

Życie bez komputerów?

Komputery
ingerują w nasze
życie prawie
wszędzie

Typowy przepływ informacji

Wprowadzanie Przetwadokumentów rzanie

Drukowanie

Pierwsi informatycy

- W sposób uświadomiony metody algorytmiczne stosowali starożytni Grecy
- Opracowali całą teorię konstrukcji geometrycznych o całkiem praktycznych zastosowaniach

Pierwsi twórcy algorytmów

- Euklides (~365-~300pne): algorytm obliczania największego wspólnego dzielnika
- Eratostenes (~275-~194pne): algorytm wyznaczania liczb pierwszych - sito Eratostenesa

Wyznaczanie liczb pierwszych

- Liczba pierwsza, to taka liczba, która ma dokładnie dwa różne podzielniki: jedność i samą siebie, np 2,3,5,7,11,...`
- · Wcale nie jest łatwo:
 - stwierdzić, czy liczba jest pierwsza
 - wyznaczyć kolejną liczbę pierwszą
 - wiedząc, że liczba nie jest pierwsza znaleźć jej dzielniki

Sito Eratostenesa

- Wypisz odpowiednio dużo liczb naturalnych poczynając od 2
- Wykreśl wszystkie liczby podzielne przez 2
- Kolejno pobieraj pierwsze niewykreślone liczby i wykreślaj ich wielokrotności.

Przykład – wypisujemy odpowiednio dużo kolejnych liczb

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

• • •

Zostały już tylko liczby pierwsze

Problemy z algorytmem Eratostenesa

- Nadaje się tylko do znajdowania stosunkowo niewielkich liczb
- Wymaga dodatkowej pamięci na przechowywanie kolejnych liczb naturalnych - jest złożony pamięciowo.

Największa liczba pierwsza do dziś odkryta

- 282,589,933-1 jest nawiększą do 13.10.2008 znaną liczbą pierwszą. Została on odkryta w 07.12.2018 r. przez Patricka Lahore za pomocą GIMPS. Składa się ona z ok. 24,862,048 miliona cyfr.
- Użyta metoda jest zupełnie inna, niż za pomocą sita Eratostenesa.

Problem wyznaczenia największego wspólnego dzielnika

- · Dane są dwie liczby naturalne m,n
- Znajdź największą liczbę naturalną, przez którą dzieli się bez reszty zarówno m jak i n.
- Na przykład dla m=18 i n=24 NWD(m,n)=6

Algorytm Euklidesa (1)

- 0<=m<=n, n>0
- Jeśli m=0 to NWD(m,n)=n
- Jeśli m>0 to NWD(m,n)=NWD(m,n-m)

Wada algorytmu Euklidesa (1)

- Jest bardzo wolny przy złośliwych danych, czyli wtedy, gdy jedna z liczb będzie bardzo duża, a druga będzie jedynką, trzeba odejmować od większej z nich jedynkę tyle razy, ile wynosi wartość większej liczby.
- · ... co już dla liczb 30-cyfrowych jest zupełnie niewykonalne!

Algorytm Euklidesa (2)

- 0<=m<=n, n>0
- Jeśli m=0 to NWD(m,n)=n
- Jeśli m>0 to

 $NWD(m,n)=NWD(n \mod m, m)$

Gdzie n mod m to reszta z dzielenia n przez m

Wady i zalety

- Wada: programuje się trudniej (dzielenie trudniej zaprogramować niż odejmowanie)
- Zaleta: wykonuje się szybko proporcjonalnie do długości zapisu liczby w systemie dziesiętnym.

Algorytm Euklidesa (3)

- Jeśli m=0 to NWD(n,m) =n
- Jeśli n=0 to NWD(n,m)=m
- Jeśli n,m \in P to NWD(n,m)=2NWD(n/2,m/2)
- Jeśli n jest parzysta, a m nieparzysta, to NWD(n,m)=NWD(n/2,m)
- Jeśli n jest nieparzysta, a m parzysta, to NWD(n,m)=NWD(n,m/2)
- Jeśli n,m są nieparzyste, to NWD(n,m)=NWD(n-m,m) dla n>=m lub NWD(n,m)=NWD(m-n,n) dla m>=n

Wady i zalety

- Wady:
 - ma skomplikowany opis
 - wykonuje się nieco dłużej niż poprzedni algorytm
- Zaleta: nadal wykonuje się szybko; proporcjonalnie do długości zapisu liczb.

Podsumowanie algorytmów Euklidesa

 Algorytm (1) jest bezużyteczny w praktyce, chyba że ktoś działa z matymi liczbami. Jego ztożoność czasowa jest tak duża, że dla danych spotykanych np. w kryptografii nie bylibyśmy w stanie wykonać podstawowych kroków algorytmów szyfrujących.

Podsumowanie algorytmów Euklidesa -cd

- Algorytmy (2) i (3) są porównywalne, jeśli chodzi o jakość; częściej stosuje się algorytm (2).
- Pozwalają one swobodnie obliczać NWD nawet dla liczb kilkusetcyfrowych w rozsądnym czasie.

Dziedziny algorytmiczne

- Euklides 1: (N, =0 , <= , -)
- Euklides 2: (N, =0, mod)
- Euklides 3: (N, =0, <= , Par? ,*2, /2, -)

Przykład

- NWD(36,84) = NWD(36,48) =
 =NWD(36,12) = NWD(24,12) =
 =NWD(12,12) = NWD(12,0) = 12
- NWD(36,84)=NWD(12,36)=NWD(0,12)=12
- NWD(36,84)=2*NWD(18,42)=4*NWD(9,21)= 4*NWD(12,21)=4*NWD(6,21)=4*NWD(3,21)= 4*NWD(3,18)=4*NWD(3,9)= 4*NWD(3,6)=4*NWD(3,3)=4*NWD(0,3)=4*3 =12

Al Chwarizmi

- Abu Ja'far
 Muhammad ibn
 Musa Al Chuwarizmi (~780 ~850)
- Hisab al-jabr w'al-muqabala
- Opisał ciekawe algorytmy

Wilhelm Schickard 1592-1635

 Zbudował pierwszy kalkulator

Blaise Pascal 1623-1662

- Wybitny
 matematyk, fizyk,
 teolog, filozof,
 konstruktor
- Między innymi zajmował się konstrukcją kalkulatorów

Gotfried Wilhelm Leibniz 1646-1716

- Wybitny filozof, matematyk, prawnik i konstruktor
- Udoskonalił kalkulator
- Wymyślił mechanizm zwany kołem Leibniza

Jacques de Vaucanson (1709-82)

- Wielki francuski konstruktor I wynalazca.
 Ojciec robotyki
- Skonstruował wiele mechanicznych zabawek
- Jako pierwszy w historii użył kart perforowanych do zapisu danych

Joseph Jacquard (1752-1834)

- twórca krosna tkackiego,
- wykorzystał pomysły de Vaucansona
- używał kart perforowanych do kodowania wzorów tkackich

Karty perforowane Jacquarda

Z tego zestawu

dziurek powstaje

piękna tkanina

Farkas von Kempelen (1734-1804)

Wynalazca węgierski. Twórca automatu szach MEPHISTO

Farkas von Kempelen 1734-1804

Zbudował automat

szachowy. Ruchy

wykonywał ukryty

szachista.

Arcydzieło sztuki

Mephisto - Turek szachista von Kempelena

Mephisto (2)

Abraham Stern (1749-1842)

Jako pierwszy

skonstruował

kalkulator

wyciągający

pierwiastki

Charles Babbage (1791-1871)

- Twórca pierwszej
 maszyny liczącej
- Maszyna różnicowa
- Maszyna analityczna

Maszyna różnicowa

Joseph Jacquard

 Portret wynalazcy demonstrowany przez Babbage'a na organizowanych przez niego przyjęciach.

9 Science Misseum Pictorial / Science & Society Picture Library
Viewed by Suestion 7/51/2005

Maszyna różnicowa – wersja Babbage'a

- Rekonstrukcja
 pierwszej maszyny
 różnicowej.
- Ok. 1m wysokości

Maszyna różnicowa nr 2 - rekonstrukcja z 1990 r.

- · Waży 15 ton
- Mierzy ok 4m
 wysokości
- · Potrafi

drukować wyniki

Ada Augusta Lovelace 1815-1852

Pierwsza programistka w historii

Nowatorskie idee Ady Lovelace (1)

 Pomysł, że urządzenie może być programowalne i niekoniecznie wyspecjalizowane. Programy można wprowadzać na kartach perforowanych.

Nowatorskie idee Ady Lovelace (2)

 Pomysł, że przetwarzane nie muszą być tylko liczby. Liczby mogą kodować inne obiekty takie jak nuty, teksty, obrazy.

Nowatorskie idee Ady Lovelace (3)

 Przykład konkretnego programu liczącego liczby Bernoulliego

		Variables acted upon.	Variables receiving results,	Indication of change in the value on any Variable,	Statement of Results,	Data.			Working Variables.									Result Variables.				
Number of Operation.	Nature of Operation.					1000 = -	1V2 00 0 2	17,3 00 00 00 1	0000	% O 0 0 0 0	\$0000 [\$70000 [*V*	°V, O000	°V-0000	0 0 0 0, 0,	(V ₁₂	"V ₁₃	By its a decimal O.A. fraction.	B in a decimalO f	Bs in a decimal O ≤ fraction.	°V ₂₁ O 0 0 0 1 1 1 2
1 2 3 4 5 6 7	+ + +	$V_{3} + {}^{1}V_{1}$ ${}^{2}V_{5} + {}^{2}V_{4}$ ${}^{2}V_{13} + {}^{2}V_{12}$ ${}^{2}V_{13} - {}^{2}V_{12}$ ${}^{2}V_{3} - {}^{2}V_{12}$	² V ₃ ¹ V ₁₁ ² V ₁₁ ¹ V ₁₀	$\begin{cases} \mathbf{N}_{4}^{2} = 2\mathbf{V}_{4}^{2} \\ \mathbf{I}\mathbf{V}_{1} = 2\mathbf{V}_{1}^{2} \\ \mathbf{I}\mathbf{V}_{1} = 2\mathbf{V}_{1}^{2} \\ \mathbf{I}\mathbf{V}_{2} = 2\mathbf{V}_{3}^{2} \\ \mathbf{I}\mathbf{V}_{2} = 2\mathbf{V}_{3}^{2} \\ \mathbf{I}\mathbf{V}_{3} = 2\mathbf{V}_{3}^{2} \\ \mathbf{I}\mathbf{V}_{2} = 2\mathbf{V}_{3}^{2} \\ \mathbf{I}\mathbf{V}_{2} = 2\mathbf{V}_{3}^{2} \\ \mathbf{I}\mathbf{V}_{2} = 2\mathbf{V}_{3}^{2} \\ \mathbf{V}_{3} = 2\mathbf{V}_{1}^{2} \\ \mathbf{V}_{3} = 2\mathbf{V}_{3}^{2} \\ \mathbf{I}\mathbf{V}_{3} = 2\mathbf{V}_{3}^{2} \\ \mathbf{I}\mathbf{V}_{3} = 2\mathbf{V}_{3}^{2} \\ \mathbf{I}\mathbf{V}_{3} = 2\mathbf{V}_{3}^{2} \end{cases}$	$= 2n$ $= 2n + 1$ $= 2n + 1$ $= \frac{2n - 1}{2n + 1}$ $= \frac{1}{2} \cdot \frac{2n - 1}{2n + 1}$ $= -\frac{1}{2} \cdot \frac{2n - 1}{2n + 1} = \Lambda_0$ $= n - 1 (= 3)$	٠,,,	2	#1 	2n 2n - 1 0	2 n + 1 0	2 n	1 1 1			 	$ \frac{2n-1}{2n+1} $ $ \frac{1}{2} \cdot \frac{2n-1}{2n+1} $		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\lambda_0$				
8 9 10 11 12	× +	V ₂₁ × ³ V ₁₁ V ₁₂ + ¹ V ₁₃	:V ₁₂ :V ₁₃	$ \begin{cases} 1V_2 = 1V_2 \\ 0V_7 = 1V_7 \\ 1V_6 = 1V_6 \\ 1V_6 = 2V_{11} \\ 0V_{11} = 3V_{11} \\ 3V_{11} = 3V_{11} \\ 1V_{12} = 0V_{12} \\ 1V_{13} = 2V_{13} \\ 1V_{10} = 2V_{10} \\ 1V_{10} = 1V_{1} \\ \end{cases} $	= B ₁ .						2n	2 2			 n – 2		$B_1 \cdot \frac{2n}{2} = B_1 A$	$\left\{-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}\right\}$	B,		-	Seas
13 14 15 16 17 18 19 20 21 22 23	+ x + + x	2V ₆ + 2V ₇ 1V ₈ × 3V ₁₁ 2V ₆ - 1V ₁ 1V ₁ + 2V ₇ 3V ₆ + 3V ₇ 1V ₉ × 4V ₁₁ 1V ₁ × 5V	1V ₈	$\begin{cases} V_{N} = 0V_{N} \\ 2V_{11} = 4V_{11} \\ 2V_{0} = 5V_{0} \\ 1V_{1} = 1V_{1} \\ 2V_{2} = 3V_{2} \\ 1V_{1} = 1V_{1} \\ 3V_{2} = 3V_{2} \\ 1V_{1} = 1V_{1} \\ 4V_{2} = 3V_{3} \\ 1V_{2} = 5V_{3} \\ 1V_{2} = 0V_{2} \\ 4V_{11} = 5V_{11} \\ 1V_{22} = 1V_{22} \end{cases}$	$= 2n - 1$ $= 2 + 1 = 3$ $= \frac{2n - 1}{3}$ $= \frac{2n}{2} \cdot \frac{2n - 1}{3}$ $= 2n - 2$ $= 3 + 1 = 4$ $= \frac{2n - 2}{4}$ $= \frac{2n}{2} \cdot \frac{2n - 1}{3} \cdot \frac{2n - 2}{4} = A_3$ $= B_3 \cdot \frac{2n}{2} \cdot \frac{2n - 1}{3} \cdot \frac{2n - 2}{3} = B_3 A_3$ $= A_0 + B_1 A_1 + B_2 A_3$ $= n - 3 (= 1)$	1 1 1					2 n - 1 2 n - 1 2 n - 2 2 n - 2		2n-1 3 0	2n-5 4 0	 	$\begin{cases} \frac{2n}{2} \cdot \frac{2n-1}{3} \\ \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} \\ \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} \end{cases}$	B ₃ A ₃ 0	$\left\{A_3 + B_1 A_1 + B_2 A_2\right\}$	Carre Control	B.		
								1	lere foll	ows a re	petition	of Ope	rations 1	hirteen	to twen	ty-three.						and a
24 25	125 DE			$\begin{cases} {}^{4}V_{12} = {}^{0}V_{13} \\ {}^{0}V_{24} = {}^{1}V_{24} \\ {}^{1}V_{1} = {}^{1}V_{1} \\ {}^{1}V_{3} = {}^{1}V_{3} \\ {}^{3}V_{4} = {}^{0}V_{4} \\ {}^{6}V_{7} = {}^{0}V, \end{cases}$		2 000		n+1		-	0	0	-					1 h	Pife.			B,

Nowatorskie idee Ady Lovelace (4)

 Pomysł, że komputer może wykonywać czynność myślenia i samodzielnie podejmować decyzje.

Herman Hollerith 1860-1929

- Karty perforowane w przetwarzaniu danych
- Założyciel IBM

Alan Turing (1912-1954) i początki informatyki teoretycznej

Maszyna Turinga

Składa się z nieskończonej taśmy, głowicy i programu.

Program określa, co w każdym stanie maszyna powinna zrobić w zależności od tego, co jest pod głowicą:

- zapis bitu
- przesunięcie głowicy
- •przejście do innego stanu
- zatrzymanie się

Przykładowy program na maszynę Turinga. Dopisanie jedynki.

Etykiety na strzałkach określają do którego stanu przechodzimy i jaką akcję wykonuje głowica. Program z diagramu dopisuje 1 na końcu sekwencji jedynek.

Maszyna Turinga

 Turing wynalazł model niezwykle prosty, a jednocześnie równoważny obliczeniowo współczesnym komputerom: wszystko, co dzisiejsze komputery mogą obliczyć, można zaprogramować na maszynie Turinga.

Czy wszystko da się obliczyć?

- NIE! Okazuje się, że istnieją problemy nierozstrzygalne, czyli takie, dla których nie istnieje program je rozwiązujący.
- Przykłady:
 - problem stopu
 - problem odpowiedniości Posta

Problem stopu

- Czy dla danego programu i dla konkretnych danych na taśmie maszyna Turinga dojdzie do stanu końcowego i się zatrzyma?
- Nieroztrzygalność tego problemu oznacza, że nie istnieje program komputerowy, który dla każdego programu P i dla każdych danych D potrafiłby stwierdzić, czy program P zatrzyma się dla danych D, czy się zapętli.

Problem stopu

- Problem stopu: napisz program Q, który dla każdego programu P i danych D rozstrzygnie, czy program P zatrzyma się dla danych D.
- Chodzi o uniwersalną metodę rozstrzygania czy istnieje niebezpieczeństwo zapętlenia się programu.

Dowód Turinga

· Chodzi o taki program Q:

Załóżmy, że taki program Q istnieje

Konstruujemy teraz drugi program S:

Jak działa program 5?

- Program S ma tylko jedną daną W (jakiś program)
- · Zaczyna od tego, że robi kopię tej danej
- Następnie uruchamia program Q dla programu W i kodu programu W potraktowanego jako dana.
- Jeśli program W zatrzyma się dla danej W, to program S się zapętla. Jeśli natomiast program W nie zatrzyma się dla danej W, to program S kończy działanie.

Jak działa program S dla danej 5?

Czy program S się zatrzyma dla danej S?

Sprzeczność!

- Okazuje się, że nie sposób odpowiedzieć na pytanie o zatrzymanie się programu S dla danej S.
 - jeśli S się zatrzymuje dla danej S, to Q da odpowiedź TAK i zgodnie z konstrukcją S, program S się zapętli
 - jeśli S się nie zatrzymuje dla danej S, to program Q da odpowiedź NIE i program S się zatrzyma.

Problem odpowiedniości Posta Post correspondence problem

Przykład:

```
- x_1=abb y_1=a
- x_2=b y_2=abb
```

 $-x_3=a$ $y_3=bb$

- Czy istnieje taki ciąg indeksów i1,i2,...,in, że $x_{i1}...x_{in}=y_{i1}...y_{in}$?
- Problem odpowiedniości Posta jest w ogólnym przypadku nierozstrzygalny! Choć dla niektórych przypadków (np. dla powyższego) można podać odpowiedź, nie ma jednak ogólnego algorytmu, który dla dowolnych danych $x_1,...,x_n$ i $y_1,...,y_n$ stwierdziłby, czy można wyrównać odpowiednie słowa x-owe i y-kowe za pomocą tego samego ciągu indeksów.

Pierwsze prawdziwe komputery

Twórcy pierwszych komputerów

Konrad Zuse

John Atanasoff

Howard Aiken

John Mauchly & J. Presper Eckert

Konrad Zuse

Niemcy, 1939

"Byłem zbyt leniwy, aby trudzić sie obliczeniami, więc wymyśliłem komputer."

Komputer Zusego działał za pomocą elektrycznych przełączników, zastąpio-nych później lampami.

Z1 - replika z Deutsches Museum (Monachium)

John Atanasoff

USA, 1939

Atanasoff-Berry Computer (ABC)

Komputer ABC był już w technologii lampowej i działał w arytmetyce binarnej

Nigdy nie został skończony.

Howard Aiken

USA, 1944

Mark 1 byl największym komputerem który kiedykolwiek został zbudowany!

Dziełał w technologii przełącznikowej i przyjmował instrukcje wprowadzane za pomocą taśmy perforowanej.

John Mauchly oraz Presper Eckert USA, 1945

Mauchly oraz Eckert zbudowali ENIACa (Electronic Numerical Integrator and Computer).

ENIAC był zbudowany w technologii lampowej i programowany za pomocą zestawiania obwodów.

John von Neumann

Współpracując z Mauchlym I Eckertem zaprojektował sposób działania procesora (cykl von Neumanna):

- -wczytanie rozkazu
- -interpretacja
- -wykonanie
- -aktualizacja licznika rozkazów

Schemat działania komputera

John Backus (1924-2007)

- FORTRAN (1955) był
 pierwszym językiem
 programowania z
 prawdziwego zdarzenia
- Miał zmienne, symboliczne adresy, łatwe zapisywanie wyrażeń,instrukcje warunkowe, pętle, procedury, ciekawe zarządzanie pamięcią

Rozwój i przyspieszenie

- Pierwsza generacja
 - Lampy próżniowe
- Druga generacja
 - Tranzystory
- Trzecia generacaja
 - Układy scalone
- Czwarta generacja
 - Mikroprocessory

Pierwsza generacja komputerów

- · Lata 30-te i 40-te
- · Lampy próżniowe w roli przełączników
- Duże komputery
- Niezwykle powolne, jak na dzisiejsze standardy
- Podatne na błędy
- · ABC, Mark I, ENIAC, UNIVAC i in

Druga generacja

- Lata 50-te do połowy 60-tych
- · Tranzystory w roli przełączników
- · Znacznie mniejsze niż lampowe
- · Mniej więcej tysiąckrotnie szybsze
- · Tańsze i pewniejsze

Trzecia generacja

- · Późne lata 60-te
- · Krzemowe czipy w roli przełączników
- · Znaczne obniżenie kosztu i rozmiarów
- Istotny wzrost szybkości i wydajności

Czwarta generacja

- Lata 70-te do dziś
- Zestawy
 przełączników
 zastąpione jednym
 mikroprocesorem
- Cena tak spadła, że stały się dostępne powszechnie

