Module 8: Constructors and Other Tools

COP2274
In-class Assignments

M8A Class called ProduceBox (default constructor vs. custom constructor)

- 1. Write **a class** called **ProduceBox** with <u>private</u> member variables for the number of apples, bananas, kiwi, carrots, and broccoli.
- 2. Write **a default constructor** with an initialization section that initializes all of the member variables to 0.
- 3. Write **a custom constructor** with five parameters that initializes each *member variable* with its corresponding parameter.
- 4. Write a member function called print() to print the quantities of produce in the box as shown in the test cases.

M8A Class called ProduceBox (default constructor vs. custom constructor)

5. In your main(), declare a **ProduceBox** object that is initialized by **the default constructor**, and call **print()** on the object. Then, declare another **ProduceBox** object that is initialized by **the custom constructor** with the values shown in the test cases, and call **print()** on the object.

Test cases

```
Box of Produce
Apples: 0
Bananas: 0
Kiwi: 0
Carrots: 0
Broccoli: 0
Box of Produce
Apples: 6
Bananas: 7
Kiwi: 2
Carrots: 8
Broccoli: 1
```

M8B Class called Discount (explicit call with anonymous object)

- 1. Write **a class** called **Discount** with <u>private</u> member variables for the discount percentage and item price.
- 2. Write a default constructor with an initialization section that initializes all of the member variables to 0.
- 3. Write a custom constructor with two parameters that initializes each member variable with its corresponding parameter after validating the parameters. The discount percentage must be an integer between 0-100, and the item price must be a double that is not less than 0. If an invalid parameter is passed, set the corresponding member variable to 0 and display an error message as shown in the test cases.

M8B Class called Discount (explicit call with anonymous object)

- 4. Write a member function called *calFinalPrice()* that returns the final price after discount.
- 5. Write ONLY accessors (NO mutators) for each member variable. Make all of the accessors as a **constant** function.
- 6. In your main(), declare a **Discount** object that is initialized by the **default constructor**, prompt the user inputs for the discount percentage (int) and the initial price (double), and then reinitialize the member variables of the **Discount** object by assigning an anonymous object with the **custom constructor** to the **Discount** object. You can pass the user inputs as the arguments of the **custom constructor**.

M8B Class called Discount (explicit call with anonymous object)

7. Finally, print the final price to 2 decimal places as shown in the test cases.

Note:

 Don't forget to add a question for repeating your program.

Test cases

```
Welcome to the discount calculator!
Enter discount percentage (integer): 24
Enter initial price: 34.99
Here is the final price of your item: $26.59
Would you like to try again? (y/n) y
Enter discount percentage (integer): 101
Enter initial price: 24.50
Invalid discount! Setting discount as 0...
Here is the final price of your item: $24.50
Would you like to try again? (y/n) y
Enter discount percentage (integer): 101
Enter initial price: -1
Invalid Item price! Setting price as 0...
Invalid discount! Setting discount as 0...
Here is the final price of your item: $0.00
Would you like to try again? (y/n) y
Enter discount percentage (integer): 24
Enter initial price: -1
Invalid Item price! Setting price as 0...
Here is the final price of your item: $0.00
Would you like to try again? (y/n) n
Thanks for using the discount calculator! Goodbye!
```

M8C Class called System (static members)

- 1. Write **a class** called **System** with <u>private</u> member variables for CLK frequency (int), hard drive size in GB (int), and number of transistors (double).
- 2. Write **a default constructor** that initializes the frequency as 2×10^9 Hz, the hard drive size as 500 GB, and the number of transistors as 1e10. Define **the default constructor** with an initialization section.
- 3. Write a custom constructor with three parameters that initializes each member variable with its corresponding parameter. Also, define the custom constructor with an initialization section.

M8C Class called System (static members)

- 4. Write an accessor and a mutator for each *member* variable. Make all of the accessors as a constant function.
- 5. Write a constant member function called GetInfo() to display the system information as shown in the test case.
- 6. Create a <u>static</u> member variable called networkSize that gets incremented by 1 each time a computer is created (int).
- 7. Create a <u>static</u> member function called GetNetworkSize() that returns the value of the <u>static</u> member variable, networkSize.

M8C Class called System (static members)

8. In your main(), test your **System** class according to the test cases.

Test cases

Created a default System object

System CLK: 2000000000 Hz

Hard Drive Size: 500 GB Transistor Count: 1e+10

Network Size: 1

Created a custom System object

System CLK: 1400000000 Hz

Hard Drive Size: 250 GB Transistor Count: 3e+09

Network Size: 2

After upgrading the second System:

System CLK: 1400000000 Hz Hard Drive Size: 1000 GB Transistor Count: 3e+09

Network Size: 2