Principles of Quantum Mechanics

George Lee Girton College

October 7, 2015

1 Introduction

1.1 Blah

sergserhiugyhieru

2 Dirac Formalism

2.1 States and Operators

State of a quantum system described by a ket member $|\psi\rangle$ of a $\mathbb C$ -Hilbert space $\mathcal H$. We have the corresponding dual space of bra vectors $\langle \phi| \in \mathcal H^\dagger$. The space is sufficiently well behaved that for each member $|\psi\rangle$ of the space there is a corresponding dual vector $\langle \psi| = (|\psi\rangle)^*$. Have sesquilinear inner product $\langle \sim | \sim \rangle : \mathcal H^2 \to \mathbb C$ etc.

Physically $|\psi\rangle \mapsto \alpha |\psi\rangle$ transforms the ket to an equivalent state. For a particle we often choose $\langle \psi | \psi \rangle = 1$, note that we often study systems which are idealisations, eg infinite plane waves where $\langle \psi | \psi \rangle = \infty$. Even then given $\theta \in \mathbb{R}$ the map $|\psi\rangle \mapsto e^{i\theta} |psi\rangle$ gives equivalent systems, though we find phase differences do matter.

What with this being a vector space we have linear operators on it. Given $Q: \mathcal{H} \to \mathcal{H}$ linear we can define $Q^{\dagger}: \mathcal{H}^{\dagger} \to \mathcal{H}^{\dagger}$ by $Q^{\dagger}: \langle \psi | \mapsto (Q | \psi \rangle)^{\dagger}$.

Eigenstates of Q with eigenvalue λ of course satisfy the equation $Q|\psi\rangle = \lambda |\psi\rangle$. Oh, also [A,B] = AB - BA is the commutator. Neat identities are associated with it.

2.2 Observables and measurements

Operator Q Adjoint/Hermitian if we have $Q^{\dagger} = Q$ (THIS DOES NOT MAKE SENSE UNLESS WE'RE LIKE, LOL, Say two maps are the same if for all $|\psi\rangle |\phi\rangle$ we have $\langle\phi|Q|\psi\rangle = \langle\phi|Q'|\psi\rangle$). Can show for Q Hermitian:

- $Q|\psi\rangle = \lambda |\psi\rangle \implies \lambda \in \mathbb{R}$
- $\lambda \neq \lambda', Q |\psi\rangle = \lambda |\psi\rangle, Q |\phi\rangle = \lambda' |\phi\rangle \implies \langle \psi |\phi\rangle = 0$
- Writing \mathbb{V}_{λ} for the eigenstates of value λ , we have $s\bar{pan}(\mathbb{V}_{\lambda}:\lambda\in\mathbb{R})=\mathcal{H}$

Maybe I'll write out a bit of a rambling proof later. Or maybe just check out linear ananlysis or something?

Diagonalising Q is a matter of rewriting the states we care about in terms of Q's eigenstates. For q Q with a discrete spectrum of eigenvalues with $\forall \lambda : dim(\mathbb{V}_{\lambda})$ we can write

$$\left|\psi\right\rangle = \sum_{\lambda} \sum_{n=1}^{\dim(\mathbb{V}_{\lambda})} \left|n,\lambda\right\rangle \left\langle n,\lambda |\psi\right\rangle = \sum_{\lambda} \sum_{n=1}^{\dim(\mathbb{V}_{\lambda})} \alpha_{n,\lambda} \left|n,\lambda\right\rangle$$

ie, we have that the identity operator $Id = \sum_{\lambda} \sum_{n=1}^{\dim(\mathbb{V}_{\lambda})} |n,\lambda\rangle \langle n,\lambda|$. This simplifies, for a nondegenerate spetrum, ie, when $\forall \lambda: \dim(\mathbb{V}_{\lambda}) = 1$ to

$$|\psi\rangle = \sum_{\lambda} |n, \lambda\rangle \langle \lambda | \psi\rangle = \sum_{\lambda} \alpha_{\lambda} |\lambda\rangle$$

Here $\alpha_X = \langle X | \psi \rangle$.

Physically Q may correspond to a physical quantity, eg when $Q = \hat{\mathcal{H}}$, the Hamiltonian. When a measurement of the quantity is made we find that $\mathbb{P}(\lambda = \lambda') = \sum_{n=1}^{\dim(\mathbb{V}'_{\lambda})} \langle n, \lambda' | \psi \rangle^2$. Upon measurement of value λ the wavefunction's non- λ -eigenvalue components will vanish, and the other components may be renormalised as appropriate. Thus the expected value of λ is

$$\mathbb{E}(Q) = \langle \psi | Q | \psi \rangle = \sum_{\lambda} \mathbb{P}(\lambda) = \sum_{\lambda} \sum_{n=a}^{\dim(\lambda)} \lambda \alpha_{n,\lambda}$$