

Page 1 of 15

Name	รสภณ ส	เลษภา์เลชุ	Student ID	62	201011631188	Section : <u>. </u>
Table	1	Period			Semester	
Lecturer	K	Ds				

วัตถุประสงค์ :

เพื่อให้ผู้เรียนมีความรู้ และเข้าใจในคุณสมบัติของวงจรรวมออปแอมป์ดังต่อไปนี้ 1. คุณสมบัติพื้นฐานของวงจรรวมออปแอมป์

- 2. การหาค่า Input Bias Current, Input Offset Voltage, Slew Rate
- 3. คุณสมบัติการตอบสนองเชิงความถี่ของวงจรรวมออปแอมป์
- 4. วงจรเปรียบเทียบสัญญาณ (Comparator)

อุปกรณ์การทดลอง :

9		
1. เครื่องคอมพิวเตอร์พร้อมโปรแกรม LTspice IV		1 ชุด
2. Op-amp เบอร์ TL071CP, LM741 (หรือ UA741)		1 ตัว
3. ตัวต้านทาน 1 $k\Omega$, 2.2 $k\Omega$, 5.6 $k\Omega$, 22 $k\Omega$, 56 $k\Omega$, 100 $k\Omega$, 1 $M\Omega$, 10 $M\Omega$	ค่าละ	1 ตัว
4. ตัวต้านทาน 3.3 $\mathrm{k}\Omega$, 9.1 $\mathrm{k}\Omega$, 20 $\mathrm{k}\Omega$, 39 $\mathrm{k}\Omega$	ค่าละ	3 ตัว
5. ตัวต้านทาน 10 ${ m k}\Omega$		4 ตัว
6. ตัวเก็บประจุ 1 ${f nF}$		1 ตัว
10 nF		3 ตัว
47 nF		1 ตัว
4. DC Power Supply		1 เครื่อง
5. เครื่องกำเนิดสัญญาณ(Signal Generator)		1 เครื่อง
6. ออสซิลโลสโคป		1 เครื่อง
7. แผงวงจร (Prototype Board)		1 แผ่น
8. มัลติมิเตอร์		2 เครื่อง

4.1 Operational Amplifier

ทฤษฎี

ออปแอมป์ (Op-Amp, Operational Amplifier) เป็นอุปกรณ์อิเล็กทรอนิกส์ประเภทวงจรรวม (IC, Integrated Circuit)

ที่ถูกออกแบบมาเพื่อเป็นวงจรขยายสัญญาณ โดยมีวงจรสมมูล (Equivalent Circuit) ดังรูปที่ 1 และมีคุณสมบัติในทางอุดมคติ คือ

 $Z_i = \infty \Omega$ Input Impedance

 $Z_0 = 0 \Omega$ Output Impedance

 $A, a = \infty$ เท่า Open Loop Voltage Gain

โครงสร้างวงจรออปแอมป์ เบอร์ 741 แสดงดังรูปที่ 2 จะเห็นว่า วงจรภายในของออปแอมป์เกิดจากการนำไบโพลาร์ ทรานซิสเตอร์ หรือมอสเฟต มาต่อเป็นวงจรขยายหลายชั้นเพื่อให้วงจรมีคุณสมบัติของอัตราการขยายได้สูงตามต้องการ

รูปที่ 2

วงจรภายในของออปแอมป์แบ่งออกเป็น 3 ภาคที่สำคัญ คือ

ภาคสัญญาณอินพุต (Input Stage)

ภาคขยายสัญญาณแรงดัน (Gain Stage)

ภาคสัญญาณเอาต์พุต (Output Stage)

Page **3** of **15**

ภาคสัญญาณอินพุต (Input Stage) มีขาอินพุต 2 ขา คือ Inverting และขา Non-inverting เชื่อมต่อเข้าสู่วงจร Differential Amplifier จึงทำให้มีค่าของอินพุตอิมพีแดนซ์ (Input Impedance, Z_i) ที่มีค่าสูงมาก

ภาคขยายสัญญาณแรงดัน (Gain Stage) ทำหน้าที่ขยายสัญญาณแรงดัน จึงมีอัตราการขยายแรงดัน (Voltage Gain) สูง และ ผลตอบสนองเชิงความถี่ (Frequency Response) ที่ดีตลอดย่านใช้งาน

ภาคสัญญาณเอาต์พุต (Output Stage) ทำหน้าที่ขยายกำลัง (ขยายทั้งกระแสและแรงดัน) ของสัญญาณเอาต์พุตให้มีขนาด ที่สูงขึ้น และมีค่าเอาต์พุตอิมพีแดนซ์ (Output Impedance, $Z_{\rm o}$) ต่ำ สำหรับเบอร์ 741 ในภาคสัญญาณเอาต์พุตจะใช้ วงจรขยายแบบ Class AB

คุณลักษณะเฉพาะของออปแอมป์เชิงอุดมคติ (Ideal Op-Amp)

- 1. มีค่าอัตราขยายสัญญาณแรงดัน (ในโหมด Open Loop Gain) เป็นอนันต์ (Infinity)
- 2. มีความกว้างของแถบความถี่ใช้งาน (Bandwidth) เป็นอนันต์
- 3. มีอินพุตอิมพีแดนซ์ (Input Impedance) เป็นอนันต์
- 4. มีเอาต์พุตอิมพีแดนซ์ (Output Impedance) เป็นศูนย์

ในขณะที่ออปแอมป์ที่ใช้งานจริง (Partial Op-Amp) จะมีค่าแรงดันและกระแสที่จำกัด ดังนั้นจะไม่เกิดค่าอนันต์เหมือน เชิงอุดมคติ แต่ก็ยังคงมีแนวโน้มไปในทางเดียวกันกับเชิงอุดมคติ

คุณลักษณะที่สำคัญของออปแอมป์

1.กระแสไบอัสด้านอินพุต (Input Bias Current) เป็นสัญญาณไฟฟ้ากระแสตรงที่ใช้ในการกระตุ้นการทำงานของออปแอมป์ มีขนาดเท่ากันของสัญญาณขา Inverting และ Non-inverting ในทางทฤษฎีจะมีค่าเป็นศูนย์ แต่ในทางปฏิบัติ สัญญาณไฟฟ้า นี้ยังคงมีอยู่แต่ค่าน้อยๆ ระดับ $10^{-12}~{f A}$

2.แรงดันยกตัวด้านอินพุต (Input Offset Voltage) เป็นความแตกต่างของระดับสัญญาณแรงดันไฟฟ้ากระแสตรงระหว่างขา Inverting และ Non-inverting ในทางทฤษฎีจะมีค่าเท่ากับศูนย์แต่ในการผลิตจริงไม่สามารถทำให้เป็นศูนย์ได้ แต่ค่าก็ ต่ำมาก ออปแอมป์ส่วนใหญ่จะมีค่าแรงดัน Input Offset ต่ำกว่า $10^{-3}~{
m V}$

3.ค่าสลูเรต (Slew Rate) เป็นความไวในการปรับตัวของออปแอมป์ในการตอบสนองต่อสัญญาณอินพุต เมื่อสัญญาณอินพุตมี การเปลี่ยนแปลงอย่างรวดเร็วทันทีทันใด ออปแอมป์ที่มีค่า Slew Rate ที่ดีจะสามารถตอบสนองการเปลี่ยนแปลงดังกล่าวได้ ทัน การทดสอบค่า Slew Rate ของออปแอมป์นิยมทดสอบด้วยการป้อนสัญญาณอินพุตเป็น Unit Step

4.ความกว้างของแถบความถี่ (Bandwidth) เป็นย่านความถี่ที่ออปแอมป์สามารถให้อัตราการขยายสัญญาณได้เท่ากันตลอด ทั้งย่าน โดยไม่เกิดความผิดเพี้ยน (Distortion) ของสัญญาณ แต่อย่างไรก็ตามออปแอมป์มีข้อจำกัดในย่านความถี่สูง ดังนั้น ความกว้างของแถบความถี่จึงจะเริ่มนับจากศูนย์เฮิรตซ์ไปจนถึงค่าความถี่ที่สัมพันธ์กับค่า Slew Rate ดังสมการ

$$FPBW = \frac{Slew\ Rate}{2\pi V_p}$$

เมื่อ FPBW = Full-power Bandwidth

Slew rate = อัตราการปรับตัวสัญญาณเอาต์พูตสูงสุดของออปแอมป์ ($V/\mu s$)

 V_p = Peak Output Voltage

5.อัตราการลดทอนสัญญาณรบกวนโหมดร่วม (Common-Mode Rejection Ratio, CMRR) เป็นความสามารถของออป แอมป์ในการจำกัดสัญญาณรบกวนที่ผ่านเข้ามาทางขาสัญญาณอินพุตทั้งสองขา สามารถทดสอบได้โดยการป้อนสัญญาณที่ เหมือนกันเข้าที่ขาอินพุตทั้งสอง ในทางทฤษฎีสัญญาณเอาต์พุตจะมีค่าเป็นศูนย์แต่ในทางปฏิบัติจะพบว่าไม่เป็นศูนย์ การหา ค่า CMRR สามารถทำได้ดังรูปที่ 3

จากรูป
$$v_{II}=v_{CM}+rac{v_D}{2}$$
 $v_{I2}=v_{CM}-rac{v_D}{2}$

และ
$$v_D = v_{II}$$
 - v_{I2} $v_{CM} = \frac{v_{II} + v_{I2}}{2}$

แรงดันเอาต์พุตหาได้จาก
$$v_o=(v_+)$$
 $\left(1+\frac{R_F}{R_3}\right)$ - $v_{I2}\frac{R_F}{R_3}$ $\qquad \qquad =$ $v_o=v_{II}\frac{R_2}{R_1+R_2}\left(1+\frac{R_F}{R_3}\right)$ - $v_{I2}\frac{R_F}{R_3}$ $v_o=\left(v_{CM}+\frac{v_D}{2}\right)\frac{R_2}{R_1+R_2}\left(1+\frac{R_F}{R_3}\right)$ - $\left(v_{CM}-\frac{v_D}{2}\right)\frac{R_F}{R_3}$ $v_o=v_{CM}\frac{R_2}{R_1+R_2}\left(1-\frac{R_FR_I}{R_2R_3}\right)+\frac{v_D}{2}\frac{R_F}{R_3}\left[1+\frac{R_2(R_3+R_F)}{R_F(R_1+R_2)}\right]$

จัดรูปสมการใหม่โดยแยกเป็น A_d คือ Differential Gain และ A_{cm} คือ Common-Mode Gain จะได้

$$\mathbf{A_d} = \frac{v_o}{v_D} = \frac{R_F}{2R_3} \left[1 + \frac{R_2(R_3 + R_F)}{R_F(R_I + R_2)} \right]$$

$$\mathbf{A_{cm}} = \frac{v_o}{v_{CM}} = \frac{R_2}{R_I + R_2} \left(1 - \frac{R_F R_I}{R_2 R_3} \right)$$
 ถ้ากำหนดให้ $\frac{R_F}{R_2} = \frac{R_3}{R_I}$ จะทำให้ได้ $\mathbf{A_d} = \frac{R_F}{R_3}$ และ $\mathbf{A_{cm}} = \mathbf{0}$ ดังนั้น
$$\mathbf{CMRR} = \frac{\frac{R_F}{2R_3} \left[1 + \frac{R_2(R_3 + R_F)}{R_F(R_I + R_2)} \right]}{\frac{R_2}{R_I + R_2} \left(1 - \frac{R_F R_I}{R_2 R_3} \right)}$$

เนื่องจาก CMRR ไม่มีหน่วยทางฟิสิกส์ แต่เป็นอัตราส่วนจำนวนเท่า บ่อยครั้งที่เราจะพบสมการอยู่ในรูปลอการิทึมของ อัตราส่วนจำนวนเท่า 20log CMRR

การทดลอง

1.วัดค่ากระแสไบอัสด้านอินพุต

- 1.1 ประกอบวงจรตามรูปที่ 4 ลงบนโปรโตบอร์ดโดยใช้ค่า R_1 และ R_2 ที่มีค่าเท่ากันตามที่กำหนดในตารางที่ 1
- 1.2 วัดค่าแรงดันไฟฟ้ากระแสตรง ที่ขา V+ และ V- เทียบกับ กราวด์ พร้อมบันทึกผลลงในตารางที่ 1
- 1.3 เปลี่ยนเบอร์ไอซีออปแอมป์เป็นเบอร์ TL071 ตามตารางที่

1 และทำการทดลองซ้ำ

ตารางที่ 1

P . P .	LM	741	TL071		
R_1, R_2	$V_{_{\pm}}$	V_	$V_{_{\pm}}$	V_	
100 kΩ	-4.0 mV	-4.3 mV	-0.0 mV	-0.0mV	
1 $M\Omega$	-40, 3mV	-39.9mV	-0.0 mV	-0.0mV	
10 M Ω	-394,6 MV	-389.4 mV	-0,7 mV	-0.5 mV	

ข้อสังเกต ผลการทดลองได้มาจากผลคูณของความต้านทานกับกระแสไบอัสทางด้านอินพุต ซึ่ง น.ศ. ดูได้จาก Data Sheet ของออปแอมป์

2.วัดค่า Input Offset Voltage

- 2.1 ประกอบวงจรตามรูปที่ 5 โดยใช้ $R_{
 m f}=R_{
 m i}$ จำนวน 3 ค่า คือ 100 $k\Omega$, 1 $M\Omega$ และ 10 $M\Omega$ ตามลำดับ
- 2.2 วัดค่าแรงดันไฟตรง หรือค่าเฉลี่ยของแรงดันเอาต์พุตเทียบ กับกราวด์บันทึกผลการทดลอง
- 2.3 เปลี่ยนเบอร์ไอซีออปแอมป์เป็น TL071 และวัดค่าแรงดัน ไฟตรงหรือค่าเฉลี่ยของแรงดันเอาต์พุตเทียบกับกราวด์บันทึก ผลการทดลอง

บันทึกผลการทดลอง

เบอร์ LM741

ครั้งที่ 1 : ใช้ตัวต้านทานขนาด 100 ${
m k}\Omega$ และวัดแรงดันเอาต์พุตเท่ากับ ${
m 4.5~M}_{
m V}$

ครั้งที่ 2 : ใช้ตัวต้านทานขนาด 1 $\, {
m M}\Omega \,$ และวัดแรงดันเอาต์พุตเท่ากับ $\, \underline{\it 56\cdot 3M}_{
m V} \,$

ครั้งที่ 3 : ใช้ตัวต้านทานขนาด 10 $M\Omega$ และวัดแรงดันเอาต์พุตเท่ากับ 0.591 V เบอร์ TL071

ครั้งที่ 1 : ใช้ตัวต้านทานขนาด 100 ${
m k}\Omega$ และวัดแรงดันเอาต์พุตเท่ากับ $\frac{0\cdot 9}{100}$

ครั้งที่ 2 : ใช้ตัวต้านทานขนาด 1 $\mathbf{M}\Omega$ และวัดแรงดันเอาต์พุตเท่ากับ $\underline{1.0~ extstyle extstyl$

ครั้งที่ 3 : ใช้ตัวต้านทานขนาด 10 ${
m M}\Omega$ และวัดแรงดันเอาต์พุตเท่ากับ ${1 \over 1.3} {
m W}$

+V_{cc}

3. วัดค่า Slew Rate

- 3.1 ประกอบวงจรตามรูปที่ 6
- 3.2 ปรับเครื่องกำเนิดสัญญาณให้จ่ายสัญญาณ V_i ด้วยสี่เหลี่ยม (Square Wave) ดังนี้
- ก) ค่าความถี่ต่ำ (ระดับ 10 Hz ... 90 Hz) โดยเลือกความถี่ที่ ทำให้สัญญาณเอาต์พุตไม่ผิดเพี้ยน หรือเป็นสัญญาณสี่เหลี่ยม รูปร่างเหมือนเดิม
 - ข) ขนาดของแรงดันไม่สูงมาก สามารถอ่านค่าได้อย่างชัดเจน
- 3.3 ปรับขนาดของสัญญาณอินพุต (V_i) ไปจนกระทั่งได้สัญญาณ เอาต์พุตมีค่าประมาณ 20 V_{p-p} (Peak-to-peak)

3.5 บันทึกรูปคลื่นสัญญาณเอาต์พุตพร้อมบันทึกความสูงและความยาวฐานของสามเหลี่ยม เพื่อนำไปคำนวณค่าสลูเรต (dv/dt)

บันทึกผลการทดลอง

เบอร์ LM741

ใช้ตัวต้านทานขนาด 100 $\,\mathrm{k}\Omega$

ค่า
$$\Delta v = \frac{9}{28 \cdot 8} V$$

ค่า $\Delta t = \frac{98 \cdot 8}{4} \mu s$
ค่า Slew Rate = $\frac{0.313}{2}$

ใช้ตัวต้านทานขนาด 1 $M\Omega$ ค่า $\Delta v = \frac{10\cdot 20}{33\cdot 4}V$ ค่า $\Delta t = \underline{33\cdot 4}\mu s$ ค่า Slew Rate = $\underline{0\cdot 30}5$

Page **7** of **15**

ใช้ตัวต้านทานขนาด 10
$$M\Omega$$
 ค่า $\Delta v = 29.4$ V ค่า $\Delta t = 10.4$ μs ค่า Slew Rate = 10.293

เบอร์ TL071 ใช้ตัวต้านทานขนาด 100 $k\Omega$ ค่า $\Delta v = \frac{20.5}{\mu}V$ ค่า $\Delta t = \frac{4}{5}$ μs

ใช้ตัวต้านทานขนาด 1 $M\Omega$ ค่า $\Delta v = \frac{\lambda 0}{V} V$ ค่า $\Delta t = \frac{\mu s}{N}$ ค่า Slew Rate = $\frac{1.81}{N}$

ใช้ตัวต้านทานขนาด 10
$$M\Omega$$
 ค่า $\Delta v = \frac{1.19}{3.56} V$ ค่า $\Delta t = \underline{3.56} \mu s$ ค่า Slew Rate = $\underline{0.334}$ M $\%$

- 5. หาผลตอบสนองเชิงความถี่ (Frequency Response)
- 5.1 ใช้วงจรตามรูปที่ 7
- 5.2 เลือกค่า $R_{\rm f}$ ให้เท่ากับค่า R_{i} ในย่าน 1 $M\Omega$... 10 $M\Omega$ ($R_{\rm f}/R_{i}$ =1)
- 5.3 สัญญาณ V_i ให้ใช้สัญญาณรูปไซน์ (Sine Wave) จาก Function Generator ขนาด 4 $V_{p ext{-}p}$
- 5.4 ให้ตรวจสอบค่า Bandwidth ของ IC ในเอกสาร Data Sheet ด้วยว่ามีค่าสูงสุดเท่าใด
- 5.5 ทดลองเปลี่ยนความถี่ของสัญญาณ V_i แต่ไม่ให้เกินค่า Bandwidth ของ IC ในเอกสาร Data Sheet ในระหว่างนี้ให้คอย สังเกตขนาดของสัญญาณเอาต์พุต อัตราส่วนแรงดันจะค่อย ๆ ลดลงจนต่ำกว่าครึ่งหรือเหลือสัก 30% และรูปร่างต้องไม่ ผิดเพี้ยน บันทึกผลที่ได้ที่ช่องเติมคำใต้ตารางที่ 3 ที่ช่อง f [Hz]
- 5.6 ทดลองวัดค่าขนาดของสัญญาณอินพุตและสัญญาณเอาต์พุต อย่างละเอียดทุกค่าความถี่ (15 ค่า ตามที่ได้จากข้อ 5.5) แต่ บันทึกผลลงในตารางที่ 4
- 5.7 เปลี่ยนเบอร์ไอซีออปแอมป์เป็น TL071 ทำการทดลองซ้ำข้อ 5.1 ถึง 5.6 พล็อตกราฟการตอบสนองทางความถี่จากผล การทดลองของ TL071 และ LM741 (ให้ใช้สีต่างกัน) โดยให้ระบุตำแหน่งที่อัตราส่วนของแรงดัน ($\mathbf{V}_{\mathrm{o}}/\mathbf{V}_{\mathrm{i}}$) ลดลงเหลือ 70%

ตารางที่ 3 LM741 (ตัวต้านทานขนาด 10 $M\Omega$)

F [Hz]	$V_{i}(V)$	$V_{o}(V)$	V _o /V _i	$20\log(V_o/V_i)$
50	4.32	4.08	0.944	-0.501
100	4.32	4.08	0.944	-0.501
200	4.32	4.08	0.944	- 0.501
400	4.40	4.16	0.945	- 0.491
600	4.40	4.16	0.945	-0.491
800	4.40	4.16	0.945	-0.491
1 k	40.4	4.16	0.945	-0.491
2 k	4.40	4.10	0.945	-0.491
4 k	4.40	4.16	0.945	- 0.491
6 k	4.40	4.32	0.982	-0.158
8 k	4.40	4.32	0.982	-0.158
10 k	4.40	4.40	1.000	0.000
20 k	4.40	5,21	1,184	1, 467
40 k	4.40	5.28	1. 20	1.584
60 k	4.40	2.64	୦, ଚ	-4.437
80 k	4.40	1.60	0.364	-8.778
100 k	4.32	1,13	0.262	-11.654
200 k	4.40	0.44	0.10	- 20
400 k	4.40	0.208	0.047	- 26, 558
600 k	4.40	0.199	0-033	- 29. 630
800 k	4.40	0.152	0.035	- 29.119

ตารางที่ 4 TL071 (ตัวต้านทานขนาด 10 $M\Omega$)

F [Hz]	$V_{i}(V)$	$V_{o}(V)$	V _o /V _i	20log(V _o /V _i)
50	4.24	4.18	0.981	- 0.167
100	4.24	4.18	0.981	一0.16子
200	4.24	4.16	0.981	– 0. 16 ታ
400	4.24	4.16	0.981	-0.167
600	4.24	4.16	0.981	-0.167
800	4.24	416	0.981	-0.167
1 k	4.40	4.10	0.945	-0.491
2 k	4.40	4.16	0.945	- 0.491
4 k	4.49	4.16	0.943	-0.491
6 k	4.40	4.24	0.964	-0.318
8 k	4.40	432	0.981	-0.167
10 k	4.40	4.48	1.018	0.155
20 k	4.40	5.20	1,182	1,452
40 k	4.40	10. ك	2.318	1,532
60 k	4.32	4.32	1	Q
80 k	4.40	2.4	0. 545	-5.272
100 k	4.40	1.76	0.4	-7.959
200 k	4.40	0.76	0.173	-15.239
400 k	4.40	0.376	0.085	-21.412
600 k	4 ,49	0.264	0.06	-24.437
800 k	4.40	0.20	0.045	-26.930

ภาควิชาวิศวกรรมไฟฟ้าและคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ ปรับปรุง กันยายน 2563 ECE 010113021 Electronics Laboratory

ตอนที่ 2. ออปแอมป์ที่มีฟังก์ชันการทำงานแบบพิเศษ (Special Purpose Op-Amp)

ในปัจจุบัน วงจรรวม (IC) ประเภทออปแอมป์มีการใช้งานในกลุ่มอุตสาหกรรมจำนวนมาก เนื่องจาก IC สามารถออกแบบ ให้มีฟังก์ชันการทำงานพิเศษ (Special Purpose) ที่รองรับการทำงานเฉพาะทางที่มีวัตถุประสงค์การใช้งานที่แตกต่างกัน ดังนั้น ผู้ที่สนใจหรือวิศวกรผู้ทำหน้าที่ออกแบบวงจรจำเป็นจะต้องหมั่นติดตามข่าวสารในแวดวงอุตสาหกรรมรวมทั้งศึกษา เพิ่มเติมความรู้อยู่เสมอ

ออปแอมป์เบ[ื]อร์ LM311 หรือ LT1011 เป็นออปแอมป์ที่มีฟังก์ชันการทำงานแบบพิเศษ (Special Purpose) ซึ่งถูก ออกแบบมาให้ทำงานเป็นตัวเปรียบเทียบ (Comparator) ไม่เหมือนกับออปแอมป์เบอร์ LM741 หรือ TL071 ที่ออกแบบมา ให้ทำงานเป็นวงจรขยายสัญญาณ (Amplifier)

ดังนั้น การจัดวงจรจะไม่เหมือนทั่ว ๆ ไป ขอให้นักศึกษาระมัดระวังและศึกษาคู่มือการใช้งานของ IC ในเอกสาร Data Sheet ควบคู่ไปกับการทดลองจะช่วยให้เข้าใจได้ดียิ่งขึ้น

ก) คุณสมบัติของตัวเปรียบเทียบ (Comparator)

1. ให้นักศึกษาเขียนวงจรในรูปที่ 7 ด้วย LTspice IV โดยกำหนดค่าแหล่งจ่าย V_2 ให้เป็นสัญญาณรูปไซน์ ความถี่ 100 Hz มีขนาด 2 V_{p-p} และ DC Offset 2 V พร้อมให้นักศึกษาทำการจำลองการทำงานในโหมด Transient และบันทึกผลการ ทดลองค่าของ V_{out} , V_{in} และ V_{ref} ที่ได้ลงในกราฟ (ให้เขียนลงในรูปเดียวกันและแยกสีให้เห็นความแตกต่าง)

รูปที่ 7a) วงจร Comparator

ผลการทดลอง

จากกราฟผลการทดลอง

ถ้าระดับสัญญาณ V_{in} มีค่ามากกว่าสัญญาณ V_{ref} สัญญาณทาง เอาต์พุตมีค่า 155.33 MV

รูปที่ 7b) ตั้งค่าแหล่งจ่าย m V2

รูปที่ 7c) จำลองใน Transient Mode

ELECTRICAL & COMPUTER Engineering KMUTNB

การทดลองที่ 4 Operation Amplifier

Page **11** of **15**

2. ทดสอบวงจรจริงของวงจรเปรียบเทียบ ด้วยไอซีเบอร์ LM311 ต่อวงจรตามรูปที่ 8 ให้ใช้ไอซี Comparator เบอร์ LM311 ของบริษัท National Semiconductor ซึ่งมีคุณสมบัติเทียบเคียง กับไอซีเบอร์ LT1011 ของบริษัท Linear Technology ที่โคยจำลองใน LTspice IV

ผลการทดลอง

จากวงจรของ LM311

ขา Inverting Input ต่ออยู่กับสัญญาณ

ขา Non-inverting Input ต่ออยู่กับสัญญาณ

จากกราฟผลการทดลอง

ถ้าระดับสัญญาณ V_{in} มีค่ามากกว่าสัญญาณ V_{ref} สัญญาณทาง เอาต์พุตมีค่า V เทียบเท่ากับค่าลอจิก ถ้าเป็นสัญญาณแบบดิจิตอล

Page 12 of 15

ถ้าระดับสัญญาณ ${ m V_{in}}$ มีค่าน้อยกว่าสัญญาณ ${ m V_{ref}}$ สัญญาณทางเอาต์พุตมีค่า ${ m V}$
เทียบเท่ากับค่าลอจิก ถ้าเป็นสัญญาณแบบดิจิตอล
ตัดวงจรไม่ให้ $ {f R}_1 $ เชื่อมต่อกับขาเอาต์พุตและจำลองการทำงานซ้ำอีกครั้ง เกิดผลอย่างไรกับสัญญาณเอาต์พุต
ให้นักศึกษาเปิดเอกสาร Data Sheet ของไอซี LM311 หน้า 16 และให้ใช้ความรู้ทางด้านวงจรอิเล็กทรอนิกส์ทำการ
วิเคราะห์เหตุผลที่ผู้ผลิตไอซีได้ออกแบบให้วงจรทางด้านเอาต์พุต (ขา 7) ต้องมีลักษณะเช่นนั้น

ข) การประยุกต์ใช้ Comparator เพื่อสร้างวงจรกำเนิดสัญญาณพัลส์ (Pulse)

3. ให้นักศึกษาเขียนวงจรในรูปที่ 9 ด้วย LTspice IV และจำลองการทำงานในโหมด Transient พร้อมบันทึกผลการทดลอง ค่าของ V_{out} , V_{RC} , V_{ref} และกระแส I_{C_1} ที่ไหลผ่านตัวเก็บประจุ C1 ที่ได้ลงในกราฟผลการทดลอง (ให้เขียนลงในรูปเดียวกันและ<mark>แยกสีให้เห็นความแตกต่าง</mark>)

ช่วงเวลา t = 0.3 ms ถึง t = 0.5 ms เมื่อถึง t = 0.3 ms c เริ่ม กษุชรเจ แมะ V ref ชระสบ หราสิบ คณะม ช่วงเวลา t = 0.3 ms ถึง t = 0.5 ms เมื่อถึง t = 0.3 ms c เริ่ม กษุชรเจ แมะ V ref ชระสบ หราสิบ คณะม

ช่วงเวลา t = 0.5 ms ถึง t = 0.6 ms เมื่อ t=0.7m3 C เริ่มเก็บประจุลักครั้ง แต่ไม่ได้ Strat ที่ v = C

ช่วงเวลา t = 0.6 ms ถึง t = 0.8 ms เมื่อ t = 0.6 ms c พยปร. จุลักโด้บ และ Vref < Vro

เพราะเหตุใดความกว้างของสัญญาณพัลส์เอาต์พุตในช่วงเวลา t=0 ถึง $t=0.3~{
m ms}$ มีค่าไม่เท่ากับช่วงเวลาอื่น

เป็นช่องที่ C ฟังเร่วมเก็จประจิ ซึ่งให้เจลาในรทร ฤร์จ ประจิ หนุกที่ ช่าวอื่น นี้ เมื่อจาก เริ่มตนิตร็จที่ 🔿 4. ให้นักศึกษาทดสอบวงจรจริงของวงจรกำเนิดสัญญาณพัลส์ (Pulse) ด้วยไอซีเบอร์ LM311 โดยทำการต่อวงจรทดลองตาม รูปที่ 10 ให้ใช้ไอซี Comparator เบอร์ LM311 บันทึกรูปคลื่น V_{out}, V_{RC}, V_{ref} ลงในกราฟ

 $R_1 = 1k\Omega$ $R_2 = 10k\Omega$ $R_3 = 20k\Omega$ $R_4 = 10k\Omega$ $R_5 = 39k\Omega$ $C_1 = 0.047\mu F$

Page **14** of **15**

กราฟผลการทดลอง

จากกราฟผลการทดลอง สัญญาณพัลส์ $oldsymbol{V}_{\mathrm{out}}$ มั
ค่าความกว้างคาบ (Period) = ms ค่า Duty Cycle (ค่า % ของช่วงที่เป็น '1' ต่อเวลาทั้งคาบ) = %
ค่า Duty Cycle (ค่า % ของช่วงที่เป็น '1' ต่อเวลาทั้งคาบ) =%
จากวงจรในรูปที่ 6 ถ้าต้องการปรับเปลี่ยนค่าความกว้างคาบของรูปพัลส์ $ m V_{out}$ จะต้องทำการปรับเปลี่ยนค่าอุปกรณ์ตัวใด
เพราะเหตุใด
ถ้าต้องการปรับเปลี่ยนค่า Duty Cycle ของรูปพัลส์ $ m V_{out}$ จะต้องทำการปรับเปลี่ยนค่าอุปกรณ์ตัวใด
เพราะเหตุใด
ลายเซ็นอาจารย์ผู้ควบคม

Page **15** of **15**

คำถามท้ายการทดลอง
1. ให้เปรียบเทียบ และวิเคราะห์สาเหตุวิจารณ์ผลการทดลอง ค่าจากผลการทดลองและค่าที่ได้จาก Data Sheet ในด้าน
คุณสมบัติของ Input Bias Current, Input Offset Voltage, Slew Rate และ Bandwidth
2 ให้นักศึกษาสรุปความรู้ที่ได้จากการทดลองนี้
3. จากการทดลองในตอนที่ 1 ให้นักศึกษาอธิบายสาเหตุที่ต้องกำหนดค่าในการจำลอง LTspice เป็น"start external D0 power supply voltages at 0 V"