Epp 2<sup>nd</sup> Ed. 5.1 1, 2, 3, 5, 6, 7, 10, 15

- 5.2 25a, b
- 5.3 1, 4 (explain why rather than give a formal proof), 6.

**5.1 (1)** Which of these sets are equal?

(a) {a,b,c,d}

(a) =C

(b) {d,e,a,c}

(c)  $\{d,b,a,c\}$ 

- (b) = a
- (d) {a,a,d,e,c,e}

**5.1 (2)** Is  $4 = \{4\}$ ? Explain!

No! 4 is the individual number 4. £43 is the set containing the number 4. These are not the same.

5.1 (3) Graph each set on a number line.

 $A = \{0,1,2\}$ 



 $B=\{x\in\mathbb{R}| -1\leq x<3\}$ 



 $C=\{x\in\mathbb{R}|-1< x<3\}$ 



 $D=\{x\in\mathbb{Z}|-1< x<3\}$ 



 $E = \{x \in \mathbb{Z}^+ | -1 < x < 3\}$ 



Which of these sets were equal?

only A = D

| 5.1 (5)  | Let $A=\{c,d,f,g\}$ $B=\{f,i\}$ and $C=\{d,g\}$                        | Answer each of the following questions. |
|----------|------------------------------------------------------------------------|-----------------------------------------|
| J. 1 (J) | Let $\Lambda = \{0, 0, 1, 0\}$ , $D = \{1, 1\}$ , and $O = \{0, 0\}$ . | Answer each or the following questions. |

Yes. Every element in C is in A, and there are elements of A that are not in C.

## **5.1 (6)** Yes or no? Be ready to discuss your answers.

(a) Is 
$$3 \in \{1,2,3\}$$
?  $\forall e \leq .$ 

(f) Is {2}⊆{1,{2},{3}}? No.

(g) Is {1}⊆{1,2}? Yes.

(c) Is  $\{2\} \in \{1,2\}$ ? No.

(h) Is  $1 \in \{\{1\}, 2\}$ ? No.

(d) Is  $\{3\} \in \{1, \{2\}, (3\}\}$ ? Yes.

(i) Is  $\{1\}\subseteq\{1,\{2\}\}$ ? Yes.

(e) Is 1∈{1}? Yes.

(j) Is {1}⊆{1}? Yes.

## **5.1 (7)** Let $A=\{b,c,d,f,g\}$ and $B=\{a,b,c\}$ . Find each of the following:

(a) 
$$A \cup B = \{a, b, c, d, f, g\}$$

(b) 
$$A \cap B = \{b, c\}$$

(c) 
$$A-B = \{d, f, 93\}$$

(d) 
$$B-A = {a}$$

## **5.1 (10)** True or False? Be ready to discuss your answers.

(a) 
$$\mathbb{Z}^+ \subseteq \mathbb{Q}$$
? True

(e) 
$$\mathbb{Q} \cap \mathbb{R} = \mathbb{Q}$$
? True

(f) 
$$\mathbb{Q} \cup \mathbb{Z} = \mathbb{Q}$$
? True

(c) 
$$\mathbb{Q} \subseteq \mathbb{Z}$$
? False

(g) 
$$\mathbb{Z}^+ \cap \mathbb{R} = \mathbb{Z}^+$$
? True

(d) 
$$\mathbb{Z}^- \cup \mathbb{Z}^+ = \mathbb{Z}$$
? False (where's 0?)

(h) 
$$\mathbb{Z} \cup \mathbb{Q} = \mathbb{Z}$$
? False.

**5.1 (15)** Neatly shade the region corresponding to each set.



**5.2 (25a)** Illustrate one of the distributive laws by shading in the region corresponding to  $A \cup (B \cap C)$  on one copy of the diagram and  $(A \cup B) \cap (A \cup C)$  on the other. Label them!



## 5.2 (25b)

Illustrate the other distributive law by shading in the region corresponding to A∩(B∪C) on one copy of the diagram and  $(A \cap B) \cup (A \cap C)$  on the other. Label them!





5.3 (1)

(a) Is the number 0 in  $\emptyset$ ? Explain.

No. Nothing is in the empty set, \$= \( \frac{2}{3} \), not even zero.

(b) Is  $\emptyset = \{\emptyset\}$ ? Explain.

No. The empty set (\$) is not the same as the set containing the empty set ( E\$ 3)

(c) Is  $\emptyset \in \{\emptyset\}$ ? Explain.

Yes. The empty set is an element of the set containing the empty set.

5.3 (4) Show that (explain informally) that for all subsets A of a universal set U,  $A \cap A^{C} = \emptyset$ , and  $A \cup A^{C} = U$ .

> ANA = O This makes sense, since A is a set, and Ac is everything not in the Set, so there is nothing in their intersection. (any element is either in the set or not in the set - it can't be both) AUAC = U this makes sense, since A is a Set, and AC is everything that's in the universe but not in A. Put together, that's everything in the universe!

**5.3 (6)** Draw Venn diagrams to describe the sets A, B, and C that satisfy the given conditions:

(a)  $A \cap B = \emptyset$ ,  $A \subseteq C$ ,  $C \cap B \neq \emptyset$ .



(b)  $A\subseteq B$ ,  $C\subseteq B$ ,  $A\cap C\neq\emptyset$ .



(c)  $A \cap B \neq \emptyset$ ,  $B \cap C \neq \emptyset$ ,  $A \cap C = \emptyset$ .

