Experimentalphysik III (Oberthaler)

Robin Heinemann

13. November 2017

Inhaltsverzeichnis

I	vors	pann	I
	1.1	Ein Experiment mit klassischen Teilchen	1
	1.2	Ein Experiment mit klassischen Wellen	2
	1.3	Ein Experiment mit Elektronen/Atomen	4
	1.4	Zusammenfassung	6
2	Mate	eriewellen	7
	2.1	Historische Herleitung von de Broglie	7
	2.2	Wie sieht die Materiewelle aus?	9
	2.3	Das Wellenpaket - physikalische Wellenfunktion durch Überlagerung (Superposition von ebenen	
		Wellen)	10
	2.4	Allgemeine Ausbreitung eines Wellenpakets	17
	2.5	Beugung von Materiewellen	19
		2.5.1 Elektronen	20
		2.5.2 Moleküle an einem Transmissionsgitter	21
		2.5.3 Nachweis von sehr "fragilen" Molekülen	21
		2.5.4 Beugung von Makro-Molekülen	22
	2.6	Atom Interferometer	22
	2.7	Zusammenfassung	26
3	Allg	emeine Quantenmechanik	26
	3.1	Quantenmechanischer Zustand und dessen Darstellung	26
	3.2	Observable (beobachtbare Gröhen) und Operatoren	28
	3.3	Die Schrödiger Gleichung (nicht relativistische Quantenmechanik)	32

1 Vorspann

1.1 Ein Experiment mit klassischen Teilchen

1. Fall: Quelle von nicht weiter zerteilbaren Teilchen mit zufälliger Richtung. Es werden die Anzahl der Teilchen auf einem Raster x mit Gitterkonstante Δx gemessen. Dann werden in der Mitte die meißten Teilchen ankommen. Die diskrete Verteilung kann mit einer kontinuierlichen Wahrscheinlichkeitsverteilung beschrieben werden. Die wichtigen Größen sind hier die Position der maximalen Wahrscheinlichkeit und die Breite (FWHM - full width half maximum)

2. Fall: 2 Quellen (mittels Doppelspalt der Breite d, $d \ll \text{FWHM}$)

Wichtig: Diskrete Zahlen. Die theoretische Wahrscheinlichkeitsverteilung kann nur annähernd gemessen werden! Anzahl der Teilchen $\to \infty \implies P_1(x)$.

1.2 Ein Experiment mit klassischen Wellen

Quelle sendet Kugelwellen aus (fixe Frequenz, fixe Amplitude), Doppelspalt. Ein Detektor misst Strom \propto Intensität. Man erhält das Intensisätsmuster I_{12} eines Doppelspalts. Bei blockieren eines der Öffnungen des Doppelspalt erhält man einen Einzelspalt und somit nurnoch das Intensitätsmuster eines Einzelspalts, mit Maximum bei dem nicht blockierten Spalt. Wichtig: Intensität ist kontinuierlich I_{12} kann genau gemessen werden.

Warum hat I_{12} die angegebene Form?

$$I(x) = c\varepsilon_0 \frac{1}{2T} \int_{-T}^{T} E(x, t) dt$$
$$E(x, t) = E_1 \cos\left(\omega t + \vec{k} \vec{R}_1\right) + E_2 \cos\left(\omega t + \vec{k} \vec{R}_2\right)$$

mit Hilfe von komplexer Schreibweise

$$E(x,t) = \Re\{E_1 e^{i\left(\omega t - \vec{k} \cdot \vec{R}_1\right)} + E_2 e^{i\left(\omega t - \vec{k} \cdot \vec{R}_2\right)}\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\text{reell} \qquad \text{reell}$$

$$= \Re\{\left(E_1 \underbrace{e^{-i\left(\vec{k} \cdot \vec{R}_1\right)}}_{a_1} + \underbrace{E_2 e^{-i\vec{k} \cdot \vec{R}_2}}_{a_2}\right) e^{i\omega t}\}$$

$$\implies I_{12}(x) \propto |a_1 + a_2|^2$$

Wir interessieren uns nur für x-Abhängigkeit, nicht für absolute Werte

$$I_{12}(x) \propto |a_1 + a_2|^2 = (a_1^* + a_2^*)(a_1 + a_2)$$

$$= |a_1|^2 + |a_2|^2 + a_1^* a_2 + a_2^* a_1$$

$$|a_1|^2 = E_1 e^{ikR_1} E_1 e^{-kR_1} = E_1^2 \sim I_1$$

$$|a_2|^2 = E_2 e^{ikR_2} E_2 e^{-kR_2} = E_2^2 \sim I_2$$

$$a_1^* a_2 + a_2^* a_1 = a_1^* a_2 + c. c.$$

$$= 2\Re\{a_1^* a_2\} = 2\Re\{E_1 E_2 e^{ik(\vec{R}_2 - \vec{R}_1)}\}$$

$$= 2\sqrt{I_1 I_2} \cos\left(\vec{k}(\vec{R}_2 - \vec{R}_1)\right)$$

$$\Longrightarrow I_{12} = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos\phi$$

Maximale Intensität
$$\phi=0$$
 $\left|\vec{R}_1\right|=\left|\vec{R}_2\right|$. Für $I_1=I_2=I_0$:
$$I_{\rm MAX}=I_1+I_2+2\sqrt{I_1I_2}=4I_0$$

$$I_{\rm MIN}=I_1+I_2=2\sqrt{I_1I_2}=0$$

Intensität wird räumlich umverteilt, gesamt Intensistät bleibt erhalten

$$I_1 + I_2 =$$
 Energieerhaltung

1.3 Ein Experiment mit Elektronen/Atomen

Quelle: Metallspitze aus hohem negativen Potential. Wieder diskrete Detektoren, Messung über Elektronenvervielfacher: durch anliegende Spannung löst ein Elektron aus einer Metallplatte weitere Elektronen aus, die wieder weiter auslösen. Es entsteht ein kurzer Strom-Peak, der gemessen werden kann. Annahmen:

- 1. Das Elektron geht entweder durch Blende \bigcirc , oder Blende \bigcirc
- 2. Mit "komplizierter" Dynamik

Einfacher Test für Annahme 2.: Blockieren einer Blende (hier 2). Man würde eine Verteilung ähnlich der mit zwei Blendern erwarten.

Teilchen verschwinden in den Minima bei der P_{12} , obwohl sie nach der Verteilung für eine Blende auch dort ankommen müssten.

$$\implies P_{12} \neq \frac{1}{2} \{ P_1 + P_2 \}$$

Mathematische "'einfach"': Einführen der komplexen Wahrscheinlichkeitsamplitude ϕ . Wahrscheinlichkeiten sind gegeben durch

$$P_1 = |\phi_1|^2$$

 $P_2 = |\phi_2|^2$
 $P_{12} = |\phi_1 + \phi_2|^2$

(iii) Wichtig

Elektronen werden einzeln gezählt. Es gibt keine "halben" Elektronen. Wahrscheinlichkeitsverteilung kann nur annähernd gemessen werden. $P_{12}\stackrel{\wedge}{=}$ unendlich viele Experimente.

Welle-Teilchen Dualismus

Elektronen werden nur als Einheiten detektiert, die räumliche Verteilung kann als Interferenz von Wahrscheinlichkeits-Amplituden (komplexes ϕ) beschrieben werden.

Beobachtung der Elektronen an jedem Spalt.

Es entstehen Lichtblitze durch gestreutes Licht. P_1 : Blitz bei \bigcirc 1, P_2 : Blitz bei \bigcirc 2. Blitz bei \bigcirc 1 und \bigcirc 2 wird nie beobachtet. Dies bestätigt Annahme \bigcirc 1.

Bei $\lambda>d$ ist nicht mehr feststellbar, ob das Elektron durch 1 oder 2 kommt. Bei $\lambda\sim d$ erhält man eine Überlagerung von $|\phi_1+\phi_2|$ und $\frac{1}{2}(P_1+P_2)$

Quantenmechanik kann das beschreiben, weil das prinzipiell mögliche Wissen einer physikalischen

1.4 Zusammenfassung

Für fundierte Diskussion eines Quantenmechanischen Experiments mus definiert werden

- 1. Präpration de Anfangszustand
- 2. Wechselwirkung / Zeitlich Entwicklung
- 3. Detektion Was wird beobachtet

Ein **Ereignis** ist definiert als ein spezielles Set von 1. bis 3..

Beispiel 1.1 Ein e^- verlässt die Quelle kann nicht alle Orte in Raum erreichen (Blenden), e^- wird in einem Ortsintervall $[x, x + \Delta x]$ detektiert.

Vorhersagen nach folgenden Regeln

- Die Wahrscheinlichkeit eines Ereignisses in einem idealen Experiment ist gegeben als das Quadrat des Absolutbetrages einer im allgemeinen komplexen Wahrscheinlichkeitsamplitude
 - $P \dots$ Wahrscheinlichkeit
 - ϕ . . . Wahrscheinlichkeits-Amplitude

$$P = |\phi|^2 = \phi^* \phi$$

2. Wenn ein Ereignis in verschiedener Art und Weise stattfinden kann, dann ist die Wahrscheinlichkeits-Amplitude gegeben als Summe der einzelnen Wahrscheinlichkeits-Amplituden der Möglichkeiten.

Beispiel 1.2 $e^- \rightarrow$ Detektor über

- Blende (1)
- Blende (2)

$$\phi = \phi_1 + \phi_2$$
 (Superposition)
$$P = |\phi|^2 = |\phi_1 + \phi_2|^2$$

3. Kann man die einzelnen Möglichkeiten prinzipiell unterscheiden, addieren sich die Wahrscheinlichkeiten

$$P = (P_1 + P_2)/2$$

2 Materiewellen

2.1 Historische Herleitung von de Broglie

Ziel:

- Dispersionsrelation für massive Teilchen
- Superpositionen von unphysikalischen Wellen können Natur beschreiben
- Zerlegungin de Broglie-Wellen erlaubt vorhersagen

Louis de Broglie. "XXXV. A tentative theory of light quanta". In: *Philosophical Magazine Series 6* 47.278 (1924), S. 446–458

3 Grundlegende Hypothesen ($3 \times$ Einstein)

- 1. $E = m_0 c^2$ Masse = Energie, m_0 : Ruhemasse, c: Lichtgeschwindigkeit
- 2. $E=h\nu_0$ Photoeffekt, $h=6.626\,069\,934(89)\times 10^{-34}\,\mathrm{J\,s}$ Planck Konstante, ν_0 : Frequenz
- 3. Gleichmäßig bewegte Bezugssysteme sind mit Lorenzt Transformation verknüpft

Aus 1. und 2. folgt, dass man jedem Teilchen im Ruhesystem eine Frequenz zuordnen kann

$$\nu_0 = \frac{m_0 c^2}{h}$$

Sei S ein ruhendes Bezugssystem, betrachte ein ruhendes Teilchen (v=0). Man erhält

$$\psi = e^{i\nu_0 2\pi t}$$

Nun betrachte ein bewegtes Bezugssystem S' mit $v_x = v, v_{u,z} = 0$. Man erhält

$$\psi = e^{i\nu_0 2\pi t'}$$

$$t' = \frac{t - \frac{v}{c^2}x}{\sqrt{1 - \left(\frac{v}{c}\right)^2}}$$

Die Zeit wird ortsabhängig!

$$S':e^{i2\pi\nu_0t'}$$

$$S:e^{i2\pi\nu_0\left(\frac{t-\frac{v}{c^2}x}{\sqrt{1-(\frac{v}{c})^2}}\right)}=e^{i(\omega_{dB}t-k_{dB}x)}$$
 (die de Broglie Welle)

mit

$$\begin{split} \omega_{dB} &= \frac{2\pi\nu_0}{\sqrt{1-\left(\frac{v}{c}\right)^2}} = \frac{2\pi}{h} \frac{m_0c^2}{\sqrt{1-\left(\frac{v}{c}\right)^2}} = \frac{E_{\rm ges^{Ruhe}}}{\hbar} \\ \hbar &= \frac{h}{2\pi} \\ \vec{k}_{dB} &= \frac{2\pi\nu_0\vec{v}}{c^2\sqrt{1-\left(\frac{\vec{v}}{c}\right)^2}} = \frac{2\pi}{h} \frac{m_0c^2\vec{v}}{c^2\sqrt{1-\left(\frac{\vec{v}}{c}\right)^2}} = \frac{\vec{P}_{\rm mel}}{\hbar} \end{split}$$

nicht relativistischer Limes $v \ll c$

$$\omega_{dB} = \frac{1}{\hbar} \left(m_0 c^2 + \frac{m_0 \vec{v}^2}{2} + \dots \right)$$
$$\vec{k}_{dB} = \frac{1}{\hbar} m_0 \vec{v}$$

$$\psi(x,t) = e^{-i\left(\omega_{dB}t - \vec{k}_{dB}\vec{x}\right)} = e^{i\frac{m_0c^2}{\hbar}t} e^{i\left(\underbrace{\frac{m_0\vec{v}^2}{2\hbar}}_{\omega}t - \underbrace{\frac{m_0\vec{v}}{\hbar}}_{\vec{k}}\vec{x}\right)}$$

Materiewelle -

$$\psi(x,t) = e^{-i(\omega t - kx)}$$

mit

$$\omega = \frac{\hbar k^2}{2m}$$

$$\hbar k = mv$$

Beschreibt ein massives Teilchen mit Masse m, das sich mit wohldefinierter / scharf definerter Geschwindigkeit $v \ll c$ bewegt (Impuls Eigenzustand).

Den Zusammenhang $\omega(k)=f(k)$ nennt man Dispersions relation.

Wichtig

Unterschied zu elektromagnetischen Wellen im Vakuum:

$$\lambda \nu = c \implies \omega = ck$$

Materiewellen

$$\omega = \frac{\hbar}{2m}k^{2}$$

2.2 Wie sieht die Materiewelle aus?

$$t = 0 \quad \psi(x, t = 0) = e^{ik_{dB}x}$$

$$= \cos(k_{dB}x) + i\sin(k_{dB}x)$$

$$k_{dB} = \frac{2\pi}{\lambda_{dB}}$$

$$E = \frac{\hbar^2 k_{dB}^2}{2m} = \frac{mv^2}{2}$$

$$\Longrightarrow \lambda_{dB} = \frac{h}{mv}$$

de Broglie Beziehung

mittlere Geschwindigkeit

Größenordnung

Thermisches Gas:

$$\begin{split} \bar{v} &= \sqrt{\frac{6 k_B T}{\pi m}} & \text{mittlere Geschwindigkeit} \\ \hat{v} &= \sqrt{\frac{2 k_B T}{m}} & \text{wahrscheinlichste Geschwindigkeit} \\ &\frac{T}{300 \, \text{K}} &\sim 240 \, \text{m s}^{-1} & 19 \, \text{pm} \\ &10 \, \mu \text{K} &\sim 4 \, \text{cm s}^{-1} & 0.1 \, \mu \text{m} \\ &10 \, \text{nK} &\sim 1.4 \, \text{mm s}^{-1} & 3.3 \, \mu \text{m} \end{split}$$

$$\lambda_{dB} \propto \frac{1}{\sqrt{T}}$$

 $\psi(x,t)$ ist ein komplexes Feld:

Zeit
$$t = 0$$

$$\psi(x,t=0) = e^{ik_{dB}x}$$

 $\Re(\psi)$ $\Im(\psi)$

Zeit t $\psi(x,t) = e^{-i(\omega_{dB}t - k_{dB}x)}$

- globale Phase spielt keine Rolle
- Energienullpunkt $E = m_0 c^2$

 $\psi(x,t)$ ist ein komplexes Feld:

$$\omega_{dB}t = k_{dB}x_{m}$$

$$x_{m} = \underbrace{\frac{\omega_{dB}}{k_{dB}}}_{v_{ph}^{dB}} t$$

$$v_{ph}^{dB} = \frac{mv^{2}}{2\hbar} \frac{\hbar}{mv} = \frac{v}{2}$$

Phasengeschwindigkeit

Phasengeschwindigkeit ist nicht physikalisch! Gegeben eine de Broglie Welle mit $k_{dB}=k$. Wie groß ist die Wahrscheinlichkeit das Teilchen irgendwo zu finden?

$$P = \int_{-\infty}^{\infty} p(x) dx = \int_{-\infty}^{\infty} |\psi(x)|^2 dx = \int_{-\infty}^{\infty} e^{ikx} e^{-ikx} dx = \int_{-\infty}^{\infty} dx = \infty$$
W.-Dichte

Eine de Broglie Welle ist nicht normierbar! Analoges Problem: Energieinhalt in einer ebenen Elektromagnetischen Welle.

⇒ Lösung: Superposition (Überlagerung) von ebenen (unphysikalischen) Wellen erlaubt, um physikalischen Situation zu beschreiben.

Zusammenfassung: Neue Beschreibung der Bewegung von Teilchen \Longrightarrow Wellenoptik. Für $\psi(x,t)$ \Longrightarrow $\left|\psi(x,t)^2\right|\mathrm{d}x$ ist die Wahrscheinlichkeit, ein Teilchen zur Zeit t im Intervall $[x,x+\mathrm{d}x]$ zu beobachten. Klassische Teilchenmechanik entspricht dem geometrischen "Optik-Limit" der Wellenmechanik.

Fermat'sches Prinzip in der Wellenoptik

Licht breitet sich entlang des kürzesten optischen Weges aus

$$\delta \int \frac{\mathrm{d}s}{\lambda} = 0 = \delta \int \frac{\mathrm{d}s}{\frac{h}{mv}} = \frac{1}{h} \underbrace{\delta \int mv \mathrm{d}s = 0}_{\text{Maupertuis Prinzip der kleinsten Wirkung}}$$

2.3 Das Wellenpaket - physikalische Wellenfunktion durch Überlagerung (Superposition von ebenen Wellen)

Das Wellenpaket (ruhend) t = 0

$$\psi(x,t=0) = \underbrace{(\frac{2}{\pi a^2})^{1/4}}_{\text{Normierung}} e^{-\frac{x^2}{a^2}}$$

$$\int_{-\infty}^{\infty} |\psi|^2 \mathrm{d}x = 1 \qquad \text{Quadrat-Integrabel}$$

t=T? Wir wissen "nur" wie sich de Broglie Wellen ausbreiten \implies zerlege $\psi(x,t=0)$ in ebene Wellen mit Wellenvektor k_{dB} . Jede Welle wird sich entsprechend

$$\omega_{dB} = \frac{\hbar k_{dB}^2}{2m}$$

ausbreiten.

$$\det \text{Broglie Welle } t=0$$

$$\psi(x,t=0)=\int_{-\infty}^{\infty}\tilde{\psi}(k)e^{ikx}\mathrm{d}k$$

$$\downarrow \text{Amplitude der Welle}$$

⇒ triviale Zeitentwicklung

$$\begin{split} \psi(x,t=T) &= \int_{-\infty}^{\infty} \tilde{\psi}(k) e^{ikx} e^{-i\omega T} \mathrm{d}k \\ &= \int_{-\infty}^{\infty} \underbrace{\tilde{\psi}(k) e^{-i\frac{\hbar}{2m}k^2 T}}_{\text{Phase}} e^{ikx} \mathrm{d}k \end{split}$$

Nur die Phase der komplexen Wahrscheinlichkeits-Amplitude ändert sich. Die zeitliche Änderung ist **linear** in der Zeit, aber quadratisch in k.

Da

$$\Psi = \tilde{\psi}(k)e^{i(kx-\omega t)}$$

einer de Broglie Welle und damit einem Teilchen mit scharf definiertem Impuls $p=mv=\hbar k$ entspricht, bezeichnet man $\tilde{\psi}(k)$ als Impulsdarstellung / Impulsamplitude. Entsprechend $\Psi(x)$ ist die Ortsdarstellung / Ortsamplitude des Quantenmechanischen-Zustandes. Die Ausbreitung im Impulsraum ist trivial

$$\underbrace{\frac{\tilde{\psi}(k)}{t=0}}_{t=0} \to \underbrace{\frac{\tilde{\psi}(k)}{t}}_{t} e^{-i\frac{\hbar k^{2}}{2m}t} \downarrow \\ \text{Rotation in komplexer Zahlenebene}$$

Aber wie sieht die räumlich Wahrscheinlichkeitsverteilung aus? Wiederholung: Fourier-Transformation.

Periodische Funktionen (Fourier 1822)

$$f(x+d)=f(x)$$
 d : Periode
$$f(x)=\sum_{n=-\infty}^{\infty}g_ne^{inGx}$$

$$G=\frac{2\pi}{d}$$

$$g_n=\frac{1}{d}\int_x^{x+d}f(x)e^{-inGx}dx$$

$$\int_0^d f(x)e^{-imGx} = \int_0^d \sum_{n=-\infty}^\infty g_n e^{i(n-m)Gx} = g_m d$$

$$\int_{-\infty}^\infty |f(x)|^2 dx = \int_{-\infty}^\infty \sum_{n=-\infty}^\infty g_n^* e^{-inGx} \sum_{m=-\infty}^\infty g_m e^{imGx} dx$$

$$= \int_{-\infty}^\infty \sum_n \sum_m g_n^* g_m e^{i(m-n)Gx} dx$$

$$= \sum_{n=-\infty}^\infty |g_n|^2 = 1$$

Normierung

 $f(x) \text{ reell} \to g_n = g_n^*$

$$\sum_{n=-\infty}^{\infty} g_n e^{inGx} = g_0 + \sum_{n=-\infty}^{-1} g_n e^{inGx} + \sum_{n=1}^{\infty} g_n e^{inGx}$$
$$= g_0 + \{ \sum_{n=1}^{\infty} g_n^* e^{-inGx} + \sum_{n=1}^{\infty} g_n e^{inGx} \}$$
$$z^* + z = (a+ib)^* + (a+ib) = 2\Re\{z\}$$

Einfache Beispiele

$$f(x) = \cos(Gx) = \frac{1}{2}e^{-iGx} + \frac{1}{2}e^{iGx}$$

Fouriertransformierte

$$g_{-1} = \frac{1}{2}$$
 $g_0 = 0$ $g_1 = \frac{1}{2}$ $g_{|n|>1} = 0$

$$f(x) = \dots \qquad 1 - \frac{\vdash B \dashv}{} \qquad \dots$$

Je kleiner die Struktur im Ortsraum, umso breiter wird die Verteilung im Impulsraum.

Aperiodische Funktionen

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(k)e^{ikx} dk$$
$$g(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx} dx$$

Normierung:

$$\int_{-\infty}^{\infty} f(x)f^*(x)dx = \int_{-\infty}^{\infty} g(k)g^*(k)dk = 1$$

In der Quantenmechanik hat man

$$\psi(x) \iff f(x)$$

$$\tilde{\psi}(k) \iff g(k)$$

Dirca-Delta Fuktion

$$f(x) = \delta(x) = \frac{\int_{-\infty}^{\infty} h(x)\delta(x - x_0) dx = h(x_0)}{0} x$$

Darstellung der Dirac δ -Funktion über Fourier-Transformation

$$g(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \delta(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}}$$
$$\delta(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikx} dx$$

Darstellung von komplexen Zahlen:

$$\psi = |\psi|e^{i\phi}$$
$$\psi(x) = \int_{-\infty}^{\infty} \tilde{\psi}(k)e^{ikx}dk$$

Heisenberg Unschärfe
$$\Delta x \cdot \Delta p = \hbar \Delta x \Delta k = \hbar \frac{a}{2} \frac{1}{a} = \frac{\hbar}{2}$$

$$\frac{1}{\sqrt{l}} \text{ Wert der W.-Verteilung}$$

$$\Delta x = \text{RMS} = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$$

$$\downarrow$$
 Root Mean Square

folgt aus der Beschreibung eines Teilchens mit Gewschwindigkeit \vec{v} / Impuls $m\vec{v}$ durch $e^{i\vec{k}\vec{x}} \iff$ de Broglie Welle und dem Superpositionsprinzip.

Extremfall: Teilchen am Ort x_0 :

 \Longrightarrow Impuls maximal $[-\infty,\infty]$ unscharf.

Analog: Ein Teilchen mit wohldefiniertem Impuls ist vollständig delokalisiert.

Ausbreitung eines Wellenpakets:

$$\begin{split} \psi(x,t) &= \frac{\sqrt{a}}{(2\pi)^{3/4}} \int_{-\infty}^{\infty} e^{-\frac{a^2}{4}(k-k_0)^2} e^{i(kx-\omega(k)t)} \mathrm{d}k \\ \mathrm{mit} \quad \omega(k) &= \frac{\hbar k^2}{2m} \\ \psi(x,t) &= \left(\frac{2a^2}{\pi}\right)^{1/4} \frac{e^{i\varphi}}{\left(a^4 + \frac{4\hbar^2t^2}{m^2}\right)^{1/4}} e^{ik_0x} e^{-\frac{\left(x - \frac{\hbar k_0}{m}t\right)^2}{a^2 + \frac{2i\hbar t}{m}}} \\ \mathrm{mit} \quad \varphi &= -\theta - \frac{\hbar k_0^2}{2m} t \\ \tan 2\theta &= \frac{2\hbar t}{ma^2} \end{split}$$

Für die Breite $\Delta x(t)$ ergibt sich

$$\Delta x(t) = \frac{a}{2} \sqrt{1 + \frac{4\hbar^2 t^2}{m^2 a^4}}$$

Für kurze Zeiten:

$$\Delta x(t) \sim \frac{a}{2} \frac{\hbar^2}{m^2 a^3} t^2 + \dots$$
 Quadratisch

Für lange Zeiten:

$$\Delta x(t) \sim \frac{\hbar}{ma}t$$
 Linear

Bemerkung:

$$\lambda_{dB} = 2a \iff v = \frac{\hbar}{m} \frac{2\pi}{\lambda_{dB}} = 2\pi \frac{\hbar}{ma}$$

Stärkere Lokalisierung führt zum schnellerem Zerfließen!

2.4 Allgemeine Ausbreitung eines Wellenpakets

$$\psi(x,t) = \int_{-\infty}^{\infty} \tilde{\psi}(k)e^{i(kx-\omega(k)t)}dk$$

 $\omega(k)$: Dispersions relation

Wenn $\tilde{\psi}(k)$ im k-Raum (Impuls Raum) um k_0 konzentriert ist, kann die Dispersionsrelation $\omega(k)$ durch eine Taylor Reihe genährert werden.

Taylor Reihe für $\omega(k)$:

$$\omega(k) = \omega(k) \Big|_{k_0} + \frac{\partial \omega}{\partial k} \Big|_{k_0} (k - k_0) + \frac{\partial^2 \omega}{\partial k^2} \Big|_{k_0} \frac{(k - k_0)^2}{2} + \dots$$

$$\implies \psi(x, t) = \int_{-\infty}^{\infty} \tilde{\psi}(k) e^{-i\left(\omega_0 + \omega_0'(k - k_0) + \omega_0''\frac{(k - k_0)^2}{2}\right)t - kx} dk$$

Definiere $\kappa=k-k_0 \implies k=\kappa+k_0$, damit

$$\psi(x,t) = \underbrace{e^{i(k_0x - \omega_0t)}}_{\text{de Broglie Welle}} \underbrace{\int_{-\infty}^{\infty} \tilde{\psi}(\kappa + k_0) e^{\underbrace{-i\left(\omega_0't - x\right)}_{x' = v_gt - x} \kappa + \frac{\omega_0''}{2}\kappa^2t}}_{\text{Einhüllende}}$$
 mit

Einhüllende bewegt sich mit

$$v_g = \frac{\partial \omega}{\partial k}\big|_{k_0}$$

$$\omega_0''=0$$
:

 $\omega_0'' \neq 0 \implies$ Phase $\propto \kappa^2 t \implies$ zerfließen. Interpretation:

$$\omega \sim \omega_0 + \frac{\omega''}{2}k^2 = \omega_0 + \frac{\hbar}{2m^*}k^2$$

Effektive Masse m^* ist invers proportional zur Krümmung der Dispersionsrelation $\omega(k)$.

$$|m_1^*| > |m_2^*|$$

Gauss'sches Wellenpaket:

$$\tilde{\psi}(k) \sim e^{-\frac{a^2}{4}k^2}$$

 $\implies \omega''$ Term führt zum zerfließen des Pakets \implies Gauss bleibt Gauss. Hähere Ableitungen von $\omega(k)$ führen zur Verzerrung des Grauss'schen Wellenpakets.

2.5 Beugung von Materiewellen

 $Doppelspalt \rightarrow N\text{-Spalten} = \text{Gitter. (vergleiche Abschnitt 2.3 Fourier)}$

 $\psi(x)$ dirket nach dem Gitter

$$\psi(x, z = 0) = N \sum_{n = -\infty}^{\infty} g_n e^{inGx} \qquad G = \frac{2\pi}{d}$$

$$\min g_n = \frac{1}{n\pi} \sin\left(n\frac{\pi B}{d}\right)$$

Wie breitet sich $\psi(x, k, t)$ aus?

1. Energieerhaltung: ω_{dB} ändert sich nicht

2. Impuls ändert die Richtung weil nach dem Gitter gilt:

$$\psi(x, z, t) = N \sum_{n = -\infty}^{\infty} g_n \underbrace{e^{inGx} e^{i(k'_z z - \omega t)}}_{\vec{k}_n = \binom{nG}{k'_z}}$$
$$= N \sum_{n = -\infty}^{\infty} g_n e^{i(\vec{k}_n \vec{x} - \omega t)}$$

 k_z' folgt aus der Energieerhaltung

vor dem Gitter

$$n^2G^2 + k_z'^2 = k_z^2$$

nach dem Gitter

Wahrscheinlichkeit sich in Richtung $\vec{k}_1 = \begin{pmatrix} G \\ k_z' \end{pmatrix}$ auszubreiten / gebeugt zu werden:

$$P(k_x = G) = |N|^2 g_1^* g_1$$

 $\left| {ec k}
ight|$ ist erhalten aber die Richtung ändert sich durch Gittervektor ec G.

Nur diskrete Impulse weil periodische Struktur im Raum.

Festkörperphysik: Ewald Kugel

 $rac{G}{k} \ll 1$: Ergebnis wie in Beugung von elektromagnetischen Wellen an periodischen Strukturen.

$$\alpha = \frac{G}{k} = \frac{2\pi}{d} \frac{\lambda_{dB}}{2\pi} = \frac{\lambda_{dB}}{d}$$

2.5.1 Elektronen

Beobachtung: Davisson & Germer (1927) e^- Strahl mit $75\,\mathrm{eV}, \lambda_{dB} = 1.4 \times 10^{-10}\,\mathrm{m}$ fällt auf NI-Kristall.

Die Beugungswinkel sind vergleichbar zu Röntgenstrahlen, aber die Eindringtiefe für e^- ist geringer (Coulomb WW) \implies werden heute standardmäßig eingesetzt um bei Molekularstrahl Epitaxie kristallines Wachsen nachzuweisen.

Kristallines Wachstum
Klare Beugungsstruktur:
Amorphe Strukturen
Diffuse Beugungsstruktur:

2.5.2 Moleküle an einem Transmissionsgitter

Beispiel: Na_2 Pritchard Group am MIT.

$$Na:$$
 $\lambda_{dB} = 20 \,\mathrm{pm} \implies \theta = \frac{\lambda_{dB}}{d} \sim 1.25 \times 10^{-4} \stackrel{\wedge}{=} 125 \,\mathrm{\mu m \, m^{-1}}$

$$Na_2: \qquad \lambda_{dB} = 10 \,\mathrm{pm} \implies \theta = \frac{1}{2} 125 \,\mathrm{\mu m \, m^{-1}}$$

2.5.3 Nachweis von sehr "fragilen" Molekülen

Beispiel: He_2 Übliche Methode:

$$He_2 \longrightarrow \frac{He + He + e^-}{He + He^+ + 2e^-} \Longrightarrow \text{ misst immer nur } He \text{ Masse}$$

Verwendung von nanometer Transmissionsgitter \rightarrow Analyse der Beugungswinkel

2.5.4 Beugung von Makro-Molekülen

Beispile: C_{60} , $C_{60}F_{40}$

Fundamentale Frage: Gibt es eine kritische Größe, ab der Quantenmechanik klassisch wird?

2.6 Atom Interferometer

- Atom Interferometer Doppelspalt aus dünnen Goldfolien Gruppe-Mlynek: 1991 Konstanz
- 2. Atom Interferometer 3 Gitter Aufbau Gruppe Pritchard: 1991 MIT/Boston

Die Wahrscheinlichkeit das Atom zu detektieren ist $|\psi|^2$ mit

$$\begin{split} \psi &= \psi_1 + \psi_2 = \eta^2 e^{ikl_1} + \eta^2 e^{ikl_2} \\ &= \eta^2 e^{ikl_2} \Big(1 + e^{ik(l_2 - l_1)} \Big) \\ &\text{globale Phase} \\ \Delta l &= l_2 - l_1 = 0 \implies |\psi|^2 = 4\eta^4 \end{split}$$

Warum:

$$\psi(x) = \sum_{n=-\infty}^{\infty} g_n e^{inGx}$$

$$x \mapsto x + \Delta x \qquad = \sum_{n=-\infty}^{\infty} \underbrace{g_n e^{inG\Delta x}}_{g_n e^{i2\pi n} \frac{\Delta x}{d}} e^{inGx}$$

$$\Delta x = d \implies e^{i2\pi n} = 1 \implies \text{keine Änderung}$$

Letztes Gitter:

 $\mathrm{mit}\ \mathit{l}_{1}=\mathit{l}_{2}=\mathit{l}$

$$\psi = \eta^2 e^{ikl} \left(e^{i\frac{2\pi\Delta x}{d}} + 1 \right)$$

$$|\psi|^2 = \eta^4 \left(\left(e^{-i\frac{2\pi\Delta x}{d}} + 1 \right) \left(e^{i\frac{2\pi\Delta x}{d}} + 1 \right) \right)$$

$$= \eta^4 \left\{ 2 + \underbrace{e^{-i\frac{2\pi\Delta x}{d}} + e^{i\frac{2\pi\Delta x}{d}}}_{=2\cos\frac{2\pi\Delta x}{d}} \right\}$$

$$\implies |\psi|^2 \propto 1 + \cos\left(\frac{2\pi}{d}\Delta x\right)$$

Messen von Potentialen

Potential am Weg 2:

$$\begin{aligned} 1+3: & & \frac{\hbar^2 k_{dB}^2}{2m} \\ 2: & & \frac{p'^2}{2m} + V = \frac{p^2}{2m} \\ & & \frac{\hbar^2 k'^2}{2m} + V = \frac{\hbar^2 k^2}{2m} \end{aligned}$$

Die Kraft verändert die Geschwindigkeit \implies die de Broglie Wellenlänge ändert sich entsprechend \implies $\phi = k_{dB}^v \cdot x$ die Phasenakkumulation ändert sich im Potential \implies Phasenshift kann gemessen werden. Die de Broglie-Wellenlänge ändert sich \implies sie wird im Bereich 2 länger, weil Atom langsamer wird. Einfach Beschreibung durch Einführung eines "Brechungs Index"

$$n = \frac{k_{\text{Medium}}}{k_{\text{Vakuum}}} = \frac{k'_{\text{Potential}}}{k_{\text{frei}}} = \frac{\lambda_{dB}^{\text{frei}}}{\lambda_{dB}^{\text{Potential}}}$$

Mit 2:

$$k'^2 = k^2 - \frac{2mV}{\hbar^2}$$

$$k' = k\sqrt{1 - \frac{2m}{\hbar^2 k^2}V} = k\underbrace{\sqrt{1 - \frac{V}{E_{\rm ges}}}}_{n_{\rm AB}}$$

Für $V \ll E_{\rm ges}$

$$n_{dB}\approx 1-\frac{V}{2E_{\rm ges}}$$

 $\label{eq:matter} \mbox{Im Atom Interferometer: Empfindlichkeit abschätzen} \rightarrow \mbox{welche Potentialh\"{o}he} \mbox{ f\"{u}hrt} \mbox{ zu einer Phasenverschiebung} \\ \mbox{von } \pi \stackrel{\wedge}{=} \mbox{Maxima des Interferenzmusters verschieben sich um eine halbe Periode.}$

$$\Delta \phi = -\pi = (n-1)k_{dB} \cdot L = -\frac{V}{2E}k_{dB}L$$
$$V = \frac{\hbar^2 k_{dB}}{m} \frac{\pi}{L}$$

 $m = Na, \lambda_{dB} \sim 20 \, \mathrm{pm}, L = 1 \, \mathrm{cm}$

$$V = 3 \times 10^{-29} \,\mathrm{J} \stackrel{\wedge}{=} 0.18 \,\mathrm{neV}$$

Anwendungen: Messung der Erdbeschleunigung.

 \implies Potential differenz, für $m:Cs, \Delta h=1\,\mathrm{m}$

$$mg\Delta h \sim 13\,\mathrm{\mu eV}$$

Gravitationsmessung mit Atomeren Fountain $\implies g \pm 10^{-9}g$. Erste Messung mit Neutronen.

2.7 Zusammenfassung

Historische Herleitung von de Brogliewellen = $3 \times$ Einstein

De Brocliewelle: Quantenmechanischer Zustand mit scharfen Impuls

Dispersionsrelation für massive Teilchen

Superposition von ebenen Wellen können physikalische (normierbare) Zustände beschreiben - $|\psi(x)|^2 dx$ ist die Wahlscheinlichkeit ein Teilchen im Intervall [x, x + dx] zu detektieren.

Zerlegung einer allgemeinen Einteilchenwellenfunktion in de Broglie Wellen erlaubt Vorhersage der Dynamik Viele Experimente in Quantenmechanik mit einzelnen Teilchen, können mit diesen minimalen Vorraussetzungen verstanden werden

3 Allgemeine Quantenmechanik

3.1 Quantenmechanischer Zustand und dessen Darstellung

 $Be sher nur den Fall der Ausbreitung eines massiven Teilchens \rightarrow Wellenmechanik. Quantenmechanik ist allgemeiner!$

Das System (zum Beispiel Teilchen, drehendes Molekül, . . .) wird beschrieben durch einen Quantenmechanischen Zustand $|\psi\rangle$. Er beinhaltet alles, was wir vom System wissen können.

 $|\psi\rangle$ nennt man "ket", eingeführt von Dirac.

 $|\psi\rangle^* = \langle \psi|$ nennt man "bra".

Skalarprodukt: $\langle \psi | \psi \rangle$

2D Raum:

Darstellung des Punktes in einem Koordinatensystem durch einen Vektor:

kartesich: (x, y) polar: (r, φ)

$$\vec{P} = x \, \vec{e}_x + y \, \vec{e}_y$$

x,y: Koordinaten, \vec{e}_x, \vec{e}_y : Basisvektoren, alternativ

$$\vec{P} = r \, \vec{e}_r + \varphi + \vec{e}_{\varphi}$$

Skalarprodukt

$$\langle \vec{e}_x,\,\vec{e}_x
angle = \vec{e}_x\cdot\vec{e}_x = 1$$
 Normiert $\langle \vec{e}_x,\,\vec{e}_y
angle = 0$ Orthogonal $\langle \vec{v},a\,\vec{w}+b\,\vec{x}
angle = a\langle \vec{v},\,\vec{w}
angle + b\langle \vec{v},\,\vec{x}
angle$

"nützlich" um Koordinaten zu extrahieren:

$$\langle \vec{e}_x, \vec{P} \rangle = \vec{e}_x \cdot (x \vec{e}_x + y \vec{e}_y) = x$$

Quantenmechanik

Darstellung des Zustandes $|\psi\rangle$ in einer Basis. Bisher: |Wellenpaket \rangle .

Ortsdarstellung: $\psi(x) = |\psi|e^{i\phi}$

Impulsdarstellung: $\tilde{\psi}(k) = |\tilde{\psi}|e^{i\phi}$

$$\langle \varphi | \psi \rangle = \int \varphi^*(\vec{x}) \psi(\vec{x}) \mathrm{d}^3 x$$

Ortsdarstellung

$$= \int \tilde{\varphi}^*(\vec{k}) \tilde{\psi}(\vec{k}) \mathrm{d}^3 k$$

Impulsdarstellung

"nützlich" um Wahrscheinlichkeitsamplituden zu extrahieren

Beispiel 3.1 (1D-Wellenpaket) Basis: Zustände mit wohldefiniertem Impuls $\hbar k$

$$|k
angle \stackrel{\wedge}{=} \,$$
 de Broglie Wellen

Wellenpaket ist eine Summe (Superposition) von de Broglie Wellen

$$|\text{Wellenpaket}\rangle = |\psi_{WP}\rangle = \int_{-\infty}^{+\infty} \tilde{\psi}(k)|k\rangle \mathrm{d}k$$
 Koordinate

 $\stackrel{\wedge}{=}$ Darstellung von $|\psi_{WP}\rangle$ in Impulsbasis.

Korrdinate / Wahrscheinlichkeits-Amplitude von $|k'\rangle \to \text{Impuls } \hbar k'$ zu messen:

$$\langle k'|\psi_{WP}\rangle = \langle k'|\int \tilde{\psi}(k)|k\rangle \,dk = \int \langle k'|\tilde{\psi}(k)|k\rangle \,dk$$

$$= \int \tilde{\psi}(k)\langle k'|k\rangle \,dk$$

$$\langle k'|k\rangle = \int \frac{1}{\sqrt{2\pi}} e^{-ik'x} \frac{1}{\sqrt{2\pi}} e^{ikx} dx = \frac{1}{2\pi} \int e^{i(k-k')x} dx = \delta(k-k')$$

$$\langle k'|\psi_{WP}\rangle = \int \tilde{\psi}(k)\delta(k-k') dk = \tilde{\psi}(k')$$

Ortsdarstellung von $|\psi_{WP}\rangle$ "Ortskoordinate": $\langle x|\psi_{WP}\rangle$

$$\langle x|\psi_{WP}\rangle = \psi_{WP}(x) = \langle x|\int_{-\infty}^{+\infty} \tilde{\psi}(k)|k\rangle \,\mathrm{d}k = \int_{-\infty}^{+\infty} \tilde{\psi}(k) \underbrace{\langle x|k\rangle}_{\frac{1}{\sqrt{2\pi}}e^{ikx}} \,\mathrm{d}k$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \tilde{\psi}(k)e^{ikx} \,\mathrm{d}k$$

Ortswellenfunktion $\psi(x)$ ist eine Darstellung von $|\psi_{WP}\rangle \stackrel{\wedge}{=}$ Ortsdarstellung. $\tilde{\psi}(k)$ ist eine andere Darstellung vom Zustand $|\psi_{WP}\rangle \stackrel{\wedge}{=}$ Impulsdarstellung. Das Ergebnis von Rechnungen hängt nicht ab von der Darstellung / Basis ab \rightarrow die Berechnung kann in einer bestimmten Basis sehr einfach sein. Zum Beispiel: Wellenpaket Dynamik ist in der Impulsdarstellung einfach.

3.2 Observable (beobachtbare Gröhen) und Operatoren

Observablen können mit Hilfe von Operatoren extrahiert werden.

Beispiel 3.2 (Impuls-Operator) \hat{p} . Das symbolisiert Operator $|\psi\rangle \mapsto |\psi'\rangle$. Eingenschaften:

Zahl entspricht Impuls
$$[\log m \, s^{-1}]$$

$$\hat{p}|k\rangle = \hbar k \, |k\rangle$$

$$\downarrow$$
 Ortsdarstelung de Broglie Welle

 $|k\rangle$ ist ein spezieller Zustand, weil der Impulsoperator den Zustand nicht "ändert", sondern nur mit einer Zahl multipliziert. Daraus Folgt, dass der Zustand $|k\rangle$ einem wohldefiniereten/scharfen Impuls entspricht. $|k\rangle$ nennt man Impuls-Eigenzustand. Erwartungswert: Was erwarten man für den Mittelwert des Impulses?

Mittelwert Für de Broglie Welle:
$$\tilde{\psi}(k) = \delta(k'-k)$$

$$\bar{p} = \int_{-\infty}^{+\infty} pP(p) \mathrm{d}p = \hbar \int_{-\infty}^{+\infty} k' \left| \tilde{\psi}(k') \right|^2 \mathrm{d}k' = \hbar k$$
Probability
Wahrscheinlichkeit

In Dirac Notation

$$\langle k|\hat{p}|k\rangle = \langle k|\hbar k|k\rangle = \hbar k \underbrace{\langle k|k\rangle}_{\mathbb{I}}$$

Erwartungswert / Mittelwert ist $\vec{p} = \hbar k \implies$ zwei Möglichkeiten:

Obwohl beide den gleichen Mittelwert können diese Messreihen nicht das gleiche System beschreiben. \rightarrow Berechne Varianz:

$$VAR(p) = \langle \vec{p}^2 \rangle - \langle \hat{p} \rangle^2$$

Für Impulseigenzustand $|k\rangle$

Notation $\langle \hat{p} \rangle := \langle \psi | \hat{p} | \psi \rangle$

Jetzt speziell $|\psi\rangle = |k\rangle$

$$\langle \hat{p}^2 \rangle = \langle k | \hat{p} \hat{p} | k \rangle = \langle k | \hat{p} \hbar | k \rangle = \hbar k \, \langle k | \hat{p} | k \rangle = \hbar^2 k^2 \, \underbrace{\langle k | k \rangle}_{\mathbb{I}}$$

$$\langle \hat{p} \rangle^2 = (\langle k | \hat{p} | k \rangle)^2 = (\hbar k)^2 \, \underbrace{\langle k | k \rangle}_{\mathbb{I}}$$

$$\overline{\text{VAR}(p) = 0} \qquad \text{für Zustand } |k \rangle$$

Alle Messungen ergeben exakt den gleichen Wert; es gibt keine Streuung der Messwerte \implies Impuls scharf / wohldefiniert.

Bemerkung 3.3 Dieser Zustand existiert nur in beliebig guter Nährung!

Darstellung von Operatoren

$$\hat{p}|k\rangle = \hbar k |k\rangle$$

Darstellung des Impulsoperator in Impulsdarstellung $\stackrel{\wedge}{=}$ einfach nur Zahl. Wie sieht das in Ortsdarstellung aus?

$$|k\rangle \mapsto e^{ikx} |x\rangle$$

$$\hat{p} |k\rangle = \hbar k |k\rangle \mapsto \hbar k \left(e^{ikx} |x\rangle \right) = -i\hbar \frac{\partial}{\partial x} \left(e^{ikx} |x\rangle \right)$$

Impulsoperator in Ortsdarstellung:

$$\hat{p} := -i\hbar \frac{\partial}{\partial x}$$
Ortsdarstellung

Bemerkung 3.4

$$\begin{split} \langle x|\hat{p}|\psi\rangle &= \int \mathrm{d}p \, \langle x|p\rangle \, \langle p|\hat{p}|\psi\rangle \\ &= \frac{1}{\sqrt{2\pi}} \int \mathrm{d}k e^{ikx} \hbar k \psi(k) = -i\hbar \frac{\partial}{\partial x} \psi(x) \end{split}$$

Impuls Erwartungswert für allgemeine Wellenfunktion $\psi(x)$ für ein Teilchen:

Bezüglich einem $ket\psi$

$$\begin{split} & \stackrel{\uparrow}{\bar{p}_x} = \langle \psi | \hat{p}_x | \psi \rangle = \int_{-\infty}^{+\infty} \psi^*(x) \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right) \psi(x) \mathrm{d}x \\ & \text{Ortsdarstellung} \\ & = \int_{-\infty}^{+\infty} \underbrace{\frac{1}{\sqrt{2\pi}} \int \tilde{\psi}^*(k') e^{ik'x} \mathrm{d}k'}_{\psi^*(x)} \frac{\hbar}{i} \frac{\partial}{\partial x} \underbrace{\frac{1}{\sqrt{2\pi}} \int \tilde{\psi}(k'') e^{ik''x} \mathrm{d}k''}_{\psi(x)} \\ & = \int_{-\infty}^{+\infty} \mathrm{d}k' \int_{-\infty}^{+\infty} \mathrm{d}k'' \tilde{\psi}^*(k') \tilde{\psi}(k'') \hbar k'' \underbrace{\frac{1}{2\pi} \int e^{i(k''-k')x} \mathrm{d}x}_{\delta(k''-k')} \\ & = \int_{-\infty}^{+\infty} \mathrm{d}k' \underbrace{\tilde{\psi}^*(k') \tilde{\psi}(k')}_{P(k')} \hbar k' = \int_{-\infty}^{+\infty} \mathrm{d}k' (\hbar k') P(k') = \langle \hbar k \rangle \end{split}$$

Gleichzeitige Messung von 2 Observablen \hat{A} und \hat{B} . Wenn es einen Eigenzustand zu \hat{A} und \hat{B} gibt, dann ist das möglich:

$$\hat{A} |a, b\rangle = a |a, b\rangle$$

 $\hat{B} |a, b\rangle = b |a, b\rangle$

aber auch:

$$\begin{split} \hat{A}\hat{B} \, |a,b\rangle &= \hat{A}b \, |a,b\rangle = ab \, |a,b\rangle \\ \hat{B}\hat{B} \, |a,b\rangle &= \hat{B}a \, |a,b\rangle = ba \, |a,b\rangle \\ \hat{A}\hat{B} - \hat{B}\hat{A} \, |a,b\rangle &= 0 \end{split}$$

 $\hat{A}\hat{B} - \hat{B}\hat{A}$ Kommutator, Kurzschreibweise:

$$[A, B] = 0$$

Für vertauschende Operatoren gibt es gemeinsame scharfe Observablen. Heisenberg Unschärfe für Ort und Impuls

$$\begin{split} [\hat{x}, \hat{p}] &= \hat{x}\hat{p} - \hat{p}\hat{x} \\ &= [x(-i\hbar)\frac{\partial}{\partial x} + i\hbar\frac{\partial}{\partial x}x] \\ &= [-i\hbar x\frac{\partial}{\partial x} + i\hbar + i\hbar x\frac{\partial}{\partial x}] \\ &= i\hbar \end{split}$$

 \implies Operatoren vertauschen nicht! \implies es gibt keinen Eigenzustand zu \hat{x} und \hat{p} ! Theo-Quanten: [A,B]=iconst.

$$\implies VAR(A)VAR(B) \ge \frac{const.}{2}$$

Energie-Operator für ein freies Teilchen, klassisch:

klassisch:
$$H=\frac{p^2}{2m} o ext{Quantenmechanik: } \hat{H}=\frac{\hat{p}^2}{2m}$$

Erwartungswert der Energie für Impuls Eigenzustand:

$$\hat{H}|k\rangle = \frac{1}{2m}\hat{p}\hat{p}|k\rangle = \frac{\hbar^2 k^2}{2m}|k\rangle$$

Auch hier: Zustand unverändert, die ZAhl gibt die Energie $[\mathrm{J}]$ an. \hat{H} in Ortsdarstellung:

$$\frac{\hat{p}\hat{p}}{2m} \xrightarrow{\text{Ortsdarstellung}} \frac{1}{2m} \left(-i\hbar \frac{\partial}{\partial x} - i\hbar \frac{\partial}{\partial x} \right) = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2}$$

Energie Eigenzustand:

$$\hat{E} \left| \psi_E \right\rangle = E \left| \psi_E \right\rangle$$

Beispiel 3.5 (de Broglie Welle)

$$\begin{array}{c} e^{i(k_{dB}x-\omega_{dB}t)} \mapsto \underbrace{\hbar\omega_{dB}}_{\text{Energie}} e^{ik_{dB}x-\omega_{dB}t} \\ \hat{E} = i\hbar\frac{\partial}{\partial t} \end{array}$$

Allgemein auch gültig, das heißt Energie Eigenzustände haben die einfache Zeitentwicklung

$$e^{-i\frac{E}{\hbar}t}$$

Deshalb sind diese Zustände eine gute Basis, um Zeitdynamik zu beschreiben. Generell: Jede klassische Größe

$$a = f(\vec{x}, \vec{p}) \implies \hat{a} = f(\vec{x}, \vec{p})$$

(zum Beispiel Drehimpuls: $\vec{L}=\vec{x}\times\vec{p}$). Es gibt aber auch nicht-klassische Größen (zum Bespiel Spin).

32 Literatur

3.3 Die Schrödiger Gleichung (nicht relativistische Quantenmechanik)

Gesamtenergie: E

$$E = E_{\rm kin} + E_{\rm pot}$$

Allgemeiner: H Hamiltonfunktion

$$H = \frac{\vec{p}^2}{2m} + V(\vec{x}) \mapsto \hat{H} = \frac{\hat{\vec{p}}^2}{2m} + V(\hat{\vec{x}})$$

Operator Gleichung:

$$i\hbar\frac{\partial}{\partial t}\left|\psi\right\rangle = \hat{H}\left|\psi\right\rangle$$

Darstellung im Ortsraum:

$$\begin{split} \hat{\vec{x}} &\mapsto \vec{x} \\ \hat{\vec{p}} &\mapsto -i\hbar \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} = -i\hbar \vec{\nabla} \\ \hat{\vec{p}}^2 &= -\hbar^2 \vec{\nabla}^2 = -\hbar^2 \triangle \end{split}$$

Wichtig

Schrödinger Gleichung für nicht-relativischische Quantenmechanik:

$$i\hbar \frac{\partial}{\partial t} \psi(\vec{x}, t) = -\frac{\hbar^2}{2m} \triangle \psi(\vec{x}, t) + V(\vec{x}) \psi(\vec{x}, t)$$

Damit wird die Dynamik in allgemeinen Potentialen beschrieben. Die Zeitdynamik kann als Interferenz verstanden werden, wenn man die Energie-Eigenzustände $H|\psi_E\rangle=E|\psi_E\rangle$ als Basis verwendet \to Zeitabhängigkeit kommt nur durch die verschiedene Phasenentwicklung der Energie-Eigenzustände zustande.

Literatur

Louis de Broglie. "XXXV. A tentative theory of light quanta". In: Philosophical Magazine Series 6 47.278 (1924), S. 446-458.