## 13. előadás

# SPECIÁLIS FÜGGVÉNYEK 2.

## Hatványok értelmezése

**Pozitív kitevőkre** az n tényezős  $a \cdot \ldots \cdot a$  szorzatot  $a^n$ -nel jelöltük, és **az** a **szám** n-edik hatványának neveztük. Nyilvánvaló, hogy bármely a, b valós és x, y pozitív egész számra fennállnak a hatványozás alapazonosságai:

$$(ab)^{x} = a^{x} \cdot b^{x}, \qquad a^{x+y} = a^{x} \cdot a^{y}, \qquad (a^{x})^{y} = a^{x \cdot y}.$$

A hatványozás műveletének kiterjesztését egyéb x, y valós kitevőkre úgy célszerű definiálni, hogy a fenti alapazonosságok érvényben maradjanak.

**Egész kitevőkre**  $a \neq 0$  esetén az  $a^{x+y} = a^x \cdot a^y$  azonosság csak úgy maradhat érvényben, ha  $a^0$ -t 1-nek,  $a^{-n}$ -et pedig  $1/a^n$ -nek értelmezzük, ahol  $n \in \mathbb{N}$ , azaz

$$a^0 := 1$$
 és  $a^{-n} := \frac{1}{a^n}$   $(n = 1, 2, ...).$ 

Ezeket a definíciókat elfogadva könnyen igazolható, hogy (\*) mindhárom azonossága érvényben marad minden  $a, b \in \mathbb{R} \setminus \{0\}$  és  $x, y \in \mathbb{Z}$  esetén.

Racionális kitevőkre a hatványok értelmezése is egyszerűen megoldható. A továbbiakban csak nemnegatív a számok hatványaival foglalkozunk. Viszonylag egyszerűen meg lehet mutatni azt, hogy az imént jelzett célnak megfelelően egy a>0 valós szám r=p/q (p,q) relatív prím egészek és q>0) racionális kitevős hatványát így kell definiálnunk:

$$a^{\frac{p}{q}} := \sqrt[q]{a^p}.$$

Az is viszonylag könnyen megmutatható, hogy a (\*) azonosságok minden a,b>0 és  $x,y\in\mathbb{Q}$  esetén teljesülnek.

Irracionális kitevőkre a hatványok értelmezése már jóval bonyolultabb feladat. Hogyan értelmezzük egy pozitív a valós szám irracionális kitevőjű hatványát, például  $2^{\sqrt{2}}$ -őt?

A felvetett kérdés megválaszolására két lehetőség is kínálkozik.

1. lehetőség. Felhasználva a valós számok struktúrájának a tulajdonságait, valamint azt, hogy pozitív valós szám racionális kitevőjű hatványait már értelmeztük, megállapodhatnánk a következő definícióban:

1

Legyen x egy valós szám.

- Ha a > 1, akkor  $a^x := \sup\{a^r \mid r \le x \text{ \'es } r \in \mathbb{Q}\}.$
- Ha 0 < a < 1, akkor  $a^x := \left(\frac{1}{a}\right)^{-x}$ .
- Ha a = 1, akkor  $1^x := 1$ .

Ezt a definíciót elfogadva már be lehetne bizonyítani a (\*) azonosságokat.

2. lehetőség. A továbbiakban pozitív valós szám irracionális kitevőjű hatványainak értelmezéséhez mi a következő utat követjük. Az első lépésként az e szám tetszőleges valós kitevőjű hatványait értelmezzük. Ezt korábban az exp függvény bevezetésénél már meg is tettük. Az exp függvény inverzeként vezetjük be a természetes alapú logaritmusfüggvényt. Ezek felhasználásával fogjuk definiálni az  $a^x$  hatványokat tetszőleges a > 0 és  $x, y \in \mathbb{R}$  számokra.

### Az e szám irracionalitása

Emlékeztetünk arra, hogy az e számot a szigorúan monoton növekvő és felülről korlátos (tehát konvergens)

$$a_n := \left(1 + \frac{1}{n}\right)^n \qquad (n \in \mathbb{N}^+)$$

sorozat határértékeként definiáltuk, és akkor megjegyeztük azt, hogy ez a határérték egy irracionális szám. Most bebizonyítjuk ezt az állítást.

#### 1. tétel. Az e szám irracionális.

Bizonyítás. Azt már tudjuk, hogy

$$e = \sum_{n=0}^{+\infty} \frac{1}{n!} = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

Az állítással ellentétben tegyük fel, hogy e racionális, azaz

$$e = \frac{p}{q}$$
, ahol  $p, q \in \mathbb{N}^+$  és  $q \ge 2$ 

(a  $q \ge 2$  feltehető, egyébként bővítjük a törtet). Az

$$s_n := 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} \qquad (n \in \mathbb{N}^+)$$

sorozat szigorúan monoton növekvő módon tart e-hez, ha  $n \to +\infty$ . Legyen n > q tetszőleges egész. Ekkor

$$0 < q! \cdot (s_n - s_q) = q! \cdot \left(\frac{1}{(q+1)!} + \frac{1}{(q+2)!} + \dots + \frac{1}{n!}\right) =$$

$$= \frac{1}{q+1} + \frac{1}{(q+1)(q+2)} + \dots + \frac{1}{(q+1) \cdot \dots \cdot n} \le$$

$$\le \frac{1}{q+1} \cdot \left(1 + \frac{1}{q+1} + \frac{1}{(q+1)^2} + \dots + \frac{1}{(q+1)^{n-q-1}}\right) \le$$

$$\le \frac{1}{q+1} \cdot \frac{1}{1 - \frac{1}{q+1}} = \frac{1}{q} \le \frac{1}{2}.$$

Ebből az  $n \to +\infty$  határátmenetet véve azt kapjuk, hogy

$$(\#) 0 < q! \cdot (e - s_q) \le \frac{1}{2},$$

hiszen  $q! \cdot (e - s_q) \neq 0$ , mert  $s_q < e$ .

Az indirekt feltételből az következik, hogy

$$q! \cdot (e - s_q) = q! \cdot (\frac{p}{q} - s_q) = q! \cdot (\frac{p}{q} - 1 - \frac{1}{1!} - \frac{1}{2!} - \dots - \frac{1}{q!})$$

egész szám. Ez viszont (#) alapján nem lehetséges.

Megjegyzés. A bizonyításban alkalmazott módszerrel igazolható, hogy minden  $n \in \mathbb{N}^+$  esetén

$$0 < e - \left(1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}\right) < \frac{1}{n \cdot n!},$$

és ez (elvben) lehetőséget ad arra, hogy e értékét tetszőlegesen előírt pontossággal kiszámítsuk. Például n=6-ot véve azt kapjuk, hogy

## 4. Az exponenciális- és a logaritmusfüggvény

Most emlékeztetünk az exp függvény értelmezésére. Láttuk, hogy a  $\sum \frac{x^n}{n!}$  hatványsor minden  $x \in \mathbb{R}$  pontban konvergens. Ennek a hatványsornak az összegfüggvényeként definiáltuk az exp függvényt:

$$\exp(x) := \sum_{k=0}^{+\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots \qquad (x \in \mathbb{R}),$$

és megállapítottuk számos fontos tulajdonságát. Ezek alapján az e szám hatványait tetszőleges  $x \in \mathbb{R}$  kitevő esetén így *értelmeztük*: legyen

$$e^x := \exp(x) \qquad (x \in \mathbb{R}),$$

ezért az exp függvényt *e* alapú exponenciális függvénynek is nevezzük.

Most felsoroljuk az exp függvény tulajdonságait.

- $\exp(0) = 1$  és  $\exp(1) = \sum_{n=0}^{+\infty} \frac{1}{n!} = e$ ,
- exp ↑ és folytonos ℝ-en,
- $\lim_{-\infty} \exp = 0$  és  $\lim_{+\infty} \exp = +\infty$ ,
- exp szigorúan konvex R-en,
- $\mathcal{R}_{\text{exp}} = (0, +\infty),$
- $\exp(-x) = \frac{1}{e^x}$   $(x \in \mathbb{R}),$
- $e^{x+y} = e^x \cdot e^y$  és  $(e^x)^y = e^{xy}$   $(x, y \in \mathbb{R})$ .



**Megjegyzés.** A fenti tulajdonságokból csak kettőt nem igazoltuk még idáig. Az  $(e^x)^y = e^{xy}$  azonossággal most nem tudunk foglalkozni, mert még nem értelmeztük a hatványozást bármely pozitív szám irracionális kitevőre. Ellenben az exp függvény konvexitását igazolni tudnánk az eddigi ismereteink alapján, de így a bizonyítás elég összetett lenne. Később a differenciálszámítás eszköztárának a felhasználásával ezt az állítást jóval egyszerűbben fogjuk igazolni.

A logaritmusfüggvényt az exponenciális függvény inverzeként definiáljuk.

**1.** definíció.  $Az \exp : \mathbb{R} \to \mathbb{R}$  függvény szigorúan monoton növekvő  $\mathbb{R}$ -en, ezért létezik inverze. Legyen

$$\ln := \log := \exp^{-1}$$

a (természetes alapú vagy e alapú) logaritmusfüggvény.

A definíció közvetlen következményei az alábbi állítások:

• Az ln függvény grafikonja az exp függvény grafikonjának az y = x egyenletű egyenesre vonatkozó tükörképe.



- Ha  $x \in \mathbb{R}$ , akkor  $\ln e^x = x$ .
- $\ln \uparrow$  és folytonos  $(0, +\infty)$ -n,
- 1 zérushely, azaz  $\ln 1 = 0$ .
- $\lim_{0\to 0} \ln = -\infty$  és  $\lim_{+\infty} \ln = +\infty$ ,
- szigorúan konkáv  $(0, +\infty)$ -n.





(bizonyos speciális értékektől eltekintve) így nem számolható. A differenciálszámítás alkalmazásainál mutatjuk majd meg, hogyan tudjuk az ln függvény értékeit sorösszeggel előállítani.



**Megjegyzés.** Az exp x minden  $x \in \mathbb{R}$  esetén (elvileg) tetszőleges pontossággal számolható, mert exp x egy végtelen sor összege. Az  $\ln x$  minden x > 0 számra értelmezve van, de az értéke

# 5. Az a alapú exponenciális- és logaritmusfüggvény

Először tetszőleges  $0 < a \in \mathbb{R}$  alap és tetszőleges  $b \in \mathbb{R}$  kitevő esetén értelmezzük az  $a^b$ hatványt. Ha b racionális, akkor  $a^b$ -t már definiáltuk, és ekkor a hatványozás "megszokott" tulajdonságai érvényben maradnak.

Az e szám tetszőleges  $b \in \mathbb{R}$  kitevőjű hatványait, valamint pozitív szám logaritmusát már értelmeztük. Az  $a^b$  értelmezéséhez abból indulunk ki, hogy az a>0 valós számot felírhatjuk e hatványaként:  $a = e^{\ln a}$ . A hatvány hatványozására vonatkozó azonosság csak úgy marad érvényben, ha  $a^b$ -t így definiáljuk:

$$a^b = \left(e^{\ln a}\right)^b = e^{b \cdot \ln a}.$$

2. definíció. Legyen a>0 valós szám. Tetszőleges  $b\in\mathbb{R}$  esetén az a szám b-edik hatványát így értelmezzük:

$$a^b := e^{b \cdot \ln a}.$$

Megjegyzések.

**1º** Korábban már igazoltuk, hogy  $e^{p/q} = \sqrt[q]{e^p}$  minden  $p/q \in \mathbb{Q}$   $(p, q \in \mathbb{Z}, q \ge 1)$  esetén. Ugyanazzal a technikával igazolható, hogy

$$e^{\frac{p \ln a}{q}} = \sqrt[q]{e^{p \ln a}} \Longrightarrow a^{p/q} = \sqrt[q]{a^p}.$$

Ez azt jelenti, hogy ha b racionális, akkor a fenti definíció által adott érték megegyezik a korábbi definícióból kapott számmal.

**2º** Most már igazolni tudjuk tetszőleges  $x, y \in \mathbb{R}$  esetére is az  $(e^x)^y = e^{xy}$  azonosságot. Legyen  $a := e^x > 0$ . Ekkor

$$(e^x)^y = a^y = e^{y \cdot \ln a} = e^{y \cdot \ln e^x} = e^{y \cdot x} = e^{xy}.$$

3. definíció. Legyen a > 0 valós szám. Az a alapú exponenciális függvényt így értelmezzük:

$$\exp_a : \mathbb{R} \to \mathbb{R}, \quad \exp_a(x) := \exp(x \cdot \ln a) = a^x \qquad (x \in \mathbb{R}).$$

Világos, hogy  $\exp_e = \exp$  és  $\exp_1$  az azonosan 1 konstans függvény.

 Ha $a\neq 1$ , akkor a definíció értelmében az  $\exp_a$  függvény grafikonját megkapjuk exp grafikonjából egy xtengely irányú, az ytengelytől számított  $\frac{1}{|\ln a|}$ -szoros nyújtásával/zsugorításával, és ha  $\ln a < 0$ , akkor a grafikont az y tengelyre is tükrözzük. Ezért sok közös vonásuk van, de szükséges megkülönböztetnünk az a > 1 és a 0 < a < 1 eseteket.

Minden  $0 < a \neq 1$  valós szám esetén

- $\exp_a(0) = 1$  és  $\exp_a(1) = a$ ,
- $\exp_a$  folytonos  $\mathbb{R}$ -en,
- $\exp_a$  szigorúan konvex  $\mathbb{R}$ -en,
- $\mathcal{R}_{\exp_a} = (0, +\infty),$
- $a^{-x} = \frac{1}{a^x} = \left(\frac{1}{a}\right)^x \quad (x \in \mathbb{R}),$
- $a^{x+y} = a^x \cdot a^y$  és  $(a^x)^y = a^{xy}$   $(x, y \in \mathbb{R})$ .



Minden a > 1 esetén

Minden 0 < a < 1 esetén

•  $\exp_a \uparrow \mathbb{R}$ -en,

- $\exp_a \downarrow \mathbb{R}$ -en,
- $\lim_{n\to\infty} \exp_a = 0$  és  $\lim_{n\to\infty} \exp_a = +\infty$ .  $\lim_{n\to\infty} \exp_a = +\infty$  és  $\lim_{n\to\infty} \exp_a = 0$ .

**Megjegyzés.** A fenti azonosságok az  $a^x := e^{x \cdot \ln a}$  felhasználásával egyszerűen igazolhatók.

**4. definíció.** Ha a > 0 valós szám és  $a \neq 1$ , akkor az  $\exp_a$  szigorúan monoton  $\mathbb{R}$ -en, ezért van inverze, amelyet a alapú logaritmusfüggvénynek nevezünk és  $\log_a$ -val jelölünk, azaz

$$\log_a := (\exp_a)^{-1}, \quad ha \ a > 0 \ \text{\'es } a \neq 1.$$

Világos, hogy  $\log_e = \ln$ , ezért szokás az  $\ln$  függvényt a  $\log$  szimbólummal is jelölni.

A logaritmus és az exponenciális függvény között fennálló inverz-kapcsolat miatt:

$$\mathcal{D}_{\log_a} = \mathcal{R}_{\exp_a} = (0, +\infty)$$
 és  $\mathcal{R}_{\log_a} = \mathcal{D}_{\exp_a} = \mathbb{R}$ .

Ha  $x \in (0, +\infty)$ , akkor

$$\log_a x := \log_a(x) = y \iff \exp_a y = a^y = x,$$

azaz  $\log_a x$  tehát az a kitevő, amire az alapot (vagyis az a számot) emelve x-et kapunk.

Az inverz-kapcsolat alapján nem nehéz megadni a  $\log_a$  függvény tulajdonságait:

Minden  $0 < a \neq 1$  esetén

- Ha x > 0, akkor  $\log_a a^x = x$ ,
- $\log_a$  folytonos  $(0, +\infty)$ -n,
- 1 zérushely, azaz  $\log_a 1 = 0$ .
- $\log_a(x \cdot y) = \log_a x + \log_a y$  (x, y > 0)

• 
$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y \quad (x, y > 0)$$

- $\log_a(x^y) = y \log_a x \quad (x > 0, y \in \mathbb{R}),$
- $\log_a x = \frac{\log_c x}{\log_a a}$   $(a, c > 0, a, c \neq 1, x > 0).$



Minden a > 1 esetén

- $\log_a \uparrow (0, +\infty)$ -n,
- $\lim_{a \to 0} \log_a = -\infty$  és  $\lim_{a \to \infty} \log_a = +\infty$ ,  $\lim_{a \to 0} \log_a = +\infty$  és  $\lim_{a \to \infty} \log_a = -\infty$ ,
- szigorúan konkáv  $(0, +\infty)$ -n.

Minden 0 < a < 1 esetén

- $\log_a \downarrow (0, +\infty)$ -n,
- szigorúan konvex  $(0, +\infty)$ -n.

A logaritmusazonosságok igazolásához azt használjuk fel, hogy  $\log_a b$  az a kitevő, amire az a számot emelve b-et kapunk, tehát ha  $z = \log_a b$ , akkor  $a^z = b$ . Másrészt alkalmazzuk az exponenciális függvény szigorú monotonitását amiből:  $a^u = a^v \implies u = v$ .

• 
$$\log_a(x \cdot y) = \log_a x + \log_a y$$
 Ha  $z = \log_a(x \cdot y)$ ,  $u = \log_a x$  és  $v = \log_a y$ , akkor  $a^z = xy$ ,  $a^u = x$ ,  $a^v = y$   $\Longrightarrow$   $a^z = xy = a^u a^v = a^{u+v}$   $\Longrightarrow$   $z = u + v$ .

• 
$$\left[\log_a\left(\frac{x}{y}\right) = \log_a x - \log_a y\right]$$
 Ha  $z = \log_a\left(\frac{x}{y}\right)$ ,  $u = \log_a x$  és  $v = \log_a y$ , akkor

$$a^z = \frac{x}{y}, \ a^u = x, \ a^v = y \implies a^z = \frac{x}{y} = \frac{a^u}{a^v} = a^{u-v} \implies z = u - v.$$

$$\log_a(x^y) = y \log_a x \quad \text{Ha } z = \log_a(x^y) \text{ \'es } u = \log_a x, \text{ akkor}$$
 
$$a^z = x^y, \ a^u = x \quad \Longrightarrow \quad a^z = x^y = (a^u)^y = a^{yu} \quad \Longrightarrow \quad z = yu.$$

• 
$$\log_a x = \frac{\log_c x}{\log_c a}$$
 Ha  $z = \log_a x$ ,  $u = \log_c x$  és  $v = \log_c a$ , akkor

$$a^z = x$$
,  $c^u = x$ ,  $c^v = a \implies c^u = x = a^z = (c^v)^z = c^{vz} \implies u = vz \implies z = \frac{u}{v}$ .

Megjegyzés. Az exponenciális és logaritmus függvény konvexitását később, a differenciálszámítás eszköztárával fogjuk igazolni. ■

# 6. Általános hatványfüggvények

Ha az  $a^b$  hatványban az alapot rögzítettnek, a kitevőt pedig változónak tekintjük, akkor megkapjuk az **exponenciális függvényeket**. Ha a kitevőt tekintjük rögzítettnek és az alapot változónak, akkor megkapjuk a **hatványfüggvényeket**. Ez utóbbi függvényeket csak a  $(0, +\infty)$  intervallumon fogjuk tekinteni. Az előzőek alapján már tetszőleges b valós kitevő és a > 0 esetén értelmezni tudjuk az  $a^b$  hatványt.

**5.** definíció. Tetszőleges  $\alpha \in \mathbb{R}$  szám esetén az  $\alpha$  kitevőjű hatványfüggvényt így értelmezzük:

$$h_{\alpha}:(0,+\infty)\ni x\mapsto x^{\alpha}:=e^{\alpha\ln x}.$$

Az általános hatványfüggvények tulajdonságai különböző  $\alpha$  értékek esetén különbözők. Ha  $\alpha=0$ , illetve  $\alpha=1$ , akkor a

$$h_0(x) = 1$$
, illetve a  $h_1(x) = x$   $(x \in (0, +\infty))$ 

függvényeket kapjuk. Egyéb  $\alpha$  kitevőkre az általános hatványfüggvényeket három olyan csoportra osztjuk, amelyekben a függvények már hasonló tulajdonságokkal rendelkeznek:

Minden  $\alpha > 1$  esetén

- $\uparrow (0, +\infty)$ -n,
- folytonos  $(0, +\infty)$ -n,
- $\lim_{0 \to 0} h_{\alpha} = 0$  és  $\lim_{+\infty} h_{\alpha} = +\infty$ ,
- szigorúan konvex  $(0, +\infty)$ -n,
- $\mathcal{R}_{h_{\alpha}}=(0,+\infty),$
- ha  $\alpha = n \ (2 \le n \in \mathbb{N})$ , akkor megkapjuk az eredeti hatványfüggvényeket.



Minden  $0 < \alpha < 1$  esetén

•  $\uparrow (0, +\infty)$ -n,

• folytonos  $(0, +\infty)$ -n,

•  $\lim_{\alpha \to 0} h_{\alpha} = 0$  és  $\lim_{\alpha \to \infty} h_{\alpha} = +\infty$ ,

• szigorúan konkáv  $(0, +\infty)$ -n,

•  $\mathcal{R}_{h_{\alpha}}=(0,+\infty),$ 

• ha  $\alpha = \frac{1}{n}$  ( $2 \le n \in \mathbb{N}$ ), akkor megkapjuk a gyökfüggvényeket.

Minden  $\alpha < 0$  esetén

•  $\downarrow (0, +\infty)$ -n,

• folytonos  $(0, +\infty)$ -n,

•  $\lim_{\alpha \to 0} h_{\alpha} = +\infty$  és  $\lim_{\alpha \to \infty} h_{\alpha} = 0$ ,

• szigorúan konvex  $(0, +\infty)$ -n,

•  $\mathcal{R}_{h_{\alpha}}=(0,+\infty),$ 

• ha  $\alpha = -n$  ( $1 \le n \in \mathbb{N}$ ), akkor megkapjuk a reciprokfüggvényeket.

Megjegyzés. Az általános hatványfüggvények konvexitását később, a differenciálszámítás eszköztárával fogjuk igazolni. ■

## 7. A szinusz- és a koszinuszfüggvény

A szinusz- és a koszinuszfüggvényt az egész $\mathbb R$ -en konvergens hatványsor összegfüggvényeként értelmeztük:

$$\sin x := \sin(x) := x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} \qquad (x \in \mathbb{R}),$$

$$\cos x := \cos(x) := 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} x^{2k} \qquad (x \in \mathbb{R}).$$

Most összefoglaljuk azokat az állításokat, amelyeket korábban már megismertünk:

• Paritás: a sin függvény páratlan, és a cos függvény páros, azaz

$$\sin(-x) = -\sin x$$
,  $\cos(-x) = \cos x$   $(x \in \mathbb{R})$ .

• Addíciós képletek: minden  $x, y \in \mathbb{R}$  esetén

$$\sin(x+y) = \sin x \cos y + \cos x \sin y,$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y.$$

• Minden  $x \in \mathbb{R}$  esetén

$$\sin(2x) = 2\sin x \cos x, \qquad \cos(2x) = \cos^2 x - \sin^2 x.$$

• Négyzetes összefüggés:

$$\sin^2 x + \cos^2 x = 1 \qquad (x \in \mathbb{R}).$$

• Folytonosság: A sin és a cos függvény folytonos  $\mathbb{R}$ -en.

Az addíciós képletekből nem nehéz igazolni azt a nagyon hasznos tényt, hogy két szinusz, illetve koszinusz összege és különbsége szorzattá alakítható. Tetszőleges  $x, y \in \mathbb{R}$  esetén

$$\sin x + \sin y = 2 \cdot \sin \frac{x+y}{2} \cdot \cos \frac{x-y}{2}, \qquad \sin x - \sin y = 2 \cdot \sin \frac{x-y}{2} \cdot \cos \frac{x+y}{2},$$

$$\cos x + \cos y = 2 \cdot \cos \frac{x+y}{2} \cdot \cos \frac{x-y}{2}, \qquad \cos x - \cos y = -2 \cdot \sin \frac{x+y}{2} \cdot \sin \frac{x-y}{2}.$$

Az igazolásukhoz legyen

$$\alpha := \frac{x+y}{2}$$
 és  $\beta := \frac{x-y}{2}$   $\Longrightarrow$   $x = \alpha + \beta$  és  $y = \alpha - \beta$ .

Az első azonosság esetében azt kapjuk, hogy

$$\sin x + \sin y = \sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta = 2\cdot\sin\frac{x+y}{2}\cdot\cos\frac{x-y}{2}.$$

A többi három azonosság hasonlóan látható be.

Megjegyzés. Az addíciós képleteket két szám különbségére is felírhatjuk:

$$\sin(x-y) = \sin(x+(-y)) = \sin x \cos(-y) + \cos x \sin(-y) = \sin x \cos y - \cos x \sin y,$$
$$\cos(x-y) = \cos(x+(-y)) = \cos x \cos(-y) - \sin x \sin(-y) = \cos x \cos y + \sin x \sin y.$$

Most a sin és a cos függvények hatványsoros definícióiból kiindulva, bevezetjük az egész matematika egyik fontos állandóját, a  $\pi$  számot.

2. tétel (A  $\pi$  szám értelmezése). A cos függvénynek a [0,2] intervallumban pontosan egy zérushelye van, azaz [0,2]-nek pontosan egy  $\xi$  pontjában áll fenn a cos  $\xi=0$  egyenlőség. Ennek a  $\xi$  számnak a kétszereseként értelmezzük a  $\pi$  számot:

$$\pi := 2\xi$$
.

**Bizonyítás.** A Bolzano-tételt alkalmazzuk. Világos, hogy  $\cos \in C[0,2]$  és  $\cos 0 = 1$ . Másrészt

$$\cos 2 = 1 - \frac{2^{2}}{2!} + \frac{2^{4}}{4!} - \frac{2^{6}}{6!} + \frac{2^{8}}{8!} - \frac{2^{10}}{10!} + \frac{2^{12}}{12!} - \dots =$$

$$= \underbrace{1 - 2 + \frac{2}{3} - \frac{2^{6}}{6!} \cdot \underbrace{\left(1 - \frac{2^{2}}{7 \cdot 8}\right)}_{>0} - \frac{2^{10}}{10!} \cdot \underbrace{\left(1 - \frac{2^{2}}{11 \cdot 12}\right)}_{>0} - \dots < -\frac{1}{3} < 0.$$

A Bolzano-tétel feltételei tehát teljesülnek, ezért  $\exists \xi \in (0,2) \colon \cos \xi = 0$ .

A  $\xi$  pont egyértelműsége következik abból, hogy  $\cos \downarrow$  a [0,2] intervallumban, azaz

(\*) ha 
$$0 \le x < y \le 2$$
, akkor  $\cos x > \cos y$ .

Ezt fogjuk most igazolni. Az eddigiekből következik, hogy

$$\cos x > \cos y \qquad \iff \qquad \cos x - \cos y = -2 \cdot \sin \frac{x+y}{2} \cdot \sin \frac{x-y}{2} =$$
$$= 2 \cdot \sin \frac{x+y}{2} \cdot \sin \frac{y-x}{2} > 0.$$

Mivel

$$0 \le x < y \le 2 \qquad \Longrightarrow \qquad 0 < \frac{x+y}{2} < 2 \quad \text{és} \quad 0 < \frac{y-x}{2} < 2,$$

ezért a (\*) állítás a

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots = z \cdot \underbrace{\left(1 - \frac{z^2}{2 \cdot 3}\right)}_{>0} + \underbrace{\frac{z^5}{5!} \cdot \left(1 - \frac{z^2}{6 \cdot 7}\right)}_{>0} + \dots > 0 \quad \left(z \in (0, 2)\right)$$

egyenlőtlenség következménye.

#### Megjegyzések.

 ${f 1}^o$  A Bolzano-féle felezési eljárással  $\pi$  közelítő értéke meghatározható.  $\pi$  értelmezéséből következik, hogy  $0<\pi<4$ . Az is megmutatható, hogy  $3,141<\pi<3,142$ , ezért gyakran használhatjuk a

 $\pi \approx 3,14$ 

közelítést.

 $2^{o}$  Igazolható, hogy  $\pi$  irracionális és transzcendens szám.

 $3^o$  Az integrálszámítás alkalmazásainál értelmezni fogjuk a körív hosszát, és megmutatjuk, hogy az egységsugarú kör kerülete  $2\pi$ . Ez azt jelenti, hogy az előző tételben definiált  $\pi$  szám valóban megegyezik a korábbi tanulmányainkban megismert  $\pi$  számmal.

Az addíciós képletek, valamint a négyzetes összefüggés felhasználásával a sin és a cos függvény értékét számos nevezetes helyen pontosan ki tudjuk számolni. Például:

•  $\sin(\pi/2) = 1$ , mert a négyzetes összefüggés miatt:

$$\sin^2 \frac{\pi}{2} = 1 - \cos^2 \frac{\pi}{2} = 1 - 0 = 1$$
  $\implies$   $\sin \frac{\pi}{2} = 1$  vagy  $\sin \frac{\pi}{2} = -1$ 

de  $\pi/2 \in (0,2) \implies \sin(\pi/2) > 0$ , azaz  $\sin(\pi/2) = 1$ .

•  $\sin(\pi/6) = 1/2$ . Az addíciós képletek miatt

$$\cos 3x = \cos(2x + x) = \cos 2x \cos x - \sin 2x \sin x =$$

$$= (\cos^2 x - \sin^2 x) \cos x - 2 \sin x \cos x \sin x =$$

$$= (1 - \sin^2 x - \sin^2 x) \cos x - 2 \sin^2 x \cos x = (1 - 4 \sin^2 x) \cos x.$$

Legyen  $x = \pi/6$ . Ekkor

$$\cos 3x = \cos \frac{\pi}{2} = 0$$
 és  $\cos x = \cos \frac{\pi}{6} \neq 0$ ,

mert a cos függvénynek nincs  $\pi/2$ -től különböző zérushelye (0,2)-n. Ezért a fenti egyenlőségből következik, hogy

$$1 - 4\sin^2\frac{\pi}{6} = 0 \qquad \Longrightarrow \qquad \sin\frac{\pi}{6} = 1/2,$$

mert  $\pi/6 \in (0, 2)$ , és így  $\sin(\pi/6) > 0$ .

Megjegyzés. A fentihez hasonló számításokkal igazolni tudjuk, hogy a sin és a cos függvény a nevezetes helyeken vett értékei megegyeznek a középiskolai és más korábbi tanulmányokban már megismert értékekkel. Sőt, ilyen technikákkal pontosan meg tudjuk határozni a függvényértéket két, már kiszámolt hely számtani közepén lévő pontnál. Így a folytonosság figyelembevételével

mondhatjuk, hogy ha a most értelmezett  $\pi$  szám megegyezik a korábbi tanulmányainkban megismert  $\pi$  számmal, akkor a sin és a cos függvény hatványsoros, és a korábban megismert geometriai eredetű értelmezése megegyezik.

A trigonometrikus függvényekkel kapcsolatos alapvető fogalom a következő: az f valós-valós függvény **periodikus**, ha van olyan p>0 valós szám, hogy minden  $x\in\mathcal{D}_f$  elemre  $x\pm p\in\mathcal{D}_f$  és

$$f(x+p) = f(x).$$

A p számot f **periódusának**, az f függvényt pedig p szerint periodikus függvénynek nevezzük.

Ha az f függvény p szerint periodikus, akkor bármely  $x \in \mathcal{D}_f$ ,  $k \in \mathbb{Z}$  esetén  $x \pm kp \in \mathcal{D}_f$  és

$$f(x+kp) = f(x).$$

Vagyis, ha p az f függvénynek periódusa, akkor minden  $k = 1, 2, \ldots$  esetén kp is periódusa f-nek. Egy függvény periódusának megadásán általában a legkisebb pozitív periódus megadását értjük, amennyiben ilyen létezik.

Érdekes, hogy nem minden periodikus függvénynek van legkisebb pozitív periódusa. Az

$$f(x) := \begin{cases} 1 & (x \in \mathbb{Q}) \\ 0 & (x \in \mathbb{R} \setminus \mathbb{Q}). \end{cases}$$

Dirichlet-függvénynek minden *racionális* szám periódusa, és ezek között nyilván nincs legkisebb pozitív szám.

3. tétel. A sin és a cos függvény  $2\pi$  szerint periodikus, azaz

$$\sin(x + 2\pi) = \sin x, \qquad \cos(x + 2\pi) = \cos x \qquad (x \in \mathbb{R}).$$

Bizonyítás. Világos, hogy

$$\cos \pi = \cos \left(2 \cdot \frac{\pi}{2}\right) = \cos^2 \frac{\pi}{2} - \sin^2 \frac{\pi}{2} = 0^2 - 1^2 = -1,$$

$$\sin \pi = \sin \left(2 \cdot \frac{\pi}{2}\right) = 2\sin \frac{\pi}{2}\cos \frac{\pi}{2} = 2 \cdot 1 \cdot 0 = 0.$$

Ebből

$$\cos 2\pi = \cos^2 \pi - \sin^2 \pi = 1^2 - 0^2 = 1,$$

$$\sin 2\pi = 2\sin \pi \cos \pi = 2 \cdot 0 \cdot (-1) = 0.$$

Ekkor az addíciós képletekből

$$\cos(x+2\pi) = \cos x \cos 2\pi - \sin x \sin 2\pi = \cos x \cdot 1 - \sin x \cdot 0 = \cos x,$$

$$\sin(x+2\pi) = \sin x \cos 2\pi + \cos x \sin 2\pi = \sin x \cdot 1 + \cos x \cdot 0 = \sin x.$$

minden  $x \in \mathbb{R}$  esetén.

Az addíciós képletekből könnyen igazolhatók az alábbi azonosságok:

$$\cos(\pi - x) = -\cos x, \qquad \sin(\pi - x) = \sin x,$$

$$\cos(\pi + x) = -\cos x, \qquad \sin(\pi + x) = -\sin x,$$

$$\cos(2\pi - x) = \cos x, \qquad \sin(2\pi - x) = -\sin x.$$

minden  $x \in \mathbb{R}$  esetén. Tudjuk, hogy cos  $\downarrow \left[0, \frac{\pi}{2}\right]$ -n. Ebből a fenti azonosságokkal nem nehéz igazolni, hogy cos  $\downarrow \left[0, \pi\right]$ -n és cos  $\uparrow \left[\pi, 2\pi\right]$ -n. Ezért  $2\pi$  a cos függvény legkisebb periódusa. Másrészt az addíciós képletekből szintén igazolható, hogy

$$\cos x = \sin\left(x + \frac{\pi}{2}\right), \quad \text{illetve a} \quad \sin x = \cos\left(x - \frac{\pi}{2}\right) \quad (x \in \mathbb{R}).$$

Ez azt jelenti, hogy a sin és a cos függvények grafikonjai egymásból eltolással származtathatók, és így  $2\pi$  szintén a sin függvény legkisebb periódusa.

A sin és a cos függvények konvexitási tulajdonságainak a vizsgálatához a differenciálszámítás eszköztárára lesz szükségünk. Ezeket az ismereteket megelőlegezve most az alábbi ábrán szemléltetjük a sin és a cos függvények "jól ismert" grafikonjait:



**Megjegyzés.** Emlékeztetünk arra, hogy ha  $f, g \in \mathbb{R} \to \mathbb{R}$ ,  $a \in \mathbb{R}$  és

$$f(x) := g(x+a) \qquad (x \in \mathcal{D}_q),$$

akkor az f függvény grafikonját g grafikonjának x tengely irányú eltolásával kapjuk meg:

- a > 0 esetén az eltolást a egységgel "balra" kell elvégezni,
- a < 0 esetén pedig a egységgel "jobbra" kell elvégezni.

**Érdekesség.** A hatványsorok alkalmazásának egyik lényeges tulajdonsága, hogy az összegük képzésében csak az alapműveletek és a határátmenet szerepelnek. Ezért a hatványsorok összegfüggvényeit komplex számokra is értelmezhetjük. Például, számoljuk ki az  $e^{\pi i}$  értékét, ahol  $i^2=-1$  a képzetes egység.

$$e^{i\pi} = \sum_{k=0}^{+\infty} \frac{(i\pi)^k}{k!} = 1 + i\pi + \frac{(i\pi)^2}{2!} + \frac{(i\pi)^3}{3!} + \frac{(i\pi)^4}{4!} + \frac{(i\pi)^5}{5!} + \frac{(i\pi)^6}{6!} + \frac{(i\pi)^7}{7!} + \dots =$$

$$= (i^2 = -1, i^3 = -i, i^4 = 1, i^5 = i, i^6 = -1, i^7 = -i, i^8 = 1, \dots) =$$

$$= 1 + \pi i - \frac{\pi^2}{2!} - \frac{\pi^3}{3!} i + \frac{\pi^4}{4!} + \frac{\pi^5}{5!} i - \frac{\pi^6}{6!} - \frac{\pi^7}{7!} i + \frac{\pi^8}{8!} + \frac{\pi^9}{9!} i + \dots =$$

$$= \left(1 - \frac{\pi^2}{2!} + \frac{\pi^4}{4!} - \frac{\pi^6}{6!} + \frac{\pi^8}{8!} + \dots\right) + \left(\pi - \frac{\pi^3}{3!} + \frac{\pi^5}{5!} - \frac{\pi^7}{7!} + \frac{\pi^9}{9!} + \dots\right) i =$$

$$= \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k)!} \pi^{2k} + i \sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)!} \pi^{2k+1} = \cos \pi + i \sin \pi = -1 + i \cdot 0 = -1.$$

Ezzel igazoltuk a híres

$$e^{i\pi} + 1 = 0$$

ún. Euler-féle összefüggést, ami azért is érdekes, mert összekapcsolja a legfontosabb matematikai állandókat: a nulla, az 1, az e, a  $\pi$  és az i számokat.

Vegyük még észre, hogy hasonló számításokkal az

$$e^{ix} = \cos x + i \sin x \qquad (x \in \mathbb{R})$$

ún. Euler-féle formulát kapjuk meg, ami fontos szerepet játszik a komplex számoknál, hiszen vele egy komplex szám trigonometrikus alakját  $z=re^{i\varphi}$  módon írhatjuk fel. Ebből például könnyen igazolható a

$$z^{n} = r^{n} (e^{i\varphi})^{n} = r^{n} e^{in\varphi} = r^{n} (\cos n\varphi + i \sin n\varphi)$$

ún. De Moivre azonosság.