< Lecture 14> Chapter 2

Context-Free Grammars

- o Context free, but not regular
 - $(1) 30^n |^n | n \ge 0$
 - $(3) 30^{m} | n | m \neq n$
 - (4) 3 w las an equal # of Os and 153
 - (5) $\frac{1}{2} \omega \omega^R | \omega \in \Sigma^*$; palindromes of even length
 - (7) $\exists \omega \mid \omega \neq \omega^R, \omega \in \Sigma^*$: nonpalindromes
 - (6) $\beta \omega \mid \omega = \omega^{R}, \omega \in \Sigma^{*} \beta$: palindrones (2.4 e)
 - (d) I w I w is a balanced string of parentheses \$
- o Not even context-free: $3\omega\omega: \omega \in \Sigma^*$ } $30^n 1^n 2^n 1 n \ge 0$

Context-Free Languages

A language is called "Context-free" if it can be generated by a context-free grammar.

Context-free grammar:

e.g. s -> 051

 $S o \varepsilon$

- * substitution rules / productions
- * variables
- * terminals

e.g. $S \rightarrow OS1$

S (-) E

* derivation

 $\frac{S}{\Rightarrow} 0S1 \Rightarrow 00S11 \Rightarrow 000S111$ $\Rightarrow 000111$

* parse tree

* The language of the grammar (denoted by L(G))

A language is called "Context-free" if it can be generated by a context-free grammar.

 $S \rightarrow 0SI$ can be obserted $S \rightarrow 0SI/E$

Formal definition of CFG.

A CFG (Context-Free Grammar) is a 4-tuple (V, Σ, R, S) where

- 1. V is a finite set of "variables".
- 2. It is a finite set of "terminals", disjoint from V.
- 3. R is a finite set of rules
- 4. S = V is the start variable.

u, v, w : strings

 \circ uAv <u>yields</u> uwv if the gramma has a rule $A \rightarrow w$ (written $uAv \Rightarrow uwv$)

- o u <u>derives</u> v (u ⇒v) if
 - u = V or
 - There is a sequence $u_1, \dots u_k$ $(k \ge 0)$ such that

 $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \cdots \Rightarrow u_k \Rightarrow v.$

• The language of the grammar is $w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \nmid S$