The signal X [n] is already given as a sum of sinusoids at frequencies which are 8-point DFT frequencies. Thus, all we have to is compare the given expression with the 8-point Inverse DFT (IDFT) formula and identify the DFT coefficients X[b]: X[n] = 8 \(\frac{7}{2} \times \[\frac{1}{2} \] \(\frac{1}{2} \) \(\frac{1}{2} \] \(\frac{1}{2} \) \(\frac{1}{2} \] \(\frac{1}{2} \) Using the trigometric identities (Eulers formula), we write the given signal as $\times \text{EnI} = 1 + 2 \sin\left(\frac{\pi n}{2}\right) + 2 \cos\left(\frac{3\pi n}{4}\right)$ $\pm (\cos (\pi n) \cdot \cos (\pi n) \cdot \cos$

8-point DFT frequencies or wr=2Th/8