1) O que é árvore binária?

É um conjunto finito de elementos, nós, tal que ou é uma árvore vazia, ou há um nó raiz, especial, e os demais nós podem ser divididos em subconjuntos disjuntos, as subárvores à esquerda e à direita da raiz, sendo estas também árvores binárias.

2) O que é árvore binária de busca?

É uma árvore binária cujo valor do nó à esquerda da raiz é inferior ao valor desta, e o nó à direita da raiz é superior ao valor desta.

3) O que é árvore estritamente binária, completa e cheia?

Estritamente binária: nós possuem 0 ou 2 filhos.

Binária completa: todo nó que não possuir filhos deve estar ou no último ou no penúltimo nível da árvore.

Binária cheia: todo nó que não possuir filhos deve estar no último nível da árvore.

4) Faça uma árvore binária de busca com sua matrícula.

5) Quais os problemas de uma árvore binária de busca?

O problema é que, após muitas operações de inserção e remoção, estas podem se deformar, aumentando a complexidade da busca. Uma árvore binária de busca pode se deformar a tal ponto que se transforme em uma árvore zigue-zague, ou seja, praticamente uma lista encadeada.

6) O que é uma árvore balanceada?

É uma árvore binária de busca que, a despeito de inclusões ou remoções, mantém o custo de acesso em $O(\log n)$, ou seja, uma árvore de grandeza ótima.

7) Faça uma árvore AVL com sua matrícula.

8) Explique o procedimento de rotação em uma árvore.

Há quatro tipos de rotação: à esquerda e à direita, e dupla à esquerda e dupla à direita.

À esquerda:

À direita:

Dupla à esquerda:

Dupla à direita:

9) Qual a justificativa para se usar árvores B?

O fato de que, por manter mais de uma chave em cada nó da estrutura, a árvore B proporcionar uma organização de ponteiros de forma que operações de busca, inserção e remoção sejam executadas rapidamente. No mais, todas as folhas de uma árvore B encontram-se sempre no mesmo nível, não importando a ordem da entrada de dados.

10) O que a ordem significa numa árvore B?

É por meio da ordem que se infere quantos filhos no máximo tem cada nó (2 * ordem + 1), e também quantos filhos no mínimo estes nó, caso não sejam a raiz ou folhas, possuem (ordem + 1.)

NOTAS

Para verificar se a árvore que você montou é uma binária de busca ou não, basta imprimi-la de forma simétrica, isto é, ir para o nó mais à esquerda, imprimir o nó, ir para o nó mais à direita, recursivamente.

Para verificar se uma árvore é AVL ou não, o índice de desequilíbrio de cada um de seus nós não pode ser menor que -1 ou maior que 1. O índice de desequilíbrio de um nó é calculado da seguinte maneira: para cada nó à esquerda deste nó raiz, subtraia 1; para cada nó à direita deste nó raiz, some 1. Como os nós-folhas não possuem nada à esquerda ou à direita, seu índice é sempre 0.

Para decidir qual rotação realizar em um nó AVL para manter a árvore organizada, deve-se seguir o algoritmo abaixo:

- 1. Calcular o índice de desequilíbrio do nó (índice chamado Q)
- 2. Se -1 <= Q <= 1, o nó está equilibrado
- 3. Se Q > 1:
 - 1. Se a subárvore da direita tem Q < 0:
 - 1. Rotação dupla à esquerda
 - 2. Se a subárvore da direita tem Q > 0:
 - 1. Rotação à esquerda
- 4. Se Q < -1:
 - 1. Se a subárvore da esquerda tem Q > 0:
 - 1. Rotação dupla à direita
 - 2. Se a subárvore da esquerda tem Q < 0:
 - 1. Rotação à direita