Roll No. B120851CH

(pages 2)
Name: Imathan Dinakan

National Institute of Technology Calicut

Department of Mathematics

3rd Semester B.Tech. Interim Test II, October 2013

MA 2001 MATHEMATICS III

(Common to all branches)

Statistical tables are permitted

Time: 1 hr. 15 min Max. Marks: 25

Note: Answer all questions

- 1. A paint manufacturer wants to determine the average drying time of a new interior wall paint. If for 12 test areas of equal size he obtained a mean drying time of 66.3 minutes and a standard deviation of 8.4 minutes, construct a 95% confidence interval for the true mean. Assume normality.
- 2. In comparison of two kinds of varnishes, it is found that 4 samples of ten liter cans of one brand cover on the average 546 m² with a standard deviation of 31 m², whereas 4 samples of ten liter cans of another brand cover on the average 492 m² with a standard deviation of 26 m². Stating necessary assumptions, test at 5% level of significance whether on the average the first kind of varnish covers a greater area than the second.
- 3. The lifetime (in hours) of 10 batteries were recorded as follows: 140, 136, 150, 144, 148, 152, 138, 141, 143, and 151. Construct a 99% confidence interval for the true variance. (2.5)
- 4. Given the following random samples:

 Sample I: 39, 41, 42, 42, 44, 40 and Sample II: 40, 42, 39, 45, 38, 39, 40.

 Based upon the samples, do the population variances differ significantly at 10% level? (3)
 - 5. A manufacturer claims that an average of 2% of the bulbs manufactured by his firm is defective. A random sample of 400 bulbs contained 13 defective items. On the basis of this sample, can we accept the manufacturer's claim at 5% level? (2.5)
- 6. To compare the wearing qualities of two types of automobile tyres, A and B, a tyre of type A and one of type B are randomly assigned and mounted on the rear wheels of each of five automobiles. The automobiles are then operated for a specified number of kilometers and the amount of wear is recorded for each tyre. These measurements are as follows:

Automobile	1	2	3	4	5
Tyre A	10.6	9.8	12.3	9.7	8.8
Tyre B	10.2	9.4	11.8	9.1	8.3

Do the data present sufficient evidence to indicate a significant difference in the average wear for the two tyre types? Test using $\alpha = 0.05$. (2.5)

While testing an octa-headed die to see whether it is biased, the following results were obtained.

Face value		2.	3.	4	5.	6	7	8
frequency	7	10	11	9	12	10	14	7

Do the data present sufficient evidence that the octa-headed die is fair? Conduct goodness of fit test at 5% level of significance. (3)

- 8. Define the following with respect to testing a null hypothesis against an alternative hypothesis.

 (a) Type I error (b) Type II error (c) Power of the test.

 (1.5)
 - 9. (i). Consider the problem of testing H_0 : $\mu = 880$ against H_1 : $\mu \neq 880$ using $\bar{x} = 871$, s = 22, n = 50 and $\alpha = 0.05$. Find the probability of Type II error (β) when the actual mean μ is equal to 877.
 - (ii) In a random sample of 400 industrial accidents, it was found that 220 were due to unsafe working conditions. Construct a 95% confidence interval for the true proportion. (2)

Page 2 of 2
