Package ROBCBI Conditionally Unbiased Bounded Influence Estimates for Binomial and Poisson Regression

Alfio Marazzi and Alex Randriamiharisoa ${\rm April}\ 20,\, 2018$

Contents

1	Intr	roductory examples	2		
2	The	bounded influence estimate	14		
	2.1	Models and estimates	14		
	2.2	Covariance matrix of the coefficient estimates	16		
	2.3	Numerical procedures	17		
	2.4	Deviance D^*	21		
	2.5	Residuals	22		
	2.6	Test of a linear hypothesis	22		
3	Functions				
	3.1	The estimation functions	23		
	3.2	The object oriented interface	24		
4	Ref	erences	26		

1 Introductory examples

We first consider an example from Finney(1947), which has been used in Pregibon (1981, 1982) and Künsh et al. (1989). There are 39 observations on tree variables: Resp, Vol, and Rate. The data were obtained in a study of the effect of the rate (Rate) and volume (Vol) of air inspired on a transient vaso-constriction in the skin of the digits. Only the occurrence or nonoccurrence of vaso-constriction (Resp) was measured. Type:

```
> library(robcbi)
> data(Finney)
> Vol <- Finney$Vol; Rate <- Finney$Rate; Resp <- Finney$Resp</pre>
```

A plot of the data can be obtained by typing:

```
> plot(Vol,Rate,type="n")
> points(Vol[Resp==0],Rate[Resp==0],pch=5, cex=1.2)
```

> points(Vol[Resp==1],Rate[Resp==1],pch=16,cex=1.2)

The shape of the point suggests the use of a logarithmic transformation for

both regressor variables, Vol and Rate. To see how the shape changes, use plotFdat() (this function is loaded together with data(Finney)).

```
> 1Vol <- log(Vol); lRate <- log(Rate)
> plotFdat <- Finney$plotFdat
> plotFdat()
```


We now use the function glm() to fit the model logit(π) = $\theta_1 + \theta_2 \ln(\text{Vol}) + \theta_3 \ln(\text{Rate})$, where logit(π) = $\ln(\pi/(1-\pi))$. Type

Call:

glm(formula = Resp ~ lVol + lRate, family = binomial)

Deviance Residuals:

Coefficients:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 54.040 on 38 degrees of freedom Residual deviance: 29.264 on 36 degrees of freedom

AIC: 35.264

Number of Fisher Scoring iterations: 6

From the summary table we read the estimated coefficients and their standard errors. The deviance for the fit is 29.26 on 36 degrees of freedom and is less than its asymptotic expectation of 36, indicating no gross inadequacy with the model. However, the diagnostic given by the second plot

> plot(ML)# Works only in interactive mode

suggest that observations 4 and 18 are not well fitted. A contour plot is generated by

> plotFdat(zc=ML,cont=T)

Two black points (Resp==1) are below the 25% contour line shown on the scatter diagram. Using

> identify(1Vol,1Rate)# Works only in interactive mode

the two points are identified as observations 4 and 18. (To activate the cursor, click the primary button of the mouse. Click the secondary button to exit the program.) Since these observations are not really associated with extreme values in the design space, their effect on the fit might presumably be small. To confirm this claim, we remove them.

```
> n = length(Resp)
> out <- c(4,18); iii <- (1:n)[-out]
> MLs <- glm(Resp~lVol+lRate, family=binomial, subset=iii)
> summary(MLs)

Call:
glm(formula = Resp ~ lVol+lRate, family=binomial, subset=iii)

Deviance Residuals:
```

```
Min
                 1Q
                       Median
                                      3Q
                                                Max
-1.74412
         -0.00049
                      0.00000
                                 0.00425
                                            1.54579
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
                           14.02 -1.753
(Intercept)
              -24.58
                                            0.0796 .
lVol
               39.55
                           23.25
                                    1.701
                                            0.0889 .
               31.94
                           17.76
                                    1.798
                                            0.0721 .
1Rate
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 51.266 on 36 degrees of freedom 7.361 on 34 degrees of freedom Residual deviance:

AIC: 13.361

Number of Fisher Scoring iterations: 10

A warning message from glm indicates numerical unstability and the summary table reveals a dramatic increase in the value of the coefficients and their standard errors. This is an indication that these two data points have a large influence on the fit. A robust fitting procedure called *conditionally* unbiased bounded influence regression due to Künsch et al. (1989) facilitates the analysis. Type:

```
> ctrl <- cubinf.control(ufact=3.2)</pre>
> cbi <- cubinf(cbind(lVol,lRate),Resp, family=binomial,
          control=ctrl)
```

Here, ufact=3.2 is a tuning parameter. (It is related to the parameter b in Künsch et al. (1989), $b = \text{ufact}\sqrt{p}$, where p is the number of regression coefficients; see Section 2.)

As another option, one can use glm() with the argument method=cubinf:

```
> CBI <- glm(Resp~lVol+lRate, family=binomial, method=cubinf,
         ufact=3.2)
```

In this case, several access functions are available to retrieve the results, e.g.:

- > summary(CBI)
- > correl(CBI)
- > covar(CBI)

```
> deviance(CBI)
```

- > predict(CBI)
- > plot(CBI)
- > residuals(CBI,type="pearson")
- > rscale(CBI)

The ML and CBI results can be compared as follows:

```
> comp <- fits.compare(ML,CBI)</pre>
```

> comp

Calls:

Name

Residual Statistics

Min 1Q Median 3Q Max ML -0.6495 -0.16768 4.844e-03 0.1700 0.9274 CBI -0.5873 -0.02171 9.632e-05 0.1006 0.9964

Number of Parameter in each Model

Nobs Resid df Model Parameters Est. Parameters ML 39 36 3 3 3 CBI 39 36 3

Coefficients:

Estimate Std. Error t value (Intercept):ML -2.9239 1.2666 -2.3084(Intercept):CBI -6.3403 2.7902 -2.2723 5.2205 lVol:ML 1.8275 2.8566 1Vol:CBI 9.8595 4.2668 2.3107 lRate:ML 4.6312 1.7596 2.6319 8.7659 lRate:CBI 3.7042 2.3665

Residual Scale Estimates:

ML : 10.01 CBI : 1

Correlation of Coefficients:

Model = ML

(Intercept) 1Vol

1Vol -0.8089

1Rate -0.9286 0.8048

Model = CBI

(Intercept) 1Vol

1Vol -0.9475

lRate -0.9746 0.9363

> plot(comp) # Works only in interactive mode

The robust procedure automatically downweighs influential points by means of a weight system. The weights can be obtained by typing:

> weights(CBI)

Weights smaller than 1 indicate outliers. Note that the weights of observations 4 and 18 are 0.25 and 0.29, respectively, whereas all other observations receive weight equal 1. The weights depend on ufact. By setting ufact very large (e.g., 100), all weights are equal 1; in this case, the robust procedure gives the classical results based on the complete data set. As ufact decreases, these two weights decrease rapidly, clearly indicating the anomalous nature of these two observations. Classical and robust contour plots are generated by:

> plotFdat(zc=ML,zr=CBI,rob=T,cont=T)

As a second example we now consider the Breslow dataset. The data as well as a description are obtained as follows:

```
> library(robcbi)
> data(Breslow)
> help(Breslow)
> y = Breslow$sumY
> x1 = Breslow$Age10
> x2 = Breslow$Base4
> x3 = rep(0,length(y))
> x3[Breslow$Trt=="progabide"] = 1
> x4 = x2*x3
```

We compute the robust estimate of a Poisson regression model and draw a normal qq-plot,

```
> CBA = glm(y~x1+x2+x3+x4,family=poisson,method=cubinf,ufact=3.2)
> plot(CBA,num=5)
```

Coefficients:

(Intercept) x1 x2 x3 x4 1.8335 0.1939 0.1112 -0.3591 0.0198

Degrees of Freedom: 58 Total (i.e. Null); 54 Residual

Residual Deviance: 379.4517

which shows that the distribution of the Pearson residuals has heavy tails and

> weights(CBA)

points out several influential observations receiving a weight smaller than 1. We finally compute the \mathbb{R}^2_n statistic (Section 2.5) to compare CBA with a reduced model with three variables:

Section 2 briefly describes the conditionally unbiased bounded influence estimate and the computational algorithms. Most algorithms have been taken from the ROBETH library described in Marazzi (1993). Section 3 gives a complete description of the object oriented functions.

2 The bounded influence estimate

Let $X = (x_{ij})$ denote a real $n \times p$ design matrix with rows $x_i^{\mathrm{T}} = (x_{i1}, \dots, x_{ip})$ and $(y_1, \dots, y_n)^{\mathrm{T}}$ a given *n*-vector of responses

2.1 Models and estimates

In particular, we consider the following cases:

Bernoulli

[1,] 13.93261

Probability
$$(y_i = j|x_i) = \pi_i(1 - \pi_i), \quad j = 0, 1,$$
 (1)

Binomial

Probability
$$(y_i = j | x_i) = \binom{n_i}{j} \pi_i^j (1 - \pi_i)^{n_i - j}, \quad j = 0, 1, \dots, n_i, \quad (2)$$

Poisson

Probability
$$(y_i = j | x_i) = \exp(-\lambda_i) \lambda_i^j / j!$$
, $j = 0, 1, \dots, \infty,$ (3)

where $0 \le \pi_i \le 1$ and $\lambda_i > 0$ are unknown parameters and n_i is the number of trials at the design point x_i in the Binomial case. We define $n_i \equiv 1$ in the Bernoulli and Poisson cases, and assume that

$$\Omega: \quad E_{\theta}(y_i|x_i) = n_i g(x_i^{\mathrm{T}}\theta), \tag{4}$$

where θ is a p-vector of unknown parameters and

$$g(\vartheta_i) = \pi_i = \frac{\exp(\vartheta_i)}{1 + \exp(\vartheta_i)}$$
 in the Bernoulli and Binomial cases, (5)

$$g(\vartheta_i) = \lambda_i = \exp(\vartheta_i)$$
 in the Poisson case, (6)

where $\vartheta_i = x_i^{\mathrm{T}} \theta$. We are interested in estimating θ .

Let $\psi_a(s) = \max[-a, \min(s, a)]$ denote the Huber function with tuning constant a. Künsch et al. (1989) define the *conditionally unbiased bounded influence estimate* of θ as the solution of the following system of equations for the p-vector θ , the n constants c_1, \ldots, c_n , and the $p \times p$ lower-triangular matrix A:

$$\sum_{i=1}^{n} \psi_{a_i}(y_i - c_i - n_i g(\vartheta_i)) x_i = 0,$$
(7)

$$\sum_{j=0}^{M_i} \psi_{a_i}(j - c_i - n_i g(\vartheta_i)) \pi_i(j) = 0, \qquad i = 1, \dots, n,$$
 (8)

$$\frac{1}{n} \sum_{i=1}^{n} u_b(y_i, n_i; \vartheta_i, c_i; |Ax_i|) Ax_i (Ax_i)^{\mathrm{T}} = I_p,$$
(9)

where I_p denotes the $p \times p$ identity matrix, $\vartheta_i = x_i^{\mathrm{T}}\theta$, $M_i = n_i$ in the Binomial case, $M_i = \infty$ in the Poisson case, $a_i = b/|Ax_i|$ (and $|\cdot|$ denotes the Euclidean norm), and $b > \sqrt{p}$ is a given tuning constant. The function u_b is defined by

$$u_b(y_i, n_i; \vartheta_i, c_i; |z_i|) = \sum_{j=0}^{M_i} \left[\psi_{b/|z_i|} (j - c_i - n_i g(\vartheta_i)) \right]^2 \pi_i(j),$$
 (10)

where $z_i = Ax_i$. Note that the argument y_i does not appear in the right-hand side of (10).

Remark 1. The classical maximum likelihood estimate is the solution θ of

$$\sum_{i=1}^{n} l_i^0(y_i, x_i^{\mathrm{T}} \theta) x_i = 0.$$
 (11)

The functions $-l_i^0(y,\vartheta)x$ with $l_i^0(y,\vartheta) = -y + n_i g(\vartheta)$ and $i=1,\ldots,n$ are called (classical) score functions. (x and y denote a generic design point and a generic response.) Thus, the bounded influence estimate defined by (7) is based on truncated scores and the constants c_i defined by (8) make this estimate conditionally unbiased, given x_i . Equation (7) is also equivalent to $\sum (y_i - c_i - n_i g(\vartheta_i)) w_i x_i = 0$, where $w_i = \min(1, a_i/|y_i - c_i - n_i g(\vartheta_i))|$. The vector $\vartheta = X\theta$ is called the linear predictor, and the function g the inverse link function in the literature about generalized linear models.

Remark 2. Equation (9) is an empirical version of the condition

$$A E_{\theta} \{ x x^{\mathrm{T}} [\psi_{b/|z|} (y - c(x^{\mathrm{T}}\theta, b/|z|) - E_{\theta}(y|x))]^{2} \} A^{\mathrm{T}} = I_{p},$$
 (12)

where expectation is taken over the joint distribution of x and y and the function $c(\vartheta, a)$ is implicitly defined by

$$E_{\theta}[\psi_a(y - c(\vartheta, a) - E_{\theta}(y|x))] = 0, \tag{13}$$

where z = Ax and $\vartheta = x^T\theta$. This condition imposes a bound to the self standardized sensitivity of the estimate (Künsch et al. 1989). In applications, the distribution of x is unknown and it is common to replace it by its empirical version, thus obtaining (9) and (10). Alternatively, we can replace the joint distribution of x and y by its empirical version and obtain (9) with

$$u_b(y_i, n_i; \vartheta_i, c_i; |z_i|) = \left[\psi_{b/|z_i|}(y_i - c_i - n_i g(\vartheta_i))\right]^2.$$
 (14)

The two choices are asymptotically equivalent.

2.2 Covariance matrix of the coefficient estimates

According to Künsch et al. (1989), under regularity conditions, the coefficient estimate $\hat{\theta} = (\hat{\theta}_1, \dots, \hat{\theta}_p)$ defined by the solution of (7)–(9) is asymptotically normally distributed with covariance matrix $K_u(\psi, \theta)$ [i.e., $n^{1/2}(\hat{\theta} - \theta) \sim N(0, K_u(\psi, \theta))$], where

$$K_u(\psi, \theta) = S_1^{-1}(\psi, \theta) S_2(\psi, \theta) S_1^{-1}(\psi, \theta), \tag{15}$$

$$S_1(\psi, \theta) = E_{\theta}\psi(y, x, \theta, A)(y - E_{\theta}(y|x))x^{\mathrm{T}}.$$
 (16)

$$S_2(\psi, \theta) = E_{\theta} \psi(y, x, \theta, A) \psi(y, x, \theta, A)^{\mathrm{T}}, \tag{17}$$

$$\psi(y, x, \theta, A) = \psi_{b/|z|}(y - E_{\theta}(y|x) - c(x^{\mathrm{T}}\theta, b/|z|))x.$$
 (18)

Here, z = Ax and expectation is taken over the joint distribution of x and y. In applications, the distribution of x is unknown and it is common to replace it by its empirical version, thus obtaining the following estimate of K_u :

$$\hat{K}_u = \hat{S}_1^{-1} \hat{S}_2 \hat{S}_1^{-1},\tag{19}$$

where

$$\hat{S}_1 = \frac{1}{n} \sum_{i=1}^n \sum_{j=0}^{M_i} \psi_{a_i} (j - c_i - n_i g(x_i^{\mathrm{T}} \hat{\theta})) (j - n_i g(x_i^{\mathrm{T}} \hat{\theta})) \pi_i (j) x_i x_i^{\mathrm{T}}, \quad (20)$$

$$\hat{S}_2 = \frac{1}{n} \sum_{i=1}^n \sum_{j=0}^{M_i} [\psi_{a_i} (j - c_i - n_i g(x_i^{\mathrm{T}} \hat{\theta}))]^2 \pi_i(j) x_i x_i^{\mathrm{T}}.$$
(21)

The covariance matrix C of the coefficient estimates can be estimated by multiplying \hat{K}_u by 1/n.

2.3 Numerical procedures

A detailed description of the numerical procedures is given in Marazzi (1993, Chapter 10). The following summary is taken from this book.

The main algorithm for computing the bounded influence estimate is based on three modules with the following purposes:

 θ -step: For given values of a_i and c_i (i = 1, ..., n), find the solution θ of (7).

c-step: For given values of ϑ_i and a_i (i = 1, ..., n), find the solutions $c_1, ..., c_n$ of the equations (8).

A-step: For given values of ϑ_i and c_i (i = 1, ..., n), find the solution A of (9) and compute $a_1, ..., a_n$.

The modules are based on iterative algorithms that compute improved values $\theta^{(1)}$, $c_i^{(1)}$, and $A^{(1)}$ of θ , c_i , and A given the current values $\theta^{(0)}$, $c_i^{(0)}$, and $A^{(0)}$.

Main algorithm. Let TOL be a given tolerance and MAXIT a given positive integer (maximum number of iterations). The main algorithm has the following structure:

- **0.** Set NIT := 1. Initialize $\theta^{(0)}$, $c_i^{(0)}$ (i = 1, ..., n), and $A^{(0)}$; compute $a_1, ..., a_n$.
- **1.** Compute $\theta^{(1)}$ using the θ -step; compute $\vartheta_1, \ldots, \vartheta_n$.
- 2. Check convergence: If a measure of deviation between $\theta^{(1)}$ and $\theta^{(0)}$ (see Remark 2) is smaller than TOL, go to step 6.
- **3.** Compute $A^{(1)}$ and the corresponding values of a_i (i = 1, ..., n) using the A-step.
- **4.** Compute $c_i^{(1)}$ (i = 1, ..., n) using the c-step.
- 5. Set $\theta^{(0)} := \theta^{(1)}$, $A^{(0)} := A^{(1)}$, $c_i^{(0)} := c_i^{(1)}$ $(i = 1, \dots, n)$. Set NIT := NIT + 1; if $NIT \le MAXIT$, go to step 1.
- **6.** Exit.

We call a *cycle* a generic iteration of the main algorithm consisting of steps 1, 2, 3, 4 and 5.

Remark 1. The reader is referred to Marazzi (1993) for the definition of the initial values $\theta^{(0)}$, $c_i^{(0)}$ (i = 1, ..., n), and $A^{(0)}$.

Remark 2. For the *convergence criterion* of the main algorithm we assume that a preliminary estimate \hat{C} of the covariance matrix of the coefficient estimates, or its inverse \hat{C}^{-1} , is available before starting iterations. According to the value of an option parameter ICNV, the user sets $S = \hat{C}$ if ICNV = 1 or $S = \hat{C}^{-1}$ if ICNV = 2 or 3 (for ICNV = 1 or 3 only the diagonal elements are required). Let $\delta = \theta^{(1)} - \theta^{(0)}$.

The main algorithm evaluates the function

$$\mathcal{I}_{\delta}(\delta, S, TOL, ICNV) = \text{pos}?(TOL\sqrt{s_{jj}} - \delta_j)$$
 if $ICNV = 1$
 $\text{pos}?(TOL - \sqrt{\delta^{\text{T}}S\delta})$ if $ICNV = 2$
 $\text{pos}?(TOL - \delta_j\sqrt{s_{jj}})$ if $ICNV = 3$,

where TOL is a given tolerance for the relative error and pos?(s) = 1 if s > 0 and 0 otherwise. Iterations are stopped if $\mathcal{I}_{\delta} = 1$. The most common option is ICNV = 1.

Remark 3. Although the convergence of the algorithms used for the θ -, the c-, and the A-step can be ensured on the grounds of known general results, no proof of their joint convergence in the main algorithm is known.

The θ -step. Let s denote a given real number. We use the following notations: Binomial case

$$g(\vartheta) = \frac{\exp(\vartheta)}{1 + \exp(\vartheta)}, \quad G(\vartheta) = \ln(1 + \exp(\vartheta)),$$
 (22)

$$t_1 = \ln\left(\frac{s-a}{n_i - s + a}\right), \quad t_2 = \ln\left(\frac{s+a}{n_i - s - a}\right),$$
 (23)

$$\xi_1 = -(s-a)t_1 + n_i \ln\left(\frac{n_i}{n_i - s + a}\right), \quad \xi_2 = -(s+a)t_2 + n_i \ln\left(\frac{n_i}{n_i - s - a}\right).$$
(24)

Poisson case

$$q(\vartheta) = \exp(\vartheta), \quad G(\vartheta) = \exp(\vartheta),$$
 (25)

$$t_1 = \ln(s-a), \ t_2 = \ln(s+a),$$
 (26)

$$\xi_1 = -(s-a)t_1 + (s-a), \quad \xi_2 = -(s+a)t_2 + (s+a).$$
 (27)

For a given i let $L_i(s, \vartheta, a)$ and $l_i(s, \vartheta, a)$ be the functions defined in Table 1 and Table 2; note that $l_i(s, \vartheta, a) = (\partial/\partial \vartheta)L_i(s, \vartheta, a)$. The values t_1 and t_2 defined above are the solutions of $l^0(s, \vartheta) = -a$ and $l^0(s, \vartheta) = a$ (l^0 is defined in Section 2, Remark 1) and the values ξ_1 and ξ_2 are chosen so that the function $L_i(s, \vartheta)$ is continuous in ϑ . Clearly, for some values of s, a, and n_i , one or both solutions may not exist.

The solution of (7) for given values of $a_1, \ldots, a_n, c_1, \ldots, c_n$ characterizes the minimum of

$$Q(\theta) = \sum_{i=1}^{n} L_i(s_i, x_i^{\mathrm{T}} \theta, a_i), \tag{28}$$

where $s_i = y_i - c_i$. As $Q(\theta)$ is a convex and differentiable function, we use the Newton algorithm for solving this optimality problem.

The gradient and the Hessian matrix of Q are

$$\nabla Q(\theta) = \frac{\partial Q}{\partial \theta} = X^{\mathrm{T}} \ell \quad \text{and} \quad H(\theta) = \frac{\partial^2 Q}{\partial \theta \partial \theta^{\mathrm{T}}} = X^{\mathrm{T}} \mathcal{D} X, \quad (29)$$

where $\ell = (\ell_1, \dots, \ell_n)^T$ and

$$\ell_i = l_i(s_i, \vartheta_i, a_i) \quad \text{for} \quad i = 1, \dots, n,$$
 (30)

$$\mathcal{D} = \operatorname{diag}\left(_{i}'\left(s_{i}, \vartheta_{i}, a_{i}\right)\right). \tag{31}$$

The Newton algorithm computes an improvement δ by solving $-X^{T}\mathcal{D}X\delta = X^{T}\ell$. In other words, if $\theta^{(0)}$ denotes the current value of θ , we approximate $Q(\theta^{(0)} + \delta)$ by

$$V(\delta) = Q(\theta^{(0)}) + \delta^{T} \nabla Q(\theta^{(0)}) + \frac{1}{2} \delta^{T} H(\theta^{(0)}) \delta$$
 (32)

and minimize $V(\delta)$. There are two well-known difficulties: (1) H can become singular; (2) $|\delta|$ can be too large (and thus the objective function Q is not reduced). A remedy for (1) is the use of a positive definite generalized inverse as described in Marazzi (1993, Chapter 2, Section 2.1.2, Remark 3, with $\check{X} = \mathcal{D}^{1/2}X$), whereas difficulty (2) is usually overcome by means of an adaptive step length algorithm.

An alternative procedure for reducing $|\delta|$ is to minimize a quadratic comparison function \bar{V} that majorizes Q. Let \bar{V} be defined by

$$\bar{V}(\delta) = \sum \bar{L}_i \left(x_i^{\mathrm{T}} \delta \right) \tag{33}$$

with

$$\bar{L}_i(\vartheta) = \bar{a}_i + \bar{b}_i \vartheta + \bar{c}_i \vartheta^2, \tag{34}$$

where 2n of the 3n coefficients are determined so that $\bar{L}_i(\vartheta)$ and $L_i(s_i,\vartheta,a_i)$ have the same value and the same tangent for $\vartheta=x_i^{\mathrm{T}}\theta^{(0)}$. Writing $\bar{H}=X^{\mathrm{T}}\bar{\mathcal{D}}X$, the comparison function becomes

$$\bar{V}(\delta) = Q(\theta^{(0)}) + \delta^{\mathrm{T}} \nabla Q(\theta^{(0)}) + \frac{1}{2} \delta^{\mathrm{T}} \bar{H} \delta.$$
 (35)

Finally, the n diagonal elements $\bar{c}_i/2$ of $\bar{\mathcal{D}}$ are chosen so that $\bar{V}(\delta) \geq Q(\theta^{(0)} + \delta)$ for all δ . This procedure clearly reduces the objective function and thus no further adaptation of the step length is needed. See Marazzi (1993) for details.

Table 1 Functions L_i and l_i for the Binomial case

Condition	Condition	$L_i(s, \vartheta, a)$	$l_i(s, \vartheta, a)$
$1. \begin{cases} -s & < -a \\ -s + n_i \le -a \end{cases}$	_	$-a\vartheta$	-a
$2. \begin{cases} -s < -a \\ -s + n_i \in (-a, a] \end{cases}$	$ \begin{array}{ccc} \vartheta & < & t_1 \\ \vartheta & \ge & t_1 \end{array} $	$-a\vartheta + \xi_1 \\ -s\vartheta + n_i G(\vartheta)$	$-a \\ -s + n_i g(\vartheta)$
$3. \begin{cases} -s & < -a \\ -s + n_i > a \end{cases}$	$ \begin{aligned} \vartheta &< t_1 \\ \vartheta &\in [t_1, t_2] \\ \vartheta &> t_2 \end{aligned} $	$ \begin{aligned} -a\vartheta + \xi_1 \\ -s\vartheta + n_i G(\vartheta) \\ a\vartheta + \xi_2 \end{aligned} $	$-a \\ -s + n_i g(\vartheta)$
$4. \begin{cases} -s \in [-a, a) \\ -s + n_i \le a \end{cases}$		$-s\vartheta + n_i G(\vartheta)$	$-s + n_i g(\vartheta)$
5. $\begin{cases} -s \in [-a, a) \\ -s + n_i > a \end{cases}$	$\begin{array}{ccc} \vartheta \leq & t_2 \\ \vartheta > & t_2 \end{array}$	$-s\vartheta + n_i G(\vartheta)$ $a\vartheta + \xi_2$	$-s + n_i g(\vartheta)$
$6. \begin{cases} -s & \geq a \\ -s + n_i \geq a \end{cases}$	_	$a\vartheta$	a

Table 2 Functions L_i and l_i for the Poisson case

Condition	Condition	$L_i(s, \vartheta, a)$	$l_i(s, \vartheta, a)$
1. $-s < -a$	$ \begin{aligned} \vartheta &< t_1 \\ \vartheta &\in [t_1, t_2] \\ \vartheta &> t_2 \end{aligned} $	$-a\vartheta + \xi_1$ $-s\vartheta + G(\vartheta)$ $a\vartheta + \xi_2$	$-a \\ -s + g(\vartheta) \\ a$
2. $-s \in [-a, a)$	$\begin{array}{l} \vartheta \leq \ t_2 \\ \vartheta > \ t_2 \end{array}$	$-s\vartheta + G(\vartheta)$ $a\vartheta + \xi_2$	$-s + g(\vartheta)$ a
$3s \ge a$	_	$a\vartheta$	a

2.4 Deviance D^*

Consider the p parameter model $\Omega: y = X\theta + e$, and denote by $\hat{\theta}_{\Omega}$ the robust estimate of θ in the model Ω . This estimate depends on the values a_1, \ldots, a_n and c_1, \ldots, c_n defined by (7)–(9). Let $Q(\theta) = \sum_{i=1}^n L_i(y_i - c_i, x_i^T\theta, a_i)$ be the function defined in (28) and let θ^* be the minimum of this function when $X = I_n$. θ^* is usually called the *unconstrained minimum* of $Q(\theta)$. The

deviance D^* of Ω is defined as

$$D^* = 2Q(\hat{\theta}_{\Omega}) - 2Q(\theta^*).$$

2.5 Residuals

Residuals for GLMs are defined in several different ways. For the conditionally unbiased bounded influence estimates, the residual() method for object has a type= argument, with three choices:

• "deviance" (the default): Deviance residuals are defined as

$$r_i^D = \operatorname{sign}(y_i - \hat{\mu}_i) \sqrt{d_i},$$

where d_i is the contribution of the *i*th observation to the deviance, i.e.,

$$d_i = 2L_i(y_i - c_i, x_i^{\mathrm{T}} \hat{\theta}_{\Omega}, a_i) - 2L_i(y_i - c_i, \theta_i^*, a_i),$$

and $\hat{\mu}_i = n_i g(\hat{\theta}_{\Omega,i})$.

• "pearson": In analogy with the classical case, we define these residuals as

$$r_i^P = (y_i - \hat{\mu}_i) / \sqrt{v(\hat{\mu}_i)},$$

where $v(\hat{\mu}_i) = \hat{\mu}_i$ in the Poisson case, $v(\hat{\mu}_i) = \hat{\mu}_i(1 - \hat{\mu}_i)$ in the Bernoulli case, $v(\hat{\mu}_i) = \hat{\mu}_i(1 - \hat{\mu}_i)/n_i$ in the Binomial case, and $\hat{\mu}_i = n_i g(\hat{\theta}_i)$.

• "response": These are simply $y_i - \hat{\mu}_i$, where $\hat{\mu}_i = n_i g(\hat{\theta}_i)$.

2.6 Test of a linear hypothesis

In order to test a linear hypothesis the R_n^2 -test described in Hampel et al. (1986, Chapter 7) can be used. Consider the p parameter model

$$\Omega: \quad y = X\theta + e,$$

and let a linear hypothesis be expressed in the canonical form

$$\mathcal{H}_0: \theta_{q+1} = \theta_{q+2} = \ldots = \theta_p, \qquad 0 < q < p.$$

Denote by $\hat{\theta}_{\Omega}$ the robust estimate of θ in the model Ω and let K_{22} be the $(p-q)\times(p-q)$ lower right block of the asymptotic covariance matrix of $\hat{\theta}_{\Omega}$. The R_n^2 -test statistic is defined by

$$R_n^2 = n(\hat{\theta}_{\Omega,q+1}, \dots, \hat{\theta}_{\Omega,p}) K_{22}^{-1} (\hat{\theta}_{\Omega,q+1}, \dots, \hat{\theta}_{\Omega,p})^{\mathrm{T}}.$$

Under \mathcal{H}_0 , the R_n^2 -test statistic follows approximatively a χ^2 -distribution with (p-q) degrees of freedom.

3 Functions

Two types of functions are provided:

- (a) Functions for the numerical computations of the estimates;
- (b) Interface functions for the use of the estimation functions within the object oriented paradigm of R, as described in Chambers and Hastie (1992).

The functions of type (b) are likely to be appropriate for most users and applications. In order to control the computational algorithms in details some users may want to use functions of type (a). In addition there are service functions which are normally intended for programmers and developers. These functions are not necessarily documented elsewhere and are listed here for completeness.

3.1 The estimation functions

The main estimation function is cubinf(), which is is used by glm() to fit the conditionally unbiased bounded influence estimates. Alternatively, cubinf() can be called directly. cubinf() returns a list containing the estimate of coefficients and other values returned by the function gymain of the package robeth. (See help(cubinf) for more details). Computations are performed using routines from the robeth package as follows:

- 1. The initial values of $\hat{\theta}$, A and c_i , i = 1, ..., n are computed using the function gintac (Marazzi 1993, p.292).
- 2. The M-estimates are computed by means of the function gymain (Marazzi 1993, p.304).
- 3. Covariance matrices of estimated coefficients are obtained using the functions ktaskw and gfedca (Marazzi 1993, p.148, and p.309).

The following function can be used in order to change defaults:

• cubinf.control() – There are a few control parameters for the numerical algorithms. Their default values are collected in the auxiliary function cubinf.control() and may be set with this function. The control structure input in cubinf() defaults to the list returned by

cubinf.control(). Users may wish to set their own control parameters. This is easily accomplished. In either cubinf() or glm(), simply set control=xcontrol in the calling sequence of either function. Here xcontrol is any object produced by cubinf.control() with the desired control parameter values. Use help(cubinf.control) for additional details.

The following functions are service functions:

- The functions gintac(), gymain(), gfedca(), ktaskw(), mchl(), minv(). mttl(), glmdev(), are wrapper functions for the robeth functions used by cubinf().
- The robeth functions mentioned above call other routines of the same library as explained in Marazzi (1993).

3.2 The object oriented interface

The function cubinf() computes the robust estimates and returns a list of results. These are more easily produced using method="cubinf" in the R function glm(). The value returned by glm() is an object with class "cubinf" inheriting from class "glm". The function glm() was modified to call cubinf() when method="cubinf".

The functions print(), summary() and plot() as well as the access functions coef(), residual(), fitted(), formula() and deviance() have been extended to objects of the class "cubinf".

The following access functions are new.

• scale.estimate(), covar(), correl(), weights(), Rank() — These functions extract the scale estimate, the covariance matrix of the estimated coefficients, the corresponding correlation matrix, the weights w_i , and the rank of the design matrix.

Note. The weights w_i are defined as $w_i = \min(1, a_i/|y_i - c_i - n_i g(\vartheta_i))|$ (see Section 2.1, Remark 1).

In addition, a function for comparing the two fits has been added.

• fits.compare() — This function accepts a sequence of objects of class "glm" or "cubinf" (with optional names), and creates a class "fits.compare" object. The "fits.compare" objects is nothing more than a list of the

input objects with names. However, when the "fits.compare" object is printed, summaries of each of the input objects are computed and printed in a manner suitable for comparing the input models. Plotting the "fits.compare" object results in a sequence of graphical displays. These displays are designed to be of use in comparing two sets of parameter estimates in linear models.

Finally, a number of new auxiliary functions are required by the interface. Many of these routines are simple program stubs used to print error messages that the associated glm() function is not yet available for objects from the class.

- print.cubinf(), summary.cubinf(), and print.summary.cubinf() These functions extend the print.lm(), summary.lm(), and print. summary.lm() functions to objects of class "cubinf".
- plot.cubinf() extends plot() to objects of class "cubinf".
- plot.fits.compare() extends plot() to objects of class "fits.compare".
- deviance.cubinf(), scale.estimate.cubinf(), covar.cubinf(), correl.cubinf(), weights.cubinf(). Rank.cubinf() These functions are required by the corresponding access functions.
- anova(), add1.cubinf(), drop1.cubinf(), and step.cubinf() These are function stubs used to print error messages that the associated routines are not implemented.
- Other function stubs of class "glm", effects(), kappa(), proj(), alias(), lm.influence(), and lm.sensitivity() are not applicable to objects of class "cubinf". Therefore, function stubs effects.cubinf(), kappa.cubinf(), proj.cubinf(), lm.influence.cubinf(), alias.cubinf(), and lm.sensitivity.cubinf() have been added to issue warning messages for these functions.
- The function update() has been extended in order to compare two nested models when method="cubinf".

Acknowledgment. This work was supported by grant No. 21–36521.92. from the Swiss National Science Foundation

4 References

Chambers J.M., Hastie T.J., Eds. (1992).

Statistical Models in S, Wadsworth & Brooks/Cole Computer Science Series, Pacific Grove.

Finney, D.J. (1947). The estimation from individual records of the relationship between dose and quantal response. *Biometrika*, 34, 320-334.

Hampel F.R., Ronchetti E.M., Rousseeuw P.J., Stahel W.A. (1986).

Robust Statistics: The Approach Based on Influence Functions, Wiley, New York.

Künsch, H.R., Stefanski L.A., Carrol, R.J. (1989). Conditionally unbiased bounded-influence estimation in general regression models, with application to generalized linear models. *Journal of the American Statistical Association*, 84, 460-466.

Marazzi A. (1993). Algorithms, Routines and S Functions for Robust Statistics, The FORTRAN library ROBETH with an interface to S-Plus, Wadsworth & Brooks/Cole Statistics/Probability Series, Pacific Grove.

Pregibon D. (1981). Logistic regression diagnostic. *The Annals of Statistics*, 9, 705-724.