সম্ভাব্যতা

সম্ভাব্যতা (Probability)

্বপ্রাথমিক বিষয়গুলো সংজ্ঞাসহ ব্যাখ্যা ঃ

ঘটনা ঃযে কোন পরীক্ষনের বা কার্যক্রমের ফল যা ঘটতে পারে, বা যা ঘটে থাকে তাকে একটি ঘটনা বা Event বলা হয়।

ঘটনাজগৎ বা নমুনাক্ষেত্র ঃ ছক্কার গুটি নিক্ষেপ করলে উপরে পাশে 1,2,3,4,5,6 এর যে কোন একটি আসবেই । তাই এই পরীক্ষণ প্রসূত 6 টি ফলের প্রত্যেকটি একটি ঘটনা । আবার যেহেতু গুটি নিক্ষেপ করলেই যে কোন একটি ঘটতে পারে; তাই এ 6 টিকে একত্রে প্রাথমিক বা মৌলিক ঘটনা বলা হয় । কোন পরীক্ষণ প্রসূত সকল ঘটনাকে একবার লিখে প্রাপ্ত সেটকে ঘটনা জগৎ বা নমুনাক্ষেত্র বলা হয় ।

বিভিন্ন প্রকারের ঘটনা ঃ

- 01. নিশ্চিত ঘটনা ঃ কোন ঘটনা যদি যে কোন অবস্থায় অবশ্যই ঘটতে পারে তবে তাকে নিশ্চিত ঘটনা বলা হয়। ছক্কার গুটি নিক্ষেপ করলে যে কোন অবস্থায় 1 হতে 6 পর্যন্ত যে কোন একটি সংখ্যা পাওয়া একটি নিশ্চিত ঘটনা।
- **02.** অসম্ভব ঘটনা ঃ যে ঘটনা কোন অবস্থাতেই ঘটতে পাররে না তা একটি অসম্ভব ঘটন। ছক্কার গুটি নিক্ষেপ করলে 7, 8, 9.....পাওয়া অসম্ভব ঘটন।
- **03. অনিশ্চিত ঘটনা ঃ** যে ঘটনা ঘটতেও পারে, না ঘটতেও পারে এরূপ ঘটনাকে অনিশ্চিত ঘটনা বলা হয়। ছক্কার গুটি নিক্ষেপ করলে 6 বা 1 পড়ার ঘটনা অনিশ্চিত।
- 04. সরল ও যৌগিক ঘটনা ঃ একটি ছক্কার গুটি নিক্ষেপ করা হলে ফল 3 এর গুণিতক হবে যদি 3 বা 6 হয়। ফল জোড় সংখ্যা হবে যদি 2 বা 4 বা 6 হয়। উক্ত দুইটি ক্ষেত্রের ফল {3,6} এবং {2,4,6} কে আবার {3}, {6} ও {2}, {4}, {6} ঘটনা আকারে বিভাজন করা যায়, তাই {3,6} ও {2,4,6} প্রত্যেকে যৌগিক ঘটনা। কিন্তু শর্ত ব্যতীত সাধারণত নিক্ষিপ্ত ছক্কার ক্ষেত্রে ঘটনা {1}, {2}, {3}, {6} ,{2}, {4}, {6} যার কোনটিই বিভাজন করা যায় না। যে সকল ঘটনাকে কখনই কয়েকটি ঘটনায় বিভাজন করা যায় না তাকে সরল ঘটনা বলা হয়। আবার যে সকল ঘটনাকে একাধিক ঘটনায় বিভাজন করা যায় তাকে যৌগিক ঘটনা বলা হয়।

- 05. সম্পূর্ণ ঘটনা ঃ কোন পরীক্ষণের সঙ্গে সংশ্লিষ্ট দুই বা ততোধিক ঘটনা যদি এরূপ থাকবে, যে প্রত্যেক পরীক্ষেণের জন্য কমপক্ষে একটি ঘটনা ঘটবেই তাহেল এই ঘটনাকে সম্পূর্ণ ঘটনা বলা হয়। মুদ্রা নিক্ষেপের ক্ষেত্রে {HT}, খেলার ক্ষেত্রে {জয়, পরাজয়, ড্র}, পরীক্ষার ক্ষেত্রে {পাশ, ফেল} ইত্যাদি সম্পূর্ণ ঘটনা।
- 06. স্বাধীন বা অনির্ভরশীল ঘটনা (Independent) ঃ কোন পরীক্ষণ প্রসূত দুইটি ঘটনার একটি ঘটার সম্ভবনা অপরটির ঘটার উপর নির্ভর না করলে তারা পরক্ষার স্বাধীন; দুইটি ছক্কার গুটি নিক্ষেপ করলে একটিতে ছক্কা পাওয়ার ঘটনার উপর অন্যটির ছক্কার পাওয়া নির্ভর করে না। এই ছক্কা পাওয়ার ঘটনা দুটি পরক্ষার স্বাধীন।
- 07. অধীন বা নির্ভরশীল (Dependent) ঃ যদি দুইটি ঘটনা এরপে হয় যে, তাদের একটি ঘটনা ঘটার সম্ভাবনা অন্য একটি ঘটনা ঘটার উপর নির্ভর করে, তবে প্রথম ঘটনাটি দ্বিতীয় ঘটনার অধীন বা দ্বিতীয় ঘটনার উপর নির্ভরশীল। এক প্যাকেট তাস হতে পরপর দুটি তাস টানা হলে, দ্বিতীয় তাসটি টানার আগে প্রথম তাসটি প্যাকেটে পুনঃস্থাপন করা বা না করার উপর দ্বিতীয় তাসিটির সম্ভবনা নির্ভর করে। তাই দ্বিতীয় তাসের ঘটনাটি অধীন ঘটনা।
- 08 . সমসম্ভাব্য ঘটনা (Equiprobable বা equally likely event) 8 কোন পরীক্ষণ প্রসূত ঘটনার প্রত্যেকটি ঘটার সম্ভাবনা সমান হলে তাদের সমসম্ভাব্য ঘটনা বলা হয়। ছক্কার গুটির ক্ষেত্রে উপরে প্রত্যেক সংখ্যার থাকার সম্ভাব্যতা $\frac{1}{6}$; মুদ্রার ক্ষেত্রে H বা T এর উপরে থাকার সম্ভাব্যতা $\frac{1}{2}$; তাই তারা প্রত্যেকেই সমসম্ভাব্য ঘটনা।
- 09 . পূরক বা পরিপূরক ঘটনা (Complementary) z কোন পরীক্ষণ প্রসূত "যে ঘটনাটি ঘটে" এবং "যে ঘটনাটি ঘটে না" তারা পরস্পর পূরক । ছক্কার গুটি নিক্ষেপ করলে উপরের পাশে বিজোড় সংখ্যার পাওয়ার অর্থই জোড় সংখ্যা না পাওয়া । তাই $S=\{1,2,3,4,5,6\}$ এবং $A=\{1,2,3\}$ হলে A এর পূরক ঘটনার নমুনাক্ষেত্র A' বা $A^C=\{2,4,6\}$ ।
- 10. পরক্ষার বর্জনশীল বা বিচ্ছিন্ন বা পৃথক ঘটনা (Mutually exclusive) ${\it s}$ কোন পরীক্ষণ প্রসূত দুই বা ততোধিক ঘটনার যে কোন একটি ঘটলে যদি অপর কোনটিই না ঘটতে পারে, তাহলে তাদের পরক্ষার বর্জনশীল বা পরক্ষার সর্ম্পাকহীন ঘটনা বলা হয়। আবার দুই বা ততোধিক ঘটনার যদি কোন সাধারণ নমুনাবিন্দু না থাকে তবে তাদেরকেও বর্জনশীল ঘটনা বলা হয়। কোন বাক্সে লাল, নীল ও সাদা রঙের কিছু বল আছে। দৈবচয়নে তাদের কোন সাধারণ নমুনাবিন্দু নেই। তাই A ও B বর্জনশীল ঘটনা হলে A \cap $B=\emptyset$
- 11. পরক্ষার অবর্জনশীনা বা অবিচ্ছিন্ন (Not mutually exclusive) ३ কোন পরীক্ষণ প্রসূত দুই বা ততোধিক ঘটনার মধ্যে যে কোন একটি ঘটলে যদি অপর ঘটনা বা ঘটনা গুলো ঘটতে পারে, তাহলে তাদের পরক্ষার অবর্জনশীল ঘটনা বলা হয়। আবার দুই বা ততোধিক ঘটনার কোন সাধারণ নমুনাবিন্দু

থাকলে তাদেরও বর্জনশীল ঘটনা বলা হয়। 52 খানা তাসের প্যাকেট হতে 3 খানা তাস টানা হল। তিনটির ইন্ধাবন হওয়ার সম্ভাবনা A এবং কালো রঙের হওয়ার সম্ভাবনা B ঘটনার অর্ত্তগত।

12. অনুকূল ঘটনা (Favourable) ঃ কোন পরীক্ষণে নির্দিষ্ট ঘটনার সপক্ষের ফলাফল সমূহকে অনুকূল ঘটনা বলা হয়। 52 খানা তাসের প্যাকেটে হরতন আছে 13 খানা এবং টেক্কা আছে চার রঙের চার খানা। তাই 52 খানা তাস হতে একখানা হরতন টানার সমসম্ভাব্য অনুকূল ঘটনা 13 এবং একখানা টেক্কা টানার সমসম্ভাব্য অনুকূল ঘটনা 4।

সম্ভাব্যতার সংজ্ঞা ও পরিমাপক ঃ

সাধারণ অর্থে "সম্ভাব্যতা হল একটি অনিশ্চিত ঘটনা কি না ঘটবে সে সম্পর্কে কোন উক্তির প্রতি বিশ্বাসের মাত্রা।" ব্যাপক অর্থে "সম্ভাব্যতা হল একই অবস্থার মধ্যে অসংখ্য বার একটি চেষ্টার পুনরাবৃত্তি হতে পারে, এমন কোন পরীক্ষার ফলাফল।" কোন পরীক্ষায় সমসম্ভাব্য মোট ফলাফলের সংখ্যা $n\left(s\right)=m$ এবং A ঘটনার সমসম্ভাব্য অনুকূল ঘটনার সংখ্যা $n\left(s\right)=n$ হলে, সমসম্ভাব্য অনুকূল ঘটনার সংখ্যা

ঐ ঘটনার সম্ভাব্যতার গাণিতিক পরিমাপ
$$P\left(A\right)=\dfrac{\pi$$
মসম্ভাব্য অনুকূল ঘটনার সংখ্যা $=\dfrac{n\left(A\right)}{n\left(S\right)}=\dfrac{n}{m}$

তাই কোন ঘটনার ঘটন সম্ভাব্যতা নির্ণয় করতে হলে, সমশ্ভাব্য অনুকূল ঘটনা সংখ্যা এবং সমশ্ভাব্য মোট ঘটনা সংখ্যার অনুপাত নির্ণয় করতে হবে। 52 খানা হতে হরতনের টেক্কাকে টেনে পাওয়ার সমসশ্ভাব্য $\frac{1}{52}$, আবার যেহেতু 4 খানা টেক্কা আছে, সুতরাং যে কোন একটি টেক্কা পাওয়ার সম্ভাব্যতা $\frac{4}{52}$ । একথা মনে করা ঠিক নয় যে, 52 খানা তাস হতে ইচ্ছামত যে কোন একখানা তাসকে টানার প্রক্রিয়া 52 বার পুনরাবৃত্তি করলে তার মধ্যে 4 বার টেক্কা পাওয়া যাবে। যে কোন একখানা তাস 100 বার টেনেও একটি বা একাধিক টেক্কা পাওয়া যেতে পারে। আবার হয়ত 10 বার বা আরও কম সংখ্যক বার টেনে একটি বা একাধিক টেক্কা পওয়া যেতে পারে।

মনে করি, মুদ্রার পৃষ্ঠদ্বয় Head এবং Tail বা H এবং T চিহ্নিত, তাই তিনটি সমরূপ মুদ্রাকে নিক্ষেপ করা হলে প্রত্যেক বা দুইটি বার দুইটি H ঘটনের সম্ভাবত্যতা (1)THH, (2)HTH, (3)HHT হতে পারে। কিন্তু মোট সম্ভাব্যতা 8 টি HHH, THH, HTH, HHT TTH, THT, HTT, TTT হতে পারে। সুতরাং উপরিক্ত নিক্ষেপ পদ্ধতিতে দুইটি H পাওয়ার সম্ভাব্যতা $\frac{3}{8}$ ।

সম্ভাব্যতা সূত্রাবলি ঃ

- (Φ) কোন A ঘটনা ঘটার সম্ভাব্যতা শূন্য অপেক্ষা কম নয় এবং 1 অপেক্ষা অধিক নয় অর্থাৎ $0 \leq P(A) \leq 1$
- (খ) অসম্ভব ঘটনার সম্ভাব্যতা শূন্য, অর্থাৎ, $\mathrm{P}(\emptyset)=0$
- (গ) নিশ্চিতহ ঘটনার সম্ভাব্যতা 1 অর্থাৎ, P(S)=1

(ঘ) A ঘটনা ঘটার সম্ভাব্যতা P(A) এবং A ঘটনা না ঘটার সম্ভাব্যতা P(A') হলে, P(A) + P(A') = 1.

সম্ভাব্যতা নির্ণয়ে সেটতত্ত্বের ব্যবহার

সেট বীজগণিতে প্রতিপাদিত সেটের ধর্মবিষয়ক কিছু সূত্রের সাহায্যে বিভিন্ন ক্ষেত্রে সম্ভাব্যতা নির্ণয় কিছুটা সহজ। দুইটি বা তিনটি মুদ্রা, দুইটি বা তিনটি ছক্কা নিক্ষেপের ফলে উৎপন্ন নমুনা বিন্দুগুলো বা নমুনাক্ষেত্র প্রদশনে সেটতত্ত্ব ব্যবহার করা হয়।

সেটতত্ত্ব হতে আমরা জানি, $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

মোট ঘটনা সংখ্যা
$$N=n_1+n_2+n_3+n_4$$
 হলে, $\frac{n(A\cup B)}{N}=\frac{n(A)}{N}+\frac{n(B)}{N}-\frac{n(A\cap B)}{N}$

অর্থাৎ $P(A \cup B) = P(A) + P(B) - P(A \cap B)$.

এই সূত্র A, B, C তিন প্রকারের ঘটনার ক্ষেত্রেও সম্প্রসারণ করা যায় ঃ

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(C \cap A) + P(A + B + C)$$

সম্ভাব্যতার সংযোগসূত্র ঃ

(ক) **বর্জনশীল বা বিচ্ছিন্ন ঘটনার ক্ষেত্রে ঃ** দুইটি বর্জনশীল ঘটনার যে কোন একটি ঘটার সম্ভাব্যতা তাদের প্রত্যেকটির পৃথক পৃথকভাবে ঘটার সম্ভাব্যতার যোগফলের সমান।

মনে করি, A এবং B দুইটি বর্জনশীল ঘটনা। তাহলে P(A) অথবা B)=P(A)+P(B) এখানে P(A) এবং P(B) দ্বারা যথাক্রমে A ও B ঘটনা ঘটার সম্ভাব্যতা বোঝানো হয়েছে।

মনে করি, E পরীক্ষার নমুনাক্ষেত্রে S এর সাথে সংশ্লিষ্ট দুইটি ঘটনা A ও B (A এবং B বর্জনশীল ঘটনা ।) ভেনচিত্রের মাধ্যমে তুলে ধরা হল ।

 \boldsymbol{A}

মনে করি, প্রদত্ত নমুনাক্ষেত্রে মোট উপাদান সংখ্যা n (S)

A ঘটনার অনুকূল নমুনাবিন্দুর সংখ্যা $n\left(A
ight) \, \div \, P(A) = rac{n(A)}{n(S)}$

B ঘটনার অনুকূল নমনাবিন্দুর সংখ্যা $n\left(B
ight)$:: $P(B)=rac{n(B)}{n(S)}$

সেটতত্ত্ব হতে, $n(S) = n(A \cup B) = n(A) + n(B) - n(A \cap B)$

$$\therefore P(A \cup B) = \frac{n(A \cup B)}{n(S)} = \frac{n(A)}{n(S)} + \frac{n(B)}{n(S)} - \frac{n(A \cap B)}{n(S)}$$

যেহেতু A এবং B উভয়ই বর্জনশীল ঘটনা, সুতরাং তাদের মধ্যে কোন সাধারণ নমুনাবিন্দু থাকবে না অর্থাৎ n, $(A\cap B)=0 \Longrightarrow P(A\cup B)=\frac{n(A\cup B)}{n(S)}=\frac{n(A)}{n(S)}+\frac{n(B)}{n(S)}$ সুতরাং $P(A\cup B)$ অর্থাৎ P A অথবা B0 = P(A)+P(B) ।

(খ) সাধারণতকৃত সংযোগ সূত্র ঃ যে কোন সংখ্যক বর্জনশীল ঘটনার কোন একটি ঘটনার সম্ভাব্যতা তাদের প্রত্যেকটির পৃথক পৃথকভাবে ঘটার সম্ভাব্যতার যোগফলের সমান ।

প্রমাণ ঃ মনে করি, কোন পরীক্ষার নমুনাক্ষেত্র S এর সাথে সংশ্লিষ্ট $\, n\,$ সংখ্যক বর্জনশীল ঘটনা $\, A_1, \,\, A_2, \, ... \, A_n \,$

তাহলে,
$$P(A_1)=rac{n(A_1)}{n(S)}$$
 , $P(A_2)=rac{n(A_2)}{n(S)}$, ইত্যাদি

$$\begin{split} &n(S) = n \; (A_1 \cup A_2 \cup A_3 \; ... \; ... \; ... \cup A_n) = n(A_1) + n(A_2) + ... \; ... - n(A_1 \cap A_2) - \\ &n(A_2A_3) \; ... \; ... \; ... + n(A_1 \cap A_2 \cap A_3) + ... \; ... \; \, । যেহেতু \; A_1, \; A_2, A_3 \; ... \; ... \; ... \; বর্জনশীল, \end{split}$$

সুতরাং তাদের কোন দুইটিতেও কোন সাধারণ উপাদান নেই।

$$A_1 \cap A_2 = 0 = A_1 A_2 A_3 A_4 = \dots \dots$$

$$\therefore P(A_1 \cup A_2 \cup A_3 \dots \dots) = \frac{n(A_1 \cup A_2 \cup A_3 \dots \dots)}{n(S)}$$

$$= \frac{n(A_1)}{n(S)} + \frac{n(A_2)}{n(S)} + \frac{n(A_3)}{n(S)} \dots \dots \dots$$

$$= P(A_1) + P(A_2) + P(A_3) + \dots$$

(গ) অবর্জনশীল ঘটনারক্ষেত্রে ঃ দুইটি অবর্জনশীল ঘটনার যে কোন একটি ঘটার সম্ভাব্যতা তাদের পৃথকভাবে ঘটার সম্ভাব্যতার সমষ্টি হতে তাদের একত্রে ঘটার সম্ভাব্যতার বিয়োগফলের সমান।

A এবং B দুইটি অবর্জনশীল ঘটনা হলে এবং A ও B ঘটার সম্ভাব্যতা যথাক্রমে P(A) ও P(B) এবং তাদের উভয়ের একই সাথে ও তাদের যে কোন একটি ঘটার সম্ভাব্যতা যথাক্রমে $P(A \cap B)$ ও $P(A \cup B)$ হলে

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

মেটতত্ত্ব হতে,
$$n(S) = n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$\therefore P(A \cup B) = \frac{n(A \cup B)}{n(S)} = \frac{n(A)}{n(S)} + \frac{n(B)}{n(S)} - \frac{n(A \cap B)}{n(S)}$$

A এবং Bঅবজর্নশীল হওয়ার, $\frac{n(A\cap B)}{n(S)}=P(A\cap B)$

$$\therefore P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

সম্ভাব্যতার পূরক সূত্র (Complementary rule)ঃ

একটি ঘটনার ঘটা এবং না ঘটার ব্যাপারকে পরক্ষকের পূরক ঘটনা বলা হয়। একটি ঘটনা ঘটার ব্যাপারটি A হলে, মনে কর ঘটনাটি না ঘটার ব্যাপারটি A'; তাহলে A এবং A' পরক্ষপর বর্জনশীল এবং $A \cup A' = S$, যেখানে S দ্বারা নিশ্চিত ঘটনা প্রকাশ করা হয়। \therefore সম্ভাব্যতার পূরক সূত্র \circ P(A) + P(A') = 1

প্রমাণ ঃ মনে করি, S ঘটন জগতের মোট ঘটনার সংখ্যা =n এবং A এর অনুকূল সংখ্যা =m; তাহলে A' এর অনুকূল সংখ্যা =n-m তাহলে $P(A')=rac{n-m}{n}=1-P(A)$

সম্ভাব্যতার গুণন সূত্র (Multiplication law of Probablity)

EXAMPLE - 01:

- □1. দুইটি স্বাধীন ঘটনা A ও B একত্রে ঘটার সম্ভাব্যতা, তাদের পৃথক পৃথকভাবে ঘটার সম্ভাব্যতার গুণফলের সমান। অথা

 (P (A এবং B) = P(A ∩ B) = P(A). P(B).
- पूरेि অধীন ঘটনা A ও B ঘটার সম্ভাব্যতা, তাদের যে কোন একটি র ঘটা সম্ভাব্যতা এবং তা ঘটেছে
 এই শর্তে অপর ঘটনাটির ঘটার সম্ভাব্যতার গুণফলের সমান।

 $P(A \cap B) = P(A)$. $P\left(\frac{B}{A}\right) = P(B)$. $P\left(\frac{A}{B}\right)$, এখানে $P\left(\frac{B}{A}\right)$ দ্বারা A ঘটনা ঘটেছে এরূপ শর্তে B ঘটনা ঘটার সম্ভাবতো বোঝায়।

EXAMPLE – 02: 52 খানা তাসের একটি প্যাকেট হতে 7 এর কম নম্বরযুক্ত তাসগুলো বাদ দেওয়া হলে; অর্থাৎ 7, 8, 9, 10, J, K,Q,A নম্বরযুক্ত তাসগুলো রাখা হল। ইচ্ছেমত তাস টানা হচ্ছে, পরীক্ষা করা হচ্ছে কিন্তু টানা তাস প্যাকেটে ফেরত দেওয়া হচ্ছে না। এরূপ টানের সম্ভাব্যতা নির্ণয় কর যাতে-

- (i) একখানা টানলে তা '8' হয়। (ii) প্রথম টানে '8' এবং পরের টানে 9 হয়।
- (iii) প্রথম টানলে '8' হয়। (iv) প্রথম টানে, K পরের টানে Q এবং পরের টানে J হয়। যে তাসগুলো নেওয়া হলে তাদের সংখ্যা $= 8 \times 4 = 32$

মোট 32 খানা তাসের মধ্যে একই নম্বরযুক্ত ৪ খানা তাস আছে

 (\mathbf{i}) একখানা টানলে তা '8' হওয়ার সম্ভাব্যতা $\frac{4}{32}=\frac{1}{8}$ ।

(ii) প্রথম টানে '8' এবং পরের টানে 9 হওয়ার সম্ভাব্যতা $=rac{4}{32} imesrac{4}{31}=rac{1}{62}$

(iii) প্রথম টানে '8' এবং পরের টানেও '8' হওয়ার সম্ভাব্যতা $\frac{4}{32} imes \frac{3}{31} = \frac{3}{248}$

(iv) প্রথম টানে, K ২য় টানে Q এবং ৩য় টানে J হওয়ার সম্ভাব্যতা $=rac{4}{32} imesrac{4}{31} imesrac{4}{30}=rac{1}{456}$

শর্তাধীন সম্ভাব্যতা (Conditional Probability)ঃ

সংজ্ঞা ঃ কোন দৈব পরীক্ষণের ঘটন জগতের পরক্ষার বর্জনশীল এবং সমভাবে সম্ভাব্য নমুনাবিন্দুর সংখ্যা N হলে, তাদের মধ্যে B ঘটনা আগেই ঘটেছে এরূপ শর্তাধীন A ঘটনা ঘটার সম্ভাব্যতাকে শর্তাধীন সম্ভাব্যতা বলা হয় এবং $P\left(\frac{A}{B}\right)$ প্রতীক দ্বারা সূচিত করা হয়।

তত্ত্ব ϵ কোন নমুনাজগতে A এবং B দুইটি ঘটনা এবং P(B)>0 হলে, B ঘটনাটির ঘটার শর্তাধীনে A ঘটনাটি ঘটার সম্ভাব্যতা $P\left(\frac{A}{B}\right)=\frac{P(A\cap B)}{P(B)}$.

প্রমাণঃ মনে করি, কোন নমুনাক্ষেত্র A ও B দুইটি অধীন ঘটনা এবং ঐ নমুনাক্ষেত্রের মোট উপাদান সংখ্যা = Nমনে করি, A ঘটনার অনুকূল উপাদন সংখ্যা = n(A) এবং B ঘটনার অনুকূল উপাদন সংখ্যা = n(B)

তাহলে, A ও B একসঙ্গে ঘটা অর্থাৎ $P(A\cap B)$ ঘটনার অনুকূল উপাদন সংখ্যা $=n(A\cap B)$

$$P(A) = \frac{n(A)}{N}$$
 , $P(B) = \frac{n(B)}{N}$, $P(A \cap B) = \frac{n(A \cap B)}{N}$

 $P\left(rac{A}{B}
ight)=B$ ঘটনাটির ঘটার শর্তাধীনে A ঘটনা ঘটার সম্ভাব্যতা $rac{n(A\cap B)}{n(B)}$

$$\therefore P(A \cap B) = \frac{n(A \cap B)}{N} = \frac{n(B)}{N} \cdot \frac{n(A \cap B)}{n(B)} = P(B) \cdot P\left(\frac{A}{B}\right)$$

অর্থাৎ,
$$P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)}$$
 , যখন $P(B) \neq 0$.

EXAMPLE – 03: কোন একটি কারখানায় A, B, C যন্ত্রে যথাক্রমে মোট উৎপাদনের 25%, 35%, এবং 40% উৎপাদিত হয় এবং যন্ত্রত্রয় উৎপাদিত বল্টুগুলোর যথাক্রমে 5%, 4% এবং 2% ক্রেটিপূর্ণ। উৎপাদিত বল্টুগুলো হতে একটি বল্টু তোলা হল এবং দেখা গেল বল্টুটি ক্রেটিপূর্ণ। তোলা বল্টটু A, B, C যন্ত্রে উৎপাদিত হওয়ার সম্ভাব্যতা র্নিণয় কর।

SOLVE : মনে করি, $A_1=$ বল্টুটি A যন্ত্রে উৎপাদিত এমন ঘটনা, $B_1=$ বল্টুটি B যন্ত্রে উৎপাদিত ঘটান, $C_1=$ বল্টুটি C যন্ত্রে উৎপাদিত এমন ঘটনা এবং D= তোলা বল্টুটি ক্রেটিপূর্ণ এমন ঘটনা ।

তাহলে,
$$P(A_1) = 0.25$$
, $P(B_1) = 0.35$ এবং $P(C_1) = 0.40$ এবং $P(D/C_1) = 0.02$

মনে করি, $P\left(rac{A_1}{D}
ight)=$ ক্রটিপূর্ণ বল্টুটি A যন্ত্রে হওয়ার সম্ভাব্যতা।

তাহলে বায়েসের সুত্রানুসারে,
$$P\left(\frac{A_1}{D}\right) = \frac{0.25 \times 0.05}{0.25 \times 0.05 + 0.35 \times 0.04 + 0.40 \times 0.02} = \frac{.125}{.345} = \frac{25}{69}$$

অনুরূপভাবে,
$$P\left(\frac{B_1}{D}\right) = \frac{0.35 \times 0.04}{.345} = \frac{28}{69}$$
 এবং $P\left(\frac{C_1}{D}\right) = \frac{0.40 \times 0.02}{.345} = \frac{16}{69}$.

EXERCISE:

- 01. কোন বাণিজ্যিক প্রতিষ্ঠানের তিনটি পদের জন্য এজন প্রার্থী আবেদন করেছে। ঐ তিনটি পদে প্রার্থী সংখ্যা যথাক্রমে 3. 4. 2 হলে ঐ প্রার্থীর অন্তত একটি পদে চাকরি পাওয়ার সম্ভাবনা কত ?
- 02. একটি (ক) সাধারণ বর্ষে (365 দিনে) (খ) অধিবর্ষে (366 দিনে) 53 টি শুক্রবার থাকার সম্ভাব্যতা র্নিণয় কর। বের করলে সেটা (a) নীল (b) কালো (c) সবুজ হওয়ার সম্ভাব্যতা নির্ণয় কর।
- **03.** প্রান্তিক সখ্যাদ্বয়সহ 50 ও 60 এর মধ্যবর্তী সংখ্যাগুলো হতে নিরপেক্ষভাবে যে কোন একটি সংখ্যা বাছাই করলে সেটা (ক) মৌলিক (খ) 4 এর গুণিতক হওয়ার সম্ভাব্যতা নির্ণয় কর ।

EXAMPLE – 04:একটি ঝুড়িতে 5 টি কালো এবং 4 টি সাদা বলা আছে। একটি বালক নিরপেক্ষভাবে তিনটি বল উঠালো।

3 টি বলই কালো হবার সম্ভাবনা নির্ণয় কর।

SOLVE : ঝুড়িতে মোট বল আছে 5+4=9 টি

প্রতিবার 3 টি করে বল উঠালে, ${}^5C_3=\dfrac{5\times4\times3}{3\times2\times1}=10$ বার।

ধরি, 3 টি বল কালো হবার ঘটনা B. $\therefore 3$ টি বলই কালো হবোর সম্ভাব্যতা $P(B) = \frac{10}{84} = \frac{5}{42}$

EXAMPLE – 05: 52 টি তাসের প্যাকেট হতে 3টি তাস বের করা হলে তিনটি তাসই রাজা হবার সম্ভাবনা কত ?

SOLVE : 52 খানা তাস থেকে প্রতিবার 3 খানা তাস বাছাই করা যায় ${}^{52}C_3=\frac{52\times51\times50}{3\times2\times1}=22100$ উপায়ে। আবার, 52 খানা তাসের মধ্যে 4 খানা তাস রাজা ।

এ 4 খানা থেকে 3 খানা তাস ${}^4C_3=rac{4 imes3 imes2}{3 imes2 imes1}=4$ উপায়ে টানা যায়।

সুতরাং তিনটি তাস রাজা হবার সম্ভাব্যতা $\frac{^4C_3}{^{52}C_3}=\frac{4}{22100}=\frac{1}{5525}.$

EXAMPLE – 🗓 এক প্যাকেট তাস হতে হরতনের একটি রাজা বের করা হল। বাকি তাসগুলি ভালভাবে শাফল করা হল। পরবর্তী তাসটি হরতন হবার সম্ভাবনা র্নিণয় কর।

SOLVE : একটি প্যাকেটে 4 টি ভিন্ন রংয়ের প্রত্যেকটিতে 13 টি করে মোট 52 খানা তাস থাকে । হরতনের একটি রাজা বের করা হলে প্যাকেটে (52-1)=51 টি তাস তাকে যার মধ্যে হরতনের তাস 12 খানা ।

সুতরাং পরবর্তী তাসটি হরতন হবার সম্ভাবনা $P\left($ হরতন $\right)=rac{12}{51}=rac{4}{17}$

EXAMPLE – 07: দুইটি ছক্কা একত্রে নিক্ষেপ করা হলে তাদের নমুনা ক্ষেত্রটি তৈর কর এবং দুইটি ছয় উঠার সম্ভাবনা কত তা নির্ণয় কর।

SOLVE : দুটি ছক্কা একত্রে নিক্ষেপ করলে নমুনা ক্ষেত্রটি :

$$S = \{1, 2, 3, 4, 5, 6\} \times \{1, 2, 3, 4, 5, 6\}$$

 $= \{(1,1), (1,2), (1,3), (1,4), (1,5), (1,6), (2,1), (2,2), (2,3), (2,4), (2,5), (2,6), (3,1), (3,2), (3,3), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (4,4), (4,5), (4,6), (5,1), (5,2), (5,3), (5,4), (5,5), (5,6), (6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\} = 6^2 = 36$

EXAMPLE – \square 8: আলমের বাংলা পরীক্ষায় ফেল করার সম্ভাবনা $\frac{1}{5}$, বাংলা এবং ইংরেজী দুইটিতেই পাসের সম্ভাবনা $\frac{3}{4}$ এবং দুইটির যে কোনো একটিতে পাশের সম্ভাবনা $\frac{7}{8}$ হলে , তার কেবল ইংরেজীতে পাসের সম্ভাবনা কত ?

SOLVE : মনে করি, আলমের বাংলায় পাশ এবং ফেলের ঘটনা যথাক্রমে B এবং B^c যখন $P(B^c)=rac{1}{5}$

 \therefore বাংলায় পাসের সম্ভাবনা $P(B)=1-P(B^c)=1-\frac{1}{5}=\frac{4}{5}$, এবং ইংরেজী পাসের ঘটনা E হলে বাংলা ও ইংরেজী দুইটিতে পাসের সম্ভাবনা $P(B\cap E)=\frac{3}{4}$ এবং যে কোনো একটিতে পাসের সম্ভাবনা $P(B\cup E)=\frac{7}{8}$.

আমরা জানি, $P(B \cup E) = P(B) + P(E) - P(B \cap E) \Rightarrow \frac{7}{8} = \frac{4}{5} + P(E) - \frac{3}{4}$ [যেহেতু ঘটনা দুইটি স্বাধীন]

 \therefore ইংরেজীতে পাসের সম্ভাবনা $P(E)=rac{7}{8}+rac{3}{4}-rac{4}{5}=rac{33}{40}$. সুতরাং কেবলমাত্র ইংরেজীতে পাসের সম্ভাবনা

=(ইংরেজীতে পাসের সম্ভাবনা) – (বাংলা ও ইংরেজী দুইটিতে পাসের সম্ভাবনা)।

অর্থাৎ,
$$P(E \cap B^c) = P(E) - P(B \cap E) = \frac{33}{40} - \frac{3}{4} = \frac{3}{40}$$
.

EXAMPLE – 🖫: 10 থেকে 30 পর্যন্ত সংখ্যা হতে যে- কোনো একটিকে ইচ্ছামত নিলে সেই সংখ্যাটি মৌলিক, অথবা 5 এর গুণিতক হওয়ার সম্ভাবনা র্নিণয় কর।

SOLVE:
$$S = \{10, 11, 12,30\} \implies n(S) = 21$$

মৌলিক সংখ্যার ঘটনা E এবং 5 এর গুণিতক হওয়ার ঘটনা F হলে

অতএব,
$$P(E)=rac{n(E)}{n(S)}=rac{6}{21}=rac{2}{7}$$
 এবং $P(F)=rac{n(F)}{n(S)}=rac{5}{21}$ এক্ষেত্রে ঘটনা দুইটি বর্জনশীল।

কারণ(E ∩ F) = ϕ ∴(মৌলিক অথবা 5 এর গুণিতক)

$$= P(E \cup F) = P(E) + P(F) = \frac{2}{7} + \frac{5}{21} = \frac{6+5}{21} = \frac{11}{21}$$

EXAMPLE – 10: কোনো জরিপে দেখা গেল 80 % লোক ইত্তেফাক পড়ে,70% লোক জনকণ্ঠ পড়ে এবং 60% লোক উভয় পত্রিকা পড়ে। নিরপেক্ষভাবে বাছাই করলে একজন লোকের ইত্তেফাক অথবা জনকণ্ঠ পড়ার সম্ভাবনা নির্ণয় কর।

SOLVE : মনে করি, ইত্তেফাক এবং জনকণ্ঠ পত্রিকা পড়ার ঘটনা যথাক্রমে E এবং J .

$$\therefore$$
 $P(E)=rac{80}{100}$, $P(J)=rac{70}{100}$, এবং $P(E\cap J)=rac{60}{100}$ একজন লোকের ইত্তেফাক অথবা জনকণ্ঠ পড়ার সম্ভাব্যতা $P(E\cup J)=P(E)+P(J)-P(E\cap J)=rac{80}{100}+rac{70}{100}-rac{60}{100}=rac{90}{100}=rac{9}{10}$.

EXERCISE:

- 💵. একটি মুদ্রা তিন বার টস করা হল পর্যায়ক্রমে মুদ্রাটির হেড এবং টেইল পাবার সম্ভাবনা র্নিণয় কর।
- একটি ছক্কা ও দুইটি মুদ্রা একত্রে নিক্ষেপ করা হল। নমুনাক্ষেত্রটি লিখ (ক) 2 টি হেড ও জোড় সংখ্যা
 (খ) ছক্কায় 4 পাবার সম্ভাবনা নির্ণয় কর।
- **Q3.** 20 থেকে 520 পর্যন্ত স্বাভাবিক সংখ্যাগুলি মধ্যে হতে একটি সংখ্যা খুশিমত নিলে সংখ্যাটি অযুগ্ম ঘন সংখ্যা হবার সম্ভাবনা নির্ণয় কর।
- 1 থেকে 20 পর্যন্ত স্বাভাবিক সংখ্যাগুলি হতে একটি সংখ্যা খুশিমত নিলে সংখ্যাটি 3 অথবা 5 এর গুণিতক হবার সম্ভাবনা নির্ণয় কর।

ANS:

- 1	00 1	55 1	5 , 9		
∥ U1. <i>–</i>	1 UZ. -	∥ U3. 	l 114. –		
8	6	167	20		
	- C	20,	_ ~		

EXAMPLE – 11: যদি P(AB) = .048 এবং P(A) = 0.6 হয় তবে P(B) এর মান কত হলে, A ও B স্বাধীন হবে ?

SOLVE : দেওয়া আছে, $P(AB) = P(A \cap B) = 0.48$; P(A) = 0.6

A ও B স্বাধীন ঘটনা হলে আমরা পাই,

$$P(A \cap B) = P(A) \ P(B) \implies 0.48 = 0.6 \times P(B) \implies P(B) = \frac{0.48}{0.60} = 0.8$$

EXAMPLE – 12: $P(A) = \frac{1}{3}$, $P(B) = \frac{3}{4}$, এবং A ও B স্বাধীন হলে $P(A \cap B)$ এবং $P(A \cup B)$ এর মান নির্ণয় কর ।

SOLVE : A ও B স্বাধীন ঘটনা হলে আমরা পাই, $P(A \cap B) = P(A) \times P(B) = \frac{1}{3} \times \frac{3}{4} = \frac{1}{4}$ আবার, আমরা জানি, ঘটনাদ্বয় স্বাধীন হলে অবর্জনশীল হবে।

সুতরাং
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{3} + \frac{3}{4} - \frac{1}{4} = \frac{10}{12} = \frac{5}{6}$$
.

EXAMPLE – 13: $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ এবং $P\left(\frac{A}{B}\right) = \frac{3}{5}$ হলে , (ক) $P(A \cap B)$ (খ) $P\left(\frac{A}{B}\right)$ এবং (গ) $P(A \cup B)$ এর মান নির্ণয় কর।

SOLVE:
$$(\overline{\Phi})$$
 P(A \cap B) = P(A) P $\left(\frac{B}{A}\right) = \frac{1}{2} \times \frac{3}{5} = \frac{3}{10}$

$$(\forall) \ P(A \cap B) = P(A) \ P\left(\frac{B}{A}\right) \Longrightarrow \frac{3}{10} = \frac{1}{3} \times P\left(\frac{A}{B}\right) \Longrightarrow \frac{9}{10}$$

গ)
$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = \frac{1}{2} + \frac{1}{3} - \frac{3}{10} = \frac{15 + 10 - 9}{30} = \frac{16}{30} = \frac{8}{15}$$

EXAMPLE – 14: একটি কলেজের একাদশ শ্রেণির 40 জন ছাত্রের মধ্যে 20 জন ফুটবল খেলে, 25 জন ক্রিকেট খেলে এবং 10 জন ফুটবল ও ক্রিকেট খেলে। তাদের মধ্য থেকে একজনকে দৈবায়িত উপায়ে নির্বাচন করা হল। যদি ছেলেটি ফুটবল খেলে তবে তার ক্রিকেট খেলার সম্ভাবনা কত ?

SOLVE: 40 জন ছাত্রের মধ্যে 20 জন ফুটবল এবং 25 জন ক্রিকেট খেলে এবং 10 জন ছাত্র উভয় খেলা খেলে। যদি ছেলেটি ফুটবল খেলে তবে তার ক্রিকেট খেলার সম্ভাবনা নির্ণয় করতে হবে, যা শর্তাধীন সম্ভাবনা।

ধরি, ফুটবল ও ক্রিকেট খেলার ঘটনা যথাক্রমে F ও C.

∴
$$P(F) = \frac{20}{40} = \frac{1}{2}$$
, $P(C) = \frac{25}{40}$ এবং $P(F \cap C) = \frac{10}{40} = \frac{1}{4}$

$$\therefore$$
 ছেলেটি ফুটবল খেলে এ শর্তে ক্রিকেট খেলার সম্ভাবনা , $P\left(\frac{C}{F}\right) = \frac{P(F \cap C)}{P(F)} = \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}$.

EXERCISE:

তা. 200 জন পরীক্ষার্থীর 40 জন গণিতে, 20 জন পরিসংখ্যানে ফেল করে। উভয় বিষয়ে 10 জন ফেল করে। একজন পরীক্ষার্থী দৈবভাবে নেয়া হলে। সে গণিতে ফেল কিন্তু পরিসংখ্যানে পাস করার সম্ভাবনা নির্ণয় কর।

একটি পরীক্ষায় 30% ছাত্র গণিতে এবং 20% ছাত্র রসায়নে এবং 10% ছাত্র উভয় বিষয়ে ফেল করে। দৈবভাবে একজন ছাত্র নির্বাচন করলে (ক) ছাত্রটি গণিতে ফেল করার সম্ভাবনা কত ? যখন জানা আছে ছাত্রটি রসায়নে ফেল করেছে (খ) ছাত্রটির একটি মাত্র বিষয়ে ফেল করার সম্ভবনা কত ?

ANS:

$01.\frac{3}{20}$	$\square 2. (\overline{4}) \frac{1}{2}, (\overline{4}) \frac{2}{5}$			
20	2 3			

EXAMPLE – 15: একটি ব্যাগে 4 টি সাদা এবং 5 টি কালো বল আছে। একজন লোক নিরপেক্ষভাবে 3 টি বল উত্তোলন করলেন। 3 টি বলই কালো হওয়ার সম্ভাবনা নির্ণয় কর।

SOLVE: ব্যাগে মোট বলের সংখ্যা = (4 + 5) = 9 টি

এই 9 টি বল হতে 3 টিকে, ${}^9C_3=rac{9 imes 8 imes 7}{3 imes 2 imes 1}=84$ উপায়ে বাছাই করা যায়।

আবার, 5 টি কালো বল হতে 3 টিকে ${}^5C_3=rac{5 imes 4 imes 3}{3 imes 2 imes 1}=10$ উপায়ে বাছাই করা যায়।

সুতরাং 3 টি বলই কালো হওয়ার ঘটনা R হলে, $P(R) = \frac{10}{84} = \frac{5}{42}$

EXAMPLE – 16: একটি থলিতে 3 টি সাদা এবং 2 টি কালো বল আছে। অপর একটি থলিতে 2 টি সাদা এবং 5 টি কালো বল আছে। নিরপেক্ষভাবে প্রত্যেক থলি হতে একটি করে বল তোলা হলো। দুইটি বলের মধ্যে অন্তত ঃ একটি সাদা হওয়ার সম্ভাবনা নির্ণয় কর।

SOLVE : প্রথম থলিতে 3 টি সাদা এবং 2 টি কালো বল । অতএব প্রথম থলিতে মোট বল =(3+2)=5টি এবং দ্বিতীয় থলিতে 2 টি সাদা এবং 5 টি কালো বল । মোট বল =(2+5)=7 টি । প্রথম থলির 5 টি হতে 1 টিকে 5C_1 এবং দ্বিতীয় থলির 7 টি হতে 1 টিকে 7C_1 উপরে বাছাই করা যায় ।

অতএব, ২ টি বল মোট ${}^5C_1 imes{}^7C_1=5 imes7=35$ উপায়ে বাছাই করা যায়।

ধরি, দুইটি বলে মধ্যে অন্তত ঃ একটি সাদা হওয়ার ঘটনা R এবং একটি বলও সাদা না হওয়ার অর্থাৎ কালো হওয়ার ঘটনা R^c । প্রথম থলির ২ টি কালো বল হতে ১টি এবং দ্বিতীয় থলির ৫টি কালো হতে ১ টি করে ২ টি বল একত্রে বাছাই করা যায় ${}^2C_1 imes{}^5C_1=2 imes{}5=10$ উপায়ে। অতএব, $P(R^c)=rac{10}{35}=rac{2}{7}$ সুতরাং অন্তত ঃ একটি বল সাদা হওয়ার সম্ভাব্যতা $P(R)=1-P(R^c)=1-rac{2}{7}=rac{5}{7}$.

EXAMPLE - 17: দুইটি বাক্সের প্রথমটিতে 4 টি সাদা ও 3টি লাল এবং দ্বিতীয়তে 3টি সাদা ও 7টি লাল বল আছে। সমসম্ভব উপায়ে একটি বাক্স নির্বাচন করা হল। ঐ বাক্স হতে একটি বল টানা হলে, বলটি সাদা হওয়ার সম্ভবনা নির্ণয় কর।

SOLVE : প্রত্যেকটি বাক্স নির্বাচন করার সম্ভাব্যতা $=\frac{1}{2}$ ১ম বাক্সে মোট বল =(4+3)=7টি যার 4টি সাদা $_14$ টি সাদা বল থেকে একটি টানা যায় $_144$ উপায়ে এবং মোট $_144$ টি বল থেকে একটি করে টানা যায় $_144$ উপায়ে । তদ্রুপ ২য় বাক্সের ক্ষেত্রে $_144$ টি সাদা বল থেকে একটি টানা যায় $_144$ উপায়ে । এবং মোট $_144$ ওপায়ে । তদ্রুপ ২য় বাক্সের ক্ষেত্রে $_144$ টি সাদা বল থেকে একটি টানা যায় $_144$ উপায়ে । এবং মোট $_144$ ওপায়ে ।

বলটি সাদা হবার সম্ভাবনা=
$$\frac{1}{2}\left(\frac{4}{7} + \frac{3}{10}\right) = \frac{61}{140}$$

EXERCISE:

01. একটি বাক্সে 5 টি লাল ও 4 টি সাদা ক্রিকেট বল এবং অপর একটি বাক্সে 3 টি লাল ও 6 টি সাদা ক্রিকেট বল আছে। প্রত্যেক বাক্স হতে একটি করে বল উঠান হলে দুইটি বলে মধ্যে কমপেক্ষে একটি লাল হওয়ার সম্ভাবনা নির্ণয় কর । \mathbf{Ans} : $\frac{19}{27}$

EXAMPLE - 18: একটি বাক্সে সমআকৃতির 10 টি লাল ও 5 টি কালো বল আছে। আর একটি অনুরূপ বাক্সে 12 টি সমআকৃতির লাল বল আছে। একটি বাক্স লটারী করে নির্বাচন করা হলো এবং সেটা থেকে একটি বল তোলা হলো। যদি বলটি লাল হয় তাহলে প্রথম বাক্সটি যে নির্বাচিত হয়েছে তার সম্ভাবনা কত ?

SOLVE: মনে করি, ১ম বাক্সটি A এবং ২য় বাক্সটি B

বাক্সটি নির্বাচনের সম্ভাব্যতা $P(A) = P(B) = \frac{1}{2}$ এবং বলটি লাল হবার সম্ভাব্যতা P(R.) প্রথমে বাক্স নির্বাচন এবং পরে লাল বল পাবার সম্ভাব্যতা।

১ম বাক্সের ক্ষেত্রে ১টি লাল বল পাবার সম্ভাব্যতা= $P(A)P\left(rac{R}{A}
ight)=rac{1}{2}\cdotrac{10}{15}=rac{1}{3}$

২য় বাক্সের ক্ষেত্রে ১টি লাল বল পাবার সম্ভাব্যতা $= P(B).P\left(rac{R}{B}
ight) = rac{1}{2}.rac{12}{12} = rac{1}{2}$

অতএব, একটি লাল বল পাবার মোট সম্ভাব্যতা , $P(R)=P(A)\;P\left(\frac{R}{A}\right)+\;P(B)\;P\left(\frac{R}{B}\right)$

বলটি লাল হলে ১ম বাক্সটি যে নির্বাচিত হয়েছে তার সম্ভাব্যতা =

$$\frac{3}{4}$$
 বাক্সের ১টি লাল বলের সম্ভাব্যতা $=\frac{\frac{1}{3}}{\frac{5}{6}}=\frac{1}{3}\times\frac{6}{5}=\frac{2}{5}$

EXAMPLE - 19: একটি ব্যাগে 1টি টাকা ও 3 টি পয়সা, দ্বিতীয় ব্যাগে 2 টি টাকা ও 4 টি পয়সা এবং তৃতীয় ব্যাগে 3 টি টাকা ও 1 টি পয়সা আছে। লটারির মাধ্যমে একটি ব্যাগ বাছাই করে একটি মুদ্রা উত্তোলন করলে সেটি টাকা হওয়ার সম্ভাবনা নির্ণয়কর।

SOLVE: মনে করি, ব্যাগ তিনটি যথাক্রমে A, B, C

সুতরাং একটি ব্যাগ বাছাই করার সম্ভাব্যতা $=\frac{1}{3}$

 ${
m A}$ ব্যাগ হতে উত্তোলিত মুদ্রাটি টাকা হবার সম্ভাব্যতা $=rac{1}{3} imesrac{{}^1C_1}{{}^4C_1}=rac{1}{3 imes4}=rac{1}{12}$

 ${
m A}$ ও ${
m C}$ ব্যাগ হতে উত্তোলতি মুদ্রাটি টাকা হবার সম্ভাব্যতা যথাক্রমে $=rac{1}{3} imesrac{^2C_1}{^6C_1}$ ও $rac{1}{3} imesrac{^3C_1}{^4C_1}$ অর্থাৎ $rac{1}{9}$ ও $rac{1}{4}$

সুতরাং উত্তোলিত মুদ্রাটি টাকা হবার সম্ভাব্যতা $= rac{1}{12} + rac{1}{9} + rac{1}{4} = rac{16}{36} = rac{4}{9}$.

EXERCISE:

 \Box 1. দুইটি থলির একটিতে 5 টি লাল এবং 3 টি কালো বল আছে। অপর থলিতে 4 টি লাল এবং 5 টি কালো বল আছে। সমসম্ভব উপায়ে একটি থলি নির্বাচন করা হলে এবং তা থেকে দুইটি বল তোলা হলে একটি লাল ও একটি কালো হওয়ার সম্ভাবনা নিণয় কর। $\left[\mathbf{Ans}: \frac{275}{504}\right]$