Answers: The scalar product

Ritwik Anand

Summary

Answers to questions relating to the guide on the scalar product.

These are the answers to Questions: The scalar product.

Please attempt the questions before reading these answers!

Q1

1.1. For
$$\mathbf{a} = \begin{bmatrix} 6 \\ 3 \\ 4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$, the scalar product is $\mathbf{a} \cdot \mathbf{b} = 26$.

1.2. For
$$\mathbf{a} = \begin{bmatrix} 10 \\ -7 \\ 4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 3 \\ -5 \\ 13 \end{bmatrix}$, the scalar product is $\mathbf{a} \cdot \mathbf{b} = 117$.

1.3. For
$$\mathbf{a} = \begin{bmatrix} -44 \\ -12 \\ 3 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 61 \\ -25 \\ 93 \end{bmatrix}$, the scalar product is $\mathbf{a} \cdot \mathbf{b} = -2237$.

1.4. For
$$\mathbf{a} = \begin{bmatrix} 54 \\ 38 \\ 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 32 \\ -55 \\ 13 \end{bmatrix}$, the scalar product is $\mathbf{a} \cdot \mathbf{b} = -362$.

1.5. For
$$\mathbf{a} = 2\mathbf{i} + 7\mathbf{j} + \mathbf{k}$$
 and $\mathbf{b} = 6\mathbf{i} + 4\mathbf{j} + 8\mathbf{k}$, the scalar product is $\mathbf{a} \cdot \mathbf{b} = 48$.

1.6. For
$$\mathbf{a} = -3\mathbf{i} + 10\mathbf{j} - 8\mathbf{k}$$
 and $\mathbf{b} = \mathbf{i} - 12\mathbf{j} + 9\mathbf{k}$, the scalar product is $\mathbf{a} \cdot \mathbf{b} = -195$.

1.7. For
$$\mathbf{a} = 17\mathbf{j} + 23\mathbf{k}$$
 and $\mathbf{b} = 6\mathbf{i} - 23\mathbf{j} - 8\mathbf{k}$, the scalar product is $\mathbf{a} \cdot \mathbf{b} = -575$.

1.8. For
$$\mathbf{a} = \mathbf{i}$$
 and $\mathbf{b} = \mathbf{j}$, the scalar product is $\mathbf{a} \cdot \mathbf{b} = 0$.

As the scalar product of $\mathbf{a}=\mathbf{i}$ and $\mathbf{b}=\mathbf{j}$ is 0, they are perpendicular to each other. This is true for any combination of any distinct pair of \mathbf{i} , \mathbf{j} , and \mathbf{k} . However, since any vector is parallel to itself, it follows that $\mathbf{i} \cdot \mathbf{i} = |\mathbf{i}| |\mathbf{i}| = |1| |1| = 1$; similar results hold for $\mathbf{j} \cdot \mathbf{j}$ and $\mathbf{k} \cdot \mathbf{k}$.

1

Q2

2.1. For
$$\mathbf{a}=\begin{bmatrix} -5\\2\\-3 \end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix} 2\\-2\\11 \end{bmatrix}$, the angle θ is 132.2° .

2.2. For
$$\mathbf{a} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, the angle θ is 70.5° .

2.3. For
$$\mathbf{a} = \begin{bmatrix} -8 \\ 1 \\ -4 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} -1 \\ -5 \\ 7 \end{bmatrix}$, the angle θ is 108.7° .

2.4. For
$$\mathbf{a}=\begin{bmatrix}1.2\\-1.4\\-3.1\end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix}-5.4\\9.7\\-7.5\end{bmatrix}$, the angle θ is 86.2° .

2.5. For
$${\bf a}=\begin{bmatrix} 45\\ 65\\ 54 \end{bmatrix}$$
 and ${\bf b}=\begin{bmatrix} -19\\ -58\\ 71 \end{bmatrix}$, the angle θ is 95.1° .

2.6. For
$$\mathbf{a} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$, the angle θ is 90° .

2.7. For
$$\mathbf{a}=\begin{bmatrix} -1\\ -2\\ 3 \end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix} 4\\ -5\\ 6 \end{bmatrix}$, the angle θ is 43.0° .

2.8. For
$$\mathbf{a}=\begin{bmatrix} -17\\3\\8 \end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix} 12\\-19\\-16 \end{bmatrix}$, the angle θ is 137.8° .

Q3

3.1. For
$$\mathbf{a} = \begin{bmatrix} 2 \\ 4 \\ 7 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ \lambda \\ -2 \end{bmatrix}$ to be perpendicular, then $\lambda = 3$.

3.2. For
$$\mathbf{a} = \begin{bmatrix} 0 \\ 1 \\ \lambda \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ to be perpendicular, then $\lambda = -\frac{2}{3}$.

3.3. For
$$\mathbf{a} = \begin{bmatrix} 9 \\ -2 \\ 11 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} \lambda \\ -\lambda \\ 3 \end{bmatrix}$ to be perpendicular, then $\lambda = -3$.

3.4. For
$$\mathbf{a}=\begin{bmatrix}\lambda\\6\\1\end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix}\lambda\\\lambda\\8\end{bmatrix}$ to be perpendicular, then $\lambda=-2$ or $\lambda=-4$.

3.5. For
$$\mathbf{a}=\begin{bmatrix} -2\lambda^2\\4\\14 \end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix} 3\\2\lambda\\1 \end{bmatrix}$ to be perpendicular, then $\lambda=\frac{7}{3}$ or $\lambda=-1$.

3.6. For
$$\mathbf{a} = \begin{bmatrix} -5 \\ 9 \\ 2\lambda \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} \lambda \\ -2 \\ \lambda \end{bmatrix}$ to be perpendicular, then $\lambda = \frac{9}{2}$ or $\lambda = -2$.

3.7. For
$$\mathbf{a} = \begin{bmatrix} -7 \\ 4 \\ 2\lambda \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 2\lambda \\ 1 \\ 6\lambda \end{bmatrix}$ to be perpendicular, then $\lambda = \frac{2}{3}$ or $\lambda = \frac{1}{2}$.

3.8. For
$$\mathbf{a}=\begin{bmatrix} -25\\ -1\lambda^2\\ -2 \end{bmatrix}$$
 and $\mathbf{b}=\begin{bmatrix} 3\lambda\\ -11\\ 7 \end{bmatrix}$ to be perpendicular, then $\lambda=7$ or $\lambda=-\frac{2}{11}$.

Version history and licensing

v1.0: initial version created 08/23 by Ritwik Anand as part of a University of St Andrews STEP project.

• v1.1: edited 05/24 by tdhc.

This work is licensed under CC BY-NC-SA 4.0.