

مكاترونيك

مینی پروژه دوم

استاد: دكتر طالع ماسوله

محمدمهدى رحيمي

۸۱۰۱۹۷۵۱۰

۱. کار با OpenCV

در این قسمت با توجه به کتابخانه هایی که معرفی شد به راحتی می توان صورت را تشخیص داده و با توجه به مختصاتی که به ما میدهد دور آن مستطیلی به رنگ قرمز می کشیم و این ناحیه را جدا کرده و در متغیری ذخیره می کنیم و با استفاده از دستورات دیگر در صورت های شناخته شده به دنبال دهن و چشم ها میگردیم.

دلیل جدا کردن صورت این می باشد که دقت کار را افزایش دهیم زیرا تابع ها و کتابخانه های استفاده شده دقیق نمی باشند و با این کار احتمال خطا در عملکرد آن ها را کاهش می دهیم.

و سپس بعد از پیدا کردن چشم ها دور آن مستطیل سبز و دور دهن مستطیل آبی می کشیم.

فیلمی از عملکرد کد ضمیمه شده است با نام CA2_p1 البته عملکرد آن مطلوب نمی باشد که به دلیل دقیق نبودن توابع و کتابخانه های استفاده شده می باشد. فایل کد مورد نظر نیز با نام facetracker.py می باشد. که در ضمیمه می باشد.

۲. شبیه ساز ربات دو درجه آزادی در سیمولینک متلب

در این قسمت ابتدا باید قسمت فیزیکی ربات را طراحی کرده که با توجه به اجزای سیمولینک طراحی زیر را داریم:

که می توان با مراجعه به فایل و وارد شدن در subsystem اجزای ان را به دقت بررسی کرد.

بعد از این مرحله باید آن را با استفاده از اجزی دیگر کنترل کرد مانند مدار زیر:

که از کنترل کننده های PID نیز باید استفاده کرد و برای تیون کردن ضرایب آن می توان از خود متلب استفاده کرد. حال به بررسی سینماتیک معکوس ربات که عینا در جلسه ۱۱ درس آمده است می پردازیم:

$$\frac{x_{1} \cdot (x_{1} \cdot x_{1})}{y_{2} \cdot (x_{1} \cdot x_{1}) + (x_{1} \cdot x_{1})} = \frac{1}{y_{2} \cdot (x_{1} \cdot x_{1}) + (x_{2} \cdot x_{1} \cdot x_{1} \cdot x_{1})}{y_{2} \cdot (x_{1} \cdot x_{1} \cdot x_{1} \cdot x_{1} \cdot x_{1}) + (x_{2} \cdot x_{1} \cdot x_{1} \cdot x_{1})} = \frac{1}{y_{2} \cdot (x_{2} \cdot x_{1} \cdot x_{1}) + (x_{2} \cdot x_{1} \cdot x_{1} \cdot x_{1})} = \frac{1}{y_{2} \cdot (x_{2} \cdot x_{1} \cdot x_{1}) + (x_{2} \cdot x_{1} \cdot x_{1} \cdot x_{1})} = \frac{1}{y_{2} \cdot (x_{2} \cdot x_{1} \cdot x_{1$$

$$C = \frac{1-1^2}{1+1^2}$$

$$C = \frac{1-1^2}{1+1^2}$$

$$C = \frac{1-1^2}{1+1^2}$$

$$C = \frac{1-1^2}{1+1^2}$$

$$t = \frac{2b \pm \sqrt{4b^2 - 4(c+a)(c-a)}}{2(a+c)} = \frac{b \pm \sqrt{b^2 - c^2 + a^2}}{a+c-a=-c}$$

$$t \xrightarrow{t_1^+ \to \theta_1^+ \to \theta_2^+}$$

$$t = \tan(\frac{\theta_1}{2}) \to \theta_1^- \to \theta_2^-$$

$$t = \tan(\frac{\theta_1}{2}) \to \theta_1^- \to \theta_2^-$$

$$t = \tan(\frac{\theta_1}{2}) \to \theta_1^- \to \theta_2^-$$

$$t = atan2\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right)$$

تعداد حواب IKP این ربات ارجه از اری ، (۲) است.

$$\begin{cases} X - \ell_1 \cos \theta_1 = \ell_2 \cos (\theta_1 + \theta_2) \\ y - \ell_1 \sin \theta_1 = \ell_2 \sin (\theta_1 + \theta_2) \end{cases}$$

$$\begin{cases} Cos(\theta_1 + \theta_2) = \frac{x - \ell_1 c}{2} & \\ Sin(\theta_1 + \theta_2) = \frac{y - \ell_2 c}{2} & \\ \end{cases}$$

که با توجه به اطلاعات آورده شده می توان تابع دومی را به شکل زیر نوشت:

```
2 -
       a = 2*11*xd;
 3 -
       b = 2*11*yd;
       c = -12^2 + 11^2 + xd^2 + yd^2;
 5 -
       if a == -c
 6 -
          t = (c-a)/b/2;
 7 -
          teta1 = atan2(((2*t)/(1+t^2)), ((1-t^2)/(1+t^2)));
8 -
          teta2 = atan2(((yd - 11*sin(teta1))/12), ((xd - 11*cos(teta1))/12))-teta1;
 9
       else
10 -
          t = (b-sqrt(b^2+a^2-c^2))/(a+c);
11 -
          teta1 = atan2(((2*t)/(1+t^2)), ((1-t^2)/(1+t^2)));
12 -
          teta2 = atan2(((yd - 11*sin(teta1))/12),((xd - 11*cos(teta1))/12))-teta1;
13
      ∟end
```

و برای تابع اولی نیز داریم:

و حال اگر تمام اجزای گفته شده به درستی در مدار قرار بگیرند به درستی کار می کند که عملکرد آن در فیلم CA2.slx می باشد.