Mathematical Interpretation of Urban Growth Model

Zhoı

Model
Hypothesis
and Deduction
Model Hypothesis
Mathematical
Deduction

Interpretation and Discussio

Mathematical Interpretation of Urban Growth Model PTFX

Zhengzi Zhou

School of Resource and Environmental Sciences Wuhan University

17th January, 2019

Outline

Mathematical Interpretation of Urban Growth Model

Zho

Model
Hypothesis
and Deduction
Model Hypothesis
Mathematical
Deduction

Interpretation and Discussion

Interpretation

- 1 Model Hypothesis and Deduction
 - Model Hypothesis
 - Mathematical Deduction

- 2 Interpretation and Discussion
 - Interpretation
 - Discussion

Model hypothesis

Bettencourt, L. M.Growth, innovation, scaling, and the pace of life in cities.

Mathematical Interpretation Urban Growth

Model

Model Hypothesis

Scaling Power Law

$$Y_t = Y_0 N_t^{\beta}$$

$$y_t = Cx_t^{\beta} \tag{1}$$

$$y_0 = Cx_0^{\beta} \tag{2}$$

$$y_t = Cx_t^{\beta}$$

$$y_0 = Cx_0^{\beta}$$

$$C = \frac{y_0}{x_0^{\beta}}$$
(2)
(3)

- Y_t, y_t :Material Resources at time t1
- Y_0 , c:Nomarlization constant at time t0
- N_t, x_t :Population at time t1

Model Hypothesis

Mathematical Interpretation of Urban Growth Model

Zho

Model Hypothesis and Deduction Model Hypothesis

Mathematical Deduction

and Discussion

Urban Growth Equation

$$Y = RN + E \frac{dN}{dt}$$

$$y_t = Rx_t + E\frac{dx_t}{dt} \tag{4}$$

- Interpretion: Y are used for maintence and growth
- R:per unit time to maintain an individual on average
- E:quantity consumed by a new onee

Mathematical Deduction

Mathematical Interpretation of Urban Growth Model

Mathematical Deduction

$$Rx_t + E\frac{dx_t}{d_t} = Cx_t^{\beta}$$
 (5)

$$Rx_{t} + E\frac{dx_{t}}{d_{t}} = Cx_{t}^{\beta}$$

$$x^{-\beta}\frac{dx}{dt} + \frac{R}{E}x^{1-\beta} = \frac{C}{E}$$
(5)

$$z = x^{1-\beta} \tag{7}$$

$$\frac{dz}{dt} = (1 - \beta)x^{-\beta}\frac{dx}{dt}$$
 (8)

$$\frac{1}{1-\beta}\frac{dz}{dt} + \frac{R}{E}z = \frac{C}{E} \tag{9}$$

Let
$$K = \frac{R(1-\beta)}{E}$$
 , $B = \frac{C(1-\beta)}{E}$ (10)

$$z' + Kz = B \tag{11}$$

Mathematical Deduction

Mathematical Interpretation of Urban Growth Model

Zno

Model
Hypothesis
and Deductio
Model Hypothesis
Mathematical

Deduction
Interpretatio
and Discussion

Interpretation

$$(ze^{Kt})' = z'e^{kt} + Kze^{Kt} = Be^{Kt}$$
 (12)

$$ze^{Kt} = \int Be^{kt} dt = \frac{B}{K}e^{Kt} + S$$
 (13)

$$x^{1-\beta} = z = \frac{B}{K} + \frac{S}{e^{Kt}} = \frac{C}{R} + S \times e^{-Kt}$$
 (14)

$$S = (x_0^{1-\beta} - \frac{C}{R})e^{Kt_0}$$
 (15)

$$x^{1-\beta} = \frac{C}{R} + (x_0^{1-\beta} - \frac{C}{R})e^{-\frac{R(1-\beta)}{E}(t-t_0)}$$
 (16)

Solution

$$X_t = \left[rac{Y_0}{R} + \left(X_0^{1-eta} - rac{Y_0}{R}
ight) exp \left[-rac{R}{E} (1-eta)
ight] t
ight]^{rac{1}{1-eta}}$$

Case : $\beta = 1$

Mathematical Interpretation of

Urban Growth Model

Interpretation

when $\beta=1$, the solution reduce to a exponential:

$$y_{t} = Rx_{t} + E \frac{dx_{t}}{dt} = Cx_{t}^{\beta}$$

$$\frac{dx_{t}}{x_{t}} = \frac{C - R}{E} dt$$
(17)

$$\frac{dx_t}{x_t} = \frac{C - R}{E} dt \tag{18}$$

$$Inx_t = \frac{C - R}{E}t + s \tag{19}$$

$$x_t = x_0 e^{\frac{C-R}{E}t} \tag{20}$$

and the curve is:

Case : $\beta < 1$

Mathematical Interpretation

Urban Growth Model

ZIIO

Model
Hypothesis
and Deduction
Model Hypothesis
Mathematical
Deduction

and Discussi

when $eta < 1, {
m it}$ leads to a sigmoidal curve :

$$x^{1-\beta} = \frac{C}{R} + (x_0^{1-\beta} - \frac{C}{R})e^{-\frac{R(1-\beta)}{E}(t-t_0)}$$
 (21)

$$x_0^{1-\beta} - \frac{C}{R} = (x_0 - \frac{y_0}{R})x_0^{-\beta} < 0$$
 (22)

$$t \to \infty$$
 , $x = \left(\frac{C}{R}\right)^{\frac{1}{1-\beta}}$ (23)

Thus, cities and social organizations that are driven by economics of scale are destined to eventually stop growth.

Case : $\beta > 1$

Mathematical Interpretation of Urban Growth

Model

Model Hypothesis and Deduction Model Hypothesis Mathematical Deduction

Interpretation and Discussion

Interpretation

when $\beta > 1$

$$\frac{dx_t}{dt} = \frac{y_0}{Fx_0^{\beta}} x_t^{\beta} - \frac{R}{E} x_t \tag{24}$$

$$x_0 = (\frac{R}{Y_0})^{\frac{1}{\beta - 1}} \tag{25}$$

$$t_c = -\frac{E}{(\beta - 1)R} ln[1 - \frac{R}{C} x_0^{1 - \beta}]$$
 (26)

E_i/R_i and t_c

Mathematical Interpretation of Urban Growth Model

Zho

Model
Hypothesis
and Deduction
Model Hypothesis
Mathematical
Deduction

Interpretation and Discussion

Interpretation

■ E_i/R_i : the time needed for an average individual to reach productive maturity

• $t_i \propto t_c pprox rac{1}{x_0^{eta-1}}$:inovations arise at an accelerated rate

Discussion

Mathematical Interpretation of Urban Growth Model

Zh

Model Hypothesis and Deduction Model Hypothesis Mathematical Deduction

Interpretation and Discussion

Interpretation
Discussion

- The technique of introducing the variable t, and mathematical function analysis
- Rationality analysis
 - regard population growth rate as the constraints to resources Y
 - ignore the difference of consumption patterns between resources
 - **3** give the conclusion that technological change *slows* population growth

Discussion

Mathematical Interpretation of Urban Growth Model

∠hc

Model Hypothesis and Deduction Model Hypothesis Mathematical Deduction

and Discussion

X	$0.5x^{1.15}$	
100	100	$100\times1+0\times1$
200	221	$200{\times}1 + 21 \times 1$
221	250	29
250	286	36
286	334	48
334	400	$334\times1+66\times1$
400	492	$400 \times 1.2 + 10 \times 1.2$
410	505	$410 \times 1.2 + 11 \times 1.2$
421	521	13

Discussion

Mathematical Interpretation of Urban Growth Model

Zhc

Model
Hypothesis
and Deduction
Model Hypothesis
Mathematical
Deduction

and Discussi

X	$0.5x^{1.15}$	
100	100	$100\times1+0\times1$
200	221	$200{\times}1 + 21 \times 1$
334	400	$334\times1+66\times1$
400	492	$400\times1.2+10\times1.2$
410	505	$410\times1.2+11\times1.2$
421		
500	642	$500\times1.3-12\times1.3$
493	624	$494 \times 13 - 13 \times 13$