## Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

#### Отчет по лабораторной работе №4

по дисциплине "Математическая статистика"

Выполнил студент Группы 3630102/80101

шао Цзяци

Проверил доцент, к.ф.-м.н.

Баженов Александр Николаевич

# Содержание

| 1. | Постановка задачи                           | 4  |
|----|---------------------------------------------|----|
| 2. | Теория                                      | 4  |
|    | 2.1. Рассматриваемые распределения          | 4  |
|    | 2.2. Эмпирическая функция распределение     | 4  |
|    | 2.3. Ядерные оценки плотности вероятности   | 5  |
| 3. | Реализация                                  | 5  |
| 4. | Результаты                                  | 6  |
|    | 4.1. Эмпирическая функция распределения     | 6  |
|    | 4.2. Ядерные оценки плотности распределения | 8  |
| 5. | Обсуждение                                  | 15 |

# Список иллюстраций

| 1  | Нормальное распределение                      | 6   |
|----|-----------------------------------------------|-----|
| 2  | Нормальное распределение                      | 6   |
| 3  | Нормальное распределение                      | 7   |
| 4  | Нормальное распределение                      | 7   |
| 5  | Нормальное распределение                      | 8   |
| 6  | Нормальное распределение $n=20$               | 8   |
| 7  | Нормальное распределение $n=60$               | Ö   |
| 8  | Нормальное распределение $n=60$               | Ĝ   |
| 9  | Распределение Коши $n=20$                     | 10  |
| 10 | Распределение Коши $n=60$                     | 10  |
| 11 | Распределение Коши $n=100\ldots\ldots$        | 11  |
| 12 | Распределение Лапласа $n=20$                  | 11  |
| 13 | Распределение Лапласа $n=60$                  | 12  |
| 14 | Распределение Лапласа $n=100$                 | 12  |
| 15 | Распределение Пуассона $n=20$                 | 13  |
| 16 | Распределение Пуассона $n=60$                 | 13  |
| 17 | Распределение Пуассона $n=100\ldots\ldots$    | 14  |
| 18 | Равномерное распределение $n=20$              | 14  |
| 19 | Равномерное распределение $n=60$              | 15  |
| 20 | $P_{\text{ариомериов распределение } n = 100$ | 1 5 |

#### 1. Постановка задачи

Сгенерировать выборки размером 20, 60 и 100 элементов. Построить на них эмпирические функции распределения и ядерные оценки плотности распределения на отрезке [-4,4] для непрерывных распределений и на отрезке [6,14] для распределения Пуассона.

### 2. Теория

#### 2.1. Рассматриваемые распределения

Плотности распределений

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \tag{1}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{2}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}$$
(3)

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{4}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}}, |x| \le \sqrt{3} \\ 0, |x| \ge \sqrt{3} \end{cases}$$
 (5)

### 2.2. Эмпирическая функция распределение

C тамистический p n - последовательность различных элементов выборки  $\{z_i\}_{i=1}^k$ , расположенных по возрастанию, с указанием частот  $\{n_i\}_{i=1}^k$ , с которыми эти элементы содержатся в выборке.

Эмпирическая функция - это относительная частота события X < x, полученная по данной выборке:

$$F_n^*(x) = P^*(X < x) \tag{6}$$

Его можно найти по формуле

$$F_n^*(x) = \frac{1}{n} \sum_{i=1}^n 1_{x_i < x} \tag{7}$$

где, 1 - это индикаторная функция. Эмпирическая функция распределения является оценкой, т. е. приближённым значением, генеральной функции распределения  $F_n^*(x) \approx F_X(x)$ .

#### 2.3. Ядерные оценки плотности вероятности

Оценка плотности вероятности f(x) - построенная на основе выборки функция  $\widehat{f}(x)$  :  $\widehat{f}(x) \approx f(x)$ 

Непрерывная ядерная оценка задается формулой:

$$\widehat{f}_n(x) = \frac{1}{nh_n} \sum_{i=1}^n K(\frac{x - x_i}{h_n}) \tag{8}$$

где K(u) - ядро, т. е. непрерывная функция, являющаяся плотностью вероятности,  $x_1,...,x_n$  - элементы выборки, последовательность  $\{h_n\}$ :

$$h_n \xrightarrow[n \to \infty]{} 0; nh_n \xrightarrow[n \to \infty]{} \infty.$$
 (9)

Используется Гауссово ядро:

$$K(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} \tag{10}$$

А также правило Сильвермана:

$$h_n = 1.06\hat{\sigma}n^{-1/5} \tag{11}$$

где  $\hat{\sigma}$  - выборочное стандартное отклонение.

### 3. Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования python в среде разработки Pycharm с дополнительными библиотеками.

- scipy
- numpy
- matplotlib
- math
- seaborn
- statsmodels

Исходный код лабораторной работы размещен в Github-репозитории. URL: https://github.com/Shaots/shaoMathStatistic/tree/master/Lab4

# 4. Результаты

# 4.1. Эмпирическая функция распределения



Рис. 1. Нормальное распределение



Рис. 2. Нормальное распределение



Рис. 3. Нормальное распределение



Рис. 4. Нормальное распределение



Рис. 5. Нормальное распределение

## 4.2. Ядерные оценки плотности распределения



Рис. 6. Нормальное распределение n = 20



Рис. 7. Нормальное распределение n = 60



Рис. 8. Нормальное распределение n = 60



Рис. 9. Распределение Коши  ${\rm n}=20$ 



Рис. 10. Распределение Коши n=60



Рис. 11. Распределение Коши n=100



Рис. 12. Распределение Лапласа n=20



Рис. 13. Распределение Лапласа n=60



Рис. 14. Распределение Лапласа n = 100



Рис. 15. Распределение Пуассона n=20

0.00



Рис. 16. Распределение Пуассона n=60



Рис. 17. Распределение Пуассона n=100



Рис. 18. Равномерное распределение n = 20



Рис. 19. Равномерное распределение n = 60



Рис. 20. Равномерное распределение n = 100

# 5. Обсуждение

Из иллюстрации с эмпирическими функциями вытекает, что чем больше выборка, ступенчатая эмпирическая функция распределения тем лучше приближает функцию распределения

реальной выборки. Так и согласится с теоремой Гливенко — Кантелли, что  $\lim_{n\to\infty}\sup_{x\in R}|F_n^*(x)-F(x)|=0$  почти наверное.

Иллюстрации ядерных оценок плотностей распределения демонстрируют в большинстве случаев приближение ядерной оценки к функции плотности вероятности по всем h с увеличением размерности выборки. Однако оптимальным значением для распределения Коши можно назвать размерность выборки, равной 60.

Каждое распределение имеет свой самый подходящий параметр h для описания ядерной оценки: для нормального, равномерного и пуассоновского распределений оптимальным значением параметра является  $h=h_n$ , а для распределений Коши и Лапласса -  $h=h_n/2$ .

Также можно увидеть, что чем больше коэффициент при параметре сглаживания  $h_n$  тем меньше изменений знака производной у аппроксимирующей функции, вплоть до того, что при  $h=2h_n$  функция становится унимодальной на рассматриваемом промежутке. Также видно, что при  $h=2h_n$  по полученным приближениям становится сложно сказать плотность вероятности какого распределения они должны повторять, так как они очень похожи между собой.