

TỔ CHỨC VÀ CẦU TRÚC MÁY TÍNH II Chương 8 Bộ xử lý

8/23/2023

Nội dung

- ■Vi kiến trúc
- Datapath
- ■Thực thi lệnh
- ■Bài tập

Kiến trúc

Vi kiến trúc

Luận lý

Mạch số

Vi kiến trúc (1/2)

- Kiến trúc Máy tính bao gồm 3 thành phần chính:
 - ☐ Kiến trúc tập lệnh (ISA): Quy định máy tính có thể làm những việc gì?
 - Lệnh
 - ☐ Vi kiến trúc (Tổ chức Phần cứng Máy tính): Quy định máy tính làm việc như thế nào?
 - Hiện thực ISA
 - ☐ Hệ thống Máy tính: Quy định các thành phần của máy tính phối hợp trong một hệ thống điện toán như thế nào?
 - Ao hóa, Quản lý Bộ nhớ, Xử lý Đồ họa...

Vi kiến trúc (2/2)

- Về chức năng, Vi kiến trúc là một tổ chức phần cứng dùng để hiện thực tập lệnh của một máy tính.
- Về cấu tạo, Vi kiến trúc được chia thành 2 khối:
 - □Khối đường dữ liệu (datapath): Thực thi lệnh
 - Lưu trữ: Bộ nhớ lệnh, Bộ nhớ dữ liệu, Tập thanh ghi, ...
 - Truyền/nhận: Các đường tín hiệu dữ liệu, địa chỉ, điều khiển
 - Xử lý: ALU, Bộ so sánh, Mux, Bộ mở rộng dấu, Bộ dịch, ...
 - □Khối điều khiển (control unit): Điều khiển datapath hoạt động
 - Dựa trên opcode của lệnh và trạng thái của datapath

Datapath (1/9) – Chu kỳ thực thi lệnh

- Datapath dùng để thực thi lệnh! Một lệnh thực thi như thế nào?
 - □Chu kỳ thực thi lệnh!

Nạp lệnh	Giải mã	Thực thi	Truy xuất Bộ nhớ	Lưu kết quả
• Bộ nhớ lệnh		• ALU	• Bộ nhớ dữ liệu	• Tập thanh ghi
• PC	 Bộ nhớ dữ liệu 	 Bộ so sán 	h Hệu	
	 Mở rộng dấu 			
		ED ENG	SINIEEDIN	10

Datapath (2/9) – Nạp lệnh

- Lệnh cần nạp lưu trong Bộ nhớ lệnh
- Địa chỉ của lệnh cần nạp lưu trong thanh ghi PC
 - □ Tăng PC lên 4 để chuẩn bị nạp lệnh tiếp theo -> cần thêm bộ cộng

Datapath (3/9) – Giải mã lệnh – Định dạng lệnh

Dựa vào opcode để xác định định dạng lệnh

Datapath (4/9) – Giải mã lệnh - Nạp toán hạng

Dựa vào định dạng lệnh mà nạp toán hạng tương ứng

Datapath (5/9) – Nạp toán hạng: beq/bne

Datapath (6/9) – Nạp toán hạng: j

Datapath (7/9) – Thực thi

Dựa vào opcode và funct để quyết định thao tác gì sẽ được thực thi

Datapath (8/9) – Truy xuất bộ nhớ

Đọc dữ liệu từ bộ nhớ dữ liệu đối với các lệnh nạp

Ghi dữ liệu tới bộ nhớ dữ liệu đối với các lệnh lưu

Datapath (9/9) – Lưu kết quả

Có thể ghi dữ liệu về lại Tập thanh ghi

Thực thi nhóm lệnh luận lý & số học (1/2)

ALU_Inst C, A, B

Thực thi nhóm lệnh luận lý & số học (2/2)

add, sub, and, or, slt

Thực thi nhóm lệnh truyền dữ liệu (1/5) - lw

lw C, B(A)

Nạp lệnh Giải mã Thực thi Truy xuất Bộ nhớ Quả $Inst = IM[PC] \qquad A = R[rs] \quad ALU = A + B \quad D = DM[ALU] \qquad C = D$ $PC = PC + 4 \quad B = SigExt(imm)$ C = R[rt]

Thực thi nhóm lệnh truyền dữ liệu (2/5) - lw

Thực thi nhóm lệnh truyền dữ liệu (3/5) - sw

lw C, B(A)

Nạp lệnh Giải mã Thực thi Truy xuất Bộ nhớ Lưu kết quả

Inst = IM[PC] A = R[rs] ALU = A + B DM[ALU] = C PC = PC + 4 B = SigExt(imm)C = R[rt]

COMPUTER ENGINEERING

Thực thi nhóm lệnh truyền dữ liệu (4/5) - sw

Thực thi nhóm lệnh điều khiển (1/2) - beq

beq A, B, C

Thực thi nhóm lệnh điều khiển (2/2) - beq

Thực thi nhóm lệnh điều khiển + ALU

Thực thi nhóm lệnh điều khiển + ALU + DMEM

Tổng kết: Datapath có thể thực thi beq/alu/lw/sw

Bài tập (1/5)

Trình bày các khối chức năng được sử dụng khi thực thi lệnh

addi?

Bài tập (2/5)

Trình bày các khối chức năng được sử dụng khi thực thi lệnh sw?

Bài tập (3/5)

Tìm chu kỳ nhỏ nhất của CPU nếu chỉ thực thi lệnh and?

Quy ước: Việc đọc dữ liệu từ Register File phải thực hiện sau khi xác định đủ các thanh ghi cần đọc và ghi.

I-Mem	Add	Mux	ALU	Regs	D-Mem	Sign-Extend	Shift-Left-2
200ps	70ps	20ps	90ps	90ps	250ps	15ps	10ps

Bài tập (4/5)

Bài tập (5/5)

THẢO LUẬN

