# **Mathematical Constants and Sequences**

a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy. Stan's Library, ISSN 2421-1230, Vol.II. First release March 31, 2008. Permalink via DOI: 10.3247/SL2Math08.001 This page is dedicated to my late math teacher Jaroslav Bayer who, back in 1955-8, kindled my passion for Mathematics.

Math BOOKS | SI Units | SI Dimensions

PHYSICS Constants (on a separate page)

Mathematics LINKS | Stan's Library | Stan's HUB

This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing! When a value is followed by #t, it should be a proven transcendental number (but I only did my best to find out, which need not suffice).

Bold dots after a value are a link to the ••• OEIS ••• database.

This website does not use any cookies, nor does it collect any information about its visitors (not even anonymous statistics). However, we decline any legal liability for typos, editing errors, and for the content of linked-to external web pages.

- Basic mathematical constants ...
- ... and those derived from them
- Named math constants
- Other notable real constants
- Notable integer numbers
- Selected functions on N
- Notable integer sequences
- Combinatorial numbers
- Selected figurate numbers
- Some binary sequences
- Enumerations on sets

**Roots of i**, up to a term of 4k in the exponent (like  $i^{4k+1/4} = i^{1/4}$ , with any integer k):

- Enumerations on graphs
- Diophantine solutions / sequences
- Rational number sequences
- Geometry constants and sequences
- Platonic solids data
- Number-theoretical functions
- Selected complex functions
- · Constants useful in Sciences
- Statistics / probability constants
- Engineering constants
- Software engineering constants
- Conversion constants
- · Notes, References and Links

| Basic math constants                                                                                            |                                                                       | _                                                                                            |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Zero, One, and i                                                                                                | 0, 1, √(-1), respectively                                             | Can anything be more basic than these two? (Oops, three!)                                    |
| π, Archimedes' constant                                                                                         | 3.141 592 653 589 793 238 462 643 ••• #t                              | Circumference of a disk with unit diameter.                                                  |
| e, Euler number, Napier's constant                                                                              | 2.718 281 828 459 045 235 360 287 ••• #t                              | Base of natural logarithms.                                                                  |
| γ, Euler-Mascheroni constant                                                                                    | 0.577 215 664 901 532 860 606 512 •••                                 | $L_{n\to\infty}\{(1+1/2+1/3+1/n) - \log(n)\}$                                                |
| √2, <b>Pythagora</b> 's constant                                                                                | 1.414 213 562 373 095 048 801 688 •••                                 | Diagonal of a square with unit side.                                                         |
| Φ, Golden ratio                                                                                                 | 1.618 033 988 749 894 848 204 586 •••                                 | $\Phi$ = (1+ $\sqrt{5}$ )/2 = 2.cos( $\pi$ /5). Diagonal of a unit-side pentagon             |
| $\phi,$ inverse golden ratio 1/ $\Phi$ = $\Phi$ -1 =(1- $\phi$ )/ $\phi$                                        | 0.618 033 988 749 894 848 204 586 •••                                 | Also $\varphi = (\sqrt{5} - 1)/2 = \sqrt{(2 - \sqrt{(2 + \sqrt{(2 - \sqrt{(2 + \dots))})})}$ |
| δ <sub>S</sub> , Silver ratio   Silver mean                                                                     | 2.414 213 562 373 095 048 801 688 •••                                 | $\delta_s$ = 1+ $\sqrt{2}$ . One of the <b>silver means</b> (n+sqrt(n <sup>2</sup> +1))/2    |
| Plastic number ρ (or silver constant)                                                                           | 1.324 717 957 244 746 025 960 908 •••                                 | Real root of $x^3 = x + 1$ . Attractor of M(#)= $(1+#)^{1/3}$ .                              |
| Aleph <sub>0</sub> ≡ Beth <sub>0</sub>                                                                          | × <sub>0</sub> ≡ <sub>0</sub>                                         | Cardinality of the set of natural numbers.                                                   |
| Beth <sub>1</sub> , <sub>1</sub> ≡ □, cardinality of continuum                                                  | □ = 2^ 0 > 0                                                          | Cardinality of the set of real numbers.                                                      |
| Beth <sub>2</sub> , <sub>2</sub>                                                                                | In general, $_{k+1} = 2^{h} _{k} > _{k}$ ;                            | Cardinality of the power set of real numbers.                                                |
| Aleph <sub>1</sub>                                                                                              | ℜ1 ≤ 1, depending on axioms                                           | The smallest cardinal number sharply greater than $ \aleph_0 . $                             |
| Constants derived from the basic ones                                                                           |                                                                       |                                                                                              |
| Spin-offs of <b>zero</b> . $0^0 = 1$ is the number of mappings o                                                | f an empty set into itself (the identity). Hence, "1" n               | night be viewed as a spin-off of "0". There is only one zero!                                |
| Spin-offs of one. The best known are the natural num                                                            | bers (iterated sums of 1's) and the golden ratio, v                   | ria its continued fraction $\Phi = 1+1/(1+1/(1+1/()))$                                       |
| $\Phi = \sqrt{(1+\sqrt{(1+\sqrt{(1+\sqrt{(1+))})})}}$ ; golden ratio again!                                     | 1.618 033 988 749 894 848 204 586 •••                                 | Attractor of the mapping M1(#)= $\sqrt{(1+#)}$ in C                                          |
| $\sqrt{(1+\sqrt{(0+\sqrt{(1+\sqrt{(0+))})})}} \equiv \sqrt{(1+\sqrt{\sqrt{(1+\sqrt{(1+)})})}}$                  | 1.490 216 120 099 953 648 116 386                                     | Attractor of the mapping M10(#)= $\sqrt{(1+\sqrt{(\#)})}$ in C                               |
| √(1+√√√(1+√√√(1+√√)))                                                                                           | 1.448 095 838 609 641 132 583 869                                     | Attractor of the mapping M100(#)= $\sqrt{(1+\sqrt{(\sqrt{(\#))})}}$ in C                     |
| √(-1+√(1+√(-1+√(1+))))                                                                                          | 0.453 397 651 516 403 767 644 746 •••                                 | Attractor of the mapping M(#)= $\sqrt{(-1+\sqrt{(1+\#)})}$ in C                              |
| √(1+√(-1+√(1+√(-1+))))                                                                                          | 1.205 569 430 400 590 311 702 028 •••                                 | Attractor of the mapping M(#)= $\sqrt{(1+\sqrt{(-1+\#)})}$ in C                              |
| Spin-offs of the <b>imaginary unit i</b> . Formally, <b>i</b> is a soluti                                       | on of $z^2 = -1$ and of $z = e^{z\pi/2}$ . Hence, for any integration | ger k, $i^{2k} = (-1)^k$ and, for any z, $i^{4k+z} = i^z$                                    |
| $i^{i} = e^{-\pi/2}$                                                                                            | 0.207 879 576 350 761 908 546 955 ••• #t                              | the imaginary unit elevated to itself is real                                                |
| $i^{-1} = (-1)^{-i/2} = e^{\pi/2}$                                                                              | 4.810 477 380 965 351 655 473 035 ••• #t                              | Inverse of the above. Square root of <b>Gelfond's constant</b> .                             |
| $\log(\mathbf{i}) / \mathbf{i} = \pi/2$                                                                         | 1.570 796 326 794 896 619 231 321 ••• #t                              | Imaginary part of log(log(-1))                                                               |
| i!=Γ(1+i)=i*Γ(i) (see Gamma function)                                                                           | 0.498 015 668 118 356 042 713 691 •••                                 | - i 0.154 949 828 301 810 685 124 955 •••                                                    |
| i !  , absolute value of the above                                                                              | 0.521 564 046 864 939 841 158 180 •••                                 | arg(i!) = -0.301 640 320 467 533 197 887 531 ••• rad                                         |
| $i^i^i^i$ infinite power tower of i; solution of $z = i^z$                                                      | 0.438 282 936 727 032 111 626 975 •••                                 | +i 0.360 592 471 871 385 485 952 940 •••                                                     |
| i^i^i^i  , absolute value of the above                                                                          | 0.567 555 163 306 957 825 384 613 •••                                 | arg( i^i^i^ ) = 0.688 453 227 107 702 130 498 767 ••• rad                                    |
| Continued fraction c(i) = i/( i+i/( i+i/()))                                                                    | 0.624 810 533 843 826 586 879 804 •••                                 | +i 0.300 242 590 220 120 419 158 909 ••• attractor of i/(i+#)                                |
| Continued fraction $f(i) = i/(1+i/(1+i/()))$                                                                    | 0.300 242 590 220 120 419 158 909 •••                                 | +i 0.624 810 533 843 826 586 879 804 ••• attractor of i/(1+#                                 |
| Shared modulus  c(i)  =  f(i)                                                                                   | 0.693 205 464 623 797 320 434 363 •••                                 | Note that i/(1+i/(1+i/())) = i*conjugate[i/(i+i/(i+i/()))]                                   |
| Infinite nested radical $r(i) = \sqrt{(i+\sqrt{(i+\sqrt{(i+\dots)})})}$                                         | 1.300 242 590 220 120 419 158 909 •••                                 | +i 0.624 810 533 843 826 586 879 804 ••• (note: r(i) = 1+f(i))                               |
| Modulus $ \sqrt{(i+\sqrt{(i+\sqrt{(i+))})} $ of $r(i)$                                                          | 1.442 573 740 446 059 678 174 681                                     | r(i) is an attractor of the mapping M(#) = sqrt(i+#)                                         |
| Infinite nested power $p^+(i) = (i+(i+(i+)^i)^i)^i$                                                             | 0.269 293 437 169 311 227 190 868                                     | +i 0.012 576 454 573 863 832 381 561                                                         |
| Modulus $ (\mathbf{i}+(\mathbf{i}+(\mathbf{i}+)^{\mathbf{i}})^{\mathbf{i}} ^{\mathbf{i}} $ of $p^+(\mathbf{i})$ | 0.269 586 947 963 194 676 106 659                                     | $p^+(i)$ is an attractor of the mapping M(#) = $(i+#)^i$                                     |
| Infinite nested power $p^{-}(i) = (i+(i+(i+)^{-i})^{-i})^{-i}$                                                  | 1.339 209 168 529 111 968 359 269                                     | +i 0.5 (exact) p <sup>-</sup> (i) is the invariant point of M(z)=(i+z) <sup>-i</sup>         |
| Modulus  (i+(i+ ) <sup>-i</sup> ) <sup>-i</sup>   of p <sup>-</sup> (i)                                         | 1.429 503 828 981 383 114 270 109                                     | $p^{-}(i)$ is also an attractor of the mapping $M'(\#) = (\# + (i + \#)^{-i})$               |
| De Moivre numbers e <sup>i2πk/n</sup>                                                                           | +                                                                     | 1. 3 . 7 . 7 /                                                                               |

| $\mathbf{i}^{1/2} = \sqrt{\mathbf{i}} = (1 + \mathbf{i})/\sqrt{2} = \cos(\pi/4) + \mathbf{i}.\sin(\pi/4)$                                                                                                              | 0.707 106 781 186 547 524 400 844 •••                                                                                                                                                                                          | +i 0.707 106 781 186 547 524 400 844 •••                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $i^{1/3} = (\sqrt{3} + i)/2 = \cos(\pi/6) + i.\sin(\pi/6)$                                                                                                                                                             | 0.866 025 403 784 438 646 763 723 •••                                                                                                                                                                                          | +i 0.5                                                                                                                                                      |
| $i^{1/4} = \cos(\pi/8) + i.\sin(\pi/8)$                                                                                                                                                                                | 0.923 879 532 511 286 756 128 183 •••                                                                                                                                                                                          | +i 0.382 683 432 365 089 771 728 459 •••                                                                                                                    |
| $i^{1/5} = \cos(\pi/10) + i.\sin(\pi/10)$                                                                                                                                                                              | 0.951 056 516 295 153 572 116 439 •••                                                                                                                                                                                          | +i 0.309 016 994 374 947 424 102 293 •••                                                                                                                    |
| $i^{1/6} = \cos(\pi/12) + i.\sin(\pi/12)$                                                                                                                                                                              | 0.965 925 826 289 068 2867 497 431 •••                                                                                                                                                                                         | +i 0.258 819 045 102 520 762 348 898 •••                                                                                                                    |
| $i^{1/7} = \cos(\pi/14) + i.\sin(\pi/14)$                                                                                                                                                                              | 0.974 927 912 181 823 607 018 131 •••                                                                                                                                                                                          | +i 0.222 520 933 956 314 404 288 902 •••                                                                                                                    |
| $i^{1/8} = \cos(\pi/16) + i.\sin(\pi/16)$                                                                                                                                                                              | 0.980 785 280 403 230 449 126 182 •••                                                                                                                                                                                          | +i 0.195 090 322 016 128 267 848 284 •••                                                                                                                    |
| $i^{1/9} = \cos(\pi/18) + i.\sin(\pi/18)$                                                                                                                                                                              | 0.984 807 753 012 208 059 366 743 •••                                                                                                                                                                                          | +i 0.173 648 177 666 930 348 851 716 •••                                                                                                                    |
| $i^{1/10} = \cos(\pi/20) + i.\sin(\pi/20)$                                                                                                                                                                             | 0.987 688 340 595 137 726 190 040 •••                                                                                                                                                                                          | +i 0.156 434 465 040 230 869 010 105 •••                                                                                                                    |
| One and i spin-offs                                                                                                                                                                                                    |                                                                                                                                                                                                                                |                                                                                                                                                             |
| (1+(1+(1+)^i)^i)^i, attractor, in <b>C</b> , of M(#)=(1+#) <sup>i</sup>                                                                                                                                                | 0.673 881 331 107 875 515 780 231 •••                                                                                                                                                                                          | +i 0.407 563 930 545 621 844 739 663 •••                                                                                                                    |
| (1+(1+(1+)^i)^i)^i                                                                                                                                                                                                     | 0.787 543 272 396 837 010 967 660 •••                                                                                                                                                                                          | Absolute value of the above complex number                                                                                                                  |
| Means of 1 and i: Harmonic HM(1,i)=1+i, Geometric C                                                                                                                                                                    |                                                                                                                                                                                                                                | <u>'</u>                                                                                                                                                    |
| AGM(1,i)/(1+i) = second Lemniscate constant                                                                                                                                                                            | 0.599 070 117 367 796 103 337 484 •••                                                                                                                                                                                          | where AGM is the Arithmetic-Geometric Mean                                                                                                                  |
| $\pi$ spin-offs. $\log(-1) = \pi.i$ , $\log(\log(-1)) = \log(\pi) + (\pi/2).i$                                                                                                                                         | 0.000 070 117 007 700 100 007 101                                                                                                                                                                                              | Whole / Chill the / Hamilette Connection incan                                                                                                              |
| 2π                                                                                                                                                                                                                     | 6.283 185 307 179 586 476 925 286 ••• #t                                                                                                                                                                                       | 1/π = 0.318 309 886 183 790 671 537 767 ••• #t                                                                                                              |
|                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |                                                                                                                                                             |
| 2/π, Buffon's constant<br>π <sup>2</sup>                                                                                                                                                                               | 0.636 619 772 367 581 343 075 535 ••• #t                                                                                                                                                                                       | $\pi^{2*}(\pi/2-1) = 5.633533939060551468903666 \cdots$                                                                                                     |
|                                                                                                                                                                                                                        | 9.869 604 401 089 358 618 834 490 ··· #t                                                                                                                                                                                       | $1/\pi^2 = 0.101\ 321\ 183\ 642\ 337\ 771\ 443\ 879 \cdots \#t$                                                                                             |
| √π = Geometric mean GM(1,π;)                                                                                                                                                                                           | 1.772 453 850 905 516 027 298 167 ••• #t                                                                                                                                                                                       | $1/\sqrt{\pi} = 0.564 189 583 547 756 286 948 079 ••• #t$                                                                                                   |
| $\log(2\pi)/2 = \zeta'(0)$                                                                                                                                                                                             | 0.918 938 533 204 672 741 780 329 •••                                                                                                                                                                                          | = $I_{x=a,a+1}$ {log( $\Gamma(x)$ ) + a - a.log(a). Raabe formula.                                                                                          |
| $log(\pi)$ = real part of $log(log(-1))$                                                                                                                                                                               | 1.144 729 885 849 400 174 143 427 •••                                                                                                                                                                                          | Log(π) = 0.497 149 872 694 133 854 351 268 •••                                                                                                              |
| $\log(\pi).\pi$                                                                                                                                                                                                        | 3.596 274 999 729 158 198 086 001 •••                                                                                                                                                                                          | log(π)/π = 0.364 378 839 675 906 257 049 587 •••                                                                                                            |
| π <sup>π</sup>                                                                                                                                                                                                         | 36.462 159 607 207 911 770 990 826 •••                                                                                                                                                                                         | $\pi^{-\Pi}$ = 0.027 425 693 123 298 106 119 556 •••                                                                                                        |
| π <sup>1/π</sup>                                                                                                                                                                                                       | 1.439 619 495 847 590 688 336 490 •••                                                                                                                                                                                          | $\pi^{-1/\pi}$ = 0.694 627 992 246 826 153 124 383 •••                                                                                                      |
| Infinite power tower of $1/\pi$                                                                                                                                                                                        | 0.539 343 498 862 301 208 060 795 •••                                                                                                                                                                                          | $(1/\pi)^{(1/\pi)^{(1/\pi)^{(1/\pi)}}}$ ; also solution of $x = \pi^{-X}$                                                                                   |
| Infinite nested radical $\sqrt{(\pi+\sqrt{(\pi+\sqrt{(\pi+)})})}$                                                                                                                                                      | 2.341 627 718 511 478 431 766 586 •••                                                                                                                                                                                          | = (1+sqrt(1+4π))/2                                                                                                                                          |
| Means of 1 and $\pi$ (for Geometric GM(1, $\pi$ ) = $\sqrt{\pi}$ , see                                                                                                                                                 | above)                                                                                                                                                                                                                         |                                                                                                                                                             |
| Harmonic HM(1,π)                                                                                                                                                                                                       | 1.517 093 985 989 552 290 688 861 •••                                                                                                                                                                                          | 2*π/(1+π)                                                                                                                                                   |
| Arithmetic-Geometric AGM(1,π)                                                                                                                                                                                          | 1.918 724 665 977 634 529 660 378 •••                                                                                                                                                                                          |                                                                                                                                                             |
| Arithmetic AM(1,π)                                                                                                                                                                                                     | 2.070 796 326 794 896 619 231 321 •••                                                                                                                                                                                          | (1+π)/2                                                                                                                                                     |
| Quadratic RMS(1,π)                                                                                                                                                                                                     | 2.331 266 222 580 484 116 215 253 •••                                                                                                                                                                                          | $sqrt((1+\pi^2)/2)$ , the root-mean-square.                                                                                                                 |
| Lehmer mean $L_2(1,\pi)$                                                                                                                                                                                               | 2.624 498 667 600 240 947 773 782                                                                                                                                                                                              | $(1+\pi^2)/(1+\pi)$                                                                                                                                         |
| Complex valued spin-offs, with the imaginary part in                                                                                                                                                                   | the last column:                                                                                                                                                                                                               |                                                                                                                                                             |
| $\pi^{\pm i} = \cos(\log(\pi)) \pm i \cdot \sin(\log(\pi))$                                                                                                                                                            | 0.413 292 116 101 594 336 626 628 •••                                                                                                                                                                                          | ±i 0.910 598 499 212 614 707 060 044 •••                                                                                                                    |
| $\mathbf{i}^{\mathbf{\pi}} = \cos(\mathbf{\pi}^2/2) + \mathbf{i}.\sin(\mathbf{\pi}^2/2)$                                                                                                                               | 0.220 584 040 749 698 088 668 945 •••                                                                                                                                                                                          | - i 0.975 367 972 083 631 385 157 482 •••                                                                                                                   |
| $\pi^{\pm i\pi} = \cos(\pi \cdot \log(\pi)) \pm i \cdot \sin(\pi \cdot \log(\pi))$                                                                                                                                     | -0.898 400 579 757 743 645 668 580 •••                                                                                                                                                                                         | ±i -0.439 176 955 555 445 894 369 454 •••                                                                                                                   |
| $\pi^{\pm i/\pi} = \cos(\log(\pi)/\pi) \pm i.\sin(\log(\pi)/\pi)$                                                                                                                                                      | 0.934 345 303 678 637 694 262 240 •••                                                                                                                                                                                          | ±i 0.356 368 985 033 313 899 907 691 •••                                                                                                                    |
| Continued fraction i/(π+i/(π+i/()))                                                                                                                                                                                    | 0.030 725 404 776 448 575 790 859 •••                                                                                                                                                                                          | +i 0.312 203 069 208 072 004 947 893 •••                                                                                                                    |
| e spin-offs. Note that $e = S_{k=0,\infty}\{1/k!\} = L_{k\&arr\infty}\{(1+1/k!)\}$                                                                                                                                     | 1                                                                                                                                                                                                                              | 10.512 200 000 200 012 004 041 000                                                                                                                          |
|                                                                                                                                                                                                                        | 5.436 563 656 918 090 470 720 574 ••• #t                                                                                                                                                                                       | 1/0 = 0.267.970.444.474.442.224.505.522#                                                                                                                    |
| 2e (a + 1/a)/2 = coch(1)                                                                                                                                                                                               |                                                                                                                                                                                                                                | 1/e = 0.367 879 441 171 442 321 595 523 ••• #t                                                                                                              |
| (e + 1/e)/2 = cosh(1)                                                                                                                                                                                                  | 1.543 080 634 815 243 778 477 905 ••• #t                                                                                                                                                                                       | sinh(1) = 1.175 201 193 643 801 456 882 381 ••• #t                                                                                                          |
| e <sup>2</sup> , conic constant, <b>Schwarzschild constant</b>                                                                                                                                                         | 7.389 056 098 930 650 227 230 427 ••• #t                                                                                                                                                                                       | 1/e <sup>2</sup> = 0.135 335 283 236 612 691 893 999 ••• #t                                                                                                 |
| √e                                                                                                                                                                                                                     | 1.648 721 270 700 128 146 848 650 ••• #t                                                                                                                                                                                       | 1/ve = 0.606 530 659 712 633 423 603 799 ••• #t                                                                                                             |
| e <sup>e</sup>                                                                                                                                                                                                         | 15.154 262 241 479 264 189 760 430 •••                                                                                                                                                                                         | e <sup>-e</sup> = 0.065 988 035 845 312 537 0767 901 •••                                                                                                    |
| e <sup>1/e</sup>                                                                                                                                                                                                       | 1.444 667 861 009 766 133 658 339 ••• #t                                                                                                                                                                                       | e <sup>-1/e</sup> = 0.692 200 627 555 346 353 865 421 ••• #t                                                                                                |
| Infinite power tower of 1/e (Omega constant)                                                                                                                                                                           | 0.567 143 290 409 783 872 999 968 •••                                                                                                                                                                                          | $(1/e)^{(1/e)}^{(1/e)}$ ,; also solution of $x = e^{-x}$                                                                                                    |
|                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |                                                                                                                                                             |
| Infinite nested radical $\sqrt{(\mathbf{e} + \sqrt{(\mathbf{e} + \sqrt{(\mathbf{e} +))})}$                                                                                                                             | 2.222 870 229 721 044 670 695 387 •••                                                                                                                                                                                          | = (1+sqrt(1+4e))/2                                                                                                                                          |
| Infinite nested radical $\sqrt{(e+\sqrt{(e+)})}$ Ramanujan number: 262537412640768743 +                                                                                                                                | 2.222 870 229 721 044 670 695 387 ··· 0.999 999 999 999 250 072 597 198 ···                                                                                                                                                    | = $(1+sqrt(1+4e))/2$<br>exp $(\pi\sqrt{163})$ . Closest approach of exp $(\pi\sqrt{n})$ to an integer.                                                      |
|                                                                                                                                                                                                                        | 0.999 999 999 999 250 072 597 198 •••                                                                                                                                                                                          |                                                                                                                                                             |
| Ramanujan number: 262537412640768743 +                                                                                                                                                                                 | 0.999 999 999 999 250 072 597 198 •••                                                                                                                                                                                          |                                                                                                                                                             |
| Ramanujan number: 262537412640768743 +  Means of 1 and e (for Geometric GM(1,e) = $\sqrt{e}$ , see a                                                                                                                   | 0.999 999 999 999 250 072 597 198 •••<br>bove)                                                                                                                                                                                 | $\exp(π√163)$ . Closest approach of $\exp(π√n)$ to an integer.                                                                                              |
| Ramanujan number: $262537412640768743 +$ Means of 1 and e (for Geometric GM(1,e) = $\sqrt{e}$ , see a Harmonic HM(1,e)                                                                                                 | 0.999 999 999 999 250 072 597 198 ••• bove) 1.462 117 157 260 009 758 502 318                                                                                                                                                  | $\exp(π√163)$ . Closest approach of $\exp(π√n)$ to an integer.                                                                                              |
| Ramanujan number: 262537412640768743 +  Means of 1 and e (for Geometric GM(1,e) = √e, see a  Harmonic HM(1,e)  Arithmetic-Geometric AGM(1,e)                                                                           | 0.999 999 999 999 250 072 597 198 ••• bove) 1.462 117 157 260 009 758 502 318 1.752 351 558 081 080 826 714 086 •••                                                                                                            | $\exp(\pi\sqrt{163})$ . Closest approach of $\exp(\pi\sqrt{n})$ to an integer.<br>$2^*e/(1+e)$                                                              |
| Ramanujan number: 262537412640768743 +  Means of 1 and e (for Geometric GM(1,e) = √e, see a  Harmonic HM(1,e)  Arithmetic-Geometric AGM(1,e)  Arithmetic AM(1,e)                                                       | 0.999 999 999 999 250 072 597 198 ••• bove)  1.462 117 157 260 009 758 502 318  1.752 351 558 081 080 826 714 086 •••  1.859 140 914 229 522 617 680 143                                                                       | $\exp(\pi\sqrt{163})$ . Closest approach of $\exp(\pi\sqrt{n})$ to an integer. $2^*e/(1+e)$ $(1+e)/2$                                                       |
| Ramanujan number: 262537412640768743 +  Means of 1 and e (for Geometric GM(1,e) = √e, see a  Harmonic HM(1,e)  Arithmetic-Geometric AGM(1,e)  Arithmetic AM(1,e)  Quadratic RMS(1,e)                                   | 0.999 999 999 999 250 072 597 198 ••• bove)  1.462 117 157 260 009 758 502 318  1.752 351 558 081 080 826 714 086 •••  1.859 140 914 229 522 617 680 143  2.048 054 698 846 035 487 304 997  2.256 164 671 199 035 476 857 968 | exp( $\pi\sqrt{163}$ ). Closest approach of exp( $\pi\sqrt{n}$ ) to an integer. $2^*e/(1+e)$ $(1+e)/2$ $sqrt((1+e^2)/2), the root-mean-square$              |
| Ramanujan number: 262537412640768743 +  Means of 1 and e (for Geometric GM(1,e) = √e, see a  Harmonic HM(1,e)  Arithmetic-Geometric AGM(1,e)  Arithmetic AM(1,e)  Quadratic RMS(1,e)  Lehmer mean L <sub>2</sub> (1,e) | 0.999 999 999 999 250 072 597 198 ••• bove)  1.462 117 157 260 009 758 502 318  1.752 351 558 081 080 826 714 086 •••  1.859 140 914 229 522 617 680 143  2.048 054 698 846 035 487 304 997  2.256 164 671 199 035 476 857 968 | $\exp(\pi\sqrt{163}). \ Closest \ approach \ of \ exp(\pi\sqrt{n}) \ to \ an \ integer.$ $2^*e/(1+e)$ $(1+e)/2$ $sqrt((1+e^2)/2), \ the \ root-mean-square$ |

| $e^{\pm i/e} = \cos(1/e) \pm i.\sin(1/e)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.933 092 075 598 208 563 540 410 •••                                                                                                                                                                                                                                                                                                                                                                                              | ±i 0.359 637 565 412 495 577 0382 503 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continued fraction i/(e+i/(e+i/()))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.045 820 234 137 835 028 060 158 •••                                                                                                                                                                                                                                                                                                                                                                                              | +i 0.355 881 727 107 562 782 631 319 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>e and <math>\pi</math> combinations</b> , except trivial ones like, for a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ny integer k, $e^{i\pi k} = (-1)^k$ , $\cosh(i\pi k) = (-1)^k$ , $\sinh(i\pi k)$                                                                                                                                                                                                                                                                                                                                                   | ) = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>e</b> π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.539 734 222 673 567 065 463 550 •••                                                                                                                                                                                                                                                                                                                                                                                              | $\sqrt{(e\pi)}$ = 2.922 282 365 322 277 864 541 623 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| e/π                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.865 255 979 432 265 087 217 774 •••                                                                                                                                                                                                                                                                                                                                                                                              | π/e = 1.155 727 349 790 921 717 910 093 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| √(π/e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.075 047 603 499 920 238 722 755 •••                                                                                                                                                                                                                                                                                                                                                                                              | $L_{\infty,+\infty}$ {exp(-x <sup>2</sup> )*cos(x $\sqrt{2}$ )}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\sqrt{(\pi/\sqrt{e})}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.380 388 447 043 142 974 773 415 •••                                                                                                                                                                                                                                                                                                                                                                                              | $L_{\infty,+\infty}$ {exp(-x <sup>2</sup> )*cos(x)}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| e <sup>π</sup> = (-1) <sup>-i</sup> , Gelfond's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.140 692 632 779 269 005 729 086 ••• #t                                                                                                                                                                                                                                                                                                                                                                                          | $e^{-\pi} = 0.043\ 213\ 918\ 263\ 772\ 249\ 774\ 417\ \cdots \#t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| π <sup>e</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 22.459 157 718 361 045 473 427 152 ••• #t                                                                                                                                                                                                                                                                                                                                                                                          | $\pi^{-e}$ = 0.044 525 267 266 922 906 151 352 ••• #t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $e^{1/\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.374 802 227 439 358 631 782 821 •••                                                                                                                                                                                                                                                                                                                                                                                              | $e^{-1/\pi} = 0.727\ 377\ 349\ 295\ 216\ 469\ 724\ 148\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| π <sup>1/e</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.523 671 054 858 931 718 386 285 •••                                                                                                                                                                                                                                                                                                                                                                                              | $\pi^{-1/e} = 0.656\ 309\ 639\ 020\ 204\ 707\ 493\ 834 \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\sinh(\boldsymbol{\pi})/\boldsymbol{\pi} = (e^{\boldsymbol{\Pi}} - e^{-\boldsymbol{\Pi}})/2\boldsymbol{\pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.676 077 910 374 977 720 695 697 •••                                                                                                                                                                                                                                                                                                                                                                                              | $P_{n>0}\{1+1/n^2)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Infinite power tower of $e/\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.880 367 778 981 734 621 826 749 •••                                                                                                                                                                                                                                                                                                                                                                                              | Solution of $x = (e/\pi)^X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Infinite power tower of <b>π/e</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.187 523 635 359 249 905 438 407 •••                                                                                                                                                                                                                                                                                                                                                                                              | Solution of $x = (\pi/e)^X$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Continued fraction e/(π+e/(π+e/()))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.706 413 134 087 300 069 274 143 •••                                                                                                                                                                                                                                                                                                                                                                                              | Solution of $x(x+\pi)=e$ ;. Attractor of the mapping $M(\#)=e/(\pi+\#)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Continued fraction π/(e+π/(e+π/()))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.874 433 950 941 209 866 417 966 •••                                                                                                                                                                                                                                                                                                                                                                                              | Solution of $x(x+e)=\pi$ . Attractor of the mapping $M(\#)=\pi/(e+\#)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Arithmetic-Geometric mean AGM( <b>e</b> , <b>π</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.926 108 551 572 304 696 665 895 •••                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $e^{\pm i/\pi} = \cos(1/\pi) \pm i.\sin(1/\pi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.949 765 715 381 638 659 994 406 •••                                                                                                                                                                                                                                                                                                                                                                                              | ±i 0.312 961 796 207 786 590 745 276 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| y spin-offs and some e and y combinations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.154 431 329 803 065 721 213 024                                                                                                                                                                                                                                                                                                                                                                                                  | 1/γ = 1.732 454 714 600 633 473 583 025 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| log(γ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.549 539 312 981 644 822 337 661 •••                                                                                                                                                                                                                                                                                                                                                                                             | Log(y) = -2.386 618 912 168 323 894 602 884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| eγ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.569 034 853 003 742 285 079 907 •••                                                                                                                                                                                                                                                                                                                                                                                              | e/y = 4.709 300 169 327 103 330 744 143 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| e <sup>Y</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.781 072 417 990 197 985 236 504 •••                                                                                                                                                                                                                                                                                                                                                                                              | $L_{n\to\infty}\{P_{k=1,n}\{(1-1/prime(k))^{-1}\}/log(prime(n))\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| e <sup>-</sup> Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.561 459 483 566 885 169 824 143 •••                                                                                                                                                                                                                                                                                                                                                                                              | $L_{n\to\infty}(\varphi(n)^*\log(\log(n))/n), \varphi(n)$ being the Euler totient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Infinite power tower of y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.685 947 035 167 428 481 875 735 •••                                                                                                                                                                                                                                                                                                                                                                                              | $\gamma^{A}\gamma^{A}$ ; solution of $x = \gamma^{X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Infinite nested radical $\sqrt{(\gamma+\sqrt{(\gamma+\sqrt{(\gamma+))})}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.409 513 971 801 166 373 157 694                                                                                                                                                                                                                                                                                                                                                                                                  | = (1+sqrt(1+4y))/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Arithmetic-Geometric mean AGM(1,y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.774 110 217 793 039 338 108 461                                                                                                                                                                                                                                                                                                                                                                                                  | (1.041(1.14))/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\zeta(2)/e^{\gamma} = \pi^2/(6^*e^{\gamma})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.923 563 831 674 181 382 323 509 ***                                                                                                                                                                                                                                                                                                                                                                                              | $L_{\text{N}\to\infty}\{\log(\text{prime}(\text{n}))^*P_{k=1,\text{N}}\{(1+1/\text{prime}(k))^{-1}\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $e^{\pm i\gamma} = \cos(\gamma) \pm i \sin(\gamma)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.837 985 287 880 196 539 954 992 •••                                                                                                                                                                                                                                                                                                                                                                                              | ±i 0.545 692 823 203 992 788 157 356 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Golden ratio spin-offs and combinations. Note tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Complex golden ratio $\Phi_{\rm C} = 2.e^{i\pi/5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.618 033 988 749 894 848 204 586 •••                                                                                                                                                                                                                                                                                                                                                                                              | +i 1.175 570 504 584 946 258 337 411 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.175 570 504 584 946 258 337 411 •••                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Associate of $\Phi$ = imaginary part of $\Phi_C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.sin( $\pi$ /5), while $\Phi$ = 2.cos( $\pi$ /5) = real part of $\Phi$ <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Square root of Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.272 019 649 514 068 964 252 422 •••                                                                                                                                                                                                                                                                                                                                                                                              | √Φ; ratio of the sides of squares with golden-ratio areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Square root of the inverse φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.786 151 377 757 423 286 069 559 •••                                                                                                                                                                                                                                                                                                                                                                                              | 1/\Phi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cubic root of Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.173 984 996 705 328 509 966 683 •••                                                                                                                                                                                                                                                                                                                                                                                              | Φ <sup>1/3</sup> , ratio of edges of cubes with golden-ratio volumes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Cubic root of the inverse φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.851 799 642 079 242 917 055 213                                                                                                                                                                                                                                                                                                                                                                                                  | 1/φ <sup>1/3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\pi/\Phi = \pi.\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.941 611 038 725 466 577 346 865 •••                                                                                                                                                                                                                                                                                                                                                                                              | Area of golden ellipse with semi_axes {1,φ}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\log(\Phi) = -\log(\Phi)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.481 211 825 059 603 447 497 758 •••                                                                                                                                                                                                                                                                                                                                                                                              | Natural logarithm of Φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\Phi^{2/\pi}$ , such as in the golden spiral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.358 456 274 182 988 435 206 180 •••                                                                                                                                                                                                                                                                                                                                                                                              | $(2/\pi) \log(\Phi) = 0.306 348 962 530 033 122 115 675 \cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Infinite power tower of the inverse φ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.710 439 287 156 503 188 669 345 •••                                                                                                                                                                                                                                                                                                                                                                                              | $\varphi^{A}\varphi^{A}$ ; also solution of $x = \varphi^{A} = \Phi^{-X}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Infinite nested radical $\sqrt{(\Phi + \sqrt{(\Phi + \sqrt{(\Phi +))})}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.866 760 399 173 862 092 990 872                                                                                                                                                                                                                                                                                                                                                                                                  | $= (1+sqrt(1+4\Phi))/2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Arithmetic-Geometric mean AGM(1,Φ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.290 452 026 322 977 466 179 732                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Arithmetic-Geometric mean AGM(1,Φ)  Named math constants (mostly classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Named math constants (mostly classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\exp(\textbf{S}_{n>0}\{(zeta(n+1)-1)/n\}-1). \ \text{Re: factorizations of n!}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Named math constants (mostly classical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant ζ(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.809 394 020 540 639 130 717 931 •••                                                                                                                                                                                                                                                                                                                                                                                              | $\exp(\mathbf{S}_{n>0}\{(zeta(n+1)-1)/n\}-1)$ . Re: factorizations of n! Special value of the Riemann zeta function $\zeta(x)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant ζ(3) Artin's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.809 394 020 540 639 130 717 931 ··· 1.202 056 903 159 594 285 399 738 ··· #t                                                                                                                                                                                                                                                                                                                                                     | $\exp(\mathbf{S}_{n>0}\{(zeta(n+1)-1)/n\}-1)$ . Re: factorizations of n!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant ζ(3) Artin's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.809 394 020 540 639 130 717 931 ···  1.202 056 903 159 594 285 399 738 ··· #t  0.373 955 813 619 202 288 054 728 ···                                                                                                                                                                                                                                                                                                             | $\exp(\mathbf{S}_{n>0}\{(\text{zeta}(n+1)-1)/n\}-1). \text{ Re: factorizations of n!}$ Special value of the Riemann zeta function $\zeta(x)$ $\mathbf{P}_{\text{prime p}}\{1-1/(p(p-1))\}$ when $Q(x)=\mathbf{S}_{k\geq 0}\{q_kx^k\}=1/P(x)$ , with $P(x)$ defined below                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant $\zeta(3)$ Artin's constant Backhouse constant B = $L_{k\to\infty} q_{k+1}/q_k $ = Inverse of Backhouse constant 1/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.809 394 020 540 639 130 717 931 ···  1.202 056 903 159 594 285 399 738 ··· #t  0.373 955 813 619 202 288 054 728 ···  1.456 074 948 582 689 671 399 595 ···  0.686 777 834 460 634 954 426 540 ···                                                                                                                                                                                                                               | $\exp(\mathbf{S}_{n>0}\{(\text{zeta}(n+1)-1)/n\}-1). \text{ Re: factorizations of n!}$ Special value of the Riemann zeta function $\zeta(x)$ $\mathbf{P}_{\text{prime p}}\{1-1/(p(p-1))\}$ when $Q(x)=\mathbf{S}_{k\geq 0}\{q_kx^k\}=1/P(x)$ , with $P(x)$ defined below $-1/B$ is the only real root of $P(x)=1+\mathbf{S}_{k\geq 1}\{\text{prime}(k)x^p\}$                                                                                                                                                                                                                                                                                                                                                                           |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant $\zeta(3)$ Artin's constant Backhouse constant B = $L_{k\to\infty} q_{k+1}/q_k $ = Inverse of Backhouse constant 1/B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.809 394 020 540 639 130 717 931 •••  1.202 056 903 159 594 285 399 738 ••• #t  0.373 955 813 619 202 288 054 728 •••  1.456 074 948 582 689 671 399 595 •••  0.686 777 834 460 634 954 426 540 •••  2.596 536 290 450 542 073 632 740 •••                                                                                                                                                                                        | $\exp(\mathbf{S}_{n>0}\{(\text{zeta}(n+1)-1)/n\}-1). \text{ Re: factorizations of } n!$ Special value of the Riemann zeta function $\zeta(x)$ $P_{\text{prime }p}\{1-1/(p(p-1))\}$ when $Q(x)=\mathbf{S}_{k\geq 0}\{q_kx^k\}=1/P(x)$ , with $P(x)$ defined below $-1/B \text{ is the only real root of } P(x)=1+\mathbf{S}_{k\geq 1}\{\text{prime}(k)x^p\}$ $P_{\text{prime }p}\{1+(3p^2-1)/[p(p+1)(p^2-1)]\}$                                                                                                                                                                                                                                                                                                                         |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant $\zeta(3)$ Artin's constant Backhouse constant B = $L_{k\to\infty} q_{k+1}/q_k $ = Inverse of Backhouse constant 1/B Barban's constant Bernstein's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.809 394 020 540 639 130 717 931 ···  1.202 056 903 159 594 285 399 738 ··· #t  0.373 955 813 619 202 288 054 728 ···  1.456 074 948 582 689 671 399 595 ···  0.686 777 834 460 634 954 426 540 ···  2.596 536 290 450 542 073 632 740 ···  0.280 169 499 023 869 133 036 436 ···                                                                                                                                                 | $\exp(\mathbf{S}_{n>0}\{(\text{zeta}(n+1)-1)/n\}-1). \text{ Re: factorizations of n!}$ Special value of the Riemann zeta function $\zeta(x)$ $\mathbf{P}_{\text{prime p}}\{1-1/(p(p-1))\}$ when $Q(x)=\mathbf{S}_{k\geq 0}\{q_kx^k\}=1/P(x)$ , with $P(x)$ defined below -1/B is the only real root of $P(x)=1+\mathbf{S}_{k\geq 1}\{\text{prime}(k)x^p\}$ $\mathbf{P}_{\text{prime p}}\{1+(3p^2-1)/[p(p+1)(p^2-1)]\}$ Re: theory of function approximations by polynomials                                                                                                                                                                                                                                                            |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant $\zeta(3)$ Artin's constant Backhouse constant B = $L_{k\to\infty} q_{k+1}/q_k $ = Inverse of Backhouse constant 1/B Barban's constant Bernstein's constant Bernstein's constant $\beta$ Besicovitch constant (a 10-normal number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.809 394 020 540 639 130 717 931 ···  1.202 056 903 159 594 285 399 738 ··· #t  0.373 955 813 619 202 288 054 728 ···  1.456 074 948 582 689 671 399 595 ···  0.686 777 834 460 634 954 426 540 ···  2.596 536 290 450 542 073 632 740 ···  0.280 169 499 023 869 133 036 436 ···  0.149 162 536 496 481 100 121 144 ···                                                                                                          | $\exp(\mathbf{S}_{n>0}\{(\text{zeta}(n+1)-1)/n\}-1). \text{ Re: factorizations of } n!$ Special value of the Riemann zeta function $\zeta(x)$ $\textbf{\textit{P}}_{prime p}\{1-1/(p(p-1))\}$ when $Q(x)=\mathbf{S}_{k\geq 0}\{q_k x^k\}=1/P(x)$ , with $P(x)$ defined below -1/B is the only real root of $P(x)=1+\mathbf{S}_{k\geq 1}\{prime(k) x^p\}$ $\textbf{\textit{P}}_{prime p}\{1+(3p^2-1)/[p(p+1)(p^2-1)]\}$ Re: theory of function approximations by polynomials String concatenation of squares in base 10                                                                                                                                                                                                                 |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant $\zeta(3)$ Artin's constant Backhouse constant B = $L_{k\to\infty} q_{k+1}/q_k $ = Inverse of Backhouse constant 1/B Barban's constant Bernstein's constant Bernstein's constant Barban's constant Barban's constant Barban's constant Barban's constant Barban's constant Barban's constant (a 10-normal number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.809 394 020 540 639 130 717 931 ···  1.202 056 903 159 594 285 399 738 ··· #t  0.373 955 813 619 202 288 054 728 ···  1.456 074 948 582 689 671 399 595 ···  0.686 777 834 460 634 954 426 540 ···  2.596 536 290 450 542 073 632 740 ···  0.280 169 499 023 869 133 036 436 ···  0.149 162 536 496 481 100 121 144 ···  2.566 543 832 171 388 844 467 529 ···                                                                   | $\exp(S_{n>0}\{(\text{zeta}(n+1)-1)/n\}-1). \text{ Re: factorizations of } n!$ Special value of the Riemann zeta function $\zeta(x)$ $P_{\text{prime }p}\{1-1/(p(p-1))\}$ when $Q(x)=S_{k\geq 0}\{q_k \ x^k\}=1/P(x)$ , with $P(x)$ defined below $-1/B$ is the only real root of $P(x)=1+S_{k\geq 1}\{\text{prime}(k) \ x^D\}$ $P_{\text{prime }p}\{1+(3p^2-1)/[p(p+1)(p^2-1)]\}$ Re: theory of function approximations by polynomials String concatenation of squares in base 10 Its $Blazys'expansion$ generates prime numbers                                                                                                                                                                                                      |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant $\zeta(3)$ Artin's constant Backhouse constant B = $L_{k\to\infty} q_{k+1}/q_k $ = Inverse of Backhouse constant 1/B Barban's constant Bernstein's constant Bernstein's constant Balazys constant (a 10-normal number) Blazys constant Boling's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.809 394 020 540 639 130 717 931 ···  1.202 056 903 159 594 285 399 738 ··· #t  0.373 955 813 619 202 288 054 728 ···  1.456 074 948 582 689 671 399 595 ···  0.686 777 834 460 634 954 426 540 ···  2.596 536 290 450 542 073 632 740 ···  0.280 169 499 023 869 133 036 436 ···  0.149 162 536 496 481 100 121 144 ···  2.566 543 832 171 388 844 467 529 ···  1.805 917 418 986 691 013 997 505 ···                            | $\exp(\mathbf{S}_{n>0}\{(zeta(n+1)-1)/n\}-1).\ Re:\ factorizations\ of\ n!$ Special value of the Riemann zeta function $\zeta(x)$ $P_{prime}\ p\{1-1/(p(p-1))\}$ when $Q(x)=\mathbf{S}_{k\geq 0}\{q_k\ x^k\}=1/P(x),\ with\ P(x)\ defined\ below$ $-1/B\ is\ the\ only\ real\ root\ of\ P(x)=1+\mathbf{S}_{k\geq 1}\{prime(k)\ x^p\}$ $P_{prime}\ p\{1+(3p^2-1)/[p(p+1)(p^2-1)]\}$ Re: theory of function approximations by polynomials String concatenation of squares in base 10 Its $Blazys'expansion$ generates prime numbers $\mathbf{S}_{n\geq 1}\{(n(n+1)/2)/P_{k\geq 0}\{n!/k!\}\}$                                                                                                                                            |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant $\zeta(3)$ Artin's constant Backhouse constant Backhouse constant 1/B Barban's constant Berinstein's constant Berinstein's constant $\beta$ Besicovitch constant (a 10-normal number) Blazys constant Boling's constant Brun's cons | 0.809 394 020 540 639 130 717 931 ···  1.202 056 903 159 594 285 399 738 ··· #t  0.373 955 813 619 202 288 054 728 ···  1.456 074 948 582 689 671 399 595 ···  0.686 777 834 460 634 954 426 540 ···  2.596 536 290 450 542 073 632 740 ···  0.280 169 499 023 869 133 036 436 ···  0.149 162 536 496 481 100 121 144 ···  2.566 543 832 171 388 844 467 529 ···  1.805 917 418 986 691 013 997 505 ···  1.902 160 583 104 ··· (?) | $\exp(\textbf{S}_{n>0}\{(\text{zeta}(n+1)-1)/n\}-1). \text{ Re: factorizations of n!}$ Special value of the Riemann zeta function $\zeta(x)$ $\textbf{\textit{P}}_{\text{prime p}}\{1-1/(p(p-1))\}$ when $Q(x)=\textbf{\textit{S}}_{k\geq0}\{q_kx^k\}=1/P(x)$ , with $P(x)$ defined below -1/B is the only real root of $P(x)=1+\textbf{\textit{S}}_{k\geq1}\{\text{prime}(k)x^p\}$ $\textbf{\textit{P}}_{\text{prime p}}\{1+(3p^2-1)/[p(p+1)(p^2-1)]\}$ Re: theory of function approximations by polynomials String concatenation of squares in base 10 Its $Blazys'expansion$ generates prime numbers $\textbf{\textit{S}}_{n\geq1}\{(n(n+1)/2)/\textbf{\textit{P}}_{k\geq0}\{n!/k!\}\}$ Sum of reciprocals of prime pairs $(p,p+2)$ |
| Named math constants (mostly classical Alladi-Grinstead constant Apéry's constant $\zeta(3)$ Artin's constant Backhouse constant $B = L_{k \to \infty}  q_{k+1}/q_k  =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.809 394 020 540 639 130 717 931 ···  1.202 056 903 159 594 285 399 738 ··· #t  0.373 955 813 619 202 288 054 728 ···  1.456 074 948 582 689 671 399 595 ···  0.686 777 834 460 634 954 426 540 ···  2.596 536 290 450 542 073 632 740 ···  0.280 169 499 023 869 133 036 436 ···  0.149 162 536 496 481 100 121 144 ···  2.566 543 832 171 388 844 467 529 ···  1.805 917 418 986 691 013 997 505 ···                            | $\exp(\mathbf{S}_{n>0}\{(zeta(n+1)-1)/n\}-1).\ Re:\ factorizations\ of\ n!$ Special value of the Riemann zeta function $\zeta(x)$ $P_{prime}\ p\{1-1/(p(p-1))\}$ when $Q(x)=\mathbf{S}_{k\geq 0}\{q_k\ x^k\}=1/P(x),\ with\ P(x)\ defined\ below$ $-1/B\ is\ the\ only\ real\ root\ of\ P(x)=1+\mathbf{S}_{k\geq 1}\{prime(k)\ x^p\}$ $P_{prime}\ p\{1+(3p^2-1)/[p(p+1)(p^2-1)]\}$ Re: theory of function approximations by polynomials String concatenation of squares in base 10 Its $Blazys'expansion$ generates prime numbers $\mathbf{S}_{n\geq 1}\{(n(n+1)/2)/P_{k\geq 0}\{n!/k!\}\}$                                                                                                                                            |

|                                                                                        | 1                                         | 1                                                                                                                          |
|----------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Cahen's constant C                                                                     | 0.643 410 546 288 338 026 182 254 •••     | $C = S_{k \ge 0} \{(-1)^k / (s_{k-1})\}$ , where $s_k$ is the <b>Sylvester</b> 's sequence                                 |
| Catalan's constant C                                                                   | 0.915 965 594 177 219 015 054 603 •••     | $C = S_{k \ge 0} \{ (-1)^{k^2} \}$                                                                                         |
| Champernowne constant C <sub>10</sub> (10-normal number)                               | 0.123 456 789 101 112 131 415 161 ••• #t  | String concatenation of natural numbers in base 10                                                                         |
| Copeland-Erdös constant (a 10-normal number)                                           | 0.235 711 131 719 232 931 374 143 •••     | String concatenation of prime numbers in base 10                                                                           |
| Conway's constant $\lambda(3)$                                                         | 1.303 577 269 034 296 391 257 099 •••     | Growth rate of derived look-and-say strings                                                                                |
| Delian constant                                                                        | 1.259 921 049 894 873 164 767 210 •••     | 2 <sup>1/3</sup> . The name refers to the Oracle on island Delos.                                                          |
| Dottie number                                                                          | 0.739 085 133 215 160 641 655 312 ••• #t  | The only real solution of $x = cos(x)$                                                                                     |
| Embree - Trefethen constant β                                                          | 0.70258 ••• (?)                           | Theory of 2nd order recurrences with random add/subtract                                                                   |
| Erdös - Borwein constant                                                               | 1.606 695 152 415 291 763 783 301 •••     | $S_{n>0}\{1/(2^n-1)\}$                                                                                                     |
| $\textbf{Feigenbaum} \ reduction \ parameter \ \alpha$                                 | -2.502 907 875 095 892 822 283 902 •••    | Appears in the theory of chaos                                                                                             |
| Feller - Tornier constant F                                                            | 0.661 317 049 469 622 335 289 765 •••     | $F = (1+P_{prime p}\{1-2/p^2\})/2$ . See also                                                                              |
| Often (mis)labeled as Feller - Tornier's:                                              | 0.322 634 098 939 244 670 579 531 •••     | $P_{\text{prime p}}\{1-2/p^2\}.$                                                                                           |
| $\textbf{Feigenbaum} \ \text{bifurcation velocity} \ \delta$                           | 4.669 201 609 102 990 671 853 203 ••• #t  | Appears in the theory of chaos                                                                                             |
| Flajolet-Odlyzko constant                                                              | 0.757 823 011 268 492 837 742 175 •••     | 2 I <sub>t=0,∞</sub> {1-exp(Ei(-t)/2)}                                                                                     |
| Foias constant α                                                                       | 1.187 452 351 126 501 054 595 480 •••     | $x_{n+1}=(1+1/x_n)^n$ converges for all $x_1>0$ except $x_1=\alpha$                                                        |
| Foias-Ewing constant β                                                                 | 2.293 166 287 411 861 031 508 028 •••     | Attractor of f(#)=(1+1/#)#; converges for any starting x>0                                                                 |
| Fransén-Robinson constant                                                              | 2.807 770 242 028 519 365 221 501 •••     | $I_{X=0,\infty}\{1/\Gamma(x)\};$ see Gamma function                                                                        |
| Gauss' constant G                                                                      | 0.834 626 841 674 073 186 814 297 •••     | 1/AGM(1,√2); AGM is the <b>Arithmetic-Geometric mean</b>                                                                   |
| Gauss-Kuzmin-Wirsing constant $\lambda_1$                                              | 0.303 663 002 898 732 658 597 448 •••     | 2nd eigenvalue of GKW functional operator (first is 1)                                                                     |
| Gelfond's constant                                                                     | 23.140 692 632 779 269 005 729 086 ••• #t | $e^{\pi} = (-1)^{-1}$                                                                                                      |
| Gelfond-Schneider constant                                                             | 2.665 144 142 690 225 188 650 297 ••• #t  | 2√2                                                                                                                        |
| The last two constants are sometimes said                                              | Hilbert's since he named them             | in his famous 1900 Mathematical Problems address                                                                           |
| Gerver's moving sofa constant                                                          | 2.219 531 668 871 97 (? largest so far)   | A sofa that can turn unit-width hallway corner                                                                             |
| Hammersley's lower bound on Gerver's const.                                            | 2.207 416 099 162 477 962 306 856 •••     | $\pi/2 + 2/\pi$ . Also the mean angle of a random rotation.                                                                |
| Gibbs constant G                                                                       | 1.851 937 051 982 466 170 361 053 •••     | $Si(\pi), I_{x=0,pi;} \{sin(x)/x\}.$                                                                                       |
| Wilbraham-Gibbs constant G'                                                            | 1.178 979 744 472 167 270 232 028 •••     | 2G/π. Quantifies Gibbs effect in Fourier Transform.                                                                        |
| Glaisher-Kinkelin constant A                                                           | 1.282 427 129 100 622 636 875 342 •••     | exp(1/12 -ζ(-1)). Appears often in number theory                                                                           |
| Kinkelin constant                                                                      | -0.165 421 143 700 450 929 213 919 •••    | $1/12$ -In(A) = $\zeta$ (-1). Unstable nomenclature.                                                                       |
| Golomb-Dickman constant λ                                                              | 0.624 329 988 543 550 870 992 936 •••     | Average longest cycle length in random permutations                                                                        |
| Gompertz constant G                                                                    | 0.596 347 362 323 194 074 341 078 •••     | G = -e.Ei(-1), Ei(x) being the exponential integral                                                                        |
| Graham's constant G(3)                                                                 | 0.783 591 464 262 726 575 401 950 •••     | Digits of 3^k, read backwards, for k->infinity                                                                             |
| Grossmann's constant                                                                   | 0.737 338 303 369 29 ••• (?)              | The only x for which $\{a_0=1; a_1=x; a_{n+2}=a_n/(1+a_{n+1})\}$ converges                                                 |
| Heat - Brown - Moroz constant                                                          | 0.001 317 641 154 853 178 109 817 •••     | $P_{\text{prime p}}\{(1-1/p)^7(1+(7p+1)/p^2)\}$                                                                            |
| Khinchin's constant K <sub>0</sub>                                                     | 2.685 452 001 065 306 445 309 714 •••     | $P_{n\geq 1}\{(1+1/(n(n+2)))^{\log_2(n)}\}$ . Limit geom.mean of cont.fract. terms                                         |
| Khinchin-Lévy constant β                                                               | 1.186 569 110 415 625 452 821 722 •••     | $\beta = \pi^2/(12.\ln 2) = \mathbf{S}_{k \ge 1}\{(-1)^{k+1}/k^2\}/\mathbf{S}_{k \ge 1}\{(-1)^{k+1}/k\} = \eta(2)/\eta(1)$ |
| Lévy constant γ                                                                        | 3.275 822 918 721 811 159 787 681 •••     | $\gamma = e^{\beta} = \exp(\pi^2/(12.\ln 2))$ . Unstable nomenclature                                                      |
| Knuth's random-generators constant                                                     | 0.211 324 865 405 187 117 745 425 •••     | (1-1/√3)/2                                                                                                                 |
| Kolakoski constant γ                                                                   | 0.794 507 192 779 479 276 240 362 •••     | Related to Kolakoski sequence                                                                                              |
| Komornik-Loreti constant q                                                             | 1.787 231 650 182 965 933 013 274 ••• #t  | Least x such that $\mathbf{S}_{k>0}\{a_k/x^k\}=1$ for a unique sequence $\{a_k\}$                                          |
| Landau-Ramanujan constant                                                              | 0.764 223 653 589 220 662 990 698 •••     | Related to the density of sums of two integer squares                                                                      |
| <b>Lagrange numbers</b> $L_1 = \sqrt{5}$ , $L_2 = \sqrt{8}$ , $L_3 = (\sqrt{221})/5 =$ | 2.973 213 749 463 701 104 522 401 •••     | L <sub>n</sub> = sqrt(9-4/M(n)^2), M(n) being n-th <b>Markov</b> number                                                    |
| Laplace limit constant λ                                                               | 0.662 743 419 349 181 580 974 742 •••     | Let $\eta = \sqrt{(1+\lambda^2)}$ ; then $\lambda e^{\eta} = 1+\eta$ Click here for more                                   |
| Lieb's square ice constant                                                             | 1.539 600 717 839 002 038 691 063 •••     | (8/9)√3. Counting directed graphs. Related to ice lattice                                                                  |
| Twenty-Vertex entropy constant                                                         | 2.598 076 211 353 315 940 291 169 •••     | (3/2)√3. As above, but for triangular lattices                                                                             |
| Linnik's constant L                                                                    | 1 ≤ L ≤ 11/2, that is all we know         | Regards primes in integer arithmetic progressions                                                                          |
| Liouville's constant                                                                   | 0.110 001 000 000 000 000 000 001 ··· #t  | <b>S</b> <sub>n&gt;0</sub> {10^(-n!)}                                                                                      |
| Loch's constant                                                                        | 0.970 270 114 392 033 925 740 256 •••     | 6.log(2).log(10)/π <sup>2</sup> ; convergence rate of continued fractions                                                  |
| Madelung's constant M <sub>3</sub>                                                     | -1.747 564 594 633 182 190 636 212 •••    | M3 = $\mathbf{S}_{i,j,k}\{(-1)^{i+j+k}/sqrt(i^2+j^2+k^2)\}$                                                                |
| Meissel - Mertens constant B <sub>1</sub>                                              | 0.261 497 212 847 642 783 755 426 •••     | $L_{\text{n}\to\infty}\{\mathbf{S}_{\text{prime }p\leq n}\{1/p\}-\log(\log(n))\}$                                          |
| Meissel - Mertens constant is also known as                                            | Kronecker constant, and as                | Hadamard - de la Vallee-Poussin constant                                                                                   |
| Mills' constant $\theta$                                                               | 1.306 377 883 863 080 690 468 614 •••     | Smallest $\theta$ such that floor( $\theta$ <sup>A</sup> 3 <sup>n</sup> ) is prime for any n                               |
| Minkowski-Bower constant b                                                             | 0.420 372 339 423 223 075 640 993 •••     | For Minkowski question-mark function, a solution of ?x = x                                                                 |
| MRB constant (after Marvin R. Burns)                                                   | 0.187 859 642 462 067 120 248 517 •••     | <b>S</b> <sub>k&gt;0</sub> {(-1) <sup>k</sup> (k <sup>1/k</sup> - 1)}                                                      |
| Oscillatory-integral MRB constant, modulus                                             | 0.687 652 368 927 694 369 809 312 •••     | abs $(L_{n\to\infty}\{I_{x=1,2n}\{e^{i\pi x} x^{1/x}\}\})$ . Note: $e^{i\pi x} \equiv (-1)^x$                              |
| Oscillatory-integral MRB constant, real part                                           | 0.070 776 039 311 528 803 539 528 •••     | real( $L_{n\to\infty}\{I_{x=1,2n}\{e^{i\pi x}x^{1/x}\}\}$ ), also called MKB constant                                      |
|                                                                                        |                                           |                                                                                                                            |

| Murata's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.826 419 997 067 591 575 546 391 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $P_{\text{prime p}}\{1+1/(p-1)^2\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Niven's constant C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.705 211 140 105 367 764 288 551 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mean maximal exponent in prime factorization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Norton's constant B for Euclid's GCD algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.065 351 425 923 037 321 378 782 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | for 1≤n,m≤n, GCD(n,m) takes av. (12.log(2)/π²)log(n)+B step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Odlyzko-Wilf constant K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.622 270 502 884 767 315 956 950 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | When $x_0=1$ , $x_{n+1}=ceil(3x_n/2)$ , then $x_n=floor(K.(3/2)^n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Omega constant W(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.567 143 290 409 783 872 999 968 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Root of (x-e <sup>-x</sup> ) or (x+log(x)). See also.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Otter's constant α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.955 765 285 651 994 974 714 817 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Appears in enumeration of rooted and unrooted trees:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Otter's asymptotic constant β <sub>II</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.534 949 606 1(?) •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | for unrooted trees: UT(n) $\sim \beta_u \alpha^n n^{-5/2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Otter's asymptotic constant β <sub>r</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.439 924 012 571 (?) •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | for rooted trees: RT(n) ~ $\beta_r \alpha^n n^{-3/2}$ (V. Kotesovec)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pogson's ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.511 886 431 509 580 111 085 032 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 <sup>1/5</sup> ; in astronomy 1 stellar magnitude brightness ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Polya's random-walk constant p <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.340 537 329 550 999 142 826 273 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Probability a 3D-lattice random walk returns back. See also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Porter's constant C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.467 078 079 433 975 472 897 798 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Arises analyzing efficiency of Euclid's GCD algorithm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Prévost's constant (reciprocal Fibonacci)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.359 885 666 243 177 553 172 011 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sum of reciprocals of Fibonacci numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Reciprocal even Fibonacci constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.535 370 508 836 252 985 029 852 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sum of reciprocals of even-indexed Fibonacci numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reciprocal odd Fibonacci constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.824 515 157 406 924 568 142 158 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sum of reciprocals of odd-indexed Fibonacci numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Prince Rupert's cube constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.060 660 171 779 821 286 601 266 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (3√2)/4. Side of largest cube passing through a unit cube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Ramanujan-Soldner's constant μ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.451 369 234 883 381 050 283 968 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Positive real root of logarithmic integral li(x).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rényi's parking constant m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.747 597 920 253 411 435 178 730 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Linear space occupied by randomly parked cars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Robbins, or cube line picking constant Δ(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.661 707 182 267 176 235 155 831 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Average length of a random line inside a unit 3D cube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Salem number σ <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.176 280 818 259 917 506 544 070 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Related to the structure of the set of algebraic integers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sarnak's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.723 648 402 298 200 009 408 849 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Related to the structure of the set of algebraic integers $P_{\text{prime p} \ge 3} \{1 - (p+2)/p^3\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Prime p≥3{1-{P+2}/P}} e <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Schwarzschild constant, or conic constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.389 056 098 930 650 227 230 427 ••• #t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Shall-Wilson or twin primes constant Π <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.660 161 815 846 869 573 927 812 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $P_{\text{primes p} \ge 3\{1-1/(p-1)^2\}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sierpinski constant S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.822 825 249 678 847 032 995 328 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $S = \log(4*\pi^3 e^{2\gamma}/\Gamma^4(1/4))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| and Sierpinski constant K = πS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.584 981 759 579 253 217 065 893 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Related to decompositions of n into k squares                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Somos' quadratic recurrence constant σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.661 687 949 633 594 121 295 818 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma=\sqrt{(1/(2\sqrt{3}))}$ . Somos's sequence tends to $\sigma^{(2^n)}/(n+2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Stieltjes constants γ <sub>n</sub> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For values, click here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coefficients of the expansion of Riemann's ζ(s) about s=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Taniguchi's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.678 234 491 917 391 978 035 538 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $P_{\text{prime p}}\{1-3/p^3+2/p^4+1/p^5-1/p^6\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The odorus' constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.732 050 807 568 877 293 527 446 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | √3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Thue-Morse constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.412 454 033 640 107 597 783 361 ••• #t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Thue-Morse sequence as a binary number .0110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Viswanath's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.131 988 248 794 3 ••• (?)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Growth of Fibonacci-like sequence with random +/-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wallis' constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.094 551 481 542 326 591 482 386 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Root of x <sup>3</sup> -2x-5. A kind of historic curiosity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Weierstrass constant σ(1 1,i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.474 949 379 987 920 650 332 504 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2^{5/4}\pi^{1/2}e^{\pi/8}/\Gamma^2(1/4)$ . $\sigma$ is the Weierstrass $\sigma$ function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Wyler's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.007 297 348 130 031 832 128 956 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $(9/(16*\pi^3))(\pi/5!)^{1/4}$ . Approximation to fine structure constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.180 717 104 711 806 478 057 792 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit of [Count of Markoff numbers < x]/log(3x)^2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zagier's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.160 / 1/ 104 / 11 606 4/6 05/ /92 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Zagier's constant Zolotarev-Schur constant σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.311 078 866 704 819 209 027 546 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma$ = (1-E(c)/K(c))/c^2, see the link for more details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.311 078 866 704 819 209 027 546 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Zolotarev-Schur constant σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Zolotarev-Schur constant σ  Other notable real-valued math constants.  Continued fractions constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct  1.030 640 834 100 712 935 881 776 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ion. (1/6)π²/(log(2)log(10)). Mean c.f.terms per decimal digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Zolotarev-Schur constant σ  Other notable real-valued math constants.  Continued fractions constant  Evil numbers (see also). Some examples:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct  1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ion.  (1/6)π²/(log(2)log(10)). Mean c.f.terms per decimal digit  Running sum of their fractional-part digits hits 666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Zolotarev-Schur constant o  Other notable real-valued math constants.  Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct  1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more:  0.2 - 2.166222683713523944720••• e-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ion.  (1/6)π²/(log(2)log(10)). Mean c.f.terms per decimal digit  Running sum of their fractional-part digits hits 666  starts with "0.1", followed by 62 "9"s, and then "783"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants.  Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n\to\infty}(F_n^{\Lambda}(1/n^2))$ }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct  1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more:  0.2 - 2.166222683713523944720••• e-64  1.503 048 082 475 332 264 322 066 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ \text{Mean c.f.terms per decimal digit} $ Running sum of their fractional-part digits hits 666 starts with "0.1", followed by 62 "9"s, and then "783" $ F_n = \text{number of nXn binary matrices with no adjacent 1's} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants.  Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n\to\infty}(F_n^n(1/n^2))$ }  Infinite nested radical of primes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct  1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more:  0.2 - 2.166222683713523944720••• e-64  1.503 048 082 475 332 264 322 066 •••  2.103 597 496 339 897 262 619 939 •••                                                                                                                                                                                                                                                                                                                                                                                                                                             | ion.  (1/6)π²/(log(2)log(10)). Mean c.f.terms per decimal digit  Running sum of their fractional-part digits hits 666  starts with "0.1", followed by 62 "9"s, and then "783"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants.  Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n\to\infty}(F_n^{-1}(1/n^2))$ Infinite nested radical of primes  Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$                                                                                                                                                                                                                                                                                                                                                                                                              | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct  1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more:  0.2 - 2.166222683713523944720••• e-64  1.503 048 082 475 332 264 322 066 •••  2.103 597 496 339 897 262 619 939 •••  2.517 600 167 877 718 891 370 658                                                                                                                                                                                                                                                                                                                                                                                                          | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ \text{Mean c.f.terms per decimal digit} $ Running sum of their fractional-part digits hits 666 starts with "0.1", followed by 62 "9"s, and then "783" $ F_n = \text{number of nXn binary matrices with no adjacent 1's} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants. Continued fractions constant Evil numbers (see also). Some examples: Probability that a random real number is evil: Hard square entropy constant $L_{n\to\infty}\{F_n^{n}(1/n^2)\}\}$ Infinite nested radical of primes Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$                                                                                                                                                                                                                                                                                                                                           | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct  1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more:  0.2 - 2.166222683713523944720••• e-64  1.503 048 082 475 332 264 322 066 •••  2.103 597 496 339 897 262 619 939 •••  2.517 600 167 877 718 891 370 658  3.005 583 659 206 261 169 270 945                                                                                                                                                                                                                                                                                                                                                                       | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \mbox{ Mean c.f.terms per decimal digit} $ Running sum of their fractional-part digits hits 666 starts with "0.1", followed by 62 "9"s, and then "783" $ F_n = \mbox{number of nXn binary matrices with no adjacent 1's} $ $ \sqrt{(2+\sqrt{(3+\sqrt{(5+\sqrt{(7+\sqrt{(11+\ldots)))})})}} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants.  Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n\to\infty}(F_n^{\Lambda}(1/n^2))$ }  Infinite nested radical of primes  Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite power tower of $1/2$                                                                                                                                                                                                                                                                                                   | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct  1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more:  0.2 - 2.166222683713523944720••• e-64  1.503 048 082 475 332 264 322 066 •••  2.103 597 496 339 897 262 619 939 •••  2.517 600 167 877 718 891 370 658  3.005 583 659 206 261 169 270 945  0.641 185 744 504 985 984 486 200 •••                                                                                                                                                                                                                                                                                                                                | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants. Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n\to\infty}\{F_n^{\Lambda}(1/n^2)\}\}$ Infinite nested radical of primes  Infinite nested power $(1+(1+(1+(1+\dots)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power tower of $1/2$ Lemniscate constant L                                                                                                                                                                                                                                                                                                                                      | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct 1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more: 0.2 - 2.166222683713523944720••• e-64 1.503 048 082 475 332 264 322 066 ••• 2.103 597 496 339 897 262 619 939 ••• 2.517 600 167 877 718 891 370 658 3.005 583 659 206 261 169 270 945 0.641 185 744 504 985 984 486 200 ••• 2.622 057 554 292 119 810 464 839 •••                                                                                                                                                                                                                                                                                                 | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants. Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n\to\infty}\{F_n^{n}(1/n^2)\}\}$ Infinite nested radical of primes  Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite power tower of $1/2$ Lemniscate constant L  First lemniscate constant L                                                                                                                                                                                                                                                      | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct 1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more: 0.2 - 2.166222683713523944720••• e-64 1.503 048 082 475 332 264 322 066 ••• 2.103 597 496 339 897 262 619 939 ••• 2.517 600 167 877 718 891 370 658 3.005 583 659 206 261 169 270 945 0.641 185 744 504 985 984 486 200 ••• 2.622 057 554 292 119 810 464 839 ••• 1.311 028 777 146 059 905 232 419 •••                                                                                                                                                                                                                                                           | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants. Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n\to\infty}\{F_n^{\prime}(1/n^2)\}\}$ Infinite nested radical of primes Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite power tower of 1/2 Lemniscate constant L  First lemniscate constant L <sub>A</sub> Second lemniscate constant L <sub>B</sub>                                                                                                                                                                                             | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct 1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more: 0.2 - 2.166222683713523944720••• e-64 1.503 048 082 475 332 264 322 066 ••• 2.103 597 496 339 897 262 619 939 ••• 2.517 600 167 877 718 891 370 658 3.005 583 659 206 261 169 270 945 0.641 185 744 504 985 984 486 200 ••• 2.622 057 554 292 119 810 464 839 ••• 1.311 028 777 146 059 905 232 419 ••• 0.599 070 117 367 796 103 337 484 •••                                                                                                                                                                                                                     | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ Mean \ c.f. terms \ per \ decimal \ digit $ Running sum of their fractional-part digits hits 666 starts with "0.1", followed by 62 "9"s, and then "783" $ F_n = \text{number of nXn binary matrices with no adjacent 1's } $ $ \sqrt{(2+\sqrt{(3+\sqrt{(5+\sqrt{(7+\sqrt{(11+\ldots)))})})}} $ $ (1/2)^{N}(1/2)^{N}(1/2)^{N}; \ solution \ of \ x=2^{-X} $ $ L = \pi G, \ where \ G \ is \ the \ \textbf{Gauss' constant} $ $ L_A = L/2 = \pi G/2 $ $ L_B = 1/(2G) = AGM(1,i)/(1+i) $                                                                                                                                                                                                                                                                                                                                   |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants. Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n\to\infty}\{F_n^{\Lambda}(1/n^2)\}\}$ Infinite nested radical of primes  Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite power tower of $1/2$ Lemniscate constant L  First lemniscate constant L <sub>A</sub> Second lemniscate constant L <sub>B</sub> Mandelbrot set area                                                                                                                                                                     | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct  1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more:  0.2 - 2.166222683713523944720••• e-64  1.503 048 082 475 332 264 322 066 •••  2.103 597 496 339 897 262 619 939 •••  2.517 600 167 877 718 891 370 658  3.005 583 659 206 261 169 270 945  0.641 185 744 504 985 984 486 200 •••  2.622 057 554 292 119 810 464 839 •••  1.311 028 777 146 059 905 232 419 •••  0.599 070 117 367 796 103 337 484 •••  1.506 591 ••• (?)                                                                                                                                                                                        | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants. Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n→∞}\{F_n^{n}(1/n^2)\}\}$ Infinite nested radical of primes  Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite power tower of $1/2$ Lemniscate constant L  First lemniscate constant L  Second lemniscate constant L <sub>B</sub> Mandelbrot set area  Product $(1-1/2)^*(1-1/4)^*(1-1/8)^*(1-1/16)^*$                                                                                                                                             | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct 1.030 640 834 100 712 935 881 776 ••• $\pi$ , Φ, 2 <sup>1/3</sup> , 3 <sup>1/2</sup> , $\pi$ <sup>666</sup> , √6, and many more: 0.2 - 2.166222683713523944720••• e-64 1.503 048 082 475 332 264 322 066 ••• 2.103 597 496 339 897 262 619 939 ••• 2.517 600 167 877 718 891 370 658 3.005 583 659 206 261 169 270 945 0.641 185 744 504 985 984 486 200 ••• 2.622 057 554 292 119 810 464 839 ••• 1.311 028 777 146 059 905 232 419 ••• 0.599 070 117 367 796 103 337 484 ••• 1.506 591 ••• (?) 0.288 788 095 086 602 421 278 899 •••                                                                                                                                                     | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ Mean \ c.f. terms \ per \ decimal \ digit $ Running sum of their fractional-part digits hits 666 starts with "0.1", followed by 62 "9"s, and then "783" $ F_n = \text{number of nXn binary matrices with no adjacent 1's } $ $ \sqrt{(2+\sqrt{(3+\sqrt{(5+\sqrt{(7+\sqrt{(11+\dots)))})})}} $ $ (1/2)^{\Lambda}(1/2)^{\Lambda}(1/2)^{\Lambda}; \ solution \ of \ x = 2^{-X} $ $ L = \pi G, \ where \ G \ is \ the \ \textbf{Gauss'} \ constant $ $ L_A = L/2 = \pi G/2 $ $ L_B = 1/(2G) = AGM(1,i)/(1+i) $ Hard to estimate $ P_{k=1,\infty}\{1-x^k\}, \ for \ x=1/2 $                                                                                                                                                                                                                                                  |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants. Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n\to\infty}\{F_n^{\Lambda}(1/n^2)\}\}$ Infinite nested radical of primes  Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite power tower of $1/2$ Lemniscate constant L  First lemniscate constant L  Second lemniscate constant L <sub>B</sub> Mandelbrot set area  Product $(1-1/2)^*(1-1/4)^*(1-1/8)^*(1-1/16)^*$ Quadratic Class Number constant                                                                                                | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct 1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more: 0.2 - 2.166222683713523944720••• e-64 1.503 048 082 475 332 264 322 066 ••• 2.103 597 496 339 897 262 619 939 ••• 2.517 600 167 877 718 891 370 658 3.005 583 659 206 261 169 270 945 0.641 185 744 504 985 984 486 200 ••• 2.622 057 554 292 119 810 464 839 ••• 1.311 028 777 146 059 905 232 419 ••• 0.599 070 117 367 796 103 337 484 ••• 1.506 591 ••• (?) 0.288 788 095 086 602 421 278 899 ••• 0.881 513 839 725 170 776 928 391 •••                                                                                                                       | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants. Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n→∞}$ {F <sub>n</sub> ^(1/n <sup>2</sup> )}} Infinite nested radical of primes  Infinite nested power (1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1} Infinite nested power (1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1} Infinite power tower of 1/2  Lemniscate constant L  First lemniscate constant L <sub>A</sub> Second lemniscate constant L <sub>B</sub> Mandelbrot set area  Product (1-1/2)*(1-1/4)*(1-1/8)*(1-1/16)*  Quadratic Class Number constant  Rabbit constant                                                                       | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct 1.030 640 834 100 712 935 881 776 ••• $\pi$ , Φ, 2 <sup>1/3</sup> , 3 <sup>1/2</sup> , $\pi$ <sup>666</sup> , √6, and many more: 0.2 - 2.166222683713523944720••• e-64 1.503 048 082 475 332 264 322 066 ••• 2.103 597 496 339 897 262 619 939 ••• 2.517 600 167 877 718 891 370 658 3.005 583 659 206 261 169 270 945 0.641 185 744 504 985 984 486 200 ••• 2.622 057 554 292 119 810 464 839 ••• 1.311 028 777 146 059 905 232 419 ••• 0.599 070 117 367 796 103 337 484 ••• 1.506 591 ••• (?) 0.288 788 095 086 602 421 278 899 ••• 0.881 513 839 725 170 776 928 391 ••• 0.709 803 442 861 291 314 641 787 •••                                                                         | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ Mean \ c.f. terms \ per \ decimal \ digit $ Running sum of their fractional-part digits hits 666 starts with "0.1", followed by 62 "9"s, and then "783" $ F_n = \text{number of nXn binary matrices with no adjacent 1's } \\ \sqrt{(2+\sqrt{(3+\sqrt{(5+\sqrt{(7+\sqrt{(11+\ldots)))})})}} $ $ (1/2)^{N}(1/2)^{N}(1/2)^{N}; \ solution \ of \ x=2^{-X} $ $ L = \pi G, \ where \ G \ is \ the \ \ \textbf{Gauss'} \ constant $ $ L_A = L/2 = \pi G/2 $ $ L_B = 1/(2G) = AGM(1,\mathbf{i})/(1+\mathbf{i}) $ $ Hard \ to \ estimate $ $ P_{k=1,\infty}\{1-x^k\}, \ for \ x=1/2 $ $ P_{prime} \ p\{1-1/(p^2(p+1))\} $ $ See \ the \ binary \ rabbit \ sequence \ and \ number $                                                                                                                                            |
| Zolotarev-Schur constant σ  Other notable real-valued math constants.  Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n→∞}\{F_n^{Λ}(1/n^2)\}\}$ Infinite nested radical of primes  Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite power tower of $1/2$ Lemniscate constant L  First lemniscate constant L  Second lemniscate constant L <sub>B</sub> Mandelbrot set area  Product $(1-1/2)^*(1-1/4)^*(1-1/8)^*(1-1/16)^*$ Quadratic Class Number constant  Rabbit constant  Real root of $P(x) \equiv <$ OGF for primes>                                                   | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct 1.030 640 834 100 712 935 881 776 ••• $π$ , $Φ$ , $2^{1/3}$ , $3^{1/2}$ , $π^{666}$ , $√6$ , and many more: 0.2 - 2.166222683713523944720••• e-64 1.503 048 082 475 332 264 322 066 ••• 2.103 597 496 339 897 262 619 939 ••• 2.517 600 167 877 718 891 370 658 3.005 583 659 206 261 169 270 945 0.641 185 744 504 985 984 486 200 ••• 2.622 057 554 292 119 810 464 839 ••• 1.311 028 777 146 059 905 232 419 ••• 0.599 070 117 367 796 103 337 484 ••• 1.506 591 ••• (?) 0.288 788 095 086 602 421 278 899 ••• 0.881 513 839 725 170 776 928 391 ••• 0.709 803 442 861 291 314 641 787 ••• -0.686 777 834 460 634 954 426 540 •••                                                       | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ Mean \ c.f. terms \ per \ decimal \ digit $ Running sum of their fractional-part digits hits 666 starts with "0.1", followed by 62 "9"s, and then "783" $ F_n = \text{number of nXn binary matrices with no adjacent 1's } $ $ \sqrt{(2+\sqrt{(3+\sqrt{(5+\sqrt{(7+\sqrt{(11+\dots)))})}})} $ $ (1/2)^{\Lambda}(1/2)^{\Lambda}(1/2)^{\Lambda}; \text{ solution of } x=2^{-X} $ $ L = \pi G, \text{ where } G \text{ is the } \textbf{Gauss' constant} $ $ L_A = L/2 = \pi G/2 $ $ L_B = 1/(2G) = AGM(1,i)/(1+i) $ $ Hard \ \text{ to estimate} $ $ P_{k=1,\infty}\{1-x^k\}, \text{ for } x=1/2 $ $ P_{prime} \ p(1-1/(p^2(p+1))) $ See the binary rabbit sequence and number $ P(x) = 1+S_{k>0}\{prime(k).x^k\}. \ \text{ The real root is unique.} $                                                                   |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants. Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n→∞}\{F_n^{n}(1/n^2)\}\}$ Infinite nested radical of primes  Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite power tower of $1/2$ Lemniscate constant L  First lemniscate constant L  Second lemniscate constant L <sub>B</sub> Mandelbrot set area  Product $(1-1/2)^*(1-1/4)^*(1-1/8)^*(1-1/16)^*$ Quadratic Class Number constant  Rabbit constant  Real root of $P(x) \equiv < OGF$ for primes>  Square root of Gelfond - Schneider constant | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct 1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more: 0.2 - 2.166222683713523944720••• e-64 1.503 048 082 475 332 264 322 066 ••• 2.103 597 496 339 897 262 619 939 ••• 2.517 600 167 877 718 891 370 658 3.005 583 659 206 261 169 270 945 0.641 185 744 504 985 984 486 200 ••• 2.622 057 554 292 119 810 464 839 ••• 1.311 028 777 146 059 905 232 419 ••• 0.599 070 117 367 796 103 337 484 ••• 1.506 591 ••• (?) 0.288 788 095 086 602 421 278 899 ••• 0.881 513 839 725 170 776 928 391 ••• 0.709 803 442 861 291 314 641 787 ••• -0.686 777 834 460 634 954 426 540 ••• 1.632 526 919 438 152 844 773 495 ••• #t | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \   \text{Mean c.f.terms per decimal digit} $ Running sum of their fractional-part digits hits 666 starts with "0.1", followed by 62 "9"s, and then "783" $ F_n = \text{number of nXn binary matrices with no adjacent 1's} $ $ \sqrt{(2+\sqrt{(3+\sqrt{(5+\sqrt{(7+\sqrt{(11+\ldots)))})})}} $ $ (1/2)^{N}(1/2)^{N}(1/2)^{N}; \text{ solution of } x=2^{-X} $ $ L = \pi G, \text{ where } G \text{ is the } \text{Gauss' constant} $ $ L_A = L/2 = \pi G/2 $ $ L_B = 1/(2G) = AGM(1,i)/(1+i) $ $ \text{Hard to estimate} $ $ P_{k=1,\infty}\{1-x^k\}, \text{ for } x=1/2 $ $ P_{\text{prime p}}\{1-1/(p^2(p+1))\} $ See the binary rabbit sequence and number $ P(x)=1+S_{k>0}\{\text{prime}(k),x^k\}. \text{ The real root is unique.} $ $ \sqrt{2^{N}}2=2^{N}(1/2). \text{ Notable because proved transcendental} $      |
| Zolotarev-Schur constant $\sigma$ Other notable real-valued math constants. Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n→∞}\{F_n^{n}(1/n^2)\}\}$ Infinite nested radical of primes  Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite power tower of $1/2$ Lemniscate constant L  First lemniscate constant L  Second lemniscate constant L <sub>B</sub> Mandelbrot set area  Product $(1-1/2)^*(1-1/4)^*(1-1/8)^*(1-1/16)^*$ Quadratic Class Number constant  Rabbit constant  Real root of $P(x) \equiv < OGF$ for primes>  Square root of Gelfond - Schneider constant | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct 1.030 640 834 100 712 935 881 776 ••• $π$ , $Φ$ , $2^{1/3}$ , $3^{1/2}$ , $π^{666}$ , $√6$ , and many more: 0.2 - 2.166222683713523944720••• e-64 1.503 048 082 475 332 264 322 066 ••• 2.103 597 496 339 897 262 619 939 ••• 2.517 600 167 877 718 891 370 658 3.005 583 659 206 261 169 270 945 0.641 185 744 504 985 984 486 200 ••• 2.622 057 554 292 119 810 464 839 ••• 1.311 028 777 146 059 905 232 419 ••• 0.599 070 117 367 796 103 337 484 ••• 1.506 591 ••• (?) 0.288 788 095 086 602 421 278 899 ••• 0.881 513 839 725 170 776 928 391 ••• 0.709 803 442 861 291 314 641 787 ••• -0.686 777 834 460 634 954 426 540 •••                                                       | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Continued fractions constant  Evil numbers (see also). Some examples:  Probability that a random real number is evil:  Hard square entropy constant $L_{n\to\infty}\{F_n^{\Lambda}(1/n^2)\}\}$ Infinite nested radical of primes Infinite nested power $(1+(1+(1+(1+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite nested power $(1!+(2!+(3!+(4!+)^{1/4})^{1/3})^{1/2})^{1/1}$ Infinite power tower of $1/2$ Lemniscate constant L  First lemniscate constant L  Second lemniscate constant L  Mandelbrot set area  Product $(1-1/2)^*(1-1/4)^*(1-1/8)^*(1-1/16)^*$ Quadratic Class Number constant Rabbit constant  Real root of $P(x) \equiv COGF$ for primes>                                                                                                                            | 0.311 078 866 704 819 209 027 546 •••  Note: OGF stands for Ordinary Generating Funct 1.030 640 834 100 712 935 881 776 ••• $\pi$ , $\Phi$ , $2^{1/3}$ , $3^{1/2}$ , $\pi^{666}$ , $\sqrt{6}$ , and many more: 0.2 - 2.166222683713523944720••• e-64 1.503 048 082 475 332 264 322 066 ••• 2.103 597 496 339 897 262 619 939 ••• 2.517 600 167 877 718 891 370 658 3.005 583 659 206 261 169 270 945 0.641 185 744 504 985 984 486 200 ••• 2.622 057 554 292 119 810 464 839 ••• 1.311 028 777 146 059 905 232 419 ••• 0.599 070 117 367 796 103 337 484 ••• 1.506 591 ••• (?) 0.288 788 095 086 602 421 278 899 ••• 0.881 513 839 725 170 776 928 391 ••• 0.709 803 442 861 291 314 641 787 ••• -0.686 777 834 460 634 954 426 540 ••• 1.632 526 919 438 152 844 773 495 ••• #t | ion. $ (1/6)\pi^2/(\log(2)\log(10)). \   \text{Mean c.f.terms per decimal digit} $ Running sum of their fractional-part digits hits 666 starts with "0.1", followed by 62 "9"s, and then "783" $ F_n = \text{number of nXn binary matrices with no adjacent 1's} $ $ \sqrt{(2+\sqrt{(3+\sqrt{(5+\sqrt{(7+\sqrt{(11+)))})}})} $ $ (1/2)^{N}(1/2)^{N}(1/2)^{N}; \text{ solution of } x = 2^{-X} $ $ L = \pi G, \text{ where } G \text{ is the } \text{Gauss' constant} $ $ L_A = L/2 = \pi G/2 $ $ L_B = 1/(2G) = AGM(1,i)/(1+i) $ $ \text{Hard to estimate} $ $ P_{k=1,\infty}\{1-x^k\}, \text{ for } x=1/2 $ $ P_{\text{prime p}}\{1-1/(p^2(p+1))\} $ See the binary rabbit sequence and number $ P(x)=1+S_{k>0}\{\text{prime}(k).x^k\}. \text{ The real root is unique.} $ $ \sqrt{2^{N}}2 = 2^{N}(1/\sqrt{2}). \text{ Notable because proved transcendental} $ |

| Tetranacci constant                                          | 1.927 561 975 482 925 304 261 905 •••                                            | Asymptotic growth rate of tetranacci numbers.                                       |
|--------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Z-numbers ξ: for any k>1, 0≤ frac(ξ(3/2) <sup>k</sup> ) <1/2 | No Z-number is known                                                             | There exists at most one in each (n,n+1) interval, n>0                              |
| Hausdorff dimensions for selected fractal sets               |                                                                                  |                                                                                     |
| Feigenbaum attractor-repeller                                | 0.538 045 143 580 549 911 671 415 •••                                            | No explicit formula                                                                 |
| Cantor set, removing 2nd third                               | 0.630 929 753 571 457 437 099 527 ••• #t                                         | log <sub>3</sub> (2) = log(2)/log(3). See also <b>Devil's staircase</b> function    |
| Asymmetric Cantor set, removing 2nd quarter                  | 0.694 241 913 630 617 301 738 790 •••                                            | $log_2(\Phi) = log(\Phi)/log(2)$ , related to the golden ratio $\Phi$               |
| Real numbers with no even decimal digit                      | 0.698 970 004 336 018 804 786 261 •••                                            | Log(5) = log(5)/log(10)                                                             |
| Rauzy fractal boundary r                                     | 1.093 364 164 282 306 639 922 447                                                | Let $z^3 - z^2 - z - 1 = (z - c)(z - a)(z - a^*)$ . Then $2 a ^{3r} +  a ^{4r} = 1$ |
| 2D Cantor dust, Koch snowflake, plus more                    | 1.261 859 507 142 914 874 199 054 ••• #t                                         | log <sub>3</sub> (4) = 2.log(2)/log(3). A case of Liedenmayer's systems             |
| Apollonian gasket (triples of circles in 2D plane)           | 1.305 686 729 (?) •••                                                            | No explicit formula                                                                 |
| Heighway-Harter dragon curve boundary                        | 1.523 627 086 202 492 106 277 683 •••                                            | log <sub>2</sub> ((1+(73-6√87) <sup>1/3</sup> +(73+6√87) <sup>1/3</sup> )/3)        |
| Sierpinsky triangle                                          | 1.584 962 500 721 156 181 453 738 ••• #t                                         | $\log_2((1+(1+6+6+7)-(1+6+6+7)-1))$                                                 |
| 3D Cantor dust, Sierpinski carpet                            | 1.892 789 260 714 372 311 298 581 ••• #t                                         | $log_3(8) = 3.log(2)/log(3)$                                                        |
| Lévy C curve   Lévy fractal / dragon                         | 1.934 007 182 988 290 978 (?) •••                                                | No explicit formula                                                                 |
|                                                              | , ,                                                                              | <u>'</u>                                                                            |
| Menger sponge                                                | 2.726 833 027 860 842 041 396 094 •••                                            | log <sub>3</sub> (20) = log(20)/log(3)                                              |
| · · · · · · · · · · · · · · · · · · ·                        |                                                                                  | = {a1,a2,a3,a4,}. For primes, see Blazys constant                                   |
| a ≡ natural numbers: {1,2,3,4,}                              | 1.392 211 191 177 332 814 376 552 •••                                            | = 1/(e-2)                                                                           |
| a ≡ squares: {1,4,9,16,}                                     | 1.226 284 024 182 690 274 814 937 •••                                            |                                                                                     |
| a ≡ powers of 2: {1,2,4,8,}                                  | 1.408 615 979 735 005 205 132 362 •••                                            |                                                                                     |
| a ≡ factorials: {0!,1!,2!,3!,}                               | 1.698 804 767 670 007 211 952 690 •••                                            |                                                                                     |
| Alternating sums of inverse powers of prime num              | <b>bers</b> , $sip(x) = -S_{k>0}\{(-1)^{k}/p^{x}(k)\}$ , where $p(n)$ is the $n$ | 1                                                                                   |
| sip(1/2)                                                     | 0.347 835 4                                                                      | 11/12 -11/13 +11/15 -11/17 +11/111 -11/113 +11/117                                  |
| sip(1)                                                       | 0.269 606 351 916 7 •••                                                          | 1/2 -1/3 +1/5 -1/7 +1/11 -1/13 +1/17                                                |
| sip(2)                                                       | 0.162 816 246 663 601 41 •••                                                     | 1/2^2 -1/3^2 +1/5^2 -1/7^2 +1/11^2 -1/13^2 +                                        |
| sip(3)                                                       | 0.093 463 631 399 649 889 112 4 •••                                              | 1/2^3 -1/3^3 +1/5^3 -1/7^3 +1/11^3 -1/13^3 +                                        |
| sip(4)                                                       | 0.051 378 305 166 748 282 575 200 •••                                            | 1/2^4 -1/3^4 +1/5^4 -1/7^4 +1/11^4 -1/13^4 +                                        |
| sip(5)                                                       | 0.027 399 222 614 542 740 586 273 •••                                            | 1/2^5 -1/3^5 +1/5^5 -1/7^5 +1/11^5 -1/13^5 +                                        |
| Some notable natural and integer number                      | ers                                                                              |                                                                                     |
| Large integers                                               |                                                                                  |                                                                                     |
| Bernay's number                                              | 67^257^729                                                                       | Originally an example of a hardly ever used number                                  |
| Googol                                                       | 10 <sup>100</sup> = 10^100                                                       | Alarge integer                                                                      |
| Googolplex                                                   | 10 <sup>googol</sup> = 10^10^100                                                 | a larger integer                                                                    |
| Googolplexplex                                               | 10 googolplex = 10^10^10^100                                                     | and a still larger one.                                                             |
| Graham's number (last 30 digits)                             | ••• 5186439059104575627262464195387                                              | 3^\^\3, 64 times (3^\64); see <b>Graham's constant</b>                              |
| Shannon number, lower bound estimate:                        | 10^120                                                                           | The game-tree complexity of chess                                                   |
| Skewes' numbers                                              | 10^14 < n < e^e^e^79                                                             | Bounds on the first integer n for which $\pi(n) < Ii(n)$                            |
| Notable   interesting integers                               | •                                                                                |                                                                                     |
| Ishango bone prime quadruplet                                | 11, 13, 17, 19                                                                   | Crafted in the paleolithic Ishango bone                                             |
| Hardy-Ramanujan number                                       | $1729 = 1^3 + 12^3 = 9^3 + 10^3$ (see A080642)                                   | Smallest cubefree taxicab number T(2); see below                                    |
| Heegner numbers h (full set)                                 | 1, 2, 3, 7, 11, 19, 43, 67, 163 (see A003173)                                    | The quadratic ring $Q(\sqrt{-h})$ has class number 1                                |
| Vojta's number                                               | 15170835645 (see A023050)                                                        | Smallest cubefree T(3) taxicab number (see the link)                                |
| Gascoigne-Moore number                                       | 1801049058342701083 (see A080642)                                                | Smallest cubefree T(4) taxicab number (see the link)                                |
| Tanaka's number                                              | 906150257 (see A189229)                                                          | Smallest number violating Polya conjecture that L(n>1)≤0                            |
|                                                              | 900130237 (See A103223)                                                          | Smallest number wording Polya Conjecture that L(11/1)20                             |
| Smallest of                                                  | 70557 ( 4070200)                                                                 |                                                                                     |
| Sierpinsky numbers                                           | 78557 (see A076336)                                                              | m is a Sierpinsky number if m*2 <sup>k</sup> +1 is not prime for any k>0.           |
| Riesel numbers (conjectured!)                                | 509203 (see A076337)                                                             | m is a Riesel number if m*2 <sup>k</sup> -1 is not prime for any k>0.               |
| Known Brier numbers                                          | 3316923598096294713661 (A076335)                                                 | Numbers that are both Riesel and Sierpinski                                         |
| Non-unique sums of two 4th powers                            | 635318657 (see A003824)                                                          | = 133 <sup>4</sup> + 134 <sup>4</sup> = 59 <sup>4</sup> + 158 <sup>4</sup>          |
| Odd abundant numbers                                         | 945 (see A005231)                                                                | Odd number whose sum of proper divisors exceeds it                                  |
| Sociable numbers                                             | 12496 (see A003416)                                                              | Its aliquot sequence terminates with a 5-member cycle                               |
| Largest of                                                   | 1                                                                                |                                                                                     |
| Narcissistic numbers                                         | There are only 88 of them (A005188). max=                                        | 115132219018763992565095597973971522401                                             |
| Not composed of two abundants                                | 20161 (see A048242)                                                              | Exactly 1456 integers are the sum of two abundants                                  |
| Consecutive 19-smooth numbers                                | 11859210, 11859211 (see A002072)                                                 | In case you wonder: this pair was singled-out on MathWorld                          |
|                                                              | I                                                                                | Favole the come of featonials of its deadinite                                      |
| Factorions in base 10                                        | 40585 (see A193163)                                                              | Equals the sum of factorials of its dec digits                                      |

| Right-truncatable prime in base 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73939133 (see A023107)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Truncate any digits on the right and it's still a prime.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Right-truncatable primes in base 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | hex 3B9BF319BD51FF (see A237600)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Truncate any hex digits on the right and it's still a prime.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Left-truncatable prime with no 0 digit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 357686312646216567629137 (A103443)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Each suffix is prime. Admitting "0", such primes never end.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Primes slicing only into primes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 739397 (see A254751)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Prime whose decimal prefixes and postfixes are all prime.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Composites slicing only into primes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73313 (see A254753)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All its decimal prefixes and postfixes are prime.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Number of The Beast (Revelation 13:18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 666; also the 6x6-th triangular number, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | the largest left- and right-truncatable triangular number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Evil numbers (real) and evil integers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | are two distinct categories                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | which must not be confused!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Belphegor numbers B(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16661, 1066601, 100666001, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | prime for n=0, 13, 42, 506, 608, 2472, 2623, 28291, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Belphegor prime B(13).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100000000000066600000000000001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | See A232448. Belphegor: one of the seven princes of Hell.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Smallest apocalyptic number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 <sup>157</sup> , a power of 2 containing dec.digits "666"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 182687704666362864775460604089535377456991567872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Other Apocalyptic number exponents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 157, 192, 218, 220, 222, 224, 226, 243, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m such that 2 <sup>m</sup> contains the sequence of digits "666"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Legion's number of the first kind $L_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 666 <sup>666</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | It has 1881 decimal digits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Legion's number of the second kind $L_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 666! <sup>666!</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | It has approximately 1.609941e1596 digits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Some integer-valued functions of natural                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | numbers. Each constitutes also an integer sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | quence. Their domain {n=1,2,3,} can be often extended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Aliquot sum function s(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $s(n) = \sigma(n)$ -n. Sum of <b>proper</b> divisors of n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Divisor function $d(n) \equiv \sigma_0(n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Number of <b>all</b> divisors of n. Also $S_{din}\{d^0\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Euler's totient function φ(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 12, 6, 8, •••  1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 4, 2, 4, 2, 4, 4, 8, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Number of k's smaller than n and relatively prime to it  Pops up in counting the primitive roots of n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Iterated Euler's totient function φ(φ(n))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Also: permutations of ordered sets of n labeled elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Factorial function n! = 1*2*3*n, but 0!=1  Hamming weight function Hw(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1, 1, 2, 6, 24, 120, 720, 5040, 40320, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number of 1's in the binary expansion of n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Liouville function \(\lambda(n)\)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,-1,-1,1,-1,1,-1,-1,1,1,-1,-1,-1,1,•••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\mu(n)=(-1)^{n}\Omega(n)$ . For the <i>bigomega</i> function, see below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Partial sums of Liouville function L(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0, 1, 0, -1, 0, -1, -2, -1, 0, -1, -2, -3, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | The Polya conjecture, L(n>1)≤0, breaks at Tanaka's number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Möbius function μ(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1, -1, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mu(n)=(-1)^{\lambda}\omega(n)$ if n is squarefree; else $\mu(n)=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| omega function ω(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number of <i>distinct</i> prime factors of n.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Omega (or bigomega) function Ω(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Number of <b>all</b> prime factors of n, with multiplicity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Primes sequence function prime(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A prime number is divisible only by 1 and itself; excluding 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Primes counting function π(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, 6, 6, 6, 7, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | π(x) is the number of primes not exceeding x. See A006880.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Primorial function n#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Product of all primes not exceeding n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sigma function $\sigma(n) \equiv \sigma_1(n)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sum of <b>all</b> divisors of n. Also $\mathbf{S}_{\mathbf{d} \mathbf{n}}\{\mathbf{d}^1\}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sigma-2 function σ <sub>2</sub> (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1, 5, 10, 21, 26, 50, 50, 85, 91, 130, 122, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S <sub>d n</sub> (d <sup>2</sup> ). Sum of squares of all divisors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sigma-3 function σ <sub>3</sub> (n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1, 9, 28, 73, 126, 252, 344, 585, 757, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | In general, for $k \ge 0$ , $\sigma_k(n) = \mathbf{S}_{d n} \{d^k\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sum of distinct prime factors sopf(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0, 2, 3, 2, 5, 5, 7, 2, 3, 7, 11, 5, 13, 9, 8, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Example: $sopf(12) = sopf(2^2.3) = 2+3 = 5.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sum of prime factors with repetition sopfr(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0, 2, 3, 4, 5, 5, 7, 6, 6, 7, 11, 7, 13, 9, 8, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Also said with <i>multiplicity</i> . Example: sopfr(12) = 2+2+3 = 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Notable integer sequences (each of them is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Iso an integer-valued function). Here $n = 0, 1, 2,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ., unless specified otherwise.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Named sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Catalan numbers C(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C(n) = C(2n,n)/(n+1); ubiquitous in number theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, ••• 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $C(n) = C(2n,n)/(n+1)$ ; ubiquitous in number theory $C_n = n.2^n+1$ . Very few are prime.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Catalan numbers C(n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Catalan numbers C(n) Cullen numbers C <sub>n</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $C_n = n.2^n + 1$ . Very few are prime.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =                                                                                                                                                                                                                                                                                                                                                                                                                      | 1, 3, 9, 25, 65, 161, 385, 897, 2049, ••• 1, 141, 4713, 5795, 6611, 18496, 32292, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $C_n = n.2^n + 1$ . Very few are prime.<br>Largest known (Feb 2016): $n = 6679881$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#                                                                                                                                                                                                                                                                                                                                                                                          | 1, 3, 9, 25, 65, 161, 385, 897, 2049, ••• 1, 141, 4713, 5795, 6611, 18496, 32292, ••• 2, 3, 7, 31, 211, 2311, 30031, 510511 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $C_n = n.2^n + 1$ . Very few are prime.<br>Largest known (Feb 2016): $n = 6679881$<br>$1 + (product of first n primes) = 1 + P_{k=1,n}\{prime(k)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,                                                                                                                                                                                                                                                                                                                                                     | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $C_n = n.2^n + 1$ . Very few are prime.  Largest known (Feb 2016): $n = 6679881$ $1 + (product of first n primes) = 1 + P_{k=1,n}\{prime(k)\}$ $1/cosh(t) = S_{n \ge 0}\{t^n(E(n)/n!)\}$ ; the odd ones are 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)                                                                                                                                                                                                                                                                                                                                | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $C_n = n.2^n + 1$ . Very few are prime.  Largest known (Feb 2016): $n = 6679881$ $1 + (product of first n primes) = 1 + P_{k=1,n}\{prime(k)\}$ $1/cosh(t) = S_{n \ge 0}\{t^n(E(n)/n!)\}$ ; the odd ones are 0 $F(n) = 2^n(2^n) + 1$ . Very few are primes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)                                                                                                                                                                                                                                                                                   | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $C_n = n.2^n + 1$ . Very few are prime.  Largest known (Feb 2016): $n = 6679881$ $1 + (product of first n primes) = 1 + P_{k=1,n}\{prime(k)\}$ $1/cosh(t) = S_{n \ge 0}\{t^n(E(n)/n!)\}$ ; the odd ones are 0 $F(n) = 2^n(2^n) + 1$ . Very few are primes. $F(n) \text{ for } n = 0,1,2,3,4$ . Also prime(n) for $n = 2,3,7,55,6543,****$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Fibonacci numbers F(n)                                                                                                                                                                                                                                                           | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &\text{Largest known (Feb 2016): } n = 6679881 \\ &1 + (\text{product of first n primes}) = 1 + \textbf{\textit{P}}_{k=1,n}\{\text{prime(k)}\} \\ &1/\text{cosh(t)} = \textbf{\textit{S}}_{n \geq 0}\{t^n(E(n)/n!)\}; \text{ the odd ones are 0} \\ &F(n) = 2^n(2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n=0,1,2,3,4. \text{ Also prime(n) for } n=2,3,7,55,6543,\cdots. \\ &F_n = F_{n-1} + F_{n-2}; F_0 = 0, F_1 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3}; T_0 = T_1 = 0, T_2 = 1 \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Fibonacci numbers F(n)  Tribonacci numbers T(n)                                                                                                                                                                                                                                  | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••  0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &\text{Largest known (Feb 2016): } n = 6679881 \\ &1 + (\text{product of first n primes}) = 1 + \textbf{\textit{P}}_{k=1,n} \{ \text{prime(k)} \} \\ &1/\text{cosh(t)} = \textbf{\textit{S}}_{n \geq 0} \{ t^n (E(n)/n!) \}; \text{ the odd ones are 0} \\ &F(n) = 2^n (2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n = 0,1,2,3,4. \text{ Also prime(n) for } n = 2,3,7,55,6543, \bullet \bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Fibonacci numbers F(n)  Tribonacci numbers T(n)  Tetranacci numbers T(n)                                                                                                                                                                                                         | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••  0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, •••  0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, •••                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &\text{Largest known (Feb 2016): } n = 6679881 \\ &1 + (\text{product of first n primes}) = 1 + \textbf{\textit{P}}_{k=1,n} \{ \text{prime(k)} \} \\ &1/\text{cosh(t)} = \textbf{\textit{S}}_{n \geq 0} \{ t^n (\text{E(n)/n!}) \}; \text{ the odd ones are 0} \\ &F(n) = 2^n (2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n = 0, 1, 2, 3, 4. \text{ Also prime(n) for } n = 2, 3, 7, 55, 6543, \cdots. \\ &F_n = F_{n-1} + F_{n-2}; F_0 = 0, F_1 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3}; T_0 = T_1 = 0, T_2 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4}; T_0 = T_1 = T_2 = 0, T_3 = 1 \end{split}$                                                                                                                                                                                                                                                                                                                                                                                         |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Tribonacci numbers T(n)  Tetranacci numbers T(n)  Golomb's   Silverman's sequence, n = 1, 2,                                                                                                                                                                                     | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••  0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, •••  0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, •••  1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, •••                                                                                                                                                                                                                                                                                                                                        | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &\text{Largest known (Feb 2016): } n = 6679881 \\ &1 + (\text{product of first n primes}) = 1 + \textbf{\textit{P}}_{k=1,n} \{ \text{prime}(k) \} \\ &1/\text{cosh}(t) = \textbf{\textit{S}}_{n \geq 0} \{ t^n (E(n)/n!) \}; \text{ the odd ones are 0} \\ &F(n) = 2^n (2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n=0,1,2,3,4. \text{ Also prime}(n) \text{ for } n=2,3,7,55,6543, \cdots. \\ &F_n = F_{n-1} + F_{n-2}; F_0 = 0, F_1 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3}; T_0 = T_1 = 0, T_2 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4}; T_0 = T_1 = T_2 = 0, T_3 = 1 \\ &a(1) = 1, a(n) = \text{least number of times n occurs if } a(n) \leq a(n+1) \end{split}$                                                                                                                                                                                                                                                                                                                    |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Fibonacci numbers F(n)  Tribonacci numbers T(n)  Tetranacci numbers T(n)  Golomb's   Silverman's sequence, n = 1, 2,  Jordan-Polya numbers                                                                                                                                       | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••  0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, •••  0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, •••  1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, •••  1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, •••                                                                                                                                                                                                                                                                                       | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &\text{Largest known (Feb 2016): } n = 6679881 \\ &1 + (\text{product of first n primes}) = 1 + \textbf{\textit{P}}_{k=1,n}\{\text{prime}(k)\} \\ &1/\text{cosh}(t) = \textbf{\textit{S}}_{n \geq 0}\{t^n(E(n)/n!)\}; \text{ the odd ones are 0} \\ &F(n) = 2^n(2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n=0,1,2,3,4. \text{ Also prime}(n) \text{ for } n=2,3,7,55,6543,\cdots. \\ &F_n = F_{n-1} + F_{n-2} : F_0 = 0, F_1 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3} : T_0 = T_1 = 0, T_2 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4} : T_0 = T_1 = T_2 = 0, T_3 = 1 \\ &a(1) = 1, a(n) = \text{least number of times n occurs if } a(n) \leq a(n+1) \\ &\text{Can be written as products of factorials} \end{split}$                                                                                                                                                                                                                                                                      |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Fibonacci numbers F(n)  Tribonacci numbers T(n)  Tetranacci numbers T(n)  Golomb's   Silverman's sequence, n = 1, 2,  Jordan-Polya numbers  Kolakoski sequence                                                                                                                   | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••  0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, •••  0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, •••  1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, •••  1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, •••  1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, •••                                                                                                                                                                                                                               | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &\text{Largest known (Feb 2016): } n = 6679881 \\ &1 + (\text{product of first n primes}) = 1 + \textbf{\textit{P}}_{k=1,n}\{\text{prime(k)}\} \\ &1/\text{cosh(t)} = \textbf{\textit{S}}_{n \geq 0}\{t^n(E(n)/n!)\}; \text{ the odd ones are 0} \\ &F(n) = 2^n(2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n=0,1,2,3,4. \text{ Also prime(n) for } n=2,3,7,55,6543,\cdots. \\ &F_n = F_{n-1} + F_{n-2}; F_0 = 0, F_1 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3}; T_0 = T_1 = 0, T_2 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4}; T_0 = T_1 = T_2 = 0, T_3 = 1 \\ &a(1) = 1, a(n) = \text{least number of times n occurs if } a(n) \leq a(n+1) \\ &Can \text{ be written as products of factorials} \\ &1\text{'s and 2's only. Run-lengths match the sequence} \\ &L_n = L_{n-1} + L_{n-2}; L_0 = 2, L_1 = 1 \end{split}$                                                                                                                                                                      |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Fibonacci numbers F(n)  Tribonacci numbers T(n)  Tetranacci numbers T(n)  Golomb's   Silverman's sequence, n = 1, 2,  Jordan-Polya numbers  Kolakoski sequence  Lucas numbers L(n)                                                                                               | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••  0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, •••  0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, •••  1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, •••  1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, •••  1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, •••  2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, •••                                                                                                                                                                          | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &Largest \text{ known (Feb 2016): } n = 6679881 \\ &1 + (\text{product of first n primes}) = 1 + \textbf{\textit{P}}_{k=1,n} \{ \text{prime(k)} \} \\ &1/\text{cosh(t)} = \textbf{\textit{S}}_{n \geq 0} \{ t^n (E(n)/n!) \} ; \text{ the odd ones are 0} \\ &F(n) = 2^n (2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n=0,1,2,3,4. \text{ Also prime(n) for } n=2,3,7,55,6543, \cdots. \\ &F_n = F_{n-1} + F_{n-2}; F_0 = 0, F_1 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3}; T_0 = T_1 = 0, T_2 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4}; T_0 = T_1 = T_2 = 0, T_3 = 1 \\ &a(1) = 1, a(n) = \text{least number of times n occurs if } a(n) \leq a(n+1) \\ &Can \text{ be written as products of factorials} \\ &1 \text{'s and 2's only. Run-lengths match the sequence} \end{split}$                                                                                                                                                                                                        |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Tribonacci numbers T(n)  Tetranacci numbers T(n)  Golomb's   Silverman's sequence, n = 1, 2,  Jordan-Polya numbers  Kolakoski sequence  Lucas numbers L(n)  Markov numbers, n = 1, 2,  Mersenne numbers, n = 1, 2,                                                               | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••  0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, •••  0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, •••  1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, •••  1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, •••  1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, •••  2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, •••  1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, •••  3, 7, 31, 127, 2047, 8191, 131071, •••                                                                                      | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &\text{Largest known (Feb 2016): } n = 6679881 \\ &1 + (\text{product of first n primes}) = 1 + \textbf{\textit{P}}_{k=1,n}\{\text{prime}(k)\} \\ &1/\text{cosh}(t) = \textbf{\textit{S}}_{n \geq 0}\{t^n(E(n)/n!)\}; \text{ the odd ones are 0} \\ &F(n) = 2^n(2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n=0,1,2,3,4. \text{ Also prime}(n) \text{ for } n=2,3,7,55,6543,***.} \\ &F_n = F_{n-1} + F_{n-2}; F_0 = 0, F_1 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3}; T_0 = T_1 = 0, T_2 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4}; T_0 = T_1 = T_2 = 0, T_3 = 1 \\ &a(1) = 1, a(n) = \text{least number of times n occurs if } a(n) \leq a(n+1) \\ &Can \text{ be written as products of factorials} \\ &1\text{'s and 2's only. Run-lengths match the sequence} \\ &L_n = L_{n-1} + L_{n-2}; L_0 = 2, L_1 = 1 \\ &\text{Members of a Markoff triple } (x,y,z): x^2 + y^2 + z^2 = 3xyz \\ &2^{\text{prime}(n)}_{-1}; \end{aligned}$                                                        |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Tibonacci numbers T(n)  Tetranacci numbers T(n)  Golomb's   Silverman's sequence, n = 1, 2,  Jordan-Polya numbers  Kolakoski sequence  Lucas numbers L(n)  Markov numbers, n = 1, 2,  Mersenne numbers, n = 1, 2,  Ore's harmonic divisor numbers, n = 1, 2,                     | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••  0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, •••  0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, •••  1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, •••  1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, •••  1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, •••  2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, •••  1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, •••  3, 7, 31, 127, 2047, 8191, 131071, •••  1, 6, 28, 140, 270, 496, 672, 1638, •••                                       | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &\text{Largest known (Feb 2016): } n = 6679881 \\ &1 + (\text{product of first n primes}) = 1 + \textbf{\textit{P}}_{k=1,n}\{\text{prime}(k)\} \\ &1/\text{cosh}(t) = \textbf{\textit{S}}_{n\geq 0}\{t^n(E(n)/n!)\}; \text{ the odd ones are 0} \\ &F(n) = 2^n(2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n=0,1,2,3,4. \text{ Also prime}(n) \text{ for } n=2,3,7,55,6543,***.} \\ &F_n = F_{n-1} + F_{n-2}; F_0 = 0, F_1 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3}; T_0 = T_1 = 0, T_2 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4}; T_0 = T_1 = T_2 = 0, T_3 = 1 \\ &a(1) = 1, a(n) = \text{least number of times n occurs if } a(n) \leq a(n+1) \\ &Can \text{ be written as products of factorials} \\ &1\text{'s and 2's only. Run-lengths match the sequence} \\ &L_n = L_{n-1} + L_{n-2}; L_0 = 2, L_1 = 1 \\ &\text{Members of a Markoff triple } (x,y,z): x^2 + y^2 + z^2 = 3xyz \\ &2^{\text{prime}(n)}_{-1}; \\ &\text{The harmonic mean of their divisors is integer} \end{split}$ |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Tribonacci numbers T(n)  Tetranacci numbers T(n)  Golomb's   Silverman's sequence, n = 1, 2,  Jordan-Polya numbers  Kolakoski sequence  Lucas numbers L(n)  Markov numbers, n = 1, 2,  Mersenne numbers, n = 1, 2,  Ore's harmonic divisor numbers, n = 1, 2,  Pell numbers P(n) | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••  0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, •••  0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, •••  1, 2, 2, 3, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 8, •••  1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, •••  1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, •••  2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, •••  1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, •••  3, 7, 31, 127, 2047, 8191, 131071, •••  1, 6, 28, 140, 270, 496, 672, 1638, •••  0, 1, 2, 5, 12, 29, 70, 169, 408, 985, ••• | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &Largest known (Feb 2016): n = 6679881 \\ &1 + (product of first n primes) = 1 + \textbf{\textit{P}}_{k=1,n} \{ prime(k) \} \\ &1/cosh(t) = \textbf{\textit{S}}_{n \geq 0} \{ t^n (E(n)/n! ) \}; \text{ the odd ones are 0} \\ &F(n) = 2^n (2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n=0,1,2,3,4. \text{ Also prime}(n) \text{ for } n=2,3,7,55,6543, \bullet \bullet$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Catalan numbers C(n)  Cullen numbers C <sub>n</sub> Cullen primes subset of C <sub>n</sub> , for n =  Euclid numbers 1+prime(n)#  Euler numbers E(n) for n = 0, 2, 4,  Fermat numbers F(n)  Fermat primes subset of Fermat numbers F(n)  Tibonacci numbers T(n)  Tetranacci numbers T(n)  Golomb's   Silverman's sequence, n = 1, 2,  Jordan-Polya numbers  Kolakoski sequence  Lucas numbers L(n)  Markov numbers, n = 1, 2,  Mersenne numbers, n = 1, 2,  Ore's harmonic divisor numbers, n = 1, 2,                     | 1, 3, 9, 25, 65, 161, 385, 897, 2049, •••  1, 141, 4713, 5795, 6611, 18496, 32292, •••  2, 3, 7, 31, 211, 2311, 30031, 510511 •••  1, -1, 5, -61, 1385, -50521, 2702765, •••  3, 5, 17, 257, 655337, 4294967297, •••  3, 5, 17, 257, 655337, ••• (? Feb 2016)  0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, •••  0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, •••  0, 0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, •••  1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, •••  1, 2, 4, 6, 8, 12, 16, 24, 32, 36, 48, 64, 72, •••  1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, •••  2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, •••  1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, •••  3, 7, 31, 127, 2047, 8191, 131071, •••  1, 6, 28, 140, 270, 496, 672, 1638, •••                                       | $\begin{split} &C_n = n.2^n + 1. \text{ Very few are prime.} \\ &\text{Largest known (Feb 2016): } n = 6679881 \\ &1 + (\text{product of first n primes}) = 1 + \textbf{\textit{P}}_{k=1,n}\{\text{prime}(k)\} \\ &1/\text{cosh}(t) = \textbf{\textit{S}}_{n\geq 0}\{t^n(E(n)/n!)\}; \text{ the odd ones are 0} \\ &F(n) = 2^n(2^n) + 1. \text{ Very few are primes.} \\ &F(n) \text{ for } n=0,1,2,3,4. \text{ Also prime}(n) \text{ for } n=2,3,7,55,6543,***.} \\ &F_n = F_{n-1} + F_{n-2}; F_0 = 0, F_1 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3}; T_0 = T_1 = 0, T_2 = 1 \\ &T_n = T_{n-1} + T_{n-2} + T_{n-3} + T_{n-4}; T_0 = T_1 = T_2 = 0, T_3 = 1 \\ &a(1) = 1, a(n) = \text{least number of times n occurs if } a(n) \leq a(n+1) \\ &Can \text{ be written as products of factorials} \\ &1\text{'s and 2's only. Run-lengths match the sequence} \\ &L_n = L_{n-1} + L_{n-2}; L_0 = 2, L_1 = 1 \\ &\text{Members of a Markoff triple } (x,y,z): x^2 + y^2 + z^2 = 3xyz \\ &2^{\text{prime}(n)}_{-1}; \\ &\text{The harmonic mean of their divisors is integer} \end{split}$ |

| Riesel numbers                                                           | 509203 (?), •••                                     | Numbers m such that m.2 <sup>k</sup> -1 is not prime for any k>0.                     |
|--------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------|
| Sierpinsky numbers                                                       | 78557, 271129, 271577, 322523, •••                  | Numbers m such that m.2 <sup>k</sup> +1 is not prime for any k>0.                     |
| Somos's quadratic recurrence s(n)                                        | 1, 1, 2, 12, 576, 1658880, •••                      | $s(0)=1,s(n)=n.s^2(n-1)$ . See <b>Somos</b> 's constant                               |
| Sylvester's sequence                                                     | 2, 3, 7, 43, 1807, 3263443, •••                     | $s_{n+1} = s_n^2 - s_n + 1$ , with $s_0 = 2$ . $\mathbf{S}_{k \ge 0} \{1/s_k\} = 1$ . |
| Thabit numbers T <sub>n</sub>                                            | 2, 5, 11, 23, 47, 95, 191, 383, 767, 1535, •••      | 3.2 <sup>n</sup> -1.                                                                  |
| Thabit primes subset of Thabit numbers for n =                           | 0, 1, 2, 3, 4, 6, 7, 11, 18, 34, 38, 43, 55, •••    | As of Feb 2016, only 62 are known, up to n = 11895718.                                |
| Wolstenholme numbers                                                     | 1, 5, 49, 205, 5269, 5369, 266681, •••              | Numerators of the reduced rationals $S_{k=1}$ $_{n}\{1/k^{2}\}$                       |
| Woodall numbers (Cullen of 2nd kind), W <sub>n</sub>                     | 1, 7, 23, 63, 159, 383, 895, 2047, 4607, •••        | $W_n = n.2^n - 1$ , $n = 1, 2, 3,$ Very few are prime                                 |
| Sequences related to Factorials (maybe just in some                      |                                                     | Trip in 2 1,11 1,2,5, rely few die printe                                             |
| Double factorials n!!                                                    | 1, 1, 2, 3, 8, 15, 48, 105, 384, 945, 3840, •••     | $0!!=1$ ; for $n > 0$ , $n!! = n^*(n-2)^*(n-4)^*^*m$ , where $m \le 2$                |
| Triple factorials n!!! or n! <sup>3</sup> , n = 1,2,3,                   | 1, 1, 2, 3, 4, 10, 18, 28, 80, 162, 280, 880, •••   | $0!!!=1$ ; for $n > 0$ , $n!!! = n*(n-3)*(n-6)**m$ , where $m \le 3$                  |
| Exponential factorials a(n)                                              | 1, 1, 2, 9, 262144, •••                             | $a(0)=1$ ; for $n > 0$ , $a(n) = n^{a(n-1)}$ . Next term has 183231 digits            |
| Factorions in base 10                                                    | 1, 2, 145, 40585 (that's all)                       | Equal to the sum of factorials of their dec digits                                    |
| Factorions in base 16                                                    | 1, 2, 2615428934649 (that's all)                    | Equal to the sum of factorials of their hex digits                                    |
| Hyperfactorials $H(n) = P_{k=1,n}\{k^k\}$                                | 1, 1, 4, 108, 27648, 86400000, •••                  | H(0) is conventional                                                                  |
| Quadruple factorials (2n)!/n!                                            | 1, 2, 12, 120, 1680, 30240, 665280, •••             | Equals (n+1)!C(n), C(n) being the Catalan number                                      |
| Pickover's tetration superfactorials (n!^^n!)/n!                         | 1, 1, 4, (incredible number of digits),             | Here the term 'superfactorial' is deprecated                                          |
| Subfactorials !n = n!* $\mathbf{S}_{k=0.n}\{(-1)^k/k!\}$                 | 1, 0, 1, 2, 9, 44, 265, 1854, 14833, •••            | Also called derangements or rencontres numbers                                        |
| Superfactorials $n\$ = P_{k=0,n}\{k!\}$                                  | 1, 1, 2, 12, 288, 34560, 24883200, •••              | Prevailing definition (see below another one by Pickover)                             |
| Sequences related to the Hamming weight function                         | 1, 1, 2, 12, 200, 04000, 24000200,                  | The validing definition (see below another one by his lower)                          |
| Evil integers (but see also)                                             | 0, 3, 5, 6, 9, 10, 12, 15, 17, 18, 20, 23, 24, •••  | Have even Hamming weight Hw(n)                                                        |
| Odious numbers                                                           | 1, 2, 4, 7, 8, 11, 13, 14, 16, 19, 21, 22, 25, •••  | Have odd Hamming weight Hw(n)                                                         |
| Primitive odious numbers                                                 | 1, 7, 11, 13, 19, 21, 25, 31, 35, 37, 41, 47, •••   | They are both odd and odious                                                          |
| Pernicious numbers                                                       | 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 18, 19, •••  | Their Hamming weights Hw(n) are prime.                                                |
| Sequences related to powers                                              | 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 17, 16, 19,      | Their Hamming weights riw(ii) are prime.                                              |
| Narcissistic   Armstrong   Plus perfect numbers                          | 1,2,3,4,5,6,7,8,9, 153, 370, 371, 470, 1634, •••    | n-digit numbers equal to the sum of n-th powers of their digits                       |
| Powers of 2                                                              | 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, •••    | Also 2-smooth numbers                                                                 |
|                                                                          |                                                     |                                                                                       |
| Perfect powers with duplications                                         | 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, •••   | Includes any number of the form a^b with a,b > 1                                      |
| Perfect powers with duplications                                         | 4, 8, 9, 16, 16, 25, 27, 32, 36, 49, 64, 64, •••    | Repeated entries can be obtained in different ways                                    |
| Perfect squares                                                          | 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, •••   | Same as figurate polygonal square numbers                                             |
| Perfect cubes                                                            | 0, 1, 8, 27, 64, 125, 216, 343, 512, 729, •••       | Same as figurate polyhedral cubic numbers                                             |
| Taxicab numbers Ta(n); only six are known                                | 2, 1729, 87539319, 6963472309248, •••               | Smallest number equal to $a^3+b^3$ for n distinct pairs (a,b).                        |
| Sequences <b>related to divisors</b> . For functions like $\sigma(n)$ is | 1                                                   | T                                                                                     |
| Abundant numbers                                                         | 12, 18, 20, 24, 30, 36, 40, 42, 48, 54, 56, •••     | Sum of proper divisors of n exceeds n: s(n) > n                                       |
| Primitive abundant numbers                                               | 20, 70, 88, 104, 272, 304, 368, 464, 550, •••       | All their proper divisors are deficient                                               |
| odd abundant numbers                                                     | 945, 1575, 2205, 2835, 3465, 4095, •••              | Funny that the smallest one is so large                                               |
| odd abundant numbers not divisible by 3                                  | 5391411025, 26957055125, •••                        | see also A047802                                                                      |
| Composite numbers                                                        | 4, 8, 9, 10, 14, 15, 16, 18, 20, 21, 22, 24, •••    | Have a proper divisor d > 1                                                           |
| highly composite numbers                                                 | 1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, •••       | n has more divisors than any smaller number                                           |
| Cubefree numbers                                                         | 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ••• | Not divisible by any perfect cube.                                                    |
| Deficient numbers                                                        | 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, ••• | Sum of proper divisors of n is smaller than n: s(n) < n                               |
| Even numbers                                                             | 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, •••  | Divisible by 2                                                                        |
| Odd numbers                                                              | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, •••  | Not divisible by 2                                                                    |
| Perfect numbers                                                          | 6,28,496,8128,33550336,8589869056, •••              | Solutions of s(n) = n                                                                 |
| semiperfect / pseudoperfect numbers                                      | 6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, •••      | n equals the sum of a subset of its divisors                                          |
| primitive / irreducible semiperfect numbers                              | 6, 20, 28, 88, 104, 272, 304, 350, 368, •••         | Semiperfect with no proper semiperfect divisor                                        |
| quasiperfect numbers                                                     | Not a single one was found so far!                  | Such that $s(n) = n+1$ or, equivalently, $\sigma(n) = 2n+1$                           |
| superperfect numbers                                                     | 2, 4, 16, 64, 4096, 65536, 262144, •••              | Solutions of $n = \sigma(\sigma(n)) - n$                                              |
| Practical numbers                                                        | 1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 28, 30, 32, •••  | Any smaller number is a sum of distinct divisors of n                                 |
| Squarefree numbers                                                       | 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, •••   | Not divisible by any <i>perfect square</i> . Equivalent to μ(n) ≠ 0                   |
| Untouchable numbers                                                      | 2, 5, 52, 88, 96, 120, 124, 146, 162, 188, •••      | They are not the sum of proper divisors of ANY number                                 |
| Weird numbers                                                            | 70, 836, 4030, 5830, 7192, 7912, 9272, •••          | Abundant, but not semiperfect                                                         |
| Sequences related to the aliquot sequence As(n), As                      |                                                     | <u>'</u>                                                                              |
| Amicable number pairs (n,m)                                              | (220,284); (1184,1210); (2620,2924); •••            | m = s(n), n = s(m); As(n) is a cycle of two elements                                  |
| Aspiring numbers                                                         | 25, 95, 119, 143, (276? <i>maybe!</i> ), •••        | n is not perfect, but As(n) eventually reaches a perfect number.                      |
| Lehmer five numbers                                                      | 276, 552, 564, 660, 966                             | First five n whose As(n) <i>might</i> be totally a-periodic.                          |
| Sociable numbers                                                         | 12496, 14316, 1264460, 2115324, •••                 | As(n) is a cycle of C > 2 elements; see also A052470.                                 |
|                                                                          |                                                     | , ,                                                                                   |

| Achilles numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 72, 108, 200, 288, 392, 432, 500, 648, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Powerful, but not perfect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Carmichael's pseudoprimes (or Knödel C <sub>1</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 561, 1105, 1729, 2465, 2821, 6601, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Composite n such that a <sup>n-1</sup> =1 (mod n) for any coprime a <n< td=""></n<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| D-numbers (Knödel numbers C <sub>k</sub> for k=3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9, 15, 21, 33, 39, 51, 57, 63, 69, 87, 93, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Composite n such that a <sup>n-k</sup> =1 (mod n) for any coprime a <n< td=""></n<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Euler's pseudoprimes in base 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 341, 561, 1105, 1729, 1905, 2047, 2465, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Composite odd n such that $2^{(n-1)/2} = \pm 1 \pmod{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2, 4, 6, 12, 18, 23, 30, 37, 42, 47, 53, 60, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Either an isolated prime or the mean of twin primes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Isolated (single) numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Some $M(p) = 2^p - 1$ ; p prime; Largest known: $M(74207281)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Mersenne primes (p = 2,3,5,7,13,17,19,)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3, 7, 31, 127, 8191, 131071, 524287, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Powerful numbers (also squareful or 2-full)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 72, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Divisible by the squares of all their prime factors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3-full numbers (also cubeful)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1, 8, 16, 27, 32, 64, 81, 125, 128, 216, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Divisible by the cubes of all their prime factors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Prime twins (starting element)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3, 5, 11, 17, 29, 41, 59, 71, 101, 107, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | For each prime p in this list, p+2 is also a prime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Prime cousins (starting element)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3, 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | For each prime p in this list, p+4 is also a prime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Prime triples (starting element)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5, 11, 17, 41, 101, 107, 191, 227, 311, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | For each prime p in this list, p+2 and p+6 are also primes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Prime quadruples (starting element)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5, 11, 101, 191, 821, 1481, 1871, 2081, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | For each prime p in this list, p+2, p+6, p+8 are also primes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Primorial numbers prime(n)#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1, 2, 6, 30, 210, 2310, 30030, 510510, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Product of first n primes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Pseudoprimes to base 2 (Sarrus numbers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 341, 561, 645, 1105, 1387, 1729, 1905, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Composite odd n such that 2 <sup>n-1</sup> = 1 (mod n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Pseudoprimes to base 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 91, 121, 286, 671, 703, 949, 1105, 1541, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Composite odd n such that 3 <sup>n-1</sup> = 1 (mod n)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Semiprimes (also <b>biprimes</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Products of two primes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3-smooth numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | b-smooth numbers: not divisible by any prime p > b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pierpont primes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2, 3, 5, 7, 13, 17, 19, 37, 73, 97, 109, 163, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Primes p such that p-1 is 3-smooth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Thabit primes (so far, 62 are known)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2, 5, 11, 23, 47, 95, 191, 383, 6143, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Thabit number 3.2 <sup>n</sup> -1 which are also prime                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Wieferich primes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1093, 3511, ••• (next, if any, is > 4.9e17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Primes p such that 2^(p-1)-1 is divisible by p <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Wilson primes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5, 13, 563, ••• (next, if any, is > 2e13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Primes p such that ((p-1)!+1)/p is divisible by p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Wolstenholme primes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 16843, 2124679, ••• (next, if any, is > 1e9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Primes p such that C(2p,p)-2 is divisible by p <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sequences <b>related to partitions</b> and <b>compositions</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Polite numbers   staircase numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Can be written as sum of two or more consecutive numbers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Politeness of a number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 3, 0, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Number of ways to write n as a sum of consecutive numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Other notable sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Hungry numbers (they want to eat the π)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5, 17, 74, 144, 144, 2003, 2003, 37929, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Smallest m such that 2 <sup>m</sup> contains first m digits of <b>π</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Combinatorial numbers such as Pascal-Tartag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Binomial coefficients C(n,m) = n!/(m!(n-m)!) (ways to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| m = 2, n = 4,5,6,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n(n-1)/2; s hifted triangular numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| m = 3, n = 6,7,8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20, 35, 56, 84, 120, 165, 220, 286, 364, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n(n-1)(n-2)/3!; shifted tetrahedral numbers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| m = 4, n = 8,9,10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70, 126, 210, 330, 495, 715, 1001, 1365, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n(n-1)(n-2)(n-3)/4!; for $n < 2m$ , use $C(n,n-m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| m = 5, n = 10,11,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 252, 462, 792, 1287, 2002, 3003, 4368, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n(n-1)(n-2)(n-3)(n-4)/5!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 111 - 0,11 - 10,11,12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 202, 102, 102, 1201, 2002, 0000, 1000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11(11-1)(11-2)(11-3)(11-4)/5!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| m = 6, n = 12,13,14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 924, 1716, 3003, 5005, 8008, 12376, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n <sup>(6)</sup> /6!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n <sup>(6)</sup> /6!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| m = 6, n = 12,13,14,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 924, 1716, 3003, 5005, 8008, 12376, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n <sup>(6)</sup> /6!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| m = 6, n = 12,13,14,<br>m = 7, n = 14,15,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 924, 1716, 3003, 5005, 8008, 12376, ••• 3432, 6435, 11440, 19448, 31824, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$<br>$n^{(7)}/7!$ ; all cases up to n=14 are covered by C(n,m)=C(n,n-m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $m = 6, n = 12,13,14,$ $m = 7, n = 14,15,16$ Central binomial coefficients $C(2n,n) = (2n)!/n!^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 924, 1716, 3003, 5005, 8008, 12376, ••• 3432, 6435, 11440, 19448, 31824, ••• 1, 2, 6, 20, 70, 252, 924, 3432, 12870, ••• 1, 2, 10, 56, 346, 2252, 15184, 104960, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{split} &n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6! \\ &n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m) \\ &C(2n,n) = \textbf{S}_{k=0,n}\{C^2(n,k)\}\text{: Franel number of order 2} \\ &\textbf{S}_{k=0,n}\{C^3(n,k)\} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| m = 6, $n = 12,13,14,m = 7$ , $n = 14,15,16Central binomial coefficients C(2n,n) = (2n)!/n!^2Franel numbers of order 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 924, 1716, 3003, 5005, 8008, 12376, ••• 3432, 6435, 11440, 19448, 31824, ••• 1, 2, 6, 20, 70, 252, 924, 3432, 12870, ••• 1, 2, 10, 56, 346, 2252, 15184, 104960, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{split} &n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6! \\ &n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m) \\ &C(2n,n) = \textbf{S}_{k=0,n}\{C^2(n,k)\}\text{: Franel number of order 2} \\ &\textbf{S}_{k=0,n}\{C^3(n,k)\} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $m=6, n=12,13,14,$ $m=7, n=14,15,16$ Central binomial coefficients $C(2n,n)=(2n)!/n!^2$ Franel numbers of order 3 Lah numbers $L(n,m)$ (unsigned); signed $L(n,m)=(-1)!/n!^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  ) <sup>n</sup> L(n,m); They expand rising factorials in terms of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{split} &n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6! \\ &n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m) \\ &C(2n,n) = \textbf{S}_{k=0,n}\{C^2(n,k)\}\text{: Franel number of order 2} \\ &\textbf{S}_{k=0,n}\{C^3(n,k)\} \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $m=6, n=12,13,14,$ $m=7, n=14,15,16$ Central binomial coefficients $C(2n,n)=(2n)!/n!^2$ Franel numbers of order 3 Lah numbers $L(n,m)$ (unsigned); signed $L(n,m)=(-1m)$ $m=2, n=2,3,4,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  )°L(n,m); They expand rising factorials in terms of 1, 6, 36, 240, 1800, 15120, 141120, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{split} &n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6! \\ &n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m) \\ &C(2n,n) = \textbf{S}_{k=0,n}\{C^2(n,k)\}: \textbf{Franel } \text{ number of order } 2 \\ &\textbf{S}_{k=0,n}\{C^3(n,k)\} \\ &\text{of falling factorials and vice versa. } L(n,1) = n! \end{split}$                                                                                                                                                                                                                                                                                                                                                         |
| $m = 6, n = 12,13,14,$ $m = 7, n = 14,15,16$ Central binomial coefficients $C(2n,n) = (2n)!/n!^2$ Franel numbers of order 3 Lah numbers $L(n,m)$ (unsigned); signed $L(n,m) = (-1m = 2, n = 2,3,4,)$ $m = 3, n = 3,4,5,$ $m = 4, n = 4,5,6,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  )^nL(n,m); They expand rising factorials in terms of 1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{split} &n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6! \\ &n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m) \\ &C(2n,n) = \textbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ Franel number of order 2} \\ &\textbf{S}_{k=0,n}\{C^3(n,k)\} \\ &\text{ of falling factorials and vice versa. } L(n,1) = n! \\ &\\ &\text{ General formula: } L(n,m)=C(n,m)(n-1)!/(m-1)! \end{split}$                                                                                                                                                                                                                                                                                                      |
| $m=6, n=12,13,14,$ $m=7, n=14,15,16$ Central binomial coefficients $C(2n,n)=(2n)!/n!^2$ Franel numbers of order 3 Lah numbers $L(n,m)$ (unsigned); signed $L(n,m)=(-1m)$ $m=2, n=2,3,4,$ $m=3, n=3,4,5,$ $m=4, n=4,5,6,$ Stirling numbers of the first kind $c(n,m)$ , unsigned; signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  ) <sup>n</sup> L(n,m); They expand rising factorials in terms of the control of the cont | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \mathbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ Franel number of order 2}$ $\mathbf{S}_{k=0,n}\{C^3(n,k)\}$ of falling factorials and vice versa. $L(n,1)=n!$ $\text{General formula: } L(n,m)=C(n,m)(n-1)U(m-1)!$ $\text{tions of n distinct elements with m cycles. } s(n,0)=1.$                                                                                                                                                                                                                                                                                            |
| $m = 6, n = 12,13,14,$ $m = 7, n = 14,15,16$ Central binomial coefficients $C(2n,n) = (2n)!/n!^2$ Franel numbers of order 3  Lah numbers $L(n,m)$ (unsigned); signed $L(n,m) = (-1m)$ $m = 2, n = 2,3,4,$ $m = 3, n = 3,4,5,$ $m = 4, n = 4,5,6,$ Stirling numbers of the first kind $C(n,m)$ , unsigned; signed $C(n,m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  Igned s(n,m) = (-1)^{n-m}c(n,m); number of permuta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{split} &n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6! \\ &n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m) \\ &C(2n,n) = \textbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ Franel number of order 2} \\ &\textbf{S}_{k=0,n}\{C^3(n,k)\} \\ &\text{ of falling factorials and vice versa. } L(n,1) = n! \\ &\\ &General formula: L(n,m)=C(n,m)(n-1)!/(m-1)! \\ &\text{ tions of n distinct elements with } m \text{ cycles. } s(n,0) = 1. \\ &(n-1)! \end{split}$                                                                                                                                                                                                                      |
| $\begin{split} m &= 6, n = 12, 13, 14, \\ m &= 7, n = 14, 15, 16 \\ \textbf{Central binomial coefficients C(2n,n) = (2n)!/n!^2} \\ \textbf{Franel numbers of order 3} \\ \textbf{Lah numbers L(n,m) (unsigned); signed L(n,m) = (-1)} \\ m &= 2, n = 2, 3, 4, \\ m &= 3, n = 3, 4, 5, \\ m &= 4, n = 4, 5, 6, \\ Stirling numbers of the first kind c(n,m), unsigned; sind equal to the sind equal t$                                 | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  Igned s(n,m) = (-1) <sup>n-m</sup> c(n,m); number of permuta 1, 1, 2, 6, 24, 120, 720, 5040, 40320, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \mathbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ Franel number of order 2}$ $\mathbf{S}_{k=0,n}\{C^3(n,k)\}$ of falling factorials and vice versa. $L(n,1)=n!$ $\text{General formula: } L(n,m)=C(n,m)(n-1)!/(m-1)!$ $\text{tions of n distinct elements with m cycles. } s(n,0)=1.$                                                                                                                                                                                                                                                                                           |
| $\begin{split} m &= 6, n = 12, 13, 14, \\ m &= 7, n = 14, 15, 16 \\ \textbf{Central binomial coefficients C(2n,n) = (2n)!/n!^2} \\ \textbf{Franel numbers of order 3} \\ \textbf{Lah numbers L(n,m) (unsigned); signed L(n,m) = (-1)} \\ m &= 2, n = 2, 3, 4, \\ m &= 3, n = 3, 4, 5, \\ m &= 4, n = 4, 5, 6, \\ Stirling numbers of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of $                                 | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  19ned s(n,m) = (-1) <sup>n-m</sup> c(n,m); number of permuta  1, 1, 2, 6, 24, 120, 720, 5040, 40320, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••  1, 6, 35, 225, 1624, 13132, 118124, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{split} &n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6! \\ &n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m) \\ &C(2n,n) = \textbf{S}_{k=0,n}\{C^2(n,k)\}: \textbf{Franel number of order 2} \\ &\textbf{S}_{k=0,n}\{C^3(n,k)\} \\ &\text{of falling factorials and vice versa. } L(n,1) = n! \\ &\\ &General formula: L(n,m)=C(n,m)(n-1)!/(m-1)! \\ &\text{tions of } n \text{ distinct elements with } m \text{ cycles. } s(n,0) = 1. \\ &(n-1)! \\ &a(n+1)=n^*a(n)+(n-1)! \end{split}$                                                                                                                                                                                    |
| $\begin{split} m &= 6, n = 12, 13, 14, \\ m &= 7, n = 14, 15, 16 \\ \textbf{Central binomial coefficients } C(2n,n) = (2n)!/n!^2 \\ \textbf{Franel numbers of order 3} \\ \textbf{Lah numbers } L(n,m) \text{ (unsigned); signed } L(n,m) = (-1) \\ m &= 2, n = 2, 3, 4, \\ m &= 3, n = 3, 4, 5, \\ m &= 4, n = 4, 5, 6, \\ \textbf{Stirling numbers of the first kind } c(n,m), \text{ unsigned; sinded} \\ m &= 1, n = 1, 2, 3, \\ m &= 2, n = 2, 3, 4, \\ m &= 3, n = 3, 4, 5, \\ m &= 4, n = 4, 5, 6, \\ \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  Igned s(n,m) = (-1)^{n-m}c(n,m); number of permuta  1, 1, 2, 6, 24, 120, 720, 5040, 40320, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••  1, 6, 35, 225, 1624, 13132, 118124, •••  1, 10, 85, 735, 6769, 67284, 723680, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \textbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ Franel number of order 2}$ $\textbf{S}_{k=0,n}\{C^3(n,k)\}$ If falling factorials and vice versa. $L(n,1) = n!$ $General formula: L(n,m)=C(n,m)(n-1)!/(m-1)!$ $(n-1)!$ $a(n+1)=n^*a(n)+(n-1)!$ $A definition of s(n,m):$                                                                                                                                                                                                                                                                                                      |
| $\begin{split} m &= 6, n = 12, 13, 14, \\ m &= 7, n = 14, 15, 16 \\ \textbf{Central binomial coefficients C(2n,n) = (2n)!/n!^2} \\ \textbf{Franel numbers of order 3} \\ \textbf{Lah numbers L(n,m) (unsigned); signed L(n,m) = (-1)} \\ m &= 2, n = 2, 3, 4, \\ m &= 3, n = 3, 4, 5, \\ m &= 4, n = 4, 5, 6, \\ Stirling numbers of the first kind c(n,m), unsigned; since the sign of the si$                                 | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  1, 20, 300, 4200, 5040, 40320, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••  1, 6, 35, 225, 1624, 13132, 118124, •••  1, 10, 85, 735, 6769, 67284, 723680, •••  1, 15, 175, 1960, 22449, 269325, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \mathbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ FraneI number of order 2}$ $\mathbf{S}_{k=0,n}\{C^3(n,k)\}: \text{ falling factorials and vice versa. } L(n,1) = n!$ $General formula: L(n,m)=C(n,m)(n-1)!/(m-1)!$ $\text{tions of } n \text{ distinct elements with } m \text{ cycles. } s(n,0) = 1.$ $(n-1)!$ $a(n+1)=n^*a(n)+(n-1)!$ $A \text{ definition of } s(n,m):$ $x^{(n)} = x(x-1)(x-2)(x-(n-1)) = \mathbf{S}_{m=0,n}\{s(n,m).x^m\}$                                                                                                                                |
| $\begin{split} m &= 6, n = 12, 13, 14, \\ m &= 7, n = 14, 15, 16 \\ \textbf{Central binomial coefficients C(2n,n) = (2n)!/n!^2} \\ \textbf{Franel numbers of order 3} \\ \textbf{Lah numbers L(n,m) (unsigned); signed L(n,m) = (-1)} \\ m &= 2, n = 2, 3, 4, \\ m &= 3, n = 3, 4, 5, \\ m &= 4, n = 4, 5, 6, \\ Stirling numbers of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the si$                                 | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  Igned s(n,m) = (-1) <sup>n-m</sup> c(n,m); number of permuta  1, 1, 2, 6, 24, 120, 720, 5040, 40320, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••  1, 6, 35, 225, 1624, 13132, 118124, •••  1, 10, 85, 735, 6769, 67284, 723680, •••  1, 15, 175, 1960, 22449, 269325, •••  1, 21, 322, 4536, 63273, 902055, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \textbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ Franel number of order 2}$ $\textbf{S}_{k=0,n}\{C^3(n,k)\}$ If falling factorials and vice versa. $L(n,1) = n!$ $General formula: L(n,m)=C(n,m)(n-1)!/(m-1)!$ $(n-1)!$ $a(n+1)=n^*a(n)+(n-1)!$ $A definition of s(n,m):$                                                                                                                                                                                                                                                                                                      |
| $m = 6, n = 12,13,14,$ $m = 7, n = 14,15,16$ Central binomial coefficients $C(2n,n) = (2n)!/n!^2$ Franel numbers of order 3  Lah numbers $L(n,m)$ (unsigned); signed $L(n,m) = (-1m)$ $m = 2, n = 2,3,4,$ $m = 3, n = 3,4,5,$ $m = 4, n = 4,5,6,$ Stirling numbers of the first kind $C(n,m)$ , unsigned; signed $C(n,m)$ , unsigned; signe | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  Igned s(n,m) = (-1)^{n-m}c(n,m); number of permuta  1, 1, 2, 6, 24, 120, 720, 5040, 40320, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••  1, 6, 35, 225, 1624, 13132, 118124, •••  1, 10, 85, 735, 6769, 67284, 723680, •••  1, 15, 175, 1960, 22449, 269325, •••  1, 21, 322, 4536, 63273, 902055, •••  1, 28, 546, 9450, 157773, 2637558, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \mathbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ FraneI number of order 2}$ $\mathbf{S}_{k=0,n}\{C^3(n,k)\}: \text{ falling factorials and vice versa. } L(n,1) = n!$ $General formula: L(n,m)=C(n,m)(n-1)!/(m-1)!$ $\text{tions of } n \text{ distinct elements with } m \text{ cycles. } s(n,0) = 1.$ $(n-1)!$ $a(n+1)=n^*a(n)+(n-1)!$ $A \text{ definition of } s(n,m):$ $x^{(n)} = x(x-1)(x-2)(x-(n-1)) = \mathbf{S}_{m=0,n}\{s(n,m).x^m\}$                                                                                                                                |
| $\begin{split} m &= 6, n = 12, 13, 14, \\ m &= 7, n = 14, 15, 16 \\ \textbf{Central binomial coefficients C(2n,n) = (2n)!/n!^2} \\ \textbf{Franel numbers of order 3} \\ \textbf{Lah numbers L(n,m) (unsigned); signed L(n,m) = (-1)} \\ m &= 2, n = 2, 3, 4, \\ m &= 3, n = 3, 4, 5, \\ m &= 4, n = 4, 5, 6, \\ Stirling numbers of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the sign $                                 | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  1, 20, 300, 4200, 58800, 846720, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••  1, 6, 35, 225, 1624, 13132, 118124, •••  1, 10, 85, 735, 6769, 67284, 723680, •••  1, 21, 322, 4536, 63273, 902055, •••  1, 28, 546, 9450, 157773, 2637558, •••  1, 36, 870, 18150, 357423, 6926634, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \mathbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ Franel } \text{ number of order } 2$ $\mathbf{S}_{k=0,n}\{C^3(n,k)\}: \text{ falling factorials and vice versa. } L(n,1) = n!$ $General \text{ formula: } L(n,m)=C(n,m)(n-1)!/(m-1)!$ $\text{tions of } n \text{ distinct elements with } m \text{ cycles. } s(n,0) = 1.$ $(n-1)!$ $a(n+1)=n^*a(n)+(n-1)!$ $A \text{ definition of } s(n,m):$ $x^{(n)} = x(x-1)(x-2)(x-(n-1)) = \mathbf{S}_{m=0,n}\{s(n,m),x^m\}$                                                                                                             |
| $\begin{split} m &= 6, n = 12, 13, 14, \\ m &= 7, n = 14, 15, 16 \\ \textbf{Central binomial coefficients C(2n,n) = (2n)!/n!^2} \\ \textbf{Franel numbers of order 3} \\ \textbf{Lah numbers L(n,m) (unsigned); signed L(n,m) = (-1)} \\ m &= 2, n = 2, 3, 4, \\ m &= 3, n = 3, 4, 5, \\ m &= 4, n = 4, 5, 6, \\ Stirling numbers of the first kind c(n,m), unsigned; sind equal to the sind equal t$                                 | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  1, 20, 300, 4200, 58800, 846720, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••  1, 6, 35, 225, 1624, 13132, 118124, •••  1, 10, 85, 735, 6769, 67284, 723680, •••  1, 15, 175, 1960, 22449, 269325, •••  1, 28, 546, 9450, 157773, 2637558, •••  1, 36, 870, 18150, 357423, 6926634, •••  1, 45, 1320, 32670, 749463, 16669653, •••  1, 45, 1320, 32670, 749463, 16669653, •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \mathbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ Franel } \text{ number of order } 2$ $\mathbf{S}_{k=0,n}\{C^3(n,k)\}: \text{ of falling factorials and vice versa. } L(n,1) = n!$ $\text{General formula: } L(n,m)=C(n,m)(n-1)!/(m-1)!$ $\text{tions of } n \text{ distinct elements with } m \text{ cycles. } s(n,0) = 1.$ $(n-1)!$ $a(n+1)=n^*a(n)+(n-1)!$ $A \text{ definition of } s(n,m):$ $x^{(n)} = x(x-1)(x-2)(x-(n-1)) = \mathbf{S}_{m=0,n}\{s(n,m).x^m\}$ $\text{See also OEIS } A008275$                                                                           |
| $\begin{split} m &= 6, n = 12, 13, 14, \\ m &= 7, n = 14, 15, 16 \\ \textbf{Central binomial coefficients C(2n,n) = (2n)!/n!^2} \\ \textbf{Franel numbers of order 3} \\ \textbf{Lah numbers L(n,m) (unsigned); signed L(n,m) = (-1)} \\ m &= 2, n = 2, 3, 4, \\ m &= 3, n = 3, 4, 5, \\ m &= 4, n = 4, 5, 6, \\ Stirling numbers of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the first kind c(n,m), unsigned; since the sign of the sign $                                 | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  Igned s(n,m) = (-1)^{n-m}c(n,m); number of permuta  1, 1, 2, 6, 24, 120, 720, 5040, 40320, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••  1, 10, 85, 735, 6769, 67284, 723680, •••  1, 15, 175, 1960, 22449, 269325, •••  1, 21, 322, 4536, 63273, 902055, •••  1, 28, 546, 9450, 157773, 2637558, •••  1, 36, 870, 18150, 357423, 6926634, •••  of partitions of n distinct elements into m non-en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \mathbf{S}_{k=0,n}\{C^2(n,k)\}; \text{ Franel number of order 2}$ $\mathbf{S}_{k=0,n}\{C^3(n,k)\}$ of falling factorials and vice versa. $L(n,1)=n!$ $General formula: L(n,m)=C(n,m)(n-1)!/(m-1)!$ $tions of n distinct elements with m cycles. s(n,0)=1. (n-1)! a(n+1)=n^*a(n)+(n-1)! A definition of s(n,m): x^{(n)} = x(x-1)(x-2)(x-(n-1)) = \mathbf{S}_{m=0,n}\{s(n,m).x^m\} See also OEIS A008275 npty subsets. s(n,1)=1. By convention, s(n,0)=1.$                                                                                                             |
| $\begin{split} m &= 6, n = 12, 13, 14, \\ m &= 7, n = 14, 15, 16 \\ \textbf{Central binomial coefficients C(2n,n) = (2n)!/n!^2} \\ \textbf{Franel numbers of order 3} \\ \textbf{Lah numbers L(n,m) (unsigned); signed L(n,m) = (-1)} \\ m &= 2, n = 2, 3, 4, \\ m &= 3, n = 3, 4, 5, \\ m &= 4, n = 4, 5, 6, \\ Stirling numbers of the first kind c(n,m), unsigned; sind equal to the sind equal t$                                 | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  gned s(n,m) = (-1)^{n-m}c(n,m); number of permuta  1, 1, 2, 6, 24, 120, 720, 5040, 40320, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••  1, 6, 35, 225, 1624, 13132, 118124, •••  1, 10, 85, 735, 6769, 67284, 723680, •••  1, 21, 322, 4536, 63273, 902055, •••  1, 28, 546, 9450, 157773, 2637558, •••  1, 36, 870, 18150, 357423, 6926634, •••  1, 45, 1320, 32670, 749463, 16669653, •••  of partitions of n distinct elements into m non-emity of the state of the s            | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \mathbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ Franel } \text{ number of order } 2$ $\mathbf{S}_{k=0,n}\{C^3(n,k)\}: \text{ of falling factorials and vice versa. } L(n,1) = n!$ $General \text{ formula: } L(n,m)=C(n,m)(n-1)!/(m-1)!$ $\text{tions of } n \text{ distinct elements with } m \text{ cycles. } s(n,0) = 1.$ $(n-1)!$ $a(n+1)=n^*a(n)+(n-1)!$ $A \text{ definition of } s(n,m):$ $x^{(n)} = x(x-1)(x-2)(x-(n-1)) = \mathbf{S}_{m=0,n}\{s(n,m).x^m\}$ $\text{See also OEIS } A008275$                                                                          |
| m = 6, $n = 12,13,14,m = 7$ , $n = 14,15,16Central binomial coefficients C(2n,n) = (2n)!/n!^2Franel numbers of order 3Lah numbers L(n,m) (unsigned); signed L(n,m) = (-1)m = 2$ , $n = 2,3,4,m = 3$ , $n = 3,4,5,m = 4$ , $n = 4,5,6,Stirling numbers of the first kind C(n,m), unsigned; since m = 1, n = 1,2,3,m = 2$ , $n = 2,3,4,m = 3$ , $n = 3,4,5,m = 4$ , $n = 4,5,6,m = 4$ , $n = 4,5,6,m = 5$ , $n = 5,6,7,m = 6$ , $n = 6,7,8,m = 7$ , $n = 7,8,9,m = 8$ , $n = 8,9,10,m = 9$ , $n = 9,10,11,Stirling numbers of the second kind S(n,m); number$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 924, 1716, 3003, 5005, 8008, 12376, •••  3432, 6435, 11440, 19448, 31824, •••  1, 2, 6, 20, 70, 252, 924, 3432, 12870, •••  1, 2, 10, 56, 346, 2252, 15184, 104960, •••  1, 6, 36, 240, 1800, 15120, 141120, •••  1, 12, 120, 1200, 12600, 141120, •••  1, 20, 300, 4200, 58800, 846720, •••  Igned s(n,m) = (-1)^{n-m}c(n,m); number of permuta  1, 1, 2, 6, 24, 120, 720, 5040, 40320, •••  1, 3, 11, 50, 274, 1764, 13068, 109584, •••  1, 10, 85, 735, 6769, 67284, 723680, •••  1, 15, 175, 1960, 22449, 269325, •••  1, 21, 322, 4536, 63273, 902055, •••  1, 28, 546, 9450, 157773, 2637558, •••  1, 36, 870, 18150, 357423, 6926634, •••  of partitions of n distinct elements into m non-en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $n(n-1)(n-2)(n-3)(n-4)(n-5)/6! = n^{(6)}/6!$ $n^{(7)}/7!; \text{ all cases up to } n=14 \text{ are covered by } C(n,m)=C(n,n-m)$ $C(2n,n) = \mathbf{S}_{k=0,n}\{C^2(n,k)\}: \text{ Franel } \text{ number of order } 2$ $\mathbf{S}_{k=0,n}\{C^3(n,k)\}: \text{ of falling factorials and vice versa. } L(n,1) = n!$ $General \text{ formula: } L(n,m)=C(n,m)(n-1)!/(m-1)!$ $tions \text{ of } n \text{ distinct elements with } m \text{ cycles. } s(n,0) = 1.$ $(n-1)!$ $a(n+1)=n^*a(n)+(n-1)!$ $A \text{ definition of } s(n,m):$ $x^{(n)} = x(x-1)(x-2)(x-(n-1)) = \mathbf{S}_{m=0,n}\{s(n,m).x^m\}$ $\text{See also OEIS } A008275$ $\text{npty subsets. } S(n,1) = 1. \text{ By convention, } S(0,0) = 1.$ |

|                                                                                                                                                                                                                                        | 1 04 000 0040 0000 470                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| m = 6, n = 6,7,8,                                                                                                                                                                                                                      | 1, 21, 266, 2646, 22827, 179487, •••                                                                                                                                                                                                                                                     | See also OEIS A008277                                                                                                                                                                                                                                                                                                                                                |
| m = 7, n = 7,8,9,                                                                                                                                                                                                                      | 1, 28, 462, 5880, 63987, 627396, •••                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                      |
| m = 8, n = 8,9,10,                                                                                                                                                                                                                     | 1, 36, 750, 11880, 159027, 1899612, •••                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                      |
| m = 9, n = 9,10,11,                                                                                                                                                                                                                    | 1, 45, 1155, 22275, 359502, 5135130, •••                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                      |
| Selected sequences of Figurate Numbers                                                                                                                                                                                                 | (formulas are adjusted so that n=1 gives always                                                                                                                                                                                                                                          | 1)                                                                                                                                                                                                                                                                                                                                                                   |
| Polygonal (2D). See also A090466 (numbers which are                                                                                                                                                                                    | e polygonal) and A090467 (numbers which are n                                                                                                                                                                                                                                            | ot).                                                                                                                                                                                                                                                                                                                                                                 |
| Triangular numbers T <sub>n</sub>                                                                                                                                                                                                      | 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, •••                                                                                                                                                                                                                                             | n(n+1)/2                                                                                                                                                                                                                                                                                                                                                             |
| Square numbers, squares                                                                                                                                                                                                                | 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, •••                                                                                                                                                                                                                                           | n*n                                                                                                                                                                                                                                                                                                                                                                  |
| Pentagonal numbers                                                                                                                                                                                                                     | 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, •••                                                                                                                                                                                                                                              | n(3n-1)/2                                                                                                                                                                                                                                                                                                                                                            |
| Hexagonal numbers                                                                                                                                                                                                                      | 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, •••                                                                                                                                                                                                                                             | n(2n-1); also cornered hexagonal numbers                                                                                                                                                                                                                                                                                                                             |
| Heptagonal numbers                                                                                                                                                                                                                     | 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, •••                                                                                                                                                                                                                                            | n(5n-3)/2                                                                                                                                                                                                                                                                                                                                                            |
| Octagonal numbers                                                                                                                                                                                                                      | 1, 8, 21, 40, 65, 96, 133, 176, 225, 280, •••                                                                                                                                                                                                                                            | n(3n-2)                                                                                                                                                                                                                                                                                                                                                              |
| Square-triangular numbers                                                                                                                                                                                                              | 1, 36, 1225, 41616,1413721,48024900, ***                                                                                                                                                                                                                                                 | $[[(3+2\sqrt{2})^n-(3-2\sqrt{2})^n]/(4\sqrt{2})]^2$ ; both triangular and square                                                                                                                                                                                                                                                                                     |
| <b>Pyramidal</b> (2D). $P_n^{(r)} = n(n+1)[n(r-2)+(5-r)]/6$ for r-gona                                                                                                                                                                 | I base = partial sum of r-gonal numbers. For r=3,                                                                                                                                                                                                                                        | see <b>tetrahedral numbers</b> Te <sub>n</sub> (below)                                                                                                                                                                                                                                                                                                               |
| Square pyramidal numbers, r=4                                                                                                                                                                                                          | 1, 5, 14, 30, 55, 91, 140, 204, 285, 385, •••                                                                                                                                                                                                                                            | n(n+1)(2n+1)/6. The only ones that are squares: 1, 4900                                                                                                                                                                                                                                                                                                              |
| Pentagonal pyramidal numbers, r=5                                                                                                                                                                                                      | 1, 6, 18, 40, 75, 126, 196, 288, 405, 550, •••                                                                                                                                                                                                                                           | n <sup>2</sup> (n+1)/2                                                                                                                                                                                                                                                                                                                                               |
| Hexagonal pyramidal numbers, r=6                                                                                                                                                                                                       | 1, 7, 22, 50, 95, 161, 252, 372, 525, 715, •••                                                                                                                                                                                                                                           | n(n+1)(4n-1)/6. Also called greengrocer's numbers                                                                                                                                                                                                                                                                                                                    |
| Heptagonal pyramidal numbers, r=7                                                                                                                                                                                                      | 1, 8, 26, 60, 115, 196, 308, 456, 645, 880, •••                                                                                                                                                                                                                                          | n(n+1)(5n-2)/6                                                                                                                                                                                                                                                                                                                                                       |
| Octagonal pyramidal numbers r=8                                                                                                                                                                                                        | 1, 9, 30, 70, 135, 231, 364, 540, 765, 1045, •••                                                                                                                                                                                                                                         | n(n+1)(5n-2)/6                                                                                                                                                                                                                                                                                                                                                       |
| Polyhedral (3D)                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                      |
| Tetrahedral numbers Te <sub>n</sub> (pyramidal with r=3)                                                                                                                                                                               | 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, •••                                                                                                                                                                                                                                             | n(n+1)(n+2)/6. The only Te <sub>n</sub> squares: 1, 4, 19600                                                                                                                                                                                                                                                                                                         |
| Cubic numbers, cubes                                                                                                                                                                                                                   | 1, 8, 27, 64, 125, 216, 343, 512, 729, •••                                                                                                                                                                                                                                               | n <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                       |
| Octahedral numbers                                                                                                                                                                                                                     | 1, 6, 19, 44, 85, 146, 231, 344, 489, 670, •••                                                                                                                                                                                                                                           | n(2n <sup>2</sup> +1)/3.                                                                                                                                                                                                                                                                                                                                             |
| Icosahedral numbers                                                                                                                                                                                                                    | 1, 12, 48, 124, 255, 456, 742, 1128, •••                                                                                                                                                                                                                                                 | n(5n <sup>2</sup> -5n+2)/2.                                                                                                                                                                                                                                                                                                                                          |
| Dodecahedral numbers                                                                                                                                                                                                                   | 1, 20, 84, 220, 455, 816, 1330, 2024, •••                                                                                                                                                                                                                                                | n(3n-1)(3n-2)/2.                                                                                                                                                                                                                                                                                                                                                     |
| Platonic numbers                                                                                                                                                                                                                       | 1, 4, 6, 8, 10, 12, 19, 20, 27, 35, 44, 48, •••                                                                                                                                                                                                                                          | Union of the above sequences.                                                                                                                                                                                                                                                                                                                                        |
| Pentatopic (or pentachoron) numbers                                                                                                                                                                                                    | 1, 5, 15, 35, 70, 126, 210, 330, 495, •••                                                                                                                                                                                                                                                | n(n+1)(n+2)(n+3)/24                                                                                                                                                                                                                                                                                                                                                  |
| Centered polygonal (2D)                                                                                                                                                                                                                | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                  | C A A 9                                                                                                                                                                                                                                                                                                                                                              |
| Centered triangular numbers                                                                                                                                                                                                            | 1, 4, 10, 19, 31, 46, 64, 85, 109, 136, •••                                                                                                                                                                                                                                              | (3n <sup>2</sup> -3n+2)/2. Click for the primes subset: •••                                                                                                                                                                                                                                                                                                          |
| Centered square numbers                                                                                                                                                                                                                | 1, 5, 13, 25, 41, 61, 85, 113, 145, 181, •••                                                                                                                                                                                                                                             | 2n <sup>2</sup> -2n+1. Click for the primes subset: •••                                                                                                                                                                                                                                                                                                              |
| Centered pentagonal numbers                                                                                                                                                                                                            | 1, 6, 16, 31, 51, 76, 106, 141, 181, 226, •••                                                                                                                                                                                                                                            | (5n <sup>2</sup> -5n+2)/2. Click for the primes subset: •••                                                                                                                                                                                                                                                                                                          |
| Centered hexagonal numbers                                                                                                                                                                                                             | 1, 7, 19, 37, 61, 91, 127, 169, 217, 271, •••                                                                                                                                                                                                                                            | $n^3$ - (n-1) <sup>3</sup> = 3n(n-1)+1; also <b>hex numbers</b>                                                                                                                                                                                                                                                                                                      |
| Centered heptagonal numbers                                                                                                                                                                                                            | 1, 8, 22, 43, 71, 106, 148, 197, 253, •••                                                                                                                                                                                                                                                | (7n <sup>2</sup> -7n+2)/2                                                                                                                                                                                                                                                                                                                                            |
| Centered octagonal numbers                                                                                                                                                                                                             | 1, 9, 25, 49, 81, 121, 169, 225, 289, •••                                                                                                                                                                                                                                                | (2n-1) <sup>2</sup> ; squares of odd numbers                                                                                                                                                                                                                                                                                                                         |
| Centered polyhedral (3D)                                                                                                                                                                                                               | 1,0,20,10,01,121,100,220,                                                                                                                                                                                                                                                                | [ [ [ ] ] ] ; oqualise of our names is                                                                                                                                                                                                                                                                                                                               |
| Centered tetrahedral numbers                                                                                                                                                                                                           | 1, 5, 15, 35, 69, 121, 195, 295, 425, 589, •••                                                                                                                                                                                                                                           | (2n+1)(n <sup>2</sup> -n+3)/3                                                                                                                                                                                                                                                                                                                                        |
| Centered cube numbers                                                                                                                                                                                                                  | 1, 9, 35, 91, 189, 341, 559, 855, 1241, •••                                                                                                                                                                                                                                              | $(2n-1)(n^2-n+1)$                                                                                                                                                                                                                                                                                                                                                    |
| Centered cabe numbers  Centered octahedral numbers                                                                                                                                                                                     | 1, 7, 25, 63, 129, 231, 377, 575, 833, •••                                                                                                                                                                                                                                               | (2n-1)(2n <sup>2</sup> -2n+3)/3                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                      |
| Some named   notable binary sequences of                                                                                                                                                                                               | f "digits" {0,1} or {-1,+1}. An important case is defi                                                                                                                                                                                                                                   | ned by the Liouville function.                                                                                                                                                                                                                                                                                                                                       |
| Baum - Sweet sequence                                                                                                                                                                                                                  | 1,1,0,1,1,0,0,1,0,1,0,0,1,0,0,1,1,0,0 •••                                                                                                                                                                                                                                                | 1 if binary(n) contains no block of 0's of odd length                                                                                                                                                                                                                                                                                                                |
| Golay - Rudin - Shapiro sequence                                                                                                                                                                                                       | +1,+1,+1,-1,+1,+1,+1,+1,+1,+1                                                                                                                                                                                                                                                            | (-1)^ <b>S</b> <sub>k</sub> ]{d <sub>k</sub> d <sub>k+1</sub> }                                                                                                                                                                                                                                                                                                      |
| Fibonacci words; binary:                                                                                                                                                                                                               | 0, 01, 01 0, 010 01, 01001 010,                                                                                                                                                                                                                                                          | Like Fibonacci recurrence, using string concatenation                                                                                                                                                                                                                                                                                                                |
| Infinite <b>Fibonacci</b> word                                                                                                                                                                                                         | 010010100100101001010010                                                                                                                                                                                                                                                                 | Infinite continuation of the above                                                                                                                                                                                                                                                                                                                                   |
| Rabbit sequence; binary (click here for dec):                                                                                                                                                                                          | 1, 10, 10 1, 101 10, 10110 101, •••                                                                                                                                                                                                                                                      | Similar, but with different starting strings                                                                                                                                                                                                                                                                                                                         |
| Rabbit number; binary:                                                                                                                                                                                                                 | .1101011011010110101 •••                                                                                                                                                                                                                                                                 | Converted to decimal, gives the rabbit constant                                                                                                                                                                                                                                                                                                                      |
| Thue - Morse sequence t <sub>n</sub>                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                        | 0,1,1,0,1,0,0,1,1,0,0,1,0,1,0,1,0,0 •••                                                                                                                                                                                                                                                  | t <sub>n</sub> = 1 if binary(n) has odd parity (number of ones)                                                                                                                                                                                                                                                                                                      |
| Counting (enumeration) sequences releva                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          | t <sub>n</sub> = 1 if binary(n) has odd parity (number of ones)                                                                                                                                                                                                                                                                                                      |
| Counting (enumeration) sequences releval  Enumerations of set-related objects, assuming labeled                                                                                                                                        | nt to finite sets                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                      |
| , ,                                                                                                                                                                                                                                    | nt to finite sets                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                      |
| Enumerations of set-related objects, assuming labeled                                                                                                                                                                                  | nt to finite sets  delements. Set cardinality is n=0,1,2,, unless s                                                                                                                                                                                                                      | pecified otherwise.                                                                                                                                                                                                                                                                                                                                                  |
| Enumerations of set-related objects, assuming labeled Subsets (cardinality of the power set)                                                                                                                                           | nt to finite sets  delements. Set cardinality is n=0,1,2,, unless s 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, •••                                                                                                                                                                     | pecified otherwise.  2 <sup>n</sup> ; also mappings into a binary set                                                                                                                                                                                                                                                                                                |
| Enumerations of set-related objects, assuming labeled Subsets (cardinality of the power set)  Derangements (subfactorials) !n                                                                                                          | nt to finite sets  delements. Set cardinality is n=0,1,2,, unless s 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ••• 1, 0, 1, 2, 9, 44, 265, 1854, 14833, •••                                                                                                                            | pecified otherwise. $2^n; \text{ also mappings into a binary set}$ $n!^* \textbf{S}_{k=0,n}\{(-1)^k/k!\} \text{ Permutations leaving no element in-place}$                                                                                                                                                                                                           |
| Enumerations of set-related objects, assuming labeled Subsets (cardinality of the power set) Derangements (subfactorials) !n Endomorphisms                                                                                             | nt to finite sets  delements. Set cardinality is n=0,1,2,, unless s 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ••• 1, 0, 1, 2, 9, 44, 265, 1854, 14833, ••• 1, 1, 4, 27, 256, 3125, 46656, 823543, •••                                                                                 | pecified otherwise. $2^n; \text{ also mappings into a binary set}$ $n!^* \textbf{S}_{k=0,n}\{(-1)^k/k!\} \text{ Permutations leaving no element in-place}$ $n^n. \text{ Operators, mappings (functions) of a set into itself}$                                                                                                                                       |
| Enumerations of set-related objects, assuming labeled Subsets (cardinality of the power set)  Derangements (subfactorials) !n  Endomorphisms  Binary relations   Digraphs with self-loops                                              | nt to finite sets  delements. Set cardinality is n=0,1,2,, unless s 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, •••  1, 0, 1, 2, 9, 44, 265, 1854, 14833, •••  1, 1, 4, 27, 256, 3125, 46656, 823543, •••  1, 2, 16, 512, 65536, 33554432, •••                                          | pecified otherwise.  2 <sup>n</sup> , also mappings into a binary set  n!* S <sub>k=0,n</sub> {(-1) <sup>k</sup> /k!} Permutations leaving no element in-place  n <sup>n</sup> . Operators, mappings (functions) of a set into itself  2^(n <sup>2</sup> ). This counts also 'no relation'                                                                           |
| Enumerations of set-related objects, assuming labeled Subsets (cardinality of the power set)  Derangements (subfactorials) !n  Endomorphisms  Binary relations   Digraphs with self-loops  Reflexive relations   Irreflexive relations | nt to finite sets  delements. Set cardinality is n=0,1,2,, unless s 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, ••• 1, 0, 1, 2, 9, 44, 265, 1854, 14833, ••• 1, 1, 4, 27, 256, 3125, 46656, 823543, ••• 1, 2, 16, 512, 65536, 33554432, ••• 1, 1, 4, 64, 4096, 1048576, 1073741824, ••• | pecified otherwise.  2 <sup>n</sup> ; also mappings into a binary set  n!* S <sub>k=0,n</sub> {(-1) <sup>k</sup> /k!} Permutations leaving no element in-place  n <sup>n</sup> . Operators, mappings (functions) of a set into itself  2 <sup>n</sup> (n <sup>2</sup> ). This counts also 'no relation'  2 <sup>n</sup> (n*(n-1)). The two types have the same count |

| Preorder relations (quasi-orderings)                                                                    | 1, 1, 4, 29, 355, 6942, 209527, 9535241, •••                                   | Transitive & Reflexive                                                 |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Partial-order relations (posets)                                                                        | 1, 1, 3, 19, 219, 4231, 130023, 6129859, •••                                   |                                                                        |
| Total-preorder rels   Weakly ordered partitions                                                         | 1, 1, 3, 13, 75, 541, 4683,47293,545835, •••                                   | Ordered Bell numbers, or Fubini numbers                                |
| Total-order relations   Bijections                                                                      | 1, 1, 2, 6, 24, 120, 720, 5040, 40320, •••                                     | n! Also <b>permutations</b>   orders of symmetry groups S <sub>n</sub> |
| Equivalence relations   Set partitions                                                                  | 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, •••                                 | Bell numbers B(n)                                                      |
| Groupoids   Closed Binary Operations (CBOs)                                                             | 1, 1, 16, 19683, 4294967296, •••                                               | $n^2 = (n^n)^n$                                                        |
| Abelian groupoids                                                                                       | 1, 1, 8, 729, 1048576, 30517578125, •••                                        | Commutative CBOs. n^(n(n+1)/2)                                         |
| Non-associative Abelian groupoids                                                                       | 0, 0, 2 , 666, 1047436, •••                                                    | Commutative but non-associative CBOs.                                  |
| Non-associative non-Abelian groupoids                                                                   | 0, 0, 6, 18904, 4293916368, •••                                                | Non-commutative & non-associative CBOs.                                |
| Semigroups                                                                                              | 1, 1, 8, 113, 3492, 183732, 17061118, •••                                      | Associative CBOs                                                       |
| Non-Abelian semigroups                                                                                  | 0, 0, 2, 50, 2352, 153002, 15876046, •••                                       | Associative but non-commutative CBOs                                   |
| Abelian semigroups                                                                                      | 1, 1, 6, 63, 1140, 30730, 1185072, •••                                         | Associative and commutative CBOs                                       |
| Monoids                                                                                                 | 0, 1, 4, 33, 624, 20610, 1252032, •••                                          | Associative CBOs with an identity element                              |
| Non-Abelian monoids                                                                                     | 0, 0, 0, 6, 248, 13180, 1018692,                                               | Associative but non-commutative CBOs with identity                     |
| Abelian monoids                                                                                         | 0, 1, 4, 27, 376, 7430, 233340, •••                                            | Associative & commutative CBOs with identity element                   |
| Groups                                                                                                  | 0, 1, 2, 3, 16, 30, 480, 840, 22080, 68040, •••                                | Associative CBOs with identity and invertible elements                 |
| Abelian groups (commutative)                                                                            | 0, 1, 2, 3, 16, 30, 360, 840, 15360, 68040, •••                                | ,                                                                      |
| Non-Abelian groups                                                                                      | 0, 0, 0, 0, 0, 120, 0, 6720, 0, 181440, 0,                                     | Difference of the previous two                                         |
| The following items in this section count the isomorphi                                                 |                                                                                | '                                                                      |
| Binary relations                                                                                        | 1, 2, 10, 104, 3044, 291968, 96928992, •••                                     | This counts also 'no relation'                                         |
| Enumerations of set-related objects, assuming unlabe                                                    |                                                                                |                                                                        |
|                                                                                                         |                                                                                | · · · · · · · · · · · · · · · · · · ·                                  |
| Compositions c(n)                                                                                       | 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, •••                                  | For n>0, c(n)=2^(n-1)                                                  |
| Partitions p(n)                                                                                         | 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, •••                              |                                                                        |
| Partitions into distinct parts (strict partitions)                                                      | 1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, •••                              | Also Partitions into odd parts                                         |
| The following items in this section count the isomorphi                                                 | · · · · · · · · · · · · · · · · · · ·                                          |                                                                        |
| Binary relations                                                                                        | 1, 1, 5, 52, 1522, 145984, 48464496, •••                                       | This counts also 'no relation'                                         |
| Groupoids (more data are needed!)                                                                       | 1, 1, 10, 3330, 178981952, •••                                                 | Closed Binary Operations (CBOs)                                        |
| Abelian groupoids                                                                                       | 1, 1, 4, 129, 43968, 254429900, •••                                            | Commutative CBOs                                                       |
| Non-associative Abelian groupoids                                                                       | 0, 0, 1, 117, 43910, •••                                                       | Commutative but non-associative CBOs                                   |
| Non-associative non-Abelian groupoids                                                                   | 0, 0, 4, 3189, 178937854, •••                                                  | Non-commutative non-associative CBOs                                   |
| Semigroups                                                                                              | 1, 1, 5, 24, 188, 1915, 28634, 1627672, •••                                    | Associative CBOs                                                       |
| Non-Abelian semigroups                                                                                  | 0, 0, 2, 12, 130, 1590, 26491, 1610381, •••                                    | Associative but non-commutative CBOs                                   |
| Abelian semigroups                                                                                      | 1, 1, 3, 12, 58, 325, 2143, 17291, 221805, •••                                 | Associative & commutative CBOs                                         |
| Monoids                                                                                                 | 0, 1, 2, 7, 35, 228, 2237, 31559, 1668997 •••                                  | Associative CBOs with identity element                                 |
| Non-Abelian monoids                                                                                     | 0, 0, 0, 2, 16, 150, 1816, 28922,                                              | Associative but non-commutative CBOs with identity                     |
| Abelian monoids                                                                                         | 0, 1, 2, 5, 19, 78, 421, 2637, •••                                             | Associative & commutative CBOs with identity                           |
| Groups                                                                                                  | 0, 1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 5, 1, 2, 1, 14, •••                        | Associative CBOs with identity and inverses                            |
| Abelian groups (commutative)                                                                            | 0, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, •••                      | Factorizations of n into prime powers                                  |
| Non-Abelian groups                                                                                      | 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 9, •••                         |                                                                        |
| Counting (enumeration) sequences releva                                                                 | nt to finite graphs                                                            | •                                                                      |
| , ,                                                                                                     |                                                                                | place and effect of the reine                                          |
| Enumerations of graph-related objects, assuming label                                                   |                                                                                | nless specified otherwise.  2n(n-1)/2                                  |
| Simple graphs with n vertices                                                                           | 1, 2, 8, 64, 1024, 32768, 2097152, •••                                         | <u> </u>                                                               |
| Free trees with n vertices                                                                              | 1, 1, 3, 16, 125, 1296, 16807, 262144, •••                                     | n <sup>n-2</sup> (Cayley formula)                                      |
| Rooted trees with n vertices                                                                            | 1, 2, 9, 64, 625, 7776, 117649, 2097152, •••                                   | n <sup>n-1</sup>                                                       |
|                                                                                                         |                                                                                | Number of vertices is n=1,2,3,, unless specified otherwise.            |
| Simple connected graphs with n vertices                                                                 | 1, 1, 2, 6, 21, 112, 853, 11117, 261080, •••                                   | isomorphism classes                                                    |
| Free trees with n vertices                                                                              | 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235, 551, •••                               | isomorphism classes                                                    |
| Rooted trees with n vertices                                                                            | 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, •••                                   | isomorphism classes                                                    |
| Some Diophantine solutions and their seq                                                                | uences, such as those related to compositions                                  | of powers                                                              |
| <b>Pythagorean</b> triples (a,b,c), $a^2 + b^2 = c^2$                                                   | (3,4,5) (5,12,13) (7,24,25) (8,15,17)                                          | (9,40,41) (11,60,61) (12,35,37) (13,84,85) (16,63,65) •••              |
| Pythagorean quadruples, $a^2 + b^2 + c^2 = d^2$                                                         | (1,2,2,3) (2,3,6,7) (4,4,7,9) (1,4,8,9)                                        | (6,6,7,11) (2,6,9,11) (10,10,23,27) (7,14,22,23)                       |
| Pythagorean quintuples                                                                                  | (1,2,4,10,11) (1,2,8,10,13)                                                    | etc; there is an infinity of them in each category                     |
| <b>Markov</b> triples, $x^2 + y^2 + z^2 = 3xyz$                                                         | (1,1,1) (1,1,2) (1,2,5) (1,5,13) (2,5,29)                                      | (1,13,34) (1,34,89) (2,29,169) (5,13,194) (1,89,233)                   |
| Brown number pairs (m,n), n!+1 = m <sup>2</sup>                                                         | (5,4)(11,5)(71,7)                                                              | Erdös conjectured that there are no others                             |
| Selected sequences of rational numbers                                                                  |                                                                                |                                                                        |
| Bernoulli numbers $B_0 = 1$ , $B_1 = -1/2$ , $B_{2k+1} = 0$ for $k > 1$ , $B_1 = -1/2$ , $B_{2k+1} = 0$ | $B_n = \delta_{n,0} - S_{k-0,(n,4)} \{C(n,k)B_k/(n-k+1)\} \cdot x/(e^X-1) = 0$ | $= S_{k>0}(B_n x^n/n!): Example: B_{40} = 5/66$                        |
| 1                                                                                                       |                                                                                | - VEO: 11                                                              |

| <b>Harmonic</b> numbers $H_n = S_{k=1,n}\{1/k\}$ , in reduced form                                                            |                                                                                                                                                                                                       |                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $H_n = N/D$ ; $n = 1,2,3,$                                                                                                    | N: 1, 3, 11, 25, 137, 49, 363, 761, 7129, •••                                                                                                                                                         | D: 1, 2, 6, 12, 60, 20, 140, 280, 2520, •••                                                                                                                                |
| Other:                                                                                                                        |                                                                                                                                                                                                       |                                                                                                                                                                            |
| Rationals ≤1, sorted by denominator/numerator                                                                                 | 1 <sub>1</sub> , 1 <sub>2</sub> , 1 <sub>3</sub> , 2 <sub>3</sub> , 1 <sub>4</sub> , 3 <sub>4</sub> , 1 <sub>5</sub> , 2 <sub>5</sub> , 3 <sub>5</sub> , 4 <sub>5</sub> , 1 <sub>6</sub> ,            | Take the inverse values for rationals ≥ 1                                                                                                                                  |
| Farey fractions F <sub>n</sub> (example for order n=5)                                                                        | 0 <sub>/1</sub> , 1 <sub>/5</sub> , 1 <sub>/4</sub> , 1 <sub>/3</sub> , 2 <sub>/5</sub> , 1 <sub>/2</sub> , 3 <sub>/5</sub> , 2 <sub>/3</sub> , 3 <sub>/4</sub> , 4 <sub>/5</sub> , 1 <sub>/1</sub> , | $F_1=\{{}^0/_1,{}^1/_1\}$ ; higher n: interpolate $({}^a/_c,{}^b/_d) \rightarrow {}^{a+b}/_{c+d}$                                                                          |
| Stern - Brocot sequence (example n=4)                                                                                         | 1 <sub>/1</sub> , 1 <sub>/2</sub> , 2 <sub>/1</sub> , 1 <sub>/3</sub> , 2 <sub>/3</sub> , 3 <sub>/2</sub> , 3 <sub>/1</sub> , 1 <sub>/4</sub> , 2 <sub>/5</sub> , 3 <sub>/5</sub> , 3 <sub>/4</sub> , | Wraps up the binary Stern - Brocot tree                                                                                                                                    |
| Selected geometry constants                                                                                                   | -                                                                                                                                                                                                     | -                                                                                                                                                                          |
| Some named   notable geometry constants                                                                                       |                                                                                                                                                                                                       |                                                                                                                                                                            |
| Area doubling (Pythagora's) constant                                                                                          | 1.414 213 562 373 095 048 801 688 ***                                                                                                                                                                 | √2. Area-doubling scale factor                                                                                                                                             |
| Area tripling (Theodorus's) constant                                                                                          | 1.732 050 807 568 877 293 527 446 •••                                                                                                                                                                 | √3. Area-tripling scale factor                                                                                                                                             |
| Volume doubling (Delos) constant                                                                                              | 1.259 921 049 894 873 164 767 210 •••                                                                                                                                                                 | 2 <sup>1/3</sup> . Volume-doubling scale factor                                                                                                                            |
| Volume tripling constant                                                                                                      | 1.442 249 570 307 408 382 321 638 •••                                                                                                                                                                 | 3 <sup>1/3</sup> . Volume-tripling scale factor                                                                                                                            |
| Universal parabolic constant                                                                                                  | 2.295 587 149 392 638 074 034 298 ••• #t                                                                                                                                                              | $\log(1+\sqrt{2})+\sqrt{2}$ . Arc-to-latus_rectum ratio in any parabola.                                                                                                   |
| Minimum area of a constant-width figure                                                                                       | 0.704 770 923 010 457 972 467 598 •••                                                                                                                                                                 | (pi - sqrt(3))/2 for width = 1. See Reuleaux triangle                                                                                                                      |
|                                                                                                                               | 0.987 700 390 736 053 460 131 999 •••                                                                                                                                                                 | Portion of square area covered by a Reuleaux drill                                                                                                                         |
| Square-drill constant                                                                                                         |                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                      |
| Moser's worm constant                                                                                                         | 0.232 239 210 ••• ?                                                                                                                                                                                   | Area of smallest region accomodating any curve of length 1                                                                                                                 |
| Gravitoid constant                                                                                                            | 1.240 806 478 802 799 465 254 958 •••                                                                                                                                                                 | $2\sqrt{(2/(3\sqrt{3}))}$ . Width/Depth of <b>gravitoid curve</b> or <b>gravidome</b>                                                                                      |
| Sphere and hyper-spheres in n = 2, 3, 4,, 10 Euclid 2D-Disk   Circle.                                                         | uean dimensions                                                                                                                                                                                       |                                                                                                                                                                            |
| Area / Radius <sup>2</sup> = $V(2) = \pi$                                                                                     | 3.141 592 653 589 793 238 462 643 ••• #t                                                                                                                                                              | Associate distribution adding                                                                                                                                              |
| Radius / Area <sup>1/2</sup> = Rv(2) = $1/\sqrt{\pi}$                                                                         |                                                                                                                                                                                                       | Area of a disk with unit radius                                                                                                                                            |
| Radius / Area $^{-1}$ = RV(2) = 1/VII<br>Circumference / Radius <sup>2</sup> = S(2) = 2 $\pi$                                 | 0.564 189 583 547 756 286 948 079 •••                                                                                                                                                                 | Radius of a sphere with unit area                                                                                                                                          |
|                                                                                                                               | 6.283 185 307 179 586 476 925 286 •••                                                                                                                                                                 |                                                                                                                                                                            |
| Radius / Circumference = Rs(2) = $1/(2\pi)$                                                                                   | 0.159 154 943 091 895 335 768 883 •••                                                                                                                                                                 | Radius of a disk with unit circumference                                                                                                                                   |
| 3D-Sphere, the Queen of all bodies.                                                                                           | 1                                                                                                                                                                                                     | Inc                                                                                                                                                                        |
| Volume / Radius <sup>3</sup> = V(3) = $4\pi/3$                                                                                | 4.188 790 204 786 390 984 616 857 •••                                                                                                                                                                 | Volume of a sphere with unit radius                                                                                                                                        |
| Radius / Volume <sup>1/3</sup> = Rv(3) = $(3/(4\pi))^{1/3}$                                                                   | 0.620 350 490 899 400 016 668 006 •••                                                                                                                                                                 | Radius of a sphere with unit volume                                                                                                                                        |
| Surface / Radius <sup>2</sup> = S(3) = $4\pi$                                                                                 | 12.566 370 614 359 172 953 850 573 •••                                                                                                                                                                | See also surface indices.                                                                                                                                                  |
| Radius / Surface <sup>1/2</sup> = Rs(3) = $1/(4\pi)^{1/2}$                                                                    | 0.282 094 791 773 878 143 474 039 •••                                                                                                                                                                 | Radius of a sphere with unit surface                                                                                                                                       |
| nD-Hyperspheres in n>3 dimensions (see disk and                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                            |
| $V(4) = \pi^2/2$                                                                                                              | 4.934 802 200 544 679 309 417 245 •••                                                                                                                                                                 | Rv(4) = 0.670 938 266 965 413 916 222 789                                                                                                                                  |
| $V(5) = 8\pi^2/15$ , the largest of them all                                                                                  | 5.263 789 013 914 324 596 711 728 •••                                                                                                                                                                 | Rv(5) = 0.717 365 200 794 964 260 816 144                                                                                                                                  |
| $V(6) = \pi^3/6$                                                                                                              | 5.167 712 780 049 970 029 246 052 •••                                                                                                                                                                 | Rv(6) = 0.760 531 030 982 050 466 116 446                                                                                                                                  |
| $V(7) = 16\pi^3/105$                                                                                                          | 4.724 765 970 331 401 169 596 390 •••                                                                                                                                                                 | Rv(7) = 0.801 050 612 642 752 206 249 327                                                                                                                                  |
| $V(8) = \pi^4/24$                                                                                                             | 4.058 712 126 416 768 218 185 013 •••                                                                                                                                                                 | Rv(8) = 0.839 366 184 571 988 024 335 065                                                                                                                                  |
| $V(9) = 32\pi^4/945$                                                                                                          | 3.298 508 902 738 706 869 382 106                                                                                                                                                                     | Rv(9) = 0.875 808 485 845 386 610 603 654                                                                                                                                  |
| $V(10) = \pi^5/120$                                                                                                           | 2.550 164 039 877 345 443 856 177                                                                                                                                                                     | Rv(10) = 0.910 632 588 621 402 549 723 631                                                                                                                                 |
| nD- <b>Hyperspheres</b> in n>3 dimensions (see disk and                                                                       | d sphere for n≤3): S(n) = <b>Surface</b> /Radius <sup>(n-1)</sup> and                                                                                                                                 | $ Rs(n)  = Radius/Surface^{1/(n-1)} = 1/S(n)^{1/(n-1)}$ .                                                                                                                  |
| $S(4) = 2\pi^2$                                                                                                               | 19.739 208 802 178 717 237 668 981 •••                                                                                                                                                                | Rs(4) = 0.370 018 484 153 678 110 702 808                                                                                                                                  |
| $S(5) = 8\pi^2/3$                                                                                                             | 26.318 945 069 571 622 983 558 642 •••                                                                                                                                                                | Rs(5) = 0.441 502 208 724 281 499 461 813                                                                                                                                  |
| $S(6) = \pi^3$                                                                                                                | 31.006 276 680 299 820 175 476 315 •••                                                                                                                                                                | Rs(6) = 0.503 164 597 143 259 315 750 866                                                                                                                                  |
| $S(7) = 16\pi^3/15$ , the largest of all of them                                                                              | 33.073 361 792 319 808 187 174 736 •••                                                                                                                                                                | Rs(7) = 0.558 153 445 139 655 576 810 770                                                                                                                                  |
| $S(8) = \pi^4/3$                                                                                                              | 32.469 697 011 334 145 745 480 110 •••                                                                                                                                                                | Rs(8) = 0.608 239 384 088 163 635 224 747                                                                                                                                  |
| $S(9) = 32\pi^4/105$                                                                                                          | 29.686 580 124 648 361 824 438 958                                                                                                                                                                    | Rs(9) = 0.654 530 635 654 477 183 429 699                                                                                                                                  |
| $S(10) = \pi^5/12$                                                                                                            | 25.501 640 398 773 454 438 561 775                                                                                                                                                                    | Rs(10) = 0.697 773 792 101 567 380 147 922                                                                                                                                 |
| <b>Magic angle</b> $φ_m$ and <b>Tetrahedral angle</b> $θ_m$ . Notes: $φ_m$                                                    | $m = a\cos(1/\sqrt{3}) = atan(\sqrt{2}) = \pi/2 - asin(1/\sqrt{3}); \pi - \theta_m$                                                                                                                   | $=a\cos(1/3)=a\tan(2\sqrt{2})$                                                                                                                                             |
| Magic angle φ <sub>m</sub>                                                                                                    | 0.955 316 618 124 509 278 163 857 •••                                                                                                                                                                 | Degrees: 54.735 610 317 245 345 684 622 999 •••                                                                                                                            |
| Complementary magic angle $\varphi'_m = \pi/2 - \varphi_m$                                                                    | 0.615 479 708 670 387 341 067 464 •••                                                                                                                                                                 | Degrees: 35.264 389 682 754 654 315 377 000                                                                                                                                |
| Tetrahedral angle θ <sub>m</sub> = 2φ <sub>m</sub>                                                                            | 1.910 633 236 249 018 556 327 714 •••                                                                                                                                                                 | Degrees: 109.471 220 634 490 691 369 245 999 •••                                                                                                                           |
| Complemetary tetrahedral angle $\theta'_m = \pi - \theta_m$                                                                   | 1.230 959 417 340 774 682 134 929 •••                                                                                                                                                                 | Degrees: 70.528 779 365 509 308 630 754 000                                                                                                                                |
|                                                                                                                               | the full solid angle, $\theta = a\cos(1-2f)$                                                                                                                                                          | •                                                                                                                                                                          |
|                                                                                                                               |                                                                                                                                                                                                       |                                                                                                                                                                            |
|                                                                                                                               | 1.332 478 864 985 030 510 208 009 •••                                                                                                                                                                 | Degrees: 76.345 415 254 024 494 986 936 602 •••                                                                                                                            |
| Polar angles θ of cones cutting a given fraction f of $f = (\Phi-1)/\Phi$ , where $\Phi$ is the golden-ratio                  |                                                                                                                                                                                                       |                                                                                                                                                                            |
| Polar angles $\theta$ of cones cutting a given fraction f of $f = (\Phi-1)/\Phi$ , where $\Phi$ is the golden-ratio $f = 1/3$ | 1.230 959 417 340 774 682 134 929 •••                                                                                                                                                                 | The complemetary tetrahedral angle. Degrees: 70.528 779 •••                                                                                                                |
| Polar angles θ of cones cutting a given fraction f of $f = (\Phi-1)/\Phi$ , where $\Phi$ is the golden-ratio                  |                                                                                                                                                                                                       | Degrees: 76.345 415 254 024 494 986 936 602 •••  The complemetary tetrahedral angle. Degrees: 70.528 779 ••• π/3. Degrees: 60  Degrees: 36.869 897 645 844 021 296 855 612 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solid angle fractions f cut-out by cones with a given polar angle $\theta$ , $f = (1 - \cos\theta)/2$ . The subtended solid angle in steradians is therefore $4\pi^*f$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| $\theta = \theta'_{m}$ , the complementary tetrahedral angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| θ = 60 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.25 1/4 exact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| $\theta$ = 1 radian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.229 848 847 065 930 141 299 531 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1-cos(1))/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| $\theta = \phi_{m}$ the magic angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.211 324 865 405 187 117 745 425 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (1-√(1/3))/2; also the Knuth's constant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| θ = 45 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.146 446 609 406 726 237 799 577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1-√(1/2))/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| $\theta = \phi'_{lm}$ the complementary magic angle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.091 751 709 536 136 983 633 785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1-√(2/3))/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| θ = 30 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.066 987 298 107 780 676 618 138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1-√(3/4))/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| θ = 15 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.017 037 086 855 465 856 625 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (1-sqrt((1+√(3/4))/2))/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| $\theta$ = 0.5 degrees (base disk of 1 degree diameter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.903 846 791 435 563 132 241e-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Steradians: 2.392 444 437 413 785 769 530e-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Various solid angles in steradians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Square on a sphere with sides of 1 radian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.927 689 475 322 313 640 795 613 ••• 4*asin(sin(1/2)^2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Square on a sphere with sides of 1 degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.046 096 875 119 366 637 825 ··· e-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 asin(sin( $\alpha$ /2)sin( $\beta$ /2)); $\alpha = \beta = 1$ degree = $\pi$ /180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Spherical triangle with sides of 1 radian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.495 594 895 733 964 750 698 857 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | See Huilier's formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Spherical triangle with sides of 1 degree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.319 082 346 912 923 487 761 e-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | See Huilier's formula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Surface-to-Volume indices for CLOSED 3D bodies: σ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne), sorted by value:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Sphere                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.835 975 862 049 408 922 150 900 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(36\pi)^{1/3}$ ; the absolute minimum for closed bodies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| lcosahedron, regular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.148 348 556 199 515 646 330 812 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(5\sqrt{3})/[5(3+\sqrt{5})/12]^{2/3}$ ; a Platonic solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Dodecahedron, regular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.311 613 997 069 083 669 796 666 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(3\sqrt{(25+10\sqrt{5})})/[(15+7\sqrt{5})/4]^{2/3}$ ; a Platonic solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Closed cylinder with smallest $\sigma_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.535 810 445 932 085 257 290 411 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3*(2\pi)^{1/3}$ ; Height = Diameter. <b>Cannery constant</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Octahedron, regular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.719 105 757 981 619 442 544 453 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(2\sqrt{3})/[(\sqrt{2})/3]^{2/3}$ ; a Platonic solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Cube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.000 exact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A Platonic solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Cone (closed) with smallest σ <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.092 947 785 379 555 603 436 316 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6*(π/3) <sup>1/3</sup> ; Height=BaseDiameter*√2. <b>Frozon cone constant</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Tetrahedron, regular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.205 621 731 056 016 360 052 792 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(\sqrt{3})/[(\sqrt{2})/12]^{2/3}$ ; a Platonic solid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Surface-to-Volume indices for OPEN 3D bodies: $\sigma_3$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 12 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Open cylinder (tube)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.690 540 297 288 056 838 193 607 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2^*(2\pi)^{1/3}$ , to be multiplied by (Length/Diameter) <sup>1/3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Open cone with smallest σ <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.188 077 948 623 138 128 725 597 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3*√3*(π/6) <sup>1/3</sup> ; Height = BaseRadius*√2. <b>TeePee constant</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| Half-closed cylinder (cup/pot) with smallest σ <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.393 775 662 684 569 789 060 427 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $3\pi^{1/3}$ ; Height = Radius. Cooking pot constant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Perimeter-to-Area indices for CLOSED 2D figures, or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Disk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.544 907 701 811 032 054 596 334 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2\sqrt{\pi}$ ; this is <i>the absolute minimum</i> for all figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Regular heptagon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.672 068 807 445 035 069 314 605                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Regular n-gon: $\sigma_2 = 2* \operatorname{sqrt}(n* \tan(\pi/n)) = \min \min$ for all n-gons                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Regular hexagon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.722 419 436 408 398 395 764 874                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2*sqrt(6*tan(π/6)); <i>the minimum</i> for all hexagons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Regular pentagon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.811 935 277 533 869 372 492 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2*sqrt(5*tan(π/5)); <i>the minimum</i> for all pentagons.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.000 exact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Also the minimum for disk wedges, attained for angle of 2 rad.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| Square                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Square  Equilateral triangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.559 014 113 909 555 283 987 126 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $6/\sqrt{(\sqrt{3})}$ ; the minimum for all triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.559 014 113 909 555 283 987 126 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $6/\sqrt{(\sqrt{3})}$ ; the minimum for all triangles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Equilateral triangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I<br>lidean space by (n-1)-dimensional spheres. $\Delta_1$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : 1. Values for n>3 are [very likely] conjectures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Equilateral triangle  Packing ratios (monodispersed)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I<br>lidean space by (n-1)-dimensional spheres. $\Delta_1$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : 1. Values for n>3 are [very likely] conjectures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Equilateral triangle  Packing ratios (monodispersed)  Densest packing ratios $\Delta_n$ in the n-dimensional Euc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | I<br>lidean space by (n-1)-dimensional spheres. $\Delta_1$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : 1. Values for n>3 are [very likely] conjectures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Equilateral triangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lidean space by (n-1)-dimensional spheres. $\Delta_1$ = stants $\gamma_0$ = $4(\Delta_0 / V(n))^{2/n}$ , where $V(n)$ is the unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. Values for n>3 are [very likely] conjectures. hypersphere volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Equilateral triangle $ \begin{aligned} &\textbf{\textit{Packing ratios (monodispersed)}} \\ &\textbf{\textit{Densest packing ratios } \Delta_n \text{ in the n-dimensional Euc} \\ &\textbf{\textit{Also listed are the powers h(n)} = (v_n)^n \text{ of Hermite col}} \\ &\Delta_2 = \pi/(2\sqrt{3}), \textbf{\textit{Disks-packing Kepler constant}} \\ &\Delta_3 = \pi/(3\sqrt{2}), \textbf{\textit{Spheres-packing Kepler constant}} \\ &\Delta_4 = \pi^2/16, \textbf{\textit{Korkin-Zolotarev constant}} \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lidean space by (n-1)-dimensional spheres. $\Delta_1$ = stants $\gamma_n$ = 4( $\Delta_n$ / V(n)) <sup>2/n</sup> , where V(n) is the unit 0.906 899 682 117 089 252 970 392 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Values for n>3 are [very likely] conjectures. hypersphere volume. h(n) = 4/3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Equilateral triangle $ \begin{aligned} &\textit{Packing ratios (monodispersed)} \\ &\textit{Densest packing ratios $\Delta_n$ in the n-dimensional Euclidean Also listed are the powers $h(n) = (\gamma_n)^n$ of Hermite con $\Delta_2 = \pi/(2\sqrt{3})$, Disks-packing Kepler constant $\Delta_3 = \pi/(3\sqrt{2})$, Spheres-packing Kepler constant $\Delta_4 = \pi^2/16$, Korkin-Zolotarev constant $\Delta_5 = (\pi^2\sqrt{2})/30$, Korkin-Zolotarev $ | lidean space by (n-1)-dimensional spheres. $\Delta_1$ = stants $\gamma_n$ = 4( $\Delta_n$ / V(n)) <sup>2/n</sup> , where V(n) is the unit 0.906 899 682 117 089 252 970 392 ••• 0.740 480 489 693 061 041 169 313 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1. Values for n>3 are [very likely] conjectures.  hypersphere volume.  h(n) = 4/3.  hcp / fcc lattices (see below). h(n) = 2.                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Equilateral triangle $ \begin{array}{l} \textbf{Packing ratios (monodispersed)} \\ \textbf{Densest packing ratios } \Delta_n \text{ in the n-dimensional Euclidean Also listed are the powers } h(n) = (\gamma_n)^n \text{ of Hermite constant} \\ \Delta_2 = \pi/(2\sqrt{3}), \text{Disks-packing Kepler constant} \\ \Delta_3 = \pi/(3\sqrt{2}), \text{Spheres-packing Kepler constant} \\ \Delta_4 = \pi^2/16, \textbf{Korkin-Zolotarev constant} \\ \Delta_5 = (\pi^2\sqrt{2})/30, \textbf{Korkin-Zolotarev constant} \\ \Delta_6 = \pi^3(\sqrt{3})/144 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lidean space by (n-1)-dimensional spheres. $\Delta_1$ = $8 	ants$ $\Delta_1$ = $4 	ants$ $\Delta_2$ = $4 	ants$ $\Delta_3$ = $4 	ants$ $\Delta_4$ | hypersphere volume.  h(n) = 4/3.  hcp / fcc lattices (see below). h(n) = 2.  h(n) = 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Equilateral triangle $ \begin{array}{l} \textbf{Packing ratios (monodispersed)} \\ \textbf{Densest packing ratios } \Delta_n \text{ in the n-dimensional Euclidean Also listed are the powers } h(n) = (\gamma_n)^n \text{ of Hermite constant} \\ \Delta_2 = \pi/(2\sqrt{3}), \text{ Disks-packing Kepler constant} \\ \Delta_3 = \pi/(3\sqrt{2}), \text{ Spheres-packing Kepler constant} \\ \Delta_4 = \pi^2/16, \textbf{Korkin-Zolotarev constant} \\ \Delta_5 = (\pi^2\sqrt{2})/30, \textbf{Korkin-Zolotarev constant} \\ \Delta_6 = \pi^3(\sqrt{3})/144 \\ \Delta_7 = \pi^3/105 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lidean space by (n-1)-dimensional spheres. $\Delta_1$ = stants $\gamma_n$ = 4( $\Delta_n$ / V(n)) <sup>2/n</sup> , where V(n) is the unit 0.906 899 682 117 089 252 970 392 ••• 0.740 480 489 693 061 041 169 313 ••• 0.616 850 275 068 084 913 677 155 ••• 0.465 257 613 309 258 635 610 504 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | hypersphere volume.  h(n) = 4/3.  hcp / fcc lattices (see below). h(n) = 2.  h(n) = 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Equilateral triangle $ \begin{array}{l} \textbf{Packing ratios (monodispersed)} \\ \textbf{Densest packing ratios } \Delta_n \text{ in the n-dimensional Euclidean Also listed are the powers } h(n) = (\gamma_n)^n \text{ of Hermite constant} \\ \Delta_2 = \pi/(2\sqrt{3}), \text{Disks-packing Kepler constant} \\ \Delta_3 = \pi/(3\sqrt{2}), \text{Spheres-packing Kepler constant} \\ \Delta_4 = \pi^2/16, \textbf{Korkin-Zolotarev constant} \\ \Delta_5 = (\pi^2\sqrt{2})/30, \textbf{Korkin-Zolotarev constant} \\ \Delta_6 = \pi^3(\sqrt{3})/144 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $10$ stants $\Delta_1 = 10$ stants       | h(n) = 4.  h(n) = 4.  h(n) = 8.  h(n) = 64/3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Equilateral triangle $ \begin{array}{l} \textbf{Packing ratios (monodispersed)} \\ \textbf{Densest packing ratios } \Delta_n \text{ in the n-dimensional Euclidean Also listed are the powers } h(n) = (\gamma_n)^n \text{ of Hermite constant} \\ \Delta_2 = \pi/(2\sqrt{3}), \text{ Disks-packing Kepler constant} \\ \Delta_3 = \pi/(3\sqrt{2}), \text{ Spheres-packing Kepler constant} \\ \Delta_4 = \pi^2/16, \textbf{Korkin-Zolotarev constant} \\ \Delta_5 = (\pi^2\sqrt{2})/30, \textbf{Korkin-Zolotarev constant} \\ \Delta_6 = \pi^3(\sqrt{3})/144 \\ \Delta_7 = \pi^3/105 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $n$ stants $\gamma_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $n$ 0.906 899 682 117 089 252 970 392 $\dots$ 0.740 480 489 693 061 041 169 313 $\dots$ 0.616 850 275 068 084 913 677 155 $\dots$ 0.465 257 613 309 258 635 610 504 $\dots$ 0.372 947 545 582 064 939 563 477 $\dots$ 0.295 297 873 145 712 573 099 774 $\dots$ 0.253 669 507 901 048 013 636 563 $\dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hypersphere volume.  h(n) = 4/3.  hcp / fcc lattices (see below). h(n) = 2.  h(n) = 4.  h(n) = 8.  h(n) = 64/3.  h(n) = 64.  h(n) = 256.                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Equilateral triangle $ \begin{array}{l} \textbf{Packing ratios (monodispersed)} \\ \textbf{Densest packing ratios } \Delta_n \text{ in the n-dimensional Euclidean Packing ratios} \Delta_n \text{ in the n-dimensional Euclidean Packing are the powers h(n)} = (\gamma_n)^n \text{ of Hermite constant} \\ \Delta_2 = \pi/(2\sqrt{3}), \text{ Disks-packing Kepler constant} \\ \Delta_3 = \pi/(3\sqrt{2}), \text{ Spheres-packing Kepler constant} \\ \Delta_4 = \pi^2/16, \text{ Korkin-Zolotarev constant} \\ \Delta_5 = (\pi^2\sqrt{2})/30, \text{ Korkin-Zolotarev constant} \\ \Delta_6 = \pi^3(\sqrt{3})/144 \\ \Delta_7 = \pi^3/105 \\ \Delta_8 = \pi^4/384 \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $nstants \ \gamma_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $0.906\ 899\ 682\ 117\ 089\ 252\ 970\ 392 \cdots$ $0.740\ 480\ 489\ 693\ 061\ 041\ 169\ 313 \cdots$ $0.616\ 850\ 275\ 068\ 084\ 913\ 677\ 155 \cdots$ $0.465\ 257\ 613\ 309\ 258\ 635\ 610\ 504 \cdots$ $0.372\ 947\ 545\ 582\ 064\ 939\ 563\ 477 \cdots$ $0.295\ 297\ 873\ 145\ 712\ 573\ 099\ 774 \cdots$ $0.253\ 669\ 507\ 901\ 048\ 013\ 636\ 563 \cdots$ al Euclidean space by $(n-1)$ -dimensional spheres $0.772\ \pm 0.002$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | hypersphere volume.  h(n) = 4/3.  hcp / fcc lattices (see below). h(n) = 2.  h(n) = 4.  h(n) = 8.  h(n) = 64/3.  h(n) = 64.  h(n) = 256.                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Equilateral triangle $ \begin{array}{l} \textbf{Packing ratios (monodispersed)} \\ \textbf{Densest packing ratios} \; \Delta_n \; \text{in the n-dimensional Euc} \\ \textbf{Also listed are the powers} \; h(n) = (\gamma_n)^n \; \text{of Hermite con} \\ \Delta_2 = \pi/(2\sqrt{3}), \; \text{Disks-packing Kepler constant} \\ \Delta_3 = \pi/(3\sqrt{2}), \; \text{Spheres-packing Kepler constant} \\ \Delta_4 = \pi^2/16, \; \textbf{Korkin-Zolotarev} \; \text{constant} \\ \Delta_5 = (\pi^2\sqrt{2})/30, \; \textbf{Korkin-Zolotarev} \; \text{constant} \\ \Delta_6 = \pi^3(\sqrt{3})/144 \\ \Delta_7 = \pi^3/105 \\ \Delta_8 = \pi^4/384 \\ \textbf{Densest random packing ratios} \; \text{in the n-dimensional constant} \\ 2D \; \text{disks, densest random} \\ 3D \; \text{spheres, densest random} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $n$ stants $\gamma_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $n$ 0.906 899 682 117 089 252 970 392 $\cdots$ 0.740 480 489 693 061 041 169 313 $\cdots$ 0.616 850 275 068 084 913 677 155 $\cdots$ 0.465 257 613 309 258 635 610 504 $\cdots$ 0.372 947 545 582 064 939 563 477 $\cdots$ 0.295 297 873 145 712 573 099 774 $\cdots$ 0.253 669 507 901 048 013 636 563 $\cdots$ all Euclidean space by $(n-1)$ -dimensional spheres 0.772 $\pm$ 0.002 0.634 $\pm$ 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Values for n>3 are [very likely] conjectures. hypersphere volume.  h(n) = 4/3. hcp / fcc lattices (see below). h(n) = 2. h(n) = 4. h(n) = 8. h(n) = 64/3. h(n) = 64. h(n) = 256. s. Known only approximately.                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| Equilateral triangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $1$ stants $Y_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $1$ 0.906 899 682 117 089 252 970 392 ••• $1$ 0.740 480 489 693 061 041 169 313 ••• $1$ 0.616 850 275 068 084 913 677 155 ••• $1$ 0.465 257 613 309 258 635 610 504 ••• $1$ 0.372 947 545 582 064 939 563 477 ••• $1$ 0.295 297 873 145 712 573 099 774 ••• $1$ 0.253 669 507 901 048 013 636 563 ••• $1$ at Euclidean space by $(n-1)$ -dimensional spheres $1$ 0.772 $1$ 0.002 $1$ 0.634 $1$ 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. Values for n>3 are [very likely] conjectures. hypersphere volume. h(n) = 4/3. hcp / fcc lattices (see below). h(n) = 2. h(n) = 4. h(n) = 8. h(n) = 64/3. h(n) = 64. h(n) = 256. s. Known only approximately. Empirical & theoretical Empirical & theoretical                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Equilateral triangle $ \begin{array}{l} \textbf{Packing ratios (monodispersed)} \\ \textbf{Densest packing ratios} \; \Delta_n \; \text{in the n-dimensional Euc} \\ \textbf{Also listed are the powers h(n)} = (\gamma_n)^n \; \text{of Hermite con} \\ \Delta_2 = \pi/(2\sqrt{3}), \; \text{Disks-packing Kepler constant} \\ \Delta_3 = \pi/(3\sqrt{2}), \; \text{Spheres-packing Kepler constant} \\ \Delta_4 = \pi^2/16, \; \textbf{Korkin-Zolotarev constant} \\ \Delta_5 = (\pi^2\sqrt{2})/30, \; \textbf{Korkin-Zolotarev constant} \\ \Delta_6 = \pi^3(\sqrt{3})/144 \\ \Delta_7 = \pi^3/105 \\ \Delta_8 = \pi^4/384 \\ \textbf{Densest random packing ratios in the n-dimensional 2D disks, densest random} \\ 3D \; \text{spheres, densest random} \\ \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $n$ stants $\gamma_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $n$ 0.906 899 682 117 089 252 970 392 $\cdots$ 0.740 480 489 693 061 041 169 313 $\cdots$ 0.616 850 275 068 084 913 677 155 $\cdots$ 0.465 257 613 309 258 635 610 504 $\cdots$ 0.372 947 545 582 064 939 563 477 $\cdots$ 0.295 297 873 145 712 573 099 774 $\cdots$ 0.253 669 507 901 048 013 636 563 $\cdots$ all Euclidean space by $(n-1)$ -dimensional spheres 0.772 $\pm$ 0.002 0.634 $\pm$ 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. Values for n>3 are [very likely] conjectures. hypersphere volume. $h(n) = 4/3.$ $hcp / fcc lattices (see below). h(n) = 2.$ $h(n) = 4.$ $h(n) = 8.$ $h(n) = 64/3.$ $h(n) = 64.$ $h(n) = 256.$ S. Known only approximately.  Empirical & theoretical  Empirical & theoretical                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Equilateral triangle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $1$ stants $Y_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $1$ 0.906 899 682 117 089 252 970 392 ••• $1$ 0.740 480 489 693 061 041 169 313 ••• $1$ 0.616 850 275 068 084 913 677 155 ••• $1$ 0.465 257 613 309 258 635 610 504 ••• $1$ 0.372 947 545 582 064 939 563 477 ••• $1$ 0.295 297 873 145 712 573 099 774 ••• $1$ 0.253 669 507 901 048 013 636 563 ••• $1$ at Euclidean space by $(n-1)$ -dimensional spheres $1$ 0.772 $1$ 0.002 $1$ 0.634 $1$ 0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. Values for n>3 are [very likely] conjectures. hypersphere volume. h(n) = 4/3. hcp / fcc lattices (see below). h(n) = 2. h(n) = 4. h(n) = 8. h(n) = 64/3. h(n) = 64. h(n) = 256. s. Known only approximately. Empirical & theoretical Empirical & theoretical                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Equilateral triangle  Packing ratios (monodispersed)  Densest packing ratios $\Delta_n$ in the n-dimensional Euclidean Also listed are the powers $h(n) = (\gamma_n)^n$ of Hermite conductive $\Delta_2 = \pi/(2\sqrt{3})$ , Disks-packing Kepler constant $\Delta_3 = \pi/(3\sqrt{2})$ , Spheres-packing Kepler constant $\Delta_4 = \pi^2/16$ , Korkin-Zolotarev constant $\Delta_5 = (\pi^2\sqrt{2})/30$ , Korkin-Zolotarev constant $\Delta_6 = \pi^3/\sqrt{3}/144$ $\Delta_7 = \pi^3/105$ $\Delta_8 = \pi^4/384$ Densest random packing ratios in the n-dimensional 2D disks, densest random  3D spheres, densest random  Atomic packing factors (APF) of crystal lattices (3D) Hexagonal close packed (hcp)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $nstants$ $\gamma_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $0.906899682117089252970392$ $0.740480489693061041169313$ $0.616850275068084913677155$ $0.465257613309258635610504$ $0.372947545582064939563477$ $0.295297873145712573099774$ $0.295297873145712573099774$ $0.253669507901048013636563$ al Euclidean space by $(n-1)$ -dimensional spheres $0.772\pm0.002$ $0.634\pm0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1. Values for n>3 are [very likely] conjectures. hypersphere volume. $h(n) = 4/3.$ $hcp / fcc lattices (see below). h(n) = 2.$ $h(n) = 4.$ $h(n) = 8.$ $h(n) = 64/3.$ $h(n) = 64.$ $h(n) = 256.$ S. Known only approximately.  Empirical & theoretical  Empirical & theoretical                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Equilateral triangle  Packing ratios (monodispersed)  Densest packing ratios $\Delta_n$ in the n-dimensional Euclidean Also listed are the powers $h(n) = (\gamma_n)^n$ of Hermite con $\Delta_2 = \pi/(2\sqrt{3})$ , Disks-packing Kepler constant $\Delta_3 = \pi/(3\sqrt{2})$ , Spheres-packing Kepler constant $\Delta_4 = \pi^2/16$ , Korkin-Zolotarev constant $\Delta_5 = (\pi^2\sqrt{2})/30$ , Korkin-Zolotarev constant $\Delta_6 = \pi^3/(\sqrt{3})/144$ $\Delta_7 = \pi^3/105$ $\Delta_8 = \pi^4/384$ Densest random packing ratios in the n-dimensional 2D disks, densest random  3D spheres, densest random  Atomic packing factors (APF) of crystal lattices (3D) Hexagonal close packed (hcp)  Body-centered cubic (bcc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $nstants \ \gamma_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $0.906\ 899\ 682\ 117\ 089\ 252\ 970\ 392 \cdots$ $0.740\ 480\ 489\ 693\ 061\ 041\ 169\ 313 \cdots$ $0.616\ 850\ 275\ 068\ 084\ 913\ 677\ 155 \cdots$ $0.465\ 257\ 613\ 309\ 258\ 635\ 610\ 504 \cdots$ $0.372\ 947\ 545\ 582\ 064\ 939\ 563\ 477 \cdots$ $0.295\ 297\ 873\ 145\ 712\ 573\ 099\ 774 \cdots$ $0.253\ 669\ 507\ 901\ 048\ 013\ 636\ 563 \cdots$ at Euclidean space by $(n-1)$ -dimensional spheres $0.772\pm0.002$ $0.634\pm0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. Values for n>3 are [very likely] conjectures. hypersphere volume. $h(n) = 4/3.$ $hcp / fcc lattices (see below). h(n) = 2.$ $h(n) = 4.$ $h(n) = 8.$ $h(n) = 64/3.$ $h(n) = 64.$ $h(n) = 256.$ 3. Known only approximately. Empirical & theoretical Empirical & theoretical and face-centered cubic (fcc). $\pi / (3\sqrt{2})$ . $(\pi \sqrt{3})/8.$                                                                                                                                                                                                                   |  |  |  |  |
| Equilateral triangle  Packing ratios (monodispersed)  Densest packing ratios $\Delta_n$ in the n-dimensional Euclidean Also listed are the powers $h(n) = (\gamma_n)^n$ of Hermite color $\Delta_2 = \pi/(2\sqrt{3})$ , Disks-packing Kepler constant $\Delta_3 = \pi/(3\sqrt{2})$ , Spheres-packing Kepler constant $\Delta_4 = \pi^2/16$ , Korkin-Zolotarev constant $\Delta_5 = (\pi^2\sqrt{2})/30$ , Korkin-Zolotarev constant $\Delta_6 = \pi^3(\sqrt{3})/144$ $\Delta_7 = \pi^3/105$ $\Delta_8 = \pi^4/384$ Densest random packing ratios in the n-dimensional 2D disks, densest random  3D spheres, densest random  Atomic packing factors (APF) of crystal lattices (3D) Hexagonal close packed (hcp)  Body-centered cubic (bcc)  Simple cubic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $nstants$ $\gamma_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $0.906899682117089252970392$ $0.740480489693061041169313$ $0.616850275068084913677155$ $0.465257613309258635610504$ $0.372947545582064939563477$ $0.295297873145712573099774$ $0.295297873145712573099774$ $0.253669507901048013636563$ all Euclidean space by $(n-1)$ -dimensional spheres $0.772\pm0.002$ $0.634\pm0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. Values for n>3 are [very likely] conjectures. hypersphere volume. $h(n) = 4/3.$ $hcp / fcc lattices (see below). h(n) = 2.$ $h(n) = 4.$ $h(n) = 8.$ $h(n) = 64/3.$ $h(n) = 64.$ $h(n) = 256.$ S. Known only approximately. Empirical & theoretical Empirical & theoretical Empirical & theoretical $length{\text{Empirical }}{length{\text{Empirical }}} theoretical$ and face-centered cubic (fcc). $\pi / (3\sqrt{2})$ . $(\pi \sqrt{3})/8.$ $\pi / 6. \text{ In practice found only in polonium.}$ $(\pi \sqrt{3})/16. \text{ This is the smallest possible APF.}$ |  |  |  |  |
| Equilateral triangle  Packing ratios (monodispersed)  Densest packing ratios $\Delta_n$ in the n-dimensional Euclidson listed are the powers $h(n) = (\gamma_n)^n$ of Hermite conductive $\Delta_2 = \pi/(2\sqrt{3})$ , Disks-packing Kepler constant $\Delta_3 = \pi/(3\sqrt{2})$ , Spheres-packing Kepler constant $\Delta_4 = \pi^2/16$ , Korkin-Zolotarev constant $\Delta_6 = (\pi^2\sqrt{2})/30$ , Korkin-Zolotarev constant $\Delta_6 = (\pi^3/\sqrt{3})/144$ $\Delta_7 = \pi^3/105$ $\Delta_8 = \pi^4/384$ Densest random packing ratios in the n-dimensional 2D disks, densest random 3D spheres, densest random  Atomic packing factors (APF) of crystal lattices (3D) Hexagonal close packed (hcp)  Body-centered cubic (bcc)  Simple cubic  Diamond cubic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $nstants$ $\gamma_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $0.906899682117089252970392$ $0.740480489693061041169313$ $0.616850275068084913677155$ $0.465257613309258635610504$ $0.372947545582064939563477$ $0.295297873145712573099774$ $0.295297873145712573099774$ $0.253669507901048013636563$ all Euclidean space by $(n-1)$ -dimensional spheres $0.772\pm0.002$ $0.634\pm0.007$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1. Values for n>3 are [very likely] conjectures. hypersphere volume. $h(n) = 4/3.$ $hcp / fcc lattices (see below). h(n) = 2.$ $h(n) = 4.$ $h(n) = 8.$ $h(n) = 64/3.$ $h(n) = 64.$ $h(n) = 256.$ S. Known only approximately. Empirical & theoretical Empirical & theoretical Empirical & theoretical $length{\text{Empirical }}{length{\text{Empirical }}} theoretical$ and face-centered cubic (fcc). $\pi / (3\sqrt{2})$ . $(\pi \sqrt{3})/8.$ $\pi / 6. \text{ In practice found only in polonium.}$ $(\pi \sqrt{3})/16. \text{ This is the smallest possible APF.}$ |  |  |  |  |
| Equilateral triangle  Packing ratios (monodispersed)  Densest packing ratios $\Delta_n$ in the n-dimensional Euclidso listed are the powers $h(n) = (\gamma_n)^n$ of Hermite con $\Delta_2 = \pi/(2\sqrt{3})$ , Disks-packing Kepler constant $\Delta_3 = \pi/(3\sqrt{2})$ , Spheres-packing Kepler constant $\Delta_4 = \pi^2/16$ , Korkin-Zolotarev constant $\Delta_5 = (\pi^2\sqrt{2})/30$ , Korkin-Zolotarev constant $\Delta_6 = \pi^3/(\sqrt{3})/144$ $\Delta_7 = \pi^3/105$ $\Delta_8 = \pi^4/384$ Densest random packing ratios in the n-dimensional 2D disks, densest random  3D spheres, densest random  Atomic packing factors (APF) of crystal lattices (3D)  Hexagonal close packed (hcp)  Body-centered cubic (bcc)  Simple cubic  Diamond cubic  Perimeters of ellipses with major semi-axis 1, and minimal packing ratios in the n-dimensional cubic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lidean space by $(n-1)$ -dimensional spheres. $\Delta_1$ = $nstants \ \gamma_n = 4(\Delta_n / V(n))^{2/n}$ , where $V(n)$ is the unit $0.906\ 899\ 682\ 117\ 089\ 252\ 970\ 392 \cdots$ $0.740\ 480\ 489\ 693\ 061\ 041\ 169\ 313 \cdots$ $0.616\ 850\ 275\ 068\ 084\ 913\ 677\ 155 \cdots$ $0.465\ 257\ 613\ 309\ 258\ 635\ 610\ 504 \cdots$ $0.372\ 947\ 545\ 582\ 064\ 939\ 563\ 477 \cdots$ $0.295\ 297\ 873\ 145\ 712\ 573\ 099\ 774 \cdots$ $0.253\ 669\ 507\ 901\ 048\ 013\ 636\ 563 \cdots$ al Euclidean space by $(n-1)$ -dimensional spheres $0.772\pm0.002$ $0.634\pm0.007$ $0.740\ 480\ 489\ 693\ 061\ 041\ 169\ 313 \cdots$ $0.680\ 174\ 761\ 587\ 831\ 693\ 972\ 779 \cdots$ $0.523\ 598\ 775\ 598\ 298\ 873\ 077\ 107 \cdots$ $0.340\ 087\ 380\ 793\ 915\ 846\ 986\ 389 \cdots$ por semi-axis $b\ (area=\pi ab)$ . Special cases: $b=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. Values for n>3 are [very likely] conjectures. hypersphere volume. $h(n) = 4/3.$ $hcp / fcc lattices (see below). h(n) = 2.$ $h(n) = 4.$ $h(n) = 8.$ $h(n) = 64/3.$ $h(n) = 64.$ $h(n) = 256.$ 3. Known only approximately.  Empirical & theoretical  Empirical & theoretical  and face-centered cubic (fcc). $\pi/(3\sqrt{2})$ . $(\pi\sqrt{3})/8.$ $\pi/6. In practice found only in polonium.$ $(\pi\sqrt{3})/16. This is the smallest possible APF.$ flat ellipse, $b = 1$ circle.                                                                                 |  |  |  |  |

| b = 1/2, the <b>midway ellipse</b>                   | 4.844 224 110 273 838 099 214 251 b = 1/3: 4.454 964 406 851 752 743 376 500 |                                                                                     |  |
|------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|
| b = 3/4                                              | 5.525 873 040 177 376 261 321 396                                            | b = 2/3: 5.288 479 863 096 863 263 777 221                                          |  |
| b = 1/4                                              | 4.289 210 887 578 417 111 478 604                                            | b = 1/5: 4.202 008 907 937 800 188 939 832                                          |  |
| b = 1/6                                              | 4.150 013 265 005 047 157 825 880                                            | b = 1/7: 4.116 311 284 366 438 220 003 847                                          |  |
| b = 1/8                                              | 4.093 119 575 024 437 585 615 711                                            | b = 1/9: 4.076 424 191 956 689 482 335 178                                          |  |
| b = 1/10                                             | 4.063 974 180 100 895 742 557 793                                            | b = 0.01: 4.001 098 329 722 651 860 747 464                                         |  |
| b = 0.001                                            | 4.000 015 588 104 688 244 610 756                                            | b = 0.0001: 4.000 000 201 932 695 375 419 076                                       |  |
| Platonic solids data, except those already liste     | ad above such as surface to volume indices                                   | •                                                                                   |  |
| <u> </u>                                             |                                                                              |                                                                                     |  |
| Platonic solids: Tetrahedron, regular, 4 vertices, 6 |                                                                              | 1                                                                                   |  |
| Volume / edge <sup>3</sup>                           | 0.117 851 130 197 757 920 733 474 •••                                        | (√2)/12                                                                             |  |
| Surface / edge <sup>2</sup>                          | 1.732 050 807 568 877 293 527 446 •••                                        | √3; see also surface indices.                                                       |  |
| Height / edge                                        | 0.816 496 580 927 726 032 732 428 •••                                        | (√6)/3                                                                              |  |
| Angle between an edge and a face                     | 0.955 316 618 124 509 278 163 857 •••                                        | magic angle φ <sub>m</sub> (see above)                                              |  |
| Dihedral angle (between adjacent faces)              | 1.230 959 417 340 774 682 134 929 •••                                        | complementary tetrahedral angle θ' <sub>m</sub> (see above)                         |  |
| Tetrahedral angle (vertex-center-vertex)             | 1.910 633 236 249 018 556 327 714 •••                                        | θ <sub>m</sub> (see above)                                                          |  |
| Circumscribed sphere radius / edge                   | 0.612 372 435 695 794 524 549 321 ***                                        | Circumradius = (√6)/4, congruent with vertices                                      |  |
| Midsphere radius / edge                              | 0.353 553 390 593 273 762 200 422 •••                                        | Midradius = 1/√8, tangent to edges                                                  |  |
| Inscribed sphere radius / edge                       | 0.204 124 145 231 931 508 183 107 •••                                        | Inradius = (√6)/12, tangent to faces; Circumradius/Inradius =                       |  |
| Vertex solid angle                                   | 0.551 285 598 432 530 807 942 144 •••                                        | acos(23/27) steradians                                                              |  |
| Polar angle of circumscribed cone                    | 0.615 479 708 670 387 341 067 464 •••                                        | complementary magic angle φ' <sub>m</sub> (see above)                               |  |
| Solid angle of circumscribed cone                    | 1.152 985 986 532 130 094 749 141                                            | 2π(1-sqrt(2/3)) steradians                                                          |  |
| Hamiltonian cycles                                   | 3                                                                            | Acyclic Hamiltonian paths: 0                                                        |  |
| Platonic solids: Octahedron, regular, 6 vertices, 12 | edges, 8 faces, 4 edges/vertex, 3 edges/face, 4 fac                          | res/vertex, 3 diagonals of length $\sqrt{2}$ .                                      |  |
| Volume / edge <sup>3</sup>                           | 0.471 404 520 791 031 682 933 896 •••                                        | (√2)/3                                                                              |  |
| Surface / edge <sup>2</sup>                          | 3.464 101 615 137 754 587 054 892 •••                                        | $2\sqrt{3}$ ; see also surface indices.                                             |  |
| Dihedral angle (between adjacent faces)              | 1.910 633 236 249 018 556 327 714 •••                                        | tetrahedral angle (see above)                                                       |  |
| Circumscribed sphere radius / edge                   | 0.707 106 781 186 547 524 400 844 •••                                        | Circumradius = 1/√2, congruent with vertices                                        |  |
| Midsphere radius / edge                              | 0.5 exact                                                                    | Midradius, tangent to edges                                                         |  |
| Inscribed sphere radius / edge                       | 0.408 248 290 463 863 016 366 214 •••                                        | 1/√6; Tangent to faces. Circumradius/Inradius = √3                                  |  |
| Vertex solid angle                                   | 1.359 347 637 816 487 748 385 570 •••                                        | 4 asin(1/3) steradians                                                              |  |
| Polar angle of circumscribed cone                    | 0.785 398 163 397 448 309 615 660 •••                                        | π/4; Degrees: 45 exact                                                              |  |
| Solid angle of circumscribed cone                    | 1.840 302 369 021 220 229 909 405                                            | 2π(1-sqrt(1/2)) steradians                                                          |  |
| Hamiltonian cycles                                   | 16                                                                           | Acyclic Hamiltonian paths: 24 (8 span each body diagonal)                           |  |
| Platonic solids: Cube, or Hexahedron, 8 vertices, 1  | 2 edges, 6 faces, 3 edges/vertex, 4 edges/face, 3 fa                         | 1                                                                                   |  |
| Body diagonal / edge                                 | 1.732 050 807 568 877 293 527 446 ***                                        | √3. Diagonal of a cube with unit side                                               |  |
| Body diagonal / Face diagonal                        | 1.224 744 871 391 589 049 098 642 •••                                        | sqrt(3/2)                                                                           |  |
| Angle between body diagonal and an edge              | 0.955 316 618 124 509 278 163 857 •••                                        | magic angle φ <sub>m</sub> (see above)                                              |  |
| Angle between body and face diagonals                | 0.615 479 708 670 387 341 067 464 •••                                        | complementary magic angle φ' <sub>m</sub> (see above)                               |  |
| Circumscribed sphere radius / edge                   | 0.866 025 403 784 438 646 763 723 •••                                        | Circumradius = $(\sqrt{3})/2$ , congruent with vertices                             |  |
| Midsphere radius / edge                              | 0.707 106 781 186 547 524 400 844 •••                                        | Midradius = $1/\sqrt{2}$ , tangent to edges                                         |  |
| Inscribed sphere radius / edge                       | 0.5 exact                                                                    | Circumradius/Inradius = √3                                                          |  |
| ·                                                    | 1.570 796 326 794 896 619 231 321 •••                                        | π/2 steradians                                                                      |  |
| Vertex solid angle                                   |                                                                              |                                                                                     |  |
| Polar angle of circumscribed cone                    | 0.955 316 618 124 509 278 163 857 •••                                        | magic angle φ <sub>m</sub> (see above)                                              |  |
| Solid angle of circumscribed cone                    | 2.655 586 578 711 150 775 737 130                                            | $2\pi(1-\text{sqrt}(1/3))$ steradians                                               |  |
| Hamiltonian cycles                                   | 6                                                                            | Acyclic Hamiltonian paths: 24 (6 span each body diagonal)                           |  |
|                                                      |                                                                              | faces/vertex, 6 main diagonals, 30 short diagonals.                                 |  |
| Volume / edge <sup>3</sup>                           | 2.181 694 990 624 912 373 503 822 •••                                        | $5\Phi^2$ /6 = 5(3 + √5)/12, where Φ is the <b>golden ratio</b>                     |  |
| Surface / edge <sup>2</sup>                          | 8.660 254 037 844 386 467 637 231 •••                                        | $5\sqrt{3} = 10*A010527$ . See also surface indices.                                |  |
| Dihedral angle (between adjacent faces)              | 2.411 864 997 362 826 875 007 846 •••                                        | 2atan(Φ <sup>2</sup> ); Degrees: 138.189 685 104 221 401 934 142 083                |  |
| Main diagonal / edge                                 | 1.902 113 032 590 307 144 232 878 •••                                        | $2$ *Circumradius = $\xi$ Φ = sqrt( $2$ +Φ), $\xi$ being the <b>associate of</b> Φ. |  |
| Circumscribed sphere radius / edge                   | 0.951 056 516 295 153 572 116 439 •••                                        | Circumradius = $\xi \Phi/2$ = sqrt((5+sqrt(5))/8), $\xi$ as above.                  |  |
| Midsphere radius / edge                              | 0.809 016 994 374 947 424 102 293 •••                                        | Midradius = Φ/2, tangent to edges                                                   |  |
| Inscribed sphere radius / edge                       | 0.755 761 314 076 170 730 480 133 •••                                        | Inradius = $\Phi^2/(2\sqrt{3})$ = sqrt(42+18 $\sqrt{5}$ )/12                        |  |
| · · · · · · · · · · · · · · · · · · ·                |                                                                              | , , , , ,                                                                           |  |
| Vertex solid angle                                   |                                                                              |                                                                                     |  |
| Vertex solid angle Polar angle of circumscribed cone | 1.017 221 967 897 851 367 722 788 •••                                        | atan(Φ); Degrees: 58.282 525 588 538 994 675                                        |  |
|                                                      |                                                                              |                                                                                     |  |

|                                                                       |                                                                                                                     | , 3 faces/vertex; 10 main, 30 secondary, and 60 short diagonal.                                |  |
|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Volume / edge <sup>3</sup>                                            | 7.663 118 960 624 631 968 716 053 ••• $(5\Phi^3)/(2\xi^2) = (15+7\sqrt{5})/4$ , $\xi$ being the <b>associate of</b> |                                                                                                |  |
| Surface / edge <sup>2</sup>                                           | 20.645 728 807 067 603 073 108 143 •••                                                                              | 15Φ/ξ = 3.sqrt(25+10√5); see also surface indices.                                             |  |
| Dihedral angle (between adjacent faces)                               | 2.034 443 935 795 702 735 445 577 •••                                                                               | 2atan(Φ); Degrees: 116.565 051 177 077 989 351 572 193                                         |  |
| Main diagonal / edge                                                  | 2.080 251 707 688 814 708 935 335                                                                                   | 2*Circumradius = Φ√3                                                                           |  |
| Circumscribed sphere radius / edge                                    | 1.401 258 538 444 073 544 676 677 •••                                                                               | Circumradius = $\Phi(\sqrt{3})/2$ = (sqrt(15)+sqrt(3))/4                                       |  |
| Midsphere radius / edge                                               | 1.309 016 994 374 947 424 102 293 •••                                                                               | Midradius = $\Phi^2/2$ , tangent to edges                                                      |  |
| Inscribed sphere radius / edge                                        | 1.113 516 364 411 606 735 194 375 •••                                                                               | Inradius = $\Phi^2/(2\xi)$ = sqrt(250+110 $\sqrt{5}$ )/20                                      |  |
| Vertex solid angle                                                    | 2.961 739 153 797 314 967 874 090 •••                                                                               | π - atan(2/11) steradians                                                                      |  |
| Polar angle of circums cribed cone                                    | 1.205 932 498 681 413 437 503 923 •••                                                                               | acos(1/(Φ√3)); Degrees: 69.094 842 552 110 700 967                                             |  |
| Solid angle of circumscribed cone                                     | 4.041 205 995 440 192 430 566 404                                                                                   | $2\pi(1-1/(\Phi\sqrt{3}))$ steradians                                                          |  |
| Hamiltonian cycles                                                    | 30                                                                                                                  | Acyclic Hamiltonian paths: ? coming soon                                                       |  |
| Selected geometry sequences                                           |                                                                                                                     |                                                                                                |  |
| Constructible regular polygons                                        | 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, •••                                                                    | 2 <sup>^</sup> m*k, where k is any product of distinct Fermat primes.                          |  |
| Non-constructible regular polygons                                    | 7, 9, 11, 13, 14, 18, 19, 21, 22, 23, 25, 26, •••                                                                   | Complement of the above sequence.                                                              |  |
|                                                                       | I functions                                                                                                         |                                                                                                |  |
| Constants related to number-theoretica                                |                                                                                                                     |                                                                                                |  |
|                                                                       | · · ·                                                                                                               | the pole at s = 1 (simple, with residue 1). $L_{S\to\infty}\{\eta(s)\}=1$                      |  |
| Exact values & trivial zeros (n is integer >0)                        | $\zeta(0) = -0.5, \zeta(-1) = \zeta(-13) = -1/12$                                                                   | $\zeta(-2n) = 0$ , $\zeta(-n) = -B_{n+1}/(n+1)$ . $B_n$ are <b>Bernoulli</b> numbers           |  |
| $\zeta(-1/2) = -\zeta(3/2)/(4\pi)$                                    | -0.207 886 224 977 354 566 017 306 •••                                                                              | ζ(-3/2) = -0.025 485 201 889 833 035 949 542 •••                                               |  |
| ζ(+1/2)                                                               | -1.460 354 508 809 586 812 889 499 •••                                                                              | ζ(+3/2) = 2.612 375 348 685 488 343 348 567 •••                                                |  |
| $\zeta(2) = \pi^2 / 6.$ $\zeta(2n) =  B_{2n} (2\pi)^{2n}/(2(2n)!)$    | 1.644 934 066 848 226 436 472 415 ••• #t                                                                            | ζ(3) = 1.202 056 903 159 594 285 399 738 ··· #t ( <b>Apéry</b> 's)                             |  |
| $\zeta(4) = \pi^4/90$                                                 | 1.082 323 233 711 138 191 516 003 ••• #t                                                                            | ζ(5) = 1.036 927 755 143 369 926 331 365 •••                                                   |  |
| $\zeta(6) = \pi^6 / 945$                                              | 1.017 343 061 984 449 139 714 517 ••• #t                                                                            | ζ(7) = 1.008 349 277 381 922 826 839 797 ···                                                   |  |
| $\zeta(8) = \pi^8/9450$                                               | 1.004 077 356 197 944 339 378 685 ••• #t                                                                            | ζ(9) = 1.002 008 392 826 082 214 417 852 •••                                                   |  |
| $\zeta(10) = \pi^{10} / 93555$                                        | 1.000 994 575 127 818 085 337 145 ••• #t                                                                            | ζ(11) = 1.000 494 188 604 119 464 558 702 •••                                                  |  |
| $\zeta(12) = \pi^{12} (691/638512875)$                                | 1.000 246 086 553 308 048 298 637 ••• #t                                                                            | ζ(13) = 1.000 122 713 347 578 489 146 751 •••                                                  |  |
| ζ( i) , real and imaginary parts:                                     | 0.003 300 223 685 324 102 874 217 •••                                                                               | - i 0.418 155 449 141 321 676 689 274 •••                                                      |  |
| Local extrema along the negative real axis (local                     | tion in central column, value in last column). Remen                                                                | nber that ζ(-2n) = 0 for any integer n > 0                                                     |  |
| 1-st Maximum                                                          | -2.717 262 829 204 574 101 570 580 •••                                                                              | 0.009 159 890 119 903 461 840 056 •••                                                          |  |
| 1-st minimum                                                          | -4.936 762 108 594 947 868 879 358                                                                                  | -0.003 986 441 663 670 750 431 710                                                             |  |
| 2-nd Maximum                                                          | -7.074 597 145 007 145 734 335 798                                                                                  | 0.004 194 001 958 045 626 474 146                                                              |  |
| 2-nd minimum                                                          | -9.170 493 162 785 828 005 353 111                                                                                  | -0.007 850 880 657 688 685 582 151                                                             |  |
| 3-rd Maximum                                                          | -11.241 212 325 375 343 510 874 637                                                                                 | 0.022 730 748 149 745 047 522 814                                                              |  |
| 3-rd minimum                                                          | -13.295 574 569 032 520 384 733 960                                                                                 | -0.093 717 308 522 682 935 623 713                                                             |  |
| 4-th Maximum                                                          | -15.338 729 073 648 281 821 158 316                                                                                 | 0.520 589 682 236 209 120 459 027                                                              |  |
| 4-th minimum                                                          | -17.373 883 342 909 485 264 559 273                                                                                 | -3.743 566 823 481 814 727 724 234                                                             |  |
| 5-th Maximum                                                          | -19.403 133 257 176 569 932 332 310                                                                                 | 33.808 303 595 651 664 653 888 821                                                             |  |
| 5-th minimum                                                          | -21.427 902 249 083 563 532 039 024                                                                                 | -374.418 851 865 762 246 500 180                                                               |  |
| Imaginary parts of first nontrivial roots (for more,                  | see OEIS Wiki). Note: they all have real parts +0.5.                                                                | Frivial roots are the even negative integers                                                   |  |
| 1st root                                                              | 14.134 725 141 734 693 790 457 251 •••                                                                              | 2nd root: 21.022 039 638 771 554 992 628 479 •••                                               |  |
| 3rd root                                                              | 25.010 857 580 145 688 763 213 790 •••                                                                              | 4th root: 30.424 876 125 859 513 210 311 897 •••                                               |  |
| 5th root:                                                             | 32.935 061 587 739 189 690 662 368 •••                                                                              | 6th root: 37.586 178 158 825 671 257 217 763                                                   |  |
| 7th root:                                                             | 40.918 719 012 147 495 187 398 126                                                                                  | 8th root: 43.327 073 280 914 999 519 496 122                                                   |  |
| 9th root:                                                             | 48.005 150 881 167 159 727 942 472                                                                                  | 10th root: 49.773 832 477 672 302 181 916 784                                                  |  |
| <b>Expansion</b> about the pole at $s = 1$ : $\zeta(s) = 1/(s-1) + 1$ | $S_{n=0,\infty}\{(-1)^n\gamma_n(s-1)^n/n!\}$ , where $\gamma_0 \equiv \gamma$ is the <b>Euler-N</b>                 | lascheroni constant, and γ <sub>n</sub> , n > 0, are the Stieltjes constants                   |  |
| Stieltjes constant γ <sub>1</sub>                                     | -0.072 815 845 483 676 724 860 586 •••                                                                              | In general: $\gamma_n = L_{m\to\infty} \{ S_{k=1,m} \{ \log^n(k)/k \} - \ln^{n+1}(m)/(n+1) \}$ |  |
| Y2                                                                    | -0.009 690 363 192 872 318 484 530 •••                                                                              | y <sub>3</sub> = -0.002 053 834 420 303 345 866 160 •••                                        |  |
| Y4                                                                    | 0.002 325 370 065 467 300 057 468 •••                                                                               | γ <sub>5</sub> = -0.000 793 323 817 301 062 701 753 •••                                        |  |
| Y6                                                                    | -0.000 238 769 345 430 199 609 872 •••                                                                              | y <sub>7</sub> =-0.000 527 289 567 057 751 046 074 •••                                         |  |
|                                                                       | what follows, A is the <b>Glaisher-Kinkelin</b> constant a                                                          | 1"                                                                                             |  |
| ζ'(-1)                                                                | -0.165 421 143 700 450 929 213 919 •••                                                                              | 1/12 - log(A); called sometimes <b>Kinkelin constant</b>                                       |  |
| ζ'(-1/2)                                                              | -0.360 854 339 599 947 607 347 420 •••                                                                              | 2, ,,                                                                                          |  |
| ζ(0)                                                                  | -0.918 938 533 204 672 741 780 329 ***                                                                              | -ln(2π)/2                                                                                      |  |
| ζ'(+1/2)                                                              | -3.922 646 139 209 151 727 471 531 •••                                                                              | $\zeta(1/2)(\pi+2.\gamma+6.\log(2)+2.\log(\pi))/4$                                             |  |
| ζ(2)                                                                  | -0.937 548 254 315 843 753 702 574 •••                                                                              | $\pi^2(\gamma + \log(2\pi) - 1.2.A)/6$                                                         |  |
| > (-/                                                                 | 0.007 0 10 207 0 10 0 70 700 702 0 74 53                                                                            | (1 - 109(211) - 123 9/0                                                                        |  |

| Exact values & trivial zeros (n is integer >0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\eta(1) = \log(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.693 147 180 559 945 309 417 232 ••• #t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note that at $s=1$ , $\zeta(s)$ is not defined, while $\eta(s)$ is smooth                                                                                  |  |
| $\eta(2) = \pi^2/12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.822 467 033 424 113 218 236 207 ••• #t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\eta(2n) = \pi^{2n}[(2^{2n-1}-1)/(2n)!]. B_{2n} $                                                                                                         |  |
| $\eta(3) = 3.\zeta(3)/4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.901 542 677 369 695 714 049 803 ••• #t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Note that ζ(3) is the <b>Apéry</b> 's constant                                                                                                             |  |
| $\eta(4) = \pi^4 (7/720)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.947 032 829 497 245 917 576 503 ••• #t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\eta(6) = \pi^6 (31/30240), \eta(8) = \pi^8 (127/1209600), \text{ etc}$                                                                                   |  |
| η( i), real and imaginary parts:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.532 593 181 763 096 166 570 965 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.229 384 857 728 525 892 457 886 •••                                                                                                                     |  |
| Derivative: $\eta' \equiv d \eta(s)/ds = S_{k=1,\infty}\{(-1)^k \log(k).k^{-s}\} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.20001.001.120020.002.101.000                                                                                                                            |  |
| $\eta'(-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.265 214 370 914 704 351 169 348 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.log(A) - log(2)/3 - 1/4                                                                                                                                  |  |
| η'(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.225 791 352 644 727 432 363 097 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | log(sqrt(π/2))                                                                                                                                             |  |
| η'(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.159 868 903 742 430 971 756 947 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\log(2)(y - \log(\sqrt{2}))$                                                                                                                              |  |
| η'(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.101 316 578 163 504 501 886 002 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\pi^2(y + \log(\pi) + \log(4) - 12 \cdot \log(A))/12$                                                                                                     |  |
| η'( i) , real and imaginary parts:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.235 920 948 050 440 923 634 079 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -i 0.069 328 260 390 357 410 164 243 •••                                                                                                                   |  |
| Dedekind eta function $\eta(\tau) = q^{(1/24)} P_{n>0} \{(1-q^n)\},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |  |
| η(xi) maximum: Location x <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.523 521 700 017 999 266 800 534 ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For real x>0, $\eta(x i)>0$ is real, $\eta(0)=0$ , and $\lim_{x\to\infty}\eta(x i)=0$                                                                      |  |
| η(xi) maximum: Lecture 1 χ <sub>max</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.838 206 031 992 920 559 691 418 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | In this complex-plane cut, the maximum is unique                                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.768 225 422 326 056 659 002 594 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Gamma(1/4)/(2 \pi^{3/4})$ ; one of four values found by Ramanujan:                                                                                       |  |
| $\eta(i)$ $\eta(i/2) = 2^{1/8} \eta(i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.837 755 763 476 598 057 912 365 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Gamma(1/4)/(2^{11})$ , one of four values found by Ramanujan.<br>$\Gamma(1/4)/(2^{7/8} \pi^{3/4})$                                                       |  |
| $\eta(2i) = \eta(i)/2^{3/8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.592 382 781 332 415 885 290 363 ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\Gamma(1/4)/(2^{-11/8}\pi^{3/4})$                                                                                                                         |  |
| $\eta(2i) = \eta(1)/2^{-3}$ $\eta(4i) = (\sqrt{2}-1)^{1/4} \eta(i)/2^{13/16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.350 919 807 174 143 236 430 229 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(\sqrt{2}-1)^{1/4}\Gamma(1/4)/(2^{29/16}\pi^{3/4})$                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (1/2-1) 1 (1/4)/(2 11 )                                                                                                                                    |  |
| Constants related to selected complex fu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                            |  |
| Exponential $\exp(z) = S_{k \ge 0} \{z^k / k!\}; \deg(z) / dx = \exp(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $(x + y) = \exp(y) \exp(z)$ ; integer n: $\exp(nz) = \exp(z)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $o^{n}(z); \exp(n.z.\mathbf{i}) = \cos(n.z) + \sin(n.z).\mathbf{i} = (\cos(z) + \sin(z).\mathbf{i})^{n}.$                                                  |  |
| exp(1) = e, the Euler number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.718 281 828 459 045 235 360 287 ••• #t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Other: $\exp(\pi k i) = (-1)^k$ for any integer k, etc.; see <b>e spin-offs</b> .                                                                          |  |
| atan(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.218 282 905 017 277 621 760 461 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For real x>0, y=atan(e).x is tangent to exp(x), kissing it at x=1                                                                                          |  |
| $\exp(\pm i) = \cos(1) \pm i \sin(1) = \cosh(i) \pm \sinh(i)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.540 302 305 868 139 717 400 936 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ±i 0.841 470 984 807 896 506 652 502 ••• #t                                                                                                                |  |
| Natural logarithm $log(z) \equiv inverse \ of \exp(z)$ . Hence $logarithm = logarithm $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\log(z) + 2\pi k i$ , with integer k, are all equivalent. Conv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rentional cut is along the negative real axis.                                                                                                             |  |
| atan(1/e) = π/2 - atan(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.352 513 421 777 618 997 470 859 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For real x>0, y=atan(1/e).x is tangent to log(x), kissing it at x=e                                                                                        |  |
| Gamma $\Gamma(z) = I_{t=0,z} \{ t^{z-1} e^{-t} \}; \Gamma(z+1) = z.\Gamma(z); \Gamma(1) = 0 \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Gamma(2) = 1$ ; for $n > 0$ , $\Gamma(n) = n!$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |  |
| Location of $\Gamma(x)$ minimum for $x \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.461 632 144 968 362 341 262 659 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Also the positive root of <b>digamma function</b> $\psi(x)$                                                                                                |  |
| Value of $\Gamma(x)$ minimum for $x \ge 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.885 603 194 410 888 700 278 815 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | For x > 0, the Gamma function minimum is unique                                                                                                            |  |
| $I_{x=a,a+1}(\log(\Gamma(x)) + a - a.\log(a)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.918 938 533 204 672 741 780 329 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = log(2π)/2, for any a≥0 (the <b>Raabe</b> formula)                                                                                                        |  |
| Location and value of $\Gamma(x)$ maximum in (-1,-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x= -0.504 083 008 264 455 409 258 269 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Γ(x)= -3.544 643 611 155 005 089 121 963 •••                                                                                                               |  |
| Location and value of $\Gamma(x)$ minimum in (-2,-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x= -1.573 498 473 162 390 458 778 286 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Γ(x)= +2.302 407 258 339 680 135 823 582 •••                                                                                                               |  |
| Γ(1/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.772 453 850 905 516 027 298 167 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sqrt{\pi}$ , this crops up very often                                                                                                                    |  |
| Γ(1/3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.678 938 534 707 747 633 655 692 ••• #t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Γ(2/3) = 1.354 117 939 426 400 416 945 288 •••                                                                                                             |  |
| Γ(1/4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.625 609 908 221 908 311 930 685 ••• #t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Γ(3/4) = 1.225 416 702 465 177 645 129 098 •••                                                                                                             |  |
| $I_{X=0,\infty}\{1/\Gamma(x)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.807 770 242 028 519 365 221 501 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Fransén-Robinson constant                                                                                                                                  |  |
| Γ( i) (real and imaginary parts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.154 949 828 301 810 685 124 955 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - i 0.498 015 668 118 356 042 713 691 •••                                                                                                                  |  |
| 1/Γ(± i) (real and imaginary parts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.569 607 641 036 681 806 028 615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ± i 1.830 744 396 590 524 694 236 582                                                                                                                      |  |
| <b>Digamma</b> $\psi(z) = (d\Gamma(z)/dz)/\Gamma(z); \psi(z+1) = \psi(z) + 1/z;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | positive real root: see above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                            |  |
| ψ(1) = -γ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0.577 215 664 901 532 860 606 512 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ψ(2) = 1-γ = +0.422 784 335 098 467 139 393 488 •••                                                                                                        |  |
| $\psi(1/2) = -\gamma - 2\ln(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 1.963 510 026 021 423 479 440 976 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\psi(-1/2) = 2 + psi(1/2) = 0.036489973978576520559024$                                                                                                   |  |
| ψ( i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.094 650 320 622 476 977 271 878 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + i 2.076 674 047 468 581 174 134 050 •••                                                                                                                  |  |
| Exponential integral $Ei(z) = -I_{t=-1,\infty} \{ \exp(-zt)/t \}; E_1(z) = -I_{t=-1,\infty} \{ \exp(-zt)$ | = I <sub>t=1,∞</sub> {exp(-zt)/t};                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                            |  |
| Unique <b>real root</b> of Ei(x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.372 507 410 781 366 634 461 991 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | log(µ)                                                                                                                                                     |  |
| F:/4\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.895 117 816 355 936 755 466 520 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $Ei(0) = -\infty$ ; $Ei(log(\mu)) = 0$ ; $Ei(-\infty) = 0$ ; $Ei(\infty) = \infty$                                                                         |  |
| Ei(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Equals (Gompertz constant)/e                                                                                                                               |  |
| $E_1(1) = -real(Ei(-1))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.219 383 934 395 520 273 677 163 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.337 403 922 900 968 134 662 646 ···                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - i 0.624 713 256 427 713 604 289 968 •••                                                                                                                  |  |
| E <sub>1</sub> (1) = -real(Ei(-1))<br>E <sub>1</sub> (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -0.337 403 922 900 968 134 662 646 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                            |  |
| E <sub>1</sub> (1) = -real(Ei(-1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.337 403 922 900 968 134 662 646 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.<br>I                                                                                                                                                    |  |
| $\begin{split} & E_1(1) = -real(Ei(-1)) \\ & E_1(\mathbf{i}) \\ & Logarithmic\ integral\ li(x) = I_{t=0,x}\{1/\log(t)\}, \ x \geq 0; \ Li(x) \\ & li(2); \text{ for real\ } x \!\!>\! 0, \ Imag(li(x)) \!\!=\! 0 \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0.337 403 922 900 968 134 662 646 ••• = $I_{t=2,x}\{1/\log(t)\}; L_{X\to\infty}(I_{t}(x)/(x/\log(x))) = I_{t=2,x}\{1/\log(t)\}; L_{X\to\infty}(I_{t}(x)/(x/\log(x))) = I_{t=2,x}[1/\log(t)]; L_{X\to\infty}(I_{t}(x)/(x/\log(x))] = I_{t=2,x}[1/\log(t)]; L_{X\to\infty}(I_{t}(x)/(x/\log(x))] = I_{t=2,x}[1/\log(t)]; L_{X\to\infty}(I_{t}(x)$ | 1.<br>I                                                                                                                                                    |  |
| $E_1(1) = -\text{real}(\text{Ei}(-1))$ $E_1(\textbf{i})$ $Logarithmic \ integral \ li(x) = I_{t=0,x}\{1/\log(t)\}, \ x \ge 0; \ Li(x)$ $li(2); \text{ for real } x > 0, \ lmag(li(x)) = 0$ $li(-1); \text{ upper sign applies just above real axis}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.337 403 922 900 968 134 662 646 •••  = $li(x)-li(2) = l_{t=2,x}\{1/\log(t)\}; L_{x\to\infty}(li(x)/(x/\log(x))) =$ 1.045 163 780 117 492 784 844 588 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1. More: $li(0)=0$ , $li(1)=-\infty$ , $li(+\infty)=+\infty$ , $Re(li(-\infty))=-\infty$ , $Im(li(-\infty))=+\infty$                                       |  |
| $E_1(1) = -\text{real}(\text{Ei}(-1))$ $E_1(\mathbf{i})$ $Logarithmic integral  li(x) = I_{t=0,x}\{1/\log(t)\},  x \ge 0;  Li(x)$ $li(2);  \text{for real } x > 0,  \text{Imag}(\text{li}(x)) = 0$ $li(-1);  \text{upper sign applies just above real axis}$ $li(\pm \mathbf{i})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.337 403 922 900 968 134 662 646 •••  = $li(x)-li(2) = l_{t=2,x} \{1/\log(t)\}; L_{x\to\infty}(li(x)/(x/\log(x))) =$ 1.045 163 780 117 492 784 844 588 •••  0.073 667 912 046 425 485 990 100 •••  0.472 000 651 439 568 650 777 606 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.  More: li(0)=0, li(1)=-∞, li(+∞)=+∞, Re(li(-∞))=-∞, lm(li(-∞))=+∞  ± i 3.422 733 378 777 362 789 592 375 •••  ± i 2.941 558 494 949 385 099 300 999 ••• |  |
| $E_1(1) = -\text{real}(\text{Ei}(-1))$ $E_1(\textbf{i})$ $Logarithmic \ integral \ li(x) = I_{t=0,x}\{1/\log(t)\}, \ x \ge 0; \ Li(x)$ $li(2); \text{ for real } x > 0, \ lmag(li(x)) = 0$ $li(-1); \text{ upper sign applies just above real axis}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.337 403 922 900 968 134 662 646 •••  = li(x)-li(2) = l <sub>t=2,x</sub> {1/log(t)}; L <sub>x→∞</sub> (li(x)/(x/log(x))) =  1.045 163 780 117 492 784 844 588 •••  0.073 667 912 046 425 485 990 100 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.  More: li(0)=0, li(1)=-∞, li(+∞)=+∞, Re(li(-∞))=-∞, lm(li(-∞))=+∞  ± i 3.422 733 378 777 362 789 592 375 •••                                            |  |

| 0.541 044 224 635 181 698 472 759 ••• 1.501 975 268 268 611 498 860 348 ••• | F(x) being an odd function; there is a minimum at $-x_{max}$ $F(x_{max}) = 1/(2x_{max}). \text{ The value of -F"}(x_{max}) \text{ is twice this one.}$ Dawson integral: see above.                                                                  |  |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                             |                                                                                                                                                                                                                                                     |  |
|                                                                             |                                                                                                                                                                                                                                                     |  |
| 0.427 686 616 017 928 797 406 755 ••• $F(x_i) = x_i/(2x_i^2 - 1).$          |                                                                                                                                                                                                                                                     |  |
| -0.284 749 439 656 846 482 522 031 •••                                      | $F(x_i) = x_i/(2x_i^2 - 1).$                                                                                                                                                                                                                        |  |
|                                                                             |                                                                                                                                                                                                                                                     |  |
| 0.367 879 441 171 442 321 595 523 •••                                       | x <sub>min</sub> = 1/e. The minimum is unique.                                                                                                                                                                                                      |  |
|                                                                             | e <sup>-1/e</sup> .                                                                                                                                                                                                                                 |  |
| 1                                                                           | 1.                                                                                                                                                                                                                                                  |  |
| 1                                                                           | Solution of $sinc(x) = 1/2$                                                                                                                                                                                                                         |  |
|                                                                             | First positive solution of tan(x) = x                                                                                                                                                                                                               |  |
|                                                                             | The tpoolate condition of tanks,                                                                                                                                                                                                                    |  |
|                                                                             | First positive solution of x.sin(x) = 1-cos(x)                                                                                                                                                                                                      |  |
|                                                                             | That positive solution of X.Sin(X) = 1-cos(X)                                                                                                                                                                                                       |  |
|                                                                             | <u> </u>                                                                                                                                                                                                                                            |  |
|                                                                             |                                                                                                                                                                                                                                                     |  |
| $^{5}(e^{1/\lambda}-1)^{-1}$                                                | 1                                                                                                                                                                                                                                                   |  |
| 6.493 939 402 266 829 149 096 022 •••                                       | π <sup>4</sup> /15; related to <b>prI</b> integral.                                                                                                                                                                                                 |  |
| 4.965 114 231 744 276 303 698 759 •••                                       | Related to <b>prI</b> maximum.                                                                                                                                                                                                                      |  |
| 3.920 690 394 872 886 343 560 891 •••                                       | Calculation of Blackbody Radiation, Appendix C.                                                                                                                                                                                                     |  |
| 2.821 439 372 122 078 893 403 191 •••                                       | Calculation of Blackbody Radiation, Appendix C.                                                                                                                                                                                                     |  |
| 1.593 624 260 040 040 092 323 041 •••                                       | Calculation of Blackbody Radiation, Appendix C.                                                                                                                                                                                                     |  |
| the 2nd-order Legendre polynomial.                                          |                                                                                                                                                                                                                                                     |  |
| 0.955 316 618 124 509 278 163 857 •••                                       | Degrees: 54.735 610 317 245 345 684 622 999                                                                                                                                                                                                         |  |
| 0.615 479 708 670 387 341 067 464 •••                                       | Degrees: 35.264 389 682 754 654 315 377 000                                                                                                                                                                                                         |  |
| es per unit volume                                                          |                                                                                                                                                                                                                                                     |  |
| 0.553 960 278 365 090 204 701 121 •••                                       | Mean distance to nearest neighbor = c/n <sup>1/3</sup>                                                                                                                                                                                              |  |
| 0.541 926 070 139 289 008 744 561 •••                                       | Most probable distance to nearest neighbor = C/n <sup>1/3</sup>                                                                                                                                                                                     |  |
| h W:                                                                        |                                                                                                                                                                                                                                                     |  |
| 1.570 796 326 794 896 619 231 321 •••                                       | π/2                                                                                                                                                                                                                                                 |  |
| 1.064 467 019 431 226 179 315 267 •••                                       | sqrt(π /(4ln2))                                                                                                                                                                                                                                     |  |
| 0.828 700 120 129 003 061 896 869 •••                                       | π/(2η), η being defined by <b>sinc</b> (η) = 1/2 (see <b>sinc</b> function)                                                                                                                                                                         |  |
| er transform of an n-dimensional unit sphere):                              |                                                                                                                                                                                                                                                     |  |
| 2.404 825 557 695 772 768 621 631 ••• #t                                    | $sinc(0,x) = J_0(x)$ , the Bessel function                                                                                                                                                                                                          |  |
| 3.141 592 653 589 793 238 462 643 ••• #t                                    | $sinc(1,x) = sin(x)/x = sinc(x) = j_0(x)$ , 1st kind spherical Bessel                                                                                                                                                                               |  |
| 3.831 705 970 207 512 315 614 435 •••                                       | $sinc(2,x) = 2J_1(x)/x$                                                                                                                                                                                                                             |  |
| 4.493 409 457 909 064 175 307 880 •••                                       | $sinc(3,x) = 3[sin(x)/x - cos(x)]/x^2 = 3j_1(x)/x$                                                                                                                                                                                                  |  |
| 5.135 622 301 840 682 556 301 401 •••                                       | $sinc(4,x) = 8J_2(x)/x^3$                                                                                                                                                                                                                           |  |
| $^{2}$ ) + 4x/(1+4x <sup>2</sup> ), ubiquitous in the theory of 2nd rai     | nk relaxation processes                                                                                                                                                                                                                             |  |
| 0.615 795 146 961 756 244 755 982                                           | bpp(x) being an odd function; there is a minimum at -x <sub>max</sub>                                                                                                                                                                               |  |
| 1.425 175 719 086 501 535 329 674                                           | For first term only. $bpp_{1,max}(y) = 0.5$ , for $y = 1$                                                                                                                                                                                           |  |
|                                                                             | , :                                                                                                                                                                                                                                                 |  |
| 1                                                                           | log(10). Settling level equals initial deviation/final deviation                                                                                                                                                                                    |  |
|                                                                             | log(100)                                                                                                                                                                                                                                            |  |
|                                                                             | log(1000)                                                                                                                                                                                                                                           |  |
|                                                                             |                                                                                                                                                                                                                                                     |  |
|                                                                             | log(10^4)                                                                                                                                                                                                                                           |  |
|                                                                             | log(10^5)                                                                                                                                                                                                                                           |  |
|                                                                             | log(10^6)                                                                                                                                                                                                                                           |  |
|                                                                             | log(10^9)  After time t = n*T ever(1), the settling level equals ever(n)                                                                                                                                                                            |  |
|                                                                             | After time t = n*T exp(-1), the settling level equals exp(-n).                                                                                                                                                                                      |  |
|                                                                             | 3 T: 0.049 787 068 367 863 942 979 342 •••                                                                                                                                                                                                          |  |
|                                                                             | 5 T: 0.006 737 946 999 085 467 096 636 •••                                                                                                                                                                                                          |  |
| 0.002 478 752 176 666 358 423 045 •••                                       | 7 T: 0.000 911 881 965 554 516 208 003                                                                                                                                                                                                              |  |
|                                                                             |                                                                                                                                                                                                                                                     |  |
| xp(-(x/σ)^2 /2) / (σ√(2π)):                                                 |                                                                                                                                                                                                                                                     |  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                       |                                                                                                                                                                                                                                                     |  |
|                                                                             | 0.692 200 627 555 346 353 865 421 ***   1.895 494 267 033 980 947 144 035 ***   4.493 409 457 909 064 175 307 880 ***   -0.217 233 628 211 221 657 408 279 ***   2.331 122 370 414 422 613 667 835 ***   0.724 611 353 776 708 475 738 990 ***    5 |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 75%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.674 489 750 196 081 743 202 227 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 743 202 227 ••• Probable error: $x/\sigma$ for which $I_{t=-x,x}\{N(t,\sigma)\} = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.841 621 233 572 914 205 178 706                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85% 1.036 433 389 493 789 579 713 244                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 90%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.281 551 565 544 600 466 965 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 95% 1.644 853 626 951 472 714 863 848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.053 748 910 631 823 052 937 351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99% 2.326 347 874 040 841 100 885 606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 99.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.090 232 306 167 813 541 540 399                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.99% 3.719 016 485 455 680 564 393 660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| 99.999%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.264 890 793 922 824 628 498 524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 99.9999% 4.753 424 308 822 898 948 193 988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Probability that a random value superates n standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I deviations, $p_n = 0.5^* \text{erfc}(n/\sqrt{2})$ . Equals $P\{x/\sigma > n\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | or $P\{x/\sigma < -n\}$ , which is half of $P\{ x/\sigma  > n\}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| n = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.158 655 253 931 457 051 414 767 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n = 2 0.022 750 131 948 179 207 200 282 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| n = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.001 349 898 031 630 094 526 651 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n = 4 0.000 031 671 241 833 119 921 253 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| n = 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000 000 286 651 571 879 193 911 ··· n = 6 0.000 000 000 986 587 645 037 698 ··                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Engineering constants; click here for convention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | onal physical constants instead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Amplitude / Effective_Amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.414 213 562 373 095 048 801 688 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\sqrt{2}$ , holds only for harmonic functions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Power factor of 2 (or 0.5) in dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ±3.010 299 956 639 811 952 137 388 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ±10.Log(2); corresponding amplitudes ratio is √2 : 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Amplitude factor of 2 (or 0.5) in dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ±6.020 599 913 279 623 904 274 777 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ±20.Log(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| ±1 dB ratios:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.258 925 411 794 167 210 423 954 ••• 10+1/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Inverse power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.794 328 234 724 281 502 065 918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>-1/10</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.122 018 454 301 963 435 591 038 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10+1/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Inverse amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.891 250 938 133 745 529 953 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>-1/20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ±3 dB ratios:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.091 200 900 100 /40 029 900 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 005 262 214 069 970 604 252 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>+3/10</sup> +3 dB in power or +6 dB in amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.995 262 314 968 879 601 352 455                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 -3/10 -3 dB in power or +6 dB in amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Inverse power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.501 187 233 627 272 285 001 554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>+3/20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.412 537 544 622 754 302 155 607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 <sup>-3/20</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| Inverse amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.707 945 784 384 137 910 802 214                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10 %-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| Music and acoustics:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 <sup>1/12</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Half-note frequency ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.059 463 094 359 295 264 561 825 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Perfect fifth ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3/2, exact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | also 2/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Pythagorean comma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.013 643 264 770 507 8125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3/2) <sup>12</sup> /2 <sup>7</sup> , frequency ratio of 12 perfect fifth to 7 octaves                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Rumors constant in statistical theory of rumors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.203 187 869 979 979 953 838 479 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Solution of $xe^2 = e^{2x}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| Rumors constant in statistical theory of rumors  Computer and Software Engineering cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solution of $x.e^2 = e^{2x}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solution of $x.e^2 = e^{2x}$ . $log_2(10)$ ; Example: 7 decadic digits require 23+ binary bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Computer and Software Engineering cons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tants 3.321 928 094 887 362 347 870 319 ••• 0.301 029 995 663 981 195 213 738 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Computer and Software Engineering cons Decadic-to-binary precision/capacity factor Binary-to-decadic precision/capacity factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tants 3.321 928 094 887 362 347 870 319 ••• 0.301 029 995 663 981 195 213 738 •••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for significance)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tants  3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  ned integers see the 3rd column)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signey) byte (8 bits) 2^8-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.321 928 094 887 362 347 870 319 ••• 0.301 029 995 663 981 195 213 738 ••• ned integers see the 3rd column) 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $log_2(10)$ ; Example: 7 decadic digits require 23+ binary bits $log(2)$ ; Example: 31 binary bits require 9+ decimal digits $log(2)$ ; Example: 31 binary bits require 9+ decimal digits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Computer and Software Engineering cons Decadic-to-binary precision/capacity factor Binary-to-decadic precision/capacity factor Unsigned integer data types maximum values (for signet (8 bits) 2^8-1 word (16 bits) 2^16-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  ned integers see the 3rd column)  255  65'535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $log_2(10)$ ; Example: 7 decadic digits require 23+ binary bits $log(2)$ ; Example: 31 binary bits require 9+ decimal digits signed max = $2^7-1 = +127$ signed max = $2^1-1 = +32^7-1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed (16 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.321 928 094 887 362 347 870 319 ••• 0.301 029 995 663 981 195 213 738 ••• med integers see the 3rd column) 255 65'535 4'294'967'295 18'446'744'073'709'551'615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $log_{2}(10); \; Example: \; 7 \; decadic \; digits \; require \; 23+ \; binary \; bits$ $Log(2); \; Example: \; 31 \; binary \; bits \; require \; 9+ \; decimal \; digits$ $signed \; max = \; 2^{\Lambda}-1 = +127$ $signed \; max = \; 2^{\Lambda}-1 = +32^{\Pi}-767$ $signed \; max = \; 2^{\Lambda}-1 = +2^{\Pi}-7483^{\Pi}-767$ $signed \; max = \; 2^{\Lambda}-1 = +2^{\Pi}-7483^{\Pi}-767$ $signed \; max = \; 2^{\Lambda}-1 = +9^{\Pi}-223^{\Pi}-72^{\Pi}-32^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}$ |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.321 928 094 887 362 347 870 319 ••• 0.301 029 995 663 981 195 213 738 ••• med integers see the 3rd column) 255 65'535 4'294'967'295 18'446'744'073'709'551'615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $log_{2}(10); \; Example: \; 7 \; decadic \; digits \; require \; 23+ \; binary \; bits$ $Log(2); \; Example: \; 31 \; binary \; bits \; require \; 9+ \; decimal \; digits$ $signed \; max = \; 2^{\Lambda}-1 = +127$ $signed \; max = \; 2^{\Lambda}-1 = +32^{\Pi}-767$ $signed \; max = \; 2^{\Lambda}-1 = +2^{\Pi}-7483^{\Pi}-767$ $signed \; max = \; 2^{\Lambda}-1 = +2^{\Pi}-7483^{\Pi}-767$ $signed \; max = \; 2^{\Lambda}-1 = +9^{\Pi}-223^{\Pi}-72^{\Pi}-32^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}-72^{\Pi}$ |  |
| Computer and Software Engineering cons Decadic-to-binary precision/capacity factor Binary-to-decadic precision/capacity factor Unsigned integer data types maximum values (for signed (16 bits) 2^8-1 word (16 bits) 2^16-1 dword (double word, 32 bits) 2^32-1 qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.321 928 094 887 362 347 870 319  0.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301 029 995 663 981 195 213 738  10.301                                                                                                                                                                                                              | $log_2(10); Example: 7 decadic digits require 23+ binary bits \\ Log(2); Example: 31 binary bits require 9+ decimal digits \\ signed max = 2^7-1 = +127 \\ signed max = 2^1-1 = +32^7-67 \\ signed max = 2^3-1 = +2^1-147^4-83^6-647 \\ signed max = 2^6-3-1 = +9^1-223^3-72^1-36^3-85^4-775^3-807 \\ egation returns the same value (weird numbers)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signey) byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tants  3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  ned integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new law of the column of the co | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32'767  signed max = 2^31-1 = +2'147'483'647  signed max = 2^63-1 = +9'223'372'036'854'775'807  signed returns the same value (weird numbers)  signed -2^7 = -128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signification)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer to bits  16 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.321 928 094 887 362 347 870 319 ••• 0.301 029 995 663 981 195 213 738 ••• med integers see the 3rd column)  255 65'535 4'294'967'295 18'446'744'073'709'551'615 gers since, though formally negative, aritmetic new 10 hex 0x800 hex 0x8000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32^767  signed max = 2^31-1 = +2^147^483^647  signed max = 2^63-1 = +9^223^372^036^854^775^807  egation returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32^768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer in the signed in the sig | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new the content of the content | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32^767  signed max = 2^31-1 = +2^147^483^647  signed max = 2^63-1 = +9^223^372^036^854^775^807  signed returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32^768  signed -2^31 = -2^147^483^648  signed -2^63 = -9^223^372^036^854^775^808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Computer and Software Engineering cons Decadic-to-binary precision/capacity factor Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values) byte (8 bits) 2^8-1 word (16 bits) 2^16-1 dword (double word, 32 bits) 2^32-1 qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer as bits 16 bits 32 bits 64 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new the content of the content | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32^767  signed max = 2^31-1 = +2^147^483^647  signed max = 2^63-1 = +9^223^372^036^854^775^807  signed returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32^768  signed -2^31 = -2^147^483^648  signed -2^63 = -9^223^372^036^854^775^808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signification)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer to bits  16 bits  32 bits  64 bits  Floating point (real) data types. The epsilon value is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new the content of the content | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32^767  signed max = 2^31-1 = +2^147^483^647  signed max = 2^63-1 = +9^223^372^036^854^775^807  egation returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32^768  signed -2^31 = -2^147^483^648  signed -2^63 = -9^223^372^036^854^775^808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer as bits  16 bits  32 bits  64 bits  Floating point (real) data types. The epsilon value is the float (1+8+23 bits): Maximum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.321 928 094 887 362 347 870 319  0.301 029 995 663 981 195 213 738  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new theorem in the second of the secon         | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32^767  signed max = 2^31-1 = +2^147^483^647  signed max = 2^63-1 = +9^223^372^036^854^775^807  signed returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32^768  signed -2^31 = -2^147^483^648  signed -2^63 = -9^223^372^036^854^775^808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Computer and Software Engineering cons Decadic-to-binary precision/capacity factor Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values) byte (8 bits) 2^8-1 word (16 bits) 2^16-1 dword (double word, 32 bits) 2^32-1 qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer in the s | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic network of the control of the  | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32^767  signed max = 2^31-1 = +2^147^483^647  signed max = 2^63-1 = +9^223^372^036^854^775^807  signed returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32^768  signed -2^15 = -32^768  signed -2^31 = -2^147^483^648  signed -2^63 = -9^223^372^036^854^775^808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signification)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer as bits  16 bits  32 bits  64 bits  Floating point (real) data types. The epsilon value is the float (1+8+23 bits): Maximum value  float (1+8+23 bits): epsilon value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new the constant of th | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32^767  signed max = 2^31-1 = +2^147^483^647  signed max = 2^63-1 = +9^223^372^036^854^775^807  signed returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32^768  signed -2^31 = -2^147^483^648  signed -2^31 = -2^147^483^648  signed -2^63 = -9^223^372^036^854^775^808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signification)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer as bits  16 bits  32 bits  64 bits  Floating point (real) data types. The epsilon value is to float (1+8+23 bits): Maximum value  float (1+8+23 bits): minimum value  float (1+8+23 bits): epsilon value  double (1+11+52 bits): Maximum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new hex 0x800  hex 0x80000  hex 0x80000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32^767  signed max = 2^31-1 = +2^147^483^647  signed max = 2^63-1 = +9^223^372^036^854^775^807  signed returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32^768  signed -2^31 = -2^147^483^648  signed -2^63 = -9^223^372^036^854^775^808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer in the signed in the signe | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic network of the control of the  | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^1-1 = +32^1-7  signed max = 2^3-1-1 = +2^1-147^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^1-148^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| Computer and Software Engineering cons Decadic-to-binary precision/capacity factor Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values) byte (8 bits) 2^8-1 word (16 bits) 2^16-1 dword (double word, 32 bits) 2^32-1 qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer as bits 16 bits 32 bits 64 bits  Floating point (real) data types. The epsilon value is the float (1+8+23 bits): Maximum value float (1+8+23 bits): epsilon value double (1+11+52 bits): Maximum value double (1+11+52 bits): minimum value double (1+11+52 bits): minimum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.321 928 094 887 362 347 870 319 ···  0.301 029 995 663 981 195 213 738 ···  ned integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new theorem in the second of the seco  | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32'767  signed max = 2^31-1 = +2'147'483'647  signed max = 2^63-1 = +9'223'372'036'854'775'807  signed returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32'768  signed -2^31 = -2'147'483'648  signed -2^31 = -2'147'483'648  signed -2^63 = -9'223'372'036'854'775'808  2^(2^(8-1)); IEEE 754; bits are for: sign, exponent, mantissa  2*2^(-2^(8-1))*2^(-(23-1))  2^(-23)  2^(-2^(11-1))*2^(-(52-1))  2^(-52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signification)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed interest as bits  16 bits  32 bits  64 bits  Floating point (real) data types. The epsilon value is to float (1+8+23 bits): Maximum value  float (1+8+23 bits): minimum value  float (1+8+23 bits): epsilon value  double (1+11+52 bits): Maximum value  double (1+11+52 bits): minimum value  long double (1+15+64 bits): Maximum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new hex 0x800  hex 0x8000  hex 0x8000000000000000000  the precision limit, such that, for x < \(\epsilon\), 1+\(\epsilon\) returns 1.  3.402823669209384634633746e+38  1.401298464324817070923729e+45  1.1920928955078125 e-7  1.79769313486231590772930e+308  4.94065645841246544176568e-324  2.220446049250313080847263e-16  1.189731495357231765085759e+4932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32^767  signed max = 2^31-1 = +2^147^483^647  signed max = 2^63-1 = +9^223^372^036^854^775^807  signed returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32^768  signed -2^31 = -2^147^483^648  signed -2^63 = -9^223^372^036^854^775^808  2^(2^(8-1)); IEEE 754; bits are for: sign, exponent, mantissa  2^2^(-2^(8-1))*2^(-(23-1))  2^(-23)  2^(2^(11-1)); IEEE 754; bits are for: sign, exponent, mantissa  2*2^(-2^(11-1)); internal 10-byte format of Intel "coprocessor"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer as bits  16 bits  32 bits  64 bits  Floating point (real) data types. The epsilon value is to float (1+8+23 bits): Maximum value  float (1+8+23 bits): minimum value  double (1+11+52 bits): Maximum value  double (1+11+52 bits): minimum value  long double (1+15+64 bits): Maximum value  long double (1+15+64 bits): minimum value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new hex 0x80  hex 0x8000  hex 0x800000000  hex 0x80000000000000000  ne precision limit, such that, for x < ε, 1+ε returns 1.1  3.402823669209384634633746e+38  1.401298464324817070923729e+45  1.1920928955078125 e-7  1.79769313486231590772930e+308  4.94065645841246544176568e-324  2.220446049250313080847263e-16  1.189731495357231765085759e+4932  1.822599765941237301264202e-4951  5.421010086242752217003726e-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32^767  signed max = 2^31-1 = +2^147^483^647  signed max = 2^63-1 = +9^223^372^036^854^775^807  signed returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32^768  signed -2^31 = -2^147^483^648  signed -2^31 = -2^147^483^648  signed -2^63 = -9^223^372^036^854^775^808  2^(2^(8-1)); IEEE 754; bits are for: sign, exponent, mantissa  2^2^(-2^(8-1))*2^(-(23-1))  2^(-23)  2^(2^(11-1)); IEEE 754; bits are for: sign, exponent, mantissa  2*2^(-2^(11-1)); internal 10-byte format of Intel "coprocessor"  2^2^(-2^(15-1)); internal 10-byte format of Intel "coprocessor"  2^2^(-2^(15-1))*2^(-(64-1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer as bits  16 bits  32 bits  64 bits  Floating point (real) data types. The epsilon value is to float (1+8+23 bits): Maximum value  float (1+8+23 bits): minimum value  double (1+11+52 bits): minimum value  double (1+11+52 bits): minimum value  long double (1+15+64 bits): minimum value  long double (1+15+64 bits): minimum value  long double (1+15+64 bits): epsilon value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new hex 0x80  hex 0x8000  hex 0x800000000  hex 0x800000000  ne precision limit, such that, for x < ε, 1+ε returns:  3.402823669209384634633746e+38  1.401298464324817070923729e-45  1.1920928955078125 e-7  1.79769313486231590772930e+308  4.94065645841246544176568e-324  2.220446049250313080847263e-16  1.189731495357231765085759e+4932  1.822599765941237301264202e-4951  5.421010086242752217003726e-20  eg) are planar angles, while steradians and degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127 signed max = 2^15-1 = +32^767 signed max = 2^31-1 = +2'147'483'647 signed max = 2^63-1 = +9'223'372'036'854'775'807 signed max = 2^63-1 = +9'223'372'036'854'775'807 signed -2^7 = -128 signed -2^15 = -32'768 signed -2^15 = -32'768 signed -2^31 = -2'147'483'648 signed -2^31 = -2'147'483'648 signed -2^63 = -9'223'372'036'854'775'808  2^(2^(8-1)); IEEE 754; bits are for: sign, exponent, mantissa 2*2^(-2^(8-1))*2^(-(23-1)) 2^(-23) 2^(2^(11-1)); IEEE 754; bits are for: sign, exponent, mantissa 2*2^(-2^(11-1))*10*2^(-(52-1)) 2^(-52) 2^(2^(15-1)); internal 10-byte format of Intel "coprocessor" 2*2^(-2^(15-1))*2^(-(64-1)) 2^(-64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Computer and Software Engineering cons  Decadic-to-binary precision/capacity factor  Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values)  byte (8 bits) 2^8-1  word (16 bits) 2^16-1  dword (double word, 32 bits) 2^32-1  qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer as bits  16 bits  32 bits  64 bits  Floating point (real) data types. The epsilon value is to float (1+8+23 bits): Maximum value  float (1+8+23 bits): minimum value  float (1+8+23 bits): epsilon value  double (1+11+52 bits): Maximum value  double (1+11+52 bits): minimum value  long double (1+15+64 bits): Maximum value  long double (1+15+64 bits): epsilon value  Conversion constants. Radians and degrees (decease)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.321 928 094 887 362 347 870 319 •••  0.301 029 995 663 981 195 213 738 •••  med integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new hex 0x80  hex 0x8000  hex 0x800000000  hex 0x800000000  ne precision limit, such that, for x < ε, 1+ε returns:  3.402823669209384634633746e+38  1.401298464324817070923729e-45  1.1920928955078125 e-7  1.79769313486231590772930e+308  4.94065645841246544176568e-324  2.220446049250313080847263e-16  1.189731495357231765085759e+4932  1.822599765941237301264202e-4951  5.421010086242752217003726e-20  eg) are planar angles, while steradians and degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127 signed max = 2^15-1 = +32^767 signed max = 2^31-1 = +2'147'483'647 signed max = 2^63-1 = +9'223'372'036'854'775'807 signed max = 2^63-1 = +9'223'372'036'854'775'807 signed -2^7 = -128 signed -2^15 = -32'768 signed -2^15 = -32'768 signed -2^31 = -2'147'483'648 signed -2^31 = -2'147'483'648 signed -2^63 = -9'223'372'036'854'775'808  2^(2^(8-1)); IEEE 754; bits are for: sign, exponent, mantissa 2*2^(-2^(8-1))*2^(-(23-1)) 2^(-23) 2^(2^(11-1)); IEEE 754; bits are for: sign, exponent, mantissa 2*2^(-2^(11-1))*10*2^(-(52-1)) 2^(-52) 2^(2^(15-1)); internal 10-byte format of Intel "coprocessor" 2*2^(-2^(15-1))*2^(-(64-1)) 2^(-64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Computer and Software Engineering cons Decadic-to-binary precision/capacity factor Binary-to-decadic precision/capacity factor  Unsigned integer data types maximum values (for signed integer data types maximum values) byte (8 bits) 2^8-1 word (16 bits) 2^16-1 dword (double word, 32 bits) 2^32-1 qword (quad word, 64 bits) 2^64-1  Bit configurations which can't be used as signed integer as bits 16 bits 32 bits 64 bits  Floating point (real) data types. The epsilon value is the float (1+8+23 bits): Maximum value float (1+8+23 bits): epsilon value double (1+11+52 bits): epsilon value double (1+11+52 bits): minimum value long double (1+15+64 bits): minimum value long double (1+15+64 bits): minimum value Conversion constants. Radians and degrees (deconversions between logarithms for bases 2, 10, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.321 928 094 887 362 347 870 319 ···  0.301 029 995 663 981 195 213 738 ···  ned integers see the 3rd column)  255  65'535  4'294'967'295  18'446'744'073'709'551'615  gers since, though formally negative, aritmetic new control of the control of  | log <sub>2</sub> (10); Example: 7 decadic digits require 23+ binary bits Log(2); Example: 31 binary bits require 9+ decimal digits  signed max = 2^7-1 = +127  signed max = 2^15-1 = +32'767  signed max = 2^31-1 = +2'147'483'647  signed max = 2^63-1 = +9'223'372'036'854'775'807  signed returns the same value (weird numbers)  signed -2^7 = -128  signed -2^15 = -32'768  signed -2^15 = -32'768  signed -2^31 = -2'147'483'648  signed -2^63 = -9'223'372'036'854'775'808  2^(2^(8-1)); IEEE 754; bits are for: sign, exponent, mantissa  2*2^(-2^(8-1))*2^(-(23-1))  2^(-23)  2^(2^(11-1)); IEEE 754; bits are for: sign, exponent, mantissa  2*2^(-2^(11-1))*2^(-(52-1))  2^(-52)  2^(2^(15-1)); internal 10-byte format of Intel "coprocessor"  2*2^(-64)  2 are areas on a unit sphere.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |

| log(10), Natural logarithm of 10                         | 2.302 585 092 994 045 684 017 991 ••• e <sup>x</sup> = 10              |                                                                            |  |
|----------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|--|
| log <sub>2</sub> (10), Binary logarithm of 10            | 3.321 928 094 887 362 347 870 319 •••                                  | 2 <sup>X</sup> = 10                                                        |  |
| Log( <b>e</b> ), Decadic logarithm of <b>e</b>           | 0.434 294 481 903 251 827 651 128 •••                                  | 10 <sup>X</sup> = <b>e</b>                                                 |  |
| log <sub>2</sub> (e), Binary logarithm of e              | 1.442 695 040 888 963 407 359 924 •••                                  | 2 <sup>X</sup> = e                                                         |  |
| Planar angles (on a circle)                              | •                                                                      |                                                                            |  |
| 1 rad (radian) in degrees                                | an) in degrees 57.295 779 513 082 320 876 798 15 ··· 180/π = 57° 17' 4 |                                                                            |  |
| 1° (degree) in radians                                   | 0.017 453 292 519 943 295 769 237 •••                                  | π/180                                                                      |  |
| 1 rad (radian) in arcmin                                 | 3437,746 770 784 939 252 607 889                                       | 60*(180/π)                                                                 |  |
| 1 arcmin in radians                                      | 2.908 882 086 657 215 961 539 e-4                                      | (π/180)/60                                                                 |  |
| 1 rad (radian) in arcsec                                 | 206264,806 247 096 355 156 473 357 •••                                 | 60*60*(180/π)                                                              |  |
| arcsec in radians 4.848 136 811 095 359 935 899 ••• e-6  |                                                                        | (π/180)/60/60                                                              |  |
| Solid angles (on a sphere)                               | •                                                                      |                                                                            |  |
| Full solid angle of 4π steradians in degree <sup>2</sup> | 41252.961 249 419 271 031 294 671 •••                                  | $4\pi/(\pi/180)^2 = 360^2/\pi$                                             |  |
| 1 sr (steradian) in degree <sup>2</sup>                  | 3282.806 350 011 743 794 781 694 •••                                   | (180/π) <sup>2</sup> ; exact for infinitesimal areas                       |  |
| 1 degree <sup>2</sup> in sr (steradians)                 | 0.000 304 617 419 786 708 599 346 •••                                  | (π/180) <sup>2</sup> ; exact for infinitesimal areas; inverse of the above |  |
| 1 sr (steradian) in radian <sup>2</sup>                  | 1.041 191 803 606 873 340 234 607 •••                                  | 2*asin(√(sin(1/4)))                                                        |  |

## **Notes**

#### **Purpose**

Since every number is a math constant, there can not exist any list containing them all.

Yet some numbers catch our fancy because they were studied in more detail than others (historic importance) and such studies uncovered unusual, even counter-intuitive, aspects (with the reasons being often related more to human mind than to the numbers themselves). Learning about such numbers is fun and - maybe - teaches us something about ourselves.

The main purpose of this selection is to **stimulate curiosity** and the desire to study Math.

This collection started with just a few real numbers in mind, but it soon grew and branched into various categories. Presently, real, complex, integer, and rational numbers are all represented. I have even included some transfinite numbers and might soon include examples of quaternions, tensors, spinors, matrices, etc.

Recently, I have added some integer sequences which look fundamental to me from the educational and/or math-recreative point of view (I have no intention to compete with OEIS, of course; that would be foolish). Another new category, perhaps more 'utilitarian', is represented by special points and values related to important mathematical functions. Both initiatives are far from complete. Work in progress ...

#### Truncated values

Real values are truncated after the last shown digit, not rounded.

## Complex-valued constants

are listed with their real part in the central column and imaginary part in the right column (otherwise reserved for notes).

# Logarithms

Natural logarithm of x is written as log(x), while log(x) denotes the decadic one, and a logarithm in base b is  $log_b(x)$ .

## Format of Limits (L), Sums (S), Products (P), and Integrals (I)

The general format is  $O_{range}$  (expression), where O is an operation-defining capital letter (bold italics).

The range can be something like "min, max", or a condition, such as "prime p&gt2".

Conditions  $k \ge m$ ; and k > m stand for k = m, m+1, m+2, ...,  $\infty$  and k = m+1, m+2, ...,  $\infty$ , respectively. In the case of limits, the formats used may be "x  $\rightarrow$  c" or "x  $\rightarrow$   $\infty$ ", or similar.

#### Operator expressions using the symbol #

A construct like f(a,#) = (#+a/#)/2 denotes an operator, rather than a function. Thus f(a,#)(x) = (x+a/x)/2 is the application of the operator to (x), where x may be a variable, an expression, a quaternion, a matrix, anything. The difference between the operator f and the function f is best seen in repeated applications:

 $f^2(a,\#) = f(a,\#)(f(a,\#)) = (f(a,\#) + a/f(a,\#))/2 = ((x+a/x)/2 + a/((x+a/x)/2))/2$  which is different from the usual  $f^2(x) = ((x+a/x)/2)^2$ .

This permits to simplify statements regarding attractors of mappings, such as  $A_{(0,\infty)}\{(\#+a/\#)/2\} \equiv L_{n=1,\infty}\{f^n(a,\#)\} = \sqrt{a}$ .

#### Attributions of named constants

In a few cases I have taken the liberty of associating a name to a previously unnamed constant. I sincerely hope that these attributions will stick since, whenever they refer to persons, they acknowledge merit. They include:

- Knuth's constant: The ratio c/m in congruence random-number generators of the type  $X_{n+1} = (aX_n + c) \mod (m)$  which minimizes the correlation between successive values. See Knuth 1997, Section 3.3.3, Equation 41.
- Chandrasekhar's constants (1st and 2nd): Originally related to nearest-neighbor statistics in an ideal gas, but having a much more general significance for any 3D, uniformly random distributions of points.
- Cannery constant, Cooking pot constant, Frozen cone constant, and Teepee constant: Four constants related to the minimum-surface indices of closed and open bodies. The derivations of these constants are nice exercises in elementary analysis. I think that giving them funny names might help math acceptance by non-mathematicians in everyday life.
- Blazys constant: a recent prime-numbers generating constant which struck the imagination of many people.
- Graham's constant: Rationalization of the fact that hyperpowers  $n^{M}k$  of a number n (3 in this case), for any  $k \ge m$ , have all the same (m-2) trailing digits  $d_{m-2}d_{m-2}...d_1d_0$ . Writing the digits in reverse order as  $0.d_0d_1d_2...$ , and letting  $k \rightarrow \infty$ , one has a mathematically rigorous definition of a constant. See OEIS A133613.
- Tanaka's number, the first n>2 violating Polya's conjecture. It represents a deeply educational warning that no number of mere empirical 'tests' can replace a proof. Though violations of Polya's conjecture were known already before Tanaka's work, the determination of the first one was important. See OEIS A189229.

#### Links to OEIS, the Online Encyclopedia of Integer Sequences

Three bold dots after a value are a link to the OEIS database (OEIS accepts as integer sequences also decimal expansions of real-valued constants). The OEIS entries usually extend the values listed here (unless the sequence is finite and listed in full, and provide more references). I have registered a few OEIS entries myself, and I think that everybody who hits on a nice constant or integer sequence should do so as well.

#### Many links, other than those to OEIS and/or those appearing below,

are scattered through the text, accompanying the particular constants. This is an important feature, to be intensified.

#### Feedback:

If you think a link, or a constant, are missing, please, let me know. Such suggestions are most appreciated.

# References

1. Andreescu Titu, Andrica Dorin,



Extra Byte

#### Link Directories:

PHYSICS | CHEMISTRY Magnetic Resonance MATH | COMPUTING **ELECTRONICS** PATENTS+IP SCIENCE

#### More resources:

SI Dimensions hysics constants Unit Converters HTML Glyphs

#### Support this site! Shop from here:

COMPUTER STORE: Deals Bestsellers Accessories Calculators

## New Math BOOKs:



The Princeton Companion to Applied

Nicholas J. Higham.. Best Price \$62.02 or Buy New \$87.49

Buy amazon.com Privacy Information



Julian Havil Best Price \$10.97 or Buy New \$17.56

Buy amazon.com



Number Theory: Structures, Examples, and Problems,

Birkhauser 2009. ISBN 978-0817632458. Hardcover >>. Kindle >>.

2. Caldwell Chris K., Honaker Jr. G.L.

Prime Curios! The Dictionary of Prime Number Trivia,

CreateSpace Independent 2009. ISBN 978-1448651702. Paperback >>.

- 3. Clawson Calvin C., Mathematical Mysteries: The Beauty and Magic of Numbers, Basic Books 1999. ISBN 978-0738202594. Harcover >>
- 4. Das Abhijit,

Computational Number Theory,

Chapman and Hall/CRC 2013. ISBN 978-1439866153. Hardcover >>. Kindle >>.

5. Finch S.R., Mathematical Constants

Cambridge University Press 2003. ISBN 978-0521818056. Harcover >>.

6. Hardy G.H, Wright E.M., An Introduction to the Theory of Numbers

6th Edition, Oxford University Press 2009. ISBN 978-0199219865. Paperback >>.

7. Knuth D.E., The Art of Computer Programming

Volume 1: Fundamental Algorithms. ISBN 978-0201896831. Kindle >>.

Volume 2: Seminumerical Algorithms, ISBN 978-0201896848. Kindle >>. See Section 3.3.3, Eq.41, for Knuth's constant.

Volume 3: Sorting and Searching, ISBN 978-0201896855. Kindle >>.

Addison-Wesley 1997 (Vol.3, 1998). 8. Mazur Berry, Stein William

Prime Numbers and the Riemann Hypothesis, Cambridge University Press 2015. ISBN 978-1107499430. Paperback >>. Kindle >>.

9. Muller Jean-Michel, Brisebarre Nicolas, de Dinechin Florent, Jeannerod Claude-Pierre, Lefèvre Vincent, Melquiond Guillaume, Handbook of Floating-Point Arithmetic,

Birkhäuser Boston 2009. ISBN 978-0817647049. Hardcover >>. Kindle >>.

10. Murty M. Ram. Rath Purusottam.

Transcendental Numbers

Springer 2014. ISBN 978-1493908318. Paperback >>.

The Mathematics Devotional: Celebrating the Wisdom and Beauty of Mathematics,

Sterling 2014. ISBN 978-1454913221. Hardcover >>.

12. Pickover Clifford A.

A Passion for Mathematics: Numbers, Puzzles, Madness, Religion, and the Quest for Reality,

Wiley 2005. ISBN 978-0471690986. Paperback >>. Kindle >>

13. Pickover Clifford A.,

Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning,

Oxford University Press 2002. ISBN 978-0195157994. Paperback >>. Kindle >>.

14. Vazzana Anthony, Garth David,

Introduction to Number Theory

Chapman and Hall/CRC 2015. ISBN 978-1498717496. Hardcover >>. Kindle >>.

15. ... and many, many others.

#### Links

Mathematical constants and functions on Wikipedia.

Mathematical constants on Wikinedia

Mathematical constants on Eric Weisstein's MathWorld.

The On-Line Encyclopedia of Integer Sequences (OEIS, ex Sloane's). See also the OEIS Wiki.

Mathematical Constants by Steven Finch, plus a lot more. Many PDF's. Excellent.

Great Internet Mersenne Prime Search GIMPS.

Web Primes, a huge online repository of prime numbers.

The Prime Pages of Chris Caldwell at Uni Tennesee at Martin.

Prime products on MathWorld.

Computing Pi: Lists of Machin-type (inverse cotangent) identities for Pi/4, maintained by M.R.Wetherfield & H.Chien-lih.

Mathematical constants on Numericana, the web site of Gérard P.Michon.

Numbers Aplenty by Giovanni Resta.

Numbers, constants, and their computation by Xavier Gourdon and Pascal Sebah. 223 titled references.

Blazys Expansions and Continued Fractions in Stan's Library.

The 15 Most Famous Transcendental Numbers on Cliff Pickover's website.

Gelfond's Theorem on Wikipedia and on MathWorld.

Notable Properties of Specific Numbers, maintained by Robert Munafo. Amazing.

What's Special About This Number? by Erich Friedman. Special aspects of the first 1000 integers.

Platonic solids on Wikipedia.

Tetration web site of Daniel Geisler.

Reuleaux triangle. See it also on Wikipedia.

Spiral of Theodorus on Wikipedia.

Inverse Symbolic Calculator, ex Plouffe's Inverter.

RIES, the Inverse Equation Solver of Robert Munafo.

IEEE 754 official 2008 standard.

Arbitrary precision computing links on this website. See also these Math software.

Constants of physics and mathematics. A related resource on this website.

Mathematical constants and sequences. Link to this resource. You can also cite its DOI link: 10.3247/SL2Math08.001.

| F BOOKS Lists:                                                                                     | Popular Science                 | F Mathematics     | F Physics        | <b>F</b> Chemistry    |  |
|----------------------------------------------------------------------------------------------------|---------------------------------|-------------------|------------------|-----------------------|--|
| Patents+IP                                                                                         | F Electronics   DSP   Tinkering | F Computing       | Spintronics      | F Materials           |  |
| WWW issues                                                                                         | F Instruments / Measurements    | Quantum Computing | FNMR   ESR   MRI | <b>F</b> Spectroscopy |  |
| Hint: the F symbols above, where present, are links to free online texts (books, courses, theses,) |                                 |                   |                  |                       |  |

TOP | Math BOOKS | SI Units | SI Dimensions

PHYSICS Constants (on a separate page)

Math LINKS | Stan's Library | Stan's HUB

Information Theory James V Stone Best Price \$22.00 Buy amazon.com





Prime Curiosl Chris K. Caldwell... Best Price \$13.00 or Buy New \$17.00



Privacy Information



Richard C. Penney Best Price \$81.25 or Buy New \$116.18



Privacy Information



Anthony Vazzana, D. Best Price \$70.46

