Layout

Wind Direction

Wind Sway Coeff

• FST2: 75 deg = 0.07

• LNGC: 255 deg = 0.97

Port

Starboard

From Model Test

Transformation?

Transformation | Physical Reasoning

Physical:

- LNGC rotated by 180 deg.
- When LNGC by itself, we have nominal (OCIMF) coefficients
- Port Berthing (Data Available):
 - Wind shielding local vessel directions are: 180 to 360
 - Only 180 to 360 deg data are factored (by shield factors) compared to OCIMF coeffs
 - 0 to 180 deg, no change
- Starboard Berthing:
 - Wind shielding local vessel directions are: 0 to 180
 - Factor 0 to 180 deg data
 - Unfactor: 180 to 360 data

Transformation | From Port Model test data to Starboard

- LNGC rotated by 180 deg
 - The local angles are rotated by 180 deg
- The Surge coefficients are multiplied by -1
- The Sway coefficients are multiplied by -1

Case study (90 Beam Seas), Sway Coeff

Case study (45 Beam Seas), Sway Coeff

Case study (0 deg Following Seas), Surge Coeff

Case study (45 Beam Seas), Surge Coeff

