

Distributing Candies

Teta Marija priprema n kutija bombona za učenike iz obližnje škole. Kutije su numerisane od 0 do n-1 i na početku su prazne. Kutija i ($0 \le i \le n-1$) ima kapacitet od c[i] bombona.

Teta Marija provodi q dana pripremajući kutije. Na dan j ($0 \le j \le q-1$), ona izvršava radnju specificiranu sa tri cjelobrojne vrednosti $l[j],\ r[j]$ i v[j] gdje $0 \le l[j] \le r[j] \le n-1$ i $v[j] \ne 0$. Za svaku kutiju k zadovoljavajući $l[j] \le k \le r[j]$:

- Ako je v[j]>0, tetka Marija dodaje bombone u kutiju k, jednu po jednu, sve dok ne doda tačno v[j] bombona ili kutija postane puna. Drugim riječima, ako je kutija imala p bombona prije akcije, imaće $\min(c[k], p+v[j])$ bombona nakon akcije.
- Ako je v[j] < 0, tetka Marija vadi bombone iz kutije k, jednu po jednu, dok ne ukloni tačno -v[j] bombona ili kutija ne postane prazna. Drugim riječima, ako je kutija imala p bombona prije akcije, imaće $\max(0, p + v[j])$ bombona nakon akcije.

Vaš zadatak je da odredite broj bombona u svakoj kutiji nakon q dana.

Detalji implementacije

Trebali biste primeniti sledeći funkciju:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: niz dužine n. Za $0 \leq i \leq n-1$, c[i] označavaju kapacitet kutije i.
- $l,\ r$ i v: tri niza dužine q. Na dan j, za $0\leq j\leq q-1$, tetka Marija izvodi radnju navedenu cijelim brojevima $l[j],\ r[j]$ i v[j], kao što je gore opisano.
- Ova funkcija treba da vrati niz dužine n. Označi niz sa s. Za $0 \le i \le n-1$, s[i] bi trebalo da bude broj bombona u kutiji i poslije g dana.

Primjeri

Primjer 1

Razmotrimo sledeći poziv funkcije:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Ovo znači da kutija 0 ima kapacitet od 10 bombona, kutija 1 ima kapacitet od 15 bombona i kutija 2 ima kapacitet od 13 bombona. Na kraju dana 0, kutija 0 sadrži $\min(c[0], 0 + v[0]) = 10$

bombona, kutija 1 sadrži $\min(c[1],0+v[0])=15$ bombona, a kutija 2 sadrži $\min(c[2],0+v[0])=13$ bombona. Na kraju dana 1, kutija 0 sadrži $\max(0,10+v[1])=0$ bombona, kutija 1 sadrži $\max(0,15+v[1])=4$ bombona. Obzirom da je 2>r[1], nema promjene stanja bombona u kutiji 2. Broj bombona na kraju svakog dana nalazi se u sljedećoj tabeli:

Dan	Kutija 0	Kutija 1	Kutija 2
0	10	15	13
1	0	4	13

Prema tome, procedura treba vratiti [0,4,13].

Ograničenja

- $1 \le n \le 200\,000$
- $1 \le q \le 200000$
- $1 \leq \overset{ ext{-}}{c}[i] \leq 10^9$ (za sve $0 \leq i \leq n-1$)
- $0 \le l[j] \le r[j] \le n-1$ (za sve $0 \le j \le q-1$)
- $-10^9 \le v[j] \le 10^9, v[j] \ne 0$ (za sve $0 \le j \le q-1$)

Podzadaci

- 1. (3 boda) $n, q \leq 2000$
- 2. (8 bodova) v[j]>0 (za sve $0\leq j\leq q-1$)
- 3. (27 bodova) $c[0] = c[1] = \ldots = c[n-1]$
- 4. (29 bodova) l[j]=0 i r[j]=n-1 (za sve $0\leq j\leq q-1$)
- 5. (33 boda) Nema dodatnih ograničenja

Program za ocjenjivanje (Sample Grader)

Program za ocjenjivanje čita ulaz u sljedećem obliku:

- Linija 1: n
- Linija 2: c[0] c[1] \dots c[n-1]
- Linija 3: *q*
- Linija 4+j ($0 \leq j \leq q-1$): $l[j] \; r[j] \; v[j]$

Program za ocjenjivanje ispisuje vaš odgovor u sljedećem obliku:

• Linija 1: s[0] s[1] ... s[n-1]