Hi to all!!!

I have prepared a notebook that works on both COLAB and KAGGLE!!!

In versions 3 and 4 I show the model I treated on Google COLAB for this notebook https://www.kaggle.com/aikhmelnytskyy/bagging-rainforest

IMPORTANTLY! This notebook didn't work after the changes to kaggle, but thanks to a discussion by Martin Görner and Allohvk (https://www.kaggle.com/c/rfcx-species-audio-detection/discussion/216408), I made the necessary changes in version 4 and now everything works. Here are the changes: from

```
@tf.function
def preprocess img(x, training=False, test=False):
to
@tf.function def _preprocess_img(x, training=False, test=False):
And from
def _specaugment(image):
   image = tfa.image.cutout(image, [HEIGHT, xsize[0]], offset=
   [HEIGHT//2, xoff[0]])
   image = tfa.image.cutout(image, [HEIGHT, xsize[1]], offset=
   [HEIGHT//2, xoff[1]])
   image = tfa.image.cutout(image, [ysize[0], WIDTH], offset=
   [yoff[0], WIDTH//2])
   image = tfa.image.cutout(image, [ysize[1], WIDTH], offset=
   [yoff[1], WIDTH//2])
   image = tf.squeeze(image, axis=0)
   return image
to
   #image = tfa.image.cutout(image, [HEIGHT, xsize[0]], offset=
   [HEIGHT//2, xoff[0]])
   #image = tfa.image.cutout(image, [HEIGHT, xsize[1]], offset=
   [HEIGHT//2, xoff[1]])
   #image = tfa.image.cutout(image, [ysize[0], WIDTH], offset=
   [yoff[0], WIDTH//2])
```

Version 5 changes as shown in this discussion https://www.kaggle.com/c/rfcx-species-audio-

#image = tfa.image.cutout(image, [ysize[1], WIDTH], offset=

[yoff[1], WIDTH//2])

return image

image = tf.squeeze(image, axis=0)

detection/discussion/218930 (special thanks to the author)

I used these notebooks as a basis: https://www.kaggle.com/mekhdigakhramanian/rfcx-resnet50-tpu https://www.kaggle.com/khoongweihao/resnet34-more-augmentations-mixup-tta-inference

It is important to work with colab you need kaggle.json (https://www.kaggle.com/docs/api)

I also created a folder called Models on my Google Drive and put the kaggle.json file in it.

```
In [1]:
         import os
         COLAB=False
         models path=''
         if not os.path.exists('../input/rfcx-species-audio-detection'):# Let's che
             COLAB=True
             import qc
             from google.colab import drive
             drive.mount('/content/drive')# You must grant COLAB access to your Goo!
             #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
             GCS DS PATH = 'qs://kds-5c677f76ce55440722b2a474a5492faa70847c05a8f5d7l
             #This is a path to a dataset that changes over time, so you need to co
             #GCS DS PATH = KaggleDatasets (). Get gcs path ()
             #print (GCS DS PATH)
             models_path='/content/drive/MyDrive/Models/'# I created a folder calle
         else:
             from kaggle datasets import KaggleDatasets
             GCS DS PATH = KaggleDatasets().get gcs path('rfcx-species-audio-detect
             print (GCS DS PATH)
        gs://kds-a7dd8b09d52950714bee1818d843af117accc125d4d289d9afcebfab
In [2]:
         if COLAB: # Prepare the kaggle. ison file for use
             from google.colab import files
             if not os.path.exists('/.kaggle/kaggle.json'):
                 !mkdir ~/.kaggle
                 if not os.path.exists('/content/drive/My Drive/Models/kaggle.json'
                     files.upload()
                     !cp kaggle.json ~/.kaggle/
```

```
else:
    !cp '/content/drive/My Drive/Models/kaggle.json' ~/.kaggle/
!chmod 600 ~/.kaggle/kaggle.json

In [3]:

if COLAB:# force TF to 2.2
!pip install -q tensorflow~=2.2.0 tensorflow_gcs_config~=2.2.0
import tensorflow as tf
import requests
import os
resp = requests.post("http://{}:8475/requestversion/{}".format(os.enviif resp.status_code != 200:
```

print("Failed to switch the TPU to TF {}".format(version))

```
In [4]:
         if COLAB:
                      #%tensorflow_version 2.x
             import tensorflow as tf
             print("Tensorflow version " + tf. version )
             try:
               tpu = tf.distribute.cluster resolver.TPUClusterResolver() # TPU det
               print('Running on TPU ', tpu.cluster spec().as dict()['worker'])
             except ValueError:
               raise BaseException('ERROR: Not connected to a TPU runtime; please se
             tf.config.experimental_connect_to_cluster(tpu)
             tf.tpu.experimental.initialize_tpu_system(tpu)
             tpu_strategy = tf.distribute.experimental.TPUStrategy(tpu)
             #tpu strategy = tf.distribute.TPUStrategy(tpu)
In [5]:
         !pip install -q tensorflow io
         import tensorflow_io as tfio
         import tensorflow as tf
         import qc
         !pip install image-classifiers
         !pip install tensorflow_addons==0.10.0
         import tensorflow_addons as tfa
         #import tfa as tfa
         import numpy as np
         from pathlib import Path
         import io
         import matplotlib.pyplot as plt
         !pip install soundfile
         import soundfile as sf
         import librosa
         #!pip install kaggle_datasets
         #from kaggle datasets import KaggleDatasets
         from tqdm import tqdm
         import pandas as pd
         from sklearn.model selection import StratifiedKFold
         import seaborn as sns
         from IPython.display import Audio
         from classification models.keras import Classifiers
         tf. version
        WARNING: You are using pip version 21.0; however, version 21.0.1 is availab
        You should consider upgrading via the '/opt/conda/bin/python3.7 -m pip inst
        all --upgrade pip' command.
        Collecting image-classifiers
          Downloading image classifiers-1.0.0-py3-none-any.whl (19 kB)
        Collecting keras-applications<=1.0.8,>=1.0.7
          Downloading Keras_Applications-1.0.8-py3-none-any.whl (50 kB)
                                             | 50 kB 1.5 MB/s
        Requirement already satisfied: numpy>=1.9.1 in /opt/conda/lib/python3.7/sit
        e-packages (from keras-applications<=1.0.8,>=1.0.7->image-classifiers) (1.1
        Requirement already satisfied: h5py in /opt/conda/lib/python3.7/site-packag
        es (from keras-applications<=1.0.8,>=1.0.7->image-classifiers) (2.10.0)
        Requirement already satisfied: six in /opt/conda/lib/python3.7/site-package
        s (from h5py->keras-applications<=1.0.8,>=1.0.7->image-classifiers) (1.15.
        0)
```

```
Installing collected packages: keras-applications, image-classifiers
        Successfully installed image-classifiers-1.0.0 keras-applications-1.0.8
        WARNING: You are using pip version 21.0; however, version 21.0.1 is availab
        You should consider upgrading via the '/opt/conda/bin/python3.7 -m pip inst
        all --upgrade pip' command.
        Collecting tensorflow_addons==0.10.0
          Downloading tensorflow addons-0.10.0-cp37-cp37m-manylinux2010 x86 64.whl
        (1.0 MB)
                                             | 1.0 MB 2.9 MB/s
        Requirement already satisfied: typeguard>=2.7 in /opt/conda/lib/python3.7/s
        ite-packages (from tensorflow_addons==0.10.0) (2.10.0)
        Installing collected packages: tensorflow-addons
          Attempting uninstall: tensorflow-addons
            Found existing installation: tensorflow-addons 0.12.0
            Uninstalling tensorflow-addons-0.12.0:
              Successfully uninstalled tensorflow-addons-0.12.0
        Successfully installed tensorflow-addons-0.10.0
        WARNING: You are using pip version 21.0; however, version 21.0.1 is availab
        le.
        You should consider upgrading via the '/opt/conda/bin/python3.7 -m pip inst
        /opt/conda/lib/python3.7/site-packages/tensorflow addons/utils/ensure tf in
        stall.py:68: UserWarning: Tensorflow Addons supports using Python ops for a
        ll Tensorflow versions above or equal to 2.2.0 and strictly below 2.3.0 (ni
        ghtly versions are not supported).
         The versions of TensorFlow you are currently using is 2.4.0 and is not sup
        ported.
        Some things might work, some things might not.
        If you were to encounter a bug, do not file an issue.
        If you want to make sure you're using a tested and supported configuration,
        either change the TensorFlow version or the TensorFlow Addons's version.
        You can find the compatibility matrix in TensorFlow Addon's readme:
        https://github.com/tensorflow/addons
          UserWarning,
        Requirement already satisfied: soundfile in /opt/conda/lib/python3.7/site-p
        ackages (0.10.3.post1)
        Requirement already satisfied: cffi>=1.0 in /opt/conda/lib/python3.7/site-p
        ackages (from soundfile) (1.14.4)
        Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-p
        ackages (from cffi>=1.0->soundfile) (2.20)
        WARNING: You are using pip version 21.0; however, version 21.0.1 is availab
        le.
        You should consider upgrading via the '/opt/conda/bin/python3.7 -m pip inst
        all --upgrade pip' command.
Out[5]: '2.4.0'
In [6]:
         from classification models.keras import Classifiers
In [7]:
         \#SEED = 42
         import random
         SEED = random.randint(0, 10000)# !!!!
         def seed_everything(seed):
             random.seed(seed)
             os.environ['PYTHONHASHSEED'] = str(seed)
             np.random.seed(seed)
             tf.random.set seed(seed)
         seed everything(SEED)
```

```
In [8]:
          # from https://github.com/qubvel/classification models
          ResNet34, preprocess_input = Classifiers.get('resnet34')
 In [9]:
          cfg = {
              'parse_params': {
                  'cut time': 10,
               'data_params': {
                  'sample_time': 6, # assert 60 % sample_time == 0
                  'spec fmax': 24000.0,
                  'spec fmin': 40.0,
                  'spec mel': 300,
                  'mel_power': 2,
                   'img shape': (300, 670)
              },
               'model params': {
                   'batchsize_per_tpu': 8,
                  'iteration_per_epoch': 128,
                  'epoch': 25,# 1 epoch just for example
                  'arch': ResNet34,
                  'arch_preprocess': preprocess_input,
                  'freeze to': 0, # Freeze to backbone.layers[:freeze to]. If None,
                  'loss': {
                       'fn': tfa.losses.SigmoidFocalCrossEntropy,
                       'params': {},
                  },
                   optim': {
                       'fn': tfa.optimizers.RectifiedAdam,
                       'params': {'lr': 2e-3, 'total steps': 18*64, 'warmup proportion
                   'mixup': True # False
              }
          }
In [10]:
          # detect and init the TPU
          if not COLAB:
              tpu = tf.distribute.cluster resolver.TPUClusterResolver()
              tf.config.experimental_connect_to_cluster(tpu)
              tf.tpu.experimental.initialize_tpu_system(tpu)
              print("All devices: ", tf.config.list_logical_devices('TPU'))
              tpu strategy = tf.distribute.experimental.TPUStrategy(tpu)
```

All devices: [LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:5', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:4', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:3', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:2', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:6', device_type='TPU'), LogicalDevice (name='/job:worker/replica:0/task:0/device:TPU:7', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:1', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:0', device_type='TPU')]

```
In [11]: AUTOTUNE = tf.data.experimental.AUTOTUNE

TRAIN_TFREC = GCS_DS_PATH + "/tfrecords/train"
TEST_TFREC = GCS_DS_PATH + "/tfrecords/test"

In [12]: CUT = cfg['parse_params']['cut_time']
SR = 48000  # all wave's sample rate may be 48k

TIME = cfg['data_params']['sample_time']

FMAX = cfg['data_params']['spec_fmax']
FMIN = cfg['data_params']['spec_fmin']
N_MEL = cfg['data_params']['spec_mel']
HEIGHT, WIDTH = cfg['data_params']['img_shape']
CLASS_N = 24
```

Explore the tfrecords, Create dataset

parse tfrecords

```
In [14]:
          feature_description = {
              'recording_id': tf.io.FixedLenFeature([], tf.string, default_value='')
               'audio wav': tf.io.FixedLenFeature([], tf.string, default value=''),
               'label_info': tf.io.FixedLenFeature([], tf.string, default_value=''),
          parse dtype = {
              'audio wav': tf.float32,
              'recording_id': tf.string,
              'species id': tf.int32,
              'songtype_id': tf.int32,
               't_min': tf.float32,
              'f_min': tf.float32,
              't_max': tf.float32,
              'f max':tf.float32,
              'is tp': tf.int32
          }
          @tf.function
          def _parse_function(example_proto):
              sample = tf.io.parse_single_example(example_proto, feature_description
              wav, _ = tf.audio.decode_wav(sample['audio_wav'], desired_channels=1)
              label info = tf.strings.split(sample['label info'], sep='"')[1]
              labels = tf.strings.split(label info, sep=';')
              @tf.function
              def cut audio(label):
                  items = tf.strings.split(label, sep=',')
                  spid = tf.squeeze(tf.strings.to_number(items[0], tf.int32))
                  soid = tf.squeeze(tf.strings.to_number(items[1], tf.int32))
                  tmin = tf.squeeze(tf.strings.to_number(items[2]))
                  fmin = tf.squeeze(tf.strings.to number(items[3]))
                  tmax = tf.squeeze(tf.strings.to number(items[4]))
                  fmax = tf.squeeze(tf.strings.to_number(items[5]))
                  tp = tf.squeeze(tf.strings.to number(items[6], tf.int32))
                  tmax_s = tmax * tf.cast(SR, tf.float32)
                  tmin_s = tmin * tf.cast(SR, tf.float32)
                  cut s = tf.cast(CUT * SR, tf.float32)
                  all_s = tf.cast(60 * SR, tf.float32)
                  tsize_s = tmax_s - tmin_s
                  cut min = tf.cast(
                      tf.maximum(0.0,
                          tf.minimum(tmin s - (cut s - tsize s) / 2,
                                      tf.minimum(tmax_s + (cut_s - tsize_s) / 2, all_
                      ), tf.int32
                  cut max = cut min + CUT * SR
                  sample = {
                       'audio wav': tf.reshape(wav[cut min:cut max], [CUT*SR]),
                       'recording id': sample['recording id'],
                       'species_id': spid,
                       'songtype_id': soid,
                       't_min': tmin - tf.cast(cut_min, tf.float32)/tf.cast(SR, tf.float32)/
                       'f min': fmin,
                       't_max': tmax - tf.cast(cut_min, tf.float32)/tf.cast(SR, tf.float32)/
                       'f_max': fmax,
                       'is_tp': tp
                  return _sample
              samples = tf.map fn( cut audio, labels, dtype=parse dtype)
```

```
In [15]:
          @tf.function
          def _cut_wav(x):
              # random cut in training
              cut min = tf.random.uniform([], maxval=(CUT-TIME)*SR, dtype=tf.int32)
              cut_max = cut_min + TIME * SR
              cutwave = tf.reshape(x['audio_wav'][cut_min:cut_max], [TIME*SR])
              y = \{\}
              y.update(x)
              y['audio wav'] = cutwave
              y['t min'] = tf.maximum(0.0, x['t min'] - tf.cast(cut min, tf.float32)
              y['t max'] = tf.maximum(0.0, x['t max'] - tf.cast(cut min, tf.float32)
              return y
          @tf.function
          def cut wav val(x):
              # center crop in validation
              cut min = (CUT-TIME)*SR // 2
              cut_max = cut_min + TIME * SR
              cutwave = tf.reshape(x['audio wav'][cut min:cut max], [TIME*SR])
              y = \{\}
              y.update(x)
              y['audio_wav'] = cutwave
              y['t_min'] = tf.maximum(0.0, x['t_min'] - tf.cast(cut_min, tf.float32)
              y['t_max'] = tf.maximum(0.0, x['t_max'] - tf.cast(cut_min, tf.float32)
              return y
In [16]:
          @tf.function
          def _filtTP(x):
              return x['is_tp'] == 1
In [17]:
          def show wav(sample, ax):
              wav = sample["audio_wav"].numpy()
              rate = SR
              ax.plot(np.arange(len(wav)) / rate, wav)
              ax.set title(
                  sample["recording_id"].numpy().decode()
                  + ("/%d" % sample["species_id"])
                  + ("TP" if sample["is tp"] else "FP"))
              return Audio((wav * 2**15).astype(np.int16), rate=rate)
          fig, ax = plt.subplots(figsize=(15, 3))
          show_wav(next(iter(parsed_dataset)), ax)
Out[17]:
                           0:00:00 / 12:25:39
```

003bec244/14TP

create mel-spectrogram

100

200

300

400

500

```
In [18]:
          @tf.function
          def _wav_to_spec(x):
              mel_power = cfg['data_params']['mel_power']
              stfts = tf.signal.stft(x["audio wav"], frame length=2048, frame step=5
              spectrograms = tf.abs(stfts) ** mel power
              # Warp the linear scale spectrograms into the mel-scale.
              num spectrogram bins = stfts.shape[-1]
              lower_edge_hertz, upper_edge_hertz, num_mel_bins = FMIN, FMAX, N_MEL
              linear_to_mel_weight_matrix = tf.signal.linear_to_mel_weight_matrix(
                num_mel_bins, num_spectrogram_bins, SR, lower_edge_hertz,
                upper edge hertz)
              mel_spectrograms = tf.tensordot(
                spectrograms, linear to mel weight matrix, 1)
              mel spectrograms.set shape(spectrograms.shape[:-1].concatenate(
                linear_to_mel_weight_matrix.shape[-1:]))
              # Compute a stabilized log to get log-magnitude mel-scale spectrograms
              log_mel_spectrograms = tf.math.log(mel_spectrograms + 1e-6)
                   audio spec': tf.transpose(log mel spectrograms), # (num mel bins,
              y.update(x)
              return y
          spec dataset = parsed dataset.filter( filtTP).map( cut wav).map( wav to spec)
In [19]:
          plt.figure(figsize=(12,5))
          for i, s in enumerate(spec dataset.take(3)):
              plt.subplot(1,3,i+1)
              plt.imshow(s['audio_spec'])
          plt.show()
           0
                                                               0
                                     0
         100
                                   100
                                                             100
         200
                                   200
                                                              200
```

9 of 41 3/9/21, 21:04

100

200

300

400

500

300

400

500

```
In [20]:
          import librosa.display
          import matplotlib.patches as patches
          def show spectrogram(sample, ax, showlabel=False):
              S dB = sample["audio spec"].numpy()
              img = librosa.display.specshow(S_dB, x_axis='time',
                                       y axis='mel', sr=SR,
                                       fmax=FMAX, fmin=FMIN, ax=ax, cmap='magma')
              ax.set(title=f'Mel-frequency spectrogram of {sample["recording id"].nur
              sid, fmin, fmax, tmin, tmax, istp = (
                      sample["species id"], sample["f min"], sample["f max"], sample
              ec = '#00ff00' if istp == 1 else '#0000ff'
              ax.add_patch(
                  patches.Rectangle(xy=(tmin, fmin), width=tmax-tmin, height=fmax-fm
              if showlabel:
                  ax.text(tmin, fmax,
                  f"{sid.numpy().item()} {'tp' if istp == 1 else 'fp'}",
                  horizontalalignment='left', verticalalignment='bottom', color=ec,
```

fig, ax = plt.subplots(figsize=(15,3))
show_spectrogram(next(iter(spec_dataset)), ax, showlabel=True)

/opt/conda/lib/python3.7/site-packages/librosa/display.py:974: MatplotlibDe precationWarning: The 'basey' parameter of __init__() has been renamed 'bas e' since Matplotlib 3.3; support for the old name will be dropped two minor releases later.

scaler(mode, **kwargs)

/opt/conda/lib/python3.7/site-packages/librosa/display.py:974: MatplotlibDe precationWarning: The 'linthreshy' parameter of __init__() has been renamed 'linthresh' since Matplotlib 3.3; support for the old name will be dropped two minor releases later.

scaler(mode, **kwargs)

In [22]: # in validation, annotations will come to the center
fig, ax = plt.subplots(figsize=(15,3))
show_spectrogram(next(iter(parsed_dataset.filter(_filtTP).map(_cut_wav_val))

create labels

proprocessing and data augmentation

In training, I use

- gaussian noise
- · random brightness
- specaugment

```
In [25]:
          #@tf.function
          def _preprocess_img(x, training=False, test=False):
              image = tf.expand dims(x, axis=-1)
              image = tf.image.resize(image, [HEIGHT, WIDTH])
              image = tf.image.per image standardization(image)
              @tf.function
              def specaugment(image):
                  ERASE TIME = 50
                  ERASE MEL = 16
                  image = tf.squeeze(image, axis=2)
                  image = tfio.experimental.audio.time_mask(image, param=ERASE_TIME)
                  image = tfio.experimental.audio.freq_mask(image, param=ERASE_MEL)
                  image = tf.expand_dims(image, axis=2)
                  return image
              if training:
                  # gaussian
                  gau = tf.keras.layers.GaussianNoise(0.3)
                  image = tf.cond(tf.random.uniform([]) < 0.5, lambda: gau(image, transport</pre>
                  # brightness
                  image = tf.image.random brightness(image, 0.2)
                  # random left right flip (NEW)
                  image = tf.image.random_flip_left_right(image)
                  # specaugment
                  image = tf.cond(tf.random.uniform([]) < 0.5, lambda: specaugment()</pre>
              if test:
                  # specaugment
                  image = tf.cond(tf.random.uniform([]) < 0.5, lambda: specaugment()</pre>
              image = (image - tf.reduce min(image)) / (tf.reduce max(image) - tf.red
              image = tf.image.grayscale to rgb(image)
              image = cfg['model params']['arch preprocess'](image)
              return image
          @tf.function
          def _preprocess(x):
              image = _preprocess_img(x['input'], training=True, test=False)
              return (image, x["target"])
          @tf.function
          def preprocess val(x):
              image = _preprocess_img(x['input'], training=False, test=False)
              return (image, x["target"])
          @tf.function
          def preprocess test(x):
              image = preprocess img(x['audio spec'], training=False, test=True)
              return (image, x["recording id"])
```

```
In [26]:
    for inp, targ in annot_dataset.map(_preprocess).take(2):
        plt.imshow(inp.numpy()[:,:,0])
        t = targ.numpy()
        if t.sum() == 0:
            plt.title(f'FP')
        else:
            plt.title(f'{t.nonzero()[0]}')
        plt.colorbar()
        plt.show()
```


Model

```
In [27]:
          from tensorflow.keras.layers import *
          from tensorflow.keras import losses, models, optimizers
          from tensorflow.keras.optimizers import Adam
          def create_model():
              #with strategy.scope():
              #backbone = cfg['model params']['arch'](include top=False, weights='im
              def Classifier(shape_):
                  backbone = cfg['model_params']['arch']((shape_), include_top=False
                  def cbr(x, out layer, kernel, stride, dilation):
                      x = Conv2D(out layer, kernel size=kernel, dilation rate=dilation
                      x = BatchNormalization()(x)
                      x = Activation("relu")(x)
                      return x
                  def wave_block(x, filters, kernel_size, n):
                      dilation_rates = [2**i for i in range(n)]
                      x = Conv2D(filters = filters,
                                 kernel size = 1,
                                 padding = 'same')(x)
                      res_x = x
                      for dilation_rate in dilation_rates:
                          tanh out = Conv2D(filters = filters,
                                             kernel_size = kernel_size,
                                             padding = 'same',
                                             activation = 'tanh',
                                             dilation rate = dilation rate)(x)
                          sigm out = Conv2D(filters = filters,
                                             kernel_size = kernel_size,
                                             padding = 'same',
                                             activation = 'sigmoid',
                                             dilation_rate = dilation_rate)(x)
                          x = Multiply()([tanh_out, sigm_out])
                          x = Conv2D(filters = filters,
                                      kernel size = 1,
                                      padding = 'same')(x)
                           res x = Add()([res x, x])
                      return res x
                  #out1
                  def wavenet(layer):
                    x = cbr(layer, 192, 7, 1, 1)
                    x = BatchNormalization()(x)
                    x = wave block(x, 192, 3, 1)
                    x = cbr(x, 96, 7, 1, 1)
                    x = BatchNormalization()(x)
                    x = wave_block(x, 96, 3, 1)
                    x = cbr(x, 48, 5, 1, 1)
                    x = BatchNormalization()(x)
                    x = wave block(x, 48, 3, 1)
                    return x
                  def wavenet1(layer):
                    x = cbr(layer, 4, 7, 1, 1)
                    x = BatchNormalization()(x)
```

15 of 41 3/9/21, 21:04

```
x0 = backbone#model
        print('1')
        #backbone.summary()
        x1 = tf.keras.layers.GlobalAveragePooling2D()(x0.layers[-1].output
        #x2 = tf.keras.layers.GlobalAveragePooling2D()(x0.layers[-3].outpu
        x3 = tf.keras.layers.GlobalAveragePooling2D()(x0.layers[-7].output
        #x4 = tf.keras.layers.GlobalAveragePooling2D()(x0.layers[-12].outp
        x5 = tf.keras.layers.GlobalAveragePooling2D()(x0.layers[-18].output
        print('2')
        x1=wavenet(x0.layers[-1].output)
        x3=wavenet(x0.layers[-7].output)
        x5=wavenet(x0.layers[-18].output)
        x1 = tf.keras.layers.GlobalAveragePooling2D()(x1)
        x3 = tf.keras.layers.GlobalAveragePooling2D()(x3)
        x5 = tf.keras.layers.GlobalAveragePooling2D()(x5)
        print('4')
        \#x = tf.concat([x1, x2, x3, x4, x5], axis = 1)
        x = tf.concat([x1,x3,x5],axis = 1)
        x = tf.keras.layers.Dropout(0.7)(x)
        x = tf.keras.layers.Dense(192)(x)
        \#x = tf.keras.layers.BatchNormalization()(x)
        x = tf.keras.layers.Dropout(0.4)(x)
        \#x = margin([x , label])
        output = tf.keras.layers.Softmax(dtype='float32')(x)
        output =tf.keras.layers.Dense(CLASS_N)(x)
        print('5')
        model = tf.keras.models.Model(inputs = x0.input, outputs = output)
        #model.compile(optimizer=optimizer, loss=loss fn, metrics=[LWLRAP(
        return model
    return Classifier([HEIGHT,WIDTH,3])
model = create_model()
model.summary()
```

Layer (type) to	Output Shape	Param #	Connected
data (InputLayer)	[(None, 300, 670, 3)	0	
bn_data (BatchNormalization)	(None, 300, 670, 3)	9	data[0][0]
zero_padding2d (ZeroPadding2D) [0][0]	(None, 306, 676, 3)	0	bn_data
conv0 (Conv2D) ng2d[0][0]	(None, 150, 335, 64)	9408	zero_paddi
bn0 (BatchNormalization) [0][0]	(None, 150, 335, 64)	256	conv0
relu0 (Activation)	(None, 150, 335, 64)	0	bn0[0][0]
zero_padding2d_1 (ZeroPadding2D [0][0]	(None, 152, 337, 64)	0	relu0
pooling0 (MaxPooling2D) ng2d_1[0][0]	(None, 75, 168, 64)	0	zero_paddi
stagel_unitl_bnl (BatchNormaliz [0][0]	(None, 75, 168, 64)	256	pooling0
<pre>stage1_unit1_relu1 (Activation) t1_bn1[0][0]</pre>	(None, 75, 168, 64)	0	stagel_uni
zero_padding2d_2 (ZeroPadding2D t1_relu1[0][0]	(None, 77, 170, 64)	0	stagel_uni
stage1_unit1_conv1 (Conv2D) ng2d_2[0][0]	(None, 75, 168, 64)	36864	zero_paddi
stage1_unit1_bn2 (BatchNormaliz t1_conv1[0][0]	(None, 75, 168, 64)	256	stage1_uni
<pre>stage1_unit1_relu2 (Activation) t1_bn2[0][0]</pre>	(None, 75, 168, 64)	0	stage1_uni
zero_padding2d_3 (ZeroPadding2D t1_relu2[0][0]	(None, 77, 170, 64)	0	stagel_uni
stagel_unitl_conv2 (Conv2D) ng2d_3[0][0]	(None, 75, 168, 64)	36864	zero_paddi

<pre>stage1_unit1_sc (Conv2D) t1_relu1[0][0]</pre>	(None,	75,	168,	64)	4096	stage1_uni
add (Add) t1_conv2[0][0] t1_sc[0][0]	(None,	75,	168,	64)	0	stagel_uni stagel_uni
<pre>stage1_unit2_bn1 (BatchNormaliz</pre>	(None,	75,	168,	64)	256	add[0][0]
<pre>stage1_unit2_relu1 (Activation) t2_bn1[0][0]</pre>	(None,	75,	168,	64)	0	stagel_uni
zero_padding2d_4 (ZeroPadding2D t2_relu1[0][0]	(None,	77,	170,	64)	0	stagel_uni
stage1_unit2_conv1 (Conv2D) ng2d_4[0][0]	(None,	75,	168,	64)	36864	zero_paddi
stage1_unit2_bn2 (BatchNormaliz t2_conv1[0][0]	(None,	75,	168,	64)	256	stagel_uni
stage1_unit2_relu2 (Activation) t2_bn2[0][0]	(None,	75,	168,	64)	0	stagel_uni
zero_padding2d_5 (ZeroPadding2D t2_relu2[0][0]	(None,	77,	170,	64)	0	stagel_uni
stage1_unit2_conv2 (Conv2D) ng2d_5[0][0]	(None,	75,	168,	64)	36864	zero_paddi
add_1 (Add) t2_conv2[0][0]	(None,	75,	168,	64)	0	stagel_uni add[0][0]
<pre>stage1_unit3_bn1 (BatchNormaliz [0][0]</pre>	(None,	75,	168,	64)	256	add_1
<pre>stage1_unit3_relu1 (Activation) t3_bn1[0][0]</pre>	(None,	75,	168,	64)	0	stagel_uni
<pre>zero_padding2d_6 (ZeroPadding2D t3_relu1[0][0]</pre>	(None,	77,	170,	64)	0	stagel_uni
stage1_unit3_conv1 (Conv2D) ng2d_6[0][0]	(None,	75,	168,	64)	36864	zero_paddi

<pre>stage1_unit3_bn2 (BatchNormaliz t3_conv1[0][0]</pre>	(None,	75,	168,	64)	256	stagel_uni
<pre>stage1_unit3_relu2 (Activation) t3_bn2[0][0]</pre>	(None,	75,	168,	64)	0	stagel_uni
<pre>zero_padding2d_7 (ZeroPadding2D t3_relu2[0][0]</pre>	(None,	77,	170,	64)	Θ	stagel_uni
stage1_unit3_conv2 (Conv2D) ng2d_7[0][0]	(None,	75,	168,	64)	36864	zero_paddi
add_2 (Add) t3_conv2[0][0]	(None,	75,	168,	64)	0	stagel_uni add_1
[0][0]						_
<pre>stage2_unit1_bn1 (BatchNormaliz [0][0]</pre>	(None,	75,	168,	64)	256	add_2
<pre>stage2_unit1_relu1 (Activation) t1_bn1[0][0]</pre>	(None,	75,	168,	64)	0	stage2_uni
zero_padding2d_8 (ZeroPadding2D t1_relu1[0][0]	(None,	77,	170,	64)	0	stage2_uni
stage2_unit1_conv1 (Conv2D) ng2d_8[0][0]	(None,	38,	84,	128)	73728	zero_paddi
<pre>stage2_unit1_bn2 (BatchNormaliz t1_conv1[0][0]</pre>	(None,	38,	84,	128)	512	stage2_uni
<pre>stage2_unit1_relu2 (Activation) t1_bn2[0][0]</pre>	(None,	38,	84,	128)	0	stage2_uni
<pre>zero_padding2d_9 (ZeroPadding2D t1_relu2[0][0]</pre>	(None,	40,	86,	128)	0	stage2_uni
stage2_unit1_conv2 (Conv2D) ng2d_9[0][0]	(None,	38,	84,	128)	147456	zero_paddi
stage2_unit1_sc (Conv2D) t1_relu1[0][0]	(None,	38,	84,	128)	8192	stage2_uni
add_3 (Add)	(None,	38,	84,	128)	0	stage2_uni
t1_conv2[0][0]						stage2_uni
t1_sc[0][0] 						

<pre>stage2_unit2_bn1 (BatchNormaliz [0][0]</pre>	(None,	38,	84,	128)	512	add_3
<pre>stage2_unit2_relu1 (Activation) t2_bn1[0][0]</pre>	(None,	38,	84,	128)	0	stage2_uni
zero_padding2d_10 (ZeroPadding2 t2_relu1[0][0]	(None,	40,	86,	128)	0	stage2_uni
stage2_unit2_conv1 (Conv2D) ng2d_10[0][0]	(None,	38,	84,	128)	147456	zero_paddi
stage2_unit2_bn2 (BatchNormaliz t2_conv1[0][0]	(None,	38,	84,	128)	512	stage2_uni
stage2_unit2_relu2 (Activation) t2_bn2[0][0]	(None,	38,	84,	128)	0	stage2_uni
zero_padding2d_11 (ZeroPadding2 t2_relu2[0][0]	(None,	40,	86,	128)	0	stage2_uni
stage2_unit2_conv2 (Conv2D) ng2d_11[0][0]	(None,	38,	84,	128)	147456	zero_paddi
add_4 (Add) t2_conv2[0][0] [0][0]	(None,	38,	84,	128)	0	stage2_uni add_3
stage2_unit3_bn1 (BatchNormaliz [0][0]	(None,	38,	84,	128)	512	add_4
<pre>stage2_unit3_relu1 (Activation) t3_bn1[0][0]</pre>	(None,	38,	84,	128)	0	stage2_uni
zero_padding2d_12 (ZeroPadding2 t3_relu1[0][0]	(None,	40,	86,	128)	0	stage2_uni
stage2_unit3_conv1 (Conv2D) ng2d_12[0][0]	(None,	38,	84,	128)	147456	zero_paddi
<pre>stage2_unit3_bn2 (BatchNormaliz t3_conv1[0][0]</pre>	(None,	38,	84,	128)	512	stage2_uni
<pre>stage2_unit3_relu2 (Activation) t3_bn2[0][0]</pre>	(None,	38,	84,	128)	0	stage2_uni
zero_padding2d_13 (ZeroPadding2 t3_relu2[0][0]	(None,	40,	86,	128)	0	stage2_uni

stage2_unit3_conv2 (Conv2D) ng2d_13[0][0]	(None,	38,	84,	128)	147456	zero_paddi
add_5 (Add) t3_conv2[0][0]	(None,	38,	84,	128)	0	stage2_uni add_4
[0][0]						
<pre>stage2_unit4_bn1 (BatchNormaliz [0][0]</pre>	(None,	38,	84,	128)	512	add_5
<pre>stage2_unit4_relu1 (Activation) t4_bn1[0][0]</pre>	(None,	38,	84,	128)	0	stage2_uni
zero_padding2d_14 (ZeroPadding2 t4_relu1[0][0]	(None,	40,	86,	128)	0	stage2_uni
stage2_unit4_conv1 (Conv2D) ng2d_14[0][0]	(None,	38,	84,	128)	147456	zero_paddi
stage2_unit4_bn2 (BatchNormaliz t4_conv1[0][0]	(None,	38,	84,	128)	512	stage2_uni
stage2_unit4_relu2 (Activation) t4_bn2[0][0]	(None,	38,	84,	128)	0	stage2_uni
zero_padding2d_15 (ZeroPadding2 t4_relu2[0][0]	(None,	40,	86,	128)	0	stage2_uni
stage2_unit4_conv2 (Conv2D) ng2d_15[0][0]	(None,	38,	84,	128)	147456	zero_paddi
add_6 (Add) t4_conv2[0][0]	(None,	38,	84,	128)	0	stage2_uni add_5
[0][0]						_
<pre>stage3_unit1_bn1 (BatchNormaliz [0][0]</pre>	(None,	38,	84,	128)	512	add_6
<pre>stage3_unit1_relu1 (Activation) t1_bn1[0][0]</pre>	(None,	38,	84,	128)	0	stage3_uni
zero_padding2d_16 (ZeroPadding2 t1_relu1[0][0]	(None,	40,	86,	128)	0	stage3_uni
stage3_unit1_conv1 (Conv2D) ng2d_16[0][0]	(None,	19,	42,	256)	294912	zero_paddi

stage3_unit1_bn2 (BatchNormaliz t1_conv1[0][0]	(None,	19,	42,	256)	1024	stage3_uni
stage3_unit1_relu2 (Activation) t1_bn2[0][0]	(None,	19,	42,	256)	0	stage3_uni
zero_padding2d_17 (ZeroPadding2 t1_relu2[0][0]	(None,	21,	44,	256)	0	stage3_uni
stage3_unit1_conv2 (Conv2D) ng2d_17[0][0]	(None,	19,	42,	256)	589824	zero_paddi
stage3_unit1_sc (Conv2D) t1_relu1[0][0]	(None,	19,	42,	256)	32768	stage3_uni
add_7 (Add) t1_conv2[0][0]	(None,	19,	42,	256)	0	stage3_uni stage3_uni
t1_sc[0][0]						
stage3_unit2_bn1 (BatchNormaliz [0][0]	(None,	19,	42,	256)	1024	add_7
stage3_unit2_relu1 (Activation) t2_bn1[0][0]	(None,	19,	42,	256)	0	stage3_uni
zero_padding2d_18 (ZeroPadding2 t2_relu1[0][0]	(None,	21,	44,	256)	0	stage3_uni
stage3_unit2_conv1 (Conv2D) ng2d_18[0][0]	(None,	19,	42,	256)	589824	zero_paddi
stage3_unit2_bn2 (BatchNormaliz t2_conv1[0][0]	(None,	19,	42,	256)	1024	stage3_uni
stage3_unit2_relu2 (Activation) t2_bn2[0][0]	(None,	19,	42,	256)	0	stage3_uni
zero_padding2d_19 (ZeroPadding2 t2_relu2[0][0]	(None,	21,	44,	256)	0	stage3_uni
stage3_unit2_conv2 (Conv2D) ng2d_19[0][0]	(None,	19,	42,	256)	589824	zero_paddi
add_8 (Add) t2_conv2[0][0] [0][0]	(None,	19,	42,	256)	0	stage3_uni add_7

stage3_unit3_bn1 (BatchNormaliz [0][0]	(None,	19,	42,	256)	1024	add_8
<pre>stage3_unit3_relu1 (Activation) t3_bn1[0][0]</pre>	(None,	19,	42,	256)	0	stage3_uni
zero_padding2d_20 (ZeroPadding2 t3_relu1[0][0]	(None,	21,	44,	256)	0	stage3_uni
stage3_unit3_conv1 (Conv2D) ng2d_20[0][0]	(None,	19,	42,	256)	589824	zero_paddi
<pre>stage3_unit3_bn2 (BatchNormaliz t3_conv1[0][0]</pre>	(None,	19,	42,	256)	1024	stage3_uni
stage3_unit3_relu2 (Activation) t3_bn2[0][0]	(None,	19,	42,	256)	0	stage3_uni
zero_padding2d_21 (ZeroPadding2 t3_relu2[0][0]	(None,	21,	44,	256)	0	stage3_uni
stage3_unit3_conv2 (Conv2D) ng2d_21[0][0]	(None,	19,	42,	256)	589824	zero_paddi
add_9 (Add) t3_conv2[0][0]	(None,	19,	42,	256)	0	stage3_uni add_8
stage3_unit4_bn1 (BatchNormaliz [0][0]	(None,	19,	42,	256)	1024	add_9
<pre>stage3_unit4_relu1 (Activation) t4_bn1[0][0]</pre>	(None,	19,	42,	256)	0	stage3_uni
zero_padding2d_22 (ZeroPadding2 t4_relu1[0][0]	(None,	21,	44,	256)	0	stage3_uni
stage3_unit4_conv1 (Conv2D) ng2d_22[0][0]	(None,	19,	42,	256)	589824	zero_paddi
stage3_unit4_bn2 (BatchNormaliz t4_conv1[0][0]	(None,	19,	42,	256)	1024	stage3_uni
stage3_unit4_relu2 (Activation) t4_bn2[0][0]	(None,	19,	42,	256)	0	stage3_uni

<pre>zero_padding2d_23 (ZeroPadding2 t4_relu2[0][0]</pre>	(None,	21,	44,	256)	0	stage3_uni
stage3_unit4_conv2 (Conv2D) ng2d_23[0][0]	(None,	19,	42,	256)	589824	zero_paddi
add_10 (Add) t4_conv2[0][0]	(None,	19,	42,	256)	0	stage3_uni add_9
[0][0]						
<pre>stage3_unit5_bn1 (BatchNormaliz [0][0]</pre>	(None,	19,	42,	256)	1024	add_10
<pre>stage3_unit5_relu1 (Activation) t5_bn1[0][0]</pre>	(None,	19,	42,	256)	0	stage3_uni
zero_padding2d_24 (ZeroPadding2 t5_relu1[0][0]	(None,	21,	44,	256)	0	stage3_uni
stage3_unit5_conv1 (Conv2D) ng2d_24[0][0]	(None,	19,	42,	256)	589824	zero_paddi
<pre>stage3_unit5_bn2 (BatchNormaliz t5_conv1[0][0]</pre>	(None,	19,	42,	256)	1024	stage3_uni
<pre>stage3_unit5_relu2 (Activation) t5_bn2[0][0]</pre>	(None,	19,	42,	256)	0	stage3_uni
zero_padding2d_25 (ZeroPadding2 t5_relu2[0][0]	(None,	21,	44,	256)	0	stage3_uni
stage3_unit5_conv2 (Conv2D) ng2d_25[0][0]	(None,	19,	42,	256)	589824	zero_paddi
add_11 (Add) t5_conv2[0][0]	(None,	19,	42,	256)	0	stage3_uni add_10
[0][0]						add_10
<pre>stage3_unit6_bn1 (BatchNormaliz [0][0]</pre>	(None,	19,	42,	256)	1024	add_11
<pre>stage3_unit6_relu1 (Activation) t6_bn1[0][0]</pre>	(None,	19,	42,	256)	0	stage3_uni
zero_padding2d_26 (ZeroPadding2 t6_relu1[0][0]	(None,	21,	44,	256)	0	stage3_uni

<pre>stage3_unit6_conv1 (Conv2D) ng2d_26[0][0]</pre>	(None,	19,	42,	256)	589824	zero_paddi
stage3_unit6_bn2 (BatchNormaliz t6_conv1[0][0]	(None,	19,	42,	256)	1024	stage3_uni
<pre>stage3_unit6_relu2 (Activation) t6_bn2[0][0]</pre>	(None,	19,	42,	256)	0	stage3_uni
zero_padding2d_27 (ZeroPadding2 t6_relu2[0][0]	(None,	21,	44,	256)	0	stage3_uni
stage3_unit6_conv2 (Conv2D) ng2d_27[0][0]	(None,	19,	42,	256)	589824	zero_paddi
add_12 (Add) t6_conv2[0][0]	(None,	19,	42,	256)	0	stage3_uni add_11
[0][0]						_
stage4_unit1_bn1 (BatchNormaliz [0][0]	(None,	19,	42,	256)	1024	add_12
stage4_unit1_relu1 (Activation) t1_bn1[0][0]	(None,	19,	42,	256)	0	stage4_uni
zero_padding2d_28 (ZeroPadding2 t1_relu1[0][0]	(None,	21,	44,	256)	0	stage4_uni
stage4_unit1_conv1 (Conv2D) ng2d_28[0][0]	(None,	10,	21,	512)	1179648	zero_paddi
stage4_unit1_bn2 (BatchNormaliz t1_conv1[0][0]	(None,	10,	21,	512)	2048	stage4_uni
stage4_unit1_relu2 (Activation) t1_bn2[0][0]	(None,	10,	21,	512)	0	stage4_uni
zero_padding2d_29 (ZeroPadding2 t1_relu2[0][0]	(None,	12,	23,	512)	0	stage4_uni
stage4_unit1_conv2 (Conv2D) ng2d_29[0][0]	(None,	10,	21,	512)	2359296	zero_paddi
stage4_unit1_sc (Conv2D) t1_relu1[0][0]	(None,	10,	21,	512)	131072	stage4_uni
add_13 (Add) t1_conv2[0][0]	(None,	10,	21,	512)	0	stage4_uni

t1_sc[0][0]						stage4_uni
stage4_unit2_bn1 (BatchNormaliz [0][0]	(None,	10,	21,	512)	2048	add_13
<pre>stage4_unit2_relu1 (Activation) t2_bn1[0][0]</pre>	(None,	10,	21,	512)	0	stage4_uni
zero_padding2d_30 (ZeroPadding2 t2_relu1[0][0]	(None,	12,	23,	512)	0	stage4_uni
stage4_unit2_conv1 (Conv2D) ng2d_30[0][0]	(None,	10,	21,	512)	2359296	zero_paddi
<pre>stage4_unit2_bn2 (BatchNormaliz t2_conv1[0][0]</pre>	(None,	10,	21,	512)	2048	stage4_uni
<pre>stage4_unit2_relu2 (Activation) t2_bn2[0][0]</pre>	(None,	10,	21,	512)	0	stage4_uni
zero_padding2d_31 (ZeroPadding2 t2_relu2[0][0]	(None,	12,	23,	512)	0	stage4_uni
stage4_unit2_conv2 (Conv2D) ng2d_31[0][0]	(None,	10,	21,	512)	2359296	zero_paddi
add_14 (Add) t2_conv2[0][0] [0][0]	(None,	10,	21,	512)	0	stage4_uni add_13
<pre>stage4_unit3_bn1 (BatchNormaliz [0][0]</pre>	(None,	10,	21,	512)	2048	add_14
<pre>stage4_unit3_relu1 (Activation) t3_bn1[0][0]</pre>	(None,	10,	21,	512)	0	stage4_uni
zero_padding2d_32 (ZeroPadding2 t3_relu1[0][0]	(None,	12,	23,	512)	0	stage4_uni
stage4_unit3_conv1 (Conv2D) ng2d_32[0][0]	(None,	10,	21,	512)	2359296	zero_paddi
<pre>stage4_unit3_bn2 (BatchNormaliz t3_conv1[0][0]</pre>	(None,	10,	21,	512)	2048	stage4_uni
<pre>stage4_unit3_relu2 (Activation) t3_bn2[0][0]</pre>	(None,	10,	21,	512)	0	stage4_uni

zero_padding2d_33 (ZeroPadding2 t3_relu2[0][0]	(None,	12,	23,	512)	0	stage4_uni
stage4_unit3_conv2 (Conv2D) ng2d_33[0][0]	(None,	10,	21,	512)	2359296	zero_paddi
add_15 (Add) t3_conv2[0][0]	(None,	10,	21,	512)	0	stage4_uni add_14
bn1 (BatchNormalization) [0][0]	(None,	10,	21,	512)	2048	add_15
relul (Activation)	(None,	10,	21,	512)	0	bn1[0][0]
conv2d (Conv2D) [0][0]	(None,	10,	21,	192)	4817088	relu1
conv2d_15 (Conv2D) t3_bn2[0][0]	(None,	10,	21,	192)	4817088	stage4_uni
conv2d_30 (Conv2D) ng2d_30[0][0]	(None,	12,	23,	192)	4817088	zero_paddi
batch_normalization (BatchNorma [0][0]	(None,	10,	21,	192)	768	conv2d
batch_normalization_6 (BatchNor [0][0]	(None,	10,	21,	192)	768	conv2d_15
batch_normalization_12 (BatchNo [0][0]	(None,	12,	23,	192)	768	conv2d_30
activation (Activation) alization[0][0]	(None,	10,	21,	192)	0	batch_norm
activation_3 (Activation) alization_6[0][0]	(None,	10,	21,	192)	0	batch_norm
activation_6 (Activation) alization_12[0][0]	(None,	12,	23,	192)	0	batch_norm
batch_normalization_1 (BatchNor [0][0]	(None,	10,	21,	192)	768	activation
batch_normalization_7 (BatchNor	(None,	10,	21,	192)	768	activation

_3[0][0]

batch_normalization_13 _6[0][0]	(BatchNo	(None,	12,	23,	192)	768	activation
conv2d_1 (Conv2D) alization_1[0][0]	_	(None,	10,	21,	192)	37056	batch_norm
conv2d_16 (Conv2D) alization_7[0][0]	_	(None,	10,	21,	192)	37056	batch_norm
conv2d_31 (Conv2D) alization_13[0][0]	_	(None,	12,	23,	192)	37056	batch_norm
conv2d_2 (Conv2D) [0][0]	-	(None,	10,	21,	192)	331968	conv2d_1
conv2d_3 (Conv2D) [0][0]	_	(None,	10,	21,	192)	331968	conv2d_1
conv2d_17 (Conv2D) [0][0]	_	(None,	10,	21,	192)	331968	conv2d_16
conv2d_18 (Conv2D) [0][0]	_	(None,	10,	21,	192)	331968	conv2d_16
conv2d_32 (Conv2D) [0][0]	_	(None,	12,	23,	192)	331968	conv2d_31
conv2d_33 (Conv2D) [0][0]	_	(None,	12,	23,	192)	331968	conv2d_31
multiply (Multiply) [0][0]	-	(None,	10,	21,	192)	0	conv2d_2 conv2d_3
[0][0]							
multiply_3 (Multiply) [0][0]	_	(None,	10,	21,	192)	0	conv2d_17
[0][0]							conv2d_10
multiply_6 (Multiply) [0][0]	_	(None,	12,	23,	192)	0	conv2d_32 conv2d_33
conv2d_4 (Conv2D) [0][0]	-	(None,	10,	21,	192)	37056	multiply

28 of 41 3/9/21, 21:0⁴

conv2d_19 (Conv2D) [0][0]	_	(None,	10,	21,	192)	37056	multiply_3
conv2d_34 (Conv2D) [0][0]	-	(None,	12,	23,	192)	37056	multiply_6
add_16 (Add) [0][0]	-	(None,	10,	21,	192)	0	conv2d_1 conv2d_4
[0][0]							
add_19 (Add) [0][0]	-	(None,	10,	21,	192)	0	conv2d_16 conv2d_19
[0][0]							CONVZU_19
add_22 (Add) [0][0]	_	(None,	12,	23,	192)	0	conv2d_31
[0][0]							C011V2U_54
conv2d_5 (Conv2D) [0][0]	-	(None,	10,	21,	96)	903264	add_16
conv2d_20 (Conv2D) [0][0]	_	(None,	10,	21,	96)	903264	add_19
conv2d_35 (Conv2D) [0][0]	_	(None,	12,	23,	96)	903264	add_22
batch_normalization_2 ([0][0]	BatchNor	(None,	10,	21,	96)	384	conv2d_5
batch_normalization_8 ([0][0]	BatchNor	(None,	10,	21,	96)	384	conv2d_20
batch_normalization_14 [0][0]	(BatchNo	(None,	12,	23,	96)	384	conv2d_35
activation_1 (Activation_1) alization_2[0][0]	- on)	(None,	10,	21,	96)	0	batch_norm
activation_4 (Activation_8[0][0]	on)	(None,	10,	21,	96)	0	batch_norm
activation_7 (Activation_14[0][0]	on)	(None,	12,	23,	96)	0	batch_norm
batch_normalization_3 (BatchNor	(None,	10,	21,	96)	384	activation

_1[0][0]

batch_normalization_9 _4[0][0]	(BatchNor	(None,	10,	21,	96)	384	activation
batch_normalization_15 _7[0][0]		(None,	12,	23,	96)	384	activation
conv2d_6 (Conv2D) alization_3[0][0]		(None,	10,	21,	96)	9312	batch_norm
conv2d_21 (Conv2D) alization_9[0][0]	_	(None,	10,	21,	96)	9312	batch_norm
conv2d_36 (Conv2D) alization_15[0][0]	_	(None,	12,	23,	96)	9312	batch_norm
conv2d_7 (Conv2D) [0][0]	_	(None,	10,	21,	96)	83040	conv2d_6
conv2d_8 (Conv2D) [0][0]	_	(None,	10,	21,	96)	83040	conv2d_6
conv2d_22 (Conv2D) [0][0]	_	(None,	10,	21,	96)	83040	conv2d_21
conv2d_23 (Conv2D) [0][0]		(None,	10,	21,	96)	83040	conv2d_21
conv2d_37 (Conv2D) [0][0]	_	(None,	12,	23,	96)	83040	conv2d_36
conv2d_38 (Conv2D) [0][0]	_	(None,	12,	23,	96)	83040	conv2d_36
multiply_1 (Multiply) [0][0]	_	(None,	10,	21,	96)	0	conv2d_7 conv2d_8
multiply_4 (Multiply) [0][0] [0][0]	_	(None,	10,	21,	96)	0	conv2d_22 conv2d_23
multiply_7 (Multiply) [0][0]		(None,	12,	23,	96)	0	conv2d_37 conv2d_38
[0][0]							

30 of 41 3/9/21, 21:0⁴

conv2d_9 (Conv2D) [0][0]		(None,	10,	21,	96)	9312	multiply_1
conv2d_24 (Conv2D) [0][0]	-	(None,	10,	21,	96)	9312	multiply_4
conv2d_39 (Conv2D) [0][0]	-	(None,	12,	23,	96)	9312	multiply_7
add_17 (Add) [0][0]	-	(None,	10,	21,	96)	0	conv2d_6 conv2d_9
add_20 (Add) [0][0]		(None,	10,	21,	96)	0	conv2d_21 conv2d_24
add_23 (Add) [0][0]		(None,	12,	23,	96)	0	conv2d_36 conv2d_39
conv2d_10 (Conv2D) [0][0]		(None,	10,	21,	48)	115248	add_17
conv2d_25 (Conv2D) [0][0]	-	(None,	10,	21,	48)	115248	add_20
conv2d_40 (Conv2D) [0][0]	-	(None,	12,	23,	48)	115248	add_23
batch_normalization_4 ([0][0]	BatchNor	(None,	10,	21,	48)	192	conv2d_10
batch_normalization_10 [0][0]	(BatchNo	(None,	10,	21,	48)	192	conv2d_25
batch_normalization_16 [0][0]	(BatchNo	(None,	12,	23,	48)	192	conv2d_40
activation_2 (Activation_12) alization_4[0][0]	n)	(None,	10,	21,	48)	0	batch_norm
activation_5 (Activation_10[0][0]	n)	(None,	10,	21,	48)	0	batch_norm
activation_8 (Activation	n)	(None,	12,	23,	48)	0	batch_norm

alization_16[0][0]

batch_normalization_5 (_2[0][0]	_ (BatchNor	(None,	10,	21,	48)	192	activation
batch_normalization_11 _5[0][0]	(BatchNo	(None,	10,	21,	48)	192	activation
batch_normalization_17 _8[0][0]	(BatchNo	(None,	12,	23,	48)	192	activation
conv2d_11 (Conv2D) alization_5[0][0]	-	(None,	10,	21,	48)	2352	batch_norm
conv2d_26 (Conv2D) alization_11[0][0]	_	(None,	10,	21,	48)	2352	batch_norm
conv2d_41 (Conv2D) alization_17[0][0]	_	(None,	12,	23,	48)	2352	batch_norm
conv2d_12 (Conv2D) [0][0]	_	(None,	10,	21,	48)	20784	conv2d_11
conv2d_13 (Conv2D) [0][0]	_	(None,	10,	21,	48)	20784	conv2d_11
conv2d_27 (Conv2D) [0][0]	-	(None,	10,	21,	48)	20784	conv2d_26
conv2d_28 (Conv2D) [0][0]	_	(None,	10,	21,	48)	20784	conv2d_26
conv2d_42 (Conv2D) [0][0]	-	(None,	12,	23,	48)	20784	conv2d_41
conv2d_43 (Conv2D) [0][0]	_	(None,	12,	23,	48)	20784	conv2d_41
multiply_2 (Multiply) [0][0]	-	(None,	10,	21,	48)	0	conv2d_12
[0][0]							
multiply_5 (Multiply) [0][0]	-	(None,	10,	21,	48)	0	conv2d_27
[0][0]							conv2d_28
multiply_8 (Multiply)	_	(None,	12,	23,	48)	0	conv2d_42

[0][0]						
[0][0]						conv2d_43
conv2d_14 (Conv2D) [0][0]		(None,	10, 21,	48)	2352	multiply_2
conv2d_29 (Conv2D) [0][0]		(None,	10, 21,	48)	2352	multiply_5
conv2d_44 (Conv2D) [0][0]		(None,	12, 23,	48)	2352	multiply_8
add_18 (Add) [0][0]		(None,	10, 21,	48)	0	conv2d_11
[0][0]						conv2d_14
add_21 (Add) [0][0]		(None,	10, 21,	48)	0	conv2d_26
[0][0]						
add_24 (Add) [0][0]		(None,	12, 23,	48)	0	conv2d_41
[0][0]						conv2d_44
global_average_pooling2d [0][0]	_3 (Glo	(None,	48)		0	add_18
global_average_pooling2d [0][0]	_4 (Glo	(None,	48)		0	add_21
global_average_pooling2d [0][0]	_5 (Glo	(None,	48)		0	add_24
tf.concat (TFOpLambda)		(None,	144)		0	global_ave
<pre>rage_pooling2d_3[0][0] rage_pooling2d_4[0][0]</pre>						global_ave
rage_pooling2d_5[0][0]						global_ave
dropout (Dropout) [0][0]		(None,	144)		0	tf.concat
dense (Dense) [0][0]		(None,	192)		27840	dropout
dropout_1 (Dropout)		(None,	192)		0	dense

33 of 41 3/9/21, 21:0⁴

```
[0][0]
```

```
dense 1 (Dense)
                                          (None, 24)
                                                               4632
                                                                            dropout 1
         [0][0]
         Total params: 41,756,881
         Trainable narams: 41.737.483
In [28]:
          @tf.function
          def mixup(inp, targ):
              indice = tf.range(len(inp))
              indice = tf.random.shuffle(indice)
              sinp = tf.gather(inp, indice, axis=0)
              starg = tf.gather(targ, indice, axis=0)
              alpha = 0.2
              t = tf.compat.v1.distributions.Beta(alpha, alpha).sample([len(inp)])
              tx = tf.reshape(t, [-1, 1, 1, 1])
              ty = tf.reshape(t, [-1, 1])
              x = inp * tx + sinp * (1-tx)
              y = targ * ty + starg * (1-ty)
                y = tf.minimum(targ + starg, 1.0) # for multi-label???
              return x, y
In [29]:
          tfrecs = sorted(tf.io.gfile.glob(TRAIN_TFREC + '/*.tfrec'))
          parsed_trainval = (tf.data.TFRecordDataset(tfrecs, num_parallel_reads=AUTO)
                               .map(_parse_function, num_parallel_calls=AUTOTUNE).unb
                               .filter( filtTP).enumerate())
```

Stratified 5-Fold

```
In [30]:
          indices = []
          spid = []
           recid = []
          for i, sample in tqdm(parsed trainval.prefetch(AUTOTUNE)):
               indices.append(i.numpy())
               spid.append(sample['species id'].numpy())
               recid.append(sample['recording id'].numpy().decode())
          1216it [00:36, 33.18it/s]
In [31]:
          table = pd.DataFrame({'indices': indices, 'species id': spid, 'recording id'
          table
               indices species_id recording_id
Out[31]:
            0
                    0
                             14
                                  003bec244
            1
                    1
                             12
                                  2026bced7
            2
                    2
                             21
                                  422de4e4d
            3
                    3
                              6
                                  60a493ad4
```

34 of 41 3/9/21, 21:04

8080b2283

13

```
indices species_id recording_id
1211
        1211
                       3
                             807efd6bb
1212
                            a6610076b
        1212
                      20
1213
        1213
                      23
                            c91cae4aa
1214
        1214
                       3
                             c91cae4aa
1215
        1215
                            e755e15ec
```

```
skf = StratifiedKFold(n_splits=5, random_state=SEED, shuffle=True)
splits = list(skf.split(table.index, table.species_id))

plt.hist([table.loc[splits[0][0], 'species_id'], table.loc[splits[0][1], 'splitshow()
```



```
In [33]:

def create_idx_filter(indice):
    @tf.function
    def _filt(i, x):
        return tf.reduce_any(indice == i)
    return _filt

@tf.function
    def _remove_idx(i, x):
    return x
```

Other setup

```
In [341:
          def create_train_dataset(batchsize, train_idx):
              global parsed_trainval
              parsed train = (parsed trainval
                               .filter(create_idx_filter(train_idx))
                               .map( remove idx))
              dataset = (parsed train.cache()
                  .shuffle(len(train_idx))
                  . repeat()
                  .map(_cut_wav, num_parallel_calls=AUTOTUNE)
                  .map(_wav_to_spec, num_parallel_calls=AUTOTUNE)
                  .map( create_annot, num_parallel_calls=AUTOTUNE)
                  .map(_preprocess, num_parallel_calls=AUTOTUNE)
                  .batch(batchsize))
              if cfg['model_params']['mixup']:
                  dataset = (dataset.map(_mixup, num_parallel_calls=AUTOTUNE)
                               .prefetch(AUTOTUNE))
              else:
                  dataset = dataset.prefetch(AUTOTUNE)
              return dataset
          def create val dataset(batchsize, val idx):
              global parsed_trainval
              parsed_val = (parsed_trainval
                             .filter(create idx filter(val idx))
                             .map( remove idx))
              vdataset = (parsed_val
                  .map(_cut_wav_val, num_parallel_calls=AUTOTUNE)
                  .map(_wav_to_spec, num_parallel_calls=AUTOTUNE)
                  _map( create annot, num parallel calls=AUTOTUNE)
                  .map(_preprocess_val, num_parallel_calls=AUTOTUNE)
                  .batch(8*tpu_strategy.num_replicas_in_sync)
                  .cache())
              return vdataset
```

Metrics

```
In [35]:
          # from https://www.kaggle.com/carlthome/l-lrap-metric-for-tf-keras
          @tf.function
          def one sample positive class precisions(example):
              y_true, y_pred = example
              retrieved_classes = tf.argsort(y_pred, direction='DESCENDING')
              class rankings = tf.argsort(retrieved classes)
              retrieved_class_true = tf.gather(y_true, retrieved_classes)
              retrieved_cumulative_hits = tf.math.cumsum(tf.cast(retrieved_class_true
              idx = tf.where(y_true)[:, 0]
              i = tf.boolean_mask(class_rankings, y_true)
              r = tf.gather(retrieved_cumulative_hits, i)
              c = 1 + tf.cast(i, tf.float32)
              precisions = r / c
              dense = tf.scatter_nd(idx[:, None], precisions, [y_pred.shape[0]])
              return dense
          class LWLRAP(tf.keras.metrics.Metric):
              def __init__(self, num_classes, name='lwlrap'):
                  super(). init (name=name)
                  self._precisions = self.add_weight(
                      name='per_class_cumulative_precision',
                      shape=[num classes],
                      initializer='zeros',
                  )
                  self._counts = self.add_weight(
                      name='per class cumulative count',
                      shape=[num classes],
                      initializer='zeros',
                  )
              def update_state(self, y_true, y_pred, sample_weight=None):
                  precisions = tf.map_fn(
                      fn= one sample positive class precisions,
                      elems=(y_true, y_pred),
                      dtype=(tf.float32),
                  )
                  increments = tf.cast(precisions > 0, tf.float32)
                  total increments = tf.reduce sum(increments, axis=0)
                  total_precisions = tf.reduce_sum(precisions, axis=0)
                  self._precisions.assign_add(total_precisions)
                  self. counts.assign add(total increments)
              def result(self):
                  per_class_lwlrap = self._precisions / tf.maximum(self._counts, 1.0
                  per_class_weight = self._counts / tf.reduce_sum(self._counts)
                  overall_lwlrap = tf.reduce_sum(per_class_lwlrap * per_class_weight
                  return overall_lwlrap
              def reset_states(self):
                  self._precisions.assign(self._precisions * 0)
                  self. counts.assign(self. counts * 0)
```

Testset and Inference function

37 of 41 3/9/21, 21:04

```
In [36]:
          def _parse_function_test(example_proto):
              sample = tf.io.parse single example(example proto, feature description
              wav, = tf.audio.decode wav(sample['audio wav'], desired channels=1)
              @tf.function
              def cut audio(i):
                  sample = {
                       'audio wav': tf.reshape(wav[i*SR*TIME:(i+1)*SR*TIME], [SR*TIME
                      'recording id': sample['recording id']
                  return _sample
              return tf.map_fn(_cut_audio, tf.range(60//TIME), dtype={
                  'audio_wav': tf.float32,
                  'recording id': tf.string
              })
          def inference(model):
              tdataset = (tf.data.TFRecordDataset(tf.io.gfile.glob(TEST_TFREC + '/*.
                  .map(_parse_function_test, num_parallel_calls=AUTOTUNE).unbatch()
                  .map(_wav_to_spec, num_parallel_calls=AUTOTUNE)
                  .map(_preprocess_test, num_parallel_calls=AUTOTUNE)
                  .batch(128*(60//TIME)).prefetch(AUTOTUNE))
              rec ids = []
              probs = []
              for inp, rec_id in tqdm(tdataset):
                  with tpu_strategy.scope():
                      pred = model.predict on batch(tf.reshape(inp, [-1, HEIGHT, WID]
                      prob = tf.sigmoid(pred)
                      prob = tf.reduce_max(tf.reshape(prob, [-1, 60//TIME, CLASS N])
                  rec id stack = tf.reshape(rec id, [-1, 60//TIME])
                  for rec in rec id.numpy():
                      assert len(np.unique(rec)) == 1
                  rec_ids.append(rec_id_stack.numpy()[:,0])
                  probs.append(prob.numpy())
              crec_ids = np.concatenate(rec_ids)
              cprobs = np.concatenate(probs)
              sub = pd.DataFrame({
                  'recording_id': list(map(lambda x: x.decode(), crec_ids.tolist()))
                  **{f's{i}': cprobs[:,i] for i in range(CLASS N)}
              sub = sub.sort_values('recording_id')
              return sub
```

Now start training!

3/9/21, 21:04

```
def plot_history(history, name):
    plt.figure(figsize=(8,3))
    plt.subplot(1,2,1)
    plt.plot(history.history["loss"])
    plt.legend(['Train', 'Test'], loc='upper left')
    plt.title("loss")
    # plt.yscale('log')

plt.subplot(1,2,2)
    plt.plot(history.history["lwlrap"])
    plt.plot(history.history["val_lwlrap"])
    plt.legend(['Train', 'Test'], loc='upper left')
    plt.title("metric")

plt.savefig(name)
```

```
In [381:
                         def train_and_inference(splits, split_id):
                                  print(split_id)
                                   batchsize = cfg['model_params']['batchsize_per_tpu'] * tpu_strategy.nu
                                   print("batchsize", batchsize)
                                   loss fn = cfg['model params']['loss']['fn'](from logits=True, **cfg['model params']
                                   idx train tf = tf.constant(splits[split id][0])
                                   idx val_tf = tf.constant(splits[split_id][1])
                                   dataset = create_train_dataset(batchsize, idx_train_tf)
                                   vdataset = create_val_dataset(batchsize, idx_val_tf)
                                   optimizer = cfg['model_params']['optim']['fn'](**cfg['model_params']['
                                  with tpu_strategy.scope():
                                             model = create model()
                                             model.compile(optimizer=optimizer, loss=loss fn, metrics=[LWLRAP(CI
                                   history = model.fit(dataset,
                                                                                         steps per epoch=cfg['model params']['iteration per epoch=cfg['model params']['model params']['iteration per epoch=cfg['model params']['model params']['iteration per epoch=cfg['model params']['model p
                                                                                         epochs=cfg['model params']['epoch'],
                                                                                         validation_data=vdataset,
                                                                                         callbacks=[
                                                                                                   tf.keras.callbacks.ReduceLROnPlateau(
                                                                                                              'val_lwlrap', patience=10
                                                                                                    tf.keras.callbacks.ModelCheckpoint(
                                                                                                              filepath=models path+'model best %d.h5'
                                                                                                              save weights only=True,
                                                                                                              monitor='val lwlrap',
                                                                                                             mode='max',
                                                                                                              save best only=True),
                                                                                          1
                                             plot history(history, 'history %d.png' % split id)
                                             best_score = max(history.history['val_lwlrap'])
                                             print (best score)
                                   ### inference ###
                                   model.load weights(models path+'model best %d.h5' % split id)
                                   sub=inference(model)
                                   del model
                                   gc.collect()
                                   return sub, best score
```

In [40]:

#sub.describe()

```
In [391:
          # train and inference
          # sub, _ = train_and_inference(splits, 0)
          # N-fold ensemble
          """ Delete this line to start training the model
          print(SEED)
          train n=0
          df = pd.DataFrame(columns=["train_n",'split_id','best_score','CSV','SEED']
          for split_id in range(len(splits)):
              sub, best_score=train_and_inference(splits, split_id)
              sub.set_index('recording_id').to_csv(models_path+f"submission_train_n_
              df = df.append({'train n': train n,'split id': split id,'best score': |
          df.to csv(models path+f"train_n_{train_n}.csv", index=False)
         ' Delete this line to start training the model\nprint(SEED)\ntrain n=0\ndf
Out[39]:
         = pd.DataFrame(columns=["train_n",\'split_id\',\'best_score\',\'CSV\',\'SEE
         D\'])\nfor split_id in range(len(splits)):\n
                                                       sub, best_score=train_and_i
                                         sub.set_index(\'recording_id\').to_csv(mode
         nference(splits, split id)\n
         ls_path+f"submission_train_n_{train_n}_split_id_{split_id}.csv", index=Fals
                 df = df.append({\'train_n\': train_n,\'split_id\': split_id,\'best_
         score\': best_score,\'CSV\': f"submission_train_n_{train_n}_split_id_{split
         _id}.csv",\'SEED\':SEED}, ignore_index=True)\ndf.to_csv(models_path+f"train
         _n_{train_n}.csv", index=False)\n#'
```

If you like my notebook don't forget to upvoted it

If you have questions then ask, I will help as I can