MATHEMATICS HIGHER LEVEL

Wednesday 22 May 2019

Name in block letters

2 hours

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Calculators are not permitted in this examination.
- There are 20 questions. Try to answer them all.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working or explanations. Where an answer is incorrect, some marks may be given for a correct method provided this is shown by written working. You are therefore advised to show all working. Working may be continued below the lines, if necessary.

1. Let $\vec{a} = \begin{pmatrix} 2 \\ k \\ -1 \end{pmatrix}$ and $\vec{b} = \begin{pmatrix} -3 \\ k+2 \\ k \end{pmatrix}$. If \vec{a} and \vec{b} are perpendicular find the possible values of k .
Z·B=0.
-6+ kck+2)-k=0
$= k^2 + k - 6 = 0$
(k+3)(k-2)20
$= c_1 = -3 $
(c ₂ =2.
· · · · · · · · · · · · · · · · · · ·
······································
//
5

2. Part of the graph of the function $f(x) = a\cos(b(x+c)) + d$ is drawn below. The graph has a maximum at (1,5) and a minimum at (3,-1).

- (a) Find the values of a and d.
- (b) Find the value of b.
- (c) Find two possible values for c.

																/																														
 (a)) 	.0	ر:		3.	٠.		d	Ξ.		2.			• •	•										• •		٠.	•		•::		• •	• •			•						 		 	•	• •
 ĊP	.).		٠. -	: .	211	-	7.		11 .2.					/	/ 			•																										 	•	
 • • •		• •	• •				• •		•••	• •	•	• •		• •	• •	•	• •	•	• •	• •	•	• •	•	• •	•	٠		•		• •	٠			·		•		: ·		•		 •	 10 - 10	 ٠.	•	• •
 • • •		• •	. 5.56	• • •		• •	• •		• •	•00		• •		• ::•	• •		• •	·	• •		• • •		• •		• •	•	• •	•	• •	•	•	• •	•				•	æ.	•	•	•		 •	 	•	
 										•	٠.,									٠.	•							•			٠			···•		•	• •			•		 • •	 ٠	 	•	
 		٠.	• •					• •	٠.			••		• •		•		•							•			•			•			•	٠.	•		•		•		• •	 •	 	•	
 • • •				• •	e		*::			•0		• •	• •	• •	• •	.•	• •		• •		•		• • •		•			•			٠	• •		a:• :	٠.	•	•:•	•	٠.	: ••	• •	 • •	 •	 	•	٠.
 																·									•			·								•		•						 ٠,٠	/ .	

3. The Venn diagram shows the events A and B where P(A)=0.3. The values shown are probabilities.

/ \	***		100	- 1				91	
(a)	Write	down	the	val	ues	ot	p	and	q.

(b)	If $A \triangle B =$	$(A \cap B')$	U	$(A'\cap A)$	B) find	P	$(A \triangle$	B).
(~)	11 11 2 2	(1111)	0	()		(-)	(°

11	T: 1	D	(A A D	1 4 D)
(C)	rına	P	$A \triangle B$	$A \cup B$

	A	IA	
В	٥.٧	0.3	2.0
β'	0.1	5.4	0.5
	٤. ٥	0.7	1

(a)	0 = 0) 9=	0.3
	F	`.´' \	. 9 . 3

(,	b	1)			P	ij	(K	1	Δ)	B))	,		0	١.	1	+	0)	3	:	=	(0	1	+	Ĉ.
					٠																					٠						

			0.4		2
(1)	P	\equiv	21122+0.3	=	3
	. :		0.1+0.2+0.3		

																																			• • •
 • • • •	• • •	• • •	o• •o•	• •	• • •	• •	• •	• • •		11 * 111*	• •	* 88	• •	• •	• • •			• •		• •	• •	 • •	• •	• •	• • •	•		• •	• •	• •	• •		·· /		 /
 		• •		• •	• • •		• • •		• •	• •	• •	• •	•	• •	• • •	• • •		• •	• •	• •	•	 • •	• •	• •	• • •	• •	• • •	••	•		/	<i>/</i>		/. \	• • • •
 • • • •		• • •	• • •	• •	•	•	• •	• • •		• •	• •	• •	• •	• •	• • •	• •	• • •	• •	• •	• •	•	 • •							- 4	<i>'</i>	• •	•	• •	• /	• • •

1.	Let $f(x) = \frac{2x-1}{x+3}$.
	(a) Write down the equation of the vertical asymptote for the graph of f .
	(b) Find $f^{-1}(x)$.
	(c) Find the equation of the horizontal asymptote for the graph of f^{-1}
	(a) [: X=-3
	$(b) \mathcal{J} = \frac{2\chi - 1}{\chi + 3},$
	$\int_{-1}^{1}(x): x = \frac{3\lambda - 1}{\lambda + 3}$
	$ \begin{cases} -1(x) : x = \frac{2y-1}{y+3} \\ \vdots \\ y = -\frac{3x+1}{x-2} \end{cases} $
	(c) Inft(x), vertical assymptote: [: X=2.
	so Inf(x), there's assymptote: l: y=2. x
	for f-1 (: y=:-3.

5. The magnitudes of the vectors \vec{u} and \vec{v} are 4 and $\sqrt{3}$ respectively. The angle between the

vectors is $\frac{\pi}{6}$. If $\vec{w} = \vec{u} - \vec{v}$ find the magnitude of \vec{w} .
$\cos \frac{7}{6} = \frac{\cancel{2} \cdot \cancel{7}}{\cancel{4} \cdot \cancel{1}} = \frac{\cancel{1}}{\cancel{2}}$
∴
$-\frac{1}{2}\left(\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} - 2\frac{1}{2}\frac{1}{2}$
$\frac{1}{2} \left[\frac{1}{16} \right]^{2} = \frac{16 + 3 - 2 \times 6}{16} = \frac{1}{16}$
· [w] = 47
30.00.00.00.00.00.00.00.00.00.00.00.00.0
////
<u> </u>

6. The triangle ABC is a right-angled isosceles triangle with AB = AC = 2 and point P is the midpoint of side BC. The arc BDC is part of a circle with centre A and the arc BEC is part of a circle with centre P.

- (a) Calculate the area of the segment BDCP.
- (b) Calculate the area of the shaded region BECD.

(a) A ABOL = 7. TIZ = TT.
A DABC = = -2-2-2.
ABDCP = π-2
(b) $A_{BCEP} = \frac{1}{2} \cdot \pi \left[\left(\frac{2}{\sin \frac{\pi}{4}} \right) \cdot \frac{1}{2} \right]^2 = \pi$
A & ECD = π-(π-2) = 2
<u></u>

7. In this question, we signify that a number is written in base n by using the subscript n at the right end of the number. For example, 243_6 is a number written in base 6.
(a) Write the number 1234_8 in base 10.
(b) Find the value of the digit b if $123b_8$ is divisible by 7.
(c) Find the possible values of the digit b if $123b_8 \mod 4 = 2$.
(a) $(1234)_8 = 8^3 + 2 \times 8^2 + 3 \times 8 + 4 = 668$
(b) $(123b)_8 = 664 + b$.
664 = 6 (mod 7).
3- b= 1.
(c) $(1236)_g = 664+6$
664 = 0 (mod4) :. b = 2 or 6.
i. b= 2 or b.
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

8.	Alice and Bob take turns throwing a fair tetrahedral die. The winner throw a four. Alice goes first.	is the	first person	on to	
	(a) What is the probability that Alice wins on her first throw?	A	B	A	VS
	(b) What is the probability that Alice wins on her second throw?	-4			
	(c) What is the probability that Alice wins?	, 3 -	- 4		
	1-2-2-1	1 \	<u>β</u> -	一 ţ	4
	(a) $P = \frac{1}{4}$			¥\$	$\leq \frac{4}{3}$
	(b) $p = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{1}{64}$				4,
	(a) $p = \frac{3}{4}$. $\frac{3}{4} \cdot \frac{1}{4} = \frac{9}{64}$ (b) $p = \frac{3}{4} \cdot \frac{3}{4} \cdot \frac{1}{4} = \frac{9}{64}$ (c) $p = \frac{1}{4} \cdot \frac{1 - \frac{9}{16}}{1 - \frac{3}{16}} = \frac{1}{4} \cdot \frac{16}{7} = \frac{4}{7}$				
			a nonce nince nince	••••	
				••••	
			/		
			/	<i></i> .	
		<i>.</i>			
)		

A

The tangent to the curve $y = xe^{2x}$ at the point $(1, e^2)$ meets the x-axis at the point (a, b) .
(a) Write down the value of b .
(b) Find $\frac{dy}{dx}$.
(c) Find the value of a .
(a) b=0
(b) $\frac{dy}{dx} = e^{2x} + x \cdot e^{2x} \cdot 2$
= e ^{2x} (1+2x)
(c) at1, $m = e^2 \cdot 3 = 3e^2$
:. $y - e^2 = 3e^2(x-1)$:. when $y=0$, $\alpha = x = \frac{2}{3}$
wan J, u- n- 3
101010301010101010101010101010101010101

10. The lengths of two sides of a triangle are 4 cm and 5 cm. The triangle has an area of $\frac{5\sqrt{15}}{2}$ cm ² . Let θ be the angle between the two given sides.
(a) Show that $\sin \theta = \frac{\sqrt{15}}{4}$.
(b) Find the two possible values for the length of the third side.
(a) $A_{\Delta} = 4.5 \cdot \sin \theta - \frac{1}{2} = \frac{5}{2} \sqrt{15}$
:. 4 5 in 8 = dis
:. 5 : \ \theta = \frac{115}{4}
(b) $\cos \theta = \pm \sqrt{1 - \frac{15}{16}} = \pm \frac{1}{4}$
$c^2 = 16 + 25 - 2 \cdot 4 \cdot 5 \cdot (\pm \frac{1}{4})$
= 41±10
= 31 or 51
`_' C>0
C= 131 or 151
)

11. Solve each of the following equations over the set of real numbers.
(a) $\log_3(x+17) - 2 = \log_3 2x$.
(b) $2^{2x+2} - 10 \times 2^x + 4 = 0$.
(a) log 3 (x+17) =0
$\frac{\chi + i\gamma}{q \cdot \nu \chi} = 1$
:. x+17=18x
x+17=18x x=1
(b) let 2x be a.
4a2-10a+4=0
(2a-1)(a-2)20
$\therefore \alpha_1 = \frac{1}{2}$,
Q2=2.
$\sum_{x} = \frac{1}{2} \circ r \cdot 2 .$
- X= 1 or -1

12. Solve $z^2 = 4e^{i\frac{\pi}{2}}$, giving your answers in the form
(a) $re^{i\theta}$ where $r, \theta \in \mathbb{R}, r \ge 0$;
(b) $a + bi$ where $a, b \in \mathbb{R}$.
(a) $Z^2 = [4, \frac{\pi}{2}]$
$z = [z, \frac{\pi}{4}] \text{ or } [z, \frac{\pi}{4}\pi]$
= zeit or zeit
(b) Z= JZ +JZi or -JZ-JZi
6.6666666666666666666666666666666666666
<u> </u>

13. The three numbers 1, a and b have mean 5 and variance 14.

(a) Write down the standard deviation of the three numbers.
(b) If $a < b$ find the values of a and b .
(a) $\sqrt{14}$ (b) $\left\{ \frac{4^2 + (5-a)^2 + (5-b)^2}{3} = 14 \right\}$ $1 + a + b = 15$
2 + L2 - 10 (0 + 1) + 50 = W
$a^2+b^2-10(a+b)+50=42$
$a_{j}+p_{j}=11$
: { a+b=14
ab=40
{ a+b=14 ab=40 t2-14t+40=0
: t,=10, t2=4.
$\frac{1}{b} = 10$
1 5=10.
V

- 14. A flu virus is spreading among the students at Pearson College. A vaccination is available to protect against the virus. If a student has had the vaccination the probability of catching the virus is 0.1; without the vaccination the probability is 0.3. The probability of a randomly selected student catching the virus is 0.22.
 - (a) Find the percentage of the students who have been vaccinated.
 - (b) A student catches the virus. Find the probability that this student was vaccinated.

(a)	(t) o. 1		
	(3) V (1) 9, 1	a. 0.1 + (1-a) - 0.>=	0.22
	V' ⊕0.3	-'- Q = 0.4	
	0.6 9 0.7	40%	
(b) p=	$\frac{0.4 \cdot 0.1}{0.6 \cdot 0.3 + 0.4 \cdot 0.1} = \frac{2}{11}$		
120			
			nana wasa wasa wasa wasa wasan

** * ***** * ** *** **			/ <i>,</i>
			<u> </u>
			<u>)</u>

					20.00					80			
15	Consider	the	function	fl	m	· — ·	ln/	$r^4 \perp$. 1)	n	-	IK.
TO.	Comsider	OIIC	IdifCulon	J	100	, —	TITI	u	-	11	w	-	щи.

- (a) Show that the graph of f has only one stationary point and determine its nature.
- (b) Find the coordinates of any inflection points on the graph of f.

(a) $f'(x) = \frac{1}{x^{4+1}} \cdot 4x^{3}$	
when $f'(x) = 0$, $\chi = 0$, only one. $f''(x) = \frac{ 2x^2(x^4+1) - 4x^3 - 4x^3}{(x^4+1)^2} = \frac{4x^2(3-x^4)}{(x^4+1)^2}$ why not many $f''(x) = \frac{ 2x^2(x^4+1) - 4x^3 - 4x^3 }{(x^4+1)^2}$)
$f''(0) = \frac{0}{100} = 0$, but $f''(0)$ doesn't change sign. so it's a minimum.	
$(b) f'(x) = 0, x = 0 \text{ or } \pm \sqrt{3}$	how do you call the point with
: at X=±45, f"=0, f"change sign,	f' = f'' = 0? (on you put the
inflection points: (4d3, ln4), (-4d3, ln4)	correct answer
explain.	menond;
in $f^{(1)}$, as $x \rightarrow o^{\dagger}$, $x \rightarrow o^{\dagger}$, $x \rightarrow o^{\dagger}$,	
f" both >0. so concave up,	
minimum.	

- 16. The isosceles triangle T has base b and perimeter 30. (a) Show that the area of T is $\frac{b}{2}\sqrt{225-15b}$.
 - (b) Use calculus to show that the area of T is largest when T is equilateral.

$(a) V = \sqrt{\frac{-\rho_0 p + 3\sigma_5}{\hbar}} = \sqrt{552 + 2p}$
$A_{b} = \frac{1}{2} \cdot b \cdot h = \frac{b}{2} \sqrt{225 + 5b}$
(b) $A_{0}' = \frac{1}{5}\sqrt{225-15}b + \frac{b}{5}\cdot\frac{1}{5}\cdot\frac{1}{\sqrt{225+5}b}\cdot(-15)$
when $\theta_{\Delta}' \simeq 0$, $b=10$
$A_{\nabla_{i}} = \frac{1}{i} \cdot (552-12p)_{\frac{1}{2}} + (-\frac{12}{i}) \cdot \frac{552-12p}{1282-12p-12p-\frac{1}{2}}$
at b=10, Ao' <0, maximum.
when b=10, which is equilateral triangle, Ao is maximized.
/
······································

The points A , B and C have coordinates $(4,4,6)$, $(1,1,0)$ and $(3,3,1)$ respectively.
(a) Find a vector equation of the line (BC) .
(b) The distance from point A to the line (BC) is $a\sqrt{2}$ where $a \in \mathbb{Z}^+$. Find the value of a.
(c) Hence find the area of triangle ABC .
$\sim (1) \cdot (1)^2$
(a) B(: $\overrightarrow{r} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
$ (b) P \begin{pmatrix} 1+2t \\ 1+2t \end{pmatrix} \overrightarrow{AP} = \begin{pmatrix} 2t-3 \\ 2t-3 \\ 1-b \end{pmatrix}. $
$2(2t-3) \times 2 + t-6=0$
$(-1)^{2} = \sqrt{1+1+16} = 3\sqrt{2}$
· · · · · · · · · · · · · · · · · · ·
$1. \alpha = 3$
(c) $ \vec{Bl} = \sqrt{4+4+1} = 3$
(c) $ \vec{BC} = \sqrt{4+4+1} = 3$ $\therefore A_{ABC} = \frac{1}{2} \cdot 3 \cdot 3\sqrt{2} = \frac{9}{2}\sqrt{2}.$
······································

18. Consider the binomial expansion $(1+x)^n = 1 + ax + bx^2 + cx^3 + \cdots + x^n$ where $n > 3$.
(a) Write down expressions for a , b and c in terms of n .
(b) If a, b, c are consecutive terms in an arithmetic sequence calculate the value of n .
[4] [4]
(a) $a = \binom{n}{i}$, $b = \binom{n}{2}$, $c = \binom{n}{3}$
(b) $a = \frac{n}{1}$, $b = \frac{n(n-1)(n-2)}{2}$
$\frac{N(n+1)}{2} - \frac{N}{1} = \frac{N(n+1)(N-2)}{3} - \frac{N(n+1)}{2}$
:. 2n3-12n2+10n=0
n3-6n2+5n=0
~ ~ ≠ P
n2-6n+520
- (>> > > >
: (n-5)(n-1) 20
= N=10+5.
~ n>3.
. n=5.
1 1/

19.	The polynomial $p(x) = x^3 - 3x^2 + $	-kx + 24 ł	nas three distinct	real roots,	which can b	e written
	as $\log_2 a$, $\log_2 b$ and $\log_2 c$ where a	a, b, c are o	consecutive terms	in a geom	etric sequen	ce.

- (a) Show that one of the roots is equal to 1.
- (b) Find the other two roots.

$(a) \begin{cases} x_1 x_2 x_3 = -24 & log_2 a = log_2 a \end{cases}$	legzb=legzar, legzc=legzar			
$\chi_1 + \chi_2 + \chi_3 = 3$				
$-1. \log_2 \alpha^3 r^3 = 3$				
$-2 - \alpha^3 r^3 = 8$				
· ar = 2.				
log2 ar = log22=1=b.				
(b) 1-3+(e+2420	-1. log2 a = 6			
k= -22	a=26			
p(x)= x3-3x2-22x+24	$r = \frac{2}{26} = 2$			
€0 legza. 1. legzar²=-24	6 log2 a = 6,			
leg2α·(leg2 +)=->+	log_ L = log_ = -4.			
(sq 24 - 1 sq 2 a) = - 24				
log_a.(2-log_a)+2420				
* t(2-t)+2420	THE PARTY WAS A SERVICE STATE OF THE PARTY STATE			
-+2+ 2++24=2				
t2-24-24 20	.,,			
(t-6) (t+4)=0				
2-t=6 or -4.				
اهج المارية				

20.	(a) Find the fifth roots of unity and sketch them as position vectors in the complex plane.
	(b) Hence write $z^4 + z^3 + z^2 + z + 1$ as the product of two quadratic factors with real coefficients.
	(c) Hence find the value of the product $\cos \frac{2\pi}{5} \cos \frac{4\pi}{5}$.
	$(a) \begin{bmatrix} 1,0 \end{bmatrix} \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny \textcircled{\tiny$
	(b) 25-1 =0, z = the five roots above
	5/-1 = (3-1)(5++5,+5,+5+1)
	ご を≠1.
	· root of 24+23+22+2+1 is [1, =], [1, \frac{2}{5},], [1, \frac{2}{5},]].
	$[1,\frac{1}{5}\pi]+[1,\frac{1}{5}\pi]=2\cos\frac{1}{5}\pi$, $[1,\frac{4}{5}\pi]\cdot[1,\frac{5}{5}\pi]=[1,2\pi]=[1,0]=[1,0]$
	1. { 24+23+2+1= (2-2103=18+1) (2-2103=11 2+1)
	(c) let z=i
	そりまするよう = (-1+1-5の2 より) (-1+1-5の2 より!) = +でき山の本山
	= 1-1-1+1+1
	=
	1= 1 Les = 1 Ces = 1 = 1
	: Cas = 1 Las = 1 = - 1
	24 532 11 = 14
)