A0-A112 650 ARMY COMBINED ARMS COMBAT DEVELOPMENTS ACTIVITY FORT--ETC F/0 15/7 DIVWAO HODEL DOCUMENTATION. VOLUME II. PROGRAMMER/AMALYST MAMUA--ETC(U) LALTA CACDA-TR-8-76-VOL-2-PT-1 NL 1 OF 9

Mar Processor Reproductions of all contact of the second of the second

Technical Report TR 8-76 July 1976

30 ななら AU A

Directorate of Combat Operations Analysis US Army Combined Arms Combat Developments Activity Fort Leavenworth, Kansas 66027

> DIVWAG MODEL DOCUMENTATION VOLUME II PROGRAMMER/ANALYST MANUAL

> > ACN 21704

Approved by:

Thomas E. deShazo, Jr.

Colonel, FA Chief, War Games Division

Ľeland C. Áleger 🛭 Technical Director

Reed E. Davis, Jr.

MAR 1 7 1982

Colonel, IN

Director

0-0509

This document has been approved for public releases and rester its distribution is unlimited.

> 126 1 5

ABSTRACT

This documentation provides a complete description of the Division War Game (DIVWAG) Model as it exists on 1 April 1976. The documentation is composed of an Executive Summary (Volume I), an Analyst/Programmer Manual (Volume II), and the Planner/User Manual (Volume III). Described within the volumes are the model design and development; application; capabilities; limitations; facility, equipment, and personnel requirements; data input requirements; mathematical and logical processes; program descriptions; output descriptions; user instructions; and diagnostic messages. This documentation was originally produced in April 1973 by Computer Sciences Corporation (CSC) under Contract DAAG 11-70-0875.

Acco	×
lts on y	file
500 ≱**	
A	

CONTENTS

PART 1

•		Page
TITLE PA	GE	i
ABSTRACT		111
CONTENTS		v
FIGURES	• • • • • • • • • • • • • • • • • • • •	xlviii
SECTION	I DIVWAG SYSTEM GENERAL DESCRIPTION	I-1
Chapter	1. INTRODUCTION	I-1-1
2.	Purpose	I-1-1 I-1-1 I-1-1
Chapter	2. MODEL DESIGN AND DEVELOPMENT	I-2-1
	Need for a Division War Game Model	I-2-1 I-2-2
Chapter	3. SUMMARY DESCRIPTION	1-3-1
2. 1	Model Objective	I-3-1 I-3-1 I-3-2
Chapter	4. COMPUTER SYSTEM REQUIREMENTS	1-4-1
Appendix	A. DEFINITIONS OF TERMS	I-A-1
SECTION	II CONSTANT DATA INPUT PROCESSOR	II-1
Chapter	1. GENERAL DESCRIPTION OF THE CONSTANT DATA INPUT PROCESSOR	II-1-1
2. 3.	Introduction	II-1-1 II-1-1 II-1-1 II-1-3
Chapter	2. EXECUTIVE CONTROL DATA INPUT	11-2-1
• •	ndix A. Input Requirements for Executive Control Data	TT-2-A-

		Page
Арр	endix B. Executive Control Data Input Program Descriptions	II-2-B-1
	1. Introduction	II-2-B-1
	2. Routine PREDIV	II-2-B-1
	3. Routine OVRLY7	II-2-B-8
	4. Routine OVLY10	II-2-B-8
Арр	endix C. Output Descriptions for Executive Control Data	
Ī	nput	II-2-C-1
Арр	endix D. Source Listings for Constant Data Input Processor	
	xecutive Control	II-2-D-1
Chapter	3. ORGANIZATION AND EQUIPMENT DATA INPUT PROGRAMS	II-3-1
1.	Introduction	II-3-1
2.		II-3-1
3.		11-3-1
Арр	endix A. Organization and Equipment Data Load Input	
		II-3-A-1
A-n-n	andiv B. Omegadastica and Paulament Data Tarut Bureau	
U. App	endix B. Organization and Equipment Data Input Program	II-3-B-1
D	escriptions	11-2-0-1
	1. Introduction	II-3-B-1
	2. Routine LDTOE	II-3-B-1
	3. Routine SRCH	II-3-B-14
	4. Routine DMPTOE	II-3-B-16
		II-3-B-20
App	endix C. Organization and Equipment Data Load Output	
D		II-3-C-1
	1. Introduction	II-3-C-1
		II-3-C-1
	3. Secondary Equipment for Blue and Red	II-3-C-1
	4. Unit Type Designator Breakdown Table	II-3-C-1
	5. Unit Type Designator Directory	II-3-C-4
	6. Authorized Personnel and Equipment	II-3-C-4
	o. Authorized refsonner and Equipment	11-3-0-4
App	endix D. Source Listings for Constant Data Input	
P:	rocessor Organization and Equipment	II-3-D-1
Chapter	4. TASK ORGANIZATION DATA INPUT PROGRAMS	II-4-1
1.	Introduction	II-4-1
2.		
		11-4-2

							_														Page
Appe	endi:	к А.	Tas	k 0	rgan	iza	tic	n I	Data	Lo	ad	Inp	ut i	Rec	ļui	eme	ent	s	•	•	II-4-A-1
Appe	endi	х В.	Tas	sk O	rgan	iza	tic	on l	Data	Ir	put	Pr	ogr	am	De	BCT:	ipt	io	ns	;	II-4-B-1
	1.	Intr										•									II-4-B-1
	2.	Rout	ine	ECH	LON					•		•		•			٠	•			II-4-B-2
	3.	Rout	ine	REC	OG1					•		•			•			•			II-4-B-8
	4.	Rout	ine	COM	MCK															•	II-4-B-16
	5.	Rout	ine	COM	PRS																II-4-B-16
	6.	Rout	ine	CFI	ND .																II-4-B-18
	7.	Rout																			II-4-B-20
	8.	Rout	ine	COR	DIN																II-4-B-20
	9.	Rout	ine	SUP	ORT																II-4-B-22
	10.	Rout	ine	SEQ	UEN																II-4-B-25
	11.	Rout																			II-4-B-3
	12.	Rout	ine	TOE	PUT																II-4-B-3
	13.	Rout																			II-4-B-4
	14.	Rout																			II-4-B-49
	15.	Rout																			II-4-B-50
	16.	Rout				-															II-4-B-54
-	17.	Rout																			II-4-B-60
App	enai	x C.			_																II-4-C-1 II-4-C-1
		Intr																			II-4-C-1
	2.	Unit																			II-4-C-1
	3.	Card RECO																			II-4-C-1
	4. 5.	Mess																			II-4-C-1
																					II-4-C-1
	6.	Supp																			II-4-C-1
	7.	Unit	Res	SOTO	CTOX		LSC	• •	•	•	• •	•	• •	•	•	• •	•	•	•	•	II-4-C-7
	8.	Unit Unit	- 73	e v	esia	nac	or	Su	mis i	У	• •	•	• •	•	•	• •	•	•	•	•	
	9.	Unit	S CI	reat	ea .	•	•	• •	•	•	• •	•	• •	•	•	• •	•	•	•	•	11-4-0-7
App	endi	x D.	Sou	ırce	Lis	ti	ngs	fo	r Co	nst	tant	: Da	ita	Inj	put	Pr	oce	288	801	•	
		Organ																			II-4-D-1
pter	5.	ENVI	ROM	1ENT	AL D	ATA	A II	NPU'	T PI	ROGI	RAMS	·		•	•		•	•	•	•	II - 5-1
1.	Int	roduc	tion	a .																	II-5-1
2.		tines																			II-5-1
3.		es .	-			•	•		•			•		•	•		•	•	•	•	II-5-1
App	endi	х А.	Env	viro	nmer	ita:	L Da	ata	Loa	ad :	Inpu	ıt F	Requ	ir	eme	nts	•	•	•	•	II-5-A-1
App	endi	ж В.	Env	viro	nner	ıta.	l D	ata	Inj	out	Pro	gre	am D)es	cri	pti	on	5		•	II-5-B-1
	1.	Intr	odu	ctic	n.		•										•				II-5-B-1
	2	Pour	4	TT T	-													_		_	TT-5-R-1

		Page
3. R	outine TERAIN	II-5-B-7
4. R	outine TERNLD	II-5-B-7
5. R	outine TERNDP	II-5-B-11
6. R	outine WETHLD	II-5-B-12
Appendix	C. Environmental Data Load Output Descriptions	II-5-C-1
Appendix	D Source Listings for Constant Data Input Processor	
Environ	mental Representation	II-5-D-1
Chapter 6. U	NIT GEOMETRY DATA INPUT PROGRAMS	II-6-1
	duction	II-6-1
	nes	II-6-1
3. Files	• • • • • • • • • • • • • • • • • • • •	II-6-1
Appendix	A. Unit Geometry Data Load Input Requirements	II-6-A-1
Appendix	B. Unit Geometry Data Input Program Descriptions	II-6-B-1
	ntroduction	II-6-B-1
2. R	outine DIMLD	II-6-B-1
3. R	outine LOAD28	II-6-B-1
4. R	outine DUMP28	II-6-B-10
Appendix	C. Unit Geometry Data Load Output Descriptions	II-6-C-1
1. I	ntroduction	II-6-C-1
2. E	ighty-Column Card Image, Lata File 28	II-6-C-1
3. U	nit Type Designator Record Number Directory	II-6-C-1
4. U	nit Descriptions	II-6-C-1
Appendix	D. Source Listings for Constant Data Input Processor	
Unit Ge	ometry	II-6-D-1
Chapter 7. I	NTELLIGENCE AND CONTROL DATA INPUT PROGRAMS	II-7-1
1. Intro	duction	II-7-1
2. Routi	nes	II-7 - 1
3. Files		II-7-1
Appendix	A. Intelligence and Control Data Load Input	
	ments · · · · · · · · · · · · · · · · · · ·	II-7-A-1
Appendix	B. Intelligence and Control Data Input Program	
	tions	II-7-B-1
1. т	ntroduction	TT-7-R-1

			rage
	2.	Routine INCSLD	II-7-B-1
	3.		II-7-B-10
A	ppendi	x C. Intelligence and Control Data Load Output	
·	Descr	iptions	II-7-C-1
	1.	Introduction	II-7-C-1
	2.	Eighty-Column Card Image	II-7-C-2
	3.	Constant Data on Sensors	II-7-C-2
	4.	Unattended Ground Sensors	II-7-C-2
	5.	Equipment Item Code for Target Category	II-7-C-2
	6.	Standing Operating Procedure for Reporting Hostile Forces	II-7-C-2
	7.	Flow Delay Times	II-7-C-2
	8.	Processing and Decision Delay Times	
	9.	Unit Size Based on Personnel and Equipment Counts	II-7-C-2
	10.	Target Inferences	II-7-C-1
	10.	larget interences	11-7 0-11
A	ppendi	x D. Source Listings for Constant Data Input Processor	
•		ligence and Control	II-7-D-1
Chapt	er 8.	GROUND COMBAT DATA INPUT PROGRAMS	11-8-1
1		roduction	II-8-1
2		tines	11-8-1
3	. Fil	es	11-8-1
A	ppendi	x A. Ground Combat Data Load Input Requirements	II-8-A-1
A	ppendi	x B. Ground Combat Data Input Program Descriptions	II-8-B-1
	1.	Introduction	II-8-B-1
	2.		II-8-B-1
	3.	Routine AROTE	II-8-B-6
	4.	Routine LINEAR	II-8-B-6
	5.	Routine SPP	II-8-B-7
	6.		II-8-B-8
	7.		II-8-B-8
A	ppendi	x C. Ground Combat Data Load Output Descriptions	II-8-C-1
	1.	Introduction	II-8-C-1
	2.	Eighty-Column Card Image	II-8-C-1
	3.	Line of Sight	II-8-C-1
	4.	Target and Pinpoint Probabilities	II-8-C-4
	5.	Weapon System Specifications	II-8-C-4
	6.	Weapon Target Kill Probability	II-8-C-4
	7.		

		Page
Appendix D. Source Listings for Constant Data Input		
Processor Ground Combat	•	II-8-D-1
Chapter 9. AREA FIRE DATA INPUT PROGRAMS	•	II-9-1
1. Introduction		II-9-1
2. Routines		II-9-1
3. Files		II-9-1
Appendix A. Area Fire Data Load Input Requirements	•	II-9-A-1
Appendix B. Area Fire Data Input Program Descriptions	•	II-9-B-1
1. Introduction		II-9-B-1
2. Routine AFMLD		II-9-B-1
3. Routine LOAD29		II-9-B-3
4. Routine LOAD30		II-9-B-12
5. Routine DUMP29		II-9-B-20
6. Routine DUMP30		II-9-B-23
Appendix C. Area Fire Data Load Output Descriptions		II-9-C-1
1. Introduction		II-9-C-1
2. Data File 29 80-Column Card Image		II-9-C-1
3. Weapons and Munitions Characteristics and Performance		II-9-C-1
4. Weapons and Munitions Delivery Parameters		II-9-C-1
5. Weapons and Munitions Description		II-9-C-5
6. Eighty-Column Card Image, Personnel Data		
7. Personnel Data		II-9-C-5
Appendix D. Source Listings for Constant Data Input Processo	or	
Area Fire		II-9-D-1
Chapter 10. TACFIRE DATA INPUT PROGRAMS		II-10-1
1. Introduction		II-10-1
2. Routines		II-10-1
3. Files		_= = = = =
J. Files	•	-1 10 1
Appendix A. TACFIRE Data Load Input Requirements	•	II-10-A-1
Appendix B. TACFIRE Data Input Program Descriptions		II-10-B-1
1. Introduction		II-10-B-1
2. Routine TACLD		II-10-B-1
3. Routine LOAD25		II-10-B-1
4. Routine OSORT		II-10-B-1
5. Routine DUMP25		

			Page
•	Appen	dix C. TACFIRE Data Load Output Descriptions	II-10-C-1
	1	. Introduction	II-10-C-1
	2		II-10-C-1
			II-10-C-1
	4		II-10-C-1
		dix D. Source Listings for Constant Data Input Processor	TT 10 D 1
	IAC	FIRE	II-10-D-1
Chap	ter 1	1. AIR GROUND ENGAGEMENT DATA INPUT PROGRAMS	II-11-1
	1. I	ntroduction	II-11-1
			II-11-1
			11-11-1
	Appen	dix A. Air Ground Engagement Data Load Input Requirements	II-11-A-1
		dix B. Air Ground Engagement Data Input Program	
	pes	criptions	II-11-B-1
	1	. Introduction	II-11-B-1
	2		II-11-B-1
	Annan	dix C. Air Ground Engagement Data Load Output	
,			II-11-C-1
	1	. Introduction	II-11-C-1
	2		II 11-C-1
	3		II-11-C-1
	4	. Aircraft Preparation Delay Times	II-11-C-1
	5	. Aircraft Engagement Parameters	II-11-C-1
	6		II-11-C-1
	7		II-11-C-8
	8	. Aircraft Flight Speeds	II-11-C-8
	9		II-11-C-8
	10		II-11-C-8
	11		II-11-C-8
	12		II-11-C-8
	13		II-11-C-8
	14		
			II-11-C-8
	15		II-11-C-1
	A====	dir D. Course Lietines for Constant Date Inc.	
		dix D. Source Listings for Constant Data Input	TT-11-D-1

		Page
Chapter 12. SUPPRESSION DATA INPUT PROGRAMS		II-12-1
1. Introduction		II-12-1
2. Routines		II-12-1
3. Files		
Appendix A. Suppression Data Load Input Requirements		II-12-A-1
Appendix B. Suppression Data Input Program Descriptions		II-12-B-1
1. Introduction		II-12-B-1
2. Routine SPRSLD		II-12-B-1
3. Routine SUPDMP		II-12-B-1
Appendix C. Suppression Data Load Output Descriptions .		II-12-C-1
Appendix D. Source Listings for Constant Data Input		
Processor Suppression		II-12-D-1
Chapter 13. NUCLEAR ASSESSMENT DATA INPUT PROGRAMS		11-13-1
1. Introduction		
2. Routines		II-13-1
3. Files		II-13-1
Appendix A. Nuclear Assessment Data Load Input Requireme	nts .	II-13-A-1
Appendix P. Nuclear Accomment Date Tenut Process		
Appendix B. Nuclear Assessment Data Input Program Descriptions		TT_12_D_1
Descriptions	• • •	11-13-0-1
1. Introduction		II-13-B-1
2. Routine NUCLD		
3. Routine FLD30		II-13-B-3
4. Routine CKARY		
5. Routine DMP30		II-13-B-9
Appendix C. Nuclear Assessment Data Load Output Descript	ions .	II-13-C-1
1. Introduction		II-13-C-1
2. Nuclear Assessment 80-Column Card Image		II-13-C-1
3. Weapon Combination Names		II-13-C-3
4. Weapon Statistics		II-13-C-3
5. Fuze Table Entries		II-13-C-3
6. Yield Table		II-13-C-3
7. EOH Links		II-13-C-3
8. EOH Data		II-13-C-3
9. Yield Codes and Barrier Data		II-13-C-3
10. Unprotected Personnel Distribution		II-13-C-3
11. Special Factors for Roth Teams	• • •	TT-13-C-3

	Page
Appendix D. Source Listings for Constant Data Input	
Processor Nuclear Assessment	II-13-D-1
Chapter 14. MOVEMENT DATA INPUT PROGRAMS	11-14-1
1. Introduction	II-14-1
2. Routines	II-14-1
3. Files	II-14-1
Appendix A. Movement Data Load Input Requirements	II-14-A-1
Appendix B. Movement Data Input Program Descriptions	II-14-B-1
1. Introduction	II-14-B-1
2. Routine MOVELD	II-14-B-1
3. Routine DPMOVE	II-14-B-5
Appendix C. Movement Data Load Output Descriptions	II-14-C-1
1. Introduction	II-14-C-1
2. Eighty-Column Card Image	II-14-C-1
3. Mobility Category and Travel Mode	II-14-C-2
4. Mobility Class and Exclusion Table	II-14-C-2
5. Unit Road and Cross Country Movement	II-14-C-2
6. Equipment Cross Country and Road Movement Rates	II-14-C-2
7. Ground and Air Fuel Consumption Rates	II-14-C-2
Appendix D. Source Listings for Constant Data Input	
Processor Movement	II-14-D-1
Chapter 15. ENGINEER DATA INPUT PROGRAMS	II-15-1
1. Introduction	II-15-1
2. Routines	II-15-1
3. Files	II-15-1
Appendix A. Engineer Data Load Input Requirements	II-15-A-1
Appendix B. Engineer Data Input Program Descriptions	II-15-B-1
1. Introduction	II-15-B-1
2. Routines ENGLD and DUMP17	II-15-B-1
3. Routines GET17, IFILE, IDENT, and ITYPCK	II-15-B-8
4. Routine BARLD	II-15-B-8
Appendix C. Engineer Data Load Output Descriptions	II-15-C-1
1. Introduction	II-15-C-1
2. Barrier Segment Location and Status	TT-15-C-1

	Page
3. Engineer 80-Column Card Image	II-15-C-1
4. Engineering Task Parameters	II-15-C-1
5. Environmental and Troop Rates and Rate Modifiers	II-15-C-1
6. Equipment Requirements and Rate Modifiers	II-15-C-1
7. Minefield Forcing Casualties	II-15-C-1
Appendix D. Source Listings for Constant Data Input	
Processor Engineer	II-15-D-1
Chapter 16. AIRMOBILE DATA INPUT PROGRAMS	II-16-1
•	
1. Introduction	II-16-1
2. Routines	II-16-1
3. Files	II-16-1
Appendix A. Airmobile Data Load Input Requirements	II-16-A-1
Appendix B. Airmobile Data Input Program Descriptions	II-16-B-1
1. Introduction	II-16-B-1
2. Routine FIL7LD	II-16-B-1
Appendix C. Output Descriptions for Airmobile Data Input	II-16-C-1
Appendix D. Source Listings for Constant Data Input	
Processor Airmobile	II-16-D-1
Chapter 17. COMBAT SERVICE SUPPORT DATA INPUT PROGRAMS	II-17-1
1. Introduction	II-17-1
2. Routines	II-17-1
3. Files	II-17-1
Appendix A. Combat Service Support Data Load Input	
Requirements	II-17-A-1
Appendix B. Combat Service Support Data Input Program	
Descriptions	II-17-B-1
1. Introduction	II-17-B-1
2. Routine CSSLD	II-17-B-1
3. Routine LOAD11	II-17-B-1
•	II-17-B-1
	II-17-B-9
5. Routine EDITF2	11-1/-5-9

		Page
Appendix C. Combat Service Support Data Load Output		
Descriptions		II-17-C-1
1. Introduction	• •	II-17-C-1
2. Eighty-Column Card Image	• •	II-17-C-1
 Elapsed Time to Handle Vehicles and Class I 		
Consumption Rate	• •	
4. Weights and Volumes of Consumables and Vehicles		II-17-C-4
5. Classes of Supply	• •	II-17-C-4
6. Transport Preference for Hauling Consumables	• •	II-17-C-4
7. Major End Items and Personnel Available Daily for		
Resupply	• •	II-17-C-4
Amendia D. Course Identines for Constant Data Trans		
Appendix D. Source Listings for Constant Data Input		II-17-D-1
Processor Combat Service Support	• •	11-1/-0-1
SECTION III ORDERS INPUT PROCESSOR		III-1
	• •	
Chapter 1. GENERAL DESCRIPTION OF THE ORDERS INPUT PROCESSOR .		III-1-1
1. Introduction		III-1-1
2. Input Processor Subsystems		111-1-1
Chapter 2. THE DIVWAG SCENARIO LANGUAGE COMPILER	• •	III-2-1
1. General Description	• •	III-2-1
2. Description of Processing		
3. DSL Logical Flow	• •	III-2-10
4. Routine Descriptions	• •	III-2-10
Amonday A. Ingut Boundaryonto for DIRIAC Concents		
Appendix A. Input Requirements for DIVWAG Scenario Language Compiler		III-2-A-1
Language compiler	• •	111-2-A-1
1. Introduction		III-2-A-1
2. DSL Composition		
3. DSL Order Clauses		
4. DSL Conditional Clauses		
5. Control Cards and Deck Structure		
	• •	
6. DSL Rules and Techniques	• •	III-2-A-33
7. DIVWAG Scenario Language Vocabulary	• •	III-2-A-38
Appendix B. DIVWAG Scenario Language Compiler Program		
Descriptions		III-2-B-1
	- •	-
1. Introduction		III-2-B-1
2. Common DSLMN		III-2-B-1
3. Common CONST		III-2-B-3

		Page
Appendi	x A. Operating Instructions Data Input Requirements	III-3-A-1
1.	Sensor Control	III-3-A-1
2.	Introduction of Intelligence	III-3-A-13
3.	-	
4.	- 	
Appendi	x B. Operating Instructions Program Descriptions	III-3-B-1
1.	Introduction	III-3-B-1
2.	Routine DATAST	III-3-B-1
3.	Routine VINKLD	
4.	Routine CNVRT	
5.		
6.		
7.	Routine PLOAD	
8.		
9.	Routine INTLIN	
10.		
Appendi	x C. Output Descriptions for Operating Instructions	III-3-C-1
	x D. Source Listings for Orders Input Processor ting Instructions	III-3-D-1

PART 2

																									Page
TITLE PAG	Œ				•		•	•	•		•	•		•		•	•					•	•		i
CONTENTS	•								•		•				•	•	•	•	•		•	•	•		iii
FIGURES .	•				•		•						•	•	•	•	•	•	•	•	•	•	•		ix
SECTION I	v	PERI	OD E	ROC	ESS	OR			•			•		•	•			•	•	•		•		•	IV-1
Chapter 1		GENE	RAL	DES	CRI	PTI	ИС	OF	T	HE	PE	RI	CC	PE	loc	CES	so	R	•	•	•	•			IV-1-1
		oduc		ı .	•													•				•		•	IV-1-1
2. P	roc	essi	ng S	Sequ	ence	е.	•	•	•			•	٠			•	•			•	•	•		•	IV-1-1
		AG S																							IV-1-6
Chapter 2			•																						IV-2-1
1. I	ntr	oduc	tion		•																				IV-2-1
		ary		_	**	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-2-1
3. E		ary	Lad.	. 1	.VE	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-2-1
J. E	ven	t Sc	neai	11 111	g K	out.	TIIE	:5	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	•	
4. E	ven	t Ta	рте		•	• •	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	IV-2-1
5. B	Batt	le U	pdat	e.	•	• •	•	•	•	• •	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	IV-2-4
Appen	dix	. A.	Exe	cut	ive	Con	ntı	ro1	I	npı	ıt	Re	qui	re	me	ent	s	•	•	•	•	•	•	•	IV-2-A-1
Appen	dix	В.	Exe	cut	ive	Cor	nti	:01	P	rog	ŗa	m 1	Des	cı	ip	ti	on	s	•	•	•	•	•	•	IV-2-B-1
1		Intr	oduc	tio	n .																				IV-2-B-1
2	2.	Rout	ine	MAT																					IV-2-B-1
_		Rout																							IV-2-B-1
	-				_	-	•	•	•		•	•	•	•	•	•	•	•	•	•	•	٠	•	•	
•	•	Rout	ine	E5K	• •																				IV-2-B-15
	•	Rout				-	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	٠	•	IV-2-B-29
6	•	Rout	ine	FOR	CRD	•	•	•	•			•	•		•		•				•	•		•	IV-2-B-38
7	7.	Rout	ine	ENG	ORD	•																			IV-2-B-38
8	3.	Rout	ine	EVT	SET																				IV-2-B-40
9) _	Rout	ine	PHT	EVT																				IV-2-B-42
10	•	Rout				•																			IV-2-B-45
11	-					-				• •															
11	•	Rout	ine	TNK	UPI	•	٠	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-2-B-45
Appen	dix	с.	Out	put	De	scr:	Ĺpt	io	ns	fo	r	Ex	ecu	ıti	ve	<u> </u>	Con	tr	o 1	. R	Ιοι	ıti	ne.	es	IV-2-C-1
Appen	diz	D -	Sor	ITCE	1.1	ati:	700	, f	٥٣	Pe	7-1	οd	P+		ءم،	180		Εv	-	,,,+	4.	7 e			
Cont			•				_																		IV-2-D-1
Chapter 3	3.	UNIT	REI	PRES	ENT	ATI	NC		•				•		•	•		•	•		•		•	•	IV-3-1
1. G	ene	ral												_			_								IV-3-1

		Page
2. Ta	sk Organization	IV-3-3
Append	ix A. Unit Representation Input Requirements	IV-3-A-1
1.	Introduction	IV-3-A-1
2.	Organization and Equipment Constant Data Preparation .	IV-3-A-1
3.	<u> </u>	IV-3-A-1
4.	Considerations Prior to Preparing TOE Data	IV-3-A-2
5.	Preliminary Steps	IV-3-A-4
6.	Senior and Subordinate Type Units	IV-3-A-8
7.		IV-3-A-15
8.		IV-3-A-17
9.		IV-3-A-20
10.	_ · · · · · · · · · · · · · · · · · · ·	IV-3-A-22
11.		IV-3-A-25
12.		IV-3-A-25
13.		IV-3-A-26
14.		IV-3-A-31
15.	- · · · · · · · · · · · · · · · · · · ·	IV-3-A-39
16.		IV-3-A-42
Append	ix B. Unit Representation Program Descriptions	IV-3-B-1
1.	Introduction	IV-3-B-1
. 2.		IV-3-B-1
3.		IV-3-B-4
4.		IV-3-B-4
5.		IV-3-B-9
		IV-3-B-16
6.		IV-3-B-21
7.		IV-3-B-26
8.		IV-3-B-27
9.	Routine JOIN31	14-3-6-27
Append	ix C. Output Descriptions for Unit Representation	IV-3-C-1
	ix D. Source Listing for Period Processor Unit	
Repre	sentation	IV-3-D-1
pter 4.	ENVIRONMENTAL REPRESENTATION	IV-4-1
1. Ir	troduction	IV-4-1
2. Te	rrain Representation	IV-4-1
	ather	IV-4-8
	rrain Masking	IV-4-9
Append	ix A. Environmental Representation Input Requirements .	IV-4-A-1
1.	Introduction	IV-4-A-1

																				Page
	2.	Data																		IV-4-A-1
	3.	Terr																		IV-4-A-8
	4.	Data	Prep	arat	ion	fo	r V	Veat	her	Se	le	cti	on	•	•	•	• •	•	•	IV-4-A-11
App	endi	жB.	Envi	ron	ent	al	Ret	res	ent	ati	.on	Pr	ogr	am	Des	scri	pti.	ons	5	IV-4-B-1
	1.	Intr	oduct	ion																IV-4-B-1
	2.	Rout	ine U	PMAS	K														•	IV-4-B-1
	3.	Rout	ine E	LEVA	T														•	IV-4-B-3
	4.	Rout	ine V	ETTH	IR		٠	•			•	•		•		•		•	•	IV-4-B-5
App	endi	жC.	Envi	roni	ent	al	Re	pres	sent	ati	on	Ou	tpu	t I	esc	rip	tio	ns	•	IV-4-C-1
	1.	Intr	oduct	ion																IV-4-C-1
	2.																			IV-4-C-1
	3.																			IV-4-C-1
Ann	en di	жD.	Sout	ce T	.iet	·ina	·e ·	fo r	Per	-i o i	ı p.	roc	-089	or.	Env	ri r c	າກຫຂ	nti	a 1	
		entat																		IV-4-D-1
Chapter	5.	BATT	LEFIE	ELD A	ND	UNI	T (GEO	ÆTI	ξÝ.		••		•						IV-5-1
1.	Tnt	roduc	tion																	IV-5-1
2.		tlefi																		IV-5-1
3.	Rep	resen	tatio	n of	Re	sol	ut	ion	Uni	ts	•	•	•		•			•	•	IV-5-5
App	endi	x A.	Unit	Geo	ne t	ry	Inj	put	Rec	ານ1າ	en	en t	.s.	•				•	•	IV-5-A-1
	1.	Tota	oduct	-ion																IV-5-A-1
	2.		ning																	IV-5-A-1
	3.	Unit	s wit	h Co	· TV	n I) i m	one:	íone	97		ni e	++1	hii	+101	ne.	• •	•	•	IV-5-A-4
	4.		pmen																	IV-5-A-8
	5.		Geor																	IV-5-A-10
	6.		ribut																	IV-5-A-12
	7.		Geor																	IV-5-A-14
App	endi	ж В.	Bati	:lef:	L el c	i ar	ıd '	Uni	t Ge	:01De	etr	y P	rog	;ra:	n D	esci	ript	:10	ns	IV-5-B-1
	1.	Intr	oduci	-105																IV-5-B-1
	2.		ine 2		-			-	-	-		-								IV-5-B-1
	3.		ine A		_												• •			IV-5-B-4
	4.		ine l																	IV-5-B-6
		.x C.																		*** * ^ *
Ge	ome t	ry Ro	utino	28 .	•	•	•	•	• •	•	• •	•	•	•	•	• •	• •	•	•	IV-5-C-1
	1.	Intr	oduc	tion																IV-5-C-1

			Page
	2. 3.	Routine ZONE	IV-5-C-1 IV-5-C-1
Арр	endi	x D. Source Listings for Period Processor Battlefield	
		it Geometry	IV-5-D-1
Chapter	6.	INTELLIGENCE AND CONTROL MODEL	IV-6-1
1.	Mil	itary Activities Represented	IV-6-1
2.		ign of the Intelligence and Control Model	IV-6-7
3.		elligence and Control Model Interation with Other DIVWAG	
	, Mo	dels	IV-6-10
4.	Col	lection Submodel	IV-6-11
5.	Cre	ative Processing Submodel	IV-6-67
6.	Dec	ision Submodel	IV-6-74
7.	Ass	essment of Ground Sensors	IV-6-83
App	endi	x A. Intelligence and Control Model Input Requirements	IV-6-A-1
	1.	Introduction	IV-6-A-1
	2.	Intelligence and Control Input Card Format	IV-6-A-1
	3.	General Radar Data	IV-6-A-2
	4.	General Radar Data, Continued	IV-6-A-6
	5.	Radar Ranges	IV-6-A-9
•	6.	General Countermortar/Counterbattery Radar Data	IV-6-A-13
	7.	General Countermortar/Counterbattery Radar Data,	
		Continued	IV-6-A-15
	8.	Ground Based Radar Range Brackets for Sensor Movement .	IV-6-A-17
	9.	Air Reconnaissance/Surveillance Constant Data	
		Requirements	IV-6-A-19
	10.	Sensor Constant Data Input Format	IV-6-A-25
	11.	Sensor Combination Load Input Format	IV-6-A-30
	12.	LOH Decision Control Matrix	IV-6-A-30
	13.	LOH or Army Aviation Fixed	IV-6-A-35
		Wing Reconnaissance Vehicle TOE	
	14.	LOH or Army Aviation Fixed Wing Reconnaissance Vehicle	
		TOE Card Format	IV-6-A-35
	15.	Intelligence Handling Elapsed Time	IV-6-A-38
	16.	Target Inferences	IV-6-A-40
	17.	Target Inferences from Counts and Intervals, Continued	IV-6-A-4
	18.	Dissemination of Intelligence Information	IV-6-A-51
	19.	Unattended Ground Sensors	IV-6-A-5
	20.	Coding of Vehicles and Weapons	IV-6-A-60
	21.	Intelligence and Control Data Deck Structure	IV-6-A-62
App	endí	x B. Intelligence and Control Model Program	
		1-11	TT (D 1

																								Page
1.	Introduc	tion																	,					IV-6-B-1
2.	Routine	INCE	XC																,					IV-6-B-1
3.	Routine	CCOL	LM																					IV-6-B-4
4.	Routine	COLL	CT																	•				IV-6-B-14
5.	Routine	CCOL	LF																					IV-6-B-26
6.	Routine													_										IV-6-B-37
7.	Routine	PLNI	NT																					IV-6-B-42
8.	Routine	CIRI	NT																					IV-6-B-45
9.	Routine	CKIN	T.						-		-	-	-											IV-6-B-48
10.	Routine	IQAN	IGC															•						IV-6-B-50
11.	Routine	•																						IV-6-B-52
12.	Routine	PROC	ES																					IV-6-B-57
13.	Routine	UTSE																						IV-6-B-70
14.	Routine	SUTE																						IV-6-B-73
15.	Routine	TAR										_								•				IV-6-B-76
16.	Routine	ARES	PO			_	_		-	-	-	-	-	-	-			-				•		IV-6-B-79
17.	Routine			•	:		•	•	•	•	•	:	•	•	•	•	•	•		•	•	•		IV-6-B-79
18.	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	IV-6-B-81
19.	Routine			•	•	•	•		•	•	•	•	•	•	•	•	•			•	•	-	•	IV-6-B-97
20.	Routine			•	•	•	-	-	:	-	-	-	•	-	-	•	•	•		•	•	•	•	IV-6-B-102
21.	Routine			•	•	•	•	-	-	-	-	-	-	-	-	-	-	•		•	•	•	•	IV-6-B-110
22.	Routine			•	•	•	•	•	-	-	-	•	-	•	•	•	•	•	•	•	•	•	•	IV-6-B-111
23.	Reconna			• ∩110	•	933	· p	•	-	-		-	-		-		-			•	•	•	•	IV-6-B-113
24.	Routine					•												•		•	•	•	•	IV-6-B-115
25.	Routine			•	•	•	•	•	-	-	-	-	-		-	-	-	•		-	•	•	•	IV-6-B-118
26.	Routine			•	•	•	•	•	•	•	-	•	-	•	-	•	•	-	•	•	•	•	•	IV-6-B-118
27.	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-119
	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-119
28.				•	•	•	•	•	-	•	-	-	-	_	-	-	•	-	•	•	•	•	•	
29.	Routine			٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-126
30.	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-128
31.	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-138
32.	Routine			•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-138
33.	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-141
34.	Routine			•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-141
35.	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-147
36.	Routine			٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-153
37.	Routine			•	•	•	•	•	•	•	-	•	•	•	-	-	-	•	•	•	٠	٠	•	IV-6-B-155
38.	Routine			•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-158
39.	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-159
40.	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-159
	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	IV-6-B-182
	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-194
	Routine			•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-214
44.	Routine	NONE	ŒS	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-B-224
	k C. Ou															:e	an	ď	Co	nt	r	1		
Model		• •		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-6-C-1
1	Introdu	ation																						TV-6-C-1

		Page
2.	FILE12 and Sensor Redundancy	IV-6-C-1
3.	Countermortar/Counterbattery Radar	IV-6-C-3
4.	MOVSEN	IV-6-C-6
5.	Sensor Assessments	IV-6-C-8
6.	Routine RCONDT	IV-6-C-11
7.	Routine MOVREC	IV-6-C-11
8.	Routines GETSTD, SHTDWN, RECHOM, and RECDMP	IV-6-C-11
9.	Routine RECON1	IV-6-C-15
10.	Routine RECON2	IV-6-C-15
11.	Routine RECON3	IV-6-C-21
Appendi	x D. Source Listings for Period Processor Intelligence	
	ontrol Model	IV-6-D-1
Appendi	x E. References	IV-6-E-1

The second section of the second seco

PART 3

															Page
TITLE P	AGE											•			i
CONT ENT	s.											•			iii
FIGURES												•			ix
SECTION	IV	PERIOD	PROCES	SOR	(Cont	inue	i)								
Chapter	7.	GROUND	COMBAT	MODE	L										IV-7-1
1.	Mil	itary Ac	tivity	Repr	esent	ed				•					IV-7-1
2.	Mod	el Desig	n							•				•	IV-7-2
3.	Sub	nodel Sp	ecifica	ation	s.								•	•	IV-7-12
4.		tory Tap													IV-7-73
App	endi:	x A. Gr	ound Co	ombat	Mode	l In	put F	Requi	rene	nts			•		IV-7-A-1
	1.	Introdu	ction												IV-7-A-1
	2.	Weapon/													IV-7-A-2
	3.	Specifi													IV-7-A-6
	4.	Specifi													IV-7-A-10
	5.	Targets													IV-7-A-15
	6.	Line of													IV-7-A-18
	7.	Horizon	and B	ackgr	ound										IV-7-A-22
	8.	Ground													IV-7-A-25
Арр	endi	x B. Gr	ound C	ombat	Mode	1 Pr	ogran	a Des	crip	tio	ns		•		IV-7-B-1
	1.	Introdu	ction												IV-7-B-1
	2.	Routine	GCMDT												IV-7-B-2
	3.	Routine													IV-7-B-5
	4.	Routine	GCM												IV-7-B-6
	5.	Routine													IV-7-B-18
	6.	Routine													IV-7-B-27
	7.	Routine													IV-7-B-29
	8.	Routine													IV-7-B-32
	9.	Routine	GCTDE	т											IV-7-B-38
	10.	Routine													IV-7-B-44
	11.	Routine													IV-7-B-45
	12.	Routine													IV-7-B-47
	13.	Routine													IV-7-B-48
	14.	Routine													IV-7-B-51
	15.	Routine													IV-7-B-53
	16.	Routine													IV-7-B-55
	17.	Routine													IV-7-B-61

																Page
	App	endi	ж С.	Ground	Combat	Model	Outpu	ıt De	escr	ipti	ons.	•		•		IV-7-C-1
		1.	Intr	oductio	n											IV-7-C-1
		2.			ry and T											IV-7-C-1
		3.			Results											IV-7-C-7
		4.			duling											IV-7-C-9
			_	_							_					
					Listing											
	C	omba	t Mod	el .		• • •	• • •		•	• •	• •	•	• •	•	•	IV-7-D-1
	App	endi	х E.	Refere	nces .											IV-7-E-1
Chap	ter	8.	AREA	FIRE M	ODEL .				•							IV-8-1
	1.	W41.	i +	A 0 to d 2 to d	tr Donno	aanta	a									IV-8-1
	2.				ty Repre											IV-8-1
	3.															IV-8-1
	_				ications											IV-8-4 IV-8-21
	4.	HIS	cory .	lape ou	tput .		• • •	• •	•	• •	• •	•	• •	•	•	14-0-21
	App	endi:	х А.	Area F	ire Mode	l Inp	ut Rec	uire	men	ts					•	IV-8-A-1
		1.	Intro	oductio	n											IV-8-A-1
		2.			es for t											IV-8-A-3
		3.			tion Del											IV-8-A-9
		4.			ition Pr											IV-8-A-12
		5.			tion Let											IV-8-A-14
		6.			for Ene											IV-8-A-16
		7.			osture											IV-8-A-18
		8.			rotectio											IV-8-A-21
		9.			ata Deck											IV-8-A-24
	400	ond4:			ire Mode											IV-8-B-1
	Thh	511 4 1.		WIEG I	TIE MOGE	1 110	Bram r	,csc:	. TPC	1011	•	•	• •	•	•	1V-0-D-1
		1.	Intr	oductio	n											IV-8-B-1
		2.	Rout	ine FIR	EDT											IV-8-B-1
		3.			AFR											IV-8-B-8
		4.		ine AKI												IV-8-B-23
		5.		ine OAS												IV-8-B-24
	App	endi	ж С.	Area F	ire Mode	1 Out	put De	scri	Lpti	ons	• •	•	• •	•	•	IV-8-C-1
		1.	Intr	oductio	n											IV-8-C-1
		2.	Area	Fire M	odel Out	put			•			•		•	•	IV-8-C-1
				0-	7.3	_ ^		. ,				_				
	App	endi:	χ μ.	Source	Listing	s for	rerio	od Pi	roce	BSOI	Ar	ea				TT: 0 % 1

	Page
Appendix E. References	. IV-8-E-1
Chapter 9. TACTICAL FIRE DIRECTION SYSTEM MODEL	. IV-9-1
1. Military Activity Represented	. IV-9-1
2. Model Design	
3. Submodel Specifications	. IV-9-4
Appendix A. Tactical Fire Direction System Input	
Requirements	. IV-9-A-1
1. Introduction	. IV-9-A-1
2. Tacfire Data Base	. IV-9-A-1
3. Data Required	
4. Preparation of the TACFIRE Data Base for Card Input	. IV-9-A-17
5. Summary of Data Base Preparation	
6. TACFIRE Constant Data Deck Structure	. IV-9-A-25
Appendix B. TACFIRE Model Program Description	. IV-9-B-1
1. Introduction	. IV-9-B-1
2. Routine OVER9	. IV-9-B-1
3. Routine AFTFCl	
4. Routine AFTFC2	. IV-9-B-17
Appendix C. TACFIRE Model Output Descriptions	. IV-9-C-1
1. Introduction	. IV-9-C-1
 Introduction	
_	
Appendix D. Source Listings for Period Processor TACFIRE	
Model	. IV-9-D-1
Appendix E. References	. IV-9-E-1
Chapter 10. AIR GROUND ENGAGEMENT MODEL	. IV-10-1
1. Military Activity Represented	. IV-10-1
2. Model Design	
3. Submodel Specifications	. IV-10-8
4. History Tape Output	IV-10-27
Appendix A. Air Ground Engagement Model Input Requirements	IV-10-A-
1. Introduction	. IV-10-A-1
2 Card Format Relationships	TV-10-4-1

	.	age
	3. Data Input by Mission Type (2601)	IV-10-A-2
	4. Data Input by Aircraft Type (2602)	[V-10-A-13
	5. Data Input by Weapon Type (2603)	IV-10-A-24
	6. Results for Various Air Strike Situations (2701)	IV-10-A-35
	7. Air Ground Engagement Constant Data Deck Structure :	IV-10-A-42
Anr	endix B. Air Ground Engagement Model Program Descriptions .	[V-10-R-1
	1. Introduction	[V-10-B-1
	2. Routine AIRGND	
	3. Routine BTF	
	4. Routine ATB	[V-10-B-9
	5. Routine AVAIL	
	6. Routine PREPTM	
	7. Routine TIMES	[V-10-B-19
	8. Routine SELECT	[V-10-B-24
	9. Routine ENRATA	[V-10-B-25
	10. Routine TORA	IV-10-B-36
	ll. Routine BTA	[V-10-B-44
	12. Routine SEG5	IV-10-B-49
App	endix C. Air Ground Engagement Model Output Descriptions . :	IV-10-C-1
	1. Introduction	
	2. Air Mission Request Routine ATB	
	3. En Route Attrition - Routine ENRATA	
	4. Engagement Results - Routine TORA	
	5. Safe Point Update - Routine BTF	IV-10-C-20
	6. Mission End - Routine BTA	[V-10-C-21
455	endix D. Source Listings for Period Processor Air	
	round Engagement Model	IV-10-D-1
App	endix E. References	[V-10-E-1
Chapter	11. SUPPRESSION MODEL	IV-11-1
1.	Introduction	[V-11-1
2.	Suppression of Movement	
3.	Suppression of Indirect Fire	[V-11-1
4.	Suppression of Air Defense Fire	(V-11-1
5.	Interfaces with Other Models	IV-11-2
Арр	endix A. Suppression Model Input Requirements	(V-11-A-1
	1	
	1. Introduction	
	4. Assembling the Data Dase	LV=エエーM=L

			Page
	3.	Suppression Constant Data Deck Structure	IV-11-A-5
Αţ	ppendi	x B. Suppression Model Program Descriptions	IV-11-B-1
	1. 2.	Introduction	IV-11-B-1 IV-11-B-1
A	ppendi	x C. Suppression Model Output Description	IV-11-C-1
	1. 2.	Introduction	IV-11-C-1 IV-11-C-1
A	ppendi Suppr	x D. Source Listings for Period Processor ression Model	IV-11-D-1
Chapte	er 12.	NUCLEAR ASSESSMENT MODEL	IV-12-1
2	. Mod	itary Activity Represented	IV-12-2
A	ppendi	x A. Nuclear Assessment Model Input Requirements	IV-12-A-1
	1.	Introduction	IV-12-A-1
	2.	Data Requirements	IV-12-A-1
	3.	Weapon/Munition Characteristics	
	4.	Weapon Effects	IV-12-A-11
	5.	Equipment Vulnerability	IV-12-A-15
	6.	Barrier/Facility Vulnerability	IV-12-A-17
	7.		IV-12-A-17
	8.		IV -12-A-23
	9.		IV-12-A-25
A	ppendi	ix B. Nuclear Assessment Model Program Descriptions	IV-12-B-1
	1.	Introduction	IV-12-B-1
	2.	Routine NAM	
	3.	Routine NAM4	IV-12-B-2
	4.	Routines NAM1 and NAM2	IV-12-B-2
	5.		IV-12-B-4
	6.		IV-12-B-6
	7.	Routine BURST	
	8.	Routine NDRD	IV-12-B-10
	9.		IV-12-B-12
	10.	Routine ASUNIT	IV-12-B-14
	11.	Routine HEMOVN	IV-12-B-18

																								<u>Page</u>
12.	Routine	UPRMPT																						IV-12-B-20
13.	Routine	NASPER		•														•						IV-12-B-22
14.	Routine	NASEOH																						IV-12-B-25
15.	Routine	FNDLNK																						IV-12-B-29
16.	Routine	FNDLOS																						IV-12-B-30
17.	Routine	NPEPL																						IV-12-B-33
18.	Routine	STUPRO																						IV-12-B-34
19.	Routine	CFUN																						IV-12-B-36
20.	Routine	BANCIR		•				•	•															IV-12-B-38
21.	Routine	NBARAS											•											IV-12-B-40
22.	Routine	BARUPE																						IV-12-B-43
23.	Routine	BARNUM																						IV-12-B-44
24.	Routine	NCUNIT																						IV-12-B-47
25.	Routine	BAMUNT		•	•	•	•	•	•	•	•	•	•	•		•	•	•	٠	•	•	•	•	IV-12-B-49
Append	ix C. Nu	clear A	88	es	SD	ae i	nt	M	od	el	01	utj	u 1	t 1	De	S C 1	rij	pt:	ioı	as		•		IV-12-C-1
1.	Introduc	tion																						IV-12-C-1
2.	Routine 1																							IV-12-C-1
3.	Routine 1	NBARAS																						IV-12-C-6
4.	Routine 1	NCUNIT																						IV-12-C-8
5.	Routine 1																							IV-12-C-9
Append	ix D. So	urce Li	st	in	gs	5 1	Eo:	r I	Pe	rio	bo	P	roc	ces	886	or	N	ıc.	lea	ar				
																						•		IV-12-D-1
Append:	ix E. Rei	ference	2																					TV-12-F-1

PART 4

		Page
TITLE PAGE	•••••	i
CONTENTS		.iii
FIGURES	• • • • • • • • • • • • • • • • • • • •	x
SECTION IV	PERIOD PROCESSOR (Continued)	
Chapter 13.	MOVEMENT MODEL	IV-13-1
1. Mil	litary Unit Movement	IV-13-1
2. Mod	lel Design	IV-13-1
3. Sub	omodel Specifications	IV-13-9
4. His	story Tape Output	IV-13-21
Appendi	x A. Movement Model Input Requirements	IV-13-A-1
1.	Introduction	IV-13-A-1
2.	Assembling the Data Base	IV-13-A-4
3.	Travel Mode and Mobility Category	IV-13-A-18
4.	UTD by Mobility Category	IV-13-A-19
5.	Mobility Classification	IV-13-A-22
6.	UTD Class Exclusion List	IV-13-A-24
7.	Unit Road Movement Rate	IV-13-A-24
8.	Vehicular Road Movement Rates	IV-13-A-28
9.	Unit Cross Country Movement Rate	IV-13-A-30
10.	Vehicular Cross Country Movement Rates	IV-13-A-33
11.	Ground Movement Fuel Consumption Rate	IV-13-A-35
12.	Aircraft Fuel Consumption Rates	IV-13-A 37
13.	Breach Force Decision Tables	IV-13-A-40
14.	Movement Model Constant Data Deck Structure	IV-13-A-40
Appendi	x B. Movement Model Program Descriptions	IV-13-B-1
1.	Introduction	IV-13-B-1
2.	Routine MOVESR	IV-13-B-1
3.	Routine MOVEDT	IV-13-B-7
4.	Routine OBSRCH	IV-13-B-10
5.		IV-13-B-10
6.		
0.	Routine OVER13	IV-13-B-17
Appendi	x C. Movement Model Output Descriptions	IV-13-C-1
1.	Introduction	IV-13-C-1
	Routine MOVF	TV-13-C-1

																										Page
		3.	Rout	ine	MOV	EDT																				IV-13-C-1
		4.	Rout	ine	MOV	ESR					•															IV-13-C-5
		5.	Rout	ine	OBS	RCH		•				•					•	•	•	•	•	•	•			IV-13-C-7
	422		c D.	500	~~~	T 4.	a+1	~~		~~	Do:	-4		D.		~~		_	w.							
			•																						•	IV-13-D-1
Cha	ter	14.	ENG	INEE	R M	ODE	L.	•							•					•	•					IV-14-1
	1.	Mil:	ltary	Act	ivi	ty :	Rep	re	sen	ted	i .															IV-14-1
	2.		el De																							IV-14-2
	3.	Subi	nodel	Spe	cif	ica	tio	ns	•		•	•	•		•	•	•	•	•	•	•		•	•	•	IV-14-8
	App	endi	к А.	Eng	ine	er 1	Mod	el	In	put	: R	eq	uiı	en:	en	ts										IV-14-A-1
		1.	Intr	odua	+10	n																				IV-14-A-1
		2.	Data			or i	 Rar	ri.	•			Fo.	. .	•	• • 1 =	•	•	•	•	•	•	•	•	•	•	IV-14-A-2
		3.	Data																							
		4.	Engi																							IV-14-A-29
	Appe	endi	к В.																							
	••			_						_					•											
		1.	Intr		-		• •																			IV-14-B-1
		2.	Rout																							IV-14-B-2
		3.	Rout						•																	IV-14-B-12
		4.	Rout						•																	IV-14-B-15
		5.	Rout						•																	IV-14-B-19
		6.	Rout						•																	IV-14-B-23
		7.	Rout						•																	IV-14-B-28
		8.	Rout						•																	IV-14-B-32
		9,	Rout						•																	IV-14-B-38
		10.	Rout																							IV-14-B-38
	_	11. 12.	Rout						•																	IV-14-B-40
	-	13.	Rout						•																	IV-14-B-40 IV-14-B-40
		14.	Rout						:																	IV-14-B-40
		15.	Rout						•																	IV-14-B-40
	-	16.	Rout																							IV-14-B-44
	-	17.	Rout																							IV-14-B-44
		18.																								IV-14-B-44
		19.	Rout			•																			•	
		20.																								IV-14-B-48
	App	endi	k C.	Eng	ine	er 1	Mod	el	0u	tpu	ıt :	De	SC1	:ip	ti	On	S	•	•	٠	•	•	•	•	••	IV-14-C-1
		1.																								IV-14-C-1
		2.	Addi	tion	al	Pri	nt	St	ate	mer	ıts	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-14-C-9
	A		v Th	C ~	***	7.4	e + 1	~ ~	. <i>e</i>	_=	D.	. d	ئے	D ~				_	E	. ~ 4			_			
			κD.	SQU	ırce	L1	s C L	ug	s I	or	re	r1(υa	rI	UC	ES	80	I	LI	r Bı						TV-14-D-1
	1410	16 1 200 1											-			•		•	•	-	•		•		•	

				Page
Chapter	15.	AIRMOBILE MODEL		IV-15-1
1.	Mil:	itary Activities Represented		IV-15-1
2.		ign of the Airmobile Model		IV-15-8
3.	Subi	model Specifications	•	IV-15-9
Арр	endi:	x A. Airmobile Model Input Requirements	•	IV-15-A-1
	1.	Introduction		IV-15-A-1
	2.	Data Input by Other Load Programs	•	IV-15-A-1
	3.	Second Priority Equipment Items	•	IV-15-A-1
	4.	Mix Table	•	IV-15-A-2
	5.	Forward Area Rearm and Refuel (FARR) Area Definitions		IV-15-A-6
	6.	Refuel Device Definition	•	IV-15-A-6
	7.	Suppression Mission Data (GTAA)		IV-15-A-9
	8.	Acquisition Data		IV-15-A-1.
	9.	Aircraft Data		IV-15-A-15
	10.	Air Defense Weapon Data		IV-15-A-17
	11.	Airmobile Constant Data Deck Structure	•	IV-15-A-30
Арр	endi	x B. Airmobile Model Program Descriptions		IV-15-B-1
	1.	Introduction		IV-15-B-1
	2.	Routine AMBLEX		IV-15-B-1
	3.	Routine ACCPT		IV-15-B-1
	4.	Routine ACCPT1		IV-15-B-4
	5.	Routine ACCPT2	•	IV-15-B-14
	6.	Routine ACCPT3	•	IV-15-B-17
	7.	Routine ASULT	•	IV-15-B-19
	8.	Routine ASULT1	•	IV-15-B-20
	9.	Routine ASULT2	•	IV-15-B-25
	10.	Routine ASULT3	•	IV-15-B-30
	11.	Routine ASULT4		IV-15-B-3
	12.	Common Block FRRA	•	IV-15-B-39
	13.	Routine RREXEC		IV-15-B-41
	14.	Routine RRFRRA		IV-15-B-42
	15.	Routine RRQUE		IV-15-B-50
	16.	Routine RRFLD		IV-15-B-55
	17.	Routine REFUEL		IV-15-B-63
	18.	Routine RATIM		IV-15-B-67
	19.	Routine RRTURN		IV-15-B-68
	20.	Routine RLEAS		IV-15-B-70
	21.	Routine RLEAS1		IV-15-B-73
	22.	Routine RLEAS2		IV-15-B-78
	23.	Routine RLEAS3		IV-15-B-81
	24.	Routine RLEAS4		IV-15-B-86
	25.	Routine PENRAT		IV-15-B-88
	26.	Routine SETTYP		IV-15-B-90

	CONTENTS (Continued)	Paga
		Page
_	7. Routine CIRCLE	IV-15-B-92
_	28. Routine MORS	IV-15-B-94
	9. Routine CIRCLE	IV-15-B-94
_	0. Routine GASRCH	IV-15-B-95
_	31. Routine ATTDVR	IV-15-B-99
	32. Routine MES	IV-15-B-102
_	33. Routine SIS	IV-15-B-112
_	34. Routine GTAA	IV-15-B-120
3	35. Routine LOSSES	IV-15-B-132
Appe	endix C. Airmobile Model Output Descriptions	IV-15-C-1
	1. Introduction	IV-15-C-1
	2. Routine ACCPT1	IV-15-C-1
	3. Routine ACCPT2	IV-15-C-4
	4. Routine ACCPT3	IV-15-C-4
	5. Routine ASULT1	IV-15-C-4
	6. Routine ASULT2	IV-15-C-4
	7. Routine ASULT3	IV-15-C-8
	8. Routine ASULT4	IV-15-C-8
	9. Routine RLEAS1	IV-15-C-8
	LO. Routine RLEAS2	IV-15-C-11
	11. Routine RLEAS3	IV-15-C-11
3	12. Routine RLEAS4	IV-15-C-14
	13. Rearm Refuel Submodel	IV-15-C-14
_	14. Routine SIS	IV-15-C-19
_	L5. Routine GTAA	
	L6. Routine LOSSES	IV-15-C-27
_	17. Routine MES	
A	endix D. Source Listing for Period Processor	
	irmobile Model	IV-15-D-1
Appe	endix E. References	IV-15-E-1
Chapter	16. COMBAT SERVICE SUPPORT MODEL	IV-16-1
1.	Military Actions Represented	IV-16-1
2.	Model Design	IV-16-7
3.	Submodel Specifications	IV-16-9
	History Tape Output	IV-16-23
App	endix A. Combat Service Support Model Input Requirements .	IV-16-A-1
	1. Introduction	IV-16-A-1
	2. Elapsed Time to Handle Transports and Class I	
	Consumption Rates	IV-16-A-3
	3. Items by Supply Class	IV-16-A-5
	4. Weights and Volumes Carried by Various Transports	IV-16-A-8
	5. Resupply of Class VII and Personnel	
	6. Combat Service Support Constant Data Deck Structure	

																									Page
App	endi	х В.	Cor	nbat	Se	rvi	ce	Su	ıpı	por	ct	Mo	od€	:1	Pr	cg	rai	n D	es	cri	.pt	:10	ns	•	IV-16-B-1
	1.	Intr	oduo	ction	n .																				IV-16-B-1
	2.	Rout	ine	SER	SUP																			. •	IV-16-B-1
	3.	Rout	ine	TRN	TIM																				IV-16-B-24
	4.	Rout	ine	EVT	FIL																				IV-16-B-25
	5.	Rout	ine	SUP	FIL															•					IV-16-B-28
	6.	Rout	ine	BOF	ILE																				IV-16-B-32
	7.	Rout	ine	FET	CH																				IV-16-B-33
	8.	Rout																							IV-16-B-35
	9.	Rout	ine	RES	LVE																				IV-16-B-37
	10.	Rout				-														•					IV-16-B-37
App	endi	ж С.	Cor	nbat	Se	rvi	.ce	St	ıbi	10 9	rt	Mo	ode	:1	Ου	ıtp	ut	De	sc	rip	ti	.on	ıs		IV-16-C-1
		x D.																							
S	ervi	ce Su	ppor	rt Mo	ode.	1.	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	IV-16-D-1
Chapter	17.	MAJ	OR S	SPEC	IAL	PU	RP	OSE	E 1	PRO	OGI	RAI	MS	•	•	•	•		•	•	•	•	•	•	IV-17-1
1.	Int	roduc	+10	_																			_	_	IV-17-1
2.	_	tiali																							IV-17-1
3.		minat																							IV-17-1
4.		mina. tart																							IV-17-1
5.		mon T																							IV-17-1
6.		d Con																							
•				,	••		•	•	•	•	·	٠	•	•	•	•	•		•	•			•		2, 2, 2
App	endi	х A.	In	put 1	Requ	uir	em	ent	ts	fo	or	tl	he	Με	ajo	or	Spe	eci	al	Pu	ırp	os	e		
P	rogr	ams																						•	IV-17-A-1
App	endi:	ж В.	Ma	jor :	Spe	cia	1	Pur	·pc	ose	e I	Pro	ogi	aı	n I)es	CT:	ipt	101	ns	•	•	•	•	IV-17-B-1
	1.	Intr	odu	ctio	n							_								_					IV-17-B-1
	2.	Rout																							IV-17-B-1
	3.	Rout																							IV-17-B-5
	4.	Rout			-	_																			IV-17-B-5
	5.	Rout				•														:					IV-17-B-5
	6.	Rout						-	-	-	-	-	_	-	-	-	-		_	-	-	-	-		IV-17-B-7
	7.	Rout																							IV-17-B-9
	8.	Rout																		:					IV-17-B-10
App	endi	х С.	Out	tput	De	scr	ip	tic	ons	B (of	Ma	ajo	r	SŢ	ec	ia	1 P	ur	pos	se				
R	louti	nes		• •	•		•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	IV-17-C-1
	1.	Intr			-							•													IV-17-C-1
	2.	Rout					•	•	•		•	•	•			•									IV-17-C-1
	3.	Rout					•	•	•		•	•		•	•										IV-17-C-3
		Rout				•	•	•	•			•													IV-17-C-4
	5.	Rout	ine	UTI	LDP	٠	•																		IV-17-C-4

						<u>c</u>	ONT	EN'	rs	<u>(C</u>	on	ti	nu	ed)	-										Page
A						List																_			IV-17-D-1
Chapt	_			-																					IV-18-1
_		_	_	_	_	_																			
	L.	Gen	eral	Des	cript	ion		•	٠	•	•	•	•	• •	•	•	•	٠	•	•	•	•	٠	٠	IV-18-1
_	2.	Rous	ine	DOS	R.			•	٠										٠	•	•	•	•	•	IV-18-1
_	3.							•						• •					•	•	•	•	•	•	IV-18-1
	• • • •				IDL	• •		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	IV-18-1 IV-18-2
A	\ppe	endia	ς Α.	In	out I	Requi	.ren	en	ts	fo	or :	DI	VW	AG	Sc	en	ar:	Lo							
						e Rou													•	•	•	•	•	•	IV-18-A-1
A						Scen																			
	De	scr	ipti	ons	• •	• •	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	IV-18-B-1
		1.	Int	rodu	ction					_							_		_		_	_			IV-18-B-1
		2.			DSL					•								•	•	•	•	•		•	IV-18-B-1
		3.			DOSI	_		-	-							_	-					•	•	•	IV-18-B-1
					DBSI												•	•	•	•	•	•	•	•	IV-18-B-4
		5.				[DL				-	-					•	•	:	•	•	•	•	•		IV-18-B-5
		6.				TH .														•		:	:	:	IV-18-8-7
	La	angua	age	Inte	rface	Desc Rou	tir	es		•	•	•	•	•	•	•	•	•	•			•	•	•	IV-18-C-1
A						List																			
	Sc	enar	rio :	Lang	uage	Inte	rfs	ice	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-18-D-1
Chapt	er	19.	UT	ILIT	y rot	JTINE	s.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	IV-19-1
1		Inti	codu	ctio	ο.			_		_							_	_		_		_			IV-19-1
	2.			atio				:	•	:	•	:	•	•		•		•	:	:	•	:	•	•	IV-19-1
A	ppe	endia	c A.	In	put l	Requi	ren	en	ts	fc	or '	υt	il	1ty	, F	lou	tiı	nes	3	•		•	•	•	IV-19-A-1
A	ppe	endi	к В.	Pre	ogran	n Des	cri	pt	ior	ıs	fo	r	Ut	11:	Ltz	R	out	ir	ne s	S			•		IV-19-B-1
		1.	Int	rodu	ction	n .																			IV-19-B-1
		2.	Rou	tine	SET	CLK											•	•		•					IV-19-B-1
		3.	Rou	tine	MINO	GET							•				•							•	IV-19-B-1
		4.	Rou	tine	RED(CLK			•																IV-19-B-1
		5.	Rou	tine	ARC	CAN																			IV-19-B-1
		6.	Rou	tine	CHO	ED.				•															IV-19-B-2
		7.	Rou	tine	DIST	CPL			•							-									IV-19-B-3
		8.	Rou	tine	DSTI	PL1				•												•			IV-19-B-4
		9.	Rou	tine	INTS	SPT																			IV-19-B-4
	1	'n			PONT		. •	•	-	•	-	-	-	•	•	•	-	•	-	-	•	•	•	-	TV-10-R-7

																					<u>Page</u>
11.	Routine	CELLST				•															IV-19-B-9
12.	Routine	LOS .													•					•	IV-19-B-13
13.	Routine																				
14.	Routine																				
15.	Routine																				
16.	Routines																				
17.	Routine																				
18.	Routine																				
19.	Routine																				
20.	Routine																				
21.	Routine																				
22.	Routine																				
23.	Routine																				
24.	Routine																				
25.	Routine	EOH2OT			•																
26.	Routine	PUTOUT																			
27.	Routine																				
28.	Routine																				
29.	Routine																				
30.	Routine																				
31.	Routine																				
32.	Routine																				
33.																					
Appendi	x C. Ou	tput De	scr	ip	ti	on	s :	fo	r 1	Ut:	11:	ity	y]	Roi	uti	Lno	es				IV-19-C-1
Appendi	x D. So	urce Li	.sti	ne	s	fo	r 1	Per	ri	od	P	roc	ces	380	or						
				_																	IV-19-D-1

PART 5

	Page
TITLE PAGE	. i
CONTENTS	. iii
FIGURES	· xiii
SECTION V. PERIOD OUTPUT PROCESSOR	. v-1
Chapter 1. GENERAL DESCRIPTION OF THE PERIOD OUTPUT PROCESSOR .	. V-1-1
1. Overview	. V-1-1 . V-1-1
Chapter 2. EXECUTIVE CONTROL AND UTILITY ROUTINES	. V-2-1
1. Introduction 2. REPCTL	. V-2-1 . V-2-1
Appendix A. Executive Control and Utility Program Description	s V-2-A-1
1. Introduction	. V-2-A-1 . V-2-A-4
Appendix B. Source Listings for Period Output Processor Executive Control and Utility Routines	. V-2-B-1
Chapter 3. STATUS AND ACTIVITY REPORTS	. V-3-1
 Introduction	. V-3-1
Appendix A. Input Requirements for Status and Activity Report	s V-3-A-1
Appendix B. Status and Activity Reports Program Descriptions	. V-3-B-1
1. Introduction	. V-3-B-1 . V-3-B-8 . V-3-B-9 . V-3-B-9
6. Routine USTAT1	. V-3-B-9

xxxvii

																										Page
		7.	Rout	ine	PUT	DET																				V-3-B-21
		8.	Rout	ine	EOH	LOC											•									V-3-B-32
		9.	Rout:	ine	EOH	PER																				V-3-B-37
	1	0.	Rout	ine	UAC	TR																				V-3-B-42
	1	1.	Rout	ine	UAC	ΤY																				V-3-B-47
	1	2.	Rout	ine	OVE	L																				V-3-B-48
	1	3.	Rout	ine	GET	31																				V-3-B-48
	1	4.	Rout	ine	SUM																					V-3-B-49
	1	5.		ine	GET	SUM	•	•	•	•	•	•	•	• •		•	•	•	•	•	•	•	•	•	•	V-3-B-53
	Appe	ndix	c.	Sta	itus	an	d A	ct:	ivi	Lty	R	lep	or	ts	0u	tpı	ut	De	80	ri	pt	:10	ns		•	V-3-C-1
	Appe	ndix	D.	Sov	ırce	Li	sti	ng:	s í	Eor	. P	er	10	d (Out	pu	t I	ro	ce	:88	or	•				
																										V-3-D-1
Chan	tar	<i>]</i> .	DT ANT	NT NC	ישם י	יפחפ	т																			V-4-1
Onap	LEI	7.	1 LIMIN	12110	, KE	·	٠.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	V-4-1
	1.	Intr	oduc	tior	a .	•																				V-4-1
	2.	Syst	em F	low		•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	V-4-1
	Appe	ndix	. A.	Inp	put	Req	uir	em	ent	ts	fc	r	P1	anı	nin	g 1	Reț	or	t	•	•			•	•	V-4-A-1
	Appe	ndix	в.	Pla	nni	ng	Rep	or	t I	Pro	gr	am	D	esc	cri	pt:	ior	ıs		•		•			• •	V-4-B-1
		1.	Intro	oduc	ctio	n			_								_	_	_		_	_				V-4-B-1
			Rout	ine	UID	S01	•	•	•	•	•	•	•		•	•	•		•							V-4-B-1
		3.	Rout																							V-4-B-3
			Rout																							V-4-B-4
	٨٩٩٥																									
,	whhe	nax	ι ι.	PIE	annı	ng .	ĸep	OF	ב נ	Jut	.pu	ıτ	νe	SCI	тр	T1	on	•	•	•	•	•	•	•	•	V-4-C-1
			D.																							
	P1	anni	ing R	epor	ct .	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	V-4-D-1
Chap	ter	5.	INTE	LLIC	ENC	E R	EPO	RT																		V-5-1
	1.	Intr	oduc	tior	n.	•		•	•	•	•	•	•			•	•	•	•	•	•	٠	•	•	•	V-5-1
	2.	Syst	em F	low	• •	•	• •	•	•	•	•	•	•	•		•	•	•	•	•	٠	•	٠	•	• •	V-5-1
	Appe	ndix	κ A.	Inp	put	Req	uir	em	ent	ts	fc	r	In	te:	111	ge	nce	e R	ep	or	t	•	•	•	•	V-5-A-1
	Appe	ndix	с В.	Int	tell	ige	nce	R	epo	ort	: F	ro,	gr	am	De	sc	rij	ti	OT.	1					•	V-5-B-1
		1.	Intr	0 4 114	-+	_																				V-5-B-1
		2.	Rout																							
		٠.	NOU L	THE	TMT	IL	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	√ J-D-I
	Appe	ndia	c C.	Int	tell	ige	nce	R	ерс	ort	t (ut	pu	t 1	Des	cr	ipt	:10	n							V-5-C-1

		Page
	endix D. Source Listings for Period Output Processor	V-5-D-1
Chapter	6. BARRIER REPORT	V-6-1
•		
1.	Introduction	V-6-1
2.		V-6-1
App	endix A. Input Requirements for Barrier Report	V-6-A-1
App	endix B. Barrier Report Program Descriptions	V-6-B-1
	1. Introduction	V-6-B-1
		V-6-B-1
		V-6-B-4
App	endix C. Barrier Report Output Description	V-6-C-1
App	endix D. Source Listings for Period Output Processor	
	arrier Report	V-6-D-1
SECTION	VI. ANALYSIS OUTPUT PROCESSOR	VI-1
Chapter	1. GENERAL DESCRIPTION OF ANALYSIS OUTPUT PROCESSOR	VI-1-1
1.	Introduction	VI-1-1
2.	Overview	VI-1-1
3.		VI-1-1
App	endix A. History Tape Formats	VI-1-A-1
	1. Introduction	VT_1_A_1
		VI-1-A-1 VI-1-A-1
Chapter	2. TAPE PREPROCESSORS	VI-2-1
1.	Introduction	VI-2-1
2.		VI-2-1
3.		VI-2-1
4.		VI-2-1
App	endix A. Input Requirements for Tape Preprocessors	VI-2-A-1
	1. Introduction	VI-2-A-1
		VI-2-A-1
	3. Routine UXR	
	4. Routine PTAPE	

xxxix

																									Page
App	endi	х В. Ні	istory	Ta	рe	Pr	ер	ro	ce	SS	or	s :	Pr	og	ra	m	De	286	ri	Ĺpí	ii	ons	5		VI-2-B-1
	1.	Introdu	ction																						VI-2-B-1
	2.	Routine	PREP																						VI-2-B-1
	3.	Routine	≥ UXR																						VI-2-B-4
	4.	Routine	PTAP	Ε.			-	-	-		-	-		-	-	•	-	-	-	-	-		-	-	VI-2-B-4
	5.	Routine		-																					VI-2-B-7
	6.	Routine																							VI-2-B-7
	7.	Routine		_	•																				VI-2-B-1
	8.	Routine		_																					VI-2-B-1
	9.	Routine		- •													-						-	-	VI-2-B-1
	10.	Routine		-	•																				VI-2-B-1
	11.			_	·		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	VI-2-B-2
-	12.	Routine			•	•	•	•	•						•										VI-2-B-2
	13.	Routine	_		•	•	•	•	•	•															VI-2-B-2
-	14.	Routine	•							•	-	-		-		-	-	-	-				-	-	VI-2-B-2
-	15.	Routine			-																				VI-2-B-2 VI-2-B-2
	16.	Routine		-	-					•															VI-2-B-2 VI-2-B-2
-	17.	Routine			•			-	-	•		-		-		-	-	-	-		-		-	-	VI-2-B-2 VI-2-B-3
Арр	endi	ж С. Оц	tput I	Des	cri	Lpt	io	ns	0	of :	Ta	pe	P	re	pr	00	:e	380	or	Ro	out	tíı	nes	s .	VI-2-C-1
	1.	Introdu	ction					_															_		VI-2-C-1
	2.	Output		-																					VI-2-C-1
	3.	Routine	PREP	-r -		_	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Ī	•	•	VI-2-C-1
	4.	Routine																							VI-2-C-1
	5.	Routine																							VI-2-C-4
		x D. So				_					•				_										
T	ape	Preproce	essors	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	VI-2-D-1
Chapter	3.	HISTORY	TAPE	LI	ST:	ENG	R	OU	TI	NE	S	•	•	•	•	•	•	•	•	•	•	•	•	•	VI-3-1
			nput Re																						
P	rogr	am	• • •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	VI-3-A-1
	1.	Introdu	ction								_														VI-3-A-1
	2.	Routine	PHIS:	r.																					VI-3-A-1
Арр	endi	ж В. Ні	story	Ta	рe	Li	lst	in	g	Pr	og	ra	m :	De	sc	ri	Lpi	tio	ons	5					VI-3-B-1
	1.	Introdu	ction																						VI-3-B-1
	2.																								V. 3-B-1
	3.	History	Reco	rd	Pr:	Ĺnt	R	ou	ti	ne	8	•	•	•	•	•	•	•	•	•	•	•		•	VI-3-B-3
		x C. O																							WT_2_C 1
K	JULI																								VI-3-C-1
	1.	Introdu	ction	•			•											•				٠			VI-3-C-1

																	Page
	2.	Area Fi	re Asse	ssme	nt F	leco:	rd										VI-3-C-1
	3.	Area Fi	re Even	t Re	cord	١.											VI-3-C-1
	4.	Air Gro	und Mis	sion	Reg	ues	t R	ecoi	d.								VI-3-C-4
	5.	Air Gro	und En	Rout	e At	tri	tio	n Re	cor	:d							VI-3-C-4
	6.	Air Gro	und Tar	get :	Enga	gem	ent	Red	cord	١.							VI-3-C-7
	7.	Air Gro															VI-3-C-7
	8.	Ground															VI-3-C-10
	9.	Ground	Combat	Batt	le [Jnit	Re	cord	ì.								VI-3-C-12
	10.	Combat															
:	11.																
App	endi	x D. So	urce Li	stin	gs f	or A	Ana:	lysi	is C	utp	ut	Pro	ce	SSO	r		
																	VI-3-D-1
Chapter	4.	ANALYSI	S MATRI	X FO	RMUL	ATI	ON										VI-4-1
1.	Int	roductio	.														VI-4-1
2.		tine ANC															
3.																	VI-4-1
4.																	VI-4-1 VI-4-2
				•		• •	•		•	•	•	•	•	•	•	•	
App	endi	x A. In	put Req	uire	ment	s f	or A	Ana]	lysi	s M	latr	ix					
F	ormu												•		•		VI-4-A-1
	1.	Introdu	ction				•										VI-4-A-1
	2.	Routine	ANCARD														VI-4-A-1
	3.	Routine															
	4.	Routine															
	5.																
Арр	endi	x B. An	alysis	Matr	ix F	orm	ula	tion	n Pr	ogī	am	Des	cr	ipt	ion	s.	VI-4-B-1
	1.	Introdu	ction														VI-4-B-1
	2.	Routine	ANCARD														VI-4-B-1
	3.	Routine	GCMOD														VI-4-B-12
	4.	Routine	MATOUT														VI-4-B-20
	5.	Routine	MPRCES														VI-4-B-21
	6.	Routine															
	7.																
	8.																VI-4-B-45
	9.	Routine															VI-4-B-49
	10.	Routine															
	11.																VI-4-B-50
	12.																VI-4-B-50
Ann	ond4	ж С. Ou	tout Da	0021	n+1-	ne :	of :	Ana!	1 27 6 4	'c 1	fa+-	. 4	F-	3 -401 •	1 e +	i on	
		nes															VI-4-C-1
		T - h 1															W7 / C 1

		Page	<u> </u>
	2. Routine ANCARD	. VI-4-0)-1
	3. Routine AFM · · · · · · · · · · · · · · · · · · ·	. VI-4-0	-1
	4. Routine AGM · · · · · · · · · · · · · · · · · · ·		7-1
	5. Routine GCMOD · · · · · · · · · · · · · · · · · · ·	· VI-4-0	- 4
Appe	endix D. Source Listings for Analysis Output Processor		
	nalysis Matrix Formulation	. VI-4-D)-1
Chapter	5. ANALYSIS ROUTINES	. VI-5-1	L
1.	Introduction	WT E 1	,
2.	Routine MIXMRG		
3.			_
3. 4.	Routine MTXUP		
4.	Routine ANALYS	. VI-5-1	-
Appe	endix A. Input Requirements for Analysis Programs	. VI-5-A	<u>-1</u>
	1. Introduction	. VI-5-A	-1
	2. Routine MTXMRG		
	3. Routine MTXUP		
	4. Routine ANALYS		
Арре	endix B. Analysis Routines Program Descriptions	. VI-5-E	3-1
	1. Introduction	. VI-5-E	R_1
	2. Routine MTXMRG		_
	3. Routine MTXUP · · · · · · · · · · · · · · · · · · ·		-
	4. Routine ANALYS		
	5. Routine CALCH		-
	6. Routine PAIR		_
	7. Routine FRDMAN		-
	8. Routine DSESRT		
•	10. Routine ANOVA	. V1~3-r)-Z:
Арре	endix C. Output Descriptions of Analysis Routines	. VI-5-0	;-1
	1. Introduction	. VI-5-0	:-1
	2. Routine MTXMRG	. VI-5-0	-1
	3. Routine MTXUP	. VI-5-0	7-1
	4. Routine ANALYS		:-4
Anne	endix D. Source Listings for Analysis Output Processor		
	nolucio Poutinos	77T. E. C	٦_1

			Page
SECTION	VII	DIVWAG SYSTEM UTILITY PACKAGES	VII-1
Chapter	1.	GENERAL DESCRIPTIONS OF DIVWAG SYSTEM UTILITY PACKAGES	VII-1-1
1.		roduction	VII-1-1
2.	Uti.	lity Load and Dump Routines	VII-1-1
3.	DIV	WAG Input/Output Routines	VII-1-1
4.	Oth	er Utility Routines	VII-1-1
Chapter	2.	DIVWAG DATA FILES	VII-2-1
Appe	endi	x A. Data File Formats	VII-2-A-1
	1.	Unit Status File	VII-2-A-1
	2.	Barrier-Facility File	VII-2-A-5
	3.	Terrain File	VII-2-A-8
	4.	Weather File	V11-2-A-8
	5.	Logical File 5	VII-2-A-9
	6.	Secondary Equipment File	VII-2-A-9
	7.	Airmobile Data File	VII-2-A-9
	8.	Suppression Data File	VII-2-A-11
	9.	UTD Mobility Category File	VII-2-A-12
	10.	Logical File 10	VII-2-A-13
_	11.	Combat Service Support Data File	VII-2-A-13
-	12.	Automatic Event File	VII-2-A-17
	13.	Elevation File	VII-2-A-17
	14.	Movement Data	VII-2-A-17
	15.	Fuel Consumption Rates	VII-2-A-19
	16.	Period Processor Scratch File	VII-2-A-20
	17.	Engineer Rate and Task Characteristics	VII-2-A-23
	18.	Engineer Task File	VII-2-A-26
	19.	Unit Movement Rate Tables	VII-2-A-26
	20.	Sensor Data	VII-2-A-27
	21.	Battle Records	VII-2-A-42
	22.	Engineer Task Site File	VII-2-A-43
	23.	Unit Composition Data	VII-2-A-43
	24.	Airmobile Rearm/Refuel Point Data	VII-2-A-43
	25.	TACFIRE Data	VII-2-A-45
	26.	Air Ground Engagement Data File	VII-2-A-49
	27.	Engagement Result Tables File	VII-2-A-50
	28.	Unit Structure and Item Distribution Data	VII-2-A-51
	29.	Munition Lethal Areas and Delivery Data	VII-2-A-52
	30.	Personnel Posture and Protection Data and Nuclear Data	VII-2-A-53
	31.	Supply Status File	VII-2-A-57
	32.	Data File 32	VII-2-A-58
	33.	Data File 33	VII-2-A-58
	34.	Data File 34 · · · · · · · · · · · · · · · · · ·	VII-2-A-58
	35.	Data File 35 · · · · · · · · · · · · · · · · · ·	VII-2-A-58
	36	Common Storage File	VTT-2-A-58

		Page
37.	Engineer Equipment File	VII-2-A-63
38.	Data File 38	VII-2-A-63
39.	Ground Combat Model Data	VII-2-A-63
40.	Data File 40	VII-2-A-66
41.	Battalion Target Information File	VII-2-A-66
42.	Brigade/Regiment Target Information File	VII-2-A-68
43.	Division Target Information File	"II-2-A-68
44.	Redundant Target File	VII-2-A-68
45.	Camera Detections File	VII-2-A-68
46.	Data File 46	VII-2-A-69
47.	Data File 47	VII-2-A-69
48.	Score Board File	VII-2-A-69
49.	Data File 49	VII-2-A-69
50.	Authorized Strength Data	VII-2-A-69
51.	UTD Directory	VII-2-A-70
52.		VII-2-A-7(
53.	Unit Type Composition	VII-2-A-70
54.	Data File 54	VII-2-A-70
55.	DSL Orders Table	VII-2-A-71
Chapter 3.	DIVWAG INPUT/OUTPUT PACKAGE	VII-3-1
Chapter J.	DIVWIG INICI/COIFUI PRORAGE	V11-3-1
	roduction	VII-3-1
2. DIV	WAG Data File Logical Layout	VII-3-1
A 1 -	- A - Tuesta Bas (market) San Tuesta (0 mm A B 1	**** 0 4 3
Appendi	x A. Input Requirements for Input/Output Package	VII-3-A-1
Appendi Appendi		VII-3-A-1 VII-3-B-1
Appendi	x B. DIVWAG Input/Output Package Program Descriptions .	VII-3-B-1
Appendi 1.	x B. DIVWAG Input/Output Package Program Descriptions. Introduction	VII-3-B-1 VII-3-B-1
Appendi 1. 2.	x B. DIVWAG Input/Output Package Program Descriptions . Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-1
Appendi 1. 2. 3.	x B. DIVWAG Input/Output Package Program Descriptions . Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-1 VII-3-B-5
Appendi 1. 2. 3. 4.	X B. DIVWAG Input/Output Package Program Descriptions . Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8
Appendi 1. 2. 3. 4. 5.	X B. DIVWAG Input/Output Package Program Descriptions . Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8 VII-3-B-12
Appendi 1. 2. 3. 4. 5.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8 VII-3-B-12 VII-3-B-17
Appendi 1. 2. 3. 4. 5. 6. 7.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8 VII-3-B-12 VII-3-B-17 VII-3-B-20
Appendi 1. 2. 3. 4. 5. 6. 7.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8 VII-3-B-12 VII-3-B-17 VII-3-B-20 VII-3-B-21
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8 VII-3-B-12 VII-3-B-17 VII-3-B-20 VII-3-B-21 VII-3-B-21
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-5 VII-3-B-12 VII-3-B-17 VII-3-B-20 VII-3-B-21 VII-3-B-24 VII-3-B-25
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8 VII-3-B-12 VII-3-B-17 VII-3-B-20 VII-3-B-21 VII-3-B-24 VII-3-B-25 VII-3-B-27
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-5 VII-3-B-12 VII-3-B-17 VII-3-B-20 VII-3-B-21 VII-3-B-24 VII-3-B-25 VII-3-B-27 VII-3-B-27
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-5 VII-3-B-12 VII-3-B-17 VII-3-B-20 VII-3-B-21 VII-3-B-24 VII-3-B-25 VII-3-B-27 VII-3-B-27 VII-3-B-27 VII-3-B-28
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-5 VII-3-B-12 VII-3-B-17 VII-3-B-20 VII-3-B-21 VII-3-B-21 VII-3-B-25 VII-3-B-27 VII-3-B-27 VII-3-B-27 VII-3-B-27 VII-3-B-28 VII-3-B-28 VII-3-B-31
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-5 VII-3-B-12 VII-3-B-17 VII-3-B-20 VII-3-B-21 VII-3-B-21 VII-3-B-25 VII-3-B-27 VII-3-B-27 VII-3-B-27 VII-3-B-27 VII-3-B-28 VII-3-B-31 VII-3-B-31
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8 VII-3-B-17 VII-3-B-20 VII-3-B-21 VII-3-B-21 VII-3-B-25 VII-3-B-27 VII-3-B-27 VII-3-B-27 VII-3-B-28 VII-3-B-31 VII-3-B-32 VII-3-B-32
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8 VII-3-B-12 VII-3-B-17 VII-3-B-20 VII-3-B-21 VII-3-B-21 VII-3-B-25 VII-3-B-27 VII-3-B-27 VII-3-B-27 VII-3-B-31 VII-3-B-31 VII-3-B-32 VII-3-B-35
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8 VII-3-B-12 VII-3-B-20 VII-3-B-21 VII-3-B-21 VII-3-B-25 VII-3-B-27 VII-3-B-27 VII-3-B-27 VII-3-B-31 VII-3-B-31 VII-3-B-31 VII-3-B-32 VII-3-B-35 VII-3-B-36
Appendi 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.	Introduction	VII-3-B-1 VII-3-B-1 VII-3-B-1 VII-3-B-5 VII-3-B-8 VII-3-B-12 VII-3-B-17 VII-3-B-20 VII-3-B-21 VII-3-B-21 VII-3-B-25 VII-3-B-27 VII-3-B-27 VII-3-B-27 VII-3-B-31 VII-3-B-31 VII-3-B-32 VII-3-B-35

				Page
23. Routine				VII-3-B-52 VII-3-B-52 VII-3-B-52
Appendix C. Out	tput Descriptions	for Input/Output Pa	ckage	VII-3-C-1
		DIVWAG System Utili		VII-3-D-1
Chapter 4. UTILITY	LOAD AND DUMP PRO	OGRAMS		VII-4-1
	•	for Utility Load and	-	VII-4-A-1
1. UTILDP 2. UTILLD				VII-4-A-1 VII-4-A-1
		put Utility Program		VII-4-B-1
 Introduce Routine Routine Routine Routine 	IOTERN			VII-4-B-1 VII-4-B-1 VII-4-B-4 VII-4-B-5 VII-4-B-10
- -	•	of Utility Load and	-	VII-4-C-1
Routine	UTILLD			VII-4-C-1 VII-4-C-1 VII-4-C-1
		DIVWAG System Utili Programs		VII-4-D-1
Chapter 5. OTHER UT	CILITY ROUTINES .			VII-5-1
4. Integer/Char	acking		• • • • • •	VII-5-1 VII-5-1 VII-5-1 VII-5-1
Appendix A. Inp	out Requirements f	for Other Utility Ro	utines	VII-5-A-1
Appendix B. Pro	ogram Descriptions	for Other Utility	Routines .	VII-5-B-1

																							Page
1.	Introdu	ction																					VII-5-B-1
2.	Routine	MVCHAR	₹																				VII-5-B-1
3.	Routine	KHAR																					VII-5-B-3
4.	Routine	PACK28	3																				VII-5-B-3
5.	Routine	INTCH	3																				VII-5-B-5
6.	Routine	SNATCH	I	•					•				•			•	•		•		•	•	VII-5-B-7
Appendi	x C. Ou	tput De	280	r	i p	ti	on	8	fo	r (Oti	he	r l	J t :	11:	ity	7]	Rot	ıt:	ine	es	•	VII-5-C-1
	x D. Son																						VII-5-D-1

PART 6

		Page
TITLE PA	AGE	i
CONTENTS	S	iii
SECTION	VIII. DIVWAG DIAGNOSTIC HANDBOOK	VIII-1
Chapter	1. INTRODUCTION	VIII-1-1
1.	Purpose	VIII-1-1
2.	Scope	VIII - 1-1
3.	Organization	VIII-1-1
Chapter	2. CONSTANT DATA INPUT PROCESSOR ERROR CONDITIONS	VIII-2-1
1.	Introduction	VIII-2-1
2.	Executive Control	VIII-2-1
3.	Organization and Equipment	VIII-2-1
4.	Task Organization	VIII-2-5
5.	Environmental Load Routines	VIII-2-11
6.	Unit Geometry	VIII-2-12
7.	Intelligence and Control	VIII-2-13
8.	Ground Combat	VIII-2-16
9.	Area Fire	VIII-2-17
10.	TACFIRE	VIII-2-20
11.	Air Ground Engagement	VIII-2-21
12.	Suppression	VIII-2-23
13.	Nuclear Assessment	VIII-2-24
14.	Movement	VIII-2-28
15.	Engineer	VIII-2-31
16.	<u> </u>	VIII-2-35
17.	Airmobile	VIII-2-35
17.	Compat Service Support	VIII-2-33
Chapter	3. ORDERS INPUT PROCESSOR ERROR CONDITIONS	VIII-3-1
1.	Introduction	VIII-3-1
2.	DSL Compiler	VIII-3-1
3.	Operating Instructions	VIII-3-11
Chapter	4. PERIOD PROCESSOR ERROR CONDITIONS	VIII-4-1
1.	Introduction	VIII-4-1
2.	Executive Control	VIII-4-1
3.	Unit Representation	VIII-4-7
4.	Environmental Representation	VIII-4-11
5	Battlefield and limit Coometry	VTTT-4-11

		Page
6.	Intelligence and Control	VIII-4-12
7.	Ground Combat	
8.	Area Fire	
9.	TACFIRE	VIII-4-14
10.	Air Ground Engagement	VIII-4-15
11.	Suppression	
12.	Nuclear Assessment	VIII-4-17
13.	Movement	VIII-4-18
14.	Engineer	
15.	Airmobile	
16.	Combat Service Support	VIII-4-22
17.	Special Purpose Routines	
18.	DSL Interface	
19.	Utility Routines	VIII-4-26
Chapter	5. PERIOD OUTPUT PROCESSOR ERROR CONDITIONS	VIII-5-1
1.	Introduction	WTTT_5_1
2.	Executive Control	VIII-5-1
3.	Status of Activity Report	VIII-J-1
3. 4.	Planning Report	
5.	Intelligence Report	VIII-3-2
6.	Barrier Report	
0.	Barrier Report	A111-2-2
Chapter	6. ANALYSIS OUTPUT PROCESSOR ERROR CONDITIONS	VIII-6-1
1.	Introduction	
2.	Tape Preprocessors	VIII-6-1
3.	History Tape Listing Routine	
4.	Matrix Formulation Routines	VIII-6-3
5.	Statistical Analysis Routines	VIII-6-6
Chapter	7. DIVWAG INPUT/OUTPUT PACKAGE ERROR CONDITIONS	VIII-7-1
1.	Introduction	VIII-7-1
2.		
3.		VIII-7-3
Chapter	8. UTILITY LOAD AND DUMP ERROR CONDITIONS	VIII-8-1
,	Tabushishis	WTTT_0.1
1.		ATTT-0-T
2.	Utility Load	
3.	Utility Dump	ATTT-9-T

xlviii

FIGURES

PART 1

Number		Page
1-3-1	DIVWAG System Data Flow	1-3-4
I-3-2	Processor Input and Output	I -3- 5
II-2-A-1	Executive Job Control Deck Assembly	II-2-A-2
II-2-A-2	Executive Control Constant Data Control Deck	TT 0 4 0
II-2-B-1	Assembly Routine PREDIV	II-2-A-3 II-2-B-2
	D TDEOP	0 D 0
II-3-B-1	Routine LDTOE Routine SRCH	II-3-B-2
II-3-B-2		II-3-B-15
II-3-B-3	Routine DMPTOE Routine SORT	II-3-B-17
II-3-B-4		II-3-B-21
II-3-C-1	TOE Type Printouts	II-3-C-1
II-3-C-2	80-Column Card Image	II-3-C-2
II-3-C-3	Secondary Equipment for Blue	II-3-C-3
II-3-C-4	Unit Type Designator Breakdown Table	II-3-C-5
II-3-C-5	Unit Type Designator Directory	II-3-C-6
II-3-C-6	Authorized Personnel and Equipment Printout	II-3-C-7
II-4-B-1	Routine ECHLON	II-4-B-3
II-4-B-2	Routine RECOG1	II-4-3-9
II-4-B-3	Routine COMMCK	II-4-B-17
II-4-B-4	Routine COMPRS	II-4-B-19
II-4-B-5	Routine CORDIN	II-4-B-21
II-4-B-6	Routine SUPORT	II-4-B-23
II-4-B-7	Routine SEQUEN	II-4-B-26
II-4-B-8	Routine TOEPUT	II-4-B-33
II-4-B-9	Routine UPDATE	II-4-B-42
II-4-B-10	Routine CRAT31	II-4-B-51
II-4-B-11	Routine RELATR	II-4-B-52
II-4-B-12	Routine SUPPLY	II-4-B-56
II-4-B-13	Routine TALLY	II-4-B-61
II-4-C-1	Unit Type Designator Directory, Task Organization	II-4-C-2
II-4-C-2	Card Image, Task Organization	II-4-C-3
II-4-C-3	RECOGN1 Table, Task Organization	II-4-C-4
II-4-C-4	Supply Status Table, Task Organization	II-4-C-5
II-4-C-5	Task Organization Unit Resolution List	II-4-C-6
II-4-C-6	Unit Type Designator Summary, Task Organization	II-4-C-8
II-4-C-7	Task Organization Units Created	11-4-C-9
II-5-B-1	Record Layout of Terrain Elevation Tape	II-5-B-2
II-5-B-2	Routine ELEVLD	II-5-B-3
II-5-B-3	Routine TERNLD	II-5-B-8
II-5-B-4	Routine WETHLD	II-5-B-13
II-5-C-1	Weather File Printout	II-5-C-2

Number		Page
II-6-B-1	Routine LOAD28	II-6-B-4
II-6-B-2	Routine DUMP28	II-6-B-12
II-6-C-1	Data File 28 80-Column Card Image	II-6-C-2
II-6-C-2	Unit Type Designator Record Number Directory	II-6-C-3
II-6-C-3	Unit Description	II-6-C-4
II-7-B-1	Routine INCSLD	II-7-B-2
II-7-B-2	Routine SET20	II-7-B-13
II-7-C-1	Printouts of Intelligence and Control Constant Data Input	II-7-C-1
II-7-C-2	INC 80-Column Card Image	II-7-C-3
II-7-C-3	Constant Data on Sensors	II-7-C-4
II-7-C-4	Unattended Ground Sensors for Blue Force	II-7-C-5
II-7-C-5	Equipment Item Code for Target Category	II-7-C-6
II-7-C-6	Standing Operating Procedure for Reporting	11 / 0 0
22 / 0 0	Hostile Forces	II-7-C-7
II-7-C-7	Flow Delay Times	II-7-C-8
II-7-C-8	Processing and Decision Delay Times	II-7-C-9
II-7-C-9	Unit Size Based on Equipment and Personnel Counts	II-7-C-10
II-7-C-10	Target Inferences	II-7-C-12
II-8-B-1	Routine GCMLD	II-8-B-2
II-8-B-2	Routine DUMP39	II-8-B-9
II-8-C-1	Ground Combat Printouts for Constant Data Input	II-8-C-1
II-8-C-2	Ground Combat 80-Column Card Image	II-8-C-2
II-8-C-3	Line of Sight	II-8-C-3
II-8-C-4	Target and Pinpoint Probabilities	II-8-C-5
II-8-C-5	Weapon System Specifications	II-8-C-6
II-8-C-6	Weapon/Target Kill Probabilities	II-8-C-7
II-8-C-7	Sensor Distribution and Performance	II-8-C-9
II-9-B-1	Routine AFMLD	II-8-B-2
II-9-B-2	Routine LOAD29	II-8-B-6
II-9-B-3	Routine LOAD30	II-8-B-14
II-9-B-4	Routine DUMP29	II-9-B-22
II-9-B-5	Routine DUMP30	II-9-B-24
II-9-C-1	Area Fire Constant Data Printouts	II-9-C-1
II-9-C-2	Data File 29 80-Column Card Image	II-9-C-2
II-9-C-3	Weapons and Munitions Characteristics and	
	Performance	II-9-C-3
II-9-C-4	Weapons and Munitions Delivery Parameters	II-9-C-4
II-9-C-5	Weapons and Munitions Description	II-9-C-6
II-9-C-6	Data File 30 80-Column Card Image	II-9-C-7
II-9-C-7	Personnel Data	II-9-C-8
II-10-B-1	Routine TACLD	II-10-B-2
II-10-B-2	Routine LOAD25	II-10-B-4
II-10-B-3	Routine OSORT	II-10-B-1

Number		Page
II-10-B-4	Routine DUMP25	II-10-B-18
II-10-C-1	TACFIRE Constant Data Printouts	II-10-C-1
II-10-C-2	Data File 25 80-Column Card Image	II -10- C-2
II-10-C-3	Priority and Method of Attack	II-10-C-3
II-10-C-4	Summary of Target Priorities	II-10-C-4
II-11-B-1	Routine AIRLD	II-11-B-4
II-11-C-1	Air Ground Engagement Constant Data Printouts	II-11-C-2
II-11-C-2	Data File 26 80-Column Card Image	II-11-C-3
II-11-C-3	Aircraft and Munitions Minimum/Maximum	
	Requirements Mission Type	II-11-C-4
II-11-C-4	Aircraft Preparation Delay Times	II-11-C-5
II-11-C-5	Aircraft Engagement Parameters	II-11-C-6
II-11-C-6	Minimum Aircraft Abort Data	II - 11 - C-7
II-11-C-7	Aircraft Landing Times	II-11 <i>-</i> C-9
II-11-C-8	Aircraft Flight Speeds	II-11-C-10
II-11-C-9	Aircraft Availability Times for New Mission	II-11-C-11
II-11-C-10	Aircraft Degradation for Maintenance	II-11-C-12
II-11-C-11	Aircraft Vulnerable Areas for Kills by Weapon	
	Type	II-11-C-13
II-11-C-12	Air Defense Characteristics	II-11-C-14
II-11-C-13	Air Defense Weapons Effectiveness	II-11-C-15
II-11-C-14	Air Defense Weapon Degradation from Terrain	TT 11 C 16
II-11-C-15	and Vegetation Engagement Results for Air Strikes	II-11-C-16 II-11-C-18
11-11-0-13	Engagement Results for Air Strikes	11-11-0-10
II-12-B-1	Routine SPRSLD	II-12-B-2
II-12-C-1	Suppression Model Data Card Listing	II-12-C-2
II-13-B-1	Routine NUCLD	II-13-B-2
II-13-B-2	Routine FLD30	II-13-B-6
II-13-B-3	Routine CKARY	II-13-B-10
II-13-C-1	Nuclear Assessment Model Constant Data	
	Input Printouts	II-13-C-1
II-13-C-2	Nuclear Assessment 80-Column Card Image	II-13-C-2
II-13-C-3	Weapon Combination Names	II-13-C-4
II-13-C-4	Weapon Statistics	II-13-C-4
II-13-C-5	Fuze Table Entries	II -13- C-5
II-13-C-6	Yield Table	II -13- C-6
II-13-C-7	EOH Links to Damage Radii	II-13-C-7
II-13-C-8	EOH Data	II-13-C-8
II-13-C-9	Yield Codes and Barrier Data	II-13-C-9
II-13-C-10	Unprotected Personnel Distribution	II-13-C-10
II-13-C-11	Special Factors	II-13-C-10
II-14-B-1	Routine MOVELD	II-14-B-2
II-14-C-1	Movement Model Constant Data Input Printouts	II-14-C-1
TI-14-C-2	Movement Model 80-Column Card Image	II-14-C-3

Number		<u>Page</u>
II-14-C-3	Mobility Category and Travel Mode	II-14-C-4
II-14-C-4	Mobility Class and Exclusion Table	II-14-C-5
II-14-C-5	Unit Road and Cross Country Movement Rates	II-14-C-6
II-14-C-6	Equipment Road and Cross Country Movement Rates	II-14-C-7
II-14-C-7	Ground and Air Fuel Consumption Rates	II-14-C-8
II-15-B-1	Routine ENGLD	II-15-B-2
II-15-B-2	Routine BARLD	II-15-B-10
II-15-C-1	Barrier Segment Location and Status	II-15-C-2
II-15-C-2	Engineer 80-Column Card Image	II - 15 - C-3
II-15-C-3	Engineering Task Parameters	II-15-C-4
II-15-C-4	Environmental and Troop Rates and Rate Modifiers	II-15-C-5
II-15-C-5	Equipment Requirements and Rate Modifiers	II-15-C-6
II-15-C-6	Minefield Forcing Casualties	II-15-C-7
II-16-B-1	Routine FIL7LD	II-16-B-2
II-16-C-1	Sample of 80-Column Card Image, Airmobile Model	II-16-C-2
II-16-C-2	Sample Data Listing, Airmobile Model	II-16-C-3
II-17-B-1	Routine CSSLD	II-17-B-2
II-17-B-2	Routine LOAD11	II -17-B- 5
II-17-B-3	Routine DUMP11	II-17-B-11
II-17-C-1	Combat Service Support Constant Data Printouts	II-17-C-1
II-17-C-2	Combat Service Support 80-Column Card Image	II-17-C-2
II-17-C-3	Elapsed Time to Handle Vehicles	II-17-C-3
II-17-C-4	Weight and Volume of Consumables and Capacity of Vehicles	II-17-C-5
II-17-C-5	Equipment Item Versus Class of Supply	II-17-C-6
II-17-C-6	Transport Preference for Hauling Consumables	II-17-C-7
II-17-C-7	Blue Major End Items and Personnel Available	
	Daily for Resupply	II-17-C-8
III-2-1	Unit Battle Table Description	III-2-2
III-2-2	Numerical Order Codes	III-2-3
III-2-3	Conditional Type Codes	III-2-4
III-2-4	Standard Order Column Descriptions	III-2-5
III-2-5	Airmobile Order Column Descriptions	III-2-6
III-2-6	Engineer Order Column Descriptions	III-2-7
III-2-7	Conditional Column Descriptions	III-2-8
III-2-8	DSL Compiler Logical Flow	III-2-9
III-2-9	DSL Logical Flow	111-2-11
III-2-10	Routine DSLCMP Logical Flow	III-2-12
III-2-A-1	Travel Mode Mnemonic Description	III-2-A-21
III-2-A-2	DSL Data Deck Structure	III-2-A-32
III-2-A-3	Delay and Range Settings for Mohawk Type Mission	III-2-A-38
III-2-A-4	DSL Orders	III-2-A-39
III-2-A-5	DSL Order Modifiers	TTT-2-4-42

Number		Page
III-2-B-1	Routine DSLCMP	III-2-B-7
III-2-B-2	Routine DSLINT	III-2-B-9
III-2-B-3	Routine RDSTMT	III-2-B-11
III-2-B-4	Routine BATORD	III-2-B-14
III-2-B-5	Routine UNTORD	III-2-B-17
III-2-B-6	Routine COND	III-2-B-22
III-2-B-7	Routine AIRMOB	III-2-B-27
III-2-B-8	Routine ENGR	III-2-B-29
III-2-B-9	Routine FIRE	III-2-B-31
III-2-B-10	Routine FLY	III-2-B-32
III-2-B-11	Routine MOVE	III-2-B-34
III-2-B-12	Routine STAY	III-2-B-36
III-2-B-13	Routine TRANS	III-2-B-37
III-2-B-14	Routine KRAKMD	III-2-B-39
III-2-B-15	Routine STOW	III-2-B-48
III-2-B-16	Routine PASS2	III-2-B-50
III-2-B-17	Routine PAGE	III-2-B-52
III-2-B-18	Routine TIME	III-2-B-54
III-2-B-19	Routine CHCKID	III-2-B-57
III-2-B-20	Routine MATCH	III-2-B-60
III-2-B-21	Routine FINDN	III-2-B-62
III-2-C-1	Routine DSLINT Printed Sample Output	III-2-C-2
III-2-C-2	Routine RDSTMT Printed Sample Output	III-2-C-3
III-2-C-3	Routine PAGE Printed Sample Output	III-2-C-3
III-2-C-4	Routine DUMPF Printed Sample Output	III-2-C-5
III-3-A-1	Moving Target Indicator Radar Card Format	III-3-A-3
III-3-A-2	Countermortar/Counterbattery Radar Card Format	III-3-A-5
III-3-A-3	Air Defense Radar Card Format	III-3-A-7
III-3-A-4	Unattended Ground Sensor Identification Card Format	III-3-A-9
III-3-A-5	Unattended Ground Sensor Field Composition Card Format	III-3-A-11
III-3-A-6	Unattended Ground Sensor Location Card Format	III-3-A-12
III-3-A-7	Geometric Figures	III-3-A-13
III-3-A-8	Period Card Format	III-3-A-15
III-3-A-9	Intelligence Information Card Format	III-3-A-16
III-3-A-10	Estimated Equipment Card Format	III-3-A-19
III-3-A-11	Helicopter and Artillery Penetration Limits	
	Card Format	III-3-A-20
III-3-A-12	Blue Sorties Card Format	III-3-A-22
III-3-A-13	Red Sorties Card Format	III-3-A-23
III-3-A-14	Data Deck Arrangement for Operating Instructions	III-3-A-25
III-3-B-1	Routine DATAST	III-3-B-2
III-3-B-2	Routine VINKLD	III-3-B-6
III-3-B-3	Routine LDASR	III-3-B-14
III-3-B-4	Routine INTLIN	III-3-B-20
III-3-C-1	Sample Printed Output by the Operating	-
· · ·	Instructions Process	III-3-C-2

PART 2

Number		Page
IV-1-1	Basic Event Sequencing Logic	IV-1-3
IV-1-2	Event Scheduling Within DIVWAG System	IV-1-4
IV-1-3	DIVWAG System Models	IV-1-6
IV-1-4	Period Processor Program Groups	IV-1-8
IV-2-1	Executive Structure	IV-2-2
IV-2-2	Event Table	IV-2-3
IV-2-A-1	Period Processor Control Card	IV-2-A-2
IV-2-B-1	Routine MAIN	IV-2-B-2
IV-2-B-2	Routine MINUET	IV-2-B-3
IV-2-B-3	Routine ESR	IV-2-B-26
IV-2-B-4	Routine ARCNRL	IV-2-B-31
IV-2-B-5	Routine FORCRD	IV-2-B-39
IV-2-B-6	Routine ENGORD	IV-2-B-41
IV-2-B-7	Routine EVTSET	IV-2-B-43
IV-2-B-8	Routine PUTEVT	IV-2-B-44
IV-2-B-9	Routine GETEVT	IV-2-B-46
IV-2-B-10	Routine INRUPT	IV-2-B-48
IV-2-C-1	Routine MINUET Printed Output Sample	IV-2-C-2
IV-3-1	Brigade Organization at Battalion Level Resolution	IV-3-2
IV-3-A-1	TOE Flow	IV-3-A-3
IV-3-A-2	Unit Organization Chart	IV-3-A-8
IV-3-A-3	Example of Item Code List of Equipment for DIVWAG	IV-3-A-9
IV-3-A-4	Senior/Subordinate Units	IV-3-A-14
IV-3-A-5	Secondary Equipment List	IV-3-A-16
IV-3-A-6	Table of Organization and Equipment	IV-3-A-18
IV-3-A-7	Bulk-loaded Expendable Supplies	IV-3-A-21
IV-3-A-8	LDTOE Data Deck Structure	IV-3-A-22
IV-3-A-9	TOE Data Deck Structure	IV-3-A-24
IV-3-A-10	Examples of Use of UID	IV-3-A-27
IV-3-A-11	Sample Bookkeeping Form for Relating Units to UTD and UID	IV-3-A-30
IV-3-A-12	Diagram of Supply Doctrine for Classes I, III, and	
	IV and Personnel	IV-3-A-32
IV-3-A-13	Elementary Organizational Example	IV-3-A-35
IV-3-A-14	Elementary Organizational Input Example	IV-3-A-35
IV-3-A-15	Example of Task Organizational Input	IV-3-A-36
IV-3-A-16	Supply Point Data	IV-3-A-41
IV-3-A-17	Task Organization Data Deck	IV-3-A-43
IV-3-B-1	Routine TRFR	IV-3-B-2
IV-3-B-2	Routine ASSIGN	IV-3-B-5
IV-3-B-3	Routine ASSUME	IV-3-B-7
IV-3-B-4	Routine DETACH	IV-3-B-11
IV-3-B-5	Routine DTCH31	IV-3-B-18
TV-3-B-6	Routine JOIN	TV-3-B-23

Number		Page
IV-3-B-7	Routine BIAS	IV-3-B-28
IV-3-B-8	Routine JOIN31	IV-3-B-29
IV-4-1	Trafficability Index	IV-4-5
IV-4-2	Use of Terrain Description with DIVWAG System	IV-4-7
IV-4-3	Dominant Mask Feature	IV-4-11
IV-4-4	Dominant Masking Function	IV-4-12
IV-4-A-1	Example Overlay Depicting Grid Cells for Total Geographical Area	IV-4-A-2
IV-4-A-2	Terrain Parameter Card	IV-4-A-3
IV-4-A-3	Terrain File Load Card	IV-4-A-5
IV-4-A-4	Soil/Trafficability Index Definitions	IV-4-A-9
IV-4-A-5	Weather Zone Table Card Format	IV-4-A-12
IV-4-A-6	Weather Report Card Format	IV-4-A-14
IV-4-A-7	Visibility Index	IV-4-A-15
IV-4-A-8	Temperature Gradient Factor	IV-4-A-17
IV-4-A-9	Weather Data Deck Structure	[V-4-A-19
IV-4-B-1	Routine UPMASK	IV-4-B-2
IV-4-B-2	Routine ELEVAT	IV-4-B-4
IV-4-B-3	Routine WETTHR	IV-4-B-7
IV-4-C-1	Routine UPMASK Printed Output Sample from	
	Environmental Representation	IV-4-C-2
IV-5-1	Battlefield Orientation	IV-5-2
IV-5-2	Unit Boundaries	IV-5-4
IV-5-3	Unit Geometry	IV-5-6
IV-5-A-1	Completed Unit Geometry Planning Matrix	IV-5-A-2
IV-5-A-2	UTDs with Common Dimensions and Resources	
	Distribution	IV-5-A-5
IV-5-A-3	Comparison of UTDs	IV-5-A-6
IV-5-A-4	Equipments Issued to UTDs with Common Dimensions	IV-5-A-9
IV-5-A-5	Bands and Unit Dimensions	IV-5-A-11
IV-5-A-6	Unit Distribution of Personnel and Equipment	IV-5-A-13
IV-5-A-7	Area Fire Card Format Listings	IV-5-A-15
IV-5-A-8	Unit Geometry Data Deck Structure	IV-5-A-15
IV-5-B-1	Routine ZONE	IV-5-B-2
IV-5-B-2	Routine AFLAG	IV-5-B-5
IV-5-B-3	Routine UPDVUL	IV-5-B-8
IV-5-C-1	Routine ZONE Printed Output Sample from	
	Battlefield and Unit Geometry	IV-5-C-2
IV-5-C-2	Routine UPDVUL Printed Output Sample from	
	Battlefield and Unit Geometry	IV-5-C-2
IV-6-1	Intelligence and Control Activities Simulated	IV-6-2
IV-6-2	Intelligence and Control Model Macroflow	IV-6-9
IV-6-3	Collection Submodel Macroflow	IV-6-13
TV-6-4	Targete Subunite	TV-6-14

Number		Page
IV-6-5	Intelligence and Control Model Line of Sight	
	RBAR Parameters	IV-6-16
IV-6-6	Typical Intelligence and Control Model Line	/
	of Sight Curves	IV-6-17
IV-6-7	Air/Reconnaissance/Surveillance Macroflow	IV-6-18
IV-6-8	RECON1 Route and Area Reconnaissance	IV-6-21
IV-6-9	Search Sector Geometry for RECON1	IV-6-23
IV-6-10	Recognition and Identification versus Resolved Target Elements or Signal-to-Noise	IV-6-32
IV-6-11	Mohawk SLAR Range Gating	IV-6-36
IV-6-12	Search Geometry for Ground MTI Radar	IV-6-48
IV-6-13	Entry of UGS Field	IV-6-51
IV-6-14	Radar Probability of Collection Curves	10 0 31
14-0-14	(MTI Ground Radar)	IV-6~55
IV-6-15	Unit Location Error for MTI Ground-Based Radar	IV-6-58
IV-6-16	Macroflow of CCOLLF	IV-6-60
IV-6-17		
14-0-17	Geometry of Countermortar/Counterbattery	IV-6-61
TT (10	Artillery Fire Acquisition	TT (73
IV-6-18	Principal Items in a File Record	IV-6-71
IV-6-19	Threshold Matrix for Battalion to Pass Information or Intelligence to Other	
	Echelons	IV-6-77
IV-6-20	Threshold Matrix for Brigade to Pass Information or Intelligence to	
	Other Echelons	IV-6-78
IV-6-21	Threshold Matrix for Division to Pass	14-0-76
14-0-21	Information or Intelligence to	
	Other Echelons	IV-6-79
IV-6-22	Fire Support Decision Table	IV-6-84
IV-6-23	Damage Levels as a Function of Separation of	10-0-64
10-0-23	Center of Impact and Sensor Location	IV-6-88
IV-6-24	Sensor Status Evaluation	IV-6-89
IV-6-25	UGS Field Assessment Geometry	IV-6-91
	General Radar Data	IV-6-A-3
IV-6-A-1 IV-6-A-2		IV-6-A-4
	Sensor Category General Radar Data, Continued	IV-6-A-8
IV-6-A-3 IV-6-A-4	·	IV-6-A-1
IV-6-A-5	Radar Range	IV-6-A-1
	Target Type Code for Radar	
IV-6-A-6	General Countermortar/Counterbattery Radar Data	IV-6-A-1
IV-6-A-7	General Countermortar/Counterbattery Radar Data,	TT
****	Continued	IV-6-A-1
IV-6-A-8	Ground Based Rac. 3 Range Brackets for Sensor	***
***	Movement D. A. Transit Format	IV-6-A-1
IV-6-A-9	Sensor Constant Data Input Format	IV-6-A-2
IV-6-A-10	Airborne Visual Observers	IV-6-A-2
IV-6-A-11	Intelligence and Control Target Codes and Indexes	IV-6-A-2
IV-6-A-12	Airborne SLAR/MTI	IV-6-A-2
IV-6-A-13	Aerial Cameras	IV-6-A-3

Number		Page
IV-6-A-14	Air Reconnaissance Model Sensor Combination	
	Load Input Format	IV-6-A-33
IV-6-A-15	LOH Decision Control Matrix	IV-6-A-34
IV-6-A-16	LOH or Army Aviation Fixed Wing Reconnaissance Vehicle TOE	T11. 6 . A . 26
TU 6 A 17		IV-6-A-36
IV-6-A-17	Reconnaissance Equipment and Amount-TOE	IV-6-A-37
IV-6-A-18	Delay Times for Each Unit Type Designation	IV-6-A-39
IV-6-A-19	Normal Interval Between Senior and Subordinate Units	IV-6-A-42
IV-6-A-20	Target Inferences from Counts and Intervals	IV-6-A-44
IV-6-A-21	Units and Abbreviations	IV-6-A-45
IV-6-A-22	Target Inferences from Counts and Intervals,	
	Continued	IV-6-A-49
IV-6-A-23	Thresholds of Information Dissemination	IV-6-A-52
IV-6-A-24	Headquarters Originating and Receiving Intelligence	
	Messages	IV-6-A-53
IV-6-A-25	Abbreviations for Type Units	IV-6-A-55
IV-6-A-26	Activity Code and Description	IV-6-A-56
IV-6-A-27	Unattended Ground Sensors Input Data Example	IV-6-A-58
IV-6-A-28	Unattended Ground Sensors	IV-6-A-59
IV-6-A-29	Vehicles and Weapons Codes	IV-6-A-61
IV-6-A-30	Target Code Categories	IV-6-A-63
IV-6-A-31	Intelligence and Control Model Data Deck	
	Listing	IV-6-A-64
IV-6-A-32	Intelligence and Control Data Deck Structure	IV-6-A-65
IV-6-B-1	Routine INCEXC	IV-6-B-2
IV-6-B-2	Routine CCOLLM	IV-6-B-7
IV-6-B-3	Routine COLLCT	IV-6-B-18
IV-6-B-4	Routine CCOLLF	IV-6-B-31
IV-6-B-5	Routine WORKIT	IV-6-B-39
IV-6-B-6	Routine PLNINT	1V-6-B-44
IV-6-B-7	Routine CIRINT	IV-6-B-47
IV-6-B-8	Routine CKINT	IV-6-B-49
IV-6-B-9	Routine IQANGC	IV-6-B-51
IV-6-B-10	Routine CPDT	IV-6-B-54
IV-6-B-11	Routine PROCES	IV-6-B-59
IV-6-B-12	Routine UTSR	IV-6-B-72
IV-6-B-13	Routine SUTR	IV-6-B-75
IV-6-B-14	Routine TAR	IV-6-B-78
IV-6-B-15	Routine ARESPO	IV-6-B-80
IV-6-B-16	Routine DECIDT	IV-6-B-82
IV-6-B-17	Routine DECIDE	IV-6-B-85
IV-6-B-18	Routine MOVSEN	IV-6-B-99
IV-6-B-19	Routine SASSMT	IV-6-B-105
IV-6-B-20	Routine SENSRH	IV-6-B-112
IV-6-B-21	Routine UPSENR	IV-6-B-114
IV-6-B-22	Routine RCMAIN	IV-6-B-116

Number		Page
IV-6-B-23	Routine NUMTGT	IV-6-B-121
IV-6-B-24	Routine RECONN	IV-6-B-127
IV-6-B-25	Routine RCONDT	IV-6-B-130
IV-6-B-26	Routine GETSTD	IV-6-B-140
IV-6-B-27	Routine MOVREC	IV-6-B-144
IV-6-B-28	Routine RECHOM	IV-6-B-149
IV-6-B-29	Routine RECEND	IV-6-B-154
IV-6-B-30	Routine RECDMP	IV-6-B-156
IV-6-B-31	Routine SHTDWN	IV-6-B-160
IV-6-B-32	Routine RECON1	IV-6-B-165
IV-6-B-33	Routine RECON2	IV-6-B-186
IV-6-B-34	Routine RECON3	IV-6-B-198
IV-6-B-35	Routine RECN3B	IV-6-B-217
IV-6-C-1	Printed Output Samples of FILE12 and Sensor	
	Redundancy	IV-6-C-2
TV-6-C-2	Sample Printed Output of Countermortar/Counter-	
	battery Radar, Routine CCOLLF	IV-6-C-4
IV-6-C-3	Printed Output Sample of Routine MOVSEN	IV-6-C-7
IV-6-C-4	Printed Output Sample of Routine SASSMT	IV-6-C-9
IV-6-C-5	Routine RCONDT Printout Statements	IV-6-C-12
IV-6-C-6	MOVREC Print Statements	IV-6-C-13
IV-6-C-7	Printed Output Sample from Routines	
	GETSTD and SHTDWN	IV-6-C-14
IV-6-C-8	printed Output Sample from RECON1	IV-6-C-16
IV-6-C-9	Printed Output Sample from Routine RECON2	IV-6-C-17
IV-6-C-10	Printed Output Sample from Routine RECON3	IV-6-C-22

PART 3

Number		Part
IV-7-1	Ground Combat Model Flow Diagram	IV-7-3
IV-7-2	Unit Orientation and Movement	IV-7-6
IV-7-3	Weapon-Target Coverage Pattern for Laterally	
	Offset Units	IV-7-8
IV-7-4	Ground Combat Model Inforantion Flow Schematic	IV-7-13
IV-7-5	Multiple Unit Engagement	IV-7-16
IV-7-6	Unit Orientation Variables	IV-7-18
IV-7-7	Line of Sight Probability Versus Range	
	(km) for $\bar{T} = 0.6$ km	IV-7-24
IV-7-8	Relationship Between the Engagement Frontage	
	and the Variable d'	IV-7-27
IV-7-9	Coverage Pattern Variables, Detailed	IV-7-29
IV-7-10	Coverage Pattern Variables	IV-7-30
IV-7-11	Search Vector Geometry	IV-7-42
IV-7-12	Typical Variation of la versus @	IV-7-42
IV-7-13	Visual Acuity Versus Off Angle	IV-7-44
IV-7-14	Example of Zones Defined by Weapon/Ammunition	
	Range Capabilities	IV-7-54
IV-7-15	Estimated Coordinates	IV-7-68
IV-7-A-1	Transport System Specifications	IV-7-A-3
IV-7-A-2	Transport Types	IV-7-A-4
IV-7-A-3	Target Dimensions	IV-7-A-5
IV-7-A-4	Weapon System Specifications	IV-7-A-8
IV-7-A-5	Sensor Specifications	IV-7-A-11
IV-7-A-6	Sensor Employment	IV-7-A-12
IV-7-A-7	Weapon Systems Sensor Utilization Work Sheet	IV-7-A-14
IV-7-A-8	Target Priority and Vulnerability	IV-7-A-17
IV-7-A-9	Line of Sight	IV-7-A-19
IV-7-A-10	Probability of Line of Sight versus Range	IV-7-A-21
IV-7-A-11	Horizon and Background	IV-7-A-23
IV-7-A-12	Table of Seasons and Codes	IV-7-A-24
IV-7-A-13	Ground Combat Constant Data Card Input	IV-7-A-25
IV-7-A-14	Ground Combat Data Deck Structure	IV-7-A-27
IV-7-B-1	Ground Combat Model Segment Structure	IV-7-B-1
IV-7-B-2	Routine GCMDT	IV-7-B-3
IV-7-B-3	Routine GCM	IV-7-B-12
IV-7-B-4	Routine GSETUP	IV-7-B-21
IV-7-B-5	Routine DNUMBR	IV-7-B-28
IV-7-B-6	Routine STRBAR	IV-7-B-31
IV-7-B-7	Routine GCFIRE	IV-7-B-34
IV-7-B-8	Routine GCTDET	IV-7-B-41
IV-7-B-9	Routines GCKILL and GCKLL1	IV-7-B-46
IV-7-B-10	Routine GPKILL	IV-7-B-49

Number		Page
IV-7-B-11	Routine GBKEEP	IV-7-B-52
IV-7-B-12	Routine MURFAC	IV-7-B-54
IV-7-B-13	Routine GLEG	IV-7-B-56
IV-7-B-14	Routine GCLAST	IV-7-B-58
IV-7-B-15	Routine GUPDAT	IV-7-B-63
IV-7-C-1a	Unit Geometry and Target Acquisition Sample	
	Output From Ground Combat Model	IV-7-C-2
IV-7-C-1b	Unit Geometry and Target Acquisition Sample	
	Output From Ground Combat Model	IV-7-C-4
IV-7-C-2	Engagement Results Sample Output From Ground	
	Combat Model	IV-7-C-8
IV-7-C-3	Mortar Scheduling Sample Output From Ground	
	Combat Model	IV-7-C-10
IV-8-1	DIVWAG Area Fire Model Macroflow	IV-8-2
IV-8-2	FIREDT Macroflow	IV-8-6
IV-8-3	Weapon Munitions Characteristics Table	IV-8-7
IV-8-4	AREAFR Macroflow	IV-8-8
IV-8-5	Target Unit Assessment Geometry	IV-8-10
IV-8-6	Typical Unit Band Density	IV-8-11
IV-8-7	Typical Unit Personnel Protection	IV-8-19
IV-8-A-1	Area Fire Model Data Base	IV-8-A-2
IV-8-A-2	Personnel Postures	IV-8-A-3
IV-8-A-3	Completed Lethal Area of Weapon/Munition Matrix	IV-8-A-6
IV-8-A-4	Weapon/Munition Index	IV-8-A-7
IV-8-A-5	Weapon Munitions Delivery Characteristics	IV-8-A-10
IV-8-A-6	Weapons/Munition Projectile Description	IV-8-A-13
IV-8-A-7	Weapons/Munition Lethal Area for Personnel	IV-8-A-15
IV-8-A-8	Weapons/Munition Lethal Area for Enemy Equipment	IV-8-A-17
IV-8-A-9	Personnel Posture	IV-8-A-19
IV-8-A-10	Personnel Protection	IV-8-A-22
IV-8-A-11	Area Fire Card Formats, Load Routine AFMLD	IV-8-A-25
IV-8-A-12	Area Fire Model Data Deck Structure	IV-8-A-26
IV-8-B-1	Routine FIREDT	IV-8-B-3
IV-8-B-2	Routine AREAFR	IV-8-B-1]
IV-8-B-3	Routine AKILL	IV-8-B-25
IV-8-B-4	Routine OASSES	IV-8-B-27
IV-8-C-1	Area Fire Assessment Sample Printed Output	IV-8-C-2
IV-9-1	TACFIRE Model Macroflow	IV-9-2
IV-9-2	AFTFC1 Macroflow	IV-9-5
IV-9-3	Method of Attack Table	IV-9-10
IV-9-4	AFTFC2 Macroflow	IV-9-12
IV-9-A-1	TACFIRE Model Data Base	IV-9-A-2
IV-9-A-2	Matrix of TACFIRE Constant Data Requirements,	TT 6
	Blue Force	IV-9-A-4
IV-9-A-3	TACFIRE Target Priority Table Completed, Blue Force	IV-9-A-6

Number		Page
IV-9-A-4	Range Intervals for Target Priorities	IV-9-A-7
IV-9-A-5	TACFIRE Method of Attack Table Complete, Blue Force	IV-9-A-11
IV-9-A-6	TACFIRE Summary of Targets Priorities for Platoon/	
	Company	IV-9-A-14
IV-9-A-7	TACFIRE Summary of Target Priorities for Battalion/	
	Brigade	IV-9-A-15
IV-9-A-8	TACLD Target Priority Summary List.	IV-9-A-15
IV-9-A-9	TACFIRE Target Range/Priority Card Format	IV-9-A-18
IV-9-A-10	TACFIRE Method of Attack Card Format	IV-9-A-19
IV-9-A-11	TACFIRE Target with Priority and Method of Attack	
	Card Format	IV-9-A-20
IV-9-A-12	Weapon/Munition Combinations	IV-9-A-21
IV-9-A-13	TACFIRE Data Matrix and Card Formats	IV-9-A-23
IV-9-A-14	TACFIRE Constant Data Input Cards	IV-9-A-26
IV-9-A-15	TACFIRE Data Deck Structure	IV-9-A-27
IV-9-B-1	Routine OVER9	IV-9-B-2
IV-9-B-2	Routine AFTFCl	IV-9-B-7
IV-9-B-3	Routine AFTFC2	IV-9-B-18
IV-9-C-1	TACFIRE Model Mission Scheduling Sample Printed	
	Output	IV-9-C-1
IV-10-1	Air Ground Engagement Model Mission Type	IV-10-2
IV-10-2	Air Ground Engagement Model Macroflow	IV-10-5
IV-10-3	Resource Allocation Submodel Logical Flow	IV-10-9
IV-10-4	Friendly Airspace Overflight Submodel Logical Flow	IV-10-14
IV-10-5	Schematic for Calculating Safe Point, Blue Aircraft	
	Attacking Red Target	IV-10-15
IV-10-6	Determination of the Number of Air Defense Weapons	
	Within Range	IV-10-20
IV-10-7	Engagement Results Table	IV-10-26
IV-10-A-1	Visibility Codes	IV-10-A-2
IV-10-A-2	Minimum and Maximum Aircraft Requirements for	-
	Mission Performance	IV-10-A-4
IV-10-A-3	Mission Types and Codes	IV-10-A-5
IV-10-A-4	Minimum Ammunition and Personnel Requirements for	
	Mission Performance	IV-10-A-8
IV-10-A-5	Maximum Ammunition and Personnel Requirements for	
	Mission Performance	IV-10-A-10
IV-10-A-6	Aircraft Mission Preparation Delay Time	IV-10-A-12
IV-10-A-7	Aircraft Flight Speeds (Knots)	IV-10-A-15
IV-10-A-8	Flight Area Codes	IV-10-A-14
IV-10-A-9	Aircraft Landing Time Requirements	IV-10-A-17
IV-10-A-10	New Mission Availability Time for Returning	
	Aircraft	IV-10-A-20
IV-10-A-11	Degradation of Available Aircraft for Maintenance	IV-10-A-23
TV-10-A-12	Air Defense Herror Characteries	TV-10-A-25

Number		Page
IV-10-A-13	Reduced Effectiveness of Air Defense Weapons	
	(Percentages)	IV-10-A-27
IV-10-A-14	Terrain and Vegetation	IV-10-A-30
IV-10-A-15	Terrain and Vegetation Effects on Air Defense	
	Weapons	IV-10-A-31
IV-10-A-16	Altitude Codes	IV-10-A-32
IV-10-A-17	Aircraft Average Vulnerable Area Against Specific	
	Weapon Types for Various Kill Categories	IV-10-A-34
IV-10-A-18	Engagement Results Table	IV-10-A-37
IV-10-A-19	Engagement Results of Air Strikes	IV-10-A-38
IV-10-A-20	Activity Types and Codes Versus Target Type	IV-10-A-39
IV-10-A-21	Example Engagement Results Input	IV-10-A-41
IV-10-A-22	Air Ground Engagement Card Format Listings	IV-10-A-43
IV-10-A-23	Air Ground Engagement Data Deck Structure	IV-10-A-44
IV-10-B-1	Routine AIRGND	IV-10-B-3
IV-10-B-2	Routine BTF	IV-10-B-8
IV-10-B-3	Routine ATB	IV-10-B-11
IV-10-B-4	Routine AVAIL	IV-10-B-17
IV-10-B-5	Routine PREPTM	IV-10-B-18
IV-10-B-6	Routine TIMES	IV-10-B-21
IV-10-B-7	Routine SELECT	IV-10-B-26
IV-10-B-8	Routine ENRATA	IV-10-B-30
IV-10-B-9	Routine TORA	IV-10-B-38
IV-10-B-10	Routine BTA	IV-10-B-46
IV-10-B-11	Routine SEG5	IV-10-B-51
IV-10-C-1	DSL Air Mission Request Output	IV-10-C-2
IV-10-C-2	Automatic Air Mission Request Output	IV-10-C-8
IV-10-C-3	En Route Attrition Printed Output from Air Ground	
	Engagement Model	IV-10-C-10
IV-10-C-4	Engagement Results Printed Output from Air Ground	
	Engagment Model	IV-10-C-18
IV-10-C-5	Safe Point Update Printed Output from Air Ground	
	Engagement Model	IV-10-C-21
IV-10-C-6	Mission End Printed Output from Air Ground	
	Engagement Model	IV-10-C-22
IV-11-A-1	Suppression Time Table (Seconds)	IV-11-A-2
IV-11-A-2	Suppression Group Table	IV-11-A-3
IV-11-A-3	Suppression Time Table	IV-11-A-4
IV-11-A-4	Suppression Model Data Deck Structure	IV-11-A-6
IV-11-B-1	Routine SUPRES	IV-11-B-2
IV-11-C-1	Routine SUPRES Sample Printed Output from	
	Suppression Model	IV-11-C-2
IV-12-1	Nuclear Assessment Model Flow	IV-12-3
IV-12-2	Effect of Elliptical Dispersion Pattern on Damage	· - -
	Assessment	IV-12-16

Number		Page
IV-12-3	Effect of Error in Height of Burst on Error	
	in Range	IV-12-18
IV-12-4	Biological Response to Nuclear Radiation	IV-12-28
IV-12-5	Barrier Assessment for a Moving Unit	IV-12-31
IV-12-A-1	Munition Type Data Form	IV-12-A-3
IV-12-A-2	Vulnerability Data Form	IV-12-A-6
IV-12-A-3	Personnel Postures, Nuclear Environment	IV-12-A-7
IV-12-A-4	Weapon Munition Characteristics	IV-12-A-9
IV-12-A-5	Nuclear Weapon Effects	IV-12-A-12
IV-12-A-6	Example of Effects Table	IV-12-A-14
IV-12-A-7	Nuclear Weapon Equipment Vulnerability	IV-12-A-16
IV-12-A-8	Nuclear Barrier/Facility Vulnerability	IV-12-A-18
IV-12-A-9	Nuclear Environment Personnel Posture	IV-12-A-20
IV-12-A-10	Nuclear Environment Personnel Posture for Stay	
	Activity	IV-12-A-22
IV-12-A-11	Induced Radiation Barrier	IV-12-A-24
IV-12-A-12	Nuclear Assessment Model Constant Data Input Cards	IV-12-A-25
IV-12-A-13	Nuclear Assessment Model Data Deck Structure	IV-12-A-27
IV-12-B-1	Routine NAM	IV-12-B-3
IV-12-B-2	Routine NFIRE	IV-12-B-5
IV-12-B-3	Routine NFIRDT	IV-12-B-9
IV-12-B-4	Routine BURST	IV-12-B-11
IV-12-B-5	Routine NDRD	IV-12-B-13
IV-12-B-6	Routine SUPSCH	IV-12-B-15
IV-12-B-7	Routine ASUNIT	IV-12-B-17
IV-12-B-1	Routine HEMOVN	IV-12-B-19
IV-12-B-9	Routine UPRMPT	IV-12-B-21
IV-12-B-10	Routine NASPER	IV-12-B-23
IV-12-B-11	Routine NASEOH	IV-12-B-26
IV-12-B-12	Routine FNDLNK	IV-12-B-30
IV-12-B-13	Routine FNDLOS	IV-12-B-31
IV-12-B-14	Routine STUPRO	IV-12-B-34
IV-12-B-15	Routine CFUN	IV-12-B-36
IV-12-B-16	Routine BANCIR	IV-12-B-38
IV-12-B-17	Routine NBARAS	IV-12-B-41
IV-12-B-18	Routine BARUPE	IV-12-B-44
IV-12-B-19	Routine BARNUM	IV-12-B-45
IV-12-B-20	Routine NCUNIT	IV-12-B-47
IV-12-B-21	Routine BAMUNT	IV-12-B-50
IV-12-C-1	Routine NFIRE Output	IV-12-C-2
IV-12-C-2	Routine NBARAS Output	IV-12-C-7
IV-12-C-3	Routine NCUNIT Output	IV-12-C-8
IV-12-C-4	Routine BAMUNT Sample Printout	IV-12-C-10
	· ·	

PART 4

Number		Page
IV-13-1	Movement Model Macro Flow	IV-13-2
IV-13-2	DSL Move Path Schematic	IV-13-4
IV-13-3	MOVESR Macroflow	IV-13-10
IV-13-4	MOVEDT Macroflow	IV-13-14
IV-13-5	Movement Rate Determination Schematic	IV-13-15
IV-13-6	MOVE Macroflow	IV-13-19
IV-13-A-1	Movement Model Data Base	IV-13-A-2
IV-13-A-2	Matrix of Travel Modes Required for Mobility	
	Categories	IV-13-A-6
IV-13-A-3	Data Base Preparation Schematic	IV-13-A-15
IV-13-A-4	Example of Breach Force Decision Table	IV-13-A-17
IV-13-A-5	TRAVEL Mode and Mobility Category	IV-13-A-20
IV-13-A-6	Unit Type Designators by Mobility Category	IV-13-A-21
IV-13-A-7	Mobility Classification	IV-13-A-23
IV-13-A-8	Mobility Exclusion List	IV-13-A-25
IV-13-A-9	Unit Road Movement Rates	IV-13-A-27
IV-13-A-10	Vehicular Road Movement Rate	IV-13-A-29
IV-13-A-11	Unit Cross Country Movement Rate	IV-13-A-31
IV-13-A-12	Vehicular Cross Country Movement Rate	IV-13-A-34
IV-13-A-13	Vehicular Fuel Consumption Rates	IV-13-A-36
IV-13-A-14	Aircraft Fuel Consumption Rates	IV-13-A-38
IV-13-A-15	Breach/Force Decision Tables	IV-13-A-41
IV-13-A-16	Movement Model Constant Data Input Cards	IV-13-A-42
IV-13-A-17	Movement Model Data Deck Structure	IV-13-A-43
IV-13-B-1	Routine MOVESR	IV-13-B-4
IV-13-B-2	Routine MOVEDT	IV-13-B-9
IV-13-B-3	Routine OBSRCH	IV-13-B-12
IV-13-B-4	Routine MOVE	IV-13-B-16
IV-13-C-1	Printed Output Sample from Routine MOVE	IV-13-C-2
IV-13-C-2	Printed Output Sample from Routine MOVEDT	IV-13-C-3
IV-13-C-3	Printed Output Sample from Routine MOVESR	IV-13-C-6
IV-13-C-4	Routine OBSRCH Print Statements	IV-13-C-8
IV-14-1	Engineer TASK Activities	IV-14-2
IV-14-2	Engineer Driver Routine, ENGR	IV-14-9
IV-14-3	Engineer Priority Routine, EPRIOR	IV-14-11
IV-14-4	Engineer Task Priority Indicators for Start Tasks	IV-14-12
IV-14-5	Engineer Feasibility Routine, EFEASI	IV-14-16
IV-14-6	Engineer UPDATE Routine, EUPDAT	IV-14-20
IV-14-7	Engineer Release Routine, ERELEA	IV-14-24
IV-14-8	Engineer Nuclear Routine, ENUCLE	IV-14-26
IV-14-A-1	Barrier System Locations Card Format	IV-14-A-3
TV-14-4-2	Rarrier Line Indentification Card Format	TV-1/-A-/

Number		Page
IV-14-A-3	Barrier Segment Details Card Format	IV-14-A-6
IV-14-A-4	Barrier Segment Mnemonics Applicable to Engineer	
	Model	IV-14-A-8
IV-14-A-5	Task Identification Card Format	IV-14-A-12
IV-14-A-6	Task Performance Rates for Equipment and Supplies	
	Card Format	IV-14-A-15
IV-14-A-7	Task Performance Rates for Troops Card Format	IV-14-A-19
IV-14-A-8	Engineer Task Rate Units	IV-14-A-21
IV-14-A-9	Task Performance Rates for Environment Card Format	IV-14-A-23
IV-14-A-10	Task Performance Rates for Vehicles Crossing	
	Minefields Card Formats	IV-14-A-25
IV-14-A-11	Contingency Levels for Equipment Card Format	IV-14-A-27
IV-14-A-12	Contingency Levels for Troops Card Format	IV-14-A-28
IV-14-A-13	Unit Type Codes	IV-14-A-29
IV-14-A-14	Engineer Constant Data Card Types	IV-14-A-30
IV-14-A-15	Barrier and Facility Data Deck Structure	IV-14-A-31
IV-14-A-16	Engineer Task Data Deck Structure	IV-14-A-32
IV-14-B-1	Routine ENGR	IV-14-B-3
IV-14-B-2	Routine EPRIOR	IV-14-B-13
IV-14-B-3	Routine PRORTY	IV-14-B-16
IV-14-B-4	Routine EFEASI	IV-14-B-21
IV-14-B-5	Routine FESBIL	IV-14-B-25
IV-14-B-6	Routine ERELEA	IV-14-B-29
IV-14-B-7	Routine EUPDAT	IV-14-B-34
IV-14-B-8	Routine CREA16	IV-14-B-39
IV-14-B-9	Routine MPRALC	IV-14-B-42
IV-14-B-10	Barrier Quadrature Example	IV-14-B-45
IV-14-B-11	Routine NUCSCH	IV-14-B-47
IV-14-C-1	Engineer Model Sample Output	IV-14-C-2
IV-15-1	Macroflow of Airmobile Operation	IV-15-10
IV-15-2	Macroflow of Accept Transport - Segment 1	IV-15-12
IV-15-3	Macroflow of Airmobile Assault - Segment 2	IV-15-16
IV-15-4	Macroflow of Release Transport - Segment 3	IV-15-22
IV-15-5	Schematic Concept of Forward Area Refueling and	
	Rearming System	IV-15-27
IV-15-6	Illustrative Example of Refuel/Rearm Situation	IV-15-31
IV-15-7	Example of Refuel and Rearm Scheduling	IV-15-31
IV-15-8	Macroflow of In-flight Attrition Submodel	IV-15-35
IV-15-9	Macroflow of In-flight Attrition Submodel (Section 2)	
IV-15-10	Macroflow of In-flight Attrition Submodel (Section 3)	
IV-15-11	Horizontal Aspect Angle	IV-15-50
IV-15-A-1	Second Priority Equipment Items Card Format	IV-15-A-3
IV-15-A-2	Airmobile Mix Table Card Format	IV-15-A-4
1 V = 1 3 = A = 1	FKKA HATINITIAN KAYA KAYMOT	.v\-a-/

Number		Page
IV-15-A-4	Refuel Device Definition Card Format	IV-15-A-8
IV-15-A-5	Suppression Mission Data (GTAA) Card Format	IV-15-A-10
IV-15-A-6	Acquisition Data (Card Type 1)	IV-15-A-13
IV-15-A-7	Acquisition Data (Card Type 2)	IV-15-A-14
IV-15-A-8	Aircraft Data Card Format	IV-15-A-16
IV-15-A-9	Air Defense Weapon Data (Card Type 1) Card Format	IV-15-A-18
IV-15-A-10	Air Defense Weapon Data (Card Type 2) Card Format	IV-15-A-21
IV-15-A-11	Air Defense Weapon Data (Card Type 3) Card Format	IV-15-A-23
IV-15-A-12	Air Defense Weapon Data (Card Type 4) Card Format	IV-15-A-25
IV-15-A-13	Missile P _K Versus Miss Distance for Rotary Wing Aircraft Card Format	IV-15-A-27
IV-15-A-14	Missile P _K Versus Miss Distance for Fixed Wing	
	Aircraft Card Format	IV-15-A-29
IV-15-A-15	Airmobile Model Constant Data Input Cards	IV-15-A-31
IV-15-A-16	Airmobile Model Data Deck Structure	IV-15-A-32
IV-15-B-1	Routine AMBLEX	IV-15-B-2
IV-15-B-2	Routine ACCPT	IV-15-B-3
IV-15-B-3	Routine ACCPT1	IV-15 B-6
IV-15-B-4	Routine ACCPT2	IV-15-B-15
IV-15-B-5	Routine ACCPT3	IV-15-B-18
IV-15-B-6	Routine ASULT	IV-15-B-21
IV-15-B-7	Routine ASULT1	IV-15-B-23
IV-15-B-8	Routine ASULT2	IV-15-B-26
IV-15-B-9	Routine ASULT3	IV-15-B-31
IV-15-B-10	Routine ASULT4	IV-15-B-36
IV-15-B-11	Routine RREXEC	IV-15-B-43
IV-15-B-12	Routine RRFRRA	IV-15-B-45
IV-15-B-13	Routine RRQUE	IV-15-B-52
IV-15-B-14	Routine RRFLD	IV-15-B-56
IV-15-B-15	Routine RRFUEL	IV-15-B-65
IV-15-B-16	Routine RATIM	IV-15-B-69
IV-15-B-17	Routine RRTURN	IV-15-B-71
IV-15-B-18	Routine RLEAS	IV-15-B-72
IV-15-B-19	Routine RLEAS1	IV-15-B-75
IV-15-B-20	Routine RLEAS2	IV-15-B-79
IV-15-B-21	Routine RLEAS3	IV-15-B-83
IV-15-B-22	Routine RLEAS4	IV-15-B-87
IV-15-B-23	Routine PENRAT	IV-15-B-89
IV-15-B-24	Routine SETTYP	IV-15-B-91
IV-15-B-25	Routine MISUNT	IV-15-B-93
IV-15-B-26	Routine CIRCLE	IV-15-B-96
IV-15-B-27	Routine GASRCH	IV-15-B-98
IV-15-B-28	Routine ATTDVR	IV-15-B-100
IV-15-B-29	Routine MES	IV-15-B-104
IV-15-B-30	Routine SIS	IV-15-B-115
IV-15-B-31	Routine GTAA	IV-15-B-123
IV-15-B-32	Routine LOSSES	IV-15-B-134

Number		Page
IV-15-C-1	Printed Output Sample from Routine ACCPT1	IV-15-C-2
IV-15-C-2	Printed Output Sample from Routine ACCPT2	IV-15-C-5
IV-15-C-3	Printed Output Sample from Routine ASULT1	IV-15-C-6
IV-15-C-4	Printed Output Sample from Routine ASULT2	IV-15-C-7
IV-15-C-5	Printed Output Sample from Routine ASULT3	IV-15-C-9
IV-15-C-6	Printed Output Sample from Routine RLEAS1	IV-15-C-10
IV-15-C-7	Printed Output Sample from Routine RLEAS2	-IV-15-C-12
IV-15-C-8	Printed Output Sample from Routine RLEAS3	IV-15-C-13
IV-15-C-9	Sample Printed Output from Rearm/Refuel	IV-15-C-15
IV-15-C-10	Sample Printed Output from Routine SIS	IV-15-C-20
IV-15-C-11	Sample Printed Output from Routine GTAA	IV-15-C-24
IV-15-C-12	Sample Printed Output from Routine LOSSES	IV-15-C-28
IV-15-C-13	Sample Printed Output from Routine MES	IV-15-C-30
IV-16-1	Flow of Resupply Actions in Combat Service Support	
	Model	IV-16-4
IV-16-2	Combat Service Support Model	IV-16-8
IV-16-3	Processing of Critical Consumables and Expendables	IV-16-10
IV-16-4	Basic Inventory Model Schematic	IV-16-11
IV-16-5	Transport Assignment Algorithm	IV-16-17
IV-16-6	Processing of Major End Items and Personnel	IV-16-22
IV-16-A-1	Combat Service Support Data Base	IV-16-A-2
IV-16-A-2	Elapsed Time to Handle Transports and Class I Consumption Card Format	IV-16-A-4
IV-16-A-3	Items of Supply by Class Card Format	IV-16-A-6
IV-16-A-4	Weights and Volumes of Transports Capacities	14. 10. H-0
1V-10-R-4	Card Format	IV-16-A-9
IV-16-A-5	Class VII and Personnel Available for Resupply	
	by Card Format	IV-16-A-11
IV-16-A-6	Combat Service Support Card Format Listings	IV-16-A-13
IV-16-A-7	Combat Service Support Data Deck Structure	IV-16-A-14
IV-16-B-1	Combat Service Support Model Initialization	IV-16-B-5
IV-16-B-2	Pending Supply Actions	IV-16-B-6
IV-16-B-3	Force Loop	IV-16-B-12
IV-16-B-4	Personnel and Major End Items Resupply	IV-16-B-21
IV-16-B-5	Routine TRNTIM	IV-16-B-26
IV-16-B-6	Routine EVTFIL	IV-16-B-29
IV-16-B-7	Routine SUPFIL	IV-16-B-31
IV-16-B-8	Routine BOFILE	IV-16-B-34
IV-16-B-9	Routine MISOUT	IV-16-B-36
IV-16-B-10	Routine RESLVE	IV-16-B-38
IV-16-B-11	Routine CSSANL	IV-16-B-40
IV-16-C-1	Routine SERSUP Sample Output	IV-16-C-1
TV-17-1	Special Purpose Pourine Macroflow	TV_17_2

		Page
IV-17-B-1	Routine INITAL	IV-17-B-2
IV-17-B-2	Routine COMMDP	IV-17-B-6
IV-17-B-3	Routine EXIT1	IV-17-B-8
IV-17-B-4	Routine EAT	IV-17-B-11
IV-17-C-1	Printed Output Sample from Routine INITAL	IV-17-C-2
IV-17-C-2	Routine COMMDP Printed Output Sample	IV-17-C-5
IV-18-B-1	Routine DOSR	IV-18-B-3
IV-18-B-2	Routine DBSR	IV-18-B-6
IV-18-B-3	Routine TRUTH	IV-18-B-8
IV-18-C-1	DIVWAG Scenario Language Interface Printout	IV-18-C-2
IV-19-B-1	Routine INTSPT	IV-19-B-6
IV-19-B-2	Routine PONTLN	IV-19-B-8
IV-19-B-3	Routine CELLST	IV-19-B-10
IV-19-B-4	Routine LOS	IV-19-B-14
IV-19-B-5	Routine SEARCH	IV-19-B-18
IV-19-B-6	Routine INTPOL	IV-19-B-20
IV-19-B-7	Routine RANKA and RANK	IV-19-B-23
IV-19-B-8	Routine SCALE	IV-19-B-25
IV-19-B-9	Routine RANDU and RAND1	IV-19-B-28
IV-19-B-10	Routine IUIDF	IV-19-B-30
IV-19-B-11	Routine ADDUNT	IV-19-B-32
IV-19-B-12	Routine EOH2OT	IV-19-B-34
IV-19-B-13	Routine PUTOUT	IV-19-B-36
IV-19-B-14	Routine SCORE	IV-19-B-38
TV-19-B-15	Routine KPICK	TV-19-R-40

PART 5

Number		Page
V-2-A-1	Routine REPCTL	V-2-A-2
V-3-B-1	Routine UPEOH	V-3-B-3
V-3-B-2	Routine DNCHA1	V-3-B-10
V-3-B-3	Routine USTAT1	V-3-B-14
V-3-B-4	Routine PUTDET	V-3-B-24
V-3-B-5	Routine EOHLOC	V-3-B-34
V-3-B-6	Routine EOHPER	V-3-B-39
V-3-B-7	Routine UACTR	V-3-B-44
V-3-B-8	Routine GET31	V-3-B-50
V-3-B-9	Routine SUM	V-3-B-52
V-3-C-1	Status and Activity Reports	V-3-C-2
V-4-B-1	Routine UID501	V-4-B-2
V-4-B-2	Routine PLREPT	V-4-B-5
V-4-B-3	Routine PLOVFL	V-4-B-6
V-4-C-1	Period Planning Report	V-4-C-1
V-5-B-1	Routine INTLRP	V-5-B-4
V-5-C-1	Period Intelligence Report	V-5-C-2
V-6-B-1	Routine ENGRE1	V-6-B-2
V-6-C-1	Period Barrier Report	V-6-C-2
VI-1-1	Analysis Output Routine	VI-1-2
VI-1-2	Analysis Output Processor Macroflow	VI-1-3
VI-2-A-1	Input Card Format for PREP	VI-2-A-2
VI-2-A-2	Input Card Format for PTAPE	VI-2-A-5
VI-2-B-1	Routine PREP	VI-2-B-3
VI-2-B-2	Routine PTAPE	VI-2-B-8
VI-2-B-3	Routine UIDCD	VI-2-B-1
VI-2-B-4	Routine UTDCD	VI-2-B-1
VI-2-B-5	Routine CLSCD	VI-2-B-1
VI-2-B-6	Routine TIMCD	VI-2-B-1
VI-2-B-7	Routine DEVCD	VI-2-B-2
VI-2-B-8	Routine ENDCD	VI-2-B-2
VI-2-B-9	Routine DRSPLT	VI-2-B-2
VI-2-B-10	Routine WRTDOR	VI-2-B-3
VI-2-C-1	Printed Output Sample of Routine PREP	VI-2-C-2
VI-2-C-2	Printed Output Sample of Routine UXR	VI-2-C-3
VI-2-C-3	Printed Output Sample of Routine PTAPE	VI-2-C-5
VI-3-A-1	Input Card for PHIST	VI-3-A-2
VI-3-B-1	Routine PHIST	VI-3-B-2
VI-3-B-2	History Record Print Routines	VI-3-B-4
VI-3-C-1	Area Fire Assessment Record	VT-3-C-2

Number		Page
VI-3-C-2	Area Fire Event Record	VI-3-C-3
VI-3-C-3	Air Ground Engagement Mission Request Record	VI-3-C-5
VI-3-C-4	Air Ground En Route Attrition Record	VI-3-C-6
VI-3-C-5	Air Ground Target Engagement Record	VI-3-C-8
VI-3-C-6	Air Ground Target Assessment Record	VI-3-C-9
VI-3-C-7	Ground Combat Attacker-Defender Pair Record	VI-3-C-11
VI-3-C-8	Ground Combat Battle Unit Record	VI-3-C-13
VI-3-C-9	Back Order Event Record	VI-3-C-15
VI-3-C-10	Supply Actions	VI-3-C-16
VI-3-C-11	Supply Action Event Record	VI-3-C-17
VI-3-C-12	Movement Event Record	VI-3-C-21
VI-4-A-1	Input Cards for ANCARD	VI-4-A-5
VI-4-B-1	Routine ANCARD	VI-4-B-4
VI-4-B-2	Routine GCMOD	VI-4-B-14
VI-4-B-3	Routine MATOUT	VI-4-B-22
VI-4-B-4	Routine MPRCES	VI-4-B-24
VI-4-B-5	Routine AGM	VI-4-B-36
VI-4-B-6	Routine AFM	VI-4-B-41
VI-4-B-7	Routine IOMAT	VI-4-B-47
VI-4-B-8	Routine SETUP	VI-4-B-52
VI-4-C-1	Printed Output of Routine ANCARD	VI-4-C-2
VI-4-C-2	Printed Output from Routine AFM	VI-4-C-3
VI-4-C-3	Printed Output from Routine AGM	VI-4-C-3
VI-4-C-4	Printed Output from Routine GCMOD	VI-4-C-5
VI-5-A-1	Update Data Card for Routine MTXUP	VI-5-A-2
VI-5-A-2	Input Card for Routine ANALYS	VI-5-A-4
VI-5-B-1	Routine MTXMRG	VI-5-B-2
VI-5-B-2	Routine MTXUP	VI-5-B-6
VI-5-B-3	Routine ANALYS	VI-5-B-10
VI-5-B-4	Routine CALCH	VI-5-B-15
VI-5-B-5	Routine PAIR	VI-5-B-17
VI-5-B-6	Routine FRDMAN	VI-5-B-22
VI-5-B-7	Routine DSESRT	VI-5-B-24
VI-5-B-8	Routine FRGFIT	VI-5-B-26
VI-5-B-9	Routine ANAOVA	VI-5-B-29
VI-5-C-1	MTXMRG Output	VI-5-C-2
VI-5-C-2	MTXUP Output	VI-5-C-3
VI-5-C-3	ANALYS Output	VI-5-C-5
VII-3-B-1	Routine CREATE	VII-3-B-3
VII-3-B-2	Routine REMOVE	VII-3-B-6
VII-3-B-3	Routine ADDRCD	VII-3-B-10
VII-3-B-4	Routine ADDWRD	VII-3-B-14
VII-3-B-5	Routine SUBRCD	VII-3-B-18
VII-3-B-6	Routine SUBWRD	VII-3-B-22
VII-3-B-7	Routine FILE	VII-3-B-26

Number		Page
VII-3-B-8	Routine RECORD	VII-3-B-29
VII-3-B-9	Routine WORD	VII-3-B-34
VII-3-B-10	Routine GETPUT	VII-3-B-37
VII-3-B-11	Routine TRNSMT	VII-3-B-40
VII-3-B-12	Routine FSL	VII-3-B-47
VII-3-B-13	Routine SHFTDN	VII-3-B-49
VII-3-B-14	Routine MASSIO	VII-3-B-53
VII-4-B-1	Routine IOTERN	VII-4-B-2
VII-4-B-2	Routine IOWETH	VII-4-B-6
VII-4-B-3	Routine UTILLD	VII-4-B-8
VII-4-B-4	Routine UTILDP	VII-4-B-11
VII-4-C-1	Utility LOAD Routine Printed Output	VII-4-C-2
VII-4-C-2	Utility DUMP Routine Printed Output	VII-4-C-2
VII-5-B-1	Routine MVCHAR	VII-5-B-2
VII-5-B-2	Routine KHAR	VII-5-B-4
VII-5-B-3	Routine PACK28	VII-5-B-6
VII-5-B-4	Routine INTCHR	VII-5-B-8
VII-5-B-5	Routine SNATCH	VII-5-B-10

SECTION I

DIVWAG SYSTEM GENERAL DESCRIPTION

CHAPTER 1

INTRODUCTION

- 1. PURPOSE. The purpose of this volume is to provide computer programmers and military operation research analysts with information necessary to understand the detailed operation of the DIVWAG system, the means by which the models represent the military activities simulated, and the means by which the constituent computer programs perform the necessary model functions. This volume also provides the instructions for preparing the DIVWAG data base.
- 2. SCOPE. This volume includes the following elements of the DIVWAG system documentation.
 - . Descriptions of the mathematical and logical processes
 - . Input data requirements
 - . Detailed program descriptions
 - . Output data descriptions
 - . Data storage techniques
 - . Diagnostic message handbook
 - . Computer system requirements.
- 3. ORGANIZATION. This volume is divided into eight sections. The introductory section provides a brief description of the DIVWAG system and its developmental history followed by the minimum computer system requirements and definitions of terms. The second through sixth sections describe the Constant Data Input, Orders Input, Period, Period Output, and Analysis Output Processors respectively. Each major element of a processor constitutes a chapter with its associated appendixes. The mathematical and logical processes are described in the chapter and the appendixes include the input requirements, detailed program descriptions, output descriptions, and references. Program source listings are available under separate cover. Section seven describes utility routines used by more than one processor. A handbook, listing and describing all diagnostic messages, is included in section eight.

12.

CHAPTER 2

MODEL DESIGN AND DEVELOPMENT

1. NEED FOR A DIVISION WAR GAME MODEL:

- a. Within the Army Planning System, 1 there are two significant planning tasks that demand the use of a credible and acceptable division war game model: objective force and resource planning, and approved (constrained) force planning. Both planning tasks contribute to the primary objectives of the Army Planning System; namely, to:
 - . Provide timely, pertinent Army views for consideration by the Secretary of Defense.
 - . Contribute persuasively to the formulation and presentation of joint military strategy, force objectives, and other matters of the Joint Strategic Planning System.
 - . Provide timely guidance to Army staffs and commanders.
- b. Annually, as part of the Department of Defense Planning, Programming, and Budgeting System (PPBS), the Military Department staffs submit to the Secretary of Defense plans for those Service forces and resources they feel are necessary to meet the national security objective. These plans are referred to as objectives or requirements plans. Imbedded in these plans are the results of detailed analyses, studies, and games that supply the rationale to justify the major Service forces planned or recommended. As an integral part of the preparation of Army objectives plans, detailed study and analysis is devoted to cost-versus-effectiveness trade-offs among alternative forces to achieve the desired objective of countering the enemy threat to the United States and its Allies. The most significant building block in advancing the Army's recommendations is the division or, more precisely, the division force equivalent (DFE). A division war game model, properly applied, will provide evaluation data to support Army objective force planning.
- c. In the course of exercising the PPBS, the Secretary of Defense makes an annual decision on the apportionment of resources to each Military Department, and the results of the decision are embodied in the Five-Year Defense Program (FYDP). With this decision, the resources available to each Military Service are approved, as are the forces represented by the resources. The Army, as with the other Services, enters into a period of constrained force planning. An obvious objective of such an exercise is attaining the most combat effective force for the resources available. Again, cost effectiveness studies and analyses contribute to those approved force structures appearing in the Army Force Development Plan; and, as with objective force planning,

^{1.} AR 1-1

the division or the division force equivalent becomes the basic building block. A division war game model is of immeasurable value in arriving at the design and structure of the Army in the field.

d. Aside from direct application of a division war game model to the formalized Army Planning System, there is a major requirement to assess the value of competing individual systems (firepower; mobility; command, control, and communications; combat service support; and intelligence) to the overall combat effectiveness of Army forces in the field. All aspects and capabilities of these individual competing systems are studied, analyzed, and tested; however, until the systems are aggregated into a combat organization and evaluated as part of a composite system, the contribution (value) of each system to overall combat effectiveness cannot be properly assessed. A division war game model simulates all functions of land combat at an organizational level that permits evaluation of component organizations and systems.

2. DIVISION WAR GAME MODEL DEVELOPMENT:

- a. During the late 1960s a war game model, DIVTAG II (DIVision Through Army Group), was developed for U.S. Army Combat Developments Command (USACDC) and exercised under the sponsorship of the USACDC Institute of Combined Arms and Support (USACDCICAS). DIVTAG II was recognized as a major developmental effort incorporating several potentially significant features, including the DIVTAG Scenario Language (DSL), which allowed gamers to formulate their game period plans and orders in English-like commands for communication to the DIVTAG II computer submodels.
- b. Experience in use of the DIVTAG II model to generate game data for analysis determined that the DIVTAG II system—including both human and computer elements—functioned far too slowly to be an effective tool for responding to USACDC force analysis requirements. In addition, several flaws were suspected in the application of DIVTAG II algorithms to the simulation of combat reality.
- c. On 10 August 1970, the Combat Developments Research Office of Computer Sciences Corporation (CSC-CDRO) initiated Project 3-71, Improvement of the ICAS War Game Model (IMPWAG) under Contract DAAG11-70-C-0875. The overall tasks of this project were to identify deficiencies and problem areas in DIVTAG II through a review of the documentation; to establish a priority list for correction/resolution of the deficiencies and problem areas; to correct or improve DIVTAG II within project constraints; and to document corrective action, improvements, and resolutions, as well as recommended follow-on corrective action. This project was completed on 15 May 1971.
- d. In February 1971, project tasking was issued to CSC-CDRO to design, develop, and validate:
- (1) A computer-assisted war game model(s) which would permit determination of the impact on force effectiveness of changes in the mixes of major weapons and other systems at an appropriate level of resolution.

- (2) An analytical methodology for analyzing the output of the model(s) developed and determining the effectiveness of a single force.
 - (3) An analytical methodology for comparing alternative forces.

The project described above is entitled "Development of a Division War Game Model (DIVWAG)" and was completed on 31 December 1971.

- e. On 15 November 1971, CSC-CDRO initiated Project 2-72, Improvement of the War Gaming Capability (WAGCAP), the objectives of which were to:
 - . Incorporate selected improvements and additions into the DIVWAG Model
 - . Train a government team in the major aspects of the application of the model to include associated analytical methodologies.

The project was completed on 15 July 1972.

- f. The DIVTAG II model and its successor, the DIVWAG model, were programmed to execute on the Control Data Corporation 3300 computer system at Fort Leavenworth, Kansas. They contained numerous machine-dependent programming features. In July 1972, tasking was initiated under Project 1-73 to reprogram the DIVWAG model to conform with newly established U.S. Army software development standards. The model would thus be readily adaptable to many computer systems available to the government, and fully operational on the Control Data Corporation 6500 computer system installed at Fort Leavenworth, Kansas, in November 1972. The project included fully documenting the DIVWAG model and performing benchmark validation.
- g. The programming project was completed in April 1973 and the government accepted the model from CSC on 15 April 1973. Since then, it has been utilized to support six study efforts:
 - (1) Conceptual Armored Division (CONAR) Study (May 73 Sep 73).
 - (2) Family of Scatterable Mines (FASCAM) Study (December 73 August 74).
 - (3) TOW-DRAGON Antitank Mix Study (October 74 December 74)
- (4) Integration of Intelligence From All Sources (IIFAS) Study (May 75 Sep 75).
 - (5) Antiarmor Systems Program Review (ASPR) (Jan 76 Apr 76).
 - (6) Legal Mix V Study (Apr 76 Aug 76).
- h. In August 1974 a contract was awarded to Braddock-Dunn-McDonald (BDM) to improve the Engineer and Movement models. The \$65,000 effort was completed in October 1975. Successful integration of the changes has not been made and the documentation does not reflect BDM's modifications.

CHAPTER 3

SUMMARY DESCRIPTION

- 1. MODEL OBJECTIVE. The DIVWAG Model was developed as a computer-assisted war gaming system for use in simulating military interactions between opposing division-size forces and their major elements, with outputs permitting evaluation and comparison of the combat effectiveness of such division forces. The DIVWAG Model objective is to provide means for determining the impact on force effectiveness of changes in the mixes of major weapons and other systems. The DIVWAG Model permits two-sided simulations. The games using the DIVWAG Model can be open, semi-open, or closed. The games will be basically rigid, but the model can be operated with semi-rigid intelligence and special weapons assessment. Resolution is partially adjustable. Time resolution may be as small as a hundredth of a minute (0.01 minute), space resolution as small as one meter, and unit resolution as small as one individual; however, for practical gaming purposes, unit resolution is on the order of a battalion, depending on terrain scale and size forces being gamed.
- 2. MODEL CAPABILITIES. The model capabilities are discussed in terms of operational capabilities and operational scope.
- a. Operational Capabilities. The DIVWAG Model has the following operational capabilities:
- (1) Producing data for use in evaluating effectiveness of forces composed of maneuver units and their associated combat support and combat service support units.
- (2) Producing detailed quantitative data for use in comparing the effectiveness of the alternative forces.
- (3) Simulating high and mid-intensity conflict (nuclear and conventional war).
- b. Operational Scope. The DIVWAG Model scope is defined in terms of command levels, military services, types of operations, geographical areas of operations, rate of operation, and combat functions.
- (1) Command Levels. The DIVWAG Model has been designed to produce data to evaluate division forces; i.e., a division plus an appropriate slice of corps or field army troops. There is explicit representation of the task organization of the forces. Echelons of command are defined, and reports are prepared that reflect the status of each command echelon and include the aggregated status of all subordinate units. Communications are simulated between division, brigade/regiment, and battalion command units. A total of 1000 units can be played, divided among Red and Blue forces. These units must be structured into task organizations for each force.

- (2) Military Services. The DIVWAG Model has been designed to accommodate and integrate all types of land forces (e.g., armored, mechanized, and airmobile) and supporting tactical air forces.
- (3) Types of Operations. The DIVWAG Model provides for representation of the major types of military operations; i.e., offensive, defensive, retrograde (delay/withdrawal), covering force, and movement. In addition the model is capable of simulating high and mid-intensity conflict (nuclear and conventional war).
- (4) Geographical Area of Operations. The DIVWAG Model can accommodate rectangular geographical areas as large as 8,000 kilometers on a side. The system is limited in its application to worldwide geography only by availability of appropriate input data.
- (5) Rate of Operation. The rate of operation of the DIVWAG war game is not firmly established. It is estimated that the simulation model can produce game period turnaround data in a 2:1 ratio of computer time to combat time simulated for a relatively straightforward combat situation at a battalion level of resolution. Actual timing is a function of the level of resolution being gamed the number of units being gamed, the level of military activity portrayed, and the nature of other computer jobs on the system when the model is being used in a multiprogramming environment. Considering the time required for period turnaround, a real time to game time pace of approximately 5:1 is considered reasonably attainable for gaming at a sufficient level of complexity to provide useful results.
- (6) Combat Functions. The DIVWAG Model can address the following functions and evaluate the contribution to force effectiveness of varying the mixes of related elements:
 - (a) Intelligence functions; surveillance and target acquisition.
- (b) Command, control, and communications functions; decision and communications delay times.
 - (c) Firepower functions.
 - (d) Mobility functions; aerial, ground, and firepower mobility.
- (e) Combat service support functions; supply and transportation; loss, expenditure, and consumption rates; personnel replacement.
- 3. FUNCTIONAL COMPONENTS AND CAPABILITIES. Functionally the DIVWAG Model is a dual system; it functions physically/electronically as a data processing system and, at the same time, it functions in simulation as a military combat system. To be complete, a description of the model must consider both aspects. The DIVWAG Model is described herein in terms of its data processing functional components and its military simulation functional capabilities.
- a. Data Processing Functional Components. The DIVWAG software is divided functionally into five processors that communicate with each other through common files and records. Designations and functions of these processors are:

- (1) Constant Data Input Processor. The Constant Data Input Processor receives data on cards, edits the data, and assembles the data onto tape and disk files.
- (2) Orders Input Processor. The Orders Input Processor receives player operational orders in semi-military language and processes these orders into detailed instructions to the units simulated.
- (3) Period Processor. The Period Processor receives translated player orders and simulates the military action.
- (4) Period Output Processor. The Period Output Processor receives results from the Period Processor and compiles specific reports and gross summary reports.
- (5) Analysis Output Processor. The Analysis Output Processor receives detailed data from the Period Processor as period history tapes; retrieves, arrays, and performs the statistical analysis of the data; and outputs the arrayed data in specified formats.
- (6) Data Flow. The flow of data between processors and to the gaming staff and analysis team is displayed graphically in Figure I-3-1. The input and output of each processor are tabulated in Figure I-3-2.
- b. Military Simulation Functional Capabilities. The Period Processor simulates an extremely broad and flexible spectrum of military activity through four categories of models (intelligence and control, firepower, mobility, and combat service support). The models are described individually in the following subparagraphs.
- (1) Intelligence and Control (INC). This model provides the quantitative data necessary for evaluation of the contribution of sensor mixes to force effectiveness. It integrates the closely related functions of surveillance; target acquisition; combat intelligence; and command, control, and communications. Gamers are permitted to input intelligence from sources not simulated by, model components. The information obtained from sensors and from gamer input is processed and used automatically by the Intelligence and Control Model to make requests for fire support on acquired targets. Fire missions are requested from available attack helicopters, Air Force close air support (CAS), or ground-based artillery by use of a set of decision rules, according to the situation. Sensor information is also converted into general intelligence by this model to produce a summary report at the end of each game period. The summary outlines the current status of what may be known at division level concerning the size, type, and location of the enemy forces in the battle area. This report is to aid the gamer in preparing orders for the next game period. The Intelligence and Control Model consists of three interrelated submodels: Collection, Processing, and Decision. The military functions simulated by the Intelligence and Control Model are summarized below and include:
- (a) Sensing and Reporting. The capabilities of individual ground and aerial sensors are considered to simulate the detection and collection of information or intelligence on units of the opposing force and the summarizing

Figure I-3-1. DIVWAG System Data Flow

Processor	Input	Output
Constant Data Input Processor	Constant Data Cards	Formatted dumps of data files.
Orders Input Processor	DSL Order Cards	Unit and battle order tables.
Period Processor	Start-of-Period Tapes	Game Period History Tapes, Game Period Dump Tapes, printed output from the processor.
Period Output Processor	Game Period Dump Tapes	Game Period Status, Activity, Intelligence and Barrier Reports.
Analysis Output Processor	Period History Tapes	Analysis Reports

Figure 1-3-2. Processor Input and Output

of such information into sensing reports, which enter the intelligence chain. Both target and nontarget intelligence are simulated. Type sensors modeled include moving target indicator radar, unattended ground sensor fields, countermortar and counterbattery radar, air defense radar, visual observers in light observation helicopters and fixed wing reconnaissance aircraft, surveillance aircraft (Mohawk type) with moving target indicator radar capability, and high performance reconnaissance aircraft with visual and various photographic capabilities.

- (b) Time Delays. The model introduces separate delays for time consumed in each of the principal steps: intelligence collection, intelligence analysis, routing, and use or the information in decisions.
- (c) Development of Targets for Fire Missions. A separate channel for development of target intelligence is simulated by the model. This channel provides acquired targets for fire missions without the relatively long delays involved in general intelligence processing.
- (d) Intelligence Analysis and File Maintenance. Comparison of a new report with information already in the intelligence files is simulated, and if reports relate to the same unit they are consolidated. The existence of new units or parent units can be deduced. Intelligence analysis centers are simulated for each unit at maneuver battalion, brigade or regiment, and division levels. Files are designed to stay within the limits of 10, 20, and 100 reports, respectively, for these three echelons.
- (e) Decisions on Information/Intelligence Flow and Requests for Fire Support. The routing of information or intelligence among intelligence analysis centers and command elements at the three echelons is simulated with the use of a flow structure and set of routing criteria, according to the information in each report. A similar set of criteria is used to determine whether a target qualifies for fire support and what type of fire support (attack helicopter, TACAIR, ground-based artillery) will be requested.
- (f) Contents of Intelligence Report. The end-of-period contents of the division intelligence file are used for this report. Each report that met criteria to reach this file and was not discarded from the file in favor of a more recent record or consolidated into a record of a parent unit is reflected in the Intelligence Report. Items of estimated information given in the report for each opposing unit in this intelligence file include size, activity, type, direction of last move, time last sensed, and number of sensings attributed to this unit.
- (2) Firepower. The firepower models provide the quantitative data necessary for evaluation of force effectiveness as a function of changes in mixes and types of major weapon systems. The models integrate all aspects of mid or high intensity combat where interaction of opposing forces may occur and result in personnel or material losses. The firepower models coordinate and integrate the effectiveness of combined arms teams by modifying assessment routines for high attrition events to account for concurrent and parallel killing capabilities. For example, when units are engaged in combat, kills are

related to the number of fire elements on opposing sides. Should an attack helicopter fire team make an attack during a ground combat cycle, the ground combat cycle will be interrupted immediately prior to the helicopter attack, the status of the units in ground combat will be updated to that moment, the effects of the helicopter attack on the current ground combat unit's status will be assessed, and the ground combat cycle will be resumed. The same assessment technique is followed for other interfacing firepower activities. Five models simulate the firepower function: Ground Combat, Area Fire, TACFIRE, Nuclear Assessment, and Air Ground Engagement. Each of these models assesses damage inflicted and produces loss, expenditure rate, and consumption data for use in evaluating the supply and transportation systems.

(a) Ground Combat Model:

- $\underline{1}$. The Ground Combat Model represents the interaction between the direct fire weapons of opposing maneuver units engaged in ground combat.
- 2. The model represents the interaction and the effects of weapons of cross-reinforced units. Combat power may be enhanced by employing combined-arm forces against the enemy. The effectiveness of the maneuver unit is largely dependent on the combination and coordination of weapon systems within the unit. The distance of separation of weapon systems is limited so that mutual support is possible when weapon density permits.
- 3. The impact of the environment is represented by the model. All movement in ground combat is subject to the constraints imposed by the environment wherein ability to move forces by ground is degraded by the effects of adverse weather, terrain, and visibility. The application of firepower is largely controlled by the environment since effectiveness of each weapon system is limited by its associated target acquisition capabilities. Target acquisition cannot occur unless line of sight exists between the observer and target. Line of sight may be severely limited due to terrain roughness, vegetation, and forestation. A firer may lose line of sight on a moving target before firing a round. A moving target may drop out of line of sight during the time of flight of the round. Target acquisition is limited by visibility, whether due to adverse weather or night combat operations. Under conditions of reduced visibility, target acquisition is enhanced by the employment of night vision equipment.
- 4. The interaction of each maneuver unit with the enemy is considered by the model in terms of a maneuver unit's effectiveness and vulnerability. The maneuver unit's effectiveness is influenced by the level of activity. As the level of activity increases, more weapon systems can acquire targets. As individual moving weapon systems stop to fire, the signature (i.e., evidence of that weapon firing) increases with the level of activity. The maneuver unit's vulnerability is influenced by the level of activity. A firing weapon system may disclose its position and become a target for enemy fire.
- 5. The Ground Combat Model relies heavily on the existence of data to describe weapon/ammunition effectiveness against varying target

types in a combat situation. The model also requires adequate data to describe the target acquisition capabilities of all employed sensor types other than unaided vision.

- (b) Area Fire and TACFIRE Models. The Area Fire and TACFIRE Models simulate the scheduling of nonnuclear munitions for area fires, and the delivery and assessment of results of nonnuclear fires. Area fire events are generated by two methods. First, gamers issue fire orders prior to the engagement period for fire with specific ammunition at specific coordinates. Second, during the engagement period target information is developed by the Intelligence and Control Model with a request for nonnuclear artillery fire, and the TACFIRE Model automatically schedules the required fire missions for the fire units. The automatic mode is referred to as the TACFIRE mode. Targets in this mode consist of targets of opportunity and are limited to those enemy units detected and processed by the Intelligence and Control Model. Fire units are battalion or battery size, and integral fire units are used in attacking area fire targets. The fire units are constrained by range limitations, volley firing times, number of tubes or rails per fire unit, and weapons/ munitions availability. A target threat priority value ranging from 1 to 9 is assigned to each area fire target, and is based upon its estimated size, tvpactivity, range, and the tactical doctrine used in artillery employment for · the particular game. Priority one is a higher priority than priority two, etc. If a backlog of targets exists, targets are engaged in highest priority order. The Area Fire and TACFIRE routines are separated into three functional classes: scheduling, delivery, and assessment. Most of the routines for the automatic TACFIRE mode are concerned with scheduling of fires. The delivery routines deliver the munitions on target and determine units whose presence in the impact area will require assessments. The assessment routines then calculate the effects of the fire events, based on number of rounds fired, lethal area of nonnuclear munitions, dimensions of the target, number and density of target elements, and target vulnerability. The assessment routine makes adjustments in target personnel and equipment to reflect losses and in the fire unit's munitions on hand to reflect expenditures.
 - (c) Air Ground Engagement Model. The Air Ground Engagement Model simulates for both opposing forces all air-to-ground and ground-tc-air interactions falling within the definition of close air support (CAS) and otherwise directly related to ground combat operations. These operations inclu aircraft fires provided by other Services, and Army aircraft delivering direct aerial fires (DAF). The Air Ground Engagement Model determines all attrition and casualty results of such interactions. The Air Ground Engagement Model is sufficiently flexible that major changes in aircraft characteristics, quantity or mixes of the major weapon systems, or their modes of employment will be reflected in the measures of force effectiveness. Single or multiple aircraft flights are generated by the Intelligence and Control Model or are directed by gamer orders. Attrition of aircraft while in flight is based on the location of air defense capable units; i.e., units that contain air defense weapons. The Air Ground Engagement Model divides the flight path into the following segments as appropriate: air base to safe point, safe point to target, target to safe point, and safe point to air base. The Air Ground Engagement Model:

- Selects from available aircraft and munitions types those best suited for the mission, determines the time required for aircraft preparation and pilot briefing, and schedules the time for aircraft to be airborne.
- Maintains a current status record for aircraft assigned to a mission, to include munitions and fuel, aircraft losses caused by enemy activity, and effects of the aircraft on enemy targets.
- . Moves the aircraft progressively along the mission segments, assessing aircraft status, ¹ attrition, and accomplishments at the completion of each segment to determine if the mission should continue.
- Determines the results of attacks on targets in terms of aircraft losses and target losses.
- Upon completion of the mission and return to the airbase, aggregates total mission results (including total mission time), assesses aircraft damage, and determines delay times for subsequent mission availability of the aircraft.
- (d) Suppression Model. The treatment of suppressive effects of area fires or aerial strikes upon a unit was introduced to the DIVWAG Model through the addition of a Suppression Model. This model represents suppressive effects by the interruption of selected activities (unit movement, delivery of area fires, delivery of air defense fires) in response to incoming fire. Length of interruption depends on the activity interrupted and nature of fire received, and the interruption is extended as fires continue to be received.
- (e) Nuclear Assessment Model. The Nuclear Assessment Model simulates the delivery of and the assessment of results of tactical nuclear fires. All nuclear fires are conducted in response to gamer fire order, issued prior to the simulated engagement period. The gamer fire order specifies the unit to fire, weapon and munition to fire, yield, height of burst (if controllable), and designated ground zero. Thus, all planning of nuclear fires must be carried out by the gamer prior to an engagement period. In response to a nuclear fire order, the Nuclear Assessment Model simulates the actual firing, the nuclear detonation, and the assessment of effects against all units as well as on obstacles and facilities within the effects area of the round. The detonation and effects of atomic demolition munitions (ADM) are also simulated by the model. Simulated effects include those due to blast, prompt nuclear and thermal radiation, and delayed effects due to induced radiation. Fallout effects are not simulated.

^{1.} Includes effects of air defense activities, weather, and terrain.

- (3) Movement Model. The Movement Model represents unit movement other than airmobile operations including the effects of those activities that serve to improve or impede movement. The Movement Model provides the quantitative data necessary for evaluation of force effectiveness as a function of ground movements, and the related effects of significant changes in the mixes and types of mobility means. The Movement Model considers the following aspects of force mobility:
- (a) Air Movement. The Air Movement section of the model simulates moves by aircraft not in connection with airmobile operations. Air movements may be ordered externally by gamers or generated internally by the Air Ground Engagement Model. Aircraft availability, class IIIA supplies, and weather limitations are checked before the air movement is allowed. Air routes, altitudes, and speeds are specified by the gamer order or are determined by the model generating the movement internally. Once that air movement is initiated, it will be completed unless terminated due to losses. At the end of each flight segment the unit will be updated to reflect losses of aircraft and personnel and the status of associated supplies.
- (b) Ground Movement. The Ground Movement section of the model simulates moves by surface transportation. Ground movements of units not engaged in combat are ordered by gamers. Ground movements are affected by category of move, unit mission, formation type, vehicle mobility characteristics, terrain conditions, daylight or darkness, road nets, weather, natural obstacles, and enemy created conditions. The maximum movement rate for a unit is the rate of the slowest type vehicle in the unit. Some of the other characteristics of ground movement are indicated below.
- <u>l</u>. Administrative/Supply Movements. Administrative routes are generated by gamer orders; supply routes, by the Combat Service Support Model. The road movement rate depends on road type, grade, weather conditions, and nighttime or daytime conditions. Administrative movements are executed in segments determined by terrain cell boundaries or en route obstacles. Units are halted by events scheduled for the moving unit and by encountering obstacles. After the delay, the unit is not able to make up this lost time but continues to move at its appropriate rate.
- 2. Tactical Movements. Tactical routes are generated by gamer orders and are executed in segments in the same manner as administrative movements. Starting times and normal tactical movement rates are specified for each unit type for attack, withdrawal, and reinforcing missions, as well as for day or night movements. Units are halted for obstacles or minefields. After such delay, tactical units attempt to make up the lost time, and move at the limiting mobility class rate for that purpose. The limiting mobility class rate depends on terrain roughness and vegetation, slope and soil trafficability, forestation, weather conditions, and nighttime or daytime conditions. Each equipment type is assigned to a mobility class, and only those mobility classes used during tactical movements are considered for determining the limiting mobility class.

- 3. Maneuver Movements. Maneuvering weapon systems execute their movements at maximum limiting mobility class rates. Since different weapon systems have different maximum rates, and since the movement rate of a maneuvering unit is limited by the rate of the slowest weapon system, faster weapon systems have periods of time when they are stationary. Maneuver movement is controlled entirely by the Ground Combat Model, which determines detection capabilities, vulnerability, and weapon system capabilities.
- (c) Stay Activity. The model also simulates stationary activities for all gamed units not engaged in other specified activities; i.e., all units that are not performing another military activity such as firing, moving, or combat. Whether or not addressed by gamer orders, an inactive gamed unit will consume classes I and III or IIIA supplies and can be assessed as to losses and status; other units can gain information about the inactive unit. If a unit has completed all its orders before the end of a game period, the unit will automatically stay until the end of the period. Stay activity orders can be written to command ground units to remain in position for a specified length of time or until a specified game time arrives.
- (d) Engineer. The Engineer Model simulates the scheduling and execution of engineer activities associated with the construction and destruction of obstacles and facilities. The model accepts engineer tasks, assigns task priorities, determines task feasibility, mobilizes mission units to execute the tasks, simulates the engineering activity in terms of time and material resources used, and demobilizes the mission units.
- 1. Obstacles and facilities are parts of an overall barrier plan developed for the game being conducted. Engineering activities can be initiated by gamer order to start work on a specified obstacle or facility or by request from the Movement Model when some engineering activity is necessary for the conduct of a directed movement. Where the engineer activity is requested by the Movement Model, the moving unit is unable to complete its move until the engineer activity is completed.
- 2. Engineer task priorities are based primarily upon the urgency of the activity in terms of its impact on the force's overall plan of maneuver. Task feasibility is determined in terms of task site (proximity to FEBA) and time and material availability.
- 3. The Engineer Model automatically allocates resources to each feasible task, constructs a mission unit to execute the task, moves the mission unit to the task site, simulates the initiation of work when sufficient resources are on site, periodically updates task status until completion of the task (or until a gamer order to stop the task is encountered), and returns the mission unit to its origin.
- (4) Airmobile Model. The Airmobile Model permits simulation of a variety of airmobile operations. To maintain a high degree of flexibility in application of the model, the simulation depends upon the gaming staff for most of the general planning and decision making prior to execution of an airmobile operation. These plans are relayed to the model by a set of

DSL orders. Activities actually simulated within the model include allocation of transport and escort aircraft to conduct the operation, staging and loading of the airmobile force, the actual airmobile movement, attrition of the airmobile column while in flight to and from the objective area, suppression of air defenses by escort aircraft, deplaning at a landing zone, refueling and rearming of aircraft, and the release of aircraft from operational control of the airmobile force.

- (5) Combat Service Support Model. This model simulates the resupply of manpower and material to units within the DIVWAG system. The model deals with personnel replacements, replacement of major items of equipment, and resupply of critical consumables such as food (class I), fuel (class III and IIIA), barrier materials (class IV), and ammunition (class V).
- (a) Replacement of personnel and major items is accomplished once for each simulated day of combat. Availability of replacement personnel and major end items is on a daily basis, input by the gamer, with available assets accumulating over time; i.e., assets not used on previous days are available in addition to those available for the current time. Requirements are based on unit losses, represented by the authorized unit level of personnel and major items less the quantities on hand within the unit at the time of the replacement action. First priority for replacements and major end items is to front line maneuver units, second priority to reserve maneuver battalions and all artillery units, and third priority to all other units. If sufficient replacements or major end items are not available to fill the needs within a unit priority group, each unit receives a pro rata share of available resources based on amounts required by all units within the priority group. Replacement and major end items arrive at the receiving units after an appropriate travel delay.
- (b) The treatment of resupply of consumables within the Combat Service Support Model is conceptually similar to treatment of replacement of personnel and major items. Implementation differs to account for the following:
- 1. No limitation is placed on quantities of consumables available to the force. In the case of consumables, the primary limiting factor is the availability of transportation to move the material from various supply points to the consumer. The model treats movement of consumables through a series of supply points from the nominal point of entry into the force to the using unit. The model uses either a unit distribution or a supply point distribution method on each leg of the supply chain, depending upon the supply class of the consumable and the nature of the receiving unit at each node.
- 2. To accomplish a more continual flow of consumables, resupply requirements are determined and actions initiated on a more frequent basis than with replacements. The model currently uses a 2-hour cycle for all consumables except class I, which is on a once-a-day cycle. (As experience is gained with the model, some appropriate cycle between the extremes of hourly and daily requirement determination should be established.)

3. A request for resupply of consumables is generated if the quantity in the unit trains is less than a fixed percentage of the authorized amount in trains. That percentage is currently set at fifty percent.

CHAPTER 4

COMPUTER SYSTEM REQUIREMENTS

The minimum computer system requirements for execution of the DIVWAG model are listed below.

Core storage capacity

Magnetic tape drives

Magnetic disk capacity

Printer

Card reader

Software features

1

Coverlay loader (2 levels)

Mass storage input/output

^{1.} American National Standards Institute Incorporated, American National Standard FORTRAN, ANSI X 3.9; 1966.

APPENDIX A

DEFINITIONS OF TERMS

The terms and abbreviations herein are defined as used within the DIVWAG system and may differ from terms defined in AR 320-5, Dictionary of Army Terms; however, AR 320-5 should be used in conjunction with this appendix for a more complete definition of terms.

AAFSS: advanced aerial fire support system.

actual ground zero: the geographical location of detonation of a nuclear weapon.

AD: air defense.

ADAFSS: Army direct aerial fire support system.

ADCU: see air defense capable unit.

ADM: atomic demolition munition.

ADP: automatic data processing.

AGZ: see actual ground zero.

<u>airbase</u>: a base of operations for fixed and/or rotary wing aircraft from which mission aircraft or air units may be dispatched.

<u>air burst</u>: a burst of a nuclear weapon the fireball of which does not touch the earth's surface.

air defense capable unit: any unit possessing defined air defense weapons.

A-kill: damage inflicted upon an aircraft by defending air defense units in which the aircraft is not recoverable for future use.

AM/HI: Airmobility in the Mid/High Intensity Environment; a USACDC study.

<u>analysis of variance</u>: the parametric technique for testing whether several samples have come from identical populations, thus determining the significance of variations in a group of samples.

Analysis Output Processor: an element of the DIVWAG system which produces and arrays data for analysis at the termination of a given set of gaming conditions.

<u>analysis plan</u>: a plan for the analysis of data produced from the application of a model or simulation.

AOP: see Analysis Output Processor.

- APC: armored personnel carrier.
- area reconnaissance: reconnaissance of a rectangular area defined by four sets of coordinates.
- ASR: see available supply rate.
- <u>available supply rate</u>: the rate of consumption of ammunition that can be allocated considering the supplies and facilities available, for a given period.
- background conditions: the visual conditions surrounding a target which affect
 the capability of enemy weapons to acquire it as a target.
- <u>backorder</u>: that portion of supplies requisitioned which is not immediately available for supply but which will be recorded as a commitment for future issue; in the DIVWAG system it is the amount of a commodity which a unit orders to allow it to maintain its authorized level assuming that the commodity is consumed at a mean usage rate.
- band: one of a number of equally dimensioned subdivisions integral to a
 simulated military unit and paralleling the front of the unit.
- barrier: any object--man made or natural--which restricts, delays, or stops
 the movement of a force or imposes losses of personnel or equipment on
 units crossing it.
- barrier line: a continuous series of barrier segments.
- barrier segment: a unique homogeneous element of a barrier defined by its
 two end points and a mnemonic identification.
- Bartlett statistic: a sampling statistic for Bartlett's test of homogeneity of variances.
- <u>basic unit</u>: the smallest unit described within the DIVWAG data base by a table of organization of which the total task organization is composed. A basic unit cannot be further subdivided.
- battlefield orientation: model approximation to the axis of advance described by the slope in the X-Y plane of a line connecting the centers of mass of the two forces.
- begin morning nautical twilight: the time at which the rising sun is 12 degrees below the horizon.
- <u>B-kill</u>: damage inflicted upon an aircraft requiring a forced landing of the aircraft; if in enemy territory, the aircraft is not recoverable for future use.

	ARMY COMBINED ARMS COMBAT DEVELOPMENTS ACTIVITY FORTETC F/0 18/7 DIVMAG MODEL DOCUMENTATION. VOLUME II. PROGRAMMER/AMALYST MANUAETC(U) JUL 76								
UNCLASSIFIED	CACDA-TR-	8-76-VOL-1						ML	
20F 4									
		1							
					,				
		1							

blowdown: the effect of static overpressure or dynamic pressure from nuclear blast resulting in felled man made objects or trees.

BMNT: see begin morning nautical twilight.

CAS: see close air support.

CEP: see circular error probable.

CFS: see constant fire subsegment.

chi-square: a measure of the discrepency existing between observed and
expected frequencies.

<u>circular error probable</u>: the radius of a circle within which half of the projectiles are expected to fall.

<u>C-kill</u>: damage inflicted upon an aircraft in which the aircraft is forced to discontinue its mission because of damage to the aircraft or because of a pilot or copilot casualty.

class of supply: the subdivision of commodities necessary to equip, maintain, and operate a military command, generally so divided for planning and administration of the supplies. For definitions of classes of supply see Chapter 9, FM 100-10.

close air support: air action against hostile ground targets that are in close proximity to friendly ground forces and that require detailed integration of each air mission with the fire and movement of those forces.

closed game: a game in which the control team and opposing player teams use separate rooms or areas, maintain separate maps and records, and in which a controlled amount of intelligence is given to each player team.

CM/CB: see countermortar/counterbattery.

collection system: an integrated system of individual sensor types or groups
 of sensor types.

combat service support: the assistance of providing administrative services, chaplain services, civil affairs, finance, legal service, maintenance, medical service, military police, replacements, supply, transportation, and other logistical services. Within the DIVWAG system, it includes personnel replacement, supply, and some transportation.

combat support: operational assistance furnished combat elements by other
designated units.

complex unit: a unit comprised of two or more basic units.

- conditional casualties: casualties which would be incurred if a weapon were firing alone and not receiving return fire.
- Constant Data Input Processor: the element of the DIVWAG system which contains the group of special purpose data load programs that read source data from cards, convert the data to the form required by the Period Processor, and load the data onto DIVWAG data files.
- constant fire subsegment: flight segment within which an air unit is expected to be subject to attrition by a unique and constant set of air defense weapons.
- consumable: item that is normally expended and used up beyond recovery in the use for which it was designed or intended.
- cookie cutter: a slang expression used to describe a circular radius of effects for indirect fire weapons, including nuclear weapons; contrasted with precise calculation of effects considering the influence of terrain and other factors.
- <u>countermortar/counterbattery</u>: relating to the detection, suppression, or <u>destruction of enemy indirect fire by mortars or artillery.</u>

CSS: see combat service support.

<u>cycle time</u>: the duration of battle which is processed by a single pass through the Ground Combat Model.

DAF: see direct aerial fire.

damage radius: radius of an equivalent circular area damaged by a nuclear blast.

default rate: rate used when no rate is specified.

<u>delayed casualties</u>: casualties for which the manifestation of the cause is delayed over time; e.g., nuclear radiation.

delivery lead time: time required for a unit to obtain supplies after the order has been placed.

desired ground zero: the geographical location at which munition detonation is desired.

deterministic: not subject to random variation.

DGZ: see desired ground zero.

diagnostic message: a statement printed by a computer program indicating a possible or known erroneous condition detectable by the program.

- <u>direct aerial fire</u>: close air support delivered by Army aircraft in close proximity to friendly forces.
- <u>direct support</u>: a condition whereby a force is required to support another specific force and is authorized to answer directly the supported force's request for assistance.
- <u>division force</u>: a military organization of division size and designation supported by appropriately assigned or attached combat, combat support, and combat service support forces; a modern and more definitive term similar to division slice.
- <u>DIVTAC II</u>: a short title for Division Through Army Group Model (second iteration).
- <u>DIVWAG</u>: Division War Game; a short title used in lieu of the term Division War Game Model.
- <u>DIVWAG Scenario Language</u>: the special purpose English-like language used by the gaming group to direct simulated units within the DIVWAG system to carry out desired activities.
- $\underline{\text{D-kill:}}$ damage inflicted upon an aircraft in which the aircraft is able to continue its mission.

DLT: see delivery lead time.

DMF: see dominant mask function.

<u>dominant mask function</u>: a function describing terrain masking in terms of distance to and height of terrain features masking the line of sight of a specific geographical location.

dose rate: the amount of radiation received by personnel per unit of time.

DPFO: data processing field office.

driver, driver routine: a routine within a computer program the principal function of which is to call other routines at the required times and perform related control functions.

DS: see direct support.

DSL: see DIVWAG Scenario Language.

- <u>DSL</u> conditional: a statement included in a DSL order which describes the conditions under which the order is to be executed. Also, a DSL statement describing the conditions under which a battle is to be terminated.
- DSL modifier: a qualifying statement included in a DSL order which specifies the precise activity desired.

DSL order: a complete DSL description of an activity to be performed by a designated unit including the type of activity and associated DSL modifiers.

ECM: see electronic countermeasures.

EENT: see end evening nautical twilight.

effectiveness indicator: selected quantitative elements of the large body of performance data available, chosen to highlight the most significant aspects of the performance data in light of the force evaluation objectives and the particular measures of effectiveness they support.

EIC: see equipment item code.

<u>electronic countermeasures</u>: those measures taken to eliminate or reduce the effectiveness of equipment or units relying upon electronic emanations for the performance of an assigned mission(s).

<u>elevation grid</u>: an arbitrary grid imposed upon a geographical area the points of which have elevations specified in the data base.

end evening nautical twilight: the time at which the setting sun is 12 degrees below the horizon.

EOH: see equipment on hand.

equipment item code: a numerical code (1 to 200) assigned to unique items of equipment and supplies, including munitions, simulated within the DIVWAG system.

equipment on hand: materiel physically in the possession of a designated military organization, installation, or activity and in a useable status and condition.

error analysis: the procedure of locating the cause of erroneous results produced by the model or associated computer programs.

error message: same as diagnostic message.

event sequence: the ordering of events in chronological sequence.

expendable: same as consumable.

<u>facility</u>: a physical entity on the battlefield which facilitates the movement of military forces; e.g., bridge, ferry, ford, bypass; a military installation at which specified activity takes place.

FARMWAG: Field Army Modernization War Game.

FARR: see forward area refuel and rearm.

- FEBA: see forward edge of battle area.
- fire cycle time: the time required by a weapon/ammunition type to acquire a target and to aim, fire, and deliver one round within the Ground Combat Model.
- fire mission: specific assignment to a fire unit. In the DIVWAG system, this term refers to the specific set of data describing a single target communicated to the TACFIRE Model.
- fire support coordination center: the location at which are centralized communications facilities and personnel incident to the coordination of all forms of fire support. In the DIVWAG system this term applies to that portion of the Intelligence and Control Model regulating supporting aerial fire and artillery.
- flight corridor: a rectangular area centered along the flight path of an aircraft or group of aircraft.
- flight leg: a segment of a flight path defined by two end points.
- forest type index: an index between zero and three designating the extent of
 forest cover in a given terrain cell.
- forward area refuel and rearm: relating to a highly mobile supply point in the forward area of the battlefield used to refuel and rearm attack, escort, or lift aircraft.
- forward edge of battle area: foremost limits of a series of areas in which ground combat units are deployed excluding covering or screening forces. This edge is represented within the DIVWAG system by a straight line perpendicular to the battlefield orientation and equidistant from the forward maneuver elements of each force.
- free game: a game conducted without benefit of a fixed set of rules.
- Friedman test: nonparametric test based on ranks that can be used when matched subjects are obtained. Friedman's two-way analysis of variance by ranks provides a test of the null hypothesis that k related samples were drawn from k identically distributed populations.
- FSCC: see fire support coordination center.
- function of land combat: one of five recognized activities of land combat:
 firepower; mobility; intelligence; logistics; command, control, and
 communications.
- game: simulation of a situation of competition or conflict in which the opposing players decide which courses of action to follow on the basis of their knowledge about their own situation and intentions and on their information about their opponent's courses of action.

- game cycle: the procedures to be followed in the execution of a game period
 to maintain the gaming rate.
- game period: an arbitrary time interval for the execution of game activities which is uninterrupted by game direction.
- game period concept: a document prepared by the control group and approved by the game director stating the military and system considerations and guidelines governing activities of each game period.
- game period turnaround: the process that occurs from the end of one set of game period computer runs until the beginning of the next set of game period computer runs.
- game plan: the written concept by which the game manager plans to accomplish the game objectives.
- gaming rate: the amount of simulated combat time that can be processed per unit of real time expended by the gaming staff.

GCM: Ground Combat Model.

- general support: that support given to the supported forces as a whole and
 not to any particular subdivision thereof.
- general support reinforcing: that support provided by an artiller unit with the mission of supporting the forces as a whole and of providing reinforcing fires for another artillery unit.
- glimpse rate: the number of discrete instances at which a sensor is active and able to acquire targets per unit of time.
- ground sensor terminal: a ground-based facility with equipment for receiving directly and processing information acquired by airborne sensor systems.
- ground zero: a point on the earth's surface at or immediately below the
 detonation of a weapon.

GS: see general support.

GST: see ground sensor terminal.

GZ: see ground zero.

A Company of the Comp

height of burst: the height of a munition detonation measured from the earth's surface.

HOB: see height of burst.

homoscedactic: having equal variances.

- hypothesis: an assumption or statement about the probability distributions
 of the population.
- impact radius: the radius around an aim point within which indirect fire
 munitions may be expected to impact.
- IMPWAG: Improvement of the ICAS War Game Model; a USACDC study.
- INC: Intelligence and Control; a short title used to identify the Intelligence and Control Model.
- induced radiation barrier: a barrier to movement created by induced radiation from a nuclear burst.
- induced radiation hazard area: an area in which measurable induced radiation from a nuclear burst is present and in which the level of radiation is hazardous to personnel.
- <u>in-flight attrition</u>: the destruction of aircraft while the aircraft is in aerial flight.
- initial supply point: the origin for material and supplies within the combat
 zone.
- intelligence processing: the activity which converts information of the enemy, weather, and terrain into finished intelligence for use by a commander in the decision-making process.
- intercept segment: same as constant fire subsegment.
- intermediate supply point: a point in the chain of supply between the initial supply point and either a division distributing point or a recipient unit.
- IR: infrared.
- IS: see intercept segment.
- iteration, iteration time: the duration of unit-pair engagement which is processed by a single pass through the target acquisition, firepower distribution, and firepower effectiveness submodels of the Ground Combat Model.
- Kolmogorov-Smirnov statistic: a statistic used to test the null hypothesis of normality of the sample distribution.
- Kruskal-Wallis test: a nonparametric test based on ranks.
- landing zone: the geographical point of debarkation of an airmobile force
 from its airlift transportation.

- level of resolution: the degree to which an entity is broken into discrete, recognizable constituent parts or elements. High resolution implies many parts; low resolution implies few parts.
- level of significance: for every null hypothesis H_0 , there exists at least one alternative hypothesis H_1 . An a priori procedure is to reject H_0 in favor of H_1 if a statistical test yields a value whose associated probability of occurrence under H_0 is equal to or less than some small probability symbolized as α . That small probability, α , is called the level of significance.
- <u>lift force</u>: the military force which supplies ground or air transportation to another force or unit.

line of sight: unobstructed vision between two points.

LOH: light observation helicopter.

LOS: see line of sight.

major end items: a final combination of end products, component parts, and/or
 materiels that is ready for its intended use. Used primarily to describe
. vehicles, weapon systems, and sensor systems.

major engagement segment: same as possible engagement segment.

Mann-Whitney U-test: a method of employing the Mann-Whitney U-statistic to make orthogonal comparisons among the k treatment population or to determine which comparisons among the k treatment population are significant.

mean use rate: the usage rate determined by calculating a statistical average of usage rates since the start of the game.

measure of effectiveness: a quantitative value that indicates the degree to which a military unit or system performs its mission or achieves its goal.

MES: see major engagement segment.

mission unit: a unit created automatically within the model for performing a model generated mission and not under direct gamer control.

mobility category: a group of unit types having similar mobility characteristics.

mobility class: a group of equipment items having similar mobility characteristics.

MOE: see measure of effectiveness.

move segment: that portion of a movement path described by a straight line and entirely within a single terrain cell.

moving target indicator: a device that limits the display of radar information
primarily to moving targets.

MTI: see moving target indicator.

NAM: Nuclear Assessment Model.

nap-of-the-earth: as close to the earth's surface as vegetation and obstacles
will permit flight. The model assumes a height of 50 feet above the ground.

NATO: North Atlantic Treaty Organization.

nonparametric statistics: statistical procedures that do not depend on a knowledge of population distributions and associated parameters.

nonresolution unit: a constituent of a resolution unit or a higher echelon unit; a unit without specific location and which cannot accept orders for the execution of a function of land combat or cannot directly incur losses from enemy forces.

<u>null hypothesis</u>: the hypothesis that there is no difference between the procedures or populations.

<u>open game</u>: a military game in which opposing players have complete access to information pertaining to an opponent.

order and shipping time: the period of time represented by the combined activities of ordering and delivery of supplies or material.

Orders Input Processor: the element of the DIVWAG system which provides the communication link from the gaming group to the Period Processor by means of DSL orders and operating instructions.

period: an arbitrary time interval for the execution of game activities which
is uninterrupted by game direction.

period history tape: a magnetic tape containing data that are a representation
 of all significant activities simulated by a computer-assisted war game
 model during a game period.

<u>Period Output Processor:</u> an element of the DIVWAG system that produces at the completion of a game period a set of post-period reports to be analyzed and used for play of subsequent periods of a game.

<u>Period Processor</u>: the central element of the DIVWAG system that contains the mathematical models, data maintenance routines, and event scheduling and execution logic required to simulate the military activities portrayed in the DIVWAG Model.

pick up zone: the geographical point of embarkation of an airmobile force.

- pinpointing: detection of evidence that a potential target has fired.
- possible engagement segment: that continuous portion of a flight leg in which an air unit is vulnerable to fire from a unique set of air defense capable units (ADCUs); the set including at least one ADCU.
- primary equipment item: an item of equipment that is not a component of a larger equipment item.
- prompt casualties: casualties incurred by a unit at the time of a nuclear blast.
- $\overline{\underline{\mathbf{k}}}$: an empirical value used as an environment fitting parameter generally equated to mean range for line of sight in homogeneous terrain.
- radiological barrier: a barrier resulting from radiation effects produced by a nuclear detonation.
- reinforcing fires: fire delivered on call from the reinforced unit by a unit assigned to a reinforcing mission.
- reorder cycle time: time interval between successive supply orders.
- resolution unit: a military unit with a specific location which can be given specific orders for the execution of one or more functions of land combat and can incur losses from hostile fire.
- rigid game: a war game conducted in strict conformance with a fixed set of rules.
- roughness and vegetation index: a numerical index to a combination of terrain slope variation and nonforest vegetation.
- route reconnaissance: aerial reconnaissance conducted along a designated route or line on the earth's surface.
- routine: a discrete element of a computer program that performs a desired function or operation when called by another routine.
- RV index: see roughness and vegetation index.
- safe point: a point at which aerial vehicles are beyond the range of enemy
 air defense capable units; usually a point in friendly territory.
- <u>safety level</u>: quantity of materiel, in addition to the operating level of supply, required to be on hand to permit continuous operation in the event of minor interruption of normal replenishment or unpredictable fluctuations in demand.

- <u>scenario</u>: a narrative description of the setting in which the strategic military, political, economic, and social environment is established and the physical geography is set forth. A chronological listing of preplanned occurrences.
- secondary equipment item: an item of equipment that is associated directly
 with, or a component of and is secondary to, a primary equipment item.
- <u>semiopen game</u>: a military game in which opposing players have access to limited but corresponding type information of opposing forces.
- <u>sensor</u>: a device capable of detecting the presence and/or location of possible military targets.
- <u>side analysis</u>: analysis of factors not designated as the principal area of interest or concern.
- <u>side looking airborne radar</u>: radar system directed perpendicular to the flight path of the transporting aircraft.
- simulation: the representation of physical systems and phenomena by models or other logical or mathematical representation; a technique used to study and analyze the operation and behavior of man/machine systems in terms of the elements of which they are composed.
- <u>sky/ground ratio</u>: ratio of the brightness of the horizon to the brightness of the target facing the target.
- slant range: the distance between two points not at the same elevation.
- SLAR: see side looking airborne radar.
- slew rate: the rate of angular movement of a weapon or sensor in the horizontal and/or vertical plane.
- sortie: the execution of an assigned mission by one aircraft.
- staging area: the geographical area in which a military unit is assembled and prepared to execute an assigned operation; may be the area from which a military operation is initiated.
- STANO: surveillance, target acquisition, and night observation.
- stochastic: subject to random variations.
- subordinate list: the listing of units that comprise and which are subordinate
 in command to a designated military unit.
- supply point distribution: the method of distributing supplies in which the receiving unit is issued supplies at a supply point and moves the supplies to its own area using its own transportation.

- surface burst: a burst of a nuclear weapon in which the fireball of the weapon
 touches the earth's surface.
- <u>table of organization and equipment</u>: a table which prescribes the normal mission, organizational structure, and personnel and equipment authorization for a military unit.
- TACAIR: high performance aircraft support of ground forces usually conducted by other Service or Allied air components.
- TACFIRE: tactical fire direction.
- target subunit: a subdivision of a potential target unit on an area basis which is considered individually for detection.
- <u>supply point</u>: a military activity which receives, stores, and distributes supplies and equipment.
- task organization: the organization of a military unit for the performance of a specific task.
- terrain cell: an arbitrary geographical subdivision of the earth's surface for purposes of describing assumed homogeneous terrain characteristics.
- terrain masking: the interposition of a terrain feature so as to prohibit line of sight between an observer and a candidate area or target.
- TOE: see table of organization and equipment.
- trafficability index: a numerical index that describes the capability of a portion of the earth's surface (soil) to sustain military operations.
- transfer order: a DSL order directing a change to the task organization.
- travel mode: a four-character alphabetic code describing the type of movement
 a unit is to perform.
- UGS: see unattended ground sensor.
- UID: see unit identification.
- unattended ground sensor: a ground sensor which is unattended by human
 operators.
- <u>unit distribution</u>: that method of distributing supplies in which all requested items are transported from the supply point to the requesting unit using vehicles provided by the supplying unit.
- unit identification: an eight-character alphanumeric designation of a military unit, installation, or activity for identification purposes.

- unit type: a categorization of units having identical tables of organization
 and equipment.
- unit type designator: a four-character alphanumeric designation for a unit type.
- update cycle: the interval between successive recalculations of battlefield
 geometry parameters.
- UTD: see unit type designator.
- volley: a fire mission consisting of one round fired by each weapon of a unit.
- WAGCAP: Improvement of the War Game Capability; a USACDC study; a related follow-on study is designated WAGCAP II.
- war game: a simulation, by whatever means, of a military operation involving two or more opposing forces, conducted using rules, data, and procedures designed to depict an actual or assumed real life situation.
- weapon munition index: a four-character alphanumeric designator for a unique combination of weapon type and ammunition type.
- weather zone: a rectangular area of game play over which weather conditions are considered uniform.
- zero period: a short game period processed prior to initiation of the planned scenario for the purpose of model initialization.

SECTION II

CONSTANT DATA INPUT PROCESSOR

CHAPTER 1

GENERAL DESCRIPTION OF THE CONSTANT DATA INPUT PROCESSOR

- 1. INTRODUCTION. The purpose of this section is to identify the constant data requirements of the DIVWAG system and provide instructions for entering the data into the constant data files. Constant input data is that information in the DIVWAG system that need not be changed throughout the conduct of the dynamic play of a war game.
- 2. SIGNIFICANCE OF THIS SECTION. The conduct of a war game using the DIVWAG system requires the utilization of a large data base containing many thousands of data items. These data must be derived or extracted from available sources, coded, and entered into storage devices. This section provides: (1) a description of the data required as input by DIVWAG prior to the actual conduct of a game to produce data for evaluation and detailed instructions for entering the data onto standardized card formats compatible with the programs that actually load the data from cards into the constant data files, (2) a complete program description including input and output variables to each routine, a logical flow, and a flow chart, (3) an output description identifying all printed output reports, and (4) a source listing of each load program.
- 3. ORGANIZATION OF THIS SECTION. Each of the subsequent 16 chapters of this section pertain to a specific data load process of the Constant Data Input Processor. The purpose of each is briefly described in the following subparagraphs.
- a. Executive control. The Executive Control routine (PREDIV) provides the ability to execute any number of constant data input processors within one job request, thus providing an overall increase in efficiency to the DIVWAG system.
- b. Tables of Organization and Equipment. The Tables of Organization and Equipment (TOE) are generally the first to be entered into the DIVWAG system constant data as common information for all models. The information needed to satisfy TOE data requirements includes the force structure, senior and subordinate units, and primary and secondary items of equipment. TOE sets the stage for all other data entries for the DIVWAG system.
- c. Task Organization. The fourth chapter of this section deals with task organization input data. These data establish the identification and composition of units to be used in the game, the task force organization or organizational structure of the units within a force which will be used at the start of the game, the initial location of units, initial supporting roles of appropriate units, and the basic logistical network of the force.
- d. Environment. Chapter 5 of this section deals with weather and terrain descriptions. This is common file information, used by several of the DIVWAG models. Preparation of this type data is time consuming and should be initiated as one of the first tasks of a war game effort.

- e. Unit Geometry. Chapter 6 of this section deals with unit dimensions and item distribution data. This is data file 28 information and is used by several of the DIVWAG models.
- f. Intelligence and Control. The seventh chapter is one of the most complex of the entire section. Data requirements are varied, and the complexity of preparation and entry exceeds that for the other models. For the most part the Intelligence and Control Model uses its own unique data. In the process of accessing its unique data bases, it provides an output that is used by virtually all other models.
- g. Ground Combat. In Chapter 8 the direct fire weapons are addressed, and their constant data requirements are defined. The sensors for target detection and recognition are described with their performance data and the weapons to which they feed information. These weapons are matched with their ammunition, and target defeat is described in terms of hit probabilities and kill probabilities.
- h. Area Fire Assessment. The entry of the constant data for accessing the loss and destruction created by conventional indirect fires is the type of data entered in this model. Chapter 9 discusses personnel protection against hostile fires through their posture on the battlefield, shielding by combat equipment (tanks), and areas of lethality.
- i. TACFIRE. In the tenth chapter is decision type information that an artillery personnel will recognize as needed for division artillery and its firing batteries. Target priorities must be established, with the types of weapons and ammunition to be used; and the method of attack must be determined.
- j. Air Ground Engagement. Chapter 14 is concerned with data to describe close air support provided by Army attack helicopters and Air Force aircraft. The data cover 40 type close air support missions and include various mission descriptors, in terms of numbers and types of aircraft required, and mission results. The data also include air defense and aircraft parameters required to treat aircraft attrition en route to and from the target area.
- k. Suppression. Within the DIVWAG system suppression is treated as the interruption of an activity in response to incoming fires. Chatper 12 treats the data required, generally the duration of such interruptions.
- 1. Nuclear Assessment. The Nuclear Assessment Model deals with firing, detonation, and results of nuclear devices. Required data are prescribed in Chapter 13.
- m. Movement. In virtually any application of the DIVWAG system, there must be extensive ground movement of military units. Chapter 14 treats the entry of constant data needed for this movement. Administrative aerial movement is also treated with this data input.
- n. Engineer. The Engineer Model treats the construction and destruction of obstacles to and facilities for ground movement. The instructions for entering data required in this model are found in Chapter 15.

- o. Airmobile. Chapter 16 deals with data unique to the Airmobile Model. This model, which treats the airmobile movement of units, also uses data associated with several other models, particularly Air Ground Engagement, Combat Service Support, and Movement.
- p. Combat Service Support. The resupply of friendly troops either from supply points or through unit distribution is one of the major concerns of this model. Chapter 17 provides the instructions for constant data entry to satisfy model demands.
- 4. SEQUENCE OF LOAD PROGRAMS. Insofar as is possible, each set of data described in Chapters 3 through 17 is independent of other data to the extent that the sequence in which the data are loaded is not critical. Exceptions are listed below, with a suggested sequence of loading.

a. Data Areas Depending on Previous Loads:

- (1) Task Organization. The task organization data (Chapter 4) cannot be loaded until after Organization and Equipment data (Chapter 3) and Combat Service Support Model data (Chapter 17) have been loaded. If either Organization and Equipment or Combat Service Support Model data are changed after the task organization has been loaded, then task organization must be reloaded with the new Organization and Equipment and/or Combat Service Support Model data.
- (2) Movement. The Movement Model data (Chapter 14) cannot be loaded until after TOE data (Chapter 3) are loaded. If TOE data are changed after the Movement Model data have been loaded, then the Movement Model data must be reloaded.
- (3) Suppression. Suppression Model data (Chapter 12) cannot be loaded until after Organization and Equipment data (Chapter 3) are loaded. Any change to Organization and Equipment data will necessitate reloading Suppression Model data.
- (4) Nuclear Assessment. The data used by the Nuclear Assessment Model (Chapter 13) cannot be loaded until after conventional Area Fire Model data (Chapter 9) are loaded. Revisions to Area Fire Model data necessitate reloading Nuclear Assessment Model data.
- b. Suggested Sequence of Loading. Organization and Equipment data must be loaded early in the data preparation cycle. This is reinforced by the fact that practically every data file is keyed in some sense to the Organization and Equipment data, either through equipment item codes or unit type designations. The following sequence of loading is suggested, based both upon the program requirements listed above and upon situations where knowledge of what has been loaded in one area is critical to the logical definition of data in other areas.
- (1) Organization and Equipment data (Chapter 3) should be the first set of data loaded. Knowledge of these data is needed to prepare virtually all other data programs.

- (2) Environment data collection (Chapter 5) should be initiated early because of the volume of data required.
- (3) Intelligence and Control Model data input (Chapter 7), while not prerequisite to other data, is the most complex package and should be initiated early in the cycle.
- (4) Combat Service Support Model data preparation (Chapter 17) is relatively straightforward but should be stabilized early because it is prerequisite to the task organization.
- (5) Air Ground Engagement Model data requirements (Chapter 11) are voluminous, and preparation should be initiated early in the data development process. The individuals developing Air Ground Engagement Model data should ideally develop the Airmobile Model data (Chapter 16) thereafter because of a strong interrelation between data requirements of the two models. These individuals should be familiar with both models prior to working on either one, since heavy use of Air Ground Engagement Model data is made by the Airmobile Model.
- (6) The Area Fire Model (Chapter 9), TACFIRE Model (Chapter 10), and Nuclear Assessment Model (Chapter 13) data requirements are strongly interrelated and should, if possible, be developed by the same individuals.
- (7) Task organization data (Chapter 4) should be entered into the system at approximately this stage of development. Individuals preparing the task organization data should be those who developed the Organization and Equipment data and are familiar with its content.
- (8) Engineer Model data (Chapter 15) may be prepared late in the data development cycle. Planning for this load, however, should be initiated early if extensive barrier plans are to be used.
- (9) Ground Combat Model data requirements (Chapter 8), are voluminous but are relatively independent of other data areas.
- (10) Movement Model (Chapter 14) and Suppression Model (Chapter 12) data may enter the system late in the cycle. Proper preparation of Movement Model data requires knowledge of the model's interface with barriers. The Suppression Model data requirements are simple and may be fulfilled last in the data preparation cycle.

CHAPTER 2

EXECUTIVE CONTROL DATA INPUT

The routine PREDIV reduces the number of cards and separate computer runs required to load the constant data and increases the overall efficiency of the DIVWAG system. This routine, by making all the load programs accessible on disk, allows the programs to be executable without a compile and allows as few as one or all constant data decks to be loaded with one job request. A softfall capability of PREDIV allows any data set to be skipped if the data are incorrect for loading and to continue to the next data set. If any data set is skipped, a message will be printed informing the programmer that a data set has not loaded.

APPENDIX A

INPUT REQUIREMENTS FOR EXECUTIVE CONTROL DATA INPUT

The sample job control deck assembly is shown in Figure II-2-A-1, and a sample constant data input control deck is shown in Figure II-2-A-2. Each set of constant data is separated by a card identifying the data load program; i.e., GCMLD...PREP is the Ground Combat Model load program resident on disk. The last card behind all of the data decks is a STOP....PREP card. Only one stop card is required for one computer run. The cards required for each of the constant data decks are shown in Figure II-2-A-1. When preparing the cards, the program name begins in card column 1 and PREP must be entered in card columns 77-80 on each card. The appropriate constant data deck will follow the corresponding control deck card as shown in Figure II-2-A-2.

Figure II-2-A-1. Executive Job Control Deck Assembly

Figure II-2-A-2. Executive Control Constant Data Control Deck Assembly (Continued on Next Page)

Figure II-2-A-2. Executive Control Constar Data Control Deck Assembly (Continued)

Figure II-2-A-2. Executive Control Constant
Data Control Deck Assembly
(Concluded)

67

APPENDIX B

EXECUTIVE CONTROL DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. This appendix contains the program description of routine PREDIV, the primary executive control routine of the Constant Data Input Processor.

2. ROUTINE PREDIV:

- a. Purpose. Routine PREDIV calls the proper overlays as needed.
- b. Input Variables:

Name	Source	Contents
IFNT(56,3)	Disk	File name table.
LOADTP	Card	Variable that identifies the constant data input routine to call.

- c. Output Variables: The file name table (IFNT) is printed initially and after each overlay call.
 - d. Logical Flow (Figure II-2-B-1):
- (1) Blocks 1 and L10. A call is made to routine GETFLE to retrieve the file name table and the table is printed.
- (2) Blocks L15 and 2. A data card is read. If the card format is incorrect, another card is read.
- (3) Block 3. If the last card read was a stop card, transfer control to block L400.
- (4) Block 4. If this is an Engineer (ENGLD), Suppression (SUPLD), TACFIRE (TACLD), or barrier (BARLD) load card, transfer control to block L70.
- (5) Block 5. If the first character of the requested load is greater than M, transfer control to block L3.
- (6) Block 6. If the first character of the requested load is greater than G, transfer control to block L2.
- (7) Block 7. If the first character of the requested load is greater than C, transfer control to block L1.
- (8) Blocks 8 and 9. If the requested load is a Combat Service Support load (LDCSS) set the overlay flag to six, and transfer control to block L200.

Figure II-2-B-1. Routine PREDIV (Continued on Next Page)

Figure II-2-B-1. Routine PREDIV (Continued)

Figure II-2-B-1. Routine PREDIV (Continued)

Figure II-2-B-1. Routine PREDIV (Continued)

Figure II-2-B-1. Routine PREDIV (Concluded)

- (9) Blocks L50 and 10. If the requested load is convoy (CONVOY), set the overlay flag to eight, and transfer control to block L200.
- (10) Blocks L51 and 11. If the requested load is Area Fire (AFMLD), set the overlay flag to nine, and transfer control to block L200.
- (11) Blocks L52 and 12. If the first character of the overlay type is A, set the overlay flag to 10, and transfer control to block L200; otherwise, transfer control to block L30.
- (12) Block L70. Set the overlay flag to seven, and transfer control to to block L200.
- (13) Blocks L1 and 13. If the requested load is Ground Combat (GCMLD), set the overlay flag to two, and transfer control to block L200.
- (14) Blocks L31 and 14. If the requested load is unit dimensions (DIMLD), set the overlay flag to 10, and transfer control to block L200.
- (15) Blocks L32 and 15. If the requested load is task organization (ECHLD), set the overlay flag to 12, and transfer control to block L200.
- (16) Block L2. If the first character of the load type is less than or equal to I, transfer control to block 17.
- (17) Blocks L11 and 16. If the requested load type is movement (MOVLD), set the overlay flag to four, and transfer control to block L200; otherwise, transfer control to block L30.
- (18) Blocks 17 and 18. If the requested load is Intelligence and Control (INCLD) set the overlay flag to five, and transfer control to block L200; otherwise, transfer control to block L30.
- (19) Block L3. If the first character of the load type is less than or equal to T, transfer control to block L23.
- (20) Blocks 19 and 20. If the requested load is weather (WETLD), set the overlay flag to one, and transfer control to block L200; otherwise, transfer control to block L30.
- (21) Block L23. If the first character of the load type is greater than S, transfer control to block L22.
- (22) Blocks 21 and 22. If the requested load is Nuclear Assessment (NUCLD), set the overlay flag to six and transfer control to block L200.
- (23) Blocks L41 and 23. If the requested job is operating instructions (OPRINS), set the overlay flag to 11, and transfer control to block L200; otherwise, transfer control to block L30.
- (24) Block L22. If the second character of the load type is greater than M, transfer control to block L21.

- (25) Blocks 24 and 25. If the requested load is terrain (TERLD), set the overlay flag to one, and transfer control to block L200; otherwise, transfer control to block L30.
- (26) Blocks L21 and 26. If the requested load organization and equipment (TOELD), set the overlay flag to three; otherwise, transfer control to block L30.
- (27) Block L200. Call the system overlay routine to load the requested overlay; then, transfer control to block L10.
- (28) Block L400. Call the system overlay routine to overlay segment 1, This segment executes a dump.
- (29) Blocks 27 and 28. If the abort flag is set, write an informative message and stop the program.
- (30) Blocks L30 and 30. Write an error message, set the abort flag, and transfer control to block L15.
- 3. ROUTINE OVRLY7: Routine OVRLY7 determines which secondary overlay (ENGLD, SUPLD, TACLD, or BARLD) is requested and loads that segment.
- 4. ROUTINE OVLY10: Routine OVLY10 determines which secondary overlay (AIRLD, FIL7LD, or DIMLD) is requested and loads that segment.

APPENDIX C

OUTPUT DESCRIPTIONS FOR EXECUTIVE CONTROL DATA INPUT

The Constant Data Input Processor Executive Control routine will print the file name table (IFNT) before and after each requested constant data load program is executed.

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR EXECUTIVE CONTROL

(AVAILABLE UNDER SEPARATE COVER)

APPENDIX A

ORGANIZATION AND EQUIPMENT DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for organization and equipment are documented in Appendix A, Unit Representation Input Requirements, to Chapter 3 of the Period Processor (Section IV).

APPENDIX B

ORGANIZATION AND EQUIPMENT DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. Loading of tables of organization and equipment (TOE) data is accomplished by routine LDTOE which, in turn, calls routine DMPTOE to provide a listing of the data. LDTOE is supported by utility routines SORT and SRCH.

2. ROUTINE LDTOE:

a. Purpose. This routine loads secondary equipment tables, data file 6; unit type designator (UTD) directory, data file 51; basic unit strength tables, data file 52; and UTD breakdown tables, data file 53.

b. Input Variables:

Name	Source	Contents
ICARD	Card	Data cards defining senior/subordinate units, TOE, secondary equipment list, and bulk-loaded expendable supplies.

c. Output Variables:

Name	Destination	Contents
IVEC6	DF6	Secondary equipment quantity pairs.
IVEC53	DF53	Breakdown of complex UTDs.
ITOE	DF52	Contains quantities for respective equipment items on hand and bulk in trains.
IVEC51	DF51	UTD directory. The first 250 entries contain ordinals for data file 52, the last 750 entries contain ordinals for data file 53.

d. Logical Flow (Figure II-3-B-1):

- (1) Block 1. Call routine GETFLE to retrieve the file name table (IFNT) so that the Input/Output package may function.
 - (2) Block 2. If the dump flag is on, control goes to block L700.
- (3) Block 3. Call routines REMOVE and CREATE for each of the files being created in this routine, which initializes these files on the DIVWAG data file.

Figure II-3-B-1. Routine LDTOE. (Continued on Next Page)

Figure II-3-B-1. Routine LDTOE. (Continued)

Figure II-3-B-1. Routine LDTOE. (Continued)

Figure II-B-3-1. Routine LDTOE. (Continued)

Figure II-3-B-1. Routine LDTOE. (Continued)

II-3-B-10

Figure II-3-B-1. Routine LDTOE. (Concluded)
II-3-B-11

- (4) Block L110. A data card is read. If an end of file was sensed, control transfers to block L560. The card image is printed.
- (5) Block Ll18. A check is made to determine if the card is a secondary equipment card. If not, control transfers to block L249; otherwise, routine GETRCD is called to retrieve the appropriate data file 6 record. The card data are loaded into this record starting at the first zero location, and routine PUTRCD is called to return the updated record to the file. The data file 6 record is then loaded into the secondary equipment array for later use, and control returns to block L110.
- (6) Block L249. The card previously read is not of the secondary equipment type. If it is of TOE or bulk-loaded expendable supplies type control goes to block L325.
- (7) Block L252. The card previously read is of the senior/subordinate type. The array for holding data file 53 records is initialized. A check is made to determine if the senior UTD was previously loaded into the complex portion of data file 51. If it was, an error message is printed and control returns to block L110; if it was not, it is loaded into the data file 51 array.
- (8) Block L255. The subordinate UTDs and quantities are loaded into the data file $53\ \mathrm{array}$.
- (9) Block 4. The next data card is read, and if an end of file was sensed control transfers to block L560. If the card is not of the senior/subordinate UTD type control transfers to block L310; if the card is of senior/subordinate type and the senior UTD did not change, control returns to block L255.
- (10) Block L272. The data file 53 record counter is incremented and routine PUTRCD is called to put the data file 53 array into data file 53. If all senior/subordinate cards have not been processed control returns to block L252.
- (11) Block 5. Each data file 53 record is retrieved and each UTD of each record is examined. Each UTD, not of a complex type, is loaded into the basic portion of data file 51 until it is filled.
- (12) Block L310. The completion flag is set and control transfers to block L272.
- (13) Block L325. If the card is not of TOE or bulk-loaded expendable supplies type, control transfers to block L560. If it is bulk-loaded expendable supplies type control goes to block L380.
- (14) Block L325. Routine SRCH is called to locate the unit type designator (UTD) in the UTD directory table. If it is a complex UTD, an error message is written and control returns to block L110. If it was not found, in the table, place it in the UTD directory table.

- (15) Block L345. This block updates the TOE array for data file 52. For each equipment item code of the TOE, data file 6 is searched for secondary equipment. If none is found the TOE entry for that primary item is updated by the appropriate quantity. If secondary equipment is defined for a primary item code a nesting effect may occur, as each secondary equipment item may in turn have secondary equipment items. The products of these items are carried through into the TOE sums.
- (16) Block 6. The next data card is read. If an end of file was sensed or the card is not TOE the completion flag is set. If the UTD does not change control returns to block L345. If the data file 52 record of this UTD has not previously been written, routine PUTRCD is called to place the TOE data on data file 52. If TOE data processing is not completed control returns to block L335.
- (17) Block L380. Check to determine if all UTD entries in data file 52 have TOEs defined. If not, an informative message is written.
- (18) Block L591. Initialize trains area of data file 52. If this is a secondary equipment type card control goes to block L118. If this is a bulk expendable supplies type card control goes to block L500; otherwise, an error message is printed and control returns to block L110.
- (19) Block L500. Routine SRCH is called to locate the UTD in data file 51. If the UTD is of a complex type, an error message is printed and control returns to block L110. If the UTD was located control goes to block L537; otherwise, the data file 52 record counter is incremented and the UTD is placed in data file 51.
- (20) Block L537. The bulk quantities are loaded in their appropriate equipment item code positions in the TOE array.
- (21) Block L550. The next card is read. If it is an end of file card (9999), an end of file was sensed, or it is not a bulk-loaded expendables card; control goes to block L560. If the UTD did not change control returns to block L537.
- (22) Block L560. Routine PUTRCD is called to place the bulk expendables records onto data file 52. If the last card is secondary equipment type control returns to block L118. The UTD directory is placed onto data file 51.
- (23) Block 7. The list of complex UTDs for each force is arranged so that the components of each UTD are either basic or less complex UTDs. The resulting order is stored in the ORDER array. The first UTD associated with the Blue force must be AABB and the corresponding Red force UTD is AARR. By definition these 'JTDs are also the most complex UTDs associated with the respective force. They are placed last in the ORDER array. The ordering of the remaining UTDs is accomplished by attempting to match each component of the next UTD in the list with entries in the list of basic UTDs or with complex UTDs having components already resolved. If no match is found for a component of this UTD it is placed next to the last in the ORDER array,

the other UTDs are moved up one, and the next UTD is processed. If UTDs are discovered containing unresolved components, an error message is written and processing of this force's UTDs is terminated.

- (23) Block L6000. This area calculates the total number of UTDs of each type that is used in describing the force. It is accomplished by working from the bottom of the ORDER array derived in block 7. The running total for each UTD is kept in the KNT51 array. There can be only one AABB or AARR UTD in each force, so a one is placed in that position in KNT51. The remaining UTDs are counted by considering each UTD in the order of complexity (from the bottom of the ORDER array). The product of the number of times it has been used and the amount of each component UTD it requires is added to the value associated with each component UTD in KNT51. KNT51 is then placed as the second record of data file 51.
 - (24) Block L700. Routine DMPTOE is called.

3. ROUTINE SRCH:

a. Purpose. This routine finds the ordinal number of the passed UTD in the UTD directory table.

b. Input Variables:

Name	Source	Contents
IREC	Call	UTD
IVEC51	Call	UTD directory table.

c. Output Variables:

Name	Destination	Contents
IREC	Call	Ordinal of UTD.

- d. Logical Flow (Figure II-3-B-2):
- (1) Block 1. If the passed UTD is blank, control transfers to block L15.
- (2) Block 2. A search is made through the UTD directory table for a matching UTD. If one is found, control transfers to block L20.
- (3) Block L15. The UTD passed was either blank or was not found in the UTD directory table. The ordinal is set to zero and control returns to LDTOE.
- (4) Block L20. The ordinal is set to the location of the UTD in the UTD table and control returns to LDTOE.

Figure II-3-B-2. Routine SRCH

II-3-B-15

4. ROUTINE DMPTOE

a. Purpose. The purpose of routine DMPTOE is to dump the UTD directory table, the UTD breakdown table, the basic unit TOE table, and the secondary equipment table.

b. Input Variables:

Name	Source	Contents
IUTD	DF51	List of UTDs.
KVEC6	DF6	Secondary equipment type and quantities for Red and Blue forces.
IVEC	DF53	UTD breakdown table. A breakdown of complex UTDs by type and amount.
KVEC	DF51	Maximum number of UTDs by type per force.
JVEC	DF52	Amount of equipment authorized on vehicles by type.
IXVEC	DF52	Amount of equipment authorized in trains by type.

c. Output Variables. A listing of the variables as noted under input variables.

d. Logical Flow (Figure II-3-B-3):

- (1) Block 1. Routine GETRCD is called to retrieve the first record of data file 51. This is the UTD directory table of which the first 250 entries comprise basic UTDs, with ordinals pointing to data file 53 for UTD breakdown.
- (2) Block 2. Routine GETFLE is alled to retrieve data file 6, the secondary equipment file. There are 400 records, 10 words per record. The first 200 records are for the Blue force and the last 200 are for the Red force. Each record contains equipment type and amount for five items.
- (3) Block 3. The secondary equipment types and amounts are listed for Blue and Red forces.
- (4) Block L4. For each entry in the complex UTD table GETRCD is called to retrieve the corresponding data file 53 record. This provides a breakdown of the complex UTDs. This record is then listed.
- (5) Block L20. Routine GETRCD is called to retrieve the second record of data file 51, which contains the maximum number of UTDs by type per force.

Figure II-3-B-3. Routine DMPTOE. (Continued on Next Page)

Figure II-3-B-3. Routine DMPTOE. (Continued)
II-3-B-18

Figure II-3-B-3. Routine DMPTOE. (Concluded)
II-3-B-19

4

- (6) Block L206. Routine SORT is called for the basic and complex units to sort the UTDs alphabetically. The UTDs are listed in sorted order.
- (7) Block 4. For each basic UTD the corresponding equipment authorized in vehicles and on trains records are retrieved from data file 52. For each record, equipment types with the amounts are loaded into intermediate arrays and listed.
- (8) Block 5. After data have been listed control returns to the calling routine.

5. ROUTINE SORT:

a. Purpose. The purpose of routine SORT is to sort the UTD table alphabetically and arrange the table index in the same order.

b. Input Variables:

Name	Source	Contents
N .	Call	Number of entries in the UTD table.
IA	Call	UTD table.
IB	Call	Maximum number of UTD types allowable per force.
INDEX	Cal1	Ordinal of each UTD entry.

- c. Output Variables. The above input variables in sorted order.
- d. Logical Flow (Figure II-3-B-4):
- (1) Block 1. The scan limit of the sort is set to one less than the number of UTD's to be sorted.
- (2) Block 2. A do loop used to scan through the UTD array is established. The value of this do loop index is the ordinal of the left UTD to be compared.
- (3) Block 3. The initial ordinal of the right UTD to be compared is established.
- (4) Block L3. If the value of the ordinal of the right UTD is greater than the number of entries in the UTD array control goes to block L20.
- (5) Block 4. The UTDs of the left and right ordinal are compared. If the left UTD is less than the right UTD control goes to block L15.
- (6) Block Lll. The left and right UTD's and their indexes are interchanged.

Figure II-3-B-4. Routine SORT

- (7) Block L15. The ordinal of the right UTD is incremented and c ...rol returns to block L3.
- (8) Block L20. If the sort is complete (the do loop ordinal would be greater than the scan limit established in block 1) transfer control to the calling routine; otherwise, the do loop index is incremented and control is returned to block 2.

APPENDIX C

ORGANIZATION AND EQUIPMENT DATA LOAD OUTPUT DESCRIPTIONS

1. INTRODUCTION. Five printouts are produced when the constant data input cards are read into the DIVWAG System. These five printouts are listed in Figure II-3-C-1, TOE Type Printouts. The printouts are used to validate the accuracy of the information entered as the constant data input. The format of each type printout is illustrated in the following pages together with a brief explanation of its contents.

Title of Printout	Source of Data
80-Column Card Image of Input Data	Cards in data deck
Secondary Equipment for Blue and Red	Data file 6, secondary weapons
Unit Type Designator Breakdown Table Red and Blue	Data file 53, UTD breakout
Unit Type Designator Di∷ectory	Data file 51, UTD directory
Authorized Equipment Strengths	Data file 52, authorized strength type basic unit

Figure II-3-C-1. TOE Type Printouts

- 2. EIGHTY-COLUMN CARD IMAGE OF INPUT DATA. The source of this input printout form is the original cards that brought the data into the DIVWAG System. Figure II-3-C-2 illustrates the type printout. At the far right is listed the number 5201, which is the card identifier. On that same line at the far left is the number 2, which indicates that this is card type 2. Figure II-3-C-2 shows card image TOE for bulk-loaded-expendables data. The headings of the card columns from the card format defines the individual data items. For a complete description of the input card image, refer to Appendix A of Chapter 3, Unit Representation Input Requirements, of the Period Processor.
- 3. SECONDARY EQUIPMENT FOR BLUE AND RED. Figure II-3-C-3 Secondary Equipment for Blue, illustrates the format of this constant data input printout. This is the first of the printouts having columnar titles and formatted for easy reading. The data portrayed in the printout were entered in card format, processed, and entered into data file 6. The printout

```
12001 3
12001 2
12001 2
12001 8
12001 8
3601 8
5002 70
48001 8
908012 90
18801
                                            3 36021 90 10002
2 12001
                                                                                                                                                                                        5201
                                                                                                                                                                                                       26
27
28
29
30
2BVCLH
                                                                                                                                                                                        5231
5261
2818LH
                                                                                                                                                                                        5001 7
                                                                                                                                                           50302
                                                                                 2702 32
                                                                                                              SC5 5
                                                        8402
                                                                   90
70
                                                    8402 90
63,2 70
21,32 42
122
14702 2
                                                                                 122
1802 43
281HCC
                                                                                                                                                                                                       31
                                                                                                              462 30
                                                                                                                                     1862 32
                                                                                                                                                                 102
28 THMC
                                                                                                                                                                                                       32
33
34
35
36
37
38
20
28 T A H H
                                                        2702
                                                                               18061
ZBPWFH
                         900012
18001
12001
12001
72001
72001
72001
36001
12001
362
4002
3760
28PSMH
28IHLC
                                                    39902 70
12(31
36(31
602 2
6631
12001 90
6631 90
12001 3
12001 3
                                                                                    122
2BJACH
2BJASH
2BJBSH
                                                                                                                                                                                                       39
40
41
42
43
                                          90
2
2
2
3
2
5
4
2
                                                                               12001 7 50002
28JCSH
28VBLH
                                                                                                                                                                                        302
602
12001
28V8LH 3
28VFLH 3
28JACA 2
29IFCA 70
28IFFA 53
28IRFA 57
                                                                                                         20002
                                                                                                                                                                                                        45 46 47 48 49
                                                                                12801
                                                                       8
                                                     12011
                                                                                  1032
                             36001
6021
9301
281FLA
281GCA
281GCA 51
28PACA 2
28PFFA 65
281GLA 2
28KCCA 7C
                                                                                   121
                                              2
                                                         5001 70
                                                                                                                                                                                                      5001
2741 66
                                                         4941
                                                                                   1001
                            2741
6021
362
3042
24001
362
3762
24001
                                              5
 29KGCA 7L
29KGFA 59
28KSLA 2
28KGCA 7L
28KHFA 57
28KALA 2
                        62 2

/62 2

/62 2

401 8

362 2

4022 54

36301 8

12001

62

1601
                                                       12001
                                                                                                                                                                                         5201
5201
5201
5201
5201
5201
5201
                                                       12001
                                                      12001
1002
12001
6002
 28KFCA 70
28KCFA 53
                                                                        2
                                                                                12001
  28KCLA
28KACA
                                                         1652
                                                                                                                                                                                         28KLFA 61
28KLLA 2
28JJHCD 2
28JJHCD 2
28JJHFD 2
                             62
36301
12001
24001
24001
72
48001142
602
7
12001
12001
                                                     504802
452
602 10
5001
5052 10
102 5
                                                                                 10002
  28JECF 2
28085E142
 SBOE SE
SBOE SE
SBOE SE
                                                                                                                                                                                          102
                                                                                    1002
                             12001
12001
6001
12001
1001
1001
12001
12001
12001
  28PBCS
  SBITCT
                                                           4202 70
                                                                                       602 8 20002
  SBACC1
SBACC1
SBACC1
SBACC1
                                                        9302 70
9302 70
50001
                                                                                       602
602
                                                                                                          12001
12001
                                                                                                                                                                                          5201 78
5201 78A
5201 79
5201 80
5201 81
5201 82
5201 85
5201 85
5201 86
5201 86
5201 87
5201 878
5201 88
                                                8
                            1001 3
12001 1001 3
12001 70
180001 3
40002 70
5001 3
                                                        70
50001 8
242 70
50001 8
                                                                                       602
  2BINCI
2BJOLI
                                                                                     1002
602
1002
  28IACC
28JALC
   SBALCE
SBALCE
SBALCE
                                                                                   36001
                                                             682
                                                         50C01
                                              3
                                                                                     1002 6
1002 65
                                                                                                                                                                  1002
                            240001
1502
201
                     2
36
                                                         50001 5
1002 51
    2BJSLL
                                                                                                               1002 66
                                                                                                                                                                  1002
   28
                                                                                                                                                                                            5201
    ZBPSLL
                       2
```

Figure II-3-C-2. 80-Column Card Image

SECONDARY EQUIFHENT FOR BLUE SECONDARY

4.

	A 4T.	EOH	AFT.	E0H	AHT.	E0#	AMT.	EOH	AHT.
	21	æ	•	-	•	•	ى	•	_
	2 000	ت		63	-	ۍ	0	•	_
	137	27	114	20	-	•	525	•	_
	6	ت	63	Þ	-	0	-	-	_
	137	30	29	20	-	•	2205	0	•
	r	J,	0	•	-	.	ح.	•	
	æ	36	•	0	•	ٍ ت	9	0	
	116	£	-1	•	1995	3 6	1:	-	_
	375	38	15	39	ş	32	-	•	940
_	158	20		•	1000	24	20	£4	7
	-	ü		cı	•	6	Ç	0	_
	4	ت	•	6	9	۰	6	•	
_	135	53	1	54	20	22	-	•	525
	=	4	-	. =		•	. =	•	
		i i							
	9 5	ů	, 0			.			, .
, ,	4	3		.	• c		. c		
	5 6	2	• •				•	. =	
		1	•	٠.	. 6			• =	
	2 2		180	. c	. =		. د	, =	
	9	۰ د) 	• 6	ء ا	• 6	• a		
	224			. =					
	1353) c	1 12	•	4		•	•
	251	6	•	^	200	0	-	•	
m	297	93	-	76	-1	Ç	•	•	_
m	563	دن	ی	e	•	u	9		
m	1100	100	-	6	•	a	6	-	_
•	25	-	0	•	•	(3)	9	•	_
	190	-		•	-	•	-	•	_
	166	0	•		ė	0	6	•	_
	375	-		0	-	0	-	a	_
•	375	20	-	•	735	142	30	•	•
	1.0	•	•	•	0	٥	0	•	_
۸.	9	ت	9	•	0	ت	a	0	_
•	1264	•	9	-	6	0	-	•	_
	110		9	6	-	-	-	-	_
	5303	ت	•	ò	-	9	6	•	_
	1864	0	0	0	0	0	0	•	_
	9	22	-	•	420	0	9	-	_
	116	σ	500		•	a	6	-	_
	110	6	530	ے	•	-	•	-	_
_	105	25	34	0	•	۵	0	•	_
	120	6	0	63	•	•	-	6	_
	385	23	-	•	1470	•	7	a	-
	165	53	per per	2	15	-		•	•
									•

Figure II-3-C-3. Secondary Equipment for Blue

is a reflection of the data placed in data file 6. Across the top at far left is the title, PRIMARY EOH, and to the right is EOH, item code number, followed in the next column with AMT and so on. The first line states that the primary equipment item code number 21 has a secondary item in the quantity of 21. There are no other secondary items associated with item code 21. Formats of secondary equipment can be reviewed for validation. Should an error be found it may be traced directly to the 80-column card printout and corrected.

- 4. UNIT TYPE DESIGNATOR BREAKDOWN TABLE. The third type printout is that of unit type designator breakdown table for either Red or Blue forces illustrated in Figure II-3-C-4. This table is for the senior and subordinate unit relationship and reflects the data loaded onto data file 53. At the far left is the UTD for the senior unit. At the right of that column are the UTDs of the subordinate units assigned to that senior unit. Beneath each subordinate UTD is the number of these subordinate unit types that are assigned to the senior unit. Again, these may be used to check the accuracy of information entered in the data base. Apparent errors can be checked against the punch card 80-column printout and the errors on a specific card are detected.
- 5. UNIT TYPE DESIGNATOR (UTD) DIRECTORY. The fourth type printout for TOE constant data input is illustrated in Figure II-3-C-5. The purpose of this printout is to display the number of basic and complex units that are in the total force structure. This printout reflects the data entered onto data file 51. At the far left of the figure is the label index. To the right and along the top line is the number 142; this number has been assigned by the computer to the unit AALL. On the line labeled amount beneath AALL is the number 1; thus, in the entire force there is one AALL unit, and it has been assigned the index number of 142. Within this printout, the UTDs of all basic units are listed first—alphabetically sorted—followed by the complex units alphabetically sorted. The index numbers of the basic units provide a rapid reference to the printout of the TOE table.
- 6. AUTHORIZED PERSONNE. AND EQUIPMENT. The fifth type TOE data printout is illustrated in Figure II-3-C-6. For each basic UTD, the UTD index number and number of authorized personnel are shown at the left. Authorized equipment is shown in terms of the equipment item code, amount authorized to the unit, amount authorized on unit trains, and means of distribution (1 = unit, 2 = supply point distribution). The amount authorized to the unit and on trains is reflected on data file 50.

.

Figure II-3-C-4. Unit Type Designator Breakdown Table

191 GFCE	192 HPF &	100 P	116 JALL	118 JSCL 1	KGCA	167 PAFA 3	PBCS	96 96 96
F SC S	14 P B	11.51	23 JALC	119 JPLL	AFCA 3	157 1146	132 999E 6	900
142 141 1 2 145 3 4 5 171 179 184 194 149 145 152 175 181 173 A7 191 AALL APLL APLL APLL APLL ATTY RNCG RRLC 970C DAGE DMCD DMCD DMCLT DPPY DSTJ DTCA DWCA DYSE FSCS GFCE 1 1 1 1 1 1 1 1 1 2 2 1 5 3 99 1 3 1 3 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1	183 163 162 155 176 151 165 171 178 166 172 159 153 185 143 199 151 177 18 185 (FFA GENI GENI GENI GENI GENI GENI GENI GENI	19 42 34 93 46 36 57 47 46 36 15 146 46 23 17 55 56 59 37 59 146 146 146 23 17 59 56 59 37 59 146 146 146 146 146 146 146 146 146 146	60 61 90 91 92 96 39 43 28 22 29 27 41 35 21 14 49 77 23 116 IGFA IGLA IHGG IHLG IHHG IJGJ JJLI TKHH ILLI ILLT ILSI IHGI IMSI ISLI ITGT JAGA JACH JALG JALL 3 1 1 2 7 1 1 2 7 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1	59 78 51 16 52 136 18 79 115 76 114 97 107 113 12C 121 122 123 119 119 JASH JBFD JBSH JCLT JCSH JDCL JDLI JECF JFLL JHCD JHLL JHCL JHCL JHCL JHCL JHCL JHCL JHCL	88 103 109 108 111 73 126 69 129 9 127 128 64 6 71 72 13 133 70 67 JSS JSS JSL JSL JTCL JTL KACA KALA KALH KAMI KASH KGCA KCT KCFA KGA KGST KOLE KTA KGA KGA LA	65 124 134 68 125 74 75 131 10 7 66 11 12 164 156 154 147 148 157 167 167 KGFA KHCD KHCE KHFA KHFD KLFA KLLA KLE KLSI KHCI KSLA KTCI KIMI LBCI LBCI LECE LFCI LFIA LMC PAFA 1 2 6 5 9 3 3 7 12 3 7 12 8 6 5 9 8 5 8 7 12 8	169 193 192 174 189 198 202 190 196 161 16C 168 188 186 1A7 144 200 62 132 89 MFA MCSE MDSE MACD NBSE NBWE NDFD NDSE NEFD NFO NGCO NHCA NLCA NLFA NRII NTSE PACA PSPE PRCS 9 6 4 2 3 3 11 12 18 12 9 3 3 3 9 4 7 1 6 3	65 61 62 63 33 32 26 24 25 30 117 11C 95 112 31 94 133 66 63 64 67 67 67 67 67 67 67 67 67 67 67 67 67
161 0 MCA	151 HESE	56 1FFA 3	3ACH	122 JNLL + +	13 KCST	167	205 NTSE	133
175 01CA	195 HBFD	IFCA	JACA 1.	121 JACL	KGLA	154 LECE 3	NAIL ANII	. \$ £ 4.
162 DSTJ	143 HANTI	1001	11CT	120 JALL	71 KCFA	156 LBCT	187 NLFB	31
145 DPPY 99	175 HAF D	23 1051	35	113 JHCL	KCCT	164 teci	MICA J	112 PTLL
169 08LT	153 6VTJ	ICHI 33	IHSI	167 Juli	* * * * * * * * * * * * * * * * * * *	12 KIMT * 6	MICA MICA	95 PSMH
194 DNCD	671.1	1613	ZZ IHCI	76 LIIL 1.	128 KBSH	K1C1	168 NGFO 3	116 PSLL 3
184 DMC0	172 GRSE	ICCT	29 ILSI	11t	127 KASH 3	66 KSLA * 1	160 MFFD	Port.
179 DPCA	166 GRHT	36 1841	11LT	24CD	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	KHCI	161 NEFD 12	PNFA
171 9ACE	CPFA	TER.	11LI	115 FLL	129 KALH	10 KLSI	196 NDSE 18	PHMT 18
9700	171 GPSE	16LH	gr.	79 1604	69 KALA	131 KLE	190 NDFD 12	24 PHFA 2
RRLC	165	57 18Få	39	18 JOLI	126 KACH	75 KLLA 1	202 NBWE 111	26 PHCT 6
20 H	150 6140	38 1861	1367	136 JOCL	KACA	KF7.	198 NBSE	32 P 141 9
145 ATTY	176 CHFA 12	IBCH	92 THMC	JC SH	111	125 KHFD 3	189 NACO	33
APLL	155 GFF4	IAPH.	THC	JCL T	175	KHFA 9	174 HOSE 2	PFFA
APL.	162 GENT 27	34 IACI	THCC THCC	78 A B SH	189 JSLL	134 KHGE 2	192 MD SE	9E SE
161 APL 1	163 GEHI	42 1ACH	61 IGLA	78 JBF D	103 JSIJ	124 KHCD 1	193 MCSE	A1 PCSF 6
142 AALL 1	2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	19 1ACC 1	60 16FA 3	53 1	98 JSCS	65 KGFA	169 MPF A 9	985E
INDEX TYPE Amount	INDEX TYPE Amount	INDEX TYPE Amount	INDEX TYPE Amount	INDEX TYPE AMOUNT	INDEX TYPE Amount	INDEX TYPE Amount	INDEX TYPE Amount	INDEX TYPF AMOUNT

Figure II-3-C-5. Unit Type Designator Directory

THOST IN THE PROPERTY TABLE

	900				. 000		2300		-		
N S S S S S S S S S S S S S S S S S S S		Оны а	:	165 31.	, ၁ 00	22	N = N	ພ <i>າ</i> ວດ ຕ	Presson Dates A	ာ့သဂ မေ	
AUTH EQUIP Strfngths		6 0 0 0	AUTH EQUIP STRENGTHS	5 G G G	. G&S	AUTH EQUIP STRENGTHS 70 160	20 60 50 50 50 50 50 50 50 50 50 50 50 50 50	6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	AUTH EQUIP STRENGTHS		0 0
	ი ი ი ი	<u>ස</u> සම ප		00t	. . .	161	50%	0 00	•	8 9 0	0 & 0
	လာက္ ပ	000	•	υ <i>σ</i> ι	. မမ ာ	• • • • •	.a.1.a			, . , , , , , , , , , , , , , , , , , ,	ن ده ه
	6 5 6	9 00	•	8 B U	. .		n & D	000			e 174
	000	p p is			. .		600	e D 0	•		50

Figure II-3-C-6. Authorized Personnel and Equipment Printout

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR ORGANIZATION AND EQUIPMENT

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 4

TASK ORGANIZATION DATA INPUT PROGRAMS

- 1. INTRODUCTION. The Task Organization data input programs create and load the unit status and supply status files and the authorized equipment file. The contents of these files are controlled by the Organization and Equipment data and the Task Organization data describing the unit resolution and command and support relationships among units.
- 2. ROUTINES: The Task Organization data input programs consist of the routines described below.
- a. Routine ECHLON. The principal controlling routine is ECHLON. This routine creates and loads the unit status and authorized equipment files. It controls the reading and editing of appropriate data cards.
- b. Routine RECOG1. The task organization data cards are read by routine RECOG1 and the data are returned in arrays stored in common.
- c. Routine COMMCK. Routine COMMCK determines if a card read is a comment card. If not, it prints the card image. If a card is not terminated by a period, the next card is read.
- d. Routine COMPRS. Blank spaces are compressed out of data card images by routine COMPRS.
- e. Routine CFIND. Routine CFIND is a utility routine which searches a card image for a specified character and returns the location of a match if one is found.
- f. Routine BLNKOT. A complete card image is filled with blanks by routine BLNKOT.
- g. Routine CORDIN. Routine CORDIN searches a card image for a pair of X-Y coordinates and returns the coordinates in memory.
- h. Routine SUPORT. Routine SUPORT reads support data and establishes the necessary support linkages. The support may be general support, direct support, reinforcing, or general support/reinforcing.
- i. Routine SEQUEN. The routine that controls the creation of records for all units on the unit status file is SEQUEN. It calls routines TOEPUT, UPDATE, RELATR, and SUPPLY upon completion.
- j. Routine TOEPUT. Routine TOEPUT fills the unit status record and authorized equipment record for a unit and places them on the data files.

- k. Routine UPDATE. Updating of quantities of equipment and personnel on hand and authorized is performed by routine UPDATE for all units with subordinates. The quantities include the total of all quantities sent in subordinate units.
- 1. Routine CRAT31. Supply status records are created by routine CRAT31 and placed on the supply status file.
- m. Routine RELATR. Routine RELATR inserts properly coded indications of supporting roles into all unit status records of a force.
- n. Routine SUPPLY. The supply source for each unit is placed in the supply status records by routine SUPPLY.
- o. Routine TALLY. Routine TALLY verifies that all task organization requirements have been satisfied.
- 3. FILES. The following data files are created and loaded by the Task Organization data input programs:
 - . Unit status file data file 1
 - . Supply status file data file 31
 - . Authorized strength file data file 50

The state of the s

APPENDIX A

TASK ORGANIZATION DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for task organization are documented in Appendix A, Unit Representation Input Requirements, to Chapter 3 of the Period Processor (Section IV).

APPENDIX B

TASK ORGANIZATION DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. The task organization input data are loaded by the group of routines described in this appendix that are controlled by the routine ECHLON. For the set of data describing the task organization of one force, processing is accomplished in three passes. First, the basic organization input cards are read, recognized, and placed in a common storage area by RECOG1 and supporting utility routines called from ECHLON. Second, ECHLON calls the routine SEQUEN that constructs unit status records (data file 1) and supply status records (data file 31) using the input data. Finally, routine SUPPLY reads the supply point data and sets appropriate entries on the supply status records. Variables are passed from RECOG1 to SEQUEN with a set of arrays in common. The three common areas for this set of loading routines are as follows:

a. Common ONE (Labeled Area):

<u>Variable</u>	Base Address	Contents
IFNT(56,3)	1	File name table.
UID(2,600)	169	Unit identifications in load order.
ICLASS(200)	1369	Equipment type classes.
IDUM(200)	1569	Not used.
NBLUE	1769	Total number of blue units.
NRED	1770	Total number of red units.

b. Common TWO (Labeled Area):

<u>Variable</u>	Base Address	Contents
EVTBLE(4000)	1	Records 1 and 2 of data file 51 unit type designator and number allowable.
UIDTAB(2,1000)		Unit identifications in IUID order.

c. Blank Common (Unlabeled Area):

<u>Variable</u>	Base Address	Contents
LIST	1	List flag: l = list, 0 = no list.
NU	2	Total number of units in table.
	II-4-F	3-1

<u>Variable</u>	Base Address	Contents
LEV(600)	3	Level (echelon) of unit.
ITOE(600)	603	Unit type designator tables.
XLOC(600)	1203	X coordinates of units.
YLOC(600)	1803	Y coordinates of units.
USUP(2,600)	2403	Unit being supported.
NSUP(600)	3603	Types of support.
MAXLEV	4203	Highest level (echelon) of a unit.
KEND	4202	Total number of records on data file 31.
123	4205	Data file 23 pointer.
IRATE	4206	Consumption rate of food supplies.

2. ROUTINE ECHLON:

a. Purpose. ECHLON is the controlling routine in the sequence of routines designed to build a task organization including unit status records, supply status records, and unit authorized strength records.

b. Input:

- (1) Task organization data.
- (2) TOE data.
- (3) Supply data.
- c. Output. ECHLON builds data file 1 (unit status), data file 31 (supply status), data file 50 (authorized strength), and data file 23 (unit composition).
 - d. Logical Flow (Figure II-4-B-1):
- (1) Block 1. Call GETFLE to get the file name table from disk and place it in common.
- (2) Block 2. Call REMOVE to remove data files 12, 23, and 31 from the file name table (IFNT) and remove the corresponding data from the disk storage area.
- (3) Block 3. Call CREATE to create a new file in IFNT for data files 12, 23, and 31.

II-4-B-2

Figure II-4-B-1. Routine ECHLON (Continued on Next Page)

Figure II-4-B-1. Routine ECHLON (Continued)

Figure II-4-8-1. Routine ECHLON (Continued)

Figure II-4-B-1. Routine ECHLON (Concluded)

- (4) Block 4. Call GETRCD to retrieve the unit type designator table from data file 51.
 - (5) Block 5. Put the unit type designator table into the EVTBLE array.
 - (6) Block 6. Read one card from task organization.
- (7) Blocks Ll and 7. Zero the unit status file (data file 1) and the authorized strength file (data file 50).
 - (8) Block 13. Call COMPRS to put card image into a compressed form.
- (9) Block L7. If this is not an operation card (first card), control goes to block L35.
- (10) Blocks L5 and 9. Read the next card and call COMPRS to compress the characters.
- (11) Blocks 10, 11, and 12. Call routine COMMCK to process this card if it is a comment card. If this is not a task card, control transfers to block L7.
- (12) Block 13. Blank arrays UID, XLOC, YLOC, USUP, and ITOE. Zero arrays LEV, NSUP, MAXLEV, and NU.
- (13) Block 14. Call RECOG1 to read the task organization data cards and place the input data into computer memory. If there were any errors in RECOG1 control transfers to block L5.
- (14) Block 15. Call SEQUEN to build the unit status file. When control returns from this routine, control transfers to block L5.
- (15) Block L35. Blue was processed with the first pass. If a second pass has not been made to process the Red units, return to block L5.
- (16) Block 16. If the last card read was not a FINIS card, control goes to block L5.
 - (17) Block 18. Call TALLY which lists the units' TOEs.
- (18) Block 19. REMOVE is called to remove data file 12 from IFNT. Data file 12 passes the data from routine TOEPUT to UPDATE.
- (19) Block L31. If all units have been processed, control returns to the calling routine.
- (20) Block 20. Fill the LEV (echelon level of a unit) array from data file 1.
- (21) Block 21. If this unit does not have a location, control goes to block L31.

(22) Block 22. Build the supply status record for data file 31. Control goes to block L31.

3. ROUTINE RECOG1:

a. Purpose. RECOG1 reads task organization input data cards and places the input data into computer memory. Data are placed in a series of data arrays with the location within each array reflecting the sequence that data cards were read.

b. Input:

- (1) Task organization data cards.
- (2) Common blocks from routine ECHLON.

c. Output:

- (1) RECOG1 lists all data cards as they are read.
- (2) RECOG1 sets the following common variables: UID, ITOE, XLOC, YLOC, NSUP, UPSUP, LEV, MAXLEV, and NU.

d. Logical Flow (Figure II-4-B-2):

- (1) Block L120, 1, and 2. A data card is read and routine COMPRS is called to compress any blanks out of the card image. Routine COMMCK is then called to determine if this is a comment card and to process it.
- (2) Block 3 and L451. A check is made to determine if this is a support card. If it is, an error message is printed, the error flag is set, and control returns to the calling routine.
- (3) Block 4. If there is not a period on the card, this unit's description is not complete, and control is transferred to block L120.
- (4) Block 5. If this card is an end-of-unit card, control transfers to block L240.
- (5) Block 6, 7, and 8. Set level indicator array for unit. If the new level is greater than the maximum level variable, reset the maximum level variable.
- (6) Block 9. If this is a superior unit, transfer control to block L150.
- (7) Block 10. If the level indicator of this basic unit equals one, transfer control to block 11.
- (8) Block L150 and 13. If this is a superior unit, increment the level indicator.

Figure II-4-B-2. Routine RECOG1 (Continued on Next Page)

Figure II-4-B-2. Routine RECOG1 (Continued)

Figure II-4-B-2. Routine RECOG1 (Concluded)

- (9) Block L155 and L70. If the first character of the unit identification (UID) is not B or R, or there has been a change in the force, transfer control to block 11.
- (10) Block L180 and 14. If this is not a superior unit, locate first parameter separator in card.
- (11) Block L185 and 15. If the number of characters in the UID is less than eight, write an informative message, right fill the UID with zeros, and transfer control to block 17.
- (12) Block 16 and 161. If the number of characters in the UID is greater than eight, write an error message.
- (13) Block 17. A check is made to determine if this UID has previously been loaded. If it has, transfer control to block 11.
 - (14) Block L260. Load the eight characters of UID into UID array.
- (15) Block L280. A check is made to determine if there are any more parameters to process in the card image. If there are not, transfer control to block L400.
- (16) Block 18, L290, and 21. If the next parameter is a location parameter, call routine CORDIN to extract the X and Y coordinates, load the coordinate arrays, and transfer control to block L280.
- (17) Blocks 19 and L300. If the next parameter is a unit type designator parameter, load the parameter into the unit type designator array, and transfer control to block L280.
- (18) Blocks 20, L285, and 22. If the next parameter is not a support parameter, write an error message, set the error flag, and transfer control to block L280.
- (19) Blocks L330 and L331. Call routine SUPORT to extract the support data, load the data into the support arrays, and transfer control to block L280.
- (20) Block L400. Increment the unit counter and transfer control to block L120.
- (21) Block L420, 23, and 24. If the UID identified in the end-of-unit card has not been loaded write an error message, set the error flag and transfer control to block L120.
 - (22) Block L450. Decrement the level counter.
- (23) Blocks 25 and 26. If the decremented level is not equal to the level of the unit in question, write an error message.
- (24) Blocks 27 and L452. If the decremented level is not equal to one, transfer control to block L120; otherwise, list the UIDs, each associated

unit type designator, X and Y coordinates, support type, and level. Return control to the calling routine.

(25) Blocks 11 and 12. Write an error message, set the error flag, and transfer control to block L120.

4. ROUTINE COMMCK:

a. Purpose. COMMCK reads from the character word array and identifies comment cards.

b. Input Variables:

Name	Source	Contents
CCARD	Call	Compressed character array.
ICARD	Call	Word array.
JCHAR	Call	Last character column to search.
IGO	Call	Comment card flag.

c. Output. COMMCK compresses the card image and returns a flag if it is a comment card. If IGO equals 10, it is a comment card; if IGO equals 5, it is a data card.

d. Logical Flow (Figure II-4-B-3):

- (1) Block 1. If the card is a comment card, set IGO equal to 10 and return control to the calling routine.
 - (2) Block L1. Print the card array on the printer in a 20A4 format.
- (3) Block 2. If the last character of the card is a period, it is the end of data. Return control to the calling routine.
- (4) Block 3. The end of data was not read; so, read another card image.
- (5) Block 4. Call COMPRS to compress the next 80-column card image. Control goes to block L1.

5. ROUTINE COMPRS:

a. Purpose. COMPRS puts cards into compressed form for up to 80 compressed characters.

b. Input Variables:

Name	Source	Contents
ICARD	Call	Card image array (four characters per word).
CCARD	Call	Character array.
JCHAR	Call	Number of compressed characters.

II-4-B-16

Figure II-4-B-3. Routine COMMCK

- c. Output. Puts the nonblank characters into an array.
- d. Logical Flow (Figure II-4-B-4):
- (1) Block 1. The loop that passes through each word of the card is initialized or incremented.
- (2) Block 2. The loop that passes through each character of the card word is initialized or incremented.
- (3) Block 3. Call routine MVCHAR to extract the selected character of the word and place it left justified in a test variable.
- (4) Block 4. If the test variable is blank, transfer control to block 7.
- (5) Blocks 5 and L20. If the total number of characters in this statement exceeds 80, write an error message and return control to the calling routine.
- (6) Block 6. Increment a character counter and move the character into the character array.
- (7) Block 7. If this is not the last character of the word, transfer control to block 2.
- (8) Block 8. If this is not the last word of the card, transfer control to block 1; otherwise, return control to the calling routine.

6. ROUTINE CFIND:

a. Purpose. CFIND searches for a character and returns the column number it is in. If the character is not found, it returns 100.

b. Input Variables:

<u>Name</u>	Source	Contents
CCARD	Call	Compressed character array to search.
KK	Call	Starting column for search.
LCHAR	Call	Last character column to search.
KCHAR	Call	Character to search for.

- c. Output. CFIND sets LCHAR to the number of the column where the character is found. If the character is not found, set LCHAR to 100.
 - d. Logical Flow:
 - (1) Search the character array for the character requested.
- (2) If the character is found, let LCHAR equal column number and return control to the calling routine.
- (3) If the character is not found, let LCHAR equal 100, and return control to the calling routine.

•	ND-A112 656	DIVW	ARMY COMBINED ARMS-COMBAT DEVELOPMENTS ACTIVITY FORT-ETC F/G 15/7 DIVMAG MODEL DOCUMENTATION. VOLUME II. PROGRAMMER/AMALYST MANUA-ETC(U) JAL 76									
·	MCLASSIFIED		A-TR-6-	76-VOL	-2-PT-1			_		 ML.	_	
	30F 9											
į												
i												
ı												
									ŀ			

Figure II-4-B-4. Routine COMPRS.

II-4-B-19

7. ROUTINE BLNKOT:

- a. Purpose. BLNKOT places blanks in a card image array.
- b. Input Variables:

Name Source Contents

ICARD Call The card array to be blanked.

- c. Output. Returns a blank 20-word array to the routine.
- d. Logical Flow:
 - (1) Set ICARD(20) equal to blanks.
 - (2) Return control to calling routine.

8. ROUTINE CORDIN:

- a. Purpose. CORDIN places the card image of \boldsymbol{X} and \boldsymbol{Y} coordinates into memory storage locations.
 - b. Input Variables:

Name	Source	Contents
CCARD	Call	Character array.
JCHAR	Call	Number of characters.
K	Call	Starting column for search.
x	Call	X coordinate.
Y	Call	Y coordinate.

INFT(56,3), NBLUE, and NRED, and BLANK from common ONE are also input.

- c. Output. CORDIN places the \boldsymbol{X} and \boldsymbol{Y} coordinates from the CCARD array onto memory.
 - d. Logical Flow (Figure II-4-B-5):
- (1) Blocks 1 and 2. Find the beginning of the X coordinate in the character array. Call CFIND to find the end of the X coordinate. This is done by checking for the dash (-) character.
 - (2) Block 3. Place the X coordinate in memory.
- (3) Blocks 4 and 5. Call CFIND to search for the end of the Y coordinate. When an asterick (*) is found, the Y coordinate is placed onto memory and control returns to the calling routine.

Figure II-4-B-5. Routine CORDIN

(4) Blocks 6 and 7. If no coordinates are found an error message is printed and control returns to the calling routine.

9. ROUTINE SUPORT:

a. Purpose. SUPORT decodes data to determine the unit receiving support and the type of support it is to receive.

b. Input Variables:

Name	Source	Contents
CCARD	Call	Compressed character array.
K	Call	Starting character column in compressed array.
JCHAR	Call	Number of compressed characters.

- c. Output. SUPORT returns the type of support and the unit to receive it through the variable UNIT. The type of support is returned through K as follows:
 - . If K = 0, general support
 - . If K = 1, direct support
 - . If K = 2, reinforcing
 - . If K = 3, general support/reinforcing.
 - d. Logical Flow (Figure II-4-B-6):
- (1) Block 1. If the support type is direct, transfer control to block L50.
- (2) Block 2. If the support type is reinforcing, transfer control to block L70.
- (3) Block 3. If the support type is general, transfer control to block L25.
- (4) Blocks 4 and 5. If the support type is not general support/ reinforcing or the supported unit is of the opposing force, transfer control to block 11.
- (5) Blocks 6 and 7. Load the character representation of the supported unit into a temporary array, set the support type flag equal to three, and transfer control to block L90.
- (6) Blocks L50 and 8. If there is a syntax error in the support unit or the supported unit is of the opposing force, transfer control to block 11.
- (7) Blocks 9 and 10. Load the character representation of the supported unit into a temporary array, set the support type flag equal to one, and transfer control to block L90.

Figure II-4-B-6. Routine SUPORT (Continued on Next Page)

Figure II-4-B-6. Routine SUPORT (Concluded)

- (8) Blocks 11 and 12. Write an error message, set the support type flag equal to zero, and return control to the calling routine.
- (9) Blocks L70 and 15. If there is a support type syntax error or if the supported unit is of the opposing force, transfer control to block 11.
- (10) Blocks 16 and 17. Load the character representation of the supported unit into a temporary array, set the support type flag equal to two, and transfer control to block L90.
 - (11) Block L25. Set the support type flag equal to zero.
- (12) Block L90. Call routine MVCHAR to transfer the supported unit from the temporary array to the UNIT variable array, and return control to the calling routine.

10. ROUTINE SEQUEN:

The state of the s

· 2.

- a. Purpose. SEQUEN is the main routine that builds the unit status file.
 - b. Input Variables:
 - (1) Common ONE and blank common area from ECHLON.
 - (2) Supply class data from data file 11.
- c. Output. SEQUEN places all units and subordinates on the unit status file.
 - c. Logical Flow (Figure II-4-B-7):
- (1) Block 1. Set the number-of-units counter to zero. Initilize UID temporary storage variable with first UID of force.
- (2) Block 2. Set the force flag to 428 for the Blue force or 429 for the Red force.
- (3) Blocks 3 and L10. Call routine GETWRD twice: once, to retrieve the supply classes from data file 11; and once, to retrieve the consumption rates from data file 11.
 - (4) Block L105. Set the start point for the level search to one.
- (5) Block 4. If the MAXLEV variable is equal to one, all units have been processed and control transfers to block L180.
- (6) Blocks L100 and 5. A search is made from the start point through the total number of units for a unit of which the level is equal to the MAXLEV variable. If one is not found, transfer control to block L165.

Figure II-4-B-7. Routine SEQUEN (Continued on Next Page)

Figure II-4-B-7. Routine SEQUEN (Continued)

The second second

Figure II-4-B-7. Routine SEQUEN (Continued)

Figure II-4-B-7. Routine SEQUEN (Concluded)

RETURN

- (7) Blocks L120, 6, and 7. Set pointer for superior unit of maximum level unit found, call routine IUIDF to determine if the superior unit has previously been placed in the UID table, and increment the number-of-units counter.
- (8) Blocks 8, 9, and 10. If the superior UID has previously been placed in the UID table, an error condition exists; there being two units with the same UID. An error message is written and control returns to the calling routine.
- (9) Blocks L140 and 11. Routine ADDUNT is called to add the superior unit to the UID table, and the pointer for the subordinate UID with the maximum level is reinitialized.
- (10) Block 12. Initialize or increment do index to pass through the force from the first maximum level unit to the end of the force.
- (11) Blocks 13 and L170. If the level of the unit being examined is less than MAXLEV, reset the start point for the level search to that of the present unit, and transfer control to block L100.
- (12) Block 14. If the level of the unit being examined is greater than the maximum level variable, transfer control to block L150.
- (13) Blocks 15 and 16. Call routine IUIDF with the present subordinate UID as an argument to determine if it has previously been loaded in the UID tables. If it has, a call is made to routine UPDATE to update its superior unit's status record, and control is transferred to block L150.
- (14) Blocks 17, 18, and 19. A call is made to routine ADDUNT to add the present subordinate unit UID to the UID tables, the units counter is incremented, and a call is made to TOEPUT to load unit status and authorized strength records for this unit.
- (15) Blocks L150 and L165. If all the units of this level have been processed, decrement the MAXLEV variable and transfer control to block L105; otherwise, transfer control to block 12.
- (16) Block L180. A call is made to routine IUIDF to retrieve the IUID of the first unit in the force.
- (17) Blocks 20, 21, and 22. A call is made to routine UPDATE to load the first unit in the force's unit status record, a call is made to routine RELATR to update the supporting roles of the units in the unit status record; a call is made to routine SUPPLY to load the supply data into the unit status record; and, control returns to the calling routine.

11. ROUTINE ADDUNT:

a. Purpose. ADDUNT places the UID of a newly defined unit into a space available within the UID versus IUID cross reference table and returns the IUID allocated for the unit.

b. Input Variables:

Name	Source	Contents
UID	Call	Unit identification code.
IUID	Call	Integer unit identification.
BCOUNT	ONE	Number of Blue units in cross reference table.
RCOUNT	ONE	Number of Red units in cross reference table.

- c. Output ADDUNT returns the IUID allocated for the new unit to the calling routine.
- d. Logical Flow. Set the appropriate IUID of the Red or Blue force unit to be allocated and place the UID in the cross reference table. Return control to the calling routine.

12. ROUTINE TOEPUT:

a. Purpose. TOEPUT fills the unit status and authorized equipment records for a basic unit.

b. Input Variables:

- (1) Common ONE and blank common areas.
- (2) Other Variables:

Name	Source	Contents
IA	Call	Location in common of data for unit to be treated.
NREC	Call	Record number within data file 1 allocated for unit's status record.
IKP2	Call	Record number within data file 1 allocated for the unit's superior.
EVTBLE	TWO	Unit type designator table.

c. Output. TOEPUT outputs the unit status record on data file 1 and the authorized strength record on data file 50 for the unit created.

d. Logical Flow (Figure II-4-B-8):

- (1) Block 1. The UID, UTD, and X and Y coordinates of the unit are loaded into their appropriate places in the data file 1 record array.
- (2) Blocks 2 and 3. The UTD index table of data file 51 has been loaded into the variable array EVTBLE. The part of this table that holds basic UTDs is searched for a corresponding UTD. The ordinal of this match will give an index to data file 52 to retrieve equipment on-hand and in trains data. If a corresponding UTD is found, transfer control to block L30.
- (3) Blocks L261 and 4. If processing goes to this block, the UTD of the unit is complex, and the complex part of the UTD table is searched for a corresponding UTD. The ordinal of this corresponding UTD gives an index to data file 53 to retrieve a breakdown of the complex UTD. If a corresponding UTD is not found, transfer control to block L263.
- (4) Blocks L270, 5, and L271. If the original UTD of the unit is being processed, that UTD and the numeral 1 are loaded into a UTD and count array (TALLY array) that contains all UTD types and amounts used to build a unit.
- (5) Blocks 6, 7, 8, and 9. When a UTD must be separated into basic UTDs a data file 23 record is built for that unit. If the data file 23 record has not previously been built for this unit, the data file 23 record array is loaded and a call is made to routine PUTRCD to place the record onto data file 23. The pointer to that record is placed into the data file 1 record array.
- (6) Blocks L272 and 10. A do loop is established to access the entries within the retrieved data file 53 record. The odd-numbered words of a data file 53 record are the authorized UTD types, the even-numbered words are the amounts authorized. If the present UTD entry is blank, all UTDs in the record have been accessed and control transfers to block L280.
- (7) Blocks 11 and 12. A pointer for a UTD holding array and the corresponding array that contains the different UTD types is incremented. The UTD is loaded into that position in the array. The number of such UTDs is multiplied by a multiplication factor, derived from the number of units superior to the authorized unit, and is loaded into the count array.
- (8) Blocks 13, L277, and 14. If the present UTD has been previously processed for this unit, the TALLY array count is updated for that unit; otherwise, the UTD is loaded into the UTD TALLY array and the count is loaded into the count TALLY array.
- (9) Block L280. If processing of the current data file 53 record is not completed, transfer control to block L272.

Figure II-4-B-8. Routine TOEPUT (Continued on Next Page)

Figure II-4-B-8. Routine TOEPUT (Continued)

Figure II-4-B-8. Figure TOEPUT (Concluded)

- (10) Blocks 15 and 16. If the complex UTD for this unit does not reduce to more basic units, transfer control to block L263. If the complex UID for this unit breakdown is to more than 200 basic units, transfer control to block L305.
- (11) Block 17. At this point at least one record has been retrieved from data file 53 and placed in a holding array. This array indicates that the UTD is divided into more basic UTDs. A do index is initialized or incremented to pass through this array.
- (12) Blocks 18, 19, and 20. If a UTD is found in the holding array that is not a basic UTD, the holding array start point is updated, the count multiplication factor is set, and control is transferred to block L261.
- (13) Blocks L310 and 21. Call routine GETRCD to retrieve the data file 52 equipment-on-hand and in-trains data for this UTD and update total equipment-on-hand required and in trains.
- (14) Block L290. If all UTDs in the holding array have not been processed, transfer control to block 17.
- (15) Blocks 22, 23, and 24. A call is made to routine PUTRCD to load the trains data onto data file 12, and if the unit has a location, a call is made to routine CRAT31 to create data file 31 records for this unit.
- (16) Blocks L305, 25, and 26. The TALLY data are written onto a scratch file. The appropriate data are loaded into the data file 1 and data file 50 record arrays, and a call is made to PUTRCD to output a data file 50 record. Control is then transferred to block L330.
- (17) Blocks L30, 27, and 28. The TALLY unit type designator data are written onto the scratch file. A call is made to routine GETRCD to retrieve the appropriate data file 52 on-hand equipment record and that data are loaded into the data file 1 record array.
- (18) Blocks 29 and 30. A call is made to routine GETRCD to retrieve the appropriate data file 52 trains data and then a call is made to routine PUTRCD to load that data into data file 12.
- (19) Blocks 31 and 32. If the unit in question has a location, call routine CRAT31 to create the appropriate data file 31 records for that unit.
- (20) Block L330. Load the data file 1 record array with the IUID of the unit and its superior unit.
- (21) Blocks 33, 34, and 35. Call routine PUTRCD to load data file 50, update data file 1 record array, and call PUTRCD to load data file 1.
- (22) Block L263. Write an error message and return control to the calling routine.

13. ROUTINE UPDATE:

a. Purpose. UPDATE fills the unit status record (data file 1) and the authorized equipment strength record (data file 50) of a unit that has subordinate units and adjusts unit status records of subordinate units if required.

b. Input Variables:

- (1) Common ONE and blank common area.
- (2) Other Variables:

<u>Name</u>	Source	Contents
IA	Call	Location in common of data for unit to be treated.
NREC	Call	Record number within data file 1 allocated for unit's status record.
IKP2	Call	Record number within data file 1 allocated for the unit's superior.
IFORCE	Call	Indicates Red or Blue unit.
NI	Call	Number of subordinates pointer.
EVTBLE	TWO	Unit type designator (UTD) tables.

c. Logical Flow. (Figure II-4-B-9):

- (1) Blocks 1 and 2. Initialize all variables and arrays to be used in this routine. Set the level parameters of the unit to be updated and the unit's immediate subordinates.
- (2) Block 3. Set up a loop that will pass from the first unit after the unit to be updated to the end of the force.
- (3) Block 4. If the next unit has a level less than or equal to the level of the updating unit (BOSS) it is not subordinate to that want, and control transfers to block L37.
- (4) Block 5. If the next unit has a level which is greater than that of its immediate subordinates this is a new echelon, then transfer control to block L30.
- (5) Blocks 6 and 7. Call routine IUIDF to retrieve the IUID of the subordinate unit, and call routine GETRCD to retrieve the unit status record of that unit.

Figure II-4-B-9. Routine UPDATE (Continued on Next Page)

Figure II-4-B-9. Routine UPDATE (Continued)

Figure II-4-B-9. Routine UPDATE (Concluded)

- (6) Blocks 8 and 9. If the unit has a location or if the unit is a complex nominal unit, transfer control to block L35.
- (7) Blocks 10 and 11. There is at least one subordinate unit with no location; set the NOLOC flag equal to one and sum the equipment on hand into a sums array.
- (8) Block 12. Increment the no-location subordinate count and place the IUID of the subordination with no location into a list of basic subunits.
- (9) Blocks 13 and 14. Call routine GETRCD to retrieve data file 12 trains data for this subordinate and sum into an array of train strengths for basic units. Transfer control to block L33.
- (10) Blocks L35 and 15. Set the UPFLAG parameter equal to one for a complex unit, and call routine GETRCD to retrieve data file 12 trains data for this unit.
- (11) Block 16. If this unit is not a nominal unit (i.e., basic with location), transfer control to block L778.
- (12) Blocks 17 and 18. Sum data file 12 trains data into the nominal trains data array, increment the nominal unit's subordinate count, and place the IUID of the nominal unit into list of subordinate nominal units. Transfer control to block L33.
- (13) Block L778. Sum data file 12 trains data into the complex unit trains data array.
 - (14) Block L33. Sum personnel strength.
- (15) Blocks 19 and 20. Call routine GETRCD to retrieve data file 50 authorized personnel strength and add to authorized personnel strength array.
- (16) Blocks 21 and 22. Increment subordinate unit counter and load subordinate IUID into subordinate unit list. Also load subordinate UTD into subordinate UTD list.
- (17) Block L30. If there are more units in this force to be processed, transfer control to block 4.
- (18) Blocks L37 and 23. If there were more than 10 subordinate units, write an error message and return control to the calling routine.
- (19) Blocks 24 and 25. A search is made for the superior UTD in the complex UTD table. If it is found, transfer control to block L55.

- (20) Blocks 25, 26, and 27. If the superior UTD was not found in the complex part of the UTD table, a search is made to determine if it is a basic UTD. If it is not complex or basic, an error message is printed, and control returns to the calling routine.
- (21) Blocks L201 and 28. Call routine GETRCD to retrieve authorized on-hand equipment quantities and sum into unit status record equipment-on-hand array.
- (22) Blocks 29 and 30. Call routine GETRCD to retrieve authorized train quantities and sum into basic trains quantity array.
- (23) Blocks 31 and 32. Set the NOLOC flag equal to one, write the UTD data to the scratch file and transfer control to block L82.
- (24) Blocks L55 and 33. Write the UTD data to the scratch file and call routine GETRCD to retrieve a data file 53 record to check the UTD breakdown of the superior UTD.
- (25) Blocks 34 and L82. If the UTDs of the subordinate units do not correspond with those defined in the retrieved data file 53 record, write an informative message.
- (26) Blocks 35 and L170. If there is one subordinate unit with no location, set superior unit equipment quantities to contents of equipment-on-hand array, and transfer control to block L181.
- (27) Blocks 36, 37, 38, and L150. If the superior unit and all its subordinates have locations write an error message, and zero the superior unit locations. Set the UPFLAG parameter equal to two for a nominal unit.
- (28) Block 39. Recompute the BOSS on-hand equipment and trains quantities.
- (29) Block L181. Call routine CRAT31 to create data file 31 records for the superior unit.
- (30) Blocks 40, 41, and 42. Set the superior unit's status record parameters, and call routine PUTRCD to load the superior unit's status record and data file 50 record.
- (31) Block 43. The on-hand equipment quantities of any subordinate unit are changed to percent.

14. ROUTINE CRAT31:

- a. Purpose. This routine builds the supply records for vehicles and trains and places them on data file 31.
 - b. Input Variables:
 - (1) Common ONE and blank common area.

(2) Other Variables:

Name	Source	Contents
ІЕОН	Call	Equipment quantities authorized on hand.
IEAUTH	Call	Equipment quantities authorized in trains.
KSTART	Call	Beginning record on data file 31.
ICOMSP	Call	Consumable supplies.
IPERS	Call	Number of personnel authorized.

- c. Output. The supply status records are put on data file 31.
- d. Logical Flow (Figure II-4-B-10):
 - (1) Block 1. Zero the working area.
- (2) Block 2. Enter into the IVC31 array the quantities consumable supplies authorized on hand and in trains. Begin loop to process all equipment items.
- (3) Blocks 3 and 4. If this item is a major item, place the quantity authorized on hand into array IVC31.
- (4) Block 6. If this item is not a major item, enter the quantities authorized on hand and in trains into IVC31.
 - (5) Block 7. ADDRCD places array IVC31 on data file 31.
- (6) Blocks 8 and 9. Zero array IVC31. If all equipment items have not been processed, control goes to block 3.
- (7) Block 10. Put the number of personnel on data file 31. Return control to the calling routine.

15. ROUTINE RELATR:

- a. Purpose. RELATR inserts properly coded indicators of supporting roles into unit status records of a force.
 - b. Input Variables. Common ONE and blank common area.
- c. Output. RELATR outputs the unit status records with appropriate supporting role entries.
 - d. Logical Flow (Figure II-4-B-11):
- (1) Block 1. A do loop is initialized or incremented to pass through all the units of a force.

Figure II-4-B-10. Routine CRAT31

Figure II-4-B-11. Routine RELATR (Continued on Next Page)

Figure II-4-11. Routine RELATR (Concluded)

Ch. Zarray

- (2) Blocks 2 and 3. IUIDF is called to retrieve the IUID of the indexed unit. If that unit is not a supporting unit, transfer control to block L60; otherwise, control proceeds to block 4.
- (3) Block 4. IUIDF is called to ${\tt I}$ ieve the IUID of the supported unit.
- (4) Block 5. The type of support is biased by 10000, the IUID of the supported unit is added to it, and a call is made to routine PUTWRD to place this variable in the unit status record of the supporting unit.
- (5) Blocks 6, 7 and 8. A call is made to the routine GETWRD to retrieve the IUIDs of any unit that this supported unit in turn supports. If it supports more than 10 units, an error message is written, and control is transferred to block L60.
- (6) Blocks L50 and 9. The type of support provided by the original supporting unit is biased by 10000, the IUID of this unit is added to it, and this value is placed in the first vacant location of the supported unit's supporting array. This array is placed in the unit status record of the supported unit.
- (7) Blocks L60 and 10. The first and third character of the supporting unit's UTD are extracted. If they are B and M, this unit is a division and the division counter is incremented. If this is not a division, transfer control to block L10.
- (8) Block 11. The IUID of the division is placed in the unit status record of every unit subordinate to it.
- (9) Block L10. If all units have been processed, a return is made to the calling routine. If there are other units to be processed, transfer control to block 1.

16. ROUTINE SUPPLY:

- a. Purpose. SUPPLY builds the supply source portion of a supply status record.
 - b. Input Variables:
 - (1) Common ONE. IFNT, NBLUE, and NRED.
 - (2) Other Variables:

Name	Source	Contents
ICARD	Card	Card word array.
UID	Card	Unit identification.
ICLASS	Card	Class of supplies (1-10)

JCARD

Card

Card word array.

- c. Output. SUPPLY lists the supply points, units supplied, and classes of supplies. It also updates the appropriate records on data files 1, 31, and 50.
 - d. Logical Flow. (Figure II-4-B-12):
- (1) Bloc's 1 and 2. The first supply data card is read. If it is not a "supply point" card, transfer control to block L900.
- (2) Block L10. Call IUIDF with the UID of the supply point to retrieve the IUID of the supply point.
- (3) Blocks L15, 3, and 4. Read the next supply data card. If it does not begin with "for units", transfer control to block L100. If it is a "for all units" card, transfer control to block L51.
- (4) Blocks 5, 6, and 7. Call IUIDF with the UID of the unit being supplied to retrieve the IUID of that unit. With that IUID, call routine GETWRD to retrieve the status record class I consumption rate for that unit, and sum the consumption into a sum variable.
- (5) Blocks 8, 9, and 10. Call routine GETWRD to retrieve the supplied units supplier IUIDs by class, load the new supplier IUID into the appropriate class location and call routine PUTWRD to place the new supply point IUID into the unit's status record.
- (6) Block L40. If the last unit on the data card has been processed, transfer control to block L15; otherwise, transfer control to block 5.
- (7) Block L100. If the supply point is to supply itself, transfer control to block L102.
- (8) Blocks 11, 12, and 13. Call routine GETWRD to retrieve Class I consumption rates for the supply unit from the unit status record (data file 1) and data file 50; update these class I consumption rates by adding the summed class I consumptions. [see paragraph d(5) above]. Call routine PUTWRD to place the new class I consumption rates in the supply point unit's status record and data file 50 record.
- (9) Blocks 14, 15, and 16. Call routine GETWRD to retrieve the supply point unit's data file 31 class I consumption record; update these records by adding the summed class I consumption rates [see paragraph d(5) above]. Call routine PUTWRD to place the new consumptions in the supply points data file 31 record.
- (10) Block L102. If the last supply data card has been read, return control to the calling routine; otherwise, transfer control to block L15.

Figure II-4-B-12. Routine SUPPLY (Continued on Next Page)

;``

Figure II-4-B-12. Routine SUPPLY (Continued)

Figure II-4-B-12. Routine SUPPLY (Continued)

Figure II-4-B-12. Routine SUPPLY (Concluded)

17. ROUTINE TALLY:

- a. Purpose. TALLY reads data saved on temporary scratch file (TAPE30), tabulates the UTDs, and checks the task organization requirements.
 - b. Input Variables:

Name	Source	Contents
IUTDCT	TAPE30	Number of UTDs.
UIDD	TAPE 30	UID being processed.

- c. Output. TALLY checks the task organization requirements and provides informative and destructive messages. It also lists the UTDs and the UIDs from which they were built.
 - d. Logical Flow (Figure II-4-B-13):
 - (1) Block L100. Read a UTD record from the scratch file.
 - (2) Block 1. When an end of file is read, control goes to block L400.
 - (3) Block 2. Print the UTDs as they are read.
 - (4) Block 3. Sum the UTDs and place the sum in temporary storage.
 - (5) Block L400. List the UTDs in sequence.
- (6) Blocks 4, 5, and 6. Check the task organization UTD requirements. If a requirement is not met, an error message is printed.
- (7) Block 7. Control goes to block 4 if all UTDs are not checked. If no UTDs remain, control returns to the calling routine.

Figure II-4-B-13. Routine TALLY

•

APPENDIX C

TASK ORGANIZATION DATA LOAD OUTPUT DESCRIPTIONS

- 1. INTRODUCTION. Several types of printouts are provided when the ECHFLON routine is executed. These printouts provide descriptions of the unit types available, the task organization, supply point data, unit type designator resolution and usage data, and a list of data file 31 (supply status) records created by the routine.
- 2. UNIT TYPE DESIGNATOR DIRECTORY. A list of unit type designators available for use within the task organization (see Figure II-4-C-1) is provided for cross reference.
- 3. CARD IMAGE. A printout of card images of the task organization is provided in Figure II-4-C-2. A description of this printout is contained in Appendix A to Chapter 3, Unit Representation, for the Period Processor.
- 4. RECOGNI TABLE. As the task organization cards are input, tables are built containing the unit type designators, the unit type designator, X and Y locations, type of support provided, unit being supported, and echelon level of each unit. Figure II-4-C-3 provides a printout of these tables.
- 5. MESSAGE. An informative message as to the number of divisions in the force is printed as follows:

MESSAGE THERE WERE I DIVISIONS IN THE PLUE FORCE

- 6. SUPPLY STATUS TABLE. Supply point printout (Figure II-4-C-4) provides a comprehensive listing of the supply status of units within the task organization. The first column contains the unit identification of the supplying unit, the second column contains the unit identification of the unit being supplied, and the third column contains the unit identification record number of the unit being supplied. The next 10 columns contain the unit identification record number of the unit that supplies the corresponding class, as designated by the columnar headings.
- 7. UNIT RESOLUTION LIST. If a basic unit within the task organization is a complex type, it must be resolved into a basic type unit. In Figure II-4-C-5, lines one and two, states that unit B5502BEN was placed in the task organization as a basic unit, but was of a complex type. It was thus resolved into the basic structure of one type KCSE, three types RCSE, and one type RESE.

							SAME	NUME	SBXE
NTS	SBSE	NBSE	SOSE	NOSE	HBFD	CONG	HCSE	HUSE	GECE
NDF	NACD	NHCA	NLFA	NLCA	HAFD	0340	GEFA	HPFA	DWCA
H	DMCA	GRFA	46FA	GHFA	O TCA	#SO#		GRSE	GPSE
DAC	4BFA	NGFD	MAFA	GRMT		racı		SENT	NEFD
N	31LT	SCSE				15037	GVTJ	0513	HESE
G13	האנ ד	LFIA		ATTA	0 387	1107	HATT	ABLL	4811
101	UFIJ	VIIY				KHCE	OBBE	58 u d	KLLE
KOL	KALH	KBSH	K A S +	KACH		COHY.	שרו	JYLL	JUCL
, F	JPLL	JSCL	POLL			JHLL	JMCL	PILL	JTLL
PSL	ווצר	JTCL	זררו		USIJ	190	JSIJ	UCIJ	CIHO
ION	LIGU	UALJ	J11.	1361	HMSd	PWFH		Экні	IMLC
IHC	PBCS	SOSF		OBSE	356 d	OESE	acse	PESE	PCSF
RAS	JECE	JAFO	JAFJ	JHCD	KLLA	KLFA	KACA	KCLA	KCFA
KFC	KALA	KHFA	KSCA	KSLA	KGFA	KCCA	PFFA	PACA	IGLA
16F	IGCA	IFLA	IBFA	IFFA	IFCA	V 9L 4	VELH	JCS H	J85H
JAS	JACH	1984	1914		V GLH	VALH	IKMH	IACH	1451
IC H	וזרו .	1361	IFSI		131	IACI	PICI	PIHI	PISI
PNF	11 51	1111	IACI	PHCT	TMP q	V 4F 0	1021	11.1	ITCT
JAL	IASS	JOLI	TOCI	JOLT	1001	JACA	KCST	X T M T	KTCT
*LS	INTY	2463	KACI	*CO1	9100	Shek	اعالا د	APLL	AHLL

Figure II-4-C-1. Unit Type Designator Directory, Task Organization

```
CPERATIONSBLUE UNIT.
TASK ORGANIZATIONS
8121377C= *TOF 4438.
    BICGUDIV= *TOE RAMO.
       RIAFOMAR FYOR AFFY FLOCATION 0070000-3044090.
       310TAGGP *TOE 3TOC *LOCATION 0090130-0099100.
       RIDIVZTP=*TOE COGG.
          BIMAINOR *TOE BMCJ *LOCATION 0090180-0098100.
          BIDGRECP *TOE BRED *LOCATION GUBGICS-UC98100.
          B1030ZEN=*TOF EESE *LOCK 0391130+3095100.
            BIJIPREM *TOF JASE.
            PIUIHOEN *TOE JECE.
            PASSOMEN *TOE RASE.
          END OF BIJJJZEN.
          B10227AT=*TOE ECMI *LOCATION 0087303-3095500.
            3122HCAI=*TOE IACI.
              P14CBNTI *TOE UBIJ.
            END OF B122HQAI.
            BICCZAAI *TOE IBMI.
            · IMEL BOT* TARSSULA
            PIBRICAL *TOE IBMI.
            E122CSAI *TOF IFSI.
          END OF 81322741.
          P1uSI7SC=*TOF ESSS.
            8101808N *TOE ESGS *LOCATION 3090130-0098100.
          EMD OF RIJUDIZEC.
          B1030ZAD#*TOE EAST.
            BIJOHDAD *TOE UHOD *LOCATION GG89100-3094160.
          END OF RIJESZAD.
          P10307YI=*TOS EIT1 *LOCATION 3689633-3698330.
            RICCHATI *TOF IJOU.
            PIDSSPTI=#TOE JIIJ.
              313AFNTI *TOE JAIJ.
            END OF RIDSSETI.
            BICETSTI *TOE JSIJ.
          EMB OF BIJCJZTI.
       END OF BIDIVITE.
```

Figure II-4-C-2. Card Image, Task Organization

**IN	FUT-IN-RECO	ION1 TAR	LES				
N	UIO	UTC	X	Y	NAUP	NEUD	1.54
1	31333750	AAFB		,	7.00	NSUP	LEV
2	P1J3J3IV	BAMC			• •		ì
3	B14F349R	AFFY	3373333	16446)			2
4	B10 TACCP	PTCC	0000100	009815.	-		3 3
5	SIDIVITP	ยวดย		00) / 10 .	5		3
6	RIMAINOP	9400	33 33 133	3393133	i s		د 4
7	3100P30P	BRLC	3038133	0398133			4
8	813337EN	EESE	2031111	3395130			4
ġ	61J13PEN	JBSE		00,000	. Č		5
10	B101H05N	JECE			č		5
11	B1JADMEN	PASE			Š		5
12	61022741	ECMI	2337333	3095533	Š		4
1.3	3122H34I	IACI			۵		5
14	814384TI	UBIJ			Č		6
15	51155VVI	IBWI			ē		5
16	813223AI	IBMI			ě		5
17	B100204I	IBMI			ŝ		5
18	51220SAI	IFSI			Č		Ś
19	B1000ZZSC	ESSS			Ē		4
2.0	9131503N	E303	3693133	uf98133	٤		5
?1	B13337AD	5 4 50			Ċ		4
22	B1JCHOAN	74 Cu	1039100	3694133	ć		5
23	31060ZTI	EIIJ	3339633	0198833	ũ		4
24	B100HOTT	IJCJ			C		5
25	510SSPTI	JIIJ			î		5
26	BIZARNTI	UHIJ			î		5
27	810PTSTI	JSIJ			Ĺ		5
28 29	B1SPTZMD	CSCL	5830133	3181333	г		3
30	3140050M	JUCF			C		4
31	21940MIN B1J1S0SP	JLLL			ε		4
32		USOS			5		4
3 <i>2</i> 33	310007MM 31HOLTMM	FMLL			Ĺ		4
34	31 J HVYMN	JMCL			3		5
3 5	81384CMN	JHLL			S		5
35	310007ST	JALL ESLL			ε		5
37	B1UCHQST	JTCL	0046000	2107053	Ē		4
39	B1 0 0 S S S T	JSLL	22.26.22.3		9		5
39	B13 MT RST	JTLL	003600)	31 27 3 10	į.		5
46	21000ZM0	ENLL			5		5
41	181 J CHQMC	JALF			ū		4
42	810IVZDA	CAFA			9		5
4?	B100H2F4	JACA	00 32 2 0 3	: : : : : : : :	٤		3
44	B10JFATI	UDIJ	3072633	3893833	ن		4
45	851 15765	FB E A	0108200	2283033	-		5
46	8515HQGS	KOCA	0100633	0087800	.		4
47	PFU15AGS	KGFA			J -		5
4.8	35115365	KGFA			000000000000		5
44	35115065	KGFA			٠		5 5
	,	101 m			L		5

Figure II-4-C-3. RECOGN1 Table, Task Organization

		•			*********	10004	9000	3622415	40000	S. ACCOR	00000	0175417
DALL POINT	131 Jan 1 110	2101	C. 4 2 2 7	2000	2000	, ,		2		,		
8100MZLL	41[CC321	54		-3	د	3	2	>	,	•	•	>
01008711	CITATAR	286	_	•		-	279	-	•	-	-	•
117.001			,	•	•				•	•	•	•
RICOMPLE	A100557T	99	9	a	9	-	675	•	•	•	-	-
	24.4.40	25.7			-	-	270	-	a	•	-	=
7775019	04714430	200	>	•	•	• (•	•		•	
RICOMZLL	980A745S	528	0	0	=	-	5/3	-	-	•	-	•
P100H211	PACA7265	25.8	ų	-	9	0	27.9	-	•	•	0	-
	00000		•	, -		-	270	•	<	_	6	-
11747118	COMPANIE	0 1	9	•	•	•		• (•		•	•
P1064211	BICAVICO	177	.	0	-	-	579	-	-	-	•	•
112004711	PIDAVCO	178	7	0	0	•	279	-	9	-	•	-
	000000000000000000000000000000000000000				ي ،	•	270	-	q	_	-	•
910076	0204618		3	•		•		•	•		• •	•
BICCMZLL	91ASC 21H	180	ۍ	-	9	-	6/2	-	•	•	-	•
B105H711	TCSVALLA	56	ی	9	•	0	279	•	•	•	-	-
	O'ML AND	25.4			-	9	27.0	-	-	•	9	•
112070	1000	1 1	• .	• •			74.				•	•
8100M2L1	8101 ACCP	253	>	-	-	>	ŝ	•	•	•	•	•
BICOMZLL	81008339	252	0	a	-	0	279	•	-	-	•	•
8100M7:1	MACH TO TR	9	4	-	_	-	279	-	0	•	.,	-
	2 6 6				-	-	270	_	-	-	•	•
17740219	F 3 2 L T T T D	•	•	•	•	•		•				
8100M7Li	9104410	175	0		-	-	612	•	•	-	-	-
BIDDAZLI	81571108	28	a	•	-	0	279	-	-	-	-	-
010000	04601300	0.0		•	-	-	279	-	9	•	•	•
פותמשקרו	01571683	6.3	•	>	•	• •		•	•	, (•
8106#71.L	8101SCPN	*	9	-	9	•	5/2	3	>	3	•	•
Bico L	BIODHIAD	95	•	•	•	0	279	•	•	-	•	-
21504711	BIDGEDAD	17	0	•	-		279	-	0	-	-	-
		::	• •	• •		. <		•			-	•
BIODMZLL	910307:N	;	3	-	> 1	> 1	613	> <	> (۰ د	•	•
BICOMZLL	B100C2TI	57	-	0	-	0	6/2	•	9	-	•	•
8100#211	PISPIZMO	253	ح.	0	-	-	279	•	-	•	•	•
810CM71.1	91CH058	7.0	q	•	ی	0	279	•	0	•	-	-
	06046750	12			-	=	279	•	•	-	•	•
1770710	00000000	J •	•	•	• •	• •	. 6	•		•	•	
11741718	59762969	•	>	-	•	•		• •	• •	•	• •	• •
BICOMPLL	85045265	96	•	0	•	a	5/3	-	>	-	•	
BICOMZLL	S2258056	*	•	-	0	-	279	•	-	-	-	-
BICOMZLL	85055235	96	0	•	•	-	279	-	-	-	•	0
R1 5.3 M71.1	R118021N	142	٥	9	•	-	279	•	•	-	-	-
P109M711	N1CAV2D	174	q	•	•	•	279	•	•	-	•	•
B1508710	8128CTN	181	-	9	a	9	279	•	-	•	-	-
	200000			, c	-	-	270	•	6	-	•	•
7770010	277670		>	>	•	•		•	•	•	•	•
BIOGHZLL	855017EN	234	•	-	•	-	6/2	•	•	>	•	
BIGONZLL	855022EN	2,2	-	0	-	-	579	•	•	-	-	-
RIGOMZLL	8550694P	549	•	0	-	9	279	-	-	-	-	-
B160M7.1	85507 1149	24.8	-	a	0	•	279	-	•	•	•	-
010027	20000	24.4			c	5	279	•	-	a	•	•
1770076	000000	1 5		•			. 66	• •	. =	. =	•	-
17740012	322036	3 (٠ د	> (ه ذ	٠.		•	•	, c	•	•
8100MZLL	A1200240	52	•	•	9	,	612	•	>	-	•	•

UID 8553285N WAS BUILT FROM THE FOLLOWING UIDS

KOSE 1 ROSE 3 PESE 1

UID 755080FM WAS BUILT FROM THE FOLLOWING UIDS

KOSE 1 ROSE 3 RESE 1

UID 3550207M WAS PUILT FROM THE FOLLOWING UIDS

KOSE 1 ROSE 3 PESE 1

UID 95507MAB WAS BUILT FROM THE FOLLOWING UIDS

KRSE 1 PARE 3 CARE 1

UID BBJB72GS WAS BUILT FROM THE FOLLOWING UIDS

FSFA 1 KFCA 1 KCFA 3 KCLA 1

CCLU SWINDING THE MOS FULLY FROM THE FOLLOWING UIDS

FHFA 1 KGCA 1 KHFA 3 KALA 1

UID PIAFRMPR WAS BUILT FROM THE FOLLOWING UIDS

AFFY 1 VFIJ 6 VTTY 1

UID BEATRSUR WAS BUILT FROM THE FOLLOWING UIDS

KOSH 1 UFIJ 12 TOIJ 1

UID PAIXIAFN WAS PUILT FROM THE FOLLOWING UIRS

MASE 1 NOSE 1 SESE 2

UID RAIXIBEN WAS BUILT FROM THE FOLLOWING UIDS

MASE 1 NOSE 1 SOSE 2

UID RAIXICEN WAS BUILT FROM THE FOLLOWING UIDS

MASE 1 NOSE 1 SOSE 2

UID RAIXZAEN WAS BUILT FROM THE FOLLOWING UIDS

MASE 1 NOSE 1 SOSE 2

UID RAIXZPEN WAS BUILT FROM THE FOLLOWING UIDS

MASE 1 NOSE 1 SOSE 2

Figure II-4-C-5. Task Organization Unit Resolution List II-4-C-6

- 8. UNIT TYPE DESIGNATOR SUMMARY. Figure II-4-C-6 shows a list summarizing all unit types and the number of times each was encountered within the task organization routine.
- 9. UNITS CREATED. Figure II-4-C-7 shows a list of all the supply records (data file 31) created within the task organization routine and the associated units.

1551 1 1010 1 10

Figure II-4-C-6. Unit Type Designator Summary, Task Organization

1964 1 1964 1 1964 1 1964 1 1964 1 1964 1 1966 1 19

STHMARY OF UTDS USED IN SEQUEN

FOLLOWING IS A

		000000000	00000000	0 00000000
⁰ ინმივიმ 3-5	⁹ 3 349 03 9 303	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3 000000000	
	" ၁၉९		3 3 5 5 5 5 5 5 5 5	.
*******	4400FFFF0	***************************************	***********	******
*,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		[^]		6 Jugge 770
1000000000	3 30 0 0 0 0 0 0 0	 	**************	
) 	2000 2000 2000 2000 2000 2000 2000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	4 995 9999 9999 99999 999999	C 000000000000000000000000000000000000	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Recorded many Macade Ma Macade Macade Macade Macade Macade	298 1193 1003 11003 140 110 10	7179 10138 10139 1010 140 140 110 110 110 110	1323 1323 10000 10000 140 130 110 110 110 110	K3RR 35 1328 1000 1000 140 13
0107 117P11 2 3 3 7 7 96 96 97 167 167	UIDX B1SPT2 1 2 3 3 7 7 90 96 96 162	UIDX B1ATK1 2 3 3 7 90 97 97 167 167	010x 01a1k2 2 3 3 7 7 7 95 95 97 167 167 261	UIDX B181K3 2 3 3 96 97 97 167

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR TASK ORGANIZATION

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 5

ENVIRONMENTAL DATA INPUT PROGRAMS

1. INTRODUCTION. The Environmental data input programs create and load the constant data files describing the environmental representation. Those data describe the terrain characteristics and elevation and the weather conditions.

2. ROUTINES:

- a. General. The Environmental data input programs consist of three separate and independent programs as described below.
- b. Elevation. Routine ELEVID creates and loads the terrain elevation data file and produces a dump of the file contents. It requires a digitized terrain tape as input and determines and stores the elevation of each point on the elevation grid.
- c. Terrain. Routine TERNLD reads the terrain characteristic data from the input cards and creates and loads the terrain characteristics file. Routine TERNDP produces a formatted dump of the file contents.
- d. Weather. The weather data are read from cards and loaded into the weather data file by routine WETHLD. That routine also produces a formatted dump of the contents of the weather file.
- 3. FILES. The following data files are created and loaded.
 - . Terrain elevation file data file 13
 - . Terrain characteristics file data file 3
 - . Weather file data file 4

APPENDIX A

ENVIRONMENTAL DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for environment are documented in Appendix A, Environmental Representation Input Requirements, to Chapter 4 of the Period Processor (Section IV).

APPENDIX B

ENVIRONMENTAL DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. The environmental representation data are loaded by three independently operated routines. Routine ELEVLD loads the terrain elevation data. This differs from all other DIVWAG load routines in that the input medium is magnetic tape rather than cards. The routine TERAIN assisted by TERNLD and TERNOP routines, loads the terrain characteristic data other than elevation, and the routine WETHLD loads the weather data. These routines are described in this appendix.

2. ROUTINE ELEVLD:

- a. Purpose. Routine ELEVLD creates and loads the terrain elevation data (data file 13). It is designed to extract the elevation data from a digitized terrain tape. The tape used for all applications to date has been obtained from the TACOS Model data base.
- b. Input Variables. The only source of input data for this routine is the digitized terrain tape. The tape is structured by 100,000-meter map squares with 24 logical records per square. The four squares used for recent studies are:
 - (1) MA: Records 122 through 145
 - (2) MB: Records 218 through 241
 - (3) NA: Records 146 through 169
 - (4) NB: Records 242 through 265

Each record contains the elevations of 1717 points spaced at 500-meter intervals (101 points in the easterly direction by 17 points in the northerly direction), except those describing the northern boundary of the squares that have only 14 points in the northerly direction. Each elevation point occupies 16 bits on the tape and is in binary integer notation in decameters. The layout of the records on the tape as they relate to the terrain areas is depicted in Figure II-5-B-1.

- c. Output Variables. The output from the routine is data file 13. That data file contains one word for each elevation point. Each record contains the elevation in meters of all points on a given east-west row. There is a record for each row. For recent projects, the file was composed of 401 records of 401 words each to describe a terrain area 200,000 by 200,000 meters with 500-meter elevation grid intervals.
 - d. Logical Flow (Figure II-5-B-2):
- (1) Blocks 1 and 1A. Bring in the file name table. If data file 13 has been created and is of the correct size, transfer control to block L100.

MB - 23	MB - 24	NB - 23	NB - 24
RECORD 240	RECORD 241	RECORD 264	RECORD 26
MB - 21	MB - 22	NB - 21	NB - 22
RECORD 238	RECORD 239	RECORD 262	RECORD 26
MB - 5	MB - 6	NB - 5	NB - 6
RECORD 222	RECORD 223	RECORD 246	RECORD 24
MB - 3	MB - 4	NB - 3	NB - 4
RECORD 220	RECORD 221	RECORD 244	RECORD 24
MB - 1	MB - 2	NB - 1	NB - 2
RECORD 218	RECORD 219	RECORD 242	RECORD 24
MA - 23	MA - 24	NA - 23	NA - 24
RECORD 144	RECORD 145	RECORD 168	RECORD 16
MA - 21	MA - 22	NA - 21	NA - 22
RECORD 142	RECORD 143	RECORD 166	RECORD 16
MA - 7	MA - 8	NA - 7	NA - 8
RECORD 128	RECORD 129	RECORD 152	RECORD 1
MA - 5	MA - 6	NA - 5	NA - 6
RECORD 126	RECORD 127	RECORD 150	RECORD 1
MA - 3	MA - 4	NA - 3	NA - 4
RECORD 124	RECORD 125	RECORD 148	RECORD 1
MA - 1	MA - 2	NA - 1	NA - 2
RECORD 122	RECORD 123	RECORD 146	RECORD 1

Figure II-5-B-1. Record Layout of Terrain Elevation Tape

The second secon

Figure II-5-B-2. Routine ELEVLD (Continued on Next Page)

Figure II-5-B-2. Routine ELEVLD (Continued)

Figure II-5-B-2. Routine ELEVLD (Concluded)

- (2) Block L10. If the file has been previously created, it is removed. The file is then created with the required dimensions.
- (3) Block L100. The tape is positioned to record 122 to begin reading the elevation of square MA.
- (4) Block 2. ICOUNT is initialized to one. It counts the number of four-record sets as they are read and processed.
- (5) Block L200. A tape record is read into IREAD array. This contains the 1717 elevation points describing the westernmost of the four blocks.
- (6) Block L210. Each 16-bit word is taken in sequence from IREAD, converted to an integer word, multiplied by 10, and stored in IREC. This process fills the first 101 columns in the IREC array.
- (7) Block L300. The next tape record is read into IREAD. This contains the 1717 elevation points describing the next block to the east.
- (8) Block L310. The process described in block L210 (paragraph d(6) above] is performed to fill columns 102 through 200 of the IREC array.
- (9) Block L400. The tape is positioned to read the third record of this set by spacing over 22 records.
- (10) Block 3. A tape record is read into IREAD. This contains the 1717 elevation points describing the next block to the east.
- (11) Block L510. The process described in block L210 is performed to fill columns 201 through 301 of the IREC array.
- (12) Block L600. The next record is read into IREAD. This contains the 1717 elevation points describing the easternmost block of the set.
- (13) Block L610. The process described in block L210 is performed to fill columns 302 through 401 of the IREC array.
- (14) Block L700. IREC is normally filled with 17 rows and 401 columns that correspond to 17 records on data file 13.
- (15) Blocks 4 and 5. If this set of records pertains to the northernmost boundary of NA and MA, only 13 records are included. If it pertains to the northernmost boundary of NB and MB, only 14 records are included.
- (16) Block L710. The correct number of records is put onto data file 13 from IREC.
- (17) Block 6. If all 24 sets have been processed, transfer control to block L1000; otherwise, transfer control to block 7.

- (18) Blocks 7 and L720. If ICOUNT is equal to 12, the tape is spaced forward 48 records to position it to read the first record of square MB, and control is transferred to block L750.
- (19) Block L800. If ICOUNT is not equal to 12, the tape is backspaced 24 records to read the first record of the next set.
- (20) Block L750. ICOUNT is incremented by one to begin processing the next set, and control is transferred to block L200.
 - (21) Block L1000. The contents of data file 13 are printed.
- 3. ROUTINE TERAIN. TERAIN is the controlling program for loading the terrain data deck. It calls the TERNLD routine to read the data cards and build the terrain file (data file 3). It also calls the TERNDP routine to print the newly created terrain file (data file 3).

4. ROUTINE TERNLD:

- a. Purpose. The TERNLD routine reads the terrain data cards, performs minor editing, and writes the acceptable data onto the terrain file (data file 3).
 - b. Input Variables:

Name	Source	Contents
NX	Card	Number of cells in the X direction.
NY	Card	Number of cells in the Y direction.
NTERR	Card	Size of a terrain cell.
ISTORE	Card	RVSS codes.
IX	Card	X coordinate for ISTORE.
IY	Card	Y coordinate for ISTORE.

c. Output Variables:

<u>Name</u>	Destination	Oolice		Contents
ITERR	DF3	100	terrain	records.

- d. Logical Flow (Figure II-5-B-3):
- (1) Block L100. Read the first card; it is the parameter card specifying the number of X coordinates, Y coordinates, and size of the cell.

Figure II-5-B-3. Routine TERNLD (Continued on Next Page)

Figure II-5-B-3. Routine TERNLD (Continued)

Figure II-5-B-3. Routine TERNLD (Concluded)

- (2) Blocks 1, L110, and 2. Remove the previous data file 3, if one exists, and create a new data file 3 of the required size. Print the new file name table.
- (3) Block 3. Build the first record for data file 3 from the parameter card and put it on data file 3 by calling PUTRCD.
 - (4) Block L130. Read the next data card.
- (5) Block 4. If an end of file was detected, or if a data end of file card was read, control goes to block L180.
- (6) Block 5. If all entries on the card have been stored in array IDUM, return to block L130. If not, increase entry pointer by one.
- (7) Blocks 6 and L145. If the entry has an edit error, print an error message and return to block 5.
 - (8) Block 7. Calculate the entry cell number.
 - (9) Block 8. Store the terrain data in array IDUM.
- (10) Blocks L180 and 9. Examine each cell's data in array IDUM, and set any unspecified data item equal to that data in the previous cell.
- (11) Blocks L190, 10, and 11. Move the cell data from array IDUM, and build a buffer of 100 records. When the buffer is full or there are no more entries in IDUM, output the buffer to data file 3 by calling PUTRCD. When all records are output return control to the calling routine.

5. ROUTINE TERNDP:

- a. Purpose. The TERNDP routine is called by the TERAIN routine, and lists the terrain file record-by-record.
 - b. Input Variables:

Name	Source	Contents
ITERR	DF3	Terrain record.
NX	DF3	Number of cells in the X direction.
NY	DF3	Number of cells in the Y direction.
NTERR	DF3	Size of terrain cell.

c. Output Variables. Refer to input variables.

6. ROUTINE WETHLD:

a. Purpose. WETHLD creates the weather data file, data file 4, and loads the file with the weather data read from punched cards.

b. Input Variables:

Name	Source	Contents
IDUMP	ONE	Flag indicating that only a dump is desired.
IDAY	Card	Total number of days to be loaded.
ISEC	Card	Total number of weather sectors to be loaded.
ISTOP	Card	End-of-deck indicator; 999 indicates end of data.
IAR (9)	Card	Weather record (nine words) in the following sequence: visibility index, cloud cover, temperature, precipitation index, temperature gradient, relative humidity, wind velocity, wind direction, and fog index.
MXWETH(9)	DF04	Weather record (see IAR).

c. Output Variables:

Name	Destination	Contents
IAR(9)	DF04	Weather record (see IAR, input variable).
MSEC	Print	Weather sector number.
MDAY	Print	Day.
MHRFRM	Print	End of last hour.
MHRTO	Print	End of this hour.
MXWETH(9)	Print	Weather record (see IAR, input variable).
IRECF	Print	File record number.

d. Logical Flow (Figure II-5-B-4):

⁽¹⁾ Block 1. The indicator IDUMP is located in common ONE and must be previously set by another routine to the value DUMP if a dump without loading is desired. If only a dump is desired, transfer control to block L700.

Figure II-5-B-4. Routine WETHLD (Continued on Next Page)

Figure II-5-B-4. Routine WETHLD (Concluded)

- (2) Blocks 2, 3, and 4. The previous data file 4 is removed, if one exists, and a new data file 4 is created and zeroed.
- (3) Block L7. A header card is read that indicates the card type to be read (401 or 402).
- (4) Blocks L8 and 5. The card is checked for end-of-file indicator (9999 in columns 73-76) and then for card type 402. If an end of data was encountered, transfer control to block L500. If a card type 402 was encountered, transfer control to block L402.
- (5) Blocks L401 and 6. A data card is read and checked for card type. If the card type is 401, transfer control to block L10.
- (6) Block L9401. If the card type just read is not 401, an error message is written, and control returns to block L8.
- (7) Block L10. The data from card type 401 are stored in the output array and control returns to block L7.
- (8) Block L402. When a type 402 header card is read, control passes to block L402 and another data card is read.
- (9) Blocks 7 and 8. The card is checked for end-of-file and for card type 402. If an end of data is encountered, transfer control to block L500. If card type 402 is not encountered, transfer control to block L401.
- (10) Block 9. If the card type was 402, the data are stored in the output array.
- (11) Blocks L405 and 10. If the day number is within the specified range, put the weather data on data file 4; then transfer control to block L402 to read the next card.
- (12) Block L500. Put weather zone coordinates, sunrise and sunset times, and total number of days on data file 4.
- (13) Block L700. The sector number (MSEC), day number (MDAY), hour number (MHR), and record number (IRECF) are initialized to one. The line counter (IPAGE) is set to zero.
- (14) Block 11. This block is the top of the loop to bring in each weather record from data file 4 for printing.
- (15) Block 12. The record at record number IRECF is brought into MXWETH from data file 4.

- (16) Blocks L795 and L796. A new page header providing the title and column headings is printed if the line counter (IPAGE) equals zero.
 - (17) Block L797. The line counter (IPAGE) is incremented by one.

- (18) Block L799. The hour numbers MHRFROM and MHRTO are computed from the cumulative hour number MHR.
- (19) Block 13. The line for the weather recor. is printed from the following output variables: MSEC, MDAY, MHRFRM, MHRT, MXWETH(1-9), and IRECF.
- (20) Block L800. IRECF and MHR are incremented to go to the next record which corresponds to the next hour.
- (21) Blocks 14 and 15. If MHR exceeds 24, MHR is reset to one, and MDAY is incremented by one.
- (22) Blocks 16 and 17. If MDAY exceeds 14, MDAY is reset to one, and MSEC is incremented by one.
- (23) Block 805. If the last weather record has not been printed, transfer control to block 11; otherwise, control returns to the calling routine.

APPENDIX C

ENVIRONMENTAL DATA LOAD OUTPUT DESCRIPTIONS

The input loaded into the weather file produces a formatted printout as shown in Figure II-5-C-1. Each weather zone may contain a maximum of 14 days of weather data; therefore, regardless of the number of days of weather input for each zone, 14 pages of printout, i.e., one for each day; will be printed.

A Control of the Cont

PEC.

30.46

4

£ 5

22 22 23 24 24

15

Figure II-5-C-1. Weather File Printout

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR ENVIRONMENTAL REPRESENTATION

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 6

UNIT GEOMETRY DATA INPUT PROGRAMS

1. INTRODUCTION. The Unit Geometry data input programs create and load the constant data files describing unit dimensions and distributions for each type of unit performing seven activities. The data specify the width and depth of the unit, the number of bands in which the personnel and equipment are distributed, and the fractional distribution of personnel and equipment among the bands for each activity.

2. ROUTINES:

- a. General. The Unit Geometry data input programs consist of the three routines described below.
- b. Routine DIMLD. The controlling executive function is performed by routine DIMLD. This routine calls routine LOAD28 and routine DUMP28 in that order.
- c. Routine LOAD28. The unit dimension and distribution data file is created and loaded by routine LOAD28. This routine also reads and edits the data cards.
- d. Routine DUMP28. Routine DUMP28 produces a formatted dump of the contents of the unit dimension and distribution data file.
- 3. FILES. The following data file is loaded by these routines.
 - . Unit dimension and distribution data file 28

APPENDIX A

UNIT GEOMETRY DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for unit geometry are documented in Appendix A, Battlefield and Unit Geometry Input Requirements, to Chapter 5 of the Period Processor (Section IV).

APPENDIX B

UNIT GEOMETRY DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. Unit geometry data are loaded onto data file 28 by routines described in this appendix. Routine DIMLD is the controlling routine, LOAD28 reads the data cards and loads data file 28, and DUMP28 produces formatted tables displaying the data. Unit dimensions, number of bands, and distribution of personnel and equipment among the bands are principal data elements.

2. ROUTINE DIMLD:

- a. Purpose. DIMLD controls loading of data file 28 with unit dimensions and item distribution data from cards. DIMLD calls LOAD28 to load the data and DUMP28 to print the data.
 - b. Input Variables: None.
 - c. Output Variables: None.
- d. Processing Description. DIMLD performs three significant operations in sequence: calls LOAD28 to load the data, calls DUMP28 to print the data, and prints the file name table.

3. ROUTINE LOAD28:

a. Purpose. LOAD28 loads the unit dimensions and item distribution data onto data file $28\ \text{from cards}$.

b. Input Variables:

Name	Source	Contents
KARD(20)	Card	Data card image buffer.
IFILE	Card	File number (28).
IFORM	Card	Card format number (01-04).
ISIDE	Card	Force Designator (B or R).
IUSN	Card	Unit type designator (UTD) group assignment number (1-189).
UTDSET(12)	Card	List of one to twelve UTDs assigned to a UTD group.
NEOH	Card	Number of items with nonuniform distributions (1-20), number of entries in EOHLST.
EOHLST (20)	Card	List of item codes of items with nonuniform distribution.
UWIDTH(7)	Card	Unit width for seven activity indexes.

II-6-B-1

Name	Source	<u>Contents</u>
UDEPTH(7)	Card	Unit depth for seven activity indexes.
NBANDS(7)	Card	Number of bands for seven activity indexes.
K	Card	Scale factor for multiplying times UWIDTH and UDEPTH before loading on data file 28.
ЈЕОН	Card	Leftmost character of the three-character equipment item code; used to recognize the entry "P" as indicating personnel.
ІЕОН	Card	Two rightmost characters of the three-character item code.
IACT(4)	Card	List of one to four activity indexes.
PCENTS(4,4)	Card	The percentage of the total amount on hand of the item for each of the four possible bands and the four activity indexes listed in IACT.

c. Output Variables:

Name	Destination	Contents
KARD(20)	Print	Data card image buffer.
UDDTBL(189)	DF28	Unit dimensions and item distribution tables for one UTD group, one data file 28 record.
NEOH		UDDTBL(1) Number of entries in EOHLST.
EOHLST(20)		UDDTBL(2). List of item codes of equipment items with nonuniform distributions.
UWIDTH(7)		UDDTBL(22). Unit width for seven activity indexes.
UDEPTH(7)		UDDTBL(29). Unit depth for seven activities.
NBANDS (7)		UDDTBL(36). Number of bands for seven activity indexes.
PERSD(7)		UDDTBL(43). Packed distribution words for seven activity indexes.
EOHD(7,20)		UDDTBL(50). Packed distribution words for seven activity indexes and up to 20 equipment items as listed in EOHLST.

d. Logical Flow (Figure II-6-B-1):

- (1) Blocks L50, 1, 2, 3, and L63. The logic in these blocks reads each data card using a character format, assigns a sequence number to each card image, prints a card image for each card, and stores each card image on a temporary storage file for subsequent processing and loading onto data file 28.
- (2) Block 4. Rewind the temporary storage file to begin load program logic.
- (3) Blocks L100, 5, 6, and 7. The outdated data file 28 is removed, a new data file 28 is created, and directory and record buffer arrays are zeroed and initialized before loading the data.
- (4) Block L120. This block is the beginning of the loop to read each card image and store the data on data file 28.
- (5) Block L200. If the card file number is not equal to 28 control transfers to block 8.
- (6) Block L205. The record buffer array, UDDTBL, is zeroed prior to entering data.
- (7) Block L210. Logic of this block branches control to the correct set of logic to read the data with the proper format and to intrepret and store it accordingly. The format code is contained in columns 74 and 75 of each data card and is part of the card identification.
- (8) Block L999. If an error is detected in the data card formats or in card sequencing, control branches to this block, an error message is produced, and the load program is terminated.
- (9) Block 8. The file number is checked for an end of file entry of 99 which indicates normal termination of the load procedure. If the entry is not equal to 99, an error message is produced indicating an improper card file number, and control transfers to block L999.
- (10) Block L350. Following normal load procedure, when the last data card image has been entered into data file 28, the file directory records are entered on data file 28.
- (11) Block L120. Logic for loading data from card identification 2801 begins by reading the card image from the temporary storage file with a 2801 format. This is the unit dimension and distribution grouping data.
- (12) Blocks 9, 14, 17, and 19. Logic in these blocks ensures that the format used to read the data corresponds to the format code on the data card. If not, control is transferred to block L200.
- (13) Block 10. The force indicator data entry is checked to ensure that the entry is either R or B. If not, control is transferred to block L999.

Figure II-6-B-1. Routine LOAD28 (Continued on Next Page)
II-6-B-4

Figure II-6-B-1. Routine LOAD28 (Continued)
II-6-B-5

Figure II-6-B-1. Routine LOAD28 (Continued)
II-6-B-6

Figure II-6-B-1. Routine LOAD28 (Continued)
II-6-B-7

Figure II-6-B-1. Routine LOAD28 (Concluded)

- (14) Block L135. The force indicator index, IFORCE, is set to 1 for Blue and to 2 for Red.
- (15) Block L138. Each data card must contain the UTD group sequence number; otherwise, control is transferred to block L999.
- (16) Blocks L140 and 11. As successive UTD groups identified on the data cards are loaded, each is assigned a record location on data file 28. The record index is stored in the directory array, IRECN.
- (17) Blocks L143, 12, L144, and 13. Logic contained in these blocks reads each UTD in the data list, increments a UTD counter index, and stores the UTD with the record pointer index in the directory array, DRCTRY. The maximum number of UTDs allowed per force is 189.
- (18) Block L220. Logic beginning with this block reads data entries on card identification 2802. Data contained therein are the list of equipment items that are to be nonuniformly distributed in the bands of units which have UTDs belonging to this UTD group. The data are stored in EOHLST(20) located at UDDTBL(2).
- (19) Blocks 15 and 16. The record number on data file 28 is obtained by using the force index and UTD group sequence number as indexes to the array IRECN that was established previously. The data allow a maximum of 21 entries, the first of which is the number of items nonuniformly distributed, NEOH. Subsequent entries are the item codes of the items that are distributed, EOHLST. These entries are loaded onto data file 28.
- (20) Block L240. Logic beginning with this block loads band and unit dimension data, NBANDS(7), UWIDTH(7), and UDEPTH(7), onto data file 28. The number of bands, NBANDS; width of unit, UWIDTH; and depth of unit, UDEPTH, are entered for each of seven activities. A scale factor, K, if entered in card columns 70-72, is applied to every width and depth entry for the UTD group sequence number.
- (21) Blocks L248 and 18. The record index is obtained from IRECN, and the data arrays are loaded onto data file 28. Control then transfers to block L240.
- (22) Block L250. This block begins the loop for loading the distribution data for personnel and equipment by bands. The data array filled is EOHD(7,20) and contains the packed distribution words for each of the equipment items in up to seven activities. The array is located at UDDTBL(50). Control is then transferred to block 19.
- (23) Blocks 20 and 21. Once the record index has been established, the entire record is brought into the array, $UDDT^{\nu}L$, and the distribution data are added to the array by subsequent logic.

- (24) Blocks 22, L254, and L255. The first column of the equipment item code is read under a character format and the second two columns under an integer format. If the distribution is for personnel, the equipment item code entry has a character "P" in the first column or a zero in the third column. Data entries are loaded into UDDTBL(7,JX) where JX equals one for personnel and JX equals two through 20 for equipment items.
- (25) Blocks L270 and 23. Each item is scanned beginning with this block until a blank entry for an activity code indicates the end of the data for this UTD group; then, control is transferred to block L310.
- (26) Blocks 24, 25, L278, 26 and 27. The logic contained in these blocks performs two functions. The first is to check the data entries to ensure that the percentages sum to 100; if they do not, control transfers to block L999. The second is to pack the integer distribution percents into a single word for storage on data file 28. To store as a single word, each percent is first divided by two and rounded such that when unpacked, the sum will be 100. The percentages are each packed into six bits of a word. The packed record is stored in PCHAR(7) for each activity.
- (27) Block 28. If the number of bands data entry is not greater than zero, control transfers to block L999.
- (28) Block 29. If the last activity on the card has not been processed control returns to bl_x^{-1} L270.
- (29) Block L310. After the last data entry on the card has been processed, the entire record array, UDDTBL, is replaced on data file 28 and control transfers to block L250.

4. ROUTINE DUMP28:

a. Purpose. DUMP28 produces a printed output listing of the contents of data file 28, unit dimensions and personnel and equipment distribution data.

b. Input Variables:

Name	Source	Contents
UDDTBL(189)	DF28	Unit dimension and distribution table.
NEOH		UDDTBL(1). Number of items with nonuniform distributions.
EOHLST(20)		UDDTBL(2). List of item codes of items with nonuniform distributions.
UWIDTH(7)		UDDTBL(22). Unit width for seven activity indexes.

Name	Source	Contents
UDEPTH(7)		UDDTBL(29). Unit depth for seven activity indexes.
NBANDS (7)		UDDTBL(36) Number of bands for seven activity indexes.
PERSD(7)		UDDTBL(43). Personnel distribution densities, packed, for seven activities.
EOH(7,20)		UDDTBL(50). Equipment item distribution densities, packed, for seven activities.
DTABL(756)		Data file 28 directory table.
DRCTRY(189,4)		DTABL(1). Data file 28 directory table.
UTDSB(189)		DTABL(1). Blue force UTD array.
UTDSR(189)		DTABL(379). Red force UTD array.
RECNB(189)		DTABL(190). Record pointer index for Blue data records corresponding to UTDs stored at same position in UTDSB.
RECNR(189)		DTABL(568). Record pointer index for Red data records corresponding to UTDs stored at same position in UTDSR.

- c. Output Variables. Same as input variables.
- d. Logical Flow (Figure II-9-B-2):
- (1) Block 1. The data file 28 directory table, stored in the first four records on the file, is brought in and stored in DTABL.
- (2) Block 2. The directory data stored in DTABL are printed for both forces.
- (3) Block 3. This block initiates the loop on the two forces. The Blue force data are printed first, followed by the Red force data.
- (4) Block L200. This block begins the loop to obtain data records from the file. Each record contains the data for one UTD group within the specified force being dumped.
- (5) Block L400. Initial printout for each data record contains the record number, force identification, and list of UTDs characterized by the data in this UTD group record.

Figure II-6-B-2. Routine DUMP28
II-6-B-12

ARMY COMBINED ARMS COMBAT DEVELOPMENTS ACTIVITY FORT—ETC F/6 15/7 DIVMAG MODEL DOCUMENTATION, VOLUME II. PROGRAMMER/AMALYST MAMUA--ETC(U) JUL 76 CACDA-TR-0-76-VOL-2-PT-1 ML AD-A112 658 UNCLASSIFIED 40F4 412658

- (6) Block 4. The data in UDDTLB for the UTD group are printed for each activity. This block is the beginning of the loop on the activity index of the dimension and distribution data.
- (7) Blocks 5, 6, and 7. Logic contained in these blocks screens the data for each activity and determines if nonuniform distributions for personnel or equipment items exist. If they do not, uniform distribution messages are printed; otherwise, the distribution data for personnel are printed and item distributions are computed in subsequent blocks. Personnel data are in array PERSD(7).
- (8) Block L750. Scanning of equipment items nonuniformly distributed begins with this block.
- (9) Block 8. The distribution data, including equipment item code and percent of equipment in each band, are printed for the equipment item being considered. Data are taken from array EOHD(7,20).
- (10) Block L2800. This block completes the loop on equipment index in EOHD array.
- (11) Block L3000. This block completes the loop on activity index in EOHD and PERDS arrays.
- (12) Block L3800. This block completes the loop on UTD group (also data record) for the specified force.

The second secon

(13) Block L5000. This block completes the loop on Blue and Red forces.

APPENDIX C

UNIT GEOMETRY DATA LOAD OUTPUT DESCRIPTIONS

1. INTRODUCTION. Three different printouts of constant data inputs are generated after the data have been read into the files. These printouts are as follows:

Printout Title	Data Source				
80-Column Card Image Data File 28	Card data deck				
Unit Type Designator Record Number Directory	Data file 28				
Unit Descriptions	Data file 28				

- 2. EIGHTY-COLUMN CARD IMAGE, DATA FILE 28. The format is illustrated in Figure II-6-C-1. At the far left, top line, of this figure are the characters B001, indicating that the data are for Blue forces and 001 is the index number assigned to that grouping of UTDs. In this case there is only one UTD in the group, PFLL as shown at the right of the B001. At the far right is card 1, indicating that the sequence number of the card is 1, and therefore is the first card in this identifier. The identifier of this card is in the second column from the right. The figures 2801 indicate that these are data for data file 28 in the 01 format.
- 3. UNIT TYPE DESIGNATOR RECORD NUMBER DIRECTORY. The second printout in the series lists the UTDs and the record number that contains the data for each UTD. This printout is shown in Figure II-6-C-2.
- 4. UNIT DESCRIPTIONS (Figure II-6-C-3). The data in this format are for only one force (in this case, the Blue force), and contain the description of the unit in terms of the dimensions and distribution of personnel and equipment as representative of stay, move, fire, and attack activities.

-	~	~	t	Մ	ဖ	7	æ	σ	10	11	12	13	14	15	16	17	13	Б	20	21	22	23	5 ¢	25	56	27	2 3	29	3.0	31	2	33
	_	じからり	-	_	CAON	CAAO	_	CAPI	_	_	C. A.D.D	-	CARI	-	-	CARD	CARO	CARI	C 4 8 3	CARJ	CARJ	COVI	こりそり	C 4 3 0	CARD			C A RD	CARO	C883	◂	Q
A.	A 0	80	83	80	80	90	80	5	80	80	80	ξ	5	0	A 0	3	90	80	80	30	2	0	9.0	80	£	80	80	5	2801	80	83	81
•••			••	••	••	••	••	•	•••	••	••	•••	•••	••	••	••	••	••			,,			••	•••	•••		•••		•••		•
																											<11>					
						200	JTLi																				JLG					
						c	~																									
							KAL																				EOU>					
						JPLL	SLA																				JPLL					
						Jarr	KVLA	JPLH																			SHCF CHX					
							IGLA																				KHCA					
						JUST	ILLT	() (COVI												VOC>					
						IFMC	JFLT	<fse< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>JACH</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ACSA</td><td></td><td></td><td></td><td>KHED</td><td></td></fse<>							JACH												ACSA				KHED	
		Sud				ပ	KOCA	v				IFCA		しるので	JECE							Rol T					JHC1				KIE A	
		PTLL	IMLI			TLLT	KPLA	KMUE			L	IDCA		HUUD	KLLL	JOMH.						OTCL				ILVI	JML		ことが	KHEV	TRFD	
	PFLL	JFLL	TTCT	KHLL KHLL	JTCL	KLLA	KOLF	Jast	JALL	C HC3	HEVC	JUUI	OVLH	ان لا با	KTLL	JMCT	KHFN	JMF.	KNFJ	AMLL	APLL	RTCT	JTLT	וייור	TFFA	ICST	2500	JAMH	Suca	KICA	ひょり〉	KTTA
	101	201	≥00) n 4	306	S in F	JUE	700	9 60	606	11 n	011	112	013	014	015	n16	117	010	119	02 n	021	122	023	126	120	M 20	0 2 1	9032	133	720	4

Figure II-6-C-1. Data File 28 80-Column Card Image

FILE-28 CONTAINS UNIT DIMENSION AND ITEM DISTRIBUTION DATA BY UNIT TYPE AND UNIT ACTIVITY

The state of the s

PETORJS 1 THPU 4 CONTAIN THE FILE-29 DIPECTORY FOF THE RECORD NUMBER OF FACH UTD GROUP

00000000000000000000000000000000000000	**************************************	00000000000000000000000000000000000000	10000000 10000000
00000000000000000000000000000000000000	0000MNAtq		4000000 400000
120CA 139CL 139CL 139CL 130C 130C 130C 13CC 13CC 13CC 13CC 13CC	4480000 44880	III 000000	N 0 + 1 0 + 0 0 0 0 0 0
11	# 40 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4 W 4	7	7
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 4 5 M 4 9 V/ V O 4 G D D E	011000000	1000 1000 1000
137 137 137 137 137 137 137 137 137 137		7 1. 4 C C C C C C C C C C C C C C C C C C	n n n 4 t t e e e e e e e
JFLA JALC JALC JRLL KCSE 0000 0000		50000000	N N N N D D D D D D D D
	0 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AC 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
7HHC KFSE PHCT KHCA 17HCA 0000 0000 0000	0 4 6 0 0 0 0 0 0 0		N N N N N N C C C C C C C
00000000000000000000000000000000000000	4 4 4 8 F	00000000000000000000000000000000000000	n.n.q. 4.00000000
1 X X X X X X X X X X X X X X X X X X X		0000000	
480 480 480 600 600 600 600 600 600 600 600 600 6		00000000000000000000000000000000000000	4 N Q Q W C C C C C C C
1111 1111 1111 1111 1111 1111 1111 1111 1111	2 4 4 8 8 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		4 N N 4 A N C C C C C C C C
XALL XALL XALL XALL XALL VICES	44KW4 8080000000	FUI 0000000	4 N A & & N C C C C C C C
1011 1011 1011 1011 1010 1010 1010 101		82LT 026CO 0000 0000 0000 0000	4 N. M. 40 40 40 40 60 60 60
11.77 10.03		X1. L C C C C C C C	4 K & K & C & C & C & C & C & C & C & C &
79CS 13LA 13LA 13FA 13FA 1000 0000 0000	44NB4 60re480000	770000000	7000 7000 7000
7111 3011 5011 757 757 7000 0000	440W4 60674W0000	CV # 40000000	45.0000000
1776 1776 1777 1777 1777 1000 0000	44084		7000 7000 7000 7000
8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		3577 3577 1000 0000 0000 0000	4666 66446
	~	m	3

Figure II-6-C-2. Unit Type Designator Record Number Directory

BLUE UNITS WITH THESE UTD*S 37 CONTAINS THE DESCRIPTION OF RECORD NUMBER

ICCT

200 DFPTP = 200 NO. BANDS = 1	DISTRIBUTED UNIFORMLY AMONG BANDS ODISTRIBUTED UNIFORMLY AMONG BANDS	25 DEPTH = 1800 NO. BANDS = 1	PERSONNEL DISTRIBUTED UNIFORMLY AMONG BANDS EQUIPMENT DISTRIBUTED UNIFORMLY AMONG BANDS	0 DEPTH = 0 NO. BANDS = 0	DISTRIBUTED UNIFORMLY AMONG EANDS DISTRIBUTED UNIFORMLY AMONG BANDS	200 DEPTH = 400 NO. BANDS = 2
WIDTH =	PERSONNEL EQUIPMENT	* HIDIM *	PERSONNEL EQUIPMENT	WIDTH =	PERSONNEL EQUIPMENT	WIOTH =
^		~		^		•
1 (STAY		EX 2 CMOVE		3 (FIRE		4 CATTACK
INDEX		INDEX				×
ACTIVITY INDEX		ACTIVITY INDE		ACTIVITY INDEX		ACTIVITY INDE

ALL OTHER ITEMS DISTRIBUTED UNIFORMLY AMONG BANDS

50 % 100 % 100 % 100 % 50 % 80 % 100 %

50 100 50 50

> 520000 6200000 31310000

DISTRIBUTION BESTRIBUTION BESTR

58 63 65 65 75

> ITEM CODE ITEM CODE LIEM CODE

12500000 620000 620000

31310000

PERSONNEL

ITEM CODE ITEM CODE ITEM CODE

Figure II-6-C-3. Unit Descriptions

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR UNIT GEOMETRY

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 7

INTELLIGENCE AND CONTROL DATA INPUT PROGRAMS

1. INTRODUCTION. The Intelligence and Control data input programs create and load the constant data files describing sensor characteristics and decision and communication tables. In addition, they create and initialize the dynamic unit intelligence files.

ROUTINES:

- a. General. The Intelligence and Control data input programs consist of the four routines described below.
- b. Routine INCSLD. Routine INCSLD reads the appropriate data from input cards and loads the decision and communication data tables. This routine also creates and initializes the dynamic unit intelligence files and the redundant report file. This routine calls routine SET20 to load the sensor data and routine DUMP36 to produce the formatted dump of the decision and communication tables.
- c. Routine DUMP36. The decision and communication data are displayed in a formatted dump by routine DUMP36.
- d. Routine SET20. The characteristics of all sensors to be included in the DIVWAG system are read from data cards and stored on the sensor data file by routine SET20. Routine DUMP20 is called at the completion of this process.
- e. Routine DUMP20. A complete formatted dump of the contents of the sensor data file is produced by routine DUMP20.
- 3. FILES. The following data files are created and loaded by these routines:
 - data file 20 . Sensor characteristics
 - Decision and communication tables
 - . Unit intelligence files
- data files 41, 42, and 43
 - . Redundant report file
- data file 44

data file 36

APPENDIX A

INTELLIGENCE AND CONTROL DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for intelligence and control are documented in Appendix A, Intelligence and Control Model Input Requirements, to Chapter 6 of the Period Processor (Section IV).

APPENDIX B

INTELLIGENCE AND CONTROL DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. Routines INCSLD and SET20 are described in this appendix. Associated dump routines, DUMP36 and DUMP20, provide a formatted listing of data files 36 and 20 respectively.

2. ROUTINE INCSLD:

a. Purpose. INCSLD loads data file 36 with Intelligence and Control Model data and creates and zeroes data files 41, 42, 43, 44, and 45. The data loaded by this routine are the decision tables, delay times, unit size estimate and radius tables, and equipment type codes.

b. Input Variables:

<u>Name</u>	Source	Contents
C3601	Card	Card type 3601 containing delay times versus unit type designators (UTD), used to load UTDT (UTD table), PDT (processing delay time), and DDT (decision delay time).
C3602	Card	Card type 3602 consisting of equipment type code classification data.
C3603	Card	Card type 3603 containing data to load USET (unit size estimate table) and URT (unit radius table).
C3604	Card	Card type 3604 consisting of the threshold matrices for the dissemination of intelligence and associated information flow delay times.
ISA	DF41 DF42 DF43 DF44 DF45	An array filled with zeroes utilized to zero data files 41, 42, 43, 44, and 45.
FILE36	DF36	Data file 36 data loaded from cards by INCSLD routine.

d. Logical Flow (Figure II-7-B-1):

(1) Block 1. GETFLE is called to obtain the file name table (IFNT) to utilize the DIVWAG input/output package.

Figure II-7-B-1. Routine INCSLD (Continued on Next Page)

Figure II-7-B-1. Routine INCSLD (Continued)

Figure II-7-B-1. Routine INCSLD (Concluded)

- (2) Block 2. Read the first data card to determine if it is a game or period card. If it is a period card, control goes to block L149.
- (3) Block L100. Routine REMOVE, is called to remove data files 41, 42, 43, 44, and 45 from the DIVWAG data system.
- (4) Block 3. These same files are allocated the proper number of records and record size through a call to CREATE.
- (5) Block 4. Data files 41, 42, 43, 44, and 45 are zeroed for proper utilization within the Intelligence and Control Model.
- (6) Block L149. Through a call to the routine SET20 the sensor constant data are loaded into data file 20.
- (7) Block 5. Zero the Intelligence and Control portion of data file 36 appropriately for a game or period load. (All data file 36 word locations are different for game or period loads.)
 - (8) Block L150. Read a data card under a (20A4) format.
- (9) Block 6. If this is an end-of-data card (9999), control goes to block L980.
- (10) Block L155. If this is not a card type 3601, control then goes to block L300.
- (11) Block L165. Decode the data card into proper format to load the independent variable unit type designator table, IUTD, the decision delay time table, IDDT, and the processing delay time table, IPDT.
- (12) Block 7. PUTWRD is called to place the delay times versus UTD arrays [IUTD(50), IDDT(50), IPDT(50)] to data file 36 and control returns to block L150.
- (13) Block L300. If this is not a card type 3603, control goes to block L500.
- (14) Block L320. The unit size estimate table USET(7,22), and the unit radius table, URT(7,11) are obtained from data file 36.
- (15) Block 8. Decode the data card in the proper format and load the unit size estimate table and the unit radius table with the data from this card.
- (16) Block L360. Replace the arrays USET and URT onto data file 36; control returns to block L150.
- (17) Block L500. If this is not a card type 3604, control goes to block L800.

- (18) Block L530. Obtain from data file 36 the information flow delay times (INFLO(5,5)), the attack helicopter and artillery range limits, and the request delay time for fire support (CAS, DAFS, or artillery).
- (19) Block 9. Decode the data card in the correct format and load the delay times and range limits into their proper locations within the arrays.
- (20) Block 10. Put the delay times and range limits back on data file 36.
- (21) Block 11. Obtain from data file 36 the correct information flow threshold matrix according to the force and echelon in the card.
- (22) Block 12. Decode and load into the threshold matrix the threshold values for communicating intelligence to a specific echelon.
- (23) Block 13. Put the updated threshold matrix back on data file 36, and return control to block L150.
- (24) Blocks L800 and L890. If this is not a card type 3602, print a diagnostic message showing an attempt to load an illegal card type and return control to block L150.
- (25) Block 14. Othain the equipment type code array, IEQPTY(50), from data file 36.
- (26) Block 15. Decode and load the equipment type codes according to equipment item codes.
- (27) Block 16. Replace the equipment type code array, IEQPTY(50), on data file 36; control returns to block L150.
- (28) Block L980. Obtain the unit size estimate table and the unit radius table from data file 36.
- (29) Block 17. Adjust these tables to ensure no zeroes are in their columns. (Nonzero tables are required by the Intelligence and Control Model.)
- (30) Block 18. Replace the adjusted unit size estimate table and unit radius table on data file 36.
- (31) Block L985. Call DUMP36 to print the contents of data file 36 in formatted printout.
- (32) Block 19. Obtain the Intelligence and Control Model portion of data file 36.
- (33) Block 20. Print the contents of data file 36 in a file word format for programmer use.

- (34) Block 21. Obtain the sensor constant data loaded by SET20 from data file 20.
- (35) Block 22. Print the contents of data file 20 in a file record format for programmer use.

3. ROUTINE SET20:

a. Purpose. Routine SET20 loads the sensor constant data of data file 20 (i.e., records 201 and above).

b. Input Variables:

Name	Source	Contents
C2001T1	Card	Card ID 2001, type 1, containing general radar constant data including maximum/minimum ranges, depth of scan, horizontal beam width, vertical beam width, scan rate, minimum radial velocity, distortion factor, detection error, range error, percent of equipment failure, percent of false alarm, power up and down times, and mean time to track.
C2001T2	Card	Card ID 2001, type 2, containing radar degradation factors. The factors are forestation factors, electronic countermeasure factors, and precipitation factors.
C2001T3	Card	Card ID 2001, type 3, consisting of the detection ranges and associated probabilities of detection and recognition of target types. For MTI radars, the following items are the target types: personnel, wheeled vehicles, tanks, armored personnel carriers, tube artillery, artillery missiles, air defense guns, and air defense missiles. For air defense radar, aircraft is the only target type.
C2001T4	Card	Card ID 2001, type 4, used to load constant data for unattended ground sensor fields. These data include target types and associated sensitive radii for three target types: personnel, wheeled vehicles, and tracked vehicles. Also loaded here is the percent of false alarms.

Name	Source	Contents
C2001T5	Card	Card ID 2001, type 5, consisting of the general radar data for countermortar/counterbattery radars which include tracking probability, low angle of fire and associated CEP, high angle of fire and associated CEP, low to high angle cutoff, horizontal beam coverage, vertical beam separaters, vertical beam thickness, percent equipment failure, maximum location error, power up and down times, operator performance time, and pick-up point wait time.
С2001Т6	Card	Card ID 2001, type 6, containing the detection ranges of the countermortar/counterbattery radar against specific weapon/munition combinations.
C2001T7	Card	Card ID 2001, type 7, utilized to load the range brackets for movement of ground based sensors.
C2002T1	Card	Card ID 2002, type 1, utilized to load the sensor constant data for air reconnaissance type sensors.
C2002T2	Card	Card ID 2002, type 2, containing the reconnaissance sensor combinations.
C2002T3	Card	Card ID 2002, type 3, utilized to load the light observation helicopter decision table.
C2002T4	Card	Card ID 2002, type 4, containing the item code of the LOH or fixed wing reconnaissance aircraft, personnel on board, and delay time to prepare for subsequent reconnaissance missions.
C2002T5	Card	Card ID 2002, type 5, utilized to load the remaining equipment for a recon- naissance mission unit. Data consist of item codes and associated amounts.

c. Output Variables:

Name	Destination	Contents
FILE20	DF20	Records loaded into DIVWAG data file 20 from input cards described above.

- d. Logical Flow (Figure II-7-B-2):
- (1) Block 1. Read the first data card. If the load process is data update, control goes to block L99.
- (2) Block 2. Call CREATE to ensure that data file 20 is allocated at the proper size.
- (3) Block 3. Zero the 1000 records of data file 20, and control goes to block L10.
- (4) Block L99. Othain the 16 records containing the constant data information on UGS fields from data file 20. Control goes to block L10.
- (5) Block L9. Put the four records of constant radar data into data file $20. \,$
 - (6) Block L10. Read a data card under (20A4) format.
- (7) Block 4. If this is an end-of-data card (9999), control goes to block L20.
 - (8) Block 5. If this is a 2001 card ID, control goes to block L90.
 - (9) Block 6. If this is a 2002 card ID, control goes to block L450.
- (10) Block L20. Put the UGS field constant data (16 records) onto data file 20.
 - (11) Block 7. Put the sensor directory table onto data file 20.
- (12) Block 8. Call routine DUMP20 to dump data file 20 in readable formats for user, and return control to the calling routine.
- (13) Block L90. Print the card image previously read in format (20A4).
- (14) Block 10. If this is a card type 4 (UGS field constant data), control goes to block L250.

A CONTRACT OF THE PARTY OF THE

- (15) Block 11. Decode the first parameters on the data card which are used as the keyword to the sensor constant data and determine the proper record number on data file 20.
 - (16) Block 12. Get the designated record from data file 20.
- (17) Block L115. If this is not card type 1 (general radar data for MTI or AD radar), control goes to block L200.
- (18) Block L120. Decode the type 1 data card and store the information for general data for MTI or AD radar; control then goes to block L9.

Figure II-7-B-2. Routine SET20 (Continued on Next Page)

Figure II-7-B-2. Routine SET20 (Continued)
II-7-B-14

Figure II-7-B-2. Routine SET20 (Continued)

Figure II-7-B-2. Routine SET20 (Continued)

Figure II-7-B-2. Routine SET20 (Continued)
II-7-B-17

Figure II-7-B-2. Routine SET20 (Continued)
II-7-B-18

Figure II-7-B-2. Routine SET20 (Continued)

Figure II-7-B-2. Routine SET20 (Concluded)

- (19) Block L200. If this is card type 2 (degradation factors), control goes to block L400.
- (20) Block 13. If this is card type 5 (general radar data for countermortar/counterbattery radars), control then goes to block L310.
- (21) Block 14. If this is card type 6 (maximum detection range for weapon/munition combination), control then goes to block L350.
- (22) Block 15. If this is card type 7 (range brackets for sensor movement), control then goes to block L420.
- (23) Block 16. Decode data card type 3 (detection ranges and associated probability of detection and recognition) and load these data for storage onto data file 20; control goes to block L9.
- (24) Block L310. Decode data card type 5 and set up general countermortar/counterbattery radar data for storage onto data file 20; control goes to block L9.
- (25) Block L350. Decode data card type 6 and load maximum detection ranges for specific weapon/munition combinations; control goes to block L9.
- (26) Block L250. Decode data card type 4 and load IUGS array with UGS types and associated sensitive radii and percent of false alarms; control goes to block L10.
- (27) Block L400. Decode data card type 2 and set up degradation factors for forestation, electronic countermeasures, and precipitation; then, control goes to block L9.
- (28) Block L420. Decode data card type 7 and set up the range brackets for sensor movement; and, control goes to block L9.
- (29) Block L450. If the card ID 2002 is type 1, control goes to block L500. If the card type is 2, control goes to block L600. If the card type is 3, control goes to block L700. If the card type is 4, control goes to block L800. If the card type is 5, control goes to block L900.
- (30) Block L500. Decode and store reconnaissance sensor constant data (e.g., visual observer, airborne SLARMTI radar or aerial cameras).
- (31) Block 17. Put the words containing the reconnaissance sensor constant data onto data file 20; control goes to block L10.
- (32) Block L600. Decode data card type 2 and set up the reconnaissance sensor type combinations.
- (33) Block 18. Put the reconnaissance sensor type combination arrays onto data file 20; and, control goes to block L10.
- (34) Block L700. Decode data card type 3 and set up the LOH decision/control option array.

- (35) Block 19. Put the LOH decision/control option array onto data file 20; control returns to block L10.
- (36) Block L800. Decode data card type 4 and set up aircraft item code, number of personnel aboard, and delay time to prepare for subsequent reconnaissance missions.
- (37) Block 20. Get the appropriate mission unit TOE from data file 20.
- (38) Block 21. Store aircraft item code, number of personnel, and delay time into TOE array.
- (39) Block 22. Put the TOE array back onto data file 20, and control goes to block L10.
- (40) Block L900. Decode data card type 5 and set up remaining equipment item codes and associated quantities.
 - (41) Block L910. Bring the appropriate TOE array from data file 20.
- (42) Block 23. Store the item codes and their associated quantities into the TOE array.
- (43) Block 24. Put the TOE array back onto data file 20. Control goes to block L10.

APPENDIX C

INTELLIGENCE AND CONTROL DATA LOAD OUTPUT DESCRIPTIONS

1. INTRODUCTION. After the Red and Blue forces constant data input have been entered, a printout of these data is generated. The data in the printouts will be in three classes. The first is an 80-column image of the cards read in the data deck for INC. The second series is the file data, which has been formatted with columnar headings for easy reading. The third set of printouts is the dump of data files 20 and 36. The 80-column card image printout is designed to identify a card when updating is in order and facilitate the correction process. The file data in formatted form is suggested for use in verifying and validating data in the files. The third series of printouts is for programmer use in program check outs and is not discussed here. The list of constant data input printouts is shown in Figure II-7-C-1.

Printout Title	Data Source
80 Column Card Image	Data deck, INC
Constant Data on Sensors	Data file 20
Unattended Ground Sensors	Data file 20
Equipment Item Code for Target Category	Data file 36
SOP for Reporting Hostile Forces	Data file 36
Flow Delay Times	Data file 36
Processing and Decision Delay Times	Data file 36
Unit Size Based on Equipment and Personnel Counts	Data file 36
Target Inferences	Data file 36

Figure II-7-C-1. Printouts of Intelligence and Control Constant Data Input

- 2. EIGHTY-COLUMN CARD IMAGE. This printout is shown in Figure II-7-C-2. The top line at the far left has the characters 1B indicating that this is card type 1 for Blue forces. At the far right is the number 20% which is data file 20 with format 01. This card is general radar data, and the numbers entered on the top line would be interpret as follows: equipment item code 84, type of sensor is ground moving; maximum range was 18,280 meters, and so on.
- 3. CONSTANT DATA ON SENSORS. Figure II-7-C-3 illustrates this printout. The equipment item code of 84 is assigned this sensor with reference number of 201. The minimum and maximum ranges are shown, as was discussed for the card images. The card image data have been formatted and columnar headings applied so that it will be more readily understandable and can be used for validation checks. The follow on card labeled as general radar data continued also has its data displayed in this format. Errors or omissions detected here can then be traced to the appropriate card in the printout illustrated in Figure II-7-C-2 for remedial action.
- 4. UNATTENDED GROUND SENSORS. The illustration in Figure II-7-C-4 is for the Blue force. Data here can be traced to the card image in Figure II-7-C-2 to take remedial actions if needed. Headings for the various columns are similar to that for the card input format.
- 5. EQUIPMENT ITEM CODE FOR TARGET CATEGORY. Figure II-7-C-5 illustrates the format of this printout. At the far left the EOH column is the equipment item code. The target category for Blue force is shown in the center column, and that for Red is in the right column.
- 6. STANDING OPERATING PROCEDURE FOR REPORTING HOSTILE FORCES. These data (Figure II-7-C-6), from data file 36 were originally read from card type 1, ID 3604.
- 7. FLOW DELAY TIMES. The information from data file 36 on flow delay times is printed in the printout illustrated in Figure II-7-C-7. The data were originally read into data file 36 from card type 1, ID 3601.
- 8. PROCESSING AND DECISION DELAY TIMES. Figure II-7-C-8 illustrates the printout of data file 36 information. The data were initially read from card type 1, ID 3601. The data from this card were divided between the printout on flow delay times and this printout.
- 9. UNIT SIZE BASED ON PERSONNEL AND EQUIPMENT COUNTS. The printout is illustrated in Figure II-7-C-9. At the far left of the printout are the abbreviations for the various sized units that may be detected by radar in INC. PLA is for platoon sized unit, PLP is for platoon plus unit, and so on. The minimum and maximum is indicated beneath each of the headings.

Figure II-7-C-2. INC 80-Column Card Image

SENSOR REFERENCE NUMBER 201 FOUTPMENT LIEM A4 SENSOR TYPE	M A4 SENSOR TYPE 4
SENSING PANGE LIMITS IN METERS MAXIMUM 18290	18290 MINIMUM 450
POTATION RATE IN REVS / MIN	0
SCAN RATE IN MILS / SFG	23
RADAR REAM HORIZONTAL WIJTH IN MILS DEPTH IN METERS	179 900
TIME NFEDED IN MINUTES "OWER UP 25	POWER DOWN 35
MFDIAN TIME TO TRACK A TARGET AND GENERATE INFORMATION IN SECONDS	INFORMATION IN SECONDS
PERCENT DOWN TIME OEFLECTION EPROR IN MILS RANGE FRROR AT TARGET LOCATION IN METERS	2 3 10
RANGES IN METERS PR	PROJABILITY OF COLLECTION AT GIVEN RANGES

	RANGES	RANGES IN METERS	Δ.	ROBAF	BILITY OF COLLE	OF CO	PROBABILITY OF COLLECTION	
	KNTE	a TYN C		NIW	MIN KNEE	ANKLE MAX	n A X	
PEOPLE	25110	4500		45	9	0	0	
WHEELED VEHTCLFS	11000	16000		98	65	œ	0	
TANKS	12000	17909		98	9	10	0	
APES	11090	17009		98	9	αr	0	
ARTY TUBES	8000	10001		45	50	5	0	
ARTY MTSSLFS	11000	16900		46	9	5	0	
ADA GUNS	A 0 0 0	10000		26	9.0	10	0	
ADA MISSLES	11010	16000		26	55	Մ	0	
PRECIPITATION FACTORS	TORS	NONT 100	LIGHT	90	HEAVY	3	0	
ECM FACTORS		NON 100	SOME	9	MORE	2	ς.	
FOPESTPATION FACTORS	SdU.	MONE 108	SPARSE	06	MODEPATE	ATE A	G DENSE	5 0
FALSE ALARM PROGABILITY	PILITY	~						
RESULTS PELIABILITY FACTOR	TY FACT	16 91						

Figure II-7-C-3. Constant Data on Sensors

UNATTENDED GROUND SENSORS FOR BLUE

PEPCENT																				
AL APM P	Đ	æ	0	0	0	6	0	0	c	0	۵	0	ů.	0	©	0	0	6	Ü	Đ
FALSE																				
- PANGE	150	Оь	C.	c	0	c	0	0	0	Û	0	0	0	C	0	0	C	O	0	C
TAPGET	~ ~	~	0	c	C	0	C	Ŀ	0	G	0	6	6	c	0	0	0	c	د	Đ
- RANGE	200	5.0	0	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	G	0
TARSET -	~	~	0	0	0	0	0	0	0	G	0	0	Ü	0	0	0	0	c	0	O
- SANGE	100	(l is	Û	0	0	g J	c	Û	0	0	0	0	0	0	6	Ç	0	0	0	C.
TAPGET	-	~	c	0	0	0	9	0	0	0	©	0	0	0	0	c	G	0	c	Ð
SENSOR TYPE	~	c	~	. ‡	ľ	•	~	αc	U	1.0	11	12	1.3	44	1 2	16	17	18	10	211

Figure II-7-C-4, Unattended Ground Sensors for Blue Force

CODE LETTER BY EOH

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 C C C C C C C C C C C C C C C C C C	EOH	BLUE	PFD
3	1	C	0
45 66 7 8 9 10 11 12 13 14 15 16 17 18 19 20 C C C C C C C C C C C C C C C C C C	ر ع	n n	r.
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 21 22 23 24 5 6 7 28 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ú	0	0
6 7 9 00 00 00 00 00 00 00 00 00 00 00 00 0	5	Ö	C
7	6	G	0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	0	ŋ
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9	0	,
11 12 13 14 15 16 17 18 19 20 21 22 23 24 20 21 22 23 24 25 27 28 29 30 31 32 33 35 36 37 38 39 40 41 42 43 44 44 44 44 44 44 44 44 44 44 44 44	4.0	U	()
12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 32 35 35 37 38 39 40 41 42 44 44 44 44 44 44 44 44	11	n	r
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12	0	0
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13	Ō	Ō
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	14	0	0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15	0	0
17	15	ō	0
19	17	U	0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10	3	3
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20	C	:, E
22 0 J 9 0 J	21	Ō	Ú
23 C J 9 C J	22	0	o
24 0 0 9 0 9	23	С	J
25 0 J P 0 D D D D D D D D D D D D D D D D D D	24	0	Ü
27 G 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25	G	G .
27 28 29 30 31 32 53 32 53 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	27 27	0	J
29 E D D D D D D D D D D D D D D D D D D	28	n	U
30 0 I 31 0 C 31 0 C 32 E 73 0 C 34 0 C 35 0 C 36 0 C 37 0 F 38 0 C 37 0 F 38 0 C 40 C 41 K 0 C 41 K 0 C 43 K 0 C	29	Ē	Ċ
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	30	j J	I
32 E T C C C C C C C C C C C C C C C C C C	31	O.	£
73 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	32	Ē	т
35 0 0 0 5 5 6 0 0 0 5 6 0 0 0 5 6 0 0 0 5 6 0 0 0 5 6 0 0 0 0	7.7	0	0
36 0 0 0 37 0 F 38 0 P 39 I 0 0 41 K 0 0 41 K 0 43 K 0 44 0 F	34	U	9
37 0 F 38 0 P 39 I 0 40 0 0 41 K 0 12 0 F 43 K 0	37 76	n n	ų.
38 0 P 39 I 0 40 0 0 41 K 9 12 0 F 43 K 0	37	Ü	F
39 I 0 40 0 0 41 K 9 12 0 F 43 K 0	38	Ö	ρ
40 0 0 41 K 9 12 0 F 43 K 0	39	I	C
41 K 9 12 0 F 43 K 0 44 0 F	40	0	0
12 0 F 43 K 0 44 0 F	41	K	0
40 K U	12	0	F
	43 44	r. N	υ F

Figure II-7-C-5. Equipment Item Code for Target Category

12/00/71 THISLETTENCE AND CONTROL 15/35/42

	SHC	σ,	0	6	5	0		SHO	6	0	-		0		ONO	0,	~	9	0	0
	ME AL	-	-		5666	•		MEDE	-	-	_	_	-		ME AG	000	_	000	•	000
	7307L	12	7	4	60026			APP TUPES WEAPONS	# T	7	J	4	•		1005	00000	3	9000		00000
) Dat	10	4	w	35999	··		APC	0.1	¥	4	ع	¥		Ç.	obbět	£	06655		00000
	TANKS	61 21 01 52 66666	10	10	66606	10		TANKS	3.5	÷,	1.0	10	10		ISNAS	ceook	10	60066	10	0000
	PEPS	cobbb	99999	99996	60006	öbobé		95.95	99999	50666	30066	00606	30606		703d	56656	35666	29950	50066	00000
	L)	66666	ostto	3 99300 00900 0050	50066	50000		104	adjed asses daids	60666 30660	anabt ábéta	29960	opóbé čuteb ebétő		L ()	90000	20660	00660	56666	00000
	1705	64399	06666	66666	00116	6.0066		TYPE	65666	69166	60650	66160	E 06 6 6		TYDE	69519	ιδένδ	66666	66660	00000
	311S	2	~ ,	•	60006	~		SI 2E	€.	•	₽.	m	•		3712	60006	P :	20000	~	00000
		IVISION	FIGROE	ATTALI 71	IV APTY	Ole Supor 3 agama agama gaoge 10 & 4 10			POISIAL	304219P	NCIJBITA	IV APTY	LeailS al			MCISIAI	FISARE	ATTALI 28	ary arrest 3 93399 43999 3000 10 E u 10	AID CHOST DOODS 03303 ODDE 30000 DOODS 20000 DOODS
PATTALION				7	r	c	305	v		er .	a	Ç	0	Ė						
211	IF BOJN	.	€	~	06310	2	961530	HEOVE	·	\$	~	æ	~	91715100	IE AP IN	69933	•	06.660	9	00000
	1 Saun.	2	r	13	6666	2		APE TURES WEADING	19	1.3	5	9	ιr		Uar. 7	66 660	13	66606	10	0000
	De a	10	J	3	91999	3		A Je A	Ç	5	4	5	3		APC TUGES WEAPING	50616	-1	boot b	5.	00000
	SNCODER MERCE BULL TONES WERENING	21	J	•	ottbb brobb bbblb bbbtb btbtb	9		BNKC	21	21	3	900	abé		AVEC	66666	2.1	60666	9 Of all bob bittle balba	00000
	1331	טורנס	91999	otttt	66666	61668 66668		P. 2. 1	12 otbtb	06666	60000	61666	at6t6		56.50	91919	91919	91919	bteit	02000 22010 02000 02000 02000 00000
	F	choto	beete beete	offee orgoo	5556	9999		LUI	06666	66666		00660	60666		104	66660	1.6600	btbbb btbab bootb bubtb btbtb btbbb	00660	00000
	1404	00060	betoe	00000	00466	οσόξο		TYDE	06660	מסטטים ש	60666	00000	გიხნი		1641	60665	volto	99299	bation	00000
	3/15	ION NOI	F 3C	LTON 3	277 gagga	Olo Syber 3 aggs of		17		A RIGADE					STZF	COECE NOI	35 5	FIDWARAGO	DIV BRTV 5 nggod n	11001 00000
		IVIS	RICA	ATTA	A VIC	S ale			SINIC	RICA	BATTA	DIV A	OIP S			DIVIS	BPICA	PATTA	A VIC	100

Figure II-7-C-6. Standing Operating Procedure for Reporting Hostile Forces

TIMES
DELAY
FLOW

	ION NOISIAIC	ROISABE	ISABE MATTALION DIV-APTY DIR-SUPT	N DIV-A	ID TT DI	2-SUPT		PNOISIVE	PISADE BA	TTALION DI	V-A2TY DI	R-SUPT
DIVISION	6	1100	260		0	0	OIVISION		1100	2600	•	0
PRICANE	7.30	a6 B	240		6	0	RPISADE		960	2400	0	0
SATTAL TON	0	950	29		~	0	PATTALION		960	620	0	0
DIV-APTY	730	950			-	200	JIV-ARTY		960	730 960 0 0 200	0	200
DIR-SUPT	0	096	29	0	100	•	Tans-aro		36.0	620	100	-
DELAY TI	ME - UBFS -	_	ARTY	PLUE				ı	•			•
	1000	2300	100									
DELAY TI	DELAY TIME - NAFS -	- CAS - A2TY	APTY	PFJ								
	=	2000 100	100									

Figure II-7-C-7. Flow Delay Times

UT	D	POT	ÜΩŦ	RLU	ΙĒ
BAM	Ţ	e 3	100		
CCM	T		1400		
ĒСМ		ŋ	500		
EAM		0	500		
EBM		0	500		
		Ċ	0		
000	0	G	0		
000	0	£	C		
000	0	0	0		
000	0	ŋ	0		
000		0	0		
000	0	C	0		
000		0	0		
000		Û	0		
800		G	0		
000		O	C		
000		0	0		
000		0	0		
000		0	0		
000		0	0		
000		0	0		
0 0 0		0	0		
000		C	0		
000		0	D		
000		0	0		
000		0	0		
000		0	0		
000		0	0		
000		G	0		
000		C	0		
000		0	0		
000		0	0		
000		S.	9		
000		0	U		
000		0 0	0		
000			0 0		
000		0			
000		0 0	0		
000		0	0		
000		ņ	0		
000		0	0		
000		0	0		
000		0	0		
000		0	ם ם		
000		Ö	0		
J U (U	J		
8. E	, בטכ	essino	hna	Decision	De
			,		

Figure II-7-C-8. Processing and Decision Delay Times

12/09/71 INTELLISENCE AND CONTROL 15/35/42

10E

}	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
VEH	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- X	
ACFT TA TA	
HSCL	- BB#N&B6
A JA	0004000
S Z	ପ୍ରକ୍ଲାମହନ୍ତ !
MSSL GUNS	
I I	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
TURES MIN MAX H	710270
HIN	000000000000000000000000000000000000000
APC	000000
ATA TIN	000000
TANK MAX	2
4 1 2	
AECH AIL	41.7 th 41.7 t
NIF	0 % F 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 F 0
ARMOR MIN MAX	95 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
ATA	6 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INFANTOY HIN MAX	0 0 2 2 2 0 0 3 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4
INFA	000000
	900 000 900 900 900

Figure II-7-C-9. Unit Size Based on Equipment and Personnel Counts

10. TARGET INFERENCES. The printout for target inferences is illustrated in Figure II-7-C-10. The Intelligence and Control logic first asks for the size of the unit based on count of personnel and equipment. When this has been obtained, then the unit size is further examined in terms of the normal interval between the senior and subordinate units. It is this normal interval that is expressed in meters here. The information from the file was initially read in from card types 1 and 2, ID 3603.

ACFT		-	300	288	0	0
ISSM ACA		· •	300	1,588	0	0
SNUS	6	0	300	1 288	•	6
MSSL	6	- 6	300	1588	0	0
10355			300	7.60 000 000	0	0
APC						
97.6						
TANK	0	0	0	~	0	•
PTF						
#OHE	0	0	630	1388	5000	8000
APMOR	٥	-	600	388	5000	9000
INFANTOY	0	•	•	~	0	•
	2	3	ದಿ	땶	g N	306

> w Nec

Figure II-7-C-10, Target Inferences

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR INTELLIGENCE AND CONTROL

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 8

GROUND COMBAT DATA INPUT PROGRAMS

1. INTRODUCTION. The Ground Combat data input programs create and load the data file used by the Ground Combat Model. The data include tables describing weapon characteristics, sensor distribution, and equipment and personnel losses for attackers and defenders in a ground combat situation.

2. ROUTINES:

- a. General. The Ground Combat data input programs are composed of the routines described as follows.
- b. Routine GCMLD. This routine has the responsibility of reading and editing the data cards, storing the data on the file, and calling the file dump routine DUMP39. It is supported by utility routines AROTE, LINEAR, SPP, and FLIP.
- c. Routines AROTE, LINEAR, SPP, and FLIP. Routine AROTE determines the presented area of a double box combination after being rotated through a specific angle. LINEAR performs a linear least squares fit to a set of points, and determines the slope and Y intercept of the resulting line segment. SPP determines the coefficients a and b in the expression $f(r,t=10)=ae^{-br}$ and FLIP initializes the second record of data file 39.
- d. Routine DUMP39. This routine is used to provide a formatted dump of the data file.
- 3. FILES. The following data file is loaded by these routines.
 - . Ground combat data data file 39

APPENDIX A

GROUND COMBAT DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for Ground Combat are documented in Appendix A, Ground Combat Model Input Requirements, to Chapter 7 of the Period Processor (Section IV).

APPENDIX B

GROUND COMBAT DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. Data for the Ground Combat Model are loaded on data file 39. Loading is accomplished by routine GCMLD and supporting routines AROTE, LINEAR, SPP, FLIP, and DUMP39.

2. ROUTINE GCMLD:

- a. Purpose. Routine GCMLD identifies errors in the constant data and prints a diagnostic message if an error is found. The routine branches to the proper logic for various data types, and stores each data item in the proper location after data manipulation, if required.
 - b. Input Variables:
 - (1) Data file 39 variables.
 - (2) Other variables:

Name Source Contents

ICARD(20) Card Data card image.

c. Output Variables:

Name Destination Contents

IDAT(6000) DF39 Array containing data to be placed on data file 39.

- d. Logical Flow (Figure II-8-B-1):
- (1) Block 1 and 1A. Obtain the file name table; create data file 39 with two records containing 14,258 words each and data file 21 with 105 records containing 256 words each.
- (2) Block 2. Sensor type 1, unaided visual detection, which is not defined by input, is designated as applicable to both day and night detection.
 - (3) Block L100. Each data card is read as alphanumeric characters.
- (4) Block 3. Part of the printed output of GCMLD is a list of card images. Each card image is printed at this time.
- (5) Block 4. If card identification does not equal 9999, control goes to block L102.

Figure II-8-B-1. Routine GCMLD (Continued on Next Page)
II-8-B-2

Figure II-8-B-1. Routine GCMLD (Continued)
II-8-B-3

Figure II-8-B-1. Routine GCMLD (Concluded)
II-8-B-4

- (6) Block 5. If the second record has not yet been loaded, control goes to block L222; otherwise, to block 12.
- (7) Block 12. This block completes input. Complete the output by calling DUMP39; control returns to calling routine.
- (8) Block L102. Any card identification other than 3901 will cause processing to be terminated.
- (9) Block 6. If the card type is less than one or greater than six a diagnostic message is printed and another card is read.
- (10) Block L200. If the data designate Blue as the defender or Red as the attacker (data for the second record), control goes to block L222; otherwise, it continues to block 7.
- (11) Block 7. Control branches to the logic for the particular card type.
- (12) Blocks L300, 8, and L450. Decode the data according to transport system format specification, compute the presented area following a 30-degree rotation by a call to AROTE, and store the data in the proper record of data file 39. Control then returns to block L100.
- (13) Blocks L500, L523, and L536. Decode the data according to weapon system format specification. The range values in this set of data are scanned to determine the smallest (minimum range) and largest (maximum range). The resulting range interval is subdivided into five equal increments and a linear interpolation is performed on the hit probability data to determine the value corresponding to each range increment. Control is transferred to block L450.
- (14) Blocks L700 and 9. Decode the data according to sensor format specification and determine the performance parameters required by the Ground Combat Model calling SPP. Control is transferred to block L450.
- (15) Blocks L900 and 10. Decode the data according to weapon-target format specification. Using a least squares linear fit by calling LINEAR to determine the slope and Y intercept of the $P_{\rm K/H}$ line segment. Control is then transferred to block L450.
- (16) Blocks L1300 and L1130. Decode the data according to line of sight format specification and store it in both records of data file 39. Transfer control to block L100.

- (17) Blocks L1300 and 11. Decode the data according to background format specification and store it in both records of data file 39. Transfer control to block L100.
- (18) Blocks L222 and 13. The data for one record is complete. By calling FLIP, interchange all attacker and defender data to initialize the next record.

(19) Block 14. If the card ID is 9999, the second record is the reverse of the first. Store it and terminate; otherwise, some data in the second record require redefinition. Go to block 7.

3. ROUTINE AROTE:

a. Purpose. AROTE determines the presented area of a double box combination after being rotated through a specified angle.

b. Input Variables:

Name	Source	Contents
IDIM(6)	Call	Length, width, and height of two boxes.
IDEG	Call	Angle, in degrees, through which the box combination is to be rotated.

c. Output Variables:

Name	Destination	Contents
ANS	Call	Presented area, following rotation.

d. Processing Description. AROTE multiplies each horizontal dimension of each box by the appropriate sine or cosine of the angle, and takes the product of these resulting projected dimensions with the height. The presented area is determined by summing the area of each box.

4. ROUTINE LINEAR:

a. Purpose. LINEAR performs a linear least squares fit to a set of points, and determines the slope and Y intercept of the resulting line segment.

b. Input Variables:

Name	Source	Contents
N	Call	Number of coordinate sets in the array of input points.
XY(6,3)	Call	Array of input points.

c. Output Variables:

Name	Destination	Contents
A	Call	Y intercept.
В	Call	Slope.

II-8-B-6

d. Processing Description. LINEAR calculates the slope and Y intercept using the following equations:

Slope =
$$\frac{\sum_{i=1}^{N} x_{i} y_{i} - \sum_{i=1}^{N} x_{i} \sum_{i=1}^{N} y_{i}}{\sum_{i=1}^{N} (x_{i})^{2} - \sum_{i=1}^{N} (\sum_{i=1}^{N} x_{i})^{2}} \cdot \prod_{i=1-8-B-1}$$

$$\Sigma Y_{i} - (Slope) \Sigma X_{i}$$
Y intercept =
$$\frac{i=1}{N}$$
II-8-B-2

5. ROUTINE SPP:

a. Purpose. SPP determines the coefficients a and b in the expression $f(r,t=10)=ae^{-br}$ given the value of the function for two values of r at arbitrary t assuming the relation $f(r,t)=1-[1-f(r,t=10)]^{t/10}$.

b. Input Variables:

Name	Source	Contents
IHOLD(10)	Call	Two values of r with the value of the function evaluated at each r and the value of t.
NSENTD	Call	Pointer to the location in DSPP where output values are to be stored.

c. Output Variables:

Name	Destination	Contents
DSPP(10,4)	Call	Output array giving, for each value of NSENTD, the calculated values of a and b as well as the values of r for which the function ae-br attains the values of 0.9999 and 0.0001.

d. Processing Description. SPP evaluates the expressions:

$$b = \frac{\ln \left\{1 - \left[1 - f(r_2, t)\right]^{10/t}\right\} - \ln \left\{1 - \left[1 - f(r_1, t)\right]^{10/t}\right\}}{r_1 - r_2}$$
II-8-B-3

6. ROUTINE FLIP:

- a. Purpose. FLIP initializes the second record of data file 39.
- b. Input Variables:

Name ,	Source	Contents
I(10)	Call	One of two arrays to be interchanged.
J(10)	Call	One of two arrays to be interchanged.
K	Call	Number of words in the pair of arrays to be interchanged.

c. Output Variables:

Name	Destination	Contents
I(10)	Call	Interchanged array.
J(10)	Call	Interchanged array.

d. Processing Description. FLIP interchanges the first K words of arrays I and J. $\,$

7. ROUTINE DUMP39:

- a. Purpose. DUMP39 provides a formatted output capability to the loading program. It is designed to display the contents of both records of data file 39 in tabular form.
 - b. Input Variables:

Name	Source	Contents
FILE39(6000)	DF39	Ground Combat Model constant data.

- c. Output Variables. Individual data file 39 variables.
- d. Logical Flow (Figure II-8-B-2):
 - (1) Block 1. The record to be output is obtained from data file 39.
- (2) Blocks 2 and L100. Environmental data are printed only in conjunction with the first record. The data are identical with that in the second record and are not repeated. Included are the line of sight parameter, background reflectance, and sky/ground ratio tables.

Figure II-8-B-2. Routine DUMP39
II-8-B-9

- (3) Block L300. Print transport specifications for each force including transport area, type, reflectance, probability of being pinpointed, and the number of associated personnel.
- (4) Block L350. Print attacking weapon specifications including range capabilities, delivery times, firing rates, NATO hit probabilities, and target priorities.
- (5) Block 3. Print slopes and Y intercepts of kill probability line segments for attacking weapons against defending targets.
- (6) Blocks 4 and 5. Print data for defending weapons specified in blocks L350 and 3.
- (7) Blocks 6 and 7. Print sensor specifications for each force including sensor utilization and sensor performance parameters.
- (8) Block 8. If both records have not been processed, transfer control to block 1 for the second record; otherwise, return control to calling routine.

N. Carlotte and Ca

APPENDIX C

GROUND COMBAT DATA LOAD OUTPUT DESCRIPTIONS

1. INTRODUCTION. The input of Ground Combat constant data in the DIVWAG Model results in the generation of a series of output reports. Three types of output reports are printed: the 80-column card image, the formatted data from data file 39, and the data file 39 dump. The file printouts are listed in Figure II-8-C-1.

Printout Titles	Data Source File
80-Column Card Image	Ground Combat Data Deck
Line of Sight	Data file 39
Targets and Pinpoint Probabilities	Data file 39
Weapons and Specifications	Data file 39
Weapon/Target Intercept	Data file 39
Sensor Distribution and Performance	Data file 39

Figure II-8-C-1. Ground Combat Printouts for Constant Data Input

- 2. EIGHTY-COLUMN CARD IMAGE. This format is illustrated in Figure II-8-C-2. The top row, far left, has the characters 1BA. The 1 specifies the card type; The B specifies the data are for a Blue transport; and the A specifies the data pertain to an attacking Blue unit. At the far right of the figure the number 3901 appears, indicating that the data are for data file 39 and format 01. It also is a positive identifier for this specific card. The remaining information on this card is identifiable by tracing the headings on the card and relating the data entries to these topics.
- 3. LINE OF SIGHT. An illustration of this printout is shown in Figure II-8-C-3. Four tables are presented in this printout. The first, at the top, is line of sight parameters with no forest, and line of sight parameters for terrain with forest. The second is located in the center of the figure and entitled background reflectance. Headings of these columns are similar to those found on the card format. The third table is labeled sky-ground

-	`	,	4	Ω.	.g	7	æ	+4	~	M	3	₽.	w	7	30	6			-		7	Ŋ		2 B	25	m	4	9	æ	ን			11		
3 3 0 1	39.1	J	9	36	J.	<u>ي</u> ن	9ú	3	390	ر ت	3. 1 .5	393	90	9.0	3	96	<u>ي</u> د.	3	3	9	9.	20	9ú	90	3931	90	5	9.0	93	3	90	96	96	06	20
									5690	16.971	0.00	0.62																							
									~	ج ج	M	N								+															
										⊳										31									95					95	
									000	50009	6.30	0.0								34 10						0	Ü	00	3000	20	00		20	3336	
													-4							ر.						3	7	S	36	#	7			Ç	
								c.	î.	<u>ئ</u>	7	ű8	243	615	Ç				35	136 4						C.		S	2000	J	ç		2300	2	
								7)	7)	7	10,	3	٠ ,				3	10						7	حر	9	95	*	7		.*	35	
													-						Ĵ	∞						.>	:	3	5.6	Ü	\Rightarrow		50.		
								Ţ	Ç.	3	ۍ.	ァ	.75	\sim	31	$\boldsymbol{\tau}$	(C)	\sim	1.3	101									5 1				5 1	5.1	
															O		'n	\sim	/	1+1						C.	J.	9	911	J.	Ş		4	900	
70	C	₹	¥	ဘ	70	æ	X	~	-	_	_		7	_					,	ر-،							Ġ	′ ٦	10.	د.	0			7	
دد	7	-5	רי	٦	ר	7	~	45	95	3	66	က်	36	99	38	33	66	7.0	6 1	1 /	ţ Ţ	77	69	6 6	c) c,	8	45	35	35	3	35	15	94	9.0	35
-	ţ	\$.	t	-	11	~	ر. در	3.	ı ک	رح د	رب د .	S,	S.	,	ر د.	ر ،	د	118	₩;	J () J	ر. د د		ن 0 تا		ر د.	ر: د.	ر , ت	C O	C	3	<u>ر</u> د:		7. C.	ر ن ا
	121	J		\sim		·J	٦,	-	-	-	-1	-	-		~>	-	-	-							ر. د ت										
3	٠,		4	٠,				ς.	ىد	"	Ţ	Ç.	36	ת	Ç	\odot	J.	0		,	~		•	•	7.5	7	50	5	ري ري	3.0	<u>ر.</u> انا	ري د	5.5	5	رت د
,	Ċ	כ	7	S	د	c	د ٠				÷	• ") 	J	د	īU	Ç		Ĵ	ر پر						. 1	U		:∨:	(Q	V	7	\sim	. 0	:0
د	э	٠,	~	/	7	()	3	٠,	7	. ¬	٠.,	_	,	,	. 7	77	. ¬	7	,	355	•	2	3	د	J	3	د)	د	ر	3	• •	ר	J	د
\$	£	2	~	'n	æ.	~	7	٠,	,	7	5	. 5	٥. د.	10	_		٠,	٠,		~	117	. 1 7	_		25	. (_	•	יח		- N -		_	
-	3	æ			7	æ	89	`	7	7	25	2,	15	15	11	S	ß	7	55	55	M	~	16	16	M	~	~	16	16	*>	~>	:v)	~)	ιŋ	1.0
	,	a	7 +					~>	1-7	~	~	~		\$	#	33	18	.		5	~	~;	~;	~	\$2	~	~>	~ >	M	٠.	₩,	~		M	~
Ω	ч >	т Т						~					r E						7	93	3.1	31	3.	3.1	31	34	34	34	34	≈ 5	35	35	37	37	3.7
	341		~	-	5	35	85									\approx	30	3	15	13					31										
~)	184		$^{\circ}$	3	m	34	77	\mathbf{e}	\Box	₽	33	\mathfrak{D}	\Box	S	æ	βA	B	8	ВА	Θ	ည	8	3	\mathfrak{D}	\mathfrak{D}	\mathfrak{B}	\mathfrak{Z}	3	\mathfrak{D}	3	8	\mathfrak{B}	\mathfrak{A}	\mathbf{x}	ဆ

Figure II-8-C-2. Ground Combat 80-Column Card Image

FOREST

NO FOREST

E 2	325.
VEHICLES	175.
1	300.
HICLES PERSONNEL VEHICLES PERSONNEL VEHICLES	105.
KE 1	65ú•
VEHICLES	35u•
POSTU-	60u•
PERSONIEL	33U•
RE 2 VEHICLES	3 3 5 5
POSTUI	458.
PERSONMEL	31.0
-E 1 V:H1CLL3	1800 + 100 +
POSTURE 1	9000
PERSUNNEL VIHI	•000
TERRAIN	600U 3A0

SAUKGROUND REFLEUTANCE

PLENTIFUL	.755 .755 .755	
SPARSE	.184	
EAKREN	.184 .755 .085	
SE AS DW	SUMMER AUTUMA SNOW	

SKY-GROUND RATIO

AWAY FROM THE SUN	2.6
SUN OVERHEAD	3. Ü
TOWARD THE SUN	Γ••

MINIMUM FROMT TO FROM SEPERATION

50 METERS

Figure II-8-C-3. Line of Sight

ratio and contains the values for the three illumination conditions. The fourth is the minimum front-to-front separation of the opposing forces. The data shown in this printout, taken from data file 39, were originally read in by the cards recognized by card types 5 and 6, ID 3901.

- 4. TARGET AND PINPOINT PROBABILITIES. The third set of printout formats is that of target and pinpoint probabilities as illustrated in Figure II-8-C-4. There are three major divisions to this printout format, each of which has two tables. The upper third of the printout has the target data for both attacking and defending. In each table at the top there is the column (second from the left) labeled presented area. This is a computed figure from the information entered into card type 1, ID 3901, titled Transport Specifications. The information in the column headed presented area is the area in square feet of the target rotated through 30 degrees, and the 30-degree area is that presented as a target and computed for this column. The pinpoint probability and mobility class rate tables are also taken from card type 1, ID 3901.
- 5. WEAPON SYSTEM SPECIFICATIONS. The fourth set of printouts is weapon system specifications illustrated in Figure II-8-C-5. This format has three major tables. At the top, labeled link table, is a list of the ammunition (by item code) carried by each transport (by item code). In the center is the table with weapon performance data with each weapon's range limitations; maximum rate of fire in rounds per minute; the average time in seconds to aim, fire, and deliver a round to the midpoint of its effective range; and hit probabilities against a standard NATO target at six range values. At the bottom of the figure is the third table, labeled priority (ammo to drop) weapon to target. At the far left of this table is the equipment item code of the weapon. Across the top is the equipment item code for each of the hostile targets (transports). Beneath that listing is the priority given that target for the specific weapon. In parentheses following the target priority is the percentage of on-board basic load of ammunition which, when reached, will cause that target to be dropped from the priority list. Once dropped from the priority list, that target will not be fired on again by that weapon until the Combat Service Support Model is able to replenish the ammunition.
- 6. WEAPON TARGET KILL PROBABILITY. This printout is shown in Figure II-8-C-6. The data included in these tables are computed from the information originally entered in card type 2, weapon systems specifications, ID 3901. The far left, ammo EOH, is the equipment item code for the specific weapon. Target, in the center top of the figure, is the hostile force target (transport) item code. Beneath that equipment item code on the first line is the intercept (see second column from left). The intercept is the probability of a kill given a hit at zero range. The second line, labeled slope, is the tangent of the angle made by a straight line, defined by the intercept and the probability of a kill given a hit at the maximum range and the abscissa, representing the range from firer to target.

	TYPE	TANK	TANK	APC	APC	APC	PERS	PERS	PERS
	REFLECTANCE	.120	120	120	.120	.12	.100	.101	.100
EFENDING TAMBET	NUMBER OF PERSONNEL		13.80	2.5		12 4 3	1.1	1.0	3.3
96	PRESENTED AREA	117.89	156.52	138.56	109.54	109.54	8.20	0.20	16.79
	E 04	Š	36	161	166	32	23	52	27
	TYPE	PENS	VEH	APC	AZA	TAHK	PERS	APC	APC
	REFLECTANCE	.100	.120	.120	.123	.123	304.	.12ù	.120
TARGET	NUMBLA OF FERSONIEL	1.60	30.4	30.4	90.4	3 4	1. J.	11.00	3.00
TIACKING TARGET	NUMBLA								
4	PRESENTED AREA	5.6	33.86	164.56	195. 30	151.39	9.20	104.50	131.30
	E0H	31	*	35	~	;	\$	185	981

PINPOINT PROBABILITY

DEFENDING TARGET	PROBABILITY	0.000	0.000	0.000	001.0	0.00.0	0000	6.603	000.0	DEFENDING TARGET	RATE	133,336	133,336	133,336	133.336	133,336	133,336	133,336	133.336
DEFEN	ЕОН	35	36	161	160	32	23	25	27	DEFENG	ЕОН	35	36	161	160	32	23	25	22
ATTACKING TARGET	PROBABILITY	0.00	0.336	0.000	300.0	9.00	002.0	0.030	363.0	ATTACKING TARGET	RATE	133.336	153,336	133.336	133.336	133.336	153.336	133.336	133.336
ATTACY	E0H	31	ž	35	31	7	£.	185	186	ATTACK	EOH	31	ð.	35	37	7	4.5	185	186

Figure II-8-C-4. Target and Pinpoint Probabilities

					9	26	.6.	•20	•32	95.	5 6		66.	887	90.0	0.00	0.0	0.00																			
		90		vs	960	.972	.972	.385	9/4.		626	966	966	.524	0.000	0.00	0.000	000-0	. 000				27	ā	: a	=	8	3	5 8	3 6	;	3	3	3	3 3	3 6	3 6
				ורזדזב																				ä		ĕ	5	-	5	; =		2	-	= :	- -		; è
		••		HII PROBABILITIES	. 460	978	.978	.658	.713	704	979	966	066	.655	9.000	0.00	000	000.0					52	=	6	3	5	8	6 6	3 2	3	2	8	8	3 2	:	;
		00		HIT																				3	-	5	ö	5	5	, <u>-</u>	~	8	-	5	3 0	3 6	
		\$ \$	SPECS		969	. 987	. 987	906	226.	450	986	990	990	.760	9.000	0.00	000.9	0000	3		RGET		23	=	6	3	6	3	3 6	; ;	3	6	8	6 6	3 2	; ;	; =
		186	110N																	ITES	TO TA			9	ŏ	ĕ	ŏ	-	5 6	; ~	5	2	- c	5	5 9		5
		185	ATTACKING AMHÜNITION SPECS		.96	.950	. 950	366	966	000	960	966	. 990	.850	0.000	00000	936.0	9999	-	AHHUNITION PRIORITIES	EAPON	-	32	2	6	3	6	6 :	3 6	; 3	3	3	66	3 6	3 6	; a	3
		£ £	CING A																	1100	M (40	ET ED		5 (9	36	3	5			7 (= ;	, c	5 3			5
		4 4	ATTACI	TIME	3.292	3.662	16.562	200		2.640	9.700	7.250	1.250	3.256	0.000	000	300	900		MHHUNI	10 DR	TARG	160	3	3	3	3 :	3 :	3 (3	;3	3	5:	3 6	3 3	3	: 5	3
NOI		346			-	=	-	ŭ r	.	•	Ä			_	_					ONEX	IAMMO		_	Ş	ž	-	2	,	, ,	3	*	;	;		5 5		ö
TINOW	BLE	37		RATE	.500	.500	.530	9 0	500	. 500	.500	.530	• 500	. 543	070		3 7	9000		ATTACKING	PRIORITY (AMO TO DROP) WEAPON TO TARGET		161	9	6	3	3 :	3 5	; ;	â	6	3 (5 7	; c	3	3	a
ENG P	LINK TABLE	33										-	-		9	9	•	•	•		PRIO		7	3	3	<u>.</u>	.			3.0	51	56	,	; -	; ;		ŏ
ATTACKING AMMUNITION	3	36 36		ANGE	1001.000	3000.3002	30.00.000	1005	1000000	000.000	3380.000	1006.600	it ji	236.663	909	300) ·						36	3	â	3	3:	3.5	; 5	3	(3)	3:	3 0	`	; ;		3
		32. 3		MAX RANGE	100	3005	300	200	100	300	3300	1000	1636	200		-	. د	ت د	•					2 (5(2	7	,	5 6	12	0	3 -	, ,	; ;	; ;	ä	
				HIN RANGE	70.000	990.5	5.050		0.00	0.00	10.330	00000	0.0.0	000	9000			0.00	,				35	G	3	3 ;	3 6	3 6	3	e	5	5 5	3 6	; ;	; 5	3	5
		TION (MIN	^	•	•	-	1	10	5.	52	52	5										Ξ	Ξ	= :	::		=	ĭ	~ ·	;	4 .3	; ;	; ;	-3	ĭ
		AMMUNITION CODE TRANSPORT CODE		AMMO EOH	32	36	9 5	9 M	4	42	£4.	σ.	σ.	;	⇒ c	> q	•					AMMO	EOH	32	36	36	c 0	, ,	24	4.3	6	T 4	ļ	• •	•	3	•

Figure II-8-C-6. Weapon/Target Kill Probabilities

				TARGE T				
	35	35	101	165	32	23	52	27
INTERCEPT Slope	.4453E3		6.0000.1	.650300 u.640633	0.00000.0000000000000000000000000000000	C. 050.C. U. U.C.366	0.660J20 0.034660	6.000.00
INTERCEPT Slope		.9536.3 6.3360.0	.95.0.0 0.00000.0	000000.0	0.00000. 0.00000.	0.000000 6.00000	0.160000 0.800000	0.000000 0.000000
INTERCE PT Slope	. 43 . 64 . 6 . 6 . 6 . 5 . 5	.35 et 33 6		0.00000 0.00000	.950333 0.300300	0.000000	0.00000 0.00000	6.060030 0.060006
TERCEPT OPE	.46i9ù. E3ù1òì•à	.95000. 000000.	. 450000 	000000000000000000000000000000000000000	.956000	0.0000000000000000000000000000000000000	0.00000 0.00000	6.000000 0.066388
TERCEPT OPE	.496427	0.0000.00	.760060	320000-0	.510060	6.000000 6.000003	0.00000 0.000000	0.00000000
TERCEPT OPE	0.000000 0.000000	0.300vE0 0.300vE0	6.686398 6.666863	0.000000	0.00000.0	0.0000000000000000000000000000000000000	. 6000000.0 0.60000.0	C.060600 C.060600
TERCEPT OPE		.95005.	.953063	.956000	0.0000000	000000000	0.00000	0.000000
TERCEPT OP¢		.953660 .03566.u	. 95.6.0	000056°	0.000000	0.00.00.0	0.00000.0	6.000000
TERCEPI OPE	0.000.00 0.000.000	3 - 0 0 0 0 0 0 0	1.163643	1.166330	1.166063	1.160000.	1.1600.0	1.165000
TERCEPT OPE	0.0000000	0.00000 0.100000	1.16JOUÚ .úću66J	1.166036 .66066u	1.166669	1.166380	1.160300	1.165000
TERCEPT OPE	.226063 3.060063	.2250ûû 6.ûuðûbu	. 11uūci 8. uūūjua	.116303	.110000	6.000000 4.000000	0.0000000	0.00000.0
	INTERCEPT SLOPE SLOPE INTERCEPT SLOPE INTERCEPT SLOPE INTERCEPT SLOPE SLOPE INTERCEPT SLOPE INTERCEPT SLOPE SLOPE INTERCEPT SLOPE	CEPT CEPT CEPT CEPT CEPT CEPT CEPT CEPT	CEPT466363 CEPT496427131614 CEPT49642766063 CEPT496063 CEPT496063 CEPT496063 CEPT496063 CEPT496063 CEPT496063 CEPT496063	CEPT4663639536666	CEPT 466.363 95.3694 95.2213 0 CEPT 496427 766.000 764.069 0 CEPT 496.427 766.000 764.069 0 CEPT 466.063 95.3635 666.003 0 CEPT 49.060 95.3635 666.003 0 CEPT 49.060 95.363 95.360 0 CEPT 49.060 95.363 666.003 0 CEPT 49.060 95.363 146.3610 0 CEPT 49.060 95.363 146.3610 0 CEPT 49.060 95.363 146.3610 0 CEPT 49.060 3.06.33 46.065 0 CEPT 49.060 3.06.30 40.065 0 CEPT 49.060 3.06.30 40.065 0 CEPT 49.060 3.06.30 0 CEPT 49.060 3.06.30 0 CEPT 49.060 3.060 0 CEPT 49.060 3.060 0 CEPT 49.060 3.060 0 CEPT 49.060 3.060 0 CEPT 49.060 0 CEP	CEPT466364 .955884 .958844 .958844 .956886 . CEPT49642776688876884736886736886736886 CEPT496864 CEPT46688 CEPT46688 CEPT498866 CEPT498868 CEPT498868 CEPT498868 CEPT498868 CEPT498868 CEPT CERT CERT	CEPT466.363953000950000950000956000066600	CEPT 466.363 953000 950000 950000 0.000000 0.000000 0.000000 0.000000

ATTACKING AMMUNITION

7. SENSOR DISTRIBUTION AND PERFORMANCE. This printout is shown in Figure II-8-C-7. This format has two major tables, one of which has the distribution of sensors among the various transports, stating the amount of time that they are used either while aboard that transport or while dismounted but supporting that transport. The sensor is identified at the far left under the column headed sensor EOH, which is the equipment item code. The transport is identified with its equipment item code listed across the first row of the top table. Beneath that figure is the listing of the times that the sensor is operated for that transport. The data are extracted from card type 3, sensor specifications, ID 3901. The sensor performance data are calculated from information provided by this card type and are used to calculate the probability of detection for each sensor.

	AII	ATTACKING SENSOR DISTRIBUTION	DA DISTRIBUL	IGN				
SENSOR				TRANSPORT	12			
EOH	31		35	37	41	4.5	135	186
•	0.360	ل ترق مو	3.00	0.6.3	0000	0.00.0	000.0	37
112	300.0		11.000		15.000	(• i) t u	10.030	16.0.0
113	16. 336		13.000	30.00	34.00	0.000	10.396	370.04
•	0.300		200.0	ā • 3 · C	0.000	300.0	0.30u	0.366
-	100.0		2000	0.000	3.600	0.00	0.030	330.0
3	330.0		3.00	3000	0.00	0.000	000.00	13.5
-	0.00		3.000	3.00	0000	0.000	200.0	0.000
0	30.0			(3)	999	2020	3.036	(J) () • (J)
•	30.00		0.000	3.0.0	300.7	0.000	J J.	0.000
•	0.000	3.6.0	00	120.0	ŭ.000	0.00	3.333	0.00
	ATI	ATTACKING SENSOR PERFORMANCE	OR PERFORMAN	iCE				
ЕОМ	NIM	MAX	₫	2				
	9000	3.690	00100000	0000000				
112	.816	7516	. 338687	.630123				
113	2.034	7	. 0.0854	640053.				
-	ŭ.30¢		0.00000	030003*0				
a	0.000	3. U.L.	00.000.00	0.0000				
2	0.360		0.036600	Dougener.				
•	0.00 e		0.000000	0.0000.0				
•	200-5		6. 633666	3.63.63.6				
9	000.0		0.330000	00000000				
•	מטני-ני		0.036500	0 ៖ មិនមិនមិន				

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR GROUND COMBAT

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 9

AREA FIRE DATA INPUT PROGRAMS

1. INTRODUCTION. The Area Fire data input program creates and loads the files containing the munitions lethal areas and personnel protection data required by the Area Fire Model. It also loads certain weapons parameters on data file 25 where they are used by the TACFIRE Model.

2. ROUTINES:

The second secon

- a. General. The Area Fire data input programs consist of the routines described in the following paragraphs.
- b. Routine AFMLD. This routine controls the loading of the two data files required by the Area Fire Model. It creates the data files, and then calls routines LOAD29, DUMP29, LOAD30 and DUMP30 in that sequence.
- c. Routine LOAD29. This routine reads and edits the munition characteristics data and stores it in the correct position on the files.
- d. Routire DUMP29. This routine gives a formatted dump of data file 29 and the portion of data file 25 loaded by the input routines.
- e. Routine LOAD29. This routine is responsible for the reading and editing of the personnel protection data and for loading it correctly in the data file.
- f. Routine DUMP30. Routine DUMP30 provides a tabular dump of the personnel protection data file.
- 3. FILES. The files loaded by the Area Fire data input programs are as follows.
 - . Munitions lethal areas data file 29
 - . Personnel protection data file 30

APPENDIX A

AREA FIRE DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for area fire are documented in Appendix A, Area Fire Model Input Requirements, to Chapter 8 of the Period Processor (Section IV).

APPENDIX B

AREA FIRE DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. The Area Fire Model's input data are loaded into data files 20 and 30, by the control routine AFMLD and associated routines LOAD29, LOAD30, DUMP29, and DUMP30. The unit dimension, geometry, and distribution data used by the Area Fire Model are loaded into data file 28 by the routines documented in Chapter 6, Appendix B, Unit Geometry Data Input Program Descriptions.

2. ROUTINE AFMLD:

- a. Purpose. AFMLD controls loading of data files required by the Area Fire Model; (i.e., data file 29, which is the munitions lethal areas file, and data file 30, which is the personnel protection file. AFMLD also loads certain weapon parameters onto data file 25 to be used by the TACFIRE Model. Input data come from punched cards. AFMLD relies on two load routines to load the data, LOAD29 and LOAD30, and two dump routines to print the data, DUMP29 and DUMP30.
 - b. Input Variables: None.
 - c. Output Variables:

Name Destination Contents

IDUM(1200) DF25, DF29 and DF30 Buffer for initializing to zero.

- d. Logical Flow (Figure II-9-B-1):
- (1) Block 1. The file name table (DIVWAG file directory) is brought in from the master data file by the standard call: CALL GETFLE (4HKEYS, IFNT, IER).
- (2) Blocks 2, 3, and 4. Data files 25, 29, and 30 are created if they do not yet exist by use of the CREATE routine. Data file 25 consists of one record which is 27092 words in length, and portions are loaded by two different programs, LOAD29 and TACLD. Data file 29 consists of 72 records of 216 words per record and is loaded entirely by LOAD29. Data file 30 consists of 21 records of 2149 words per record. The first two are loaded by routine LOAD30 and the remainder are loaded by the Nuclear Model data loading routine.
- (3) Blocks 5, L300, and L500. These portions of data files 25, 29, and 30 which are to be loaded (i.e., all of data files 29 and 30 and words 7605-8396 and 26877-27092 of data file 25) are initialized to zero.
- (4) Blocks 6, 7, and 8. Routine LOAD29 is called to load the munition characteristics data onto data files 25 and 29. NERR is returned as the count of serious errors which were found in the data. Routine DUMP29 is called to print the data from data file 29 if no serious errors were located by LOAD29.

Figure II-9-B-1. Routine AFMLD II-9-B-2

- (5) blocks 9, 10, and 11. Routine LOAD30 is called to load the personnel protection data onto data file 30. NERR is returned as the count of serious errors which were found in the data. Routine DUMP30 is called to print the data from data file 30 if no serious errors were located by LOAD30.
- (6) block L10. The file name table (IFNT) is printed to allow verification of the sizes of data files 25, 29, and 30.

3. ROUTINE LOAD29:

a. Purpose. LOAD29 reads the munition characteristics data required by the Area Fire and TACFIRE Models from cards and loads the data on data files 29 and 25.

b. Input Variables:

<u>Name</u>	Source	Contents
KARD(20)	Card	Data card image buffer.
IFILE	Card	File number (29).
IFORM	Card	Card format number (1-4).
ISEQ	Card	Card image sequence number.
ISIDE	Card	Force designator (B or R).
IWMUXX	Card	Weapon/munition combination index (1-36).
IWEOHX	Card	Weapon item code.
IMEOHX	Card	Munition item code.
LAPERS(3,2)	Card	Lethal areas to personnel in three postures (standing, prone, foxhole) and two environments (unforested and forested).
IEOH(7)	Card	List of seven equipment item codes.
LAREA(7)	Card	List of seven lethal areas for equipment items given by IEOH.
MAXRNG	Card	Maximum range of munition.
MINRANG	Card	Minimum range of munition.
ETYPE	Card	Error type code: S=Sigma, C=CEP.
SIGTAB(6)	Card	Table of round dispersion errors at six range points between MAXRNG and MINRNG.

Name	Source	Contents
DTV1	Card	Time to fire first volley.
DTVMR	Card	Time to fire each successive volley at maximum rate of fire.
DTVSR	Card	Time to fire each sucessive volley at sustained rate of fire.
NRNDMR	Card	Maximum number of rounds that can be fired at maximum rate of fire.
EFFRAD	Card	Effects radius.
IANGF	Card	Angle of fire of the weapon.
LENG	Card	Length of the projectile.
ICAL	Card	Caliber of the projectile.

c. Output Variables:

Name	Destination	Contents
NERR	Call	Number of serious data errors detected.
ISEQ	Print	Card image sequence number.
KARD(20)	Print	Data card image buffer.
MUNDAT(216)	DF29	Munition data, data file 29 record.
IWEOHX		MUNDAT(1). Weapon item code.
IMEOHX		MUNDAT(2). Munition item code.
LAPERS(3,2)		MUNDAT(3). Lethal areas for personnel in three postures (standing, prone, foxhole) and two environments (unforested and forested).
LAEOH(200)		MUNDAT(9). Lethal areas for 200 equipment items.
MAXRNG		MUNDAT(209). Maximum range of munition.
MINRNG		MUNDAT(210). Minimum range of munition.
SIGTAB(6)		MUNDAT(211). Round dispersion errors at six range points between maximum range and minimum range.

Name	Destination	Contents
WMPARM(36,11,2)	DF25	Weapon/munition combination parameter table for TACFIRE: 11 parameters for 36 weapon/munition combinations and two forces.
MUNDES (3,36,2)	DF25	Munition description table for countermortar/counterbattery: three parameters for 36 weapon/munition combinations and two forces.

d. Logical Flow (Figure II-9-B-2):

- (1) Blocks L50, L61, 1, L63, 2, and 3. The data file 29 data cards are read and card images copied to a temporary disk file (logical unit 30). Each card is read with a 20A4 format, assigned a sequence number, and printed. The card image is written to the temporary file with the last four characters replaced by the new sequence number. The last data card is expected to have a card ID of 9999 in card columns 73-76. The card image file is positioned to card image number one after the last card is copied.
- (2) Block 4. NERR is the count of serious detectable data errors which will be returned to AFMLD; it is set to zero before the editing process begins.
- (3) Block 5. Each group of cards with the same card ID (i.e., 2901, 2902, 2903, or 2904) must be preceded by a header card which is blank except for the card ID. The first card image must be a header card and establishes the card ID of the first group.
- (4) Blocks L100 and 6. The card ID consists of four numeric characters: the first two are the file number (29), the last two are the card format number (01-04, 99). If the file number is 29, control goes to block L110. If the card format number is 99, it goes to block L199.
- (5) Blocks 7 and 8. If the card ID is not 2901, 2902, 2903, 2904 or 9999, an error has occurred. An appropriate error message is printed and the error counter (NERR) is incremented.
- (6) Block L110. This block represents a computed GO TO statement that branches to the appropriate code for reading the next card image according to the card format number.
- (7) Block L120. Using format 2901, the following variables are filled from the next card image: ISIDE, IWMUNX, IWEOHX, IMEOHX, LAPERS(1-6), IFILE, IFORM, and ISEQ.
- (8) Block 9. If IFORM is not equal to one, it indicates that the header card of the next card group has been read. Control branches to block L100.

Figure II-9-B-2. Routine LOAD29 (Continued on Next Page)
II-9-B-6

manife the second section of the second

Figure II-9-B-2. Routine LOAD29 (Continued)
II-9-B-7

Figure II-9-B-2. Routine LOAD29 (Continued)

Figure II-9-B-2. Routine LOAD29 (Continued)

Figure II-9-B-2. Routine LOAD29 (Concluded)
II-9-B-10

The second second

- (9) Blocks 10, 18, 26, and 34. Routine EDITF1 is called to edit the one-character force designator (ISIDE). If ISIDE is neither B nor R, then EDITF1 prints an error message and increments the error counter (NERR).
- (10) Blocks 11, 19, 27, and 35. Routine EDITF2 is called to edit the weapon/munition combination index (IWMUNX). If IWMUNX is not between the values 1 and 36, EDITF2 prints an error message and increments the error counter.
- (11) Blocks 12 and 13. EDITF3 is used to ensure that equipment item codes, in this case the weapon item code (IWEOHX) and the munition item code (IMEOHX), have values between 1 and 200. EDITF3 prints an error message and increments the error counter if the item code is not valid.
- (12) Blocks 14, L155, and L180. If data errors have been found (NERR greater than zero), the loading of data file 29 is discontinued, although the card editing process continues.
- (13) Block 15. IWEOHX, IMEOHX, and LAPERS(1-6) are loaded on data file 29 for this weapon/munition combination.
- (14) Block 16. IWEOHX and IMEOHX are also placed in the weapon/munition parameter table (WMPARM) which is to be loaded on data file 25.
- (15) Block L140. Using format 2902, the following variables are filled from the next card image: ISIDE, IWMUNX, IEOH(1-7), LAREA(1-7), IFILE, IFORM, and ISEQ.
- (16) Block 17. If IFORM is not equal to two, it indicates that the header card of the next card group has been read and control goes to block L100.
- (17) Blocks 20, 21, 22, 23, and L150. The table of lethal areas for equipment items (LAEOH) due to this weapon/munition combination is brought into core to have additional lethal areas filled. Seven item codes and lethal areas were read from the card image into IEOH and LAREA arrays. Each item code in IEOH is edited using the EDITF3 routine. The lethal areas in LAREA are put into the LAEOH array.
- (18) Block 24. If no data errors have been found, the updated LAEOH array is returned to data file 29 and control returns to block L140 to read the next card image.
- (19) Block L160. Using format 2903, the following variables are filled from the next card image: ISIDE, IWMUNX, MAXRNG, MINRNG, ETYPE, SIGTAB(1-6), DTV1, DTVMR, DTVSR, NRNDMR, EFFRAD, IFILE, IFROM, and ISEQ.
- (20) Block 25. If IFORM is not equal to three, it indicates that the header card of the next card group has been read, and control goes to block L100.

- (21) Blocks 28, 29, 30 and L170. The error type code (ETYPE) indicates whether the round dispersion errors (SIGTAB) are in the desired sigma form or the circular error probable (CEP) form; therefore, if ETYPE equals C, SIGTAB must be converted from CEPs to sigmas by multiplication of a conversion factor. Any other value of ETYPE is an error.
- (22) Block 31. MAXRNG, MINRNG, and SIGTAB(1-6) are loaded onto data file 29 if no errors were detected.
- (23) Block 32. DTV1, DTVMR, DTVSR, NRNDMR, MAXRNG, MINRNG, and EFFRAD are stored in the WMPARM table which will be loaded on data file 25 when completed.
- (24) Block L190. Using format 2904, the following variables are filled from the next card image: ISIDE, IWMUNX, IANGF, LENG, ICAL, IFILE, IFORM, and ISEQ.
- (25) Block 33. If IFORM is not equal to four, it indicates that the header card of the next card group has been read.
- (26) Block 36. IANGF, LENG, and ICAL are saved in the MUNDES table which will be loaded on data file 25 when completed.
- (27) Blocks L199 and 37. All data file 29 cards have been read and processed; therefore, the completed WMPARM and MUNDES arrays must be loaded into the appropriate locations of data file 25.
- (28) Block 38. The number of data errors detected (NERR) is printed for the user.

4. ROUTINE LOAD30:

a. Purpose. LOAD30 reads the personnel protection data required by the Area Fire Model and other models from cards and loads the data on DIVWAG data file 30.

b. Input Variables:

Name	Source	Contents
KARD(20)	Card	Data card image buffer.
IFILE	Card	File number (30).
IFORM	Card	Card format number (1-4).
ISEQ	Card	Card image sequence number
ISIDE	Card	Force designator (B or R)
IACT(3)	Card	List of three activity indexes.

Name	Source	Contents
OPEND(3,7)	Card	Seven data items about unprotected (open) personnel for each of the three activity indexes given by IACT. The seven items are: percent standing unwarned, percent prone unwarned, percent in foxhole unwarned, percent standing warned, percent prone warned, percent in foxholes warned, and time to revert from warned to unwarned posture.
IACTX	Card	Activity index (1-7).
IRANK(6)	Card	List of six protection priorities (orders of choice) between 1 and 100.
COVERD(6,3)	Card	Three data items about protected (covered) personnel for each of the six protection priorities. The three items are: the equipment item code, the number of personnel protected, and the number of casualties per item lost.

c. Output Variables:

Name	Destination	<u>Contents</u>
NERR	Call	Number of serious data errors detected.
ISEQ	Print	Card image sequence number.
KARD(20)	Print	Data card image buffer.
UNPRO(7,7)	DF30	Table of unprotected personnel data; i.e., seven data items for each of seven activity indexes. The seven items are: percent standing unwarned, percent prone unwarned, percent in foxholes unwarned, percent standing warned, percent prone warned, and percent in foxholes warned, and time to revert from warned to unwarned postures.
EOHPRO(3,100)	DF30	Three data items (equipment item code, number of personnel per item, and number of casualties per item lost) for 100 protection priorities.

d. Logical Flow (Figure II-9-B-3):

(1) Blocks L50, L61, 1, L63, 2, and 3. The data file 30 cards are read and copied to a temporary disk file (logical unit 30). Each card is read with a 20A4 format, assigned a sequence number, and printed. The card

Figure II-9-B-3. Routine LOAD30 (Continued on Next Page)
II-9-B-14

Figure II-9-B-3. Routine LOAD30 (Continued)
II-9-B-15

Figure II-9-B-3. Routine LOAD30 (Continued)
II-9-B-16

Figure II-9-B-3. Routine LOAD30 (Concluded)

image is written on the temporary file with the last four characters replaced by the new sequence number. The last data card has a card ID of 9999 in card columns 73-76. The card image file is positioned to the first card image after the last card is copied.

- (2) Block 4. NERR is the number of serious detectable data errors which will be returned to AFMLD and it is set to zero before the editing process begins.
- (3) Block 5. Each group of cards with the same card ID (i.e., 3001 or 3002) must be preceded by a header card which is blank except for the card ID.
- (4) Block L200. The card ID consists of four numeric characters, the first two of which are the file number (30), the last two are the card format number (01, 02, 99). If the file number is 30, transfer control to block L210.
- (5) Block 6. If the card format number is 99 transfer control to block L229.
- (6) Blocks 7 and 8. If the card ID is not 3001, 3002, or 9999, an error has occurred. An appropriate error message is printed and the error counter (NERR) is incremented.
- (7) Block L210. This block represents a computed GO TO statement which branches to appropriate code for reading the next card image according to the card format number. If the card format number is two, control is transferred to block L250. If the card format number is one, control goes to block L270.
- (8) Block L220. Using format 3001, the following variables are filled from the next card image: ISIDE, IACT(7), OPEND(3,7), IFILE, IFORM, and ISEQ.
- (9) Block 9. If IFORM is not equal to one, which indicates that the header card of the next card group has been read, control goes to block L200.
- (10) Blocks 10 and 23. Routine EDITF1 is called to edit the one-character force designator (ISIDE). If ISIDE is neither B nor R, EDITF1 prints an error message and increments the error counter (NERR).
- (11) Block 11. The UNPRO array is read from data file 30 to be updated with the new data.
- (12) Block 12. The first/next activity index is selected from IACT(1-3).
- (13) Block 13. The activity index from TACT is edited by routine EDITF5. If the index is not between one and seven, EDITF5 prints an error message and increments the error counter.

ARMY COMBINED ARMS COMBAT DEVELOPMENTS ACTIVITY FORT--ETC F/6 15/7 DIVIAG MODEL DOCUMENTATION. VOLUME II. PROGRAMMER/AMALYST MAMUA--ETC(U) JL. 76 CACDA-TR-8-76-VOL-2-PT-1 NL AD-A112 656 UNCLASSIFIED

- (14) Block 14. The percent sum (IPCSUM) is used to verify that each unwarned and warned posture sums to 100 percent.
- (15) Block 15. The first/next of six postures is selected: standing unwarned, prone unwarned, foxhole unwarned, standing warned, prone warned, and foxhole warned.
- (16) Blocks 16 and 17. The percent of personnel in this posture is given in OPEND and is stored in UNPRO which will be returned to data file 30. The percent is also added to IPCSUM.
- (17) Block L230. If the last posture has not been processed, control returns to block 15.
- (18) Block 18. The seventh data item about unprotected personnel is the time to revert from warned to unwarned posture. This is taken from OPEND and stored in UNPRO.
- (19) Blocks 19, 20 and 21. The percentages in the three unwarned postures total 100 percent, as do the percentages in the three warned postures; therefore, the total percent sum (IPCSUM) is 200; if it is not, an error message is printed and the error counter incremented.
- (20) Blocks L240 and L245. If last activity index has not been processed control returns to block 12; otherwise the UNPRO table is placed into data file 30.
- (21) Block L250. Using format 3002, the following variables are filled from the next card image; ISIDE, IACTX, IRANK(6), COVERD(6,3), IFILE, IFORM, and ISEQ.
- (22) Block 22. If IFORM is not equal to two, it indicates that the header card of the next card group has been read, and control is transferred to block L200.
- (23) Block 24. The activity index (IACTX) is edited by routine EDITF5. If the index is not between one and seven, EDITF5 prints an error message and increments the error counter.
- (24) Block 25. EOHPRO(3,100) is the table of personnel protection data for a single activity. In this case it is taken from data file 30 according to IACTX.
- (25) Block 26. The first/next protection priority (order of choice) is selected from the IRANK table.

A STATE OF THE STA

(26) Block 27. Routine EDITF4 is called to edit the order-of-choice index. If the index is not between 1 and 100, EDITF4 prints an error message and increments the error counter.

- (27) Block 28. Routine EDITF3 is called to edit the item code of the equipment item which is specified to provide personnel protection. If the item code is not between 1 and 200, EDITF3 prints an error message and increments the error counter (NERR).
- (28) Block L260. The three protection data items for this protection priority are copied from the COVERD array to the EOHPRO array. The column index is identical to the order-of-choice index.
- (29) Blocks L270 and 29. If the last protection priority has not been processed, control transfers to block 26; otherwise the EOHPRO table is returned to data file 30 and control is transferred to block L250.
- (30) Block L299. After the last card image has been read, the number of data errors detected (NERR) is printed for the user.

5. ROUTINE DUMP29:

a. Purpose. DUMP29 prints the data which LOAD29 loaded onto the DIVWAG data files: (i.e., the contents of data file 29 and two selected portions of data file 25).

b. Input Variables:

<u>Name</u>	Source	Contents
MUNDAT(216)	DF29	Munition data, data file 29 record.
IWEOHX	DF29	MUNDAT(1). Weapon item code.
IMEOHX	DF29	MUNDAT(2). Munition item code.
LAPERS(3,2)	DF29	MUNDAT(3). Lethal areas to personnel in three postures(standing, prone, foxhole) and two environments (unforested, forested).
LAEOH(200)	DF29	MUNDAT(9). Lethal areas for 200 equipment items.
MAXRNG	DF29	MUNDAT(209). Maximum range of munition.
MINRNG	DF29	MUNDAT(210). Minimum range of munition.
SIGTAB(6)	DF29	MUNDAT(211). Round dispersion errors at six range points between maximum range and minimum range.
WMPARM(36,11)	DF25	Weapon/munition combination parameter table for TACFIRE: eleven parameters for 36 weapon/munition combinations.

MUNDES (3,36) DF25

Munition description table for countermortar/ counterbattery: three data items for 36 weapon/munition combinations.

- c. Output Variables. Same as input variables, destination being the printer.
 - d. Logical Flow (Figure II-9-B-4):
- (1) Block 1. Each force is selected separately according to the force index (IFORCE); 1 for Blue, 2 for Red.
- (2) Blocks 2 and 3. The weapon/munition combination parameter table (WMPARM) is taken from data file 25. It contains eleven words per weapon/munition combination, two of which are not used. This parameter table is printed.
- (3) Blocks 4 and 5. The munition description table (MUNDES) is taken from data file 25. It contains three data items per weapon/munition combination. This table is printed.
- (4) Block 6. Select the first/next of each of the 36 weapon/munition combinations by selecting the combination index (IMUN).
- (5) Block 7. One record for each weapon/munition combination is brought into MUNDAT from data file 29.
- (6) Block 8. The weapon/munition header consisting of the record number, the force name (RED or BLUE), the weapon/munition index (IMUN), the weapon item code (IWEOHX), and the munition item code (IMEOHX) are printed.
- (7) Block 9. Six lethal areas against enemy personnel are listed for standing, prone, and foxhole postures, in both unforested and forested environments.
- (8) Block L1000. An array (LAPRIN) is built containing nonzero lethal areas and the corresponding item codes so that only the nonzero lethal areas can be printed.
- (9) Block L2000. The six round dispers from (SIGTAB) are printed with the six corresponding range points. The six range point is MAXRNG, the last is MINRNG, and the four intermediate anges are calculated.
- (10) Block L4000. If all of the weapon/munition combinations have not been processed, control is transferred to block 6.
- (11) Block L5000. If Red force has not been processed, control transfers to block 1.

Figure II-9-B-4. Routine DUMP29

II-9-B-22

6. ROUTINE DUMP30:

a. Purpose. DUMP30 prints the data contained on data file 30, the personnel protection data.

b. Input Variables:

Name	Source	Contents
UNPRO(7,7)	DF30	Table of unprotected personnel data; i.e., seven data items for each of seven activity indexes. The seven items are: the percent of personnel in standing, prone, and foxled postures, both unwarned and warned, and the time to revert from warned to unwarned postures.
EOHPRO(3,100)	DF30	Three data items (equipment item code, number of personnel per item, and casualties per item lost) for 100 protection priorities.

- c. Output Variables. Same as input variables, destination being the printer.
 - d. Logical Flow (Figure II-9-B-5):
- (1) Block 1. Select separately each of the two force indexes: 1 for Blue, 2 for Red.
- (2) Block 2. The UNPRO table for the force is brought in from data file 30.
- (3) Block 3. The first/next index of seven activity indexes is selected.
- (4) Block 4. The activity header consisting of the record number, the force name (BLUE or RED), the activity index (IACTX), and the activity name taken from the IACT table are printed.
- (5) Block 5. The personnel protection by equipment table (EOHPRO) is brought in from data file 30 for this activity index.
- (6) Block 6. The percent of personnel in the three postures (standing, prone, foxhole) is printed from the UNPRO table for the two separate cases of unwarned and warned for this activity index.
- (7) Block L2000. The order of choice, item code, number of personnel per item, and number of casualties per item lost are printed from the EOHPRO table for those items listed as protecting personnel.

Figure II-9-B-5. Routine DUMP30
II-9-B-24

- (8) Block L4000. If all of the activity indexes have not been processed, control is transferred to block 3.
- (9) Block L5000. If the Red force has not been processed control transfers to block 1.

APPENDIX C

AREA FIRE DATA LOAD OUTPUT DESCRIPTIONS

1. INTRODUCTION. Nine different printouts of constant data inputs are generated after the data have been read into the files. (It is coincident that there are nine output reports and nine card types for input.) These printouts are listed in Figure II-9-C-1.

Printout Title	Data Source
Data File 29 80-Column Card Image	Card Data Deck
Weapons and Munitions Characteristics and Performance	Data file 29
Weapons and Munitions Delivery Parameters	Data file 25
Weapons and Munitions Description	Data file 25
80-Column Card Image for Personnel Data	Card Data Deck
Personnel Data	Data file 30

Figure II-9-C-1. Area Fire Constant Data Printouts

- 2. DATA FILE 29 80-COLUMN CARD IMAGE. In Figure II-9-C-2 is an illustration of this format. At the top line, far left, are the characters 1B, indicating that the data are for the Blue force and represent index 1 in combining UTDs with common dimensions and distribution of personnel and equipment. At the far left is the card number, preceded by ID 2901. The data between the far right and far left columns are actually entered into the file.
- 3. WEAPONS AND MUNITIONS CHARACTERISTICS AND PERFORMANCE. This format is illustrated in Figure II-9-C-3. The upper third of the figure shows data originally recorded in card ID 2901; i.e., lethal area against Red personnel, both forested and unforested. The center of the figure shows lethal areas for Red force equipment data initially transcribed on card ID 2902. The lower third of the figure shows deflection and range errors for six different range distances beginning with maximum at the left and proceeding to minimum at the right.

THE RESIDENCE OF THE PARTY OF T

4. WEAPONS AND MUNITIONS DELIVERY PARAMETERS. This format is illustrated in Figure II-9-C-4. The weapon item code and the munition item code are read from card ID 2901 and the remaining data are read from card ID 2903. The columnar headings designate the following data. The data are stored in data file 25.

CAKU	2 (CARO	CARJ	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARO	CARD	CARD	CARD	CARD	CARJ	CARD	CARD	CARD	CARD	CARD	CARO	CARD	CARD	CARD	CARD	CARD	CARD	CARD	CARD
													12	<u>;</u>										35	12											35	-	~	m		r.	•	~
1062	1000	2901	2901	2901	2901	2901	2961	2961	29.01	2981	2903	2902	2902	2902	2062	2062	2902	2902	2902	2902	2902	2902	2902	2062	2902	2902	2902	2062	2902	2902	2902	2002	2902	2902	2902	2062	2902	2962	2062	2062	2902	2902	2902
													18	5	36	450	450	104	207	53	5	1.6	207		18	r	36	450	450	104	207	63	5	18	207		867		334			725	
•	•	~	24	24	51	57		57	25	, <u>c</u>			15140	18147	18 73	450113	450120	63 85	9 32	104 62	5160	18167	16174		18140	18147	18 73	456113	450120	63 85	9 32	104 62	5160	18167	18174		867116	867	834 90		780	725 27	
											5,1195 11	•	16139	18146	18 71	450112	450119	63126	200 29	9 63	18187	18166	18173		18139	18145	18 71	450112	450119	63126	200 29	9 63	18187	18165	18173		857115	867122	834 88		780 59	725126	1
276	613	275	452	452	5058	3591	0 3 6 3	35.38	7140	577	92532		161 38	9145	18 72	63111	450118	36125	200 23	9 6	9186	18165	18172		181 38	9145	18 72	63111	450118	36125	200 23	9 26	9186	18165	18172		867114	867121	834174		780 62	725125	
											2375	•	18137	134166	18 70	450110	450117	63124	22 29	9 54	5185	1,8164	19171		16137	104144	18 70	450110	450117	63124	63 27	9 54	5185	18164	18171		857113	867120	834168		780 60	725124	
											117147	•	91 35	18143	36150	53 78	50116	50123	96 90	9 52	5 36	5163	18170	r.	91.15	18143	15150	53 78	50116	50123	36 38	25 6	5 36	5163	18170	'n	57112	57119	34 97				725
4		1 2	98	98	991	623	076	606	1126	52.4	212224	•																															725 33 7
20	•	27	رع دع	51	53	7	5	£	2	. 0		;	~	13	F. F.	63	450	450	104	σ	σ	T.	207	18	~	18	4	63	450	450	154	6	5	g,	207	18	867	867	834	75.8	780	62	725
30	C	2	2	50	25	25	S.		, y	ď	3	•	71	141	1 48	75	114	121	88	33	58	161	158	175	21	141	149	75	114	121	3 6	33	28	161	168	175	78	117	35	76	75	21	23
٠	-	~	m	*	'n	ی	~	•	σ	, 6	; ;	:	C	5	C	5	0	6	01	0	5	01	CI	0.1	20	05	25	05	20	05	23	05	2	62	05	20	03	03	03	60	03	5	03

The state of the s

FILE-29 DATA CARN IMAGES

					LETHAL ARFA	ć		œ	104	67.	2.4	1 0	253	450	63	9 .	3 0	v a	•	207	18	•
	(SO. WETFPS)		(SO. MFTFRS)		ITEH COPE	2.0		25	ا ور	~:		113	117	121	125	139	7.	39	191	168	172	176
FOXHOLE	ır	FOXHJLE	~	ERSI	ETHAL AREA	203		(* (.		10.	120	450	453	£.,		D 4		: 5	£	91	
PRONE	200	PROPE	104	(SO. MEY		2.3	i															
STINGING	057	STANDING	275	DUIPYENT			80 E	20		1 %	97	112	116	120	164		4 6	150	163	167	171	167
* 1s		2 15		AINST PED E(LETHAL ARFI	σ	202	0) PC	104	950	200	420			. A	36	ī.	8	18	18
FASOWNEL. NO FORE				LFTHAL ARFAS AG	ITEM CODE	22	25	e 4	2.	7.	36	111	113	119	135	161	145	149	162	166	34.	186
ACAINST REJ DE		AGBINST REG PE			LFTHAL ARES	~	σv	• •	¥.9	36	104	en e		9 5	63	1.8	o r	63	٠ ,	B .	6 6	3
LETHAL AREA		LETHAL ADER			ITEM CADE	52	623	30	29	73	. 65	D 1 .		122	126	146	11		151	. e.	17.1	115
	PRONE	STAVOING PRONE FOXHOLE 450 200 5	STAMOING PROME FORMOLE STANDING PROME FORMOLE	STANDING PRONE FOXHOLE STANDING PRONF FOXHOLE	STAMOING PRONE FORMOLE STANDING PRONE FORMOLE 275 1C4 2	STANDING PROME FORMOLE STANDING PROME FORMOLE 275 164 2 (SO, HETERS) HAL ARFA ITEM CODE LETWAL AREA ITEM COPE	HAL ADEA AGAINST RET) PERSONNEL, NO FOREST Y STANDING PROME FOXHOLE 450 200 5 150, WETFPS) HAL ADEA AGAINST RES PERSONNEL, FOREST Y STANDING PROME FOXHOLE 275 1C4 2 150, WETERS) EM CADE LETHAL AREAS AGAINST PRO EQUIPMENT 159, WETERS) 27 1TEM CODE LETHAL AREAS AGAINST PRO EQUIPMENT 159, WETERS) 28 2 4 28 4 28 28 5 20 5	HAL ADEA AGAINST RET) PERSONNEL, NO FOREST Y STANDING PROME FOXHOLE LETHAL AREAS AGAINST PED EQUIPMENT 159, METERS) EM CADE LETHAL AREAS AGAINST PED EQUIPMENT 159, METERS) 275 1C4 2 150, METERS) LETHAL AREAS AGAINST PED EQUIPMENT 159, METERS) 28 20 32 20 9 33 27 35 27 35 35 35 35 35	HAL APEA ACAINST RET) PERSONNEL, NO FOREST Y STANDING PRONE FOXHOLE 450 200 5 150, HETEPS) HAL APEA ACAINST RET STANDING PRONE FOXHOLE 275 1C4 2 150, HETERS) EM CADE LETHAL AREA SCAINST PED EQUIPMENT 150, METERS) EM CADE LETHAL AREA ITEM CODE LETHAL AREA ITEM CODE 21 9 20 35 51 65 16 35 72 75 150, HETERS)	HAL APEA ACAINST RET DEGENAREL, NO FOREST Y STANDING PRONE FOXHOLE 450 200 5 150, WETFPS] HAL APEA ACAINST RED EQUIPMENT 150, WETERS] EM CODE LETHAL AREAS ACAINST PED EQUIPMENT 150, WETERS] EM CODE LETHAL AREAS ACAINST PED EQUIPMENT 150, WETERS] 21 27 31 9 35 27 4 35 50 9 55 65 65 65 65 65 65 65 65 65 65 65 65	HAL APER ACAINST RET PERSONNEL, NO FOREST Y STANDING PRONE FOXHOLE LETHAL AREAS ACAINST PED EQUIPMENT (50, MEYERS) EM CAOPE LETHAL AREAS ACAINST PED EQUIPMENT (50, MEYERS) EM CAOPE LETHAL AREAS ACAINST PED EQUIPMENT (50, MEYERS) EM CAOPE LETHAL AREAS ACAINST PED EQUIPMENT (50, MEYERS) 23 22 20 9 35 35 55 55 55 9 9 56 65 65 65 65 65 65 65 65 65 65 65 65	HAL ADEA AGAINST RET PERSONNEL, NO FOREST Y STANDING PRONE FOXHOLE 450 200 5 150, WETFPS) HAL ADEA AGAINST RED PROPERTY STANDING PRONE FOXHOLE 275 1C4 2 150, WETFRS) EM CADE LETHAL AREAS AGAINST PED EQUIPMENT 1590, WETERS) EM CADE LETHAL AREA 1TEM CODE LETHAL AREA 1TEM CODE LETHAL AREA 1TEM CODE 23 22 207 9 56 9 56 9 56 9 56 9 56 9 56 100 572 110	HAL ADEA AGAINST RET DEGEONNEL, NO FOREST Y STANDING PRONE FOXHOLE HAL ADEA AGAINST REG PRECONNEL, FOREST Z STANDING PRONE FOXHOLE 275 1C4 2 100, WETERST 275 1C4 2 100, WETERST 276 LETHAL AREA SAGINST PED EQUIPMENT 150, WETERST EW CODE LETHAL AREA SAGINST PED EQUIPMENT 150, WETERST 27 32 20 9 9 6 6 6 6 9 9 6 6 6 6 9 9 6 6 6 6 6	HAL ADEA AGAINST RETT DEGENNEL, NO FOREST T. STANDING PROME FOXHOLE HAL ADEA AGAINST RED PERSONNEL, FOREST T. STANDING PROME FOXHOLE 275 1C4 2 (50, WETFRS) LFTHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EM GNOF LFTHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EM GNOF LFTHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EM GNOF LFTHAL AREAS AGAINST PED EQUIPMENT (50, METERS) 27 32 20 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	HAL ADEA ACAINST RET DEGEONMEL, NO FOREST Y STANDING PRONE FOXHOLE LETHAL APEA ACAINST RED EQUIPMENT (59, METERS) LETHAL AREAS ACAINST PED EQUIPMENT (59, METERS) EM CADE LETHAL AREAS ACAINST PED EQUIPMENT (59, METERS) LETHAL AREA 11EM CODE LETHAL AREA 11EM CODE 27	HAL ADEA ACAINST RET DEGEONNEL, NO FOREST Y STANDING PROME FORMOLE LETHAL AREAS ACAINST PED EQUIPMENT (59, WETERS) EM CADE LETHAL AREAS ACAINST PED EQUIPMENT (59, WETERS) LETHAL AREAS ACAINST PED EQUIPMENT (59, WETERS) EM CADE LETHAL AREAS ACAINST PED EQUIPMENT (59, WETERS) LETHAL AREA ACAINST PED EQUIPMENT (59, WETERS) LETHAL ACAINST PED	HAL ADEA ACAINST RET PERSONNEL, NO FOREST Y STANDING PROME FORHOLE 450 200 5 150, METERS) 450 450 115 450 11	HAL APER ACAINST RET) DEGENOMEL, NO FJREST Y STANDING PROME FOXHOLE LETHAL AREAS ACAINST PED EQUIPMENT (50, WETERS) EM GODE LETHAL AREAS ACAINST PED EQUIPMENT (50, WETERS) EM GODE LETHAL AREAS ACAINST PED EQUIPMENT (50, WETERS) EM GODE LETHAL AREAS ACAINST PED EQUIPMENT (50, WETERS) LETHAL AREAS ACAINST PED EQUIPMENT (50, WETERS) EM GODE LETHAL AREAS ACAINST PED EQUIPMENT (50, WETERS) 275 1C4 2 C (50, WETERS) 275 1C4 2 C (50, WETERS) 275 1C4 2 C (50, WETERS) 276 4 C (50, WETERS) 277 1C4 2 C (50, WETERS) 278 4 C (50, WETERS) 279 4 C (50, WETERS) 270 4 C (50, WETERS) 270 4 C (50, WETERS) 270 4 C (50, WETERS) 271 1C4 2 C (50, WETERS) 271 1C4 2 C (50, WETERS) 272 4 C (50, WETERS) 273 4 C (50, WETERS) 274 1 C (50, WETERS) 275 1 C (50, WETERS) 276 4 C (50, WETERS) 277 1 C (50, WETERS) 278 4 C (50, WETERS) 279 4 C (50, WETERS) 270 4 C (50, WETERS) 271 C (50, WETERS) 272 4 C (50, WETERS) 273 4 C (50, WETERS) 274 4 C (50, WETERS) 275 4 C (50, WETERS) 276 4 C (50, WETERS) 277 1 C (50, WETERS) 278 4 C (50, WETERS) 279 4 C (50, WETERS) 270 4 C (50, WETERS) 271 C (50, WETERS) 272 4 C (50, WETERS) 273 4 C (50, WETERS) 274 4 C (50, WETERS) 275 4 C (50, WETERS) 276 4 C (50, WETERS) 277 4 C (50, WETERS) 278 4 C (50, WETERS) 279 4 C (50, WETERS) 270 5 C (50, WETERS) 270 6 C (5	HAL APER ACAINST RET DEGENOMEL, NO FOREST Y STANDING PRONE FOXHOLE LETHAL AREA ACAINST PEO EQUIPMENT (SO, METERS) LETHAL AREA TIEN CODE LETHAL ABEA TIEN CODE LETHAL AREA TIEN COPE LETHAL AREA TIEN CODE LETHAL ABEA TIEN CODE LETHAL AREA TIEN COPE LETHAL AREA TIEN CODE LETHAL ABEA TIEN COPE LETHAL AREA TIEN CODE LETHAL ABEA TIEN COPE LETHAL AREA TIEN CODE LETHAL AREA TIEN COPE LETHAL AREA TIEN	HAIL ADER ACAINST RET DEGEONNEL, NO FOREST Y STANDING PRONE FOXHOLE HAIL ADER AGAINST GEO DEGEONNEL, FOREST Y STANDING PRONE FOXHOLE EFFORM THE AREAS AGAINST PED EDUTPHENT (50, METERS) EFFORM THE AGAINST PED EDUTPHE	HAL ADER ACAINST RET DERSONNEL, NO FOREST Y STANDING PRONE FOXHOLE MAL ADER AGAINST RES DERSONNEL, FOREST Y STANDING PRONE FOXHOLE EFFICION LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREA AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREA AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREA AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREAS AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREA AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREA AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREA AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREA AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREA AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREA AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AREA AGAINST PED EQUIPMENT (50, METERS) EFF CODE LETHAL AG	FINDING PROME FORHOLE STANDING PROME FORHOLE 275 1C4 2 1C9 45 100 MFTERS) HAL ARFA ITEM CODE LETWAL AREA ITEM CONE 1 3

ARFA

Figure II-9-C-3. Weapons and Munitions Characteristics and Performance

HINRANGE 50 9

0 % 11

1813 12

2726

1610

2

SIGNA (METERS) 2 # (Sallin) agnes

OFFLECTION AND PANCE EPROP (SIGNA) AS FUNCTION OF PANCE

Figure II-9-C-4. Weapons and Munitions Delivery Parameters

EFFECTS RADIUS	T W F W W W W T W T W T W T W T W W W W
MINI NUM Pange	00000000000000000000000000000000000000
HAXI MUM RANGE	
ROUND LIMIT	8005NNNN\$\$4000000000000000000000000000000
SECONDS SECONDS SECONDS TO FIRE PER ROUND RC FIRE PEP ROUND PER ROUND RC FIRST ROUND RATE SUSTAINED RATE MA	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
SECONDS PEP ROUND HAXIMUM RATE	4 4444330 NN W W W W C C C C C C C C C C C C C C C
HOLL INCH	NOW SE
NEAPON ITEM CODE	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
WE A P C N / W U N T T I C N. I N D F Y	またさん ちゃっぱい ちょうきゅうちょう はっぱっぱい さいきょう でんさん かんかい かままままままま まま まま しょう こうごうごうごうごう できる まる ちゅう

- 5. WEAPONS AND MUNITIONS DESCRIPTION. This format is illustrated in Figure II-9-C-5. The information is read from card ID 2904 and stored in data file 25. The mean angle of fire is printed in decidegrees and represents the angle between the horizontal and the direction of fire. The projectile length and caliber are printed in millimeters in the third and fourth columns, respectively.
- 6. EIGHTY-COLUMN CARD IMAGE, PERSONNEL DATA. This format is shown in Figure II-9-C-6. It lists the card image of data for loading data file 30 with personnel data.
- 7. PERSONNEL DATA. The personnel data, the postures that they may assume in combat, and the type of equipment available to afford protection are shown on this printout, Figure II-9-C-7. The table in the upper part of the figure has data originally transcribed in card ID 3001. The lower half of the figure has data in card ID 3002.

The state of the s

PLUEWEAPON/MUNITION DESCRIPTION(FILE-25)

WEAPONZMUNITION	MEAN ANGLE	LENGTH	CALIBER
INDEX	OF FIGE	MM	MM
1	500.	528	81
?	599.	528	81
र	592.	555	107
L	193.	831	105
5	183.	700	155
6	189.	700	155
7	293.	733	155
8	290.	700	155
9	?71.	892	203
1.7	183.	1732	175
11	140.	13563	762
12	2.	C	
17	3.	č	Ē
14	9.	Č	ě
15	ũ.	С	ā
15	2.	Č	Ē
17	3.	٤	Ĉ
19	G.	00000000	ē
19	0.	c	3
20	J.	C	2
21	≎.	ξ	į
2?	3.	S	3
23	3.	2	Ĵ
24	€.	Û	Ĵ
25	5 •	С	ċ
25	3.	8	3
27	9.	0 0	3
2 ^g	å •	Û	9
5.3	2•	0 C	3
73	3 •	Ĉ	3
31	C •	C	30995699699999999999
32	3.	0 C 0	3
₹ ₹	3.	5	S
34	ۥ		\$
35	J•	3	ε
36	€.	0	ĩ

Figure II-9-C-5. Weapons and Munitions Description

Control of the last of the las

Image

Data File 30 80-Column Card

Figure II-9-C-6.

II-9-C-7

ACTIVITY INCEX 1 (STAY

PERSONNEL NOT PROTECTED BY FAULBHENT

FOXHOLE	1.0	FOXHOLE	14	
PRONE	9	PRONE	90	(MINUTES)
STANDING	30	STANDING	m	r
POSTUPE GREAKDOMN, UNHARNED %		POSTURE 9RF4400MM, WARNED 2		TINE TO RETURN TO UNMARNED POSTURE %

PROTECTION OF PEPSONNEL BY SOUIPHENT

CASUALTIES Per Loss	44044 840 864
PERSONNEL Per Item	ፈ ታ ሰፊ መቆመ መመ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ መ
ITEM	
PROTECTION PRIORITY	କ୍ଷାଧିକ ଓ ଜଣ ବ୍ୟସ୍ଥ ସେ କ୍ଷ୍ୟ ବ୍ୟସ୍ଥ ବ୍ୟସ

Figure II-9-C-7. Personnel Data

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR AREA FIRE

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 10

TACFIRE DATA INPUT PROGRAMS

1. INTRODUCTION. The TACFIRE data input programs create and load the data file required by the TACFIRE Model. These data consist of target priority and method of attack tables.

2. ROUTINES:

- a. General. The routines described in the following paragraphs comprise the TACFIRE data input programs.
- b. Routine TACLD. This routine controls the other routines of the TACFIRE data input. It also creates and initializes the required data file. After that has been completed, it calls utility routines LOAD25 and DUMP25.
- c. Routine LOAD25. This routine is responsible for the reading and editing of the data cards. It also stores the data extracted from the cards in the appropriate position on the file.
- d. Routine OSORT. This routine is called by LOAD25 for the purpose of ranking a list of values in ascending order.
- e. Routine DUMP25. This routine provides a listing of the file contents in tabular form.
- 3. FILES. Data file 25 is loaded by the TACFIRE data input programs.

APPENDIX A

TACFIRE DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for tactical fire direction systems are documented in Appendix A, TACFIRE Model Input Requirements, to Chapter 9 of the Period Processor (Section IV).

APPENDIX B

TACFIRE DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. The input data of the TACFIRE Model are loaded by the routines described in this appendix. TACLD initializes the data file and calls routine LOAD25 to read data cards and load the data, and routine DUMP25 to provide a formatted listing of the data. LOAD25 is supported by a utility sort routine, OSORT.

2. ROUTINE TACLD:

- a. Purpose. Program TACLD is the driver for loading constant data target priority and method of attack tables required by the DIVWAG TACFIRE Model. These data are loaded onto data file 25.
- b. Input Variables. Input variables consist of TACFIRE data entered on cards 2501, 2502, and 2503. (Refer to LOAD25 routine.)
- c. Output Variables. TACFIRE data stored on data file 25. (Refer to DUMP25 routine.)
 - d. Logical Flow (Figure II-10-B-1):
- (1) Block 1. A call is made to routine GETFLE to retrieve the file name table.
- (2) Block 2. A call is made to the routine CREATE to create the TACFIRE record on data file 25 with one record of 27092 words.
 - (3) Block L90. Initialize priority area of data file 25.
 - (4) Block L100. Initialize method of attack area of data file 25.
- (5) Block 3. Call routine LOAD25 to read the data cards and load data file 25.
- (6) Block 4. If no errors were detected in LOAD25, a call is made to routine DUMP25 to list data file 25.
- (7) Block 5. The file name table is listed and the routine is terminated.

3. ROUTINE LOAD25:

a. Purpose. Routine LOAD25 loads the TACFIRE Model's target priority and method of attack tables onto data file 25.

Figure II-10-B-1. Routine TACLD

b. Input Variables:

<u>Name</u>	Source	Contents
KARD(20)	Card	TACFIRE Model's data file 25 entries on card formats 2501, 2502, and 2503.
IRNGP(4,5,77)	Card	TACFIRE Model's target priority data for each of four possible target sizes and 77 activity-type combinations.
MTHATK(20,5,77)	Card	TACFIRE Model's method of attack table array. A table of 20 choices exists for each of the 77 possible activity-type target combinations.
NERR	Call	Error counter index.
KFORCE	Card	Force indicator on card being processed.
JFORCE	Card	Force indicator of previous card processed.

c. Output Variables:

Name	Destination	Contents
IRNGP(4,5,77)	DF25	Target priority tables.
MTHATK(20,5,77)	DF25	Method of attack tables.

d. Logical Flow (Figure II-10-B-2):

- (1) Blocks L50, 1, 2, and 3. The logic of LOAD25 begins by reading each data load card, printing the card image, and storing the card image on a temporary scratch file.
- (2) Block L70, 6, 7, 8, L76, and L80. The scratch file containing the TACFIRE card images is read and edited. Each card image is read. If the card image is a 2502 type all nonnumeric data are deleted. All card images are then rewritten to another scratch file.
- (3) Block 4. Initialization of the data arrays in common is accomplished by setting the entries of the target priority table array, IRNGP, to 100. These values are used in the model to indicate that no priorities have been assigned to the target in the data load. Valid target combinations are given priorities in the load data with values 1-99. The method of attack array, MTHATK, is zeroed in the initialization process.
- (4) Blocks 5 and 9. The first card in the deck is read and checked. If it is not a 2501 group card with no data entries, transfer control to block L210.

Figure II-10-B-2. Routine LOAD25 (Continued on Next Page)

Figure II-10-B-2. Routine LOAD25 (Continued)

Figure II-10-B-2. Routine LOAD25 (Concluded)

- (5) Blocks L300, 10, and L310. The second data card must have a valid force designator, R or B. If it does not, transfer control to block L210. The card contains the first set of target priority data.
- (6) Blocks L1105, 11, and L1110. These blocks edit the card identification format, the force designator, and the target priority table index.
- (7) Block L1120. The data on a single card, type 2501, contain two range cutoff values and three priority values (totaling five data entries) for each of four different target sizes. The data are stored in array IRNGP until all of the force's 2501 and 2502 card data have been processed. The data are then transferred to data file 25 using the indexing information contained on card format, identification 2503.
- (8) Block L1100. The remainder of card format 2501 data for the force are read beginning with this block.
- (9) Blocks L210, 12, 14, 15, 16, 17, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, L9900, 35, 36, 39, 40, 41, and 42. The logical process in each of these blocks prints an error message identifying the data error and increments an error counter index, NERR.
- (10) Block L1033. Control transfers to the proper logic to process the card identification format. Card format identification groups 2501, 2502, and 2503 must be read in sequence for each respective force.
- (11) Blocks 24 and 25. If the last card type read corresponds to the next sequence of the previously read card, control goes to block L1044. If the last card type read was a 2501 and the previous card was a 2503, control goes to block L1036; otherwise, control goes to block 26.
- (12) Block L1036. Initialize load arrays and set JFORM equal to one. Control goes to block L300.
- (13) Blocks L2200 through L2220. The method of attack table data for each weapon/munition combination listed are read into the MTHATK array for each method of attack table index. The data are stored in groups containing 10 data entries. Each card contains up to four groups.
- (14) Blocks L3300 through 45. The logic represented in these blocks reads the data on the third format, 2503. Each set of data on this card format is required to associate a target combination with the correct target priority table and method of attack table. The data are transferred separately for each combination. If an error has been detected previously, none of the data are transferred to data file 25.

4. ROUTINE OSORT:

a. Purpose. Routine OSORT is used to rank a list of N values in ascending order. The values are input in array LIST(N) in any order and are output in ranked order.

b. Input Variables:

Name Source Contest

LIST Call Array used to store values that are to be

arranged.

N Call Total number of values in LIST array.

c. Output Variables:

Name Destination Contents

LIST Call Array containing ranked packed priority values for each target combination.

d. Logical Flow (Figure II-10-B-3):

- (1) Block 1. Set variable for the maximum number of passes to be made through array to be sorted.
- (2) Block 2. Establish/increment outer do loop index. If all values have been sorted, return control to the calling routine.
- (3) Blocks 3 and 4. Set inner loop scan limit and initialize MAX and INDEX.
- (4) Block 5. Establish/increment inner do loop index. If inner do loop index is greater than the inner loop scan limit, control goes to block 6. Otherwise, control goes to block 8.
- (5) Blocks 6 and 7. If the inner loop indexed value is less than MAX, control goes to block 5; otherwise, set MAX equal to that value and set INDEX equal to its index position.
- (6) Block 8. If INDEX is equal to the inner loop scan limit, control goes to block 2.
- (7) Block 9. Interchange the old and new maximum values. Control goes to block 2.

5. ROUTINE DUMP 25

- a. Purpose. Routine DUMP25 is called by routine TACLD to produce a printed output record of the data loaded onto data file 25 and a summarized listing of the TACFIRE Model's target priority tables for each force.
- b. Input Variables: Input variables listed below are output variables in routine LOAD25.

Figure II-10-B-3. Routine OSORT (Continued on Next Page)

Figure II-10-B-3. Routine OSORT (Concluded)

Name	Source	Contents
IRNGP(4,5,77)	DF25	Target priority tables.
MTHATK(20,5,77)	DF25	Method of attack tables.

- c. Output Variables: The variables used as input are the output variables to the printer.
 - d. Logical Flow (Figure II-10-B-4):
 - (1) Block 1. The labels used in each print header are initialized.
- (2) Block 2. Routine DUMP25 processes and lists output for each force. This block initializes or increments a loop to process each force.
- (3) Block L500. Routine GETWRD is called twice: once to retrieve the priority tables from data file 25 and once to retrieve the method of attack tables from data file 25.
- (4) Blocks 3 and 4. The do loop indexes to extract data from the target type and method of attack tables are initialized or incremented.
- (5) Blocks 5 and 6. The header and priority table are printed for this combination.
- (6) Block 7. A summarized listing of target combinations in order of priority is produced after the TACFIRE priority and method of attack tables have been listed for the force. To rank the data according to the priority value, the packed priority value consisting of the priority, type, activity, table index, and range indexes is computed. The packed priority value is in array IRANK. The original target priority scale will always be retained.
- (7) Block 8. A method of attack table is printed for the specific target type and target activity data being scanned.
- (8) Block L3000. If there are more activity types to be scanned, transfer control to block 3.
- (9) Block L4000. If there are more target types to be scanned, transfer control to block 4.
- (10) Block 9. Routine OSORT is called to rank the entries in array IRANK in ascending order.
- (11) Block 10. A summarized listing of target combinations, in order of decreasing priority, is printed as part of the TACLD output records.
- (12) Block L5000. If there is another force to be processed, transfer control to block 2; otherwise, return control to the calling routine.

II-10-B-17

Figure II-10-B-4. Routine DUMP25 (Continued on Next Page)

Figure II-10-B-4. Routine DUMP25 (Concluded)

APPENDIX C

TACFIRE DATA LOAD OUTPUT DESCRIPTIONS

1. INTRODUCTION. Three types of printout formats are generated each time data are entered into the TACFIRE constant data input files. These printouts are listed in Figure II-10-C-1. These printouts were designed to assist those preparing constant data input to validate the data in the files and make necessary revisions as may be required.

Data Source
Card data deck
Data file 25
Data file 25

Figure II-10-C-1. TACFIRE Constant Data Printouts

- 2. DATA FILE 25 DATA CARD IMAGE. The 80-column card image data is illustrated in Figure II-10-C-2. At the top of the figure at the far left is the number 1 followed by the letter B indicating that the card type is 1 and the force is Blue. At the far right is the card number 1, the sequence of that card within this subdeck; that is, it is the second card in the deck illustrated in the figure. The third column from the right has the card ID 2501, indicating that this is range priority type data. By referring to the discussion of card type 1 and ID 2501, the reader may determine the meaning of the other entries on this line. For example, the Ol1 at the left on the top line refers to the weapon munition index. For a complete description of the input card images, refer to Appendix A to Chapter 9 of the Period Processor, TACFIRE Model Input Requirements.
- 3. PRIORITY AND METHOD OF ATTACK TABLES. The second TACFIRE constant data input printout is labeled Priority and Method of Attack Tables. It is illustrated in Figure II-10-C-3. The headings on the various tables are similar to those for the card formats. At the top of the figure is shown the table of priority by target size and range to that target. These data are taken from card ID 2501. The lower half of the figure has the method of attack table and is a composite of information taken from cards 2502 and 2503. The order of choice of weapons with the weapon/munition index are arrayed against the number of volleys to be fired on each of the target sizes listed.
- 4. SUMMARY REPORT OF TARGET PRIORITIES. The last format of the printout displays the summary data on target priorities. It is illustrated in Figure II-10-C-4. The data headings in this table are those used in the card formats in describing the data entries. This table permits a review of the logic of priority and range choice.

	121 1977 40105 2 7011 50 14 3 50 1 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	113			•	- 5		-5		, ;	~		;			٠.				3.5
### 300 C	1 170.00 40.00	32			-					· ()	•		١.,		ö	•		172		3
\$1, \$3,57, \$4,00,054, \$2, \$7,00, \$60, \$7, \$3, \$60, \$7, \$1, \$1, \$7,00, \$60, \$7, \$3, \$60, \$7, \$1, \$1, \$7,00, \$60, \$7, \$1, \$1, \$1, \$1, \$1, \$1, \$1, \$1, \$1, \$1		331			•	_		ξ,			~		٠,		, ,	-	-			٩
71 37072 401075 2 31171 5011.45 4 11.0. 10 72 37072 401075 2 31171 5011.45 3 5.0.1 1101.17 4 4 11.0. 110 73 37072 401075 2 31172 5011.4 3 5.0.1 1101.17 4 4 11.0. 110 73 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 4 11.0. 110 73 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 4 11.0. 110 73 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 4 11.0. 110 73 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 73 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 73 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 73 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 73 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 73 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 74 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 401075 2 31172 5011.4 3 5.0.1 1101.07 4 11.0 110 75 37072 501074 2 31172 5011.4 3 5.0.1 1101.07 4 1100 75 37072 501074 2 31172 5011.4 3 5.0.1 1101.07 4 1100 75 37072 501074 2 31172 5011.4 3 5.0.1 1101.07 4 1100 75 37072 501074 2 31172 5011.4 3 5.0.1 1101.07 4 1100 75 37072 501074 2 31172 5011.4 3 5.0.1 1101.07 4 1100 75 37072 501074 2 31174 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	\$1 70172	3			-	ະ				3	3		٠.		ď	•	c			Š
### 197122 ### 19713 ### 19714 ### 197101 ### 197101 ### 19710 ###	### 1712 ### 1712 #### 1712 ############	651			-	2		H		;;	٠,	~	. :		٠,		c .ı			3
73 7576 7 45375 7 5 5521 651.24 3 5521 1070274 4 55723 157074 15707	19.00	9			•	- '		20			٠,				٠,	-				٥
### ### ### #### #####################	10. 10004	2			.	٠, ;					M					-		N25.1		3
13 32022 400053 2 30013 600125 3 35013 1000125 4 1000 1 10	11 3022 40005 2 3003 50045 3 3002 10006 4 100 100 100 100 100 100 100 100 100 1					7 .						٠,	-: -:		, .			1 7 1		5
23 35072 401058 2 30101 500712 3 35071 1070713 4 1070 1070 1070 1070 1070 1070 1070 10	11 100002 400025 2 30001 500025 3 30002 1000026 4 1000 1000025 1 1000025 1 1000025 2 30001 500025 3 30002 1000026 4 1000 1000025 1 1000025 1 1000025 2 30001 500025 3 30002 1000026 4 1000 1000025 1					, -		3 2			, ,	, ~	; .		٠.		, =	1000		ع د
3 30002 400036 2 30002 500.25 3 300.2 100.05 6 4 100N 100 100 100 100 100 100 100 100 10	21 30012 40023 2 30103 50102 3 30102 101004 4 1010 1010025 1 101004 2 10100 3	::				, 5		36)		3			•		N26.1		ة د
33 33972 400335 2 30032 50035 3 35022 1000024 4 100N 100 1001 400108 2 30003 500345 3 35022 1000024 4 100N 100 1001 1001 100 100 100 100 100	31 39072 400035 2 30122 501225 3 35122 1031226 4 1610 10100851 1010034 400059 2 30103 500145 3 35121 1031264 4 1510 10100851 1010059 2 30103 500145 3 35121 1031264 4 1510 10100851 10100551 3 30103 400165 4 1510 10100851 10100551 3 30103 400165 4 1510 10100851 10100551 3 30103 400165 4 1510 10100851 10100551 3 30103 400165 4 1510 10100851 10100551 3 30103 400165 5 30103 500163 5 30103 5 3	121				3		30			0.00	٠.	10		٠	•		N25.21		5
\$1 30003 \$00104N \$2 30013 \$00012 \$3 30012 \$100026 \$4 100N \$100 \$10003 \$2 30011 \$00012 \$3 30011 \$100012 \$4 010004 \$4 100N \$1 30003 \$10003 \$2 30001 \$100013 \$3 30011 \$1000026 \$4 100N \$10003 \$2 30001 \$100013 \$3 30011 \$1000026 \$4 100N \$10003 \$2 30001 \$100013 \$3 30011 \$1000026 \$4 100N \$10003 \$2 30001 \$1000026 \$3 30001 \$1000026 \$4 100N \$10003 \$2 1000026 \$4 100N \$1000026 \$4 100N	### ## ### ### ### ### ### ### ### ###	131			•	8		2		3	9	~			. 0			N25.31		S
### 1993 # 403058	### ## ## ### ### ### ### ### ### ###	141			-	Ξ		5		000	. C E	~	2					N25.1		3
### 30012 #00123 Z 30101 500112 3 35011 1005512 6 1507 100 100 100 100 100 100 100 100 100 1	13 13072 401023 C 30101 500713 3 35011 1007024 4 100N 100NN2611 100003 4 100N 100NN261 10NN261 10	151			•	ະ		2		60	366	۰,	5		٠,			N2501		3
71 30702 403025 7 30001 500013 3 36001 100024 4 100N 100 72 100003 6 30002 500024 3 36001 1000024 4 100N 100 73 100003 400036 7 30001 500013 3 36002 100024 4 100N 100 73 100003 400036 7 100002 300013 3 36002 100024 4 100N 100 74 100003 5000034 7 100002 300004 3 10002 100024 4 100N 100 75 100003 5000034 7 100002 300004 3 100024 4 100N 100 75 100003 5000034 7 100002 300004 3 100024 4 100N 100 76 100003 5000034 7 100002 3 100004 3 1000034 4 1000 100 77 100N 100NN 2 30003 100004 3 50002 1000024 4 100N 100 78 100NN 2 30003 50003 50002 1000037 4 10000 100 78 100NN 2 30003 100004 3 50002 1000057 4 1000 100 78 100NN 2 50004 100008 3 50002 1000057 4 1000 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100008 3 50002 1000057 4 100N 100 78 100NN 2 50004 100000 3 30005 1000057 4 100N 100 78 100NN 2 50004 100000 3 30005 100000 4 100N 100 78 100NN 2 50004 100000 3 30005 100000 4 100N 100 78 100NN 2 50004 100000 3 30005 100000 4 100N 100 78 100NN 2 50004 100000 3 30000 4 100N 100 78 100NN 2 50005 100000 3 30000 4 100N 100 78 100NN 2 50005 100000 3 30000 4 100N 100 78 100NN 2 50005 100000 3 30000 4 100N 100 78 100NN 2 50005 100000 3 30000 4 100N 100 78 100NN 2 50005 100000 3 30000 4 100N 100 78 100NN 2 50005 100000 3 30000 4 100N 100 78 100NN 2 50005 100000 3 30000 4 100N 100 78 100NN 2 50005 100000 3 30000 4 100N	71 37772 400325 2 30001 500724 3 36031 10007024 4 100N 100N0201 1010 10003	191			3	2		5		00		_			٠,		~	,		S
13 100 10 10 10 10 10 10 10 10 10 10 10 10	### 1900 ### 1000 ###	17			₹.	χ:		26		56	30.0		2:		٠, ٠		5,	٠,		CA
11 102002 310034 2 102012 310022 3 35072 102022 4 102N 10102 310002 4 102N 10102 31002 4 102N 10102 31002 4 102N 10102 31002 31002 3 5002	### 1900 2000	141				3 :		3		9	7 1	٠,	; ;		₽,		-	٠, ,		5
11 (1020)2 3100034 2 102012 3101135 3 12002 10300384 4 1020 110132 2000034 4 1020 110132 2000034 4 1020 110132 2000034 4 1020 110132 2000034 2 102003 103003	11 102002 3100036 2 102002 3100012 3 1200 2 10300026 4 1201 100NN2501 13 102002 3100036 2 102002 3100012 3 1200 2 10300036 4 1201 100NN2501 13 100013 3100036 2 102002 3100012 3 1200 4 1201 120013 2 102012 2 102012 3 1200 4 1200 4 1201 100NN2501 1200 120013 2 102014 2 10201	6			•	2 9		•			3,6	٠.	35		_			٠ د		3 8
11 10000 100	11 100012 200034 2 100302 2000594 3 120012 3030634 1000 10008261 1000034 2 100302 200034 2 100302 200034 2 100302 200034 2 100302 200034 2 100302 2 103002 2 100302 2	3 5	•		-	2 6		200	•	, e	200	u -	36		٠,			٠, د.		33
\$\(\) \text{1.00} \text{3.000} \text{3.000} \text{5.000} \text{3.000}	\$\frac{1}{3}\$\$\fra	221	•			2		, ,	, ~	1 (1	170	٠.		_	ں د			ن د		35
\$1 30001 500012 2 30001 400013 3 5000 1000024 4 100N 100N 2 30002 400024 3 50002 1000024 4 100N 100N 2 30002 400024 3 50002 1000024 4 100N 100N 2 30002 500024 3 50002 1000024 4 100N 2 50002 100002 1000024 4 100N 2 50002 100002 1000027 4 100002 20002 100002 1000027 4 100002 20002 100002 1000027 4 100002 20002 100002 1000027 4 100002 20002 100002 1000027 4 100002 100002 100002 1000027 4 100002	\$1 30001 \$00012 \$ 30101 \$01012 \$ 3 15.0 \$ 100.	233	-		5	2		650	, 10	2	1000		13				-	, 0		5
\$1 30001 500013 Z 30001 A00014 3 30002 1000026 4 1000 1000	\$1 30022 \$00074 \$2 30302 \$00024 \$2 30013 \$100013 \$4 16019 \$10003552524 \$1 100N \$100NN \$2 30302 \$00074 \$2 50013 \$100076 \$4 160019 \$2600355251 \$1 100N \$100NN \$2 30303 \$500075 \$3 50012 \$100076 \$4 160019 \$2600735521 \$2 13003 \$100NN \$2 30303 \$500075 \$3 50012 \$1000076 \$4 160019 \$2600735521 \$2 13003 \$100NN \$2 30304 \$300076 \$3 50012 \$1000076 \$4 160019 \$2600735521 \$2 13003 \$20057 \$2 30304 \$300076 \$3 50012 \$1000076 \$4 160019 \$260073551 \$2 13003 \$20057 \$2 30304 \$300076 \$3 50012 \$1000076 \$4 16019 \$200073551 \$2 13003 \$20057 \$2 30304 \$300076 \$3 50012 \$1000076 \$4 16019 \$200073551 \$2 13003 \$20057 \$2 30304 \$300076 \$3 50012 \$1000076 \$4 16019 \$200073551 \$2 13003 \$20057 \$2 30304 \$300076 \$3 50012 \$1000076 \$4 16019 \$200073551 \$2 13003 \$20057 \$2 30304 \$300076 \$3 50012 \$1000076 \$4 16019 \$200073551 \$2 13003 \$20057 \$2 30304 \$300076 \$3 50012 \$1000076 \$4 16019 \$200072551 \$2 13003 \$20057 \$2 30304 \$300076 \$3 50024 \$1000076 \$4 16019 \$100NN551 \$2 10003 \$2 100075 \$2 1000076 \$3 50024 \$1000076 \$4 16019 \$100NN551 \$2 10003 \$2 100007 \$2 1000076 \$3 1000075 \$4 16019 \$100NN551 \$2 10003 \$2 100007 \$2 1000076 \$3 1000075 \$4 16019 \$100NN551 \$2 10003 \$2 100007 \$2 1000076 \$3 1000075 \$4 111 N2 \$2 16 12502 \$2 11 23 34 N 6 71 12 33 34 N 3 112 33 34 N 4111 N2 \$2 16 18502 \$2 11 2 33 34 N 6 71 12 33 34 N 3 112 33 34 N 4111 N2 \$2 16 18502 \$2 11 2 33 34 N 6 71 12 33 34 N 3 112 33 34 N 4111 N2 \$2 16 NS512 \$2 11 2 33 34 N 6 71 12 33 34 N 3 11 12 33 34 N 4111 N2 \$2 16 NS512 \$2 11 2 33 34 N 6 71 12 33 34 N 3 11 2 33 34 N 4111 N2 \$2 34 N 85512 \$2 11 2 33 34 N 6 71 12 33 34 N 3 11 12 33 34 N 4111 N2 \$2 34 N 8502 \$2 11 2 33 34 N 6 71 12 33 34 N 3 11 12 33 34 N 4111 N2 \$2 34 N 8502 \$2 11 2 33 34 N 6 71 12 33 34 N 3 11 12 33 34 N 4111 N2 \$2 34 N 8502 \$2 11 2 33 34 N 6 71 12 33 34 N 3 11 12 33 34 N 4111 N2 \$2 34 N 8502 \$2 11 2 33 34 N 6 71 12 33 34 N 3 11 12 33 34 N 4111 N2 \$2 34 N 8502 \$2 11 2 33 34 N 6 71 12 33 34 N 3 11 12 33 34 N 3 11 1 N 3 N 3 1 1 N 3 N 3 1 N 3 N 3	241			•	5		5		50	-	2	3		٠,		õ	ť		్
61 300C	### 100N 2 3032 ### 100 100	251			.	5		9		300	3 C C	~			.,			ت		3
11 100N 100NN 2 30134 700047 3 550.2 10.0024 4 1000.0 200.0 11.0 100NN 2 30135 500.5 4 3 550.2 10.0027 4 1000.0 200.0 11.0 100NN 2 30.0 3 100.0 3 4 3 550.2 10.0 2 4 10.0 0 2 10.0 10.0 10.0 10.0 10.0 10.0	11 100N 2 30103 500154 3 5002 1010224 10001N 20103 50501 100N 2 30103 500154 3 5002 1010224 1000N 2 30103 500154 3 5002 1010022 1000N 2 30103 500154 4 1000N 2 30103 500154 4 100N 2 30103 100154 2 100N 2 100N 2 30103 100154 2 100N 2 100N 2 30103 100154 2 100N 2 10N	261			•	2		3		200	m c				- :	•	<u>.</u>	\sim ι		3 8
11 100N 100N 2 30.005 3 50.005 1 0.005 5 4 10.005 1 10.00 1 20.005 1 20.005 1 10.00 1 20.005 1 20.005 1 10.005 5 4 10.005 1 10.005 2 10.00	11 100N 100N 2 30105 500057 3 50005 1001067 4 1000 N 100N 2 50005 1000057 4 1000 N 100N 2 30105 100057 2 30105 100057 4 1000 N 100N 2 30105 100057 2 30105 100057 4 1000 N 100N 2 30105 100057 2 30105 100057 4 1000 N 100N 2 30105 100057 4 100N 2 30105 100057 4 1000 N 100N 2 30105 100057 4 1000 N 100N 2 30105 100057 4 100N 2 30105 10N 2	3				3 5		3 6) i	3 .	- r			3 6	· ·		э.		3 8
11 100N 100N1 2 33705 50057 3 55055 100057 4 1007 2 2005 13100N 100N1 2 33705 50053 500 34 3 55052 1000723 4 1007 2 2005 13100N 100NN 2 30031 10055 3 55052 1000757 4 1007 2 1000 3 50057 2 30031 10055 3 5505 100005 4 100N 100NN 2 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 5505 100006 4 100N 100 5 50006 1500078 3 1000078 3 1000078 4 100N 100 5 50006 1 100078 3 1000078 3 1000078 4 100N 100 5 1000078 3 1000078 4 1000078 4 1000078 3 1000078 4 1000078 4 100N 100 5 1000078 3 1000078 4 100007	11 100N 100NN 2 30003 500034 3 50005 6 1000053 4 1000 100053 4 1000 10005552 1 30003 500057 2 30003 1000034 3 50002 1000078 4 1000 1000078 2 30003 1000054 3 50004 1000078 4 1000 1000078 2 30003 1000078 3 50004 1000078 4 1000 1000N25 1 1	5 6 2						30		; è	7 7	۰.	•		د و	٠ ٨				35
11 100N 100NN 2 30003 5000.34 3 55622 1000.223 4 10000 2000 2000 2000 2000 2000 2000 2	11 3000 50057 2 30303 590234 3 55022 1020253 4 10300 1000N25552 21 30003 560057 2 30304 1000064 3 1020077 4 1030 1000N2554 441 5003 560057 2 30304 1000064 3 1020077 4 1030 1000N2554 541 10003 100007 2 30304 1000064 3 10204 100066 4 1030 1000N2554 541 10003 100007 2 50306 1000078 3 10205 102006 4 1030 1000N2554 542 10003 100007 2 50306 1000078 3 10004 100066 4 1030 1000N2554 543 10003 100007 2 100007 3 100006 4 1000 1000N2554 544 10003 100007 2 100007 3 1000078 4 1000 1000N2554 545 10003 100007 2 100007 3 100007 4 1000 1000N2554 546 10003 100007 2 100007 3 100007 4 1000 1000N2554 547 100007 100007 2 100007 3 100007 4 1000 1000N2554 548 100007 100007 2 100007 3 100007 4 1000 1000N2554 549 100007 100007 1 100007 3 100007 4 1000 1000N2554 549 100007 1 100007 1 100007 1 100007 4 1000 1000	301				: 2		5		9	563	ı ıv	: 0		60	۰.	. 3	, , ,		55
21 33003 500057 2 30031 100C537 3 5CC51 100037 4 150N 100 41 30003 50057 2 30034 100C53 3 5CC53 100057 4 150N 100 51 30003 50057 2 30034 100C63 3 5CC53 100067 4 160N 100 52 100NN 2 50036 100068 3 5CC53 100067 4 150N 100 52 100NN 2 50036 100068 3 5C05 100008 4 150N 100 53 15002 100051 2 100021 3 100C61 3 5C05 100008 4 150N 100 53 15002 100051 2 100021 300031 3 100028 4 150N 100 53 15002 100051 2 100021 300031 3 100028 4 150N 100 53 15002 100051 2 100001 300031 3 100028 4 150N 100 53 15002 100051 2 100001 300001 3 10002 3 30008 4 150N 100 53 15002 100051 2 100001 3 10002 3 30000 4 100N 100 54 15002 3 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 55 11 2 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 55 11 2 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 55 11 2 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 55 11 2 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 55 11 2 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 55 11 2 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 56 11 2 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 56 11 2 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 56 11 2 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 56 11 2 33 34 N 6 71 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 56 11 2 33 34 N 6 71 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 56 11 2 33 34 N 6 71 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 56 11 2 33 34 N 6 71 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 56 11 2 33 34 N 6 71 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 56 11 2 33 34 N 6 71 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 56 11 12 13 34 N 6 71 12 33 34 N 3 61 12 33 34 N 7 111 N2 63 14 57 11 12 13 34 N 6 71 12 33 34 N 3 61 12 23 34 N 7 111 N2 63 14	21 30703 500057 2 30704 100CL37 3 5CCC1 10C0077 4 120N 10CNNS511 100N 20023 55C057 2 30704 100CC67 3 5CCC3 10C0067 4 16CN 10CNNS51 10CNN 25C1 10CNN 25CNN 25CN	311				8		3		9	500	~	3		933	2	ŏ	.,		S
33 30003 560557 & 30003 100747 3 5003 10006557 4 1550 100065 4 1550 100065 5 100065 5 100065 7 1550 100065 7 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 1550 100065 7 100065 7 100065 7 100065 7 100065 7 100065 7 100065 7 100065 7 100	31 30003 500557 2 30104 100056 3 50054 1000066 4 105N 100NN5501 1501 100NN 2 5006 100006 3 50055 100006 4 100N 100NN 2 5006 100006 3 50055 100006 4 100N 100NN5501 100NN 2 5006 100006 3 50055 100006 4 100N 100NN5501 100NN 2 5006 100006 3 5005 100006 4 10NN 100NN5501 100NN 2 5005 100009 3 5005 100006 4 10NN 100NN5501 100NN5501 100NN 2 5005 100009 3 5005 100006 4 10NN 100NN5501 100NN550	321				2		3	4	200	336	-	2				Ξ.			Š
1 100N 100N 2 50.04 1700 2 3 50.05 10.00 C 1 4 10.0 1 10.0	### 100NN 2 50106 100006 3 56005 100006 4 100N 100NN5551 100NN 2 50106 100006 3 56005 100106 4 100N 100NN 2 50106 100006 3 56005 100100 6 100NN5551 100NN555	5				9		23	-		7	m .	- 6	-				,,,		33
### 100NW 2 50006 1000.09 3 50.07 100.09 4 10.00 100 100 100 100 100 100 100 100 1	71 100N 100N 2 50306 1500078 3 55327 1003078 4 100 NN5501 91 50001 1000034 2 100002 3 300074 4 1003078 4 100 NN5501 92 50302 1000034 2 100002 3 300074 4 100308 4 100 NN5501 93 50302 1000034 2 100002 3 300074 4 100078 4 100 NN5501 94 12 33 34 N 2 61 12 33 34 N 3 110 30 30 34 H 4111 N2 03 14 12602 95 11 2 33 34 N 2 61 12 33 34 N 3 11 2 33 34 N 4111 N2 03 14 12602 96 11 2 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12602 97 12 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12602 97 12 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12602 97 11 2 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12602 97 11 2 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12602 97 11 2 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12602 97 11 2 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12602 97 11 2 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12602 97 11 2 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12602 97 11 2 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12602 97 11 2 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 NS502 97 11 2 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 NS502 97 11 12 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 NS502 97 11 12 14 NS 14 N 2 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	į			r	3 5		36	٠.	ن د د د	7 7		2 6		Э с		Ξ.	ο.		3:
71 100 N 100 N 2 50 0 9 100 0 9 3 5 5 0 7 10 5 10 9 4 15 0 N 10 0 10 0 10 0 10 0 10 0 10 0 10	### 100	361				9		20	•	200	5.5							∍ ⊂		38
### 50000 1000001 2 100000 300001 3 4 10000 1000001 4 1000 1000	### 50001 100011 2 100001 3 100011 4 1000 11 100 11 100001 10001 1000001 100001 100001 100001 100001 100001 100001 100001 100001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000000	371				2		3	-	2	3	~	::				-			3
91 500C1 1001004 0 100C1 5 3 10C0 5 5 9 10C0 5 4 10C0 1 10C0 5 10C0 5 5 9 10C0 5 9 10C0 5 5 9 10C	91 50001 100001 2 00001 3 000001 3 100002 000001 9 1 CON 1000010 501 1000001 100001 100001 100001 100001 100001 100001 100001 100001 1000001 100001 100001 100001 100001 100001 100001 100001 100001 1000001 100001 100001 100001 100001 100001 100001 100001 100001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000001 1000000	381			3	2:		3		0.0	333	٠.	5		3		-			5
01 50001 100001 2 10001 50001 3 10002 20001 4 5000 1 1	### \$10001 2 100001 3 10002 3 3 4 4 1 1 1 1 1 1 1 1	5			-	2		9	~	100	1000						-	0		3
1 9 1 1 2 3 3 4 N 2 6 1 1 2 3 3 3 4 N 3 6 1 1 2 3 3 3 4 N 4 111 N2 03 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 91 12 33 54 N 6 61 12 33 34 N 3 91 12 33 34 N 4111 N2 63 14 12502 15 12 13 34 N 4111 N2 63 14 12502 15 12 13 34 N 6 71 12 33 34 N 7103 12 33 34 N 4111 N2 63 14 12502 15 12 13 34 N 6 71 12 33 34 N 7103 12 33 34 N 4111 N2 63 14 12502 15 12 13 34 N 6 71 12 33 34 N 7103 12 N	5			-	25		36	•				25		ے دے			ی د:		3 3
1 91 12 31 34 N 2 61 12 33 34 N 3 91 12 33 34 N 4111 N2 C3 14 15 112 33 34 N 6711 12 33 34 N 4111 N2 C3 14 15 91 12 33 34 N 6 71 12 33 34 N 7131 12 33 34 N 4111 N2 C3 14 15 91 12 33 34 N 6 71 12 33 34 N 7131 12 33 34 N 4111 N2 C3 14 15 91 12 33 34 N 2 61 12 33 34 N 7131 12 33 34 N 4111 N2 C3 14 15 91 12 33 34 N 2 61 12 33 34 N 7131 12 33 34 N 4111 N2 C3 14 15 112 33 34 N 6 71 12 33 34 N 711 12 33 34 N 4111 N2 C3 14 15 15 15 15 15 15 15 15 15 15 15 15 15	1 91 12 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 03 14 12502 5 5 11 23 34 N 6112 33 34 N 7113 12 33 34 N 4111 N2 03 14 12502 5 5 11 23 34 N 6 71 12 33 34 N 7113 12 33 34 N 4111 N2 03 14 12502 5 5 11 23 33 4 N 6 71 12 33 34 N 7113 12 33 34 N 4111 N2 03 14 12502 5 5 11 23 33 34 N 6 71 12 33 34 N 7113 12 33 34 N 4111 N2 03 14 12502 5 5 11 23 33 34 N 6 71 12 33 34 N 7113 12 33 34 N 4111 N2 03 14 12502 5 5 11 23 33 34 N 7113 12 33 34 N 4111 N2 03 14 12502 5 5 11 2 33 34 N 6 71 12 33 34 N 7113 12 33 34 N 4111 N2 03 14 N2502 1 5 5 11 2 33 34 N 6 71 12 33 34 N 7113 12 33 34 N 7113 N2 03 14 N2502 1 5 5 11 2 33 34 N 6 71 12 33 34 N 7113 12 33 34 N 7113 N2 03 14 N2502 1 6 71 12 33 34 N 7113 12 33 34 N 7113 N2 03 14 N2502 1 6 71 12 33 34 N 7113 12 33 34 N 7113 N2 03 14 N2502 1 6 71 12 33 34 N 7113 12 33 34 N 7113 N2 03 14 N2502 1 6 71 12 33 34 N 7113 12 33 34 N 7113 N2 03 14 N2502 1 6 71 12 33 34 N 7113 N2 03 14 N2502 1 6 71 12 33 34 N 7113 N2 03 14 N2502 1 7 N113 N2 03 14 N2502 1 N113 N2 03 N113 N2 03 N113 N2 N				•	!			•						•		:	9		55
7 91 12 33 34 M 9 71 12 33 34 M 7121 12 33 34 X 4111 N2 03 14 12 13 34 M 8 6 71 12 33 34 M 7121 12 33 34 X 4111 N2 03 14 12 13 34 M 8 6 71 12 33 34 M 7121 12 33 34 X 4111 N2 03 14 12 13 34 M 8 6 71 12 33 34 M 7121 12 33 34 M 4111 N2 03 14 12 13 34 M 8 6 71 12 33 34 M 7121 12 33 34 M 4111 N2 03 14 12 13 34 M 8 6 71 12 33 34 M 7121 12 33 34 M 4111 N2 03 14 12 13 34 M 8 6 71 12 33 34 M 8 712 12 33 34 M 8 712 12 33 34 M 8 712 12 33 34 M 8 711 12 33 34 M 8 711 12 33 34 M 8 71 12	1 1 1 1 1 1 1 1 1 1		σ,	٠,		٠.		61	2	*	81 1	~	3 34	3	111			0		5
1 91 12 33 34 N 7 61 12 33 34 N 3 61 12 53 34 N 4111 N2 53 18 19 11 2 33 34 N 7 51 12 33 34 N 3 61 12 33 34 N 3 61 12 33 34 N 4111 N2 53 18 18 18 18 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 53 14 N 51 12 53 34 N 6 71 12 53 34 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 4111 N2 53 14 N 7101 12 33 34 N 7111 N2 53 14 N 7101 12 33 34 N 7111 N2 53 14 N 7101 12 73 34 N 711 12 73 34 N 7101 12	1 91 12 33 34 N 6 71 12 33 34 N 3 61 12 33 34 K 4111 N 7 93 14 1255 12 12 13 13 14 N 7 71 12 13 34 34 H 7 111 12 13 34 14 H 7 11 12 13 34 H 7 11 11 11 11 11 11 11 11 11 11 11 11 11 1		٠,	-				C :		*	101	٠.	30.00		:			0	~ •	3
1 91 12 33 34 N 6 71 12 33 34 N 3 81 12 33 34 N 4111 N2 C3 14 5 51 12 33 34 N 6 71 12 33 34 N 7101 12 33 34 N 4111 N2 C3 14 S 51 12 33 34 N 6 71 12 33 34 N 7101 12 33 34 N 4111 N2 C3 14 S 51 12 33 34 N 6 71 12 33 34 N 7101 12 33 34 N 4111 N2 C3 14 S 51 12 33 34 N 6 71 12 33 34 N 7101 12 33 34 N 4111 N2 C3 14 S 51 12 33 34 N 6 71 12 33 34 N 7101 12 33 34 N 7111 N2 C3 14 S 51 12 33 34 N 6 71 12 33 34 N 7101 12 33 34 N 7111 N2 C3 14 S 51 12 33 34 N 6 71 12 33 34 N 7111 N2 C3 14 S 51 12 33 34 N 6 71 12 33 34 N 7111 N2 C3 14 S 51 12 33 34 N 6 71 12 71 34 71 71 71 71 71 71 71 71 71 71 71 71 71	1 91 12 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 03 14 1250 2 51 12 33 34 N 6 71 12 33 34 N 7131 12 33 34 N 4111 N2 03 14 1250 2 51 12 33 34 N 6 71 12 33 34 N 7131 12 33 34 N 4111 N2 03 14 1250 2 51 12 33 34 N 2 61 12 33 34 N 7151 12 33 34 N 4111 N2 03 14 1250 2 55 12 13 34 N 6 71 12 33 34 N 7151 12 33 34 N 4111 N2 03 14 1250 2 55 12 51 33 34 N 6 71 12 33 34 N 7151 12 33 34 N 6 71 12 33 34 N 7151 12 12 33 34 N 7151 12 12 33 34 N 7151 12 12 33 34 N 715			-				2 5	~ ~	* *		~ ~	3 34	3	111			30	m 4	38
5 51 12 33 34 N 2 51 12 33 34 N 3 101 12 33 34 3 5 3 5 3 1 12 33 34 N 3 101 12 33 34 3 5 3 5 N 4 11 12 33 34 3 5 N 4 11 12 33 34 3 5 N 4 11 12 33 34 N 5 11 12 33 34 N 6 71 12 33 34 N 6 11 12 34 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N 6 N	5 51 12 33 34 N 5 71 12 33 34 N 7101 12 33 34 3 N 411 N 73 14 12502 1 12 33 34 N 6 71 12 33 34 N 7101 12 33 34 N 411 N 73 14 12502 1 12 33 34 N 6 71 12 33 34 N 7101 12 33 34 N 4111 N 73 14 12502 1 12 33 34 N 6 71 12 13 34 N 7101 12 33 34 N 6 71 12 13 34 N 7101 12 33 34 N 6 71 12 13 34 N 7 7101 12 33 34 N 6 71 12 13 34 N 7 7101 12 33 34 N 6 71 12 13 34 N 7 7101 12 33 34 N 7 111 N 7 73 14 N 7572 1 1 5 5 112 33 34 N 7 7101 12 33 34 N 7 111 N 7 73 14 N 7572 1 1 5 5 112 33 34 N 7 7101 12 33 34 N 7 111 N 7 73 14 N 7572 1 1 1 91 12 33 34 N 7 7101 12 33 34 N 7 11 1 N 7 73 14 N 7572 1 1 1 91 12 33 34 N 7 7 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		٠.	• -					, ,			, 6	, ,	3	:				P U	5 6
1 91 12 33 34 N 2 61 12 33 34 N 3 61 12 33 36 N 411 N 2 3 14 S 14 S 12 33 34 N 6 712 12 33 34 N 6 712 12 33 34 S 14 S 14 S 14 S 14 S 14 S 14 S 1	1 91 12 33 34 N 2 61 12 33 74 N 3 61 12 33 34 N 411 N2 C3 14 12532 5 51 12 33 34 N 6 71 12 33 34 N 761 12 33 34 N 411 N2 C3 14 12562 5 51 12 33 34 N 6 71 12 33 34 N 761 12 33 34 N 411 N2 C3 14 12562 5 51 12 33 34 N 6 71 12 33 74 N 761 12 33 34 N 7 111 N2 C3 14 N2562 5 51 12 33 34 N 6 71 12 33 34 N 7 161 12 33 34 N 7 111 N2 C3 14 N2562 1 91 12 33 34 N 6 71 12 33 34 N 7 161 12 33 34 N 7 11 12 73 34 N2562 1 91 12 33 34 N 7 67 11 2 33 34 N 7 161 12 33 74 N 7 11 12 73 74 N2562 1 91 12 33 34 N 7 7 11 12 37 34 N 7 161 12 37 74 N 11 12 73 74 N2562		. ~	•				: 2	, w	, <u>*</u>	. 1.	. ~	38.	•	:) ()	n ve	55
5 51 12 33 34 N 6 71 12 33 34 N 7161 12 33 34 3 1 91 12 33 34 N 2 61 12 33 34 N 3 61 12 33 34 N 4111 N2 63 14 5 51 12 73 34 N 6 71 12 73 74 N 7161 12 33 54 7 1 91 12 33 34 N 2 61 12 73 74 N 3 81 12 33 34 7 N 4111 N2 63 14 5 51 12 33 34 N 6 71 12 33 34 7 7161 12 73 34 3 0 11 12 27 34	5 51 12 33 34 N 6 71 12 33 34 N 7161 12 33 34 3		o	•		3		4	2 3	\$	81 1	~	3 34	3	-			•	~	5
1 91 12 33 36 N 2 61 12 33 36 N 3 61 12 33 36 N 6111 N2 (3 10 5 11 5 12 12 33 36 N 6 71 12 33 36 N 7 71 12 33 36 N 6 71 12 23 36 N 6 71 12 23 36 N 6 71 12 23 36 N 6 71 12 33 36 N 7 71 12 12 33 36 N 7 71 12 23 36 N 7 71 12 33 36 N 7 71 12 71 36 N 7 71 12 12 71 36 N 7 71 12 71 12 71 36 N 7 71 12 71 71 12 71 71 12 71 12 71 12 71 12 71 12 71 12 71 12 71 12 71 12 71 12 71 71 12 71 71 71 71 71 71 71 71 71 71 71 71 71	19112 33 36 N 2 61 12 33 36 N 3 61 12 33 36 N 6111 N2 (3 16 15502 15 51 12 33 36 N 6111 N2 (3 16 15502 15 51 12 33 36 N 6 71 12 37 36 N 7 71 12 37 36 N 6 71 12 37 36 N 7 75 12 33 36 N 6 71 12 37 36 N 7 75 12 37 36 N 61 12 27 36 N 7 7 12 12 37 36 N 7 7 11 12 37 36 N 7 7 12 12 37 36 N 7 7 11 12 37 38 38 38 38 38 38 38 38 38 38 38 38 38		S.	~		•	_	7	۳ د	2	101	٠.	34					5.1	Ð	3
5 51 12 73 34 M 6 71 12 33 74 4 7 75 11 12 33 34 3 5 5 7 1 1 1 2 1 2 1 2 1 2 33 34 M 6 71 12 33 74 4 3 4 1 1 2 33 34 7 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 51 12 73 34 N 6 71 12 33 74 N 7121 12 33 54 3 5 7 2512 1 2 13 12 33 34 N 6 71 12 33 74 N 7121 12 33 54 N 6 71 12 73 74 N 712 13 74 N 711 12 73 34 N 71 12 13 74 N 71 12 13 74 N 71 12 73 74 N 71 12 N 74 N 71	ı.	•	~		•		61	2	34	91	•	3 34	3	11 N	∞ 3		J	σ	S
1 91 12 33 34 N 2 51 12 33 34 N 3 51 12 33 34 N 4111 N2 C3 16 S 51 12 33 34 N 6 71 12 33 34 7 7151 12 33 34 3 N 41 12 23 35	1 91 12 33 34 N 2 61 12 33 34 N 3 81 12 33 34 N 4111 N2 C3 14 N552 1 5 51 12 33 34 N 7 112 23 34 N 5522 1 1 91 12 33 34 N 6 71 12 33 34 N 7 141 12 33 74 N 2 61 12 33 34 N 7 141 12 33 74 N 5522 1 5 51 12 N 7 3 14 N2 52 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.	ď,	-		•	_	2	~ .	3		N.	3 36					_	::	3
2 1 1 2 2 2 2 2 2 2 1 1 1 2 2 2 2 1 1 1 1 2	2 31 45 33 34 N T 71 16 35 34 N 7151 16 35 34 N 3 N 41 16 65 34 NESTS 1 1 91 45 33 34 N Z 61 12 33 34 N T 81 12 33 78 N D 5151 N D 53 14 NESTS 1 5 51 12 N 3 4 N 6 71 12 N 7 34 N 7101 12 N 74 N 74 N 75 N 74 N 75 N 75 N 75 N 75		σ,	-				-	~ (2 ;	-	٠.		.*	Z .	٠, ‹			= :	5
	1 41 14 15 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15		n (•				: :	~ .			٠,		٠.	7	`			<u> </u>	3 8
71 67 78 78 79 74 75 76 77 78 78 78 78 78 78 78 78 78 78 78 78								~ .	, e	3 3	7			, ,	~ .	, ,			<u> </u>	30

FILE-25 PATA LESS 1PES

Figure II-10-C-3. Priority and Method of Attack

PLUE PRIORITY AND METHOD OF ATTACK TABLES FOR RED TAPGETS OF TYPE 1 (INFANTRY) IN ACTIVITY	PRIORITY BY TARGET SIZE AND RANGE TO TARGET	PRIORITY (RER1) RI (METERS) PRIORITY (RI-RER2)	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3000	100	METHOD OF ATTACK	WEAPON/MUNITION INDEX VOLLIFS ON PLT	K V 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OF ATTACK TABLES IN ACTIVITY 1 (STAY	ND RANGE TO TARGET	RSI	0 6	2000	2004	ITACK	VOLLIES ON CO VOLLIE	N N N O O O N N N N O O O O O O O
-		PPINRITY (R\R?)	ای	so.	301		VOLLIES ON BN VCLLIFS CN PDE	

TO SEE STATE

SUMMARY REPORT OF TARGET PRIORITIES

BLUE FIRING ON RED

PRIORITY TARGET TARGET TARGET TYPE ACTIVITY SIZE	RANGE TO Target
1 ARTY G/H FIRE BN	10000 30000
1 ARTY MSL STAY PLT	0 5000
1 ARTY MSL STAY PLT	5698 10000
1 ARTY MSL STAY PLT	10000 999999
1 ARTY MSL STAY CO	0 10000
1 ARTY MSL STAY CO 1 ARTY MSL STAY CO	10000 30070
	30660 999999
1 ARTY MSL STAY BN 1 ARTY MSL STAY BN	10000 30070
	30000 999999
1 ARTY MSL FIPE PLT 1 ARTY MSL FIRE PLT	C 5030 5000 10030
1 ARTY MSL FIRE PLT	10000 999999
1 ARTY HSL FIRE CO	0 10010
1 ARTY MSL FIRE CO	10000 30000
1 ARTY MSL FIRE CO	30000 999999
1 ARTY MSL FIRE BN	0 10010
1 ARTY MSL FIRE BN	10000 30000
1 ARTY MSL FIRE BN	30000 999999
1 ADA GUNS STAY BN	0 3070
1 ADA GUNS STAY BN	3000 10000
1 ADA GUNS MOVE PLT	0 3000
1 ADA GUNS MOVE PLT	3000 5000
1 ADA GUNS MOVE CO	0 3036
1 ADA GUNS MOVE CO	3000 8030
1 ADA GUNS FIRE PLT	0 3630
1 ADA GUNS FIRE PLT	300C 5COC
1 ADA GUNS FIRE CO	0 3030
1 ADA GUNS FIRF CO	3000 8030
1 ENGINEER ENGINEER CO	0 3670
1 ENGINEER ENGINEER BN	C 5000
2 INFANTRY STAY BN	0 3000
2 INFANTRY STAY BN 2 IAFANTRY STAY BN 2 IAFANTRY MOVE CO 2 IAFANTRY MOVE CO 2 IAFANTRY MOVE BN 2 IAFANTRY MOVE BN 2 IAFANTRY ATTACK PLT 2 IAFANTRY ATTACK CO	3000 10030
2 INFANTRY MOVE CO	0 30;0
2 INFANTRY MOVE CO	3000 5000
2 INFANTRY MOVE BN 2 INFANTRY MOVE BN	3000 3030
2 INFANTRY HOVE BN 2 Infantry Attack Plt	2000 20030
2 INFANTRY ATTACK PLT 2 INFANTRY ATTACK PLT	0 3090 3090 4090
2 INFANTRY ATTACK CO	5000 999999
2 INFANTRY ATTACK BN	10000 999999
2 INFANTRY DEFEND PLT	0 3036
2 INFANTRY ATTACK BN -2 INFANTRY DEFEND PLT 2 INFANTRY DEFEND BN 2 INFANTRY DEFEND BN 2 INFANTRY HITHDRAW PLT 2 INFANTRY HITHDRAW BN 2 ARMOR HOVE CO 2 ARMOR HOVE BN	3000 4000
2 INFANTRY DEFEND BN	3000 10000
2 INFANTRY WITHDRAW PLT	0 3010
2 INFANTRY WITHDRAW BN	16000 999999
2 ARHOR HOVE CO	G 300C
2 ARMOR HOVE BN	0 3030
2 ARMOR HOVE BOE	0 3030

Figure II-10-C-4. Summary of Target Priorities

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR TACFIRE

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 11

AIR GROUND ENGAGEMENT DATA INPUT PROGRAMS

- 1. INTRODUCTION. The Air Ground Engagement data input programs create and load the data files used to store the data required by the Air Ground Engagement Model. These data include tables of weapon descriptions and engagement results.
- 2. ROUTINES. The routine AIRLD comprises the Air Ground Engagement data input. It reads and edits the Air Ground Engagement data cards and loads the data on the appropriate file. After the load is complete, a formatted dump of each file is printed.
- 3. FILES. The following data files are used to store the Air Ground Engagement Model data:
 - . Air Ground Engagement data data file 26
 - . Engagement results table data file 27

APPENDIX A

AIR GROUND ENGAGEMENT DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for air ground engagements are documented in Appendix A, Air Ground Engagement Model Input Requirements, to Chapter 10 of the Period Processor (Section IV).

APPENDIX B

AIR GROUND ENGAGEMENT DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. This appendix provides the program description of routine AIRLD which loads the input data to the Air Ground Engagement Model. Routine SNATCH is a utility routine used to access the appropriate tables on data file 26. SNATCH is documented in Section VII.

2. ROUTINE AIRLD:

a. Purpose. The AIRLD routine loads and dumps DIVWAG data files 26 and $27.\,$

b. Input Variables:

Name	Source	Contents
ITASK	Card	Task to be performed (load or dump).
MT	Card	Type of mission that applies to data on the card.
IPRIOR	Card	Aircraft/munition mix.
ESTACT	Card	Estimated activity of target.
IAD	Card	Air defense code.
IFC	Card	Position in table where data will be put.
AMNT	Card	Number to be put in the table.
IPENN	Card	Penetration code.
IAC	Card	Aircraft item code.
IACMN	Card	Minimum number of aircraft required.
IACMX	Card	Maximum number of aircraft required.
IABRT	Card	Minimum number of aircraft required to perform the mission.
IFLMN	Card	Minimum amount of fuel required.
IFLMX	Card	Maximum amount of fuel required.
IGAGE	Card	Engagement range.
MIX	Card	Aircraft/munition mix.

II-11-B-1

Name	Source	Contents
MUN	Card	Munition item code.
ROUNDS	Card	Number of rounds being carried by the aircraft designated by mix.
IPERSN	Card	Number of personnel required.
ISLANT	Card	Average slant range.
IACC	Card	Accuracy of the weapon.
MIC	Card	Munition item code.
DAYATK	Card	Percent effectiveness of weapon in daytime when enemy attacks.
DAYDEF	Card	Percent effectiveness of weapon in daytime when enemy is defending.
NITATK	Card	Percent effectiveness of weapon at night when enemy attacks.
NITDEF	Card	Percent effectiveness of weapon at night when enemy is defending.
ISPEED	Card	Percent effectiveness of weapon at various aircraft speeds.
IALT	Card	Altitude code.
IRSPAR	Card	Percent effectiveness of weapon in rough terrain, sparse forest.
IRMED	Card	Percent effectiveness of weapon in rough terrain, medium forest.
IRDENG	Card	Percent effectiveness of weapon in rough terrain, dense forest, good intelligence.
IRDENP	Card	Percent effectiveness of weapon in rough terrain, dense forest, poor intelligence.
IGSPAR	Card	Percent effectiveness of weapon in good terrain, sparse forest.
IGMED	Card	Percent effectiveness of weapon in good terrain, medium forest.

II-11-B-2

Name	Source	Contents
IGDENG	Card	Percent effectiveness of weapon in good terrain, dense forest, good intelligence.
IGDENP	Card	Percent effectiveness of weapon in terrain, dense forest, poor intelligence.
ITYPEA	Card	Average vulnerable area of aircraft to type A kill.
ITYPEB	Card	Average vulnerable area of aircraft to type B kill.
ITYPEC	Card	Average vulnerable area of aircraft to type C kill.
ITYPED	Card	Average vulnerable area of aircraft to type D kill.

c. Output Variables:

Name	Destination	Contents
ACAVL	DF26	List of aircraft, munition, and weapon types.
TABLE	DF26	Data contained in Air Ground Engagement data file 26.
TABLE2	DF26	Data contained in Air Ground Engagement data file 26.
DATA	DF27	Engagement results table data for data file 27.

d. Logical Flow (Figure II-11-B-1):

- (1) Blocks 1 and 2. A call is made to routine GETFLE to retrieve the file name table and the first card is read.
- (2) Block 3. If the first card was a DUMP card control goes to block L479. If it was a LOAD card, processing continues.
 - (3) Blocks 4 and 5. Data file 26 is created and initialized.
 - (4) Block 6 and 7. Data file 27 is created and initialized.
- (5) Blocks 8, 9, and 10. Read the data cards and print card images and write card images onto a scratch file. When an end of data card is encountered rewind the scratch file.

II-11-B-3

Figure II-11-B-1. Routine AIRLD (Continued on Next Page)
II-11-B-4

Figure II-11-B-1. Routine AIRLD (Continued)
II-11-B-5

The state of the s

Figure II-11-B-1. Routine AIRLD (Concluded)
II-11-B-6

- (6) Blocks 11 and 12. Read a card image from the scratch file. If an end of file was sensed control transfers to block L479.
- (7) Block 13. If the data card ID is 2701 control goes to block 15; Otherwise, control goes to block 14.
- (8) Block 14. Control transfers to block 17, 18, or 19 if the card ID is 2601, 2602, or 2603 respectively.
- (9) Block 15. Determine the number of the data file 27 record to be loaded.
- (10) Block L2250, L2255 and 16. Retrieve the record from data file 27, place the card data into the record, and replace the record onto data file 27. Control returns to block 11.
- (11) Block 17. Place aircraft data in appropriate area of data file 26. Control transfers to block 11.
- (12) Block 15. Place munition data in appropriate area of data file 26. Control returns to block 11.
- (13) Block 19. Place air defense weapon data in appropriate area of data file 26. Control transfers to block 11.
- (14) Block L479. Each record of data files 26 and 27 is retrieved and printed in formatted form. Control returns to the calling routine.

APPENDIX C

AIR GROUND ENGAGEMENT DATA LOAD OUTPUT DESCRIPTIONS

- 1. INTRODUCTION. The 15 different printout formats listed in Figure II-11-C-1 are generated each time the constant data files of the Air Ground Engagement Model are recreated. These printouts are generated in the order in which they are listed. These printouts list all the data entered in the files and were designed for assistance to review and validate the data, and take remedial action if needed. In the figure are the titles of the printouts and the source from which these data were extracted. In most cases the data were taken from data file 26, but engagement results of air strikes were extracted from data file 27. The second column from the right lists the data card ID from which the information was initially read, and the last column on the right further identifies the individual card from which the basic data were extracted. Each of the printouts can thus be related to a specific file and, further, to the card that initially input the data.
- 2. DATA FILE 26 80-COLUMN CARD IMAGE. The first printout, Figure II-11-C-2, is a card image of the data that was read into data file 26. This printout consists of data that was punched into cards ID 2601, 2602, and 2603 in card types 1 through 4 in all three cases. Many of these card formats were produced in multiple copies to acquire and load all the pertinent data. The type of data entered into each of the card images that are pictured on these printouts may be interpreted from the columnar headings of the card format and by reference to Appendix A to Chapter 10, Air Ground Engagement Model Input Requirements, of the Period Processor.
- 3. AIRCRAFT AND MUNITIONS MINIMUM AND MAXIMUM REQUIREMENTS. The format of this printout is shown in Figure II-11-C-3. The aircraft and munition item codes and the minimum and maximum requirements of each are listed for the various mission types to be flown. There is also a listing for penetration missions for the Blue force and a similar set of listings for the Red force.
- 4. AIRCRAFT PREPARATION DELAY TIMES. The format of this printout is shown in Figure II-11-C-4. The time required to prepare an aircraft to fly a mission depends upon the number of aircraft flying the mission. The time is, therefore given in minutes for groups of five or less, for groups of five to ten, and for groups of more than 10 for all combinations of aircraft and mission types to be flown.
- 5. AIRCRAFT ENGAGEMENT PARAMETERS. The format of this printout is shown in Figure II-II-C-5. The aircraft engagement range is given in meters for each mission type that is to be flown by each of three classes of aircraft, two direct aerial fire support (DAFS) and one close air support (CAS).
- 6. AIRCRAFT MINIMUM ABORT DATA. The format of this printout is shown in Figure II-11-C-6. The number of aircraft required to successfully complete a mission is given for each class of aircraft that is to fly each mission. If fewer aircraft reach the target, the mission will be aborted.

Printout Titles	Data Source File	Card ID	Card Type
80-Column Card Image, Data File 26	Card data deck	A11	A11
Aircraft and Munitions Minimum and Maximum Requirements per Mission Type	Data file 26	2601	1
Aircraft Preparation Delay Times	Data file 26	2601	4
Aircraft Engagement Parameters	Data file 26	2601	1
Minimum Aircraft Abort Data	Data file 26	2601	1
Aircraft Landing Times	Data file 26	2602	2
Aircraft Flight Speeds	Data file 26	2602	1
Aircraft New Mission Availability Time	Data file 26	2602	3
Aircraft Degradation for Maintenance	Data file 26	2602	4
Aircraft Vulnerable Areas for Kills by Weapon Type	Data file 26	2603	4
Air Defense Weapon Characteristics	Data file 26	2603	1
Air Defense Weapons Effectiveness	Data file 26	2603	2
Air Defense Weapon Degradation from Terrain and Vegetation	Data file 26	2603	3
80-Column Card Images, Data File 27	Card data deck	All	A11
Engagement Results of Air Strikes	Data file 27	2701	1

Figure II-11-C-1. Air Ground Engagement Constant Data Printouts

1010 2661 1 1010 2661 1 1010 2661 1	0	10 260 10 260	030 2601	030 2601 030 2661	2 2601	2601	601 661	2661	2601	2601	2601	2601	2601	2601	2601	2601	2601	2601	2661	2601	2601	2601	2501	601	601	601	661	601	601
न न न	-		 1	r1 +4																									
ታ 86 ታ 86		er ec	مت و د	x «																									
					ß	S	4 7 250 4 7 250	22	7 25	43	0 33	7 25	7 25	7 50	7 50	7 50	7 53	7 50	7 50	33	(b)	7 53	7 50) 20	0.83	2.23	51 200	3 23	2.3
(7) (2) (2)	2 25130 2 25130	2 2513J6 2 251300	2 251330	2 251311 2 251300	n vz 1 93	R VZ 1 9	σ σ	0 771 9	P VZ1 0	n V71 7 2	D V71 7 2	6 1 2	6 1 2	δ	VZ 1 9	V71 9	2 VZ1 9	0 VZ1 9	3 VZ1 9	2 12A C	8 121 7 5	2 1 9	6 1 2	VZ 88 5	S 88 ZA	N VZ 88 5	PP V7 88 50	n V7 88 5	R V7 38 5
19 13 88 2 4 1 18 23 88 2 4 1 18 53 88 2 4 1	8 63 88 2 8 93 88 2	8103 38 2 8133 88 2	B143 88 2	8173 88 2 8183 88 2	BOITK CO DAY	BCZTK CO DAY	OSMEC IN	BOSARTBIR DA	B10ARTBTR DA	BISINF CO DA	814 INF CO DA	817AFB DAY G	B18AFB DAY PR	BOITK CO DAY	BOZTK CO DAY	BOSMEC IN DAY	BOGMEC IN DAY	BOGARIBTE DAY	B10ARTBTR DAY	913INF CO DAY	914INF CO DAY	817AFB DAY GD	BIBAFB DAY PR	BO1TK CO DAY	BOZTK CO DAY	BOSMEC IN DAY	ROSMEC IN DAY	ROGARIBIR DAY	BLOARTBIR DAY

A STATE OF THE PARTY OF THE PAR

NON-PENETRATION MISSIONS

	274		Š		z	- N	-	2		I .	0		CK DUNDS	ē				ū	
HIS.	ITEN	_	V			• : :	. ~	•	٠.	,			6	- :	•	PERS	CKNFL	9	(CALS)
TYPE		.	IN MAX	? I E				ï		Z	MAX		HAX	7 1 1	MAX	¥	×d	Z	YAY
-		۶.	;	;			_	:		;					ċ	۶.	۶.	162.	251.
-		3	ė					j		Ġ			•		ċ	;		ġ	ં
~		٠,	*	;			_	6		=	٠,			•	÷	٠.	2.	162.	251.
~		;	•	•				Ġ		<u>.</u>	;		•	:	÷		;	:	•
ĸ		2	•	;				Ġ		-	;		;	:		٠.	٠,	162.	251.
		3		•				•		ځ	;		ė		•		د,	•	ċ
•		2					_	ė		å	;			•		.2	۶.	162.	251.
٠		;	•	ö				ö		•	;		•			;	Ġ	÷	ċ
•		٠,	;	<u>ب</u>			_	•			-				:	۶.	2.	162.	251.
•		j						(3		ċ	-		-		;	.,		:	
10		2	;	m			_	ċ		(3			•		•	۶.	۶.	162.	251.
70		;	•					•		ئ			:		•		:		6
13		2.	ż	ż	•	256.	-	ċ		•	-	•	;		•	۶.	۶.	162.	251.
10		3	•	ċ				•		;	;				÷	•	•	:	
1.		?	;	j				•		•	;		ċ		-	;	۶.	162.	251.
*1		j		;				,		చ	;		ë	-		;			.
11		2	;	3		-	_	Ġ		ؿ	÷		÷	9	ċ	۶.	~	162.	251.
17		*	:	-				-		ئ	;		:		ċ	•	•	•	•
18		2	;	;				•		;							۶.	162.	251.
87		3		:				•						•	÷	0.0.0		÷	•
	ĐE	<u> </u>	PENETRATION H	MISSIONS	10														
	A/C		, Q		I	2	1 I	S	8 Y I	T E H	0 0	S	(ROUNDS)	23				•	UEL

JEL	11.53	×	251.	•	251.	÷	251.	-	251.	•	251.	ė	251.	÷	251.	;	251.
٣	3	Z I	162.	•	162.	•	162.	•	162. 251.		162.	•	162.		162.	;	152.
	CNNEL	XAX	۶.	•	5	÷	۶.		2. 2.	-	5.		۰2		۶.	;	۶.
	PERS	Z II	٠.	:	۶.		٠.	•	.		۶.	•	۶.	:	۶.	ં	?
	•	¥ ¥ ¥		:	•	Ġ	•			ċ						;	•
S		Z			•	-			:		•			•	6	;	•
(ROUNDS)		XY			•	•	•		0.0			•	:	•	ċ		
S		Z Z		÷	•				•	.	ċ	-		ٺ	•	•	Ġ
0	•	#A×	÷	÷	÷	;		;	;	;	÷	÷		;	÷	;	;
7 E H									•								
I	0	X	:	ċ			•		·.		•	-		ġ		ះ	-
S		Z		ë		•	:	:			:		9.	:	:	.;	
1 I 0	~	ΗAX	500.	•	500.		500.	•	530.	Ġ	500.	;	£00°	•	500.	.;	530.
Z O									250.								
I	33	4 A X	•	÷	•		ģ		, •	:	•	ra	ģ	•	•		ŝ
	_	Z	;	-	÷		;	•	;	•	ĸ,	ċ	ě	ċ	;	-	;
•	2	X A X	;		;		;	•	;	:	;		;				;
		E	۶.	;	۶.	;	۶.	;	2.	;	2.	;	2.	;	2.	;	2.
A/C	ITEM	CODE	88	96	8	86	8	96	8	96	•	96	88	96	8	86	88
	HIS.	TYPE	-	-	~	~	2	•	•	•	•	6	10	10	£.	£3	:

Figure II-11-C-3. Aircraft and Munitions Minimum/Maximum Requirements Mission Type

HLUE AIRCRAFT PREPARATION DELAY TIMES (MINUTES)

NON-PENETRATION MISSIONS

MIS. TYPE A/C ITEM	1 NO. 0 - 5 - 5 - 10	2 NO.			7.00 m
1705 5005	A/C 5 113	A / C 5 5 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 2 C +	A/C 5 113	A/C 5
188		5.0 5.0 20.0	0 0 0 0 0	0 0 0 0 0 0	າ ເຄ
98	0 C C	900 •••0	0.00	0 0 0 0 0	ა ი ი ი
& W 10	, o o	0 0 0 0 0	0.0	0.0	
3 G	3 G G	0 0 0 0	000	000	ა ი ი ი
5 87	0.00	0 0 0 0 0 0	0.0	0.00	0.0
91	000	000	000	0.0	0.0
66	0.00	300 	000	000	0.0
& 53	0.0	6 C C	000	0.00	000
60	000	000	000	000	0.0

Figure II-11-C-4. Afreraft Preparation Delay Times

BLUE AIRCRAFT ENGAGEMENT PARAMETERS

NON-PENETPATION MISSIONS

	DAFS 1	DAFS 2	CAS
MISS. TYPE	RANGE (METERS)	RANGE (METERS)	RANGE (METERS)
1	3000.	C •	1000.
2	3000.	C •	1000.
3	ε.	C •	3.
4	0.	C •	0.
5	3000.	C.	1980.
6	3805.	0.	1303.
7	0.	9.	0 •
3	û•	0.	J.
9	3600.	0.	1300.
1 0	3606.	G.	1989.
11	G.	C •	3.
12	C •	0.	3.
13	3000.	G.	1009.
14	3000.	0.	1330.
15	C •	G.	3.
16	C.	0.	0.
1 7	3050.	ũ .	1980.
18	3000.	0.	1000.

Figure II-11-C-5. Aircraft Engagement Parameters

BLUE AIRCRAFT MINIMUM ABORT DATA

NON-PENETRATION MISSIONS

MIS.			
TYPE	DAFS 1	DAFS 2	CAS
1	1.	0.	1.
2	1.	0.	1.
3	0 •	0.	0.
4	C •	0.	C •
5	1.	0.	1.
5	1.	Ū •	1.
7	0.	0.	Č.
8	0.	0.	0.
9	1.	0.	1.
10	1.	C.	1.
11	G •	0.	0.
12	Ĉ.	Ğ.	0.
13	1.	G.	1.
14	1.	C.	1.
15	ē.	0.	0.
16	0.	õ.	C.
17	1.	0.	
18			1.
	1.	0•	1.
19	Ç.	C.	Ç.
20	0 •	0•	0.

PENETRATION MISSIONS

MIS.			
TYPE	DAFS 1	DAFS 2	CAS
4	4	0	4
1	1.	<u>0</u> •	1.
2	1.	C.	1.
3	C •	0.	C •
4	Ũ •	G.	0.
5	1.	0.	1.
6	1.	0.	1.
7	0 •	Û•	C •
8	0 •	0.	0.
9	1.	0•	1.
1 ũ	1.	C •	1.
11	0.	0.	٥.
12	Û•	0.	0.
13	1.	G •	1.
14	1.	0•	1.
15	0 •	0.	0.
16	G .	C.	C.

Figure II-11-C-6. Minimum Aircraft Abort Data
II-11-C-7

- 7. AIRCRAFT LANDING TIME. The format of this printout is shown in Figure II-11-C-7. The time required for an aircraft to land after it has entered the traffic pattern is given in minutes for each aircraft type according to the number of aircraft in the formation and the visibility conditions.
- 8. AIRCRAFT FLIGHT SPEEDS. The format of this printout is shown in Figure II-11-C-8. The average flight speed is given for each aircraft under four visibility conditions at cruise speed and under other specified conditions which that aircraft type would fly. The speeds are printed in knots.
- 9. AIRCRAFT NEW MISSION AVAILABILITY TIME. The format of this printout is shown in Figure II-11-C-9. The time required to make an aircraft available for a new mission depends upon the amount of damage incurred in the previous mission, or, if no damage, it depends upon the amount of time the aircraft was flown. Figure II-11-C-9 shows the time required for repairs after B-, C-, and D-kills, and the time to prepare an aircraft after a flight of less than 60 minutes and a flight of more than 60 minutes for each aircraft type to be flown. The times are in minutes.
- 10. AIRCRAFT DEGRADATION FOR MAINTENANCE. The format of this printout is shown in Figure II-11-C-10. The number of aircraft available for a mission is expressed as a decimal fraction of those that were available on the first day (D-Day). A number is shown for each aircraft type for a 14-day period, with the first day being D-Day.
- 11. AIRCRAFT VULNERABLE AREAS. The format of this printout is shown in Figure II-11-C-11. The numbers in the left-most column are the weapon types and the three two-digit numbers going across the page are the aircraft types. The four decimal numbers under the headings A, A+B, A+B+C, and A+B+C+D are the average vulnerable areas in square meters for each of the four kill categories when the specified aircraft type is fired on by the specified weapon type.
- 12. AIR DEFENSE WEATON CHARACTERISTICS. The format of this printout is shown in Figure II-ll-C-l2. The average number of rounds fired per engagement, maximum effective range, average slant range and the average error are given for each weapon type under four different visibility conditions. The distance each weapon type is employed behind the FEBA is given in the last column. The weapon types are listed in the first column on the left.
- 13. AIR DEFENSE WEAPONS EFFECTIVENESS. The format of this printout is shown in Figure II-11-C-13. The column on the left is the weapon types and the next four columns indicate the percent of each of these weapons that would engage the target under each of the combinations of time of day and whether the enemy is attacking or defending. The remaining columns give the percent effectiveness of each weapon type when firing at targets moving at different speeds. The various speeds are given by the top number heading each column.
- 14. AIR DEFENSE WEAPON DEGRADATION FROM TERRAIN AND VEGETATION. The format of this printout is shown in Figure II-l1-C-l4. The column on the left is the weapon types. The percent of these weapons that are unaffected by the different conditions of terrain roughness, amount of vegetation, intelligence, and target altitude is given for each weapon type.

NLUE AIRCRAFT LANDING TIMES IN MINUTES FROM ENTRY INTO TRAFFIC PATTERN TO PARKER ON PAD

VISIBILITY	Ķ	PAY - G030	٥	_	DAY - POOR	ō.	Z	NIGHT - G000	99	Z	NISHT - POOR	a 00
AIRCRAFIX 0-5	9-5	5-10	13 +	3-5	5-10	10 +	3-6)-5 5-1C 10 +	10 +	9-0	5-10	9-10 10 +
A/C ITEM CODE												
80	10.	15.	20.	15.	20.	.55	15.	23.	25.		•	6
86	5.		13.	10.	20.	25.	10.	.02	25.	10.	- 32	25.
85	10.	15.	23.	15.	20.	.52	15.	20.	25.	•	•	6
96	10.	15.	23.	15.	20.	.25.	15.	20.	25.	•	•	6
87	10.	15.	.t.	15.	.02	.62	15.	20.	.55	•	.	ė
91	10.	15.	23.	10.	15.	20.	15.	-02	.25.	10.	-02	25.
66	5		13.	10.	20.	25.	10.	20.	25.	10.	26.	25.

Figure II-11-C-7. Aircraft Landing Times

SLUE AIRCRAFT FLIGHT SPEEDS (KNOTS)

					HEL	ICOP TE	S ONE	_	REC	S / NO.	URV	7.4		CAS	DNLY	
	S	PUISE	SPEED		ATT	ATTACKING TARGET	TARGE	_	6	IER TA	RGET		A	TACKIN	G TARG	ET
I	DA	<u></u>	SIN	r.	OA	_	SIN	Ŧ	õ	<u>_</u>	NIG	Ħ	0	~	9IN	E I
CODE VISK	0009	G000 P00R G	GOOD POOR	POOR	0000	G000 P00R G000 P00R	0000	POOR	6000	G000 P00R G000 P00R	0000	POOR	0000	G000 P00R G000 P00R	0000	POOR
6 0	130.	50.	53.	3	110.		=	•	ė	-	3	•	;	6	:	:
9.6	.044	440.	443.	445.	0.			6	1200.	1200.	1206.	1200.	* 0 * *	.044	.044	.04
	119.	50.	59.	;	i10.	•	:	:	•	:	;		•	:	•	;
98	92.	50.	53.	•	116.	:	:		:	•	:	ċ	:	•	•	:
29	155.	50.	50.	:	110.	;	:	:	ė	•		;	•	:	•	:
91	225.	225.	225.	225.	•	6	•	•	:	•	•	225. 225. 225. 225. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	•	:	:	:
66	***	***	443.	440	:	•	:	•	1200.	1200.	1200.	1200.	•	•	;	•

Figure II-11-C-8. Aircraft Flight Speeds

TIME DELAY IN MINUTES REFORE RETURNED BLUE AIRCRAFT ARE AVAILABLE FOR A NEW MISSION

AIRUTAFI ARE AVAILABLE	AVA I LABLE	FOR A	NEW MISSION	
3 - KILLS	c - KILLS	D - KILLS	UNDAMAGED A/C HISSION TIME (MIN) 0-60 60 +	1/C (MIN) 60 +
555.	240.	120.	15.	Ą
0.	•0	• G		17.
555.	240.	120.	, t	• •
555.	240.	120.	, a	13.
555.	240.	120.	ר ר ס •	• n .
144.	720.	120.	28	15.
0.		8		•
				•

Figure II-II-C-9. Aircraft Availability Times for New Mission

DECIMAL FRACTION OF BLUE ALREGAFT AVAILABLE AFTER SUBTRACTING THOSE DOWN FOR MAINTENANCE

AY D-DAY D-JAY D-DAY 0 +11 +12 +13	004. 005. 039. 07.	00 1.000 1.300 1.000	.700 .660 .500 .400	.600	00%. 006. 008. 007.	.600	00 1.000 1.300 1.000
0-DAY 0-DAY	.750	. 000	.750	.750	.750	.750	1.000
D-DAY D-DAY	.756	1.000	.600 .600 .750	05.2	.750	.800	1.003 1.000
Y D-DAY	. 663	0 1.000	. 833	. 663	0.80	90	00
0-0AY D-0AY + 5 + 6	008. 6	0 1.00	0.80		. 600 .	. 006. 0	00001
	. 803	0 1.00	009. 0	. 803	. 633	.800	0 1.000
0-' AY 0-0AY 3 + 4	009.	0 1.000 1	.800	008. 0	0.8.0	0 .800	0 1.000
1V 0-'A	006. 0	10 1.600	006* 0:		006. 0:	006. 01	10 1.600
17 9-0AY [056. 01	1.000	696. 00	056. 00	056. 00	066. 00	1.300
17 D-0AY + 1	. 992	1.000	066. 00	066. 00	066. 00	066. 00	1.050
H 0-0AY	1.000	1.300	1.000	1.000	1.000	1.000	1.000
A/C ITEM CODE	88	96	8.5	96	19	91	6

Figure II-11-C-10. Aircraft Degradation for Maintenance

9LUE AT3CZAFT VULNEFANLE PPEAS FOR KILLS BY PFC WEAPON TYPES (SQUARE METEPS)

A & A		A+B+C+D 13.24	A+8+C+13	ታ ታ •	A+8+C+0 3.94
\$ \$ \$ \$ \$ \$	2,08	A+8+C	80 44 70 0 10 0 10 0	7.29	A+8+C 7.29
4 6	1.01	1.01	& *	n *	A+B 4.43
ď	\$ \$. 50	थ	3.01	3 A A 0.1
98 A+8+C A+R+C+D	16.15	A+B+C+D 10.24	A+9+C+n	14.25	A+B+C A+B+C+0 7.29 9.94
	1.35	A+B+C	98 A+8+C	8.53 87	A+B+C 7.29
€ €	0.00	1.01	A 8	5.24	A+8
⋖	*0.	.50	٩	\$. \$.	3.61
	\$ C C C C C C C C C C C C C C C C C C C	A+B+C+D 10:24	A+B+C+D	* * *	A+B+C+D 9-44
3.8 4 + B + C	2 · 03	A+B+C 2.03	38 A+9+C	36	7.29
e .	1	A+9	A + 9	?	N + 3 + . 6 %
≪ "	•	A . 50	4 6 5		3.01
A/C ITEM CODE KILL TYPE	A/C ITEM CODE KILL	1 7 PE	CODE	A/C ITEM CODE KILL	- A PE
MEPN 11EN CODE	MEPN	22	NEPN ITEM CODE 70	HEPN	2 P

Figure II-11-C-11. Aircraft Vulnerable Areas for Kills by Weapon Type

REO AIR DEFINSE WEAPON CHARACTERISTICS

DISTANCE	EMPLOYED	BEHIND	FEBA	(METERS)		-005	1500.	3000.	*000	+000.	25000.	25000.	.009	17000.
_				Ħ	POOR	40.	10.	10.	10.	10.	#	•	ċ	1. 1.
AVERAGE	WEAPON	š	rs)	NICHT	GOOD POOR GOOD POOR	*0* *0* . *0*	10. 10. 10.	16. 10. 10.	10. 10. 10.	10. 10. 10.	;	:	÷	;
AVE	HEA	ERROR	(HILS)	DAY	POOR	. 9		16.			:	1:	÷	:
				6	000	6	10.	10.	10.	10.	#	÷	;	:
				NI GHT	POCA	370.	450.	1390.	÷	1990.	5000. 5000.	•	•	5000.
AVERAGE	L N	GE	(METERS)	Ħ	G000 P00R G000 P00R	370.	1420.	1396. 1390. 1390.	ė	1990.		5600.	ė	5000.
AVE	SL ANT	RANGE	EE	DAY	POOR	370. 370.	450.		808.	1990.	5000.	5300.	450.	5000.
				0	0000		800. 1420.	3300. 1390.	1600.	1990.	5000.	0. 5000.	0. 1060.	5000.
				NIGHT	POOR	.008	800.		3. 0. 1600.	52. 6101. 5010. 6001. 6000. 1990. 1990.	1. 45000. 45030. 45003. 45000. 5000.		ċ	3. 35001. 35000. 35001. 35000. 5000.
MAXIMUM	EFFECTIVE	'n	(HETERS)		GOOD POOR GOOD POOR	1403.	2000.	3000		6003.	45003*	0. 45000. 45030. 45003.	.:	35000.
MAX1	EFFE	RANGE	CHE	DAY	POOR	803.	800.	3600.	800.	50J0.	45030	45000.	0. 2160. 800.	35000.
				-	0009	1400.	2300.	3000.	26. 4300.	6303.	+5000	45000.	2300.	35003.
				Ħ	P003	16.	27.	784.	26.	52.	;	:	Ġ	ĸ
	S) PER		NIGHT	6000 P003	16.	73.	784.	26.	52.	:	1.	:	m
	ROUNDS	FIRED	ENGAGE	DAY	POOR	.64	100.	784.	59.	52.	#	:	#	m
					600	ç	273.	784.	56.	.25	:	:	ä	6
			MEPN	ITEM	CODE	22	70	12	22	73	2	92	1.8	79

Figure II-11-C-12. Air Defense Characteristics

RED AIR DEFENSE WFAPONS EFFECTIVENESS DATA FACTORS

(EPN	2	101	TO ENGAGE	9140			FA(FACTOR F	OR NO	FOR MODIFYING ROUNDS FIRED PER	Rour	IDS F1	d 03a	N L	FNCACEMENT	1-2		
TEN	2	DAY	NIGHT	SHT						AIR	CP AF T	SPEED	LCNXI		1			
3005	ATK	DEF	4	DEF	3.4	9	80		126	126 160 160 180	16.0	•		;	1			
22	50.0	50.0	3.0	3.0	6 * 66	99.9	•	۰				01	B 0 4	022		240 250	240	360+
7.0	50.0	50.0	9			96	99.90			7	9.09	53.0	0.04	35.0	36.5	30.08	25.€	25.0
11	50.0	50.0	•	•	99. 9	0 00			4.00	f • 0 ;	9 ° 0 9	53.9	6.04	35.0 3	30.6	30.0	25.0	25.0
72	50.0	50,0			0			3 · ·	3 . 3	60.1	60.0	60.0 50.0	40.0	35.0	0.0	30.0	25.0	25.0
73	50.0	50,0	u			, , , , , , , , , , , , , , , , , , ,	0.56 8.66	93.0	90.0	86.3	60.09	50.0	40.0	35.0	30.0	30.0	25.0	25.0
2	50.0	6			· ·	666	99.9 95.0	93.0	90.0	96.6 80.3 60.0	60.0	53.0	4.0.E	35.0	0.0	30.08	25.€	25.0
. 42			3 (P		.	•	0.0 0.0	0.0	99.9	6*66 6*66 6*66	6.66	99.9	6*66		6.66	99.9	99.9	0.00
		9 6	, 		. i	•	•	99.9	666	6.66 6.66	6.66	93.9	99.9	6.6	64.9	6.65	6.66	9 9
. 2			; ;		6.6	99.9	99	6 66.66 6	666	95.3	95.0	99.0	90.0	0 85.0 8	85.0 75.0	75.6	75.0	50.0
	•	;	=	-	9.0		3.0 0.0	9 · c	0.0	0.5 0.0 0.6 0.0 0.0 0.0 0.6 0.0 0.0	0.0	3.0	0.0	0.0	0.0	0	0.0	0.3

Figure II-11-C-13. Air Defense Weapons Effectiveness

0.0

FACTORS FOR RED AIR DEFENSE WFAPON FFFECTIVENESS VS. TERRAIN AND VEGETATION

The state of the s

	DENSE PCOR INTEL	000°°	. 500	.300	.500	. 500
TFRRAIN	STATION) 0 500D INTEL	.500 .750 0.000	.500	.500	.530 .750	.500 .750 .750
ROUGH	(FORFS MED	. 750 . 900 0 . 000	052° 006°	006. 006.	. 750 . 900 . 900	. 750 . 930 . 930
	SPARSE	. 950 0 26 • 0 0 0 0	. 950 . 950	0 56 • 0 56 •	. 950 . 950 . 950	. 950 . 950 . 950
	DENSE POOR Intel	000 000 000 000	. 300 . 500 . 500	.360 .500	. 300	000 000 0009 •
TERRAIN	GOOD INTEL	.500 .753 0.000	.643 .753	.503 .753	.600 .753	.600 .750 .801
0009	(FORES	. 950 0.000 0.000	.800 .950 .950	958 958	. 950 . 950 . 950	. 800 . 950 . 950
	SPARSE	.933 1.303 0.303	.903 1.003 1.003	.900 1.000 1.000	.903 1.000 1.303	.900 1.000 1.000
	ALT (FEET)	NOF 1500 5010	NOF 1500 6000	NOF 1500 6000	NOE 1500 6000	NOE 1500 6000
Ç	NEPN ITEM CODE	22 22 25 25 25 25 25 25 25 25 25 25 25 2	7.0 7.0 7.0	71 71 71 71 71 71 71 71 71 71 71 71 71 7	72 72 72	73

II-11-C-16

Figure II-11-C-14. Air Defense Weapon Degradation from Terrain and Vegetation

15. ENGAGEMENT RESULTS. Two printouts deal with the results of air strikes, the 80-column card images of data file 27 and the engagement results of air strikes, which includes Blue aircraft striking Red targets and vice versa. The 80-column card image displays all data as originally entered in the card formats. For a description of the input cards, see Appendix A to Chapter 10, Air Ground Engagement Model Input Requirements, of the Period Processor. The engagement results of air strikes printout, Figure II-11-C-15, depicts the data entered into data file 27 and has been formatted with columnar headings and related information so that the data will be readily identifiable.

ENGAGEMENT RESULTS FOR BLUE AIRCPAFT attacking RED TARGFT

TIME = DAY		_	VISIBILITY =		0009	TARGET =		TANK COYPBNY	
AIRCAAFT =	DAF	ACT	ACTIVITY =	ASSEMB	ASSEMBLY ARFA	AIR DEFENSE	FENSE =	NORFAL	
TYPE			WEAPON	TYPE	w				
KILL	v ·	SMALLER THAN 23mm	~	23HH	41.5	LARGIR THAN 23H"	SAN		
A-KILL		30000-0	4.	.17847	0.0	0.0000.0	0.0000	ø	
P-KILL		20000-3	0.	.01810	3.9	0.000.0	0.0000	دى	
כ-אורר		0.0360.0		. 3559û	0.0	0.000.0	9.39000	•	
ה-אזרר		0.63636	9.0	9.00003	0.0	0.000.0	0.0000	0	
		TYPE 1		TYPE 2	TYPE 3	TYPE 4	TYPE 5		TYPE 6
AEPIAL MUNITION EXPENDED	ON EXPENDED	0.0000	0 3.60000		0.00000	6.6000	0.00000	-	6.50000
AERIAL MUNITICN LCSF	CN LCST	0.00000	0 0.00680		0.00.00	0.63363	6.03368		0.000.0
	TYPE 1	TYPE 2	TYPE 3	TYPE 4	TYPE 5	1 ype 6	TYPE 7 T	TYPE A	TYPE 9
AIR REFENSE WEAPONS KILLED	0.3060	0.000	.6533	0000 -0	0.000.0	6.6330	6.0000	3.0300	0.3360
AIR DEFENSE Munition expended	0000° 0000	9000 • 0	0.00.0	0000-9	0000.0	0.0000	0.6300	0.1300	0.0300
WEAPON		TANKS KILLED	זרונס	AP	APC KILLED	•	VEHICLES KILI	אזרו ם	

Figure II-11-C-15. Engagement Results of Air Strikes

NUMBER OF AIRCRAFT DUPATION OF ENGAGEMENT FLYING MISSION = 2.00

PERSONNEL KILLED =14.10

0.00000

0.0000.0

2.95000

GUIDED MISSILE OTHER

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR AIR GROUND ENGAGEMENT

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 12

SUPPRESSION DATA INPUT PROGRAMS

1. INTRODUCTION. The Suppression data input programs create and load the file containing the suppression group indexes and tables of suppression times used by the Suppression Model. These data are dependent upon data stored in data file 51 by the Organization and Equipment routines.

2. ROUTINES:

The second secon

- a. General. The Suppression data input programs consist of the following routines.
- b. Routine SPRSLD. This routine creates the Suppression data file, reads and edits the data cards, and stores the data in the file. It also associates the suppression group index input on the data cards with the UTDs using the table stored on data file 51.
- c. Routine SUPDMP. This routine gives a formatted dump of the Suppression data loaded which includes the suppression groups and tables of suppression times associated with each group. It also generates an unformatted record dump of the file.
- 3. FILES. Data file 8 is loaded by the Suppression input program.

APPENDIX A

SUPPRESSION DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for suppression are documented in Appendix A, Suppression Model Input Requirements, to Chapter 11 of the Period Processor (Section IV).

APPENDIX B

SUPPRESSION DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. Suppression Model data are loaded by one routine, SPRSLD, which in turn calls routine SUPDMP to list the data. Since SPRSLD uses data file 51 as input, these data cannot be loaded until after an acceptable run of LDTOE.

2. ROUTINE SPRSLD:

- a. Purpose. This routine is used to load the constant data required by the Suppression Model. The data are read from card forms 0801 and 0802 and are stored on data file 8.
 - b. Input Variables. Data cards 0801 and 0802 and data file 51.
 - c. Output Variables. Tables to data file 8.
 - d. Logical Flow. (Figure II-12-B-1):
- (1) Blocks 1, 2, and 3. The file name table is brought in from disk and data file 8 is released by a call to REMOVE and allocated by a call to CREATE with one record of 3200 words.
- (2) Block 4. The list of unit type designators (UTD) required by this routine is retrieved from data file 51. These data must be loaded after the UTD list is finalized.
- (3) Blocks L1000, 5, and L1125. The suppression groups (card types 0801) are read and stored in the array IFIL8, starting with word 1 if they are Blue force groups and with word 1001 if they are Red force groups. The 1000 locations reserved for each force correspond to the 1000 possible UTDs. The word location within the data file 8 record of the beginning of the suppression time table for the UTD associated group, is stored in the corresponding location in IFIL8.
- (4) Blocks L2000, L2010, and L2040. The suppression time tables are read from card types 0802 and stored in IFIL8 starting in location 2001 if they are associated with the Blue force and in location 2601 if they are associated with the Red force. There are 12 words of data per table with a maximum of 50 tables. Each card contains an entire table. The suppression times are read in seconds and converted to and stored in centiminutes.
- (5) Blocks L7000, 6, and 7. The suppression data are put into data file 8, and routine SUPDMP is called to give a word dump of data file 8. The file name table is printed.

3. RCUTINE SUPDMP:

a. Purpose. This routine produces a dump of the contents of data file 8.

II-12-B-1

Figure II-12-B-1. Routine SPRSLD

- b. Input Variables. Tables on data file 8.
- c. Output Variables. Printed tables.
- d. Processing Description. The data loaded on data file 8 are read and dumped in file sequence.

APPENDIX C

SUPPRESSION DATA LOAD OUTPUT DESCRIPTIONS

An 80-column image of each card is printed immediately after it is read. A sample of the listing produced in this manner is shown in Figure II-12-C-1. This data load program also provides a word dump of the file. This word dump may be used to verify that the data file was loaded correctly.

	<u>.</u>	1		-4	7-	<u>g</u>	ď	17-	11-	12-	1 3-	14-	15-						21-	-22		-42	70.0	Ė	•	•	١	-1c3b	١	•	•	•	•	•		119F9L-
361	931	(7)	شر د ع	~	5	6	ري ن	3	(C)	9	9.0	ą.	33	4	ري د	٩	3)	ς Ω	9.0	م	ዓ ን	9	د.	1931	90	₽	e E	901	رب ت	G,	بر ن	(<u>ی</u>	Q .	3901 3	A 319
1 + 155 SP H]			5	**	•	17	7	7	C'csus Ids'ALIVI	•	•	,		•	, ,				0		•			C	0	c. ,	•	ENGS		0	9	PANAS		C	,	
XIM HOUR +		PUF 202				Ų			HO SVC. FORINS, MAIST, SPI																	Alcu		PCM, CAT	SNOS	MSL		100, 650,				
TANK		175 6	HELH			KUD US	1	HAMK		510						JSV d									du.dv	MAFATOUFD		MECH	SP AD	ARTY M	JON UK	ANIUP				
FSFA			1531	200								IACH								しいいし	JILL	ii) Ya			`	MARA		HASE	J .	_	_	₩C ?F		LFOT		ピンピン
1111			KUST	TUI					1151	ITCT	1521	F 2 MH								JIIJ		KIST				Vach		AUSE				43× 14	35F	1011	DST.	ر بعر آ
FOMI	,		XL31	1510					YTET			1510								1001	בערר	といいと		עלה ע		46FA		3503				いいしま	[r.15		Ç	AR AR
PMCT		KHFA	OMFA	היים					104.3	5571	17:1	LANT									1776	KALI		レコンユ		ひょいと		45 UH							Jiu	لا . ال
LVYC	1++1	VLHI	Linns	10.1		ווייון			ひとして	<u>د</u> .	1 (4)	1.01	HIVE	HUV				1001						I VEDI	101	5 1 J		18 CT				おじんじ	u : :::	1111	V 1.	# (U.E.
11.11	1.56	バ ら ア カ	1. 4.4	4 6 4		JAFI	1-14	Lani	301.	luci	400	1.11	14.41	1:63	f ich	1000	11.17	القارية	11,00	HI VI	Juma	¥ 0.00 X	K 11	10.74	1000	2110	として	51	Lain	Hill 1	Hara	1, 25	4100	HATT	Critic	۱ د د
14.4	V 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	RELEA	PIMI	シャドル	11:45	10V5	4 in 1	משמה	3,,,	151	10.1	まじいよ	TAIH	HMUL	47 11	はいしょ	KACA	ادلان	יין אין	7880	HILL	KVVX	はいいい	בנינע	Leat	311E A	Valre	1 تامل	NI FO	0 U	HAFN	はつくつ	t not	5413	1600	いいと
**		r	4	٠,	~	۲	٤	^	x	α	α	ď	κ	oʻ	α	¢	¢	œ	α	ď	α	α	œ	~	-	~	~	ۍ	Ľ	ď	7	a	ø	α	c	۳
C.	•	•	~	-	4	•	-		•	*	•	· +	•	•	*	-	-	•	•	r	•	-	•	₹-	4	₹~	: 1	٠,	4	64	*	٠.	•	<u>د</u> •	٠,	•

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR SUPPRESSION

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 13

NUCLEAR ASSESSMENT DATA INPUT PROGRAMS

1. INTRODUCTION. The Nuclear Assessment data input programs add the data required by the Nuclear Assessment Model to the data pertaining to the conventional Area Fire Model and already existing in data file 30. The controlling Nuclear load routine assures that the fire has been created. The data include tables describing the immediate time dependent effects of each nuclear detonation.

2. ROUTINES:

THE RESERVE THE PROPERTY OF THE PARTY OF THE

- a. General. The routines comprising the Nuclear Assessment data input programs are described in the following paragraphs.
- b. Routine NUCLD. This routine controls the other routines for Nuclear data input. Its first task is to assure that the conventional Area Fire data are preserved. Once this is accomplished, routines FLD30 and DMP30 are called in that sequence.
- c. Routine FLD30. This routine reads and edits the Nuclear Assessment data cards and stores the data on the file.
- d. Routine CKARY. This is a utility routine which determines if a given integer is present in a given array.
- e. Routine DMP30. This routine prints the nuclear data portion of the file in tabular form.
- 3. FILES. This program loads the part of data file 30 containing the nuclear data.

APPENDIX A

NUCLEAR ASSESSMENT DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for nuclear assessment are documented in Appendix A, Nuclear Assessment Model Input Requirements, to Chapter 12 of the Period Processor (Section IV).

ARMY COMBINED ARMS COMBAT DEVELOPMENTS ACTIVITY FORT—ETC F/8 15/7 DIVIAG MODEL DOCUMENTATION. VOLUME II. PROBRAMMER/AMALYST MAMUA—ETC(U) JUL 76 CACDA—TR—8-76—VOL—2-PT-1 NL AD-A112 656 UNCLASSIFIED

APPENDIX B

NUCLEAR ASSESSMENT DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. Data for the Nuclear Assessment Model, when loaded, share data file 30 with data for the conventional Area Fire Model. The load programs are constructed in such a manner that the conventional Area Fire Model's data load routines must be executed prior to Nuclear Assessment Model data load routines. These routines include the controlling routine, NUCLD, that ensures proper allocation of data file 30 and maintenance of the conventional Area Fire Model data, FLD30, that reads the input data cards and stores data on data file 30, a utility routine, CKARY, and a dump routine, DMP30.

2. ROUTINE NUCLD:

- c. Purpose. NUCLD is the driving routine for FLD30. It copies the two records on data file 30, recreates data file 30 with 21 records, and puts the first two records back on the new data file 30.
 - b. Input Variables. None.
 - c. Output Variables:
 - (1) Data file 30.
 - (2) Other variables:

Name	Destination	Contents
LUCR	ONE	Logical unit number of card reader.
LUPR	ONE	Logical unit number of printer.
LUIN	ONE	File number of intermediate file.

- d. Logical Flow (Figure II-13-B-1):
- (1) Block 1. Initialize the numbers of the devices to be used by FLD30 for input and output operations.
 - (2) Blocks 2 and 3. Bring in the file name table and print it.
- (3) Blocks 4 and 5. Copy the first two records of data file 30 and call REMOVE to remove it.
- (4) Blocks 6 and 7. Call CREATE to recreate data file 30 and copy the two records from the original data file 30 onto it.
- (5) Block 8. Initialize the added records on data file 30 as either blank or zero.

Figure II-13-B-1. Routine NUCLD

(6) Blocks 9 and 10. Call FLD30 to read and edit the input data and store it on data file 30. Call DMP30 to print the contents of data file 30.

3. ROUTINE FLD30:

- a. Purpose. FLD30 reads and edits data for the Nuclear Assessment Model and stores it on data file 30.
- b. Input Variables. Input variables are the output variables of NUCLD (paragraph 2c).

c. Output Variables:

Name	Destination	Contents
FAYT(7,1200)	DF30	Fuze data for nuclear weapons.
		FAYT(1,I). Code number for the weapon-fuze combination.
		FAYT(2,I). Impact detonation flag.
		FAYT(3,1). Airburst option flag.
		FAYT(4,I). Desired height of burst if the airburst flag is on.
		FAYT(5,I). Probable error in height of burst.
		FAYT(6,I). Minimum range for this weapon-fuze combination.
•		FAYT(7,I). Maximum range for this weapon-fuze combination.
NOBFAC(30)	DF30	Character codes to link barriers to the array of pointers to damage radii.
NOBFPT(30)	DF30	Array of pointers linking barriers to damage radii.
RT(9)	DF30	Radiation codifiers and soil type indicator.
WWNAME(1200)	DF30	Array ware issigned to nuclear weapon-warhead-fuze combinations.
		WWSTAT(9,100). Array of weapon-warhead statistics.
		WWSTAT(1,1). Code number for the weapon-warhead combination.

Name	Destination	Contents
		WWSTAT(2,1). Equipment item code for the weapon.
		WWSTAT(3,I). Equipment item code for the warhead.
		WWSTAT(4,I). Standard deviation in range for the weapon-warhead combination.
		WWSTAT(5,I). Standard deviation in deflection for the weapon-warhead combination.
		WWSTAT(6,I). Index number of the FAYT array of the first entry for this weapon-warhead combination.
		WWSTAT(7,I). Incoming angle of the round.
		WWSTAT(8,I). Velocity of the round (meters per minute).
		WWSTAT(9,I). Time required to deliver from state of readiness one.
YDRHOB(241,30)	DF30	Table associating, with each yield, four heig. of burst and radii choices for each of the 30 possible damage radii.
EOHLEA(200)	DF30	Array of links from equipment item codes of items in the air to damage radii of enemy weapons.
EOHLFA(200)	DF30	Array of links from equipment item codes of items in the air to damage radii of friendly weapons.
PEPFLG(200)	DF30	Array of flags to show troop carrying items.
CCYD(30)	DF30	Codes of the yields in the YDRHOB table.
UNPRO (70)	DF30	Array of distributions of unprotected personnel.
		UNPRO(1,I). Personnel exposed (unwarned).
		UNPRO(2,I). Personnel in open foxholes (unwarned).
		UNPRO(3,I). Personnel in earth shelters (unwarned).
		II-13-B-4

<u>Name</u>	Destination	Contents
		UNPRO(4,I). Personnel exposed (warned).
		UNPRO(5,I). Personnel in open foxholes (warned).
		UNPRO(6,I). Personnel in earth shelters (warned).
		UNPRO(7,I). Time to revert to unwarned status
EOHLEG(200)	ONE	Array of links from equipment item codes of items on the ground to damage radii of enemy weapons.
EOHLFG(200)	ONE	Array of links from equipment item codes of items on the ground to damage radii of friendly weapons.
RSTRAN(200)	ONE	Array of residual transmission factors for each equipment item.

d. Logical Flow (Figure II-13-B-2):

- (1) Blocks L700 and 1. Initialize the arrays to be used for storage of data before it is transferred to data file 30. If the input is for the Red force, transfer control to block 8.
 - (2) Block 2. Read the data cards and print each one on the printer.
- (3) Blocks 3 and 4. As the cards are read, store card image on an intermediate file from which they will again be read for editing and storing into arrays.
- (4) Blocks 5, 6, 7, and 8. Read the first data card image and store the radiation modifiers and soil type indicator in the output array. Read the next card image. Control branches on the appropriate card type.
- (5) Blocks L10, 10, 11, 12, 13, and 14. Process the type one card images by reading them from the intermediate file and checking for redundant cards or values not within range. Print error messages.
 - (6) Block 15. Put the edited data on data file 30.
- (7) Blocks L38, 16, 17, L30, 18, 19, L40, 20, 21, L50, 22, 23, L60, 24, and 25. Process other card types according to their associated formats, checking for redundant cards or values not within range.
- (8) Block 26. Store the data from card types two through six on data file 30.

Figure II-13-B-2. Routine FLD30 (Continued on Next Page)

Figure II-13-B-2. Routine FLD30 (Continued)

Figure II-13-B-2. Routine FLD30 (Concluded)

- (9) Block 27. If data for both forces have been processed, return control to the calling routine.
- (10) Blocks 28 and 29. Put data on data file 30 and set a flag to indicate that the Red force data is being entered. Control goes to block L700 to process the Red force data.

4. ROUTINE CKARY:

- a. Purpose. CKARY searches an integer array for a special number. If the number is not found, a zero is returned; if the number is found, a one is returned.
 - b. Input Variables:

Name	Source	Contents
IARRY	Call	Array to be searched.
LOOK	Call	Number to find in IARRAY.
MAX	Call	Maximum number of elements to search in the array IARRY.

c. Output Variables:

Destination	Contents
Call	Flag indicating whether the number was in the array.

- d. Logical Flow (Figure II-13-B-3):
 - (1) Block 1. Initialize the flag to zero.
- (2) Block 2. Loop through IARRY from one to MAX, searching for the number specified. If the number is not found, return control to the calling routine.
- (3) Block L2. If the specified number was found, set the flag to one and return control to the calling routine.

5. ROUTINE DMP30.

- a. Purpose. DMP30 prints the contents of data file 30 in formatted tabular form.
 - b. Input Variables. Contents of data file 30.
- c. Output Variables. Formatted tables printed with contents of data file 30.

d. Processing Description. Each type of data is read from data file 30, reformatted into easily readable tables, and printed on the line printer.

APPENDIX C

NUCLEAR ASSESSMENT DATA LOAD OUTPUT DESCRIPTIONS

1. INTRODUCTION. Ten different printouts are generated each time data are entered in the Nuclear Assessment constant data file. These printouts are listed in Figure II-13-C-1.

Printout Title	Date Source	Card ID
80-Column Card Image	Card Data Deck	A11
Weapon Combination Names	Data file 30	3011
Weapon Statistics	Data file 30	3011
Fuze Table Entries	Data file 30	3011
Yield Table	Data file 30	3011
EOH Link to Damage Radii	Data file 30	3011
EOH Data	Data file 30	3011
Yield Codes and Barrier Data	Data file 30	3011
Unprotected Personnel Distribution	Data file 30	3011
Special Factors for Both Teams	Data file 30	3011

Figure II-13-C-1. Nuclear Assessment Model Constant Data Input Printouts

2. NUCLEAR ASSESSMENT 80-COLUMN CARD IMAGE. The 80-column card image is printed so that the data entries are in the same format as entered in the card type. The format for the 80-column card image is illustrated in Figure II-13-C-2. On the top line at the far left is the number 7, indicating card type 7 for both forces. In the third column from the right is the ID number 3011.

Figure II-13-C-2. Nuclear Assessment 80-Column Card Image

- 3. WEAPON COMBINATION NAMES. The format for this report, described by its title, is illustrated in Figure II-13-C-3 for the Blue team. A similar report is produced for the Red team.
- 4. WEAPON STATISTICS. This report, Figure II-13-C-4, identifies the weapon statistics for each combination of weapon delivery system and weapon item code. Column one identifies each such combination. The next eight columns identify respectfully the weapon item code, warhead item code, the range dispersion, deflection dispersion, weapon system index, delivery angle, projectile velocity, and delay time associated with each weapon/delivery combination.
- 5. FUZE TABLE ENTRIES. This report, Figure II-13-C-5, identifies fuze characteristics for each type of fuze in column one. The next six columns identify respectfully the impact option indicator, height of burst option, preset height of burst, probable error in height of burst, and the minimum and maximum range of dispersion associated with each fuze type.
- 6. YIELD TABLE. This report, Figure II-13-C-6, reflects the height of burst and damage radius for each damage index of each weapon system.
- 7. EOH LINKS. This report, Figure II-13-C-7, associates equipment with the appropriate assessment radii of effect. This assessment is given for friendly and enemy munitions both airborne and on the ground.
- 8. EOH DATA. This report, Figure II-13-C-8, reflects the radiation transmission factor and the personnel protection flag for each equipment type.
- 9. YIELD CODES AND BARRIER DATA. This report, illustrated in Figure II-13-C-9, reflects barrier damage by yield code and damage radius index.
- 10. UNPROTECTED PERSONNEL DISTRIBUTION. This report, Figure II-13-C-10, reflects the percentage of personnel killed in three different postures, engaged in seven different activities, for both warned and unwarned. It also gives the time for personnel engaged in the seven activities to revert back to an unwarned condition.
- 11. SPECIAL FACTORS FOR BOTH TEAMS. The first two entries in this report, Figure II-13-C-11, give the slant range in yards corresponding to a radiation rate of 0.1 rads/hour/ton, the slant range in yards corresponding to a radiation rate of 0.005 rads/hour/ton. The next four entries give the same data for kiloton and megaton yields. The next entry is the soil type multiplier. The next entry is zero—and meaningless—and the last entry is minutes to resume unwarned posture for stay activity.

THE WEAPON COMBINATION NAMES FOR BLUE TEAM.

NMII	
NMB I	DDSF
NMAI	DDSA
NLIG	NAIN
NLBG	NABN
NLAG	NAIL
NRIH	NABL
NRIF	NAIG
NRIE	NABG
NRAH	NHIK
NRAF	NHBK
NRAE	NHAK
NCAD	NMIJ
NCAC	NMBJ
NSAB	MA

Figure II-13-C-3. Weapon Combination Names

		~	ĸ	ľ	5	2.0	2 0	2.0	1 C	10	10	0-	- J	0	0	0	0	ວ	0	0	0	ب
		300	121	604	600	703	700	300	150	150	150	ا	င ာ •	0	ن	0	0	5	ဌာ	0	Ö	و،
		6 t)	6. 10	30	3.0	6.0	60	A ()	85	ዓ ያ	æ ያ	0-	0-	0	0	0	0	0	0	0	0	ن
	ANGLE VELOCITY TIME	101	202	406	1105	1505	2005	2505	3903	3303	3503	3901	4001	Û	O	0	0	c	n	0	0	٠.5
UE TEAM.	MOLE VEL	~	~	14	₩	۱۸	2	æ	<u> </u>	C	ا ن	Ð	ا ن	o	ro	0	0	Ü	0	0	0	r
S FOR BL	INDFX	7	7	14	~	5	5	π		0-	Ū -	0	. .	C	0	O	0	ņ	0	C	0	0
WEAPON STATISTICS FOR BLUE TEAM.	FOFFLECT.		63	70	130	181	1,42	183	101	162	103	143	144	0	ت	0	0	ت	0	ت	C	0
THE WFAPON	HAFH RANGE	55	56	6.0	67	6.8	a.	6'3	80	9.8	98	143	144	5	0	0	ت	က	0	Ö	0	ی
-	CONF WFAD	SN	27	NR.	ָרָרָ בָּרָרָ	Σ	Σ	I	A Z	AN	AN	00	96									

Figure II-13-C-4. Weapon Statistics

CODE		THE FUZE T	ABLE ENTRIES	FOR BLUE	TFAY.		
A 0 0 0 -0 15 2007 150000 A 0 0 0 -0 28 2005 20000 A 0 0 0 -0 28 2000 25000 A 0 0 0 -0 140 5000 45000 A 0 0 0 -0 140 5000 40000 A 0 0 0 -0 140 5000 40000 A 0 0 0 -0 140 5000 40000 I 1 1 0 0 -0 -0 5000 40000 I 1 1 0 0 -0 -0 5000 40000 A 0 0 1 19 30 1000 50000 A 0 0 1 19 30 10000 50000 A 0 0 1 19 30 10000 50000 B 1 1 19 30 10000 50000 B 1 1 1 19 30 10000 50000 B 1 1 1 10 -0 -0 -0 50000 150000 A 0 0 1 1 32 50 50000 150000 A 0 0 1 1 32 50 50000 150000 B 1 1 1 50 50 5000 150000 B 1 1 1 50 50 50 5000 150000 B 1 1 1 50 50 50 5000 150000 B 1 1 1 50 50 50 5000 150000 B 1 1 1 50 50 50 5000 150000 B 1 1 1 50 50 50 5000 150000 B 1 1 1 50 50 50 5000 150000 B 1 1 1 50 50 50 5000 150000 B 1 1 1 50 50 50 5000 150000 B 1 1 1 50 50 50 5000 150000 B 1 1 1 50 50 50 5000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 50 50000 150000 B 1 1 1 50 50 5000 300000 B 1 1 1 50 50000 3000000 B 1 1 1 50 50000 3000000 B 1 1 1 500000 5000000000000000000000000	CODE				PEH	MIN PANGE	MAX RANGE
A				- û	15		13000
A	Δ	o o		- 3	28	2000	20000
A		ĵ	Ú	- ງ	28	200ú	
A	Δ		ė	- 3	146	5000	43000
1	Α	0	ú	- i)	149	5363	4.000
1	Δ	3	U	- ú			43000
1	I	1	0	- 3	- 0		40000
I	I	1	to the	- j	– C		
A	I	1	ō				
1	Δ	J					
B		J					
1							
A			2				
A	I		ũ				
1	Δ						
1							
1							
A							
A	I						
1 1 90 50 50 5000 150000 150000 1 1 1 0 0 0 0							
1							
1							
A							
A 0 2 118 100 50000 300000 B 1 1 2 6 50 0 0 999999 B 1 1 2 46 50 0 999999 B 1 1 1 0 0 -0 -0 0 0 999999 B 1 1 1 0 0 -0 -0 0 0 999999 B 1 1 1 1 0 0 -0 -0 0 0 999999 B 1 1 1 1 0 0 -0 -0 0 0 999999 B 1 1 1 1 0 0 -0 -0 0 0 0 0 0 0 0 0 0 0 0							
B 1 1 2 118 100 50303 304000 I 1 0 -0 -0 50303 304000 B 1 1 0 -0 -0 50000 304000 B 1 1 26 50 0 999999 B 1 2 46 50 0 999999 I 1 0 -0 -0 0 999999 B 1 1 74 50 0 999999 B 1 1 74 50 0 999999 B 1 1 131 50 0 999999 I 1 0 -0 -0 -0 -0 -0 B 1 1 131 50 -0 -0 -0 -0 B 1 2 215 50 -0 -0 -0 -0 B 1 1 0 -0 -0 -0 -0 -0<							
1 1 2 118 100 50363 300000 1 1 1 1 26 50 50 00 300000 300000							
I 1 0 -0 50000 30,000 B 1 1 26 50 0 999999 B 1 2 46 50 0 999999 I 1 0 -0 -0 0 999999 B 1 1 74 50 0 999999 B 1 2 123 50 0 999999 I 1 0 -0 -0 -0 999999 I 1 0 -0 -0 -0 999999 I 1 0 -0 -0 -0 -0 999999 I 1 131 50 -							
8 1 1 26 50 0 999999 8 1 2 45 50 0 999999 8 1 1 74 50 0 999999 9 1 1 74 50 0 999999 1 1 2 123 50 0 999999 1 1 0 -0 -0 -0 -0 -0 8 1 1 131 50 -0 <							
B 1 2 45 50 0 994999 II 1 1 0 -0 -0 0 999999 B 1 1 74 50 0 999999 B 1 2 123 50 0 999999 II 1 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -							
1 1 0 -0 -0 0 999999 3 1 1 74 50 0 999999 3 1 2 123 50 0 999999 1 1 0 0 -0 -0 -0 -0 -0 -0 8 1 1 131 50 -0 -0 -0 8 1 2 215 50 -0 -0 -0 1 1 0 0 -0 -0 -0 -0 -0 S 1 0 0 -0 -0 -0 -0 -0 S 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						•	
1 1 74 50 0 999999 1 1 2 123 50 0 999999 1 1 0 -0 -0 -0 -0 -0 -0 8 1 1 1 131 50 -0 -0 8 1 2 215 50 -0 -0 -0 8 1 0 -0 -0 -0 -0 -0 -0 S 1 0 -0 -0 -0 -0 -0 -0 S 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
1 2 123 50						-	
1 1 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -							
8 1 1 131 50 -0 -0 -0 131 1 131 50 -0 -0 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
B 1 2 215 50 -3 -0 10 11 11 00 -0 -0 -0 -0 -0 -0 -0 11 11 00 -0 -0 -0 -0 -0 -0 -0 11 11 00 -0 -0 -0 -0 -0 -0 11 00 00 00 00 00 00 00 00 00 00 00 00							•
I							
S 1 0 -0 -0 -0 -0 -0 S 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
S 1 0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -							
0					-:		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3	Ţ	6		n		ŗ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ט ה		2	2		Ü
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		U N	a A	0		ล	û
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		ນ ຄ		0		7	ŋ
0		Ü		7	5	, ,	5
0		บ ก	r,	j J	ũ		û
			1	.î		a a	
				5			
		Ü		์ ว	Č	3	

Figure II-13-C-5. Fuze Table Entries

		?	-	î	-	•	?	-	?	9	6-	9	-	9-	9	0-		553	330	0	500	320	4.50	180	790	3	0	007	0	0	0	0		5.50	450	0	623	9	6.00	250	1160	0	0	450
		?	0-	7	<u>.</u>	٠.	3	J	9	7	7	-	-	0-	•	7		420	420	420	420	420	420	420	420	420	429	420	420	420	420	420		450	450	6.50	450	450	450	450	650	450	450	450
		ï	0-	21	ر •	٦.	9	Ö	٥-	0-	9	0	J	?	0	?		049	450	190	990	450	4.60	1.80	1.93	007	0	940	0	0	0	0		760	560	233	700	550	600	250	1350	710	0	600
		7	7	-	9	<u>ں</u> ا	0-	7	-	9		?	9	9-	9	7		280	280	280	283	280	280	280	290	280	280	280	2.40	260	283	280		300	300	300	300	300	300	300	300	305	300	300
		7	6-	7	0	9	?	-	٦	0-	ç	-	٠.	7	-	0		5.80	520	310	640	510	480	140	933	674	0	620	200	c	100	100		790	610	370	740	500	909	250	1250	573	0	649
		7	-		9	1	0	-	7	7	P	0-	7	9	0-	?		140	140	140	140	140	140	140	140	140	140	140	140	140	140	140		200	200	200	200	200	200	200	200	200	200	200
		283	20.0	140	 ?	19.	213	6	3153	1250	253	140	750	500	500	900		9€	64	3.00	510	264	364	185	74.3	350	103	500	900	115	153	220		910	64.	420	750	533	603	250	1023	52:	160	700
			Ç	د.	(.)	.:	0	(3	0	ເກ	0	ı.	•	C)	9	0		20	26	2.0	20	20	2.0	20	20	20	Ç.	20	20	26	2 3	20		2.0	20	50	50	5.0	5.3	50	50	5.3	0،	50
		~•	~	ĭ	ĩ	ر	ار.	٠	÷	•	0	(3)	0	0-	9-	0-		23.	0	O	190	0	720	366	ت	ب	ر,	0	30.0	Ü	•	0		409	5.0	0	330	. ح	1600	500	0	. ح	0	ð
•		9	, 3)	٠,	(3) 1	•	0-	دن ا	9	7	0-	0-	0	ŗ-	0		425	420	420	420	423	420	420	420	420	420	420	420	423	420	420		453	450	450	450	450	450	450	450	450	0.54	450
1.UF TEA'I.		.3	<u>ا</u>	7	-	7	٦	·3	'n	j	•	-	•		۱.	Û		42 î	240	0	37.	230	72(360	ى	ح	• =	5	350	0	0	0		530	346	.э	7.7	3.4.0	1360	500	ပ	Ö	3	u
462		÷	.5	ï	:) •	ب	-	ra I	~;	ပ္	- - -	6	7	C-	ب	6-		230	230	283	23.0	200	240	210	01.2	210	216	290	210	240	240	2+0		3.0	ري دي	300	٦. د و	3:0	376	3.00	300	3.) i)	300	316
16 '15		1	3	٩	ì	•	?	7	î	7	1	Ş		7	7	7		£ 4	34)	153	644	337	723	363	0	110	165	1.50	(1)	110	ت	C		673	41.	19)	625	£ 0.3	1660	503	_	133	5 53	2 4 C
YF TL F	.13	آ ا	ï	7	7	7	P	7	7	7	7	7	0		-	-	.50	140	143	140	140	140	140	1 % 0	143	146	140	140	140	140	740	140	1.00	203	2:3	200	260	203	530	200	200	20.1	233	200
# +		, , ;	15,	 ~		15	32)	163	203	50)	7.5.	550	100	1433	55.	356		473	13 3	180	430	330	723	364	36	165	260	209	0.04	150	110	10c		50 ک	45	275	556	. 7 7	1000	50.	130	230	29.0	333
	¥[][]±	ر.،	0	0	ب	0	0	0	0	0	6	-	0	ے	0	0	YEIL"=	20	29	20	20	20	32	20	20	20	20	20	50	20	3C	50	YEILD=	20	5.0	20	50	20	50	20	20	50	50	5.0

	ITEMS ON THE GROUND		***							15																									
OLUF TEAM.		ANGME MEAN	15	15	16	15	16	16	15	15	16	16	0	C	O	0	ن	0	0	Ð	ى ا	20	20	50	0	92	20	26	15	20	23	15	92	45	
LINKS TO DAMAGE RADII FOR	_		0	ت.	د	C	0	5	ے	ר	0	0	0	0	0	0	O	5	د	0	0	כי	J	0	7	:J	Û	O	0	0	.j	0	0		
THE FOH I		ENEMY REAPORS	0	0	و،		O	Û	3	. 1	0	ū	Ð	ى	O	Ö	0	ت،	O O	0	ာ	0	0	Ö	G	0	၁	ပ	Ð	O	'n	C.	**)	-	

	FOR DATA FOR	PLUE			
RESIDUAL	TRANS. FACTOR		PEPSOINEL	PROTECTION	FLAS
	10.0000			0	
	10.0003 10.0000			C ū	
	16.0300			3	
	10.0000			ũ	
	16.3003			ρ O	
	10.0000			0	
	10.0000			C	
	10.0000			Ö	
	16.0700			ä	
	0.0000			C C	
	0.0000			G	
	0.0000			Ĉ	
	0.0000			ū	
	0.0308			٥	
	(.0000			0	
	9.0000			G	
	0.0000			Û	
	0.0000			0	
	10.0000			8	
	1(.0000			0	
	16.0000			6	
	r.uaua			0 C 2 0	
	10.0000			Ē	
	7.0000			2	
	10.0000				
	16.0366			0	
	10.0000			<u> </u>	
	7.0000 10.3000			2	
	10.0000			C 0	
	10.0000			C C	
	10.0000			0	
	7.0000				
	7.0000			2 2 û 1	
	10.0000			ũ	
	3.0000			1	
	15.0000			C	
	10.0000			ε	
	10.0000			0	
	3.0000			1	
	10.0000			3 6	
	10.0000			ũ	
	10.0363			G	
	0.0000			0	
	0.0000			0	
	0.0000			Û	
	0.0000			C	

Figure II-13-C-8. EOH Data

	THE YELLD CODES	AMD BARRIER DATA	FOR BLUE TEAM.
YEILD CODE		DAMAGE RADIUS	
Δ	ARH	15	
3 C	ARL	15	
C	3FL	27	
ŋ	BFR	2 7	
<u> </u>	af t	27	
	∋FX	26	
G	FRO	21	
Н	FRJ	21	
I	FRS	21	
J	FRU	24	
K	нин	30	
L	4110	24	
Ħ	MNP	25	
	MNT	24	
	หบุพ	16	
	PT4	15	
		3	
		3	
		3	
		٥	
		ð	
		J	
		٥	
		Ü	
		3	
		0	
		O O	
		٥	
		ធិ	
		0	

Figure II-13-C-9. Yield Codes and Barrier Data

MAPNE 0 STANJING 5 5 0 20 60 60 10 10 5 UNPONTECTED SERSONNEL DISTRIUTION FOR TLUF TEAM, WARNED UNMARNED STATH SHELLEDS STANDING FORMOLES EARTH SHELLEDS STANDING FOR TLUF TEAM, WARNED STANDING STA STANDING 30 70 70 50 100 100 30 40 100

Figure II-13-C-10. Unprotected Personnel Distribution

1 + 2 3 4 5									
30 54									
9 G									
FERTIPS		۲	σ	-	.•	(C	_		
	5225	ď	1966	0100	23467.53344	9369	03037	0.000	
SPECTAL	•	•	2244.	•	. 10.	•	12.	E.)	
SPE			67		23				

Figure II-13-C-11. Special Factors

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR NUCLEAR ASSESSMENT

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 14

MOVEMENT DATA INPUT PROGRAMS

1. INTRODUCTION. The Movement data input routines create and load the data files required to contain the data associated with the Movement Model. They require, as input, data file 51 created by the Organization and Equipment data input programs. The data stored include tables of mobility categories, mobility classes, movement rates, and fuel consumption rates.

2. ROUTINES:

- a. General. The Movement input programs consist of the following routines.
- b. Routine MOVELD. This routine creates the files required, reads and edits the data cards, and loads the data in the files. It also calls routine DPMOVE. It uses the unit type designator (UTD) directory table from data file 51 to associate UTDs with mobility categories.
- c. Routine DPMOVE. This routine provides a formatted dump of the files created in tabular form. An unformatted record dump of each file is also given.
- 3. FILES. The files created by this program are:

•	Mobility category tables	-	data	file	9
•	Exclusion and miscellaneous tables	-	data	file	14
•	Fuel consumption rate tables	-	data	file	15
	Movement rate tables	_	data	file	19

APPENDIX A

MOVEMENT DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for movement are documented in Appendix A, Movement Model Input Requirements, to Chapter 13 of the Period Processor (Section IV).

APPENDIX B

MOVEMENT DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. Data used by the Movement Model are loaded by routine MOVELD, which in turn calls routine DPMOVE to provide a formatted listing of the data. Since data file 51 is used as input to MOVELD, these data cannot be loaded until after a satisfactory LDTOE run has been accomplished.

2. ROUTINE MOVELD:

- a. Purpose. This routine loads the constant data required by the Movement Model. The data are read from cards with identifications 0901, 0902, 0903, 1401, 1402, 1403, 1404, 1405, 1501, 1901, and 1902 and stored on data files 9, 14, 15, and 19.
- b. Input Variables. The only input required by this routine is the data cards and the list of unit type designators from data file 51.
- c. Output Variables. The output of this routine consists of the four loaded data files.

d. Logical Flow (Figure II-14-B-1):

- (1) Block 1. The file name table array (IFNT) is brought into core and data files 9, 14, 15, and 19 are released, if they exist. Data file 9 is then initialized. If a data file 9 of the correct size (5 records of 1000 words) exists, data read serves to update the file; otherwise, the file will be allocated and set to zero.
- (2) Block 2. The data file 15 parameters in IFNT are checked to determine if a file of the right size (16 records of 400 words) exists. If it does, data read that are normally stored on that file will update it. If the file does not exist, it will be allocated and set to zero initially.
- (3) Block 3. A check is made to determine if data file 14 exists. If it does not, it is allocated and set to zero, and the variables IFOOD, MODE, MCPT, MAXRAT, NMCAT, LR14, and LR19 are given initial values. If data file 14 does exist, data read pertaining to the file will update it and the variables listed above will be initialized from its contents.
- (4) Block 4. If data file 19 exists and has the correct number of records (50) and words (120) per record, data read will update it; otherwise, it is allocated and set to zero.
- (5) Block 5. Data defining the travel mode mnemonics, mobility categories, and their legitimate combinations are read from cards identified by 1401 and stored on data file 14. The four-character travel mode mnemonics are stored in records 2 and 23 for the Blue and Red forces, respectively. The one-character mobility category codes are stored in words 3-7 of record

į

Figure II-14-B-1. Routine MOVELD
II-14-B-2

- 1 for the Blue force and words 8-12 for the Red force. The combination tables for the Blue force are stored in records 3-22 and those for the Red force are stored in 24-43. A maximum of 20 mobility categories and 20 travel mode mnemonics is allowed. As each mobility category is stored, the list is checked to assure that there are no duplicates. Each travel mode mnemonic is checked to assure it is legitimate.
- (6) Block 6. The mobility category data are read from cards identified by 0901 and are stored on data file 9. The data are stored in the first record of data file 9 if they pertain to the Blue force and in the second record if they are Red force data. Each record is 1000 words long, allowing the mobility category associated with a particular UTD to be stored in the same location in the data file 9 record that the UTD appears in the 1000-word UTD list on data file 51. The card data associates a list of UTDs with a particular mobility category. An attempt is made to match each UTD with one in the list retrieved from data file 51. If a corresponding UTD is found, the data are stored as described above; otherwise, an error message is written.
- (7) Block 7. The mobility class data are read from cards identified by 0902 and are also stored on data file 9. Words 211-410 and 411-610 of record 5 contain the Blue and Red mobility classes, respectively. The card data contain lists of item codes associated with a particular class. The item codes are used as pointers to store the class in the proper words of record 5. For example, if the Blue force card data indicated class 2 contained items 100 and 129, words 310 (210+100) and 339 (210+129) would be set to 2.
- (8) Block 8. The mobility class exclusion table is read from card 1402 and is stored on data file 14 beginning in record 768. A pointer to the next available record in data file 14 is kept in data file 14 (record 1, word 17) and records may be added if they are needed. The exclusion tables contain a list of mobility classes that will be excluded from limiting the rate of movement of a type UTD unit moving by travel mode mnemonic TMDM. As each UTD is processed, it is assigned a record in data file 14 if one has not been assigned to it previously. This record number is stored in data file 9 (record 3, Blue; record 4, Red) in the word corresponding to the UTD's location in the UTD list. If the record is not newly assigned, it is searched for a word containing zero. The travel mode mnemonic and then the list of mobility classes to be excluded are stored in the record starting with that word. Each record is 20 words long. If the first 19 words cannot contain all of the mnemonics and classes, the next available record in data file 14 is assigned and its number is stored in word 20. One list of excluded classes with its associated UTD and TMDM is read per card.
- (9) Block 9. The unit movement rate data are read from cards with the identifiers 1901 for road movement rate data and 1902 for cross-country movement rate data, and are stored in data file 19. Each record in data file 19 contains unit movement rates as a function of terrain, road, and movement type, and weather/light conditions. There is one record in data file 19 for each combination of unit formation and mobility category used. Two 3 by 20 word tables (information, category) containing pointers to records

in data file 19 are stored in data file 14 (records 44-49 for Blue force and 50-55 for Red force). The first of the two tables is associated with road movement rates and the second pertains to cross-country rates.

- (10) Block 10. The cards identified by 1403 and 1404 contain vehicular movement rate data. The Blue force tables are stored on data file 14 in records 56-211, and the Red force tables are stored in records 212-367. The first 36 records of each group are associated with movement on roads and are functions of terrain type, road type, and weather/light conditions (2 by 3 by 6). The last 120 records contain cross-country movement rates as functions of terrain trafficability and weather/light conditions (20 by 6). The words of each record are associated with the mobility classes. Data contained on each card identify the mobility class and weather/light conditions that the movement rates are associated with.
- (11) Block 11. Fuel consumption rate data (class III and class IIIA) are read from cards with identifiers 1501 and 1405. Data associated with vehicles moving on the ground (1501) are stored on data file 15. The 200 real words of each record correspond to the 200 possible items. The first eight records contain Blue force data and the last eight are used for Red force data. The consumption rates are functions of route type and activity. The aircraft consumption rate data (1405) are stored in data file 14 records 368-767, with the first 200 records of each group being used by the Blue force and the last 200 by the Red force. The 200 records per group correspond to the 200 equipment items. The first 16 words of each record are used to store the eight real values associated with aircraft fuel consumption. A table of item codes of aircraft for which fuel consumption data are loaded is kept in data file 9, record 5. Words 2-102 are reserved for Blue force data and words 104-204 for Red force. The first word of each group contains the number of item codes in the list.
- (12) Block 12. The breach/force decision tables determine a unit's action if it encounters a barrier. They are read from cards identified by 0903 and are stored on data file 9, record 5. Words 663-831 are reserved for Blue force tables, and 832-1000 are used for Red. The first word of each group is set to the lowest of the movement priorities associated with the tables loaded for that force. The tables (a maximum of six is allowed) are stored in the remaining space. The tables contain four rows and seven columns. The first word of each row is the equipment loss cutoff value associated with that row. The other words contain decision indicators. Each data card contains a movement priority and the complete decision table associated with it. The priority determines the lo ation at which the table is stored within the area assigned to the force.
- (13) Block 13. The arrays used to accumulate data from cards are dumped to the appropriate files. Variables describing the files are written.
- (14) Block 14. Checks are made to determine if items that the Movement Model will default to have been set. Checks are also made to assure that the various items of data are consistent.

(15) Block 15. Routine DPMOVE is called to print the data files just loaded.

3. ROUTINE DPMOVE:

- a. Purpose. This routine dumps the constant data tables required by the Movement Model and loaded by MVELD from data files 9, 14, 15, and 19. The first part of the routine prints the data in tabular form with appropriate headers. The latter part gives a word dump of each file.
- b. Input Variables. The only input to this routine is the data to be listed from data files 9, 14, 15, and 19, and the UTD list from data file 51.
- c. Output Variables. The printed dumps described below are the output of this routine.
- d. Processing Description. All Blue force data are listed, and then the Red force data are printed. The travel mode mnemonics, mobility category codes, and their combination tables are printed first for each force. Next are the mobility category codes and the UTDs associated with each code, followed by a list of the mobility classes and the item codes defining them. Next is a dump of the excluded mobility classes by UTD and travel mnemonic, followed by a listing of the unit road movement rate tables and the unit cross-country movement rate tables. Printed next are the vehicular road and cross-country movement rate tables, followed by tables of class III and class IIIA consumption rates. The tabular listings for the two forces are followed by a word dump of data file 14. Each record is dumped in integer format except records 368-767 which are dumped in real format. The records containing basic alphanumeric data are also dumped in alphanumeric format. Data file 9 is dumped next in integer format. The list of UTDs contained in data file 51 is also printed. Data file 15 containing class III consumption rate data is dumped in real format. Data file 19 is dumped in integer format and, finally a dump of the file name table is given.

APPENDIX C

MOVEMENT DATA LOAD OUTPUT DESCRIPTIONS

1. INTRODUCTION. Ten different printouts are generated each time data are entered in the constant data file for movement. These printouts are listed in Figure II-14-C-1.

Printout Title	Data Source	Card ID
80-Column Card Image	Data Deck	A11
Travel Mnemonic Mobility Category Index	File 14	1401
Mobility Category	File 9	0901
Mobility Class and Exclusion Table	File 9	0902
Unit Road Movement Rates	File 19	1901
Unit Cross Country Movement Rates	File 19	1902
Equipment Road Movement Rates	File 14	1403
Equipment Cross Country Movement Rates	File 14	1404
Ground Movement Fuel Consumption Rates	File 15	1501
Air Movement Fuel Consumption Rates	File 14	1405

Figure II-14-C-1. Movement Model Constant Data Input Printouts

2. EIGHTY-COLUMN CARD IMAGE. The 80-Column Card Image is printed so that the data entries are in the same format as entered in the card type. The format for the 80-Column Card Image is illustrated in Figure II-14-C-2. On the top line at the far left are the characters 1B, indicating card type 1 for Blue force. At the far right is the ID number 1401. Also on the top line are the characters ARAM and F indicating the army dismounted infantry unit, and the index cross referencing it to the mode of travel and its mobility category

- is shown. For a complete description of the input card images, refer to Appendix A to Chapter 13 of the Period Processor for MOVELD input requirements.
- 3. MOBILITY CATEGORY AND TRAVEL MODE. The format for this report is illustrated in Figure II-14-C-3. The data and the titles of the columns are similar to the card format; a complete description may be gained by reference to Appendix A to Chapter 13 of the Period Processor for MOVELD input requirements, cards ID 1401 and 901.
- 4. MOBILITY CLASS AND EXCLUSION TABLE. For both Red and Blue forces the mobility class and exclusion tables are printed in the illustrated format of Figure II-14-C-4. The titles of the columns in this format are similar to those used in the punch card format; for a complete description, refer to Appendix A to Chapter 13 of the Period Processor for MOVELD input requirements for card ID 902 and 1402.
- 5. UNIT ROAD AND CROSS COUNTRY MOVEMENT. The rates at which a composite unit or basic unit type will move cross country and over the various roads are printed in this format. The format is illustrated in Figure II-14-C-5. The data from which this format is printed were taken from data file 19 and were originally punched into cards ID 1901 and ID 1902. The headings in the columns of this printout are the same as for the card formats. The upper half of this figure shows Blue force data for road movement, and the lower half shows the cross country movement rates. A similar printout is prepared for the Red force.
- 6. EQUIPMENT CROSS COUNTRY AND ROAD MOVEMENT RATES. The rates at which individual vehicles, wheeled and track-laying types, will move cross country and over the various roads are printed in this format. The format illustrated in Figure II-14-C-6 shows data for Blue force. The lower half shows road movement rates, and the upper half shows cross country movement rates. The data are taken from data file 14 and were originally punched in cards ID 1403 and ID 1404.
- 7. GROUND AND AIR FUEL CONSUMPTION RATES. The last printout in the constant data input printout series is for ground and air fuel consumption rates and is illustrated in Figure II-14-C-7. The upper portion of the figure shows Blue force ground equipment consumption rates and the lower portion shows the fuel consumption for blue force aircraft. Similar tables are printed for Red force. The data shown in the illustration were taken from data files 14 and 15 and were initially inscribed in cards ID 1405 and 1501.

40. W 4 D C F 4	34-	1 L C C C	- 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	7 1 1 1 1	- 1 1 1 1 1 1 1 1 1
	0901 0901 0901			0901 0901 0902	10000000000000000000000000000000000000
	u .	ורר אפרש ורר		i 2	
		KGGA JOCL		. V	;
	[AM]	SALA KALA IJCJ	3001 3001	<u> </u>	- •
		IACC IBLH KGCA FTIJ			C VEH V C C V C C V C C V C C C C C C C C C C
		I PCH I PCH I FCLA I HLC		PESE H MOV	TED MHEFEL TY WHEFEL LT TRACK TED TRACK TYY TRACK CU-47,UH10
		GCH GCA HCC	KALH FAYH IGFA JBFN	1002 1007 1007	100 AVP
gen gen gen gen gen gen gen gen gen	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		7464 JTLL TALA KGFA JAFA	33.1	2
منته دي نتم ليس	TECT		SELL JSLL FSFA TRFA TRFA		41 71
> C	H + C 4				r r.C.
1001 7 1404 7 147			10000 10000		6715416 79 75 3 56 9 6 6
		1			
ta be ⊒d to u			1 - T 1 1	. L. C . ~	11671561 3135138 5195138 7191191 5141 5 95 87 1701 5
A				4- C	71011 61851 71851 71871 71671 8 85 7781 TO
	6666				

Figure II-14-C-2. Movement Model 80-Column Card Image

MORILITY CATEGORY TABLE (UTD)

FORCETBLUE

COTECUPY CATECUPY	UNIT	TYPE	DESI	GNATOI	१९									
F	7 47													
7				_	-	KTMT Eamt				PMFA	PH41	PHCT	1=01	ILST
L	TACH KSLA JSLL	VALH PSUL	VCLH KALA JTLL	TICH KEGA PTLL	TBLH KCLA JFLL	YAC4	JCSH KLLA KACH	VELH JHON KALH	VBLH JECF	IFCA IHCC	TFLA THLC	ICIJ IGCA IJCJ ICIJ	TGL A	ALL!
r	30.00 90.00	EVAN EVAN	COSE	DESF ESFA	TSGS ICFA	JSCS FGEA	PBCS	IA 4H	FWFH	PSMH	KHET		KB3H	ዋለና፣ ዋርና፣ F559
F	פת כר	CEST	bud£	Gunk	JUSE	KGZE								
7	TACT	IPMI	IFSI	Inci	ICMI	INST	ECMI	E041						

TRAVEL MUDHONIC - MODILITY CATEGORY INCEY TABLE

FORCEXALITE

TRAVEL		0.015.114 0.015.114	;	I NI	771)E'	7						•	•	,	1	1	•	1	1	1	1	,	
		LULE		1	7	3	4	5	5	7	Ŗ	ù	ā	1	Ş	7	4	5	ŕ	7	3	ā	ĵ	
ስ ን ለ ዓ	1	r	-	÷		:	^	ن	1	1		ι	ı	э	ı	£	C	6	С	3	J	ç	3	
V SUM	7	7	-	c	u	1	1	1	1	1	1	ċ	3	÷	Š	ē	į	Ū	Ü	j	j	ē	٠	-
T D 5 "	3	<u>.</u>	-	•	:	1	1	1	Ū	1	-						ù			5	3	:	3	-
TOEY	4	5	-	ξ	1	1	1	1	1	1	L	ί	1	٤	ī	ŝ	ċ	٤	Ĺ	j	2	Ĺ	ċ	-
† ob M	5	ŧ	-	1	1	1	•	1	Č	1	÷	Ċ	•	ē	į	Ċ	٥	Č	C	j	ò	- 3	3	-
TOOM	G	,								Ē		ť	Ď				j				3	ċ	5	_
TOOM	7	•	-	J	:	3	ŋ	٠	3	ن	٠	Ċ	ð	9	ì	ž	2	Č	Č	1	ì	Ċ	9	_
TOOP	C:	•	_	Ĺ	•	٦	C	Ĵ	j	1,	ō	t	Š	ē	ž	ē	ū	ũ	ē	j	ž	i	7	_

Figure II-14-C-3. Mobility Category and Travel Mode

II-14-C-4

MODILITY CLASS TAPLE (FOUIDTHENT ITEM)

FORCEXT! HE

CFWZZ	COUTPINENT ITEM CODES
2	74 160
3	6) 161 162 164 165 166 167
4	135 138 163
5	25 20 25 41 71 73 75 185 186 188
f	37 52 56 58 187 189 190 191
7	147 141
A	85 86 87 88

MODITALITY CLASS EXCLUSION TARLS

EOUCE AUTHE

קדט	MMLMUAIÚ LSVALF	۲n	BIL	ITY	CE435ES	τn	þς	E XOL UNED
ITCT	₹CC4	?	₹.	4				
TOST	1004	2	₹	4				
	7007 7002	2	3	4				
PMFA	TDD 4	?	4	4				
	1008 1000	? ?	3	4				
TMOT	TOOM	2	3	4				
	4005 4005	? 2 2	3 3	4				
TLSI	TOOM	2	3	4				
	7007 7007	2 2 2	3 3	4				
LHED	TCC'4	2	7	4				
	1000 1001	5 5 5	3	4				
rīcī	FOOT	?	3	4				
	7007 7007	5 5 5	3 3	4				

Figure II-14-C-4. Mobility Class and Exclusion Table

II-14-C-5

PHILLTY CATEGORY GOD ADVENENT PATE TABLES (KYZHA)

ALTICON	POLITICAL ALITICA			Brum SALLVELSIAIMUV	STIVE	出たいる			TACTICAL MOVE	NOVE		
1 July 1		SCAL SINGS	- 11	12	11	25 11 12	° <u>.</u>	24 T2	11	12	RD 11	12
_		WARE CIT - AUG	Ţ	ى	1 2	_	3	¢.	*	Ş	70	6
	1 44 -	LIGHT PAIS	• • •	6	. 13	• -	. M	, 6	. M	, v	, ,	- E
	1 767	45ATY PATH 32 FOS	•	c.s	C	-	25	2	ι. .τ.	54		12
	Incl.	ICHT - NO OBJE	0	د	cı	_	5 ¢	6	7	2	2	, e
	11241	FIGHT - LIGHT CAIN	c,	u	ی	_	2.0	.	6	9		
	INSIA	HIGHT - HEAVY PAIN OF FOR	0	0	0	_	7	7	16	1	12	
-	FAY -	PAY - CI - YAT	9	36	9	35	7	*	46	32	«	4
	- >0.	7164 17817	4	36	0.7	30	9	2	2		7.	. ~
	1 74 1	DOS EL NIGE ANGEN - ABU	32	28	22	2.3	2.5	. 6	. 60	, ,	20	, <u>.</u>
	Inula	TRMI - NO DAIN	36	32	36		, r.	2	2		9 6	4 5
	14514	with - Linus only	€:0	28	32	. 5	~	· «		. 4		•
	11011	PICH T HOAVY PATH OF FOR	•	3.6				ì	` i	, ,	9 1	J (

MABILITY GATEGORY CROSS COUNTRY MOVEMENT MATE TABLES (KMYHR)

Figure II-14-C-5. Unit Road and Cross Country Movement Rates

	<i>c</i> .		
	Social Production of the state of the social section of the social	~~~	∿ ™ ਜ਼ ∿ ਜ਼ ਜ਼
	•	N (V (V et et et	ひりょうかい
	4-1 -	fu (d f) e d (d ed	\$ C) et N (c) et
	~	* C. C. C. C. et et	n 3 v k v v
	12 14	h h (fiction) m	30,4000
	::	* ***	0 10 p p p p
	<u>.</u> .	* * * * * * *	U 25 60 F 6 6
	<u>.</u>	мкопен	V @ V R R 3
	::	P P (U C ++	a to a a a s
	 V .	P. D. N. tu en en	e way was
	c	10 M M 01 M 44	r r w w a a
	Œ.	*****	00×500 111 112 112 114 115 115 115 115 115 115 115 115 115
	> K	10 P. P. NI NI +1	war ~~~
	A STATE OF STATE	or the think to ≠4	11 12 2 13 11 12 11 12 11 13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
	> 1.5	* * * * * (1) (1)	
	_ ,		445666
	15.4		DOMEST OF
		** * ** ** ** *	rane ar
	- A - E = -	***** ** *****	436776
		Take Transport of the Control of the	76 - 40 7411 78 - 11.41 9414 78 - 11.41 9414 17641 - 40 9414 17641 - 40 9414 17641 - 40 9414
		•	
وباوريا لأداران	5.170 *** 1206.		c ,
وبالالا		4	

(CHIA) Saluti lite insmanch cabe Savio Alitica.

-		
£ .	*****	20 20 20 20 20 20 20 20 20 20 20 20 20 2
40vT		2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
TASTIGAL VOVĘ RG 2 T1 T2	the tea for the feet for	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-	******	44 CO0 2
- P£	M. M. M. M. M. M. M.	0000000 0000000 0000000
1.4		
- Jekl alford	01V - 40 PAIY 04V - LIGHT RAIN 11V - 45AVY PAIY ÖT EDC 415HT - 80 PAIN 115HT - 110HT PAIY 115HT - LIGHT PAIY	018 - 40 E419 018 - 41741 = 418 01911 - 42 - 418 01741 - 41641 = 518 01741 - 41641 = 518
MOJILITY VILASS	-	~

EGPCFZCLUF

CONSUMPTION DATES OF CLASS III SUPPLIFS

Enock your

STAY LE LF 92752 92752	0.03 C.23	<u> </u>		
37.6		•		
34LS/46 EVGTNF70 25 1772 90/22	535\ 	' /		
2\$/?6 = T -jailte.jowst = NG NG	900 900 900 900 900 900	200		
Ç	0000	. / / / / / / / / / / / / / / / / / / /		20.00 20.00
e e	0003	ដូច្នេង) 98 9	
φ. 25 26 27.27	6909		0000	341111133 7677779 74777
Tacki shide such tacking a variable such such such such such such such such	न ् ।		11,	75.55

CONSUMPTION PATES OF CLASS IIIA SUPPLIES (GALS/HR)

	47 GT 96/32	30000 68860 90000
4CTIVITY- S TEMP LE 93/32		11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00
PATES	GT SPEED ST ALT.	22.00 85.00 \$67.00 83.50
COMSUMPTION DA	SPEED GT SPEED ALT. LE ALT.	00000 000000
COR	LE SPEED ST ALT.	
	LE SPEFA	00000
Slings	(44)TS)	99500 ***** *****
	الدرلال	50000 ••••• ••••
CONTOTION I	الادن	4 4 4 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4

Figure II-14-C-7. Ground and Air Fuel Consumption Rates

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR MOVEMENT

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 15

ENGINEER DATA INPUT PROGRAMS

1. INTRODUCTION. The Engineer data input programs consist of two independently executed routines, ENGLD and BARLD. These routines create and load the files required by the Engineer Model and other models using barrier information. The data loaded define the time and resources required to accomplish each engineering task and describe the location and characteristics of the barriers.

2. ROUTINES:

- a. General. The following routines comprise the Engineer data input programs.
- b. Routine ENGLD. This routine reads and edits the data cards describing an engineering task and loads the information on the file. It also calls DUMP17.
- c. Routine DUMP17. This routine provides a formatted dump of the Engineer data file.
- d. Routines GET17, IFILE, IDENT, and ITYPCK. These four routines are efficiency routines used by ENGLD (GET17 is also used by DUMP17). GET17 is responsible for the input/output operation of bringing in the proper record from data file 17. IFILE edits the file number associated with each data card for the file, IDENT edits the card number, and ITYPCK edits the card type.
- e. Routine BARLD. This routine reads and edits the input data describing the barriers and loads it on the file. It also creates the eight-digit quadrature code associated with each barrier. Finally, it provides a formatted dump of the data loaded.
- 3. FILES. The following files are used as indicated:
 - Barrier description data file 2
 - . Engineer task data data file 17

APPENDIX A

ENGINEER DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for engineer activities are documented in Appendix A, Engineer Model Input Requirements, to Chapter 14 of the Period Processor (Section IV).

APPENDIX B

ENGINEER DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. Engineer data are loaded by the routines described in this appendix. The routine ENGLD loads the constant data describing the various engineer tasks and, through a call to routine DUMP17, provides a listing of the data. Routine BARLD loads and lists data describing actual barriers. ENGLD and BARLD are run as independent jobs.

2. ROUTINES ENGLD AND DUMP17:

- a. Purpose. Routine ENGLD is responsible for editing and loading the data for engineer tasks onto data file 17. DUMP17 prints the contents of data file 17 after it has been loaded. ENGLD reads a data card, prints its image, and examines this card for possible loading errors. Should an error occur, this routine identifies the type of error, prints the diagnostic message, places useable information onto the file, and reads the next card. Data file 17 contains data pertaining to actual engineering task information; and as such, six different card types are permissible, each providing different types of data for tasks. After reading the data, and placing it on data file 17, ENGLD calls routine DUMP17 to print those records containing data.
 - b. Input Variables:

Name	Source		De	scri	iptic	<u>on</u>	
IDATA	DF17	Record	number	157	for	Red	force.

c. Output Variables:

Name	Destination	Description
IDATA	DF17	Data to be loaded.
RDATA	DF17	Rate information, minimum and standard.

- d. Logical Flow (Figure II-15-B-1):
 - (1) Block L1. Initialize variables and zero output array.
- (2) Blocks 1, L10001, and 2. Bring in and print the file name table and create data file 17 on disk.
 - (3) Block 3. Zero data file 17.
 - (4) Block L10. Read next card.
- (5) Blocks 4, L15, L20, L25, L30, 5, and L1100. Routines IFILE, IDENT, and ITPCHK edit the first data card for proper file, card, and card

Figure II-15-B-1. Routine ENGLD (Continued on Next Page)

Figure II-15-B-1. Routine ENGLD (Continued)

Figure II-15-B-1. Routine ENGLD (Continued)

Figure II-15-B-1. Routine ENGLD (Continued)

Figure II-15-B-1. Routine ENGLD (Concluded)

Cold of the second of the seco

type; control branches on card type or end of data. If this is not a valid card, the diagnostic message is printed and control goes to block L10 to read the next data card.

- (6) Blocks L32, 6, and 7. Fill in possible number of sizes and densities by default for all task types. If this is a Red data card, bring in record 157.
- (7) Blocks L40, 8, 9, L50, 10, L55, 11, 12, and L60. Read next card of first card type, containing task type, description, basic task size, number of sizes being played, and number of densities and restricted movement rate; all are placed on record 157. If this is not the end of the data, and there were no errors detected on this card, processing continues. If this is still the first card type, place the information just read into the output array. If this is a different card type, put record 157 onto the disk, and transfer control to block L25.
- (8) Blocks L111 and 13. Card 1702 has four possible types; control branches on the proper type.
- (9) Block L120. Read task type, activity, item code, minimum amount needed, standard amount required, proportionality factor, transportation item code, and modifiers affecting the task rates if less than the standard amount needed.
- (10) Blocks 14, 15, L130, 16, L141, 18, 19, 20, and L145. If this is a valid card, and not the end of the data, processing continues. If this is the same card type, put the information just read into the output array. If this is a different card type, place the output array onto data file 17, and branch control to block L120.
- (11) Blocks L201, 21, and L230. Read force pertaining to data, task type, size step, density, minimum troop level required for this size task, rate associated with this troop level, standard troop level, and standard rate. Bring in part of record 157 and calculate the record number where data are to be stored.
- (12) Blocks 22, 23, 24, 25, and L234. If no errors are detected from this card, and this does not end the data, continue processing. If this is the same card type, put the data into the output array. If not, put the output array on the proper record of data file 17 and transfer control to block L201.
- (13) Block L300. Read task type, activity, nighttime rate modifier, and terrain modifiers affecting the task rate on this type terrain.
- (14) Blocks 26, 27, L325, and 28. If this is a valid card, and not the end of the data, processing continues. Put this data into output array and place it on data file 17; transfer control to block L300.
- (15) Blocks L401, 29, 30, 31, 32, and L425. Read task type, activity, size step, density class, force rate, forcing code, and associated casualties.

If this is a valid card, and not the end of the data, processing continues. Put these data into the output array and place it on data file 17; transfer control to block L401.

- (16) Blocks 33, 34, L710, 35, and L730. Read the item code and the contingency associated with it.
- (17) Blocks L750, L760, and 36. Read contingency associated with each troop type, and place this onto data file 17, record 157. If this is not the end of the data, control goes to block L10.
- (18) Blocks L1500, L1550, 37, and L10005. When the last data card has been read, print the total number of errors found. The last word on every record containing valid data is marked, and DUMP17 is called. The file name table is printed and control returns to the calling routing.
- 3. ROUTINES GET17, IFILE, IDENT, AND ITYPCK. These four routines are efficiency routines used by ENGLD (GET17 is also used by DUMP17). GET17 is responsible for the input/output operation of bringing in the proper record from data file 17. IFILE edits the file number associated with each data card for the file, and returns a three if an error is encountered. IDENT edits the card number returning a four if an error has occurred, and ITYPCK edits the card type and returns a five if an error occurs; otherwise, IDENT and ITYPCK return the values found for card number and card type. respectively.

4. ROUTINE BARLD:

a. Purpose. BARLD places the barriers to be played in any period or game onto data file 2 of the constant data base, by either loading a new barrier, updating an existing barrier, or removing a barrier. It also creates the eight-digit quadrature code associated with each barrier segment and places it onto data file 22. The routine prints the barrier segments line-by-line.

b. Input Variables:

(1) Barriers used in the actual barrier line segment are those common to the entire Engineer Model.

(2) Other Variables:

Name	Source	Contents
XMAX	DF37	Maximum X coordinate permissible.
YMAX	DF37	Maximum Y coordinate permissible.
XACTON	DF37	X coordinate approximating the center of action.

Name Source Contents

YACTON DF37 Y coordinate approximating the center of action.

c. Output Variables:

Name	Destination	Contents
KDUM(1)	DF22	Link for this code to corresponding barrier record.
KDUM(2)	DF22	Eight-character quadrature code.

- d. Logical Flow (Figure II-15-B-2):
 - (1) Block 1. Bring in the file name table and print it.
- (2) Blocks 2 and L1000. Read geometry necessary for quadrature and print.
- (3) Blocks 3 and 4. Read mnemonic of barrier line and card type; if card is not a load type, transfer control to block L2000.
- (4) Blocks 5, 6, 7, 8, and 9. Remove, create, and zero data files 2, 18, 22, and 37. Place geometry information on data file 37.
 - (5) Block L10. Read mnemonic of next barrier line and card type.
- (6) Blocks 10 and 11. Read barrier segment mnemonic; both barrier end points; Blue/Red task, size, troop types; and the segment's intelligence and physical status. Check for end of barrier line; if end of barrier line is found, transfer control to block L10.
- (7) Blocks L11 and 12. Call routine BUIDRC to obtain the correct identifying record number for this barrier. Call routine CRTQD to create the eight-digit quadrature code based on the location of this barrier segment.
- (8) Blocks 13, 14, and 15. If the card type is not UPDT, the record number of the present segment is put into the record for the preceding segment, and the barrier information is put in data file 2. If the card type is UPDT, the record number is retained.
- (9) Blocks L3001 and L3005. The barrier file and the intelligence and existence status of the barrier are printed.
- (10) Blocks 16 and 17. If the card is a UPDT type, transfer control to block L10 to read the next header card. If not, the record number and quadrature code are put into data file 22.
- (11) Block L100. This block is the end of the loop that reads barrier segment data. If end of barrier line, transfer control to block L10; otherwise, transfer control to block 10.

Figure II-15-B-2. Routine BARLD (Continued on Next Page)

Figure II-15-B-2. Routine BARLD (Concluded)

- (12) Blocks L2000, 18, and 19. If card type is not UPDT or REMV, stop the program; otherwise, determine the record number and bring it from data file 2.
- (13) Blocks L2002 and 2004. If the card type is UPDT, transfer control to block 10 to read the next data card. If not, and if the card type is not REMV, stop the program.
- (14) Blocks 20, 21, and 22. If the card type is REMV, remove the barrier line from data file 22, and transfer control to block L10.

APPENDIX C

ENGINEER DATA LOAD OUTPUT DESCRIPTIONS

- 1. INTRODUCTION. This appendix contains sample printouts of constant data input for Combat Service Support. The input of barrier and facility file data results in the generation of one type of output report and the input of engineer task file data results in the generation of five types of output reports.
- 2. BARRIER SEGMENT LOCATION AND STATUS. The format of this printout is illustrated in Figure II-15-C-1. The first line gives the coordinates from card ID 0200, type 1 (geographical area and battle area); this appears only once. The second line is the barrier record number and the quadrature number used for search purposes. The third line is the barrier line name from card ID 0201, type 1. The first two columns of the fifth line are provided to give record numbers of previous and following segments of the same barrier line; the remaining data are transferred directly from appropriate cards. More barrier segments follow in the same format.
- 3. ENGINEER 80-COLUMN CARD IMAGE. This format is illustrated in Figure II-15-C-2. The sources of this printout are the original cards that brought the data into the model. The number in the left column is the card type number and the number in columns 73-76 is the card ID.
- 4. ENGINEERING TASK PARAMETERS. This format, illustrated in Figure II-15-C-3, has three parts. The first part, task sizes, is a printout of data from card ID 1701, type 1; the second part, contingency levels of equipment, lists data from card ID 1703, type 1; and the third part, contingency levels of troops, lists data from card ID 1703, type 2.
- 5. ENVIRONMENTAL AND TROOP RATES AND RATE MODIFIERS. This format, illustrated in Figure II-15-C-4, has three parts. The first part, environmental rate modifiers, is a printout of data from card ID 1702, type 3; the second part, minimum number of troops and associated rates, and the third part, standard number of troops and associated rates, are printouts of data from card ID 1702, type 2.
- 6. EQUIPMENT REQUIREMENTS AND RATE MODIFIERS. This format, illustrated in Figure II-15-C-5, has two parts, both of which are printouts of data from card ID 1702, type 1. The upper part covers minimum and standard equipment requirements, and the lower part the associated rate modifiers.
- 7. MINEFIELD FORCING CASUALTIES. This format, illustrated in Figure II-15-C-6, is a printout of equipment types and their losses when forcing a minefield. It is a printout of data from card ID 1702, type 1.

PARFIER LINE AIPHA 31	ALPHA 31											
PVNMCD FLN4CD	13e0JX	VCOFD1	YCOPCZ	VCORD2	BUID	\$1268	7	1P1C	E DNT B	IONTR	SIZEB. CHAPIC IONTB IDNTR ISIZER	
	1480().0 INTELLD	1480(1).0 1536/0.C 1446(0.7 1510)6.0 RIVOGI 0 G.C.C320 GCCC GGOG Intelligence status both existence status .all	1486C0.3 BOTH	151036.0	RIVOG1 EXISTENCE	STATUS .	PLL .	פינינששש	.	9 993	909	9
ITOTAL = 6CIALLOC = 42333450 PARPIER LINE ALPMA 11	4LPHA 21 4LPHA 21	450										
PYNHCE FLNHCD XCPE1	XCPF1	YCORD1	XCOF D2	YC0902	BUID	S 17f B	3	AR1C	IDNTB	IONTR	SIZEB CHARIC IDNTB IONTR ISIZER	
3276 0	14865.9 INTELLI	0 14A6(1.º 151C)6.0 149.5Gc.3 1598JC.9 BFXJC1 INTELLIGEMCE STATUS 90TH EXISTENCE	149266.3 90TH	159836.9	EXISTENCE STATUS		A.t.	Eù LCCiu32i All		9254 0124	124	20

IONIB IDNIR ISIZER 3636 CFAR1C , j S12EB 0 150703.0 150600.0 156900.0 150002.0 RTV-0.0 INTELLIGENCE STATUS 90TH 8010 YC0802 XC0R02 YCORD1 ITOTAL = 3376ALLOC = 73.06900 PARTER LINE ALPHA 31 XCORE1 PYNMCE FLNMCD 3277

CHERIC TONTB TONTP ISIZER

S1718

RUID

YCORDS

YCORDS

V CORD1

Y CORE 1

PYNHED FLUNCD 133

ITOTAL = 3377ALLOC = 423337CC Parfier line alpha 51

0000 0000

128 11 331

150600,C RIVOUZ 0 EXISTENCE STATUS ALL

0 1490Ci.0 15Jegg.C 15j7cg.g Intelligence Status Both

Figure II-15-C-1. Barrier Segment Location and Status

Figure II-15-C-2. Engineer 80-Column Card Image

EMSINFERING TASK PARAMETEPS

CONSTRICTIVE	333	REN FNRCE	CONT. LEVEL		CONT. LEVFL	0000
NO. PECESS. INCR.			GUNDS	1 2 2 3 199 200	UNIT	MN V.P. ENGQ Anm Fl.B.P.
USZ IS •UN	, , , , , , , , , , , , , , , , , , ,		CONT. LFVFL	3350) 36	CONT. LFVEL	0000
RASIC	100 100 333 333 00 00	āUaCa uNla	فالله كل	1 2 4 4 4 5 10 0 10 0 10 0 10 0 10 0 10 0 1	UNIT	WNVO FNGS ANM FLRS
18 SK 1956	-unan (r					

Figure II-15-C-3. Engineering Task Parameters

			PATE								21.15											
			TRCCFS							u .	TRCCPS											
N C C C C C C C C C C C C C C C C C C C	9 -	ORATE	RATE							ED RATE	PATF											
M O D I F I E P S M P TERRATN	0- 0-	THE ASSOCIATED	TROOFS							ASSOCIATED	TROOPS											
FSS M O D 1		THE AS	RATE							THE A	PATE											
L IGHT/DAPKHESS	20	0 X 4 S	TROOPS							O N W S &	TROOPS											
		S 400 & L	RA TE							1 9 0 0 9 5	RATE											
A C T I V T Y		1 F R O F	TROCFS							NUMBER OF	TROOPS											
_ _ _	PUTLP	N CHBFR	RATF	\$8.008	80.000	50.030	50.000	50.000	•		PATE	90.00	\$0.030	50.000	\$0.000	50.006	•	•	•	6	•	•
# N # 1	ĸ	RINIAUR	TRCOPS	-	-	•		-	-	STANDARD	TRECES	••	~	•	•	sv.	•	•	•	-	•	•
ь с. ь	PLUE		SIZE	-	~	•	•	w.	٠		\$12F		~	n	•	5	٠		•	•	10	11

Figure II-15-C-4. Environmental and Troop Rates and Rate Modifiers

			400.	100	100
VEHICLE	161	161	HIN.	•	60009
<u></u>			400	52	100
MINTHUM AMOUNT STANDARD AMOUNT PROPORTIONALITY	50	10	7 S TIN.	-	15000
- 6 .) I F I E MOD.	•	•
AMOUNT			T I	•	•
STANDAFO	•	6000	PATE	•	•
HOUNT T			EQUIPTYENT PATE MODIFIERS HOD, HIM, MOD, HIM, MOD.	•	•
HINTHUM ,		15000	E Q U 1 4	•	•
0 4			HIN.	•	0
TIFF CODE	161	2			
H			TTEH COPE	161	10
			TTEN	Ä	

Figure II-15-C-5. Equipment Requirements and Rate Modifiers

Figure II-15-C-6. Minefield Forcing Casualties

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR ENGINEER

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 16

AIRMOBILE DATA INPUT PROGRAMS

- 1. INTRODUCTION. The Airmobile data input program creates the necessary file and loads all data used by the Airmobile Model including data required to define the composition of a mission and the weapons and aircraft characteristics necessary to simulate ground to air attrition.
- 2. ROUTINES. The Airmobile data input program is the routine FIL7LD. This routine is responsible for reading and editing the data cards containing the Airmobile data and loading the extracted data on the file. It also gives a partial formatted dump of the file and a complete unformatted record dump of the file.
- 3. FILES. Data file 7 is used to contain the airmobile data.

APPENDIX A

AIRMOBILE DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for airmobile events are documented in Appendix A, Airmobile Model Input Requirements, to Chapter 15 of the Period Processor (Section IV).

APPENDIX B

AIRMOBILE DATA INPUT PROGRAM DESCRIPTIONS

- 1. INTRODUCTION. The constant data stored on data file 7 for use by the Airmobile Model are loaded by the routine FIL7LD, described in this appendix.
- 2. ROUTINE FIL7LD:
- a. Purpose. This routine loads the data contained on data file 7 that are used by the Airmobile Model.
 - b. Input Variables. Standard common area, IFNT.
 - c. Output Variables:

Name	Destination	Contents
EOH1(50)	DF7	Equipment item codes of all secondary priority items in the force; denoted by a one in the appropriate character location of this array. Four character codes are contained in each word.
JDATA(15)	DF7	Contents of the mission mix table for each escort/transport aircraft mix.
IFIL7(201-210)	DF7	Unit type designators of the forward rearm/refuel areas (FRRA).
IFIL7(211-220)	DF7	Number of rearm points at the above FRRAs.
IFIL7(221-224)	DF7	Equipment item codes of the refuel devices.
IFIL7(231-234)	DF7	Number of nozzles at each refuel device specified in words 221-224.
IFIL7(241)	DF7	Maneuver time for refueling.
IFIL7(242)	DF7	Maneuver time for rearming.
ITABLE	DF7	Array where data is stored until it is put onto data file 7.
MKILL	DF7	Probability of kill data for air defense weapons.

- d. Logical Flow (Figure II-16-B-1):
 - (1) Blocks 1 and 2. Bring in the file name table and print it.

Figure II-16-B-1. Routine FIL7LD

II-16-B-2

Figure II-16-B-1. Routine FIL7LD

Figure II-16-B-1. Routine FIL7LD

Figure II-16-B-1. Routine FIL7LD

The second secon

Figure II-16-B-1. Routine FIL7LD

II-16-B-6

- (2) Blocks 3, 4, 5, and 6. Remove, create, and zero data files 7 and 24. Set IPASS equal to one to indicate that data for the Blue force are being processed.
- (3) Blocks L200, 7, and 8. Read data cards. If the card identification is 701, set a flag in the output array for each secondary priority equipment type.
- (4) Blocks L400, 9, and 10. The 702 cards are processed. They contain the mission mix data that are entered into the output array.
- (5) Blocks L500, 11, and 12. After the 702 cards are processed, the 703 cards are read and the forward rearm and refuel area (FRRA) definitions that the cards contain are entered into the output array.
- (6) Blocks L550, 13, 14, and 15. The 704 cards that contain the refuel device definitions are read and the data are stored in the output array. The data read from the four card types are put on the data file.
- (7) Blocks 16, 17, L4215, 18, and 19. If the next card is a 740 card, the suppression mission data are read from it and stored in the output array. The JTABLE array is zeroed and, if the card was a 740 card, the next card is read in. If not control goes to block L4221.
- (8) Blocks L4221, 20, 21, 22, 23, and 24. If the card read had data errors, a message is printed. If not, the acquisition data are stored in the appropriate place in the output array. When all 74l cards are processed, control passes to block L4500.
- (9) Blocks L4500, 25, 26, and 27. If the card read is a 745 card, the aircraft data that it contains are stored in the output array. After all 745 cards are read the data from the 740, 741, and 745 cards are put on the data file.
- (10) Blocks L5110, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, and 40. Card types 1 through 4 of card identification 750 are read. The air defense weapon data from each are stored in the output array. Each card is checked for identification and type. After all cards are read, the data are put on the data file.
- (11) Blocks 41, 42, 43, and 44. The air defense weapon data for rotary wing aircraft are read from card type 5 of the identification 750 cards. The data are stored in the output array and, after all type 5 cards have been read, the data are put on the data file.
- (12) Blocks 45, 46, 47, and 48. The air defense weapon data for fixed wing aircraft are read from card type 6 of the identification 750 cards. The data are stored in the output array and, after all type 6 cards have been read, the data are put on the data file.

- (13) Blocks 49 and 50. If this was the second pass, control goes to the output portion of the program. If not, set IPASS equals two and read the data for the Red force, starting with the 701 cards.
- (14) Blocks 51, 52, 53, 54, 55, 56, and 57. After the data have been loaded for both forces, print the contents of the first two records with descriptions of the contents. Then, print the contents of all data file 7 records.

APPENDIX C

OUTPUT DESCRIPTIONS FOR AIRMOBILE DATA INPUT

An 80-column image of each constant data input card is printed immediately after it is read. A sample of the listing produced in this manner is shown in Figure II-16-C-1. The listing of the data shown in Figure II-16-C-2 is generated by reading the first record and printing descriptive titles with the data. A similar listing for the Red force is generated from the second record. A word dump of all 52 records is also provided.

Figure II-16-C-1. Sample of 80-Column Card Image, Airmobile Model

Figure II-16-C-2. Sample Data Listing, Airmobile Model

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR AIRMOBILE

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 17

COMBAT SERVICE SUPPORT DATA INPUT PROGRAMS

1. INTRODUCTION. The Combat Service Support data input programs create and load the data file required by the Combat Service Support Model. The data loaded include tables defining consumption rates of various items of equipment, the weight and volume constraints and the load and unload times of the transportation vehicles, and the supply classes of the equipment items.

2. ROUTINES:

- a. General. The Combat Service Support data input programs consist of the following routines.
- b. Routine CSSLD. This routine controls the other routines of the Combat Service Support data input. It creates the file used to store the data, then calls the data load and file dump routines.
- c. Routine LOADll. This routine is responsible for the reading and editing of the Combat Service Support data cards. It also loads the data in the correct position on the file.
- d. Routines EDITF1 and EDITF2. These routines are called by LOAD11 to edit fields one and two of the data card respectively. Field one contains the force indicator and field two contains an equipment item code.
- e. Routine DUMP11. This routine provides both a dump of the Combat Service Support data file in tabular format and an unformatted record dump.
- 3. FILES. Data file 11 is used to contain the Combat Service Support data.

APPENDIX A

COMBAT SERVICE SUPPORT DATA LOAD INPUT REQUIREMENTS

Complete descriptions of the constant data load input requirements for combat service support are documented in Appendix A, Combat Service Support Model Input Requirements, to Chapter 16 of the Period Processor (Section IV).

AFPENDIX E

COMBAT SERVICE SUPPORT DATA INPUT PROGRAM DESCRIPTIONS

1. INTRODUCTION. Loading of the Combat Service Support Model data is controlled by the routine CSSLD which, in turn, calls routine LOAD11 to read the input data cards and place data upon data file 11 and DUMP11 to take data from the file and provide a formatted data listing. LOADIL is supported by a pair of card editing routines, EDITF1 and EDITF2.

2. ROUTINE CSSLD:

- a. Purpose. This routine controls the loading of Combat Service Support Model data on data file 11. Two routines are called: LOAD11 and DUMP11.
 - b. Input Variables. None.

Print

c. Output Variables:

Contents Name Destination NERR Number of data errors detected.

- d. Logical Flow (Figure II-17-B-1):
- (1) Blocks 1, 2, and 3. After the file name table has been obtained, routine REMOVE is called to remove outdated data from data file 11. Routine CREATE is called to create data file 11 as 249 records of 512 words each. This is an expandable file and can be expanded by the SERSUP routine of the Combat Service Support Model.
- (2) Block 4. After the file has been created, records 11 through 18 are filled with words containing 99999. Records 1 through 10 and 19 through 239 are filled with zeros.
- (3) Block 5. Routine LOADL1 is called to load data file L1 from carás.
- (4) Block 6. If no errors have occurred in LOAD11, a dump of data file 11 is made by routine DUMP11. The file name table is printed and control returns to the calling routine.

3. ROUTINE LOADIL:

- a. Purpose. This routine load: Co. bat Service Support Model data from cards onto data file 11.
 - b. Input Variables: Data card types 1101, 1102, 1103, and 1104.

Figure II-17-B-1. Routine CSSLD II-17-B-2

c. Output Variables:

Name	Destination	Contents
IREC19(425)	DF11	A value of zero, indicating no pending supply action entries, stored in record 29, word 425.
IREC19(426)	DF11	A value of one, indicating that this is the first 70-word block created on data file 11 for supply action entries, stored in record 29.
IREC19(427)	DF11	A value of 70, indicating this is first 70-word block created on data file 11 for supply action entries. When the second block is created, IREC19(425) and (426) are incremented by 70.
IREC19(428)	DF11	Blue force class I consumption rate, stored in record 29, word 428.
IREC19(429)	DF11	Red force class I consumption rate, stored in record 29, word 429.
ISUPB(11,201)	DF11	Weight, volume, and maximum of nine transport equipment item code preferences for each of 200 equipment items plus personnel for Blue force, stored in records 30 through 33 plus words 1 to 163 of record 34.
ISUPR(11,201)	DF11	Same as abovefor Red forcestored in records 35 through 38 plus words 1 to 163 of record 39.
ICAPB(3,50)	DF11	Equipment item code, weight, volume, and capacities of up to 50 transport types for Blue force, stored in record 34, words 363 to 512.
ICAPR(3,50)	DF11	Same as abovefor Red forcestored in words 363 to 512 of record 39.
IAVB(201,14)	DF11	Number of each item available for resupply for each day (14 days maximum) of battle for Blue force, stored in records 40 to 44 plus words 1 to 254 of record 45.
IAVR(201,14)	DF11	Same as abovefor Red forcestored in records 46 through 50 plus words 1 to 254 of record 51.
ITIMEB(6)	DF11	Load and unload times for Blue force transports, stored in words 1 through 6 of record 29.
ITIMER(6)	DF11	Load and unload times for Red force transports, stored in words 207 to 212 of record 29.

Name	<u>Destination</u>	Contents
ISCB(200)	DF11	Supply class for each Blue force equipment item, stored in words 7 to 206 of record 29.
ISCR(200)	DF11	Supply class for each Red force equipment item, stored in words 213 to 412 of record 29.

d. Logical Flow (Figure II-17-B-2):

- (1) Block 1. Cards in the CSSLD data deck are read; the 80-column card images are printed and stored on a scratch file. Cards continue to be read until 9999 is found in columns 73 through 76. The scratch file is then rewound.
- (2) Block 2. A card image is read from the scratch file. The form number, which is in columns 75 through 76, is read into IFORM. For Combat Service Support data an 11 should appear in columns 73 and 74. Columns 73 and 74 are stored in IFILE. If IFILE equals 11, this card contains Combat Service Support data and control passes to block 3. If IFILE is not equal to 11, it is checked to determine if it contains 99. If it does, this is the end of the data to be loaded, and control goes to block 9; otherwise, an error message is printed and control goes bo block 3.
- (3) Block 3. IFORM is checked to determine if it is valid; (i.e., greater than zero and less than or equal to four). If not, an error message is printed and control goes to block 2; otherwise, control goes to block 4.
- (4) Block 4. If IFORM equals 4, control goes to block 8. If IFORM equals 3, control goes to block 7. If IFROM equals 2, control goes to block 6. If IFORM equals 1, control goes to block 5.
 - (5) Block 5. This is an 1101 card and contains transport load and unload times plus food consumption rates. Routine EDITF1 is called to ensure that the force designator code for this card is valid. If all transport times are zero or blank, a message is printed. If no consumption rates for class I are given, an error message is printed. If the force designator was invalid, an error message is printed. Blue class I consumption rate is stored in word 428 of record 429. Red class I consumption rate is stored in word 429 of record 429. The transport load and unload times are also stored in core in the ITIMEB or ITIMER arrays until all data are loaded. If no error occurs, it will be put on data file 11 in record 29. When IFORM changes, control returns to block 2.
 - (6) Block 6. This is an 1102 card and contains the equipment item codes (EIC) of the transports that will carry the consumable item for which the EIC is in columns 3 through 5. The weight and volume of the consumable item are also input in this card. The weight is in hundredths of pounds on the card, but is stored in tenths of pounds on data file 11. Routine EDITF1 is called to ensure that the card contains a valid force designator code. Routine EDITF2 is called to ensure that the consumable has a valid EIC. The supply class listed for the consumable is also edited to ensure that it is between one and ten. A check is made to ensure that if the consumable is

Figure II-17-B-2. Routine LOAD11 (Continued on Next Page)
II-17-B-5

ARMY COMBINED ARMS COMBAT DEVELOPMENTS ACTIVITY FORT--ETC F/8 15/7 DIVING MODEL DOCUMENTATION, VOLUME II. PROGRAMMER/AMALYST MAMUA--ETC(U) JUL 76 CACDA-TR-6-76-VOL-2-PT-1 NL AD-A112 656 UNCLASSIFIED

Figure II-17-B-2. Routine LOAD11 (Continued)
II-17-B-6

Figure II-17-5-2. Routine LOAD11 (Concluded)

class 7, a nonzero EIC is specified for the first transport choice under unit distribution. This EIC is used in determining now quickly personnel and major end items will travel to the receiving unit after they have been issued. All nine possible transport choices on this card are subjected to the EIC editing. Both the weight and volume of the consumable must be greater than zero. Messages are printed for all errors that are encountered. A count of the number of errors is also printed. All information is stored in core in the appropriate ISUPB or ISUPR arrays except the class of the consumable. The class is appropriately stored in ISCB or ISCR. When IFORM changes, control returns to block 2.

- (7) Block 7. This is an 1103 card and contains the weight and volume capacities of the transports. A maximum of three transports can be entered on each card. Each transport is identified by its EIC. The weight capacities of the transports are read in hundredths of pounds but stored on data file 11 in tenths of pounds. Routine EDITF1 is called to check the validity of the force designator code. The EIC of each transport listed is checked for validity by routine EDITF2. If the volume capacity of a particular transport is input as 99999999.0 it is stored as the largest number that can be stored in a 24 bit integer word; (i.e., 8388607). The EIC, weight capacity, and volume capacity are stored in the appropriate ICAPB or ICAPR arrays. Messages are printed for all errors encountered. When IFORM changes, control returns to block 2.
- (8) Block 8. This is an 1104 card and contains the number of major end items by type that are available to the division for resupply for each day of battle. The number of personnel available for replacement is also input on this card format. Routine EDITF1 is called to check the validity of the force designator code. Routine EDITF2 is called to verify the EIC for each card. The resources are stored in the appropriate IAVB or IAVR arrays. When IFORM changes, control returns to block 2.
- (9) Block 9. At this point Combat Service Support data have been loaded in core. If no data load errors were encountered, the information is put on data file 11.

4. ROUTINE EDITF1:

a. Purpose. This routine edits the force designator located in the second column of every input card.

b. Input Variables:

Name	Source	Contents
NERR	Common	Number of errors that have occured in loading data.
IFD	Call	Force designator for card being read.

c. Output Variables:

Name	Destination	<u>Contents</u>
NERR	Common	Number of errors that have occurred in loading data.
IFORCE	Call	Number indicating whether card pertains to Red or Blue Force.

d. Processing Description. This routine examines the force designator in column two of every input card. If it contains a B, IFORCE is set equal to one. If it contains an R, IFORCE is set equal to two. If it contains anything else, an error message is printed, the error counter is incremented, and control returns to routine LOADIL.

5. ROUTINE EDITF2:

a. Purpose. This routine edits the equipment item codes. It is called by routine LOAD11.

b. Input Variables:

<u>Name</u>	Source	Contents
NERR	Common	Number of errors encountered in loading data file 11.
IEIC	Call	Equipment item code to be edited.
LIM	Call	The largest valid integer value IEIC may have.

c. Output Variables:

<u>Name</u>	<u>Destination</u>	<u>Contents</u>
NERR	Common	Number of errors encountered in loading data file 11.

d. Processing Description. This routine edits each equipment item code to ensure that it contains an integer value greater than zero but less than the value contained in LIM. If it contains a value outside of this range an error message is printed. NERR is incremented, and control returns to routine LOAD11.

6. ROUTINE DUMP11:

- a. Purpose. This routine prints formatted tables displaying Combat Service Support Model data contained on data file ll and then prints a dump of the file.
 - b. Input Variables: See output variables from routine LOAD11.

- c. Output Variables: Printed data tables and dump of data file 11.
- d. Logical Flow (Figure II-17-B-3):
- (1) Block 1. In this block both Red and Blue force information is printed. This includes the class I consumption rates in pounds per man per day and the transport load and unload times for each distribution method.
- (2) Block 2. Blocks 3 through 7 are performed first for the Blue force; then, for the Rea force.
- (3) Block 3. The supply class for each equipment item in the force is printed. If no supply class is given for a particular item, that item will not be resupplied. Supply classes are given numbers from 1 to 10.
- (4) Block 4. The weight (pounds) and volume (cubic feet) of each consumable item to be resupplied is printed for this force. Each item is identified by its equipment item code.
- (5) Block 5. The weight (pounds) and volume (cubic feet) capacities of each transport assigned to resupply consumables is printed for this force. Each transport is identified by its equipment item code. A maximum of 50 transports may appear.
- (6) Block 6. The EICs of the transports assigned to deliver consumables for this force are printed. The first, second, and third preferences are displayed for each consumable under each of the three distribution methods.
- (7) Block 7. This block prints the amounts of major end items and personnel that are available for resupply to the division during each day of battle.
- (8) Block 8. If the Red force data were not printed, control returns to block 3 to process the Red force. Otherwise, a record-by-record dump of data file 11 is printed. Control then returns to routine CSSLD.

Figure II-17-B-3. Routine DUMP11
II-17-B-11

APPENDIX C

COMBAT SERVICE SUPPORT DATA LOAD OUTPUT DESCRIPTIONS

I. INTRODUCTION. The constant data input printouts for Combat Service Support are listed in Figure II-17-C-1. The 80-column card image is the listing of all data entered in the files. The other printouts are used to check the values of data entered and to identify the originating card if necessary.

Printout Title	Data Source	Card ID	Card Type
80-Column Card Image	Card data deck	A11	A11
Elapsed Time to Handle Vehicles	Data file ll	1101	1
Consumption Rates	Data file ll	1101	1
Weights and Volumes of Consumables	Data file ll	1102	1
Weight and Volume Capacity of Transports	Data file ll	1103	1
Equipment Item vs Class of Supply	Data file 11	1102	1
Transport Preference for Hauling Consumables	Data file ll	1102	1
Consumables Available Daily for Resupply	Data file ll	1104	1
File Dump	Data file ll	All	All

Figure II-17-C-1. Combat Service Support Constant Data Printouts

2. EIGHTY-COLUMN CARD IMAGE. The 80-column card image printout is illustrated in Figure II-17-C-2. Across the top at the far left is the number 1, indicating card type 1. The letter B indicates Blue force data and the number 1101 is the card ID.

The state of the s

3. ELAPSED TIME TO HANDLE VEHICLES AND CLASS I CONSUMPTION RATE. The next printout in the constant data input printout series is illustrated by Figure II-17-C-3. At the upper half of the format is the elapsed time in minutes for handling the transports for both Blue and Red forces. The lower half of the figure has the subsistence consumption for both Red and Blue forces. The data for this printout are extracted from data file 11 and were originally enscribed on card ID 1101.

1	6 60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 60 7 5 1 1	10 1 2 5 1 10 10 10 10 10 10	101	0 60 7 5 1 1101 1 1 1101 1 1 1 1 1 1 1 1 1 1 1	0 60 7 5 1 101 1 102 1 101 1 102 1 1
7	0 60 60 6 60 60 60 60 60 60 60 60 60 60	0 60 60 7 5 5 1 13 151 154 0 161 165 20 155 166 162 162 156 10 154 167 161 167 161 10 154 167 161 167 161 10 154 167 161 167 161 10 154 167 161 167 161 10 154 167 161 167 161 10 154 167 161 167 161 10 154 167 161 167 161 175 154 167 161 167 161 175 154 167 161 167 161 176 164 167 161 167 161 176 164 167 161 167 161 177 164 167 161 167 161 178 164 167 161 167 161 20 164 167 161 167 161 20 164 167 167 161 20 164 167 167 161 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 20 164 167 167 20 164 167 167 20 164 167 167 20 164 167 167 20 164 16	0 60 60 7 5 5 1 13 151 154 0 161 165 20 155 166 162 162 156 10 154 167 161 167 161 10 154 167 161 167 161 10 154 167 161 167 161 10 154 167 161 167 161 10 154 167 161 167 161 10 154 167 161 167 161 10 154 167 161 167 161 175 154 167 161 167 161 175 154 167 161 167 161 176 164 167 161 167 161 176 164 167 161 167 161 177 164 167 161 167 161 178 164 167 161 167 161 20 164 167 161 167 161 20 164 167 167 161 20 164 167 167 161 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 167 20 164 167 167 20 164 167 167 20 164 167 167 20 164 167 167 20 164 167 167 20 164 16	6 60 7 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	C C C C C C C C C C	101	C C C C C C C C C C	0 60 7 5 1 1101 1 CAPD 13 151 154 0 161 156 0 67 Pe 0 1102 1 CAPD 20 165 166 162 162 166 16 0 0 0 1102 2 CAPD 21 165 167 161 167 161 164 0 0 0 1102 3 CAPD 22 165 167 161 167 161 164 0 0 0 1102 3 CAPD 23 164 167 161 167 161 164 0 0 0 1102 5 CAPD 24 167 161 167 161 164 0 0 0 1102 5 CAPD 25 164 167 161 167 161 164 0 0 0 1102 5 CAPD 26 164 167 161 167 161 164 0 0 0 1102 5 CAPD 27 164 167 161 167 161 164 0 0 0 1102 17 28 164 167 161 167 161 164 0 0 0 1102 17 29 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 0 0 1102 17 20 164 167 161 167 161 164 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
69	7 5 1 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	5 5 1 1 1 1 1 1 1 1	5 5 1 1 1 1 1 1 1 1	7 5 1 151 164 0 161 165 16 165 166 162 162 165 16 164 167 161 167 161 164 164 167 167 167 161 164	7 5 1 1101 161 164 0 161 164 0 87 86 0 1102 165 166 162 162 168 16 87 86 0 1102 164 167 161 167 161 164 0 0 0 1 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 167 161 164 0 0 0 0 1102 164 167 167 167 161 164 0 0 0 0 1102 164 167 167 167 161 164 0 0 0 0 1102 164 167 167 167 161 164 0 0 0 0 1102 164 167 167 167 161 164 0 0 0 0 1102 164 167 167 167 167 164 0 0 0 0 1102 164 167 167 167 167 167 167 0 0 0 1102 164 167 167 167 161 164 0 0 0 0 1102 164 167 167 167 167 167 167 0 0 0 1102 165 167 167 167 167 167 0 0 0 0 1102 166 167 167 167 167 167 0 0 0 0 1102 166 167 167 167 167 167 167 0 0 0 0 1102 166 167 167 167 167 167 167 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 5 1 1011 6 5 1 1 1011 165 164 0 161 164 0 67 96 0 1102 165 166 162 162 168 16 87 96 0 1102 164 167 161 167 161 164 0 0 0 1 1102 164 167 161 167 161 164 0 0 0 1 1102 164 167 161 167 161 164 0 0 0 1 1102 164 167 161 167 161 164 0 0 0 1 1102 164 167 161 167 161 164 0 0 0 1 1102 164 167 161 167 161 164 0 0 0 1 1102 164 167 161 167 161 164 0 0 0 1 1102 164 167 161 167 161 164 0 0 0 1 1102 164 167 161 167 161 164 0 0 0 1 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 161 167 161 164 0 0 0 0 1102 164 167 167 167 161 164 0 0 0 0 1102 164 167 167 167 161 164 0 0 0 0 1102 164 167 167 167 167 161 164 0 0 0 0 1102 164 167 167 167 167 161 164 0 0 0 0 1102 164 167 167 167 167 167 167 167 167 167 167	7 5 1 161 164	7 5 1 6 161 164 0 161 164 0 17 PF 0 1102 1 102
	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	164 162 162 164 164 165 165 165 165 165 165 165 165 165 165	164 162 162 164 164 165 165 165 165 165 165 165 165 165 165	7 5 1 164 0 161 162 0 165 165 165 165 165 165 165 165 165 165	7 5 1 1 1011 64 162 162 165 166 16 17 76 1102 166 162 162 165 166 16 17 76 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 10 1102 167 161 167 161 164 10 10 10 1102 167 161 167 161 164 10 10 10 1102 167 167 167 164 164 10 10 1102 167 167 167 164 164 10 10 10 1102 167 167 167 164 164 10 10 1102 167 167 167 167 164 167	7 5 1 1 1011 64 162 162 165 166 16 17 76 1102 166 162 162 165 166 16 17 76 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 1102 167 161 167 161 164 10 10 10 1102 167 161 167 161 164 10 10 10 1102 167 161 167 161 164 10 10 10 1102 167 167 167 164 164 10 10 1102 167 167 167 164 164 10 10 10 1102 167 167 167 164 164 10 10 1102 167 167 167 167 164 167	7 5 1 164 162 162 166 16 17 7 7 1102 1 166 162 162 166 16 17 7 7 1102 1 167 162 162 165 164 10 10 1102 2 167 162 167 161 164 10 10 1102 3 167 161 167 161 164 10 10 1102 3 167 161 167 161 164 10 10 1102 3 167 161 167 161 164 10 10 1102 11 167 161 167 161 164 10 10 1102 11 167 161 167 161 164 10 10 1102 11 167 161 167 161 164 10 10 1102 11 167 161 167 161 164 10 10 1102 11 167 161 167 161 164 10 10 1102 11 167 161 167 161 164 10 10 1102 11 167 161 167 161 164 10 10 1102 11 167 161 167 161 164 10 10 1102 11 167 161 167 161 164 10 10 11 167 161 167 161 164 10 10 10 11 167 161 167 161 164 10 10 10 11 167 161 167 161 164 10 10 10 11 167 161 167 161 164 10 10 10 11 167 161 167 161 164 10 10 10 11 167 161 167 161 164 10 10 10 11 167 161 167 161 164 10 10 10 11 168 167 167 161 164 10 10 10 11 168 167 167 161 164 10 10 10 11 168 167 167 161 164 10 10 10 11 168 167 167 161 164 10 10 10 11 168 167 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 167 168 167 167 167 167 167 167 167 167 167 167	7 5 1 101 1 102 0 100 1 101 1 102 1
r. r.	5 2 1 1 1 2 2 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 2 1 2 2 2 1 2	5 10 10 10 10 10 10 10 10 10 10	5 10 10 10 10 10 10 10 10 10 10	5 10 10 10 10 10 10 10 10 10 10	5 1 1 101 1	5 1 1 1011 162 162 165 16	5 1 162 162 165 16 16 10 10 1102 2 162 162 165 16 16 10 10 1102 2 161 167 161 164 10 10 10 1102 3 161 167 161 164 10 10 10 1102 3 161 167 161 164 10 10 10 1102 3 161 167 161 164 10 10 10 1102 3 167 167 161 164 17 16 17 2 167 167 161 164 17 3 167 167 161 161 161 17 3 167 167 161 17 3 167 167 161 161 17 3 167 167 167 167 17 3 167 167 167 17 3 167 167 167 17 3 167 167 17 3 167 167 17 3 167 17 3 167 17 3 167 17 3 167 17 3 167 17 3 167 17 3 170 170 3 17	5 1 162 162 165 16 10 17 PE 0 1102 1 1020 1
r. r.		5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	55 11 167 167 167 167 167 167 167	5 1 161 164	5 1 1 1011 5 1 1 1011 161 164	5 1 161 164	5 1 16.1 16.4
		ଧାର୍ଥ ଦେବଳା କଳା କଳା କଳା କଳା କଳା କଳା କଳା କଳା କଳା କ	ଧାର୍ଥ ଦେବଳା କଳା କଳା କଳା କଳା କଳା କଳା କଳା କଳା କଳା କ		15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	155 155 155 155 155 155 155 155 155 155	1 1101 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	156 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
							まも まるではちゃうのうにどうはであるからのものではちょうかいご	1101 1102
			# \$\frac{1}{4} \text{D} \frac{1}{4} \text{D}	0 C 0 0 3 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			まも まてていちちてきりりにごろれてもちまりますのできないとうことできます。 まるていちらい ちゅうしょくきゅう おりはし ひりんごう みずか アカロ	40
			₽¢₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽					

Figure II-17-C-2. Combat Service Support 80-Column Card Image

ELAPSED TTWE TO HARDLE TPANGOORTS (IN MINHIES)

The second secon

	UNLOBE AIRERAFT	•	•
	LOAD AIPCRAFT	u	u
PISTRIPHTTON	LOAP TEANSPOPTS	e: u	ž
CUPELY ECINT PISTRIPHTICN	STANT TPRNSPNGTS LOAP TEANSPOPTS	ÛŁ	30
THE THE PRESENCE OF THE PROPERTY OF THE PROPER	UNLAG TEANSPORTS		1
ilu	LOAF TRENSPERTS	c v	.,
	LOAF	Pt ve	RED

GLASS I CONCUMPTION PATES

FODLE	
0.50	
<u>.</u>	
FOOCE	1
PLIE	

Figure II-17-C-3. Elapsed Time to Handle Vehicles

- 4. WEIGHTS AND VOLUMES OF CONSUMABLES AND VEHICLES. Figure II-17-C-4 illustrates the format for this printout. One printout is for Red force and one for Blue. The titles of the columnar headings are identical with those of the card formats. At the bottom of that format is shown weight and volume capacity of vehicles. The data from the upper half of the illustration were taken from data file 11 and originated from card ID 1102. Data from the lower half of the illustration were also taken from data file 11 but were punched in card ID 1103.
- 5. CLASSES OF SUPPLY. Classes of supply printout format is shown in Figure II-17-C-5, Equipment Item vs Class of Supply. One printout is for Red force and the other for Blue force. The information for this printout was extracted from data file 11 and was punched in card ID 1102.
- 6. TRANSPORT PREFERENCE FOR HAULING CONSUMABLES. Figure II-17-C-6 depicts the format for this type of printout. One such table is printed for Blue and another for Red. This table lists the consumable at the far left and, for each consumable, preferred transports. Data for this printout were taken from data file 11 and were punched originally in card ID 1102.
- 7. MAJOR END ITEMS AND PERSONNEL AVAILABLE DAILY FOR RESUPPLY. This table, as illustrated in Figure II-17-C-7, provides the amounts of major end items and personnel available each day for resupply. These data were extracted from data file 11 and were input initially in card ID 1104.

HEIGHT WHO AUTHME OF BITTE CONGLITABLES

1 - =	शहराह्मर	vol (inc
CCC	([pc.*)	("(, "",1
1	1 5	
· •	1,0	•
7	F. 2	.21
L	•	.20
<u>.</u>	1.0	. ; 4
C	1.0	•12
7	1.5	• 5 2
2	• ,	•71
0	. 4	• 11
5.5	1.3	• • ?
26	165.0	1.00
25	3000	25.50
	20 = 40 • 6	1154.70
76	20%	25.53
27	17.7	1
2 n	640.0	20.4°
9 G	10561.n	1944.89
7.5	40.0	1.17

RETURN THE ACTING CALVCIAN OF BEINE ABSHOLDED MENTUSED

TTEM	NEICHT	I'CI HUC
LUÇE	(LP5.)	(ni. et.)
o ¬	23705.j	2011.10
1 = 1	16500.0	702.73
152	7149.3	245.00
167	57 L Ú C - Č	27,4.00
1 + L	24505.0	27.4.17
1្្⊏	71887.0	1000.01
100	11160.0	750.00
167	16553.1	70 7 2 7
Pr.	4:00.1	1111.00

Figure II-17-C-4. Weight and Volume of Consumables and Capacity of Vehicles

CLICELY OF VEGES OF BUILD PUBLISHED TARMS

- ;	0 2010	****	CHECK	ナナテル	CHE CAN
·· 65-		a or e	CLICE		circtl A
				(())	01:00
•	•	L1	7	ρį	-
	,	42	E		-
•	7	4.7	- 5	F ?	Ę.
	t.			ጸ ን	
-	r.	1. ti	ō	٥٤	
:	ŗ	1.5	; ;	or	7
-	, r	LF	Ţ.	ο¢	7
٠	-	4.7	0 0 1 7	9.7	7
		t: n	3	ने व	7
•	.	7.3	<u> </u>	٥С	7
1 '	÷ .	وداب		эг	7
• •	;	Γ4	c	0.4	7
: ~	•	£ 🙃	~	ڌي	-
4 '	1.5	ृ ष	Ľ	07	ŗ
• •	•	£	<u></u>	O.L	-
1 °		FF	7	٥n	ָרָי רָי
::	•	rę	-	O.E.	7
• •		F 7	r.	7.0	7
• :		٦٠	~	9.0	•
1 -	2	şn	-	o c	•
-	^	į,	•,	15(
5.4		· 1	#		
-, -	-	£ 2	÷	151	
• •	•	67	E	192	
٠:	-		5	103	u
7 F	••	F L	<u> </u>	106	:
~:	-	7.5		105	
<u>.</u>	5	(5	<u> </u>	105	
_	-	17	7.	1.7	€
		. 3	٦	135	^
		۲.	•	125	-
7.	5	~ ^	E	4 1 6	^
7.	~	~ :	-	111	.
7-	-	~ ?	-	117	7
7 ~	-	7 =	7	113	7
7.6	7	. 4	~	114	7
7.5	-	7.5	-	11=	-
7.7	-	75	n	114	7
	~	7 -	3	117	-
7 ·	-	ء 7	ž	110	7
7 -	<u>;</u> ;	70	n	110	•
4	-	0.5	•	120	3,
		•		1 €	

Figure II-17-C-5. Equipment Item versus Class of Supply

TOANSPOOT OPEFEPENCES FOR ALIVE FONSUMABLES

CONSUMPLE	UNITHEISTEL TIND	1415It	NUİ 111	ATJJ115	CUEPLY PAINT DISTOINUTION	TPIRNTION		. Ajbijet	
ITEN	TTEM	ITE	TTEN	LUDE	ITEM	Hatt	וופא	1461	1164
					•		•		
-	151	164	-	14.	46.4	c	4	4	c
۰ ~	165	166	152	162	4 4 4 4	# FF FF	A.7	. u.	c
~	145	100	167	162	15.6	1.1	•		· en
3	164	167	141	167	161	1.54	•	ت	0
u.	144	157	141	147	16.1	166	•	0	6
Ľ	154	167	16.1	167	161	164	· c	.	E
•	154	167	141	167	141	164	0	0	6
•	154	147	141	167	161	164	E	ı	c
c	151	16.7	161	16-	15.1	154	٠.	•	0
22	164	1 < 1	0	161	164	c	6	J.	6
5 7	154	141	0	161	154	e.	64	9	e
76	52	ی	•	2¢.	E	E	c	c	0
۲,	154	16.1	c	161	154	c,	F 4	u a.	0
22	154	147	141	147	161	1 4 4	4	Æ.	0
2#	164	161	6	161	144	C)	6	0	6
50	53	د،	0	\$2	ن	c	0	5	0
30	154	167	161	147	161	164	9	0	0
31	164	161		141	164	¢.	19	a.	
32	164	167	141	167	161	151	87	9	•
33	164	161	-	151	166	ల	24	99 K	6
J ,	154	161	0	161	164	ب	18	9	0
u M	35	-	0	u En	6	E	6	•	0
4 ;	154	167	161	167	161	154	87	9	0
37	37	ن	67	11	ٿ		•	0	6
e: M	164	167	141	147	161	164	0	5	6
9	154	147	141	121	141	164	6	د	•
•									

Figure II-17-C-6. Transport Preference for Hauling Consumables

FLUF CANSUMAGLES BUAILBOLF DAILY FOR RFSUPFLY

	TOTAL	ಗಳಾರಾಗರ ಪ ಆಗ
	0 b Y	00000 000
	13	000000
	DAY 12	****
	94	8000000
	0AY 1.0	9000000
	A O	0000000
۲.	₽ 8	000000
Y EPCIMTS	Y F	^{ଲେ} ଶଶ୍ମଶ୍ମ ଅ N ମ
DATLY	7. A.	797077 0277
	P.A.	120
	, 4 4	1 1 1 1 1 1 1 2 2 0
	≯ ¥.	2202
	E 4 5. C	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	ΓΑΥ 1	
CONSUMER! F	775H 700F	MUNNEGE V Phone e e Mu

Figure II-17-6-7. Blue Major End Items and Personnel Available Daily for Resapply

APPENDIX D

SOURCE LISTINGS FOR CONSTANT DATA INPUT PROCESSOR COMBAT SERVICE SUPPORT

(AVAILABLE UNDER SEPARATE COVER)

SECTION III

ORDERS INPUT PROCESSOR

CHAPTER 1

GENERAL DESCRIPTION OF THE ORDERS INPUT PROCESSOR

- 1. INTRODUCTION. In the conduct of a war game with the DIVWAG system, the Orders Input Processor is a primary point of interface between the war gaming staff and the Period Processor. It provides the means by which the gaming staff instructs simulated units to carry out desired activities. Although explicit unit portrayal and assessment of unit actions, together with limited decision making processes, are automated within the Period Processor, the gaming staff maintains its ultimate control of the course of the game through the Orders Input Processor.
- 2. INPUT PROCESSOR SUBSYSTEMS. The Orders Input Processor is composed of two independently run computer subsystems: the DIVWAG Scenario Language (DSL) Compiler and the Operating Instructions (OPERINS) Loader.
- a. DSL Compiler. The DSL Compiler converts instructions written in a specialized source language into tables which, in turn, are used to drive the Period Processor. DSL orders are combined into unit scenarios, where each unit scenario contains the series of orders to be followed by one specified unit, or into battle paragraphs, which are used to control the Ground Combat Model of the Period Processor. DSL orders must be provided at the beginning of each period of simulated combat. The length of a period of simulated combat is under control of the gaming staff and is set by the gaming staff as part of the DSL input.
- b. OPERINS Loader. The OPERINS Loader allows the gaming staff to interject, at the beginning of a period of simulated combat, certain data items for the control of ground-based sensors, for the control of fire support allocation, and for the introduction of intelligence from sources beyond the scope of sources internal to the Period Processor. Operating Instructions must be provided for the first period of simulated combat within a game. Their use thereafter is left to the discretion of the gaming staff.

The second second

CHAPTER 2

THE DIVWAG SCENARIO LANGUAGE COMPILER

- 1. GENERAL DESCRIPTION. The DIVWAG Scenario Language (DSL) compiler is designed to recognize statements composing a unit scenario or battle paragraph and translate them into tables which are easily used by the Period Processor. One table is generated for each unit scenario or battle paragraph, and is stored on the DSL data file. A unit battle table (UBT), which serves as a directory to the unit scenario and battle paragraph tables, is generated and is also stored on the file. The table is described in detail in Figure III-2-1. Each of the unit scenario and battle paragraph tables contains 21 columns and as many rows as necessary. The orders, modifiers, and conditionals are stored in the tables by use of numerical codes and implicit location within the table. The numerical codes of the orders (NORD) are listed in Figure III-2-2, and those associated with the conditionals (NCON) are shown in Figure III-2-3. Figures III-2-4, through III-2-7 list the meanings associated with each column as a function of NORD or NCON. In the unit scenario tables, rows beginning with NORDs and NCONs may appear in almost any order. In the battle paragraph tables the first five rows are reserved for the list of units participating in the battle. These are stored ten UIDs per row (using two columns per UID) leaving column 21 unused. The remainder of the table will have rows beginning with an NCON intermingled with rows of labels of unit scenario statements. These labels are associated with the unit scenario order the unit is to execute if the battle is terminated by the preceding conditional. They are stored one per column, again leaving column 21 unused.
- 2. DESCRIPTION OF PROCESSING. The limited vocabulary of orders, modifiers, and conditional clause elements and the rigid syntax of the language allow the decomposition of a statement to be accomplished using a small number of logical decisions. This process is depicted in Figure III-2-8. The first level of logic determines if the statement is a COMMENT, FINIS, unit scenario identification (ID), battle paragraph identification (BATTLE), unit order, or battle description statement. If the statement is one of the first four types listed, processing may be completed without further decision making. If the statement is a unit order, the second level of logic determines if it contains a conditional. If a conditional is present, a third level of logic is invoked to determine the conditional clause type. A different set of third-level logic is used to determine the type of order. If the order may have modifiers associated with it, a fourth level of logic determines which modifiers are present. If the statement is part of a battle description, another set of second level logic determines if it contains the list of units participating in the battle, or a conditional followed by a list of labels designating the next orders that the units are to execute if the battle is terminated by this conditional. If it contains the list of units, no other logic decisions are necessary. If not, the conditional will be processed by the third-level logic mentioned above. The final processing of any statement may consist of merely transferring execution to the appropriate place in the code (e.g., comment or FINIS statement), but usually requires the extraction and storage of data (e.g., UID, coordinates, munition type, labels).

- . The unit battle table is a 4 x 1023 word array.
- . Each of the 1023 columns may contain information about a unit scenario or battle paragraph.
- . Unit scenario information is stored in column 1 to UNTPT.
- . Battle paragraph information is stored in columns BATPT to 1023. with information from the first battle paragraph excountered being stored in column 1023, information from the second stored in column 1022, etc.
- . Unit scenario information description:
 - Row 1 contains the first four characters of the unit identification
 - Row 2 contains the last four characters of the unit identification
 - Row 3 contains the number of records (NR) required to contain the unit scenario and the pointer (PKNT) to the record containing the order currently being executed by the unit (value = NR + 1000 * PKNT)
 - Row 4 contains the record number of the first record used to store the unit scenario.
- . Battle paragraph information description:
 - Row 1 contains the first four characters of the battle identification
 - Row 2 contains the last four characters of the battle identification
 - Row 3 contains the number of records (NR) required to store the battle paragraph and the number of units (NU) participating in the battle (value = NU + 1000 * NR)
 - Row 4 contains the record number of the first record used to store the battle paragraph.

Figure III-2-1. Unit Battle Table Description

DSL Order	NORD
Accept Transport	20
Advance	6
Airmobile Assault	41
Assignment is	23
Assume control of	24
Breach	43
Build	42
Detach	26
Engage	15
Fire	9
Fire on targets of	
opportunity	10
Fly	7
Go to	-1
Join	25
Loiter	32
Mission is	39
Move	3
Prepare	2
Reconnoiter	8
Release transport	31
Remove	44
Retain	40
Stay	1
Stop task	45
Terminate	37
Withdraw .	5

Figure III-2-2. Numerical Order Codes

Conditional Type	NCON
Assessed	-2
At location	-4
Class 3	- 5
Class 5	- 6
Cloud cover	-14
Equipment type	-7
Firing	-8
Fog index	-21
Halted at	-11
Moving	-9
Precipitation index	-16
Present strength	-12
Relative humidity	-18
Stopped	-10
Temperature	-15
Temperature gradient	-17
Time	-3
Visibility index	-13
Wind direction	-20
Wind speed	-19

Figure III-2-3. Conditional Type Codes

Column	Description
1	NORD
2	Time associated with the order
3	Air speed
4	Altitude
5,6	X and Y coordinates of designated ground zero
7	Number of rounds or number of volleys
8	Munition type
9	Impact radius
10	Height of burst
11,12	Unit identification of cooperating unit
13,14	Battle identification
15,16	X and Y coordinates of movement objective
17	Travel mode mnemonic, or reconnoiter by code
18	Movement priority
19	Unit width
20	Unit depth
21	Relative position in table of next order to be executed

See Figure III-2-5 for airmobile orders and Figure III-2-6 for engineer orders.

Figure III-2-4. Standard Order Column Descriptions

Column	Description
1	NORD (= 20, 39, 40, or 41)
3	Game time associated with order
9	Number of aircraft <0 Number of trips ≤0
10	Mix table code, or aircraft item code
12	Number of escorts, or target number
15,16	X and Y coordinates of the objective
21	Relative position in table of next order to be executed
	All other columns are unused.

Figure III-2-5. Airmobile Order Column Descriptions

Column	Description
1	NORD (= 42, 43, 44, or 45)
· 3	Barrier = 0 Bridge or facility = 1
4	First 3 characters of barrier code
5	Last 3 characters of barrier code
6	Priority code
7	Complete task by time = 0 Begin task by time = 1 (See column 9)
8	Completion of task is desired = 0 Completion is mandatory = 1
9	Game time associated with the task
21	Relative position in table of next order to be executed
	All other columns are unused.

Figure III-2-6. Engineer Order Column Descriptions

Column	Description
1	NCON (less than -1)
2,3	UID associated with the conditional
4	Time associated with the conditional
5,6	X and Y coordinates of the location associated with the conditional
7	Quantity data
8	Percentage data
9	True = negator appeared in conditional False = no negator
10	Less than = -1: equal = 0: greater than = +1
11	Item code of equipment in conditional
20	Relative location in table of next order to be executed if conditional is false
21	Relative location in table of next order to be executed if conditional is true
	All other columns are unused.

Figure II1-2-7. Conditional Column Descriptions

Figure III-2-8. DSL Compiler Logical Flow

- 3. DSL LOGICAL FLOW. The order in which the routines are invoked to process each DSL statement is depicted in Figure III-2-9. As indicated by this figure, DSLCMP serves as the controlling routine of the compiler. It first invokes DSLINT which initializes the dynamic arrays and variables and processes the DSL control statements. RDSTMT is used to read all DSL data cards. It is called by DSLINT for the processing of the first three DSL data cards and by DSLCMP for the processing of the remainder of the data deck. DSLCMP performs a preliminary examination of each statement read to determine if it is a
- a FINIS statement, a battle paragraph or unit scenario identification statement, or a battle paragraph or unit scenario descriptive statement. BATORD is called to further process battle paragraph descriptive statements, and UNTORD is invoked if the statement describes a unit scenario. Both BATORD and UNTORD call COND if a conditional is discovered in the statement. The decoding and storage of UIDs of units participating in a battle and the labels of the orders they are to execute immediately following a battle is accomplished by BATORD. After calling COND, if necessary, UNTORD determines the type of order contained in the statement and calls the appropriate routine. Each of the routines—AIRMOB, ENGR, FIRE, FLY, MOVE, STAY and TRANS—contains a list of the modifiers that may be used with the orders for which they are responsible. As each order is received, an array containing the modifiers that may be associated with it is set up and passed to KRAKMD. KRAKMD further decodes the statement by searching out the modifiers present and storing the associated data.
- 4. ROUTINE DESCRIPTIONS. A description of the routines comprising the DSL compiler follows. The purpose of each routine and the manner in which it accomplishes that purpose is included in the description.
- a. Routine DSLCMP. This is the driving routine of the DSL compiler. Its first task is to call routine DSLINT which performs the initialization of the dynamic variables and processes the DSL control cards. Once that is accomplished, a loop involving the reading and decoding of the remaining statements is entered. RDSTMT reads each data card and performs initial processing. The statement is tested to determine if it is a comment. If it is, no further processing is necessary and the next statement is read. If the statement is the FINIS statement, the end of the DSL orders has been reached. PASS2 is called to complete processing of the tables. If debug print was requested, DUMPF is called to print the tables generated; otherwise, the statement is checked to determine if it is part of a unit scenario. If this is the case, UNTORD is called to process it. If the statement is part of a battle paragraph BATORD is invoked to decode it. If the statement is a battle paragraph or unit scenario identification statement, STOW is called to write the table associated with the battle paragraph or unit scenario just processed to the data file. If the statement cannot be recognized an error message is written and the next statement is processed.
- b. Routines BLOCKD and DSLINT. These routines accomplish the initialization of the arrays and constants required by the DSL compiler. BLOCKD initializes the arrays of order names and codes, modifier names, array limits, and integer and special character constants. DSLINT sets the initial values of variables, such as the line counter, the error counters, and the file name table array. It calls RDSTMT to read the DSL control cards and stores the period time parameters input on those cards. It also initializes the unit

Figure III-2-9. DSL Logical Flow

Figure III-2-10. Routine DSLCMP Logical Flow

location and unit identification tables used by the compiler, and fills the unit-battle directory table with blanks and zeros.

- c. Routine RDSTMT. RDSTMT is responsible for the reading and initial processing of all data cards input to the compiler. Blanks are ignored in the statements, so the nonblank characters are extracted from each card and stored in a compressed format as each card is read. Each nonblank character is also checked to determine if it is a period, colon, or comma. The locations of those characters, if encountered, are stored as they are useful in decomposing the statement. The contents of each card are also printed. To keep the listings of the Blue force and Red force unit scenarios and the battle paragraphs separate, each ID and BATTLE statement is checked and the printer skips to the top of the next page if the statement does not belong to the same group of the last listed statement.
- d. Routine BATORD. This routine processes statements belonging to a battle paragraph. These statements must be one of two types. The first type contains the list of UIDs of units participating in the battle. The UIDs are extracted from the statement and stored in the order array, and the number of UIDs is stored in the unit battle table (UBT) in the area assigned to this battle paragraph. The second type of statement is a conditional followed by a list of labels. These labels correspond to labels in the unit scenarios of the units in the battle. When a battle is terminated by a conditional, the units execute the orders designated by the list of labels following the conditional. Routine COND is called to process the conditional portion of the statement, and BATORD extracts the labels from the statement and stores them in the order array.
- e. Routine UNTORD. UNTORD is called to process unit scenario descriptive statements. These statements are orders to the unit and can be preceded by a label, a conditional, or both. If the statement contains a colon, the characters preceding the colon are stored as the label. If the statement contains a conditional, routine COND is called to process it. The remainder of the statement is an order that is chosen from the DSL vocabulary of orders and that order's modifiers. The general type of the order is determined (e.g., moving, firing) and the appropriate order processing routine is called (See Figure III-1).
- f. Routine COND. The routine COND is responsible for the decomposition of and storage of data from the conditional portion of the statements. There are 14 conditional vocabulary elements including 10 clauses and 4 types of data. The syntax allows seven clause types to be formed from these elements. Clause types can be connected by AND or OR with the limitation that both AND and OR cannot be used in the same statement. Routine COND determines if AND or OR is present, and processes each clause type independently. A clause type is processed by first determining if the unit identification element is present. If it is, and the next element is a unit activity (e.g., MOVING, AT LOCATION), the processing is completed; otherwise, the clause type cannot be recognized. If the unit identification element is not present, a search is made for a unit possession element. If this element is found processing is completed. If a unit possession element is not present, a search is made for a weather conditional element. If this element is present it is processed; otherwise, the clause type cannot be recognized. If the unit identification element is not

present, a time element is searched for; and if found, the time is stored; otherwise, a weather element is searched for indicating a weather conditional at a location if it is present and an unrecognizable clause type if it is not.

- g. Routines AIRMOB, ENGR, FIRE, FLY, MOVE, STAY, and TRANS. These routines build an array of modifiers for the orders for which they are responsible and assure that the modifiers required by the orders are present in the statement. This is accomplished by building an array of modifiers that may be used with a particular order, passing this array to KRAKMD, and checking it when it is returned. If a required modifier or an exclusive modifier is missing, an error message is written.
- h. Routine KRAKMD. This routine decomposes the modifier portion of the DSL statement and stores data associated with each modifier. Modifiers exclusively contain alpha characters. Most modifiers are followed by numerical data. Each modifier is processed independently by scanning the statement from the last character processed to the next numerical character or the end of the statement. If no modifier is found, an error message is written. If a modifier is present, the data associated with it (if any) is extracted and stored, and a search for another modifier begins. As each modifier is found, its position in the array of modifiers is set to zero, thereby disallowing more than one occurrence of the same modifier. Each coordinate pair, of orders having coordinate pairs (move, fly, advance, withdraw, reconnoiter, and airmobile assault), generates a separate order in the order table. After processing one of these order modifiers, the data stored in the first order generated are copied into the other orders. In the case of a reconnoiter or airmobile assault order, the last order generated is indicated.
- i. Routine STOW. This routine is called by DSLCMP to write a unit scenario or battle paragraph to the data file. If a unit scenario is being stored, the labels associated with the scenario are written on the file in the five records immediately preceding the first record used to store the unit scenario. STOW also stores the number of statements (records on the file) in the appropriate location in the UBT and increments the order file record pointer.
- j. Routine PASS2. PASS2 is the second pass of the DSL compiler. The labels used to identify orders in a unit scenario that are referenced later by the pseudo order GO TO or a battle paragraph statement are stored in character form. An array of labels is built as the unit scenario is processed. The position in the array corresponds to the order's position in the unit scenario. When a label is referenced by a GO TO or battle paragraph statement, it is stored in the appropriate position in the order array. PASS2 scans each unit scenario and battle paragraph for referenced order labels, matches labels found with a position in the unit scenario's array of labels, and substitutes the numerical position of the label for the characters in the order table.
- k. Routine DUMPF. This routine is called by DSLCMP if the debug option on the DSL control cards is exercised. It provides a formatted dump of the tables built by the compiler by reading the contents of the order file and printing them under the appropriate format. Included in the dump is the period start time and period length, start of game/start of period flag, UBT pointers, resume of the formats used in printing unit scenarios, and an index of the unit scenarios listed. This is followed by a listing of the unit scenarios and battle paragraphs.

III-2-14

- 1. Routine TIME. The time input with a DSL order may be in either of two forms: a six-digit integer with the pairs of digits indicating days, hours, and minutes; or one to three integers followed by appropriate day, hour, or minute indicator. Routine TIME converts the quantity input into an integer value, which is the number of centiminutes from the beginning of the period to the time indicated.
- m. Routine CHCKID. This routine performs requested checks on unit and battle identifications. It can be requested to determine if a unit exists or is a resolution unit, whether the unit identification contains eight characters with the first one being B or R, or if the unit identification is a duplicate. A battle identification can be checked for duplication, for length (eight characters or less), or for existence in the list of battles.
- n. Routine MVCHAR. This routine uses system mask and shift functions available to FORTRAN users to reposition characters.
- o. Routines PAGE, IUIDF, MATCH, FINDN, EXPAND, IBCD, and RBCD. PAGE determines if the value of the line counter is greater than or equal to the number of lines allowed per page. If so, a header is written at the top of a new page and the line counter is reset. IUIDF is a function routine used to determine the position of a given UID in the Period Processor's list of UIDs. MATCH is used to determine if a given character string is a subset of a second character string (e.g., determines if a statement contains a particular order or modifier). If it is found to be a subset, the location is returned. FINDN will locate the next numerical character in a character string. EXPAND is used to move the four characters stored in one word to the first character in each of four words. Routines IBCD and RBCD are used to convert a string of numerical characters to its equivalent integer or floating point value.

APPENDIX A

INPUT REQUIREMENTS FOR DIVWAG SCENARIO LANGUAGE COMPILER

1. INTRODUCTION. The essential components of the DIVWAG Scenario Language (DSL), as of any language, are a vocabulary; or set of symbols, words, or phrases with specified meanings; and a syntax, or set of rules for combining vocabulary elements. With DSL the vocabulary is limited to a small set of elements, and the syntax is relatively rigid; that is, few syntactic options exist. Within the DSL syntax, the highest level of composition is the Unit Scenario and the Battle Paragraph. This level parallels the paragraph of the English language, generally defined as being composed of one or more sentences and dealing with one point. A Unit Scenario contains the DSL commands for one unit within the DIVWAG system, and a Battle Paragraph contains the definition and instructions for one battle within the Ground Combat Model of the Period Processor. As the paragraph of the English language generally contains an introductory sentence followed by a number of elaborating sentences, so must a Unit Scenario or a Battle Paragraph contain an introductory section and an elaborating body. As a sentence of the English language generally expresses one thought and concludes with appropriate end punctuation, so must each piece of a Unit Scenario or a Battle Paragraph. As punctuation is critical to a proper understanding of written English, it is also critical to proper use of DSL. DSL differs from a language used for human communication in one highly significant aspect, semantic flexibility. In the English language a sentence could be interpreted as having several meanings, and a single thought could be expressed in a multitude of ways. In DSL, an order has only one meaning, and there is only one way to express an order.

2. DSL COMPOSITION:

- a. General. The highest level of composition within the DSL syntax is the Unit Scenario or the Battle Paragraph. Each contains an introductory section and an elaborating body. Each statement of the introductory sections or of the elaborating body is similar to a sentence of the English language and must end with a period. Any other use of a period within DSL is illegal; thus, decimal points are not permitted and, although abbreviations are possible within the vocabulary, they are not denoted by the period. The building blocks for a statement are order clauses, conditional clauses, and labels. In the following paragraphs, an order clause is represented by the symbol O, a conditional clause by the symbol C, and a label by the symbol L. Where examples are given below, the prototype order clause STAY UNTIL 0:1200 will be used, the prototype conditional clause TIME LESS THAN 0:1830 will be used, and the prototype label ABC will be used. Statements may not exceed 400 characters in length.
- b. Unit Scenarios. A Unit Scenario contains the set of DSL orders to be followed by one unit through the course of the game period for which the DSL is prepared. A Unit Scenario contains one productory statement and at least one elaborating statement.

(1) Unit Identification. The unit identification is the first statement of each Unit Scenario. It contains the characters ID: followed by the eight-character unit identification (UID) of the unit to follow the orders contained in the scenario. For example:

ID:B1234ABC.

The colon and period must be present as in the example. The UID must be composed of exactly eight alphanumeric (letters of the alphabet or Arabic numerals) characters, the first of which must be B or R.

- (2) Commands. Commands comprise the elaborating body of a Unit Scenario. Each unit identification statement must be followed by at least one command. There is no practical limit on the number of commands which may appear within one Unit Scenario. A command is composed of an optional label, one or more optional conditional clauses, and exactly one mandatory order clause.
- (a) Command Syntax. A command may be written in one of the four following basic forms:

0.

L:0.

IF C, THEN O.

L:IF C, THEN O.

Using the prototypes introduced above, these forms are in actual DSL examples:

STAY UNTIL 011200.

ABC:STAY UNTIL 011200.

IF TIME LESS THAN 011830, THEN STAY UNTIL 011200.

ABC: IF TIME LESS THAN 011830, THEN STAY UNTIL 011200.

The following rules of syntax must be observed:

- $\underline{1}$. If a label is present, it must be the first element of the command.
 - 2. If a label is present, it must be followed by a colon.
- 3. If a conditional clause is present, it must be stated before the mandatory order clause and after the label (if used).
- $\underline{4}$. If a conditional clause is present, it must be introduced by the keyword $\overline{\text{IF}}$ and it must be followed by a comma and the keyword THEN, in that order.
 - 5. The order clause must be the final clause of a command.

- 6. The order clause must be followed by a period.
- (b) Syntax for Conditional Expansion. The basic command forms containing conditionals may be expanded to contain more than one conditional in the following forms:

IF C AND IF C AND IF C, THEN O.

L: IF C AND IF C AND IF C, THEN O.

IF C OR IF C OR IF C, THEN O.

L: IF C OR IF C OR IF C, THEN O.

In using the conditional expansion feature, the following additional rules of syntax must be followed:

- $\underline{\textbf{1}}.$ The logical keywords AND and OR may not both appear in one command.
- $\underline{2}$. The first conditional clause is introduced by the keyword IF; all following conditional clauses are introduced by the keywords AND IF or OR IF.
- $\underline{\mathbf{3}}$. The last conditional clause is followed by a comma and the keyword THEN.

(c) Command Components:

- $\underline{1}$. The order clause within a command must be composed of one of the orders within the DSL vocabulary with any appropriate modifiers.
- 2. The conditional clauses within a command must be composed of conditionals contained within the DSL vocabulary with appropriate modifiers.
- 3. The label within a command must be composed of not more than three alphanumeric characters. Each label within one Unit Scenario must be unique. Labels are used to identify specific commands within a Unit Scenario. The use of labels is treated at length in paragraph 6. The keyword ID may not be used as a label since it is associated with unit identification.
- (3) Unit Scenario Execution. A Unit Scenario contains all commands to be followed by the unit identified in the unit identification statement during the game period for which the scenario was written. A unit will follow commands only if it is a resolution unit and if it has a personnel strength of at least one mar. (It is assumed that the reader is familiar with the concept of resolution units within the DIVWAG system.) Since a nonresolution unit is not actually active within the Period Processor, any Unit Scenario for a nonresolution unit will be ignored. The Unit Scenario for any resolution unit having less than one man is also ignored.

(a) Sequencing. The first command in a Unit Scenario is always acted upon first. When execution of one command is completed, execution of the succeeding command is initiated. This direct sequencing of commands can be overridden by the proper use of labels and the GO TO order, or the Battle Paragraph, as discussed in paragraph 6.

(b) Execution of One Command:

- 1. Conditionals. Upon receipt of a command which contains a conditional clause or clauses, the condition is checked prior to execution of the order clause. If the condition stated in the conditional clause does exist, the order clause is executed. If the condition stated in the conditional clause does not exist, the order clause is ignored and the next command is executed. Processing of a command wherein the expanded conditional feature is used is identical except that all conditional clauses are checked. If the logical AND keyword is used, the condition stated in each conditional clause must exist for execution of the order clause. If the logical OR keyword is used, the order clause is executed if the condition stated in any one (or more) of the conditional clauses exists. In either case, the next command is executed if the appropriate conditional criteria are not met.
- 2. Order Clause. In the absence of conditional clauses or the presence of appropriate conditional criteria, the order clause of a command is executed. Duration of the event initiated by an order clause depends on the nature of the clause. Generally, the Unit Scenario is not reentered until execution of the event initiated by the order clause has been completed. Exceptions are discussed in paragraph 6.
- (4) Unit Scenario Preparation. Unit Scenarios are written on standard program coding sheets in free form; that is, the first character can be written in any column of the form, and spacing between characters or a group of characters can be used to improve readability. As many lines as needed may be used for one command, each line representing a punched card. Each command must begin with a new line (new card). The information on the form is then key punched on standard cards, and the cards are assembled in proper sequence to become unit scenarios within the source deck.
- c. Battle Paragraphs. One Battle Paragraph serves to identify each battle grouping (battle) within the Ground Combat Model of the Period Processor, to identify the units involved in that battle, to establish the conditions for termination of the battle, and to identify the command within their respective Unit Scenarios that each involved unit is to follow upon termination of the battle. A Battle Paragraph contains two introductory statements and at least one elaborating statement.
- (1) Battle Identification (BID). The battle identification is the first statement of each Battle Paragraph. It contains the characters BATTLE: followed by the name associated with the battle (BID). For example:

BATTLE: BULGE.

The colon and period must be present as in the example. The battle identification (BID) Lust be composed of not more than eight alphanumeric characters; and, within one game period, each BID must be unique.

(2) Battle Declaration. The battle declaration is the second statement of each Battle Paragraph. It contains the phrase SURFACE UNITS:, followed by a list of the UIDs of units which are to be actively engaged in the battle or are to respond to battle conditionals contained in the Battle Paragraph. For example:

SURFACE UNITS: B123ABCD, B111222B, RAB12345.

The colon must be present, the UIDs must be separated by commas, and the period must be present, as in the example. No more than 34 UIDs may be used, and no more than 17 UIDs on either side (Blue or Red) are permitted.

- (3) Battle Conditionals. Battle conditionals comprise the elaborating body of a Battle Paragraph. Each battle declaration statement must be followed by at least one battle conditional. There is no practical limit on the number of battle conditionals in one Battle Paragraph. A battle conditional is composed of one conditional clause and a series of labels, where the number of labels must equal the number of units listed in the battle declaration statement.
- (a) Battle Conditional Syntax. A battle conditional must be written in one of the following forms:

WHEN C, THEN L,L,L.

WHEN C, AND WHEN C, AND WHEN C, THEN L,L,L.

WHEN C, OR WHEN C, OR WHEN C, THEN L,L,L.

or, using the prototypes listed above form one becomes:

WHEN TIME LESS THAN 011830, THEN ABC, ABC, ABC.

The following rules of syntax must be observed:

- $\underline{\mathbf{1}}$. The logical keywords AND or OR may not both appear in one command.
- $\underline{2}$. The first conditional clause is introduced by the keyword WHEN; all following conditional clauses are introduced by the keywords AND WHEN or OR WHEN.
- $\underline{\mathbf{3}}$. The last conditional clause is followed by a comma and the keyword THEN.
- $\underline{4}$. The number of labels must agree with the number of units listed in the battle declaration statement.

- 5. Labels must be separated by commas.
- $\underline{6}$. The final label must be followed by a period.
- $\underline{7}$. Each unit in the battle declaration statement must have a Unit Scenario.
- $\underline{8}$. The nth listed unit in the battle declaration must have in its Unit Scenario a command which has the nth label listed in the battle conditional.

(b) Battle Conditional Execution:

- 1. Timing. The list of battle conditional statements within a Battle Paragraph is reviewed after each simulation increment of the named battle within the Period Processor.
- $\underline{2}$. Sequence. Battle conditionals within a Battle Paragraph are executed in the sequence in which they appear in the paragraph.
- 3. Condition Met. If, in the course of executing battle conditionals, the condition stated in a given conditional clause does exist, the battle is terminated (another battle increment is not scheduled in the Period Processor); and each unit listed in the battle declaration statement is immediately scheduled to execute the command within its own Unit Scenario which has a label matching the label of that battle conditional associated with that unit. Association of units in the battle declaration and labels in the battle conditional is by position; that is, the nth listed unit is associated with the nth listed label.
- 4. Condition Not Met. If at the time of execution, the condition listed in a battle conditional is not met, processing continues with the next battle conditional. When all conditionals in a Battle Paragraph have been processed, and none of the stated conditions exists, a new battle increment is scheduled in the DIVWAG Period Processor.

3. DSL ORDER CLAUSES:

- a. General. The previous paragraph introduced the order clause and the the conditional clause as components of a DSL statement. This paragraph presents the elements of a DSL order clause, and paragraph 4 presents elements of a DSL conditional clause.
- (1) Each order clause is composed of exactly one basic order, a variable number of order modifiers, and a variable number of data elements. In the following discussion, elements of DSL will always be written in upper case letters to differentiate from the accompanying narrative.

- (2) The DSL Compiler does not recognize English words. It recognizes DSL elements. For example, the compiler recognizes the basic order FIRE as one DSL element. It also recognizes the basic order FIRE ON TARGETS OF OPPORTUNITY as one DSL element. The user must take care to provide the total DSL element when preparing DSL orders.
- (3) Order modifiers may be mandatory, exclusive, or optional. A mandatory order modifier is one which must appear each time the basic order with which it is associated appears. A set of exclusive order modifiers is a group of modifiers, exactly one of which must appear each time the associated basic order appears. An optional order modifier is one which may appear with the associated basic order but is not required by the DSL Compiler.
- (4) A data element may be associated with a basic order or with an order modifier. Data elements are never optional; that is, where a data element is associated with a basic order or an order modifier, the data element must be present.
- (5) The first element of an order clause is always a basic order. If a data element is associated with a basic order, it is always the second element of an order clause. Order modifiers and associated data may be written after the basic order and its data element (if any) in any sequence, with the limitation that a data element associated with any modifier must immediately follow the modifier. Punctuation, or any entry not specifically identified as part of a DSL element, is not allowed.
- b. DSL Basic Orders. Basic DSL orders are grouped within six generic categories: stay, move, engage, engineer, transfer, and pseudo orders. These categories contain basic orders for which the simulated activity is generally similar. In most cases, the various orders generate different secondary actions which are discussed with the appropriate basic order.
- (1) Stay Activity Orders. Units with a stay activity are motionless. They will consume class I and class III or IIIA supplies. If on the ground, they may be assessed by area fires and by aerial attack and, if air defense units, may fire upon enemy aircraft. Other capabilities of units with stay activity orders depend upon the specific order.
- (a) STAY. The STAY order requires one of the exclusive modifiers FOR (a specified period of time) or UNTIL (a specified time). For example:

STAY FOR 1 HOUR. STAY UNTIL 010230.

If the unit is an artillery unit it will enter the TACFIRE Model of its division automatically and will fire upon targets if so directed by TACFIRE. This is also the default order. If a resolution unit has no Unit Scenario, or if all commands in its Unit Scenario are completed, the Period Processor will automatically generate a STAY UNTIL (end of the game period) for the unit.

(b) FIRE ON TARGETS OF OPPORTUNITY. This order should only be given to artillery units. It requires the same modifiers as the STAY order and, for an artillery unit, has the same effect as a STAY order. Examples:

FIRE ON TARGETS OF OPPORTUNITY FOR 30 MIN.
FIRE ON TARGETS OF OPPORTUNITY UNTIL 011230.

(c) PREPARE. The PREPARE order requires one of the exclusive modifiers FOR (a specified period of time) or UNTIL (a specified time) and allows the optional modifiers AT WIDTH (unit front in meters) -DEPTH (unit depth in meters). For example:

PREPARE UNTIL 031500.
PREPARE FOR 12 HOURS AT WIDTH 1500 - DEPTH 500.
PREPARE AT WIDTH 2000 - DEPTH 775 FOR 1 DAY.

The PREPARE order causes the unit to assume a defensive posture at its current location. If unit dimensions are specified, these are used. If unit dimensions are not specified, those loaded in the data base for a defensive posture are used. This is one of the three orders under which a unit may become involved in battle within the Ground Combat Model of the Period Processor. Rules for such engagement are discussed under the ENGAGE order. An artillery unit given the PREPARE order does not enter the TACFIRE Model.

(d) LOITER. The LOITER order requires the three modifiers: FOR (a specified period of time), AT ALTITUDE (a specified altitude in feet), and AT SPEED (a specified flight speed in knots). For example:

LOITER FOR 15 MIN AT ALTITUDE 3000 FT AT SPEED 30 KNOTS.

The LOITER order should be given to aircraft units only. The unit will remain at its current location and specified altitude for the specified period of time. Flight speed is used to determine fuel consumption. Since an aircraft unit under the LOITER order is not vulnerable to air defense, the order should only be used for units over friendly territory.

- (2) Move Activity Orders. Move activity orders direct surface and air movement. The general requirement of these orders is specification of the route the unit is to follow. The unit is moved from its current location to each point specified within the order clause along a straight line. Class I and class III or IIIA are generally consumed, and ground units are generally vulnerable to area fire and aerial fire. Vulnerability of air units depends on the order. Other actions depend upon the specific order.
- (a) MOVE. The MOVE order is the prototype order for ground movement. The modifier TO (series of X-Y coordinates) is mandatory, and the modifiers BY (travel mode mnemonic), PRIORITY (movement priority = 1,2,3, or 4), and AT WIDTH-DEPTH (unit width and depth in meters) are optional. For example

MOVE TO 0123000-0096500.

MOVE BY TCCM TO 0115000-0095750,
0115000-0098500, 0117500-0100000

Priority 3.

MOVE TO 0116000-0172500 BY TCCM AT WIDTH 3000-DEPTH 2000.

MOVE PRIORITY 1 to 0098000-0118800.

The MOVE order causes ground movement over the specified route. Movement mode used by the DIVWAG Movement Model is as specified or, if the BY modifier is not present, cross country deployed movement is assumed. The priority code, used by the DIVWAG Engineer Model in allocation of engineer resources should an obstacle be encountered on the move, is set to 4 if the PRIORITY modifier is not present. If not specified in the DSL order, the unit width and depth dimensions will be assigned according to the units activity as loaded in the pregame data base.

(b) WITHDRAW. The WITHDRAW order uses the same modifier structure as the MOVE order with one exception. For WITHDRAW and ADVANCE orders the modifier BY must specify a 4 digit integer movement rate (kilometers/hour) in place of 4 character movement mnemonic. For example:

WITHDRAW TO 0117000-0098000 AT WIDTH 2000-DEPTH 880.
WITHDRAW AT WIDTH 3000-DEPTH 500 BY TCCD
TO 0088000-0115000,0098000-0117000,
0102500-0118000 PRIORITY 1.
WITHDRAW TO 0124000-0100500 AT WIDTH 2000-DEPTH 1000 BY 0033.

The WITHDRAW order combines effects of the MOVE and PREPARE orders. It causes a unit to assume a withdrawal posture while accomplishing ground movements. This is one of the three orders under which a unit may become engaged in battle within the DIVWAG Ground Combat Model. Engagement procedures are discussed under the ENGAGE order.

(c) ADVANCE. Modifier requirements of the ADVANCE order are identical to those of the WITHDRAW order with the restriction that only one pair of coordinates may be specified. For example:

ADVANCE TO 0101500-0101888. ADVANCE BY TCCR AT WIDTH 1200-DEPTH 1000 TO 0123400-0090500. ADVANCE TO 0122000-0110000 BY 0066.

The ADVANCE order is the third order under which a unit may become engaged in ground combat. The unit assumes an attacking posture and proceeds toward the specified objective which, for proper ground combat engagement, should be to the rear of an opposing maneuver unit. Engagement procedures are discussed under the ENGAGE order.

(d) FLY. In using the FLY order, the three modifiers OVER (series of X-Y coordinates) AT SPEED (air speed in knots) AT ALTITUDE (altitude in feet) are mandatroy. For example:

FLY AT SPEED 125 AT ALTITUDE 2500 OVER 0111000-0088000.

This order is issued to an air unit to cause it to move along a flight path from its present location to a specified coordinate point. A list of coordinates following the modifier OVER is used to describe end points of all legs of the flight path. The air unit will be located (land) at the last point listed. FLY orders should be reserved for administrative movement over nonhostile territory.

(e) AIRMOBILE ASSAULT. In writing this order the modifier TO (series of X-Y coordinates) is mandatory, and the modifier AT TIME (specified time) is optional. For example:

AIRMOBILE ASSAULT TO 0111000-0111000,0123000-0111000. AIRMOBILE ASSAULT AT TIME 030500 TO 009530-0088000.

This order causes the airmobile assault segment of the DIVWAG Airmobile Model to be activated. The airmobile task force conducts an airmobile movement along the specified flight path. Initiation of movement is scheduled such that leading elements of the airmobile task force arrive at the final coordinate if this is possible considering flight speeds, distance, and time the order is received. If the AT TIME modifier is not used, movement is initiated when the order is received. The airmobile task force is vulnerable to air defense weapons. To properly execute the order, the airmobile task force must have previously received an ACCEPT TRANSPORT order. Techniques for inclusion of this order in a Unit Scenario are discussed in paragraph 6.

(f) RECONNOITER. In writing the RECONNOITER order, the four modifiers BY (reconnaissance control code), OVER (series of no more than seven X-Y coordinates), AT SPEED (flight speed in knots) and AT ALTITUDE (altitude in feet) are all mandatory. For example:

RECONNOITER BY H322 OVER 0123000-0122000, 0123000-0117000, 0133000-0117000, 0133000-0122000 AT SPEED 50 AT ALTITUDE 100.

Processing of the order varies depending upon the nature of the unit receiving the order and the reconnaissance control code.

1. If the first character of the reconnaissance control code is the letter A, the unit receiving the order must be an Air Force reconnaissance control flight. The entire unit conducts the mission flying at the specified altitude and speed over the specified route. The fourth character of the reconnaissance control code specifies the sensor load. Sensors are activated upon receipt of the order and remain active over the entire flight path.

- 2. If the first character of the reconnaissance control code is the letter M, the unit receiving the order must be an army surveillance aircraft (Mohawk type) flight. The entire unit conducts the flight as outlined in the previous paragraph. The fourth character of the reconnaissance control code identifies the sensor package (which must include the side looking airborne radar (SLAR) with a ground terminal), and the second and third characters control range, delay, and direction of the SLAR.
- 3. If the first character of the reconnaissance control code is the letter H or F, the unit receiving the order must be an army unit containing light observation helicopters (H) or light fixed wing scout aircraft (F). In response to the order, a mission unit is created to conduct the mission. The mission unit flies to the first coordinate, at which point target sensing may commence. Upon completion of the mission, the mission unit returns to the unit which received the order. The mission unit may conduct a route or an area reconnaissance, as determined by the control code and discussed in paragraph 6.
- $\underline{4}$. In all cases, the RECONNOITER order provides the ability to control airborne sensors. Aircraft responding to a RECONNOITER order are vulnerable to air defense weapons.
- (3) Engagement Orders. The group of engagement orders permit the game staff to control application of firepower within the Period Processor. The FIRE order controls both the Area Fire and Nuclear Assessment Models; the ENGAGE order controls the Ground Combat Model; the MISSION IS order controls the Air Ground Engagement Model. It is axiomatic that these orders be given only to appropriate units. FIRE orders should be given only to units capable of delivering conventional or nuclear indirect fires. ENGAGE orders should be given only to maneuver units capable of engagement within the Ground Combat Model. MISSION IS orders should be given only to units capable of carrying out a close air support mission either with attack helicopters or tactical Air Force aircraft.
- (a) FIRE. The FIRE order activates the Area Fire or Nuclear Assessment Model. It should, of course, appear within the Unit Scenario of a unit that is capable of carrying out the fire mission. The FIRE order structure depends upon whether a conventional or nuclear fire is required.
- <u>1.</u> For conventional fires the FIRE order must contain the mandatory modifiers ON (coordinates of target) and MUNITION TYPE (Area Fire munition code beginning with A) and one of the exclusive modifiers, NUMBER OF ROUNDS (a number), NUMBER OF VOLLEYS (a number), or IMPACT RADIUS (a number). For example:

FIRE ON 0123000-0098500 NU BER OF ROUNDS 25 MUNITION TYPE A013 IMPACT RADIUS 100.

The unit receiving the order will fire the specified number of rounds or volleys of the type specified upon the specified location.

2. For nuclear fires, four modifiers should be viewed as mandatory. These are ON (desired ground zero), MUNITION TYPE (munition code starting with N or D), NUMBER OF ROUNDS 1, and HEIGHT OF BURST (preset height of burst option index). IMPACT RADIUS (desired height of burst if not preset) is required if HEIGHT OF BURST is not preset. The desired ground zero is specified in terms of one X-Y coordinate pair. The munition code is a four-character alphanumeric code wherein the first character must be N or D and the remaining characters relate to the Nuclear Assessment Model constant data base, allowing specification of a firing weapon, a munition, a fuzing option, and a yield. Specification of a height of burst depends upon whether the specified fuze allows free selection of height of burst or only preset height options. If preset options are used, the modifier HEIGHT OF BURST is followed by a height index (1, 2, 3, 4). If free selection of a height of burst is possible, the HEIGHT OF BURST is followed by the number zero; and IMPACT RADIUS, by desired height in meters. Examples:

FIRE ON 0127000-0115000 NUMBER OF ROUNDS 1
MUNITION TYPE NA33 HEIGHT OF BURST 2
IMPACT RADIUS 100.

FIRE ON 0127000-0115000 NUMBER OF ROUNDS 1 MUNITION TYPE NXA2 HEIGHT OF BURST 1 IMPACT RADIUS 500.

(b) ENGAGE. The ENGAGE order has one mandatory modifier, IN BATTLE (battle name), and is always used in conjunction with the ADVANCE order. For example:

ADVANCE TO 0123100-0125000. ENGAGE IN BATTLE BRAVO.

The combination of an ADVANCE order followed by an ENGAGE order is used to initiate a battle within the DIVWAG Ground Combat Model. Each time an ADVANCE order is encountered within a Unit Scenario, the next command is checked for an ENGAGE order. If the ENGAGE order is not found, the ADVANCE is executed as a simple movement event. If an ENGAGE order is found, the following sequence of events takes place:

- $\underline{\textbf{1}}$. The list of units involved in the battle named in the ENGAGE order is obtained from the battle declaration statement of the appropriate Battle Paragraph.
- 2. From the list of all units involved in the battle, those units which are on the opposing side of the unit in whose scenario the ENGAGE order appears and whose current order is either PREPARE or WITHDRAW are selected. These units constitute potential opponents.
- 3. The list of potential opponents is checked for proximity to the advancing unit. If no potential opponents are within 3000 meters

(front-to-front) of the advancing unit, the battle is not initiated. (The process will be repeated as each Movement Model increment generated by the ADVANCE order is initiated.)

- 4. If a potential opponent is within 3000 meters of the advancing unit, the battle is initiated by scheduling the first Ground Combat Model increment. The increment is scheduled to take place after the standard Ground Combat Model increment length (15 minutes) has elapsed.
- $\underline{5}$. At the scheduled time, any unit listed in the Battle Paragraph which has an ADVANCE, PREPARE, or WITHDRAW order (a combat enabling order) will engage all units of the opposing force, also listed in the Battle Paragraph, and also having a combat enabling order and within 3000 meters.
- $\underline{6}$. The force to which the unit that had the initiating ENGAGE order belongs is treated as the attacking force within the Ground Combat Model.
- (c) MISSION IS. The MISSION IS order is used to control the Air Ground Engagement Model. The order clause must contain the three mandatory modifiers TARGET NUMBER (a target intelligence index code from a DIVWAG intelligence report), NUMBER OF AIRCRAFT (a specified number), and AIRCRAFT TYPE (a specified equipment item code) and may contain the optional modifier AT TIME (a specified time). For example:

MISSION IS TARGET NUMBER 480001 AIRCRAFT TYPE 87 NUMBER OF AIRCRAFT 4 AT TIME 030720.

This order must be within the Unit Scenario of a unit that is capable of aerial attack of a target. Upon receipt of the order a mission unit is formed from the unit receiving the order, where composition of the mission unit is as specified in the order; and the Air Ground Engagement Model simulation of the mission unit strike against the specified target is scheduled. If a time is specified, and it is possible to strike the target at the specified time, the Air Ground Engagement Model events are scheduled accordingly. If a time is not specified or is specified but unattainable, scheduling of the first portion of the model takes place at once; and the strike will occur after appropriate delays within the model data base have passed. To function properly, the unit must have the specified number and type of aircraft available (except if an Air Force unit and the aircraft is an appropriate TACAIR item). This may be ensured by use of the RETAIN order, discussed in a subsequent paragraph.

(4) Engineer Activity Orders. The DIVWAG Engineer Model functions as a resource allocation filter, controlling the assignment of engineer resources to tasks that must be accomplished. In consonance with this approach, DSL orders controlling engineer activity are task oriented rather than unit oriented. For a given game period, all commands requesting engineer tasks are consolidated within one Unit Scenario for each force, and the scenarios

given the unit identification BLUEFORC or REDFORCE as appropriate. Three basic DSL orders are used to initiate engineer activity, and one DSL order stops activity on a given task.

1. Activity Initiation Syntax. The basic DSL orders to initiate engineer activity are BUILD, BREACH, and REMOVE. Order clauses are built around these basic orders identically. The order clause contains the basic order; one of the exclusive modifiers BARRIER or BRIDGE or FACILITY, followed by a barrier facility identification; one of the exclusive modifiers BEGIN BY or COMPLETE BY, followed by a specified time; optionally, the modifier PRIORITY followed by a priority indicator 1, 2, 3 or 4; optionally, one of the modifiers MANDATORY or DESIRED. Several examples follow:

BUILD BARRIER MNAO07 BEGIN BY 010800.

REMOVE BARRIER MNAO28 MANDATORY

COMPLETE BY 020705.

BREACH MANDATORY PRIORITY 1 COMPLETE BY

010715 BARRIER MNT001.

BUILD BRIDGE BRF011 BEGIN BY 022200

DESIRED.

REMOVE FACILITY BFL003 BEGIN BY 041730

PRIORITY 3.

- 2. Activity Initiation Response. The BUILD function is defined as construction of a new barrier or facility or repair and rebuilding of one that has been breached. The BREACH function is the disruption of the functional purpose of the obstacle or facility, while the REMOVE function is total destruction or dismantling and removal for use elsewhere. The modifiers BRIDGE and FACILITY are interchangeable. The Engineer Model operates upon a group of tasks, assigning resources to complete or initiate tasks as closely to the times requested as is possible. The user should be familiar with the priority algorithms used by the Engineer Model when assigning the optional modifiers. Briefly, all task orders having the modifier MANDATORY will have preference before task orders having the modifier DESIRED. If neither of the modifiers is used, the task order is treated as if the DESIRED modifier were present. The PRIORITY modifier and its data are used as a tie-breaker between task orders otherwise identical. If the modifier is not used, the task order is treated as though the modifier PRIORITY 4 had been present.
- 3. Relation to Automatic Task Requests. The DIVWAG Movement Model will generate automatic requests when a moving unit encounters an obstacle. The order will be to BREACH if the obstacle is breachable or to BUILD a facility if the obstacle is a natural obstacle. An automatic order will always be treated as having the modifier MANDATORY, the modifier BEGIN BY (time the obstacle is encountered), and PRIORITY (the priority associated with the movement event).
- 4. Task Cessation. Any engineer activity may be halted by the DSL order STOP TASK (barrier/facility identification). For example:

STOP TASK MNA013.

Work on the specified task halts at once, and any resources committed to the task are available for reassignment.

- (5) Transfer Orders. The set of transfer activity orders provide a means for various administrative and organizational controls to be implemented within the model.
- (a) JOIN. The JOIN order has one mandatory modifier UNIT (a UID). For example:

JOIN UNIT R1122333.

Receipt of this order causes the unit so ordered to integrate into another organization. The unit is completely absorbed by the receiving unit, its strength being reflected by the receiving unit in any subsequent actions. Once a unit joins another unit, it can accept no more orders until it has been detached. This order is used to change task organizations and, concurrently, results in the detail of resolution being reduced as several units join into one superior. If the receiving unit (unit being joined) had been a nonresolution unit prior to execution of the order it assumes the location of the joining unit and, if a Unit Scenario is provided, will immediately execute the first command of its Unit Scenario.

(b) DETACH. The DETACH order requires the mandatory modifier UNIT (a UID) and may have the optional modifier TYPE (a UTD). For example:

DETACH UNIT R1122BAR.
DETACH UNIT B113MECH TYPE GRMI.

The DETACH order causes the named subunit to be broken out of the superior unit receiving the order (e.g., one company out of a battalion). Without the optional modifier, TYPE, the detached unit is formed with its pro rata share of the superior unit's strength (personnel and equipment). When the optional modifier, TYPE, is used, the detached unit will be broken out at its full authorized strength, to the extent that the strength of the superior unit allows. The detached unit is initially given the same location as the unit from which it was detached and will immediately begin to follow any DSL orders provided for it within a Unit Scenario. The detaching, or superior, unit will maintain all residual strength, if any, and will continue to follow DSL orders as long as it has residual strength. Combined use of the DETACH and JOIN orders provides the ability to restructure organizations in any manner desired, limited only by the quantity and definition of units within the game. Used in isolation, the DETACH order results in an increase in the detail of unit resolution. Proper functioning of the order requires that the unit being detached is already defined to the game, insofar that it must have been defined as a subordinate of the unit from which detached either within the task organization at the start of the game or through a previous JOIN order. The DETACH order with optional TYPE modifier may also be used to introduce new units to the game if, within the original task organization, the unit receiving the DETACH order was defined as being of a nonbasic UTD

and having no subordinates. In this case the UTD of the superior unit must be defined within TOE data as containing the UTD of the unit specified in the DETACH order.

(c) ASSUME CONTROL OF. This order, followed by the modifier, UNIT, causes the named unit to come under control of the unit receiving the order. Upon implementation of the order, status reports for the assuming unit will reflect strengths of the new subordinate. If the named unit is not already under control of the assuming unit and is not a resolution unit, it will be detached from its superior upon execution of the order. Example:

ASSUME CONTROL OF UNIT B1212123.

(d) ASSIGNMENT IS. This order, followed by an exclusive modifier, DIRECT SUPPORT OF UNIT, REINFORCING UNIT, GENERAL SUPPORT, or GENERAL SUPPORT-REINFORCING UNIT, causes the unit receiving the order to have the designated assignment for allocation of its supporting resources. Applications are within the TACFIRE Model, where fire support is allocated per assignment; within the Air Ground Engagement Model, where aerial fire support may be allocated by assignment; within the Airmobile Model, where allocation of lift and escort aircraft is per assignment; and in the Engineer Model, where allocation of engineer resources may be per assignment. Only the DIRECT SUPPORT assignment is actually acted upon within the Period Processor, the other assignments simply provide the user means of documenting organizational features of the force. In all cases, the GENERAL SUPPORT assignment serves to cancel previous assignments. Examples:

ASSIGNMENT IS GENERAL SUPPORT.
ASSIGNMENT IS DIRECT SUPPORT OF UNIT B1111111.
ASSIGNMENT IS REINFORCING UNIT B1234567.
ASSIGNMENT IS GENERAL SUPPORT-REINFORCING
UNIT B1212123.

- (e) ACCEPT TRANSPORT. This order initiates the first segment of the Airmobile Model, which allocates aircraft and moves the aircraft to the location of the airmobile task force to be lifted. The ACCEPT TRANSPORT order must appear in the Unit Scenario of the unit being lifted and must precede the AIRMOBILE ASSAULT order for which aircraft are being allocated. The MIX modifier identifies the type lift and escort aircraft to be used and a standard lift to escort ratio. (This ratio is overridden by use of the NUMBER OF ESCORTS modifier.) The Airmobile Model allocates the specified number of lift aircraft, if the NUMBER OF AIRCRAFT modifier is used, or sufficient aircraft to move the entire unit in the specified number of trips, if the NUMBER OF TRIPS modifier is used. If the AT TIME modifier is used, aircraft are scheduled to arrive at the location of the unit to be lifted at the specified time. If such a time is not specified aircraft arrive as soon as possible after receipt of the order.
- (f) RELEASE TRANSPORT. This order requires no modifiers or data. For example:

"FLEASE TRANSPORT.

The RELEASE TRANSPORT order may appear in the Unit Scenario of an airmobile task force. If it appears it must not precede the AIRMOBILE ASSAULT order. In response to the RELEASE TRANSPORT order, all aircraft are returned to their home bases upon completion of the airmobile movement or upon receipt of the order, whichever occurs later. If the order is not used, aircraft remain with the airmobile task force.

(g) RETAIN. The RETAIN order has two mandatory modifiers: NUMBER OF AIRCRAFT (a specified number) and AIRCRAFT TYPE (an equipment item code). For example:

RETAIN AIRCRAFT TYPE 188 NUMBER OF AIRCRAFT 8.

This order should be reserved for use in the Unit Scenario of a unit which is capable of flying attack helicopter strikes within the Air Ground Engagement Model. When the order is used, the specified type and number of aircraft are exempt from automatic scheduling by the Air Ground Engagement Model. The order is intended to be used in conjunction with the MISSION IS order, to ensure availability of sufficient aircraft to conduct strikes ordered by the game staff. Aircraft are released for automatic scheduling as they return from a DSL ordered strike. Aircraft may also be released for automatic scheduling by a new RETAIN order, where the specified number is less than the number of aircraft currently retained. For example:

RETAIN AIRCRAFT TYPE 188 NUMBER OF AIRCRAFT O.

- (6) Pseudo Orders. Two DSL pseudo orders can be used in the construction of Unit Scenarios. The orders are so called because they differ from those described above with respect to their reasons for existence. They are not used to direct units to perform military activities but rather are inserted into Unit Scenarios to perform the functions described below.
- (a) GO TO. The GO TO order is used to direct a unit to follow a set of orders in a particular sequence or with particular exceptions, depending on the order string structure and satisfaction of conditional statements. A GO TO order must be followed by a statement label. For example, the statement GO TO 6 may be inserted in an order string to direct the unit to start executing a statement labeled 6 immediately. Statement 6 may follow several others in the order string. If so, the orders between the statement GO TO 6 and statement 6 will be ignored by the unit.
- (b) TERMINATE. This order, when encountered in any unit's scenario, will cause all simulation to halt and terminate the period. It is most useful in those cases where important or critical situations are expected to occur and for which contingency planning is not feasible or particularly desirable. The TERMINATE order should be used sparingly and with caution because it will halt all processing. To continue the war game a new game period, with complete DSL instructions for all units, must be prepared.

- (7) Scatterable Mine Order. The emplacement of scatterable mines by indirect fire or aerial delivery means is directed by the EMPLACE order. This order is limited to field emplacement by indirect fire or aerial means. The emplacement of scatterable minefields by more conventional ground means is treated through the Engineer BUILD order described in paragraph 3b(4) above.
- (a) System. The EMPLACE order must be followed by the mandatory modifiers FIELD (followed by a 6-character minefield identifier) and MUNITION TYPE (followed by a 4-character munition code). Additionally, one of the exclusive modifiers NUMBER OF ROUNDS, NUMBER OF VOLLEYS, or NUMBER OF TRIPS (followed by an integer number) must be used.
- (b) Emplacement by Indirect Fire. Emplacement of minefields by indirect fire can be accomplished by, and the order may be given to, only artillery firing units. Such units are identified within the model as units which have the letters FA in the third and fourth characters of the Unit Type Designators. For example, units with the following UTD would accept the EMPLACE order for indirect fire minefield delivery: GFFA, MBFA, NSFA, etc.
- 1. The field to be emplaced is identified by the modifier FIELD (field identification where the field identification is a six-character mnemonic. The first three characters must be MVA, MNP, MNT, or MNS and the last three characters must be integers in a range depending on the first three:

MVA001 - MNA500

MNP001 - MNP150

MNT001 - MNT150

MNS001 - MNS500

- $\frac{2}{\text{to}}$. The munition mnemonic must be of the form AOnn where nn rarges from Ol to 36; this should be the code of a weapons/munition mix loaded for minefield delivery within the Area Fire Model data load.
- 3. In response to the EMPLACE order, the ordered unit will fire the designated number of rounds or volleys of the designated type into the area of the specified minefield. Delivery is dependent on the field being within the range capabilities of the specific weapon/munition combination. Should the firing unit have fewer than the desired number of rounds, all munition available to the unit will be fired.
- (c) Emplacement by Aerial Means. Aerial emplacement can only be accomplished by an aerial-type unit; that is, by a unit having a UTD which ends with the character H or Y. The same restrictions on the minefield name as were presented for indirect fire delivery apply.

- 1. For aerial emplacement, the MUNITION TYPE modifier must be followed by a 4-character aerial emplacement code.
- a. First character of the aerial emplacement code must be A, C, or H, designating emplacement by high performance (A), fixed wing cargo type (C), or helicopter (H). If helicopter delivery, the UTD of the unit receiving the order must end with H; otherwise, the UTD of the ordered unit must end with Y.
- b. Second character of the aerial emplacement code must be an inter 0, 1, or 2. This specifies mission abort criterion: 0=do not abort in any case; l=abort if aircraft fired upon; 2=abort if aircraft losses are experienced.
- <u>c.</u> Third character of the aerial emplacement code is an integer in the range 1-9. This specifies an index for mean height at the dispensing site, where the height values are loaded in constant data base.
- d. Fourth character of the emplacement code is an integer 1-9. This specifies an aircraft mix table (type and number of mines and type of aircraft) to be used in emplacement. The mix tables are part of the model's constant data load.
- 2. In response to the order, the number of aircraft specified in NUMBER OF TRIPS of the type in the appropriate mix table will be given full loads, as specified in the mix table, and will be sent to emplace the named field as a single mission unit.

- c. DSL Order Modifiers and Data Elements. Most of the DSL order modifiers and some basic DSL orders require data elements to complete an order clause. The required format of a data element depends on the order or order modifier with which it is associated. This paragraph discusses the order modifiers and all required data elements.
- (1) There are two basic rules regulating the entry of data elements when required by an order or an order modifier:
- (a) A data element must follow the order or order modifier with which it is associated. In the following examples data elements are underlined:

FLY AT SPEED 150 KNOTS AT ALTITUDE 3000 FEET OVER 0112000-0098500, 0115000-0127500.

ADVANCE TO <u>0113000-0127000</u> BY <u>TCCD</u> AT WIDTH <u>2000M-DEPTH 1500M PRIORITY</u> 1.

- (b) Units of measure may be used as parts of data elements to provide clarification; however, the system requires that each type of data be input in a specific unit of measure. For example, aircraft speed must be in knots, and aircraft altitude must be in feet. Only units of time measure are actually recognized as key words by the compiler. Periods must not be used to terminate abbreviations; they are used exclusively to terminate statements. If units of measure are used in DSL statements, they must be restricted to the following forms:
 - . DAY, DAYS, DA, or DAS
 - . HOUR, HOURS, HR, or HRS
 - . MINUTE, MINUTES, MIN, or MINS
 - . FEET or FT
 - . METER, METERS, or M
 - . KNOT or KNOTS.
- (2) Format of data elements generally must follow a rigid pattern. An exception is the specification of a time or a period of time. Times may be expressed either by a six-digit data time group or in clear text. In either case interpretation of the data element as a specific time or as a period of time depends on the modifier with which it is used.
- (a) The first form uses an integer number of six digits with the digits in three blocks of two digits each. The blocks are in fixed order. The leftmost block represents the number of days, the center block the number

of hours, and the rightmost block the number of minutes. If fewer than six digits are used, a zero fill on the left is assumed. Examples:

112233 (denoting 11 days, 22 hours, and 33 minutes)

1122 (read as 001122 with zero fill on the left, denoting 11 hours and 22 minutes)

0800 (read as 000800, denoting 8 hours)

126 (read as 000126, denoting 1 hour and 26 minutes).

(b) The second form uses integer numbers of days, hours, and minutes, each of which must be followed by the word DAY, HOUR, or MINUTE (or abbreviations thereof as listed above). The words DAY, HOUR, and MINUTE (or abbreviations) are recognized by the compiler; therefore, the data may be written in any order and with any omissions. Examples:

1 DAY 12 HOURS 10 MINUTES

12 HOURS 10 MINUTES 1 DAY

12 HR 10 MIN

120 MIN

2 HRS

- (3) For those orders and order modifiers that require data elements, specific data formats have been established. All order modifiers and those basic orders requiring data elements are presented below in alphabetical order.
- (a) AIRCRAFT TYPE (equipment item code). The data element is an integer between 1 and 200 denoting the equipment item code of aircraft. Example:

AIRCRAFT TYPE 188

(b) AT ALTITUDE (height of aircraft in feet). The data element is an integer. Example:

AT ALTITUDE 6000 FT

(c) AT SPEED (velocity of aircraft in knots). The data element is an integer. Example:

AT SPEED 375

A CONTRACT OF THE PARTY OF THE

(d) AT TIME (a specified time). The data element is a time group as described above. Examples:

AT TIME 011230 AT TIME 1 DAY 12 HR 30 MIN

(e) AT WIDTH (unit frontage in meters). The data element is an integer value used in conjunction with-DEPTH. Example:

AT WIDTH 2000M -DEPTH 1200M

(f) BARRIER (barrier identification code). The data element is a six-character mnemonic, the first three characters being alphabetic and the last three characters numeric. Example:

BARRIER MNA013

(g) BEGIN BY (a specified time). The data element is a time group as described above. Examples:

BEGIN BY 010800 BEGIN BY 8 HOURS 1 DAY

(h) BRIDGE (facility identification code). The data element is a six-character mnemonic, the first three characters being alphabetic and the last three numeric. Example:

BRIDGE BFX103

- (i) BY (code). Two cases exist:
- 1. BY (movement mode mnemonic). The data element consists of four alphabetic characters, comprising a movement mode mnemonic for the Movement Model. See Figure III-2-A-1. Example:

BY TCCD

2. BY (reconnaissance control code). The data element consists of four alphanumeric characters, the first of which is A, M, F or H, comprising a control code for the Reconnaissance Overlay. Example:

BY AXX3

BY MAL6

BY HR36

BY H425

Movement type -

- A Administrative. Movement of units by road nets. Uses the most efficient transportation systems available.
- T Tactical. Movement as part of an attack, withdrawal, or other tactical plan external to movement within Ground Combat engagements.

Route type -

- CC Cross country. Route is subject to natural terrain conditions.
- RA Paved roads. Route is such that road beds are asphalt or concrete with at least two lanes with good shoulders.
- RG Gravel roads. Route is gravel or similar surfaced road.
- RD Dirt roads. Route is dirt, road is narrow and/or marginally maintained.

Formation -

- M Column march. Unit is in a column formation.
- R Reconnaissance. Unit on a ground reconnaissance type mission.
- D Deployed. Unit is partially deployed in anticipation of imminent contact with the enemy.

Recognized movement combinations -

A:	RAD	RDD	RGD	
	RAM	RDM	RGM	
	RAR	RDR	RGR	
T:	RAD	RDD	RGD	CCD
	RAM	RDM	RGM	CCM
	RAR	RDR	RGR	CCR

Figure III-2-A-1. Travel Mode Mnemonic Description

III-2-A-21

(j) COMPLETE BY (a specified time). The data element is a time group as described above. Examples:

COMPLETE BY 031720 COMPLETE BY 3 DAYS 17 HR 20 MIN

(k) -DEPTH (unit depth in meters). The data element is an integer value used in conjunction with AT WIDTH. Example:

AT WIDTH 1250 -DEPTH 1525

- (1) DESIRED. No data element.
- (m) DIRECT SUPPORT OF UNIT (UID of supported unit). The data element is an eight-character alphanumeric unit identification beginning with B or R. Example:

DIRECT SUPPORT OF UNIT B1212AAR

(n) FACILITY (facility identification code). The data element is a six-character mnemonic, the first three characters being alphabetic and the last three numeric. Example:

FACILITY BFX103

(o) FOR (a specified period of time). The data element is a time group as defined above. The following examples are equivalent:

FOR 200 FOR 2 HOURS FOR 120 MIN

- (p) GENERAL SUPPORT. No data required.
- (q) GENERAL SUPPORT-REINFORCING UNIT (UID of the reinforced unit). The data element is an eight-character alphanumeric unit identification beginning with B or R. Example:

GENERAL SUPPORT-REINFORCING UNIT R1234TKB

(r) GO TO (label of procedure statement). GO TO is a pseudo order used to direct the sequence of unit procedure statements applicable to a unit. The data element is an alphanumeric character string of one to three characters. In the following example, the labeled statement is also shown.

GO TO A12. A12: STAY FOR 3 HRS. (s) HEIGHT OF BURST (height index). The data element is an integer value 0, 1, 2, 3, 4. Zero is used for a nuclear fire event in which height of burst of the munition and fuze may be specified. Where munition and fuze permit only preset heights of burst, the integer 1, 2, 3, 4 is an index to the preset height option desired, as defined through Nuclear Assessment Model constant data. Example:

HEIGHT OF BURST 2

(t) IMPACT RADIUS (desired height of nuclear burst in meters). The data element is an integer. It is acted upon only in the case of a nuclear munition and fuze which allows specification of height of burst, in which case the data element is the desired height of burst in meters. Example:

IMPACT RADIUS 500M

(u) IN BATTLE (battle identification). The data element is composed of no more than eight alphanumeric characters. Examples:

IN BATTLE EIGHTCHR

IN BATTLE X

IN BATTLE 1PLUS2

- (v) MANDATORY. No data required.
- (w) MIX (an airmobile aircraft mix index). The data element is an integer. Example:

MIX 3

(x) MUNITION TYPE (weapon/munition code). The data element is a four-character code, the first character being A (conventional round), N (nuclear round), or D (atomic demolition munition). Examples:

A012

NKX3

The second secon

(y) NUMBER OF AIRCRAFT (specified number of aircraft). The data element is an integer. Example:

NUMBER OF AIRCRAFT 4

 $\mbox{(z)}$ NUMBER OF ESCORTS (specified number of escort aircraft). The data element is an integer. Example:

NUMBER OF ESCORTS 6

(aa) NUMBER OF ROUNDS (specified number). The data element is an integer. Example:

NUMBER OF ROUNDS 187

(bb) NUMBER OF TRIPS (specified number of airmobile lift trips). The data element is an integer. Example:

NUMBER OF TRIPS 2

(cc) NUMBER OF VOLLEYS (specified number). The data element is an integer. Example:

NUMBER OF VOLLEYS 1

(dd) ON (location). The data element is a single rectangular map coordinate entry of the form integer - integer. Each integer can be one to seven digits in length. If fewer than seven digits are used, leading zeros are assumed by the compiler. Example:

ON 1163590 - 1246780

(ee) OVER (location or list of locations). A map coordinate pair or list of as many as eight pairs may be entered. Each pair has the form integer - integer, where each integer can be one to seven digits in length; leading zeros are assumed if fewer than seven digits are used. Each location is to the nearest meter. Examples:

OVER 163590 - 246780 OVER 163590 - 246780, 163600 - 246800

(ff) PRIORITY (movement or engineer priority). The data element is one of the integer values 1, 2, 3 or 4. Example:

PRIORITY 4

(gg) REINFORCING UNIT (UID of reinforced unit). The data element is composed of eight alphanumeric characters, the first of which must be B or R. Example:

REINFORCING UNIT B1212123

(hh) STOP TASK (barrier or facility identification). The data element consists of three alphabetic and three numeric characters. Example:

STOP TASK MNA017

(ii) TARGET NUMBER (target index from intelligence report). The data element is an integer. Example:

TARGET NUMBER 480003

(jj) TO (location or list of locations). A map coordinate pair or list of pairs may be entered. Each pair has the form integer - integer, where each integer can be one to seven digits in length; leading zeros are assumed if fewer than seven digits are used. Each location is to the nearest meter. Examples:

TO 163590 - 246780

TO 163590 - 246780, 163600 - 246800

(kk) TYPE (a unit type designator). The data element is composed of four alphabetic characters. Example:

TYPE BAMT

(11) UNIT (a unit identification). The data element consists of eight alphanumeric characters, the first of which is B or R. Example:

UNIT B1212123

(mm) UNTIL (a specified time). The data element is a time group as described above. Examples:

UNTIL 021215 UNTIL 02 DAYS 12 HOURS 15 MINUTES

4. DSL CONDITIONAL CLAUSES:

- a. General. Conditional clauses are used to specify the user's desired sequence of order execution when that sequence depends on conditions prevailing prior to execution of an order or during or upon termination of an order currently being executed. Conditional clauses can be used in Unit Scenarios and in Battle Paragraphs. As with order clauses, the construction of a conditional clause is governed by the allowed vocabulary and the DSL syntax.
- b. Conditional Clause Vocabulary. A limited vocabulary is used in the construction of conditional clauses. This vocabulary, together with four possible types of data entries, constitutes the totality of symbols recognized by the DSL Compiler in processing conditional clauses. The vocabulary elements can be arranged within 14 distinct groups, of which groups 1, 12, 13, and 14 are data entries:

Group Number	Description	Legal Vocabulary
1	Unit identification	A UID consisting of eight alphanumeric characters, the first of which is B or R.
2	Unit's possession	CLASS 3, CLASS 5, PRESENT STRENGTH
3	Unit's possession with data	EQUIPMENT TYPE XXX (an equipment item code)
4	Clock time	TIME
5	Logical operator	GREATER THAN, LESS THAN, EQUAL TO
6	Negator	NOT
7	Unit's activity	ASSESSED, FIRING, MOVING, STOPPED
8	Weather condition	CLOUD COVER, FOG INDEX, RELATIVE HUMIDITY, TEMPERATURE, TEMPERATURE GRADIENT, VISIBILITY INDEX, WIND DIRECTION, WIND SPEED, PRECIPITATION INDEX
9	Location of weather condition	AT LOCATION
10	Unit's activity with data	HALTED AT, AT LOCATION
11	Percent indicator	PERCENT
12	Location data	A pair of seven-digit map coordinates; e.g., 0122000-0095750.
13	Quantity data	An integer.
14	Time data	Formats as presented in subparagraph 3c(2).

c. Conditional Clause Syntax. Syntax established for the DSL Compiler allows seven conditional clause types, where a clause type is a set sequence of elements from the conditional clause vocabulary groups. The types are listed below with one example of each type. Parentheses indicate a group is optional.

Type	Pattern	<u>Example</u>
A	1 2 (6) 5 13 (11)	B1234567 PRESENT STRENGTH GREATER THAN 150
В	1 3 (6) 5 13	B1234567 EQUIPMENT TYPE 172 LESS THAN 34
С	1 8 (6) 5 13 (11)	B1234567 VISIBILITY INDEX NOT LESS THAN 5
D	8 9 12 (6) 5 13 (11)	CLOUD COVER AT LOCATION 0123500-0095000 NOT GREATER THAN 70 PERCENT
E	4 (6) 5 14	TIME GREATER THAN 011300
F	1 (6) 7	B1234567 NOT MOVING
G	1 (6) 10 12	B1234567 AT LOCATION 0123000-0095800

d. Description of Conditions being Tested:

(1) Conditional Type A. The unit for which the test is made may be any resolution unit defined within the system. The quantity against which a check is made is the quantity present in the specified unit of personnel (PRESENT STRENGTH); Class 3, or equipment item 2 (CLASS 3); ammunition associated with individual weapons, or equipment item 6 (CLASS 5). If PERCENT is used, the quantity against which a check is made is the ratio of the amount present in the unit to amount authorized. Examples:

B1234567 CLASS 3 NOT LESS THAN 2500 B1234567 CLASS 5 GREATER THAN 70 PERCENT B1234567 PRESENT STRENGTH LESS THAN 150

(2) Conditional Type B. The unit for which the test is made may be any resolution unit defined within the system. The item on which the check is to be made is specified by an equipment item code between 1 and 200. The quantity against which a check is made is the quantity present in the unit or, if PERCENT is used, the ratio of quantity present to authorized quantity. Example:

B1234567 EQUIPMENT TYPE 32 LESS THAN 500 B1234567 EQUIPMENT TYPE 3 LESS THAN 50 PERCENT

- (3) Conditional Type C. The value against which a check is made is the current weather condition at the location of the specified unit. Legal values of the data entry depend on the weather condition being checked. The values which are treated as percentages are so indicated.
- (a) Cloud Cover. The data value can be an integer from 1 to 100. It is treated as a percentage. Example:

B1234567 CLOUD COVER LESS THAN 50 PERCENT

(b) Fog Index. The data value can be 0 (no fog) or 1 (fog). PERCENT is not allowed. Limitation to the logical operators EQUAL TO and NOT EQUAL TO is suggested. Example:

B1234567 FOG INDEX EQUAL TO 1

(c) Relative Humidity. The data value must be between 1 and 100. It is treated as a percentage. Example:

B1234567 RELATIVE HUMIDITY NOT LESS THAN 60 PERCENT

(d) Temperature. The data entry should be desired temperature in degrees Fahrenheit. Example:

B1234567 TEMPERATURE LESS THAN 32

(e) Temperature Gradient. The data value may be 1 (inversion), 2 (moderate inversion), 3 (neutral), or 4 (lapse). Example:

B1234567 TEMPERATURE GRADIENT LESS THAN 3

(f) Visibility Index. The data entry may range from 1 to 9 where 9 denotes best and 1 denotes poorest visibility. Example:

B1234567 VISIBILITY INDEX NOT LESS THAN 6

(g) Wind Direction. The data value, denoting azimuth in degrees, may range from 0 to 360. Example:

B1234567 WIND DIRECTION NOT LESS THAN 45

(h) Wind Speed. The data entry is wind speed in knots. Example:

B1234567 WIND SPEED NOT LESS THAN 12

(i) Precipitation Index. The data entry may have a value of 0 (no precipitation), 1 (light precipitation), or 2 (heavy precipitation). Example:

B1234567 PRECIPITATION INDEX EQUAL TO 0

- (4) Conditional Type D. The value against which a check is made is the current weather condition at the specified location. Rules are identical to those for conditional type C.
- (5) Conditional Type E. The value within the clause is any legal time format as described in subparagraph 3c(2). This is checked against current time. Example:

TIME GREATER THAN 011330

- (6) Conditional Type F. The condition checked is the current status of the specified unit as follows:
- (a) ASSESSED. A unit is sensed as ASSESSED if it has been attrited by the Area Fire or Air Ground Engagement Models within the past 15 minutes. Example:

B1234567 NOT ASSESSED

(b) FIRING. A unit is sensed as FIRING if it has received a DSL FIRE order or a TACFIRE fire mission and has not yet completed the ordered fire mission. Example:

B1234567 FIRING

(c) MOVING. A unit is sensed as MOVING if it has received one of the following orders and has not reached the final movement coordinates: MOVE, FLY, ADVANCE, WITHDRAW. If, however, the order is ADVANCE or WITHDRAW and the unit has actually engaged in ground combat, it is not sensed as moving. Example:

B1234567 MOVING

(d) STOPPED. The STOPPED condition is exactly equivalent to NOT MOVING, and MOVING is exactly equivalent to NOT STOPPED.

(7) Conditional Type G. The condition checked is whether the specified location is within the rectangular area defined by the specified unit's current location, orientation, width, and depth. The specified unit must be a resolution unit. Example:

B1234567 NOT AT LOCATION 0123000-0095000.

- 5. CONTROL CARDS AND DECK STRUCTURE. This paragraph presents control cards required by the DSL Compiler, structure of the DSL Compiler data deck, and structure of decks for submittal to the data processing facility.
 - a. Compiler Control Cards:
- (1) The DSL Compiler call card must be the first card of the data deck. This card has one of the following forms:

DSL.

DSL, DEBUG.

Position on the punched card is not critical, as any blanks are ignored; however, the first entry must be DSL, and the designated comma and period must appear as indicated. Use of the DEBUG option causes the tables generated by the DSL compiler to be listed.

(2) The start of period card must be the second card of the data deck. This card has the form:

START OF PERIOD: XX DAY XX HOUR XX MINUTE.

where XX represents an appropriate numeric entry such as:

START OF PERIOD: 01 DAY 18 HOUR 30 MINUTE.

Presence of the colon and period as illustrated is crucial. To indicate the start of a game, the card must appear as follows:

START OF PERIOD: 01 DAY 00 HOUR 00 MINUTE.

This card indicates the game time at which the period for which DSL orders are being supplied is to start.

(3) The period length card must be the third card of the data deck. This card must be of the form:

PERIOD LENGTH: XXXX MINUTES.

where XXXX represents an appropriate numeric entry such as:

PERIOD LENGTH: 480 MINUTES.

The colon and period must appear as indicated. This card indicates the length of the period of combat to be simulated using the DSL orders.

(4) The final card of the DSL data deck must contain, in any position on the card, the notation:

FINIS.

This card indicates the end of the DSL data deck.

(5) Comments may be inserted at any position in the data deck following the third card. The comment is used to provide background elaboration of the operations being ordered for the information of any individual who should have access to the DSL data deck or a listing thereof. Comments have no meaning to the DSL Compiler or to any other processor of the DSL system and exist solely for user convenience. A comment must be introduced by one of the phrases COMMENT:, CONCEPT:, or CONCEPT OF OPERATION:, where the colon is an integral part of the phrase. A comment is ended with a period. The body of a comment, between the introductory phrase and closing period, may contain any symbol except a period. One comment may be of any length up to (and including) 400 nonblank characters. A DSL data deck may contain as many comments as desired. Example:

COMMENT: SECOND BRIGADE SHOULD NOW BE IN ATTACK POSTIONS; 1ST BN ON NORTH, 2ND BN ON SOUTH AND 3RD BN IN RESERVE (EAST) PD SUPPORTING ARTILLERY (1ST AND 3RD OF 307TH) HAVE FIRED PREPARATORY MISSIONS AND GONE TO TACFIRE MODE.

- b. Data Deck Structure. The DSL data deck contains four segments as illustrated in Figure III-2-A-2.
- (1) The first segment of a DSL data deck must comprise the compiler call card, start of period card, and period length card, in that sequence.
- (2) Unit Scenarios comprise the second segment of a DSL data deck. The order in which individual Unit Scenarios appear is not critical, although review may be facilitated by keeping scenarios for units of the Red force and Blue force separate. A Unit Scenario is acted upon only if the specified unit is a resolution unit or has a personnel strength of at least one. Scenarios for nonresolution units are ignored, unless the unit should attain resolution status as the result of an appropriate transfer activity order (DETACH) within the scenario of another unit. In this case, execution of the scenario commences when resolution status is attained. The exception is a scenario with identification ID:REDFORCE. or ID:BLUEFORC. which contains all engineer activity orders for the appropriate force. Comments may appear within any Unit Scenario.

Figure III-2-A-2. DSL Data Deck Structure

- (3) Battle Paragraphs comprise the third segment of a DSL data deck. All units listed in battle declaration cards of Battle Paragraphs must be provided Unit Scenarios which contain appropriately labeled commands keyed to the battle conditionals as discussed in subparagraph 2c. Situations may arise where a DSL data deck having no Battle Paragraphs is appropriate, which is allowed by the compiler.
 - (4) The final segment of a DSL data deck is the FINIS. card.
- 6. DSL RULES AND TECHNIQUES. The DIVWAG Scenario Language provides the gamer with a wide degree of latitude in controlling simulated units within the DIVWAG system. Proper use of DSL does, however, depend upon observation of the basic vocabulary and syntax rules of the language. Effective use also depends upon an appreciation of the model's response to the various orders. This paragraph restates some of the more critical basic DSL rules and provides selected guidelines toward effective DSL writing techniques. As with any language, an individual's facility with DSL strongly depends upon the extent of his exposure to and experience with the language. Thus, fluency with DSL cannot be expected simply by exposure to this manual. It is gained through practice.

a. Elementary Rules:

(1) Unit Scenarios:

- (a) A Unit Scenario can be acted upon only if the unit is a resolution unit and has personnel. The DSL Compiler will accept Unit Scenarios for any unit, as long as the scenario is identified with a legal UID. The DIVWAG Period Processor, however, will ignore orders for units not defined within the game, for nonresolution units, and for resolution units having no personnel.
- (b) A Unit Scenario may be provided for a nonresolution unit and that unit may gain a resolution status through appropriate use of the DETACH order given to another unit. When this happens, the Unit Scenario is acted upon at the time resolution status is gained.
- (c) If a unit loses resolution status, through the JOIN order in its own Unit Scenario or through an order to DETACH its last subordinate; or should a unit lose all personnel; it will not execute any remaining orders in its Unit Scenario.
- (d) A unit may have only one Unit Scenario. Presence of more than one Unit Scenario for a given unit causes the tables generated by the DSL Compiler to be invalidated.
 - (e) A Unit Scenario must contain at least one command.

- (f) Liberal use of labels within a Unit Scenario is a key to efficient use of DSL. Labels must, however, be unique within a Unit Scenario. The sequence of orders cannot be followed as the user intends if more than one command has the same label in one Unit Scenario.
 - (2) Battle Paragraph/Unit Scenario Interface:
- (a) Each unit listed in the battle declaration card must be provided a Unit Scenario.
- (b) Within the Unit Scenario for each unit listed in the battle declaration card, properly labeled commands must appear.
 - b. Basic DSL Techniques:
- (1) Timing. It is generally possible to control the time at which execution of an order begins by preceding the order with a STAY order or a PREPARE order. In the following example, the STAY order is used to time a FIRE order and a MOVE order.

ID:B1111111.
STAY UNTIL 010530.
FIRE MUNITION TYPE A003 ON 0123000-0123000
NUMBER OF VOLLEYS 4 IMPACT RADIUS 100.
STAY UNTIL 010615.
MOVE TO 0118000-0127000.

(2) Repetitive Orders. It is generally possible to repeat a sequence of orders using the GO TO order with appropriate labels. In the following example, an artillery unit is ordered to fire upon a series of three targets repetitively. A time conditional is used to exit the loop when time exceeds 021800.

ID:B1111FA.
STAY UNTIL 021630.
A1:FIRE MUNITION TYPE A003 ON 0123000-0123000
NUMBER OF VOLLEYS 3 IMPACT RADIUS 100.
FIRE ON 0118000-0123000 MUNITION TYPE A003
NUMBER OF VOLLEYS 3 IMPACT RADIUS 100.
FIRE ON 0120000-0122525 NUMBER OF VOLLEYS 2
MUNITION TYPE A003 IMPACT RADIUS 100.
IF TIME NOT GREATER THAN 021800, THEN GO TO A1.
STAY UNTIL 022000.

(3) Skipping Commands. Judicious use of conditionals with the GO TO order permits skipping a command or series of commands as the situation may dictate. In the example B123BNO1 will engage in one of two battles depending upon the strength of B123BNO2. The command with label ABC will be executed upon termination of either battle (Battle Paragraphs not shown here).

ID:B123BN01.
PREPARE UNTIL 020500.
IF B123BN02 PRESENT STRENGTH LESS THAN 125, THEN
GO TO AAA.
ADVANCE TO 0125000-0113000.
ENGAGE IN BATTLE BIGHORN.
AAA:ADVANCE TO 0120000-0115500.
ENGAGE IN BATTLE FIREFITE.
ABC:PREPARE UNTIL 021200.

c. Techniques Related to Models:

- (1) Ground Combat Model. Preparation of DSL commands for the Ground Combat Model is the most subtle phase of DSL preparation. Functioning of the model must be held in mind as orders are prepared.
- (a) Battle is initiated in response to an ADVANCE order followed by an ENGAGE order. Initiation requires scheduling the first Ground Combat Model assessment cycle to take place 15 minutes from the time of initiation. Initiation takes place only if a unit on the other force is currently under a PREPARE or a WITHDRAW order and is within 3000 meters (front to front) of the unit receiving the ENGAGE order.
- (b) Assessment of battle results takes place at the scheduled time. Assessment will cover all units under ADVANCE, PREPARE, or WITHDRAW orders at the time of assessment. Only units under an appropriate order and within 3000 meters of an opponent who is also under an appropriate order are treated. Specification of attacker and defender within the Ground Combat Model is determined by the one unit in whose scenario the ENGAGE order that caused initiation occurs. All units on the initiator's side are assessed as attackers and all units on the opposing side are assessed as defenders.
- (c) Upon completion of the assessment cycle, all conditionals in the Battle Paragraph are checked to determine if the battle must be terminated. If none of the conditions are met, another assessment cycle is scheduled to take place in 15 minutes.
- (d) A battle may be reinitiated at any time another ENGAGE order is encountered. Once initiated and terminated, a battle will generally terminate 15 minutes after reinitiated. This is because reinitiation will schedule a 15-minute cycle, and the conditional that terminated the battle the first time will generally continue to be true and will generally terminate the battle each time it is reinitiated.
- (e) Upon battle termination, all units listed in the Battle Paragraph will progress to labeled commands as indicated by the battle conditional that is met. This occurs regardless of whether the units actually participated in the battle. The command under execution at the time of battle termination is not generally completed.

- (f) Battle conditionals are checked in the order in which they appear in the Battle Paragraph. Once a condition is met, 'er conditionals are not checked. Thus, if several conditions are included the condition expected to occur at the latest time should generally appear first in the Battle Paragraph.
- (2) Reconnaissance Orders. The reconnaissance control code is of paramount importance in a RECONNOITER order. The code consists of four characters, $C_1C_2C_3C_4$, where the first character, C_1 , identifies the mission type as light observation helicopter mission (C_1 =H), light fixed wing aircraft mission (C_1 =F), Mohawk OV-1D type aircraft mission (C_1 =M), or Air Force reconnaissance mission (C_1 =A). Meaning of successive characters of the code depends upon the first character.

(a) Control Code Determination:

- $\underline{1}.$ LOH/Fixed Wing Observation Reconnaissance Mission. Code equals H $\rm C_2C_3C_4$ or F $\rm C_2C_3C_4$.
- \underline{a} . If the second character, C_2 , is R, then the mission is a route reconnaissance mission; otherwise, it is an area reconnaissance mission. If it is an area reconnaissance mission, then C_2 has values 1-9, where the integer value specifies the time assigned to the search area in units of 15-minute intervals. For example, a code of H326 specifies an area reconnaissance mission lasting 45 minutes for an LOH.
- b. The third character, C₃, has a range of 0-9 and specifies the route deviation limit in kilometers (corridor width) which the aircraft will not exceed during the flight. In the example, H326, the character 2 in the third position specifies that the LOH will reconnoiter along routes with a corrider width of 2 kilometers, and thus will never exceed the 1-kilometer deviation limit from the route interval. For an area reconnaissance mission, the third character is used in the same manner and effectively creates a density of reconnaissance coverage; i.e., successive passes over the assigned area will be separated by the corridor width.
- \underline{c} . The fourth character, C_4 , ranges from 1-9 and is used for two purposes:
 - C₄ is the sensor load combination code which identifies the list of sensor types carried on board the aircraft
 - . C₄ is also the combination code which identifies the correct LOH decision control matrix to use in this mission. Note that the same sensor load is required to use the same decision matrix; however, with up to 10 combinations available, it is possible to list the same sensor load with different decision matrices.

- 2. Mohawk Type Mission. Code equals M C2C3C4.
- a. This type reconnaissance mission is currently restricted to represent only the SLAR MTI with GST and camera sensor types on board. The fourth character, C_4 , identifies the sensor load combination carried on board in the same manner as the LOH. The first sensor type in the combination is currently restricted to the SLAR MTI with GST.
- \underline{b} . The second character, C_2 , is used to set the range and delay of the SLAR MTI sensor package during the RECONNOITER order flight path. The allowed values of C_2 and interpretations are shown in Figure III-2-A-3 where the values of DELAY, RANGE 1, RANGE 2, and RANGE 3 are set as part of the constant data base.
- \underline{c} . The third character, C_3 , defines the direction(s) for which the SLAR is gated as being to the right, left, or to both sides of the aircraft flight direction as follows:
 - . $C_3 = R$, radar is gated on the right side only
 - . $C_3 = L_a$ radar is gated on the left side only
 - . $C_3 = B$, radar is gated on both sides
- $\underline{\mathbf{3}}$. Air Force Aircraft Reconnaissance Mission. Code equals A X X C $_{4}$.
- \underline{a} . The second and third characters of the code are not currently used by the submodel and should contain X X.
- \underline{b} . The fourth character, C_4 , is used to specify the sensor load combination on board as in previous mission types. (Sensor types are currently restricted to camera systems.)

(b) DSL Flight Pattern Data:

- 1. The DSL order also specifies the flight intervals or area over which the reconnaissance mission is to be flown. The coordinate endpoints listed on the DSL order form the actual flight path taken in Mohawk OV-1D and Air Force reconnaissance missions.
- 2. If the mission is an area reconnaissance mission, the coordinates specify the four corners of the area over which the reconnaissance mission is to be flown. The order of the points appearing in the DSL order is such that $P_1P_2P_3P_4$ are in counterclockwise order around the enclosed reconnaissance area. Also P_1P_2 is the rear boundary from which the reconnaissance aircraft will start the coverage of the area.
- 3. If the DSL order request is for an LOH type mission, the actual flight path does not follow the route intervals exactly but remains within the corridor limits defined in the DSL order control code.

Second Character of code		TI Settings Range Setting
$C_{2} = 0$ $C_{2} = 1$ $C_{2} = 2$ $C_{2} = 3$ $C_{2} = 4$ $C_{2} = 5$ $C_{2} = 6$	0 x DELAY 1 x " 2 x " 3 x " 4 x " 5 x " 6 x "	RANGE1 "" "" "" "" "" "" ""
$C_2 = A$ $C_2 = B$ $C_2 = C$ $C_2 = D$ $C_2 = E$ $C_2 = E$	0 x DELAY 1 x " 2 x " 3 x " 4 x " 5 x "	RANGE 2 "" "" "" ""
c ₂ = z	0 x DELAY	RANGE3

Figure III-2-A-3. Delay and Range Settings for Mohawk Type Mission

- 7. DIVWAG SCENARIO LANGUAGE VOCABULARY. Figure III-2-A-4 and Figure III-2-A-5 provide a compendium of the DSL order and modifier vocabulary in tabular form.
- a. DSL Orders. Figure III-2-A-4 lists the DSL order, the appropriate modifiers--required, exclusive, and optional--for that order, and the code number.
- b. DSL Order Modifiers. Figure III-2-A-5 lists the modifiers of DSL orders with the type and format of data. Various comments are included regarding the data format.

Code Number	20	9	41	23	24	43	42
Optional Modifiers	NUMBER OF ESCORTS AT TIME	BY PRIORITY AT WIDTH - DEPTH	AT TIME			PRIORITY MANDATORY DESIRED Sone of	PRIORITY MANDATORY DESIRED One of
Exclusive Modifiers*	NUMBER OF TRIPS NUMBER OF AIRCRAFT			DIRECT SUPPORT OF UNIT REINFORCING UNIT GENERAL SUPPORT GENERAL SUPPORT REINFORCING UNIT		BARRIER BRIDGE FACILITY BEGIN BY COMPLETE BY SONE of	BARRIER BRIDGE FACILITY BEGIN BY COMPLETE BY SONE of
Required Modifiers	MIX	10	ТО		UNIT		
Orders	ACCEPT TRANSPORT	ADVANCE	AIRMOBILE ASSAULT	ASSIGNMENT IS	ASSUME CONTROL OF	Вкеасн	BUILD

Figure III-2-A-4. DSL Orders (Continued on Next Page)

Figure III-2-A-4. DSL Orders (Continued)

* One and only one required.

Figure III-2-A-4. DSL Orders (Concluded)

Comments	S	Integer may be followed by FEET or FT.	Integer may be followed by KNOT or KNOTS.	<pre>d = number of days (digit). h = number of hours (digit). m = number of minutes (digit). One to six digit integer. If less than six digit, zero fill on left is assumed.</pre>	<pre>d = number of days (integer). h = number of hours (integer). m = number of minutes (integer). D = DAYS, DAY, or DA H = HOURS, HOUR, or HR M = MINUTES, MINUTE, or MIN</pre>	dD, hH, or mM (or any two of the three forms) may be omitted (e.g., dDhH is valid). dD, hH, and mM may be arranged in any order (e.g., hHdD is valid). Caution: 0800 HOURS = 800 hours, not eight hours.
Data Format	One to three digits	Integer	Integer	ddhhma	dDhнmм	
Data Type	Equipment item code	Height (in feet)	Speed (in knots)	Absolute time		
Modifier	AIRCRAFT TYPE	AT ALTITUDE	AT SPEED	AT TIME		

Figure III-2-A-5. DSL Order Modifiers (Continued on Next Page)

Modifier	Data Type	Data Format	Comments
АТ МІДТН	Unit front (meters)	Integer	
BARRIER	Barrier identification code	Alphanumeric string, six characters.	First three characters are alpha, last three numeric.
BEGIN 3Y	Absolute time	(See AT TIME modifier)	()
BRIDGE	Facility identification code	Six alphanumeric characters.	First three characters are alpha, last three numeric.
ВҮ	Transportation mode	Four alphabetic characters.	
ВҮ	Reconnaissance control code.	Four alphanumeric characters.	Used only with RECONNOITER order. First character is A, F, L or M.
COMPLETE BY	Absolute time	(See AT TIME modifier)	(
- рертн	Unit depth (meters)	Integer	
DESIRED	Not applicable.		
DIRECT SUPPORT OF UNIT	UID	Alphanumeric string	Eight characters heginning with B or R.
FACILITY	Facility identification code	Six alphanumeric characters.	First three characters are alpha, last three numeric.
FOR	Time length	(See AT TIME modifier)	(2)
GENERAL SUPPORT	Not applicable		Used with ASSIGNMENT IS order.

Figur II-2-A-5. DSL der Modifiers (atinued)

Modifier	Data Type	Data Format	Comments
GENERAL SUPPORT- REINFORCING UNIT	UID	Alphanumeric string	Eight characters beginning with B or R.
GO TO	Label	Alphanumeric string	Three characters only. One of two orders (not modifiers) requiring data.
HEIGHT OF BURST	Preset HOB option code.	Integer, 0, 1, 2, 3, 4	Used with nuclear FIRE order to indicate which preset HOB when fuzing appropriate.
IMPACT RADIUS	Height of bust (meters)	Integer	Used with nuclear FIRE when fuzing allows specification of HOB. Mandatory for all other FIRE orders but data not used.
IN BATTLE	Battle name	Alphanumeric string	One to eight characters.
MANDATORY	Not applicable.		
MIX	Airmobile transport/ escort mix code.	Integer 1-10	
MUNITION TYPE	Munition mnemonic	Alphanumeric string	Four characters.
NUMBER OF AIRCRAFT	Desired number	Integer	Used with RETAIN, MISSION IS, ACCEPT TRANSPORT orders.
NUMBER OF ESCORTS	Desired number	Integer	Used with ACCEPT TRANSPORT order.
NUMBER OF COUNDS	Rounds	Integer	For nuclear FIRE, must be 1.
NUMBER OF TRIPS	Desired number	Integer	Used with ACCEPT TRANSPORT order.

Figure III-2-A-5. DSL Order Modifiers (Continued)

Modifier	Data Type	Data Format	Comments
NUMBER OF VOLLEYS	Volleys	Integer	
NO	Single coordinate pair	x-y, Integer	x and y are integers measured in meters.
OVER	Coordinate pairs	x1-y1,, x _n -y _n Integer	x ₁ and y ₁ are integers measured in meters. n≤8 except for area reconnaissance, in which case n must be 4.
PRIORITY	Movement or engineer task priority	1, 2, 3 or 4	
REINFORCING UNIT	UID	Character string	Eight characters beginning with B or R
STOP TASK	Barrier or facility identification code.	Six alphanumeric characters.	First three characters are alpha, last three numeric. One of two orders (not modifiers) requiring data.
TARGET NUMBER	Target index from intelligence report.	Five to seven digits.	
то	Coordinate pairs	^x 1 ^{-y} 1,, ^x n ^{-y} n Integer	<pre>x₁ and y₁ are integers mea- sured in meters. For AIRMOBILE ASSAULT order, n ≤ 4. For ADVANCE order n=1. Otherwise n ≤ 8.</pre>
TYPE	Unit type designator (UTD)	Alphanumeric string	Four characters.
UNIT	Unit identification	Alphanumeric string	Eight characters beginning with B or R.
UNTIL	Absolute time	(see modifier AT TIME)	()

Figure III-2-A-5. DSL Order Modifiers (Concluded)

APPENDIX B

DIVWAG SCENARIO LANGUAGE COMPILER PROGRAM DESCRIPTIONS

- 1. INTRODUCTION. This appendix contains detailed descriptions of the routines comprising the DIVWAG scenario language (DSL) compiler and the common area used by those routines.
- 2. COMMON DSLMN. This common area is used by most of the DSL compiler routines. The variable definitions listed below are consistent throughout the compiler.

Name	Description
NFERR	Total number of fatal errors found in input data.
NWERR	Total number of warning errors found in input data.
DBUG	Debug print switch.
ISTMT	Pointer to the first character in the array STMT that was processed.
MXSTMT	Maximum number of characters allowed in the STMT array.
STMT	Array containing the statement being processed.
LOCCM	Location of the first comma in the statement.
LOCCLN	Location of the colon in the statement.
LOCPER	Location of the period in the statement.
MXORD	Maximum number of orders allowed in array OARY.
ORDER	Array containing the first four characters of each order.
ORORN	Array containing the order number (NORD) associated with each order.
MXMDFR	Maximum number of modifiers in the MDFR array.
MDFR	Array containing the first four characters of each modifier.
MXNUM	Maximum number of unit scenarios plus battle paragraphs allowed.

Name Description UBT Unit-battle directory table, containing the unit scenario information (loaded from the front) to UNTPT and the battle paragraph information (loaded from the back) to BATPT. UNTPT Pointer to the last position in unit battle table used to store unit scenario information. BATPT Pointer to the first position in unit battle table used to store battle paragraph information. **UBFLG** Unit scenario-battle paragraph indicator. CONORD Conditional-order indicator. OARY Order array built by the compiler. MXOA Maximum number of orders allowed in each unit scenario or battle paragraph. JOA Pointer to the last order placed in the ORDR array. LABEL Array containing the labels associated with the orders. RECPT Pointer to the last record used in the order file. ORDFIL DIVWAG data file identifying number of the order file. IN Logical number of input file. OUT Logical number of output file. LNCNT Total number of lines that have been written on the current page. MXLN Maximum number of lines per page. PERBG Beginning time of the period in centiminutes.

PERDAY Day period begins.

PERHR Hour period begins.

PERMIN Minute period begins.

PERED Day period ends.

Name Description

PEREH Hour period ends.

PEREM Minute period ends.

XMAX Maximum value of X coordinate.

YMAX Maximum value of Y coordinate.

3. COMMON CONST. This common area is used by many of the DSL compiler routines. It contains the hollerith constants, listed below, that are stored in the first character of the word with the remaining word blank filled.

Name	Description
IPER	Period (.)
ICOM	Comma (,)
ICLN	Colon (:)
IBLNK	Blank ()
IDASH	Dash or minus sign (-)
INTGR	A 10-word array containing the digits (0-9).
IALPH	A 26-word array containing the alphabet (A-Z).

4. COMMON ONE. This common area is used by routines calling any of the input/output routines.

Name Description

IFNT File name table.

IER Error code.

5. ROUTINE BLOCKD:

- a. Purpose. This routine initializes some of the variables for common DSLMN and common CONST.
 - b. Input Variables. None.
 - c. Output Variables:

Name	Initial Value	Name	Initial Value	Name	Initial Value
MXSTMT	400	MXNUM	1023	MXOA	100

III-2-B-3

Name	Initial Value	Name	Initial Value	Name	Initial Value
ORDFIL	55	IN	60	OUT	61
MXLN	55	mxord	25	MXMDFR	32
ORDR(1)	4HFLYB	ORDR(2)	4HSTAY	ORDR(3)	4HGOTO
ORDR(4)	4HMOVE	ORDR(5)	4HFIRE	ORDR(6)	4HPREP
ORDR(7)	4HADVA	ORDR(8)	4HENGA	ORDR(9)	4HRECO
ORDR(10)	4HACCE	ORDR(11)	4HAIRM	ORDR(12)	4HASSI
ORDR(13)	4HASSU	ORDR(14)	4HBREA	ORDR(15)	4HBUIL
ORDR(16)	4HDETA	ORDR(17)	4HJOIN	ORDR(18)	4HLOIT
ORDR(19)	4HMISS	ORDR(20)	4HRELE	ORDR(21)	4HREMO
ORDR(22)	4HRETA	ORDR(23)	4HSTOP	ORDR(24)	4HTERM
ORDR(25)	4HWITH	ORDN(1)	7	ORDN(2)	1
ORDN(3)	-1	ORDN(4)	3	ORDN(5)	9
ORDN(6)	2	ORDN(7)	6	ORDN(8)	15
ORDN(9)	8	ORDN(10)	20	ORDN(11)	41
ORDN(12)	23	ORDN(13)	24	ORDN(14)	43
ORDN(15)	42	ORDN(16)	26	ORDN(17)	25
ORDN(18)	32	ORDN(19)	39	ORDN(20)	31
ORDN(21)	44	ORDN(22)	40	ORDN (23)	45
ORDN(24)	37	ORDN (25)	5	MDFR(1)	4HAIRC
MDFR(2)	4HATAL	MDFR(3)	4HATSP	MDFR(4)	4HATTI
MDFR(5)	4HATWI	MDFR(6)	4HBARR	MDFR(7)	4HBEGI
MDFR(8)	4HBRID	MDFR(9)	4вурь	MDFR(10)	4HCOMP
MDFR(11)	4H-DEP	MDFR(12)	4HDESI	MDFR(13)	4HDIRE
MDFR(14)	4HFACI	MDFR(15)	4HFORb	MDFR(16)	4HGENE
MDFR(17)	4HHEIG	MDFR(18)	4HIMPA	MDFR(19)	4HINBA

Name	Initial Value	Name	Initial Value	Name	Initial Value
MDFR(20)	4HMAND	MDFR(21)	4HMIXb	MDFR(22)	4HMUNI
MDFR(23)	4HNUMB	MDFR(24)	4HONbb	MDFR(25)	4HOVER
MDFR(26)	4HPRIO	MDFR(27)	4HREIN	MDFk(28)	4HTARG
MDFR(29)	4НТОЪЪ	MDFR(30)	4НТҮРЕ	MDFR(31)	4HUNIT
MDFR(32)	4HUNTI	IPER	1H.	ICOM	1H,
ICLN	1H:	IBLNK	1H	IDASH	1H-
INTGR(1)	1H1	INTGR(2)	1H2	INTGR(3)	1H3
INTGR(4)	1H4	INTGR(5)	1H5	INTGR(6)	1H6
INTGR(7)	1H7	INTGR(8)	1H8	INTGR(9)	1H9
INTGR(10)	1H0	IALPH(1)	1 HA	IALPH(2)	1HB
IALPH(3)	1HC	IALPH(4)	1HD	IALPH(5)	1HE
IALPH(6)	1HF	IALPH(7)	1HG	IALPH(8)	1 H H
IALPH(9)	1HI	IALPH(10)	1HJ	IALPH(11)	1HK
IALPH(12)	1HL	IALPH(13)	1HM	IALPH(14)	1HN
IALPH(15)	1HO	IALPH(16)	1HP	IALPH(17)	1HQ
IALPH(18)	1HR	IALPH(19)	1HS	IALPH(20)	lht
IALPH(21)	1HU	IALPH(22)	lhv	IALPH(23)	1HW
IALPH(24)	1HX	IALPH(25)	1HY	IALPH(26)	1HZ

6. ROUTINE DSLCMP:

a. Purpose. This is the controlling routine of the DSL compiler. It makes the major decisions to store a unit scenario or battle paragraph and initialize the arrays so another may be built, to initiate the second pass of the compiler, to dump the data file if requested, and to abort the run if fatal errors are discovered.

b. Input Variables. DSL common, NFERR, DBUG, ISTMT, STMT, LOCCLN, UBT, UNTPT, BATPT, UBFLG, OARY, JOA, LABEL and OUT.

- c. Output Variables. DSL common variables, NFERR, NWERR, ISTMT, UBT, UNTPT, BATPT, UBFLG, OARY, and LABEL.
 - d. Logical Flow (Figure III-2-B-1):
- (1) Block 1. DSLINT is called to perform initialization of necessary variables.
- (2) Block L2000. This block initializes the label array (LABEL), order array (OARY), JOA and UBFLG each time a unit scenario or battle paragraph is to be built.
- (3) Block L3000. If the next statement is to be read from cards, control is transferred to block L3005; otherwise, control passes to block L3010.
- (4) Block L3005. RDSTMT is called to read the next statement from cards.
- (5) Block 2. If this statement is FINIS, control is passed to block 4.
- (6) Block 3. If the statement begins with ID or BATTLE, it indicates the beginning of a new unit scenario or battle paragraph and control is transferred to block L2000.
- (7) Block L3010. The type of statement is further determined and the appropriate action taken to process it. If it is a comment, no further action is necessary. If it is the end of a unit scenario or battle paragraph STOW is called to store it on the DSL data file. If it is an order, UBFLG is interrogated; UNTORD is called if it is one or BATORD is called if it is two.
 - (8) Block 4. PASS2 is called to complete the compilation.
- (9) Blocks 5 and 6. If DEBUG was specified on the DSL card, DBUG will be true and DUMPF will be called to dump the DSL data file.
- (10) Block 7. The total number of fatal errors and warning errors detected by the compiler are written.
- (11) Blocks L8500 and 8. If fatal errors were detected by the compiler, the run will be aborted by generating a system error mode 1, the DSL data file will be invalidated, and an error message is printed.

7. ROUTINE DSLINT:

a. Purpose. This routine initializes the areas of common that are not initialized by the DSL block data routine. It reads the DSL, start of period, and start of game cards and initializes the variables obtained from them. It also loads the unit identification and unit location tables.

Figure III-2-B-1. Routine DSLCMP

Name	Source	Contents
PERDAY	Card	Beginning period day.
PERHR	Card	Beginning period hour.
PERMIN	Card	Beginning period minute.
IREC1(6)	Card	Start of period/start of game flag.
IREC1(4)	Card	Period length.
DEBUG	Card	DSL debug option.

c. Output Variables:

(1) DSL Common Block Variables. IFNT, IER, LNENT, PGNO, NFERR, NWERR, DBUG, PERED, PEREH, PEREM, PERDAY, PERHR, PERMIN, XMAX, YMAX, RECPT, UNTPT, BATPT, and UBT.

(2) Other Variables:

Name	Destination	Contents
IREC1(4)	Call	Period length.
IREC1(6)	Call	Start of period/start of game flag.
UIDTAB	TWO	Unit identification table.
UNTLOC	TWO	Unit location table.
BPOINT	TWO	Pointer to last blue unit in UIDTAB.
RPOINT	TWO	Pointer to first Red unit in UIDTAB.

d. Logical Flow (Figure III-2-B-2):

- (1) Blocks 1 and 2. The array IFNT is checked to determine if the order file has been created at a proper size. If it has not been created, it is created.
- (2) Blocks L1002 and 3. The line count (LNCNT), page number (PGNO), number of fatal errors (NFERR), and number of warning errors (NWERR), are initialized and DSL COMPILATION and PAGE1 are written on the first line of a new page.
- (3) Block 4. The first three cards of the DSL deck are read and the values of the beginning day, hour, and minute (PERDAY, PERHR, PERMIN), the period ending day, hour, and minute (PERED, PEREH, PEREM), and the period length (IREC1(4)) are initialized. If the DEBUG option is found on the first card, DEBUG is set to TRUE. It also sets the start of game/start of period flag (IREC1(6)) to three or one respectively.

Figure III-2-B-2. Routine DSLINT

- (4) Blocks 5, 6, and 7. IREC1(6) is checked to determine if it is equal to three. If it is, the UIDTAB and UNTLOC tables are constructed; otherwise, these tables are loaded from data file 36.
- (5) Block 8. The maximum values of the X and Y coordinates (XMAX and YMAX), the pointer to the last record used in the order file (RECPT), the pointer to the last unit loaded (UNTPT), and the pointer to the last battle loaded (BATPT) are initialized. Also, the appropriate words of the unit and battle directory table (UBT) are set to blanks and zeros.

8. ROUTINE RDSTMT:

- a. Purpose. This routine reads and prints DSL data cards. A card is read until a period is encountered or the STMT array is filled. If the STMT array is filled, a period is placed in it's last position and the routine reads until a period or colon is encountered. The routine also returns the position of the period, the position of a colon if one is found, and the position of the first comma if one is found.
 - b. Input Variables:
 - (1) DSL Common Block Variables.
 - (2) Other Variables:

Name	Source	Contents
ISAV	Call	Error indicator: 1 = period was left out in previous DSL statement and colon was found in next DSL statement, ICARD contains the previous card image. A new card is not read. 0 = normal entry. Read new DSL statement.
ICARD	Card	DSL order statement.

- c. Output Variables:
- (1) DSL Common Block Variables. LOCCM, LOCCLN, LOCPER, ISTMT, NFERR, INWERR, STMT, and LNCNT.
 - (2) Other Variables:

Name	Destination	Contents
ICARD	Print	DSL order statement.

- d. Logical Flow (Figure III-2-B-3):
- (1) Block L1000. Set the period, comma, color, and STMT location pointers and the number of characters counter are set to zero.
- (2) Blocks 1 and L1010. If ISAV is less than or equal to zero, a new card is read.

III-2-B-10

UNCLASSIFIED	CACDA-TR-S	ARMY COMBINED ARMS COMBAT DEVELOPMENTS ACTIVITY FORT-ETC F/6 18/7 DIVMAG MODEL DOCUMENTATION. VOLUME II. PROGRAMMER/AMALYST MAMUAETC(U) JUL 76 CACDA-TR-8-76-VOL-2-PT-1 NL							
864- 9									

William Conference of the Market State of the Market

Figure III-2-B-3. Routine RDSTMT (Continued on Next Page)

Figure III-2-B-3. Routine RDSTMT (Concluded)

- (3) Block 2. Control transfers to block L7000 if an end of file is encountered.
- (4) Block 3. As the contents of CARD are packed into START, each character is checked to determine if it is a comma, period or colon. If a colon is found, its location (in STMT) is stored in LOCCLN. If a comma is found, LOCCM is compared to zero to determine if it is the first comma in the statement; if it is first, its location is stored in LOCCM.
- (5) Blocks 4 and 5. If a period is found, control transfers to block 7; otherwise, it is determined if the STMT array is full and control transfers to block 6 if it is.
- (6) Block 6. A period is put in the last location of the STMT array, and reading is continued until a period or colon is found. If a colon is found, ICARD is saved and used as the first card the next time RDSTMT is called.
- (7) Block 7. The period location pointer (LOCPER) is updated and checked for nonblank characters following the period. A warning message is printed if nonblank characters are found.
- (8) Blocks L7000 and L7010. If an end of file was encountered while reading the DSL data cards, an error message is written and the six characters FINIS. are inserted in STMT.
- (9) Block L8000. A new page header is written if the statement belongs to a different force or to a battle paragraph rather than a force.
- (10) Block 9. If an end of statement has been detected, control is returned to the calling routine; otherwise, control is transferred to block L1010.

9. ROUTINE BATORD:

- a. Purpose. This routine processes the battle paragraph statements by storing the participating unit list and the corresponding labels and calling COND to process the conditionals.
- b. Input Variables. DSL common block variables LOCCLN, ISTMT, BATPT, LOCPER, NFERR, IBLNK, STMT, ICOM, and JOA.
- c. Output Variables. DSL common bloc' ables OARY, NFERR, JOA and ISTMT
 - d. Logical Flow (Figure III-2-B-4):
- (1) Block 1. This block decides whether the battle order is a conditional or unit list.

Figure III-2-B-4. Routine BATORD (Continued on Next Page)

The section of the se

Figure III-2-B-4. Routine BATORD (Concluded)

- (2) Block 2 and L1005. If there are more than 35 units in this battle, the number of fatal errors (NFERR) is incremented by one and an appropriate error message is written.
- (3) Block 3. The unit list is stored in records one to four of OARY, 10 unit identifications per record.
- (4) Block L1120. CHCKID is called to find errors in the unit identifications.
- (5) Block 4. If the list of units is completed, control is returned to the calling routine; otherwise, another unit identification is processed.
- (6) Blocks L2010 and 5. COND is called to return the value IAO. If IAO is less than zero, control is returned to the calling routine.
- (7) Blocks 6 and L2025. If the number of labels is greater than 35, NFERR is incremented by one and an appropriate error message is written.
 - (8) Block L2060. The labels are stored OARY.
- (9) Blocks 7 and L2115. If a label is followed by extra characters, NFERR is incremented by one and an appropriate error message is written.
- (10) Block 8. If the label list is not completed, control returns to block 6.
- (11) Blocks 9 and 10. If the number of labels equals the number of units, control is returned to the calling routine. If they are not equal, NFERR is incremented by one and a fatal error message is written.

10. ROUTINE UNTORD:

- a. Purpose. This routine processes unit scenario orders and conditionals. It determines the type of order and calls the appropriate order routine, stores the statement label if there is one, and calls COND if necessary.
- b. Input Variables. DSL common block variables LOCCLN, NFERR, STMT, LABEL, IALPH, OARY, IBLNK, ISTMT, ORDR, MXORD, JOA, and LOCPER.
- c. Output Variables. DSL common block variables LABEL, NFERR, JOA, and OARY.
 - d. Logical Flow (Figure III-2-B-5):
- (1) Block 1. If a colon is present in the statement, control transfers to block 2, or to block L2010 otherwise.
- (2) Blocks 2 and 3. If the label is legal (less than four characters), processing continues. If it is not legal, an error message is written.
 - (3) Block L1020. The label is stored in the array LABEL.

Figure III-2-B-5. Routine UNTORD (Continued on Next Page)

Figure III-2-B-5. Routine UNTORD (Continued)

Figure III-2-B-5. Routine UNTORD (Concluded)

- (4) Blocks L2010 and 4. If the statement contains a conditional, COND is called.
- (5) Block 5. COND returns parameter IAO. If this parameter is less than zero, the conditional is not valid, and processing of the statement is aborted by returning control to the calling routine.
- (6) Blocks L3030 and 7. If the order cannot be matched in array ORDR, an error message is written stating the order is invalid. If there is a match, the order type is determined by the value stored in the same position in ORDRN.
- (7) Block L3035. NORD is set equal to the identifying number associated with this particular order.
 - (8) Block 8. NORD determines which order routine to call.
- (9) Block 9. An error message is written if the value of NORD is invalid.
- (10) Blocks L4700, L4710, and L4717. These blocks are for GOTO orders. If the order is labeled or contains a conditional, the GOTO order requires a separate statement. Otherwise, GOTO is put at the end of the previous order.
- (11) Block L4200. This block checks for a fire on targets of opportunity (FOTO) order. If it is a FOTO order, routine STAY is called.
- (12) Blocks L4000, L4100, L4250, L4300, L4400, L4500, and L4600. These blocks call the appropriate order routines.

11. ROUTINE COND:

- a. Purpose. This routine decodes the conditional clauses of the unit scenario and battle paragraph orders. Each clause of a conditional is considered separately.
- b. Input Variables. DSL common variables NFERR, NWERR, ISTMT, STMT, LOCCM, JOA, OUT and OARY.
 - c. Output Variables:
 - (1) DSL Common Variables. NFERR, NWERR, ISTMT, OARY, and JOA.
 - (2) Other Variables:

Name	Destination	Contents
IOA	Cal1	Conditional clause indicator: Less than zero = fatal error in processing conditional 1 = clauses are connected by AND 2 = clauses are connected by OR.

III-2-B-20

KNTOA

Call

Number of clauses in statement.

- d. Logical Flow (Figure III-2-B-6):
- (1) Block L1000. Initialization in this block checks the conditional to be sure a comma is in the statement and writes an error message and aborts processing if it is missing. KNTOA and IOA are initialized and it is determined if each clause begins with if or when.
- (2) Block L1021. If the clause separators—and/or—are present in the conditional, the locations are stored. A check is made to assure both "and and "or" do not appear in the same conditional.
- (3) Blocks 1, 2, 3, and L1030. If the first character of the conditional is not a B or R, control is transferred to block L3000. If an R is found, another check must be made to determine if the relative humidity condition is being checked. If this is the case, control is transferred to block L2000; otherwise, the unit identification is stored and control passes to block L1045.
- (4) Blocks L1045 and 4. The conditional is checked to determine if 'not' is present. If it is, the indicator is stored in OARY.
- (5) Blocks L1200 and 5. The conditional is checked for 'HALTED AT' or 'AT LOCATION'. If one is found, the coordinate pair associated with it is stored in OARY and control passes to block L7000.
- (6) Blocks L1300 and 6. If the unit's activities of movement, stopping, or firing or of being assessed are to be determined the indicator is stored and control is transferred to block L7000.
- (7) Block L1500. If an equipment type conditional is found, the equipment type is stored and control is transferred to block L7000.
- (8) Blocks L1600 and 8. If the condition of class III, class V or present strength is detected, the indicator is stored and control is passed to block L2000.
- (9) Block L1700. If weather conditionals—cloud cover, fog index, relative humidity, temperature, visibility, wind speed or direction, and percipitation—are not found, control is transferred to block L1800; otherwise, control passes to block L2000.
- (10) Block L1800. This clause could not be recognized as a conditional; so, an error message is written and control is transferred to block L7000.
- (11) Blocks L2000 and 9. If 'not' is found in the conditional, its indicator is stored in OARY.
- (12) Blocks L2200 and 10. If a 'greater than', 'equal to' or 'less than' appears in the conditional, the appropriate indicator is stored.

Figure III-2-B-6. Routine COND (Continued on Next Page)

Figure III-2-B-6. Routine COND (Continued)

Figure III-2-B-6. Routine COND (Continued)

Figure III-2-B-6. Routine COND (Concluded)

- (13) Block L2300. The numeric quantity data associated with the conditional is decoded and stored.
- (14) Block 11. The value of the quantity data must fall in prescribed ranges. The allowed values are:
 - . visibility index, 1-9 inclusive
 - . cloud cover and relative humidity, 1-100
 - precipitation index, 0-2
 - temperature gradient, 1-4
 - wind direction, 0-360
 - fog index 0-1
 - wind speed, positive.

If values are found that are not within these ranges an error message is written.

- (15) Block L2600. Equipment type and present strength are compared to an absolute value or to a percentage of the amount authorized to the unit. If percent is found, it is stored.
- (16) Block L7000. If the conditional contains another clause, control transfers to block L1021; otherwise, it returns to the calling routine.
- (17) Blocks L3000 and 12. If the conditional contains a check against time, the time is decoded and stored, and control is transferred to block L7000.
- (18) Blocks L4000 and 13. If the condition to be considered is weather at a particular location, the coordinates are stored, and control is passed to block L2000; otherwise, control goes to block L1800.

12. ROUTINE AIRMOB:

- a. Purpose. This routine builds the list of modifiers for the orders accept transport, airmobile assult, mission is, and retain. If a required or exclusive modifier is missing in an order, an appropriate error message is written.
- b. Input Variables. DSL common block variables OARY, NFERR, MDFR, and JOA.
 - c. Output Variables. DSL common block variable NFERR.
 - d. Logical Flow (Figure III-2-B-7):
- (1) Block 1. Determine the order type (accept transport, airmobile assault, mission is, retain). Store the modifier indexes that correspond to the particular order in the array MDF.
- (2) Block L1000. KRAKMD returns MDF with the value zero replacing the index of each modifier that was found in the order.

Figure III-2-B-7. Routine AIRMOB
III-2-B-27

- (3) Block 2. MDF is checked to verify that all required modifiers were found in the order. If not, block L3000 is executed.
- (4) Block 3. MDF is checked to verify that one of each exclusive modifier set was found in the order. Block L3001 is executed for each set that is missing.
- (5) Block L3000. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written listing each required modifier omitted in the order.
- (6) Block L3001. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written listing each exclusive modifier set omitted in the order.

13. ROUTINE ENGR:

- a. Purpose. This routine builds the list of modifiers for the orders build, breach, and remove. If any exclusive modifiers are missing or there are too many modifiers input, an error message is printed.
- b. Input Variables. DSL common block variables OARY, NFERR, MDFR, and JOA.
 - c. Output Variables. DSL common block variable NFERR.
 - d. Logical Flow (Figure III-2-B-8):
- (1) Block 1. Determine the order type (build, breach, remove). Store the modifier indexes that are used with the particular order in the array MDF.
- (2) Block L302. KRAKMD returns MDF with the value zero replacing the index of each modifier that was found in the order.
- (3) Block 2. MDF is checked to verify that only one of each exclusive modifier set is in the order. If there are too many exclusive modifiers in the order, block L2000 is executed.
- (4) Block 3. MDF is checked to verify that one of each exclusive modifier set was found. Block L2001 is executed for each set that is missing.
- (5) Block L2000. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written.
- (6) Block L2001. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written listing each exclusive modifier set not found.

14. ROUTINE FIRE:

a. Purpose. This routine builds the list of modifiers for the orders fire (nuclear), fire (conventional), and engage. If any required or exclusive modifiers are missing, an error message is printed.

Figure III-2-B-8. Routine ENGR
III-2-B-29

- b. Input Variables. DSL common block variables OARY, NFERR, MDFR, and JOA.
 - c. Output Variables. DSL common block variable NFERR.
 - d. Logical Flow (Figure III-2-B-9):
- (1) Block 1. Determine the order type (fire, nuclear; fire, conventional; engage). Store the modifier indexes that correspond to the particular order in the array MDF.
- (2) Block L1000. KRAKMD returns MDF with the value zero replacing the index of each modifier that was found in the order.
- (3) Block 2. MDF is checked to verify that all required modifiers were found. Block L3000 is executed for each one that is missing.
- (4) Block 3. MDF is checked to verify that exclusive modifiers of each set was found. Block L3010 is executed for each set that is missing.
- (5) Block L3000. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written listing each required modifier not found.
- (6) Block L3010. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written listing each exclusive modifier set not found.

15. ROUTINE FLY:

- a. Purpose. The routine checks all of the required modifiers for the orders, fly, loiter, and reconnoiter. If any required modifiers are missing, an error message is printed for each required modifier not found in the order.
- b. Input Variables. DSL common block variables OARY, NFERR, MDFR, and JOA.
 - c. Output Variables. DSL common block variable NFERR.
 - d. Logical Flow (Figure III-2-B-10):
- (1) Block 1. Determine the order type (fly, loiter, or reconnaissance). Store the indexes of the modifiers that apply to the particular order in the array MDF.
- (2) Block L1001. KRAKMD zeros the positions in MDF corresponding to each modifier found in the order.
- (3) Block 2. MDF is checked to verify that all of the required modifiers were found. Block L2000 is executed for each modifier that is missing.

Figure III-2-B-9. Routine FIRE
III-2-B-31

Figure III-2-B-10. Routine FLY
III-2-B-32

(4) Block L2000. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written listing the required modifiers not found.

16. ROUTINE MOVE:

- a. Purpose. This routine builds the list of modifiers for the orders move, advance, and withdraw. If a required modifier is missing an error message is written. Also, if the order is advance or withdraw, the routine checks to determine if both width and depth modifiers were found if these optional modifiers were used.
- b. Input Variables. DSL common block variables OARY, NFERR, NWERR, MDFR, and JOA.
 - c. Output Variables. DSL common block variables NFERR and NWERR.
 - d. Logical Flow (Figure III-2-B-11):
- (1) Block 1. Determine the order type (move, advance, withdraw). Store the modifier indexes that correspond to the particular order in the array MDF.
- (2) Block 2. KRAKMD returns MDF with the value zero replacing the index of each modifier that was found in the order.
- (3) Block 3. MDF is checked to verify that all required modifiers were found in the order. If some were not found or incorrect modifiers were found, block 4 is executed.
- (4) Block 4. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written.
- (5) Block 5. MDF is checked to verify that both parts of the width-depth pair were found. If both were not found, block L2700 is executed.
- (6) Block L2700. The number of warning errors (NWERR) is incremented by one, and a warning error message is written.

17. ROUTINE STAY:

To a second seco

- a. Purpose. This routine builds the list of modifiers for the orders stay, prepare, and fire on targets of opportunity (FOTO). If any exclusive modifiers are missing or if more than one is input, an error message is written. Also, the width and depth are checked to determine if both were input if the width-depth optional modifiers are used.
- b. Input Variables. DSL common block variables OARY, NFERR, NWERR, MDFR, and JOA.
 - c. Output Variables. DSL common block variables NFERR and NWERR.

Figure III-2-B-11. Routine MOVE
III-2-B-34

The state of the s

d. Logical Flow (Figure III-2-B-12):

- (1) Block 1. Determine the order type (stay, prepare, fire on targets of opportunity). Store the modifier indexes that correspond to the particular order in the array MDF.
- (2) KRAKMD returns MDF with the value zero replacing the index of each modifier that was found in the order.
- (3) Block 3. MDF is checked to determine if exclusive modifiers were found in the order. Block 4 is executed if none were found.
- (4) Block 4. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written.
- (5) Block 5. MDF is checked to determine if more than one exclusive modifier was found in the order. Block L2600 is executed if more than one was found.
- (6) Block L2600. The number of warning errors (NWERR) is incremented by one, and a warning error message is written.
- (7) Block 6. MDF is checked to see that both parts of the width-depth pair were found in the order. If both were not found, block L2700 is executed.
- (8) Block L2700. The number of warning errors (NWERR) is incremented by one, and a warning error message is written.

18. ROUTINE TRANS:

- a. Purpose. This routine builds the list of modifiers for the orders assignment is, assume control of, detach, and join. If a required or exclusive modifier is missing, an appropriate error message is written.
- b. Input Variables. DSL common block variables OARY, NFERR, MDFR, and JOA.
 - c. Output Variables. DSL common block variable NFERR.
 - d. Logical Flow (Figure III-2-B-13):
- (1) Block 1. Determine the order type (assignment is, assume control of, detach, or join). Store the modifier indexes that correspond to the particular order in the array MDF.
- (2) Block L1000. KRAKMD returns MDF with the value zero replacing the index of each modifier in MDF that was found in the order.
- (3) Block 32. MDF is checked to verify that all required modifiers were found in the order. Block L3000 is executed for each one that is missing.

Figure III-2-B-12. Routine STAY
III-2-B-36

Figure III-2-B-13. Routine TRANS
III-2-B-37

- (4) Block 3. MDF is checked to verify that one of each exclusive modifier set was found. Block L2051 is executed for each set that is missing.
- (5) Block 4. MDF is checked to see that too many exclusive modifiers were not found. If too many were found, block L2050 is executed.
- (6) Block L3000. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written listing each required modifier omitted in the order.
- (7) Block L2051. The number of fatal errors (NFERR) is incremented by one, and an appropriate fatal error message is written.
- (8) Block L2050. The number of fatal errors (NFERR) is incremented by one, and an appropriate error message is written.

19. ROUTINE KRAKMD:

a. Purpose. This routine decodes the modifiers associated with a particular DSL order. As each modifier is found, an appropriate entry is made in OARY. Error checking is also done where possible.

b. Input Variables:

(1) DSL Common Variables. NFERR, NWERR, ISTMT, STMT, LOOPER, OARY, JOA, OUT, MXMDFX, and PERBG.

(2) Other Variables:

Name	Source	<u>Description</u>
MDF	Call	Array containing pointers to the modifiers that may be applied to this order.
NM	Call	Number of modifiers in MDF.

- c. Output Variables. DSL common variables NFERR, NWERR, ISTMT, JOA, and OARY.
 - d. Logical Flow (Figure III-2-B-14):
- (1) Block L5010. The number of modifiers (NM) is compared to the maximum number of modifiers (MXMDFR) to assure there is room in the MDF array. If there isn't an error message is printed and NM is set equal to MXMDFR. The first four characters of the modifiers are extracted from the MDFR array and stored one-character-per-word in the MDFX array.
- (2) Block L5100. The STMT array is scanned from ISTMT to LOOPER for a numeric character. If one is found, its location is stored in MXC and the numeric string is converted to an integer and stored in IVAL.

Figure III-2-B-14. Routine KRAKMD (Continued on Next Page)

Figure III-2-B-14. Routine KRAKMD (Continued)

Figure III-2-B-14. Routine KRAKMD (Concluded)

- (3) Block L5200. The STMT array is scanned from ISTMT to MXC to determine if a modifier is in that character string. If none is found, a message is printed and the remaining statement is processed. If a modifier is found, IM is set to its index and is used to determine the next block of code to be processed.
- (4) Block L100. The aircraft item code is stored in the tenth position in the order array (OARY) and checked to determine if it is less than or equal to 200. An error message is printed if it is not. Control is transferred to block L6010.
- (5) Block L200. The altitude is stored in position four in the order array (OARY) and control is passed to block L6010.
- (6) Block L300. The speed is stored in the third position of OARY and control is transferred to block L6010.
- (7) Block L400. Routine TIME is called to store the time in OARY(2) and control passes to block L6050.
- (8) Block L500. The width is stored in OARY(19) and control passes to block L6010.
- (9) Block L600. OARY(3) is set to one if a bridge or facility is the modifier and remains zero if a barrier is the modifier. The barrier code is stored in OARY(4) and OARY(5) and checked to determine if the last three characters are numeric. If they are not, an error message is written. Control passes to block L6010.
- (10) Block L700. The begin-by code of one is stored in OARY(7) and control is transferred to block L1000.
- (11) Block L900. The travel mode mnemonic or reconnaissance by code is stored in OARY(17). The mnemonic or code is checked to determine that it is legitimate and an error message is printed if it is not. Control passes to block L6050.
- (12) Block L1000. Write an error message if the time data are missing; otherwise, call TIME to store the begin-by or complete-by time in OARY(9). Transfer control to block L6050.
- (13) Block L100. Store depth in OARY(20) and pass control to block L6010.
- (14) Block L1200. Store the value of zero in OARY(8) to indicate a desired engineer task and pass control to block L6050.
- (15) Block L1300. Store, in OARY(8), a one if the modifier is direct support, two if modifier is reinforcing, or three if modifier is general support-reinforcing. Transfer control to block L3100.
- (16) Block L3100. Store the unit identification in OARY(11) and OARY(12); call CHCKID to determine if it is legitmate, and transfer control to block L6050.

- (17) Block L1500. Store the time in OARY(2) if the modifier is until; otherwise, add the beginning of the period time (PERBG) to the time and store the negative of the sum in OARY(2). Pass control to block L6050.
- (18) Block L1600. If the modifier is general support-reinforcing unit, transfer control to block L1300; otherwise, control is transferred to block L6050.
- (19) Block L1700. Store height of burst in OARY(10), write an error message if its value is greater than four, and transfer control to block L6010.
- (20) Block L1800. Store impact radius in OARY(9), and pass control to block L6010.
- (21) Block L1900. Store the battle identification in OARY('), and OATY(14), and pass control to block L6050.
- (22) Block L2000. Store the value of one in OARY(8) to indicate a mandatory engineer task and transfer control to block L6050.
- (23) Block L2100. Store mix in OARY(10), write an error message if its value is greater than 10, and transfer control to block L6010.
- (24) Block L2200. Store the munition type in OARY(8), write an error message if its first character is not A, D, or N, and pass control to block L6050.
- (25) Block L2300. Determine if the remainder of the number-of modifier is aircraft, escorts, rounds, volleys, or trips. Store number of aircraft in OARY(9), number of escorts in OARY(12), number of rounds or volleys in OARY(7) with number of rounds being stored as the negative value, and number of trips in OARY(9) as a negative value. Transfer control to block L6010.
- (26) Block L2400. Store the X coordinate in OARY(5) and the Y coordinate in OARY(6) if it is an on modifier and in OARY(15) and OARY(16) otherwise. If the modifier is either over or to, scan the statement for other coordinate pairs. A check is made to assure that all coordinates are written in pairs, the location defined is in the defined game area, and the coordinates are composed of seven digits. An appropriate message is written if any condition is not met. Control passes to block L6010.
- (27) Block L2600. The priority code is stored in OARY(6) if the order is an engineering order and in OARY(18) otherwise. Control passes to block L6010.
- (28) Block L2800. The target number is stored in OARY(12) and control is passed to block L6010.
- (29) Block L3000. The type is stored in OARY(8), an error message is written if it is not alphabetic, and control is transferred to block L6010.

- (30) Block L6010. ISTMT is moved to point to the last numeric character in the data just processed.
- (31) Block L6050. If any of the statement remains to be processed, control passes to block L5100.
- (32) Block L7000. Orders that have multiple coordinate pairs input are expanded so that only one coordinate pair appears in each order in the final array. The other modifiers are copied into each of these orders. Reconnaissance orders are limited to seven pairs and airmobile assault orders are allowed only four pairs. A message is written if these limits are exceded. OARY(5) is set to one in the order containing the last coordinate pair for the reconnaissance order. OARY(2) is set to negative one for all airmobile assault orders except the last order.

20. ROUTINE STOW:

- a. Purpose. This routine stores the unit scenario or battle paragraph orders in the DSL order file and the number of orders in the unit battle table (UBT) array.
- b. Input Variables. DSL common variables UBFLG, UNTPT, BATPT, LABEL, OARY, JOA, NFERR, and ORDFIL.
 - c. Output Variables. DSL common variables. UBT, NFERR, and RECPT.
 - d. Logical Flow (Figure III-2-B-15):
- (1) Block 1. The variable UPFLG is checked to determine if a unit scenario or battle paragraph is to be stored. If UPFLG is not equal to one indicating it is not a unit scenario, control is transferred to block L2000; otherwise, block 2 is executed.
- (2) Block 2. If a unit scenario has been processed, the labels associated with the orders are stored on the DSL data file, and the number of orders in the scenario is stored in UBT.
- (3) Block L2000. The number of orders associated with the battle is stored in the UBT array.
- (4) Block L2100. The unit scenario or battle paragraph orders stored in OARY are put on to the DSL data file and the record pointer (RECPT) is updated.

21. ROUTINE PASS2:

a. Purpose. This routine processes the second pass necessary to complete the compilation. During this pass, the alphanumeric labels stored by the first pass of the compiler, are converted to the numeric position of the order associated with the label. Some error checks are also made by the routine.

Figure III-2-B-15. Routine STOW

- b. Input Variables. DSL common variables. NFERR, NWERR, UBT, UNTPT, BATPT, OARY, LABEL, ORDFIL, and OUT.
 - c. Output Variables. DSL common variables NFERR and NWERR.

Name Destination Contents

OARY DFORDFIL

Unit scenario or battle paragraph orders.

- d. Logical Flow (Figure III-2-B-16):
- (1) Block 1. If UNTPT is less than one, no unit scenarios were processed and control is transferred to block L1450.
- (2) Block 2. The next unit scenario and its labels are retrieved from the DSL data file. Each order is checked to determine if it contains a label. If it does, the label array is searched for a match. If a match is found, the alphanumeric value of the label in the order is replaced by its numeric position in the label array. If the label is not in the label array, an error message is printed.
- (3) Block 3. The engage order is preceded by an advance order. If another relationship occurs, an error message is printed.
- (4) Block L1270. Each order is checked to determine if it contains a battle identification. If it does, CHCKID is called to determine if a battle paragraph was input for a battle of that name.
- (5) Block L1300. The processed order array is restored in the DSL order file.
- (6) Block L1400. If another unit scenario is to be processed, control is transferred to block 2; otherwise, block L1450 is executed.
- (7) Block L1450. The battle paragraph of the next battle to be processed is read and the orders are scanned to determine those that contain conditionals or unit scenario labels. The locations of orders containing labels are stored in LABEL.
- (8) Block L2100. The labels associated with each unit participating in the battle are retrieved from the DSL data file. The alphanumeric labels stored in the battle paragraph are matched with a label in the array; and, if a match is found, the location of the label is stored in the battle paragraph. An error message is written if the label cannot be matched.
- (9) Block L2400. If another participating unit is to be processed, control is transferred to block L2100; otherwise, block L2500 is executed.
- (10) Block L2500. If another battle is to be processed, execute block L1450; otherwise, return control to the calling routine.

Figure III-2-B-16. Routine PASS2

22. ROUTINE DUMPF:

a. Purpose. This routine is designed to give a formatted dump of the DSL data file. This dump is optional at the time the data are compiled and is obtained by specifying the DEBUG option on the DSL card.

b. Input Variables:

- (1) DSL Common Variables. ORDFIL and OUT.
- (2) Data File Variables. PERDAY, PERHR, PERMIN, UBT, UNTPT, BATPT, OARY, JOA, LABEL, RECPT, and the length of period.
- c. Output Variables. The input variables listed above are output to the line printer.

d. Processing Description:

- (1) The first portion of the routine calls PAGE to eject the page and write the page title. PAGE writes the time the period begins, the length of period, start of game/start of period flag, UNTPT and BATPT. A description of the formats used to write the engineer orders, airmobile orders, conditionals, and other orders is written.
- (2) The next portion of the routine reads each unit scenario and its labels, scans each order in the scenario, and prints the order and the appropriate label using a format described above.
- (3) The last portion of the routine reads the orders for each battle paragraph, prints the list of participating units, and prints the conditional and labels list with appropriate formats.

23. ROUTINE PAGE:

- a. Purpose. This routine writes a new DSL period page header and page number at the top of each new DSL compilation page.
- b. Input Variables. DSL common block variables LNCNT, MXLN, PGNO, PERDAY, PERHR, PERMIN, PERED, PEREH, and PEREM.
 - c. Output Variables. DSL common block variables. PGNO and LNCNT.
 - d. Logocial Flow (Figure III-2-B-17):
- (1) Block 1. If the line counter (LNCNT) is less than the maximum number of lines (MXLN), control returns to the calling routine, otherwise, block 2 is executed.
- (2) Block 2. The page number (PGNO) is incremented by one and the line counter (LNCNT) is reset to zero.
- (3) Block 3. The DSL compilation page header and page number is written.

Figure III-2-B-17. Routine PAGE
III-2-B-52

24. ROUTINE TIME:

- a. Purpose. This routine converts the character time expressed in days, hours, and minutes, or as six digits, to an integer time in centiminutes.
 - b. Input Variables:
- (1) DSL Common Block Variables. ISTMT, STMT, IALPH, PERBG and NFERR.
 - (2) Other Variables:

Name	Source	<u>Contents</u>
LOC	Call	Pointer to the first character following the first numeric field.
IF	Call	<pre>Fatal error test indicator: IF = 0, do not check, less than PERBG IF = 1, check, less than PERBG.</pre>
IVAL	Call	Integer value of first numeric character.

- c. Output Variables:
 - (1) DSL Common Block Variables. NFERR and ISTMT.
 - (2) Other Variables:

Name	Destination	Contents
LOC	Call	POINTER to second character following last numeric field.
IT IME	Call	Time in centiminutes.

- d. Logical Flow (Figure III-2-3-18):
- (1) Block L31. Determine if the characters following the first numeric value are DA, HO, HR, or MI. If they are, the corresponding value (ID, IH, or IM) is set equal to IVAL; otherwise, the time is assumed to be in the six-digit format and block L1 is executed.
- (2) Block Ll. IVAL is divided into day, hour, and minute values. The day, hour, and minute values are converted to centiminutes and summed.
- (3) Block 2. FINDN is called and returns the location of the next numeric character.
- (4) Block 3. IBCD is called and returns the integer value of the numeric characters found by FINDN.

Figure III-2-B-18. Routine TIME
III-2-B-54

- (5) Block 4. The values of ID, IH, and IM are checked. If any value is equal to zero, block 9 is executed; otherwise, control goes to block 5.
- (6) Block 9. If the end of the statement has not been reached, execute block L31.
- (7) Block 5. The day, hour, and minute values (ID, IH, and IM) are converted to centiminutes and summed.
- (8) Block 10. The time the period began (in centiminutes) is subtracted from the time calculated and the result is stored in ITIME.
- (9) Block 6. The value of IF is checked. If IF is nonzero, block 7 is executed; otherwise, control is returned to the calling routine.
- (10) Block 7. If the time in centiminutes is less than PERBG, block L2 is executed; otherwise, control is returned to the calling routine.
- (11) Block L2. The number of fatal errors (NFERR) is incremented by one, and an error message stating that the time is prior to the beginning of the period is written.

25. ROUTINE CHCKID:

- a. Purpose. This routine checks the unit identification to determine if it begins with B or R and contains eight characters. It also checks to determine if the unit exists, is a resolution unit, and is not a duplicate unit. Battle identifications are checked to determine if any name contains more than eight characters and if the battle is duplicated.
 - b. Input Variables.
- (1) DSL Common Block Variables. UNTPT, BATPT, IBLNK, UBT, UBFLG, UBID, NFERR, and NWERR.
 - (2) Common TWO Variable. UNTLOC.
 - (3) Other Variables:

Name	Source	Contents
IFLG	Call	Flag indicating type of checking requested on UB. 0 = UID - check for duplication check for eight characters check for B or R in first character check for resolution unit.

BID - check for duplication.

Contonto

Contents

- 1 = check UID only for 8 characters and B or R in first character.
- 2 = check to see if BID is in UBT.

UB

Call

Containing unit or battle identification to be checked (double precision).

- c. Output Variables.
 - (1) DSL Common Block Variables. NFERR, NWERR.
 - (2) Other Variables. None.
- d. Logical Flow (Figure III-2-B-19):
- (1) Block 1. The value of IFLG determines the type of check to be If IFLG is equal to zero, block L19 is executed. Block L2 is executed if IFLG is equal to one and block 2 is executed if IFLG is equal to two.
- (2) Block L2. The unit identification is checked to verify that it contains eight characters. Block L8 is executed if the unit identification does not contain eight characters.
- (3) Block L91. The first character of the unit identification is checked. Block L9 is executed if the first character is not B or R.
- (4) Block 3. If IFLG is equal to one, control is returned to the calling routine. Block 4 is executed if IFLG is not equal to one.
- (5) Block 4. Routine IUIDF returns the identification number of a unit. Block 5 is executed if the subscript is greater than one and block L15 is executed if the subscript is equal to zero.
- (6) Block 5. If the unit's location is equal to zero, block L10 is executed. Control is returned to the calling routine otherwise.
- (7) Block L19. Block L22 is executed if UBFLG is equal to one; otherwise, block L21 is executed.
- (8) Block L22. UBID is checked to determine if the unit identification is a duplicate. Block L7 is executed if the unit is a duplicate; otherwise, block L2 is executed.
- (9) Block L21. UBID is checked to determine if the battle identification is a duplicate. Block L4 is executed if it is a duplicate, or block 2 is executed if it is not.
- (10) Block 2. If the ninth character of the battle identification is not a blank, the identification is greater than eight characters and block L14 is executed. If it is a blank, control is returned to the calling routine.

Figure III-2-B-19. Routine CHCKID

- (11) Block L8. The number of fatal errors (NFERR) is incremented by one, and an error message is written stating the unit identification contains fewer than eight characters.
- (12) Block L9. The number of fatal errors (NFERR) is incremented by one, and an error message is written stating the unit identification does not begin with B or R.
- (13) Block L15. The number of warning errors (NWERR) is incremented by one, and an error message is written stating the unit does not exist.
- (14) Block L10. The number of warning errors (NWERR) is incremented by one, and an error message is written stating the unit is not a resolution unit.
- (15) Block L7. The number of fatal errors (NFERR) is incremented by one, and an error message is written stating the unit is a duplicate.
- (16) Block L4. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written stating the battle is a duplicate.
- (17) Block L14. The number of fatal errors (NFERR) is incremented by one, and a fatal error message is written stating the battle identification contains more than eight characters.

26. ROUTINE IUIDF:

- a. Purpose. This routine scans the list of units (UIDTAB) and returns the location of the unit identification input to it.
 - b. Input Variables:
 - (1) Standard Common Block Variables. UIDTAB, BPOINT, and RPOINT.
 - (2) Other Variables.

Name Source Description

NUID Call Unit identification to be matched.

c. Output Variables:

The state of the s

Name Destination Description

IUIDF Call Location in UIDTAB of NUID.

d. Processing Description. The routine determines if the unit is Blue or Red force. Using this information it initiates a search loop from one to BPOINT or RPOINT to 1000. If the unit identification input is matched in the list of units (UIDTAB), its location is returned in IUIDF; otherwise, a zero is returned. If the unit identification input (NUID) has a first character that is neither B nor R, an error message is printed and a zero is returned

27. ROUTINE MATCH:

a. Purpose. This routine searches for a string of characters in STMT that matches a string of characters in MDFX.

b. Input Variables:

- (1) DSL Common Block Variables. STMT, ISTMT, IBLNK, and IPEP.
- (2) Other Variables:

Name	Source	Contents
MDFX	Call	Array of character strings to be matched (one character per word, left justified, blank filled).
NM	Call	Number of character strings.
MXC	Call	Index of STMT where search will end.

c. Output Variables:

- (1) DSL Common Block Variable. ISTM (pointing to the last character processed).
 - (2) Other Variables:

Name	Destination	Contents
IFND	Call	Pointer to the string matched: 0 = no match was found 1 = a period was encountered.

d. Logical Flow (Figure III-2-B-20):

- (1) Block L1000. The statement pointer (ISTMT) is incremented by one so it points to the character being analyzed.
- (2) Blocks 1 and L7000. A check determines if the character being analyzed is a period. If it is, block L7000 sets IFND equal to negative one.
- (3) Blocks 2 and 3. It is determined whether the character being analyzed is equal to the first character of a string in MDFX. If it is not equal, the index of MDFX is incremented to the next string.
- (4) Blocks 4, L2010, and 5. A check determines if the next three characters in STMT are equal to the next three characters of the string in MDFX. If they are equal, IFND is set equal to the pointer of the string matched in MDFX and ISTMT is set equal to the pointer to the last character processed.

Figure III-2-B-20. Routine MATCH
III-2-B-60

(5) Blocks 6 and L1500. A check determines if the search is terminated (MXC -1 > ISTMT). If so, IFND is set equal to zero.

28. ROUTINE FINDN:

- a. Purpose. This routine locates the next numeric character in a string of characters and returns a constant containing the number of nonnumeric characters encountered before a numeric was encountered.
 - b. Input Variables:
 - (1) DSL Common Block Variables. IPER and INGR.
 - (2) Other Variables:

Name	Source	Contents
S	Call	Array containing the character string.

c. Output Variables:

Name	Destination	<u>Contents</u>
N	Call	Number of nonnumeric characters encountered
		before a numeric was encountered.

- d. Logical Flow (Figure III-2-B-21):
- (1) Block 1. Character S(N) is checked to determine if it is a period. If S(N) is a period, block 3 is executed; if not, block 2 is executed.
- (2) Block 2. If S(N) is numeric, block 4 is executed; if not, block 5 is executed.
 - (3) Block 3. The value of N is set to negative one.
 - (4) Block 4. One is subtracted from the value of N.
 - (5) Block 5. N is incremented by one.

29. ROUTINE EXPAND:

- a. Purpose. This routine expands and unpacks the number of character strings that are stored in the array M to the array MX.
 - b. Input Variables.

Name	Source	Contents
М	Call	Array containing original character strings four characters per word, left justified, and blank filled.
N	Call	Number of character strings.

III-2-B-61

Figure III-2-B-21. Routine FINDN III-2-B-62

c. Output Variables.

Name	Destination	Contents
MX	Call	Array containing character strings (one character per word).

d. Processing Description: EXPAND calls MVCHAR four times for each string and stores one character in one word of MX during each call.

30. ROUTINE IBCD:

- a. Purpose. This routine converts numeric characters to an integer value and returns the integer value, the number of characters converted, and the statement pointer.
 - b. Input Variables:
 - (1) DSL Common Block Variables. STMT and INTGR.
 - (2) Other Variables:

Name	Source		Conte	nts		
ISTM	Call	Pointer to	 		character	to

c. Output Variables:

Name	Destination	Contents
ISTM	Call	Pointer to first nonnumeric character encountered.
NC	Call	Number of numeric characters encountered.
IR	Call	Integer value of converted characters.

d. Processing Description. NC and IR are initialized to zero. Each numeric character encountered is converted by multiplying the previous value of IR by 10 and adding the value of the new character. Each time a numeric is encountered NC and ISTM are incremented by one.

31. ROUTINE RBCD:

- a. Purpose. This routine converts numeric characters to real values and returns the real value, the number of characters converted, and the statement pointer.
 - b. Input Variables:
 - (1) DSL Common Block Variables. STMT and INTGR.

III-2-B-63

(2) Other Variables:

Name	Source	Contents
ISTM		Pointer to the first numeric character to be converted in STMT.

c. Output Variables:

Name	Destination	Contents
ISTM	Call	Pointer to first nonnumeric character encountered.
NC	Call	Number of numeric characters encountered.
R	Call	Real value of converted characters.

d. Processing Description. NC and R are initialized to zero. Each numeric character encountered is converted by multiplying the previous value of R by 10 and adding the value of the new character. Each time a numeric is encountered NC and ISTM are incremented by one.

APPENDIX C

DIVWAG SCENARIO LANGUAGE COMPILER OUTPUT DESCRIPTIONS

- 1. INTRODUCTION. This appendix contains samples and detailed descriptions of printed output from routines within the DIVWAG Scenario Language (DSL) Compiler of the Orders Input Processor. A figure depicts the format of each routine's print statements. In the figure, an alphabetical character (descriptor) designates an appropriate line, group of lines, or column that is explained in the following paragraphs.
- 2. ROUTINE DSLINT. This printed output (Figure III-2-C-1) is a listing of the DIVWAG file name table. Column 1 lists the number of the file; column 2 contains the starting address of the file; column 3 contains the number of words per record; and column 4 contains the number of records in the file.
- 3. ROUTINE RDSTMT. Routine RDSTMT lists the input cards as they are read. Figure III-2-C-2 illustrates several different kinds of input cards:

Output <u>Descriptor</u>	Explanation
A	The DSL control cards are listed in this group. The first card contains the debug option; the second card indicates this period is to start at day 1, hour 5, and minute 0; and the third card sets the period length to 150 minutes.
В	This printout contains examples of unit scenarios. The Blue force unit, Bl011ZAR, has two MOVE orders followed by a PREPARE order. The Red force unit, Rl330ZTK, has a PREPARE order contingent upon a conditional, a pseudo order GOTO also contingent upon a conditional, an ADVANCE order, an ENGAGE order, and a second PREPARE order. Its scenario also contains a COMMENT and two labeled order.
С	The battle MECH3 will involve the units R2110ZTK, R2120ZTK, R2130ZTK, and B8001ZAR which will execute orders labeled M3, M3, M3, and M1 in their respective unit scenarios when game time exceeds day 1, hour 5, and 14 minutes.

- 4. ROUTINE PAGE. This routine positions the printer at the top of the next page and prints the header shown in Figure III-2-C-3.
- 5. ROUTINE PASS2. This routine prints the following message:

PASS2 DIAGNOSTICS

It is printed at the top of the page as an indication that the routine has been entered and to separate any diagnostic print from the listing of the data input cards.

		FNT	
1	27393	512	1300
2	2558442	35	4250
3	121361D	10	15001
4	893273	9	3333
5 6	0 556273	0	9 463
7	275273 1930483	10 300	52
8	1353520	3200	1
9	1976383	1000	5
10	0	3063	Ó
11	976222	512	249
12	2149842	35	3000
13	1366820	481	431
14	1984583	20	95 0
15	1981383	200	16
16	2129942	50000	1
17	1103710	783	157
18	2452442	6	1100
19 20	2003583 956222	120 20	50 1000
21	539393	256	105
22	27 07 1 92	752	50
23	2054376	25	200
24	1946083	1212	25
25	257	27092	1
26	1527621	. 72	616
27	1571973	112	1300
28	2009583	189	237
29	920570	215	72
30	2722232	2149	23
31 32	2059376 C	10 0	4195
33	0	ū	9 0
34	0	ŭ	3
35	Ď	Ď	Č
36	935122	20100	i
37	2468442	60	1500
38	0	0	0
39	2101326	14255	2
40	<u>0</u>	0	0
41	1824043	340	84
42	1852603	680	21
43	1855883	3400	500
44 45	1880483 1683973	100 35	500 4302
46	10034/3	37	4102
47	ő	ž	Ď
48	2254842	1212	50
49	0	5	0
50	570273	203	1300
51	772273	1000	5
52	774273	20?	500
53	875273	24	750
54	0	0	0
55	2315442	21	7300
56	0	0	30

Figure III-2-C-1. Routine DSLINT Printed Sample Output

Figure III-2-C-2. Routine RDSTMT Printed Sample Output

PAGE

DEPIOD STARTS 1 DAY 5 HOUR D MINUTES ENDS 1 DAY 7 HOUR 30 MINUTES.

Figure III-2-C-3. Routine PAGE Printed Sample Output

III-2-C-3

6. ROUTINE DUMPF. This routine gives a formated dump (Figure III-2-C-4) of the tables generated by the DSL compiler if the DEBUG parameter is specified on the first DSL control card.

Output Descriptor	Explanation	
A	The banner line is printed and the day, hour, and minute the period begins and the length of the period are listed.	
В	The period type and an explanation of its meaning is listed on the first line. The following lines give the pointers to the last positions used in the unit battle table.	
c	All order information is not stored in the same format. Descriptor C lists the various formats used to print the unit scenario orders shown in descriptors F and G. The first column printed by each format (JOA) is the counter indicating the relative record the order is placed in. Column two contains the label associated with the order. If the order was not labeled, that space will be blank. The third column contains the order number (referred to as NORD in the Period Processor), if the value is greater than zero. If the value is a -1 the pseudo order GOTO is indicated. If the value is less than -1 a conditional is stored in that record. A description of the remaining columns is tabulated below for each format type.	
	Engineer orders, NORD = 42, 43, 44, 45 BARR-BRID-FAC CODE: code indicating type of engineering structure; 0 = barrier, 1 = bridge or facility BID(1): first half of barrier-facility name BID(2): second half of barrier-facility name PRIORITY: priority of task TIME FLAG: 0 = complete by, 1 = begin by DESIR/MAND: 0 = desired, 1 = mandatory ENG TIME: time i centiminutes	
	Airmobile orders, NORD = 20, 39, 40, 41 AT TIME: time associated with order NO. OF A/C, NO. TRIPS: value greater than 0 indicates	

MIX: transport-escort mix code or aircraft item code NO. OF ESCORTS: number of aircraft or target number OBJX,OBJY: coordinates of mission destination

number of trips

JOA.LAGEL.NORD.PARR-RPID-FAC CODE, SIGHII. SIDHZI.PCIG-TIY.IIME FLAG. DESIR/MAND. ENG TIME FORMAT FOR AIRMOBILE DROERS WITH NOOD=(20,39,40,41) FORMAT FOR ENGINEER OPDERS MITH NORD= (42,43,44,45) JOB.LANEL, HORD, FFCD., TUTO(1), TUTO(2), GTTME, XLOG, YLOG, AVAL, PVAL, HOT, LOS, TFC POINTER-FALSE, POINTER-FRUE NROFAFILE TIME FOUTINE JUMPE C - JOA.LABEL, HOPE, AT TIME, NO. A/C> 3, NO. TRIPSES, MIX. NO. OF SSCORTS, D9JX, J9JY FORMAT FOR TRUTH FUNCTION ORDERS, NOPOI-1 15000 BATPT= 1019 POINTEP TO THE LAST BATTLE LGADED LENGTH OF PFPIOP IN CENTIMI VUTES MINUTE PERIOD REGINS 9 HOUR PERIOD BEGINS DAY PERION REGINS **@**

Figure III-2-C-4. Routine DUMPF Printed Sample Output (Continued on Next Page)

JOB.LBAFL.NORD.NIIME.AIRSPD.ALT.DGZX.DGZY.NOR.HUNTPY.IZ.HOB.COMPUID.3ATID.O9JX.O9JY.RP2CD.HOVPPIY. BLANK.BLANK.PDIMTFR

FORMAT FIR NORMAL ORDERS NORD ANVIHING NOT PREVIOUSLY SOFCIFIED

1		UID	PCOUNTER ANT NUMO	URECNO
ļ				
	1 1	BAG127MT	1 1	202 208
	2	RAD11ZMT		214
	2	BR0027AP Br0017AR	1	220
	5	B131174R	13	226
	ا أ	B1021ZAP	15	244
	,	B 10317MT	13	264
	,	910107CA	11	262
	9	81013CAC	1	298
	10	B10237AH	?	304
	11	9101AWPL	1	311
	12	BIDAVIBN	1	317
	13	B10137AC	12	323
© -	14	B1199FH0	4	340
	15	R12PDEHO	4	349
	16	B13ACPH0	5	359
	17	BSAIRSUR	?	368
	18	BIAIRFLT	6	375
	19	RSAIRFLY	7	386
	20	BIAFRYRP	2	393
	21	BIACHECE	5	405
	52	BSALSECE	5	415
	23	REDECEDE	1	425
	24	R1910PCN	1	431
	25	P13107TK	7	437
	26	9132071K	,	449 461
	27	R13367TK	í	473
	28	R14307MT	2	479
	29	R144371K R7310RCN	1	486
	30	R21107TK	7	492
	31	R21207TK	7	504
	33	R21767TK	7	515
	34	924407TK	i	528
	35	R2410ZMI	i	534
	36	R10000PS	ā	542
	37	R20000R5	ě	553
	38	PIAIRPON		565
	39	REATERCH	5	575
	L 46	PF4AIRFT	5	585
	Γ	8 10	THUP CHA- OMUN	BRECNO
6	1	LONG	7024	611
(E)-	1 2	ME DH3	6304	605

ſ	810	THUP CHA- OMUN	BRECNO
E	1 LONG	7024	611
	2 MECH3	6304	605
	A MECHS	6002	599
[_ 4 MECH1A	5003	593
	= MECH1	6003	587

Figure III-2-C-4. Routine DUMPF Printed Sample Output (Continued)

Routine DUMPF Printed Sample Output (Continued) Figure III-2-C-4.

Figure III-2-C-4. Routine DUMPF Printed Sample Output (Concluded)

Output Descriptor

Explanation

Conditionals, value of column 3 is less than zero

TFCD: conditional code - printed in column 3

TUID(1): first word of UID
TUID(2): second word of UID

CTIME: time associated with conditional

XLOC, YLOC: X,Y coordinates associated with conditional AVAL: amount of equipment item associated with conditional PVAL: percent of equipment item associated with conditional

NOT: value is true if negator appears in conditional

LOG: logical variable indicator; l = less than, 0 = equal

to, +1 = greater than
IEC: equipment item code

Other orders

NTIME: time in centiminutes, negative if data were from

FOR modifier
AIRSPD: air speed
ALT: altitude

DGZX,DGZY: designated ground zero X and Y coordinates

NOR: number of rounds MUNTPY: munition type IR: impact radius HOB: height of burst

COOPUID: UID of cooperating unit BATID: battle identification

OBJX, OBJY: coordinates of destination

RRRCD: travel mode mnemonic or reconnaissance by code

MOVPRTY: priority of movement

The last two columns printed are reserved for pointers to other orders; they contain nonzero values for all conditionals, and the last column will be nonzero for the pseudo order GOTO.

- D Descriptor D lists the unit portion of the unit battle table. Column 1 numbers the units as they are listed and also serves as a page index to the following printout. Column 2 contains the unit identification; column 3 contains integers indicating the number of DSL data file records required to store the unit scenario; and the fourth column contains the number of the first record used to store the scenario.
- E The format of the battle portion of the unit battle table listed in group E is similar to that of the unit portion.

 Again, column 1 numbers the battles and serves as a page index to that portion of the following printout. Column 2 contains the identification of the battle. Column 3 contains

Output Descriptors

Explanation

two variables packed in each word. The rightmost three digits indicate the number of units involved in the battle, and the remaining digits denote the number of records required to store the battle paragraph information. Column 4 contains the record number of the first record used to store that battle paragraph.

- F Group F is a formatted dump of the table generated from the orders contained in the unit scenario of unit B1011ZAR. It is unit number 5 in the directory table listed in descriptor D and it's unit scenario is listed in RDSTMT (descriptor group B, Figure III-2-C-2). As indicated by the last print format described in descriptor C, the first column is a counter of the records used to store the orders. The second column is blank. The third column gives the order number (NORD). The fourth column contains meaningful information only in the thirteenth record. The value listed is the number of centiminutes from the start of the period to the time input in the PREPARE order. The last three columns contain the X and Y coordinates and the travel mode mnemonic respectively. It should be noted that one record is generated for each coordinate pair in each MOVE order.
- Group G lists the table generated from the unit scenario of R1330ZTK unit number 27 in the directory. Again, column 1 is the record counter. Column 2 contains the labels of the labeled orders. Column 3 contains order codes. The positive numbers are NORDs and the negative numbers indicate a conditional or a GOTO pseudo order. This column also serves as an index to the format descriptions listed in descriptor group C.
- H This group lists the information stored for battle MECH3. Its battle paragraph is listed in RDSTMT (descriptor C, Figure III-2-C-2). The second line contains a list of the units participating in the battle. The remaining lines list the conditionals and the associated labels. Note that the record count in column one begins with 5; the first four records are reserved for the list of participating units, and record number 5 is the time conditional. The last two columns listed for a conditional contain the record numbers to be transferred to (i.e., if the conditional is false or true respectively). Record 6 now contains the record numbers of the orders that the participating units are to execute if the battle is terminated by this conditional.

APPENDIX D

SOURCE LISTINGS FOR ORDERS INPUT PROCESSOR DIVWAG SCENARIO LANGUAGE COMPILER

(AVAILABLE UNDER SEPARATE COVER)

CHAPTER 3

OPERATING INSTRUCTIONS

- 1. INTRODUCTION. The Operating Instructions (OPERINS) loader provides a means for the gaming staff to interject, at the beginning of a period of simulated combat, certain items for the control of ground-based sensors, for the introduction of intelligence from sources beyond the scope of the sensors simulated within the DIVWAG Period Processor, and for the control of fire support allocation. Operating Instructions input must be provided for the initial period of a game to initialize ground-based sensors and fire support allocation control and may be provided for any following game period.
- 2. GROUND-BASED SENSORS. The classes of ground-based sensors for which Operating Instructions are required include moving target indicator (MTI) radars, countermortar and counterbattery (CM/CB) radars, air defense (AD) radars and unattended ground sensor (UGS) fields. Basic hardware characteristics of these classes of sensors are loaded within the Intelligence and Control Model constant data base (Section IV, Chapter 6, Appendix A). Operating Instructions identify individual radars and unit ground sensor fields as to their locations, operational constraints that are expected to vary in the course of a game, and composition for UGS fields.
- 3. INTRODUCTION OF INTELLIGENCE. Collection of information concerning the enemy force is simulated within the DIVWAG system for selected ground-based and aerial sensors typically available to the committed forces. Explicit simulation of all potential sources of information is not attempted. Through the use of Operating Instructions, the gaming staff may introduce additional information concerning the opposing forces. Such information may be routed through the information processing areas of the Intelligence and Control Model and/or through fire support allocation areas of the model at the discretion of the gaming staff.
- 4. FIRE SUPPORT ALLOCATION CONTROL. Operating Instructions allow the gaming staff to set the most critical parameter used within the system to control the allocation of fire support and to define the number and type of tactical air sorties available to the respective forces.

APPENDIX A

OPERATING INSTRUCTIONS DATA INPUT REQUIREMENTS

1. SENSOR CONTROL. The DIVWAG system will simulate up to 100 model sensors for each opposing force where a model sensor is an individual moving target indicator (MTI), countermortar/counterbattery (CM/CB), or air defense (AD) radar or an unattended ground sensor (UGS) field. Each such model sensor is defined to the DIVWAG system through the use of the OPERINS loader. A distinct card format is required for each type sensor as discussed below. Certain data items, including a sensor code, unit identification (UID) of first node, sensor index, sensor reference number, and sensor status code are common to all card formats.

a. Data Common to All Sensors:

(1) Sensor Code. Each generic type sensor is identified by a sensor code which appears on all sensor control data cards. Permissible values of this code and interpretations are:

02 = short range MTI radar

03 = medium range MTI radar

04 = long range MTI radar

05 = continuous tracking type CM/CB radar

06 = dual beam type CM/CB radar

07 = UGS field

08 = AD radar.

- (b) UID of First Node. Each sensing report is passed, within the Intelligence and Control Model, through an intelligence communications network for decisions and processing. (See Section IV, Chapter 6 for a detailed discussion.) Nodes within this network are battalion, brigade, or division level command units. This entry identifies the unit that is nominally in control of the sensor being specified. Each sensor will use the unit so identified as the entry point into the network for all sensing reports generated by that sensor. The UID is the eight-character alphanumeric unit identifier of the unit to be specified. This unit must have a maneuver type unit type designator (UTD); that is, the third character of this unit's UTD must be M.
- (c) Sensor Index. If a given unit (UID) is responsible for more than one MTI radar, more than one CM/CB radar, more than one AD radar, or more than one UGS field, the sensor index is used to determine to which radar or UGS field the OPERINS data applies. A sequence of sensor indexes, starting with 1, must be assigned to each group of model sensors that is composed of elements from one of the above categories and shares the same first node UID. For example, if a given unit controlled three MTI radars, one CM/CB radar, and six UGS fields; the sensor indexes applied to the MTI radar would be 1, 2, and 3; to the CM/CB radar 1; and to the UGS fields 1, 2, 3, 4, 5, and 6.

- (d) Sensor Reference Number. Hardware characteristics of each type sensor are defined using the Intelligence and Control Model constant data load routines (see Section IV, Chapter 6, Appendix A). These routines assign a reference number to each type sensor. This reference number is used to specify within OPERINS data the piece of hardware desired. The reference number is obtained from the printed output of the Intelligence and Control load routines.
- (e) Sensor Status Code. Allowed values of the sensor status code are:
 - l = available
 - 2 = tracking
 - 3 = inoperative.

The status code is set dynamically to appropriate values by the Intelligence and Control Model. An entry of 1 using OPERINS data will permit full play of the sensor during the course of the period. An entry of 2 or 3 made by OPERINS is not reset by the Intelligence and Control Model and will effectively turn off the sensor through the course of the period.

- b. MTI Radar. The essential hardware characteristics of this type radar are entered in the constant data input. These performance characteristics are not changed during the entire game. The operating instructions, which the gamer is expected to give, are those that deal with operating constraints and changes in the situation as the battle progresses. This card format must be prepared for each sensor played either to define the sensor initially or to change a previously defined sensor's location, status, and orientation. There are two segments in the input card format, illustrated in Figure III-3-A-1. The first segment, columns 1 through 18, identifies a specific radar and associates its operating unit with identification details. The second segment, columns 20 through 66, specifies the location and other operating parameters.
- (1) Sensor Code (Columns 1-2). Each generic type sensor is identified by a sensor code. For MTI radar, enter the value 02 (short range), 03 (medium range), or 04 (long range).
- (2) UID of Controlling Unit (Columns 4-11). Enter the eight-character UID of the unit that is to receive reports from this sensor. (This must be a unit having an M as the third character of its UTD.)
- (3) Unique Sensor Index (Columns 13-14). When the controlling unit is responsible for more than one MTI radar, this index is used to discriminate among the radars. The index must be assigned serially, starting with 1 for the first MTI radar under this unit, 2 for the next MTI radar, etc. In relocating or reorienting a radar, this index is used to decide which radar to move, should a unit be responsible for more than one. The entry is right justified.

			21	\ <u>-</u>	١.	\		/	(7	7	<u></u>	/	1	1		/	7			
						<u>\</u>				1/2	\ <u>\</u>	/ }				\ <u> </u>		/		. _	
			.ib.dicales	. \ <u>.</u>	/		/-	/-	/		/ <u>;</u>	\ <u>-</u>		1		/-	\ <u>-</u>		/	/-	
	WIDIA SECTOR (MILS)		ii			7			ZZ		<u></u> Z	<u></u>		<u>ک</u> آ					 		The second content of
			-	\equiv			$\pm z$	\Box		-	\overline{Z}	\overline{z}	\equiv	\Box						\overline{z}	-3
	CENTRAL AZIMUTH (MILS)		michiasias	=	1 1	-			-	! -		-					-			-	10169166
'		-	-8			<u> </u>	-	1		έΖ		7		_	\neg	_		\vdash	1-2	-	13
	MAXIMUM		selvei esi es				-		-		-	-				1	-			-	22,23,44,54
		\dashv	\$0 31		-	1-7		7				\overline{z}			7	_	\overline{z}		-		- 5
!	MINIMOM RANGE		ias isol 40 iso	-				-	-	-	-	-	-		7 1 1		-	-			4107 708/00
			-	X	7	\vdash	1	=	1	$\overline{\lambda}$	X	X	X	X	Y	$\overline{\lambda}$	Ŧ	Z	\vdash	X	- ;
TI RADAR			16014161631	/-				/-		/-	/	17,7	1111	1	/	7		/		Z	161451145001
Y.			1	7-	7	17	17-	7-	17-	7-	7-	\overline{A}	\vec{A}	$\sqrt{\cdot}$	7.	7	7-	7	17-	7	- 5
		П	-	-	-			 	 	-		_			}	_	\dashv	- '	 		-
		٨	1 10 10	-					! -			11-11	1111		-		=		1 :	=	244
	S		(lati	-	-	1 -	1 -	-] [_	=	4	-	<u>ב</u>		:] :		187
	SENSOR COORDIMATES		8	-		-		-	-		_		_		_	_	_		-	-	1
	SENS		2	-			-		-											-	1
Ì	" 8	×	210016] -] :] =					1111	7171	1 1 1 1 1		1 1 1 1 1	-		-] =	1
			21.0	-	-	{ -	1 =	1 =	! =		1	4	-	-	-	7	-		-		1
	300	_			-	-		_		-		_			-		-	_	-		- 3
	SOR STATUS	7E4	ě					\equiv				\Rightarrow	\Rightarrow		\rightrightarrows			\vdash			2
	श्वर	DOM:		\Box		<u> </u>	٢-	<u> </u>								ـــ	_	<u>-</u> -	۲	<u> </u>	
l	I:KENCE 208	REF	5	_	_	-		_		=							_	-	-	-	•
	XAGRI BOS	RES!	•	\overline{z}								\overline{z}				\supset	\overline{z}		1		:
	305	TEA	- [_	٠,	-	-	· - ·	· -	-	_	-	-	- ~		~	_			-	-
	3	5			-	-	<u> </u>	_	: -								_				
	ODE.	NET	mls. 0 "lott total state					i -		=	=	_		-	-	1 177 1	-	:	 -] =	1 3
	UID FIRST NUDE IN	NET	=	-	-]]	: -	-	, -	: <u>-</u>	_	_	-	- 4	_	-	-		1 -	1 :	1 3
	FIRE	: 1	=	1	-	· -	: -				-	1	-,	j			-		1 :	į :	1 1
			-	\Box								\Box	\neg	\equiv	\Box				\Box	13	ᆸ
	SOR CODE	W.36	1	-	-	_		_				-		_	-	_	-		-	-	1 3
	SOR COUR	1130	-	-							_ =		_ 1	_			-	1	1 '	1 -	1 '

Figure III-3-A-1. Moving Target Indicator Radar Card Format

- (4) Sensor Reference Number (Columns 16-18). Each specific type of sensor hardware is parametrically defined within the constant data input on the Intelligence and Control Model data file. In the process, a reference number is assigned by the data load program. Enter this number, obtained from the load program's printed output.
- (5) Sensor Status Code (Column 20). The status of the radar at the beginning of the game or period is to be entered in this card column.
- (6) Sensor Coordinates (Columns 22-36). Enter the seven-digit X and Y coordinates of the sensor right adjusted in appropriate columns. Leading zeros are not required.
- (7) Assigned Area of Search (Columns 46-66). The area of search to be assigned to an MTI radar is specified by the entries on columns 46-66. Columns 46-50 and 52-56 contain the minimum and maximum ranges, respectively, of the assigned search area, in meters. Columns 58-61 contain the orientation, or central azimuth, of the assigned search sector, measured clockwise in mils from grid north. Columns 63-66 contain the width of the assigned search sector, in mils. These values must not exceed hardware characteristics as loaded in the Intelligence and Control Model constant data.
- c. CM/CB Radar. The hardware characteristics of this type radar were entered in the constant data input. These characteristics are not changed during the entire game. The data on countermortar/counterbattery radar loaded as Operating Instruction are those that deal with operating constraints and changes in the situation as the battle progresses. A card in this format (Figure III-3-A-2) must be prepared for each sensor played either to define the sensor initially or to change a previously defined sensor's location status or orientation.
- (1) Sensor Code (Column (1-2). Each generic type sensor is identified by a sensor code. For a single beam continuous tracking CM/CB radar, set the code to 5. For a dual beam CM/CB radar, set the code to 6. The entry must be right justified.
- (2) UID of First Node in Communication Net (Columns 4-11). Enter the eight-character UID of the unit that will be the first node in a communication network from this specific radar site. This unit must be a maneuver unit (i.e., have the character M in the third character of the UTD).
- (3) Unique Sensor Index (Columns 13-14). When this receiving node has more than one CM/CB radar reporting to it, this index is used to discriminate among the radars. The index must be assigned serially, starting with 1 for the first CM/CB radar reporting to this unit, 2 for the second, etc. In relocating or reorienting a radar, this index is used to decide which radar to move or reorient, should the unit have more then one reporting to it. The entry must be right justified.

		CARD SEO.		-	:	-	-	-	-		-				-		-			30000
		CAR G	7	-	-	•	-	-		-	-	-		-	-	-	:	:	-3-	W. Careal
		Ę	14 02 03 29	-	-		-	-		-			-	-		-		-		141.101.160100
	ANGLES	O	1 102 02 02 02 03 00 00 10 10 10	-					-			-	-							19164 16164 161
		8	3 9 9 4 1 0 1				-	-	-	,	-	-	-			-				asi refees spies
18		1016	- 10 CE 100 25 100 100 121 121 13 100 100 120 120 120 120 120 120 120 120							1111111111								The state of	dendina.	COLLEG CONTROL
BATTERY RADA	*A38 SU	JAUQ TATZ	in the state of the last sec		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		7			111111111111111111111111111111111111111	// III									1 1
COUNTER MORTAR/COUNTER BATTERY RADAR	JR (TES	¥	at on lest be lest at lighter										111111	1111111]]] ' ' ' ' ' ' '	111111		11111111	90,11 30,100,100,100,100,100, at 100
COUNT	SENSOR COORDINATES	×	az pelaz inebseinel celta	111111			111111					17-61-7-17	111111	11111	11111	' ' ' ' '	111111		1 1 1	42 94 142 92 192 192 194 142 122
		COD RENZOB	14 02 44																	
	NCE	SENS SEPERE MINE	oilela:				-		77		1	-	1	1	-				-	911.119
	X Sensor	INDE CMIGNE	.31.00 63																	
	UID OF FIRST UNIT	CONCTUNITATION		1		1	111111	11			1	111111			1					
		SENSOR		\exists					3	3			-							

Figure III-3-A-2. Countermortar/Counterbattery Radar Card Format

- (4) Sensor Reference Number (Columns 16-18). Each specific type of sensor hardware is parametrically defined within the constant data input on the Intelligence and Control Model data file. In the process, a reference number is assigned by the data load program, and it is this number that is required here to tie this particular radar to a set of hardware data.
- (5) Sensor Status Code (Column 20). The status of the radar at the beginning of the game or period is to be entered in this card column. Entering a 2 or 3 will preclude the radar from detecting and recognizing targets during the course of the period. Entering a 1 will permit full play of the radar during the course of the period.
- (6) Sensor Coordinates (Columns 22-36). Enter the seven-digit X and Y coordinates of the sensor. The entry must be right justified, and leading zeros are not required.
- (7) Dual Beam Status (Column 44). This is a status code for dual beam CM/CB radars only (i.e., sensor code 6). This flag is used to indicate the desired operational status of the radar. Possible entries are:
 - 0 = monitor low angle fire only
 - 1 = monitor high angle fire only
 - 2 = switch back and forth to monitoring low and high angle fire.

The radar must have this capability.

- (8) Center Azimuth, α (Columns 58-61). This the orientation or center azimuth of the search sector, measured in mils from grid north. Entry must be right justified.
- (9) Search Sector, θ (Columns 63-66). This is the assigned search sector width, in mils. If this search sector is more than two times the sector coverage capability of the hardware (see beam description variables in Appendix A to Chapter 6 of the Period Processor, Section IV for Countermortar/Counterbattery Radars), there will be a coverage gap in the center of the assigned search sector. Entry must be right justified.
- (10) Site Mask Angle, β (Columns 68-71). This is the site mask angle measured in mils, and it must be right justified in the field.
- d. AD Radar. Hardware characteristics of the radars are entered in the Intelligence and Control Model constant data files (see Section IV, Chapter 6, Appendix A). These hardware characteristics are not to be exceeded by those in the Operating Instructions input. The operating instructions that the gamer is expected to provide on AD sensors are those that deal with operating constraints and changes in the situation as the battle progresses. This card format must be prepared for each AD radar to be played. Format of the input card is shown on Figure III-3-A-3.
- (1) Sensor Code (Columns 1-2). Each generic type of sensor is identified by a sensor code. For AD radar, enter the value 08.

			-	, ,	1	\ -	(;	(-	(;	(-	((}	\bigcap	\ <u>.</u>		(-	<u> </u>		\- <u>-</u>	111
	VERTI- CAL WIDTH UF SECTOR (MILE)	Tee on the touched to the land on the		1111	1111	-		-		7				-	7					The state of the s
		11111111111		\mathbb{H}^{-1}				=	-							-	-	-	-	
	VERTI- CAL CENTPAL AZIMUTH (MILS)	60 00 100				$\Pi_{\cdot,\cdot}$														1
	HORI- ZONTAL WIDTH OF SECTOR (MILS)	oj sol sol go/28	-				1	- 1	1 1 1	1										alsolosissics
	HORI- ZONTAL CENTRAL AZIMUTH (MILS)	ro i end debi est d			1 1 1	1 1 1		1 1 1		1 1 1						1 1 1				1,074074471847
	MAXI HUH RANGE	co on the section is an extension to be selected as the section in the section in the section is an extension of extension of extension in the section is a section of the section in the section is a section of the section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in			1111							1 1 1			1 1 1 1					ार वा को क्या का
	HINIMPH RANGE	5 06 40 40 40 40 40		1111	1111	1111	-		1111			1 1 1	1111		1111			''''	1111	1 4614214614918618
	110N	0 0 10 10					-	-		-		11	111			111	111	1	111	100160140
RADAR	ELEVATION	10 100 104 104 1	-	111	111		-	-	1	1 1 1	, ,		111	111	1111			111	111	-HOPFORTO
AIR DEFENSE RADAR	INATE	1 00 100 100		• • •	1 1		-		-	-		1	111	' ' '				1 1	1111	6961467967
AIR	Y-COORD HATE	6619119199			111	-	-	-	1 1 1	1 1 1			111			111		717	1	1000
	INATE	2 02 63 100	=			111			1.1			-	1.1	111	1.1	111	111	1	1	1011111
	X-COORDINATE	146105185157	-	1111	1111	7 7 7 7	=	-	1111	1	1 1 1		1111	7 7 7 7	1111	1111	-	1	1111	166144135124
	SENSOR STATUS	- 5										Ш								
	NEWBER REFERENCE SENSOR	es estactes	-	1		-		-		-			1 1		-				-	11 011 611 01
	SENSOR CODE	51 mle.								-										1
	UID FIRST NODE IN COMMUNICATION NET	יו פוני ופו פו שושו או פונו פוניו						-	-		-									وها ما عبري الما في المادر في المراجع
	SENSOR CODE	1111									-		-							

Figure III-3-A-3. Air Defense Radar Card Format

- (2) UID of First Node in Communication Net (Columns 4-11). Enter the eight-character UID of the unit that will be the first node in a communication network from this specific radar site. This it must be a maneuver unit (i.e., have the character M in the third chars er of the UTD).
- (3) Unique Sensor Index (Columns 13-14). When this receiving node has more than one AD radar reporting to it, this index is used to discriminate among the radars. The index must be assigned serially, starting with 1 for the first AD radar reporting to this unit, 2 for the second, etc. In relocating or reorienting a radar, this index is used to decide which radar to move or reorient, should the unit have more than one reporting to it. The entry must be right justified.
- (4) Sensor Reference Number (Columns 16-18). Each specific type of sensor hardware is parametrically defined within the constant data input on the Intelligence and Control Model data file. In the process, a reference number is assigned by the data load program, and it is this number that is required here to tie this particular radar to a set of hardware data.
- (5) Sensor Status Code (Column 20). The status of the radar at the beginning of the game or period is to be entered in this card column. Entering a 2 or 3 will preclude the radar from detecting and recognizing targets during the course of the period. Entering a 1 will permit full play of the radar during the course of the period.
- (6) Sensor Coordinates and Height (Columns 22-44). Enter the seven-digit X, Y coordinates and height in meters of the sensor t ight adjusted in the appropriate columns. Leading zeros are not required.
- (7) Assigned Area of Search (Columns 46-76). The area of search to be assigned to an AD radar is specified by the entries in columns 46-76. Columns 46-50 and 52-56 contain the minimum and maximum ranges, respectively, of the assigned search area, in meters. Columns 58-61 contain the orientation, or central azimuth, of the assigned search sector, measured in mils clockwise from grid north. Columns 63-66 contain the width of the assigned search sector, in mils. Columns 68-71 contain the vertical central azimuth of the search area, in mils. Columns 73-76 contain the width of the vertical search sector, in mils.
- e. Unattended Ground Sensors. This section describes the card formats required to represent unattended ground sensor fields. Each UGS field requires three data cards. The first card contains data necessary to identify the UGS field, the second card specifies the composition of the UGS field, and the third card specifies the location of the field. The format of each of these cards is discussed below.
- (1) UGS Identification (Figure III-3-A-4). This card specifies the sensor code, UID of the controlling unit, unique sensor index, sensor status, and the median time to track and report enemy units.

B C	-		×		ŀ			
			SENSOR INDEX ONIONE REVAR	BLANK	SEASOR CODE	BLANK	MEDIAN TING (SECS) TO TRACK AND DETECT	BLANK
		" minister at a Table	1	91161171161161	114111 02	or ise for for fix feet as fix for farfarfix fixe for for for	39440] 44 [42]42,744	oo laa taa [aa]aa ta- ta- ta- ta- ta- ta- ta- ta- ta- t
	щ.	1111111	7	1111		111111111111111	11111	Letter to the sale of the sale of the sale of
	_4	*1111111	7	1111	- -		1111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	ــــــــــــــــــــــــــــــــــــــ	*********	Ţ	7	7	111717171717		4274124224124
	_ V.	1111111	Ŧ	7717	7		7777	
	__	41.17.11.44	7		7.7	1.	1.1.1.1.1	7
	V	1777117	7	-	7		11.11	Land the transfer to the little to the land to the land
	_ V_	111111111		7-1.7			1111	
	V	1.1 1.1 1.1.	1	1111	7	1111111111111111	1.1.1.1.	الموسائل المزيائموا المرا المرسائع الماريان المرادائموا
	N_		7	777	4			مومله بالمويايين المهن الهزائين الهزائه
		-171117	÷	11.1.	<u>구</u>	111111111111111	11-11-1	كمور ويكور المحروبكر البوراكه والهروائه والمروائه
	_1	**************************************	7	7777	1		17175	Line in Lygishy in the later the later the
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	V	+1-1-1 1 1 1 1 1 1	7	7.1.1.	-		11.1.1	~
100 100 100 100 100 100 100 100 100 100	V	1.1.1.1.1.1	7	71-1 7-1-	+		1111	4.1.24.1.24.1.24
21-12-1-12-1-12-1-12-1-12-1-12-1-12-1-	V	4 - 1 - 1	7	1111	4	*************	1111	***
The state of the s	N	*******	7		4	1111111111111	1111	Lister Superior
1911 1911 1911 1911 1911 1911 1911 191	N	4.1.1.1.1.1.2	7	1111	<u> </u>			411141114
हार है जिसका अधिकार का अधिकार के अधिक	V	********	7	1111	4	*************	1111	Levelinders desperations
	_		2	49 148 17 18 14	- 2	0412496165 of 155125 4 Josies 162361425614514414	39,631,131,131,45	and the state of t

The second secon

Figure III-3-A-4. Unattended Ground Sensor Identification Card Format

- (a) Sensor Code (Columns 1-2). Each generic type of sensor is identified by a sensor code. For UGS fields, enter the value 07.
- (b) UID of First Node in Communication Net (Columns 4-11). Enter the eight-character UID of the unit that will be the first node in a communication network from this specific UGS field. This unit must be a maneuver unit (i.e., have the character M in the third character of the UTD).
- (c) Unique Sensor Index (Columns 13-14). When this receiving node has more than one UGS field reporting to it, this index is used to discriminate among the fields. The index must be assigned serially, starting with 1 for the first UGS field reporting to this unit, 2 for the second, etc.
- (d) Sensor Status Code (Column 20). The status of the UGS field at the beginning of the game or period is to be entered in this card column. Entering a 2 or 3 will preclude the field from detecting and recognizing targets during the course of the period. Entering a 1 will permit full play of the field during the course of the period.
- (e) Median Time to Track and Detect (Columns 39-44). Enter the median time in seconds, from activation of this UGS field to receipt of a sensing report at the first communication node.
- (2) UGS Field Composition (Figure III-3-A-5). This card specifies the composition of the UGS field. Field composition is defined in terms of the number of each distinct type of UGS that is located within the field. Up to 10 different types of UGSs may be present in a given field. See Section IV. Appendix A to Chapter 6, for a discussion of UGS types.
- (a) Sensor Type (Columns 2-3). The sensor type identifies the specific kind of UGS. This sensor type must agree with the definition given in the UGS constant data (Section 11, Chapter 6).
- (b) Number (Columns 5-7). Enter the number of sensors, of the type specified above, to be placed in the UGS field.
- (c) The remainder of the card has space for defining nine additional sensor types and their numbers.
- (3) UGS Field Location (Figure III-3-A-6). This card specifies the battlefield locations of the UGS field by listing the four corner coordinates of the field. The shape of an UGS field is restricted to a convex quadrilateral. A geometric figure is said to be convex if it is possible to connect <u>any</u> two points in the figure by a straight line that lies entirely within the figure. The geometric figure shown as (a) below (Figure III-3-A-7) is convex; the figure shown as (b) is not. The order in which the corners are input is arbitrary.

	-		? \	_	_	$\overline{}$	_	_	<u> </u>	$\overline{}$		_	_		_	- (
1 1		ĺ	·, `	/ –)	/ - <i>)</i>	\ - \	′ -)	(~)	(–)	\ -\	(-)	\ - \	\ - \	· - /	(~ /	(-)	` \	√-1	\ -	/\ -	
1 1			7	Ζ	7	\bar{z}	7	7	/_	/-	/-	/-	/-	/-	/-	/-	/-	1.	/-	7	
1 1		×	Elina	ζ.	Γ.	Z	Z	7	7.	7	7	-7	-7	3	7	3	3	_	\]	7 2]
1 1	- 1	BLANK	<u> </u>	/-:	\- `	/-,	/ -'\	\ -`\	\ - \	\ - `	\-'	\ <i>-</i> `	\- '	/- '	/-:/	\ - \	(Ξ)	\-	/-	۱\ -	1
1 1	ł	<u> </u>	Ţ.	7	\	/	/	1.	Ł,	<u>`</u> }	4	7	4	7	7	£,	7	Ź	4	, 7	
1 1	- 1	1	- - -/	, <u>1</u> λ	√-N	√ 1	Ę,	*	Ť	ત્રે∖	Æ	1	Ξ/	Æ,	Æ,	7	1	٠-٨	∖ ⊣	/ 7	1 3
1 1		1	Takalala	\	V	7	ΛΞ,	/='	√=,	/_'	/-'	νΞ'	/['	/'	′ニ゙	/- '	ヹ゙	\	_		[]
1	\vdash			٠,	__	~	~~	7	7-	<u> </u>	7	_	7	_		7	7	_		۷	<u> </u>
1 1	1:	TOTH TYPE	2/10/10	⊣	j	⊣	7	_	-		-	-	-	-	٦	7	-	Ⅎ	-	=	}
		30 88		1			٦		7	-		-		۲.	7	7	7	7		!	3
	F	BLAI:K	3	\overline{z}	\overline{Z}	-		\overline{z}	\boldsymbol{z}	\mathcal{I}	Ż	Z	\mathcal{I}	Z	7	7	7	Z	\equiv	\overline{z}	-
1 1	1 :	TOTH TYPE	3	4		⊣	4		4		-		-		4	4	⊣	4	-	i -	1 5
l i	\vdash	BLANK	3	-7	Z	Δį	Z_{i}	Ţ	7	$\overline{}$	Vi-	$\mathbf{\nabla}$	1	V	7	4	\overline{X}	Ą	\neg		- :
1 1		SIN INDE	es les	7		\exists	-		=				=		4	4		4			3
1 1	- 1	NK OF	3	4	4	4	7	7	7	4	j	Ⅎ	4	4	4	4	٦	┥	-	-	1
1 1	┢	STVAK	8	4	7	Α,	4	7	7	Z	τ	T	4	V	4	ヾ	7	4		7	-
1 1		34YT HTC	00100	1	7	7	\exists					-	<u> </u>	1	T		J	7			<u> </u>
	-	BFV!!K	_ặ_	↲	7	7;	7	\overline{A}	→	-\ +		√⊢	. :	₹.	+	χį.	4	╮	~	$\vdash \prec$	H
	H		1	- +			\rightarrow	-+	+	+	- -		+	+	+	+	+	<u> </u>	\rightarrow	-	<u> </u>
	- -	NK OF	3	1	1	4]	1	1		_	- 1	7	1	1	1	1.	I		ı	1 2
	1		4	-	-₹	\	1	7	₹	.,	- -	+	7	+	1	+	┪	4			
1	_	BLANK	*	- }	┷	- }	+	-+	+	+	-	ــــــــــــــــــــــــــــــــــــــ	- - -	7	÷	+	+	+		\vdash	
		39YT HT8	28 74		٦									.1		1	7				
1	計	BLAUK	2	\overline{A}	X	V	7	Y	λ	\overline{X}	7.	Ż.	\overline{X}	$\overline{\Lambda}$	$\overline{\lambda}$	7	X	X	\overline{Z}	-z	
[]	3	JEN TYPE	9100	4	4	4	4	4	⊣	4	7	i	4	4	4	4	4	4	-	-	1
151	SE _	NE OF	•1.	⊣	- 1	┪	⊣	⊣	\dashv	Ⅎ	_	┪	4	Ť		4	┪	٦	-		
COMPOSITION	SE_	BΓ∿74K	3	Z	7	7	7	Z	\overline{Z}	\mathbf{Z}	\boldsymbol{Z}	Z	Z	7.	\mathcal{I}	Z	7	7		\Box	-
[6]		SAYT IITY	•	4	4	4	4	4	4	4	4	4	4	4	4	1	4	4	-	-	1
		BLANK		4	\		4	7	\forall	4	4	V	√-	\forall	$\overline{}$	$^{\perp}$	┪	7	7	$\vdash $	-:
CCS FIELD	OLUNIO L	34YT HT6			_	-	1	- }	4	1	1		'		7	7	┱	7	_		
	٤	NR OF	1	٦	4	7	7	7	_	7	٦	7	7	7	7	7	7	4	-		Ž
8						+	- +	- \	- \ 	+		+	┽-	┪-	┪-	₹	٠	4	$\overline{}$		
2 3	ᇎ	SLANK	-	_	+	- }	-	4	-	-	- -	1	-		1	- } -	1	1		<u>-</u>	:
	ATTENDED	ATYT HT8	8		コ			ユ		<u>.</u>	7		7	.	구.	.	구.	ᆛ	_,	-	
	<u>;-</u>	BLAIIK	2	4	4	_;	V	-4-	4	Ż	}-	Y	-4-	Ż	\overline{X}	Z	X	Z	\overline{Z}	\Box	
1 1:		34YT HT?	10 10 10	4	٦	+	⊣	Ⅎ	4	4	_	4	4	Ⅎ	4	4	+	4	-	-	ž
11	L	AB OL		7	_1		_1	ユ					1	ユ	ユ		1	_]			
1		RFV:1K	2	7	Z	-7	7	Z	7	Z	Z	7	4	Y	Y.	Υ.	4	Y		lacksquare	
	1	34YT HT?	16100	4	4	+	4	بـ	┪	=	-	-	٦	4	4	ب	\dashv	⊣	-	-	1 2
1		BLANK	2	7	Ż	4	7,	7	Z	Z	V	7	Z	7	7	Z:	Zi.	\mathbf{Z}	\overline{Z}	\equiv	2
1		3471 HT2	110	1	-	7	٦	7		7		7	4	4	4	4		4	-	-	-
1 1	1	NK OF	24127126	-	4	4	4	4		+	7	-	4	4	-	Ę	4	Ⅎ	-	-	3
1 1	F	BFVKK	2	\mathbf{Z}	Ż	Z,	Ż	Z	Z	Z	Z	Z	\mathbf{Z}	V	Z	Ż	7	\overline{Z}	\overline{z}	\overline{z}	
	Г	3dXI HI7	2	-		1	4				٦	4	4	-	-	1	4	4	-	-	-
	-	BLANK	न्तरनंत	- \ \	+	4	+	4	+	-	7	₹.	┪	+	₹+	₹	4	7	~	-	 -
1 1	\vdash			_	- }		- } -	¥	÷	- } -			- j -		Ť	1	1	ڙ		\Box) <u> </u>
		3ED LABE RE OE	120131]	1	7	1	1	1	7	7	7]]]	7	7	J	_	-	2
1	\vdash		•	-	+	-	+	4	┰	4	-4-	+	┪	₹!	4	ż	4	4	_	$\vdash \leftarrow$	
	\vdash	SLANK		-	+	+	+	+	+			- i -	+	-	-		_}	-		Ь,	<u> </u>
	L	3RD TYPE		_1	ı			ユ		ユ		그				-	ᆛ	ユ		└	┶┋
	[-	3FVI:K		4	7	-7-	-7-	<u>.</u>	7	-7		Υ.	7	7	Z		4	بد_		\leftarrow	+:
		SMD TYPE	11111	\dashv	4	4	4	4	4	1	4	4	7	4	4	-	4	4	-	-	1
1		AG NN										-1	-	7	_1		1		_ :		=
		BLANK	-	7	Z	7	\mathbf{z}	Z	Z	\boldsymbol{Z}	Z	Z	Z	Z	Z	Z	Z	Z		\Box	يَــا
		SND IXEE	91.	4	-4	4	-í	4	4	+	_	4	-	-	4	4	Ħ	4	-	∮ -	1 :
	-	BEVIK		$\overline{}$	4	4	7	ヾ	7	7	$\overline{}$	T	7.	7	$\overline{\Delta}$	Z.	Z,	\angle	7		
		1ST TYPE		7	4				1	-	1	1	7	1	1	4	1		-	Γ.	1
	-	AGYT TOF	1	4	4	-	4	4	4	4	4	4	4	4	4	+	4	ļ	-	ļ	!
	-	BLARK	+	4	-4	4	4	4	4	4	4	\forall	4	4	4	4	4	-4	_	 	╁
1	-	adal Isl	4	7	1	-	_	-	+	_	1	_	_	_	1	_	1	J		<u></u>	<u> </u>
	_		-7-	_Ţ	-,1	<u>.</u>	4	귀	_1	ᆛ.	Į.	규.	-	ᆛ-	,]	ᆛ-	4	٦,		┯	ᠮ
		ANAJO	للنا	_1		_ل_	ــــــــــــــــــــــــــــــــــــــ			У	. У.		_لا_		_ \			۷.			٠

Figure III-3-A-5. Unattended Ground Sensor Field Composition Card Format

							32	ucs Location							
					SE	SEASOR FIELD COORDINATES	0000	INATES							
REVIK	FIRST	FIRST CORNER		SECOND	SECOND CORNER	VIIK	y ₁ m ₂	TAIRD CORNER		ANK	FOURTH CORNER	CORN	8	BLANK	
L	×	79	*	×	78			ਸ ਬ ×	¥	78	×	78	¥		
	11111111	3	MISIMISITAL.	17 40,140,140,141,121,124,24	19 26127130	16 26 1 16 1 20 1 21	M 1 M 1	19 00 100 100 146 1	00149 [00] 00] 00] 00]		0676810616816911	3	esiseiseisejasi	એ સહિદા સાથે કેસ્પોરા વિકાર્શ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ છે. જે લાગ ભાગ લાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભાગ ભ	99182
-	1 1 4 4 1	\overline{z}					-		-	_	-	_	-		7
				Ь	-				-	-	-	_	-		7
7						-		\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \		-		-	J _		7
7		-	-3		-	-				-	-	_	-		Z
Ë										\vdash					7
										-		 ;			7
-										j ;		,			7
_		\sim						\Box				-			7
L		-								<u> </u>		\vdash	1 :		7
E		·								1		-			7
		!	1							 		-			7
_		7			-	-				-	-	-			7
_		\vdash			-	7			-	7	-	-	-		7
7	1111		11111		-	- 1	- -			_	11111	4	1111		7
\exists	1 1 1 1	\vec{z}	41111	1 1 1 1	- \	- 1			111111	7	1111	4	1111	The state of	3
		\exists		1 1 1 1	-	_ \ - - -	-		11111	-	1111	-	1111	Children Land	[/
	1	\exists	1 1 1	111111	4	-}	-		4111111	-	1111	4	1	Minhila	[]
	********		0.1 6.1 6.1 6.1 6.1 5.1	1 06162168181818181	20,010	126 36 at 106 195 t	100 M	19190-1261-601-61	- last in ingligation is	-	1115215916415910	-	+019 51 287 197 69F	व्यासान्तानातः जन्नात्त्रात्त्रात्राकाकाक्ष्रकाव्याव्याव्याव्याव्याव्याव्याव्याव्याव्य	13

Figure III-3-A-6. Unattended Ground Sensor Location Card Format

Figure III-3-A-7. Geometric Figures

- (a) X coordinate (Columns 2-8). Enter the seven-digit X coordinate of the first corner of the field. Leading zeros are not required.
- (b) Y coordinate (Columns 10-16). Enter the seven-digit Y coordinate of the first corner of the field.
- (c) The remainder of the card contains the coordinates of the remaining three corners.
- 2. INTRODUCTION OF INTELLIGENCE. While the DIVWAG Period Processor simulates a range of ground-based and aerial sensors generally available to a division in the field, explicit simulation of all potential sources of battlefield intelligence is not attempted. The ability is available through the OPERINS loader to introduce additional intelligence to the model. This capability is intended to permit the control team to enrich the intelligence picture available to the opposing player teams in a closed or semi-closed game while maintaining the information within the format that is generally used for intelligence in the DIVWAG system. It also permits specification of targets for attack within the Air Ground Engagement Model or for automatic allocation of fire support, should this prove necessary. In all cases, use of this feature should be stringently controlled by the game's control team.
- a. Approach. Intelligence introduced to the DIVWAG Period Processor through the OPERINS loader enters and is processed by the Intelligence and Control Model similarly to intelligence gathered by sources explicitly modeled. The data input by the OPERINS loader is formatted to produce a sensing report similar to those generated within the model. The input data format permits the user to control the time at which this sensing report enters the Intelligence and Control Model, the node in the intelligence communication network at which the sensing report enters the system, and whether the report passes through the intelligence processing portions of the model, the fire support allocation portions of the model, or both. Details of the Intelligence and Control Model communications network, processing, and fire support allocation logic are found in Section IV, Chapter 6.

- b. Card Formats. Three card formats are prescribed for the introduction of intelligence with the OPERINS loader. The period card is prepared only once for each game period in which intelligence is introduced. For each sensing report to be introduced, one intelligence information card and one estimated equipment card are produced.
- (1) Period Card. The period card, illustrated in Figure III-3-A-8, is the first data card of an intelligence data deck processed by the OPERINS loader. The information provided on this card is needed to correctly schedule time of entry of sensing reports into the Intelligence and Control Model. The symbols PERIOD, DAY, HOUR, MINUTE and a period are preprinted on the coding form at columns 1-6, 12-14, 19-22, 27-32, and 33 respectively and must be punched on the data card. Data to be provided are the starting time of the game period for which intelligence is to be introduced. Start of period in terms of day, hour, and minute are placed in columns 9-10, 16-17, and 24-25, respectively. Each entry is right justified.
- (2) Intelligence Information. This card format, shown in Figure III-3-A-9, is the first of two cards required for each item of intelligence to be introduced into the system.
- (a) Source Type Code (Columns 1-2). The source type code is a gamer or control group classification of the information source. Within the model, its function is simply one of mechanical bookkeeping; and processing of each sensing report is identical, regardless of the nature of the information source specified. Legal codes and their nominal source interpretation are:
 - 31 = Prisoners of war
 - 32 = Civilians
 - 33 = Recovered military personnel
 - 34 = Captured enemy documents
 - 35 = Enemy materiel
 - 36 = Stay-behind units
 - 37 = Agencies for operation behind enemy lines
 - 38 = Other sources.
- (b) Where to Code (Columns 4-7). This code establishes the type of action to be taken upon the sensing report within the Intelligence and Control Model. Legal codes and indicated actions are:
 - . INTL Enter report only in intelligence processing and communication net
 - FSCC Enter report only in the fire support allocation logic of the model
 - BOTH Enter report both in intelligence processing and communication net and in fire support allocation logic.

	CARD SEO.	unite incles	-	-	-	-	-	-	-	-	-				-	-	1		1	1
	CARD	M [W] 04 F 4	-]-		-		-	-		_	-	-	-	-	-		-	-≱	F. 27.41
PERIOD CARD		and the first of the second control of the s	HIXUTE																	च्या विषय प्रत्याचा न्यात्रात्राकाकार्याकाकार्याकाकार्याकाकाकाकाकाकार्याका
	BIJUIM	1	_	<u> </u>	_	_	_:	-	_	_			-	-	<u> </u>		-			214
		101 101 2010: 10110:	HOUR	-	1	1 1 1	-	1 1 1			1111		-		-	1 1 1		-	1	\$1221.220010.TG:
	ноия	16113								-										
		41411314118	DAY		1111	1 1 1	-	-	1111	111		-	-	-	-	-	-			***********
	λ¥G	• 1	-						-						-					•••
		0141019101	PERIOD:	11111	1 1 1		-					-	-	-	-					91,1916.91
		1	_ =				-	_		_=	_=	-		_	_	_	_:	_:	_	ات

Figure III-3-A-8. Period Card Format

	CARD SEQ.		-	-		-	-	-		-			-	-	-	-				
	CARD	MINTER NA			-	-	-	-	-	-		-	-	-	-	-	-	-	-	211210111
		211. (log lap) end (pi pel sal e	7	/				7			/				1	/		7		169164 167268 16917027-173
	ESTIMATED DIRECTION	9 10 10 10	-	-			-									-	-	7 ' '	-	1
	ESTI- MATED HOVE RATE	4 44 87 140 130	-	-		-	-	-	-	-	-				-	-	-			1 1
	ESTI- MATED ACTIVIT	5 04 143 143 145 0			-	-		-	-	-		-	1			-				1.001681691.016
	ESTIMATED Y-COORDINATE	6 00 00 140 100 00 00 00 00		-	-		1		1	1	-					111111				Mapisolapispispispispispi
INTELLIGENCE INFORMATION	ESTINATED X-COORDINATE	to the factor of the factor					-							11111111		111111			11111	
INTELLIGE	30.1	e celecticion facinetar		-									111111	1 1 1		111111				16 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	TARGET UID	The state of the s						111111					11111111		1111111	11111111				4 102 102 122 122 122 122 122 122 122 122
	SOURCE UID		1111111	1 1 1 1 1 1		111111														र पर्या प्राप्त हो पर्या विकास का
	WHERE TO CODE						11111									, ,				
	SOURCE TYPE	•														-				

Figure III-3-A-9. Intelligence Information Card Format

- (c) Source UID (Columns 9-16). Enter the eight-character alphanumeric UID of a unit to whom the information is first available. This unit will function as the first node in the communication network for the sensing report and must be a battalion, brigade, or division-level maneuver
- (d) Target UID (Columns 18-25). Enter the eight-character alphanumeric UID of the target unit; i.e., the unit described by this
- (e) Time (Columns 27-33). Enter the time at which the information is to enter the Intelligence and Control Model. Upon entry the report is processed as any sensing report in the model, and the user must be aware of decision and processing delay times that will be applied. Enter the day in columns 27-28, the slash (/) in column 29, and the time (24-hour clock) in columns 30-33. For example, 02/0830 represents 0830 hours on the second day of simulated combat.
- (f) Estimated Location (Columns 35-49). Enter the seven-digit X and Y coordinates of the estimated location of the target unit. Entries are right justified in columns 35-41 (X coordinate) and 43-49 (Y coordinate) and leading zeroes may be omitted.
- (g) Estimated Activity (Columns 51-54). The estimated activity of the target unit at time of entry of the report into the system is required. Legal activity codes for the unit are:

MOVE = Unit moving

FIRT = Unit firing tube artillery

FIRM = Unit firing missile artillery

FIRA = Unit firing air defense weapons ATCK = Unit in an attack posture

DEFN = Unit in a defensive posture

WTHD = Unit withdrawing

ENGR = Unit involved in engineering activity

STAY = Unit stationary and not otherwise active.

- (h) Estimated Move Rate (Columns 56-57). If the estimated activity is MOVE, ATCK, or WTHD, enter the estimated rate of unit movement in meters per minute; otherwise, leave the field blank.
- (i) Estimated Direction (Columns 61-63). If the estimated activity is MOVE, ATCK, or WTHD, enter the estimated direction of movement; otherwise, leave the field blank. Directions are expressed as points of the sixteen-point compass, and entries are right justified within the field. Legal entries are:

N	E	S	W
NNE	ESE	SSW	WNW
NE	SE	SW	NW
ENE	SSE	WSW	NNW

III-3-A-17

- (3) Estimated Equipment. This card format, illustrated in Figure III-3-A-10, is the second of two cards required for each item of intelligence to be introduced into the system. This information is used within the model to develop estimated type and size of the target unit.
- (a) Personnel (Columns 1-4). Estimated number of personnel obtained from source.
- (b) Vehicles (Columns 6-8). Estimated number of vehicles, other than those in categories described below, obtained from source.
- (c) Tanks (Columns 10-12). Number of tanks estimated by source about the target.
- (d) APCs (Columns 14-16). Estimated number of APCs in target obtained from source.
- (e) Artillery Tubes (Columns 18-20). Number of artillery tubes estimated by information source.
- (f) Artillery Missiles (Columns 22-24). Estimated number of artillery missiles in target.
- (g) Air Defense Guns (Columns 26-28). Number of AD guns estimated by source to be in target unit.
- (h) Air Defense Missiles (Columns 30-32). Estimated number of AD missiles in target unit.
- (i) Aircraft (Columns 34-36). Estimated number of aircraft obtained from information source.

3. FIRE SUPPORT ALLOCATION CONTROL:

- a. Helicopter and Artillery Penetration Limits. This card format, shown in Figure III-3-A-ll, sets limiting ranges beyond which helicopter and artillery fire support missions will not be requested by the fire support allocation logic of the Intelligence and Control Model. Ranges are stated in terms of distance beyond the FEBA. The Period Processor actually calculates a rectilinear approximation of the trace of the FEBA to be used in reaching fire support allocation decisions. Since the model's approximation of the FEBA may not coincide with the FEBA on game maps plotted by the user, the calculation of the model FEBA, as described in Chapter 4 of Section IV, Battlefield and Unit Geometry, should be understood prior to assignment of these ranges. Ranges are initially set to zero within the model and should be set to desired values at the first game period.
- (1) Blue Helicopters (Columns 2-7). Enter in meters the maximum range beyond the FEBA to which Blue attack helicopter missions may be automatically requested within the model.

	CARD SEG. NR	774 50 1 50 6".		111	111	111	-	-	-	-	-	-	-	111	, , ,	-	1		-	20,000,000
	CAMO	M let let he	-] -	-	1	1 1 1		-	-		1	1		1 1 1	1		111	- A	11.11.01.11
		K. 2.1 1.2 Ga. 50 50 50 50 50 50 50 5																		परितास (ति ति स्वाकार्यकार्यकार्यकार्यकार्यकार्यकार्यकार्
EQUIPMENT	,	37£ 28£ Pet en 1 et 1	1	/-	/-					/	/	/	/	1		1111			MILE	17,138,139,148,148
ESTIMATED	ESTIMATED TRAFST	26.100.100		:			-	-				-	-						1	11 20 20 20
ES1	ESTIMATED AND MISSILES	K 8 20 3 10 100 4			-			-	-			-	-		-	-				261 E 20
	ESTIMATED AA	48 94 44 194 54														-				19 30 14 2 190 50
	ESTIMATED ARTY MISSILES	28188184				:	:			-										29,79,20
	ESTIMATED ARIY YIBES	14 02 101 101																		10001001001
	ESTIMATED #29AA	61 34 1 81 1 04																	-	961 66 94
	ESTIMATED TANKS	41 01 10														:		-		1
	ESTIMATED VEHICLES																			1977
	ESTIMATED PERSONNEL	1000		-																10.11

Figure III-3-A-10. Estimated Equipment Card Format

HELICOPTER AND ARTILLERY PENETRATION LIMITS (METERS)		ANY FE	NACTO	नतात्ता पत्ता देशता क्षा कार्नेका न नेका कार्यका विकास स्थाप कार्यका विकास कार्यका विकास स्थाप ने विकास कार्यका										1		in the property of the same	Language part of the state of t	In the second	1 Hill Mill Sand Sand Sand March March Sand Sand	कार प्राप्त किया है जिल्ला हो है जिल्ला हो है जिल्ला हो है जिल्ला हो है जिल्ला है जिल्
HELICO		N INTO BLUE TORY	FOR ARTY TO FIRE	ae octatisciscistica	 _		-		-	_	_		_		_		1,1	1	11111	1 23 24 18 18 18 1 1 1 E
	C3X	PENETRATION INTO TERRITORY	FOR HELICOPTERS	te seige igaloul delbu	 		-							7 1 1 1 1	- 1		41111	4.1.1.	4	1 12 12 12 12 12 12 12 1
		X	W18	H	 _	1	-	-	_			-	\vdash	7		7	-7		}	픸
	3(INTO EMESTY TORY	FOR ARTY TO FIRE	810101016	-	-							-	1				1111	- - - -	61,61,1,161,1
	BLUE	PEATERATION INTO ENERTY TERAITORY	FOR HELICOPTERS BL																	المديينا

Figure III-3-A-11. Helicopter and Artillery Penetration Limits Card Format

- (2) Blue Artillery (Columns 9-14). Enter in meters the maximum range beyond the FEBA to which Blue artillery fire missions may be automatically requested within the model.
- (3) Red Helicopters (Columns 16-21) and Red Artillery (Columns 23-28). Same definition as columns 2-7 and 9-14 above.
- b. Close Air Support Sorties. These card formats are used to set the number of TACAIR sorties available to the Blue and Red forces. They are initialized at zero and must be set by OPERINS data to obtain TACAIR simulation.
- (1) Blue Sortie Constraints (Figure III-3-A-12). It is assumed that all Blue sorties will be conducted by all-weather-capable aircraft. Sorties are allocated in 6-hour blocks, starting at midnight; and unused sorties in one block are not carried over to later blocks. Entries are the maximum number of sorties available from 0001 to 0600 (columns 1-5); from 0601 to 1200 (columns 6-10); from 1201 to 1800 (columns 11-15); and from 1801 to 2400 (columns 16-20).
- (2) Red Sortie Constraints (Figure III-3-A-13). Both all-weather-capable aircraft and aircraft limited to good visibility conditions are played for Red. The good visibility aircraft are flown first, conditions and sortie limits permitting; otherwise, allocation of sorties is as for Blue TACAIR. Enter maximum Red all-weather-capable sorties for the time blocks 0001 to 0600, 0601 to 1200, 1201 to 1800, and 1801 to 2400 in columns 1-5, 6-10, 11-15, and 16-20 respectively. Enter maximum Red sorties by aircraft limited to good visiblity for the time blocks 0001 to 0600, 0601 to 1200, 1201 to 1800, and 1801 to 2400 in columns 21-25, 26-30, 31-35, and 36-40 respectively.
- 4. OPERINS DATA DECK STRUCTURE. The data deck for the OPERINS loader is composed of up to four subdecks. Any or all of these decks can be provided for one operation of the loader. Each subdeck is introduced by a header card with the proper code punched in the first two columns. Legal header card codes and associated subdecks are:
 - 01 = Sensor control subdeck
 - 02 = Introduction of intelligence subdeck
 - 03 = Helicopter and artillery penetration subdeck
 - 04 = Close air support sorties subdeck.

a. Subdeck Structure:

(1) Sensor Control Subdeck. The first card of the sensor control subdeck is a header card with the symbols Ol punched in the first two card columns. Following the header card, sensor control data cards may be provided in any sequence with the requirement that the three cards required to establish an UGS field must be contiguous and in the order described in subparagraph le (UGS Identification, UGS Field Composition, UGS Field Location) for each UGS field. The user should bear in mind the limit of 100 model

				817.65
HAXIMEN SORTIES STARTING	MAXINDM NUMBER OF ALL STATHER SORTIES FOR EACH 6 HOUR PERIOD STARTING AT MEDICAL	NUMBER OF ALL VEATHER FOR EACH & HOUR PEKION AT MIDNIGHT	HER Kiod	жын
Perion 1	PLP10D	PERIOU 3	PERIOD \$	
	016101710	116161614	M. 1611717171	नीता जात करते होता तथा केवर केवर केवर केवर केवर केवर केवर केवर
1	7 7 7	- - -	1	VI TO ELECTIVE LA LIBERTA LIBERTA DE LA LIBERTA LA LIBERTA LA LIBERTA LIBERTA LIBERTA LIBERTA LIBERTA LIBERTA
1 1 1	1111	7111	- - -	y / y 1/2 (1/2 / 2/2
1	1111	111	1	بورائرا المحرائين المرتبائين الموتدام ويكبوا كبويكيو المويكيو المعويكيو المعديكي ويديد ويدويه ويدود
1	1111	1	1111	7 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		-	-	
	-		-	
-		-		
		-	-	
	-	-	-	
	-	-	-	
	-	-		
1	1	1	-	y 1 / 20
-	1	1	1	7. 1 /4 1 / 24 1 /4 1. /
1111	1	1	1	(1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1)
	1	1	4	in her representations and an experience of the second section of the second sections of the second sections of
111	1	1	1	Like it all the like it by the interest the interest in the in
1		1	1	
राराताः	فيعدده	11.161.191.11	#161161161	क्षां प्राप्त निर्माण का

Figure III-3-A-12. Blue Sorties Card Format

							RED SORTIES	RTIES
MAXIMUM SORTIES STARTIN	HAXIMOM NUMBER OF ALL WEATHER SORTIES FOR EACH 6 HOUR PERIOD STARTING AT MIDNICHT	ALL WEATH 6 HOUR PER CHT	IER (IOD	MAXIMUM SURTIES STARTING	NUMBER OF FOR EACH	HAXIMUM NUMBER OF GOOD VISIBILITY SURTIES FOR EACH 6 HOUR PERIOD STARTING AT MIDNIGHT	HELLITY NOD	BLANK
PERIOD	PERIOD 2	PERIOD 3	PERTOD	PEKIOD 1	PERIOD	PERJOD	PERIOD	
.1518161.	010101410	614119119	16117119130	P-128123 [24] 25	or 1421 021 12 104	at late be a late i at	40 10E 10E 12E 10E	को प्रीति स्ति स्तिति । जाककित्व को के कि कि बोर्क कि विकास को कि को कि को कि को स्वाप्ति । विकास को कि स्वाप्ति को को को स्वार्ति । को स्वार्ति के कि को स्वार्ति के को स्वार्ति के कि स्वार्ति के कि को स्वार्ति के कि को स्वार्ति के कि को स्वार्ति के कि स्वार्ति के कि को स्वार्ति के कि स्वार्ति के कि को स्वार्ति के कि के कि को स्वार्ति के कि को स्वार्ति के कि कि को स्वार्ति के कि को स्वार्ति के कि को स्वार्ति के कि
-	1 1 1		111	1	1111	1111	1111	Bucket Shirt Shirt Shirt Shirt Shirt Shirt Shirt
1	1111	1111	1111	1111	1111	1111	1111	New State St
111	1111	111	1111	1111	1111	1111	111.1	THE PARTY OF THE P
111	1111		1111				1 1 1	14 1 14 1 24 1 1 14 1 1 24 1 1 24 1 1 24 1 1 24 1 1 24 1 1 24 1 1 24 1 1 24 1 1 24 1 1 24 1 1 24 1 1 24 1 1 24
111	1 1		1111	1111	-	1	1111	12. 12. 12. 12. 12. 12. 12. 12. 12. 12.
-	-		-	-	-	-	-	\ Y
-	-					-	1111	
-		-		- 1 - 1		1111	1111	Marine Control of the
-	_		111				1111	4.14.14.14
			1111	1111		1111	1111	
-	$\overline{}$	1	_	1111	1111	1111	1111	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
-	-					1111	1111	Land to the sail of the sail o
111	-			-	111	1	-	Ly the best by the state of the state of the state of the
-	-		1111	1111	1	1111	1111	Mily in the Bull har har har har har har har har har
			1111		1111	1	1 1 1	Sellen Control of the sellen s
-	-	1 1	1111		-	1	1 1 1	Liberty in the property of the party of the
	1	1	1111	111	-	1	1111	distributed the party and in the said
.1010	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	91 91 91 91 91 1 1 1 1 1 1 1 1 1 1 1 1	1 46 117 148 145 146	88198188118	06161.00,00,00	MI 04 169 189 . W	90195136136106	हाराज्यात प्राप्त प्राप्त प्राप्त प्राप्त का

Figure III-3-A-13. Red Sorties Card Format

sensors (radars or UGS fields) per force. The size of this subdeck is not fixed; and the last card of the subdeck must be a blank card, used to signal the end of the subdeck to the loader.

- (2) Introduction of Intelligence Subdeck. The first card of this subdeck must be the header card with the symbols 02 punched in the first two card columns. The second card of this subdeck must be the period card, described in subparagraph 2b(1). For each sensing report to be introduced into the system, the intelligence information card must be followed immediately by the estimated equipment card. There is no practical limit on the number of such card pairs to be processed. The size of this subdeck is not fixed; and the last card of the subdeck must be a blank card, used to signal the end of the subdeck to the loader.
- (3) Helicopter and Artillery Penetration Subdeck. This subdeck consists of the header card, with 03 punched in the first two card columns, followed by one data card as discussed in subparagraph 3a.
- (4) Close Air Support Sorties Subdeck. This subdeck is composed of a header card, with 04 punched in the first two card columns, followed by a Blue sortie card and a Red sortie card. All three cards must be present in the proper order.
- b. Deck Structure. Only those subdecks required for the game period need be included in the data deck. The order of subdecks within the data deck is of no significance as long as each subdeck starts with the proper header card. An end of data deck card, with 99 punched in columns 1-2 of the card, must follow the last subdeck. A typical data deck for Operating Instructions is shown in Figure III-3-A-14.

Figure III-3-A-14. Data Deck Arrangement for Operating Instructions

APPENDIX B

OPERATING INSTRUCTIONS PROGRAM DESCRIPTIONS

1. INTRODUCTION. The routines described in this appendix make up the operating instructions loader and include a loader executive, DATAST, and a group of routines that read data cards and place the data directly into the DIVWAG data files. These routines are considered part of the Orders Input Processor because they may be used at the beginning of any game period.

2. ROUTINE DATAST:

- a. Purpose. DATAST is the executive routine of the operating instructions loader.
 - b. Input Variables:

Name	Source	Contents
IFNT(56,3)	Disk	File name table.
UTDTAB(1000)	DF36 `	Unit type designator (UTD) for all units.
UIDTAB(2,1000)	DF36	Unit identification cross-reference table for all units.
IBLUE	DF36	IUID of last Blue unit.
IRED	DF36	IUID of first Red unit.
JHEAD	Card	Header card to indicate the type of load required.

- c. Output Variables. None.
- d. Logical Flow (Figure III-3-B-1):
 - (1) Block 1. Call routine GETFLE to load the file name table.
- (2) Block 2. Call routine GETWRD to obtain from data file 36 the unit type designator cross-reference table, the unit identification cross-reference table, and the last used IUID for both Blue and Red forces.
- (3) Block 4. Zero out the array of sequence numbers for sensing reports from all battlefield sources and call routine PUTRCD to place this array in data file 16.
- (4) Block L1000. Read header card to indicate which set of data is to follow.
- (5) Block 5. If the header card is an end-of-data card, terminate the program.

Figure III-3-B-1. Routine DATAST (Continued on Next Page)

90F AD A1 12658

MICROCOPY RESIDEBLE NOTES OF SERVER

Figure III-3-B-1. Routine DATAST (Concluded)

- (6) Blocks 7 and L5. If the header card is a legitimate header card (i.e., contains a value between one and five inclusive), control goes to block 8; otherwise, print a diagnostic message about the illegal header card and transfer control to block L1000 to read the next card.
- (7) Block 8. Control branches according to value in header card. If JHEAD is equal to one, control goes to block L1. If JHEAD is equal to 2, control goes to block L6. If JHEAD is equal to three, control goes to block L3. If JHEAD is equal to four, control goes to block L4. If JHEAD is equal to five, control goes to block L2.
- (8) Block L1. Call VINKLD to load data file 20 with the individual sensor data. Upon its return, control goes to block L1000.
- (9) Block L2. Call LDASR to load a unit's available supply rates (ASR). Upon controls return, it goes to block L1000.
- (10) Block L3. Call PLOAD to load the ranges from the FEBA for the decision process of the Intelligence and Control Model on the type of fire support to request. Upon its return, control goes to block L1000.
- (11) Block L4. Call SLOAD to load the Blue and Red sorties for a period of time in 6-hour blocks. Upon its return, control goes to block L1000.
- (12) Block L6. Call INTLIN to load intelligence information. Upon its return, control goes to block L1000.

3. ROUTINE VINKLD:

a. Purpose. VINKLD loads the individual sensor data desired for this $\operatorname{\mathsf{game}}$ period onto data file 20.

b. Input Variables:

Name	Source	Contents
IDUM(320)	DF20	Constant unattended ground sensor (UGS) field data. First 160 words describe Blue UGS fields and last 160 words describe Red UGS fields.
INVEC(15)	Card	Sensor data for individual sensor read from cards.
UTDTAB(1000)	TWO	Unit type designator table for all units.
JREC(20)	DF20	Individual sensor data record from data file 20.

c. Output Variables:

<u>Name</u>	Destination	Contents
JREC(20)	DF20	New or updated individual sensor data record.

- d. Logical Flow (Figure III-3-B-2):
- (1) Block 1. Get from data file 20 the constant unattended ground sensor field data (loaded by INCLD).
 - (2) Block L1000. Read sensor data card.
- (3) Block 2. If all the data have been read (sensed by blank card), control goes to block L6000.
 - (4) Block 3. Print the contents of the data card just read.
- (5) Block 4. Utilizing the unit identification read as the first node in the communication network, determine the IUID and, using it, obtain the unit type designator of the first node from the unit type designator table.
- (6) Block 5. If the first node is not a maneuver unit (last characters of unit type designator not MI, MT, or MC), control goes to block L5000.
 - (7) Block 6. Set the sensor record pointer for the Blue or Red force.
- (8) Block 7. Loop through the individual sensor records to determine if this is a new set of data or an update to an existing record.
- (9) Blocks 8 and 9. If this is a new set of data, transfer control to block L2. If this is an update set of data, transfer control to block L3.
- (10) Block 10. Since the data are not an update to existing sensor data and there is no room on the existing sensor data record for new sensor data, a diagnostic message is written and control is returned to the calling routine.
- (11) Block L2. Set the new data flag and load the keyword into the sensor record array.
 - (12) Block L3. Compute the next record counter.
- (13) Block 11. If the new sensor data are not for an update, transfer control to block L7.
- (14) Block 12. If the new set of data is for an unattended ground sensor field sensor, transfer control to block L300.
- (15) Block L10. Set up sensor record with parateled that are common to the moving target indicator, air defense, and countermortal or counterbattery radars.
- (16) Block 13. If this is a countermortar or counterbattery radar type sensor, transfer control to block L90.
- (17) Block 14. Set those sensor values common to the moving target indicator and air defense radars.

Figure III-3-B-2. Routine VINKLD (Continued on Next Page)

Figure III-3-B-2. Routine VINKLD (Continued)

4,

III-3-B-7

Figure III-3-B-2. Routine VINKLD (Continued)

Figure III-3-B-2. Routine VINKLD (Continued)

Figure III-3-B-2. Routine VINKLD (Concluded)

- (18) Block 15. If this is not an air defense radar sensor type, transfer control to block L8.
- (19) Block L80. Set the vertical orientation and vertical sector for air defense radar.
- (20) Block L8. Put individual sensor record onto data file 20 and return control to block L1000.
- (21) Block L90. Set the values of the countermortar/counterbattery radar, and transfer control to block L8.
- (22) Blocks L300, 16, 17, and 18. Read cards 2 and 3 for unattended ground sensor fields and print their contents. Card 2 contains sensor types and numbers to make up an unattended ground sensor field. Card 3 contains the four X,Y coordinates that give the unattended ground sensor field its convex geometric shape.
- (23) Block 19. Put the coordinates into the sensor record. Convert the median time to track from seconds to centiminutes and store into sensor record.
- (24) Blocks 20 and 21. Call routine AREA to determine the area of the unattended ground sensor field described by the coordinates and determine the sensitive area ratios for personnel, for wheeled vehicles, and for tracked vehicles; place these into the sensor record, and transfer control to block L8.
- (25) Block L7. Zero sensor record, and set up values common to all sensor types.
- (26) Blocks 22 and 23. If this is an unattended ground sensor radar card type, transfer control to block L300. If this is an air defense or countermortar/counterbattery radar type card, transfer control to block L10.
- (27) Block 24. Call routine GETRCD to retrieve the minimum radial velocity, azimuth auto scan rate, and range auto scan depth; then, transfer control to block L10.
- (28) Block L5000. Print a diagnostic message that the first node in the communication network is not a maneuver unit; then transfer control to block L1000 to read the next card.
- (29) Blocks L6000 and 25. Print each sensor record formatted according to sensor type; first, the Blue force sensors and then the Red force sensors are printed. Return control to the calling routine.

4. ROUTINE CNVRT:

a. Purpose. CNVRT is called by VINKLD to convert angles in mils measured clockwise from grid north to angles in radians measured counterclockwise from the positive X axis.

b. Input Variables:

Name Source Contents

ANG Call Angle in mils measured clockwise from grid north.

c. Output Variable:

Name Destination Contents

CNVRT Call Angle in radians measured counterclockwise from the positive X axis.

d. Processing Description. The angle is converted from mils to degrees from grid north, using the multiplicative factor 0.05625. This is converted to degrees from the X axis by a change in sign and addition of 45° (90° if the original angle was less than or equal to 90°). Finally, the result is converted to radians by the multiplicative factor 0.01745.

5. ROUTINE AREA:

a. Purpose. AREA is called by VINKLD to compute the area of a convex quadrilateral by summing the areas of the two triangles formed by bisecting the quadrilateral.

b. Input Variable:

Name	Source	Contents
X(4), Y(4)	ONE	Set of four (X,Y) coordinate locations of the corners of a convex figure describing the unattended ground sensor field.

c. Output Variable:

Name	Destination	Contents
ANS	Call	Area of the convex quadrilateral computed by this routine.

d. Processing Description. The lengths of each side of the quadrilateral are determined as A, B, C, and D and the length of a diagonal as E, all using the Pythagorean theorem. (The quadrilateral is bisected into triangles with sides A, B, E, and C, D, E.) The area of each triangle is calculated, and the two areas are summed.

6. ROUTINE LDASR:

a. Purpose. LDASR loads from cards the available supply rate for specific equipment types for a specified unit.

b. Input Variables:

<u>Name</u>	Source	Contents
UID	Card	Unit identifier code for unit receiving the available supply rate.
NI	Card	The number of entries on the data card.
INDEX(100)	Card	An array of equipment item codes.
ASR(100)	Card	An array of associated available supply rates.
UMAIN(500)	DF1	Unit status file of unit receiving the available supply rates.
LIST(10)		UMAIN(277). List of subordinate units.
PNT1, PNT2	ONE	UMAIN(317) and UMAIN(318). Beginning and ending supply status records.
EQUIP(1000)	DF31	Storage for up to 100 ten-word records from data file 31.

c. Output Variables:

Name	Destination	Contents
EQUIP(1000)	DF31	Updated available supply rate data in storage area for up to 100 ten-word records for data file 31.

d. Logical Flow (Figure III-3-B-3):

- (1) Block L1000. Read the card containing the following information: UID, unit identification of unit to receive the new available supply rates; NI, number of new available supply rate entries; INDEX, an array of equipment item codes; and ASR, an array of associated available supply rates.
- (2) Block 1. If this is an end-of-data card (i.e., blank card), then return control to the calling routine.
 - (3) Block 2. Print the contents of the card just read.
- (4) Block L1001. Get from data file 1 the unit status record of the unit receiving the new available supply rates.
- (5) Block 3. Utilizing the record pointers of this unit's data file 31 records, get this unit's supply status record from data file 31.
- (6) Block 4. Search for a match between the item codes read from cards and those on the supply status array. When there is a match, the new available supply rate associated with the item code is stored into the proper location on the data file 31 storage array.

Figure III-3-B-3. Routine LDASR (Continued on Next Page)

Figure III-3-B-3. Routine LDASR (Concluded)

- (7) Block 5. Put this unit's updated supply status file on data file 31.
- (8) Block 6. If this unit has subordinate units, then their supply status records must be updated to correspond with those of the superior; therefore, transfer control to block L1001. If all the subordinates have been processed or there are no subordinates, then transfer control to block L1000 for the next card.

7. ROUTINE PLOAD:

a. Purpose. PLOAD loads ranges from the forward edge of battle area used in the decision process as to what fire support to request.

b. Input Variables:

Name	Source	Contents
JBLU(2)	Card	Blue force attack helicopter range limit (JBLU(1)) and artillery range limit (JBLU(2)).
JRED(2)	Card	Red force attack helicopter range limit (JRED(1)) and artillery range limit (JRED(2)).

c. Output Variables:

Name	Destination	Contents
JBLUE(2)	DF16	Same as input variable description.
JRED(2)	DF16	Same as input variable description.

d. Processing Description. A data card is read, values on the card are listed and placed on data file 16, and control returns to the calling routine.

8. ROUTINE SLOAD:

a. Purpose. SLOAD reads the Blue and Red close air support (CAS) sortie constraints and stores them on data file 26.

b. Input Variables:

Name Source		Contents	
JSORTY(8)	Card	JSORTY (1 through 4) are good weather sorties for a 24-hour period, allocated in 6-hour segments. JSORTY (5 through 8) are all-weather sorties for a 24-hour period, allocated in four 6-hour blocks.	

c. Output Variables:

Name	Destination	Contents		
JSORTY(8)	DF26	Same as described for input variables.		

d. Processing Description. A card is read and listed, and its contents placed on data file 26 as Blue sortie limits. A second card is read and listed, and its contents placed on data file 26 as Red sortie limits. Control then returns to the calling routine.

9. ROUTINE INTLIN:

a. Purpose. The Intelligence and Control Model utilizes simulation of enemy activity detecting devices to develop an intelligence picture. Although these provide valuable combat intelligence information, they are not the only source of intelligence. INTLIN allows introduction of intelligence information from other battlefield sources.

b. Input Variables:

Name	Source	<u>Contents</u>
ISENST	Card	The source type code is the classification of the information source.
IWHERE	Card	Code indicating where the information is to go within the Intelligence and Control Model.
SUID	Card	Identification of the unit to which the information will first be communicated (i.e., first node in the information network; hence, must be a maneuver type unit).
TUID	Card	Identification of the unit that is described in the information (i.e., the target UID).
IDAY and IHRMIN	Card	Time at which the information enters the Intelligence and Control Model. It is also the time that will appear on the intelligence report as the detection time.
ESTX	Card	Estimated X coordinate of the target (detected) unit in meters, (up to seven digits).
ESTY	Card	Estimated Y coordinate of the target unit in meters.
IACT	Card	The estimated activity code is a four-character code describing the target unit's estimated activity.

Name	Source	Contents
MOVRAT	Card	Estimated movement rate in meters/minute, if the estimated activity is movement or if the target unit is attacking.
IDIR	Card	Estimated direction of the movement, if the target is considered to be moving.
NOPERS	Card	Estimated number of personnel in target.
NOVEH	Card	Estimated number of wheeled vehicles in target.
NOTNKS	Card	Estimated number of tanks in target.
NOAPCS	Card	Estimated number of armored personnel carriers in target.
NOATBS	Card	Estimated number of artillery tubes in target.
NOAMIS	Card	Estimated number of artillery missiles in target.
NOADGN	Card	Estimated number of air defense guns in target.
NOADMS	Card	Estimated number of air defense missiles in target.
NOACFT	Card	Estimated number of aircraft in target.
c. Output	: Variables:	
Name	Destination	Contents
FILE12(35)	DF12	Automatic event array containing intelligence information to be entered into the Intelligence and Control Model.
LUID		FILE12(1). Identification of the detecting unit.
INCOPR		FILE12(2). Intelligence and Control function to be performed.
RPTNO		FILE12(5). Sensing report number.
MUID		FILE12(6). Identification of the unit sensed.
ESTX		FILE12(7). Estimated X coordinate.

ESTY

ESTSZE

FILE12(8). Estimated Y coordinate.

FILE12(9). Estimated size of unit sensed.

Name	Destination		Contents
ESTYPE		FILE12(10).	Estimated type of unit sensed.
ESTACT		FILE12(11).	Estimated activity of unit sensed.
MOVRAT		FILE12(12). unit.	Average movement rate of detected
ESTDIR		FILE12(13). if moving.	Estimated direction of movement,
NOPERS		FILE12(14). detected.	Estimated number of personnel
NOVEH		FILE12(15). detected.	Estimated number of vehicles
NOTNKS		FILE12(16).	Estimated number of tanks detected.
NOAPCS			Estimated number of armored rriers detected.
NOATBS		FILE12(18). tubes detect	Estimated number of artillery ed.
NOAMIS		FILE12(19). missiles det	Estimated number of artillery ected.
NOADGN		FILE12(20). guns detecte	Estimated number of air defense d.
NOADMS		FILE12(21). missiles det	Estimated number of air defense ected.
NOACFT		FILE12(22). detected.	Estimated number of aircraft
TIMDET		FILE12(23).	Time of detection.
ISENST		FILE12(26).	Sensor type.

d. Logical Flow (Figure III-3-B-4):

- (1) Block 1. Bring in contents of data file 36.
- (2) Block 2. Get from data file 16 the sequence numbers for the sources of information to be used in the development of the sensing report numbers.
- (3) Block L4. Read the first intelligence information card, which contains source and target units, time to enter Intelligence and Control Model,

Figure III-3-B-4. Routine INTLIN (Continued on Next Page)

Figure III-3-B-4. Routine INTLIN (Continued)

Figure III-3-B-4. Routine INTLIN (Concluded)

and time of detection, source type, estimated location, estimated activity, and if activity is estimated to be movement, the estimated direction and rate of movement.

- (4) Block 3. If this is not an end-of-data card (i.e., a blank card), control goes to block L20.
- (5) Block 4. Since all data have been read, save source sequence numbers by putting them on data file 16.
- (6) Block 5. Since some Intelligence and Control events have been scheduled by this routine, save the schedule for automatic events by putting it on data file 36. Return control to the calling routine.
- (7) Block L20. Read the second card containing the estimated equipment items contained in the target unit.
- (8) Block 7. Develop the report number for the sensing report, which will also be used on the printout.
- (9) Block 8. Print the contents of the two intelligence information cards just read.
- (10) Block 9. Convert the time read into time of detection (i.e., time in minutes from beginning of game). This time is also used as the time increment to schedule the entry of this information into the Intelligence and Control Model.
- (11) Block 10. Utilizing the routine IUIDF, determine the identification numbers of the source and target units read on the first card of intelligence information.
- (12) Block ll. Convert the direction code read into the proper radian equivalent. Convert the activity code read into its proper numerical equivalent. (See DATA statement in listing).
- (13) Block 12. Determine if the specified source unit is a maneuver unit by checking its unit type designator. If it is not a maneuver unit, check the unit type designator of its superior unit. If neither unit is a maneuver unit, then set the specified source unit's division as the indicated source unit on the sensing report.
- (14) Block 13. Check the code indicating where this intelligence information is to enter the Intelligence and Control Model; if it is a request for only fire support coordination processing, control goes to block L70.
- (15) Block 14. Call EVTSET to schedule an event to enter this intelligence information into the communication network of the Intelligence and Control Model.
- (16) Block 15. If this is not a request to enter this information into both the information communication network and fire support coordination center, control goes to block L4.

- (17) Block L70. Call UTSR to establish the estimated size and type of the target unit entered in the data cards.
- (18) Block 16. Call EVTSET to schedule an event to determine what type of fire support should be requested against this target; transfer control to block L4.
- 10. ROUTINES IUIDF, UTSR, EVTSET. These routines are described in Section IV.

APPENDIX C

OUTPUT DESCRIPTIONS FOR OPERATING INSTRUCTIONS

The operating instructions (OPRINS) process initially lists all unit identification codes in the Blue and Red forces. Figure III-3-C-1 depicts the format of the output produced by the operating instructions process. In the figure, an alphabetical character (descriptor) designates an appropriate group of lines explained below.

Output
Descriptor

Explanation

Α

This line reflects the unit identification code of the last unit in the Blue force (288), and the first unit in the Red force (655).

В

INTLAN DATA CARDS: There are two lines reflecting intelligence information loaded in routine INTLAN of the operating instructions. The report number (4800011) reflects the source of information (48) and a unique sequential report number (11). This unique report number is generated by adding 10 to a source type code, multiplying the result by 100,000 and adding a sequential report number. For a description of source type codes, see Appendix A to this chapter.

BOTH: Both indicates that this report is entered both in the intelligence processing and communication network and in the fire support allocation logic. Other possible entries here are INTL to indicate that this report is entered in the intelligence processing and communication network only, or FSCC to indicate that this report is entered in the fire support allocation logic only.

B82MEZBD and RZ130ZTK are unit identification codes of the first node of the communication network and the target unit respectively.

The next two entries (1 500) are the day and hour/minute in which the information is to be entered into the Intelligence and Control Model. The next two entries are the estimated X and Y coordinates of the target unit.

The next entry (DEFN) is the estimated activity of the target unit. See Appendix A of this chapter for all estimated activity mnemonics and their interpretations.

 (B) — INTLAN CATA CAFOS 4800011 90TH P12202TK BBC612AR 1 5CC 11EE77 89753 PEFN .

D-EWERED UTST

Figure III-3-C-1. Sample Printed Output by the Operating Instructions Process (Continued on Next Page)

(G) RACUS= 15F5CF= 275FC-CDAFER= 90000:00 %
RACUS= 36F5CF= 900FC-CDAFER= 90006:00 %
FATUS= 30F5CF= 90FFC-CDAFER= 90000-00 %

o v Figure III-3-C-1. Sample Printed Output by the Operating Instructions Process (Continued)

Sample Printed Output by the Operating Instructions Process (Concluded) Figure 1:11-3-C-1.

Output Descriptor

Explanation

The last two entries of this line reflect the estimated rate of movement (in meters per minute) and the estimated direction of movement of the target unit.

The second line of this report reflects the estimated number of personnel, vehicles, tanks, armored personnel carriers, artillery tubes, artillery missiles, air defense guns, air defense missiles, and aircraft of the target unit.

С

EVTSET, event report: The first line of this report gives the time that the event occurs within this period and the event number. The next four lines are an image of a 35-word record of data file 12. The first-line entries (per column) are:

IUID of the division to which this data is sent
The intelligence operation code
Not used
Not used
Index number
IUID of target number
X coordinate of unit
Y coordinate of unit
Estimated type of target unit
Estimated size of target unit

The second line gives:

Estimated activity of target unit
Estimated movement rate of target unit (meters per minute)
Estimated movement direction of target unit (tenths of radians)
Estimated personnel strength of target unit
Estimated number of vehicles in target unit
Estimated number of tanks in target unit
Estimated number of armored personnel carriers in target unit
Estimated number of artillery tubes in target unit
Estimated number of artillery missiles in target unit
Estimated number of artillery missiles in target unit
Estimated number of air defense guns in target unit

The 10 words on the third line are:

Estimated number of air defense missiles in target unit

III-3-C-5

Н

Explanation

Estimated number of aircraft in target unit
Time of detection of target unit (since start of
game
Detector code

The remaining nine words are not used.

- D This entry indicates that routine UTSR was called to estimate the size of the target unit.
- E Sensor data cards. A description of these cards appears in Appendix A to this chapter.
- F Unattended ground sensor (UGS) field composition and location cards. See Appendix A to this chapter for a description of these cards.
- UGS data report. The first three lines of this report reflect UGS coverage for personnel, wheeled, and tracked vehicles. The first entry gives the sensitive radius of the sensor for the respective target; the second entry gives the cumulative sum of the square of the sensitivity radius of all sensors in the UGS field. The next entry gives the area of the UGS field, and the last entry is the number of sensors of the type reflected by this line. The last line of this report is the same as the third line with the exception of SUM. On this line, SUM reflects the ratio of the sums of the area of coverage of all UGS sensors in the UGS field to the area of the UGS field.
 - Moving target indicator (MTI) radar report. This printout is a report of data file 20 records of MTI radar sensor data. Each line has the following entries:

Record number
Sensor type code
Key to sensor type parameter table.
IUID of sensor's first node unit
Last assigned report number
Sensor status flag
Sensor X coordinate
Sensor Y coordinate

Ι

J

Explanation

Sensor Z coordinate.
Minimum range.
Maximum range.
Horizontal orientation (radius from X axis).
Horizontal search sector (radians).
Minimum radial target velocity.
Azimuth autoscan rate (milliradians per centiminutes).

Range autoscan depth (meters).

The remaining fields are not used.

Counterbattery radar report. This printout is a report of data file 20 records of individual countermortar/counter-battery radar data. Each line has the following entries:

Record number.

Sensor type code.

Key to sensor type parameter table.

IUID of sensors first node unit.

Last assigned report number.

Sensor status flag.

Sensor X coordinate.

Sensor Y coordinate.

Horizontal center azimuth (radians from X axis).

Horizontal search sector (radians).

Site mask angle (radians).

Vertical beam separation (radians).

The remaining fields are not used.

Unattended ground sensor (UGS) report. This printout is a report of data file 20 records of UGS data. Each line has the following entries:

Record number.

Sensor type code.

Key to sensor type parameter table.

IUID of sensor first node unit.

Last assigned report number.

Sensor status flag.

X coordinate of first UGS field corner.

Y coordinate of first UGS field corner.

X coordinate of second UGS field corner.

Y coordinate of second UGS field corner.

X coordinate of third UGS field corner.

Y coordinate of third UGS field corner.

X coordinate of fourth UGS field corner.

Y coordinate of fourth UGS field corner.

Y coordinate of fourth UGS field corner.

III-3-C-7

Output Descriptor

Explanation

K

PLOAD, penetration data report. This report reflects the maximum range in meters beyond the FEBA to which missions may be automatically requested within the model for Blue attack helicopter missions, Blue artillery fire missions, Red attack helicopter missions, and Red artillery fire missions.

I.

Blue and Red sorties report. Line one reflects the maximum number of all weather sorties for each 6-hour period starting at midnight for the Blue force. Line two reflects that data for the Red force.

APPENDIX D

SOURCE LISTINGS FOR ORDERS INPUT PROCESSOR OPERATING INSTRUCTIONS

(AVAILABLE UNDER SEPARATE COVER)

