- 问题 (1): 下周的课程中讲授环的整扩张, 我们在此处陈列一些有关的事实, 各位同学们可以在之后的问题中直接使用此处的事实.
- 问题 (1.5): 对整环 R, 记 $K = \operatorname{Frac}(R)$, 若 R 在 K 中的整闭包就是 R 自身, 则称 R 是整闭的. 请证明 下列条件等价:
 - (1) R 是整闭的.
 - (2) 对 R 的所有素理想 \mathfrak{p} , 都有 $R_{\mathfrak{p}}$ 是整闭的.
 - (3) 对 R 的所有极大理想 \mathfrak{m} , 都有 $R_{\mathfrak{m}}$ 是整闭的.

提示: 对于 (3) 推出 (1), 考虑理想 $I=\left\{r\in R:r^p_q\in R\right\}$, 此时 $\frac{p}{q}\in R$ 当且仅当 $1\in I$.

证明. 当 (1) 成立, 对 $\frac{p}{q} \in K$, 若 $\frac{p}{q}$ 是 $R_{\mathfrak{p}}$ 上的整元, 则 $\frac{p}{q}$ 满足多项式 $f(X) = X^n + \frac{r_1}{s_1}X^{n-1} + \cdots + \frac{r_n}{s_n}$, 其中 $r_i \in R$, $s_i \in R - \mathfrak{p}$. 记 $s = s_1s_2 \dots s_n$, 则 s_q^p 满足多项式 $g(X) = X^n + \frac{s}{s_1}r_1X^{n-1} + \cdots + \frac{s^n}{s_n}r_n$, 其中 $\frac{s^k}{s_k} \in R$, 故 $g(X) \in R[X]$. 由 R 是整闭的, 则 $s_q^p \in R$, 进而 $\frac{p}{q} = \frac{r}{s} \in R_{\mathfrak{p}}$, 故 $R_{\mathfrak{p}}$ 是整闭的. 显然 (2) 可以推出 (3). 当 (3) 成立, 对于在 R 上整的 $\frac{p}{q} \in K$, 考虑 $I = \left\{r \in R : r_q^p \in R\right\}$, 只需证明 $1 \in I$. 否则, 存在极大理想 m, 使得 $I \subset \mathfrak{m}$. 此时, 由 $\frac{p}{q}$ 在 $R_{\mathfrak{m}}$ 上整,则 $\frac{p}{q} \in R_{\mathfrak{m}}$. 进而 $\frac{p}{q} = \frac{r}{s}$, 其中 $r \in R$, $s \in R - \mathfrak{m}$, 故 $s_q^p = r \in R$, 进而 $s \in I$, 与 $I \subset \mathfrak{m}$ 矛盾,故而得到 (1).

问题 (1.6):请证明: 若 R 是唯一分解整环,则 R 是整闭的. 特别地,由 (1.5),则 Dedekind 整环是整闭的.

证明. 当 R 是唯一分解整环. 对 $\frac{p}{q} \in \operatorname{Frac}(K)$, 若 $\frac{p}{q}$ 在 R 上整, 记 $\frac{p}{q}$ 满足 $f(X) = X^n + r_1 X^{n-1} + \cdots + r_n \in R[X]$, 则 $p^n + r_1 p^{n-1} q + \cdots + r_n q^n = 0$. 由于 R 是唯一分解整环, 因此我们可以不妨设 p,q 的分解中不包含相同的不可约元. 然而此时 $-p^n = q(r_1 p^{n-1} + \cdots + r_n q^{n-1})$, 因此若 q 不是单位, 则 q 的某个不可约元一定出现在 p 的分解中,与假设矛盾, 进而 q 是单位, 故 $\frac{p}{q} = q^{-1} p \in R$, 故 R 是整闭的. 由 Dedekind 整环的定义, 它对所有极大理想的局部化都是离散赋值环, 而离散赋值环是唯一分解整环, 故而 Dedekind 整环是整闭的.

问题 (2): 本系列问题中, 我们证明 Noether 正规化引理.

问题 (2.1): 对 $R \subset S$, 其中 S 是交换环,R 是 S 的子环. 对 $s_1, \ldots, s_n \in S$, 若自然 映射 $R[X_1, \ldots, X_n] \to R[s_1, \ldots, s_n]$, $f(X_1, \ldots, X_n) \mapsto f(s_1, \ldots, s_n)$ 是同构, 则我们称 s_1, \ldots, s_n 在 R 上代数无关.请证明 下列条件等价:

- (1) s_1, \ldots, s_n 在 R 上代数无关.
- (2) 对所有 $1 \le k \le n$, s_k 在 $R[s_1, \ldots, s_{k-1}]$ 上代数无关.

证明. 验证是容易的, 略.

问题 (2.2): 对 $R \subset S$, 其中 S 是交换环, $R = K[X_1, ..., X_r]$ 是 S 的子环, K 是域. 对 $S \in S$, 请证明: 存在在 K 上代数无关的 $Y_1, Y_2, ..., Y_t \in R[s]$, 使得 R[s] 是 $K[Y_1, ..., Y_t]$ 的整扩张.

提示: 当 s 在 R 上代数无关,令 $Y_1 = X_1, \ldots, Y_r = X_r, Y_{r+1} = s$ 即可. 否则,存在 $f(X) \in R[X] = K[X_1, \ldots, X_r, X]$,使得 f(s) = 0. 请尝试对 $f(X) = f(X_1, \ldots, X_r, X)$ 进行换元,将 f(X) 变换为 (关于 X 的) 首一多项式..

证明. 当 s 在 R 上代数无关,令 s'=s. 否则,存在 $f(X_1,\ldots,X_r,X)\in K[X_1,\ldots,X_r,X]$,使得 $f(X_1,\ldots,X_r,s)=0$. 此时,取足够大的 d_1,\ldots,d_r ,考虑 $g(X)=f(X_1+X^{d_1},X_2+X^{d_2},\ldots,X_r+X^{d_r},X)$,则 g(X) 是关于 X 的首一多项式。因此,令 $Y_k=X_k-s^{d_k}$,则 $g(Y_1,\ldots,Y_r,s)=0$. 此时 s 在 $K[Y_1,\ldots,Y_r]$ 的整扩张。此时,若 Y_1,\ldots,Y_r 是代数相关的,重复上述过程,可以取出 $Z_1,\ldots,Z_{r-1}\in K[Y_1,\ldots,Y_r]$,其中 $Z_k=Y_k-Y_r^{d_k'}$,使得 $K[Y_1,\ldots,Y_r]=K[Z_1,\ldots,Z_{r-1},Y_r]$ 是 $K[Z_1,\ldots,Z_r]$ 的整扩张。这样的过程不能永远重复,因为 $r<\infty$. 因此存在 $t\leq r$,以及代数无关的 $W_1,\ldots,W_t\in R[s]$,使得 R[s] 是 $K[W_1,\ldots,W_t]$ 的整扩张。

问题 (2.3): 对交换环 R, 若域 K 是 R 的子环, 且存在有限多个 $r_1, \ldots, r_n \in R$, 使得 $R = K[r_1, \ldots, r_n]$,请证明: 存在 $x_1, \ldots, x_r \in R$, 使得 x_1, \ldots, x_r 在 K 上代数无关, 且 R 是 $K[x_1, \ldots, x_r]$ 的整扩张.

证明. 由问题 (2.2), 对 n 进行归纳法即可.

问题 (3): 本系列问题中, 我们证明 Hilbert 零点定理.

问题 (3.1): 对域 K, 若 R 是 K 的子环, 且 K/R 是整扩张, 请证明: R 是域.

证明. 此时, 对非零的 $r \in R$, 则 $r^{-1} \in K$. 由 K/R 是整扩张, 则存在首一的 $f(X) = X^n + r_1 X^{n-1} + \cdots + r_n \in R[X]$, 使得 $f(r^{-1}) = r^{-n} + r_1 r^{n-1} + \cdots + r_n = 0$, 进而 $-r^{-1} = r_1 + r_2 r + \cdots + r_n r^{n-1} \in R$, 故 $r \in R$ 中可逆, 进而 R 是域.

问题 (3.2): 对交换环 R, 若 R/K 是整扩张, 其中 K 是域, <u>请证明</u>: R 是域.

证明. 对 $r \in R$, 则存在 $f(X) = X^n + k_1 X^{n-1} + \dots + k_n \in K[X]$, 使得 f(r) = 0, 进而 $r(-k_n^{-1}r^{n-1} - k_n^{-1}k_1r^{n-2} - \dots - k_n^{-1}k_{n-1}) = 1$, 其中 $-k_n^{-1}r^{n-1} - k_n^{-1}k_1r^{n-2} - \dots - k_n^{-1}k_{n-1} \in R$, 故 r 可逆, 进而 R 是域.

问题 (3.3): 对交换环 R, 若 K 是 R 的子环, 且存在 $r_1, \ldots, r_n \in R$, 使得 $R = K[r_1, \ldots, r_n]$, 则我们称 R 是一个有限生成 K-代数.<u>请证明</u>: 对域 K 及域 L, 若 $K \subset L$, 且 L 是有限生成 K-代数, 则 L/K 是整扩张.

提示: 利用问题 (2.3)(Noether 正规化引理), 将 L 化为 $K[X_1, \ldots, X_r]$ 的整扩张.

证明. 由 Noether 正规化,存在代数无关的 $X_1, \ldots, X_r \in L$,使得 L 是 $K[X_1, \ldots, X_r]$ 的整扩张. 只需证明 r=0,否则,由 L 是域,则 $X_1^{-1} \in L$.由 X_1^{-1} 是 $K[X_1, \ldots, X_r]$ 上的整元,则存在 $f_1, \ldots, f_n \in K[X_1, \ldots, X_n]$,使得 $X_1^{-n} + f_1X_1^{1-n} + \cdots + f_n = 0$,进而 $1 + X_1f_1 + \cdots + X_n^nf_n = 0$,与 X_1, \ldots, X_r 的代数无关性矛盾,故得证.

问题 (3.4): 对 $K \subset R \subset S$, 其中 K 是域, R,S 是交换环, 若 S 是有限生成 K-代数, 请证明: 若 \mathfrak{m} 是 S 的极大理想, 则 $\mathfrak{m} \cap R$ 是 R 的极大理想.

证明. 此时, 存在自然的单射 $R/\mathfrak{m} \cap R \to S/\mathfrak{m}$, 因而用 S/\mathfrak{m} 替代 S, 不妨设 $\mathfrak{m} = 0$, 即 S 是域. 此时, 只需证明 R 也是域即可. 由 (3.3), 则 S/K 是整扩张, 进而 R/K 也是整扩张, 故而由 (3.2), 则 R 是域, 故得证.

问题 (3.5): 对多项式环 $R = K[X_1, ..., X_n]$, 当 K 是代数闭域, <u>请证明</u>: 若 \mathfrak{m} 是 R 的极大理想, 则存在 $(k_1, ..., k_n) \in K^n$, 使得 $\mathfrak{m} = (X_1 - k_1, ..., X_n - k_n)$.

证明. 记 $R_k = K[X_k]$, 由 K 是代数闭域,则 R_k 的极大理想形如 $(X_k - r_k)$. 由 (3.4),记 $R_k \cap \mathfrak{m} = (X_k - r_k)$,则 $(X_1 - k_1, \dots, X_n - k_n) \subset \mathfrak{m}$,由于前者是极大理想,故而 $\mathfrak{m} = (X_1 - k_1, \dots, X_n - k_n)$.

问题 (3.6): 当 K 是代数闭域, 对多项式 $R = K[X_1, ..., X_n]$ 的理想 I, 我们记 $V(I) = \{(k_1, ..., k_n) \in K^n : f(k_1, ..., k_n)$ 对所有 $f \in I$ 成立 $\}$. 另一方面, 对 $S \subset K^n$, 我们记 $I(S) = \{f \in R : f(k_1, ..., k_n) = 0$ 对所有 $(k_1, ..., k_n) \in S$ 成立 $\}$.请证明: 对 R 的理想 I, 则:

$$I(V(I)) = \sqrt{I} = \{ f \in R :$$
存在 $n \in \mathbb{Z}_{>1}$ 使得 $f^n \in I \}$.

提示: 若 $f \notin \sqrt{I}$, 考虑乘性子集 $S = \{1, f, f^2, \dots\}$, 则 $S^{-1}I$ 是 $S^{-1}R$ 的非平凡理想. 此时 $S^{-1}R$ 也是有限生成 K 代数, 利用 (3.4) 将 $S^{-1}R$ 的极大理想拉回为 R 的极大理想.

证明. 由 (3.5), 则 $I(V(I)) = \bigcap_{\mathfrak{m} \in \mathbb{R}_{\mathbb{R}} \neq \mathbb{R}} \mathfrak{m}$. 显然 $\sqrt{I} \subset I(V(I))$. 因此, 只需证明若 $f \notin \sqrt{I}$,

则存在极大理想 \mathfrak{m} , 使得 $I \subset \mathfrak{m}$, 且 $f \notin \mathfrak{m}$. 考虑乘性子集 $S = \{1, f, f^2, \dots\}$, 则 $S^{-1}R = R\left[\frac{1}{f}\right]$ 是有限生成 R-代数,进而是有限生成 K-代数. 由 (3.4),则存在 R 的极大理想 $\mathfrak{m} \supset I$,使得 $S^{-1}\mathfrak{m}$ 是 $S^{-1}R$ 的极大理想,则 $f \notin \mathfrak{m}$,故得证.

问题 (4): 本系列问题中, 我们证明 Hilbert 基定理.

问题 (4.1): 对交换环 R, 若 R 的理想都是有限生成的,则我们称 R 是 Noetherian 的.请证明 下列条件等价:

- (1) R 是 Noetherian.
- (2) 对 R 中的理想族 $\{I_n\}_{n=1}^{\infty}$,若 $I_1 \subset I_2 \subset \cdots$,则存在 $N \in \mathbb{Z}_{\geq 1}$,使得任取 $n \geq N$,都 有 $I_N = I_n$.

证明. 显然 (2) 可以推出 (1). 反之, 当 (1) 成立, 对理想升链 $I_1 \subset I_2 \subset \cdots$, 记 $I = \bigcup_{n=1}^{\infty} I_n$, 则 I 是理想, 进而是有限生成的. 则当 N 足够大时, I 的所有生成元已经出现在 N 中, 进而 $I = I_N$. 故而, 对 $N \geq N$, 我们有 $N \subset I_n \subset I$, 进而 $N \subset I_n \subset I$

问题 (4.2): 对交换环 R 上的多项式环 R[X], 若 I 是 R[X] 的理想, 对 $d \in \mathbb{Z}_{\geq 0}$, 我们记 $I_d = \{r \in R : 存在 f \in I$ 使得 rX^d 是 f 的最高次项 $\}$. <u>请证明</u>: I_d 是 R 的理想, 且 $I_0 \subset I_1 \subset I_2 \subset \cdots$

证明. 显然 I_d 构成理想. 注意到若 rX^d 是 f(X) 的最高次项, 则 rX^{d+1} 是 Xf(X) 的最高次项, 故而 $I_d \subset I_{d+1}$.

问题 (4.3): 对交换环 R 上的多项式环 R[X]. 请证明: 若 R 是 Noetherian 的, 则 R[X] 也是 Noetherian 的.

证明. 对 $d \in \mathbb{Z}_{\geq 1}$, 取 $f_1^d, \dots, f_{n_d}^d \in I$, 使得这些多项式的最高次项全为 d, 且最高次项系数生成了 I_d . 此时, 对 $f \in I$, 若 $\det(f) = d$, 则存在 $r_i \in R$ 使得 $f - \sum_{i=1}^{n_d} r_i f_i^d$ 的次数 $\leq d-1$. 因此 $\left\{f_i^k\right\}_{\substack{1 \leq k \leq d \\ 1 \leq i \leq n_k}}$ 生成了 I 中所有次数 $\leq d$ 的多项式. 取 d 足够大, 使得 $I_d = I_{d'}$ 对所有 $d' \geq d$ 成立. 此时, 对 $f(X) \in I$, 当 f(X) 的次数为 $d' \geq d$, 由 $I_d = I_{d'}$, 则存在 $r_i \in R$, 使得 $f - \sum_{i=1}^{n_d} r_i X^{d'-d} f_i^d$ 的次数 $\leq d' - 1$. 反复进行上述过程, 则可以将 f 的次数降至不超过 d, 进而 f 也可以被 $\left\{f_i^k\right\}_{\substack{1 \leq k \leq d \\ 1 \leq i \leq n_k}}$,故 I 可被这些多项式生成, 进而是有限生成的.

问题 (4.4): 对 $R \subset S$, 若 S 是交换环, R 是子环, S 是有限生成 R-代数, <u>请证明</u>: 若 R 是 Noetherian 的, 则 S 也是 Noetherian 的.

证明. 当 S 是有限生成 R-代数, 则 S 是多项式环 $R[X_1, \ldots, X_r]$ 的商环. 由 (4.3), 则 $R[X_1, \ldots, X_r]$ 是 Noetherian 的, 故 S 也是 Noetherian 的.

问题 (5): 本系列问题中, 我们研究交换环的维数.

问题 (5.1): 对交换环 R, 若 R 的素理想 $\mathfrak{p}_0,\mathfrak{p}_1,\ldots,\mathfrak{p}_l$ 满足 $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \cdots \subsetneq \mathfrak{p}_l$, 则我们称其为 R 的一个长度为 l 的素理想升链. 若存在一条长度最大的素理想升链, 则我们称 R 是有限维的, 并记 $\dim(R) = l$, 其中 l 是长度最大的素理想升链的长度 (若并不存在长度最大的素理想升链, 则我们记 $\dim(R) = \infty$). 请证明: 当 K 是域, 则 $\dim(K[X_1,\ldots,X_n]) \geq n$.

补充说明: 在问题 (3.6) 的意义下, 对代数闭域 K, 我们可以在 K^n 上定义 Zariski 拓扑. 对 $X = K^n$, $\mathcal{O}_X = K[X_1, \ldots, X_n]$, 我们令形如 V(I) 的集合为 X 中的闭集, 其中 I 是 \mathcal{O}_X 的理想, 则我们可以在 X 上可以唯一确定一个拓扑, 称作其 Zariski 拓扑. 对于 Zariski 拓扑下的闭集 Y = V(I), 记 $\mathcal{O}_Y = \mathcal{O}_X/I(Y)$, 则 Y 上的子空间拓扑可以被

 \mathcal{O}_Y 的理想描述: 即 $S \subset Y$ 是 Y 的闭集当且仅当存在理想 $J \subset \mathcal{O}_Y$ 使得 S = V(J). 对闭集 Y, 若对其任意闭子集 $F_1, F_2 \subset Y$, 当 $Y = F_1 \cup F_2$, 便有 $Y = F_1$ 或 $Y = F_2$, 则我们称 Y 是不可约的. 不难验证 Y 不可约当且仅当 \mathcal{O}_Y 是整环, 即当且仅当 I(Y) 是 \mathcal{O}_X 的素理想. 因此 $\dim(\mathcal{O}_Y)$ 对应于被包含于 Y 的不可约闭集降链的长度, 这便是交换环维度背后的几何直观. 譬如说, 当 Y 是一条曲线, 则其不可约闭集的降链为 (不可约曲线) \supseteq (点), 因此曲线的维度是 1. 而当 Y 是曲面, 则其不可约闭集的降链为 (不可约曲面) \supseteq (不可约曲线) \supseteq (点), 故曲面的维度是 2. 特别地, 下面的问题 (5.5) 说明 $\dim(K^n) = n$, 即"n 维空间"的维数确实是 n.

证明. 显然 $0 \subset (X_1) \subset (X_1, X_2) \subset \cdots \subset (X_1, X_2, \ldots, X_n)$ 是长度为 n 的素理想升链, 故 $\dim(K[X_1, \ldots, X_n]) \geq n$.

问题 (5.2): 对交换环 S, 若 R 是 S 的子环, 且 S/R 是整扩张. 则对 S 的素理想 $\mathfrak{P}_1, \mathfrak{P}_2$, 满足 $\mathfrak{P}_1 \subset \mathfrak{P}_2$, 请证明: 若 $\mathfrak{P}_1 \cap R = \mathfrak{P}_2 \cap R$, 则 $\mathfrak{P}_1 = \mathfrak{P}_2$.

证明. 注意到有嵌入 $R/\mathfrak{P}_1 \cap R \to S/\mathfrak{P}_1$, 因此不妨设 $\mathfrak{P}_1 = 0$. 此时, 只需证明若 $R \cap \mathfrak{P}_2 = 0$, 则 $\mathfrak{P}_2 = 0$. 此时 R, S 是整环, 记 $M = R - \{0\}$, 则 $M^{-1}R \to M^{-1}S$ 也是单射, 用 $M^{-1}R$ 替代 R, 不妨设 R 是域. 此时, 由 $M^{-1}S/\mathfrak{P}_1$ 是 $R/\mathfrak{p}_1 \cap R = R$ 的整扩张, 由 (4.2), 则 $M^{-1}S/\mathfrak{P}_1$ 是域, 进而 \mathfrak{P}_1 是 $M^{-1}S$ 的极大理想. 然而 \mathfrak{P}_2 也是 $M^{-1}S$ 的理想, 故 $\mathfrak{P}_1 = \mathfrak{P}_2$.

问题 (5.3): 对交换环 S, 若 R 是 S 的子环, 且 S/R 是整扩张. 则对 R 的素理想 $\mathfrak{p}_1 \subset \mathfrak{p}_2$,请证明: 存在 S 的素理想 \mathfrak{P}_1 ,使得 $\mathfrak{P}_1 \cap R = \mathfrak{p}_1$. 进一步地, <u>请证明</u>: 若 S 的素理想 \mathfrak{P}_1 满足 $\mathfrak{P}_1 \cap R = \mathfrak{p}_1$,则存在 S 的素理想 $\mathfrak{P}_2 \supset \mathfrak{P}_1$,使得 $\mathfrak{P}_2 \cap R = \mathfrak{p}_2$.

证明. 记 $M = R - \mathfrak{p}_1$,用 $M^{-1}R$ 和 $M^{-1}S$ 替代 R, S,不妨设 \mathfrak{p}_1 是 R 的极大理想. 此时,对 S 的任意包含 \mathfrak{p}_1S 的极大理想 \mathfrak{m} ,由 (4.4),则 $\mathfrak{m} \cap R$ 是 R 的极大理想,因而 $\mathfrak{m} \cap R = \mathfrak{p}_1$. 故存在 S 的素理想 \mathfrak{P}_1 使得 $\mathfrak{P}_1 \cap R = \mathfrak{p}_1$. 对于 \mathfrak{P}_2 的存在性,记 $M = R - \mathfrak{p}_2$,不妨设 \mathfrak{p}_2 是 R 的极大理想. 且用 R/\mathfrak{p}_1 和 S/\mathfrak{P}_1 替代 R, S,不妨设 $\mathfrak{p}_1 = \mathfrak{P}_2 = 0$. 此时,对 S 中任意极大理想 \mathfrak{P}_2 ,都有 $\mathfrak{P}_2 \supset \mathfrak{P}_1 = 0$,且 $\mathfrak{P}_2 \cap R = \mathfrak{p}_2$,故我们得到 \mathfrak{P}_2 的存在性.

问题 (5.4): 对交换环 S, 若 R 是 S 的子环, 且 S/R 是整扩张.请证明: $\dim(S) = \dim(R)$. 证明. 综合 (5.2) 和 (5.3) 得到.

问题 (5.5): 当 K 是域, <u>请证明</u>: $\dim(K[X_1,\ldots,X_n])=n$.

提示: 同理于 Noether 正规化引理的证明, 若 I 是 $K[X_1, ..., X_n]$ 的非平凡理想, 则商环 $K[X_1, ..., X_n]/I$ 是 $K[Y_1, ..., Y_r]$ 的整扩张, 其中 r < n, 且 $Y_1, ..., Y_r$ 代数无关, 进而 利用归纳法证明.

证明. 由上面对 Noether 正规化引理的证明, 若 $I \neq 0$, 则存在 Y_1, \ldots, Y_r , 其中 r < n, 使得 Y_1, \ldots, Y_r 代数无关,且 $K[X_1, \ldots, X_n]/I$ 是 $K[Y_1, \ldots, Y_r]$ 的整扩张.显然 $\dim(K) = 0$. 故而对 n 进行归纳,则对 $K[X_1, \ldots, X_n]$ 的非零素理想 \mathfrak{p} ,有 $\dim(K[X_1, \ldots, X_n]/\mathfrak{p}) = \dim(K[Y_1, \ldots, Y_r]) = r \le n - 1$,因此 $K[X_1, \ldots, X_n]$ 中所有素理想升链的长度都不会超过 n,进而 $\dim(K[X_1, \ldots, X_n]) = n$. □
问题 (5.6): 当 K 是域,<u>请证明</u>: 若交换环 R 是有限生成 K-代数,则 $\dim(R) < \infty$. 证明.由 (5.5) 得到.