METODY NUMERYCZNE - LABORATORIUM

Zadanie 1 – Rozwiązywanie równań nieliniowych

Opis rozwiązania

Metoda Bisekcji:

- Obliczamy wartości funkcji na krańcach przedziału [a,b]
- Jeśli funkcja nie ma różnych znaków na krańcach przedziału [a,b] -> return błąd
- Wyznaczamy środek przedziału [a,b].
- Jeśli osiągnięto założoną dokładność -> return wynik
- Obliczamy wartość funkcji w środku przedziału
- Za nowy przedział [a,b] przyjmujemy tę połówkę [a,x₀], [x₀,b], w której funkcja zmienia znak
- Wróć do kropki nr 3

Metoda siecznych:

- Z punktów wykresu funkcji dla krańców przedziału (x₁, x₂) prowadzimy sieczną. Daje ona nam punkt x₃
- Prowadzimy drugą sieczną z punktów wykresu funkcji dla x2, x3. Daje ona nam punkt x4
- Prowadzimy trzecią sieczną z punktów wykresu funkcji dla x3, x4. Daje ona nam punkt x5
- Kontynuujemy rysowanie siecznych do momentu aż pętla przerwana zostanie dobranym warunkiem stopu. W naszym przypadku jest to albo epsilon albo liczba iteracji.

Wyniki

Szacowanie dokładności za pomocą epsilon:

Metoda bisekcji

Parametry/funk cja	$5x^5 + 4x^4 - 3^3 + 2^2 + x - 2$	$\left(\frac{1}{3}\right)^x - 10$	$\sin(x)$	$5 \sin^5(\sin x) + 4 \sin^4(\sin x) - 3 \sin^3(\sin x) + 2 \sin^2(\sin x) + \sin(\sin x) - 2 \sin^3(\sin x) + 3 \sin^3(\sin$
Lewy kraniec	0	-10	-0.5	0
Prawy kraniec	5	0	1	2
Epsilon	0.00001	0.00001	0.00001	0.00001
Ilość iteracji	18	23	16	15
Wynik	0.6539726257324219	-2.095903158187866	-0,00000762939453125	0.79351806640625

Metoda siecznych

Parametry/funkcj a	$5x^5 + 4x^4 - 3^3 + 2^2 + x - 2$	$\left(\frac{1}{3}\right)^x - 10$	$\sin(x)$	$5\sin^5(\sin x) + 4\sin^4(\sin x) - 3\sin^3(\sin x) + 2\sin^2(\sin x) + \sin(\sin x) - 2$
Lewy kraniec	0	-10	-0.5	0
Prawy kraniec	5	0	1	2
Epsilon	0.00001	0.00001	0.00001	0.00001
Ilość iteracji	23	42	3	6
Wynik	0.6539735059897727	-2.0959032744285846	0.0000005475351568028173	0.793517815690851

Określona liczba iteracji:

Metoda bisekcji

Parametry/funkcj a	$5x^5 + 4x^4 - 3^3 + 2^2 + x - 2$	$\left(\frac{1}{3}\right)^x - 10$	$\sin\left(x\right)$	$5\sin^{5}(\sin x) + 4\sin^{4}(\sin x) - 3\sin^{3}(\sin x) + 2\sin^{2}(\sin x) + \sin(\sin x) - 2$
Lewy kraniec	0	-10	-0.5	0
Prawy kraniec	5	0	1	2
Ilość iteracji	25	25	25	25
Wynik	0.6539733707904816	-2.09590345621109	0.00000001490116119384766	0.7935177683830261

Określona liczba iteracji:

Metoda siecznych

Mictoda Sicozifyoff					
Parametry/funkcja	$5x^5 + 4x^4 - 3^3 + 2^2 + x - 2$	$\left(\frac{1}{3}\right)^x - 10$	$\sin\left(x\right)$	$5\sin^{5}(\sin x) + 4\sin^{4}(\sin x) - 3\sin^{3}(\sin x) + 2\sin^{2}(\sin x) + \sin(\sin x) - 2$	
Lewy kraniec	0	-10	-0.5	0	
Prawy kraniec	5	0	1	2	
Ilość iteracji	25	25	3	9	
Wynik	0.6539734425360056	-0.2959767153180888	0.0000005475351568028173	0.7935178182581291	

Szacowanie dokładności za pomocą epsilona – obliczenia analityczne:

Metoda bisekcji

wetoda bisekc	ון			
Parametry/funkcja	$5x^5 + 4x^4 - 3^3 + 2^2 + x - 2$	$\left(\frac{1}{3}\right)^x - 10$	$\sin\left(x\right)$	$5\sin^5(\sin x) + 4\sin^4(\sin x) - 3\sin^3(\sin x) + 2\sin^2(\sin x) + \sin(\sin x) - 2$
Lewy kraniec	0	-10	-0.5	0
Prawy kraniec	5	0	1	2
Epsilon	0.0001	0.0001	0.0001	
Ilość iteracji	16	16	8	
Wynik	0.6539764404	-2.0959014893	0.001953125	

Szacowanie dokładności za pomocą epsilona – obliczenia analityczne:

Metoda siecznych

Wietoda siecznych	1			
Parametry/funkcja	$5x^5 + 4x^4 - 3^3 + 2^2 + x - 2$	$\left(\frac{1}{3}\right)^x - 10$	$\sin\left(x\right)$	$5\sin^5(\sin x) + 4\sin^4(\sin x) - 3\sin^3(\sin x) + 2\sin^2(\sin x) + \sin(\sin x) - 2$
Lewy kraniec	0	-10	-0.5	0
Prawy kraniec	5	0	1	2
Epsilon	0.00001	0.00001	0.00001	0.00001
Ilość iteracji	10	4	3	4
Wynik	0.6539721325	-2.0959032161	0.0000023262	0.7935156533

Wnioski

- Nie udało nam się stwierdzić, która metoda szybciej znajduje miejsca zerowe, ponieważ jest to zależne od typu funkcji.
- Dla funkcji sin(x) analityczne szacownie dokładności jest nieefektywne.
- W przypadku występowania 2 miejsc zerowych w danym przedziale obie metody nie działają poprawnie. Dla metody bisekcji spowodowane jest to tożsamością znaków.
- W naszej implementacji metod nie bierzemy pod uwagę funkcji nieciągłych.