SUBSTITUTE CLAIM AMENDMENT

assuming the amendments made in the amendment filed march 4, 2004 was **not** entered because of poor fax quality

1. (Currently Amended) A receiver operating in an environment where a transmission channel, \mathbf{H} , between a transmitter of information and said receiver has a memory corresponding to n transmitted symbols, said receiver being responsive to an n_o plurality of receiving antennas comprising:

a pre-filter having an $n_o \times n_i$ plurality of FIR filters, F(j,k), where n_i is a number of transmitting antennas whose signals said receiver is processing, j is an index running from 1 to n_o and k is an index running from 1 to n_i , each filter F(j,k) being responsive to a signal that is derived from one of said no antennas receiving antenna j, and applying its output signal to a pre-filter output point k applied to an input point, and each developing an output signal that contributes to one of ni pre-filter outputs; and

decision logic responsive to said $[n_i]$ pre-filter output points.

- 2. (Currently Amended) The receiver of claim 1 further comprising a sampling circuit interposed between said n_o plurality of antennas and said pre-filter that samples received signal at rate $T_s = \frac{T}{l}$, where l is an integer that is greater than 1, and T is symbol rate of a transmitter whose signals said receiver receives.
- 3. (Currently Amended) The receiver of claim [[2 where *l*>1]] 1 further comprising a preprocessor for computing coefficients of said FIR filters that result in an

Al-Dhahir 2

effective transmission channel memory between said transmitter and output of said prefilter of N_b transmitted symbols that is less than n.

- 4. (Currently Amended) The receiver of claim [[1]] $\underline{2}$ further comprising a preprocessor for computing where coefficients of said FIR filters are computed in a processor in response to a block of N_f symbols that is received by said receiver, and installing the computed coefficients in said FIR filters.
 - 5. (Delete) .
- 6. (Currently Amended) The receiver of claim 4 where said coefficients of said FIR filters are computed and installed once every time interval during which transfer characteristics of said transmission channel, H, exhibits a significant change are substantially constant.
 - 7. (Delete) .
 - 8. (Delete) .
 - 9. (Delete) .
 - 10. (Delete) .

- 11. (Currently Amended) The receiver of claim [[10]] 1 wherein said decision logic is adapted to receive from said transmitting antennas transmitted signals that were encoded in a space-time encoding schema.
- 12. (Original) The receiver of claim 2 where said plurality of FIR filters is expressed by matrix W, and W is computed by $\mathbf{W}_{opt}^{\bullet} = \tilde{\mathbf{B}}_{opt}^{\bullet} \mathbf{R}_{xy} \mathbf{R}_{yy}^{-1}$, $\mathbf{W}_{opt}^{\bullet} = \tilde{\mathbf{B}}_{opt}^{\bullet} \mathbf{R}_{xx} \mathbf{H}^{\bullet} (\mathbf{H} \mathbf{R}_{xx} \mathbf{H}^{\bullet} + \mathbf{R}_{mn})^{-1}, \text{ or } \mathbf{W}_{opt}^{\bullet} = \tilde{\mathbf{B}}_{opt}^{\bullet} (\mathbf{R}_{xx}^{-1} + \mathbf{H}^{\bullet} \mathbf{R}_{mn}^{-1} H)^{-1} \mathbf{H}^{\bullet} \mathbf{R}_{in}^{-1}, \text{ where } \mathbf{R}_{xx}$ is an autocorrelation matrix of a block of signals transmitted by a plurality of transmitting antennas to said n_o antennas via a channel having a transfer characteristic \mathbf{H} , \mathbf{R}_{mn} is an autocorrelation matrix of noise received by said plurality of n_o antennas during said block of signals transmitted by said transmitting antennas, $\mathbf{R}_{xy} = \mathbf{R}_{xx} \mathbf{H}^{\bullet}$, $\mathbf{R}_{yy} = \mathbf{H} \mathbf{R}_{xx} \mathbf{H}^{\bullet} + \mathbf{R}_{mn}$, and $\tilde{\mathbf{B}}_{opt}^{\bullet}$ is a sub-matrix of matrix $\mathbf{B}_{opt}^{\bullet}$, where $\mathbf{B}_{opt} = \arg\min_{B} trace(\mathbf{R}_{ee})$ subject to a selected constraint, \mathbf{R}_{ee} being the error autocorrelation function.
- 13. (Original) The receiver of claim 12 wherein said plurality of FIR filters are subjected to designer constraints relative to any one or a number of members of the following set: transmission channel memory, size of said block, effective memory of the combination consisting of said transmission channel and said pre-filter; n_i , n_o , autocorrelation matrix \mathbf{R}_{xx} , autocorrelation matrix \mathbf{R}_{nn} , value of factor l in said sampling circuit, and decision delay.

Al-Dhahir 2

- 14. (Currently Amended) The receiver of claim 12, where said matrix W is expressible by $\mathbf{W} = \begin{bmatrix} \mathbf{W}_0 & \mathbf{W}_1 & \cdots & \mathbf{W}_{N_f-1} \end{bmatrix}'$, where matrix \mathbf{W}_q , q being an index between 0 and \mathbf{N}_{f-1} is a matrix that specifies \mathbf{q}^{th} tap coefficients of said FIR filters.
- 15. (Original) The receiver of claim 12 where said constraint restricts **B** so that $\mathbf{B}^* \mathbf{\Phi} = \mathbf{I}_{n_i}$, where $\mathbf{\Phi}^* \equiv \begin{bmatrix} \mathbf{0}_{n_i \times n_i m} & \mathbf{I}_{n_i} & \mathbf{0}_{n_i \times n_i (N_b m)} \end{bmatrix}$ and m is a selected constant.
- 16. (Original) The receiver of claim 15 where $\mathbf{B} = \overline{\mathbf{R}}^{-1} \mathbf{\Phi} (\mathbf{\Phi}^* \overline{\mathbf{R}}^{-1} \mathbf{\Phi})^{-1}$, $\overline{\mathbf{R}}$ is a sub-matrix of a matrix $\mathbf{R}^{\perp} = \mathbf{R}_{xx} \mathbf{R}_{xy} \mathbf{R}_{yy}^{-1} \mathbf{R}_{yx}$.
- 17. (Original) The receiver of claim 12 where said constraint restrict B so that $\mathbf{B}^{\dagger}\mathbf{B} = \mathbf{I}_{n}$.
- **18.** (Original) The receiver of claim 17 where $\mathbf{B} = \mathbf{U} \left[e_{n_i N_b} \cdots e_{n_i (N_b + 1) 1} \right]$, each element \mathbf{e}_p is a vector having a 0 element in all rows other than row p, at which row the element is 1, and U is a matrix that satisfies the equation $\mathbf{R} \equiv \mathbf{U} \mathbf{\Sigma} \mathbf{U}^*$, $\mathbf{\Sigma}$ being a diagonal matrix.