Are you prone to a stroke?

Why There's a Need to Focus on Strokes

According to the World Health Organization (WHO) stroke is the **2nd** leading cause of death globally, responsible for approximately **11%** of total deaths.

#1 leading cause of death in America (<u>cdc.gov</u>)

For stroke survivors that did not get help quickly, they may live with complications

 Memory loss, speech impairment, eating disabilities, and/or loss of normal bodily functions (source: Johns Hopkins)

Risk Factors For Stroke

Source: Yashoda Hospitals

But Prevention is Possible!

Can patients with an affinity to having a stroke, be identified with a high degree of accuracy and sensitivity?

As health data from smartphones, smartwatches, and even tech-friendly primary care facilities continues to accumulate, there is a real opportunity to identify those future at risk stroke victims.

- Provide patients with targeted preventative measures
- Monitor patients predicted as high risk
 - Possibly integrate this monitoring into smartwatches

TABLE OF CONTENTS

1

Data Background and Cleaning

2

Exploratory Data Analysis (EDA)

3

Explore Models

4

Model Performance and Future Impact

Data Source

- Sourced from Kaggle competition data
 - Used to predict whether a patient is likely to get stroke based on the input parameters like gender, age, various diseases, and smoking status.
- Competition stated that the sourcing on this data was confidential

Patient Data Features

```
'glucose level',
'married',
'residence',
'hypertension',
'heart disease',
    'gender',
'smoker',
        'stroke'
           'bmi',
```

Source: https://www.kaggle.com/fedesoriano/stroke-prediction-dataset

Data Cleaning

EDA- Imbalanced Classes

- Data is extremely imbalanced
 - 0.05% were stroke victims (248)
- Techniques to handle imbalances:
 - Oversampling
 - Undersampling
 - Synthetic Minority Over-sampling Technique (SMOTE)
- Metrics:
 - Recall/sensitivity (reduce false negatives)
 - Accuracy

EDA- Imbalanced Classes

- Recall = 0%
- Accuracy = 95%

Oversampling

- Recall = 74%
- Accuracy = 70%

SMOTE

- Recall = 72%
- Accuracy = 69%

Undersampling

- Recall = 74%
- Accuracy = 68%

EDA- General

Age of Different Patients

EDA- General

EDA- General

EDA- Stroke Victims

EDA- Stroke Victims

Age of Patients

EDA- Stroke Victims

- BMI 18.5 to 24.9, it falls within the normal range

Baseline Evaluation

Baseline Accuracy

- 95% without oversampling
- 50% with oversampling

Models

Models Tested	Recall	Accuracy	Train & Test Scores
Logistic Regression	78%	73%	0.77, 0.73
Support Vector Machine	83%	65%	0.78, 0.65
K Nearest Neighbor	32%	82%	0.94, 0.82
Decision Tree	85%	65%	0.80, 0.65
Extremely Randomized Trees (ExtraTrees)	84%	63%	0.77, 0.63
Random Forest Classifier	74%	70%	0.85, 0.70

Top Model- Decision Tree

Best Params

- Min Samples Split: 4
- Min Samples Leaf: 1
- Max depth: 3
- Class Weight: balanced

• Top Features

- Age (weight = 0.92)
- > BMI
- Hypertension
- (all other features ignored by model)

Results and Conclusions

Can patients with an affinity to having a stroke, be identified with a high degree of accuracy and sensitivity?

- Yes!
- Models performed okay, average glucose level non-factor
- Imbalanced classes created an uphill battle for the models

Results and Conclusions

How can this help you?

- Age is the strongest stroke indicator
- Focus on managing BMI and hypertension

Risk Factors For Stroke

Future Work

- Get more data!
- Create a functioning site with streamlit for patients to discover their stroke risk
- Incorporate this data with other health data to help determine stroke patient's risk

