Disciplina "Econometrie"

Tipuri de întrebări grilă (cu mai multe variante de răspuns corecte)

1. Rezultatele modelării legăturii dintre variabilele *PIB/loc* (\$) și *Procentul de populație urbană* (%), pentru un eșantion de țări în anul 2010, folosind modelul *Compound*, sunt prezentate în tabelul de mai jos.

Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
Pop_urbana	1,046	,004	2,126	265,173	,000
(Constant)	210,430	48,762		4,315	,000

The dependent variable is In(PIB).

Sunt corecte afirmațiile:

a) Ecuația estimată a modelului de regresie este $y_x = 210.43 \cdot 1.046^X$

b) Ecuația estimată a modelului de regresie este $y_x = 210 J 3 x^{1.048}$

c) Ecuația estimată a modelului de regresie este $y_{x}=1.046 \, \mathrm{v}^{210.43}$

d) la o creștere cu 1% a Populației urbane, PIB/loc. scade în medie cu $\theta n L046$) $\pm 100\%$

e) la o creștere cu 1% a Populației urbane, PIB/loc. crește în medie cu Gn1.046) 400%

f) la o creștere cu 1% a Populației urbane, PIB/loc. crește în medie cu 104,6%.

2. Datele privind variabilele X și Y sunt reprezentate în figura de mai jos:

Ecuația teoretică a curbei care ajustează legătura dintre variabile este

a)
$$Y = \beta_0 + \beta_1 \cdot X + \beta_2 \cdot X^2 + \epsilon$$

b) $Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2^2 + \epsilon$

b)
$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2^2 + i$$

c)
$$Y = \beta_{\theta} \cdot \beta_{I}^{X} \cdot e^{\epsilon}$$

3. În studiul legăturii dintre costul unitar (lei) și producția realizată (tone) sau obținut următoarele rezultate:

	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
Productie	-,009	,001	-4,897	-14,094	,000
Productie ** 2	7,73E-006	,000	4,809	13,839	,000
(Constant)	5,886	,142		41,431	,000

Pentru exemplul dat, sunt corecte afirmațiile:

a) ecuația estimată este: $Y_X = 5.886 - 0.009X + 7.73 \cdot I0^{-6} \cdot X^2$

b) legătura de tip parabolic admite un punct de minim

c) ecuația estimată este: $Y_X = 5.886 - 0.009 X_1 + 7.73 \cdot 10^{-6} \cdot X_2^2$

d) nivelul optim al costului se atinge pentru o producție de 582,14 tone.

Rezultatele modelării legăturii dintre variabilele X (mii lei) și Y (mil. lei), printr-un model *Growth*, se prezintă în tabelul de mai jos.

Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
X1	.130	.014	.912	9.412	.000
(Constant)	2.720	.073		37.090	.000

The dependent variable is In(Y).

Sunt corecte afirmaţiile:

a) ecuația modelului estimat este $ln Y_x = 2.72 \pm 0.13 \cdot X$

b) atunci când X=0, nivelul mediu estimat al lui Y este $e^{2,72}$

c) la o creștere a lui X cu o mie de lei, Y crește în medie cu 13%

Rezultatele modelării legăturii dintre variabilele X (mii lei) și Y (mil. lei), printr-un model exponential, se prezintă în tabelul de mai jos.

Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
X1	.130	.014	.912	9.412	.000
(Constant)	15.175	1.113		13.638	.000

The dependent variable is In(Y).

Sunt corecte afirmaţiile:

- a) ecuația modelului estimat este $lnY_e = lnI5.175 + \theta.13 \cdot X$
- b) la o creștere a lui X cu 1%, Y crește în medie cu 13%
- c) la o creștere a lui X cu o mie de lei, Y crește în medie cu 13%
- 6. Rezultatele modelării legăturii dintre variabilele X (mii lei) și Y (mil. lei) se prezintă în tabelul de mai jos.

Coefficients

	Unstandardized Coefficients		Standardized Coefficients		
	В	Std. Error	Beta	t	Sig.
In(X)	20.535	3.396	.961	6.047	.009
(Constant)	-1.799	5.388		334	.760

Sunt corecte afirmațiile:

- a) ecuația modelului estimat este $Y_3 = -1.799 + 20.535 \ln X$
- b) ecuația modelului estimat este $ln Y_z = -1.799 + 20.535 ln X$
- c) la o creștere a lui X cu 1%, Y crește în medie cu 20,535 mil. lei
- d) la o creștere a lui X cu 1%, Y crește în medie cu 0,20535 mil. lei
- 7. În studiul legăturii dintre două variabile, s-au obținut următoarele rezultate:

Statistics

	S	С	o	r	е
--	---	---	---	---	---

Score		
N	Valid	48
	Missing	0
Skewness		,038
Std. Error of Skewness		,343
Kurtosis		-,961
Std. Error of Kurtosis		,674

Pentru exemplul dat, asumându-ne un risc de 0,05, se poate considera că

- a) se acceptă ipoteza de normalitate a erorilor
- b) se respinge ipoteza de normalitate a erorilor
- c) se acceptă ipoteza de necorelare a erorilor
- d) valoarea teoretică a statisticii test este $\chi^2_{que} = 5.991$.
- 8. În urma prelucrării datelor pentru un eșantion de volum n=35 unități, s-a estimat un model de forma Y= $\beta_0+\beta_1X+\epsilon$ și s-au obținut următoarele rezultate:

Model Summary^b

Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	Durbin- Watson
1	,081 ^a	,007	-,015	,509	,244

a. Predictors: (Constant), Score

b. Dependent Variable: Tension

Pentru un risc asumat egal cu 0,05, se poate considera că:

- a. erorile de modelare sunt autocorelate pozitiv
- b. erorile de modelare sunt autocorelate negativ
- c. nu este posibilă luarea unei decizii cu privire la existența autocorelării erorilor
- 9. Încălcarea ipotezei de homoscedasticitate are ca efect
- a. pierderea eficienței estimatorilor parametrilor modelului de regresie
- b. pierderea eficienței estimatorului variabilei dependente
- c. pierderea eficienței estimatorului variabilei independente
- 10. Dacă între variabilele independente se înregistrează o coliniaritate perfectă, atunci varianța estimatorilor este
- a. infinită
- b. nulă
- c. mare
- 11.În urma analizei legăturilor dintre variabilele independente ale unui model de regresie, s-au obținut următoarele rezultate:

Coefficientsa

			lardized cients	Standardized Coefficients			Collinearity	Statistics
Model		В	Std. Error	Beta	t	Sig.	Tolerance	VIF
1	(Constant)	65,705	27,731		2,369	,037		
	X1	48,979	10,658	,581	4,596	,001	,950	1,052
	X2	59,654	23,625	,359	2,525	,028	,753	1,328
	X3	-1,838	,814	-,324	-2,258	,045	,738	1,355

a. Dependent Variable: Y

Valoarea indicatorului VIF pentru variabila X₁ arată că:

- a. variabila X₁ nu introduce fenomenul de coliniaritate
- b. 4,94% din variația variabilei X_1 este explicată liniar de variația celorlalte variabile independente
- c. există coliniariate între variabilele independente

12.În vederea testării ipotezei privind valoarea mediei erorilor ε ale unui model de regresie liniară simplă s-au obținut următoarele rezultate:

One-Sample Statistics

				Std. Error
	N	Mean	Std. Deviation	Mean
Unstandardized Residual	15	,0000000	73271,63549	18918,65

Pentru exemplul dat, considerând un risc de 0,05 și n=15, se poate considera că:

- a. se respinge ipoteza $H_{\theta}: M(\varepsilon_1) = 0$.
- b. se acceptă ipoteza $H_0: M(\varepsilon_1) = 0$.
- c. se acceptă ipoteza $H_{\theta}: M(\varepsilon_{\epsilon}) \neq 0$.
- d. valoarea teoretică a statisticii test t Student este $t_{0.025,Id} = 2.145$.

13.În vederea testării normalității erorilor unui model de regresie, s-au obținut următoarele rezultate:

One-Sample Kolmogorov-Smirnov Test

		Tension
N		12
Normal Parameters a,b	Mean	1.50
	Std. Deviation	.522
Most Extreme	Absolute	.331
Differences	Positive	.331
	Negative	331
Kolmogorov-Smirnov Z		1.146
Asymp. Sig. (2-tailed)		.145

a. Test distribution is Normal.

b. Calculated from data.

Considerând un risc de 0,05, se poate considera că

- a. erorile urmează o lege normală
- b. erorile nu urmează o lege normală
- c. erorile sunt homoscedastice
- d. erorile sunt necorelate

14.În urma prelucării datelor privind erorile unui model de regresie, s-au obținut următoarele rezultate:

Runs Test

	Unstandardiz ed Residual
Test Value ^a	,12239
Cases < Test Value	16
Cases >= Test Value	16
Total Cases	32
Number of Runs	16
Z	-,180
Asymp. Sig. (2-tailed)	,857

a. Median

Pentru un risc de 0,05, se poate considera că:

- a. erorile urmează o lege normală
- b. erorile sunt homoscedastice
- c. erorile sunt necorelate
- d. se acceptă ipoteza de necorelare a erorilor
- e. succesiunea run-urilor este aleatoare

15.În urma prelucării datelor privind erorile unui model de regresie, s-au obținut următoarele rezultate:

Heteroskedasticity Test: Breusch-Pagan-Godfrey

F-statistic	1.207422	Prob. F(1,10)	0.2976
Obs*R-squared	1.292810	Prob. Chi-Square(1)	0.2555
Scaled explained SS	0.949554	Prob. Chi-Square(1)	0.3298

Test Equation:

Dependent Variable: RESID^2 Method: Least Squares Date: 01/14/21 Time: 11:22

Sample: 1997 2008 Included observations: 12

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C RATA_SOM_COEF(-2)	-0.012487 0.277159	0.018044 0.252232	-0.691992 1.098828	0.5047 0.2976
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.107734 0.018508 0.010615 0.001127 38.61282 1.207422 0.297594	Mean deper S.D. depend Akaike info o Schwarz crit Hannan-Qui Durbin-Wats	ent var criterion erion nn criter.	0.007053 0.010714 -6.102136 -6.021318 -6.132058 1.854675

Pentru un risc de 0,05, se poate considera că:

- a. erorile urmează o lege normală
- b. erorile sunt homoscedastice
- c. erorile sunt necorelate
- d. se acceptă ipoteza de homoscedasticitate a erorilor

16.În studiul legăturii dintre două variabile, X și Y, pentru a testa ipoteza de homoscedasticitate a erorilor se estimează un model de regresie între variabila reziduală estimată și variabila independentă, și se obțin următoarele rezultate:

Coefficients^a

		Unstand Coeffic	lardized cients	Standardized Coefficients		
Mode	el	В	Std. Error	Beta	t	Sig.
1	(Constant)	3,497	,691		5,060	,001
	X1	-,220	,130	-,512	-1,688	,130

a. Dependent Variable: modul erori

Pentru exemplul dat, considerând un risc de 0,05, se poate considera că

- a. modelul de regresie este heteroscedastic
- b. modelul de regresie este homoscedastic
- c. erorile sunt autocorelate pozitiv

17.În urma analizei coliniarității pentru un model liniar multivariat, s-au obținut rezultatele din tabelul de mai jos:

	Toleranc	VIF
	e	
(Constant)		
fibre	.006	166.66
grasimi	.647	
zaharuri	.073	13,69

Pe baza datelor din tabelul de mai sus alegeți afirmațiile corecte:

- a. rapoartele de determinație (R^2) pentru cele 3 modele de regresie auxiliare sunt 0,994; 0,353 si 0,927;
- b. există variabile independente care introduc fenomenul de coliniaritate
- c. nu există variabile independente care introduc fenomenul de coliniaritate
- d. valoarea care lipsește este 1,546
- e. 64,7% din variatia variabilei *grăsimilor* este explicată prin variatia simultană a zaharurilor si fibrelor
- f. Variabile Fibre este coliniară în raport cu variabila dependentă