Compresseur de Huffman

Contents

1 Analyse

1.1 Types de données abstraits

Nom: ArbreDeHuffman

Paramètre: Element

Utilise: Naturel, Booleen

Opérations: arbreDeHuffman: Element \times Naturel \rightarrow ArbreDeHuffman

combiner: ArbreDeHuffman \times ArbreDeHuffman \rightarrow

ArbreDeHuffman

obtenirPondération: ArbreDeHuffman \rightarrow Naturel

obtenirElement: ArbreDeHuffman → Element estUneFeuille: ArbreDeHuffman → Booleen

obtenirArbreGauche: ArbreDeHuffman → ArbreDeHuffman obtenirArbreDroit: ArbreDeHuffman → ArbreDeHuffman

 ${\bf Axiomes}: \quad \ - \ \, {\rm obtenirElement} \,\,\, (arbreDeHuffman(\'{\rm e}l\'{\rm e}ment,pond\'{\rm e}ration)) \, = \, \,$

élément

 $- \ obtenir Pond{\'e}ration \ (arbre De Huffman (\'el\'ement, pond\'eration))$

= pondération

- obtenirPondération (combiner(arbreGauche,arbreDroit)) = obtenirPondération(arbreGauche)+obtenirPondération(arbreDroit)

- estUneFeuille (arbreDeHuffman(élément,pondération)) = Vrai

- estUneFeuille (combiner(arbreGauche,arbreDroit)) = Faux

- obtenir Arbre
Gauche (combiner(arbre Gauche,arbre Droit)) = arbre Gauche - obtenir Arbre
Droit (combiner(arbre Gauche,arbre Droit)) = arbre Droit

Préconditions: obtenirElement(arbre)estUneFeuille(arbre)

non estUneFeuille(arbre)

obtenirArbreGauche(arbre):obtenirArbreDroit(arbre): non estUne-

Feuille(arbre)

Nom: Octet

Utilise: Booleen, Bit, \$\\$

Opérations: octet: Bit \times Bit \to

Octet

estEgal: Octet \times Octet \rightarrow Booleen

obtenirBit: Octet \times 1..8 \rightarrow Bit

Sémantiques: octet: Crée un octet avec les 8 bits spécifiés.

estEgal: Vérifie si les deux octets sont égaux.

obtenirBit: Obtient le bit à la position spécifiée dans l'octet

(position de 0 à 7).

Axiomes: - obtenirBit (00000001, 1) = 1

- estEgal (octet1,octet2) = (obtenirBit (octet1, 1..8) = obtenir-

Bit (octet2, 1..8))