MACHINE LEARNING INSIGHTS FOR PREDICTING ORAL DRUGS PROPERTIES

LUCIANA OLIVEIRA & MARÍA URIBURU GRAY 12/12/2024

AGENDA

- MAIN OBJECTIVE
- DATASET
- EXPLORATORY DATA ANALYSIS
- MACHINE LEARNING ALGORITHMS
- CONCLUSIONS

INTRODUCTION

Drug Discovery – Traditional Process

7 phases

~ 10 years

~ \$2.6 billion

INTRODUCTION

Machine Learning in Drug Discovery

The Lipinski's Rule

to assess whether a molecule has suitable chemical properties for oral bioavailability.

Molecular weight

Hydrophobicity or Lipophilia

H-Bond donors

X Log P

Mannhold Log P

H-Bond acceptors

INTRODUCTION

Machine Learning in Drug Discovery

Table 1
Summary of supervised ML algorithms used for Molecular Property and Activity Prediction.

Reference	Model	Scope	Performance	Database
Tayyebi et al. (2023)	RF and Shapley Additive exPlanations (SHAP)	Predict chemical solubility	Acc = 88%	Open databases: Vermeire, Boobier and Delaney.
Marchetti et al. (2021)	LR, RF, SVM	Classify molecular ligands	Highest Acc = 89%	Open database: Protein Data Bank
Zhang et al. (2019)	DT, k-NN, SVM, RF, AdaBoost, GB, XGBoost, XT	Identify active or inactive compound property	Highest Acc = 89.5%	Open database: Crystal Protein Database
Feinberg et al. (2018)	GNN	Predict protein-ligand binding affinity	AUC = 85.7%	Open databases: QM8 and GDB-8
Wang et al. (2022)	GNN	Predict several molecular properties	AUC = 92.8%	Unknown
Lane et al. (2020)	RF, k-NN, SVM, NB, Adaboost, DT, RNN	Predict molecular properties	Highest Acc = 84.1%	Open database: ChEMBL
Ashraf et al. (2023)	XGBoost and SHAP	Predict bioactivity	Acc = 93%	Open database: ChEMBL and PubChem
Wallach et al. (2015)	CNN	Predict bioactivity of small molecules	AUC = 90%	Open databases: Directory of Useful Decoys Enhanced (DUDE) benchmark, ChEMBL-20 PMD, etc
Aly and Alotaibi (2023)	RNN	Predict modified gedunin	Acc = 98.68%	Open databases: CHEMBL and Drug Bank
Ahmad et al. (2024)	GNN	Predicting silico solubility	Acc = 0.79%	Open databases: AqSolDB, Lovric and etc

MAIN OBJECTIVE

Develop a **predictive model** capable of evaluating whether a **molecular compound** has **potential** for **oral drug use**.

DATASET

Wikipedia Molecules Properties Dataset

Molecular Properties Dataset from Wikipedia

[34 columns x 15166 rows]

This dataset is a collection of **molecular properties from various chemical substances.** Each entry represents a unique molecule and contains detailed information about its **chemical structure and characteristics**, including:

- Molecular Structure: Textual representation.
- Physicochemical Properties: Molecular weight, hydrophobicity (LogP or Mannhold LogP), polar surface area, etc.
- Structural Properties: Number of aromatic bonds, pi-chain length, etc.
- Atomic Properties: Polarizability of atoms and bonds.
- Additional Information: Molecular formula, formal charge, etc.

4			
	Column	Non Null Count	Dtype
0	index	15166	int64
1	row ID	15166	object
2	Molecule	15166	object
3	Molecule name	15166	object
4	Mannhold LogP	15166	float64
5	Atomic Polarizabilities	15166	object
6	Aromatic Atoms Count	15166	int64
7	Aromatic Bonds Count	15166	int64
8	Element Count	15166	int64
9	Bond Polarizabilities	15166	object
10	Bond Count	15166	int64
11	Eccentric Connectivity Index	15166	float64
12	Fragment Complexity	15166	float64
13	VABC Volume Descriptor	15166	object
14	Hydrogen Bond Acceptors	15166	int64
15	Hydrogen Bond Donors	15166	int64
16	Largest Chain	15166	int64
17	Largest Pi Chain	15166	int64
18	Petitjean Number	15166	float64
19	Rotatable Bonds Count	15166	int64
20	Lipinski's Rule of Five	15166	int64
21	Topological Polar Surface Area Magnitude	15166	object
22	Vertex adjacency information	15166	float64
23	Molecular Weight	15166	object
24	XLogP	15166	float64
25	Zagreb Index	15166	int64
26	Molecular Formula	15166	object
27	Formal Charge	15166	int64
28	Formal Charge (pos)	15166	int64
29	Formal Charge (neg)	15166	int64
30	Heavy Atoms Count	15166	int64
31	Molar Mass	15166	object
32	SP3 Character	15166	float64
33	Rotatable Bonds Count (non-terminal)	15166	int64

DATASET

Cleaning data process

Lower(), replace(), rename()

To_numeric()

Isnull().sum(), duplicated()

₱ Drop rows containing null values:

['molar_mass', 'tpsa', 'bond_polarizabilities, 'molecular_weight']

₱ Drop columns:

['vabc_volume_descriptor', 'row_id', 'molecule_name']

Column	Null Count	%
vabc_volume_descriptor	1559	10.28%
molar_mass	31	0.20%
topological_polar_surface_area	7	0.05%
bond_polarizabilities	3	0.02%
molecular_weight	3	0.02%
index	0	0.00%
row_id	0	0.00%
	•••	

Correlation map

Method: Spearman

Molecules that meet Lipinski's criteria

Hydrophobicity determination

X log P vs Mannhold log P

Molecular weight distribution

 $C_{216}H_{228}F_{72}N_{12}O_{30}P_{12}$, Mw = 5209.23 Da

- Many outliers observed in the boxplot.
- Those outliers correspond to large-sized molecules.
- RDKit Python Library for molecule representation.

Boxplots

Many outliers observed in the boxplot corresponding to large-sized molecules.

PCA analysis

StandardScale

was applied before PCA analysis

Mahalanobis distance: Compute how far each point is from the mean in PCA space,

Set a threshold using **Chi-square** distribution (confidence level = 95%)

MACHINE LEARNING ALGORITHMS

Process

- •26 numeric columns
- Data normalisation
 - RobustScaler

Data preprocessing

Splitting data

- •Train size 75 %
- •Test size 25 %
- •Target:
 - X log P
 - Mannhold log P

- Random Forest Regressor
- Support Vector Regressor
- AdaBoost Regressor
- Multi-Layer Perceptron Regressor
- GridSearch & Cross validation (k-fold)

Model training & Hyperparameter optimisation

Metric evaluation

- •Mean Squared Error (MSE)
- Mean Absolute Error (MAE)
- Mean Absolute Percentage Error (MAPE)
- Root Mean Squared Error (RMSE)
- R² Score (R²)

Random Forest Regressor

- Combines decision trees to reduce variance.
- Handles nonlinear data well.
- Less effective for high-dimensional data.

Support Vector Regressor

- Uses a **hyperplane** to minimize errors.
- Ideal for small, well-distributed datasets.
- Sensitive to scaling; computationally expensive for large datasets.

AdaBoost Regressor

- Combines weak predictors, focusing on errors.
- Effective with moderate noise.
- Prone to overfitting with outliers.

Multi-Layer Perceptron

- Artificial neural network for nonlinear data.
- Requires proper setup and large datasets.
- Susceptible to overfitting if not well-tuned.

MACHINE LEARNING ALGORITHMS

Results for Target: X log P - True vs Predicted values

MACHINE LEARNING ALGORITHMS

Results for Target: Mannhold X log P - True vs Predicted values

MACHINE LEARNING ALGORITHMS

Model fitting evaluation

Target: X log P

FUTURE WORK

Improvements

LazyRegressor is a Python library that quickly compares the performance of multiple regression models on a dataset. It provides metrics like R², RMSE, and execution time for various algorithms.

SVR and MLP may be optimised. Other models can be applied.

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
ExtraTreesRegressor	0.91	0.91	0.99	13.36
MLPRegressor	0.89	0.89	1.07	7.54
${\it HistGradient Boosting Regressor}$	0.89	0.89	1.09	1.52
LGBMRegressor	0.89	0.89	1.09	0.47
XGBRegressor	0.87	0.87	1.19	0.69
RandomForestRegressor	0.85	0.85	1.24	19.32
BaggingRegressor	0.82	0.82	1.37	2.62
GradientBoostingRegressor	0.82	0.82	1.38	7.50
KNeighborsRegressor	0.81	0.81	1.41	0.51
HuberRegressor	0.81	0.81	1.41	0.39
LinearSVR	0.81	0.81	1.41	1.39
LinearRegression	0.80	0.80	1.46	0.04
Transformed Target Regressor	0.80	0.80	1.46	0.04
LassoLarsIC	0.80	0.80	1.46	0.06
Bayesian Ridge	0.80	0.80	1.46	0.12
RidgeCV	0.80	0.80	1.46	0.07
Ridge	0.79	0.80	1.47	0.03
SVR	0.79	0.80	1.47	15.58
ElasticNetCV	0.79	0.79	1.47	40.22
NuSVR	0.79	0.79	1.48	11.32

CONCLUSIONS

It was possible to use machine learning algorithms to predict two important parameters used for drug discovery (X log P and Mannhold log P).

★ EDA was essential and showed
 the needed of RobustScale
 standardization before applying
 the models.

SVR and MLP were not suitable models for this dataset being also more complex to implement and optimize.

Pandom Forest and AdaBoost algorithm showed the best model performances with low errors and good R² values.

REFERENCES

- Analytics+. (n.d.), https://analyticsplus.org/glossary/
- Askr, H., Elgeldawi, E., Aboul Ella, H., Elshaier, Y. A. M. M., Gomaa, M. M., & Hassanien, A. E. (2023). Deep learning in drug discovery: an integrative review and future challenges. *Artificial Intelligence Review*, 56(7), 5975–6037. https://doi.org/10.1007/s10462-022-10306-1
- Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Artificial intelligence to deep learning: machine intelligence approach for drug discovery. *Molecular Diversity*, 25(3), 1315–1360. https://doi.org/10.1007/s11030-021-10217-3
- Lipinski, C. A., Dominy, B. W., & Feeney, P. J. (1997). drug delivery reviews Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. In Advanced Drug Delivery Reviews (Vol. 23).
- Obaido, G., Mienye, I. D., Egbelowo, O. F., Emmanuel, I. D., Ogunleye, A., Ogbuokiri, B., Mienye, P., & Aruleba, K. (2024).
 Supervised machine learning in drug discovery and development: Algorithms, applications, challenges, and prospects.
 Machine Learning with Applications, 17, 100576. https://doi.org/10.1016/j.mlwa.2024.100576
- Shin, K. K., Ong, L., Kayne, K. M., & Sow, W. (n.d.). CM4044 Project 2 LogP Prediction.
- Sun, D., Gao, W., Hu, H., & Zhou, S. (2022). Why 90% of clinical drug development fails and how to improve it? In Acta Pharmaceutica Sinica B (Vol. 12, Issue 7, pp. 3049–3062). Chinese Academy of Medical Sciences. https://doi.org/10.1016/j.apsb.2022.02.002

LUCIANA OLIVEIRA & MARÍA URIBURU GRAY DSPP02 – CODEOP Extra slides

MACHINE LEARNING ALGORITHMS

X log P

	Model	MSE	MAE	MAPE	RMSE	R ²
	RF	1.47	0.64	25700739400780	1.21	0.8608
	АВ	1.93	1.05	91363261747935	1.39	0.8174
	SVR	10.36	2.23	154865117739752	3.22	0.0193
1	MLP	10.39	2.26	164907121406810	1.07	0.0168

Mannhold log P

Model	MSE	MAE	MAPE	RMSE	R ²
RF	0.06	0.11	0.07	0.24	0.96
SVR	1.20	0.83	0.60	1.10	0.0390
АВ	0.11	0.24	0.17	0.33	0.9109
MLP	1.19	0.83	0.65	1.095	0.0402