

## MID TERM ES

| Programme : B.Tech.                          | ONS - April 20 |                  |
|----------------------------------------------|----------------|------------------|
| Course Title/ .                              | Semester       | : Winter 2023-24 |
| Course Code   Engineering Chemistry/ CHY1001 | Slot           | B11+B12+B13      |
| 1 1 1/2 hours                                | Max. Mark      | s : 50           |

## Answer all the Questions

|       |              | Answer all the Questions                                                                                                                                                                                                     |    |  |  |
|-------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| Q.No. | Sub.<br>Sec. | Question Description                                                                                                                                                                                                         |    |  |  |
| 1     |              | Showing chemical reactions and physical steps involved (in detail), give advantages and disadvantages of using Ion exchange resins over Zeolite water softening.                                                             |    |  |  |
| 2     | A            | a). Which salts cause temporary hardness of water? Suggest one method to remove this type of hardness.                                                                                                                       |    |  |  |
|       |              | b). Calculate the hardness of a water sample (in terms of equivalents of CaCO <sub>3</sub> ) containing 10 <sup>-3</sup> M CaSO <sub>4</sub> . (molar mass of CaSO <sub>4</sub> =136 g mol <sup>-1</sup> ) + 3 <sup>-5</sup> |    |  |  |
|       | В            | Name the kind of damage happens to boiler due to presence of high alkaline water. Explain it using chemical reactions involved.                                                                                              | 3  |  |  |
|       |              | Enlist the methods to prevent kind of damage.                                                                                                                                                                                | 2  |  |  |
| 3     |              | Phase diagram of CO <sub>2</sub> is given. TO represents line equilibrium of solid-liquid.  1) Draw phase diagram of water with Triple point T, TO represents of solid-liquid freezing curve.                                |    |  |  |
|       |              | 2) Calculate degree of freedom along line TO using Phase rule in picture above. Gas                                                                                                                                          | 10 |  |  |
|       |              | 3) Explain the reason of difference in slope of freezing curve phase diagram of CO <sub>2</sub> and water.  Temperature T <sub>v</sub>                                                                                       |    |  |  |
| 4     | Α.           | Briefly explain with examples following terms Phase, Component and degrees of freedom.                                                                                                                                       | 4  |  |  |
|       | В            | Using Gibbs' Phase rule, calculate degree of freedom along the curve/lines AC,2 BC, point C and areas in following diagram.                                                                                                  | 6  |  |  |



Zn|Zn<sup>2+</sup>(1M)||Cu<sup>2+</sup>(1M)|Cu, is shorthand or cell representation form of Galvanic cell, Identify anode half, Cathode half and write half-cell reactions.

Mention constituents of salt bridge in this cell.

The  $Cu^{2+}$  ion concentration in a copper-silver electrochemical cell is 0.1 M. If  $E^{\circ}(Ag^{+}/Ag) = 0.8 \text{ V}$ ,  $E^{\circ}(Cu^{2+}/Cu) = 0.34 \text{ V}$ , and Cell potential (at 25°C) = 0.422 V. Find the silver ion concentration.