Predicting Airbnb listing prices for host in London city

Presented by **Group 12**

Aparna Bhat Neha Mehta Olivia Rodrigues Prakash Chokkalingam Prathyusha Sathineni 1

Problem Statement

- Airbnb offers complete independence to its host to price their properties with minimal pointers. Currently, hosts compare similar listings in their neighbourhood so as to come up with competitive price.
- Since the number of hosts are increasing in Airbnb, coming up with the right price so as to remain competitive in a hosts neighbourhood is very important.
- If prices are too low or too high, it is going to affect the bookings of property and eventually Airbnb will be missing a lot of potential income.

Dataset(Source Variables)

- DataSource: https://www.kaggle.comabdmitriy/airbnb#listing
 s.csv
- Last scraped in November 2019

Records: 85000+

Variables: 106

Data cleaning

We have dropped variables based on :-

- Redundancy (e.g. street smart location)
- Missing values
- the number of levels present in the categorical data. (e.g. There were 96 unique categories for calendar_updated, a host might update their calendar for multiple different reasons).
- Special characters like \$ and % , we have removed them from the dataset.

Handling missing values:

- o In variables like bathrooms, bedrooms, and beds, we have replaced the missing values with the median value.
- In pricing variables like security deposit, price, and cleaning fee, we have replaced the missing values with the minimum value - zero (\$0).

Data cleaning

- Similarly, in minimum nights and maximum nights variables, we replaced the values greater than 365 with 365, because in a year we have only 365 days.
- In property type, we had 44 categories. So, we have combined the records and formed 3 levels - (House, Apartment, and Other)
- Lastly, we have checked the data types of each variable and converted it into an appropriate data type.
- After data cleaning, our dataset consists of 63000+ records and 30 variables.

Initial Analysis

- Price Distribution: The maximum price per night is \$1000.
- Beds: Maximum of the listings have 1 or 2 beds.
- The average price of room types entire home/apt and hotel room is almost equal.
- The entire home/apt has the highest cleaning fee of about \$50 compared to that of the other room types.
- Out of 33 neighborhoods, Kensington and Chelsea are having the highest average price value of around \$168.
- The maximum number of listings are in the Westminster neighborhood.
- The maximum of the listings is of property type Apartment.
- Most of the hosts are not qualified as super hosts and also their identity is also not verified.

Plots - (link)

Preprocessing

Selected Variables

host_response_rate,host_is_superhost,host_listings_count,host_identity_verified.id,neighbourhood,property_type,accommo dates,bedrooms,bathrooms, beds, price, security_deposit, cleaning_fee, guests_included, extra_people, availability_90, number_of_reviews, review_scores_rating, instant_bookable

Created dummies for the categorical variables and converted them to factor

host_is_superhost,host_identity_verified,property_type,instant_bookable

Converted some variables in to date time format

host_since,first_review,last_review

Model 1 - Knn : Regression

- As the value of k increases, the RMSE on validation data also increases.
- Below table displays the RMSE value for different values of k.

k	5	10	20	30	40	80	200	300
RMSE	61	60.63	60.74	61.27	61	63	65	66

- Based on the RMSE table we choose best k ie 40
Graph displaying the actual values
VS the predicted values(50 records).

Model 2- Regression Trees

- In order to predict the price, we developed regression tree: (Pruned Tree), Bootstrap-Aggregating and Random Forest.
- RMSE for Random forest is lowest.
- Variables: "bedrooms", "accomodation", "cleaning fee"
- And "Room_type-private" are important
- Below are the results obtained for different models:

Types of RT	Prune-Tree	Bootstrap Aggregation	Random Forest
RMSE on validation data	66	68	53

Model 3 - Multiple Linear Regression

Some variables like number_of_reviews, review_scores_rating, instant_bookable had the lowest p value which indicates that those variables are useful.

RMSE: 61

Graph shows the actual values vs predicted value.

Model 4 - Neural Network

1 Hidden layer with 4 node

RMSE: 77

Analysis of results

- We developed 4 models for prediction of price.
- Multiple Linear Regression, Knn -Regression, Classification Tree and NN.
- If we compare the RMSE(Root Mean Square Error) values of all these model we found that all were in the range of 52-77.
- Amongst, all of these models we found that Random Forest Tree approach provides the best RMSE value on the Validation data.
- However, the models we developed have an minimum rmse of 52\$.

Analysis of results

- Our Model provide details regarding on how variables such as "accommodation", "Cleaning fee", "room type", "availability" play an role on deciding in the Price.
- "Superhost" has a very less predictability on the optimal price.
- If the user selects "Private room" or "Entire Apt" then the prices are higher.
- A few neighbourhood locations in London for eg :(Westminster, Kingston and Chelsea) tend to show high Price.

Comparison of model

Based on Accuracy metrics

Model	NN	Multiple Regression	KNN	Regression Tree
RMSE	77	61	61	53

Conclusion and Recommendations

Learnings:

- Performed exploratory analysis and Visualisation using Tableau on large dataset(80k records).
- Found best variables which would be helpful in Price prediction for our dataset.

Conclusion:

• The optimal price arrived through predictive techniques would be useful to increase the occupancy rate of hosts ,thereby increasing the revenue for hosts and in turn for airbnb.

• Target host groups for recommendation:

- Price reduction recommendation would be suggested to non super host with higher than optimal price.(Super host might have a exceptionally good value which justifies the price)
- Price increase recommendation would be suggested to Super host with lower than optimal price.(Non Super host might have a few gaps in quality and hence we refrain from price increase recommendation).