MR. ROBOT

- Overall strategy
- Robot mechanical design
- Sensors
- Actuators
- Algorithms
- Power
- Processing unit
- Task delegation

1. OVERALL STRAGY

2. ROBOT MECHANICAL DESIGN

- Robot Platform
- Wheels
- Mechanisms
- Computer Aided Design

BLUEPRINT

SUPPORT POLYGON & WHEELS

DRIVE MECHANISM

ARM MECHANISM

SENSOR PLACEMENT

SENSOR ARAY

COMPUTER AIDED

3. SENSORS

Sharp IR

Name – GP2Y0A51
Detect range – 2cm to 15cm
Number of sensors we use – 5 sensors (GP2Y0A51)
Located on- Left side 2, Right side 2 and Back side 1

we use the sharp IRs for

- Wall Following
- Pillars detecting
- Color box detecting

Why should we use that sharp IR GP2Y0A51?

- Wall is curve therefore difficult to identify using Ultrasonic sensors
- Wall and the pillars are 15cm away from the white line

Ultrasonic Sensor

Name – HC-SR04
In practically measuring distance range – 2cm to 80cm
Measuring angle covered – 15 degrees covered
Number of sensors we use – only one sensor
Located on – front side of the robot

we use the ultrasonic sensor for

We use to detect the synchronous gate

Why should we use ultrasonic?

- It has 15 degrees measuring angle covered
- Gate is a moving object therefore we need a wider range sensor
- Before the gate we have a holding position. From holding position to gate has 30cm-40cm distance approximately

Color sensor

Name – TCS230 8x8 photo diode array Using current to frequency converter Light measurements should be made at about 1~3cm to get a more accurate result.

Number of sensors we use – 2 sensors Located on – design a special box for put the color box

Why should we use TCS230 sensors?

- In our task has 3 colors (red, blue, green)
- This sensor module can easy to identify red, blue and green
- frequency directly proportional to the light intensity
- Avarage cost

4. ACTUATORS

Servo Motors

Name – MG90 and SG90 Number of servos – 6 servors (2 SG90 and 4 MG90) Using PWM system

	MG90	SG90
Operating Voltage	4.8V- 6V	4.8V- 6V
Rotate	180 degrees	180 degrees
torque	2.2 Kg/cm	2.5Kg/cm
Gear type	Metal	Plastic

Why should we use servo motors?

34:1 12V High Power DC Motor

High Power Motor needs 5.6A stall current

We selected special motor drive Dagaya 1.0
Maximum current -12A
Number of drives -2

5. POWER

Power System

Name – Lithium Polymer Rechargeable battery 3300mAh 25C

Why we use?

We need – nearly 3000mA (maximum) Required discharge rate – 6C

POWER SUPPLY CIRCUIT

Servo motors power supply

Sensor power supply

6. PROCESSING UNIT

- Arduino Mega 2560
 Board Is used as processing unit
- Image shows wire configuration of the Arduino borard

PCB DESIGNS

7. ALGORITHMS

Calibrate()

- 1. Get maximum values of each sensors
- 2. Get minimum values of each sensors
- 3. Calculate average maximum
- 4. Calculate average minimum
- 5. Th (Thresher hold) = (average maximum + average minimum)/2
- 6. Return Th

Task()

Define task ()

Pillars = 0

- 1. Motor_drive (forward)
- 2. Status = line_follow (max_speed = 5)
- 3. If (status == wall_detect)
 - a. Status = wall_follow()
 - b. Stage +=1
- 4. Else
 - a. Motor_drive(reverse)
 - b. Go to line 3
- 5. If status == line_follow
 - a. Status = line_follow (max_speed = 5)
- 6. Else
 - a. Motor_drive(reverse)
 - b. If road_statu() = wall_detect
 - i. Status = wall_follow()
 - ii. Go to line 5
 - c. Else
 - i. Return 0
- 7. If status == circle_detect
 - a. maze_solve()
 - b. Stage+=1
- 8. else
 - a. Motor_drive(reverse)
 - b. Status = line_follow (max_speed = 2,)
 - c. Go to line 7
- 9. If status == maze_solved
 - a. Status = line_follow (max_speed = 5)
- 10. else
 - a. return
- 11. if status == T_jn_passed
 - a. stage+=1
 - b. Status = pillars_count (max_speed = 2)

- 12. else
 - a. Motor_drive(reverse)
 - b. Status = line_follow (max_speed = 2)
 - c. Go to line 11
- 13. If status = turn_back

SUB ALGORITHMS

line_follow()

wall_follow()

Motor_drive ()

road_status()

maze_solve()

Gate_avoid()

LINE
FOLLOWING
AND WALL
FOLLOWING

MAZE SOLVING

Maze_solve()

PILLARS COUNTING

Count considering stage

GATE AVOID

Time	Gate 1	Gate 2
0s	open	closed
3s	open	open
10s	closed	open
13s	closed	closed
20s	open	closed
23s	open	open

Gate_avoid()

8. TASK DELEGATION

Allocated Works	Team members
Hardware design	SIRITHUNGA M.R.A. JAYAWEERA D.S.B.C.L. ARIYARATHNE H.D.M.P.
PCB design & Circuitry	KANNANGARA D.N. JAYAWEERA D.S.B.C.L. HIROSHAN H.H.R.
Algorithm	ARIYARATHNE H.D.M.P. KANNANGARA D.N. SIRITHUNGA M.R.A.
Stage 0 of the task	HIROSHAN H.H.R.
Stage 1 of the task	KANNANGARA D.N.
Stage 2 of the task	SIRITHUNGA M.R.A.
Stage 3 of the task	JAYAWEERA D.S.B.C.L.
Stage 4 of the task	ARIYARATHNE H.D.M.P.

Submitted by

KANNANGARA D.N.	180301A
SIRITHUNGA M.R.A.	180609B
ARIYARATHNE H.D.M.P.	180045P
JAYAWEERA D.S.B.C.L.	180288L
HIROSHAN H.H.R.	180245E