STAT 6021: Final Project EDA

Group 1

Libraries

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                        v readr
                                    2.1.5
## v forcats 1.0.0
                        v stringr 1.5.1
## v ggplot2 3.5.1
                        v tibble 3.2.1
## v lubridate 1.9.3
                        v tidyr
                                    1.3.1
## v purrr
              1.0.2
## -- Conflicts -----
                                           -----ctidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(ggcorrplot)
library(ResourceSelection)
```

Data

ResourceSelection 0.3-6

Looking at sleep efficiency, with hours of sleep as the response variable

2023-06-27

```
## [1] "Age" "Gender" "Sleep.duration"
## [4] "Sleep.efficiency" "REM.sleep.percentage" "Deep.sleep.percentage"
## [7] "Light.sleep.percentage" "Awakenings" "Caffeine.consumption"
## [10] "Alcohol.consumption" "Smoking.status" "Exercise.frequency"
```

Cleaning

```
str(sleep)
## 'data.frame':
                   452 obs. of 13 variables:
                           : int 65 69 40 40 57 36 27 53 41 11 ...
## $ Age
## $ Gender
                                  "Female" "Male" "Female" "Female" ...
## $ Sleep.duration
                           : num 6 7 8 6 8 7.5 6 10 6 9 ...
## $ Sleep.efficiency
                           : num 0.88 0.66 0.89 0.51 0.76 0.9 0.54 0.9 0.79 0.55 ...
## $ REM.sleep.percentage : num 0.18 0.19 0.2 0.23 0.27 0.23 0.28 0.28 0.28 0.18 ...
## $ Deep.sleep.percentage : num 0.7 0.28 0.7 0.25 0.55 0.6 0.25 0.52 0.55 0.37 ...
## $ Light.sleep.percentage: num 0.12 0.53 0.1 0.52 0.18 0.17 0.47 0.2 0.17 0.45 ...
                           : num 0 3 1 3 3 0 2 0 3 4 ...
## $ Awakenings
## $ Caffeine.consumption : num 0 0 0 50 0 NA 50 50 50 0 ...
## $ Alcohol.consumption
                           : num 0 3 0 5 3 0 0 0 0 0 ...
## $ Smoking.status
                           : chr "Yes" "Yes" "No" "Yes" ...
## $ Exercise.frequency
                           : num 3 3 3 1 3 1 1 3 1 0 ...
## $ weighted.sleep
                           : num 5.28 4.62 7.12 3.06 6.08 6.75 3.24 9 4.74 4.95 ...
Summary Statistics
#sleep duration
summary(sleep$Sleep.duration)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
##
    5.000 7.000
                   7.500
                            7.466 8.000 10.000
#sleep efficiency
summary(sleep$Sleep.efficiency)
                             Mean 3rd Qu.
     Min. 1st Qu. Median
                                             Max.
  0.5000 0.6975 0.8200 0.7889 0.9000 0.9900
#weighted sleep
summary(sleep$weighted.sleep)
##
     Min. 1st Qu. Median
                             Mean 3rd Qu.
                                             Max.
                    6.075
##
    2.600
            5.025
                            5.887
                                    6.728
                                            9.200
# Model for sleep duration with consumption predictors
lm.duration <- lm(Sleep.duration ~ Caffeine.consumption + Alcohol.consumption + Smoking.status + Exerci
summary(lm.duration)
##
## lm(formula = Sleep.duration ~ Caffeine.consumption + Alcohol.consumption +
##
      Smoking.status + Exercise.frequency, data = sleep)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
```

```
## -2.54074 -0.47209 0.01386 0.52791 2.58649
##
## Coefficients:
                        Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                        7.575074
                                   0.092103 82.246 <2e-16 ***
## Caffeine.consumption -0.001280
                                   0.001525 -0.839
                                                       0.402
## Alcohol.consumption -0.019320
                                   0.027465 -0.703
                                                       0.482
## Smoking.statusYes
                                                       0.880
                        0.014050
                                   0.092724
                                             0.152
## Exercise.frequency
                       -0.034329
                                   0.030372 -1.130
                                                       0.259
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8824 on 402 degrees of freedom
     (45 observations deleted due to missingness)
## Multiple R-squared: 0.005622,
                                   Adjusted R-squared: -0.004272
## F-statistic: 0.5683 on 4 and 402 DF, p-value: 0.6858
# Model for weighted sleep with consumption predictors
lm.weightsleep <- lm(weighted.sleep ~ Caffeine.consumption + Alcohol.consumption + Smoking.status + Exe
summary(lm.weightsleep)
##
## Call:
## lm(formula = weighted.sleep ~ Caffeine.consumption + Alcohol.consumption +
       Smoking.status + Exercise.frequency, data = sleep)
##
## Residuals:
##
               1Q Median
      Min
                               3Q
                                      Max
## -2.4926 -0.7818 -0.0038 0.7429 3.3723
## Coefficients:
##
                         Estimate Std. Error t value Pr(>|t|)
                        6.0456482  0.1145083  52.797  < 2e-16 ***
## (Intercept)
## Caffeine.consumption 0.0007615 0.0018962
                                              0.402
                                                        0.688
## Alcohol.consumption -0.2370237 0.0341465 -6.941 1.57e-11 ***
## Smoking.statusYes
                       -0.5071377   0.1152799   -4.399   1.39e-05 ***
                        0.1560424 0.0377602
## Exercise.frequency
                                              4.132 4.37e-05 ***
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 1.097 on 402 degrees of freedom
     (45 observations deleted due to missingness)
## Multiple R-squared: 0.1842, Adjusted R-squared: 0.176
## F-statistic: 22.68 on 4 and 402 DF, p-value: < 2.2e-16
Model Assumptions
# Only predictors
sleep2 \leftarrow sleep[,c(13,1,9,10,11,12)]
# Drop missing predictors
```

sleep2 <- na.omit(sleep2)</pre>

```
long <- gather(sleep2, key="predictor", value="value",</pre>
               Age, Caffeine.consumption, Alcohol.consumption,
               Smoking.status, Exercise.frequency)
ggplot(long, aes(x=value, y=weighted.sleep, color=predictor)) +
  geom_point() +
  facet_wrap(~predictor, scale="free_x")
```


Age

Alcohol.consu Caffeine.cons

Exercise.frequ Smoking.statu

Linearity assumption

The linearity assumption isn't totally met, due to the nature of our predictors. Besides age, which doesn't seem to exhibit any sort of linear relationship, our data is broken up into distinct categories so our x-axis wouldn't be continuous. As a result, a linear relationship isn't super clear.

```
model_pred <- mutate(sleep2, predictions=fitted(lm.weightsleep),</pre>
                         resid=residuals(lm.weightsleep))
ggplot(model_pred, aes(x=predictions, y=resid)) +
  geom_point() +
  geom_hline(yintercept = 0, color="aquamarine4")
```


Equal variance and Independence

The equal variance and independence assumptions appear to be met as the residuals appear to be scattered around 0 and there are no apparent clusters

```
ggplot(model_pred, aes(sample=resid)) +
stat_qq() + stat_qq_line(color="red")
```


Normality assumption

Our model fits the normality assumption as it very closely follows the line of normality for the Q-Q plot. This means that our residuals follow a normal distribution and with it meeting all of the assumptions except for potentially the linear assumption. Therefore, we deem this model to be acceptable

Case A: Unhealthy

Case B: Health nut

Case C: Average College Student on weekend