# Analysis of Variance Part 3: Linear Models

STAT 705: Regression and Analysis of Variance



## Linear Models for ANOVA

- Cell means model
  - Directly models the mean response for each treatment
  - Compare treatments by comparing the means
- Effects model
  - Models how the mean response for each treatment is different from the mean response for a reference treatment
  - Sometimes, the reference treatment is the average of all treatments
  - This difference is called the 'effect' of the treatment

# Advantages/Disadvantages

- Cell means model
  - Easier to understand
  - Harder to use software for calculations
- Effects model
  - Harder to understand
  - Easier to use software for calculations

We will concentrate first on the cell means model

. . . but . . .

most of the work we do will be with the effects model.

## Cell Means Model

$$Y_{ij} = \mu_i + \varepsilon_{ij}$$

i = 1, 2, ... t (t is the number of treatments)

 $j = 1, 2, ... n_i$  (treatment i has sample size  $n_i$ )

 $Y_{ij}$  is the observed response for the  $j^{th}$  EU in the  $i^{th}$  treatment

 $\mu_i$  is the true mean response for treatment i

 $\mathcal{E}_{ij}$  is the error for the the  $j^{th}$  EU in the  $i^{th}$  treatment

ASSUME:  $\varepsilon_{ij} \sim \text{NIID}(0, \sigma^2)$ 

## Where's the X?

How can this be a linear model?

Where is X???

- The X's are all indicator variables.
  - There are t indicator variables for t treatments

$$X_1 = \begin{cases} 1 & \text{for } 1^{\text{st}} \text{ trt} \\ 0 & \text{otherwise} \end{cases}$$
  $X_2 = \begin{cases} 1 & \text{for } 2^{\text{nd}} \text{ trt} \\ 0 & \text{otherwise} \end{cases}$   $X_t = \begin{cases} 1 & \text{for } t^{\text{th}} \text{ trt} \\ 0 & \text{otherwise} \end{cases}$ 

Cell means model can be written

$$Y_{ij} = \beta_1 X_{1ij} + \beta_2 X_{2ij} + \ldots + \beta_t X_{tij} + \varepsilon_{ij}$$

(Note that there is <u>no intercept</u> in the cell means model.)

# Cell Means Model for Caffeine Data

| Treatment | Taps | i | j  | X <sub>1</sub> | X <sub>2</sub> | X <sub>3</sub> |
|-----------|------|---|----|----------------|----------------|----------------|
| 0mg       | 242  | 1 | 1  | 1              | 0              | 0              |
| 0mg       | 245  | 1 | 2  | 1              | 0              | 0              |
|           |      |   |    |                |                |                |
| 0mg       | 242  | 1 | 10 | 1              | 0              | 0              |
| 100 mg    | 248  | 2 | 1  | 0              | 1              | 0              |
| 100 mg    | 246  | 2 | 2  | 0              | 1              | 0              |
|           |      |   |    |                |                |                |
| 100 mg    | 244  | 2 | 10 | 0              | 1              | 0              |
| 200mg     | 246  | 3 | 1  | 0              | 0              | 1              |
| 200mg     | 248  | 3 | 2  | 0              | 0              | 1              |
|           |      |   |    |                |                |                |
| 200 mg    | 250  | 3 | 10 | 0              | 0              | 1              |

Cell Means Model:  $Y_{ij} = \mu_i + \varepsilon_{ij}$ 

Using indicator variables:

$$Y_{ij} = \beta_1 X_{1ij} + \beta_2 X_{2ij} + \beta_3 X_{3ij} + \varepsilon_{ij}$$

- Re-arrange the data so that treatment is in 1<sup>st</sup> column and response is in 2<sup>nd</sup> column
- The indicator variables are shown in the table
- Least squares estimates are  $\hat{\mu}_1 = \overline{Y}_1$ ,  $\hat{\mu}_2 = \overline{Y}_2$ , and  $\hat{\mu}_3 = \overline{Y}_3$ .  $\hat{\beta}_1 = \overline{Y}_1$ ,  $\hat{\beta}_2 = \overline{Y}_2$ , and  $\hat{\beta}_3 = \overline{Y}_3$ .

## **Estimates for Cell Means Model**

- The estimates for the slopes (in regression) are the same as the estimates for the treatment means (in ANOVA)
- The least squares estimate for  $\mu_i$  (or  $\beta_i$ ) is the sample mean for the  $i^{th}$  treatment, i.e., the average of all the observed values in the  $i^{th}$  treatment
- These are Least Squares estimates
  - They are unbiased
  - They have minimum variance of all unbiased estimators

## Standard Errors

- Point estimates for treatment means are simply sample means:  $\hat{\mu}_i = \overline{Y}_i$ .
- For inference, we need standard errors of these estimates

■ Variance: 
$$\operatorname{var}(\hat{\mu}_i) = \frac{\operatorname{var}(Y_{ij})}{n_i} = \frac{\sigma^2}{n_i}$$

- Estimated variance:  $var(\hat{\mu}_i) = \frac{\hat{\sigma}^2}{n_i} = \frac{MSE}{n_i}$
- Standard error:  $SE(\hat{\mu}_i) = \sqrt{\frac{MSE}{n_i}}$

#### Comments on Standard Errors

- The standard errors of the treatment means depend on the sample size for the treatment
- If the treatments all have the same sample size
  - Standard errors for the means will all be the same
  - This is what we call 'balanced' data
- If the treatments have different sample sizes
  - Treatment means will have different standard errors
  - This is 'unbalanced' data

# Standard Errors for Caffeine Data

We calculated these values in the last lesson

$$\overline{Y}_1$$
 = 244.8,  $\overline{Y}_2$  = 246.4,  $\overline{Y}_3$  = 248.3,  $n_1=n_2=n_3=10$  MSE = 4.967, dfE = 27

The sample sizes are all the same, so the standard errors of the means are also all the same

$$SE(\hat{\mu}_i) = \sqrt{\frac{MSE}{n_i}} = \sqrt{\frac{4.967}{10}} = 0.705$$

Critical value is from t distribution with  $\alpha$  = 0.05. (Recall that we use  $\alpha/2$  for confidence intervals and two-sided tests.)

$$t_{\alpha/2, dfE} = t_{0.025, 27} = 2.052$$

## Confidence Intervals for Means

- Confidence interval: (point estimate)  $\pm$  (critical value)×SE
- For the caffeine data
  - Margin of error = (critical value)  $\times$  SE = 2.052  $\times$  0.705 = 1.447
  - Same margin of error for all treatment means because the data are balanced
- 95% Confidence intervals for the caffeine treatments means
  - Dose 0 mg: 244.8 ± 1.447, or (243.353, 246.247) finger taps
  - Dose 100 mg: 246.4 ± 1.447, or (244.953, 247.847) finger taps
  - Dose 200 mg: 248.3 ± 1.447, or (246.853, 249.747) finger taps
- Later, we will see these standard errors and confidence intervals in the SAS output



# Hypothesis Tests for Means

- For some constant C
  - Test  $H_0$ :  $\mu_i$  = C vs.  $H_a$ :  $\mu_i \neq C$
  - Test statistic:  $t = \frac{\hat{\mu}_i C}{SE(\hat{\mu}_i)} = \frac{\overline{Y}_i C}{\sqrt{\frac{MSE}{n_i}}}$
  - Critical value is from t distribution, with df = df Error
- Reject  $H_0$  if |t| >critical value
- Special case: C = 0
  - Then we are testing  $H_0$ :  $\mu_i = 0$  vs.  $H_a$ :  $\mu_i \neq 0$
  - SAS will generate the p-value for this test

## **Effects Model**

- There are many ways to write an effects model for ANOVA
  - The exact model depends on which treatment is the reference treatment
  - All the effect models are equivalent, i.e., they produce the same inference
  - But they have different parameters (and different interpretations of those parameters)
- By default, SAS uses the last treatment as the reference
  - The treatment with either the highest number or the last alphabetically
  - We can accept the default, or change it with the 'ref' option
- This will be described in more detail when we see the code



#### **Effects Model**

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$

i = 1, 2, ... t-1 (the t treatment groups)

 $j = 1, 2, ... n_i$  (treatment i has sample size  $n_i$ )

 $Y_{ij}$  is the observed response for the  $j^{th}$  EU in the  $i^{th}$  treatment

 $\mu$  is the true mean response for the reference level

 $\tau_i$  is the effect of the  $i^{th}$  treatment

 $\mathcal{E}_{ij}$  is the error for the the  $j^{th}$  EU in the  $i^{th}$  treatment

ASSUME:  $\varepsilon_{ij} \sim \text{NIID}(0, \sigma^2)$ 

#### **Parameterizations**

- The effects model and the cell means model
  - produce identical inference
  - are different only in how they are parameterized
- Treatment means
  - $\begin{array}{c} \blacksquare \text{ Cell means model: } \mu_i \\ \blacksquare \text{ Effects model: } \mu + \tau_i \end{array} \\ \Rightarrow \mu_i = \mu + \tau_i$
- $\tau_i$  is the 'effect' of the  $i^{th}$  treatment
  - how much it is different from the mean of the reference treatment

## **Estimation in Effects Model**

- Least squares estimate for  $\mu$  is  $\hat{\mu} = \overline{Y}_t$ .
  - the mean of all observed responses for reference level (treatment t)
- Least squares estimate for  $\mu_i$  is  $\hat{\mu}_i = \overline{Y}_i$ .
  - the mean of all observations in treatment i
- To get the least squares estimate for the <u>effect</u> ( $\tau_i$ ) of the  $i^{th}$  treatment, manipulate the two estimates

given above: 
$$\mu_i = \mu + \tau_i \implies \hat{\mu}_i = \hat{\mu} + \hat{\tau}_i \implies \hat{\tau}_i = \hat{\mu}_i - \hat{\mu}$$
 so  $\hat{\tau}_i = \overline{Y}_i - \overline{Y}_t$ .

## Fit the Model with SAS

```
PROC GLM DATA=caffeine;
CLASS dose (REF='0');
MODEL taps = dose / SOLUTION;
LSMEANS dose / STDERR CL;
run;
```

- Use PROC GLM because PROC REG does not allow categorical predictors
- CLASS statement defines caffeine dose as a categorical predictor and sets
   Dose=0 as the reference level
- The solution option on the model statement prints least squares estimates for a version of the effects model
- The LSMEANS statement prints the estimates for the cell means model
  - STDERR option prints the standard errors of the estimates
  - CL option prints the confidence limits

# SAS Output: ANOVA Table

|                 |    | Sum of      |             |         |        |
|-----------------|----|-------------|-------------|---------|--------|
| Source          | DF | Squares     | Mean Square | F Value | Pr > F |
| Model           | 2  | 61.4000000  | 30.7000000  | 6.18    | 0.0062 |
| Error           | 27 | 134.1000000 | 4.9666667   |         |        |
| Corrected Total | 29 | 195.5000000 |             |         |        |

- The ANOVA table is standard SAS output for PROC GLM.
- 'F Value' and 'Pr>F' are the test statistic and p-value, respectively, for testing
  - For the cell means model  $H_0$ :  $\mu_1 = \mu_2 = \mu_3$  vs.  $H_a$ : not all means are equal
  - For the effects model  $H_0$ :  $\tau_1 = \tau_2 = 0$  vs.  $H_a$ : at least one effect is not 0
- The test results are the same, regardless of which parameterization is used.

# SAS Output: Effects Estimates

| Parameter | Estimate | Standard<br>Error | t Value | Pr >  t |
|-----------|----------|-------------------|---------|---------|
| Intercept | 244.80   | 0.70474582        | 347.36  | <.0001  |
| dose 100  | 1.60     | 0.99666109        | 1.61    | 0.1200  |
| dose 200  | 3.50     | 0.99666109        | 3.51    | 0.0016  |
| dose 0    | 0.00     | •                 |         |         |

This is generated by the 'solution' option on the model statement.

The last row (dose = 0) is the reference level; all others are compared to this level.

- Estimates for cell means can be constructed from this table
  - For Dose = 0, the estimated mean is the intercept, 244.8
  - For Dose = 100, the effect is 1.6, so the estimated mean is 1.6 more than the reference level (244.8 + 1.6 = 246.4)
  - For Dose = 200, the effect is 3.5, so the estimated mean is 3.5 more than the reference level (244.8 + 3.5 = 248.3)
- Interpretation of this table continues on the next slide

# SAS Output: t Tests

| Parameter | Estimate | Standard Error | t Value | Pr >  t |
|-----------|----------|----------------|---------|---------|
| Intercept | 244.80   | 0.70474582     | 347.36  | <.0001  |
| dose 100  | 1.60     | 0.99666109     | 1.61    | 0.1200  |
| dose 200  | 3.50     | 0.99666109     | 3.51    | 0.0016  |
| dose 0    | 0.00     |                |         |         |

The columns 't Value' and 'Pr>|t|' are the test statistics and p-values for testing
H<sub>0</sub>: parameter = 0
vs. H<sub>a</sub>: parameter ≠ 0

- The tricky part is ... what are the parameters?
- For the 'Intercept': The parameter is the mean for the reference level.
   Result: It is statistically different from 0 (p < .0001)</li>
- For Dose 100: The parameter is the difference between Dose 100 mean and the reference level mean. Result: The means are <u>not</u> statistically different (p = 0.1200).
- For Dose 200: The parameter is the difference between Dose 200 mean and the reference level mean. Result: The means <u>are</u> statistically different (p = 0.0016).

# SAS Output: Cell Means Estimates

| dose | taps<br>LSMEAN | Standard Error | Pr >  t | 95% Confidence Limits |            |
|------|----------------|----------------|---------|-----------------------|------------|
| 0    | 244.8          | 0.704746       | <.0001  | 243.353981            | 246.246019 |
| 100  | 246.4          | 0.704746       | <.0001  | 244.953981            | 247.846019 |
| 200  | 248.3          | 0.704746       | <.0001  | 246.853981            | 249.746019 |

- This table is created by the LSMEANS statement
- The first two columns (after 'dose') are the estimates and standard errors for the cell means model
- Standard errors are all the same because the data are balanced
  - On earlier slides, we calculated both the standard errors and the confidence intervals
- The p-values are for two-sided tests comparing the corresponding treatment mean to 0. (This is not usually what we want to test.)



# Setting a Reference Level

- In the caffeine example, we set the reference level to dose=0
- If you do not specify a reference level, SAS will automatically use the last level (dose=200) as the reference level
- In many cases, the reference level is not important (i.e., the final results of the analysis are not affected by the choice of reference level)
- Let SAS choose a reference level unless you have a good reason to change it

#### What You Should Know

- How to generate the solution in SAS
- In the SAS output, know
  - what each p-value is testing
  - how to interpret the p-values
  - how to re-construct the treatment means
- Calculate "by hand"
  - estimates for the treatment means
  - standard errors of the estimates
  - confidence intervals for the treatment means

