1	portion of said first side so that said integrated circuit device is within said internal cavity;
2	and
3	an epoxy encapsulant material filling a substantial portion of said internal
. 4	cavity, and said epoxy encapsulant material being in contact with both said integrated circuit
γ) 5	device and said top portion of said metal cap,
6	wherein said metal cap is constructed from a material selected from one of
7	copper, aluminum, or alloys thereof.
1	 (Unamended) A ball-grid array package comprising:
2	a substrate having first and second sides;
3	a metal heat slug attached to said first side of said substrate, said metal heat
4	slug having a die attach pad portion, at least one wirebond pad window portion, and
5	peripheral rim portions;
6	an integrated circuit device attached to said die attach pad portion of said
7	metal heat slug;
8	a metal cap having a side wall portion and a top portion forming an internal
. 9	cavity, wherein said metal cap is attached to said metal heat slug along said peripheral rim
10	portions so that said integrated circuit device is within said internal cavity; and
ÍΙ	an epoxy encapsulant material filling a substantial portion of said internal
12	cavity, said epoxy encapsulant material being in contact with both said integrated circuit
13	device and said top portion of said metal cap.
	•
1	7. (Unamended) A ball-grid array package according to claim 6, further
2	comprising:
3	a retainer ring attached to said metal heat slug within said internal cavity.
	and the stag within said internal cavity.
ı	8. (Unamended) A ball-grid array electronic package according to
	(

2 claim 6, wherein said metal cap has at least one hole in its top portion.

- 1 9. (Unamended) A ball-grid array package according to claim 6, wherein
 2 thermally conductive particles are dispersed in said epoxy encapsulant material, thereby
 3 enhancing the thermal conductivity of said epoxy encapsulant.
- 1 10. (Unamended) A ball-grid array package according to claim 9, wherein said thermally conductive particles are made from a material selected from one of diamond, cubic boron nitride or an oxide such as alumina.
- 1 11. (Unamended) A ball-grid array package according to claim 1, wherein
 2 said metal cap is constructed from a material selected from one of copper, aluminum, or
 3 alloys thereof.