NOIP Day1

题目名称	删点游戏	迷路	魔术
题目类型	传统型	传统型	传统型
输入文件名	dt.in	expand.in	magic.in
输出文件名	dt.out	expand.out	magic.out
每个测试点时限	1s	1s	2s
内存限制	128M	512M	512M
测试点数目	10	10	10
每个测试点分值	10	10	10

提交源程序文件名

对于C++ 语言	dt.cpp	expand.cpp	magic.cpp
对于C 语言	dt.c	expand.c	magic.c
对于Pascal语言	dt.pas	expand.pas	magic.pas

编译选项

对于C++ 语言	-lm	-lm	-lm
对于C 语言	-lm	-lm	-lm
对于Pascal语言			

Problem 1 删点游戏(dt.cpp/dt.in/dt.out)

Description

Marah现在有一张n个点m条边的无向图,每个点都有一个点权。

Marah想通过将这些点一个一个的删掉来把这张图删干净。删掉一个点是有代价的,其大小等于与这个点相邻的未被删掉的点的权值之和。

Marah想请你帮她求出最小的代价。

Input Format

第一行两个数n,m.

第二行n个数,第i个数 A_i 表示这个点的点权。

接下来m行,每行两个数u,v,表示有一条连接u,v的边。数据保证任意两个点之间最多一条边相连,并且不存在自环。

Output Format

你需要输出最小的代价是多少

Sample

Input

```
4 3
40 20 30 10
1 4
2 4
2 3
```

Output

40

Explanation

一个合理的方法是先删1号点,此时有10点代价。接下来删3号点,获得20点代价,再删2号点,获得10点代价,最后删4号点,没有代价。总计40点疲劳值。

Constraints

对于30%的数据n<=10。

对于60%的数据n,m<=1000。

对于100%的数据1<=n,m,ai<=100000

Problem 2 迷路 (expand.cpp / expand.in / expand.out)

Description

Marah要出去买菜,但不小心迷路了,它记得所有菜店的坐标,也知道它现在的坐标。请你帮帮她,找到一条买完菜的路吧。它已经急得快哭了,它想要买完菜回家。因此它需要你找到一条最短的路买菜。

她穿上了最新研发的机甲,这个机甲的体格能够变化,为了使自己尽量炫酷,她因此它希望在路径最短的情况下使自己的体格最大,即在移动时离障碍尽可能远。因为你开着上帝视角,所以你知道小T所在的地图。你能帮它找到一条路吗?

注意: 1、此处的离障碍最远是保证在任何时候、在保证路径最短的情况下离障碍最远。当然小T只需要你保证 在每个位置的体格之和尽可能大。

2、不需要考虑小T回家的路

Input Format

第一行两个数n,m,s ,表示小T所在的地图大小和小T的最大体格。 体格为i 表示小T会占据 $(2i+1)\times(2i+1)$ 个格子。 接下来n 行每行 m个数字表示地图,其中'1'表示障碍,'0'表示空地。 接下来一行三个数 x,y,p表示小T所在的坐标 (x,y)和菜店数量 p。 接下来p 行,第 两个数表示菜店i 所在的坐标。

Output Format

输出两个数,表示最短路长度以及每个位置的体格之和。

Sample

Input1

```
4 5 3

0 1 1 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 4 1

0 0
```

Output1

```
6 0
```

Input2

Output2

```
7 5
```

Constraints

对于 20%的数据,所有菜市位置和小T所在的位置在一条水平直线上。

对于另外 30%的数据,s=0 ,其中 20%的数据还满足 $n,m\leq 50$

对于另外20%的数据, p=1

对于100%的数据, $n, m \leq 300, s \leq 10, p \leq 15$

Problem3 魔术(magic.cpp/magic.in/magic.out)

Description

Marah是一名魔法师,她生活的大陆上有n 座城市,城市之间通过 m条路径相连, 每条路径都以一个 权值 。有 一天,她突然想去 n号城市玩。

但是她很懒,于是她在路上行走的时候会用一点小小的法术,改变一下两座城之间的距离

但是她的法力也是很珍贵的,所以她决定,如果从她的家里出发,到达某个城市所经过的所有路径的权值的**最大公约数**为g,从该城市出发前往下一个城市的路径的权值为w,则 经过这条路的时候会施法将这条路的路程缩 短为 $\frac{w}{\gcd(g,w)}$.

现在Marah有Q个家,她告诉了你这Q个家在哪,并请你告诉她这Q个家到n号城市的最短距离。

Input Format

第一行两个数n, m ,表示有n 座城市, m条道路

接下来m 行,每行三个数 u,v,w,表示 u号城市和 v号城市之间有一条权值为 w的路

接下来一行一个数Q,表示Marah有Q个家

接下来Q行,其实第i行有一个数 p_i ,表示H的第i个家在 P_i 号城市

Output Format

输出Q行,第i 行输出一个数表示 Marah的第i个家到 n号城市的最短距离

Sample

Input1

```
4 3
1 2 2
2 3 4
3 4 6
3
1
2
3
```

Output1

```
6
4
1
```

Input2

```
3 4 34
1 5 97
4 1 85
7 8 81
6 1 23
8 3 57
5 2 77
9 1 68
10 3 95
2 10 68
8 5 21
6 8 68
5 7 34
2 8 91
2 7 37
3 7 68
2 9 68
8 4 68
5 10 68
2 8 68
7
1
7
4
6
3
9
5
```

Output2

```
3
3
3
1
2
1
```

Constraints

```
对于20%的数据,有2 \le n \le 10, 1 \le q \le 10, m \le 100
```

对于50%的数据,有 $2 \le n \le 100$ $1 \le q \le 100$, $m \le 500$

对所有数据:

```
2 \le n \le 1000
```

 $n-1 \leq m \leq 2000$,保证每个点均可到达n

$$1 \leq q \leq 1e5$$

$$1 \le max(w) \le 500$$