

OUR TEAM

Rank 4

ZHONGJIE LI

Ph.D. student Department of Thermal Engineering Tsinghua University

YICHEN YAO

Ph.D. student Department of Engineering Mechanics Tsinghua University

Solution Report

CONTENTS

- 01/Introduction
- 02/Data Analysis
- 03/Data Processing
- **04**/ Predictive Models
- 05/Conclusions

FIRST

INTRODUCTION

Detail About the Competition

IJCAI-17 Data Mining Contest

Customer Volume Forecast of Merchant Review Platform Koubei

Background

- Held by Ant Financial in cooperation with IJCAI-17
- Dedicated to providing sales forecasts for each business. Based on the forecast results, businesses can optimize operations, reduce costs and improve customer experience.

Goal

- Given historical transaction logs of 2000 merchants in the past 17 months →
- Predict daily customer volume of each merchant in the next 2 weeks.

KOUBEI — CUSTOMER VOLUME FORCAST

Forecasting business volume is critical to business management.

- Customer Volume Defined as the number of users who use Alipay in the business hours
- **Data** Users' browsing and payment history, and other business-related information for 2000 shops External data allowed.
- **Prediction** -- Daily business volume of 2000 shops in the next 14 days
- Evaluation $L = \frac{1}{nT} \sum_{i}^{n} \sum_{t}^{T} \left| \frac{c_{it} c_{it}^{g}}{c_{it} + c_{it}^{g}} \right|$

SECOND

Data Analysis

Data Description

□ 2000 merchants in 122 cities

Shop Information

Shop ID

City

Location ID

Average Pay

Score by Users

Comment Count

Shop Level

1st Level Category

2nd Level Category

3rd Level Category

User Information

User ID

Shop ID

Pay Timestamp

User Information

User ID

Shop ID

View Timestamp

Data Description

Shop Category

☐ The contest encouraged the use of external information such as weather.

Monthly Weather History Graph

Daily Precipitation

Rain & Clear Index

Comfort Index SSD

$$SSD = (1.818T + 18.18)(0.88 + 0.002F) + (T - 32)/(45 - T) - 3.2V + 18.2$$

T - Temperature

F - Humidity

V - Wind Velocity

Weather Information

2016.7.20, Beijing, daily precipitation 210.7mm

☐ Weekday: label 0; Weekend: label 1; Other holiday: label 2

<From official forum of Tianchi Platform>

☐ Weekday: label 0; Weekend: label 1; Other holiday: label 2

Holiday Information

Date	Festival
2015-08-20	Chinese Valentine's Day
2015-09-27	Mid-Autumn Festival
2015-10-01	National day
2015-11-11	Singles Day
2015-12-25	Christmas Day
2016-02-08	Spring festival
2016-02-14	Valentine's Day
2016-04-04	Qing Ming Jie
2016-05-01	Labour Day
2016-06-09	Dragon Boat Festival
2016-08-09	Chinese Valentine's Day
2016-09-15	Mid-Autumn Festival
2016-10-01	National day
2016-11-11	Double 11 Festival

China's largest shopping festival

■ November 11th has become a special festival during recent years. With four characters of "1", this date was named as Double 11 Festival.

Test set

Train set

Challenges & Difficulties

☐ Cold Start Problem

Rapid accumulation of new customers & new merchants

Challenges & Difficulties

☐ Cold Start Problem

- Rapid accumulation of new customers & new merchants
- Unsteady transaction records

Challenges & Difficulties

☐ Cold Start Problem

- Rapid accumulation of new customers & new merchants
- Unsteady transaction records
- Lack of seasonal trends

THIRD

Data Processing

Data Cleaning

☐ Cleaning by Rules

Reduction transformation

$$f(x) = 1 + \log_2 x$$

Removal of abnormal time intervals

Correction of local abnormal value by $\mu \pm 2\sigma$

Data Cleaning

☐ Cleaning by Residuals

- Merchant sales volume can be violated for various reasons, such as promotions, marketing strategy changes...cannot easily cleaned by rules
- Pre-training with high-bias model
- Eliminating samples with top 25% of residual error

PDF of small & large error samples prediction

Data Consolidation

Central limit theorem: when independent random variables are added, their properly normalized sum tends toward a normal distribution.

purchase tendency of each individual have unique underlying distribution As the sample size get large enough Sampling distribution becomes normal as the population increases

Data Consolidation

To predict the number of customers for each of the merchant **in a whole day**, the particular purchasing behavior of each individual is beyond the scope of current consideration.

User id

Shop id

Pay timestamp

user_ID shop_ID timestamp 20736824 2016-09-18 15:00:00 20552170 2016-07-31 15:00:00 15489634 2016-09-12 15:00:00 2522266 2015-08-27 17:00:00 13920140 2016-10-06 20:00:00 22605133 2016-02-21 16:00:00 9530406 2016-05-27 13:00:00 9143789 2016-10-21 15:00:00 . . . 2204282 2016-10-28 19:00:00 6057097 1264 2016-09-10 18:00:00 3225115 2015-09-10 13:00:00 21166664 2016-02-20 08:00:00 18596087 2016-05-22 11:00:00 15879972 2016-03-19 14:00:00 6945600 2016-07-23 17:00:00 20099495 2016-02-17 14:00:00 15177032 2016-03-10 21:00:00 11187169 2016-01-13 21:00:00 18524477 2016-05-14 19:00:00 12339000 2016-06-08 19:00:00 6816338 2015-10-18 03:00:00 14926791 2016-09-12 16:00:00 9346560 2016-08-02 10:00:00 20420027 2016-04-26 19:00:00 1142271 2016-02-04 15:00:00

Hourly sales volume

Hour stamp

FOURTH

Predictive Models

Pipeline

General Sales Model

Feature & label	Description
Historical customer volume features	Customer volume in the past 21 days
Weather features	Precipitation, SSD value, rain index and clear index in the input time range of 3 weeks and 4 days around the predicting days
Holiday features	Holiday information in the past 21 days and the future 14 days
Merchant features	view/pay ratio, opening and closing time, active business hour, opening date, holiday / non-holiday sales ratio; business category, consumption level, rating, comments number, store grade level
Label	Customer volume in the next 14 days

Features

- ◆ Historical features
- **♦** Weather
- **♦** Holiday
- **♦** Shop information

Labels

◆ Sales volume in the next 14 days

Rolling window procedure

☐ The input length of 3 weeks could avoid the disturbance from the National holiday of China during Oct. 1st - 7th.

National day golden week holiday

Data set partition

General Sales Model

list of paramerters of the XGboost models

parameter	outlier removal	volume prediction
Max depth	3	5
Learning rate	0.1	0.03
Estimators	500	1600
alpha	0	1
lambda	1	0

General Sales Model

Correlation Moving Average Model

Double 11 Correction Coefficient

- Due to the lack of historical data, only about 1/3 of the merchants have sales record on the Double 11 in 2015.
- Predict the Double 11 correction coefficient for the rest 2/3 of merchants based on the features of merchant information.

Shop features

◆ View/Pay ratio, opening time, closing time, business time, first opening date, median of non-holiday sales volume, median of holiday sales volume, shop category, consumption per person, score, comment number, shop level

Label

◆ Sales increase on historical Double 11 Festival

Model Ensemble

Results

FIFTH

Conclusions

Conclusions & Further Work

Conclusions

- □ Outliers are removed based on both empirical rules and the model residuals.
- ☐ General customer volume is predicted using the GBDT algorithm with a multiplication modification on the Double 11 Festival.
- ☐ Facilitate an improved understanding of the potential factors that may influence the customer flow, which will help merchants optimize their operations, reduce cost and improve user experience based on the forecast result.

Future work

- Sequential information among the time series records should be taken into considering, to discover the subtle local structure patterns that might influence the customer flow afterwards.
- ☐ The relative short input time span in the rolling window fail to capture long term tendency.

Codes & Solution Reports

https://github.com/Jessicamidi/IJCAI17_Tianchi_Rank4

Acknowledgement:

