

《线性代数》

5-相关性、基和维度 (Independence, Basis and Dimension)

杨启哲

上海师范大学信机学院计算机系

2024年3月14日

复习-向量空间(I)

- 一个向量空间 V 是一个非空集合,其中的元素称之为向量,并且其满足以下两种运算:
 - 向量加法: 对于任意的 $u, v \in V$, $u + v \in V$ 。
 - 数与向量的乘法 (数乘): 对于任意的 $\mathbf{u} \in V$ 和任意的实数 $\mathbf{c} \in \mathbb{R}, \ \mathbf{c} \mathbf{u} \in \mathbf{V}$ 。

复习-向量空间(II)

其中的加法满足如下的性质:

1. 加法满足交换律:

$$u + v = v + u$$

2. 加法满足结合律:

$$u + (v + w) = (u + v) + w$$

- 3. 加法存在一个零元素(唯一的) $\mathbf{0}$, 其满足 $\mathbf{u} + \mathbf{0} = \mathbf{u}$ 对任意的 $\mathbf{u} \in \mathbf{V}$ 。
- 4. 加法存在一个负元素(逆元),即对于任意的 $\mathbf{u} \in \mathbf{V}$,存在一个 $\mathbf{v} \in \mathbf{V}$,使得 $\mathbf{u} + \mathbf{v} = \mathbf{0}$,特别的,将 \mathbf{v} 记为 $-\mathbf{u}$ 。

复习-向量空间(III)

其中的数乘满足如下的性质:

- 5. 数乘存在单位元 1, 使得 1u = u 对于任意的 $u \in V$ 。
- 6. 数乘满足结合律:

$$c_1(c_2\mathrm{u})=(c_1c_2)\mathrm{u}$$

7. 数乘是线性的,即对于任意的 $c \in \mathbb{R}$ 和 $u, v \in V$ 均有:

$$c(u + v) = cu + cv$$

8. 数乘对于加法满足分配律,即对于任意的 $c_1, c_2 \in \mathbb{R}$ 和 $u \in V$ 均有:

$$(c_1 + c_2)u = c_1u + c_2u$$

复习-子空间

定义 1

[子空间 (Subspace)].

给定一个向量空间 V, 如果 W 是 V 的一个非空子集,并且 W 满足如下两个条件:

- 1. 对于任意的 $u, v \in W$, $u + v \in W$ 。
- 2. 对于任意的 $c \in \mathbb{R}$ 和 $u \in W$, $cu \in W$ 。

则称 $W \in V$ 的一个子空间。

引理 2.

令 V 是一个向量空间,W 是 V 的一个子集。则 W 是 V 的一个子空间当且仅当: 对于任意的 $k \ge 0, c_1, \dots, c_k \in \mathbb{R}$ 和 $v_1, \dots, v_k \in W$ 均有:

$$c_1v_1+\dots+c_kv_k\in W$$

特别的, 当 k=0 时我们令上述和为 $\mathbf{0}$.

复习-子空间的生成

给定向量空间 V 和其子集 $S \subseteq V$,定义:

$$\text{span}(S) = \{c_1v_1 + \dots + c_kv_k \mid k \geqslant 0, \ c_1, \dots, c_k \in \mathbb{R}, \ v_1, \dots, v_k \in S\}$$

则:

定理 3.

 $\Leftrightarrow S \subseteq V$,则 span(S) 是 V 的包含 S 的最小子空间,即:

- 1. span(S) 是 V 的子空间。
- 2. 令 $W \subseteq V$ 是一个 V 的子空间,且 $S \subseteq W$,则 $\operatorname{span}(S) \subseteq W$ 。

子空间的生成(I)

现在考虑向量空间 №3:

- ・ \diamondsuit $S = \{(1,0,0), (0,1,0), (0,0,1)\}$, 则 span(S) 是什么?
- \diamondsuit S = {(1,0,0), (0,1,0)}, 则 span(S) 是什么?
- \diamondsuit S = {(1,0,0), (0,1,0), (1,1,0)}, 则 span(S) 是什么?
- \diamondsuit S = {(1,0,1), (0,1,1), (0,0,1)}, 则 span(S) 是什么?

子空间的生成 (I)

一个子空间究竟需要多少个向量生成?

主要内容

• 第6章6.2

我们先来回顾以下线性组合的概念,固定一个向量空间V。

定义 4.

令 $v_1,\ldots,v_n\in V$. v_1,\ldots,v_n 的线性组合是一个具有如下形式的向量:

$$c_1 v_1 + \dots + c_n v_n$$

其中 $c_1, \ldots, c_n \in \mathbb{R}$ 。

说明

可以看到 $\text{span}(\{v_1,\ldots,v_n\})$ 实际上就是 v_1,\ldots,v_n 的所有线性组合的集合。

定义 5

[线性无关 (Linearly Independent)].

给定一个向量组 v_1, \ldots, v_n 。如果对于任意的 $c_1, \ldots, c_n \in \mathbb{R}$,当且仅当 $c_1 = \cdots = c_n = 0$ 时有:

$$c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n = \mathbf{0}$$

则称 v_1, \ldots, v_n 是线性无关的。

例 6.

- $\{(1,0,0),(0,1,0),(0,0,1)\}$ 是线性无关的。
- $\{(1,0,0),(1,1,0)\}$ 是线性无关的。
- $\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\}$ 不是线性无关的。

更多的例子

- 单个向量是线性无关的么?
- 包含 0 的向量组是线性无关的么?

引理 7.

线性无关的向量组的任何一个子集都是线性无关的。

线性无关的向量组与方程的解

我们知道,一个矩阵方程 Ax 可以看成是其列向量 a_1, \ldots, a_n 的线性组合,所以我们有:

引理 8.

给定一个矩阵 A,则其列向量是线性无关的当且仅当方程 Ax = 0 只有唯一解 x = 0。

线性相关的定义

我们也可以给出线性相关的定义:

定义 9

[线性相关 (Linearly Dependent)].

给定一个向量组 v_1, \ldots, v_n 。如果存在 $c_1, \ldots, c_n \in \mathbb{R}$ 满足至少一个 $c_i \neq 0$,使得:

$$c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n = \mathbf{0}$$

则称 v_1, \ldots, v_n 是线性相关的。

例 10.

- $\{(1,0,0),(0,1,0),(0,0,1),(1,1,1)\}$ 是线性相关的。
- $\{(2,2,0),(1,1,0)\}$ 是线性相关的。
- 包含 0 的向量组是线性相关的。

线性相关的性质

引理 11.

 v_1,\dots,v_n 是线性相关的当且仅当至少有一个 v_i 可以表示成其余向量的线性组合。

引理 12.

给定一个矩阵 A,则其列向量是线性相关的当且仅当方程 $Ax=\mathbf{0}$ 有非零解。

向量空间的基和维度

生成的空间

给定一个集合 S, 回顾 span(S):

$$span(S) = \{c_1v_1 + \dots + c_kv_k \mid k \ge 0, c_1, \dots, c_k \in \mathbb{R}, v_1, \dots, v_k \in S\}$$

我们知道 span(S) 是一个向量空间,进一步的,我们称 span(S) 是由 S 生成的向量空间。

定义 13

给定一个向量集合 S 和向量空间 V,如果 V = span(S),则称 S 生成了向量空间 V

向量空间的基

定义 14

[向量空间的基 (A Bssis for a Vector Space)].

- 一组向量是一个向量空间的基 如果其满足:
 - 1. 这组向量是线性无关的。
 - 2. 这组向量生成了向量空间 V。

例 15.

- 1. $\{(1,0,0),(0,1,0),(0,0,1)\}$ 是 \mathbb{R}^3 的基。
- 2. $\{(1,0),(0,1)\}$ 是 \mathbb{R}^2 的基。
- 3. $\{(1,0),(2,4)\}$ 也是 \mathbb{R}^2 的基。

一些更多的例子

例 16.

- 1. M_{m×n}(ℝ) 的基是什么?
- 2. **Z** = {**0**} 的基是什么?
- 3. 考虑之前提到的向量空间:

$$V = \mathbb{R}^+ = \{ x \in \mathbb{R} \mid x > 0 \}$$

其中的加法和数乘运算定义为:

$$x \oplus y = x \times y, \ c \otimes x = x^c$$

V 的基是什么?

向量空间的维度

我们现在来定义向量空间的维度,直观上来讲,向量空间的维度就是需要多少个向量才能生成这个向量空间。

定义 17

[维度 (Dimension)].

给定一个向量空间 V,其维度,记作 $\dim(V)$,是指 V 的一个基中的向量个数。

问题 18

上述定义会不会产生问题?

显然只有 V 中所有基的向量个数都相同时,上述定义才是合理的。

Steinitz 交换引理

引理 19

[Steinitz Exchange Lemma].

令 e_1, \ldots, e_n 是向量空间 V 的一个基, v_1, \ldots, v_m 是 V 的一个线性无关的向量组,其中 $1 \le m \le n$ 。则存在 $1 \le i_1 < i_2 < \cdots < i_{n-m} < n$,使得 $v_1, \ldots, v_m, e_{i_1}, \ldots, e_{i_{n-m}}$ 是 V 的一个基。

说明

当 m=0 时,上述引理是平凡的。

Steinitz 交换引理的应用

推论 20.

给定一个向量空间 V 和其上的两组基 e_1,\ldots,e_n 和 f_1,\ldots,f_m 。则 n=m。

推论 21.

假设 $dim(V)=\mathfrak{n}$,并且 $v_1,\ldots,v_\mathfrak{m}\in V$ 是线性无关的,则: $\mathfrak{m}\leqslant\mathfrak{n}$.

推论 22.

假设 $dim(V)=\mathfrak{n},\ \ \text{并且 }v_1,\dots,v_\mathfrak{n}\in V$ 是线性无关的,则 $v_1,\dots,v_\mathfrak{n}$ 是 V 的一个基。

现在我们来证明 Steinitz 交换引理。

Steinitz 交换引理的证明(I)

Steinitz 交换引理的证明. 我们对 m 使用归纳法。

m=1 的情况:

由于 e_1, \ldots, e_n 是 V 的一个基,从而存在 c_1, \ldots, c_n 使得:

$$\mathbf{v}_1 = \mathbf{c}_1 \mathbf{e}_1 + \dots + \mathbf{c}_n \mathbf{e}_n$$

显然 $v_1 \neq \mathbf{0}$,从而存在 $c_i \neq 0$,因此我们有:

$$e_{i} = \frac{1}{c_{i}}v_{1} - \frac{c_{1}}{c_{i}}e_{1} - \dots - \frac{c_{i-1}}{c_{i}}e_{i-1} - \frac{c_{i+1}}{c_{i}}e_{i+1} - \dots - \frac{c_{n}}{c_{i}}e_{n}$$

即: $v_1, e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_n$ 是 V 的一组基。

Steinitz 交换引理的证明 (II)

Steinitz 交换引理的证明 (续). 我们还需要证明:

$$v_1, \dots, v_m, e_{i_1}, \dots, e_{i_{n-m}}$$

是线性无关的。考察如下的线性组合:

$$c_1e_1 + \cdots + c_{i-1}e_{i-1} + cv_1 + \cdots + c_ne_n = \mathbf{0}$$

- 如果 c = 0,则由于 e_i 是线性无关的,从而 $c_1 = \cdots = c_{i-1} = c_{i+1} = \cdots = c_n = 0$ 。
- 如果 $c \neq 0$,由于 $v_1 \neq \mathbf{0}$,从而 v_1 可以由 $e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_n$ 的线性组合表示,从而 e_i 可以由 $e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_n$ 的线性组合表示,矛盾。

Steinitz 交换引理的证明 (III)

Steinitz 交换引理的证明 (续).

归纳步骤:

假设命题对于 \leq m -1 的情况成立,对于 = m 的情况,令 v_1,\ldots,v_m 是线性无关的,注意到 v_1,\ldots,v_{m-1} 也是线性无关的,从而由归纳假设,存在 $1 \leq i_1 < \cdots < i_{n-m+1} \leq n$,使得:

$$v_1,\dots,v_{m-1},e_{\mathfrak{i}_1},\dots,e_{\mathfrak{i}_{n-m+1}}$$

是 V 中的一组基。从而存在不全为 0 的 $c_1,\ldots,c_{m-1},d_1,d_2,\ldots,d_{n-m+1}$ 使得:

$$v_m = c_1 v_1 + \dots + c_{m-1} v_{m-1} + d_1 e_{i_1} + \dots + d_{m-1} e_{i_{n-m+1}}$$

Steinitz 交换引理的证明 (IV)

Steinitz 交换引理的证明 (续).

注意到存在 $l \in [n-m+1]$ 使得 $d_l \neq 0$,从而:

$$e_{i_{l}} = \frac{1}{d_{l}}v_{m} - \frac{c_{1}}{d_{l}}v_{1} - \cdots - \frac{c_{m-1}}{d_{l}}v_{m-1} - \frac{d_{1}}{d_{l}}e_{i_{1}} - \cdots - \frac{d_{l-1}}{d_{l}}e_{i_{l-1}} - \frac{d_{l+1}}{d_{l}}e_{i_{l+1}} - \cdots - \frac{d_{n-m+1}}{d_{l}}e_{i_{n-m+1}}e_{i_{n-m+$$

即: e_{i_1} 可以由 $v_1, \ldots, v_m, e_{i_1}, \ldots, e_{i_{l-1}}, e_{i_{l+1}}, \ldots, e_{i_{n-m+1}}$ 表示。

进一步可以验证:

$$v_1, \ldots, v_m, e_{i_1}, \ldots, e_{i_{l-1}}, e_{i_{l+1}}, \ldots, e_{i_{n-m+1}}$$

是 V 的一组基,即归纳步骤成立,引理得证。

向量空间 Z 的维度(I)

回顾向量空间 Z:

$$\dim(Z) = \{0\}$$

定理 23.

$$\dim(Z) = 0.$$

其中的关键在于:

$$\sum_{v \in \emptyset} v = \mathbf{0}$$

$\sum_{\mathbf{v} \in \emptyset} \mathbf{v} = \mathbf{0}$ 的原因

关键在于加法是可交换的,令T是一个有限的向量集,考察T的一个划分:

$$T = T_1 \cup T_2$$
, 其中 T_1, T_2 满足: $T_1 \cap T_2 = \emptyset$, $T_1 \cup T_2 = T$

则我们有:

$$\sum_{v \in T} v = \sum_{v \in \mathsf{T}_1} v + \sum_{v \in \mathsf{T}_2} v$$

显然有:

$$\sum_{\mathbf{v} \in \mathsf{T}} \mathbf{v} = \sum_{\mathbf{v} \in \emptyset} \mathbf{v} + \sum_{\mathbf{v} \in \mathsf{T}} \mathbf{v}$$

从而:

$$\sum_{\mathbf{v} \in \emptyset} \mathbf{v} = \sum_{\mathbf{v} \in \mathsf{T}} \mathbf{v} - \sum_{\mathbf{v} \in \mathsf{T}} \mathbf{v} = \mathbf{0}$$

无限维的向量空间(1)

回顾之前函数构成的向量空间:

$$F = F(\mathbb{N} \to R) = \{f \mid f : \mathbb{N} \to \mathbb{R}\}\$$

其中:

• 给定 $f_1, f_2 \in F$, 定义函数 $f_1 + f_2 : \mathbb{F} \to \mathbb{R}$ 为:

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

• 对于任意的 $f \in F$ 和 $c \in \mathbb{R}$, 定义函数 $cf : \mathbb{N} \to \mathbb{R}$ 为:

$$(cf)(x) = cf(x)$$

F 的维度是多少?

无限维的向量空间(II)

事实上,对于任意的 $i \in \mathbb{N}$,定义:

$$f_i: \mathbb{N} \to \mathbb{R}, \ f_i(x) = \left\{ egin{array}{ll} 1, & \text{如果 } x = i \\ 0, & \text{其他情况} \end{array}
ight.$$

则对于任意的 $n \in \mathbb{N}$. 我们有:

$$\mathsf{f}_0,\mathsf{f}_1,\ldots,\mathsf{f}_n$$

是线性无关的。

有限维的向量空间如果一个向量空间存在一个有限的基,则称这个向量空间是<mark>有限维</mark>的。

子空间的维度(I)

现在我们来看一下子空间的维度:

• 假设 $W \in V$ 的一个子空间,那么 W 的维度和 V 的维度有什么关系?

定理 25.

给定一个向量空间 V 和其子空间 W, 如果 V 是有限的,则 W 也是有限的,并且:

$$\dim(W)\leqslant\dim(V)$$

子空间的维度(II)

令量空间 V 的维度 dim(V) = n, 并且其一组基为:

$$w_1, \ldots, w_n$$

我们希望从 V 中慢慢的扩展出一组基

$$\mathrm{v}_1,\dots,\mathrm{v}_k$$

使得:

$$W = \text{span}(\{v_1, \dots, v_k\})$$

子空间的维度(Ⅲ)

定理??的证明. 我们沿用上一页的记号,对 k 进行构造。初始化 k=0,如果:

$$W \neq \operatorname{span}(\{v_1, \ldots, v_k\}).$$

则存在 $v_{k+1} \in W \setminus span(\{v_1, \ldots, v_k\})$ 使得:

$$v_1, \ldots, v_k, v_{k+1}$$

是线性无关的。注意到 dim(V) = n,从而由 Steinitz 交换引理,必然有:

$$k+1\leqslant n$$

从而
$$\dim(W) \leq \dim(V)$$
。

阶段总结

- 线性相关和线性无关的概念。
- · 向量空间的基, Steinitz 交换引理。
- 向量空间的维度, 子空间的维度。