```
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [29]: PATH = "C:/Users/DELL/Downloads/data.xlsx - Sheet1.csv"

df = pd.read_csv(PATH)
```

Out[29]:

In [28]: import pandas as pd

df.head()

	Unnamed: 0	ID	Salary	DOJ	DOL	Designation	JobCity	Gender	DOB	10perce
0	train	203097	420000.0	6/1/12 0:00	present	senior quality engineer	Bangalore	f	2/19/90 0:00	
1	train	579905	500000.0	9/1/13 0:00	present	assistant manager	Indore	m	10/4/89 0:00	
2	train	810601	325000.0	6/1/14 0:00	present	systems engineer	Chennai	f	8/3/92 0:00	
3	train	267447	1100000.0	7/1/11 0:00	present	senior software engineer	Gurgaon	m	12/5/89 0:00	
4	train	343523	200000.0	3/1/14 0:00	3/1/15 0:00	get	Manesar	m	2/27/91 0:00	
5 r	ows × 39 co	olumns								
4										

About of Data

In [32]: df.describe()

Out[32]:

	ID	Salary	10percentage	12graduation	12percentage	CollegeID	Col
count	3.998000e+03	3.998000e+03	3998.000000	3998.000000	3998.000000	3998.000000	3998
mean	6.637945e+05	3.076998e+05	77.925443	2008.087544	74.466366	5156.851426	1
std	3.632182e+05	2.127375e+05	9.850162	1.653599	10.999933	4802.261482	0
min	1.124400e+04	3.500000e+04	43.000000	1995.000000	40.000000	2.000000	1
25%	3.342842e+05	1.800000e+05	71.680000	2007.000000	66.000000	494.000000	2
50%	6.396000e+05	3.000000e+05	79.150000	2008.000000	74.400000	3879.000000	2
75%	9.904800e+05	3.700000e+05	85.670000	2009.000000	82.600000	8818.000000	2
max	1.298275e+06	4.000000e+06	97.760000	2013.000000	98.700000	18409.000000	2

8 rows × 27 columns

In [33]: df.head()

Out[33]:

	Unnamed: 0	ID	Salary	DOJ	DOL	Designation JobCity		Gender	DOB	10perce
0	train	203097	420000.0	6/1/12 0:00	present	senior quality engineer	Bangalore	f	2/19/90 0:00	
1	train	579905	500000.0	9/1/13 0:00	present	assistant manager	Indore	m	10/4/89 0:00	
2	train	810601	325000.0	6/1/14 0:00	present	systems engineer	Chennai	f	8/3/92 0:00	
3	train	267447	1100000.0	7/1/11 0:00	present	senior software engineer	Gurgaon	m	12/5/89 0:00	
4	train	343523	200000.0	3/1/14 0:00	3/1/15 0:00	get	Manesar	m	2/27/91 0:00	

5 rows × 39 columns

In [34]: df.tail()

Out[34]:

DOE	Gender	JobCity	Designation	DOL	DOJ	Salary	ID	Unnamed: 0	
4/15/87 0:00	m	New Delhi	software engineer	10/1/12 0:00	10/1/11 0:00	280000.0	47916	train	3993
8/27/92 0:00	f	Hyderabad	technical writer	7/1/13 0:00	7/1/13 0:00	100000.0	752781	train	3994
7/3/9 ² 0:00	m	Bangalore	associate software engineer	present	7/1/13 0:00	320000.0	355888	train	3995
3/20/92 0:00	f	Asifabadbanglore	software developer	1/1/15 0:00	7/1/14 0:00	200000.0	947111	train	3996
2/26/9 [,] 0:00	f	Chennai	senior systems engineer	present	2/1/13 0:00	400000.0	324966	train	3997

5 rows × 39 columns

In [37]: df.duplicated().sum()

Out[37]: 0

In [35]: df.isnull().sum() Out[35]: Unnamed: 0 0 ID 0 0 Salary DOJ 0 DOL 0 Designation 0 0 JobCity Gender 0 DOB 0 10percentage 0 10board 0 12graduation 0 12percentage 0 12board 0 CollegeID 0 CollegeTier 0 Degree 0 Specialization 0 collegeGPA 0 CollegeCityID 0 CollegeCityTier 0 CollegeState 0 GraduationYear 0 English 0 Logical 0 Quant 0 Domain 0 ComputerProgramming 0 ElectronicsAndSemicon 0 ComputerScience 0 MechanicalEngg 0 0 ElectricalEngg TelecomEngg 0 CivilEngg 0 conscientiousness 0 agreeableness 0 extraversion 0 nueroticism 0 openess_to_experience 0

dtype: int64

In [36]: print(df.count())

Unnamed: 0	3998
ID	3998
Salary	3998
DOJ	3998
DOL	3998
Designation	3998
JobCity	3998
Gender	3998
DOB	3998
10percentage	3998
10board	3998
12graduation	3998
12percentage	3998
12board	3998
CollegeID	3998
CollegeTier	3998
Degree	3998
Specialization	3998
collegeGPA	3998
CollegeCityID	3998
CollegeCityTier	3998
CollegeState	3998
GraduationYear	3998
English	3998
Logical	3998
Quant	3998
Domain	3998
ComputerProgramming	3998
ElectronicsAndSemicon	3998
ComputerScience	3998
MechanicalEngg	3998
ElectricalEngg	3998
TelecomEngg	3998
CivilEngg	3998
conscientiousness	3998
agreeableness	3998
extraversion	3998
nueroticism	3998
openess_to_experience	3998
dtype: int64	

```
In [10]: df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3998 entries, 0 to 3997 Data columns (total 39 columns):

Data	columns (total 39 colur	·	
#	Column	Non-Null Count	Dtype
0	Unnamed: 0	3998 non-null	object
1	ID	3998 non-null	int64
2	Salary	3998 non-null	float64
3	DOJ	3998 non-null	object
4	DOL	3998 non-null	object
5	Designation	3998 non-null	object
6	JobCity	3998 non-null	object
7	Gender	3998 non-null	object
8	DOB	3998 non-null	object
9	10percentage	3998 non-null	float64
10	10board	3998 non-null	object
11	12graduation	3998 non-null	int64
12	12percentage	3998 non-null	float64
13	12board	3998 non-null	object
14	CollegeID	3998 non-null	int64
15	CollegeTier	3998 non-null	int64
16	Degree	3998 non-null	object
17	Specialization	3998 non-null	object
18	collegeGPA	3998 non-null	float64
19	CollegeCityID	3998 non-null	int64
20	CollegeCityTier	3998 non-null	int64
21	CollegeState	3998 non-null	object
22	GraduationYear	3998 non-null	int64
23	English	3998 non-null	int64
24	Logical	3998 non-null	int64
25	Quant	3998 non-null	int64
26	Domain	3998 non-null	float64
27	ComputerProgramming	3998 non-null	int64
28	ElectronicsAndSemicon	3998 non-null	int64
29	ComputerScience	3998 non-null	int64
30	MechanicalEngg	3998 non-null	int64
31	ElectricalEngg	3998 non-null	int64
32	TelecomEngg	3998 non-null	int64
33	CivilEngg	3998 non-null	int64
34	conscientiousness	3998 non-null	float64
35	agreeableness	3998 non-null	float64
36	extraversion	3998 non-null	float64
37	nueroticism	3998 non-null	float64
38	openess_to_experience		float64
	es: float64(10), int64(1	17), object(12)	
mamar	γν με ασο· 1 2± MR		

memory usage: 1.2+ MB

```
In [11]:
         df.dtypes
Out[11]: Unnamed: 0
                                     object
         ID
                                      int64
                                   float64
          Salary
         DOJ
                                     object
         DOL
                                     object
         Designation
                                     object
          JobCity
                                     object
         Gender
                                     object
         DOB
                                     object
          10percentage
                                   float64
          10board
                                    object
          12graduation
                                      int64
                                   float64
          12percentage
          12board
                                    object
         CollegeID
                                     int64
         CollegeTier
                                      int64
         Degree
                                    object
          Specialization
                                    object
          collegeGPA
                                   float64
         CollegeCityID
                                      int64
         CollegeCityTier
                                      int64
         CollegeState
                                     object
         GraduationYear
                                     int64
         English
                                      int64
         Logical
                                      int64
         Quant
                                      int64
         Domain
                                   float64
         ComputerProgramming
                                      int64
          ElectronicsAndSemicon
                                      int64
         ComputerScience
                                      int64
         MechanicalEngg
                                      int64
         ElectricalEngg
                                      int64
         TelecomEngg
                                      int64
         CivilEngg
                                      int64
          conscientiousness
                                   float64
         agreeableness
                                   float64
         extraversion
                                   float64
                                   float64
         nueroticism
                                   float64
         openess_to_experience
         dtype: object
```

Univariate Analysis on Numerical Data

In [41]: univariate_analysis(numerical_df)

```
******* ID *******
    1.124400e+04
min
max
     1.298275e+06
     6.637945e+05
mean
median 6.396000e+05
   3.632182e+05
std
     5.477047e-02
skew
kurt -1.222694e+00
Name: ID, dtype: float64
______
****** Salary *******
    3.500000e+04
4.000000e+06
min
max
mean 3.076998e+05
median 3.000000e+05
      2.127375e+05
std
skew 6.451081e+00
kurt 8.093000e+01
Name: Salary, dtype: float64
______
******* 10percentage *******
     43.000000
     97.760000
max
    77.925443
mean
median 79.150000
std
      9.850162
      -0.591019
skew
kurt
      -0.110284
Name: 10percentage, dtype: float64
______
******* 12graduation *******
    1995.000000
min
     2013.000000
max
     2008.087544
mean
median 2008.000000
    1.653599
std
skew
       -0.964090
kurt
        1.951164
Name: 12graduation, dtype: float64
   _____
****** 12percentage *******
     40.000000
min
     98.700000
max
mean
      74.466366
median 74.400000
   10.999933
std
   -0.032607
-0.630737
skew
kurt
Name: 12percentage, dtype: float64
______
_____
****** CollegeID *******
         2.000000
min
     18409.000000
max
      5156.851426
mean
median
      3879.000000
      4802.261482
std
skew
         0.649176
```

```
kurt
         -0.767441
Name: CollegeID, dtype: float64
****** CollegeTier *******
      1.000000
      2.000000
max
      1.925713
mean
median 2.000000
std
   0.262270
     -3.247991
skew
      8.553722
kurt
Name: CollegeTier, dtype: float64
______
****** collegeGPA *******
min
        6.450000
      99.930000
max
     71.486171
mean
median 71.720000
std
       8.167338
skew
       -1.249209
kurt
      10.234244
Name: collegeGPA, dtype: float64
______
****** CollegeCityID *******
          2.000000
      18409.000000
max
      5156.851426
mean
median
       3879.000000
std
       4802.261482
skew
         0.649176
kurt
          -0.767441
Name: CollegeCityID, dtype: float64
______
******* CollegeCityTier *******
     0.000000
min
max
      1.000000
      0.300400
mean
median 0.000000
   0.458489
std
skew
      0.871120
      -1.241771
Name: CollegeCityTier, dtype: float64
****** GraduationYear *******
         0.000000
min
max 2017.000000
mean 2012.105803
median 2013.000000
std
        31.857271
      -63.068064
    -63.068004
3984.369696
skew
kurt
Name: GraduationYear, dtype: float64
****** English *******
       180.000000
min
max
       875.000000
```

```
501.649075
mean
median 500.000000
std
      104.940021
skew
       0.191997
kurt
       -0.254133
Name: English, dtype: float64
****** Logical ******
      195.000000
      795.000000
max
    501.598799
mean
median 505.000000
std
      86.783297
skew
      -0.216602
      -0.224761
kurt
Name: Logical, dtype: float64
______
_____
******* Quant *******
      120.000000
min
     900.000000
max
mean
     513.378189
median 515.000000
    122.302332
std
skew
       -0.019399
       -0.102472
kurt
Name: Quant, dtype: float64
______
******* Domain ******
     -1.000000
min
     0.999910
max
     0.510490
mean
median 0.622643
std 0.468671
skew
     -1.922146
kurt
      3.895951
Name: Domain, dtype: float64
______
****** ComputerProgramming *******
min
       -1.000000
     840.000000
max
mean
    353.102801
median 415.000000
std 205.355519
    -0.778106
-0.666352
skew
Name: ComputerProgramming, dtype: float64
______
****** ElectronicsAndSemicon *******
       -1.000000
min
     612.000000
max
     95.328414
mean
median
      -1.000000
    158.241218
std
       1.195975
skew
kurt
       -0.210374
Name: ElectronicsAndSemicon, dtype: float64
```

```
******* ComputerScience *******
       -1.000000
min
      715.000000
max
      90.742371
mean
median
       -1.000000
std
      175.273083
skew
        1.529521
kurt
        0.692641
Name: ComputerScience, dtype: float64
______
****** Mechanical Engg *******
       -1.000000
min
      623.000000
max
mean
median -1.000
98.123311
4 029563
kurt 15.018957
Name: MechanicalEngg, dtype: float64
______
-----
****** ElectricalEngg *******
      -1.000000
min
max
     676.000000
mean 16.478739
median -1.000000
std 87.585634
       5.060407
skew
kurt 24.878194
Name: ElectricalEngg, dtype: float64
______
****** TelecomEngg *******
min
       -1.000000
      548.000000
max
      31.851176
-1.000000
mean
median
std 104.852845
skew
        3.041261
        7.810221
kurt
Name: TelecomEngg, dtype: float64
______
****** CivilEngg *******
       -1.000000
min
max
      516.000000
       2.683842
mean
median
       -1.000000
      36.658505
std
skew
       10.315681
      109.041349
Name: CivilEngg, dtype: float64
-----
****** conscientiousness *******
     -4.126700
min
      1.995300
max
      -0.037831
mean
median 0.046400
std
       1.028666
```

```
-0.527003
        skew
        kurt
                0.122596
       Name: conscientiousness, dtype: float64
        ______
        ****** agreeableness *******
              -5.781600
       min
       max
               1.904800
              0.146496
       mean
       median 0.212400
              0.941782
       std
              -1.204915
       skew
                3.391242
       kurt
       Name: agreeableness, dtype: float64
        ______
        ****** extraversion *******
             -4.600900
       min
       max
               2.535400
              0.002763
       mean
       median 0.091400
       std
               0.951471
       skew
              -0.523267
       kurt
              0.643969
       Name: extraversion, dtype: float64
        ****** nueroticism ******
             -2.643000
       min
       max
               3.352500
       mean
              -0.169033
       median -0.234400
               1.007580
       std
        skew
               0.165710
               -0.191539
       kurt
       Name: nueroticism, dtype: float64
        ****** openess_to_experience *******
       min
              -7.375700
               1.822400
       max
              -0.138110
       mean
       median -0.094300
               1.008075
       std
       skew
              -1.506962
               5.788327
       kurt
       Name: openess_to_experience, dtype: float64
In [43]: | numerical_df.shape
Out[43]: (3998, 27)
```

Univariate Analysis on Numerical Data (Visualization)

In [95]: sns.boxplot(data=numerical_df.iloc[:,:2])

Out[95]: <AxesSubplot:>

In [96]: plt.figure(figsize=(15,15))
sns.boxplot(data=numerical_df.iloc[:,11:16])

Out[96]: <AxesSubplot:>


```
In [99]: def univariate_cat(data):
    for column in data:
        print("*"*6,column,"*"*5)
        print("mode of data is",data[column].mode())
        print("unique values of columns are",data[column].value_counts())
    univariate_cat(df[["JobCity","Specialization"]])
```

```
***** JobCitv *****
mode of data is 0
                     Bangalore
dtype: object
unique values of columns are Bangalore
                                           627
Noida
             368
Hyderabad
             335
Pune
             290
            . . .
Bathinda
               1
Patiala
               1
Dausa
               1
Bhilai
               1
Banglore
               1
Name: JobCity, Length: 339, dtype: int64
***** Specialization *****
mode of data is 0 electronics and communication engineering
dtype: object
unique values of columns are electronics and communication engineering
                                                                              88
computer science & engineering
                                                744
information technology
                                                660
computer engineering
                                                600
computer application
                                                244
mechanical engineering
                                                201
electronics and electrical engineering
                                                196
electronics & telecommunications
                                                121
electrical engineering
                                                 82
electronics & instrumentation eng
                                                 32
                                                 29
civil engineering
information science engineering
                                                 27
electronics and instrumentation engineering
                                                 27
instrumentation and control engineering
                                                 20
electronics engineering
                                                 19
biotechnology
                                                 15
                                                 13
other
industrial & production engineering
                                                 10
                                                  9
chemical engineering
applied electronics and instrumentation
                                                  9
telecommunication engineering
                                                  6
computer science and technology
                                                  6
                                                  5
mechanical and automation
                                                  5
automobile/automotive engineering
                                                  4
instrumentation engineering
mechatronics
                                                  4
electronics and computer engineering
                                                  3
                                                  3
aeronautical engineering
information & communication technology
                                                  2
                                                  2
metallurgical engineering
                                                  2
biomedical engineering
computer science
                                                  2
electrical and power engineering
                                                  2
                                                  2
industrial engineering
embedded systems technology
                                                  1
computer networking
                                                  1
industrial & management engineering
                                                  1
internal combustion engine
                                                  1
control and instrumentation engineering
                                                  1
mechanical & production engineering
                                                  1
polymer technology
                                                  1
power systems and automation
                                                  1
```

electronics

Two methods that helps performing Univariate Analysis:

Mode and Value_counts

Univariate Analysis on Categorical Data (Non-Visualize)

```
In [122]: def visualize_cat(d):
    for column in d:
        print("*"*8,column,"*"*8)
        d[column].value_counts().plot(kind="barh")
    visualize_cat(df[["Degree"]])

    ******* Degree ********

M.Sc. (Tech.)

M.Tech./M.E.
```

Bivariate Analysis

500

1000

1500

2000

2500

3000

3500

MCA

B.Tech/B.E.

Categorical vs Categorical

<pre>In [117]: Out[117]:</pre>	pd.crosstab(Specialization	df["Gender" aeronautical engineering	applied electronics and instrumentation	ization"],margins=T automobile/automotive engineering	biomedical	biotechnology e
	Gender					
	f	1	2	0	2	9
	m	2	7	5	0	6
	All	3	9	5	2	15
	3 rows × 47 co	lumns				
	4					>

In [118]: pd.crosstab(df["Specialization"],df["Gender"],margins=True)

Out[118]:

Gender	f	m	All
Specialization			
aeronautical engineering	1	2	3
applied electronics and instrumentation	2	7	9
automobile/automotive engineering	0	5	5
biomedical engineering	2	0	2
biotechnology	9	6	15
ceramic engineering	0	1	1
chemical engineering	1	8	9
civil engineering	6	23	29
computer and communication engineering	0	1	1
computer application	59	185	244
computer engineering	175	425	600
computer networking	0	1	1
computer science	1	1	2
computer science & engineering	183	561	744
computer science and technology	2	4	6
control and instrumentation engineering	0	1	1
electrical and power engineering	0	2	2
electrical engineering	17	65	82
electronics	0	1	1
electronics & instrumentation eng	10	22	32
electronics & telecommunications	28	93	121
electronics and communication engineering	212	668	880
electronics and computer engineering	0	3	3
electronics and electrical engineering	34	162	196
electronics and instrumentation engineering	5	22	27
electronics engineering	3	16	19
embedded systems technology	0	1	1
industrial & management engineering	0	1	1
industrial & production engineering	2	8	10
industrial engineering	1	1	2
information & communication technology	2	0	2
information science	0	1	1
information science engineering	8	19	27
information technology	173	487	660
instrumentation and control engineering	9	11	20
instrumentation engineering	0	4	4
internal combustion engine	0	1	1
mechanical & production engineering	0	1	1

Gender	f	m	All	
Specialization				
mechanical and automation	0	5	5	
mechanical engineering	10	191	201	
mechatronics	1	3	4	
metallurgical engineering	0	2	2	
other	0	13	13	
polymer technology	0	1	1	
power systems and automation	0	1	1	
telecommunication engineering	1	5	6	
All	957	3041	3998	

Numerical vs Numerical

```
In [125]: correlation=df["collegeGPA"].corr(df['Salary'])
    print("correlation between Salary and collegeGPA is ",correlation)
```

correlation between Salary and collegeGPA is 0.1301025190711256

Numerical vs Categorical

In [133]: df.groupby(["Specialization"])["Salary"].sum().sort_values(ascending=False)

Out[133]:	Specialization	
	electronics and communication engineering	261195000.0
	computer engineering	224460000.0
	computer science & engineering	206415000.0
	information technology	203605000.0
	computer application	68415000.0
	mechanical engineering	63809000.0
	electronics and electrical engineering	56235000.0
	electronics & telecommunications	35520000.0
	electrical engineering	24090000.0
	electronics & instrumentation eng	11665000.0
	civil engineering	11055000.0
	electronics and instrumentation engineering	8840000.0
	instrumentation and control engineering	7880000.0
	information science engineering	7460000.0
	electronics engineering	5310000.0
	industrial & production engineering	3845000.0
	biotechnology	3815000.0
	other	3465000.0
	chemical engineering	3330000.0
	applied electronics and instrumentation	3135000.0
	telecommunication engineering	2055000.0
	mechanical and automation	1545000.0
	computer science and technology	1475000.0
	automobile/automotive engineering	1110000.0
	mechatronics	1015000.0
	instrumentation engineering	960000.0
	information & communication technology	775000.0
	industrial engineering	740000.0
	polymer technology	700000.0
	metallurgical engineering	675000.0
	electronics and computer engineering	660000.0
	biomedical engineering	580000.0
	computer science	580000.0
	computer networking	565000.0
	information science	460000.0
	aeronautical engineering	445000.0
	electrical and power engineering	420000.0
	internal combustion engine	360000.0
	ceramic engineering	335000.0
	industrial & management engineering	32000.0
	control and instrumentation engineering	305000.0
	embedded systems technology	200000.0
	computer and communication engineering	120000.0
	,	
	mechanical & production engineering	100000.0 100000.0
	power systems and automation	
	electronics	40000.0
	Name: Salary, dtype: float64	

 $local host: 8888/notebooks/Problem\ Solving/Innomatics\ Projects/Task\ 4/AMCAT_EDA. ipynb\#Conclusion$

```
In [135]: group = df.groupby('Specialization')
    group['Salary'].agg(['min', 'max', 'mean', 'median'])
```

Out[135]:

	min	max	mean	median
Specialization				
aeronautical engineering	120000.0	180000.0	148333.333333	145000.0
applied electronics and instrumentation	175000.0	950000.0	348333.333333	300000.0
automobile/automotive engineering	100000.0	400000.0	222000.000000	130000.0
biomedical engineering	145000.0	435000.0	290000.000000	290000.0
biotechnology	100000.0	450000.0	254333.333333	235000.0
ceramic engineering	335000.0	335000.0	335000.000000	335000.0
chemical engineering	100000.0	730000.0	370000.000000	375000.0
civil engineering	110000.0	800000.0	381206.896552	320000.0
computer and communication engineering	120000.0	120000.0	120000.000000	120000.0
computer application	50000.0	4000000.0	280389.344262	217500.0
computer engineering	35000.0	4000000.0	374100.000000	350000.0
computer networking	565000.0	565000.0	565000.000000	565000.0
computer science	180000.0	400000.0	290000.000000	290000.0
computer science & engineering	35000.0	2050000.0	277439.516129	280000.0
computer science and technology	100000.0	360000.0	245833.333333	250000.0
control and instrumentation engineering	305000.0	305000.0	305000.000000	305000.0
electrical and power engineering	180000.0	240000.0	210000.000000	210000.0
electrical engineering	40000.0	1860000.0	293780.487805	300000.0
electronics	40000.0	40000.0	40000.000000	40000.0
electronics & instrumentation eng	100000.0	2300000.0	364531.250000	310000.0
electronics & telecommunications	45000.0	630000.0	293553.719008	300000.0
electronics and communication engineering	45000.0	3000000.0	296812.500000	300000.0
electronics and computer engineering	120000.0	300000.0	220000.000000	240000.0
electronics and electrical engineering	45000.0	2500000.0	286913.265306	280000.0
electronics and instrumentation engineering	50000.0	1745000.0	327407.407407	300000.0
electronics engineering	110000.0	410000.0	279473.684211	300000.0
embedded systems technology	200000.0	200000.0	200000.000000	200000.0
industrial & management engineering	320000.0	320000.0	320000.000000	320000.0
industrial & production engineering	170000.0	660000.0	384500.000000	382500.0
industrial engineering	350000.0	390000.0	370000.000000	370000.0
information & communication technology	325000.0	450000.0	387500.000000	387500.0
information science	460000.0	460000.0	460000.000000	460000.0
information science engineering	100000.0	570000.0	276296.296296	245000.0
information technology	35000.0	2000000.0	308492.424242	300000.0
instrumentation and control engineering	150000.0	1300000.0	394000.000000	312500.0
instrumentation engineering	200000.0	260000.0	240000.000000	250000.0
internal combustion engine	360000.0	360000.0	360000.000000	360000.0
mechanical & production engineering	100000.0	100000.0	100000.000000	100000.0

	min	max	mean	median
Specialization				
mechanical and automation	180000.0	500000.0	309000.000000	300000.0
mechanical engineering	60000.0	1300000.0	317457.711443	275000.0
mechatronics	100000.0	350000.0	253750.000000	282500.0
metallurgical engineering	300000.0	375000.0	337500.000000	337500.0
other	110000.0	600000.0	266538.461538	240000.0
polymer technology	700000.0	700000.0	700000.000000	700000.0
power systems and automation	100000.0	100000.0	100000.000000	100000.0
telecommunication engineering	275000.0	400000.0	342500.000000	350000.0

Numerical vs Numerical

```
In [136]: sns.scatterplot(data=df,x="10percentage",y="12percentage")
```

Out[136]: <AxesSubplot:xlabel='10percentage', ylabel='12percentage'>


```
In [144]: plt.figure(figsize=(15,8))
sns.scatterplot(data=df, x='collegeGPA',y='Salary',hue='Specialization')
```

Out[144]: <AxesSubplot:xlabel='collegeGPA', ylabel='Salary'>

The Scatter plot shows the Strong positive Correlation

```
In [137]: sns.scatterplot(data=df,x="collegeGPA",y="Salary")
```

Out[137]: <AxesSubplot:xlabel='collegeGPA', ylabel='Salary'>

Categorical vs Numerical (Visualize)

```
In [139]: plt.figure(figsize=(12,12))
sns.boxplot(data=df,y="Salary",x="Gender")
```

Out[139]: <AxesSubplot:xlabel='Gender', ylabel='Salary'>

The Median Salary for Male Endineers is High compare to the Salary of Female Engineers

In [146]: grouped=df.groupby(["CollegeState","Gender"]).size().unstack(fill_value=0)
grouped

Out[146]:

Gender	•	""
CollegeState		
Andhra Pradesh	69	156
Assam	1	4
Bihar	2	8
Chhattisgarh	6	21
Delhi	32	130
Goa	0	1
Gujarat	2	22
Haryana	49	131
Himachal Pradesh	5	11
Jammu and Kashmir	1	6
Jharkhand	5	23
Karnataka	93	277
Kerala	11	22
Madhya Pradesh	36	153
Maharashtra	68	194
Meghalaya	0	2
Orissa	42	130
Punjab	46	147
Rajasthan	43	131
Sikkim	1	2
Tamil Nadu	93	274
Telangana	115	204
Union Territory	0	5
Uttar Pradesh	186	729
Uttarakhand	18	95
West Bengal	33	163

Gender

m

```
In [147]: grouped.plot(kind="bar",figsize=(12,6))
```

Out[147]: <AxesSubplot:xlabel='CollegeState'>

UP has highest working proffessionals

Times of India article dated Jan 18,2019 states that "After doing your Computer Science Engineering if you take up jobs as a Programming Analyst,Software Engineer, Hardware Engineer and Associate Enginner You can earn up to 2.5-3 lakhs as a fresh graduate." Test this claim with the data giben to you.

Out[168]: <AxesSubplot:>


```
df1=df[["Designation", "Specialization", "Salary"]]
In [159]:
In [176]:
           # Assuming df1 is the original DataFrame
           df1_filter = df1[(df1["Designation"] == "programmer analyst") &
                             (df1["Specialization"] == "computer science & engineering")]
           # Display the first 5 rows of the filtered DataFrame
           print(df1 filter.head())
                       Designation
                                                      Specialization
                                                                          Salary
           24
                programmer analyst
                                     computer science & engineering 335000.0
                programmer analyst
                                     computer science & engineering 335000.0
           473
                programmer analyst
                                     computer science & engineering 345000.0
           530
                                     computer science & engineering 180000.0
           595
                programmer analyst
           767
                programmer analyst
                                     computer science & engineering 340000.0
In [181]: df1_filter.count()
Out[181]: Designation
                              26
           Specialization
                              26
                              26
           Salary
           dtype: int64
In [177]: df1 filter.plot(kind="box")
Out[177]: <AxesSubplot:>
            400000
            350000
            300000
            250000
            200000
                                         0
                                       Salary
In [183]:
          df1_filter1 = df1[(df1["Designation"] == "software engineer") &
                             (df1["Specialization"] == "computer science & engineering")]
           df1 filter1.head()
Out[183]:
                    Designation
                                           Specialization
                                                          Salary
               software engineer computer science & engineering
                                                        340000.0
                                                        390000.0
                software engineer
                               computer science & engineering
                software engineer
                               computer science & engineering
                                                        400000.0
```

113 software engineer computer science & engineering

computer science & engineering

250000.0 340000.0

55 software engineer

Out[187]: <AxesSubplot:>

Out[189]:		Designation	Specialization	Salary
	819	associate engineer	computer science & engineering	350000.0
	3134	associate engineer	computer science & engineering	315000.0

Programming Analyst, Software Engineer and Associate Engineer can earn up to 2.5-3 lakhs as a fresher graduate.

```
In [190]:
            df[["Gender", "Specialization"]].head()
Out[190]:
                Gender
                                                Specialization
             0
                                           computer engineering
             1
                        electronics and communication engineering
             2
                      f
                                          information technology
             3
                                           computer engineering
                     m
                     m electronics and communication engineering
In [191]: df["Gender"].value_counts()
Out[191]: m
                  3041
                   957
```

Name: Gender, dtype: int64

```
In [195]: print("Percentage of Females")
print((957/3998)*100)
```

Percentage of Females 23.936968484242122

In [196]: grouped=df.groupby(["Specialization","Gender"]).size().unstack(fill_value=0)
grouped

Out[196]:

Gender	f	m
Specialization		
aeronautical engineering	1	2
applied electronics and instrumentation	2	7
automobile/automotive engineering	0	5
biomedical engineering	2	0
biotechnology	9	6
ceramic engineering	0	1
chemical engineering	1	8
civil engineering	6	23
computer and communication engineering	0	1
computer application	59	185
computer engineering	175	425
computer networking	0	1
computer science	1	1
computer science & engineering	183	561
computer science and technology	2	4
control and instrumentation engineering	0	1
electrical and power engineering	0	2
electrical engineering	17	65
electronics	0	1
electronics & instrumentation eng	10	22
electronics & telecommunications	28	93
electronics and communication engineering	212	668
electronics and computer engineering	0	3
electronics and electrical engineering	34	162
electronics and instrumentation engineering	5	22
electronics engineering	3	16
embedded systems technology	0	1
industrial & management engineering	0	1
industrial & production engineering	2	8
industrial engineering	1	1
information & communication technology	2	0
information science	0	1
information science engineering	8	19
information technology	173	487
instrumentation and control engineering	9	11
instrumentation engineering	0	4
internal combustion engine	0	1
mechanical & production engineering	0	1

Gender		m
Specialization		
mechanical and automation	0	5
mechanical engineering	10	191
mechatronics	1	3
metallurgical engineering	0	2
other	0	13
polymer technology	0	1
power systems and automation	0	1
telecommunication engineering	1	5

In [197]: grouped.plot(kind="bar",figsize=(12,6))

Out[197]: <AxesSubplot:xlabel='Specialization'>

OBJECTIVE OF THE ANALYSIS

KEY INSIGHTS: This Analysis provided the significant insights into distribution of Salaries and the Factors influencing them.

Skill Impact: Examined the relationship between cognitive, technical, and personality skills with salary outcomes, revealing significant predictors.

GENDER & SPECIALIZATION: The Preferences for specialization appears to have the some correlation with Gender.

Explore Trends: Look into how salaries vary by the factors such as location, gender and job roles to identify the potential inequalities in the job market.

Overall this analysis aim to provide valuable insights for Engineering Graduates.