Classe d'Euler d'un fibré vectoriel

Abdelhak ABOUQATEB Université Cadi-Ayyad de Marrakech

Rencontre Nationale en Mathématiques Meknès, du 03 au 06 Juin 2009

Résumé. Le théorème de Gauss-Bonnet classique (1850) établit une relation entre topologie et géométrie de surfaces compactes orientées de \mathbb{R}^3 . En 1944 ([4]), Chern donne une généralisation de ce théorème pour les variétés compactes orientées de dimension paires. Ce théorème est à l'origine de développements intéressants en géométrie différentielles (théorie des classes caractéristiques, théorie de l'indice). Nous nous proposons dans cet exposé de donner une preuve de ce théorème dans le cadre des fibrés vectoriels $E \to V$ (réels, riemanniens, orientées de rang paire dont la base V est une variété compacte orientée). Il s'agit d'établir une égalité entre deux classes d'Euler du fibré $E \to V$, l'une géométrique (définie à l'aide de la courbure d'une connexion métrique) et l'autre topologique (exprimé à l'aide de la classe de Thom).

Mots clefs. : Classe d'Euler, Classe de Thom, Théorème de Gauss-Bonnet, Théorème de Poincaré-Hopf.

1 Introduction

Dans cet exposé, nous nous proposons le programme suivant :

- 1. Définir la classe d'Euler géométrique d'un fibré vectoriel $E \to V$ orienté riemannien (à l'aide de la courbure d'une connexion métrique).
- 2. Définir la classe de Thom d'un fibré vectoriel $E \to V$ orienté de base V variété compact (c'est une classe de cohomologie à support compact dans l'espace total).
- 3. Définir la classe d'Euler topologique (à partir de la classe de Thom).
- 4. Montrer l'égalité entre les deux classes d'Euler (théorème de Gauss-Bonnet-Chern pour les fibrés vectoriels).
- 5. Etablir (lorsque le rang de E coïncide avec dim V) une formule de résidus (à l'aide des section transverses à la section nulle).
- 6. Dans le cas du fibré tangent TV (d'une variété compacte orientée), on montre le lien entre la classe d'Euler de TV et la somme alternée des nombres de Betti (deux approches seront

possibles à ce stade : \triangleright Utiliser les inégalités de Morse et en considérant un champ de gradient associé à une fonction de Morse (cf. [10]). Ou bien \triangleright Considérer le fibré normal à la diagonal \triangle dans $V \times V$ (cf. page 127 [3]).

Evidemment, il s'agit d'un programme ambitieux et qui est imppossible

2 Un exemple prototype : Cas des surfaces

L'invariant d'Euler-Poincaré $\chi(V)$ d'une surface compacte V est un entier, égal à 2-2h pour une surface compacte orientable connexe de genre h, et qui représente une obstruction à l'existence d'un champ de vecteurs sans singularité sur cette surface.

Cet entier peut se calculer comme intégrale de la courbure d'une connexion préservant une métrique riemannienne sur la surface (théorème de Gauss-Bonnet). C'est en fait un invariant topologique, qui caractérise entièrement la topologie de la surface, et qui ne dépend donc en particulier ni de la métrique riemannienne sur la surface, ni de la connexion qui la préserve.

La donnée d'un champ de vecteurs X avec singularités sur V permet de localiser $\chi(V)$ au voisinage des singularités sous forme d'un "théorème de résidus" : c'est le théorème de Poincaré-Hopf, qui permet de calculer $\chi(V)$ en fonction du comportement local de X au voisinage de ses seules singularités, calcul dont le résultat ne dépend évidemment pas du champ de vecteurs X.

Si l'on se donne une triangulation (T) de V dont le nombre de faces est égal à F, le nombre d'arêtes à A, et le nombre de sommets à S, l'entier F + S - A, qui est aussi égal à $\chi(V)$, ne dépend donc pas de (T) (théorème d'Euler).

2.1 Connexions sur l'espace tangent à une surface

Soit V une surface (i.e. une variété réelle de dimension 2), que l'on supposera de classe C^{∞} , compacte, orientable, sans bord et connexe. Notons $C^{\infty}(V)$ l'algèbre des fonctions C^{∞} sur V à valeurs réelles, et Vec(V) le $C^{\infty}(V)$ -module des champs de vecteurs sur V.

On appelle métrique riemannienne sur V la donnée d'une forme $C^{\infty}(V)$ -bilinéaire, symétrique, et définie positive

$$g: \mathcal{V}ec(V) \times \mathcal{V}ec(V) \to C^{\infty}(V)$$
:

pour tout $X \in \mathcal{V}ec(V)$, g(X,X) est une fonction à valeurs ≥ 0 , prenant des valeurs > 0 en tout point de V où X est non nul. Par exemple, si V est plongée dans l'espace euclidien \mathbb{E}_3 , on définit une métrique g en posant : $g_m(X,Y) = \langle X_m, Y_m \rangle$ (produit scalaire dans l'espace euclidien).

On appelle $connexion^1$ sur V la donnée d'une application

$$(X,Y) \to \nabla_X Y$$

¹Les motivations d'une telle définition seront données au chapitre trois, dans un contexte plus général. Pour l'instant, nous voulons en arriver le plus vite possible à la formule de Gauss-Bonnet.

de $Vec(V) \times Vec(V)$ dans Vec(V), $C^{\infty}(V)$ -linéaire en X, \mathbb{R} -linéaire en Y, et vérifiant la formule de Leibnitz:

$$\nabla_X(uY) = u\nabla_X Y + (X.u)Y \text{ pour tous } X, Y \text{ dans } \mathcal{V}ec(V)\text{et} u \text{ dans } C^{\infty}(V). \tag{*}$$

On notera ∇Y l'application $C^{\infty}(V)$ -linéaire $X \mapsto \nabla_X Y$.

On dira qu'une telle connexion préserve une métrique riemannienne g si

$$X.g(Y,Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z) \text{ pour tous } X, Y, Z \text{ dans } \mathcal{V}ec(V).$$
 (**)

Exercice 2.1 (connexion de Levi-Civita). Montrer qu'il existe une et une seule connexion ∇ préservant une métrique riemannienne g, vérifiant en plus la condition (dite de torsion nulle): $\nabla_X Y - \nabla_Y X - [X, Y] = 0$ pour tous X, Y. [On appelle cette connexion la connexion de Levi-Civita relative à g].

Par exemple, si V est plongée dans l'espace euclidien \mathbb{E}_3 , prenons pour g(X,Y) le produit scalaire euclidien < X, Y > comme ci-dessus. Un champ de vecteurs Y sur V est défini par ses trois fonctions coordonnées u, v, w relativement à une base orthonormée $\vec{i}, \vec{j}, \vec{k}$ de $\mathbb{E}_3 : Y = u \vec{i} + v \vec{j} + w \vec{k}$. Notons

$$D_X Y = (X.u) \ \vec{i} + (X.v) \ \vec{j} + (X.w) \ \vec{k}$$

le champs de vecteurs sur V dans \mathbb{E}_3 , dont les composantes sont les dérivées des composantes de Y par rapport à X: ce champ D_XY n'est plus nécéssairement tangent à V, mais sa projection orthogonale

$$\nabla_X Y = p^T(D_X Y)$$

en chaque point sur l'espace tangent à V l'est.

Exercice 2.2. Montrer que l'on définit ainsi une connexion, et que celle-ci est la connexion de Levi-Civita relative à la métrique < , > induite par la métrique euclidienne.

Exercice 2.3 (caractère local d'une connexion). Montrer qu'une connexion sur une surface induit une connexion sur tout ouvert de cette surface. Montrer qu'une connexion sur V est entièrement définie par l'ensemble de ses restrictions à des ouverts qui recouvrent V.

2.2 Courbure d'une connexion

Soit ∇ une connexion sur V. On pose, pour tous champs de vecteurs X, Y, Z:

$$R(X,Y)Z = \nabla_X(\nabla_Y Z) - \nabla_Y(\nabla_X Z) - \nabla_{[X,Y]} Z. \tag{***}$$

Définition 2.1. On appelle R la courbure de la connexion.

Exercice 2.4. Montrer que R est $C^{\infty}(V)$ -trilinéaire en X, Y, Z.

Exercice 2.5. Montrer que si ∇ préserve une métrique riemannienne g sur V, sa courbure vérifie, pour tous X, Y, Z_1, Z_2 , la formule :

$$g(R(X,Y)Z_1,Z_2) + g(Z_1,R(X,Y)Z_2) = 0$$

On dit que la courbure est anti-symétrique² en (Z_1, Z_2) , relativement à g.

²Nous verrons au chapitre trois que cette propriété est en relation avec le fait que l'algèbre de Lie du groupe orthogonal O(2) est égal à l'ensemble des matrices 2×2 anti-symétriques.

2.3 Invariant d'Euler-Poincaré d'une surface compacte

Supposons pour l'instant V orientée, et munie d'une métrique riemannienne g. Soit $\mathcal{U} = (U_i)_i$ un recouvrement de V par des ouverts U_i au dessus de chacun desquels il existe un champ de repères orthonormés directs (A_i, B_i) .

Compte tenu de (**), ∇A_i doit être orthogonal à A_i , donc colinéaire à B_i , ∇B_i doit être de même colinéaire à A_i , et $g(\nabla A_i, B_i) = -g(\nabla B_i, A_i)$. dès que la connexion ∇ sur V préserve la métrique g: il existe donc une 1-forme ω_i sur chaque ouvert U_i telle que, relativement au repère local (A_i, B_i) , ∇ et sa courbure K s'écrivent:

$$\begin{cases} \nabla B_i = \omega_i \ A_i \ , \\ \nabla A_i = -\omega_i \ B_i \ . \end{cases}$$
 On en déduit :
$$\begin{cases} R(X,Y)B_i = d\omega_i(X,Y) \ A_i \ , \\ R(X,Y)A_i = -d\omega_i(X,Y) \ B_i \ . \end{cases}$$

On écrit encore en abrégé:

$$\nabla = \begin{pmatrix} 0 & \omega_i \\ -\omega_i & 0 \end{pmatrix} \text{ et } R = \begin{pmatrix} 0 & d\omega_i \\ -d\omega_i & 0 \end{pmatrix}$$

relativement au repère local (A_i, B_i) .

Sur l'intersection $U_i \cap U_j$ de deux des ouverts du recouvrement, il existe une fonction différentiable $\theta_{ij}: U_i \cap U_j \to S^1$ à valeurs dans le cercle $S^1 = \mathbb{R}/2\pi\mathbb{Z}$ telle que

$$\begin{cases} A_j = \cos \theta_{ij} \ A_i + \sin \theta_{ij} \ B_i, \\ B_j = -\sin \theta_{ij} \ A_i + \cos \theta_{ij} \ B_i. \end{cases}$$

D'après (*), $\nabla B_j = (\omega_i - d\theta_{ij}) A_j$. On en déduit : $\omega_j = \omega_i - d\theta_{ij}$ sur $U_i \cap U_j$. Les différentielles $d\omega_i$ et $d\omega_j$ se "recollent", puisqu'elles coïncident sur $U_i \cap U_j$: la matrice représentant R relativement à un champ de repères orthonormés directs ne dépend donc pas de celui-ci, et il existe une 2-forme Ω , globalement définie sur tout V, fermée car localement exacte, dont la restriction à chaque ouvert U_i est égale à $d\omega_i$. On écrit en abrégé :

$$R = \begin{pmatrix} 0 & \Omega \\ -\Omega & 0 \end{pmatrix}.$$

On appelle³ pfaffien l'application $Pf: so(2) \to \mathbb{R}$ qui, à toute matrice 2×2 antisymétrique $\begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$ associe le nombre $\frac{1}{2\pi} a$, et l'on pose $Pf(R) = \frac{1}{2\pi} \Omega$.

Remarque 2.1. La formule

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} 0 & a \\ -a & 0 \end{pmatrix}$$

³Plus généralement, on définira le pfaffien d'ordre r, comme étant un certain polynôme $Pf: so(2r) \to \mathbb{R}$ sur l'algèbre de Lie so(2r) des matrices anti-symétriques de taille 2r, homogène de degré r, invariant par la représentation adjointe de SO(2r) sur so(2r). Son carré est égal au déterminant.

exprime que la représentation adjointe de SO(2) sur son algèbre de Lie so(2) est triviale (ce qui est évident puisque le groupe SO(2) est abélien), et que le pfaffien est donc invariant par cette représentation. Par contre, il n'est pas invariant par la représentation adjointe de O(2) sur so(2): par exemple,

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & +a \\ -a & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -a \\ +a & 0 \end{pmatrix}.$$

Théorème 2.1 (Gauss-Bonnet).

- (i) La 2-forme Pf(R) est fermée.
- (ii) Sa classe de cohomologie [Pf(R)] dans la cohomologie de de Rham $H^2(V;\mathbb{R})$ ne dépend ni de la métrique riemannienne g, ni de la connexion ∇ préservant g. Elle ne dépend que de l'orientation de V. Si l'on change l'orientation de V, la classe de cohomologie [Pf(R)] change de signe.
- (iii) Si la surface V est compacte et orientable, l'intégrale

$$\chi(V) = \int_{V} Pf(R)$$

est un entier ⁴. Cet entier ne dépend pas de l'orientation de V.

(iv) S'il existe un champ de vecteurs v sur V sans singularité, la classe [Pf(R)] est nulle.

Définition 2.2. La classe de cohomologie [Pf(R)] dans $H^2(V;\mathbb{R})$ s'appelle la classe d'Euler de la variété orientée V, et est notée Eul(V). Son évaluation

$$\chi(V) = Eul(V) \frown [V]$$

sur la classe fondamentale de V s'appelle l'invariant d'Euler-Poincaré de la surface.

2.4 Théorème de Poincaré-Hopf

Théorème 2.2 (Poincaré-Hopf). Pour tout champ de vecteurs X sur V à singularités isolées, l'égalité suivante est vérifiée :

$$\chi(V) = \sum_{\alpha} I(X, m_{\alpha}).$$

En particulier $\sum_{\alpha} I(X, m_{\alpha})$ ne dépend pas du champ de vecteurs X.

Pour qu'une surface compacte sans bord admette un champ de vecteurs sans singularité, il faut que son invariant d'Euler-Poincaré soit nul.

 $^{^4}$ C'est précisément pour obtenir un entier par intégration que l'on a normalisé Ω en divisant par 2π dans la définition du Pfaffien.

3 Le polynôme Pfaffian

Toute matrice antisymétrique $A \in so(2m)$ permet de définir une forme \mathbb{R} -bilinéaire alternée $\beta_A \in \bigwedge^2(\mathbb{R}^{2m})^*$ en posant : $\beta_A(u,v) = \langle Au,v \rangle$. Pour $A = [a_{ij}]$ et en introduisant $\{e_1,\ldots,e_{2m}\}$ la base canonique de \mathbb{R}^{2m} , nous pouvons écrire :

$$\beta_A = \sum_{i < i} a_{ij} \ e_i^* \wedge e_j^*$$

Lorsqu'on prend une famille A_1, \ldots, A_m de matrices antisymétriques, on définit $\widehat{Pf}(A_1, \cdots, A_m)$ par l'égalité :

$$\beta_{A_1} \wedge \cdots \wedge \beta_{A_m} = m! \widehat{Pf}(A_1, \cdots, A_m) \det$$

Nous obtenons ainsi une forme m mutilinéaire symétrique $\widehat{\Pr}$ définie sur so(2m). Le polynôme Pfaffien $Pf: so(2m) \to \mathbb{R}$ est la fonction : $Pf(A) = \widehat{\Pr}(A, \dots, A)$, c'est une fonction polynômiale homogène de degré m sur so(2m) (\mathbb{R} -espace vectoriel de dimension m(2m-1). De manière plus précise, nous obtenons :

$$Pf(A) = \frac{1}{2^m m!} \sum_{\sigma \in S_{2m}} \varepsilon(\sigma) \ a_{\sigma(1)\sigma(2)} \cdots a_{\sigma(2m-1)\sigma(2m)}$$

Exercice 3.1. Pour une matrice par blocs

$$A = Diag(\begin{pmatrix} 0 & \lambda_1 \\ -\lambda_1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \lambda_2 \\ -\lambda_2 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & \lambda_m \\ -\lambda_m & 0 \end{pmatrix})$$

Montrer que : $Pf(A) = \lambda_1 \dots \lambda_m$.

2) Montrer que Pf $(A) = Pf(gAg^{-1})$ pour tous $g \in SO(2m)$ et $A \in so(2m)$.

Remarque 3.1. On peut montrer que pour toute matrice $A \in so(2m)$, il existe $g \in SO(2m)$ tel que

$$gAg^{-1} = Diag(\begin{pmatrix} 0 & \lambda_1 \\ -\lambda_1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \lambda_2 \\ -\lambda_2 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 & \lambda_m \\ -\lambda_m & 0 \end{pmatrix})$$

Une idée de démonstration de ce lemme algébrique serait d'interpréter A comme étant un endomorphisme normal de \mathbb{C}^{2m} (puisque $A^*A = AA^*$); ce qui permet de diagonaliser A. En suite, on passe aux réels à l'aide de la conjugaison des valeurs et des vecteurs propres. Comme application, nous obtenons que pour tout $A \in so(2m)$ on a:

$$Pf(A)^2 = \det(A)$$

4 Classe d'Euler géométrique

Considérons maintenant un fibré vectoriel réel orientée de rang 2r. Soit <,> une métrique riemannienne sur E et ∇ une connexion préservant cette métrique; R la courbure de ∇ . La courbure totale de ∇ est la 2r-forme différentielle donnée par :

$$Pf(\frac{-R}{2\pi})(X_1, \dots, X_{2r}) = (\frac{-1}{2\pi})^r \sum_{\sigma \in S_{2m}} \varepsilon(\sigma) \ \widehat{Pf}(R(X_{\sigma(1)}, X_{\sigma(2)}), \dots, R(X_{\sigma(2r-1)}, X_{\sigma(2r)}))$$

Autrement dit, si on désigne par Ω la matrice de courbure de R relativement à un repère orthonormé direct, alors l'expression locale de $Pf(\frac{-R}{2\pi})$ n'est autre que $Pf(\frac{-\Omega}{2\pi})$. Nous obtenons ainsi une forme différentielle de degré 2r.

Proposition 4.1. $Pf(\frac{-R}{2\pi})$ est une forme fermée et sa classe de cohomologie ne dépend pas du choix de la connexion ∇ .

On définit la classe d'Euler différentiable de E (ou tout simplement classe d'Euler) comme étant la classe de cohomologie

 $Pf(E) = [Pf(\frac{-R}{2\pi})].$

Lorsque V est une variété compacte orientée de dimension 2r, on appellera nombre d'Euler du fibré E le nombre obtenu en intégrant Pf(E) sur V:

$$\chi(E) := Pf(E) \frown [V] = \int_{V} Pf(\frac{-R}{2\pi})$$

Dans le cas particulier du fibré tangent TV, le nombre d'Euler de TV sera appelé nombre d'Euler de la variété V.

5 Classe de Thom et Classe d'Euler topologique

Soit V une variété compacte orientée de dimension n et $\pi: E \to V$ un fibré vectoriel orientée de rang q. Une orientation naturelle de la variété E en est alors induite. Par dualitée de Poincaré, nous obtenons des isomorphismes : $\mathcal{P}_E: H_c^{q+k}(E) \xrightarrow{\cong} H_{n-k}(E)$ et $\mathcal{P}_V: H^k(V) \xrightarrow{\cong} H_{n-k}(V)$. D'un autre côté, l'homomorphisme $H_*(\pi): H_*(V) \to H_*(E)$ est un isomorphisme (pour une section arbitraire s du fibré on a $\pi \circ s = id_V$ et $s \circ \pi$ est homotope à id_E : il suffit d'utiliser la structure d'espace vectoriel des fibres). Nous obtenons ainsi par composition un isomorphisme :

$$\mathcal{T}: H^*(V) \xrightarrow{\cong} H_c^{q+*}(E),$$

appelé isomorphisme Thom. De manière plus explicite, on considère l'opérateur d'intégration le long des fibres $f_{\mathbb{R}^q}$: $\Omega_c^{q+*}(E) \to \Omega_c^*(V)$; celui-ci commute aux différentiels et passe à la cohomologie :

$$H^*(f): H_c^{q+*}(E) \to H^*(V).$$

Il est facile de voir (en utilisant le théorème de Fubini de l'intégration le long des fibre) que c'est la bijection inverse de l'isomorphisme de Thom⁵ : $H^*(f_{pq}) = \mathcal{T}^{-1}$.

La classe de cohomologie $\mathcal{T}(1) \in H_c^q(E)$, image de $1 \in H^0(V)$ par l'isomorphisem de Thom, sera appelée classe de Thom de E; elle sera notée $\tau(E)$. Autrement dit, c'est l'unique calsse dans $H_c^q(E)$ dont l'intégrale sur la fibre E_x est égale à 1, pour tout $x \in V$. Comme exercice facile, on montre la propositon qui suit.

⁵ en fait lorsque V n'est pas compacte, on peut toujours étendre l'intégration le long des fibres aux formes à support compacts dans la direction de la fibre et obtenir un isomorphisme de Thom plus général [3]

Proposition 5.1. Si $\vartheta \in \Omega_c^q(E)$ est un représentant de la classe de Thom, alors l'isomorphisme de Thom $\mathcal{T}: H^*(V) \to H_c^{*+q}(E)$ est réalisé par l'application $[\omega] \mapsto [\pi^*(\omega) \wedge \vartheta]$.

On vérifie sans problème le lemme qui suit.

Lemme 5.1. Soit $\vartheta \in \Omega^q_c(E)$ un représentant de la classe de Thom, et soit s une section arbitraire de E. Alors la classe de cohomologie $[s^*\vartheta] \in H^q(V)$ ne dépend pas des choix de ϑ et s

On notera alors $e_{\tau}(E) \in H^q(V)$ la classe de cohomologie $[s^*\vartheta]$ (on peut prendre pour s la section nulle par exemple); on l'appellera classe d'Euler topologique du fibré vectoriel $E \to V$.

Lemme 5.2. Soit $\pi: E \to V$ un fibré vectoriel orienté. Alors : L'existence d'une section $s: V \to E$ partout non nulle implique la nullité de la classe d'Euler topologique.

Démonstration du lemme. Soit <, > une métrique riemannienne sur E. Désignons par $\rho: E \to \mathbb{R}$ la fonction radiale définie par $\rho(v) = \parallel v \parallel$. Soit ϑ un représentant de la classe de Thom et K le support de ϑ . La fonction ρ est continue donc bornée sur K. Posons $c = 1 + \sup_{v \in K} \rho(v)$; le support de s est ainsi contenu dans $\{v \in E/\rho(v) < c\}$. Autrement dit, $\vartheta_v = 0$ dès que $\rho(v) \ge c$. D'un autre côté, puisque s est partout non nulle, il existe s 0 telle que s0 que s0 pour tout s0 pour tout s0. Considérons maintenant la section s1 est alors facile de voir que s2. D'où : s3. Il est alors facile de voir que s4 que s6. D'où : s6. s7.

Une autre description de la classe $e_{\tau}(E)$ est donnée par la proposition suivante.

Proposition 5.2. On a l'égalité :

$$e_{\tau}(E) = \mathcal{T}^{-1}(\tau(E) \frown \tau(E))$$

où \frown est la multiplication canonique de $H_c^*(E)$. En particulier $e_{\tau}(E) = 0$ lorsque le rang du fibré est impaire.

Démonstration. Soit ϑ un représentant de $\tau(E)$. D'après le théorème ci-dessus on a : $\mathcal{T}(e(E)) = [\pi^*(s^*\vartheta) \wedge \vartheta]$. D'un autre côté, du fait que $s \circ \pi$ est homotope à id_E il en découle que $\pi^* \circ s^*(\vartheta)$ est cohomologue à ϑ . D'où le résultat.

L'objet principal de ce qui suit est de démontrer le résultat suivant.

Théorème 5.1. Pour tout fibré vectoriel riemannien orienté $E \to V$ de base V variété compacte orientée, la classe d'Euler Pf(E) coïncide avec la classe d'Euler topologique $e_{\tau}(E)$.

Démonstration du théorème. 6

<u>Idée de la démonstration</u>: Dans un premier temps on démontre le théorème pour un fibré de rang 2. D'un autre côté, nous avons vu auparavant (en exercices) que les deux classes Pf(E) et $e_{\tau}(E)$ vérifient les deux propriétés fondamentales "Dualité de Whitney" et "Naturalité"; le théorème est alors une conséquence directe du "Splitting Principle" (Théorème qui suit, dont une démonstration se trouve dans [12]).

⁶Nous nous sommes inspiré dans cette démonstration de [1]

Théorème 5.2. (Splitting Principle)

Soit $E \to V$ un fibré vectoriel réel orientable de rang paire. Alors, il existe une variété différentiable W et une application différentiable $f: W \to V$ telles que :

- 1. $H^*(f): H^*(V) \to H^*(W)$ soit injective.
- 2. $f^*(E)$ soit la somme de Whitney de fibrés orientables de rang 2.

La preuve du théorème est ainsi ramenée à l'étude du cas des fibrés de rang 2.

Soit alors $E \to V$ est un fibré vectoriel de rang 2 orienté. Soit <,> une métrique riemannienne sur E et ∇ une connexion préservant cette métrique; nous allons définir à partir de ces choix un représentant ϑ de la classe de Thom : Il s'agit d'une 2-forme ϑ à support compact définie globalement sur E telle que $f_{\mathbb{R}^2} = 1$. On désignera par $r: E \to \mathbb{R}$ la fonction radiale associée à la métrique : $r(v) = ||v|| = \sqrt{< v, v>}$.

Considérons un recouvrement (U_i) de V par des ouverts trivialisant $E_{U_i} \cong U_i \times \mathbb{R}^2$ (la famille étant supposée finie à cause de la compacité de V). Pour tout i, on désignera par $\{A_i, B_i\}$ un repère orthonormé directe de E_{U_i} ; il existe alors une 1-forme différentielle ω_i sur U_i telle que $\nabla A_i = \omega_i B_i$ et $\nabla B_i = -\omega_i A_i$.

Soit $\rho \in C_c^{\infty}(]0,1[)$ telle que : $\int_0^1 s\rho(s^2)ds = -1$, et λ la fonction de variable réelle définie par : $\lambda(t) = 1 + \int_0^t s\rho(s^2)ds$.

On considère la 2-forme $\vartheta_i \in \Omega^2_c(E_{U_i})$ définie par :

$$\vartheta_i = \frac{-1}{2\pi} (\rho(r^2) dy_1^i \wedge dy_2^i + r\rho(r^2) dr \wedge \pi^* \omega_i + \lambda(r) \pi^* (d\omega_i))$$

où y_1^i et y_2^i sont les fonctions coordonnées définies sur E_{U_i} relativement au repère $\{A_i,B_i\}$: $y_1^i(v)=< v,A_i>$ et $y_2^i(v)=< v,B_i>$. On vérifie alors facilement que les formes différentielles ϑ_i se recollent pour donner une forme globale $\vartheta\in\Omega^2_c(E)$, qu'en plus on a : $f_{\mathbb{R}^2}=1$ et que $s_0^*(\vartheta)=\frac{-\Omega}{2\pi}$ (s_0 étant la section nulle et Ω la 2-forme de courbure associée à la connexion ∇ : localement sur l'ouvert U_i , celle-ci est donnée par : $d\omega_i$.

Ceci achève la démonstration du théorème.

Corollaire 5.1. Soit $E \to V$ un fibré vectoriel riemannien orienté $E \to V$ de base V variété compacte orientée tels que dim $V = rang\ E$. Alors:

$$\chi(E) = \int_{V} e_{\tau}(E).$$

Autrement dit, si ϑ désigne un représentant de la classe de Thom, alors : $\chi(E) = \int_V s^* \vartheta$ (où s une section arbitraire du fibré).

6 Indice de Poncaré-Hopf

Soit $E \to V$ un fibré vectoriel orienté $E \to V$ de base V variété compacte orientée tels que $\dim V = rang\ E$. On désignera par $s_0: V \hookrightarrow E$ la section nulle. Soit s une autre section de E et

m un zéro de s (c'est-à-dire $s(m) = s_0(m)$). Les deux applications s et s_0 sont des plongements de V dans E, leurs applications linéaires tangentes $T_m s$ et $T_m s_0$ injectent l'espace tangent $T_m V$ dans le même espace $T_{s_0(m)}E$. On dira que s est transverse à s_0 (ou tout simplement que s est une section transverse) si pour tout m qui zéro de s on a :

$$T_m s(T_m V) \cap T_m s_0(T_m V) = \{0\}.$$

On supposera dans ce qui suit que s est une telle section et m désignera un zéro des. L'espace $T_{s_0(m)}E$ s'identifie naturellement à la somme $T_m s_0(T_m V) \oplus E_m$ (comme pour tou espace vectoriel, la fibre E_m s'identifie à l'espace tangent $T_{s_0(m)}E_m = Ker(T_{s_0(m)}\pi)$). A partir de la section s, on peut définir l'application linéaire :

$$L: T_m V \to E_m, \quad L(v) = T_m s(v) - T_m s_0(v)$$

C'est un isomorphisme linéaire (à cause de la transversalité). Les deux espaces T_mV et E_m sont orientés par hypothèse.

 \triangleright On définit l'indice topologique local $\iota(s,m)$ de s en m en posant : $\iota(s,m)=1$ si L préserve les orientations, et $\iota(s,m)=-1$ dans le cas contraire.

L'indice topologique global de s est la somme :

$$\iota(s) = \sum \iota(s, m)$$

pour m variant dans l'ensemble des zéros de s.

Remarque 6.1. Si l'on se donne une carte locale positive (U, φ) autour de m $(\varphi(0) = m)$ et $\{e_1, \ldots, e_q\}$ un repère local direct E_U , alors l'expression locale de s est donnée par une fonctions $f: \mathbb{R}^q \to \mathbb{R}^q$ qui s'annule en 0. Il est facile de voir que la condition de transversalité équivaut au fait que la différentielle df_m est un isomorphisme. Ainsi $\iota(s,m)$ est le signe du déterminant de df_m . De plus, le théorème d'inversion local implique que f est un difféomorphisme local en f, et que par suite f est un zéro isolé de f est un conséquent, à cause de la compacité de f l'ensemble des zéros d'une section transversale est toujours fini.

Remarque 6.2. Parmis les sections de fibrés vectoriels, il serait intéressant de décrire avec un peu plus de détails la notion d'indice topologique dans les cas suivants :

- 1. Soit X un champ de vecteurs sur V, c'est donc une section du fibré tangent $TV \to V$. Dire que X est une section transverse cela signifie..?
- 2. Soit $f: V \to \mathbb{R}$ une fonction différentiable sur V. sa différentielle df est alors une section du fibré cotangent T^*V . Dire que df est une section transverse cela signifie..?
- 3. Soit maintenant <, > est une métrique riemannienne sur V. Pour toute fonction $f\mathbb{C}^{\infty}(V)$, on peut considérer df et le champ de vecteurs gradf. Il est alors facile de vérifier que les deux notions de transversalités à partir de df ou gradf sont les mêmes et que les indices sont également les mêmes.

Nous avons déjà vu auparavant un théorème d'annulation selon lesquel l'existence d'une section partout non nulle implique que $e_{\tau}(E) = 0$.

Théorème 6.1. Soit $E \to V$ un fibré vectoriel orienté $E \to V$ de base V variété compacte orientée tels que $\dim V = rang\ E$, et s une section transverse de E. Alors :

$$\int_{V} e_{\tau}(E) = \iota(s)$$

Conséquence : $\chi(E) = \iota(s)$ et $I(s) = \iota(s)$. En particulier Pf(E) est une classe de cohomologie entière, $Pf(E) \in \mathcal{H}^{\dim V}(V, \mathbb{Z})$.

Démonstration du théorème. Il s'agit de trouver un représentant $\vartheta \in \Omega_c^{2r}(E)$ de la classe de Thom tel que $\int_V s^*(\vartheta) = \iota(s)$. Notons $\{m_1, \dots, m_k\}$ les zéros de s. Soit pour tout i un voisinage U_i domaine d'une carte locale...

En effet, la raion toute simple est I(s) est égal à $\chi(E)$ qui est un entier d'après le théorème ci-dessus.

7 Théorème de Poincaré-Hopf

Il s'agit de montrer que pour toute variété compacte orientée de dimension paire, on a l'égalité entre $\chi(V)$ et la somme alternée des nombres de Betti :

$$\chi(V) = \sum (-1)^i \dim H^i(V, \mathbb{R})$$

Première approche. (Utiliser le fibré normal à la sous-variété diagonale \triangle_V dans $V \times V$) ([3]).

Deuxième approche. (Utiliser les fonctions de Morse) ([10])

Références

- [1] D. Bell: The Gauss-Bonnet theorem for vector bundles. J. Geom. 85 no. 1-2 (2006) 15-21.
- [2] G.E. Bredon: Introduction to compact transformation Groups. Academic Press, New York (1972).
- [3] R. Bott et LW. Tu: Differential forms in algebraic topology. Graduate texts in Mathematics, Springer, 1982.
- [4] BS.-S. Chern: A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds, Ann. of Math. (2) 45 (1944) 747-752.
- [5] W. Greub, S. Halperin and R. Vanstone: Connections, curvature, and cohomology. Vol. I. Academic Press 1972.
- [6] W. Greub, S. Halperin and R. Vanstone: Connections, curvature, and cohomology. Vol. II. Academic Press 1973.
- [7] S. Kobayashi: Fixed points of isometries. Nagoya Math. J. 13 (1958), 63-68.

RÉFÉRENCES 12

- [8] S. Kobayashi: Transformation groups in differential geometry. Springer (1972).
- [9] V. Mathai and D. Quillen: Superconnections, Thom Classes, and equivariant differential forms, Topology 25 (1986) 85-110.
- [10] Milnor, Morse Theory...
- [11] S. Rosenberg: The Laplacian on a Riemannian Manifol, Cambridge University Press, Cambridge, 1997.
- [12] P. Shanahan: The atiyah-Singer Index Theorem: An Introduction, Lecture Notes in Mathematics, vol. 638, Springer, Berlin, New York, 1978.