1.1 连续

• 定义: 连续

我们称 f(x) 在 x_0 处连续, 当且仅当:

$$\lim_{x o x_0}f(x)=f(x_0)$$

我们给出这三个定义:

1. 可去间断点: $\lim_{x \to x_0} f(x)$ 存在,但不等于 $f(x_0)$

2. 一类间断点 (跳跃间断点): 左右极限不等

3. 二类间断点: 左右极限不存在

连续函数的性质

• 介值定理

若 f(x) 在区间 [a,b] 上连续,则若 ξ 满足 $f(a) < \xi < f(b)$ 或 $f(b) < \xi < f(a)$,则必然存在 $x_0 \in [a,b]$,使得 $f(x_0) = \xi$.

以及零点存在定理:

若 f(x) 在区间 [a,b] 上连续,且 f(a)f(b)<0,则必然存在 $x_0\in [a,b]$,使得 $f(x_o)=0$.

显然上述两个定理完全等价,我们只证明后者。

考虑集合 $A = \{x | f(x) < 0\}$, 显然该集合不空,于是根据最小上界定理,存在 $x_0 = \sup A$, 又由于 f(x) 连续,故当 $0 < x - x_0 < \delta$ 时,有 $f(x) < f(x_0) + \varepsilon$.

另一方面,显然 $x \notin A$,于是我们得到

$$0 < f(x) < f(x_0) + \varepsilon$$

也就是说,对于任意 $\varepsilon > 0$,恒有 $0 < f(x_0) + \varepsilon$,于是可以得到 $f(x_0) \ge 0$.

同时,我们也容易说明 $f(x_0)$ 非正,这是因为若 $f(x_0) > 0$,根据连续性,存在一个 x_0 的左领域 D,使得对于任意 $x \in D$,有 f(x) > 0.那么如果 $x_0 \in A$,这与 $f(x_0) \ge 0$ 矛盾,

如果 $x_0 \notin A$, 那么任何一个 $x \in D$ 都是 A 的上界, 且 $x < x_0$, 这与 $x_0 = \sup A$ 矛盾。

从而我们得到 $f(x_0) = 0$,于是证毕。

• 复合函数的连续性

若 $f: X \to Y$ 连续, $g: Y \to Z$ 连续,则 f(g(x)) 连续。

即证

$$\lim_{x o x_0}f(g(x))=f(g(x_0))$$

这是显然的,因为

$$\lim_{x\to x_0}f(g(x))=f(\lim_{x\to x_0}g(x))=f(g(x_0))$$

我们在这里简单讨论为何此处的极限符号可以换序,我们不妨这么理解,因为

$$g(x) = g(x_0) + o(1)$$

根据 f(x) 的连续性,后面的这个无穷小量在 $x \to x_0$ 时就被去掉了。显然这种可换序性并不总是这样,我们之后会做进一步讨论。

接下来我们引入连续函数的几个性质

• 性质1.11: 闭区间上的连续函数有界

证明:

根据连续的定义,对于任意一个 x_0 ,和 $\varepsilon > 0$,则必然有一个区间 $E_{\lambda_0} = (x_0 - \delta, x_0 + \delta)$,使得当 $x \in E_{\lambda_0}$ 时,有 $f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$.

无数个这样的区间显然构成这个闭区间的一个开覆盖。

根据有限覆盖定义,该区间上存在一个有限开覆盖 $F = \{E_{\lambda_n}\}$,从而我们有

$$\{f(x_n) - \varepsilon\}_{min} < f(x) < \{f(x_n) + \varepsilon\}_{max}$$

于是证明。

• 性质1.12

定义: 若 $f(x_0)$ 满足,存在 x_0 的一个邻域 U,都有如果 $x \in U$,则 $f(x_0) \geq f(x)$,则称 x_0 是 f(x) 的一个极大值点。类似的,我们定义极小值点。

若定义在 [a,b] 上的连续函数 f(x) 满足 f(a) = f(b),则 f(x) 在 [a,b] 上必有极值点。

当 f(x) 是常值函数时,结果显然。

如果 f(x) 不是常值函数,考虑集合 $A = \{f(x)|x \in [a,b]\}$,由性质1.11,我们知道 A 有界,所以 $\alpha = \sup A, \beta = \inf A$ 存在。显然 α 和 β 中至少有一者不等于 f(a),不妨设这是 α ,现在我们证明存在一个 x_0 使得 $f(x_0) = \alpha$ 。

根据最小上界的性质,对于一个单减数列 $\{\varepsilon_n\}$ 中的每个 $\varepsilon_n > 0$,存在一个 $f(x_n)$,使得 $\alpha - \varepsilon < f(x_n) < \alpha$,显然这得到了一个有界数列 $\{x_n\}$,满足 $\lim_{n\to\infty} f(x_n) = \alpha$ 。根据致密性定理,这个有界数列有收敛子列 $\{x_{k_n}\}$ 。

记 $x_{k_n}\to x_0$,因为 f(x) 连续,我们知道 $\lim_{n\to\infty}f(x_{k_n})=f(\lim_{n\to\infty}x_{k_n})=f(x_0)=\alpha$,于是证明。

又因为 $f(x_0) \ge f(x)$, 显然 x_0 是 f(x) 的一个极大值点。