

INTRODUCCIÓN A

Agenda

Parte III (5 de Noviembre)

Diseño PCB para RF.

- ► Tipos de conexiones en un PCB
- ▶ Pistas de RF Líneas de Transmisión
- ▶ Tipos de pistas de RF (Microstrip, CPWG, Stripline, etc)
- ▶ Cálculo de CPWG
- ▶ Recomendaciones diseño de PCB's
- ▶ Plugins RF Tools
- ▶ Creando pistas de RF con KICAD
- Demo
- ▶ Ejemplos

Tipos de Conexiones en un PCB

Tipos de conexiones en el LNA Doble con Diplexor para recepción con SDR

Tipos de Conexiones en un PCB

 Cada tipo de conexión tiene unos requerimientos que hay que considerar en el diseño de un PCB

Pistas de Alimentación

- ► Soportar la Intensidad que va a circular por ellas
- ► Evitar que se induzcan ruidos de circuitos cercanos

▶ Pistas de Control/Digitales

- ▶ Evitar comunicación cruzada
- ▶ Necesitan impedancia controlada (Datos USB)

Pistas de RF

- Mantenimiento de la Impedancia
- ▶ Mínimas pérdidas posibles

 Señales de RF son muy sensibles al ruido, reflexiones, pérdidas debidas al sustrato empleado y el método de fabricación.

- Es necesario mantener las impedancias adaptadas para minimizar pérdidas por retorno / VSWR
- Las pistas de RF son "líneas de transmisión" con una impedancia Z_0 que depende de:
 - Constante Dieléctrica del sustrato (FR-4: ϵ_r =4,5 4,6 / Rogers 4350B: ϵ_r =3,66)
 - Altura desde el plano de tierra (H) / distancia al plano de tierra (G)
 - Ancho y grosor de la pista (W y T). Acabado (Sn, ENIG, Oro)
 - Tipo de estructura

Coupled Microstrip Line

Microstrip

$$\varepsilon_{\text{eff}} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[\frac{1}{\sqrt{1 + \frac{12h}{w}}} + 0.04 \left(1 - \frac{w}{h}\right)^2 \right] \quad \text{if} \quad \frac{w}{h} < 1$$

$$\frac{\text{otherwise}}{\varepsilon_{\text{eff}}} = \left[\frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[\frac{1}{\sqrt{1 + \frac{12h}{w}}} \right] \right]$$

$$Z_0 = \frac{60}{\sqrt{\varepsilon_{\text{eff}}}} \bullet \ln \left(\frac{8h}{w} + \frac{w}{4h} \right) \quad \text{if} \quad \frac{w}{h} < 1$$

otherwise

$$Z_0 = \frac{120\pi}{\sqrt{\varepsilon_{\text{eff}}}} \bullet \frac{1}{\left(\frac{w}{h} + 1.393 + 0.677 \bullet \ln\left(\frac{w}{h} + 1.444\right)\right)}$$

Microstrip

CPWG w/G (Guía Coplanar con Plano de tierra)

Longitud crítica

$$L_{critical} = \frac{c}{f} \bullet \frac{1}{\sqrt{\varepsilon_{\textit{eff}}}} \bullet \frac{1}{16}$$

PCB FR4 - 2 Layers 0,8mm					
MHz	Eff	Lcrit (mm)	Z		
70	2,555	167,5	50,14		
145	2,555	80,8	50,14		
435	2,555	27,0	50,14		
1296	2,556	9,0	50,13		
2320	2,557	5,1	50,12		
2400	2,557	4,9	50,12		
5650	2,565	2,1	50,04		

- Calculadores de líneas de RF en PCB's
 - On line: Spok Electronics https://spok.ca/index.php/resources/tools
 - Programas Gratuitos: Kicad, Qucs, Saturn PCB
 - \triangleright Cálculos similares pero no exactamente Iguales (+/- 2% de diferencia en Z_0)
- Microstrip / CPWG
 - Microstrip en líneas de RF en transmisión. Adaptación de impedancias.
 - CPWG por la necesidad de componentes entre la línea de RF y GND (shunt)
 - ► Considerar el tamaño de los componentes a emplear

- ldentificar proveedor. Múltiples opciones económicas en la actualidad
- Datos Fabricante

Features	Capability	Notes	Patterns
Layer count	1,2,4,6 layers	The number of copper layers in the board.	
Controlled Impedance	4/6 layer, default layer stack-up		
Material	FR-4	FR-4 Standard Tg 130-140/ Tg 155	FR.4 Copper
Dielectric constant	4.5(double-side PCB)	7628 structure 4.6 2313 structure 4.05 2116 structure 4.25	

Layer Impedance Control Stackup						
Thickness						
0.8mm 1.0mm 1.2mm 1.6mm 2.0mm Current layer:4-layer						
a) JLC7628 Stackup:						
Layer	Material Type	Thickness				
Top Layer1	Copper	0.035 mm				
Prepreg	7628*1	0.2 mm				
Inner Layer2	Copper	0.0175 mm				
Core	Core	0.265 mm	0.3 n			
Inner Layer3	Copper	0.0175 mm				
Prepreg	7628*1	0.2 mm				
Bottom Layer4	Copper	0.035 mm				

Especificaciones	FR4 - 2 Capas	FR4 – 4 Capas
Grosor Total	0.8 mm	0.8 mm
Const. Dieléctrica (ε _r)	4,5	4,6 (4,3)
Grosor Cobre (h)	35 µm (1oz)	35 µm (1 oz)
Tangent Loss (pérdidas)	0,022	0,022
Grosor sustrato	0,73 mm	0,18 mm

Calculadora de Kicad

Recomendaciones Diseño PCB

- Los circuitos Analógicos / Digitales / RF deben mantenerse separados
- Organizar los circuitos de RF por funciones (Amp, Osciladores, Filtros, Mezcladores, etc.
- Colocar los componentes que trabajen a mayor frecuencia lo más cerca posible de los conectores
- Evitar poner la entrada y la salida de amplificadores en el mismo lado del PCB, siempre en lados opuestos
- Pistas de RF lo mas cortas posibles y rectas. Evitar ángulos rectos y cambios bruscos de ancho
- IMPORTANTE Conexión Pista de RF a Conectores
- Componentes en "shunt" entre RF y GND, el pad del lado de RF encima de la pista. Evitar "T"
- La siguiente capa bajo las pistas de RF siempre GND
- Evitar cambios de capa en pistas de RF mediante vías. Añade una Inductancia en serie
- Pistas de control digital separadas de las de RF, a ser posible en otra capa y separadas por GND
- Uso intensivo de "vías" para conectar los laterales del CPWG w/G a GND y en las áreas con mucha GND expuesta
- Mas detalles en: https://www.qsl.net/va3iul/Microstrip_Stripline_CPW_Design/Microstrip_Stripline_and_CPW_Design.pdf

Recomendaciones Diseño PCB

Ángulos rectos

Conexiones en T

Cambios de anchura. Transformadores de Impedancia

Plugins RF para Kicad

RF Tools https://github.com/easyw/RF-tools-KiCAD

Plugins RF para Kicad

RF Tools https://github.com/easyw/RF-tools-KiCAD

Plugins RF para Kicad

RF Tools https://github.com/easyw/RF-tools-KiCAD

Proceso pistas RF tipo CPWG w/G

- Alinear las huellas de los componentes que van en las pistas de RF
 - Mover Componente / Mover PAD del componente
- Conectar los componentes con pistas del ancho identificado para Z_0 en la capa superior
- Emplear Tappers para cambios de anchura y Mittered Bend para ángulos rectos
 - **IMPORTANTE:** Los Footprints creados con Tapper, Mittered Bend, al insertarse en PCB no tienen NET asignado. Hay que editarlo e incluir el que corresponda
- En las pistas rectas, añadir un área de protección (Keep out) 🧖 en la capa de RF para lograr la distancia entre pista y GND
 - ▶ Ancho del Keep-out área = Ancho Pista + 2 x Gap.
 - Origen de la Rejilla al centro de la pista de RF y User Grid
- Añadir zona de relleno en la capa de RF 🏻 🔄
- Añadir línea de Solder Mask en capa RF 📑
 - Ancho = Keep Out Area
- Añadir "costuras" con vías 🛭 😪

User grid: 0.2500 mm (9.84 mils)

Net: GND Clearance: 0

Pad connection: Solid

Ejemplos

LNA 1,296 MHz/2,4 GHz 4 Capas 1,6mm ENIG

Ejemplos

Rosenberger 32K243-40ML5

Preguntas

Enlaces interesantes

Kicad https://www.kicad.org/

Draw.io https://www.diagrams.net/

Librerías de Símbolos y huellas https://www.snapeda.com/

Tutoriales de Kicad https://www.youtube.com/user/contextualelectronic/playlists

Librerías 3D https://www.3dcontentcentral.es/

Cajas metálicas http://www.schubert-gehaeuse.de/weissblechgehaeuse.html

Kicad RF Tools: https://github.com/easyw/RF-tools-KiCAD

Información PCB's de RF

- Videos y libros de Rick Hartley
- https://www.qsl.net/va3iul/Microstrip Stripline CPW Design/Microstrip Stripline and CPW Design.pdf
- https://www.jlab.org/accel/eecad/pdf/050rfdesign.pdf
- https://www.protoexpress.com/pcb/resources/pcb-design-guides/
- ► Charla Micromeet 2020: https://www.youtube.com/watch?v=80r13grW34c
- ► Github EA4BFK: https://github.com/EA4BFK

