Unidad 1: Presentación Axiomatica de los Números Reales Analisis Matemático I (R-112) Licenciatura en Ciencias de la Computación

Iker M. Canut 2020

1. Axiomas de Cuerpo

A1) Propiedad Conmutativa: a + b = b + a y $a \cdot b = b \cdot a$

A2) Propiedad **Asociativa**:
$$a + (b + c) = (a + b) + c$$
 y $a \cdot (b \cdot c) = (a \cdot b) \cdot c$

A3) Propiedad **Distributiva**: $a \cdot (b+c) = a \cdot b + a \cdot c$

A4) Existencia de **Elementos Neutros**: $\forall a \in \mathbb{R}, a+0=a \ \text{y} \ a \cdot 1=a$

A5) Existencia de **Elementos Opuestos**: $\forall a \in \mathbb{R} \ \exists b : a+b=b+a=0$

A6) Existencia de **Elementos Recíprocos**: $\forall a \neq 0, \exists b : a \cdot b = b \cdot a = 1$

$$a = a$$
 $a = b \Rightarrow b = a$ $a = b \land b = c \Rightarrow a = c$

Teorema 1: Propiedad Cancelativa de la Suma: $a+b=a+c \Rightarrow b=c$

D/ Sea
$$d = a + b = a + c$$
, por $A5 \exists y : a + y = y + a = 0$. Luego $b = 0 + b = (y + a) + b = y + (a + b) = y + d = y + (a + c) = (y + a) + c = 0 + c = c$

Corolario 1: Unicidad del Elemento Neutro de la Suma.
$$a + 0' = 0' + a = a \Rightarrow 0' = 0$$

D/ Por $A4\ a + 0 = a$. Por $H\ a + 0' = a$. Luego $a = a \Rightarrow a + 0 = a + 0'$ y por $T1\ 0 = 0'$

Corolario 2: Unicidad del Elemento Opuesto.
$$a+b=a+b'=0 \Rightarrow b=b'$$

D/ Por $A5 \; \exists b: a+b=0$. Por $H \; \exists b': a+b'=0$. Luego $a+b=a+b'$ y por $T1 \; b=b'$

Teorema 2:

-(-a) = aD/ Por existencia de elemento opuesto de a, a + (-a) = 0

D/ Por existencia de elemento opuesto de a, a + (-a) = 0. Por existencia de elemento opuesto de -a, -(-a) + (-a) = 0. Luego, $0 = 0 \Rightarrow a + (-a) = (-a) + -(-a)$ y por T1, a = -(-a)

- -0 = 0D/ Por $A5\ 0 + (-0) = 0$. Por $A4\ 0 + 0 = 0$. Luego, $0 = 0 \Rightarrow 0 + (-0) = 0 + 0$, por T1, -0 = 0
- $0 \cdot a = 0$ $\mathbf{D}/0 \cdot a = 0 \cdot a + 0 = 0 \cdot a + (a + -a) = (0 \cdot a + a) + -a = (0 \cdot a + 1 \cdot a) + -a = a \cdot (0 + 1) + -a = a \cdot 1 + -a = a + -a = 0$

■
$$a \cdot (-b) = (-a) \cdot b = -(a \cdot b)$$

 $\mathbf{D}/a(-b) = a(-b) + 0 = a(-b) + (ab + -(ab)) = (a(-b) + ab) + -(ab) =$
 $= a((-b) + b) + -(ab) = a \cdot 0 + -(ab) = 0 + -(ab) = -(ab)$

- $(-a) \cdot (-b) = a \cdot b$ $\mathbf{D}/0 = (-a) \cdot (b + (-b)) = (-a)b + (-a)(-b)$. Por otro lado, 0 = (-a)b + ab. Luego $0 = 0 \Rightarrow (-a)b + (-a)(-b) = (-a)b + ab$ y por T1 (-a)(-b) = ab
- $a \cdot (b-c) = a \cdot b a \cdot c$ **D**/ Se puede reescribir como $a \cdot (b+(-c))$ y por el A3 es igual a $a \cdot b - a \cdot c$

Teorema 3: Propiedad Cancelativa del Producto:
$$a \cdot b = a \cdot c \wedge a \neq 0 \Rightarrow b = c$$

 $\mathbf{D}/ab = ac \Rightarrow a^{-1}(ab) = a^{-1}(ac) = (a^{-1}a)b = (a^{-1}a)c = 1 \cdot b = 1 \cdot c = b = c$

Corolario 3: Unicidad del Elemento Neutro del Producto.
$$a \cdot 1 = a \cdot 1' = a \Rightarrow 1 = 1'$$

D/ Por $A4$, $a \cdot 1 = a$. Por H , $a \cdot 1' = a$. Luego, $a = a \Rightarrow a \cdot 1 = a \cdot 1'$ y por $T3$, $1 = 1'$

Corolario 4: Unicidad del Recíproco.
$$\forall a \neq 0$$
, existe un único $b : a \cdot b = b \cdot a = 1$
D/ Por $A6 \ a \cdot b = 1$, suponemos $a \cdot b' = 1$. Luego, $1 = 1 \Rightarrow a \cdot b = a \cdot b'$ y por $T3$, $b = b'$

Teorema 4:

• 0 no tiene recíproco.

D/ Por definición de recíproco,
$$\forall a \in \mathbb{R} - \{0\}, \ \exists b : ab = ba = 1$$

■
$$1^{-1} = 1$$

D/ $1^{-1} = 1 \cdot 1^{-1}$ y como $a \cdot a^{-1} = 1$, con $a = 1, 1 \cdot 1^{-1} = 1$

■
$$\frac{a}{1} = a$$
, si $a \neq 0$, $\frac{1}{a} = a^{-1}$

D/ $\frac{a}{1} = a \cdot 1^{-1} = a \cdot 1 = a$. Además, $\frac{1}{a}$ se puede reescribir por definición como a^{-1}

■
$$a \cdot b = 0 \Rightarrow a = 0 \lor b = 0$$

D/ Si $a \neq 0$, por T3 tenemos que $b = 0$. Análogamente el caso de $b \neq 0$. Sino, ambos son 0.

 $\bullet b \neq 0 \land d \neq 0$:

•
$$(b \cdot d)^{-1} = b^{-1} \cdot d^{-1}$$

D/ Como $1 = (bd)(bd)^{-1} \wedge 1 = b(b)^{-1} \wedge 1 = d(d^{-1})$, luego
 $1 = 1 \cdot 1 \Rightarrow (bd)(bd)^{-1} = b(b)^{-1}d(d)^{-1}$ y por $T4$ $(bd)^{-1} = b^{-1}d^{-1}$

•
$$\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + b \cdot c}{b \cdot d}$$

• $\frac{a}{b} + \frac{c}{d} = ab^{-1} \cdot 1 + cd^{-1} \cdot 1 = ab^{-1}(dd^{-1}) + cd^{-1}(bb^{-1}) = b^{-1}d^{-1}(ad + cb) = (bd)^{-1}(ad + cb) = \frac{ad + cb}{bd}$

•
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

$$\mathbf{D} / \frac{a}{b} \cdot \frac{c}{d} = ab^{-1}cd^{-1} = acb^{-1}d^{-1} = ac(bd)^{-1} = \frac{ac}{bd}$$

■
$$a \neq 0, b \neq 0, \left(\frac{a}{b}\right)^{-1} = \frac{a^{-1}}{b^{-1}}$$

$$\mathbf{D}/\left(\frac{a}{b}\right)^{-1} = (a \cdot (b^{-1}))^{-1} = a^{-1} \cdot (b^{-1})^{-1} \text{ y reescribiendo llegamos a que } \frac{a^{-1}}{b^{-1}}$$

$$-a = (-1) \cdot a$$

$$\mathbf{D}/-a = 1 \cdot -a = (-1) \cdot a$$

2. Axiomas de Orden

A7) Si
$$a, b \in \mathbb{R}_0^+ \Rightarrow a + b \in \mathbb{R}_0^+ \text{ y } a \cdot b \in \mathbb{R}_0^+$$

A8)
$$\forall a \in \mathbb{R} : a \neq 0 \Rightarrow \text{o bien } a \in \mathbb{R}^+ \text{ o } -a \in \mathbb{R}^+$$

A9)
$$0 \notin \mathbb{R}^+$$

$$a < b \Rightarrow b - a \in \mathbb{R}^+$$

$$a > b \Rightarrow a - b \in \mathbb{R}^+$$

•
$$a \le b \Rightarrow$$
 o bien $b - a \in \mathbb{R}^+$ o $a = b$

•
$$a > b \Rightarrow$$
 o bien $a - b \in \mathbb{R}^+$ o $a = b$

$$a > 0 \iff a \in \mathbb{R}^+$$

Teorema 5: Propiedad de Tricotomía: Dados $a, b \in \mathbb{R}$ sucede solo una de las siguientes proposiciones:

$$a < b$$
 $a > b$

Caso 1. $a < b \land a = b \Rightarrow b - a \in \mathbb{R}^+ \land a = b \Rightarrow 0 \in \mathbb{R}^+$ y llegamos asi a una contradicción.

Caso 2.
$$a < b \land a > b \Rightarrow b - a \in \mathbb{R}^+ \land a - b \in \mathbb{R}^+ \Rightarrow (b - a) + (a - b) \in \mathbb{R}^+ \Rightarrow 0 \in \mathbb{R}^+$$
, contradicción.

El resto de los casos se resuelve de manera análoga, llegando a las mismas contradicciones.

Teorema 6: Propiedad Transitiva de la Relación Menor: Si
$$a < b \land b < c \Rightarrow a < c$$
 D/ $a < b \Rightarrow b - a \in \mathbb{R}^+, \ b < c \Rightarrow c - b \in \mathbb{R}^+.$ Por A7, $(b - a) + (c - b) \in \mathbb{R}^+ \Rightarrow$

$$a < b \Rightarrow b - a \in \mathbb{R}^+, \ b < c \Rightarrow c - b \in \mathbb{R}^+.$$
 For AI , $(b - a) + (c - b) \in \mathbb{R}^+ \Rightarrow b - a + c - b \in \mathbb{R}^+ \Rightarrow c - a \in \mathbb{R}^+ \Rightarrow a < c$

Teorema 7:

■
$$a < b \Rightarrow a + c < b + c$$

 $\mathbf{D}/\ a < b \Rightarrow b - a \in \mathbb{R}^+ \Rightarrow b - a + (c - c) \in \mathbb{R}^+ \Rightarrow (b + c) - (a + c) \in \mathbb{R}^+ \Rightarrow a + c < b + c$

■
$$a < b \land c < d \Rightarrow a + c < b + d$$

 $\mathbf{D}/(a < b \Rightarrow b - a \in \mathbb{R}^+ \land c < d \Rightarrow d - c \in \mathbb{R}^+$. Y por $A7$, $(b - a) + (d - c) \in \mathbb{R}^+ \Rightarrow (b + d) - (a + c) \in \mathbb{R}^+ \Rightarrow a + c < b + d$

■
$$a < b \land c > 0 \Rightarrow a \cdot c < b \cdot c$$

 $\mathbf{D}/\ a < b \land c > 0 \Rightarrow (b - a) \cdot c \in \mathbb{R}^+ \Rightarrow bc - ac \in \mathbb{R}^+ \Rightarrow ac < bc$

■
$$a < b \land c < 0 \Rightarrow a \cdot c > b \cdot c$$

 $\mathbf{D}/c < 0 \Rightarrow (-c) > 0$. Luego, $(b-a)(-c) \in \mathbb{R}^+ \Rightarrow ac - bc \in \mathbb{R}^+ \Rightarrow ac > bc$

■
$$a \neq 0 \Rightarrow a^2 > 0$$

D/ Por tricotomia, $a < 0 \lor a = 0 \lor a > 0$

Caso 1.
$$a < 0 \Rightarrow (-a) \in \mathbb{R}^+ \Rightarrow (-a)(-a) \in \mathbb{R}^+ \Rightarrow aa \in \mathbb{R}^+ \Rightarrow a^2 \in \mathbb{R}^+ \Rightarrow a^2 > 0$$

Caso 2. Este caso no puede suceder por Hipotesis.

Caso 3.
$$a > 0 \Rightarrow a \in \mathbb{R}^+ \Rightarrow aa \in \mathbb{R}^+ \Rightarrow a^2 \in \mathbb{R}^+ \Rightarrow a^2 > 0$$

- **■** 1 > 0
 - **D/** Por A4 sabemos que $1 \neq 0$. Por A8 sabemos que $-1 \in \mathbb{R}^+ \ \underline{\lor} \ 1 \in \mathbb{R}^+$. Suponemos $-1 \in \mathbb{R}^+ \Rightarrow 1 \notin \mathbb{R}^+$. Por A7, $(-1)(-1) \in \mathbb{R}^+ \Rightarrow 1 \in \mathbb{R}^+$, llegando asi a una contradicción. Luego, $1 \in \mathbb{R}^+ \Rightarrow 1 > 0$

■
$$a < b \Rightarrow -b < -a$$

 $\mathbf{D}/a < b \Rightarrow b - a \in \mathbb{R}^+ \Rightarrow -(-b + a) \in \mathbb{R}^+ \Rightarrow (-a) - (-b) \in \mathbb{R}^+ \Rightarrow -b < -a$

- $a \cdot b > 0 \iff a \lor b \text{ son los dos positivos o los dos negativos.}$
- $a \cdot b < 0 \iff a$ positivo y b negativo, o a negativo y b positivo.

Caso 1.
$$a, b \in \mathbb{R}^+ \Rightarrow a \cdot b \in \mathbb{R}^+$$

Caso 2.
$$a \in \mathbb{R}^+, (-b) \in \mathbb{R}^+ \Rightarrow a(-b) = -(ab) \in \mathbb{R}^+ \Rightarrow 0 + -(ab) \in \mathbb{R}^+ \Rightarrow ab < 0$$

Caso 3.
$$(-a) \in \mathbb{R}^+, b \in \mathbb{R}^+ \Rightarrow (-a)b = -(ab) \in \mathbb{R}^+ \Rightarrow 0 + -(ab) \in \mathbb{R}^+ \Rightarrow ab < 0$$

Caso 4.
$$(-a), (-b) \in \mathbb{R}^+ \Rightarrow (-a)(-b) = ab \in \mathbb{R}^+$$

■
$$a > 0 \iff \frac{1}{a} > 0$$

⇒) $a > 0$, suponemos $\frac{1}{a} < 0 \Rightarrow -a^{-1} \in \mathbb{R}^+$ y como $a \in \mathbb{R}^+$, $-a^{-1} \cdot a \in \mathbb{R} \Rightarrow -1 \in \mathbb{R}^+$.

Llegando asi a una contradicción, ergo
$$a > 0 \Rightarrow \frac{1}{a} > 0$$

$$\Leftarrow$$
) $\frac{1}{a} > 0$, suponemos $a < 0 \Rightarrow -a \in \mathbb{R}^+ \Rightarrow -a \cdot \frac{1}{a} \in \mathbb{R}^+ \Rightarrow -1 \in \mathbb{R}^+$. Contradicción, i.e $a > 0$

■
$$0 < a < b \Rightarrow 0 < \frac{1}{b} < \frac{1}{a}$$

D/ Sabemos que $\frac{1}{a}, \frac{1}{b} \in \mathbb{R}^+ \Rightarrow \frac{1}{a} \frac{1}{b} \in \mathbb{R}^+$. Además, $a < b \Rightarrow b - a \in \mathbb{R}^+$. Entonces, $(b-a)(a^{-1}b^{-1}) \in \mathbb{R}^+ \Rightarrow (ba^{-1}b^{-1} - aa^{-1}b^{-1}) \in \mathbb{R}^+ \Rightarrow a^{-1} - b^{-1} \in \mathbb{R}^+ \Rightarrow b^{-1} < a^{-1} : 0 < \frac{1}{b} < \frac{1}{a}$

2.1. Números Naturales, Enteros, Racionales e Irracionales

Números Naturales: N. El conjuntos inductivo más pequeño:

- 1. El número 1 pertenece al conjunto.
- 2. Si a pertenece al conjunto, a + 1 también pertenece.

Destacamos que 1 es el primer elemento de \mathbb{N} , i.e es el menor. Ergo, si $a < 1 \Rightarrow a \notin \mathbb{N}$

Números Enteros:
$$\mathbb{Z} = \{x \in \mathbb{R} : x \in \mathbb{N} \lor -x \in \mathbb{N} \lor x = 0\}$$

La suma, la diferencia y el producto son operaciones cerradas en \mathbb{Z} .

Números Racionales:
$$\mathbb{Q} = \left\{ x \in \mathbb{R} : \exists p, q \in \mathbb{Z}, q \neq 0 : x = \frac{p}{q} \right\}$$

Notas:

- $\mathbb{Z} \subset \mathbb{Q}$
- Dados $a, b \in \mathbb{R}, c, d \in \mathbb{R} \{0\}, \frac{a}{c} = \frac{b}{d} \iff ad = bc$ $\mathbf{D} / \frac{a}{c} = \frac{b}{d} \iff \frac{d}{d} \frac{a}{c} = \frac{b}{d} \frac{c}{c} \iff \frac{ad}{dc} = \frac{bc}{dc} \iff \text{por cancelación del producto, } ad = bc$

2.2. Representación Geometrica de los numeros reales: la recta real

En una recta se elige un punto para representar al 0 y otro punto distinto para representar al 1 (esta elección fija la escala). Cada punto de la recta representa a un único número real y cada número real está representado por un único punto de la recta.

- 1. Si los puntos A y B representan los números reales a y b, A está a la izquierda de $B \iff a < b$.
- 2. Si los puntos A, B, C, D representan a los números reales a, b, c, d. con a < b y c < d, entonces \overline{AB} y \overline{CD} son congruentes $\iff b a = d c$.

Además, los números positivos quedan a la derecha del 0, y los negativos a la izquierda del mismo.

2.3. Intervalos Reales

•
$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

$$[a, b] = \{x \in \mathbb{R} : a < x < b\}$$

•
$$(a, b] = \{x \in \mathbb{R} : a < x < b\}$$

$$[a, b] = \{x \in \mathbb{R} : a < x < b\}$$

$$(a, +\infty) = \{x \in \mathbb{R} : a < x\}$$

$$[a, +\infty) = \{x \in \mathbb{R} : a < x\}$$

$$(-\infty, b) = \{x \in \mathbb{R} : x < b\}$$

$$(-\infty, b] = \{x \in \mathbb{R} : x < b\}$$

2.4. Valor absoluto de un número

Dado $x \in \mathbb{R}$, su valor absoluto es el número real |x|:

$$|x| = \begin{cases} x & \text{, si } x \ge 0\\ -x & \text{, si } x < 0 \end{cases}$$

Geométricamente, |x| es la distancia en la recta real entre los puntos 0 y x. También puede verse que la distancia entre dos puntos cualesquiera $x, y \in \mathbb{R}$ está dada por el valor |x - y| = |y - x|.

Proposición:

$$|x| \ge 0$$
. Además, $|x| = 0 \iff x = 0$

Caso 1.
$$x > 0 \Rightarrow x \in \mathbb{R}^+ \land |x| = x \Rightarrow |x| \in \mathbb{R}^+ \Rightarrow |x| > 0$$

Caso 2.
$$x = 0 \Rightarrow |x| = x \Rightarrow |x| = 0$$

Caso 3.
$$x < 0 \Rightarrow (-x) \in \mathbb{R}^+ \land |x| = -x \Rightarrow |x| \in \mathbb{R}^+ \Rightarrow |x| > 0$$

$$|x| = |-x|$$

Caso 1.
$$x > 0 \Rightarrow |x| = x \land |-x| = -(-x) = x : |x| = |-x|$$

Caso 2.
$$x = 0 \Rightarrow |x| = 0 \land |-x| = -0 = 0 : |x| = |-x|$$

Caso 3.
$$x < 0 \Rightarrow |x| = -x \land |-x| = -x : |x| = |-x|$$

$$-|x| \le x \le |x|$$

Caso 1.
$$x > 0 \Rightarrow -x \le x \le x$$
. Además, $-x < 0$. Entonces $-x < 0 < x : -x < x \land x \le x$

Caso 2.
$$x = 0 \Rightarrow 0 \le 0 \le 0$$

Caso 3.
$$x < 0 \Rightarrow -(-x) \le x \le -x$$
. Además, $-x > 0$. Entonces $x < 0 < -x$. $x \le x \le -x$

• Sea
$$a > 0$$
: $|x| < a \iff -a < x < a$

$$\Rightarrow$$
) Caso 1. $x > 0 \Rightarrow |x| = x \land -a < 0 : -a < 0 < x < a$

Caso 2.
$$x = 0 \Rightarrow |x| = 0 \land -a < 0 : -a < 0 = x < a$$

Caso 3.
$$x < 0 \Rightarrow |x| = -x \land -a < 0$$
. Además, como $-x < a$, entonces $-a < x : -a < x < 0 < a$

$$\Leftarrow$$
) Caso 1. $x > 0 \Rightarrow |x| = x : -a < |x| < a$

Caso 2.
$$x = 0 \Rightarrow |x| = 0 \land -a < 0 < a : -a < |x| < a$$

Caso 3.
$$x < 0 \Rightarrow |x| = -x$$
. Entonces $-|x| = x \Rightarrow -a < -|x| < a : a > |x| > -a$

• Sea
$$a > 0$$
: $|x| > a \iff x < -a \lor a < x$

$$\Rightarrow$$
) Caso 1. $x > 0 \Rightarrow |x| = x : a < x$

Caso 2. x = 0 No puede suceder, pues 0 < a < |x|

Caso 3.
$$x < 0 \Rightarrow |x| = -x \Rightarrow -x > a$$
; $x < -a$

 \Leftarrow) Caso 1. $0 < a < x \Rightarrow |x| = x : a < |x|$

Caso 2.
$$x < -a < 0 \Rightarrow 0 < a < -x \Rightarrow |x| = -x : a < |x|$$

 $|x + y| \le |x| + |y|$

D/ Sabemos que
$$-|x| \le x \le |x| \land -|y| \le y \le |y| \Rightarrow -|x| + -|y| \le x + y \le |x| + |y| \Rightarrow \Rightarrow -(|x| + |y|) \le x + y \le |x| + |y|$$
. Llamando $a = |x| + |y| \Rightarrow \Rightarrow -a \le x + y < a \Rightarrow |x + y| \le a : |x + y| \le |x| + |y|$

$$|x \cdot y| = |x| \cdot |y|$$

Caso 1.
$$x \ge 0, y \ge 0 \Rightarrow xy > 0 \Rightarrow |xy| = xy$$
. Luego $|x| = x \land |y| = y : |xy| = xy = |x||y|$

Caso 2.
$$x \ge 0, y < 0 \Rightarrow xy < 0 \Rightarrow |xy| = -(xy)$$
. Luego $|x| = x \land |y| = -y : |xy| = -(xy) = |x||y|$

Caso 3.
$$x < 0, y \ge 0 \Rightarrow xy < 0 \Rightarrow |xy| = -(xy)$$
. Luego, $|x| = -x \land |y| = y : |x||y| = -(xy) = |x||y|$

Caso 4.
$$x < 0, y < 0 \Rightarrow xy > 0 \Rightarrow |xy| = xy$$
. Luego, $|x| = -x \land |y| = -y : |xy| = (-x)(-y) = |x||y|$

Caso 1.
$$a > 0$$
, $|a| = a$. Luego $\frac{1}{a} > 0 \Rightarrow \left| \frac{1}{a} \right| = \frac{1}{a} : \left| \frac{1}{a} \right| = \frac{1}{a} = \frac{1}{|a|}$
Caso 2. $a < 0$, $|a| = -a$. Luego $\frac{1}{a} < 0 \Rightarrow \left| \frac{1}{a} \right| = -\frac{1}{a} : \left| \frac{1}{a} \right| = -\frac{1}{a} = \frac{1}{-a} = \frac{1}{|a|}$

Sea
$$y \neq 0$$
, $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}$

$$\mathbf{D} / \left| \frac{x}{y} \right| = |x \cdot y^{-1}| = |x||y^{-1}| = |x| \cdot \left| \frac{1}{y} \right| = |x| \cdot \frac{1}{|y|} = \frac{|x|}{|y|}$$

3. Introducción A10

Sea A un subconjunto no vacio de \mathbb{R}

- Cota Superior: Sea $b \in \mathbb{R}$, b es una cota superior de A si $a \leq b \ \forall a \in A$.
- Cota Inferior: Sea $b \in \mathbb{R}$, b es una cota inferior de A si $a \ge b \ \forall a \in A$.
- Supremo: b es supremo de $A \iff (a \le b \ \forall a \in A) \land (c < b \Rightarrow c \text{ no es una cota superior de } A)$.
- Ínfimo: b es ínfimo de $A \iff (b \le a \ \forall a \in A) \land (b < c \Rightarrow c \text{ no es una cota inferior de } A)$.
- Máximo: b es máximo de A si $a \le b \ \forall a \in A \land b \in A$.
- Mínimo: b es mínimo de A si $b \le a \ \forall a \in A \land b \in A$.

Teorema 8: Unicidad del supremo: Dos números distintos no pueden ser supremos de un mismo conjunto. Por esto tenemos una notación: $b = \sup(A)$.

D/ Sean b y b' supremos de un mismo conjunto, ambos son cotas superiores. Luego, considerando a b como supremo y a b' como cota superior, $b \le b'$. Análogamente, $b' \le b : b = b'$

Teorema 9: Caracterización del Supremo: $b = sup(A) \iff b$ es una cota superior de A tal que $\forall \epsilon > 0$ existe algun elemento $a \in A$ tal que $b - \epsilon < a$.

- \Rightarrow) Supongamos que no ocurre, entonces $a \leq b \epsilon$ y es cota superior de A, pero contradice que b es supremo de A, porque $a \leq b \epsilon < b$.
- \Leftarrow) Queremos demostrar que c < b no es cota superior de A. Sea $\epsilon_c = b c > 0$ y como $\exists a \in A : b \epsilon_c < a$, entonces $a > b \epsilon_c = b (b c) = c$ i.e c no es cota superior de A. Luego, $b = \sup(A)$.

Proposición 3: $b = máx(A) \iff b \in A \land b = sup(A)$.

 \Rightarrow) $b = \max(A) \Rightarrow a \leq b \ \forall a \in A \land b \in A$. Suponiendo que existe c cota superior del conjunto, como $b \in A$, contradice que c es cota superior, ergo b es supremo de A y $b \in A$

$$\Leftarrow$$
) $b \in A \land b = \sup(A) \Rightarrow b \in A \land a \leq b \forall a \in A \Rightarrow b = \max(A)$

Proposición 4: $b = \min(A) \iff b \in A \land b = \inf(A)$.

 \Rightarrow) $b = \min(A) \Rightarrow b \leq a \ \forall a \in A \land b \in A$. Suponiendo que existe c cota inferior del conjunto, como $b \in A$, contradice que c es cota inferior, ergo b es infimo de A y $b \in A$

$$\Leftarrow$$
) $b \in A \land b = \inf(A) \Rightarrow b \in A \land b \leq a \forall a \in A \Rightarrow b = \inf(A)$

3.1. Axioma del Supremo

A10) Todo conjunto no vacío de números reales que sea acotado superiormente tiene un supremo.

Teorema 10: Existencia de Raices Cuadradas: Dado $a \ge 0$, existe un único $x \in \mathbb{R} : x \ge 0$ y $x^2 = a$. **D**/ Si a = 0 es trivial. Si a > 0, sabemos que tiene dos soluciones (solo una es positiva). Se define el conjunto $S_a = \{x \in \mathbb{R} : x^2 \le a\}$. Vemos que $S_a \ne \emptyset$ y que está acotado superiormente. Luego existe $b = \sup(A)$. Luego, por tricotomía sacamos que $b^2 = a$.

Teorema 11: Propiedad Arquimediana de los Reales: Sean $x, y \in \mathbb{R}, x > 0 \Rightarrow \exists n \in \mathbb{N} : y < n \cdot x$. **D**/ Va por absurdo, suponiendo $n \cdot x \leq y \ \forall n \in \mathbb{N}$. Definimos $S = \{n \cdot x : n \in \mathbb{N}\}$. S no es vacio, ergo existe $b = \sup(S)$. Luego $\exists a \in S : b - x < a$ (Caracterización). Y se podria escribir como $a = m \cdot x$, $m \in \mathbb{N}$. Es decir, $b < mx + x = (m+1) \cdot x$. Pero $(m+1) \cdot x \in S$, y b no es cota superior de S, lo que contradice que $b = \sup(S)$. Se contradice por suponer S acotado superiormente. Luego $\exists n \in \mathbb{N} : y < n \cdot x$

Corolario 5:

- $\forall y \in \mathbb{R}, \exists n \in \mathbb{N} : y < N.$
- Caso 1. Si $y \le 0$ podemos tomar n = 1 i.e y < n

Caso 2. Si y > 0, aplicando la propiedad arquimediana, con x = 1, tenemos que y < n

- N no está acotado superiormente. **D**/ Por contradicción, si N estuviese acotado, por A10 tiene supremo $b \in \mathbb{R}$. Sea $n \in \mathbb{N}$, podemos asegurar que b < nx (con x > 0), por lo tanto b < nx, contradiciendo la P.A.
- Sea x > 0, $\exists n \in \mathbb{N} : \frac{1}{n} < x$ $\mathbf{D} / \frac{1}{n} < x \Rightarrow 1 < nx$ y al cumplir las hipótesis de la P.A, podemos asegurar que es válido.
- $x, y, z \in \mathbb{R}, z > 0$, si $x \le y < x + \frac{z}{n} \ \forall n \in \mathbb{N}$ entonces x = y.

 D/ Supongo $x < y < x + \frac{z}{n}$, luego $0 < y x < \frac{z}{n}$. Reemplazando y x por y', tenemos que 0 < y'n < z, que contradice el teorema anterior. Luego, x = y
- Si $|x| < \frac{1}{n} \ \forall n \in \mathbb{N}$, entonces x = 0.

 D/ Sabemos que $|x| \ge 0$. Pero si fuese |x| > 0, entonces $\exists n \in \mathbb{N} : \frac{1}{n} < x : |x| = 0 \Rightarrow x = 0$
- Si $|x| < \epsilon \ \forall \epsilon > 0$ entonces x = 0. $\mathbf{D}/0 \le x < \epsilon \land 0 < \epsilon \Rightarrow 0 = x$

Teorema 12: Si A está acotado inferiormente, entonces posee ínfimo.

D/ Sea m una cota inferior de A y H el conjunto de todas las cotas inferiores (no esta vacio pues $m \in H$), entonces H está acotado superiormente cualquier elemento de A, luego tiene supremo por A10. Sea $\mu = \sup(H) \Rightarrow \mu = \inf(A)$, pues $\forall x \in A\mu \leq x$ (pues es cota inferior de A) y además $\forall y \in H, y \leq \mu$ (pues es supremo de H). Luego μ es el ínfimo de A.

Corolario 6: Dado $x \in \mathbb{R}$, existe un único número p entero tal que $p \le x .$

- Si $x \in \mathbb{Z}$, p = x verifica.
- Sino, si 0 < x < 1, entonces p = 0 verifica.
- Sino, sea $S = \{n \in \mathbb{N} : x < n\}$ es distinto de \emptyset . Está acotado inferiormente por x, y por la propiedad arquimediana, existe $n_0 > x$ y $n_0 \in S$. Luego existe un minimo m y $m-1 \le x < m$ $\notin S$. Luego, llamando p = m-1, tenemos que $p \le x < p+1$, siendo p único.
- Si $x < 0 \Rightarrow -x > 0$ y es análogo.

Y queda demostrado que cuaquiera sea $x \in \mathbb{R}$, existe un unico $p \in \mathbb{Z}$:

$$p \le x$$

que suele notarse como [x] y se denomina **parte entera** de x:

$$[x] \le x < [x] + 1$$

9