[Cheng P.6-11] A long wire carrying a current I folds back with a semicircular bend of radius b as in Fig. 6-38. Determine the magnetic flux density at the center point P of the bend.

FIGURE 6-38

A very long wire with a semicircular bend (Problem P.6-11).

Solution: This problem is the superposition of two problems:

$$B = B_1 + B_2$$

where

1. \mathbf{B}_1 is the magnetic flux density at P due to two semi-infinite wires carrying equal and opposite currents. Assuming \mathbf{a}_z points out of the page:

$$\mathbf{B}_1 = \mathbf{a}_z \frac{\mu_0 I}{2\pi b}.$$

2. \mathbf{B}_2 is the magnetic flux density at P due to a half circle. Taking one half of the result in Eq. (6-38) for z=0

$$\mathbf{B}_2 = \mathbf{a}_z \frac{\mu_0 I}{4b}$$

Therefore,

$$\mathbf{B} = \mathbf{a}_z \frac{\mu_0 I}{2b} \left(\frac{1}{\pi} + \frac{1}{2} \right).$$

Answer:

$$\mathbf{B} = \mathbf{a}_z \frac{\mu_0 I}{2b} \left(\frac{1}{\pi} + \frac{1}{2} \right)$$