

Prof. Dr. M. Grohe

H. Wolf, E. Fluck, M. Ritzert

Übungsblatt 0

Abgabetermin: Montag 9. November 2020

- Wählen Sie in RWTHonline bis Mittwoch, den 4. November 2020 12:00 Uhr ihre Prioritäten für die Tutorien
- Die Lösungen der Hausaufgaben werden online in RWTHmoodle abgegeben.
- Die Hausaufgaben müssen in Gruppen von je drei Studierenden aus dem gleichen Tutorium abgegeben werden. Suchen Sie sich beim ersten Termin Ihres Tutoriums Abgabeparter*innen (Bekanntgabe der Tutorien am Mittwoch, den 4.11.2020).
- Einzelabgaben werden mit 0 (Null) Punkten bewertet. Bitte versucht immer zu dritt arbeiten und abzugeben, das heißt wenn ein Teammitglied aufhört, sucht euch bitte ein weiteres Teammitglied.
- Nummer der Übungsgruppe, Nummer des Übungsblattes und Namen und Matrikelnummern der Studierenden sind auf das erste Blatt jeder Abgabe aufzuschreiben
 - Auch wenn wir die Information zusätzlich über Moodle einsehen können macht das die Korrekturen sehr viel einfacher.
- Die Lösungen zu den Hausaufgaben werden in Form von Videos in RWTHmoodle hochgeladen. Ausnahme: Blatt 0 wird in der Globalübung am Montag, den 9. November besprochen.

Aufgabe 1 (\mathcal{O} -Notation)

- a) Wiederholen Sie die Definitionen der \mathcal{O} -, Ω und Θ -Notation.
- b) Sortieren Sie die folgenden Funktionen nach wachsender Größenordnung. Wenn in Ihrer Sortierung f vor g steht, dann ist $f = \mathcal{O}(g)$. Begründen Sie dabei jeweils, warum f vor g steht.

$$\sqrt{n}$$
, n^n , $\log n$, $\log(n!)$, n , n^2 , 3^n , $n \log n$, 2^n

Prof. Dr. M. Grohe

H. Wolf, E. Fluck, M. Ritzert

Aufgabe 2 (Binärdarstellung)

- a) Geben Sie eine Binärdarstellung der natürlichen Zahlen \mathbb{N} (inkl. 0) in folgenden Alphabeten an:
 - (i) $\sigma_1 = \{0, 1\},\$
 - (ii) $\sigma_2 = \{a, b\},\$
 - (iii) $\sigma_3 = \{a, b, c\}.$
 - (iv) $\sigma_4 = \{ \bullet, \bot, \mathbb{N} \},$
- b) Geben Sie eine Bijektion zwischen den natürlichen Zahlen und der Sprache $\{0,1\}^*$ über dem binären Alphabet $\sigma = \{0,1\}$ an.

Hinweis: Überlegen Sie erst, warum es nicht genügt nur die Binärzahlen zu nehmen.