1.4: Straight Lines

Definition. (Slope of a Nonvertical Line)

If (x_1, y_1) and (x_2, y_2) are any two distinct points on a nonvertical line L, then the slope m of L is given by

$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

Example. Compute the slope of the line passing through the points

$$(x_1, y_1) = (1, 1)$$
 and $(x_2, y_2) = (4, 2)$

$$m = \frac{2-1}{4-1} = \frac{1}{3}$$

$$(x_1, y_1) = (3, 2)$$
 and $(x_2, y_2) = (-1, 2)$

$$M = \frac{2-2}{-1-3} = \frac{0}{-4} = 0$$

$$(x_1, y_1) = (4, 1)$$
 and $(x_2, y_2) = (4, 4)$

$$m = \frac{4-1}{4-4} = \frac{3}{0}$$
 undefined

Definition. (Point-Slope Form of an Equation of a Line)

An equation of the line that has slope m and passes through the point (x_1, y_1) is given by

$$y - y_1 = m(x - x_1)$$

Example. Find the equation of the line going through the points

$$(x_1, y_1) = (-2, 1)$$
 and $(x_2, y_2) = (3, -2)$

$$m = \frac{-2-1}{3-(-2)} = \frac{-3}{5}$$

$$y-1=-\frac{3}{5}(x-(-2))$$

$$(x_1, y_1) = (3, 4)$$
 and $(x_2, y_2) = (-1, 4)$

$$M = \frac{4-4}{-1-3} = 0$$

$$M = \frac{4-4}{1-3} = 0$$
 $y-4=0(x-3)$

$$(x_1, y_1) = (2, 0)$$
 and $(x_2, y_2) = (2, 1)$

$$M = \frac{1-0}{2-2} = \frac{1}{0}$$
 undefined

1.4: Straight Lines 2 Math 123 Class notes

Definition. (Slope-Intercept Form of an Equation of a Line)

An equation of the line that has slope m and intersects the y-axis at the point (0,b)is given by

$$y = mx + b$$

Example. Rewrite the equations in the previous example in slope-intercept form.

$$+1+y-1=-\frac{3}{5}(x-(-2))+1$$

$$y=-\frac{3}{5}x-\frac{6}{5}+1\left(\frac{5}{5}\right)$$

$$y=-\frac{3}{5}x-\frac{6}{5}$$

$$+4+y-4=o(x-3)+4$$

Horizontal lines are of the form
$$y = \alpha$$

Vertical lines are of the form
$$\chi = 6$$

Vertical lines are of the form
$$x = 6$$

- Undefined slope

- no $y - intercept$

Definition. (Parallel and Perpendicular lines)

Let L_1 and L_2 be lines with slopes m_1 and m_2 respectively. If L_1 and L_2 are parallel, then

$$m_1 = m_2$$
.

If L_1 and L_2 are perpendicular, then

$$m_1 = -\frac{1}{m_2}.$$

Example.

Find the line parallel to $y = \frac{3}{2}x + 1$ that passes through the point (-4, 10).

$$=) m = \frac{3}{2}$$

$$y - 10 = \frac{3}{2} \left(x - \left(-41 \right) \right)$$

Find the line perpendicular to $y = \frac{3}{2}x + 1$ that passes through the point (-3, 4).

$$\Rightarrow$$
 $m = -\frac{1}{3/2} = -\frac{2}{3}$

Forms of Linear Equations

General form: Ax + By = C

Point-slope form: $y - y_1 = m(x - x_1)$

Slope-intercept form: y = mx + b

Vertical line: x = a

Horizontal line: y = b