UNIVERSIDAD DEL VALLE DE GUATEMALA

MM2034 - 2 SEMESTRE - 2022

LICENCIATURA EN MATEMÁTICA APLICADA

LÓGICA

Catedrático: Paulo Mejía

Estudiante: Rudik Roberto Rompich Cotzojay

Carné: 19857

Correo: rom19857@uvg.edu.gt

8 de febrero de 2023

Índice

1	Topología		1
	1.0.1	Objeto de estudio de la topología	5
f 2	Bases v su	lbases de una topología	9

1. Topología

Definición 1. Sea $X \neq \emptyset$. Una clase τ de subconjunto de X es una topología sobre X, se cumple:

- 1. $\emptyset, X \in \tau$
- 2. La unión de una clase arbitraria de conjuntos en τ es un miembro de τ .
- 3. La intersección de una clase finita de miembros de τ está en τ .

Los miembros de τ son los abiertos de X.

- 1. El par (X, τ) es un espacio topológico.
- 2. A los elementos de X se les llama puntos.

estructura topológica

- **Ejemplo 1.** 1. Sea $X \neq \emptyset \implies \tau = P(X)$ es una topología sobre X. A τ se le llama topología discreta de X, $y(X,\tau)$ es un espacio discreto.
 - 2. Sea $X \neq \emptyset \implies \tau = \{\emptyset, X\}$ es una topología sobre X. A τ se le llama topología indiscreta, $y(X, \tau)$ es un espacio indiscreto.
 - 3. $X = \mathbb{R}^2$ y τ es la colección de abiertos de \mathbb{R}^2 definido en términos de la métrica usual. A τ se le llama topología usual de \mathbb{R}^2 .
 - 4. Sea $X = \{a, b, c, d, e\}$.
 - a) Sea $\tau_1 = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d, e\}\} \implies \tau_1$ es una topología sobre X.
 - b) Sea $\tau_2 = \{X, \emptyset, \{a\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Note que $\{a\} \cup \{b, c, d\} = \{a, b, c, d\} \not\in \tau_2 \implies \tau_2$ no es topología sobre X
 - c) Sea X un conjunto infinito y sea τ el vacío junto con la colección de subconjunto de X cuyos complementos son finitos. τ es una topología sobre X, y se llama topología cofinita sobre X.

NOTA. Un espacio metrizable es un espacio topológico X con la propiedad que existe una métrica que genera los abiertos de la topología dada.

Problema 1. ¿Qué tipos de espacios topológicos son metrizables?

Proposición 1. Si τ_1 y τ_2 son topologías sobre X, entonces $\tau_1 \cap \tau_2$ es topología sobre X.

Demostración. 1. Como τ_1 y τ_2 son topologías, etnonces: $X, \emptyset \in \tau_1$ y $X, \emptyset \in \tau_2 \implies X \in \tau_1 \cap \tau_2$ y $\emptyset \in \tau_1 \cap \tau_2$.

- 2. Sea $\{G_i\}_{i\in I}$ una subcolección de $\tau_1 \cap \tau_2 \implies G_i \in \tau_1, \forall i \in I \implies \bigcup_i G_i \in \tau_i$ y $G_i \in \tau_2, \forall i \in I \implies \bigcup_i G_i \in \tau_2$. Entonces $\bigcup_i G_i \in \tau_1 \cap \tau_2$
- 3. Sea G_1 y $G_2 \in \tau_1 \cap \tau_2 \implies G_1 \in \tau_1$ y $G_1 \in \tau_2$. $G_2 \in \tau_1$ y $G_2 \in \tau_2$. Entonces $G_1 \cap G_2 \in \tau_1$ y $G_1 \cap G_2 \in \tau_2 \implies G_1 \cap G_2 \in \tau_1 \cap \tau_2$. Entonces, $\tau_1 \cap \tau_2$ es una topología sobre X.

NOTA. Sea $X = \{a, b, c\}$ y sean:

■ $\tau_1 = \{X, \emptyset, \{a\}\}, \ \tau_2 = \{X, \emptyset, \{b\}\}. \ Entonces, \ \tau_1 \cup \tau_2 = \{X, \emptyset, \{a\}, \{b\}\}, \ pero \ \{a, b\} \notin \tau_1 \cup \tau_2. \ \therefore \tau_1 \cup \tau_2 \ no \ es \ topología \ sobre \ X.$

Ejemplo 2. Sea $f: X \to Y$, donde X es un conjunto no vacío y Y es el espacio topológico de (Y, τ') . Entonces $\tau = \{f^{-1}(G): G \in \tau'\}$ es una topología sobre X. En efecto:

$$1. \ \varnothing \implies \tau' \implies f^{-1}(\varnothing) = \varnothing \in \tau. \ Y \in \tau' \implies f^{-1}(Y) = X \in \tau$$

2. Sea $\{G_i\}$ una subclase de τ . Como $G_i \in \tau, \forall \implies \exists H_i \in \tau' \ni G_i = f^{-1}(H_i) \implies \bigcup_i G_i = \bigcup_i f^{-1}(H_i) = f^{-1}(\bigcup_{i \in \tau'} H_i) \in \tau$

Definición 2. Sean X y Y espacios topológicos y f un mapeo de X en Y. Se dice que f es continua si $f^{-1}(G)$ es un abierto de X para cada abierto de G de Y.

Definición 3. Se dice que el mapeo es abierto si, para cada abierto G de X, se cumple que f(G) es abierto de Y.

Definición 4. Si f es continuo, entonces f(x) es la imagen continua de X bajo f.

Definición 5 (Homeomorfismo). Un homeomorfismo es un mapeo biyectivo y bicontinuo (continuo y abierto) entre espacios topológicos. En este caso, los espacios son homeomorfos.

NOTA. Una propiedad topológica es una propiedad que si la tiene el espacio topológico X, la tiene también cualquier espacio homeomorfo a X

NOTA. Sea A un subconjunto no vacío del espacio topológico (X, τ) . Considerese la clase:

$$\tau_A = \{ A \cap G : G \in \tau \, es \, \, abierto \, \, de \, \, X \}$$

Entonces, τ_A es una topologia sobre A, la cual se llama topologia relativa sobre A.

Definición 6. El par (A, τ_A) es un espacio topologico y se dice es un subespacio de X,

1.
$$\emptyset \in \tau \implies A \cap \emptyset = \emptyset \in \tau_A \ y \ X \in \tau \implies A \cap X = A \in \tau_A$$
.

2. Sea
$$\{G_i\}_{i\in I}$$
 una colección de miembros de $\tau_A \implies \exists H_i \in \tau \ni G_i = A \cap H_i, \forall i \implies \bigcup_i G_i = \bigcup_i (A \cap H_i) = A \cap \left(\bigcup_{i \in \tau} H_i\right) \in \tau_A$

3. Sean
$$G_1, G_2 \in \tau_A \implies \exists H_i \in \tau \ni G_i = A \cap H_i, i = 1, 2$$
. Entonces, $G_1 \cap G_2 = (A \cap H_1) \cap (A \cap H_2) = A \cap (\underbrace{H_1 \cap H_2}_{\in \tau}) \in \tau_A \implies \tau_A$ es topología sobre A .

Ejemplo 3. Tenemos,

Sea τ la topología usual de ℝ y considere la topología relativa τ_{ℤ+} (en este caso, ℤ⁺ ⊂ ℝ). Nótese que {n₀} es abierto, la unión de unitarios es abierto de τ_{ℤ+} ⇒ τ_{ℤ+} es la topología discreta de ℤ⁺.

- 2. Considere (\mathbb{R}, τ) , donde τ es la topología usual de \mathbb{R} y sea I = [0, 1]. Entonces,
 - a) $(1/2, 1] = [0, 1] \cap (1/2, 2) \in \tau_I$
 - b) $(1/2, 2/3) = [0, 1] \cap (1/2, 2/3) \in \tau_I$
 - c) $(0,1/2] \notin \tau_I$, ya que no existe un abierto $G \in \tau \ni (0,1/2] = I \cap G$.
- 3. Sea $X = \{a, b, c, d, e\}$ y sea

$$\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c, d\}, \{a, b, e\}\}\$$

$$\tau_A = \{A, \varnothing, \{a\}, \{a, c\}, \{a, e\}\}\$$

Considere $A = \{a, c, e\}$ entonces:

- $A \cap X = A$
- $A \cap \emptyset = \emptyset$
- $\quad \blacksquare \ A \cap \{a\} = \{a\}$
- $\quad \blacksquare \ A \cap \{a,b\} = \{a\}$
- $A \cap \{a, c, d\} = \{a, c\}$
- $A \cap \{a, b, c, d\} = \{a, c\}$
- $A \cap \{a, b, e\} = \{a, e\}$

1.0.1. Objeto de estudio de la topología

: Estudio de todas las propiedades topológicas de los espacios

Definición 7. Sea (X, τ) un espacio topológico. Un subconjunto $A \subset X$ es cerrado si y solo si $A^c \in \tau$.

Ejemplo 4. Sea (X, τ) un espacio discreto. Sea $A \subset X \implies A \in \tau \implies A^c \subset X \implies A^c \in \tau \implies A$ es cerrado. Entonces, $A \subset X$ es abierto y cerrado en X.

NOTA. Sea (X, τ) un espacio topológico,

- 1. $\phi \in \tau \implies \phi^c = X$ es cerrado. $X \in \tau \implies X^c = \phi$ es cerrado.
- 2. Considere una familia arbitraria $\{F_i\}$ de cerrados en $\tau \implies \{F_i^c\} \subset \tau \implies \bigcup_i F_i^c \in \tau \implies (\bigcup_i F_i^c)^c = \bigcap_i F_i$ es cerrado.
- 3. Sean F_1 y F_2 cerrados en $\tau \implies F_1^c$ y $F_2^c \in \tau \implies F_1^c \cap F_2^c \in \tau \implies (F_1^c \cap F_2^c)^c = F_1 \cup F_2$ es cerrado.

Definición 8. Sea X un espacio topológico:

- 1. Una vecindad de un punto (o de un conjunto), es un abierto de X que contiene al punto (o al conjunto).
- 2. Sea $A \subseteq X$. Un punto x en A es aislado si existe una vecindad de x que no contiene ningún otro punto de A.
- 3. Sea $A \subseteq X$. Un punto de $y \in X$ es un punto límite de A si, $\forall G \in \tau \ni y \in G$, se tiene que $(G \{y\}) \cap A \neq \emptyset$.

EL conjunto de puntos límite de A se llama derivado de A, (A',D(A)).

Sea A ⊆ X. La cerradura de A, denotado Ā, es el cerrado más pequeño que contiene a A. Es decir, si F_i son los cerrados de X que contiene a A ⇒ Ā = ⋂_i F_i.

Tenemos:

- a) $A \subseteq \overline{A}$
- b) Si A es cerrado $\implies A = \overline{A}$.

- 5. Un subconjunto A de X es denso (siempre denso), si $\overline{A} = X$.
- 6. El espacio topológico X es separable si tiene un subconjunto separable contable y denso.
- 7. Un punto de adherencia de $A \subseteq X$ es cualquier elemento de \overline{A} .

Proposición 2. Sea $A \subset B \implies A' \subset B'$.

Proposición 3. Sea $A \subset B$ y sea $x \in A' \implies si \ G$ es un abierto $\ni x \in G \implies (G - \{x\}) \cap B \supset (G - \{x\}) \cap A \neq \emptyset \implies x \in B' \implies A' \subset B'$.

Proposición 4. Derivado de la unión $(A \cup B)' = A' \cup B'$

Demostración. Por doble contención:

- (⊇). A probar: $A' \cup B' \subset (A \cup B)'$. Sea $A \subseteq A \cup B$ y $B \subseteq A \cup B \implies A' \subseteq (A \cup B)'$ y $B' \subseteq (A \cup B)' \implies A' \cup B' \subseteq (A \cup B)'$
- (⊆). A probar $(A \cup B)' \subseteq A' \cup B' \iff x \in (A \cup B)' \implies x \in A' \cup B' \iff$ si $x \notin A' \cup B' \implies x \notin (A \cup B)'$.
 - Suponemos que $x \notin A' \cup B' \implies x \notin A'$ y $x \notin B' \implies$ existen G, H abiertos de $X \ni x \in G$ y $x \in H$ y $(G \{x\}) \cap A = \emptyset$ y $(H \{x\}) \cap B = \emptyset$ ya que $x \in G$ y $x \in H \implies x \in G \cap H$. Además, $G \cap H \subseteq G$ y $G \cap H \subseteq H$. Entonces $(G \cap H \{x\}) \cap A = \emptyset$ y $(G \cap H \{x\}) \cap B = \emptyset$. Por lo tanto, $(G \cap H \{x\}) \cap (A \cup B) = \emptyset$.

Proposición 5. $A \subseteq X$ es cerrado ssi $A' \subseteq A$.

Demostración. Sea

- **■** (⇒)
- **■** (⇐=)

6

Proposición 6. Sea F un superconjunto cerrado de A, entonces $A' \subset F$.

Demostración. Como
$$A \subset F \implies A' \subset F'$$
. Como F es cerrado, $F' \subset F \implies A' \subset F$.

Proposición 7. $A \cup A'$ es cerrado.

Demostración. A probar: $(A \cup A')^c$ es abierto. Sea $x \in (A \cup A')^c \implies x \notin A$ y $x \notin A' \implies \exists G$ abierto $\exists G \cap A = \emptyset$.

Sea
$$G\cap A'=\varnothing$$
. Supóngase que $y\in G\cap A'\implies y\in G$ y $y\in A'\implies (G-\{y\})\cap A\neq 0(\to\leftarrow)$

Por otra parte, $G \cap A' = \emptyset$. Entonces,

$$G \cap (A \cup A') = (G \cap A) \cup (G \cap A')$$
$$= \emptyset \cup \emptyset$$
$$= \emptyset$$

$$\implies G \subset (A \cup A')^c \implies (A \cup A')^c \text{ es abierto } \implies A \cup A' \text{ es cerrado.}$$

Proposición 8. $\overline{A} = A \cup A'$

Demostración. Sea

- A probar $\overline{A} \subset A \cup A' \implies A \subset \underbrace{A}_{cerrado} \cup A' \implies A \subset \overline{A} \subset A \cup \overline{A}$.
- A probar: $A \cup A' \subset \overline{A}$. Entonces $A \subset \overline{A}$, $A' \subset (\overline{A})' \subset \overline{A}$. Entonces $A \subset \overline{A}$ y $\overline{A} \subset \overline{A}$, entonces $A \cup A' \subset \overline{A}$.

Proposición 9. $Si \ A \subset B \implies \overline{A} \subset \overline{B}$.

Demostración. $A \subset B \implies A' \subset B' \implies A \cup A' \subset B \cup B' \implies \overline{A} \subset \overline{B}$.

Proposición 10. $\overline{A \cup B} = \underline{\overline{A} \cup \overline{B}}_{cerrado}$

Demostración. • Sabemos que $A \cup B \subset \overline{A} \cup \overline{B} \implies A \cup \subset \overline{A \cup B} \subset \overline{A} \cup \overline{B}$.

■ $A \subset A \cup B \implies \overline{A} \subset \overline{A \cup B}$ y $B \subset A \cup B \implies \overline{B} \subset \overline{A \cup B}$. Entones $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$

Teorema 1. Sea

1. $\overline{\varnothing} = \varnothing$

2. $A \subset \overline{A}$

3. $\overline{A \cup B} = \overline{A} \cup \overline{B}$

4. $\overline{\overline{A}} = \overline{A}$

Demostración. 1. Como \varnothing es cerraddo entonces $\overline{\varnothing} = \varnothing$

- 2. $A \subset \overline{A}$, por la cerradura.
- 3. $\overline{A \cup B} = \overline{A} \cup \overline{B}$, por propiedad anterior.
- 4. Como \overline{A} es cerrado, entonces $\overline{\overline{A}} = \overline{A}$.

Definición 9. 1. Un punto P de X es interior de $A \subseteq X$, si existe un abierto $G \ni$

$$p \in G \subset A$$

2. El interior de A, denotado $\int (A)$ o A° , es el conjunto de todos los puntos interiores de A.

Definición 10. Un punto frontera de $A \subset X$ es un punto tal que, cada vecindad del punto intersecta a A y A^c .

2. Bases y subases de una topología

Definición 11. Una base β (abierta) para el espacio topológico (X, τ) es una clase de abiertos de X tal que cada abierto en τ puede escribirse como uniones de los miembros de la clase.

Ejemplo 5. Sea (X, τ) un espacio discreto. Entonces $\beta = \{\{x\} : x \in X\}$ es una base para τ

NOTA. 1. Si cada
$$G \in \tau$$
 puede representarse como $G = \bigcup_i B_i$, donde $B_i \in \beta \implies para\ cada\ x \in G \implies x \in B_{i_0}$, (miembro de la unión) para algún $i_0. \implies x \in B_{i_0} \subseteq \bigcup_i B_i = G$

Definición 12. Sea (X, τ) un espacio topológico. Una subclase S de abiertos en τ es una subbase de la topología τ , si las intersecciones finitas de miembros de S producen una base τ .

Ejemplo 6. 1. Sean $a, b \in \mathbb{R} \ni a < b$. Nótese que

$$(a,b) \subseteq \mathbb{R}$$

- 2. ejemplo 2
- 3. Sea $a = \{\{a\}\}, \text{ entonces } \beta = \{\{a\}, X\} \implies \tau = \{X, \emptyset, \{a\}\}$
- 4. $a = \{\emptyset\} \implies \beta = \{X, \emptyset\} \implies \tau = \{X, \emptyset\}$

Teorema 2. Los enunciados siguientes son equivalentes:

- 1. Una familia β de subconjuntos abiertos del espacio topológico (X, τ) es una base para τ , si cada abierto de τ es unión de miembros de β .
- 2. $\beta \subset \tau$ es una base para τ ssi $\forall G \in \tau, \forall p \in G \exists B_p \in \beta \ni p \in B_p \subset G$.
- **Demostración.** $(i) \to (ii)$ Sea $G \in \tau$ y sea $p \in G$. Como $G \in \tau$ y β es base de $\tau \implies G = \bigcup_i B_i, B_i \in \beta$. Como $p \in G \implies p \in \bigcup_i B_i \implies \exists i_p \ni p \in B_{i_p} \implies \text{dado } p \in G \exists B_{i_p} \in \beta \ni p \in B_{i_p} \subset G$.

• $(ii) \to (i)$ Sea $G \in \tau \implies$ Para cada $x \in G \exists B_x = \beta \ni x \in B_x \subset G \implies$ $\bigcup_{x \in G} = G \implies$ es union de miembros de β .

Teorema 3. Sea β una familia de subconjuntos de un conjunto no vacío X. Entonces, β es una base para una topologia τ sobre X ssi se cumplen:

- 1. $X = \bigcup_{B \in \beta} B$
- 2. $\forall B, B^* \in \beta$ se tiene que $B \cap B^*$ la union de miembros de β ($\iff p \in B \cap B^* \exists B_p \in \beta \ni p \in B_p \subset B \cap B^*$)
- **Demostración.** (\rightarrow) Sea β la base de una topologia τ sobre X. Sabemos que X es abierto $\Longrightarrow X = \bigcup_{B \in \beta} B$, donde esta union se toma sobre todos los miembros de β . Como β es base para $\tau \Longrightarrow B \cap B^*$ puede escribirse como union de miembros de β .
 - (\leftarrow) Sea τ la colección de las uniones de miembros de la familia de subconjuntos de X. A probar: τ es topologia.
 - 1. Por (i) $X \in \tau$. Además, la union de la clase vacia de β es $\emptyset \implies \emptyset \in \tau$.
 - 2. Sea $\{G_i\}_{i\in I}$ una familia de miembros de τ . Entonces, $G_i = \bigcup_{B\in\beta} B_{G_i}$ (donde cada G_i es union de miembros de β) \Longrightarrow \bigcup_i es union de uniones de miembros de β \Longrightarrow $\bigcup_i G_i \in \tau$.
 - 3. Sean $G_1, G_2 \in \tau \implies G_i = \bigcup \{B_i : i \in I\} \text{ y } G_2 = \bigcup \{B_j : j \in J\}.$ Entonces, $G_1 \cap G_2 = (\bigcup_i B_i) \cap (\bigcup_j B_j) = \bigcup_{i=j} (B_i \cap B_j) \implies G_1 \cap G_2 \in \tau \implies \tau \text{ es una topologia sobre } X.$

Ejemplo 7. Sean (a_1, b_1) y (a_2, b_2) intervalos abiertos y acotados de $\mathbb{R} \implies$

$$(a_1, b_1) \times (a_2, b_2) \{ (x, y) \in \mathbb{R}^2, a_1 < x < b_1, a_2 < y < b_2 \}$$
 (1)

10

Teorema 4. Sea X cualquier conjunto no vacío y sea S una clase arbitraria de subconjuntos de X. Entonces, S puede constituirse en la subbase para una topología abierta para una topología sobre X en el sentido que las intersecciones finitas de los miembros de S producen una base para dicha topología.

Teorema 5. Sea $X \neq \emptyset$ y sea S una clase arbitraria de subconjunto de X. Entonces, S puede servir como subbase abierta de una topología sobre X en el sentido que la clase τ de todas las uniones de intersecciones finitas en S es una topogía.

Demostración. Tenemos:

- 1. $S = \emptyset \implies \beta = \{X\} \implies \tau = \{X, \emptyset\}$ es la topología indiscreta.
- 2. $S \neq \varnothing$ l. A probar: τ es topología.
 - $a) \varnothing, X \in \tau$
 - b) $\{G_i\}_{i\in I}$ una subclase arbitraria de τ . A probar: $\bigcup_i G_i \in \tau$. Cada G_i es unión de intersecciones finitas de miembros de S. Entonces, $\bigcup_i G_i$ es unión de uniones de intersecciones finitas de miembros de $S \implies \bigcup_i G_i \in \tau$.
 - c) Sea $G_1, G_2 \in \tau$. A probar $G_1 \cap G_2 \in \tau$. $G_1 \cap G_2$ es unión de intersecciones finitas de miembros de S.

Lema 6. Si S es subbase de las topologías τ y τ^* sobre $X \implies \tau = \tau^*$

Demostración. A probar: $\tau \subseteq \tau^*$. Sea $G \in \tau \implies$ Como S es subbase de $\tau \implies$

$$G = \bigcup_{i} (S_{i_1} \cap S_{i_2} \cdots \cap S_{i_{n_i}}), S_{i_k} \in S$$

Sabemos que S genera a $\tau^*(S \subset \tau^*) \implies S_{i_1} \cap S_{i_2} \cdots \cap S_{i_{n_i}} \in \tau^* \implies G = \bigcup_i \left(S_{i_1} \cap S_{i_2} \cdots \cap S_{i_{n_i}} \right) \in \tau^* \implies \tau \subset \tau^*$. De forma similar, se tiene que $\tau^* \subset \tau$.

Teorema 7. Sea X un subconjunto no vacío y sea S una clase de subconjuntos de X. La topología τ sobre X, generada por S, es la intersección de todas las topologías sobre X que contienen a S.

Demostración. Sea $\tau^* = \bigcap_i \tau_i$, donde cada τ_i es una topología sobre X que contiene a S. A probar: $\tau = \tau^*$

- (\supseteq) Como S genera a $\tau \implies S \subset \tau \implies \tau^* \subset \tau$
- (\subseteq). Sea $G \in \tau \implies G = \bigcup_i (S_{i_1} \cap S_{i_2} \cdots \cap S_{i_{n_i}}), S_{i_k} \in S$. Como $S \subseteq \tau^* \implies S_{i_k} \in \tau^* \implies G \in \tau^*$

¿Cuándo es útil una base para una topología?

• Simplificación en cardinalidad.

Definición 13. Un espacio topológico que tiene una base contable es un espacio segundo contable.

Teorema 8 (de Lindelof). Sea X un espacio vacío no contable. Si un abierto de G de X se puede representar como unión de una clase $\{G_i\}$ de abierto de $X \implies G$ puede representarse como unión contable de los G_i .

- **Demostración.** 1. Sea G un abierto no vació de $X \ni G = \bigcup_i G_i$. Como X es segundo contable, entonces X tiene una base contable $\beta \implies \text{cada } G_i$ es unión contable de los elementos de $\beta \implies G$ falla.
 - 2. Sea $G = \bigcup_i G_i, G \in \tau, G \neq \emptyset$. Como X es segundo contable $\Longrightarrow G$ es unión contable de miembros de $\beta = \{\beta_j\}$ además los G_i , por ser abiertos, son únicos de $\beta_j \Longrightarrow$ como por cada $\beta_i \exists G_i^* \ni B_i \subseteq G_i^* \Longrightarrow G = \bigcup_i \beta_i = \bigcup_i G_i^* \subseteq$.

Definición 14. Un espacio topológico es un espacio de Hausdorf (T_2) si dados $x, y \in X, x \not y, \exists u, v \in \tau \ni x \in U, y \in V \ y \ u \cap v = \emptyset$

Ejemplo 8. Sea $X = \{a, b\}$ con topología discreta $\implies X$ es T_2 . Ahora con la topología $\tau_m = \{x, \emptyset, \{a\}\}$ no T_2 .

Teorema 9. Sea (X,d) un espacio métrico y sean $x,y \in X,x$ /y \Longrightarrow sea $\delta = d(x,y) \Longrightarrow u = \beta_{\delta/2}(x)$ y $v = \beta_{\delta/2}(y) \Longrightarrow x \in u$ y $y \in V$ y $u \cap v = \emptyset$. Por lo tanto, es de Hausdorf.

Teorema 10. Composición de mapeos continuos es un mapeo continuo. Sean $(X,\tau), (Y,\tau^*), (Z,\tau^{**})$ espacio topológicos y sean $f:X\to Y$ y $g:Y\to Z$ mapeos continuos. A probar $g\circ f:X\to Z$. Sea $G\in\tau^{**}$ \Longrightarrow $g^{-1}(G)\in\tau^*$ \Longrightarrow $f^{-1}[g^{-1}(G)]\in\tau=(g\circ f)^{-1}(G)\in\tau$.

Teorema 11. Sea $\{\tau_i\}$ sobre X, si $f: X \to Y$ continua, $\forall \tau_i \implies f$ es continuo con respecto a $\bigcap_i \tau_i$.

Definición 15. Sea (x_n) una sucesión en un espacio topológico X, se dice que (x_n) converge a un punto $y \in X$ si $\forall u \in \tau \ni y \in U, \exists N \in \mathbb{Z}^+ \ni n \geq N \implies x_n \in U$

Teorema 12. Si X es un $T_2 \implies$ cualquier sucesión de puntos en X (a lemas) es un punto de X.

Demostración. Suponga que a y b son límites de la sucesión $(x_n) \Longrightarrow$ por ser X de Hausdorf $\Longrightarrow \exists u, v \in \tau \ni a \in U$ y $b \in V$ y $U \cap V = \emptyset$ como son límites $\Longrightarrow \exists N_1, N_2 \in \mathbb{Z}^+ \ni n \geq N_1 \Longrightarrow X_n \in U$ y $m \geq N_2 \Longrightarrow X_m \in V$. Sea $N = \max\{N_1, N_2\} \Longrightarrow n > N \Longrightarrow X_n \in U$ y $X_n \in V \Longrightarrow X_n \in U \cap V \Longrightarrow U \cap V \neq \emptyset(\rightarrow \leftarrow)$

Teorema 13. Cada subconjunto límite $A \subseteq X$ es un T_2 es cerrado.

Continuidad

Definición 16. Sea (X, τ) y (Y, τ^*) esapacios topológicos. El mapeo $f: X \to Y$ es continuo si para cada $G \in \tau^*$ se tiene que $f^{-1}(G) \in \tau$

Ejemplo 9. Sean $X = \{a, b, c, d\}$ y $Y = \{x, y, z, w\}$, la topología $\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\}$ y $Y = \{Y, \emptyset, \{x\}, \{y\}, \{x, y\}, \{x, z, w\}\}$

NOTA. Sea $f:(X,\tau)\to (Y,\tau^*)$ un mapeo y suponga que $\beta=\{B_i\}$ es una base para τ^* . Sea $G\in\tau^*$ \Longrightarrow $G=\bigcup_i B_i, B_i\in\beta$. Entonces, $f^{-1}(G)=g^{-1}(\bigcup_i B_i)=\bigcup_i f^{-1}(B_i)$ \Longrightarrow $f^{-1}(G)\in\tau$, si $f^{-1}(B_i)\in\tau$.

NOTA. Dado un mapeo $f: X \to Y$ y si $A \subseteq Y \implies f^{-1}[A^c] = [f^{-1}(A)]^c$. En efecto: Sea $x \in f^{-1}(A^c) \iff f(x) \in A^c \iff f(x) \notin A \iff x \notin f^{-1}(A) \iff x \in [f^{-1}(A)]^c$

NOTA. 1. Sean $f:(X,\tau) \to (Y,\tau^*)$ un mapeo continuo y sea F un cerrado de $Y \implies f^{-1}(F^c) = [f^{-1}(F)]^c \in \tau \implies f^{-1}(F)$ es cerrado en X.

2. Sea G un abierto de $Y \implies G^c$ es cerrado de Y. Si $f^{-1}[G^c] = [f^{-1}(G)]^c$ es cerrado, entonces $f^{-1}(G) \in \tau \implies f$ es continuo

Proposición 11. Sea $f: X \to Y$ un mapeo entre espacios topológicos. Entonces, f es un mapeo continuo ssi $f(\overline{A}) \subset \overline{f(A)}, \forall A \subseteq X$

Propiedades:

1.
$$f[f^{-1}(A)] = A$$

1.
$$f[f^{-1}(A)] = A$$

2. $f^{-1}[\underbrace{f(A)}_{\subseteq X}] \supset A$

Demostración. Sea

 \blacksquare (\Longrightarrow) Suponga que f es continuo y sabemos que $f(A)\subset \overline{f(A)}$ \implies $f^{-1}[f(A)] \subset f^{-1}[\overline{f(A)}]$. Además, como $\overline{f(A)}$ es cerrado $\implies f^{-1}[\overline{f(A)}]$ es cerrado (ya que f continuo). Entonces,

$$A \subseteq \underbrace{f^{-1}[\overline{A}]}_{cerrado} \implies A \subset \overline{A} \subset f^{-1}[\overline{f(A)}]$$

$$\implies f(\overline{A}) \subset f[f^{-1}[\overline{f(A)}]]$$

$$\implies f(\overline{A}) \subset \overline{f(A)}$$

 \bullet ($\ \ \, =\ \,)$ Supóngase que $f(\overline{A})\,\subset\,\overline{f(A)}, \forall A\,\subseteq\, X.$ Sea C un cerrado de $Y. \text{ Sea } A = f^{-1}(C) \implies f[\overline{f^{-1}(C)}] \subseteq \overline{f(f^{-1}(C))} \implies f[\overline{f^{-1}(C)}] \subseteq \overline{f(f^{-1}(C))}$ $C \implies f^{-1}[f[\overline{f^{-1}(C)}]] \subseteq f^{-1}(C) \implies \overline{f^{-1}(C)} \subset f^{-1}(C) \implies f^{-1}(C) \subset f^{-1}(C) = f^{-1}(C) \subset f^{-1}(C) = f^{-1}($ $\overline{f^{-1}(C)} \subset f^{-1}(C) \implies f^{-1}(C) = \overline{f^{-1}(C)} \implies f^{-1}(C)$ es cerrado.