

### Introduction

#### **Benefits**

→ Make drivers to drive more carefully or warn them to change their travel method. Reduce the economic and societal impact of car accidents

#### Objective

→ Recognize key factors affecting the accident severity. Develop a model to predict accident severity based on the sophisticated traffic accident dataset.

# Data acquisition and cleaning

- → "Road Safety Data Accidents 2018" downloaded from Open Data Platform UK.
- → 32 columns and 122635 rows in raw dataset
- → Missing value are deleted
- → Unrelated variables are deleted
- → Convert categorical variables to binary variables
- → Data standard scaled
- → Cleaned data contains 67037 rows and 14 variables
- → Unbalanced data

## Exploratory data analysis

- → There is no big difference in the severity of accident when the weather conditions are different
- → "Serious" accidents are more likely to happen when the light condition is not good.
- → There is no big difference in the severity of accident when the accident happens at a junction or not.

| Accident_Severity Weather_Conditions |                  |          |  |  |  |
|--------------------------------------|------------------|----------|--|--|--|
|                                      | fine             | 0.050700 |  |  |  |
| serious<br>slight                    |                  | 0.859769 |  |  |  |
|                                      | not_fine         | 0.140231 |  |  |  |
|                                      | fine             | 0.845962 |  |  |  |
|                                      | not_fine         | 0.154038 |  |  |  |
| Assidant Cavanity                    | Limbs Candisiana |          |  |  |  |
| Accident_Severity                    | Light_Conditions |          |  |  |  |
| serious<br>slight                    | daylight         | 0.699421 |  |  |  |
|                                      | not_daylight     | 0.300579 |  |  |  |
|                                      | daylight         | 0.763166 |  |  |  |
|                                      | not_daylight     | 0.236834 |  |  |  |
| Accident Severity                    | Junction Detail  |          |  |  |  |
| serious                              | at_junctino      | 0.505073 |  |  |  |
| slight                               | not_at_junction  | 0.494927 |  |  |  |
|                                      | not_at_junction  |          |  |  |  |
|                                      | at_junctino      | 0.516705 |  |  |  |
|                                      | not_at_junction  | 0.483295 |  |  |  |

# Predictive modeling

- → Dataset spilting
  - ◆ 70% training dataset
  - 30% testing dataset
- → 5 classification models are used
  - ◆ Logistic regression
  - ◆ K-Nearest Neighbors
  - Decision Tree
  - Random Forest
  - Support Vector Machine

## Model performance

- → Accuracy
  - ◆ 64.45 to 67.80 between 5 models
- → F1 Score
  - ◆ 57.50 to 62.13 between 5 models
- → SVM performed best

|   | Model                   | Accuracy | F1 - Score | Jaccard - Score |
|---|-------------------------|----------|------------|-----------------|
| 0 | Support Vector Machines | 67.80    | 62.13      | 16.27           |
| 2 | Logistic Regression     | 67.01    | 57.50      | 7.23            |
| 4 | Decision Tree           | 66.48    | 61.71      | 17.06           |
| 3 | Random Forest           | 66.46    | 62.11      | 18.12           |
| 1 | KNN                     | 64.45    | 61.28      | 19.13           |

#### Conclusion and future decision

- → Built useful models to predict whether a car accident would be serious or slight
- → Accuracy of the models has room to improve
- → Ideas
  - Make the dataset balanced
  - Get more variables and data, such as drivers' background information and vehicle conditions



#### Reference

Road Safety Data – Accidents 2018
Retrieved from <a href="https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data">https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data</a>