Mathematical Admin N = {1,2,3,...} [n] = 5, 1, 2, 3, ... n} We will often build sets from smaller sets AUB = {x·xeA or zeB3 ANR = S.Z.XEA and XEB3 if A, B are finite, then |AUB|=|A]+|B|-|AnB| if ANB=Ø, then A,B are disjoint and |AUB|= |A]+|B| Unions are 'sums' The cartesian product of A & B is the set A × B = {(a,b): a ∈ A, b ∈ B}; i.e. the set of all pairs with first element in A and second element For KEIN, At denotes (A x A) x ... x A' = { (a, a2, ..., ak) · a; ∈ A for each i} e.g. {10,1)} = {10,0,0,0,0), (0,0,0,0,1)...} IS A. B are finite, then $|A \times B| = |A| \cdot |B|$ e.g. {1,2} x {2,3,43 = 4,01,2),(1,3),(1,4),(2,2),(2,3),(2,4)} It follows that |AK = IAIK.

A function $f:A \rightarrow B$ is a subset of $A \times B$ in which every element of A occurs exactly once as a first element of a pair. eg: { (dog, 4), (coxt, 4), (duok, 2), (cow, 4)} is a Function from Edog, cat, duck, con 3 to IN. f is one-to-one if $\frac{(injective)}{f(a)} = f(y) \rightarrow x = y$ For all a, y ∈ A f is onto if (subjective) 15 A & B one finite, then for all yeB, there exists the number of functions $x \in A$ such that f(a) = y. f from A to B is IBIM A function that is both one to one and onto is bijective (a bijection) Prop: If A,B are finite and there easily a bijection f: A > B, then |A| = |B|. bijeotive IN square numbers real numbers Q

Combinatorial Proofs

Prop. There are 2" subsets of [n]

Pf: Let Xn be the set of subsets of [n]
Yn be the set of binary strings of length n.

We showed earlier | Yn | = 2n.

We define a bijection f: Xn → Yn'

For each S & Xn, let 5(s) = a, a2 a3...an

Where a = {1 if i 65}

Yhere a = {0 otherwise}

For each i & [n]

For each string by, by, ..., bn \(\) \(\