

EAS®-Compact®

Backlash-free Torque Limiting Clutches

We safeguard the movements of this world

Specialists for power transmission for more than a century

mayr® power transmission is one of the most traditional and yet most innovative German companies in the field of power transmission. From modest beginnings in the year 1897, the family enterprise from the Allgäu region has developed into world market leader. Today, 550 employees work at the headquarters in Mauerstetten; more than 1000 employees work for the company worldwide.

Unsurpassed - our standard range

mayr® power transmission offers an extensive variety of torque limiters, safety brakes, backlash-free shaft misalignment compensation couplings and high-quality DC drives. Also when it comes to customer-specific requirements, the company possesses the expertise to develop customized and economical solutions. This is why numerous renowned machine manufacturers trust in holistic solutions by mayr® power transmission.

Available worldwide

With eight subsidiaries in Germany, sales offices in the USA, France, Great Britain, Italy, Singapore and Switzerland as well as 36 additional country representatives, $mayr^{\otimes}$ is available in all important industrial areas, guaranteeing optimum customer service around the globe.

Never compromise on safety

We make no compromises where safety is concerned. Only top products of a perfect quality guarantee that no people are injured or machines damaged in case of operational malfunctions, collisions and other hazardous situations. The safety of your employees and machines is our motivation to always provide the best and most reliable clutches, couplings or brakes.

mayr® power transmission holds numerous ground-breaking patents, and is the global market or technological leader for

- application-optimised safety brakes, for example for passenger elevators, stage technology and gravity loaded axes
- torque limiters to protect against expensive overload damage and production losses and
- backlash-free servo couplings.

Tradition and innovation – the best of both worlds

Tradition and innovation do not contradict each other - on the contrary. They are the two supporting pillars which have guaranteed stability and reliability for generations. Long-term stability, independence as well as a good reputation and satisfied customers are important values for a family enterprise rich in tradition.

Therefore, we place emphasis on:

- Tested product quality
- Optimum customer service
- Comprehensive know-how
- Global presence
- Successful innovations
- Effective cost management

Following our own objective of always offering our customers the technologically most advanced and economical solution, we have been able to gain the trust of many leading industrial companies from all branches and from all over the world as a reliable partner.

Place your trust in our know-how and our more than 50 years of experience in torque limiters, safety brakes and shaft couplings.

Tested quality and reliability

mayr® products are subject to meticulous quality inspections. These include quality assurance measures during the construction process as well as a comprehensive final inspection. Only the best, tested quality leaves our factory. All products are rigorously tested on calibrated test stands, and adjusted precisely to the requested values. An electronic database in which the measurement values are archived together with the associated serial numbers guarantees 100 % traceability. On request, we confirm the product characteristics with a test protocol.

The certification of our quality management according to DIN EN ISO 9001:2000 confirms the quality-consciousness of our colleagues at every level of the company.

EAS®-Compact® - the economically viable protection for machines

Function

If the set limit torque is exceeded, the clutch disengages. The torque drops immediately. A mounted limit switch registers the disengagement movement and switches off the drive. The limit switch signal can also be used for further control functions.

After the malfunction has been rectified, the EAS®-Compact® ratchetting clutches and the EAS®-Compact® synchronous clutches automatically re-engage (for a detailed description of the re-engagement behaviour, see page 5). EAS®-Compact® overload clutches separate the input and the output side completely and remain in this state until they are intentionally re-engaged by hand or via a suitable device. A detailed description of the overload clutches starts on page 26.

The EAS®-Compact® matrix for success

Product characteristics	Your advantages	Your benefits
Backlash-free torque transmission	Long lifetime, Low wear	Lowest maintenance effort
Safe, readable torque adjustment	Simple installation and operation	Time-saving during initial operation
High performance density	Low mass moment of inertia, compact construction	High machine dynamic
Convenient torque course in the drive line on overload	Optimised dimensioning	Effective and efficient machine construction

EAS®-Compact® - the backlash-free principle

Backlash means:

- The torsional angle between the input and output of the clutch
- Also known an "torsional backlash"
- Not to be confused with the transmission backlash from the shaft onto the hub
- At mayr[®], backlash-free means: Backlash→ 0 (see diagram)

EAS®-Compact®/EAS®-NC Ratchetting clutch

- When the set limit torque is reached, the clutch disengages; the torque drops immediately.
- The clutch ratchets.
- After the cause of overload has been removed, the clutch automatically re-engages into the next of the series of ball detents.
- The clutch is ready for operation again.

EAS®-Compact®/EAS®-NC Synchronous clutch

- When the set limit torque is reached, the clutch disengages; the torque drops immediately.
- After the cause of overload has been removed, the clutch re-engages automatically after 360 angular degrees. Other cycle sequences, for example 180 degrees, are also available.
- The clutch is ready for operation again.

EAS®-Compact® overload clutch

If overload occurs, the EAS®-Compact® overload clutches separate the input and output almost residual torque-free. Therefore, they are the ideal protective element for fast-running drives and high mass moments of inertia.

A detailed description starts on page 26.

Contents

	Page
EAS®-Compact® ratchetting clutches	
EAS®-Compact® synchronous clutches	;
Torque range: 5 to 1500 Nm	
Description	5
Summary of constructional designs	6
Data sheets	
EAS®-Compact® short hub	8
EAS®-Compact® double bearing design EAS® Compact® long protygging but	10
 EAS®-Compact® long protruding hub EAS®-Compact® with steel bellows coupling 	12 14
EAS®-Compact® torsionally rigid	16
EAS®-Compact® lastic backlash-free	18
For small torques:	
EAS®-NC ratchetting clutches	
EAS®-NC synchronous clutches	
Torque range: 0.65 to 15 Nm	
Data sheets	
EAS®-NC short hub	20
EAS®-NC long protruding hub	20
 EAS®-NC double bearing design 	22
EAS®-NC with steel bellows coupling	24
EAS®-Compact® overload clutches	
Torque range: 5 to 3000 Nm	
Description	26
Summary of constructional designs	27
Data sheets	
EAS®-Compact® overload short hub EAS® Compact® overload loan quantum discussions. TAS® Compact® overload loan quantum discussions. TAS® Compact® overload loan quantum discussions.	28
 EAS®-Compact® overload long protruding hub EAS®-Compact® overload torsionally rigid, 	30
Sizes 01 to 3	32
EAS®-Compact® overload torsionally rigid,	
Sizes 4 and 5	34
EAS®-Compact® overload lastic backlash-free EAS® Compact® systematic backlash.	36
EAS®-Compact® overload lastic	40
EAS®-Compact® Options	42
Technical Explanations	44
Frictionally-Locking Transmittable Torques	50
Limit Switch	51
Installation Examples	54

Summary of constructional designs EAS®-Compact® ratchetting clutch/synchronous clutch

EAS®-Compact® short hub

Torque:

5 to 1500 Nm

Sizes 01 to 4 Type 490._ _ _.0

Also available in rustproof design! Flange clutch for direct installation of the drive element with the resulting radial force approximately in the bearing

See installation example, Fig. 1, page 54

With cone bushing With keyway

Type 490._1_.0 Type 490._2_.0

Page 8

EAS®-Compact® double bearing design

Torque: 5 to 1500 Nm

Sizes 01 to 4 Type 490.___.2 Flange clutch with a stable, double bearing for the drive

With cone bushing Type 490._1_.2 Type 490._2_.2 With keyway

Page 10

EAS®-Compact® long protruding hub

Torque: 5 to 1500 Nm

Sizes 01 to 4 Type 490.___.1 Flange clutch for very wide drive elements or elements with a very small diameter

Suitable bearings for the drive element are ball bearings, needle bearings or plain bearings.

See installation example, Fig. 2, page 54

With cone bushing With keyway

Page 12

EAS®-Compact® with steel bellows coupling

Torque: 5 to 350 Nm

Sizes 01 to 3 Type 493.___.0 Double shaft design with a torsionally rigid steel bellows

Compensation for axial, radial and angular shaft misalignments

See installation example, Fig. 4, page 54

Hub designs:

EAS®-side/steel bellows-side Cone bushing/cone bushing Key hub/key hub Cone bushing/clamping hub

Type 493._1_.0 Type 493._2_.0 Type 493._3_.0

Type 490._1_.1

Type 490._2_.1

Page 14

EAS®-Compact® torsionally rigid

Torque: 5 to 1500 Nm

Sizes 01 to 4 Type 496._ _ _.0

- Double shaft design with a robust disk pack coupling
- Compensation for axial, radial and angular shaft misalignments
- High torsional rigidity

Hub designs:

EAS®-side/torsionally rigid side Cone bushing/shrink disk hub Key hub/clamping hub Key hub/key hub

Type 496._1_.0 Type 496._2_.0 Type 496._2_.0

Page 16

Summary of constructional designs EAS®-Compact® ratchetting clutch/synchronous clutch

Torque: 5 to 1200 Nm

Sizes 01 to 4
Type 494._ _ _._

- Double shaft design with a flexible, backlash-free coupling
- Compensation for axial, radial and angular shaft misalignments
- High damping characteristics
 See installation example, Fig. 3, page 54

Hub designs:

EAS®-side/flexible side
Cone bushing/clamping hub
Cone bushing/shrink disk hub
Key hub/key hub

Type 494._0_._ Type 494._1_._ Type 494._2_._

Page 18

Summary of constructional designs EAS®-NC miniature clutch

EAS®-NC short hub EAS®-NC long protruding hub

Torque: 0.65 to 15 Nm

Sizes 03 and 02 Type 450._ _ _._

EAS®-NC short hub

 Flange clutch for direct installation of drive elements with the resulting radial force approximately in the bearing centre

With cone bushing Type 450._1_.0 With keyway Type 450._2_.0

EAS®-NC long protruding hub

 Flange clutch for very wide drive elements or elements with a very small diameter

With cone bushing Type 450._1_.1 With keyway Type 450._2_.1

Page 20

EAS®-NC double bearing design

Torque: 0.65 to 15 Nm

Sizes 03 and 02 Type 450.___.2 Flange clutch with a stable, double bearing for the drive element

With cone bushing With keyway

Type 450._1_.2 Type 450._2_.2

Page 22

EAS®-NC with steel bellows coupling

Torque: 0.65 to 15 Nm

Sizes 03 and 02 Type 453._ _ _.0

- Double shaft design with a torsionally rigid steel bellows coupling
- Compensation for axial, radial and angular shaft misalignments

Hub designs:

EAS®-side/steel bellows-side Cone bushing/cone bushing Key hub/key hub

Type 453._1_.0 Type 453._2_.0

Page 24

EAS®-Compact® short hub with cone bushing

Type 490._1_.0 Sizes 01 to 4

For information on rustproof designs, please order catalogue!

EAS®-Compact® short hub with keyway

A Contactless limit switch

Type 490._2_.0 Sizes 01 to 4

For information on rustproof designs, please order catalogue!

Orde	r N	Numb	er														
					with cone bushing with keyway		•		•		Ratchetting clutch ³⁾ Synchronous clutch		Torque adjustment value (Optional)			;	
	/	4	9	0					0	/		/	_	/		/ _	_
																4	_
Sizes 01 to 4		Torque medium high very hig maximu	gh			5 6 7 8					Hub bore Ø d ^{H7} Ø d _P ^{H7}			pag	With mit switch see ges 51 – 53 (Option)	adju: s paç	I torque stment see ge 42 otion)

Example: Order number 1 / 490.620.0 / 25 / 60 / limit switch 055.002.5 / radial adjustment

Stroke

- 1) See Technical Data, limit torque for overload $\rm M_{_{\rm G}}$
- 2) Max. torque range only available as synchronous clutch, speed < 250 rpm
- 3) Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)

Tachnical Data	Technical Data					Size 1)							
recrimical Data					0	1	2	3	4				
	Type 490.50	M _G	[Nm]	5 – 12.5	10 - 25	20 - 50	40 – 100	70 – 175	120 - 300				
Limit torques for	Type 490.60	M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	140 – 350	240 - 600				
overload 1) 2)	Type 490.70	\mathbf{M}_{G}	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	280 – 700	480 –1200				
	Type 490.8_ 5.0 11)	\mathbf{M}_{G}	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	350 – 875	600 –1500				
Max. speed		n _{max}	[rpm]	4000	3000	2500	2000	1200	800				
Thrust washer stroke on overload [mm]		1.2	1.5	1.8	2.0	2.2	2.5						

Mass mamonts of	f inartia and w	,oio	uhto			Si	ze	Size							
Mass moments of	i inertia and w	veig	Jiils	01	0	1	2	3	4						
Type 49010			[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858	29.432						
Hub-side	Type 49020	ı	[10 ⁻³ kgm ²]	0.205	0.505	1.302	2.630	6.329	28.443						
Pressure flange-side	Type 49010	1	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649	6.690						
Pressure liange-side	Type 49020	ı	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649	6.690						
Weights	Type 49010	m	[kg]	0.68	1.14	1.98	2.88	4.59	10.63						
weignis	Type 49020	m	[kg]	0.63	1.02	1.75	2.55	4.07	10.06						

Tanaianing agray	vo and aarow on h		_	Size							
rensioning screw	Tensioning screws and screw-on bores				0	1	2	3	4		
_	Number, dimensions	М	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8		
Tensioning screws in cone bushing	Wrench opening	SW	[mm]	7	7	7	8	10	13		
in conc buoming	Tightening torque	T _A	[Nm]	4	4	4	8	12	25		
Screw-on bores	Number, dimensions s [mm			8 x M4	8 x M5	8 x M6	8 x M6	8 x M8	8 x M10		
in pressure flange					Screws quality class 12.9 must be used to secure the drive element.						

Dimensions				Si	ze		
Dimensions [mmj	01	0	1	2	3	4
Α		12	13.5	16	17	20.5	46
A ₁	A,			9	10	12	16
a ⁵⁾		5	7	9	10	10	12
a _o		8	11	14	16	18	21
b		6	7	9	10	12	15
E		65	80	95	110	130	166
e _{h5} ⁶⁾	e _{h5} ⁶⁾ F		62	75	90	100	130
F			67	82	97	117	150
F ₂		70	85	100	115	135	166
f		38	44	56	70	84	100
f ₂		5	5	5	6	7	-
f ₄		50	55	70	84	100	-
Minimum	9 ₄	34	39	42	48	53	93
shaft length	9 ₇	31	36	48	49	62	78
h		40	48	59	64	75	115
k		2.8	2.8	3.5	4.0	4.0	-
k ₁	k ₁		2.8	2.8	3.5	4.0	5.3
L ⁷⁾	L ⁷⁾			67	73	86	130
m		56	71	85	100	116	150

Paras Imr	Bores [mm]		Size									
Dores [iiii	11]	01	0	1	2	3	4					
d ^{2) 3) 4)}	d _{min}	10	15	22	32	35	40					
u	d _{max}	20	25	35	45	55	65					
(2) 10	d _{P min} 8)	12	15	22	28	32	40					
u _p · ·	d _{P max} 9)	20	25	30	40	50	65					

- Further sizes for smaller and larger torques available on request
 Please observe the shaft load in max. torque range.
 Shaft tolerance up to Ø 38 hg, over Ø 38 hg
 Transmittable torques available with smaller bores on request

- nansimuable torques available with smaller bores on request
 Mounting tolerance + 0.1
 Tolerance user-side H7
 Dimensions in untensioned condition (shorter in tensioned condition)
 Smaller bores for low torques available on request
- 9) Larger bores available on request
- 10) The position of the keyway to the mounting bore "s" in the pressure flange is not defined. Defined position available on request
- 11) Maximum speed: 250 rpm

EAS®-Compact® double bearing design with cone bushing

Type 490._1_.2 Sizes 01 to 4

EAS®-Compact® double bearing design with keyway

Type 490._2_.2 Sizes 01 to 4

Example: Order number 1 / 490.610.2 / 25 / 60 / limit switch 055.002.5 / radial adjustment

- 1) See Technical Data, limit torque for overload M_{G}
- 2) Max. torque range only available as synchronous clutch, speed < 250 rpm
- 3) Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)

Tachnical Data	Technical Data					Size 1)							
rechnical Data	Technical Data				0	1	2	3	4				
	Type 490.52	M _G	[Nm]	5 – 12.5	10 - 25	20 - 50	40 – 100	70 – 175	120 - 300				
Limit torques for	Type 490.62	M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	140 – 350	240 - 600				
overload 1) 2)	Type 490.72	M _G	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	280 – 700	480 – 1200				
	Type 490.8_ 5.2 ¹¹⁾	M _G	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	350 – 875	600 – 1500				
Max. speed		n _{max}	[rpm]	4000	3000	2500	2000	1200	800				
Thrust washer stroke on overload [mm]		[mm]	1.2	1.5	1.8	2.0	2.2	2.5					

Masa mamanta a	f inartia and w	, o i o	uhto			Si	ze		
wass moments o	Mass moments of inertia and weights					1	2	3	4
Hub-side	Type 49012	ı	[10 ⁻³ kgm ²]	0215	0.552	1.450	2.998	7.081	30.990
Hub-side	Type 49022		[10 ⁻³ kgm ²]	0.209	0.526	1.364	2.782	6.552	30.000
Draggura flance side	Type 49012	ı	[10 ⁻³ kgm ²]	0.100	0.273	0.799	1.675	3.162	8.570
Pressure flange-side	Type 49022	ı	[10 ⁻³ kgm ²]	0.100	0.273	0.799	1.675	3.162	8.570
Weights	Type 49012	m	[kg]	0.79	1.35	2.35	3.45	5.27	11.96
weights	Type 49022	m	[kg]	0.74	1.23	2.12	3.12	4.75	11.35

Tanaianing cares	ro and careur on h	. O PO	_	Size							
rensioning screw	Tensioning screws and screw-on bores			01	0	1	2	3	4		
_	Number, dimensions	M	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8		
Tensioning screws in cone bushing	Wrench opening	SW	[mm]	7	7	7	8	10	13		
	Tightening torque	T _A	[Nm]	4	4	4	8	12	25		
Screw-on bores	Number, dimensions s [mm]			8 x M4	8 x M5	8 x M6	8 x M6	8 x M8	8 x M10		
in pressure flange					Screws quality class 12.9 must be used to secure the drive element.						

Dimensions [n		Size 01 0 1 2 3 4										
Α	A		0	1	2	3	4					
		12	13.5	16	17	20.5	46					
A ₁	7	8	9	10	12	16						
a ₂ ⁵⁾		14	19	25	28	28	34					
a ₃		17	23	30	34	36	43					
b		6	7	9	10	12	15					
E		65	80	95	110	130	166					
e _{h5} ⁶⁾		47	62	75	90	100	130					
F		61.5	67	82	97	117	150					
F ₂		70	85	100	115	135	166					
f		38	44	56	70	84	100					
f ₂		5	5	5	6	7	-					
f ₄		50	55	70	84	100	-					
Minimum	g ₃	40	48	63	67	80	100					
shaft length	g ₄	34	39	42	48	53	93					
$h_{_2}$		49	60	75	82	93	137					
k		2.8	2.8	3.5	4.0	4.0	-					
k ₁	k ₁		2.8	2.8	3.5	4.0	5.3					
L ₂ ⁷⁾	L ₂ ⁷⁾			83	91	104	152					
m				85	100	116	150					

Paras Imr	Bores [mm]	Size									
Dores [iiii	'',	01	0	1	2	3	4				
d ^{2) 3) 4)}	d _{min}	10	15	22	32	35	40				
u -, -, .,	d _{max}	20	25	35	45	55	65				
(2) 10	d _{P min} 8)	12	15	22	28	32	40				
d _P ^{2) 10)}	d _{P max} 9)	20	25	30	40	50	65				

- 1) Further sizes for smaller and larger torques available on request

- 1) Further sizes for smaller and larger torques available on request
 2) Please observe the shaft load in max. torque range.
 3) Shaft tolerance up to Ø 38 he, over Ø 38 he
 4) Transmittable torques available with smaller bores on request
 5) Mounting tolerance + 0.1
 6) Tolerance uper side L17

- 7) Tolerance user-side H7
 7) Dimensions in untensioned condition (shorter in tensioned condition)
 8) Smaller bores for low torques available on request
- 9) Larger bores available on request
- 10) The position of the keyway to the mounting bore "s" in the pressure flange is not defined. Defined position available on request
- 11) Maximum speed: 250 rpm

EAS®-Compact®long protruding hub with cone bushing

Type 490._1_.1 Sizes 01 to 4

EAS®-Compact® long protruding hub with keyway

Type 490._2_.1 Sizes 01 to 4

Example: Order number 1 / 490.610.1 / 25 / 60 / limit switch 055.002.5 / radial adjustment

- 1) See Technical Data, limit torque for overload $\rm M_{\rm G}$
- 2) Max. torque range only available as synchronous clutch, speed < 250 rpm
- 3) Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)

Technical Data				Size 1)						
recrimical Data				01	0	1	2	3	4	
Type 490.51		M _G	[Nm]	5 – 12.5	10 – 25	20 - 50	40 – 100	70 – 175	120 - 300	
Limit torques for	Type 490.61	M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	140 – 350	240 - 600	
overload 1) 2)	Type 490.71	M _G	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	280 – 700	480 – 1200	
	Type 490.8_ 5.1 11)	M _G	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	350 – 875	600 – 1500	
Max. speed		n _{max}	[rpm]	4000	3000	2500	2000	1200	800	
Thrust washer stroke on overload [mm]		1.2	1.5	1.8	2.0	2.2	2.5			

Mass mamonts o	f inartia and v		abto	Size						
Mass moments of	i inerua and v	vei	gnis	01	0	1	2	3	4	
Hub-side	Type 49011	ı	[10 ⁻³ kgm ²]	0.225	0.588	1.491	3.105	7.350	30.890	
Hub-side	Type 49021	ı	[10 ⁻³ kgm ²]	0.219	0.562	1.405	2.889	6.851	29.900	
Dungayung flamma aida	Type 49011	ı	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649	6.690	
Pressure flange-side	Type 49021	ı	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649	6.690	
Weights	Type 49011	m	[kg]	0.78	1.36	2.26	3.34	5.18	11.65	
weignts	Type 49021	m	[kg]	0.73	1.24	2.04	3.00	4.66	11.04	

Tanaianing agray	ro and saraw on h		_			Si	ze		
rensioning screw	vs and screw-on b	ore	5	01	0	1	2	3	4
	Number, dimensions	М	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8
Tensioning screws in cone bushing	Wrench opening	SW	[mm]	7	7	7	8	10	13
in conc bushing	Tightening torque	T _A	[Nm]	4	4	4	8	12	25
Screw-on bores	Number, dimensions	s	[mm]	8 x M4	8 x M5	8 x M6	8 x M6	8 x M8	8 x M10
in pressure flange				Sci	rews quality cla	ss 12.9 must be	used to secure	the drive elem	ent.

Dimensions [mm1			Si	ze		
Dimensions [01	0	1	2	3	4
Α		12	13.5	16	17	20.5	46
A ₁		7	8	9	10	12	16
a ⁵⁾	a ⁵⁾			9	10	10	12
a ₁		6.5	8.75	11.5	13	14	16
b		6	7	9	10	12	15
C,		33	43	55	67	73	76
E		65	80	95	110	130	166
e _{h5} 6)		47	62	75	90	100	130
F		61.5	67	82	97	117	150
F ₂		70	85	100	115	135	166
f		38	44	56	70	84	100
f _{1 h6}		30	40	45	55	65	85
f ₂		5	5	5	6	7	-
f ₄		50	55	70	84	100	-
Minimum	g ₄	34	39	42	48	53	93
shaft length	g ₈	56	68	89	100	117	133
h ₁		65	80	100	115	130	170
k		2.8	2.8	3.5	4.0	4.0	-
k ₁	k ₁		2.8	2.8	3.5	4.0	5.3
L ₁ ⁷⁾	72	88	108	124	141	185	
m		56	71	85	100	116	150

Paras Imi	Bores [mm]	Size								
Dores [iiii	iiij	01	0	1	2	3	4			
d ^{2) 3) 4)}	d _{min}	10	15	22	32	35	40			
u ¬¬¬	d _{max}	20	25	35	45	55	65			
al 2) 10)	d _{P min} 8)	12	15	22	28	32	40			
d _P ^{2) 10)}	d _{P max} 9)	20	25	30	40	50	65			

- 1) Further sizes for smaller and larger torques available on request

- Furtner sizes for smaller and larger torques available on request
 Please observe the shaft load in max. torque range.
 Shaft tolerance up to Ø 38 hs, over Ø 38 hs
 Transmittable torques available with smaller bores on request
 Mounting tolerance + 0.1
 Tolerance user-side H7

- 7) Dimensions in untensioned condition (shorter in tensioned condition)
 8) Smaller bores for low torques available on request
- Smaller bores for low torques available on request
- 9) Larger bores available on request
- 10) The position of the keyway to the mounting bore "s" in the pressure flange is not defined. Defined position available on request
- 11) Maximum speed: 250 rpm

EAS®-Compact® with steel bellows coupling

Type 493._ _ _ .0 Sizes 01 to 3

EAS®-side cone bushing, Steel bellows-side cone bushing Type 493._1_.0

EAS®-side cone bushing, Steel bellows-side clamping hub Type 493._3_.0

EAS®-side key hub, Steel bellows-side key hub Type 493._2_.0

Example: Order number 1 / 493.615.0 / 22 / 25 / 60 / limit switch 055.002.5 / radial adjustment

- 1) See Technical Data, limit torque for overload M_a
- 2) Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)

Technical Data						Size 1)		
recrimical Data				01	0	1	2	3
Limit torques for	Type 493.50	M _G	[Nm]	5 – 12.5	10 – 25	20 - 50	40 – 100	70 – 175
overload 1)	Type 493.60	M _G	[Nm]	10 – 25	20 – 50	40 – 100	80 – 200	140 – 350
Max. speed n			[rpm]	4000	3000	2500	2000	1200
Thrust washer stroke			[mm]	1.2	1.5	1.8	2.0	2.2
Nominal torques, stee	el bellows coupling	T _{KN}	[Nm]	50	100	200	350	600
Dawe ittad	axial	ΔK_{a}	[mm]	0.4	0.6	0.8	1.0	1.0
Permitted misalignments	radial	ΔK_r	[mm]	0.15	0.15	0.20	0.25	0.30
inisangiments	angular	ΔK _w	[°]	2	2	2	2	2

Masa mamanta d	of inautic and w	:.	.lata			Size		
Mass moments of	oi inerua and w	/eiç	jnts	01	0	1	2	3
	Type 49310	1	[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858
EAS®-hub-side	Type 49320	1	[10 ⁻³ kgm ²]	0.205	0.505	1.302	2.630	6.359
	Type 49330	1	[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858
	Type 49310	ı	[10 ⁻³ kgm ²]	0.269	0.753	1.764	3.602	7.789
Steel bellows-side	Type 49320	ı	[10 ⁻³ kgm ²]	0.249	0.690	1.546	3.018	6.818
	Type 49330	1	[10 ⁻³ kgm ²]	0.286	0.789	1.772	3.773	8.087
	Type 49310	m	[kg]	1.09	1.88	3.08	4.60	7.19
Weights	eights Type 49320		[kg]	1.04	1.76	2.85	4.27	6.90
	Type 49330	m	[kg]	1.22	1.91	3.10	4.65	7.12

Tonoioning corou	vo					Size		
Tensioning screv	v5			01	0	1	2	3
la saus broskins	Number, dimensions	М	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6
In cone bushing EAS®-side	Wrench opening	SW	[mm]	7	7	7	8	10
EAS -Side	Tightening torque			4	4	4	8	12
la saus brodias	Number, dimensions	M ₁	[mm]	4 x M4	6 xM5	6 x M6	6 x M8	6 x M8
In cone bushing steel bellows-side	Wrench opening	SW ₁	[mm]	7	8	10	13	13
Steel Dellows-Side	Tightening torque	T _A	[Nm]	3	5	9.5	17	17
la alamaina bub	Number, dimensions	M_3	[mm]	1 x M5	1 x M6	1 x M6	1 x M8	1 x M10
In clamping hub steel bellows-side	Wrench opening SI		[mm]	4	5	5	6	8
steel bellows-side	Tightening torque	T _A	[Nm]	10	18	18	43	87

Dimension	o [mm]			Size		
Dimension	s [mm]	01	0	1	2	3
Α		12	13.5	16	17	20.5
A ₁		7	8	9	10	12
C ₃		45	53	64	70	81
D ₁			60	70	81	98
$D_{\!\scriptscriptstyle 2}$		47	60	71	81	98
D_3		50	60	71	82	98
E		65	80	95	110	130
F		61.5	67	82	97	117
F ₂		70	85	100	115	135
f		38	44	56	70	84
f_2		5	5	5	6	7
f ₄		50	55	70	84	100
Minimum	g_4	34	39	42	48	53
shaft length	$g_{\scriptscriptstyle 5}$	24	27	29	32	35
onart longth	l ₃	24	28	28	36	40
h		40	48	59	64	75
k		2.8	2.8	3.5	4.0	4.0
k ₁		2.8	2.8	2.8	3.5	4.0
L 4)		47	56	67	73	86
L ₁ 4)		93	109	125.5	138	164
L ₂		77.5	92	107.5	119	140.5
3		102	119	133	150	177
I ₁ 4)		27.5	29	33	37	45
l ₂		25	27	29	36	44

Boro	Bores [mm]				Size		
БОГЕ	:5 [IIIII	IJ	01	0	1	2	3
de	d ^{2) 3)}	d _{min}	10	15	22	32	35
EAS®-side	u //	d _{max}	20	25	35	45	55
S	d	d _{P min}	12	15	22	28	32
7	d _P	d _{P max}	20	25	30	40	50
.	d ₁ ^{2) 3)}	d _{1 min}	9	12	15	22	32
Š	u ₁ / · ·	d _{1 max}	20	25	35	42	50
bellc	a	d _{2 min}	9	12	15	22	32
Sic	d ₂	d _{2 max}	20 5)	25 ⁶⁾	35 ⁷⁾	42 8)	50
Steel bellows side	al	d _{3 min}	12	15	25	30	35
Ġ	d ₃	d _{3 max}	25	32	42	45	55

- 1) Further sizes for smaller and larger torques available on request

- Further sizes for smaller and larger torques available on request
 Shaft tolerance up to Ø 38 hg, over Ø 38 hg
 Transmittable torques available with smaller bores on request
 Dimensions in untensioned condition (shorter in tensioned condition)
 Up to Ø 18 keyway acc. DIN 6885/1, over Ø 18 keyway acc. DIN 6885/3
 Up to Ø 22 keyway acc. DIN 6885/1, over Ø 22 keyway acc. DIN 6885/3
 Up to Ø 33 keyway acc. DIN 6885/1, over Ø 33 keyway acc. DIN 6885/3
 Up to Ø 38 keyway acc. DIN 6885/1, over Ø 38 keyway acc. DIN 6885/3

EAS®-Compact® torsionally rigid

EAS®-side cone bushing, ROBA®-DS-side shrink disk hub Type 496._1_.0, Sizes 01 to 4 Type 496._ _ _.0 Sizes 01 to 4

All EAS®-Compact® clutches can be combined with almost all components of the ROBA®-DS backlash-free shaft coupling. The Types shown here represent only a selection of the most established designs.

For further combination possibilities, see page 43.

We are happy to advise you on the dimensioning and configuration of your optimum clutch.

EAS®-side key hub, ROBA®-DS-side clamping hub with keyway Type 496._2_.0, Sizes 01 and 0

EAS®-side key hub, ROBA®-DS-side key hub Type 496._2_.0, Sizes 1 to 4

The missing dimensions (Øf, ØF and ØF,) are identical to Type 496._2_.0

Order Number

EAS®-side Cone bushing Key hub ROBA®-DS-side Shrink disk hub Clamping hub ⁴⁾ with keyway (Sizes 01 – 0) / key hub (Sizes 1 – 4)

Ratchetting clutch ³⁾
Synchronous clutch

Torque adjustment value (Optional) With limit switch see pages 51 – 53 (Option)

9 4 6 Hub 2 **Sizes** Torque range 1) Hub 1 Radial torque 01 medium 5 adjustment bore bore 6 to high see page 42 $Ø d^{H7}$ $Ø d_1^{H7}$ 7 4 very high (Option) $Ød_2^{H7}$ $Ød_D^{H7}$ 8 maximum 2)

Example: Order number 1 / 496.625.0 / 22 / 25 / 60 / limit switch 055.002.5 / radial adjustment

1

2

- 1) See Technical Data, limit torque for overload $\rm M_{_{\rm G}}$
- Max. torque range only available as synchronous clutch, speed < 250 rpm
- 3) Standard ratchetting division is 15°; other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)
- 4) Clamping hub also available without keyway (Sizes 01-0)

Technical Data						Size 1)			
recrimical Data				01	0	1	2	3	4
	Type 496.50	$M_{\rm G}$	[Nm]	5 – 12.5	10 - 25	20 - 50	40 – 100	70 – 175	120 - 300
	Type 496.60	M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	140 – 350	240 - 600
	Type 496.70	$M_{\rm G}$	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	280 – 700	480 – 1200
	Type 496.8_ 5.0 ⁵⁾	$M_{\rm G}$	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	350 – 875	600 – 1500
Max. speed		n _{max}	[rpm]	4000	3000	2500	2000	1200	800
Thrust washer stroke of	on overload		[mm]	1.2	1.5	1.8	2.0	2.2	2.5
Nominal torques, torsion	onally rigid coupling	T _{KN}	[Nm]	100	150	300	650	1100	1600
Downittod	axial ⁶⁾		[mm]	0.9	1.1	0.8	1.1	1.3	1.5
Permitted misalignments	radial	ΔK_r	[mm]	0.20	0.20	0.20	0.25	0.30	0.30
inioangimiento	angular		[°]	2.0	2.0	1.4	1.4	1.4	1.4

Mass mamonto	Mass moments of inertia and weights			Size						
wass moments c	oi inertia and w	veiç	jiits	01	0	1	2	3	4	
EAS®-hub-side	Type 49610	1	[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858	29.432	
EAS*-Hub-side	Type 49620	ı	[10 ⁻³ kgm ²]	0.205	0.505	1.302	2.630	6.359	28.443	
ROBA®-DS-side	Type 49610	1	[10 ⁻³ kgm ²]	0.849	2.395	2.915	9.543	21.443	38.996	
hoda - Do-side	Type 49620	I	[10 ⁻³ kgm ²]	0.709	2.086	2.417	7.815	18.215	31.480	
Weights	Type 49610	m	[kg]	1.63	2.95	3.80	7.04	11.45	19.16	
weights	Type 49620	m	[kg]	1.43	2.61	3.50	6.35	10.81	17.31	

Topoloping corou	Tensioning screws			Size						
rensioning screv				0	1	2	3	4		
la saus broskins	Number, dimensions	M [mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8		
In cone bushing EAS®-side	Wrench opening	SW [mm]	7	7	7	8	10	13		
LAG -Side	Tightening torque	T _A [Nm]	4	4	4	8	12	25		
la abainte diale	Number, dimensions	M ₁ [mm]	4 x M5	6 x M5	6 x M5	6 x M5	6 x M6	6 x M8		
In shrink disk ROBA®-DS-side	Wrench opening	SW ₁ [mm]	8	8	8	8	10	13		
NODA -D3-Side	Tightening torque	T _A [Nm]	6	6	6	8.5	10	25		
la alamaina kuk	Number, dimensions	M ₂ [mm]	1 x M8	1 x M8	-	-	-	-		
In clamping hub ROBA®-DS-side	Wrench opening	ning SW ₂ [mm]		6	-	-	-	-		
NODA -D3-Side	Tightening torque	T _A [Nm]	33	33	-	-	-	-		

Dimensions [mm]			Si	ze		
Dimensions [mm]	01	0	1	2	3	4
Α	12	13.5	16	17	20.5	46
A ₁	7	8	9	10	12	16
D	69	79	77	104	123	143
D ₁	68	78	77	100	115	143
$D_{\!\scriptscriptstyle 2}$	-	-	50	70	80	100
$D_{_3}$	69	85	100	115	135	172
F	61.5	67	82	97	117	150
F ₂	70	85	100	115	135	166
f	38	44	56	70	84	100
f ₂	5	5	5	6	7	-
f ₄	50	55	70	84	100	-
Min. shaft length g ₄	34	39	42	48	53	93
h	40	48	59	64	75	115
k	2.8	2.8	3.5	4.0	4.0	-
k ₁	2.8	2.8	2.8	3.5	4.0	5.3
$\mathbf{k_2}$	3.5	3.5	3.5	3.5	4.0	5.3
L ⁴⁾	47	56	67	73	86	130
L ₁ 4)	105.3	132.8	141.2	175.2	208	237
$L_{\!\scriptscriptstyle 2}$	98.3	120.3	133.2	171.2	207	237
I	34.3	49.8	48.2	68.2	85	68
l ₁	32	37.5	40	50	55	60
	32	33.5	40	55	65	75
U ₁	15.3	15.8	21.2	26.2	34	35.2

Bores [mm]			Size							
БОГЕ	S [IIII	11)	01	0	1	2	3	4		
	d ²⁾	$d_{\scriptscriptstylemin}$	10	15	22	32	35	40		
EAS®-	u ′	d _{max}	20	25	35	45	55	65		
Si E	a	d _{P min}	12	15	22	28	32	40		
	d _P	d _{P max}	20	25	30	40	50	65		
Ś	d ₁ 3)	d _{1 min}	19	25	25	40	45	55		
3A®-D side	u ₁ ′	d _{1 max}	38	45	45	60	70	90		
ROBA®-DS side	d	d _{2 min}	19	25	16	25	30	35		
8	d ₂	d _{2 max}	35	42	32	50	55	70		

- Further sizes for smaller and larger torques available on request
 Shaft tolerance up to Ø 38 he, over Ø 38 he
 Recommended shaft tolerance ge
 Dimensions in untensioned condition (shorter in tensioned condition) 4) Dimensions in untensioned5) Maximum speed: 250 rpm6) Only permitted as a static of
- Only permitted as a static or virtually static value.

EAS®-Compact® lastic backlash-free

Type 494. . Sizes 01 to 4

EAS®-side cone bushing, ROBA®-ES-side clamping hub Type 494._0_._

EAS®-side cone bushing. ROBA®-ES-side shrink disk hub

The missing dimensions (Øf, Øf, QF and ØF₂) are identical to Type 494._0_._

EAS®-side key hub, ROBA®-ES-side key hub Type 494. 2.

Order Number

EAS®-side ROBA®-ES-side Cone bushing Clamping hub 0 Shrink disk hub Cone bushing 0 Ratchetting clutch 2) Synchronous clutch Key hub Key hub

Torque adjustment value (Optional)

With limit switch see pages 51 - 53 (Option)

4 9 4

Torque range 1) medium

high very high 5 6

7

Flexible coupling 92 Shore A 98 Shore A 64 Shore D

3 4 6 Hub 1 bore $Ø d^{H7}$ Ø d_PH7 Hub 2 bore Ø d₃F7 $Ød_{A}^{H7}$ Ø d_e H7 Radial torque adjustment see page 42 (Option)

Example: Order number 1 / 494.615.3 / 22 / 25 / 60 / limit switch 055.002.5 / radial adjustment

- See Technical Data, limit torque for overload $\rm M_{\rm g}$ Standard ratchetting division is $\rm 15^\circ;$ other ratchetting divisions optionally available (45°/60°/90°/120°/180°/...)
- The transmittable torques on the flexible coupling " $T_{\rm KN}$ " are dependent on factors such as temperature, torsional rigidity, etc., see also coupling dimensioning ROBA®-ES catalogue K.940.V__ or contact the manufacturer. Furthermore, the transmittable torques of the flexible coupling are dependent on the bore diameter d_3 or d_4 , see also Table 1 on page 50.
- Shaft tolerance up to Ø 38 $_{\rm h6}$, over Ø 38 $_{\rm h8}$ Transmittable torques available with smaller bores on request
- Smaller bores for smaller torques available on request 6)
- Larger bores available on request
- Shaft tolerance up to Ø 40_{j6}
- Keyway 180° offset to "G"
- 10) Dimensions in untensioned condition (shorter in tensioned condition)

Technical Data	Technical Data						Size			
recililical Data					01	0	1	2	3	4
Type 494.5		$M_{_{\mathrm{G}}}$	[Nm]	5 – 12.5	10 – 25	20 - 50	40 – 100	70 – 175	120 - 300	
Limit torques for overload ³⁾	Type 494.6		$M_{_{\mathrm{G}}}$	[Nm]	10 – 25	20 – 50	40 – 100	80 – 200	140 – 350	240 - 600
Overioau *	Type 49	4.7	$M_{_{\mathrm{G}}}$	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	280 – 700	480 – 1200
Max. speed			n _{max}	[rpm]	4000	3000	2500	2000	1200	800
Thrust washer stroke	on ove	load		[mm]	1.2	1.5	1.8	2.0	2.2	2.5
Nominal and		92 Shore A	T _{KN} /T _{max}	[Nm]	35 / 70	95 / 190	190 / 380	265 / 530	310 / 620	900 / 1800
maximum torques 3),	es ³⁾ , 98 Shore A		T _{KN} /T _{max}	[Nm]	60 / 120	160 / 320	325 / 650	450 / 900	525 / 1050	1040 / 2080
flexible coupling			T_{KN}/T_{max}	[Nm]	75 / 150	200 / 400	405 / 810	560 / 1120	655 / 1310	1250 / 2500
	axial		ΔK_{a}	[mm]	1.4	1.5	1.8	2.0	2.1	2.6
		92 Shore A	ΔK_{r}	[mm]	0.14	0.15	0.17	0.19	0.21	0.25
Permitted	radial	98 Shore A	ΔK_{r}	[mm]	0.10	0.11	0.12	0.14	0.16	0.18
misalignments 64		64 Shore D	ΔK_{r}	[mm]	0.07	0.08	0.09	0.10	0.11	0.13
inisangiments		92 Shore A	ΔK_{w}	[°]	1.0	1.0	1.0	1.0	1.0	1.0
	angular	98 Shore A	ΔK_{w}	[°]	0.9	0.9	0.9	0.9	0.9	0.9
		64 Shore D	$\Delta K_{_{w}}$	[°]	0.8	0.8	0.8	0.8	0.8	0.8

Masa mamanta a	of inartic and w	voic	ubto			Si	ze		
Mass moments of inertia and weights			01	0	1	2	3	4	
	Type 4940	ı	[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858	29.432
EAS®-hub-side	Type 4941	ı	[10 ⁻³ kgm ²]	0.211	0.531	1.388	2.846	6.858	29.432
	Type 4942	ı	[10 ⁻³ kgm ²]	0.205	0.505	1.302	2.630	6.359	28.443
	Type 4940	ı	[10 ⁻³ kgm ²]	0.322	0.700	1.846	7.627	14.530	48.570
ROBA®-ES-side	Type 4941	ı	[10 ⁻³ kgm ²]	0.381	0.833	2.280	7.475	14.167	43.038
	Type 4942	ı	[10 ⁻³ kgm ²]	0.324	0.696	1.847	7.613	14.520	49.106
	Type 4940	m	[kg]	1.06	1.58	2.69	6.31	9.23	21.53
Weights	Type 4941	Type 4941 m		1.18	1.74	3.05	6.20	8.91	21.44
	Type 4942	m	[kg]	1.02	2.09	2.70	6.23	9.56	21.09

Tonoioning cores	Tensioning screws				Si	ze		
Tensioning screws			01	0	1	2	3	4
lu aana huahina	Number, dimensions	M [mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8
In cone bushing EAS®-side	Wrench opening	SW [mm]	7	7	7	8	10	13
EAS -Side	Tightening torque	T _A [Nm]	4	4	4	8	12	25
la alomaina hub	Number, dimensions	M ₁ [mm]	1 x M6	1 x M8	1 x M8	1 x M10	1 x M12	1 x M14
In clamping hub ROBA®-ES-side	Wrench opening	SW ₁ [mm]	5	6	6	8	10	12
NODA -E3-Side	Tightening torque	T _A [Nm]	10.5	25	25	70	120	200
In shrink disk	Number, dimensions	M ₂ [mm]	4 x M5	8 x M5	8 x M6	4 x M8	4 x M8	4 x M12
ROBA®-ES-side	Wrench opening	SW ₂ [mm]	4	4	5	6	6	10
NODA -E3-Side	Tightening torque	T _A [Nm]	6	6	10.5	25	30	90

Dimensione [mm]			Si	ze		
Dimensions [mm]	01	0	1	2	3	4
Α	12	13.5	16	17	20.5	46
$\mathbf{A}_{_{1}}$	7	8	9	10	12	16
C ₄	47	56.5	69	74	87	130
D_{1}	70	85	100	115	135	175
D _H	55	65	80	95	105	135
F	61.5	67	82	97	117	150
F ₂	70	85	100	115	135	166
f	38	44	56	70	84	100
$f_{_2}$	5	5	5	6	7	-
f_{4}	50	55	70	84	100	-
G ⁹⁾	M5	M6	M8	M8	M8	M10
Min. shaft length g ₄	34	39	42	48	53	93
h	40	48	59	64	75	115
k	2.8	2.8	3.5	4.0	4.0	-
k ₁	2.8	2.8	2.8	3.5	4.0	5.3
L 10)	47	56	67	73	86	130
L ₁ 10)	102	119.5	146	159	182	255
L ₂	95	111.5	138	150	171	240
l ₁	30	35	45	50	56	75
t	10	15	15	20	25	20
t,	12	13.5	20	20	21	27.5

Bores [mm]				Si	ze			
		01	0	1	2	3	4	
	d ^{4) 5)} -	d _{min}	10	15	22	32	35	40
EAS®- side	u ""	d _{max}	20	25	35	45	55	65
Sic	d 6)7) -	d _{P min}	12	15	22	28	32	40
	d _P ⁽⁾ /) -	$d_{_{Pmax}}$	20	25	30	40	50	65
	al 3) _	d _{3 min}	15	19	20	28	35	45
ώ	d ₃ 3) -	d _{3 max}	28	35	45	50	55	80
- - 8	al 3)	d _{4 min}	15	19	20	28	35 ⁸⁾	45
BA®- side	d ₄ 3) -	d _{4 max}	28	38	45	50	60 ⁸⁾	75
ROBA®-ES side	d ₅ ³⁾ -	d _{5 min}	8	10	12	14	20	38
	u ₅ ",	d _{5 max}	28	38	45	55	60	80

Type 450._ _ _ .0 Sizes 03 and 02

EAS®-NC long protruding hub

EAS®-NC short hub

Type 450._ _ _ .1 Sizes 03 and 02

Example: Order number 02 / 450.610.0 / 15 / 8 / limit switch 055.002.5

Technical Data				Size 1)				
rechnical Data				03	02			
	Type 450.5	M _G	[Nm]	0.65 - 1.30	2 - 5			
Limit torques for overload 1)	Type 450.6	M _G	[Nm]	1.30 – 2.60	5 – 10			
Overload	Type 450.7	M _G	[Nm]	2.00 - 3.80	6 – 15			
Max. speed		n _{max}	[rpm]	4000	4000			
Thrust washer stroke on overload [mm]		0.8	1.0					

Mass mamonts o	f inartia and w	, oi o	ıhta	Si	ze
Mass moments of	i inertia and w	veig	JIIIS	03	02
	Type 45010 I [10 ⁻³ kgm ²]			0.027	0.054
Hub-side	Type 45020	1	[10 ⁻³ kgm ²]	0.025	0.051
nub-side	Type 45011			0.028	0.058
	Type 45021			0.026	0.055
Pressure flange-side	Type 450	ı	[10 ⁻³ kgm ²]	0.008	0.018
	Type 45010	m	[kg]	0.18	0.28
Weights	Type 45020	m	[kg]	0.17	0.26
vveigitts	Type 45011		[kg]	0.20	0.32
	Type 45021	m	[kg]	0.19	0.30

Tanaianing agray	Tensioning screws and screw-on bores			Si	ze
iensioning screws and screw-on bores			S	03	02
	Number, dimensions	М	[mm]	4 x M3	4 x M3
Tensioning screws in cone bushing	Wrench opening	sw	[mm]	5.5	5.5
in cone bushing	Tightening torque	T _A	[Nm]	1	1
Screw-on bores in pressure flange	Number, dimensions	s	[mm]	6 x M3	6 x M3

Dimensions [mm]		Size			
Difficusions		03	02		
Α		7.2	9.5		
a ²⁾		2	2		
a _o		4.5	5.0		
a ₁		3.0	3.2		
b		5	5		
C ₁		20.5	25		
E		40	47		
e _{h5} 4)		30	37		
F		37	42		
F ₂		45	50		
f		26	30		
f _{1 h6}		17	25		
f ₂		-	3		
f ₄		-	37		
Minimum	g_4	11.5	15.5		
shaft length	9 ₇	25.5	30.5		
	g ₈	41.5	50.5		
h		24	29		
h ₁		40	49		
k ₁		2	2		
L ⁶⁾		28.5	34.5		
L ₁ ⁶⁾		44.5	54.5		
m		35	42		

Bores [mm]		Size		
		03	02	
a	d _{min}	6	8	
d	d _{max}	12	15	
d 3)	d _{P min}	6	8	
d _P ³⁾	d _{P max}	11	16 ⁵⁾	

- 1) Further sizes for smaller and larger torques available on request
- Mounting tolerance + 0.1
 The position of the keyway to the mounting bore "s" in the pressure flange is not defined. Defined position available on request
- Tolerance user-side H7
 Up to Ø 14 keyway acc. DIN 6885/1, over Ø 14 keyway acc. DIN 6885/3
 Dimensions in untensioned condition (shorter in tensioned condition)

EAS®-NC double bearing design with cone bushing

Type 450._1_.2 Sizes 03 and 02

EAS®-NC double bearing design with keyway

Type 450._2_.2 Sizes 03 and 02

Example: Order number 02 / 450.610.2 / 15 / 8 / limit switch 055.002.5

Technical Data				Size 1)		
				03	02	
Type 450.52 M _g [Nm]		0.65 – 1.30	2 – 5			
Limit torques for overload 1)	Type 450.62	M _G	[Nm]	1.30 – 2.60	5 – 10	
Type 450.72		M _G	[Nm]	2.00 - 3.80	6 – 15	
Max. speed		n _{max}	[rpm]	4000	4000	
Thrust washer stroke on overload [mm]		0.8	1.0			

Mass moments of inertia and weights			ıhta	Size	
			Jiilo	03	02
			[10 ⁻³ kgm ²]	0.028	0.058
Hub-side Type 4502	Type 45022	I	[10 ⁻³ kgm ²]	0.026	0.055
Pressure flange-side	Type 4502	I	[10 ⁻³ kgm ²]	0.008	0.018
Waighta	Type 45012	m	[kg]	0.13	0.31
Weights	Type 45022	m	[kg]	0.18	0.29

Tensioning screws and screw-on bores			_	Size	
			S	03	02
Number, dimensions		М	[mm]	4 x M3	4 x M3
Tensioning screws in cone bushing	Wrench opening	sw	[mm]	5.5	5.5
	Tightening torque	T _A	[Nm]	1	1
Screw-on bores in pressure flange	Number, dimensions	s	[mm]	6 x M3	6 x M3

Dimensions	Dimensions [mm]		ze
Dimensions	mmj	03	02
Α		7.2	9.5
a ₂ ²⁾		9	9
a ₃		11.5	12
b		5	5
E		40	47
e _{h5} 4)		30	37
F		37	42
F ₂		45	50
f		26	30
f ₂		-	3
f ₄		-	37
Minimum	g ₃	32.5	37.5
shaft length	9 ₄	11.5	15.5
h ₂		31	36
k ₁		2	2
L ₂ ⁶⁾		35.5	41.5
m		35	42

Bores [mm]		Size			
		03	02		
d d _{min}		6	8		
d	d _{max}	12	15		
al 3)	d _{P min}	6	8		
d _P ³⁾	d _{P max}	11	16 ⁵⁾		

- Further sizes for smaller and larger torques available on request
 Mounting tolerance + 0.1
 The position of the keyway to the mounting bore "s" in the pressure flange is not defined. Defined position available on request
 Tolerance user-side H7
 Up to Ø 14 keyway acc. DIN 6885/1, over Ø 14 keyway acc. DIN 6885/3
 Dimensions in untensioned condition (shorter in tensioned condition)

EAS®-NC with steel bellows coupling

Type 453._ _ _ .0 Sizes 03 and 02

EAS®-side cone bushing, Steel bellows-side cone bushing Type 453._1_.0

EAS®-side key hub, Steel bellows-side key hub

Type 453._2_.0

Example: Order number 02 / 453.615.0 / 15 / 15 / 8 / limit switch 055.002.5

Technical Data				Size 1)	
rechinical Data	Technical Data			03	02
	Type 453.50	M _G	[Nm]	0.65 – 1.30	2 – 5
Limit torques for overload 1)	Type 453.60	M _G	[Nm]	1.30 – 2.60	5 – 10
Ovoriouu	Type 453.70		[Nm]	2.00 - 3.80	6 – 15
Max. speed		n _{max}	[rpm]	4000	4000
Thrust washer stroke of	on overload		[mm]	0.8	1.0
Nominal torques, steel	bellows coupling	T _{KN}	[Nm]	12	25
axial		ΔK_{a}	[mm]	0.2	0.3
misalignments	radial	ΔK_{r}	[mm]	0.1	0.1
	angular	ΔK _w	[°]	2	2

Mass moments of inertia and weights			ıbta	Size	
			ints	03	02
Hub-side	Type 45310 I Type 45320 I		[10 ⁻³ kgm ²]	0.027	0.054
nub-side			[10 ⁻³ kgm ²]	0.025	0.051
Steel bellows-side	Type 45310	ı	[10 ⁻³ kgm ²]	0.027	0.063
Steel bellows-side	Type 45320	ı	[10 ⁻³ kgm ²]	0.025	0.057
Weights	Type 45310	m	[kg]	0.27	0.45
	Type 45320	m	[kg]	0.24	0.39

Tensioning screws				Size	
				03	02
Number, dimensions		М	[mm]	4 x M3	4 x M3
EAS®-SIGE	Wrench opening	sw	[mm]	5.5	5.5
	Tightening torque	T _A	[Nm]	1.3	1.3
In cone bushing steel bellows-side	Number, dimensions	M,	[mm]	4 x M3	4 x M3
	Wrench opening	SW,	[mm]	5.5	5.5
	Tightening torque	T _A	[Nm]	1.3	1.3

Dimensions I	Dimensions [mm]		ze
Dimensions [mm]		03	02
Α		7.2	9.5
C ₃		28	33.5
D ₁		30	36
E		40	47
F		37	42
F ₂		45	50
f		26	30
f ₂	f ₂		3
f ₄		-	37
Minimum	g ₄	11.5	15.5
shaft length	g ₅	12.5	16
h		24	29
k ₁		2	2
L ³⁾		28.5	34.5
L ₁ 3)		58.5	70.5
$L_{\scriptscriptstyle 2}$		49.3	59
l ₁ 3)		14	21
l ₂		9.5	15

Boros [mm]		~ 1	Size		
Dore	Bores [mm]		03	02	
	d	d _{min}	6	8	
EAS®-	u	d _{max}	12	15	
Sic	a	d _{P min}	6	8	
	d _P	d _{P max}	11	16 ²⁾	
de	a	d _{1 min}	6	8	
s-si	d,	d _{1 max}	12	15	
Steel bellows-side	м	$d_{\scriptscriptstyle 2\mathrm{min}}$	6	8	
<u>pe</u>	d ₂	d _{2 max}	11	16 ²⁾	

- Further sizes for smaller and larger torques available on request
 Up to Ø 14 keyway acc. DIN 6885/1, over Ø 14 keyway acc. DIN 6885/3
 Dimensions in untensioned condition (shorter in tensioned condition)

Function

If the set limit torque is exceeded, the clutch disengages. The torque drops immediately. A mounted limit switch registers the disengagement movement and switches off the drive. The limit switch signal can also be used for further control functions.

EAS®-Compact® overload clutches separate the input and the output side completely and remain in this state until they are intentionally re-engaged by hand or via a suitable device.

When in operation, the EAS®-Compact® overload clutches transmit the torque backlash-free. On overload occurrence, they ensure free run-out of the drive components.

The EAS®-Compact® overload clutches Types 49_.5_4._, 49_.6_4._ and 49_.7_4._ are also available in ATEX design according to directive 94/9 EC (ATEX 95).

Summary of constructional designs EAS®-Compact® overload clutch

EAS®-Compact® overload short hub

Torque: 5 to 3000 Nm

Sizes 01 to 3 Type 490._ _ 4.0

Sizes 4 and 5 as 2-bearing design Type 490._ _ 4.2

 Flange clutch for direct installation of drive elements with the resulting radial force approximately in the bearing centre

With cone bushing With key hub

Type 490._14._ Type 490._24._

Type 490._14.1

Type 490._24.1

Page 28

EAS®-Compact® overload long protruding hub

Torque: 5 to 1000 Nm

Sizes 01 to 3 Type 490._ _ 4.1

- Flange clutch for very wide drive elements or elements with a very small diameter
- Suitable bearings for the drive element are ball bearings, needle bearings or plain bearings.

With cone bushing With key hub

Page 30

EAS®-Compact® overload torsionally rigid

Torque: 5 to 3000 Nm

Sizes 01 to 3 Type 496._ _ 4.0

Sizes 4 and 5 as 2-bearing design Type 496.__ 4.2

- Double shaft design with a robust disk pack coupling
 Compensation for axial, radial and angular shaft misalignments
- High torsional rigidity

Hub designs:

EAS®-side/torsionally rigid side Cone bushing/shrink disk hub Key hub/clamping hub Key hub/key hub

Type 496._14._ Type 496._24.0 Type 496._24._

Page 32

EAS®-Compact® overload lastic backlash-free

Torque: 5 to 1500 Nm

Sizes 01 to 3 Type 494._ _ 4._

Size 4 as 2-bearing design Type 494._ _ 4._

- Double shaft design with a flexible, backlash-free coupling
- Compensation for axial, radial and angular shaft misalignments
- High damping characteristics

Hub designs:

EAS®-side/flexible side
Cone bushing/clamping hub
Cone bushing/shrink disk hub
Key hub/key hub

Type 494._04._ Type 494._14._ Type 494._24._

Page 36

EAS®-Compact® overload lastic

Torque: 240 to 3000 Nm

Size 5 as 2-bearing design Type 494._ _ 4.2

- Double shaft design with a flexible coupling
 Compensation for axial radial and angular sign
- Compensation for axial, radial and angular shaft misalignments

Hub designs:

EAS®-side/flexible side Key hub/key hub Cone bushing/key hub

Type 494._24.2 Type 494._34.2

Page 40

EAS®-Compact® overload short hub with cone bushing

Type 490._14.0, Sizes 01 to 3

EAS®-Compact® overload short hub with keyway

Type 490._24.0, Sizes 01 to 3

Type 490._14._ Sizes 01 to 5

Type 490._14.2, Sizes 4 to 5

Type 490._24._ Sizes 01 to 5

Type 490._24.2, Sizes 4 to 5

Order N	um	ber									
				with cone with keyw	_	1 2	4	Overload o	clutch		Torque adjustment value (Optional)
							∇				$\overline{}$
	/	4	9	0			4		/ _	/	_ /
Sizes 01 to 5		Torque ra medium high very high maximum			5 6 7 8	1-bearing (Sizes 01 2-bearing (Sizes 4-	-3) g design	0 2	Hub bore Ø d ^{H7} Ø d _p ^{H7}		With limit switch see page 51 (Option)

Example: Order number 1 / 490.614.0 / 25 / 60 / limit switch 055.002.5

Technical Data			Size 1)									
rechinical Data				01	0	1	2	3	4	5		
	Type 490.5_4	$M_{\rm G}$	[Nm]	5-12.5	10- 25	20- 50	40-100	80- 200	120- 300	240- 600		
Limit torques for	Type 490.6_4	$M_{\rm G}$	[Nm]	10-25	20- 50	40-100	80-200	160- 400	240 - 600	480-1200		
overload 1)	Type 490.7_4	$M_{\rm G}$	[Nm]	20-50	40-100	80-200	160-400	320- 800	480-1200	960-2400		
	Type 490.8_4	M _G	[Nm]	25-62.5	50-125	100-250	200-500	400-1000	600-1500	1200-3000		
Max. speed		n _{max}	[rpm]	8000	7000	6000	5000	4000	3500	3000		
Thrust washer stroke	Thrust washer stroke on overload [mm]			2.0	2.6	3.2	3.8	4.5	5.5	6.5		

Mass mamonts o	f inartia and w	, oi o	ıhta				Size			
Mass moments of	i inertia and w	veig	Jiits	01	0	1	2	3	4	5
Hub-side	Type 49014	1	[10 ⁻³ kgm ²]	0.383	0.943	2.279	4.421	10.396	39.730	120.834
nub-side	Type 49024	1	[10 ⁻³ kgm ²]	0.377	0.917	2.193	4.205	9.867	37.215	112.399
Dungayung flamma aida	Type 49014	1	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649	19.950	65.760
Pressure flange-side	Type 49024	1	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649	19.950	65.760
Weights	Type 49014	m	[kg]	0.92	1.55	2.58	3.70	5.83	17.10	34.70
vveignis	Type 49024	m	[kg]	0.87	1.43	2.35	3.37	5.31	16.50	34.30

Caravia and cara	u on house			Size								
Screws and scre	w-on bores			01	0	1	2	3	4	5		
	Number, dimensions	М	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8	8 x M10		
Tensioning screws in cone bushing	Wrench opening	sw	[mm]	7	7	7	8	10	13	16		
in cone busining	Tightening torque	T _A	[Nm]	4	4	4	8	12	25	71		
Locking screw	Number, dimensions	M ₃	[mm]	1 x M4	1 x M4	1 x M5	1 x M5	1 x M6	-	-		
in adjusting nut	Wrench opening	SW ₃	[mm]	3	3	4	4	5	-	-		
Sizes 01 - 3	Tightening torque	T _A	[Nm]	3	5	9	9	15	-	-		
Pins/threads	Wrench opening	SW ₄	[mm]	-	-	-	-	-	18	18		
in adjusting nut	Wrench opening	SW ₅	[mm]	-	-	-	-	-	6	6		
Sizes 4 - 5	Number, dimensions	M_6	[mm]	-	-	-	-	-	3 x M8	3 x M8		
Screw-on bores	Number, dimensions	s	[mm]	8 x M4	8 x M5	8 x M6	8 x M6 *	8 x M8 *	8 x M10	8 x M12		
in pressure flange				*	Screws qualit	y class 12.9	must be used	to secure the	drive elemer	ıt.		

Dimensions [Size			
Dimensions [mmj	01	0	1	2	3	4	5
Α		24	28	30	34	40	62.5	80
A ₁		-	-	-	-	-	46.5	60
a ²⁾		5	7	9	10	10	12	13
a _o		8	11	14	16	18	21	23
b		6	7	9	10	12	20	20
E		65	80	95	110	130	166	215
e _{h5} 3)		47	62	75	90	100	130	160
F ₂		70	85	100	115	135	175	225
f		38	44	56	70	84	100	134
f ₂		5	5	5	6	7	-	-
f ₄		50	55	70	84	100	-	-
Minimum	g_4	34	39	42	48	53	93	118
shaft length	9 ₇	36	43	54	57	69	110	130
h		45	55	65	72	82	145	175
k ₁		2.8	2.8	2.8	3.5	4.0	5.3	6.4
L 4)		52	63	73	81	93	160	193
m		56	71	85	100	116	150	185

Boroe Imr	Bores [mm]				Size			
Doies [iiii	''J	01	0	1	2	3	4	5
d ^{5) 6)}	d _{min}	10	15	22	32	35	40	45
u 3747	d _{max}	20	25	35	45	55	4 40 65 40 65	85
a	d _{P min} 7)	12	15	22	28	32	40	45
d _P	d _{P max} 8)	20	25	30	40	50	65	80

- 1) Further sizes for smaller and larger torques available on request

- Further sizes for smaller and larger torques available on request
 Mounting tolerance + 0.1
 Tolerance user-side H7
 Dimensions in untensioned condition (shorter in tensioned condition)
 Shaft tolerance up to Ø 38 _{ns}, over Ø 38 _{ns}
 Transmittable torques available with smaller bores on request
 Smaller bores for low torques available on request

- Larger bores available on request

EAS®-Compact® overload long protruding hub with cone bushing

Type 490._14.1 Sizes 01 to 3

EAS®-Compact® overload long protruding hub with keyway

Type 490._24.1 Sizes 01 to 3

Order	Nı	umber													
				with co	one bushing eyway	1 2	4	Ove	erload	clutch			Torque (Option	•	ment value
						∇	∇						∇		
	/	4	9	0	·		4		1	/		/	_	/	_
											\triangle				
Sizes 01 to 3		Torque rar medium high very high maximum	nge ¹⁾		5 6 7 8	long prot	truding hub)	1		Hub bore Ø d ^{H7} Ø d _p H7		V		it switch see page 51 (Option)

Example: Order number 1 / 490.614.1 / 25 / 60 / limit switch 055.002.5

Technical Data				Size 1)								
recrimical Data				01	0	1	2	3				
	Type 490.5_4.1	M _G	[Nm]	5 – 12.5	10 – 25	20 - 50	40 – 100	80 – 200				
Limit torques for	Type 490.6_4.1	M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	160 – 400				
overload 1)	Type 490.7_4.1	$M_{\rm G}$	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	320 - 800				
	Type 490.8_4.1	M _G	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	400 – 1000				
Max. speed		n _{max}	[rpm]	8000	7000	6000	5000	4000				
Thrust washer stroke	Thrust washer stroke on overload [mm]				2.6	3.2	3.8	4.5				

Mass moments of	f inartia and w	, oio	ıbto			Size		
Mass moments of	i illertia aliu v	veig	Jiits	01	0	1	2	3
Hub-side	Type 49014.1	1	[10 ⁻³ kgm ²]	0.397	1.000	2.382	4.680	10.888
Hub-side	Type 49024.1	I	[10 ⁻³ kgm ²]	0.391	0.974	2.296	4.464	10.389
Dunner side	Type 49014.1	1	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649
Pressure flange-side	Type 49024.1	-1	[10 ⁻³ kgm ²]	0.093	0.234	0.643	1.306	2.649
Weights	Type 49014.1	m	[kg]	1.02	1.77	2.86	4.16	6.42
weights	Type 49024.1	m	[kg]	0.97	1.65	2.64	3.82	5.90

Screws and scre	u on horon					Size			
Screws and scre	w-on bores			01	0	1	2	3	
	Number, dimensions	M	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	
Tensioning screws in cone bushing	Wrench opening	sw	[mm]	7	7	7	8	10	
in cone bushing	Tightening torque	T _A	[Nm]	4	4	4	8	12	
	Number, dimensions	M ₃	[mm]	1 x M4	1 x M4	1 x M5	1 x M5	1 x M6	
Locking screw in adjusting nut	Wrench opening	SW ₃	[mm]	3	3	4	4	5	
in dajaoting nat	Tightening torque	T _A	[Nm]	3	5	9	9	15	
Screw-on bores	Number, dimensions	s	[mm]	8 x M4	8 x M5	8 x M6	8 x M6 *	8 x M8 *	
in pressure flange				* Screws quality class 12.9 must be used to secure the drive element.					

Dimensions [mm1			Size		
Dimensions [01	0	1	2	3
Α		24	28	30	34	40
a ²⁾		5	7	9	10	10
a ₁		6.5	8.75	11.5	13	14
b		6	7	9	10	12
C,		33	43	55	67	73
E		65	80	95	110	130
e _{h5} 3)		47	62	75	90	100
F ₂		70	85	100	115	135
f		38	44	56	70	84
f _{1 h6}		30	40	45	55	65
f ₂		5	5	5	6	7
f ₄		50	55	70	84	100
Minimum	g_4	34	39	42	48	53
shaft length	g ₈	61	75	95	108	124
h ₁		70	87	106	123	137
k ₁		2.8	2.8	2.8	3.5	4.0
L ₁ 4)		77	95	114	132	148
m		56	71	85	100	116

Boros Imr	กไ			Size		
Bores [mr	'']	01	0	1	2	3
d ^{5) 6)}	d _{min}	10	15	22	32	35
u -7 -7	d _{max}	20	25	35	45	55
d	d _{P min} 7)	12	15	22	28	32
a _P	d _{P max} 8)	20	25	30	40	50

- 1) Further sizes for smaller and larger torques available on request
- Mounting tolerance + 0.1
- Tolerance user-side H7
- Distriction
 Dimensions in untensioned condition (shorter in tensioned condition)
 Shaft tolerance up to Ø 38 her, over Ø 38 he
 Transmittable torques available with smaller bores on request

- Smaller bores for low torques available on request
- Larger bores available on request

EAS®-Compact® overload torsionally rigid

Type 496. 4.0 Sizes 01 to 3

EAS®-side cone bushing, ROBA®-DS-side shrink disk hub Type 496. 14.0, Sizes 01 to 3

All EAS®-Compact® clutches can be combined with almost all components of the ROBA®-DS backlash-free shaft coupling. The Types shown here represent only a selection of the most established designs.

For further combination possibilities, see page 43.

We are happy to advise you on the dimensioning and configuration of your optimum clutch.

EAS®-side key hub, ROBA®-DS-side clamping hub with keyway Type 496. 24.0, Sizes 01 and 0

EAS®-side key hub, ROBA®-DS-side key hub Type 496. 24.0, Sizes 1 to 3

Order Number

ROBA®-DS-side EAS®-side Cone bushing Shrink disk hub Key hub Clamping hub with keyway 2 (Sizes 01-0) / key hub (Sizes 1-3)

Overload clutch 4

0

Torque adjustment value (Optional)

	/
\wedge	

Sizes

01

to

3

4

Hub 1

bore

 $Ød^{H7}$

 $Ø d_{P}^{H7}$

 $Ød_{a}^{H7}$

With limit switch see page 51 (Option)

Example: Order number 1 / 496.614.0 / 30 / 30 / 60 / limit switch 055.002.5

5

6

7

Torque range 1)

medium

very high

maximum

high

Technical Data			Size					
recrimical Data				01	0	1	2	3
	Type 496.5_4.0	M _G	[Nm]	5 – 12.5	10 – 25	20 - 50	40 – 100	80 - 200
Limit torques for	Type 496.6_4.0	M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	160 – 400
overload	Type 496.7_4.0	M _G	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	320 - 800
	Type 496.8_4.0	M _G	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	400 – 1000
Max. speed		n _{max} [[rpm]	8000	7000	6000	5000	4000
Thrust washer stroke o		_	[mm]	2.0	2.6	3.2	3.8	4.5
Nominal torques, torsio	nally rigid coupling	T _{KN}	[Nm]	100	150	300	650	1100
Permitted misalignments	axial 1)	ΔK _a [[mm]	0.9	1.1	0.8	1.1	1.3
	radial	ΔK _r [[mm]	0.20	0.20	0.20	0.25	0.30
	angular	ΔK _w	[°]	2.0	2.0	1.4	1.4	1.4

Mass mamonto of inartic and weights				Size					
Mass moments of inertia and weights			01	0	1	2	3		
EAS®-hub-side	Type 49614.0	1	[10 ⁻³ kgm ²]	0.383	0.943	2.279	4.421	10.396	
EAS®-nub-side	Type 49624.0	1	[10 ⁻³ kgm ²]	0.377	0.917	2.193	4.205	9.867	
ROBA®-DS-side	Type 49614.0	1	[10 ⁻³ kgm ²]	0.894	2.395	2.915	9.543	21.443	
HODA*-D3-Side	Type 49624.0	1	[10 ⁻³ kgm ²]	0.709	2.086	2.417	7.815	18.215	
Weights	Type 49614.0	m	[kg]	1.81	3.34	4.34	7.81	12.75	
	Type 49624.0	m	[kg]	1.65	3.07	4.01	7.12	14.94	

Screws			Size					
Screws				01	0	1	2	3
La caracteristica	Number, dimensions	М	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6
In cone bushing EAS®-side	Wrench opening	SW	[mm]	7	7	7	8	10
LAO -Side	Tightening torque	T _A	[Nm]	4	4	4	8	12
Lastina sauce	Number, dimensions	M ₃	[mm]	1 x M4	1 x M4	1 x M5	1 x M5	1 x M6
Locking screw in adjusting nut	Wrench opening	SW ₃	[mm]	3	3	4	4	5
in adjusting nat	Tightening torque	T _A	[Nm]	3	5	9	9	15
la abaiala diala	Number, dimensions	M,	[mm]	4 x M5	6 x M5	6 x M5	6 x M5	6 x M6
In shrink disk ROBA®-DS-side	Wrench opening	SW ₁	[mm]	8	8	8	8	10
HODA -DO-Side	Tightening torque	T _A	[Nm]	6	6	6	8.5	10
La alamatan kat	Number, dimensions	M ₇	[mm]	1 x M8	1 x M8	-	-	-
In clamping hub ROBA®-DS-side	Wrench opening	SW,	[mm]	6	6	-	-	-
HODA DO-Side	Tightening torque	T _A	[Nm]	33	33	-	-	-

Dimensione [mm]			Size		
Dimensions [mm]	01	0	1	2	3
Α	24	28	30	34	40
D	69	79	77	104	123
D ₁	68	78	77	100	115
$D_{\!\scriptscriptstyle 2}$	-	-	50	70	80
F ₂	70	85	100	115	135
f	38	44	56	70	84
f ₂	5	5	5	6	7
f ₄	50	55	70	84	100
Min. shaft length g ₄	34	39	42	48	53
h	45	55	65	72	82
k ₁	2.8	2.8	2.8	3.5	4.0
k_2	3.5	3.5	3.5	3.5	4.0
L ²⁾	52	63	73	81	93
L ₁ ²⁾	110.3	139.3	147.1	183.2	215
$L_{\!\scriptscriptstyle 2}$	103.3	127.3	139.2	179.2	214
I	34.3	49.8	48.2	68.2	85
Ļ	32	37.5	40	50	55
	32	33.5	40	55	65
U ₁	15.3	15.8	21.2	26.2	34

Bores [mm]		Size						
Боге	S [IIII	11)	01	0	1	2	3	
	d ³⁾	d _{min}	10	15	22	32	35	
EAS®-	u -	d _{max}	20	25	35	45	55	
Sic	a	d _{P min}	12	15	22	28	32	
	a _b	d _{P max}	20	25	30	40	50	
Ś	d ₁ 4)	d _{1 min}	19	25	25	40	45	
- - -	a ₁ "	d _{1 max}	38	45	45	60	70	
ROBA®-DS side		d _{2 min}	19 ⁵⁾	25 5)	16	25	30	
RO		d _{2 max}	35 ⁵⁾	42 5)	32	50	55	

- Only permitted as a static or virtually static value.
 Dimensions in untensioned condition (shorter in tensioned condition)
 Shaft tolerance up to Ø 38 _{h6}, over Ø 38 _{h8}
 Recommended shaft tolerance _{g6}
 Recommended shaft tolerance _{k6}

EAS®-Compact® overload torsionally rigid

Type 496._ _4.2 Sizes 4 and 5

EAS®-side cone bushing, ROBA®-DS-side shrink disk hub Type 496._14.2

All EAS®-Compact® clutches can be combined with almost all components of the ROBA®-DS backlash-free shaft coupling. The Types shown here represent only a selection of the most established designs.

For further combination possibilities, see page 43.

We are happy to advise you on the dimensioning and configuration of your optimum clutch.

EAS®-side key hub, ROBA®-DS-side key hub Type 496._24.2

Example: Order number 5 / 496.714.2 / 70 / 70 / 1500 / limit switch 055.002.5

Technical Data			Size						
				4			5		
	Type 496.5_4.2	M _G	[Nm]	120	-	300	240	-	600
Limit torques for	Type 496.6_4.2	M _G	[Nm]	240	-	600	480	-	1200
overload	Type 496.7_4.2	M _G	[Nm]	480	-	1200	960	-	2400
	Type 496.8_4.2	M _G	[Nm]	600	-	1500	1200	-	3000
Max. speed		n _{max}	[rpm]		3500			3000	
Thrust washer stroke o			[mm]		5.5			6.5	
Nominal torques, torsio	nally rigid coupling	T _{KN}	[Nm]		1600			3500	
Permitted misalignments	axial 1)	ΔK_a	[mm]		1.5			1.2	
	radial	ΔK_r	[mm]		0.30	·		0.25	
	angular	$\Delta K_{_{w}}$	[°]		1.4			1.0	

Mass mamonto o	f inartia and w	امنما	hto	Size			
Mass moments of inertia and weights			1115	4	5		
EAS®-hub-side	Type 49614.2	ı	[10 ⁻³ kgm ²]	39.730	120.834		
EAS*-Hub-side	Type 49624.2	ı	[10 ⁻³ kgm ²]	37.215	112.399		
ROBA®-DS-side	Type 49614.2	1	[10 ⁻³ kgm ²]	32.310	147.080		
RODA*-D5-side	Type 49624.2	ı	[10 ⁻³ kgm ²]	26.050	128.580		
Weights	Type 49614.2	m	[kg]	27.30	52.18		
	Type 49624.2	m	[kg]	26.10	48.60		

Screws				Size		
				4	5	
L	Number, dimensions	М	[mm]	8 x M8	8 x M10	
In cone bushing EAS®-side	Wrench opening	SW	[mm]	13	16	
LAG -Side	Tightening torque		[Nm]	25	71	
to all 2 de alta l	Number, dimensions	M,	[mm]	6 x M8	8 x M8	
In shrink disk ROBA®-DS-side	Wrench opening	SW ₁	[mm]	13	13	
NODA -D3-side	Tightening torque	T _A	[Nm]	25	35	
B: ///	Wrench opening	SW ₄	[mm]	18	18	
Pins/threads in adjusting nut	Wrench opening	SW ₅	[mm]	6	6	
n adjusting nut Ni	Number, dimensions	M ₆	[mm]	3 x M8	3 x M8	

Dimensione [mm]	Size					
Dimensions [mm]	4	5				
Α	62.5	80				
A ₁	46.5	60				
D	143	167				
D ₁	143	164				
$D_{\!\scriptscriptstyle 2}$	100	121				
Е	166	215				
F ₂	175	225				
f	100	134				
G	2)	M12				
Min. shaft length g ₄	93	118				
h	145	175				
k ₁	5.3	6.4				
k ₂	5.3	5.3				
L ³⁾	160	193				
L ₁ 3)	267	331				
L ₂	267	328				
I	68	86				
l _t	60	75				
	75	90				
t	21	25				
U ₁	35.2	44.4				

Bores [mm]		~ 1	Size				
		''J	4	5			
	d 4)	d _{min}	40	45			
EAS®-	u '	d _{max}	65	85			
S is	٨	d _{P min}	40	45			
	d _P	d _{P max}	65	80			
Š	d ₁ 5)	d _{1 min}	55	50			
ROBA®-DS side		u ₁ ′	u ₁ "	u ₁ ′	d _{1 max}	90	85
BA	٨	d _{2 min}	35	45			
8		d _{2 max}	70	90			

- Only permitted as a static or virtually static value
 Up toØ 44 M8, over Ø 44 M10
 Dimensions in untensioned condition (shorter in tensioned condition)
 Shaft tolerance h8
 Recommended shaft tolerance g6

EAS®-Compact® overload lastic backlash-free

Type 494._ _4._ Sizes 01 to 4

EAS®-side cone bushing, ROBA®-ES-side shrink disk hub

Type 494._14._, Sizes 01 to 3

Tapped extracting hole between C₄ the clamping SW screws ØD ØD, ğ g 4 ğ P, Stroke Contactless limit switch

Tapped extracting hole between the clamping screws

Tapped extracting hole between the clamping screws

Contactless

limit switch

The missing dimensions (ØD, and ØD $_{\rm H}$) are identical to Sizes 01 to 3, Type 494._14._

Stroke

EAS®-side cone bushing, ROBA®-ES-side clamping hub Type 494._04._, Sizes 01 to 3

Type 494._04._, Size 4

The missing dimensions ($\emptyset D_1$ and $\emptyset D_2$) are identical to Sizes 01 to 3, Type 494._04._

Order Number

EAS®-side ROBA®-ES-side
Cone bushing Clamping hub 0
Cone bushing Shrink disk hub 1 4 Overload clutch (Optional)

9 4 4 \triangle Hub 1 Hub 2 Sizes Torque range 1) Flexible coupling With limit switch 01 medium 5 92 Shore A 3 bore bore see to high 6 98 Shore A 4 page 51 Ø d^{H7} Ø d₂F7 very high 7 64 Shore D 6 (Option) Ø d, H7 maximum 8

Example: Order number 1 / 494.614.3 / 22 / 25 / 60 / limit switch 055.002.5

- 1) See Technical Data, limit torque for overload $\rm M_{\rm G}$
- 2) The transmittable torques on the flexible coupling "T_{KN}" are dependent on factors such as temperature, torsional rigidity, etc., see also coupling dimensioning ROBA®-ES catalogue K.940.V_ or contact the manufacturer.
 - Furthermore, the transmittable torques of the flexible coupling are
- dependent on the bore diameter d₃ or d₄, see also Table 1 on page 50.
- Dimensions in untensioned condition (shorter in tensioned condition)
 Shaft tolerance up to Ø 38 pg. over Ø 38 pg.
- 5) Transmittable torques available with smaller bores on request
- 6) Shaft tolerance up to Ø 40_{i6}

Technical Data	_						Si	ize		
recrimical Data	a				01	0	1	2	3	4
	Type 494	.5_4	M _G	[Nm]	5 – 12.5	10 - 25	20 - 50	40 – 100	80 - 200	120 - 300
Limit torques 2)			M _G	[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	160 - 400	240 - 600
for overload			M _G	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	320 - 800	480 –1200
			M _G	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	400 – 1000	600 –1500
Max. speed n _{maxi}		[rpm]	8000	7000	6000	5000	4000	3500		
			[mm]	2.0	2.6	3.2	3.8	4.5	5.5	
Nominal and max	imum	92 Shore A	T _{KN} /T _{K max}	[Nm]	35 / 70	95 / 190	190 / 380	265 / 530	310 / 620	900 / 1800
torques 2),		98 Shore A	T _{KN} /T _{K max}	[Nm]	60 / 120	160 / 320	325 / 650	450 / 900	525 / 1050	1040 / 2080
flexible coupling		64 Shore D	T _{KN} /T _{K max}	[Nm]	75 / 150	200 / 400	405 / 810	560 / 1120	655 / 1310	1250 / 2500
	axial		ΔK_{a}	[mm]	1.4	1.5	1.8	2.0	2.1	2.6
		92 Shore A	ΔK_r	[mm]	0.14	0.15	0.17	0.19	0.21	0.25
Dameitta d	radial	98 Shore A	ΔK_r	[mm]	0.10	0.11	0.12	0.14	0.16	0.18
misalignments	Permitted 64 Shore I		ΔK _r	[mm]	0.07	0.08	0.09	0.10	0.11	0.13
ŭ		92 Shore A	ΔK _w	[°]	1.0	1.0	1.0	1.0	1.0	1.0
	angular	98 Shore A	ΔK _w	[°]	0.9	0.9	0.9	0.9	0.9	0.9
		64 Shore D	$\Delta K_{_{w}}$	[°]	0.8	0.8	0.8	0.8	0.8	0.8

Mass moments	of inartia and w	voic	uhte	Size						
Mass IIIOIIIEIIIS	oi illertia allu v	veig	JIILS	01	0	1	2	3	4	
EAS®-hub-side	Type 4944	ı	[10 ⁻³ kgm ²]	0.383	0.943	2.279	4.421	10.396	39.730	
ROBA®-ES-side	Type 49414 I		[10 ⁻³ kgm ²]	0.378	0.832	2.277	7.25	14.167	61.674	
NODA*-E3-Side	Type 49404	ı	[10 ⁻³ kgm ²]	0.320	0.691	1.843	7.40	14.529	62.369	
Moighto	Type 49414		[kg]	1.38	2.16	3.64	6.69	10.11	27.61	
Weights	Type 49404	m	[kg]	1.27	1.98	3.25	6.81	10.42	27.67	

Screws						Si	ze		
Screws				01	0	1	2	3	4
In cone bushing Number, dimensions		М	[mm]	6 x M4	6 x M4	8 x M4	8 x M5	8 x M6	8 x M8
EAS®-side	Wrench opening	SW	[mm]	7	7	7	8	10	13
EA3 -Side	Tightening torque	T _A	[Nm]	4	4	4	8	12	25
In shrink disk	Number, dimensions	M ₂	[mm]	4 x M5	8 x M5	8 x M6	4 x M8	4 x M8	4 x M12
ROBA®-ES-side	Wrench opening	SW ₂	[mm]	4	4	5	6	8	10
Tightening torque		T	[Nm]	6	6	10.5	25	30	120
la alamaiaa bula	Number, dimensions	M,	[mm]	1 x M6	1 x M8	1 x M8	1 x M10	1 x M12	1 x M14
In clamping hub ROBA®-ES-side	Wrench opening	SW,	[mm]	5	6	6	8	10	12
NODA -E3-Side	Tightening torque	T	[Nm]	10	25	25	70	120	200
Locking screw	Number, dimensions	M_3	[mm]	1 x M4	1 x M4	1 x M5	1 x M5	1 x M6	-
in adjusting nut	Wrench opening	SW ₃	[mm]	3	3	4	4	5	-
Sizes 01 - 3	Tightening torque	T	[Nm]	3	5	9	9	15	-
Pins/threads	Wrench opening	SW4	[mm]	-	-	-	-	-	18
in adjusting nut	Wrench opening	SW ₅	[mm]	-	-	-	-	-	6
Size 4	Number, dimensions	M ₆	[mm]	-	-	-	-	-	3 x M8

Dimensions [mm]			Si	ze		
Dimensions [mm]	01	0	1	2	3	4
Α	24	28	30	34	40	62.5
C₄	52	63.5	75	82	94	160
D,	70	85	100	115	135	175
D _H	55	65	80	95	105	135
F ₂	70	85	100	115	135	175
f	38	44	56	70	84	100
f ₂	5	5	5	6	7	-
f ₄	50	55	70	84	100	-
Min. shaft length g ₄	34	39	42	48	53	93
k,	2.8	2.8	2.8	3.5	4.0	5.3
L 3)	52	63	73	81	93	160
L ₁ 3)	107	126.5	152	167	189	270
Ĺ	30	35	45	50	56	75
t,	12	13.5	20	20	21	27.5

Doro	o Imn	_1			Si	ze			
DOIE	s [mn	·IJ	01	0	1	2	3	4	
EAS®-	d 4) 5)	4) 5) d _{min}		15	22	32	35	40	
Sic	u / /	d _{max}	20	25	35	45	55	65	
Ś	d 2)	d _{3 min}	15	19	20	28	35	45	
3A®-E side	d ₃ ²⁾	d _{3 max}	28	35	45	50	55	80	
ROBA®-ES side	d 2)		d _{4 min}	15	19	20	28	35 ⁶⁾	45
2	d ₄ ²⁾	d _{4 max}	28	38	45	50	60 ⁶⁾	75	

We reserve the right to make dimensional and constructional alterations.

EAS®-Compact® overload lastic backlash-free

Type 494._24._ Sizes 01 to 4

EAS®-side key hub, ROBA®-ES-side key hub Type 494._24._, Sizes 01 to 3

Type 494._24._, Size 4

Example: Order number 1 / 494.624.3 / 22 / 25 / 60 / limit switch 055.002.5

Tachnical Dat	_						Size			
Technical Dat	d				01	0	1	2	3	4
	Type 494	l.524	M _G	[Nm]	5 – 12.5	10 - 25	20 - 50	40 – 100	80 - 200	120 - 300
Limit torques 1)	Type 494	Type 494.624		[Nm]	10 – 25	20 - 50	40 – 100	80 – 200	160 - 400	240 - 600
for overload	Type 494	l.724	M _G	[Nm]	20 – 50	40 – 100	80 – 200	160 – 400	320 - 800	480 – 1200
	Type 494.824		M _G	[Nm]	25 – 62.5	50 – 125	100 – 250	200 – 500	400 – 1000	600 – 1500
Max. speed n _{maxi}		[rpm]	8000	7000	6000	5000	4000	3500		
Thrust washer stroke on overload [mm]			2.0	2.6	3.2	3.8	4.5	5.5		
Nominal and max	cimum	92 Shore A	$T_{\rm KN}/T_{\rm K\ max}$	[Nm]	35 / 70	95 / 190	190 / 380	265 / 530	310 / 620	900 / 1800
torques 1),		98 Shore A	$T_{\rm KN}/T_{\rm K\ max}$	[Nm]	60 / 120	160 / 320	325 / 650	450 / 900	525 / 1050	1040 / 2080
flexible coupling		64 Shore D	$T_{\rm KN}/T_{\rm K\ max}$	[Nm]	75 / 150	200 / 400	405 / 810	560 / 1120	655 / 1310	1250 / 2500
	axial		ΔK_{a}	[mm]	1.4	1.5	1.8	2.0	2.1	2.6
		92 Shore A	ΔK _r	[mm]	0.14	0.15	0.17	0.19	0.21	0.25
	radial	98 Shore A	ΔK _r	[mm]	0.10	0.11	0.12	0.14	0.16	0.18
Permitted misalignments		64 Shore D	ΔK _r	[mm]	0.07	0.08	0.09	0.10	0.11	0.13
misalignments		92 Shore A	ΔK _w	[°]	1.0	1.0	1.0	1.0	1.0	1.0
	angular	98 Shore A	ΔK _w	[°]	0.9	0.9	0.9	0.9	0.9	0.9
		64 Shore D	ΔK _w	[°]	0.8	0.8	0.8	0.8	0.8	0.8

Mass mamonto	Size								
Mass moments of inertia and weights			01	0	1	2	3	4	
EAS®-hub-side	Type 49424	I	[10 ⁻³ kgm ²]	0.377	0.917	2.193	4.205	9.867	37.215
ROBA®-ES-side	Type 49424	I	[10 ⁻³ kgm ²]	0.321	0.695	1.844	7.39	14.519	62.873
Weights	Type 49424	m	[kg]	1.23	1.92	3.26	6.73	10.28	27.19

Companyo				Size						
Screws	OCI CWO			01	0	1	2	3	4	
Locking screw Number, dimensions M ₃ [m		[mm]	1 x M4	1 x M4	1 x M5	1 x M5	1 x M6	-		
in adjusting nut	Wrench opening	SW ₃	[mm]	3	3	4	4	5	-	
Sizes 01 - 3	Tightening torque	T _A	[Nm]	3	5	9	9	15	-	
Pins/threads	Pins/threads Wrench opening S		[mm]	-	-	-	-	-	18	
in adjusting nut Size 4	Wrench opening	SW ₅	[mm]	-	-	-	-	-	6	
	Number, dimensions	M ₆	[mm]	-	-	-	-	-	3 x M8	

Dimensione [mm]			Si	ze		
Dimensions [mm]	01	0	1	2	3	4
Α	24	28	30	34	40	62.5
C ₄	52	63.5	75	82	94	160
D ₁	70	85	100	115	135	175
D _H	55	65	80	95	105	135
F ₂	70	85	100	115	135	175
f ₂	5	5	5	6	7	-
f ₄	50	55	70	84	100	-
G ⁴⁾	M5	M6	M8	M8	M8	M10
h	45	55	65	72	82	145
$L_{\!\scriptscriptstyle 2}$	100	118.5	144	158	178	270
l ₁	30	35	45	50	56	75
t	10	15	15	20	25	20

Porce	Bores [mm]			Size							
bores			01	0	1	2	3	4			
EAS®- side	a	d _{P min} 2)	12	15	22	28	32	40			
EAS [®] side	d _p	d _{p max} 3)	20	25	30	40	50	65			
3A®- side	a	d _{5 min}	8	10	12	14	20	38			
ROBA®- ES - side	d ₅	d _{5 max}	28	38	45	55	60	80			

We reserve the right to make dimensional and constructional alterations.

- The transmittable torques on the flexible coupling "T_{KN}" are dependent on factors such as temperature, torsional rigidity, etc., see also coupling dimensioning ROBA®-ES catalogue K.940.V_ or contact the manufacturer.
 Smaller bores for smaller torques available on request
 Larger bores available on request
 Keyway 180° offset to "G"

EAS®-Compact® overload lastic

Type 494._ _4.2 Size 5

Key hub on both sides Type 494._24.2

EAS®-side cone bushing, lastic-side key hub Type 494._34.2

Example: Order Number 5 / 494.624.2 / 60 / 60 / 800 / limit switch 055.002.5

Technical Data				Size
Tooliilloai Data				5
	Type 494.5_4.2	M _G	[Nm]	240 – 600
Limit torques	Type 494.6_4.2	M _G	[Nm]	480 – 1200
for overload	Type 494.7_4.2	M _G	[Nm]	960 – 2400
	Type 494.8_4.2	M _G	[Nm]	1200 – 3000
Max. speed n _{max} [rpm]			[rpm]	3000
Thrust washer stro	Thrust washer stroke on overload		[mm]	6.5
	Type 494.5_4.2	T _{KN}	[Nm]	2400
Nominal torques,	Type 494.6_4.2	T _{KN}	[Nm]	2400
flexible coupling	Type 494.7_4.2	T _{KN}	[Nm]	2400
	Type 494.8_4.2	T _{KN}	[Nm]	3700
.	axial	ΔK_{a}	[mm]	2.0
Permitted misalignments 2)	radial	ΔK _r	[mm]	0.3
	angular	ΔK _w	[°]	0.07

Mass mamont	s of inartia and wai	abte		Size
wass moments	s of inertia and wei	gnis		5
EAS®-hub-side	Type 494 24.2	I	[10 ⁻³ kgm ²]	112.399
EAS*-Hub-side	Type 494 34.2	I	[10 ⁻³ kgm ²]	120.834
lastic-side	Type 4944.2	I	[10 ⁻³ kgm ²]	420.870
Weights	Type 494 24.2	m	[kg]	69.780
weights	Type 494 34.2	m	[kg]	70.150

Screws				Size
Sciews	Sciews			5
	Number, dimensions	M	[mm]	8 x M10
In cone bushing EAS®-side	Wrench opening	sw	[mm]	16
LAO -Side	Tightening torque	T _A	[Nm]	71
D'a a (tha a a da	Wrench opening	SW ₄	[mm]	18
Pins/threads in adjusting nut	Wrench opening	SW ₅	[mm]	6
in adjusting nut	Number, dimensions	M ₆	[mm]	3 x M8

Dimensions [mm]	Size
	5
Α	80
A ₁	60
D	240
D ₁	146
E	215
F ₂	225
f	134
G	M12
$g_{_{4}}$	118
h	175
k ₁	6.4
L 1)	193
$L_{\!\scriptscriptstyle 2}$	400
L ₃ 1)	418
I	117
I ₁	75.5
I_2	108
S	4
t	35

Poros [mm]		am]	Size
БОІ	Bores [mm]		5
	al	d _{p min}	45
EAS®-	d _p	d _{p max}	80
Sic	a	d _{min}	45
	d	d _{max}	85
astic- side	a	d _{2 min}	60
lastic side	d ₂	d _{2 max}	100

We reserve the right to make dimensional and constructional alterations.

Dimensions in untensioned condition (shorter in tensioned condition)
 The values refer to 1500 rpm.

EAS®-Compact® Options

EAS®-Compact® with adjusting nut for radial torque adjustment

The EAS®-Compact® can be equipped with an adjusting nut for radial torque adjustment if the clutch cannot be accessed axially due to narrow installation conditions.

On this variant, the graduation for reading and adjusting the torque is mounted radially visible on the outer diameter.

Dimensions	Size								
[mm]	01	0	1	2	3				
$A_{\!\scriptscriptstyle 2}$	12	13.5	16	17	20.5				
F,	59	73	88	104	125				
F ₂	70	85	100	115	135				
Х	6	7	7	8	10				
х	3	4	4	4.5	4				

EAS®-Compact® with clamping ring

EAS®-Compact® clutches with clamping ring hub can be mounted extremely quickly and easily onto the shaft. The slotted clamping ring is tensioned using one single screw. Due to the equipment with an adjusting nut for radial torque adjustment, the limit torque for overload can be altered even in installed condition.

Dimensions [mm]	Size								
	01	0	1	2	3				
$\mathbf{A}_{_{3}}$	15.5	19	20.5	23.5	26				
F ₂	70	85	100	115	135				
F ₃	60	72	84	97	115				
L ₄	43.5	53.5	63.5	70.5	80.5				
L ₅	65	77	90	103	117				
I ₄	18	22	26	32	36				

Bores [mm]		Size							
		01	0	1	2	3			
d ^{H7 1)}	d _{min}	10	15	22	32	35			
a,	d _{max}	25	32	40	45	55			

1) For transmittable torques dependent on bore, see Table 1.

Frictionally-locking transmittable torques T _R [Nm] EAS®-Compact® with clamping ring					
			Size		
Bore	01	0	1	2	3
Ø 10	44	-	-	-	-
Ø 12	52	-	-	-	-
Ø 14	61	-	-	-	-
Ø 16	69	101	-	-	-
Ø 18	78	113	-	-	-
Ø 20	87	126	-	-	-
Ø 22	96	138	199	-	-
Ø 25	109	168	226	327	-
Ø 28	-	201	253	366	523
Ø 30	-	216	290	420	561
Ø 32	-	230	325	470	598
Ø 35	-	-	355	515	700
Ø 38	-	-	386	559	798
Ø 40	-	-	406	588	840
Ø 45	-	-	-	661	945
Ø 50	-	-	-	-	1050
Ø 55	-	-	-	-	1155

Table 1

Corouro			Size					
Screws		01	0	1	2	3		
	Number, dimensions	M ₈	[mm]	1 x M4	1 x M5	1 x M6	1 x M6	1 x M8
Locking screw in adjusting nut	Wrench opening	SW ₈	[mm]	3	4	5	5	6
	Tightening torque	T _A	[Nm]	3	5.5	9.5	9.5	23
	Number, dimensions	M ₉	[mm]	1 x M6	1 x M8	1 x M10	1 x M12	1 x M14
In the clamping ring	Wrench opening	SW ₉	[mm]	5	6	8	10	12
	Tightening torque	T _A	[Nm]	16	40	79	135	220

EAS®-Compact® Options

EAS®-Compact® torsionally rigid Modular Structure

EAS®-Compact® ratchetting, synchronous and overload clutches can be combined with almost all components of the ROBA®-DS backlash-free shaft coupling. For a current selection of different Types, please see pages 16 and 17 as well as pages 32 to 35.

We are happy to advise you on the dimensioning and configuration of your optimum design.

Readable Torque Adjustment

The EAS®-Compact®overload clutch offers easily readable torque adjustment on the adjusting nut (for Sizes 01 to 3). This readability makes adjusting the torque far more simple, and also allows easy checks on the set release value on the installed clutch.

- The limit torque can be finely adjusted and accurately read due to the adjusting nut with the fine thread and the easily-readable graduation scale.
- The positive-locking (or frictionally-locking) safeguard on the adjusting nut protects against self-turning, inadvertent adjustment of the set limit torque. The integral blocking protection prevents the cup springs from becoming spring-bound.

Fig. 1: EAS®-Compact® ratchetting and synchronous clutch

Fig. 2: EAS®-Compact® overload clutch

Fig. 3 (The diagram only serves as an example)

(The diagram only serves as an

Depending on the drive and the drive constellation, torque peaks (e.g. via start-up torque impacts on asynchronous motors) can occur which lie substantially above the system (motor) operating

This behaviour is to be taken into account customerside when dimensioning or adjusting the clutch.

Torque Adjustment

Adjustment takes place by turning the adjusting nut (5) (Sizes 03 to 3) or the set screws (6) (Sizes 4 and 5).

The installed cup springs (9) are operated in the negative range of the characteristic curve (Fig. 3). A stronger pre-tension produces a dropping in spring force. Turning the adjusting nut (5) (Sizes 03 to 3) or the set screws (6) (Sizes 4 and 5) clockwise therefore produces a decrease in spring force. Turning it anti-clockwise produces an increase in torque (facing direction towards the adjusting nut (5) -Figs. 1 and 2).

If no other torque adjustment is requested customer-side, the EAS®-Compact® ratchetting, synchronous and overload clutch is generally set and marked (calibrated) manufacturer-side to approx. 70 % of the respective maximum torque. The respective torque adjustment or the adjustable torque range are visible on the type tag.

A control "spring operation in the operating range" can be carried out via the dimension "a".

- ☐ EAS®-Compact® ratchetting and synchronous clutch (Sizes 01-3): Dimension "a" is the distance between the adjusting nut facingside (5) to the thrust washer facing-side (3) (Fig. 5).
- ☐ EAS®-Compact® overload clutch (Sizes 01 3): Dimension "a" is the distance between the adjusting nut facingside (5) to the hub edge (1) (Fig. 6).

For the corresponding data, please see the Installation and Operational Instructions.

EAS®-NC Sizes 03 and 02 must be adjusted according to the Adjustment Diagram (please order if necessary) if no adjustment or calibration was made manufacturer-side.

EAS®-NC Size 03 (Fig. 7):

- Unscrew both set screws (8) from the adjusting nut (5).
- Grease the thread surfaces on the adjusting nut (5) and the hub (1).
- Set the adjusting nut (5) to the required dimension "a" (acc. Adjustment Diagram) using a hook wrench.
- · Paint both set screws (8) with Loctite 243, screw them into the adjusting nut (5) and tighten them.

EAS®-NC Size 02 (Fig. 8 and Fig. 4):

- Loosen the locking screw (2).
- Grease the thread and contact surfaces on the adjusting nut (5), the locking ring (4) and the hub (1).
- Set the adjusting nut (5) by hand up to contact on the cup spring
- Continue to turn until the four notches on the circumference of the adjusting nut (5) and the notches in the locking ring (4) align.
- Turn the adjusting nut (5) further using a face wrench to the number of graduation lines which equal the required torque (Fig. 4. number of graduation lines in the Adjustment Diagram). The 4 notches on the circumference of the adjusting nut (5) and on the locking ring (4) must be in the same position.
- Paint the locking screw (2) with Loctite 243 and screw it into the adjusting nut (5).

Fig. 8

Changing the Torque

Sizes 01 to 3 (Figs. 1, 2 and 6):

 Convert the required torque (acc. formula below) in percent of the maximum adjustment value.

Required torque adjustment

Max. torque adjustment (see Table Technical Data)

x 100 = Adjustment in %

- · Loosen the locking screw (2) in the adjusting nut (5).
- Turn the adjusting nut (5) clockwise or anti-clockwise according to the engraved adjustment scale (Figs. 1 and 2) using a hook wrench or a face wrench, until the required torque is set.
- The required torque results from:
 - ☐ the locking ring (4) marking (D) overlap and the percent value (C) on the adjusting nut (5) (ratchetting and synchronous clutch, Fig. 1), or
 - ☐ the hub (1) marking overlap and the percent value on the adjusting nut (5) (overload clutch, Figs. 2 and 6).
- Paint the locking screw (2) with Loctite 243 and screw it into the
 adjusting nut (5); the 4 notches (A) in the adjusting nut (5) and the
 notches (B) in the locking ring (4) must be in the same position
 (Fig. 1). Correct slightly if necessary.

Example:

EAS®-Compact® Size 3, Type 490.610.0 ($\rm M_a$ max. = 350 Nm): Torque pre-adjustment = 70 % of $\rm M_a$ max. = 245 Nm. The adjustment should be increased from 245 Nm to 280 Nm.

 \bullet Define the torque adjustment in percent of $\rm M_{\rm g}$ max. using the formula below:

280	x 100 = 80 %
350	X 100 = 80 %

 Turn the adjusting nut (5) according to the facing-side scale (Fig. 1) anti-clockwise from 70 % to 80 % on the adjustment scale using a face wrench.

Fig. 9

Sizes 4 and 5 (Figs. 9 and 10):

The torque is changed exclusively via the set screws (6) and not via the adjusting nut (5).

- Loosen all hexagon nuts (7).
- Adjust all set screws (6) evenly to the required dimension "a" using a hexagon socket wrench.
 - ☐ EAS®-Compact® ratchetting and synchronous clutch, Size 4: find dimension "a" in the Adjustment Table glued to the clutch (Fig. 9).
 - ☐ EAS®-Compact® overload clutch, Sizes 4-5: find dimension "a" in the Adjustment Table (10) glued to the adjusting nut (5) (Fig. 10).
- Counter the set screws (6) again using hexagon nuts (7).

After de-installing the clutch (e.g. due to cup spring replacement or changes to the cup spring layering), the clutch must be re-adjusted.

Re-engagement of the EAS®-Compact® overload clutch

EAS®-Compact® overload clutch re-engagement is carried out by applying axial pressure onto the thrust washer (3). It may be necessary to turn between the clutch input and output sides slightly.

Re-engagement must only take place when the device is not running or at low differential speed (< 10 rpm). For a more detailed explanation on re-engagement, please see the respective Installation and Operational Instructions.

Depending on the equipment available, the accessibility of the installation point etc., re-engagement can be carried out in the following ways:

Sizes 01 to 3:

- Manually, e.g. using a plastic hammer or installation levers supported on the adjusting nut (5) (e.g. 2 screwdrivers placed opposite each other).
- By using an engagement mechanism. The engagement procedure can also be automated using pneumatic or hydraulic cylinders.

Sizes 4 and 5:

☐ By evenly screwing 3 hexagon head screws M8 (provided by the customer) into the adjusting nut (5) (Fig. 10).

After re-engagement has taken place, the three hexagon head screws must be removed immediately, as they could stop the clutch functioning (blockage).

- ☐ By using two screwdrivers, applied opposite each other and supported by the cup springs (9).
- By using an engagement mechanism. The engagement procedure can also be automated using pneumatic or hydraulic cylinders.

Permitted Bearing Load

The output element is centred on the deep groove ball bearing (tolerance H7/h5) and bolted together with the pressure flange (3).

If the resulting radial force from the output element is anywhere near the centre of the ball bearing and under the maximum permitted radial load according to Table 1, an additional bearing for the output element is unnecessary.

No appreciable axial forces (see Table 1) should be transferred from the output element onto the clutch pressure flange (3).

Permitted			Size								
bearing load			03	02	01	0	1	2	3	4	5
Axial forces	F _A	[kN]	0.12	0.28	0.65	1	1.5	2.4	4.2	5	7.7
Radial forces	F _R	[kN]									
1-bearing design	1		0.1	0.25	0.65	1	1.5	2.4	4.2	5	-
2-bearing design	1		0.15	0.375	1	1.5	2.25	3.6	6.3	7.5	11.5
Transverse force torques*	M _Q	[Nm]	0.5	1.5	5	10	20	30	40	50	70

Table 1

* Torques, which put strain on the deep groove ball bearing due to the non-centric axial forces having an effect on the pressure flange.

Size Selection, Energy Calculation, **Torque Adjustment for Horizontal Servo Axes**

Fig. 1 Fig. 2

Fig. 3

Configuration Fig. 1

Configuration Fig. 2

Configuration Fig. 3

I, from equation (7)

Total mass moment of inertia without EAS®-Compact® clutch

$$I_g = I_M + I_{Z1} + (I_{Z2} + I_S + I_L) \cdot (\frac{n_2}{n_1})$$

I, from equation (7)

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2}$$

$$I_g = I_M + I_{Ku} + I_S + I_L$$

[kgm²] (1)

Mass moment of inertia input-side referring to the shaft with the EAS®-Compact® clutch

$$I_1 = I_D + I_{Z2} + (I_{Z1} + I_M) \cdot (\frac{n_1}{n_2})^2$$
 $I_1 = I_M + I_N$

$$I_1 = I_M + I_N$$

$$I_1 = I_M + I_E$$

[kgm²] (2)

Mass moment of inertia output-side (spindle-side) referring to the shaft with the EAS®-Compact® clutch

$$I_2 = I_N + I_S + I_L$$

$$I_2 = I_D + I_{Z1} + (I_{Z2} + I_S + I_L) \cdot (\frac{n_2}{n_1})^2$$

$$I_2 = I_N + I_S + I_L$$

[kgm²] (3)

I, from equation (7)

I, from equation (7)

I, from equation (7)

Clutch pre-selection

$$M_{erf.} = 1.5 \cdot M_2$$
 M_2 from equation (4)

$$M_{erf.} = 1.5 \cdot M_1$$

$$M_{erf.} = 1.5 \cdot M_1$$

[Nm]

Configuration Fig. 1	Configuration Fig. 2	Configuration Fig. 3		
Torque on the spindle				
$M_2 = M_1 \cdot \frac{n_1}{n_2}$	As configuration Fig. 1	As configuration Fig. 1	[Nm]	(4)
Carriage feed rate				
$v = \frac{p \cdot n_2}{6 \cdot 10^4}$	As configuration Fig. 1	As configuration Fig. 1	[<u>m</u>]	(5)
Angular speed of the motor shaft $\omega_{_{f 1}}$ and $$	the spindle $\omega_{_{2}}$			
$\omega_1 = \frac{n_1 \cdot \pi}{30} \qquad \omega_2 = \frac{n_2 \cdot \pi}{30}$	As configuration Fig. 1	As configuration Fig. 1	[s ⁻¹]	(6)
Mass of the carriage reduced on the spir	ndle			
$I_L = m \cdot \frac{v^2}{\omega_2^2}$ v from equation (5), ω_2 from equation (6)	As configuration Fig. 1	As configuration Fig. 1	[kgm²]	(7)
Energy on collision without EAS®-Compa	act® clutch			
$W_{g} = \frac{1}{2} \cdot I_{g} \cdot \omega_{1}^{2}$	As configuration Fig. 1	As configuration Fig. 1	[J]	(8)
$\rm I_{\rm g}$ from equation (1), $\omega_{\rm 1}$ from equation (6)				
Energy on collision with EAS®-Compact®	[®] clutch			
$W_2 = \frac{1}{2} \cdot I_2 \cdot \omega_2^2$	$W_2 = \frac{1}{2} \cdot I_2 \cdot \omega_1^2$	$W_2 = \frac{1}{2} \cdot I_2 \cdot \omega_1^2$	[J]	(9
${\rm I_2}$ from equation (3), $\omega_{\rm 2}$ from equation (6)	${\rm I_2}$ from equation (3), $\omega_{\rm 1}$ from equation (6)	$\rm I_{\rm 2}$ from equation (3), $\omega_{\rm 1}$ from eq. (6)		
Remaining residual energy				
$W_{R} = \frac{W_{2}}{W_{g}} \cdot 100$	As configuration Fig. 1	As configuration Fig. 1	[%]	(10
W _g from equation (8), W ₂ from equation (9)				
Uncoupled energy				
$\Delta W = W_g - W_2$ $\Delta W = 100 - W_R$ $W \text{ from a quotien (0)} W \text{ from a quotien (0)}$	As configuration Fig. 1	As configuration Fig. 1	[J] [%]	(11
W_g from equation (8), W_2 from equation (9), Required disengagement torque in the ac				
$M_{A} = M_{B} \cdot \frac{I_{2}}{I_{2} + I_{1}} \cdot \frac{n_{1}}{n_{2}}$	Speed ratio $\frac{n_1}{n_2}$ not applicable.	Speed ratio $\frac{n_1}{n}$	[Nm]	(13
$I_2 + I_1 \qquad n_2$ I_1 from equation (2), I_2 from equation (3)	$n_{_2}$	not applicable.		
Required disengagement torque in the ac	cceleration phase (axis in any direction)	not applicable.		
$M_A = [(M_B \cdot \frac{n_1}{n_2} - M_L) \cdot \frac{I_2}{I_2 + I_1} + M_L] \times 1.2$	$M_A = [(M_B - M_L \cdot \frac{n_2}{n_1}) \cdot \frac{l_2}{l_2 + l_1} + M_L \cdot \frac{n_2}{n_1}] \times 1.2$		[Nm]	(14
M _L from equation (15) Load torque from carriage mass in any d	M _L from equation (15)	M _L from equation (15)		
$M_{L} = \frac{m \cdot g \cdot \sin\alpha \cdot p}{2 \cdot \pi \cdot 1000}$	As configuration Fig. 1	As configuration Fig. 1	[Nm]	(1
α Spindle				
Limit torque adjustment				
$M_G = 1.5 \cdot M_2$ M_2 from equation (4)	$M_G = 1.5 \cdot M_1$	$M_{G} = 1.5 \cdot M_{2}$ M_{2} from equation (4)	[Nm]	(10
2		2		

The disengagement torque M_A from equation (13) or (14) (multiplied by a factor of 1.2) must be smaller than the torque M_G set on the clutch.

Condition:

Calculation Example

Configuration as shown in Fig. 1

Data:

Mass of the carriage = 560 kg $= 0.0037 \text{ kgm}^2$ Mass moment of inertia of the motor Mass moment of inertia of the $= 0.0006 \text{ kgm}^2$ Toothed belt pulleys $= 0.01132 \text{ kgm}^2$ Mass moment of inertia of the spindle $= 0.00067 \text{ kgm}^2$ Drive speed of the motor = 2000 rpSpeed of the spindle = 1000 rpmPitch of the spindle Nominal torque of the motor Max. torque of the motor = 40 Nm

$$M_{erf.} = 1.5 \cdot M_2$$

 M_2 from equation (4)

$$M_{erf} = 1.5 \cdot 28 = 42$$
 [Nm]

Selected: EAS®-Compact® Size 0, Type 490.610.0

Torque range $M_g = 20 \div 50 \text{ Nm}$ (see Technical Data, page 9)

Total mass moment of inertia of the EAS®-Compact®

Hub side $I_N = 0.000531 \text{ kgm}^2$ (see Techn. Data, page 9) Pressure flange side $I_D = 0.000234 \text{ kgm}^2$ (see Techn. Data, page 9)

Total mass moment of inertia without EAS®-Compact® clutch

$$I_{g} = I_{M} + I_{Z1} + (I_{Z2} + I_{S} + I_{L}) \cdot (\frac{n_{2}}{n_{1}})^{2} \quad \text{equation (7)}$$

$$I_{g} = 0.0037 + 0.0006 + (0.01132 + 0.00067 + 0.00142) \cdot (\frac{1000}{2000})^{2}$$

$$I_{g} = 0.00765 \quad [kgm^{2}] \quad (1)$$

Mass moment of inertia input-side referring to the shaft with the EAS®-Compact® clutch

$$I_{1} = I_{D} + I_{Z2} + (I_{Z1} + I_{M}) \cdot (\frac{n_{1}}{n_{2}})^{2}$$

$$I_{1} = 0.000234 + 0.01132 + (0.0006 + 0.0037) \cdot (\frac{2000}{1000})^{2}$$

$$I_{1} = \mathbf{0.0287}$$
[kgm²] (2)

Mass moment of inertia output-side (spindle-side) referring to the shaft with the EAS®-Compact® clutch

Torque on the spindle

$$M_2 = M_1 \cdot \frac{n_1}{n_2} = 14 \cdot \frac{2000}{1000} = 28$$
 [Nm] (4)

Carriage feed rate

$$v = \frac{p \cdot n_2}{6 \cdot 10^4} = \frac{10 \cdot 1000}{6 \cdot 10^4} = 0.1667 \qquad \left[\frac{m}{s}\right] \quad (5)$$

Angular speed of the motor shaft ω_1 and the spindle ω_2

$$\omega_{1} = \frac{n_{1} \cdot \pi}{30} = \frac{2000 \cdot \pi}{30} = 209$$
 [s⁻¹] (6)
$$\omega_{2} = \frac{n_{2} \cdot \pi}{30} = \frac{1000 \cdot \pi}{30} = 104.7$$
 [s⁻¹] (6)

Mass of the carriage reduced on the spindle

$$I_L = m \cdot \frac{v^2}{\omega_2^2}$$
 = 560 \cdot \frac{0.1667^2}{104.7^2} = **0.00142** [kgm²] (7)

v from equation (5), ω_{2} from equation (6)

Energy on collision without EAS®-Compact® clutch

$$W_{g} = \frac{1}{2} \cdot I_{g} \cdot \omega_{1}^{2} = \frac{1}{2} \cdot 0.00765 \cdot 209^{2} = 167$$
 [J] (8)
I₂ from equation (1), ω_{1} from equation (6)

Energy on collision with EAS®-Compact® clutch

$$W_{2} = \frac{1}{2} \cdot I_{2} \cdot \omega_{2}^{2} = \frac{1}{2} \cdot 0.00262 \cdot 104.7^{2} = 14$$
 [J] (9)
$$I_{2} \text{ from equation (3), } \omega_{2} \text{ from equation (6)}$$

Remaining residual energy

$$W_{R} = \frac{W_{2}}{W_{g}} \cdot 100 = \frac{14}{167} \cdot 100 = 8.4$$
 [%] (10)
 W_{g} from equation (8), W_{g} from equation (9)

Uncoupled energy

$$\Delta W = W_g - W_2$$
 = 167 - 14 = **153** [J] (11)
 $\Delta W = 100 - W_B$ = 100 - 8.4 = **91.6** [%] (12)

Required disengagement torque in the acceleration phase (horizontal axis)

$$M_{A} = M_{B} \cdot \frac{I_{2}}{I_{2} + I_{1}} \cdot \frac{n_{1}}{n_{2}} \quad I_{1} \text{ from equation (2)}$$

$$M_{A} = 40 \cdot \frac{0.00262}{0.00262 + 0.0287} \cdot \frac{2000}{1000} = \textbf{6.7} \quad [Nm] \quad (13)$$

Limit torque adjustment

$$M_{_{\rm G}} = 1.5 \cdot M_{_{2}} = 1.5 \cdot 28 = 42$$
 [Nm] (16)
Condition: The disengagement torque $1.2 \cdot M_{_{\rm A}} = 1.2 \cdot 6.7 = 8.04$ Nm

Keys

l _g	[kgm²]	Total mass moment of inertia without EAS®-Compact® clutch
I ₁	[kgm²]	Mass moment of inertia input-side referring to the shaft with the EAS®-Compact® clutch
I_2	[kgm²]	Mass moment of inertia output-side (spindle-side) referring to the shaft with the EAS®-Compact® clutch
I _M	[kgm²]	Mass moment of inertia of the motor
I_{z_1}	[kgm²]	Mass moment of inertia of the motor-side toothed belt pulley
I_{z_2}	[kgm²]	Mass moment of inertia of the second toothed belt pulley
I_s	[kgm²]	Mass moment of inertia of the spindle
I _L	[kgm²]	Mass of the carriage reduced on the spindle
I_N	[kgm²]	Mass moment of inertia of the EAS®-Compact®, hub-side
$I_{_{\rm D}}$	[kgm²]	Mass moment of inertia of the EAS®-Compact®, pressure flange-side
I _E	[kgm²]	Mass moment of inertia of the EAS®-Compact®, flexible coupling
I_{Ku}	[kgm²]	Mass moment of inertia of the double shaft connection before installation of the EAS®-Compact® clutch
$M_{\scriptscriptstyle 1}$	[Nm]	Motor nominal torque
M_2	[Nm]	Torque on the spindle
M_A	[Nm]	Required disengagement torque in the acceleration phase
$M_{\scriptscriptstyle B}$	[Nm]	Maximum motor torque
$M_{\rm G}$	[Nm]	Limit torques for overload
M_{L}	[Nm]	Load torque from the carriage mass in any direction
$M_{erf.}$	[Nm]	Required torque (pre-selection of the clutch)
g	[m·s ⁻²]	Gravitational acceleration
m	[kg]	Carriage mass
n ₁	[rpm]	Drive speed on the motor (rapid movement)
n_2	[rpm]	Spindle speed (rapid movement)
р	[mm]	Spindle pitch
٧	[m·s ⁻¹]	Carriage feed rate
W_g	[J]	Total energy on collision without EAS®-Compact® clutch
W_2	[J]	Energy on collision with EAS®-Compact® clutch
W_{R}	[%]	Remaining residual energy
ΔW	[J]	Uncoupled energy
ΔW	[%]	Uncoupled energy
$\omega_{_1}$	[S ⁻¹]	Angular speed of the motor shaft
ω_{2}	[S ⁻¹]	Angular speed of the spindle

Frictionally-locking Transmittable Torques

Table 1: Assignment of the bore diameters d₃/d₄ on the flexible coupling to the transmittable torque "T_R" EAS®-Compact® synchronous, ratchetting and overload clutches Types 494._0._/494._1._

			-				C:			
			Bore		04	_		ze	•	
			Boile	А	01	0	1	2	3	4
		[Nm]	Ø 15	d ₃	34	-	-	-	-	-
				d ₄	56	-	-	-	-	-
			Ø 16	d ₃	36	-	-	-	-	-
				d ₄	62	-	-	-	-	-
			Ø 19	d ₃	43	79	-	-	-	-
				d₄	81	141	-	-	-	-
			Ø 20	d ₃	45	83	83	_	-	-
			Ø 20	$d_{_4}$	87	153	197	-	-	-
	T_R		Ø 22	d ₃	50	91	91	-	-	-
			W 22	d_4	100	177	228	-	-	-
			Ø 24	d ₃	54	100	100	-	-	-
Frictionally-locking transmittable torques Clamping hub Ø d ₃				d_4	120	203	261	-	-	-
			Ø 25	d ₃	57	104	104	-	-	-
				d ₄	125	216	279	-	-	-
				d ₃	63	116	116	208	-	-
			Ø 28	d ₄	135	256	332	300	-	-
			~	d ₃	-	124	124	228	-	-
			Ø 30	d ₄	-	282	368	350	-	-
				d ₃	_	133	133	248	_	_
			Ø 32	d ₄	-	308	405	400	-	-
				d ₃	_	145	145	280	350	_
			Ø 35	d ₄	-	343	460	500	450	_
				d ₃	_	-	158	315	390	-
			Ø 38	d ₃	-	373	513	600	500	-
Valid for F7/k6				d ₄		-	166	340	420	
Shrink disk hub Ø d₄ Valid for H7/k6 The transmittable torques of the clamping connection take the max. tolerance backlash of the shaft tolerance k6/ bores F7 or H7 into account. If the tolerance backlash is larger, the torque decreases.			Ø 40	d ₃	-					-
					-	-	547	680	600	-
			Ø 42 Ø 45	d ₃	-	-	174	365	455	-
				d ₄	-	-	577	730	720	
				d ₃	-		187	404	505	545
				d₄ ·	-	-	617	790	850	1402
			Ø 48	d ₃	-	-	-	442	560	590
			~ .0	d ₄	-	-	-	850	1000	1596
			Ø 50	d ₃	-	-	-	470	600	630
			9 30	d₄	-	-	-	880	1180	1731
			Ø 52	d ₃	-	-	-	_	640	662
				$d_{_{4}}$	-	-	-	-	1270	1873
			Ø 55	d ₃	-	-	-	-	705	710
			<i>y</i> 33	d_4	-	-	-	-	1353	2095
			Ø 58	d ₃	-	-	-	-	-	764
				d ₄	-	-	-	-	1428	2308
			Ø 00	d ₃	-	-	-	-	-	800
			Ø 60	d ₄	-	-	-	-	1471	2420
			~	d ₃	-	-	-	-	-	840
			Ø 62	d ₄	-	-	-	-	-	2570
				d ₃	_	-	-	-	_	900
			Ø 65	d ₄	-	-	-	-	-	2750
				d ₃	_	-	-	_	_	954
			Ø 68	d ₄	-	-	_	_	_	2989
			Ø 70	d ₃	-	-	-	-	-	990
				d ₃	-	-	-	-	-	3157
			Ø 72							
				d ₃	-	-	-	-	-	1032
				d ₄	-	-	-	-	-	3306
			Ø 75	d ₃	-	-	-	-	-	1095
				d ₄	-	-	-	-	-	3550
			Ø 78	d ₃	-	-	-	-	-	1158
			~ . 3	d ₄	-	-	-	-	-	-
			Ø 80	d ₃	-	-	-	-	-	1200
			200	d ₄	-	-	-	-	-	-

Limit Switch Type 055.00_.5 (Contactless)

Application

This device is used for measuring and monitoring axial and radial disengagement movements, e.g. on EAS®-clutches. It acts as a control sensor for electronic and mechanical sequences.

Function

When the sensor surface of the NAMUR sensor scans a metal control flag (damped), the signalling relay is triggered, is deenergised and drops. Contacts 1 - 2 are opened. Damping is possible from all sides

Electrical Connection (Terminals)

1-2-3 Floating change-over contacts 5-6 Connection input voltage

Design

The electronic amplifier is installed in a light metal housing. The limit switch is fixed using two screw-on mounting links attached diagonally with M4 cap screws.

Technical Data

Input voltage 230 VAC, $\pm 10~\%$, 50-60~Hz (dependent on design) 115 VAC, $\pm 10~\%$, 50-60~Hz

24 VDC, PELV, ±5 %,

protected against reverse polarity, for overvoltage category II connection

Power consumption Max. 1.5 VA

Ambient temperature -10 °C up to +60 °C limit switch -25 °C up to +60 °C NAMUR sensor

Protection IP54

Conductor cross-section Max. 2.5 mm² / AWG 14

Weight 400 g / 14 oz

Protection fuse 0.1 A/fast acting at 24 VDC (in system)

Signalling relay Floating change-over contacts

Contact load max. 250 VAC / 12 A Contact material AgNi 90/10 max. switching frequency 20 Hz at min. load, 0.1 Hz at max. load Installed in a light metal housing,

NAMUR sensor internal In

switching distance S_n 2 mm, flush fitting, max. switching frequency 2 kHz, the zero point can be set per 1 mm by means of the lateral adjusting

screw SW 7

NAMUR sensor external Metal housing M12 x 1, switching

distance S_n 2 mm, flush fitting, max. switching frequency 2 kHz, standard cable length 2 m, max. 100 m on special design,

protection IP67

Installation

Dimensions (external NAMUR sensor)

Order Number

Sensor internal

0 5 5 . 0 0 __ . 5 / __

Contactless sensing
Sensor external

1 Connection voltage
230 VAC

Connection voltage

1 230 VAC

2 115 VAC

24 VDC

Limit Switch Type 055.000.5 (Mechanical Operation)

Application

This device is used to monitor mechanical movements and end positions. It is a controlling sensor for electronic and mechanical sequences. It also detects axial disengagement movements, e.g. on EAS®-clutches.

Function

The pre-tensioned contact is discharged by actuating the switching lever:

Contacts 11 - 14 (21 - 24) open, contacts 11 - 12 (21 - 22) close.

Design

The microswitch is fitted into a light metal housing and is actuated by a switching lever. Operation is only possible in one direction. The limit switch is fixed using two screw-on mounting links attached diagonally with M4 cap screws.

Contact 1 change-over contact

(special design: 2 change-over

contacts)

Switching power 250 VAC / 15 A (with 2 change-over

contacts: 10 A) 24 VDC / 6 A 60 VDC / 1.5 A 250 VDC / 0.2 A min. 12 VDC / 10 mA

Contact material AgSnO

Switching frequency Max. 200 switching operations/min

Ambient temperature: -10 °C up to +85 °C

Protection IP54 Weight 275 g

Switching travel setting Using the adjusting screw (SW 7),

the zero point can be moved right or

left by max. 5 mm

Switching travel Pretravel: min. 0.15 to 0.5 mm

Overtravel: max. 10 mm,

depending on the zero point setting

Special types Different switching lever lengths as well as a design with 2 change-over

contacts are possible on request

Installation

Dimensions

Electrical Connection

Order Number

0 5 5 . 0 0 0 . 5

Limit Switch Type 055.010.6 (Mechanical Operation, Multi-directional)

Application

The limit switch is used to monitor and measure axial or radial mechanical movements and adjustments e.g. on EAS®-clutches. The device is suitable for clutches with a minimum stroke of 1.1 mm with radial actuation and 0.9 mm with axial actuation.

Function

By actuating the metal tappet, contacts 11 - 12 are opened.

Electrical Connection (Terminals)

11 – 12 NC contact

Technical Data

Contact 1 x NC contact,

positive opening contacts Θ

Contact (Special Design) additional 1 x NO contact, terminals

23 – 24, galvanically separated (Zb)

Contact-opening see Switching Travel Diagram

Contact-closing see Switching Travel Diagram

Contact-load NC contact 250 VAC / 2.5 A

24 VDC / 1 A

min. 12 VDC / 10 mA

Contact distance 250 VAC >1.25 mm axial, forced opening

Contact distance 24 VDC <1.25 mm, min. 0.5 mm

Contact material Ag90Ni10

Max. input current acc. DIN EN 60947-5-1

AC15 / DC13

Metal tappet travel max. 4 mm axial or radial

Switching frequency max. 100/min.

Mechanical lifetime 1 x 10⁶ switching cycles, unloaded

Conductor cross-section 1.5 mm² / AWG 16 Ambient temperature: -30 °C up to +80 °C

Protection IP65

Protection insulation acc. Protection Class II
Housing thermoplastic, self extinguishing

acc. UL94-V0

Weight 120 g / 4.2 oz

TRACE TOBER MAD INCOME TOBER MAD INCOME TYPE 955 00 8. 20 TYPE 955

Fixed positioning for safety application with fixing screws 2 x M5 (DIN 912).

Installation

Switching Travel Diagram

Do not install switch so that it drags and observe max. actuation travel (travel of metal tappet).

Order Number

0 5 5 . 0 1 0 . 6

Installation Examples

EAS®-Compact® short hub

The drive elements of the EAS®-Compact® short hub are centred on the deep groove ball bearing and are screwed together with the pressure flange. If the resulting radial force from the drive element is anywhere near the centre of the ball bearing, an additional bearing for the drive element is unnecessary.

The screw quality and the tightening torque for the fixing screws of the drive element are to be selected so that the set limit torque can be safely transmitted using frictional locking.

EAS®-Compact® long protruding hub

The EAS®-Compact® long protruding hub is recommended for very wide drive elements or for elements with very small diameters. On a small diameter, the drive element is screwed together via a customer-side intermediate flange with the clutch pressure flange. Ball bearings, needle bearings or plain bearings are suitable as bearings for the drive element, depending on the installation situation and the installation space.

EAS®-Compact® with flexible shaft coupling

The EAS®-Compact® with a backlash-free, torsionally flexible and vibration-damping shaft coupling for the connection of two shafts. The coupling compensates for axial, radial and angular shaft misalignments. In comparison to the EAS®-Compact® with steel bellows coupling, this product is torsionally flexible to a small extent in the circumferential direction.

In the installation example on the right, the EAS®-Compact® lastic is mounted backlash-free between the rotor and a ball screw spindle. The torque is transmitted backlash-free up to the point of disengagement and drops immediately on overload. The contactless limit switch (sensor) emits a signal to switch off the drive.

EAS®-Compact® with steel bellows coupling

The EAS®-Compact® with a torsionally rigid flexible steel bellows coupling for the connection of two shafts. The coupling compensates for axial, radial and angular shaft misalignments. It is torsionally rigid in the circumferential direction.

In comparison with the EAS®-Compact® with ROBA®-D coupling, the EAS®-Compact® with steel bellows coupling has a lower mass moment of inertia.

In the installation example on the right, the EAS®-Compact® with steel bellows coupling is mounted between the rotor and a ball screw spindle. The torque is transmitted backlash-free up to the point of disengagement and drops immediately on overload. The contactless limit switch (sensor) emits a signal to switch off the drive.

Product Summary

Safety Clutches/Overload Clutches

■ EAS®-Compact®/EAS®-NC

Positive locking and completely backlash-free torque limiting clutches

EAS®-smartic®

Cost-effective torque limiting clutches, quick installation

■ EAS®-element clutch/EAS®-elements

Load-disconnecting protection against high torques

EAS®-axial

Exact limitation of tensile and compressive forces

EAS®-Sp/EAS®-Sm/EAS®-Zr

Load-disconnecting torque limiting clutches with switching function

ROBA®-slip hub

Load-holding, frictionally locked torque limiting clutches

ROBA®-contitorque

Magnetic continuous slip clutches

■ EAS®-HSC/EAS®-HSE

High-speed safety clutches for high-speed applications

Shaft Couplings

smartflex®/primeflex®

Perfect precision couplings for servo and stepping motors

■ ROBA®-ES

Backlash-free and damping for vibration-sensitive drives

■ ROBA®-DS/ROBA®-D

Backlash-free, torsionally rigid all-steel couplings

■ ROBA®-DSM

Cost-effective torque-measuring couplings

Electromagnetic Brakes/Clutches

■ ROBA-stop[®] standard

Multifunctional all-round safety brakes

■ ROBA-stop®-M Motor brakes

Robust, cost-effective motor brakes

ROBA-stop®-S

Water-proof, robust monoblock brakes

ROBA-stop®-Z/ROBA-stop®-silenzio®

Doubly safe elevator brakes

■ ROBA®-diskstop®

Compact, very quiet disk brakes

ROBA®-topstop®

Brake systems for gravity loaded axes

ROBA®-linearstop

Backlash-free brake systems for linear motor axes

ROBA®-guidestop

Backlash-free holding brake for profiled rail guides

■ ROBATIC®/ROBA®-quick/ROBA®-takt

Electromagnetic clutches and brakes, clutch brake units

tendo®-PM

Permanent magnet-excited DC motors

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: info@mayr.com

Service Germany

Baden-Württemberg

Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/45 96 01 0

Fax: 07 11/45 96 01 10

Hagen

Im Langenstück 6 58093 Hagen Tel.: 0 23 31/78 03 0

Fax: 0 23 31/78 03 25

Bavaria

Eichenstraße 1 87665 Mauerstetten Tel.: 0 83 41/80 41 04 Fax: 0 83 41/80 44 23

Kamen

Lünener Straße 211 59174 Kamen Tel.: 0 23 07/23 63 85

Fax: 0 23 07/24 26 74

North

Chemnitz

Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77

Bornaer Straße 205

Tel.: 03 71/4 74 18 96

Fax: 03 71/4 74 18 95

09114 Chemnitz

Fax: 0 57 54/9 20 78

Rhine-Main

Franken

Unterer Markt 9

91217 Hersbruck

Tel.: 0 91 51/81 48 64

Fax: 0 91 51/81 62 45

Hans-Böckler-Straße 6 64823 Groß-Umstadt Tel.: 0 60 78/7 82 53 37 Fax: 0 60 78/9 30 08 00

Branch office

Mayr Zhangjiagang Power Transmission Co., Ltd. Chenxin Road No.7, 215637 Zhangjiagang Tel.: 05 12/58 91-75 67 Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Singapore

Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30

Fax: 00 65/65 60 10 00 info@mayr.com.sg

Great Britain

Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00

Fax: 0 15 35/66 32 61 sales@mayr.co.uk

Switzerland

Mayr Kupplungen AG Tobeläckerstraße 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70

Fax: 0 52/6 74 08 75 info@mayr.ch

France

Mayr France S.A.S. Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

USA

Mayr Corporation 4 North Street Waldwick NJ 07463

Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com

Italy

Mayr Italia S.r.I. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0498/79 10 20 Fax: 0498/79 10 22 info@mayr-italia.it

Representatives

Regal Beloit Australia Pty Ltd. 19 Corporate Ave 03178 Rowville, Victoria Australien

Tel.: 0 3/92 37 40 00 Fax: 0 3/92 37 40 80 salesAUvic@regalbeloit.com

Poland

Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0.22/8 15.61.80 wamex@wamex.com.pl

National Engineering Company (NENCO) J-225, M.I.D.C. Bhosari Pune 411026 Tel.: 0 20/27 13 00 29 Fax: 0.20/27 13 02 29

nenco@nenco.ora

South Korea

Mayr Korea Co. Ltd. 15, Yeondeok-ro 9beon-gil Seongsan-gu 51571 Changwon-si Gyeongsangnam-do. Korea Tel.: 0 55/2 62-40 24

Fax: 0 55/2 62-40 25 info@mayrkorea.com

MATSUI Corporation 2-4-7 Azabudai Minato-ku Tokyo 106-8641 Tel.: 03/35 86-41 41 Fax: 03/32 24 24 10 k.goto@matsui-corp.co.jp

Taiwan

German Tech Auto Co., Ltd. No. 28, Fenggong Zhong Road, Shengang Dist., Taichung City 429, Taiwan R.O.C.

Tel.: 04/25 15 05 66 Fax: 04/25 15 24 13 abby@zfgta.com.tw

Netherlands

Groneman BV Amarilstraat 11 7554 TV Hengelo OV Tel.: 074/2 55 11 40 Fax: 074/2 55 11 09

aandrijftechniek@groneman.nl

Czech Republic

BMC - TECH s.r.o. Hviezdoslavova 29 b 62700 Brno

Tel.: 05/45 22 60 47 Fax: 05/45 22 60 48 info@bmc-tech.cz

More representatives:

Austria, Belgium, Brazil, Canada, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Luxembourg, Malaysia, New Zealand, Norway, Philippines, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand, Turkey

You can find the complete address for the representative responsible for your area under www.mayr.com in the internet. $\stackrel{\frown}{\triangleright}$