Applications of Response Dimension Reduction in Large *p*-Small *n* Problems

Minjee Kim1*, Jae Keun Yoo1

¹Department of Statistics Ewha Womans University, Korea

Korean Data Analysis Society, December 6, 2024

Outline

- Response Dimension Reduction Methodologies
- Implementation along with Sample Size
- Real Data Applications
- Discussion

2/26

Outline

- Response Dimension Reduction Methodologies

Response Dimension Reduction

Sufficient Dimension Reduction

- Replace X ∈ ℝ^ρ with lower dimensional projection P_SX, without losing information of Y | X
- ullet Find the orthogonal projection operator ${f P}_{\mathcal S}$, such that

$$\mathbf{Y} \perp \!\!\! \perp \mathbf{X} \mid \mathbf{P}_{\mathcal{S}} \mathbf{X}$$

Response Dimension Reduction

- In multivariate regression of $\mathbf{Y} \in \mathbb{R}^r \mid \mathbf{X} \in \mathbb{R}^p \ (r \ge 2)$, **Sample size** n could be smaller than p or $r \Rightarrow \mathbf{Large} \ p$ -Small n Problem
 - Lead to exponential increase in the number of parameters (curse of dimensionality)
- ullet Reduce the dimension of ${f Y}$ without loss of information on ${f E}({f Y}\mid {f X})$

Non-parametric Method (YC-method)

Linear Response Reduction (Yoo and Cook, 2008)

$$E(\mathbf{Y}|\mathbf{X}) = E\{\mathbf{P}_{L(\mathbf{\Sigma}_y)}^{\mathsf{T}}\mathbf{Y}|\mathbf{X}\}$$

where $\mathbf{L} \in \mathbb{R}^{r \times q}$, $q \leq r$, and $\mathbf{P}_{\mathbf{L}(\mathbf{\Sigma}_y)} = \mathbf{L}(\mathbf{L}^{\mathsf{T}}\mathbf{\Sigma}_y\mathbf{L})^{-1}\mathbf{L}^{\mathsf{T}}\mathbf{\Sigma}_y$ is an orthogonal projection operator.

Conditional Response Reduction (Yoo and Cook, 2008)

$$E(\mathbf{Y}|\mathbf{X}) = E\{E(\mathbf{Y}|\mathbf{X}, \mathbf{K}^{\mathsf{T}}\mathbf{Y})|\mathbf{X}\} = E\{E(\mathbf{Y}|\mathbf{K}^{\mathsf{T}}\mathbf{Y})|\mathbf{X}\} = E\{g(\mathbf{K}^{\mathsf{T}}\mathbf{Y})|\mathbf{X}\}$$

where $\mathbf{K} \in \mathbb{R}^{r \times k}$, $k \leq r, \mathbf{K} \neq \mathbf{I}_r$, and $g(\cdot)$ represents an **unknown function**.

- Column spaces of L, K: Response dimension reduction subspace
- $S(K) \subseteq S(L)$, and S(K) = S(L) iff $E(Y|K^TY = a)$ is linear in a
- To estimate L and K, $\sum_{v}^{-1} cov(\mathbf{Y}, \mathbf{X}^{T}) \sum_{x}^{-1}$ is needed
 - $\Sigma_x = \text{cov}(X)$ and $\Sigma_y = \text{cov}(Y)$ are positive-definite matrices

Principal Response Reduction

Principal Response Reduction (Yoo, 2018)

Assume both E(Y) and E(X) are zero without loss of generality:

$$\mathbf{Y} = \mathbf{\Gamma} \mathbf{\nu}_{\scriptscriptstyle X} + \mathbf{\varepsilon}$$

where $d \leq r$, $\Gamma \in \mathbb{R}^{r \times d}$ is an **orthogonal** matrix, $\varepsilon \sim N(0, \Sigma)$, and $cov(\nu_x, \varepsilon) = 0$. ν_x is a d-dimensional **unknown function** of **X**, and $\Sigma_x \nu_x = 0$.

- $S(\Gamma)$ is invariant, and reduces subspace for Σ
- $\bullet \ \boldsymbol{\Sigma} = \boldsymbol{\Gamma} \boldsymbol{\Omega} \boldsymbol{\Gamma}^{\scriptscriptstyle T} + \boldsymbol{\Gamma}_{\scriptscriptstyle 0} \boldsymbol{\Omega}_{\scriptscriptstyle 0} \boldsymbol{\Gamma}_{\scriptscriptstyle 0}^{\scriptscriptstyle T}$

$$\bullet \ \Gamma_0 \in \mathbb{R}^{r \times (r-d)}, \, \Gamma_0^T \Gamma_0 = I_{r-d}, \, \Gamma_0^T \Gamma = 0, \, \Omega = \Gamma^T \Sigma \Gamma, \, \text{and} \, \, \Omega_0 = \Gamma_0^T \Sigma \Gamma_0$$

- ullet $E(\mathbf{Y}|\mathbf{X}) = E(\mathbf{P}_{\Gamma(\Sigma_{Y})}^{T}\mathbf{Y}|\mathbf{X})$ holds
- MLE for Γ is derived from the 1st d largest eigenvectors of $\hat{\Sigma}_{y}$
 - $\mathcal{L}_{PRR}(\Gamma_0, \Upsilon) = -\frac{n}{2} \log |\Gamma_0^T \hat{\Sigma}_{\nu} \Gamma_0| \frac{n}{2} \log |\Upsilon|$, where $\Upsilon \in \mathbb{S}^{r \times r}$ stand for Ω
 - ⇒ No need for inverse matrix
- However, in PRR, Γ does not consider X, only utilizes Y

Principal Fitted Response Reduction

Principal Fitted Response Reduction (Yoo, 2018)

To incorporate **X**, assume $\nu_{\scriptscriptstyle X} = \psi \mathbf{f}_{\scriptscriptstyle X}$,

$$\mathbf{Y} = \mathbf{\Gamma} \psi \mathbf{f}_{\scriptscriptstyle X} + \mathbf{arepsilon}$$

where $\psi \in \mathbb{R}^{d \times q}$ is an unknown matrix, \mathbf{f}_x is a q-dimension **known vector function** of \mathbf{X} , and $\mathbf{\Sigma}_x \mathbf{f}_x = 0$.

- \mathbb{Y} : $n \times r$ response data matrix \mathbb{F} : $n \times q$ matrix stacking $\mathbf{f}_{\downarrow}^{\mathsf{T}}$
- $\bullet \ \mathbf{P}_{\mathbb{F}} = \mathbb{F}(\mathbb{F}^{\mathsf{T}}\mathbb{F})^{-1}\mathbb{F}^{\mathsf{T}}$

- $oldsymbol{\hat{\Sigma}}_{ ext{fit}} = \mathbb{Y}^{\mathsf{T}} \mathbf{P}_{\mathbb{F}} \mathbb{Y} / n ext{ and } \hat{\mathbf{\Sigma}}_{ ext{res}} = \hat{\mathbf{\Sigma}}_{y} \hat{\mathbf{\Sigma}}_{ ext{fit}}$
- MLE for Γ does not have a closed-form solution
 - $\mathcal{L}_{PFRR}(\Gamma, \Gamma_0) = -\frac{n}{2} \log |\Gamma_0^T \hat{\Sigma}_y \Gamma_0| \frac{n}{2} \log |\Gamma^T \hat{\Sigma}_{res} \Gamma|$
 - Γ is influenced by both $\hat{\Sigma}_y$ and $\hat{\Sigma}_{res}$
 - \Rightarrow Only needs inverse of $\mathbb{F}^{\mathsf{T}}\mathbb{F}$

Unstructured Principal Fitted Response Reduction

Unstructured Principal Fitted Response Reduction (Yoo, 2019)

Assume that $\varepsilon \sim N(0, \Sigma > 0)$, and $cov(\nu_x, \varepsilon) = 0$:

$$\mathbf{Y} = \mathbf{\Gamma} \psi \mathbf{f}_{\scriptscriptstyle X} + \mathbf{\varepsilon}$$

- $\Sigma = \Gamma \Omega \Gamma^{\mathsf{T}} + \Gamma_0 \Omega_0 \Gamma_0^{\mathsf{T}}$ does not need anymore
- $S(\Sigma\Gamma) \subset S(\Gamma)$ iff $S(\Sigma_{\nu}\Gamma) \subset S(\Gamma)$ $\Rightarrow E(\mathbf{Y}|\mathbf{X}) = E(\mathbf{P}_{\Gamma(\Sigma_{\nu})}^{\mathsf{T}}\mathbf{Y}|\mathbf{X})$ if $S(\Gamma)$ is invariant for Σ_{ν}

$$\bullet \ \hat{\boldsymbol{\Sigma}} = \hat{\boldsymbol{\Sigma}}_{\text{res}} + \hat{\boldsymbol{\Sigma}}_{\text{res}}^{1/2} \hat{\boldsymbol{V}} \hat{\boldsymbol{K}}_{\textit{d}} \hat{\boldsymbol{V}}^{\mathsf{T}} \hat{\boldsymbol{\Sigma}}_{\text{res}}^{1/2} = \hat{\boldsymbol{\Sigma}}_{\text{res}}^{1/2} (\boldsymbol{I}_{r} + \hat{\boldsymbol{V}} \hat{\boldsymbol{K}}_{\textit{d}} \hat{\boldsymbol{V}}^{\mathsf{T}}) \hat{\boldsymbol{\Sigma}}_{\text{res}}^{1/2}$$

- $\bullet \ \hat{\mathcal{S}}(\mathbf{\Gamma}) = \hat{\mathbf{\Sigma}}^{1/2} \mathcal{S}_d(\mathbf{B}) = \hat{\mathbf{\Sigma}}_{res}^{1/2} \mathcal{S}_d(\mathbf{B}_{res})$
 - B_d: 1st d eigenvectors of B

 - **a** $\mathbf{R} \hat{\mathbf{\Sigma}}^{-1/2} \hat{\mathbf{\Sigma}}_{c} \hat{\mathbf{\Sigma}}^{-1/2}$
 - $\bullet \; \mathbf{B}_{roc} = \hat{\mathbf{\Sigma}}_{roc}^{-1/2} \hat{\mathbf{\Sigma}}_{fit} \hat{\mathbf{\Sigma}}_{roc}^{-1/2}$ • $\hat{\bf \Lambda} = (\hat{\lambda}_1, ..., \hat{\lambda}_q)$: Eigenvalues of ${\bf B}_{\rm res}$ • $\hat{\bf V} = (\hat{\gamma}_1, ..., \hat{\gamma}_q)$: Eigenvectors of ${\bf B}_{\rm res}$
 - $\hat{\mathbf{K}}_d = \text{diag}(0,...,0,\hat{\lambda}_{d+1},...,\hat{\lambda}_d)$
 - \Rightarrow Inverse of Σ_{res} and $\mathbb{F}^{\mathsf{T}}\mathbb{F}$ (from Σ_{fit}) is needed

• $S_d(\mathbf{B})$: Column subspace of \mathbf{B}_d

Outline

- Response Dimension Reduction Methodologies
- Implementation along with Sample Size
- Real Data Applications
- 4 Discussion

9/26

Implementation along with Sample Size

p: dimension of predictor, r: dimension of response, n: sample size

- YC-method (Non-parametric method)
 - Requires inverse matrices of $\hat{\Sigma}_x$ and $\hat{\Sigma}_y$

$$\Rightarrow p < n, r < n$$

- PRR (Principal Response Reduction)
 - Does not require inverse matrix
 - \Rightarrow No constraints for p, r, and n
- PFRR (Principal Fitted Response Reduction)
 - \bullet Requires inverse matrix of $\mathbb{F}^{^T}\mathbb{F}$

$$\Rightarrow p < n$$

- UPFRR (Unstructured Principal Fitted Response Reduction)
 - \bullet Requires inverse matrices of $\mathbb{F}^{^T}\mathbb{F}$ and $\hat{\pmb{\Sigma}}_{\text{res}}$

$$\Rightarrow p < n, r < n$$

Implementation along with Sample Size

Table 1. Feasible response dimension reduction methods according to p, r and n

	Relation between p, r, n	Feasible methods
case 1	$\max(p,r) < n$	YC-method, PRR, PFRR, UPFRR
case 2	$p \ge n$, but $r < n$	PRR
case 3	$p < n$, but $r \ge n$	PRR, PFRR
case 4	$\min(p,r) \geq n$	PRR

- case 2: r < n ≤ p</p>
 - Reducing *p* with **multivariate seeded** dimension reduction (Yoo and Im, 2014)
 - ⇒ Enable YC-method, PFRR, UPFRR
- case 3: $p < n \le r$
 - Reducing r through PRR or PFRR
 - ⇒ Enable YC-method, UPFRR
- case 4: $n \leq \min(p, r)$
 - 1. Reducing r through PRR
 - 2. Reducing *p* with **multivariate seeded** dimension reduction
 - ⇒ Enable YC-method, PFRR, UPFRR

Outline

- Response Dimension Reduction Methodologies
- Implementation along with Sample Size
- Real Data Applications
- 4 Discussion

Near-infrared (NIR) Spectroscopy of Biscuit Doughs data

- cookie dataset from the seedCCA package (Kim et al., 2021)
 - X (p = 256): wavelengths spanning from 1380 to 2400nm at 4nm intervals
 - Y (r = 4): fat (Y1), sucrose (Y2), dry flour (Y3), water (Y4)
 - $n_{\text{train}} = 39$, $n_{\text{test}} = 31$ ($n \le p$) \Rightarrow Require reducing p
 - \Rightarrow X_{train}: 39 × 256, X_{test}: 31 × 256, Y_{train}: 39 × 4, Y_{test}: 31 × 4
- Based on the multivariate seeded dimension reduction,

$$X (p = 256) \rightarrow Rx (p' = 4)$$

- $\mathbf{Rx}_{\text{train}}$: 39 × 4, $\mathbf{Rx}_{\text{test}}$: 31 × 4 (p' < n)
- ⇒ UPFRR, PFRR, and PRR are applied

Table 2. UPFRR and PFRR Results for cookie data

Comparison	Stat	df	p-value	Comparison	Stat	df	p-value
0D vs \geq 1D	340.9	32	< 0.0001	0D vs \geq 1D	340.9	32	<0.0001
1D vs \geq 2D	159.4	21	<0.0001	1D vs \geq 2D	196.1	24	< 0.0001
2D vs \geq 3D	27.39	12	0.0068	$\mathbf{2D}\ \mathbf{vs} \geq \mathbf{3D}$	63.80	16	< 0.0001
$3D \text{ vs} \ge 4D$	9.508	5	0.0904	$3Dvs \ge 4D$	11.38	8	0.1809

(a) **UPFRR** Test Summary

- (b) **PFRR** Test Summary
- For (Rx, Y), both UPFRR and PFRR suggest reducing Y to 3 dimensions (5% significance level)

Table 3. Cumulative Variance of 1-4 Dimensions with Each RDR Method

Method	1D	2D	3D	4D
UPFRR	0.1136	0.3470	0.6676	1.0000
PFRR	0.1915	0.4281	0.7059	1.0000
PRR	0.7085	0.9902	1.0000	1.0000

PRR shows that 1st 2 components account for 99.02% of variance

Trace correlation coefficients (Hooper, 1959)

Given two matrices A_1 and A_2 , q is the number of principal components to consider:

$$\bar{r} = \sqrt{\frac{\sum_{i=1}^{q} \lambda_i}{q}}$$

where λ_i are the eigenvalues of the matrix $P = A_1^T A_2 A_2^T A_1$.

Table 4. Trace Correlation Coefficients for UPFRR, PFRR, and PRR

Comparison	1st 2 components	1st 3 components
UPFRR vs PFRR	0.9247	1.0000
UPFRR vs PRR	0.9218	1.0000
PFRR vs PRR	1.0000	1.0000

- Similarity in the 1st 2 components suggests 2-dimensional Ry is sufficient
 - \Rightarrow Apply **PFRR** to reduce **Y** $(r = 4) \rightarrow \text{Ry} (r' = 2)$

- In **Ry** (r' = 2),
 - 1st component: linear combination of sucrose (Y2), dry flour (Y3), water (Y4)
 - 2nd component: fat (Y1)

Figure 1. Scatter plot matrix of (Ry, Rx) for cookie data

- (Ry, Rx), (Y, Rx): Analyze using multivariate linear regression
- (Ry, X), (Y, X): Analyze using partial least squares regression
 mvr function from pls package (Liland et al., 2021)
- Mean Squared Prediction Error (MSPE)

MSPE =
$$\frac{1}{n \times r} \sum_{i=1}^{n} \sum_{j=1}^{r} (y_{ij} - \hat{y}_{ij})^2$$

Table 5. MSPE Results for cookie data

Model	<i>Y</i> 1	Y2	<i>Y</i> 3	Y4
(Ry, Rx)	0.0901	0.0462	0.0452	0.0471
(Y, Rx)	0.0937	0.0463	0.0506	0.0470
(Ry, X)	0.0397	0.0418	0.0462	0.0400
(Y, X)	0.0396	0.0418	0.0495	0.0392

- Comparing (Ry, Rx) vs (Y, Rx) and (Ry, X) vs (Y, X)
 - ⇒ No substantial difference in prediction performance

Nutrimouse data

- nutrimouse dataset from the seedCCA package (Kim et al., 2021)
 - X₁: **genotypes** wild type, PPARalpha
 - X₂: **diets** COC(coconut oil), FISH(fish oil), LIN(linseed oil), REF(corn and colza oil), SUN(sunflower oil)
 - Y (r = 141): 120 genes and 21 lipids
 - $n = 40 (n < r) \Rightarrow \text{Require reducing } r$
 - Predictors are categorical, PRR is the preferable choice

Table 6. Cumulative Variance of 1-6 Dimensions with PRR Method for nutrimouse data

Dimension	1D	2D	3D	4D	5D	6D
Variance	0.4038	0.6949	0.8623	0.9554	0.9726	0.9835

Based on PRR, 1st 4 components capture over 95% of total variance

Y
$$(r = 141) \rightarrow$$
Ry $(r' = 4)$

Figure 2. Scatter plot matrices of the reduced responses marked by genotype and diet

- (a) Scatter plot matrix marked by **genotype** (b) Scatter plot matrix marked by **diet**
- Ry2 & Ry3 distinctly separate genotypes, Ry1 & Ry4 distinctly separate diets

Figure 3. Scatter plots of Ry2 and Ry3 marked by genotype and of Ry1 and Ry4 marked by diet

- Ry2 & Ry3 associated with genotype, Ry1 & Ry4 associated with diet
 - \Rightarrow possible existence of interaction between $\emph{genotype}$ and \emph{diet}

Table 7. MANOVA Results for nutrimouse data

Effect	Effect df		Approx. F	Pr(>F)
Genotype	1	0.9070	65.825	1.574e-13 ***
Diet	4	3.0805	25.125	< 2.2e-16 ***
Genotype:Diet	4	2.0993	8.284	4.339e-13 ***
Residuals	30	-	-	-

 MANOVA with Ry shows that the effects of genotype, diet and their interaction are significant at 5%

- Split the data according to **genotype** (wild type, PPARalpha)
- Compare dietary factor-level means using test function in Ismeans package (Lenth, 2016)

Table 8. Pairwise Comparison Results for nutrimouse data

Contrast	Estimate	df	t-ratio	p-value	Contrast	Estimate	df	t-ratio	p-value
coc-fish	-8.935	15	-23.833	<.0001	coc-fish	-9.817	15	-15.126	<.0001
coc-lin	-9.714	15	-25.912	<.0001	coc-lin	-9.370	15	-14.437	<.0001
coc-ref	-3.401	15	-9.072	<.0001	coc-ref	-2.794	15	-4.305	0.0008
coc-sun	-1.627	15	-4.341	0.0006	coc-sun	-4.435	15	-6.833	<.0001
fish-lin	-0.779	15	-2.079	0.0552	fish-lin	0.447	15	0.689	0.5013
fish-ref	5.534	15	14.762	<.0001	fish-ref	7.023	15	10.821	<.0001
fish-sun	7.308	15	19.492	<.0001	fish-sun	5.382	15	8.293	<.0001
lin-ref	6.313	15	16.841	<.0001	lin-ref	6.576	15	10.132	<.0001
lin-sun	8.087	15	21.571	<.0001	lin-sun	4.935	15	<.0001	<.0001
ref-sun	1.774	15	4.731	0.0003	ref-sun	-1.641	15	0.0258	0.0258

(a) Pairwise Comparison in Wild Type

- (b) Pairwise Comparison in PPARalpha
- In Wild Type, all diets are different from each other
- In PPARalpha, FISH and LIN are not distinguishable

22/26

Outline

- Response Dimension Reduction Methodologies
- Implementation along with Sample Size
- 3 Real Data Applications
- Discussion

Summary and Limitations

Summary

- Demonstrate the practical application of Response Dimension Reduction across different relationships between p, r, n
- Apply to cookie data (case 2: $n \le p$), nutrimouse data (case 3: $n \le r$)
 - Achieve simplified information while maintaining predictive performance

Limitations

- Beyond case 1, it is hard to capture nonlinear relationship
- Absence of real data applications for **case 4**: $n \le \min(p, r)$
- Variable performance of RDR methods across different datasets

Thank You.

References I

- Hooper, J. W. (1959). Simultaneous equations and canonical correlation theory. Econometrica: Journal of the Econometric Society, 27(2):245–256.
- Kim, B., Im, Y., and Yoo, J. K. (2021). SEEDCCA: An integrated R-package for canonical correlation analysis and partial least squares. The R Journal, 13(1):7–20.
- Lenth, R. V. (2016). Least-squares means: The R package Ismeans. Journal of Statistical Software, 69(1):1–33.
- Liland, K. H., Mevik, B.-H., Wehrens, R., and Hiemstr, P. (2021). PLS: Partial least squares and principal component regression. R package version 2.8.0.
- Yoo, J. K. (2018). Response dimension reduction: model-based approach. Statistics, 52(2):409–425.
- Yoo, J. K. (2019). Unstructured principal fitted response reduction in multivariate regression. Journal of the Korean Statistical Society, 48(4):561-567.
- Yoo, J. K. and Cook, R. D. (2008). Response dimension reduction for the conditional mean in multivariate regression. Computational Statistics and Data Analysis. 53(2):334-343.
- Yoo, J. K. and Im, Y. (2014). Multivariate seeded dimension reduction. Journal of the Korean Statistical Society, 43(4):559-566.

Applications of RDR in Large p-Small n Problems