МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНОМУ УНІВЕРСИТЕТІ "ЛЬВІВСЬКА ПОЛІТЕХНІКА"

Кафедра систем штучного інтелекту

Розрахункова робота

з дисципліни

«Дискретна математика»

Виконала:

студентка групи КН-112

Горішна Надя

Викладач:

Мельникова Н.І.

Варіант 9

Завдання № 1

Виконати наступні операції над графами:

1) знайти доповнення до першого графу

2) об'єднання графів

3) кільцеву суму G1 та G2 (G1+G2)

4) розмножити вершину у другому графі

5) виділити підграф А - що скадається з 3-х вершин в G1

6) добуток графів

Завдання № 2 Скласти таблицю суміжності для орграфа.

	1	2	3	4	5	6	7	8	9
1	0	1	0	0	0	0	1	1	1
2	1	0	1	0	0	0	0	1	0
3	0	1	0	1	0	1	0	1	0
4	0	0	1	0	1	0	1	0	0
5	0	0	0	1	0	1	0	1	0
6	0	0	1	0	1	0	0	1	0
7	1	0	0	1	0	0	0	1	0
8	1	1	1	0	1	1	1	0	0
9	1	0	0	0	0	0	0	0	0

Завдання № 3

Для графа з другого завдання знайти діаметр.

Діаметр = 3

Завдання № 4

Для графа з другого завдання виконати обхід дерева вглиб (варіант закінчується на непарне число) або вшир (закінчується на парне число).

Обхід графа вглиб:

- 1. Починаємо з довільної вершини і включаємо її в стек.
- 2. Розглядаємо останю вершину у стеку. Вибираємо інциденте ребро, яке з'єднує поточну вершину із сусідньою, якщо її нема у стеку, і включаємо її туди.
- 3. Повторюємо пукт 2 поки остання вершина у стеку не матиме інцидетних ребер, тоді переходимо до пункту 4.
- 4. Виключаємо останю вершину із стеку і повертаємся до кроку
- 3. Якщо стек пустий, то обхід дерева завершено.

Вершина	Вміст стеку
V1	V1
V2	V1V2
V3	V1V2V3
V4	V1V2V3V4
V5	V1V2V3V4V5
V6	V1V2V3V4V5V6
V8	V1V2V3V4V5V6V8

V7	V1V2V3V4V5V6V8V7
-	V1V2V3V4V5V6V8
-	V1V2V3V4V5V6
-	V1V2V3V4V5
-	V1V2V3V4
-	V1V2V3
-	V1V2
-	V1
V9	V1V9
-	V1
-	Ø

Програмна реалізація:

Завдання № 5

Знайти двома методами (Краскала і Прима) мінімальне остове дерево графа.

Прима:

 $V=\{1,4,6,7,2,5,3,10,9,11,8\}$ $E=\{(1,4),(4,6),(4,7),(7,2),(2,5),(5,3),(6,10),(7,9),(9,11),(11,8)\}$ Програмна реалізація:

Результат програми:

Краскала:

V={1,4,3,5,6,2,7,10,9,11,8} E={(1,4),(3,5),(4,6),(5,2),(2,7),(6,10),(7,9),(9,11),(11,8)}

Програмна реалізація:

```
| Sepace |
```

Завдання № 6

Розв'язати задачу комівояжера для повного 8-ми вершин-ного графа методом «іди у найближчий», матриця вагів якого має вигляд:

9)								
	1	2	3	4	5	6	7	8
1	90	5	5	3	3	4	4	1
2	5	90	4	3	2	1	4	5
3	5	4	00	4	5	6	5	
4	3	3	4	00	1	5	1	7
5	3	2	5	1	00	5	5	2
6	4	1	6	5	5	90	7	3
7	4	4	5	1	5	7	00	2
8	1	6	5	7	2	3	2	(2)

Найкоротші шляхи:

```
4-5-8-1-6-2-3-7-4(19)
```

Програмна реалізація:

```
| Definition | Def
```


Завдання № 7

За допомогою алгоритму Дейкстри знайти найкоротший шлях у графі між парою вершин V0 і V^* .

Програмна реалізація:

Результат:

Завдання № 8

Знайти ейлеровий цикл в ейлеровому графі двома методами: а) Флері; б) елементарних циклів.

Алгоритм Флері(якщо степені вершин парні):

- 1. Вибираємо почтакову вершину і починаємо рух по інцидентному ребру.
- 2. Повторюємо пункт 1, вважаючи вершину в яку прибули початковою.
- 3. Не проходимо по ребру, якщо видалення цього ребра призводить до розбиття графа.
- 4. Робота закінчена, коли ми пройшли по усіх ребрах
- a) 1-8-11-7-8-2-11-9-10-6-7-9-3-10-4-6-5-4-3-2-1

Програмна реалізація:

Елементарних циклів:

Оскільки ейлеровів цикл складається з елементарних циклів, то ми шукаємо найкорошті, найефективніші цикли і об'єднуємо їх і в один.

Програмна реалізація:

```
| Se мормосы | Se
```

```
| Sum = 0; | Sum = 0; | For (q = 0; q < n; q++) | Sum = 0; | Sum = 0; | Sum = 0; | Sum = 0; | Sum = arr[p][q]; | Sum += arr[p
```

Завдання №9

Спростити формули (привести їх до скороченої ДНФ).

9.
$$(x \to y) \cdot (y \to z) \to (x \to z)$$

 $(\neg x \lor y)(\neg y \lor z) \rightarrow (x \rightarrow z)$

 $(\neg x \neg y \lor \neg xz \lor yz) \rightarrow (x \rightarrow z)$

 $(\neg x \neg y \lor yz) \rightarrow (\neg x \lor z)$

 $\neg(\neg x \neg y \lor yz) \lor \neg xz$

 $((x \lor y)(\neg y \lor \neg z))\lor \neg x \lor z$

 $x \neg y \lor x \neg z \lor y \neg y \lor y \neg z \lor \neg x \lor z$

 $x \neg y \lor x \neg z \lor y \neg z \lor \neg x \lor z$

 $y \neg z \lor x \neg y \lor \neg x \lor z$

 $\neg x \lor \neg y \lor \neg z \lor z$

 $\neg x \lor \neg y \lor 1$