Calcul d'arbre. Phylogénie. – travail en binôme noté sur 20 à rendre pour dans 1 semaine (18/12/2015).

Merci de rédiger vos réponses – il est important d'arriver à se faire comprendre.

1/Observation d'un fichier Genbank (non noté)

A partir du fichier Genbank NC_000964.gbk, exploration du contenu du fichier.

2/Calcul de la distance phylogénétique. (10pts)

a) Choix d'une métrique.

JP Delahaye dans une communication personnelle affirme que la fonction GZIP (ou ZIP) permet de calculer une distance phylogénétique (l'idée qu'il existe un ancêtre commun).

Soit A la chaîne de texte ADN issue du fichier *.fna.

Appelons I_A la taille du fichier contenant cette chaîne.

Après application de la fonction GZIP(Z) (<u>utiliser l'implémentation 7zip avec le niveau de compression maximal</u>), nous obtenons un fichier de taille l_z_A.

On peut écrire, Z(A)=I_z_A

De même l'opérateur concaténation sera écrit : &

On définit la mesure de la distance d entre A1 et A2 comme :

$$d(A,B) = \frac{Z(A\&B)}{Z(A) + Z(B)} - \frac{Z(A\&A)}{4 * Z(A)} - \frac{Z(B\&B)}{4 * Z(B)}$$

(on vérifiera x pour que : d(A1,A1)=0),

On implémentera une fonction d pour estimer une distance à partir de 2 fichier *.fna
On pourra, si le temps le permet, implémenter une autre métrique :
d(A1,A2)=racine carrée(Z(A1&A1)+Z(A2&A2)-2*Z(A1&A2))

!attention! tous les zippeurs ne sont pas équivalents (prenez le temps de comparer)

b) Si nous devons parcourir 2 à 2 l'ensemble, on obtient une matrice symétrique positive. Calculer la matrice symétrique positive pour le tableau joint.

Bacillus_subtilis	NC_000964
Bacillus_amyloliquefaciens_FZB42	NC_009725
Bacillus_pumilus_SAFR_032	NC_009848
Bacillus_thuringiensis_BMB171	NC_014171
Bacillus_cereus_03BB102	NC_012472
Bacillus_anthracis_Ames	NC_003997
Bacillus_coagulans_2_6	NC_015634
Bacillus_atrophaeus_1942	NC_014639
Bacillus_licheniformis_ATCC_14580	NC_006322
Escherichia_coli_K_12_substrMG1655	NC_000913
Pseudomonas_aeruginosa_LESB58	NC_011770
Rhodobacter_sphaeroides_ATCC_17025	NC_009428
Streptomyces_flavogriseus_ATCC_33331	NC_016114

Micrococcus_luteus_NCTC_2665_uid59033	NC_012803
Lactococcus_lactis_Il1403	NC_002662

3/Calcul de dendrogramme, méthode dite single linkeage (saut minimal) (10pts)

Construction par l'exemple

	Α	В	С	D	E
Α	0	7.40	7.56	5.01	12.43
В	7.40	0	8.62	6.03	6.55
С	7.56	8.62	0	12.46	<mark>4.66</mark>
D	5.01	6.03	12.46	0	9.28
Ε	12.43	6.55	4.66	9.28	0

La plus petite distance incite à regrouper C et E en un ensemble X, dont la distance à un autre objet sera le minimum des distances de C et de E à cet objet.

	Α	В	Х	D
Α	0	7.40	7.56	5.01
В	7.40	0	6.55	<mark>6.03</mark>
X	7.56	6.55	0	9.28
D	<mark>5.01</mark>	<mark>6.03</mark>	9.28	0

Cette fois la plus petite distance concerne A et D, on les regroupe en un ensemble Y.

	Υ	В	X
Υ	0	6.03	7.56
В	6.03	0	6.55
X	7.56	6.55	0

Cette fois la plus petite distance concerne Y à B, on appelle Z le regroupement de Y et B.

	Z	X
Z	0	6.55
Х	6.55	0

(Exemple d'après http://www.obs-vlfr.fr/Enseignement/enseignants/labat/anado/classif/Dmini.html)

Le standard Newick pour représenter les arbres est basé sur les travaux **d'Arthur Cayley** (1857). Cette représentation utilise les parenthèses pour décrire un arbre. Le terminateur est un point virgule.

6.030

Ainzi l'arbre construit dans l'exemple peut être vu comme : ((C,E),((A,D),B));

Ce format permet de donner une longueur de branche. ((C:4.66,E:4.66):1.89,((A:5.01,D:5.01):1.02,B:6.03):0.52);

Déterminé l'algorithme de construction de cette chaîne.

Vous utiliserez le programme njplot pour afficher l'arbre obtenu.

