

# Robust Neural Machine Translation with Doubly Adversarial Inputs

Cheng et al.

#### JungsooPark

Data Mining & Information Systems Lab.

Department of Computer Science and Engineering,
College of Informatics, Korea University

## Introduction



#### Synthetic and Natural Noise Both Break NMT

Belinkov et al. (ICLR 2018)



Current NMT models suffer from both synthetic and natural noise

## Introduction



#### MTNT: A Testbed for Machine Translation of Noisy Text

Michel et al. (EMNLP 2018)



A Surge of Interest Towards Building Robust NMT Models to Noisy Text

## Related Work



#### Research Trend



- Domain Adaptation
- Designing Synthetic and Natural Noise



Adversarial Training

## Related Work



#### Effective Adversarial Regularization for NMT

Sato et al. (ACL, 2018)



## Inject Adversarial Perturbation(Noise) in Embedding Space

$$m{e}_i' = m{E}m{x}_i + \hat{m{r}}_i.$$
  $\hat{m{r}} = \operatorname*{argmax}_{m{r},||m{r}|| \leq \epsilon} \Big\{ \ell(m{X},m{r},m{Y},m{\Theta}) \Big\},$ 



#### AdvGen (Encoder)



adversarial one.



### AdvGen (Decoder)





## AdvGen (Encoder)

#### Adversarial Objective

$$\left\{\mathbf{x}' \mid \mathcal{R}(\mathbf{x}', \mathbf{x}) \leq \epsilon, \underset{\mathbf{x}'}{\operatorname{argmax}} - \log P(\mathbf{y} | \mathbf{x}'; \boldsymbol{\theta}_{mt})\right\}$$

#### Replacing

$$x'_i = \underset{x \in \mathcal{V}_x}{\operatorname{argmax}} \sin(e(x) - e(x_i), \mathbf{g}_{x_i})$$
  
 $\mathbf{g}_{x_i} = \nabla_{e(x_i)} - \log P(\mathbf{y}|\mathbf{x}; \boldsymbol{\theta})$ 

#### **Candidate Minimization**

$$Q_{src}(x_i, \mathbf{x}) = P_{lm}(x | \mathbf{x}_{< i}, \mathbf{x}_{> i}; \boldsymbol{\theta}_{lm}^x)$$
$$\mathcal{V}_{x_i} = top\_n(Q(x_i, \mathbf{x}))$$



## AdvGen (Decoder)

Adversarial Objective

$$\mathbf{z}' = AdvGen(\mathbf{z}, Q_{trg}, D_{trg}, -\log P(\mathbf{y}|\mathbf{x}'))$$

**Substitution Candidate Reduction** 

$$Q_{trg}(z_i, \mathbf{z}) = \lambda P(z | \mathbf{z}_{i}; \boldsymbol{\theta}_{lm}^y) + (1 - \lambda) P(z | \mathbf{z}_{$$

Word Selection Distribution

$$P(j) = \frac{\sum_{i} \mathcal{M}_{ij} \delta(x_i, x_i')}{\sum_{k} \sum_{i} \mathcal{M}_{ik} \delta(x_i, x_i')}, j \in \{1, ..., |\mathbf{y}|\}$$

# Experiment



| Method                   | Model                 | MT06  | MT02  | MT03  | MT04  | MT05  | MT08  |
|--------------------------|-----------------------|-------|-------|-------|-------|-------|-------|
| Vaswani et al. (2017)    | TransBase             | 44.59 | 44.82 | 43.68 | 45.60 | 44.57 | 35.07 |
| Miyato et al. (2017)     | TransBase             | 45.11 | 45.95 | 44.68 | 45.99 | 45.32 | 35.84 |
| Sennrich et al. (2016a)  | TransBase             | 44.96 | 46.03 | 44.81 | 46.01 | 45.69 | 35.32 |
| Wang et al. (2018)       | TransBase             | 45.47 | 46.31 | 45.30 | 46.45 | 45.62 | 35.66 |
| Cheng et al. (2018)      | $RNMT_{lex}$ .        | 43.57 | 44.82 | 42.95 | 45.05 | 43.45 | 34.85 |
|                          | $RNMT_{feat.}$        | 44.44 | 46.10 | 44.07 | 45.61 | 44.06 | 34.94 |
| Cheng et al. (2018)      | TransBase $f_{eat}$ . | 45.37 | 46.16 | 44.41 | 46.32 | 45.30 | 35.85 |
|                          | TransBase $_{lex}$ .  | 45.78 | 45.96 | 45.51 | 46.49 | 45.73 | 36.08 |
| Sennrich et al. (2016b)* | TransBase             | 46.39 | 47.31 | 47.10 | 47.81 | 45.69 | 36.43 |
| Ours                     | TransBase             | 46.95 | 47.06 | 46.48 | 47.39 | 46.58 | 37.38 |
| Ours + BackTranslation*  | TransBase             | 47.74 | 48.13 | 47.83 | 49.13 | 49.04 | 38.61 |

**Evaluation on NIST Test Dataset** 

# Experiment



| Method         | 0.00  | 0.05  | 0.10  | 0.15  |
|----------------|-------|-------|-------|-------|
| Vaswani et al. | 44.59 | 41.54 | 38.84 | 35.71 |
| Miyato et al.  | 45.11 | 42.11 | 39.39 | 36.44 |
| Cheng et al.   | 45.78 | 42.90 | 40.58 | 38.46 |
| Ours           | 46.95 | 44.20 | 41.71 | 39.89 |

**Evaluation on Noisy Dataset** 

| $\mathcal{L}_{clean}$ | $ \begin{array}{c c} \mathcal{L}_{robust} \\ \mathbf{x}' \neq \mathbf{x} & \mathbf{z}' \neq \mathbf{z} \end{array} $ |   | $\mathcal{L}_{lm}$ | BLEU  |  |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|---|--------------------|-------|--|
| <b>√</b>              |                                                                                                                      |   |                    | 44.59 |  |
| $\checkmark$          |                                                                                                                      |   | ✓                  | 45.08 |  |
| $\checkmark$          | ✓                                                                                                                    |   | ✓                  | 45.23 |  |
| $\checkmark$          |                                                                                                                      | ✓ | ✓                  | 46.26 |  |
| $\checkmark$          | ✓                                                                                                                    | ✓ |                    | 46.61 |  |
| $\checkmark$          | ✓                                                                                                                    | ✓ | ✓                  | 46.95 |  |

**Ablation Study**