Further Mathematics Notes - Core Pure

Xingzhi Lu

2024

Contents

1	Proof	2
2	Complex numbers	3
3	Matrices	6
4	Further algebra and functions	7
5	Further calculus	8
6	Further vectors	9
7	Polar coordinates	11
8	Hyperbolic functions	12
9	Differential equations	13

1 Proof

1.1 Proof by mathematical induction

- 1. Prove the general statement is true for n=1
- 2. Assume the general statement is true for n = k
- 3. Show that the general statement is true for n = k + 1
- 4. The general statement is then true for all positive integers n

2 Complex numbers

2.1 Forms expressing complex number

2.1.1 Cartesian form

$$z = a + bi$$

$$Re(z) = a, Im(z) = b$$

$$|z| = \sqrt{a^2 + b^2}$$

2.1.2 Polar form

$$\begin{split} z &= (r, \theta) \\ r &= \sqrt{a^2 + b^2}, \ \theta = \arg(z) \\ a &= r \cos \theta, \ b = r \sin \theta, \ \tan \theta = \frac{b}{a} \\ z &= r \cos \theta + r \sin \theta i = r (\cos \theta + \sin \theta i) = r \cos \theta \end{split}$$

2.1.3 Exponential / Euler form

$$z=re^{i\theta}$$

2.1.4 When to use which form

Addition / subtraction: Cartesian form

Multiple / division / power / root: Polar / Euler form

2.2 Calculations

• $z_1 z_2 = r_1 r_2 \operatorname{cis}(\theta_1 + \theta_2) = r_1 r_2 e^{i((\theta_1 + \theta_2))}$

•
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \operatorname{cis}(\theta_1 - \theta_2) = \frac{r_1}{r_2} e^{i((\theta_1 - \theta_2))}$$

• $z^n = r^n \operatorname{cis}(n\theta) = r^n e^{i\theta n}$

• De Moivre's theorem:
$$\sqrt[n]{z} = \sqrt[n]{r}\operatorname{cis}(\frac{\theta + 2k\pi}{n}) = \sqrt[n]{r}e^{i(\frac{\theta + 2k\pi}{n})}$$
 $(k = 0, 1, 2, \dots, n - 2, n - 1)$

3

•
$$\sqrt{a+ib} = \pm \left(\sqrt{\frac{|z|+a}{2}} + i\frac{b}{|b|}\sqrt{\frac{|z|-a}{2}}\right)$$

• $arg(z_1z_2) = arg(z_1) + arg(z_2)$

$$\bullet \arg(\frac{z_1}{z_2}) = \arg(z_1) - \arg(z_2)$$

 \star Complex numbers' sizes cannot be compared

2.3 Conjugate

 $\bullet \ |z| = |z^*|$

$$\bullet \ z \cdot z^* = |z|^2$$

• If z = z* then z is a real number

• If z = -z* then z is a pure imaginary number

2.4 Deducing multiple angle formulae by complex number

2.4.1 Properties for z

•
$$z = \operatorname{cis} \theta = e^{i\theta} = \cos \theta + i \sin \theta$$
, $\frac{1}{z} = e^{-i\theta} = \operatorname{cis}(-\theta)$

•
$$z + \frac{1}{z} = 2\cos\theta$$

•
$$(z + \frac{1}{z})^n = (e^{i\theta} + e^{-i\theta})^n = 2^n \cos^n \theta$$

•
$$z - \frac{1}{z} = 2i\sin\theta$$

•
$$(z - \frac{1}{z})^n = (e^{i\theta} - e^{-i\theta})^n = 2^n i^n \sin^n \theta$$

•
$$z^n - \frac{1}{z^n} = 2i\sin(n\theta)$$

2.4.2 Finding $\sin(n\theta)$ or $\cos(n\theta)$

1. Use
$$(z + \frac{1}{z})$$
 for cos and $(z + \frac{1}{z})$ for sin

2. Use the *n*th power of
$$z + \frac{1}{z}$$
 or $z - \frac{1}{z}$ (*n* is the same as coefficient)

4. Merge the terms into
$$z^n + \frac{1}{z^n}$$
 or $z^n - \frac{1}{z^n}$

2.4.3 Find $\sin^n \theta$

n is odd:

•
$$n = 4k + 1$$
: $\sin^n \theta = \frac{1}{2^{n-1}} [\binom{n}{0} \sin n\theta - \binom{n}{1} \sin(n-2)\theta + \binom{n}{1} \sin(n-4)\theta - \dots + \binom{n}{\frac{n-1}{2}} \sin \theta]$

•
$$n = 4k + 3$$
: $\sin^n \theta = \frac{1}{2^{n-1}} \left[-\binom{n}{0} \sin n\theta + \binom{n}{1} \sin(n-2)\theta - \binom{n}{1} \sin(n-4)\theta + \dots - \binom{n}{\frac{n-1}{2}} \sin \theta \right]$

n is even:

•
$$n = 4k$$
: $\sin^n \theta = \frac{1}{2^{n-1}} [-\binom{n}{0} \cos n\theta + \binom{n}{1} \cos(n-2)\theta - \binom{n}{1} \cos(n-4)\theta + \dots - \binom{n}{\frac{n-1}{2}} \cos \theta]$

•
$$n = 4k + 2$$
: $\sin^n \theta = \frac{1}{2^{n-1}} \left[-\binom{n}{0} \cos n\theta + \binom{n}{1} \cos(n-2)\theta - \binom{n}{1} \cos(n-4)\theta + \dots - \binom{n}{\frac{n-1}{2}} \cos \theta \right]$

4

2.4.4 Find $\cos^n \theta$

•
$$\cos^n \theta = \frac{1}{2^{n-1}} \sum$$

•
$$\int \cos^n \theta \ d\theta = \frac{1}{2^{n-1}} \sum_{i=0}^{\lceil \frac{n-1}{2} \rceil} \binom{n}{i} \frac{\sin(n-2i)\theta}{den}$$

2.5 Argand diagrams

2.5.1 Circle

•
$$|z| = a$$
: circle with centre O , radius a

•
$$|z - z_0| = a$$
: circle with centre z_0 , radius a

•
$$|z-z_0| < a$$
: circle with centre z_0 , radius a , shaded in

•
$$|z-z_0| > a$$
: circle with centre z_0 , radius a , outside of circle shaded

^{5.} Use properties above to convert then into trig functions

2.5.2 Perpendicular bisector

- $|z-z_1|=|z-z_2|$: z on perpendicular bisector of z_1z_2
- $\bullet \ |z-z_1| < |z-z_2| \ / \ |z-z_1| > |z-z_2| \text{: on the left / right side of perpendicular bisector, bisector} = \text{dotted line}$

2.5.3 Argument angle

- $\arg z = \theta$: ray starting from origin, angle with x-axis = θ
- $arg(z-z_0) = \theta$: ray starting from z_0 , angle with horizontal = θ

2.5.4 Ellipse

• $|z-z_1|+|z-z_2|=2a$: ellipse with focus at z_1 and z_2 , longest diameter =2a

Matrices 3

3.1 Finding determinants

3.2 Finding inverse matrices

$$2 \times 2 \text{ matrices:} \\ \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

 3×3 matrices:

4 Further algebra and functions

4.1 Vieta's Law

•
$$x_1 + x_2 + \dots + x_n = -\frac{a_{n-1}}{a_n}$$

•
$$(r_1r_2 + r_1r_3 + \dots + r_1r_n) + (r_2r_3 + r_2r_3 + \dots + r_2r_n) + \dots + r_{n-1}r_n = \frac{a_{n-2}}{a_n}$$

$$\bullet \ r_1 r_2 \dots r_n = (-1)^n \frac{a_0}{a_n}$$

4.2 Summation formulae

4.2.1 Summation of squares

$$\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$$

4.2.2 Summation of cubes

$$\sum_{r=1}^{n} r^3 = \frac{(n(n+1))^2}{4}$$

4.3 Maclaurin series

5 Further calculus

5.1 Volumes of revolution

Volume =
$$\pi \int y^2 dx$$
 or $\pi \int x^2 dy$

5.2 Inverse trig differentiation and integration

6 Further vectors

6.1 Expressing linear equations

6.1.1 Vector form

$$\vec{r} = \vec{a} + t\vec{d}$$
 or $(\vec{r} - \vec{a}) \times \vec{d} = 0 / (\vec{r} - \vec{a}) \times \vec{b} = 0$

6.1.2 Parametric form

$$\begin{cases} x = x_0 + tu \\ y = y_0 + tv \\ z = z_0 + tw \end{cases}$$

6.1.3 Cartesian form

$$\frac{x - x_0}{u} = \frac{y - y_0}{v} = \frac{z - z_0}{w} (= t)$$

6.2 Expressing planes

6.2.1 Vector form

 $\vec{r} \cdot \vec{n} = \vec{r} \cdot \vec{a} \ (\vec{n} = \text{normal}, \ \vec{a} = \text{a point on plane})$

6.2.2 Parametric form

$$\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}$$

6.2.3 Cartesian form

When
$$\vec{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
: $ax + by + cz = d$

6.3 Formulae

6.3.1 Dot and cross product

•
$$\vec{a} \cdot \vec{b} = |\vec{a}||\vec{b}|\cos\theta = x_1x_2 + y_1y_2 + z_1z_2$$

$$\vec{a} \perp \vec{b}$$
: $\vec{a} \cdot \vec{b} = 0$

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

•
$$\vec{a} \times \vec{b} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \times \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix}$$

Calculating cross product using matrix: $\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix}$

$$\begin{split} \vec{a}\times\vec{b}\perp\vec{a} \text{ and } \vec{a}\times\vec{b}\perp\vec{n} \text{, so } \vec{a}\times\vec{b}=\vec{n} \\ |\vec{a}\times\vec{b}| &= |\vec{a}||\vec{b}|\sin\theta \\ \vec{a}\parallel\vec{b} \text{: } \vec{a} &= \lambda\vec{b} \text{; } \vec{a}\times\vec{b}=\vec{0} \end{split}$$

6.4 Questions

6.4.1 Angle between planes

1. Find the normal of the two planes

2. Use
$$\theta = \cos^{-1} \frac{\vec{n_1} \cdot \vec{n_2}}{|\vec{n_1}||\vec{n_2}|}$$
 to find the angle between planes

3. If $\theta > 90$ than the angle is $180 - \theta$

6.4.2 Angle between plane and line

$$\phi = 90 - \cos^{-1} \frac{\vec{n} \cdot \vec{d}}{|\vec{n}||\vec{d}|} \text{ or } \phi = \sin^{-1} \frac{\vec{n} \cdot \vec{d}}{|\vec{n}||\vec{d}|}$$

6.4.3 Finding distances between point and line

6.4.4 Finding distances from point to plane

When $P = (x_0, y_0, z_0)$ and the plane has equation ax + by + cz - d = 0: distance $= \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$

6.4.5 Finding distances between lines

distance = $\frac{|\overrightarrow{AB} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|}$ (\overrightarrow{AB} = any line that connects 2 lines together)

6.4.6 Finding intersections between line and plane

Write line in parametric form, substitute x, y and z into the equation for plane (Cartesian form)

7 Polar coordinates

7.1 Polar form

- $P = (r, \theta)$
- $r = f(\theta)$

7.2 Converting between different forms of coordinates

7.2.1 Polar to Cartesian form

- $x = r \cos \theta$
- $y = r \sin \theta$

7.2.2 Cartesian to polar form

- $r = \sqrt{x^2 + y^2}$
- $\tan \theta = \frac{y}{x}$

7.3 Sketching curves for polar equations

- 1. Plot points
- 2. Consider symmetry
- 3. Convert to Cartesian form

7.3.1 Circle polar form

•

- 7.3.2 Polar form of lines
- 7.3.3 Cardioids
- 7.3.4 Lima con
- 7.3.5 Rose
- 7.3.6 Lemniscates
- 7.3.7 Spiral

7.4 Testing for symmetry

7.5 Finding area enclosed

Area =
$$\frac{1}{2} \int_{\alpha}^{\beta} r^2 d\theta$$

8 Hyperbolic functions

9 Differential equations