Prova di Comunicazioni Numeriche

21 Febbraio 2013

Es. 1 - Siano $x(t) = \sum_{n=-\infty}^{+\infty} a(t-9nT)$, dove il segnale a(t) e' rappresentato in Fig. 1 e $h(t) = \frac{1}{3T} sinc\left(\frac{t}{3T}\right)$. Con riferimento alla Fig. 2, calcolare: a) Lo spettro X(f); b) L'espressione analitica dell'uscita y(t); c) La energia e la potenza di y(t).

Fig. 2

Es. 2 - Al ricevitore di Figura 3 è applicato il segnale PAM in banda base $r(t) = \sum_i x[i]p(t-iT) + w(t)$ dove x[i] sono simboli indipendenti ed equiprobabili e appartengono all'alfabeto A = [0,2]. Il rumore w(t) introdotto dal canale è Gaussiano a media nulla con densità spettrale di potenza $S_w(f) = \frac{N_0}{2}$ e l'impulso trasmesso è definito come p(t) = 2Bsinc(2Bt) + Bsinc(Bt). Il filtro in ricezione è $H_r(f) = rect\left(\frac{f}{2B}\right)$. La strategia di decisione è $\hat{x}[k] = \begin{cases} 0 & y[k] \leq \lambda \\ 2 & y[k] > \lambda \end{cases}$ con $\lambda = 1$. Calcolare:

- 1) L'energia media trasmessa per simbolo in un intervallo di segnalazione, E_s
- 2) L'istante di campionamento ottimo per non avere ISI.
- 3) Calcolare la probabilità di errore, $P_E(b)$.

Fig. 3