Department of Computer Science and Engineering

C6173D IMAGE PROCESSING Assignment I

Posted on 2nd March 2021 / Submission on 14th March 2021

1 Theoretical and Numerical Questions

Answer at least 3 questions from out of the 5 questions.

1. Compute the Fourier Transform for the following functions.

$$\sin(x)$$

(b)
$$cos(x)$$

(c)
$$cos(4\pi x)$$

(d)
$$e^{-j8\pi x}$$

(e)
$$2 + \cos(2\pi x) - j\sin(2\pi x) + \cos(3\pi x) - j\sin(3\pi x)$$

- 2. Prove the linearity property of 1D Continuous Fourier Transform.
- 3. Consider the function given below. $f(\mathbf{x}) =$

$$\begin{cases} 1, \frac{-a}{2} \le x \le \frac{a}{2} \\ 0, otherwise \end{cases}$$

Prove the time shifting property of Fourier Transform for f(x-2).

- 4. Compute the 2D basis vectors of 2D DFT using the separability property of DFT.
- 5. Compute the 2D basis vectors of 2D DCT using the separability property of DCT.

2 Programming Questions

Answer at least 5 questions from out of the 9 questions. You may choose Python or MATLAB.

- 6. Write a program to read and display a sample gray level image of size 256*256 (Standard MATLAB images such as Cameraman, Lena etc.). Find the maximum and minimum intensity values in the image.
- 7. Create an image of size 64x64 where

$$I(i,j) = \left| \cos \sqrt{(i^2 + j^2)} \right|$$

Display the image?

8. Quantize the intensity levels in the above image by dividing the range [0,1] into four equal intervals. Quantization happens according to the following table.

Image gray level	Output gary level
$0 \le I < 0.25$	0
$0.25 \le I < 0.5$	0.25
$0.5 \le I < 0.75$	0.5
$0.75 \le I < 1$	0.75
1	1

- 9. 4 level quantization of the intensities of the image in Question 1.(max_intensity interval divided into 4 equal intervals and follow the scheme in the previous question).
- 10. 8 level quantization of the intensities of the image Question 1.(max_intensity interval divided into 8 equal intervals and follow the scheme in the previous question). Observe the difference in image quality (with image in question 5).
- 11. Perform following operations on the given image.
 - (a) Find DFT of the given image.
 - (b) Find the magnitude spectrum.
 - (c) Find the phase spectrum.
 - (d) Double the magnitude spectrum.
 - (e) Reconstruct the image using the IDFT.
 - (f) Reconstruct the image removing phase spectrum.
 - (g) Put the results together in one window.

Explain your results

- 12. Pick an image and follow the operations
 - (a) Multiply image by $(-1)^{x+y}$.
 - (b) Compute the DFT.
 - (c) Take the complex conjugate of the transform.
 - (d) Compute the IDFT.
 - (e) Multiply the real part of the result by $(-1)^{x+y}$.

Compare the input image and output image. Explain (mathematically) why the output image appear as it does.

- 13. Obtain the Fourier spectrum of a given image. Pad the image with zero's, obtain Fourier spectrum.
 - (a) Explain the difference in overall contrast
 - (b) Explain the significant increase in signal strength along the vertical and horizontal axes of spectrum on the second output image.
- 14. What is the result of two DFTs performed in succession? Apply a DFT to an image, and then again DFT to the resultant image. Can you account for what you see?

Outputs Required

• Create Assignment1.tar file containing code for all questions with the following naming convention.

```
EXE < number > \_ < rollnumber > \_ < firstname > \_ < questionnumber > if < partnumber > . < extension >
```

- Output images with naming convention < questionnumber > if < partnumber >
- Observations (comparing images) in a Text file for question 2 and 6 with naming convention < question number > if < partnumber >.