PARISHRAM 2025

Mathematics

DPP: 1

Determinants

Q1 The value of the determinant of the matrix

$$A = \left[egin{matrix} 2 & -1 \ 3 & -5 \end{matrix}
ight]$$
 is equal to

(A) 7

- (B) -7
- (C) -8
- (D) 8
- Q2 The value of the determinants of the matrix A = [-5] is equal to
 - (A) -5
- (B) 5
- (C) 10
- (D) -10
- Q3 If $\begin{vmatrix} k & -2 \\ 5 & 7 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 2 & 3 \end{vmatrix}$, then k is
- **Q4** If $A=egin{bmatrix} 2 & -5 \ 3 & 7 \end{bmatrix}$, then the value of |2A| is equal to
 - (A) 116
- (B) 117
- (C) 115
- (D) 118
- **Q5** If |A|=20, then the value of |3A| is equal to (order of matrix is 3)
 - (A) 540
- (B) 580
- (C) 640
- (D) 680
- The value of $\begin{vmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{vmatrix}$ is equal to
 - (A) 1

(B) -1

(C) O

- (D) 2
- Q7 The value of the determinant $\begin{vmatrix} 18 & 21 & 24 \end{vmatrix}$ is -6 25
 - (A) O

- (B) 4
- (C) -4
- (D) 1

- 1114 8 Q8 The value of the determinant | 6 6 is 8 5
 - (A) O

(B) 5

- (C) 15
- (D) 75
- **Q9** Let $ax^3 + bx^2 + cx + d$ $= \begin{vmatrix} 3x & x+1 & x-1 \ x-3 & -2x & x+2 \end{vmatrix}$
 - then the value of d is (A) 5
- (B) 0
- (C) -6
- (D) 4
- Let $A = egin{bmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{bmatrix}$, then |2A| is equal

 - (A) $4\cos(2\theta)$
- (B) 1
- (C) 2
- (D) 4
- **Q11** Find the area of the $\triangle ABC$ formed by vertices A(5,4), B(6,2) and C(8,3).
- **Q12** Find the value of k for which (k,5),(-3,8) and (7,2) are collinear.
- Q13 If area of the triangle is 25 square units with vertices (3,-4),(1,0) and (2,k), then find the value of k.
- If $\begin{vmatrix} x^4 & 3x & x+4 \ x+4 & x^2 & 3x \ 3x & x+4 & x \end{vmatrix} = ax^5 + bx^4 + cx^3$ Q14 $+dx^2 + ex + f$ then find the value of f.
- **Q15** Find the equation of straight line joining (7,2)and(5,3).

Answer Key

Q1 (B)

Q2 (A)

Q3 (A)

Q4 (A)

Q5 (A)

Q6 (A)

Q7 (A)

Q8 (A)

Q9 (C)

Q10 (D)

Q11 Area of $\Delta ABC=rac{5}{2}~sq.~units$

Q12 k=2

Q13 k = -27, 23

Q14 f=64

Q15 x + 2y = 11

