FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 1

Zpracoval: Teodor Duraković Naměřeno: 20. března 2024

Obor: F Skupina: St 8:00 Testováno:

Úloha č. 7: Měření Poissonovy konstanty vzduchu

 $T = 20.6 \, ^{\circ}\text{C}$ $p = 99399 \, \text{Pa}$ $\varphi = 36.9 \, \%$

1. Zadání

Zjistit Poissonovu konstantu: 1) Clément-Desormesovou metodou pomocí diferenciálního tlakového čidla a U trubice 2) Prostřednictvím měření maxim vlnových délek stojatého vlnění v Kundtově trubici.

2. Postup

Poissonova konstanta, označovaná κ , je konstantou vyskytující se ve vztahu pro adiabatický děj v ideálním plynu

$$pV^{\kappa} = konst. \tag{1}$$

Poissonovu konstantu můžeme určit jako $\kappa = \frac{C_p}{C_v}$, kde C_p je molární tepelná kapacita při stálém tlaku a C_V molární tepelná kapacita při stálém objemu. Tyto hodnoty jsou závislé na počtu atomů tvořících vyšetřovaný plyn, tepelná kapacita se totiž odvíjí od toho, kolika způsoby může plyn tepelnou energii absorbovat a manifestovat, resp. kolika stupňů volnosti molekula daného plynu disponuje. Jelikož je námi zkoumaný vzduch tvořen z převážně dvouatomových molekul, budeme se soustředit právě na dvouatomový plyn. U vzduchu se za laboratorní teploty projevuje pět stupňů volnosti: tři translační a dva rotační. Vibrace se projevuje až u vyšších teplot. Pro zkoumaný plyn dle ekvipartičního teorému tedy platí:

$$C_V = \frac{\partial E}{\partial T_V} = \frac{N\partial \langle \varepsilon \rangle}{\partial T_V} = N \frac{d\frac{5}{2}kT}{dT} = \frac{5}{2}Nk = \frac{5}{2}nR$$
 (2)

$$C_p = C_V + nR = \frac{7}{2}nR \tag{3}$$

kde N je počet částic, n látkové množství plynu, R univerzální plynová konstanta a $\langle \varepsilon \rangle$ je střední hodnota energie (v našem případě translační a rotační) jedné částice. Pro Poissonovu konstantu platí:

$$\kappa = 1.4$$

2.1. Clément-Desormesova metoda

Aparatura se sestává z velké nádoby, malého napouštěcího a velkých vypouštěcích ventilů a tlakoměrů. Nádoba se tlakuje ruční pumpičkou přes malý oddělovací ventil. Vypouštění plynu z nádoby lze provést otevřením velkého ručního ventilu. Nádoba je opatřena dvěma tlakoměry, které měří přetlak vzhledem

k okolní atmosféře – U trubicí a průmyslovým diferenciálním tlakovým čidlem. Postupujeme následovně:

- 0. Před každým měřením za otevření velkého ventilu poznamenáme proud na ampérmetru napojeném na diferenciální tlakové čidlo. Tato hodnota nám stanovuje proud I_0 , tedy proud při nulovém rozdílu tlaků. 1. Otevřeme malý ventil a ruční pumpičkou zvýšíme tlak v nádobě. Ventil uzavřeme a systém necháme dosáhnout termodynamické rovnováhy s okolím (plyn se bude izochoricky ochlazovat, proto budeme pozorovat pokles tlaku).
- 2. Po ustálení tlaku jej odečteme z měřících přístrojů, poznamenáme hodnotu p_1 .
- 3. Rychlým otočením velkého ventilu uskutečníme adiabatickou expanzi vzduchu. Ventil okamžitě uzavřeme, izobarický ohřev by do měření přinesl systematickou chybu. S uzavřeným ventilem se systém zahřívá izochoricky, sledujeme růst tlaku. Po dosažení termodynamické rovnováhy s okolím pozorujeme ustálení tlaku. Odečteme z přístrojů hodnotu p_2 .

2.2. Měření Poissonovy konstanty z rychlosti zvuku v plynu

V Kundtově trubici měříme polohy maxim pro různé vlnové délky. Rozdíl poloh sousedních maxim d se rovná polovině vlnové délky, jsme tedy schopni určit vlnovou délku. Pro rychlost zvuku c bude platit vztah:

$$c = 2\overline{d}f,\tag{5}$$

kde f je nastavená frekvence. Pro výpočet d použijeme metodu nejmenších čtverců. Pro každou frekvenci zvlášť do grafu vyneseme polohu každého naměřeného maxima jako funkci jeho pořadí a závislost proložíme lineární funkcí. Pro ideální plyn platí pro rychlost vztah

$$c = \sqrt{\frac{\kappa p}{\rho}},\tag{6}$$

pro výpočet Poissonovy konstanty tudíž platí

$$\kappa = \frac{c^2 \rho}{p} = \frac{(2\overline{d}f)^2 \rho}{p} \tag{7}$$

2.3. Údaje používaných přístrojů

Název přístroje	typ přístroje	standardní nejistota
Metex 3292	ampérmetr (výstup diferenciálního tlakoměru)	0.007%
(voda v U trubici)	tlakoměr	0.3 mm
	Svinovací metr (v Kundtově trubici)	0.3 mm

3. Měření

3.1. Clément-Desormesova metoda

Při měření získáváme následující údaje:

	$h_1 [\mathrm{mm}]$	$h_2 [\mathrm{mm}]$	κ		$I_0 [\mathrm{mA}]$	I_1 [mA]	$I_2[\mathrm{mA}]$	κ
1	238	60	1.34	1	4.0331	11.473	5.8868	1.33
2	235	60	1.34	2	4.0382	11.396	5.9884	1.36
3	244	61	1.33	3	4.0423	11.705	5.9634	1.33
4	420	107	1.34	4	4.0445	17.220	7.4407	1.35
5	332	105	1.46	5	4.0510	14.466	7.3916	1.47
6	340	90	1.36	6	4.0516	14.690	6.8243	1.35
7	165	44	1.36	7	4.0525	9.2140	5.4430	1.37
8	248	70	1.39	8	4.0518	11.830	6.2390	1.39
9	280	87	1.45	9	4.0531	12.833	6.4740	1.38
10	243	64	1.36	10	4.0547	11.640	6.0623	1.35
\overline{x}	274.5	74.8	1.37	\overline{x}	4.05	12.65	6.37	1.37

3.2. Zpracování měření

Vztahem

$$\overline{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{8}$$

jsme získali odhady středních hodnot (arit. průměry) veličin. Vztahem

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N - 1}} \tag{9}$$

získáme odhad směrodatné odchylky. Úpravou Studentovým koeficientem s $p=0,9973, \nu=9$ získáme hrubé chyby (krajní odchylky) pro výsledky Poissonovy konstanty. Vidíme, že hodnoty z intervalů nevystupují, soubory hodnot tudíž není třeba nijak upravovat.

3.3. Nejistoty typu A

Nejistoty typu A získáme užitím vztahu

$$u_x = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N(N-1)}}$$
 (10)

3.4. Nejistoty typu B

Nejistoty typu B získáme užitím vztahu vychází z tabulky s údaji používaných přístrojů.

3.5. Nejistota typu C

Nejistotu typu C získáme vztahem:

$$u_C = \sqrt{u_A^2 + u_B^2} \tag{11}$$

3.6. Spočítané veličiny

Výše uvedenými vztahy jsme získali následující veličiny

	h1 [mm]	h2 [mm]	κ_1	I_0 [mA]	I_1 [mA]	$I_2 [\mathrm{mA}]$	κ_2
u_A	22.682	6.70		0.002	0.7	0.2	
u_B	0.3	0.3		0.0003	0.001	0.0005	
u_C	22.68	6.71	0.06	0.002	0.7	0.2	0.06

Použitím Clément-Desoresovy metody jsme získali výsledek:

$$\kappa_h = 1.374 \pm 0.063, r_{\kappa h} = 4.59 \%, \kappa_I = 1.369 \pm 0.060, r_{\kappa_h} = 4.38 \%$$
 (12)

Tyto hodnoty jsme získali následujícím kódem:

```
from uncertainties import *
h1l = ufloat (274.5, 22.68)
h2l = ufloat ( 74.8 , 6.71)
i0l = ufloat(4.05 ,0.002)
i1l = ufloat(12.65,0.7)
i2l = ufloat(6.37,0.2)
print ("kappa1 =", '{:.5u}'.format((h1l)/(h1l-h2l)))
print ("kappa2 =", '{:.5u}'.format((i1l - i0l)/(i1l-i2l)))
```

3.7. Závislost proudu na výšce hladiny vody

Pro získání této závislosti jsme naměřili hodnoty proudu odpovídající různým hladinám:

I [mA]	h [mm]
4.3082	9
4.5360	15
4.8331	25
5.3550	42
5.6186	51
5.9252	61
6.2030	70
6.2720	73
6.5940	82
7.0530	97
12.081	259
14.690	340
17.220	420

Po fitu lineární funkcí vidíme, že je závislost skutečně lineární. lze ji popsat následující funkcí:

$$I(h) \approx 0.03134h + 4.023 \tag{13}$$

Po provedení lineárního fitu jsme získali následující údaje:

[3/20/2024 8:12:42 PM Plot: ''Graph1'']

Linear Regression of dataset: Table6_I, using function: A*x+B

Weighting Method: No weighting

B (y-intercept) = 4.023421186978052e+00 +/- 1.113498096910232e-02

A (slope) = 3.133719207855267e-02 +/- 6.392337109404016e-05

Vidíme, že nejistota koeficientu úměrnosti je velmi nízká, s relativní nejistotou circa dvě promile jde o velmi uspokojivý výsledek.

3.8. Měření κ z rychlosti zvuku v plynu

Postupem zmíněným v 2.2. získáme následující data:

f [Hz]	l_1	l_2 [cm]	l_3 [cm]	l_4 [cm]	l_5 [cm]	l_6 [cm]	$l_7 [{ m cm}]$	l_8 [cm]	$\overline{d}[cm]$
2235.6	2.9	9.9	17.9	25.6	33.2	40.7	48.5	56.4	7.66 ± 0.03
1984.3	3.4	12	20.8	29.5	38.2	46.7	55.4		8.67 ± 0.01
1603.9	6.3	17	27.7	38.2	49				10.66 ± 0.02
1000.6	14.9	32.2	49.3	66.6					17.22 ± 0.03

Po aplikaci formule (5) a (7) získáme rychlosti zvuku a Poissonovy konstanty pro dané frekvence:

f [Hz]	$c [\mathrm{m.s^{-1}}]$	κ
2235.6	342.5 ± 3.7	1.386 ± 0.030
1984.3	344.1 ± 3.5	1.399 ± 0.028
1603.9	342.0 ± 3.5	1.382 ± 0.028
1000.6	344.6 ± 3.5	1.404 ± 0.028

Tyto hodnoty jsme za použití hodnoty $\rho^{[1]} = 1.1748 \,\mathrm{g.cm^{-1}}$ získali následujícím kódem:

```
p = ufloat (99398.8,0)
rho = ufloat (1.1748,0)
d1 = ufloat (17.22, 0.03)
d2 = ufloat (10.66, 0.02)
d3 = ufloat (8.67, 0.01)
d4 = ufloat (7.66, 0.03)
f1= ufloat (1000.6,10)
f2= ufloat (1603.9,16)
f3= ufloat (1984.3,19.84)
f4= ufloat (2235.6,22.35)
print ("c pro 1000 =", 2*d1*f1/100)
print ("c pro 1600 =", 2*d2*f2/100)
print ("c pro 1984 =", 2*d3*f3/100)
print ("c pro 2200 =", 2*d4*f4/100)
print ("k pro 1000 =", (2*d1*f1/100)**2 * rho /p)
print ("k pro 1600 =", (2*d2*f2/100)**2 * rho /p)
print ("k pro 1984 =", (2*d3*f3/100)**2 * rho/p)
print ("k pro 2200 =", (2*d4*f4/100)**2 * rho/p)
```

4. Výsledek

Za použití Clément-Desormesovy metody nám hodnota Poissonovy konstanty po zaokrouhlení vyšla $\kappa = 1.37 \pm 0.06$ pro oba měřící přístroje. Při použití Kundtovy trubice nám Poissonova konstanta vyšla $\kappa_{2235Hz} = 1.39 \pm 0.03, \kappa_{1984Hz} = 1.40 \pm 0.03, \kappa_{1604Hz} = 1.38 \pm 0.03, \kappa_{1001Hz} = 1.40 \pm 0.03.$

5. Závěr

Jak lze z výsledků pozorovat, měření CD metodou se od skutečné hodnoty odchylovalo více. Jsem přesvědčen, že v této nepřesnosti hraje významnou roli ruční otevírání ventilu při adiabatické expanzi. Ve většině případů se mi nepodařilo ventil otevřít a následně zavřít dostatečně rychle, a tudíž došlo i k jiným dějům, které adiabatickou expanzi při otevírání a zavírání ventilu nahradily. U metody druhé jsem s výsledky spokojen, jelikož se skutečné hodnotě blížily mnohem více.

6. Zdroje

[1] Air density calculator [on-line]
Dostupný z WWW: https://www.omnicalculator.com/physics/air-density