GCSCR_EL2, Guarded Control Stack Control (EL2)

The GCSCR EL2 characteristics are:

Purpose

Controls the Guarded control stack at EL2.

Configuration

This register is present only when FEAT_GCS is implemented. Otherwise, direct accesses to GCSCR EL2 are undefined.

Attributes

GCSCR EL2 is a 64-bit register.

Field descriptions

63626160595857565554535251504948474645444342	41	40	39	38	37	36353433	
	RES	0					
RES0 S	STREn	PUSHMEr	RES0	EXLOCKEN	RVCHKEN	RES0	P
31302928272625242322212019181716151413121110	9	8	7	6	5	4 3 2 1	

Bits [63:10]

Reserved, res0.

STREn, bit [9]

Execution of the following instructions are trapped:

- GCSSTR.
- GCSSTTR if any of the following are true.
 - HCR EL2. {E2H,TGE} is not {1,1}.
 - HCR EL2. {E2H,TGE} is {1,1} and PSTATE. UAO is 1.

STREn	Meaning
0b0	Execution of any of the
	specified instructions at EL2
	cause a GCS exception.
0b1	This control does not cause any
	instructions to be trapped.
·	·

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

PUSHMEn, bit [8]

Trap GCSPUSHM instruction.

PUSHMEn	Meaning
0b0	Execution of a GCSPUSHM
	instruction at EL2 causes a
	Trap exception.
0b1	This control does not cause
	any instructions to be
	trapped.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [7]

Reserved, res0.

EXLOCKEN, bit [6]

Exception state lock.

Prevents MSR instructions from writing to ELR EL2 or SPSR EL2.

EXLOCKEN	Meaning
0b0	EL2 exception state
	locking disabled.
0b1	EL2 exception state
	locking enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

RVCHKEN, bit [5]

Return value check enable.

RVCHKEN	Meaning
0b0	Return value checking disabled at EL2.
0b1	Return value checking enabled at EL2.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bits [4:1]

Reserved, res0.

PCRSEL, bit [0]

Guarded control stack procedure call return enable selection.

PCRSEL	Meaning
0d0	Guarded control stack at EL2
	is not PCR Selected.
0b1	Guarded control stack at EL2 is PCR Selected.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Accessing GCSCR_EL2

When FEAT_VHE is implemented, and HCR_EL2. E2H is 1, without explicit synchronization, accesses from EL2 using the register name GCSCR_EL2 or GCSCR_EL1 are not guaranteed to be ordered with respect to accesses using the other register name.

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, GCSCR_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b0010	0b0101	0b000

```
if PSTATE.EL == EL0 then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.GCSEn == '0' then
```

```
UNDEFINED;
elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
    if Halted() && EDSCR.SDD == '1' then
        UNDEFINED;
    else
        AArch64.SystemAccessTrap(EL3, 0x18);
else
        X[t, 64] = GCSCR_EL2;
elsif PSTATE.EL == EL3 then
    X[t, 64] = GCSCR_EL2;
```

MSR GCSCR EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b0010	0b0101	0b000

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.GCSEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
        GCSCR\_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    GCSCR\_EL2 = X[t, 64];
```

MRS <Xt>, GCSCR_EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0010	0b0101	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
```

```
if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.GCSEn == '0' then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.nGCS_EL1 == '0'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && SCR EL3.GCSEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x8D0];
    else
        X[t, 64] = GCSCR EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR_EL3.GCSEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR EL2.E2H == '1' then
        X[t, 64] = GCSCR\_EL2;
    else
        X[t, 64] = GCSCR\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = GCSCR\_EL1;
```

MSR GCSCR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b0010	0b0101	0b000

```
elsif HaveEL(EL3) && SCR EL3.GCSEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED:
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
        NVMem[0x8D0] = X[t, 64];
    else
        GCSCR EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION DEFINED "EL3 trap priority
when SDD == '1'" && SCR EL3.GCSEn == '0' then
        UNDEFINED;
    elsif HaveEL(EL3) && SCR_EL3.GCSEn == '0' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR EL2.E2H == '1' then
        GCSCR\_EL2 = X[t, 64];
    else
        GCSCR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    GCSCR\_EL1 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.