강의 20: 동적 프로그래밍 II

강의 개요

- 간단한 5개 단계
- 글 정렬
- 정보를 모두 알고 있는 블랙잭
- 부모 포인터

개요

- * DP ≈ "세심한 무차별 대입법"
- * DP ≈ 추측 + 재귀 + 메모이제이션
- * DP ≈ 문제를 합리적인 개수의 하위 문제로 나누고 해를 비순환적으로 연관 짓는다. 보통 해의 일부를 추측한다.
- * time = # subproblems × time/subproblem

treating recursive calls as O(1)(usually mainly guessing)

- 근본적으로 분할 상환
- 각 하위 문제를 한번만 센다: 메모이제이션을 통해 처음 이후에는 O(1) 시간이 걸린다
- * DP ≈ DAG에서의 최단 경로

동적 프로그래밍의 간단한 5 단계

- 1. 하위 문제를 정의한다
- 2. 해의 일부를 추측한다
- 3. 하위 문제의 해를 연관짓는다
- 4. 재귀와 메모이제이션

문제의 개수

혹은 DP 테이블을 상향식으로 만든다 하위 문제가 비순환이고 위상 순서가 있다는걸 확인한다

5. 기존 문제를 푼다 - 하위 문제와 같거나

하위 문제의 해를 합쳐서 푼다 ⇒ 추가 시간이 걸림

하위 문제의 개수를 센다

선택지의 개수를 센다

하위 문제당 시간을 계산한다

시간 = 하위 문제당 시간. 하위

Examples:	Fibonacci	Shortest Paths
subprobs:	F_k	$\delta_k(s, v)$ for $v \in V$, $0 \le k < V $
	for $1 \le k \le n$	$= \min s \to v$ path using $\leq k$ edges
# subprobs:	n	V^2
guess:	nothing	edge into v (if any)
# choices:	1	indegree(v) + 1
recurrence:	$F_k = F_{k-1}$	$\delta_k(s,v) = \min\{\delta_{k-1}(s,u) + w(u,v)$
	$+F_{k-2}$	$ (u,v) \in E\}$
time/subpr:	$\Theta(1)$	$\Theta(1 + \text{indegree}(v))$
topo. order:	for $k = 1, \ldots, n$	for $k = 0, 1, \dots V - 1$ for $v \in V$
total time:	$\Theta(n)$	$\Theta(VE)$
		+ $\Theta(V^2)$ unless efficient about indeg. 0
orig. prob.:	F_n	$\delta_{ V -1}(s,v)$ for $v \in V$
extra time:	$\Theta(1)$	$\Theta(V)$

글 정렬

글을 "좋은" 줄로 나눈다

- MS Word/Open Office에서 쓰이는 알고리즘: 첫 줄에 가능한 많은 단어를 넣고 반복한다
- 좋지 않은 줄을 만들 수 있음

그림 1: 좋은 정렬 vs 나쁜 정렬

- 단어[i:j]에 대해 나쁨을 정의한다 총 길이가 페이지 너비보다 크면 ∞, 아니면 (페이지 너비 총 길이) 3
- 목표: 단어를 나눠서 나쁨의 합을 최소화한다
 - 1. <u>하위 문제</u> = suffix 단어[i:]의 최소 나쁨 ⇒ 하위 문제 개수 = $\Theta(n)$, n = 단어 개수

- 2. $\frac{\dot{7}}{\dot{7}} = \dot{7}$ 줄을 어디서 끊을지 (i:j) \Rightarrow 선택지 개수 = n-i = O(n)
- 3. 재귀:
 - DP[i] = i + 1부터 n + 1까지의 j에 대해 나쁨 (i,j) + DP[j]의 최솟값
 - DP[n] = 0
 - \Rightarrow 하위 문제당 시간 = $\Theta(n)$
- 4. <u>순서</u>: *i* = *n*,*n*-1,...,1,0 에 대해

총 시간 = $\Theta(n^2)$

그림 2: DAG.

5. <u>답</u> = DP[0]

정보를 모두 알고 있는 블랙잭

- $c_0, c_{1, \dots} c_{n-1}$ 가 모든 카드의 순서일때
- 17이상에서 카드를 더 받지 않는 딜러와 한 명의 참가자
- 받을지 말지 추측
- 목표: \$1 내기에서 최대한 많이 따기
- 한 번 져서 나중에 더 좋은 패를 얻을 수 있음
- 1. <u>subproblems</u>: $BJ(i) = best play of c_i, ... c_{n-1} where i is # cards "already played" remaining cards$
 - ⇒ 하위 문제 개수 = n
- 2. <u>추측</u>: 참가자가 몇 장의 카드를 더 받는지 ⇒ 선택지 개수 ≤ *n*
- 3. <u>재귀</u>: BJ(*i*) = 최댓값(결과 ∈{+1,0,-1} + BJ(*i* + 사용된 카드) O(*n*)

)

21을 넘지 않을 동안 0,1,... 인 받은 카드 개수

O(n)

⇒ 하위 문제당 시간 = $\Theta(n^2)$

4. <u>순서</u>: *n*부터 0까지 *i*에 대해 총 시간 = Θ(*n*³)

time is really
$$\sum_{i=0}^{n-1}\sum_{\#h=0}^{n-i-O(1)}\Theta(n-i-\#h)=\Theta(n^3)$$
 still

5. <u>답</u>: BJ(0)

자세한 재귀: 메모이제이션 전(나누기와 두 배 걸기 제외할 때)

```
\Theta(n^2) \begin{cases} \Theta(n) \begin{cases} \text{if } n-i < 4 \text{: return 0 (not enough cards)} \\ \text{for } p \text{ in range}(2, n-i-1) \text{: } (\# \text{ cards taken}) \\ \text{player} = \text{sum}(c_i, c_{i+2}, c_{i+4:i+p+2}) \\ \text{if player} > 21 \text{: (bust)} \\ \text{options.append}(-1(bust) + BJ(i+p+2)) \\ \text{break} \end{cases} \\ \text{for } d \text{ in range}(2, n-i-p) \\ \text{dealer} = \text{sum}(c_{i+1}, c_{i+3}, c_{i+p+2:i+p+d}) \\ \text{if dealer} \geq 17 \text{: break} \\ \text{if dealer} > 21 \text{: dealer} = 0 \text{ (bust)} \\ \text{options.append}(\text{cmp}(\text{player, dealer}) + BJ(i+p+d)) \\ \text{return } \max(\text{options}) \end{cases}
```


그림 3: DAG view

부모 포인터

총 비용과 실제 해를 찾기 위해 부모 포인터 (각 하위 문제에서 어떤 추측이 쓰였는지)

를 저장하고 거꾸로 푼다

- 보통 최솟/최댓값과 최소/최대 인수를 기억함
- 예제: 글 정렬

• 메모이제이션과 상향식 방법과 같이 이 변환은 <u>자동이다</u> 생각할 필요 없음 MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.