Modelos de datos

Colección de herramientas conceptuales para describir

datos,
relaciones entre ellos,
semántica asociada a los datos y
restricciones de consistencia.

Modelos de datos

Modelos basados en objetos

 Se usan para describir datos a nivel conceptual.

Modelo entidad-relación

Modelos basados en registros

 Se utilizan para describir datos a nivel físico.

Modelo relacional

Modelado de datos utilizando el Modelo Entidad-Relación

Entidades

ENTIDAD:

es un **objeto** que **existe** y es **distinguible** de otros objetos.

Puede ser:

- concreta: persona, empleado, casa, auto,
- abstracta: cuenta bancaria, empresa, curso,

 Una entidad está representada por un conjunto de atributos.

Atributos

ATRIBUTOS:

son propiedades específicas que describen la entidad.

 Ejemplo: persona puede describirse con nombre, edad, dirección, ...

DOMINIO:

es el conjunto de **valores permitidos** para un atributo.

Atributos

Formalmente:

un **atributo** es una función que asigna al conjunto de entidades un dominio.

- Como un conjunto de entidades puede tener diferentes atributos, cada entidad se puede describir como un conjunto de pares (atributo,valor)
 - un par para cada atributo del conjunto de entidades.
- Ejemplo: empleado se puede describir mediante el conjunto

{(DNI, 67789901), (nombre, López), (calle, Mayor), (ciudad, Rosario)}

Tipos de atributos

Atributos simples y compuestos.

- Simples: no están divididos en subpartes.
 - Son los que vimos hasta ahora: nombre, calle, ...
- Compuestos: se pueden dividir en subpartes (es decir, en otros atributos).
 - Ejemplo: nombre-persona podría estar estructurado como un atributo compuesto consistente en nombre, primer-apellido y segundo-apellido.

Tipos de atributos

Atributos monovalorados y multivalorados.

- Monovalorados: atributos con un valor único para la entidad.
 - Ejemplo: fecha-nacimiento
- Multivalorado: tiene un conjunto de valores para una entidad.
 - Ejemplo: número-teléfono para los empleados.

Un empleado puede tener **cero**, **uno** o **más** números de teléfono.

Tipos de atributos

Atributos derivados.

- Su valor se puede obtener a partir de valores de otros atributos.
 - Ej.: edad se puede derivar a partir de la fecha de nacimiento.
- Su valor no se almacena, sino que se calcula cuando es necesario

Valor **nulo**.

 Un atributo toma un valor nulo cuando una entidad no tiene un valor para ese atributo.

Ejemplos de entidades

 Sucursal → el conjunto de todas las sucursales de un banco determinado.

Atributos: nombre-sucursal, ciudad-sucursal, activo

 Cliente → el conj. de todas las personas que tienen una cuenta en el banco.

Atributos: nombre-cliente, seguridad-social, calle, ciudad-cliente

 Empleado → el conjunto de todas las personas que trabajan en el banco.

Atributos: nombre-empleado, número-teléfono

 Cuenta → el conjunto de todas las cuentas que mantiene en el banco.

Atributos: número-cuenta, saldo

Transacción → el conj. de todas las transacciones realizadas en

Relaciones

RELACIÓN es una asociación entre varias entidades.

Formalmente:

Sean E₁, E₂, E_n conjuntos de entidades,

un **conjunto de relaciones R** es un **subconjunto** de

$$\{(e_1, e_2, ... e_n) \mid e_1 \in E_1, e_2 \in E_2, ... e_n \in E_n\}$$

donde una instancia (e_1 , e_2 , ... e_n) es una instancia de la relación.

Entidades Cliente y Cuenta

Oliver	654-32-1098	Main	Austin
Harris	890-12-3456	North	Georgetown
Marsh	456-78-9012	Main	Austin
Pepper	369-12-1518	North	Georgetown
Ratliff	246-80-1214	Park	Round Rock
			•
Brill	121-21-2121	Putnam	San Marcos
			•
Evers	135-79-1357	Nassau	Austin
	l L		•

Cliente

259	1000
630	2000
401	1500
700	1500
199	500
467	900
115	1200
183	1300
118	2000
225	2500
210	2200

Cuenta

Relación CtaCli : muestra la asociación entre clientes y cuentas/

asocia		Ciletite	3 y Guerric	13	259	1000
					630	2000
					1	
Oliver	654-32-1098	Main	Austin		401	1500
Harris	890-12-3456	North	Georgetown		700	1500
Marsh	456-78-9012	Main	Austin		199	500
Pepper	369-12-1518	North	Georgetown		467	900
					1	
Ratliff	246-80-1214	Park	Round Rock		115	1200
Brill	121-21-2121	Putnam	San Marcos		183	1300
DIIII	121-21-2121	rutiiaiii	San Marcos		103	1300
Evers	135-79-1357	Nassau	Austin		118	2000
					225	2500
	Clien	ite				2230
					210	2200
					l	

Cuenta

Relaciones

Relaciones binarias:

son entre 2 entidades (grado 2)

- Las entidades asociadas con una relación pueden no ser distintos.
 - Ejemplo: trabaja-para
 - podría modelarse por pares ordenados de entidades Empleado,
 - donde el primero es el jefe, y el segundo es el subordinado.

Relaciones

Una relación puede tener atributos descriptivos

- Ejemplos:
 - fecha_préstamo de un libro a un lector
 - fecha en CtaCli, especifica la última fecha en la que un cliente tuvo acceso a su cuenta.

¿Atributo o Entidad?

- Se pueden definir entidades y sus relaciones de varias formas.
- La principal diferencia es la forma en que se tratan los atributos.

Ejemplo: Empleado(nombre-empleado, númeroteléfono)

- Se puede argumentar que teléfono es una entidad en sí misma con atributos: Teléfono(número, oficina).
- Entonces, quedarían las entidades:

Empleado(nombre-empleado)

Teléfono(número-teléfono, oficina)

v la relación: FmnTel que asocia empleados y sus teléfonos

Caso 1 vs. Caso 2

Caso 1: Empleado(nombre-empleado, número-teléfono)

 cada empleado tiene exactamente un número de teléfono

Caso 2: Empleado(nombre-empleado)

Teléfono(número-teléfono, oficina)

relación EmpTel

 los empleados pueden tener varios números de teléfono

• El Caso 2 es más general y puede ser más

¿Atributo o Entidad?

¿Qué constituye un atributo o una entidad?

Depende de

- la estructura de la empresa que se modela y
- la semántica asociada con el atributo en cuestión.

La cardinalidad de asignación expresa el número de entidades con las que se puede asociar otra entidad a través de un conjunto de relaciones.

En una relación **binaria** entre las entidades A y B, la

cardinalidad debe ser una de las siguientes:

1:1 1:N N:1 N:N

1:1

1:N

N:1

N:N

 La cardinalidad depende del mundo real que se está modelando.

Ejemplo:

Para la relación CtaCli

 Si una cuenta puede pertenecer únicamente a un cliente, y un cliente puede tener varias cuentas

⇒ 1:N de Cliente a Cuenta.

 Si una cuenta puede pertenecer a varios clientes, y un cliente puede tener varias cuentas

 \Rightarrow N:N

Dependencias de existencia

Es otra clase de restricción.

Si la **existencia de la entidad x** (entidad subordinada)

depende de

la existencia de la entidad y (entidad dominante)
entonces

se dice que x es dependiente por existencia de y.

 \Rightarrow si se suprime **y**, también se suprime **x**.

Superclave es un conjunto de uno o más atributos que permiten identificar de forma única a una entidad.

Ejemplos: Superclaves de la entidad Cliente (nombre-cliente, seguridad-social, calle, ciudadcliente)

- {nombre-cliente, seguridad-social}
- seguridad-social
- Si K es una superclave, también lo será cualquier superconjunto de K.

Claves candidatas
son superclaves para las cuales
ningún subconjunto propio
es superclave.

Clave primaria

es aquella clave candidata que **elige** el diseñador de la BD.

Una entidad que **tiene** una **clave candidata** se denomina **entidad fuerte**.

 Es posible que una entidad no tenga atributos suficientes para formar una clave candidata.

Estas se denominan entidad débil.

Ejemplo de entidad débil:

Transacción (número-transacción, fecha, cantidad)

 Transacciones en cuentas diferentes pueden compartir el mismo número de transacción

=> no tiene clave candidata

Discriminador de una entidad débil es el conjunto de atributos que permite, fijada una entidad fuerte, distinguir una entidad débil de otra.

Ejemplo: Fijado un número de cuenta número-transacción es el discriminador de la entidad débil Transacción

Por lo tanto:

La clave primaria de una entidad débil está formada por:

- la clave primaria de la fuerte de la cual depende
- y su discriminador

Ejemplo:

 clave primaria de Transacción es {número-cuenta, número-transacción}

Sean

R una relación que involucra a las entidades E_1 , E_2 ... E_n . (E_i) la clave primaria de la entidad E_i

Si R

no tiene atributos ⇒

atributo(R) =
$$(E_1)$$
 U (E_2) U U (E_n)

• tiene atributos descriptivos $\{a_1, a_2, ..., a_m\} \Rightarrow$ atributo(R) = (E₁) U (E₂) U U (E_n) U $\{a_1, a_2, ..., a_m\}$

Ejemplo:

Sea la relación **CtaCli** con:

- atributo: fecha
- entidades involucradas:
 - -cliente con clave primaria seguridad-social
 - -cuenta con clave primaria número-cuenta

resulta:

atributo(CtaCli)={seguridad-social,númerocuenta,fecha}

Si R no tiene atributos ⇒ atributo(R) forma una superclave.

Si la cardinalidad es N:N ⇒
 esta superclave es clave primaria.

Ejemplo: Si *CtaCli* es muchas a muchas, entonces {seguridad-social, número-cuenta} es la clave primaria

Si R no tiene atributos ⇒ atributo(R) forma una superclave.

Si la cardinalidad es N:1 o 1:N ⇒
 la clave primaria es un subconjunto de esta superclave.

Ejemplo: Si *CtaCli* es **muchas a una** de *Cliente* y *Cuenta*

Es decir, una persona puede tener **una sola cuenta asociada**

pero una cuenta puede estar a nombre de varias personas

entonces la clave primaria es {seguridad-social}

Claves en relaciones

Si R tiene atributos asociados ⇒
una superclave está formada igual que antes
con el posible agregado de
uno ó más de estos atributos.

Ejemplo: Sea la relación BanqueroCli con

– entidades: Cliente y Banquero

atributo: tipo
 (con valores prestamista o banquero personal).

Claves en relaciones

 Si un banquero puede representar dos papeles distintos (prestamista o banquero personal) en una relación con un cliente,

la **clave primaria** de **BanqueroCli** es

clave-primaria(cliente) U clave-primaria(banquero) U {tipo}

 Si un banquero puede tener un sólo tipo de papel con un cliente,

la **clave primaria** de **BanqueroCli** es

clave-primaria(cliente) U clave-primaria(banquero)

Por lo tanto, si el **atributo** tipo **queda determinado por uno de los dos elementos de la clave**,

Diagrama entidad-relación

- Consta de los siguientes componentes:
 - Rectángulos: conjuntos de entidades
 - Elipses: atributos
 - Rombos: relaciones entre conjuntos de entidades
 - Líneas: conectan atributos a conjuntos de entidades y conjuntos de entidades a relaciones.
- Cada componente se etiqueta con la entidad ó relación que representa.

Ejemplo: Sistema bancario de BD que consta de los clientes y sus cuentas.

Diagrama entidad-relación

Se nota la cardinalidad con 1 ó n junto a la entidad correspondiente.

 Cuando una entidad está relacionada consigo misma (trabaja-para) los papeles se indican etiquetando las líneas que conectan los rombos a los rectángulos.

Diagrama entidad-relación

Una **entidad débil** se indica por medio de un **rectángulo de doble contorno**.

Reducción de DER a tablas (mapa canónico)

Representación de conjuntos de entidades fuerte

- Sea E una entidad fuerte con atributos descriptivos a₁, a₂,...., a_n.
- Representamos esta entidad por medio de una tabla llamada E con n columnas
- Cada columna corresponde un atributo de E.
- Cada fila corresponde a una entidad.

Ejemplo: tabla cuenta

Número-cuenta	Saldo
259	1000
630	2000
401	1500
700	1500
199	500
467	900
115	1200
183	1300
118	2000
225	2500
210	2200

Tabla cuenta

Sean:

- D₁ el conjunto de todos los números de cuentas, y
- D₂ el conjunto de todos los saldos.

Cualquier fila de la tabla Cuenta consiste en una tupla binaria (v_1,v_2) con v_1 en D_1 y v_2 en D_2 .

- El conjunto de todas la filas posibles de Cuenta es el producto cartesiano D₁ x D₂.
- La tabla Cuenta contendrá un subconjunto de D₁ x D₂.

Tabla proveniente de una entidad

En general,
para una tabla con n columnas,
el producto cartesiano $D_1 \times D_2 \times \times D_n$

es el conjunto de todas las filas posibles.

La tabla contiene un subconjunto de D₁ x D₂ xx D_n

Tabla cliente

Nombre- cliente	Seguridad-social	Calle	Ciudad- cliente
Oliver	654-32-1098	Main	Austin
Harris	890-12-3456	North	Georgetown
Marsh	456-78-9012	Main	Austin
Pepper	369-12-1518	North	Georgetown
Ratliff	246-80-1214	Park	Round Rock
Brill	121-21-2121	Putnam	San Marcos

Representación de entidades débiles

Sean:

- A una entidad débil con atributos descriptivos a₁,a₂,....,a_r.
- B la entidad fuerte de la que depende A.
- La clave primaria de B es {b₁,b₂,...,b_s}

Entonces, se representa la entidad **A** por medio de una

tabla llamada A con columnas:

$$\{b_1, b_2, \dots, b_s\} \cup \{a_1, a_2, \dots, a_r\}$$

Tabla transacción

Número-cuenta	Número-transacci ó n	Fecha	Cantidad
259	5	11 mayo 1990	+ 50
630	11	17 mayo 1990	+ 70
401	22	23 mayo 1990	- 300
700	69	28 mayo 1990	- 500
199	103	3 junio 1990	+ 900
259	6	7 junio 1990	- 44
115	53	7 junio 1990	+ 120
259	7	17 junio 1990	- 79

Representación de relaciones

Sea R una **relación** que involucra a las **entidades**

$$E_1, E_2, ... E_m$$

Supongamos que atributo(R) consta de n atributos.

Entonces, **representamos** esta relación mediante una **tabla** llamada **R** con **n columnas** distintas, donde cada columna corresponde a un atributo de atributo(R).

Tabla CtaCli

Tiene las columnas:

seguridad-social, número-cuenta y fecha

Representación de relaciones entre entidades fuertes y débiles

Las relaciones que conectan una entidad fuerte con una débil son un caso especial.

- Son relaciones muchas a una.
- No tienen atributos descriptivos.
- La clave primaria de la entidad débil incluye la clave primaria de la entidad fuerte de la cual depende.

Por esto, la tabla de la relación resulta **una tabla redundante** y no necesita presentarse.

Tabla bitácora

- Cuenta es entidad fuerte con clave primaria número-cuenta
- Transacción es entidad débil con clave primaria {número-cuenta, número-transacción}

Como la relación no tiene atributos descriptivos la tabla bitácora tendrá 2 columnas: número-cuenta, número-transacción.

Pero la **tabla** para la entidad **transacción** tiene 4 **columnas**:

número-cuenta, número-transacción, fecha y cantidad.

Dor la aua la tabla Ritácara de radundanta

Algunas extensiones al DER: Generalización y Especialización

Si clasificamos cada cuenta en cuenta-ahorros y cuenta-cheques

y considerando que cada una de estas entidades tiene

- algunos atributos diferentes
- y otros atributos en común con la entidad cuenta

esto se puede expresar por generalización

En el DER
se
representa
mediante un
triángulo
etiquetado
IS_A.

Generalización y Especialización

Generalización
es una relación de inclusión
que existe entre una entidad de nivel más
alto
y una o más entidades de nivel más bajo.

Especialización es la relación inversa.

Representación en tablas

Existen dos métodos.

Método 1:

- Crear una tabla para la entidad del nivel más alto.
- Crear una tabla para cada entidad de nivel más bajo que incluya:
 - una columna por cada atributo de esa entidad
 - más una columna para cada atributo de la clave primaria de la entidad del nivel más alto.

Representación en tablas - Método 1

Cuenta(número-cuenta, saldo)
Cuenta-ahorros(número-cuenta, tasa-interés)
Cuenta-cheques(número-cuenta, saldo-deudor)

Representación en tablas

Método 2:

- No crear una tabla para la entidad del nivel más alto.
- Crear una tabla para cada entidad de nivel más bajo que incluya:
 - una columna para cada uno de los atributos de esta entidad,
 - más una columna para cada atributo de la entidad de nivel más alto.

Representación en tablas – Método 2

Cuenta-ahorros (número-cuenta, tasa-interés, saldo)

Cuenta-cheques (número-cuenta, saldo-deudor, saldo)

Diseño de un esquema de BD Comentarios generales

Existe una amplia variedad de alternativas.

El diseñador deberá tomar decisiones, por ejemplo:

- Uso de una relación ternaria ó un par de binarias
- Un concepto se expresa mejor mediante un conjunto de entidades ó de relaciones
- Utilización de un atributo ó un conjunto de entidades
- Uso de un conjunto de entidades fuerte ó débil
- Uso de generalización.

—