

Docket No.: 797

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE PATENT APPLICATION TRANSMITTAL UNDER 37 CFR 1.53

BOX PATENT APPLICATION Assistant Commissioner for Patents Washington, D.C. 20231

Sir:

Transmitted herewith for filing is the patent application of

Inventor(s):

Y. Tom Tang, Ping Zhou, Ryle Goodrich, Chenghua Liu, Vinod Asundi,

Feiyan Ren, Jie Zhang, Qing A. Zhao, Aidong J. Xue, Yonghong Yang,

Tom Wehrman, Radoje T. Drmanac

Title:

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. Type of application

- This is a new application for a
 - Utility patent.
 - Design patent.
- Applicants claim small entity status (See 37 CFR 1.27) Х

2. **Application Papers Enclosed**

- 1 Title Page
- 142 Pages of Specification (excluding Claims, Abstract, Drawings & Sequence Listing)
- Page(s) of Claims 4
- Page(s) of Abstract 1
- 0 Sheet(s) of Drawings (Figs. X-X)
- Formal
- ☐ Informal

723 Page(s) of Sequence Listing

CERTIFICATION UNDER 37 CFR 1.10

I hereby certify that this Patent Application Transmittal and the documents referred to as enclosed therewith are being deposited with the United States Postal Service on November 17, 2000, in an envelope addressed to the Assistant Commissioner for Patents, Washington, D.C 20231 utilizing the "Express Mail Post Office to Addressee" service of the United States Postal Service under Mailing Labet No EK415382545US

Docket No.: 797

4.

3. Oath or Declaration

	Enclosed					
		Executed by (check all applicable boxes)				
		Inventor(s)				
		Legal representative of inventors(s) (37 CFR 1.42 or 1.43)				
		Joint inventor or person showing a proprietary interest on behalf of inventor who refused to sign or cannot be reached				
		The petition required by 37 CFR 1.47 and the statement required by 37 CFR 1.47 are enclosed. See Item 5D below for fee.				
X	Unexecuted – the undersigned attorney or agent is authorized to file this application on behalf of the applicant(s). An executed declaration will follow.					
Additi	Additional Papers Enclosed					
	Prelim	inary Amendment				
	Information Disclosure Statement					
	Declaration of Biological Deposit					
X	Computer readable copy of sequence listing containing nucleotide and/or amino acid sequence					
X	Statement Under 37 CFR § 1.821					
x	Paper copy of sequence listing identical to computer copy (723 pages)					
	Microfiche computer program					
	Associate Power of Attorney					
	Verifie	d translation of a non-English patent application				
x	Return receipt postcard					
	Other					
Priority Applications Under 35 USC 119						
Certified copies of applications from which priority under 35 USC 119 is claimed are listed below and						
		are attached.				
		will follow.				

Docket No.: 797

5.

6. Filing Fee Calculation (37 CFR 1.16)

A. x Utility Application

CLAIMS AS FILED – INCLUDING PRELIMINARY AMENDMENT (IF ANY)								
,				LENTITY	OTHER THAN A SMALL ENTITY			
	NO. FILED	NO. EXTRA	RATE	FEE	RATE	FEE		
BASIC FEE	[83]]			\$355.00	200	\$710.00		
TOTAL	30-20	= 10	X 9=	\$90.00	X 18=	\$0.00		
INDEP.	3-3	= 0	X 40 =	\$00.00	X 80 =	\$0.00		
Γ First Presenta	tion of Multiple D	Dependent Claim	+ 135 =	\$135.00	+ 270 =	\$0.00		
		FIL	\$580.00	OR	\$0.00			

В.		Design Application (\$160.00/\$320.00) Filing Fee: \$	S				
C.		Plant Application (\$245.00/\$490.00) Filing Fee: \$	8				
D.	Other	Other fees					
		Recording Assignment [Fee \$40.00 per assignment]	\$				
		Petition fee for filing by other than all the inventors or person on behalf of the inventor where inventor refused to sign or cannot be reached [Fee \$130.00]	\$				
		Other	\$				

TOTAL FEES ENCLOSED \$ 580.00

7. Method of Payments of Fees

- □ Enclosed check
- x Charge Deposit Account No. 501169. A duplicate copy of this transmittal is enclosed
- □ Not enclosed

8. Deposit Account and Refund Authorization

The Commissioner is hereby authorized to charge payment of any additional fees due or credit any overpayment to Deposit Account No. 501169. A duplicate copy of this transmittal is enclosed.

Please refund any overpayment to Hyseq, Inc. at the address below.

Please direct all future correspondence to Leslie A. Mooi at the address below.

Respectfully submitted,

Date: November 17, 2000

By:

Leslie A. Mooi

Attorney for Applicants Registration No.: 37,047

HYSEQ, INC.

670 Almanor Avenue

Sunnyvale, CA 94085

(408) 524-8100

(408) 524-8145 (Telefacsimile)

Our Ref. No.: 797

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

Express Mail Label No.: EF415382545US

20

25

30

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. BACKGROUND OF THE INVENTION

5 1.1 TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

10 1.2 BACKGROUND

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

2. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1 – 362 and are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is any of the four bases. In the amino acids provided in the Sequence Listing, * corresponds to the stop codon.

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO: 1-362 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO: 1-362. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO: 1-362 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO: 1-362. The sequence

10

15

20

25

30

information can be a segment of any one of SEQ ID NO: 1-362 that uniquely identifies or represents the sequence information of SEQ ID NO: 1-362.

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information is provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-362 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO: 1-362 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO: 1–362; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO: 1–362; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1–362. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under

10

15

20

25

30

stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEQ ID NO: 1–362; (b) a nucleotide sequence encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in the Sequence Listing; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO: 1-362; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g. host cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention. Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These

10

15

20

25

30

techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein, and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, *e.g.*, *in situ* hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form

10

15

20

25

30

the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (*e.g.*, bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provides methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products.

Compounds and other substances can effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 1); for which they have a signature region (as set forth in Table 3); or for which they have homology to a gene family (as set forth in Table 4). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

10

15

20

25

30

5

3. DETAILED DESCRIPTION OF THE INVENTION

3.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules.

10

15

20

25

30

The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonadal ridges during embryogenesis that have the potential to differentiate into germ cells and other cells. PGCs are the source from which GSCs and ES cells are derived. The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to regenerate themselves.

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide is RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of

10

15

20

25

30

oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 9 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 100 nucleotides, more preferably less than about 50 nucleotides and most preferably less than 30 nucleotides. Preferably the probe is from about 6 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NOs:1-362.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NOs: 1-362. The sequence information can be a segment of any one of SEQ ID NOs: 1-362 that uniquely identifies

10

15

20

25

30

or represents the sequence information of that sequence of SEQ ID NO: 1-362. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1 \div 4^{25})$ times the increased probability for mismatch at each nucleotide position (3×25) . The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

10

15

20

25

30

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or "segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at least about 7 amino acids, more preferably at least about 9 amino acids and most preferably at least about 17 or more amino acids. The peptide preferably is not greater than about 200 amino acids, more preferably less than 150 amino acids and most preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200 amino acids. To be active, any polypeptide must have sufficient length to display biological and/or immunological activity.

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include the initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol)

15

20

25

30

and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, *e.g.*, recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, *i.e.*, conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophobicity, hydrophobicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions,

10

15

20

25

30

deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, *e.g.*, polynucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (*e.g.*, microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, *e.g.*, *E. coli*, will be free of

10

15

20

25

30

glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted"

10

15

20

25

30

proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2):134 -143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (*i.e.*, the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is about 0.35 or less). Such a sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, *e.g.*, mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 25% (75% sequence identity); and in a further variation of this embodiment, by no

10

15

20

25

30

more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 90% sequence identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, and most preferably at least about 95% identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J. (1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and

10

15

20

25

30

the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

3.2 NUCLEIC ACIDS OF THE INVENTION

Nucleotide sequences of the invention are set forth in the Sequence Listing.

The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO: 1 - 362; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO:1 - 362; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polynucleotides of any one of SEQ ID NO: 1 - 362. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO: 1 - 362; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 1-362. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptorlike polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known

methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO: 1 – 362 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO: 1 – 362 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO: 1 – 362 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, *e.g.*, at least about 65%, at least about 70%, at least about 75%, at least about 80%, more typically at least about 90%, and even more typically at least about 95%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO: 1 - 362, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that are selective for (i.e. specifically hybridize to any one of the polynucleotides of the invention) are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can

10

15

20

25

30

differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided in SEQ ID NO: 1 - 362, a representative fragment thereof, or a nucleotide sequence at least 90% identical, preferably 95% identical, to SEQ ID NOs: 1 - 362 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NOs: 1 - 362, can be obtained by searching a database using an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably

10

15

20

25

30

constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., *DNA* 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, *Nucleic Acids Res.* 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by

10

15

20

25

30

the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., *Gene* 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and *Current Protocols in Molecular Biology*, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO: 1-362, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and

the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide. In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell.

Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NOs: 1 - 362 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NOs: 1 - 362 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., *Nucleic Acids Res.* 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, *Methods in Enzymology* 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the

10

15

20

25

30

protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice.

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived

10

15

20

25

30

from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (*e.g.*, temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., *Nat. Biotech.* 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

3.3 HOSTS

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous

10

15

20

25

30

promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7

10

15

20

25

30

lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from in vitro culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the

10

15

20

25

30

invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this

15

20

25

30

purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

3.4 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEQ ID NO: 1-362 or an amino acid sequence encoded by any one of the nucleotide sequences SEQ ID NOs: 1 - 362 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEQ ID NOs: 1 - 362 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEQ ID NO: 1-362 or (c) polynucleotides that hybridize to the complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO: 1-362 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, typically at least about 95%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO: 1-362.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for

10

15

20

25

30

example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, *e.g.*, pharmaceutically acceptable, carrier.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypeptide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments

10

15

20

25

30

of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, *e.g.*, Scopes, *Protein Purification: Principles and Practice*, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: *A Laboratory Manual*; Ausubel et al., *Current Protocols in*

10

15

20

25

30

Molecular Biology. Polypeptide fragments that retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that encode specific protein domains.

The purified polypeptides can be used in *in vitro* binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO: 1-362.

The protein of the invention may also be expressed as a product of transgenic animals, *e.g.*, as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, *e.g.*, U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in

10

15

20

25

30

the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (*i.e.*, from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearlTM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin

10

15

20

25

30

(TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven,

One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, *e.g.*, silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

3.4.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE IDENTITY AND SIMILARITY

15

20

25

30

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics 5 Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTX, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST (Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al, ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

3.5 GENE THERAPY

Mutations in the polynucleotides of the invention gene may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient

34

10

15

20

25

30

expression) or artificial chromosomes (stable expression). Cells may also be cultured *ex vivo* in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced *in vivo* for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered *in vivo* to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired

10

15

20

25

30

protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences.

Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, *e.g.*, inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting

10

15

20

25

30

sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

3.6 TRANSGENIC ANIMALS

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased

10

15

20

25

protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the invention *in vivo*, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

30

3.7 USES AND BIOLOGICAL ACTIVITY

10

15

20

25

30

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

3.7.1 RESEARCH USES AND UTILITIES

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when

10

15

20

25

30

labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology:

10

15

20

25

30

Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

3.7.2 NUTRITIONAL USES

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

3.7.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of therapeutic compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function 3.1-3.19;

10

15

20

25

30

Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6--Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Aced. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11--Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H.

Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, *In Vitro* assays for Mouse Lymphocyte Function; Chapter

6, Cytokines and their cellular receptors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

3.7.4 STEM CELL GROWTH FACTOR ACTIVITY

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totipotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells in vivo or ex vivo is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for reengineering damaged or diseased tissues, transplantation, manufacture of biopharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors, implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Flt-3 ligand (Flt-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of

10

15

20

25

30

mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a

10

15

20

25

30

specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: *Principles of Tissue Engineering eds.* Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endogenous stem cell factor activity and allow differentiation to proceed.

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci, U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g. as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

3.7.5 HEMATOPOIESIS REGULATING ACTIVITY

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation

10

15

20

25

30

of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either *in-vivo* or *ex-vivo* (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I.

10

15

20

25

30

Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

3.7.6 TISSUE GROWTH ACTIVITY

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue repair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue.

10

15

20

25

30

De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors *ex vivo* for return *in vivo* to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising

10

15

20

25

30

such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon); International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

3.7.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes

10

15

20

25

30

viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastbom et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent.

50

10

15

20

25

30

Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

10

15

20

25

30

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected

10

15

20

25

30

cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules, can be transfected with nucleic acid encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I alpha chain protein and β_2 microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bowman et al., J. Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

10

15

20

25

30

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol. 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto. 1994.

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

5

10

15

20

3.7.8 ACTIVIN/INHIBIN ACTIVITY

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

25

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

30

3.7.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

10

15

20

25

30

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

3.7.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

20

25

30

5

A polypeptide of the invention may also be involved in hemostatis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

3.7.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases,

10

15

20

25

30

blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCl,

15

20

25

30

Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine,

Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These *in vitro* models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

3.7.12 RECEPTOR/LIGAND ACTIVITY

A polypeptide of the present invention may also demonstrate activity as receptor, receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of

10

15

20

25

30

such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of

10

15

20

25

30

colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited, to ricin.

3.7.13 DRUG SCREENING

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves.

Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally

occurring) variants thereof. For a review, see *Science* 282:63-68 (1998).

10

15

20

25

30

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, *Curr. Opin. Biotechnol.* 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., *Mol. Biotechnol.* 9(3):205-23 (1998); Hruby et al., *Curr Opin Chem Biol.* 1(1):114-19 (1997); Dorner et al., *Bioorg Med Chem*, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in *in vivo* tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

3.7.14 ASSAY FOR RECEPTOR ACTIVITY

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind

10

15

20

25

30

polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (*i.e.*, increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including, (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides, oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

3.7.15 ANTI-INFLAMMATORY ACTIVITY

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or

10

15

20

25

30

promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

3.7.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of a therapeutic that promotes or inhibits function of the polynucleotides and/or polypeptides of the invention. Such leukemias and related disorders include but are not limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

3.7.17 NERVOUS SYSTEM DISORDERS

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases

10

15

20

25

or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

- (i) traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries;
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
- (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
- (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;
- (v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;
- (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
- (vii) lesions caused by toxic substances including alcohol, lead, or particular neurotoxins; and
- 30 (viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple

10

15

20

25

30

sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

- (i) increased survival time of neurons in culture;
- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or *in vivo*, *e.g.*, choline acetyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody binding, Northern blot assay, *etc.*, depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, *e.g.*, weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive

10

15

20

25

30

bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

3.7.18 OTHER ACTIVITIES

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

3.7.19 IDENTIFICATION OF POLYMORPHISMS

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving

10

15

20

25

30

inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

3.7.20 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963,

Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

15

20

25

30

10

5

3.8 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

3.8.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically,

the amount of polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water, saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

10

15

20

25

5

3.9 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF),

10

15

20

25

30

platelet-derived growth factor (PDGF), transforming growth factors (TGF- α and TGF- β), insulin-like growth factor (IGF), as well as cytokines described herein.

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers to that amount of the compound sufficient to result in amelioration of symptoms, *e.g.*, treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

10

15

20

25

30

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When coadministered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors.

3.9.1 ROUTES OF ADMINISTRATION

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome

10

15

20

25

30

coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

3.9.2 COMPOSITIONS/FORMULATIONS

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or elixir. When administered in tablet form, the pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol,

10

15

20

25

30

propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art. Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose,

10

15

20

25

30

hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, talc, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, *e.g.*, dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, *e.g.*, gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, *e.g.*, by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, *e.g.*, in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or

15

20

25

30

aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, *e.g.*, sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, *e.g.*, containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without

10

15

20

25

30

destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T

10

15

20

25

30

cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response.

Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about $0.01~\mu g$ to about 100~m g (preferably about $0.1~\mu g$ to about 10~m g, more preferably about $0.1~\mu g$ to about 1~m g) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are

10

15

20

25

30

useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone, cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle size, particle shape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering

10

15

20

25

30

agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF- α and TGF- β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, *e.g.*, amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (*e.g.*, bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final

10

15

20

25

30

composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

3.9.3 EFFECTIVE DOSAGE

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC₅₀ as determined in cell culture (*i.e.*, the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical

10

15

20

25

30

procedures in cell cultures or experimental animals, e.g., for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀.

Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, *e.g.*, Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active moiety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from *in vitro* data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%. In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about $0.01~\mu g/kg$ to 100~mg/kg of body weight daily, with the preferred dose being about $0.1~\mu g/kg$ to 25~mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

3.9.4 PACKAGING

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

10

15

20

25

30

5

3.10 ANTIBODIES

Another aspect of the invention is an antibody that specifically binds the polypeptide of the invention. Such antibodies include monoclonal and polyclonal antibodies, single chain antibodies, chimeric antibodies, bifunctional/bispecific antibodies, humanized antibodies, human antibodies, and complementary determining region (CDR)-grafted antibodies, including compounds which include CDR and/or antigen-binding sequences, which specifically recognize a polypeptide of the invention. Preferred antibodies of the invention are human antibodies which are produced and identified according to methods described in WO93/11236, published June 20, 1993, which is incorporated herein by reference in its entirety. Antibody fragments, including Fab, Fab', $F(ab')_2$, and F_v , are also provided by the invention. The term "specific for" indicates that the variable regions of the antibodies of the invention recognize and bind polypeptides of the invention exclusively (i.e., able to distinguish the polypeptide of the invention from other similar polypeptides despite sequence identity, homology, or similarity found in the family of polypeptides), but may also interact with other proteins (for example, S. aureus protein A or other antibodies in ELISA techniques) through interactions with sequences outside the variable region of the antibodies, and in particular, in the constant region of the molecule. Screening assays to determine binding specificity of an antibody of the invention are well known and routinely practiced in the art. For a comprehensive discussion of such assays, see Harlow et al. (Eds), Antibodies A Laboratory Manual; Cold Spring Harbor Laboratory; Cold Spring Harbor, NY (1988),

10

15

20

25

Chapter 6. Antibodies that recognize and bind fragments of the polypeptides of the invention are also contemplated, provided that the antibodies are first and foremost specific for, as defined above, full length polypeptides of the invention. As with antibodies that are specific for full length polypeptides of the invention, antibodies of the invention that recognize fragments are those which can distinguish polypeptides from the same family of polypeptides despite inherent sequence identity, homology, or similarity found in the family of proteins. Antibodies of the invention can be produced using any method well known and routinely practiced in the art.

Non-human antibodies may be humanized by any methods known in the art. In one method, the non-human CDRs are inserted into a human antibody or consensus antibody framework sequence. Further changes can then be introduced into the antibody framework to modulate affinity or immunogenicity.

Antibodies of the invention are useful for, for example, therapeutic purposes (by modulating activity of a polypeptide of the invention), diagnostic purposes to detect or quantitate a polypeptide of the invention, as well as purification of a polypeptide of the invention. Kits comprising an antibody of the invention for any of the purposes described herein are also comprehended. In general, a kit of the invention also includes a control antigen for which the antibody is immunospecific. The invention further provides a hybridoma that produces an antibody according to the invention. Antibodies of the invention are useful for detection and/or purification of the polypeptides of the invention.

Polypeptides of the invention may also be used to immunize animals to obtain polyclonal and monoclonal antibodies which specifically react with the protein. Such antibodies may be obtained using either the entire protein or fragments thereof as an immunogen. The peptide immunogens additionally may contain a cysteine residue at the carboxyl terminus, and are conjugated to a hapten such as keyhole limpet hemocyanin (KLH). Methods for synthesizing such peptides are known in the art, for example, as in R. P. Merrifield, J. Amer. Chem. Soc. 85, 2149-2154 (1963); J. L. Krstenansky, et al., FEBS Lett. 211, 10 (1987).

Monoclonal antibodies binding to the protein of the invention may be useful diagnostic agents for the immunodetection of the protein. Neutralizing monoclonal antibodies binding to the protein may also be useful therapeutics for both conditions

30

10

15

20

25

30

associated with the protein and also in the treatment of some forms of cancer where abnormal expression of the protein is involved. In the case of cancerous cells or leukemic cells, neutralizing monoclonal antibodies against the protein may be useful in detecting and preventing the metastatic spread of the cancerous cells, which may be mediated by the protein. In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A.M., Monoclonal Antibodies Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. 35:1-21 (1990); Kohler and Milstein, Nature 256:495-497 (1975)), the trioma technique, the human B-cell hybridoma technique (Kozbor et al., Immunology Today 4:72 (1983); Cole et al., in Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985), pp. 77-96).

Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with a peptide or polypeptide of the invention. Methods for immunization are well known in the art. Such methods include subcutaneous or intraperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection. The protein that is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to, coupling the antigen with a heterologous protein (such as globulin or β -galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells. Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, Western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Research. 175:109-124 (1988)). Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell,

A.M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)). Techniques described for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody-containing antiserum is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures. The present invention further provides the above- described antibodies in delectably labeled form. Antibodies can be delectably labeled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labeling are well-known in the art, for example, see (Sternberger, L.A. et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E.A. et al., Meth. Enzym. 62:308 (1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J.W. J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and *in situ* assays to identify cells or tissues in which a fragment of the polypeptide of interest is expressed. The antibodies may also be used directly in therapies or other diagnostics. The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and Sepharose®, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D.M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W.D. et al., Meth. Enzym. 34 Academic Press, N.Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and *in situ* assays as well as for immuno-affinity purification of the proteins of the present invention.

3.11 COMPUTER READABLE SEQUENCES

10

15

20

25

30

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NOs: 1 - 362 or a representative fragment thereof; or a nucleotide sequence at least 95% identical to any of the nucleotide sequences of SEQ ID NOs: 1 - 362 in computer readable form, a skilled artisan can routinely access the sequence information for a variety of purposes.

Computer software is publicly available which allows a skilled artisan to access sequence

information provided in a computer readable medium. The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system is used to identify open reading frames (ORFs) within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may be useful in producing commercially important proteins such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based

10

15

20

25

30

systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

3.12 TRIPLE HELIX FORMATION

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

10

15

20

25

30

3.13 DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays:

10

15

20

25

30

Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

15

20

25

30

3.14 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

3.15 SCREENING ASSAYS

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NOs: 1 - 362, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
 - (b) determining whether the agent binds to said protein or said nucleic acid.

In general, therefore, such methods for identifying compounds that bind to a polynucleotide of the invention can comprise contacting a compound with a polynucleotide of the invention for a time sufficient to form a polynucleotide/compound complex, and detecting the complex, so that if a polynucleotide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polynucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives

10

15

20

25

30

expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a

10

15

20

25

30

skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

3.16 USE OF NUCLEIC ACIDS AS PROBES

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NOs: 1 - 362. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from of any of the nucleotide sequences SEQ ID NOs: 1 - 362 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

10

15

20

25

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

Fluorescent *in situ* hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data. Examples of genetic map data can be found in the 1994 Genome Issue of Science (265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

10

15

20

25

30

3.17 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers. Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata *et al.*, 1985; Dahlen *et al.*, 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller *et al.*, 1988; 1989); all references being specifically incorporated herein.

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude *et al.* (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen *et al.*, (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond

10

15

20

25

30

joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ul) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M 1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. A ss DNA solution is then dispensed into CovaLink NH strips (75 ul/well) standing on ice.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), dissolved in 10 mM 1-MeIm₇, is made fresh and 25 ul added per well. The strips are incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g., Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4 N NaOH, 0.25% SDS heated to 50°C).

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor *et al.* (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness *et al.* (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of

10

15

20

25

30

Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness *et al.* (1991), requires activation of the nylon surface via alkylation and selective activation of the 5'-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease *et al.*, (1994) PNAS USA 91(11) 5022-6, incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected *N*-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

3.18 PREPARATION OF NUCLEIC ACID FRAGMENTS

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook *et al.* (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook *et al.* (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer *et al.* (1990) Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA samples are passed through a small French pressure cell at a variety of low to intermediate pressures. A lever device allows controlled application of low to intermediate pressures to

10

15

20

25

30

the cell. The results of these studies indicate that low-pressure shearing is a useful alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, $Cvi\Pi$, described by Fitzgerald *et al.* (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgun cloning and sequencing.

The restriction endonuclease *Cvi*JI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (*Cvi*JI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald *et al.* (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a *Cvi*JI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that *Cvi*JI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 ug instead of 2-5 ug); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

3.19 PREPARATION OF DNA ARRAYS

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the

10

15

20

25

density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate (all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane. Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

10

15

20

25

30

4.0 EXAMPLES

4.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences. In some cases RACE (Random Amplification of cDNA Ends) was performed to further extend the sequence in the 5' direction.

4.2 EXAMPLE 2

Novel Nucleic Acids

The novel nucleic acids of the present invention of the invention were assembled from sequences that were obtained from a cDNA library by methods described in Example 1 above, and in some cases sequences obtained from one or more public databases. The nucleic acids were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST version 114, gb pri 114, and UniGene version 101) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

15

20

25

30

Using PHRAP (Univ. of Washington) or CAP4 (Paracel), a full length gene cDNA sequence and its corresponding protein sequence were generated from the assemblage. Any frame shifts and incorrect stop codons were corrected by hand editing. During editing, the sequence was checked using FASTY and/or BLAST against Genbank (i.e., dbEST version 120, gb pri 120, UniGene version 120, Genepet release 120). Other computer programs which may have been used in the editing process were phredPhrap and Consed (University of Washington) and ed-ready, ed-ext and gc-zip-2 (Hyseq, Inc.). The full-length nucleotide and amino acid sequences, including splice variants resulting from these procedures are shown in the Sequence Listing as SEQ ID NOS: 1- 362.

Table 1 shows the various tissue sources of SEQ ID NO: 1-362.

The homology for SEQ ID NO: 1-362 were obtained by a BLASTP version 2.0al 19MP-WashU search against Genpept release 120 and the amino acid version of Geneseq released on October 26, 2000, using BLAST algorithm. The results showed homologues for SEQ ID NO: 1-362 from Genpept. The homologues with identifiable functions for SEQ ID NO: 1-362 are shown in Table 2 below.

Using eMatrix software package (Stanford University, Stanford, CA) (Wu et al., J. Comp. Biol., Vol. 6 pp. 219-235 (1999) herein incorporated by reference), all the sequences were examined to determine whether they had identifiable signature regions. Table 3 shows the signature region found in the indicated polypeptide sequences, the description of the signature, the eMatrix p-value(s) and the position(s) of the signature within the polypeptide sequence.

Using the pFam software program (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1) pp. 320-322 (1998) herein incorporated by reference) all the polypeptide sequences were examined for domains with homology to certain peptide domains. Table 4 shows the name of the domain found, the description, the p-value and the pFam score for the identified domain within the sequence.

The nucleotide sequence within the sequences that codes for signal peptide sequences and their cleavage sites can be determine from using Neural Network SignalP V1.1 program (from Center for Biological Sequence Analysis, The Technical University of Denmark). The process for identifying prokaryotic and eukaryotic signal peptides and their cleavage sites are also disclosed by Henrik Nielson, Jacob Engelbrecht, Soren

Brunak, and Gunnar von Heijne in the publication "Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites" Protein Engineering, Vol. 10, no. 1, pp. 1-6 (1997), incorporated herein by reference. A maximum S score and a mean S score, as described in the Nielson et as reference, was obtained for the polypeptide sequences. Table 5 shows the position of the signal peptide in each of the polypeptides and the maximum score and mean score associated with that signal peptide.

TABLE 1

TISSUE ORIGIN	LIBRARY/	HYSEQ LIBRARY	SEQ ID NOS:
	RNA SOURCE	NAME	oly it noo.
adult brain	GIBCO	AB3001	4 18 39-40 83 88 98 110 112-
			113 136 168-169 201-203
adult brain	GIBCO	ABD003	7 15-16 31-32 39-41 45 54 58
			63 70 73-75 82-84 92 98 106
			110 114 116-117 126 128 130
			139 144 155 164 168-169 191-
			192 195 198 204-215 239-240
	01 1	TDD001	249 252 258 272-274
adult brain	Clontech	ABR001	10-11 15 19 39-40 88 106 120
adult brain	Clantach	7.DD006	144 168 215-216 258
adult brain	Clontech	ABR006	13 17 20 23 33 39-40 50 58 62
			75 82 84 88 100 104 121-122
			129 149 168 208 216 223 232-
			233 239 256 269 277 287-288
adult brain	Clontech	ABR008	353 360 4 10-11 13 17 20 23 25 28-30
addic Diain	CTOHCECH	סטאמא	32 34-35 39-41 48 50 53-54 58
			61 63 68-69 74 76 78 80 84-89
			91 98 104 107 112-114 118 121-
			122 130 134-136 143 153-155
			158-160 163-166 168 172-173
			184-188 199-200 203 212-213
			215-216 219-220 226-227 234
			239 242 244 251-252 255-257
			263 268 271-272 277-280 287
			291 300-301 305-306 316 322
			338 346-347 360
adult brain	Clontech	ABR011	157 306
adult brain	BioChain	ABR012	36 247
adult brain	Invitrogen	ABR013	176
adult brain	Invitrogen	ABR014	50 53 100 269
adult brain	Invitrogen	ABR015	19 38 74 161-162
brain	Invitrogen	ABR016	53 74 137 139 239
adult brain	Invitrogen	ABT004	8 15 19-20 28 30 35 75 78 100
			106-107 113 134 160 179 181
			184 198-199 210 216 224 227
adinogutas	C+ xo+ o zono	70001	252 254-255 288 340
adipocytes	Stratagene	ADP001	9 13 19 45 74 98 121-122 131 164 187 189-190 217 239
adrenal gland	Clontech	ADR002	9 15 18-19 24-25 31-32 46 56
aurenar Arana	CTOHCECH	WALLOUS	77-78 112 114-115 117-119 121-
			122 124 139 170 182 192 209
			213 218 220 225 249 276 306
adult heart	GIBCO	AHR001	2 4 7 17 19-22 26-27 34 38 45-
	01200	11111001	46 50 53-54 58 60-61 63 74 76-
			77 86-87 91 96 98 108 112 114
			121-122 131 133 136-140 144
			155 160 165-168 184 188 217
			226 239 241-242 251 259 265
			277-278 290 306
adult kidney	GIBCO	AKD001	4 6-11 13 15-17 19-20 24 30-32

	/	LINGTO TERRIBU	SEQ ID NOS:
TISSUE ORIGIN	LIBRARY/	HYSEQ LIBRARY	SEQ ID NOS:
	RNA SOURCE	NAME	24 26 20 47 52 54 60 62 66 60
			34 36-38 47 53-54 60-63 66 69
			73-75 78 82-85 87 89-92 96 98
			100 103 106 108 110 112-113
			116 121-123 126 129 131 134
			136 139-142 144 153 155 158-
			159 169-170 176 181 207 237
			239 266-267 271-272 306
adult kidney	Invitrogen	AKT002	7-8 10-11 13 15 19 25-27 32
addit kidney	Inviciogen	11111002	37-38 53 55-56 66 75 86 90 92
			108 123 144 165-166 172 182
			199 218 225 233 236 238 260
			266-267 332
adult lung	GIBCO	ALG001	8 22 26-28 38-40 47 54 78 91
			98 104 110 112 117 139 148 168
			189 196 225 239 248 351-352
lymph node	Clontech	ALN001	7 26-27 32 35 38-40 79 82 120
			127 152 158-159 169 171 219
			239 244
	GIBCO	ALV001	7 14 16-17 19 33 37 53 72 77
young liver	GIBCO	ALVOOT	107 113 116 118 134 152 168
			1
			212 249
adult liver	Invitrogen	ALV002	12 14 17 24 28 32-33 36 58 73
			75-76 84 101 116 131 138 140
			158-160 182 194 212 238 275
			284 323 342-343
adult liver	Clontech	ALV003	271 284 358
ovary	Invitrogen	AOV001	4 6-11 13 15-16 18-21 25-27
Ovary	1111122109011	110.00	31-32 34 36 38-40 46 48 50 53-
			54 56 58 60 65 70 73-78 80 83-
			84 86 91-92 95 98 100-101 103-
			106 108 110-112 115 117-118
			124 126-127 129-131 136 139-
			142 144 148 155 157-161 163-
			167 169 173-174 178 180-186
			188-189 191-193 196 199-200
			204-208 210-211 220-223 233
			236 239 249-252 260-263 266-
			270 287-288 306 315 351-352
placenta	Clontech	APL001	30 50 74 82 230
	Invitrogen	APL002	45 50 59 70 75 103 163 223
placenta		ASP001	7 19 30 38 45 54 58 62 74 81
adult spleen	GIBCO	ASPUUL	83 91 106 110 112-113 116 131
			144 151 155 162 165-166 172
			176 189 191 215 230 236 239
			249 329
testis	GIBCO	ATS001	4 15 19-20 30 48 53 74 89 94
			110 126 140 158-159 173 214-
			215 220 239 245 306
bladder	Invitrogen	BLD001	30 35 59 61 74-75 123 164 221
pradder	THATCTOGET	770001	241 318
	03 1 3	DMD001	3 6-7 9 13 17 20 26-27 30-31
bone marrow	Clontech	BMD001	34 38-40 42 46 53-54 63-79 82-
			83 85 91 93-98 101 105 110 115
1		1	121-122 126 128-129 133-134

mrggir opicin	LIBRARY/	HYSEQ LIBRARY	SEQ ID NOS:
TISSUE ORIGIN	RNA SOURCE	NAME	DIQ 10 NOO!
	KNA SOUNCE	TAT 71 1173	143 145 154 161-162 176 192
			205-206 234 236 239 243 264
			289 306 322
bone marrow	Clontech	BMD002	3-4 7 9 13 16-17 19-20 23 30
DOILC MALLOW	0101100011		32 34 36 38-40 47-48 54-56 58
			61 68-69 74-75 79 84 108 118-
			119 121-122 125 128-129 131
			133 140 144 147 149 153-154
			158-159 161 163 167 171 174
			176 185-187 200 211 218 232
			239 241 247 252 277-278 285
			296 303 310 320 324 329 339
			341 353 356 359
bone marrow	Clontech	BMD004	64
colon	Invitrogen	CLN001	18 32 100 106 110 143 153 163-
			164 178 213 247 266-267 284
cervix	BioChain	CVX001	4 6 8-9 19 22 24-25 28 32 45-
			46 53 55-56 63 74-75 77-78 83
			87 91-92 95 102 105 108 110 123 127 136-137 140 169 172
			182 184-186 189-191 199 211
			238 249 266-267 274 283 306-
	3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		308 317 354
1 1 1 7 7	Chustagana	EDT001	2 4 6-7 9 15 17-21 25-28 30 32
endothelial	Stratagene	FDIOOI	36 39-40 45 47-48 53 55-57 60
cells			62-63 69-70 74-76 78 83 85-87
			98 101-104 106 108 112-113 119
			121-123 130-131 136-137 139-
			142 155-156 158-159 161 174
			189-192 204 208 218 220 223
			230 239 251 280 306
Genomic clones	Genomic	EPM001	223
from short arm	Data from		
of chromosome	Genetic		
8	Research		
Genomic clones	Genomic	EPM003	223
from short arm	Data from		
of chromosome	Genetic		
8	Research	EDV(0.0.4	222
Genomic clones	Genomic	EPM004	223
from short arm	Data from		
of chromosome	Genetic Research		
8	Clontech	FBR001	32 227
fetal brain fetal brain	Clontech	FBR004	319
fetal brain	Clontech	FBR004	7 10-11 13 17 20 23-25 28-29
Tecar Diain	0101100011		32 35 41-42 48 50 53 63 75 80
			89 91 104 112 121-122 125 130
			154 163 165-166 168 171 173
			191 199 210 215-216 218 226
			232 239 256 272 277 290 300
			306 309 319-320 333 353 360
fetal brain	Invitrogen	FBT002	15 17 19 35 69 75 87 104 109
			140 163 174 192-193 198-199

TISSUE ORIGIN	LIBRARY/	HYSEQ LIBRARY	SEQ ID NOS:
110000 0111011	RNA SOURCE	NAME	
			207 220 228 239 252 256-258
fetal heart	Invitrogen	FHR001	3 8 19 32 41 48 77-79 91 114
			119 126 163 165-166 172 174
			176 200 218 232 244 263 331
			351-352 360-361
fetal kidney	Clontech	FKD001	16-17 36 46 53 74 82 95 104
			111 117 169 189
fetal kidney	Clontech	FKD002	26-27 165-166 218 220 232 238 263 306
fetal kidney	Invitrogen	FKD007	38 74
fetal lung	Clontech	FLG001	32 48 139 173 217
fetal lung	Invitrogen	FLG003	10-11 19 36 58 61 69 74 134
			163 168 178 194 249 263 266-
			267 351-352
fetal liver-	Columbia	FLS001	1-19 21-38 41-62 68 70 72 74-
spleen	University		78 87 90-91 93 100-104 106-121
=			123-125 127 130-131 133-134
	,		141-142 144 149 155-156 161
			163 165-167 169 176 194-196
			200 207 210 221 224-225 227 231-233 236 238 263 303 306
			l l
		FT 7000	313 324 336 342 2 5 7-9 12 14 16-18 22-24 30-
fetal liver-	Columbia	FLS002	33 35-40 43-46 48-50 52-53 57
spleen	University		70 72 76-78 84-85 87 90 92
			101-102 106-108 110 112 114
			116-120 124 127-128 130-131
			134-135 140-142 144 155 163
			172 174 187 189-190 192 195-
			196 199 205-207 210 220-221
			223-224 230-234 244 251 258
			260-261 263 265 275 296 313-
			315 331 337-338 345 362
fetal liver-	Columbia	FLS003	19 30 33 139 174 265 313 339
spleen	University		355
fetal liver	Invitrogen	FLV001	10-11 14 17 19 21 37 46 50 61
			63 156 163 165-166 172 200 210
	<u> </u>		238 253
fetal liver	Clontech	FLV002	19 32 74 163 356
fetal liver	Clontech	FLV004	3 14 19 32-33 37 42 47-48 50
			58 60 82 85 121-122 129 131
			152 171 193 272 353
fetal muscle	Invitrogen	FMS001	28 32 39-40 45 48 50 57 74 107
			121-122 131 137 139-140 147
			173 204 230 281
fetal muscle	Invitrogen	FMS002	19 23 32 34 55-56 80-81 98
			121-122 124 131-132 158-159
			199 212 230 280-281 353 357
		DOMO 01	360 2 4 14-15 17-19 22 41 46 50 53
fetal skin	Invitrogen	FSK001	59 72 75-76 81-82 84 94 103
			106 113 128 135 140 144 156
			164 167 170 174 188 209-210
			220 227 230 238-239 254 306
	1		220 221 230 230 233 201 300

TISSUE ORIGIN	LIBRARY/ RNA SOURCE	HYSEQ LIBRARY NAME	SEQ ID NOS:
	TRIVIT DOGRAM		321-322 333-335
fetal skin	Invitrogen	FSK002	4 34 47 54 79 84 113 126-127 129 134 156 192-193 208 223 230 241 277 285 333
fetal spleen	BioChain	FSP001	32 104
umbilical cord	BioChain	FUC001	4 19 22-23 32 38-40 46 55-56 58 61 73-75 91 98-99 103 106 110 112 116 120 123 129-130 139 160 165-166 175 182 230 234 249 251 302
fetal brain	GIBCO	HFB001	6 9 16 19-20 25 32 35-36 39-41 45 48 53-54 56 60 73 80-81 83-92 98 107 112 114 157-159 163 165-166 172 191 197-198 211 226-227 239 350
infant brain	Columbia University	IB2002	6-8 13 15-17 19 21 32 35 41-42 48 50 60-61 77 81 84-85 88 92 104-106 112-113 116 119 134 139 144 160 165-166 168-169 173 176 191 196 199-201 215 223 225 227-228 239 261 285 290 329 339-340 348
infant brain	Columbia University	IB2003	7-9 13 32 39-41 58 92 103 105- 106 144 160 162 199 205-206 219 227-228 271 357
infant brain	Columbia University	IBM002	32 88 340
infant brain	Columbia University	IBS001	6 26-27 32 164 199 340
lung, fibroblast	Stratagene	LFB001	2 4 18-19 25 39-40 46 53 55-56 106 112 124 129 136 139 146 150 164 169 189-190 215 230 239 260 349
adult lung	Invitrogen	LGT002	2 6 8-11 15-16 19 26-28 30 32 39-40 46 48 50 53-56 60-61 66 72 74-75 85 87 92 94 96 98 103-104 108 110 112-113 117 119-120 124 130-131 139-140 149 152-153 155 158-159 167 169 174 176 178 184 189-190 195-196 217 220 229-230 234- 239 248-250 263 265-267 280 286 310 329-330 351-352
lymphocyte	ATCC	LPC001	7 13 16 19 32 39-40 54 63 74 82 96 113 120 126 130-131 133 144 150 178 184-186 223 239 241 260 262 294 305 339
leukocytes	GIBCO	LUC001	1 3-4 7-9 13 16-20 26-27 30 32 34-35 38-40 46 48 51 53-56 63 66 70 72-76 78 82 84-85 87 89 91-92 95-96 101 106 108 110- 112 114 116 120-122 126-127 129-133 136 139 144 146-152 164 175-179 187 192 232 236

TISSUE ORIGIN	LIBRARY/	HYSEQ LIBRARY	SEQ ID NOS:
1	RNA SOURCE	NAME	_
			239 241 266-267 292-294 306
			325-327 329 339 359
leukocytes	Clontech	LUC003	7-8 17 55-56 76 84 112 129 131 161-162 176 180 185-186 329
melanoma	Clontech	MEL004	4 13 17 28 30-31 39-40 83 85
	,		92 113 126 129 139 160 162 182
			198 232 239 303 324
mammary gland	Invitrogen	MMG001	8-11 16-21 28 30 32 35 41 45
			58-59 61 72 74-75 78 84 87 92
	}		103-104 106-107 110 113 115- 116 123 128 131 134-135 144
			152 163 176 181 183 210 212
			220-221 230 234 236 238-239
			248 251 260 272-273 275-276
			306 331 351-352 360
neuron	Stratagene	NTD001	18-19 39-40 45 74 78 85 91
neuron	Stratagene	NTR001	19 21 57 246 265
neuronal cells	Stratagene	NTU001	8-9 18-19 21 32 81 85 87 128
nituitore.	Clontech	DITO 0 4	164 174 184 13 47 82 87 98 112 288 354
pituitary gland		PIT004	
placenta	Clontech	PLA003	13 48 50 58 77 100 106 112 126
	07 1	DD#001	129 152 178 232
prostate	Clontech	PRT001	16 19 22 26-27 32 34 46-47 76- 77 92 98 106 112 124 172 214
			239 260 280 294
rectum	Invitrogen	REC001	8 10-11 18 30 54 74-76 106 113
			123-124 143 163 172 213 220
			232 237 260 322-323 340
salivary gland	Clontech	SAL001	8 19 36 74 83 104 118 124 150
21-2-	7 ECC	GEDOO3	176 260 295 304 239
skin fibroblast	ATCC	SFB002	239
small	Clontech	SIN001	9 17 19 22 32 34 54 57 59-60
intestine	:		73 75 84-85 96 99 107 113 118
			134 139 144 149 151 185-187
			189 197 199 217 219 221 230-
			231 248 250 253-254 260 266- 267 295 304 356
skeletal	Clontech	SKM001	17 19 39-40 48 89 104 116 131
muscle			281
spinal cord	Clontech	SPC001	8 19 32 34 38-40 47 58 61 74
-			80 83-84 89 104 108 131 139-
			140 168 187 213 226 236 239
			300 350
adult spleen	Clontech	SPLc01	1 46 54 134 236
stomach	Clontech	ST0001	7 32 38-40 51 66 74 76 89 117 124 128 169 229 239 253 280
			124 128 169 229 239 253 280 294 296
thalamus	Clontech	THA002	24 30 50 87 124 127 143 163
cnazamas	OTOILCEOIL		201 207 220 223 230 266-267
			269 279
thymus	Clontech	THM001	7 13 19 25 32 36 39-40 54-56
			72 74 82 96 108 113 119 127

TISSUE ORIGIN	LIBRARY/ RNA SOURCE	HYSEQ LIBRARY NAME	SEQ ID NOS:
			137 139 141-142 146 169 184 192 260 276 296
thymus	Clontech	THMc02	9 17 28 30 32 39-40 48 53 61 72 74-75 77 79 82 91 107 112 119-122 125-126 131 139-142 153 171 175-176 178 184 187 205-206 222-223 227 235-236 269 278 289 297 305 310-311 325 327-329 336
thyroid gland	Clontech	THR001	7-11 15 17 19-20 25-27 32 34 36 46 48 53 59 72 82-87 89 91 96 98-99 104 106 110 118-119 121-122 127 130 136 139 144 151-152 158-159 165-167 179 187 204 208 220 239 249 281 283 295 298-299 312 316 344
trachea	Clontech	TRC001	62-63 73 75 86-87 89 101 147 192 239 266-267 282-283
uterus	Clontech	UTR001	4 8 17 19 22 26-27 32 39-40 46 63 82 98 110 130 151

TABLE 2

SEQ ID	ACCESSION	DESCRIPTION	SMITH-	ાં
NO:	NUMBER		WATERMAN	IDENTITY
			SCORE	
1	L29075	Dictyostelium discoideum G-box	173	21
		binding factor		
2	AL359215	Streptomyces coelicolor A3(2)	133	28
		putative phosphoglycerate mutase.		
3	AF228713	Homo sapiens EDAG-1	1671	100
4	AC007130	Homo sapiens similar to 3-	1557	100
		hydroxyisobutyrate dehydrogenase;		1
		similar to P29266 (PID:g416873)		
5	AB040926	Homo sapiens KIAA1493 protein	1973	98
6	AF193016	Homo sapiens methyltransferase COQ3	1609	99
7	U95825	Homo sapiens androgen-induced	2968	63
•		prostate proliferative shutoff		
		associated protein		
8	AL390081	Homo sapiens SEMA4B, Semaphorin 4B	3560	99
9	AC002130	Arabidopsis thaliana F1N21.9	258	50
10	Z38061	Saccharomyces cerevisiae mal5,	323	27
10	230001	stal, len: 1367, CAI: 0.3,		
		AMYH YEAST P08640 GLUCOAMYLASE S1		
		(EC 3.2.1.3)		
11	D88733	Equine herpesvirus 1 membrane	284	24
_ T	100,00	glycoprotein		
13	M80783	Homo sapiens B12 protein	1144	70
14	U72678	Mus musculus EF-9	792	92
15	AK026486	Homo sapiens unnamed protein	427	83
		product		
16	AK025813	Homo sapiens unnamed protein	1010	100
		product		
17	AF151036	Homo sapiens HSPC202	722	84
18	AY007148	Homo sapiens similar to Homo	984	100
		sapiens HSPC197 mRNA with GenBank		
		Accession Number AF151031.1		
19	X57432	Rattus rattus ribosomal protein S2	956	97
20	AF164793	Homo sapiens protein x 013	386	100
21	J02642	Homo sapiens glyceraldehyde 3-	1639	95
- -		phosphate dehydrogenase (EC		
		1.2.1.12)		
22	M34573	Homo sapiens alpha-2 collagen type	515	100
2.2	1.010.0	VI-a		
23	AL109928	Homo sapiens dJ551D2.5 (novel	1999	100
20	112203320	protein)		
24	AF111858	Homo sapiens dimethylglycine	3918	99
23	1111111000	dehydrogenase precursor		
25	U64854	Caenorhabditis elegans partial CDS	184	25
26	AF151072	Homo sapiens HSPC238	838	99
27	AF151072	Homo sapiens HSPC238	393	96
28	AK024825	Homo sapiens unnamed protein	1794	99
۷0	ALOSAOS	product		
			+	175
20	AF285631	Rattus norwegicus secretory carrier	1 894	1 13
29	AF285631	Rattus norvegicus secretory carrier membrane protein 4	894	75

SEQ ID NO:	ACCESSION NUMBER	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
		product		
31	AL161515	Arabidopsis thaliana putative protein	146	52
32	AJ007798	Homo sapiens stromal antigen 3, (STAG3)	6320	99
33	D31856	Bacillus subtilis Hutl protein, imidazolone-5-propionate hydrolase	667	39
34	AL391145	Arabidopsis thaliana putative protein	423	24
35	AF134726	Homo sapiens G7A	1591	46
36	AJ276485	Homo sapiens integral membrane transporter protein	1502	100
37	J05158	Homo sapiens carboxypeptidase N (EC 3.4.17.3)	2274	88
38	X57351	Homo sapiens 1-8D	673	97
39	AF230904	Homo sapiens c-Cbl-interacting protein	3437	100
40	AF230904	Homo sapiens c-Cbl-interacting protein	2615	99
41	AF276893	Homo sapiens p21-activated protein kinase 6	3550	100
42	AF269255	Homo sapiens lysosomal apyrase-like protein 1	3198	100
43	S85655	Homo sapiens prohibitin	742	84
44	AB040926	Homo sapiens KIAA1493 protein	1973	98
45	AF151063	Homo sapiens HSPC229	1012	100
46	X68277	Homo sapiens protein-tyrosine phosphatase	1886	100
47	Z98745	Homo sapiens dJ29K1.2	889	51
48	AF032668	Rattus norvegicus rsec15	3738	92
50	AF195534	Rattus norvegicus GERp95	4513	99
51	AF161368	Homo sapiens HSPC105	513	98
52	W73147	Amino acid sequence of the soluble complement receptor 1	651	81
53	AF271212	Homo sapiens disrupter of silencing SAS10	2431	100
54	AF116646	Homo sapiens PRO0082	598	100
55	AF145613	Drosophila melanogaster BcDNA.GH03108	817	46
56	AF145613	Drosophila melanogaster BcDNA.GH03108	884	38
57	AL023803	Homo sapiens dJ616B8.3 (novel gene)	2287	100
59	AC024877	Caenorhabditis elegans contains similarity to Pfam families PF00621 (Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases, score=58.2, E=1.7e-13, N=10 and PF00169 (PH (pleckstrin homology) domain, score=17.0, E=0.00071, N=1)	296	31
60	AL390114	Leishmania major probable proteophosphoglycan	154	30
61	AL031427	Homo sapiens dJ167A19.1 (novel	732	51

SEQ ID NO:	ACCESSION NUMBER	DESCRIPTION	SMITH- WATERMAN SCORE	
		protein)	BOOKE	
62	AL390935	Leishmania major possible CG17807 protein	151	43
63	J04067	Canis familiaris microsomal signal peptidase	930	99
64	AF062378	Mus musculus calmodulin-binding protein SHA1	1782	60
65	AE001002	Archaeoglobus fulgidus ATP- dependent RNA helicase, putative	195	29
66	X69065	Erythroid ankyrin [Mus musculus]	181	30
68	AF017807	Homo sapiens Arp2/3 complex 16kDa subunit	371	100
69	AC007660	Arabidopsis thaliana putative translation initiation factor	173	29
70	AJ243177	Xenopus laevis Xenopus RPA interacting protein alpha	447	42
71	AF226055	Homo sapiens HTGN29	1367	100
72	AF090930	Homo sapiens PRO0478	180	89
73	AF118084	Homo sapiens PRO1914	350	98
74	AB028893	Homo sapiens ribosomal protein S11	824	100
75	AK024500	Homo sapiens FLJ00109 protein	1514	100
76	AF238866	Mus musculus LNR42	1041	99
7 7	AC026875	Arabidopsis thaliana T6D22.6	129	30
78	U42436	Caenorhabditis elegans Hypothetical protein C49H3.3	130	32
79	M80902	Homo sapiens AHNAK nucleoprotein	8529	99
80	W90962	Human CSGP-2 protein [homo sapiens]	2346	99
81	AF206661	Gallus gallus neuronal tetraspanin	1066	81
82	S73591	Homo sapiens brain-expressed HHCPA78 homolog VDUP1	800	42
83	AF116650	Homo sapiens PRO0786	302	100
84	L26335	Cavia porcellus zinc finger protein	1493	99
85	AF209198	Homo sapiens zinc finger protein 277	2357	100
86	AE001399	Plasmodium falciparum GAF domain protein (cyclic nt signal transduct.)	178	35
87	Y48226	Human prostate cancer-associated protein 12 [Homo sapiens]	1204	96
88	M94389	Loligo pealei neurofilament protein	165	23
89	AF121775	Homo sapiens nasopharyngeal carcinoma susceptibility protein LZ16	903	58
90	AF116675	Homo sapiens PRO1942	257	100
91	AE002760	Drosophila melanogaster CG14464 gene product	195	43
92	AK000100	Homo sapiens unnamed protein product	841	100
93	AB020236	Homo sapiens ribosomal protein L27A	754	99
94	AF119865	Homo sapiens PRO2176	470	97
96	AF138863	Homo sapiens PRO1677	868	99
97	X14361	Homo sapiens CR-1 receptor SCR9 (or	135	100

SEQ ID NO:	ACCESSION NUMBER	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
		16) C-term. (21 is 3rd base in codon) (106 is 1st base in codon)		
98	Z24725	Homo sapiens mitogen inducible gene mig-2	3576	99
99	U64598	Caenorhabditis elegans weakly similar to S. cervisiae PTM1 precursor (SP:P32857)	398	45
100	AC004770	Homo sapiens BC269730 4	1527	84
101	AL139075	Campylobacter jejuni NOL1\NOP2\sun family protein	312	35
102	AF113694	Homo sapiens PRO1359	416	100
103	U15158	Homo sapiens ESP-2	564	41
104	AL020996	Homo sapiens dJ317E23.3 (novel protein)	1818	99
105	AF161370	Homo sapiens HSPC107	824	100
106	AK000161	Homo sapiens unnamed protein product	284	100
107	AK001784	Homo sapiens unnamed protein product	684	100
108	AE000913	Methanobacterium thermoautotrophicum conserved protein	221	25
109	AF165527	Homo sapiens DGCR8	859	100
110	AF230200	Homo sapiens OVN6-2	358	95
111	Z72516	Caenorhabditis elegans T25G3.1	180	36
112	AF201940	Homo sapiens DC6	505	100
113	AK001301	Homo sapiens unnamed protein product	2040	98
114	U23515	Caenorhabditis elegans weakly similar to gastrula zinc finger protein	205	47
115	AF228021	Bos taurus cyclophilin I	345	91
116	AF166124	Homo sapiens selenoprotein X	527	100
117	AF079445	Dictyostelium discoideum TipC	529	30
118	AB032179	Homo sapiens similar to mouse Ehm2	2255	100
119	U89867	Homo sapiens nuclear matrix protein 55	2449	98
120	U29056	Mus musculus Src-like adapter protein	352	47
121	U22015	Mus musculus retinoid X receptor interacting protein	2190	73
122	AF113538	Homo sapiens retinoid x receptor interacting protein	1800	100
123	AK000158	Homo sapiens unnamed protein product	740	100
124	AF260924	Mus musculus UFD2/D4COLE1E fusion protein	1222	82
125	U12465	Homo sapiens ribosomal protein L35	591	97
126	AJ277591	Homo sapiens p15-2a protein	749	100
127	AF205599	Mus musculus transposase-like protein	2406	74
128	U58975	Homo sapiens proto-oncogene	659	90

SEQ ID NO:	ACCESSION NUMBER	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
129	X98374	Rattus norvegicus KIS	2193	99
130	AF151049	Homo sapiens HSPC215	627	100
131	M59807	Homo sapiens putative	907	99
132	U12979	Homo sapiens PC4	563	99
133	AF076642	Homo sapiens regulator of G-protein	1218	100
		signaling 13		
134	AF116718	Homo sapiens PRO2900	396	100
135	AC018758	Homo sapiens GPI-anchored metastasis-associated protein homolog	213	31
136	AC025416	Arabidopsis thaliana F5011.12	135	36
137	M83186	Homo sapiens cytochrome c oxidase subunit VIIa	247	100
138	AF232937	Mus musculus thymic stroma derived lymphopoietin	247	41
139	M15841	Homo sapiens U2 small nuclear ribonucleoprotein B''	638	100
140	AK026916	Homo sapiens unnamed protein product	2612	99
141	Y05317	<pre>Human secreted protein bn97_1 [Homo sapiens]</pre>	1508	100
142	Y05317	<pre>Human secreted protein bn97_1 [Homo sapiens]</pre>	851	99
143	AF041083	Rattus norvegicus RoBo-1	139	25
144	AC024260	Arabidopsis thaliana cell division control protein, putative; 15914-18846	194	25
146	AL022398	Homo sapiens dJ434014.3.2 (putative protein) (isoform 2)	575	100
147	AF212842	Homo sapiens immunoglobulin-like transcript 11 protein	1280	99
148	AB042827	Rattus norvegicus Nadrin	477	66
149	AK001841	Homo sapiens unnamed protein product	1916	100
150	AJ278120	Homo sapiens putative ankyrin- repeat containing protein	540	98
151	AL135959	Homo sapiens dJ233G16.1 (novel protein)	770	100
152	Y58196	[Homo sapiens] Human STRAP-3 protein, encoded by testis EST AI139607	671	100
153	U41060	Homo sapiens LIV-1 protein	373	50
154	AJ007590	Homo sapiens XRP2 protein	1766	100
155	AB046868	Xenopus laevis beta-catenin- interacting protein	125	46
156	AB027258	Homo sapiens basal transcriptional activator hABT1	1408	100
157	AF039656	Homo sapiens neuronal tissue- enriched acidic protein	1109	96
158	AK001425	Homo sapiens unnamed protein product	1695	99
159	AK001425	Homo sapiens unnamed protein	858	98

SEQ ID	ACCESSION	DESCRIPTION	SMITH-	%
NO:	NUMBER		WATERMAN	IDENTITY
			SCORE	
1.00	7.770.000.000	product	1000	100
160	AK002030	Homo sapiens unnamed protein product	1029	100
161	X79417	Sus scrofa 40S ribosomal protein S12	510	83
162	X12597	Homo sapiens HMG-1 protein (AA 1-215)	1140	99
163	AK001159	Homo sapiens unnamed protein product	764	100
164	AK000020	Homo sapiens unnamed protein product	1613	100
165	AK001322	Homo sapiens unnamed protein product	1207	100
166	AK001322	Homo sapiens unnamed protein product	892	98
167	AE003822	Drosophila melanogaster CG8493 gene product	357	36
168	AF023451	Bos taurus guanine nucleotide- exchange protein	187	21
169	AK000154	Homo sapiens unnamed protein - product	673	100
170	AJ132702	Mus musculus ATFa-associated factor	435	64
172	AL022311	Homo sapiens dJ1014D13.3 (novel	405	38
		protein)		
174	AB017634	Mus musculus ENP	770	65
175	U40407	synthetic construct T cell receptor alpha chain	1119	80
176	AF043179	Homo sapiens T cell receptor beta chain	681	73
177	AF116678	Homo sapiens PRO1995	587	100
178	AF217522	Homo sapiens uncharacterized bone marrow protein BM046	262	42
179	AB046074	Macaca fascicularis unnamed protein product	515	83
180	X79417	Sus scrofa 40S ribosomal protein S12	429	84
181	AF002668	Homo sapiens MLD	1235	65
182	AB036422	Bos taurus molybdopterin cofactor sulfurase	3509	79
184	AF036696	Caenorhabditis elegans contains similarity to Brassica oleracea non-green plastid phosphate/triose- phosphate translocator precursor (GB:U13632)	662	42
185	AJ277276	Homo sapiens rapa-2	5155	99
186	AJ277275	Homo sapiens rapa-1	5086	100
187	U22296	Rattus norvegicus casein kinase 1 gamma 1 isoform	1444	93
188	AE003750	Drosophila melanogaster CG9996 gene product	468	44
189	Z97056	Homo sapiens dJ434P1.2 (KDEL (Lys-Asp-Glu-Leu) endoplasmic reticulum	1103	100

SEQ ID NO:	ACCESSION NUMBER	DESCRIPTION	SMITH- WATERMAN	% IDENTITY
			SCORE	
190	AF081126	protein retention receptor 3) Drosophila melanogaster ER lumen	409	75
192	AF226047	protein retaining receptor Homo sapiens GL002	863	100
193	AF269167	Homo sapiens arsenite related gene	906	60
193	AF 209107	1	906	00
195	U41805	Mus musculus putative T1/ST2 receptor binding protein precursor	162	26
197	AL357374	Homo sapiens bA353C18.2 (novel protein)	404	97
199	M34551	Homo sapiens 52-kD Ro/SSA ribonucleoprotein	964	42
202	AF230201	Homo sapiens OVC10-2	396	100
203	AK001984	Homo sapiens unnamed protein product	658	100
204	AK000530	Homo sapiens unnamed protein product	691	100
205	U37134	Drosophila melanogaster inturned protein	248	23
206	U37134	Drosophila melanogaster inturned protein	244	23
208	AB033130	Mus musculus testis-specific gene	871	85
209	AK000464	Homo sapiens unnamed protein product	221	100
210	AJ277557	Homo sapiens mitochondrial 5'(3')- deoxyribonucleotidase (dNT-2)	617	100
211	AF127564	Arabidopsis thaliana ubiquitin- protein ligase 1	854	42
213	Y17108	Homo sapiens rhomboid-related protein	485	39
214	AL132776	Homo sapiens dJ393D12.2 (novel LIM domain protein)	1660	99
215	U73819	Mus musculus polypeptide GalNAc transferase-T4	1039	42
216	AL035406	Homo sapiens dJ233K16.1 (KIAA0444, 3844 a putative chromodomain helicase DNA binding protein 3 (CHD3))		100
217	M15800	Homo sapiens MAL protein	308	42
218	L29554	Rattus norvegicus alpha 2,6- 942 sialyltransferase		80
219	AL137315	Homo sapiens hypothetical protein	983	100
220	AK026027	Homo sapiens unnamed protein product	647	100
221	AL137584	Homo sapiens hypothetical protein	246	97
223	AC005498	Homo sapiens R31665_1	1752	78
225	AC010155	Arabidopsis thaliana F3M18.5	171	34
226	AL080276	Homo sapiens dJ101K10.2 (regulator of G-protein signaling 17 (RGS17) (RGSZ2))	1126	100
227	AF042345	Homo sapiens truncated EVI5	1815	64
228	J04214	Bos taurus retinaldehyde-binding protein precursor	504	39

SEQ ID	ACCESSION	DESCRIPTION	SMITH-	8
NO:	NUMBER		WATERMAN SCORE	IDENTITY
230	AF181263	Homo sapiens EH domain containing 2	2816	99
231	AP001660	Homo sapiens putative gene, multidrug resistance associated protein like	1424	100
232	AB000910	Sus scrofa ribosomal protein	542	100
233	AL133404	Homo sapiens dJ238023.9 (novel protein similar to rat SAC (soluble adenylyl cyclase))	298	100
234	X51397	Mus musculus MyD88 protein (AA 1-243)	136	25
235	X01403	Homo sapiens T-cell receptor alpha- chain	840	90
236	X14254	Rattus rattus invariant chain (AA 1-280)	745	77
238	U23084	Saccharomyces cerevisiae Ynl0470p	344	35
239	X03342	Homo sapiens rpL32 (aa 1-135)	152	96
240	AF116669	Homo sapiens PRO1828	237	100
241	U23181	Caenorhabditis elegans final exon in repeat region; similar to long tandem repeat region of sialidase (SP:TCNA_TRYCR, P23253) and neurofilament H protein	135	25
242	AF263913	Mus musculus fidgetin	3864	97
243	AF090892	Homo sapiens PRO0106	290	100
244	U21310	Caenorhabditis elegans F40H6.3 gene product	153	27
246	AK001673	Homo sapiens unnamed protein product	3661	100
247	AL022603	Arabidopsis thaliana putative protein	166	43
248	AL023803	Homo sapiens dJ616B8.3 (novel gene)	339	42
249	X52140	Rattus norvegicus precursor polypeptide (AA -28 to 1152)	5429	87
250	AB020755	Arabidopsis thaliana gene id:MZN1.18~unknown protein	139	46
251	AE003619	Drosophila melanogaster CG7224 gene product	186	43
252	AC004997	Homo sapiens match to ESTs Z43979 (NID:g573097), R19699 (NID:g774333), and C01164 (NID:g1433394); alternatively spliced form of H_DJ130H16.1a (Cterminal truncation confirmed by C01164)	388	67
254	AE003588	Drosophila melanogaster CG13947 gene product	115	42
256	Y50934	Human fetal brain cDNA clone vc30_1 498 derived protein #1 [Homo sapiens]		100
257	AF242768	Homo sapiens mesenchymal stem cell protein DSC43	1554	100
259	м95779	Bos taurus G protein gamma-5 subunit	333	98

	NUMBER AL035521 F247501	Arabidopsis thaliana putative	WATERMAN SCORE	IDENTITY
		Arabidopsis thaliana putative		1
261 A	F247501	protein	145	28
		Drosophila melanogaster PINEAPPLE EYE	333	36
	L034548	Homo sapiens dJ1103G7.2 (novel protein)	262	100
	F119851	Homo sapiens PRO1722	143	63
	41834	Ensis minor nuclear protein	173	26
	97966	Homo sapiens calcyphosine	963	100
267 X	97966	Homo sapiens calcyphosine	660	95
269 A	F022383	Homo sapiens complexin I	668	99
271 Y	10054	Rattus norvegicus 3-hydroxy-3- methylglutaryl CoA lyase	224	67
274 Al	F153201	Homo sapiens zinc finger protein dp	179	36
275 X8	85738	Bos taurus novel brain-specific protein	326	55
277 Al	F250342	Arabidopsis thaliana SMC-related protein MSS2	266	39
278 AI	L080242	Homo sapiens bA554C12.1 (RBX1 or ROC1 (ring-box or ring finger protein 1))	131	100
279 Z8	83760	Ciona intestinalis COS41.4	1162	62
	41534	Caenorhabditis elegans similar to yeast MAK16 protein (SP:MK16 YEAST, P10962)	721	54
281 A	F272975	Gallus gallus smoothelin-C	543	37
	L035414	Homo sapiens dJ667H12.2.2 (novel protein (isoform 2))	588	100
283 AE	F116661	Homo sapiens PRO1438	145	62
	K001757	Homo sapiens unnamed protein product	1300	100
287 U2	20897	Homo sapiens melanoma ubiquitous mutated protein	2133	100
289 UC	09847	Homo sapiens zinc finger protein	880	100
290 A.	J000079	Trypanosoma cruzi glycosylphosphatidylinositol- specific phospholipase C	225	26
	F156549	Mus musculus putative E1-E2 ATPase	2108	49
	F161345	Homo sapiens HSPC082	439	100
294 AF	F116694	Homo sapiens PRO2219	351	88
295 M7	74027	Homo sapiens mucin	461	39
298 AI	L133640	Homo sapiens hypothetical protein	2149	100
299 M1	L7886	Homo sapiens acidic ribosomal phosphoprotein (P1)	161	76
300 Y9	99368	Human PRO1326 (UNQ686) amino acid sequence SEQ ID NO:100 [Homo sapiens]	300	32
303 AE	003708	Drosophila melanogaster CG6171 gene product	144	27
304 M3	32639	Homo sapiens statherin precursor	276	87
305 Z8	33844	Homo sapiens dJ37E16.2 (SH3-domain binding protein 1)	897	96

SEQ ID	ACCESSION	DESCRIPTION	SMITH-	96
NO:	NUMBER		WATERMAN	IDENTITY
			SCORE	
306	AE003791	Drosophila melanogaster CG18065	120	32
		gene product		
307	AF135026	Homo sapiens kallikrein-like	1392	100
210	7 7 1 0 0 0 5 7	protein 3 splice variant 1		
310	AF198257	Felis catus immunoglobulin kappa	678	76
211	7.577.05	light chain		
311	X57725	Homo sapiens TCR Vbeta 22a	626	100
312	AC018513	Homo sapiens unknown	818	100
313	X03249	Bos taurus epsilon-4 beta-globin	321	79
314	AB046099	Macaca fascicularis unnamed protein product	395	88
315	AC006033	Homo sapiens T cell receptor gamma	1017	95
		chain; match to S08328		1
		(PID:g106470)		
316	AB046103	Macaca fascicularis unnamed protein	801	94
		product		
317	U88895	Homo sapiens ORF2	399	81
318	U09848	Homo sapiens zinc finger protein	242	49
319	AB003184	Homo sapiens ISLR	880	59
320	AB036921	Chrysophrys major maturation-	797	69
		inducing protein		
322	AF284422	Homo sapiens cation-chloride	4694	100
		cotransporter-interacting protein		
325	AE000659	Homo sapiens TCRAV8S2	577	100
327	R59748	T cell receptor Valpha2.3 chain	636	100
200	2 700 10 71	[homo sapiens]		
328	AJ004871	Homo sapiens TCR alpha chain	1328	94
329	AF043179	Homo sapiens T cell receptor beta chain	1286	92
330	AF090930	Homo sapiens PRO0478	140	50
332	AF077043	Homo sapiens 60S ribosomal protein L36	275	87
333	AL121988	Homo sapiens dJ34M23.3 (gap	1457	100
		junction protein, beta 4 (connexin		
		30.3))		
334	D86424	Mus musculus high-sulfur keratin	521	87
		protein]
335	AF090434	Fundulus heteroclitus cytochrome P450 2N1	760	40
336	AF116688	Homo sapiens PRO2133	370	98
337	X85372	Homo sapiens Sm protein F	222	84
338	D87009	Homo sapiens putative	1822	99
339	AE000860	Methanobacterium	631	35
		thermoautotrophicum conserved protein		
340	AL049759	Homo sapiens dJ930L11.1 (similar to KIAA0397)	1305	98
341	AE000004	Mycoplasma pneumonia MG207 homolog, 141 from M. genitalium		27
342	AF151076	Homo sapiens HSPC242	135	100
343	AB037902	Homo sapiens truncated aldo-keto	670	100
,	77001707	reductase	1010	100

SEQ ID NO:	ACCESSION NUMBER	DESCRIPTION	SMITH- WATERMAN SCORE	% IDENTITY
345	M33014	Drosophila melanogaster ubiquitin	153	62
346	AF053356	Homo sapiens leucin rich neuronal protein	580	46
348	AL137512	Homo sapiens hypothetical protein	751	100
349	S68015	Homo sapiens c6.1A	1664	100
350	AF151037	Homo sapiens HSPC203	318	100
351	AB036432	Homo sapiens advanced glycation endproducts receptor	2133	100
352	AB036432	Homo sapiens advanced glycation endproducts receptor	2094	96
353	AC006942	Homo sapiens R31181_2, partial protein	547	100
354	AF125535	Homo sapiens pp21 homolog	502	95
355	AF227130	Homo sapiens candidate taste receptor T2R3	1629	100
357	AB046626	Macaca fascicularis hypothetical protein	291	93
358	Z69597	Canis familiaris Rod transducin alpha subunit	1145	100
359	AE000659	Homo sapiens TCRAV16S1	565	100
360	Y99368	Human PRO1326 (UNQ686) Amino acid sequence SEQ ID NO:100. [Homo sapiens]	2034	100
362	L06499	Homo sapiens ribosomal protein L37a	187	55

TABLE 3

SEQ ID NO:	ACCESSION NO.	DESCRIPTION	RESULTS*
1	PR00651	5-HYDROXYTRYPTAMINE 2B RECEPTOR SIGNATURE	PR00651E 10.53 4.025e-06 60-80
2	BL00126	3'5'-cyclic nucleotide phosphodiesterases proteins.	BL00126B 15.20 7.750e-06 208-220
3	DM00892	3 RETROVIRAL PROTEINASE.	DM00892C 23.55 9.438e-07 285-319
4	BL00895	3-hydroxyisobutyrate dehydrogenase proteins.	BL00895B 21.14 7.061e-22 151-190 BL00895C 20.10 8.071e-22 200-236 BL00895A 12.61 1.973e-18 42-63
5	DM00099	4 kw A55R REDUCTASE TERMINAL DIHYDROPTERIDINE.	DM00099A 5.17 5.263e-06 409-415
7	PF00598	Influenza Matrix protein (M1).	PF00598C 19.35 3.333e-07 531-563
9	DM00522	499 kw TRYPSIN KINASE KUNITZ PANCREATIC.	DM00522A 8.30 3.250e-06 287-297
10	PR00514	5-HYDROXYTRYPTAMINE 1D RECEPTOR SIGNATURE	PR00514C 11.01 9.061e-07 81-100
11	PR00514	5-HYDROXYTRYPTAMINE 1D RECEPTOR SIGNATURE	PR00514C 11.01 9.061e-07 81-100
12	PR00775	90 KD HEAT SHOCK PROTEIN SIGNATURE	PR00775G 10.64 3.487e-07 8-27
13	PR00902	VP6 BLUE-TONGUE VIRUS INNER CAPSID PROTEIN SIGNATURE	PR00902K 11.09 1.000e-05 176-200
14	PR00875	MOLLUSC METALLOTHIONEIN SIGNATURE	PR00875A 5.83 1.127e-07 159-171 PR00875D 5.00 1.000e-05 158-169
15	DM01803	1 HERPESVIRUS GLYCOPROTEIN H.	DM01803C 7.00 9.200e-07 181-191 DM01803A 10.51 1.000e-06 178-199 DM01803C 7.00 7.337e-06 214-224
16	PF00803	3A movement protein.	PF00803D 14.15 2.622e-06 41-71
17	PR00170	SODIUM CHANNEL SIGNATURE	PR00170G 7.74 1.000e-05 24-53
18	PR00701	60KD INNER MEMBRANE PROTEIN SIGNATURE	PR00701E 13.83 5.684e-06 117-133
20	DM01415	6 SALIVARY GLUE PROTEIN.	DM01415A 6.65 6.063e-06 55-68
21	DM01418	352 FIBRILLAR COLLAGEN CARBOXYL- TERMINAL.	DM01418A 20.83 7.731e-06 64-112
22	BL00616	Histidine acid phosphatases phosphohistidine proteins.	BL00616D 15.83 7.268e-06 117-133

SEQ ID NO:	ACCESSION NO.	DESCRIPTION	RESULTS*
23	DM00611	9 kw LECTIN HTPG SERINE GNTR.	DM00611A 7.73 5.826e-06 173-181
24	BL00832	2'-5'-oligoadenylate synthetases proteins.	BL00832D 21.81 5.017e-06 425-449
25	PR00354	7FE FERREDOXIN SIGNATURE	PR00354C 5.72 8.590e-09 543-561
26	PR00217	43 KD POSTSYNAPTIC PROTEIN SIGNATURE	PR00217C 10.91 3.851e-07 89-105
27	PR00513	5-HYDROXYTRYPTAMINE 1B RECEPTOR SIGNATURE	PR00513A 7.75 1.439e-06 168-180
28	DM00552	GROWTH FACTOR AND CYTOKINES RECEPTORS FAMILY.	DM00552A 11.97 1.000e-05 130-152
29	PR00701	60KD INNER MEMBRANE PROTEIN SIGNATURE	PR00701I 8.59 3.088e-06 102-126
30	DM00060	338 kw NEUREXIN ALPHA III CYSTEINE.	DM00060 6.92 3.284e-07 680-690
34	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517D 7.66 6.971e-07 484-496
35	PR00701	60KD INNER MEMBRANE PROTEIN SIGNATURE	PR00701A 14.28 4.183e-06 722-744
37	PR00513	5-HYDROXYTRYPTAMINE 1B RECEPTOR SIGNATURE	PR00513C 10.79 8.927e-07 287-304
38	PR00166	AROMATIC AMINO ACID PERMEASE SIGNATURE	PR00166I 11.06 1.000e-05 98-118
39	PR00003	4-DISULPHIDE CORE SIGNATURE	PR00003A 14.69 3.803e-06 311-321
40	PR00003	4-DISULPHIDE CORE SIGNATURE	PR00003A 14.69 3.803e-06 311-321
41	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517D 7.66 8.788e-07 2-14
42	PR00701	60KD INNER MEMBRANE PROTEIN SIGNATURE	PR00701F 14.45 7.750e-06 25-46
43	DM00895	7 kw REVERSE TRANSCRIPTASE RNA POLYMERASE.	DM00895B 8.85 4.185e-06 157-167
44	DM00099	4 kw A55R REDUCTASE TERMINAL DIHYDROPTERIDINE.	DM00099A 5.17 5.263e-06 409-415
45	PR00519	5-HYDROXYTRYPTAMINE 5B RECEPTOR SIGNATURE	PR00519A 8.06 8.984e-06 137-154
46	PR00519	5-HYDROXYTRYPTAMINE 5B RECEPTOR SIGNATURE	PR00519B 9.99 1.828e-07 151-168
47	DM00892	3 RETROVIRAL PROTEINASE.	DM00892B 9.78 2.047e-06 21-27
48	BL00832	2'-5'-oligoadenylate synthetases	BL00832B 15.45 6.836e-07 375-416

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.		
		proteins.	
49	DM00588	8 kw CHO2 ALPHA ANTIGEN PARAMYOSIN.	DM00588A 10.87 7.128e-06 20-31
50	DM00604	2 SHIGA/RICIN RIBOSOMAL INACTIVATING TOXINS.	DM00604D 13.26 8.250e-06 263-273
51	BL01193	Ribosomal protein S8e proteins.	BL01193A 13.21 1.000e-05 19-50
52	PR00172	GLUCOSE TRANSPORTER SIGNATURE	PR00172F 8.47 9.901e-06 69-90
53	PR00297	10 KD CHAPERONIN SIGNATURE	PR00297A 13.91 4.740e-06 379-395
54	PR00320	G-PROTEIN BETA WD-40 REPEAT SIGNATURE	PR00320A 16.74 9.710e-06 81-96
55	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517C 5.36 4.126e-07 352-365
56	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517C 5.36 4.126e-07 352-365
57	DM00547	1 kw CHROMO BROMODOMAIN SHADOW GLOBAL.	DM00547E 13.94 4.656e-06 229-252
58	PF00506	Influenza virus nucleoprotein.	PF00506I 10.26 3.723e-06 32-68
60	DM00522	499 kw TRYPSIN KINASE KUNITZ PANCREATIC.	DM00522B 9.43 7.338e-07 171-185
61	DM01123	5 kw RESISTANCE TETRACYCLINE METHYLENOMYCIN EXPORT.	DM01123B 20.06 3.187e-06 205-244
62	PR00439	11-S SEED STORAGE PROTEIN FAMILY SIGNATURE	PR00439G 17.85 9.239e-07 82-100
63	PR00652	5-HYDROXYTRYPTAMINE 7 RECEPTOR SIGNATURE	PR00652F 11.66 4.767e-06 100-122
64	DM01785	72 PYRUVATE (FLAVODOXIN) DEHYDROGENASE.	DM01785A 14.90 2.196e-06 218-261
65	PR00652	5-HYDROXYTRYPTAMINE 7 RECEPTOR SIGNATURE	PR00652A 8.92 5.104e-06 315-336
67	BL00405	43 Kd postsynaptic protein.	BL00405F 8.07 9.920e-06 13-44
68	PR00380	KINESIN HEAVY CHAIN SIGNATURE	PR00380D 9.93 9.043e-06 44-66
69	PR00683	SPECTRIN PLECKSTRIN HOMOLOGY DOMAIN SIGNATURE	PR00683D 15.87 9.571e-06 46-65
70	PR00753	1-AMINOCYCLOPROPANE- 1-CARBOXYLATE SYNTHASE SIGNATURE	PR00753C 13.93 7.330e-06 192-213
71	PF00602	Influenza RNA- dependant RNA	PF00602J 9.52 9.727e-06 47-102

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.		
		polymerase subunit PB1.	
72	DM01855	PROTEIN-GLUTAMATE O- METHYLTRANSFERASE.	DM01855A 11.54 7.594e-06 27-44
74	BL01277	Ribonuclease PH proteins.	BL01277A 17.39 1.000e-05 50-88
75	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517G 16.45 6.919e-06 755-771
77	PF01073	3-beta hydroxysteriod dehydrogenase/isomer ase family.	PF01073B 12.26 9.767e-07 102-147
78	PR00351	MAS20 PROTEIN IMPORT RECEPTOR SIGNATURE	PR00351C 7.03 6.182e-06 99-112 PR00351C 7.03 1.000e-05 5-18
79	DM00611	9 kw LECTIN HTPG SERINE GNTR.	DM00611C 11.08 4.549e-06 1489- 1501
80	DM01111	4 kw PHOSPHATASE TRANSFORMING 61K PDF1.	DM01111C 9.35 2.800e-06 44-73
82	PD02407	3- BISPHOSPHOGLYCERATE- INDEPENDENT PHOSPHOGLYCER.	PD02407B 16.51 1.000e-06 94-111
83	PR00116	ARGINASE SIGNATURE	PR00116D 14.91 9.850e-06 14-44
84	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517F 11.48 7.250e-06 45-62
87	DM00522	499 kw TRYPSIN KINASE KUNITZ PANCREATIC.	DM00522B 9.43 3.535e-07 223-237
88	DM00303	6 LEA 11-MER REPEAT REPEAT.	DM00303A 13.20 8.034e-08 270-320
91	DM01242	3 THREONINETRNA LIGASE.	DM01242B 23.57 4.672e-06 71-120
92	PR00388	3',5'-CYCLIC NUCLEOTIDE CLASS II PHOSPHODIESTERASE SIGNATURE	PR00388E 6.66 3.797e-06 124-136
93	PD02407	3- BISPHOSPHOGLYCERATE- INDEPENDENT PHOSPHOGLYCER.	PD02407B 16.51 9.676e-06 15-32
94	PF00506	Influenza virus nucleoprotein.	PF00506I 10.26 4.555e-06 16-52
95	PR00551	2-S GLOBULIN FAMILY SIGNATURE	PR00551H 11.29 8.740e-06 21-39
96	PR00756	MEMBRANE ALANYL DIPEPTIDASE (M1) FAMILY SIGNATURE	PR00756E 11.91 9.338e-06 68-81
97	PR00547	X OPIOID RECEPTOR SIGNATURE	PR00547B 6.96 3.268e-06 17-36
98	PR00651	5-HYDROXYTRYPTAMINE 2B RECEPTOR	PR00651A 16.53 4.000e-06 653-674

SEQ ID NO:	ACCESSION	DESCRIPTION	RESULTS*
INO:	NO.	SIGNATURE	
99	PR00208	GLIADIN AND LMW GLUTENIN SUPERFAMILY SIGNATURE	PR00208C 11.51 9.775e-06 54-71
101	PR00451	CHITIN-BINDING DOMAIN SIGNATURE	PR00451A 6.49 1.000e-05 152-161
102	BL00832	2'-5'-oligoadenylate synthetases proteins.	BL00832B 15.45 7.569e-06 1-42
103	BL00405	43 Kd postsynaptic protein.	BL00405J 13.28 6.952e-06 142-176
104	DM01242	3 THREONINETRNA LIGASE.	DM01242F 10.61 5.500e-07 187-201
105	DM01834	8 HYDROGENASE (FE) SMALL CHAIN.	DM01834A 4.96 7.097e-06 53-60
107	PR00101	ASPARTATE CARBAMOYLTRANSFERASE SIGNATURE	PR00101E 5.52 1.000e-05 111-117
109	PR00902	VP6 BLUE-TONGUE VIRUS INNER CAPSID PROTEIN SIGNATURE	PR00902K 11.09 9.922e-06 91-115
110	PR00259	TRANSMEMBRANE FOUR FAMILY SIGNATURE	PR00259A 9.27 9.716e-06 9-33
111	BL00785	5'-nucleotidase proteins.	BL00785B 10.65 6.507e-06 53-67
112	PR00652	5-HYDROXYTRYPTAMINE 7 RECEPTOR SIGNATURE	PR00652G 10.94 5.429e-06 14-32
113	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517D 7.66 3.661e-06 372-384
114	PF00637	7-fold repeat proteins in Clathrin, also in VPS proteins.	PF00637D 7.09 9.449e-07 32-44
115	DM01235	5 kw T4 55.10 METHYLCYTOSINE TRANSCRIPTASE.	DM01235 20.29 9.832e-06 77-108
116	PR00873	ECHINOIDEA (SEA URCHIN) METALLOTHIONEIN SIGNATURE	PR00873C 6.16 9.906e-06 70-81
117	PR00387	3'5'-CYCLIC NUCLEOTIDE PHOSPHODIESTERASE SIGNATURE	PR00387D 10.81 4.889e-06 155-172
118	PF00598	Influenza Matrix protein (M1).	PF00598A 14.24 7.158e-06 211-254
119	BL00895	3-hydroxyisobutyrate dehydrogenase proteins.	BL00895B 21.14 8.036e-06 428-467
120	PR00419	ADRENODOXIN REDUCTASE FAMILY SIGNATURE	PR00419D 10.62 9.430e-06 18-33
121	DM00396	5 kw INTRON COI ND4L	DM00396B 7.85 3.739e-07 381-389

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.		
122	DI 00100	ND5.	
122	BL00198	4Fe-4S ferredoxins,	BL00198 10.43 5.500e-06 135-147
		iron-sulfur binding region proteins.	
123	DM01554	1 THYROLIBERIN	DM01554E 10.78 4.208e-06 93-110
	21101001	PRECURSOR.	DM01334E 10.78 4.208E-06 93-110
124	BL00405	43 Kd postsynaptic	BL00405G 7.78 6.294e-06 130-167
		protein.	
125	PR00298	60 KD CHAPERONIN	PR00298D 10.23 3.847e-06 14-40
		SIGNATURE	
126	PR00317	EPENDYMIN SIGNATURE	PR00317A 13.39 9.897e-06 79-99
127	PR00513	5-HYDROXYTRYPTAMINE	PR00513B 17.51 3.971e-06 277-290
		1B RECEPTOR	
130	PR00516	SIGNATURE 5-HYDROXYTRYPTAMINE	PRO05160 15 11 0 011 00 10
100	FROODIO	2A RECEPTOR	PR00516G 15.11 8.811e-06 18-35
		SIGNATURE	
131	PR00828	FORMIN SIGNATURE	PR00828F 8.56 1.000e-05 61-81
132	DM01269	303 kw ACTIVATING	DM01269A 23.35 7.279e-06 28-56
		RAN GTPASE ISOZYME.	2-10220311 23:33 7:2736 00 20 30
133	PR00586	PROSTANOID EP4	PR00586B 14.97 7.322e-06 10-28
		RECEPTOR SIGNATURE	PR00586H 8.65 9.791e-06 16-40
134	PF00954	S-locus glycoprotein	PF00954D 18.68 9.843e-06 9-44
105		family.	
135	PR00018	KRINGLE DOMAIN	PR00018A 14.52 1.000e-05 120-136
136	BL00115	SIGNATURE	
130	BF00112	Eukaryotic RNA polymerase II	BL00115E 14.13 9.921e-06 40-69
		heptapeptide repeat	
		proteins.	
137	PR00521	ANDROGEN RECEPTOR	PR00521A 17.02 9.729e-06 5-25
		SIGNATURE	
138	PR00701	60KD INNER MEMBRANE	PR00701I 8.59 5.267e-07 16-40
		PROTEIN SIGNATURE	
139	DM01269	303 kw ACTIVATING	DM01269A 23.35 7.085e-08 93-121
140	DD00015	RAN GTPASE ISOZYME.	
140	PR00915	LUTEOVIRUS GROUP 1 COAT PROTEIN	PR00915D 16.14 1.000e-05 374-392
		SIGNATURE	
143	DM00522	499 kw TRYPSIN	DM00522A 8.30 4.441e-06 94-104
	21100322	KINASE KUNITZ	DM00322A 0.30 4.441e-06 94-104
		PANCREATIC.	
144	PF00598	Influenza Matrix	PF00598B 13.10 1.623e-06 89-133
		protein (M1).	
145	PR00217	43 KD POSTSYNAPTIC	PR00217C 10.91 6.250e-06 24-40
1.5		PROTEIN SIGNATURE	
147	PR00701	60KD INNER MEMBRANE	PR00701A 14.28 6.049e-06 266-288
148	PR00513	PROTEIN SIGNATURE	DD00512D 11 06 0 000
T 4 0	EV00212	5-HYDROXYTRYPTAMINE 1B RECEPTOR	PR00513D 11.06 9.920e-06 103-121
		SIGNATURE	
149	PF00603	Influenza RNA-	PF00603D 8.49 9.319e-07 30-85
		dependant RNA	1100000D 0.43 3.3136-01 30-85
		polymerase subunit	

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.	DESCRIFTION	RESULTS*
		PA.	
150	DM01688	2 POLY-IG RECEPTOR.	DM01688N 11.93 9.920e-08 72-100
151	PF00637	7-fold repeat proteins in Clathrin, also in VPS proteins.	PF00637B 10.68 6.906e-06 186-195
152	BL00461	6-phosphogluconate dehydrogenase proteins.	BL00461A 15.90 1.764e-08 21-57
153	DM01554	1 THYROLIBERIN PRECURSOR.	DM01554A 6.07 2.565e-06 589-599
154	BL00405	43 Kd postsynaptic protein.	BL00405E 8.84 8.125e-06 109-135
155	PF00637	7-fold repeat proteins in Clathrin, also in VPS proteins.	PF00637A 15.49 5.179e-06 42-65
156	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517D 7.66 7.339e-06 85-97
157	DM01688	2 POLY-IG RECEPTOR.	DM01688P 13.54 1.925e-07 44-89 DM01688L 4.36 2.367e-07 123-133
159	PR00933	B-LYTIC METALLOENDOPEPTIDASE (M23) SIGNATURE	PR00933D 13.92 1.000e-05 85-106
161	PR00352	3FE-4S FERREDOXIN SIGNATURE	PR00352A 11.15 6.162e-06 94-106
163	BL00785	5'-nucleotidase proteins.	BL00785E 15.85 4.000e-06 95-111
164	PR00916	2C ENDOPEPTIDASE (C24) CYSTEINE PROTEASE FAMILY SIGNATURE	PR00916C 8.02 2.655e-06 121-133
165	BL00785	5'-nucleotidase proteins.	BL00785D 9.89 3.045e-06 154-164
166	BL00785	5'-nucleotidase proteins.	BL00785D 9.89 3.045e-06 123-133
167	DM01023	2 GLYCOSYL HYDROLASES FAMILY 5.	DM01023C 13.51 6.486e-06 149-175
168	PF00803	3A movement protein.	PF00803A 15.38 8.088e-06 255-290
169	PR00282	SNAKE CYTOTOXIN SIGNATURE	PR00282D 11.82 9.882e-06 74-85
170	PR00519	5-HYDROXYTRYPTAMINE 5B RECEPTOR SIGNATURE	PR00519B 9.99 5.787e-06 83-100
172	DM01803	1 HERPESVIRUS GLYCOPROTEIN H.	DM01803A 10.51 6.804e-06 136-157
173	PR00701	60KD INNER MEMBRANE PROTEIN SIGNATURE	PR00701E 13.83 9.724e-06 14-30
174	BL00118	Phospholipase A2 histidine proteins.	BL00118A 16.00 9.842e-06 132-145
175	DM01688	2 POLY-IG RECEPTOR.	DM01688G 16.45 1.825e-06 89-121
176	DM01930	2 kw FINGER SMCX SMCY YDR096W.	DM01930A 7.97 2.403e-07 146-159

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.		
177	PR00510	NEBULIN SIGNATURE	PR00510F 9.88 8.552e-06 34-51
179	PF00432	Prenyltransferase and squalene oxidase repeat proteins.	PF00432A 11.90 1.000e-05 27-39
180	PR00537	MU OPIOID RECEPTOR SIGNATURE	PR00537A 8.17 1.000e-05 27-41
183	PR00536	MELANOCYTE STIMULATING HORMONE RECEPTOR SIGNATURE	PR00536C 8.58 8.833e-06 64-82
184	DM00973	3 kw RESISTANCE BENOMYL YLL028W CYCLOHEXIMIDE.	DM00973B 17.81 8.261e-06 158-184
185	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517C 5.36 4.265e-06 718-731
186	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517C 5.36 4.265e-06 718-731
187	PR00651	5-HYDROXYTRYPTAMINE 2B RECEPTOR SIGNATURE	PR00651A 16.53 6.447e-06 144-165
188	BL01017	Ergosterol biosynthesis ERG4/ERG24 family proteins.	BL01017D 20.82 9.737e-06 21-67
191	DM00315	072 RIBONUCLEASE INHIBITOR.	DM00315B 6.84 7.459e-06 95-107
192	PR00930	HIGH MOBILITY GROUP PROTEIN (HMGY) SIGNATURE	PR00930E 5.98 9.740e-06 285-298
193	BL00794	7,8-dihydro-6- hydroxymethylpterin- pyrophosphokinase proteins.	BL00794B 22.12 8.967e-06 150-191
194	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517C 5.36 5.853e-06 115-128
196	DM01803	1 HERPESVIRUS GLYCOPROTEIN H.	DM01803A 10.51 7.031e-07 11-32
197	PR00171	SUGAR TRANSPORTER SIGNATURE	PR00171B 14.73 1.000e-05 15-35
198	PD02407	3- BISPHOSPHOGLYCERATE- INDEPENDENT PHOSPHOGLYCER.	PD02407J 10.55 6.610e-06 69-81
199	PF00604	Influenza RNA- dependant RNA polymerase subunit PB2.	PF00604F 10.21 2.417e-06 276-331
201	PR00409	PHTHALATE DIOXYGENASE REDUCTASE FAMILY SIGNATURE	PR00409D 13.02 9.900e-06 43-58
202	BL00660	Band 4.1 family	BL00660A 31.50 9.595e-06 1-54

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.		
		domain proteins.	
203	PR00745	GLYCOSYL HYDROLASE FAMILY 39 SIGNATURE	PR00745D 15.85 9.700e-06 68-83
204	PD01364	MUCIN GLYCOPROTEIN PRECURSOR MEM.	PD01364A 6.18 9.667e-06 9-16
205	BL00794	7,8-dihydro-6- hydroxymethylpterin- pyrophosphokinase proteins.	BL00794C 19.62 7.690e-07 309-347
206	BL00794	7,8-dihydro-6- hydroxymethylpterin- pyrophosphokinase proteins.	BL00794C 19.62 7.690e-07 309-347
207	DM00895	7 kw REVERSE TRANSCRIPTASE RNA POLYMERASE.	DM00895E 15.72 3.170e-06 241-266
208	PR00517	5-HYDROXYTRYPTAMINE 2C RECEPTOR SIGNATURE	PR00517D 7.66 4.835e-06 59-71
209	PD02365	CHAIN FACTOR INTERLEUKIN-12 BETA PRECURSOR IL-1.	PD02365C 7.89 9.719e-06 20-50
210	PR00551	2-S GLOBULIN FAMILY SIGNATURE	PR00551E 10.27 9.432e-06 19-34
211	DM01418	352 FIBRILLAR COLLAGEN CARBOXYL- TERMINAL.	DM01418B 22.51 3.289e-06 527-569
213	DM01785	72 PYRUVATE (FLAVODOXIN) DEHYDROGENASE.	DM01785E 12.98 6.400e-06 165-216
214	DM01834	8 HYDROGENASE (FE) SMALL CHAIN.	DM01834B 15.29 3.382e-06 64-90
215	PR00217	43 KD POSTSYNAPTIC PROTEIN SIGNATURE	PR00217C 10.91 4.583e-06 407-423
216	DM00547	1 kw CHROMO BROMODOMAIN SHADOW GLOBAL.	DM00547F 23.43 6.538e-36 628-675 DM00547E 13.94 2.400e-18 387-410 DM00547C 17.30 9.486e-16 266-288 DM00547B 11.28 9.217e-15 237-251 DM00547D 11.60 4.951e-12 357-371 DM00547A 12.38 6.455e-11 216-228
217	BL00407	Connexins proteins.	BL00407D 17.61 1.000e-05 57-87
218	BL00198	4Fe-4S ferredoxins, iron-sulfur binding region proteins.	BL00198 10.43 9.481e-06 74-86
219	DM01417	6 kw INDUCING XPMC2 MUSHROOM SPAC22G7.04.	DM01417B 15.47 3.550e-06 90-102
220	PR00519	5-HYDROXYTRYPTAMINE 5B RECEPTOR SIGNATURE	PR00519E 3.58 2.404e-07 184-199
221	PD01313	INTRON PROBABLE MATURASE CHLOROPLAST MR.	PD01313B 23.27 1.000e-05 10-45
222	PR00047	C4-TYPE STEROID	PR00047A 15.70 9.878e-06 99-116

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.	RECEPTOR ZINC FINGER	
		SIGNATURE	
223	DM01554	1 THYROLIBERIN PRECURSOR.	DM01554C 11.76 3.571e-06 255-271
224	DM01123	5 kw RESISTANCE TETRACYCLINE METHYLENOMYCIN EXPORT.	DM01123B 20.06 5.206e-06 28-67
226	BL00198	4Fe-4S ferredoxins, iron-sulfur binding region proteins.	BL00198 10.43 8.630e-07 28-40
227	BL00895	3-hydroxyisobutyrate dehydrogenase proteins.	BL00895B 21.14 5.173e-06 185-224
229	PR00907	THROMBOMODULIN SIGNATURE	PR00907G 11.63 9.794e-06 13-40
230	PR00651	5-HYDROXYTRYPTAMINE 2B RECEPTOR SIGNATURE	PR00651B 9.95 6.416e-06 62-77
231	DM00611	9 kw LECTIN HTPG SERINE GNTR.	DM00611C 11.08 9.113e-06 214-226
232	PR00582	PROSTANOID EP3 RECEPTOR SIGNATURE	PR00582B 9.74 1.000e-05 76-95
233	PR00407	EUKARYOTIC MOLYBDOPTERIN DOMAIN SIGNATURE	PR00407E 13.51 9.438e-06 176-192
234	DM00892	3 RETROVIRAL PROTEINASE.	DM00892C 23.55 9.913e-06 6-40
235	DM01688	2 POLY-IG RECEPTOR.	DM01688G 16.45 4.450e-06 94-126 DM01688J 14.69 6.000e-06 34-71
236	PD00930	PROTEIN GTPASE DOMAIN ACTIVATION.	PD00930A 25.62 1.000e-05 80-106
237	PR00076	6-PHOSPHOGLUCONATE DEHYDROGENASE SIGNATURE	PR00076B 11.24 6.418e-07 14-44
239	PR00243	MUSCARINIC ACETYLCHOLINE RECEPTOR SIGNATURE	PR00243F 16.45 9.182e-06 7-18
240	BL00854	Proteasome B-type subunits proteins.	BL00854B 10.97 1.000e-05 1-9
241	PR00513	5-HYDROXYTRYPTAMINE 1B RECEPTOR SIGNATURE	PR00513B 17.51 5.263e-07 876-889
242	DM01111	4 kw PHOSPHATASE TRANSFORMING 61K PDF1.	DM01111I 15.32 2.473e-07 522-552
243	BL00415	Synapsins proteins.	BL00415B 9.91 9.778e-06 53-89
244	BL00514	Fibrinogen beta and gamma chains C-terminal domain proteins.	BL00514E 14.28 1.000e-05 221-238
245	PR00187	ARTHROPOD HAEMOCYANIN SIGNATURE	PR00187B 15.70 1.000e-05 37-55

SEQ ID	ACCESSION NO.	DESCRIPTION	RESULTS*
246	PF00637	7-fold repeat proteins in Clathrin, also in VPS proteins.	PF00637C 27.33 1.184e-06 368-415
247	BL00785	5'-nucleotidase proteins.	BL00785A 9.73 7.557e-06 57-68
248	PR00651	5-HYDROXYTRYPTAMINE 2B RECEPTOR SIGNATURE	PR00651D 12.56 2.615e-06 228-249
249	PR00516	5-HYDROXYTRYPTAMINE 2A RECEPTOR SIGNATURE	PR00516B 10.78 1.811e-06 310-325
250	BL00461	6-phosphogluconate dehydrogenase proteins.	BL00461C 18.34 9.495e-06 30-58
251	BL00888	Cyclic nucleotide- binding domain proteins.	BL00888A 18.03 9.667e-06 20-37
252	DM01242	3 THREONINETRNA LIGASE.	DM01242E 23.00 6.215e-07 119-161
253	DM00250	kw ANNEXIN ANTIGEN PROLINE TUMOR.	DM00250A 10.52 6.488e-06 16-32
254	BL00291	Prion protein.	BL00291A 4.49 2.469e-07 51-86 BL00291A 4.49 6.878e-07 40-75 BL00291A 4.49 5.330e-06 22-57 BL00291A 4.49 1.000e-05 30-65
255	PF00506	Influenza virus nucleoprotein.	PF00506F 9.40 5.459e-08 17-55
256	BL00126	3'5'-cyclic nucleotide phosphodiesterases proteins.	BL00126A 27.56 6.026e-06 25-62
257	PR00003	4-DISULPHIDE CORE SIGNATURE	PR00003D 8.10 5.131e-06 291-300
258	DM01803	1 HERPESVIRUS GLYCOPROTEIN H.	DM01803C 7.00 7.061e-06 10-20
259	DM01803	1 HERPESVIRUS GLYCOPROTEIN H.	DM01803C 7.00 8.071e-06 3-13
260	PR00775	90 KD HEAT SHOCK PROTEIN SIGNATURE	PR00775D 8.91 3.831e-06 147-165
261	PR00217	43 KD POSTSYNAPTIC PROTEIN SIGNATURE	PR00217C 10.91 1.167e-06 75-91
262	PR00388	3',5'-CYCLIC NUCLEOTIDE CLASS II PHOSPHODIESTERASE SIGNATURE	PR00388D 14.87 8.079e-06 69-83
263	PR00023	ZONA PELLUCIDA SPERM-BINDING PROTEIN SIGNATURE	PR00023A 17.17 9.036e-06 24-39
264	BL00024	Hemopexin domain proteins.	BL00024F 11.30 9.894e-06 3-24
265	DM00303	6 LEA 11-MER REPEAT REPEAT.	DM00303A 13.20 6.294e-06 177-227
266	PR00652	5-HYDROXYTRYPTAMINE	PR00652A 8.92 9.224e-07 69-90

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.		
		7 RECEPTOR SIGNATURE	
267	PR00652 .	5-HYDROXYTRYPTAMINE 7 RECEPTOR SIGNATURE	PR00652A 8.92 9.224e-07 69-90
268	DM01803	1 HERPESVIRUS GLYCOPROTEIN H.	DM01803A 10.51 1.673e-06 14-35
270	PR00875	MOLLUSC METALLOTHIONEIN SIGNATURE	PR00875C 8.64 9.550e-06 65-77
271	DM01803	1 HERPESVIRUS GLYCOPROTEIN H.	DM01803A 10.51 7.308e-06 21-42
272	PF00598	Influenza Matrix protein (M1).	PF00598A 14.24 4.383e-06 46-89
273	PR00113	ALKALINE PHOSPHATASE SIGNATURE	PR00113D 6.87 9.260e-06 8-19
274	PD01841	PHOSPHORYLASE KINASE ALPHA MUSCL.	PD01841E 18.60 9.446e-06 80-118
275	PF00600	Influenza non- structural protein (NS1).	PF00600A 20.40 1.563e-06 40-67
276	PR00877	PLANT PEC FAMILY METALLOTHIONEIN SIGNATURE	PR00877B 4.74 9.878e-06 31-38
277	PR00076	6-PHOSPHOGLUCONATE DEHYDROGENASE SIGNATURE	PR00076E 12.73 6.417e-06 71-99
279	BL00101	Hexapeptide-repeat containing-transferases proteins.	BL00101A 10.95 1.000e-05 71-78
280	DM01111	4 kw PHOSPHATASE TRANSFORMING 61K PDF1.	DM01111M 10.67 2.629e-06 163-187
282	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 9.934e-06 35-50
283	PR00519	5-HYDROXYTRYPTAMINE 5B RECEPTOR SIGNATURE	PR00519C 9.73 1.227e-06 22-37
284	PR00304	TAILLESS COMPLEX POLYPEPTIDE 1 (CHAPERONE) SIGNATURE	PR00304E 7.79 1.000e-05 54-67
285	BL00197	2Fe-2S ferredoxins, iron-sulfur binding region proteins.	BL00197A 18.23 9.866e-07 49-79
286	PR00753	1-AMINOCYCLOPROPANE- 1-CARBOXYLATE SYNTHASE SIGNATURE	PR00753D 6.85 8.636e-06 61-83
287	PR00003	4-DISULPHIDE CORE SIGNATURE	PR00003B 7.64 1.300e-06 166-174
288	BL00940	Gamma-thionins family proteins.	BL00940A 20.51 9.671e-06 16-40
289	PD00066	PROTEIN ZINC-FINGER METAL-BINDI.	PD00066 13.92 9.609e-11 122-135 PD00066 13.92 1.900e-09 94-107 PD00066 13.92 2.703e-07 66-79

SEQ ID	ACCESSION	DESCRIPTION	RESULTS*
NO:	NO.		
			PD00066 13.92 1.000e-05 38-51
291	PR00516	5-HYDROXYTRYPTAMINE 2A RECEPTOR SIGNATURE	PR00516F 10.18 9.609e-07 761-779
293	PR00651	5-HYDROXYTRYPTAMINE 2B RECEPTOR SIGNATURE	PR00651E 10.53 8.487e-06 51-71
296	PR00635	AT1 ANGIOTENSIN II RECEPTOR SIGNATURE	PR00635C 7.44 8.602e-06 28-45
297	PF00915	Calicivirus coat protein.	PF00915E 5.71 1.000e-05 102-112
298	PR00519	5-HYDROXYTRYPTAMINE 5B RECEPTOR SIGNATURE	PR00519B 9.99 3.968e-06 495-512
299	PR00784	MITOCHONDRIAL BROWN FAT UNCOUPLING PROTEIN SIGNATURE	PR00784D 15.86 9.730e-06 22-40
300	DM00973	3 kw RESISTANCE BENOMYL YLL028W CYCLOHEXIMIDE.	DM00973A 21.17 1.273e-06 7-44
301	PR00049	WILM'S TUMOUR PROTEIN SIGNATURE	PR00049D 0.00 8.752e-06 42-57
302	BL00283	Soybean trypsin inhibitor (Kunitz) protease inhibitors family.	BL00283B 16.55 1.000e-05 15-30
303	DM01753	6 kw OSTEOBLAST MAJOR IMMUNOGENIC MPB70.	DM01753A 21.93 9.830e-06 59-94
304	PR00516	5-HYDROXYTRYPTAMINE 2A RECEPTOR SIGNATURE	PR00516E 14.87 6.516e-06 20-38
305	DM01554	1 THYROLIBERIN PRECURSOR.	DM01554E 10.78 5.452e-07 20-37
306	PR00331	HAEMAGGLUTININ HA2 CHAIN SIGNATURE	PR00331E 18.67 1.000e-05 75-93
307	PR00651	5-HYDROXYTRYPTAMINE 2B RECEPTOR SIGNATURE	PR00651H 5.59 8.858e-06 152-175
308	BL00208	Plant hemoglobins proteins.	BL00208A 18.41 1.000e-05 5-47
309	PR00240	ALPHA-1A ADRENERGIC RECEPTOR SIGNATURE	PR00240E 9.25 9.391e-06 36-56
310	PR00701	60KD INNER MEMBRANE PROTEIN SIGNATURE	PR00701C 10.53 8.255e-06 55-76
311	PR00423	CELL DIVISION PROTEIN FTSZ SIGNATURE	PR00423B 7.15 1.000e-05 5-26
312	PF00602	Influenza RNA- dependant RNA polymerase subunit PB1.	PF00602C 12.16 2.068e-07 26-66
313	PR00246	SOMATOSTATIN RECEPTOR SIGNATURE	PR00246D 7.36 1.000e-05 4-14

SEQ ID NO:	ACCESSION NO.	DESCRIPTION	RESULTS*
314	BL00216	Sugar transport proteins.	BL00216A 13.29 9.526e-06 26-38
316	PF00721	Tobacco mosaic virus coat.	PF00721A 14.59 9.845e-06 131-167
317	PD00489	PROTEIN TRANSMEMBRANE TRANSPORT C.	PD00489A 15.57 1.000e-05 55-71
318	PR00163	RUBREDOXIN SIGNATURE	PR00163A 10.47 9.888e-06 59-76
319	PR00513	5-HYDROXYTRYPTAMINE 1B RECEPTOR SIGNATURE	PR00513A 7.75 9.149e-07 205-217
320	DM01418	352 FIBRILLAR COLLAGEN CARBOXYL- TERMINAL.	DM01418C 20.48 5.142e-06 377-419
321	BL00067	3-hydroxyacyl-CoA dehydrogenase proteins.	BL00067D 21.49 7.441e-06 9-42
322	DM01857	5 kw NUCLEOSIDE TRANSPORT DEPENDENT NA.	DM01857B 14.94 7.821e-08 52-80
323	DM01803	1 HERPESVIRUS GLYCOPROTEIN H.	DM01803C 7.00 5.133e-06 43-53
324	PD01672	+ TRANSPORT EXCHANGER NA H TRANS.	PD01672B 15.16 1.000e-05 6-55
325	DM01688	2 POLY-IG RECEPTOR.	DM01688J 14.69 5.538e-06 31-68
327	DM00372	CARCINOEMBRYONIC ANTIGEN PRECURSOR AMINO-TERMINAL DOMAIN.	DM00372A 19.18 1.000e-05 9-54
328	DM01688	2 POLY-IG RECEPTOR.	DM01688J 14.69 4.308e-06 31-68
329	DM01930	2 kw FINGER SMCX SMCY YDR096W.	DM01930A 7.97 2.403e-07 144-157
330	PF00685	Sulfotransferase proteins.	PF00685A 19.12 9.370e-06 49-82
331	PR00347	PATHOGENESIS-RELATED PROTEIN SIGNATURE	PR00347A 13.98 9.649e-06 55-68
332	PR00538	MUSCARINIC M1 RECEPTOR SIGNATURE	PR00538F 10.59 8.667e-06 30-48
334	PR00159	2FE-2S FERREDOXIN SIGNATURE	PR00159A 9.58 1.153e-06 23-32
336	PR00554	ADENOSINE A2B RECEPTOR SIGNATURE	PR00554B 12.52 9.778e-06 41-50
337	DM01111	4 kw PHOSPHATASE TRANSFORMING 61K PDF1.	DM01111G 10.39 7.250e-06 3-44
338	PR00516	5-HYDROXYTRYPTAMINE 2A RECEPTOR SIGNATURE	PR00516B 10.78 7.649e-06 214-229
340	PR00388	3',5'-CYCLIC NUCLEOTIDE CLASS II PHOSPHODIESTERASE SIGNATURE	PR00388A 10.45 5.050e-06 141-160
342	DM01664	kw.	DM01664D 16.63 1.000e-05 22-47

SEQ ID NO:	ACCESSION NO.	DESCRIPTION	RESULTS*
343	PD01841	PHOSPHORYLASE KINASE ALPHA MUSCL.	PD01841K 14.81 1.000e-05 65-95
344	PR00416	EUKARYOTIC DNA TOPOISOMERASE I SIGNATURE	PR00416D 12.12 9.772e-06 23-40
345	BL00726	AP endonucleases family 1 proteins.	BL00726C 19.90 1.000e-05 7-33
346	BL00305	11-S plant seed storage proteins.	BL00305D 21.08 4.566e-06 465-507
347	PR00332	HISTIDINE TRIAD FAMILY SIGNATURE	PR00332A 10.15 9.890e-06 16-33
348	PR00518	5-HYDROXYTRYPTAMINE 5A RECEPTOR SIGNATURE	PR00518A 8.62 7.807e-06 19-36
349	BL00305	11-S plant seed storage proteins.	BL00305D 21.08 4.736e-06 276-318
350	PR00503	BROMODOMAIN SIGNATURE	PR00503C 19.84 9.731e-06 28-47
351	DM01688	2 POLY-IG RECEPTOR.	DM01688K 17.19 9.066e-07 81-120
352	DM01688	2 POLY-IG RECEPTOR.	DM01688K 17.19 9.066e-07 81-120
353	DM01415	6 SALIVARY GLUE PROTEIN.	DM01415B 13.78 5.273e-06 99-147
354	PR00216	OSTEOPONTIN SIGNATURE	PR00216F 11.79 9.913e-06 50-69
356	DM00895	7 kw REVERSE TRANSCRIPTASE RNA POLYMERASE.	DM00895G 3.62 9.913e-06 62-72
357	BL00126	3'5'-cyclic nucleotide phosphodiesterases proteins.	BL00126B 15.20 6.329e-06 35-47
358	PR00512	5-HYDROXYTRYPTAMINE 1A RECEPTOR SIGNATURE	PR00512G 6.54 3.139e-06 3-19
359	PD02455	ELEMENT TRANSPOSABLE INSERTION PROTEIN TRANSPOSITION DNA.	PD02455D 18.65 1.000e-05 58-77
360	DM01415	6 SALIVARY GLUE PROTEIN.	DM01415A 6.65 3.250e-07 16-29
361	BL00794	7,8-dihydro-6- hydroxymethylpterin- pyrophosphokinase proteins.	BL00794C 19.62 9.702e-06 27-65
362	PR00866	RNA-DEPENDENT DNA- POLYMERASE (MSDNA) SIGNATURE	PR00866B 9.86 9.786e-06 60-73

^{*} Results include in order: accession number subtype; raw score; p-value; postion of signature in amino acid sequence.

TABLE 4

SEQ ID	pFAM NAME	DESCRIPTION	p-value	pFAM SCORE
2	PGAM	Phosphoglycerate mutase family	2.5e-05	23.4
6	Ubie_methyltran	ubiE/COQ5 methyltransferase family	0.035	-133.9
8	Plexin repeat	Plexin repeat	0.03	18.4
13	K_tetra	K+ channel tetramerisation domain	2.3e-31	117.6
14	EGF	EGF-like domain	7.8e-14	59.4
16	Armadillo_seg	Armadillo/beta-catenin-like repeats	1.3e-05	32.1
19	Ribosomal S5	Ribosomal protein S5	1.7e-46	167.9
21	gpdh	glyceraldehyde 3-phosphate dehydrogenases	1.3e-230	773.2
24	GCV_T	Glycine cleavage T-protein (aminomethyl tran	9.3e-156	530.9
25	zf-C3HC4	Zinc finger, C3HC4 type (RING finger)	0.015	12.5
26	zf-C3HC4	Zinc finger, C3HC4 type (RING finger)	1.6e-10	38.4
33	urease	Urease	0.014	11.0
35	tRNA-synt 1e	tRNA synthetases class I (C)	0.0091	12.1
37	LRRNT	Leucine rich repeat N- terminal domain	0.00049	26.8
39	SH3	SH3 domain	3.4e-60	213.4
40	SH3	SH3 domain	3.4e-60	213.4
41	PBD	P21-Rho-binding domain	1e-08	42.4
42	GDA1_CD39	GDA1/CD39 (nucleoside phosphatase) family	9e-94	324.9
43	Band 7	SPFH domain / Band 7 family	1.7e-21	84.9
46	Rhodanese	Rhodanese-like domain	2.9e-24	94.0
47	zf-C2H2	Zinc finger, C2H2 type	6.2e-32	119.5
50	ZAP	ZAP domain	1.6e-50	181.3
52	sushi	Sushi domain (SCR repeat)	9.5e-27	102.3
55	zf-C2H2	Zinc finger, C2H2 type	0.047	20.3
56	zf-C2H2	Zinc finger, C2H2 type	0.00021	28.1
59	PH	PH domain	2.6e-06	27.6
60	PHD	PHD-finger	2e-09	44.8
64	IQ	IQ calmodulin-binding motif	6.4e-42	152.7
66	ank	Ank repeat	2.7e-23	90.8
69	eIF-1a	Eukaryotic initiation factor 1A	0.0047	-2.4
74	Ribosomal_S17	Ribosomal protein S17	6e-43	148.6
75	LIM	LIM domain containing proteins	0.00067	19.0
80	Phosphodiest	Type I phosphodiesterase / nucleotide py	2.7e-49	177.2
81	transmembrane4	Transmembrane 4 family	6.6e-61	197.7
84	zf-C2H2	Zinc finger, C2H2 type	1.6e-64	227.8
85	zf-C2H2	Zinc finger, C2H2 type	1.4e-07	38.6
89	ank	Ank repeat	4e-31	116.8
93	L15	Ribosomal protein L15	3.5e-21	61.9

ano		DEGCRIPETON	7	T =21/ 00000
SEQ ID NO:	pFAM NAME	DESCRIPTION	p-value	pFAM SCORE
98	Band 41	FERM domain (Band 4.1 family)	0.00015	16.7
101	Noll Nop2 Sun	NOL1/NOP2/sun family	4.5e-19	68.6
103	LIM	LIM domain containing	1.3e-30	113.2
		proteins	1.00 00	110.1
113	WD40	WD domain, G-beta repeat	0.00018	28.3
115	pro isomerase	Cyclophilin type peptidyl-	5.3e-34	120.4
	_	prolyl cis-tr		
116	DUF25	Domain of unknown function DUF25	1.1e-11	46.9
118	Band_41	FERM domain (Band 4.1 family)	3.2e-77	242.4
119	rrm	RNA recognition motif.	1.1e-33	125.4
		(a.k.a. RRM, RBD, or		
120	SH3	SH3 domain	3e-05	30.9
125	Ribosomal_L29	Ribosomal L29 protein	1.6e-15	65.0
126	NTF2	Nuclear transport factor 2 (NTF2) domain	7.6e-06	32.2
129	rrm	RNA recognition motif. (a.k.a. RRM, RBD, or	0.0016	25.2
130	Fork head	Fork head domain	1e-28	108.8
132	PC4	Transcriptional Coactivator	2.1e-38	141.0
		p15 (PC4)		
133	RGS	Regulator of G protein signaling domain	2.6e-45	164.0
137	COX7a	Cytochrome c oxidase subunit	2.3e-40	147.5
139	rrm	RNA recognition motif. (a.k.a. RRM, RBD, or	3.2e-15	64.0
141	lectin c	Lectin C-type domain	5.1e-05	30.0
142	lectin c	Lectin C-type domain	5.1e-05	30.0
147	ig	Immunoglobulin domain	9.1e-07	26.9
150	ank	Ank repeat	8.6e-09	42.6
161	Ribosomal L7Ae	Ribosomal protein L7Ae	0.03	0.8
162	HMG box	HMG (high mobility group) box	8e-53	188.9
163	PH	PH domain	3e-13	52.4
168	Peptidase C6	Helper component proteinase	0.0056	7.9
175	ig	Immunoglobulin domain	2.3e-09	35.2
176	ig	Immunoglobulin domain	9.2e-09	33.3
178	WW	WW domain	0.054	17.2
180	Ribosomal_S12e	Ribosomal protein S12e	1.9e-38	141.1
185	myb_DNA-binding	Myb-like DNA-binding domain	0.00011	29.1
186	myb_DNA-binding	Myb-like DNA-binding domain	0.00011	29.1
187	pkinase	Eukaryotic protein kinase domain	3.4e-26	98.4
189	ER_lumen_recept	ER lumen protein retaining receptor	3.9e-144	492.2
190	ER_lumen_recept	ER lumen protein retaining receptor	2.1e-88	307.1
195	EMP24 GP25L	emp24/gp25L/p24 family	6.9e-06	28.1
199	zf-B box	B-box zinc finger.	5.2e-07	36.7
211	HECT	HECT-domain (ubiquitin-	1.1e-115	397.8
		transferase).		
213	Rhomboid	Rhomboid family	4.2e-42	153.3
214	LIM	LIM domain containing	8.8e-35	127.8
		·		

SEQ ID NO:	pFAM NAME	DESCRIPTION	p-value	pFAM SCORE
		proteins		
215	Ricin_B_lectin	Similarity to lectin domain of ricin	0.0015	19.2
216	chromo	'chromo' (CHRromatin Organization MOdifier	2.1e-09	37.1
218	Sialyltransf	Sialyltransferase family	7.3e-20	79.4
219	PG_binding_2	Putative peptidoglycan binding domain	5e-06	33.5
223	zf-C2H2	Zinc finger, C2H2 type	1.5e-104	360.7
226	RGS	Regulator of G protein signaling domain	5.1e-52	186.2
227	TBC	TBC domain	7.2e-35	129.3
228	CRAL TRIO	CRAL/TRIO domain.	4.5e-47	158.6
232	Ribosomal L44	Ribosomal protein L44	1e-48	175.3
235	ig	Immunoglobulin domain	3.5e-08	31.4
236	thyroglobulin 1	Thyroglobulin type-1 repeat	3.9e-24	93.6
238	TBC	TBC domain	1.2e-54	195.0
241	zf-C2H2	Zinc finger, C2H2 type	3.8e-08	40.5
242	AAA	ATPases associated with various cellular act	2.1e-43	157.6
249	integrin_A	Integrin alpha cytoplasmic region	0.091	18.0
256	PAP2	PAP2 superfamily	0.00084	22.8
257	zf-C2H2	Zinc finger, C2H2 type	1.2e-60	214.9
259	G-gamma	GGL domain	5.5e-30	108.3
266	efhand	EF hand	3.4e-07	37.4
267	efhand	EF hand	3.4e-07	37.4
274	zf-C2H2	Zinc finger, C2H2 type	0.00014	28.6
277	RecF	RecF protein	0.036	11.1
281	CH	Calponin homology (CH) domain	7.9e-22	86.0
285	cyclin	Cyclin	3.9e-07	28.5
289	zf-C2H2	Zinc finger, C2H2 type	1.9e-21	84.7
290	PI-PLC-X	Phosphatidylinositol-specific phospholipase	0.073	10.8
299	60s_ribosomal	60s Acidic ribosomal protein	4.1e-07	25.8
307	trypsin	Trypsin	6.9e-81	257.3
310	ig	Immunoglobulin domain	1.3e-10	39.3
311	ig	Immunoglobulin domain	6.1e-07	27.4
313	globin	Globin	3.8e-21	78.2
315	ig	Immunoglobulin domain	1.6e-05	22.8
318	zf-C2H2	Zinc finger, C2H2 type	9e-19	75.8
319	ig	Immunoglobulin domain	0.01	13.8
320	BTB	BTB/POZ domain	5e-17	70.0
322	aa permeases	Amino acid permease	0.0058	-262.2
325	ig	Immunoglobulin domain	1.6e-10	38.9
327 328	ig	Immunoglobulin domain	1.9e-09	35.5
328	ig	Immunoglobulin domain	2.9e-09	34.9
332	ig Ribosomal L36e	Immunoglobulin domain	7.4e-14	49.7
333	connexin	Ribosomal protein L36e	6.3e-17	69.7
335	p450	Connexin	7.6e-148	504.6
337	Sm Sm	Cytochrome P450 Sm protein	2.1e-100	347.0
338	zf-C2H2	Zinc finger, C2H2 type	0.00012	28.8
220	41 CC11C	Tine Tinger, CZHZ type	0.0025	24.5

SEQ ID	pFAM NAME	DESCRIPTION	p-value	pFAM SCORE
NO:				
343	aldo ket red	Aldo/keto reductase family	2.4e-53	190.7
345	ubiquitin	Ubiquitin family	3.1e-13	45.5
346	СН	Calponin homology (CH) domain	0.0017	23.8
351	ig	Immunoglobulin domain	4.8e-18	63.2
352	iq	Immunoglobulin domain	4.8e-18	63.2
358	G-alpha	G-protein alpha subunit	4.5e-148	505.3
359	iq	Immunoglobulin domain	8.9e-09	33.3
362	Ribosomal_L37ae	Ribosomal L37ae protein family	0.00083	-3.0

TABLE 5

SEQ ID NO:	POSITION OF SIGNAL IN AMINO ACID	maxS (MAXIMUM SCORE)	meanS (MEAN SCORE)
	SEQUENCE	0.040	0.664
2	1-29	0.942	0.664
12	1-15	0.909	0.589
14	1-17	0.974	0.943
20	1-22	0.932	0.802
25	1-16	0.988	0.881
28	1-13	0.896	0.771
37	1-21	0.992	0.929
42	1-46	0.978	0.754
52	1-34	0.954	0.756
63	1-31	0.960	0.773
71	1-45	0.981	0.652
80	1-22	0.982	0.882
81	1-42	0.993	0.715
83	1-30	0.966	0.767
95	1-18	0.997	0.971
102	1-13	0.981	0.764
107	1-45	0.890	0.631
110	1-27	0.992	0.969
138	1-33	0.961	0.864
144	1-45	0.987	0.658
145	1-20	0.992	0.967
175	1-20	0.957	0.874
176	1-21	0.989	0.945
179	1-42	0.980	0.577
184	1-20	0.972	0.771
189	1-28	0.941	0.755
190	1-28	0.941	0.755
191	1-12	0.907	0.779
195	1-21	0.958	0.779
200	1-15	0.970	0.875
211	1-20	0.895	0.595
215	1-31	0.987	0.895
218	1-30	0.971	0.889
225	1-17	0.884	0.588
235	1-23	0.965	0.817
237	1-29	0.933	0.725
249	1-28	0.972	0.870
251	1-17	0.966	0.905
260	1-26	0.921	0.587
270	1-20	0.938	0.631
283	1-18	0.901	0.763
288	1-20	0.940	0.693
293	1-26	0.937	0.784
295	1-22	0.972	0.745
296	1-15	0.930	0.748
297	1-35	0.906	0.600
300	1-29	0.981	0.864
307	1-19	0.976	0.916
308	1-27	0.973	0.931

SEQ ID NO:	POSITION OF SIGNAL	maxS (MAXIMUM	meanS (MEAN SCORE)
	IN AMINO ACID	SCORE)	
	SEQUENCE		
309	1-29	0.950	0.629
310	1-19	0.969	0.913
311	1-21	0.956	0.823
315	1-17	0.976	0.938
317	1-19	0.943	0.837
319	1-18	0.991	0.978
324	1-26	0.968	0.806
325	1-20	0.972	0.828
326	1-27	0.893	0.567
327	1-21	0.994	0.959
328	1-20	0.945	0.891
329	1-21	0.984	0.858
330	1-27	0.891	0.593
333	1-40	0.955	0.703
347	1-22	0.968	0.806
351	1-23	0.982	0.945
352	1-23	0.982	0.945
355	1-32	0.955	0.617
356	1-23	0.936	0.677
359	1-20	0.937	0.859
360	1-29	0.956	0.765
361	1-23	0.968	0.819

5

10

15

20

CLAIMS

WHAT IS CLAIMED IS:

- 1. An isolated polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-362, a mature protein coding portion of SEQ ID NO: 1-362, an active domain of SEQ ID NO: 1-362, and complementary sequences thereof.
- 2. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- 3. An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.

4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.

5. An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.

6. A vector comprising the polynucleotide of claim 1.

- 7. An expression vector comprising the polynucleotide of claim 1.
- 25 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
 - 9. A host cell genetically engineered to comprise the polynucleotide of claim 1 operatively associated with a regulatory sequence that modulates expression of the polynucleotide in the host cell.
 - 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:
 - (a) a polypeptide encoded by any one of the polynucleotides of claim 1; and

30

143

- (b) a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEQ ID NO: 1-362.
- 11. A composition comprising the polypeptide of claim 10 and a carrier.

5

10

20

30

- 12. An antibody directed against the polypeptide of claim 10.
- 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex; and
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
- 15 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
 - a) contacting the sample under stringent hybridization conditions with nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions;
 - b) amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
 - c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
- The method of claim 14, wherein the polynucleotide is an RNA molecule and
 the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
 - 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:
 - a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and
 - b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.

. .

5

10

15

20

25

30

- 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
 - a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
 - b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
 - 19. A method of producing the polypeptide of claim 10, comprising,
 - a) culturing a host cell comprising a polynucleotide sequence selected from the group consisting of a polynucleotide sequence of SEQ ID NO: 1-362, a mature protein coding portion of SEQ ID NO: 1-362, an active domain of SEQ ID NO: 1-362, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO: 1-362, under conditions sufficient to express the polypeptide in said cell; and
 - b) isolating the polypeptide from the cell culture or cells of step (a).
 - 20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of any one of the polypeptides from the Sequence Listing, the mature protein portion thereof, or the active domain thereof.
 - 21. The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.

- X 1

5

15

- 22. A collection of polynucleotides, wherein the collection comprising the sequence information of at least one of SEQ ID NO: 1-362.
- 23. The collection of claim 22, wherein the collection is provided on a nucleic acid array.
 - 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.
- 10 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
 - 26. The collection of claim 22, wherein the collection is provided in a computer-readable format.
 - 27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.
- 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

ABSTRACT OF THE INVENTION

The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.

5

Express Mail No.: . EF415382545US

Docket No.: 797

DECLARATION FOR PATENT APPLICATION AND POWER OF ATTORNEY

As [a] below named inventor(s), I/we hereby declare that:

Y. Tom Tang, Ping Zhou, Ryle Goodrich, Chenghua Liu, Vinod Asundi, Feiyan Ren, Jie Zhang, Qing A. Zhao, Aidong J. Xue, Yonghong Yang, Tom Wehrman, Radoje T. Drmanac

My/our residence, post office address and citizenship is/are as stated below next to my/our name(s).

I/we believe I/we am/are an/the original, first and sole/joint inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES, the specification of which

<u>X</u>	is attached hereto.	
	was filed on [date] as Application Serial Number [and was amended on [date].]

I/We hereby state that I/we have reviewed and understand the contents of the above-identified specification, including the claims as amended by any amendment referred to above.

I/We acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, Section 1.56(a).

I/We hereby claim foreign priority benefits under Title 35, United States Code, § 119 of any foreign application(s) for patent or inventor's certificate, listed below and so identified, and I/we have also identified below any foreign application for patent or inventor's certificate on this invention filed by me or my legal representatives or assigns and having a filing date before that of the application on which priority is claimed:

NUMBER	COUNTRY	DAY/MONTH/ YEAR FILED	PRIORITY CLAIMED - YES OR NO

I/We hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, § 112, I/we acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, § 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application.

SERIAL NUMBER	FILING DATE	STATUS	

I/We hereby declare that all statements made herein of my/our own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under § 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

I/We hereby appoint the following attorneys and agents, with full power of substitution and revocation, to prosecute this application and to transact all business in the United States Patent and Trademark Office connected therewith and request that all correspondence and telephone calls with respect to this application be directed to Leslie A. Mooi, HYSEQ, INC., 670 Almanor Avenue, Sunnyvale, CA 94085, Telephone No. (408) 524-8100:

ATTORNEY	REGISTRATION NO.
Petrina S. His	38,496
Leslie A. Mooi	37,047

Full name of first joint inventor:	Y. Tom Tang
Inventor's signature:	Date:
Residence and Post Office Address:	4230 Ranwick Court, San Jose, CA 95118
Citizenship:	United States of America
Full name of second joint inventor:	Ping Zhou
Inventor's signature:	Date:
Residence and Post Office Address:	1461 Japaur Lane, San Jose, CA 95132
Citizenshin:	People's Republic of China

Full name of third joint inventor:	Ryle Goodrich	
Inventor's signature:	Date:	
Residence and Post Office Address:	4896 Sandy Lane, San Jose, CA 95124	
Citizenship:	United States of America	
Full name of fourth joint inventor:	Chenghua Liu	
Inventor's signature:	Date:	
Residence and Post Office Address:	1125 Ranchero Way, Apt. # 14, San Jose, CA 95117	
Citizenship:	People's Republic of China	
Full name of fifth joint inventor: Inventor's signature:	Vinod Asundi	
•	Date:	
Residence and Post Office Address:	709 Foster City Blvd., Foster City, CA 94404	
Citizenship:	United States of America	
Full name of sixth joint inventor:	Feiyan Ren	
Inventor's signature:	Date:	
Residence and Post Office Address:	20685 Garden Manor Court, Cupertino, CA 95014	
Citizenship:	People's Republic of China	

Full name of seventh joint inventor:	Jie Zhang
Inventor's signature:	Date:
Residence and Post Office Address:	20800 Homestead Road, #38B, Cupertino, CA 95014
Citizenship:	People's Republic of China
Full name of eigth joint inventor:	Qing A. Zhao
Inventor's signature:	Date:
Residence and Post Office Address:	1028 S. de Anza Blvd., Apt. B-210, San Jose, CA 95129
Citizenship:	People's Republic of China
Full name of ninth joint inventor:	Aidong J. Xue
Inventor's signature:	Date:
Residence and Post Office Address:	1621 S. Mary Avenue, Sunnyvale, CA 94087
Citizenship:	People's Republic of China
Full name of tenth joint inventor:	Yonghong Yang
Inventor's signature:	Date:
Residence and Post Office Address:	4230 Ranwick Ct, San Jose, CA 95118
Citizenshin:	United States of America

Full name of eleventh joint inventor:	Tom Wehrman
Inventor's signature:	Date:
Residence and Post Office Address:	300 Pasteur Drive, Edwards R314, Stanford University Medical Center, Stanford, CA 94305
Citizenship:	United States of America
Full name of twelfth joint inventor:	Radoje T. Drmanac
Inventor's signature:	Date:
Residence and Post Office Address:	850 East Greenwich Place, Palo Alto, CA 94303
Citizenship:	Yugoslavia

Express Mail No.: EF415382545US Docket No.: 797

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant(s): Tang, et al.

Serial No: Not Yet Assigned

Filed: Herewith

For: NOVEL NUCLEIC ACIDS

AND POLYPEPTIDES

CERTIFICATE OF MAILING
BY "EXPRESS MAIL" UNDER 37 CFR § 1 10

"Express Mail" Mailing Label Numbers EF415382559US

Date of Deposit November 17, 2000

I hereby certify that this paper and all enclosures are being deposited with the United States Postal Service "Express Mail Post Office to Addressee" under 37 CFR § 1.10 on the date indicated above and is addressed to the Assistant Commissioner for Patents, Washington, D.C., 20231

Type or Print Name of Person Mailing. Sandy Fong

STATEMENT REGARDING SEQUENCE LISTING UNDER 37 CFR §1.821(f)

Signature of Person Mailing

BOX PATENT APPLICATION Assistant Commissioner for Patents Washington, D.C. 20231

Dear Sir:

I hereby state that the content of the paper and computer readable copies of the Sequence Listing, submitted in accordance with 37 CFR §1.821(c) and (e), respectively, are the same.

Respectfully submitted,

Dated: November 17, 2000

By: _

Leslie A. Mooi ⁶ Attorney for Applicants Registration No.: 37,047

HYSEQ, INC.

670 Almanor Avenue Sunnyvale, CA 94085

SEQUENCE LISTING

	Tang, Y. T	om				
	u, Ping drich, Ryle					
	, Chenghua					
	ndi, Vinod					
	, Feiyan ng, Jie					
	o, Qing A.					
Xue	, Aidong J.					
	g, Yonghong rman, Tom					
	anac, Radoj	е Т.				
<120>	Novel Nucl	eic Acids a	nd			
	ypeptides					
120	B 0 B					
<130>	797					
	To Be Assi	gned				
<141>	2000-11-17					
<160>	362					
<170>	pt_FL_gene	s Version 2	.0			
		•				
<210>	1					
<211>						
<212>	DNA Homo sapie	าย				
12137	nomo sapre	.15				
<220>	an a					
<221> <222>	(1173)(3	539)				
		,				
<400>		ttataaataa	ccccgaagca	aggtgatga	2222225	6.0
aacccaacca	gagggcagcc	ctgtggatgg	ccccgaagca	ageetgatgg	aacaygatag	60
aaccaaccat	gttgagggca	acagactaag	tccattcctg	ataccatcac	ctcccatttg	120
ccagacagaa	cctctggcta	caaagctcca	gaatggaagc	ccactgcctg	agagagctca	180
tccagaagta	aatggagaca	ccaagtggca	ctctttcaaa	agttattatg	gaataccctg	240

300

tatgaaggga agccagaata gtcgtgtgag tcctgacttt acacaagaaa gtagagggta

360 ttccaagtgt ttgcaaaatg gaggaataaa acgcacagtt agtgaacctt ctctctctgg gctccttcag atcaagaaat tgaaacaaga ccaaaaggct aatggagaaa gacgtaactt 420 cggggtaagc caagaaagaa atccaggtga aagcagtcaa ccaaatgtct ccgatttgag 480 540 tgataagaaa gaatctgtga gttctgtagc ccaagaaaat gcagttaaag atttcaccag 600 tttttcaaca cataactgca gtgggcctga aaatccagag cttcagattc tgaatgagca ggaggggaaa agtgctaatt accatgacaa gaacattgta ttacttaaaa acaaggcagt 660 gctaatgcct aatggtgcta cagtttctgc ctcttccgtg gaacacacac atggtgaact 720 cctggaaaaa acactgtctc aatattatcc agattgtgtt tccattgcgg tgcagaaaac 780 cacatctcac ataaatgcca ttaacagtca ggctactaat gagttgtcct gtgagatcac 840 tcacccatcg catacctcag ggcagatcaa ttccgcacag acctctaact ctgagctgcc 900 960 tccaaagcca gctgcagtgg tgagtgaggc ctgtgatgct gatgatgctg ataatgccag taaactaget geaatgetaa atacetgtte ettteagaaa eeagaacaat tateaacaae 1020 attaatcagt ttttgagata tgcccatctc ctgcagaaaa taacatccag ggaaccacaa 1080 agctagcgtc tggtgaagaa ttctgttcag gttccagcag caatttgcaa gctcctggtg 1140 gcagctctga acggtattta aaacaaaatg aa atg aat ggt gct tac ttc aag 1193 Met Asn Gly Ala Tyr Phe Lys caa age tea gtg tte act aag gat tee ttt tet gee act ace aca cea 1241 Gln Ser Ser Val Phe Thr Lys Asp Ser Phe Ser Ala Thr Thr Thr Pro cca cca cca tca caa ttg ctt ctt tct ccc cct cct cct ctt cca cag 1289 Pro Pro Pro Ser Gln Leu Leu Ser Pro Pro Pro Pro Leu Pro Gln 25 30 gtt cct cag ctt cct tca gaa gga aaa agc act ctg aat ggt gga gtt 1337 Val Pro Gln Leu Pro Ser Glu Gly Lys Ser Thr Leu Asn Gly Gly Val 40 45 55 tta gaa gaa cac cac cac tac ccc aac caa agt aac aca aca ctt tta 1385 Leu Glu Glu His His Tyr Pro Asn Gln Ser Asn Thr Thr Leu Leu 60 70 agg gaa gtg aaa ata gag ggt aaa cct gag gca cca cct tcc cag agt 1433 Arg Glu Val Lys Ile Glu Gly Lys Pro Glu Ala Pro Pro Ser Gln Ser 75 85 1481 cct aat cca tct aca cat gta tgc agc cct tct ccg atg ctt tct gaa Pro Asn Pro Ser Thr His Val Cys Ser Pro Ser Pro Met Leu Ser Glu 90 95 1529 agg cct cag aat aat tgt gtg aac agg aat gac ata cag act gca ggg

Arg	Pro 105	Gln	Asn	Asn	Cys	Val 110	Asn	Arg	Asn	Asp	Ile 115	Gln	Thr	Ala	Gly	
											aga Arg					1577
_											agt Ser					1625
			_	_	_	-	-				caa Gln			_	~	1673
											ccc Pro			_		1721
							-	_	_	_	cct Pro 195	_				1769
						_		-	_		ctg Leu					1817
											tcc Ser					1865
				_							caa Gln	_			_	1913
											tac Tyr					1961
											cat His 275					2009
											gac Asp					2057
											cat His					2105
											gtg Val					2153
											tca Ser					2201

330	335	340

ttg Leu	caa Gln 345	His	aag Lys	cct	cat His	aaa Lys 350	cag Gln	gca Ala	gca Ala	caa Gln	aca Thr 355	Gln	cca Pro	tcc Ser	cag Gln	2249
agt Ser 360	Ser	cat His	ctc Leu	cct Pro	caa Gln 365	aac Asn	cag Gln	caa Gln	cag Gln	cag Gln 370	caa Gln	aaa Lys	tta Leu	caa Gln	ata Ile 375	2297
aag Lys	aat Asn	aaa Lys	gag Glu	gaa Glu 380	ata Ile	ctc Leu	cag Gln	act Thr	ttt Phe 385	cct Pro	cac His	ccc Pro	caa Gln	agc Ser 390	aac Asn	2345
aat Asn	gat Asp	cag Gln	caa Gln 395	aga Arg	gaa Glu	gga Gly	tca Ser	ttc Phe 400	ttt Phe	ggc	cag Gln	act Thr	aaa Lys 405	gtg Val	gaa Glu	2393
															gag Glu	2441
act Thr	cat His 425	aat Asn	gtc Val	caa Gln	atg Met	gga Gly 430	ctg Leu	gag Glu	gaa Glu	gta Val	cag Gln 435	aat Asn	ata Ile	aat Asn	cgt Arg	2489
aga Arg 440	aat Asn	tcc Ser	cct Pro	tat Tyr	agt Ser 445	cag Gln	acc Thr	atg Met	aaa Lys	tca Ser 450	agt Ser	gca Ala	tgc Cys	aaa Lys	ata Ile 455	2537
cag Gln	gtt Val	tct Ser	tgt Cys	tca Ser 460	aac Asn	aat Asn	aca Thr	cac His	cta Leu 465	gtt Val	tca Ser	gag Glu	aat Asn	aaa Lys 470	gaa Glu	2585
cag Gln	act Thr	aca Thr	cat His 475	cct Pro	gaa Glu	ctt Leu	ttt Phe	gca Ala 480	gga Gly	aac Asn	aag Lys	acc Thr	caa Gln 485	aac Asn	ttg Leu	2633
cat His	cac His	atg Met 490	caa Gln	tat Tyr	ttt Phe	cca Pro	aat Asn 495	aat Asn	gtg Val	atc Ile	cca Pro	aag Lys 500	caa Gln	gat Asp	ctt Leu	2681
ctt Leu	cac His 505	agg Arg	tgc Cys	ttt Phe	caa Gln	gaa Glu 510	cag Gln	gag Glu	cag Gln	aag Lys	tca Ser 515	caa Gln	caa Gln	gct Ala	tca Ser	2729
								aac Asn								2777
gct Ala	gcg Ala	caa Gln	ctt Leu	gct Ala 540	cag Gln	caa Gln	agg Arg	tac Tyr	ttg Leu 545	ata Ile	cat His	aac Asn	cat His	gca Ala 550	aat Asn	2825
gtt Val	ttt Phe	Pro	gtg Val 555	cct Pro	gac Asp	cag Gln	gga Gly	gga Gly 560	agt Ser	cac His	act Thr	cag Gln	acc Thr 565	cct Pro	ccc Pro	2873

			Thr						cta Leu							2921
									ccc Pro							2969
									gaa Glu							3017
									aac Asn 625							3065
									tgt Cys							3113
									ctg Leu							3161
tcg Ser	tta Leu 665	ttt Phe	gac Asp	cat His	aag Lys	gct Ala 670	ctt Leu	act Thr	ctc Leu	aaa Lys	tca Ser 675	cag Gln	aag Lys	caa Gln	gta Val	3209
									gtt Val							3257
									gct Ala 705							3305
									aca Thr							3353
									cta Leu							3401
									tat Tyr							3449
									atc Ile							3497
			Ser						tgg Trp 785				tag *			3539

	<2 <2	12>	1342 DNA		iens										
	<2	20> 21> 22>	CDS (25)	(8	94)										
cgg		gcg		agca	ag c	ggc	Me			g Gl:				g ctg n Leu	51
										gtg Val					99
										gcg Ala					147
										ccg Pro					195
									_	tct Ser	_				243
										ctg Leu 85					291
										ttc Phe					339
										gac Asp					387
										ctc Leu					435
								_	_	tct Ser	_	_	-	-	483
										cca Pro					531

					ctg Leu 175											579
					aag Lys											627
					gcc Ala							_	_	_	-	675
					agt Ser											723
					tgc Cys			_	_				_			771
					aat Asn 255											819
					gcg Ala											867
					act Thr			tga * 290	gggc	t co	ggad	tctc	ctt	ccct	ctg	919
tcct	ccct	gc a	cago	rccgc	ca ca	cact	taac	gtt	ttgt	tcc	caag	rgaga	icc g	iacac	raaagt	979
agaa	acct	gc a	atgo	tgca	at ct	ggga	actg	act	tgtg	racc	aggo	tgag	raa g	ıggga	gagtt	1039
ggga	tcag	rac a	ıgcct	gact	t ct	ctgc	aggg	ttt	tata	cct	gacc	atga	ac c	ccca	ggatg	1099
gcgt	aaaa	rtt t	aagg	rtgaa	ıa go	gtct	cacg	cac	aagt	cag	gcct	gttg	rtg g	rggac	ttgaa	1159
agag	gcct	ga c	ccag	racca	ıc ca	tgtt	cgca	ccc	acag	ctg	acco	gtgc	tg a	ıgggt	.ccagg	1219
ctcc	attg	ıgc a	aago	cggt	c ag	gcac	gagg	gcg	actg	agg	cacg	tgga	tg a	ggag	ggcac	1279
ccag	gttc	tg t	tcac	aact	c ac	ttca	cttc	ata	.catc	ctt	ttaa	tttc	tt a	aaaa	.aaaaa	1339
aaa																1342

<210> 3 <211> 1640

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (137)..(1591) <400> 3 agagcaatga aaattcgggc acgagtggtt atgaagatag gtactgtggg tgttagaaag 60 attcacggca aaacagggaa gcatctaggc tgcttgtgga agtcagacca aaatagcagg 120 aaggtattgc agcaag atg gat ttg gga aag gac caa tct cat ttg aag 169 Met Asp Leu Gly Lys Asp Gln Ser His Leu Lys cac cat cag aca cct gac cct cat caa gaa gag aac cat tct cca gaa 217 His His Gln Thr Pro Asp Pro His Gln Glu Glu Asn His Ser Pro Glu 20 gtc att gga acc tgg agt ttg aga aac aga gaa cta ctt aga aaa aga 265 Val Ile Gly Thr Trp Ser Leu Arg Asn Arg Glu Leu Leu Arg Lys Arg aaa gct gaa gtg cat gaa aag gaa aca tca caa tgg cta ttt gga gaa 313 Lys Ala Glu Val His Glu Lys Glu Thr Ser Gln Trp Leu Phe Gly Glu 45 50 55 cag aaa aaa cgc aag cag cag aga aca gga aaa gga aat cga aga ggc 361 Gln Lys Lys Arg Lys Gln Gln Arg Thr Gly Lys Gly Asn Arg Arg Gly 60 65 aga aag aga caa caa aac aca gaa ttg aag gtg gag cct cag cca cag 409 Arg Lys Arg Gln Gln Asn Thr Glu Leu Lys Val Glu Pro Gln Pro Gln 80 ata gaa aag gaa ata gtg gag aaa gca ctg gca cct ata gag aaa aaa 457 Ile Glu Lys Glu Ile Val Glu Lys Ala Leu Ala Pro Ile Glu Lys Lys 95 100 act gag cca cct ggg agc ata acc aaa gta ttt cct tca gta gcc tcc 505 Thr Glu Pro Pro Gly Ser Ile Thr Lys Val Phe Pro Ser Val Ala Ser 110 ccg caa aaa gtt gtg cct gag gaa cac ttt tct gaa ata tgt caa gaa 553 Pro Gln Lys Val Val Pro Glu Glu His Phe Ser Glu Ile Cys Gln Glu 130 agt aac ata tat cag gag aat ttt tct gag tac caa gaa ata gca gta 601

8

649

697

170

165

Ser Asn Ile Tyr Gln Glu Asn Phe Ser Glu Tyr Gln Glu Ile Ala Val

caa aac cat tct tct gaa aca tgc caa cat gtg tct gaa cct gaa gac

Gln Asn His Ser Ser Glu Thr Cys Gln His Val Ser Glu Pro Glu Asp

ctc tct cct aaa atg tac caa gaa ata tct gta ctt caa gac aat tct

Leu Ser Pro Lys Met Tyr Gln Glu Ile Ser Val Leu Gln Asp Asn Ser

180

145

160

						atg Met										745
	_		_			gta Val 210			~							793
						gaa Glu										841
_	_	_				ctt Leu									-	889
						ctt Leu										937
						aca Thr										985
						gga Gly 290										1033
						gag Glu										1081
			-	_		aaa Lys							_		_	1129
_						ccc Pro							_			1177
						att Ile	_				_			~ ~ ~		1225
						acg Thr 370										1273
						caa Gln						_	_			1321
						aca Thr										1369
aca	tat	aaa	aat	aag	gat	gtg	cct	aaa	gaa	tgc	ttt	cca	gaa	cca	cac	1417

Thr Tyr Lys Asn Lys Asp Val Pro Lys Glu Cys Phe Pro Glu Pro His 415 420 425	
caa gaa aca ggt ggg ccc caa ggc cag gat cct aaa gca cac cag gaa Gln Glu Thr Gly Gly Pro Gln Gly Gln Asp Pro Lys Ala His Gln Glu 430 435 440	1465
gat gct aaa gat gct tat act ttt cct caa gaa atg aaa gaa aaa ccc Asp Ala Lys Asp Ala Tyr Thr Phe Pro Gln Glu Met Lys Glu Lys Pro 445 450 455	1513
aaa gaa gag cca gga ata cca gca att ctg aat gag agt cat cca gaa Lys Glu Glu Pro Gly Ile Pro Ala Ile Leu Asn Glu Ser His Pro Glu 465 470 475	1561
aat gat gtc tat agt tat gtt ttg ttt taa c aatgctcaac cataaagttg Asn Asp Val Tyr Ser Tyr Val Leu Phe * 480 485	1612
tggtccaatg gaacataaaa aaaaaaaa	1640
<210> 4 <211> 1892 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (100)(1110)	
<221> CDS	60
<221> CDS <222> (100)(1110) <400> 4	60 114
<pre><221> CDS <222> (100)(1110) <400> 4 ctccgtgggc gagccagcca gtcccgctgc acacgctcgc agtctgtggg ccctccggga ggcggcggag gtcaccgcgg ggagaggggc gggcgcagc atg gca gcc tcc tta</pre>	
<pre><221> CDS <222> (100)(1110) <400> 4 ctccgtgggc gagccagcca gtcccgctgc acacgctcgc agtctgtggg ccctccggga ggcggcggag gtcaccgcgg ggagaggggc gggcgcagc atg gca gcc tcc tta</pre>	114
<pre> <221> CDS <222> (100)(1110) <400> 4 ctccgtgggc gagccagcca gtcccgctgc acacgctcgc agtctgtggg ccctccggga ggcggcggag gtcaccgcgg ggagaggggc gggcgcagc atg gca gcc tcc tta</pre>	114
<pre> <221> CDS <222> (100)(1110) <400> 4 ctccgtgggc gagccagcca gtcccgctgc acacgctcgc agtctgtggg ccctccggga ggcggcggag gtcaccgcgg ggagaggggc gggcgcagc atg gca gcc tcc tta</pre>	114 162 210

Val 70	Phe	Pro	Asp	Ala	Cys 75	Lys	Glu	Phe	Gln	Asp 80	Ala	Gly	Glu	Gln	Val 85	
											gac Asp					402
_	_			-			_		_	_	tat Tyr			~		450
											tta Leu		-		-	498
											aaa Lys 145					546
					_	_	_		-		ggt Gly		-		_	594
-	_					_		_			gga Gly	_	_	_	_	642
											Gly					690
											aag Lys					738
_	_		-		_	_				-	gaa Glu 225	_	_			786
											gct Ala					834
											tat Tyr					882
											tat Tyr					930
									-	_	gca Ala		_		-	978
											ctg Leu					1026

295		300		305	
		a Lys Gly ?	_	aaa gac ttc tca tcc Lys Asp Phe Ser Ser 325	1074
	g ttc cta cg n Phe Leu Ar 330			tga gtgt gccctttggc *	1124
cacggacact	gttgggaacc	aaactctgtc	ttggagcctc	cttttagctc actccacaag	1184
taaatggatt	taatcaaagg	tcacctatct	gcttttgatt	gtctaggtca cagtaatccc	1244
taggattttt	caccgcttat	tctttttgtc	tttttaacaa	acatattatc cgaatttttt	1304
ttctgcaagc	cactgatagt	ctctgctaac	tagcttaatt	gaccttttta caaagtttga	1364
tccccaagca	tcctcaacta	aatcattgaa	tacttcaatc	aggatattat ctgctttact	1424
ttacaaataa	aaccaaatct	tttgtcaaca	ggatgaaacc	catcttaaag gaaagaaaag	1484
gaattggtgt	gaagagagaa	gttagagaag	ggaaatgcag	tgaattacta tctgtgtcca	1544
tcaggaagtt	tgtcctgtta a	accaaatggt	tactgcacta	ccagggttac tggtttattt	1604
tccagggagc	tgataaagca (ggagaactgt	tgctgcatgt	tttctatttg gactccgtca	1664
caatatggta	ggatatccct	caccaactcc	cgacactcag	cagacttgtt tttatatttt	1724
tttctttctt	gttcattctt a	actacgtatt	ttttgactta	agaatgacat ctttagatgc	1784
atttcagagc	caatgatgat a	atttgcttta	gataattatt	atattattat aaatatagcc	1844
atattattt	gaattcaaat a	aaatttctat	actggtaaaa	aaaaaaaa	1892

```
<210> 5
<211> 2032
<212> DNA
<213> Homo sapiens
<220>
```

<221> CDS <222> (55)..(1620)

aaa aat ata aaa gca ctt gtg gcc ttt cat agc act gcc ttg gat aag
Lys Asn Ile Lys Ala Leu Val Ala Phe His Ser Thr Ala Leu Asp Lys
5 10 15

gaa att aca tca gca aat tat gct ggt gtc tgt aca tca tct gtg att 153 Glu Ile Thr Ser Ala Asn Tyr Ala Gly Val Cys Thr Ser Ser Val Ile aaa gaa gaa aac att gat caa cca qga tac tgt tat ctc tca cct gat 201 Lys Glu Glu Asn Ile Asp Gln Pro Gly Tyr Cys Tyr Leu Ser Pro Asp gga aag aga aaa act atg ctc tgc ttg gct tgt gga caa tcc atg aga 249 Gly Lys Arg Lys Thr Met Leu Cys Leu Ala Cys Gly Gln Ser Met Arg 55 60 297 aca gag aaa gga ctg aaa caa ttg ctt cca ggg gtt cca ttc ctc tgt Thr Glu Lys Gly Leu Lys Gln Leu Leu Pro Gly Val Pro Phe Leu Cys att tca ggc acc aag act cag aag ccc ttc tta caa ggg ccc ttc aag 345 Ile Ser Gly Thr Lys Thr Gln Lys Pro Phe Leu Gln Gly Pro Phe Lys gtc atc agt gtg gct gag gtt gat ttg tcg tgt gac aag gct gaa aaa 393 Val Ile Ser Val Ala Glu Val Asp Leu Ser Cys Asp Lys Ala Glu Lys 100 105 act cta agt tac tac caa gca cgt cta ttg tct tta cgg atg aag acc 441 Thr Leu Ser Tyr Tyr Gln Ala Arg Leu Leu Ser Leu Arg Met Lys Thr 115 120 tgc acg caa gct gca tct cac agt ggc atg gca gcc aca cac cag aag 489 Cys Thr Gln Ala Ser His Ser Gly Met Ala Ala Thr His Gln Lys 135 140 537 gca gtg aaa ata att gca tac aaa aat ggg gat ggg tat cgt aat ggg Ala Val Lys Ile Ile Ala Tyr Lys Asn Gly Asp Gly Tyr Arg Asn Gly 150 155 aag tta att gtg gct gga aca ttc ccc atg ctt ctt aca gaa tgc acg 585 Lys Leu Ile Val Ala Gly Thr Phe Pro Met Leu Leu Thr Glu Cys Thr 165 170 175 gaa caa ctt ggg ctt gcc aga gca gcc tcc aaa gta tat acc aaa gat 633 Glu Gln Leu Gly Leu Ala Arg Ala Ala Ser Lys Val Tyr Thr Lys Asp 180 185 gga acc cca atc ttt acc ttg cgt gat ttg gtt tta tgg gct cta gat 681 Gly Thr Pro Ile Phe Thr Leu Arg Asp Leu Val Leu Trp Ala Leu Asp 195 200 729 gaa tcc ttt ctc cag aga gac tct gag aaa caa aag caa gat gca gct Glu Ser Phe Leu Gln Arg Asp Ser Glu Lys Gln Lys Gln Asp Ala Ala 210 215 220 225 777 cct gtt gga aaa gaa cag ata att gtt gaa agt atg gaa gaa aat cca Pro Val Gly Lys Glu Gln Ile Ile Val Glu Ser Met Glu Glu Asn Pro 230 235 aga atg aaa gtg aaa aac aga tta ttt gca aaa tct gtg aca tcc gat 825

Arg	Met	Lys	Val 245	Lys	Asn	Arg	Leu	Phe 250	Ala	Lys	Ser	Val	Thr 255	Ser	Asp	
_	_	-			gac Asp	_		_						_		873
		_			gtg Val		-		-							921
-	_	_		_	gaa Glu 295					_					_	969
					gat Asp											1017
					gta Val											1065
					cag Gln											1113
-			_	-	att Ile			_	_			_				1161
-				_	atc Ile 375		_	_	_							1209
					ata Ile											1257
					gtg Val											1305
-				_	tgg Trp							-	_		-	1353
_			_		aaa Lys	-				-	_	-	_			1401
	_				att Ile 455	_			_	_			_	_	_	1449
					atg Met											1497

	470	475	480
	gag atc aga gca aat Glu Ile Arg Ala Asn 490		
	gcc aca gac att gtg Ala Thr Asp Ile Val 505		
	cat ctc cac aat taa His Leu His Asn * 520	ctcct atcagaacca tcg	gattttc 1645
tgctgtattt ttctg	ggaaag aaaactttct tta	eccactt ataaacagaa g	actgtgaca 1705
agaaggccaa ttat	ttccat cgctgaagac tct	aaatttg gcaaatcttc t	aaataacaa 1765
tcctgcatag ttta	ttaaaa aaaattagtc gta	aaattta teetteaaaa a	tctgcattt 1825
taaataaacc ctgad	cagtga tttctcaaga ctg	taaagat attagtctga g	aatgcaact 1885
ctaacagact gctct	tgggca tettttetet ttg	ccttggc caggcctctc a	gaattgagt 1945
gagcgtgtga ctcca	atttgc acagtgggac aga	tgagtac aactgaaata a	aaagtggag 2005
gcctctgcaa aaaat	caaaaa aaaaaaa		2032
<210> 6 <211> 1357 <212> DNA <213> Homo <220> <221> CDS <222> (39) <400> 6	(1148)		
acactcgaac ctcat	cacgec agettggeae gag	gcgcg atg tgg agt Met Trp Ser 1	
	tcc ggg ggt tgg ttt Ser Gly Gly Trp Phe: 10		
	aaa gct gcg cgt ccc Lys Ala Ala Arg Pro : 30		
	ctc agt ggg act cta Leu Ser Gly Thr Leu 45		

			-			tgg Trp 60						_				245	
						agt Ser							_	_		293	
						gtc Val										341	
						tgg Trp										389	
						agg Arg						_			_	437	
						cag Gln 140										485	
						ggt Gly										533	
						att Ile										581	
						aaa Lys										629	
						tcc Ser										677	
						gta Val 220					_					725	
						cag Gln										773	
						aca Thr										821	
						gag Glu										869	
act	cat	aca	tgg	gag	aag	ttt	gtt	tca	cct	gaa	aca	cta	gag	agc	att	917	

Thr His Thr Trp Glu Lys Phe Val Ser Pro Glu Thr Leu Glu Ser Ile 280 285 290													
ctg gaa tca aat ggt ctg tca gtt caa aca gtg gta gga atg ctc tat Leu Glu Ser Asn Gly Leu Ser Val Gln Thr Val Val Gly Met Leu Tyr 295 300 305	965												
aac ccc ttc tca ggt tac tgg cat tgg agt gaa aat acc agc ctt aac Asn Pro Phe Ser Gly Tyr Trp His Trp Ser Glu Asn Thr Ser Leu Asn 310 325	1013												
tat gca gct cat gct gtg aaa tcc agg gtc cag gaa cac cca gcc tct Tyr Ala Ala His Ala Val Lys Ser Arg Val Gln Glu His Pro Ala Ser 330 335 340	1061												
gct gag ttt gtt tta aag gga gaa aca gaa gag ctc caa gct aat gcc Ala Glu Phe Val Leu Lys Gly Glu Thr Glu Glu Leu Gln Ala Asn Ala 345 350 355	1109												
tgc acc aat cca gct gtg cat gaa aag ctg aag aaa tga attgtttctg Cys Thr Asn Pro Ala Val His Glu Lys Leu Lys Lys * 360 365 370	1158												
agaactatag taatatggct tggatatctg atgttttcaa atacaagaaa tgtacaattt	1218												
atcetttgag agagaateat gaagaaaaga aggteaataa aaagggetaa aacettggae													
aaaagttttt gttatttcgt ctaatagcta ctttcaaggg attctgtgaa taaaaagttt													
tgtcaagaaa aaaaaaaaa													
	1338 1357												
<pre>tgtcaagaaa aaaaaaaaa <210> 7</pre>													
<pre>tgtcaagaaa aaaaaaaaa <210> 7</pre>													
<pre>tgtcaagaaa aaaaaaaaa <210> 7</pre>													
<pre>tgtcaagaaa aaaaaaaaa <210> 7</pre>	1357												
tgtcaagaaa aaaaaaaaaa <pre></pre>	1357												
tgtcaagaaa aaaaaaaaa <pre></pre>	60 120												

Glu 20	Ala	Ala	Glu	Lys	Val 25	Ser	Trp	Ile	Lys	Asp 30	Lys	Leu	Leu	His	Ile 35	
		_		_		-	-		-	_	gta Val					320
_	-			_				-	-		gaa Glu		_	_		368
_						_	_	_	-		aat Asn	_	_		_	416
		_	_		-	_	_		_		cgg Arg 95	-			_	464
_		_	-	_		_	_				gag Glu			_		512
_	_				_	-			_	_	aat Asn	_		-		560
		_		-			_				cag Gln	-			_	608
_						_	_				att Ile					656
	_			~	-		_		-	-	ata Ile 175	_				704
											gag Glu					752
-	-	-	_		_					_	tca Ser	_	_		_	800
				_	_		_				ggg ggg					848
											cgt Arg					896
		_	-	_							tcg Ser					944

						tta Leu		-		-	-		-			992
-	_	-	-	-		caa Gln			-							1040
_		_			-	ata Ile	-	_								1088
						act Thr										1136
_			_			aca Thr 330										1184
				-		agt Ser	_		-	-			-			1232
				~		ttg Leu					_		-		-	1280
_		_			_	aaa Lys		-	_	_						1328
						agg Arg										1376
			_	_		gtt Val 410			-							1424
				_	-	agg Arg		_	_		_					1472
			_			acc Thr							_	_		1520
~		-	_	_		gag Glu		_			-			-	-	1568
	_	_	_		_	gct Ala		_	_		_	-		-		1616

_		_			-					-	cag Gln 495		_		_		1664
_		_			-		-			_	agg Arg	_			-		1712
-	_	-		_	-			_		_	ctc Leu		_				1760
_				_	_	-	_		_		gtg Val	_		_	_		1808
											agt Ser						1856
		_	_			_	~				tta Leu 575			_	•		1904
											cta Leu						1952
-			~			•	_	-	-		cgt Arg	-					2000
-				-		-	-		_		aag Lys		-				2048
-		-		-	_	-	-	-			atc Ile	_			_		2096
_	_	_			_	_		_			gaa Glu 655		_				2144
_	-	_	-	-		-	-			_	aaa Lys	_	_	_	_		2192
											atg Met					:	2240
		_	_	-		-		-	-	_	tat Tyr			-		:	2288

	aga Arg			_								_				2336
	gca Ala 725	_		-				_	_						-	2384
	agc Ser															2432
_	aac Asn						_			_	_	_			-	2480
_	gaa Glu		-	_	_	_		_	-							2528
	gtc Val			_	_			_		_	_		_	_		2576
	tct Ser 805	_	_	_		-					_	_	-		-	2624
	aga Arg		_		_	_		_								2672
_	gag Glu		-	-	_	_				_						2720
_	gga Gly	_	_		_		_		-			-				2768
•	gat Asp							_	~ ~		_	_	_	_		2816
	cag Gln 885		_				_	_	_			_		_		2864
	ctg Leu		-		_		_	-	_		-	-	_			2912
-	tta Leu			taa * 920	aaat	gcat	itt g	gcaaa	ggga	ig aa	aatg	gaagg	g cca	aaca	agaa	2967
gcag	ggcto	cca g	ctto	tgca	aa aa	actt	ggat	tca	caaa	tgt	ccct	gaac	ag a	aaat	gaagc	3027

3087 tcacttcaga acacacactc tctgccttga aaactaaaga gactattact tccttttcac 3147 atgaccacaa gtcctctgat ggaaatgtac agcagaaact cttgagagag aggctaaaag caactctgtt ctcccccttc ccctagactt ttcttacgaa aagtcaataa ttaagcaaat 3207 3267 tgcttaacac ttggttccag ttcctgccta tctggagttt aaatgcgtaa tacaccatta atttccacgc tgcagttttt attttaaaga aagtaacaag atgtctttac actgacactg 3327 3387 aaaattcatc cattttagag ccaggaattc ccatgttaca caggaaaaaa tagaagtcta 3447 ctgaattaat tttttaaaag aaaagagatc agattaaata tttctttgtt tttccttttg gaaactttta tgtataattc tttctgcctg cctacttttc tgcaaaaatg agatgtacag 3507 atttcggttc cctgctatga aaagtgatgt ggtagcaatt ttataaatgt tgctttctga 3567 tttttatcag agtgagaaaa ttaaaattat tgatttgcaa gtagtaaaca gttcatattt 3627 3687 tgatttcccc tcattttagt ttaatataat ttgcaataaa tgtacatatt gttgtttgtt tcataaagca tatcacttta aaatggtttt tactcctgtg attatgttgg aatatttgga 3747 attttaaagg agtaaagact gtccagcatt tggttttata atgtttgtca ccagattttt 3807 attaatgtaa aaaaaatcaa tttttaaaaa atagttggac tttggcagct tttaaggaaa 3867 gttggaggtg ttttaggatt gctatcaatt ttcagcattg tgctatttgg aaataagtgt 3927 3987 tttgcttttg tctgatggtc tgggctcatt tttatgttta ttttagaaaa ctgttgcatc aatatattat gtttcttggc attgttcagc ataggtaatg tgtgcacttt atgtgtacac 4047 4107 ataatcatat ttaagttttt tgcataaaat aaatgcttct agatgtcatg gcagtctttt 4167 taatcttttt atcatatgct ttcttgtgaa ttttttcatg ttaaagagct aaagtcataa 4227 catgattaca gtcaactctc cattatctat ataaaatagt gactaagcct caggttttta 4287 attttgtgat aacaaaataa cgaaggcatg taagacctga ttctggagga acatgaaatt tgtcttttct catgtccaga gttctatcct gccccactg tccactgtag ggtcatccgc 4347 aaagccctag cagaatgtgc tcactccatt tccttacacg tttctagcat gggtcagagg 4407 4467 aaacaacatt tgtgttataa cttcgtcttg ataggctgta gtgtacatgg gatgtaaaac 4527 aaacaagtgt atcaaaggtg gatgattctg ttagagtgaa gtttgagagt aaatgtcact 4587 tacgtttctc atagataatc aagagttggc tgtgtattga ctgaaagatg ggtaattatt 4647 ttaaatatgc atttacacac atttaggtat cagaagatgc ttagggaaca atggatacca atgatagaaa atgatacctt tacaggggca gaaaaatccc cactcttcct tattgcctct 4707

4767 tcagaaccct ttagaaagta taaaatattg cctccaacat gctgaaaaag agtatctatg 4827 cataagtatc agagaagtcc ctcaagcaat cagtaggtgt gttctattta gagagagttt aaagttetet tageateaga caacttgatt eetaaggttt eeagtgtgte aecaacaaaa 4887 agtgcattga tagggacctt tgtctcttcc tccctttgat taattgcccg gcatcacagt 4947 ttactagatt accaagtgtt acatcatatt aaataaaatg tagcagaacc atctgcatca 5007 atatattcct gtttagattt ttgcaggaga gaagttaaaa ggatttgctc cttgtatgat 5067 gtaagtggcc caccccaatt ttgtaacatg atgcaagtgt ctggcactaa gggaagcaag 5127 agtagggttg tggaaagacc aagctgatgg ggagggactt gtttacggga atttttttag 5187 ttttcctttt caaaggaaaa cattaaaatc ccttaggaat ttggtattca catctcagag 5247 aactacaaca caaaagtgca gacttatatt tgagaattaa tgttaaccct ttgtgtctag 5307 tttgaagctt cttgtatttg tctaaaacaa caagccagaa ttttgtatct cctttgataa 5367 aaagtgtgta taatgtaaag tagttttgca tattcttgtg ctgcacatgg gctgaatttt 5427 taaatttttt ttaaaaactt gaagcagaac cttgtaattt gtgtaaatga caagtgtaaa 5487 5547 atcctaccat aaaatgctaa aaatatgcac tgtttcaaat aaaaccaaga aatgcagcat 5562 taaaaaaaa aaaaa

<210> 8 <211> 3360 <212> DNA

<213> Homo sapiens

<220> <221> CDS

<222> (307)..(2334)

<400> 8
cattttctaa gcctcacctc ctccgccagg tgggtctgat aatgtgtccc gcgtcgggtc 60
actgtgaggc agtgtggcac tgtgtctggg tgaggcctct cctgaggccg actgtccagg 120
ttcaaaccct tcggcaccgt gtcctggctg aggaggacgg cgtccctgac acctgacccc 180
ttctgtccca cacacctcac ctgcctgcag agttgccttc tcctgcacgc ctctctttt 240
ctcaccaagc ctgctcctca ttccctggag tgcccctgag cccatgtgtc cgccctcctg 300
cagaac atg gag aac ttc acc ctg gca agg gac gag aag ggg aat gtc
Met Glu Asn Phe Thr Leu Ala Arg Asp Glu Lys Gly Asn Val

	_	_	_		_	ggc Gly	_	_			_	_			_	396
		-	_		_	gat Asp								-	-	444
_					_	ccg Pro	-		_		_		_		_	492
		-			-	tcc Ser				-		-		-		540
						cct Pro 85										588
_	_	_				ttc Phe		-				_	-			636
						gtg Val										684
						gtg Val										732
-	-	-		_	-	tca Ser			-	-						780
	_	_	_	-		acg Thr 165	-	_		_		_	_		_	828
						gtc Val										876
	_	~ ~		_	•	tgt Cys	_			_	_	_		_	-	924
						aag Lys										972
					_	gtg Val								_		1020
acc	aac	agt	gcc	cgg	gaa	agg	aag	atc	aac	tca	tcc	ctg	cag	ctc	cca	1068

Thr	Asn 240	Ser	Ala	Arg	Glu	Arg 245	Lys	Ile	Asn	Ser	Ser 250	Leu	Gln	Leu	Pro	
~	_		_		ttc Phe 260		_	_			-	-	_		_	1116
					ctg Leu											1164
	-	-		-	gtc Val			_					-			1212
	_				gac Asp					_	-		_			1260
					att Ile			_	_				_		_	1308
					ctc Leu 340											1356
_			_		gta Val	-	_			-	-		_	_	_	1404
		-	_		gac Asp	_										1452
	_			_	tgc Cys	_		-	-			_		_	_	1500
					atc Ile											1548
	_	_			tcg Ser 420	_			_			_				1596
					caa Gln											1644
					ctc Leu											1692
		-		-	aat Asn	-	_	_		-						1740

ggg gac ctg ctg ctg ggc acc caa cag ctg ggg gag ttc cag tgc Gly Asp Leu Leu Val Gly Thr Gln Gln Leu Gly Glu Phe Gln Cys tgg tca cta gag gag ggc ttc cag cag ctg gta gcc agc tac tgc cca Trp Ser Leu Glu Glu Gly Phe Gln Gln Leu Val Ala Ser Tyr Cys Pro gag gtg gtg gag gac ggg gtg gca gac caa aca gat gag ggt ggc agt Glu Val Val Glu Asp Gly Val Ala Asp Gln Thr Asp Glu Gly Gly Ser gta ccc gtc att atc agc aca tcg cgt gtg agt gca cca gct ggt ggc Val Pro Val Ile Ile Ser Thr Ser Arg Val Ser Ala Pro Ala Gly Gly aag gcc agc tgg ggt gca gac agg tcc tac tgg aag gag ttc ctg gtg Lys Ala Ser Trp Gly Ala Asp Arg Ser Tyr Trp Lys Glu Phe Leu Val atg tgc acg ctc ttt gtg ctg gcc gtg ctg ctc cca gtt tta ttc ttg Met Cys Thr Leu Phe Val Leu Ala Val Leu Leu Pro Val Leu Phe Leu ctc tac cgg cac cgg aac agc atg aaa gtc ttc ctg aag cag ggg gaa Leu Tyr Arg His Arg Asn Ser Met Lys Val Phe Leu Lys Gln Gly Glu tgt gcc agc gtg cac ccc aag acc tgc cct gtg gtg ctg ccc cct gag Cys Ala Ser Val His Pro Lys Thr Cys Pro Val Val Leu Pro Pro Glu acc ege eca etc aac gge eta ggg eec eet age acc eeg etc gat eac Thr Arg Pro Leu Asn Gly Leu Gly Pro Pro Ser Thr Pro Leu Asp His cga ggg tac cag tcc ctg tca gac agc ccc ccg ggg gcc cga gtc ttc Arg Gly Tyr Gln Ser Leu Ser Asp Ser Pro Pro Gly Ala Arg Val Phe act gag tca gag aag agg cca ctc agc atc caa gac agc ttc gtg gag Thr Glu Ser Glu Lys Arg Pro Leu Ser Ile Gln Asp Ser Phe Val Glu gta tcc cca gtg tgc ccc cgg ccc cgg gtc cgc ctt ggc tcg gag atc Val Ser Pro Val Cys Pro Arg Pro Arg Val Arg Leu Gly Ser Glu Ile cgt gac tct gtg gtg tga gagctg acttccagag gacgctgccc tggcttcagg Arg Asp Ser Val Val ggctgtgaat gctcggagag ggtcaactgg acctccctc cgctctgctc ttcgtggaac acgaccgtgg tgcccggccc ttgggagcct tggggccagc tggcctgctg ctctccagtc

aagtagcgaa gctcctacca cccagacacc caaacagccg tggccccaga ggtcctggcc 2550 2610 aaatatgggg gcctgcctag gttggtggaa cagtgctcct tatgtaaact gagccctttg tttaaaaaac aattccaaat gtgaaactag aatgagaggg aagagatagc atggcatgca 2670 gcacacagg ctgctccagt tcatggcctc ccaggggtgc tggggatgca tccaaagtgg 2730 2790 ttgtctgaga cagagttgga aaccctcacc aactggcctc ttcaccttcc acattatccc gctgccaccg gctgccctgt ctcactgcag attcaggacc agcttgggct gcgtgcgttc 2850 tgccttgcca gtcagccgag gatgtagttg ttgctgccgt cgtcccacca cctcagggac 2910 cagagggcta ggttggcact gcggccctca ccaggtcctg ggctcggacc caactcctgg 2970 3030 acctttccag cctgtatcag gctgtggcca cacgagagga cagcgcgagc tcaggagaga 3090 tttcgtgaca atgtacgcct ttccctcaga attcagggaa gagactgtcg cctgccttcc teegttgttg egtgagaace egtgtgeece tteecaccat atecaccete geteeatett 3150 tgaactcaaa cacgaggaac taactgcacc ctggtcctct ccccagtccc cagttcaccc 3210 tccatccctc accttcctcc actctaaggg atatcaacac tgcccagcac aggggccctg 3270 aatttatgtg gtttttatac attttttaat aagatgcact ttatgtcatt ttttaataaa 3330 3360 gtctgaagaa ttactgttta aaaaaaaaaa

<210> 9 <211> 2582 <212> DNA <213> Homo sapiens

<213> HOMO Sapiens

<220> <221> CDS <222> (44)..(1168)

tcg tca gag gag agc tgc gat agt ttt gac tca cta gag tca ggg aaa 103 Ser Ser Glu Glu Ser Cys Asp Ser Phe Asp Ser Leu Glu Ser Gly Lys 5 10 15 20

cag gtc gcg gag tca gat ttg agt gat gat ggc aaa gca tct ttg gtg
Gln Val Ala Glu Ser Asp Leu Ser Asp Gly Lys Ala Ser Leu Val
25 30 35

agc gag gaa gag gaa gat gaa gaa gat aag gct acc cct aga aga 199

Ser	Glu	Glu	Glu 40	Glu	Asp	Glu	Glu	Glu 45	Asp	Lys	Ala	Thr	Pro 50	Arg	Arg	
					agt Ser											247
		_	_	_	gcc Ala				-			_				295
					gca Ala 90											343
					tgt Cys											391
			_	_	gac Asp			_	_		_		_		_	439
	_	_			acc Thr	-		_	_					_		487
-	-		_		gaa Glu											535
_					gct Ala 170			_	_					_		583
_					acg Thr		_	_					_			631
					gct Ala											679
		_	-		tac Tyr	_		_	_		_				~~~	727
	_		~ ~		aga Arg	_	_		_							775
					gaa Glu 250											823
					gat Asp											871

	265	270	275	
	r Ile Asp Thr Lys		cgg aac cag ggt tgc Arg Asn Gln Gly Cys 290	919
			ctg cgg aac cgc tat Leu Arg Asn Arg Tyr 305	967
		Leu Asp Pro A	gat tgg gtg tgt ccc Asp Trp Val Cys Pro 320	1015
			cgg aag cgt gac ggc Arg Lys Arg Asp Gly 340	1063
			aag ttt tat ggt tat Lys Phe Tyr Gly Tyr 355	1111
	Glu Tyr Leu Glu	-	aag gag ctg gta gaa Lys Glu Leu Val Glu 370	1159
gac aat taa gag Asp Asn * 375	ggaaa acaaacagaa (ccagccacct cad	ccatagag tactccaaca	1215
agacatgcat acca	attggtg cctaagatt	ttttacagtt (gtgtttttat acagaaattc	1275
tttgtagaaa ttac	ctatttt ttgttaaaga	a ttgtttatat g	gcttacaaag atttctcagg	1335
aagacagcag agca	agaggaa tctatataga	a tgtatgcaca (gacctgtctg tatgctgaac	1395
tttgttaaaa atat	ctgcca gttattaaa	a agcacagttt a	aaatggggtg gggttaaagt	1455
tcaggtaagt aagt	tagaga gaaaacatt	g tatgatcagc t	tcctgcactt gatctatctt	1515
tggcttccca aaca	agtaact cactccaggo	c caagtgtgcc t	ttagcacgag tgaccacagt	1575
ttaatagacc acac	cacateg tttaacetge	c tcttggtcat t	tggaaattta cactgaacaa	1635
agtgcaatta actg	gtagaac agttttatt!	ttattaaaac t	ttgactgaac aaaaggggac	1695
catcaacatt gtag	gacactg gaggccttad	c agagtgctag d	cctcttcctt caggactcac	1755
ctggggcctg ctgc	cttttat attttgaaag	g agtttaaggg d	ctaataattt aatttgttgt	1815
ttgttaaaaa ttaa	aatctc cgttctttc	ggctgcattg o	cttttgcatg ttcacatatg	1875
atgtactttt atga	atgtact tttttttt	tgagatggag t	tettgttetg ttgeecagga	1935
gggagtgcag tggt	gcaacc teggeteact	gcaacctttg (cctcctaggt tcaagtgatc	1995
tcctacctct tgac	rtactoo gattacagto	c atateceaca o	cgctcagccc tgagttagtt	2055

tctagtattt ttttctgact ttcactctaa ggatagcgtt gaaaaaagaa tgcacgtgtg 2115 2175 agttactaaa aagttagaat aatgtgcatg ggaacagtgc agcaacatgc tagaaaatcc tcactgcact ccagcagagg ctagaggaat gccagtgtta ccttacgctt ctagaagcag 2235 agccactcca gccagaaccc attttgcagt cttctcttcg ctcttcagcc tgaaggtcca 2295 gatgtagetg gggcctctca gtttggttct atacacaggg cactcgtagg tctgtttggt 2355 ttcttgtctg tccacggggg tggcttttgc aaaaatgacc ggcatagggc atgccagctc 2415 cttgagacgg gcttcaacaa tggttcctgc ttgggtgtcc cagcgggcgc ctatggcaaa 2475 aacacagcgg ttgcaattgt gtggcagctt gctactaatg ataatgatca agttgtttga 2535 2582 tgcaataaac attcaacatt ctggttttgt cataaaaaaa aaaaaaa

<210> 10 <211> 2383 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (402)..(2084)

<400> 10 accaactcaa agetetgega gteetggaeg etggtetgee ttettggete accetggaag 60 gtggacgctg gcccacaca tcccctctta aagacgcagg ccgatagcca gcagatcctg 120 gggcttgctg gccccaagtg agttgtcagg gtttcagagg acaccagtca tggcaacccc 180 240 agetecatgg etgecaeaca ggeetggget teccaggaet geeteettet tgttegetta tgtagatgaa aaatgaggta acggcactcc cctgccccac cctcctccca gaagtgccca 300 gggtgtaaat gcaatagctt gtgtgaagtc cactggaacc caggctcacc aagtcagtct 360 taaccaacac aggccccagc acccgcagag cagacactgc g atg aca acg gac 413 Met Thr Thr Asp 1 461 gac aca gaa gtg ccc gct atg act cta gca ccg ggc cac gcc gct ctg Asp Thr Glu Val Pro Ala Met Thr Leu Ala Pro Gly His Ala Ala Leu 5 20 10 15 509 gaa act caa acg ctg agc gct gag acc tct tct agg gcc tca acc cca Glu Thr Gln Thr Leu Ser Ala Glu Thr Ser Ser Arg Ala Ser Thr Pro 25 30

gcc ggc ccc att cca gaa gca gag acc agg gga gcc aag aga att tcc

557

Ala	Gly	Pro	Ile 40	Pro	Glu	Ala	Glu	Thr 45	Arg	Gly	Ala	Lys	Arg 50	Ile	Ser	
					agg Arg											605
~ ~	_		_		tcc Ser	-				-	-	_		_		653
		_		_	acc Thr 90		_	-					_	_		701
	_	_			gac Asp			_		_	-					749
					atg Met											797
					tcc Ser											845
		_			ccg Pro			-								893
					gtc Val 170											941
					ccc Pro											989
	_	_	-		tcc Ser	-										1037
					agc Ser											1085
					tca Ser											1133
					tca Ser 250											1181
					act Thr											1229

	265		270	275
_	-	-	agc atc cct gg Ser Ile Pro Gl	
			aag gcc tcg tc Lys Ala Ser Se 30	er Thr Ser Asp
_		_	gca aaa cca ca Ala Lys Pro Hi 320	
-			aca gcc ggc ac Thr Ala Gly Th 335	
			cca ctc ccc ac Pro Leu Pro Th 350	
			gcc acg acc ct Ala Thr Thr Le	
			gaa gaa acc to Glu Glu Thr Se 38	er Ala Leu Ser
			tca gga gca gc Ser Gly Ala Al 400	
			aca act tcc tt Thr Thr Ser Ph 415	
_	_		gcc gcc ctc aa Ala Ala Leu Ly 430	-
			gca acc aag gg Ala Thr Lys Gl	
			cct ccg act ac Pro Pro Thr Th 46	nr Thr Asn Ser
		-	aag atc aca ac Lys Ile Thr Th 480	
	_	_	ccc acg act gc Pro Thr Thr Al 495	

ccg acc aca gac gtg agt gca ggt gaa aat gga ggt ttc ctc ctc ctg Pro Thr Thr Asp Val Ser Ala Gly Glu Asn Gly Gly Phe Leu Leu 505 510 515	1949
cgg ctg agt gtg gct tcc ccg gaa gac ctc act gac ccc aga gtg gca Arg Leu Ser Val Ala Ser Pro Glu Asp Leu Thr Asp Pro Arg Val Ala 520 525 530	1997
gaa agg ctg atg cag cag ctc cac cgg gaa ctc cac gcc cac gcg cct Glu Arg Leu Met Gln Gln Leu His Arg Glu Leu His Ala His Ala Pro 535 540 545	2045
cac ttc cag gtc tcc tta ctg cgt gtc agg aga ggc taa cggacatcag His Phe Gln Val Ser Leu Leu Arg Val Arg Arg Gly * 550 560	2094
ctgcagccag gcatgtcccg tatgccaaaa gagggtgctg cccctagcct gggcccccac	2154
cgacagactg cagctgcgtt actgtgctga gaggtaccca gaaggttccc atgaagggca	2214
gcatgtccaa gcccctaacc ccagatgtgg caacaggacc ctcgctcaca tccaccggag	2274
tgtatgtatg gggaggggt tcacctgttc ccagaggtgt ccttggactc accttggcac	2334
atgttctgtg tttcagtaaa gagagacctg atcacccaaa aaaaaaaaa	2383

<210> 11 <211> 2098 <212> DNA <213> Homo sapiens <220>

<221> CDS <222> (402)..(1799)

<400> 11

accaactcaa agctetgcga gteetggacg etggtetgee ttettggete accetggaag 60 gtggacgctg gccccacaca tcccctctta aagacgcagg ccgatagcca gcagatcctg 120 gggcttgctg gccccaagtg agttgtcagg gtttcagagg acaccagtca tggcaacccc 180 240 agctccatgg ctgccacaca ggcctgggct tcccaggact gcctccttct tgttcgctta 300 tgtagatgaa aaatgaggta acggcactcc cctgccccac cctcctccca gaagtgccca 360 gggtgtaaat gcaatagctt gtgtgaagtc cactggaacc caggctcacc aagtcagtct 413 taaccaacac aggccccagc acccgcagag cagacactgc g atg aca acg gac Met Thr Thr Asp 1 461 gac aca gaa gtg ccc gct atg act cta gca ccg ggc cac gcc gct ctg

Asp 5	Thr	Glu	Val	Pro	Ala 10	Met	Thr	Leu	Ala	Pro 15	Gly	His	Ala	Ala	Leu 20	
-			_	_	_	_						-		acc Thr 35		509
_					_	_					_	_		att Ile		557
	_	_				-								ttc Phe	_	605
														agc Ser		653
														gat Asp		701
	_	-			_									gaa Glu 115		749
_	_					-		_		-	-			tcc Ser		797
~	~	~		_				-	_	_			-	ggc Gly		845
		_												act Thr		893
														aat Asn		941
_			_		-		_			_				gcc Ala 195		989
														acc Thr		1037
_														atc Ile		1085
	_		-		-			_			_			aca Thr		1133

235 240 230 tca gct gca cct cat gcc acg gtt ggg acc cca ctc ccc act aac agc 1181 Ser Ala Ala Pro His Ala Thr Val Gly Thr Pro Leu Pro Thr Asn Ser 250 1229 gcc aca gaa aga gaa gtg aca gca ccc ggg gcc acg acc ctc agt gga Ala Thr Glu Arg Glu Val Thr Ala Pro Gly Ala Thr Thr Leu Ser Gly 270 gct ctg gtc aca gtt agc agg aat ccc ctg gaa gaa acc tca gcc ctc 1277 Ala Leu Val Thr Val Ser Arg Asn Pro Leu Glu Glu Thr Ser Ala Leu 280 285 tct gtt gag aca cca agt tac gtc aaa gtc tca gga gca gct ccg gtc 1325 Ser Val Glu Thr Pro Ser Tyr Val Lys Val Ser Gly Ala Ala Pro Val 295 300 1373 tcc ata gag gct ggg tca gca gtg ggc aaa aca act tcc ttt gct ggg Ser Ile Glu Ala Gly Ser Ala Val Gly Lys Thr Thr Ser Phe Ala Gly 310 315 age tet get tee tee tae age eec teg gaa gee gee ete aag aac tte 1421 Ser Ser Ala Ser Ser Tyr Ser Pro Ser Glu Ala Ala Leu Lys Asn Phe 330 335 acc cct tca gag aca ccg acc atg gac atc gca acc aag ggg ccc ttc 1469 Thr Pro Ser Glu Thr Pro Thr Met Asp Ile Ala Thr Lys Gly Pro Phe 345 350 1517 ccc acc agg gac cct ctt cct tct gtc cct ccg act aca acc aac Pro Thr Ser Arg Asp Pro Leu Pro Ser Val Pro Pro Thr Thr Thr Asn 360 365 age age ega ggg acg aac age ace tta gee aag ate aca ace tea geg 1565 Ser Ser Arg Gly Thr Asn Ser Thr Leu Ala Lys Ile Thr Thr Ser Ala 375 380 1613 aag acc acg atg aag ccc cca aca gcc acg ccc acg act gcc cgg acg Lys Thr Thr Met Lys Pro Pro Thr Ala Thr Pro Thr Thr Ala Arg Thr 390 395 agg ccg acc aca gac gtg agt gca ggt gaa aat gga ggt ttc ctc ctc 1661 Arg Pro Thr Thr Asp Val Ser Ala Gly Glu Asn Gly Gly Phe Leu Leu 405 410 1709 ctg cgg ctg agt gtg gct tcc ccg gaa gac ctc act gac ccc aga gtg Leu Arg Leu Ser Val Ala Ser Pro Glu Asp Leu Thr Asp Pro Arg Val 425 gca gaa agg ctg atg cag ctc cac cgg gaa ctc cac gcc cac gcg 1757 Ala Glu Arg Leu Met Gln Gln Leu His Arg Glu Leu His Ala His Ala 440 1806 cet cae tte cag gte tee tta etg egt gte agg aga gge taa eggacat Pro His Phe Gln Val Ser Leu Leu Arg Val Arg Arg Gly 455 460

<210> 12 <211> 636 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (394)..(618)

<400> 12

60 actagtccag tgcggcggaa ttcgctggct gcacccctca aaccatgaag ctgagaagca cccactttac aagtgcagca tccggagagg aggctctcat cagtgcaggc tcatccacac 120 cagccgtgtt ttggggactt aaggaggtca ttcgcgctca gaggctgtcc cgggcaccat 180 240 geggegtetg eeggggtett teteetgeee ageeteattt geetgtgeat geacttggtt atccaacaag agctagaaca ttctgggaga agcccacggt ggctccttgc cgggctggtc 300 360 agactccgtg gttgtcctga gacacccacc ctctgctgcc ctgagggtgg cccaggaaag tttgtgtgac cttccacacg gatcccctgg gac atg cag gtg tgg ctc ttg aca 414 Met Gln Val Trp Leu Leu Thr 1 ctg gaa agg ctg agg gtt ctg ccc aaa cct agg agt gaa ttc gac ttc 462 Leu Glu Arg Leu Arg Val Leu Pro Lys Pro Arg Ser Glu Phe Asp Phe 10 15 ttt ccc atc tca cac aca cac ccg aga cgt cac ccg aat cca cgt att 510 Phe Pro Ile Ser His Thr His Pro Arg Arg His Pro Asn Pro Arg Ile 25 30 35 tcc cac gtt cgg ctg cca ctg cct ccc agg tgg gct ttg cag gac cca 558 Ser His Val Arg Leu Pro Leu Pro Pro Arg Trp Ala Leu Gln Asp Pro 55 50 40 45 606 cca tcg cat ccc ctc tca ctc cac aga aaa ctc gtg ggg ccg tgt tcc Pro Ser His Pro Leu Ser Leu His Arg Lys Leu Val Gly Pro Cys Ser 70 60 65 636 ccc tgc cac tga ccacgctttc cttgcaga

<210> 13 <211> 2905 <212> DNA <213> Homo sapiens													
<220> <221> CDS <222> (314)(1279)													
<400> 13 cccttgtgcc tgcagggtcg acaggcaggg tcagtgtatg aggctttttg ggtgggtttt	60												
gggacaaact aggggatgca tggccctctc taggggtcat ccaatacccc agctctgacc	120												
agttgttccc ctgctagccc agttggcctc tgattttagg agaagccaga agtccagatt	180												
tttctgtgag ctctccttag ttgtccacat tggaagcaaa cttttaaatg ctgtgtatgc	240												
gtggcccaag caaaacacat ctggaggcca gattgaatcc acaggctgaa agcagtcaac	300												
caggcctgat gtc atg acc ctg tat cct ctc cac tgg cag gaa gag atg Met Thr Leu Tyr Pro Leu His Trp Gln Glu Met 1 5 10	349												
tca gga gaa agt gtg gtg agc tca gcg gtg cca gcg gct gct acc cgc Ser Gly Glu Ser Val Val Ser Ser Ala Val Pro Ala Ala Ala Thr Arg 15 20 25	397												
acc act tcc ttc aag ggc acg agc ccc agc tcc aaa tac gtg aag ctg Thr Thr Ser Phe Lys Gly Thr Ser Pro Ser Ser Lys Tyr Val Lys Leu 30 35 40	445												
aat gtg ggt gga gcc ctc tac tat acc acc atg cag acg ctg acc aagAsn Val Gly Gly Ala Leu Tyr Tyr Thr Thr Met Gln Thr Leu Thr Lys4550	493												
cag gac acc atg ctg aag gcc atg ttc agc ggg cgc atg gaa gtg ctc Gln Asp Thr Met Leu Lys Ala Met Phe Ser Gly Arg Met Glu Val Leu 65 70 75	541												
acc gac agt gaa ggc tgg atc ctc att gac cgc tgt ggg aag cac ttt Thr Asp Ser Glu Gly Trp Ile Leu Ile Asp Arg Cys Gly Lys His Phe 80 85 90	589												
ggt acg ata ctc aac tac ctt cga gac ggg gcg gtg cct tta ccc gag Gly Thr Ile Leu Asn Tyr Leu Arg Asp Gly Ala Val Pro Leu Pro Glu 95 100 105	637												
agc cgc cgg gag atc gag gag ctg cta gca gaa gcc aag tac tac cta Ser Arg Arg Glu Ile Glu Glu Leu Leu Ala Glu Ala Lys Tyr Tyr Leu	685												

	110					115					120					
														aaa Lys		733
														aag Lys 155		781
_									_		-		_	ttg Leu		829
		_	_								_			gac Asp	-	877
														cgc Arg		925
			-	_			_	_	_			-		atc Ile		973
														tgt Cys 235		1021
														gag Glu		1069
														tat Tyr		1117
														aca Thr		1165
														cgg Arg		1213
														gac Asp 315		1261
	cac His				tga *	gcaç	ggc a	aagag	gaccg	ga go	ccgcc	cctco	c tct	caco	egce	1315
CCC	ccactccct gccgtgctac acccagatcc tgtgcaggct gccgggcccc ttctgcttcc 1375															
cttg	ggago	cct ç	ggaga	atact	t tt	igtaa	acaag	g cca	agato	gatt	attt	tggt	tat t	gctt	gacaa	1435

ggcaaattga ttgtcttgac ccaggcgtat gacccctgtc gttgaacaag ctgtgtctaa 1495 1555 gatetetaet titeatgaga atetgagaet etitggagee aggetitete ggiteteaga ggaaaagtat gaatgagtgt gaagtgtatg tgagaacttt tgtttgcaat atttattttt 1615 1675 gtgggtgtcg acttcctatg tgggcttttt gggtgacact cccttaaggg ttcagtttga caattctgag agttgtcctg cagttggagg ccaccagagg tatctgagct ccctgcttcc 1735 1795 tatttcataa tcctccagcc ccagcaggtc cactcctggt tcctgtgtgt ttggcccggg 1855 cacaatcccc actgctttgc tagacgtgct ttctgccatg tggctttggg cctagagctt 1915 qttgataatt gcagcttgtg gcagtggaaa tatggctgaa tgagcgtcta aatcgttgag 1975 accagtgcaa ctttgggtgc aaggetttgt ttagggatca ageettttge cacettggge tggtctttgg cctggtgctc actgggaccc catatgtctg cgtaggagca gaactttcca 2035 tggcagtaag tgtccagctc tgtttctggt tctttcccca actccagccc cgtccagttg 2095 2155 ttctcctgat tgacccgact ccactccagg aaggccatct gaccctgtga caggcatagc tcataaacta cccctccctg ggatcccgct cctcttcagc ctccttcccc atgaagctgg 2215 gctaactttc taagtcattt tgcttagaaa ttcagtgtgg cccataccct ttgtcctccc 2275 agcctggcat ccaggcaggg acaccctcac accaccagcc ccagggagct tccctgctat 2335 aaacacagac ccccttgtct ttgcctctga tttttacaca gtgtagagtg gccagcagtg 2395 aacaggttga ggatgtgcgg gtagatagat aactttgggt ctggtttgtg tctgtgttca 2455 tgtttgttta agggatatgt gtgactgtgg gtggggacgt gtgcttgtgg ggcacaggtg 2515 2575 gcccctgctg gagcccggct gggcgcagcg cctatgtagg acgggtgttc tcagtgacct 2635 accteceagg etectetgea cetgeaaagg aacaggagtg agtegtgaet gaeaggggtg 2695 gttgagacta gactaggtag agtagttacc aggagatgtg aatgtgcgtc aggtgatgga 2755 tgggtttgtc aagggaatcg ttaccgtttt ataccaaagg tattaacatg ggcagccttt 2815 gacacatgta ttccaaaaac gagtttatat tttcaaacgg tttttacagc ttagactttg 2875 tacttactgc cctgcctgtg acagttgtat gccttcattt tgtatccaac agcaaagtct 2905 acaataaaac tttaaaacaa aaaaaaaaaa

<210> 14

<211> 2444

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (287)..(1924)

<400> 14

<400> 14 gcaccggtcc ggaa	attcccg ggtcg	actte getgteg	gacg atttcgtcgt a	agcttggat 60
cctctagagc gtc	gctcgc gatct	agaac ccaaggo	cag agctgtggac a	accttatccc 120
actcatcctc atco	ctcttcc tctga	taaag cccctad	cag tgctgataaa g	tetteteg 180
tgagagccta gagg	goottaa aaaaa	aaagt gcttgaa	laga gaaggggaca a	aggaacacc 240
agtattaaga ggat	tttcca gtgtt	tctgg cagttgg		cct cca 295 Pro Pro
=	-	Phe Ile Thr	ggc acc tcc gtg Gly Thr Ser Val 15	
			agc ctg aat gag Ser Leu Asn Glu 30	
			caa ggt cct cct Gln Gly Pro Pro	
-	. Asn Gly Glu		ttc acg ggc atg Phe Thr Gly Met 65	
			aac cac tgt gga Asn His Cys Gly 80	
		Ser His Pro	cta gaa ggc gac Leu Glu Gly Asp 95	
		_	ggg aac tgc tgt Gly Asn Cys Cys 110	
			gga ggc tac tat Gly Gly Tyr Tyr	
	Pro Ser Val		gtc tac tgt ggt Val Tyr Cys Gly 145	
		-	agc tgc tca gat Ser Cys Ser Asp	

	150			155			160		
			cca Pro						823
			gaa Glu 185						871
			aaa Lys						919
			gat Asp						967
			ggc Gly						1015
			tgt Cys						1063
			cct Pro 265						1111
			ctg Leu						1159
			gtg Val						1207
			ggt Gly						1255
			gtg Val						1303
			atc Ile 345						1351
			ctg Leu						1399
			ctg Leu						1447

cca ttc a	_				_	_				_				1495
cgg gaa g Arg Glu 2 405														1543
att gag of Ile Glu 1														1591
tgc ttt g Cys Phe 2														1639
ctc atc c														1687
tcc cgg g Ser Arg A														1735
gtg ggc a Val Gly 1 485														1783
tgt gga (Cys Gly \ 500														1831
cga atg Arg Met														1879
cag acg Gln Thr		Gly										tag *	ttc	1927
gtagccata	ac ctcg	agtco	ec to	gcatt	ggad	gg g	ctctg	gctc	tttg	ggag	ctt d	ctcc	cccac	1987
cgccctct	aa gaac	atcto	jc ca	acaç	gctgg	g gtt	caga	actt	caca	actg	tga 🤉	gttca	agactc	2047
ccagcacc	aa ctca	ctctg	ga tt	ctg	gtcca	a tto	cagto	gggc	acaç	ggtc	aca 🤉	gcact	tgctga	2107
acaatgtg	gc ctgg	gtggg	gg tt	tcat	ccttt	cta	agggt	tga	aaa	ctaaa	act (gtcca	acccag	2167
aaagacac	tc acco	cattt	c cc	ctcat	ttct	t tto	ccta	cact	taaa	atac	ctc (gtgta	atggtg	2227
caatcaga	cc acaa	aatca	ag aa	agct	gggta	a taa	atati	tca	agt	taca	aac (ccta	gaaaaa	2287
ttaaacag	tt actg	aaatt	ta to	gacti	caaat	aco	ccaat	gac	tcct	ttaaa	ata 1	tgtaa	aattat	2347
agttatac	ct tgaa	attto	ca at	tcaa	aatgo	c aga	acta	atta	tag	ggaa	ttt q	ggaaq	gtgtat	2407

	<23 <23	10> 1 11> 1 12> I 13> I	L472 ONA	sap:	iens											
		20> 21> (22>) (8	328)											
acco		00> 1 cg a		acgc	gt go	cgggg	ggatg	g ggd	cttt	tta	atct	ittta	aga a	agggt	tagag	60
gggt	tgag	ggc t	igact	gaco	cc ca	agcct	taato	a aaa	gtago	gtag	gcct	tggg	gaa 🤉	gtgga	agc	117
					cca Pro											165
					ggc Gly											213
					Gly											261
					gtg Val											309
					gac Asp 70											357
					ctg Leu											405
				Ser	gtt Val	Phe	Lys		Cys							453
cgt Arg	ggg	ggt Gly 115	gat Asp	ctg Leu	cag Gln	aag Lys	att Ile 120	gga Gly	gaa Glu	ttc Phe	tgt Cys	atg Met 125	gtt Val	tat Tyr	tct Ser	501
					agt Ser											549
					gtg Val 150											597

645 cct acc act gga ccc tct gcc tct cca gcc tct gag aac cag aat Pro Thr Thr Gly Pro Ser Ala Ala Ser Pro Ala Ser Glu Asn Gln Asn 170 165 693 ggg aat gga ctg agt gcc cca cca ggt ccc ggt ggt ggc cca cat ccc Gly Asn Gly Leu Ser Ala Pro Pro Gly Pro Gly Gly Gly Pro His Pro 180 185 190 741 cct cat act ccc tcc cac cca ccc agc acc cga atc act cga agc cag Pro His Thr Pro Ser His Pro Pro Ser Thr Arg Ile Thr Arg Ser Gln 195 789 ccc aac cac aca cct gca ggc ccg cct ggc cct ttc agc aac cct gtt Pro Asn His Thr Pro Ala Gly Pro Pro Gly Pro Phe Ser Asn Pro Val 210 838 agt aac ggc aaa gaa acc cgg agg agc agc aag aga tag catgacattc Ser Asn Gly Lys Glu Thr Arg Arg Ser Ser Lys Arg 230 tttcttcctg ccaccaacca catcccaagt gtcccctgga gagcaagata gccttccact 898 958 gattggctgg tgtagcagta ttttagccac tgaacttcag tggagggtgg tgagcagtgt ccttatccac cctaatctca tactccctca ttgtccagct gaactacctg tcccctggga 1018 gtcaggaccc tctgcctgct ctctttcctc tttagaaatg gcagttactg gctgggcgca 1078 gtggctcacg cttgtaatcc cagcactttg ggaagccgag gtgggcggat cacctgaggt 1138 1198 cgggagttca agaccagcct gaccaacatg gagaaacccc gtgtctacta aaaatacaga attagccagg catggtggcg tatgcctgta atcccagcta cttaggaggc tgaggcagga 1258 gaatctcttg aaaccgggag gcggaggttg aggtgagccg aaattgcacc attgcactcc 1318 agcctgggca ataagagcga aactccatct caaaaaaaaa agaaagaaag aaagaaagaa 1378 atggcagtta ccatctgttt cttctgtgtg agacatggga gtctaactga agtctctcct 1438 tcctaataaa tgttaccact ctaaaaaaaa aaaa 1472

```
<210> 16
<211> 2098
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (301)..(897)
```

<400> 16
tggacggtgc gccagtgccc cctccgcgag ccccaaccag tagacggttc cctgtctccc 60

gcgccccaat	ttcgattttc a	aacgcaact cc	tacaggat	tctgagaccc c	egteceatet 1	120
cccatatccc	atttccagct g	caaattact gc	agaatctg	aacccaggaa a	agaaacccat 1	180
ttgccgaccc	cctcttccct c	tccagacag gt	ggagagcg	ggtgagggtc t	cgctcggct 2	240
ttccccctgc	acctttccca c	cctcccgcc cg	tccctggg	ggtcctccgt (caccgcggcc	300
		gtg gac ccc Val Asp Pro				348
		gaa ttc cag Glu Phe Gln 25		-	5 5	396
	Val Leu Ala	aac ctc gcc Asn Leu Ala 40				444
		cag ctg cag Gln Leu Gln 55			_	492
		gag acc ctg Glu Thr Leu		-	55 55	540
		gac agg gcc Asp Arg Ala			5	588
		atc atc aac Ile Ile Asn 105				636
	Leu Ser Ala	atc acc acg Ile Thr Thr 120				584
		gag ctg acc Glu Leu Thr 135	-		5 5	732
		tcg gcc agc Ser Ala Ser			5 5	780
-		ttc tgc tcc Phe Cys Ser			5 5 5	828
		tct gcc ctg Ser Ala Leu 185			55 5	376

gtg gcc cca cgg cag cgc tga tc catggagact gcgagaccgt ggcaccccta Val Ala Pro Arg Gln Arg * 195	929
ctgctgggga ccacagtcct gatgtggacg cagggaacgg ggagcacata ctgccccatt	989
ggtgcctttt cagccatctg aaaggcgggt tctttcagca ggacaggcat ttacactgat	1049
gaaacgccac tgggagtgag gaagccagac tccagagaca cggagaagat caaactggag	1109
ctgcgttcat aggctggcac tctcaatcct acatcaggtg ccaccaccac cagactcagg	1169
ccctggtgta agaagcggcc aagtgcctgg acccagaggc tttgcaggac agtgttctca	1229
ggagctgggc ctgaggctta ggagagctgc cttcgctgca ggaaatcagg gattatccct	1289
taacagaagt gtctggagta gttttcaggt ataggaatga gatgcctcgt ggtgaaagga	1349
tctcaccctg ggaagatgtg gtgcccctc cagggctctg gaggatggat gcctccccca	1409
ggggctctcc aagctgggca tttgggcctg gtggatgcca acctggataa cctgtggccc	1469
agcattgact gtccacccag ccttgctgtt aggcaccatg actccaagat gaagatgtgg	1529
tecetgeeet tgagtgaeag eccagggaet taatgtggee ategggeate aageaeaagg	1589
ccatgcaggt gatgatacgt cggaatagag gcaccagccc tggtaactgc atcttctccc	1649
cttgccaccc catggccccg gctgaaagct tcggccctcc tctgctgtca ctcaatgatg	1709
gggagcccta ccccagaagt gtatcccacg agggcatcag ggacgcagtg agtgttgctc	1769
aagggagtca ggaagagacg gcaacgtaaa ggatgtggct ccatgtccat ggtgccccct	1829
ggtcaacata aggagcgtgg gatccgatgg aaaggtggag ctcagggaaa atgggggtcc	1889
ttgcctctcg tgtaccccct caaggctgac cccttagatg gcccaggaat ggcaggtgct	1949
acaaaaatgg tacccacgtg ggcatggaaa tggggcagat taggggacca ctggactcag	2009
aggggaggga agggctcatc agcacccgct cagggagcct gtccctttat gttcccaaat	2069
aaagggtcct agaagaaaaa aaaaaaaaa	2098

<210> 17

<211> 2099

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (119)..(580)

<400> 17

tttcggggag gctgcagccg cgggttgtta cagctgctgg agcagcagcg gcccccgctc	60
ccgggaaccg ttcccgggcc gttgatcttc ggccccacac gcagagaggg gcagcagg atg aat gtg ggc aca gcg cac agc gag gtg aac ccc aac acg cgg gtg Met Asn Val Gly Thr Ala His Ser Glu Val Asn Pro Asn Thr Arg Val 1 5 10	118 166
atg aac agc cgt ggc atc tgg ctc tcc tac gtg ctg gcc atc ggt ctc Met Asn Ser Arg Gly Ile Trp Leu Ser Tyr Val Leu Ala Ile Gly Leu 20 25 30	214
ctc cac atc gtg ctg ctg agc atc ccg ttt gtg agt gtc cct gtc gtc Leu His Ile Val Leu Leu Ser Ile Pro Phe Val Ser Val Pro Val Val 35 40 45	262
tgg acc ctc acc aac ctc att cac aac atg ggc atg tat atc ttc ctg Trp Thr Leu Thr Asn Leu Ile His Asn Met Gly Met Tyr Ile Phe Leu 50 55 60	310
cac acg gtg aag ggg aca ccc ttt gag acc ccg gac cag ggc aag gcg His Thr Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ala 65 70 75 80	358
agg ctg cta acc cac tgg gag cag atg gat tat ggg gtc cag ttc acg Arg Leu Leu Thr His Trp Glu Gln Met Asp Tyr Gly Val Gln Phe Thr 85 90 95	406
gcc tct cgg aag ttc ttg acc atc aca ccc atc gtg ctg tac ttc ctc Ala Ser Arg Lys Phe Leu Thr Ile Thr Pro Ile Val Leu Tyr Phe Leu 100 105 110	454
acc agc ttc tac act aag tac gac cag atc cat ttt gtg ctc aac acc Thr Ser Phe Tyr Thr Lys Tyr Asp Gln Ile His Phe Val Leu Asn Thr 115 120 125	502
gtg tcc ctg atg agc gtg ctt atc ccc aag ctg ccc cag ctc cac gga Val Ser Leu Met Ser Val Leu Ile Pro Lys Leu Pro Gln Leu His Gly 130 135 140	550
gtc cgg att ttt gga atc aat aag tac tga g agtgcagccc cttcccctgc Val Arg Ile Phe Gly Ile Asn Lys Tyr * 145 150	601
ccagggtggc aggggagggg tagggtaaaa ggcatgtgct gcaacactga agacagaaag	661
aagaageete tggacaetge cagagatggg ggttgageet etggeetaat tteeeceete	721
gcttccccca gtagccaact tggagtagct tgtagtgggg ttggggtagg ccccctgggc	781
tctgaccttt tctgaatttt ttgatctttt ccttttgctt tttgaataga gactccatgg	841
agttggtcat ggaatgggct gggctcctgg gctgaacatg gaccacgcag ttgcgacagg	901
aggccagggg aaaaacccct gctcacttgt ttgccctcag gcagccaaag cactttaacc	961
cctgcatagg gagcagaggg cggtacggct tctggattgt ttcactgtga ttcctaggtt	1021

1081 ttttcgatgc cacgcagtgt gtgcttttgt gtatggaagc aagtgtggga tgggtctttg 1141 cctttctggg tagggagetg tctaatccaa gtcccagget tttggcagct tctctgcaac 1201 ccaccgtggg tcctggttgg gagtggggag ggtcaggttg gggaaagatg gggtagagtg 1261 tagatggctt ggttccagag gtgagggggc cagggctgct gccatcctgg cctggtggag gttggggagc tgtaggagag ctagtgagtc gagacttaga agaatggggc cacatagcag 1321 1381 cagaggactg gtgtaaggga gggaggggta gggacagaag ctagacccaa tctcctttgg gatgtgggca gggagggaag caggcttgga gggttaattt acccacagaa tgtgatagta 1441 ataggggagg gaggctgctg tgggtttaac tcctgggttg gctgttgggt agacaggtgg 1501 ggaaaaggcc cgtgagtcat tgtaagcaca ggtccaactt ggccctgact cctgcggggg 1561 tatggggaag ctgtgacaga aacgatgggt gctgtggtcc tctgcaggcc ctcacccctt 1621 aactteetea tacagaetgg caetgggeag ggeeteteat gtggeageea eatgtggegt 1681 1741 tgtgaggcca ccccatgtgg ggtctgtggt gagagtcctg taggatccct gctcaagcag 1801 cacagaggaa ggggcaagac gtggcctgta ggcactgtct cagcctgcag agaagaaagt gaggccggga gcctgagcct gggctggagc cttctcccct ccccagttgg actaggggca 1861 gtgttaattt tgaaaaggtg tgggtccctg tgtcctcttc caggggtcca agggaacagg 1921 agaggteact gggcetgttt teteceteet gaccetgeat eteceaece gtgtateata 1981 gggaactttc accttaaaat ctttctaagc aaagtgtgaa taggattttt actccctttg 2041 2099 tacagtattc tgagaaacgc aaataaaagg gcaacatgtt tctgttaaaa aaaaaaaa

<210> 18

<211> 1605

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (535)..(1050)

<400> 18

gacctagaaa tgggcctgtc tggcatttca gagtcaggca aagcaggcag ggatagggag 60
cttctgtggg tctacacaag aaggttcctg tgagggctat cagttgttgc cttctagctt 120
gctggtaact ttggcgcctc cgccaagccc tgccagactc ccctggctgt gatggcattc
tgtgccatcc tccttgtccc cagcctctgc aggatgccct ccctacccac ctctccctgg 240

gccttccctg tccactgggc tggattcatg ttcaaaccac tggactggca gggcaacgac	300
ttcttcccac ctcaagatga ggtcctcgcc cccttgtctt ggcataaaaa cacctttaaa	360
gcatgagcca tgtgcttctt tgcccttctc tgtcctgttc caatcttctg cctcccagtc	420
actecetggg gactatggga teactgtece eccacetgtg tggccacace atgtgtectg	480
tcaatccaga actgcctctg agetccagge tgaccacaga tcagccacag cctg atg Met 1	537
cct gca gcc cca ctt tgc tca ccc ttc ccc tcc cct cct tcc ttc Pro Ala Ala Pro Leu Cys Ser Pro Phe Pro Ser Pro Pro Pro Ser Phe 5 10 15	585
cac aca gca agc cta cct ttc tcc atc cat gct cac cat agc ccc ctt His Thr Ala Ser Leu Pro Phe Ser Ile His Ala His His Ser Pro Leu 20 25 30	633
cct tgt gac ttg gac cct cca ttg tac ctg gct gag act gtc agc ctc Pro Cys Asp Leu Asp Pro Pro Leu Tyr Leu Ala Glu Thr Val Ser Leu 35 40 45	681
ctg gag gag tgg ggt cca cct tct tct tgc cct atg cag tgc aag ctc Leu Glu Glu Trp Gly Pro Pro Ser Ser Cys Pro Met Gln Cys Lys Leu 50 55 60 65	729
act tct cac cca gca agg ttg act cat ctg cct cca tgt ctc tgg ggc Thr Ser His Pro Ala Arg Leu Thr His Leu Pro Pro Cys Leu Trp Gly 70 75 80	777
ttt gct gtt gcc ctg aaa cct agc tgg gct ggt ctt gct ccc agc ttg Phe Ala Val Ala Leu Lys Pro Ser Trp Ala Gly Leu Ala Pro Ser Leu 85 90 95	825
ctt ccc cct ccg atg tcc ctt tgc agg ccc ctg tcg ttc ctc cgg Leu Pro Pro Pro Arg Met Ser Leu Cys Arg Pro Leu Ser Phe Leu Arg 100 105 110	873
cac cag tgt cct tgg ctg cca tgg caa gct cat cag ggg ctt gta ccc His Gln Cys Pro Trp Leu Pro Trp Gln Ala His Gln Gly Leu Val Pro 115 120 125	921
tgg tca cca agc atg gta gca gct gcc tgc att gta tct cca tct ggt Trp Ser Pro Ser Met Val Ala Ala Ala Cys Ile Val Ser Pro Ser Gly 130 135 140 145	969
cac tgc agg tgc caa ccc ttc atc ccc cat gtt ttc ctg ggc cat gga His Cys Arg Cys Gln Pro Phe Ile Pro His Val Phe Leu Gly His Gly 150 155 160	1017
ggg ctg acc tcc gtt tct ggg gaa tgt ggc tga gctgtggt aaccagctac Gly Leu Thr Ser Val Ser Gly Glu Cys Gly * 165 170	1068
accccaggtg ctctttccat ggtggtgcct gctcatcttg ctgatgcaaa ctaggaagtt	1128

1188 aggetgeate teggagtgge tttegetgga gaggtgettt getgtetete agaeteagte actgtgttcc ctccccgcct ctcttatctc catggctgtt tgcagctctc ccaggtactt 1248 tggggtctga gctggaattc ctttgtggtt tgctcttctg cttctcactc ttgtattaag 1308 1368 aaggattcca caaagggaga gtggcatccc tgctgctgct gtgccagacc agagtttcct gaggggccct gaccctaacc ctccagctca gccctgtaca cctgaccctg taaatgagtg 1428 1488 gggtttgctg actgtaatcc ctgacaccag taaaaccaaa aggactcttg ggggctcagt 1548 gtgagagcca gggttaccta ctctgccaag tgaggacaaa ctgctaggct gtatcccata 1605 atttcaggat gagaaacatt aacaataaaa atttgtagta aacataaaaa aaaaaaa

<210> 19 <211> 1497 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (210)..(1172)

<400> 19 agttcgggcg acgaggacaa aacactgtga gtcgctgttg gtcgctgcag cgggcctctg 60 120 cgtgggcggc gggaatccgc ggacatcggg tcgggtctag gctcccgagt ccgcgctccc 180 tgggcgggag cccttgtctg ggtctcgcgg ggggctgcca gatgcgtagg ccacactgac 233 tagtteette ttgtegettt teeeageaa atg geg gat gae gee ggt gea geg Met Ala Asp Asp Ala Gly Ala Ala 281 ggg ggg eec ggg gge eet ggt gge eet ggg atg ggg aac ege ggt gge

Gly Gly Pro Gly Gly Pro Gly Met Gly Asn Arg Gly Gly 20 10 15 ttc cgc gga ggt ttc ggc agt ggc atc cgg ggc cgg ggt cgc ggc cgt 329 Phe Arg Gly Gly Phe Gly Ser Gly Ile Arg Gly Arg Gly Arg Gly Arg

25 377 gga cgg ggc cgg ggc cga ggc cgc gga gct cgc gga ggc aag gcc gag Gly Arg Gly Arg Gly Arg Gly Ala Arg Gly Gly Lys Ala Glu 50 55 45

35

30

gat aag gag tgg atg ccc gtc acc aag ttg ggc cgc ttg gtc aag gac 425 Asp Lys Glu Trp Met Pro Val Thr Lys Leu Gly Arg Leu Val Lys Asp 70 60 65

473 atg aag atc aag tcc ctg gag gag atc tat ctc ttc tcc ctg ccc att

Met	Lys	Ile 75	Lys	Ser	Leu	Glu	Glu 80	Ile	Tyr	Leu	Phe	Ser 85	Leu	Pro	Ile	
											gcc Ala 100					521
											acc Thr					569
											gac Asp					617
_		-		-	_	-		_			gcc Ala		_		-	665
				_	_	_				_	ccc Pro		_	_		713
				_			_				gtc Val 180		~	_		761
											cat His					809
											cca Pro					857
											ccc Pro					905
									_	_	gat Asp			_	_	953
							_				cag Gln 260		_		_	1001
											cct Pro					1049
											caa Gln					1097
											atg Met	-	-	_	_	1145

	300	305		310	
	ggc agg gag Gly Arg Glu		atcac ca	ctccaggg acttaga	itct 1197
tcatgtcctt	ggaccaagcg g	ccacaactt cg	gtgacggg	gcatccactc cttat	egete 1257
ggccttgcgc	tccagcgagc to	ccgcaggca ca	tcggccca	caggccacac agtca	acacag 1317
gccgcagacc	accaggccac c	agagtgcac ag	catgcaca	gaaacactgc cgcag	gaagc 1377
acacacagcg	gcttcccaca t	cacaagggc ca	caatgggc	ccccagggcc cacco	ecgctg 1437
taccggcgta	tccagccatt t	ggtgttttg ac	aacccagg	atcgtacact agccg	staatt 1497
<220> <221>	907 DNA Homo sapiens CDS (114)(338)				
gcttcttcca	gtcacctcgg c	ccggatcgg ga	agtgtcaa	gegggegete ecces	atctcc 60
gccgctatta	ccactgaacc c	ggaccccct ac	ccaggtcc	agggccagcc gcc	atg 116 Met 1
acg aac gtg Thr Asn Val	tac tcc ttg Tyr Ser Leu 5	gat ggg att Asp Gly Ile 10	Leu Val	ttt ggt ttg ctc Phe Gly Leu Leu 15	ttt 164 Phe
	Cys Ala Tyr			cgt ctc aaa acc Arg Leu Lys Thr 30	
				ttt tac aaa gcc Phe Tyr Lys Ala 45	
gtg att gga Val Ile Gly 50	acc agg ctg Thr Arg Leu 55	His Ala Ala	gtg gca Val Ala 60	att gct tgt gtt Ile Ala Cys Val	gta 308 Val 65
atg gcc ttt	tac gtc ctg	ttt ata aaa	tga a tt	ccaaagca cccaagt	ccat 359

caactgccaa ccaaggggac ggggatgaag aacctgttgg agacctgaac ccagtgtagg

479 agagttcagc tgaaatcatc ggtccccagg atgacaccac agcatctgcc cctgctatat gtggggaaaa ctcatggtca cgaacattat ttatgcttca ggggactaca gaaagccagc 539 ttcctttgat ctatgtgtaa atcagtcctt ggcagagtgc atataatgtc cggataaatt 599 acacccctcg gtgataagat tacatacctc cttcataaaa acctgtcatc ctgtttgttc 659 719 ttcagctcct catcaggatc ttttcaaact gggctcatta gggaaggaac taggcttgtg 779 ttcagacttc tttgagagcg agaatttcca gacttctttt cctccttgat tggtctggca 839 ttggggcggg gatgctgggt gggaacccgt ttgaattgcc aggaaattct tgggttagaa ttctcttcat gtccatccgg accttaggag gctggggctt gcaaggaccc gtcctcccgg 899 907 ttggccgg <210> 21 <211> 1329 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (103)..(1116) <400> 21 60 aaqqatcctt aattaaatta atccccccc ccggctcctc ctgttcgaca gtcagccgca 114 tcttcttttg cgtcgccagc cgagccacat cgctcagaca cc atg ggg aag gtg Met Gly Lys Val 1 aag gtc gga gtc aac gga ttt ggt cgt att ggg cgc ctg gtc acc agg 162 Lys Val Gly Val Asn Gly Phe Gly Arg Ile Gly Arg Leu Val Thr Arg 10 gct gct ttt aac tct ggt aaa gtg gat att gtt gcc atc aat gac ccc 210 Ala Ala Phe Asn Ser Gly Lys Val Asp Ile Val Ala Ile Asn Asp Pro

gct gct ttt aac tct ggt aaa gtg gat att gtt gcc atc aat gac ccc 210
Ala Ala Phe Asn Ser Gly Lys Val Asp Ile Val Ala Ile Asn Asp Pro
25 30 30 35

ttc att gac ctc aac tac atg gtt tac atg ttc caa tat gat tcc acc
Phe Ile Asp Leu Asn Tyr Met Val Tyr Met Phe Gln Tyr Asp Ser Thr
40 45 45 50

cat ggc aaa ttc cat ggc acc gtc aag gct gag aac ggg aag ctt gtc
His Gly Lys Phe His Gly Thr Val Lys Ala Glu Asn Gly Lys Leu Val
55 60 60 65

atc aat gga aat ccc atc acc atc ttc cag gag cga gat ccc tcc aaa
354

Ile Asn Gly Asn Pro Ile Thr Ile Phe Gln Glu Arg Asp Pro Ser Lys
70 75 80

													tcc Ser			402
_				_	-	_	_		-		_	_	ggg Gly			450
													atg Met 130			498
_	-					_		_		_		_	atc Ile		_	546
													aag Lys			594
	-						_			_			gtc Val			642
		-											gga Gly			690
													cct Pro 210			738
		_	_	_	_	_		_	_				ctg Leu			786
													gtg Val			834
	_	-		_	_		-			_			gat Asp			882
													ggc Gly			930
													agc Ser 290			978
					-	-		_			-		aac Asn			1026
ttt	gtc	aag	ctc	att	tcc	tgg	tat	gac	aac	gaa	ttt	ggc	tac	agc	aac	1074

Phe Val Lys Leu Ile Ser Trp Tyr Asp Asn Glu Phe Gly Tyr Ser Asn 310 315 320	
agg gtg gtg gac ctc atg gcc cac atg gcc tcc aag gag taa gacccct Arg Val Val Asp Leu Met Ala His Met Ala Ser Lys Glu * 325 330 335	1123
ggaccaccag ccccagcaag agcacaagag gaagagagag	1183
cctgccacac tcagtccccc accacactga atctcccctc ctcacagttg ccatgtagac	1243
cccttgaaga ggggagggc ctagggagcc gcaccttgtc atgtaccatc aataaagtac	1303
cctgtgctca accaaaaaaa aaaaaa	1329
<210> 22 <211> 1251 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (532)(930)	
<400> 22 gagtteteag ttgegtgggg accagagggt getggagaaa caaaccagae geagetgaag	60
gcagtcaggg cagggcgcaa tcagcgataa gagctgcata ggggccacag cgtaacctga	120
gctccagtcg gtggaaagaa aaggcagaga cgttgcagag gccaggtctg ctcaggggaa	180
gacagttctg ggtgtagagg actcacatcc cagagaggct gaggaagggt ttaccaccgc	240
aagctttctc aggcgggctc ttgaggggtg gctggggtct tcctggcgac gggcctgcgg	300
cactggaagc cctactggag tttggcctgt ctccggcaca ggtttggacg gagctgtttt	360
gtgctgaaag gttttctcgg ggtccgtggt gtcccccaaa ggtgccaccg tgcgggtctc	420
ctageteect gecagettee tgteeetgtg etcaetgeee ecaegeetee tgecaaggee	480
gagccacaca cccgctccac ctgcatttcc tctaccgact cgccagccca a atg ccg Met Pro 1	537
ctc ttc act ctg gcc tcg ctg agc ggc tgc ccg agg agg agc tct agg Leu Phe Thr Leu Ala Ser Leu Ser Gly Cys Pro Arg Arg Ser Ser Arg 5 10 15	585
ccg acg ccc acc gca ggc ctt aca gtc ttc tct gga cgc tcc ctt gca Pro Thr Pro Thr Ala Gly Leu Thr Val Phe Ser Gly Arg Ser Leu Ala 20 25 30	633

gat gca ccg tgg cct ggc ggc gag ccc ccg gtc acc ttc ctc cgc acg

Asp 35	Ala	Pro	Trp	Pro	Gly 40	Gly	Glu	Pro	Pro	Val 45	Thr	Phe	Leu	Arg	Thr 50	
			ccg Pro													729
_	_		aac Asn 70	_	_			_	_	_	_	_	_			777
_	_		gcc Ala			_			_			-			_	825
			gag Glu													873
_	_		cac His		_				_					_	_	921
ctc Leu	_	taa *	agco	ccgg	gcac	ccg	ccc a	agcco	gggct	g gg	gccct	ccct	geo	cacac	ctag	977
ctto	ccaç	igg c	ctgcc	cccc	ga ca	aggct	ggct	cto	cagto	gag	gcca	ıgaga	atc t	ggaa	atcggg	1037
gtca	gegg	igg c	ctaca	igtco	ct to	ccago	gggct	cto	gggg	cagc	tccc	cagco	ctc t	tccc	catgct	1097
ggtg	gcca	acc g	gtgto	ccctt	g ct	gegg	gatga	ato	ettec	agt	ctct	ccto	ccg t	ctto	cagtg	1157
gccg	gctct	ct t	tata	agaa	ac co	ctggt	catt	gaa	attta	agg	ccca	ıccc	caa g	gtcca	igaatg	1217
acct	caca	aa a	accct	taac	et da	aaaa	aaaa	ı aaa	aa							1251

<210> 23

<211> 1566

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (291)..(1442)

<400> 23

cgcgccgcag ccgggcgtcc ccgcgcggc gccggagagg aaggaaggct ggcagcctcg 60
tcacgtgtcc gctgcagtcg cgaaacagtt ccggtggtga ggagaccttt ccaaatataa 120
gaggaataaa gaagtcacct ccccagctgt catcatcttc cagcagattg agcaagaata 180
ttttgagcac tacaggaaag acagtccatc aaacccgaga tgatgatcag ccacgtgatt 240

ttttcaagaa gag	gaatagg gtgaa	atgaat ctcatca	agaa aagcagcaat	atg aat 296 Met Asn 1
		~ ~	tca aag aat tct Ser Lys Asn Ser 15	
		Val Pro His	gct tct tcc cag Ala Ser Ser Gln 30	
		-	gaa gaa aaa ctt Glu Glu Lys Leu 45	~
-			aat cca ctc ggt Asn Pro Leu Gly	
0 0000	a Ser Gly Ası	J	ctt gat ttt cag Leu Asp Phe Gln 80	•
			agt gca agt gat Ser Ala Ser Asp 95	
		e Pro Pro Ser	ccc ctc aca cct Pro Leu Thr Pro 110	•
-		-	gtt tac ttt gat Val Tyr Phe Asp 125	
		_	tat tat cct aat Tyr Tyr Pro Asn	
	e Ser Ser Tr		gat atg gcc ctg Asp Met Ala Leu 160	
			cga gtg gga gga Arg Val Gly Gly 175	
		ı Ile Gln Leu	gag tgg ctg caa Glu Trp Leu Gln 190	
			aaa gca agg ccc Lys Ala Arg Pro 205	

gcc cct ggg acc tca ggg gca ctg aaa agc cct ggg aga agt aag cta Ala Pro Gly Thr Ser Gly Ala Leu Lys Ser Pro Gly Arg Ser Lys Leu 215 220 225	968
att gct agt gct ctg tcc aag cca cta cct cac cag gaa ggg gct tca Ile Ala Ser Ala Leu Ser Lys Pro Leu Pro His Gln Glu Gly Ala Ser 230 235 240	1016
aag tca ggc cct tcc cga aag aaa gct ttt cac cat gaa gaa atc cac Lys Ser Gly Pro Ser Arg Lys Lys Ala Phe His His Glu Glu Ile His 245 250 255	1064
cca tca cat tat gca ttt gag act tcc cct aga ccc att gat gtg ctt Pro Ser His Tyr Ala Phe Glu Thr Ser Pro Arg Pro Ile Asp Val Leu 260 265 270	1112
ggt ggt acc agg ttt tgt tct cag agg caa acc ctt gaa atg agg aca Gly Gly Thr Arg Phe Cys Ser Gln Arg Gln Thr Leu Glu Met Arg Thr 275 280 285 290	1160
gaa gaa aaa aaa aaa tca agt aag agt acg aag ctg cag cgc tgg Glu Glu Lys Lys Lys Ser Ser Lys Ser Thr Lys Leu Gln Arg Trp 295 300 305	1208
gat ctg tcc ggc agt gga agc agc tct aag gtg gaa acc agc ggt cac Asp Leu Ser Gly Ser Gly Ser Ser Ser Lys Val Glu Thr Ser Gly His 310 315 320	1256
att cga gtt ccc aaa cag gca gct gtg att ctg gac tca gca gat tcc Ile Arg Val Pro Lys Gln Ala Ala Val Ile Leu Asp Ser Ala Asp Ser 325 330 335	1304
tgt aag gcc tcc aaa aca caa gca cat gca cat cct agg aaa aag gga Cys Lys Ala Ser Lys Thr Gln Ala His Ala His Pro Arg Lys Lys Gly 340 345 350	1352
aag gca gag agc tgt ggt cat gcc act gta tcg agt gag aaa aaa ctgLys Ala Glu Ser Cys Gly His Ala Thr Val Ser Ser Glu Lys Lys Leu355360	1400
aaa aca aac gga gta aag caa aac aca tat aaa cta aaa taa atatcta Lys Thr Asn Gly Val Lys Gln Asn Thr Tyr Lys Leu Lys * 375 380	1449
aaatgctgaa ttgccaagac ctgcaggtac ctcaatgtta gagcgcttcc aaaagtcaaa	1509
atactgtgaa ttttaaggaa ttttacaaat actgacattt aagtaaaaaa aaaaaaa	1566

<220>

<210> 24

<211> 2851

<212> DNA

<213> Homo sapiens

<221> CDS <222> (70)..(2322)

att		00>		acca	an a	atto	aaca	റ നമ	uuaa	ccat	att	taaa	tac	caaa	caatga	60
CEE	attt	at	Me				u Gl						l Va		a ttc y Phe	108
	_			_		_		-				_		gta Val	~	156
														gaa Glu		204
														ctc Leu 60		252
		-	-		-		_					-		cac His		300
														aaa Lys		348
														gcc Ala		396
														aga Arg		444
														ggt Gly 140		492
										-				tat Tyr	-	540
														ctg Leu		588
											_	-	-	agg Arg	_	636
		-					-	-				_		gtt Val	-	684

	tcc Ser						_						_	_		732
	gag Glu		_		_	_		_	_				_	_	_	780
_	atg Met	_		-	-		-	-	_				_	-		828
	cct Pro 255															876
	Gly															924
	cac His	-			_					-	-			-		972
	gaa Glu				_	_		_	-				-			1020
	tgg Trp				_			_	_		_	_	_			1068
	ttc Phe 335				-					-	_			_		1116
	ccg Pro			_	_	_						_	-		_	1164
	tcc Ser															1212
	cca Pro		_	_		-				-		-				1260
	ttt Phe															1308
	gta Val 415		-						-							1356

					ctg Leu 435											1404
					ata Ile			_				_		_		1452
			_		gtt Val											1500
					tca Ser											1548
					gga Gly										-	1596
					gga Gly 515											1644
					gaa Glu											1692
					aag Lys											1740
					gag Glu	_				-			_	_	~	1788
					tat Tyr											1836
					gga Gly 595											1884
	_		-	-	tgg Trp				_		_	_				1932
_		-		_	gaa Glu				-			_		~	•	1980
					gca Ala											2028
cga	aga	ctg	gtc	tgc	ctc	acc	ttg	gca	acg	gat	gat	gtt	gat	cca	gag	2076

Arg	Arg 655	Leu	Val	Cys	Leu	Thr 660	Leu	Ala	Thr	Asp	Asp 665	Val	Asp	Pro	Glu	
														acg Thr		2124
														gca Ala 700		2172
														gaa Glu		2220
						_	_				_		_	gta Val	_	2268
														gac Asp		2316
act Thr 750	tga *	aaaa	agac	ct t	cago	agto	a ac	tgaa	ıttag	, agt	tgct	aat	gact	gtco	tt	2372
gaaa	ttat	ta t	aact	ggct	c cc	aggg	gaat	aga	ıggaa	acc	agga	atto	at t	tcaa	aatca	2432
tcaa	agto	ta a	attt	agaa	ıt ct	taat	gaaa	cct	ttct	gtt	aagt	gttt	tc t	aago	aagac	2492
agaa	taat	ag a	ıtaaa	tgat	t ta	catt	gttc	ttt:	taaa	ıtga	agaa	attt	ga a	atga	atgtt	2552
tttt	tatt	ta c	ccca	catt	a co	caat	cagt	aaa	acat	tta	ggtg	rtttg	rct a	atat	acaca	2612
atca	ittac	ta t	aacc	taat	t aa	ggga	.catt	. tta	taat	ttt	agta	acaa	at g	rcatt	cggtt	2672
cttg	racag	rct g	raaaa	ıcaaa	ıt ta	ataa	atta.	tct	ttta	cat	aaaa	acat	gt a	caat	attgt	2732
ttat	ggat	tt a	cttc	tttg	ra ga	aato	tttc	ctt	agat	gaa	taaa	tgaa	ag t	ttta	atttt	2792

```
<210> 25
```

tcatgatata tctgtgatga aaatagtaaa acttaacatt gacatataaa aaaaaaaaa

62

2851

60

<211> 2426

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (630)..(2360)

<400> 25

tttcgtgcgg gggtgggctc tgcgcgtaat ggcagcgccg tggcctcgcg tccatctttg

120 cogttetete ggacetgtea caaaggagte gegeegeege egeegeeee teeeteeggt 180 gggcccggga ggtagagaaa gtcagtgcca cagcccgacc gcgctgctct gagccctggg 240 cacgcggaac gggagggagt ctgagggttg gggacgtctg tgagggaggg gaacagccgc tcgagcctgg ggcgggcgga ccggactggg gccggggtag gctctggaaa gggcccggga 300 360 gagaggtggc gttggtcaga acctgagaaa cagccgagag gttttccacc gaggcccgcg cttgagggat ctgaagaggt tcctagaaga gggtgttccc tctttcgggg gtcctcacca 420 480 gaagaggttc ttgggggtcg cccttctgag gaggctgcgg ctaacagggc ccagaactgc cattggatgt ccagaatccc ctgtagttga taatgttggg aataagctct gcaactttct 540 ttggcattca gttgttaaaa acaaatagga tgcaaattcc tcaactccag gttatgaaaa 600 cagtacttgg aaaactgaaa actacctaa atg atc gtc ttt ggt tgg gcc gtg 653 Met Ile Val Phe Gly Trp Ala Val 701 ttc tta gcg agc aga agc ctt ggc cag ggt ctg ttg ttg act ctc gaa Phe Leu Ala Ser Arg Ser Leu Gly Gln Gly Leu Leu Thr Leu Glu 10 15 749 gag cac ata gcc cac ttc cta ggg act gga ggt gcc gct act acc atg Glu His Ile Ala His Phe Leu Gly Thr Gly Gly Ala Ala Thr Thr Met 25 30 797 ggt aat tcc tgt atc tgc cga gat gac agt gga aca gat gac agt gtt Gly Asn Ser Cys Ile Cys Arg Asp Asp Ser Gly Thr Asp Asp Ser Val 45 55 845 gac acc caa cag caa cag gcc gag aac agt gca gta ccc act gct gac Asp Thr Gln Gln Gln Ala Glu Asn Ser Ala Val Pro Thr Ala Asp 60 893 aca agg agc caa cca cgg gac cct gtt cgg cca cca agg agg ggc cga Thr Arg Ser Gln Pro Arg Asp Pro Val Arg Pro Pro Arg Arg Gly Arg 75 ឧក gga cct cat gag cca agg aga aag aaa caa aat gtg gat ggg cta gtg 941 Gly Pro His Glu Pro Arg Arg Lys Lys Gln Asn Val Asp Gly Leu Val 95 989 ttg gac aca ctg gca gta ata cgg act ctt gta gat aat gat cag gaa Leu Asp Thr Leu Ala Val Ile Arg Thr Leu Val Asp Asn Asp Gln Glu 105 110 115 cct ccc tat tca atg ata aca tta cac gaa atg gca gaa aca gat gaa 1037 Pro Pro Tyr Ser Met Ile Thr Leu His Glu Met Ala Glu Thr Asp Glu 125 130 135 gga tgg ttg gat gtt gtc cag tct tta att aga gtt att cca ctg gaa 1085 Gly Trp Leu Asp Val Val Gln Ser Leu Ile Arg Val Ile Pro Leu Glu

140 145 150

_		-			gct Ala	_			_			_	_	~		1133
					gca Ala											1181
					tgc Cys 190	-	_		_			-				1229
					cta Leu											1277
					ctt Leu	_				_	_		_		-	1325
_	-	_		_	tcc Ser				_	_			_			1373
-	_	-	_		gca Ala	_		_	_			~				1421
					gac Asp 270									-		1469
					aaa Lys											1517
					tta Leu											1565
					att Ile											1613
					tca Ser											1661
					gtg Val 350											1709
					aca Thr											1757

	_		-	-	_	aaa Lys					_					1	805
	_	_	-			tgt Cys			_		_	~ ~	~	_		1	.853
			-	-	_	aag Lys 415						_			•	1	.901
	_		_			ctg Leu		_	_		-	_		_		1	949
						cag Gln							-			1	.997
		_				ttt Phe	-	_	_	_		_				2	045
	_					gga Gly	-									2	093
						aat Asn 495										2	141
			_			cac His		_		-	_	_	_		-	2	189
					_	tgt Cys			-	-	-		-	_	_	2	237
		-	-		_	gga Gly		_	-	_	-	_	_	-	-	2	285
_	-	-			_	cca Pro	_	_	-		_		-		_	2	333
						att Ile 575		tga *	caca	ıt gt	gaag	gaggo	ato	gtgg	gact	2	385
tttt	tcta	ict c	aatt	ccaç	jc ca	atgt	tgaa	aaa	aaaa	aaa	a					2	426

	<2: <2:	10> 1 11> 1 12> 1 13> 1	564	sap	iens											
	<22	20> 21> (22>	CDS (14)	(4	75)											
ttti	<40 cgaad	00> 2 ccc f		Me				r Phe						s Gl	g ccg ı Pro	49
					gag Glu											97
					agg Arg	_	-		_	-			-	-		145
					ctg Leu 50											193
					gtc Val											241
					gaa Glu											289
					ttc Phe											337
					ccc Pro											385
_					cac His 130	_	_	_	_	_	_		_	_	_	433
					aac Asn								tga *	ggag	ggtt	482
gggg	gctga	agt g	gctgg	gacat	to to	gagta	cttco	c tta	attaa	acct	tgaa	atcct	ca t	taaa	aggttt	542
cttt	acco	cac a	aaaa	aaaaa	aa aa	a.										564

<210> 27 <211> 609 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (18)(581)	
<pre><400> 27 gcagaaggct ggcagcc atg gcg tcc tat ttc gat gaa cac gac tgc gag</pre>	50
ccg tcg gac cct gag cag gag acg cga acc aac atg ctg ctg gag ctc Pro Ser Asp Pro Glu Gln Glu Thr Arg Thr Asn Met Leu Leu Glu Leu 15 20 25	98
gca agg tca ctt ttc aat agg atg gac ttt gaa gac ttg ggg ttg gta Ala Arg Ser Leu Phe Asn Arg Met Asp Phe Glu Asp Leu Gly Leu Val 30 35 40	146
gta gat tgg gac cac cac ctg cct cca cca gct gcc aag act gtg gtt Val Asp Trp Asp His His Leu Pro Pro Pro Ala Ala Lys Thr Val Val 45 50 55	194
gag aac ctc ccc agg aca gtc atc aga ggc tct cag gct gct ctc acc Glu Asn Leu Pro Arg Thr Val Ile Arg Gly Ser Gln Ala Ala Leu Thr 60 65 70 75	242
gtg ccc tgg gcc cag tac tca agc ttc ttt ctg ttc atg gac tgc tgg Val Pro Trp Ala Gln Tyr Ser Ser Phe Phe Leu Phe Met Asp Cys Trp 80 85 90	290
ggg atg gaa gaa gag tgg cag ttg gga gca ggg gag ggt ggt tat cag Gly Met Glu Glu Glu Trp Gln Leu Gly Ala Gly Glu Gly Gly Tyr Gln 95 100 105	338
ctt atg aag atc aga cca agg cta gaa cac tac tct act ttt ctc aga Leu Met Lys Ile Arg Pro Arg Leu Glu His Tyr Ser Thr Phe Leu Arg 110 115 120	386
caa att cct gtc cct tgt gcc gct atg agc tgc cca ctg atg acg aca Gln Ile Pro Val Pro Cys Ala Ala Met Ser Cys Pro Leu Met Thr Thr 125 130 135	434
ctt atg agg agc aca gac gag ata agg ctc gaa aac agc agc agc aac Leu Met Arg Ser Thr Asp Glu Ile Arg Leu Glu Asn Ser Ser Ser Asn 140 145 150 155	482
acc gac tgg aga acc tcc atg gag cca tgt aca cgt gag gag gtt ggg Thr Asp Trp Arg Thr Ser Met Glu Pro Cys Thr Arg Glu Glu Val Gly 160 165 170	530
gct gag tgc tgg ccc tct gcg tct tcc tta tta acc ttg aat cct cat Ala Glu Cys Trp Pro Ser Ala Ser Ser Leu Leu Thr Leu Asn Pro His	578

175 180 185

taa aggtttcttt acccacaaaa aaaaaaaa

609

<210> 28 <211> 1291 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (26)(1057)	
<pre><400> 28 tgctggaatt ccccggcgcc gcgcc atg tgg gct gcg gcg ggg ctg tgg</pre>	52
cgc tcc cgc gcg ggt ctc cgg gcc ctg ttc cgt agc cgc gat gct gcg Arg Ser Arg Ala Gly Leu Arg Ala Leu Phe Arg Ser Arg Asp Ala Ala 10 15 20 25	100
cta ttt cca ggc tgc gag cgg gga ctt cac tgc tct gct gtc tcc tgc Leu Phe Pro Gly Cys Glu Arg Gly Leu His Cys Ser Ala Val Ser Cys 30 35 40	148
aag aac tgg ctc aag aaa ttt gcc tcg aaa acc aaa aaa aag gtt tgg Lys Asn Trp Leu Lys Lys Phe Ala Ser Lys Thr Lys Lys Lys Val Trp 45 50 55	196
tat gaa agt cct tcc ttg ggt tct cac tcg act tac aaa cca tcc aag Tyr Glu Ser Pro Ser Leu Gly Ser His Ser Thr Tyr Lys Pro Ser Lys 60 65 70	244
ttg gaa ttc ctc atg agg agc acc tca aag aaa acc agg aag gaa gac Leu Glu Phe Leu Met Arg Ser Thr Ser Lys Lys Thr Arg Lys Glu Asp 75 80 85	292
cat gcg cgc ctg agg gcc ctg aac ggc ctc ctc tat aag gca ctg aca His Ala Arg Leu Arg Ala Leu Asn Gly Leu Leu Tyr Lys Ala Leu Thr 90 95 100 105	340
gac ctg ctg tgt acc cct gaa gtg agt cag gag ctg tat gac ctt aac Asp Leu Leu Cys Thr Pro Glu Val Ser Gln Glu Leu Tyr Asp Leu Asn 110 115 120	388
gtg gag ctc tcc aag gtt tcc ctg act cca gac ttc tca gcc tgc cga Val Glu Leu Ser Lys Val Ser Leu Thr Pro Asp Phe Ser Ala Cys Arg 125 130 135	436
gcg tac tgg aag aca acg ctc tct gct gag cag aac gca cac atg gag	484

Ala Tyr S	Trp Lys 140	Thr Thr	Leu	Ser 145	Ala	Glu	Gln	Asn	Ala 150	His	Met	Glu	
gct gtc o Ala Val I 155			_			-				_	_		532
cag cag a Gln Gln 7 170			. Val										580
gga aat g Gly Asn A		_			_	_		_	_	_	-	-	628
ttt gga o			_	_			_			_			676
gac cct g Asp Pro A				_					-			•	724
tcc agt o Ser Ser I 235												_	772
gag tac a Glu Tyr I 250													820
ggg cag g Gly Gln V													868
gcc aag c Ala Lys F	_		_	_	_			_	_		_		916
ggc gag g Gly Glu G													964
gaa tgc t Glu Cys T 315													1012
ggc aga a Gly Arg T 330											tag *	atg	1060
gagaggctc	ct gccca	tccca c	atttg	cagg	gaa	aagc	att	ggca	ıcgca	ac g	cago	atgtg	1120
gcttcattg	ga ggcag	ıttgat g	gagtt	aaac	: cat	ctgc	tct	tctg	rctac	tt c	aaca	tttc	1180
tagcttttc	cc gtgta	ıtctaa a	cacaa	.tttg	r cta	caca	agt	cact	.gttt	tt t	tttc	catgc	1240

<210> 29 <211> 766 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (103)(759)	
<400> 29 atttggccct cgaggcctag aattcggcac gaggcgctgc gctcgcgccc ggatccctca	60
ggcggctgca ggcttcagcc tgcgctggtt ggtgaaacag ag atg tca gaa aag Met Ser Glu Lys 1	114
gag aac aac ttc ccg cca ctg ccc aag ttc atc cct gtg aag ccc tgc Glu Asn Asn Phe Pro Pro Leu Pro Lys Phe Ile Pro Val Lys Pro Cys 5 10 15 20	162
ttc tac cag aac ttc tcc gac gag atc cca gtg gag cac cag gtc ctg Phe Tyr Gln Asn Phe Ser Asp Glu Ile Pro Val Glu His Gln Val Leu 25 30 35	210
gtg aag agg atc tac cgg ctg tgg atg ttt tac tgc gcc acc ctc ggc Val Lys Arg Ile Tyr Arg Leu Trp Met Phe Tyr Cys Ala Thr Leu Gly 40 45 50	258
gtc aac ctc att gcc tgc ctg gcc tgg tgg atc ggc gga ggc tcg ggg Val Asn Leu Ile Ala Cys Leu Ala Trp Trp Ile Gly Gly Gly Ser Gly 55 60 65	306
acc aac ttc ggc ctg gcc ttc gtg tgg ctg ctc ctg ttc acg cct tgc Thr Asn Phe Gly Leu Ala Phe Val Trp Leu Leu Phe Thr Pro Cys 70 75 80	354
ggc tac gtg tgc tgg ttc cgg cct gtc tac aag gcc ttc cga gcc gac Gly Tyr Val Cys Trp Phe Arg Pro Val Tyr Lys Ala Phe Arg Ala Asp 85 90 95 100	402
agc tcc ttt aat ttc atg gcg ttt ttc ttc atc ttc gga gcc cag ttt Ser Ser Phe Asn Phe Met Ala Phe Phe Phe Ile Phe Gly Ala Gln Phe 105 110 115	450
gtc ctg acc gtc atc cag gcg att ggc ttc tcc ggc tgg ggc gcg tgc Val Leu Thr Val Ile Gln Ala Ile Gly Phe Ser Gly Trp Gly Ala Cys 120 125 130	498
ggc tgg ctg tcg gca att gga ttc ttc cag tac agc ccg ggc gct gcc Gly Trp Leu Ser Ala Ile Gly Phe Phe Gln Tyr Ser Pro Gly Ala Ala 135 140 145	546

gtg gtc atg ctg ctt cca gcc atc atg ttc tcc gtg tcg gct gcc atg Val Val Met Leu Pro Ala Ile Met Phe Ser Val Ser Ala Ala Met 150 155 160	594
atg gcc atc gcg atc atg aag gtg cac agg atc tac cga ggg ggc tgg Met Ala Ile Ala Ile Met Lys Val His Arg Ile Tyr Arg Gly Gly Trp 165 170 175 180	642
cgg aag ctt cca gaa ggc cag acg gag tgg cac acg ggc ctt ggc gga Arg Lys Leu Pro Glu Gly Gln Thr Glu Trp His Thr Gly Leu Gly Gly 185 190 195	690
acc ccc cgc gac ggg ggc ccc gtc aac atc ttt cgg cga agc ttg ccc Thr Pro Arg Asp Gly Gly Pro Val Asn Ile Phe Arg Arg Ser Leu Pro 200 205 210	738
agt acc ccc ttg tgc ccg taa ccggcgg Ser Thr Pro Leu Cys Pro * 215	766
<210> 30 <211> 3922 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (139)(3633)	
<400> 30 cggtggcgtg gtcaagcccc agagagcgcc gcgaaaacca cattttccag agtgcactgc	60
gacggcaggg gtcctcagac cggcgctcgc tcgccggcgc catccctata gagaagaacg	120
gaggtacggc ctgtggtc atg gcg ctg ttc cca gcc ttt gcg ggg ctt agt Met Ala Leu Phe Pro Ala Phe Ala Gly Leu Ser 1 5 10	171
gag gct ccc gat ggc ggg agc tcc agg aaa gag tta gac tgg ctg agc Glu Ala Pro Asp Gly Gly Ser Ser Arg Lys Glu Leu Asp Trp Leu Ser 15 20 25	219
aac cca agc ttt tgt gtt gga tcc ata acg tcc ctg agc caa caa act Asn Pro Ser Phe Cys Val Gly Ser Ile Thr Ser Leu Ser Gln Gln Thr	267
30 35 40	
gaa gca gct cca gcc cat gtt tct gaa ggg tta ccg ctg aca agg agt Glu Ala Ala Pro Ala His Val Ser Glu Gly Leu Pro Leu Thr Arg Ser 45 50 55	315

	caa Gln		_	_		_	_				_				_	411
	cag Gln			_			_		_			_	_	_	_	459
	agg Arg		_		-		-		-	_	-				_	507
	gtt Val 125		-	-		-	-		-	-	_					555
	gct Ala															603
_	gct Ala		_		_			-		-	_			-		651
	aac Asn															699
_	agg Arg			-		_						_	_	_	_	747
	tct Ser 205		-						_	_			_	_	_	795
_	gaa Glu	-				_	_	-				_			-	843
	gtt Val	-		_	-			-								891
	ttt Phe															939
	ttg Leu			_				-	_							987
	gga Gly 285															1035

			gag Glu													1083
			cgg Arg					-	-	_	-		-	-		1131
			cag Gln 335													1179
	-		gag Glu	_	-	-	_	_			_	_			-	1227
	_	_	ctg Leu	-		_			_			_		_	-	1275
		_	ctg Leu		_	-	_	_	_		_					1323
			act Thr	-	_				_		_			_		1371
			aca Thr 415													1419
		-	acc Thr		_						-					1467
			act Thr								-					1515
			cct Pro													1563
			ttt Phe													1611
			gcc Ala 495													1659
			cct Pro													1707
gac	agt	gga	gag	ccc	cgg	gct	aaa	gag	aag	gga	gcc	cga	ggc	tgg	aag	1755

Asp	Ser 525	Gly	Glu	Pro	Arg	Ala 530	Gly	Glu	Lys	Gly	Ala 535	Arg	Gly	Trp	Lys	
					cag Gln 545											1803
					gaa Glu											1851
					tgg Trp											1899
					cgg Arg											1947
					gag Glu											1995
					atc Ile 625											2043
					ctg Leu											2091
cct Pro	cca Pro	gcc Ala	tcc Ser 655	tgt Cys	ctt Leu	tat Tyr	ctg Leu	gcc Ala 660	atg Met	gat Asp	gag Glu	aac Asn	agc Ser 665	atc Ile	ttt Phe	2139
					gat Asp										_	2187
					tgt Cys											2235
					cag Gln 705											2283
					atg Met											2331
					tta Leu											2379
					aag Lys											2427

	750		75	5				760				
		aag aat Lys Asn										2475
_		aag cag Lys Gln 785	-		_			_				2523
		aga aaa Arg Lys 800										2571
		aaa gac Lys Asp										2619
		gtg gag Val Glu		r Pro						_	_	2667
	-	cac ata His Ile		_	_		-	-				2715
		gga cag Gly Gln 865										2763
		cac gca His Ala 880										2811
	_	ccc acc Pro Thr	_	_	_	-			_	_	_	2859
		ctc ttc Leu Phe		r Leu								2907
		gaa cag Glu Gln										2955
		ggc gag Gly Glu 945										3003
		gcc atc Ala Ile 960										3051
		agt gtt Ser Val										3099

tca cag gct tta aag ttg tat cca ggc aac cag gtt ctt tgg agg tcc Ser Gln Ala Leu Lys Leu Tyr Pro Gly Asn Gln Val Leu Trp Arg Ser 990 995 1000	3147
tat gta cag att cag aat aag tcc cac agt gcc agc aaa acc agg aga Tyr Val Gln Ile Gln Asn Lys Ser His Ser Ala Ser Lys Thr Arg Arg 1005 1010 1015	3195
ttt ttt gac aca atc acc agg tct gcc aaa ccc ttg gag cct tgg ttg Phe Phe Asp Thr Ile Thr Arg Ser Ala Lys Pro Leu Glu Pro Trp Leu 1020 1025 1030 1035	3243
ttt gca att gaa gct gag aaa ctg agg aag aga ctg gtg gaa act gtc Phe Ala Ile Glu Ala Glu Lys Leu Arg Lys Arg Leu Val Glu Thr Val 1040 1045 1050	3291
cag agg tta gac ggt aga gag atc cac gcc aca att cct gag acc ggc Gln Arg Leu Asp Gly Arg Glu Ile His Ala Thr Ile Pro Glu Thr Gly 1055 1060 1065	3339
tta atg cat cgg atc caa gcc ctg ttt gaa aat gcc atg cgc agc gac Leu Met His Arg Ile Gln Ala Leu Phe Glu Asn Ala Met Arg Ser Asp 1070 1075 1080	3387
agt ggc agc cag tgc ccc ttg ctg tgg agg atg tat ttg aac ttt ctg Ser Gly Ser Gln Cys Pro Leu Leu Trp Arg Met Tyr Leu Asn Phe Leu 1085 1090 1095	3435
gtt tcc tta gga aat aaa gaa aga agc aaa ggt gta ttc tac aaa gca Val Ser Leu Gly Asn Lys Glu Arg Ser Lys Gly Val Phe Tyr Lys Ala 1100 1105 1110 1115	3483
ctt cag aat tgc cct tgg gca aag gtg ttg tac ctg gac gcc gtg gag Leu Gln Asn Cys Pro Trp Ala Lys Val Leu Tyr Leu Asp Ala Val Glu 1120 1125 1130	3531
tat ttc ccc gat gag atg cag gag atc ctg gac ctg atg act gag aag Tyr Phe Pro Asp Glu Met Gln Glu Ile Leu Asp Leu Met Thr Glu Lys 1135 1140 1145	3579
gag ctc cgg gtg cgc ctg ccg ctg gag gag ctg gag ctg ctg ctg gag Glu Leu Arg Val Arg Leu Pro Leu Glu Glu Leu Glu Leu Leu Glu 1150 1155 1160	3627
gat tag agagcagtgg gaaaacgggc tgtgcctgcg aggccaagtt gcccaccctg Asp * 1165	3683
cggagctagg aggcgcgagc agagaacgtg tgtgttagga gaactcggct tttgaaatgt	3743
tctttctcga tagtaataat gtgggctgcc agcctctcac atcttgcaca ctttttgggt	3803
gtgtaaatga cacaaaagtt atttacatat tatatatgtg aatatgtgta tatatgtaca	3863
tagccagaga gtcatgccac gtggtcatta aaccgatgat gattgagaaa aaaaaaaaa	3922

•	<212	> 31 > 1099 > DNA > Homo		iens											
•	<220: <221:		_												
ctcgg	<400> cctta		Me		-	_	c Sei		_				a Ala	g gcg a Ala	49
gcc gc Ala Al	la Al														97
ctt ga Leu Gl	_		_		-					_	_	_		-	145
tct at Ser II 45															193
tca to Ser Se															241
gct ga Ala Gl			Thr		tga *	ct t	tctg	ggaga	aa at	tctg	gatga	a gat	tatgt	caa	294
gctctg	gcaag	g aggg	ttaga	aa ga	attgo	catto	g tag	gttga	agaa	tgta	ıcaat	ga a	aatta	actgca	354
tgcago	cagto	y taga	aaaat	t tt	actt	ttta	a aaa	agaat	tat	aaaa	ccat	ag d	cttta	ataaat	414
cagtgg	gaaag	, tggc	ttaca	ag ag	gagaa	actat	cag	gatgt	gtt	taca	itcac	cat o	cttat	tcact	474
ttttt	taaca	gctc	taato	gc tt	tggd	catto	g cta	atgtt	cat	attt	atgt	at t	cctt	attta	534
tagcto	ctgat	agct	ttaat	t tt	ctaa	agcag	g tct	gtct	tatc	agat	gtgo	cac a	atcto	gctgtg	594
ccaggt	tgaa	gtat	agtgg	ga ac	ccat	cagt	agt	taato	gtgt	agta	agtta	atg a	actto	gttgac	654
atttcc	catta	taaa	cttta	aa tt	ttga	atto	y ttt	tatgo	att	ataa	ctgt	gg a	attta	tattg	714
tattgg	ggatg	g aaag	ttgad	ca gg	gattt	cago	c cac	ccact	tgt	gaat	tttt	at t	taga	ttcat	774
tatgta	atato	: agaa	tcttg	gt tt	tttç	gaaat	aag	gagca	ıtgg	aaaa	catt	tc t	tgta	atcta	834
ctcttc	raaca	aarra	atatt	t ac	r+++	tcaa	aca	acttt	att	aaac	aact	aa t	anto	traac	894

caggtcattt ttgtattgag taaaaaaatc aaactttgag aaacttggat tttaaaagta 954
atgacaatgc ttaggttagt attatttgta atttgaatca tttacatcta atgagaatgt 1014
tagttgagaa tgttttctta aagttttata tcctataaat aacggaataa aaaaatttgt 1074
aaaatgaaac aacaaaaaa aaaaa 1099

<210> 32

<211> 4309

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (248)..(3928)

<400> 32

cogggeegee egegtgeeca ageceacgtg agagggeagg aegeetgaga gettgaggee 60 acacgaggct gtggagcggc gtgactcaaa cgtggcgcgc atcagctcgc acacttccaa 120 acctegegat agetactgge cetgggegag cegttgggat tgegettgeg cacagegtgt 180 240 cttctggatc gccataccta ccctgtggtc ctcatcttcc tggcctcata gctcctcctc 289 tccaagc atg tct tcc ccg ttg caa aga gct gtg gga gat acc aag agg Met Ser Ser Pro Leu Gln Arg Ala Val Gly Asp Thr Lys Arg 1 10 5 gcc ttt tct gca tct tct agt tcc tct gcc agt cta ccc ttt gat gac 337 Ala Phe Ser Ala Ser Ser Ser Ser Ala Ser Leu Pro Phe Asp Asp 15 20 30 agg gac tca aac cat acc tca gag ggg aat ggc gac tct ttg tta gct 385 Arg Asp Ser Asn His Thr Ser Glu Gly Asn Gly Asp Ser Leu Leu Ala 35 433 gat gaa gac act gac ttt gaa gac agc ttg aat cgc aat gtg aag aag Asp Glu Asp Thr Asp Phe Glu Asp Ser Leu Asn Arg Asn Val Lys Lys 55 481 Arg Ala Ala Lys Arg Pro Pro Lys Thr Thr Pro Val Ala Lys His Pro 529 aag aaa ggg tcc cga gtg gta cat cgt cat agc cgg aaa cag tca gag Lys Lys Gly Ser Arg Val Val His Arg His Ser Arg Lys Gln Ser Glu 80 85 90 577 cca cca gcc aat gat ctt ttc aat gct gtg aaa gcc gcc aaa agt gac Pro Pro Ala Asn Asp Leu Phe Asn Ala Val Lys Ala Ala Lys Ser Asp 95 100

_	_		_	_	gat Asp	-		-	-	-		-		-	_	625
-	-			_	gag Glu		_							_		673
					acc Thr											721
					cta Leu			-				-	_		-	769
					cca Pro 180								_		_	817
	_	_			agg Arg		_	_	_	_	_	_		_		865
		_			cct Pro	_	_	_				_				913
					gtc Val									_		961
					acc Thr											1009
			_		aat Asn 260	_	_	_			-	-	_		_	1057
			_		gca Ala				_		_	_	_			1105
_					gag Glu								_	_		1153
					gtc Val											1201
					tgc Cys			_			_		_		_	1249
tac	agc	acg	tct	ttc	ctc	acc	gac	agc	tat	tta	aaa	tat	att	ggt	tgg	1297

Tyr 335	Ser	Thr	Ser	Phe	Leu 340	Thr	Asp	Ser	Tyr	Leu 345	Lys	Tyr	Ile	Gly	Trp 350	
	_		_	_		cga Arg	_	_	_		_	_		_	-	1345
_			_			aac Asn		_	_		-	_	_			1393
						gac Asp										1441
		_		-		gag Glu 405	-	-	-		-					1489
						ctg Leu										1537
	_					aat Asn	_		_	_		_	_		_	1585
						ttc Phe									_	1633
		_			-	cag Gln	_			-	_					1681
						ttt Phe 485										1729
						ctg Leu										1777
_				-		agc Ser	-	_	_		_	-	_		_	1825
	-		_		-	aca Thr	_		-					_	_	1873
						cac His										1921
						gag Glu										1969

aag ttg act gag cac ctc atc ccc ctg ctg ccc cag ctc ctg gcc aag Lys Leu Thr Glu His Leu Ile Pro Leu Leu Pro Gln Leu Leu Ala Lys ttc tca gct gat gca gag aag gtc act ccc ctg ctc cag ctt ctc agc Phe Ser Ala Asp Ala Glu Lys Val Thr Pro Leu Leu Gln Leu Leu Ser tgc ttt gac ctc cac atc tac tgc act ggg cgc ttg gag aag cac ctg Cys Phe Asp Leu His Ile Tyr Cys Thr Gly Arg Leu Glu Lys His Leu gag ctg ttc ctg cag caa ctc cag gag gtg gtg gtg aag cat gca gag Glu Leu Phe Leu Gln Gln Leu Gln Glu Val Val Lys His Ala Glu cca gcg gtg ctt gag gct ggg gcg cat gcc ctc tac ctg ctc tgt aat Pro Ala Val Leu Glu Ala Gly Ala His Ala Leu Tyr Leu Leu Cys Asn ccc gaa ttc act ttc ttc agc cgg gcg gac ttt gcc cgc agc cag cta Pro Glu Phe Thr Phe Phe Ser Arg Ala Asp Phe Ala Arg Ser Gln Leu gta gat ttg ctg act gac cgc ttc cag cag gag ctt gaa gag ctg tta Val Asp Leu Leu Thr Asp Arg Phe Gln Glu Leu Glu Glu Leu Leu cag tcg tcc ttc cta gat gag gat gag gta tat aat ctg gca gcc act Gln Ser Ser Phe Leu Asp Glu Asp Glu Val Tyr Asn Leu Ala Ala Thr ctg aaa cgc ctc tct gcc ttc tac aac act cat gac ctg act cgc tgg Leu Lys Arg Leu Ser Ala Phe Tyr Asn Thr His Asp Leu Thr Arg Trp gag ctc tat gag cca tgt tgc caa ctc ctg cag aag gct gtg gac aca Glu Leu Tyr Glu Pro Cys Cys Gln Leu Leu Gln Lys Ala Val Asp Thr gga gag gtt cct cac cag gtt atc ctg cca gcc ttg act ctt gtc tat Gly Glu Val Pro His Gln Val Ile Leu Pro Ala Leu Thr Leu Val Tyr ttt tcc att ctc tgg aca cta acc cac att tct aaa tca gat gct tcc Phe Ser Ile Leu Trp Thr Leu Thr His Ile Ser Lys Ser Asp Ala Ser cag aag cag ctg tcg agt ttg agg gac aga atg gtg gcc ttc tgt gaa Gln Lys Gln Leu Ser Ser Leu Arg Asp Arg Met Val Ala Phe Cys Glu ctc tgc cag agt tgc ctc tca gat gtg gat act gag atc cag gag cag Leu Cys Gln Ser Cys Leu Ser Asp Val Asp Thr Glu Ile Gln Glu Gln

_		-			agt Ser										2689
					gat Asp 820										2737
					gag Glu										2785
					ctg Leu										2833
					cac His										2881
					ggg Gly										2929
					aag Lys 900				_			_		-	2977
					gca Ala										3025
	_	_	_	_	ctc Leu	_	-	_			_	_			3073
			_		ctg Leu					-			_		3121
_	_	_			ttt Phe	-									3169
					gtc Val 980										3217
-					cca Pro	-		Ser			_		Pro		3265
_		Leu	~ ~		ctt Leu		Glu				_	Leu		_	3313

gac aag cag ctt tta ctg tcc tat cta gaa aag tgc ctg cag cat gtc Asp Lys Gln Leu Leu Ser Tyr Leu Glu Lys Cys Leu Gln His Val 1025 1030 1035	3361
tcc cag gca cct ggc cat ccc tgg ggc cca gtc acc acc tac tgc cac Ser Gln Ala Pro Gly His Pro Trp Gly Pro Val Thr Thr Tyr Cys His 1040 1045 1050	3409
tcc ctc agc cct gtg gag aac aca gca gag acc agc cct cag gtc ctc Ser Leu Ser Pro Val Glu Asn Thr Ala Glu Thr Ser Pro Gln Val Leu 1055 1060 1065 1070	3457
ccc age tcc aag agg agg cgc gtt gaa ggg cct gcc aag cct aac aga Pro Ser Ser Lys Arg Arg Val Glu Gly Pro Ala Lys Pro Asn Arg 1075 1080 1085	3505
gag gac gtc tcc tcg tcc cag gaa gaa agt ctg cag ctg aac agc atc Glu Asp Val Ser Ser Ser Gln Glu Glu Ser Leu Gln Leu Asn Ser Ile 1090 1095 1100	3553
ccg ccc acg ccc acc ctc acc tcc aca gct gtg aag agc agg cag ccc Pro Pro Thr Pro Thr Leu Thr Ser Thr Ala Val Lys Ser Arg Gln Pro 1105 1110 1115	3601
ctg tgg ggg ttg aaa gag atg gag gaa gaa g	3649
ttt gcc cag ggc agt cag ccc gtc gca ggc acc gag agg tca agg ttc Phe Ala Gln Gly Ser Gln Pro Val Ala Gly Thr Glu Arg Ser Arg Phe 1135 1140 1145 1150	3697
ttg ggt cca caa tat ttc cag act cca cac aac cct tca ggt cct ggc Leu Gly Pro Gln Tyr Phe Gln Thr Pro His Asn Pro Ser Gly Pro Gly 1155 1160 1165	3745
ctg ggc aac cag ctg atg cga ctc agc ctt atg gaa gag gac gag gaa Leu Gly Asn Gln Leu Met Arg Leu Ser Leu Met Glu Glu Asp Glu Glu 1170 1180	3793
gaa gag tta gaa atc cag gat gag tca aat gaa gaa cgg cag gat aca Glu Glu Leu Glu Ile Gln Asp Glu Ser Asn Glu Glu Arg Gln Asp Thr 1185 1190 1195	3841
gac atg caa gca agt agc tac tct tcc acc agt gag cgc ggg ctg gac Asp Met Gln Ala Ser Ser Tyr Ser Ser Thr Ser Glu Arg Gly Leu Asp 1200 1205 1210	3889
ctc tta gat tct aca gag ctg gat att gag gat ttc tga caggactctg Leu Leu Asp Ser Thr Glu Leu Asp Ile Glu Asp Phe * 1215 1220 1225	3938
ggcccctccc cagctccact ccctacctca agaatgtgac catttggaaa aggcaaagag	3998
aaaaggagca aaatgaagca ttcccccagg cttcagccct gggctctgag gggaaagagt	4058
tgggcattgt ttttctaacc taacctttcc ctctggggta gagaagccga gagaccctgt	4118

4178 cctccctaat qcactqtqqc ccaqtcccct tgcctttttc ctgttctgtt tggagtggag 4238 aaqqqcaqca cctctgtgtt taatggaaat agcccatagt ctcctggatt tttggaacat ctttctcagc ctattttgtg tcctaatgat tcgctcaata aacatgtttg aatccacaaa 4298 4309 aaaaaaaaa a <210> 33 <211> 1545 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (29)..(1309) <400> 33 atg gca ggc ggc cac agc ctc ctg 52 tttcgtgcga ccctcagcgc gaggcgac Met Ala Gly Gly His Ser Leu Leu 1 5 ctg gag aac gcg cag cat gtg gcg ttg gtg tgc gcc cgc ggc gag cgc 100 Leu Glu Asn Ala Gln His Val Ala Leu Val Cys Ala Arg Gly Glu Arg 10 15 ttc ctg gcg cgg gat gcg ctg cgc agc ctg gcg gtg ctg gaa ggc gcc 148 Phe Leu Ala Arg Asp Ala Leu Arg Ser Leu Ala Val Leu Glu Gly Ala 30 agc ctg gtg gtg ggc aaa gat gga ttt ata aaa gct att ggt cct gct 196 Ser Leu Val Val Gly Lys Asp Gly Phe Ile Lys Ala Ile Gly Pro Ala 45 50 gat gtt att caa aga cag ttt tct gga gaa act ttt gaa gaa tta att 244 Asp Val Ile Gln Arg Gln Phe Ser Gly Glu Thr Phe Glu Glu Leu Ile 292 gac tgc tct ggg aaa tgt atc cta cca ggt ttg gtg gat gca cac aca Asp Cys Ser Gly Lys Cys Ile Leu Pro Gly Leu Val Asp Ala His Thr 75 cat cca gta tgg gct ggt gaa aga gtt cac gaa ttt gca atg aag ttg 340 His Pro Val Trp Ala Gly Glu Arg Val His Glu Phe Ala Met Lys Leu 90 388 gca gga gcc acc tac atg gaa att cac cag gcc gga gga ggg atc cac Ala Gly Ala Thr Tyr Met Glu Ile His Gln Ala Gly Gly Ile His 105 120 110 436 Phe Thr Val Glu Arg Thr Arg Gln Ala Thr Glu Glu Glu Leu Phe Arg

	_	_			ctc Leu	-	_	_	_		-				484
		_	_	-	gga Gly				_	_			-		532
_	_	_			gag Glu	_									580
_	-				ggg Gly 190										628
					gac Asp										676
					ggg Gly										724
					ttt Phe										772
					ggg Gly										820
					gct Ala 270										868
					gaa Glu										916
-	-		_		gcc Ala			_							964
_	_				cga Arg	_		_	_		-	-		_	1012
-					gat Asp										1060
	_	-	_		ctg Leu 350	_	_	_							1108

gag gcc ttg gcc gct gcc acc atc aat gca gct tat gca ctg gga aag Glu Ala Leu Ala Ala Ala Thr Ile Asn Ala Ala Tyr Ala Leu Gly Lys 365 370 375	1156
tct cac aca cac gga tcg ttg gaa gtt ggc aaa cag gga gat ctc att Ser His Thr His Gly Ser Leu Glu Val Gly Lys Gln Gly Asp Leu Ile 380 385 390	1204
atc atc aat tca tcc cga tgg gag cat ttg att tac cag ttc gga ggc Ile Ile Asn Ser Ser Arg Trp Glu His Leu Ile Tyr Gln Phe Gly Gly 395 400 405	1252
cat cat gaa tta att gaa tat gtt ata gct aaa gga aaa ctc atc tat His His Glu Leu Ile Glu Tyr Val Ile Ala Lys Gly Lys Leu Ile Tyr 410 415 420	1300
aaa aca tga tagattt gaaaagagaa gactttttga ctatatgaaa taagtcaata Lys Thr * 425	1356
tagttatatt aaaagttaaa acaccttaat atttacaaga attatatcac ttaaacctga	1416
atgtacttca atgtcttttt aagtcactca aaaaacccaa gggatagatt tattttcatt	1476
taacacatgc atttgacata taaacaggta aacctattgt gattaaaatc acaaaacatc	1536
caattagtt	1545
<210> 34 <211> 5490 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (250)(2328) <400> 34	
ccggaattcc cgggtcgacg atttcgtctt gtaatcaccc gtgagattga tgtggcaaaa	60
aatcagtcct tttggttcat caacaaaaaa tctacaaccc agaaaatagt ggaagagaaa	120
gttgcagcct taaatattca agtggggaat ctttgccagt ttctccctca ggacaaagtt	180
ggagaatttg ctaaactcag caaaattgaa ctcctcgaag ccactgaaaa gtcaattggt	240
cccccagaa atg cac aaa tat cac tgt gaa ctc aaa aac tta agg gag Met His Lys Tyr His Cys Glu Leu Lys Asn Leu Arg Glu 1 5 10	288
aaa gaa aaa cag ctc gag acc tca tgc aaa gag aaa act gag tat cta Lys Glu Lys Gln Leu Glu Thr Ser Cys Lys Glu Lys Thr Glu Tyr Leu	336

15 20

-		_	-	_	agg Arg 35		_	_				-				384
		-		_	cga Arg			_				-		-	-	432
					gaa Glu											480
-			_	-	gac Asp	_		_	_		-	_				528
					ata Ile											576
_			_		gct Ala 115	_			_	_	-		-		_	624
					tgc Cys											672
					gaa Glu								-			720
_			-	_	cag Gln		_					_		_		768
					gaa Glu											816
				_	gcc Ala 195				-	_	_			_	_	864
		-		_	gaa Glu		-			_	_	-	-			912
					gag Glu											960
	_			_	aat Asn	_	_	-	-	-		_	-	-		1008
cgt	gac	acg	tat	gat	gct	gtt	tta	tgg	cta	aga	aat	aac	aga	gac	aaa	1056

Arg	Asp 255	Thr	Tyr	Asp	Ala	Val 260	Leu	Trp	Leu	Arg	Asn 265	Asn	Arg	Asp	Lys		
			_	_	_			ata Ile	_		_			_		11	L04
-				_				gaa Glu							_	11	152
	-	-		_		_	_	caa Gln 310	-	-	_		_			12	200
		-	_	_				tta Leu	-	-		-	-		_	12	248
	_	_			~	~		gca Ala			_		_		_	12	296
								tat Tyr	_	-	-			-	_	13	344
	_		_	_	_			tgc Cys	_	_					_	13	392
-		_			-	_		aga Arg 390	_	_		-		-		14	140
	_		-			-		tat Tyr		-	-	-	-			14	188
								aaa Lys								15	36
		-	-	-				gtc Val					-			15	84
~			~	~	~		~	gaa Glu			_		_		_	16	32
								cgt Arg 470								16	80
								aag Lys								17	28

485 490 480 1776 aaa acc aag aaa aga caa ctg gaa caa aaa atc agt tcc aaa cta gga Lys Thr Lys Lys Arg Gln Leu Glu Gln Lys Ile Ser Ser Lys Leu Gly 500 1824 agt tta aag ctg atg gaa cag gat act tgc aat ctt gaa gag gaa gag Ser Leu Lys Leu Met Glu Gln Asp Thr Cys Asn Leu Glu Glu Glu Glu 510 515 520 1872 cga aaa gca agt acc aaa atc aaa gaa ata aat gtt caa aaa gcg aaa Arg Lys Ala Ser Thr Lys Ile Lys Glu Ile Asn Val Gln Lys Ala Lys 530 535 ctt gtt acc gaa tta aca aac cta ata aag att tgt act tct ttg cat 1920 Leu Val Thr Glu Leu Thr Asn Leu Ile Lys Ile Cys Thr Ser Leu His 545 550 ata caa aaa gta gat tta att ctc caa aat act aca gtg atc tct gag 1968 Ile Gln Lys Val Asp Leu Ile Leu Gln Asn Thr Thr Val Ile Ser Glu 570 560 565 2016 aag aac aaa tta gaa tca gat tat atg gcc gca tct tca caa ctc cgt Lys Asn Lys Leu Glu Ser Asp Tyr Met Ala Ala Ser Ser Gln Leu Arg 575 580 ctt aca gag caa cat ttc att gaa ttg gat gaa aat aga cag aga tta 2064 Leu Thr Glu Gln His Phe Ile Glu Leu Asp Glu Asn Arg Gln Arg Leu 595 600 2112 ttg cag aaa tgc aag gaa ctt atg aaa aga gct agg caa gta tgt aac Leu Gln Lys Cys Lys Glu Leu Met Lys Arg Ala Arg Gln Val Cys Asn 610 615 2160 ctg ggt gca gag cag act ctt cct caa gaa tac cag aca caa gta ccc Leu Gly Ala Glu Gln Thr Leu Pro Gln Glu Tyr Gln Thr Gln Val Pro 625 630 2208 acc att cca aat gga cac aac tcc tca ctc ccc atg gtt ttc caa gac Thr Ile Pro Asn Gly His Asn Ser Ser Leu Pro Met Val Phe Gln Asp 640 645 2256 ctt cca aac aca ttg gat gaa att gat gct tta tta act gaa gaa aga Leu Pro Asn Thr Leu Asp Glu Ile Asp Ala Leu Leu Thr Glu Glu Arg 655 660 2304 tca aga gct tcc tgc ttc acg gga ctg aat cct aca att gtt cag gaa Ser Arg Ala Ser Cys Phe Thr Gly Leu Asn Pro Thr Ile Val Gln Glu 670 685 675 tat aca aaa aag aaa aaa tag aacagttaac tgaggaacta aagggaaaga 2358 Tyr Thr Lys Lys Lys Lys Lys * 690 aagttgaact agatcaatac agggaaaaca tttcacaggt aaaagaaagg tggcttaatc 2418 2478 ctttaaaaga gctggtagaa aaaattaatg aaaaattcag caatttttt agttccatgc

2538 aqtqtqctqq tqaaqttqat ctccatacag aaaatgagga agattatgat aaatatggaa 2598 ttcgaattag agtcaaattt cgaagtagta ctcaactgca tgaattaact cctcatcatc 2658 aaagtggagg tgaaagaagt gtttctacca tgttatactt gatggcactt caggagctaa 2718 atagatgtcc attcagagta gttgatgaaa tcaatcaggg aatggaccca atcaatgaac ggagagtgtt tgaaatggtt gtaaatactg cctgtaaaga aaatacatct caataacttt 2778 2838 ttcataacac caaagctcct gcaaaatctt ccttattctg aaaagatgac agttttgttt 2898 gtctacaatg gccctcatat gctggaacca aacacatgga atttaaaggc tttccaaagg 2958 cggcggcgcc gtattacatt cactcaacct tcttaataaa agtaaagaga gggaacttgg 3018 gaattttttt tgttaaattc tgtttataag tatggctcaa ctgaataaaa ggagattcac taaaacgaaa agcagttatt tttggaaacc tgcttttaaa tacaaatagg ttgataatgg 3078 3138 aaactataat gacctttcca aaatagcagc tggtagtaaa agttaagtct tcttcagtct 3198 tggttgaact tgagttcttg gcactctgac catgagtcat tcagttctca tgttaaaatg tacttaatat tacaaatcaa aggtacagtg gaagaagggt taatcacaag aagttactta 3258 tatggtagcc ctgagcttta attgcagagt aactttaatt acttttagag cctaaagatg 3318 actctagagc ctaagtccta gtttctccca atgttatatt taattttaaa aaattgatat 3378 3438 gaaaatgtct aatgtatagt aataatttat gacagatcta gtcatttctt cctattaaaa 3498 aagattacct tatctccagt aggaaatgga attttatggg cctttaaaaag aaagttttat 3558 gaaacttgat gctataattt tattggtatt tcaaggggaa aaaagcactg gggttcaaaa 3618 atggtagcag aactgctttg aaatgctgca aggtggccac tagatgatgc aaaatacaac 3678 caaaagattg actgagaata aaattaggtg acaagggttt ttaaagaata accttttaaa 3738 gtgtggggc aggggttgct tttttttatt ttatttaaag tcaattatat tttacatctt 3798 acatttctaa aaqcatttta taattatttt tagtaagatt tttcttaaaa tttcatatac 3858 tggtttctac aatttatatt tgaaatttct cagtgttatg taaagagtga tggaaaagca 3918 ttgatttctt taaaaccgta atgtttttag aacttaagcc tatagggcct ttcttacaat 3978 gttgatgtac ccattatctt agaaaatcta gtttaaactg ttttctttca ccgcaaaaga 4038 attaaatggg aaaatcattt gtttatctct aagttatact aattagtaga accaaacaaa 4098 ttatcttctt ttaaaaaaata aatcttatag gaaaatagac agtccaaagt catgtctttg 4158 aacaqtqqat tqqatctgtg ccagtaatga caaaattatt tttttgactt gcttgcctga

4218 ataaattgaa gaattgcttt cagtttgggt tttgtatatt cttaagtagc cattgaaatt 4278 tatattetta actaggicaa aaaataatga geeataagit tatgicetet caettagaca 4338 ttttctcttt aaaaaggtat tttcttcttt ataaacattt taaaagagcc ttcccttctt aaactaactc cagtgcatga agtgtgaaaa tattttaaaa tgacattttt actaatatga 4398 4458 qcaaqtcatq taaacattga agaacttggt aacatattag taaatggata ttaccaaatg 4518 ttttcatcgt taattacttt gcgttccacc aaaatatctt tactaaaatg tgcttggtgt 4578 agtttgttta ttgtctaaat tagtaccagt catcttattt ctgcaaaatg agtatcaatg tgaaaaagac acgtgaagat taagcatgtt tgaaaataaa atggtcaatt acatttcaat 4638 4698 ttacataggc caacaactgt tccatacttt gtttgtaaac atttaatttc tctactggac 4758 aaaattaata tttggcttta cattgaattt tgagctgtga agaataaatt atgtatcatt ttagcatatt aaacagtagt aagtctagca catagtctca gccacttaaa acaaaagttt 4818 4878 ttttgtttgt ttgtttgttt gtttttttga gatggagtct cactctgttg cccaggctgg agtgcagtgg cgtgatctcg gcttactgca acctccgcct cccgggttca agcgattctc 4938 ctgcctcagc ctcccaagta actgggacaa caggcgcgtc ccaccacacc cagctaattt 4998 5058 tttatacttt tagtagagat ggggtttcag catattggcc aggctggtct cgaactcctg 5118 accttgtgat ccacccgcct cggcctccca aagtgctggg attataggcg tgagcccctg 5178 cacceggeca aaagttgatt tttaattaca taaaaategt aaaaacttet agtaaaaact tgatttggtg aatacagtta tattttaaaa ccttaaggtg acaagcattt tctatgccta 5238 aatcttcatt ggtttgcctg gaaagagtct ctgttaaaag attttccata ttcaaagtaa 5298 aaggaaagat ttcttgcttt ctaattgtct tttggacaca tgcctatttt ctttgaggta 5358 taaaccttta gatgtgaaaa atgtaatttc attctgctat tgtgtgtgct tgtgtgtgtg 5418 taattgaaaa aactgggaaa tcctgctttg ttggtaataa atcaatattt ttatattcaa 5478 5490 aaaaaaaaa aa

<210> 35

<211> 3596

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (103)..(3084)

<400> 35 tttcgtggtt tggtggattc ctcagtccct gccgccgcgg ggcgccctgg gatagcggcg													
gggcctcctg aacagatctc ggcccctttc caaacactcc tg atg cct cat ttg Met Pro His Leu 1													
cct ctc gct tct ttt cga cca cca ttt tgg ggg ctg agg cac tca cgg Pro Leu Ala Ser Phe Arg Pro Pro Phe Trp Gly Leu Arg His Ser Arg 5 10 15 20	162												
ggc ctc ccc agg ttt cac tcc gtt tct aca cag tcg gag ccc cat gga Gly Leu Pro Arg Phe His Ser Val Ser Thr Gln Ser Glu Pro His Gly 25 30 35	210												
tct ccc atc tcc cgg agg aac cgt gaa gcc aaa cag aag cgc ctg cga Ser Pro Ile Ser Arg Arg Asn Arg Glu Ala Lys Gln Lys Arg Leu Arg 40 45 50	258												
gag aag cag gct act ctg gag gct gag ata gca ggg gag agc aag tca Glu Lys Gln Ala Thr Leu Glu Ala Glu Ile Ala Gly Glu Ser Lys Ser 55 60 65	306												
cct gca gaa tcc att aag gcc tgg agg cct aag gag tta gta ttg tat Pro Ala Glu Ser Ile Lys Ala Trp Arg Pro Lys Glu Leu Val Leu Tyr 70 75 80	354												
gaa atc cct acg aaa ccc ggt gaa aag aaa gat gtc tct ggg ccc ctg Glu Ile Pro Thr Lys Pro Gly Glu Lys Lys Asp Val Ser Gly Pro Leu 85 90 95 100	402												
cct cct gca tac agc ccc cga tat gtt gag gct gcc tgg tac ccg tgg Pro Pro Ala Tyr Ser Pro Arg Tyr Val Glu Ala Ala Trp Tyr Pro Trp 105 110 115	450												
tgg gta cga gag ggc ttc ttc aaa cca gaa tat cag gcc cgg ctg ccc Trp Val Arg Glu Gly Phe Phe Lys Pro Glu Tyr Gln Ala Arg Leu Pro 120 125 130	498												
caa gct aca ggg gag acc ttt tcc atg tgt atc cca cct ccc aat gtc Gln Ala Thr Gly Glu Thr Phe Ser Met Cys Ile Pro Pro Pro Asn Val 135 140 145	546												
act ggc tcc ctg cac att ggc cac gca ctc acg gtg gcc ata cag gat Thr Gly Ser Leu His Ile Gly His Ala Leu Thr Val Ala Ile Gln Asp 150 155 160	594												
gcc ctc gtg cgc tgg cac cgg atg cgt ggg gat caa gtg ctg tgg gtc Ala Leu Val Arg Trp His Arg Met Arg Gly Asp Gln Val Leu Trp Val 165 170 175 180	642												
cct ggt tca gat cat gca gga att gct aca caa gct gtg gtg gag aaa Pro Gly Ser Asp His Ala Gly Ile Ala Thr Gln Ala Val Val Glu Lys 185 190 195	690												
caa ctg tgg aag gaa cgg gga gtg agg aga cat gag ctg agc cgg gag	738												

Gln	Leu	Trp	Lys 200	Glu	Arg	Gly	Val	Arg 205	Arg	His	Glu	Leu	Ser 210	Arg	Glu	
		ctt Leu 215														786
atc Ile	tgt Cys 230	gag Glu	cag Gln	ctg Leu	cga Arg	gct Ala 235	ctg Leu	ggt Gly	gcc Ala	tcc Ser	ctg Leu 240	gac Asp	tgg Trp	gat Asp	cga Arg	834
		ttt Phe														882
ttt Phe	gtg Val	cgg Arg	ctc Leu	tac Tyr 265	aag Lys	gcg Ala	ggg Gly	ttg Leu	ctg Leu 270	tac Tyr	cgg Arg	aac Asn	cat His	cag Gln 275	ctt Leu	930
		tgg Trp														978
gag Glu	aac Asn	cgg Arg 295	ccc Pro	ctg Leu	cct Pro	ggc Gly	cac His 300	aca Thr	cag Gln	cct Pro	ctt Leu	ccc Pro 305	ctc Leu	atc Ile	aca Thr	1026
		gct Ala														1074
		cac His														1122
		ttg Leu														1170
		tgg Trp														1218
		gtg Val 375														1266
		gta Val														1314
		aag Lys														1362
gct Ala	gcc Ala	aag Lys	gct Ala	gtg Val	gag Glu	tcg Ser	ggg Gly	gcc Ala	ctg Leu	gag Glu	ctc Leu	agt Ser	ccc Pro	tcc Ser	ttc Phe	1410

425 430 435 1458 cac cag aag aac tgg cag cac tgg ttt tcc cat att ggg gac tgg tgt His Gln Lys Asn Trp Gln His Trp Phe Ser His Ile Gly Asp Trp Cys 440 gtc tcc cgg cag ctg tgg tgg ggc cat cag att cca gcc tac ctg gtt 1506 Val Ser Arg Gln Leu Trp Trp Gly His Gln Ile Pro Ala Tyr Leu Val 460 465 1554 gta gag gac cat gcg cag gga gaa gag gac tgt tgg gtg gtc ggg cgg Val Glu Asp His Ala Gln Gly Glu Glu Asp Cys Trp Val Val Gly Arg 470 475 1602 tca gag gct gag gcc aga gag gta gca gcg gaa ctg aca ggg agg cca Ser Glu Ala Glu Ala Arg Glu Val Ala Ala Glu Leu Thr Gly Arg Pro 485 490 495 ggg gca gag ctg acc ctg gag agg gat cct gat gtc cta gac aca tgg 1650 Gly Ala Glu Leu Thr Leu Glu Arg Asp Pro Asp Val Leu Asp Thr Trp 510 515 505 1698 ttt tct tct gcc ctg ttc ccc ttt tct gcc ctg ggc tgg ccc caa gag Phe Ser Ser Ala Leu Phe Pro Phe Ser Ala Leu Gly Trp Pro Gln Glu 520 525 acc cca gac ctt gct cgt ttc tac ccc ctg tca ctt ttg gaa acg ggc 1746 Thr Pro Asp Leu Ala Arg Phe Tyr Pro Leu Ser Leu Leu Glu Thr Gly 535 540 1794 age gae ett etg etg tte tgg gtg gge ege atg gte atg ttg ggg ace Ser Asp Leu Leu Phe Trp Val Gly Arg Met Val Met Leu Gly Thr 555 550 1842 caq ctc aca qqq caq ctq ccc ttc agc aag gtg ctt ctt cat ccc atg Gln Leu Thr Gly Gln Leu Pro Phe Ser Lys Val Leu Leu His Pro Met 575 570 565 gtt cgg gac agg cag ggc cgg aag atg agc aag tcc ctg ggg aat gtg 1890 Val Arg Asp Arg Gln Gly Arg Lys Met Ser Lys Ser Leu Gly Asn Val 585 1938 ctg gac cca aga gac atc atc agt ggg gtg gag atg cag gtg ctg cag Leu Asp Pro Arg Asp Ile Ile Ser Gly Val Glu Met Gln Val Leu Gln 600 1986 gaa aag ctg aga agc gga aat ttg gac cct gca gag ctg gcc att gtg Glu Lys Leu Arg Ser Gly Asn Leu Asp Pro Ala Glu Leu Ala Ile Val 615 2034 gct gca gca cag aaa aag gac ttt cct cac ggg atc cct gag tgt ggg Ala Ala Gln Lys Lys Asp Phe Pro His Gly Ile Pro Glu Cys Gly 630 635 2082 aca gat gcc ctg aga ttc aca ctc tgc tcc cat gga gtt cag gcg ggc Thr Asp Ala Leu Arg Phe Thr Leu Cys Ser His Gly Val Gln Ala Gly 650 655 645

		gtc Val						2130
		gct Ala						2178
		cct Pro						2226
		agc Ser						2274
		cga Arg 730						2322
		aac Asn						2370
		tcg Ser						2418
		ctc Leu						2466
		ctc Leu						2514
		atc Ile 810						2562
		cag Gln						2610
		gtg Val						2658
		cga Arg						2706
		gcc Ala						2754

2802 tqt qqq qct qtq ggc ctg tta ccc cca ggc aca gca gct ccc tcc ggc Cys Gly Ala Val Gly Leu Leu Pro Pro Gly Thr Ala Ala Pro Ser Gly 2850 tgg gcc cag gct cca ctc agt gac acg gct caa gtc tac atg gag ctg Trp Ala Gln Ala Pro Leu Ser Asp Thr Ala Gln Val Tyr Met Glu Leu 905 910 cag ggc ctg gtg gac ccg cag atc cag cta cct ctg tta gcc gcc cga 2898 Gln Gly Leu Val Asp Pro Gln Ile Gln Leu Pro Leu Leu Ala Ala Arg 920 925 agg tac aag ttg cag aag cag ctt gat agc ctc aca gcc agg acc cca 2946 Arg Tyr Lys Leu Gln Lys Gln Leu Asp Ser Leu Thr Ala Arg Thr Pro 940 935 2994 tca gaa ggg gag gca ggg act cag agg caa caa aag ctt tct tcc ctc Ser Glu Gly Glu Ala Gly Thr Gln Arg Gln Gln Lys Leu Ser Ser Leu 950 3042 cag ctg gaa ttg tca aaa ctg gac aag gca gcc tct cac ctc cag cag Gln Leu Glu Leu Ser Lys Leu Asp Lys Ala Ala Ser His Leu Gln Gln 975 980 965 970 ctg atg gat gag cct cca gcc cca ggg agc ccg gag ctc taa ctcatca 3091 Leu Met Asp Glu Pro Pro Ala Pro Gly Ser Pro Glu Leu * 985 3151 tccccatcag ttttcctccc tctcagacct gtctttgagg acaaacagat ttgtcagctg 3211 tcagggtgca gtgggacgtc agagactatg tggtccatcg ccttcattgt gtaaatgagg 3271 acacaqactq qcttqqtcqc agtgactgtg gtgtccttga gatgctcaca ttactgcccg gcctgcctcc cacctggaag tctgggaatg aggagattga gataaacttt tgaaatccca 3331 aacatgtctq tttatgqctc tttggtcccc tttgctccca gtggtgactt ttgtgcttct 3391 3451 gagttgtccc ctgagagctt ggtctgggaa aagaggagga ggggtcctca ctggaggaag aggaaccttt tagtcatggg taaggggatg gggacagttg gttcccggtt ctacctccct 3511 3571 ttctggactg acaattgccc tggctttttg cagggtcctt tctcccccac tttcactaaa 3596 ttggaagttc cccgctcctt gggtt

```
<210> 36
```

<211> 1406

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (555)..(1406)

<400> 36 caagaatagt tataccagat atagatctta gataatgatt atatatgaat atcattaatc	60
attagttggt agtaattact ctttatccca atattataat aatcctcgct ctacaatcat	120
aacctaggaa aaaccaggcc atacagagat aggagctgag gggacatagt gaggtgtgac	180
cagaagacaa gagtgcgagc cttctgttat gcctggcaac gggcgtcttc ccagatgctg	240
gcgtcaccgc tagaccaagg agccctctgg gcagggcgaa gccagaggaa actctggtgg	300
aggtccgtag cggtcctgac gtgcaaatcg gtcgtccgac ctgggtatag gggcgaaaga	360
ctaatcgaac catctagtag ctggttccct ccgaagtttc cctcaggata gctggcgctc	420
tegeagacee gaegeaceee egeeacgeag tittateegg taaagegaat gattagaggt	480
cttggggtaa gaagcccgtc tcgcccgccg cgccggggag gtggagcacg agcgcacgtg	540
ttaggacccg aaag atg gtg aac tat gcc tgg gca ggg cga agc cag agg Met Val Asn Tyr Ala Trp Ala Gly Arg Ser Gln Arg 1 5 10	590
aaa ctc tgg tgg agg tcc gta gcg gtc ctg acg tgc aaa tcg gtc gtc Lys Leu Trp Trp Arg Ser Val Ala Val Leu Thr Cys Lys Ser Val Val 15 20 25	638
cga cct ggg tat agg ggc ggg ctc cag gcg agg cgg tcg acg ctc ctg Arg Pro Gly Tyr Arg Gly Gly Leu Gln Ala Arg Arg Ser Thr Leu Leu 30 35 40	686
aaa act tgc gcg cgc gct cgc gcc act gcg ccc gga gcg atg aag atg Lys Thr Cys Ala Arg Ala Arg Ala Thr Ala Pro Gly Ala Met Lys Met 45 50 55 60	734
gtc gcg ccc tgg acg cgg ttc tac tcc aac agc tgc tgc ttg tgc tgc Val Ala Pro Trp Thr Arg Phe Tyr Ser Asn Ser Cys Cys Leu Cys Cys 65 70 75	782
cat gtc cgc acc ggc acc atc ctg ctc ggc gtc tgg tat ctg atc atc His Val Arg Thr Gly Thr Ile Leu Leu Gly Val Trp Tyr Leu Ile Ile 80 85 90	830
aat gct gtg gta ctg ttg att tta ttg agt gcc ctg gct gat ccg gat Asn Ala Val Val Leu Leu Ile Leu Leu Ser Ala Leu Ala Asp Pro Asp 95 100 105	878
cag tat aac ttt tca agt tct gaa ctg gga ggt gac ttt gag ttc atg Gln Tyr Asn Phe Ser Ser Ser Glu Leu Gly Gly Asp Phe Glu Phe Met 110 115 120	926
gat gat gcc aac atg tgc att gcc att gcg att tct ctt ctc atg atc Asp Asp Ala Asn Met Cys Ile Ala Ile Ala Ile Ser Leu Leu Met Ile 125 130 135 140	974
ctg ata tgt gct atg gct act tac gga gcg tac aag caa cgc gca gcc	1022

Leu	Ile	Cys	Ala	Met 145	Ala	Thr	Tyr	Gly	Ala 150	Tyr	Lys	Gln	Arg	Ala 155	Ala	
					ttc Phe	-		_			_		_	_		1070
_	-	_	_		act Thr									_	-	1118
				_	cct Pro						_	_	-	_	_	1166
					tgt Cys 210	_	-					_			_	1214
		-			aag Lys			-		-	-	-			-	1262
	-				ggt Gly					-		_	_		_	1310
	-		-		acg Thr		_			_		_	-	-		1358
			_	_	aag Lys			_						-	taa *	1406
	<21	.0> 3 .1> 3	003													
		.2> I .3> F		sapi	ens											
		20> 21> C 22> (.(16	592)											
gtad		00> 3 ac g		tccc	a gg	gtcga	ıcgat	t ttc	gtac	gct	cggc	cctc	ac ç	gaag	atg Met 1	57
					ctg Leu											105

	_	cag Gln 20		_		_		_	_						_	-	153
		tca Ser														2	201
		aaa Lys														2	249
		gct Ala														2	297
		cag Gln		_	_			-	_	_						3	345
		gag Glu 100														3	393
		atc Ile				_		-	_		-					2	141
		atg Met														Ž.	189
_	-	gag Glu														ŗ	537
		ctc Leu		_		-			_	-						Ĭ.	585
_		ctc Leu 180	_	_	_		_			_						•	633
~	_	cag Gln		_	_	_	-									6	581
		gtg Val														•	729
		aac Asn														•	777
tgc	cta	gag	agg	ctg	tgg	ctg	caa	cgc	aac	gcc	atc	acg	cac	ctg	ccg	8	325

Cys	Leu	Glu	Arg 245	Leu	Trp	Leu	Gln	Arg 250	Asn	Ala	Ile	Thr	His 255	Leu	Pro	
			ttt Phe	-		_			_			_	_	_	_	873
			ctt Leu													921
			ggc Gly													969
			ttt Phe	_		_			_	_			_			1017
		_	att Ile 325					~				_	_	_		1065
			aaa Lys													1113
			ttc Phe													1161
			ctg Leu													1209
	_		aac Asn	-	-	_						-	-	-	_	1257
			tac Tyr 405													1305
			cag Gln													1353
			gcc Ala													1401
			ggc Gly													1449
			gat Asp													1497

470 475 480

acc tac agc aac ccc gag Thr Tyr Ser Asn Pro Glu 485	u Gly Thr V			Gln Ala	1545
cag tgt cgc tgg ctg aad Gln Cys Arg Trp Leu Asr 500					1593
gga ctg cag tac aat gct Gly Leu Gln Tyr Asn Ala 515					1641
ggt tct ctg cgg ctc acc Gly Ser Leu Arg Leu Thi 530 535	r Val Ser I				1689
tag tagc agcgcataca gga	agctgggg aa	ıgggggcct ct	ggggcctg ac	caggcgac	1746
aggtaggggc ggaggggagc t	tgagtctccg	aagccttggc	ttttcacatg	caagggacag	1806
ggttacatcc ccaaggtgag g	ggggtggagt	ctggtctgct	ccactaacca	gggtctcctc	1866
ctcctcttcc ttcatcgctt o	ctcctggagt	gtgcggccta	acaaggccat	ccttatgctt	1926
tgcaaagcac cctcaaaagc t	tgcaccacag	cctggagaat	aaaatatcct	cagccctgat	1986
gcctccccat tatgtaacac	ccaaccgctc	tcacctacac	cctgaggtct	attcactgca	2046
tcccagtgat acaaagtgga g	ggccactgcc	ttctgacatc	tggctcaaaa	gcccagtgtc	2106
tgtttccatt tatttccctg	gaatttcatt	taaaattggt	atagagaaaa	aaaggatgtg	2166
acagaagcag agatgaccag a	aaagcacagg	ggcagggttc	tgactggcgt	gtgggagacc	2226
ctgtggccgg cacccacctc (cacacgagga	ctaagctctg	attttttat	cttgcccaaa	2286
ttcctaccta aggggtctag (ggagtcgcgc	cttacaaatc	ataaattctc	atcagatggg	2346
ttttatttga ccctgtatat (catgacttat	ttttaatctg	actatggcat	aacattacaa	2406
gacgaggcaa aaatatttaa (ccccaaata	tatttctttg	ccctaccttg	aacttgccct	2466
gcagagtctc ttgtgaggag a	aatccacatc	ctataaagaa	gcccctttcc	cctttgtttt	2526
ccttcctttc tttccagtcc a	aggagatcat	caactaagag	ccaggcaccc	cttttaagtc	2586
gataagaaac agtttacaac o	ctgctctctc	tctctctgaa	gtctgctgag	agcttcccct	2646
gcacaataaa acttggcctc	cacgatcctt	tatcttaacc	tgaacattcc	tttccattga	2706
tcccaggtct tcagctaagc t	tcaaccaatt	gtcaaccaga	aaatgtttaa	atttacctac	2766
agcctggaag cacccacccc	cgctgcttcg	agttgtcctg	cctttctgaa	ctcaaccaat	2826

qtatttctta aatqtatttq attgatqcct cattcctccc taaaatgtat aaaaccaagc 2886 2946 tgtacctcga ccaccttggg cacatgttcc caggccctcc tgaggtctgt gtcacgggcc 3003 atggccactc atatttggct cagaataaat ctcttcaaat attttaaaaa aaaaaaa <210> 38 <211> 631 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (68)..(466) <400> 38 gatecgaatt egeggeegeg tegacteact gagaaceate eeggtaacee gateaeeget 60 ggtcacc atg aac cac att gtg caa acc ttc tct cct gtc aac agc ggc 109 Met Asn His Ile Val Gln Thr Phe Ser Pro Val Asn Ser Gly 1 5 157 cag cct ccc aac tac gag atg ctc aag gag gag cag gaa gtg gct atg Gln Pro Pro Asn Tyr Glu Met Leu Lys Glu Glu Glu Glu Val Ala Met 20 ctg ggg gtg ccc cac aac cct gct ccc ccg atg tcc acc gtg atc cac 205 Leu Gly Val Pro His Asn Pro Ala Pro Pro Met Ser Thr Val Ile His 253 atc cgc agc gag acc tcc gtg cct gac cat gtg gtc tgg tcc ctg ttc Ile Arg Ser Glu Thr Ser Val Pro Asp His Val Val Trp Ser Leu Phe 50 55 301 aac acc ctc ttc atg aac acc tgc tgc ctg ggc ttc ata gca ttc gcg Asn Thr Leu Phe Met Asn Thr Cys Cys Leu Gly Phe Ile Ala Phe Ala 65 70 tac tcc gtg aag tct agg gac agg aag atg gtt ggc gac gtg acc ggg 349 Tyr Ser Val Lys Ser Arg Asp Arg Lys Met Val Gly Asp Val Thr Gly 80 85 397 gcc cag gcc tat gcc tcc acc gcc aag tgc ctg aac atc tgg gcc ctg Ala Gln Ala Tyr Ala Ser Thr Ala Lys Cys Leu Asn Ile Trp Ala Leu 95 100 445 att ttg ggc atc ttc atg acc att ctg ctc atc atc cca gtg ttg Ile Leu Gly Ile Phe Met Thr Ile Leu Leu Ile Ile Pro Val Leu 115 120

gtc gtc cag gcc cag cga tag at caggaggcat cattgaggcc aggagctctg

Val Val Gln Ala Gln Arg * 130

498

558 cccqtqaqct qtatccacqt actctatctt ccattcttcg cctgccccca gaggccagag ctctgccctt gactgtattc acttattcag ctccattctg cctgtccaaa gcgagtctga 618 631 ttagccttta caa <210> 39 <211> 2995 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (274)..(2271) <400> 39 ggagcaggaa acccggcgca gccgggcgca ttgggccgcg atgcaacagc agcagcagga 60 120 cgccgccgcc actgaggaag aagccggccc agccgccgcc gcgtccggac cctcgcgcct 180 ggatcccagc gccccgatcc cggcgcccca acccccacgc ccgcctccgc caactttcac 240 gctgcctcgg cggcccggcc cggctcgacg cca atg gtg gag gcc ata gtg gag 294 Met Val Glu Ala Ile Val Glu ttt gac tac cag gcc cag cac gat gat gag ctg acg atc agc gtg ggt 342 Phe Asp Tyr Gln Ala Gln His Asp Asp Glu Leu Thr Ile Ser Val Gly 15 10 390 gaa atc atc acc aac atc agg aag gag gat gga ggc tgg tgg gag gga Glu Ile Ile Thr Asn Ile Arg Lys Glu Asp Gly Gly Trp Trp Glu Gly 30 25 cag atc aac ggc agg aga ggt ttg ttc cct gac aac ttt gta aga gaa 438 Gln Ile Asn Gly Arg Arg Gly Leu Phe Pro Asp Asn Phe Val Arg Glu 40 45 50 55 ata aag aaa gag atg aag aaa gac cct ctc acc aac aaa gct cca gaa 486 Ile Lys Lys Glu Met Lys Lys Asp Pro Leu Thr Asn Lys Ala Pro Glu 70 60 65 534 aag ccc ctg cac gaa gtg ccc agt gga aac tct ttg ctg tct tct gaa Lys Pro Leu His Glu Val Pro Ser Gly Asn Ser Leu Leu Ser Ser Glu 85 75 80 582 acg att tta aga acc aat aag aga ggc gag cga cgg agg cgc cgg tgc Thr Ile Leu Arg Thr Asn Lys Arg Gly Glu Arg Arg Arg Arg Cys 95

cag gtg gca ttc agc tac ctg ccc cag aat gac gat gaa ctt gag ctg

630

Gln	Val 105	Ala	Phe	Ser	Tyr	Leu 110	Pro	Gln	Asn	Asp	Asp 115	Glu	Leu	Glu	Leu	
								gta Val								678
								act Thr								726
	-		_				_	gat Asp 160						-	_	774
								agg Arg								822
~	~~~		~		_	_		aag Lys		~	~ ~	~				870
	_		_	_		_		aag Lys		_	_					918
	_				_	_		atc Ile			_					966
								gta Val 240								1014
		_			_			gac Asp					_	_	_	1062
_			_	_	_	_		tgc Cys		-						1110
_	_		-	_	-	-		atc Ile		_		_		_		1158
			_	-	_		-	gta Val				_			_	1206
		_	_					gat Asp 320				_				1254
_	_		_	_	-			aga Arg		_	_		_			1302

330	335	340	
		c act gag aga aaa c Thr Glu Arg Lys 355	
		a atg ctt cca aac 1 Met Leu Pro Asr)	
		a aaa ctg gat tta b Lys Leu Asp Leu 390	Gln
Lys Pro Ser V		g cct cgg cca cct s Pro Arg Pro Pro 405	
		c ccg aga agg ccg o Pro Arg Arg Pro 420	_
		gac agt cca aag Asp Ser Pro Lys 435	_
		g gac aaa gat cto 1 Asp Lys Asp Leu)	
		gac tcc gtg gta Asp Ser Val Val 470	Ser
Ser Thr Glu I		c aga cca aaa gct c Arg Pro Lys Ala 485	
		t tca tcc ctt tca Ser Ser Leu Ser 500	
		g gat aag gag gaa 1 Asp Lys Glu Glu 515	
		a aag aaa act tco r Lys Lys Thr Ser)	
		a gca tcc ctg ccg s Ala Ser Leu Pro 550	Pro
Lys Pro Gly T		g cca gcc cct ctg y Pro Ala Pro Lei 565	

2022 tca gcg gcg ccc tcc ccc ctg tca tcc tct ttg gga aca gct gga cac Ser Ala Ala Pro Ser Pro Leu Ser Ser Ser Leu Gly Thr Ala Gly His 575 570 2070 aga qcc aac tcc ccg tct ctg ttc ggc acg gaa gga aaa cca aag atg Arg Ala Asn Ser Pro Ser Leu Phe Gly Thr Glu Gly Lys Pro Lys Met 590 585 gag cct gcg gcc agc agc cag gcg gcc gtg gag gag cta agg aca cag 2118 Glu Pro Ala Ala Ser Ser Gln Ala Ala Val Glu Glu Leu Arg Thr Gln 610 615 605 600 2166 gtc cgc gag ctg agg agc atc atc gag acc atg aag gac cag cag aaa Val Arg Glu Leu Arg Ser Ile Ile Glu Thr Met Lys Asp Gln Gln Lys 2214 cga gag att aaa cag tta ttg tct gag ttg gat gaa gag aag aaa atc Arg Glu Ile Lys Gln Leu Leu Ser Glu Leu Asp Glu Glu Lys Lys Ile 635 2262 cgg ctt cgg ttg cag atg gaa gtg aac gac ata aag aaa gct cta caa Arg Leu Arg Leu Gln Met Glu Val Asn Asp Ile Lys Lys Ala Leu Gln 655 650 tca aaa tga atacttg atcaatgaaa tgtcacatta ttcatcctga gtccgagact 2318 Ser Lys 665 caaattttct gccccagcca aaataatctt gtgccaaaag attaaaggtt tgcctcaaaa 2378 tgtccctgtt tgaaagatta gcacaaaagt cttgatagca caacacaaat tccatccaag 2438 aggagaatct tccccagggt ttagtcctgg ggctggcact cgttgtgact tacacagagc 2498 2558 aaaattgtgc taaaqqcttt tctactctga gatctcaatg cgaaatgaaa actcaggcag tttagtccat agtggtacta ttttgatgat attttccatt aataaaatgt aatttcagat 2618 2678 tattcgttta caagctttat aattttatga ttttttaatc gtgttttgtc acagacttcc 2738 ctagtgtttg tactacacgt agtcagaagc gagtgtcctt ttcttttgct tcaggctaag 2798 agctgcctcg ctctttgtcc ccccattagg attctattac atatgcaatt gtaggttcaa cctgtccctt tccctgccag caaaccccac caccctaaga gaaattttag cttatatatg 2858 2918 acggtatatt tacaaaaaga gaaagagaaa atctggtatt tgcaatgatc tgtgccttct 2978 ttttaccacc ctcttgattg gagcttttgt gatgcagcta ccatgattca aaaaaattaa 2995 aaattaaaaa aaaaaaa

<210> 40

<211> 2866 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (274)..(2142) <400> 40 ggagcaggaa acccggcgca gccgggcgca ttgggccgcg atgcaacagc agcagcagga 60 120 180 cgccgccgcc actgaggaag aagccggccc agccgccgcc gcgtccggac cctcgcgcct ggatcccagc gccccgatcc cggcgcccca acccccacgc ccgcctccgc caactttcac 240 294 getgeetegg eggeeeggee eggetegaeg eea atg gtg gag gee ata gtg gag Met Val Glu Ala Ile Val Glu 342 ttt qac tac caq qcc cag cac gat gat gag ctg acg atc agc gtg ggt Phe Asp Tyr Gln Ala Gln His Asp Asp Glu Leu Thr Ile Ser Val Gly 15 10 gaa atc atc acc aac atc agg aag gag gat gga ggc tgg tgg gag gga 390 Glu Ile Ile Thr Asn Ile Arg Lys Glu Asp Gly Gly Trp Trp Glu Gly 30 25 cag atc aac ggc agg aga ggt ttg ttc cct gac aac ttt gta aga gaa 438 Gln Ile Asm Gly Arg Arg Gly Leu Phe Pro Asp Asn Phe Val Arg Glu 40 45 ata aag aaa gag atg aag aaa gac cct ctc acc aac aaa gct cca gaa 486 Ile Lys Lys Glu Met Lys Lys Asp Pro Leu Thr Asn Lys Ala Pro Glu 70 534 aag ccc ctg cac gaa gtg ccc agt gga aac tct ttg ctg tct tct gaa Lys Pro Leu His Glu Val Pro Ser Gly Asn Ser Leu Leu Ser Ser Glu 80 582 acg att tta aga acc aat aag aga ggc gag cga cgg agg cgc cgg tgc Thr Ile Leu Arg Thr Asn Lys Arg Gly Glu Arg Arg Arg Arg Cys 95 630 cag gtg gca ttc agc tac ctg ccc cag aat gac gat gaa ctt gag ctg Gln Val Ala Phe Ser Tyr Leu Pro Gln Asn Asp Asp Glu Leu Glu Leu 105 678 aaa gtt ggc gac atc ata gag gtg gta gga gag gta gag gaa gga tgg Lys Val Gly Asp Ile Ile Glu Val Val Gly Glu Val Glu Glu Gly Trp 125 130 120 726 tgg gaa ggt gtt ctc aac ggg aag act gga atg ttt cct tcc aac ttc Trp Glu Gly Val Leu Asn Gly Lys Thr Gly Met Phe Pro Ser Asn Phe 145 150 140

	aag Lys															774
	cag Gln															822
	ggg Gly 185															870
	gca Ala															918
	gac Asp															966
_	gta Val	-														1014
	cct Pro												_			1062
	agg Arg 265															1110
	cag Gln															1158
	atc Ile		_	_	_		_	_				-				1206
	ggc Gly	_	_	~ ~				-				_				1254
	gac Asp															1302
	gct Ala 345		_					_					_			1350
	att Ile															1398
aca	gaa	gaa	aaa	gaa	aga	cca	gag	aga	gag	cca	aaa	ctg	gat	tta	cag	1446

Thr	Glu	Clu	Tare	G111	Δrα	Pro	G111	Δrα	Glu	Pro	Lvs	Len	Asp	Leu	Gln	
1111	Giu	Giu	шys	380	111.9	110	OIU	111.9	385	110	<i>1</i>	200	1100	390	02	
														cct Pro		1494
														ccg Pro		1542
														aag Lys	_	1590
														ctc Leu		1638
														gta Val 470		1686
														gct Ala		1734
														aac Asn		1782
														ggt Gly		1830
														tct Ser		1878
														acg Thr 550		1926
														gtg Val		1974
														acc Thr		2022
														ttg Leu		2070
														gac Asp		2118

600	60)5	610		615	
	t cta caa to a Leu Gln Se 620		atacttgatc	aatgaaatgt	cacattattc	2172
atcctgagtc	cgagactcaa	attttctgcc	ccagccaaaa	taatcttgtg	ccaaaagatt	2232
aaaggtttgc	ctcaaaatgt	ccctgtttga	aagattagca	caaaagtctt	gatagcacaa	2292
cacaaattcc	atccaagagg	agaatcttcc	ccagggttta	gtcctggggc	tggcactcgt	2352
tgtgacttac	acagagcaaa	attgtgctaa	aggcttttct	actctgagat	ctcaatgcga	2412
aatgaaaact	caggcagttt	agtccatagt	ggtactattt	tgatgatatt	ttccattaat	2472
aaaatgtaat	ttcagattat	tcgtttacaa	gctttataat	tttatgattt	tttaatcgtg	2532
ttttgtcaca	gacttcccta	gtgtttgtac	tacacgtagt	cagaagcgag	tgtccttttc	2592
ttttgcttca	ggctaagagc	tgcctcgctc	tttgtcccc	cattaggatt	ctattacata	2652
tgcaattgta	ggttcaacct	gtccctttcc	ctgccagcaa	accccaccac	cctaagagaa	2712
attttagctt	atatatgacg	gtatatttac	aaaaagagaa	agagaaaatc	tggtatttgc	2772
aatgatctgt	gccttctttt	taccaccctc	ttgattggag	cttttgtgat	gcagctacca	2832
tgattcaaaa	aaattaaaaa	ttaaaaaaaa	aaaa			2866
<210> <211> <212> <213>	3099	ıs				
<220> <221> <222>	CDS (404)(244	19)				
<400> aaagctgggt		gctggctggg	ggcttgacag	gagtttatcc	taactgatgc	60
tgggtgggcg	caggccctga	gatgggcgtc	agggagaggg	gacgccagac	acacggcctg	120
agcagggtga	ggagcagctg	ccagccccgg	caggcccagg	ccctgtctgg	gtgcacagga	180
cagagacaca	gcaagatgcc	cagggagtgc	cgcttcctgg	gctagagaca	agcaccagcc	240
tgcagtggag	aacgcaggac	cccgctgccc	agaaggagca	gccacggcct	gcggaggact	300
ggcccagcaa	ggtcccaggt	cttccctctc	ctcagcgcct	aagagagagg	cccagtgcgg	360

gtgaggagtc gcgaggaaga ggcggaaggc gccggaaggc acc atg ttc cgc aag

415

Met Phe Arg Lys

	aag Lys									463
	cac His									511
	caa Gln		-		_	_				559
	gac Asp 55									607
	gtg Val									655
	aac Asn									703
	cgc Arg									751
	gat Asp									799
_	tct Ser 135		-							847
	aca Thr	Pro	Ala	His	Lys					895
	cgg Arg									943
	gcc Ala									991
	ctg Leu									1039
	cat His 215									1087

				gtg Val								13	135
				aag Lys 250								1:	183
		 _		ctg Leu		_	_	_		-		1:	231
				cca Pro								1:	279
				aac Asn								1:	327
				ccg Pro						_		1:	375
				cag Gln 330								1.	423
				tct Ser								1.	471
_	_			agc Ser							_	1	519
-	_	 -	_	gct Ala								1!	567
				ctc Leu								1	615
				tac Tyr 410								1	663
				gag Glu								1	711
				aag Lys								1	759

gtg Val	gtg Val	atc Ile 455	atg Met	cgg Arg	gac Asp	tac Tyr	cag Gln 460	cac His	ttc Phe	aac Asn	gtg Val	gtg Val 465	gag Glu	atg Met	tac Tyr	1807
													gag Glu			1855
													ctg Leu			1903
													ctg Leu			1951
													gac Asp 530			1999
													gga Gly			2047
													gtg Val			2095
													tat Tyr			2143
													atg Met			2191
	-												atg Met 610			2239
													aag Lys			2287
													gac Asp			2335
													ctg Leu			2383
aca Thr	ggg	cta Leu	cct Pro	gag Glu 665	tgc Cys	ctg Leu	gtg Val	ccc Pro	ctg Leu 670	atc Ile	cag Gln	ctc Leu	tac Tyr	cga Arg 675	aag Lys	2431
cag	acc	tcc	acc	tgc	tga	gcc	cac (cccaa	agta	tg c	ctgc	cacc	t ac	gccc	acag	2485

Gln Thr Ser Thr Cys * 680

	gcagggcaca	ctgggcagcc	agcctgccgg	caggacttgc	ctgcctcctc	ctctcagtat	2545
	tctctccaaa	gattgaaatg	tgaagcccca	gccccaccct	ctgcccttca	gcctactggg	2605
	ccaggccgga	cctgccccct	cagtgtctct	ccctcccgag	tccccagatg	gagacccctt	2665
	tctacaggat	gaccccttga	tatttgcaca	gggatatttc	taagaaacgc	agaggccagc	2725
	gttcctggcc	tctgcagcca	acacagtaga	aaaggctgct	gtggtttttt	aaaggcagtt	2785
	gtccactagt	gtcctaggcc	actgcagagg	gcagactgct	ggtctccaca	gatacctgct	2845
	gttctcagct	ccagcttcaa	acctcgagtc	tcgagagggc	cacggggtgg	tttttatgac	2905
	cggaatcccg	cttcctccct	cacgtctgat	gtcctgaagg	tgcagtccca	cctgtacagc	2965
,	ccctccccgc	ccagaactgt	gaatggcctg	ctccaggcca	tggctggggg	cagggagtga	3025
•	ggggacaatt	tctgagtgaa	agagaaagaa	tggggtcggt	ggtgaaggtg	ctctcacttt	3085
i	acagaatgga	gaga					3099

<210> 42

<211> 1968

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (154)..(1968)

<400> 42

cggcacgagg gggactgaac cgagaggtgc cgaaggaacc ggcgggccgc ttgatcccgc 60

tgcagacgta ggagatgcct gggacaagga ggccaccttc tcagggcaaa agaaaaagaa 120

ggtgacaggc gttgagacca ccgaagggaa ccc atg gct agg atc agt ttt tcc Met Ala Arg Ile Ser Phe Ser 1 5

tac ctc tgc cca gcc tcc tgg tac ttc act gtg ccc aca gtg agt cca
Tyr Leu Cys Pro Ala Ser Trp Tyr Phe Thr Val Pro Thr Val Ser Pro 10 15 20

ttt ctc cgt cag cgg gtg gca ttc ctg gga ctc ttc ttc ata tcc tgt
Phe Leu Arg Gln Arg Val Ala Phe Leu Gly Leu Phe Phe Ile Ser Cys
25 30 35

ctc ctt tta ctt atg tta atc ata gac ttt cga cat tgg agt gct tca 318
Leu Leu Leu Met Leu Ile Ile Asp Phe Arg His Trp Ser Ala Ser
40 45 50 55

cca Pro										366
gaa Glu		-	_	-		_			_	414
 gac Asp							_			462
cat His 105										510
cgc Arg										558
atg Met								-	_	606
agc Ser										654
ctt Leu										702
cag Gln 185										750
gac Asp										798
 gaa Glu										846
gac Asp										894
gga Gly										942
caa Gln 265										990

	cag Gln															1038
	gat Asp					_					_		_			1086
	ctg Leu															1134
	ctg Leu															1182
	ctg Leu 345															1230
	aca Thr							_		_			_	_		1278
	gga Gly															1326
	tcc Ser															1374
	gac Asp															1422
	aca Thr 425															1470
	gcc Ala															1518
	cag Gln															1566
	ctc Leu															1614
	gaa Glu															1662
cag	ctg	gtg	tat	gac	cga	gag	gtt	cag	tgg	acg	ctg	gga	gcc	att	cta	1710

Gln Leu Val Tyr Asp Arg Glu Val Gln Trp Thr Leu Gly Ala Ile Leu 505 510 515	
tat aaa aca cga ttc tta cca ctc agg gat ctt cgg cag gaa ggt gtc Tyr Lys Thr Arg Phe Leu Pro Leu Arg Asp Leu Arg Gln Glu Gly Val 520 535	1758
cga caa gcc cat ggt agc tgg ttc cgt ctc tcc ttt gta tac aac cac Arg Gln Ala His Gly Ser Trp Phe Arg Leu Ser Phe Val Tyr Asn His 540 545 550	1806
tat ctc ttc ttt gcc tgt atc ctg gtg gtg cta ctg gcc atc ttc cta Tyr Leu Phe Phe Ala Cys Ile Leu Val Val Leu Leu Ala Ile Phe Leu 555 560 565	1854
tac ctt ctg cgg cta cgc cga att cac cac cga caa aca cga gcc tca Tyr Leu Leu Arg Leu Arg Arg Ile His His Arg Gln Thr Arg Ala Ser 570 575 580	1902
gct cca ttg gac ttg ctg tgg ctt gaa gag gtg gtg ccc atg atg gga Ala Pro Leu Asp Leu Leu Trp Leu Glu Glu Val Val Pro Met Met Gly 585 590 595	1950
gta cag gtg ggg ccg tga Val Gln Val Gly Pro * 600 605	1968
<210> 43 <211> 1229 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (418)(1023) <400> 43	
ctggaattga gcaagacatc attccataaa atacagtaat tgttccagtg agctgagcag	60
aagaggttag acagaagggc taaagaaagc agaagcaaag aacagagtat attagttact	120
tttcaattag ttactttttc ttacaaggct gggagaggga gacagaacaa tagaaaaata	180
actggttgat tcatatggag gtcagagtgg aagcaggtgt gagagggtcc cacagaagaa	240
aacatggcag ccaaagtgtt tgagtccacg gtaagtttgg cttggcctta gctgttgcag	300
gagacctgtg aactctgcct tatataatgt ggatgttggg cacagagctg tcatctttga	360
ctgattccag gacaaaaatg acaggacatt gtggtagggg actcactttc tcatccc atg ggt aca gaa acc aat tat ctt tgc ctt tct cca cca cgt aat gta Met Gly Thr Glu Thr Asn Tyr Leu Cys Leu Ser Pro Pro Arg Asn Val 1 5 10 15	417 465

cca atc atc act ggt agc aaa gat tta cag aat gtc aat atc aca ctg Pro Ile Ile Thr Gly Ser Lys Asp Leu Gln Asn Val Asn Ile Thr Leu 20 25 30	513
cgc atc atc ttc cag cct gtt gct agc cag ctt cct cgc atc ttc acc Arg Ile Ile Phe Gln Pro Val Ala Ser Gln Leu Pro Arg Ile Phe Thr 35 40 45	561
agc atc gga gag gac tat gat gag cct gtg ctg acg tac atc acg acc Ser Ile Gly Glu Asp Tyr Asp Glu Pro Val Leu Thr Tyr Ile Thr Thr 50 55 60	609
gag atc ctc aag tca gtg gtg gct cgc ttt gat gct gga gaa gtt atc Glu Ile Leu Lys Ser Val Val Ala Arg Phe Asp Ala Gly Glu Val Ile 65 70 75 80	657
act cag aga gag ctg gtc tcc agg cag gtg agc aac gac ctt acg gag Thr Gln Arg Glu Leu Val Ser Arg Gln Val Ser Asn Asp Leu Thr Glu 85 90 95	705
caa gca gcc aca ttt ggg ctc atc ctg gac gac gtg tcc ttg aca tat Gln Ala Ala Thr Phe Gly Leu Ile Leu Asp Asp Val Ser Leu Thr Tyr 100 105 110	753
ctg acc ttt gga aag gag ttc aca gaa gca gtg gaa gcc aaa cag gtg Leu Thr Phe Gly Lys Glu Phe Thr Glu Ala Val Glu Ala Lys Gln Val 115 120 125	801
gct cag cag gaa gca gag agg gcc aga ttt gtg aag gaa aag gct gag Ala Gln Gln Glu Ala Glu Arg Ala Arg Phe Val Lys Glu Lys Ala Glu 130 135 140	849
cag cag aaa aag gct gag cag cag aaa aag gtt gag cag cag aaa aag Gln Gln Lys Lys Ala Glu Gln Gln Lys Lys Val Glu Gln Gln Lys Lys 145 150 155 160	897
gca gcc gtg atc tct gct gag ggc gac tcc aag gca acc gag ctg att Ala Ala Val Ile Ser Ala Glu Gly Asp Ser Lys Ala Thr Glu Leu Ile 165 170 175	945
gcc aac tca ctg gcc acc gcg ggg gac ggc ctg atg gag ctg tgc aag Ala Asn Ser Leu Ala Thr Ala Gly Asp Gly Leu Met Glu Leu Cys Lys 180 185 190	993
ttg gaa gcc gcg gag gct ctc gga aca tga c ctacctgccg gcggggcagt Leu Glu Ala Ala Glu Ala Leu Gly Thr * 195 200	1044
ccgctcctcc ggctgcccca tgagggccca ccctgcctgc acctccgcag gctgactggg	1104
ccacagcccc aatgattctt aacactgcct taccccccta ccccagaaat cactgaaatt	1164
tcataattgg cttaaagtga aggaaataaa agtaaaatca cttcagaact cttaaaaaaaa	1224
aaaaa	1229

	<2 <2	10> 11> 12> 13>	2173 DNA	sap	iens											
	<2	20> 21> 22>		(1	653)											
att		00> .		gcca	ag a	attc	ggca	c ga	ggtt	caga	aat	ataa	gcc	gtac	aacaat	60
gga	gctg	cca a	atca	aaag	tg g	catt	ac	Me	_			e Ly	_		t gtg u Val	111
				act Thr												159
				aca Thr												207
			-	tat Tyr 45				_		_	_			_		255
		-	_	gga Gly			_	_					_			303
				gtt Val												351
				caa Gln												399
_	_	_	_	gac Asp	-	-	-				_				_	447
		_		tta Leu 125		_	_		_	_		_	_			495
_		_	_	gcc Ala			_	_	_					_		543
				ggg Gly												591

155 160 165 ttc ccc atg ctt ctt aca gaa tgc acg gaa caa ctt ggg ctt gcc aga 639 Phe Pro Met Leu Leu Thr Glu Cys Thr Glu Gln Leu Gly Leu Ala Arg 175 687 gca gcc tcc aaa gta tat acc aaa gat gga acc cca atc ttt acc ttg Ala Ala Ser Lys Val Tyr Thr Lys Asp Gly Thr Pro Ile Phe Thr Leu 190 195 cgt gat ttg gtt tta tgg gct cta gat gaa tcc ttt ctc cag aga gac 735 Arg Asp Leu Val Leu Trp Ala Leu Asp Glu Ser Phe Leu Gln Arg Asp 205 210 tct gag aaa caa aag caa gat gca gct cct gtt gga aaa gaa cag ata 783 Ser Glu Lys Gln Lys Gln Asp Ala Ala Pro Val Gly Lys Glu Gln Ile 220 225 831 att gtt gaa agt atg gaa gaa aat cca aga atg aaa gtg aaa aac aga Ile Val Glu Ser Met Glu Glu Asn Pro Arg Met Lys Val Lys Asn Arg 235 240 879 tta ttt gca aaa tct gtg aca tcc gat agt ttg gat ggt ata gac aag Leu Phe Ala Lys Ser Val Thr Ser Asp Ser Leu Asp Gly Ile Asp Lys 250 255 tct ttg ctt acc ctc atc ctc aga aat cct att gcc atc tgg gtg tct 927 Ser Leu Leu Thr Leu Ile Leu Arg Asn Pro Ile Ala Ile Trp Val Ser 270 275 975 tgt ggt gaa cca ttt cta cct cca aat gct ttg cag aaa gca gaa aaa Cys Gly Glu Pro Phe Leu Pro Pro Asn Ala Leu Gln Lys Ala Glu Lys 290 1023 tta gag aaa cag aac tgg cta aaa aag gac aga att ttg gct gat cta Leu Glu Lys Gln Asn Trp Leu Lys Lys Asp Arg Ile Leu Ala Asp Leu 300 305 1071 gat acc atg aga cac aaa atg aga cag tta aaa ggg cgg cga gta gcg Asp Thr Met Arg His Lys Met Arg Gln Leu Lys Gly Arg Arg Val Ala 315 320 gca tgt cag cca gcc acc atg gtt cct acc aag agc cct gtg cag ccc 1119 Ala Cys Gln Pro Ala Thr Met Val Pro Thr Lys Ser Pro Val Gln Pro 330 335 gtg gtg gtt gaa gga ggc tgg acc gaa cag act caa cag gaa att aaa 1167 Val Val Glu Gly Gly Trp Thr Glu Gln Thr Gln Gln Glu Ile Lys 345 ctc atg gaa ctt ata aga cat aca gag gca cac ctt tct gaa atc caa 1215 Leu Met Glu Leu Ile Arg His Thr Glu Ala His Leu Ser Glu Ile Gln 365 370 gaa atg gaa tcc aaa ata aat ttt cca att gca acc aaa cgt ata gca 1263 Glu Met Glu Ser Lys Ile Asn Phe Pro Ile Ala Thr Lys Arg Ile Ala 380 385

gtc aag ccg agc aac ctg tat aag cag ccc aac aca aaa cga gtg tgg 1311 Val Lys Pro Ser Asn Leu Tyr Lys Gln Pro Asn Thr Lys Arg Val Trp 395 att tat cta aat gga ggc aga cct gaa gat ggc act tat gcc tgg ggc 1359 Ile Tyr Leu Asn Gly Gly Arg Pro Glu Asp Gly Thr Tyr Ala Trp Gly 410 415 420 aaa act att tca gag ctg ctg caa gac tgc tcc tct cgt ctc aaa atg 1407 Lys Thr Ile Ser Glu Leu Leu Gln Asp Cys Ser Ser Arg Leu Lys Met 425 430 435 acc cac cca gct aga gca ctg tac acc ccc agt gga gag cca att cag 1455 Thr His Pro Ala Arg Ala Leu Tyr Thr Pro Ser Gly Glu Pro Ile Gln 445 450 tcc tgg gac gac ata gag cga gat atg gtc atc tgt gtg tct atg gga 1503 Ser Trp Asp Asp Ile Glu Arg Asp Met Val Ile Cys Val Ser Met Gly cat ggt ttc aaa acc cca aaa gag tta aaa caa ctg atg gag atc aga 1551 His Gly Phe Lys Thr Pro Lys Glu Leu Lys Gln Leu Met Glu Ile Arg 475 480 485 gca aat tat gcc aga atc cga agg cag ggc cct caa gcc aca gac 1599 Ala Asn Tyr Ala Arg Ile Arg Arg Gln Gln Gly Pro Gln Ala Thr Asp 490 495 500 att gtg gtg tca cca tcc acg aag ctg tct ctg gca cat ctc cac 1647 Ile Val Val Ser Pro Ser Thr Lys Leu Leu Ser Leu Ala His Leu His 505 510 515 520 aat taa ctcctatcag aaccatcgga ttttctgctg tatttttctg gaaagaaaac 1703 Asn * tttctttacc cacttataaa cagaagactg tgacaagaag gccaattatt tccatcqctq 1763 aagactctaa atttggcaaa tcttctaaat aacaatcctg catagtttat taaaaaaaat 1823 tagtcgtaaa atttatcctt caaaaatctg cattttaaat aaaccctgac agtgatttct 1883 caagactgta aagatattag tetgagaatg caactetaac agactgetet gggcatettt 1943 tetetttgee ttggeeagge eteteagaat tgagtgageg tgtgaeteea tttgeaeagt 2003 gggacagata gtacaactga aataaaaagt ggaggcctct gcaaaaaata aaaaataaaa 2063 aataaattta toottoaaaa taactoagtt ttttoaatgg gootattttt aagaatgaac 2123 attgaaaaat gagacaatat atccataaat tcatagtatg acataccata 2173

<210> 45

	<2	11> 1 12> 1 13> 1		sap	iens											
	<2	20> 21> (22>	CDS (186) (:	929)											
	<22 <22	22>	misc (1). n = a	(1	432)	g										
atti		00> 4		gccaa	ag a	attc	ggca	c ga	ggtt	acaa	ttg	tttt	cct	tata	tccgtg	60
caa	cgct	ggc a	aagto	ctcaa	aa g	tege	caca	g aa	acat	gccc	ctga	attc	agt :	gcct	ctgctt	120
agct	gta	aca 1	tgtta	aatca	ag aa	acta	cctg	g ca	tctt	cctg	aaca	aaga	ctt	tcaa	tagggg	180
ccag	gt	Met	_	_		e Ile		_	_			n Āla			a aag r Lys	225
		-								_		_	_		gat Asp 30	275
			ctc Leu												cca Pro	323
			ctt Leu 50													371
			aca Thr							-	-	-	-		_	419
			aga Arg													467
			tta Leu	-	-		_	-						_	_	515
		_	gtc Val	_	_	_									_	563
		_	atg Met 130	_			_	_					_			611
atc	ana	taa	aat	+++	act	cta	cca	raa	aat	act	cca	acc	222	CCa	asc.	650

Ile Arg Trp Gly Phe Ala Leu Pro Glu Gly Ser Pro Ala Lys Pro Asp 145 150 155	
tac ctt aat tta gct agc agt gca gct cct ctt ttc ttt tca tgg ttt Tyr Leu Asn Leu Ala Ser Ser Ala Ala Pro Leu Phe Phe Ser Trp Phe 160 165 170	707
gcc ttc ctt att tct gaa aga ctt agt gaa gcc ata gtc aca gta ata Ala Phe Leu Ile Ser Glu Arg Leu Ser Glu Ala Ile Val Thr Val Ile 175 180 185 190	755
atg ggt atg gga gta gca ttc cac ctt gaa ctt ttt ctc tta cca cat Met Gly Met Gly Val Ala Phe His Leu Glu Leu Phe Leu Leu Pro His 195 200 205	803
tat ccc aac tgg ttt aaa gcc ctg agg ata gta gtc act tta ttg gcc Tyr Pro Asn Trp Phe Lys Ala Leu Arg Ile Val Val Thr Leu Leu Ala 210 215 220	851
act ttt tca ttt ata atc act tta gta gtt aaa agt agt ttt cca gaa Thr Phe Ser Phe Ile Ile Thr Leu Val Val Lys Ser Ser Phe Pro Glu 225 230 235	899
aaa gga cat aag aga cct ggt caa gta taa a aaatataaaa gtctgggaag Lys Gly His Lys Arg Pro Gly Gln Val * 240 245	950
tgaggagcac ctctgcccag ctgctgcccc gtctgggaag tgaggagcgc ctctgcctgg	1010
ccgcctgacc atctgggaag tgtgacaagc gcctctgccc ggccgctgtg caaccttcca	1070
cgtgtgaagt gacagccttg tgtgtgatct tttctgtctt ccccaagttt gcattttcga	1130
cattaaagtt tactttttag ttaaaagttt aaaaaaatata tataaataca ctgtagagan	1190
aacatgtgtn tgccagctac acctttctcn acttctgttt ggcttttttt ccccacacca	1250
atggtaattt atcttcacag atngttcttc atttctagaa attgttactt catggtaatt	1310
acttgagcaa aagcttgaaa atccctgaca agtacttntc atctcatagt atattagttt	1370
tcactcagtc attttatgaa taatanagtt atccacttaa acatttcaat aatgtaacca	1430
gc	1432

```
<210> 46
<211> 2047
```

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (269)..(1372)

<400> 46 60 atttqqccct cqaqqccaaq aattcqqcac qagqatttgg gctgtgtgt cgacgcgggt 120 cggagggca gtcgggggaa ccgcgaagaa gccgaggagc ccggaggccc gcgtgacgct cctctctcag tccaaaagcg gcttttggtt cggcgcagag agacccgggg gtctagcttt 180 240 teetegaaaa gegeegeeet geeettggee eegagaacag acaaagagea eegeagggee atg gtc atg gaa gtg ggc acc ctg 292 gatcacgctg ggggcgctga ggccggcc Met Val Met Glu Val Gly Thr Leu 7 340 gac gct gga ggc ctg cgg gcg ctg ctg ggg gag cga gcg gcg caa tgc Asp Ala Gly Gly Leu Arg Ala Leu Leu Gly Glu Arg Ala Ala Gln Cys ctg ctg ctg gac tgc cgc tcc ttc ttc gct ttc aac gcc ggc cac atc 388 Leu Leu Leu Asp Cys Arg Ser Phe Phe Ala Phe Asn Ala Gly His Ile 436 gee gge tet gte aac gtg ege tte age ace ate gtg egg ege egg gee Ala Gly Ser Val Asn Val Arg Phe Ser Thr Ile Val Arg Arg Arg Ala 45 50 aag ggc gcc atg ggc ctg gag cac atc gtg ccc aac gcc gag ctc cgc 484 Lys Gly Ala Met Gly Leu Glu His Ile Val Pro Asn Ala Glu Leu Arg 60 65 ggc cgc ctg ctg gcc gcc tac cac gcc gtg gtg ttg ctg gac gag 532 Gly Arg Leu Leu Ala Gly Ala Tyr His Ala Val Val Leu Leu Asp Glu 75 cgc agc gcc ctg gac ggc gcc aag cgc gac ggc acc ctg gcc ctg 580 Arg Ser Ala Ala Leu Asp Gly Ala Lys Arg Asp Gly Thr Leu Ala Leu 90 95 628 gcg gcc ggc gcg ctc tgc cgc gag gcg cgc gcc gcg caa gtc ttc ttc Ala Ala Gly Ala Leu Cys Arg Glu Ala Arg Ala Ala Gln Val Phe Phe 105 120 110 676 ctc aaa gga gga tac gaa gcg ttt tcg gct tcc tgc ccg gag ctg tgc Leu Lys Gly Gly Tyr Glu Ala Phe Ser Ala Ser Cys Pro Glu Leu Cys 125 130 age aaa cag teg ace eec atg ggg etc age ett eec etg agt act age 724 Ser Lys Gln Ser Thr Pro Met Gly Leu Ser Leu Pro Leu Ser Thr Ser 140 145 gtc cct gac agc gcg gaa tct ggg tgc agt tcc tgc agt acc cca ctc 772 Val Pro Asp Ser Ala Glu Ser Gly Cys Ser Ser Cys Ser Thr Pro Leu 155 165 160 tac gat cag ggt ggc ccg gtg gaa atc ctg ccc ttt ctg tac ctg ggc 820 Tyr Asp Gln Gly Gly Pro Val Glu Ile Leu Pro Phe Leu Tyr Leu Gly 170 175 180

agt gcg tat cac gct tcc cgc aag gac atg ctg gat gcc ttg ggc ata Ser Ala Tyr His Ala Ser Arg Lys Asp Met Leu Asp Ala Leu Gly Ile 185 190 195 200	868
act gcc ttg atc aac gtc tca gcc aat tgt ccc aac cat ttt gag ggt Thr Ala Leu Ile Asn Val Ser Ala Asn Cys Pro Asn His Phe Glu Gly 205 210 215	916
cac tac cag tac aag agc atc cct gtg gag gac aac cac aag gca gac His Tyr Gln Tyr Lys Ser Ile Pro Val Glu Asp Asn His Lys Ala Asp 220 225 230	964
atc agc tcc tgg ttc aac gag gcc att gac ttc ata gac tcc atc aag Ile Ser Ser Trp Phe Asn Glu Ala Ile Asp Phe Ile Asp Ser Ile Lys 235 240 245	1012
aat gct gga gga agg gtg ttt gtc cac tgc cag gca ggc att tcc cgg Asn Ala Gly Gly Arg Val Phe Val His Cys Gln Ala Gly Ile Ser Arg 250 255 260	1060
tca gcc acc atc tgc ctt gct tac ctt atg agg act aat cga gtc aag Ser Ala Thr Ile Cys Leu Ala Tyr Leu Met Arg Thr Asn Arg Val Lys 265 270 275 280	1108
ctg gac gag gcc ttt gag ttt gtg aag cag agg cga agc atc atc tct Leu Asp Glu Ala Phe Glu Phe Val Lys Gln Arg Arg Ser Ile Ile Ser 285 290 295	1156
ccc aac ttc agc ttc atg ggc cag ctg ctg cag ttt gag tcc cag gtg Pro Asn Phe Ser Phe Met Gly Gln Leu Leu Gln Phe Glu Ser Gln Val 300 305 310	1204
ctg gct ccg cac tgt tcg gca gag gct ggg agc ccc gcc atg gct gtg Leu Ala Pro His Cys Ser Ala Glu Ala Gly Ser Pro Ala Met Ala Val 315 320 325	1252
ctc gac cga ggc acc tcc acc acc gtg ttc aac ttc ccc gtc tcc Leu Asp Arg Gly Thr Ser Thr Thr Thr Val Phe Asn Phe Pro Val Ser 330 335 340	1300
atc cct gtc cac tcc acg aac agt gcg ctg agc tac ctt cag agc ccc Ile Pro Val His Ser Thr Asn Ser Ala Leu Ser Tyr Leu Gln Ser Pro 345 350 355 360	1348
att acg acc tct ccc agc tgc tga aaggccacgg gaggtgaggc tcttcacatc Ile Thr Thr Ser Pro Ser Cys * 365	1402
ccattgggac tccatgctcc ttgagaggag aaatgcaata actctgggag gggctcgaga	1462
gggctggtcc ttatttattt aacttcaccc gagttcctct gggtttctaa gcagttatgg	1522
tgatgactta gcgtcaagac atttgctgaa ctcagcacat tcgggaccaa tatatagtgg	1582
gtacatcaag tccatctgac aaaatggggc agaagagaaa ggactcagtg tgtgatccgg	1642
tttcttttttg ctcgcccctg ttttttgtag aatctcttca tgcttgacat acctaccagt	1702

attattcccg acgacacata tacatatgag aatatacctt atttatttt gtgtaggtgt 1762
ctgccttcac aaatgtcatt gtctactcct agaagaacca aatacctcaa tttttgtttt 1822
tgagtactgt actatcctgt aaatatatct taagcaggtt tgtttcagc actgatggaa 1882
aataccagtg ttgggttttt ttttagttgc caacagttgt atgtttgctg attatttatg 1942
acctgaaata atatattct tcttctaaga agacattttg ttacataagg atgactttt 2002
tatacaatgg aataaattat ggcatttcta ttgaaaaaaa aaaaa 2047

<210> 47

<211> 1451

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (271)..(1317)

75

<400> 47

gaattcccgg gtcgacgatt tcgtgctgtc caaaggacgc tagctgttgc acctgttcct 60 120 180 cattatgatg tgtttatgtt cacagaaatt tttgtaattt ctctatggta acaacttttt atgccttaag agtgtctctg aggcaggatt ctaagagatt ctctttgact caatcccaga 240 tagaggataa atctcctggc aaagcccaga 291 atg acc aca gcc ctg gaa cct Met Thr Thr Ala Leu Glu Pro 339 gag gac caa aaa gga ctt ctg ata att aag gca gag gac cat tac tgg Glu Asp Gln Lys Gly Leu Leu Ile Ile Lys Ala Glu Asp His Tyr Trp 10 15 gga cag gat tcc agc tca caa aag tgc agt cct cac agg agg gaa ctc 387 Gly Gln Asp Ser Ser Ser Gln Lys Cys Ser Pro His Arg Arg Glu Leu 25 30 435 tat aga caa cac ttc agg aag ctc tgc tat cag gat gca cct gga ccc Tyr Arg Gln His Phe Arg Lys Leu Cys Tyr Gln Asp Ala Pro Gly Pro 40 45 55 483 cgt gaa gct ctt acc cag ctg tgg gag ctc tgc cgt cag tgg ctg agg Arg Glu Ala Leu Thr Gln Leu Trp Glu Leu Cys Arg Gln Trp Leu Arg 60 65 531 cca qaa tqc cac acc aaq qaq caq att tta gac ctg ctg gtg cta gaa Pro Glu Cys His Thr Lys Glu Gln Ile Leu Asp Leu Leu Val Leu Glu

_		•	~			cct Pro		•	_		~			-	_	579
						gag Glu 110										627
	-			-	-	cct Pro		-	-	_					_	675
						gac Asp										723
_		_		_	_	ctc Leu				_			-			771
_	_					agg Arg			-					-		819
-	~ ~	~		_	~	gaa Glu 190	_	_			_	_	_			867
						ctg Leu										915
						aat Asn										963
						tgt Cys										1011
-		_		-		cac His		-			_			_		1059
		-	_		-	gga Gly 270		_			_	_				1107
				-	-	cac His	_		_					_		1155
						agt Ser										1203

aga atc cac aca ggt gaa aaa ccc tat gaa tgt gat gag tgt gga agg Arg Ile His Thr Gly Glu Lys Pro Tyr Glu Cys Asp Glu Cys Gly Arg 315 320 325	1251
cct ttc cga gta agt tca gct ctt att aga cat caa aga att cat acc Pro Phe Arg Val Ser Ser Ala Leu Ile Arg His Gln Arg Ile His Thr 330 335 340	1299
gca aat aaa ctc tac taa tatagc agtaatatca aaagttcttt ggacactcag Ala Asn Lys Leu Tyr * 345	1353
gcctaactag ttatcaaaga atctatttta gaaaccttga gtttcctcaa tgtggtcaaa	1413
gcttcagtca tcattaaact tctctggacc aaaaaaaa	1451
<210> 48 <211> 3785 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (290)(2641)	
<400> 48 tttcgttgtg ccggaagagg atgaatgtgc tgtgtaggag gagcggggtc atgcagtgac	60
actggaaaat taggggcctg tcgagcgatg ttggaagaag aaacagatca aacctatgag	120
aatgtcctgg ctgagattca gtctttcgaa ctgcctattg aagctacttt aagtcaacag	180
gaagagatac ctctttggtc aggaatgtaa aaacaggaag gaggaagtct attgcaaatc	240
tgtgctggct gattatgaat tcaggtttca ccatggagga tgttcatta atg atc Met Ile 1	295
atc agt gtg ctg tgc tgt tat tca aaa tta cag tct gtg tat gat gac Ile Ser Val Leu Cys Cys Tyr Ser Lys Leu Gln Ser Val Tyr Asp Asp 5 10 15	343
caa cca aat gcg cac aag aag ttt atg gaa aag tta gat gct tgt atc Gln Pro Asn Ala His Lys Lys Phe Met Glu Lys Leu Asp Ala Cys Ile 20 25 30	391
cgt aat cat gac aag gaa att gaa aag atg tgt aat ttt cat cat cag Arg Asn His Asp Lys Glu Ile Glu Lys Met Cys Asn Phe His His Gln 35 40 45 50	439
ggt ttt gta gat gct att aca gaa ctc ctt aaa gta agg act gat gca Gly Phe Val Asp Ala Ile Thr Glu Leu Leu Lys Val Arg Thr Asp Ala 55 60 65	487

			aag Lys 70													535
			gag Glu			-			-							583
			aga Arg													631
			cta Leu													679
			tat Tyr		-				_	_						727
			tgg Trp 150	_	_					_	_		_		_	775
			aaa Lys		_		-			_			_		_	823
			ttt Phe													871
-		-	atg Met		_	_	_		_				-	-		919
_	_		caa Gln			_						_				967
_	_	_	att Ile 230			-			-		_	_				1015
	-	_	gag Glu	_			_	_					-	-	-	1063
	-	-	ttt Phe			_		-	_	_					_	1111
		-	gag Glu	_			-				_			_	_	1159
aaa	caa	gca	aga	ctg	gta	ttg	caa	CCC	cag	tcg	aat	atg	cat	gaa	aca	1207

Lys	Gln	Ala	Arg	Leu 295	Val	Leu	Gln	Pro	Gln 300	Ser	Asn	Met	His	Glu 305	Thr		
_	-			-	aga Arg						-					125	5
-	-	-			tta Leu							-			-	130)3
		_	_		tgg Trp		_	_			_			-	-	135	51
	_	~			tcc Ser 360		_		~		~		~	-		139	19
					gta Val											144	₹7
				_	ctt Leu		_				_		_	_		149	15
					ctt Leu											154	.3
	-	-	-		tac Tyr	-				-	-		-	-	_	159	1
					agc Ser 440											163	9
					aag Lys											168	:7
					aaa Lys											173	5
					agc Ser					-						178	3
			_	_	ctg Leu		_		_	_	_	_		_		183	1
		-			cat His			_			_	-				187	9

515		520		525	5		530
	ca aca cac nr Thr His 535	Leu Glu					
	ac att aca sn Ile Thr 550						
Leu Tyr G	ga ctt tct ly Leu Ser 55			_	~		
	at acc aaa yr Thr Lys						
gct gat ta Ala Asp Ty 595	at gac tgg yr Asp Trp	_		_	Gly Arg		
tat tta at Tyr Leu Me	tg gac ctt et Asp Leu 615						
act cat to		_	-	_		-	_
cag cat ct Gln His Le	eu Ser Thr			_			
aaa caa at Lys Gln II 660							
cag tgt ga Gln Cys G 675	aa ttg ttt lu Leu Phe				Pro Gly		
gat acc ct Asp Thr Le							
ttt atg gt Phe Met Va							
gct tct aa Ala Ser Ly 72	ys Tyr Leu						
gag aag at Glu Lys Me 740		_	_				

agg aag aat gat cga gac aaa cag aag ttg ata gag aca gtc gtg aaa 2599 Arg Lys Asn Asp Arg Asp Lys Gln Lys Leu Ile Glu Thr Val Val Lys 755 760 765 2648 cag ctg aga agt ttg gtg aat ggt atg tcc cag cac atg tag acctcac Gln Leu Arg Ser Leu Val Asn Gly Met Ser Gln His Met 775 780 atggcttgca ctcagtgaca ccaaatccat gattcaatgt tgatcttgag caagtattgg 2708 tcatgataca gtaatttgtt tacagaatcc aaaaatacaa tagagaagat acatgagggc 2768 2828 ttaaacaaga aatagtaata aatatcattt gtatggattt ttaaataatc gaatactatt ttatatatgg aaaaaaatga ccattttttc acttttaggg gaaaatgcaa aagtgtaata 2888 cataaattgt cacaaattat acctgaaatt gattacaaat acatttgaaa aacatatgcc 2948 tctactcata agtatttttt tctatttaga cttgaatgat aatctgtttt ttgatcagta 3008 tatggctttg gaattcaatc atgtctgata tggtagtatt tcactaccat tttctgactt 3068 ttagctttta ttttcacctc aatgtgattt aagcagacca aaatttctaa ttctgctaat 3128 3188 tctgaagggg aaatagacaa atcttaaaag ctgcctgaaa tcaaacttga tttaactcag 3248 taagaatgtg aattatttgt tctacttggg tggtttaatt taatcgttct gaatatgaac 3308 aaaaggtttt ggattttcta aagatgcagt gttgtttctg ttcatcaggg ttaatatttc 3368 taaaagagag gacaggaact aaatggggct aaccacttca ggtgcagctt gtgcgagggt 3428 agatggttcc tgcacacaga agttaccaca ggggtcaggt tactttcttc aaatagcaga 3488 tttcagtact ttatcctcat tgtggaaaca agccaaacca aatgaactct ggaaaaccta 3548 3608 aaacaaatgt acattttcct ttgtgtatgt ttctgtggtc caaatggcaa tataaatcca 3668 gtctttattc tccctttgtt gtatttatgc tgaatcttcc ctttgccttt tcaggattta ggcctgtaag aaactatgcc tgattctgta aaataagtgt aaagaattat atgtacatct 3728 3785 ctggattttg tgatgaaata ttaaaaatat tgagcaagtt gttgaaaaaa aaaaaaa

<210> 49

<211> 591

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (41)..(250)

<400> 49 55 atttggccct cgaggccaag aattcggcac gagtgggaag atg gtg cca aga acg Met Val Pro Arg Thr aag aag gaa gct cct gcc cct cct aaa gcc gaa gcc aaa gcg aag gct 103 Lys Lys Glu Ala Pro Ala Pro Pro Lys Ala Glu Ala Lys Ala Lys Ala 10 20 ttg caa ggc caa gaa ggc agt gtt gaa aga tgt cca cag cca caa aaa 151 Leu Gln Gly Gln Glu Gly Ser Val Glu Arg Cys Pro Gln Pro Gln Lys aaa caa gat cca cat gtc acc cac ctt ccg gcg gcc caa gac act gtg 199 Lys Gln Asp Pro His Val Thr His Leu Pro Ala Ala Gln Asp Thr Val 40 45 247 act ccg gag gca gcc caa ata tcc ttg gaa gag cac ccc cag gag aaa Thr Pro Glu Ala Ala Gln Ile Ser Leu Glu Glu His Pro Gln Glu Lys 60 taa gctt gaccaccatg ttatcatcaa gtttccgctg accactgagt aggctgtgaa 304 70 gaagatagaa aacaacagcc tacttgtgtt cactgtggat gttaaagcca acaagcacca 364 gatcaaacag gctgtgaaga agtttgtgac attgatgtgg ccaaagtcaa cactctgatt 424 cagtctgatg gagagaggaa ggcatatgtt cgactggctc ctgactacga tgctttggtt 484 gttgccacca aaattgggat cacctaaact gagtcaagct ggctaattcc aaatatatgt 544 591 atatcttttc accattaaaa gaatcttaat ctctcaaaaa aaaaaaa

<210> 50 <211> 3011

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (150)..(2729)

<400> 50

ccctcggccc cggagccct cggcggcgca ccatgtactc gggagccggc cccggtacta 60
actgacttgt ccatttgcta agcttcatcc caccgggcaa ttttcctgca cagcagccct 120
cggccccgga gcccctcggc ggcgccacc atg tac tcg gga gcc ggc ccc gca Met Tyr Ser Gly Ala Gly Pro Ala

	-				ccg Pro	_							_		-	221
					gac Asp 30											269
_	_				gaa Glu	_	-									317
	-	_	-		aag Lys			_	-	-		_	_			365
_			_		atg Met	-	_					_				413
-		_			ttt Phe	-			-					-	_	461
		_			agg Arg 110	-	_			_		-	_	_		509
	-		_	-	cgc Arg											557
_		_	_	_	gcg Ala			-	-					_		605
					acg Thr											653
_			-		tac Tyr					_						701
	-		_		aac Asn 190						_	-				749
~ ~			_		gtc Val							_	_	_		797
	-	-		-	aca Thr				_	_	_		_			845

		tgt Cys 235														893
	_	aca Thr	-				-	_				_				941
		gtg Val														989
_	_	aat Asn						-	-					_	_	1037
_	_	gag Glu	-		-	-			_	_		-	_			1085
_	-	agg Arg 315		_	_	_	_	_						_		1133
	_	gga Gly	_		_							_		-	-	1181
		gtg Val	-			_	-					_	_		-	1229
		acc Thr	-		-			-		_			-			1277
_		att Ile	_		_	_	-	-	-	-				-		1325
	-	cgt Arg 395	-				_	-		-		_		-		1373
		cgg Arg														1421
	-	att Ile				-	_		_		_	_			_	1469
_		cac His	_					-			-			_		1517
gcc	ccc	cag	cgc	cag	tgc	acg	gaa	gtc	cat	ctg	aag	tcc	ttc	aca	gag	1565

Ala	Pro	Gln	Arg 460	Gln	Cys	Thr	Glu	Val 465	His	Leu	Lys	Ser	Phe 470	Thr	Glu		
_		_	_		tcg Ser	_	_	-		_			_		_	1	1613
					tac Tyr											1	1661
			_	-	aac Asn 510	_				-	-	_				1	1709
	_			_	acg Thr						_	_	_			1	L757
_	~	~ ~	-		atg Met	_	_	_	_		_	_	_			1	L805
~			_		cag Gln		-				-	_	_			1	L853
					gtg Val											1	L901
_			_	_	ccc Pro 590	_			_							1	L949
					ggg Gly											1	L997
					ccc Pro											2	2045
					atc Ile											2	2093
					tac Tyr											2	2141
					ggt Gly 670											2	2189
					gcc Ala											2	237

685 690 695 gac tac cag ccc ggg atc acc ttc atc gtg gtg cag aag agg cac cac 2285 Asp Tyr Gln Pro Gly Ile Thr Phe Ile Val Val Gln Lys Arg His His 705 acc cgg ctc ttc tgc act gac aag aac gag cgg gtt ggg aaa agt gga 2333 Thr Arg Leu Phe Cys Thr Asp Lys Asn Glu Arg Val Gly Lys Ser Gly 720 2381 aac att cca gca ggc acg act gtg gac acg aaa atc acc cac ccc acc Asn Ile Pro Ala Gly Thr Thr Val Asp Thr Lys Ile Thr His Pro Thr 730 735 gag ttc gac ttc tac ctg tgt agt cac gct ggc atc cag ggg aca agc 2429 Glu Phe Asp Phe Tyr Leu Cys Ser His Ala Gly Ile Gln Gly Thr Ser 745 750 2477 agg cct tcg cac tat cac gtc ctc tgg gac gac aat cgt ttc tcc tct Arg Pro Ser His Tyr His Val Leu Trp Asp Asp Asn Arg Phe Ser Ser 775 765 770 gat gag ctg cag atc cta acc tac cag ctg tgt cac acc tac gtg cgc 2525 Asp Glu Leu Gln Ile Leu Thr Tyr Gln Leu Cys His Thr Tyr Val Arg 780 785 2573 tgc aca cgc tcc gtg tcc atc cca gcg cca gca tac tac gct cac ctg Cys Thr Arg Ser Val Ser Ile Pro Ala Pro Ala Tyr Tyr Ala His Leu 795 800 2621 gtg gcc ttc cgg gcc agg tac cac ctg gtg gat aag gaa cat gac agt Val Ala Phe Arg Ala Arg Tyr His Leu Val Asp Lys Glu His Asp Ser 815 2669 gct gaa gga agc cat acc tct ggg cag agt aac ggg cga gac cac caa Ala Glu Gly Ser His Thr Ser Gly Gln Ser Asn Gly Arg Asp His Gln 825 830 835 2717 gca ctg gcc aag gcg gtc cag gtt cac caa gac act ctg cgc acc atg Ala Leu Ala Lys Ala Val Gln Val His Gln Asp Thr Leu Arg Thr Met 845 850 tac ttt gct tga cat gttttagtgt ttagcgattg tgtaccgagt gggattcacg 2772 Tyr Phe Ala 860 agaccageta cacteagace aacagatgge cagecettee gtgacageca geategaaca 2832 2892 tgagacgtca ttgattttat tagattctcc gttttccaga atgccttccg tcccagattt caaacttgga ttttgaactg cagacctgta tgagaaccca atgtcatagg aaatatggtt 2952 tgctaaaatc tataagctgc ttattaaaac agagtcccgt gtgtcctaaa aaaaaaaaa 3011

<210> <211> <212> <213>	1064	
<220> <221> <222>		
<400>	51 gggggacttt ttttacgcgt aagtgtttaa agaggtgacc gccgggggca	60
cagccaacat	cctccaggtt tgccaaagga gaagggtgcc caggttagtt tacaccagca	120
ctttcaatgt	catctttgga ggtcaagtta tcagaaatgg ggatgaatct ctgccgtacc	180
tgcctcttca	cctccaccct gatcactact ctcggacaaa gtcaattgca gagcagaagg	240
tgctggaggc	gaatgctaca cccctggaca gaggcgacgg tgtcttaaga acctgcgctc	300
tgaggccagc	tggcatctat gggcctggag aacaaagaca ccttcccagg atagtcagct	360
acatcgagaa	gggtctgttc aagtttgtct acggcgaccc caggagcctg gttgagtttg	420
tccacgtgga	taacttggtg caggeteaca ttetggeete agaageeetg agagetgaca	480
agggccatat	tgcctctggg cagccctact tcatctcaga tggcagaccc gtgaacaact	540
ttgagttctt	ccggcctctg gttgagggcc tgggctacac attcccgtct acccgcctgc	600
cattgacctt	ggtctactgc tttgcttttc taacagag atg gtt cac ttc att Met Val His Phe Ile 1 5	653
	a ctc tac aac ttc cag ccc ttc ctc act cgc act gaa gtt g Leu Tyr Asn Phe Gln Pro Phe Leu Thr Arg Thr Glu Val 10 15 20	701
	t ggt gtc aca cat tat ttt agc tta gag aaa gcc aag aaa r Gly Val Thr His Tyr Phe Ser Leu Glu Lys Ala Lys Lys 25 30 35	749
	t tat aag gct cag cca ttt gac ctc cag gaa gca gtg gaa y Tyr Lys Ala Gln Pro Phe Asp Leu Gln Glu Ala Val Glu 0 45 50	797
	a gcc cat ggt cat ggc aga agt tct gga agt cgt gac tcg s Ala His Gly His Gly Arg Ser Ser Gly Ser Arg Asp Ser 60 65	845
	t gtt tgg gat ggg cta ttg gtc ttc ctc ctg att ata gca e Val Trp Asp Gly Leu Leu Val Phe Leu Leu Ile Ile Ala 75 80 85	893
	g tgg ctg cct tct tct gtg att ctg tca ctg tga aggaggg t Trp Leu Pro Ser Ser Val Ile Leu Ser Leu * 90 95	942

gcc	agaa	ata	aggt	gatc	ac a	gttg	gctg	a ga	tggt	tctc	aag	aaac	atg	ggtt	ttaaaa	1002
tgt	gtac	agt	gata	tctg	gt g	ccaa	acat	t gg	ctct	tcaa	att	gcta	ctt	aaaa	aaaaaa	1062
aa																1064
	<2	10>	52													
		11> 12>	710 DNA													
			Homo	sap	iens											
		20> 21>	CDS													
			(158) (682)											
atti		00>		acca	an a	atto	raca	ന നമ	acaai	caca	add	aacaa	rna (aaaa	ttgttg	60
															tctgct	120
					_				_						J	
caco	ctcc	gga	taaa	ccac	gg g	gtet	cccg	c gc	cgct	Me				o Va	c cgt l Arg 5	175
			ccc Pro 10													223
			ttg Leu													271
			cca Pro									_	_			319
			ggg Gly													367
			ttt Phe													415
			aag Lys 90													463
			atg Met													511

att aaa tat tot tgt oot aaa gga tac cga oto att ggt too tog tot 559

120 125 130	
gcc aca tgc atc atc tca ggc aac act gtc att tgg gat aat aaa aca Ala Thr Cys Ile Ile Ser Gly Asn Thr Val Ile Trp Asp Asn Lys Thr 135 140 145 150	607
cct gtt tgt gac agt gag ttg aaa tat gca ttc cta ttt ctt tta ccg Pro Val Cys Asp Ser Glu Leu Lys Tyr Ala Phe Leu Phe Leu Pro 155 160 165	655
ata cat tct aat ttt tct ctg gaa taa taaaa atctattccg aaaaaaaaaa	707
aaa	710
<210> 53 <211> 1685 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (174)(1613)	
<400> 53	
tttcgtccgg aaggaagagg aaattccagt agccgatcag gagtctgcaa actccggtgg	60
tttcgtccgg aaggaagagg aaattccagt agccgatcag gagtctgcaa actccggtgg taggggagcg cgctgctgtt tagagccacg agttaccgga gcgcctgatt cctgcgccga	60 120
taggggagcg cgctgctgtt tagagccacg agttaccgga gcgcctgatt cctgcgccga agtcagtggt ggccgaaagt ccggagtcgc tgtaaaacct gagattgtga gcc atg Met	120
taggggagcg cgctgctgtt tagagccacg agttaccgga gcgcctgatt cctgcgccga agtcagtggt ggccgaaagt ccggagtcgc tgtaaaacct gagattgtga gcc atg Met 1 gtg ggg aga tcc cgg cgc gga gca gct aag tgg gca gct gtg cga Val Gly Arg Ser Arg Arg Arg Gly Ala Ala Lys Trp Ala Ala Val Arg	120 176
taggggagcg cgctgctgtt tagagccacg agttaccgga gcgcctgatt cctgcgccga agtcagtggt ggccgaaagt ccggagtcgc tgtaaaacct gagattgtga gcc atg Met 1 gtg ggg aga tcc cgg cgg cgc gga gca gct aag tgg gca gct gtg cga Val Gly Arg Ser Arg Arg Arg Gly Ala Ala Lys Trp Ala Ala Val Arg 5 10 15 gcc aag gca ggt ccc acg ctc acc gac gaa aat gga gat gat tta gga Ala Lys Ala Gly Pro Thr Leu Thr Asp Glu Asn Gly Asp Asp Leu Gly	120 176 224
taggggagcg cgctgctgtt tagagccacg agttaccgga gcgcctgatt cctgcgccga agtcagtggt ggccgaaagt ccggagtcgc tgtaaaacct gagattgtga gcc atg Met 1 gtg ggg aga tcc cgg cgc gga gca gct aag tgg gca gct gtg cga Val Gly Arg Ser Arg Arg Arg Gly Ala Ala Lys Trp Ala Ala Val Arg 5 10 15 gcc aag gca ggt ccc acg ctc acc gac gaa aat gga gat gat tta gga Ala Lys Ala Gly Pro Thr Leu Thr Asp Glu Asn Gly Asp Asp Leu Gly 20 25 30 ttg cca ccc tca cca ggg gac acc agc tac tac caa gat cag gta gat Leu Pro Pro Ser Pro Gly Asp Thr Ser Tyr Tyr Gln Asp Gln Val Asp	120 176 224 272

-		_		-	atg Met	-	_		-	-		-				464
					gag Glu											512
			_	_	gct Ala		_			_		_	_	_		560
					ctt Leu 135											608
					caa Gln											656
					atc Ile											704
					gtc Val	-		-		_		-				752
					gct Ala											800
					aag Lys 215											848
	_		_		gaa Glu	-	-		_	_	_			_	-	896
		_			ttg Leu			_		_						944
				_	caa Gln		_			_					-	992
		_	_		atc Ile	_			-		-		_		_	1040
-		-			cat His 295		-		-			_			-	1088

•			cag aag ctg tcc Gln Lys Leu Ser	•
	Leu Thr Leu		gct gta aag aaa Ala Val Lys Lys 335	
-		-	cca aag tct gtt Pro Lys Ser Val 350	
			ctt tct gat gat Leu Ser Asp Asp 365	_
	_	Lys Tyr Tyr	aaa gaa ata gaa Lys Glu Ile Glu 380	
-			agc act gaa gaa Ser Thr Glu Glu	
	Asn Ala Lys		acc tat caa att Thr Tyr Gln Ile 415	•
			att gat cgc aat Ile Asp Arg Asn 430	_
			aaa att aga aga Lys Ile Arg Arg 445	
		Glu Glu Gln	cgt tat agt ggt Arg Tyr Ser Gly 460	-
			att aag ctt aaa Ile Lys Leu Lys	tga agt 1616 * 480
ttttgcttag cata	aggttt ttggc	agttt tggatca	ata aatttttact t	ttaactaaa 1676
aaaaaaaa				1685

<220>

<210> 54 <211> 2600

<212> DNA

<213> Homo sapiens

<221> CDS <222> (289)..(831)

<400> 54 tgaatatete teeetgatga taateataea catgaagetg ggattttett teeetttgtg 60 aatgtagaac caatataatc aaatatttga agtgtaaaac atattttgta agctgtgttg 120 aaggaagaaa attggtaact ttaagtggga cttatcattt gttgtgtgtg ctttcctcat 180 agtgagtcta attttcacaa ttacaccttg gtctcattga atgaagaatt taatcgtgga 240 cgaggactaa atgtgggtgc ccgagcttgg gacaagggag aggtcttg atg ttt ttc 297 Met Phe Phe 1 tgt gat gtt gat atc tat ttc tca gcc gaa ttc ctt aac agc tgc cgg 345 Cys Asp Val Asp Ile Tyr Phe Ser Ala Glu Phe Leu Asn Ser Cys Arg 5 tta aat gct gag cca ggt aag aag gtg ttt tac cct gtg gtg ttc agt 393 Leu Asn Ala Glu Pro Gly Lys Lys Val Phe Tyr Pro Val Val Phe Ser 20 25 35 ctt tac aat cct gcc att gtt tat gcc aac cag gaa gtg cca cca cct 441 Leu Tyr Asn Pro Ala Ile Val Tyr Ala Asn Gln Glu Val Pro Pro 45 gtg gag cag ctg gtt cac aaa aag gat tct ggc ttt tgg cga gat 489 Val Glu Gln Gln Leu Val His Lys Lys Asp Ser Gly Phe Trp Arg Asp ttt ggc ttt gga atg act tgt cag tat cgt tca gat ttc ctg acc att 537 Phe Gly Phe Gly Met Thr Cys Gln Tyr Arg Ser Asp Phe Leu Thr Ile ggt gga ttt gac atg gaa gtg aaa ggt tgg ggt gga gaa gat gtt cat 585 Gly Gly Phe Asp Met Glu Val Lys Gly Trp Gly Gly Glu Asp Val His 90 ctt tat cga aaa tac tta cat ggt gac ctc att gtg att cgg act ccg 633 Leu Tyr Arg Lys Tyr Leu His Gly Asp Leu Ile Val Ile Arg Thr Pro 100 105 110 115 gtt cct ggt ctt ttc cac ctc tgg cat gaa aag cgc tgt gct gat gag 681 Val Pro Gly Leu Phe His Leu Trp His Glu Lys Arg Cys Ala Asp Glu 120 130 ctg acc ccc gag cag tac cgc atg tgc atc cag tct aaa gcc atg aat 729 Leu Thr Pro Glu Gln Tyr Arg Met Cys Ile Gln Ser Lys Ala Met Asn 135 140 gag gcc tct cac tcc cac ctg gga atg ctg gtc ttc agg gag gaa ata 777 Glu Ala Ser His Ser His Leu Gly Met Leu Val Phe Arg Glu Glu Ile 150 155 825

gag acg cat ctt cat aaa cag gca tac agg aca aac agt gaa gct gtt

Glu Thr His Leu His Lys Gln Ala Tyr Arg Thr Asn Ser Glu Ala Val
165 170 175

ggt tga aatcataatt aatgcgttac tgtatgaacc acaaaacagc actatttatt

881

Gly 180

941 tagcettact tetactteca gatgeagtge etettttgga gaagacatgt ttatttttea tgttctttct gacattactt tagcaattca acttgatgtg agaagaaaaa acaaatgttt 1001 caacacaaaa tctctgtttt gtgagaatac tgcactatgg aataattgac aaattgaaat 1061 ctcatatttg tcccaaaagt tgttttgagt tagttctacc tggtgcccat gttctgattg 1121 tgtgtgggat tgcatggtgt cctgattgca tctaggtgga gcggatggaa tgtgctgggc 1181 cactgttggg tggagagcag cacattctta cagaggagat ggagcgttat gagcatagta 1241 tgtggatagg tatcttcacc tgcccgcccc tgagtcagcc tccttgactt gatagcttga 1301 agaatccttt tccactgaaa tagaggataa ttaattgaca catctgaaat ccccaatcaa 1361 tcaatcaaga gaaaggtaga actaaaaact ccttaactta ctgttgctta cacccctgaa 1421 agtctgtttt taagcaaatg ggtaatagta gaaaataggt tagaatctat ggcttgatta 1481 aaaatatgtt attacattat catgttcagg attaggatta gtagtcagtt gctgtaaact 1541 attttgaaca aacagaaaag aacacggaaa catttttaac agagcattta attatgttgg 1601 aatacaggat cctagctctg tctgggaaca ttagtttatg tgagccagct ctatcagggt 1661 cttcccatgg tggttcagaa tagatgagca tagcatggtt ttgtttgttt ttgctttcaa 1721 ttttctaatt tggcatggat ccatatgtat ttactatcct ttttctaata tattaatata 1781 tgctacattt gtatttgcat tactataata ctttgagttg aaaaagagtt tcattgtgga 1841 gagaaaaagc aaatggtatg ccacaagatc actctgattt gagaaaaggg aggagggaa 1901 gatagtctga atggaaatct gaaatacgga atgttttaga gaaatatgtc acttgcatat 1961 2021 agaatgtttt aattgaggta taaattaatg agacaaagtg aaaaagaaat tatattcaga taggactgca ctacattatt tgtcacacat ggatctgtta ccatcaggtc aattcctagt 2081 atgcataaat tttttaaccc ttttaaaaga gacctatgtt gaaaacccct gaaaattcac 2141 tgaagaaaaa tcattactct ttttctcagt aaatcatatc atctgaaata ttacaaattt 2201 caaatttcta ggtgctatat taattcaata ttacaataac tcttacctaa ttattcttac 2261 aagttttaag ttgtggtagt ttagtgattt ttttaaaaaga tgtgtgaaat gttctctgca 2321 aaataattca ggccactgtc tccttttata tattattata attatttatt atgaagacca 2381

gtgaattacg atatttaaag tgagagaact taattatttg caaaggtaag ttacagcttg 2441
ttttttgaga gaatcaaatg agtttacttt tgttcctgtt gtttttaact agctttaagt 2501
ttaaagatgg aagctaagca atggaaatgc tatacgtttt tgacatttat taaatggtac 2561
caataaagta ttttattacc aaaagttaaa aaaaaaaaa 2600

<210> 55 <211> 1949 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (23)..(1369)

cgg cgc gac gcc agc gag gag gag ctc aag aag gcc tat cgg aag ctg
Arg Arg Asp Ala Ser Glu Glu Glu Leu Lys Lys Ala Tyr Arg Lys Leu

15 20 25

gcc ctg aaa tgg cac ccg gat aaa aat ctg gat aat gcc gca gaa gca
Ala Leu Lys Trp His Pro Asp Lys Asn Leu Asp Asn Ala Ala Glu Ala
30 35 40

gct gaa caa ttt aaa tta atc caa gca gca tat gat gtg ttg agt gac 196 Ala Glu Gln Phe Lys Leu Ile Gln Ala Ala Tyr Asp Val Leu Ser Asp 45 50 55

cct cag gaa aga gca tgg tat gat aat cat aga gag gcc cta ctt aaa 244
Pro Gln Glu Arg Ala Trp Tyr Asp Asn His Arg Glu Ala Leu Leu Lys
60 65 70

ggt ggg ttt gat ggc gaa tat caa gat gac agc tta gat ttg cta cgc
Gly Gly Phe Asp Gly Glu Tyr Gln Asp Asp Ser Leu Asp Leu Leu Arg
75 80 85 90

tat ttc acc gtt acc tgt tat tct ggt tat gga gat gat gaa aag gga

Tyr Phe Thr Val Thr Cys Tyr Ser Gly Tyr Gly Asp Asp Glu Lys Gly
95 100 105

ttt tac acg gtg tat cgt aat gtt ttt gaa atg att gcc aag gaa gaa
Phe Tyr Thr Val Tyr Arg Asn Val Phe Glu Met Ile Ala Lys Glu Glu
110 115 120

cta gaa tct gtg tta gag gaa gag gtt gat gat ttc cca act ttt gga
Leu Glu Ser Val Leu Glu Glu Glu Val Asp Asp Phe Pro Thr Phe Gly
125 130 135

						gat Asp 145										484
						caa Gln										532
_		-	-	-		aac Asn	-		-		_	_	_	_		580
-			_			gac Asp		_								628
-	-	_	_	-	-	ttc Phe		_		_	_		_		_	676
		_				gaa Glu 225	_	_		_	_	-				724
_	_		_			cag Gln	_	_		_	_	-		_	_	772
	_		_	_	_	agc Ser		_		_	-					820
						gca Ala										868
_	-	-		_	_	gaa Glu	-		-			-			-	916
		_	_	_		gcc Ala 305		_	_				_	-		964
	_		_	_	_	aaa Lys	_		_		-	_	_	_	-	1012
			_		_	aag Lys			-	_		-	_			1060
	_				_	gaa Glu	_				_				-	1108
gaa	aat	cca	tta	gat	gac	aat	tct	gag	gaa	gaa	atg	gaa	gat	gca	cca	1156

Glu Asn Pro Leu Asp Asp Asn Ser Glu Glu Glu Met Glu Asp Ala Pro 365 370 375	
aaa caa aag ctt tct aaa aaa cag aag aca caa gaa aca gta aac cag Lys Gln Lys Leu Ser Lys Lys Gln Lys Thr Gln Glu Thr Val Asn Gln 380 385 390	1204
cac agg atg tac ctg gca aag att cat atc tgc ctg cag ctc act ttc His Arg Met Tyr Leu Ala Lys Ile His Ile Cys Leu Gln Leu Thr Phe 395 400 405 410	1252
aga tgg ctt ggg gaa aaa agt gtg tgt agg gag aga gaa ga	1300
aga gcg agc aca aat gtg cca aaa tgt tgc ttg aaa aca gac aga att Arg Ala Ser Thr Asn Val Pro Lys Cys Cys Leu Lys Thr Asp Arg Ile 430 435 440	1348
atg atg acc att tca atg taa at ggacctggac gaaggagtaa aggttgatcc Met Met Thr Ile Ser Met * 445	1401
atgaagatac taacttatat caagacagtg ccaaagaatt ggaagatagt ccccaggaaa	1461
atgtcagtgt cacagatgat cattacacca tgtgatgatc caaaaagtga agctaaaagg	1521
taagtcaaag ttgcatatta tttgtaaatt actgaatatt gatagtaagg atgtagcttt	1581
tcatatatca aataaaatct tctttcccat gactgaccag gtaatttaga tgtatctgta	1641
catatttatg tatagataca cacacata tgtatacaga tgaagagcgt tgagaagagg	1701
atgctagagg aatgtgccca cacacatctc agcagcatgg ccaaaatcag aaagatgtca	1761
ctttgatcca gttctcgttt accttatcct gctgtggcgc tgatctcgtc gtggatcatt	1821
aacacttgac actcacatga gaacaagact cctgctgcgt ccctggagtg tcactaagca	1881
aatctccatg ctcacgacag cagcctgtgt agggccccac catgttgtga ggacacatgg	1941
cagcagct	1949

```
<210> 56
```

<211> 2439

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (23)..(1618)

<400> 56

cggccgcccg cccggtcggg cg atg aag tgt cac tat gag gcg ctg ggg gtg

	1	5	10
		aag aag gcc tat Lys Lys Ala Tyr 20	
		ctg gat aat gcc Leu Asp Asn Ala	
	_	gca tat gat gtg Ala Tyr Asp Val 55	Leu Ser Asp
	 -	cat aga gag gcc His Arg Glu Ala 70	
	 _	gac agc tta gat Asp Ser Leu Asp 85	
	 	tat gga gat gat Tyr Gly Asp Asp 100	0 00
		gaa atg att gcc Glu Met Ile Ala	
		gat gat ttc cca Asp Asp Phe Pro 135	Thr Phe Gly
_	 	gtc cat cct ttc Val His Pro Phe 150	_
		ttt gca tgg aag Phe Ala Trp Lys 165	

Met Lys Cys His Tyr Glu Ala Leu Gly Val

-		-		-		-		gag Glu	_		62	28
								gat Asp			67	76
	_			_	_	_	_	gag Glu	_	 	72	24

180

gat aca cga cag gct tca aac cgc tgg gaa aaa cga gcc atg gaa aaa

Asp Thr Arg Gln Ala Ser Asn Arg Trp Glu Lys Arg Ala Met Glu Lys

580

gcc gaa gag atg agg cgg cag cag aag cta aag cag gcc aaa ctg gtg Ala Glu Glu Met Arg Arg Gln Gln Lys Leu Lys Gln Ala Lys Leu Val gag cag tac aga gaa cag agc tgg atg act atg gcc aat ttg gag aaa Glu Gln Tyr Arg Glu Gln Ser Trp Met Thr Met Ala Asn Leu Glu Lys gag ctc cag gag atg gag gca cgg tac gag aag gag ttt gga gat gga Glu Leu Gln Glu Met Glu Ala Arg Tyr Glu Lys Glu Phe Gly Asp Gly tcg gat gaa aat gaa atg gaa gaa cat gaa ctc aaa gat gag gag gat Ser Asp Glu Asn Glu Met Glu Glu His Glu Leu Lys Asp Glu Glu Asp ggt aaa gac agt gat gag gcc gag gac gct gag ctc tat gat gac ctt Gly Lys Asp Ser Asp Glu Ala Glu Asp Ala Glu Leu Tyr Asp Asp Leu tac tgc cca gca tgt gac aaa tcg ttc aag aca gaa aag gcc atg aag Tyr Cys Pro Ala Cys Asp Lys Ser Phe Lys Thr Glu Lys Ala Met Lys aat cac gag aag tca aag aag cat cgg gaa atg gtg gcc ttg cta aaa Asn His Glu Lys Ser Lys Lys His Arg Glu Met Val Ala Leu Leu Lys caa cag ctg gag gaa gaa gaa aat ttt tca aga cct caa att gat Gln Gln Leu Glu Glu Glu Glu Glu Asn Phe Ser Arg Pro Gln Ile Asp gaa aat cca tta gat gac aat tct gag gaa gaa atg gaa gat gca cca Glu Asn Pro Leu Asp Asp Asn Ser Glu Glu Glu Met Glu Asp Ala Pro aaa caa aag ctt tct aaa aaa cag aag aaa aag aaa cag aaa cca gca Lys Gln Lys Leu Ser Lys Lys Gln Lys Lys Lys Gln Lys Pro Ala cag aat tat gat gac aat ttc aat gta aat gga cct gga gaa gga gta Gln Asn Tyr Asp Asp Asn Phe Asn Val Asn Gly Pro Gly Glu Gly Val aag gtt gat cca gaa gat act aac tta aat caa gac agt gcc aaa gaa Lys Val Asp Pro Glu Asp Thr Asn Leu Asn Gln Asp Ser Ala Lys Glu ttg gaa gat agt ccc cag gaa aat gtc agt gtc aca gag atc att aaa Leu Glu Asp Ser Pro Gln Glu Asn Val Ser Val Thr Glu Ile Ile Lys cca tgt gat gat cca aaa agt gaa gct aaa agt gtt cct aaa ccc aaa Pro Cys Asp Asp Pro Lys Ser Glu Ala Lys Ser Val Pro Lys Pro Lys

gga aag aaa acc aaa gat atg aaa aaa cct gtc aga gta cct gct gaa Gly Lys Lys Thr Lys Asp Met Lys Lys Pro Val Arg Val Pro Ala Glu 460 465 470	1444
cca caa aca atg agt gtt ctt atc agc tgt aca acc tgc cat agt gaa Pro Gln Thr Met Ser Val Leu Ile Ser Cys Thr Thr Cys His Ser Glu 475 480 485 490	1492
ttt cca tct cgg aat aaa ctt ttt gac cat cta aag gcc aca ggt cat Phe Pro Ser Arg Asn Lys Leu Phe Asp His Leu Lys Ala Thr Gly His 495 500 505	1540
gca aga gca cct tca tca tcg tct tta aac agc gca aca agt agt caa Ala Arg Ala Pro Ser Ser Ser Ser Leu Asn Ser Ala Thr Ser Ser Gln 510 515 520	1588
agc aag aaa gag aaa cgt aaa aac aga tag a gattctgcct gtgcttttgt Ser Lys Lys Glu Lys Arg Lys Asn Arg * 525 530	1639
ttgactgtct ctagattttg aaaccaaaaa actgaactga	1699
tttcagtgat ctgcaattaa ttacattgtg gaagattatt ttttatcttg taaaaacact	1759
tttttggttt aatatatt tttaaaacat ttcactagtg attgaattct acttttgcca	1819
tctgaattga cttgaatgtc ttaaaacagg taaatactgt aaagtgtgta ttcttgatgt	1879
ttattggctc atgtggacag aaatgtacag ggagaattac attattttaa cacacagaag	1939
tgcaactttc tgctttattt tctgaatttc acattacttt tacttaatgc ttttgtgttt	1999
tgttaatact tcataatatg tgaaaaactc ggatctttta aaaagcatca tagatcattt	2059
ttccatatga cactggttcc gattttaaaa attatttta aataaccgat tattgattac	2119
tgtatttttt ttctcaagaa cagtgatagg tagaaactaa ttgaacattt ggtagtcttt	2179
caagaatagt gtctcttcaa ggttttactt gatttaattt gatattttac tggtttacca	2239
gtaaggtgta ttgttcagtt ttttgctccg atttgaattg tggaggtgga agcaaattag	2299
tttacatggc atgtcctccc taggcacagt gacagctgta aagtatgacg gaacaaggta	2359
gcagatggta cagaatttat actatttaag aagagatgtg gcgttcttca ttgagttttt	2419
ttcttcacta ttttcagaag	2439

<210> 57

<211> 2331

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (27)..(1784)

<pre><400> 57 ggcacgaggc gagtccgagc gccgcc atg gct ctg ctg tcc gag ggc ctg gac</pre>											
gag gtg ccc gcc gcc tgc ctg tcg c Glu Val Pro Ala Ala Cys Leu Ser P 10											
gag ctg ttc agc gag tca cgg cgc c Glu Leu Phe Ser Glu Ser Arg Arg L 30											
ggc ggc ccc gaa gcc ttc gcg gcc t Gly Gly Pro Glu Ala Phe Ala Ala P 45											
cgt ttc ctg aac ccc gat gag gtg c Arg Phe Leu Asn Pro Asp Glu Val H 60 65											
agg ccg gga gag gag ggc gcg gcg gc Arg Pro Gly Glu Glu Gly Ala Ala A 75 80											
ttc ggc tcc tcg cac gac tgc tct tc Phe Gly Ser Ser His Asp Cys Ser Sc 90 95											
tcg gac ctg gag cca ccg ctg ttg gas Ser Asp Leu Glu Pro Pro Leu Leu G											
cag ggc gcc tac cgc ggc gcc acg cgln Gly Ala Tyr Arg Gly Ala Thr A											
cgc ggc gct ggc gaa ggt ggc ccc to Arg Gly Ala Gly Glu Gly Gly Pro Ty 140 145	Tyr Gly Cys Lys Asp Ala Leu Arg										
cag cag ctc cgc tcg gcg cga gag g Gln Gln Leu Arg Ser Ala Arg Glu V 155 160											
ttc aca gac atc gac atc ttc aga gac atc atc atc atc atc aga gac atc atc atc atc atc atc atc atc atc a											
cag gga gtt gct gtg tat atc ctt c Gln Gly Val Ala Val Tyr Ile Leu L 190											

	_	_	_	_	_	-	_	aaa Lys 210	_			_	_	-	_	677
	-		-					gga Gly					-			725
								cac His								773
		_		_				tac Tyr	_				-	-		821
			_	_		_	_	att Ile	_					-	_	869
		_	_			_		ctg Leu 290		~	_		_			917
_				_				cag Gln	-	-		_		-		965
								aag Lys								1013
-		-		_	_		-	tca Ser	-				_		-	1061
								ggc Gly								1109
						_	_	gag Glu 370	-	_			-	-		1157
	_			_	_	_	_	gcc Ala		-	-	-				1205
-					_			ctg Leu	-		-					1253
		-				_	_	gct Ala			_		_	-		1301
acc	agg	ata	gca	agc	tct	caa	acc	acg	att	tgg	tcc	aga	tcg	acc	act	1349

Thr Arg Ile Ala Ser Ser Gln Thr Thr Ile Trp Ser Arg Ser Thr Thr 430 435 440	
act cag act gac atg gat gag aac att ctc ttt cct cga gga act caa Thr Gln Thr Asp Met Asp Glu Asn Ile Leu Phe Pro Arg Gly Thr Gln 445 450 455	1397
tct aca gaa ggg tca cca gtc tca aaa atg tct gta tcg aga tct tcc Ser Thr Glu Gly Ser Pro Val Ser Lys Met Ser Val Ser Arg Ser Ser 460 465 470	1445
agt ttg aag tct tcc tcc tct gtg tct tcc caa ggc tct gtg gca agc Ser Leu Lys Ser Ser Ser Ser Val Ser Ser Gln Gly Ser Val Ala Ser 475 480 485	1493
tcc act ggt tct ccc gct tcc atc aga acc act gac ttc cac aat cct Ser Thr Gly Ser Pro Ala Ser Ile Arg Thr Thr Asp Phe His Asn Pro 490 495 500 505	1541
ggc tat ccc aag tac ctg ggc acc ccc cac ctg gaa ctg tac ttg agt Gly Tyr Pro Lys Tyr Leu Gly Thr Pro His Leu Glu Leu Tyr Leu Ser 510 515 520	1589
gac tca ctt aga aac ttg aac aaa gag cgg caa ttc cac ttc gct ggt Asp Ser Leu Arg Asn Leu Asn Lys Glu Arg Gln Phe His Phe Ala Gly 525 530 535	1637
atc agg tcc cgg ctc aac cac atg ctg gct atg ctg tca agg aga aca Ile Arg Ser Arg Leu Asn His Met Leu Ala Met Leu Ser Arg Arg Thr 540 545 550	1685
ctc ttt act gaa aac cac ctt ggc ctt cat tct ggc aat ttc agc aga Leu Phe Thr Glu Asn His Leu Gly Leu His Ser Gly Asn Phe Ser Arg 555 560 565	1733
gtt aat ttg ctt gct gtt aga gat gta gca ctt tat cct tcc tat cag Val Asn Leu Leu Ala Val Arg Asp Val Ala Leu Tyr Pro Ser Tyr Gln 570 585	1781
<pre>taa ctgc tccgtgttca gactcctggt ttcttccagg cttacagtgg acatcatcag *</pre>	1838
cttcctgctt taaaaaatat cttatgtccc taattgcctt tcttttacct gactttgtca	1898
cctttgttgt ctttgaattc tttaggctgc atattatttt acatgctttg ttttgtcatg	1958
tatataccag gtattggttt tatggtttaa acactatgga tacaggggtt tgttttgcac	2018
aattttaata gtcatgcact acataatgat gttttggtca atgacagacc acgtatatgt	2078
tggcagtctc ataagattat aatactgtat ttttactata ccttttctgt gtttagatac	2138
aaataccatt atgttacagt tgcctacagt attcagtgca gtaacatgat gtacaggttt	2198
gtagcctgtt ttgcattttt cttaggttgt atgctcttct gttttaaagg tttgaatcac	2258

cagcattttt	gtgatcaaaa	tcctatttag	r aaaaaataaa	actactttct	gtttatctct	2318
ttaaaaaaaa	aaa					2331
<210> <211>						
<212>	DNA					
<213>	Homo sapier	ıs				
<220>	ana					
<221> <222>	(685)(138	30)				
<400>	58					
gcacgagcct	aaatgggaag	aaggacattt	ttgctgcatc	aaggaagccg	ttaaactcct	60
gctaagctaa	ctagctcttt	tttatgggtc	catgcacacg	accgaactcc	tctttcactg	120
accagagatt	atttctgaca	acccaggata	tcccgaaagc	ttggaggcat	atggctggaa	180
aatgaaacga	cccaggacat	cgtttctggc	tgcatcatta	ttttgtgtcg	cgtagtacca	240
gatgggcagt	cagtgagcgg	cgcagggatg	tgaacggacg	gttttataat	gtgaaaattt	300
tcccttggta	aagctaaaac	agatttaatt	tccctctctt	ttctttcact	acttccccct	360
ctttattccc	cctctgtctg	caatatcagt	gaactcaact	ttgcagtgag	gtggccaaaa	420
agagagagaa	tgaggagatc	ttgatcatct	tagtgtcaga	ggagtcgcag	cggactggga	480
actgcagctg	cgaccccccg	cgtcctgtgc	ggatttcagg	gctgataccg	cataggcggt	540
tatggaaagg	acggtacacc	ggagcggcgg	aggatagaga	ccctggcccc	cggagaggtc	600
tgctgatttc	gcagcagcct	tcgaagccgt	ggctgccttt	catctgctgc	gttttattac	660
tattatcgcc	gttccggaaa		gaa gac ago Glu Asp Ser			711
		1	Gid Asp Sei	5	o Asp Leu	
			cgc aaa gta			759
Arg Asp Ile	_	s Leu Gly 1 5	Arg Lys Val 20	Pro Glu Ser	Leu Val 25	
cac tot oto	cat aga as	ת מפת ככת ו	gtt ccc agg	ass saa asc	agg gag	807
	Arg Gly Gl		Val Pro Arg		Arg Asp	807
	30		35		40	
			ggc ggc ggc			855
ETO CAR GIA	45	л стл ст <u>л</u> (Gly Gly Gly 50	GIA GIA GIA	GIA GIA	
ggc tgc aqt	agc agc ag	c agc tac 1	tgc agc ttc	cet eee tee	ttg tca	903
			Cys Ser Phe			

tcc Ser	tcc Ser 75	tct Ser	tcg Ser	tcc Ser	tcc Ser	cca Pro 80	acc Thr	tct Ser	ggc	tcc Ser	cca Pro 85	cga Arg	ggt Gly	agc Ser	cac His	951
			ctg Leu													999
			aac Asn													1047
			aat Asn 125													1095
			att Ile													1143
agt Ser	ttg Leu 155	ttg Leu	gag Glu	agt Ser	cag Gln	agc Ser 160	acc Thr	tcc Ser	tta Leu	cgt Arg	ggc Gly 165	agc Ser	tac Tyr	aac Asn	agc Ser	1191
			ggc Gly													1239
			ttg Leu													1287
			ttc Phe 205													1335
			cct Pro			Asp								tag *	tga	1383
cagt	tttt	tg c	atgg	gact	g gt	gtgc	aatg	aac	ttgt	att	tato	ctto	tt c	tacg	ctgct	1443
atat	tttt	gg t	gtga	tttt	t at	ttta	ataa	gat	gacc	ttt	ttaa	.aaga	ag c	tgat	tttga	1503
aact	gctt	aa t	ggta	ttgc	t gt	tgct	ccta	ata	cttc	tca	tctg	agct	ga t	ttat	ttttc	1563
tctg	ttac	at c	tcta	tttt	t ta	ttta	ttac	aat	gatt	ttc	tccc	ttct	tt t	acag	tagca	1623
caaa	caaa	gt a	gggg	gaaa	a ga	ataa	gcaa	taa	ttat	gtt	tttg	cttt	tg t	tttc	agagc	1683
aatg	ggtc	ag g	gatt	acaa	g aa	aaac	tttg	cta	aatt	tta	caat	aaac	ca a	agtc.	tgata	1743
acad	ttaa	aa a	aaaa	aaaa												1762

<210> 59 <211> 2860 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (116)(2488)	
<400> 59 tactctcggg acctggggtg ggggtgcggt gacacctgtg ggcacagccc taggggac	ect 60
ctttctcctg gacattgaag atatggccct ttggaggtga cccaggagag aaggg at Me	
aag gcc ttt ggt cct cca cat gag ggc ccc ctc caa gga ctc gtg gcc Lys Ala Phe Gly Pro Pro His Glu Gly Pro Leu Gln Gly Leu Val Ala 5 10 15	166
tcc cgc att gag act tat ggg ggc cgg cat cga gcc tct gct cag agc Ser Arg Ile Glu Thr Tyr Gly Gly Arg His Arg Ala Ser Ala Gln Ser 20 25 30	
act act ggc aga ctc tat ccc cga gga tac cct gtg ctg gat ccc agt Thr Thr Gly Arg Leu Tyr Pro Arg Gly Tyr Pro Val Leu Asp Pro Ser 35 40 45	262
cgc cga cgc ctc cag cag tat gtc ccc ttt gcc agg ggt tct ggc cag Arg Arg Arg Leu Gln Gln Tyr Val Pro Phe Ala Arg Gly Ser Gly Gln 50 55 60 65	310
gcc cga ggc ctg tca ccc atg aga ctg cga gat cca gag ccc gag aag Ala Arg Gly Leu Ser Pro Met Arg Leu Arg Asp Pro Glu Pro Glu Lys 70 75 80	358
agg cac ggg ggc cat gtg ggg gct ggc ctg ctt cac tcc ccc aaa ctc Arg His Gly Gly His Val Gly Ala Gly Leu Leu His Ser Pro Lys Leu 85 90 95	406
aag gaa ctc acc aag gcc cat gag ctg gag gtg agg ctg cac act ttc Lys Glu Leu Thr Lys Ala His Glu Leu Glu Val Arg Leu His Thr Phe 100 105 110	454
agc atg ttt ggg atg ccc cgg ctg ccc cct gag gac cgg cgg cac tgg Ser Met Phe Gly Met Pro Arg Leu Pro Pro Glu Asp Arg Arg His Trp 115	502
gag ata gga gag ggt ggc gac agt ggc ctg acc atc gag aag tcc tgg Glu Ile Gly Glu Gly Asp Ser Gly Leu Thr Ile Glu Lys Ser Trp 130 135 140 140	550
agg gag ctg gtg cct ggg cac aag gag atg agc cag gag ctc tgc cac Arg Glu Leu Val Pro Gly His Lys Glu Met Ser Gln Glu Leu Cys His 150 155 160	598

				Leu					Thr					Tyr	gtg Val	646
															aac Asn	694
					ctg Leu										ttt Phe	742
															gag Glu 225	790
					ctg Leu											838
gac Asp	ccc Pro	att Ile	ggt Gly 245	ctg Leu	caa Gln	agt Ser	ggc Gly	ttc Phe 250	ctg Leu	acg Thr	ttt Phe	ggc Gly	cag Gln 255	cgg Arg	ttc Phe	886
cac His	ccc Pro	tat Tyr 260	gtc Val	cag Gln	tac Tyr	tgc Cys	ctc Leu 265	cga Arg	gtg Val	aag Lys	cag Gln	acc Thr 270	atg Met	gct Ala	tac Tyr	934
					gaa Glu											982
					aag Lys 295											1030
ctt Leu	atc Ile	aag Lys	ccc Pro	cac His 310	cag Gln	cgc Arg	atc Ile	acc Thr	aag Lys 315	tac Tyr	cca Pro	ctg Leu	ctg Leu	ctc Leu 320	cat His	1078
					agc Ser											1126
gcc Ala	Met	att Ile 340	gaa Glu	gcc Ala	gtg Val	Glu	tca Ser 345	ttc Phe	ctg Leu	cga Arg	cat His	atc Ile 350	aat Asn	ggg Gly	cag Gln	1174
gtc Val	cgc Arg 355	cag Gln	ggc Gly	gaa Glu	gag Glu	caa Gln 360	gag Glu	agc Ser	ttg Leu	gcg Ala	gct Ala 365	gca Ala	gca Ala	caa Gln	cgc Arg	1222
atc Ile 370	Gly aaa	ccc Pro	tac Tyr	gag Glu	gtg Val 375	ctg Leu	gag Glu	cca Pro	ccc Pro	agt Ser 380	gat Asp	gag Glu	gtg Val	gag Glu	aag Lys 385	1270

aac Asn	ctg Leu	cgc Arg	cca Pro	ttc Phe 390	Ser	acc Thr	ctg Leu	gac Asp	ctg Leu 395	Thr	tcc Ser	ccc Pro	atg Met	ctg Leu 400	Gly	1318
gtt Val	gca Ala	tct Ser	gag Glu 405	His	acc Thr	aga Arg	cag Gln	ctg Leu 410	Leu	ctg Leu	gag Glu	Gly	cct Pro 415	Val	cga Arg	1366
			Gly												ttc Phe	1414
			ctc Leu													1462
	Val		cga Arg													1510
ctg Leu	cga Arg	gac Asp	ccc Pro	aac Asn 470	agc Ser	ttc Phe	ctg Leu	ctg Leu	atc Ile 475	cac His	ctc Leu	act Thr	gaa Glu	ttc Phe 480	cag Gln	1558
			agc Ser 485													1606
gcc Ala	cag Gln	tgg Trp 500	ctg Leu	gag Glu	aag Lys	acc Thr	cag Gln 505	cag Gln	gcc Ala	cag Gln	gcc Ala	gcc Ala 510	cta Leu	cag Gln	aag Lys	1654
ctg Leu	aag Lys 515	gca Ala	gag Glu	gag Glu	tat Tyr	gtt Val 520	caa Gln	cag Gln	aag Lys	agg Arg	gag Glu 525	ctc Leu	ctg Leu	acc Thr	ctc Leu	1702
			cag Gln													1750
			ggc Gly													1798
tcg Ser	acc Thr	att Ile	atc Ile 565	ccc Pro	cac His	ctg Leu	gtg Val	gtg Val 570	aca Thr	gaa Glu	gac Asp	aca Thr	gat Asp 575	gaa Glu	gat Asp	1846
			gtg Val													1894
atc Ile	cca Pro 595	ggc Gly	acc Thr	ccc Pro	acg Thr	600 G1 ^y aaa	tcc Ser	cgc Arg	tcc Ser	cca Pro	ctg Leu 605	agc Ser	cgt Arg	cta Leu	cgc Arg	1942
caa	aga	gcc	ctt	cgg	cgg	gac	cct	cgc	ctc	acc	ttc	tcc	acc	ctg	gaa	1990

Gln Arg Ala Leu Arg Arg Asp Pro Arg Leu Thr Phe Ser Thr Leu Glu 610 625	
ctc cgg gac atc cct ctg cgt ccc cac cct ccc gac ccc caa gct cct Leu Arg Asp Ile Pro Leu Arg Pro His Pro Pro Asp Pro Gln Ala Pro 630 635 640	2038
caa cgc cga agc gcc ccc gaa ctg ccg gaa gga atc cta aaa gga ggc Gln Arg Arg Ser Ala Pro Glu Leu Pro Glu Gly Ile Leu Lys Gly 645 650 655	2086
agt ctt ccc cag gaa gac cca cca acc tgg tct gag gaa gaa gat ggg Ser Leu Pro Gln Glu Asp Pro Pro Thr Trp Ser Glu Glu Glu Asp Gly 660 665 670	2134
gcc tcc gag cga ggg aat gtg gtg gtg gaa aca ctc cac agg gcc cgg Ala Ser Glu Arg Gly Asn Val Val Val Glu Thr Leu His Arg Ala Arg 675 680 685	2182
ctt cgg ggc cag ctt ccc tcc tcc cca acc cat gct gac tct gcc ggg Leu Arg Gly Gln Leu Pro Ser Ser Pro Thr His Ala Asp Ser Ala Gly 690 695 700 705	2230
gaa agc ccc tgg gag tcc tca ggg gag gag gaa gaa gag ggg cct ctg Glu Ser Pro Trp Glu Ser Ser Gly Glu Glu Glu Glu Glu Gly Pro Leu 710 715 720	2278
ttc ctg aaa gct ggc cac aca tcc ctg cgc cca atg cgg gct gag gac Phe Leu Lys Ala Gly His Thr Ser Leu Arg Pro Met Arg Ala Glu Asp 725 730 735	2326
atg ctc aga gag atc cgg gag gag ctg gcc agc caa agg att gag ggg Met Leu Arg Glu Ile Arg Glu Glu Leu Ala Ser Gln Arg Ile Glu Gly 740 745 750	2374
gcc gag gag ccc cgg gac agc agg cca cgg aag ctg act cgg gcc cag Ala Glu Glu Pro Arg Asp Ser Arg Pro Arg Lys Leu Thr Arg Ala Gln 755 760 765	2422
ctg cag agg atg cgg ggg ccc cac atc att cag ctg gac acc cct ctg Leu Gln Arg Met Arg Gly Pro His Ile Ile Gln Leu Asp Thr Pro Leu 770 785	2470
tcc gca tca gag gta tga ggaatg cagaggacct ttggcatgca tctctcccag Ser Ala Ser Glu Val * 790	2524
aggagatete tecceagtag tgetggteae eeteeggeat etgtgaetet aceteaagga	2584
ccacatttcc caaaggaagc ctggcccagg caccctgcct cctgctctgt ttggggatca	2644
agaactgtaa atttatgtat cataggtgca cctgagcccc acagaaagtt gtgcataaaa	2704
atgactgccc tggctgggca tggctgcctg taatcccagc actttgggag gctgaggtgg	2764
gaggatecet tgageecagg agttecagae eageetggge aatataggga aaceetgtet	2824

	<2 <2	10> 11> 12> 13>	1676 DNA	sap	iens											
	<2	20> 21> 22>)(1561)										
gcg		ggg (caag	ag c	ttgc	gaag	t ca	tgaa	gaac	aaa	gttt	ttt	agag	ccatta	60
tga	aatg	gca .	acga	taat	ac t	gcac	tcta	t gt	gaac	agtt	tct	gttt	cct	tcat	ctgggg	120
cac	gtgc	ata '	tgat	caac	tt t	ggac	ttct	t tt	gaga	ttgc	cag	gcgt	ttg	ca	atg Met 1	175
gct Ala	gct Ala	act Thr	gtg Val 5	aac Asn	ttg Leu	gaa Glu	ctt Leu	gat Asp 10	ccc Pro	att Ile	ttt Phe	ttg Leu	aaa Lys 15	gca Ala	cta Leu	223
										gct Ala						271
										gat Asp						319
										tca Ser 60						367
tcc Ser	att Ile	aag Lys	caa Gln	gag Glu 70	ccc Pro	aaa Lys	ata Ile	tca Ser	tcc Ser 75	agt Ser	ctt Leu	cct Pro	tct Ser	ggt Gly 80	aat Asn	415
										gta Val					gaa Glu	463
										atc Ile						511
										gaa Glu						559
att Ile	act Thr	gtc Val	caa Gln	agt Ser	agc Ser	aag Lys	gat Asp	tta Leu	cct Pro	atg Met	gct Ala	gac Asp	ctt Leu	tcc Ser	agt Ser	607

130	ı				135					140					145	
					Ala					Met					gcc Ala	655
			tgt Cys 165											Leu	gta Val	703
			gag Glu													751
			gac Asp													799
			acc Thr													847
			aaa Lys													895
			ttg Leu 245													943
act Thr	ttt Phe	cta Leu 260	gcg Ala	ttt Phe	aag Lys	aga Arg	aca Thr 265	gaa Glu	gtc Val	aag Lys	aca Thr	tcc Ser 270	aca Thr	gtt Val	att Ile	991
			tct Ser													1039
tta Leu 290	act Thr	gga Gly	tgg Trp	gca Ala	gct Ala 295	ttt Phe	gca Ala	gcc Ala	aaa Lys	act Thr 300	tcc Ser	tct Ser	gct Ala	ggt Gly	cct Pro 305	1087
tca Ser	aca Thr	gca Ala	aaa Lys	ttg Leu 310	agt Ser	tca Ser	aca Thr	aca Thr	caa Gln 315	aac Asn	aat Asn	act Thr	ggg Gly	aaa Lys 320	cct Pro	1135
gct Ala	act Thr	tcg Ser	tca Ser 325	gct Ala	aac Asn	cag Gln	aaa Lys	cct Pro 330	gtg Val	ggt Gly	ttg Leu	act Thr	ggt Gly 335	ctg Leu	gca Ala	1183
aca Thr	tca Ser	tcc Ser 340	aaa Lys	ggt Gly	gga Gly	Ile	ggt Gly 345	tcc Ser	aaa Lys	ata Ile	ggt Gly	tcc Ser 350	aat Asn	aac Asn	agc Ser	1231
			act Thr		Pro											1279

aaa Lys 370	act Thr	ggc Gly	ctt Leu	agt Ser	cgc Arg 375	tca Ser	gtt Val	agt Ser	tgt Cys	gac Asp 380	aat Asn	gtc Val	agc Ser	aaa Lys	gta Val 385	1327
			agt Ser													1375
			gga Gly 405													1423
			act Thr													1471
ggc Gly	cca Pro 435	act Thr	tca Ser	caa Gln	gaa Glu	tca Ser 440	cag Gln	ctc Leu	aat Asn	gct Ala	atg Met 445	aag Lys	cga Arg	tta Leu	cag Gln	1519
atg Met 450	gtc Val	aag Lys	aag Lys	aaa Lys	gct Ala 455	gcc Ala	caa Gln	aag Lys	aaa Lys	ctc Leu 460	aag Lys	aag Lys	taa *	tgtg	gcc .	1568
aagt	aggt	tt t	tgta	tcat	a tt	agco	taaa	a gat	gaaa	ıggc	ttat	tatt	at g	ratat	aatct	1628
	<21 <21 <21 <21 <22 <22 <22 <40	.0> 6 .1> 1 .2> I .3> H	L110 DNA Homo CDS (158)	sapi (1	ens 051)											1676
															gaggg	60
															gttgg	120
tcgc	cagc	ga g	ıggat	gcgg	a ga	cgcc	cctg	r aac	gacc		Ala				Glu	175
ctg Leu	acc Thr	ttc Phe	cat His 10	gaa Glu	ttc Phe	gag Glu	gag Glu	gcc Ala 15	act Thr	aat Asn	ctt Leu	ctg Leu	gct Ala . 20	gac Asp	acc Thr	223
cca Pro	gat Asp	gca Ala 25	gcc Ala	acc Thr	acc Thr	agc Ser	aga Arg 30	agc Ser	gat Asp	cag Gln	ctg Leu	acc Thr 35	cca Pro	caa Gln	Gl ^A aaa	271

		gtg Val					-		_	319
		agt Ser 60								367
		gga Gly			_		-	-		415
		tca Ser								463
		 cac His		 		_			~ ~	511
		ccc Pro								559
		aac Asn 140								607
		agc Ser								655
		tat Tyr								703
		aag Lys								751
-		 tgc Cys					_			799
		tgg Trp 220								847
		ctg Leu								895
		cgt Arg								943

			Val					Ala							gaa Glu	991
					gtg Val											1039
		ccc Pro		att	ggg	ggcc	tac	tgtc	gggc	cg g	gccc	ctca	g ag	gcgg	gccg	1094
gcc	cttg	gac (cctt	aa												1110
	<2: <2:	10> (11> ; 12> ; 13> ;	1011 DNA	sap:	iens											
	<22	20> 21> (22>		(7	16)											
gcg		00> (gag (caaco	cc to	gaaat	cctc	c cat	gaco	eccg	ctco	cggga	att	-	g gcc	56
														-	1	
					gcg Ala									tgg	gtg	104
Gly cga	Thr ggc	Gly 5 tcg	Leu ggc	Leu		Leu gtg	Arg 10 ctg	Thr	Leu cgc	Pro ctg	Gly cag	Pro 15 gac	Ser gcg	tgg Trp gcc	gtg Val gtg	104 152
Gly cga Arg	Thr ggc Gly 20 cgg	Gly 5 tcg Ser	Leu ggc Gly ggc	Leu cct Pro	Ala	Leu gtg Val 25 agc	Arg 10 ctg Leu acg	Thr agc Ser gca	Leu cgc Arg	Pro ctg Leu gag	Gly cag Gln 30 gag	Pro 15 gac Asp	Ser gcg Ala ctg	tgg Trp gcc Ala	gtg Val gtg Val	
cga Arg gtg Val 35	ggc Gly 20 cgg Arg	Gly 5 tcg Ser cct Pro	ggc Gly ggc Gly	cct Pro ttc Phe	tcc Ser ctg Leu	gtg Val 25 agc Ser	Arg 10 ctg Leu acg Thr	Thr agc Ser gca Ala	cgc Arg gag Glu	Pro ctg Leu gag Glu 45 tac	cag Gln 30 gag Glu	Pro 15 gac Asp acg Thr	gcg Ala ctg Leu	tgg Trp gcc Ala agc Ser	gtg Val gtg Val cga Arg 50	152
cga Arg gtg Val 35 gaa Glu	Thr ggc Gly 20 cgg Arg ctg Leu	Gly 5 tcg Ser cct Pro gag Glu gcc	ggc Gly ggc Gly ccc Pro	cct Pro ttc Phe gag Glu 55	tcc Ser ctg Leu 40	Leu gtg Val 25 agc Ser cgc Arg	Arg 10 ctg Leu acg Thr cgc Arg	Thr agc Ser gca Ala cgc Arg	Cgc Arg gag Glu Cgc Arg 60	Pro ctg Leu gag Glu 45 tac Tyr	Cag Gln 30 gag Glu gaa Glu	Pro 15 gac Asp acg Thr tac Tyr	gcg Ala ctg Leu gat Asp	tgg Trp gcc Ala agc Ser cac His 65	gtg Val gtg Val cga Arg 50 tgg Trp	152 200
gtg yal 35 gaa Glu gac Asp	Thr ggc Gly 20 cgg Arg ctg Leu gcg Ala	Gly 5 tcg Ser cct Pro gag Glu gcc Ala	ggc Gly ggc Gly ccc Pro atc Ile 70 cgg	Leu cct Pro ttc Phe gag Glu 55 cac His	tcc Ser ctg Leu 40 ctg Leu	Leu gtg Val 25 agc Ser cgc Arg ttc Phe	Arg 10 ctg Leu acg Thr cgc Arg cga Arg	Thr agc Ser gca Ala cgc Arg gag Glu 75 cgc	Leu cgc Arg gag Glu cgc Arg 60 aca Thr	Pro ctg Leu gag Glu 45 tac Tyr gag Glu cag	Cag Gln 30 gag Glu gaa Glu aag Lys	Pro 15 gac Asp acg Thr tac Tyr	gcg Ala ctg Leu gat Asp cgc Arg 80 gcc	tgg Trp gcc Ala agc Ser cac His 65 tgg Trp	gtg Val gtg Val cga Arg 50 tgg Trp	152 200 248

			atc Ile													440
			ggc Gly													488
			gag Glu 150													536
			atc Ile					-	-		-					584
			gat Asp		-						-	_				632
			atc Ile				_	-						_		680
			tct Ser	-	_	_			_	_	tga *	ccc	c caç	gcttt	cta	730
caga	cacc	ag a	atttg	gtgaa	ıt aa	agtt	gggg	g aat	ggad	cagc	ctaa	actgo	gga d	catto	gcagtg	790
gctg	rcttg	rct g	ggggc	cggg	ja tt	tgca	aggg	g aac	ccaç	gat	ggca	actgo	gcc c	catac	ggagc	850
tcca	ıggtç	ıtg g	gctgc	gctgg	ja ca	cato	gtca	a aag	gtcac	aag	gccg	ggaç	gag t	ggtg	tcctt	910
tatt	gcac	tc a	actgo	tggt	c go	ccca	gccc	c act	cccc	etcc	tcgt	tgtc	ctc t	gcat	ccagg	970
tctc	caat	aa a	ataag	gtcag	ic cõ	gagaa	aaag	g aaa	aaaa	ıaaa	a					1011
	-21	0- (- 2													
	<21 <21	.0> 6 .1> 8 .2> I .3> F	342	sapi	.ens											
		1> (DS (194)	(7	'36)											
ataa		0> 6		'naar	ומ מר	rtaat	atat	· a+=	acta	tet	atto	rato	rat o	raace	taccc	60

caccaaaccc aaaaaaagag atctctcgag gatccgaatt cgcggccgcg tcgacatcgc

agg	gagc	cgg	tccg	ccgc	cg g	aacg	ggag	c ct	gggt	gtgc	gtg	tgga	gtc	cgga	ctcgtg	180
gga	gacg	atc (gcg	Me				l Le						r Le	g ttc u Phe	229
											ttc Phe					277
											cgg Arg 40					325
											gga Gly					373
											gct Ala					421
											tat Tyr					469
											gtc Val					517
					-		_	_	-	-	ctg Leu 120		_	_		565
											ctc Leu					613
										-	cca Pro		_			661
											gtc Val					709
			ata Ile					taa *	atta	at to	ctgaa	tttg	g aaa	acaad	cata	761
tttt	tata	act t	taatg	gaatt	g ta	itctc	catta	a ato	tctt	ccc	ttac	catct	tc a	atgta	attgtt	821
ggtt	tgtt	tt t	tggt	tttg	ia a											842

<210> 64 <211> 4027 <212> DNA <213> Homo sapiens

<220>

<221> CDS

<222> (1021)..(3825)

<400> 64

60 gcaaacatac tttaataagt taaagaaaat aacaaaaaca gtacagcaaa gatactgggc aatgaaagaa agaaacatac aatttcaaag gtataacaaa ctgaggcatt ctgtaatata 120 cattcaggct atttttaggg gaaagaaagc tagaagacat ttaaaaaatga tgcatatagc 180 cgcaactctc attcagagga gatttagaac tctaatgatg agaagaagat tcctctctct 240 caagaaaact gctattttga ttcagagaaa atatcgggca catctttgta caaagcatca 300 360 cttacagttc cttcaggtac aaaatgcagt tattaaaaatc cagtcatcat acagaagatg 420 gatgataagg aaaaggatgc gagagatgca cagggctgct actttcatcc agtctacttt 480 cagaatgcac agattacata tgagatatca ggctttgaaa caggcctccg ttgtgatcca acagcaatac caagcaaata gagctgcaaa actgcagagg cagcattatc tcagacaaag 540 600 acactctgct gtgatccttc aggctgcatt caggggtatg aaaactagaa gacatttgaa gagtatgcat tcctctgcaa cccttattca gagtaggttt agatcattac tggtgaggag 660 720 aagattcatt tccctcaaaa aagctactat ttttgttcag aggaaatatc gagccaccat 780 ttgtgccaaa cataaattgt accaattctt gcacttaaga aaggcagcca ttacaataca 840 gtcatcttac agaagactga tggtaaagaa gaagttacaa gaaatgcaaa gggctgcagt tctcattcag gctactttca ggatgcacag aaaaaaaaat atattacatt tcagacttgg 900 aaacatgctt caattctaat tcagcaacat tatcgaacat atagagctgc aaaattgcaa 960 agagaaaatt atatcagaca atggcattct gctgtggtta ttcaggctgc atataaagga 1020 atg aaa gca aga caa ctt tta agg gaa aaa cac aaa gct tct atc gta 1068 Met Lys Ala Arg Gln Leu Leu Arg Glu Lys His Lys Ala Ser Ile Val 1 5 15 1116 ata caa agc acc tac aga atg tat agg cag tat tgt ttc tac caa aag Ile Gln Ser Thr Tyr Arg Met Tyr Arg Gln Tyr Cys Phe Tyr Gln Lys 20 30 1164 ctt cag tgg gct aca aaa atc ata caa gaa aaa tat aga gca aat aaa Leu Gln Trp Ala Thr Lys Ile Ile Gln Glu Lys Tyr Arg Ala Asn Lys 35 40 aag aaa cag aaa gta ttt caa cac aat gaa ctt aag aaa gag act tgt 1212

Lys	Lys 50	Gln	Lys	Val	Phe	Gln 55	His	Asn	Glu	Leu	Lys 60	Lys	Glu	Thr	Cys	
-	-	-			_	gac Asp	_					_		_	_	1260
		_	_	_		att Ile		_	_		_		-			1308
						cac His		_	_		-	-				1356
_	_		-			act Thr	_		-			-	-		_	1404
	_				_	ggc Gly 135			_	-	-	-				1452
_			_	_		cta Leu		_				_	_		00	1500
						aca Thr									_	1548
						gtt Val										1596
						gta Val										1644
						ttg Leu 215										1692
						gca Ala										1740
						gaa Glu										1788
gct Ala						tca Ser										1836
agg Arg						caa Gln										1884

275 280 285 aaa ctg gaa aca cag aaa tgt gct gcc cta cgg att cag ttc ttc ctt 1932 Lys Leu Glu Thr Gln Lys Cys Ala Ala Leu Arg Ile Gln Phe Phe Leu 295 1980 cag atg gct gtg tat cgg aga aga ttt gtt cag cag aaa aga gct gct Gln Met Ala Val Tyr Arg Arg Phe Val Gln Gln Lys Arg Ala Ala 310 2028 atc act tta cag cat tat ttt agg acg tgg caa acc aga aaa cag ttt Ile Thr Leu Gln His Tyr Phe Arg Thr Trp Gln Thr Arg Lys Gln Phe 325 330 tta cta tat aga aaa gca gca gtg gtt tta caa aat cac tac aga gca 2076 Leu Leu Tyr Arg Lys Ala Ala Val Val Leu Gln Asn His Tyr Arg Ala 340 345 ttt ctg tct gca aaa cat caa aga caa gtc tat tta cag atc aga agc 2124 Phe Leu Ser Ala Lys His Gln Arg Gln Val Tyr Leu Gln Ile Arg Ser 355 agt gtt atc att att caa gct aga agt aaa gga ttt ata cag aaa cgg 2172 Ser Val Ile Ile Gln Ala Arg Ser Lys Gly Phe Ile Gln Lys Arg 370 375 aag ttt cag gaa att aaa aat agc acc ata aaa att cag gct atg tgg 2220 Lys Phe Gln Glu Ile Lys Asn Ser Thr Ile Lys Ile Gln Ala Met Trp 390 395 agg aga tat aga gcc aag aaa tat tta tgt aaa gtg aaa gct gcc tgc 2268 Arg Arg Tyr Arg Ala Lys Lys Tyr Leu Cys Lys Val Lys Ala Ala Cys 405 410 aag att caa gcc tgg tat aga tgt tgg aga gca cac aaa gaa tat cta 2316 Lys Ile Gln Ala Trp Tyr Arg Cys Trp Arg Ala His Lys Glu Tyr Leu 420 425 gct gta tta aaa gct gtt aaa att att caa ggt tgc ttc tat acc aaa 2364 Ala Val Leu Lys Ala Val Lys Ile Ile Gln Gly Cys Phe Tyr Thr Lys 435 440 cta gag aga aca cgg ttt ttg aat gtg aga gca tca gca att atc att 2412 Leu Glu Arg Thr Arg Phe Leu Asn Val Arg Ala Ser Ala Ile Ile Ile 450 455 cag aga aaa tgg aga gct ata ctt cct gca aag ata gct cat gaa cac 2460 Gln Arg Lys Trp Arg Ala Ile Leu Pro Ala Lys Ile Ala His Glu His 465 470 ttc tta atg ata aaa aga cat cga gct gct tgt ttg atc caa gca cat 2508 Phe Leu Met Ile Lys Arg His Arg Ala Ala Cys Leu Ile Gln Ala His

2556

tat aga gga tat aaa gga agg cag gtc tct ctt cgg cag aaa tct gct

Tyr Arg Gly Tyr Lys Gly Arg Gln Val Ser Leu Arg Gln Lys Ser Ala

485

500

					aaa Lys											2604
_					att Ile	_						_				2652
					tgg Trp 550											2700
					ctt Leu											2748
	-	-	_		caa Gln	-	-					_	-	-	_	2796
	_		_	_	gtt Val											2844
_	-	_			gaa Glu	_	-			_				_		2892
	-				gaa Glu 630			_	-	-	-	_	-			2940
-	-		_		cag Gln		_		-					_		2988
					act Thr											3036
_					agg Arg	_			-	_						3084
	_		_		caa Gln											3132
				_	act Thr 710	_		-					_			3180
_				-	att Ile			-						-	_	3228

	_	ttg Leu												_	_	3276
		aaa Lys 755														3324
_		gaa Glu	_		_		~			-	_			-		3372
		gag Glu														3420
_		cta Leu	_			_	_			_	-	-				3468
	~	gca Ala	_				_						_	_		3516
_	-	att Ile 835		_	_											3564
		aaa Lys	_	-	_	_			-						-	3612
		cat His		_			-	-				_		-	_	3660
		tct Ser		_						_			_			3708
_		gtt Val														3756
		gaa Glu 915														3804
_		ggc Gly				tag * 935	ta a	aatgt	aaao	ca tt	ttca	agtat	t gta	atagt	egta	3857
aaga	aaata	att a	aaago	ccaat	cc at	gagt	cacgt	c aaa	agtga	attt	ttga	ctcto	ctg t	gtad	caactt	3917
tta	aaato	ctg a	actt	gtti	it aa	aaaa	acat	c aaa	actgt	tca	ttad	catto	ctt o	catt	ttatc	3977
att	tatag	gtt t	tate	gcat	gt aa	ataaa	actaa	a tat	gtca	ataa	aaaa	aaaaa	aaa			4027

<210> 65 <211> 3103 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (1335)..(2939)

<400> 65
tatacctaat gataatattt ctg
taatcaaat gaaatttag tac

tatacctaat gataatattt ctgatgagcc aagtctctgt gactgtgatg tacataaaca 60 120 taatcaaaat gaaaatttag tacctaacaa tcgtgttcaa atacacagaa gccctgcaca gaatttagtt ggagagaaca atcatgatgt tgataacagt gacctcccag tattgtccac 180 tgatcaagat gaaagtttgc tgttatttga agatgttaat acagagttcg acgatgtgag 240 300 tctttcaccc ttgaacagta aaagcgaatc tttacctgtg tcagacaaaa ctgctattag 360 tgaaacgcct ctggtctctc agttcttaat ttctgatgaa cttttgttgg acaataattc tgaactccaa gatcaaatca cccgtgatgc taatagtttt aaatctcgtg atcagagagg 420 tgtacaggaa gaaaaagtga agaatcatga ggatattttt gattgctcta gggatttatt 480 ttctgttacc tttgatttag gattctgtag tccagattct gatgatgaaa tattggaaca 540 tacatcagat agcaatagac ctctagatga tctatatgga aggtatttgg aaattaagga 600 gataagtgat gcaaattatg tttcgaatca agcactaata ccaagagatc atagtaaaaa 660 ttttactagt ggaactgtta ttatcccatc aaatgaagat atgcagaatc caaattatgt 720 780 acatttgcca ctgagtgcag caaaaaatga agaattgtta tctcctggtt attctcagtt ttctttacca gtgcaaaaaa aagttatgag tacaccactc tctaaatcaa acacattgaa 840 ctcattttct aagataagaa aggaaatact taagacacca gattctagta aggaaaaagt 900 aaacctacaa agattcaaag aagcattgaa ttcaactttt gattattcag aattttctct 960 1020 agaaaagtct aaaagcagtg gtccaatgta tctgcataaa tcctgtcatt ctgttgaaga tggacaatta ttaacaagta acgaaagtga agatgacgag attttccgaa gaaaagttaa 1080 aagagcaaaa ggaaatgttt taaactctcc tgaggatcag aaaaatagtg aagttgattc 1140 1200 tccacttcat gctgtcaaaa agcgcagatt tcctataaac agatcagaat tatcatctag 1260 tgatgagagt gagaattttc ccaaaccatg ttcacaatta gaagacttca aggtttgtaa 1320 cgggaatgcc agaagaggca tcaaagtccc aaagagacag agtcacttaa agcatgtagc

taggaagttt ttag		-	ctg aag aag atg Leu Lys Lys Met 10	Gln Asn
5	<u> </u>		aaa atg aac aag Lys Met Asn Lys 25	
_			caa ctt tca cag Gln Leu Ser Gln 40	
•		-	aaa tct ttg cgt Lys Ser Leu Arg 55	
5 5	-	•	aag aca cat aaa Lys Thr His Lys	
			gaa acc tat tta Glu Thr Tyr Leu 90	
			aaa ggc caa tca Lys Gly Gln Ser 105	
			act gat gat tgc Thr Asp Asp Cys 120	
			gta atg cta aaa Val Met Leu Lys 135	
			aaa tta tcc aga Lys Leu Ser Arg	
			aat gta aat gat Asn Val Asn Asp 170	
9	~ ~ ~	-	gtt aag aag aac Val Lys Lys Asn 185	
			gga tct tct gcg Gly Ser Ser Ala 200	
			tta gca aag cag Leu Ala Lys Gln 215	

_		-	-		tta Leu	_	-				_	_		_		2042
		_			aat Asn	_	_	_								2090
	-	-		_	aaa Lys	-	_	_				-				2138
					gca Ala		_			_			_		_	2186
					ggt Gly 290											2234
					agt Ser											2282
	_		_		aga Arg											2330
_		_	_	_	gga Gly				-			_				2378
					tta Leu	-										2426
	_		_	-	gtt Val 370	_					_	_				2474
-		-	_		gtg Val	-							_			2522
_	_		_		aag Lys				-		_		_	_	-	2570
_		_	-		tgt Cys				_	_	_	_	_			2618
					atg Met											2666
ctg	act	acc	tta	att	ggc	gct	gga	atc	cga	att	ctt	ttc	agt	tcc	tgc	2714

Leu Thr Thr Leu Ile Gly Ala Gly Ile Arg Ile Leu Phe Ser Ser Cys 445 450 455 460												
caa gaa gaa acc gca gat ttg cta aag gaa ctg tct tta gtg gaa caa Gln Glu Glu Thr Ala Asp Leu Leu Lys Glu Leu Ser Leu Val Glu Gln 465 470 475	2762											
aga aag aat gtt ggt att cat gtt cca aca gtg gtg aat agt aat aaa Arg Lys Asn Val Gly Ile His Val Pro Thr Val Val Asn Ser Asn Lys 480 485 490	2810											
agt gag gca ctc cag ttt tat tta agt att ccc aat ata agt tat ata Ser Glu Ala Leu Gln Phe Tyr Leu Ser Ile Pro Asn Ile Ser Tyr Ile 495 500 505	2858											
act gca tta aat atg tgt cac cag ttt tca tct gtg aaa agg atg gct Thr Ala Leu Asn Met Cys His Gln Phe Ser Ser Val Lys Arg Met Ala 510 515 520	2906											
aac agg tat gtc tgt tgt aat att ttt aaa tga ttactttt aaaagattcg Asn Arg Tyr Val Cys Cys Asn Ile Phe Lys * 525 530 535	2957											
taaaagcatt ccatagaagt ttaatgttaa aaaaatttaa gcggcatcat gcctgttaga	3017											
ttattttatt cagtaaacat tttttgcctg ccaacatata ttagttactg tatgaagcta	3077											
agggacatta ttcgaaaaaa aaaaaa	3103											
<210> 66 <211> 1196 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (337)(912)												
<211> 1196 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (337)(912)												
<211> 1196 <212> DNA <213> Homo sapiens <220> <221> CDS	60											
<211> 1196 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (337)(912) <400> 66	60 120											
<pre><211> 1196 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (337)(912) <400> 66 ccgtgcgacc cacgcgccgg ttaccactgg cagagcaaat atgactcaga aaccggctcc</pre>												
<pre><211> 1196 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (337)(912) <400> 66 ccgtgcgacc cacgcgccgg ttaccactgg cagagcaaat atgactcaga aaccggctcc tcagggttgt aacattagat gatacaggct tgggtcgtta cacatgacac cagtgccttt</pre>	120											
<pre><211> 1196 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (337)(912) <400> 66 ccgtgcgacc cacgcgccgg ttaccactgg cagagcaaat atgactcaga aaccggctcc tcagggttgt aacattagat gatacaggct tgggtcgtta cacatgacac cagtgccttt gtttcattgg gctgggctct ctggaaggtg tgctgctgcc tgagctgctg gaaaagcact</pre>	120 180											
<pre><211> 1196 <212> DNA <213> Homo sapiens <220></pre>	120 180 240											

Glu Pro Ile Cy	ys Gln Ala 1 10	Ala Tyr Gln 15	Asn Asp	Phe Gly (Gln Val 20	Trp
cgg tgg gtg aa Arg Trp Val Ly 25						
aat gga gac ac Asn Gly Asp Th 40						-
atc gtt tcc tt Ile Val Ser Ph 55			_	_		
cag aaa gag ag Gln Lys Glu Ar	-	_		-		
ttc att gat ta Phe Ile Asp Ty 9				Pro Val I		
ggg tat ttc ct Gly Tyr Phe Le 105						
cga atg cta ct Arg Met Leu Le 120	eu Asp Ala (
ggc tgt acc gc Gly Cys Thr Al 135			-		-	
atc cct ctg ct Ile Pro Leu Le			_		-	
cat ggt gag ag His Gly Glu Se 17	er Ser Leu A			Leu Lys I		
att gaa tta at Ile Glu Leu Me 185				ttgtgacc	acaccga	tgg 933
agatacagaa aaa	agttaacg act	tggattct ato	cttcattt	tagactttt	tg gtctg	rtgggc 993
catttaacct gga	atgccacc at	tttatggg gai	taatgatg	cttaccato	gg ttaat	gtttt 1053
ggaagagctt ttt	tatttata gca	attgttta cto	cagtcaag	ttcaccato	gg ccgta	atcct 1113
tctaagggaa aca	actaaagt tg	ttgtagtc tc	catttcag	tcagaaact	ig atgtt	tcagc 1173
taggcacagt ggt	tacatgcc tg	t				1196

<210> 67 <211> 529	
<212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (209)(403)	
<400> 67	
cttttgttcc ttcattcagc ggaagagaat tgtgtgctta ctgtgtgctg ggctccagtg	60
ttgcaaagtg aataatgtac tagatctctg cccttgaagg tctcactttg tgatttcagt	120
gcaaattact taatctcagt aggcctcagt tctctctttc accaaatcag gagaattatt	180
tttttaatca tcaactgtac attattat atg caa aac ata ctg gta ggc att Met Gln Asn Ile Leu Val Gly Ile 1 5	232
atg tgg acc aaa aaa tat gac agc agg tgg tcc ttc cct ttt aag aaa Met Trp Thr Lys Lys Tyr Asp Ser Arg Trp Ser Phe Pro Phe Lys Lys 10 15 20	280
cta aga tat aca cac atg aag act gct ggt ggt gca agg tgt gga gtc Leu Arg Tyr Thr His Met Lys Thr Ala Gly Gly Ala Arg Cys Gly Val 25 30 35 40	328
att ggt gcc gtg ata gca gtg tgc agg tca gag cta gag agt cca gag Ile Gly Ala Val Ile Ala Val Cys Arg Ser Glu Leu Glu Ser Pro Glu 45 50 55	376
aag gga ctt tgc tgt ggg ctg aag tga ccagg aagggctccg tggaggaagt Lys Gly Leu Cys Cys Gly Leu Lys * 60 65	428
ggggcccaag gatggacagg acatggatgt ggcaggaaga gggagagcct taccagatgg	488
gccagacttc cggaaccaag atgttgctgg tgggatgtgt g	529
<210> 68 <211> 309	
<212> DNA <213> Homo sapiens	
<220>	
<221> CDS <222> (16)(267)	
<400> 68	
ctggtcggga ttggg atg tcg aag aac aca gtg tcg tcg gcc cgc ttc cgg	51

Met Ser Lys Asn Thr Val Ser Ser Ala Arg Phe Arg 1 5 10												
aag gtg gac gtg gat gaa tat gac gag aac aag ttc gtg gac gaa gaa Lys Val Asp Val Asp Glu Tyr Asp Glu Asn Lys Phe Val Asp Glu Glu 15 20 25	99											
gat ggg ggc gac ggc cag gcc ggg ccc gac gag ggc gag gtg gac tcc Asp Gly Gly Asp Gly Gln Ala Gly Pro Asp Glu Gly Glu Val Asp Ser 30 35 40	147											
tgc ctg cgg caa gga aac atg aca gct gcc cta cag gca gct ctg aag Cys Leu Arg Gln Gly Asn Met Thr Ala Ala Leu Gln Ala Ala Leu Lys 45 50 55 60	195											
aac ccc cct atc aac acc aag agt cag gca gtg aag gtg agt cgc aga Asn Pro Pro Ile Asn Thr Lys Ser Gln Ala Val Lys Val Ser Arg Arg 65 70 75	243											
cta caa cac agt gat ctc tgc tga tatcttattc ttagtaaaat cctctgcagt Leu Gln His Ser Asp Leu Cys *	297											
tgcaaaaaaa aa	309											
<210> 69 <211> 772 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (95)(592)												
<400> 69 cgaacagtcc tgggttctga gcctgccatc caaggaactc aggaggagga gttgacagtc	60											
tcttcgttcc taaccagtgt gggacgactt cagc atg tct cag gcc acc aag Met Ser Gln Ala Thr Lys 1 5	112											
agg aag cat gtg gtg aag gag gtg cta ggg gag cac ata gtg ccc tcc Arg Lys His Val Val Lys Glu Val Leu Gly Glu His Ile Val Pro Ser 10 15 20	160											
gac cag cag att gtc agg gta ctc agg acc cca ggg aac aat ctg Asp Gln Gln Ile Val Arg Val Leu Arg Thr Pro Gly Asn Asn Leu 25 30 35	208											
cat gag gtg gag aca gcc caa ggg cag cgc ttc ctg gtg agc atg ccc His Glu Val Glu Thr Ala Gln Gly Gln Arg Phe Leu Val Ser Met Pro 40 45 50	256											
tcc aaa tac cgc aag aac atc tgg atc aag aga ggg gac ttt ctc att	304											

Ser Lys Tyr Arg Lys Asn Ile Trp Ile Lys Arg Gly Asp Phe Leu Ile 55 60 65 70												
gtt gac ccc att gaa gag gga gaa aag gtg aag gct gaa atc tcg ttt Val Asp Pro Ile Glu Glu Gly Glu Lys Val Lys Ala Glu Ile Ser Phe 75 80 85	352											
gtg ctc tgc aag gac cac gtg cgc tct ctg cag aag gag ggg ttt tgg Val Leu Cys Lys Asp His Val Arg Ser Leu Gln Lys Glu Gly Phe Trp 90 95 100	400											
cct gag gcc ttc tct gaa gtg gct gag aaa cac aac aac agg aac aga Pro Glu Ala Phe Ser Glu Val Ala Glu Lys His Asn Asn Arg Asn Arg 105 110 115	448											
caa act caa cca gaa ctc cca gct gag cca cag tta tca gga gag gag Gln Thr Gln Pro Glu Leu Pro Ala Glu Pro Gln Leu Ser Gly Glu Glu 120 125 130	496											
tcc agc tca gaa gat gat tct gac ctg ttt gtt aac aca aac cgc aga Ser Ser Ser Glu Asp Asp Ser Asp Leu Phe Val Asn Thr Asn Arg Arg 135 140 145 150	544											
cag tat cat gag agt gag gag gag agt gaa gag gag g	592											
gactccagga cccaattctc cacttgctca gggactggcc cctggctctt ctgggcttgg	652											
acatteccag ggtgetetge acatetteae eeetgeatga ggacaaagea gggeteetet	712											
ctgaactgat cttttgattc agagaattaa acccctggtg ggttggtgaa aaaaaaaaaa	772											
<210> 70 <211> 857 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (66)(725)												
<400> 70	60											
cccacgcgtc cgcccacgcg tccgcaggga acgggtcttg tggctttgtc tcccgcgaag aggag atg gcg gag tcg ttg agg tct ccg cgc cgc tcc ctg tac aaa	00											
	107											
Met Ala Glu Ser Leu Arg Ser Pro Arg Arg Ser Leu Tyr Lys 1 5 10	107											
	107 155											

Glu Arg Met Arg	Asn Ser Arg 35	Asp Arg Leu Leu 40		g Gln 5
	Gly Pro Gly	aat tct cag aac Asn Ser Gln Asn 55		
		aat gct ttg cag Asn Ala Leu Gln 70		
		gag gag ctg ata Glu Glu Leu Ile		
		atc aac caa gag Ile Asn Gln Glu 105	Gln Ser Ile Il	
		ttt gat gaa aag Phe Asp Glu Lys 120		e Met
	Glu Ala Asn	cca ctc atc tgt Pro Leu Ile Cys 135		
		ggt gtg gtg gtg Gly Val Val Val 150		
		gag ttg aca gag Glu Leu Thr Glu		
		gag cac agt gca Glu His Ser Ala 185		
		gga aca gaa gaa Gly Thr Glu Glu 200		u Leu
	Ala Cys Asp	act tgg gct gtg Thr Trp Ala Val 215		ccagc 732
tgggactcac atca	ttctat gggcg	ttgaa gacaactcat	tcctctgagg ago	cttgtac 792
atacaagcct ttta	tttata actta	ttttg tattgaaact	tttacaccat tct	ggagaaa 852
aaaaa				857

<210> 71

<211> 1004 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (207)..(1004) <400> 71 60 atttggcct cgaggccaag aattcggcac gaggttcgcc tagcggcaac tccctcctcc ctgcaatcct tccttcttat tccggtttcc agagcacgtc tccaggcttc gacgtcacca 120 180 cqctqqqacq tatqtqcqa qqqcqcqggc qtctgacctc atggcgtaga gcctagcaac agegeagget eccageegag teegtt atg gee get gee gte eeg aag agg atg 233 Met Ala Ala Val Pro Lys Arg Met agg ggg cca gca caa gcg aaa ctg ctg ccc ggg tcg gcc atc caa gcc 281 Arg Gly Pro Ala Gln Ala Lys Leu Leu Pro Gly Ser Ala Ile Gln Ala 2.0 ctt gtg ggg ttg gcg cgg ccg ctg gtc ttg gcg ctc ctg ctt gtg tcc 329 Leu Val Gly Leu Ala Arg Pro Leu Val Leu Ala Leu Leu Val Ser 30 377 gcc gct cta tcc agt gtt gta tca cgg act gat tca ccg agc cca acc Ala Ala Leu Ser Ser Val Val Ser Arg Thr Asp Ser Pro Ser Pro Thr 50 45 425 qta ctc aac tca cat att tct acc cca aat gtg aat gct tta aca cat Val Leu Asn Ser His Ile Ser Thr Pro Asn Val Asn Ala Leu Thr His 60 65 473 gaa aac caa acc aaa cct tct att tcc caa atc agc acc acc ctc cct Glu Asn Gln Thr Lys Pro Ser Ile Ser Gln Ile Ser Thr Thr Leu Pro 75 521 ccc acg acg agt acc aag aaa agt gga gga gca tct gtg gtc cct cat Pro Thr Thr Ser Thr Lys Lys Ser Gly Gly Ala Ser Val Val Pro His 100 95 ccc tcg cct act cct ctg tct caa gag gaa gct gat aac aat gaa gat 569 Pro Ser Pro Thr Pro Leu Ser Gln Glu Glu Ala Asp Asn Asn Glu Asp 115 110 cct agt ata gag gag gat ctt ctc atg ctg aac agt tct cca tcc 617 Pro Ser Ile Glu Glu Glu Asp Leu Leu Met Leu Asn Ser Ser Pro Ser 130 125 665 aca gcc aaa gac act cta gac aat ggc gat tat gga gaa cca gac tat Thr Ala Lys Asp Thr Leu Asp Asn Gly Asp Tyr Gly Glu Pro Asp Tyr 150 140 145 gac tgg acc acg ggc ccc agg gac gac gac gag tct gat gac acc ttg 713 Asp Trp Thr Thr Gly Pro Arg Asp Asp Glu Ser Asp Asp Thr Leu

160 165 155 761 gaa gaa aac agg ggt tac atg gaa att gaa cag tca gtg aaa tct ttt Glu Glu Asn Arg Gly Tyr Met Glu Ile Glu Gln Ser Val Lys Ser Phe 180 175 809 aag atg cca tcc tca aat ata gaa gag gaa gac agc cat ttc ttt ttt Lys Met Pro Ser Ser Asn Ile Glu Glu Glu Asp Ser His Phe Phe 190 195 857 cat ctt att att ttt gct ttt tgc att gct gtt gtt tac att aca tat His Leu Ile Ile Phe Ala Phe Cys Ile Ala Val Val Tyr Ile Thr Tyr 205 210 905 cac aac aaa agg aag att ttt ctt ctg gtt caa agc agg aaa tgg cgt His Asn Lys Arg Lys Ile Phe Leu Leu Val Gln Ser Arg Lys Trp Arg 225 230 220 953 gat ggc ctt tgt tcc aaa aca gtg gaa tac cat cgc cta gat cag aat Asp Gly Leu Cys Ser Lys Thr Val Glu Tyr His Arg Leu Asp Gln Asn 240 245 235 gtt aat gag gca atg cct tct ttg aag att acc aat gat tat att ttt 1001 Val Asn Glu Ala Met Pro Ser Leu Lys Ile Thr Asn Asp Tyr Ile Phe 255 260 250 1004 taa <210> 72 <211> 1562 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1244)..(1399) <400> 72 cttgagcagg ggttcactta ttctgagagc attagttctc ctaaaaagct ccagcataga 60 120 aagggaagat aaaccaaatt ctagcttgtg ttttacccac agaaggatac aggacaaagg aatagtaact ggcctgtttg gatactaaaa ttgaaaataa cttttagcct cctccttatg 180 240 atagccgcca gagtaaatgt tgagcattac tacagaaaag ccacaaacca agaatctacc tgtttggaaa gatcttttgc atctctgaag gtgcttaaag catacttagt gcctttcctt 300 360 ttaactqqqa aqataaaaqa agtatctgtc caagatatta atatgtaaga taacattgta 420

qacatqttct tctgataata caaggtttat tctatttgca ttaggatatt tgtggacatg

480 tccatctaat ataaaqqaaa gttttttaat cattgaggca tgtagggctg agttatataa 540 tgtagaaact tctaaagata attggatgag aatatacata ttgacctgta tattatgact 600 aatcatgact cagatcttaa tacagggatg atctcatagc atttagatat cagaaaaggt tttgacctat atgtctttaa tattgtttga atacatgtat aatctttatc attcctcagt 660 720 gtttcatttc tcaaattctg taaaaggaat ataagaggaa agacaattca tatacaaaga 780 caacgagatt aaaaatatgc agtaggaaaa ataattactt aaggggagat tttttttaca 840 tgaaatctgg gctttggatg tgtgtgtgtg tgtgtgtgtg cacatatgca ctgtggtggg agtggggcaa cttggggaat atgttacatg tgtgactttg ttttgccctg gcgaagttaa 900 960 tgttgttcag aaagggtaaa tgtttggaca cttgcaattg ctcatggatg aatttatatg 1020 ttttagtcat agaaaaattg taccetttga tagaagcaca ttttctttcc aaagttggtt attaaccaca gaattatagc aggtattcat aacttaagtt tgaaaatcaa tagcgtctgc 1080 aaatggatta acagattaga gaatcaacag catcggaaaa taggttaatg catattgctt 1140 1200 ctaacaagtg catgaagaaa tagaagaagc tatgtagctt tcagttctga cagaaaaggg 1255 tgaaggaggg tatcatttca agaaaaaaaa tagctatcac gca atg gtt atc tct Met Val Ile Ser 1 1303 gaa aat att tgt att aag atg tgt ata cat ggc cag gca tgg tgg ctc Glu Asn Ile Cys Ile Lys Met Cys Ile His Gly Gln Ala Trp Trp Leu 10 20 5 1351 atg cct gta atc cca gca ctt tgg gag gca ggt gga tca cga ggt cag Met Pro Val Ile Pro Ala Leu Trp Glu Ala Gly Gly Ser Arg Gly Gln 25 1399 gag atc aag acc atc ctg gcc aac atg gtg aaa cct cat ctc tac taa Glu Ile Lys Thr Ile Leu Ala Asn Met Val Lys Pro His Leu Tyr aaatacaaaa atgagcgggg tgtggtggcc catgcctgta gtcccagctg ctcgggagac 1459 1519 tgaatctctt gagcctggga agcagaggtt gcagtgaact gagatcgcgt cactgcactc

cagcccgggt gacagagcga gattccatct caaaaaaaaa aaa

1562

<210> 73

<211> 2100

<212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (1229)..(1432)

<220>
<221> misc_feature
<222> (1)...(2100)
<223> n = a,t,c or g

<400> 73
Cttggaa ctttatttt aaac

60 taacttggaa ctttattttt aaagtattct gaaaattttc caagaatttt aaccaccacc tacttccctt aaacacacac acatttttat cttacaatta taacccctat tgcagtacaa 120 aacaagaaac aataattcta agttagccag ccaatcaaac tacttcagta aatgatcata 180 ctacagcctg gaatcactca aacaaaaaat tcttctagtt ctctttaaag atatttatcg 240 tttatttttt catgaaacca aagtaattga ttcaacaata ctaacagttc tagcatgcaa 300 360 caaaccatct actatctaat gtttaatctt cttaacatgt atattttcat tcctataaag 420 tttccataag aagcttgcaa tgacaataaa ggtaaataag tacagttgtc ccttggtatc 480 catggggtat tggttcctgg accgtccccc caacccacag ataccaaaaa tccaagtata ctcaagtccc ttacataaaa tgacatattt gtatataacc aacgcacatc cgcctgtata 540 ctttatccct agactaatac ctaatgcaat gtaaatgcta tttaaataac tgttatactg 600 tatttttatt tgtattattt ttattttttc taatattttt gatctgcaat tggtttaatc 660 720 cacaqatqca qaqtacatgg atacagaggg ccaactgttt tgttacaggt acttcaaata 780 qcactacagt acatctttga caaaattttt acaatattcc acctttcaat atgaaacagc 840 ttaaaaaggc atgggtcaaa aataaagtat agtagtatca cttacgcaaa taaagtctca gaatcataca agcacaacac tgttaggact ctccctgttt aggctgggaa aaacattata 900 960 caaaacattt tcttcaaata aaattacata aattgcttag aaaaatgcca aaatcaataa tttcaaacat attaaggaga aaaccttgaa cattattgga aaatataaac tagttattcc 1020 ttgcttttaa cagatgagtt cttgacaagt tttgtgtaaa gcaaattctg taaaccatta 1080 1140 tcttgcttgc actggaggaa catatctcaa ggaaacctaa gagaaagtgt tctttaaagc 1200 atgtgattct cctgtttttg ctggatgtct gtatctacat aataaacagg cacacttcta 1252 atg ttt cat ctc tgt aaa tta aac catcactggg tattttactc agactgtc Met Phe His Leu Cys Lys Leu Asn 5 1300 cca agt tac tta aaa atc acc tgt ggt aaa aga agc aag cag atc acc

cca agt tac tta aaa atc acc tgt ggt aaa aga agc aag cag atc acc
Pro Ser Tyr Leu Lys Ile Thr Cys Gly Lys Arg Ser Lys Gln Ile Thr
10 15 20

ccc atc tac tat ccc tcc cgc ctc ccc cct gtc aaa aga aag ttc tca 1348 Pro Ile Tyr Tyr Pro Ser Arg Leu Pro Pro Val Lys Arg Lys Phe Ser 25 30 gtt tat gat gca aaa ctt aca att gtt cat tta tcc aca ttc tca ata 1396 Val Tyr Asp Ala Lys Leu Thr Ile Val His Leu Ser Thr Phe Ser Ile 45 50 55 1446 gag gat ttt cca cta tat tta agt atg gca gga taa ttac ccacctgttc Glu Asp Phe Pro Leu Tyr Leu Ser Met Ala Gly * 60 ctcttttcag cttagaaaca taacggttca ttccttttat tgctagagaa tgtcattcct 1506 gaagatttta taaacaaagg caaatatgaa ggaaaatttg taattatgaa ataagtcctt 1566 1626 tgtagtaaag aatatttccc aaatcataac agttctattt ggaatgatac ccacaactct acaagcatct tatccctcta caggaatgac taccttatta attaaaataa aaatttaaca 1686 aggatcaaaa taaaattctt tagcaataga ctcctgcaaa aataaaaact aaaactagac 1746 1806 ctagtcattg ccatttgatc aaacttagaa caggcttaaa taacagaacc actccattaa agaggcatag aaagaaaagt ttactaaaat aaatgtaaaa gtcttatgga gatgaagatc 1866 tctagaatag tcttaagtct atgactactg ctatcattaa tgagcaaata aatgacttga 1926 aattattccn cctggaaaag gtaaactcat acgtattatg gaaaangcct atgggcactt 1986 agaaaaatat tcctgggtaa gtaaaccatg gnaaatatag ggtacatcct aagcctctcc 2046 2100 gccctaactt ttaaaattat tnttggagaa aggatagcac tagccgggga ggaa

<210> 74

<211> 933

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (267)..(866)

<400> 74

tgctttcttt ttctccaaaa ggggaggaaa ttgaaactga gtggcccacg atgggaagag 60 gggaaagccc aggggtacag gaggctctg ggtgaaggca gaggctacca tggggttcgg 120 agcgaccttg gccgttggcc tgaccatctt agtgctgtct gtcgtcacta tcatcatctg 180 cttcacctgc tcctgctgct gcctttacaa gacgtgccgc cgaccacgtc cggttgtcac 240 caccaccaca tccaccactg tggtgc atg ccc ctt atc ctc agc ctc caa gtg 293

Met Pro Leu Ile Leu Ser Leu Gln Val 1 5

tgc Cys 10																341
ccg Pro																389
atg Met	~ ~	~		_			_	_			-	-				437
ttt Phe																485
ctc Leu																533
gag Glu 90																581
aat Asn																629
aag Lys																677
cgc Arg																725
ctg Leu														_	_	773
ggc Gly 170																821
gtc Val														tga * 200	ggc	869
tgga	cato	egg o	cccg	ctcc	cc a	caato	gaaat	c aaa	agtta	attt	tcto	catto	ccc a	aaaa	aaaaa	929
aaaa	L															933

<210> 75 <211> 3093

<212> DNA <213> Homo sapiens <220> <221> CDS <222> (446)..(2956) <400> 75 attcccgggt cgacgatttc gtggtgctgg accttgcggg ctgcgggtcg ctgtggagct 60 ggcgctgctg ggggcccgag tggtgctggt ggaaaagcgc accaagttct ctcgccacaa 120 cgtgctccac ctctggccct tcaccatcca cgacctgcgg gcactcggtg ctaagaagtt 180 240 ctacqqqcqc ttctqcaccq qcaccctqga ccacatcagc atcaggcagc tccagctgct 300 tctgctgaag gtagcattgc tgctgggggt ggaaattcac tggggtgtca ctttcactgg cctccagccc cctcctagga aggggagtgg ctggcgtgcc cagctccaac ccaacccccc 360 tgcccagctg gccaactatg aatttgacgt ccttatctcg gctgcaggag gtaaattcgt 420 472 ccctgaaggc ttcaaagttc gagaa atg cga ggc aaa ctg gcc att ggc atc Met Arg Gly Lys Leu Ala Ile Gly Ile 1 520 aca gcc aac ttt gtg aat gga cgc acc gtg gag gag aca cag gtg ccg Thr Ala Asn Phe Val Asn Gly Arg Thr Val Glu Glu Thr Gln Val Pro 10 15 25 20 gag atc agt ggt gta gcc agg atc tac aac cag agc ttc ttc cag agc 568 Glu Ile Ser Gly Val Ala Arg Ile Tyr Asn Gln Ser Phe Phe Gln Ser 40 30 616 ctt ctc aaa gcc aca ggc att gat ctg gag aac att gtg tac tac aag Leu Leu Lys Ala Thr Gly Ile Asp Leu Glu Asn Ile Val Tyr Tyr Lys 664 gac gac acc cac tac ttt gtg atg aca gcc aag aag cag tgc ctg ctg Asp Asp Thr His Tyr Phe Val Met Thr Ala Lys Lys Gln Cys Leu Leu 712 cgg ctg ggg gtg ctg cgc cag gac tgg cca gac acc aat cgg ctg ctg Arg Leu Gly Val Leu Arg Gln Asp Trp Pro Asp Thr Asn Arg Leu Leu 760 ggc agt gcc aat gtg gtg ccc gag gct ctg cag cgc ttt acc cgg gca Gly Ser Ala Asn Val Val Pro Glu Ala Leu Gln Arg Phe Thr Arg Ala 90 100 808 gct gct gac ttt gcc acc cat ggc aag ctc ggg aaa cta gag ttt gcc Ala Ala Asp Phe Ala Thr His Gly Lys Leu Gly Lys Leu Glu Phe Ala 115

								gtc Val 130								856
								cgt Arg								904
								gac Asp								952
								ggc Gly								1000
								gag Glu								1048
								cag Gln 210								1096
_		_		-			_	cag Gln								1144
_				_				gca Ala					_	_		1192
_	_		_			-	_	gag Glu			_				_	1240
_		_			_		-	acc Thr		_	-					1288
-	_		_	~ ~	_	_		cag Gln 290		_			_		-	1336
	_		_	_				tgg Trp	-	-			-	_	_	1384
_	_				_	_		ggc Gly	_	-	-					1432
								act Thr								1480
gag	aat	gag	ctg	ggc	atc	aca	ccg	gtg	gtg	tct	gca	cag	gcc	gtg	gta	1528

Glu	Asn	Glu	Leu	Gly 350	Ile	Thr	Pro	Val	Va1 355	Ser	Ala	Gln	Ala	Val 360	Val	
					ctg Leu											1576
_	_		_	_	atg Met	-										1624
					agt Ser	_	_				~			_		1672
					cgg Arg 415											1720
_	_	_	_	_	gag Glu	_		-				-				1768
		-			cct Pro		-		_							1816
					Gly ggg											1864
	_	_	-	_	ctc Leu	-	-								_	1912
-		-	-		acc Thr 495	-		_		_						1960
					gat Asp											2008
_		-			gag Glu	-		_	_	_						2056
					agt Ser											2104
					gag Glu											2152
					atc Ile											2200

570	575	580		585
tcc tcc ctt aac c Ser Ser Leu Asn L 5	eu Thr Pro Asp			
cct ccc cgc agc to Pro Pro Arg Ser C 605				_
ttt gtg ggc tgg gg Phe Val Gly Trp G 620			0 0	9
atg gag aag gag ga Met Glu Lys Glu G 635		Pro Phe Ser S		
gaa gat gtg cct tt Glu Asp Val Pro Le 650				
gcc aag acc tca gg Ala Lys Thr Ser Gl 67	y Thr Met Asn			
ctg ctg cgc cgt gc Leu Leu Arg Arg Al 685				
cag acc atc caa co Gln Thr Ile Gln Ar 700				
cta gag gcc gag gg Leu Glu Ala Glu Gl 715		Glu Leu Ala I		
agt tcc cca gaa ca Ser Ser Pro Glu Gl 730				
ctc gtt gac aag aa Leu Val Asp Lys Ly 75	s Asn Ser Leu			
atc acg gtg cag ga Ile Thr Val Gln Gl 765				
cag gag cta cga gg Gln Glu Leu Arg Gl 780				
gct gat cgg cag gc Ala Asp Arg Gln Al 795		Val Leu Arg L		

gto Val 810	Asr	caq Glr	g aga 1 Arg	gat Asp	gcc Ala 815	Leu	ato Ile	cgc Arg	tto Phe	cag Gln 820	Glu	g gag ı Glu	g cgo L Arg	agg Arg	g ctc g Leu 825	2920
agc Ser	gag Glu	rctg Leu	g gcc 1 Ala	ttg Leu 830	Gly	aca Thr	Gly	gcc Ala	cag Gln 835	. Gly	tag	, acç	ra go	gtgg	igccg	2970
tct	gctt	tcg	ttcc	caca	aa g	aaag	cacc	t ca	cccc	agca	cag	rtgcc	acc	ccto	ıttcatc	3030
tgg	gctg	cct	ggca	gaga	gc c	ttgc	tgtt	t ac	aatt	aaaa	tgt	ttct	gcc	aaaa	ıaaaaaa	3090
aaa																3093
	.0	1.0-	7.6													
		10> 11>	76 1110													
		12> 13>	DNA Homo	ຕລກ	iane											
			TIOIIIO	sap.	rens											
	_	20> 21>	CDS													
			(179) (9	961)											
	<4	00>	76													
gct	ggag	aac	aact	atcta	at to	cgat	gatg	a ag	atac	ccca	cca	aacc	caa	aaaa	agagat	60
ctc	tcga	gga	tccg	aatto	cg cg	ggcc	gcgt	c ga	cgtg	ggct	tgt	gggt	ctt	tgag	acccga	120
aaai	tga	gag	cgtt:	ttcg	ca ct	tccag	gegg	c tg	ctcci	tggc	ggc	tctg	cgg	ccgt	cacc	178
atg Met	cca Pro	cag Gln	aat Asn	gaa Glu	tat	att	gaa Glu	tta	cac Hic	cgt	aaa	cgc	tat	gga	tac	226
1	110	GIII	nan	5	тУT	116	GIU	пеп	10	Arg	гуя	Arg	Tyr	15	Tyr	
cgt	ttg	gat	tac	cat	gag	aaa	aag	aga	aag	aaq	gaa	agt	cga	σaσ	act	274
Arg	Leu	Asp	Tyr	His	Glu	Lys	Lys	Arg	Lys	Lys	Glu	Ser	Arg	Glu	Ala	/-
			20					25					30			
cat His	gaa Glu	cgt Ara	tca Ser	aag Lvs	aag Lys	gca Ala	aag	aaa	atg Met	att	ggt Gly	ctg	aag	gct	aag	322
		35	501	27.0	_, 0	1114	40	цу	ricc	116	GIY	45	пур	AIA	пур	
ctt	tac	cat	aaa	cag	cgt	cat	gct	gag	aaa	ata	caa	atg	aaa	aag	act	370
Leu	Tyr 50	His	Lys	Gln	Arg	His 55	Ala	Glu	Lys	Ile	Gln	Met	Lys	Lys	Thr	
											60					
atc Tle	aag Lvs	atg Met	cat His	gaa Glu	aag Lws	aga Ara	aac Asn	acc Thr	aaa	caa Gln	aag	aat	gat	gaa	aag	418
65	-2 -				70	9			J D	75	шy	ASII	ഹാവ	GIU	80 80	
aca	cca	cag	gga	gca	gta	cct	gcc	tat	ctg	ctg	gac	aga	gag	gga	caa	466
Thr	Pro	Gln	Gly	Ala 85	Val	Pro	Ala	Tyr	Leu 90	Leu	Asp	Arg	Glu	Gly	Gln	
				55					J (95		

tct cga gct aaa gta ctt tcc aat atg att aaa cag aaa aga aaa gag Ser Arg Ala Lys Val Leu Ser Asn Met Ile Lys Gln Lys Arg Lys Glu 100 105 110	514
aag gcg gga aaa tgg gaa gtc cct ctg cct aaa gta cgt gcc cag gga Lys Ala Gly Lys Trp Glu Val Pro Leu Pro Lys Val Arg Ala Gln Gly 115 120 125	562
gaa aca gaa gta tta aaa gtt att cga aca gga aag aga aag aag aag Glu Thr Glu Val Leu Lys Val Ile Arg Thr Gly Lys Arg Lys Lys 130 135 140	610
gca tgg aag aga atg gtt act aaa gtg tgc ttt gtt gga gat ggc ttt Ala Trp Lys Arg Met Val Thr Lys Val Cys Phe Val Gly Asp Gly Phe 145 150 155 160	658
aca aga aaa cca cct aaa tat gaa aga ttc atc agg cca atg ggc ttg Thr Arg Lys Pro Pro Lys Tyr Glu Arg Phe Ile Arg Pro Met Gly Leu 165 170 175	706
cgt ttc aag aaa gcc cat gta aca cat cct gaa ctg aaa gcc acc ttt Arg Phe Lys Lys Ala His Val Thr His Pro Glu Leu Lys Ala Thr Phe 180 185 190	754
tgc cta cca ata ctt ggt gta aag aag aat ccc tca tcc cca ctg tat Cys Leu Pro Ile Leu Gly Val Lys Lys Asn Pro Ser Ser Pro Leu Tyr 195 200 205	802
aca act ttg ggt gtt att acc aaa ggt act gtc att gaa gta aat gtg Thr Thr Leu Gly Val Ile Thr Lys Gly Thr Val Ile Glu Val Asn Val 210 215 220	850
agc gaa ttg ggc ctt gtg aca caa gga ggc aaa gtt att tgg gga aaa Ser Glu Leu Gly Leu Val Thr Gln Gly Gly Lys Val Ile Trp Gly Lys 235 240	898
tat gcc cag gtt acc aac aat cct gaa aat gat gga tgt ata aat gca Tyr Ala Gln Val Thr Asn Asn Pro Glu Asn Asp Gly Cys Ile Asn Ala 245 250 255	946
gtc tta ctg gtt tga cagcaatttc atatataatt attgaggact acacaccaat Val Leu Leu Val * 260	1001
tgaagaaact gccattactg tgatgtttct gaatactacc aaacagccat acatgtctgc	1061
aatgaagaga tttattaaat tgtaaacatt aaagtggaaa aaaaaaaaa	1110

<220>

<210> 77

<211> 1835

<212> DNA

<213> Homo sapiens

<221> CDS <222> (29)..(1714)

<pre><400> 77 acgagcctgc gttttccggc cagaggac</pre>	52
agt gct tcc ctt att gac aga acc atc aag atg aga aaa gaa aca gag Ser Ala Ser Leu Ile Asp Arg Thr Ile Lys Met Arg Lys Glu Thr Glu 10 15 20	100
gct agg aaa gtg gtc tta gcc tgg gga ctc cta aat gta tct atg gct Ala Arg Lys Val Val Leu Ala Trp Gly Leu Leu Asn Val Ser Met Ala 25 30 35 40	148
gga atg ata tat act gaa atg act gga aaa ttg att agt tca tac tac Gly Met Ile Tyr Thr Glu Met Thr Gly Lys Leu Ile Ser Ser Tyr Tyr 45 50 55	196
aat gtg aca tac tgg ccc ctc tgg tat att gag ctt gcc ctt gca tct Asn Val Thr Tyr Trp Pro Leu Trp Tyr Ile Glu Leu Ala Leu Ala Ser 60 65 70	244
ctc ttc agc ctt aat gcc tta ttt gat ttt tgg aga tat ttc aaa tat Leu Phe Ser Leu Asn Ala Leu Phe Asp Phe Trp Arg Tyr Phe Lys Tyr 75 80 85	292
act gtg gca cca aca agt ctg gtt gtt agt cct gga cag caa aca ctt Thr Val Ala Pro Thr Ser Leu Val Val Ser Pro Gly Gln Gln Thr Leu 90 95 100	340
tta ggg ttg aaa aca gct gtt gta cag act acg cct cca cat gat ctg Leu Gly Leu Lys Thr Ala Val Val Gln Thr Thr Pro Pro His Asp Leu 105 110 115 120	388
gca gca acc caa atc cct ccc gct cca cct tcc cct tca att cag ggt Ala Ala Thr Gln Ile Pro Pro Ala Pro Pro Ser Pro Ser Ile Gln Gly 125 130 135	436
cag agt gtg ttg agt tat agc cct tct cgt tcg ccc agt acc agt ccc Gln Ser Val Leu Ser Tyr Ser Pro Ser Arg Ser Pro Ser Thr Ser Pro 140 145 150	484
aag ttc acc acc agc tgt atg act ggt tac agc cct cag ctg caa ggt Lys Phe Thr Thr Ser Cys Met Thr Gly Tyr Ser Pro Gln Leu Gln Gly 155 160 165	532
ctg tcc tca ggt ggc agt ggt tct tat agc cct gga gtg acc tac tcg Leu Ser Ser Gly Gly Ser Gly Ser Tyr Ser Pro Gly Val Thr Tyr Ser 170 175 180	580
ccc gtc agt ggt tat aat aag ttg gcg agc ttt agc ccc tct cctPro Val Ser Gly Tyr Asn Lys Leu Ala Ser Phe Ser Pro Ser Pro Pro185190195200	628
tct ccg tac cct acc act gtt gga cca gtg gag agc agt gga ttg aga	676

Ser	Pro	Tyr	Pro	Thr 205	Thr	Val	Gly	Pro	Val 210	Glu	Ser	Ser	Gly	Leu 215	Arg	
	_		_		tca Ser			_						_		724
_	_		_		gac Asp		_		_	-						772
-				-	cat His		-	_	_		_		-			820
					cct Pro 270											868
-		-			tta Leu	-	-		-		_		-	_		916
	_	_		_	gct Ala			~	_	_	_		_			964
					gtc Val											1012
	-		_	-	tca Ser			_			_					1060
					cca Pro 350		-							-		1108
					ggt Gly											1156
					caa Gln											1204
	-				gtt Val	_			_					_	-	1252
					atc Ile											1300
					aga Arg											1348

425	430	435	440
aca gac ctg ccc acc Thr Asp Leu Pro Thr 445	Asp Ser Ala Ile Ile	e Met His Val Phe	-
tac ctt gat tcc aga Tyr Leu Asp Ser Arg 460	_		
act ttt act tct cag Thr Phe Thr Ser Gln 475			
aca aat gag aat gtt Thr Asn Glu Asn Val 490	_		
cat tat gag ctc atc His Tyr Glu Leu Ile 505	5 5 5	~	~ ~ ~
aga aat aat atg ttt Arg Asn Asn Met Phe 525		Phe Leu Tyr Ile	•
acc aaa gag tca gga Thr Lys Glu Ser Gly 540			
gtg aat ata ttg tgg Val Asn Ile Leu Trp 555		g c aagtcatata ttt	aattctg 1735
acatttagac tatttcact	tg aaccagaagt cgaaac	ctaaa catctctgag c	cactgactc 1795
ttctgaaata aaatacaca	at gggtgtaaaa aaaaaa	aaaaa	1835

<210> 78

<211> 1029

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (428)..(817)

<400> 78

ccctgattat aactggatat tgggtagcat ccagttaaag tatcagtaga gcttggatgt 60
atcaaagaaa atatttatt caagttccca aaacaaactt gaggagttat gctgggtttg 120
aattgaagaa aaaaggccaa gttaaaatag gaaaacaaat ggttttcatt tggtggcagt 180

tgaaatcaaa gtatacatgt gtatacattc taatccgtca tctatcccat gtggcatttt 240 ccaaggtttt aagagtctac caggccaaac cctttqccac tttcactqct tttqctttqc 300 ttttcccctt tctttctct cgctttgcct tcagcctttt tctttgcctt tggttcatcc 360 atattgggta ctgtccatgc tggtcggcgt gagcgtgagg tgtgggtgtt cgtttctcag 420 gtaaaac atg gct aaa agc tta cgg agt aag tgg aaa aga aag atg cgt 469 Met Ala Lys Ser Leu Arg Ser Lys Trp Lys Arg Lys Met Arg gct gaa aag aga aaa aag aat gcc cca aag gag gcc agc agg ctt aaa 517 Ala Glu Lys Arg Lys Lys Asn Ala Pro Lys Glu Ala Ser Arg Leu Lys 15 2.0 25 agt att ctc aaa cta gac ggt gat gtt tta atg aaa gat gtt caa gag 565 Ser Ile Leu Lys Leu Asp Gly Asp Val Leu Met Lys Asp Val Gln Glu 35 ata gca act gtg gtg gta ccc aaa ccc aaa cat tgc caa gag aaa atg 613 Ile Ala Thr Val Val Val Pro Lys Pro Lys His Cys Gln Glu Lys Met 50 caa tgt gag gta aaa gat gaa aaa gat gac atg aaa atg gag act gat 661 Gln Cys Glu Val Lys Asp Glu Lys Asp Asp Met Lys Met Glu Thr Asp att aag aga aac aaa aag act ctt cta gac cag cat gga cag tac cca 709 Ile Lys Arg Asn Lys Lys Thr Leu Leu Asp Gln His Gly Gln Tyr Pro 85 ata tgg atg aac caa agg caa aga aaa agg ctg aag gca aag cga gag 757 Ile Trp Met Asn Gln Arg Gln Arg Lys Arg Leu Lys Ala Lys Arg Glu 100 105 aaa aga aag ggg aaa agc aaa gca aaa gca gtg aaa gtg gca aag ggt 805 Lys Arg Lys Gly Lys Ser Lys Ala Lys Ala Val Lys Val Ala Lys Gly 115 120 ttg gcc tgg tag act cttaaaacct tggaaaatgc cacatgggat agatgacgga 860 Leu Ala Trp 130 ttagaatgta tacacatgta tactttgatt tcaactgcca ccaaatgaaa accatttgtt 920 ttcctatttt aacttggcct tttttcttca attcaaaccc agcataactc ctcaagtttg 980 ttttgggaac ttgaataaaa tattttcttt gatacaaaaa aaaaaaaaa 1029

<210> 79

<211> 5476

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (188)..(5149) <400> 79 60 ggcccctgct cggataaagg tgggaggctc aggtgtcaat gtcaatgcaa agggcttgga cttgggtggc agaggaggg tccaagttcc agcagtggac atttcatctt ctcttggggg 120 180 tcccacc atg aaa gtg ccg aaa ttt ggt gtc tca aca ggg cgt gag ggc 229 Met Lys Val Pro Lys Phe Gly Val Ser Thr Gly Arg Glu Gly cag aca cca aag gca ggg ctg agg gtt tct gca cct gaa gtc tct gtg 277 Gln Thr Pro Lys Ala Gly Leu Arg Val Ser Ala Pro Glu Val Ser Val 15 20 ggg cac aag ggc ggc aag cca ggc ttg act atc caa gcc cct cag ctg 325 Gly His Lys Gly Gly Lys Pro Gly Leu Thr Ile Gln Ala Pro Gln Leu 35 373 gaa gtc agt gtg ccc tct gcc aat att gag ggc ctt gag ggg aag ctg Glu Val Ser Val Pro Ser Ala Asn Ile Glu Gly Leu Glu Gly Lys Leu 50 aag ggc ccc caa atc act ggg cca tca ctt gag ggt gac cta ggc ctg 421 Lys Gly Pro Gln Ile Thr Gly Pro Ser Leu Glu Gly Asp Leu Gly Leu aaa ggt gcc aag cca cag ggg cac att ggg gtg gat gcc tct gct ccc 469 Lys Gly Ala Lys Pro Gln Gly His Ile Gly Val Asp Ala Ser Ala Pro 85 caa att ggg ggt agc atc act ggc ccc agt gtg gaa gtt cag gcc cct 517 Gln Ile Gly Gly Ser Ile Thr Gly Pro Ser Val Glu Val Gln Ala Pro 95 100 105 110 565 gac att gat gtt cag ggg cct ggg agc aaa ctg aat gtg ccc aag atg Asp Ile Asp Val Gln Gly Pro Gly Ser Lys Leu Asn Val Pro Lys Met 115 120 125 aaa gtc ccc aag ttc tct gta tca ggt gca aag gga gag gaa act ggg 613 Lys Val Pro Lys Phe Ser Val Ser Gly Ala Lys Gly Glu Glu Thr Gly 130 135 140 att gat gtg aca ctg cct aca ggt gaa gtg act gtt cct ggg gtc tct 661 Ile Asp Val Thr Leu Pro Thr Gly Glu Val Thr Val Pro Gly Val Ser 145 150 155 709 ggg gat gtc agc ctg cct gag att gct act ggt ggg ctg gaa gga aag Gly Asp Val Ser Leu Pro Glu Ile Ala Thr Gly Gly Leu Glu Gly Lys 160 165 170

atg aaa ggt act aaa gtg aag act cct gaa atg att att cag aaa cct

757

M	T	Q1	ml	T	77- T	T	ml	D	α1	Mot	т1 -	т1 ~	Λ1	T	Daca	
Met 175	ьуs	GΤĀ	Tnr	ьуs	Val 180	ьуѕ	Tnr	Pro	GIU	Met 185	TTE	тте	GIN	ьуѕ	190	
					gat Asp											805
					gtt Val											853
					ctt Leu											901
					ttg Leu							_				949
				_	agg Arg 260			_		_	_	_				997
-	_				aaa Lys			-	_	_				_	_	1045
-			-		gtc Val		_	_	_	_	_					1093
_	_	_	_		gat Asp	_	_					_			_	1141
	_		-	_	aaa Lys	_		-		_				-		1189
					gtt Val 340											1237
					gtc Val											1285
					ctt Leu											1333
					aag Lys											1381
					aag Lys											1429

		400					405					410					
G			_			ggc Gly 420				-		-	-		_		1477
_		-				gac Asp			_	_	_		_	_		_	1525
				_		cca Pro				_				_		_	1573
_	_		_		_	gct Ala	_		-					_		-	1621
_			-		-	gtg Val	_			_		_			_		1669
G						atg Met 500									-		1717
						gac Asp											1765
						atg Met		-	-	-	_				_		1813
						agt Ser											1861
						gac Asp											1909
Ρ						cct Pro 580											1957
						gct Ala											2005
						gtg Val											2053
						atg Met											2101

	-		-		gac Asp	_		_					-	-		214	.9
_		_	_		gtg Val 660		~	~	~		_	~				219	7
					gcc Ala											224	.5
	_	-	_		aag Lys			_				_	_		_	229	3
					cca Pro	-		-			_					234	.1
					cca Pro						-		_	_	_	238	9
	_			_	ggg Gly 740	_	-			_	-		_	_		243	7
					gct Ala											248	5
					aaa Lys	_				-	-			_		253	3
				-	atg Met	_	_		-		-		_			258	1
_	_	_			gca Ala		_		_				_	_		262	9
_	_				aag Lys 820	_		_		_		_	_		_	267	7
					cca Pro	-		_			~		_	-	_	272	5
_	_	_			ccc Pro	_		-		_	-		-		-	277	3

					ggg											:	2821
				_	acc Thr		_			_		-		-		2	2869
	-				aaa Lys 900	_			-		_					2	2917
					atg Met											2	2965
	-			_	gcc Ala		_			-				-		3	3013
	_	_	_		aag Lys	_		-		_		-	-			3	3061
					cga Arg											3	3109
					ccc Pro 980											3	3157
					gga Gly			Lys					Lys			3	3205
	_	His		_	gcc Ala		Lys			_		Asp		~	~	3	3253
	Leu	_			aaa Lys	Leu	_		-		Asp			_		3	3301
Glu	_	_		-	atg Met 1				-	Val	-					3	3349
	-	-		Ser	gct Ala 1060		_		Asp	_				Asp		3	3397
	_	_	Met		aag Lys			Met		-		_	Met			3	3445
ttc	aaa	gga	gag	ggc	cct	gaa	gtg	gat	gtg	aag	ctg	ccc	aaa	gct	gac	3	3493

Phe Lys Gly	Glu Gly 1090	Pro Glu	Val Asp 1095	Val Lys		Lys Ala 100	Asp
gtt gat gtc Val Asp Val 1105	Ser Gly	Pro Lys			-		
att gaa ggt Ile Glu Gly 1120	-	-		Gly Pro			
gaa atg agt Glu Met Ser 1135	Ile Lys	-	-		-	Val Gly	-
cat ttg aaa His Leu Lys		-	Lys Gly	-		_	
aaa gta gaa Lys Val Glu					Asp Ile		
aaa gtt gat Lys Val Asp 1185		Ala Pro .					
cac ctg aag His Leu Lys 1200	-		-	Pro Lys	_	•	
ttt aaa gga Phe Lys Gly 1215	Glu Gly					Lys Ala	-
ctt ggt gtt Leu Gly Val			Val Asp				
ctt gaa gct Leu Glu Ala					Lys Phe 1		
agc atg aat Ser Met Asn 1265		Thr His 1					
aat ttg aaa Asn Leu Lys 1280		_		Asp Val			
aaa gtg gaa Lys Val Glu 1295	Gly Asp					Lys Ala	
aag atg gat Lys Met Asp							

1315 1320 1325

			Pro Glu Met	cat ttc aag g His Phe Lys A 1340	-
	e Ser Met Pro		Leu His Leu	aaa ggc ccc a Lys Gly Pro I .355	
				gaa ggt gaa a Glu Gly Glu M	-
		Ile Lys Gly		gac att gat g Asp Ile Asp A	
				aaa atg ccc a Lys Met Pro I 1405	
			Gly Phe Lys	gca gag ggc c Ala Glu Gly F 1420	
	Val Asn Leu		Asp Ile Asp	gtg tct gga c Val Ser Gly F .435	
	Thr Asp Ala			gga cca gaa g Gly Pro Glu G	
		Phe Lys Met		aat ata aaa g Asn Ile Lys A 14	
	Ser Met Pro	Asp Val Asp		aag gga ccc a Lys Gly Pro I 1485	
Leu Lys Gly			Pro Glu Leu	gaa ggt gat c Glu Gly Asp I 1500	
	Gln Val Asp		Pro Leu Val	gaa gcg gag g Glu Ala Glu V 515	
	Asp Leu Glu	-		aag ggc ccc a Lys Gly Pro L	•
		_		atc tcc atg c Ile Ser Met P 15	

gat gtg gac tta cac ttg aaa ggc ccc aaa gtc Asp Val Asp Leu His Leu Lys Gly Pro Lys Val 1555 1560		4885
gtg tct ttg cca aaa ttg gag gga gat tta aca Val Ser Leu Pro Lys Leu Glu Gly Asp Leu Thr 1570		4933
gtg gag gtg cct gat gtt gag ctg gag tgt cct Val Glu Val Pro Asp Val Glu Leu Glu Cys Pro 1585 1590		4981
ggg ccc aag ttt aag atg cct gag atg cac ttc Gly Pro Lys Phe Lys Met Pro Glu Met His Phe 1600 1605		5029
tcc atg cct gat gtg aac tta aac ttg aaa ggc Ser Met Pro Asp Val Asn Leu Asn Leu Lys Gly 1615 1620 1625		5077
gat atg gat gtg tct gtt ccc aaa att gga ggg Asp Met Asp Val Ser Val Pro Lys Ile Gly Gly 1635 1640		5125
cag tgt gga tgt gga ggt gcc tga tgttgagctg g Gln Cys Gly Cys Gly Gly Ala * 1650	gctgtcgttg ttctgagggc	5179
ggcatcactc tggggtcagt ctctcccctg tcctttgagg	acatacagac ctcacctatt	5239
gtttaagtgt ttgaaccagc cccgaaccca agcaacacca	gagtcctcct tacatttctt	5299
cagtgagcaa accttacgca ccgtgaactt gggagtcaaa	ccagctgtgc ccctcactag	5359
ccgggtaagc gcagggaggt atcgtgccac actgagcatc	agttccccaa tccgaatcag	5419
gatagaacaa ttccactgtt gcttggttta cccaactgct	gctgttccta atctgac	5476

				ctt Leu								gcc Ala	160
				gtg Val									208
			 	ctg Leu		_						~ ~	256
				gtg Val 60									304
				tat Tyr									352
_		_		aac Asn	_		-				_		400
	-		 _	aac Asn	~	~		_			 		448
				tgg Trp									496
				cca Pro 140									544
				gaa Glu					-	-			592
				gat Asp									640
				tac Tyr									688
				ccg Pro									736
				atg Met 220									784

aaaaaaaaa aa

						att Ile						_				832
						att Ile		_		_			_	_		880
						gac Asp										928
_						gag Glu 285					_	_		-	_	976
						aaa Lys										1024
						tct Ser										1072
						cga Arg				_			_		_	1120
						tgg Trp										1168
						ggc Gly 365				-						1216
						ctc Leu										1264
						gcc Ala										1312
						agc Ser										1360
						ctt Leu										1408
tag *	ccaa	ata	cttt	gcc	ttgt	aaat	tt t	aaat	cctg	ıa gt	gcag	ıtgaa	ı gaa	aatg	gtaa	1465

	<2 <2	12>	1395 DNA		iens											
	<2	20> 21> 22>)(1002)										
gcad		00> cgc		agag	tg t	atcc	agaa	g ct	actg	tcag	gag	gaca	ctg	taag	agaacc	60
ttgg	gcac	ctc	tggg	ccca	aa g	ggaa	agac	a cc	agtg	gaaa	gag	gtga	gca	tctc	ctggac	120
caco	cctca	aag	cttc	aggt	ga g	ctga	gctt	c ta	acac	tacc	atc	aaag	caa	ctgg	aacccc	180
ttga	aatt	tga	tttc	tgga	ga c	gcga	gcat	a at	cctt	ttgc	aaa	catc	tca .	acgc	tggctc	240
tcca	aggt	gga ·	gcac	Me				р Су						s Ty	t ctg r Leu	291
					ttc Phe											339
					gtc Val			-								387
					ctg Leu 50			-		_				_	_	435
					ttt Phe											483
					tgt Cys										ctg Leu	531
			_	_	gag Glu			_	_		~	~				579
					cga Arg											627
					gac Asp 130											675

														gac Asp 155		723
_		_				_		_		_	_	_	-	gag Glu		771
_		_	_	_			-			-		-		gtc Val	_	819
														aac Asn		867
														gtc Val	tac . Tyr 220	915
														ttc Phe 235		963
			gcc Ala 240								_	tag *	aggg	gtato	igc	1012
ctga	agco	ctg a	agac	ctcgo	cc cc	cacco	cacca	cto	ıccca	ıgca	ccca	atgt	cc t	cccc	ıtgccc	1072
ctcc	ccgc	tg t	cctc	ettgg	je ec	cago	ggag	, aac	atga	ggc	catc	agaç	gat g	gcca	ıggaga	1132
aggg	rccaç	iaa c	gaata	ıgago	t at	tttt	ttaa	ı caa	aaca	aaa	tgaa	ıgaca	aa a	atat	ggact	1192
gatg	rtato	ct c	gcct	ggad	ct ca	gggc	aggt	gcc	gtgg	gtt	ctcc	agag	sac c	ccag	rcacct	1252
ggcc	cago	gat a	igcaa	ıggct	g ct	ctag	gagac	aaa	ıggaa	cac	aagg	rccag	igc c	acta	tgggc	1312
agca	agac	cc g	ggcc	ttat	t ct	cate	ıgcgt	gac	tgtg	rcca	gaag	rtggg	rtt c	ggca	ıggggc	1372
agca	ttcg	gag a	gato	aggo	c gg	ıg										1395

```
<210> 82
<211> 1840
```

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (264)..(1508)

<400> 82

gctggacacc tgcggtaccg gtccggaatt cccgggtcga cccacgcgtc cgaccactga

gacgagcggg agcgcggagc agcagcctct gctgccctga ctttttaaga aatctcaatg	120
aactatttgt agagaatcac tgatccggcc tgcaagcatt ttgcacggca aaaatatcga	180
tcagtgttaa gtgaagatca cattttatat gcgatcttga cttttttgtc ttacattata	240
tttttataga ttttgttata aac atg gtg ctg gga aag gtg aag agt ttg Met Val Leu Gly Lys Val Lys Ser Leu 1 5	290
aca ata agc ttt gac tgt ctt aat gac agc aat gtc cct gtg tat tct Thr Ile Ser Phe Asp Cys Leu Asn Asp Ser Asn Val Pro Val Tyr Ser 10 15 20 25	338
agt ggg gat acc gtc tca gga agg gta aat tta gaa gtt act ggg gaa Ser Gly Asp Thr Val Ser Gly Arg Val Asn Leu Glu Val Thr Gly Glu 30 35 40	386
atc aga gta aaa tct ctt aaa att cat gca aga gga cat gcg aaa gta Ile Arg Val Lys Ser Leu Lys Ile His Ala Arg Gly His Ala Lys Val 45 50 55	434
cgc tgg act gaa tct aga aac gcc ggc tcc aat act gcc tat aca cag Arg Trp Thr Glu Ser Arg Asn Ala Gly Ser Asn Thr Ala Tyr Thr Gln 60 65 70	482
aat tac act gaa gaa gta gag tat ttc aac cat aaa gac atc tta att Asn Tyr Thr Glu Glu Val Glu Tyr Phe Asn His Lys Asp Ile Leu Ile 75 80 85	530
ggg cac gaa aga gat gat gat aat tcc gaa gaa ggc ttc cac act att Gly His Glu Arg Asp Asp Asp Asn Ser Glu Gly Phe His Thr Ile 90 95 100 105	578
cat tca gga agg cat gaa tat gca ttc agc ttc gag ctt cca cag aca His Ser Gly Arg His Glu Tyr Ala Phe Ser Phe Glu Leu Pro Gln Thr 110 115 120	626
cca ctc gct acc tca ttc gaa ggc cga cat ggc agt gtg cgc tat tgg Pro Leu Ala Thr Ser Phe Glu Gly Arg His Gly Ser Val Arg Tyr Trp 125 130 135	674
gtg aaa gcc gaa ttg cac agg cct tgg cta cta cca gta aaa tta aag Val Lys Ala Glu Leu His Arg Pro Trp Leu Leu Pro Val Lys Leu Lys 140 145 150	722
aag gaa ttt aca gtc ttt gag cat ata gat atc aac act cct tca tta Lys Glu Phe Thr Val Phe Glu His Ile Asp Ile Asn Thr Pro Ser Leu 155 160 165	770
ctg tca ccc caa gca ggc aca aaa gaa aag aca ctc tgt tgc tgg ttc Leu Ser Pro Gln Ala Gly Thr Lys Glu Lys Thr Leu Cys Cys Trp Phe 170 175 180 185	818
tgt acc tca ggc cca ata tcc tta agt gcc aaa att gaa agg aag ggc Cys Thr Ser Gly Pro Ile Ser Leu Ser Ala Lys Ile Glu Arg Lys Gly	866

			190					195					200		
			 -	tca Ser		-			-					_	914
				gtg Val									_	_	962
				aaa Lys									-		1010
				tta Leu 255											1058
				cca Pro											1106
				tat Tyr											1154
				ctt Leu											1202
				agc Ser											1250
				ctc Leu 335						-	-		_	_	1298
		_	_	gaa Glu		-			_						1346
				gct Ala	-	-	_			_	-				1394
				atc Ile											1442
				cca Pro											1490
	tgc Cys			tga * 415	agga	ac a	acttg	ıgttç	ja at	caaç	gttga	ı tgt	gggt	tcc	1544

<210> 83

<211> 800

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (509)..(685)

<400> 83

gcacgaggga accgattttt tttatccaat gtgaattata aatgagataa tccacagtta 60 ttcattgtgg agttgttgag actatgaaag actcattgtc tttgtattca gctcttaaat 120 agtgtaacta tatccccacc tctgcttgct ttctttccct cccttccaat gataaagaaa 180 atgataaatt ttctgttgtg cattcaattc ttattttaaa taagactaag tataggcatt 240 gtacctgaca ttgctacgtt tctaccagtg tttcaattta aagtgctagt gtttaaaaac 300 attttcaagg gataaggcct tctgtacttt gcttatttga agaatcagtg gtaggagcag 360 tgaagtaaat tctatggagt acatttctaa aataccacat ttctgaaatc ataaataagt 420 ttattcaggt tctaaccctt tgctgtacac aagcagacag aaatgcatct gttacataaa 480 tgagaaaaag ctattatgct gatggagc atg ctt ttt aaa tcc ttt aaa aac 532 Met Leu Phe Lys Ser Phe Lys Asn 1 act cac cat ata aac ttg cat ttg agc ttg tgt gtt ctt ttg tta atg 580 Thr His His Ile Asn Leu His Leu Ser Leu Cys Val Leu Leu Leu Met 10 15 2.0 tgt aga gtt ctc ctt tct cga aat tgc cag tgt gta ctt ggc tta act 628 Cys Arg Val Leu Leu Ser Arg Asn Cys Gln Cys Val Leu Gly Leu Thr 25 30 35 40 caa gaa cag ttt ctt ctg gat tcc tta ttt gat tta ttt aac cta att 676 Gln Glu Gln Phe Leu Leu Asp Ser Leu Phe Asp Leu Phe Asn Leu Ile 45 50 ata ttc taa tattgca aatattacca taagtgggta aaagtaaaat tcctcttctg 732

Ile Phe *

aaaatgggtc	ctggggtttt	agatttttaa	attccataaa	aaacattctt	aattttcaac	792
tcaaaaaa						800

<210> 84

<211> 2885

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (585)..(1370)

<400> 84

ccatgtaggg aattccccaa agcagggctt gccatacctg gaccccgagg agcctgcttg 60 ctggaaaggc tctcctgtct gatgtgcagg aggcagaatg ccaaactgac tcttcaaggg 120 gcaactgcag gggctcgaga ccagccagca gtatctcatc cttcgataca ggggatatac 180 tgtacagtcc tttttctaga agtgagacat acaagattac tctacaagag gaagattcca 240 ggggctcaaa aacgcaaagg tttgcacttt gagagcccct tggaatgttg acaactcagg 300 atctaaaaca aagttctgtg ttaatgagtt acagaattca cgtggaagtc aatgtcactt 360 tataatcgat aataatactg agtgaggaac actatgcagg aagaaacctt ccgtagaaag 420 acaggcaggg aaaagcttag gctgacctta aacttaccta atagagcaag cctgagatag 480 actgccaaaa tggccaaata agagactcta tgaaataaca gtcttgtaac tgtagtaatc 540 ataaggaaat tttctccttg aaatcacgat accaaatagg aaaa atg atc tac aag 596 Met Ile Tyr Lys 1 tgc ccc atg tgt agg gaa ttt ttc tct gag aga gca gat ctt ttt atg 644 Cys Pro Met Cys Arg Glu Phe Phe Ser Glu Arg Ala Asp Leu Phe Met 5 10 20 cat cag aaa att cac aca gct gag aag ccc cat aaa tgt gac aag tgt 692 His Gln Lys Ile His Thr Ala Glu Lys Pro His Lys Cys Asp Lys Cys 25 35 gat aag ggt ttc ttt cat ata tca gaa ctt cat att cat tgg aga gac 740 Asp Lys Gly Phe Phe His Ile Ser Glu Leu His Ile His Trp Arg Asp cat aca gga gag aag gtc tat aaa tgt gat gat tgt ggt aag gat ttt 788 His Thr Gly Glu Lys Val Tyr Lys Cys Asp Asp Cys Gly Lys Asp Phe

					ctt Leu											836
_				-	tac Tyr 90		-			-				_		884
					atg Met	_	-						_		_	932
_	-		-		agg Arg			_		_				_	_	980
					acc Thr											1028
					cac His											1076
					ccc Pro 170			_			_		_			1124
					ctc Leu											1172
					tgt Cys											1220
_	_	_			cag Gln	_	_									1268
_	-		_		aag Lys	_		-	_	~	_	_		_		1316
					aca Thr 250											1364
ata Ile	taa *	aacg	gtttt	.gc t	aaga	igttt	a aa	iatct	taaa	acc	cata	ıagt	gcca	ıctaç	jga	1420
aggaaaccct gtatatacct acattgaccc aagaaatatt tacgcaatcc ctagcagaac 14												1480				
atto	ıtttc	tg a	aggag	gcat	a to	rtgag	atto	, att	tgtt	ggt	tcat	gcca	ag t	gtgt	tccac	1540

1600 aggttgactt tgaatgtgga cetetgagea teeacgeagg atggetetea ggteecagte acagacgtcg cttcctggga ttccagcacg atgcctccat agttgaaaga ctacacaaaa 1660 agccacaatc attgcccggc ctcctgagtc accttctatc tatactttgc ttaaaaagcta 1720 1780 teccagatae tecceettga ggageteatg ceetteette etettatte gageataetg gcaatgcatt ggaaaacaga cagctcccac taagatcacg ttctggtatt tctgaggtta 1840 1900 acacttgatt tagcccctac atatctttcc atatatccta ttatttctga atatatgtcc tcaaaatccc cataaatatc catcccttcc tagatggcat taactttcat tttagatttt 1960 aggtgactca taattcccat tcacttagcc tatcagaaaa gtcattggca gacatatatg 2020 tccttgaacc ttttttattt gtgtggattc tgctcatcac tgtctctgtt agacttattt 2080 tgtagtggct gcatcacata tttttcactt gaattttttt ggaaatagct gaatgtaaat 2140 2200 agcagggagg aagaagcaag caaagtgaga gcttttcttc atccagaatt gccctctggg ctcctttggt aacagatgga gctccttcct agctagggag accttatgag aagtggatgg 2260 taggaggagt cactaatgtt tcaatctcta tttctgtaat cttgggcaat aatgcatagg 2320 agttettgat acceptteat tgattactgt gtateagtte tttgttagge atgaacgtet 2380 ttattaatcc atcattcttt tcttcattca acaaatatgt attgaacacc tcctatatgc 2440 caggcactgt gctaggtgct gggaatacca ctgatgagac agacaaggtc cctactcttg 2500 tggagtttac ttctggtgga ggagacagat gataagtaaa caaataaata atgtagtttg 2560 agatagtgat taagtgctat gaagaaaata aactagggtg atgattttag tggtggggtg 2620 gggtgggggt ggggttacat tagctagtgg tcagggaggc ctttccgcgg tgggatgttg 2680 agctgaggcc ggaggagaag tagcagtcgc tggcagagca cacaggctgc tctgggggat 2740 gagetggtge gtttaaggaa caggecagca etggcatteg caagcagtgg ggaaggggag 2800 agatgccgag gtggtcagta tcctgacttt cagaggcctt tttttgtttg ttttaatttt 2860 tgctagattg atattaaaaa aaaaa 2885

<210> 85

<211> 1685

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (66)..(1382)

<400> 85 cccacgcgtc cgttcttttc tgccgggtaa tggctgcttc caagacccag ggggctgtcg													
cccga atg cag gaa gac cgt gat ggg agc tgc agc aca gtc ggg ggt Met Gln Glu Asp Arg Asp Gly Ser Cys Ser Thr Val Gly 1 5 10													
gta ggt tat ggg gac agt aag gat tgt atc ctg gag ccg ctt tcc ctg Val Gly Tyr Gly Asp Ser Lys Asp Cys Ile Leu Glu Pro Leu Ser Leu 15 20 25 30	155												
cca gaa agt cca ggt ggc acc acc act tta gaa ggt tct cca tct gtg Pro Glu Ser Pro Gly Gly Thr Thr Thr Leu Glu Gly Ser Pro Ser Val 35 40 45	203												
cct tgt att ttc tgt gaa gaa cat ttt cct gtg gct gaa caa gac aaa Pro Cys Ile Phe Cys Glu Glu His Phe Pro Val Ala Glu Gln Asp Lys 50 55 60	251												
ctt ctg aag cac atg att att gag cat aag att gtc ata gct gat gtc Leu Leu Lys His Met Ile Ile Glu His Lys Ile Val Ile Ala Asp Val 65 70 75	299												
aag ttg gtt gct gat ttc caa agg tac att tta tat tgg agg aaa agg Lys Leu Val Ala Asp Phe Gln Arg Tyr Ile Leu Tyr Trp Arg Lys Arg 80 85 90	347												
ttc act gaa cag ccc atc aca gat ttt tgt agt gta ata aga att aat Phe Thr Glu Gln Pro Ile Thr Asp Phe Cys Ser Val Ile Arg Ile Asn 95 100 105 110	395												
tcc act gct cca ttt gaa gaa caa gag aat tat ttt ttg tta tgt gac Ser Thr Ala Pro Phe Glu Glu Glu Glu Asn Tyr Phe Leu Leu Cys Asp 115 120 125	443												
gtt tta cca gaa gat aga att ctt aga gaa gag ctt cag aaa cag aga Val Leu Pro Glu Asp Arg Ile Leu Arg Glu Glu Leu Gln Lys Gln Arg 130 135 140	491												
ctg aga gaa att ctg gaa caa cag cag caa gaa cga aat gat acc aat Leu Arg Glu Ile Leu Glu Gln Gln Gln Glu Arg Asn Asp Thr Asn 145 150 155	539												
ttt cat ggc gtt tgt atg ttt tgc aat gaa gaa ttc ctt gga aac aga Phe His Gly Val Cys Met Phe Cys Asn Glu Glu Phe Leu Gly Asn Arg 160 165 170	587												
tct gtt att ttg aac cac atg gcc aga gaa cat gct ttc aac att gga Ser Val Ile Leu Asn His Met Ala Arg Glu His Ala Phe Asn Ile Gly 175 180 185 190	635												
ttg cca gac aac att gta aac tgc aat gaa ttt ttg tgt aca tta cag Leu Pro Asp Asn Ile Val Asn Cys Asn Glu Phe Leu Cys Thr Leu Gln 195 200 205	683												
aaa aag ctt gac aat ttg cag tgc ttg tac tgt gag aag acc ttc agg	731												

Lys	Lys	Leu	Asp 210	Asn	Leu	Gln	Cys	Leu 215	Tyr	Cys	Glu	Lys	Thr 220	Phe	Arg	
_						gat Asp		_				_		-	_	779
			-		_	gaa Glu 245		-	-			-				827
_	_				_	tgg Trp	-	_	_	_	_	_	_	_		875
	_	-	-		_	gaa Glu	-	~			-		_	_		923
	-		-	-	_	tta Leu		_	-	_		_	-			971
	_	_		_		atg Met		_	_		_		_			1019
		_		_		gga Gly 325					_				-	1067
						caa Gln										1115
		_				aaa Lys	_	_		_			_	_	_	1163
						ctc Leu										1211
						tat Tyr										1259
						ctg Leu 405										1307
						aca Thr										1355
						cta Leu		taa *	gagt	a ct	tgaa	aacc	: tag	gaaga	aac	1407

taccacagaa gcaattttc atgttttct cctatgagac agatatgaaa gaacaattta 1467
aatttgaaca tcaacaaaag attggtcctt ggtgaaataa acttttcaaa aatgaatgtt 1527
cttttcaaaa aataaagtag aaaaatgcac ttactaagaa catgaaaaaa aatgaagtag 1587
gaaaataaga tgaagacttt gtattttggc tgtaaagttt tattgtgtga tcatcttaaa 1647
ttatctcact tcattaaact cataattata tatagaaa 1685

<210> 86
<211> 1094
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (59)..(595)
<400> 86
tttcgtggc ttgccgggcg getg gag gcg ctg aac acget Glu Ala Leu Asn Thr

435

atttcgtggc ttgccgggcg gccccaggcg gctgggcacg caccccaaga aggagccc 58
atg gag gcg ctg aac acg gcg cag ggc gcg gac ttc atc tac agc
Met Glu Ala Leu Asn Thr Ala Gln Gly Ala Arg Asp Phe Ile Tyr Ser
1 5 10 15

ctg cac tcc acg gag agg agc tgc ctg ctc aaa gag ctg cac cgc ttc Leu His Ser Thr Glu Arg Ser Cys Leu Leu Lys Glu Leu His Arg Phe $20 \hspace{1cm} 25 \hspace{1cm} 30$

gag tot att gcc att gcc caa gaa aaa ttg gaa gct cca ccc acc
Glu Ser Ile Ala Ile Ala Gln Glu Lys Leu Glu Ala Pro Pro Pro Thr
35 40 45

cca gga cag ctg aga tat gta ttc atc cac aat gcg ata cct ttc ata

Pro Gly Gln Leu Arg Tyr Val Phe Ile His Asn Ala Ile Pro Phe Ile

50 55 60

ggg ttt ggc ttt ttg gat aat gca att atg att gtt gct gga acc cat

Gly Phe Gly Phe Leu Asp Asn Ala Ile Met Ile Val Ala Gly Thr His

65 70 75 80

att gaa atg tct att gga att att ttg gga att tca act atg gca gct

Ile Glu Met Ser Ile Gly Ile Ile Leu Gly Ile Ser Thr Met Ala Ala

85

90

95

gct gct ttg gga aat ctt gtg tca gat cta gct gga ctt gga ctt gca 394 Ala Ala Leu Gly Asn Leu Val Ser Asp Leu Ala Gly Leu Gly Leu Ala 100 105 110

ggc tac gtt gaa gca ttg gct tcc agg tta ggc ctg tca att cct gat

Gly Tyr Val Glu Ala Leu Ala Ser Arg Leu Gly Leu Ser Ile Pro Asp

115 120 125

490 ctc aca cca aag caa gtt gac atg tgg caa aca cgt ctt agt aca cat Leu Thr Pro Lys Gln Val Asp Met Trp Gln Thr Arg Leu Ser Thr His 130 135 ttg ggc aaa gct gtt ggg gtg act att ggc tgc att cta gga atg ttt 538 Leu Gly Lys Ala Val Gly Val Thr Ile Gly Cys Ile Leu Gly Met Phe 145 150 155 160 586 cct tta att ttc ttt gga gga ggt gaa gat gaa aaa ctg gaa acg Pro Leu Ile Phe Phe Gly Gly Glu Glu Asp Glu Lys Leu Glu Thr 165 aaa agt taa tcctctt agaataccta taaaaagatg taaactaatg tacctcagta 642 Lys Ser * attaaatatg ctgtcacaac atttaggaat taagacagta acagtataga tatgggatca 702 aataatttag catgtattat ggaaaacact aacttattgt ggcttgatct tcttaggaca 762 tettttttaa aaagetgttt agtateattt tgtgtatatt gttgaaatge ttttteatea 822 atagcagtca acattttatc ctttctttt atattcataa tgttatttaa gtgtcattga 882 tgtactgtat tgacttgggg tttgcttatt tgttacttaa catgtgtaca tgcatgaaag 942 catttttcgt tgttccctga tagttacatt tcaaccttgg gatttttcca aattacttaa 1002 gatgtttaat gtcagttaaa gattttttta ccctcttttt gggaacatca attttgtact 1062 gttatgcagt aaacatttat aataatataa aa 1094

<210> 87

<211> 1046

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (272)..(1024)

<400> 87

gctggcgtac cgctccggaa ttcccgggtc gacccacgcg tccggaatta ttggttgggg 60
gaaacccacg aggggacgcg gccgaggagg gtcgctgtcc acccgggggc gtgggagtga 120
ggtaccagat tcagcccatt tggccccgac gcctctgttc tcggaatccg ggtgctgcgg 180
attgaggtcc cggttcctaa cggtgggatc ggtgtcctcg ggatgagatt tggcgtttcc 240
tcggggcttt ggtgggatcg gtgtcctcag g atg aga ttt agg gtt tcc tcg
Met Arg Phe Arg Val Ser Ser
1 5

				ggc Gly											34	40
	_		_	gat Asp		-		_	_	-	-		_		38	38
				tgc Cys 45											43	36
				ggg ggg											48	34
				ggt Gly						_					53	32
				ctt Leu			-			_					58	30
			-	ctc Leu									_		62	8 .
				ctc Leu 125											67	'6
_				 gag Glu	_	_	_			-	-		_	_	72	!4
				gtc Val											77	'2
				ctg Leu						-	-		_		82	:0
		_		 agc Ser		_			_			_	_	_	86	;8
_		-	-	aag Lys 205		_	_		-		-			_	91	.6
			_	tct Ser		-		_		-	-	_	_		96	4

		_		_		_			-			-		-	Gly ggg	1012
	ggt Gly			tgc	tctc	cga .	aaaa	aaaa	aa a	a						1046
	<2: <2: <2:	10> 11> 12> 1 13> 1	4797	sap	iens											
	<2	21>	CDS (19)	(1	830)											
atc		00> agc (cccg(ctat	Me				a Vai						c atc e Ile 0	51
			ttc Phe 15													99
			atg Met													147
			att Ile													195
			cga Arg													243
			cga Arg					_		_	_				_	291
			cac His 95		-	-		-	_			-		_		339
			gcc Ala		_	_				_	-	_	_			387
			cac His													435

_		atc Ile	_	_	_		_						_	_		483
		tct Ser														531
		gcc Ala				_										579
		tcc Ser 190														627
		cac His														675
_	_	cta Leu			_	_							-			723
		gaa Glu														771
_	_	gag Glu	_			_		_		_	_		_	_		819
-	-	gct Ala 270				-			_						-	867
	-	atg Met		_	_			_	-		-	-	-	_		915
		ctt Leu			-						-					963
_		aaa Lys		-			-			_					_	1011
		tca Ser														1059
		aat Asn 350														1107

-					_	aac Asn 370				-			_	_		1155
				-	_	aag Lys	_			-					_	1203
						ctg Leu										1251
	_		_		-	tct Ser			_		_	-				1299
					_	gag Glu					_		_	_	-	1347
	-	_	-			aat Asn 450	_	_	_		-	-	_	_	_	1395
						ggc Gly										1443
_			_			gtt Val			-							1491
		-		-	-	gcc Ala			_	_		_	_			1539
_				~	_	gca Ala						_				1587
				_	_	aaa Lys 530	_									1635
_						agt Ser				_						1683
						tgg Trp										1731
_		_	-	-	_	tta Leu		-			_		-	-		1779
aag	ata	gca	ggg	cct	agg	aaa	gaa	gag	gtc	tgg	gat	agt	ttt	aaa	gtg	1827

Lys Ile Ala Gly Pro Arg Lys Glu Glu Val Trp Asp Ser Phe Lys Val 590 595 600

tag catc tccaggaaga agaggaaaaag gagggaaccc cggattggat atgagacaga *	1884
agatataaga atcaaatatt cccaaggagg atttgtcaat caaggaaaac atgacagatg	1944
gtgaggtaaa gtcaaaggca tgggtagaag aggaccaggg gggcaagagc aacaacgtca	2004
taatggagaa gtcagacttt ggtcaagaaa gtccttccct tggtaacact aggaaaatct	2064
ttccatttca gcatgtttaa ggaaaatagc ccacaatgtc tgccctgatc aatatgtatc	2124
catgggactt tgaagatcct aagccaggta aaccaggaga cacagaagac gtaccagatt	2184
tgcaaagaaa gaaaaggtat aagacatata taactgaaat tctaagtagc tgaccgagaa	2244
gaacttactt tacctattta accttgatag cactgctaac ttaatgcatc ccaaaaatat	2304
cttttatatt aatgattgct ctcattttct tataaatgta tgtttcagta tatcgttgtg	2364
tctcatattc aagcattcca gattgtataa tttttgcaaa taactttggt attatgtgac	2424
acaacacatt tatgcaatct gcagctattc aattgttatt gcaccttaca gaatacctgc	2484
tatctatcaa ctttagttga ttcttgaagt acagtaagct ttctctggct tgggaagcca	2544
taactgttac tataaaaact tttagttttg gctgtggttt atatattgtg actttgaatt	2604
tgactctatt atttcacatc atggtttgtt atactgtctt aatcagggtt ttttatacaa	2664
gttgagttac ttgttttgca cttcttgtta ggactcagaa gctttattaa tattggagat	2724
caagtggtcc tacttagtca tatgtctcaa taagttaagg acaacttatc cgttgtttat	2784
tcaaagtcag agatagataa cgccttcatt ccaattaatt gtccctttta actctttcag	2844
tatttcctac ttagcagcat ttccaaagga agaagctaag agtgagaaaa atataccgtg	2904
cattattatt actattggaa agggaagact ctagggatga cataagaatt atagcagtac	2964
tataaaccca ggaagtttgc ctttcaaaaa aaaacacagg tagctcctga tagcactttc	3024
aagggattat ttttttaaag agaaaaatta tggtagcatc aagatcattg tatggatata	3084
tttttattat gtgtactgaa aatacagtat tttaaaaatac cttaaagtat ttattctcat	3144
aaactcttat tcattgcttc agctacaggt agaacttgct gggctcaaat cccaaagagg	3204
ttttataacc ttatttattc aaaacctata aggtggtatg gaatcttcat tctcccaagc	3264
actggaaaat gtctaagtcc tgcaaattgc cattgtgagc cacttgctcg acatgtaaca	3324
tgtaaggtcc atttgcaaag caaagcagcc cccaaagcat attttataaa gcttattgca	3384

ttccacactg atctcttggc atgggaatcc taagctgccg actaagccct accgacatga 3444 tcatgcagtg agattccaaa gctcagtctc atttcattta aagaagaatc actcagaaat 3504 agaaccgaga cttccctttt tctccctgta aacacccaag tatcaactgc ttatttggcc 3564 aggacactcc cagcacaaat aactattttt tatgtcacaa gcagcaagga ggacatgcta 3624 gggtgataaa agatggagaa acaggatcag agggtggata tagggctgtt cttagagagt 3684 attttcagtg gaaggtaaaa acagaattct ccatattcat catcaaattt ttctcagtga 3744 ttttttttat tcaggagtaa gcaagcactt cactgttttc acaaagctgt gcgcaaatct 3804 tcctcaccca tttgctgact ttatgcatta ctcaggttgg tggggtcggt ttgagaagat 3864 atagaaattc tatttttgtg tctttacacc atttatttct tttatctctt ccttttcaat 3924 gaaggeetat atgettggtg accteettta aggaatettt gtgaactggg ttggaagtte 3984 ctagacccac atatttgttt catttatgtc tgaaatctgt tagcacttga ttcctttctt 4044 gagaattatg cagtcaagca tcagtgactt tctattgcac ttcaggattg atcctgctag 4104 agatgtgagt taaaaagact tgccaaatta tatcttagcg acattctata gttcatagat 4164 tattctccac cagcataaat cagtgagagt gcctagagtc tttctgagag tttcattgcc 4224 4284 attatcaaca agagaagttg aaatttacaa gtcaggaggt tatttttcca gattgataac catagaaagt gaataaacac ttttaaggtc gcaaacattt gctaggttgt ccttctcaat 4344 gcatgtgcag gctgcatcct gtccttgttt ttaagccagg gtttataaat aagtagattt 4404 ataccaatct taatagaatt gtatatttta tgcaagaatt aaatgcttta caacatgaag 4464 tataactcaa cccattgtaa actttggtgg caatatggat ttgaaactcg acagttctct 4524 tgtatttgct tcctaggttt ctgcatgcaa gttatgacag gtaggactga aaaaacactg 4584 ccttttgact tctagcattt agcaaccgag agtcgtagag tcaataaagc tgtaagtgtc 4644 ttcacttaat ctgtggttct cctaaaacta ttatctgaaa cctacagcat cccaccatga 4704 aatatttggt aaatttatgt tgtgacgtgt tgcagcatgt aaataattat aacttctctg 4764 4797 caataaaaca tatttatatg aaaaaaaaaa aaa

<210> 89

<211> 2778

<212> DNA

<213> Homo sapiens

<220>

<221> CDS <222> (250)..(2664)

<400> 89	
aagctggtac gcctgcaggt accggtccgg aattcccggg tcgacgattt cgtgagacgg	60
accgagaccg gagatgtttt caagcccggc tccggcggct ttacaggcgg ctgcagcggc	120
gacgaagaca acgacagcga cggctacgcc gaagcactcg ttccgggggt gaagcctcct	180
gcgccggcct tgcctcggat ccaggatgag aagactgata aaagaagaag ctagctgaac	240
agctgtaaa atg ccc aaa tct ggg ttc aca aaa cca att cag agt gaa Met Pro Lys Ser Gly Phe Thr Lys Pro Ile Gln Ser Glu 1 5 10	288
aat tot gac agt gac agc aat atg gta gag aaa cca tat gga aga aag Asn Ser Asp Ser Asp Ser Asn Met Val Glu Lys Pro Tyr Gly Arg Lys 15 20 25	336
agt aaa gac aag att gca tcc tac agc aaa act cca aaa att gaa cga Ser Lys Asp Lys Ile Ala Ser Tyr Ser Lys Thr Pro Lys Ile Glu Arg 30 35 40 45	384
agt gat gtg agc aag gag atg aaa gag aaa tca tcc atg aaa cgt aaa Ser Asp Val Ser Lys Glu Met Lys Glu Lys Ser Ser Met Lys Arg Lys 50 55 60	432
ctt cct ttt act att agc cca tca aga aat gaa gaa cga gat tca gac Leu Pro Phe Thr Ile Ser Pro Ser Arg Asn Glu Glu Arg Asp Ser Asp 65 70 75	480
aca gag aaa gaa ggt cca gaa aag aag aag aca aaa aag gaa gct gga Thr Glu Lys Glu Gly Pro Glu Lys Lys Lys Thr Lys Lys Glu Ala Gly 80 85 90	528
aat aag aaa tcc aca cca gtt agc att ctt ttt ggt tat cca ctc tct Asn Lys Lys Ser Thr Pro Val Ser Ile Leu Phe Gly Tyr Pro Leu Ser 95 100 105	576
gag cga aaa cag atg gca ctt ctt atg cag atg aca gca aga gac aac Glu Arg Lys Gln Met Ala Leu Leu Met Gln Met Thr Ala Arg Asp Asn 110 125	624
agt cca gat tcc aca cca aat cat cca tca caa aca ac	672
aag aaa act ccc agt tct tca tct cga cag aaa gat aaa gtt aat aaa Lys Lys Thr Pro Ser Ser Ser Ser Arg Gln Lys Asp Lys Val Asn Lys 145 150 155	720
aga aat gaa cgt ggt gaa act cct tta cac atg gct gct att cga gga Arg Asn Glu Arg Gly Glu Thr Pro Leu His Met Ala Ala Ile Arg Gly 160 165 170	768
gat gtg aaa caa gtt aaa gaa tta ata agt tta ggg gca aat gtg aat	816

Asp	Val 175	Lys	Gln	Val	Lys	Glu 180	Leu	Ile	Ser	Leu	Gly 185	Ala	Asn	Val	Asn	
		-		-					-		gaa Glu	-	-		_	864
			-	-	_	_				-	gct Ala		-	-	_	912
					_	_	_				cat His	_		_	_	960
-			_	-		-	_	_			cgt Arg			~ ~		1008
											gtg Val 265					1056
			_		_				-		gtg Val				•	1104
											caa Gln					1152
											gag Glu					1200
	_	_	_		_				_		aca Thr					1248
											gat Asp 345					1296
											gaa Glu		_		_	1344
											gca Ala					1392
											caa Gln					1440
											gaa Glu					1488

405 410 400 aaa aag att tot act toa tgt too gto atc cot gaa aca toa aat tot 1536 Lys Lys Ile Ser Thr Ser Cys Ser Val Ile Pro Glu Thr Ser Asn Ser gat atg caa acc aaa aag gaa tat gta gtt tca ggt gaa cac aaa cag 1584 Asp Met Gln Thr Lys Lys Glu Tyr Val Val Ser Gly Glu His Lys Gln 435 440 aaa ggc aaa gtt aaa aga aaa ttg aaa aat cag aat aaa aat aaa gag 1632 Lys Gly Lys Val Lys Arg Lys Leu Lys Asn Gln Asn Lys Asn Lys Glu 450 455 aac caa gag cta aag caa gaa aag gaa gga aaa gaa aat aca aga ata 1680 Asn Gln Glu Leu Lys Gln Glu Lys Glu Gly Lys Glu Asn Thr Arg Ile 465 470 aca aac ttg aca gta aat act gga cta gat tgt tca gaa aag acc aga 1728 Thr Asn Leu Thr Val Asn Thr Gly Leu Asp Cys Ser Glu Lys Thr Arg 480 485 gag gag ggg aac ttt agg aaa tct ttt agc cca aaa gat gat act tca 1776 Glu Glu Gly Asn Phe Arg Lys Ser Phe Ser Pro Lys Asp Asp Thr Ser 495 500 tta cat tta ttt cat att tcc act ggt aaa tct ccc aaa cat tct tgt 1824 Leu His Leu Phe His Ile Ser Thr Gly Lys Ser Pro Lys His Ser Cys 515 gga tta agt gaa aaa cag tca aca cca cta aaa caa gaa cat act aaa 1872 Gly Leu Ser Glu Lys Gln Ser Thr Pro Leu Lys Gln Glu His Thr Lys 1920 aca tgt tta tca cca gga agt tct gaa atg tca tta cag cct gat ctt Thr Cys Leu Ser Pro Gly Ser Ser Glu Met Ser Leu Gln Pro Asp Leu 545 550 1968 gtt cgg tat gat aat aca gaa tct gaa ttc ttg cca gaa agt tca agt Val Arg Tyr Asp Asn Thr Glu Ser Glu Phe Leu Pro Glu Ser Ser Ser 560 565 gta aaa tct tgt aag cat aag gaa aaa agc aaa cat cag aaa gat ttc 2016 Val Lys Ser Cys Lys His Lys Glu Lys Ser Lys His Gln Lys Asp Phe 575 2064 cac tta gaa ttt ggt gaa aaa tca aat gcc aaa ata aag gat gaa gat His Leu Glu Phe Gly Glu Lys Ser Asn Ala Lys Ile Lys Asp Glu Asp 590 cat agt cca aca ttt gaa aat tca gat tgc aca ctg aaa aaa atg gat 2112 His Ser Pro Thr Phe Glu Asn Ser Asp Cys Thr Leu Lys Lys Met Asp 610 615 aaa gaa ggt aaa aca tta aaa aaa cat aaa ttg aag cat aaa gag agg 2160 Lys Glu Gly Lys Thr Leu Lys Lys His Lys Leu Lys His Lys Glu Arg 625 630

gaa a Glu L		u Lys				-		_		_	_	_			2208
aaa a Lys T 6!			_	_		-	-	-		_		_		_	2256
aga ga Arg Gi 670									_	_	_		_	_	2304
ctc ti Leu Pl			_	_		_					-				2352
aaa tt Lys Le			Asn			_	_				_	_	_		2400
gtg to Val Se		s Glu						_	_	_	-			-	2448
gaa ag Glu Se 73															2496
gag ag Glu Ar 750														_	2544
ggt at Gly Me													_	-	2592
gaa at Glu Il	_		Glu			_	_			_	_				2640
aaa aa Lys Ly		s Gly		_		-	agta	itccc	tc g	ıaggg	igaac	a ag	gctta	ıcgcg	2694
taccca	agctt	tctt	gtaca	aa ag	gtggt	ccct	ata	ıgtga	.gtc	gtat	tata	ag c	tggc	gcctg	2754
cgcago	ctagt	caac	ctcto	ca co	ett										2778

<210> 90 <211> 1070

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (727)..(876) <220> <221> misc_feature <222> (1)...(1070) <223> n = a,t,c or g<400> 90 60 cggnttgaag tatttaaaca taattagaat cttaaggcca gtgtcacata ttgtaatatg ccaattatgt ttaaatactt caaacagcaa atactacagt ttatctcaat gaatataata 120 accattectg ctgggegeag tggeteatge etttaateee agteattaag gaggetgagg 180 tgggaagatt gcttgaaacc aggagattgc ctcaggcctg ggcaacatgg tgagacctct 240 tateteaaaa aateaaaata aaaaattage tgggcatggt ggeteateee tgtageecea 300 gcttctcaag aggctgaggt gggaggatag cttcagccta ggagacagaa gctgcagtga 360 gctatgatca caccactaca ctccagcctg gacaacagaa agagaccttg tctctaaaaa 420 caaaacaaaa caatcaaaca aaaaagtact cctgaattta agtattgatg gctatgggaa 480 ttgcttccta acctgtttga aaaatgtgtt aactgttaca tattttgaga actgcagcac 540 tcagtgaagc tttgttaaag ggaatgagga gtttaggccc cagcaggcaa accacttcac 600 agtgctagga tgaagagete acactcaggg acttcgagag tgaatcaact actttcgtta 660 720 actcaatgtt aaatgagaat aacatcaacc ttggatggtt gtggtgagaa tcaaatgaaa atg gga aaa cct ttg tca cat gtt aca caa ttg acg gca act 768 tgacat Met Gly Lys Pro Leu Ser His Val Thr Gln Leu Thr Ala Thr aca gct tta ggt aga att tca act tct aat ttt tac tac tat gca aat 816 Thr Ala Leu Gly Arg Ile Ser Thr Ser Asn Phe Tyr Tyr Tyr Ala Asn 15 20 25 30 864 tat cag aat att tat gat gtt aac ttt tta aaa agg ttt tta aat aga Tyr Gln Asn Ile Tyr Asp Val Asn Phe Leu Lys Arg Phe Leu Asn Arg 35 40 aac ttt att taa ata aatgaactct tctcaacccc aaaacccagc ttctgatctt 919 Asn Phe Ile 50 gactaagttc ataattactc agggaaaaac actgctggtt ccttataagc cactgtgctg 979 tacgaaatca attcatgaaa aggaaacgcc ctatttccaa gcatacctgt actagaatat 1039 1070 attaagtata ttcacttaac atattaattt a

	<2 <2	10> 11> 12> 13>	1784 DNA	sap	iens											
	<2	20> 21> 22>) (932)											
gg		00> ctg		gcgg	tc g	gtcg	agtg	t gg	cctg	tgtg	gac	taga	atc	ttgc	ccgaag	60
cc	gggcg	gag	gaga	gctc	aa g	ctaa	gggt	g at	cagc	ccat	gac	ctaa	acc	tcca	gacaaa	120
at	aaaac	gga .	aaat	ttgc	ta g	aatc	aaga	Me				э Су			t gga l Gly	173
_	c cag l Gln 10		-					-							_	221
	c aca s Thr 5												-	-		269
	a ctt u Leu															317
	c ttt s Phe								-	_			_		_	365
	g tca s Ser	-	~	_						_			_			413
	t ttg n Leu 90				-		_	_	_			_	_	_		461
	t gga e Gly 5													_		509
	g ata n Ile															557
_	g aaa g Lys				_		_		_		_	_				605
ca	a ttt	acg	aat	cca	gga	agg	caa	act	gaa	ttt	gct	cca	gaa	act	ggt	653

Gln Phe Thr Asn Pro Gly Arg Gln Thr Glu Phe Ala Pro Glu Thr Gly 155 160 165	
aaa aga gaa aaa aga agg ctt aca aaa aat gca acc gct ggt tca gac Lys Arg Glu Lys Arg Arg Leu Thr Lys Asn Ala Thr Ala Gly Ser Asp 170 175 180	701
aga caa gtg ata cca gca aag agt aag gtc tat gat agc cag ggt ctc Arg Gln Val Ile Pro Ala Lys Ser Lys Val Tyr Asp Ser Gln Gly Leu 185 190 195 200	749
ctg att ttt agt ggg atg gac ctc tgt gac tgc ctg gat gaa gac tgc Leu Ile Phe Ser Gly Met Asp Leu Cys Asp Cys Leu Asp Glu Asp Cys 205 210 215	797
tta gga tgt ttc tat gct tgt cct gcc tgt ggt tct acc aag tgt gga Leu Gly Cys Phe Tyr Ala Cys Pro Ala Cys Gly Ser Thr Lys Cys Gly 220 225 230	845
gct gaa tgc cgc tgt gac cgc aag tgg ctg tat gag caa att gaa att Ala Glu Cys Arg Cys Asp Arg Lys Trp Leu Tyr Glu Gln Ile Glu Ile 235 240 245	893
gaa gga gga gaa ata att cat aat aaa cat gct gga taa tctgcggtac Glu Gly Gly Glu Ile Ile His Asn Lys His Ala Gly * 250 255 260	942
caaactatgg agcctttaaa ggtctttatt tctaaaaatc tgttactcta agatacattt	1002
taagcttgat tatcatatga caaagatttt aaaaccatct cagtgtgccc taatttttca	1062
tottgggtgc tttaagattc actatttgat ataaattcag ataggctatt tttcagtagt	1122
cagcgttaag cctgtctgga tcaatataaa caagtagggt gtaggcagtc ctctatttgc	1182
atgtttccca tgggcacaaa tttcagtgac ctagatttag tttaaatacc agtttcctta	1242
ccaggaagga aagaaaactg gtaaggaaac tgttgttgtt aaaatctagg ttaaaatttt	1302
agttagcaca ttgtaactga gtaattacat gaagtacaaa cctctctgct agctcttcag	1362
tctacaaatc gctatgtaaa taacagatat gcttcatgat tgtgaccagt catgttattt	1422
ctttcaaatt cttccagtgg tttgtccctg tgcatctgtt aattcagttc acgtacagca	1482
gagcatgtag ttatgctgtc tctctgtcat ctacttgaca ttctatagaa gtgaacactc	1542
gaaagaactg gtcaacaaag atgaaagtgc agcaaagcaa	1602
agtgaaattt taatcaaaca taaatgaatt tgtagaagaa gtcactgacc atgggaatgt	1662
tgttcttgct gctgtgtatt cataggagct tagtgaaggc aaacttacca acacaaataa	1722
gcaaagtggt tgcaataaag acagatacgt cccagaggaa gtgatggtta aaaaaaaaa	1782
aa	1784

<210> 92 <211> 2559 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (978)..(1451)

<400> 92 agtaaaaaat atgctggtta taaaccttag gggactaccc attgaatatg tggtccatcg 60 ttgacctaaa catcattatg tggtgcatga ctgtccgtat atgcagatta aactaccaaa 120 cattttttcc agcaaaggtg gtttttgaaa gtaacctaat gaaaccctgg ctgccatggg 180 cattttaatt ctggactgag aagaagcgac tctgcgttgt gctgttggcc caggcctgca 240 tgcctgagga ctgttggccg ttacagttcc ttgctgtggt cgccggtctc tctgtattct 300 gccactgctc tcatgtggca tttggcagaa gtactacgta gatttctgtg ctactgaaaa 360 aaataaaaac agtggttcct tttaatagcc ctgatttgag acttaggaga gggtcaagag 420 tccctacctg atttatgagg agagaagatt ttttaaaaaac ctcatgtgat gctgtcatac 480 atagttcaaa gagcttccct taattcactt catttacctt tttttccatt ttcgcttgag 540 aactagagaa gtttgtgttc tgttggaacc ctctgtagaa cactttacac tcagttctga 600 tggacctttt caggggcgat tttttaaaaa ccgctctcga aagtagtctt aaaatgagag 660 720 cactttattg atggcttttc aggactgtgt tggtattttt catgcagtgt atttgtcagc ttacattttt cagttgagct acctgatgct actgacacac atatgatttt cctatcttac 780 caggcaaata ctactgttaa cgttttaata gtaagtctac ttatgcacat tgattttact 840 ttgaaaaaag aactggttta aaaggaaaaa aaagaaacta aaattcttta aaattgtaat 900 ggcagtgaag cattttatag tttctcctcc ctcattggtt ctgaattttg gtgacaggtg 960 tatttcttaa tgcagat atg aaa aac agt agc tcc gta tcg aat aca ttg 1010 Met Lys Asn Ser Ser Ser Val Ser Asn Thr Leu aca aat gga tgt gtc atc aat gga cat ttg gac ttc ccc tcc acg acc 1058 Thr Asn Gly Cys Val Ile Asn Gly His Leu Asp Phe Pro Ser Thr Thr 15 ccg ctc agt ggg atg gaa agc agg aat ggc cag tgc ttg aca gga act 1106 Pro Leu Ser Gly Met Glu Ser Arg Asn Gly Gln Cys Leu Thr Gly Thr 30 35

aac gga att agc agt gga tta gcc cca gga cag ccg ttt ccg agt agc Asn Gly Ile Ser Ser Gly Leu Ala Pro Gly Gln Pro Phe Pro Ser Ser 45 50 55	1154
cag ggt tct ctc tgc att agt ggg act gag gag cca gag aag acc ctg Gln Gly Ser Leu Cys Ile Ser Gly Thr Glu Glu Pro Glu Lys Thr Leu 60 65 70 75	1202
aga gct aac cct gag ttg tgc ggt tct ctg cac ctg aac ggg agt cca Arg Ala Asn Pro Glu Leu Cys Gly Ser Leu His Leu Asn Gly Ser Pro 80 85 90	1250
agt agc tgc ata gcc agt agg cct tcc tgg gtg gaa gac att ggg gat Ser Ser Cys Ile Ala Ser Arg Pro Ser Trp Val Glu Asp Ile Gly Asp 95 100 105	1298
aac ctg tac tat gga cac tac cac ggg ttt ggg gac act gct gaa agc Asn Leu Tyr Tyr Gly His Tyr His Gly Phe Gly Asp Thr Ala Glu Ser 110 115 120	1346
atc cca gaa ctg aac agt gtg gtc gag cat tcc aag tcc gtg aag gtg Ile Pro Glu Leu Asn Ser Val Val Glu His Ser Lys Ser Val Lys Val 125 130 135	1394
cag gag cgg tac gac agt gcc gtg ctg ggc acc atg cac ctg cac cac Gln Glu Arg Tyr Asp Ser Ala Val Leu Gly Thr Met His Leu His His 140 145 150 155	1442
ggc tcc tag agacgct gacctggctc tcggaaacgc aggagtccct cctggtagcc Gly Ser *	1498
agctcagaat acccatgtag cagcaacttg aacgaatgtc acaacttgta cttttttat	1558
agctcagaat acccatgtag cagcaacttg aacgaatgtc acaacttgta cttttttat atacttcaac tttctgaaaa agtaaacttc gacaagttcc cagcaactgc ttgtttgtgc	1558 1618
atacttcaac tttctgaaaa agtaaacttc gacaagttcc cagcaactgc ttgtttgtgc	1618
atacttcaac tttctgaaaa agtaaacttc gacaagttcc cagcaactgc ttgtttgtgc atgagtaggg cttactaagt gcatagatgt ttctacagtg aggtgtcctt tttataaggt	1618 1678
atacttcaac tttctgaaaa agtaaacttc gacaagttcc cagcaactgc ttgtttgtgc atgagtaggg cttactaagt gcatagatgt ttctacagtg aggtgtcctt tttataaggt gcacttttgg agttttctg atgccaatct caacattgtc tttttaatac tgtcaccaga	1618 1678 1738
atacttcaac tttctgaaaa agtaaacttc gacaagttcc cagcaactgc ttgtttgtgc atgagtaggg cttactaagt gcatagatgt ttctacagtg aggtgtcctt tttataaggt gcacttttgg agttttctg atgccaatct caacattgtc tttttaatac tgtcaccaga tattgccatt tttctttttg ttaaaagatt atatgatcaa gataaattgg ggtggtaaat	1618 1678 1738 1798
atacttcaac tttctgaaaa agtaaacttc gacaagttcc cagcaactgc ttgtttgtgc atgagtaggg cttactaagt gcatagatgt ttctacagtg aggtgtcctt tttataaggt gcacttttgg agttttctg atgccaatct caacattgtc tttttaatac tgtcaccaga tattgccatt tttctttttg ttaaaagatt atatgatcaa gataaattgg ggtggtaaat caggtgcctg gtaatttatc tctttgcaca tgggcatcat tttaaaaagc ttgcttccac	1618 1678 1738 1798 1858
atacttcaac tttctgaaaa agtaaacttc gacaagttcc cagcaactgc ttgtttgtgc atgagtaggg cttactaagt gcatagatgt ttctacagtg aggtgtcctt tttataaggt gcacttttgg agttttctg atgccaatct caacattgtc tttttaatac tgtcaccaga tattgccatt tttctttttg ttaaaagatt atatgatcaa gataaattgg ggtggtaaat caggtgcctg gtaatttatc tctttgcaca tgggcatcat tttaaaaagc ttgcttccac tctttctgt agaatttgac ggaacacagc tatttcccta tgcaaggtac agccttacaa	1618 1678 1738 1798 1858 1918
atacttcaac tttctgaaaa agtaaacttc gacaagttcc cagcaactgc ttgtttgtgc atgagtaggg cttactaagt gcatagatgt ttctacagtg aggtgtcctt tttataaggt gcacttttgg agttttctg atgccaatct caacattgtc tttttaatac tgtcaccaga tattgccatt tttcttttg ttaaaagatt atatgatcaa gataaattgg ggtggtaaat caggtgcctg gtaatttatc tctttgcaca tgggcatcat tttaaaaagc ttgcttccac tctttctgt agaatttgac ggaacacagc tatttcccta tgcaaggtac agccttacaa agatttctgc agtgatttgt gtgaagaaga gaatgtttgt cttttcaat gaagctttgc	1618 1678 1738 1798 1858 1918
atacttcaac tttctgaaaa agtaaacttc gacaagttcc cagcaactgc ttgtttgtgc atgagtaggg cttactaagt gcatagatgt ttctacagtg aggtgtcctt tttataaggt gcacttttgg agttttctg atgccaatct caacattgtc tttttaatac tgtcaccaga tattgccatt tttcttttg ttaaaagatt atatgatcaa gataaattgg ggtggtaaat caggtgcctg gtaatttatc tctttgcaca tgggcatcat tttaaaaagc ttgcttccac tcttttctgt agaatttgac ggaacacagc tatttcccta tgcaaggtac agccttacaa agatttctgc agtgatttgt gtgaagaaga gaatgtttgt cttttcaat gaagctttgc agatcaccat gtggttgaag gttttagttg tggacacagt ggtccctcct taatgatgaa	1618 1678 1738 1798 1858 1918 1978 2038
atacttcaac tttctgaaaa agtaaacttc gacaagttcc cagcaactgc ttgtttgtgc atgagtaggg cttactaagt gcatagatgt ttctacagtg aggtgtcctt tttataaggt gcacttttgg agttttctg atgccaatct caacattgtc tttttaatac tgtcaccaga tattgccatt tttcttttg ttaaaagatt atatgatcaa gataaattgg ggtggtaaat caggtgcctg gtaatttatc tctttgcaca tgggcatcat tttaaaaagc ttgcttccac tctttctgt agaatttgac ggaacacagc tatttccta tgcaaggtac agccttacaa agattctgc agtgattgt gtgaagaaga gaatgtttgt cttttcaat gaagctttgc agatcaccat gtggttgaag gttttagttg tggacacagt ggtccctcct taatgatgaa gatcactgcc ttgggcttca tggaaaacag gcccagcctg gggctgcgtt tggatttatt	1618 1678 1738 1798 1858 1918 1978 2038 2098

<210> 93 <211> 813 <212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (286)..(759)

55

<400> 93 cggcacgagg gagctttgag gcggtctaac tacccagctt ttagtattta tgttccccaa 60 aatgtaaaaa ctgtaagtta ttcttgaaaa tgtagtccag acatttcttt gatcctggat 120 tttactgcag tttcatcatg ggtttgttga atgtgcagtc catttattgc cctgtcttgc 180 ttaaatattc ttgttgagaa cagctggagg ctttgactgg gttcctagtt ctgttttctg 240 ggaaggcaac gtggattctg ttttgtagac attaatgagc tttaa 294 atg gga att Met Gly Ile ggg gat gat gta tgt cta caa aaa aaa aaa agt tgg agc ggc cgc caa 342 Gly Asp Asp Val Cys Leu Gln Lys Lys Lys Ser Trp Ser Gly Arg Gln 10 15 390 ctt agg ggc cac gtg agc cac ggc cac ggc cgc ata ggc aag cac cgg Leu Arg Gly His Val Ser His Gly His Gly Arg Ile Gly Lys His Arg 20 25 3.0 35 aag cac ccc ggc ggc cgc ggt aat gct ggt ggt ctg cat cac cac cgg 438 Lys His Pro Gly Gly Arg Gly Asn Ala Gly Gly Leu His His Arg 40 50 45

aag cat tac cac tta aag agg aac cag agc ttc tgc cca act gtc aac
Lys His Tyr His Leu Lys Arg Asn Gln Ser Phe Cys Pro Thr Val Asn
70 75 80

atc aac ttc gac aaa tac cac cca ggc tac ttt ggg aaa gtt ggt atg

Ile Asn Phe Asp Lys Tyr His Pro Gly Tyr Phe Gly Lys Val Gly Met

60

ctt gac aaa ttg tgg act ttg gtc agt gaa cag aca cgg gtg aat gct 582

486

Leu Asp Lys Leu Trp Thr Leu Val Ser Glu Gln Thr Arg Val Asn Ala 85 90 95	
gct aaa aac aag act ggg gct gct ccc atc att gat gtg gtg cga tcg Ala Lys Asn Lys Thr Gly Ala Ala Pro Ile Ile Asp Val Val Arg Ser 100 105 110 115	630
ggc tac tat aaa gtt ctg gga aag gga aag ctc cca aag cag cct gtc Gly Tyr Tyr Lys Val Leu Gly Lys Gly Lys Leu Pro Lys Gln Pro Val 120 125 130	678
atc gtg aag gcc aaa ttc ttc agc aga aga gct gag gag aag att aag Ile Val Lys Ala Lys Phe Phe Ser Arg Arg Ala Glu Glu Lys Ile Lys 135 140 145	726
agt gtt ggg ggg gcc tgt gtc ctg gtg gct tga agccacat ggagggagtt Ser Val Gly Gly Ala Cys Val Leu Val Ala * 150 155	777
tcattaaatg ctaactactt tttcaaaaaa aaaaaa	813
<210> 94 <211> 1686 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (737)(1003)	
<221> CDS	60
<221> CDS <222> (737)(1003) <400> 94	60 120
<221> CDS <222> (737)(1003) <400> 94 taataaatgg tatgaatata tattttgcat actttacaat aaagaaaatt ttgaaagaaa	
<221> CDS <222> (737)(1003) <400> 94 taataaatgg tatgaatata tattttgcat actttacaat aaagaaaatt ttgaaagaaa atggatctaa aactttgttt ccctccaatt tacatagtaa agtcaactgc atacagttct	120
<pre><221> CDS <222> (737)(1003) <400> 94 taataaatgg tatgaatata tattttgcat actttacaat aaagaaaatt ttgaaagaaa atggatctaa aactttgttt ccctccaatt tacatagtaa agtcaactgc atacagttct ttccatgtgt aagttttaca tttgtattt ctacaattaa gtaaatctaa atgttaaatt</pre>	120 180
<pre><221> CDS <222> (737)(1003) <400> 94 taataaatgg tatgaatata tattttgcat actttacaat aaagaaaatt ttgaaagaaa atggatctaa aactttgttt ccctccaatt tacatagtaa agtcaactgc atacagttct ttccatgtgt aagttttaca tttgtatttt ctacaattaa gtaaatctaa atgttaaatt ttaacacata tatccaatta tgtacacaat tacaatgtca atttataagt caagcttact</pre>	120 180 240
<pre><221> CDS <222> (737)(1003) <400> 94 taataaatgg tatgaatata tattttgcat actttacaat aaagaaaatt ttgaaagaaa atggatctaa aactttgttt ccctccaatt tacatagtaa agtcaactgc atacagttct ttccatgtgt aagttttaca tttgtatttt ctacaattaa gtaaatctaa atgttaaatt ttaacacata tatccaatta tgtacacaat tacaatgtca atttataagt caagcttact taacaatcat aaattacaaa aaacgcacta tgaataattt tgttctagaa gtatcacatc</pre>	120 180 240 300
<pre><221> CDS <222> (737)(1003) <400> 94 taataaatgg tatgaatata tattttgcat actttacaat aaagaaaatt ttgaaagaaa atggatctaa aactttgttt ccctccaatt tacatagtaa agtcaactgc atacagttct ttccatgtgt aagttttaca tttgtatttt ctacaattaa gtaaatctaa atgttaaatt ttaacacata tatccaatta tgtacacaat tacaatgtca atttataagt caagcttact taacaatcat aaattacaaa aaacgcacta tgaataattt tgttctagaa gtatcacatc aactcatatg atctaggtga acccaaaagt aaaaaataat gattataaat tatggtagtg</pre>	120 180 240 300 360
<pre><221> CDS <222> (737)(1003) <400> 94 taataaatgg tatgaatata tattttgcat actttacaat aaagaaaatt ttgaaagaaa atggatctaa aactttgttt ccctccaatt tacatagtaa agtcaactgc atacagttct ttccatgtgt aagttttaca tttgtatttt ctacaattaa gtaaatctaa atgttaaatt ttaacacata tatccaatta tgtacacaat tacaatgtca atttataagt caagcttact taacaatcat aaattacaaa aaacgcacta tgaataattt tgttctagaa gtatcacatc aactcatatg atctaggtga acccaaaagt aaaaaataat gattataaat tatggtagtg tctgtaaaac cctgttataa aggaggtatt cttttaaaat atgtacctta tatataaaag</pre>	120 180 240 300 360 420
<pre><221> CDS <222> (737)(1003) <400> 94 taataaatgg tatgaatata tattttgcat actttacaat aaagaaaatt ttgaaagaaa atggatctaa aactttgttt ccctccaatt tacatagtaa agtcaactgc atacagttct ttccatgtgt aagttttaca tttgtatttt ctacaattaa gtaaatctaa atgttaaatt ttaacacata tatccaatta tgtacacaat tacaatgtca atttataagt caagcttact taacaatcat aaattacaaa aaacgcacta tgaataattt tgttctagaa gtatcacatc aactcatatg atctaggtga acccaaaagt aaaaaataat gattataaat tatggtagtg tctgtaaaac cctgttataa aggaggtatt cttttaaaat atgtacctta tatataaaag ctcctgactc cttttaagga ccaaaattat tttcagtcta accattttca ttaaagcgct</pre>	120 180 240 300 360 420 480
<pre><221> CDS <222> (737)(1003) <400> 94 taataaatgg tatgaatata tattttgcat actttacaat aaagaaaatt ttgaaagaaa atggatctaa aactttgttt ccctccaatt tacatagtaa agtcaactgc atacagttct ttccatgtgt aagttttaca tttgtatttt ctacaattaa gtaaatctaa atgttaaatt ttaacacata tatccaatta tgtacacaat tacaatgtca atttataagt caagcttact taacaatcat aaattacaaa aaacgcacta tgaataattt tgttctagaa gtatcacatc aactcatatg atctaggtga acccaaaagt aaaaaataat gattataaat tatggtagtg tctgtaaaac cctgttataa aggaggtatt cttttaaaat atgtacctta tatataaaag ctcctgactc cttttaagga ccaaaattat tttcagtcta accattttca ttaaagcgct tatttaaaaa gtatcacctt ataaaactga gtatataaaa tacaatgcag cccttgatag</pre>	120 180 240 300 360 420 480 540

cctttatgtt acaact atg aaa gtc ttc aat cca att ccc tgc ttc Met Lys Val Phe Asn Pro Ile Pro Cys Phe I	
aca aag gac aaa gaa agc cta aac ttt cct ttt ttc tgg gct cca a Thr Lys Asp Lys Glu Ser Leu Asn Phe Pro Phe Phe Trp Ala Pro I 15 20 25	
gga agc agc att tac aac gtg tct ggc ttg gtg gga gga aga ttg tc Gly Ser Ser Ile Tyr Asn Val Ser Gly Leu Val Gly Gly Arg Leu Se 30 35 40	
att gag gta tca tgt gtg ttc acc tgc ctc tct tgc cct att tct tc Ile Glu Val Ser Cys Val Phe Thr Cys Leu Ser Cys Pro Ile Ser Le 45 50 55	
gtt gct ata aat ttc ctg ctt ctc aaa tat ctg gat ttt tgg cta cc Val Ala Ile Asn Phe Leu Leu Leu Lys Tyr Leu Asp Phe Trp Leu Pi 60 65 70	
att tgg ctt ccg tct ttg gtg ttt ata tct gtc tgg ttt tag caggto Ile Trp Leu Pro Ser Leu Val Phe Ile Ser Val Trp Phe * 80 85	ct 1010
ctctgattcc tgacccacag ctcctctcct tctctaatat tcaagtatgc tgcttcc	ccta 1070
actcctcatt ccttctcctt gaatttcact ttacaattgc gctaggttct aacatcc	gttg 1130
gccatagatt accacaaaac ataatttctt aaattctgca aatttctaat gtttcta	aatc 1190
ttggtttcct acaagatcta acactaagct tgtgttatcc tgattacagt gtatata	aaaa 1250
caatgettgt ggaaaattaa eetaggagaa agettatagg ggaaacetga tgatgaa	attt 1310
tattaaatta ataaccctta taacaatttc aaatgtaata ctatctggat ttgaact	ttca 1370
atacttttcc taagtaaaat tcttaaccat ggtagaagtt atgtttgttg atgttca	actc 1430
atctataccc tccatattct cagcaaagtt ggcataaatc tgacctgaat aaacagg	ggtt 1490
ataacattat caggcttgta aaatacttta tcaaatcaat gcatcagtta aagcagg	gggt 1550
ccccagccct gggctgtgtg tggcctgtta ggaatcgggc cacacagttg gtgagct	gag 1610
aggcaggtga gtgagcatta ctgcctgagc tccacctctt gttagatcag tagtggc	catt 1670
agattctcac tcgtgc	1686

<210> 95 <211> 1217

<212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (353)..(472)

<400> 95 cttgcagact tttgacacaa gttctccaca aagtgtgaag agagccccag gcattcctga 60 ttggtcaatg ggagagecta actttcattg ttttcttcag tacaaagagt atccaaaagc 120 taagtttttg tattccacta ctttcagttc aataaaacct agagttgttt catctgcgcc 180 taaagtgtat ggcacaattt tcttaagaat taggggaacc aggtgcctac agttaaagga 240 acgtttcagt tcctttcatt cattcctggg tttttctttt attttctaag aaggttgaag 300 aaggatgagt gatagagaag aaagcaacac cattgatttt ttttttaag aa 355 atg Met 403 ata tat ata tgt ata tgt ttg tgt gtg tgt gtg tgt gtg tgt gta ttc Ile Tyr Ile Cys Ile Cys Leu Cys Val Cys Val Cys Val Cys Val Phe 10 tgt gca tta ttt tgt cat gat ctc aat tct ctt ctt tcc acc aaa gtt 451 Cys Ala Leu Phe Cys His Asp Leu Asn Ser Leu Leu Ser Thr Lys Val 20 504 tgt cgt aat att ttc tcc tga ag gtgcattctg gctcctttaa attagtcagt Cys Arg Asn Ile Phe Ser 35 40 gttatattgt aggagactgt catggaaaaa aggactcagt ttactttcgt cattttcaca 564 624 ggggaacctt ttaaaacaat cttttcagca gcagatacct ttaaccctaa taatctcagg ccttgatgaa aatactatat tttgtagatt atggttaaag ggggaaaatt actagttccg 684 744 taagataaat atgagctcca tttgacttct gatgtctggt ttagcattac ataatatgtt gatcttacac tctgcttttg tccaaataaa atgcaatagt atcaatatca atttcagaaa 804 aatggactga atatgctttt ttggtgatga aatctcatgt acgatattta tagtgatgtg 864 cttttatttt ctcatgagat actaaatatt aattgtgttg tacatttgtt cttagcatat 924 984 attaaagttt tgaaccaaat gtgttaaagc ttacgctttg ccatgtaaat ttcccagaag ttgttgagct caaatgtatc ctacatccag ctgtagaaat ttgtcagaaa ttgtttaaat 1044 tttgtatata attgtactgt ttaattctag ccattgcgct gaacagtatt tgagttacca 1104 tataatatgg ctttacacaa ggaaatgtgt ggcttttgtt ttgtattttt tcagtataga 1164 agttcctgtg tcttatttaa ataaagttat tagtaaaact gaaaaaaaaa aaa 1217

<210> 96

<211> 1380 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (691)..(1173) <400> 96 atgatagcca tcagggaccg gcccggaatt tccggggtga accacgcgtt cggccagagg 60 tttttagaga acgttcttcg agaggacctt ttgcatggaa atccaggcgg gacttacctt 120 gcttgcaatt gaacatcacc ccccaactgg aagagcctca catcctggac gaatgaccaa 180 ggcgccagga gaaagactgt gttttctccc acgctacctg ccgcccgctc ttctcttggc 240 tctctgcaaa cacctgaagc tgtgaccacc agaaagggca caggcttgct ttcctcagac 300 tacaggatca tcaatggcaa aagtggaact caggacatcc agcctggccc tctttttaat 360 aataatgctg atggagtggc cacagatata acttctacca gatccttaaa ttacaaaagc 420 actagcagcg gtcacagaga aatatcatca cctaggattc aggatgctgg acctgcttcc 480 cgagatgtcc aggccactgg cagaatcgca gatgatgctg acccaagagt agcacttgtt 540 aacgattett tatetgatgt cacaagtace acatetteta gggtggatga teatgactea 600 gaggaaattt gtcttgacca tctgtgtaag ggttgtccgc ttaatggtag ctgcagcaaa 660 gtccacttcc atctgcctta ccggtggcag atg ctt att ggt aaa acc tgg 711 Met Leu Ile Gly Lys Thr Trp 1 5 acg gac ttt gag cac atg gag acg atc gag aaa ggc tac tgt aac ccc 759 Thr Asp Phe Glu His Met Glu Thr Ile Glu Lys Gly Tyr Cys Asn Pro 10 15 20 gga atc cac ctc tgt tct gta gga agt tat aca atc aat ttt cgg gta 807 Gly Ile His Leu Cys Ser Val Gly Ser Tyr Thr Ile Asn Phe Arg Val 30 atg agt tgt gat tcc ttt ccc atc cga cgc ctc tcc act cct tct tct 855 Met Ser Cys Asp Ser Phe Pro Ile Arg Arg Leu Ser Thr Pro Ser Ser 40 45 gtc acc aag cca gcc aat tct gtc ttc acc acc aaa tgg att tgg tat 903 Val Thr Lys Pro Ala Asn Ser Val Phe Thr Thr Lys Trp Ile Trp Tyr 60 tgg aag aat gaa tct ggc aca tgg att cag tat gga gaa gag aaa gac 951 Trp Lys Asn Glu Ser Gly Thr Trp Ile Gln Tyr Gly Glu Glu Lys Asp 75 80

Lys Arg Lys Asn Ser Asn Val Asp Ser Ser Tyr Leu Glu Ser Leu 90 95 100	
caa tcc tgt ccg agg gga gtt gtg cca ttt cag gcg ggc tca cgg Gln Ser Cys Pro Arg Gly Val Val Pro Phe Gln Ala Gly Ser Arg 105 110 115	
tat gag ctg agt ttc caa ggg atg att cag aca aac ata gct tcc Tyr Glu Leu Ser Phe Gln Gly Met Ile Gln Thr Asn Ile Ala Ser 120 125 130	
act caa aag gat gtc atc aga aga cca aca ttt gtg cct cag tgg Thr Gln Lys Asp Val Ile Arg Arg Pro Thr Phe Val Pro Gln Trp 140 145 150	Tyr
gtg cag cag atg aag aga ggg cca gag taa g tgttctgaag cagctg Val Gln Gln Met Lys Arg Gly Pro Glu * 155 160	tttg 1194
ctgacagatg cttgagatgt tcatgccctg ggctcatcaa gtcactcgtg aatc	tggagc 1254
ctgttttcct gaaaagttcc tgtttgcatt actctgcagt ttccatttgc atta	tcgatg 1314
agtaagatgc ttgttaagca gcatggtgtg actgaaagga tactagatcg gaaa	atgaat 1374
tttctt	1380
<210> 97 <211> 1163 <212> DNA <213> Homo sapiens <220>	
<221> CDS <222> (469)(600)	
<400> 97 tccctggagt ttttaacatt cagacttaac gctttctgaa cctcaacaat tcat	caatta 60
tagttcaggt tttcctaccc tagctctgtt tctcacagag gtttctgctc atga	gtctgt 120
gctctggtaa gccaagactc cttgtgttta cctgttcatc tctgcaatct aggg	ggtagc 180
attttgtcct gtgtccttac cggcaaaacg atgtataaat gaaagaaatt gaga	tggtgc 240

300

360

420

477

Met Tyr Arg

acgatgcaca gttgaagtga acttgcgggg tttttcagta tctacgattc atagatctgg

aattcgcggc cgcgtcgacg aaatatctct ttcaataatg aaagaataag aaaaagaaat

agaagagctg gaaacaatag gtaaagttta ggctaggcct tagacttctc ctgcattgta

atccttctgg tttgccacat atgcatgctg tcaggaagtt gatgaggt atg tac agg

					gac tca tt Asp Ser Le 15		525
cat ctg ct His Leu Le 20							573
agc cgc ca Ser Arg Gl	•			aatct ct	ttccccat t	caccccacc	625
attgaatcct	agagttgto	cc tcctaga	aatt aca	aagaatg	gatctcatcc	ctcttggaaa	685
tggtatcctt	ctgatattt	g aagaato	ctag tca	atatcctt	aaaatggctc	acagcattcc	745
aaacttccgc	cttcaccta	ng aaatgct	ttt ttt	tttctta	tctcagtcta	atgtattta	805
aactagtctt	tagctcatt	t aaccago	ccc caa	ıtgtcctc	ttctgttggt	tgagcacctc	865
gcagtttgaa	gagcatttt	g tttagtg	gaag tca	acaaata	caaagtcagt	gaaagaaacc	925
ccatatcctc	tctgcaago	t cttagta	atca cat	cagatat	tcaagccatg	cagctctttc	985
ttccttctta	ttctttgtc	t aaacagg	gatc atg	gccatctt	ccctgtgagt	tgtttggaag	1045
atgagctttc	gtcgacgcg	ıg ccgcgaa	ttc gga	ıtcctcga	gagatctctt	tttttgggtt	1105
tggtggggta	tcttcatca	t cgaatag	gata gtt	atataca	tcagcctatc	aatcgccc	1163

<210> 98

<211> 3320

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (160)..(2202)

<400> 98

taagettgeg geeeggeacg aggeggeacg agggeeacag geagegette geeageegag 60
gaaceggacg eggacacege egeeeegga geeteeagee eetegeetgt tgeeggega 120
gteeegggee eggagegeta ggagegeeg gaaggagee atg get etg gae ggg
Met Ala Leu Asp Gly
1 5

ata agg atg cca gat ggc tgc tac gcg gac ggg acg tgg gaa ctg agt

Ile Arg Met Pro Asp Gly Cys Tyr Ala Asp Gly Thr Trp Glu Leu Ser

10 15 20

						aac Asn										270
						gtg Val			-						_	318
						gac Asp 60										366
			-	_		cat His				_	-				-	414
_	_	-	-		_	ttc Phe			_			_		_	_	462
				_	_	tat Tyr		_							-	510
						tct Ser			-						_	558
						ctc Leu 140										606
						gat Asp					-		-		_	654
	-					act Thr					_				-	702
						aca Thr						_	_		_	750
						act Thr										798
	_					ata Ile 220		_	_	_				_		846
						atg Met		_			-			-		894
gca	aaa	atc	aac	caa	gga	tgg	ctt	gat	tcc	tca	aga	tct	ctc	atg	gaa	942

Ala	Lys	Ile	Asn	Gln 250	Gly	Trp	Leu	Asp	Ser 255	Ser	Arg	Ser	Leu	Met 260	Glu	
					aat Asn								_			990
					aat Asn											1038
					aaa Lys		_			_	_			_	_	1086
					atg Met 315											1134
					aca Thr								_	_		1182
					gat Asp											1230
					tca Ser											1278
					att Ile											1326
					tat Tyr 395											1374
					gaa Glu											1422
					gaa Glu											1470
					ctc Leu											1518
					gac Asp											1566
					tcc Ser											1614

470	475	480	485
Asn Leu Glu Val G		cc ttt ctg aag atg c er Phe Leu Lys Met (495	
	n Leu Ile Pro G	ag cag atc acg act of lu Gln Ile Thr Thr A	
		at cta aaa aag tat a yr Leu Lys Lys Tyr I 530	
		cc cat cag aat gta g la His Gln Asn Val <i>F</i> 545	
		tt att caa gct tgg c he Ile Gln Ala Trp G 560	
	e Thr His Phe I	tt gca agg ttc caa g le Ala Arg Phe Gln G 575	
	e Gly Ile Ala Ty	ac aac aga ctg att c yr Asn Arg Leu Ile A 90	
		ca tgg cgt ttc agc a nr Trp Arg Phe Ser A 610	
		aa atg gtc acc gta g ys Met Val Thr Val G 625	
gat gaa gta cga tt Asp Glu Val Arg Le 630	g tcc ttc att to u Ser Phe Ile Cy 635	gt act gaa gta gat t ys Thr Glu Val Asp C 640	gc aaa gtg 2094 ys Lys Val 645
	e Gly Gly Tyr Il	ta ttt ctc tca aca c Le Phe Leu Ser Thr A 655	
		ag atg ttc tac aaa c Lu Met Phe Tyr Lys L 70 6	
ggt tgg gtg tga at Gly Trp Val * 680	a gaaatactgt tta	aatgaaac tccacggcca	taacaatatt 2245
taactttaaa agctgtt	tgt tatatgctgc t	taataaagt aagcttgaa	a tttatcattt 2305
tatcatgaaa acttctt	tgc cttaccagac c	agttaatat gtgcactaa	a caagcacgac 2365

2425 tattaatcta tcatgttatg atataataaa cttgaatttg gcacacattc cttagggcca 2485 tgaattgaaa actgaaatag tgggcaaatc aggaacaaac catcactgat ttactgattt aagctagcca aactgtaaga aacaagccat ctattttaaa gctatccagg gcttaaccta tatgaactct atttatcatg tctaatgcat gtgatttaat gtatgtttaa tttgatatca 2605 2665 tgttttaaaa tatcctactt ctggtagcca tttaattcct ccccctaccc ccaaataaat caggcatgca ggaggcctga tatttagtaa tgtcattgtg tttgaccttg aaggaaaatg 2725 ctattagtcc gtcgtgcttg atttgttttt gtccttgaat aagcatgtta tgtatattgt 2785 ctcgtgtttt tatttttaca ccatattgta ttacactttt agtattcacc agcataatca 2845 2905 ctgtctgcct aaaatatgca actctttgca ttacaatatg aagtaaagtt ctatgaagta 2965 tgcattttgt gtaactaatg taaaaacaca aattttataa aattgtacag ttttttaaaa aactactcac aactagcaga tggcttaaat gtagcaatct ctgcgttaat taaatgcctt 3025 3085 taagagatat aattaacgtg cagttttaat atctactaaa ttaagaatga cttcattatg atcatgattt gccacaatgt ccttaactct aatgcctgga ctggccatgt tctagtctgt 3145 tgcgctgtta caatctgtat tggtgctagt cagaaaattc ctagctcaca tagcccaaaa 3205 gggtgcgagg gagaggtgga ttaccagtat tgttcaataa tccatggttc aaagactgta 3265 3320 taaatgcatt ttattttaaa taaaagcaaa acttttattt aataaaaaaa aaaaa

<210> 99 <211> 1621 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (47)..(697)

att ggg ggt tct aac cat tta gct gtt gtt ctt gat gac att att tta

Ile Gly Gly Ser Asn His Leu Ala Val Val Leu Asp Asp Ile Ile Leu

5 10 15

gca gtt att gac tcc att ttt gtg tgg ttc att ttt att agt ttg gca
Ala Val Ile Asp Ser Ile Phe Val Trp Phe Ile Phe Ile Ser Leu Ala
20 25 30 35

caa act atg aag Gln Thr Met Lys					199
tta tat aga cat Leu Tyr Arg His 55		-			247
ata gtg ttt atg Ile Val Phe Met 70		_			295
caa tca gat tgg Gln Ser Asp Trp 85		Trp Val Asp			343
ctt ttt tcg ctt Leu Phe Ser Leu 100		-		-	391
gca aac aat cag Ala Asn Asn Gln	-	-	-	-	439
gat gaa att gag Asp Glu Ile Glu 135			Glu Asn Leu		487
ata aaa tta aga Ile Lys Leu Arg 150	~	-			535
gcc act tct gag Ala Thr Ser Glu 165					583
att ccc tct tca Ile Pro Ser Ser 180	_				631
gat gag gaa atc Asp Glu Glu Ile				_	679
tca gaa aag ata Ser Glu Lys Ile 215		gaa cccgtataa	ag aaatgtagtt	aagcctgaag	733
gactatcctt catca	aagact gaaag	tgagc tttgatt	tga tattgccta	aa aaattttat	793
tgtgttatct tggaa	agtctg tgtate	caaaa tgaagaa	attc agatggtag	gg aggttctata	853
gtccttttaa agcto	gactct tgagt	gtcag ttgaata	atcc attaaatto	gg atttggaaat	913
aacctgagga aagta	attatg ataaa	gatct gcacaga	tgc ctcttagct	tg ataggtggca	973

1033 ggcctgtggg tttgggttct ccctcttttc tctggaacat atgacaattc cagattaaag aaaaatqttt tttaataaat accettggte tttettetag teacetttga ggtagatatt 1093 gtgattttct ggagtatagt atatccgtgt ctctgtgtct taggtttact agatgcaata 1153 atacttctct ttgacatttg tactgaagtg atttgatatt aagtaaaaca gttaatgttt 1213 gaatataggc atatttatag gttttttccg ctcccccca acccacctt tttaaaaaaat 1273 1333 ctatacaaag cccttgtttg agtctcatca tgcacatcaa atcatggagt taggtcttct 1393 ctgageteag gggaacacaa gtgeacagag agagatgtet tgagggteae taccaaagaa ttaccctcat tgtccctcac tcaggccatg tgtacatgcg atgctgctga gtgtgctggg 1453 gtgggtggtg gccacgtggc tcccccagag cacttcctaa ctggcaagct gggagaccca 1513 ttactggtga actttgtgga aattagaact gtatctttta cataatcttg gcatattaca 1573 1621 tttcataata aaaacataca tttagttgca tgctaaaaaa aaaaaaaa

<210> 100 <211> 5847 <212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (98)..(3460)

<400> 100
teeegggteg acgatttegt geegegeegg egatgeegeg ceeeegggee gggetgtage 60

ggggccgcgg ctggagtgtg cgccgggcag gcgggac atg gag gtg gtg gac gag 115

Met Glu Val Val Asp Glu

1 5

acg gag gcg ctg cag cgc ttc ttc gaa ggc cac gac atc aac ggt gcc

Thr Glu Ala Leu Gln Arg Phe Phe Glu Gly His Asp Ile Asn Gly Ala

10 15 20

ctg gag ccc tcc aac ata gac acc agc atc ctg gag gag tac atc agc
Leu Glu Pro Ser Asn Ile Asp Thr Ser Ile Leu Glu Glu Tyr Ile Ser
25 30 35

aag gag gat gcc tcc gac ctc tgc ttc cct gac atc tct gct cca gcc
Lys Glu Asp Ala Ser Asp Leu Cys Phe Pro Asp Ile Ser Ala Pro Ala
40
45
50

agc tcg gcc tcc tac tcc cac ggg cag cct gcg atg cct ggc tcc agc

Ser Ser Ala Ser Tyr Ser His Gly Gln Pro Ala Met Pro Gly Ser Ser

55 60 65 70

	_			ctg Leu 75	_				-							355
				cca Pro		_										403
				atg Met												451
				aag Lys	-			_	_							499
_	_	-		ccc Pro		-	_			-						547
				ccc Pro 155												595
_				gtg Val												643
_		_		ggc Gly		_								_		691
	_	_		cgg Arg												739
				atg Met												787
	_	_		cag Gln 235	_	-		-		_	_	_			-	835
				cac His			_	_		-			_			883
_	-			aat Asn												931
				aca Thr												979
cca	CCC	tgg	cct	CCC	cag	ggt	ccg	ctc	tcc	ccg	ggc	cct	ggt	tcc	ttg	1027

Pro Pro Trp Pro Pro Gln Gly Pro Leu Ser Pro Gly Pro Gly Ser Leu 300 305 cct ctc agc att gcc cgt gtc cag aca ccg cct tgg cac ccg cca ggt 1075 Pro Leu Ser Ile Ala Arg Val Gln Thr Pro Pro Trp His Pro Pro Gly 315 gcc ccc tcc cca ggc ctc ctg cag gac agt gac agc ctc agt ggc tcc 1123 Ala Pro Ser Pro Gly Leu Leu Gln Asp Ser Asp Ser Leu Ser Gly Ser 330 tac ctg gac ccc aac tac cag tcc atc aag tgg cag cct cat cag cag 1171 Tyr Leu Asp Pro Asn Tyr Gln Ser Ile Lys Trp Gln Pro His Gln Gln 345 350 aac aag tgg gcg acc ctg tac gat gct aac tac aag gag ctg ccc atg 1219 Asn Lys Trp Ala Thr Leu Tyr Asp Ala Asn Tyr Lys Glu Leu Pro Met 1267 ctc acc tac cgc gtg gat gcg gac aag ggc ttc aac ttt tcg gtg ggc Leu Thr Tyr Arg Val Asp Ala Asp Lys Gly Phe Asn Phe Ser Val Gly 375 380 385 gac gac gcc ttt gtg tgc cag aag aag aac cac ttc cag gtg aca gtg 1315 Asp Asp Ala Phe Val Cys Gln Lys Lys Asn His Phe Gln Val Thr Val 395 400 tac atc ggc atg ctg ggc gag ccc aag tac gtc aag acg ccc gag ggc 1363 Tyr Ile Gly Met Leu Gly Glu Pro Lys Tyr Val Lys Thr Pro Glu Gly 410 ctc aag ccc ctc gac tgc ttc tat ctg aag ctg cac gga gtg aag ctg 1411 Leu Lys Pro Leu Asp Cys Phe Tyr Leu Lys Leu His Gly Val Lys Leu 425 gag gcc ctg aac cag tcc att aac atc gag cag tcc cag tca gac cgg 1459 Glu Ala Leu Asn Gln Ser Ile Asn Ile Glu Gln Ser Gln Ser Asp Arg 440 age aag egg eee tte aac eeg gte aeg gte aat etg eee eet gag eag 1507 Ser Lys Arg Pro Phe Asn Pro Val Thr Val Asn Leu Pro Pro Glu Gln 460 gtc acg aag gtg act gtg ggg cgg ctg cac ttc agc gag acc acc gct 1555 Val Thr Lys Val Thr Val Gly Arg Leu His Phe Ser Glu Thr Thr Ala 475 480 aac aac atg cgt aag aag ggc aag ccc aac ccg gac cag agg tac ttc 1603 Asn Asn Met Arg Lys Lys Gly Lys Pro Asn Pro Asp Gln Arg Tyr Phe 490 495 atg ctg gtg gcc ctc cag gct cat gca cag aac cag aac tac acg 1651 Met Leu Val Val Ala Leu Gln Ala His Ala Gln Asn Gln Asn Tyr Thr 505 510 515 ctg gcc gcc cag atc tca gag cgc atc att gtg cgg gcc tcc aac cca 1699 Leu Ala Ala Gln Ile Ser Glu Arg Ile Ile Val Arg Ala Ser Asn Pro

		gac Asp 540									174′
		cac His									179
		gtt Val									1843
		gac Asp									1891
		ttg Leu									1939
		gag Glu 620									1985
		gtc Val									2035
		acc Thr									2083
		gtg Val						_			2131
		gag Glu	_	_	_		_	_		_	2179
		gag Glu 700									2227
		aag Lys									2275
		agt Ser			_	_		_	_		2323
		agc Ser									2371

			cag Gln													2419
		-	ttc Phe	_				_			_			-	_	2467
-	_		gag Glu		_	_	_	_		-				-	_	2515
-			acc Thr 810	_	~		_	_			_		_	000		2563
			cag Gln													2611
_	_		ggt Gly		_	_	-		_	-	_	_		~		2659
	_		gtc Val		-	_										2707
			ctt Leu													2755
		-	ccc Pro 890	_			-				_	-	_			2803
			acc Thr			_	_	-						_		2851
			cac His													2899
			ccc Pro													2947
			ttc Phe													2995
			gct Ala 970										-			3043

ccc tcc ctg acc tcc atc cag gtg ctg gag aat tcg atg tcc atc acc Pro Ser Leu Thr Ser Ile Gln Val Leu Glu Asn Ser Met Ser Ile Thr 985 990 995	3091
tcc cag tac tgt gct cca ggg gat gcc tgc agg cct ggg aac ttc acc Ser Gln Tyr Cys Ala Pro Gly Asp Ala Cys Arg Pro Gly Asn Phe Thr 1000 1005 1010	3139
tac cac atc cct gtc agt agt ggc acc cca ctg cac ctc agc ctg act Tyr His Ile Pro Val Ser Ser Gly Thr Pro Leu His Leu Ser Leu Thr 1015 1020 1025 1030	3187
ctg cag atg aac tcc tcc tcc ccc gtg tct gtg gtg ctg tgc agc ctg Leu Gln Met Asn Ser Ser Ser Pro Val Ser Val Val Leu Cys Ser Leu 1035 1040 1045	3235
agg tca aag gag gaa cca tgt gag gag ggg agc ctt cca cag agt ctc Arg Ser Lys Glu Glu Pro Cys Glu Glu Gly Ser Leu Pro Gln Ser Leu 1050 1055 1060	3283
cac acc cac cag gac acc cag ggc acc tct cac cgg tgg cca ata acc His Thr His Gln Asp Thr Gln Gly Thr Ser His Arg Trp Pro Ile Thr 1065 1070 1075	3331
atc ctg tcc ttc cgt gaa ttc acc tac cac ttc cgg gtg gca ctg ctg Ile Leu Ser Phe Arg Glu Phe Thr Tyr His Phe Arg Val Ala Leu Leu 1080 1085 1090	3379
ggt cag gcc aac tgc agt tca gag gct ctc gcc cag cca gcc aca gac Gly Gln Ala Asn Cys Ser Ser Glu Ala Leu Ala Gln Pro Ala Thr Asp 1095 1100 1105 1110	3427
tac cac ttc cac ttc tac cgc ctg tgt gac tga gctgccct cctgaggcag Tyr His Phe His Phe Tyr Arg Leu Cys Asp * 1115 1120	3478
caccacacca gggaccaggg gtgcccaggc accccccaac actggatgca atggtgttac	3538
actggagccc gctgcaggcc agctctgctg ttcactggcc ctacccgaga ctggtgaaac	3598
tggaagtett cacactggag ttgetgttee agetggtege eeetcaegge acagagggaa	3658
cctgagagcc agagacttct tgggccttcc tgcctgccac cccctagggg ccaggacagg	3718
accagtttac ctctttccag atatggtggt tggagggctg gttcaggtgc cctggaggga	3778
aggggaagcc tgtggccctg atttgttcag agcccattct cccttgcctc cccttttgag	3838
actggagcca accettttgg agagaggace tgcccacett tgagatcage agggggeteg	3898
gatccagccc taagagactt gggtggaccc ccatgagtca atggagggca gacggctctc	3958
ccccttaaag ctgttccctg ggggatggct tggtagtgga ctttctgggg tttgcctgtt	4018
acgccagact cggacttcta agctttaagt gtggcccagg aggtttcttc tccctgggag	4078
ggcttggctc ccaagaagtc ccagggcagc cgaggccagc cctgcctggg ttggagaaac	4138

4198 tgactttgtg ccttaagtct actcagtgcc tggtgaagcc accctcagcc cttcacaggc 4258 ctgaaccagt aggggccagt gggccaggta agccctagag ccttgaacca ggaatatcca ggaagaggaa attccctttg agcccccaga tggtattgca gcttcactgc ctgcgttcct 4318 gggagcgtct ggagctcaca gtgatcagtg accacatcat tctctctgag cagaggagca 4378 4438 ggaatccctc aagcagcagc ctggtcttgg ctggtgggca gatgcaaata gcttttgctg ttattaatga agtaattact aaatgcactt aaaccagggc aggaaggaat ggaaggatgg 4498 agctagaaag ctcagagtgg gccagagcag gggtgtgaca cttgcaaaga cagggctctg 4558 actetgatee eteccaggga geeteegaca eccateecac teccaaceac caagaceetg 4618 4678 ggttagggaa gaagttgtat cttaagtgcc accttcaagt ttcttagtgg tgcctggtgc 4738 attccgaggc tacatccagg ctcatggaag gagtgtagta ttcatttagc catgtctgcc atgggtccag aaatgggaaa gggaattgct gtccttgccc tgtggtatgc tgccacctct 4798 ttgggaagca ggccttgccc ctgtcccacc actcattctc agctttgaat gggaggcctt 4858 tctatagtgg aggcctttcc ttgaagccta tgaactgcag gccccctttt gccattgatc 4918 4978 tcaaagcact tgtcctcagg atagggaaga gcagggggat gcaggaatag cagggatagc ttgctcccag ccccctcccc aatttggttc cgttgacata ggaattttac gattcccaaa 5038 5098 ccatgcaggg gctgagcctt ccttatgatg actttgttct ccctcccact gggggaatcc tccctatgcc ttaaaactgc cgagccccac tccatgtaat aggattcctg ggcttcctca 5158 atgggggttc atgttcttgg actgcgggcc ctcagtcctt aactggaaag tgaccgtcca 5218 ctgccccatg gagcccatct ggacacagca cagccccaaa accgttagca gctggctctg 5278 tttccaagcc tggggagggg ttcctcagtg caggagttgg ggacaggctg gggatccaag 5338 ctgcttgagg gggtcaacct tggaccaaag ttgccttaag cctgtggtaa aagggcttca 5398 gggaaggtaa gtgggccacc tgctggaagc tgccagctgc ccggctggca atggtgtgag 5458 5518 tgtcttggcc ctgtccctgc cctggggtcc agcaggtcat ccctcccttc ttctctcc tttggcgttt gttcctgtag tcactgggct aatctccccc tagcttcaag ctgtacatag 5578 ggcctcccag tgcaaatcct cctgcccata ccgtgcaccc ttagaagcct gcgtgtgcat 5638 agagegeece etactteeca gttaacteec agttettete eetgagettg gtatttgtea 5698 tgtgccaact ctgactctga ggtgggcagt gagggaagca gccccgggcc tgcttgcttc 5758 ctgtccccga aatgttcgtt tcttctgaag taaatataca tatataaata aatgtataaa 5818

	<2 <2	12>	1535 DNA	sap	iens											
	<2	20> 21> 22>	CDS (98)	(1	120)											
cgc		00> ccc (gtca	ga c	tgtt	tttt	t ca	gttc	cctg	gag	gctt	ttt	gata	ctgatt	60
cgc	gtac	acc	tgtt	gttt	ga a	agct	ctca	g cg	ggac	Me	-	-		n Le	g aaa u Lys 5	115
							-		_		-		_	gtg Val	_	163
														tgg Trp		211
														gct Ala		259
														tta Leu		307
														tat Tyr 85		355
														cct Pro		403
														aat Asn		451
_														gag Glu	_	499
														ctg Leu		547

											gaa Glu					595
_	-					_	_	_	_		ttc Phe			_		643
											ggc Gly					691
					-		_	_			gtg Val 210	_	_	_	-	739
		-	_	_						_	tct Ser	_	_	_		787
											cta Leu					835
					_	_		-			Gly ggg			_		883
											gat Asp					931
								-		_	gac Asp 290			~ ~		979
											ccc Pro			_	_	1027
											gcc Ala					1075
		Ala									gga Gly			tga *	cat	1123
gaat	ttgt	aa a	ctgt	gttt	a tg	rtgtt	atta	ı tat	ttat	att	tctg	raact	ca g	gtaca	ıtgtta	1183
atat	ttaa	at a	atta	ıtgca	ıg ta	actt	tata	: tgg	gtct	gtt	tgga	atco	ta t	ttag	ſttaat	1243
actt	tago	at c	ttag	raato	t ag	gctt	gago	gct	acco	aaa	actt	aatg	gaa t	gatg	ıgctgc	1303
agtt	ggct	.cg g	cttg	rccta	ac tt	taaa	tgag	gca	aaca	tca	gctc	ctag	ıtg c	catt	cccca	1363
ccct	catg	ac c	gcgt	gcca	ıg aa	igtca	.tcat	ctt	caca	ttt	gtag	acgt	tg t	tcta	gcgga	1423

gagcagcaag ggataagaat tttttttcag aaattttaga attggatata ga 1535 <210> 102 <211> 738 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (84)..(332) <400> 102 tgcgtccttt ttaagcgaac attttagggc ctgggagttt gtcaagtaag gaagtctcaa 60 gcccaaagag cagcgtcctg acc atg gtg gtt tca tta cga gcc ctt ctg 110 Met Val Val Ser Leu Arg Ala Leu Leu 1 5 ctg gct ctc agg cag aag ccc cac agc acc ggg acc att cat gag gtc 158 Leu Ala Leu Arg Gln Lys Pro His Ser Thr Gly Thr Ile His Glu Val 15 206 act gcc cag ctc atg atg tcc gtg agg ctg tcc ttt tgg cca gta gcc Thr Ala Gln Leu Met Met Ser Val Arg Leu Ser Phe Trp Pro Val Ala gtg tgc agc tgt gtg gca cag atg gct tcg ttc atc ctg atc aag gcc 254 Val Cys Ser Cys Val Ala Gln Met Ala Ser Phe Ile Leu Ile Lys Ala 45 cca cct cag cca cag cag tcc ccc caa cct gtg ttg tcc acc cta tta 302 Pro Pro Gln Pro Gln Ser Pro Gln Pro Val Leu Ser Thr Leu Leu 60 65 70 ttc atg tac ctg cca ggc cct gct aga tag c acccegtggc attacataac 353 Phe Met Tyr Leu Pro Gly Pro Ala Arg * 75 80 acttcatgag tggctgtgtc ttgtaatttt ggggacaggt ttctctcttt ccctctcttt 413 tttttgtcaa aagcccagag actgacaacc agctgcagtg tctaagtgtt cctcactgac 473 agggtggggc ctcaccacc ctggagggag cagcgttggc agggagacag cctggcccag 533 tgaccctggg cccaagccag ccctccagg gctttcaggg aagcgccatc cattttcaaa 593 gatgtcaaac gtcacttctt cctgtagggc ccgagtcctg cctcctatca gggccagatc 653 713 atagaaggct attttctatt ctggggaacg attataactt aaatgattgt tttaataaaa 738 attctaagct ggaaaaaaaa aaaaa

agacaggett tgeagattte ggtgetttta gtgaactggt gtttteegta aactttttet

<210> 103 <211> 1123 <212> DNA <213> Homo sapiens												
<220> <221> CDS <222> (113)(1003)												
<400> 103 cccggaattc ccgggtcctg ccccatgaa gacacccgag gctggcttgg cgggtaggcc												
cageceetgg acaacecetg geagagetge agecaeagtg eeggetgeae et	atg 11 Met 1	.5										
cag ctc ttc aat gga gga tgc cca ccc cct cct cct gtc ctg aat g Gln Leu Phe Asn Gly Gly Cys Pro Pro Pro Pro Pro Val Leu Asn G		3										
gag gac gtg ctt cct gac ctg aac ctc ctc cca ccc ctt caa ccg cGlu Asp Val Leu Pro Asp Leu Asn Leu Leu Pro Pro Leu Gln Pro E		1										
ctt cca ggg ctt ctg cct tct gaa aag gag gct cct gct cca atg g Leu Pro Gly Leu Leu Pro Ser Glu Lys Glu Ala Pro Ala Pro Met (35 40 45		9										
gcc tca ctc att gca aac tta aag cag ctg cac ctg tcc ccg ccc calla Ser Leu Ile Ala Asn Leu Lys Gln Leu His Leu Ser Pro Pro F 50 55 60		7										
ccc cca cca cag gcc cca gcg gag gga cct tca gtc cag ccc ggt c Pro Pro Pro Gln Ala Pro Ala Glu Gly Pro Ser Val Gln Pro Gly F 70 75 80		5										
ctc agg ccc atg gag gaa gag ctg cca cct ccc ccg gca gaa cct g Leu Arg Pro Met Glu Glu Glu Leu Pro Pro Pro Pro Ala Glu Pro N 85 90 95		3										
gag aaa ggg gca tcc aca gac atc tgt gcc ttc tgc cac aag acc g Glu Lys Gly Ala Ser Thr Asp Ile Cys Ala Phe Cys His Lys Thr V 100 105 110		1										
ttc ccc cga gag ctg gct gtg gag gcc atg aag agg cag tac cat g Phe Pro Arg Glu Leu Ala Val Glu Ala Met Lys Arg Gln Tyr His A 115 120 125		9										
cag tgc ttc acg tgc cgc acc tgc cgc cgc cag ctg gct ggg cag acg clin Cys Phe Thr Cys Arg Thr Cys Arg Arg Gln Leu Ala Gly Gln State 130 135 140		7										
ttc tac cag aag gat ggg cga ccc ctc tgc gaa ccc tgc tac cag g	gac 59.	5										

	Phe	Tyr	Gln	Lys	Asp 150	Gly	Arg	Pro	Leu	Cys 155	Glu	Pro	Cys	Tyr	Gln 160	Asp	
												_		_	cac His		643
															tgt Cys		691
								_		-		_	_		agc Ser	_	739
															ccc Pro		787
															gat Asp 240		835
						_		-				-		_	tac Tyr		883
								_		_			_	_	caa Gln		931
															gtg Val		979
			gct Ala			_	-	tga *	gagt	gaac	gc t	gggc	agtg	ja ad	agac	cact	1033
agccccggct ggggcccttc cctgacttgg gttcccttcc taacctgctc ttgcacactt											1093						
	tcct	tctg	ag c	ctcc	atgg	ja ga	ccag	rcctg	ſ								1123

```
<210> 104
<211> 4184
```

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (253)..(1284)

<400> 104

atgggccggg cccggccggg ccaacgcggg ccgcccagcc ccggccccgc cgcgcagcct 60

cccgcgccac cgcgccgccg cgcccgttcc ctggcgctgc tcggagccct gctggccgcc	120									
gccgctgccg ccgccgtccg ggtctgcgcc cgccacgccg aggcccaggc ggccgcgcgg 180										
caggaactgg cgctgaagac cctggggaca gatggccttt ttctcttttc ctccttggac	240									
actgacgggg at atg tac atc agc cct gag gag ttc aaa ccc att gct Met Tyr Ile Ser Pro Glu Glu Phe Lys Pro Ile Ala 1 5 10	288									
gag aag cta aca ggg tca act ccc gcg gcc agc tac gag gag gag gag Glu Lys Leu Thr Gly Ser Thr Pro Ala Ala Ser Tyr Glu Glu Glu 15 20 25	336									
ttg ccc cct gac cct agc gag gag acg ctc acc ata gaa gcc cga ttc Leu Pro Pro Asp Pro Ser Glu Glu Thr Leu Thr Ile Glu Ala Arg Phe 30 35 40	384									
cag cct ctg ctc ccg gag acc atg acc aag agc aaa gat ggc ttc cta Gln Pro Leu Leu Pro Glu Thr Met Thr Lys Ser Lys Asp Gly Phe Leu 45 50 55 60	432									
ggg gtc tcc cgc ctc gcc ctg tcc ggc ctc aga aac tgg aca gcc gcc Gly Val Ser Arg Leu Ala Leu Ser Gly Leu Arg Asn Trp Thr Ala Ala 65 70 75	480									
gcc tca cca agt gca gtg ttt gcc acc cgc cac ttc cag ccc ttc ctt Ala Ser Pro Ser Ala Val Phe Ala Thr Arg His Phe Gln Pro Phe Leu 80 85 90	528									
ccc ccg cca ggc cag gag ctg ggt gag ccc tgg tgg atc atc ccc agtPro Pro Pro Gly Gln Glu Leu Gly Glu Pro Trp Trp Ile Ile Pro Ser95100	576									
gag ctg agc atg ttc act ggc tac ctg tcc aac aac cgc ttc tat cca Glu Leu Ser Met Phe Thr Gly Tyr Leu Ser Asn Asn Arg Phe Tyr Pro 110 115 120	624									
ccgccgcccaagggcaaggtcatcatccaccggctcctgagcatgProProProLysGluValIleIleHisArgLeuLeuSerMet125130135140	672									
ttc cac cct cgg ccc ttt gtg aag acc cgc ttt gcc cct cag gga gct Phe His Pro Arg Pro Phe Val Lys Thr Arg Phe Ala Pro Gln Gly Ala 145 150 155	720									
gtg gcc tgc ctg act gcc atc agc gac ttc tac tac act gtg atg ttc Val Ala Cys Leu Thr Ala Ile Ser Asp Phe Tyr Tyr Thr Val Met Phe 160 165 170	768									
cgg atc cat gcc gag ttc cag ctc agt gag ccg ccc gac ttc ccc ttt Arg Ile His Ala Glu Phe Gln Leu Ser Glu Pro Pro Asp Phe Pro Phe 175 180 185	816									
tgg ttc tcc cct gct cag ttc acc ggc cac atc atc ctc tcc aaa gac Trp Phe Ser Pro Ala Gln Phe Thr Gly His Ile Ile Leu Ser Lys Asp	864									

190 195 200

gcc acc cac gtc cgc gac ttc cgg ctc ttc gtg ccc aac cac agg tct Ala Thr His Val Arg Asp Phe Arg Leu Phe Val Pro Asn His Arg Ser 205 210 215 220	912
ctg aat gtg gac atg gag tgg ctt tac ggg gcc agt gaa agc agc aac Leu Asn Val Asp Met Glu Trp Leu Tyr Gly Ala Ser Glu Ser Ser Asn 225 230 235	960
atg gag gtg gac atc ggc tac ata ccc cag atg gag ctg gag gcc acg Met Glu Val Asp Ile Gly Tyr Ile Pro Gln Met Glu Leu Glu Ala Thr 240 245 250	1008
ggc ccc tct gtg ccc tcc gtg atc ctg gat gag gat ggc agc atg atc Gly Pro Ser Val Pro Ser Val Ile Leu Asp Glu Asp Gly Ser Met Ile 255 260 265	1056
gac agc cac ctg ccc tca ggg gag ccc ctg cag ttt gtg ttt gag gag Asp Ser His Leu Pro Ser Gly Glu Pro Leu Gln Phe Val Phe Glu Glu 270 275 280	1104
atc aag tgg cag cag gag ctg agc tgg gag gag gct gcc cgg cgc ctg Ile Lys Trp Gln Gln Glu Leu Ser Trp Glu Glu Ala Ala Arg Arg Leu 285 290 295 300	1152
gag gtg gcc atg tac ccc ttc aag aag gtc tcc tac ttg ccg ttc act Glu Val Ala Met Tyr Pro Phe Lys Lys Val Ser Tyr Leu Pro Phe Thr 305 315	1200
gag gcc ttc gac cga gcc aag gct gag aac aag ctg gtg cac tca atc Glu Ala Phe Asp Arg Ala Lys Ala Glu Asn Lys Leu Val His Ser Ile 320 325 330	1248
ctg ctg tgg ggg gcc ctg gat gac cag tcc tgc tga ggtt cagggcggac Leu Leu Trp Gly Ala Leu Asp Asp Gln Ser Cys * 335 340	1298
tctccgggag actgtcctgg aaagttcgcc catcctcacc ctgctcaacg agagcttcat	1358
cagcacctgg tccctggtga aggagctgga ggaactgcag aacaaacagg agaactcgtc	1418
ccaccagaag ctggctggcc tgcacctgga gaagtacagc ttccccgtgg agatgatgat	1478
ctgcctgccc aatggcaccg tggtccatca catcaatgcc aactacttct tggacatcac	1538
ctccgtgaag cccgaggaaa tcgagagcaa tctcttcagc ttctcatcca cctttgaaga	1598
cccgtccacg gccacctaca tgcagttcct gaaggaggga ctccggcgtg gcctgcccct	1658
cctccagccc tagagtgcct ggacgggatc tgatgcacag gccccacgc ctcagagcca	1718
gagtggtcct cagcccattt cagactgcag atgccgccca ctcccaccc actcctaggc	1778
tgccttggag ggtacaagat ccactgaggg tggccaccac agccttggct ccatggtggc	1838
gggtagacaa gggatgcctg ggctgactgg gcagaggaac ctctagctct gactgtcact	1898

cggctctccc tacccatttg gctctggaag ctgcttggcc cccccagatc agggcctggg 1958 tgaactccct ggacctttcc tagccagccg cacagtctag gcccttgtgg ggtgaagaat 2018 2078 ggagggagga gcaggctagg aagacggggc caccaccctc teettgettt cagceettee 2138 cacaggaaac atcaagaagc cccagccagg aggggccagg ctgccaaggc ggctcccctg tttatctaga gccttcgttc ctggccatac cccggactgc cctcctgtgc ctgatgtccc 2198 2258 cagctggggt cagtctcaac aggagccagt cttctggagc ctctgggcag aaccctccat 2318 cagagtggaa atcagacggg accccctgca gcttccctga ccacgccact gaccagctat ctggggaagt ttactgtgaa ggggtttctg cctttagcaa tggggttcac taagggggtt 2378 cccgaggccc agggccaagg cactcccacc gcctacctta gcacagggtc tctgcaggac 2438 tgcgggagcc agcgctcctg ccgccctct tgcccctcag accttgcatc cacagaagca 2498 2558 caacccagcc aaacaccaca gccttctcca gagccggcac tgtcccggca accaggggtg ccccaggcta gctcttctac ctctggggca ccacggactc cccttggcca ctcttgggac 2618 tttggtccac gtcctgagcc actgaccacg gccagtctct ctttttatat gtgcagaaaa 2678 2738 gtgtttttac acaaactttc tcatggtttg taggtatttt tttataaccc cagtgctgag gagaaaggag gggcagtggc ttccccggca gcagccccat gatggctgaa tccgaaatcc 2798 2858 tcgatgggtc cagcttgatg tctttgcagc tgcacctatg ggaagaagta gtcctctctt cettetecte tteagetttt taaaaacagt ceteagagga teeatgatee ceageactgt 2918 cccatcctcc acaaaggccc acaggcatgc ctgtactctc tttcattaag gtcttgaagt 2978 caggetgeee cetececage ecceagttet etececacee ceteacecea eccggggete 3038 3098 actcagcctg gcagaggaag aaggaaggca gacatctccg cagccactcc tgggcctttt atgtgccgag ttaccccact tgccttgggc gtgtccactg agccttcccc agccagtctt 3158 gttctcaatt ttgttttgtt ttgttttgag acggagtctt gctctgtcac ccaggctgga 3218 gtgctatggc tcgatcttgg ctcactgcaa cctccacctc ccaggttcaa gcaattctct 3278 tgccccagcc tcccgagtag ctgggattac aggtgcatgc caccatggct ggctaatttt 3338 tgtattttta gtagagatgg ggtttcacca tattggtcag gctgatctgg aactcctgac 3398 ctcaggtgat ccacctgcct cagcctccca aagtgctggg attacaggcg tgagcaatcg 3458 tgcccagcct tgttcttaat tttgtatcat ccagtcatcg ctaatattac acgcaccttc 3518 tcacttaatc ctcacgacaa gcctgtgagg cagatgctca ttgttcccat cttgatgaaa 3578

cttgagtctc agggaagtga agtgacttgc ccagggtcac tcaggtagag ttgagattca 3638 aacccacatg tggctccaaa gtctgcatct ggatttgggg gtgttttttg gcatggcacc 3698 ctcacctctc tccctgcctg ttttccccaa agtggaaagg aaggcctttc aaaccagagt 3758 gtctcactcc cctctgacct ccagaccaga tggggcatga gccagccagc tcagccaggc 3818 tccctgtgtc ctgggaggaa gtgtccccat cccccatgcc ccttatgggg agggagggcg 3878 tetgatgete tetetetgee teccececa teetgteagg cacaggtgae gggggeagee 3938 catgcgagcc cttctcctgc tgctctggga gggccagttc cacattgagc cagcctggtc 3998 ccatggaaaa tgatggcctg ggctttctga ggccttatct gatgcctctg cagttcatgt 4058 ccccaccag gcctcgaggc tcagggtggg agagggcccc gggctgccct gtcactcctc 4118 taacacttcc ctcccctgtc cccaacatgc cctgtaataa aattagagaa gactaaaaaa 4178 aaaaaa 4184

<210> 105 <211> 1509 <212> DNA <213> Homo sapiens

<220> <221> CDS <222> (56)..(598)

<400> 105

50

tgaaaaacag ggatgtagtt cagcagtgtc tgaataaggc tgatgactca gaatc atg 58 Met 1

cag tgc ctg gct tct cag gcc gcc gcc agc cgg gac tgc ttt agg cgc 106 Gln Cys Leu Ala Ser Gln Ala Ala Ala Ser Arg Asp Cys Phe Arg Arg

gaa ccc acg ctt ctg acc tgt gct ctg tct ttg cag ttc tgc acg gag 154 Glu Pro Thr Leu Leu Thr Cys Ala Leu Ser Leu Gln Phe Cys Thr Glu

202 cta aac cag ccg acc ctg ccc aac atc cgc aag tgg aag ggg ccc cgg Leu Asn Gln Pro Thr Leu Pro Asn Ile Arg Lys Trp Lys Gly Pro Arg

35 40 gga tgc tgg aag gct gtt gtt gct gag aag ccc tcg aat cag ctc cag 250 Gly Cys Trp Lys Ala Val Val Ala Glu Lys Pro Ser Asn Gln Leu Gln

55

aag gta eec teg tet gea aag eet gge ett tee ett eat tta att tat Lys Val Pro Ser Ser Ala Lys Pro Gly Leu Ser Leu His Leu Ile Tyr

	70		75	80	
				att tcc ttt gcc Ile Ser Phe Ala 95	
		_	-	ttt aaa tcc ttg Phe Lys Ser Leu 110	
	-			ttt aga ttg gta Phe Arg Leu Val 125	-
	Gln Glu G			gtg ttg gga gag Val Leu Gly Glu	
				ctt tgt cct tct Leu Cys Pro Ser 160	
				gtg cag agc tca Val Gln Ser Ser 175	
ctc gtt gac Leu Val Asp 180	tga aaa t *	ttcagattc a	accttagttc ad	cacatgaag tatttgo	cttc 641
tagtggtaga a	aattatgcac	ataatttcaa	catagaaatg	ttctattgaa atgtt	cagca 701
gattttggtt t	tgaattttc	tttcatcagt	atcacccata	tgagcaggta agggt	taaatc 761
tctgtaaata c	cacgttttcc	ctcatattat	tattcaaggc	cagatttatt cacct	tgcaa 821
tgcttaacat c	caatggagtt	ttagattttt	aaacagactc	ctgataataa ccago	gagttg 881
aaaatgtatt a	attacataat	tttcctataa	atgcagattt	ttaaatccct agtat	accta 941
acatgcttac a	aacacatgt	gatttatact	taatatgatt	atgtttataa tgtag	ggatat 1001
taaatcataa a	atgtatactg	gattaaaagt	ggccattttt	ttgacagtaa gcccc	tactc 1061
tctttttagc t	tactacttaa	agaggtacat	gtaaatcttc	tgtctctggg tttta	itgttt 1121
gggggtgtaa a	atggctcctg	ccagctgaca	gtgagtcagc	acacttcaga gaagg	ıctgga 1181
gataaagctg a	atttgaatg	catctagttc	agggttctcc	cttccagtcc acgtg	gaaat 1241
aataagaata a	taccacctt	ccttttttga	. tcgcacttta	catgtatgta ggtgt	ctgag 1301
cttcacaagc c	ttttatagt	ccattcagca	. ctgcattcat	tcaacaaatc attaa	itgaaa 1361
ggtggctatg t	accaggcat	attgtttcat	gccaggtaca	cactggtgag aaaaa	ictcca 1421
tgcctgcatg t	tttcactct	ttgcaagaca	cagtggggat	cccggctgga gcctg	acctg 1481

<210> <211> <212> <213>	1889	ens						
<220> <221> <222>	CDS (781)(9	42)						
<400> gcagagcagc		a agcgatg	gcc cc	agagaaag	ggacaatg	gta gcct	ggctct	60
cacacagtat	tttatcttt	g attctga	ata aa	tattttt	gtggggtt	tt tttt	tttggt	120
ggcagttgtt	tgttttaaa	c tgaccac	ttg ga	agaaacac	cttggtta	atc tgtg	gttttc	180
atgccttgtc	cctgcctct	a cccccac	ccc tt	ttgagtcg	ggtgacto	at tttt	ctgtgt	240
agagactcgg	tggcccagg	c aggaggt	gaa ag	cggccatc	cggaaggc	cc tggg	gaccct	300
tgtgcctgtt	gctcgcctt	c aggtcac	cag ct	gagctgcg	ataggaaa	at ctga	atggag	360
gcagcaaaca	gccaaaaca	a acattcc	cca cc	cggccctg	tgcatatg	gaa gtct	ttcttc	420
ccccaactct	tgaacgatg	a tgatatt	cag ac	gaagcatt	gatgttat	gg aaga	aagaaa	480
gaaacaaaca	aaaaatata	t atatatg	tcc aa	aaacagac	aaatccaa	gg gtgt	gaggta	540
aacgagtgtc	tgcatttag	a ttccaca	aaa cc	aaaatcca	tgttgaac	aa agtt	aagtcc	600
gtacacagtg	actttttgg	g tgagccg	tgt gt	gtctgtct	gttgtgtg	ıtg tgcc	tcaagc	660
cctgttttcc	tgtgaagata	a ctttgag	tgg ca	gccattct	ctccacgt	ga acca	cacgtc	720
tggagcacag	acaggcctc	t caaggtc	att ga	tcttacgc	atttacto	rtt tacc	gaacaa	780
atg tct gac Met Ser Asp 1							Gln	828
tcc cct gtg Ser Pro Val								876
tac tca tca Tyr Ser Ser 35	Leu Arg I	Phe Ala H						924
gcg ttc tgt Ala Phe Cys 50		taa atgga *	a gcgt	gctctg a	gcctgtctg	cctccc	tcgg	978

1038 ctgctgctgg tcctcagtac cagcgcccgg gggtgtccac aaccacttgg gacagaagaa ggtggaattt cagacagaag cttgactggg tcttcaatga caggcttgga ctagctgtgg 1098 cccagacatc ggccctgccc agaattgcca ggaggaggct ttgcaggctc tagaggagcc 1158 gcagggcctg cctgcctctg gtgagtccaa caggcacaag caagctggcg tgtggccaga 1218 ggtagccgga gtgtgtcaca gcccctcaga tgcctttcct tccacctttt tttattttt 1278 aagaatccca aataactcac tgaagtgtct caaaggcgaa caagttttac caaaatgaat 1338 cctttttcag ttaacagatc aaatggatga gttctgagcc tctcaagttc ctttccccag 1398 ttagagtggg gaactgggca agtgttaact gtgggactca ctgcagcgtc ctatcctaaa 1458 ggcacgagaa gacggaaatg caacctgcgg agctgggctt ggttcccagg tcacagtttg 1518 gcccccgcta caggatgctg ccctgctcag agagagattt aatagggagc tgaaggaatc 1578 gttagggggc cagggagatg tgactgaggc tggctttcca cgtgaatgag acggggtcgg 1638 tggagggttt ggtgctacag ccagtcagaa gatttgcaaa tgcgaacaca ttcctgtgtg 1698 aggcacgtta ccctttgtca gttattgtga atatgtgtat tttaagcaat aagattcagc 1758 tggtcagact tttctgggca gtctcagtga cgcatttcct gtgctgtgat tgttctgaag 1818 acagagtggc tctaaccact gtgagaagcc caaataaaaa ttgatcccaa aaatgctaaa 1878 1889 aaaaaaaaa a

<210> 107

<211> 3309

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (246)..(632)

<400> 107

gtaccetteg ggtaccgete eggaatteee gggtegacga tttegtetee tgeggegeat 60
gegtegegee caaacgagge eggetgtgga gaaaggeagg caacgcatge gtagttgatg 120
tagggagteg geggtgagaa atggacagee egcattgace gaagetttge geatgegtt 180
tactgetggg tgaageegaa cetegggage ecaggaegee eteetgeaca tgegeaggag 240
getea atg aca gte gag ett tgg eta agg ete egg gga aag ggt eta
Met Thr Val Glu Leu Trp Leu Arg Leu Arg Gly Lys Gly Leu

gcc atg ctg cat gtg acc cgg ggg gtc tgg ggg tcc agg gtc cga gta Ala Met Leu His Val Thr Arg Gly Val Trp Gly Ser Arg Val Arg Val 15 20 25 30	335
tgg cca ctg ttg ccc gcg ctc ctc ggg ccc ccc cgg gcc ctc tca tcg Trp Pro Leu Leu Pro Ala Leu Leu Gly Pro Pro Arg Ala Leu Ser Ser 35 40 45	383
ctg gca gcc aaa atg ggg gag tat cgc aag atg tgg aac ccc agg gag Leu Ala Ala Lys Met Gly Glu Tyr Arg Lys Met Trp Asn Pro Arg Glu 50 55 60	431
ccc cgc gac tgg gcc cag cag tac cgc gag cgc ttc att ccc ttc tcc Pro Arg Asp Trp Ala Gln Gln Tyr Arg Glu Arg Phe Ile Pro Phe Ser 65 70 75	479
aag gag cag ctg ctc cgc ctc cta ata cag gta aca gga att cca ctc Lys Glu Gln Leu Leu Arg Leu Leu Ile Gln Val Thr Gly Ile Pro Leu 80 85 90	527
gag tcc ggc aga gaa ggc ggc ttt gga ggc gtt ctc agc cca cgt gga Glu Ser Gly Arg Glu Gly Gly Phe Gly Gly Val Leu Ser Pro Arg Gly 95 100 105 110	575
ctt ctg cac cct gtt cca cta cca cca aat cct ggc ccg gct gca ggc Leu Leu His Pro Val Pro Leu Pro Pro Asn Pro Gly Pro Ala Ala Gly 115 120 125	623
ctt ata tga ccccatc aaccctgaca gggagaccct cgatcagcca tcactaacgg Leu Ile *	679
atccccagcg tctgtctaat gagcaggagg tgcttcgggc tctggagccc ctgctggcc	c 739
aggccaactt ctccccgctg tctgaggaca ccctggccta cgcgctggtg gtccaccac	c 799
ctcaggatga ggtccaggtg acagtaaatt tggatcagcc tggttgggag tcttggctc	c 859
atggcacggc cccctcctgt cattctttcc tctacctgag ctgacactct ccctacaag	a 919
gatcctgcgc gctccctgtg tgggctccag gtggtcccct tgcctacagg accccccac	c 979
ttccctgccc aagagcccct gactggtccc cagacgaaag ccccagagct gggccttct	g 1039
gccctctcga ccctcctggg ccttgttccg ctcccctcca agcctcaaga tcactccta	g 1099
gettetecca aacceaggee ettectgtte tttgeectae geeceteett getgeteee	t 1159
cgaatcttcc ccgatctcag tgtgacctca gaacacctgc ctctcccctt gcagagacc	t 1219
ccaggtggct ccggtcggag gtggagaact ggctcctagc caagtcaggc tgtgaggtg	a 1279
ccttcaacgg aactcgggcc ctggcgcatc tgcaggccct gacccccagc atgggattg	t 1339
acccaccece gggtttcccc aaactagace cagtggctcc gatcacttcc gagececeg	c 1399

1459 aagccacgcc cagcagtaac atctcctgag tagaacctac ctccctgccc agtcagcagg 1519 ctaggaacta ageccegect cetteacgae aggetgteaa ttaeggttat tataetttte 1579 actccaactt ccaataactg acaggtgatt atttttgctg cactgtgtgc ttaagcaaag 1639 cagccaatca aagcagctag cagttgttaa gtcttccccg cccttcgat gaacagccaa tcaaagcgat ttagctctgc ttctgttcca tttcttagtc ccaccctcac cataaacatc 1699 1759 caagtgtggt ttggctgagg agctgagggt gtctgccaat cacagctgct cagctctggc ttctgtaaac cgccaggtag aagagttaaa gctgcgccct cccgagacta tatatcattg 1819 tettttteag ceegeteegg geaaactgee cateatgtge accaaggeeg ttagecetge 1879 ctcctggcaa acgtccagtg acagctgctg ggttccatca actttgggca gccggttgtc 1939 gctgcaggga aggaaccaat aagaatttct aaaggaaacc tgatcttgct atcaattgct 1999 2059 gctgcttaaa tggcaggcca actggtcagc tgctgatcag ggtgtctagg ctgaaggagt 2119 tggagacctt gtgctaggta ggtgaaccag aaaccaccct cgccaccaag actcgctccc 2179 aacctggctc ccggcaacct caggtgcctt cctcgcccag gtctttcacc ctttctacag aaactacctc ggtctggatc tccccaccac cagcagcctg tgcaatattt attggtctat 2239 2299 caatttctcc cgtctcctgt cccaaagtaa taaatcatgt ttaataagtc tggatgaggc 2359 tactcttaac gcactgcctt tagggtaacc ctgctctgta ggagtggtta aaaaattatt tttaaaaatc tagatgagtg ggatggctgc aggagttgga gggaaggaaa gcatttgaat 2419 2479 cctggaaaga ggggagggac tctagctagg tcttggggtc ccagacagag aaagctgtag 2539 tcctaaaaag aggctgggtt catggtcggt gaaacaaaga cagtcataga agaggatctt 2599 agaaggatct gattccagag gagtcccagg gcctgatgaa cagaggagat agcgtagcca tgtgcgattg tgcagatttg cagatttttt tttgttcttg agatggagtt tcgcgcttgt 2659 tgcccaggct ggaatgcaat ggcgtgatct tggctcactg caacctccgc ctcctgggtt 2719 caggogatec teccaceteg geeteeegag tagetgggae egegggtgtg tgecaceaea 2779 2839 ccaggctaat ttttttgtat ttttttgtag agacggggtt ttatctcatt gcccaagctg gtctcaaact cctgagcaca agcaatacgc ttgccttagc cacccaaagt gctggaatta 2899 catgggtgag ctaccgtgtc cagcctcaat ttaaaaaataa agagcataat tgcattgttt 2959 3019 gtaacacaaa gaataaatgc ttgaggggat ggataccccc tttaccctgt gattattatg 3079 cattgcatac ctgtatcaaa gtatcccata aatatataca cctactatct acccacaaaa 3139 attaaaaaac aacaacaaaa aaccccacac cactacctca ctgatgccat aatgtttaac

catgcette acttaaagaa tecaggaaa taagceaggt gtgtggeteg tgeetgtaat 3199
ceeageactt tgggaggeea aggtgggtgg ateacetgte acetgagete aggagttega 3259
gaceageetg ggeaacatgg caaaateeeg tetetaetag aaatacaaaa 3309

<210> 108

<211> 2979

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (670)..(1695)

<400> 108

60 aattcccqqq ttqcaqacat qatqaaqcat ggactcactg aggctgacgt aggcatcacc aagtttgtga gttctcatca agggttctcg ggaatcttaa aagaaagata ctccgacttc 120 gttgttcatg aaataggaaa agatggacgg atcagccatt tgaatgactt gtccattcca 180 240 gtggatgagg aggacccttc agaagacata tttacagttt tgacagctga agaaaagcag cgattggaag agctccagct gttcaaaaat aaggaaacca gtgttgccat tgaggttatc 300 360 gaggacacca aagagaaaag aaccatcatc catcaggcta tcaaatctct gtttccagga 420 ttagagacaa aaacagagga tagggagggg aagaaataca ttgtagccta ccacgcagct 480 gggaaaaaagg ctttggcaaa tccaagaaaa cattcttggc caaaatctag gggaagttac 540 tgccacttcg tactatataa ggaaaacaaa gacaccatgg atgctattaa tgtactctcc 600 aaatacttaa gagtcaagcc aaatatattc tcctacatgg gaaccaaaga taaaagggct ataacagttc aagaaattgc tgttctcaaa ataactgcac aaagacttgc ccacctgaat 660 atg aac ttt aag cta ggg aat ttc agc tat caa aaa aac 708 aagtgcttg Met Asn Phe Lys Leu Gly Asn Phe Ser Tyr Gln Lys Asn 1 cca ctg aaa ttg gga gag ctt caa gga aac cac ttc act gtt gtt ctc 756 Pro Leu Lys Leu Gly Glu Leu Gln Gly Asn His Phe Thr Val Val Leu 15 aga aat ata aca gga act gat gac caa gta cag caa gct atg aac tct 804 Arg Asn Ile Thr Gly Thr Asp Asp Gln Val Gln Gln Ala Met Asn Ser 30 35 852 ctc aag gag att gga ttt att aac tac tat gga atg caa aga ttt gga Leu Lys Glu Ile Gly Phe Ile Asn Tyr Tyr Gly Met Gln Arg Phe Gly 55 50

					acg Thr											900
			-	_	atg Met	_			_			_			-	948
_	_			_	gtt Val		_	_	-	_		-	-			996
					ctc Leu 115								_		_	1044
					gga Gly											1092
	_				ata Ile		_			_		_				1140
					gtg Val											1188
_					cct Pro	_			-		_				_	1236
					gag Glu 195											1284
					ttg Leu											1332
					tac Tyr		_	_			_	_			-	1380
	-		_	_	cac His			-	-			_			-	1428
					att Ile	_		_		_	_		_	_	_	1476
_		-	_		aaa Lys 275							_		-		1524

cta gaa ggg aag aca cca cca gtt ttt gct tct gaa ggc aaa tac agg Leu Glu Gly Lys Thr Pro Pro Val Phe Ala Ser Glu Gly Lys Tyr Arg 290 295 300	1572
gct ctg aaa atg gat ttt tct cta ccc cct tct act tac gcc acc atg Ala Leu Lys Met Asp Phe Ser Leu Pro Pro Ser Thr Tyr Ala Thr Met 305 310 315	1620
gcc att cga gaa gtg cta aaa atg gat acc agt atc aag aac cag acg Ala Ile Arg Glu Val Leu Lys Met Asp Thr Ser Ile Lys Asn Gln Thr 320 325 330	1668
cag ctg aat aca acc tgg ctt cgc tga gcagt accttgtcca cagattagaa Gln Leu Asn Thr Thr Trp Leu Arg * 335 340	1720
aacgtacaca agtgtttgct tcctggctcc ctgtgcattt ttgtcttagt tcagactcat	1780
atatggattt caaatctttg taataaaaat tatttgtatt tttaagtttt tattagctta	1840
aagaaataat ttgcaatatt tgtacatgta cacaaatcct gaggttctta attttagctc	1900
agaatataaa ttagtcaaaa tacacttcag gtgcttaaat cagagtaaaa tgtcagcttt	1960
acaataataa aaaaaggact ttggtttaaa gtagcaggtt taggttttgc tacattctca	2020
aaagacagca ggagtatttg acacatctgt gatggagtat acaacaatgc attttaagag	2080
caaatgcaac aaaacaaatc tggactatgg ataaataatt tgagagctgc cacccacaaa	2140
tataaataca gtactcatgc tgactgaaat aataagacat ctacaaattt ataaacaaaa	2200
agtgattgtc attatcctgc ttatgtacta gattcaggca agcattatag actttttggt	2260
tgcggtggct tttgcattta tattatcaat gccttgcagg aacgttgcat tgataggccc	2320
attttatttt tttattttt ttttcgagac aggatctcac tctgtagcac aggctggatt	2380
gcagtgcaat cctgcaattc tcaatcttgc actgcagcct cgacctccca ggctccagtg	2440
acteteccae eteageetee taagtagetg ggagtacagg egegeaceae eaegeetage	2500
tgatttttgt atttttttgt agagacgggg gtttggccat gttgccgagg ctaactcctg	2560
ggattacagg catgagctgt gctggccggg tttttttttc ttgatgtaaa cgtgtacagc	2620
tgttttatta gttaaggtct aatttttact ctaggtgcct tttatgttca gaactctttc	2680
cactggactg gtatttgctc aaaaataaat aatggtagag aagaaaacta taaaaatgga	2740
caaggettte ttetateagt agegtttace etttgteace agtggetttg gtattteeat	2800
gtctggcatt gcataaactt ctctggtgtg aaaggataaa tatgcctttc taaagttgta	2860
tatcaaaatt gtatcaattt ttattttcta tgatttctag aaacaaatgt aataaatatt	2920
tttaaaatct cctttctact ggttatgtaa ataaatcaaa taaatataaa aaaaaaaaa	2979

<210> 109 <211> 726 <212> DNA <213> Homo sapiens											
<220> <221> CDS <222> (25)(648)											
<pre><400> 109 taagcttgcg gccgcgtcag cgat</pre>											
gaa gag ctc aca act tca gga Glu Glu Leu Thr Thr Ser Gly 10			99								
aag gaa ctg aag aaa att tgc Lys Glu Leu Lys Lys Ile Cys 30			147								
gcc tac cgc ctc ctc ata gac Ala Tyr Arg Leu Leu Ile Asp 45			195								
acc gcc cgg cac gca cct gcg Thr Ala Arg His Ala Pro Ala 60			243								
ttg ctt aag gat gta aag att Leu Leu Lys Asp Val Lys Ile 75 80	Ser Val Ser Phe		291								
agt aag gac agg aag gtg ctg Ser Lys Asp Arg Lys Val Leu 90 95			339								
gcg gag tgc ggt ctg ctc ctt Ala Glu Cys Gly Leu Leu Leu 110			387								
tgt ccc ttt ggc ggg agt gtt Cys Pro Phe Gly Gly Ser Val 125			435								
agt gct gat aag aag gat gag Ser Ala Asp Lys Lys Asp Glu 140			483								
gtg gag tat gca gtg ctc gat Val Glu Tyr Ala Val Leu Asp 155 160	Glu Leu Glu Asp		531								

gag c Glu I 170																	579
cag a Gln A																	627
tgt t Cys I							ag g	ggcto	cttag	gc aa	aaac	ccaa	a gaq	gagat	ttg		680
ggaattgcag catcttttga aagcagggaa attaaaaaaa aaaaaa 72										726							

<210> 110 <211> 2761 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (2069)..(2305)

<400> 110 60 cagaaattcg gcacgagtac atgattgtct tggcagctct aatatctgca ttgttcagaa 120 aggattctga ggctaaggca aactctgtgg gaaaaaggga ctggaccaaa aaaaactgga tggtggcaca caagaagagg aaatgatgag atgtgtactt tctatctctg gttaggctta 180 240 gtccccacta gacaaattga ttttaaatac tatgtagtga tttttaaatt ccatccacac 300 attcattacc cacacagata atcatagaaa tttgggggag tgcctagctt ctgatgaagt 360 ggtgatatgg cagttgccaa gcagtggcat cgccagagta tctgtttggt tagcaaatga 420 gcagtcattt taggtcatgc agattgctga tatctgccca gtagccactg agcatttgct ggttttttct tctggctttc ttggaggtta agctctctgt agtcataécc agttggtact 480 540 tgatctttag caatatgtct catattcatg taaattgaag ggagggttac atgtactgaa 600 ataatctgca tgctaggcat tggcttagac accgtaccta tctcacttag atttgtggac 660 taggaaagca agattcagag atcatgtgac ttgcatgtgg cctagagata aaattcaaat 720 780 gataaatttg tgtttatggt taacaaatgt gaaagctatt aaacattgct ggtttgaatt ttttacagtg cagaaatgta aaatgaaaaa ggatatttcc tttcacagtg ttaccgagaa 840 900 gtcatgataa tttcgtttgt tcttccagat ttaggcatat acttatttaa tcaataatgt

960 gttaacagct gacacctgtg gttgctgtga caggcactat ttgaagtgct ttatcatgga 1020 ttaactctta atcctcagct accgtataaa gtaggacata accccatttc acatgcacta 1080 cactgagact tgcctcctct cccccacat tgaagatgtt cttttttcat aactatatac tattccattg catgaatatt ctgtaattta tttaatcccc tatggattga taattaggtt 1140 cattatagat agaagtgtaa ttaacattcc tgtacatgta ttttgctact tgtgtgggta 1200 1260 tttctgtagg atgaataact agaaatttat tggatcaggt ttcacatttg cagttttgaa 1320 aactactacc aaaaagattt caccaattta caactccatc attagtaaga atgcctgttt gcctatagtc tgccaaccct gaatccttaa aaatttttgc caatctggta ggcaaaattt 1380 ctttcttttc tttgaatatt aatgaggagg aacatctttt catgtttctt ggccatttgc 1440 atttcctatt atgaattgct tttgcccatt ttcctttttt taattatgaa agtctaatga 1500 1560 ctaccttctc attgtataaa aaacacagtt ctttgaatag agagaccctt ttctccaatg ctaccaatca cattccactt accacagttt aacatacatc ctctagtcac ctttccgtac 1620 gaatatacat acacataaaa acacttttta cataaatagg atctcatatt ctgtagcttt 1680 1740 ttaaaatttt ggtctcaaaa aaagataaca ggtctttaaa tttctttaat ggttgaatat gattaaatac tatgaaaatg ccattattta ttcccttaat tttttcctc tcgctattac 1800 1860 attgccaaag taaacatcct attcagatgt ctttgtgcat gtgtgtgaat atttctttag tctggagtcc agtaaggtgg atttttggat caaagggttt gttctctgtc caccttcagt 1920 cttcccaaag gccttcataa ctgtattttc accaagtgta tggagaatgt tcatttcccc 1980 atataaccat acctacactt gatagttttt atctgttggg cgaaaaagaa ccttttctta 2040 2092 atg gtg aga ttg ggg tta ttt tca ttttqcattt ccctqattat aaaaaaaa Met Val Arg Leu Gly Leu Phe Ser tgt tta ttg gcc att tat agt tta ctg tgg att gtt tgt atc cct tac 2140 Cys Leu Leu Ala Ile Tyr Ser Leu Leu Trp Ile Val Cys Ile Pro Tyr 15 ctg ctt tct att ggg tta tgt gtg gat ata ttg ttt tta ttt gtt cag 2188 Leu Leu Ser Ile Gly Leu Cys Val Asp Ile Leu Phe Leu Phe Val Gln 30 25 cat ctc ctt ccc cat ctt ctg gta aca caa cct tta ttt att tgt ggg 2236 His Leu Leu Pro His Leu Leu Val Thr Gln Pro Leu Phe Ile Cys Gly 50 55 45 2284 gaa cot att coc tgt ggc tta ggt gag cat gtg acc agg cot ggc ctc Glu Pro Ile Pro Cys Gly Leu Gly Glu His Val Thr Arg Pro Gly Leu

60	65	70							
ctg agt ccc aca gct tcc tag cc a Leu Ser Pro Thr Ala Ser * 75	acagtgataa aagaatgggt	atataactta 2337							
agccaggcta aggaaagccc ttaacagaac	: ttctgctgga actactgga	a agaaggcttt 2397							
atggagatcc caggaaccaa ggaccatgta	a agcctgaatt tgtgccatg	rt ggagagagtc 2457							
tgtctgagga gaaactcgga tgctagcaga	a aatggaaaga gaactaagt	t ctgatgtcat 2517							
ttttctggag gccctagatc cagctgtgcc	c taaageetge eetaeetee	g gactttaaag 2577							
ttttgtgagc caataaagtc cctttcttgt	t ttaagataat tgaattgag	t ttttgttttg 2637							
attaatatag gttatttgta tttttttatt	gatttgtaaa aaacctttg	rt aattttaaat 2697							
tttagacttt atgccctata taagttaata	a aaattagcat ggccttcca	la aaaaaaaaaa 2757							
aaaa		2761							
<210> 111 <211> 821 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (38)(502) <400> 111									
gaatccgtcg cggaacctgt ctttacccag	Met Ser Lys 1								
gta tcg tac gtg cgg cca gcc gag Val Ser Tyr Val Arg Pro Ala Glu 10									
gaa cgg gtc ggc tac agg gag gga Glu Arg Val Gly Tyr Arg Glu Gly 25 30									
cag cct cag ccc cca gat gaa gat Gln Pro Gln Pro Pro Asp Glu Asp 40 45									
gaa cag cct caa gtg gtg gtt tta Glu Gln Pro Gln Val Val Val Leu 55 60									
gaa gtc atg aaa att aaa gca gaa Glu Val Met Lys Ile Lys Ala Glu									

75 80 85	
gaa cca act cca gcc gat gga aga atc ata tat cga aaa cca gtc aag Glu Pro Thr Pro Ala Asp Gly Arg Ile Ile Tyr Arg Lys Pro Val Lys 90 95 100	343
cat ccc tca gat gaa aaa tat tca ggt tta aca gca agc tca aaa aag His Pro Ser Asp Glu Lys Tyr Ser Gly Leu Thr Ala Ser Ser Lys Lys 105 110 115	391
aag aag cca aat gaa gat gaa gta aat cag gac tcg gtc aaa aag aac Lys Lys Pro Asn Glu Asp Glu Val Asn Gln Asp Ser Val Lys Lys Asn 120 125 130	439
tca caa aaa caa att aaa aat agt agc ctc ctt tct ttt gac aac gaa Ser Gln Lys Gln Ile Lys Asn Ser Ser Leu Leu Ser Phe Asp Asn Glu 135 140 145 150	487
gat gaa aat gag taa gtgtaaatat tttgaattta gtctactttg aaagtatatg Asp Glu Asn Glu * 155	542
gagtgttcat taaaatcaca ttttttccta ttataaagat actacaagtt ctttatagaa	602
agtttaggaa atagagaaaa aaatttaata aactacatct attcatcaat acccctctga	662
cttaaaatgc caactctata gaaattagct agtattaaca ttttgttatt tcccttgtgt	722
ggttgtatat atatgtaaat tatattttta agcaaaatac attttttgtg tgtaaacaaa	782
attttataaa tacaactgta ttgcaaaaaa aaaaaaaaa	821
<210> 112 <211> 573 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (152)(457)	
<400> 112 acggaacttc ggcacgaggc tagctttctg tgtgcttagg tgcccgagct actgagggtc	60
taagtccggg cagccgaaga gtgtggtagg taacggtcct cagcgcaagg gtcatttcgt	120
cgctgggaag ggacggccct cgcccgcggt g atg gtg gtt agc aag atg aac Met Val Val Ser Lys Met Asn 1 5	172
aaa gat gcg cag atg aga gca gcg att aac caa aag ttg ata gaa act Lys Asp Ala Gln Met Arg Ala Ala Ile Asn Gln Lys Leu Ile Glu Thr 10 15 20	220

gga gaa aga gaa cgc ctc aaa gag ttg ctg aga gct aaa tta att gaa Gly Glu Arg Glu Arg Leu Lys Glu Leu Leu Arg Ala Lys Leu Ile Glu 25 30 35	268
tgt ggc tgg aag gat cag ttg aag gca cac tgt aaa gag gta att aaa Cys Gly Trp Lys Asp Gln Leu Lys Ala His Cys Lys Glu Val Ile Lys 40 45 50 55	316
gaa aaa gga cta gaa cac gtt act gtt gat gac ttg gtg gct gaa atc Glu Lys Gly Leu Glu His Val Thr Val Asp Asp Leu Val Ala Glu Ile 60 65 70	364
act cca aaa ggc aga gcc ctg gta cct gac agt gta aag aag gag ctc Thr Pro Lys Gly Arg Ala Leu Val Pro Asp Ser Val Lys Lys Glu Leu 75 80 85	412
cta caa aga ata aga aca ttc ctt gct cag cat gcc agc ctt taa gat Leu Gln Arg Ile Arg Thr Phe Leu Ala Gln His Ala Ser Leu * 90 95 100	460
tgaattagat tgtgttgttg tggttttatt tctgaaagta aaacttgcca taaattagaa	520
aacaatttcc caaaataaaa tccttttttg tatgatggta aaaaaaaaa aaa	573
<210> 113 <211> 1687 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (477)(1634) <400> 113	
tttcaggttc caaagcttat ggttagggag ccaaaacccc cacccctta tttttagaat	60
ggcaatatta ttgtaccaca tctgtcatgc tacggaaaac aaatggaatc tggctttcat	120
gtgaatacaa aggttacaaa gtctatattt accatcatta atactgaata ttatattcca	
	180
ataagaatct ttagaatttt aagagaaatt tgagtattaa aaaaattatc taatataccc	180 240
ataagaatct ttagaatttt aagagaaatt tgagtattaa aaaaattatc taatataccc aattagaatc ttttcacatg agactacaga gaaagatttg tatttgtaac aaaaaattag	
	240
aattagaatc ttttcacatg agactacaga gaaagatttg tatttgtaac aaaaaattag	240 300
aattagaatc ttttcacatg agactacaga gaaagatttg tatttgtaac aaaaaattag ctgggcatgg tggcaggtgc ctgtaatccc agctacttgg gaggctgagg caggagaatc	240 300 360

Thr	Gly	Ile	Leu 20	Lys	Gly	Val	Asn	Leu 25	Gln	Arg	Lys	Gln	Ala 30	Ala	Asn	
	_	gcc Ala 35			_	_		-	_	-						620
		ggc Gly														668
		gtg Val														716
		tgc Cys														764
_		acc Thr														812
		aag Lys 115														860
		cct Pro			_		_	-		_		_				908
		gcc Ala														956
_		tct Ser														1004
		gac Asp														1052
		tca Ser 195														1100
_		gat Asp														1148
		gag Glu					-	_								1196
		att Ile														1244

<400> 114

		~ ~ ~	_		ctg Leu		_	_	_		_	-		_			1292
_		_	_	_	cac His			_				_		_			1340
-	-	_	-	_	agg Arg												1388
		_	_		ctc Leu 310	_			_		-			_			1436
					gag Glu												1484
_				_	gac Asp				_	_			_				1532
					cgg Arg												1580
•			_	_	cgg Arg	_	_	_	_						_		1628
ccc Pro 385	tga *	cgc	ccct	gtg (cca	ctttg	gt aa	aataa	aacto	g ctg	gaaca	accc	aaaa	aaaa	aaa	,	1684
aaa																	1687
	<21 <21	10> 1 11> 1 12> 1 13> 1	1416	sap:	iens												
	<22	20> 21> (22>	CDS (109))(756)												

250

245

255

60

117

Met Leu Leu

atttggccct cgaggccaag aattcggcac gaggtgctat actgggatgc aggcgcggcg

gggactggca gcaatcatgc cctgggagct agcgtagagc tttggata atg ctt ttg

					Gly											165	
		_			gct Ala 25	-	_		_	-	-		_			213	
					ttc Phe											261	
_	_	_		_	gag Glu											309	
					tcc Ser											357	
					ctg Leu											405	
_	_	_		-	ggc Gly 105											453	
_	~		_	_	aaa Lys			-		_	_	-	-		_	501	
					cac His											549	
		-			cga Arg											597	
					ctg Leu											645	
					aat Asn 185											693	
					aca Thr											741	
	cac His	_		tga *	ggca	aggg	gat t	igato	ccctg	ga co	ctcc	cttct	aco	cca	cttc	796	

856 cctacacaat tctcttattt atttggtttg gctcctgttc caatttgaaa ggagtctgtg ttcataatac tgtttctcct ctcaatttcc cagaaattgg gttctatgct ggctggaaat 916 976 gttgggggaa agagaaggca aaggatgtgg aaatgagatg tgcttaggaa agggtcaggc ccatcgtagg agcaccatat gcctgcagcc ttttcactac gaattagaat aaggactatg 1036 1096 tggttgtctc tggaccttat caagacacct tagtgtctga ccaggggacg atagtaactt ttctaaggat tgaataaatt gagettttet tetggeacag aggtaetgag tggtaagtaa 1156 1216 cttttaccct gcctgagatt cctcaggaga aaaggcaacc tgcctccagc ctgaaataca taaagcctca ttttaagact gtaagtccat gctgcctggc tactagagag caaggggctt 1276 1336 tottaccaco agtgotgagg agaaaagtac tgaacggaaa cggagttgto titgtactot 1396 tgagttgtac cttattcttc cacttggcct gagtttttat aaaatttcaa taaattgtga 1416 cagtgtgaaa aaaaaaaaaa

<210> 115 <211> 1008

<211> 1000 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (392)..(736)

<400> 115

cagtgtggtg gaattcagaa atactaggga agggccaggc gtggtggctc acgcctctaa 60 120 acccagcact ttgagaggcc aaggtgggag gatcacctga gggcaagagt tcaagaccag 180 cctgaccaac atggagaaac cccatctcta cttaaaaaaa aaaaaatacg aatttaccca 240 ggcatggtgg tgggcacctg taatcccagc tactcgggag actgaggcgg gagattctct tgaacctggg aggcagaggt tgcggtgagc cgagatcgtg ccattgcact ccagcctggg 300 360 caacaagagc aaaactccat ctcaaaaaga aaaaagaaag aaagaaatgc taggggaaaa 412 tgttttaact agtcattctt cccagtagct a atg aag ctg act ttt aaa aag Met Lys Leu Thr Phe Lys Lys 460 aag gct gtg agc ttt gca gat gct gcc gcc cag ggc ccc ctg ctt Lys Ala Val Ser Phe Ala Asp Ala Ala Ala Ala Gln Gly Pro Leu Leu 10 20 15 508 cca gcc atg gtc aac ccc acc atg ttt ttc cac att gct gtc gat ggc

Pro Ala Met Val Asn Pro Thr Met Phe Phe His Ile Ala Val Asp Gly 25 30 35	
gag ccc ttg ggc tgt gtc tcc ttc gag ctg ttt gca gac aag gtt cca Glu Pro Leu Gly Cys Val Ser Phe Glu Leu Phe Ala Asp Lys Val Pro 40 45 50 55	556
aag aca gca gaa aat ttc cat gct ctg agc act gga gaa aaa gga ttt Lys Thr Ala Glu Asn Phe His Ala Leu Ser Thr Gly Glu Lys Gly Phe 60 65 70	604
ggt tat aag ggt tcc tgc ttt cac aga att att cca ggg ttt acg tgt Gly Tyr Lys Gly Ser Cys Phe His Arg Ile Ile Pro Gly Phe Thr Cys 75 80 85	652
cag agt ggt gac ttc aca cgc cat aca gca ttg gtg gca agt cca tct Gln Ser Gly Asp Phe Thr Arg His Thr Ala Leu Val Ala Ser Pro Ser 90 95 100	700
gca ggg aga aat ttg atg aca aga act tca tcc tga agca tacgggtcct Ala Gly Arg Asn Leu Met Thr Arg Thr Ser Ser * 105 110 115	750
ggcatcttgt ccatggcaaa tgctggaccc agcgtgaacg tttcccagtt ttttatctgc	810
cctgccaaga tgccaagaca gagtggttgg attgcaagca tgtggtcttt ggcaaggtga	870
aagatggcat gaatattgtg gaggtcatgg agcacttggg gtccaagaat ggcaagatca	930
gcaatcagca agaagatcac cattgctgac tggacaactg caataaattt gacgggtgtt	990
tctcttaaaa aaaaaaaa	1008
<210> 116 <211> 1379 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (160)(444) <400> 116	
agtagaaata cccttttgat caccctgcgg taccggtccg gaattcccgg gtcgacccac	60
gcgtccgggc ggggaggtgg acgcgggtac cggcggtcgt cgggtcggca gcctttggtc	120
agttggcagc ggcaagcgcg ctgcggttcc ggtggcgcc atg tcg ttc tgc agc Met Ser Phe Cys Ser 1 5	174
ttc ttc ggg ggc gag gtt ttc cag aat cac ttt gaa cct ggc gtt tac Phe Phe Gly Gly Glu Val Phe Gln Asn His Phe Glu Pro Gly Val Tyr 10 15 20	222

270 gtg tgt gcc aag tgt ggc tat gag ctg ttc tcc agc cgc tcg aag tat Val Cys Ala Lys Cys Gly Tyr Glu Leu Phe Ser Ser Arg Ser Lys Tyr 30 318 gca cac tcg tct cca tgg ccg gcg ttc acc gag acc att cac gcc gac Ala His Ser Ser Pro Trp Pro Ala Phe Thr Glu Thr Ile His Ala Asp 40 45 50 agc gtg gcc aag cgt ccg gag cac aat aga tct gaa gcc ttg aag gtg 366 Ser Val Ala Lys Arg Pro Glu His Asn Arg Ser Glu Ala Leu Lys Val 55 414 tcc tgt ggc aag tgt ggc aat ggg ttg ggc cac gag ttc ctg aac gac Ser Cys Gly Lys Cys Gly Asn Gly Leu Gly His Glu Phe Leu Asn Asp 465 qqc ccc aag ccg qgg cag tcc cga ttc tga a tattcagcag ctcgctgaag Gly Pro Lys Pro Gly Gln Ser Arg Phe 90 95 525 tttgtcccta aaggcaaaga aacttctgcc tcccagggtc actaggcggg cagcccacac 585 ccacccaga cggccaccac actgaggcca cacgttggcc attccacctt ggagttggaa ccctgggcgt cgagacagga aggcagggcg cagtggttga aacatcagga cactcccaag 645 705 gccccggctc tgaacaagac cttttcgttt cttggaaaag agactcattt gctgatggtt catgccttct gctgggacag gcctgggctg tgcagccaca ctgtcggctg acttagcccc 765 825 ctgctcactc taggtgcctc caggaggtga gccctgggtg cagctggtct ctgaatgacg 885 ttacaccctc accttctttt cctggccctg tctctgggac tctcccctgt gaggcccaat 945 tccaagacag actctcgtcc tcaccgaagc ttaggcccac atctcccagg ctgcttagga 1005 gacagaatgg aaacggaggc cgccctgcc agccgccctg gccctggtca ctgcatgatc 1065 cgctctggtc aaacccttcc aggccagcca gagtggggat ggtctgtgac ctgctgggaa 1125 ggcaggctga tggggcacac ccttggcctc tcgtccacga ggggagaaac ctaaaccctg tttcacaatc tgtgcggaag tagcttgcct cacttctgct taggaaagcg gctgttgctc 1185 cataactcta accagcacag ggctgaggcc tgcagtgcac acctgcaggg aggcccttcc 1245 caaggtqtqq tgactqtgcc ttactgtaca tgctcggagg cctggccata taggagggtg 1305 ggtgatgctg aaatcacccc ccatcttaag taattacttt ctggagtaat caggtggaaa 1365 1379 tccatagaca aatg

<210> 117

<211> 2179 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (70)..(1827) <400> 117 caaatatcaa gagaccatgg ctggattaag ctagataata attttgaggt caattttgat 108 aaagatcca atg gaa atg cgc ctc cct att cgt agc cct att aaa cga Met Glu Met Arg Leu Pro Ile Arg Ser Pro Ile Lys Arg gac ttt tta tca gga att cag att gaa ttt aag cag tct tct cac cag 156 Asp Phe Leu Ser Gly Ile Gln Ile Glu Phe Lys Gln Ser Ser His Gln 20 204 aga agt tta agg gcc agg ttg tac tgg ctt cag gtt gat aat cag tta Arg Ser Leu Arg Ala Arg Leu Tyr Trp Leu Gln Val Asp Asn Gln Leu 30 35 252 cca ggt gca atg ttc cct gtt gta ttt cat cct gtt gcc cct cca aaa Pro Gly Ala Met Phe Pro Val Val Phe His Pro Val Ala Pro Pro Lys 50 55 300 tct att gct tta gat tca gag ccc aag cct ttc att gat gtg agt gtc Ser Ile Ala Leu Asp Ser Glu Pro Lys Pro Phe Ile Asp Val Ser Val 65 348 atc aca aga ttt aat gag tac agt aaa gtc tta cag ttc aag tat ttt Ile Thr Arg Phe Asn Glu Tyr Ser Lys Val Leu Gln Phe Lys Tyr Phe 80 396 atg gtc ctc att cag gaa atg gcc tta aaa att gat caa ggg ttt cta Met Val Leu Ile Gln Glu Met Ala Leu Lys Ile Asp Gln Gly Phe Leu 95 100 444 gga gct att att gca ctg ttt acc cca aca aca gac cct gaa gct gaa Gly Ala Ile Ile Ala Leu Phe Thr Pro Thr Thr Asp Pro Glu Ala Glu 115 120 aga aga cgg aca aag tta atc caa caa gat att gat gct cta aat gca 492 Arg Arg Arg Thr Lys Leu Ile Gln Gln Asp Ile Asp Ala Leu Asn Ala 135 130 540 gaa tta atg gag act tca atg act gat atg tca att ctt agt ttc ttt Glu Leu Met Glu Thr Ser Met Thr Asp Met Ser Ile Leu Ser Phe Phe 150 145 588 gaa cat ttc cat att tct cct gtg aag ttg cat ttg agt ttg tct ttg Glu His Phe His Ile Ser Pro Val Lys Leu His Leu Ser Leu Ser Leu 170 160 165 636 ggt tcc gga ggt gaa gaa tca gac aaa gaa aaa cag gaa atg ttt gca Gly Ser Gly Glu Glu Ser Asp Lys Glu Lys Gln Glu Met Phe Ala

	175					180					185					
_			-											ctg Leu		684
-		-	_											cga Arg 220		732
-			_	_	_	_								cat His		780
-	-	_		_		_	-		_		_	_		tta Leu	_	828
_									_		_		-	gga Gly		876
_	_				-			_		_	-			cct Pro		924
														gga Gly 300		972
														tct Ser		1020
														caa Gln		1068
														agc Ser		1116
-	-			_			_	_		_	_			gtg Val		1164
														gct Ala 380		1212
														gcc Ala		1260
														ggc Gly		1308

														ccc Pro		1356
														cag Gln		1404
														gaa Glu 460		1452
														aca Thr		1500
														gaa Glu		1548
														ttt Phe		1596
														aag Lys		1644
_		_												gtt Val 540		1692
														aat Asn		1740
														aag Lys		1788
			_		ctc Leu							taa *	tcad	caga	cct	1837
cag	gggct	ccc a	aacag	gggag	ga aa	aaaa	caato	c act	tggt	cttg	tcta	ataag	gtc a	actc	tgcttt	1897
atc	ttgct	caa a	agaca	aatti	t to	caago	caato	c ctt	tagt	ttt	agt	ttc	tgg a	aatag	gctagt	1957
att	gggti	ctt d	ctagi	tttt	ct ca	accti	ttag	g ttt	ttad	ctct	aatt	ttg	taa (ccat	gtatat	2017
gct	agcag	gtc (cacti	tctad	cg co	cacca	accca	a aat	gggt	cag	acco	cttga	aag a	aaac	gtcact	2077
tca	aacto	cag a	aatga	aaati	tt to	catta	aatat	t taa	aatt	gtg	aago	caaag	ggt (caata	aggctt	2137
ata	tttaa	att a	aaago	cctta	ac to	gaaaa	ataag	g aaa	atga	gctt	ag					2179

<210> 118

<211> 3168 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (330)..(1652) <400> 118 60 cccaggcccc ttttacctct gccagtcgtt acaaaccgta tcgatggcaa ccgcactgct tgatgtagec agaatggetg gttacagtec egggagggge ecaagetgge ttgaacetgg 120 cccaggtcat gcacacagcc agcagtgaca catccaatgg gacactccag gatgaaacct 180 gagaaaggag gtctgggata tgggatattg taatgggaga gcaggaaatt taaggtcgga 240 ggtatttgtt taggatacct cagtattcta gagctatggg atttattttg ctttgaagtc 300 353 cagaggtatt tagetttatt ctaaaageg atg aag tte etc tta att aaa gae Met Lys Phe Leu Leu Ile Lys Asp gct cct gga aaa aaa aag aaa aat tta atg ctg tct ttt aaa agg 401 Ala Pro Gly Lys Lys Lys Arg Lys Asn Leu Met Leu Ser Phe Lys Arg 15 10 449 aaa cat gcc aaa ggc cag gat ttg ttt gat cag att gtg tac cac ttg Lys His Ala Lys Gly Gln Asp Leu Phe Asp Gln Ile Val Tyr His Leu 30 25 497 gac ctt gtg gaa aca gat tac ttt ggc ctc cag ttc ctc gac tct gcc Asp Leu Val Glu Thr Asp Tyr Phe Gly Leu Gln Phe Leu Asp Ser Ala 45 55 545 cag gtt gcg cac tgg ctg gat cat gcc aaa ccc ata aaa aag cag atg Gln Val Ala His Trp Leu Asp His Ala Lys Pro Ile Lys Lys Gln Met 65 aaa att gga cct gct tat gct tta cac ttt cga gtt aaa tac tat tct 593 Lys Ile Gly Pro Ala Tyr Ala Leu His Phe Arg Val Lys Tyr Tyr Ser 641 tca gaa cca aac aac ctt cgt gag gag ttt aca agg tac ctg ttt gtt Ser Glu Pro Asn Asn Leu Arg Glu Glu Phe Thr Arg Tyr Leu Phe Val 90 100 tta caa ctc agg cat gac att ctt tct gga aaa ttg aaa tgc cct tat 689 Leu Gln Leu Arg His Asp Ile Leu Ser Gly Lys Leu Lys Cys Pro Tyr 120 105 110 115 737 qaa aca gct gtg gaa tta gct gct ctc tgt cta caa gcg gag ctt ggg Glu Thr Ala Val Glu Leu Ala Ala Leu Cys Leu Gln Ala Glu Leu Gly

	125	130		135
			ctt gtg tct gag Leu Val Ser Glu 150	
	Gln Thr Glu		ttt gat atc ttc Phe Asp Ile Phe 165	
			cag gcg gaa ctc Gln Ala Glu Leu 180	
			ggg gta gac atg Gly Val Asp Met 195	
			ctt gga ctg acc Leu Gly Leu Thr	
			ata ggc tta ttc Ile Gly Leu Phe 230	
	Lys Met Asp 1		agc aaa ttg aca Ser Lys Leu Thr 245	_
			caa gag cac acg Gln Glu His Thr 260	
			cac ctt tgg aag His Leu Trp Lys 275	
			acg cca gga aac Thr Pro Gly Asn	
_	_		tct cgc ttc aga Ser Arg Phe Arg 310	
	Tyr Gln Ala 7		tcc agg tta cga Ser Arg Leu Arg 325	
=			tat cca tcc cgg Tyr Pro Ser Arg 340	
_			gca gcc cag ctc Ala Ala Gln Leu 355	

aaa aca aat cca gaa gtc cat aat tac cag cct caa tat cat cct aat Lys Thr Asn Pro Glu Val His Asn Tyr Gln Pro Gln Tyr His Pro Asn 365 370 375	1457
atc cat ccc agc cag ccc cgg tgg cat cct cac tct cca aat gtc agg Ile His Pro Ser Gln Pro Arg Trp His Pro His Ser Pro Asn Val Arg 380 385 390	1505
cca tcc ttt cag gat gac agg tcg cat tgg aaa gca tcg gcc agt gga Pro Ser Phe Gln Asp Asp Arg Ser His Trp Lys Ala Ser Ala Ser Gly 395 400 405	1553
gat gac agc cat ttt gat tat gtc cac gac cag aac cag aag aac tta Asp Asp Ser His Phe Asp Tyr Val His Asp Gln Asn Gln Lys Asn Leu 410 415 420	1601
gga ggg atg caa agt atg atg tat cga gat aaa ctc atg act gca ctt Gly Gly Met Gln Ser Met Met Tyr Arg Asp Lys Leu Met Thr Ala Leu 425 430 435	1649
tga gaga ctgaagcatc tctcttccat tcaccttcat agtttcattg cattccatga *	1706
aaagtgtctt ggcctcagat ggatggatgt gtttggacga gtgtctttaa ggagtagtcc	1766
tgaaaggtgt ttttggtgtc catgtaaata tttgaagata aaaccactat agcttgtcat	1826
aatttactgt tgactgcatt ctcattaaaa tgaaggtaaa ggctcaggaa tcatattgat	1886
gttctgattt taaaattgga gtcaaagtct atgtttatca ttttactatg ttcctgatgt	1946
tctttgttat ttaattaatg ggagcaaata aaaccagaag agcttgggaa gattgctcag	2006
catatattcc tgtcgtagaa gttgagattg ctagggtcca gtttccctag tgtggcctgg	2066
acgagtcatt tccccttcat tgacctcatt ttccccatct gaaaagagag ggttggacta	2126
agtgatctcc aaggtccttt ccaactctaa aattctgcaa tttgttaaca tttcattttg	2186
tttaggttga ggacatacat tcaaactaat tttatcacaa ggaaaactgc aatacccact	2246
tccttgacag agttactcct ttcagaagct aaataaagta tataacttat tagatgttat	2306
atagatacag ggggactttg aatttcacat cttaaagcag ttgagctact ttgaatttaa	2366
gcagtcgtac taatcttaaa ttgcatagca tttgttttga tcgaatttgc tgctcaagta	2426
tgggaataat ttttaatgtc ttaatgattg gtgctgctaa cttgcgtgat ttcagaagac	2486
ataattgtga atacacactg tcagaattgg gggattggtt tttaccctag acttcactct	2546
taaaaagcaa cgtgcaatca agatcattta tggctcaaat gaaagcatat aaggttttct	2606
tgaagttgtg ccaaagcatt ctgtagagta ggatgagatg gttgttgccc tagtctgttg	2666

2726 gtagaaccag aaatcaatat gttgtctttt aggttaaagc ttgtaccaaa atatttattt 2786 ccccatttc aagccctgag tcaaacattt ttttctctta ataatagacc tgaaatgttt tattaqtatt tctqtqaaat caqttqattc ttgtgccatt tttgtatatg taattgtaat 2846 tttgcccatg ttaggccctc taaaaaatgt ttgacatcct ttgagatatt ttattactaa 2906 aatctgatct tttttggcta ctgcaaaaat ctattcagca agaaggtatc agctgcatac 2966 3026 cttgcacagt ggagctgact acctataaac tctccctaag gcatttgttt acaggtgtat 3086 tccattttag cagacgttct gatgctcagt gtatgtgctg catacaaata aatgtgttct gaatcttttc atcttattga tagcattttt acaaatgtgt ttccaaggaa taaagattat 3146 3168 tcttgcttta aaaaaaaaaa aa

<210> 119 <211> 1875 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (247)..(1677)

(222) (241)..(10)

<400> 119

tagaggagaa gtcgaggtta gagggaactg ggaggcactt tgctgtctgc aatcgaagtt 120 qaqaqqccca qtatttaqqc qacaqtqaat ttattactct gaagagggtt ctgcacatat 180 ttccaaatta tattqqtqqt catcaqaaqt agqtqataqq aagaaatact tctcaagggt 240 288 atg cag agt aat aaa act ttt aac ttg gag aag caa aac cat gcaaaa Met Gln Ser Asn Lys Thr Phe Asn Leu Glu Lys Gln Asn His 5 336 act cca aga aag cat cat caa cat cac cac cag cag cag cac cac cag Thr Pro Arg Lys His His Gln His His Gln Gln Gln His His Gln 15 384 cag caa cag cag ccg cca ccg cca ata cct gca aat ggg caa Gln Gln Gln Gln Pro Pro Pro Pro Pro Ile Pro Ala Asn Gly Gln 35 432 cag gcc agc agc caa agt gtg tat atg cta gat gaa ggc ttg act att Gln Ala Ser Ser Gln Ser Val Tyr Met Leu Asp Glu Gly Leu Thr Ile 50 55 480 gac ctg aag aat ttt aga aaa cca gga gag aag acc ttc acc caa cga Asp Leu Lys Asn Phe Arg Lys Pro Gly Glu Lys Thr Phe Thr Gln Arg

ttttctcggg acgggagagg ccgtgtagcg tcgccgttac tccgaggaga taccagtcgg

70 75 65 528 age egt ett tit gig gga aat ett eet eee gae ate aet gag gaa gaa Ser Arg Leu Phe Val Gly Asn Leu Pro Pro Asp Ile Thr Glu Glu Glu 85 576 atg agg aaa cta ttt gag aaa tat gga aag gca ggc gaa gtc ttc att Met Arg Lys Leu Phe Glu Lys Tyr Gly Lys Ala Gly Glu Val Phe Ile 100 105 624 cat aag gat aaa gga ttt ggc ttt atc cgc ttg gaa acc cga acc cta His Lys Asp Lys Gly Phe Gly Phe Ile Arg Leu Glu Thr Arg Thr Leu 120 115 672 gcg gag att gcc aaa gtg gag ctg gac aat atg cca ctc cgt gga aag Ala Glu Ile Ala Lys Val Glu Leu Asp Asn Met Pro Leu Arg Gly Lys 130 cag ctg cgt gtg cgc ttt gcc tgc cat agt gca tcc ctt aca gtt cga 720 Gln Leu Arg Val Arg Phe Ala Cys His Ser Ala Ser Leu Thr Val Arg 145 150 155 768 aac ctt cct cag tat gtg tcc aac gaa ctg ctg gaa gaa gcc ttt tct Asn Leu Pro Gln Tyr Val Ser Asn Glu Leu Leu Glu Glu Ala Phe Ser 160 165 gtg ttt ggc cag gta gag agg gct gta gtc att gtg gat gat cga gga 816 Val Phe Gly Gln Val Glu Arg Ala Val Val Ile Val Asp Asp Arg Gly 180 1.85 agg ccc tca gga aaa ggc att gtt gag ttc tca ggg aag cca gct gct 864 Arg Pro Ser Gly Lys Gly Ile Val Glu Phe Ser Gly Lys Pro Ala Ala 195 200 912 cgg aaa gct ctg gac aga tgc agt gaa ggc tcc ttc ctg cta acc aca Arg Lys Ala Leu Asp Arg Cys Ser Glu Gly Ser Phe Leu Leu Thr Thr 210 215 ttt cct cgt cct gtg act gtg gag ccc atg gac cag tta gat gaa 960 Phe Pro Arg Pro Val Thr Val Glu Pro Met Asp Gln Leu Asp Asp Glu 225 230 gag gga ctt cca gag aag ctg gtt ata aaa aac cag caa ttt cac aag 1008 Glu Gly Leu Pro Glu Lys Leu Val Ile Lys Asn Gln Gln Phe His Lys 240 1056 gaa cga gag cag cca ccc aga ttt gca cag cct ggc tcc ttt gag tat Glu Arg Glu Gln Pro Pro Arg Phe Ala Gln Pro Gly Ser Phe Glu Tyr 255 1104 gaa tat gcc atg cgc tgg aag gca ctc att gag atg gag aag cag cag Glu Tyr Ala Met Arg Trp Lys Ala Leu Ile Glu Met Glu Lys Gln Gln 1152 cag gac caa gtg gac cgc aac atc aag gag gct cgt gag aag ctg gag Gln Asp Gln Val Asp Arg Asn Ile Lys Glu Ala Arg Glu Lys Leu Glu

295

						cgc Arg										1200
_	_	_	_		-	caa Gln 325	-	-				_	_		_	1248
						aaa Lys	_	_		_				_		1296
_		_		_	_	gaa Glu	_		_			_		_	_	1344
_	_		-	_	_	gaa Glu			_					-		1392
_		_				atg Met		_	_	_	_			_	_	1440
						gcc Ala 405										1488
		-				cct Pro	_		_	_	_	_			_	1536
	_					act Thr	-	-			_	-	-		-	1584
_						ggt Gly					-			_	_	1632
						gcc Ala								taa *	taa	1680
gtto	gcagt	gt o	ctagt	ttct	c aa	aaacc	cctta	a aaa	agaaç	gac	cctt	tttç	gga c	ctago	cagaa	1740
ttct	acco	ctg g	gaaaa	agtgt	it aç	ggat	tcct	tcc	caata	ıgtt	agat	ctac	ccc t	gcct	gtact	1800
acto	tago	gga g	gtato	gatgg	ga gg	gcaga	agggo	c aag	ggag	iggg	tggt	atta	aa c	caagt	caatt	1860
ctga	aaaa	aaa a	aaaa	ì												1875

<210> 120

<211> 1413 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (54)..(686) <400> 120 56 tgacaaacca atttccctcg atgatgtgct tctgagtgct ctgctgagga aca atq Met 1 104 gga ggt ctg ccc agc aga aga aaa tct ctg cca agc cca agc ttg agt Gly Gly Leu Pro Ser Arg Arg Lys Ser Leu Pro Ser Pro Ser Leu Ser 152 tcc tct qtc caa ggc cag gga cct gtg acc atg gaa gca gag aga agc Ser Ser Val Gln Gly Gln Gly Pro Val Thr Met Glu Ala Glu Arg Ser 25 200 aag gcc aca gcc gtg gcc ctg ggc agt ttc ccg gca ggt ggc ccg gcc Lys Ala Thr Ala Val Ala Leu Gly Ser Phe Pro Ala Gly Gly Pro Ala 35 40 gag ctg tcg ctg aga ctc ggg gag cca ttg acc atc gtc tct gag gat 248 Glu Leu Ser Leu Arg Leu Gly Glu Pro Leu Thr Ile Val Ser Glu Asp 50 55 60 296 gga gac tgg tgg acg gtg ctg tct gaa gtc tca ggc aga gag tat aac Gly Asp Trp Trp Thr Val Leu Ser Glu Val Ser Gly Arg Glu Tyr Asn 70 75 344 atc ccc agc gtc cac gtg gcc aaa gtc tcc cat ggg tgg ctg tat gag Ile Pro Ser Val His Val Ala Lys Val Ser His Gly Trp Leu Tyr Glu 85 95 392 ggc ctg agc agg gag aaa gca gag gaa ctg ctg ttg tta cct ggg aac Gly Leu Ser Arg Glu Lys Ala Glu Glu Leu Leu Leu Pro Gly Asn 100 105 cct gga ggg gcc ttc ctc atc cgg gag agc cag acc agg aga ggc tct 440 Pro Gly Gly Ala Phe Leu Ile Arg Glu Ser Gln Thr Arg Arg Gly Ser 120 tac tct ctg tca gtc cgc ctc agc cgc cct gca tcc tgg gac cgg atc 488 Tyr Ser Leu Ser Val Arg Leu Ser Arg Pro Ala Ser Trp Asp Arg Ile 130 135 140 536 aga cac tac agg atc cac tgc ctt gac aat ggc tgg ctg tac atc tca Arg His Tyr Arg Ile His Cys Leu Asp Asn Gly Trp Leu Tyr Ile Ser 150 155 584 ccg cgc ctc acc ttc ccc tca ctc cag gcc ctg ggg gac cat tac tct Pro Arg Leu Thr Phe Pro Ser Leu Gln Ala Leu Gly Asp His Tyr Ser 165 170

gag ggc tgg ccc Glu Gly Trp Pro . 180		Gly Tyr Thr		-
gca gag gac acc Ala Glu Asp Thr 195				
ttc tga agctgcca Phe * 210	ca ggggaggagt c	tcttctcag tg	agggtctc cgggag	tccc 736
tcagcttcta catca	gcctg aatgacgag	g ctgtctcttt	ggatgatgcc tag	gcccaaa 796
ggagaggcca aaagg	gaaac caaggctgc	a cacctagaac	cccaattcag cct	cctgggc 856
accccagagg caagg	ctgtg cactcaggg	a gggagggtgg	gacacagagg tgc	atctagg 916
gtcccacctg taccc	ttgct ctttcctct	c ttagccctta	gaagtcacct act	tccttcc 976
agtgccatga tccca	cctgc gacctctag	t gcgagtgcag	agaaggtggg acc	agggcca 1036
gggttccaaa aagag	aataa gcctcctgg	g gggtctgacc	tagttagttc ttg	agtttgg 1096
ggtttccagt accate	ctgga tgccctgcc	t gttgagcccc	attctacatc ccc	accatta 1156
accaggcccc accca	caagg tagaaacaa	c ccctagagtc	aacgagaaag tca	ttttcag 1216
aaaatctaca agtct	cgttg agaccacca	c catacctcag	aaggtaggac tgt	ggcctag 1276
aagggaaagg aaagc	tgaga tgatgtctt	a ccgtagcagc	agatcttgga tgg	tccaggc 1336
tctatgtgac ctccag	gagca aagagaaag	a cttcggacag	tctaggtcct caaa	atgtccc 1396
ccattgagga caacag	gc			1413

<210> 121

<211> 2554

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (164)..(2323)

<400> 121

cccggcaacc cggagaaggt ctacagagcg gcctgcgcca gcgagtgagt acccgccgcc 60

tgcgcacagc tccgcccacc cctccctgcc tccttttctt cctcagcggg tccgcggccc 120

gctactctcc gggaggggcg cttcccgacg ccaagacaaa agg atg cca cgg aga
Met Pro Arg Arg
1

						gtc Val										223
-		_			-	tct Ser	-	_		_		_	_	_		271
						ata Ile										319
	_			-	_	aaa Lys	_	_			_	_		_	-	367
-		-	-			aaa Lys 75										415
						atg Met										463
_	_			_	_	gag Glu			_			_		_	_	511
-	_		_	_		cct Pro		_	-		_		_		_	559
	_	-			_	tct Ser		_								607
_					_	ggc Gly 155			_	-	-					655
						agt Ser					_		_	_		703
			_			gaa Glu			_			_	_			751
_			-		-	cag Gln		_	-		-					799
	_				_	aga Arg	_				_	_				847
cag	tgt	ggg	aag	cca	cag	gaa	agt	act	ggg	agg	ggt	tct	gct	ttt	ctc	895

Gln	Cys 230	Gly	Lys	Pro	Gln	Glu 235	Ser	Thr	Gly	Arg	Gly 240	Ser	Ala	Phe	Leu	
	gct Ala	_	_		_		_					_				943
	gca Ala	_	_				_	-								991
	tgg Trp					_		_		-	-			_		1039
	aag Lys															1087
_	gct Ala 310	_		-									_			1135
	cct Pro	_				_										1183
_	gct Ala	_				-	-			-	-	_		-	-	1231
_	aaa Lys				_	-			_		_					1279
	aag Lys	_		_	_	_				_	_					1327
	ttg Leu 390															1375
	gtt Val	-				-										1423
_	gtt Val	-	-	_		_	_	-	-		_		_			1471
_	tct Ser	_	_	-			_	_				_		_		1519
	gaa Glu															1567

465

ato Ile	ttg Leu 470	ı Asr	gga Gly	gto Val	aga Arg	ata Ile 475	I1e	atg Met	gca : Ala	ı gat ı Asp	aag Lys 480	s Glu	gtt Val	ggt Gly	aac Asn	1615	5
aag Lys 485	: Glu	gat Asp	gct Ala	gag Glu	aag Lys 490	Glu	gta Val	gct Ala	att Ile	tct Ser 495	Thr	ttc Phe	tca Ser	tcc Ser	agt Ser 500	1663	3
aac Asn	cag Gln	gta Val	tcc Ser	tgc Cys 505	ccg Pro	cta Leu	tgt Cys	gac Asp	caa Gln 510	. Cys	ttt Phe	cca Pro	ccc Pro	aca Thr 515	aag Lys	1711	-
att Ile	gaa Glu	cga Arg	cat His 520	gcc Ala	atg Met	tac Tyr	tgc Cys	aat Asn 525	ggt Gly	ctg Leu	atg Met	gag Glu	gaa Glu 530	Asp	aca Thr	1759)
gta Val	ttg Leu	act Thr 535	cgg Arg	aga Arg	caa Gln	aaa Lys	gag Glu 540	gcc Ala	aag Lys	acc Thr	aag Lys	agt Ser 545	gac Asp	agt Ser	Gly aaa	1807	
aca Thr	gct Ala 550	gcc Ala	cag Gln	act Thr	tct Ser	cta Leu 555	gac Asp	att Ile	gac Asp	aag Lys	aat Asn 560	gag Glu	aag Lys	tgt Cys	tac Tyr	1855	
ctc Leu 565	tgt Cys	aaa Lys	tcc Ser	ctg Leu	gtc Val 570	cca Pro	ttt Phe	aga Arg	gag Glu	tat Tyr 575	cag Gln	tgt Cys	cat His	gtg Val	gac Asp 580	1903	
tcc Ser	tgt Cys	ctc Leu	cag Gln	ctt Leu 585	gca Ala	aag Lys	gct Ala	gac Asp	caa Gln 590	gga Gly	gat Asp	gga Gly	cct Pro	gaa Glu 595	ggg ggg	1951	
agt Ser	gga Gly	aga Arg	gca Ala 600	tgt Cys	tca Ser	act Thr	gtg Val	gag Glu 605	Gly	aag Lys	tgg Trp	cag Gln	cag Gln 610	agg Arg	ctg Leu	1999	
Lys	Asn	Pro 615	aag Lys	Glu	Lys	Gly	His 620	Ser	Glu	Gly	Arg	Leu 625	Leu	Ser	Phe	2047	
ttg Leu	gaa Glu 630	cag Gln	tct Ser	gag Glu	His	aag Lys 635	act Thr	tca Ser	gat Asp	gca Ala	gac Asp 640	atc Ile	aag Lys	tct Ser	tca Ser	2095	
gaa Glu 645	aca Thr	gga Gly	gcc Ala	ttc Phe	agg Arg 650	gtg Val	cct Pro	tca Ser	cca Pro	ggg Gly 655	atg Met	gaa Glu	gag Glu	gca Ala	ggc 660	2143	
tgc Cys	agc Ser	aga Arg	gag Glu	atg Met 665	cag Gln	agt Ser	tct Ser	ttc Phe	aca Thr 670	cgt Arg	cgt Arg	gac Asp	tta Leu	aat Asn 675	gaa Glu	2191	
tct Ser	ccc Pro	Val	aag Lys 680	tct Ser	ttt Phe	gtt Val	Ser	att Ile 685	tca Ser	gaa Glu	gcc Ala	aca Thr	gat Asp 690	tgc Cys	tta Leu	2239	

gtg gac ttt aaa aag caa gtt act gtc cag cca ggt agt cgg aca cgg Val Asp Phe Lys Lys Gln Val Thr Val Gln Pro Gly Ser Arg Thr Arg 695 700 705	2287
acc aaa gct ggc aga gga aga agg aga aaa ttc tga attt ctagggtcca Thr Lys Ala Gly Arg Gly Arg Arg Arg Lys Phe * 710 715 720	2337
aaagttgaca aaaccattag taggaggggt gggccatgtt cattaagcca tagtggtccc	2397
tagttcattg ttgagcaagt tttagccctg cagttttcac caccagcacc tacccagcat	2457
totggttttt atgtttttta tgatctatgc agacaactgt gtattctgtt ttataacagt	2517
ttgtttgaat ttacttacag ttaaaaaatt taaatat	2554
<210> 122	
<211> 1879 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> (599)(1648)	
<400> 122	
accggaccgg aattcccggg tcgacgattc gtcgcgctcc caacgtgtgg cggctcgcga	60
ccccggcaa cccggagaag gtctacagag cggcctgcgc cagcgagtga gtacccgccg	120
cctgcgcaca gctccgccca cccctccctg cctccttttc ttcctcagcg ggtccgcggc	180
ccgctactct ccgggagggg cgcttcccga cgccaagaca aaaggatgcc acggagaaag	240
aaaaaagtta aagaagtctc cgaatctcgg aacctggaga agaaggatgt ggaaactacc	300
agtictgica gigtgaagag gaagcgiaga citgaggaig caticatigi gataiccgai	360
agtgatggag aggaaccaaa ggaggaaaat gggttgcaga aaacgaagac aaaacagtcg	420
aatagagcaa agtgtttggc caaaagaaaa atcgcacaga tgacagaaga agaacagttt	480
gctctggctc tcaaaatgag tgagcaggaa gctagggagg tgaacagcca ggaggaggaa	540
gaagaggagc tcttgaggaa agccattgct gaaagcctga atagttgccg gccttctg atg ctt ccg cta cca gat ctc gac ctc tgg cca ctg gac cgt ctt ccc Met Leu Pro Leu Pro Asp Leu Asp Leu Trp Pro Leu Asp Arg Leu Pro 1 5 10 15	598 646

694

agt ccc atc aag aga aaa cca cag act ctg ggc tca ctg aag tct tcc Ser Pro Ile Lys Arg Lys Pro Gln Thr Leu Gly Ser Leu Lys Ser Ser 20 25 30

						act Thr		_					-		-	742
		_	_	_	_	ttg Leu 55		_	_	_	_		_		_	790
						gaa Glu										838
						gac Asp		_	-	-	-				_	886
						gtc Val										934
		_	-	-	-	gag Glu	_	_	_	-						982
	_		_	-		tgc Cys 135	_		_	_		_				1030
						gcc Ala										1078
						aga Arg			-	_	_		-	-	_	1126
				-	_	act Thr			-		_	_			_	1174
_			-			ctg Leu	-			_			_	_		1222
					_	ctt Leu 215	_	_	-	-			_			1270
						tgt Cys										1318
						gaa Glu				_	_		_			1366
agt	ttc	ttg	gaa	cag	tct	gag	cac	aag	act	tca	gat	gca	gac	atc	aag	1414

tct tca gaa aca gga gcc ttc agg gtg cct tca cca ggg atg gaa gag Ser Ser Glu Thr Gly Ala Phe Arg Val Pro Ser Pro Gly Met Glu Glu 275
Ala Gly Cys Ser Arg Glu Met Gln Ser Ser Phe Thr Arg Arg Asp Leu 290 295 300 aat gaa tct ccc gtc aag tct ttt gtt tcc att tca gaa gcc aca gat Asn Glu Ser Pro Val Lys Ser Phe Val Ser Ile Ser Glu Ala Thr Asp 305 310 315 320 tgc tta gtg gac ttt aaa aag caa gtt act gtc cag cca ggt agt cgg Cys Leu Val Asp Phe Lys Lys Gln Val Thr Val Gln Pro Gly Ser Arg
Asn Glu Ser Pro Val Lys Ser Phe Val Ser Ile Ser Glu Ala Thr Asp 305 310 315 320 tgc tta gtg gac ttt aaa aag caa gtt act gtc cag cca ggt agt cgg 1606 Cys Leu Val Asp Phe Lys Lys Gln Val Thr Val Gln Pro Gly Ser Arg
Cys Leu Val Asp Phe Lys Lys Gln Val Thr Val Gln Pro Gly Ser Arg
aca cgg acc aaa gct ggc aga gga aga agg aga aaa ttc tga atttcta 1655 Thr Arg Thr Lys Ala Gly Arg Gly Arg Arg Lys Phe * 340 345 350
gggtccaaaa gttgacaaaa ccattagtag gaggggtggg ccatgttcat taagccatag 1715
tggtccctag ttcattgttg agcaagtttt agccctgcag ttttcaccac cagcacctac 1775
ccagcattct ggtttttatg ttttttatga tctatgcaga caactgtgta ttctgtttta 1835
taacagtttg tttgaattta cttacagtta aaaaatttaa atat 1879
<pre><210> 123 <211> 2288 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (208)(663) <220> <221> misc_feature <222> (1)(2288) <223> n = a,t,c or g</pre>
<400> 123 aatagaattc gatcgccgat ngccacgagc aacgatggca agccttatgt cttgggagcc 60
tgttttgcta ggcaaagtta caagtgacct aatgggagct caaatgtgtg tgtgtctctc 120
tgtgtgtttg tgtgtgtgt tgcactcaag acctctaaca gcctcgaagc ctggggtggc 180

atg cat cat cag atg aca agg aca Met His His Gln Met Thr Arg Thr 231

atcccggcct tgccattagc atgcctc

	ctc Leu 10															279
	aat Asn															327
	tct Ser															375
	aca Thr															423
	act Thr															471
	ctc Leu 90															519
	ccg Pro															567
	caa Gln															615
	ttt Phe														tga *	663
agg	atgco	cag t	tacto	gtggt	g to	gtgag	rtctc	ago	cagco	gcc	caca	cgct	cc t	aact	ctgct	723
gca	tggca	iga t	tgcct	aggt	g ga	aaata	ıgcaa	aaa	caaç	gcc	cagg	rctgg	igg c	cagg	gccag	783
agg	ggaac	igc (cctgg	gatto	ct ca	actca	tgtg	r aga	atctt	gaa	tctc	tttc	tt t	gttc	tgttt	843
gtt	tagtt	ag t	tatca	tctc	gg ta	aaaat	agtt	aaa	aaac	aac	aaaa	aact	ct c	ıtato	tgttt	903
cta	gcato	ıtg d	ctgca	ıttga	ac to	ctatt	aato	aca	tttc	aaa	ttca	ccct	ac a	ttcc	tctcc	963
tct	tcact	ag d	cctct	ctga	a gg	gtgtc	ctgg	cca	igaca	tgg	agaa	gcac	tg ç	rtgtc	tgcag	1023
cac	ccctc	ag t	tcct	gtgc	c to	cagco	caca	ggc	cact	gtg	ataa	tggt	ct g	rttta	gcact	1083
tct	gtatt	ta t	tgta	agaa	ıt ga	ttat	aatg	aag	gatac	aca	ctgt	aact	ac a	agaa	attat	1143
aaa	tgttt	tt d	cacat	cagg	jc to	gttct	tttt	ttt	tttt	tgg	aggc	gagg	rtt a	aago	attac	1203
tat	ttqca	aa c	acact	ctat	a σc	taca	tatt	ato	raaaa	tag	ataa	ctaa	tc a	gaat	aataa	1263

tgtcactcgc atccacttct tagaacctgg ctccaaagga aaataagctg atagactcaa tcactttcct gaggatggag gcctatggca tgtgtggctg caggtcgcga agctgcttaa 1383 tggtgctggg aagcctagag gaattaaata aagaccctgg aggaggtggg atcggagctg 1443 caccttgaac aaatagctca gatttgaaca gatggatgga aaagagggag gtgttcccaa 1503 ccaaggggac atgatacagg gaacaggtcc tatgtctctt tactcctgag agtattaaac 1563 ctagtaggtg ggcagcccct cttggttgcc tgttacctta ttttgaattc tttttgcaaa 1623 acatactatc accegtecaa ataatetttt gtetaaatec agaetteaca ttetgaetgg 1683 ggcaaaaaga ggcagtccag taaaggttat aaaataggta ccatcattgt ttgccttatt 1743 tagaaaagct tccaattttc actataatca ccctaagcct gagagaggtg aactgttcaa 1803 gggtactttg gctccagtgg gtgacagtac ctggcccagc tttggaattg aaacatttct 1863 gatggtctgt actctgctag aacacaggat gcttctgctc tccctgctct ggcatcctgc 1923 caggtgtcct ggccacgcac aggcatgaag acagccggga agccagagtt cccacgaagc 1983 actcactcct tggacttgct cccaccccac tggggagagc actcctggag caggaaatga 2043 gcatctctca tctccctgaa ttccacatcc actggctgaa tgatcaggga ggcatagcag 2103 tgagagccat aggtcggcag agggaactca ggccctcctt taggatggcc atcacctcat 2163 ctcaatccag ccaaatcaac catctagagc acacaggccg agagaaatgt aataaaatat 2223 aacatgagac acgtatgaaa tttaaacttt ccggtagcca cactagaaaa aqqtaaaaaa 2283 aaaaa 2288

```
<210> 124
```

act gaa gtg gtt ctc ctt gct tgt ggt tca ttc aat ccc atc acc aac 160

<211> 1047

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (95)..(934)

<400> 124

ctccggtagc actcgggccg gcggacagtg agggcgcgac aacaagggag gtgtcacagt 60

tttccattta gatcaacaac ttcaagttct tacc atg gaa aat tcc gag aag Met Glu Asn Ser Glu Lys
1 5

Thr	Glu	Val	Val 10		Leu	Ala	Cys	Gly 15		Phe	Asn	Pro	Ile 20		Asn	
			Arg					Ala					Asn		aca Thr	208
												Val			gcc Ala	256
															gca Ala 70	304
															gaa Glu	352
	ctt Leu															400
	gag Glu															448
act Thr	cta Leu 120	gaa Glu	agg Arg	cct Pro	gga Gly	agg Arg 125	aag Lys	agg Arg	aag Lys	tgg Trp	act Thr 130	gaa Glu	aca Thr	caa Gln	gat Asp	496
tct Ser 135	agt Ser	caa Gln	aag Lys	aaa Lys	tcc Ser 140	cta Leu	gag Glu	cca Pro	aaa Lys	aca Thr 145	aaa Lys	gct Ala	gtg Val	cca Pro	aag Lys 150	544
	aag Lys															592
aat Asn	ttg Leu	tgg Trp	aag Lys 170	agt Ser	gaa Glu	gac Asp	atc Ile	acc Thr 175	caa Gln	atc Ile	gtg Val	gcc Ala	aac Asn 180	tat Tyr	Gly	640
ctc Leu	ata Ile	tgt Cys 185	gtt Val	act Thr	cġg Arg	gct Ala	gga Gly 190	aat Asn	gat Asp	gct Ala	cag Gln	aag Lys 195	ttt Phe	atc Ile	tat Tyr	688
gaa Glu	tcg Ser 200	gat Asp	gtg Val	ctg Leu	tgg Trp	aaa Lys 205	cac His	cgg Arg	agc Ser	aac Asn	att Ile 210	cac His	gtg Val	gtg Val	aat Asn	736
gaa Glu 215	tgg Trp	atc Ile	gct Ala	aat Asn	gac Asp 220	atc Ile	tca Ser	tcc Ser	aca Thr	aaa Lys 225	atc Ile	cgg Arg	aga Arg	gcc Ala	ctc Leu 230	784
aga Arg	agg Arg	ggc Gly	cag Gln	agc Ser	att Ile	cgc Arg	tac Tyr	ttg Leu	gta Val	cca Pro	gat Asp	ctt Leu	gtc Val	caa Gln	gaa Glu	832

				235					240					245		
														Arg	aat Asn	880
															aag Lys	928
aca Thr		gaa	ttct	aca (gcat	gata	tt t	caga	cttc	c ca	tttg	ggga	tct	gaaa	caa	984
tct	gggag	gtt a	aataa	actg	aa a	aaaga	aagt	t gt	gatc	tgtt	gcc.	taaa	cta .	aagc	ttaaaa	1044
gtt																1047
	<21 <21	10> 1 11> 4 12> I 13> F	174 ONA	sap:	iens											
	<22	21> (22> ((28).	(3	99)											
gcad)0> 1 cgt t		ggcti	tg tọ	gcago	ca	Met				e Lys			a gat g Asp	51
ctt Leu	cgc Arg 10	ggg Gly	aag Lys	aag Lys	aag Lys	gag Glu 15	gag Glu	ctg Leu	ctg Leu	aaa Lys	cag Gln 20	ctg Leu	gac Asp	gac Asp	ctg Leu	99
											gtg Val					147
											aaa Lys					195
								_			aac Asn					243
											cgg Arg					291
											gag Glu					339

90	95	100	
		ctg tac ccg ctg cag aag tac aca Leu Tyr Pro Leu Gln Lys Tyr Thr 115 120	387
gtg aac gcc tga Val Asn Ala *	acg tcacatgggt	tcataaaaga gagctggccg aagagaacaa	442
aagaaaagtg tgta	tttaat atgcaattc	t gt	474
<210> 126 <211> 2594 <212> DNA <213> Homo <220> <221> CDS <222> (148			
<400> 126 tttcgtgaat ggga	gggtgg aaaattttgt	gegtttggeg ggtttegete tetteataag	60
tattgatcat tccg	cagece tgeggaeegg	g acacgtgagg aggtagtgac gccgacactg	120
ccagaacaca ctgc	tacaag gtcccag	atg gcc acg tct ctg gat ttt aaa Met Ala Thr Ser Leu Asp Phe Lys 1 5	171
		gct gct gag gag ttt gtc aat att Ala Ala Glu Glu Phe Val Asn Ile 20	219
Tyr Tyr Glu Thr	atg gat aaa aga Met Asp Lys Arg 30	aga cgg gca cta acc agg ctg tat Arg Arg Ala Leu Thr Arg Leu Tyr 35 40	267
		aat gga aat gct gtt tca ggg ctg Asn Gly Asn Ala Val Ser Gly Leu 50 55	315
		aca ttg cct tct agt gag ttc cag Thr Leu Pro Ser Ser Glu Phe Gln 65 70	363
		gtt cat gag caa gca act cag tcc Val His Glu Gln Ala Thr Gln Ser 85	411
		agt gga act gtg aag ttt gat gga Ser Gly Thr Val Lys Phe Asp Gly	459

aac aaa caa cat ttc ttc aac cag aac ttc ctg ctg act gct cag tc Asn Lys Gln His Phe Phe Asn Gln Asn Phe Leu Leu Thr Ala Gln Se 105 110 115	r
act ccc aac aat act gtg tgg aag att gca agt gat tgc ttc cgt tt Thr Pro Asn Asn Thr Val Trp Lys Ile Ala Ser Asp Cys Phe Arg Phe 125 130 135	
caa gat tgg tct agt agt taa ag gggcaaaagt ccattctcat ttggtccat Gln Asp Trp Ser Ser Ser * 140	t 608
agttccagca attgaaattt atgtgaatta ttttgattgt agaagcacta taatatg	tgc 668
tgaaactaaa tttctttaat attttctatt cctgtcagca ccttttctag cagctgc	cag 728
tttggagcat tgccctctaa gagctttaaa actattttt tacatgcctt atataca	ttc 788
cactaatgac attettataa taatattaaa cacatgatet tggtactaac atactea	ctg 848
tgaacccagc ctattgcaaa aataaaatct ttttataata ttatctatgg gatgtcag	gca 908
caatataaca ctctgggaag aagtggagtt ttttggttat taggttaatt ttctagta	aaa 968
acacattgcc tgttttcagt taacactggt aatgccattt taatatatgg ctttttca	aaa 1028
tcagttcagt gaaaatagta cagatttagg tttacataac tactctgaca tactggaa	att 1088
gcatatagag atgttcagtg gtcgtttttc attttaagta atttttgttt tggcatt	ttt 1148
ttgtgtgaag taaattaatc aactagagag gtgcaaaacg ttctcagttg atatctga	agt 1208
attgggtgca tttggtggct taaaagcaaa gcttcctaaa aagatttttc ttggcago	ctc 1268
caggtctata catttaggta atgaatggta gtagaactaa tagctttaac aggagaat	tag 1328
ggaatgagaa atagaaatcc aaggctgaag ccaaaagtaa ggagggtggc caaatggt	taa 1388
actattggta cttgttttct acctcctaaa aatgtagctt atttttagga tttaaatc	cac 1448
taagtaaata agtatoottg ocaagtgato atgagtgtoa tttttgttot aagactaa	ata 1508
tttttagatc tttttacttc acctcatact tatcaccaat gtatatctcc atttattc	caa 1568
taacttactg gggtaaaata acagcaataa acctaacctt ttaacagggt ctaacatg	gag 1628
agttggagtc aaagccattg ttatcttttg gtgacaccct taaattttaa gtcttcca	agt 1688
cttccatgtg aactttaggc ccaaagtttc ttatgtatca cacatccccc aaataagt	iga 1748
ttttttccca gtgctttgta ctgtcaactg cattatcttt aattatttaa aggtagaa	att 1808
atttaatttt gtgatttgtt cttccatatg acattgagca aatagatctg tttcaaaa	ata 1868
tgttcccgct atgtggataa ctcttctttt taaaaagaaa atagagaata gcaaatct	tc 1928
atgataatcc tcaaaagaac aaaatgctta actttatctc ttaatttcta aaggtaaa	ata 1988

acctaggttc agcttttgct taaacattaa atatcttttc cattttttaa tgtttgtaag 2048 ctagatatgc cagctttgtt tctacattgc aaccaaaaac tgtttctttt cacttaatta 2108 taaaaccagt aattcattta ctcttgccca aaactataca ctgtatttct gttatagtaa 2168 caaaatagag ttatgtagaa ttgtatggaa ctcaaattta aaccatgctt tcttgtagta 2228 ctgattgaaa cttacacgtt ttattctact catagtgagc ttattcttat tttggattga 2288 ttttccaaaa ccacagcttc agcagcaaca atcagaatgt ccaaatgctg tcctttccct 2348 tacagagaag aacaatggta actaaaagct gcatataact agcaataact acattgaacg 2408 gtgtgcattg ttcatgattg ttgtgtttta agacttgtat ataaactgct ttttccaaac 2468 tctgtataac ttttaaatgg ctggaactac tcgtataagg actagactgt atttttgaca 2528 tgctcctatt tttgtaactt gaaaaaataa aattttgcct tgtgacagat tttaaaaaaa 2588 aaaaaa 2594

<210> 127

<211> 2519

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (229)..(2145)

<400> 127

ttattgttaa tttgatgtgt atcatggtct tcagccctaa tttcaataac ctattgggtg 60
cttgggatta cttgtacatg taccacatcc tacagtttta ttatacctag tgatcaagct 120
ttgggcaaag gagaaattca gttttcagta gcatcattgg aagtattatg acttgtgctt 180
aaacttttac cagtgcattc ttttgataaa tagaaatagt aacaaaat atg aat ttt
Met Asn Phe
1

aaa tat gtg ggg aga tac ata aag aac att gct tat ttg ttc ttg aaa 285 Lys Tyr Val Gly Arg Tyr Ile Lys Asn Ile Ala Tyr Leu Phe Leu Lys 5 10 15

ata aca gtg att caa ata ttt cat tca gat tta cct atg cct aat gaa

Ile Thr Val Ile Gln Ile Phe His Ser Asp Leu Pro Met Pro Asn Glu

20 25 30 35

aaa aat gat gca gaa ctt gat tct cca cct tca aag aaa aaa aga tta 381 Lys Asn Asp Ala Glu Leu Asp Ser Pro Pro Ser Lys Lys Arg Leu 40 45 50

					tat Tyr										429
	-				aaa Lys	-	-				-	-	-		477
-					tcc Ser	-	_		-	-	-				525
		_	_		aaa Lys 105			_		-			_	_	573
		-			tct Ser		_	-	-	-		_			621
	_	_			gtt Val	-	_				_				669
	-				gct Ala	_	_	_	_				_	_	717
					tat Tyr							-	_	-	765
	-	-		-	aaa Lys 185	_							_		813
					gat Asp										861
_	_	_		_	gag Glu		-			_	_		_		909
					aat Asn										957
_					cgt Arg		-		-	-			_		1005
					ata Ile 265				-		-				1053

			_	_		tct Ser	_					_	-			1101
						agc Ser										1149
						gcc Ala					-				-	1197
						tta Leu 330										1245
						tca Ser										1293
						atg Met										1341
						ccg Pro										1389
		_	_			aga Arg			-		_				_	1437
						cat His 410										1485
						ctg Leu					_					1533
						agt Ser										1581
	_	_				gat Asp	_		_	_	_			_		1629
						aat Asn										1677
						ggc Gly 490										1725
att	ttt	gag	cac	ctg	gaa	gga	ctt	tct	caa	gtg	ttc	agt	gac	tgt	ttt	1773

Ile Phe Glu His Leu Glu Gly Leu Ser Gln Val Phe Ser Asp Cys Phe 500 505 510 cca cca gaa caa gac ttg cgt tca gga aat ttg tgg ata att cac cct 1821 Pro Pro Glu Gln Asp Leu Arg Ser Gly Asn Leu Trp Ile Ile His Pro 520 530 ttt atg aat cac caa aat aat ctc acc gac ttc gaa gaa gaa aag 1869 Phe Met Asn His Gln Asn Asn Leu Thr Asp Phe Glu Glu Lys 535 540 cta aca gag cta tct tca gat tta gga tta caa gca cta ttt aaa tca 1917 Leu Thr Glu Leu Ser Ser Asp Leu Gly Leu Gln Ala Leu Phe Lys Ser 555 gtg tct gta act cag ttt tgg ata aat gca aag aca agt tac cca gaa 1965 Val Ser Val Thr Gln Phe Trp Ile Asn Ala Lys Thr Ser Tyr Pro Glu 570 ctc cat gaa agg gca atg aaa ttt tta tta ccc ttt tca act gtt tat 2013 Leu His Glu Arg Ala Met Lys Phe Leu Leu Pro Phe Ser Thr Val Tyr 580 585 590 tta tgt gat gct ttt tca gct ttg act gag tca aaa caa aaa aat 2061 Leu Cys Asp Ala Ala Phe Ser Ala Leu Thr Glu Ser Lys Gln Lys Asn 600 605 ctg ttg ggt tct ggc cct gcc cta aga ctt gca gtc aca tct tta att 2109 Leu Leu Gly Ser Gly Pro Ala Leu Arg Leu Ala Val Thr Ser Leu Ile 615 620 cca agg ata gaa aaa tta gtg aag gag aaa gag tag caat atgcacattg 2159 Pro Arg Ile Glu Lys Leu Val Lys Glu Lys Glu * 630 cttaacagtg aagtcaataa tcctgtgtta agttttgtat aagtatccta aaagataatt 2219 tcctaatgtg gatttgtgtt ttcagtgatt aaatgtttta ataatttttc cctttttgtt 2279 gaggaattta ataattatga ttgttataaa taattatgta taattataat ctagggtaga 2339 aaatttagtt atttcattaa atttggacta gtgacaaaga ctgcaggtaa tgagaagccc 2399 agtttataat gtaacagcac aacctggatg ttgaaacagc ttggccttta gaagcaagtg 2459 gaacatttca gtcttctagc caaccagcta cttacccctg caaggttgtg agtaggtgga

```
<210> 128
```

<211> 2166

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (97)..(798)

caa		00> atg		ggct	tc a	ccca	caqc	t cc	acac	ccac	aaa	caac	caa (accc	ccagcg	60
																114
aagcccgcac agctccgggt gccaggacgg ggggcc atg ccg tgc cgg agg gag Met Pro Cys Arg Arg Glu 1 5																
								gcg Ala								162
			10					15					20			
								tcg Ser								210
								atc Ile								258
		_	_	_	_	~	_	ccg Pro	~	-		_		-	•	306
								gcg Ala								354
								ctg Leu 95								402
								ctg Leu								450
								ccc Pro		-				_	_	498
								ccg Pro								546
_	_	_			_	_	_	cag Gln	_	-	-				-	594
								ccg Pro 175								642
								gaa Glu								690

gcc gtc gcc gcg gtt gca gcc acg ggc ccc gca agc gcc cct ggg ccc Ala Val Ala Ala Val Ala Ala Thr Gly Pro Ala Ser Ala Pro Gly Pro 200 205 210	738
ggg gga ggc cgc agc gga cct gac cgc att gcc ctg cag ccc tca ggc Gly Gly Gly Arg Ser Gly Pro Asp Arg Ile Ala Leu Gln Pro Ser Gly 215 220 225 230	786
tcc ttg ctc tga cgc aggcctcctg gaggaggaag tggaggccgc tgcgtagacc Ser Leu Leu *	841
caacagcgtc cagttcctac taactctgag ctgaagccga cgtcgccagc ctgggagcga	901
ccactttggc tgcggggagg cgcgtgggga gagatctcaa ccagagaagt taccagccgc	961
ggcgaggccg tcggagaaaa cttaagcgtg gagaaatgta tgcgccaggg tgcttccgtg	1021
gggcatgaga atttcccggg ccatccaagc ccaaggacct gggataaact gggagaacta	1081
tggcagctac ttgcatcgac ttgtacctca cttagccctt gggggcgtcg tgagcttgga	1141
ttgtttaagg agggctcagg ggtaggaatc gcgatggctt tataacaata cttgaaaact	1201
aacgacacgc atacattttc ttattttctg gtggaggagc ttagtaagtg gtgctacaat	1261
tgctgtgcaa agaaattcca gaggggagaa gaatgtaaaa gtttggtggt gggtggcttg	1321
gcattgcccc tttttcccac cgattcggtg gctggtgaag gtgggagatg tgaactccaa	1381
ttaagggact ggagagaggt gaagaatttt gcaggtggga gatttggatt tgaatgtgga	1441
cttgtaaatg acttgacctt gccatctgtg ttcaaggtca cggtttgctg tggggttcct	1501
gggagagett actcaccccg gagtetttte tttetettge tecaagaaga geeetgttgg	1561
tgctttacca ccgcttggag tctcccgagg acacaaacag gcagagaggg acgtgtaggg	1621
agagttettt cetgttttet gtgettteet ttttacagga eteceggaag gecaeteatg	1681
gccatgccag gagctttctc agaaacagtc ataaacgatc tcttgagtct ctttcttgtc	1741
ctcccagctg agctttctta ttccaccctt tctggtgtct ataggaatgc atgagagacc	1801
ctggacgttt ttctgctctc ttctggccct ccatggagcc atgggcctcg gcctcggcgg	1861
ctcctcaccc tcacaattta tttcctcctc ccgtgccagc ccttcttttg tgtctgaaac	1921
cggttttaaa atgtgactct cccagagaag aagccgctgg ctgtatgaaa cttgacggcg	1981
cttttgtaag gtgccacccc caaactttaa ggtagctaaa ccaatttta aaagattcaa	2041
tggcttgttc atcctccaga tgtagctatt gatgtacact tcgcaacgga gtgtctgaaa	2101
ttgtggtggt cctgatttat aggatttcat aattaaaatg tctgctgaat aaaaaaaaaa	2161
aaaaa	2166

<210> 129 <211> 2008 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (79)(1338)	
<400> 129 tttcgtgtga ccgcggccc ggccggcctg cctcaggcgt cgcgtcagct cccgtgtccg	60
tgcccttaac ccacaccg atg gcg gga tcc ggc tgc gcc tgg ggc gcg gag Met Ala Gly Ser Gly Cys Ala Trp Gly Ala Glu 1 5 10	111
ccg ccg cgt ttt ctg gag gcc ttc ggg cgg ctg tgg cag gta cag agc Pro Pro Arg Phe Leu Glu Ala Phe Gly Arg Leu Trp Gln Val Gln Ser 15 20 25	159
cgt ctg ggt agc ggc tcc tcc gcc tcg gtg tat cgg gtt cgc tgc tgc Arg Leu Gly Ser Gly Ser Ser Ala Ser Val Tyr Arg Val Arg Cys Cys 30 35 40	207
ggc aac cct ggc tcg ccc ccc ggc gcc ctc aag cag ttc ttg ccg cca Gly Asn Pro Gly Ser Pro Pro Gly Ala Leu Lys Gln Phe Leu Pro Pro 45 50 55	255
gga acc acc ggg gct gcg gcc tct gcc gcc gag tat ggt ttc cgc aaa Gly Thr Thr Gly Ala Ala Ala Ser Ala Ala Glu Tyr Gly Phe Arg Lys 60 65 70 75	303
gag agg gcg gcg ctg gaa cag ttg cag ggt cac aga aac atc gtg act Glu Arg Ala Ala Leu Glu Gln Leu Gln Gly His Arg Asn Ile Val Thr 80 85 90	351
ttg tat gga gtg ttt aca atc cac ttt tct cca aat gtg cca tca cgc Leu Tyr Gly Val Phe Thr Ile His Phe Ser Pro Asn Val Pro Ser Arg 95 100 105	399
tgt ctg ttg ctt gaa ctc ctg gat gtc agt gtt tcg gaa ttg ctc tta Cys Leu Leu Leu Glu Leu Leu Asp Val Ser Val Ser Glu Leu Leu 110 115 120	447
tat tcc agt cac cag ggt tgt tcc atg tgg atg ata cag cat tgc gcc Tyr Ser Ser His Gln Gly Cys Ser Met Trp Met Ile Gln His Cys Ala 125 130 135	495
cga gat gtt ttg gag gcc ctt gct ttt ctt cat cat gag ggc tat gtc Arg Asp Val Leu Glu Ala Leu Ala Phe Leu His His Glu Gly Tyr Val 140 145 150 155	543
cat gcg gac ctc aaa cca cgt aac ata ttg tgg agt gca gag aat gaa	591

His	Ala	Asp	Leu	Lys 160	Pro	Arg	Asn	Ile	Leu 165	Trp	Ser	Ala	Glu	Asn 170	Glu	
					gac Asp											639
-	-	-			cag Gln		-				-		-	-	_	687
-			_	_	gcc Ala	_	_		_	_	_	_		_	_	735
		-	-	_	ctg Leu 225		_						-	_	_	783
			_		ctg Leu				-	_		_	-		_	831
-		_		-	att Ile		-				-	-		-		879
					cca Pro	-					-				-	927
					cca Pro											975
-	-				agc Ser 305				_				_	_	_	1023
					cca Pro											1071
					gaa Glu											1119
					aaa Lys											1167
					aga Arg											1215
					gcg Ala											1263

380 385 390 395 1311 ggg aag ttt gtt gtg gct aca ttc tac ccg ctg agt gcc tac aag agg Gly Lys Phe Val Val Ala Thr Phe Tyr Pro Leu Ser Ala Tyr Lys Arg 400 1363 gga tat ctg tat caa acc ttg ctt taa tcagt aacctaagga ctgtttcctt Gly Tyr Leu Tyr Gln Thr Leu Leu * 415 1423 tttctcctct tccatttctt gggttattcc acatatgaat gcaggactac ccccttacca ttttaagaag gtactttata catttattta atcctactaa tgtgcagcca ttgcccaagc 1483 agtgactgcg ttgcatacat ttggcactga gtaggacaag acctctcagc tatacattga 1543 ggggttttag agcatccatg tgggcaaccc ttttttgtgc gggagagcag gtgttgctct 1603 tcagtatgta gcctaaaaaa atcttaatta tttcatggat catgaagcaa ggatgaataa 1663 tatcatgtct tggtaaatac taacaaattt gttaggtttg gtgacatcat ttacagatta 1723 tttctttatg ttgtccagtg gttcttcctt attgttgata tccataagct ggcactggat 1783 gctctcagta atgttaagta attgtcaagc agcagttacc tactgtgttc ttaacactga 1843 gttgtgaatt ttttcttaaa gcagtactgt agtactgaat attcctttac aggaactgca 1903 gtgagcctat ctaagtcttt gcctactaag gcttcctatg ggagaaaagt catgcttgac 1963 cttgcaccct tttcatcact gctctctacg cccgagggaa ggccc 2008 <210> 130 <211> 1313 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (316)..(1257) <400> 130 cgcctgcgta cgtaagcttg gatcctctag agcggccgct gtcgttgttc tgaggtggct 60 catgcctgta aacgtaacat ttggggaggc caaggctggg ggatcactta aggccaggat 120 180 aaacaaaaca aacaaacaaa aaaaacagcc ggttgcggtg gcacatgctt gcagtcctcg 240 300 ttactcaaga agcagaagca agaggattgc ttgagcccaa cagtgcttgc aaaagacaaa

Met Met Thr His Leu His Val Lys Ser Thr Glu Pro

gaacgcctgc aagcc atg atg acc cac ctg cat gtg aag tct aca gaa ccc

351

1 10 aaa gcc gcc cct cag ccc ttg aat ctg gta tca agt gtc act ctc tcc 399 Lys Ala Ala Pro Gln Pro Leu Asn Leu Val Ser Ser Val Thr Leu Ser aag tcc gca tcg gag gct tct cca cag agc tta cct cat act cca acg 447 Lys Ser Ala Ser Glu Ala Ser Pro Gln Ser Leu Pro His Thr Pro Thr 35 acc cca acc gcc ccc ctg act ccc gtc acc caa ggc ccc tct gtc atc 495 Thr Pro Thr Ala Pro Leu Thr Pro Val Thr Gln Gly Pro Ser Val Ile 50 aca acc acc agc atg cac acg gtg gga ccc atc cgc agg cgg tac tca 543 Thr Thr Ser Met His Thr Val Gly Pro Ile Arg Arg Tyr Ser 65 gac aaa tac aac gtg ccc att tcg tca gca gat att gcg cag aac caa 591 Asp Lys Tyr Asn Val Pro Ile Ser Ser Ala Asp Ile Ala Gln Asn Gln 80 gaa ttt tat aag aac gca gaa gtt aga cca cca ttt aca tat gca tct 639 Glu Phe Tyr Lys Asn Ala Glu Val Arg Pro Pro Phe Thr Tyr Ala Ser 95 100 tta att agg cag gcc att ctc gaa tct cca gaa aag cag cta aca cta 687 Leu Ile Arg Gln Ala Ile Leu Glu Ser Pro Glu Lys Gln Leu Thr Leu 110 115 aat gag atc tat aac tgg ttc aca cga atg ttt gct tac ttc cga cgc 735 Asn Glu Ile Tyr Asn Trp Phe Thr Arg Met Phe Ala Tyr Phe Arg Arg 130 135 aac gcg gcc acg tgg aag aat gca gtg cgt cat aat ctt agt ctt cac 783 Asn Ala Ala Thr Trp Lys Asn Ala Val Arg His Asn Leu Ser Leu His 145 150 aag tgt ttt gtg cga gta gaa aac gtt aaa ggg gca gta tgg aca gtg 831 Lys Cys Phe Val Arg Val Glu Asn Val Lys Gly Ala Val Trp Thr Val 160 165 879 gat gaa gta gaa ttc caa aaa cga agg cca caa aag atc agt ggt aac Asp Glu Val Glu Phe Gln Lys Arg Pro Gln Lys Ile Ser Gly Asn 175 180 cct tcc ctt att aaa aac atg cag agc agc cac gcc tac tgc aca cct 927 Pro Ser Leu Ile Lys Asn Met Gln Ser Ser His Ala Tyr Cys Thr Pro 190 195 ctc aat gca gct tta cag gct tca atg gct gag aat agt ata cct cta 975 Leu Asn Ala Ala Leu Gln Ala Ser Met Ala Glu Asn Ser Ile Pro Leu 205 210 215 220 tac act acc gct tcc atg gga aat ccc act ctg ggc aac tta gcc agc 1023 Tyr Thr Thr Ala Ser Met Gly Asn Pro Thr Leu Gly Asn Leu Ala Ser 225 230

240 245 250	1071
gag agt gac agc agt cca ggc aga tct cct atg caa gcc gtg cat cct Glu Ser Asp Ser Ser Pro Gly Arg Ser Pro Met Gln Ala Val His Pro 255 260 265	1119
gta cac gtc aaa gaa gag ccc ctc gat cca gag gaa gct gaa ggg ccc Val His Val Lys Glu Glu Pro Leu Asp Pro Glu Glu Ala Glu Gly Pro 270 275 280	1167
ctg tcc tta gtg aca aca gcc aac cac agt cca gat ttt gac cat gac Leu Ser Leu Val Thr Thr Ala Asn His Ser Pro Asp Phe Asp His Asp 285 290 295 300	1215
aga gat tac gaa gat gaa cca gta aac gag gac atg gag tga ctatcgg Arg Asp Tyr Glu Asp Glu Pro Val Asn Glu Asp Met Glu * 305 310	1264
ggcgggccaa ccccgagaat gaagattgga aaaaggaaaa aaaaaaaaa	1313
<210> 131 <211> 847 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (91)(657) <400> 131	
<221> CDS	60
<221> CDS <222> (91)(657) <400> 131	60 111
<pre><221> CDS <222> (91)(657) <400> 131 gcacgagcag ggacggaccc tcattcctcc cagggacccc agacctctgt ctctctcggc aggccttggc tccttgaact tttggccgcc atg tgc ttc ccg aag gtc ctc</pre>	
<pre><221> CDS <222> (91)(657) <400> 131 gcacgagcag ggacggaccc tcattcctcc cagggacccc agacctctgt ctctctcggc aggccttggc tccttgaact tttggccgcc atg tgc ttc ccg aag gtc ctc</pre>	111
<pre> <221> CDS <222> (91)(657) <400> 131 gcacgagcag ggacggaccc tcattcctcc cagggacccc agacctctgt ctctctcggc aggccttggc tccttgaact tttggccgcc</pre>	111

		~		-	~	~	~ ~			_	_			aga Arg		351
	_	_	-	_		-		-						gag Glu	-	399
														cgg Arg		447
														gtg Val		495
														agt Ser 150		543
_	_		_					_				_		tac Tyr		591
														tct Ser		639
	caa Gln 185				tga *	agat	cac t	gaca	accao	ec tt	tgc	cctc	c ccí	gtcad	eege	693
gcad	ccac	ccc t	gaco	ccct	cc ct	cago	ctgto	c cts	gtgco	cccg	ccct	ctc	ccg (cacao	ctcagt	753
cccc	cctgo	ect g	ggcgt	tcct	g co	cgcag	gctct	gad	cctgg	gtcg	tgto	cgcc	ctg g	gcato	cttaat	813
aaaa	accto	gct t	tatad	ette	cc to	gaaaa	aaaa	a aaa	aa							847

```
<210> 132
<211> 526
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (33)..(419)
```

gtt tct tca agc tct tct ggc agt gat tct gac agt gag gtt gac aaa 101

Val	Ser	Ser 10	Ser	Ser	Ser	Gly	Ser 15	Asp	Ser	Asp	Ser	Glu 20	Val	Asp	Lys	
_		_			_		_	-		_			_	aag Lys		149
	-					-	_	_	_					cag Gln	_	197
_	_	-	_	-	-		_		_				_	agg Arg 70		245
_	_	_	_	_								_		aga Arg	-	293
		_	_		_		-	_				-		ggt Gly		341
				_				_		_				atg Met		389
	_	_	_		gtg Val 125	_		_	taa *	t aa	atgcg	gagco	c aga	attaa	attt	440
atco	tgta	ict c	gttag	gattt	g gg	gtaa	atcto	g tct	tato	caca	aagg	gatgt	tg a	actto	ctagat	500
gtto	tcca	ıga t	tato	gtata	it to	ıtgat	;									526
		.0> 1 .1> 1														
		.2> I .3> I		sapi	ens											
	-22	0														

<220> <221> CDS

<222> (157)..(864)

<400> 133 acagaaagaa acgcagctct tgacttcttt tttgtaaaca ttactgtaag agttgtgata 60 120 actttttatt ctactatgta tatgtatgga atagtattaa taaatgaact agggaaggat gtaataaatt agacatctct tcattttaga gagaag atg gaa aca aca ttg ctt 174 Met Glu Thr Thr Leu Leu 5

222 ttc ttt tct caa ata aat atg tgt gaa tca aaa gaa aaa act ttt ttc

Phe	Phe	Ser	Gln 10	Ile	Asn	Met	Cys	Glu 15	Ser	Lys	Glu	Lys	Thr 20	Phe	Phe		
_								gaa Glu								270	
	_	_	_	~		~		aga Arg		_				_		318	
				_	_		_	tcc Ser	_	_				_	_	366	
	_		_				_	gag Glu	-					_		414	
	_		_					gat Asp 95								462	
				-		_	_	gaa Glu			-				_	510	
-	-	-		_		_	_	gga Gly								558	
_		_						ata Ile	_		_	-				606	
_			_					gaa Glu	-				_			654	
					-			gct Ala 175								702	
	-	_		_	_			cgt Arg					_			750	
	_	-	_	-		-		cag Gln	_						_	798	
								gaa Glu								846	
		att Ile			taa *	agaa	aaa t	tgat	tttg	gc to	cattt	ttat	gad	caaac	ctta	900	

960 tacatctgct tctaacatat cgcatgttta tgttaagatt tggtcccatc ctttaaactg 1020 aaatatgtca tgtgaaatta ttttaaaaat gtaaaaacaa aactttctgc taacaaaata 1080 catacagtat ctgccagtat attctgtaaa accttctatt tgatgtcatt ccatttataa 1140 tcagaaaaaa aacttatttc ttaatcaaaa ggcagtacaa aaaaagtaat aatgttttat 1200 aagattgtag agttaagtaa aagttaagct tttgcaaagt tgtcaaaagt tcaaacaaaa gtctagttgg gattttttac caaagcagca taatatgtgt tatataaaca taataatact 1260 cagatatcca aatgttcaga tagcattttt cataatgaat gttctctttt ttttggtaat 1320 agtgtagaag tgatctggtt cttacaatgg gagatgaaga acatttatta ttgggttact 1380 actaaccctg tcccaagaat agtaatatca cctctagtta taagccagca acaggaactt 1440 1500 ttgtgaagac acattcatct ctacagaact tcagattaaa tataatctag attaatgact 1560 gagaataaga tccacatttg aactcattcc taagtgaaca tggacgtacc cagttataca 1620 aagtacttct gttggtcaca gaaacatgac cagattttgc atatctccag gtagggaact 1680 aagtagacta ccttatcacc ggctaagaaa acttgctact aaactattag gccatcaatg 1740 gcttgaataa aaaccagaga aggtttttcc caggacgtct catgtttggc cctttagaat 1800 tggggtagaa atcagaaatg agatgagggg aagaagcaag gagtctaagg ccctagcgat ttgggcatct gccacattgg ttcatattca gaaagtgtta tctcattgat tatattcttg 1860 1884 ttaagcaatc tccttaagta atta

<210> 134

<211> 1601

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (868)..(1098)

<400> 134

tetggttteg ggttttattt tagaatttat aaaatteeag tgteateeat atteatgage 60
etttacaeat gtttgeatat aateteeaa tteeaaagtt aaggeeaagg gatggattgt 120
agetatggaa acagatgata tggaagaeat ceaacaagga ggaaaageae aegeaegeet 180
eaceeetgee teatetetge eeaggeetgt eetgaeagea eagaegette agggagaeag 240

300 gcctggggac agtcatgtca tcacccttgc aacaaccacc caaaggaaaa gagagcgctg 360 aacagtttag gaaagggctc gcgtctaaga catcaagcga catacagaga tgtgcaaaac ttggtgagaa ttaaaattga cctttgggag agggtagggg caggatgttt tatgacactg 420 480 tagaaaagac aggaggaacc cgctgcgatg gagattgggg ggagctggaa gcaagcagcc aacaqqacaq aqttccaqaa ctcatqcaqa tqqqqaaqaq qtqacaqccc ttccccactq 540 600 gcctcccccg tggaggtgga gtagacagat cccgggaaaag gcaggaaaag ggccttgctt tettteeetg ttteetaage egtggteace etageetatg aagetggaag etatatteet 660 tccaatccca atttaccatt cctgtaaaca ggcccattca gggctgcctg agcaaatggg 720 gacttgccga ggcagctgca actagacttg ggctaagccg tctgggtcta ctcaagaatt 780 cgagtctgaa gatgaccaag cttgagttat tcaactgaga gtgaggtgtc aaggcggaag 840 891 cgactgtccc cagggaaggg ctgtgag atg gat ggg cgt gag tca gct ttt Met Asp Gly Arg Glu Ser Ala Phe 939 cca aaa ctc aag tac ctg gga cag gac aac tcg cta gca gct cag tca Pro Lys Leu Lys Tyr Leu Gly Gln Asp Asn Ser Leu Ala Ala Gln Ser 987 cct ccg tgg cgg aca cag ata agg atg tta aga cca gaa aac cag aga Pro Pro Trp Arg Thr Gln Ile Arg Met Leu Arg Pro Glu Asn Gln Arg 1035 cta ggg ccc cgt cct cag ccc tca cag cat gac aca gat gcc tcc ctc Leu Gly Pro Arg Pro Gln Pro Ser Gln His Asp Thr Asp Ala Ser Leu 45 1083 qqa qaq caq gqt ctc tcq qca tcc agc ggc gtg gtc tgc att ctg ctc Gly Glu Gln Gly Leu Ser Ala Ser Ser Gly Val Val Cys Ile Leu Leu 60 tac ctc atg ctc tag gccccatgcc atcgtctcgg ccctagaccg tgaaaactgc 1138 Tyr Leu Met Leu 75 cagtcacccg ggacctgctc ctaggggctg gcctgcacag ccggatggcc tgtgggcggg 1198 1258 gtggaagtgc ccactcccac tccagatggg cctgctggcc actgacccac ctgtgctgag ggagagegee agectecage ttaggtacae ggegeeeace eccageteea egggaaacee 1318 1378 ataaccacca gaaacatctc aatcaagaga cgggtgtgtg gggtggcact aactgcacag 1438 agaccactcc acgccggctg aggtagaaag aaggcaactg aacacacagc agctagggca 1498 ggggcaggga ggggctgcag gtggtgtgaa gaagagccca gctgtcatct aaggcaaact

gccccactg aggaccagcg ccaggcccta cctccccaa cctgtgcgca tctcaatcac

1558

<210> 135 <211> 941	
<212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (194)(820)	
<400> 135 ccggaactcc cgggtcgacg atttcgtccc agggattctt gggttccgcg tgtagtttcg	60
gaaggagaca tcgaagcagg gcgaggcgca gagggcgttg cggactcatg ccccagtcgg	120
cagtgcgggg tcccaagccc tgcagtgcta cagctttgag cacacctact ttggcccctt	180
tgacctcagg gcc atg aag ctg ccc agc atc tcc tgt cct cat gag tgc Met Lys Leu Pro Ser Ile Ser Cys Pro His Glu Cys 1 5 10	229
ttt gag gct atc ctg tct ctg gac acc ggg tat cgc gcg ccg gtg acc Phe Glu Ala Ile Leu Ser Leu Asp Thr Gly Tyr Arg Ala Pro Val Thr 15 20 25	277
ctg gtg cgg aag ggc tgc tgg acc ggg cct cct gcg ggc cag acg caa Leu Val Arg Lys Gly Cys Trp Thr Gly Pro Pro Ala Gly Gln Thr Gln 30 35 40	325
tcg aac ccg gac gcg ctg ccg cca gac tac tcg gtg gtg cgc ggc tgc Ser Asn Pro Asp Ala Leu Pro Pro Asp Tyr Ser Val Val Arg Gly Cys 45 50 55 60	373
aca act gac aaa tgc aac gcc cac ctc atg act cat gac gcc ctc ccc Thr Thr Asp Lys Cys Asn Ala His Leu Met Thr His Asp Ala Leu Pro 65 70 75	421
aac ctg agc caa gca ccc gac ccg ccg acg ctc agc ggc gcc gag tgc Asn Leu Ser Gln Ala Pro Asp Pro Pro Thr Leu Ser Gly Ala Glu Cys 80 85 90	469
tac gcc tgt atc ggg gtc cac cag gat gac tgc gct atc ggc agg tcc Tyr Ala Cys Ile Gly Val His Gln Asp Asp Cys Ala Ile Gly Arg Ser 95 100 105	517
cga cga gtc cag tgt cac cag gac cag acc gcc tgc ttc cag ggc aat Arg Arg Val Gln Cys His Gln Asp Gln Thr Ala Cys Phe Gln Gly Asn 110 115 120	565
ggc aga atg aca gtt ggc aat ttc tca gtc cct gtg tac atc aga acc Gly Arg Met Thr Val Gly Asn Phe Ser Val Pro Val Tyr Ile Arg Thr 125 130 135 140	613

											acc Thr					661
											tac Tyr					709
		_		_				_	_		gcc Ala					757
											gtc Val 200					805
	ctc Leu				acc	geee	etc (cagga	atgct	a ad	ggaca	gggd	c tca	acaca	acct	860
catt	ctte	gat g	gctto	cagco	cc ct	tatca	acata	a gct	cact	gga	aaat	gate	gtt a	aaagt	caagaa	920
ttgo	caata	aaa a	aaaa	aaaa	aa a											941
	<21 <21 <21 <22 <22 <22 <22	?0> ?1> (534 DNA Homo CDS (120)													
gcaa	atago	gt c	cccta	agcgo	cg at	ggcg	gtato	ggc	cgcaç	gcg	cact	ctgo	cg g	gcaac	egcega	60
atg	gtc	aac	gtc	ttg	aaa	gga	gtg	ctt	ata	gaa	ctga tgt Cys	gat	cct	gcc		119 167
											gcc Ala					215
											ttt Phe					263
											tta Leu					311

gct ttt tcc ctt acc cag aaa tga aaatactcaa tatggaccat ttaggaatta Ala Phe Ser Leu Thr Gln Lys * 65 70	365
taagcagcaa ctgtgaaaga cttgccactc aatatcttag gtgactgatt agacatagag	425
ggttgtttta ggagcatgcc acgggaaaga ctgagggatc atgatcattt gttcagaaaa	485
aaagcccctg aactgatttt gttaccatag aatttaaaaa aaaaaaaaa	534
<210> 137 <211> 459 <212> DNA <213> Homo sapiens <220> <221> CDS	
<222> (23)(385)	
<pre><400> 137 cggcggaaga ggacaaggca ga atg cag gcc ctt cgg gtg tcc cag gcg ctg</pre>	52
atc cgc tcc ttc agc tcc acc gcc cgg aac cgc ttt cag aac cga gtg Ile Arg Ser Phe Ser Ser Thr Ala Arg Asn Arg Phe Gln Asn Arg Val 15 20 25	100
cgc gag aaa cag aag ctc ttc cag gtg ggg ggg gcg ggg ggg gtg ggg Arg Glu Lys Gln Lys Leu Phe Gln Val Gly Gly Ala Gly Gly Val Gly 30 35 40	148
atc cga cgc gcc agc cgg gag cgc gcc gag ccg ggg cag gcg ggg cgc Ile Arg Arg Ala Ser Arg Glu Arg Ala Glu Pro Gly Gln Ala Gly Arg 45 50 55	196
gct cta agg agc agc cag cac ccc ttt ctc atc aga cac ccc cac atc Ala Leu Arg Ser Ser Gln His Pro Phe Leu Ile Arg His Pro His Ile 60 65 70	244
cag gag gac aat gac atc ccg ttg tac ctg aag ggc ggc atc gtt gac Gln Glu Asp Asn Asp Ile Pro Leu Tyr Leu Lys Gly Gly Ile Val Asp 75 80 85 90	292
aac atc ctg tac cga gtg aca atg acg ctg tgt ctg ggc ggc act gtc Asn Ile Leu Tyr Arg Val Thr Met Thr Leu Cys Leu Gly Gly Thr Val 95 100 105	340
tac agc ttg tac tcc ctt ggc tgg gcc tcc ttc ccc agg aat taa gac Tyr Ser Leu Tyr Ser Leu Gly Trp Ala Ser Phe Pro Arg Asn * 110 115 120	388
caagaagcct ggggggcctg agagacttga acaagtgtca ataaacgctg gcctctgaaa	448

aaaaaaaaa a 459

<210> <211> <212> <213>	691	i.				
<220> <221> <222>	CDS (197)(691)					
<400> ggcacggggc	138 aagccaagaa g	gctctggag c	atcagggag	actccaactt	aaggcaccaa	60
gcatgggtga	ctaagggctt c	ctgtggact g	gcaaatgag	agcaaacacc	tgtggcttga	120
gcactgcccc	ctaaagcagg c	cttacagat c	tcttacact	cgtggtggga	agagtctagt	180
gtgaaactgg				g ttc cct tt t Phe Pro Ph		229
	t ctg tca gtt l Leu Ser Val 15		g Lys Ile			277
	g gtg tta act ı Val Leu Thr)	-				325
	a gcc tat ctc a Ala Tyr Leu					373
	g acc aaa agt y Thr Lys Ser 65	Thr Glu Ph				421
	a cat tgc ctt D His Cys Leu 80	_				469
	c tgc gcg tcg 7 Cys Ala Ser 95		s Glu Met			517
	c tta gct atc a Leu Ala Ile)					565
~	c cag gca atg c Gln Ala Met	• • •	~ ~			613

aat aaa tgt ctg gaa caa gtg tca caa tta caa gga ttg tgg cgt cgc Asn Lys Cys Leu Glu Gln Val Ser Gln Leu Gln Gly Leu Trp Arg Arg 140 145 150 155	661
ttc aat cga cct tta ctg aaa caa cag taa Phe Asn Arg Pro Leu Leu Lys Gln Gln * 160 165	691
<210> 139 <211> 924 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (172)(696)	
<400> 139 gcttttggtt cttacagtag tcggcgtagg ccttaggtgg gttcgtgcgc cttctacctc	60
getgtttegg tttteetgge teeteggeee tttteteeee tgttgeaget gggageggae	120
gaagcgcgaa gctgggattt tttactgtct cctgaagaat ttaacacaaa c atg gat Met Asp 1	177
atc aga cca aat cat aca att tat atc aac aat atg aat gac aaa att Ile Arg Pro Asn His Thr Ile Tyr Ile Asn Asn Met Asn Asp Lys Ile 5 10 15	225
aaa aag gaa gaa ttg aag aga tcc cta tat gcc ctg ttt tct cag ttt Lys Lys Glu Glu Leu Lys Arg Ser Leu Tyr Ala Leu Phe Ser Gln Phe 20 25 30	273
ggt cat gtg gtg gac att gtg gct tta aag acc atg aag atg agg ggg Gly His Val Val Asp Ile Val Ala Leu Lys Thr Met Lys Met Arg Gly 35 40 45 50	321
cag gcc ttt gtc ata ttt aag gaa ctg ggc tca tcc aca aat gcc ttg Gln Ala Phe Val Ile Phe Lys Glu Leu Gly Ser Ser Thr Asn Ala Leu 55 60 65	369
aga cag cta caa gga ttt cca ttt tat ggt aaa cca atg cga ata cag Arg Gln Leu Gln Gly Phe Pro Phe Tyr Gly Lys Pro Met Arg Ile Gln 70 75 80	417
tat gca aaa aca gat tcg gat ata ata tca aaa atg cgt gga act ttt Tyr Ala Lys Thr Asp Ser Asp Ile Ile Ser Lys Met Arg Gly Thr Phe 85 90 95	465
gct gac aaa gaa aag aaa aaa gaa aag aaa aaa	513

cag act gca aca acc aca aac aaa aag cct ggc ttc aag gaa gta cgt Gln Thr Ala Thr Thr Thr Asn Lys Lys Pro Gly Phe Lys Glu Val Arg 115 120 125 130	561
ctg gta cca ggg agg cat gac att gct ttt gtt gaa ttt gaa aat gat Leu Val Pro Gly Arg His Asp Ile Ala Phe Val Glu Phe Glu Asn Asp 135 140 145	609
ggg cag gct gga gct gcc agg gat gct tta cag gga ttt aag atc aca Gly Gln Ala Gly Ala Ala Arg Asp Ala Leu Gln Gly Phe Lys Ile Thr 150 155 160	657
ccg tcc cat gct atg aag atc acc tat gcc aag aaa taa catttgggat Pro Ser His Ala Met Lys Ile Thr Tyr Ala Lys Lys * 165 170 175	706
agtcgtcttt aaaagacttg gtgttattta cagtgtttgt tttgataaca tttggctggg	766
tcattttaat agttagagat gaggaggagt aaaagtgaaa tttttgtgaa ggacttaaat	826
tatccagtgt ttctttagcc ttggtgaact atgaaatacg aaggccttaa ttttgtacaa	886
taaactttta tttgtattct gtgtaaaaaa aaaaaaaa	924
<210> 140 <211> 1773 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (141)(1667) <400> 140	
teeggateet gttagaeace ggegggegeg ageegttgea gttetetttg ggtgateget	60
cettecetet teaacggate ceteceegee tecateeteg ttetgtggga gagaceagee	120
ttctggtgct gcagtcagga atg gag ctt gac agc gct ctg gaa gcc cca Met Glu Leu Asp Ser Ala Leu Glu Ala Pro 1 5 10	170
teg cag gaa gac tet aat ttg tee gag gag ttg tet cae tee gee ttt Ser Gln Glu Asp Ser Asn Leu Ser Glu Glu Leu Ser His Ser Ala Phe 15 20 25	218
gga cag gcc ttc tcc aag att tta cac tgt ctt gcc cgc ccg gag gca Gly Gln Ala Phe Ser Lys Ile Leu His Cys Leu Ala Arg Pro Glu Ala 30 35 40	266
cga cga ggc aat gta aaa gat gca gtt ctt aaa gac ctc ggt gat cta Arg Arg Gly Asn Val Lys Asp Ala Val Leu Lys Asp Leu Gly Asp Leu 45 50 55	314

		Ala			ttt Phe											362
					gag Glu 80											410
					tcc Ser											458
	-	-	-		aaa Lys	-	_		-			_				506
_				_	gag Glu		-	-			_	-			-	554
	_	_		_	cat His		-	_			_				_	602
			-	_	gag Glu 160						_	_			-	650
					ctc Leu			_			_		_	_		698
					cta Leu										-	746
					ggg Gly									-		794
	-				gcc Ala				_					_		842
_	_		~ ~		tgg Trp 240	_	_	_		_	-		_			890
_		_	_		tca Ser	_	~		_		~ ~				_	938
					cat His											986

-		_			-	gcc Ala	_	_				_				1034
	_					cac His 305				_	_			-	_	1082
_	_	-				atc Ile	_				_					1130
_		_	_			acc Thr		_	_		_	_		_		1178
_			-			gag Glu		_				_				1226
_	_		-	_		ttc Phe				-					_	1274
			-		-	gag Glu 385	_	_					_		_	1322
						gaa Glu										1370
			_			act Thr			_	_		_	_			1418
						ttg Leu										1466
						tct Ser	_	_	_	_	-		_		-	1514
						ctg Leu 465										1562
		_	_			ccc Pro		_	_	_	-	_				1610
						cag Gln										1658
gga	act	taa	gact	tgt	atta	cttt	cc c	aaga	ıggaa	a gg	attt	tctt	ccc	catco	caa	1714

Gly Thr *

tttgtatgaa	tggagttatt	taagaaaaaa	agatatttt	acacgaaaaa	aaaaaaaaa	1773
tttgtatgaa	tygagttatt	Laagaaaaaa	agatatttt	acacgaaaaa	aaaaaaaaa	1,,5

<210> 141 <211> 2242 <212> DNA <213> Homo	sapiens			
<220> <221> CDS <222> (100))(942)			
<220> <221> misc_ <222> (1). <223> n = 8	(2242)			
<400> 141 gaatgccttt tagtg	geettg etteetga	aac tagctcacag	tageceggeg geeeagg	gca 60
atccgaccac atttc	cactct caccgcto	gta ggaatccag	atg cag gcc aag to Met Gln Ala Lys T 1	
			gac acc acc atg age Asp Thr Thr Met Se: 20	
			cca gag ccc cgg cgc Pro Glu Pro Arg Arg 35	
	Ala Pro Ser Se		cca gtg gcc ctg acc Pro Val Ala Leu Th: 50	
			ctg gca gcc ctg ggg Leu Ala Ala Leu Glg 65	
_	_	_	act ggt caa gac acc Thr Gly Gln Asp Th:	r -
_			tcc caa gag ttg caa Ser Gln Glu Leu Gla 100	
_	=		agt ctg cag cat gtg Ser Leu Gln His Va 115	

gct gaa aaa ctc tgt cgt gag ctg tat aac aaa gct gga gca cac agg Ala Glu Lys Leu Cys Arg Glu Leu Tyr Asn Lys Ala Gly Ala His Arg 120 125 130	498
tgc agc cct tgt aca gaa caa tgg aaa tgg cat gga gac aat tgc tac Cys Ser Pro Cys Thr Glu Gln Trp Lys Trp His Gly Asp Asn Cys Tyr 135 140 145	546
cag ttc tat aaa gac agc aaa agt tgg gag gac tgt aaa tat ttc tgc Gln Phe Tyr Lys Asp Ser Lys Ser Trp Glu Asp Cys Lys Tyr Phe Cys 150 165	594
ctt agt gaa aac tct acc atg ctg aag ata aac aaa caa gaa gac ctg Leu Ser Glu Asn Ser Thr Met Leu Lys Ile Asn Lys Gln Glu Asp Leu 170 175 180	642
gaa ttt gcc gcg tct cag agc tac tct gag ttt ttc tac tct tat tgg Glu Phe Ala Ala Ser Gln Ser Tyr Ser Glu Phe Phe Tyr Ser Tyr Trp 185 190 195	690
aca ggg ctt ttg cgc cct gac agt ggc aag gcc tgg ctg tgg atg gat Thr Gly Leu Leu Arg Pro Asp Ser Gly Lys Ala Trp Leu Trp Met Asp 200 205 210	738
gga acc cct ttc act tct gaa ctg ttc cat att ata ata gat gtc acc Gly Thr Pro Phe Thr Ser Glu Leu Phe His Ile Ile Ile Asp Val Thr 215 220 225	786
agc cca aga agc aga gac tgt gtg gcc atc ctt aat ggg atg atc ttc Ser Pro Arg Ser Arg Asp Cys Val Ala Ile Leu Asn Gly Met Ile Phe 230 245	834
tca aag gac tgc aaa gaa ttg aag cgt tgt gtc tgt gag aga agg gca Ser Lys Asp Cys Lys Glu Leu Lys Arg Cys Val Cys Glu Arg Arg Ala 250 255 260	882
gga atg gtg aag cca gag agc ctc cat gtc ccc cct gaa aca tta ggc Gly Met Val Lys Pro Glu Ser Leu His Val Pro Pro Glu Thr Leu Gly 265 270 275	930
gaa ggt gac tga ttc gccctctgca actacaaata gcagagtgag ccaggcggtg Glu Gly Asp * 280	985
ccaaagcaag ggctagttga gacattggga aatggaacat aatcaggaaa gactatctct	1045
ctgactagta caaaatgggt tctcgtgttt cctgttcagg atcaccagca tttctgagct	1105
tgggtttatg cacgtattta acagtcacaa gaagtcttat ttacatgcca ccaaccaacc	1165
tcagaaaccc ataatgtcat ctgccttctt ggcttagaga taacttttag ctctctttct	1225
tctcaatgtc taatatcacc tccctgtttt catgtcttcc ttacacttgg tggaataaga	1285
aactttttga agtagaggaa atacattgag gtaacatcct tttctctgac agtcaagtag	1345
tccatcagaa attggcagtc acttcccaga ttgtaccagc aaatacacaa ggaattcttt	1405

ttgtttgttt cagttcatac tagtcccttc ccaatccatc agtaaagacc ccatctgcct 1465 1525 tgtccatgcc gtttcccaac agggatgtca cttgatatga gaatctcaaa tctcaatgcc ttataagcat teetteetgt gteeattaag actetgataa ttgteteece teeataggaa 1585 tttctcccag gaaagaaata tatccccatc tccgtttcat atcagaacta ccgtccccga 1645 tattcccttc agagagatta aagaccagaa aaaagtgagc ctcttcatct gcacctgtaa 1705 tagtttcagt tcctattttc ttccattgac ccatatttat acctttcagg tactgaagat 1765 1825 ttaataataa taaatgtaaa tactgtgaag tgtgtgtgat tttacaatgg acttatggtt ggtgggaaaa ttcagcatgg aaatgctttt caaaatatga tagcggtcat tattttgatt 1885 gtgccttact gaaagttttt ggggaattta caagagtact gattacatga ttatctggag 1945 aaaataagat gtctttgaaa tacatgttgg cttcaagaaa acagttttaa cgttttccta 2005 2065 aaatgaaatc ttttgaggtg agcttatggc atcaacacat ggttgatgag gaagctgagt tgcattagtg cacatgattt ccagtcaggt catgggaaat gaacagagac agtgacatct 2125 ttgtagctgc tcctttgtga ggcacttctt tcttgagatg actccatgca caaatataac 2185 agggatcatt gggaatgaca ccatcacagc caccaagntt attgggttac tgataat 2242

```
<210> 142

<211> 2323

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (100)..(1023)

<220>

<221> misc_feature

<222> (1)...(2323)

<23> n = a,t,c or g
```

agc agc acg agg gac atg ctg gat gat gat ggg gac acc acc atg agc

Ser Ser Thr Arg Asp Met Leu Asp Asp Gly Asp Thr Thr Met Ser

10 15 20

_		tct Ser		_		_						-			_	210
		cac His 40														258
~	_	act Thr	~	_	_		_	_			_	-	_	_		306
	_	ttt Phe		_			_							-		354
		caa Gln	_	_	_	_				_				_		402
		caa Gln														450
-	-	aaa Lys 120		-	-		-				_					498
_		atg Met			_		-				_			_		546
		atg Met		_	_	_	_	-			-	-		_		594
-		tgg Trp					_		_		_				_	642
_		agt Ser			_	-				_		_	_			690
		ctg Leu 200														738
		tac Tyr														786
		agt Ser														834
tct	gaa	ctg	ttc	cat	att	ata	ata	gat	gtc	acc	agc	cca	aga	agc	aga	882

Ser Glu Leu Phe His Ile Ile Ile Asp Val Thr Ser Pro Arg Ser 250 255 260	-
gac tgt gtg gcc atc ctt aat ggg atg atc ttc tca aag gac tgc Asp Cys Val Ala Ile Leu Asn Gly Met Ile Phe Ser Lys Asp Cys 265 270 275	
gaa ttg aag cgt tgt gtc tgt gag aga agg gca gga atg gtg aag Glu Leu Lys Arg Cys Val Cys Glu Arg Arg Ala Gly Met Val Lys 280 285 290	
gag agc ctc cat gtc ccc cct gaa aca tta ggc gaa ggt gac tga Glu Ser Leu His Val Pro Pro Glu Thr Leu Gly Glu Gly Asp * 295 300 305	a ttc 1026
gccctctgca actacaaata gcagagtgag ccaggcggtg ccaaagcaag ggct	agttga 1086
gacattggga aatggaacat aatcaggaaa gactatctct ctgactagta caaa	aatgggt 1146
tctcgtgttt cctgttcagg atcaccagca tttctgagct tgggtttatg cacg	gtattta 1206
acagtcacaa gaagtcttat ttacatgcca ccaaccaacc tcagaaaccc ataa	atgtcat 1266
ctgccttctt ggcttagaga taacttttag ctctctttct tctcaatgtc taat	catcacc 1326
tccctgtttt catgtcttcc ttacacttgg tggaataaga aactttttga agta	agaggaa 1386
atacattgag gtaacatcct tttctctgac agtcaagtag tccatcagaa attg	gcagtc 1446
acttcccaga ttgtaccagc aaatacacaa ggaattcttt ttgtttgttt cagt	tcatac 1506
tagtcccttc ccaatccatc agtaaagacc ccatctgcct tgtccatgcc gttt	cccaac 1566
agggatgtca cttgatatga gaatctcaaa tctcaatgcc ttataagcat tcct	tcctgt 1626
gtccattaag actctgataa ttgtctcccc tccataggaa tttctcccag gaaa	gaaata 1686
tatccccatc tccgtttcat atcagaacta ccgtccccga tattcccttc agag	gagatta 1746
aagaccagaa aaaagtgagc ctcttcatct gcacctgtaa tagtttcagt tcct	attttc 1806
ttccattgac ccatatttat acctttcagg tactgaagat ttaataataa taaa	itgtaaa 1866
tactgtgaag tgtgtgtgat tttacaatgg acttatggtt ggtgggaaaa ttca	gcatgg 1926
aaatgctttt caaaatatga tagcggtcat tattttgatt gtgccttact gaaa	gttttt 1986
ggggaattta caagagtact gattacatga ttatctggag aaaataagat gtct	ttgaaa 2046
tacatgttgg cttcaagaaa acagttttaa cgttttccta aaatgaaatc tttt	gaggtg 2106
agcttatggc atcaacacat ggttgatgag gaagctgagt tgcattagtg caca	tgattt 2166
ccagtcaggt catgggaaat gaacagagac agtgacatct ttgtagctgc tcct	ttgtga 2226
ggcacttctt tcttgagatg actccatgca caaatataac agggatcatt ggga	atgaca 2286

	<2 <2	10> 11> 12> 13>	971	sap	iens											
	<2	20> 21> 22>	CDS (72)	(7	67)											
cgg		00> gtc		gaca	ga c	ggga	gcag	t gc	tttt	ccta	gag	taga	gta	tgct:	ctataa	60
atg	tcta	ctg (Me	-	-		y Vai		_		_		r Se	_	a tct u Ser	110
			gtg Val													158
	-		gaa Glu	_				-			-	_		_		206
			tcc Ser										_		_	254
			gcg Ala 65													302
			gtg Val													350
			aag Lys													398
			gtg Val													446
			tcc Ser													494
			ttt Phe 145													542

agt ctc gtg ctg aaa ggc tgt tcc aac gtc agt aac gcc acc tgt cag 590 Ser Leu Val Leu Lys Gly Cys Ser Asn Val Ser Asn Ala Thr Cys Gln ttc ctg tct ggt gaa aac aag act ctt gga gga gtc atc ttt cga aag 638 Phe Leu Ser Gly Glu Asn Lys Thr Leu Gly Gly Val Ile Phe Arg Lys 180 686 ttt gag tgt gca aat gta aac agc tta acc ccc acg tct gca cca acc Phe Glu Cys Ala Asn Val Asn Ser Leu Thr Pro Thr Ser Ala Pro Thr 190 195 200 act tcc cac aac gtg ggc tcc aaa gct tcc ctc tac ctc ttg gcc ctt 734 Thr Ser His Asn Val Gly Ser Lys Ala Ser Leu Tyr Leu Leu Ala Leu 210 215 gcc agc ctc ctt ctt cgg gga ctg ctc ctg aggtcctgg ggctgcactt 785 Ala Ser Leu Leu Leu Arg Gly Leu Leu Pro * 225 230 tgcccagcac cccatttctg cttctctgag gtccagagca ccccctgcgg tgctgacacc 845 ctctttccct gctctgcccc gtttaactgc ccagtaagtg ggagtcacag gtctccaggc 905 aatgccgaca gctgccttgt tcttcattat taaagcactg gttcattcac tgcccaaaaa 965 aaaaaa 971 <210> 144 <211> 1689 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (354)..(1370) <220> <221> misc_feature <222> (1)...(1689) <223> n = a,t,c or g<400> 144

cctgaatget ttacgtaccg geceggaatt cccgggtega cccaegegte egeteggea 60
ccgaageeae cctgeeetgg tgaaaggget eccgeaeege ceggtgetee ecatetgeet 120
ggegttgtge geagagetgg aaageatgge tgttataaat gaattetgat tttggggage 180
agatgeeaee ttagageete gtaccaatet etetgtett aaaagatgag gtgaettggt 240
gatttteetg gaaaattata ggtgeeeage taagaeetga atgeeateae eeteeeagg 300

gctctgcagt tttctcgtgg tgaacccttg atggatttgt tgttgcttga gaa

356

atq

															Met 1	
					Gly											404
	_	_		_	ctg Leu	-				-	-	_		_		452
			_	-	ttt Phe									_	_	500
			-		aaa Lys 55			-		-		_	_			548
					aaa Lys											596
	_				cac His		_	-			-		_		-	644
			_		cag Gln											692
_					gat Asp			-	-		-		-			740
					gat Asp 135											788
					ctg Leu											836
					aac Asn											884
					ctg Leu											932
					ctg Leu											980
					att Ile											1028

210					215					220					225	
													ctg Leu			1076
	_		_		-	_				_			aga Arg 255	_	_	1124
													agg Arg	-		1172
													tca Ser			1220
					-			_			-		cac His			1268
		-							_	_			ctc Leu	_	_	1316
													atc Ile 335			1364
ccg Pro	tga *	aagt	ttat	tt t	tgto	tgaa	aa go	ettto	ataa	a gta	attta	aat	caac	acag	yta	1420
atca	acta	itt t	aatt	gcto	gc aa	ıtcgg	gtcaa	a aat	ttac	caaa	agco	cacac	cac a	aatt	tctct	1480
cctt	ctac	cac g	rtago	ctcca	at ac	cacto	gecec	ttg	ıccaa	aca	ccct	tacg	ggg a	acca	atcag	1540
catg	racat	tc c	tggg	gcagt	t aa	ıtgtg	gagaa	gcg	aggg	gcag	ggca	accgt	cc n	agto	ggactt	1600
tato	cttc	ag g	gagg	ggcg	yt at	ccto	ctctc	tta	cact	ctg	tgtg	ıtggt	ta a	attt	ctaaa	1660
gaac	acca	itt t	aato	cata	g ct	atat	cag									1689

```
<210> 145
```

<211> 480

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (104)..(298)

<400> 145

atttcactgt atgtaatgca tttttgttgt tgttgttgtt gtttttagaa acctagctac	60
tttaagtttt ttttctttat tactgatctt atgcaatttg att atg ttc ctt ggt Met Phe Leu Gly 1	115
gta gct ttt cag tgt ttc ttc tgc ttt tgg ttt gtt gag ctt ttt gga Val Ala Phe Gln Cys Phe Phe Cys Phe Trp Phe Val Glu Leu Phe Gly 5 10 15 20	163
ttt gtg ggt tta cag tta tta tca aat ttg gaa aaa ttt cag ccc tta Phe Val Gly Leu Gln Leu Leu Ser Asn Leu Glu Lys Phe Gln Pro Leu 25 30 35	211
tgt ctt caa ata ttt ttt ctg tct ccc tgc ccc atc cgt agt ctt tat Cys Leu Gln Ile Phe Phe Leu Ser Pro Cys Pro Ile Arg Ser Leu Tyr 40 45 50	259
ata ttt gat cat cta aag ttg tct cac agc tca cag tga cactgcttgt Ile Phe Asp His Leu Lys Leu Ser His Ser Ser Gln * 55 60 65	308
ttttccagtc ttttttccc tctaggtgtt tcattttgaa caattgctat tgctatgtct	368
tcaagatcct taatcttttc ttctgtagtg ccacatctta cccagtgaac ttttcacctc	428
agacatggta ttttttattt ctagaaatta ggactttttt tacatttccc ac	480
<210> 146 <211> 557 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (158)(520)	
<400> 146 agagcagaag tgtgaagagt ggaggagcca gtatgaggct ctgaaggagg actggaggac	60
ccttgggacc cagcacaggg agctggagag ccaactccac gtgcttcagt ccaaactgca	120
ggtaccaggc actgggggtg gggagggaag acagggt atg ggg agg agg gat ggt Met Gly Arg Arg Asp Gly 1 5	175
gat gaa aga agc tgt tct gga tta ggg act cca aag gca gct gac agc Asp Glu Arg Ser Cys Ser Gly Leu Gly Thr Pro Lys Ala Ala Asp Ser 10 15 20	223
atc tgg ctt tca gtt cct cag tca cca cta ctt tgt acc aaa ttc act Ile Trp Leu Ser Val Pro Gln Ser Pro Leu Leu Cys Thr Lys Phe Thr	271

gtt ttg gct ctg aaa tct aat ttt gag ttt agc aag gat gtc tgc att Val Leu Ala Leu Lys Ser Asn Phe Glu Phe Ser Lys Asp Val Cys Ile 40 45 50	319
gct cat gca aat gaa cta agc gtt cat tgg aat gac acc atc acc acc Ala His Ala Asn Glu Leu Ser Val His Trp Asn Asp Thr Ile Thr Thr 55 60 65 70	367
caa atg aaa aga act ggc tgg aat att cat cag cct act aat gtc atc Gln Met Lys Arg Thr Gly Trp Asn Ile His Gln Pro Thr Asn Val Ile 75 80 85	415
tcc caa ccc act ctc caa act cca tcc caa aaa a	463
att gcc cac tgt tgg caa aga aag aat gtc act aat tta ttt aca ggg Ile Ala His Cys Trp Gln Arg Lys Asn Val Thr Asn Leu Phe Thr Gly 105 110 115	511
agc aga tag cagggactta cagatgaacc aggccctgcg atttttg Ser Arg * 120	557
<210> 147 <211> 1190 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (172)(1071)	
<400> 147	
gggagggtet gaaccgataa ceetgeggta eegeteegga atteeegggt egacceaege gteegggget acacageeag gtgteagatg tgtetetget gatetgagte tgeetgtgge	60 120
atggacctgc atcttccctg aagcatctcc agggctgaaa aatcactgac c atg gca Met Ala 1	177
cca tgg tct cat cca tct gca cag ctg cag cca gtg gga gga gac gcc Pro Trp Ser His Pro Ser Ala Gln Leu Gln Pro Val Gly Gly Asp Ala 5 10 15	225
gtg agc cct gcc ctc atg gtt ctg ctc tgc ctc ggg ctg agt ctg ggc Val Ser Pro Ala Leu Met Val Leu Cys Leu Gly Leu Ser Leu Gly 20 25 30	273
ccc agg acc cac gtg cag gca ggg aac ctc tcc aaa gcc acc ctc tgg Pro Arg Thr His Val Gln Ala Gly Asn Leu Ser Lys Ala Thr Leu Trp 35 40 45 50	321

_					gtg Val		_								369
					gag Glu										417
_		_			gac Asp		-			-		-		-	465
					cca Pro								-		513
_	-				agc Ser 120		_					_	~		561
_		_			aca Thr									_	609
					gtg Val								_	-	657
					ttc Phe							_		_	705
					acc Thr										753
					cct Pro 200										801
					ggc Gly										849
					ctg Leu										897
		_			aac Asn	_		_			_				945
_	-		-	_	gag Glu				_	_	 _	_		_	993

	Leu														cag Gln 290	1041
		ccc Pro								a c	agaa	gaga	g aa	caat	gcac	1092
cat	tgaa	tgc	tgga	gcct	tg g	aagc	gaat	c tga	atgg	tcct	agg	aggt	tcg	ggaa	gaccat	1152
ctg	aggc	cta	tgcc	atct	gg a	ctgt	ctgc	t gg	caati	tt						1190
	<2: <2:	10> 1 11> 1 12> 1 13> 1	1260 DNA	sap	iens											
		20>	250													
		21> (22>)(626)											
<400> 148 ctggctagcg tttaaactta agcttggtac cgagctcgga tccactagtc cagtgtggtg									60							
gaattccagc accccggagg tactccagca gcttgtctcc aatccaagct cccaatcacc									120							
cacegorgica godococtacg caggoracgo cactg atg cac acc aaa coc aat Met His Thr Lys Pro Asn									173							
		ggc Gly														221
		cca Pro 25						Gln								269
		cta Leu			-			-	_		_		-		-	317
		ggt Gly														365
		aga Arg				_						-				413
		caa Gln				_			_		-	-	_			461

aac aca gca cca aca gct tcc aag ata gta aca gac tcc aat tcc agg Asn Thr Ala Pro Thr Ala Ser Lys Ile Val Thr Asp Ser Asn Ser Arg 105 110 115	509
gtt tca gaa ccg cat cgc agc atc ttt cct gaa atg cac tca gac tca Val Ser Glu Pro His Arg Ser Ile Phe Pro Glu Met His Ser Asp Ser 120 125 130	557
gcc agc aaa gac gtg cct ggc cgc atc ctg ctg gat ata gac aat gat Ala Ser Lys Asp Val Pro Gly Arg Ile Leu Leu Asp Ile Asp Asn Asp 135 140 145 150	605
acc gag agc act gcc ctg tga ag aaagcccttt cccagccctc caccacttcc Thr Glu Ser Thr Ala Leu * 155	658
accctggcga gtggagcagg ggcaggcgaa cctctttctt tgcagaccga acagtgaaaa	718
gctttcagtg gaggacaaag gagggcctca ctgtgcggga cctggccttc tgcacggccc	778
aaggagaacc tggaggccac cactaaagct gaatgacctg tgtcttgaag aagttggctt	838
tctttacatg ggaaggaaat catgccaaaa aaatccaaaa caaagaagta cctggagtgg	898
agagagtatt cctgctgaaa cgcgcatagg aagcttttgt ccctgctgtt aatgcgggca	958
gcacctacag caacttggaa tgagtaagaa gcagtgcgtt aactatctat ttaataaaat	1018
gcgctcatta tgcaagtcgc ctactctctg ctacctggac gttcattctt atgtattagg	1078
agggaggetg egeteettea gaettgetge agaateattt tgtateatgt atggtetgtg	1138
tctccccagt cccctcagaa ccatgcccat ggatggtgac tgctggctct gtcacctcat	1198
caaactggat gtgacccatg ccgcctcgtt ggattgtcgg aatgtagaca gaaatgtact	1258
gt	1260

<210> 149

<211> 1929

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (208)..(1395)

<400> 149

ccgctccgga attcccgggt cgacccacgc gtccgctaga tcccaggatc acacacgtcc 60
tccttcctct gtctattaca caccatctgc tcatactatc tggtactcac tcaagaaatc 120
caagatgatg catggctgga caaaatctac agacgctatg cctggataaa acgccagctt 180

gtggactatg aggagaaata cggccgc atg ttt cca cgt gag tgg tgc atg Met Phe Pro Arg Glu Trp Cys Met 1 5									
gct gag agg att gcg Ala Glu Arg Ile Ala 10									
gcc aag att atg cgt Ala Lys Ile Met Arç 25									
ctt ttt gct att caa Leu Phe Ala Ile Glr 45	Arg Thr Thr			_					
cgc ttc tcc ggc tgc Arg Phe Ser Gly Cys 60	_		-						
tct cca ccc cca tct Ser Pro Pro Pro Ser 75		Phe Leu Glu							
gag atg gag gaa ctg Glu Met Glu Glu Lev 90			~	-					
aag cct aaa gcc cca Lys Pro Lys Ala Pro 105	_		-						
ttt gag cct cat ctc Phe Glu Pro His Lev 125	ı Tyr Val Tyr		Gln Asp Lys						
gga gag ctg ata gat Gly Glu Leu Ile Asr 140									
cct aag ccc aac act Pro Lys Pro Asn Thr 155									
gac ctc ttt gtc tac Asp Leu Phe Val Tyr 170			-	•					
agt act ggg gag ccc Ser Thr Gly Glu Pro 185	-	-	_	-					
ctc cga gaa tac gcc Leu Arg Glu Tyr Ala 205	Trp Lys Ile		Asn Leu Pro						
aca acc agc agt gga	ı gga ctg act	atc agc agc	ctc ctc aag	gaa aag 903					

Thr	Thr	Ser	Ser 220	Gly	Gly	Leu	Thr	Ile 225	Ser	Ser	Leu	Leu	Lys 230	Glu	Lys	
gag Glu	ggc Gly	tca Ser 235	gaa Glu	gta Val	gcc Ala	aag Lys	ttc Phe 240	act Thr	ctg Leu	gag Glu	gag Glu	ctc Leu 245	tgc Cys	ctc Leu	atc Ile	951
tgt Cys	aac Asn 250	atc Ile	ctg Leu	agc Ser	acg Thr	gca Ala 255	gag Glu	tac Tyr	tgt Cys	ctg Leu	gcc Ala 260	acc Thr	acc Thr	cag Gln	cag Gln	999
cta Leu 265	gaa Glu	gaa Glu	aaa Lys	ctc Leu	aaa Lys 270	gaa Glu	aaa Lys	gtg Val	gat Asp	gta Val 275	agt Ser	ctg Leu	att Ile	gaa Glu	cga Arg 280	1047
atc Ile	aat Asn	ctg Leu	act Thr	gga Gly 285	gag Glu	atg Met	gac Asp	acg Thr	ttc Phe 290	agc Ser	acc Thr	gtc Val	atc Ile	tcc Ser 295	agc Ser	1095
agt Ser	att Ile	cag Gln	ctg Leu 300	ctg Leu	gtt Val	cag Gln	gat Asp	ctg Leu 305	gat Asp	gct Ala	gcc Ala	tgt Cys	gat Asp 310	cct Pro	gcc Ala	1143
ctg Leu	act Thr	gcc Ala 315	atg Met	agc Ser	aag Lys	atg Met	cag Gln 320	tgg Trp	cag Gln	aac Asn	gtg Val	gag Glu 325	cac His	gtt Val	ggt Gly	1191
gac Asp	cag Gln 330	agc Ser	ccc Pro	tac Tyr	gtc Val	acc Thr 335	tct Ser	gtc Val	att Ile	ctg Leu	cac His 340	atc Ile	aag Lys	cag Gln	aac Asn	1239
gtc Val 345	ccc Pro	atc Ile	atc Ile	cgt Arg	gac Asp 350	aac Asn	ctg Leu	gct Ala	tcc Ser	aca Thr 355	cgc Arg	aag Lys	tac Tyr	ttc Phe	act Thr 360	1287
cag Gln	ttc Phe	tgc Cys	gtt Val	aaa Lys 365	ttt Phe	gca Ala	aac Asn	tcc Ser	ttc Phe 370	att Ile	ccc Pro	aaa Lys	ttc Phe	atc Ile 375	acc Thr	1335
cac His	ctc Leu	ttc Phe	aag Lys 380	tgc Cys	aag Lys	cca Pro	att Ile	agc Ser 385	atg Met	gtg Val	gga Gly	gca Ala	gaa Glu 390	cag Gln	gtg Val	1383
	tgg Trp			tat	cag	gcat	ttg	cctg	gcag	ct t	ttgt	tgta	g at	caag	caca	1438
tat	tctt	cta	gtcc	agat	ct a	cttg	gcag	g aa	taaa	attg	atg	atgt	ccc	ctgt	ttgggg	1498
aca	gtat	aat	gact	cacc	cg g	aagg	tttc	t ta	attc	gttc	ttc	catt	tat	tttt	aaaaat	1558
ttt	gttt	gaa	cgcc	tact	aa g	ttct	gggt	g ca	gggt	ataa	cac	agca	agc	acca	tggaaa	1618
ggt	ccct	gct	ccta	gtgc	tc a	cact	ccaa	t aa	gaag	aagt	ggc	tggg	ccg	ggca	cagcgg	1678
ctc	acgc	tgt	aacc	ccag	ca t	ttcg	ggag	g cc	tggg	cagg	cag	atca	cct	aaaa	taagga	1738

atttgagagc agectggcca acatggtgaa atcccatctc tactaaaaat acaaaaatta 1798
gctgggcatg ggggcaggct accggggagg ctgaggcagg agaatcactt gaacccggga 1858
ggtggaggtt gcagtgagcc gatatcacac cactgcactc cagcctgggt gacaaagtga 1918
gactccatct c 1929

<210> 150 <211> 1230 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (70)..(555)

<400> 150
aaaaaagttg gtgtatcatc ctccatcctc caaggtctct ggatctctta tagcacagaa 60
ggtctttcc atg gca ctg gcg tct tta cga aat ctc tac act cca aat 108
Met Ala Leu Ala Ser Leu Arg Asn Leu Tyr Thr Pro Asn

1 5 10

ata aag gtc agc cga ctg ctg att ttg gga ggt gcc aat att aat tac 156

Ile Lys Val Ser Arg Leu Leu Ile Leu Gly Gly Ala Asn Ile Asn Tyr

15 20 25

cgg aca gag gtt tta aat aat gct cca att cta tgt gtt cag tcc cat
Arg Thr Glu Val Leu Asn Asn Ala Pro Ile Leu Cys Val Gln Ser His
30 45

ctt ggt tac aca gaa atg gta gcc ctg ctg ctg gag ttc ggg gcc aac
Leu Gly Tyr Thr Glu Met Val Ala Leu Leu Glu Phe Gly Ala Asn
50 55 60

gtg gat gcc tct tct gaa agt ggc ctg act ccc ctg gga tat gct gca
Val Asp Ala Ser Ser Glu Ser Gly Leu Thr Pro Leu Gly Tyr Ala Ala
65 70 75

gca gca ggg tac ctg agc att gtg gtg ctg ctg tgc aag aaa cgg gcc 348
Ala Ala Gly Tyr Leu Ser Ile Val Val Leu Leu Cys Lys Lys Arg Ala
80 85 90

aag gtg gat cat ttg gat aag aac ggg cag tgt gct ttg gtt cat gct
Lys Val Asp His Leu Asp Lys Asn Gly Gln Cys Ala Leu Val His Ala
95 100 105

gca ctc cga ggt cat ctg gag gtt gtc aag ttt ttg att cag tgt gac
Ala Leu Arg Gly His Leu Glu Val Val Lys Phe Leu Ile Gln Cys Asp
110 125

tgg acg atg gcc ggc cag cag caa gga gta ttt aag aag agc cat gcc 492
Trp Thr Met Ala Gly Gln Gln Gly Val Phe Lys Lys Ser His Ala

130	135	140
atc caa cag gcc ctc att gct gca gcc Ile Gln Gln Ala Leu Ile Ala Ala Ala 145 150		
aga agt agg caa tag gattgttttt tcaag Arg Ser Arg Gln * 160	getetg tattgaagga eed	aggaaac 595
caggagaaaa gattgcacga agacaaaatt gcc	caaccaaa ttaatgtgaa t	tcgtgatcg 655
ctgctctgaa taataaggag attaaactcc atg	gaagcact ttactcaaat ç	gccaaagtcc 715
ctcaaattat aggtatagaa aggtgcgagt tgg	gaaaggac cgtggaaatg a	atataattat 775
tctccatgtt ttcctccctg tttaacagac agt	ggcacca aggctcaaag a	agatgaatta 835
ttgaggtgta gtcacatggt tagataatgt ggc	acaggaa cagcataaca t	ttagaatct 895
cagaaggacc agatttgagt cccagcctcg cta	attcatta actctagccc t	tgaacaatt 955
tacctatctc ttagaagttt agtttcccat cag	gcaaagtg aagctaataa a	actcctttat 1015
acaaggctgt tgtaagggat gcttggtaaa ctg	yttaaaca ttatacagtt t	atttattaa 1075
tgataataac aataatagtg gcaaatgtag gga	aattggta gtgtgctagg a	aaatgtttaa 1135
caaccaactg tgaagagggg tgtggggtgg aac	aggggtg tgtgtttgtg t	gtgcatacg 1195
tttattataa attttactga tagaatgtgt tgc	ccg	1230
<210> 151 <211> 1335 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (91)(1257) <400> 151		
gcgactgcgg acaggttaga gttgtggttg ggg	geggaege ggaageagee o	aagggcaga 60
gagggagece gagecaggee atetecaace	atg ttc gac gag gcc Met Phe Asp Glu Ala 1	a Ser Ala
atc act tcc tac gag aag ttt cta acc Ile Thr Ser Tyr Glu Lys Phe Leu Thr 10 15		
ctg gga cct cct cgc ggg gtg ggc acc Leu Gly Pro Pro Arg Gly Val Gly Thr		

	25					30					35					
tgc Cys 40	ctg Leu	gac Asp	atc Ile	agc Ser	gac Asp 45	ttc Phe	ggc Gly	tgc Cys	cag Gln	ctg Leu 50	tcc Ser	tcc Ser	tgc Cys	cat His	cgc Arg 55	255
acc Thr	gac Asp	ccg Pro	ctc Leu	cac His 60	cgc Arg	ttc Phe	cac His	acc Thr	aac Asn 65	agg Arg	tgg Trp	aac Asn	cta Leu	act Thr 70	tct Ser	303
tgt Cys	gga Gly	aca Thr	agt Ser 75	gtt Val	gcc Ala	agc Ser	tca Ser	gaa Glu 80	ggc Gly	agt Ser	gag Glu	gag Glu	ctg Leu 85	ttt Phe	tca Ser	351
tct Ser	gtg Val	tct Ser 90	gtt Val	gga Gly	gat Asp	caa Gln	gat Asp 95	gat Asp	tgc Cys	tat Tyr	tcc Ser	ctg Leu 100	tta Leu	gat Asp	gat Asp	399
cag Gln	gac Asp 105	ttc Phe	act Thr	tct Ser	ttt Phe	gat Asp 110	tta Leu	ttt Phe	cct Pro	gag Glu	ggg Gly 115	agt Ser	gtc Val	tgc Cys	agt Ser	447
gat Asp 120	gtc Val	tct Ser	tct Ser	tct Ser	att Ile 125	agc Ser	act Thr	tac Tyr	tgg Trp	gat Asp 130	tgg Trp	tca Ser	gat Asp	agc Ser	gag Glu 135	495
ttt Phe	gaa Glu	tgg Trp	cag Gln	tta Leu 140	cca Pro	ggc Gly	agt Ser	gac Asp	att Ile 145	gcc Ala	agt Ser	Gly	agt Ser	gat Asp 150	gta Val	543
ctt Leu	tct Ser	gat Asp	gtc Val 155	ata Ile	ccc Pro	agt Ser	att Ile	cca Pro 160	agt Ser	tca Ser	cct Pro	tgc Cys	ctg Leu 165	ctt Leu	cct Pro	591
aaa Lys	aag Lys	aaa Lys 170	aac Asn	aag Lys	cac His	cgg Arg	aat Asn 175	tta Leu	gat Asp	gaa Glu	ctc Leu	cct Pro 180	tgg Trp	agt Ser	gca Ala	639
atg Met	aca Thr 185	aat Asn	gat Asp	gag Glu	cag Gln	gtg Val 190	gaa Glu	tat Tyr	att Ile	gag Glu	tat Tyr 195	Leu	agt Ser	cgg Arg	aaa Lys	687
gtg Val 200	agt Ser	act Thr	gag Glu	atg Met	ggt Gly 205	Leu	cgg Arg	gag Glu	caa Gln	ctt Leu 210	Asp	att Ile	att Ile	aag Lys	atc Ile 215	735
att Ile	gat Asp	cct Pro	tct Ser	gct Ala 220	Gln	atc Ile	tcc Ser	cct Pro	aca Thr 225	Asp	agg Arg	gag Glu	ttt Phe	att Ile 230	att Ile	783
gaa Glu	ctt Leu	aac Asn	tgt Cys 235	Leu	aca Thr	gat Asp	gaa Glu	aaa Lys 240	Leu	aag Lys	cag Gln	gto Val	aga Arg 245	Asn	tat Tyr	831

atc aag gaa cat agc cct cgc caa cgg cct gca aga gag gcc tgg aag Ile Lys Glu His Ser Pro Arg Gln Arg Pro Ala Arg Glu Ala Trp Lys

927 aga agc aac ttt agt tgt gca agc acc agt gga gtg agc ggt gcc agt Arg Ser Asn Phe Ser Cys Ala Ser Thr Ser Gly Val Ser Gly Ala Ser 275 265 270 975 gcc agc gcc agc agc agt gcc agc atg gtc agt tct gca agc agc Ala Ser Ala Ser Ser Ser Ser Ala Ser Met Val Ser Ser Ala Ser Ser 295 285 290 280 agt ggg tcc agt gtt gga aac tct gct tca aac tcc agt gcc aac atg 1023 Ser Gly Ser Ser Val Gly Asn Ser Ala Ser Asn Ser Ser Ala Asn Met 300 1071 agt cga gca cac agt gac agc aac ctg tct gca agt gca gca gag cgg Ser Arg Ala His Ser Asp Ser Asn Leu Ser Ala Ser Ala Ala Glu Arg 320 1119 att cgg gat tca aaa aag cga tcc aag cag cgg aag tta cag cag aag Ile Arg Asp Ser Lys Lys Arg Ser Lys Gln Arg Lys Leu Gln Gln Lys 335 330 1167 gcc ttc cgc aag agg cag ctg aag gag cag agg cag gcc cgg aag gag Ala Phe Arg Lys Arg Gln Leu Lys Glu Gln Arg Gln Ala Arg Lys Glu 355 350 345 agg ctc agt ggg ctc ttc ctt aac gaa gag gtg ctg tcc ttg aaa gtg 1215 Arg Leu Ser Gly Leu Phe Leu Asn Glu Glu Val Leu Ser Leu Lys Val 370 365 360 act gag gaa gac cat gaa gca gat gtt gat gtt ttg atg taa taagggt 1264 Thr Glu Glu Asp His Glu Ala Asp Val Asp Val Leu Met 385 380 gaatttatca acgttctttg tgagcattaa aatactccat ccttatgggt ttacatgcaa 1324 1335 aaaaaaaaa a

<210> 152

<211> 2251

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (203)..(1582)

<400> 152

cgcgtgcggt ggaattcggc gaaacttccc tctacccgcc cggcccgcgg cgcgcaccgt 60
tggcgctgga cgcttcctcc ttggaagcgc ctctccctca ggtctcaaga actgttttga 120
gatgcaggaa ttcatctaat tttcactgcc gggcgaggtg tgagagccct agcatctgaa 180
agtggtcgac ttgcgagttg tt atg gag aaa act tgt ata gat gca ctt cct 232

						Met 1		ı Lys	Thr	Cys		. Asp) Ala	. Leu	Pro 10	
ctt Leu	act Thr	atg Met	aat Asn	tct Ser 15	tca Ser	gaa Glu	aag Lys	caa Gln	gag Glu 20	act Thr	gta Val	tgt Cys	att Ile	ttt Phe 25	gga Gly	280
act Thr	ggt Gly	gat Asp	ttt Phe 30	gga Gly	aga Arg	tca Ser	ctg Leu	gga Gly 35	ttg Leu	aaa Lys	atg Met	ctc Leu	cag Gln 40	tgt Cys	ggt Gly	328
tat Tyr	tct Ser	gtt Val 45	gtt Val	ttt Phe	gga Gly	agt Ser	cga Arg 50	aac Asn	ccc Pro	cag Gln	aag Lys	acc Thr 55	acc Thr	cta Leu	ctg Leu	376
ccc Pro	agt Ser 60	ggt Gly	gca Ala	gaa Glu	gtc Val	ttg Leu 65	agc Ser	tat Tyr	tca Ser	gaa Glu	gca Ala 70	gcc Ala	aag Lys	aag Lys	tct Ser	424
ggc Gly 75	atc Ile	ata Ile	atc Ile	ata Ile	gca Ala 80	atc Ile	cac His	aga Arg	gag Glu	cat His 85	tat Tyr	gat Asp	ttt Phe	ctc Leu	aca Thr 90	472
gaa Glu	tta Leu	act Thr	gag Glu	gtt Val 95	ctc Leu	aat Asn	gga Gly	aaa Lys	ata Ile 100	ttg Leu	gta Val	gac Asp	atc Ile	agc Ser 105	aac Asn	520
aac Asn	ctc Leu	aaa Lys	atc Ile 110	aat Asn	caa Gln	tat Tyr	cca Pro	gaa Glu 115	tct Ser	aat Asn	gca Ala	gag Glu	tac Tyr 120	ctt Leu	gct Ala	568
cat His	ttg Leu	gtg Val 125	cca Pro	gga Gly	gcc Ala	cac His	gtg Val 130	gta Val	aaa Lys	gca Ala	ttt Phe	aac Asn 135	acc Thr	atc Ile	tca Ser	616
gcc Ala	tgg Trp 140	gct Ala	ctc Leu	cag Gln	tca Ser	gga Gly 145	gca Ala	ctg Leu	gat Asp	gca Ala	agt Ser 150	cgg Arg	cag Gln	gtg Val	ttt Phe	664
gtg Val 155	tgt Cys	gga Gly	aat Asn	gac Asp	agc Ser 160	aaa Lys	gcc Ala	aag Lys	caa Gln	aga Arg 165	gtg Val	atg Met	gat Asp	att Ile	gtt Val 170	712
cgt Arg	aat Asn	ctt Leu	gga Gly	ctt Leu 175	act Thr	cca Pro	atg Met	gat Asp	caa Gln 180	Gly	tca Ser	ctc Leu	atg Met	gca Ala 185	A⊥a	760
aaa Lys	gaa Glu	att Ile	gaa Glu 190	Lys	tac Tyr	ccc Pro	ctg Leu	cag Gln 195	Leu	ttt Phe	cca Pro	atg Met	tgg Trp 200	Arg	ttc Phe	808
ccc Pro	tto Phe	tat Tyr 205	Leu	tct Ser	gct Ala	gtg Val	ctg Leu 210	ı Cys	gtc Val	ttc Phe	ttg Leu	ttt Phe 215	Phe	tat Tyr	tgt Cys	856
gtt Val	ata Ile	aga Arg	gac Asp	gta Val	atc Ile	tac Tyr	cct Pro	tat Tyr	gtt Val	tat Tyr	gaa Glu	aag Lys	aaa Lys	gat S Asp	aat Asn	904

	220					225					230					
aca Thr 235	ttt Phe	cgt Arg	atg Met	gct Ala	att Ile 240	tcc Ser	att Ile	cca Pro	aat Asn	cgt Arg 245	atc Ile	ttt Phe	cca Pro	ata Ile	aca Thr 250	952
gca Ala	ctt Leu	aca Thr	ctg Leu	ctt Leu 255	gct Ala	ttg Leu	gtt Val	tac Tyr	ctc Leu 260	cct Pro	ggt Gly	gtt Val	att Ile	gct Ala 265	gcc Ala	1000
att Ile	cta Leu	caa Gln	ctg Leu 270	tac Tyr	cga Arg	ggc Gly	aca Thr	aaa Lys 275	tac Tyr	cgt Arg	cga Arg	ttc Phe	cca Pro 280	gac Asp	tgg Trp	1048
ctt Leu	gac Asp	cac His 285	tgg Trp	atg Met	ctt Leu	tgc Cys	cga Arg 290	aag Lys	cag Gln	ctt Leu	ggc Gly	ttg Leu 295	gta Val	gct Ala	ctg Leu	1096
gga Gly	ttt Phe 300	gcc Ala	ttc Phe	ctt Leu	cat His	gtc Val 305	ctc Leu	tac Tyr	aca Thr	ctt Leu	gtg Val 310	att Ile	cct Pro	att Ile	cga Arg	1144
tat Tyr 315	tat Tyr	gta Val	cga Arg	tgg Trp	aga Arg 320	ttg Leu	gga Gly	aac Asn	tta Leu	acc Thr 325	gtt Val	acc Thr	cag Gln	gca Ala	ata Ile 330	1192
ctc Leu	aag Lys	aag Lys	gag Glu	aat Asn 335	cca Pro	ttt Phe	agc Ser	acc Thr	tcc Ser 340	tca Ser	gcc Ala	tgg Trp	ctc Leu	agt Ser 345	gat Asp	1240
tca Ser	tat Tyr	gtg Val	gct Ala 350	ttg Leu	gga Gly	ata Ile	ctt Leu	ggg Gly 355	ttt Phe	ttt Phe	ctg Leu	ttt Phe	gta Val 360	ctc Leu	ttg Leu	1288
gga Gly	atc Ile	act Thr 365	tct Ser	ttg Leu	cca Pro	tct Ser	gtt Val 370	agc Ser	aat Asn	gca Ala	gtc Val	aac Asn 375	tgg Trp	aga Arg	gag Glu	1336
ttc Phe	cga Arg 380	ttt Phe	gtc Val	cag Gln	tcc Ser	aaa Lys 385	ctg Leu	ggt Gly	tat Tyr	ttg Leu	acc Thr 390	ctg Leu	atc Ile	ttg Leu	tgt Cys	1384
aca Thr 395	Ala	cac His	acc Thr	ctg Leu	gtg Val 400	tac Tyr	ggt Gly	Gly	aag Lys	aga Arg 405	ttc Phe	ctc Leu	agc Ser	cct Pro	tca Ser 410	1432
aat Asn	ctc Leu	aga Arg	tgg Trp	tat Tyr 415	ctt Leu	cct Pro	gca Ala	gcc Ala	tac Tyr 420	Val	tta Leu	ggg	ctt Leu	atc Ile 425	att Ile	1480
cct Pro	tgc Cys	act Thr	gtg Val 430	Leu	gtg Val	atc Ile	aag Lys	ttt Phe 435	Val	cta Leu	atc Ile	atg Met	cca Pro 440	Cys	gta Val	1528
gac Asp	aac Asn	acc Thr 445	Leu	aca Thr	agg Arg	atc Ile	cgc Arg 450	Gln	ggc Gly	tgg Trp	gaa Glu	agg Arg 455	Asn	tca Ser	aaa Lys	1576

cac tag aaaaagcatt gaatggaaaa tcaatattta aaacaaagtt caatttagct $*$ 460	1632
ggatttctga actatggttt tgaatgttta aagaagaatg atgggtacag ttaggaaagt	1692
ttttttctta caccgtgact gagggaaaca ttgcttgtct ttgagaaatt gactgacata	1752
ctggaagaga acaccatttt atctcaggtt agtgaagaat cagtgcaggt ccctgactct	1812
tattttccca gaggccatgg agctgagatt gagactagcc ttgtggtttc acactaaaga	1872
gtttccttgt tatgggcaac atgcatgacc taatgtcttg caaaatccaa tagaagtatt	1932
gcagcttcct tctctggctc aagggctgag ttaagtgaaa ggaaaaacag cacaatggtg	1992
accactgata aaggetttat taggtatate tgaggaagtg ggtcacatga aatgtaaaaa	2052
gggaatgagg tttttgttgt tttttggaag taaaggcaaa cataaatatt accatgatga	2112
attctagtga aatgacccct tgactttgct tttcttaata cagatattta ctgagaggaa	2172
ctatttttat aacacaagaa aaatttacaa ttgattaaaa gtatccatgt cttggataca	2232
tacgtaaaaa aaaaaaaaa	2251
<210> 153 <211> 2310 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (306)(2174) <400> 153	
aaaactccag gaggcggagg aggctagtgg cagtacctgg gcaccctgac cctcccaca	60
ggccagagcc caccetectg etcatgaggg cagacaggee tttecaggga cacagteect	120
cttctcccca ggaccccagg gccaactccc cctgccggcc ctctgccatc aaattggcag	180
tggctccagg ggagtcccct ggggatgggg gaccactgtt ggggacccct ctgcgtgcac	240
ccctgtagtt ggggaagcag gacaggggcc tggggagacg gaagggcgcc aggggttgag	300
agagg atg gtg gac gtt gtt gga ctt gaa agg gaa aca ggc cct cgg Met Val Asp Val Val Gly Leu Glu Arg Glu Thr Gly Pro Arg 1 5 10	347
gga agc ccc tgg cca ggc ctg cct ctc ccc tcc ctg gtg ggc cca gcg Gly Ser Pro Trp Pro Gly Leu Pro Leu Pro Ser Leu Val Gly Pro Ala	395

ccc Pro	ctg Leu	ctc Leu	act Thr	tgt Cys 35	ctc Leu	tgc Cys	cca Pro	cag Gln	tgc Cys 40	ctg Leu	tct Ser	gtg Val	gag Glu	gac Asp 45	gcc Ala	443
ctg Leu	ggc Gly	ctg Leu	ggc Gly 50	gag Glu	cct Pro	gag Glu	ggg Gly	tca Ser 55	ggg Gly	ctg Leu	ccc Pro	ccg Pro	ggc Gly 60	ccg Pro	gtc Val	491
ctg Leu	gag Glu	gcc Ala 65	agg Arg	tac Tyr	gtc Val	gcc Ala	cgc Arg 70	ctc Leu	agt Ser	gcc Ala	gcc Ala	gcc Ala 75	gtc Val	ctg Leu	tac Tyr	539
ctc Leu	agc Ser 80	aac Asn	ccc Pro	gag Glu	ggc Gly	acc Thr 85	tgt Cys	gag Glu	gac Asp	gct Ala	cgg Arg 90	gct Ala	ggc Gly	ctc Leu	tgg Trp	587
gcc Ala 95	tct Ser	cat His	gca Ala	gac Asp	cac His 100	ctc Leu	ctg Leu	gcc Ala	ctg Leu	ctc Leu 105	gag Glu	agc Ser	ccc Pro	aag Lys	gcc Ala 110	635
ctg Leu	acc Thr	ccg Pro	ggc Gly	ctg Leu 115	agc Ser	tgg Trp	ctg Leu	ctg Leu	cag Gln 120	agg Arg	atg Met	cag Gln	gcc Ala	cgg Arg 125	gct Ala	683
gcc Ala	ggc Gly	cag Gln	acc Thr 130	ccc Pro	aag Lys	acg Thr	gcc Ala	tgc Cys 135	gta Val	gat Asp	atc Ile	cct Pro	cag Gln 140	ctg Leu	ctg Leu	731
gag Glu	gag Glu	gcg Ala 145	gtg Val	ggg	gcg Ala	Gly ggg	gct Ala 150	ccg Pro	ggc Gly	agt Ser	gct Ala	ggc Gly 155	ggc Gly	gtc Val	ctg Leu	779
gct Ala	gcc Ala 160	ctg Leu	ctg Leu	gac Asp	cat His	gtc Val 165	agg Arg	agc Ser	ggg	tct Ser	tgc Cys 170	ttc Phe	cac His	gcc Ala	ttg Leu	827
ccg Pro 175	agc Ser	cct Pro	cag Gln	tac Tyr	ttc Phe 180	gtg Val	gac Asp	ttt Phe	gtg Val	ttc Phe 185	cag Gln	cag Gln	cac His	agc Ser	agc Ser 190	875
gag Glu	gtc Val	cct Pro	atg Met	acg Thr 195	ctg Leu	gcc Ala	gag Glu	ctg Leu	tca Ser 200	gcc Ala	ttg Leu	atg Met	cag Gln	cgc Arg 205	ctg Leu	923
Gly	gtg Val	ggc Gly	agg Arg 210	gag Glu	gcc Ala	cac His	agt Ser	gac Asp 215	His	agt Ser	cat His	cgg Arg	cac His 220	agg Arg	gga Gly	971
gcc Ala	agc Ser	agc Ser 225	cgg Arg	gac Asp	cct Pro	gtg Val	ccc Pro 230	Leu	atc Ile	agc Ser	tcc Ser	agc Ser 235	Asn	agc Ser	tcc Ser	1019
agt Ser	gtg Val 240	Trp	gac Asp	acg Thr	gta Val	tgc Cys 245	Leu	agt Ser	gcc Ala	agg Arg	gac Asp 250	Val	atg Met	gct Ala	gca Ala	1067

tat Tyr 255	gga Gly	ctg Leu	tcg Ser	gaa Glu	cag Gln 260	gct Ala	Gly ggg	gtg Val	acc Thr	ccg Pro 265	gag Glu	gcc Ala	tgg Trp	gcc Ala	caa Gln 270	1115	ı
ctg Leu	agc Ser	cct Pro	gcc Ala	ctg Leu 275	ctc Leu	caa Gln	cag Gln	cag Gln	ctg Leu 280	agt Ser	gga Gly	gcc Ala	tgc Cys	acc Thr 285	tcc Ser	1163	ı
cag Gln	tcc Ser	agg Arg	ccc Pro 290	ccc Pro	gtc Val	cag Gln	gac Asp	cag Gln 295	ctc Leu	agc Ser	cag Gln	tca Ser	gag Glu 300	agg Arg	tat Tyr	1211	-
ctg Leu	tac Tyr	ggc Gly 305	tcc Ser	ctg Leu	gcc Ala	acg Thr	ctg Leu 310	ctc Leu	atc Ile	tgc Cys	ctc Leu	tgc Cys 315	gcg Ala	gtc Val	ttt Phe	1259)
ggc Gly	ctc Leu 320	ctg Leu	ctg Leu	ctg Leu	acc Thr	tgc Cys 325	act Thr	ggc Gly	tgc Cys	agg Arg	ggg Gly 330	gtc Val	gcc Ala	cac His	tac Tyr	1307	7
atc Ile 335	ctg Leu	cag Gln	acc Thr	ttc Phe	ctg Leu 340	agc Ser	ctg Leu	gca Ala	gtg Val	ggt Gly 345	gca Ala	ctc Leu	act Thr	ggg Gly	gac Asp 350	1355	5
gct Ala	gtc Val	ctg Leu	cat His	ctg Leu 355	acg Thr	ccc Pro	aag Lys	gtg Val	ctg Leu 360	Gly ggg	ctg Leu	cat His	aca Thr	cac His 365	agc Ser	1403	3
gaa Glu	gag Glu	ggc Gly	ctc Leu 370	agc Ser	cca Pro	cag Gln	ccc Pro	acc Thr 375	tgg Trp	cgc Arg	ctc Leu	ctg Leu	gct Ala 380	atg Met	ctg Leu	1451	L
gcc Ala	ggg Gly	ctc Leu 385	tac Tyr	gcc Ala	ttc Phe	ttc Phe	ctg Leu 390	ttt Phe	gag Glu	aac Asn	ctc Leu	ttc Phe 395	aat Asn	ctc Leu	ctg Leu	1499	9
ctg Leu	ccc Pro 400	agg Arg	gac Asp	ccg Pro	gag Glu	gac Asp 405	ctg Leu	gag Glu	gac Asp	Gly	ccc Pro 410	tgc Cys	ggc Gly	cac His	agc Ser	154'	7
agc Ser 415	cat His	agc Ser	cac His	Gly	ggc Gly 420	cac His	agc Ser	cac His	ggt Gly	gtg Val 425	tcc Ser	ctg Leu	cag Gln	ctg Leu	gca Ala 430	159	5
ccc Pro	agc Ser	gag Glu	ctc Leu	cgg Arg 435	cag Gln	ccc Pro	aag Lys	ccc	ccc Pro 440	His	gag Glu	ggc Gly	tcc Ser	cgc Arg 445	Ala	164	3
gac Asp	ctg Leu	gtg Val	gcg Ala 450	Glu	gag Glu	agc Ser	ccg Pro	gag Glu 455	Leu	ctg Leu	aac Asn	cct Pro	gag Glu 460	Pro	agg Arg	169	1
aga Arg	ctg Leu	agc Ser 465	Pro	gag Glu	ttg Leu	agg Arg	cta Leu 470	Leu	ccc Pro	tat Tyr	atg Met	atc Ile 475	Thr	ctg Leu	ggc Gly	173	9
gac	gcc	gtg	cac	aac	ttc	gcc	gac	ggg	ctg	gcc	gtg	ggc	gcc	gcc	ttc:	178	7

Asp	Ala 480	Val	His	Asn	Phe	Ala 485	Asp	Gly	Leu	Ala	Val 490	Gly	Ala	Ala	Phe	
gcg Ala 495	tcc Ser	tcc Ser	tgg Trp	aag Lys	acc Thr 500	Gly aaa	ctg Leu	gcc Ala	acc Thr	tcg Ser 505	ctg Leu	gcc Ala	gtg Val	ttc Phe	tgc Cys 510	1835
cac His	gag Glu	ttg Leu	cca Pro	cac His 515	gag Glu	ctg Leu	ggg Gly	gac Asp	ttc Phe 520	gcc Ala	gcc Ala	ttg Leu	ctg Leu	cac His 525	gcg Ala	1883
Gly ggg	ctg Leu	tcc Ser	gtg Val 530	cgc Arg	caa Gln	gca Ala	ctg Leu	ctg Leu 535	ctg Leu	aac Asn	ctg Leu	gcc Ala	tcc Ser 540	gcg Ala	ctc Leu	1931
acg Thr	gcc Ala	ttc Phe 545	gct Ala	ggt Gly	ctc Leu	tac Tyr	gtg Val 550	gca Ala	ctc Leu	gcg Ala	gtt Val	gga Gly 555	gtc Val	agc Ser	gag Glu	1979
gag Glu	agc Ser 560	gag Glu	gcc Ala	tgg Trp	atc Ile	ctg Leu 565	gca Ala	gtg Val	gcc Ala	acc Thr	ggc Gly 570	ctg Leu	ttc Phe	ctc Leu	tac Tyr	2027
gta Val 575	gca Ala	ctc Leu	tgc Cys	gac Asp	atg Met 580	ctc Leu	ccg Pro	gcg Ala	atg Met	ttg Leu 585	aaa Lys	gta Val	cgg Arg	gac Asp	ccg Pro 590	2075
cgg Arg	ccc Pro	tgg Trp	ctc Leu	ctc Leu 595	ttc Phe	ctg Leu	ctg Leu	cac His	aac Asn 600	gtg Val	ggc Gly	ctg Leu	ctg Leu	ggc Gly 605	ggc Gly	2123
tgg Trp	acc Thr	gtc Val	ctg Leu 610	ctg Leu	ctg Leu	ctg Leu	tcc Ser	ctg Leu 615	tac Tyr	gag Glu	gat Asp	gac Asp	atc Ile 620	Thr	ttc Phe	2171
tga *	tac	c ct	gccc	tagt	ccc	ccac	ctt	tgac	ttaa	ga t	ccca	cacc	t ca	caaa	ccta	2228
cag	ccca	gaa	acca	gaag	cc c	ctat	agag	g cc	ccag	tccc	aac	tcca	gta	aaga	cactct	2288
tgt	cctt	gga	aaaa	aaaa	aa a	a										2310

```
<210> 154
<211> 1233
```

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (136)..(1170)

<400> 154

tttcgtgcgg accgttgggc ggttccgcgg ggcgttgtcc ggagagctgc gaggccgggg

ttcccagggt tcacgccaca ctctaggaag tgcctgagct agtgagctgg ccaacgagct	120													
ccgcgggctg ggacc atg ggc tgc ttc ttc tcc aag aga cgg aag gct gac Met Gly Cys Phe Phe Ser Lys Arg Arg Lys Ala Asp 1 5 10														
aag gag tcg cgg ccc gag aac gag gag gag cgg cca aag cag tac agc Lys Glu Ser Arg Pro Glu Asn Glu Glu Glu Arg Pro Lys Gln Tyr Ser 15 20 25	219													
tgg gat cag cgc gag aag gtt gat cca aaa gac tac atg ttc agt gga Trp Asp Gln Arg Glu Lys Val Asp Pro Lys Asp Tyr Met Phe Ser Gly 30 35 40	267													
ctg aag gat gaa aca gta ggt cgc tta cct ggg acg gta gca gga caa Leu Lys Asp Glu Thr Val Gly Arg Leu Pro Gly Thr Val Ala Gly Gln 45 50 55 60	315													
cag ttt ctc att caa gac tgt gag aac tgt aac atc tat att ttt gat Gln Phe Leu Ile Gln Asp Cys Glu Asn Cys Asn Ile Tyr Ile Phe Asp 65 70 75	363													
cac tct gct aca gtt acc att gat gac tgt act aac tgc ata att ttt His Ser Ala Thr Val Thr Ile Asp Asp Cys Thr Asn Cys Ile Ile Phe 80 85 90	411													
ctg gga ccc gtg aaa ggc agc gtg ttt ttc cgg aat tgc aga gat tgc Leu Gly Pro Val Lys Gly Ser Val Phe Phe Arg Asn Cys Arg Asp Cys 95 100 105	459													
aag tgc aca tta gcc tgc caa caa ttt cgt gtg cga gat tgt aga aag Lys Cys Thr Leu Ala Cys Gln Gln Phe Arg Val Arg Asp Cys Arg Lys 110 115 120	507													
ctg gaa gtc ttt ttg tgt tgt gcc act caa ccc atc att gag tct tcc Leu Glu Val Phe Leu Cys Cys Ala Thr Gln Pro Ile Ile Glu Ser Ser 125 130 135 140	555													
tca aat atc aaa ttt gga tgt ttt caa tgg tac tat cct gaa tta gct Ser Asn Ile Lys Phe Gly Cys Phe Gln Trp Tyr Tyr Pro Glu Leu Ala 145 150 155	603													
ttc cag ttc aaa gat gca ggg cta agt atc ttc gac aat aca tgg agt Phe Gln Phe Lys Asp Ala Gly Leu Ser Ile Phe Asp Asn Thr Trp Ser 160 165 170	651													
aac att cat gac ttt aca cct gtg tca gga gaa ctc aac tgg agc ctt Asn Ile His Asp Phe Thr Pro Val Ser Gly Glu Leu Asn Trp Ser Leu 175 180 185	699													
ctt cca gaa gat gct gtg gtt cag gac tat gtt cct ata cct act acc Leu Pro Glu Asp Ala Val Val Gln Asp Tyr Val Pro Ile Pro Thr Thr 190 195 200	747													
gaa gag ctc aaa gct gtt cgt gtt tcc aca gaa gcc aat aga agc att Glu Glu Leu Lys Ala Val Arg Val Ser Thr Glu Ala Asn Arg Ser Ile	795													

220 215 205 210 843 gtt cca ata tcc cgg ggt cag aga cag aag agc agc gat gaa tca tgc Val Pro Ile Ser Arg Gly Gln Arg Gln Lys Ser Ser Asp Glu Ser Cys 891 tta gtg gta tta ttt gct ggt gat tac act att gca aat gcc aga aaa Leu Val Val Leu Phe Ala Gly Asp Tyr Thr Ile Ala Asn Ala Arg Lys 245 240 939 cta att gat gag atg gtt ggt aaa ggc ttt ttc cta gtt cag aca aag Leu Ile Asp Glu Met Val Gly Lys Gly Phe Phe Leu Val Gln Thr Lys 260 255 987 gaa gtg tcc atg aaa gct gag gat gct caa agg gtt ttt cgg gaa aaa Glu Val Ser Met Lys Ala Glu Asp Ala Gln Arg Val Phe Arg Glu Lys 275 270 gca cct gac ttc ctt cct ctt ctg aac aaa ggt cct gtt att gcc ttg 1035 Ala Pro Asp Phe Leu Pro Leu Leu Asn Lys Gly Pro Val Ile Ala Leu 295 285 290 1083 gag ttt aat ggg gat ggt gct gta gaa gta tgt caa ctt att gta aac Glu Phe Asn Gly Asp Gly Ala Val Glu Val Cys Gln Leu Ile Val Asn 310 305 gag ata ttc aat ggg acc aag atg ttt gta tct gaa agc aag gag aca 1131 Glu Ile Phe Asn Gly Thr Lys Met Phe Val Ser Glu Ser Lys Glu Thr 325 ggt ttc tgg aga tgt aga cac gct cta aca ctt ggc tga tatacagatg 1180 Gly Phe Trp Arg Cys Arg His Ala Leu Thr Leu Gly * 335 1233 ggaatatgaa gtgcaatgtg gaacccggac ttggtataag acctttccca ctt <210> 155 <211> 1021 <212> DNA <213> Homo sapiens

<220> <221> CDS <222> (256)..(873) <400> 155

gcacgagcta aactctggga ctggcgggcg gtcaggcggc acagggggaa tcccgggggc ctaaggaggt tgtctcagtt tttgtcagca tctccaccc gaggtggttt gaactttgag 120 ccttttgtag tcctgatgaa taatttcatt ttcctcaagt ttatgacact cggaacgtca 180 240 agaactggag gtttgtgcaa tttgagaccg gtcggcactg tgcagagatc agagtactaa

gagacagaga ttaaa atg gct tcc aga gga aag aca gag aca agc aaa tta Met Ala Ser Arg Gly Lys Thr Glu Thr Ser Lys Leu 1 5 10	291
aag cag aat tta gaa gaa cag ttg gat aga ctc atg caa caa tta caa Lys Gln Asn Leu Glu Glu Gln Leu Asp Arg Leu Met Gln Gln Leu Gln 15 20 25	339
gat ctg gag gaa tgc aga gag gaa ctt gat aca gat gaa tat gaa gaa Asp Leu Glu Glu Cys Arg Glu Glu Leu Asp Thr Asp Glu Tyr Glu Glu 30 35 40	387
acc aaa aag gaa act ctg gag caa cta agt gaa ttt aat gat tca cta Thr Lys Lys Glu Thr Leu Glu Gln Leu Ser Glu Phe Asn Asp Ser Leu 45 50 55 60	435
aag aaa att atg tct gga aat atg act ttg gta gat gaa cta agt gga Lys Lys Ile Met Ser Gly Asn Met Thr Leu Val Asp Glu Leu Ser Gly 65 70 75	483
atg cag ctg gct att cag gca gct atc agc cag gcc ttt aaa acc cca Met Gln Leu Ala Ile Gln Ala Ala Ile Ser Gln Ala Phe Lys Thr Pro 80 85 90	531
gag gtc atc aga ttg ttt gca aag aaa caa cca ggt cag ctt cgg aca Glu Val Ile Arg Leu Phe Ala Lys Lys Gln Pro Gly Gln Leu Arg Thr 95 100 105	579
agg tta gca gag atg gat aga gat ctg atg gta gga aag ctg gaa aga Arg Leu Ala Glu Met Asp Arg Asp Leu Met Val Gly Lys Leu Glu Arg 110 115 120	627
gac ctg tac act caa cag aaa gtg gag ata cta aca gct ctt agg aaa Asp Leu Tyr Thr Gln Gln Lys Val Glu Ile Leu Thr Ala Leu Arg Lys 125 130 135 140	675
ctt gga gag aag ctg act gca gat gat gag gcc ttc ttg tca gca aat Leu Gly Glu Lys Leu Thr Ala Asp Asp Glu Ala Phe Leu Ser Ala Asn 145 150 155	723
gca ggt gct ata ctc agc cag ttt gag aaa gtc tct aca gac ctt gga Ala Gly Ala Ile Leu Ser Gln Phe Glu Lys Val Ser Thr Asp Leu Gly 160 165 170	771
cgg ccc cca agt tac atg aac tac ctg cta gac tca cac ccc agc aaa Arg Pro Pro Ser Tyr Met Asn Tyr Leu Leu Asp Ser His Pro Ser Lys 175 180 185	819
aat att gat gtc ccc agc aag att agc ttc ctg tta aag atc cag gac Asn Ile Asp Val Pro Ser Lys Ile Ser Phe Leu Leu Lys Ile Gln Asp 190 195 200	867
ctg tga atacatgcgt aactgcaaga atggaagcaa aggatgaacc caagttaaag Leu * 205	923
cccagcacaa gaatatgatg taagcgcttt tgggaaatgc agagattttc ttttctcttc	983

	<21 <21	0> 1 1> 1 2> E 3> H	581	sapi	.ens											
		1> 0	DS (1)	(819))											
atg Met 1	gag Glu	00> 1 g gca i Ala	qac	gaa Glu	ı Ser	g gag Glu	aag Lys	g gco s Ala	c gca a Ala 10	ı Thr	gag Glu	g caa i Glr	n gag n Glu	g ccg l Pro 15	ctg Leu	48
gaa Glu	ggg Gly	aca Thr	gaa Glu 20	cag Gln	aca Thr	cta Leu	gat Asp	gcg Ala 25	gag Glu	gag Glu	gag Glu	cag Gln	gag Glu 30	gaa Glu	tcc Ser	96
gaa Glu	gaa Glu	gcg Ala 35	gcc Ala	tgt Cys	ggc Gly	agc Ser	aag Lys 40	aag Lys	cgg Arg	gta Val	gtg Val	cca Pro 45	ggt Gly	att Ile	gtg Val	144
tac Tyr	ctg Leu 50	ggc Gly	cat His	atc Ile	ccg Pro	ccg Pro 55	cgc Arg	ttc Phe	cgg Arg	ccc Pro	ctg Leu 60	cac His	gtc Val	cgc Arg	aac Asn	192
ctt Leu 65	ctc Leu	agc Ser	gcc Ala	tat Tyr	ggc Gly 70	gag Glu	gtc Val	gga Gly	cgc Arg	gtc Val 75	ttc Phe	ttt Phe	cag Gln	gct Ala	gag Glu 80	240
gac Asp	cgg Arg	ttc Phe	gtg Val	aga Arg 85	cgc Arg	aag Lys	aag Lys	aag Lys	gca Ala 90	gca Ala	gca Ala	gct Ala	gcc Ala	gga Gly 95	gga Gly	288
aaa Lys	aag Lys	cgg Arg	tcc Ser 100	tac Tyr	acc Thr	aag Lys	gac Asp	tac Tyr 105	acc Thr	gag Glu	gga Gly	tgg Trp	gtg Val 110	gag Glu	ttc Phe	336
cgt Arg	gac Asp	aag Lys 115	cgc Arg	ata Ile	gcc Ala	aag Lys	cgc Arg 120	gtg Val	gcg Ala	gcc Ala	agt Ser	cta Leu 125	cac His	aac Asn	acg Thr	384
cct Pro	atg Met 130	ggt Gly	gcc Ala	cgc Arg	agg Arg	cgc Arg 135	agc Ser	ccc Pro	ttc Phe	cgt Arg	tat Tyr 140	gat Asp	ctt Leu	tgg Trp	aac Asn	432
ctc Leu 145	aag Lys	tac Tyr	ttg Leu	cac His	cgt Arg 150	Phe	acc Thr	tgg Trp	tcc Ser	cac His 155	ctc Leu	agc Ser	gag Glu	cac His	ctc Leu 160	480
gcc	ttt	gag	cgc	cag	gtg	cgc	agg	cag	cgc	ttg	aga	gcg	gag	gtt	gct	528

Ala Phe Glu Arg Gln Val Arg Arg Gln Arg Leu Arg Ala Glu Val Ala 165 170 175	
caa gcc aag cgt gag acc gac ttc tat ctt caa agt gtg gaa cgg gga Gln Ala Lys Arg Glu Thr Asp Phe Tyr Leu Gln Ser Val Glu Arg Gly 180 185 190	576
caa cgc ttt ctt gcg gcc gat ggg gac cct gct cgc cca gat ggc tcc Gln Arg Phe Leu Ala Ala Asp Gly Asp Pro Ala Arg Pro Asp Gly Ser 195 200 205	624
tgg aca ttt gcc cag cgt cct act gag cag gaa ctg agg gcc cgt aaa Trp Thr Phe Ala Gln Arg Pro Thr Glu Gln Glu Leu Arg Ala Arg Lys 210 220	672
gca gca cgg cca ggg gga cgt gaa cgg gct cgc ctg gca act gcc cag Ala Ala Arg Pro Gly Gly Arg Glu Arg Ala Arg Leu Ala Thr Ala Gln 225 230 235 240	720
gac aag gcc cgc tcc aac aaa ggg ctc ctg gcc agg atc ttt gga gcc Asp Lys Ala Arg Ser Asn Lys Gly Leu Leu Ala Arg Ile Phe Gly Ala 245 250 255	768
ccg cca ccc tca gag agc atg gag gga cct tcc ctt gtc agg gac tcc Pro Pro Pro Ser Glu Ser Met Glu Gly Pro Ser Leu Val Arg Asp Ser 260 265 270	816
tga gggc ctgggtggcc ccttccattt cctggccctg ctctgcttcc tgtctacctc *	873
atactagaat gatcgtgact acccgggcag acattttact gtgtttctca gaccaagtgt	933
ctactgatgg cccaaacatg gagttttgtg ggcttccact gtccccactc cgaactcctg	993
tatgtgcctg gctgagtcac ctaattcata ctgtcatact agcataatta tgactattgc	1053
atatgcttgt tttgtttgac tcttggctgc ctacgtctgt agggtcccct gaaaatccca	1113
cttcctgccc ccagaaaggg cctttatttc caactaggag gataatgcct agtccaggca	1173
atctttctct gtttagcagt cacaggtgag ggtggtatta gcatctttt tatgtagaaa	1233
aaattgagtt aatggggtgg actgggttgg gaagaaatac atttcctaat gtatttatag	1293
aaaataaaaa tattttatg tgccttttta tttttgttgg tggggaggtc attggacaag	1353
ttccaacttt catcttgtgt tcccttcacc ttcatatcct gatcttagag cccccctccc	1413
cctggcaccc accttactgt ttaacctgga tttttttttc tatttaattt ttgtctaata	1413
Congressed according transcription of the contract of the cont	1473
tattagccca gtttatcaat cagttatctt aagtcagcat tttctaagcc attgtttgag	

<210> 157 <211> 1642 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (228)(911)	
<400> 157 aaggateett aattaaatta ateeeeeee eeeeeegag tageggeage ggegaegaeg	60
geggeggeag egetecaaet ggeteetege teegggetee geegtegage egggagagag	120
ceteegeeag eggeeaggea ecageeagae gaegeeageg acceeggeet eteggeggea	180
ccgcgctaac tcaggggctg cataggcacc cagagccgaa ctccaag atg gga ggc Met Gly Gly 1	236
aag ctc agc aag aag aag ggc tac aat gtg aac gac gag aaa gcc Lys Leu Ser Lys Lys Lys Gly Tyr Asn Val Asn Asp Glu Lys Ala 5 10 15	284
aag gag aaa gac aag aag gcc gag ggc gcg gcg	332
acc ccg aag gag agt gag ccc cag gcg gcc gca gag ccc gcc gag gcc Thr Pro Lys Glu Ser Glu Pro Gln Ala Ala Ala Glu Pro Ala Glu Ala 40 45 50	380
aag gag ggc aag gag aag ccc gac cag gac gcc gag ggc aag gcc gag Lys Glu Gly Lys Glu Lys Pro Asp Gln Asp Ala Glu Gly Lys Ala Glu 55 60 65	428
gag aag gag ggc gag aag gac gcg gcg gct gcc aag gag gag gcc ccg Glu Lys Glu Gly Glu Lys Asp Ala Ala Ala Ala Lys Glu Glu Ala Pro 70 75 80	476
aag gcg gag ccc gag aag acg gag ggc gcg gca gag gcc aag gct gag Lys Ala Glu Pro Glu Lys Thr Glu Gly Ala Ala Glu Ala Lys Ala Glu 85 90 95	524
ccc ccg aag gcg ccc gag cag gag cag gcg gc	572
ggc ggc gag gcc ccc aaa gct gct gag gcc gcc gcg gcc ccg gcc gag Gly Gly Glu Ala Pro Lys Ala Ala Glu Ala Ala Ala Ala Pro Ala Glu 120 125 130	620
agc gcg gcc cct gcc gcc ggg gag gag ccc agc aag gag gaa ggg gaa Ser Ala Ala Pro Ala Ala Gly Glu Glu Pro Ser Lys Glu Glu Gly Glu 135 140 145	668

ccc aaa aag act gag gcg ccc gca gct cct gcc gcc cag gag acc aaa Pro Lys Lys Thr Glu Ala Pro Ala Ala Pro Ala Ala Gln Glu Thr Lys 150 155 160	716
agt gac ggg gcc cca gct tca gac tca aaa ccc ggc agc tcg gag gct Ser Asp Gly Ala Pro Ala Ser Asp Ser Lys Pro Gly Ser Ser Glu Ala 165 170 175	764
gcc ccc tct tcc aag gag acc ccc gca gcc acg gaa gcg cct agt tcc Ala Pro Ser Ser Lys Glu Thr Pro Ala Ala Thr Glu Ala Pro Ser Ser 180 185 190 195	812
aca ccc aag gcc cag ggc ccc gca gcc tct gca gaa gag ccc aag ccg Thr Pro Lys Ala Gln Gly Pro Ala Ala Ser Ala Glu Glu Pro Lys Pro 200 205 210	860
gtg gag gcc ccg gca gct aat tcc gac caa acc gta acc gtg aaa gag Val Glu Ala Pro Ala Ala Asn Ser Asp Gln Thr Val Thr Val Lys Glu 215 220 225	908
tga caag gacagcctat aggaaaaaca ataccactta aaacaatctc ctctctctct	965
ctctctctc ctctatctc ctctctatct cctctctct	1025
ctctctctct cctatactaa cttgtttcaa attggaagta atgatatgta ttgcccaagg	1085
aaaaatacag gatgttgtcc catcaaggga gggagggggt gggagaatcc aaatagtatt	1145
tttgtgggga aatatctaat ataccttcag tcaactttac caagaagtcc tggatttcca	1205
agateegegt etgaaagtge agtacategt ttgtacetga aactgeegee acatgeacte	1265
ctccaccgct gagagttgaa tagcttttct tctgcaatgg gagttgggag tgatgcgttt	1325
gattctgccc acagggcctg tgccaaggca atcagatctt tatgagagca gtatttctg	1385
tgttttcttt ttaatttaca gcctttctta ttttgatatt tttttaatgt tgtggatgaa	1445
tgccagcttt cagacagagc ccacttagct tgtccacatg gatctcaatg ccaatcctcc	1505
attetteete teeagatatt tttgggagtg acaaacatte teteateeta ettageetae	
	1565
ctagatttct catgacgagt taatgcatgt ccgtggttgg gtgcacctgt agttctgttt	1565 1625

<220>

<210> 158 <211> 1521

<212> DNA

<213> Homo sapiens

<221> CDS <222> (417)..(1403)

<400> 158 aaggateett aattaaatta ateeeceee ceeee	ccqq cqaqqqqaq qcqqqacccq 60
cgaggagtcg cgccgaggac ggaggccacg atacct	
gggtcaccac cctgggcgac ccggaggtgg cgcctc	
gtgtccccaa gccgggggag caggacttga gcaggc	cacge ggggtcaceg eegggeageg 240
tggaggagcc atctcctgga ggagaaaact cacctg	ggtgg cggaggctcc ccttgtttgt 300
cctcccggag cctggcgtgg ggttcttctg cgggaa	agaga gagtgcgcgc ggagatagca 360
gtgtggaaac gcgcgaggag tcggagggca cgggcgatg ggt ggt ccc ggg acc aag agc ggg gag Met Gly Gly Pro Gly Thr Lys Ser Gly Glu 1 5 10	cct ttg tgt cct ccg tta 464 Pro Leu Cys Pro Pro Leu
ctg tgt aat cag gac aaa gaa acc ttg act Leu Cys Asn Gln Asp Lys Glu Thr Leu Thr 20 25	
cgg atc cag ccg caa agt ctt caa gga gat Arg Ile Gln Pro Gln Ser Leu Gln Gly Asp 35 40	
aaa tta cgc ttc tcc gca caa gac tta gtt Lys Leu Arg Phe Ser Ala Gln Asp Leu Val 50 55	
ttt gct cca gag aat aaa ttg agt acc aca Phe Ala Pro Glu Asn Lys Leu Ser Thr Thr 65 70	
tct tca aac aat gca gtg ata gaa ctg gca Ser Ser Asn Asn Ala Val Ile Glu Leu Ala 85 90	Lys Ser Pro Glu Ser His
gga cat tgg aga gag tgg tat tat ggt gta Gly His Trp Arg Glu Trp Tyr Tyr Gly Val 100 105	
gaa agg tta ttt gtc aat gaa gaa aat gtt Glu Arg Leu Phe Val Asn Glu Glu Asn Val 115 120	
gtc ctg agc tct cca ttc aaa cag tct atg Val Leu Ser Ser Pro Phe Lys Gln Ser Met 130 135	-
att gaa gtt ctt caa gtt act gat aat aag Ile Glu Val Leu Gln Val Thr Asp Asn Lys 145	

ttg caa gaa tgt agt aac tct gat cag cta caa gga aag gag gaa aga Leu Gln Glu Cys Ser Asn Ser Asp Gln Leu Gln Gly Lys Glu Glu Arg 165 170 175	944
gta aat gaa gaa agt cat cta act gaa aag gaa tat ata gaa cat tgt Val Asn Glu Glu Ser His Leu Thr Glu Lys Glu Tyr Ile Glu His Cys 180 185 190	992
aac acc cct aca act gat tct gat tca tct ata gca gtt aaa gca cta Asn Thr Pro Thr Thr Asp Ser Asp Ser Ser Ile Ala Val Lys Ala Leu 195 200 205	1040
caa ata gat agc ttt ggt tta gtt aca tgc ttt caa caa gag tct ctt Gln Ile Asp Ser Phe Gly Leu Val Thr Cys Phe Gln Gln Glu Ser Leu 210 215 220	1088
gat gtt tct caa atg ata ctt gga aaa tct cag caa cct gag tca aaa Asp Val Ser Gln Met Ile Leu Gly Lys Ser Gln Gln Pro Glu Ser Lys 235 230 235 240	1136
atg caa tct gaa ttt ata aaa gaa aaa agt gct act tgt tca aat gag Met Gln Ser Glu Phe Ile Lys Glu Lys Ser Ala Thr Cys Ser Asn Glu 245 250 255	1184
gaa aaa ggt aac tta aac gag tca gta ata act gaa gag aaa gaa aca Glu Lys Gly Asn Leu Asn Glu Ser Val Ile Thr Glu Glu Lys Glu Thr 260 265 270	1232
gat gga gat cac cta tct tca tta ctg aac aaa act acg gtt cac aat Asp Gly Asp His Leu Ser Ser Leu Leu Asn Lys Thr Thr Val His Asn 275 280 285	1280
ata cct gga ttc gac agc ata aaa gaa acc aat atg cag gat ggt agt Ile Pro Gly Phe Asp Ser Ile Lys Glu Thr Asn Met Gln Asp Gly Ser 290 295 300	1328
gtg cag gtc att aaa gat cat gtg acc aat tgt gca ttc agt ttt cag Val Gln Val Ile Lys Asp His Val Thr Asn Cys Ala Phe Ser Phe Gln 305 310 315 320	1376
aat tot ttg ota tat gat ttg gat taa ttota tataattttg gacttttaaa Asn Ser Leu Leu Tyr Asp Leu Asp * 325	1428
tattaaggtt aaaaaatacc tgtatctaaa attgattctg ttaactgttg tcttaaaact	1488
aaaggtatta aagtataaaa ttaaaatttg caa	1521

<220>

<210> 159

<211> 1377

<212> DNA

<213> Homo sapiens

<221> CDS <222> (417)..(1259)

<400> 159 aaggateett aattaaatta ateeceeece ceeceeegg egagggggag gegggaceeg 60 120 cgaggagtcg cgccgaggac ggaggccacg atacctgcgt ggctggggct gcgggctccg 180 gggtcaccac cetgggegac ceggaggtgg cgcctccgcc ggccgcagct ggagaggagc gtgtccccaa gccgggggag caggacttga gcaggcacgc ggggtcaccg ccgggcagcg 240 tggaggagcc atctcctgga ggagaaaact cacctggtgg cggaggctcc ccttgtttgt 300 cctcccggag cctggcgtgg ggttcttctg cgggaagaga gagtgcgcgc ggagatagca 360 gtgtggaaac gcgcgaggag tcggagggca cgggcggcca gcgctcagcc tgcgcc 416 464 atg ggt ggt ccc ggg acc aag agc ggg gag cct ttg tgt cct ccg tta Met Gly Gly Pro Gly Thr Lys Ser Gly Glu Pro Leu Cys Pro Pro Leu ctq tqt aat caq gac aaa gaa acc ttg act ctg ctc att cag gtg cct 512 Leu Cys Asn Gln Asp Lys Glu Thr Leu Thr Leu Leu Ile Gln Val Pro 20 25 cgg atc cag ccg caa agt ctt caa gga gat ttg aat ccc ctc tgg tac 560 Arg Ile Gln Pro Gln Ser Leu Gln Gly Asp Leu Asn Pro Leu Trp Tyr 40 35 aaa tta cgc ttc tcc gca caa gac tta gtt tat tcc ttc ttt ttg caa 608 Lys Leu Arg Phe Ser Ala Gln Asp Leu Val Tyr Ser Phe Phe Leu Gln 50 656 ttt gct cca gag aat aaa ttg agt acc aca gaa cct gtg att agc att Phe Ala Pro Glu Asn Lys Leu Ser Thr Thr Glu Pro Val Ile Ser Ile 75 80 65 70 704 tct tca aac aat gca gtg ata gaa ctg gca aaa tct cca gag agc cat Ser Ser Asn Asn Ala Val Ile Glu Leu Ala Lys Ser Pro Glu Ser His 752 gga cat tgg aga gag tgg tat tat ggt gta aac aac gat tct ttg gag Gly His Trp Arg Glu Trp Tyr Tyr Gly Val Asn Asn Asp Ser Leu Glu 800 ttg caa gaa tgt agt aac tct gat cag cta caa gga aag gag gaa aga Leu Gln Glu Cys Ser Asn Ser Asp Gln Leu Gln Gly Lys Glu Glu Arg 120 848 gta aat gaa gaa agt cat cta act gaa aag gaa tat ata gaa cat tgt Val Asn Glu Glu Ser His Leu Thr Glu Lys Glu Tyr Ile Glu His Cys 130 135 140 896 aac acc cct aca act gat tct gat tca tct ata gca gtt aaa gca cta Asn Thr Pro Thr Thr Asp Ser Asp Ser Ser Ile Ala Val Lys Ala Leu 145 150 160

caa ata gat agc ttt ggt tta gtt aca tgc ttt caa caa gag tct ctt Gln Ile Asp Ser Phe Gly Leu Val Thr Cys Phe Gln Gln Glu Ser Leu 165 170 175	944
gat gtt tct caa atg ata ctt gga aaa tct cag caa cct gag tca aaa Asp Val Ser Gln Met Ile Leu Gly Lys Ser Gln Gln Pro Glu Ser Lys 180 185 190	992
atg caa tct gaa ttt ata aaa gaa aaa agt gct act tgt tca aat gag Met Gln Ser Glu Phe Ile Lys Glu Lys Ser Ala Thr Cys Ser Asn Glu 195 200 205	1040
gaa aaa ggt aac tta aac gag tca gta ata act gaa gag aaa gaa aca Glu Lys Gly Asn Leu Asn Glu Ser Val Ile Thr Glu Glu Lys Glu Thr 210 215 220	1088
gat gga gat cac cta tct tca tta ctg aac aaa act acg gtt cac aat Asp Gly Asp His Leu Ser Ser Leu Leu Asn Lys Thr Thr Val His Asn 225 230 235 240	1136
ata cct gga ttc gac agc ata aaa gaa acc aat atg cag gat ggt agt Ile Pro Gly Phe Asp Ser Ile Lys Glu Thr Asn Met Gln Asp Gly Ser 245 250 255	1184
gtg cag gtc att aaa gat cat gtg acc aat tgt gca ttc agt ttt cag Val Gln Val Ile Lys Asp His Val Thr Asn Cys Ala Phe Ser Phe Gln 260 265 270	1232
aat tot ttg ota tat gat ttg gat taa ttota tataattttg gacttttaaa Asn Ser Leu Leu Tyr Asp Leu Asp * 275 280	1284
tattaaggtt aaaaaatacc tgtatctaaa attgattctg ttaactgttg tcttaaaact	1344
aaaggtatta aagtataaaa ttaaaatttg caa	1377

<210> 160

<211> 1611

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (510)..(1112)

<400> 160

cggccgcgg ggtcggcagc ctggggctcc gctgatctag ggcaacgagc gggggacgct 60
tcgagcccgc agcgagagtg accagcatgg tccctgccgg cagctcgggg ccggagggtt 120
ttgactgcaa ggccagccca cgccgagggt ccaagcatcg ggatatgccg ccagcacctg 180
gctgctgcag caccgcgtg gacatgagcg ctccgccaa cccgacggcg tcagctggcg 240

300 cgcgcgcccg cgaccgacqt gcgcaggcgc ccacgggccg cgcagccgcc attgctctcc 360 tgccacggag gggagcgctt ggtggcagtc cgcgggcccg gacggaaggc tgaggcgacg cctcgacgac agcggaccgg agctgcaggg gcaacacatt cagggcgggg tgccccattt 420 480 aggectgget gaccggagta agaaactaca accccgaag tgccttgcgc ctcaaggtta 533 cggaggcagt gaccacccac cctggagcc atg gtc cac gcc ttc ctc att cac Met Val His Ala Phe Leu Ile His acc ttg agg gcc ccg aat act gag gac acg ggc ctt tgc cga gtg ctg 581 Thr Leu Arg Ala Pro Asn Thr Glu Asp Thr Gly Leu Cys Arg Val Leu 10 15 tac tcc tgc gtc ttc ggt gct gag aag tca cct gat gac cca cgg ccg 629 Tyr Ser Cys Val Phe Gly Ala Glu Lys Ser Pro Asp Asp Pro Arg Pro 25 30 677 cat ggt gcc gag agg gac agg ctt ctc cgg aag gaa cag att tta gct His Gly Ala Glu Arg Asp Arg Leu Leu Arg Lys Glu Gln Ile Leu Ala 725 gtg gcc agg cag gta gag tca atg tgt cgg ctg cag cag cag gca tct Val Ala Arg Gln Val Glu Ser Met Cys Arg Leu Gln Gln Gln Ala Ser 773 ggc cgg ccc ccc atg gac ctg cag ccg caa tcc tca gat gag caa gtg Gly Arg Pro Pro Met Asp Leu Gln Pro Gln Ser Ser Asp Glu Gln Val ccg ctg cac gag gcc cca cgt ggg gct ttc cgc ctg gca gca gag aac 821 Pro Leu His Glu Ala Pro Arg Gly Ala Phe Arg Leu Ala Ala Glu Asn 100 cct ttc cag gag cca cgg acg gtg gtg tgg ctg ggc gtg ctc tcg tta 869 Pro Phe Gln Glu Pro Arg Thr Val Val Trp Leu Gly Val Leu Ser Leu 105 110 115 ggc ttt gcc ctg gtg ctg gat gcc cat gag aac ctg cta ctg gct gag 917 Gly Phe Ala Leu Val Leu Asp Ala His Glu Asn Leu Leu Leu Ala Glu 125 130 ggc acg ctc cgg ctg ctg aca cgc ctc ctc ctt gac cac ctc cgg ctg 965 Gly Thr Leu Arg Leu Leu Thr Arg Leu Leu Leu Asp His Leu Arg Leu 140 150 ctg gcg ccc agc acc agc ctt ctg ctg cgg gct gac cgc att gag ggc 1013 Leu Ala Pro Ser Thr Ser Leu Leu Arg Ala Asp Arg Ile Glu Gly 155 160 165 atc ctc acc cgc ttc ctg cca cat ggt cag ctg ctt ttc ctc aac gac 1061 Ile Leu Thr Arg Phe Leu Pro His Gly Gln Leu Leu Phe Leu Asn Asp 170 175 180 1109 cag ttt gtc caa ggc ctg gag aag gaa ttc agt gcc gct tgg ccc cgc

Gln Phe Val Gln Gly Leu Glu Lys Glu Phe Ser Ala Ala Trp Pro Arg 185 190 195 200	
tga ttcc tcgttgggat ggtgcttctg agggcaggca gagggtagac acacagccag *	1166
atgaagettg geateteest estaceeage agetetgatg tgetgetata eeaggacaag	1226
tgggtgacac aagcctgcag aaagggggct gggcagaggg tggaggaggt cctgcctgtc	1286
ctcaggttag tggaaccaca gaacttcctg agcctagagc tgctgtgtta cttagaccgc	1346
tgccgtgcgg cagccacgct tgtccttgaa cccaccttcc tccatccctg ccagccgata	1406
gtgctagggt gaggagctgc ctggagctca ccccgctctt cttccaaacc cacagccacc	1466
atgcctggcc tcaatctttt cttttaaaca attattccta tattttattg taatgcagtt	1526
aaccgtgttt gtcagattca atactctgtg acccgttaac caagtctctg tatgtttatt	1586
actgcaattc aagtggccct gtatt	1611
<210> 161 <211> 568 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (193)(555) <400> 161	
acggccagtg aattgaattt aggtgacact atagaagagc tatgacgtcg catgcacgcg	60
tacgtaagct tggatcctct agagcggccg cctactacta ctaaattcgc ggccgcgtcg	120
accgccgccg agtcgcgcgg aggcggaggc ttgggtgcgt tcaagattca gcttcacccg	180
taacccaccg cc atg gcc gag gaa ggc att gct gct gga ggt gta atg Met Ala Glu Glu Gly Ile Ala Ala Gly Gly Val Met 1 5 10	228
gac gtt aat act gct tta caa gag gtt ctg aag act gcc ctc atc cac Asp Val Asn Thr Ala Leu Gln Glu Val Leu Lys Thr Ala Leu Ile His 15 20 25	276
gat ggc cta gca cgt gga att cgc gaa gct gcc aaa gcc tta gac aag Asp Gly Leu Ala Arg Gly Ile Arg Glu Ala Ala Lys Ala Leu Asp Lys 30 35 40	324
cgc caa gcc cat ctt tgt gtg ctt gca tcc aac tgt gat gag cct atg Arg Gln Ala His Leu Cys Val Leu Ala Ser Asn Cys Asp Glu Pro Met 45 50 55 60	372

tat gtc aag ttg gtg gag gcc ctt tgt gct gaa cac caa atc aac cta Tyr Val Lys Leu Val Glu Ala Leu Cys Ala Glu His Gln Ile Asn Leu 65 70 75	420
att aag gtt gat gac aac aag aaa cta gga gaa tgg gta ggc ctt tgt Ile Lys Val Asp Asp Asn Lys Lys Leu Gly Glu Trp Val Gly Leu Cys 80 85 90	468
aaa att gac aga gag ggg tgt att gcg gcc gct cta gag gat cca agc Lys Ile Asp Arg Glu Gly Cys Ile Ala Ala Ala Leu Glu Asp Pro Ser 95 100 105	516
tta cgt acg cgt gca tgc gac gtc ata gct ctt cta tag tgtcacctaa Leu Arg Thr Arg Ala Cys Asp Val Ile Ala Leu Leu * 110 115 120	565
att	568
<210> 162	
<211> 1837 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS <222> (784)(1473)	
<400> 162 attctagaac acattatcac ctttttaaat aagcaaaatg atgatcccag gttaaaaaaac	60
	60 120
attctagaac acattatcac ctttttaaat aagcaaaatg atgatcccag gttaaaaaac	
attctagaac acattatcac ctttttaaat aagcaaaatg atgatcccag gttaaaaaac cttggtaaaa actggttctt aagaacccca agttcgccaa aagaaggttc aagctaataa	120
attotagaac acattatcac ctttttaaat aagcaaaatg atgatcccag gttaaaaaac cttggtaaaa actggttctt aagaacccca agttcgccaa aagaaggttc aagctaataa aggaaacttc tggttaccaa ttccatctgc ctccttctca gtgactcctg acgagctgct	120 180
attotagaac acattatcac ctttttaaat aagcaaaatg atgatcccag gttaaaaaac cttggtaaaa actggttctt aagaacccca agttcgccaa aagaaggttc aagctaataa aggaaacttc tggttaccaa ttccatctgc ctccttctca gtgactcctg acgagctgct catttacaca cacctgctcc cacccccacc ccacagtctg gattgcgaaa cctaccgcac	120 180 240
attetagaac acattateac ettittaaat aageaaaatg atgateecag gitaaaaaac ettiggtaaaa actggitett aagaaceeca agitegeeaa aagaaggite aagetaataa aggaaacite tggitaecaa iteeateige eteetietea gigaeteetg aegagetget eatitaeaca eaceigetee eaceeceace ecacagietg gaitgegaaa eetaeegeac eccaceeca gigeaggaag aaggigaece itggietiggg itggggaeaga gagietiggga	120 180 240 300
attetagaac acattateac ettittaaat aageaaaatg atgateecag gitaaaaaac ettiggtaaaa actggitett aagaaceeca agitegeeaa aagaaggite aagetaataa aggaaacite tggitaecaa ticeatetge eteetietea gigaeteetg aegagetget eatitaeaca eacetgetee eaceeceace ecacagietg gatigegaaa ectaeegeac eccaeeceea gigeaggaag aaggigaece tggietgggg tggggaeaga gagietggga ggggggggg getggeagte teggiggetg gegaegeete tieegetett eetieetggg	120 180 240 300 360
attotagaac acattateac ettittaaat aageaaaatg atgateecag gitaaaaaac ettiggitaaaa actggitett aagaaceeca agitegeeaa aagaaggite aagetaataa aggaaacite tiggitaecaa tiecatetge eteettetea gitgaeteetg aegagetget eatitaeaca eacetgetee eaceeceace ecacagietg gatigegaaa eetaeegeac eceaceeca gigeaggaag aaggigaece tiggitetgggg tiggigaeaga gagietiggga giggiggiggiggiggiggiggiggiggiggiggiggig	120 180 240 300 360 420
attetagaac acattateac ettittaaat aageaaaatg atgateecag gitaaaaaac ettiggtaaaa actggitett aagaaceeca agitegeeaa aagaaggite aagetaataa aggaaacite tiggitaecaa tiecatetge eteettetea gitgaeteetg aegagetget eatitaeaca eacetgetee eaceeceace eeacagietg gatigegaaa eetaeegeac eecaeeceea gigeaggaag aaggigaeee tiggitetgggg tiggigaeaga gagietiggga giggiggiggiggiggiggiggiggiggiggiggiggig	120 180 240 300 360 420 480
attctagaac acattatcac ctttttaaat aagcaaaatg atgatcccag gttaaaaaac cttggtaaaa actggttctt aagaacccca agttcgccaa aagaaggttc aagctaataa aggaaacttc tggttaccaa ttccatctgc ctccttctca gtgactcctg acgagctgct catttacaca cacctgctcc cacccccacc ccacagtctg gattgcgaaa cctaccgcac cccaccccca gtgcaggaag aaggtgaccc tggtctgggg tggggacaga gagtctggga gggggtggtg gctggcagtc tcggtggctg gcgacgcctc ttccgctctt ccttcctggg aggaggcggg caaggcgaag cctctccgct cagtcgatgg tttccttcag gacgtctcat agaggtgtgg gtgagatccc aggtctgggc cgcaatttct agccacgctg cccaaccttc aggcaagcag tcaggttcca cagctacccc accacctct cagagtcgag gggaacaaga	120 180 240 300 360 420 480 540

ggcaagtgag agccggacgg gcactgggcg actctgtgcc tcgctgagga aaaataacta

aac	Me				y Ası						g Gl				a tca Ser 15	828
														aag Lys 30		876
	_	-		-								_	_	tca Ser		924
		_		-		-							_	gat Asp	-	972
														tat Tyr		1020
							-	_			_			gca Ala		1068
_				_	_									cgc Arg 110		1116
														gcg Ala		1164
														cag Gln		1212
	_	_	_	_		_	_	_	-			_	_	gat Asp		1260
-	_		_	_			-		_		_			gga Gly		1308
-	_	_	_		_			-	_	-			-	gat Asp 190		1356
-	-													gaa Glu		1404
~	_	_	_	_	_	-	_	_		_	_	-		gcg Ala		1452

ttt ttt ttt tct tgt cta taa ag catttaaccc ccctgttaca caactcactc Phe Phe Phe Ser Cys Leu * 225 230	1505
cttttaaaga aaaaaattga aatgtaaggc tgtgtaagat ttgtttttaa actgtacagt	1565
gtcttttttt gtatagttaa cacactaccg aatgtgtctt tagatagccc tgtcctggtg	1625
gtattttcaa tagccactaa ccttgcctgg tacagtatgg gggttgtaaa ttggcatgga	1685
aatttaaagc aggttcttgt tggtgcacag cacaaattag ttatatatgg ggatggtagt	1745
tttttcatct tcagttgtct ctgatgcagc ttatacgaaa taattgttgt tctgttaact	1805
gaataccact ctgtaattgc aaaaaaaaaa aa	1837
<210> 163 <211> 1454 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (269)(718)	
<400> 163 ccaccttggt ccggtttatt tcagtttaat ggttatgtaa caacggtccg tctctcctac	60
caaccggtac cccgcccacg ccagcagcca cgggtcgcca gcgcacgca gcggaggcgg	120
gcggcatggc tggcccaagg tgcgcaggcg cactagccct gggggtgctt ccgtgtctgc	180
gccctgagac atttttggcg ccggccccag cctgagcggg gacggcggcc gggagggcgc	240
ggcccgggtt cccgttcccc gcggagcc atg cgg tac aac gag aag gag ctg Met Arg Tyr Asn Glu Lys Glu Leu 1 5	292
cag gct ctg tcc cgg cag ccg gcc gag atg gcg gcc gag ctg ggc atg Gln Ala Leu Ser Arg Gln Pro Ala Glu Met Ala Ala Glu Leu Gly Met 10 15 20	340
agg ggc ccc aag aag ggc agc gtg ctg aag cgg cgg ctg gtg aag ctg Arg Gly Pro Lys Lys Gly Ser Val Leu Lys Arg Arg Leu Val Lys Leu 25 30 35 40	388
gtg gtg aat ttc ctc ttc tac ttt cgg aca gac gag gcc gag ccc gtc Val Val Asn Phe Leu Phe Tyr Phe Arg Thr Asp Glu Ala Glu Pro Val 45 50 55	436
gga gcc ctg ctg ctg gag cgc tgc aga gtc gtc cgg gaa gag ccc ggc	

acc ttc tcc atc agc ttc att gag gac cct gag agg aag tat cac ttt Thr Phe Ser Ile Ser Phe Ile Glu Asp Pro Glu Arg Lys Tyr His Phe 75 80 85	532
gag tgc agc gag gag cag tgt cag gag tgg atg gag gct ctg cgt Glu Cys Ser Ser Glu Glu Gln Cys Gln Glu Trp Met Glu Ala Leu Arg 90 95 100	580
cgg gcc agc tac gag ttc atg cgg aga agc ctc atc ttc tac agg aac Arg Ala Ser Tyr Glu Phe Met Arg Arg Ser Leu Ile Phe Tyr Arg Asn 105 110 115 120	628
gaa atc cgg aag gtg acg ggc aag gac ccc ctg gaa cag ttc ggc ata Glu Ile Arg Lys Val Thr Gly Lys Asp Pro Leu Glu Gln Phe Gly Ile 125 130 135	676
tcc gag gag gcc agg ttc cag ctg agt ggc ttg cag gcg tga gcgcagg Ser Glu Glu Ala Arg Phe Gln Leu Ser Gly Leu Gln Ala * 140 145 150	725
gcacggtggt cagcgtgcag cgggacggga ctggccctgc ccagccatga atcgcttggc	785
catgcctgga tctgttttgt tttggttttt ggtttttggg tcagggtttc actgtgttgc	845
ccaggctaga gtgcagtggt gccacagctc actgtgacct tgaccttctg gactcaagtg	905
atcctcctgc ctcagcttcc caagtagcgg ggatcacagg catgagccgc cacacccggc	965
catcacacct ggattttcag tgggaggttt ttggtttgga gacatccaaa gcctgaagcc	1025
aggtgggtgt gggcaggggc tgcattttat gaaactgccc agcaagctgc gctccctggg	1085
gccccaggat ccacctaact ggcctggcac ctggtgccac gtgctgctgc cgccaggata	1145
tgcgccttcc cacaggtgcc ctgcctgagt tgtgtgcatc caggggcctg gtgagcccc	1205
aggetggtgg catggeecee etgeecegtg etgaatgaat gtacagagee agacaaaget	1265
gtgaatggcc taggggctga gtcccacacc agctgtgaat tctcctgcag acaggagggc	1325
cctggctgtg cacctgggga agtggttgcc ctggggccag ggtgcttgtt ctgttcaaat	1385
aaaggtacct cttttccaaa aaaaaaata aaaatgtatt tttatttcgg gggccggagg	1445
cttattctt	1454

<210> 164 <211> 1162 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (9)..(917)

<pre><400> 164 acggcgcg atg gcg gcg gct gcc gcc gag acc ccc gaa gtc ctt cgg gaa</pre>											
tgc ggt tgc aa Cys Gly Cys Ly 15											
ggc agt gac co Gly Ser Asp Pr					g Phe						
att tac tgc tc Ile Tyr Cys Se 5	-										
ttt gag ggc tg Phe Glu Gly Tr 65											
ttt gtg acc cg Phe Val Thr Ar 80				g Leu Met Asp	=						
gac ccc tgg aa Asp Pro Trp Ly 95											
ccc aaa gtc aa Pro Lys Val As					e Cys						
ggc ctc ccc ag Gly Leu Pro Se 13	er Phe Ser										
ccg ggg ctg ga Pro Gly Leu Gl 145											
tgc ccc gag cg Cys Pro Glu Ar 160	g Gly Ser	-	-	u Asp Asp Ala							
ctg tgg ggg ga Leu Trp Gly Gl 175											
ctg tcc atg tg Leu Ser Met Cy					Ala						
ccg tcg gct gc Pro Ser Ala Al 21	a Pro Glu										

cgg tcg gtg cta tgc cag gag gtg gag gtg gcc atc ccc tta ccc gcc Arg Ser Val Leu Cys Gln Glu Val Glu Val Ala Ile Pro Leu Pro Ala 225 230 235	722
cgc tcc ctg ctg gtc ctc acc ggg gcg gca cgg cac cag tgg aag cat Arg Ser Leu Leu Val Leu Thr Gly Ala Ala Arg His Gln Trp Lys His 240 245 250	770
gcc atc cac cgc aga cac atc gag gcc cgc cgc gtc tgc gtc act ttc Ala Ile His Arg Arg His Ile Glu Ala Arg Arg Val Cys Val Thr Phe 255 260 265 270	818
cgg gag ctg tcg gct gag ttt ggc cct gga ggg agg cag caa gag ctg Arg Glu Leu Ser Ala Glu Phe Gly Pro Gly Gly Arg Gln Gln Glu Leu 275 280 285	866
ggc cag gaa ctg ctg cgg atc gcc ctc tcc ttc cag gga aga ccc gtg Gly Gln Glu Leu Leu Arg Ile Ala Leu Ser Phe Gln Gly Arg Pro Val 290 295 300	914
tga accg cctccttggc tccagacttg actgatcccg ggattgaaat gaggagcaca *	971
gaacagggcc tcctgcaact cacggggttt caagagaaga tggctgaccc ctgatgctgt	1031
gagcagtgtg agccctgccc aggagcaggt tttgatggga acgtacctcc aggcagcccc	1091
cttccacctg gaccgtggcc acactttttt ggttatttag tttgtcacag tcttggggac	1151
atgggatcat t	1162
<210> 165 <211> 1018 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (40)(747)	
<pre><400> 165 getcactctt ggegeetteg eggaaggtge gteegagee atg gee get gee aac</pre>	54
ccg tgg gac ccg gcg tcc gcg cct aac ggc gct ggg cta gtg cta ggc Pro Trp Asp Pro Ala Ser Ala Pro Asn Gly Ala Gly Leu Val Leu Gly 10 15 20	102
cac ttc ata gct tcg ggg atg gtc aat cag gag atg tta aac atg tct His Phe Ile Ala Ser Gly Met Val Asn Gln Glu Met Leu Asn Met Ser 25 30 35	150

_					tgt Cys											-	198
					gaa Glu								_	_		2	246
					gat Asp 75											2	294
_	_	_	_		act Thr	_		-	_				_	-		3	342
	_			_	aga Arg					-						;	390
-	_	-			cct Pro		-	_	-			-		_	_	2	438
	_	_		_	gct Ala						_		-			2	486
	-			_	aat Asn 155					_	-			-		Ţ	534
-		_	_		gca Ala	_	-	-		_					_		582
_	_	_	-		ata Ile											•	530
_		_			aaa Lys			_	•	_	_					(678
					cct Pro											•	726
		att Ile		_	aag Lys 235	tag *	tc a	atcaa	actt	ta tt	ctttg	gctta	a att	tatgt	igta		779
gtca	atato	gaa g	gtcta	attto	ct ag	gttga	actgt	c aac	catgo	ggta	ttaa	atagt	ct t	tgct	gctgg	{	339
taa	tacto	gaa a	agaad	cctgo	et tt	tatat	tgga	a gta	atcaa	agat	ctca	aggtt	ca t	ttaag	gaccaa	8	399

ctaaaaaata gccatgacaa tttattaata taagtgaatt aaccattaaa aaaaaaaaa 1018 <210> 166 <211> 925 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (40)..(654) <400> 166 gctcactctt ggcgccttcg cggaaggtgc gtccgagcc atg gcc gct gcc aac 54 Met Ala Ala Ala Asn ccg tgg gac ccg gcg tcc gcg cct aac ggc gct ggg cta gtg cta ggc 102 Pro Trp Asp Pro Ala Ser Ala Pro Asn Gly Ala Gly Leu Val Leu Gly 15 10 cac ttc ata gct tcg ggg atg gtc aat cag aaa aac ctg gaa att gaa 150 His Phe Ile Ala Ser Gly Met Val Asn Gln Lys Asn Leu Glu Ile Glu 25 30 ctc ctg aaa cta gaa aaa gat aca gca gat gtt gtt cat cct ttc ttt 198 Leu Leu Lys Leu Glu Lys Asp Thr Ala Asp Val Val His Pro Phe Phe 40 45 ttg gct cag aag tgt cat act ctg caa agc atg aat aat cat ttg gaa 246 Leu Ala Gln Lys Cys His Thr Leu Gln Ser Met Asn Asn His Leu Glu 55 60 294 gca gtg ctg aaa gag aag aga tcc ctt agg caa aga ctg ttg aaa ccc Ala Val Leu Lys Glu Lys Arg Ser Leu Arg Gln Arg Leu Leu Lys Pro 70 75 atg tgc cag gaa aac tta cct att gaa gct gtt tat cac aga tat atg 342 Met Cys Gln Glu Asn Leu Pro Ile Glu Ala Val Tyr His Arg Tyr Met 90 95 gta cat ttg ctg gag ttg gct gtg act ttc att gag aga tta gaa acc 390 Val His Leu Leu Glu Leu Ala Val Thr Phe Ile Glu Arg Leu Glu Thr 105 110 cac ctt gaa aca att aga aat att cct cat tta gct gca aat cta aag 438 His Leu Glu Thr Ile Arg Asn Ile Pro His Leu Ala Ala Asn Leu Lys 120 125 130 486 aaa atg aac cag gct tta gca aag atg gat ata ttg gtg act gag aca Lys Met Asn Gln Ala Leu Ala Lys Met Asp Ile Leu Val Thr Glu Thr 135 140 145

actgactttt cctttgtttt tcatatattt ttattctacc tttcagtaaa actagagaag

gaa gaa ctg gca gag aat ata ctc aag tgg cgt aaa caa caa aac gaa Glu Glu Leu Ala Glu Asn Ile Leu Lys Trp Arg Lys Gln Gln Asn Glu 150 165	534
gtt tcg tct tgt atc ccc aaa ata tta gct gaa gaa agt tat ctt tat Val Ser Ser Cys Ile Pro Lys Ile Leu Ala Glu Glu Ser Tyr Leu Tyr 170 175 180	582
aaa cat gat att ata atg cct cct tta cct ttt act tct aaa gtt cat Lys His Asp Ile Ile Met Pro Pro Leu Pro Phe Thr Ser Lys Val His 185 190 195	630
gtc caa act att aat gcc aag tag tcatcaactt tatttttgct taattatgtg Val Gln Thr Ile Asn Ala Lys * 200 205	684
tagtcatatg aagtctattt ctagttgact gtaacatggg tattaatagt ctttgctgct	744
ggtaatactg aaagaacctg ctttatattg gagtatcaag atctcaggtt cattaagacc	804
aaactgactt ttcctttgtt tttcatatat ttttattcta cctttcagta aaactagaga	864
agctaaaaaa tagccatgac aatttattaa tataagtgaa ttaaccatta aaaaaaaaaa	924
a	925
<210> 167 <211> 1058 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (190)(828) <400> 167	
gctcagcttt agattctccc tgtactggaa agggatgtcg caaggttggg gacgaaacct	60
ctgagtttgc gaccgtagct gtcgctttcc ggccaacaca gaggtgcctg aaggctggtt	120
ggggtggtga ggcccgaggc agctcttgtt cagcttctgg aatttctgag cagccctcgt	180
cagtacaag atg gac ccc gta gtc ttg agt tac atg gac agt cta ctg Met Asp Pro Val Val Leu Ser Tyr Met Asp Ser Leu Leu 1 5 10	228
cgg caa tca gat gtc tca cta ttg gat ccg cca agc tgg ctc aat gac Arg Gln Ser Asp Val Ser Leu Leu Asp Pro Pro Ser Trp Leu Asn Asp 15 20 25	276
cat att att ggg ttt gcg ttt gag tac ttt gcc aac agt cag ttt cat His Ile Ile Gly Phe Ala Phe Glu Tyr Phe Ala Asn Ser Gln Phe His 30 35 40 45	324

gac tgc tct gat cac gtc agt ttc atc agc cct gaa gtc acc cag ttc Asp Cys Ser Asp His Val Ser Phe Ile Ser Pro Glu Val Thr Gln Phe 50 55 60	372
atc aag tgc act agc aac cca gca gag att gcc atg ttc ctt gaa cca Ile Lys Cys Thr Ser Asn Pro Ala Glu Ile Ala Met Phe Leu Glu Pro 65 70 75	420
ctg gac ctc ccc aac aag aga gtt gta ttt tta gcc atc aat gat aac Leu Asp Leu Pro Asn Lys Arg Val Val Phe Leu Ala Ile Asn Asp Asn 80 85 90	468
tcc aac cag gca gct gga gga acc cac tgg agt tta ttg gtc tac ctc Ser Asn Gln Ala Ala Gly Gly Thr His Trp Ser Leu Leu Val Tyr Leu 95 100 105	516
caa gat aaa aat agc ttt ttt cat tat gat tcc cat agc agg agc aac Gln Asp Lys Asn Ser Phe Phe His Tyr Asp Ser His Ser Arg Ser Asn 110 125	564
tca gtt cac gca aag cag gta gca gag aaa ctg gag gct ttc tta ggc Ser Val His Ala Lys Gln Val Ala Glu Lys Leu Glu Ala Phe Leu Gly 130 135 140	612
aga aaa gga gac aaa ctg gcc ttt gtg gaa gag aaa gcc cct gcc caa Arg Lys Gly Asp Lys Leu Ala Phe Val Glu Glu Lys Ala Pro Ala Gln 145 150 155	660
caa aac agc tat gac tgt ggg atg tac gtg ata tgt aac act gag gcc Gln Asn Ser Tyr Asp Cys Gly Met Tyr Val Ile Cys Asn Thr Glu Ala 160 165 170	708
ttg tgt cag aac ttc ttt agg caa cag aca gaa tca ctg ctg cag cta Leu Cys Gln Asn Phe Phe Arg Gln Gln Thr Glu Ser Leu Leu Gln Leu 175 180 185	756
ctc acc cct gca tac atc aca aag aag agg gga gaa tgg aaa gat ctc Leu Thr Pro Ala Tyr Ile Thr Lys Lys Arg Gly Glu Trp Lys Asp Leu 190 195 200 205	804
att gcc aca ctt gct aaa aag tag ctattgaagt atatttgcga cttttgaagg Ile Ala Thr Leu Ala Lys Lys * 210	858
ctcctctttc tgcccttccc catttgttgg atggctgcaa tctcagtgcc tgagggaaga	918
tgcctagtag aggaaagctt aatactcttt ttcctgaaag aatatcatcc tctgcattat	978
ccccatggaa cgtttcactt taaccctgac tggggagcaa tatgttctgt gaaaatatct	1038
tgaaattgta caccaaaacc	1058

<210> 168 <211> 7643

<212> DNA <213> Homo sapiens																
	<220> <221> CDS <222> (99)(5618)															
gcc	<400> 168 gccgctcctg cactgcgccg gccctgagcg gacctgtggc tcggactatc tattacatcg															60
cag	cagcegaget ggteeggetg gtggggtetg tggaetee atg aag eee gtg ete Met Lys Pro Val Leu 1 5															113
_	tcc Ser				_		-									161
	gaa Glu	-				_						_				209
	tgt Cys	_	_	-												257
_	tca Ser 55					_										305
	gat Asp		_		_	_	_									353
	gca Ala		-													401
	agc Ser															449
_	cgc Arg				_	_	_		-							497
	gag Glu 135															545
	gaa Glu															593
	atc Ile															641

ttg g Leu G																689
ctc a Leu L																737
ttg g Leu G 2	_				_	_	_		_	_		_	_	_		785
acg g Thr V 230	-				_					_		_	-	-		833
aca a Thr A																881
gac c Asp G		_					_		_		_	_	_			929
atg g Met A	la	_	_	_	_	_				_			_			977
tcg g Ser A 2																1025
cta g Leu G 310	-				_	_		_	_	_				_	_	1073
aag a Lys A		-			-	-			-							1121
ctg g Leu G								_	_				_			1169
gtg g Val A	4sp		-	_	_			-				_			_	1217
atg c Met H 3						_			_	_		-		_	-	1265
ctg a Leu M 390	_		-	_	-				_	_		_	_	_		1313

						cac His										13	361
-					_	aag Lys	_		_	_	_		_		_	14	109
						tct Ser										14	157
						atg Met 460										15	505
	-	_		_		ccc Pro				_	_		-		_	15	553
			-	-	-	att Ile			_	_	-	_	_	_	_	16	501
						cag Gln	-	-	-			-			-	16	549
						cgc Arg										16	597
						acc Thr 540										17	745
						att Ile										17	793
		_			-	gcc Ala		_	_	_		_		_		18	341
						tgc Cys										18	889
	-		-	_	_	gca Ala	-	_		_	_					19	37
						gaa Glu 620										19	85
cta	aaa	gtg	gag	cag	aaa	ctg	gag	cag	att	aaa	aag	gtg	cag	aaa	gtg	20	33

Leu 630	Lys	Val	Glu	Gln	Lys 635	Leu	Glu	Gln	Ile	Gly 640	Lys	Val	Gln	Gly	Val 645	
	_				cac His	_	_	_	_		_					2081
-					agc Ser											2129
		•	_		gtg Val			_						_	_	2177
	_	_	_		cct Pro	_			_	_		_	_	-		2225
	_	_			ctt Leu 715		-			_			_			2273
					cag Gln											2321
_		_			cag Gln	_		-		-		_				2369
_		_		-	ggc Gly		_		-	-		-	_		_	2417
					ctc Leu		_		_	_				_	_	2465
					aac Asn 795											2513
_	_		-	-	cag Gln		-					_		_		2561
_	-			_	gca Ala	_			-							2609
_		-	-		cac His	_		-	-			-	-	-		2657
			-		gca Ala			_				_	-	_		2705

860 865 855 age ctt gtg gcc cca cac ctg gtg gag gct gct tgc cat aag gaa aga 2753 Ser Leu Val Ala Pro His Leu Val Glu Ala Ala Cys His Lys Glu Arg 875 cat gtg tct cag aag gct gtt tcc ttc atc cat gac ata ctg aca gaa 2801 His Val Ser Gln Lys Ala Val Ser Phe Ile His Asp Ile Leu Thr Glu 890 895 gtc ctc act gac tgg aat gag cca cct cat ttt cac ttc aat gaa gca 2849 Val Leu Thr Asp Trp Asn Glu Pro Pro His Phe His Phe Asn Glu Ala 905 910 915 ctc ttc cga cct ttc gag cgc att atg cag ctg gaa ttg tgt gat gag 2897 Leu Phe Arg Pro Phe Glu Arg Ile Met Gln Leu Glu Leu Cys Asp Glu 920 925 gac gtc caa gac cag gtt gtc aca tcc att ggt gag ctg gtt gaa gtg 2945 Asp Val Gln Asp Gln Val Val Thr Ser Ile Gly Glu Leu Val Glu Val 935 tgt tcc acg cag atc cag tcg gga tgg aga ccc ttg ttc agt gcc ctg 2993 Cys Ser Thr Gln Ile Gln Ser Gly Trp Arg Pro Leu Phe Ser Ala Leu 950 955 960 3041 gaa aca gtg cat ggc ggg aac aag tca gag atg aag gag tac ctg gtt Glu Thr Val His Gly Gly Asn Lys Ser Glu Met Lys Glu Tyr Leu Val 970 975 3089 ggt gac tac tcc atg gga aaa ggc caa gct cca gtg ttt gat gta ttt Gly Asp Tyr Ser Met Gly Lys Gly Gln Ala Pro Val Phe Asp Val Phe 985 990 3137 gaa gct ttt ctc aat act gac aac atc cag gtc ttt gct aat gca gcc Glu Ala Phe Leu Asn Thr Asp Asn Ile Gln Val Phe Ala Asn Ala Ala 1000 1005 1010 3185 act agc tac atc atg tgc ctt atg aag ttt gcc aaa ggg ctg ggg gag Thr Ser Tyr Ile Met Cys Leu Met Lys Phe Ala Lys Gly Leu Gly Glu 1015 1020 gtg gac tgt aaa gag att gga gac tgt gcc cca gca ccc gga gcc ccg 3233 Val Asp Cys Lys Glu Ile Gly Asp Cys Ala Pro Ala Pro Gly Ala Pro 1030 1035 3281 tcc aca gac ctg tgc ctc ccg gcc ctg gat tac ctc agg cgc tgc tct Ser Thr Asp Leu Cys Leu Pro Ala Leu Asp Tyr Leu Arg Arg Cys Ser 1050 1055 cag tta ttg gcc aaa atc tac aaa atg ccc ttg aag cca ata ttc ctt 3329 Gln Leu Leu Ala Lys Ile Tyr Lys Met Pro Leu Lys Pro Ile Phe Leu 1065 1070 3377 agt ggg aga ctt gcc ggc ttg cct cga aga ctt cag gaa cag tca gcc Ser Gly Arg Leu Ala Gly Leu Pro Arg Arg Leu Gln Glu Gln Ser Ala

1085

agc agt gag gat gga att gaa tca gtc ctg tct gat Ser Ser Glu Asp Gly Ile Glu Ser Val Leu Ser Asp 1095 1100 1105	
acc ggt ctg ata gaa gtc tgg ata atc ctg ctg gag Thr Gly Leu Ile Glu Val Trp Ile Ile Leu Leu Glu 1110 1115 1120	0 0
gct gtg tcc aat tgt cca cgg cag cac caa cca cca Ala Val Ser Asn Cys Pro Arg Gln His Gln Pro Pro 1130	
ctc ttt gag ctg ttg aga gat gtg acg aaa aca cca Leu Phe Glu Leu Leu Arg Asp Val Thr Lys Thr Pro 1145 1150	
ggt atc tat gca gtg gtt cac ctc ctc ctt cct gtg Gly Ile Tyr Ala Val Val His Leu Leu Leu Pro Val 1160 1165 1	
ctc cgc cgg agc cat aaa gac cat tcc tac tgg gat Leu Arg Arg Ser His Lys Asp His Ser Tyr Trp Asp 1175 1180 1185	
aat ttc aag cac gct att ggt ctg tcc tgt gag ctg Asn Phe Lys His Ala Ile Gly Leu Ser Cys Glu Leu 1190 1195 1200	
att caa agc ttt cta cat tca gat atc agg tac gag Ile Gln Ser Phe Leu His Ser Asp Ile Arg Tyr Glu 1210 1215	-
acc atg ctg aag gac ctc ttt gag ttg ctg gtc gcc Thr Met Leu Lys Asp Leu Phe Glu Leu Leu Val Ala 1225 1230	
ccc act gaa acc atc tcc aga gtg ggc tgc tcc tgt Pro Thr Glu Thr Ile Ser Arg Val Gly Cys Ser Cys 1240 1245 1	-
ctt gtg aca gcg ggc cct gtg ttc act gag gag atg Leu Val Thr Ala Gly Pro Val Phe Thr Glu Glu Met 1255 1260 1265	
tgc tgt gcc ctg caa gat gcg ttc tct gcc aca ctc Cys Cys Ala Leu Gln Asp Ala Phe Ser Ala Thr Leu 1270 1275 1280	
gac ctg ctg ggc tgc ttc cac agc ggc acg gag agc Asp Leu Leu Gly Cys Phe His Ser Gly Thr Glu Ser 1290 1295	
ggc tgc cag gtg cga gtg gcg gcc ccg tcc tcc tcc Gly Cys Gln Val Arg Val Ala Ala Pro Ser Ser 1305	

	gag Glu					Arg					Gln					4097
Asp	acc Thr 1335	_	_		Pro	_				Asn		_		_	_	4145
	tgc Cys	_		Ile			_		Pro	_	_			Asn		4193
	acc Thr	_	Lys	_				Arg	-				Ser	_	_	4241
	cat His	Gln				-	Asn			_		Leu		-	-	4289
	gtc Val					Pro					Thr					4337
Glu	gcc Ala 1415				Gly					Ile						4385
	gtc Val			Asp					Ser					Arg		4433
	gac Asp		Ser			_	_	Cys	_	_	_		Val			4481
	ggg Gly	Gly					Tyr					Met				4529
	tat Tyr					Val					Thr					4577
Ile	acg Thr 1495	_			Val	_	_	-		Phe		_	-		_	4625
_	acg Thr	_		Ser	_	_	_		Ser		_	_	_	Ile		4673
	gaa Glu		Ala					Pro					Lys			4721
tgg	cgg	gca	cgg	atg	ccc	ttg	ctc	agc	gtc	cag	cct	gtc	agc	aac	gca	4769

Trp	Arg		Arg 1545	Met	Pro	Leu		Ser 1550	Val	Gln	Pro		Ser L555	Asn	Ala	
	tgg Trp					Lys					Leu					4817
Сув	aac Asn 1575				Gln	_		_	_	Leu			_	_		4865
	cct Pro			Phe					Phe					Ser		4913
-	tcc Ser		Ser					Thr					Gly		-	4961
	cct Pro	Ser		-	-	-	Ser	_				His	_			5009
	ctg Leu	_	_	_	-	Gly			-	_	Leu	_			_	5057
Pro	aaa Lys 1655				Lys					Lys						5105
	gcg Ala			Lys				_	Āla	-	-	_		Ile		5153
_	ttg Leu	_	Thr	_			_	Arg		_	_		Asn	_		5201
	ttc Phe	Pro					Val					Glu				5249
	agg Arg		-	-		Pro	_		-	_	Pro	_		_		5297
Asp	caa Gln 1735			_	Arg				_	Āla				_	_	5345
_	cag Gln		-	Arg		_			Ser			_		Leu	_	5393
	tcg Ser															5441

1770 1775 1780

gtg cta aca gtt ctc aat cag att cag att ctc cca gac cag acc ttc Val Leu Thr Val Leu Asn Gln Ile Gln Ile Leu Pro Asp Gln Thr Phe 1785 1790 1795	5489
acg gcc ctc cag ccc gca gtg ttc ccg tgc atc agt cag ctg acc tgt Thr Ala Leu Gln Pro Ala Val Phe Pro Cys Ile Ser Gln Leu Thr Cys 1800 1805 1810	5537
cac gtg acc gac atc aga gtt cgc cag gct gtg agg gag tgg ctg ggc His Val Thr Asp Ile Arg Val Arg Gln Ala Val Arg Glu Trp Leu Gly 1815 1820 1825	5585
agg gtg ggc cgt gtc tat gac atc att gtg tag ccgactcc tgttctactc Arg Val Gly Arg Val Tyr Asp Ile Ile Val * 1830 1835 1840	5636
tcccaccaaa taacagtagt gagggttaga gtcctgccaa tacagctgtt gcattttccc	5696
caccactage eccaettaaa etaetaetae tgteteagag aacagtgttt ectaatgtaa	5756
aaagcctttc caaccactga tcagcattgg ggccatacta aggtttgtat ctagatgaca	5816
caaacgatat totgattttg cacattatta tagaagaato tataatoott gatatgttto	5876
taactcttga agtatatttc ccagtgcttt tgcttacagt gttgtcccca aatgggtcat	5936
tttcaaggat tactcatttg aaaacactat attgatccat ttgatccatc atttaaaaaa	5996
taaatacaat tootaaggoa atatotgotg gtaagtoaag otgataaaca otcagacato	6056
tagtaccagg gattattaat tggaggaaga tttatggtta tgggtctggc tgggaagaag	6116
acaactataa atacatatto ttgggtgtca taatcaagaa agaggtgact tctgttgtaa	6176
aataatccag aacacttcaa aattattcct aaatcattaa gattttcagg tattcaccaa	6236
tttccccatg taaggtactg tgttgtacct ttatttctgt atttctaaaa gaagaaagtt	6296
ctttcctagc agggtttgaa gtctgtggct tatcagcctg tgacacagag tacccagtga	6356
aagtggctgg tacgtagatt gtcaagagac ataagaccga ccagccaccc tggctgttct	6416
tgtggtgttt gtttccatcc ccaaggcaaa caaggaaagg aaaggaaaga agaaaaggtg	6476
ccttagtcct ttgttgcact tccatttcca tgccccacaa ttgtctgaac ataaggtata	6536
gcatttggtt tttaagaaaa caaaacatta agacgcaact cattttatat caacacgctt	6596
ggaggaaagg gactcaggga agggagcagg gagtgtgggg tggggatgga ttatgatgaa	6656
atcattttca atcttaaaat ataatacaac aatcttgcaa aattatggtg tcagttacac	6716
aagctctagt ctcaaaatga aagtaatgga gaaagacact gaaatttaga aaattttgtc	6776
gatttaaaaat atttctccta tctaccaagt aaagttaccc tatgtttgat gtctttgcat	6836

6896 tcagaccaat atttcaggtg gatatttcta agtattacta gaaaatacgt ttgaaagctt 6956 tatcttatta tttacagtat ttttatattt cttacattat cctaatgatt gaaaactcct caatcaagct tacttacaca cattctacag agttatttaa ggcatacatt ataatctccc 7016 agccccattc ataatgaata agtcaccctt taaatataag acacaaattc tacagtattg 7076 7136 aaataaggat ttaaaggggt atttgtaaac tttgccctcc ttgagaaata tggaactacc ttagaggtta agaggaaggc agtgttctga cttctttagg tgatctgaaa aaaacaccct 7196 tatcatccag tgtaccatct agagatcacc acagaatcca tttttttccc agttccacaa 7256 aacactctgt ttgccttcag tttttactca ctagacaata attcaagttt agaaacaggt 7316 7376 aatcagctat ttgatcttaa aaggcaatga attgttggga tatcagtgaa ctatgttgta 7436 tacttttgaa tttttacatt ttataaatgg aattgaaagt tggataactg ctttttttaa attittccaac agaagtaaca ccacagttgc titgtttctt titatagctt acctgaggtt 7496 cagttcttct ttgtgaacct gtgagtactc cacagtttac tgggggaaaa ggcttcagta 7556 aagcagaggc tagaattaca gtatttatac atagcaactt ttcataaagt agaaaaattc 7616 7643 aaaggaagct gtctcaattt gagaata

<210> 169

<211> 2535

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (258)..(629)

15

<400> 169

tagcttaata gtgtcatatt ttaaaagtag aatccactgt taagcaccaa gattaccttt 60 tcctcccct gtggcacagt ttatttaaat gaagtattag caataatcat gtcactattt 120 tgccctgaat aattaagagt ttgctttttt cccatgtctt tgcaatagga taatataaag 180 aatagtatta aaagtcagag gctttactaa tctacctata tgtattccat ggctaacaaa 240 290 ccctggcccc tttacat atg agc tct gga ggt tcg cct ggc tgc ctc agg Met Ser Ser Gly Gly Ser Pro Gly Cys Leu Arg 1 338 ctt qca qaa qqc tqc ccc aat cac aqa qcc tqq qta agg tqg aac agg Leu Ala Glu Gly Cys Pro Asn His Arg Ala Trp Val Arg Trp Asn Arg

387

agg cag ccc cac tcg gct ttt ctg att gca tcc cac ctg ttt ctg agt Arg Gln Pro His Ser Ala Phe Leu Ile Ala Ser His Leu Phe Leu Ser 30 35 40	386
gtg ttg gtt tgg ttt aat tct ttt caa ggg ttg gag ttg gaa agt gaa Val Leu Val Trp Phe Asn Ser Phe Gln Gly Leu Glu Leu Glu Ser Glu 45 50 55	434
aac cct aga cac ttg ctg tgg aat gtt tgc ctg gtt gta ttg gtg tgtAsn Pro Arg His Leu Leu Trp Asn Val Cys Leu Val Val Leu Val Cys60657075	482
ccc tct tct tca ctg gca tgt cgc ttt caa gtg tac caa agg aca ttt Pro Ser Ser Ser Leu Ala Cys Arg Phe Gln Val Tyr Gln Arg Thr Phe 80 85 90	530
tgt tct gtt gaa agc cac agg acc aaa agg aaa ata ttg caa cta ttt Cys Ser Val Glu Ser His Arg Thr Lys Arg Lys Ile Leu Gln Leu Phe 95 100 105	578
gca aac ata ctt ccc tac cta tac aag cag cca tat act aaa aag cac Ala Asn Ile Leu Pro Tyr Leu Tyr Lys Gln Pro Tyr Thr Lys Lys His 110 115 120	626
taa acaa gcacaaatga acactaaata gccttatacc aaaaagcatt cttgtaactg *	683
tcagggcatg gtatgaattc cttcctcttt aagcagcaac ttaccacagg cttggtggct	743
ttaagtaata tagcattaag caaatggtca gttatttttt aatgttgaaa acttccaagt	803
gtgaataata cggacatagt ttactacctt ttgcttttaa tatacctggt tatctatttc	863
catttgaaat aaaatgaaag gagacctcaa actgatgctg agaagtagac aaaatcagct	923
ctcagactta actctcccca attaaaaatag ttttttttc ccttcccatt tttttgtttt	983
taagagatag ggtcttgctg tgttgcccag gctagagtgc agcagtgaca tgatcatagc	1043
tcactgcagc ctggaactcc tgggctcagg atccttctgc ttcggcctcc tgagtagcta	1103
agaccacagg tgtgtgccac cacacctggc taatttttt aaaatttttt gtagagatgg	1163
ggacttgcta tgttgcccag actggtctcg aactcctggc ctcaagccac caacctctca	1223
aattgctaga attacaagca tgagccacca cacctggcct gttattcctt ctttatctaa	1283
tgtgtgctaa gcttgtgaaa aatatatgtt gaggtaaata gggcaaaaca ttagttgata	1343
aattatgcta attaatggga aaaatagaca tgttcctctc tgaacattta gaaggactct	1403
gccctacaac tatcttctgt ttttagaatt tgtagtcact gttcttagtg ccactggaaa	1463

1583 aaatgccagc aagtttttgt ttgtatagag ttggaatgta ttgttcgtgc atgcctgtga tattcatcat caaaatatac ctgtaaaaaa taaactactg cttcctctcc acagcttagg 1643 1703 cctccctctt actaaaaaca atagtagttt ctgtagaagt ttcagtgaga aattatggtt atataaataa cagatatggc agaacaattt tgttgtagta tttttttccg tagcatttct 1763 taataatagc tcagttttta aaggagggga acaatacccc atgagttcaa attaattttc 1823 1883 tctactttga ggtatacctt cctaattata ttttacatag gctgtttttt ttaagtttaa 1943 attctcactg ttaagttgca ttgagagaca attagaaatg ttgtaattgt catatcttta catgtggatt atgaacaaat gaaagtttgc tgtgtgattg cagttttaaa ttataacatt 2003 tcataaatat gtcaatttta gaaactcaaa ctctttccca tcttttgtat ggataaagtt 2063 tatggtttca tttctgagaa tagagttggt ctgctgtgct aacttcatgt ttcttattcc 2123 aaaggcttga ttatattttt ttctccagtg attaaaaatg cagcgaaaat ccaatctaca 2183 agttcatata ttggtatttc tagacatagt ctagttctaa aagaatgtac ttggtgtgca 2243 tttttaagtg tttcatgtag acagattaat atatttttgt acaacattgt atttctacat 2303 ttatttcaag actgtacttt tcagtgactt tttcaagtgc atgtgttaac agaagattgt 2363 ttggaacgag agtgcagtgg cttctttact agcaaagaga agtgtaatac aagtgatcat 2423 agaaggtgag aatgtgttta tactgtatat ggaaacctaa tgcctctttt ctaaagcttt 2483 2535

<210> 170

<211> 2191

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (451)..(846)

<400> 170

tgacaggtct ccactgatcc agcctctgat gatctgtcct ctggtgatct atcctctagt 60 gaatctggcc tctgtatgta tctggccact ggttgaactg gcctctgaat gagctgactt 120 ctgaatcaac ctttgatcgt acctttgaac cacattctgt accagtttgt gagccagttt 180 cctgtaatat tgacaatata gaaccaagta gcaataaaga tgatgatttt cttgaaaaaa 240 atggagctga tgaaaaatta gagcaaattt cagagtaaag actcattgga tgagaaaaat 300

360 aaagctgata ataatattga tgctaatgaa gaaactctag aaacagatta tacaactatt tgttcagatc gacctcctga aaatgaaaag aaggtagagg aagatattat cacagagctt 420 gctcttggag aagatgctat atctagcagt atg gaa att gac caa ggt gaa 471 Met Glu Ile Asp Gln Gly Glu aag aat gaa gat gaa act tct gca gat ctt gta gaa acg att aat gaa 519 Lys Asn Glu Asp Glu Thr Ser Ala Asp Leu Val Glu Thr Ile Asn Glu 10 15 aat gtt att gaa gat aac aaa agt gag aat atc tta gaa aat aca gac 567 Asn Val Ile Glu Asp Asn Lys Ser Glu Asn Ile Leu Glu Asn Thr Asp 25 30 tct atg gag aca gat gaa atc att cct att ttg gaa aag ctt gca cct 615 Ser Met Glu Thr Asp Glu Ile Ile Pro Ile Leu Glu Lys Leu Ala Pro 40 45 663 tct gag gat gaa ctt act tgc ttt tct aaa aca tct ctc ctt cca atc Ser Glu Asp Glu Leu Thr Cys Phe Ser Lys Thr Ser Leu Leu Pro Ile 60 70 711 gat gag aca aat cca gat ttg gaa gag aaa atg gaa agt tct ttt ggt Asp Glu Thr Asn Pro Asp Leu Glu Glu Lys Met Glu Ser Ser Phe Gly 75 759 tca cca tct aaa caa gaa agt agt gag agt ttg cca aaa gaa gcc ttt Ser Pro Ser Lys Gln Glu Ser Ser Glu Ser Leu Pro Lys Glu Ala Phe 95 807 ctg gtc ctc tct gat gaa gag gat att tcg ggt gaa aaa gat gag tct Leu Val Leu Ser Asp Glu Glu Asp Ile Ser Gly Glu Lys Asp Glu Ser 110 gaa gtt ata tcg caa aat gaa acg tgc tct cca ggt tag catataactt 856 Glu Val Ile Ser Gln Asn Glu Thr Cys Ser Pro Gly 120 125 130 916 aaatgttaaa gattttttat tgactttgat gaactgttta ataaaacatt atcataatgt 976 tttaaattta ttttagctgc agagaaagtt gagaatagtg atgactctat agaaagatgt cttaacttca tagaattcag aattagtgtg tgtactctgt gagtagcatt gtactaaata 1036 ctaagaaggg agataaaata agtagaaaat atgcccttat agtctggaaa tagagatgaa 1096 gtagagcacc ataacactga gataacagct taagttagta cataattgac tagagttgta 1156 gcagttcttt cttgctatca cttagcgaac aaataactta gaactaaaag cctaatagtt 1216 taatctattt gcttcaagtg taacaaatta tattttcaat taatattccc aatgaaatcc 1276 tgttctttaa tattctttgt ccaggaatga cagcaccatt gttgtaagcc agaaacctta 1336 aagettgatt atccatttga taaagacttt acccatttgc tccctcagcc cttttgattc 1396

tacccageet attetettee teattttetg aatgagetee etgtaaccca attetettat 1456 ttgatattgt ccgtctatgt cttagatctc tgttactttt aggttgattt caaactcctt 1516 atgtaaaagg tacattaact ttatgatttg ttcagtacct atctctccca tctcttttat 1576 tttatttatt attcctagag aaaaagaatg agaaaaattc taccttcttt tatggtcaaa 1636 ctgaaaaaca ttattcctct atgaaacttt ctcagcctgt ggaagactga gaaaagcatg 1696 aatacctttc ttttcccatt atatcacatt cttttagatt tagacatctc tgagagaagt 1756 gaccttgcta gcataaaaca ccatctaatt tcttcaaaga aaaaaaaatg gaggcaggtc 1816 taagagacag agacaacttt tttccccaat atatcatacc agcttttgga ggtagagatt 1876 tttttcttat taaaaaatgg cttttctttt ttttttggcc aggtaaggtg gctcacgcct 1936 gtggtcctag gactttggga ggctgaggca ggcagattgc ttgagctcag gagttcgaga 1996 ccagcctggg caacatggtg agaccccgtc tctacaaagg tacaaaaatt ggccaggcgt 2056 ggtggcactt gtctgtagtc cagggtactt gagggcctga ggtgggggga tcacttgaac 2116 ctgggtggtc gaggctgcag tgagccgaga tcgcgccact actccagcct gggtgacaaa 2176 gtaagaccct gcctc 2191

<210> 171 <211> 874

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (141)..(401)

<400> 171

60 gtagttcgcg acctcggatt cgatacgcgg gtgcaagggc gcacctgctt cacccaggcg cccaacgtag aggttgagca tcagcggcag catggccgac ccttccgcga agtgcagcca 120 ttgcacgtat tcgtcatagg 170 atg ctg tgg ccc ggc gca gga ttg gag gga Met Leu Trp Pro Gly Ala Gly Leu Glu Gly 1

218 cat aga cct ggt gga agg cgt ggc gcc ctg acc cag gga ttt ggc His Arg Pro Gly Gly Arg Arg Gly Ala Ala Leu Thr Gln Gly Phe Gly 15 25

tcc tgt agc gct gct ggg cag agg tcc gca gga gct gca ggt act tct 266 Ser Cys Ser Ala Ala Gly Gln Arg Ser Ala Gly Ala Ala Gly Thr Ser 30 35

tgg cca act cta gct gct gct tct tgc act gct tcc ggc ggg gtg agg Trp Pro Thr Leu Ala Ala Ala Ser Cys Thr Ala Ser Gly Gly Val Arg 45 50 55	314
acc cac agc tct gat gtg ggc gct tca ggc cat ggt gga gct gag att Thr His Ser Ser Asp Val Gly Ala Ser Gly His Gly Gly Ala Glu Ile 60 65 70	362
cag gtt ggc ttt tcc cct cag ctc cca gct ggc tgg tga acccatcatc Gln Val Gly Phe Ser Pro Gln Leu Pro Ala Gly Trp * 75 80 85	411
atagccaaaa gtactcagca gcagcacctc caggtccaga ggcacctcca gctgcatgca	471
cacacaatga atgaaagact gccaggtgtc cgaaccctgg acatgcagct tgttgagttg	531
caggatgact ctctgttcag ggtccaaggt ctcgttcctg gaatccaggt ccgtgttggg	591
gaggaagaac ttcatcttgg cgttcagcca ttctgggtct ttggtgagca gcctcacaag	651
acagetecae aggttettgt tgeegagetg gaggeeaaeg gggteeatga ggageeagee	711
ttggtctcct cgttcatgat aggtgctcta gggtccccac ggagagggtc tcatgggtgt	771
ctgggctatg tgtgccttga gctggattga caggttgttt ccatagtgca gactccctca	831
gagetecegg cacteacect cagegetege ggetecteeg ege	874
<210> 172 <211> 1297 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (15)(1052) <400> 172	
agccagaggc cccg atg gca aag ggt aaa agc acc acc tta acg cag gac Met Ala Lys Gly Lys Ser Thr Thr Leu Thr Gln Asp 1 5 10	50
atg agc acc agc ctc cag gaa ggc cag gag gac ggg ccg gca gga tgg Met Ser Thr Ser Leu Gln Glu Gly Gln Glu Asp Gly Pro Ala Gly Trp	98
15 20 25	
aga gcg aat ctg aag ccc gtg gac agg aga agc cca gct gag agg act Arg Ala Asn Leu Lys Pro Val Asp Arg Arg Ser Pro Ala Glu Arg Thr 30 35 40	146

_	ccc Pro		-													24	42
_	acc Thr					-				_		_	_			2:	90
	agc Ser			~	~ ~						-	-		_	_	3:	38
-	gtc Val 110		-	-		_	_	_	_					_		31	86
	cct Pro		_	_	-	-		-	_		_				_	43	34
	cct Pro															48	82
	cct Pro															53	30
	gac Asp															5	78
	agg Arg 190															62	26
	ctg Leu															67	74
_	tgg Trp							-	_		_	_	_	-	-	72	22
	gag Glu	_	-													71	70
	gac Asp															81	18
_	aag Lys 270		_	_							-					86	56

tac gtg agc acc gtg aac gac cgc agt gac atc gtg gac tcg ctg gac Tyr Val Ser Thr Val Asn Asp Arg Ser Asp Ile Val Asp Ser Leu Asp 285 290 295 300	914
gag gac cgg ctc cgg gaa caa gag gag gat cag atg ctg cgg gac atg Glu Asp Arg Leu Arg Glu Gln Glu Glu Asp Gln Met Leu Arg Asp Met 305 310 315	962
att gag aag ctg ggc ctc cag agg aag aag tcc aag ttc cgc ttg tcc Ile Glu Lys Leu Gly Leu Gln Arg Lys Lys Ser Lys Phe Arg Leu Ser 320 325 330	1010
aag atc tgg tca cca aaa agc aaa agc ccc tcc cag tag tagccag Lys Ile Trp Ser Pro Lys Ser Lys Ser Ser Pro Ser Gln * 335 340 345	1059
tagggccgtg ggctcggccc ggacctggca tccggacttg gactcggggc catgggcttg	1119
gcccggaccc ggaacccgga cttgtactcg gggccgtggg ctcggcccgg acccggcatt	1179
cggacttgga ctcgggaagg gcctcctgtc cctacaaggg gcatgtggac agcagggacc	1239
tgcgctaccg tctgtggtct caataaagaa accgaccaca tggaaaaaaa aaaaaaaa	1297
<210> 173 <211> 546 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (131)(502) <400> 173	
ctgccgtgag aaaattagcc tctggggtac ggccgacttt tgtccactgg gtgtcgcaga	60
teccagteet cagggeetea agacagetet geaateegee geacagaatt caagttegga	120
ttcggctttg atg acc tta atc cag gca aat cct aaa tcc tat cca gtc Met Thr Leu Ile Gln Ala Asn Pro Lys Ser Tyr Pro Val 1 5 10	169
ggc agc atc cag atg aac cac aac tcc ttc ctc agc gca acc agg cca Gly Ser Ile Gln Met Asn His Asn Ser Phe Leu Ser Ala Thr Arg Pro 15 20 25	217
agg gag tgc tcc atc ccc tgc ctc gca gtt act gat tct cca agc cgg Arg Glu Cys Ser Ile Pro Cys Leu Ala Val Thr Asp Ser Pro Ser Arg 30 35 40 45	265
gcg ccg ccc agt cct ggc ggg gct tcc ccc acc cct ctc cgc gcc ggg Ala Pro Pro Ser Pro Gly Gly Ala Ser Pro Thr Pro Leu Arg Ala Gly 50 55 60	313

								gtg Val 70			Trp					361
											gtc Val					409
											gct Ala 105					457
											agc Ser			tag *	ccg	505
agto	cgag	gca (gcac	ggtto	dd da	aaggo	cagco	c aag	ggatg	gege	С					546
	<2: <2: <2: <2: <2: <2: <2:	10> 1 11> 1 12> I 13> I 20> 2 21> (22>	L009 DNA Homo CDS (50)													
gcad				gctgt	ta tç	gagto	ggtag	g cct	ttc	ccct	caac	cago	ca		g gag : Glu	55
		ccc		atα	caa	gac	acc	gac					taa	~~~	~~~	
	GIII	Pro 5			Gln	Asp					gcg Ala					103
	ggc	5 cgg	Gln gca	Met ggc	ggg	cca	Ala 10 ccg	Asp cag	Glu gtc	Pro gcc		Asp 15 gcc	Ser cag	Gly gcg	Gly gcg	103 151
Glu tgc	ggc Gly 20 agc	5 cgg Arg	Gln gca Ala gac	Met ggc Gly cgc	ggg Gly atg	cca Pro 25	Ala 10 ccg Pro	Asp cag Gln ctc	Glu gtc Val ctc	Pro gcc Ala agg	Ala ggc Gly	Asp 15 gcc Ala aga	Ser cag Gln gca	Gly gcg Ala cag	Gly gcg Ala aca	
tgc Cys 35	ggc Gly 20 agc Ser	5 cgg Arg gag Glu	gca Ala gac Asp	ggc Gly cgc Arg	ggg Gly atg Met 40	cca Pro 25 acc Thr	Ala 10 ccg Pro ctg Leu aaa	Asp cag Gln ctc Leu	gtc Val ctc Leu	gcc Ala agg Arg 45	Ala ggc Gly 30 ctg	Asp 15 gcc Ala aga Arg	Ser cag Gln gca Ala	gcg Ala cag Gln	Gly gcg Ala aca Thr 50 gaa	151
tgc Cys 35 aaa Lys	ggc Gly 20 agc Ser caa Gln	cgg Arg gag Glu caa Gln	Gln gca Ala gac Asp ctc Leu gaa	Met ggc Gly cgc Arg tta Leu 55 caa	ggg Gly atg Met 40 gaa Glu	cca Pro 25 acc Thr tat Tyr	Ala 10 ccg Pro ctg Leu aaa Lys caa	Asp cag Gln ctc Leu tca Ser	gtc Val ctc Leu atg Met 60	gcc Ala agg Arg 45 gtt Val caa	ggc Gly 30 ctg Leu	Asp 15 gcc Ala aga Arg gca Ala	Ser cag Gln gca Ala agt Ser gct	Gly gcg Ala cag Gln gaa Glu 65 aaa	Gly gcg Ala aca Thr 50 gaa Glu att	151 199

	_	ctt Leu	-		-		_	_				_				391
		gag Glu														439
		cta Leu								-			-	-	-	487
		gat Asp			-		_		-		_	_	_	_	_	535
		aaa Lys 165														583
		aaa Lys														631
		atc Ile														679
		caa Gln								-		-		_		727
		gag Glu														775
	_	gac Asp 245	_	_	taa *	taag	gaa t	tcat	ttct	g ac	catat	ttta	a cat	ttct	ggc	829
aato	ctcaa	act o	ttat	ttgg	ga at	actt	ctgt	gca	ittte	gtct	gtco	cacco	gta a	atttt	agaaa	889
agca	atato	cca t	aacg	gttta	ac ag	ıttgt	agta	a cag	gttgt	ggt	tagt	tatt	tg t	agto	ggatt	949
gaaa	agtaa	att t	tttt	cttt	it ta	ıtatt	tcta	a tat	tcag	ıgtt	ggtt	tttt	.gg t	gaag	ıttaga	1009

90

95

<210> 175

85

<211> 834

<212> DNA

<213> Homo sapiens

<220>

<221> CDS <222> (12)..(833)

<400> 175 tttcgtcaag g atg aca tcc att cga gct gta ttt ata ttc ctg tgg ctg 50 Met Thr Ser Ile Arg Ala Val Phe Ile Phe Leu Trp Leu cag ctg gac ttg gtg aat gga gag aat gtg gag cag cat cct tca acc 98 Gln Leu Asp Leu Val Asn Gly Glu Asn Val Glu Gln His Pro Ser Thr 20 ctg agt gtc cag gag gga gac agc gct gtt atc aag tgt act tat tca 146 Leu Ser Val Gln Glu Gly Asp Ser Ala Val Ile Lys Cys Thr Tyr Ser 30 35 gac agt gcc tca aac tac ttc cct tgg tat aag caa gaa ctt gga aaa 194 Asp Ser Ala Ser Asn Tyr Phe Pro Trp Tyr Lys Gln Glu Leu Gly Lys 50 aga cct cag ctt att ata gac att cgt tca aat gtg ggc gaa aag aaa 242 Arg Pro Gln Leu Ile Ile Asp Ile Arg Ser Asn Val Gly Glu Lys Lys gac caa cga att gct gtt aca ttg aac aag aca gcc aaa cat ttc tcc 290 Asp Gln Arg Ile Ala Val Thr Leu Asn Lys Thr Ala Lys His Phe Ser 85 338 ctg cac atc aca gag acc caa cct gaa gac tcg gct gtc tac ttc tgt Leu His Ile Thr Glu Thr Gln Pro Glu Asp Ser Ala Val Tyr Phe Cys 100 gca gca agt aac ggc cag gca gga act gct ctg atc ttt ggg aag gga 386 Ala Ala Ser Asn Gly Gln Ala Gly Thr Ala Leu Ile Phe Gly Lys Gly 120 115 acc acc tta tca gtg agt tcc aat atc cag aac cct gac cct gcc gtg 434 Thr Thr Leu Ser Val Ser Ser Asn Ile Gln Asn Pro Asp Pro Ala Val 130 135 tac cag ctg aga gac tct aaa tcc agt gac aag tct gtc tgc cta ttc 482 Tyr Gln Leu Arg Asp Ser Lys Ser Ser Asp Lys Ser Val Cys Leu Phe 145 150 acc gat ttt gat tct caa aca aat gtg tca caa agt aag gat tct gat 530 Thr Asp Phe Asp Ser Gln Thr Asn Val Ser Gln Ser Lys Asp Ser Asp 160 165 gtg tat atc aca gac aaa act gtg cta gac atg agg tct atg gac ttc 578 Val Tyr Ile Thr Asp Lys Thr Val Leu Asp Met Arg Ser Met Asp Phe 175 180 aag agc aac agt gct gtg gcc tgg agc aac aaa tct gac ttt gca tgt 626 Lys Ser Asn Ser Ala Val Ala Trp Ser Asn Lys Ser Asp Phe Ala Cys 190 195 200

gca aac gcc ttc aac agc att att cca gaa gac acc ttc ttc ccc

674

Ala Asn Ala Phe Asn Asn Ser Ile Ile Pro Glu Asp Thr Phe Pro 210 215 220	
agc cca gaa agt tcc tgt gat gtc aag ctg gtc gag aaa agc ttt gaa Ser Pro Glu Ser Ser Cys Asp Val Lys Leu Val Glu Lys Ser Phe Glu 225 230 235	722
aca gat acg aac cta aac ttt caa aac ctg tca gtg att ggg ttc cga Thr Asp Thr Asn Leu Asn Phe Gln Asn Leu Ser Val Ile Gly Phe Arg 240 245 250	770
atc ctc ctc ctg aaa gtg gcc ggg ttt aat ctg ctc atg acg ctg cgg Ile Leu Leu Lys Val Ala Gly Phe Asn Leu Leu Met Thr Leu Arg 255 260 265	818
ctg tgg tcc agc tga g Leu Trp Ser Ser * 270	834
<210> 176 <211> 778 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (34)(576)	
<220> <221> misc_feature <222> (1)(778) <223> n = a,t,c or g	
<400> 176 tttcgtagac ctctctgtct tgtagcatct gcc atg aga atc agg ctc ctg tgc	54
Met Arg Ile Arg Leu Cys 1 5	
tgt gtg gcc ttt tct ctc ctg tgg gca ggt cca gtg att gct ggg atc Cys Val Ala Phe Ser Leu Leu Trp Ala Gly Pro Val Ile Ala Gly Ile 10 15 20	102
acc cag gca cca aca tct cag atc ctg gca gca gga cgg cgc atg aca Thr Gln Ala Pro Thr Ser Gln Ile Leu Ala Ala Gly Arg Arg Met Thr 25 30 35	150
ctg aga tgt acc cag gat atg aga cat aat gcc atg tac tgg tat aga Leu Arg Cys Thr Gln Asp Met Arg His Asn Ala Met Tyr Trp Tyr Arg 40 45 50 55	198
caa gat cta gga ctg ggg cta agg ctc atc cat tat tca aat act gca Gln Asp Leu Gly Leu Gly Leu Arg Leu Ile His Tyr Ser Asn Thr Ala 60 65 70	246

						~	-		~			_	-	tcc Ser	-	294
			-	-				_	_			-	_	ccc Pro		342
_						_	_	-	_	_		_	_	ggg Gly	_	390
														acc Thr		438
_		_	_			-				-	~	_		ttt Phe 150		486
		-								_	_		_	gtg Val	_	534
-							gac Asp 175				_	_	tga *	tttt	ttc	583
atag	gacta	atg a	agctt	ctaa	aa aa	atca	atcco	cat	atto	gtc	atta	acatt	ct t	ggga	atcaaa	643
tata	actgo	cat c	gaaaa	aaaga	at go	ctcaç	gaaaa	gto	ctato	gtta	agtt	taato	gta g	gaata	atatga	703
atga	agtga	ag g	gaaag	gtgtt	t to	gaaac	ccato	ata	ıggga	ata	taat	aaga	ata a	natt	acact	763
agaa	taaa	at c	raaac	:												778

<210> 177

<211> 708

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (176)..(493)

<400> 177

gagggcggga gaggcagatg agtaaatgga tccttacact aagtgtgatg agcagaaacc 60
caggcgctct ggggcatgag cagggatacc taacccagcc ctgggggctc aatctctccc 120
cacccctgca ggagaggctt ggggtgagtt ttgggaataa ggaccatcca gccac atg
Met
1

_	_		_	-										caa Gln		226
														cgc Arg		274
	_						-	-		-		_		cag Gln		322
-		_	_			_			_	_			-	aag Lys		370
														aag Lys 80		418
	_			_					_					caa Gln		466
			gga Gly					tga *	gcto	ga gg	ggaag	ggata	a gga	atttg	ggag	518
agct	gaca	att c	tgat	gago	g go	etteg	gtta	a aag	gctca	acaa	aaac	cctt	ccc c	ctccc	ccatg	578
ccct	ttga	aa t	catt	tgaa	at ca	aaga	ttgc	gtg	gtgtt	caaa	gaca	atgtt	tg t	ctgt	tatct	638
gaaa	gcto	gtg g	gtttc	ctctt	t aa	caga	ittca	a ggg	gaata	catc	cttt	gact	cg g	gacca	agaag	698
gaat	tato	gag														708

```
<210> 178
<211> 1463
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (120)..(1175)

<220>
<221> misc_feature
<222> (1)...(1463)
<223> n = a,t,c or g
```

<400> 178
tttcgtgcaa agaaaactgt gagagagaga atttttaaaa agcagctggg gcctgaggtt 60

atg	tca	gag	CCC	cct	gt ca gtg Val	tac	tgt	aac	ctg	gtg	gac	ctt	cgc	cgc		119 167
					cca Pro											215
					cac His											263
					ggc Gly											311
					cct Pro 70											359
					ctg Leu											407
aca Thr	gly ggg	acc Thr	cca Pro 100	gaa Glu	ccg Pro	ctt Leu	gac Asp	cca Pro 105	cag Gln	ggt Gly	tca Ser	ctc Leu	agc Ser 110	ctc Leu	agc Ser	455
					ctt Leu											503
					gac Asp											551
					att Ile 150				Gly		Lys			Lys		599
					gtg Val											647
					aca Thr											695
					agc Ser											743
					agc Ser											791

cct ggc cac gag ttc ctg ctg cag tcg gac cac gag aca gag ctg cgaPro Gly His Glu Phe Leu Leu Gln Ser Asp His Glu Thr Glu Leu Arg225230	839
gcc tgg cac cgc gcg ctg cgg act gtc atc gag cgg ctg gat cgg gag Ala Trp His Arg Ala Leu Arg Thr Val Ile Glu Arg Leu Asp Arg Glu 245 250 255	887
aac ccc ctg gag ctg cgt ctg tcg ggc tct gga ccc gcg gag ctg agcAsn Pro Leu Glu Leu Arg Leu Ser Gly Ser Gly Pro Ala Glu Leu Ser260265	935
gcc ggg gag gac gaa gaa gag gag tcg gag ctg gtg tcc aag ccg ctg Ala Gly Glu Asp Glu Glu Glu Glu Ser Glu Leu Val Ser Lys Pro Leu 275 280 285	983
ctg cgc ctc agc agc cgc cgg agc tcc att cgg ggg ccc gaa ggc acc Leu Arg Leu Ser Ser Arg Arg Ser Ser Ile Arg Gly Pro Glu Gly Thr 290 295 300	1031
gag cag aac cgc gtg cgc aac aaa cta aag cgg ctc atc gcg aag aga Glu Gln Asn Arg Val Arg Asn Lys Leu Lys Arg Leu Ile Ala Lys Arg 305 310 315 320	1079
ccg ccc tta caa agc ctg cag gag cgg ggt ctg ctc cga ggt gag ggg Pro Pro Leu Gln Ser Leu Gln Glu Arg Gly Leu Leu Arg Gly Glu Gly 325 330 335	1127
gct ggg cca ggt tca tgg ata aga aaa ctc cag cga ggc tca gag tag Ala Gly Pro Gly Ser Trp Ile Arg Lys Leu Gln Arg Gly Ser Glu * 340 345 350	1175
agcttcccag aactagacca caaccttctg tgactgctgc tttcccacta ccccagattg	1235
tttaggggag aagctggggt gacctgtacc cctttgccag attgtttgaa gcangggaag	1295
ggaggtggag tgtatttcct tgcccaggcc tggcacaggc agccaggagg accagcctca	1355
cttaaggata aagacctatg ctgagaagag ctcctgtgag tgacgctggc acttggcttc	1415
cgcctcactc tacttcccca gaccaggtgt tcggctggca gatggaat	1463

```
<210> 179
```

<211> 678

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (122)..(478)

<400> 179

agtgcggtgg aattctggtt aaaaaaagta cagaatgcaa aaggatatgg cataaaaggc

caagtccgaa aagggctact agtgttctag gtgtctttcc agaaagatta tgcgcatata	120
a atg tgc aca ctt gca tgt gtg cac aca cat aca cac act ctc ata Met Cys Thr Leu Ala Cys Val His Thr His Thr His Thr Leu Ile 1 5 10 15	166
tac cta aaa tac gaa tgg gag cac atg aca cac aca ttc tgc ctg ctg Tyr Leu Lys Tyr Glu Trp Glu His Met Thr His Thr Phe Cys Leu Leu 20 25 30	214
ctt tgt ctg tgc ata att tta tct tcc agg tca tct gtg ctg gtg tct Leu Cys Leu Cys Ile Ile Leu Ser Ser Arg Ser Ser Val Leu Val Ser 35 40 45	262
atc agt ctg cta gtc ttt ccc cgc cat gtg gcc att gtt cca gtc ccc Ile Ser Leu Leu Val Phe Pro Arg His Val Ala Ile Val Pro Val Pro 50 55 60	310
tcc tat gca cac cca ggt ttc tct agg acc atg tta tcc cag agc cag Ser Tyr Ala His Pro Gly Phe Ser Arg Thr Met Leu Ser Gln Ser Gln 65 70 75	358
gtg gac agg aca caa agg gct agg ggt caa tgg ggg tgt tct cgc ctc Val Asp Arg Thr Gln Arg Ala Arg Gly Gln Trp Gly Cys Ser Arg Leu 80 85 90 95	406
cag tct gcc ctg cca gcc ccc agt cgt ggg tgg acc tgc cat cag ctt Gln Ser Ala Leu Pro Ala Pro Ser Arg Gly Trp Thr Cys His Gln Leu 100 105 110	454
gct ctg ccc act ccc cag gcc tga gctgctggcg aaacaggcaa gtgactgcac Ala Leu Pro Thr Pro Gln Ala * 115	508
tgcccatggc cggtcaccag cctcaggtga accccaggag gggttcctac ctagcactca	568
tcatttcctc aacttcacta ctgtgtcgcc ctgtgggaca gggaagtcca agtcggggaa	628
aaagcctgtg gggaggggtt ggtgggagat ggggagccca tatggcccag	678

<210> 180

<211> 599

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (189)..(512)

<400> 180

accgaaagct gtaggagttt ataccagtac ttccaattcc aaccttattc tagttttcac 60 cctttccaaa tttgtaattc tctgactata agaaatctgg ctcctgctct ttccctgctg 120

ccactgaatt gtatagaggc ggagtctcgg gtgcattcaa gatccggctt cactcgtaac	180
ccactgcc atg gcc gag gaa ggc agt gct gct gga ggt gta atg gac att Met Ala Glu Glu Gly Ser Ala Ala Gly Gly Val Met Asp Ile 1 5 10	230
aat act gtt tta cag gag gtg ctg aag acc gcc ctc atc cat gat ggc Asn Thr Val Leu Gln Glu Val Leu Lys Thr Ala Leu Ile His Asp Gly 15 20 25 30	278
cta gca tat gaa att tgc aaa gct gcc aaa gcc tca gac aag tgc caa Leu Ala Tyr Glu Ile Cys Lys Ala Ala Lys Ala Ser Asp Lys Cys Gln 35 40 45	326
gcc cat ctt tgt gtg ctg tgt gtg ctt gca tcc aac tgt gat gag cct Ala His Leu Cys Val Leu Cys Val Leu Ala Ser Asn Cys Asp Glu Pro 50 55 60	374
atg tat gtc aag ttg gtg gag gcc ctt tgt gct gaa cac caa atc aac Met Tyr Val Lys Leu Val Glu Ala Leu Cys Ala Glu His Gln Ile Asn 65 70 75	422
cta att aag gtt gat gac cag aaa cta ggg gaa tcg gta ggc ctc tgt Leu Ile Lys Val Asp Asp Gln Lys Leu Gly Glu Ser Val Gly Leu Cys 80 85 90	470
aaa act gac aga gag ggg aaa ccg tgt aaa gtg gtt ggt tga agttgta Lys Thr Asp Arg Glu Gly Lys Pro Cys Lys Val Val Gly * 95 100 105	519
tagtagttac gaactatggc aaggagtctc aggccaagga tatcattgaa gagtacttca	579
aatgcaagaa atgaacaagt	599
<210> 181 <211> 1396	
<211> ISSO <212> DNA <213> Homo sapiens	
<220>	
<221> CDS <222> (68)(1039)	
<400> 181 tttcgtagtt cttagtccgt gcggtggaat tcccggccgc gctccgaacg gcgcctcccg	60
	109
ccccacc atg ggc aac agc gcg agc cgc aac gac ttc gag tgg gtc tac Met Gly Asn Ser Ala Ser Arg Asn Asp Phe Glu Trp Val Tyr 1 5 10	109
acc gac cag ccg cac acg cag cgc cag gag ata ctg gcc aag tac Thr Asp Gln Pro His Thr Gln Arg Arg Lys Glu Ile Leu Ala Lys Tyr 15 20 25 30	157

	gcc Ala															205	5
	ctg Leu															253	3
	ctg Leu															301	1
	gtg Val 80															349	Э
	gcc Ala															391	7
	gcc Ala															445	ō
	cac His															493	3
	gtg Val															542	1
	ctg Leu 160															589	Э
	tgc Cys															63*	7
	gtg Val															685	ō
	ccc Pro															733	3
	ccc Pro															78:	1
	cac His 240															829	9
aat	gtg	ggc	tac	cac	gtg	gag	cac	cac	gac	ttc	ccc	agc	atc	ccg	ggc	87	7

Asn Val Gly Tyr His Val Glu His His Asp Phe Pro Ser Ile Pro Gly 255 260 265 270	
tac aac ctg ccg ctg gtg cgg aag atc gcg ccc gag tac tac gac cac Tyr Asn Leu Pro Leu Val Arg Lys Ile Ala Pro Glu Tyr Tyr Asp His 275 280 285	925
ctg ccg cag cac cac tcc tgg gtg aag gtg ctc tgg gat ttt gtg ttt Leu Pro Gln His His Ser Trp Val Lys Val Leu Trp Asp Phe Val Phe 290 295 300	973
gag gac tcc ctg ggg ccc tat gcc agg gtg aag cgg gtg tac agg ctg Glu Asp Ser Leu Gly Pro Tyr Ala Arg Val Lys Arg Val Tyr Arg Leu 305 310 315	1021
gca aaa gat ggt ctg tga geeegg getgeeteet ggtggtggee attgteeece Ala Lys Asp Gly Leu * 320	1075
atcggcccct cagccttgca ccccagcact gagaagctac atttccttcc tgtgctctgg	1135
actgctgccc ttgtccccga ggagtgtccc gcgcagccac acctggcaac agcagtgtgg	1195
gctgcagggc tccgtctgca cgtggacttg ccctggacct tgagtgtggc cctccctttc	1255
tgggcctccc caggtgaggc ctggccctgc cccaccatga cctgggtgct ctgagcccac	1315
ggttcccacg gagctgactt ctccggggtg cctgtgccct acattaaacc cggcgtttgt	1375
gytteecacy gagetgaett eteeggggtg cetytgeeet acattaaace eggegttigt	13/3
ttcacagcca aaaaaaaaa a	1396
<pre>ttcacagcca aaaaaaaaaa a <210> 182</pre>	
<pre>ttcacagcca aaaaaaaaa a <210> 182</pre>	
ttcacagcca aaaaaaaaaa a <pre></pre>	1396
ttcacagcca aaaaaaaaaa a <pre></pre>	1396

Pł	ne S	Ser	Arg 45	Leu	Ala	Gly	Thr	Va1 50	Tyr	Leu	Asp	His	Ala 55	Gly	Ala	Thr	
						cag Gln											243
As						cct Pro 80		-	-			_	_	_			291
	~	•		-		cag Gln		_		_		_					339
			_	_	-	tac Tyr						_		_	_	_	387
				_		gca Ala	-	_						_			435
_	.u S	-	_		_	cgc Arg		-				_	_				483
-	ıl V	_		_		aac Asn 160			_	-			-				531
						gac Asp									_		579
_					_	tgc Cys	-	_	-				-			_	627
		er				gga Gly											675
	ılL					ttg Leu											723
	l L	-	_	-	_	gcc Ala 240				_		-		-	-	-	771
						gac Asp											819
						ctg Leu											867

			270				275					280		
					acc Thr									915
	-		-	-	ttc Phe		_		_	_	-	-	_	 963
	_	-			atc Ile 320			_	-					1011
					gag Glu									1059
					ttg Leu									1107
					gga Gly									1155
					gag Glu									1203
					aac Asn 400									1251
					atc Ile									1299
					cac His									1347
					cat His									1395
					tct Ser									1443
					gcc Ala 480									1491
					tgg Trp									1539

			-		tca Ser	-	-	-	_	-	_	_			_	1587
_	-		_	-	agc Ser											1635
		_			aac Asn	_					_				_	1683
			_	_	gtc Val 560	-	-		-	-						1731
-	-		-	-	gag Glu		-					_	-			1779
					atc Ile			-	_	~		~ ~	~ ~		~ ~	1827
					caa Gln											1875
					gtt Val											1923
_	_		_		ttc Phe 640		_	_					_	_		1971
	_			_	gag Glu								_		_	2019
					cgc Arg											2067
		-	_		gaa Glu				_		_					2115
	-		-		ttg Leu				_							2163
_	_	_			gga Gly 720		_						_	_		2211

	tct Ser	_				-	_		_	-				-	2259
	ttg Leu														2307
-	gaa Glu				_	_	_		-	_	-	_	_		2355
	att Ile 780						_		~	~	~ ~		-		2403
	tca Ser														2451
	cag Gln														2499
	ttc Phe					-	-	_	_		_				2547
_	tac Tyr	_	_		~		_	_				~		_	2595
	gta Val 860														2643
	gat Asp												taa *	aaa	2691
aaat	tttt	ag c	catac	atta	a aç	ıtttc	tctt	tta	ıaaaa	l					2728

```
<210> 183
<211> 1265
```

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (546)..(857)

<400> 183

cttcgacatt cgtatagcag acccaagctg gctagcgttt aaacttaagc ttggtaccga 60

120 gctcggatcc actagtccag tgtggtggaa ttcggcagtc cccaaggggc gcagactctg 180 ctgtgaggtg tgcgaagccc cagccgagcg ggtgtgcgcg gcctgcacag tcacttatta ctggtctggg ccgaatcgtt caggctgaag aatatctatt ccaagcccag tggacagtcc 240 tcaaatcaac tgactgtagt aatgccaccc actctttact gcatcggaat ctgggacttc 300 tctatatagc taagaaaaac tatgaagagg cccgttatca tctggccaat gatatttatt 360 ttgccagttg tgcatttgga acagaggaca ttaggacttc aggaggctac ttccacctgg 420 ctaatatatt ctatgacctt aaaaagttgg acctggcaga cacattgtac accaaggtct 480 ctgagatctg gcatgcatat ttgaacaatc actatcaagt cctctcacag gctcacatcc 540 aacaa atg gat tta ctg ggc aaa cta ttt gag aat gac act ggc ttg 587 Met Asp Leu Gly Lys Leu Phe Glu Asn Asp Thr Gly Leu 1 gat gaa gcc caa gaa gca gaa gcc att cgc atc ctg act tca atc ttg 635 Asp Glu Ala Gln Glu Ala Glu Ala Ile Arg Ile Leu Thr Ser Ile Leu 15 20 30 683 aac att cga gaa tct aca tct gac aaa gcc ccc caa aaa acc atc ttt Asn Ile Arg Glu Ser Thr Ser Asp Lys Ala Pro Gln Lys Thr Ile Phe gtt ctg aag atc ctg gtc atg ctt tac tac ctg atg atg aat tct tca 731 Val Leu Lys Ile Leu Val Met Leu Tyr Tyr Leu Met Met Asn Ser Ser 779 aag gca cag gaa tat ggc atg agg gcc ctc agt cta gcc aaa gaa caa Lys Ala Gln Glu Tyr Gly Met Arg Ala Leu Ser Leu Ala Lys Glu Gln 827 cag ctt gat gtc cat gag caa agc acc att caa gag tta tta agt ctc Gln Leu Asp Val His Glu Gln Ser Thr Ile Gln Glu Leu Leu Ser Leu 80 85 att tca act gaa gac cat ccc att act tag t gacccatgag ctctgcatca 878 Ile Ser Thr Glu Asp His Pro Ile Thr 95 100 agggttattc caggggctac tgaagatcta atatattcca gccttgcaca actgctttga 938 ggtactgtag actgctgaag tttccaccct cttcccctgg gattgcacac atagctgtta 998 tttttttctt acacagcata ttaagggaat ataaagcttt aggcatagaa atcactaaaa 1058 actgtgtttg tcatgacctt tgtacttgat ttatcatgac tttgtatgac tgagtaatat 1118 gtagtcagat cactaatatg gtatttgtaa ttaaactaca aatagtttgt catttcccag 1178 1238 aagtetteea aegatgeatg ttteataeae ttttgetaaa ggaggggtaa aggagggggt agggaataaa gctatattgg aacaaaa 1265

<210> 184

<211> 1288 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (251)..(1246) <400> 184 ggacttctcg ggtcgacgat ttcgtgcccc ctcggatgaa tgggaccgaa gctgactgcg 60 aactacaget tettggcage gteggtgttg geegegggag aaggggagae egeggeggee 120 cccagtgaga gcggctttcc aggacggtgc gatgtgctgc gcagcgaaga ggcaggaggc 180 240 eggetteetg gggtageggt acaggeggge gettaetetg tgegettget teeceaacee 289 tgcaccggcc atg cgc ccg gcc ttg gcg gtg ggc ctg gtg ttc gca ggc Met Arg Pro Ala Leu Ala Val Gly Leu Val Phe Ala Gly 1 tgc tgc agt aac gtg atc ttc cta gag ctc ctg gcc cgg aag cat cca 337 Cys Cys Ser Asn Val Ile Phe Leu Glu Leu Leu Ala Arg Lys His Pro 15 20 gga tgt ggg aac att gtg aca ttt gca caa ttt tta ttt att gct gtg 385 Gly Cys Gly Asn Ile Val Thr Phe Ala Gln Phe Leu Phe Ile Ala Val 35 433 gaa ggc ttc ctc ttt gaa gct gat ttg gga agg aag cca cca gct atc Glu Gly Phe Leu Phe Glu Ala Asp Leu Gly Arg Lys Pro Pro Ala Ile 50 55 481 cca ata agg tac tat gcc ata atg gtg acc atg ttc ttc acc gtg agc Pro Ile Arg Tyr Tyr Ala Ile Met Val Thr Met Phe Phe Thr Val Ser 65 gtg gtg aac aac tat gcc ctg aat ctc aac att gcc atg ccc ctg cat 529 Val Val Asn Asn Tyr Ala Leu Asn Leu Asn Ile Ala Met Pro Leu His 80 atg ata ttt aga tcc ggt tct cta att gcc aac acg att cta gga att 577 Met Ile Phe Arg Ser Gly Ser Leu Ile Ala Asn Thr Ile Leu Gly Ile 95 100 625 atc att ttg aag aaa aga tac agt ata ttc aaa tat acc tcc att gcc Ile Ile Leu Lys Lys Arg Tyr Ser Ile Phe Lys Tyr Thr Ser Ile Ala 110 115 120 ctg gtg tct gtg ggg ata ttt att tgc act ttt atg tca gca aag cag 673 Leu Val Ser Val Gly Ile Phe Ile Cys Thr Phe Met Ser Ala Lys Gln 130 135

		tcc Ser	_		-	_	_			-			_	-		721
		tgg Trp 160						_	_			_		_	_	769
		agg Arg														817
		tcc Ser	-		-	_					-				_	865
		gtc Val														913
	_	tct Ser				_			_					_		961
	_	tgg Trp 240					_					_			-	1009
		ggt Gly							-	_	_				_	1057
-		gtc Val				-				_						1105
_		ttc Phe	_					_				_			_	1153
		ttc Phe														1201
		aca Thr 320		-			-			-		-		tga *	ggc	1249
ctgt	gctg	ga g	gtaco	gtaga	ac ca	gtgt	cgto	gtg	gaggg	gtg						1288

<210> 185

<211> 3956 <212> DNA

<213> Homo sapiens <220>

<221> CDS

<222> (837)..(3743)

<400> 185

60 ggcacgaggg gactctgctc gcccccatc tcaccccca agcggatact ggtcttctcg tcggattgcc catgcacttg ttgcagaaac agccaaggcc ctggctgtgg agaatgctga 120 aggaagaaga cgcagaagca ggacgaccct gaaagattca gcctcttcat cctcaaacag 180 gtcgcttctc gggagttctt ggtgttggaa tattttacag caaagcagtc gaccaggcct 240 cctcttccca cctgtccagc agcatgaaag cagcatgatt ggccgaccgc aggagaagcc 300 cccagaacca ggcccccaac tcagccatct gcggaggtca aggtgtgagc gacgtctcct 360 caccacagtg ctgtgtggtc tatacctcag ccagggagag gatgtgaaac ccccgccct 420 gcacatgagt ggtacaggcc aacaggaaca cctggctcca gccacgttca cagacatgtc 480 540 agccgtggag tagtgctgac acttttctct cagcttctca gggtttcagt ccttttgggt ttggtttatt tacctttttt atggttttgt ggctggacgt tcacaaccaa ggcagacagc 600 atgggtgacc agcaactgta caagaccaac catgtggccc atggtagtga gaaccttttc 660 taccaacagc caccacttgg cgtccacagc gggctgagcc cactgatggc taccaataca 720 cctactccca ggccagcgag atccggaccc agaagcttac cagcggtgtc ttacacaagc 780 836 tggactcttt cacccaggtg tttgccaacc aaaacctgcg aattcaggtc aacaat atg gcc cag gtg ctg cac act cag tca gca gtg atg gat gga gcc cct 884 Met Ala Gln Val Leu His Thr Gln Ser Ala Val Met Asp Gly Ala Pro 932 gac agt gct ctc cgc cag ctg ctg tct cag aag ccc atg gag ccc cca Asp Ser Ala Leu Arg Gln Leu Leu Ser Gln Lys Pro Met Glu Pro Pro 20 980 gca ecg gct atc ect tee ege tae eag eag gtg ece eag eag ect eae Ala Pro Ala Ile Pro Ser Arg Tyr Gln Gln Val Pro Gln Gln Pro His 35 cct ggt ttc act ggt ggg ctg tcc aaa cca gct ctt cag gtc ggg cag 1028 Pro Gly Phe Thr Gly Gly Leu Ser Lys Pro Ala Leu Gln Val Gly Gln 50 1076 cac cct acc caa ggg cac ctg tat tat gac tac cag cag cct ctg gct His Pro Thr Gln Gly His Leu Tyr Tyr Asp Tyr Gln Gln Pro Leu Ala 65 70 80 1124 cag gtg cca gtg cag gga gga cag cca ctg cag gcc cca cag atg ctg Gln Val Pro Val Gln Gly Gly Gln Pro Leu Gln Ala Pro Gln Met Leu

	-		_		cag Gln	_	_	_		_				_	_	1	172
	_	_			ggg Gly		_	-			_		_		_	1:	220
_	-	-			att Ile	_			_		_	_	_		_	1:	268
-	_	_	_	_	cag Gln 150		_	_	_	-		_			_	1	316
					tat Tyr					_	_	_		_		1.	364
					cag Gln											1	412
					acc Thr											1.	460
					tcc Ser											1!	508
	_				tac Tyr 230	_	_	_		_		_		_	_	1!	556
_		_	-	_	ctg Leu	_				_	_	_	_	_	_	10	604
					cat His		-	_				_			_	10	652
	_			-	tca Ser	-	_			-	-	-				1	700
					tcc Ser		-							_		17	748
	-		-	-	ctg Leu 310			-	-	_			_	_		17	796

	cct Pro	-		_	-	_							_			1	844
	aaa Lys															1	892
_	tcc Ser		_	_	_			_		_		-	_			1	940
	atg Met 370															1	988
	atc Ile			-		_	_	-				_				2	036
	aag Lys			_		_		_					_	~		2	084
	ttc Phe		-	_	-					_			_	~		2	132
	tcg Ser		-		_		_	-	_	_	_		_	_	_	2:	180
	ggg Gly 450	-		-		_	-					_				2:	228
-	ccc Pro			_	_	_	_		_	_		-				2	276
-	aat Asn	-									_		_	-	_	23	324
	ctg Leu	_		_	_						-	_	_	-		23	372
	agc Ser		-		_			_	_							24	420
	act Thr 530	_	-	_	_		-					_	_			24	468
gca	gaa	atc	cct	gaa	ctc	caa	gat	atc	tct	gcc	ctg	gcc	cag	gac	aca	25	516

Ala 545	Glu	Ile	Pro	Glu	Leu 550	Gln	Asp	Ile	Ser	Ala 555	Leu	Ala	Gln	Asp	Thr 560	
	-	-		-	-		_	ccc Pro			-		-			2564
_		_		-				ctt Leu 585	_		-	_	_		_	2612
								tct Ser								2660
		_			_		_	gtt Val	-	-	-	_	_		_	2708
	_		_				-	cat His			-					2756
_		_	-	_				cta Leu	-			_				2804
					_		_	ttt Phe 665			_	_	_	_		2852
								gtg Val								2900
_		-		_				cac His			-	-	-	-		2948
		-	-			_	_	gaa Glu	_	_					-	2996
			_	_	_	-	_	agg Arg					-	-		3044
_			-	_		_		cca Pro 745			_		_	_	-	3092
								gcc Ala		-						3140
								ggg Gly								3188

770 775 780	
act ccc ttt ctt ccc cag gtg ttc agc tcc cga cag gca ctg aat ggc Thr Pro Phe Leu Pro Gln Val Phe Ser Ser Arg Gln Ala Leu Asn Gly 785 790 795 800	3236
cat gcc cgc atc cac ggg ggc acc aac cag gtg acc aag gcc cga ggt His Ala Arg Ile His Gly Gly Thr Asn Gln Val Thr Lys Ala Arg Gly 805 810 815	3284
gcc atc ccc tct ggg aag cag aag cct ggt ggc acc cag agt ggg tac Ala Ile Pro Ser Gly Lys Gln Lys Pro Gly Gly Thr Gln Ser Gly Tyr 820 825 830	3332
tgt tcg gta aag agc tca ccc tct cac agc acc acc agc ggc gag aca Cys Ser Val Lys Ser Ser Pro Ser His Ser Thr Thr Ser Gly Glu Thr 835 840 845	3380
gac ccc acc acc atc ttc ccc tgc aag gag tgt ggc aaa gtc ttc ttc Asp Pro Thr Thr Ile Phe Pro Cys Lys Glu Cys Gly Lys Val Phe Phe 850 855 860	3428
aag atc aaa agc cga aat gca cac atg aaa act cac atg cag cag gag Lys Ile Lys Ser Arg Asn Ala His Met Lys Thr His Met Gln Gln Glu 865 870 875 880	3476
gaa caa cag agg caa aag gct cag aag gcg gct ttt gca gct gag atg Glu Gln Gln Arg Gln Lys Ala Gln Lys Ala Ala Phe Ala Ala Glu Met 885 890 895	3524
gca gcc acg att gag agg act acg ggg ccc gtg ggg gcg ccg ggg ctg Ala Ala Thr Ile Glu Arg Thr Thr Gly Pro Val Gly Ala Pro Gly Leu 900 905 910	3572
ctg ccc ctg gac cag ctg agt ctg atc aaa ccc atc aag gat gtg gac Leu Pro Leu Asp Gln Leu Ser Leu Ile Lys Pro Ile Lys Asp Val Asp 915 920 925	3620
atc ctc gac gac gtc gtc cag cag ttg gga ggt gtc atg gaa gag Ile Leu Asp Asp Asp Val Val Gln Gln Leu Gly Gly Val Met Glu Glu 930 935 940	3668
gct gaa gtt gtg gac acc gat ctt ctc ttg gat gat caa gat tca gtc Ala Glu Val Val Asp Thr Asp Leu Leu Leu Asp Asp Gln Asp Ser Val 945 950 955 960	3716
ttg ctt cag ggt gac gca gaa cta taa agccc tgtgtgtcac ttagagacag Leu Leu Gln Gly Asp Ala Glu Leu * 965	3768
tgaaaaccca cggcctccat cttcattaat caggaaacct ggactgcctg cttgttttgt	3828
aaccctttta aactacctgt tttaaaagtg gtcattttat tcaggtttag aaaaaaaaat	3888
cctatttctt ttccttttat ttaaaaaaat ttgtttttgt ggggggttgg gctcgtgccg	3948
aattottt	3956

<210> 186

```
<211> 4610
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> CDS
     <222> (837)..(3707)
     <400> 186
ggcacgaggg gactctgctc gcccccatc tcacccccca agcggatact ggtcttctcg
                                                                       60
teggattgee catgeacttg ttgeagaaac ageeaaggee etggetgtgg agaatgetga
                                                                      120
aggaagaaga cgcagaagca ggacgaccct gaaagattca gcctcttcat cctcaaacag
                                                                      180
gtcgcttctc gggagttctt ggtgttggaa tattttacag caaagcagtc gaccaggcct
                                                                      240
cctcttccca cctgtccagc agcatgaaag cagcatgatt ggccgaccgc aggagaagcc
                                                                      300
cccagaacca ggcccccaac tcagccatct gcggaggtca aggtgtgagc gacgtctcct
                                                                      360
caccacagtg ctgtgtggtc tatacctcag ccagggagag gatgtgaaac ccccgccct
                                                                      420
gcacatgagt ggtacaggcc aacaggaaca cctggctcca gccacgttca cagacatgtc
                                                                      480
agccgtggag tagtgctgac acttttctct cagcttctca gggtttcagt ccttttgggt
                                                                      540
ttggtttatt tacctttttt atggttttgt ggctggacgt tcacaaccaa ggcagacagc
                                                                      600
atgggtgacc agcaactgta caagaccaac catgtggccc atggtagtga gaaccttttc
                                                                      660
taccaacage caccacttgg cgtccacage gggetgagee cactgatgge taccaataca
                                                                      720
cctactccca ggccagcgag atccggaccc agaagcttac cagcggtgtc ttacacaagc
                                                                      780
                                                                      836
tggactcttt cacccaggtg tttgccaacc aaaacctgcg aattcaggtc aacaat
                                                                      884
atg gcc cag gtg ctg cac act cag tca gca gtg atg gat gga gcc cct
Met Ala Gln Val Leu His Thr Gln Ser Ala Val Met Asp Gly Ala Pro
                                     10
                                                                      932
gac agt get etc ege eag etg etg tet eag aag eec atg gag eec eea
Asp Ser Ala Leu Arg Gln Leu Leu Ser Gln Lys Pro Met Glu Pro Pro
             20
gca ccg gct atc cct tcc cgc tac cag cag gtg ccc cag cag cct cac
                                                                      980
Ala Pro Ala Ile Pro Ser Arg Tyr Gln Gln Val Pro Gln Gln Pro His
         35
                             40
cct ggt ttc act ggt ggg ctg tcc aaa cca gct ctt cag gtc ggg cag
                                                                     1028
Pro Gly Phe Thr Gly Gly Leu Ser Lys Pro Ala Leu Gln Val Gly Gln
     50
                         55
                                             60
```

						ctg Leu			-		_	_		_	_	1076
						gga Gly										1124
	_		_		_	atg Met	_	_		_				_	_	1172
	_	_		-		caa Gln	_	_			_		_		_	1220
_	_	_				cgc Arg 135			_		-	_	_		_	1268
_	_	-	_	_	_	cta Leu	_	_	_	_		_			_	1316
_			_			cag Gln				_	_	_		_		1364
						atg Met		-								1412
						cca Pro										1460
	_			_		cag Gln 215				_			_	_		1508
	-					cag Gln	_	_		_		_		_	_	1556
-		_	_	_	_	aag Lys				-	-	-	-	-	-	1604
-	_	_	_			ggg Gly	-	_				-			_	1652
	_			_		gat Asp	_			_	_	_				1700
cat	cgc	CCC	ctc	cta	tcc	ccc	agt	ggg	atc	cac	ctc	aac	aac	atg	ggg	1748

His	Arg 290	Pro	Leu	Leu	Ser	Pro 295	Ser	Gly	Ile	His	Leu 300	Asn	Asn	Met	Gly	
	_		_	_	ctg Leu 310			-	_	_			-			1796
		_		-	gcc Ala	_							-			1844
					GJÀ âââ											1892
_			_	_	aag Lys			_		_		-	_			1940
					Gly ggg											1988
_					cat His 390											2036
	-			_	gag Glu	_		_					_	-		2084
			_	_	ccg Pro					_			_	_		2132
	_		_		ctg Leu		_	_	_	_	_		_	_	_	2180
					ctc Leu											2228
_				_	ctg Leu 470	_	_	-	-	_		_				2276
_		_			tcc Ser			-		~ ~	-		_	_	_	2324
	_	_		_	acg Thr						_	-	_	_		2372
					agc Ser											2420

			515					520					525				
									atc Ile								2468
	-	-			-			-	atc Ile		-	_	-	-	-		2516
		_	-		-	_		-	ccc Pro			_		_			2564
									ctt Leu 585								2612
	_	-							tct Ser	-		-	_			_	2660
									gtt Val								2708
		_		_				_	cat His			_					2756
									cta Leu								2804
	_		_			_		-	ttt Phe 665			-	-	-	-		2852
	_		_	_		_	_	_	gtg Val					_			2900
	_		_		_				cac His			-	-	-	-		2948
									gaa Glu								2996
				-	-	-	-	-	agg Arg					-	_		3044
٠	_			_	_		_		cca Pro			-				-	3092

			gc cag ccc tca ggc tcc ly Gln Pro Ser Gly Ser 765	3140
		Cys Gly Ala V	tg ttc agc tcc cga cag al Phe Ser Ser Arg Gln 780	3188
		Ile His Gly G	gc acc aac cag gtg acc ly Thr Asn Gln Val Thr 95 800	3236
			ag aag cct ggt ggc acc ln Lys Pro Gly Gly Thr 815	3284
	r Cys Ser Val		cc tct cac agc acc acc co Ser His Ser Thr Thr 830	3332
	-		cc tgc aag gag tgt ggc co Cys Lys Glu Cys Gly 845	3380
•	_	Ser Arg Asn A	ca cac atg aaa act cac la His Met Lys Thr His 860	3428
		Arg Gln Lys A	ct cag aag gcg gct ttt La Gln Lys Ala Ala Phe 75 880	3476
			et acg ggg ccc gtg ggg nr Thr Gly Pro Val Gly 895	3524
	ı Leu Pro Leu		gt ctg atc aaa ccc atc er Leu Ile Lys Pro Ile 910	3572
			cc cag cag ttg gga ggt al Gln Gln Leu Gly Gly 925	3620
			at ctt ctc ttg gat gat sp Leu Leu Leu Asp Asp 940	3668
caa gat tca gt Gln Asp Ser Va 945		Gly Asp Ala G	aa cta taa agccctgtgt Lu Leu * 55	3717
gtcacttaga gac	agtgaaa accca	cggcc tccatctto	ca ttaatcagga aacctggact	3777
gcctgcttgt ttt	gtaaccc tttta	aacta cctgtttta	aa aagtggtcat tttattcagg	3837

3897 tttagaaaaa aaaatcctat ttcttttcct tttatttaaa aaaatttgtt tttgtggggg gttgggggaa taaataattg gcacaactat ctttaagagg tgtttcatct gggctacctt 3957 4017 ctcatgaaat cattcccagt agggactgaa gctgaccttc atgttccatt gcattcagat 4077 gtcaaccatc ccggttgcct tttatcccaa agcttgctgt gagtgtgtgt gtgtgagacg caggegacce tettagtact ggggtettgg ggecaacttt teecateaag egttactttg 4137 attctgttct gacctcattc catagtttgc agtgagcatg gcatctttgc ctggagatac 4197 tatgctaggg ccagctttcc aggggcaaag caagccctcg tgttacacgg ctctcctcca 4257 4317 gctcacacga catgtgagga gatgaccaaa tgtgaaaaca ggtttcccct gtgttgcccg tcatcctttg gcccgttcac aggaatggag tactgtataa ttttaggctt tcattcccag 4377 cagtgtttac tgaggacctg gttttctaga acaggtgtgt cctgtcctct tccatgttcc 4437 ctgggggctg gtcagctcca agttgtgggt ggcagagctg tgtttcagca tgaactgact 4497 agagacccat ctggaggcaa atattaagtt gccaggactg ctttcacttc agggtgattg 4557 aaggacacat attgaagtac ctagaatgcc agaaagtgtt ctattgccca aac 4610

<210> 187

<211> 2318

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (367)..(1524)

<400> 187

ttaggtaccg gtccggaatt cccgggtcga cgatttcgtg gaaagagaga aaccaccgct 60 120 ccttgcagca ctgctggacc aggttacaag atgttcacct aagattgaga cctagtgact 180 acatttccta cgggaacaaa taaatggttt ttcatctccc ggagatacat tacaaacaaa 240 300 tatggtgcta aaagaactcc ttacctttct ctgactacaa tttatttgga catacttttg tattgaagag aggtatacat actgaagcta cttgctgtac tataggagac tctgtcctgt 360 408 aggatc atg gac cat cct agt agg gaa aag gat gaa aga caa cgg aca Met Asp His Pro Ser Arg Glu Lys Asp Glu Arg Gln Arg Thr 456 act aaa ccc atg gca caa agg agt gca cac tgc tct cga cca tct ggc Thr Lys Pro Met Ala Gln Arg Ser Ala His Cys Ser Arg Pro Ser Gly

15					20					25					30	
					ggg Gly											504
					tgt Cys											552
			_		tat Tyr					-					_	600
_		_			ctt Leu			_	_		-	_		_		648
-	-	-			act Thr 100	_	_	_			_		-		_	696
					gaa Glu											744
_	_	_			aac Asn		_			-				_		792
					att Ile											840
_		_			aaa Lys						-			-		888
					tat Tyr 180											936
					gat Asp											984
		_		_	ctc Leu						_	-	-			1032
		_			aaa Lys			_								1080
-	-		_		aac Asn					_	-					1128

tat gtc agg cga ctg gac ttc ttt gaa aaa cct gat tat gag tat tta Tyr Val Arg Arg Leu Asp Phe Phe Glu Lys Pro Asp Tyr Glu Tyr Leu 255 260 265 270	1176
cgg acc ctc ttc aca gac ctc ttt gaa aag aaa ggc tac acc ttt gac Arg Thr Leu Phe Thr Asp Leu Phe Glu Lys Lys Gly Tyr Thr Phe Asp 275 280 285	1224
tat gcc tat gat tgg gtt ggg aga cct att cct act cca gta ggg tca Tyr Ala Tyr Asp Trp Val Gly Arg Pro Ile Pro Thr Pro Val Gly Ser 290 295 300	1272
gtt cac gta gat tct ggt gca tct gca ata act cga gaa agc cac aca Val His Val Asp Ser Gly Ala Ser Ala Ile Thr Arg Glu Ser His Thr 305 310 315	1320
cat agg gat cgg cca tca caa cag cag cct ctt cga aat cag gtg gtt His Arg Asp Arg Pro Ser Gln Gln Gln Pro Leu Arg Asn Gln Val Val 320 325 330	1368
agc tca acc aat gga gag ctg aat gtt gat gat ccc acg gga gcc cac Ser Ser Thr Asn Gly Glu Leu Asn Val Asp Asp Pro Thr Gly Ala His 335 340 345 350	1416
tcc aat gca cca atc aca gct cat gcc gag gtg gag gta gtg gag gaa Ser Asn Ala Pro Ile Thr Ala His Ala Glu Val Glu Val Val Glu Glu 355 360 365	1464
gct aag tgc tgc tgt ttc ttt aag agg aaa agg aag aag act gct cag Ala Lys Cys Cys Cys Phe Phe Lys Arg Lys Arg Lys Thr Ala Gln 370 375 380	1512
cgc cac aag tga cca gtgcctccca ggagtcctca ggccctgggg actctgactc Arg His Lys * 385	1567
aattgtacct gcagctcctg ccatttctca ttggaaggga ctcctctttg ggggagggtg	1627
gatatccaaa ctaaaaagaa gaaaacagat gcccccagaa ggggccagtg cgggcagcca	1687
gggcctagtg ggtcattggc catctccgcc tgcctaaggc tctgagcagg tcccagagct	1747
getgtteete caetgettge ceataggget geetggttga eteteettee eattgtttae	1807
agtgaaggtg tcattcacaa aaactcaagg actgctattc tccttcttcc ccttagttta	1867
ctcctggttt ttaccccacc ctcaaccctc tccagcataa aacctagtga gctaaaggct	1927
ttgtctgcag aaggagatca agaggctggg ggtaaggcca agaaggtagg aggaaaatgg	1987
cagacctggg ctggagaaga accttctccg tatcccaggt gtgcctggca gtatggtttc	2047
ctcttcctct gtgcctgtgc agcattcatc ccagctggcc ttggggttca ggttccttct	2107
tecetecete etgtgaagtt acaetgtagg acaeaagetg tgageaatet geagtetaet	2167

gtccctgtgt gttggcgttc ttagcttttt tgacaaactc ttttctccag gtagtaggac 2227
aatgaaaatt gttttaagca aaggaaagaa aactgacttt gttgcacttt tagtttttt 2287
aaaaaaaaca aaaacaaaaa catgaaaaaa a 2318

<210> 188

<211> 1335

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (505)..(1119)

<400> 188

60 cgacgatttc gtgcgccccc gagcgggccg ccggggcgct gcgagactgg agaagttggc gaggagget ggagaacca ggagtttca agetgtgetg ceaccegage tetggateca 120 cctggctgtg gtggcctgtg gcaatcggct ggaggagacg ctggtcatgc tcaaatcagc 180 tgtgcttttt agccacagga agatccaatt ccacatcttc actgaagact ctctgaagcc 240 cgagtttgat aagcagttac gccatggcct gactcatata caaagaagtt tgagcacaga 300 atctacccca tcacattttc tgttggaaac cctcaggagt ggaagaaatt gttcaaaccc 360 420 tgtgctgccc agagactctt tcttccggtg attttaaagg atgtggactc acttctctac gtggacaccg atgtcctctt tctgagacct gttgatgaca tctggaagct tctgaggctg 480 531 tttaattcca cccagcttgc agcc atg gcc cct gag cac gaa atc ccc aag Met Ala Pro Glu His Glu Ile Pro Lys 579 att ggc tgg tac agc cgc ttt gct agg cat cct ttc tat ggc tct gca Ile Gly Trp Tyr Ser Arg Phe Ala Arg His Pro Phe Tyr Gly Ser Ala 15 gga gtt aat tca gga gtc atg tta atg aat tta act cgg ata aga agt 627 Gly Val Asn Ser Gly Val Met Leu Met Asn Leu Thr Arg Ile Arg Ser 3.0 acc cag ttc aag aac agc atg att cca aca ggc ctg gct tgg gag gac 675 Thr Gln Phe Lys Asn Ser Met Ile Pro Thr Gly Leu Ala Trp Glu Asp 45 50 atg ttg tac cct ctg tac cag aag tac aag aat gcc atc acg tgg gga 723 Met Leu Tyr Pro Leu Tyr Gln Lys Tyr Lys Asn Ala Ile Thr Trp Gly 60 65 70 gac cap gat tta tta aat att att ttt tat ttc aac cca gag tgt ctc 771 Asp Gln Asp Leu Leu Asn Ile Ile Phe Tyr Phe Asn Pro Glu Cys Leu

75	80		85	
-		-	c gat cac tgc atg o Asp His Cys Met)	
			t gtg tct gtt ctg y Val Ser Val Leu 120	
			a cca acg ttc aga n Pro Thr Phe Arg 135	
• •	Ile Arg Asp I		a gac aat ctc ttt n Asp Asn Leu Phe 150	
			g gag act gtg cac 1 Glu Thr Val His 165	
			g caa att gag aaa s Gln Ile Glu Lys)	
			c cat gtt ggc ccc e His Val Gly Pro 200	
cag atg cac tga Gln Met His * 205	ata ttttgtctt	tg ttgcaagtca a	attaggtgtc ttgtgaa	acaa 1162
ggaaatacta atcto	ctaagc tgcctg	ggtc tttttgtgtç	g aatatttaat ggtgo	ctccat 1222
gactgttgag tttta	aaaac ctcgtta	aaat tttgccaaat	cagttgcccc caaa	agggaa 1282
tatgcttttc cttat	ctitt titctaa	aaat gctatttato	c tctaaggaaa aaa	1335
<210> 189				
<211> 1685 <212> DNA				
<213> Homo	sapiens			

<220>
<221> CDS
<222> (126)..(770)

<400> 189
gcacgagcgc aggcagggct ctggggcacc tagagaccgg ggccggagac gtggcagccg 60
ccctgcccgc cagaaagttt cctagaagtt tgctgggcgc gggcgcacga ctgactggct 120

		_		c ctg agc cac p Leu Ser His 10		167
gcc atg atc to Ala Met Ile Le 15					5 5	215
ggc atc tct gg Gly Ile Ser Gl		•		-		263
agg tac ctg ga Arg Tyr Leu As			e Ile Ser			311
atg aag gtg gt Met Lys Val Va 65					9	359
tat ggg aaa tt Tyr Gly Lys Ph 80	_	_			 -	407
ctg gag ttt ct Leu Glu Phe Le 95		_			-	455
tac agt ttc ac Tyr Ser Phe Th						503
gaa tca gtg gc Glu Ser Val Al 13	a Ile Leu		ı Phe Met			551
gag gct gag ac Glu Ala Glu Th 145						599
cgg gca ctc ta Arg Ala Leu Ty 160	r Leu Ala .				55	647
ttc tat gac ca Phe Tyr Asp Gl 175						695
tac tgt gac tt Tyr Cys Asp Ph					22 2	743
aag tta agt ct Lys Leu Ser Le 21	eu Pro Met	-		tcagagaca gto	ctacgcct	795
taacaagcac atg	gaaggaaa ct	attctgaa tg	gttctcttt	ggcaacttat d	ccataatttg	855

915 ggatcaaatg ttaaaaccag aaaagtgttt agtgtggatt tcagcaaaac ctgatcatcc 975 cacccagaag accttctcat caatagatcg cccttaaaga cccattgtaa ggtcataaaa aacctcggcc aactgcacaa agatggtgcc tcactgcaac aagaaacctt aaggtgtctt 1035 1095 accgacgaaa taaaaaacat aaatgattgt tctccaaggc ctgagggcaa gactcatgat gagcaagtca accccaatct ggaacaatgt ccctcctctt agaatgtccc aactaaagac 1155 1215 cagttaaaat attagggtac gttcttgtga atttccactt tccaggtaga tgaccaaatt 1275 taggtggtca agatataaag gtgtcagcta gttttaagtg tgaaacttat ttcactttca 1335 cactgccttc aggccagaag caaaccaaat ttaccaggtt tggctggagg agttttgtga 1395 ctcatctttt actggtttga attttttcaa accagtggct gatacctgcc ttgtacttag taccttaata ccaataacct aatggtactt aggcgagtac catttgcaca atcactgttt 1455 tacttatgag cagatacaga tatatccaaa cccttaccta ctaggtatcc tgctagggtt 1515 ttcaattcca attcttgtat taagtttttt cctttcagtt ttaggtgcga aagtaatcag 1575 tcaatccaat atcccccatc tttgtcttga aacaaaaact gttttaagac gtctacgttg 1635 aattattcag agaattaagc aataaaagct cacaccttat tgtcaaaaaa 1685

<210> 190

<211> 716

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (151)..(636)

<400> 190

60 atttggccct cgaggccaag aattcggcac gaggcaggca gggctctggg gcacctagag accggggccg gagacgtggc agccgccctg cccgccagaa agtttcctag aagtttgctg 120 171 ggcgcgggcg cacgactgac tggctggacc atg aac gtg ttc cga atc ctc Met Asn Val Phe Arg Ile Leu 219 ggc gac ctg agc cac ctc ctg gcc atg atc ttg ctg ggg aag atc Gly Asp Leu Ser His Leu Leu Ala Met Ile Leu Leu Gly Lys Ile 10 15 267 tgg agg tcc aag tgc tgc aag ggc atc tct ggg aag agc cag atc ctg Trp Arg Ser Lys Cys Cys Lys Gly Ile Ser Gly Lys Ser Gln Ile Leu

	_		_			acc Thr			_	_	_				_	315
						gta Val										363
						atc Ile										411
						ata Ile										459
						ctg Leu 110										507
						att Ile										555
						ttc Phe										603
						cca Pro				tga *	ggad	cctt	c aga	agaca	agtc	654
taco	gcctt	caa o	caago	cacat	cg aa	aggaa	aacta	a ttt	tgaa	atgt	tcto	ctttg	ggc a	actt	tatcca	714
ta																716

<210> 191 <211> 948 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (380)..(706)

<400> 191 tgagatggag tctcactctg tcgctcaggc tggagtgcag tgggaagatc tcagcttact 60 gtaacctcca cctcccgggt tcaagcgact ctcgtgcctc agcctcctga gtagctggga 120 ttacaggcac ctgccaccat gcccagctaa tttttatatt tttaagagat gggggttcac 180 catgttggcc aggctggtct caaactcctg acctcaggcg atccgcccac cttggcctcc 240

caaa	gtga	ctg g	gttt	tgcag	ga to	gggag	gccad	c cat	gcco	cagc	ctag	gtcto	cac t	ttat	taggct	300
ccca	.aacc	cac a	agcag	gaaca	ac ct	zggct	zgact	cat	ccct	ctg	caco	ccato	cac g	gccag	gtgggc	360
atgc	tggc	ctg t	taggt	-gggg	Met				a Arg						c tgg r Trp)	412
tgt Cys																460
gtt Val																508
gct Ala																556
tgg Trp:																604
att Ile						-										652
ggc Gly																700
gcc Ala	tag *	acco	cctgg	gga g	ggcct	ccaa	ag to	ccta	aggt	: tag	gacat	ctc	ctg	gggtg	gct	756
atgg	acto	gtc g	gggg	ctcca	a gg	gagco	cgagt	gtg	aaaa	gaaa	ctca	actgt	gg g	gaggo	cgctcc	816
tgac	ctgo	cag g	ggago	ctgga	aa to	gctgt	ggga	a ggg	rccct	gac	cccg	gggg	ccc a	atgga	agctcc	876
ctag	gcto	cct o	ctggd	ccaca	ac gg	gacgo	gtgg	ggto	gaco	cgg	gaat	tccg	ggg d	ccggt	accga	936
aggc	gato	caa g	gg													948

```
<210> 192
<211> 1152
```

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (47)..(943)

<400> 192 agaacaagca cago	eccaage cagat	gtaca gcacac	acag catccc	atg gtg gcc Met Val Ala 1	55
aaa gac agg cag Lys Asp Arg Glr 5		Leu Met Ala			103
gta cag gtg ctt Val Gln Val Leu 20					151
cag gct ccg aac Gln Ala Pro Asr			Gln Pro Gln		199
agc caa atg tcg Ser Gln Met Ser 55	Leu Pro Ala				247
gtg gag cag cca Val Glu Gln Pro 70					295
ttt gag ggg cgc Phe Glu Gly Arg 85		Thr Val Thr			343
tct gtg cct aag Ser Val Pro Lys 100					391
gcc tct gag aag Ala Ser Glu Lys			Leu Lys Met		439
gaa gct cag att Glu Ala Gln Ile 135	Asp Thr Asr		Met Ile Val		487
aag aag gct ctt Lys Lys Ala Leu 150					535
ccc tcc acc cac Pro Ser Thr His 165		. Ala Gly Met			583
caa cag aaa tgt Gln Gln Lys Cys 180					631
tcc cta acg aca Ser Leu Thr Thi			Ala Val Pro		679

cag ttc atg cgt att cag aat gta ggc caa aag aaa gct gaa gag agt Gln Phe Met Arg Ile Gln Asn Val Gly Gln Lys Lys Ala Glu Glu Ser 215 220 225	727
cca gca gaa att atc atc cag gct att cct cag tat gct att cct tgt Pro Ala Glu Ile Ile Gln Ala Ile Pro Gln Tyr Ala Ile Pro Cys 230 235 240	775
cac tcc agc tcc aat gtg gtg gtg gag ccc agt ggg ctt ctt gag cta His Ser Ser Ser Asn Val Val Val Glu Pro Ser Gly Leu Leu Glu Leu 245 250 255	823
aac aac ttc act agt caa cag ctg gat gat gag gag aca gca atg gagAsn Asn Phe Thr Ser Gln Gln Leu Asp Asp Glu Glu Thr Ala Met Glu260265270275	871
cag gac ata gac agt agc acg gag gat gga act gaa ccc agc cct tct Gln Asp Ile Asp Ser Ser Thr Glu Asp Gly Thr Glu Pro Ser Pro Ser 280 285 290	919
cag agc tct gct gaa cgg tcc tag tgtttggaca caatagtgca ctttaaaacc Gln Ser Ser Ala Glu Arg Ser * 295	973
tgcttggtta ccaagtgtcc agggaaaccc ttgtattttg atgactaaaa agagcacttt	1033
gcccgtactt aggctgtgga ccctaaaaca gcagtgtttc aacaagatgt tgctgcagga	1093
gcagcttttt aaaacaagat aaaactcaca ggggaatgta ctttttaaa aaaaaaaaa	1152
<210> 193 <211> 2582 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (195)(1436) <400> 193	
ctcgtgagac gtgggacttc tcgcgggaac tgcattcaaa tatcccaggc gcttactcga	60
gagctagctg agcgaatggg ccggcgactg tggagttagc gtcctcaatg tggacgccct	120
gageteceat taggageege tggetgegge ageaggggae tagegtgaga gttggetaaa	180
aaaaagaaaa gaac atg gag gca gat ata atc aca aat ctt cga tgc agg Met Glu Ala Asp Ile Ile Thr Asn Leu Arg Cys Arg 1 5 10	230
ctc aaa gag gct gaa gaa gag cga cta aaa gct gca cag tat ggt tta Leu Lys Glu Ala Glu Glu Glu Arg Leu Lys Ala Ala Gln Tyr Gly Leu 15 20 25	278

						aat Asn 35										326
_		_	_	_		atg Met			-							374
						gaa Glu										422
						att Ile										470
	-	_	_			agc Ser	_	_			_	-	-			518
						aaa Lys 115										566
	_	-	-	_	_	aag Lys			_	_						614
						gaa Glu										662
						atg Met										710
_		_	_	_		acc Thr			_	_			_			758
	_		_	_		gaa Glu 195										806
~	_					gaa Glu		-		_			_	-		854
				_		gag Glu		-	-	_	_					902
						gca Ala										950
aaa	ggc	aac	tct	ttg	ttt	gca	gag	gtg	gaa	gat	cga	agg	gca	gca	atg	998

Lys Gly Asn Ser Leu Phe Ala Glu Val Glu Asp Arg Arg Ala Ala Met 255 260 265	
gaa cgt cag ctt atc agt atg aaa gtc aag tat cag tca cta aag aag Glu Arg Gln Leu Ile Ser Met Lys Val Lys Tyr Gln Ser Leu Lys Lys 270 275 280	1046
caa aat gta ttt aac aga gaa cag atg cag aga atg aag tta caa att Gln Asn Val Phe Asn Arg Glu Gln Met Gln Arg Met Lys Leu Gln Ile 285 290 295 300	1094
gcc acg ttg cta cag atg aaa ggg tct caa act gaa ttt gag cag cag Ala Thr Leu Leu Gln Met Lys Gly Ser Gln Thr Glu Phe Glu Gln 305 310 315	1142
gaa cgg ttg ctt gcc atg ttg gag cag aag aat ggt gaa ata aaa cat Glu Arg Leu Leu Ala Met Leu Glu Gln Lys Asn Gly Glu Ile Lys His 320 325 330	1190
ctt tta ggt gaa att aga aat ctg gag aaa ttt aag aat tta tat gac Leu Leu Gly Glu Ile Arg Asn Leu Glu Lys Phe Lys Asn Leu Tyr Asp 335 340 345	1238
agt atg gaa tcc aag cct tca gtc gac tct ggt act ctg gaa gat aac Ser Met Glu Ser Lys Pro Ser Val Asp Ser Gly Thr Leu Glu Asp Asn 350 355 360	1286
acc tat tat aca gat tta ctt cag atg aag ctg gat aac tta aac aaa Thr Tyr Tyr Thr Asp Leu Leu Gln Met Lys Leu Asp Asn Leu Asn Lys 365 370 375 380	1334
gaa att gaa agc act aaa ggt gaa ttg tcc ata cag cga atg aaa gca Glu Ile Glu Ser Thr Lys Gly Glu Leu Ser Ile Gln Arg Met Lys Ala 385 390 395	1382
tta ttt gag agc cag cgg gct cta gat att gag cga aaa ctt ttt tgc Leu Phe Glu Ser Gln Arg Ala Leu Asp Ile Glu Arg Lys Leu Phe Cys 400 405 410	1430
aaa tga aagatgcctc cagctttcag aaagtgaaaa tatgaaactg agagctaaac Lys *	1486
tagatgaatt gaaactaaaa tatgaacctg aagagacagt tgaagtgcct gtactgaaaa	1546
agaggcgtga ggtgctccct gtggatataa ccaccgctaa agatgcatgt gtcaacaaca	1606
gtgctctcgg gggagaagtt tatcgattac cgcctcagaa agaggagaca cagtcctgcc	1666
ctaacagttt agaagataac aacttgcaat tagaaaaatc agtttctata cacacaccag	1726
tagtcagtct ctctcctcac aaaaatctgc ccgtggatat gcagctgaag aaggaaaaga	1786
aatgtgtgaa actcatagga gttcccgctg acgctgaggc cttaagtgaa agaagtggaa	1846
acaccccaaa ctctcccagg ttagctgctg aatcaaagct tcaaacagaa gttaaagaag	1906

1966 gaaaagaaac ttcaagcaaa ttggaaaaaag aaacttgtaa gaaatcacac cctattctat atgtgtcttc taaatctact ccagagaccc agtgccctca acagtaaaga cttttcttta 2026 agtaagagta cggtgccact tgcctcaaaa gttactatgg tgcttaagat tgtcttgatc 2086 tgacatatat caccttctgg gttatttact cattgtgcca ggacctggca ttttcatgtg 2146 2206 cctttgacca agtgttcaga atttgcttga ctctaacctg gagagcttct taagtgatgc cccttcatgg agcttctatg acagtgaata aactattaat tgaaggaaaa tgttataatt 2266 aatgtatcta tttgctgcat tgtatatgga ttaaatgata aaaaacaagt aatctaccct 2326 cagagecatg tatttgagaa tgetteaate atatttteet atgtaetttt ttttataaae 2386 2446 ttagttttag actatgttgt aaaaatggga aggttgtaaa ctatgttgta aaaataggaa atgtggctta aaatatatac attatattgt ttcaggattt tgtcagtgtt taaagaacca 2506 tgttcatctt tgtatttata tacatgattt aaattttgtc taaaatttta aataaaactg 2566 ccagtgattt atcctt 2582

<210> 194 <211> 1042 <212> DNA

<213> Homo sapiens

<220>
<221> CDS
<222> (528)..(953)

<400> 194 cgaagacatc tcctattagc tgtgtgactg tttataggca ggttcttgtg ccccggttgg 60 tgcttcacaa aaggaagctt ataacaacag tacttgtctc acagttttag gataattaaa 120 180 ttatggtata tgcaaagcaa ttaaaacagc tcctgccaaa gagtaaacac catataaata ttcattaaat aacatacaaa cataccaggt tgggaaaaat cagtaagcat aggagtcagg 240 aaattccaag ttggttatca caactcttgg cccacagggc tttaatccag gtgcccttgt 300 ctcctaccct tgttgccatc ccagtgtctc cagggagtaa gtagaaataa agatcctatc 360 420 teacetettg ggeattttee eetgeeetga aagegtataa tegettagea eagteggtge 480 ttaaggggcc aggctccaaa gaagattaaa ggaacagttt gtggggtgca ctgggcagca 536 gtactctcct ctgagttcaa tcatcttgca ctctaagaat caccacc atg gcc ctt Met Ala Leu

1

			_	_	aag Lys		_					_		-		584
			_		cca Pro 25	_	_			_						632
-	-	~ ~			ggc Gly	_	•	~	~ ~		_			_	_	680
					tgt Cys											728
				-	gtc Val			_	-							776
					gtg Val											824
_			_		cat His 105		~ ~	_	_	-			-			872
					gcc Ala											920
					ttc Phe					tga *	gcts	gaato	g tto	etggg	gcag	971
agco	caaga	atg g	gaagt	cagt	t ac	ggco	ccto	g cat	tcag	gcag	taaa	aggo	cac a	acago	aggtg	1031
ctca	ataa	at g	I													1042

```
<210> 195
<211> 903
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (17)..(739)
```

<400> 195

ggctccagaa agcggc atg tcc cct ttg ctc ttt ggg gct ggg ctg gtc 49

Met Ser Pro Leu Leu Phe Gly Ala Gly Leu Val

1 5 10

	ctg Leu															97
	ggc Gly															145
	gcc Ala 45															193
_	cac His	_							_			-	_			241
	Gly gag															289
-	g gga n Gly				-			_		_			-			337
	tct Ser								_		-		-		_	385
	aat Asn 125															433
	gag Glu					-			-	_	_	_			-	481
	gat Asp		_	_	_			-								529
	atc lle			_		_					-		_			577
_	gct Ala	_														625
	tcg Ser 205		-	-	-		_							_		673
	tat Tyr															721
aaç	g aag	cca	aga	tgc	taa	gcta	ag g	gtgad	ctata	ag ca	accct	ggct	gtt	ttct	tct	775

Lys Lys Pro Arg Cys ^ 240	
ggggcttagt cgaatcagct ttgtaatgtt atgggacaaa aatcaattat ctcattaatg	835
ttttagtctg ctgcacacat ctaaaaaagc aaaatggcaa taaaatcata acagtgaaaa	89!
aaaaaaaa	903
<210> 196 <211> 649 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (19)(312)	
<pre><400> 196 ccgggagctt ggtgcgct atg gcg aca ccc agc ctg cgg ggt cgt ctg gcg</pre>	53
cgg ttt ggg aac ccg cgg aag cct gtg ctg aag ccc aat aaa cct ctc Arg Phe Gly Asn Pro Arg Lys Pro Val Leu Lys Pro Asn Lys Pro Leu 15 20 25	99
att cta gct aac cgc gtc ggg gag cgg cgc cgg gag aag ggc gag gcg Ile Leu Ala Asn Arg Val Gly Glu Arg Arg Arg Glu Lys Gly Glu Ala 30 35 40	147
act tgc atc acg gag atg tcg gtg atg atg gct tgc tgg aag cag aat Thr Cys Ile Thr Glu Met Ser Val Met Met Ala Cys Trp Lys Gln Asn 45 50 55	195
gaa ttc cgc gac gat gcg tgc aga aaa gag atc cag ggc ttc ctc gat Glu Phe Arg Asp Asp Ala Cys Arg Lys Glu Ile Gln Gly Phe Leu Asp 60 65 70 75	243
tgt gcc gcg agg gct cag gtg acc gat ggc tcc tgg ggt gct ttc tca Cys Ala Ala Arg Ala Gln Val Thr Asp Gly Ser Trp Gly Ala Phe Ser 80 85 90	291
gga aaa gaa tgg ggg aga tag aa gtaatgattc tccctgcctt ttgctaggaa Gly Lys Glu Trp Gly Arg * 95	344
aggccctttc attcatttgg gaggtatatt attcacgcca aagtgggaaa ggttacagtt	404
ttgaaggetg tgtgatettg aeggatttat teattgetet gaaetttega gttaetgtae	464

524

584

gtaaaatgag gctaaccaat accaccttaa agaatgttgt gagtgtcaga tgaagtaatg

aatgggaaaa tcattttgaa aaatgtaaat tgctgctcaa gtagacatta ttgtgtgaaa

tagaactaa	a gagactaaad	c taaataatg	a caatag	tttg gttcc	tgtct aggc	taattg 644
ctagg						649
<211 <212	> 197 > 360 > DNA > Homo sapie	ens				
	> > CDS > (36)(275	5)				
	> 197					
agacgtata	g ctgagcgacc	c cagecegega	a gcgag		gtg gcc gtg Val Ala Val	l Gly
	ga cag tcc c ly Gln Ser G 10					
Phe Val M	tg ggt tgc g et Gly Cys A 25			Ala Glu A		
	cc tgt ctc a er Cys Leu A					
	gg aaa acc a ly Lys Thr M					
	tt ggg atg g le Gly Met G 75			c catggtt	gcc aactaca	1tct 296
gtcccttcc	c atcaatccca	gcccatgtac	c taataaa	aga aagtc	tttga gtaaa	aaaaa 356
aaaa						360

```
<210> 198
<211> 1280
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (206)..(535)
```

<400> 198 ggggttctag aaaatatatt tootataata aaatggcacc ttcccccttt caagaagggt	60
gattetgggg cegacteagg gtttaggtge eccetggtgt ggeetaaatg tececacetg	120
ggccatcttt ctggggagga ctctcccagg tagggaaggc cagaggtggc ccagtgcctg	180
gagggttagg gtctctgcct gggat atg caa gag gaa gta gga aag ggt Met Gln Glu Glu Val Gly Lys Gly Gly 1 5	232
ctc atg gat gat cct agg ctg cta gaa gtc ctt aag gcc cca tct agt Leu Met Asp Asp Pro Arg Leu Leu Glu Val Leu Lys Ala Pro Ser Ser 10 15 20 25	280
cca ttc cac tcc cta ccc cca ttc cag agc cga gta gta agt tta cag Pro Phe His Ser Leu Pro Pro Phe Gln Ser Arg Val Val Ser Leu Gln 30 35 40	328
atg ttt ccc cca tta cgt acc ccc acc cat ccc tgc tgc agc gag cct Met Phe Pro Pro Leu Arg Thr Pro Thr His Pro Cys Cys Ser Glu Pro 45 50 55	376
gag agc cag gca gag cca ggc aca gct cct cag tct tct cac aca gtc Glu Ser Gln Ala Glu Pro Gly Thr Ala Pro Gln Ser Ser His Thr Val 60 65 70	424
ctg ccg gtg gcc ttc cct cat gac cct tgc ttg gga ggg tgg agc act Leu Pro Val Ala Phe Pro His Asp Pro Cys Leu Gly Gly Trp Ser Thr 75 80 85	472
ggc tcc ttg acc cta aaa ggt agc tgg cag ggg caa gat ggg ggc cag Gly Ser Leu Thr Leu Lys Gly Ser Trp Gln Gly Gln Asp Gly Gln 90 95 100 105	520
cta cct aat gga tga aagccacaag tgaatacagt tcttgtcacc agggttgccc Leu Pro Asn Gly * 110	575
tgccctcact cggcagggag ttctgacacc ccagggcccg tgagctacct gcttgagccc	635
ctgtttctgg ggcaccttcg aggaggcgtt gtggagggca tcgcccctg tttattcaca	695
acaccctcag gggcaaacag gcctgggacc cgctgacacc attttgggta gctggatgca	755
cccgacagca gtggggtcca cacactgagc tccagctggc actgcccact caagggctga	815
gtggaggggc ccctccggcc agctctgctc caccagccct gcaagctgat gcagggggg	875
ggaagggctg ggtgttgcac tattgctgcg ctgccttaag gcatctgtcc tctggtggtg	935
cacccgtgca cacaggtaca gtgcatctgg gcacagcttt tggatccaca cctctgcaca	995
agtgtgaata cctctgcaca tatgggtgta tctgtgtgtg ctcgtgtata tggggtgggg	1055
aacatgagac ttcctgtgac cagtccaccc tggctcccag ctgtctgtat cctcctgccc	1115

cgccctggcg	agtycctacc	Ctyycayaa	.c ccaygg	agga grg	gaggerg	eetet	tgeetg	11/5
ggcctccaca	cagcatcctg	tacatacgc	c acctgg	gctg ggg	gtgggga	ggcag	gggcca	1235
ggagcatcga	ttaaagatca	catcctggg	g cttcca	ggga gct	ca			1280
<210> <211> <212> <213>	2549	ns						
<220> <221> <222>	CDS (284)(174	11)						
<400>	199 ttaccgggcc	gacgatttc	a tataat	atcc tgg	gagetge	aaact	actoo	60
	ccgggctttg							120
	cggcagcttc							180
actttgagtt	tccgccgcga	agcgccagt	c cgggcc	gagg aggg	gageett	tacta	icttct	240
ccctggtttc	attcatgttc	tgaggaggg	t gtgaga	agga acc	atg ga Met Asj 1			295
	g gaa gcc at Glu Ala Il 1							343
	agg gag co Arg Glu Pr 25							391
cac agc tgt His Ser Cys	ctc tct gg Leu Ser Gl 40	a ctc tgg y Leu Trp	gag atc Glu Ile 45	cca gga Pro Gly	gaa tcc Glu Ser 50	cag Gln	aac Asn	439
	acc tgt cc Thr Cys Pr							487
	aat tgg ca Asn Trp Gl							535
cta agg cta Leu Arg Leu 85	cat cca gg His Pro Gl 9	a atg ggg y Met Gly 0	ctg aag Leu Lys	ggt gac Gly Asp 95	ctg tgt Leu Cys	Glu :	cgc Arg 100	583

cat ggg gaa aag ctg aag atg ttc tgc aaa gag gat gtc ttg ata atg 631

His	Gly	Glu	Lys	Leu 105		Met	Phe	Cys	Lys 110	Glu	Asp	Val	Leu	Ile 115	Met	
															gtg Val	679
															gcc Ala	727
											tgg Trp 160					775
															cga Arg 180	823
											cag Gln					871
											gag Glu					919
											atg Met					967
											gtc Val 240					1015
											gtc Val					1063
											tct Ser					1111
											gat Asp					1159
ggg ggg	cta Leu	aga Arg 295	gag Glu	atc Ile	ctg Leu	aag Lys	act Thr 300	tat Tyr	gca Ala	gct Ala	gat Asp	gtg Val 305	cgc Arg	ttg Leu	gat Asp	1207
											gag Glu 320					1255
											gac Asp					1303

325					330					335					340	
			tat Tyr							_	_					1351
			tgg Trp 360													1399
			aag Lys													1447
			gga Gly													1495
			acc Thr													1543
			gga Gly													1591
			act Thr 440													1639
			ggg Gly													1687
			aac Asn													1735
gac Asp 485	taa *	gaaa	igct <i>a</i>	icc a	accct	aacc	a ca	ıgagg	gette	gaa	ittgg	igcc	tggd	cccc	at	1791
gggg	rcttg	ga g	gacc	gago	cc ac	tgac	aggt	ato	ccct	gaa	actg	agct	ga g	gccca	gtatc	1851
caag	rgatt	cc t	ctgt	ctga	at co	tttg	gtct	ttg	rctac	cag	gctg	aagt	ct g	gtcat	gaaac	1911
cact	tatt	tt a	aaaa	gcag	ja gg	ссса	gtca	aat	gago	att	gcat	ccca	ıtg a	ıggga	agcac	1971
gaca	.gggc	tg a	ıtggt	gagg	ga to	agag	cagt	tct	aagg	ıtga	ctcg	ttgg	ıgg t	aagg	atcag	2031
gact	ttgt	.cc a	tgta	gtag	gc ca	.acca	.ccct	ctt	ccct	gat	tccc	gtcc	gg t	gtca	.cagtt	2091
cagt	cagt	ga g	gatg	atga	ıa gt	agat	acag	tct	tcag	gac	acca	ttag	at g	ıggct	ttccc	2151
aata	.ggcc	aa a	ıaaaa	tgct	g cg	cata	.ccca	. gag	ctgg	rttg	ttgt	gctg	ag g	rccag	tcaga	2211
ggat	gctt	cc c	ctga	.ggtt	t ga	tata	acta.	agc	aacc	ttt	atgt	gact	ct c	acct	tctga	2271

cctcctggca	agagaaattc	agtgcagcag	ggggacacag	acctgcccaa	gccaccccac	2331
tgccgttccc	tctctgagca	caagctgggc	aaatcactgt	cccttggact	ccagtagacc	2391
agtgtcctag	tcttgccttt	tttctctaag	tggcaggatc	agaaaacctg	cgagctttag	2451
tttgtatttt	cactttatga	atgaggaaac	tgaaatggcc	ttaagggagc	aagttatttc	2511
ttttttttg	agactcctca	aaaaagaaaa	aaaaaaaa			2549

<210> 200 <211> 1377 <212> DNA <213> Homo sapiens <220>

<221> CDS <222> (331)..(1047)

Thr Val Leu Val Ile Cys Leu Ala Asp Leu Glu Glu Glu Ser Glu Ser

10

15

20

tgg gac aac tct gag gct gaa gag gag gag aaa gcc cct gtg ttg cca
Trp Asp Asn Ser Glu Ala Glu Glu Glu Glu Lys Ala Pro Val Leu Pro
25

30

35

399

act gtc ctt gtc atc tgt ctt gca gat tta gaa gag gaa tca gaa agc

gag agt aca gaa ggg cgg gag ctg acc cag ggc ccg gca gag tcc tcc 495 Glu Ser Thr Glu Gly Arg Glu Leu Thr Gln Gly Pro Ala Glu Ser Ser 40 45 50 55

tct ctc tca ggc tgt ggg agc tgg cag ccc cgg aag ctg cca gtc ttc 543 Ser Leu Ser Gly Cys Gly Ser Trp Gln Pro Arg Lys Leu Pro Val Phe 60 65 70

aag tcc ctc cgg cac atg agg cag gtc ctg ggt gcc cct tct ttc cgc 591
Lys Ser Leu Arg His Met Arg Gln Val Leu Gly Ala Pro Ser Phe Arg
75 80 85

											gtg Val					639
											gta Val 115					687
											agc Ser					735
											ccg Pro					783
									_	-	atc Ile			_		831
											tgt Cys					879
											ggg Gly 195					927
											att Ile					975
											cag Gln					1023
					atg Met		taa *	gcaa	ıcagt	gt g	ggtg	aggo	ec co	etttg	gcttg	1077
cgac	cctg	ıga ç	raaaa	ccto	g ag	rctgt	ttcc	aaa	agag	ıgag	ctgg	igccg	ıtg ç	gccac	tgagg	1137
gagg	gagct	ga g	agaa	gagg	jt tg	ıaaac	cggg	gtt	ccaa	ictc	cacg	rtccg	icc e	actgo	aaagc	1197
tcag	ıgtgg	rcc t	cggg	gaggo	g gt	cato	atgt	ctg	rccto	cgg	ctcc	tgca	itg g	ggag	ıgtggg	1257
ggto	tato	at g	acta	gtgo	t go	tgtg	aaca	tto	ctga	ıtcc	ggto	tctg	gac a	ıaaca	cgcct	1317
gtgc	acat	ga g	rtgtg	rtcgt	g ca	cctt	agco	tag	cacc	gca	gttg	cggg	rac c	tcaa	cggcc	1377

<210> 201

<211> 441

<212> DNA

<213> Homo sapiens													
<220> <221> CDS <222> (90)(416)													
<400> 201 ctctcatttt ctctctcaca caaaaatact ctggacttct ccaagtccct gaggagcctg													
accactgaag ctgatcatga gatgactgt atg ctg aca cac ccc ctt cag ggg Met Leu Thr His Pro Leu Gln Gly 1 5													
cct ggc ctt gac tta ggg ctg cac tgt atc ctc agc aac ggc ctt gca Pro Gly Leu Asp Leu Gly Leu His Cys Ile Leu Ser Asn Gly Leu Ala 10 15 20	161												
gga gcc cct ttt gga ctg ctt tcc cta ttc agc cca aag ttg ggg tgg Gly Ala Pro Phe Gly Leu Leu Ser Leu Phe Ser Pro Lys Leu Gly Trp 25 30 35 40	209												
tgg gag aag agg ggt tgg agt gaa tcc atc tct att caa att cca gct Trp Glu Lys Arg Gly Trp Ser Glu Ser Ile Ser Ile Gln Ile Pro Ala 45 50 55	257												
ggg att act cta gga gtc ttc ctg gct tgt ttt ggg ctc aaa ctt agc Gly Ile Thr Leu Gly Val Phe Leu Ala Cys Phe Gly Leu Lys Leu Ser 60 65 70	305												
tac att gtt tat tgg ctc cca aag tcg gga ttg aag agt gaa aag atg Tyr Ile Val Tyr Trp Leu Pro Lys Ser Gly Leu Lys Ser Glu Lys Met 75 80 85	353												
cag gca atg aat cct tct gca cac tcc tcc ccc cac att cct gac act Gln Ala Met Asn Pro Ser Ala His Ser Ser Pro His Ile Pro Asp Thr 90 95 100	401												
agt aag aac caa taa acacttgttg acggaaaaaa aaaaa Ser Lys Asn Gln * 105	441												
<210> 202													
<211> 732 <212> DNA													
<213> Homo sapiens													
<220> <221> CDS <222> (72)(296)													
<400> 202													

cccacgcgtc cgggcatgca taacctaaat gggaataaat atggcgcttc ggggaaggag

ggaaaaagta a atg aag ttc cag gaa tgt Met Lys Phe Gln Glu Cys 1 5	cat tct gaa gta atg agg cat 110 His Ser Glu Val Met Arg His 10
gga cag aaa ata tac ccc tca cat cat c Gly Gln Lys Ile Tyr Pro Ser His His . 15 20	
ata gct tca ttg aag tgt cag cac tca : Ile Ala Ser Leu Lys Cys Gln His Ser : 30 35	
agg aaa aat agc aac agt aca acg ggg a Arg Lys Asn Ser Asn Ser Thr Thr Gly a	
atg ggc ata ggg aat agc ggc tca aat g Met Gly Ile Gly Asn Ser Gly Ser Asn v 65 70	
ggtgctgata ttatttttta tgatgggagg atca	ataaagt gaattgagaa cagtgaggtc 363
tgtctttgct taacctattc aaccagaaat gaat	ggaget egaetggaaa ggaacagtet 423
tcagatgggt taagattgaa gggtggactg gact	cctactg agcaccgtcc ttcaacaagg 483
aaattctatt aaaggaaaat caatgcatta gta	tggggt tctcgtagct gttaaaaatt 543
gtctgctcca atccagggtt attaggccaa agtt	cacataa ttcagatctc actgcaacca 603
tccaaaagtg gattctcgag cccttgctcc aatq	gggggga ggagatcaat acaattccca 663
attccatgga aattgtttcc cttctaagga agaa	aaaaata aatcatctgc ttcaacataa 723
aaaaaaaaa	732

<210> 203

<211> 1476

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (111)..(488)

<400> 203

ctgaaaacag tgaaactgag ttagaaagga ttttgcgtcg cagaaaggtg acagcagaag 60
cagatagcag tagtccaact gggatattag ccacctcaga gtccaaatcc atg cca 116
Met Pro
1

gtg ttg ggt tct gta tcc agt gta aca aaa aca gcc ttg aac aag aaa 164 Val Leu Gly Ser Val Ser Ser Val Thr Lys Thr Ala Leu Asn Lys Lys

act c Thr L																212
ggt g Gly G 35						_	_		-		-		_	_	_	260
ttt c Phe G																308
gaa a Glu L				-		-	_	_		_		_				356
gaa co Glu P	ro G															404
aag ga Lys G																452
gaa aa Glu A: 115											tga *	tcca	a taa	aacca	agaa	502
gcctga	acato	, tt	tgg	aagt	c ct	tttc	aata	ago	acat	gat	tagt	gttg	gtt a	atatt	ggcaa	562
gggct	gtaga	ı ca	attc	tgct	c to	ıgtca	ctgt	att	caga	ata	cago	rttct	tt t	ctgg	gtgtca	622
cttttg	gtaag	, ta	ıgca	acta	t aa	acat	aagt	aag	rctgt	tta	gcaa	aaca	ıca d	catto	ctagt	682
aggtti	ttggt	: tt	ttt	gato	t tt	ataa	.agat	gag	gttt	ttt	tcct	agtt	ac t	gtat	taagt	742
atgact	ttctt	: tt	aga	aggt	t ac	aaaa	aaat	tca	gatg	ıttg	atac	cttt	tt a	aggaa	atgtg	802
cataco	cacto	at	caa	atgg	a at	gctg	aaag	ttt	gagg	rtgc	ttgt	atat	aa t	cgga	taaac	862
aaaact	tgato	: aa	ıccc	aatg	t ga	.tttt	aaaa	gcc	ccca	aag	aagc	ttct	gt t	ttgg	gtctg	922
atccto	cttga	ı tg	gag	aaac	t gc	agca	gcat	gga	aatt	gtt	gggt	actg	rtg g	gcata	ıcaagt	982
tatttt	tctac	ag:	rtag	actg	a ga	taaa.	ctga	aaa	.ctca	gga	gctg	gcat	ca a	acto	gtagt	1042
cccata	agtca	gt	gtt	aatt	a ca	caca	ttgt	taa	.ctat	tgg	atga	.aaaa	ita c	atgo	tattg	1102
attgto	gtcca	aa	gcc	tccc	g ag	gacc	tccg	tgg	ggat	gct	ctgg	tago	ct g	gaata	ıcagaa	1162
ctgagg	gtgaa	ag	tcc	aaac	c tt	gaat	ttta	cag	tagt	aag	ttgg	taaa	icc a	tgtg	ctctg	1222
tgctat	tgagt	. ta	att.	atgt	t tt	ccca	aata	cta	atgt	ggc	acaa	gtac	ca t	attt	tatca	1282
gagtto	cttat	gt	aca	gtat	g gt	gaag	ataa	gtg	acaa	.gca	caca	tttt	tc t	tgct	tcact	1342

gctg	gttei	tat	atta	caca	gg t	ttgt	tgtt	g tt	tttt	ttaa	aaa	agaa.	att	aagc	agtagt	1402
tagt	cctc	taa	aaat	acaa	tg t	ttca	ggct	a cc	acag	tgaa	taa	atag	aaa	tgta	atcagg	1462
gatt	caaaa	aaa	aaaa													1476
	-0.1	1.0-	204													
		10> . 11> .														
		12> : 13> :		sapi	iens											
		20>														
	<22	21> (4 >											
) (!	564)											
tgca		00> : acg :		gatat	g c	tgtc	cggai	t ac	acac	gcac	gca	caca	tgc (agata	atgctg	60
cata	iaace	aca o	cacti	taaa	na ca	acac:	atac:	a cad	caca	aata	cag	atato	act (acct	ggacac	120
															ccgtga	180
ggct	cata	agt 1	tg	_		-			_			-			c cca o Pro	228
				1	Ĺ				5				1	0		
				tct Ser												276
****		15		501	· al	110	20	501	701	110	1114	25		110	IIIu	
				cct					-			_	_		_	324
Ser	Val 30	Pro	Trp	Pro	Trp	Arg 35	Leu	Phe	Leu	Pro	Pro 40	Ala	Leu	Gly	Ala	
caq	gag	tcc	cct	act	act	ata	aac	taa	aat	taa	aaa	cac	agc	agc	CCC	372
				Thr												
																400
				ctg Leu												420
				65					70					75		
				aca Thr												468
501	110	110	80	1111	GIG	מעם	GTĀ	85	110	1 y 1	пси	- <u>y</u> -	90	1119	ASII	
				aat												516
Glu	Asp	Asn 95	Ile	Asn	Asn	Asp	Gly 100	Arg	Lys	Thr	GLy	Leu 105	Gln	Gly	Leu	
tgg	tct	ctc	ctg	ggg	ccc	ggg	acc	cgc	ctg	gtc	ttt	cag	cca	tgc	tga	564
Trp				Gly											*	

tga	ccac	acc	ccgt	ccag	gc c	agac	acca	c cc	ccca	cccc	act	gtcg	tgg	tggc	cccaga	624
tct	ctgt	aat	ttta	tgta	ga g	tttg	agct	g aa	gccc	cgta	tat	ttaa	ttt a	attt	tgttaa	684
aca	tgaa	agt	gcat	cctt [.]	tc c	ctcc	aaaa	a aa	aaaa	a						721
	-2	10> :	205													
	<2	11> . 11> . 12> .	3249													
			Homo	sap:	iens											
<220> <221> CDS																
			(71)	(2	399)											
		00>														60
		_		_				-					_	_	tattgc	60
att	cctga	acg	Met					a Se					g Pro		c tca r Ser	109
							tct									157
Asp	15	Leu	Pro	GIY	Asp	Pro 20	Ser	Ser	Gin	Glu	G1u 25	Asp	Glu	Asp	Tyr	
							gac									205
30	Pne	GIU	ASP	Arg	35	ser	Asp	ser	GТĀ	40	TĀT	ser	ser	Ala	45	
							cct				-	_		_		253
ser	Asp	ıyı	Asp	50	ьeu	GIU	Pro	GIU	55	ьeu	ASD	ser	vai	60	гур	
							gaa									301
ASII	GTĀ	GIU	65	Pile	ığı	ьeu	Glu	70	ser	GIU	Asp	GIU	75	GIU	ser	
							gtg Val			-			_	_		349
ьeu	пец	80	GIU	1111	FIO	1111	85	ASII	1112	vai	Arg	90	Set	GIU	ASII	
				_	_	_	tac		_	-		-		-		397
GIU	95	TIE	116	GIU	ASP	100	Tyr	пур	GIU	Arg	105	цур	тАт	GIU	PIO	
		_	_				att		_			_				445
Lys 110	пец	пур	GIII	r116	115	пЛя	Ile	шeu	ALG	120	пуз	ALU	TIGU	шеu	125	
_	-	-					agc		_				-			493
пλр	AT A	СУS	WOII	ட்தத் 130	пур	MDII	Ser	Holl	135	UDII	дтλ	FIO	val	140	TT6	

					aat Asn								_		541
					gtt Val										589
					ctc Leu										637
					agc Ser 195		_	-		_	_		-		685
					cat His										733
_		-	-		att Ile		-	_	_	_			_	_	781
					aac Asn										829
					ctg Leu										877
					aga Arg 275	_		_	-				_	_	925
					tgg Trp										973
					cat His							_		_	1021
	_			_	gaa Glu		_	_						_	1069
					aaa Lys										1117
				_	gaa Glu 355		_				_		-		1165

						aaa Lys										1213
		-	_	-		att Ile		_		_	-	-	_			1261
						ata Ile										1309
						agt Ser 420										1357
						aac Asn										1405
						gcc Ala										1453
						gac Asp										1501
						atg Met										1549
						gaa Glu 500										1597
	_				_	ggg Gly							9.0			1645
	-	_		-		aag Lys	_	_			_		_	_		1693
						ctg Leu										1741
_	_				_	gaa Glu				_				-		1789
		-		_		gaa Glu 580	-		_	-		_		~		1837
ttt	ttg	cta	gtt	gtt	ggc	ttg	aaa	cat	tat	atg	cta	tgt	gta	cta	tta	1885

Phe 590	Leu	Leu	Val	Val	Gly 595	Leu	Lys	His	Tyr	Met 600	Leu	Cys	Val	Leu	Leu 605	
-	-			-	gca Ala			_			_				_	1933
-	-			-	caa Gln	-						-		-		1981
_	_		-		gat Asp	-			-				_		_	2029
_		_	_	_	tgg Trp						_	-			-	2077
-	_			_	cct Pro 675			-								2125
-	-				aca Thr	_	_	_	-				_			2173
	-		-	_	cct Pro	-			-	-	-				-	2221
		_	_		gga Gly	_	~	_			_					2269
_	-	_	_		aag Lys		_	-		_			_			2317
					ttg Leu 755											2365
					ttg Leu											2413
					aac Asn											2461
					gtt Val											2509
					gag Glu											2557

	815					820					825					
					ttc Phe 835										-	2605
					gtg Val		-		_					_		2653
_			-		gca Ala	_								_		2701
					ttt Phe	_	_							-	-	2749
		-			gtt Val	_	_			-	-		_			2797
					caa Gln 915	-			_	_			_		_	2845
					gaa Glu											2893
ttg Leu	tag *	ctgt	gctt	tc t	tgat	gcgt	a ga	aaca	ıcgtç	g cat	ggag	ggat	caaa	acact	igt	2949
caga	aatto	gat g	gaaat	caat	a ca	ıcaaa	ıgaga	ı taa	agtt	tag	cttc	etttt	ta c	ctatt	caata	3009
ttga	acat	aa t	atto	ıttaa	aa ta	ıttga	gatg	, aaa	ıtgct	gtt	ggat	ttga	ata c	catta	aatct	3069
taat	gtaa	ıta t	tgta	agac	t tt	tgaç	gaata	tac	ttga	itta	aaat	gtga	aaa g	gaagg	gattg	3129
ttaa	ictta	ıtt g	rctat	tttg	ıg ta	tata	atgt	taa	ıttta	ttg	acta	ıgttt	ga a	ataa	tgtga	3189
agtç	ıtttt	tt a	tato	agat	t aa	tata	ıggaa	atg	ttta	ttc	ttga	aaaa	ata a	aaaa	aaaaa	3249

```
<210> 206
```

<211> 3186

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (71)..(2836)

<400> 206

catggcggcc	ttagcaagct a	tagctgcga ga	tttgaatt ac	tccactcg tagc	tattgc 60
attcctgacg				cg cgt ccg ag er Arg Pro Se 10	
				a gat gag gac u Asp Glu Asp 5	
		Ser Asp Ser		t tcc tca gcg r Ser Ser Ala	
				c agt gtg cag p Ser Val Gln 60	
	_			t gaa gaa gaa p Glu Glu Glu 75	
		~ ~		g ttc agt gaa g Phe Ser Glu 90	
		-		a aag tat gaa s Lys Tyr Glu 5	
_	_			a aga ctt tta s Arg Leu Leu	
				a cca gta tcc y Pro Val Ser 140	att 493 Ile
•	-	~ ~	00 0	t gtc caa cag e Val Gln Gln 155	
				g cta act gtt s Leu Thr Val 170	
				g gtt gga att u Val Gly Ile 5	
				g cag ggt gat s Gln Gly Asp	
				a tct gct atg y Ser Ala Met 220	

		gta Val 225												-	781
-	_	act Thr	-				_	-	_		_			~ ~	829
		gtg Val													877
		cat His													925
		ctt Leu													973
		act Thr 305													1021
		tca Ser													1069
		tct Ser													1117
		atg Met													1165
		tta Leu													1213
		ttg Leu 385					_		_	_	-	-			1261
		agg Arg													1309
		 tct Ser		_	_	_		-	_				_		1357
		cat His													1405

					agc Ser											145	53
					tta Leu											150	01
					aag Lys											154	49
					gca Ala											159	97
					att Ile 515											164	45
_	~			_	gca Ala			_			-	~				169	93
_		_			cag Gln											174	41
					gaa Glu											178	39
	_				atg Met		-									183	37
					ggg Gly 595											188	35
	_				ctt Leu											193	33
					tct Ser											198	31
					tca Ser											202	29
					cta Leu											201	77
aca	tgc	aga	aga	acg	ctt	ttt	ggt	gac	tat	tcc	tta	aag	aca	cgc	aag	212	25

Thr 670	Cys	Arg	Arg	Thr	Leu 675	Phe	Gly	Asp	Tyr	Ser 680	Leu	Lys	Thr	Arg	Lys 685		
	_			_	agt Ser	_				_							2173
	-	-	_		ttt Phe	_					_	-	_	_			2221
_		_	_		cag Gln			-			-	-	-				2269
_		_	_		aaa Lys	_	_										2317
~			_		aag Lys 755	_			_		_		•				2365
				_	aca Thr												2413
-	-		-		gtg Val										_	:	2461
		-	_		agt Ser						_			_		;	2509
		_	-	-	ctt Leu			-	_	_			_		_	:	2557
					aaa Lys 835											:	2605
					tct Ser												2653
	_	_			gga Gly											:	2701
					gta Val											:	2749
	~			_	tgt Cys			_		-		-		-		:	2797

895	900		905	
·	t aaa ttg ttc ttt e Lys Leu Phe Phe 915		ttg tag ctgtgctttc Leu *	2846
ttgatgcgta gaa	acacgtg catggagga	t caaacactgt	cagaattgct gaaatcaata	a 2906
cacaaagaga taa	agtttag cttctttt	a ctattcaata	ttgaacataa tattgttaaa	a 2966
tattgagatg aaa	tgctgtt ggatttgat	a cattaaatct	taatgtaata ttgtaagact	3026
tttgagaata tac	ttgatta aaatgtgaa	a gaagggattg	ttaacttatt gctattttgg	3086
tatataatgt taa	tttattg actagtttg	a aataatgtga	agtgttttt atatcagatt	3146
aatataggaa atg	tttattc ttgaaaaat	a aaaaaaaaaa		3186

<211> 1595 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (306)..(1496) <220> <221> misc_feature <222> (1)...(1595) <223> n = a,t,c or g

<210> 207

<400> 207 cccttcaact tggcgtgggt tgccaacaag cttcaccgta gccaagtact ttgcgcccc 60 gtggaaacat gtcttgcgac acccaccagc gactgctaca acccagcggc ggcgntgntg 120 180 gtcacggagc tggggccggg ggcagcccgg gagctggctg ggccccctgc aaggaccgtc 240 tcgggcctgc ccagccaaga gtgtgtgcaa cacatcggtg ctgagcagca gcctgcagtc actggagtat ctcatcaacg acatccggcc gccctgcatc aaggagcaga tgctgggcaa 300 atg aga cgg tgg ccg tgc ccc ggc tac tcg acc acc agc atg 347 gggct Met Arg Arg Trp Pro Cys Pro Gly Tyr Ser Thr Thr Ser Met 1 5 10 ccc aca tcc gcc tac ccg tct aca gat aag gcc tgc ctg cgg aca tac 395 Pro Thr Ser Ala Tyr Pro Ser Thr Asp Lys Ala Cys Leu Arg Thr Tyr 15 20 25 30 443 gga cat gcg gac agg gcg cag agc cgg gag gca ggc cgc aga aca ggg Gly His Ala Asp Arg Ala Gln Ser Arg Glu Ala Gly Arg Arg Thr Gly 40

														gat Asp		491
	~ ~	~ ~	-		_	_	_	_	_	_		-	-	gga Gly		539
														gtt Val		587
														gcc Ala		635
			-		_		_			-				aaa Lys 125		683
	_	-									_	_	-	aag Lys		731
	-				-			_	_	_				agg Arg	_	779
-						_	_	_				-	-	ccc Pro	_	827
														ggc Gly		875
_	-				-	_		-			_			gct Ala 205		923
				_		_								cca Pro		971
					_									cct Pro		1019
													_	ctg Leu		1067
	-	_	_	_			_							agg Arg		1115

cac cac ttt cac cca aac ttg tat att tat tac aat ttt ctg cat ctt His His Phe His Pro Asn Leu Tyr Ile Tyr Tyr Asn Phe Leu His Leu 275 280 285	1163
gag gaa ggg gcg tca ttt tcc tgt tcg cac aaa ggc acc aca ggg gct Glu Glu Gly Ala Ser Phe Ser Cys Ser His Lys Gly Thr Thr Gly Ala 290 295 300	1211
aac agt ggg cct gca atc tta gat ccc atc ctt gcc ttc ttc gag gga Asn Ser Gly Pro Ala Ile Leu Asp Pro Ile Leu Ala Phe Phe Glu Gly 305 310 315	1259
tct ctt ggg acc ctc ctg gtt tta act ggg agg ccc aga cca act cct Ser Leu Gly Thr Leu Leu Val Leu Thr Gly Arg Pro Arg Pro Thr Pro 320 325 330	1307
ttc ctg caa acc acc ctc caa ggc ctg tcc cac acg atc aag gca ggg Phe Leu Gln Thr Thr Leu Gln Gly Leu Ser His Thr Ile Lys Ala Gly 335 340 345 350	1355
aaa gat agg cag gag tcc cct cac gaa gtc ctc aag tcc tgg ccc ctc Lys Asp Arg Gln Glu Ser Pro His Glu Val Leu Lys Ser Trp Pro Leu 355 360 365	1403
tgg cgc tct gga agc ggt act gta tct ctc tcc aag gcc tgg tca agc Trp Arg Ser Gly Ser Gly Thr Val Ser Leu Ser Lys Ala Trp Ser Ser 370 375 380	1451
act aag tgc att tac aaa tct ctg aga atg ttt ttt tta tac taa aat Thr Lys Cys Ile Tyr Lys Ser Leu Arg Met Phe Phe Leu Tyr * 385 390 395	1499
tgaccattat attctactgt gagaagtgca gtctgcacta tattgtttta aaaacgaaga	1559
gaaagaagaa aaaggaaaaac acagaaaaaa aaaaaa	1595

<210> 208

<211> 1463

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (288)..(1235)

<400> 208

aaaataaccc tcactaaagg gaataagctt gcggccgccc ggggagccgc gggagaggcg 60 gcggcggggg gaggagggag aggagggccg agccggcggc acgggaggcc cggttttgaa 120 gccgcttctc tgcccgagtt aggtttcgcc cagcgcaatt tctttctcta tgtactttgc 180 gaataagttt cggagcatcg gttaacagcc tatgggtgaa atttggcttt cattcatgaa 240

tgagaaatta ttottq	gacag aagtattt	tta aaagaaaaat	Met	g gcc tca 296 : Ala Ser l
gca gta ctt agt t Ala Val Leu Ser S 5	-			
caa gtg gat agt g Gln Val Asp Ser (20				
ggt cga aat act o				
aat gag aaa aaa a Asn Glu Lys Lys <i>E</i> 55				
agt gaa gca aat g Ser Glu Ala Asn (70	Glu Leu Arg As			
aaa tcc tcc cat o Lys Ser Ser His A 85				
aac cca gta cag a Asn Pro Val Gln I 100				
caa aga gat gag d Gln Arg Asp Glu (
aag gca ttg tta d Lys Ala Leu Leu I 135	-	-		
tat gaa gat gct g Tyr Glu Asp Ala (150	-	er Thr Gln Ser		
aaa gat aaa aga a Lys Asp Lys Arg I 165	•		-	
tca cta aaa gat t Ser Leu Lys Asp I 180		_	-	
gaa gtg gtt ctg a Glu Val Val Leu I 2				
gaa agg aaa gat g	gct gaa atc ca	ag aag ctg aaa	aat gta atc	act caa 968

Glu Arg Lys Asp Ala Glu Ile Gln Lys Leu Lys Asn Val Ile Thr Gln 215 220 225	
tgg gag gca aag tat aag gaa gta aag gca aga aat gca caa tta ttg Trp Glu Ala Lys Tyr Lys Glu Val Lys Ala Arg Asn Ala Gln Leu Leu 230 235 240	1016
aaa atg ctt cag gaa ggt gaa atg aaa gat aag gca gaa ata ctt ctg Lys Met Leu Gln Glu Gly Glu Met Lys Asp Lys Ala Glu Ile Leu Leu 245 250 255	1064
caa gtt gat gaa tca caa agt atc aag aat gag ctc act att cag gtg Gln Val Asp Glu Ser Gln Ser Ile Lys Asn Glu Leu Thr Ile Gln Val 260 265 270 275	1112
act tca ctt cat gct gca tta gaa caa gaa aga tct aaa gtg aaa gta Thr Ser Leu His Ala Ala Leu Glu Gln Glu Arg Ser Lys Val Lys Val 280 285 290	1160
tta caa gca gag tta gcc aaa tac cag ggt ggc aga aaa ggg aaa aga Leu Gln Ala Glu Leu Ala Lys Tyr Gln Gly Gly Arg Lys Gly Lys Arg 295 300 305	1208
aac tot gaa too gac cag tgt agg tga ttaca ttagcotttg aagtoaacac Asn Ser Glu Ser Asp Gln Cys Arg * 310 315	1260
aaagtttaaa acttccagga ttttgcaaag ttgtatatat ttaatgctgt gcaactgcta	1320
aactatgcag tttttgttga aggaactaaa agcaactagc tccctaatgg tctataattt	1380
tatttctttt ggcttaaagt gaaaaagaag aatagagatt ccagcagatt cagtggtggt	1440
cactatccaa cttctatcac ttg	1463
<210> 209 <211> 751 <212> DNA <213> Homo sapiens	
<220>	
<221> CDS <222> (160)(399)	
<400> 209 cttccctttc ctgggaaaga aattcaatct tgttttctct tttattattg gattctctat	60
tctacagtta tgccccaata gtagccaaag gaaaaagggg gaagatgata gtttgactaa	120
acaaatacca gttcatacat tcttgttcca ataggagtt atg gga gga aaa att	174

att cca agc aat cac aca gga tca act ttt tct cct tgt aga ata tgt

Met Gly Gly Lys Ile

222

1

Ile Pro Se	r Asn His 10	-	g Ser '	Thr	Phe 15	Ser	Pro	Cys	Arg	Ile 20	Cys	
gtc atc aca Val Ile Tha												270
att aaa ago Ile Lys Ser 40	r Ile Ser											318
aac aag gto Asn Lys Vai			Lys 2									366
att atc tac Ile Ile Tyr 70						taa * 80	tgac	agat	CC	aatga	acc	417
ttagaatcca	gtagcata	tg cttag	gcatac	ttc	tcta	gca	gttt	gagg	ıtg (ctaat	tttag	477
gtatactttc	acctaaag	aa attc	cagct	CCC	ccaa	att	aggt	atct	ca (ggagg	gtgtag	537
tatctgttat	attaggtt	ct gtgc	actat	ccc	tata	atg	ccca	ıggat	.gg a	aggag	ıgggga	597
aggcaggcct	ttgaaagg	ag aact	ctaata	gca	atata	aac	aaga	ıtatt	tt (gtaca	cttcta	657
gttgtattaa	actagtat	gt cgag	tctgt	aaa	attta	agg	tgac	taac	tc 1	ttctt	tacca	717
tatatttcca	catgtaaa	tt aaaca	igaaaa	aaa	a							751
<210> <211> <212> <213>	1876	iens										
<220> <221> <222>	CDS (813)(1148)										
<400> tcaattcggc		gg ttgg†	gatgg	ggg:	ttct	tct	ccca	ıgcto	ag (ctgct	gtttt	60
gctgtgtgac	atcaatgg	gg atct	ttccc	ccg.	tccg	ggc	ccta	agto	tg (gggco	aggaa	120
aaagaagggt	ctgcattt	tt gctti	gcaac	tct	aaaa	gca	gcag	raatc	ct 1	ttttt	taaaa	180
aggtacttat	gggcacct	ca ccata	taaaa	ccg	ataa	aag	cata	cctc	tt d	ctggt	taagg	240
tggggaggat	cctcgagc	tc cctga	attgt	cct	ttta	ccc	tgtc	tccc	cc t	tcccc	cttgt	300
ccctcatggc	accttaaa	ga tctc	gagtc	cct	ccag	ttc	tcaa	gttt	aa g	ggact	ctact	360

accatggtaa gagctggtcc agcctcagtt tccacaatgc ttttggccac tcgaatccag

cctaacaagc acgcagttcc tgatgattgg cctcaggtcc cagagagctc cagcaggtgt	480
aggagtccat gggcctgaca cctttgctgg tctctgctgg atcccgacga agtcaggtcc	540
tttctggaaa ggggttcgaa gtccacatac tctccgcact acccccagga agtacgtcct	600
tgggtgtgtg tttgggggag tgagaggaat gaagaaccac tccccctata gcctggccat	660
actccccaag atgagggcag taaggtgctg aggaccctgg aagtaacttg cttttctcaa	720
cttctcagga gaaggccatc agcatttggg agtcaaagaa tttcttttt gaacttgagc	780
ctctgccagg ggccgtggaa gctgtcaagg ag atg gcc agc cta caa aac act Met Ala Ser Leu Gln Asn Thr 1 5	833
gac gtc ttc atc tgc aca agc ccc atc aag atg ttc aag tac tgt ccc Asp Val Phe Ile Cys Thr Ser Pro Ile Lys Met Phe Lys Tyr Cys Pro 10 15 20	881
tat gag aag tat gcc tgg gtg gag aag tac ttt ggc cct gac ttt ctg Tyr Glu Lys Tyr Ala Trp Val Glu Lys Tyr Phe Gly Pro Asp Phe Leu 25 30 35	929
gag cag att gtg ctg acc aga gac aag acc gtg gtc tct gct gac ctt Glu Gln Ile Val Leu Thr Arg Asp Lys Thr Val Val Ser Ala Asp Leu 40 45 50 55	977
ctc ata gac gac cgg ccg gac atc aca ggg gcc gag cca acc ccc agc Leu Ile Asp Asp Arg Pro Asp Ile Thr Gly Ala Glu Pro Thr Pro Ser 60 65 70	1025
tgg gag cat gtc ctc ttc acc gcc tgc cac aac cag cac ctg cag ctg Trp Glu His Val Leu Phe Thr Ala Cys His Asn Gln His Leu Gln Leu 75 80 85	1073
cag ccc ccc cgc cgc agg ctg cac tcg tgg gcg gac gac tgg aag gcc Gln Pro Pro Arg Arg Leu His Ser Trp Ala Asp Asp Trp Lys Ala 90 95 100	1121
att ctg gac agc aag cgg ccc tgc tga gctgg actgtgcttc gggctcctct Ile Leu Asp Ser Lys Arg Pro Cys * 105 110	1173
gtggggctct gacctcaggg ctcccagctc ggggcctgtg gggccagtat gctggtctgg	1233
gagtccctcc tagactcctg ggccccatga cctcctgctg catgtccctt cccttcccca	1293
gcccctgcca ggccttaacc tgatcacggg gcagggctgg gccctctggg cgcttggaca	1353
taacaacgtg gtcccaggcc gttcagcctg acctcaggca gcaggcacca agctgccaga	1413
agcccagggg ctcaggacaa ggaggagttt aggccactgt tcagggggct ggtggccgtc	1473
ttcactccct aaggcaagtt ttttaaggca aaagggggtt ccctgttccc aaagtttgca	1533

gccatcagca aggaggacca ggaacccggc gattgaggtg cttccaggtg gggacaagcc 1593
ccttttggtt tcagccacag cacccttat tccaggtgcc ctgcccaacc tgctcacccc 1653
acatgacctt ttgtgtattc agcaaaccct cattaggtga cagcggcccc caggctttgt 1713
gctgggggac gatactggcc ctggcctcga ccagcttaaa ggtttttcac acctttgttc 1773
ccagggcccc gctcagggcc cagcaaaaag tccgtaggct tgaacatgtg ttgagggcat 1833
gaaaaataaa tgctgttcat gtgtgtagct caaaaaaaaa aaa 1876

<210> 211

<211> 3051

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (527)..(2308)

<400> 211

aaccaggggt gctaaaaata accaggccca aatggaccag aagcaactcc catggacttt 180 240 ggcttgcagt catggtcaga agagatacag gcacagatcc cactattacg aaggagccaa 300 aatatctgcc aagataaaaa tggaagtaac tcctctggat ttatgtgtcc aggggtggat atggaaagac ttgtgaagta ttaatcaaaa atcacccgag gctttttcag actattattc 360 aaatgacaca gaatgaagac ctccgagaaa acatgtacgg caagttctgg agcatttgtc 420 tcagcacagt gaaagccagt acctaaagat tctaacaagc cttgctgaag ttgctacaac 480 aaatggtcat aaactgctta gcctctctag caattatgat gctcaa 535 atg aag agc Met Lys Ser ctt tta agg att gtg aga atg ttt tgt cac gtc ttt cga att ggt cca 583 Leu Leu Arg Ile Val Arg Met Phe Cys His Val Phe Arg Ile Gly Pro 10 tcc tcc ccc agt aat gga att gat atg ggc tac aat ggg aat aaa act 631 Ser Ser Pro Ser Asn Gly Ile Asp Met Gly Tyr Asn Gly Asn Lys Thr 20 25 3.0 679 cca aaa agc cag gtg ttc aag cct ctg gaa ttg ctt tgg cac tcg tta

ccagcccct tggcagacag tggcagtgaa ggtgaatgtt aaggaatgcc aatgggccaa

caagcactgg catgtggccc tcccagaccg ggtcacaaga cgccagtgca agtgctggtt

60

120

45

50

Pro Lys Ser Gln Val Phe Lys Pro Leu Glu Leu Leu Trp His Ser Leu

40

_	_			_			_		-				aac Asn 65			727
_			-										ggc Gly	_		775
	_	-	_						_				cct Pro		_	823
													gat Asp			871
-	~ ~ ~	_	_	_	_	-	-	-	_	_	-	-	att Ile		_	919
	_				_	_	_			_			atg Met 145	_	_	967
													att Ile			1015
-	_			-	_	_			-		_		aga Arg			1063
													cct Pro			1111
_		_		_					_	_			aaa Lys	_	_	1159
_	_				-		_				_		gat Asp 225		_	1207
-							-		_		_	_	gtt Val			1255
_					-	_	_	_	_				gca Ala		-	1303
													gaa Glu			1351
atg	ggt	caa	ggt	gtt	gtg	cgt	gag	tgg	ttt	gat	att	ctg	tcc	aat	gag	1399

Met	Gly	Gln	Gly	Val 280	Val	Arg	Glu	Trp	Phe 285	Asp	Ile	Leu	Ser	Asn 290	Glu	
	_			_	tat Tyr	_	_			_		-	-			1447
		_			agc Ser				_			_		_		1495
				_	ggg ggg	_		-				_				1543
					tac Tyr 345											1591
					tac Tyr											1639
					tgg Trp											1687
	_				tct Ser											1735
			_		cct Pro				-							1783
					gtc Val 425											1831
					atc Ile											1879
					ata Ile											1927
					cca Pro											1975
					ggc Gly											2023
					gaa Glu											2071

500	505	5	510		515
				cat ggt ggg t His Gly Gly P	
		Gly Leu		aca atc gct g Thr Ile Ala A 545	
				aca tgc atc a Thr Cys Ile A 560	
				ctc aag gac a Leu Lys Asp A 575	
ctt gtg gca Leu Val Ala 580		Gly Ser		aca atg gca to Thr Met Ala	aa tga 2311 *
agtctggaaa a	actectetga c	tactgatgc	acaattcaga	atggcagaag ta	atttggga 2371
aaatgtcaac a	aaaaagcag c	cctaaatgca	acccataggc	agggctgatg ct	tccaattt 2431
ataaaggatc a	atcaggtttt c	tgtttctct	cttttccctt	ttatgttttc tc	tgtttgta 2491
tacaattaga a	aatataaaa t	cacagtaga	ttttattttt	taaaatgcta ac	tgaaagta 2551
atagagactg t	cctttttca t	aattaattt	tatccaagat	tgtattaagg caa	aaatctga 2611
ttctacattc c	cacctctgct a	tgtaactgt	cttgttaaaa	gggtgttttc tc	ctaatttc 2671
tgatatatta t	atgaggtca t	ccagctggt	gtgttctttt	gcatgtaaac tg	ccatttat 2731
attttagaaa a	actattgtat a	ıgaatggatt	tagattgtct	ataaagccac aa	atacgtat 2791
tttgccacag t	gtattctat a	ıttgcaatga	tttttttagc	attttaatat tt	taatatat 2851
attgtaaaat t	tagactgat g	gatactaaca	gttgatgaaa	tgacatataa tt	tatatatg 2911
aaagcttacg c	ctatattgta t	gaattattt	gcatctttca	gtggccagtt tte	ccatatgt 2971
atatattatg g	gtctcaatgt t	tttcttacg	cctcatttta	atttataatg aag	ggtaaaat 3031
taaaatgtaa a	aaaaaaaaa				3051

<220>

<210> 212

<211> 1435 <212> DNA

<213> Homo sapiens

<221> CDS

<222> (634)..(1122) <220> <221> misc feature <222> (1)...(1435) <223> n = a,t,c or g<400> 212 ccccaagtgt agatatactc ggggcatcat atgcttcctg tgccatcgag cccncgtctg 60 120 ggtgtacacg agtggagaac tgacacaggc gcctgcaaat cagccgggag ttcctggcct tggctcctcc tccagcccct tggctctctg ctgctccccc cggggcagga gaaagaagga 180 240 aagagggcca ggggtcccct gccccaccac tttccatgat gacaagagat gggaaggtag 300 ccaggcagca acagtgtacg gcgacattgg agcggacctc acggcgacct caatttccac tgcgcctcct cccagagctt aagaagctgc aggcctgtgg tgcccagcac caagtgcaga 360 tggacacggg tetteatece etteettgge acettecatt taagecaaac attagaaatg 420 taaagaaggg cttgtttctg gagtttccag tttgttccat tcatctactc agagcatctt 480 ctttggacaa cactgtctgc agctgtgggc ccactccaag gggaggcgat ggactgtagg 540 tctgtggagc tcagcacagg gctgtgccac ggacgcgggt gtcagtgaag tcacgcgcat 600 tttcagatgg aattctcctc cccgatgtga aca atg aac gac ggt gtc act ttc 654 Met Asn Asp Gly Val Thr Phe ata gga ttg tcc tgg agc cca cgg aga cgc ggg ctt ggg att caa cgt 702 Ile Gly Leu Ser Trp Ser Pro Arg Arg Gly Leu Gly Ile Gln Arg 10 15 gat gct gag cgg atc ttc tct gct tca gac cag gcc tca tgt ggc ttc 750 Asp Ala Glu Arg Ile Phe Ser Ala Ser Asp Gln Ala Ser Cys Gly Phe 25 30 act att cat cca cac ata gat gct gca gag aca ctg agg gga ctc aca 798 Thr Ile His Pro His Ile Asp Ala Ala Glu Thr Leu Arg Gly Leu Thr 4۱ 45 846 aat gca cct gtg cag aag gtg tca acg tgg aca aac aca ggc agg gaa Asn Ala Pro Val Gln Lys Val Ser Thr Trp Thr Asn Thr Gly Arg Glu 60 65 act ccc atg agc ccg tgt gcc aca tgc agt gag gga act ttg gtg gct 894 Thr Pro Met Ser Pro Cys Ala Thr Cys Ser Glu Gly Thr Leu Val Ala 75 80 gag tot ggg cgg ggg tgg gct ggg ggc tca atc gat ttc cac cga gtg 942 Glu Ser Gly Arg Gly Trp Ala Gly Gly Ser Ile Asp Phe His Arg Val 90 95 100

tgt ctc caa atc ttt gct gga agt gca ggc aag ggg caa ggc ttg gac Cys Leu Gln Ile Phe Ala Gly Ser Ala Gly Lys Gly Gln Gly Leu Asp 105 110 115	990
acc agc gtc gct gtt cct cca ggc tgg gct gat ccc ttt tta ttt cca Thr Ser Val Ala Val Pro Pro Gly Trp Ala Asp Pro Phe Leu Phe Pro 120 135	1038
agt cac agg agc ctg ttc cct gaa atc ctg ggg aag tgt ggt gag gtg Ser His Arg Ser Leu Phe Pro Glu Ile Leu Gly Lys Cys Gly Glu Val 140 145 150	1086
gcc ccg tgc cgt cga atc ccc atc ctg gtt tac tga agtg cagaagtgac Ala Pro Cys Arg Arg Ile Pro Ile Leu Val Tyr * 155 160	1136
ataagtgctt gtgaatcagc agggagctct tggctttgac tccctgtgca gatgagccca	1196
gggcgccagc tecttgctgg agaacteett tgtecatttg cacgtatgga tettteetca	1256
ctgcttgatg ttttgaactc tcttctttgc ggttattaat gagatactca aaggtggtca	1316
tettettgge etetatttea gecaegaget teeatggagg ggecaaacte teeatgette	1376
tttccctaaa caccaacacc gtgagagccg atgtcttgtg actatttctg gagactggg	1435

<210> 213

<211> 1600

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (469)..(1380)

<400> 213

ccatagatgc ctgtcgcctg caggttcggg tccggtattc ccgggtcgac ccacgcgtcc 60 120 gaaaaaaaa gaaaaaatat atattatata ttaaatggcg aaaatggtaa attttatgtt 180 atgtgtattt caccacaatt taagaaatat gtaatttgag gcttggagaa tttaattaag 240 tgatttatct gatgttaact tacagctgat acatggtaga gctgcatttt aatctcagtc atctggctct ttttaaaaca attacagaga aaactttatt ttgggccatt taggaggttt 300 agatcatttt gatcatcttc agctgtcttc tcttcacata caggaaaggc cttggaaagc 360 agtcgttgcg ccagacagcc cagggaagag cggcagcctg aggacctagg gccacctgct 420 gttccctggg attcatgtcc ttctggggag gagggaggac ccaggaca atg gct gct 477 Met Ala Ala

1

-		_	_			gag Glu 10										525
						gaa Glu										573
		~	~ ~	_	_	agt Ser		_	_				-			621
22	_	_		-	~	tcc Ser	_	-			_		_	-		669
-						ttc Phe										717
-						gct Ala 90			_		_		_			765
						ttg Leu										813
						agg Arg										861
	_	_				Gl ^A aaa										909
		_	_	-	_	cac His				-			_			957
-	-				_	ggg Gly 170			_	_						1005
						gct Ala										1053
						ctg Leu										1101
				_	_	ctg Leu				_				_	_	1149
atg	gga	ttt	gct	ctc	tat	aga	agg	ttc	ttt	gtt	cct	gaa	gat	ggg	tct	1197

Met Gly Phe Ala Leu Tyr Arg Arg Phe Phe Val Pro Glu Asp Gly Ser 230 235 240	
ccg gtg tct ttt gca gct cac att gca ggt gga ttt gct gga atg tcc Pro Val Ser Phe Ala Ala His Ile Ala Gly Gly Phe Ala Gly Met Ser 245 250 255	1245
att ggc tac acg gtg ttt agc tgc ttt gat aaa gca ctg atg aaa gat Ile Gly Tyr Thr Val Phe Ser Cys Phe Asp Lys Ala Leu Met Lys Asp 260 275	1293
cca agg ttt tgg ata gca att gct gca tat tta gct tgt gtc tta ttt Pro Arg Phe Trp Ile Ala Ile Ala Ala Tyr Leu Ala Cys Val Leu Phe 280 285 290	1341
gct gtg ttt ttc aac att ttc cta tct cca gca aac tga cctgccccta Ala Val Phe Phe Asn Ile Phe Leu Ser Pro Ala Asn * 295 300	1390
ttgtaagtca attaataaaa agagccatct ggaggaaata ataaaaaaaa ggaagactct	1450
atgaagaaac agagaagtct cagcaaaggc taacaatttt atatagagga caaaacagca	1510
ttaaactcat cagttgcaaa gattgcctat aaaaggacct taggatttaa ggaaggggct	1570
tcttaatgta gaaagggaaa aaaaaaaaa	1600
<210> 214 <211> 1158 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (232)(1086) <400> 214	
catgtacacg gtataagact tggaggaaat gcagggaccc ttctgttttc tcctgcaaag	60
ttgaaaaagc tgcatgcagt tggaagggat cttcagatgg tgctggtgac tttctgttcc	120
ttttggagtt gacatgcatg tggattggag gaaaaataat caacatatat tctcctttcg	
tactgtttaa atcacaggaa gaagcggctt taagacaaag atcaaaccaa a atg aca Met Thr	180
1	180 237
act gct cac ttt tac tgt caa tac tgc aca gca tca ctt ctt ggg aag Thr Ala His Phe Tyr Cys Gln Tyr Cys Thr Ala Ser Leu Leu Gly Lys 5 10 15	

-	_	ttt Phe								381
		aag Lys								429
		tgc Cys								477
		gat Asp 85								525
		aag Lys								573
		gaa Glu								621
		tgc Cys								669
_		aat Asn	_		_					717
		ttt Phe 165								765
		cta Leu								813
		tgt Cys								861
		tgc Cys								909
		att Ile								957
		tgg Trp 245								1005

ttg gtg ggt aaa ggc ttc ctg acc cag aac aag gaa atc ttc tgc caa Leu Val Gly Lys Gly Phe Leu Thr Gln Asn Lys Glu Ile Phe Cys Gln 260 265 270	1053
aaa tgt ggc tcc gga atg gac act gac atc tag gagacagt ccttgcccac Lys Cys Gly Ser Gly Met Asp Thr Asp Ile * 275 280 285	1104
ctaaaatcca ttttgccttc gttgtcacta aagccagaac tcaaaaaaaa aaaa	1158
<210> 215 <211> 2102 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1)(1920)	
<pre><400> 215 atg ctc cta agg aag cga tac agg cac aga cca tgc aga ctc cag ttc Met Leu Leu Arg Lys Arg Tyr Arg His Arg Pro Cys Arg Leu Gln Phe 1 5 10 15</pre>	48
ctc ctg ctg ctc ctg atg ctg gga tgc gtc ctg atg atg gtg gcg atg Leu Leu Leu Leu Met Leu Gly Cys Val Leu Met Met Val Ala Met 20 25 30	96
ttg cac cct ccc cac cac acc ctg cac cag act gtc aca gcc caa gcc Leu His Pro Pro His His Thr Leu His Gln Thr Val Thr Ala Gln Ala 35 40 45	144
agc aag cac agc cct gaa gcc agg tac cgc ctg gac ttt ggg gaa tcc Ser Lys His Ser Pro Glu Ala Arg Tyr Arg Leu Asp Phe Gly Glu Ser 50 55 60	192
cag gat tgg gta ctg gaa gct gag gat gag ggt gaa gag tac agc cct Gln Asp Trp Val Leu Glu Ala Glu Asp Glu Gly Glu Glu Tyr Ser Pro 65 70 75 80	240
ctg gag ggc ctg cca ccc ttt atc tca ctg cgg gag gat cag ctg ctg Leu Glu Gly Leu Pro Pro Phe Ile Ser Leu Arg Glu Asp Gln Leu Leu 85 90 95	288
gtg gcc gtg gcc tta ccc cag gcc aga agg aac cag agc cag ggc agg Val Ala Val Ala Leu Pro Gln Ala Arg Arg Asn Gln Ser Gln Gly Arg 100 105 110	336
aga ggt ggg agc tac cgc ctc atc aag cag cca agg agg cag gat aag Arg Gly Gly Ser Tyr Arg Leu Ile Lys Gln Pro Arg Arg Gln Asp Lys 115 120 125	384
gaa gcc cca aag agg gac tgg ggg gct gat gag gac ggg gag gtg tct Glu Ala Pro Lys Arg Asp Trp Gly Ala Asp Glu Asp Gly Glu Val Ser	432

	130					135					140					
					acc Thr 150											480
	_		_	-	cgc Arg											528
			_	_	ctg Leu											576
~	_	_			tgt Cys			_		-					_	624
~ ~		_		-	atc Ile		-					-		_		672
					gac Asp 230											720
_		_	_		gtg Val	-		_				_				768
					ggt Gly											816
_	-			-	gtg Val		_		_	-	_		_			864
				_	gag Glu											912
					ccg Pro 310											960
					aag Lys											1008
_	_				gaa Glu											1056
					ccc Pro											1104

gcc Ala 370								1152
atg Met								1200
ctc Leu								1248
atc Ile								1296
ctg Leu								1344
gaa Glu 450								1392
gag Glu								1440
tgt Cys								1488
cca Pro								1536
ctt Leu								1584
ccc Pro 530								1632
cag Gln								1680
tgc Cys								1728
gaa Glu								1776

ggg atg att gtc cac att ctt tct ggg aaa tgc atg gaa gct gtg gtg Gly Met Ile Val His Ile Leu Ser Gly Lys Cys Met Glu Ala Val Val 595 600 605	1824
caa gaa aac aat aaa gat ttg tac ctg cgt ccg tgt gat gga aaa gcc Gln Glu Asn Asn Lys Asp Leu Tyr Leu Arg Pro Cys Asp Gly Lys Ala 610 615 620	1872
cgc cag cag tgg cgt ttt gac cag atc aat gct gtg gat gaa cga tga Arg Gln Gln Trp Arg Phe Asp Gln Ile Asn Ala Val Asp Glu Arg * 625 630 635 640	1920
atgtcaatgt cagaaggaaa agagaatttt ggccatcaaa atccagctcc aagtgaactt	1980
aaagagctta tatatttcat gaagctgatc cttttgtgtg tgtgctcctg gtgttaggag	2040
agaaaaaagc tctatgaaag aatataggaa gtttctcctt ttcacacctt aaaaaaaaaa	2100
aa	2102
<210> 216 <211> 4675 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (187)(4599)	
<400> 216 tttcgttgga gttctgccgc gtgtgcaagg acgggttcga gctgctctgc tgcgacgcct	60
gcccctcctc ctaccacctg cattgcctca acccgccgct gcccgagatc ccaaacgtgc	120
cccccactga agggcaaagt ccagcggatt ctacactgga ggtggacgga gccccctgcc	180
cccttc atg gtg ggg ctg ccg ggg cct gac gtg gag ccc agc ctc cct Met Val Gly Leu Pro Gly Pro Asp Val Glu Pro Ser Leu Pro 1 5 10	228
cca cct aag ccc ctg gag ggc atc cct gag aga gag ttc ttt gtc aag Pro Pro Lys Pro Leu Glu Gly Ile Pro Glu Arg Glu Phe Phe Val Lys 15 20 25 30	276
Pro Pro Lys Pro Leu Glu Gly Ile Pro Glu Arg Glu Phe Phe Val Lys	276 324
Pro Pro Lys Pro Leu Glu Gly Ile Pro Glu Arg Glu Phe Phe Val Lys 15 20 25 30 tgg gca ggg ctg tcc tac tgg cat tgc tcc tgg gtg aag gag cta cag Trp Ala Gly Leu Ser Tyr Trp His Cys Ser Trp Val Lys Glu Leu Gln	

65 70 75

-													gcc Ala		468
		_			-				-				atg Met		516
	-		_			-		_	_	-			gtg Val		564
_		_			_	_			_	_	-		tgg Trp 140		612
_	~		_					_			_	_	gcc Ala		660
				-	_	_		-	-			-	ccc Pro		708
_		_	-		-	_	_		-				gag Glu		756
_	_	_				-		_	_	_		-	aag Lys	_	804
~ ~			_						_		-		cag Gln 220	_	 852
													gac Asp		900
													atc Ile		948
													tac Tyr		996
													ttt Phe		1044
			_				_						aag Lys 300		1092

-	_	gtg Val 305									-					13	140
	_	Gly	_	_	_		_	_	_		_					13	188
		gtg Val	_										-	_	_	12	236
	_	ggc					_	-	_	-						12	284
-		aag Lys			_		_				-			_		13	332
_		gat Asp 385		_	_	_	_						_			13	380
		gag Glu														14	428
		ctg Leu														14	476
		atc Ile														15	524
		aag Lys	-	-			_		_	_	_	_				15	572
		cgg Arg 465														16	620
		aca Thr					-	_			_					16	668
	_	tcg Ser	-				_	-	-	_		_	_	-		15	716
		tac Tyr														17	764

						agc Ser										1812
_	_		-	_	_	ctg Leu	-		_		_	-				1860
						atg Met 565										1908
						tac Tyr										1956
						gag Glu										2004
_	_	_		_		ctc Leu										2052
						gac Asp										2100
						cag Gln 645										2148
						atc Ile										2196
						gtg Val										2244
_						ctc Leu			-	_			-			2292
						ctc Leu										2340
						atg Met 725										2388
		_	-	-		tcc Ser					_	-	-			2436
aag	aag	aag	cac	ggt	agc	acc	ccg	cca	ggt	gac	aac	aag	gac	gtg	gag	2484

Lys	Lys	Lys	His	Gly 755	Ser	Thr	Pro	Pro	Gly 760	Asp	Asn	Lys	Asp	Val 765	Glu	
_	_	_					_	_					_	ctg Leu	-	2532
-			-	-			-	_	_			_		atg Met		2580
														gag Glu		2628
-								_			_	-		gag Glu		2676
	-		-											gag Glu 845		2724
_	_		-	_	-	_		-		_		-	-	atc Ile	_	2772
_	_	-				_	-		-		-	-		tgg Trp	_	2820
_				-		_		-						gag Glu	_	2868
	_		-		-			_	_		-	_		cga Arg	_	2916
														ccc Pro 925		2964
		_	_	-							_			aat Asn	_	3012
_	_		_	_		_		-		_	_			atg Met		3060
														cga Arg		3108
														cgg Arg		3156

ctg tgt gag ccg ggg gcg gat ggt gca gag acc ttc gca gac ggc gtg Leu Cys Glu Pro Gly Ala Asp Gly Ala Glu Thr Phe Ala Asp Gly Val ccc cgg gag ggc ctc tcc agg cag cac gtg ctg acc cgc atc ggg gtc Pro Arg Glu Gly Leu Ser Arg Gln His Val Leu Thr Arg Ile Gly Val atg tca cta gtt agg aag aag gtt cag gag ttt gag cat gtc aac ggg Met Ser Leu Val Arg Lys Lys Val Gln Glu Phe Glu His Val Asn Gly aaq tac aqc acc cca gac ttg atc cct gag ggg ccc gag ggg aag aag Lys Tyr Ser Thr Pro Asp Leu Ile Pro Glu Gly Pro Glu Gly Lys Lys ccg ggc gag gtg atc tcc tcg gac ccc aac aca cca gtg ccc gcc agc Pro Gly Glu Val Ile Ser Ser Asp Pro Asn Thr Pro Val Pro Ala Ser cct gcc cac ctc ctg cca gcc ccg ctg ggc ctg cca gac aaa atg gaa Pro Ala His Leu Leu Pro Ala Pro Leu Gly Leu Pro Asp Lys Met Glu gcc cag ctg ggc tac atg gat gag aaa gac ccc ggg gca cag aag cca Ala Gln Leu Gly Tyr Met Asp Glu Lys Asp Pro Gly Ala Gln Lys Pro agg cag ccc ctg gaa gtc cag gcc ctt cca gcc gcc ttg gat aga gtg Arg Gln Pro Leu Glu Val Gln Ala Leu Pro Ala Ala Leu Asp Arg Val gag agt gag gac aag cac gag agc cca gcc agc aag gag aga gcc cga Glu Ser Glu Asp Lys His Glu Ser Pro Ala Ser Lys Glu Arg Ala Arg gag gag cgg cca gag gag acg gag aag gcc ccg ccc tcc ccg gag cag Glu Glu Arg Pro Glu Glu Thr Glu Lys Ala Pro Pro Ser Pro Glu Gln ctg ccg aga gag gtg ctt cct gag aag gag aag atc ctg gac aag Leu Pro Arg Glu Glu Val Leu Pro Glu Lys Glu Lys Ile Leu Asp Lys ctg gag ctg agc ttg atc cac agc aga ggg gac agt tcc gaa ctc agg Leu Glu Leu Ser Leu Ile His Ser Arg Gly Asp Ser Ser Glu Leu Arg cca gat gac acc aag gct gag gag aag gag ccc att gaa aca cag caa Pro Asp Asp Thr Lys Ala Glu Glu Lys Glu Pro Ile Glu Thr Gln Gln aat ggt gac aaa gag gaa gat gac gag ggg aag aag gag gac aag aag Asn Gly Asp Lys Glu Glu Asp Asp Glu Gly Lys Lys Glu Asp Lys Lys

	aaa Lys			Phe					Ala					Thr	3876
-	cac His		Leu					Glu					Ser		3924
	atc Ile	Tyr					Arg					Trp			3972
	atc Ile					Tyr					Asp				4020
Pro	cgg Arg 1280		_		Leu		_			Lys					4068
	aac Asn			Glu					Phe					Phe	4116
	ctg Leu		Gln					Glu					Arg		4164
	ctg Leu	Asn					Pro					Met			4212
	cgc Arg					Glu					Ser				4260
Ser	aag Lys 1360				Ala			_		Āla		_	_	_	4308
	gtc Val			${\tt Gln}$					Leu					Ala	4356
	acc Thr		Leu			_	_	Ser	_			_	Val	-	 4404
	ctg Leu	Gln					Ser					Leu			4452
_	ggg Gly	-				Gln	_		-		Gly				4500

Tyr		aac Asn			Gly					Gly						4548
		aac Asn		Asn					Gly					Asp		4596
tag *	cgt	c ct	caati	tcct	gtg	tgca	ggt (catt	cagc	tg a	cagc	gegg	g gc	actg	cgac	4653
caa	tgga	gag a	aagt	gcac	tt t	t										4675
	<2: <2:	10> 2 11> 1 12> 1 13> 1	1042 ONA	sap:	iens											
	<2	20> 21> (22>		(52	24)											
aat		00> 2 aac g		gcago	gt a	ccggt	ccgg	g aat	tcc	cggg	tcga	accca	acg (cgtc	cggaca	60
gc	Me				o Ası						r Tyı				c gac r Asp 15	107
		tcg Ser														155
_		gag Glu	_	Ile	Phe		Phe	Leu	Val	Trp	Thr	Met	Val			203
		ata Ile 50	_			_	_					_		-	-	251
	acc	tcg	ttt													299
		Ser	Phe	Leu	Ile	70					75		_			
Leu gga	Thr 65 ttt	Ser tac Tyr	aaa	aga	ttt	70 gaa	tcc	tgg	aga	gtt	75 ctg	_	agc	_	tac	347

cat gcc acg att gtt tct gag aaa ctg ctg gac cca aga att tac tac His Ala Thr Ile Val Ser Glu Lys Leu Leu Asp Pro Arg Ile Tyr Tyr 115 120 125	443
att aat tcg gca gcc tcg ttc ttc gcc ttc atc gcc acg ctg ctc tac Ile Asn Ser Ala Ala Ser Phe Phe Ala Phe Ile Ala Thr Leu Leu Tyr 130 135 140	491
att ctc cat gcc ttc agc atc tat tac cac tga tgcacagg cgccaggcca Ile Leu His Ala Phe Ser Ile Tyr Tyr His * 145 150	542
agggggaaat gctctttgaa agctccaatt attggtcccc aaaagcagct tccaacgttt	602
gccatctgga tgacaaacgg aagatccact aaaacgtcca cgggattaac agaacgtcct	662
tgcagactga gcgatgacac cacactttgt ttggacattt aaattcactc tgctgaatag	722
gaggaagett ttettttee tgggaaaaca actgtetett ggaattatet gaccatgaac	782
ttgctcttct agacaactca catcaaagcc ctcactccac taatggagaa tcctagcccc	842
actaatgcca agtctgtttg gggattttgc ctcagctatg ggcttcccta gagtaggtct	902
aggggaatac tcagtctgat cttttttttg tttgttttat tttgtttttt ttgagacgga	962
gtctcgctct tcctccaagg ctggagtgca gtgacgcgat ctccactcac tgcaggctcc	1022
gcctccgggg ttcccgccat	1042
<210> 218 <211> 1294 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (166)(831) <400> 218	
<pre><211> 1294 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (166)(831) <400> 218 ccggaatttc cgggtcgacg attccgtccg cggtcccctt atttggatct gcgggaatgt</pre>	60
<211> 1294 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (166)(831) <400> 218	60 120
<pre><211> 1294 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (166)(831) <400> 218 ccggaatttc cgggtcgacg attccgtccg cggtcccctt atttggatct gcgggaatgt</pre>	
<pre> <211> 1294 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (166)(831) <400> 218 ccggaatttc cgggtcgacg attccgtccg cggtcccctt atttggatct gcgggaatgt gggctggaga ggtcctgccg tggtaccagc ctccagcctg cccccagac tgcccctgac ccaggcgcgc ccgctgctcg gtggcaggag ggccggcgga gcgcc atg gcc tgc Met Ala Cys</pre>	120

20					25					30					35	
														ttc Phe 50		318
														aat Asn		366
														ata Ile		414
														ata Ile		462
														ggt Gly		510
														cat His 130		558
_	_													gaa Glu	_	606
														agg Arg		654
														ggt Gly		702
														agt Ser		750
														cat His 210		798
					tct Ser					taa *	gcga	atta	c ca	gtgc	tggc	849
aag	tggaa	act a	accti	ttcc	gg to	cata	ttaca	a ago	catco	cagt	cac	ttgc	tga a	aatgi	tcataa	909
gcga	atata	aaa (cctg	ctga	ca g	gcca	ggato	c at	tgcat	tctc	ctg	cctc	ctc (cttc	cacgta	969
aca	aatc	tca 1	ttgti	tgat	tg g	cata	tggca	a gca	aagca	atcc	caa	cacco	cag a	agtg	gtgttc	1029
ttai	tttct	tga q	ggga	gcag	gg to	ctgt	gtgt	g aa	ttgca	acac	aca	ggga	gca a	atcc	cctgcc	1089

ctg	atac	agg	caac	ctga	gt g	ctta	.gttc	c tt	ctct	gctc	aga	actt	agt	gtga	ctatgt	1149
ggc	ctac	ctc	acat	tgtt	tg t	gtta	.cacc	t ac	acag	gaaa	aag	gaaa	aat	gtcc	ttttga	1209
ttc	catg	ctt	gtag	agat	gt t	catc	caat	t tg	aatg	aaca	tgt	agcc	aag	gtag	tgtctt	1269
ccc	cctt	tct	tctc	cttt	tt t	tttg										1294
		10> 11>	219 3454													
	<2	12>	DNA													
			Homo	sap	ıens											
		20> 21> ·	CDS													
			(156) (1076)										
	_	00>														
ttt	cgtc	gga	gacg	ttgg	cg g	caga	ggcg	g ag	gcgg	acgg	ggt	cagc	cca	aagc	agaggc	60
tcg	gcca	tga (actt	accc	gg g	acag	cggc	g gc	ggcg	gacc	ttt	tggc	cat	cttc	tcgcag	120
agt	gete	cct (gcta	acgg	gg a	caga	tttt	a ac	att	Me				g Hi	t cag s Gln 5	173
							gga Gly									221
							agt Ser 30									269
							gga Gly									317
							att Ile									365
							ata Ile									413
_		_					aat Asn									461
_							cca Pro 110	-		-		-		_		509

gaa aca ct Glu Thr Le 120							
gtt caa ta Val Gln Ty 135							
ctt gct ta Leu Ala Ty		Ser Ala					
gac ata ga Asp Ile Gl		-	_	-	-		
aat gag gt Asn Glu Va 18	l Val Ser						
gat aac aa Asp Asn Ly 200							
gga ata gg Gly Ile Gl 215		_		_	_		
ata aca co Ile Thr Pr		Tyr Leu					
gat gtt ag Asp Val Se							
atc aca co Ile Thr Pr 26	o Pro Ser						
act aaa gg Thr Lys Gl 280							
caa gat to Gln Asp Se 295						caattago	etc 1086
ataatcaaat	gttagtgg	tc aggtc	acatg tg	catctgga	atgtggt	gaa tcagt	tatat 1146
ccaataatag	cttcaaag	gc agaat	ttaga ga	gattgagg	atgcttt	tgt tttta	aacaaa 1206
agggtttcac	actttgaa	aa ttttt	tgagc aa	ctagttgt	tgatgtt	gag agcag	gttgat 1266
ccataaatct	ggtgtgtg	aa tgttt	caagc ag	aaattaat	ttaaatg	tgt gttta	aggaag 1326

tacttaactt ggaagatgta tcatttttct taaaatgcat gtttaaattt tatttttta 1386 agtaattttt aaaaagttta ttaatgttaa atttatgatg cagaatgata gcatcagatg 1446 tctgcagctg aaaaaaattt actactatga acccccaaaa tattcagttg caagaaaatt 1506 tgattctaaa attattcatg gtaggatacg taacacccc cttcaaaact tttaaaaaaat 1566 acatttagca catgtgctat gaaagcatac gtacaaagag aaaggggaaa gtgatttata 1626 attcctacaa cagaggccaa gaaatagatt aaaatatttt caagacccca aaataatgta 1686 ttatggttgg gaagtcagta gaacactgga ataggtgaag acctgacagt aatttttgtc 1746 ttaagaatgc tttctttagg acagaccctt taacctcacc tctgtgcatc tgtttttaaa 1806 atgattatat ttgcctctga tatttgaaag cacttttgta gttttgatga tgaaaaatat 1866 attaaacgtg catattacca ttatttagga aataattcct tatatactgt gataaatcat 1926 tgctgttaca tacagtaaca tgccttaatt acatttaatg ccttactgct ttatgtaagt 1986 aaatccaagt ttcagaatta aaaataagca ttatttcata tggtccaatc agattcgtta 2046 cataggctat ataaatttgt ctccattttc accatcaagc acaaataatt gggtcaaaac 2106 tgcctttgag gtctgttgaa gaaaatggtt cattaagcaa aaaagagtag aggtatttta 2166 tattagcagt aacagacaaa ttatttagta atcccttaac ctctgttttt caaagagaaa 2226 atatccaatt tagacttttt tcctgatctc tatatatagc atcaagttgg gaaacaaagg 2286 ccaaaggtgt atagattgct tgaaaggggg tggtagtgcc tctttttaag atctgttgag 2346 tcggctacag tctggctaag taagaagcat ttgcatactg attccatcat ttaatcttta 2406 aaagtatgtg ttttaaaaat gtaaccagaa tgattcttca atagaaatga gatttggtgg 2466 2526 agtctggatt gcctgttttg tatataatat atacttaaga tatataatac cacctcattt tctgggcatt atttcctaat tgttgatgtt tcaggctttt gataagtcat tttatatatt 2586 tcaaatttaa ctcagaataa gtaaatattt atggcaaatg cagttttatg tactttcagg 2646 agaagaccat caggaaaaga caggacaaag aagtcaaaca ttaaagccct tgcaaatatt 2706 agaggacctt agacaattac caaaaagtgt ttaataggga agttgcaaat gattctctta 2766 gtaaattaaa catttaaaaa gtagttttaa tgtgccttgg gcatcttgaa aagaagagtg 2826 tgatataatt tatgcttagt gttaactggt cattttacat tgtatttatt aagtctgctg 2886 2946 aaaaatgagg ttttaaggaa gaaaatgcag attattttag ggtaaacagg ccaggtgtcc tttgaagaac tttgtttaca tcaaattgat gaaattacag tgattcctta ctttttttgc 3006 3066 tagttgtact ttgaaattgt tatgggttcg atttccaaaa tatgtaactt atttttaaa

qqaataaqqt qtqctqtqta tttqttqatt aaaaatcatt tqtcttqcag agtatccttt 3186 tttgaaggaa atatacatcc ttataacaca tcaggtagtt ttctttttc tgtatttaaa ttatatattt gaattaattg aatataattt gagttacata taattctata taaaggttac 3246 atattgaatt atggttctaa tctgtttagg aaagaaatga attttctaag catttaatac 3306 3366 atttggaata attttagttt ctaaaaagta ctaatgtaag ttaagtttat atcaaatgca aattaccttg tataactaac aagcacagtt attgtttaac attatggatt ttaattgtgt 3426 3454 tgacaccctt ctttgaattt gttgcttt <210> 220 <211> 1873 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (179)..(1480) <400> 220 60 ctcccctcc aggacctccc tgggtcagct tattgaactg accgtagaaa ggcagaaaac 120 cactggcagc agecetecce atetgeecag caaacggetg ecceeatggg acagggecag 178 geogagggat cecteegagg acaeeecage agtggaegge ageacagaea eggaeagg atg ccc ttg aag ctc tac ttg cct ggt ggt aat tcc agg atg acc cag 226 Met Pro Leu Lys Leu Tyr Leu Pro Gly Gly Asn Ser Arg Met Thr Gln 1 10 274 gag agg ctg gaa aga gcg ttc aaa cgg cag ggc agc cag ccc gca cct Glu Arg Leu Glu Arg Ala Phe Lys Arg Gln Gly Ser Gln Pro Ala Pro 322 gtc agg aaa aat cag ttg ctg ccg tct gac aag gtg gat ggt gag ctg Val Arg Lys Asn Gln Leu Leu Pro Ser Asp Lys Val Asp Gly Glu Leu 370 ggt gcc ctg cgg ctc gag gat gtg gag gat gag ttg ata agg gaa gag Gly Ala Leu Arg Leu Glu Asp Val Glu Asp Glu Leu Ile Arg Glu Glu 50 55 418 gtc atc ctg tcg cca gtc cca tca gtg ctc aag ttg cag aca gca tca Val Ile Leu Ser Pro Val Pro Ser Val Leu Lys Leu Gln Thr Ala Ser 65 70 75 466 aaa cca att gac ctc tca gta gca aag gaa ata aag acc ctt ctg ttt

3126

90

Lys Pro Ile Asp Leu Ser Val Ala Lys Glu Ile Lys Thr Leu Leu Phe

		agc Ser		-	-			_	_				-	-		514
		agt Ser 115			-								_		_	562
		cct Pro														610
		ctg Leu		_		_	_		-	-	-	-	_		_	658
_		tca Ser	-	-				_	_		-					706
		gtg Val														754
_	_	aga Arg 195		_	_		_							-	-	802
		tta Leu														850
_		act Thr														898
		tgc Cys		_					_		_					946
		atc Ile	_	_	_		-	-			_		_			994
•		ggc Gly 275		-		-	_		-		_		_			1042
	-	gtg Val														1090
_		aac Asn					_									1138
ggc	ttc	tta	tct	ctc	ttt	gag	cat	tac	aac	atg	tgc	cag	gtt	ggc	tgc	1186

~ 7	-1	_	~	_	-1	~ 1		_	_		~	~1	7	~1	~	
GIY	Phe	Leu	Ser	Leu 325	Phe	GLu	HIS	Tyr	330	Met	Cys	GIn	Val	335	Cys	
	_	_		_	agg Arg						_	_	-		-	1234
		_			ttt Phe	_	_	_	_			_	-	_		1282
					ttt Phe											1330
_	_		_		cgg Arg 390	_			_							1378
~ ~	_		•		gac Asp		_						_		-	1426
	_		_		gca Ala								-			1474
ctg Leu	tga *	ccgt	tgga	atg t	gggt	aaac	cc ct	gtgg	gtcca	a CCa	actca	ıtca	cct	catca	acc	1530
gagg	gatga	aca g	gctga	acco	cc aa	agcct	ctgg	ggc	caggt	ctc	atgt	acco	cca a	accto	ggtca	1590
gcat	gact	gc a	agaaç	gcato	cc ag	gagco	etecc	tgc	ccct	tcc	atga	aggg	gcc (cacco	caagac	1650
tgtg	gctgg	gg a	accca	agtgt	g tt	gcto	ggto	c ccc	ctccc	cagc	tgaç	gctgt	ga d	ctgct	gagta	1710
ctgg	gaagg	gag g	gttgo	ccago	gg to	ctctc	gctac	ctt	tgto	ctgc	atco	cctcc	cct t	gcto	cctgc	1770
tggg	ıtggt	cc c	ctcac	ccaç	gg co	ctcca	atgt	ggt	tggd	ccct	gggg	gacto	cat t	actt	ctggt	1830
agct	ggct	tt c	ctata	aaaa	at go	gtca	aacc	c caa	aaaa	aaaa	aaa					1873

```
<210> 221
```

<211> 787

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (371)..(595)

<400> 221

acgttctgga gctgagcacg gtgaggggga gaagggagaa ggggactctg gcggcccaag

ccccacacct ttgccccaga gccacaggtc ccacggagtg tcacgtaatt ccccacatcc	120
agaacagcta cccatctcaa accccaggag tcaccagccc ttgggccctc acatccctgg	180
agcctcagcc ccctccacac acgtgctgtg aatcataggg ggatcaggat actcctgctc	240
acagacaccc atctccccct accaaaaata acgctgggct cctccttcca ccctgactct	300
gcctctctgt ctgcaggagc ctggtcgggg tgctccacag aagctgtgcc tgggcttggg	360
agccaaggcc atg tcc ctc tcc cgg cca ggg gag acg gag ccc atc cac Met Ser Leu Ser Arg Pro Gly Glu Thr Glu Pro Ile His 1 5 10	409
agt gtc agc tat ggc cat gtg gcc gcc tgc cag cta atg ggc ccc cac Ser Val Ser Tyr Gly His Val Ala Ala Cys Gln Leu Met Gly Pro His 15 20 25	457
acc ctg gcc ttg agg gtg gga gag agc cag ctc ctc ctg cag agc ccc Thr Leu Ala Leu Arg Val Gly Glu Ser Gln Leu Leu Gln Ser Pro 30 35 40 45	505
cag gtg agt gag aag agg agt tgt ggg agg a	553
tgt cag gaa gca ttt aca gaa cac caa acc tgg gcc agg tag agctcta Cys Gln Glu Ala Phe Thr Glu His Gln Thr Trp Ala Arg * 65 70 75	602
agcactgggg atccagcagt gatcacagac aagctgaagg agcttacact agagtggagt	662
cagacaataa acaaggaatc ccaggctatg aagacagtga gaaatgctac aaaggaaaga	722
gtgatgtgac aggaagccag ggaagggttc tcaaaaaaggg tgccatttaa gctagccagg	782
gaaga	787

<210> 222 <211> 1184 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (66)..(425)

gct gtc atg ctc agc ctg ggg cct gga agc cgg ggc aga gcc tca cgt Ala Val Met Leu Ser Leu Gly Pro Gly Ser Arg Gly Arg Ala Ser Arg 15 20 25 30	155
ccc tcc agt ggg acc cag cac tgt gac ata acc tgg aaa cct cca aca Pro Ser Ser Gly Thr Gln His Cys Asp Ile Thr Trp Lys Pro Pro Thr 35 40 45	203
cag act gag ggc ggc ttc cag aag ggg agg ggc cgg gac agc gag agc Gln Thr Glu Gly Gly Phe Gln Lys Gly Arg Gly Arg Asp Ser Glu Ser 50 55 60	251
tgg gcc tac cct gtg gcc ccc atg ttc agc cct cct tcc tca gag cct Trp Ala Tyr Pro Val Ala Pro Met Phe Ser Pro Pro Ser Ser Glu Pro 65 70 75	299
cac ctg ggc ctc ctg atg gct cct gtc ccc tgc ctg ccc tgc tgt acg His Leu Gly Leu Leu Met Ala Pro Val Pro Cys Leu Pro Cys Cys Thr 80 85 90	347
cct gcc cac cct tgg cct gtg tgc tcc gat aag cca ttg ctg tgt tca Pro Ala His Pro Trp Pro Val Cys Ser Asp Lys Pro Leu Leu Cys Ser 95 100 105 110	395
ctg ggc cag tcg gtg gtg gag ccc tcc taa g gattcacggt ggcccgccct Leu Gly Gln Ser Val Val Glu Pro Ser * 115 120	446
ggccgccccc acggtggcca catctgccct gggaccccca gagtcctggc ctcttctgcc	506
ccccagtgcc accactgcct accagtttct ctgcacccca tgacctgtgc ccgtcttctg	566
gggtcactgc cctcccagca gactaaggga agcttgaatg aacaaatgtt actggacttt	626
caggcagttg gggtgtattt gggggctctg gggaagagaa gagctccctt tatccctgaa	686
ttccctcctg cctactgtgg gacccacgga gggagcagac gctcatggct caccactgcc	746
caccagacgc tggatgggcg ccttctgtgg gtttccgcat ttaaaagctt cacaagggtt	806
taaacctgtg gggaagccca ccctctggc agctcagaag tctctagggc ttgccctctg	866
agagtgggta ttgcaggccc ctggtccctg actgtgacct accttcttga tctcacaggc	926
agccacgggg taggccagcc cctgcccatc ctccgtaatg ccctctgagg ttggcattgc	986
catgttgatg cccgtgccca gcctgctgcc cgccatgggc tgaggccagt ccatctggtg	1046
ttcaggcatc cccagcgcgg gcaccagcct gtcctgcccg agccttgctg aatgaatgaa	1106
atgggcttgg aggcatgctc atgggtcaaa tctcagccct cccatctatt ggctggctaa	1166
ccttgggcga ggcatggc	1184

<210> 223 <211> 4716 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (74)(1732)	
<400> 223 taccggtccg gaattcccgg gtcgacgatt tcgtgtgatc tccttattgg agcaagggag	60
agagccttgg gag atg acg agt gag atg aca aga agc cca ttc tca gat Met Thr Ser Glu Met Thr Arg Ser Pro Phe Ser Asp 1 5 10	109
tgg gaa tct ata tat gtg aca cag gaa tta cct ctg aag cag ttc atg Trp Glu Ser Ile Tyr Val Thr Gln Glu Leu Pro Leu Lys Gln Phe Met 15 20 25	157
tat gat gat gca tgc atg gag gga att act agc tat gga ctt gag tgt Tyr Asp Asp Ala Cys Met Glu Gly Ile Thr Ser Tyr Gly Leu Glu Cys 30 35 40	205
tcc act ttt gaa gaa aat tgg aaa tgg gaa gac ctt ttt gag aag cag Ser Thr Phe Glu Glu Asn Trp Lys Trp Glu Asp Leu Phe Glu Lys Gln 45 50 55 60	253
atg gga agt cat gag atg ttt agc aag aaa gaa ata atc act cat aaa Met Gly Ser His Glu Met Phe Ser Lys Lys Glu Ile Ile Thr His Lys 65 70 75	301
gaa acc atc act aag gaa aca gaa ttc aaa tat act aaa ttt ggg aaa Glu Thr Ile Thr Lys Glu Thr Glu Phe Lys Tyr Thr Lys Phe Gly Lys 80 85 90	349
tgt atc cat ctg gaa aac ata gaa gag agt att tat aat cac aca tca Cys Ile His Leu Glu Asn Ile Glu Glu Ser Ile Tyr Asn His Thr Ser 95 100 105	397
gat aaa aaa agc ttc tcc aaa aat tct att gta ata aaa cac aag aaa Asp Lys Lys Ser Phe Ser Lys Asn Ser Ile Val Ile Lys His Lys Lys 110 115 120	445
gtc tat gta gga aag aag ctt ttt aaa tgt aat gaa tgt gac aaa acc Val Tyr Val Gly Lys Lys Leu Phe Lys Cys Asn Glu Cys Asp Lys Thr 125 130 135 140	493
ttc acc cat agc tca tcc ctt act gtt cat ttt aga att cat act ggt Phe Thr His Ser Ser Ser Leu Thr Val His Phe Arg Ile His Thr Gly 145 150 155	541
gaa aaa cca tat gca tgt gag gaa tgt gga aaa gcc ttc aag caa agg Glu Lys Pro Tyr Ala Cys Glu Glu Cys Gly Lys Ala Phe Lys Gln Arg 160 165 170	589

					cat His											637
-	_				agg Arg											685
					cat His 210											733
_	_		_		aga Arg											781
					aaa Lys											829
	_	_		_	tct Ser		_	_		_	-	_				877
					tgt Cys											925
					cac His 290											973
					tgt Cys											1021
					att Ile											1069
	_	55			ttc Phe	_					_		_		_	1117
					gag Glu											1165
					gca Ala 370											1213
					gaa Glu											1261
aat	gta	cac	ctt	gtt	agt	cat	ttg	aga	att	cat	act	ggt	gaa	aaa	CCC	1309

	Asn	Val	His	Leu 400	Val	Ser	His	Leu	Arg 405	Ile	His	Thr	Gly	Glu 410	Lys	Pro	
			_		_	-			_		_	atc Ile	_		_	•	1357
												cct Pro 440		_	_		1405
												ctt Leu					1453
											_	aat Asn	_	_	~~~		1501
												caa Gln	_				1549
												aag Lys					1597
												act Thr 520					1645
												aga Arg					1693
						agt Ser						cct Pro	taa *	gaat	gtag	ıtg	1742
	catg	tggc	ca a	ıgcct	ttaç	rt ta	tcac	caat	ccc	ctac	tgt	taat	.caga	.ga t	gtcc	cactg	1802
	gata	aaaa	ac a	tata	aato	rt aa	ıgaaa	tgta	ı gaa	aaac	ctt	cago	cagg	ag g	rctgg	caaga	1862
	tggc	cgaa	ta g	gaac	agct	c tg	atct	gcag	r ttc	ccag	tga	gato	aacg	ca g	aagg	tgggt	1922
	gctt	tctg	rta t	ttcc	agct	g ag	gtac	ctgg	ctc	atct	cat	tggg	actg	gt t	agac	agtgg	1982
	gtgc	agcc	ca c	ggag	rggtg	a gc	tgaa	.gcag	ggt	gggg	tgt	aacc	tcac	ct g	ıggaa	gtgca	2042
•	agga	gtcg	gg g	atct	ccct	c cc	ctag	ccaa	ggg	aago	cat	gagg	gact	gt g	rccat	gagga	2102
	atgg	tgca	.ct c	cggc	acag	ra ta	.ctac	gctt	ttc	ccat	ggt	cttc	gcaa	.cc c	acag	accag	2162
•	gaga	tccc	ct t	gggt	gcct	a tg	ccac	caag	gcc	ctgg	gtt	tcaa	gcac	aa a	actg	ggcgg	2222
•	ccat	tcgg	gc a	gaca	.ccga	g ct	agct	gtag	gag	tttt	ttt	gata	gccc	ag t	ggca	cctgg	2282

2342 aatgccagtg aaacagaacc gcttactccc ttgttaaggg ggctgaagcc ggggagccaa 2402 gtggttccca tgcccactga gcccagcaag ctaagatcca ctggcttgga attctccctg ccagcacagc agtctgaagt caacctggga tgatcaagct tggtgggggg aggggcgcca 2462 2522 accattacca aagcttgaat aggtggtttt cccctcacag cgtaaacaaa gccatgggga 2582 agttccagct gagcagagcc ctccacagct cagcaaagcc tctgtagcca gactgcctct 2642 ctagattcct cctctctggg cagcgcatct ttgaaaaaag tgcagataaa accctcatct 2702 ccctgggaca aagcacgtgg gggaaagggg tgcctgtggg cacagcttca gcagacttaa 2762 acattectge etgecagete tgaagagage ageagttett ceageacage gettgagete tgctaaggga cagactgcct cctcaagtgg gtccctgacc cccatgcctc ctgacgggga 2822 2882 gacacctccc agcaggggtc cacagacacc tcatacagga gagctctggc tggcatctgg 2942 tgggtgcccc tctgggacaa agcttccaga ggaaggaaca ggcagcaatc tttgctgttc tgcagcctcc actggtgata cccaggcaga cagggtctgg agtggacctc cagcaaactc 3002 3062 cagcagacct gcagccgagg ggcctcactg ttagaaggaa aactaacagg aatataatca 3122 acatcaacaa aggacatcca cacagaaacc ccatctgaag gttaccagca tcaaagacca 3182 aaggtagata aattcacgaa gatgaggaga aaccagtgca aaaagcctga aaattccaaa aaccagaatg cctcttctcc tccaaaggat cacaactcct tgccggcaag ggaacaaaac 3242 3302 tggatagaga atgagtttga caaattgaca gaagtaggct tcagaaggtg ggaaataaca 3362 aactectetg agetaaagga geatgtteta acceaatgea aggaagetaa gaacettgaa 3422 aaaaggttag aggaattgct aactagaata accagtttag agaagaacat aaatgacctg 3482 atggagctga aaaacacagc atgagaactt cgtgaagcat acagaagaaa aaccttcagc 3542 cagattgaat gctttacagg gaagaattca tactgcagag cggtcttaac aatgtaaaga 3602 atgtgcaaat gtcctcagac aagatgcaca ccttgctcat cagtgagttc atttcaggca 3662 gccagctctt cctcacccac tacatcacca agtcctgtgg atatatctgc taaatatttt 3722 tggaatttat ccacttcttt tggttcccca gtccaaaaca cagtcatttc acctggacta 3782 tttcaatcat tacacaggtg tccaaccttt tgtcttccct gggccacatt ggaagaagaa 3842 aaattgtctt gtgccacaca tacaatacac taacattaac aatagctgat gagctaagaa 3902 aaaaaaaaag tctgtgcata gttttagtga tacaccacct ccaataagca aaaaagtcct cacattcaat gggttgcata cccatgaatt ctaaaacttc atcctcttt gtccctttcg 3962 4022 agttaacatt acagccacag tgacctttca aaaatgcaaa ttaagttact cttaaaactc

4082 tagttaaaat acttgatgta cataaagtgc ttagcaaaat gaccaactca tactaagtgc 4142 ttagtaaatg ttagataagt attctccaga gttgatgtaa attattttta aacagtgcat 4202 tcttgaaagc agtatggcag tcataaaaat tttggaacca aaacagtatc ttttttaag 4262 ctaaaaaaaa qttttaaatg gtgtctttct atgttgccca gggtggtctc aaactcctgt 4322 gctcaagtga ccctcccacc tcattctcaa gtggctgcaa ttacaggcaa ccagcctgac 4382 ttaaaacagt atcttaaggt agatggtgat tagcacatgt agtatgctta acatttaata 4442 ttataataaq acatcacagc ggctgtctca tgattaaggc tgtgttccct tgttggtgag 4502 gaaattaatt atgacttgat aaatagaaca tgttttaaga agtggctata tagctctgga 4562 taaaacgaac aaaagaatta gaatteetge ggggaatata tacaagaett tatttagtea 4622 agtaaaaaaa aatcactaat gtttaactga agaaagagaa attgaataat atagttctat ttcaacatgt gggttcacag atttattcta accttccaag taaagttgtt ccactagtaa 4682 4716 agttgttctg gagtatattt ttaaaaaaaa aaaa

<210> 224

<211> 1026

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (578)..(916)

<400> 224

gtaactgcgg tggaattcga gcccagagct tcttcctgac actcaggcct ttcaaagcct 60 120 gactctcagg gccactgctg cacagggtga caaccgggca tggcacgcag tgtggctggt 180 gcagaggagg cttaaggctg gcctgggaga gattcttggt ctagctccca gcacggagcc ttgcttgtgt cccagggcgg cactaaccag aaccagaaaa ggaaatcttt ggccctcggg 240 300 gagaattatg ccaattatct gtctggttcc tgtctttgaa aatgcccaga tgttggttta caaatcagga agctgtcttg gggcaatctc tgttccctct ttgatgcaga gagcctttct 360 420 ctgtaaacac tggagagcag ggcttcactg tctggctccc ctcccgcctc ttgcaggaag 480 gactagatgc tgctgatcag ctgatcatgg ctgagccggg tagagcttgg ggctctccta agaggtcacc cactgggagg gagcttcaca gctgttcttt tgacccagga aggagctctt 540 595 tcaggactgt ggcacccaga gccgtggccc tcctgcc atg cca ttg ttc cca ctt

Met Pro Leu Phe Pro Leu 1 5

														gag Glu	_	643
		-												ctg Leu		691
														ctt Leu		739
														Gly ggg		787
														agg Arg 85		835
														aga Arg		883
	_			ctc Leu						tga *	aaga	agcc	c ct	caaa	agca	934
gcct	ggg	cag (caggi	taacg	gt gg	gttt	ccct	gcg	ggcc	ccct	cct	cca	gct (gcata	agactc	994
gtgg	gtttg	gaa (gtgaa	acaga	at ct	tgto	ccgga	a ac								1026

<210> 225

<211> 1267

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (70)..(609)

<400> 225

ggaggagtga agaggttgag gcgcccgcc cagtcagcaa ggttgcgcgt gccctgtgag

accgccaag atg gtg gtg gcg ttc cct atg gcg aag ctg cta tac 108

Met Val Val Gly Ala Phe Pro Met Ala Lys Leu Leu Tyr

1 5 10

ttg ggc atc cgg cag gtc agc aag ccg ctt gcc aac cgt att aag gag
Leu Gly Ile Arg Gln Val Ser Lys Pro Leu Ala Asn Arg Ile Lys Glu
15 20 25

gcc q Ala 2 30																204
gct (Ala (_														252
ggc				_	_		_	-	-					_	_	300
gag (Glu 1																348
ggc (396
cac a His 1 110																444
gtg g Val (492
gcg g Ala A																540
gag g		-	_	_		_										588
gtg (Val :						tag * 180	ga (gettg	gctgg	ga tç	ggaad	cctga	a att	ttgga	acat	641
ggcci	tato	ıta d	cctaa	acgt	gg co	cttct	tcc	c gca	accad	ccct	tgc	ctgcg	gct g	ggcc	cagtgg	701
aaaco	cacc	ag g	gatct	tgat	tg ca	actt	ggca	a ttt	ggtt	cacc	ccto	gctga	ata a	agago	cagcca	761
ttac	ctgc	ca c	ctggg	gacca	ag ca	aggto	gaago	c gtt	cgcaa	acat	agco	cccct	taa a	atcat	ccttc	821
acct	ccta	atc o	ccca	actco	ca aa	accag	ggac	g acc	ctgca	aagg	tcc	cagco	cag (cagga	acaccg	881
tggg	cact	ct g	ggcaa	aatga	aa aa	aaatg	ggaad	c ctg	ggtct	tga	gctg	gaato	caa 1	tgtgt	tattg	941
ttac	cccc	cac c	cccc	ggtti	ca co	ctgat	cagt	gtt	caaco	cttt	acto	gggad	cac 1	tcato	ctgtta	1001
cact	ggaa	aca d	cctt	cttc	et ti	tgto	caato	c ggd	cacaç	gacc	acto	gtaaq	gga a	aatgo	cagtgt	1061
gttg	cagt	gg d	ccttt	tctc	cc co	cctca	acct	cta	aaggt	cag	ctct	tagct	tga g	gcato	cagtgc	1121

1181 tctcttaagg aggaaaaaaa cggtgcggct gggagcggtg gctcacgcct gtaatcctag 1241 caccttggga ggccgaggcg ggcggatcac ttgaggtcag gagttccaga ccagcctggc 1267 caacatggtg aaactccgtc tttcta

<210> 226

<211> 1813

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (494)..(1126)

<400> 226 ccggaattcc cgggtcgacc cacgcgtccg aaagaacccg gccaggtgca gggtttcatg 60 cctataatcc cagcactttg ggaggcctag acgggaggat tgcttgagct cagaagtttg 120 180 agatcagcct caacaagatg atgagacccc ttctctacaa aagaaattat aaaaaaattag tcaggtgtgg tagtacacac ctatagcccc agctactcag gaggctgaag cgggaggatc 240 acttgaggcc aggagtttga ggccatagtg agcaaggatc atgccactgc cctccagcct 300 gggcaacaac gagaccctgt ctctaaaaaa taaataaaaa ctagttcctc gcccgctggg 360 420 tgctgaagtt gggcggatgg cagcaaaccg gctccgctag aggaccgagc cgcccagccc 480 cqctccccq qacccatcqq cqcgctgccc acacctccag gcgaccggcc aactgggtcc 529 atg cga aaa agg cag cag tcc caa aat gaa gga aca tgaagtagct gaa Met Arg Lys Arg Gln Gln Ser Gln Asn Glu Gly Thr 1 577 cct gcc gtg tct caa gct cct gga aac cag agg ccc aac aac acc tgt Pro Ala Val Ser Gln Ala Pro Gly Asn Gln Arg Pro Asn Asn Thr Cys 625 tgc ttt tgt tgg tgc tgt tgt tgc agc tgc tcc tgc ctc act gtg agg Cys Phe Cys Trp Cys Cys Cys Cys Ser Cys Ser Cys Leu Thr Val Arg aat gaa gaa aga ggg gaa aat gcg gga aga ccc aca cac act aca aaa 673 Asn Glu Glu Arg Gly Glu Asn Ala Gly Arg Pro Thr His Thr Thr Lys 45 50 atg gag agt atc cag gtc cta gag gaa tgc caa aac ccc act gca gag 721 Met Glu Ser Ile Gln Val Leu Glu Glu Cys Gln Asn Pro Thr Ala Glu 70 65 gaa gtc ttg tcc tgg tct caa aat ttt gac aag atg atg aag gcc cca 769 Glu Val Leu Ser Trp Ser Gln Asn Phe Asp Lys Met Met Lys Ala Pro

80

817 gca gga aga aac ctt ttc aga gag ttc ctc cga aca gaa tac agt gaa Ala Gly Arg Asn Leu Phe Arg Glu Phe Leu Arg Thr Glu Tyr Ser Glu 100 865 gag aac cta ctt ttc tgg ctt gct tgt gaa gac tta aag aag gag cag Glu Asn Leu Leu Phe Trp Leu Ala Cys Glu Asp Leu Lys Lys Glu Gln 115 aac aaa aaa gta att gaa gaa aag gct agg atg ata tat gaa gat tac 913 Asn Lys Lys Val Ile Glu Glu Lys Ala Arg Met Ile Tyr Glu Asp Tyr 130 135 125 961 att tct ata cta tca cca aaa gag gtc agt ctt gat tct cga gtt aga Ile Ser Ile Leu Ser Pro Lys Glu Val Ser Leu Asp Ser Arg Val Arg 145 150 1009 gag gtg atc aat aga aat ctg ttg gat ccc aat cct cac atg tat gaa Glu Val Ile Asn Arq Asn Leu Leu Asp Pro Asn Pro His Met Tyr Glu 160 165 gat gcc caa ctt cag ata tat act tta atg cac aga gat tct ttt cca 1057 Asp Ala Gln Leu Gln Ile Tyr Thr Leu Met His Arg Asp Ser Phe Pro 175 180 185 agg ttt ttg aac tct caa att tat aag tca ttt gtt gaa agt act gct 1105 Arg Phe Leu Asn Ser Gln Ile Tyr Lys Ser Phe Val Glu Ser Thr Ala 190 195 ggc tct tct tct gaa tct taa tg ttcatttaaa aacaatcatt ttggagggct 1158 Gly Ser Ser Ser Glu Ser gagatgggaa ataaaagtag ttaaataaca tcagaaactg agttcctgga gaactacagt 1218 ttagcattcc tcaggctact gtgaaaacac aaccgttatg gtctttgtct ccatttttat 1278 1338 caaggttttc catggttaag tttggagaaa ataccacaca aaacaatgaa ttgccaaatt 1398 gtttgtttta ttcaagactc attctacttg caagcaaagt gtatttgtag tcctatgaac 1458 agtetecteg tgtateteca gagactgeat gtgcaaagta aaatgettea tttgccacat agttgttgta atatttaatc cagtagcata acttatatct gtatttaagg acttttgtgc 1518 aatatggtct taagaaataa ttgccaaaaa aatcggccat gggttgcatt ttttaacata 1578 atctaagacc caaaaaaaag catttttact atggaacaat ggtattcaac aatctatata 1638 ctgtgtttag taccctaatt tttgagccaa tatttctgta ccttaaaaaa aactatttat 1698 ctttgtttgt tggaaaaacc taatggggaa tcctctggtg gtccttgcca aaactgtgga 1758 1813 tttttctttc cgggaaagtt tcctttgcct aaagccccaa acccaaaaaa aaaaa

85

<210> 227 <211> 3404 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (170)..(2119) <400> 227 ggtcccgggg ggcggctgag ggggccgggc cggggctgcg gggcgaacgg cgcggctagg 120 atccggcggc tcagcccggg gcggcgaggc tcggcacgga gatggcggcg cgctcggcgc 175 agacagaget gtgaaccaac cccgctcacg gctaacaagc ccacccacc atg gcg Met Ala 1 age eee act etg age eee gae tee tea tee eag gag gee etg teg gee 223 Ser Pro Thr Leu Ser Pro Asp Ser Ser Ser Gln Glu Ala Leu Ser Ala 15 5 10 271 ccc acc tgc tcc cca acc tct gac tcc gag aac ctc agc ccc gat gag Pro Thr Cys Ser Pro Thr Ser Asp Ser Glu Asn Leu Ser Pro Asp Glu 20 25 319 ctg gag ctg ctg gcc aag ctc gaa gag cag aac cgg ctc ctg gag gcc Leu Glu Leu Leu Ala Lys Leu Glu Glu Gln Asn Arg Leu Leu Glu Ala 45 40 367 qac tcc aag tcc atg cgc tcc atg aat ggc tcg cgg cgg aac agt ggc Asp Ser Lys Ser Met Arg Ser Met Asn Gly Ser Arg Asn Ser Gly 60 55 415 tee teg eta gtg tee age tee teg gee tee tee aac etg age cac etg Ser Ser Leu Val Ser Ser Ser Ser Ala Ser Ser Asn Leu Ser His Leu 75 70 gag gag gac acg tgg atc ctg tgg ggc cgg atc gcc aac gag tgg gag 463 Glu Glu Asp Thr Trp Ile Leu Trp Gly Arg Ile Ala Asn Glu Trp Glu 85 90 95 gag tgg cgc cgc agg aag gag atg ctc ccc aag gag ctg atc cgc aag 511 Glu Trp Arg Arg Lys Glu Lys Leu Leu Lys Glu Leu Ile Arg Lys 100 105 559 ggc atc ccc cac cac ttc cgg gcc atc gtg tgg cag ctt ctg tgc agc Gly Ile Pro His His Phe Arg Ala Ile Val Trp Gln Leu Leu Cys Ser 130 120 125 115 gcc acg gac atg ccc gtc aag aac cag tac tcc gag ctg ctc aag atg 607 Ala Thr Asp Met Pro Val Lys Asn Gln Tyr Ser Glu Leu Leu Lys Met 135 140 655 tcc tcg ccg tgc gag aag ctg atc cgc agg gac atc gcc cgc acc tac

Ser	Ser	Pro	_	Glu	Lys	Leu	Ile		Arg	Asp	Ile	Ala		Thr	Tyr	
			150					155					160			702
		cac His 165														703
		aac Asn														751
	-	cag Gln														799
		gag Glu														847
	_	cgg Arg						~	_	_					_	895
		cag Gln 245														943
		ttc Phe	_			~					-		_	-		991
		ctc Leu		_		_										1039
	_	ttt Phe	-			_										1087
		ctc Leu														1135
		gag Glu 325														1183
		agc Ser														1231
		ccc Pro														1279
		aag Lys														1327

	375	380		385
			acc cta gag aag Thr Leu Glu Lys 400	
	Asp Arg Leu 1		caa gtg aca cgg Gln Val Thr Arg 415	
			gag ctg gcg gtg Glu Leu Ala Val 430	
cag cag tgc agc Gln Gln Cys Ser 435	tcg gcg gcc g Ser Ala Ala (440	gag gac ctg Glu Asp Leu	cag aag gca cag Gln Lys Ala Gln 445	agc acc 1519 Ser Thr 450
			ccc cgc ctc aca Pro Arg Leu Thr	
			cag tcg agg ctg Gln Ser Arg Leu 480	
	Gly Ala Leu A		cag gac aag gtt Gln Asp Lys Val 495	
			gag aac aat gtg Glu Asn Asn Val 510	
			cgg gaa ggc cag Arg Glu Gly Gln 525	
			cag gag ctc tcg Gln Glu Leu Ser	
tgg cag gac cag Trp Gln Asp Gln 550	atc gag gag of Ile Glu Glu I	ctg aag acc Leu Lys Thr 555	gag gtg cgg ctg Glu Val Arg Leu 560	ctg aag 1855 Leu Lys
	Phe Glu Asp 1		ttc gat ggg ctg Phe Asp Gly Leu 575	
			tcg tcg gac gag Ser Ser Asp Glu 590	
ctt ggc gta ggc Leu Gly Val Gly 595	gtg ggc gct g Val Gly Ala 2 600	gcc ctg cag Ala Leu Gln	gac gca ttg tac Asp Ala Leu Tyr 605	cct ctg 1999 Pro Leu 610

2047 tee eeg ege gat geg ege tte tte ege egt etg gag egg eeg gee aag Ser Pro Arg Asp Ala Arg Phe Phe Arg Arg Leu Glu Arg Pro Ala Lys 620 615 2095 gac agc gag ggc agc tca gac agc gac gcc gat gag ctg gcc gcg ccc Asp Ser Glu Gly Ser Ser Asp Ser Asp Ala Asp Glu Leu Ala Ala Pro 630 635 tac agc cag ggt ctg gac aac tga ggccatgccc agcgcgcccg gagtcaggag 2149 Tyr Ser Gln Gly Leu Asp Asn 650 645 2209 gccgcagccg cggggggcgc ccgggcagtc cgcgttctgc tccccacctg ccgcacttga 2269 caaactacgc gccctctgtg gctcggccac ccctaaagcg aggcccggcg aggcagcgca 2329 gagggtaggg tccgacctgg gctcctcagg gccccggggc aggctctctc tccccagcag tgtttaccca tcttggtctg tacccctccg ggccctctgg cgttccaggg gtgcctggag 2389 gggctgactg ctctcttaac aggagggcag agggcagggg acagacgacc cagaggtccc 2449 agcactgaat gagcaggcag ctcccacctc ctggcaggct tccttctggg acaggggcga 2509 cattgctggg aagtgctcag gaggtagccg aggcctgagg aaggagagcg ccagctctgg 2569 gctggacatc agcacccac aacactcctc gggatgaagt gacccttgac tagcccctgg 2629 ccatctctag gggagtcagg ccgctgggga cagatggcca ggccggcctc tcctgcctgg 2689 2749 cqcaqqcacc qtgqcccctg cagcggaaac caaagtcccc ctactatgtg cggggcgcct ggggactgag tggctaacgg gaagcctccc tgcttctctg gggccagagc agcttccagg 2809 2869 aaqtqaaqaq accctctcc ccagtgcccc acatctttct ctgggagaca ctcgcgcccc 2929 ctatcctggc cagtgatgga ggggtatctc tacaggggtc ctcggtctcc atctacttcc 2989 ctttcttcat gtgtttccag ccccaccctc agccagagcc aggcccccag gcaggagctt cccagcgagc ggcctcccct cacttcctcc tggtggtccc gttgtctctg ctgaatcaga 3049 3109 gctgagaacg gtgccaaaat ccaacgatgc cccccaggcc ccttcctccc ttcccccggc ccccgggcc tcatgaccct gggggctgcc cccctcggtg ctcccggagc ctccagtaga 3169 gtagcgtcac aagcaatctc cctggcgctt cctgggtggg gacccctgct ccgtccccgc 3229 ttcctagctg cccacttttc agtgttacga agcctgggga ccggggcagg cacccacggg 3289 gctctccaca cgccccctac actgcccgcc accattttgc acactgcctg ttcacatgtc 3349 3404 gcccaggcgg gaaaaatgga aaataaagtg tatttacaca gtcaaaaaaa aaaaa

<210> 228

<211> 1719 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (331)..(1167) <400> 228 aatggtagcc actcgaatat gcacacgcca agcttggcac gaggcgagct ctcattcaca 60 120 gctttctaga gaaatctgag cccgaacctg ccagaatagg ggatctcacc cacccagttc agcagcgagg acacctgcag aaatacattc ccaaagcaag gctgggcggc cgtgtgaagt 180 240 aaggaatggc ctcagttttg cttctgtttt ggatgaacac caccacatag ggcctgaatg tgaaagaaga ccctctattt gtctgttccg gggcagcctg gtagtaaaac actgttgaat 300 gggccacagt ttcagcagac catcaggtga 351 atg gga cca gtc tct ctt ctt Met Gly Pro Val Ser Leu Leu 399 cca aaa tat cag aag tta aac act tgg aac gga gat ttg gcc aag atg Pro Lys Tyr Gln Lys Leu Asn Thr Trp Asn Gly Asp Leu Ala Lys Met 10 15 acc cat tta cag gct gga ctc agt cca gag act ata gag aaa gct cgc 447 Thr His Leu Gln Ala Gly Leu Ser Pro Glu Thr Ile Glu Lys Ala Arg 25 30 495 ctg gaa ctg aat gaa aac ccc gat gtt tta cat cag gat att cag caa Leu Glu Leu Asn Glu Asn Pro Asp Val Leu His Gln Asp Ile Gln Gln 55 45 40 gtc agg gac atg atc atc acc agg cct gac att gga ttt tta cgt aca 543 Val Arg Asp Met Ile Ile Thr Arg Pro Asp Ile Gly Phe Leu Arg Thr 70 65 591 gat gat gcc ttc atc ctg aga ttt ctc cga gcc agg aag ttt cac caa Asp Asp Ala Phe Ile Leu Arg Phe Leu Arg Ala Arg Lys Phe His Gln gcg gat gcc ttt aga ctc ctg gct cag tat ttc cag tac cgc cag cta 639 Ala Asp Ala Phe Arg Leu Leu Ala Gln Tyr Phe Gln Tyr Arg Gln Leu 687 aac ctg gac atg ttc aaa aac ttc aag gca gat gat ccc ggc att aag Asn Leu Asp Met Phe Lys Asn Phe Lys Ala Asp Asp Pro Gly Ile Lys 115 105 110 735 agg gct ctg atc gat ggg ttc ccc ggg gtg ctg gaa aac cga gac cat Arg Ala Leu Ile Asp Gly Phe Pro Gly Val Leu Glu Asn Arg Asp His 130 135 120 125

tac ggc agg aag att ctt ttg ctg ttt gca gcc aat tgg gat cag agt Tyr Gly Arg Lys Ile Leu Leu Phe Ala Ala Asn Trp Asp Gln Ser 140 145 150	783
agg aac tcc ttc aca gac atc ctt cgt gcc atc ctg ctg tca ttg gaa Arg Asn Ser Phe Thr Asp Ile Leu Arg Ala Ile Leu Leu Ser Leu Glu 155 160 165	831
gtc cta atc gaa gat ccg gag ctt cag ata aat ggc ttc att tta att Val Leu Ile Glu Asp Pro Glu Leu Gln Ile Asn Gly Phe Ile Leu Ile 170 175 180	879
ata gac tgg agt aat ttt tcc ttc aaa caa gcc tcc aaa ctg aca cct Ile Asp Trp Ser Asn Phe Ser Phe Lys Gln Ala Ser Lys Leu Thr Pro 185 190 195	927
tca atc ctt aaa ctg gcc att gaa ggg ttg cag gac agc ttt cct gcc Ser Ile Leu Lys Leu Ala Ile Glu Gly Leu Gln Asp Ser Phe Pro Ala 200 205 210 215	975
cgc ttt gga gga gtc cac ttt gtc aac cag ccc tgg tac att cat gcc Arg Phe Gly Val His Phe Val Asn Gln Pro Trp Tyr Ile His Ala 220 225 230	1023
ctc tac aca ctc atc aag cca ttt ctt aaa gac aag acc agg aaa cgg Leu Tyr Thr Leu Ile Lys Pro Phe Leu Lys Asp Lys Thr Arg Lys Arg 235 240 245	1071
att ttc ctg cat gga aac aat tta aac agc ctt cac cag cta ata cac Ile Phe Leu His Gly Asn Asn Leu Asn Ser Leu His Gln Leu Ile His 250 255 260	1119
cct gaa ttt ttg ccc tct gaa ttt gga gga act ctt cct ccc tta tga Pro Glu Phe Leu Pro Ser Glu Phe Gly Gly Thr Leu Pro Pro Leu * 265 270 275	1167
catgggaact tgggcccgga cgttactcgg tcccgactac agcgatgaaa atgactatac	1227
tcacacatcc tataatgcaa tgcacgtgaa gcatacgtcc tcgaatctgg agagagaatg	1287
ctcacccaag ctgatgaaaa gatctcagtc tgtggtagaa gctgggaccc tgaaacatga	1347
ggagaaggga gagaatgaga acacccagcc actcctggct ctggactgaa ccctgagtca	1407
ccccaatgct cctgcacact ggccttcagt ggtatcagcc acccaggaag cacatgcaca	1467
actgacccat gcagacacgt gtgttctgct tgacacaagg tcctccactc ctgaacccct	1527
gcagtgactg tcaccagcca tcggtctgag cagccaaagt tggacaaaga cttgagagat	1587
gctttttttt tcccccagtg aggggactgg aggatgatgc aaggcattta tgtaaaaaag	1647
attctccctc ctttcatatt tattgtagta aattgaaaaa ataaagacta aatttgatgg	1707
aaaaaaaaa aa	1719

<210> 229 <211> 546 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (151)(420)	
<400> 229 cattatectg ettecageet eteteaatge teatecagat gettgeagta gteteetaga	60
tggtttcctt actcccacaa ttacttacct acagtctgtt ctcgatacaa gactgacaga	120
agtcagattc tgactctgca tacccctcca atg gct ttc gcc acc ccc aaa Met Ala Phe Ala Thr Pro Lys 1 5	171
tca ctt gga gta aaa gcc gaa gtc ctt cca gca gct tac cag gtg ctg Ser Leu Gly Val Lys Ala Glu Val Leu Pro Ala Ala Tyr Gln Val Leu 10 15 20	219
cat gat cca gac tcc ttc tta gcc ctc tgg ctc tcc tgc tgc tct cct His Asp Pro Asp Ser Phe Leu Ala Leu Trp Leu Ser Cys Cys Ser Pro 25 30 35	267
tct tca ttt ctc tct agc cac acc agc ttt ctt gct gag agc act ggg Ser Ser Phe Leu Ser Ser His Thr Ser Phe Leu Ala Glu Ser Thr Gly 40 45 50 55	315
tgc tct gtc tac act att ctc caa aat atc cat atg gtt tgt cct cct Cys Ser Val Tyr Thr Ile Leu Gln Asn Ile His Met Val Cys Pro Pro 60 65 70	363
tca ttt act ttc ttg aat tcc acg gtc tca gtg aga tta cct tgg cat Ser Phe Thr Phe Leu Asn Ser Thr Val Ser Val Arg Leu Pro Trp His 75 80 85	411
cct agt taa agctgct gcctgtcctc tcaccctgcg tcctgcagtc ccctttctag Pro Ser * 90	467
cgtcccctcc ctttttctat agcactcttc aacttctaac atacttttaa aacataattt	527
ccttgtatgt tttgctgag	546

<210> 230 <211> 3543

<212> DNA

<213> Homo sapiens

<220>

<221> CDS <222> (198)..(1829)

<400> 230	
aggtaccggt ccggaattcc cgggtcgacc cacgcgtccg ggaccgcgag cacaggccgc	60
teegegggeg etteggatee tegegggace ceaecetete eeageetgee eageeegetg	120
cagccgccag cgcgccccgt cggcagctct ccatctgcac gtctctccgt gaaccccgtg	180
agcggtgtgc agccacc atg ttc agc tgg ctg aag cgg ggc ggg gca cgg Met Phe Ser Trp Leu Lys Arg Gly Gly Ala Arg 1 5 10	230
ggc cag cag ccc gag gcc atc cgc acg gtg acc tcg gcc ctc aag gag Gly Gln Gln Pro Glu Ala Ile Arg Thr Val Thr Ser Ala Leu Lys Glu 15 20 25	278
ctg tac cgc acg aag ctg ctg ccg ctg gag gag cac tac cgc ttt ggg Leu Tyr Arg Thr Lys Leu Leu Pro Leu Glu Glu His Tyr Arg Phe Gly 30 35 40	326
gcc ttc cac tcg ccg gcc ctg gag gac gca gac ttc gac ggc aag ccc Ala Phe His Ser Pro Ala Leu Glu Asp Ala Asp Phe Asp Gly Lys Pro 45 50 55	374
atg gtg ctg gtg gcc ggc cag tac agc acg ggc aag acc agc ttc atc Met Val Leu Val Ala Gly Gln Tyr Ser Thr Gly Lys Thr Ser Phe Ile 60 65 70 75	422
cag tac ctg ctg gag cag gag gtg ccc ggc tcc cgc gtg ggg cct gag Gln Tyr Leu Leu Glu Gln Glu Val Pro Gly Ser Arg Val Gly Pro Glu 80 85 90	470
ccc acc acc gac ttc ttt gtg gcc gtc atg cac ggg gac act gag ggc Pro Thr Thr Asp Phe Phe Val Ala Val Met His Gly Asp Thr Glu Gly 95 100 105	518
acc gtg ccc ggc aac gcc ctc gtc gtg gac ccg gac aag ccc ttc cgc Thr Val Pro Gly Asn Ala Leu Val Val Asp Pro Asp Lys Pro Phe Arg 110 115 120	566
aaa ctc aac cct ttc gga aac acc ttc ctc aac agg ttc atg tgt gcc Lys Leu Asn Pro Phe Gly Asn Thr Phe Leu Asn Arg Phe Met Cys Ala 125 130 135	614
cag ctc cct aat cag gtc ctg gag agc atc agc atc atc gac acc ccg Gln Leu Pro Asn Gln Val Leu Glu Ser Ile Ser Ile Ile Asp Thr Pro 140 145 150 155	662
ggt atc ctg tcg ggt gcc aag cag aga gtg agc cgc ggc tac gac ttc Gly Ile Leu Ser Gly Ala Lys Gln Arg Val Ser Arg Gly Tyr Asp Phe 160 165 170	710
ccg gcc gtg ctg cgc tgg ttc gcg gag cgc gtg gac ctc atc atc ctg Pro Ala Val Leu Arg Trp Phe Ala Glu Arg Val Asp Leu Ile Ile Leu 175 180 185	758

				aag Lys								806
				ggc Gly								854
				gag Glu 225								902
	_	 -	_	ggc Gly	-							950
_		-		ttc Phe		-			-		_	998
				ctg Leu								1046
				gca Ala								1094
	_	 _		cga Arg 305	-	_			_			1142
				gtg Val								1190
		_		gtc Val			_	_	_	-		1238
				ttt Phe								1286
				acc Thr								1334
				atg Met 385								1382
				gag Glu								1430

ggc gct ttt gag ggc acc cac atg ggc ccg ttt gtg gag cgg gga cct Gly Ala Phe Glu Gly Thr His Met Gly Pro Phe Val Glu Arg Gly Pro 415 420 425	1478
gac gag gcc atg gag gac ggc gag gag ggc tcg gac gac gag gcc gag Asp Glu Ala Met Glu Asp Gly Glu Glu Gly Ser Asp Asp Glu Ala Glu 430 435 440	1526
tgg gtg gtg acc aaa gac aag tcc aaa tac gac gag atc ttc tac aac Trp Val Val Thr Lys Asp Lys Ser Lys Tyr Asp Glu Ile Phe Tyr Asn 445 450 455	1574
ctg gcg cct gcc gac ggc aag ctg agc ggc tcc aag gcc aag acc tgg Leu Ala Pro Ala Asp Gly Lys Leu Ser Gly Ser Lys Ala Lys Thr Trp 460 465 470 475	1622
atg gtg ggg acc aag ctc ccc aac tca gtg ctg ggg cgc atc tgg aag Met Val Gly Thr Lys Leu Pro Asn Ser Val Leu Gly Arg Ile Trp Lys 480 485 490	1670
ctc agc gat gtg gac cgc gac ggc atg ctg gat gat gaa gag ttc gcg Leu Ser Asp Val Asp Arg Asp Gly Met Leu Asp Asp Glu Glu Phe Ala 495 500 505	1718
ctg gcc agc cac ctc atc gag gcc aag ctg gaa ggc cac ggg ctg ccc Leu Ala Ser His Leu Ile Glu Ala Lys Leu Glu Gly His Gly Leu Pro 510 515 520	1766
gcc aac ctg ccc cgt cgc ctg gtg cca ccc tcc aag cga cgc cac aag Ala Asn Leu Pro Arg Arg Leu Val Pro Pro Ser Lys Arg Arg His Lys 525 530 535	1814
ggc tcc gcc gag tga gccgggcccc cctcccatgg ccctgctgtg gctccccagc Gly Ser Ala Glu * 540	1869
tccagtcggc tgcacgcaca cccctgctcc ggctcacaca cgccctgcct gccctccctg	1929
cccagctgta aggaccgggg gtctccctcc tcactaccgc cagacacccc ggtggaagca	1989
tttagagggg accacgggag ggacaaggct tctctgtccg cccttcacac ctccagcctc	2049
acgttcactt aggcacatca cacacacat ggcacacgca ggcatccatc catccgtcat	2109
tcattcaaat atttattgag cacctactat gtgcccagcc ctgttctagg cactgggcat	2169
taccatagag aacaaaatag acaaatacat ctgccctcat ggaaggtgac gttcccagga	2229
gagggcacct acacagtcac gcaaacacac actaattcct ggcagggccc ccagccctc	2289
ccctggctga gcagccctgt ggctgaaatg actagcagat aaacagaccc ccttctgctc	2349
cgcttcctcc tgcccagcca ggcaacaccc tcaaccggct ccatcacatc ctcaggtctc	2409
gggaccatgg ggggctcaga ggggagacac acctactgct tcctcagatg ggcccctccg	2469
cagccccttc ccttgctcgg ggaaagcccc caattctgcc cacacccatt tatttccttc	2529

2589 2649 catacccatt tetteette etteetteet tettttttgt tittgeecce agttetgtee 2709 acaccccttc cctttcctgt cctgtccttt ctttcttttt tgatagaatc ttgctctgtc 2769 gcccaggctg gagtgcagtg gtgagatctc agctcactgc aacctccacc tcctgggttg aagtgattct cgtgcctcag cctcctgagt agctgggact gcaggcacgc gccaccacgc 2829 2889 ccagctaatt tttgtatttg agtagagacg gggtttcacc atgttggcca ggctggtctc gaactccgca tctcaggtga tctgctcgcc tcggcctccc aaagtgatgg gattacaggc 2949 3009 atgagecace gtgccegget teacacecat ttetttaaaa aggateeegt ageaggeaga aaagcccctt ccatcctgct cctctgatac tgtgccccct tggagatatt tccgtcctcc 3069 acceacgtgt ctgtggctgg aactgcccag cctgctcctg gccccctgga agcctcccca 3129 3189 caqctqqtaa tctgqactta aggattgctg ggccaccgcc tctctgccta ccaccattcc atatttaagt ggagccccta cgtagaaagg ccccggggct ttattttagt ctccttttca 3249 gggatgtcgt gggcgggga gggggttctt ggtgctacag ccctctcccc acccctaaag 3309 ggacgccgac gctgtttgct gccttcacca catattagtg cttgaccctg gcaggggacc 3369 ccatggaaaa gatggggaag agcaaaatac atggagacga cgcaccctcc aggatgctcg 3429 3489 ctgggattcc cacgcccacc actgtccccc accccatggc tgggaggggc ctctgaacgg 3543 aacagtgtcc ccacagagcg aataaagcca aggettette ccaaaaaaaa aaaa

<210> 231

<211> 1389

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (190)..(1014)

<400> 231

aagetgaetg eccgeacege eccaggegea etgggtagga etgaaaggea gggaetaagg 60

tgacagetga etetgeeggg geggagtgeg tgteeteeca eegtgetgge getgaaetga 120

etgteegetg ecaagggaag tgacageege ageegggete teageeageg geegggegee 180

eegeeggaee atg ete tee agt aeg eag aac geg gge gge tee tat eag 228

Met Leu Ser Ser Thr Gln Asn Ala Gly Gly Ser Tyr Gln

			ctt Leu						276	5
			aaa Lys 35						324	4
			aga Arg						372	2
			ttc Phe						420	Э
 _	_	-	tta Leu					_	468	8
			gca Ala						510	б
			aaa Lys 115						564	4
			ttg Leu						612	2
			gaa Glu						660	0
			ctt Leu						708	8
			cgt Arg						756	6
			ctg Leu 195						804	4
			ttt Phe						852	2
			gac Asp						900	0

ttt tca aat cct aat ggc cgt ata tct cct ttg gca aga gct ggg tcc Phe Ser Asn Pro Asn Gly Arg Ile Ser Pro Leu Ala Arg Ala Gly Ser 240 245 250	948
agc agt gtt agc agg ggt ggc agt cct tgt gtt tgt tat acc aat aaa Ser Ser Val Ser Arg Gly Gly Ser Pro Cys Val Cys Tyr Thr Asn Lys 255 260 265	996
tgc ttt agc tgc aac taa aataaa aaagttaaag gtaaaaaaat gactgcctca Cys Phe Ser Cys Asn * 270 275	1050
tgttacatgt gtcaaacagg agctgagttt tctgacttga gttaacaatc accatctcgc	1110
taattatata gagagagtta caaatggaag tcatcgaatt ttatcattta cttattcact	1170
caaccagtat tgaacaagca tgtatcttat gtcagccagt gtttcaggca caggaagtac	1230
agcagtgagg ggaaatgaca agtccagctc tcatgagggg tagtggagga gacaggcatt	1290
aagcaagtac ataaatagag agaaaacatt tgtatatgaa aaagatttag taaaatacag	1350
tgatgaagag acaaaggatg ccattttaca tttaagatc	1389
<210> 232 <211> 707 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (56)(439) <400> 232	
ctactactac tactactaaa ttcgcggccg cgtcgaccat agcgctcacg caagc atg Met 1	58
gtt aac gtc cct aaa acc cgc cgg act ttc tgt aag aag tgt ggc aag Val Asn Val Pro Lys Thr Arg Arg Thr Phe Cys Lys Lys Cys Gly Lys 5 10 15	106
cac caa ccc cat aaa gtg aca cag tac aag aag ggc aag gat tct ctg His Gln Pro His Lys Val Thr Gln Tyr Lys Lys Gly Lys Asp Ser Leu 20 25 30	154
tac gcc cag gga aag cgg cgt tat gac agg aag cag agt ggc tat ggt Tyr Ala Gln Gly Lys Arg Arg Tyr Asp Arg Lys Gln Ser Gly Tyr Gly 35 40 45	202
ggg caa act aag ccg att ttc cgg aaa aag gct aaa act aca aag aag Gly Gln Thr Lys Pro Ile Phe Arg Lys Lys Ala Lys Thr Thr Lys Lys	250

att gtg cta agg ctt gag tgc gtt gag ccc aac tgc aga tct aag aga Ile Val Leu Arg Leu Glu Cys Val Glu Pro Asn Cys Arg Ser Lys Arg 70 75 80	298
atg ctg gct att aaa aga tgc aag cat ttt gaa ctg gga gga gat aag Met Leu Ala Ile Lys Arg Cys Lys His Phe Glu Leu Gly Gly Asp Lys 85 90 95	346
aag aga aag gta tat aat tat ggg tcg gaa ggt gca atc ttt ctc ata Lys Arg Lys Val Tyr Asn Tyr Gly Ser Glu Gly Ala Ile Phe Leu Ile 100 105 110	394
gct tta tta ttt cga aaa ggt gaa cat cta ttc ctt gtg gca tag agc Ala Leu Leu Phe Arg Lys Gly Glu His Leu Phe Leu Val Ala * 115 120 125	442
tcaggggtaa tcctctaaaa atattagatc tatagctaaa gatatgtgag gtcttttgct	502
acaaggagga aaggaagaat gaggaagctt aacagcatgg tgactatttt aggaacagat	562
aatgttetta atggggeagt agtteatgge aaaatacaaa acaaettttt tetgttetge	622
ttacagggcc aagtgatcca gttttaagtg tcatctttta ttatgaagac aataaaatct	682
tgagtttatg ttcaaaaaaa aaaaa	707
<210> 233 <211> 824 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (101)(688) <400> 233	
attagaaact gatttacatg gagacccaag ctggctagcg tttaaactta agcttggtac	60
cgagctcgga tccactagtc cagtgtggtg gaattccata atg tat agt att tct Met Tyr Ser Ile Ser 1 5	115
cct gcc aac tct gag gaa ggc cag gaa ctt tat gtc tgc aca gtc aag Pro Ala Asn Ser Glu Glu Gly Gln Glu Leu Tyr Val Cys Thr Val Lys 10 15 20	163
gat gat gtg aac ttg gat aca gta ctt ctc cta ccc ttt ttg aaa gaa Asp Asp Val Asn Leu Asp Thr Val Leu Leu Pro Phe Leu Lys Glu 25 30 35	211
ata gca gta agc caa ctg gat caa ctg agc cca gag gaa cag ttg ctg Ile Ala Val Ser Gln Leu Asp Gln Leu Ser Pro Glu Glu Gln Leu Leu	259

						att Ile 60										307
_			_			tgg Trp	_			_				-	-	355
						cat His										403
			_			ata Ile		_					-			451
						aag Lys										499
					_	gaa Glu 140					_	•	_	_		547
						cac His										595
						gta Val	-	-			-	_	_	_	_	643
						cta Leu								taa *	gca	691
tgct	gggg	jtc a	acgto	gtcat	g ca	aaco	ttgg	g aca	agato	gact	gaac	cctct	ct a	tgco	cttggt	751
ttct	tcat	ct g	gtgta	gaco	jc ca	igtga	cgat	gto	ctcct	tcc	tcag	gtc	ggg g	gacta	ıtctgg	811
gaco	caag	ıgt t	ct													824

```
<210> 234
```

<220>

<221> CDS

<222> (239)..(946)

<400> 234

tttcgtctgg gcccgcgcgc aggccttaca taggaagtcc ttctaaagag ctgcctgcca 60

<211> 1077

<212> DNA

<213> Homo sapiens

gctgcccttc cccagato	ecc gaatateete et	ggccaggt gga	agcagaga acagttcctc	120
agctggtcat gctgagct	ca taccctgatg gc	tgctccat gag	ggtcaaga ctgggtctcc	180
tccctcctcc cccttcac atg gca tca tcg acc Met Ala Ser Ser Thr 1	tcc ctc cca gct Ser Leu Pro Ala	cct ggc tct	t cgg cct aag aag	238 286
cct cta ggc aag atg Pro Leu Gly Lys Met 20		Arg Gln Thr		334
ccc aag aag agg ccc Pro Lys Lys Arg Pro 35		=		382
cag cct acc tca cag Gln Pro Thr Ser Gln 50		-	r Leu Ser Ser Val	430
acg tct ccc agc ctg Thr Ser Pro Ser Leu 65				478
cgc tgg agc aaa gac Arg Trp Ser Lys Asp 85	Tyr Asp Val Cys			526
ctg gtg gcc gcc cag Leu Val Ala Ala Gln 100		Tyr Leu Glu		574
agc ctg cgc tgc ttc Ser Leu Arg Cys Phe 115	-			622
ata gtg tcc gag ctg Ile Val Ser Glu Leu 130			r His Cys Arg Val	670
ctg ctc atc acg ccg Leu Leu Ile Thr Pro 145				718
atg ctg cag gcc ctg Met Leu Gln Ala Leu 165	Thr Glu Ala Pro			766
ccc ctg ctg tcg ggc Pro Leu Leu Ser Gly 180		Ala Tyr Pro		814
ttc atg tac tac gtc Phe Met Tyr Tyr Val 195		-		862

Val Lys Glu Ala Val Met Arg Cys Lys Leu Leu Gln Glu Gly Glu Gly 210 215 220	910
gaa cgg gat tca gct aca gta ttt gat cta ctt tga cttt taggagacag Glu Arg Asp Ser Ala Thr Val Phe Asp Leu Leu * 225 230 235	960
ccctgtagcc tagtagttca aagcgcagct tctggaagag gctgtcgggg tttgtatcct	1020
ggctcctgcc cttattaacc cataaaaagt aacttggtca agttaaaaaa aaaaaaa	1077
<210> 235 <211> 916 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (169)(738)	
<400> 235 agctggctag cgtttaaact taagcttggt accgagctcg gatccactag tccagtgtgg	60
tggaattcca cagcccagta actttgctag tacctcttga gtgcaaggtg gagaattaag	120
atctggattt gagacggagc acggaacatt tcactcaggg gaagagct atg aac atg Met Asn Met 1	177
ctg act gcc agc ctg ttg agg gca gtc ata gcc tcc atc tgt gtt gta Leu Thr Ala Ser Leu Leu Arg Ala Val Ile Ala Ser Ile Cys Val Val	
5 10 15	225
tcc agc atg gct cag aag gta act caa gcg cag act gaa att tct gtg Ser Ser Met Ala Gln Lys Val Thr Gln Ala Gln Thr Glu Ile Ser Val 20 25 30 35	225 273
tcc agc atg gct cag aag gta act caa gcg cag act gaa att tct gtg Ser Ser Met Ala Gln Lys Val Thr Gln Ala Gln Thr Glu Ile Ser Val	
tcc agc atg gct cag aag gta act caa gcg cag act gaa att tct gtg Ser Ser Met Ala Gln Lys Val Thr Gln Ala Gln Thr Glu Ile Ser Val 20 25 30 35 gtg gag aag gag gat gtg acc ttg gac tgt gtg tat gaa acc cgt gat Val Glu Lys Glu Asp Val Thr Leu Asp Cys Val Tyr Glu Thr Arg Asp	273
tcc agc atg gct cag aag gta act caa gcg cag act gaa att tct gtg Ser Ser Met Ala Gln Lys Val Thr Gln Ala Gln Thr Glu Ile Ser Val 20 25 30 35 gtg gag aag gag gat gtg acc ttg gac tgt gtg tat gaa acc cgt gat Val Glu Lys Glu Asp Val Thr Leu Asp Cys Val Tyr Glu Thr Arg Asp 40 45 50 act act tat tac tta ttc tgg tac aag caa cca cca agt gga gaa ttg Thr Thr Tyr Tyr Leu Phe Trp Tyr Lys Gln Pro Pro Ser Gly Glu Leu	273 321

acc atc aca gcc tca caa gtc gtg gac tca gca gta tac ttc tgt gct Thr Ile Thr Ala Ser Gln Val Val Asp Ser Ala Val Tyr Phe Cys Ala 100 105 110 115	513
ctg agt gag gcg gcc caa gaa acc agt ggc tct agg ttg acc ttt ggg Leu Ser Glu Ala Ala Gln Glu Thr Ser Gly Ser Arg Leu Thr Phe Gly 120 125 130	561
gaa gga aca cag ctc aca gtg aat cct gat atc cag aac cct gac cct Glu Gly Thr Gln Leu Thr Val Asn Pro Asp Ile Gln Asn Pro Asp Pro 135 140 145	609
gcc gtg tac cag ctg aga gac tct aaa tcc agt gac aag tct gtc tgc Ala Val Tyr Gln Leu Arg Asp Ser Lys Ser Ser Asp Lys Ser Val Cys 150 155 160	657
cta ttc acc gat ttt gat tct caa aca aat gtg tca caa agt aag gat Leu Phe Thr Asp Phe Asp Ser Gln Thr Asn Val Ser Gln Ser Lys Asp 165 170 175	705
tct gat gtg tat atc aca gac aaa ctg tgc tag actgtgag gctagggatt Ser Asp Val Tyr Ile Thr Asp Lys Leu Cys * 180 185 190	756
tcagaaccac cgggttgggc ctggagcaac aaatctgact ttgcatgggc aacgccttca	816
acaacaggct tatttcagaa gaaccettet teeccageee caaaaggtee ettgatggea	876
acaacagget tattteagaa gaaceettet teeceageee caaaaggtee ettgatggea agetgeeega gaaagetttg aaacagatae caacetaaae	916
<pre>agctgcccga gaaagctttg aaacagatac caacctaaac <210> 236 <211> 876 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (38)(547) <400> 236</pre>	916
<pre>agctgcccga gaaagctttg aaacagatac caacctaaac <210> 236 <211> 876 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (38)(547)</pre>	
agctgcccga gaaagctttg aaacagatac caacctaaac <pre> <210> 236 <211> 876 <212> DNA <212> DNA <213> Homo sapiens <220> <221> CDS <222> (38)(547) </pre> <pre> <400> 236 agtgtggtgg aattcgggag ccctgcccca ggggccc atg cag aat gcc acc aag Met Gln Asn Ala Thr Lys</pre>	916
agctgcccga gaaagctttg aaacagatac caacctaaac <210> 236 <211> 876 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (38)(547) <400> 236 agtgtggtgg aattcgggag ccctgcccca ggggccc atg cag aat gcc acc aag Met Gln Asn Ala Thr Lys 1 5 tat ggc aac atg aca gag gac cat gtg atg cac ctg ctc cag aat gct Tyr Gly Asn Met Thr Glu Asp His Val Met His Leu Leu Gln Asn Ala	916

	40					45					50						
														cac His		:	247
														aag Lys 85			295
														ttc Phe			343
ccc Pro	aag Lys	tgc Cys 105	gac Asp	gag Glu	aac Asn	ggc Gly	aac Asn 110	tat Tyr	ctg Leu	cca Pro	ctc Leu	cag Gln 115	tgc Cys	tat Tyr	GJÀ aaa		391
														gtc Val			439
aac Asn 135	acc Thr	aga Arg	agc Ser	cgc Arg	ggg Gly 140	cac His	cat His	aac Asn	tgc Cys	agt Ser 145	gag Glu	tca Ser	ctg Leu	gaa Glu	ctg Leu 150		487
gag Glu	gac Asp	ccg Pro	tct Ser	tct Ser 155	ggg	ctg Leu	ggt Gly	gtg Val	acc Thr 160	aag Lys	cag Gln	gat Asp	ctg Leu	ggc Gly 165	cca Pro		535
	ccc Pro		tga * 170	gag	cago	caga	ggc (ggtc	tcaa	ac at	teet	gcca	g cc	ccaca	acag		590
ctac	cagct	tt d	cttg	ctcc	ct to	cagc	ccca	a gc	ccct	cccc	cato	ctcc	cac (cctg	acctc		650
atco	ccato	gag a	accci	tggt	gc ct	-ggc	tctti	t cg1	tcac	cctt	gga	caag	aca (aacca	aagtcg		710
gaad	cagca	aga t	taaca	aatg	ca go	caag	gccct	t gci	tgcc	caat	ctc	catc	tgt (caaca	aggggc		770
ggto	cgac	gcg (gccg	cgaai	tt c	ggato	cctc	g aga	agato	ctct	ttt	tttg	ggt	ttgg	ggggt		830
gtct	tcat	tca t	tcgga	atata	ac ta	aggta	atata	a cat	tagg	ccta	tcaa	agg					876

```
<210> 237
```

<211> 753

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (168)..(419)

<400> 237

gtccgtgcgc accgcccggc gtccaggtga gtctcccatc tgcagagacg cggacgcgcc	60
ggcccgcagt tggcctgcgg agcgcggtgg acggtttggc gcccaccagg cgatcaatac	120
tttggatttt taatttctag atttggcaat tcttcgctga agtcatc atg agc ttt Met Ser Phe 1	176
ttc caa ctc ctg atg aaa agg aag gaa ctc att ccc ttg gtg gtg ttc Phe Gln Leu Leu Met Lys Arg Lys Glu Leu Ile Pro Leu Val Val Phe 5 10 15	224
atg act gtg gcg gcg ggt gga gcc tca tct ttc gct gtg tat tct ctt Met Thr Val Ala Ala Gly Gly Ala Ser Ser Phe Ala Val Tyr Ser Leu 20 25 30 35	272
tgg aaa acc gat gtg atc ctt gat cga aaa aaa aat cca gaa cct tgg Trp Lys Thr Asp Val Ile Leu Asp Arg Lys Lys Asn Pro Glu Pro Trp 40 45 50	320
gaa act gtg gac cct act gta cct caa aag ctt ata aca atc aac caa Glu Thr Val Asp Pro Thr Val Pro Gln Lys Leu Ile Thr Ile Asn Gln 55 60 65	368
caa tgg aaa ccc att gaa gag ttg caa aat gtc caa agg gtg acc aaa Gln Trp Lys Pro Ile Glu Glu Leu Gln Asn Val Gln Arg Val Thr Lys 70 75 80	416
tga cgag ccctcgcctc tttcttctga agagtactct ataaatctag tggaaacatt *	473
tctgcacaaa ctagattctg gacaccagtg tgcggaaatg cttctgctac atttttaggg	533
tttgtctaca ttttttgggc tctggataag gaattaaagg agtgcagcaa taactgcact	593
gtctaaaagt ttgtgcttat tttcttgtaa atttgaatat tgcatattga aatttttgtt	653
tatgatctat gaatgttttt cttaaaattt acaaagcttt gtaaattaga ttttctttaa	713
taaaatgcca tttgtgcaag atttctcaaa aaaaaaaaaa	753

<210> 238

<211> 1395

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (50)..(1060)

<400> 238

gagtggtgga attccgctgg cctcgctcgg tgcgcgcctc cctccccgc atg cag 55 Met Gln

													gga Gly			103
													ttc Phe			151
													cgg Arg			199
													tat Tyr			247
		_	-	_			-	-	_	-			gtg Val 80			295
													cac His			343
													agg Arg			391
													acc Thr			439
													tat Tyr			487
													ata Ile 160			535
	_							_	_	_			tgg Trp	_		583
													ccg Pro			631
													gtg Val			679
aag		cca	act	ata	aaa	acc	cta	atσ	aaa	cat	ctc	aat	ata	cta	taa	727

acg ctg ctg gtg tcc cgc tgg ttc atc tgc ctg ttt gtg gac atc ttg 775 Thr Leu Leu Val Ser Arg Trp Phe Ile Cys Leu Phe Val Asp Ile Leu 235 230 823 ccc qtq qaq aca gtg ctt cgg atc tgg gac tgt ttg ttt aac gaa ggc Pro Val Glu Thr Val Leu Arg Ile Trp Asp Cys Leu Phe Asn Glu Gly 250 245 tcg aag att atc ttc cgg gtg gcc ctg acc tta att aag cag cac cag 871 Ser Lys Ile Ile Phe Arg Val Ala Leu Thr Leu Ile Lys Gln His Gln 260 265 919 gag ttg att ttg gaa gcc acc agc gtt cca gac att tgc gat aag ttt Glu Leu Ile Leu Glu Ala Thr Ser Val Pro Asp Ile Cys Asp Lys Phe 280 285 967 aag cag ata acc aaa ggg agt ttc gtg atg gag tgt cac acg ttt atg Lys Gln Ile Thr Lys Gly Ser Phe Val Met Glu Cys His Thr Phe Met 1015 cag aaa ata ttt tca gaa cct gga agc tta tcc atg gcc acc gtc gcc Gln Lys Ile Phe Ser Glu Pro Gly Ser Leu Ser Met Ala Thr Val Ala 310 315 1063 aag ctc cgc gag agc tgc agg gcc cgg ctg ctg gca cag ggg tga gcg Lys Leu Arg Glu Ser Cys Arg Ala Arg Leu Leu Ala Gln Gly 325 330 tgcctgtccc ctgcgttgct cgtctctaca ctgacgatgc ccctttccag agttgacact 1123 1183 ggaccaactt tcactgcttt cctttttagt gttgtaaata cttgacatca ctacacttta gttgtgaatt ttttaaaaga gcagtttaaa atcaggtcat tctaccagct tttgatgatt 1243 agctatgaag tcatactttt taaagaaaac ttatttttac ctgagagatc aataatatat 1303 aaaatgtgag tgtgggtttg tatctaataa agtatgccaa cacctgtgtt tgtgatcagt 1363 1395 ttctcagctg actggaaatt aaaaaaaaaa aa

```
<210> 239
<211> 767
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (78)..(326)

<220>
<221> misc_feature
```

<222> (1)...(767) <223> n = a,t,c or g

<400> 239 ccggtccgga attcccgggt cgacccacgc gtccgccctt ctctcttcct tggtgcttct 60 110 atg gct gcc ctc aga tcc ctt gtg aag ccc aag ttttcctgct cggcatc Met Ala Ala Leu Arg Ser Leu Val Lys Pro Lys 158 atc qtc aaa aaq aga acc aag aaa ttc atc cgg cac cag tca gac cga Ile Val Lys Lys Arg Thr Lys Lys Phe Ile Arg His Gln Ser Asp Arg 20 15 206 tat gtc aaa atc aag atg aga aga ata atg tct ggg gtg aag gtg aag Tyr Val Lys Ile Lys Met Arg Arg Ile Met Ser Gly Val Lys Val Lys 30 35 254 cac cca gcc caa gac tca gca gcc agg aag tgg ccc agc gct ctt tat His Pro Ala Gln Asp Ser Ala Ala Arg Lys Trp Pro Ser Ala Leu Tyr 45 50 302 acc acg ggt gca gga att cac aca gaa aag tgg agg cca agg cgt gag Thr Thr Gly Ala Gly Ile His Thr Glu Lys Trp Arg Pro Arg Arg Glu 70 75 60 aat tcc tca atg act gcc ctc taa aggaagagat ccaaagaaat cctgaggaag 356 Asn Ser Ser Met Thr Ala Leu * cacaacaaac aaaaacactc tggatcagaa cttcctgtgc cagcgttaca tcagggtttt 416 476 ctagcagcaa gggcgggctc cacatggctg aagcaggcaa ccaggaggac caggcttcct 536 qtcagagact gaggacccag gaagaaacat gtctcggccc ctgtccccct ccacaattca gaggccacat tctaacaggg gaggctgacc aattaaacag ataatgacac ctcctagagc 596 656 taagagetet eegactatga accagatgee tggagaacae ggatgaatgg tetgageatg agcaggggtg ggaggcagcg ttaagggagg catcagagtc agaacctagc aaacaagtgt 716 767 ttqtqaaqaa qaattcataq aanagggcaa tgcgggcatc acatgggcta a

<210> 240

<211> 526

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (187)..(324)

<400> 240

gagttttaaa attctttatt taaaaatctc taactgtaat gtttcataaa aaatatacac

gtttctattt acatattcca ttaattctat tagtttgaat tagattttaa gtccaatttt	120
gaaaagcttg cagaatttct tctgaaatta cttaaaatta ctgtatgcat aaacttacaa	180
aaacat atg cta tac caa ggc aga gaa aag aaa aaa agt gaa gtg gct Met Leu Tyr Gln Gly Arg Glu Lys Lys Lys Ser Glu Val Ala 1 5 10	228
aca aag gtc cct ggg gca tca cct gct cac cta gga acc agg agt act Thr Lys Val Pro Gly Ala Ser Pro Ala His Leu Gly Thr Arg Ser Thr 15 20 25 30	276
gga tac tgt tcc gtt act ggt aac cta tct gga tgt aaa ggt tca taa Gly Tyr Cys Ser Val Thr Gly Asn Leu Ser Gly Cys Lys Gly Ser * 35 40 45	324
gttacaatgc tttttttgtt taaaaaaaaa aaaaagtctg tactttacaa gccaaaagtg	384
aaaatgccac acatcctctt tacgctttca tgtacactaa gtcactccat ttggttgata	444
ccaataatga tagctcctgt gtataatatt ttcataaatc atactcagta agcaaatctc	504
tcaagcagcc agcatatgca gc	526
<210> 241 <211> 3744 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (27)(3161) <400> 241	
aagagctgcc tcccgagggt gtctac atg gtg cag ccc cag ggg tgc agc gat Met Val Gln Pro Gln Gly Cys Ser Asp 1 5	53
gag gaa gac cac gcg gag gag ccc tcc aag gac ggc ggt gcc ctg gag Glu Glu Asp His Ala Glu Glu Pro Ser Lys Asp Gly Gly Ala Leu Glu 10 15 20 25	101
gag aag gat tcg gac ggg gca gcc tcc aag gag gac agc ggc ccc agc Glu Lys Asp Ser Asp Gly Ala Ala Ser Lys Glu Asp Ser Gly Pro Ser 30 35 40	149
acc agg cag gct tca gga gag gcc tcc tcg ctg cgg gac tac gcg gcc Thr Arg Gln Ala Ser Gly Glu Ala Ser Ser Leu Arg Asp Tyr Ala Ala 45 50 55	197
tcc acc atg acc gag ttc ctc ggc atg ttt ggc tat gat gac cag aac Ser Thr Met Thr Glu Phe Leu Gly Met Phe Gly Tyr Asp Asp Gln Asn	245

														cac His		293
														tcc Ser		341
														tac Tyr 120		389
														agc Ser		437
														ccc Pro		485
														acc Thr		533
														gta Val		581
														ggc Gly 200		629
														aag Lys		677
														gag Glu		725
agc Ser	ccc Pro 235	gac Asp	atg Met	ggc Gly	ggg Gly	gcc Ala 240	atc Ile	gcc Ala	ttc Phe	aag Lys	aca Thr 245	ggc Gly	aag Lys	gtg Val	Gly	773
														ccc Pro		821
														agc Ser 280		869
														gcc Ala		917
ctg	tcc	ttc	aac	act	ccc	gag	tac	ctg	aag	tca	acc	ttc	tcc	aaa	aca	965

Leu	Ser	Phe 300	Asn	Thr	Pro	Glu	Tyr 305	Leu	Lys	Ser	Thr	Phe 310	Ser	Lys	Thr	
gac Asp	tcc Ser 315	atc Ile	acc Thr	acg Thr	Gly ggg	acc Thr 320	gtc Val	tcc Ser	act Thr	gtc Val	aag Lys 325	aac Asn	gga Gly	ctg Leu	ccc Pro	1013
aca Thr 330	gat Asp	aaa Lys	cca Pro	gcc Ala	gtc Val 335	act Thr	gaa Glu	gat Asp	gta Val	aac Asn 340	att Ile	tac Tyr	cag Gln	aaa Lys	tat Tyr 345	1061
att Ile	gcc Ala	agg Arg	ttc Phe	tcg Ser 350	ggc Gly	agc Ser	cag Gln	cac His	tgt Cys 355	ggc Gly	cac His	atc Ile	cac His	tgt Cys 360	gcc Ala	1109
tac Tyr	cag Gln	tac Tyr	cgc Arg 365	gag Glu	cac His	tac Tyr	cac His	tgc Cys 370	ctt Leu	gac Asp	cct Pro	gag Glu	tgt Cys 375	aac Asn	tac Tyr	1157
cag Gln	agg Arg	ttc Phe 380	acg Thr	agt Ser	aag Lys	cag Gln	gac Asp 385	gtg Val	atc Ile	cgc Arg	cac His	tac Tyr 390	aac Asn	atg Met	cac His	1205
aag Lys	aag Lys 395	cgc Arg	gac Asp	aac Asn	tcc Ser	ctg Leu 400	cag Gln	cac His	ggc Gly	ttc Phe	atg Met 405	cgt Arg	ttc Phe	agc Ser	ccg Pro	1253
ctg Leu 410	gac Asp	gac Asp	tgc Cys	agc Ser	gtc Val 415	tac Tyr	tac Tyr	cac His	ggc Gly	tgc Cys 420	cac His	ctc Leu	aat Asn	ggg Gly	aag Lys 425	1301
agc Ser	acc Thr	cac His	tat Tyr	cac His 430	tgc Cys	atg Met	cag Gln	gtg Val	ggc Gly 435	tgt Cys	aac Asn	aag Lys	gtg Val	tac Tyr 440	acg Thr	1349
agc Ser	acg Thr	tct Ser	gac Asp 445	gtg Val	atg Met	acc Thr	cac His	gag Glu 450	aac Asn	ttc Phe	cac His	aag Lys	aag Lys 455	aat Asn	acc Thr	1397
cag Gln	ctc Leu	att Ile 460	aac Asn	gac Asp	ggc Gly	ttc Phe	cag Gln 465	cgc Arg	ttc Phe	cga Arg	gcc Ala	acc Thr 470	gaa Glu	gac Asp	tgt Cys	1445
ggc Gly	aca Thr 475	gcc Ala	gac Asp	tgc Cys	cag Gln	ttc Phe 480	tac Tyr	gga Gly	cag Gln	aag Lys	acc Thr 485	acg Thr	cac His	ttc Phe	cac His	1493
tgc Cys 490	Arg	cgc Arg	ccc Pro	ggc	tgc Cys 495	aca Thr	ttc Phe	act Thr	ttc Phe	aag Lys 500	aac Asn	aag Lys	tgt Cys	gac Asp	atc Ile 505	1541
gag Glu	aag Lys	cac His	aag Lys	agc Ser 510	Tyr	cac His	atc Ile	aag Lys	gac Asp 515	gat Asp	gcc Ala	tac Tyr	gcc Ala	aag Lys 520	gac Asp	1589
ggc Gly	ttc Phe	aag Lys	aag Lys	ttc Phe	tac Tyr	aag Lys	tac Tyr	gag Glu	gag Glu	tgc Cys	aag Lys	tac Tyr	gag Glu	ggc Gly	tgc Cys	1637

			525					530					535				
gtg t Val T	уr	~	_	_						_		_	-			-	1685
ggc t Gly P 5																-	1733
cat g His G 570	_	-				_		_		_						:	1781
tcg c Ser L	_	_		-	_	-	_	-		-	_					- -	1829
gac c Asp L		_	_			~	-	-	~	•			_	_	-	:	1877
gcc to Ala So	er			_	_	-					-	-	-	_		:	1925
gcc gc Ala A 63																-	1973
atc to Ile So 650																2	2021
ctg go Leu A					_	~ ~	_				-					2	2069
ata c Ile L	_	-														2	2117
ctc c	eu		~		_				_	-		_			-	2	2165
aca co Thr P:		_	-	_	_	-										2	2213
gcc go Ala A 730																2	2261
gca ag Ala S																2	2309

gcc Ala	ctc Leu	aag Lys	ccc Pro 765	tct Ser	gcc Ala	acc Thr	ttt Phe	gac Asp 770	cca Pro	gga Gly	agc Ser	ggg Gly	cag Gln 775	cag Gln	gtc Val	2357
acc Thr	cca Pro	gcc Ala 780	agg Arg	ttc Phe	ccc Pro	ccg Pro	gcc Ala 785	caa Gln	gtg Val	aag Lys	ccg Pro	gaa Glu 790	ccc Pro	ggt Gly	gag Glu	2405
agc Ser	acc Thr 795	ggc Gly	gcc Ala	cca Pro	ggc Gly	ccc Pro 800	cac His	gaa Glu	gcc Ala	tcc Ser	cag Gln 805	gac Asp	cgc Arg	agt Ser	cta Leu	2453
gac Asp 810	ctg Leu	act Thr	gtg Val	aag Lys	gag Glu 815	ccc Pro	agc Ser	aac Asn	gaa Glu	tca Ser 820	aat Asn	ggc Gly	cac His	gca Ala	gtc Val 825	2501
ccg Pro	gca Ala	aat Asn	tca Ser	tct Ser 830	ctt Leu	tta Leu	tcc Ser	tcg Ser	ctt Leu 835	atg Met	aat Asn	aag Lys	atg Met	tct Ser 840	cag Gln	2549
ggc Gly	aac Asn	cct Pro	ggc Gly 845	ctg Leu	ggc Gly	agc Ser	ctg Leu	ctg Leu 850	aac Asn	atc Ile	aag Lys	gcg Ala	gaa Glu 855	gcg Ala	gag Glu	2597
Gly	agc Ser	ccc Pro 860	gct Ala	gcg Ala	gag Glu	ccc Pro	tcg Ser 865	ccc Pro	ttc Phe	cta Leu	ggc Gly	aag Lys 870	gcc Ala	gtg Val	aag Lys	2645
gcg Ala	ctg Leu 875	gtt Val	cag Gln	gag Glu	aag Lys	ttg Leu 880	gca Ala	gag Glu	ccc Pro	tgg Trp	aag Lys 885	gtg Val	tac Tyr	ctg Leu	cgc Arg	2693
agg Arg 890	ttt Phe	ggt Gly	aca Thr	aag Lys	gac Asp 895	ttc Phe	tgt Cys	gac Asp	ggc Gly	cag Gln 900	tgt Cys	gac Asp	ttc Phe	ctc Leu	cac His 905	2741
aag Lys	gcc Ala	cac His	ttc Phe	cac His 910	tgc Cys	gtg Val	gtg Val	gag Glu	gaa Glu 915	tgc Cys	ggc	gcg Ala	ctc Leu	ttc Phe 920	agc Ser	2789
acc Thr	ttg Leu	gac Asp	ggg Gly 925	gcc Ala	atc Ile	aag Lys	cac His	gca Ala 930	aac Asn	ttc Phe	cac His	ttc Phe	cgg Arg 935	Thr	gag Glu	2837
gga Gly	gga Gly	gca Ala 940	Ala	aaa Lys	gga Gly	aac Asn	aca Thr 945	gag Glu	gct Ala	gcc Ala	ttt Phe	ccg Pro 950	Ala	tcg Ser	gcc Ala	2885
gcc Ala	gag Glu 955	Thr	aaa Lys	cct Pro	ccc Pro	atg Met 960	Ala	ccc Pro	tcg Ser	tcc Ser	cct Pro 965	Pro	gtc Val	cct Pro	cct Pro	2933
gtc Val 970	Thr	acg Thr	gcc Ala	acg Thr	gtg Val 975	Ser	tct Ser	ctg Leu	gag Glu	980 980	Pro	gct Ala	ccc Pro	agc Ser	ccg Pro 985	2981

gcc tcc gtg ccc Ala Ser Val Pro	tcc acc ccc acc Ser Thr Pro Thr 990	ctg ctc gcc Leu Leu Ala 995	tgg aag cag ctg gct Trp Lys Gln Leu Ala 1000	3029
tcc acc ata ccc Ser Thr Ile Pro 1005	Gln Met Pro Gln	atc cca gcg Ile Pro Ala 1010	tca gtg cct cac ctg Ser Val Pro His Leu 1015	3077
ccc gcc tcg ccc Pro Ala Ser Pro 1020	ttg gca acg act Leu Ala Thr Thr 1025	Ser Leu Glu	aac gcc aag ccc cag Asn Ala Lys Pro Gln 1030	3125
gtc aaa ccc gga Val Lys Pro Gly 1035	ttc ctc cag ttc Phe Leu Gln Phe 1040	Gln Glu Lys	tga gtcc ctcgatgagc * 1045	3175
cgggagtccc gcgtt	cccct cgcgtctcg	g gagtaggtgc	tagcaagggc gctaggaggc	3235
cctgttcctc actgc	ggatg gtgctgctg	t ccccagcctc	tctggggcat ggccatcggg	3295
tgatgtcctt ctagc	caaag atgctgctg	c tcctacctca	ctgcctgtcc cagagcaggc	3355
cagcccgcgt gggcc	gatgg tggcggcag	t ggctactgct	cctgcagggc atgtggtgat	3415
cctgccaggg ccagg	tgggg tggactggg	c gtggtggtcc	tcagaggaca actcccagcc	3475
tgacaaggag ggctg	cgtct ccctccgage	c ctccgtattg	gcctcctctg tggctcacac	3535
ccatggctga atctc	tgcag ggcacgtgaa	a gtcacgggta	ggggccaggc ccctccaggc	3595
cgtcactggc ctgca	cagtg gtctgagcto	ttgggtggaa	gggaccctcc tcactggatg	3655
gtggtggctc cttgc	aggga gaacggtgad	c tttgtattgt	catgtgtgcg gcttcctgtt	3715
ctcaataaaa gtaata	aaatt ggattattt			3744

<210> 242

<211> 2450

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (192)..(2438)

<400> 242

ttgagtcccc tgcggtaccg gtccggaatt cccgggtcga cgatttcgta aacagtgtag 60
atcttttaaa gtatgcatat cattagtgga aaataatagg taacaaaaga aattggggga 120
aaagctttaa gagttctgat gcctatttaa gtaaattaac tcttttcccc ccaaaattct 180
taggcttgaa g atg cag tgg acg cca gag cat gcc cag tgg cca gaa cag
Met Gln Trp Thr Pro Glu His Ala Gln Trp Pro Glu Gln

				1				5				1	.0			
cac His	ttt Phe 15	Asp	atc Ile	acc Thr	tca Ser	acc Thr 20	act Thr	cgg Arg	tct Ser	cct Pro	gcc Ala 25	His	aaa Lys	gtt Val	gaa Glu	278
gcc Ala 30	Tyr	aga Arg	ggt Gly	cat His	ctg Leu 35	cag Gln	cgc Arg	acc Thr	tat Tyr	cag Gln 40	tac Tyr	gcc Ala	tgg Trp	gcg Ala	aat Asn 45	326
gat Asp	gac Asp	ata Ile	tct Ser	gct Ala 50	Leu	act Thr	gca Ala	tcc Ser	aac Asn 55	cta Leu	cta Leu	aaa Lys	aaa Lys	tat Tyr 60	gca Ala	374
gag Glu	aag Lys	tat Tyr	tcc Ser 65	ggc Gly	att Ile	ttg Leu	gaa Glu	ggt Gly 70	cct Pro	gtg Val	gac Asp	cga Arg	ccc Pro 75	gta Val	ctc Leu	422
			tcg Ser													470
gaa Glu	agt Ser 95	gaa Glu	ccc Pro	tgg Trp	cag Gln	cct Pro 100	tcc Ser	ttg Leu	aat Asn	tca Ser	gaa Glu 105	gct Ala	gtt Val	tat Tyr	ccc Pro	518
atg Met 110	aac Asn	tgt Cys	gtt Val	ccg Pro	gat Asp 115	gtt Val	atc Ile	act Thr	gcc Ala	agc Ser 120	aaa Lys	gct Ala	gga Gly	gtc Val	agt Ser 125	566
tca Ser	gcc Ala	ctc Leu	cct Pro	cca Pro 130	gca Ala	gat Asp	gtc Val	tct Ser	gcg Ala 135	agt Ser	ata Ile	gga Gly	agc Ser	tct Ser 140	cct Pro	614
Gly ggg	gta Val	gcc Ala	agc Ser 145	aac Asn	ctg Leu	aca Thr	gaa Glu	cct Pro 150	agt Ser	tat Tyr	tca Ser	agt Ser	agt Ser 155	acc Thr	tgt Cys	662
gga Gly	agc Ser	cac His 160	act Thr	gta Val	ccc Pro	agt Ser	ctt Leu 165	cat His	gca Ala	Gly ggg	ctc Leu	cca Pro 170	tct Ser	cag Gln	gaa Glu	710
tat Tyr	gcc Ala 175	cca Pro	gga Gly	tac Tyr	aac Asn	gga Gly 180	tca Ser	tat Tyr	ttg Leu	cat His	tct Ser 185	act Thr	tat Tyr	agt Ser	agc Ser	758
cag Gln 190	cca Pro	gca Ala	cct Pro	gca Ala	ctt Leu 195	cct Pro	tca Ser	cct Pro	cat His	ccg Pro 200	tct Ser	cct Pro	ttg Leu	cat His	agc Ser 205	806
tct Ser	Gly ggg	cta Leu	cta Leu	cag Gln 210	ccc Pro	cca Pro	cca Pro	cca Pro	cct Pro 215	cct Pro	ccg Pro	cca Pro	cca Pro	gcc Ala 220	ttg Leu	854
gtc Val	cca Pro	ggc Gly	tac Tyr 225	aat Asn	ggg Gly	act Thr	tct Ser	aac Asn 230	ctc Leu	tcc Ser	agt Ser	tac Tyr	agc Ser 235	tat Tyr	ccg Pro	902

tct Ser	gct Ala	ago Ser 240	Tyr	cct Pro	cct Pro	cag Gln	act Thr 245	Ala	gtg Val	ggg ggg	tct Ser	ggg Gly 250	tac Tyr	agc Ser	cct Pro	950
Gly gag	ggg Gly 255	Ala	ccg Pro	cct Pro	ccg Pro	cct Pro 260	tca Ser	gcg Ala	tac Tyr	ctg Leu	cct Pro 265	Ser	gga Gly	att Ile	cct Pro	998
gct Ala 270	Pro	acc Thr	ccc Pro	cta Leu	ccc Pro 275	ccc Pro	acc Thr	act Thr	gtt Val	cct Pro 280	ggc	tac Tyr	acc Thr	tac Tyr	cag Gln 285	1046
ggc Gly	cat His	ggt Gly	ttg Leu	aca Thr 290	cct Pro	att Ile	gca Ala	ccg Pro	tcg Ser 295	gct Ala	ctg Leu	aca Thr	aac Asn	agt Ser 300	tca Ser	1094
gca Ala	agt Ser	tct Ser	ctc Leu 305	aaa Lys	agg Arg	aaa Lys	gct Ala	ttc Phe 310	tac Tyr	atg Met	gca Ala	Gly ggg	caa Gln 315	gga Gly	gat Asp	1142
			agt Ser													1190
cag Gln	agt Ser 335	cct Pro	atg Met	tac Tyr	aga Arg	atg Met 340	ccc Pro	gac Asp	aac Asn	agc Ser	att Ile 345	tca Ser	aac Asn	aca Thr	aat Asn	1238
cgg Arg 350	ggg Gly	aat Asn	ggc Gly	ttt Phe	gac Asp 355	aga Arg	agt Ser	gct Ala	gaa Glu	aca Thr 360	tca Ser	tcc Ser	tta Leu	gca Ala	ttt Phe 365	1286
aag Lys	cca Pro	acg Thr	aag Lys	cag Gln 370	cta Leu	atg Met	tcc Ser	tct Ser	gaa Glu 375	cag Gln	caa Gln	agg Arg	aaa Lys	ttc Phe 380	agc Ser	1334
			agt Ser 385													1382
			gga Gly													1430
			agt Ser													1478
			ggc Gly						Ala							1526
gtg Val	gac Asp	gag Glu	caa Gln	ctg Leu 450	aag Lys	aat Asn	act Thr	gac Asp	acg Thr 455	cac His	ctc Leu	atc Ile	gac Asp	ctg Leu 460	gta Val	1574

							caa Gln								Asp	att Ile	1622
							aag Lys									tgg Trp	1670
E	cca Pro	gtg Val 495	ttg Leu	agg Arg	tca Ser	gac Asp	gcg Ala 500	ttc Phe	agt Ser	gga Gly	ctg Leu	acg Thr 505	gcc Ala	tta Leu	cct Pro	cgg Arg	1718
Ş	igc Ser 510	atc Ile	ctt Leu	tta Leu	ttt Phe	gga Gly 515	cct Pro	cgg Arg	ggg Gly	aca Thr	ggc Gly 520	aaa Lys	aca Thr	tta Leu	ttg Leu	ggc Gly 525	1766
							ctg Leu										1814
							tgg Trp										1862
							agg Arg										1910
a S	gt er	gac Asp 575	att Ile	gac Asp	atg Met	ctt Leu	ctc Leu 580	tcc Ser	tct Ser	caa Gln	gtg Val	aat Asn 585	gag Glu	gaa Glu	cat His	agt Ser	1958
P							acc Thr										2006
							caa Gln										2054
C:	ca ro	gaa Glu	gaa Glu	ata Ile 625	gat Asp	gaa Glu	tcc Ser	ctt Leu	cgg Arg 630	agg Arg	tac Tyr	ttc Phe	atg Met	aaa Lys 635	cga Arg	ctt Leu	2102
t L	ta eu	atc Ile	cca Pro 640	ctt Leu	cct Pro	gac Asp	agc Ser	aca Thr 645	gcg Ala	agg Arg	cac His	cag Gln	ata Ile 650	ata Ile	gta Val	caa Gln	2150
L.	eu	ctc Leu 655	tca Ser	cag Gln	cac His	aat Asn	tac Tyr 660	tgt Cys	ctc Leu	aat Asn	gac Asp	aag Lys 665	gag Glu	ttt Phe	gca Ala	ctg Leu	2198
L	tc eu 70	gtc Val	cag Gln	cgc Arg	aca Thr	gaa Glu 675	ggc Gly	ttt Phe	tct Ser	gga Gly	cta Leu 680	gat Asp	gtg Val	gct Ala	cat His	ttg Leu 685	2246
t	gt	cag	gaa	gca	gtg	gtg	ggc	ccc	ctc	cat	gcc	atg	cca	gcc	aca	gac	2294

Cys Gln Glu Ala Val V 690	al Gly Pro Leu His 695	Ala Met Pro Ala Thr Asp 700
		ccc gtt aca tat caa gac 2342 Pro Val Thr Tyr Gln Asp 715
		agc ata tct caa aag gag 2390 Ser Ile Ser Gln Lys Glu 730
ctt gat atg tat gtt g Leu Asp Met Tyr Val G 735		ttt ggt tgc agt cag tga 2438 Phe Gly Cys Ser Gln * 745
taacttcttt ag		2450
<210> 243 <211> 465 <212> DNA <213> Homo sapie <220> <221> CDS <222> (168)(43		
<400> 243 gcatagtaat gatccaaata	tatgtatatg ttgctca	stgg aatgaaccct ccccagacta 60
gcatagtaat gatccaaata		atgg aatgaaccct ccccagacta 60 agaa acctgaggca attagttaaa 120
gcatagtaat gatccaaata	ttcactataa ttgtaaa	gaa acctgaggca attagttaaa 120
gcatagtaat gatccaaata aagatgcctg taaatcaaat aagttttaag tattcaggca cat aaa aac ttg tat a	ttcactataa ttgtaaa attcatgata ccttgtt	igaa acctgaggca attagttaaa 120 igaa ataaagc atg cag act 176 Met Gln Thr
gcatagtaat gatccaaata aagatgcctg taaatcaaat aagtttaag tattcaggca cat aaa aac ttg tat a His Lys Asn Leu Tyr I 5 gga tta tta tca ggg ta Gly Leu Leu Ser Gly Ty	ttcactataa ttgtaaa attcatgata ccttgtt ta atc aaa ata aag le Ile Lys Ile Lys 10 at att aag gtg tta	igaa acctgaggca attagttaaa 120 igaa ataaagc atg cag act 176 Met Gln Thr 1 ttc tac aaa tgg gaa aga 224 Phe Tyr Lys Trp Glu Arg
gcatagtaat gatccaaata aagatgcctg taaatcaaat aagtttaag tattcaggca cat aaa aac ttg tat a His Lys Asn Leu Tyr I 5 gga tta tta tca ggg ta Gly Leu Leu Ser Gly Ty 20 ata att aat tac tca ts	ttcactataa ttgtaaa attcatgata ccttgtt ca atc aaa ata aag le Ile Lys Ile Lys 10 at att aag gtg tta cr Ile Lys Val Leu 25	igaa acctgaggca attagttaaa 120 igaa ataaagc atg cag act 176 Met Gln Thr 1 ttc tac aaa tgg gaa aga 224 Phe Tyr Lys Trp Glu Arg 15 gac tta caa aag aag tgc 272 Asp Leu Gln Lys Lys Cys
aagatgcctg taaatcaaata aagtttaag tattcaggca cat aaa aac ttg tat aa His Lys Asn Leu Tyr I: 5 gga tta tta tca ggg ta Gly Leu Leu Ser Gly Tg 20 ata att aat tac tca ta Ile Ile Asn Tyr Ser Pl 40 aca gat aaa ata aaa ga	ttcactataa ttgtaaa attcatgata ccttgtt ta atc aaa ata aag le Ile Lys Ile Lys 10 at att aag gtg tta yr Ile Lys Val Leu 25 tt aaa att aat tct ne Lys Ile Asn Ser 45 ta tgc aac agt gct	agaa acctgaggca attagttaaa 120 agaa ataaagc atg cag act Met Gln Thr 1 ttc tac aaa tgg gaa aga 224 Phe Tyr Lys Trp Glu Arg 15 gac tta caa aag aag tgc 272 Asp Leu Gln Lys Lys Cys 30 35 ata ccc att agc ttg gca 320 Ile Pro Ile Ser Leu Ala

		Ser	tcg Ser					tata	ıcat	catg	rctct	tc a	atta	aaa		465
	<2 <2	12>	1080		iens											
	<2	20> 21> 22>	CDS (83)	(8	29)											
cta		00> agc		ttct	gc g	tctt	cctt	t ag	gctg	cggc	gag	acaa	tcc	ccag	agcccc	60
gcg	gccc	ggc	ctcg	gggc	ag c	Me				n Gl					g att u Ile 10	112
			tgt Cys													160
			att Ile 30													208
			ggc Gly													256
gaa Glu	ttt Phe 60	gag Glu	gct Ala	att Ile	aaa Lys	aat Asn 65	aaa Lys	caa Gln	gat Asp	gta Val	tca Ser 70	ctt Leu	tgt Cys	tct Ser	cta Leu	304
ctt Leu 75	gca Ala	ctg Leu	ata Ile	tat Tyr	gcc Ala 80	cat His	aaa Lys	atg Met	agt Ser	cct Pro 85	aat Asn	cca Pro	gat Asp	aga Arg	gaa Glu 90	352
gct Ala	att Ile	ctg Leu	gaa Glu	tca Ser 95	gat Asp	gcc Ala	aga Arg	gtg Val	aag Lys 100	gaa Glu	caa Gln	cgt Arg	aaa Lys	gga Gly 105	gct Ala	400
gga Gly	gag Glu	aaa Lys	gcc Ala 110	tta Leu	tac Tyr	cat His	gca Ala	ggc Gly 115	tta Leu	ttt Phe	tta Leu	tgg Trp	cac His 120	att Ile	ggt Gly	448
cgc Arg	cat His	gat Asp 125	aaa Lys	gca Ala	agg Arg	gaa Glu	tat Tyr 130	att Ile	gac Asp	aga Arg	atg Met	atc Ile 135	aaa Lys	ata Ile	tca Ser	496

gat ggt agt aaa cag gga cac gtt ttg aaa gca tgg ctt gat att aca Asp Gly Ser Lys Gln Gly His Val Leu Lys Ala Trp Leu Asp Ile Thr 140 145 150	544
aga gga aaa gag cct tac act aaa aaa gca ctg aag tat ttt gaa gag Arg Gly Lys Glu Pro Tyr Thr Lys Lys Ala Leu Lys Tyr Phe Glu Glu 155 160 165 170	592
gga ctc caa gat ggg aat gat act ttt gct ctg ctg ggt aag gca caa Gly Leu Gln Asp Gly Asn Asp Thr Phe Ala Leu Leu Gly Lys Ala Gln 175 180 185	640
tgc ctt gag atg cgc cag aat tat tca ggt gcc ctg gag act gtg aac Cys Leu Glu Met Arg Gln Asn Tyr Ser Gly Ala Leu Glu Thr Val Asn 190 195 200	688
cag ata atc gtg aat ttt ccg agc ttc ctt cct gct ttt gtt aag aaa Gln Ile Ile Val Asn Phe Pro Ser Phe Leu Pro Ala Phe Val Lys Lys 205 210 215	736
atg aaa tta caa cta gcc ttg cag gat tgg gac cag aca gtt gag aca Met Lys Leu Gln Leu Ala Leu Gln Asp Trp Asp Gln Thr Val Glu Thr 220 225 230	784
gca aaa ggt tgc tgc tcc aag ata gcc aaa atg tgg aag cac tga gaa Ala Lys Gly Cys Cys Ser Lys Ile Ala Lys Met Trp Lys His * 235 240 245	832
tgcaggcact ctactatgtg tgtagagagg gggatataga gaaggcttcc accaagctgg	892
aaaacttggg aaatgcattg gatgccatgg aaccacagaa tgctcaactt ttctataaca	952
ttacactcgc cttcagcaga acttgtggac gtagtcaact tattcttcaa aaaattcaaa	1012
cgttacttga gagagctttt agtttaaccc tcagcaatca gaatttgcta cagacttgga	1072
taccaatt	1080

```
<210> 245
```

<211> 2128

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (107)..(286)

<400> 245

gagcttagct aacattgcct tttcactcta tttttctcag atattgtaag cattctgttt 60
ttcaatattg tagttaattt tttggctttc aacagcagcc ctagta atg gtg gag 115
Met Val Glu

ttg tta att aat gtg Leu Leu Ile Asn Val 5					163
tca ctg ctt tgg tgg Ser Leu Leu Trp Trp 20			Ser Arg Ph		211
gtt tat ttt ttt ctc val Tyr Phe Phe Leu 1					259
ttt cta ttt ttc ttc Phe Leu Phe Phe 55		tga tctcc t * 60	taaaaatga a	tctagagtt	311
ggtggctttt tccccctcc	ctttggccag	, ttccacagtt	cagttcttcc	tgaaaacagg	371
gatgatgaac ttgtaggate	c aggacaaatg	, tgtgttttc	aaaaacttaa	ggctgggtgt	431
gaaacacctt ctgtggacaa	a ggatttgtaa	acttctctcc	tccctccagc	tgcggcccca	491
gcctaactga tagttactt	g attcagtgtg	r ctagacactt	aaatagcatc	tatgtctctt	551
tcaagggaat ttgtcaaata	atgctgttta	gctaattgtt	gcaagcaatt	gcatattaac	611
agctgtgatt ttgttggaca	gcaagtatta	tggccaaagc	cagtttcttg	gcatttcaaa	671
aataatgcaa taaaaactaq	g ttgaggttag	ctgaggctgg	aaatgccttt	ttcatggtaa	731
atgattcact tctatattt	tetttettt	tcttttttt	tctttggttt	tcatcctgga	791
ttcatcccct gatcttaaat	: caaaacgtca	. gatcaatgaa	ctatgaacta	aagtatttt	851
cttaagccta ttgagtgatt	aatttttaa	aaaatgttta	aatgcatatg	cttttctttc	911
agcacaaaca acagcaaaaa	cttttgtaat	aactaactta	cctttgcatg	tatgaagaac	971
tgagtcattt atttccctaa	cttactcctc	tttcaagtaa	caggtggcag	atcataaaat	1031
gaattetta ttgtatetae	acactccaca	ttctttactg	tgtcctacta	ctgtatcttg	1091
gctccctgct gtattaaaca	ccatcttaag	cacttgttcc	tgcaggactc	cttcttgaca	1151
ttttgtctcc cccttcaaag	tcactcaaag	agtgggactt	catcaaaaga	aatgaattag	1211
tctctatcac accgaatact	aagatttatt	tcctctgatg	gtacatagat	ttctctctcc	1271
actaagaggg tcactctcat	agaggaatgt	cttgtcagtt	ttatacttgc	tgaggctaga	1331
ctgacaataa aaatgagctg	ggcagttaaa	ttagcatttg	ttactatatt	ggcctataaa	1391
ggatcaggtt gatgataata	cctctaaaaa	tatgcaataa	taaaacaata	gttatgaaag	1451
aaacttgaaa ggtttgcaag	gtttctccta	tccctgttaa	aattatcatt	tattatctct	1511
ttgtcagtgt tagtaaggta	acccatgaca	gaataatttg	agtgatagtt	catcatgcag	1571

aggatatgat caagatatta cctaatggtt ttatcctgaa aaaggtgtat acttttaggg 1631 cactgttaac aatgcgagtg aaaccaagat ggtgcaagtt ccctttgcag atggcgtggg 1691 cacacttgat ttttattatg agtgaatgta atctttctgt attttaccag agttacagca 1751 attacctgaa aagtttccta acattttaat aatgttaggg atttcgtttt ggttttagtt 1811 gtcctcaaga gacaacaggt tcacagtaat ttccatgatg ttgggtgtgg ctaagctggg 1871 gattggttct gttccccctg ctcccgtgta gagaaaagct atatttatac tgcattcttt 1931 ctcaactttc aggtaaaaca aactatgatt taaaaaaaga aaaaagaaaa gacaggtact 1991 tttacttcaa agagtgcttt gctacatttt tatttaaacc aaaaatcaaa taaaataaqq 2051 aggggggctg ggtatacttt aaacaaaacc agtcctgaaa tgctgttatt ctcaaaqtac 2111 attccaaaaa aaaaaaa 2128

<210> 246 <211> 3373 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (146)..(2254)

<400> 246
agatatgaaa ctggttctgg agtgagatga gctcggctgg ggacgctact tgagaaggcc 60
tttccccaca gggtgactta aatgtcccag gctggaaggt ggagcgagaa gtggatgccc 120
ccagggctct gggtcacact ccagg atg act tct cgg aac cag ctg gtg cag 172

aag gtg ctg cag gag ctg cag gaa gca gtg gag tgc gaa ggc ctg gag
Lys Val Leu Gln Glu Leu Gln Glu Ala Val Glu Cys Glu Gly Leu Glu
10 20 25

Met Thr Ser Arg Asn Gln Leu Val Gln

ggt ctc ata ggt gct tcc ttg gag gcc aag cag gtc ctg tct tcc ttc 268
Gly Leu Ile Gly Ala Ser Leu Glu Ala Lys Gln Val Leu Ser Ser Phe
30 35 40

act ctc ccc acc tgc cgg gag gga ggc cct ggc ctc cag gtg ctg gaa 316
Thr Leu Pro Thr Cys Arg Glu Gly Gly Pro Gly Leu Gln Val Leu Glu
45 50 55

gtg gac tcg gtg gcc ctg agc ctg tat cca gaa gat gct cca cgg aac
Val Asp Ser Val Ala Leu Ser Leu Tyr Pro Glu Asp Ala Pro Arg Asn
60 65 70

		tgc Cys						412
		tgg Trp 95						460
		gag Glu						508
		aaa Lys						556
		cct Pro						604
		gcc Ala						652
		cac His 175						700
		tac Tyr						748
		cgg Arg						796
		gct Ala						844
		cct Pro						892
		gcc Ala 255						940
		ctg Leu						988
		gag Glu						1036

	tgg Trp															1084
	tcc Ser 315															1132
	cca Pro															1180
	tac Tyr															1228
gcc Ala	ttg Leu	ccc Pro	ccc Pro 365	agg Arg	gag Glu	gtg Val	ctg Leu	ggc Gly 370	atg Met	gag Glu	gag Glu	cta Leu	gag Glu 375	aag Lys	ctg Leu	1276
	gag Glu															1324
	tca Ser 395															1372
	cat His															1420
	agg Arg															1468
	gcc Ala															1516
	gct Ala															1564
	tgg Trp 475															1612
	cct Pro															1660
	tgg Trp		Arg													1708
ggg	cat	ctc	cct	ttc	tgc	cgc	ttc	cgc	ctc	cgc	tac	ccc	agc	ctg	tca	1756

Gly His Leu Pro Phe Cys Arg Phe Arg Leu Arg Tyr Pro Ser Leu Ser 525 530 535	
cct tct gcc ttt tgg gtc tgg aag agt ctt gct cgg ggt tgg ccc aga Pro Ser Ala Phe Trp Val Trp Lys Ser Leu Ala Arg Gly Trp Pro Arg 540 545 550	1804
ggc ctg tcc aaa ctt cag gtg ccg gtc ccc acc ttg ggc aaa ggg ggg Gly Leu Ser Lys Leu Gln Val Pro Val Pro Thr Leu Gly Lys Gly Gly 555 560 565	1852
cag gag gct gag gag aag cag gag aag gag gct ggc agg gat gtg aca Gln Glu Ala Glu Glu Lys Gln Glu Lys Glu Ala Gly Arg Asp Val Thr 570 585	1900
gct gtg atg gcc cca cct gtg ggg gct tct tca gaa gat gta gag gga Ala Val Met Ala Pro Pro Val Gly Ala Ser Ser Glu Asp Val Glu Gly 590 595 600	1948
ggg cct tcc aga gag ggg gcc ctg cag gag ggg gcc aca gcc cag ggc Gly Pro Ser Arg Glu Gly Ala Leu Gln Glu Gly Ala Thr Ala Gln Gly 605 610 615	1996
cag ccc cac agt ggg ccc ttg ctg agc caa cct gtg gtg gca gca gcg Gln Pro His Ser Gly Pro Leu Leu Ser Gln Pro Val Val Ala Ala Ala 620 625 630	2044
ggt ggc agg gat ggc cgg atg ctg gtg atg gac atg atc gct acc acg Gly Gly Arg Asp Gly Arg Met Leu Val Met Asp Met Ile Ala Thr Thr 635 640 645	2092
aag ttc aag gcc cag gcc aag ctg ttc ttg cag aag cgc ttc cag tccLys Phe Lys Ala Gln Ala Lys Leu Phe Leu Gln Lys Arg Phe Gln Ser650655	2140
aag agc ttt ccc tcc tac aag gag ttc agt gcc ctc ttt ccc ctc act Lys Ser Phe Pro Ser Tyr Lys Glu Phe Ser Ala Leu Phe Pro Leu Thr 670 675 680	2188
gcc cgc tcc aca tac tac atg tgg aag cga gcc ctc tat gac ggc ctg Ala Arg Ser Thr Tyr Tyr Met Trp Lys Arg Ala Leu Tyr Asp Gly Leu 685 690 695	2236
acc ctg gta gat ggc tga caggga ggtacaaaag gggctgggaa gaagggggac Thr Leu Val Asp Gly * 700	2290
cagtttggag agggtcaggg acctgagctg accccaggct tggccaggat gtcctttgct	2350
ctgggtccca cagtgtctac cctaagtcca agggtatatt tgtgttattt tctggctcca	2410
ggacagagaa tgccagaaat cagccatctg gtctcccgta ggaaactgtg ggaccagaga	2470
tatcctcttt cgttgtttgc tggtcatatt tttactgtta tgatttagtt tttggttttg	2530
atttgagtgg gttggttggc ccccttgctg gagttggaag ccgtatgtat gtcagggggt	2590

ttagaggggg gttggttagc tagagctgct ttcagctttt cctggagaca aaaggagtgt 2650 tatagcatga tcatcggtcc cactgggcag aacgttatct tcaqtttctt ttgggggttg 2710 gcatcctctt tactcagttg tttcccaaag gaacattagg ctcgaatatg ggggccaggt 2770 gtggtggctt atgcctgtaa tcctagcgct ttgggaggcc aaggcaggag gatcacttga 2830 ggctaggagt tagagaccac cctgggcaat gtagtgagac ctcatctctt agaaaaaaaa 2890 aaagaaagaa aatcaaatgt agagctgatc agcagcttgt gcctggcatc cccaagggag 2950 aaggtgccag gtcagcagga gcagcagcag ggatgtatag aaagaaccac agctggcctc 3010 taaaggatgg cactgaggca ccggagatct tgaggcactg gagatcactg aggggctggc 3070 ctgtcccctg caaggagtgt gggaccaggt ggggcaaggc tgggagatgc aggctctgtt 3130 tgcagattat ggcccagagt ctctgcttgt gggtgcttga tccacctqct gggacctqc 3190 agtcctcggc cagcctggct gtcagttggg gattccacct ttctgctgag cgtcttctcg 3250 gagctggagg cccatcttca gtgagagatc acaaagcggc caggcaggtg qgagactgaa 3310 tttgccttgt tcgagagtaa cgtttgaaaa ccaaagaaat aaagtgatgc agtgcccaca 3370 aaa 3373

<210> 247 <211> 817 <212> DNA <213> Homo sapiens <220>

<220> <221> CDS <222> (90)..(662)

<400> 247

tttcgtgggc cactgcaggg gccgctaacg gtccggcgcc cctcggcgtc cgcgcgcccc 60

cagcctggcg gacgagcccg gcggcggag atg ggg gcg acg gcg gcg gag 113

Met Gly Ala Thr Gly Ala Ala Glu

1 5

ccg ctg caa tcc gtg ctg tgg gtg aag cag cag cgc tgc gcc gtg agc

Pro Leu Gln Ser Val Leu Trp Val Lys Gln Gln Arg Cys Ala Val Ser

10 15 20

ctg gag ccc gcg cgg gct ctg ctg cgc tgg tgg cgg agc ccg ggg ccc
Leu Glu Pro Ala Arg Ala Leu Leu Arg Trp Trp Arg Ser Pro Gly Pro
25 30 35 40

gga gcc ggc gcc ccc ggc gcg gat gcc tgc tct gtg cct gta tct gag

Gly Ala Gly Ala Pro Gly Ala Asp Ala Cys Ser Val Pro Val Ser Glu

257

45	50	55

					_	aca Thr		_							•	305
						gaa Glu										353
						cac His 95										401
						ctg Leu										449
						acg Thr				-			-	-		497
						aaa Lys										545
						acc Thr										593
						cag Gln 175										641
				gac Asp		tga *	gt a	agco	gtct	t to	atcg	rccat	caa	igtec	att	694
gtta	atga	aa a	agtt	ctac	c ca	cctc	tcag	ttt	tgag	agc	tcct	tttc	ct a	aato	cgccc	754
cccg	rccto	ca c	ccac	gacc	a at	tgta	aaag	taa	acat	gct	tctt	acag	rga a	ıggca	agaaa	814
gaa																817

<210> 248

<211> 2416

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (526)..(1962)

<400> 248

atccccttta aggacctttg ggtgattaga gacaggcagg cagcttgccg cctggaaatg	60
atcaagtggt cagcctgacc aaattcagga cagctgaagg gtctgactgg gcactgtgtg	120
actggtgggt tggaggctgt cgtgtggctg accagagatg gccagctgat gggtcacaca	180
gttggggatg gtgtcaggag gtcaacctga ccagcagaga cggctggcag gaaggtcacg	240
gaaggccagc caggcatggt gccactgggt gcaggcaggt ggcggatctg agtggcctga	300
cacattggat ggtcgcttat ttgggcagcg tgattgtcag aacagtgtgg caggggctgc	360
tgcagggagc catttggaca tctgcagggc cccgccggag gcctcggatg gccacgtagg	420
gtctgcctat caagagaacc cccagatgat cacagtcccc cagagacagc cagacccccg	480
gggacccagc ctctcacagt cagtcctccc acccgagtga ccccg atg gcg gcc Met Ala Ala 1	534
tcc cag ctg gcg ctg gaa gga gtg gac tcc ggt ccc agg gtg ccc Ser Gln Leu Ala Ala Leu Glu Gly Val Asp Ser Gly Pro Arg Val Pro 5 10 15	582
ggg gcc agc ccc ggc ttc cta tat tcc gag ggc cag cgg ctg gca ctg Gly Ala Ser Pro Gly Phe Leu Tyr Ser Glu Gly Gln Arg Leu Ala Leu 20 25 30 35	630
gag gct ctg ttg agc aag ggc gcg gag gcg ttc cag acc tgc gtg cag Glu Ala Leu Leu Ser Lys Gly Ala Glu Ala Phe Gln Thr Cys Val Gln 40 45 50	678
cgc gag gag ctg tgg ccc ttc ctc agt gcg gat gag gtt cag ggc ttg Arg Glu Glu Leu Trp Pro Phe Leu Ser Ala Asp Glu Val Gln Gly Leu 55 60 65	726
gca gcg gca gct gaa gac tgg aca gtg gcc aag cag gag ccc agc ggg Ala Ala Ala Glu Asp Trp Thr Val Ala Lys Gln Glu Pro Ser Gly 70 75 80	774
atg gca gag gga gcc acc acc gcc gat gtg gac gcg ggc agc ctg agc Met Ala Glu Gly Ala Thr Thr Ala Asp Val Asp Ala Gly Ser Leu Ser 85 90 95	822
tac tgg cct ggg cag tcg gag cag ccg gcg ccc gtc ctg cgg ctg ggc Tyr Trp Pro Gly Gln Ser Glu Gln Pro Ala Pro Val Leu Arg Leu Gly 100 105 110 115	870
tgg cca gtg gac tct gcg tgg aaa ggc atc acc cgg gcg cag ctg tac Trp Pro Val Asp Ser Ala Trp Lys Gly Ile Thr Arg Ala Gln Leu Tyr 120 125 130	918
acc cag cct cct gga gag ggt cag ccg ccc ctc aag gag ctg gtg cgg Thr Gln Pro Pro Gly Glu Gly Gln Pro Pro Leu Lys Glu Leu Val Arg 135 140 145	966
ctg gag atc cag gct gcc cac aag ctg gtg gcc gtg gtc atg gac gtc	1014

Leu	Glu	Ile 150	Gln	Ala	Ala	His	Lys 155	Leu	Val	Ala	Val	Val 160	Met	Asp	Val	
						ctt Leu 170										1062
						ctg Leu										1110
						cag Gln										1158
						gtg Val								-		1206
_		_		_		acc Thr				_			-	_	_	1254
						gga Gly 250										1302
						gtg Val						-		_	_	1350
						cgg Arg										1398
						aaa Lys							_	-		1446
						gtg Val										1494
						ggc Gly 330					-	_	_	_	_	1542
						ccg Pro										1590
						acc Thr										1638
						agc Ser										1686

	375	38	30	385		
gat ggg gac Asp Gly Asp 390				tcc aag gac Ser Lys Asp 400		34
gcc aag gct Ala Lys Ala 405						32
gaa gtg gac Glu Val Asp 420						30
gcc cac cgc Ala His Arg						78
gat gct aca Asp Ala Thr			o Arg Gly			26
tgg gcc ccc Trp Ala Pro 470				tga acag gag *	gcccaagc 197	16
caaatctgct g	gcccaccca aç	ggagcagtg c	cggacaact	gtcggctcag a	agecetetge 203	16
ctcaatgccc t	gccttggac aa	aggettetg g	cctcggcgt	ctgtcaagca 🤅	gaagggatgt 209)6
ttgtcacttg t	tctgcaact to	ggccggga g	tggtggctc	atgcctgtaa (ccctgcact 215	6
ttgggaggct a	aggtgggag gg	gttgcttaa g	gccaggagt	tggagaccag d	cctgggcaac 221	.6
atagtgagac c	ccatctcta ca	attaaaaa a	acaaattag	ttgggtgtgg t	ggegeaege 227	6'
ctgtggtccc a	gctacgcag ga	ıggctgagg t	gggaggatc	cctcgagctc a	aggaggtgga 233	, 6
ggcagcagtg a	gccaagatc at	gcccttgc a	ctccagcct	gggcaacaca g	gtgagaggcc 239	6 ا

```
<210> 249
```

atctctttaa aaaaaaaaa

<220>

<221> CDS

<222> (399)..(3938)

<400> 249

atttggccct cgaggccaag aattcggcac aaggtttaag gtttgcttct acagcccgtg

<211> 4537

<212> DNA

<213> Homo sapiens

gactttagcc taaacacgga cccgcqaagc tggctttatt tgtccatgtc tcggacagag 120 cctgggaagc tgccagtgag atttcagaga ccaagagcgc gaaggggcgg gcgatgtggc 180 aatccgtctg ggatgtgaaa agcgtggagc gcatttagag gcattcgacg aaaacacagg 240 aaatcactcc tctcccgctc ctgggcgccg ctgccactgg ggcagaggac tgggaaccgc 300 ggcagcggga taagtggccc agccagagag cgcagctccc gcgcccggtc ctgccctgcg 360 aaccagegeg geeecetgge getgaggetg eteeggee atg gcc cct cgg ccc 413 Met Ala Pro Arg Pro 461 Arg Ala Arg Pro Gly Val Ala Val Ala Cys Cys Trp Leu Leu Thr Val 10 509 gtt cta cgc tgc tgc gta tca ttc aat gtt gat gtg aaa aat tca atg Val Leu Arg Cys Cys Val Ser Phe Asn Val Asp Val Lys Asn Ser Met 25 557 act ttc agc ggc ccg gtg gaa gac atg ttt gga tat act gtt caa caa Thr Phe Ser Gly Pro Val Glu Asp Met Phe Gly Tyr Thr Val Gln Gln 40 605 tat gaa aat gaa gaa gga aaa tgg gtg ctt att ggt tct ccg tta gtt Tyr Glu Asn Glu Glu Gly Lys Trp Val Leu Ile Gly Ser Pro Leu Val ggc caa ccc aaa aac aga act gga gat gtc tat aag tgt cca gtt ggg 653 Gly Gln Pro Lys Asn Arg Thr Gly Asp Val Tyr Lys Cys Pro Val Gly 701 aga ggt gaa tca tta cct tgc gta aag ttg gat cta cca gtt aat aca Arg Gly Glu Ser Leu Pro Cys Val Lys Leu Asp Leu Pro Val Asn Thr 90 95 tca att ccc aat gtc aca gaa gta aag gag aac atg aca ttt gga tca 749 Ser Ile Pro Asn Val Thr Glu Val Lys Glu Asn Met Thr Phe Gly Ser 105 110 act tta gtc acc aac cca aat gga gga ttt ctg gct tgt ggg ccc tta 797 Thr Leu Val Thr Asn Pro Asn Gly Gly Phe Leu Ala Cys Gly Pro Leu 120 125 tat gcc tat aga tgt gga cat ttg cat tac aca act gga atc tgt tct 845 Tyr Ala Tyr Arg Cys Gly His Leu His Tyr Thr Thr Gly Ile Cys Ser 135 140 893 gac gtc agc ccc aca ttt caa gtc gtg aat tcc att gcc cct gta caa Asp Val Ser Pro Thr Phe Gln Val Val Asn Ser Ile Ala Pro Val Gln 150 155 160 941 gaa tgc agc act caa ctg gac ata gtc ata gtg ctg gat ggt tcc aac Glu Cys Ser Thr Gln Leu Asp Ile Val Ile Val Leu Asp Gly Ser Asn

180

175

					gac Asp								-		_	989
	-	-	-		ggt Gly			_		_	_			~	-	1037
		_			acc Thr							_				1085
			-		gtt Val 235	_	_	_			-	_	-			1133
	_		_		gct Ala				_		_	-	_		_	1181
		-	_		ggt Gly	_		-		_			_	_	-	1229
			_		gag Glu			_			_	_	-	_	-	1277
					gat Asp											1325
		_			cga Arg 315				-		_					1373
-					gca Ala	_	~			_	_					1421
-			-	_	gct Ala		-			•			_	-	_	1469
					gaa Glu											1517
					cag Gln											1565
					gca Ala 395											1613

-	atg Met	_	-	-	-						_					1661
	gtt Val					_		_	_		-					1709
	act Thr	_			-		-				_					1757
_	gga Gly 455	-								_	_					1805
-	gaa Glu	_							-	-		_		-	_	1853
	ggt Gly					_						_		_	_	1901
	tct Ser			-												1949
	gag Glu															1997
	agg Arg 535		-			_	_	_	_			_	_	_	-	2045
_	tca Ser			_				_			_					2093
	tgc Cys		-	_				-		-	_	_		_		2141
	ctt Leu	-				_					_	_	_	_	-	2189
_	cac His			_							_		-			2237
	aaa Lys 615															2285
ctg	aaa	ttt	ttt	ggc	cag	tct	atc	cac	gga	gaa	atg	gat	tta	aat	ggt	2333

Leu 630	Lys	Phe	Phe	Gly	Gln 635	Ser	Ile	His	Gly	Glu 640	Met	Asp	Leu	Asn	Gly 645	
											ggt Gly					2381
			-	-		-	-	-			acc Thr	-				2429
							_			_	cat His	_			-	2477
-		-	_			-			-		gag Glu 705	-			_	2525
		-	-	-			_	-	-	_	cag Gln		_	_		2573
	_			-				_	~		ttc Phe					2621
	_	_	_						_		aaa Lys		-	_		2669
_					-	-	-	-		-	ttt Phe	_	-			2717
		_	_	-					_		gaa Glu 785				-	2765
											tat Tyr					2813
	_	_			_	_		_			gac Asp		-	_		2861
											cga Arg					2909
											aag Lys					2957
											cta Leu	_				3005

	855					860					865					
											aat Asn					3053
_		_					_	_	-		gag Glu	_	-			3101
		_		_							atg Met	~		~ ~		3149
										-	cct Pro		_			3197
											aaa Lys 945		-	_		3245
											att Ile					3293
						-					gag Glu	_				3341
						_		_		_	gga Gly				_	3389
	Glu		_	_		Ile					atg Met					3437
Tyr					Pro					Ser	tct Ser L025					3485
				Ile					Phe		atc Ile			Gly		3533
	_		Thr			_		Leu		-	ggc Gly		Ile	_	_	3581
_		Thr	_			-	Thr			-	aat Asn	Leu				3629
	Ile					Val					tgg Trp 1					3677

ata aaa toa tat ttt too ago tta aat ott act ata agg gga gaa ott 3725 Ile Lys Ser Tyr Phe Ser Ser Leu Asn Leu Thr Ile Arg Gly Glu Leu 1095 1100 1105 cgg agt gaa aat gca tct ctg gtt tta agt agc agc aat caa aaa aga 3773 Arg Ser Glu Asn Ala Ser Leu Val Leu Ser Ser Ser Asn Gln Lys Arg 1110 1115 1120 1125 3821 gag ctt gct att caa ata tcc aaa gat ggg cta ccg ggc aga gtg cca Glu Leu Ala Ile Gln Ile Ser Lys Asp Gly Leu Pro Gly Arg Val Pro 1130 tta tgg gtc atc ctg ctg agt gct ttt gcc gga ttg ttg ctg tta atg 3869 Leu Trp Val Ile Leu Leu Ser Ala Phe Ala Gly Leu Leu Leu Met 1150 ctg ctc att tta gca ctg tgg aag att gga ttc ttc aaa aga cca ctg 3917 Leu Leu Ile Leu Ala Leu Trp Lys Ile Gly Phe Phe Lys Arg Pro Leu 1165 1160 aaa aag aaa atg gag aaa tga aa tattttatga aagaaaataa taacaattat 3970 Lys Lys Met Glu Lys 1180 1175 tcaataatct atcctcaggt ttgcctcaaa tatgtgacaa gaaatgtata attcatgaca 4030 tagtcatgta actatgtaat ccatcaggga ttcattactt ggaaaatgac aggtcatgca 4090 ttatccaaaa acaataccaa aaagacatat tttataaaat gacaaaaaat attttacata 4150 attactcatt tttgttgagt aagcaaaatt acaaagtgtt tttaaaaaaaa cctgtacaaa 4210 tatgtttatg tattaaatca ccatccaaaa tatttaagga atatataaaa agatttttat 4270 gatcatagaa acatctattt tcaaaacaat ataaattaag cttttcccct tgattcctgt 4330 4390 tggatatcca tgttcagcat gacagtcagc actcgtaaat gccaagaaaa gaattacctg aaaaagatca tttctcccta ttcaaatgag aatattttcc ctcggtagaa tccatataca 4450 atatggattg aaaattaagt cacgaagaat acatttagca tctttgtgtt gggttctata 4510 cctaaaaatt ttccctcccg gcccaag 4537

```
<210> 250 <211> 1203
```

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (608)..(832)

<400> 250 60 gagateetea aggtagegge agetegggge ttgtgtteag ttteetette eeagaegeee 120 ccagccccgt ttccctgaac gactgttggg tgtcccgacg gctcctgtgg ctggcagaaa gagaaagagg ataacactga ccaggtttgg gtctggtcag agcccccgcc tcttcagggc 180 aggtgctgag ttgtggaaat ttgaggagcc tattttcgtg tttagttttc aaactaagac 240 tgctgcttct gcttctctga cgggcttcag ctgggaacag attaactagg ttgctaaagg 300 aacaaatatt tcttccgtgc actgaagaca ggcaggaaga caacagataa cgtacctgca 360 gtggagaggt taagctcctg tacggaagcg taattcataa atagataaat ataggaaagg 420 acaacaaaga aaatagggat agaataacgg gcagagaatt tagagatgat gtcaggtgat 480 tagttttctc atctaaaagc ttgaaaatcc tgcatgtttg tggagtggtc aagcaggtgg 540 tgaagagggc aaactctttg attctacaat agctgatgag ggaacatgga ctttggagga 600 649 cagaaaa atg gtt cgt att gtt ctt aca aag aca aag aga gat gca gca Met Val Arg Ile Val Leu Thr Lys Thr Lys Arg Asp Ala Ala aat tgt tgg act tct cta cta gaa tct gaa tat gca gcg gat cct tgg 697 Asn Cys Trp Thr Ser Leu Leu Glu Ser Glu Tyr Ala Ala Asp Pro Trp 15 20 gtg caa gac caa atg cag aga aag ctt aca tta gag aga ttc caa aaa 745 Val Gln Asp Gln Met Gln Arg Lys Leu Thr Leu Glu Arg Phe Gln Lys 35 gaa aat cct ggt ttt gac ttc agt gga gca gaa atc tca gga aac tac 793 Glu Asn Pro Gly Phe Asp Phe Ser Gly Ala Glu Ile Ser Gly Asn Tyr 50 55 60 842 act aaa ggt gga cca gat ttc tca aac ctt gag aaa taa ctgctttttt Thr Lys Gly Gly Pro Asp Phe Ser Asn Leu Glu Lys 65 70 75 tcctgcattc tgtggatcct agcagatatt gccaacttaa tcagataaac agattatgta 902 atggaagaaa aatgcggatg cctacagtta acagattgca aaatgtatct taaaatggtt 962 ctaaaaattg cattcaaaca taatttacat aggaaatgta ctgtgggaac tattctatgg 1022 atatatgggt aagttgtttt ggacttgttt ttgctcagca tgaagtttta tatgctgcat 1082 tttactaatt ccatatttaa ccatatgttt aatacaaaag aacattagag tatagatcat 1142 gtgaaatgaa gggtgccttc ggggaaaatt aactttttct tttgatagta tgatattcac 1202 t. 1203

<210> 251 <211> 935 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (36)..(362) <400> 251 atttggccct cgaggccaag aattcggcac gaggc atg acc cca tcg agg ctt 53 Met Thr Pro Ser Arg Leu 5 ccc tgg ttg ctt agc tgg gtc tcg gcc acg gcg tgg aga gcg gca aga 101 Pro Trp Leu Leu Ser Trp Val Ser Ala Thr Ala Trp Arg Ala Ala Arg 15 tca ccc ctt ctg tgt cat tct ctg agg aaa aca agt tct tct caa gga 149 Ser Pro Leu Cys His Ser Leu Arg Lys Thr Ser Ser Ser Gln Gly 25 30 197 gga aag tct gaa ctt gtc aaa cag tcc ctt aag aag ccg aag tta cca Gly Lys Ser Glu Leu Val Lys Gln Ser Leu Lys Lys Pro Lys Leu Pro 40 45 gaa ggt cgt ttt gat gca cca gag gat tcc cat tta gag aaa gaa cca 245 Glu Gly Arg Phe Asp Ala Pro Glu Asp Ser His Leu Glu Lys Glu Pro 55 60 ctg gaa aaa ttt cca gat gat gtt aat cca gtg acc aaa gaa aaa ggt 293 Leu Glu Lys Phe Pro Asp Asp Val Asn Pro Val Thr Lys Glu Lys Gly 75 gga ccc agg ggc cca gaa cct acc cga tat gga gat tgg gaa cga aaa 341 Gly Pro Arg Gly Pro Glu Pro Thr Arg Tyr Gly Asp Trp Glu Arg Lys 90 gga cgc tgt att gat ttt taa gt cgcatattct ttaacttcaa tattgttttc 394 Gly Arg Cys Ile Asp Phe * 105 tgaatatgta catctgaatt aacttatttc tgattatttt ctttctttat atcctttatg 454 514 atgatggctt tggaagaaaa tatgctgctg taaattagga aagggagacc agcctgacca 574 634 atatggagaa atctcgcctt tgctagagat acaaaattag ccaggcgtgg tggcatgcac 694 ctgtaatcag cctcctgagt agctgggatt acagacaccc accattgcgc ctggctaatt tttgtatttt tagtaaagac aaggtttcac catgttagcc aggctggtct cgaactcctg 754 acctcagttg atccacctgc ctcagcctcc caaagtgctg ggattgcagg tgtgagccac 814

taaattaatc agttgc	ttat aaaatgcata	cataaataaa	ataattttta aa	aaaaaaaa 934
a				935
<210> 252 <211> 1219 <212> DNA <213> Homo s	apiens			
<220> <221> CDS <222> (41)	(532)			
<400> 252 ggcgcaggag ggggcg	gggg cgcggctcgt	ccccagcgg	atg agc tgc Met Ser Cys 1	
cgg ggc gcg ggc g Arg Gly Ala Gly G				
aag ttg cca gcg t Lys Leu Pro Ala S 25	Ser Pro Arg Arg V			
ctg atc aaa ctt g Leu Ile Lys Leu A 40				
agt ctg act gag a Ser Leu Thr Glu T 55				
gga ttc cta gag c Gly Phe Leu Glu L 70				
acc tgg ctg gcc c Thr Trp Leu Ala L			Gly Ser Phe S	
tcc cag cct att g Ser Gln Pro Ile G 105	Sly Met Thr Lys I			
ctg gct gac cag a Leu Ala Asp Gln A 120				
gac ttc atc ctg g Asp Phe Ile Leu V				

cacgcccagc ctagaaatga ttcttagagc tgtaggcctt tacttcatca tttttcagtt

135		140		145		
	a gag ttc adr Glu Phe Ti					535
ccgagaacct	cggcatcacc	agtggcttcg	tgaagcccaa	gctggtccag	atgccggtca	595
tccacccact	gtccagcccg	agcaacaggt	tctgtgtcac	cagcctggac	cccgacacgc	655
tgcctgctgt	tgccacactc	ctcatggatg	tcatgtccta	cttcaatggg	tgaggataca	715
actagaagcc	agcagtctac	aggctggaag	aaggccctca	ccagaaccca	acccttggac	775
ttcagcctcc	agaactgtga	gaaatacata	cctgctgttt	gtcagacacc	agtctatgga	835
attctgttac	agtagcctga	actcagacat	agcccttttc	catttataag	gtggttttac	895
cttatattt	atgtaaaagg	tccattttat	ttatttttga	attgttgatt	tttttttaag	955
agacacgtgt	ttactatgtt	acccaggctg	gactccaact	cctggactat	tgatcctcct	1015
gtctccacct	cccgagttgc	tggaactaca	ggctaacagc	tctgttttaa	agatgagaaa	1075
atgggcccga	cgcagtggct	cacacctgta	atcccagcac	ttagggtagc	tgagccaggt	1135
ggagccactt	gaggtcaggt	gttcgagatt	agcctggcca	acatggcaaa	accccgtctc	1195
tactaaaaat	acaaaaaaaa	aaaa				1219
<210> <211> <212> <213>	421	ıs				
<220> <221> <222>	CDS (211)(363	3)				
<400> cccacgcgtc	253 cgcccacgcg	tccgacagca	cccctggcct	ggtctgattc	cactgaaaga	60
tggggccatg	atggtagctg	attgctaaat	ttacataact	cagttcatcg	tcacaggagc	120
cctaagaggt	tgatacgacc	atgagtccat	tttcactgag	gaaaaccgaa	gaaaagaaat	180
tgtaaatggc	cagagatgta	tggctggtga		c ctg tgt go Leu Cys Gl		231

gcc aag gtg aat gct cct gct atg cag atg atg cag ccc aga gag ccg Ala Lys Val Asn Ala Pro Ala Met Gln Met Met Gln Pro Arg Glu Pro

cag cca cct ctg cga gtc cca cag ctg gaa gga gca ccc agt cct Gln Pro Pro Leu Arg Val Pro Gln Leu Glu Gly Ala Pro Ser Pro 25	
aca cta gcc gga cag gcc cgc agc ctg cac tac tga gctg tcacgga Thr Leu Ala Gly Gln Ala Arg Ser Leu His Tyr * 40 45 50	agga 377
ctctaccaag ccccagtgcg gagccacaag tggaggacat cctg	421
<210> 254 <211> 636 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (250)(516)	
<400> 254 gtcttttgag agctctaggt cccacccagc tctcagattt tataatacta tggtc	catctt 60
ccctgcaggt tgggggacag ggaaggggga ataaggcctc gggagaagga agatg	gagcta 120
ggaggcctgg tgcactacac agctcctttg tgcctccagg ccacctgccc aagct	ggtgt 180
gcctcccttc taaggtcctg tcccactggg cacaggaggc agatccagca gcgtg	ggaatc 240
ccagataac atg tcc cac aga ctc tgg caa cgt cac aga tca cat Met Ser His Arg Leu Trp Gln Arg His Arg Ser His 1 5 10	
gag gca agt gca ggc caa cga cat ccg cat ccg ggt cct aca gga Glu Ala Ser Ala Gly Gln Arg His Pro His Pro Gly Pro Thr Gly 15 20 25	
gaa cgg gcg gct cca atc aat gct gtc caa aat ccg gga agt ggc Glu Arg Ala Ala Pro Ile Asn Ala Val Gln Asn Pro Gly Ser Gly 30 35 40	
gca ggg tgg cct caa ggt ggg cct gag agg gcg ggc cct tgg gga Ala Gly Trp Pro Gln Gly Gly Pro Glu Arg Ala Gly Pro Trp Gly 50 55 60	
gga gga agc ccc tat cca gca gca ggt ctt cag act ctg ccc cgg Gly Gly Ser Pro Tyr Pro Ala Ala Gly Leu Gln Thr Leu Pro Arg 65 70 75	
ctt gtg gag agc cca cct cat cac atg agg cct tag gctg tgctttt Leu Val Glu Ser Pro Pro His His Met Arg Pro * 80 85	gtg 530

aaacattttt cacatttcca gaaggcgtga ggatgttatg gattcgatgc cttccagttc

<210> <211> <212> <213>	718	iens						
<220> <221> <222>	CDS (414)(6	595)						
<400> ggaattcccg		at ttcgta	agcga ggo	cctctttc	cccctcg	ctc ccact	ccagac (60
cacccccaag	cctggactg	gg aagtg!	gttg ag	cccctggg	tcaggctq	ggc gagco	cagctc 1	20
ggccctgccc	acccagggg	gt ttccga	agatc ac	ccctggtg	aggcggcg	gtg ccagt	teeett 18	80
gctttcttac	ttgttctgo	ca gagcgg	gggag ct	gaggctgc	atgaggga	aag actco	ccgtac 24	40
cccagcacgg	tggagggtg	gg gatggg	ggtca cgo	cctgtgcg	acccagga	agg tggco	cagcag 3	00
aaggaaacag	tagtgtcca	ac catggi	cetge gto	ctccccac	cacggatt	gt cttg	geteeg 3	60
gatttgagac	atggcaggg	gc cagatç	gagga caa	acttgatg	acagttta	aca gag	atg 4: Met 1	16
gag gca gge Glu Ala Gl							_	64
gtc cag gcc Val Gln Ala 2	a Gly Leu							12
agg ggt gtg Arg Gly Va								60
agg ccg cag Arg Pro Gla 50	•	_	_					08
ggc tgc ac Gly Cys Th	_							56
ctg gag gc Leu Glu Ala						gacagato	ggg 7(05
ttcactgcac	ctc						73	18

<210> 256

<211> 1767 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (251)..(1609) <400> 256 60 aactaggcta ggtagcgagg cctgggtggt ggggggctca ggcggcggcg gcctcgacgc gagtgagtgt cgtggttggg gtgctggacc cagagtgcct accctcgcct gcctgggcct 120 cagtttccac atctgcacaa tgggggtgac catccctgcc ctgctggctg ccaggagcgg 180 ctgtgagtct tcaggcgtgg atgcagcctg ggggaagcca tagggcgctt tcacaggcct 240 289 ggccttcacc atg gcg gga ggg aga ccg cat ctg aag agg agt ttc tcc Met Ala Gly Gly Arg Pro His Leu Lys Arg Ser Phe Ser atc atc ccc tgc ttt gtc ttc gtg gag tcg gtg ctg ctg ggc att gtg 337 Ile Ile Pro Cys Phe Val Phe Val Glu Ser Val Leu Leu Gly Ile Val 15 20 atc ctg ctt gct tac cgc ctg gag ttc acg gac acc ttc cct gtg cac 385 Ile Leu Leu Ala Tyr Arg Leu Glu Phe Thr Asp Thr Phe Pro Val His 30 35 45 acc cag gga ttc ttc tgc tat gac agt acc tac gcc aag ccc tac cca 433 Thr Gln Gly Phe Phe Cys Tyr Asp Ser Thr Tyr Ala Lys Pro Tyr Pro 50 55 60 481 ggg cct gag gct gcc agc cga gtg cct cct gct ctt gtc tac gca ctg Gly Pro Glu Ala Ala Ser Arg Val Pro Pro Ala Leu Val Tyr Ala Leu 75 65 529 gtc act gcc ggg ccc acc ctc acg atc ctg ctg gga gag ctg gcg cgt Val Thr Ala Gly Pro Thr Leu Thr Ile Leu Leu Gly Glu Leu Ala Arg 85 577 gcc ttt ttc cct gca cca cct tca gcc gtc cca gtc atc ggg gag agc Ala Phe Phe Pro Ala Pro Pro Ser Ala Val Pro Val Ile Gly Glu Ser 100 acc atc gtg tct ggg gcc tgc tgc cgc ttc agc ccc cca gtg cgg agg 625 Thr Ile Val Ser Gly Ala Cys Cys Arg Phe Ser Pro Pro Val Arg Arg 110 115 120 ctg gtc cgc ttc ctg ggg gtc tac tcc ttc ggc ctc ttc acc acg acc 673 Leu Val Arg Phe Leu Gly Val Tyr Ser Phe Gly Leu Phe Thr Thr 130 135

						cag Gln										721
	_			-	-	ccc Pro			_	-	_		-	_		769
		_	~			ggt Gly 180		-	-		-		-	_		817
-	-	-		_		agc Ser			_	-			_	-		865
						ctc Leu										913
_		_				ttc Phe										961
	_		_	~	_	ttg Leu	_	_	_	-		_				1009
						cga Arg 260										1057
	~				_	atc Ile	_			_	-		_	-		1105
						cca Pro										1153
	-	-			-	ccc Pro		_	_	_			-	_		1201
						gag Glu										1249
					_	tcg Ser 340	_		_	-	-	_			-	1297
		_	_	_		tcc Ser		_		_	-	_	_	-		1345
cgt	gtg	ccc	cgt	cct	cga	ttg	agg	tct	gag	ccg	acg	ccc	ttg	ccc	ctg	1393

Arg Val Pro Arg Pro Arg Leu Arg Ser Glu Pro Thr Pro Leu Pro Leu 370 375 380										
ccc cta ccc ctg cca gcg ccc acc ccc agc cag ggc ccc tcg cct tcc Pro Leu Pro Leu Pro Ala Pro Thr Pro Ser Gln Gly Pro Ser Pro Ser 385 390 395	1441									
tcc cct gga cct ggg ggg cca ggc ggg ggt ggt gga cgt ggc cgg aag Ser Pro Gly Pro Gly Pro Gly Gly Gly Gly Gly Arg Gly Arg Lys 400 405 410	1489									
ctg ctg ctg ccc acg ccc ctg ctg cgg gac ctg tac acc ctg agt gga Leu Leu Leu Pro Thr Pro Leu Leu Arg Asp Leu Tyr Thr Leu Ser Gly 415 420 425	1537									
ctc tat ccc tcc ccc ttc cac cgg gac aac ttc agc cct tac ctg ttt Leu Tyr Pro Ser Pro Phe His Arg Asp Asn Phe Ser Pro Tyr Leu Phe 430 435 440 445	1585									
gcc agc cgt gac cac ctg ctg tga ggcccgacca cccacccaga atctgcccag Ala Ser Arg Asp His Leu Leu * 450	1639									
tececaette ttecetgeea egegtgtgtg tgegtgtgee aegtgagtge caaagteeee	1699									
agcaccccaa gccagccaga cccagattgt attgcggccg ctcagaggat caaactacgt										
cgcggcca										
<210> 257 <211> 2367 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (379)(1332)										
<400> 257 tcaatttaag ctccctaaag ggaatttggc cctcaggcca agatcgcccc aggcccggcc	60									
caggaaaggg cccgaggggt aggttggact gcgggccagg acctaacgcg ggggtcgggc	120									
cgcctcaggt gcttgggagt cggggactcg aaggacgcaa gtgttgagct cgcgcccttc	180									
tcgaagccgt ttgggcggac gctggggtcc ttcgggctcc gccccagggg gtggggctat	240									
atgtteggae aatgaeegge egteettgeg gteeegeeee eteeeegeee eeggaageeg	200									
cggcctcgct gagtgcccag ccgcccggcg cccaggcctg gggcaccgcg agtgccgaac	300									
	360									

					gag Glu											459
					aag Lys											507
					ccg Pro											555
	_				tgc Cys 65		_	_		_	_			-	-	603
					cac His											651
					Gly gag											699
					cac His											747
					tcg Ser											795
					aag Lys 145											843
					aac Asn											891
	_	_			tgc Cys	_	_	_		_	_				~	939
_	_	_		_	cac His	_	_	_		_						987
_	_	_	_	_	ggc Gly	_	_		_	_	_	_		_	_	1035
_			-		cac His 225	_			_	_		-	-	-		1083

tgt ggc cgt cgc ttc ggc cac cgc tcc aac ctg gcg gag cac gcg cgc Cys Gly Arg Arg Phe Gly His Arg Ser Asn Leu Ala Glu His Ala Arg 240 245 250	1131
acg cac aca ggc gag cgg ccc tac ccc tgc gcc gag tgc ggc cgc cgc Thr His Thr Gly Glu Arg Pro Tyr Pro Cys Ala Glu Cys Gly Arg Arg 255 260 265	1179
ttc cgc cta agc tcg cac ttc att cgc cac cga cgc gcg cac atg cgg Phe Arg Leu Ser Ser His Phe Ile Arg His Arg Arg Ala His Met Arg 270 275 280	1227
cgc cgc ctg tat att tgc gcc ggc tgc ggc agg gac ttc aag ctg ccc Arg Arg Leu Tyr Ile Cys Ala Gly Cys Gly Arg Asp Phe Lys Leu Pro 285 290 295	1275
cct ggc gcc acg gcc gcc act gcc acc gag cgt tgc ccg gag tgt gag Pro Gly Ala Thr Ala Ala Thr Ala Thr Glu Arg Cys Pro Glu Cys Glu 300 305 310 315	1323
ggc agc tga gtcccgc agggctgcgg aggggcgcgc tggggcttcg acctggctgc Gly Ser *	1379
actaacccag gctcctcctc gccccggcct ccgggtctgg gaaattgagg ggacggcagg	1439
cccggctgcc ctggaactgg gagacaggga gaatcccctg ccggggtccc tggaaacagt	1499
gcccacccca catcactaca ttccctcggc ccgtgttagt gaataaagta ttatatcctc	1559
accccacccg tgcctgtgag tgaggtgggt gggagaggaa gaaagttggg gttctccagg	1619
ctcaggtgcc aagtgagttg tcaaggaacc aaatggggat gtaaacctaa aaggggttcc	1679
cggcacctcg gtttgtgttg gttggaggtg atcgcacact tggcccttgg ttacgtcctc	1739
ataaccttag acctgaaagg gcccataaat atactatgtt cacgatcaga cacgcactgc	1799
attcggcaga gctccagtga gcaaggcacg accctcagat ctcagtctag tgaaggagag	1859
aaaactgtaa taacactacg ttaaaggttt taactgcttt gttatgtaag cttacccagc	1919
ccggcgcaca gtgactcacg cctgtaatcc cagcactttg ggagggcgag gctagcagat	1979
cacttgaggt taggagttcg ataccagcct ggccaacatg gtgaaacccg gtctctacta	2039
aaaatacaaa aattaactgg gtgtggtggc gggcgcctgt aatcccagct actgaggggg	2099
ctgaggcatg agaatcactt gaacctggga gacagaggtt gcaatgaacc gagatagtgc	2159
cattgcactc cggcctgggc aacagaggaa gactgcctca aacaaacaaa aaacaacaaa	2219
ccaaaccaaa ccaaaaaaat ctcaaagcga ttggacctag cagctcatgc ctgtaatctc	2279
cagcactttg ggaggcggag gcaggaggat ctcttgaagt caagagtttg agatcagcct	2339
ggagaacaaa gtgagacccc catctatt	2367

<210> 258 <211> 581 <212> DNA <213> Homo sapiens									
<220> <221> CDS <222> (97)(525)									
<400> 258 cacaatgagg cagggagaca tgggtttgct atcacatcac	60								
tgagacaggt gttttaatca tcgtttttgc acccag atg aac aag gag agg gca Met Asn Lys Glu Arg Ala 1 5									
ttc agg cat ggc gac ccg cct gag cca cct cca ggg gca aga gat gag Phe Arg His Gly Asp Pro Pro Glu Pro Pro Pro Gly Ala Arg Asp Glu 10 15 20	162								
cag att tac ttt aga aag gac aac agc atc agc cac tgc cac agc ccc Gln Ile Tyr Phe Arg Lys Asp Asn Ser Ile Ser His Cys His Ser Pro 25 30 35	210								
ccc cag atc atc tgt act ggc tgt cag aac agt cct gct gaa acg cca Pro Gln Ile Ile Cys Thr Gly Cys Gln Asn Ser Pro Ala Glu Thr Pro 40 45 50	258								
atc aca cct gtc att cac tgc tct gcc cag gac tct tca gtg ggc tcc Ile Thr Pro Val Ile His Cys Ser Ala Gln Asp Ser Ser Val Gly Ser 55 60 65 70	306								
cca gcg cta agc att tgg cct gac act cca ggc gcc atg tgc cct ggt Pro Ala Leu Ser Ile Trp Pro Asp Thr Pro Gly Ala Met Cys Pro Gly 75 80 85	354								
ccc cac cta cct ctc cac tgc aaa ttc tgg cca tac acc cct gca ccc Pro His Leu Pro Leu His Cys Lys Phe Trp Pro Tyr Thr Pro Ala Pro 90 95 100	402								
cca aac agt gca ctc cca tct cag tcc aca ttc tcc cct tac aac atg Pro Asn Ser Ala Leu Pro Ser Gln Ser Thr Phe Ser Pro Tyr Asn Met 105 110 115	450								
att cat cca aga cca tgg att cgt ggc ctt aag ttt act tct ggt ctg Ile His Pro Arg Pro Trp Ile Arg Gly Leu Lys Phe Thr Ser Gly Leu 120 125 130	498								
gac ttc tgt gtc agc tcc aga gta tag ttgtc tcactgaccc cttcacttgg Asp Phe Cys Val Ser Ser Arg Val * 135 140	550								
gtgccagaga acactggata ttccagaccc c	581								

```
<210> 259
     <211> 317
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> CDS
     <222> (39)..(317)
     <400> 259
aacaaaattc ggagcccggc ccacggcgcg cgctgctg
                                              atg ggt ctg ggc ccg
                                                                        53
                                              Met Gly Leu Gly Pro
cct acc gac ggc cca gga ccc atc gac cca cga gtc ggt ccg gcc gcc
                                                                       101
Pro Thr Asp Gly Pro Gly Pro Ile Asp Pro Arg Val Gly Pro Ala Ala
                                                          20
                 10
                                      15
                                                                      149
ggg tgc aca atg ggt ggc tcc tcc agc gtc gcc gct atg aag aaa gtg
Gly Cys Thr Met Gly Gly Ser Ser Ser Val Ala Ala Met Lys Lys Val
             25
                                  30
gtt caa cag ctc cgg ctg gag gcc gga ctc aac cgc gta aaa gtt tcc
                                                                      197
Val Gln Gln Leu Arg Leu Glu Ala Gly Leu Asn Arg Val Lys Val Ser
                             45
cag gca gct gca gac ttg aaa cag ttc tgt ctg cag aat gct caa cat
                                                                      245
Gln Ala Ala Ala Asp Leu Lys Gln Phe Cys Leu Gln Asn Ala Gln His
                                                                      293
gac cct ctg ctg act gga gta tct tca agt aca aat ccc ttc aga ccc
Asp Pro Leu Leu Thr Gly Val Ser Ser Ser Thr Asn Pro Phe Arg Pro
                     75
70
                                          80
                                                                      317
cag aaa gtc tgt tcc ttt ttg tag
Gln Lys Val Cys Ser Phe Leu *
                 90
```

```
<210> 260

<211> 1480

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (239)..(961)

<220>

<221> misc_feature
```

<222> (1)...(1480) <223> n = a,t,c or g

<400> 260 agctagtctg cggacgctgt ataccetect ccaettcccg ctgcagccaa taaaggccgt 60 tectaceata gtetgtgtee gegttetttt tteegggaet geagagtteg gggaagetgt 120 acgccgcctt tcgctacgcg gaatttgcag atcttcccct ggacctcagg cctctccggc 180 tggagtaggg tggacgcttc acataagctt ctctggtcga acttacccga atctccag 238 atg gcc gcg ctg cgt cga atg ctc cac ttg ccg agc ctg atg atg ggg 286 Met Ala Ala Leu Arg Arg Met Leu His Leu Pro Ser Leu Met Met Gly 5 10 acg tgc cgc ccc ttt gcg ggc tca ctg gct gat agt tgc ctg gcg gac 334 Thr Cys Arg Pro Phe Ala Gly Ser Leu Ala Asp Ser Cys Leu Ala Asp ege tgt etc tgg gat egg etg eat gee eag eet egt ttg gge act gte 382 Arg Cys Leu Trp Asp Arg Leu His Ala Gln Pro Arg Leu Gly Thr Val 35 40 430 ccc acc ttc gac tgg ttc ttt gga tac gac gaa gtc cag ggg ctc cta Pro Thr Phe Asp Trp Phe Phe Gly Tyr Asp Glu Val Gln Gly Leu Leu 50 55 ctg cca ttg ctg cag gag gca cag gct gcc agt cct ctg cga gtg ctg 478 Leu Pro Leu Gln Glu Ala Gln Ala Ser Pro Leu Arg Val Leu 65 70 75 gat gtg ggc tgt ggg act tcc agc cta tgt aca ggc ctc tac acc aaa 526 Asp Val Gly Cys Gly Thr Ser Ser Leu Cys Thr Gly Leu Tyr Thr Lys 85 tet eea cae eea gtg gat gtg etg ggg gtg gae tit tet eet gtg get 574 Ser Pro His Pro Val Asp Val Leu Gly Val Asp Phe Ser Pro Val Ala 100 gtg gcc cac atg aat agc ctc ctg gag ggt ggc cca agc caa aca cct 622 Val Ala His Met Asn Ser Leu Leu Glu Gly Gly Pro Ser Gln Thr Pro cta tgc cct gga cac cct gcc tca agc ctc cac ttc atg cac gcc gat 670 Leu Cys Pro Gly His Pro Ala Ser Ser Leu His Phe Met His Ala Asp 135 gct cag aac ctg ggg gct gtg gct tct tca ggc tct ttc caa cta ctg 718 Ala Gln Asn Leu Gly Ala Val Ala Ser Ser Gly Ser Phe Gln Leu Leu 145 150 155 ctg gac aaa ggc aca tgg gat gct gtt gcc cgg gga ggt ctg cct agg 766 Leu Asp Lys Gly Thr Trp Asp Ala Val Ala Arg Gly Gly Leu Pro Arg 165 170 gct tac cag ctt cta tca gaa tgc ttg agg gtt cta aac cct cag ggg 814 Ala Tyr Gln Leu Ser Glu Cys Leu Arg Val Leu Asn Pro Gln Gly

	180		18	35		190	

_	e Gln Phe S			gtg cga ctg ccc tgc Val Arg Leu Pro Cys 205	862
				gtg cag gag cta ggc Val Gln Glu Leu Gly 220	910
	Gly Ile T		-	att caa ggc tct cat Ile Gln Gly Ser His 240	958
taa agac at *	tttagtag t	cctgaccct	agtatttctg t	gggcaagga gagggctgaa	1015
gaactgtctt	tgcaagctat	. ctggctgca	a agtgagaatt	tgagtcctgg cttccacatt	1075
tactagctgg	gtgccatatt	gctgaatgt	t tetgtteece	agtttactca tctgcagagt	1135
gagaataact	tggagttacg	gagattaca	t acaatgatgt	gcgcaatatt tagcacaaaa	a 1195
tgaatgctga	aaagagaagg	tacaattgg	g tcattcccca	gtttcaacta actggagcto	1255
ctaaaagcag	cagacaggaa	ctgaatcaa	a acccctgcgc	tgactgactt gtataatcta	a 1315
gtggcctaac	ctgtaagcct	cattnttgt	c acctgtaaaa	ggagattgta agaggatggg	g 1375
tataacgagc	ttcataaacc	: tcgatgaga	t atttgagggg	gagggaacaa tacttaccct	1435
caaagctatt	aggaggccgg	agatgggaa	t atttccacaa	gcccg	1480

<210> 261

<211> 1645

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (389)..(1030)

<400> 261

atttggccct cgaggccaag aattcggcac gagatcgttt cgaggggcgt ccgccgggtt 60
aggaagccac tgcctggcag cttgtggaag cctcatttgc aaagccaccc ctcagatgtt 120
ttgaagatcg tgacgtcttg taactagcag tgtgtgcaca gaatcctact caaggaacgt 180
cttggcccag cgatgcaaag aactgaagtt tcaagctgga agagcctgta ttgtcctcac 240
aatagtatag aagaattcaa gagaggagag agagacagca ccgaatgaag actgtaaaag 300

aaaagaagga atgccagaga ttgagaaaat ctgccaagac taggagggta acccagagga	360
aaccgtcttc agggcctgtt tgctggct atg ctt cga gaa cct ggg gat ccc Met Leu Arg Glu Pro Gly Asp Pro 1 5	412
gaa aaa tta ggg gaa ttt ctt cag aaa gac aat atc agc gtg cat tat Glu Lys Leu Gly Glu Phe Leu Gln Lys Asp Asn Ile Ser Val His Tyr 10 15 20	460
ttc tgt ctt atc tta tct agt aag ctg cct cag agg ggc cag tcc aac Phe Cys Leu Ile Leu Ser Ser Lys Leu Pro Gln Arg Gly Gln Ser Asn 25 30 35 40	508
aga ggt ttc cat gga ttt ctg cct gaa gac atc aaa aag gag gca gcc Arg Gly Phe His Gly Phe Leu Pro Glu Asp Ile Lys Lys Glu Ala Ala 45 50 55	556
cgg gct tct agg aag atc tgc ttt gtg tgc aag aaa aag gga gct gct Arg Ala Ser Arg Lys Ile Cys Phe Val Cys Lys Lys Lys Gly Ala Ala 60 65 70	604
atc aac tgc cag aag gat cag tgc ctc aga aac ttc cat ctg cct tgt Ile Asn Cys Gln Lys Asp Gln Cys Leu Arg Asn Phe His Leu Pro Cys 75 80 85	652
ggc caa gaa agg ggt tgc ctt tca caa ttt ttt gga gag tac aaa tca Gly Gln Glu Arg Gly Cys Leu Ser Gln Phe Phe Gly Glu Tyr Lys Ser 90 95 100	700
ttt tgt gac aaa cat cgc cca aca cag aac atc caa cat ggg cat gtg Phe Cys Asp Lys His Arg Pro Thr Gln Asn Ile Gln His Gly His Val 105 110 115 120	748
ggg gag gaa agc tgc atc tta tgt tgt gaa gac tta tcc caa cag agt Gly Glu Glu Ser Cys Ile Leu Cys Cys Glu Asp Leu Ser Gln Gln Ser 125 130 135	796
gtt gag aac atc cag agc ccg tgt tgt agt caa gcc atc tac cac cgc Val Glu Asn Ile Gln Ser Pro Cys Cys Ser Gln Ala Ile Tyr His Arg 140 145 150	844
aag tgc ata cag aaa tat gcc cac aca tca gca aag cat ttc ttc aaa Lys Cys Ile Gln Lys Tyr Ala His Thr Ser Ala Lys His Phe Phe Lys 155 160 165	892
tgt cca cag tgt aac aat cga aaa gag ttt cct caa gaa atg ctg aga Cys Pro Gln Cys Asn Asn Arg Lys Glu Phe Pro Gln Glu Met Leu Arg 170 175 180	940
atg gga att cat att cca gac agg agg tgg tgc ctc att ctg tgt gct Met Gly Ile His Ile Pro Asp Arg Arg Trp Cys Leu Ile Leu Cys Ala 185 190 195 200	988
act gcg gat ccc acg gaa ccc aca gga ctg ctc ctc tct tag atctaac Thr Ala Asp Pro Thr Glu Pro Thr Gly Leu Leu Ser * 205 210	1037

1097 agtaagaaat gggagtgtga ggagtgttca cctgctgcag ccacagacta catacctgaa aactcagggg acatcccttg ctgcagcagc accttccacc ctgaggaaca tttctgcaga 1157 gacaacacct tggaagagaa tccgggcctt tcttggactg attggccaga accttcctta 1217 1277 ttagaaaagc cagagtcctc tcgtggcagg aggagctact cctggaggtc caagggtgtc agaatcacta acagctgcaa aaaatccaag taacaccttc tgagtagctg ctgtcccaca 1337 1397 caatagggta tgaagctgcg ctcctccatc gggtttgggg agggagcact ctgggactgt 1457 qaqacaaqqa agcaqggcca gcagtgagac tatgagccaa gcaaagagaa gtctcagtgg agcatgagga gggagcagtc cagatgccaa caaggaaatg cgtttatggc tacaagagtg 1517 1577 cctctgcttt ctcctcctct cctcccacca aggattcttc caccttaatc ttgttttcat atgcctcttc ttacttcacc catgtttgtt gttatgcaaa taaaggtttt ctctccaaaa 1637 1645 aaaaaaaa

<210> 262 <211> 694 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (166)..(672)

<400> 262 gcggtggaat tcgtcaaaca aaatccctta ccctcttcat tccctggtaa aaagatcaca 60 atcagattag ctgctcctgt gtgttcttct aagactctgc aggctgaggt ccctttgtca 120 174 gactgtgtcc aaaaagcaag taaacccact tcaagcacac aaatc atg gtg aag Met Val Lys 1. 222 acc aac atg tat cat aat gaa aag gtg aac ttt cat gtt gaa tgt aaa Thr Asn Met Tyr His Asn Glu Lys Val Asn Phe His Val Glu Cys Lys 15 5 10 gac tat gta aaa aag gca aag gta aag atc aac cca gtg caa cag agc 270 Asp Tyr Val Lys Lys Ala Lys Val Lys Ile Asn Pro Val Gln Gln Ser 30 35 20 25 cgg ccc ttg ttg agc cag att cac aca gat gca gca aag gag aac acc 318 Arg Pro Leu Leu Ser Gln Ile His Thr Asp Ala Ala Lys Glu Asn Thr 50 40 45

tgc tac tgt ggt gca gtg gca aag aga caa gag aaa aaa ggg atg gag

366

Cys Tyr Cys Gly Ala Val Ala Lys Arg Gln Glu Lys Lys Gly Met Glu 55 60 65	
cct ctt caa ggt cat gcc act ccc gct ttg cct ttt aaa gaa acc cag Pro Leu Gln Gly His Ala Thr Pro Ala Leu Pro Phe Lys Glu Thr Gln 70 75 80	414
gaa cta tta cta agt ccc ctg ccc cag gaa ggt cct ggg tca ctt gca Glu Leu Leu Ser Pro Leu Pro Gln Glu Gly Pro Gly Ser Leu Ala 85 90 95	462
gca gga gag agc agc agt ctt tct gcc agt aca tca gtc tca gat tca Ala Gly Glu Ser Ser Ser Leu Ser Ala Ser Thr Ser Val Ser Asp Ser 100 105 110 115	510
tcc cag aaa aaa gaa gag cac aat tat tct ctt ttt gtc tcc gac aac Ser Gln Lys Lys Glu Glu His Asn Tyr Ser Leu Phe Val Ser Asp Asn 120 125 130	558
ttg ggt gaa cag cca act aaa tgc agt cct gaa gaa gat gag gag gac Leu Gly Glu Gln Pro Thr Lys Cys Ser Pro Glu Glu Asp Glu Glu Asp 135 140 145	606
gag gag gat gtt gat gat gag gac cat gat gaa gga ttc ggc agt gag Glu Glu Asp Val Asp Asp Glu Asp His Asp Glu Gly Phe Gly Ser Glu 150 155 160	654
cat tac atc att ata taa tggtacttcc tcaagttgct gg His Tyr Ile Ile * 165	694
<210> 263 <211> 1540 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (1033)(1188)	
<400> 263 cccaggagga agtgaacttc ctgagcactt acatggacca tgagtattcc atcaagtctg	60
tccagatctc cactcttatg cgccagctgc agcaggttaa ggacagccag caggatgagc	120
tggatgacct cggtgagatg cgcagaaagg tcctggaatc cttgtctgac aagattcaga	180
agaagaagaa aaaaattctg agttctgtgg tggcggaaac ccagcgtccc tatgaagagg	240
ctctcctaca gaagatgtgg gaaagccagg acttcctgaa atgcatgcaa aggttcagag	300
aagtgcgtgg gcaaggaagg tggtggtccc tgtagggaag cagtggatgg gcagtcccca	360

420 cggcctgtgg gaatgagtca ggcttctcct gatctggcgc tcaggaggtc tctgattctg 480 qtqttqqcct ccctccttgc cggtgccatt actgtcactt gtctttcatc tgggaaggcg 540 attggcactg acctaggect tgcctcatta gccagcaatg ctggctaatg acccatttac aaccatcacc aaacatcacc tattcagcca ttaaccaccg tgcatcttta ccccttgatt 600 cttgttactg cccaccacc attatcagtg ttaatgaact tcaccatcac tgccttcttg 660 720 aattaatttt cattatcttg cctcttcact ggtttttaat gtgcatgccc ttcactatct ctgccagcct ccattcattc ccacgattga gcattccccg ccactttgta acctgtctcc 780 840 attctccatg atccctcacc tgtttcagca ccactgaata ttgtcactaa cttggaagcc 900 agccqcaccc tqcatqqqqa agtcccctct ctgqagtcca gcaagtccca gtgacagaac 960 ccataccatt tccccagata gctttgctcc tcgttcattt tggcctttct ccctttggtt gggggccatt tgcctctccc ttctcccctg ctgtgccttt cctctcagtt tattgaccag 1020 atg cct gta tta agg gcc gag gtg gaa gag ctc caa 1068 tttgaggaga ac Met Pro Val Leu Arg Ala Glu Val Glu Glu Leu Gln 1 5 gcc cag acc cgg gaa ccc cga gag gtc ata ttt gag gat gtt ctg ctt 1116 Ala Gln Thr Arg Glu Pro Arg Glu Val Ile Phe Glu Asp Val Leu Leu cgg aga ccc aag tgc acc cca gac atg gat gtc atc ctc aac att cct 1164 Arg Arg Pro Lys Cys Thr Pro Asp Met Asp Val Ile Leu Asn Ile Pro 1218 Val Glu Glu Pro Leu Pro Phe * 45 50 tgctctcttc ccagcacctg gagccttgga tcatttactt ccaggaccgg atctccattc 1278 1338 agaccetgat ctacagtete cetgetecet etgecettee tecetette tttecetece 1398 teceteettt etttetteet gtggtttttt cetetettet tecettettt etggttggtg 1458 ctgctgggcc aggtgggaat ttctgattaa atctgctatt ccttttttac caataaagct 1518

ggatttacat ttaaaaaaaa aa

1540

<210> 264

<211> 583

<212> DNA

<213> Homo sapiens

<220>

<221> CDS <222> (216)..(464) <400> 264 gtgctgagag gtgagttagc tgcagaagaa atgctggaag ctggcaaaga tcagttcgtg 60 aggtttaaca agtcatttcc ataacataaa agtacaaagt gaagtagcaa ttgctgatgt 120 ggaatctgca gcaagcattt ccagaatatc tagataaatg gcagaggtag ctctactaga 180 233 atg cca ttt agg act ttc gttttaacag agacaaaaca gccttacttc aggag Met Pro Phe Arg Thr Phe 1 aca gct cta ggt aag cta ata tct gac ttc aaa gat tca aag gac ggg 281 Thr Ala Leu Gly Lys Leu Ile Ser Asp Phe Lys Asp Ser Lys Asp Gly 10 15 ctg act ctt tac ttt gta gag aca gcg tca cgc tct gtt gtg ctg gct 329 Leu Thr Leu Tyr Phe Val Glu Thr Ala Ser Arg Ser Val Val Leu Ala 35 25 ggt ctt gaa ctc ttg acc tca agt gat cct cca acc tca gcc tcc caa 377 Gly Leu Glu Leu Leu Thr Ser Ser Asp Pro Pro Thr Ser Ala Ser Gln 45 40 agc act gga att aca ggt gta agc cac ttt tcc cag cct ggg ctg gct 425 Ser Thr Gly Ile Thr Gly Val Ser His Phe Ser Gln Pro Gly Leu Ala 474 ttc ttg tta gag gtc aat gca gtt ggt gac ttt aaa tga atgctaatat Phe Leu Leu Glu Val Asn Ala Val Gly Asp Phe Lys * 75 tcaattacca ttccaaaaat ccaagagcca gttaagaatt atgctacatc ctcgtgccga 534 attcattgcc tcgagggcca aattccctat agtgatcgta ttaaattca 583 <210> 265 <211> 2077 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (154)..(834) <400> 265

60

120

cggcacgagg acagcataga ggaagtcaag gaagatagaa acaggcatcc tccagcaaac

ctgcccactc cagccagtac ccggattctt agaaaatatt ccaatattcg aggaaagctc

agagcccagc aacgtttaat caagaatgag aaa atg gaa tgc cca gat gct ctg Met Glu Cys Pro Asp Ala Leu 1 5	174
gct gtg gaa agt aag cca agt cgt aag agc gta tgc atc aac cct ctg Ala Val Glu Ser Lys Pro Ser Arg Lys Ser Val Cys Ile Asn Pro Leu 10 15 20	222
atg tcc ccc aag ctt gcc ctg caa gtg gat gca gat ggg ttt cct gtt Met Ser Pro Lys Leu Ala Leu Gln Val Asp Ala Asp Gly Phe Pro Val 25 30 35	270
aag ccc aag agt act gaa gga atg aag gga agg aag ggg aag cag gtg Lys Pro Lys Ser Thr Glu Gly Met Lys Gly Arg Lys Gly Lys Gln Val 40 45 50 55	318
tct gaa atc ttg cct aaa gca gaa gtt cag agt aaa cgc aag aga aca Ser Glu Ile Leu Pro Lys Ala Glu Val Gln Ser Lys Arg Lys Arg Thr 60 65 70	366
gaa ggc agc cct cca gat agt aag aac aag ggg cct acg gtg aaa Glu Gly Ser Ser Pro Pro Asp Ser Lys Asn Lys Gly Pro Thr Val Lys 75 80 85	414
gcc agc aaa gaa aag cat gct gat gga gcc acc aaa acc cct gct gcc Ala Ser Lys Glu Lys His Ala Asp Gly Ala Thr Lys Thr Pro Ala Ala 90 95 100	462
aag agg cca gct gca agg gac aga agc agc caa ccc ccc aaa aag acg Lys Arg Pro Ala Ala Arg Asp Arg Ser Ser Gln Pro Pro Lys Lys Thr 105 110 115	510
tct ttg aaa gag aat aaa gtg aag atc cct aaa aag tcc gct ggg aag Ser Leu Lys Glu Asn Lys Val Lys Ile Pro Lys Lys Ser Ala Gly Lys 120 125 130 135	558
agc tgc cct ccc tcc agg aaa gaa aaa gag aat aca aac aaa agg cct Ser Cys Pro Pro Ser Arg Lys Glu Lys Glu Asn Thr Asn Lys Arg Pro 140 145 150	606
tcc cag tct att gcc tcg gaa aca ctg acg aaa cct gca aaa cag aag Ser Gln Ser Ile Ala Ser Glu Thr Leu Thr Lys Pro Ala Lys Gln Lys 155 160 165	654
ggg gcc ggt gaa tcc tct tca agg cct cag aaa gcc acg aat agg aag Gly Ala Gly Glu Ser Ser Ser Arg Pro Gln Lys Ala Thr Asn Arg Lys 170 175 180	702
cag agt agt gga aag act cgg gcc aga ccc tca acg aaa acc cca gag Gln Ser Ser Gly Lys Thr Arg Ala Arg Pro Ser Thr Lys Thr Pro Glu 185 190 195	750
agc agt gca gct cag aga aag cga aag ctg aag gca aag ctg gac tgt Ser Ser Ala Ala Gln Arg Lys Arg Lys Leu Lys Ala Lys Leu Asp Cys 200 205 210 215	798
tcg cac ggc aaa cgg agg cgg ctg gat gca aag tga ttgg aaagatggta	848

Ser His Gly Lys Arg Arg Arg Leu Asp Ala Lys * 220 225

gccaagagta	aaactgttct	atagaagtaa	ccttttattt	tgcattaact	aaatctgctt	908
ttataagctt	atcaagcctt	tcaaatttac	agttaatgga	gaacaccgta	atttgagatg	968
tcagaaaatg	catctcagat	ggagaaggga	acttgcagag	tccttctctg	aggctaaggg	1028
aagttatata	ttatattctg	gttgttcctt	gggttttaaa	cttggaacca	agcagttttc	1088
gtttttaaaa	gtacagtgcc	ttatttatcc	tttttgtttt	taaatttaca	aaagctaaaa	1148
agctgatcta	tgtgattaaa	ggcttgtatt	ttatacttga	tgcacaagca	cttgtactgt	1208
agccgagaag	accaccatca	tgcacataaa	aggagctttt	cagcagccac	cctgcagcat	1268
ctgcccacga	acagatgccc	ttctttgcaa	accccagcag	tgaacttccc	tctctgtctt	1328
gtttgtttgt	ttagatgatg	tttgaaagct	aaaccaaatc	attttatggt	atgcagagga	1388
tttataatta	taaaagatta	ctatttctgt	tacccccttt	taaaaaagat	catgttcatt	1448
gttggtccct	cctctcacct	ttgatgtttt	gtcatttgag	agcatgtatt	ctaaattatg	1508
tgcccatggg	acaagagata	tgtcacaagt	gttaattttt	gtttacaaac	tctaaaaaat	1568
catttgcatc	cccaaactgt	attactaatt	ctcaccatct	tcttcatttc	tggtcttgct	1628
agcactcctg	caaggcttcc	atcctacttc	gggaggaaaa	agcctaggat	tttttttc	1688
catcttgtag	ctgtaatttg	atgattagga	tgaaaatgac	tcttattttc	tttcttaccc	1748
agagtacttc	catattcaaa	gaaagccgaa	ctattatttc	cagtaataga	aaggtttaag	1808
aatatgtatg	tccatgtgtg	tttgggtgca	tttgcatgtg	gttatcagcc	acaaatgtct	1868
cccaatccca	attttacagt	aaaattttt	ccctatgcag	tgtgcttggg	tgtccctgag	1928
ttgagtaatt	agcaaaggac	agatggttta	aaagtagccc	agtgtctctg	tgagcatccc	1988
caataccact	ttggtaccag	actcagaaag	atctaaaaca	gcatggagtt	atgtaaaggt	2048
tagagcagcc	ttgcagttgg	aggaagcag				2077

<210> 266

<211> 1175

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (116)..(685)

<400> 266 cccacgcgtc cgtccactag caacagtctc cccaggcaca acacagctaa cacaaggccc	60										
cgcaggcagg actctgggac agacgcaggc cagctgccca gagcccagac caagc atg Met 1	118										
gac gcc gtg gat gcc acc atg gag aaa ctc cgg gca cag tgc ctg tcc Asp Ala Val Asp Ala Thr Met Glu Lys Leu Arg Ala Gln Cys Leu Ser 5 10 15	166										
cgc ggg gcc tcg ggc atc cag ggc ctg gcc agg ttt ttc cgc caa cta Arg Gly Ala Ser Gly Ile Gln Gly Leu Ala Arg Phe Phe Arg Gln Leu 20 25 30	214										
gac cgg gac ggg agc aga tcc ctg gac gct gat gag ttc cgg cag ggt Asp Arg Asp Gly Ser Arg Ser Leu Asp Ala Asp Glu Phe Arg Gln Gly 35 40 45	262										
ctg gcc aaa ctc ggg ctg gtg ctg gac cag gcg gag gca gag ggt gtg Leu Ala Lys Leu Gly Leu Val Leu Asp Gln Ala Glu Ala Glu Gly Val 50 55 60 65	310										
tgc agg aag tgg gac cgc aat ggc agc ggg acg ctg gat ctg gag gag Cys Arg Lys Trp Asp Arg Asn Gly Ser Gly Thr Leu Asp Leu Glu Glu 70 75 80	358										
ttc ctt cgg gcg ctg cgg ccc ccc atg tcc cag gcc cgg gag gct gtc Phe Leu Arg Ala Leu Arg Pro Pro Met Ser Gln Ala Arg Glu Ala Val 85 90 95	406										
atc gca gct gca ttt gcc aag ctg gac cgc agt ggg gac ggc gtc gtg Ile Ala Ala Ala Phe Ala Lys Leu Asp Arg Ser Gly Asp Gly Val Val 100 105 110	454										
acg gtg gac gac ctc cgc ggg gtg tac agt ggc cgt gcc cac ccc aag Thr Val Asp Asp Leu Arg Gly Val Tyr Ser Gly Arg Ala His Pro Lys 115 120 125	502										
gtg cgc agt ggg gag tgg acc gag gac gag gtg ctg cgc cgc ttc ctg Val Arg Ser Gly Glu Trp Thr Glu Asp Glu Val Leu Arg Arg Phe Leu 130 135 140 145	550										
gac aac ttc gac tcc tct gag aag gac ggg cag gtc aca ctg gcg gaa Asp Asn Phe Asp Ser Ser Glu Lys Asp Gly Gln Val Thr Leu Ala Glu 150 155 160	598										
ttc cag gac tac tac agc ggc gtg agt gcc tcc atg aac acg gat gag Phe Gln Asp Tyr Tyr Ser Gly Val Ser Ala Ser Met Asn Thr Asp Glu 165 170 175	646										
gag ttc gtg gcc atg atg acc agt gcc tgg cag ctg tga gcagctccgg Glu Phe Val Ala Met Met Thr Ser Ala Trp Gln Leu * 180 185 190	695										
ctcagccctg ctgccctggc ctgtcactcc ccacccctgc cggagacctc ccttccctgg											

geceettete teetggeag eeacaceae gagegggag gggeaggtg gggaatggag 815
getgeaggae tggetagace aggteeetge eggteeacea ggeggaggtg ggacaaaggt 875
cetaacagga gteactgget eaggaceea gggagaaaeg eteteeeae eeacgeatg 935
etgaceagag gtettgeage eeetgtggat geeeeegeeg aggteeeeg ateeeegae 995
eeggactget geteeetgee eeteeettge gggteeeea ggaageeagg tgaceeeagg 1055
tgggaggetg tgtgtggagg eeateetgga aggaagtta gacetgeea ggtgtggage 1115
gaggggeaca ggggeateet aaceteagaa actgaaataa ageetttgaa aaaaaaaaaa 1175

<210> 267 <211> 1094

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (116)..(604)

<400> 267 cccacgcgtc cgtccactag caacagtctc cccaggcaca acacagctaa cacaaggccc cgcaggcagg actctgggac agacgcaggc cagctgccca gagcccagac caagc atg 118 Met 166 gac gcc gtg gat gcc acc atg gag aaa ctc cgg gca cag tgc ctg tcc Asp Ala Val Asp Ala Thr Met Glu Lys Leu Arg Ala Gln Cys Leu Ser 15 5 10 cgc ggg gcc tcg ggc atc cag ggc ctg gcc agg ttt ttc cgc caa cta 214 Arg Gly Ala Ser Gly Ile Gln Gly Leu Ala Arg Phe Phe Arg Gln Leu 20 25 gac cgg gac ggg agc aga tcc ctg gac gct gat gag ttc cgg cag ggt 262 Asp Arg Asp Gly Ser Arg Ser Leu Asp Ala Asp Glu Phe Arg Gln Gly 40 310 ctg gcc aaa ctc ggg ctg gtg ctg gac cag gcg gag gca gag ggt gtg Leu Ala Lys Leu Gly Leu Val Leu Asp Gln Ala Glu Ala Glu Gly Val

tgc agg aag tgg gac cgc aat ggc agc ggg acg ctg gat ctg gag gag

Cys Arg Lys Trp Asp Arg Asn Gly Ser Gly Thr Leu Asp Leu Glu Glu

70

75

80

ttc ctt cgg gcg ctg cgg ccc ccc atg tcc cag gcc cgg gag gct gtc

Phe Leu Arg Ala Leu Arg Pro Pro Met Ser Gln Ala Arg Glu Ala Val

85

90

95

atc gca gct gca ttt gcc aag ctg gac cgc agt ggg gac ggc gtc gtg Ile Ala Ala Phe Ala Lys Leu Asp Arg Ser Gly Asp Gly Val Val 100 105 110	454
acg gtg gac gac ctc cgc ggg gtg tac agt ggc cgt gcc cac ccc aag Thr Val Asp Asp Leu Arg Gly Val Tyr Ser Gly Arg Ala His Pro Lys 115 120 125	502
gtc aca ctg gcg gaa ttc cag gac tac tac agc ggc gtg agt gcc tcc Val Thr Leu Ala Glu Phe Gln Asp Tyr Tyr Ser Gly Val Ser Ala Ser 130 135 140 145	550
atg aac acg gat gag gag ttc gtg gcc atg atg acc agt gcc tgg cag Met Asn Thr Asp Glu Glu Phe Val Ala Met Met Thr Ser Ala Trp Gln 150 155 160	598
ctg tga gcagctccgg ctcagccctg ctgccctggc ctgtcactcc ccacccctgc Leu *	654
cggagacete cettecetgg geceettete teetgggeag ceacaceaea gageggggag	714
gggcaggtgg gggaatggag gctgcaggac tggctagacc aggtccctgc cggtccacca	774
ggcggaggtg ggacaaaggt cctaacagga gtcactggct caggacccca gggagaaacg	834
ctctccccac ccacgccatg ctgaccagag gtcttgcagc ccctgtggat gcccccgccg	894
aggtcccccg atccccgcac ccggactgct gctccctgcc cctcccttgc gggtccccca	954
ggaagccagg tgaccccagg tgggaggctg tgtgtggagg ccatcctgga aggaagttta	1014
gacctgccca ggtgtggagc gaggggcaca ggggcatcct aacctcagaa actgaaataa	1074
agcctttgaa aaaaaaaaaa	1094

<210> 268

<211> 485

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (169)..(387)

<400> 268

ccctcttcat agaggagccg gaagcatcgg gagccgcggt acccgcccat cttccggcca 60
ggatgtgtgg tcctggtgag cgattgtcct gtggcgtccg ggaccgagtt tgtggcccag 120
ggttatgtgt gcacttcaca cctctgactt ttttcagggt tcctattg atg gtt agg
Met Val Arg

1

agc agg att tcg ggg atg aag gcg gca gca gca aga gga ggc tgc gac Ser Arg Ile Ser Gly Met Lys Ala Ala Ala Ala Arg Gly Gly Cys Asp 5 10 15	225
tgc gga ccc cag att cgt ccc cct cca cca cac aca acg cca aga cgg Cys Gly Pro Gln Ile Arg Pro Pro Pro Pro His Thr Thr Pro Arg Arg 20 25 30 35	273
gcc cca gga ggg cgt gaa gag aag act tcc ttt cct ctc ctc tcg cct Ala Pro Gly Gly Arg Glu Glu Lys Thr Ser Phe Pro Leu Leu Ser Pro 40 45 50	321
cct ggc gct ggc cgt atg aag gtg tct ccc aga agc att agc aga gga Pro Gly Ala Gly Arg Met Lys Val Ser Pro Arg Ser Ile Ser Arg Gly 55 60 65	369
gcc ctg tgg gag aaa tga ggagtg acccaaaaga aacttgctca aggacagcct Ala Leu Trp Glu Lys * 70	423
ccttaaagca gacttccata taccccaacc tgcaaaagaa gactttacgt gaaatgttac	483
ag	485
<pre><210> 269 <211> 1170 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (168)(611) <220> <221> misc_feature <222> (1)(1170) <223> n = a,t,c or g</pre> <400> 269	60
attcagccgc ctttttatgt caccgggcgc cacatggacc cagccggccc gagcgcgccc	60
cgccgctgac cgcccgcgcc ccgggaagga agaacactcg ctcccggcca tacttgcgtg	120
tgagttctga cccctggagg agccactgtg gaagcagagc aatcgcc atg gag ttt Met Glu Phe 1	176
gtg atg aag cag gct cta gga ggg gcc acc aag gac atg ggg aag atg Val Met Lys Gln Ala Leu Gly Gly Ala Thr Lys Asp Met Gly Lys Met 5 10 15	224
ctg ggg ggt gac gag gag aag gac cca gac gcc gcc aag aag	272

320 qaq cqq caq qaq qcq ctq cqc caq qcq gag gag gag cgc aag gcc aag Glu Arg Gln Glu Ala Leu Arg Gln Ala Glu Glu Glu Arg Lys Ala Lys 368 tac gcc aag atg gag gcg gag cgc gag gcc gtg cgc cag ggc atc cga Tyr Ala Lys Met Glu Ala Glu Arg Glu Ala Val Arg Gln Gly Ile Arg 65 55 416 gac aag tac ggc atc aag aag gag gag cgc gag gcc gag gcc cag Asp Lys Tyr Gly Ile Lys Lys Glu Glu Arg Glu Ala Glu Ala Gln 70 75 gcc gcc atg gag gcc aac tcc gag ggg agc ttg acg cgg ccc aag aag 464 Ala Ala Met Glu Ala Asn Ser Glu Gly Ser Leu Thr Arg Pro Lys Lys 512 qcc atc ccq ccq ggc tqc ggg gac gag gtg gag gag gac gag agc Ala Ile Pro Pro Gly Cys Gly Asp Glu Val Glu Glu Asp Glu Ser 105 110 100 560 atc ctq qac acc gtc atc aag tac ctg ccc ggg ccg ctg cat gac atg Ile Leu Asp Thr Val Ile Lys Tyr Leu Pro Gly Pro Leu His Asp Met 120 125 ctc aag atg tat ccc cgc gcg gga cag ctg ccc cgc gga gcc ggc cat 608 Leu Lys Met Tyr Pro Arg Ala Gly Gln Leu Pro Arg Gly Ala Gly His 140 135 665 tga acac tgcaccctcc acaggagccg cagaggccct gaggcaccgg actgcttgga gaccetgege ecetgeecag caceteetee gtgggeaget ceteggtgtg gggeetgegg 725 785 ggttccctgc ggcgcagccg ggcgcgtgtg tggcctaatc cacctggtgg ccctgcgggg 845 cggcatccga gccctgttt ctcctccatt catgtttatt ttgcatcaca atttgttgaa 905 tctcaggtag atgaggtctt tgcatttagt gagttttatc ttgacagggc gcgctcgccc 965 ccggtccctt tcgtccacat caaaaatgca tcacgtctcc acgtgtttcg ggccagggcg qqqcttqqca ttqaccttca tgaccttaca tagctttaga gaagccataa cgcttgactg 1025 caatactaac gaccgacgcc cctccggaca gagaccaccg cgcccctctg cgccccatcg 1085 acgctgtccg cggngacgtc gctgaccgcc ctgctcgccc tgagccctct cactgacttc 1145 1170 tcccgggtcg tgtcttatta aaact

<210> 270

<211> 1116

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (497)..(766)

<400> 270	
gatgacetet ttetteette egttttgeea gtgteaetet gtgatgatag gtgtaagttg	60
actgtgtgca ttgcccgtct gtgaccgttt tcgactcaca gaaatggcag tctgaagtgg	120
ctcggcctct tgcttgagag acagattgga gcagagtctt tgtggatgca aagccacctg	180
ggccactgcc gtgtgtgcca ccctgaactt caagctgccc tgaaccgcgt gcgtttctca	240
gtgtcacgta cagctcggcc tgaccgtttg ccttttagtg ttctcttcct tctcggtgtc	300
ctcctcctct tcctcactaa cattcatcca gagcctttca gtgcagaaat caggtagctg	360
ctgaactcgg cagctgcgtc ctttttccca tcatctcttc tgtcctttgc tagctgtcat	420
ttcttccctc ttggcttcaa ctgcacatcc ctgggtttgt cctaataggg aatttttccc	480
acttgagtag acaagc atg aga ata tca tta ttt tta tat gtt ata tgt Met Arg Ile Ser Leu Phe Leu Tyr Val Ile Cys 1 5 10	529
tat att ttt agc aga gaa aaa agt gga aaa tgt gtg caa act tgc aga Tyr Ile Phe Ser Arg Glu Lys Ser Gly Lys Cys Val Gln Thr Cys Arg 15 20 25	577
agg ccc ccc gga gga ggg tcg tcc ctg tgc cca tgc tgt cag gaa ggc Arg Pro Pro Gly Gly Gly Ser Ser Leu Cys Pro Cys Cys Gln Glu Gly 30 35 40	625
ccc gga gga ggg tcg tcc ctg tgc cca tgc tgt cag gaa ggc ccc gga Pro Gly Gly Gly Ser Ser Leu Cys Pro Cys Cys Gln Glu Gly Pro Gly 45 50 55	673
gga ggg tcg tcc ctg tgc cca tgc ggt cag aaa ggc ccc gga gga ggg Gly Gly Ser Ser Leu Cys Pro Cys Gly Gln Lys Gly Pro Gly Gly 60 65 70 75	721
tca tct ctg tgc cca tgc ggt cag gtt ggg gct gag gca ctt tga tca Ser Ser Leu Cys Pro Cys Gly Gln Val Gly Ala Glu Ala Leu * 80 85 90	769
ttgctcctcc tcagagtgtt cttttcctgc cctctcagat tataataacg aggtagttac	829
agagtgagct ccagcctaga tcgtctgggt ttgaatccag ctccatgact gtggccgtgt	889
tgcctaatct ctctgagtct cagcttcctt ttctgtaaag tgggtataat agtagagtct	949
acactgtggg gctgtggtgg gattcattgt gttcacacgt gtgcagggct gagaacaggg	1009
ccccaaacag ggtaggcaca atgaagcatg agtcagaata ataatacaga tgacagtttc	1069

	<21 <21 <21		2569 DNA	sap:	iens									
		21> ((59	96)									
cgcí		00> 2 cca t	271 ttga	Met			l Vai				r Arg	g gtc g Val		50
										cat His				98
										gcc Ala			:	146
				-		_				cag Gln				194
										ctc Leu			:	242
	-				_					gtt Val 90			:	290
										gtt Val			:	338
										caa Gln			:	386
										tgg Trp				434
										gct Ala				482
										gaa Glu			!	530

165 170 160 578 gga aaa ttt gag gag gtt gtt aag tct gca aga cac atg aat att cca Gly Lys Phe Glu Glu Val Val Lys Ser Ala Arg His Met Asn Ile Pro gca cga ggg tac tta tga aatccc acaaattctg ttttgttaat gtttattgtt 632 Ala Arg Gly Tyr Leu 190 aaagcttact caaaaattat ctagagattc ttatatcatt tataaaaata tacatagaat 692 752 atcatatttc tattttgttt aatcagggta atcactatat agttacatct cattaacatc 812 actgctgatt attagtgagt atctagcttg tggaatgtgt catgcaattg aaatcagagg 872 tactagcatg caaatctggc attattaact attttattaa cactctagca cccaaatgca 932 gccctcttat ctcagcctac atgtgctgat aagttggtat aaactcacaa cagcttttgg aaaagaatca cctaatgtgg ttttcaaatt ttttttaaaa catgactttt tcttcaaaga 992 gtattttatg tagaacttca atagaataca gcagatataa aattgagctg ctctgggaaa 1052 tcattttatc cattctttct cccctcaat ggctgacttt tctacttcct ctgggtgatc 1112 ccaaagcacc tccatagtat cttgcagaac actgtttaaa aatacttgat aaattgctta 1172 tagaagataa atataaactt tcagttctct actattttct attatatgtg atttctataa 1232 atttaggagt atcagagata tcaatccctt tctcctcgcc ttgccttttt cttgtggaaa 1292 1352 cttatcagct gttcattcta agagatgttg attacaggac atggaaaata aaaactgacc caagatccac aaacctaatt ttctctctca ggagtttaga aatggtatac caaacatggt 1412 tacttgtatt gaaagattat gtgattttgt cactgagttc actattttgg ggttcctagg 1472 1532 atggagccac atgcaaacca gtgacaggac agagtagtag aaagcagaaa tggaaaaaagg 1592 aggetectag eggtgatgag aggtatgggg gagggaggag agggaaaaat etgeettggt 1652 gcttgtctgc ttccaggacc aatagttgcc tcaagtatta taaccaggcc tatgtgctgt 1712 gaaacctata atgcattttt gtgtgtgttt gtttcttaag gaagaatttg tttctaagac attagctact ttttctatta attttataaa tatggagata tgatgaacac acatcttaac 1772 aaqttaaagt gcatagcgat tggtaataga aggttgaaag ctggggatgg atttgggtgc 1832 aggctgtact tcccttagtt gaggtgagca aagttcatgg tagcgggaaa gattcaacag 1892 ttaatgagaa agataagtga gtcaattgtg actgaaaata ttagtgaaat gattggaatt 1952

2012

2072

tcaatcaagg tgttttgggg gaacaattag agttagacta tacctagtaa aatattttgt

tagtttgttt tctatttata tttttcctgt cctccatagt aagtctacat gagtttctaa

aatttgaaat tacttttgta attaagatag atgcatatca tgtaaggact atatgagaaa 2132 2192 aatttaaaat ccaaggcaat gtacttccaa agacataaaa taaaggatat ttatttttca 2252 ggcaaaagtt acaaaaccac aatcaaaaag gagagatata ctattggttt ctcaattcga atataaataa gttgtctcaa ttttctttaa aataaagaga aagatgaaga ccctattcta 2312 cttcaatatg tgtttaaagt gtggagtata agctttaaag taattctcat tgggaagtta 2372 2432 aaaagtatgt gactataaga agtaaattgc ttatgtagct tgctcttcaa ataggaaggg 2492 tttttttagt gttgaaagat ggatgcaaat ataagttgta ggaagtaacc ttttattatc ttagctttct gttgtaaaat ggaatagtta atgtaactgg gctaataaaa atcttaaacc 2552 2569 ctcttaaaaa aaaaaaa <210> 272

<210> 272
<211> 1204
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (64)..(630)

<400> 272

gga gga gaa gga aga gaa ctg ggt gcc gcc tgc ctg cac tct ctc cgg 204 Gly Gly Glu Gly Arg Glu Leu Gly Ala Ala Cys Leu His Ser Leu Arg 35 40 45

atg ctg gag gct gga ggc agt gag gca gca aca gcg cga ggg cga ggc 252

Met Leu Glu Ala Gly Gly Ser Glu Ala Ala Thr Ala Arg Gly Arg Gly
50 55 60

gac ttt gga gct gcc tca tgc agc gac ctc gcc ttc cgc tgc gcc tcc

Asp Phe Gly Ala Ala Ser Cys Ser Asp Leu Ala Phe Arg Cys Ala Ser

65 70 75

tcc cag aac cca aga agc ctg gaa cct gtg gcg tcc agc cct gaa agg
Ser Gln Asn Pro Arg Ser Leu Glu Pro Val Ala Ser Ser Pro Glu Arg
80 85 90 95

396 agg aga cgg caa ccc agc cgc gct ttt gcc tgc act ctc cct gga tgc Arg Arg Arg Gln Pro Ser Arg Ala Phe Ala Cys Thr Leu Pro Gly Cys 100 105 tqq aqq ctq gaq gca gtg acg cag caa cag cgc gag gcg act ttg gag 444 Trp Arg Leu Glu Ala Val Thr Gln Gln Gln Arg Glu Ala Thr Leu Glu 125 115 120 cgg cct cat ata gcg acc tcg cct tcc gct gcg cgt cct ccc aga gcc 492 Arg Pro His Ile Ala Thr Ser Pro Ser Ala Ala Arg Pro Pro Arg Ala 130 135 540 caa gaa gcc cgg aac ctg tgg cat cca tct ctg aaa gga gaa gac ggc Gln Glu Ala Arg Asn Leu Trp His Pro Ser Leu Lys Gly Glu Asp Gly 150 588 aac cca gcc gag gca cta ctg ggt tgg ggt ctc cac gac cga gct ggt Asn Pro Ala Glu Ala Leu Leu Gly Trp Gly Leu His Asp Arg Ala Gly 165 637 ctc atc aag tgg cgt cca aca agg ggc tca aac ccg ggt tga ggggttg Leu Ile Lys Trp Arg Pro Thr Arg Gly Ser Asn Pro Gly 180 185 ctggagcgac ggagaacgtg gaactacact ggaggacacc agagtactct taagcaatcc 697 cttggccaaa accagcaact gatttggata ccatcaagac acctgaaatc ttgtcatgag 757 ccagatactg aggaagagat tttgggaaga acccaaggac ccccagttg cagccatgtc 817 aagactgaca ataaggaaga catcagtccc agcaagcaac attcatcggg cacagccacc 877 catgtggggc cagatcaaga agttgacaca gacggcggaa gaaaatctga agaaagcgga 937 997 tgaccagcta caatgagtaa tctaatggta gctatgatgg ctgtgctcac cattgccatg agtattcccc cagcacctgc tgaaacaaaa aacattatac ttattgggca tatattcctt 1057 1117 ttccaccagt ttcatggcca gtgacatggt tagacccccc agtggaggta tacactaatg atagettttq gatacetggt tetacagatg atagaggeec ateteacece caaaaggagg 1177 1204

```
<210> 273
```

gaacattatg aatatttcgt tgggatt

<211> 943

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (356)..(610)

<400> 273 gagaagggat ggcggcgct ggctgctgag catgctggca ggcccgggac tctgcgttgc 60 120 tgccaccctc tcctcagggt cacctccccc tggagccaga ggcaccgtag tcaagagaca acacgaggag cctccactcc gggcagctgt tcgggttcgt ctcagttgcc aaacggaata 180 atttcacact ctgataacct gattgttttt taagccttgt ggtattctta attgcccggt 240 gttagataaa ctgtgattta aagagcacaa acccagatag cagacacaca aaacactggc 300 358 ttgggaatag caaggagtga cttatttact ttagcaaagc cttttataag gtttt atg Met 1 406 gct gca cta tca gag tgt cac cca gaa gtc act ctg gga ggt gaa cgc Ala Ala Leu Ser Glu Cys His Pro Glu Val Thr Leu Gly Gly Glu Arg aca ggg cag gac caa ggt agc acc agg cag aca caa gcc tcc ctg tgg 454 Thr Gly Gln Asp Gln Gly Ser Thr Arg Gln Thr Gln Ala Ser Leu Trp 20 25 502 gga gcc tct ctc atc tgt cgg ggg cct gcg ggc agg gga gag gag gtg Gly Ala Ser Leu Ile Cys Arg Gly Pro Ala Gly Arg Gly Glu Val 35 40 ccc cta cag gca agc ctg tgg ggg cgg cac cca gac ctc tgg aga cca 550 Pro Leu Gln Ala Ser Leu Trp Gly Arg His Pro Asp Leu Trp Arg Pro 50 55 60 age ace act gee ace cag tge tgg gga gaa ggg atg gag aga ate aaa 598 Ser Thr Thr Ala Thr Gln Cys Trp Gly Glu Gly Met Glu Arg Ile Lys 70 75 653 age cag cac tag gaa ggetgttgte tetgcatgae ecatggeggg geaggtggag Ser Gln His 85 gggaagccgg acacaggaga gctcctgggg ccagacacgc cacctctgcc aggtgagccc 713 acgtectgag etgeageete aggaacceag ggttetteea agaacteeet teacceeaca 773 tggtcacttc ccagcctcct gacccacact caggcccagc tccttcccag actgtcatcc 833 893 tctttctaga aggaaacagg gacccctgg ggtccgggat ggccctgagc tcccctgtgt gccccacacc ctggcggtct ttgcccccat gtgccctgag tctgatgcct 943

<210> 274

<211> 803

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (27)..(488) <400> 274 aatttaggtg acactataga agagct atg acg tcg cat gca cgc gta cgt aag 53 Met Thr Ser His Ala Arg Val Arg Lys ctt gga tcc tct aga gcg gcc gct gtc gtt gtt ctg agg aga aac ctt 101 Leu Gly Ser Ser Arg Ala Ala Ala Val Val Leu Arg Arg Asn Leu 10 15 aca agt gta ata aat gtg cga agg ttt tta atc aaa aag gaa tcc ttg 149 Thr Ser Val Ile Asn Val Arg Arg Phe Leu Ile Lys Lys Glu Ser Leu cac aac atc aga gag ttc ata ctg gag aga aac ctt aca agt gta atg 197 His Asn Ile Arg Glu Phe Ile Leu Glu Arg Asn Leu Thr Ser Val Met aat gtg gca agg ttt tta atc aaa aag caa gcc ttg caa aac atc aga 245 Asn Val Ala Arg Phe Leu Ile Lys Lys Gln Ala Leu Gln Asn Ile Arg 60 gag ttc ata ctg cag aga aac ctt aca agt gta atg agt gtg gca aag 293 Glu Phe Ile Leu Gln Arg Asn Leu Thr Ser Val Met Ser Val Ala Lys 75 80 cct tta ctg gac agt caa cac tta ttc acc atc aag caa tcc atg ggt 341 Pro Leu Leu Asp Ser Gln His Leu Phe Thr Ile Lys Gln Ser Met Gly 90 gta ggg aaa ctt tac aaa tgt aat gat tgt cac aaa gtc ttc agt aat 389 Val Gly Lys Leu Tyr Lys Cys Asn Asp Cys His Lys Val Phe Ser Asn 110 115 gct aca acc att gca aat cat tac aga atc cat att gaa gag aga tct 437 Ala Thr Thr Ile Ala Asn His Tyr Arg Ile His Ile Glu Glu Arg Ser 125 130 aca agt gta ata aat gtg gca aat ttt tca gac gtc att cat aac ttg 485 Thr Ser Val Ile Asn Val Ala Asn Phe Ser Asp Val Ile His Asn Leu 145 tag ttca tcagtgaact catactggag agaaacctta caaatatcat gactgtgaca 542 aggtetteag teaagettea teetatgeaa aacatagaat teatacagga gagaaacete 602 acaagtgtga tgattgtggc aaagccttta cttcatgttc acacctcatt agacatcaga 662 gaattcatac tggacagatg ccttacaaat gtaagggtgg caaggtcttc actctgtggt 722

782

cattccatgc agaacatcag aaaattcatt tttgagataa ttgttccaaa taaaatgaat

	<2 <2	12>	1078		oiens	\$										
	<2	20> 21> 22>	CDS (357)(713)											
	<2 <2	22>	misc (1). n =	(1	078)											
acg		00> ccc	_	agac	ta c	agtc	cagn	g nc	ggcg	aant	cga	gaaa	aca	cagc	aacgag	60
gtg	aatg	aca	tggg	agac	ag a	cctg	gggt	c tt	ttag	ggac	gga	aagc	ctc	agcc	aagacc	120
cag	actc	cca	gggt	catc	aa c	ctcc	tcgg	g tc	acta	accc	tcc	ccag	tgt	ctgt	ctaccc	180
cta	agtc	cag .	agaa	cacg	tc c	tctc	tagg	c tc	gagc	cgga	atc	aata	tag	gcta	caaggg	240
cat	cagt	tca	ggct	gcgc	gg a	ggag	agaa	g ga	agtg	ctga	tgt	ggag	tcc	tccc	tccccc	300
atg	gca	tca	cccc gag Glu	gca	gaa	aaa	aca	ttc	cat	cgg	ttt	gct	aca	ttt	cc gga Gly	356 404
gaa Glu	tca Ser	tca Ser	agc Ser 20	agt Ser	ggc Gly	act Thr	gaa Glu	atg Met 25	aac Asn	aac Asn	aag Lys	aac Asn	ttc Phe 30	tcc Ser	aag Lys	452
ctg Leu	tgc Cys	aaa Lys 35	gac Asp	tgt Cys	ggc Gly	atc Ile	atg Met 40	gat Asp	ggc Gly	aag Lys	aca Thr	gtc Val 45	acc Thr	tcc Ser	acg Thr	500
gac Asp	gtg Val 50	gac Asp	atc Ile	gtg Val	ttc Phe	agc Ser 55	aaa Lys	gtc Val	aag Lys	gcc Ala	aag Lys 60	aac Asn	gcc Ala	cga Arg	acc Thr	548
atc Ile 65	acg Thr	ttt Phe	caa Gln	cag Gln	ttc Phe 70	aaa Lys	gag Glu	gca Ala	gtg Val	aag Lys 75	gaa Glu	ctg Leu	ggc Gly	cag Gln	aag Lys 80	596
cgc Arg	ttc Phe	aaa Lys	ggg Gly	aag Lys 85	agt Ser	cca Pro	gat Asp	gaa Glu	gtc Val 90	ctg Leu	gag Glu	aac Asn	att Ile	tat Tyr 95	gga Gly	644
ctc Leu	atg Met	gag Glu	ggc ggc	aaa Lys	gac Asp	cca Pro	gcc Ala	acc Thr	act Thr	ggc Gly	gct Ala	act Thr	ttt Phe	ccc Pro	tgg Trp	692

100	105	110

tta cct atg caa gaa acc tga aa gtgatcctag acccctccac ctccccaatc Leu Pro Met Gln Glu Thr * 115	745
ccagctacgg ggaggcggtc ctgcatggtg gttaagatca aggcttttga gtgaaacaga	805
ccaggaattg aatcctgcct ctgcagctta caaactgcac accatctatc tgtttacgaa	865
accactgaaa gcttccttgt ttcatctgtt catgaggata gtattttta ctcacggcag	925
tatgaggatc cattaagatg tatatcaaga gtttttagac cagtgcccgg cacatgtgga	985
tgctctcgtc tcgcctggac agcacacaca ctccaactcc agtaagactc aactcaaata	1045
tatctcttat acaacttcaa gaaaaaaaaa aaa	1078
<210> 276 <211> 724 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (74)(223) <400> 276	
aaaaatgaaa catttaccct agtgtctaag tgtctaataa ggaagaactt aaaatgtggg	60
cacctatgta aaa atg tca aaa ttg aaa atg cgg agg ggg cat ctg gaa Met Ser Lys Leu Lys Met Arg Arg Gly His Leu Glu 1 5 10	109
tca aac tgg tgg cct ctc ggt ctg cag tct tat gct cta acc ctg agc Ser Asn Trp Trp Pro Leu Gly Leu Gln Ser Tyr Ala Leu Thr Leu Ser 15 20 25	157
tat acc cct tcc tgc tgc tgt ggg ggt caa tta atg cct ttg act tgt Tyr Thr Pro Ser Cys Cys Cys Gly Gly Gln Leu Met Pro Leu Thr Cys 30 35 40	205
gcg gtc aca ccc aga tga ccagtc acctgtgtgt tgccacttca caatggaagc Ala Val Thr Pro Arg * 45 50	259
tcctaggagc tgccaggtct acctcagtga aaactcattg accttgtgca tagcaagagg	319
cagtccccgc tcctcagata acccccgtgc ctgtgtcttc cctgccttga gtccttagtt	379
atgggcagca ggctggaaaa gcactgccag cagccactag aatggccttg agagtcatcc	439
tccagtaact gtttatggtg ggcacataca agagaaactt tgtgtgactg aggtgtctgt	499

tetaaaacac ttaatgacag agttgggeet ggeteteetg gteeagtgtt ceatteaggg 559
cagatteage acaactgeag tetaggacaa aagatgatte ttteaacttt taettettea 619
gttaatacaa atgaagaatg ttagagaagg agcaacteea agaaatagtg agaagtgtgt 679
agetgagtag attteecaaa agcattaata gggeeagtgt taeca 724

<210> 277 <211> 1007 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (119)..(682)

<400> 277
tttcgtcagt tcgcgcggaa gcggggcgcc tgggtggatg ggcgcttggg 6

cgcctgggct gccggacggt gggaacggaa gtcgctgtgg gacgctgagg aagccagg
atg gcg act ccg agc aag aag acg tca act cca agc ccc cag cct tcc
Met Ala Thr Pro Ser Lys Lys Thr Ser Thr Pro Ser Pro Gln Pro Ser
1 5 10 15

aag aga gct ctc ccg aga gac cct tcg tcg gag gtc ccg agc aag agg
Lys Arg Ala Leu Pro Arg Asp Pro Ser Ser Glu Val Pro Ser Lys Arg
20 25 30

aag aat tcg gcc ccg cag ctg ccg ctg ttg cag tcg tcc ggg cct ttc
Lys Asn Ser Ala Pro Gln Leu Pro Leu Leu Gln Ser Ser Gly Pro Phe
35
40
45

gtg gaa ggc tct atc gtc cgc atc tcg atg gag aac ttc cta aca tat
Val Glu Gly Ser Ile Val Arg Ile Ser Met Glu Asn Phe Leu Thr Tyr
50 55 60

gat att tgt gaa gta tct cct gga ccc cac ttg aat atg atc gtt gga
Asp Ile Cys Glu Val Ser Pro Gly Pro His Leu Asn Met Ile Val Gly
65 70 75 80

gcc aat gga aca ggg aag tcg agc att gtg tgt gcc att tgc ctt ggt 406 Ala Asn Gly Thr Gly Lys Ser Ser Ile Val Cys Ala Ile Cys Leu Gly 85 90 95

tta gct gga aaa cct gct ttc atg gga cga gca gat aag gtt ggg ttt
Leu Ala Gly Lys Pro Ala Phe Met Gly Arg Ala Asp Lys Val Gly Phe
100 105 110

ttt gtg aag aga gga tgt tct aga ggc atg gtt gaa att gaa ttg ttc
Phe Val Lys Arg Gly Cys Ser Arg Gly Met Val Glu Ile Glu Leu Phe
115 120 125

agg gct tct gga aat ctt gta atc acc cgt gag att gat gtg gca aaa 550

Arg Ala Ser Gly Asn Leu Val Ile Thr Arg Glu Ile Asp Val Ala Lys 130 135 140	
aat cag tcc ttt tgg ttc atc aac aaa aaa tct aca acc cag aaa ataAsn Gln Ser Phe Trp Phe Ile Asn Lys Lys Ser Thr Thr Gln Lys Ile145150	598
gtg gaa gag aaa gtt gca gcc tta aat att cag tgg gga atc ttt gcc Val Glu Glu Lys Val Ala Ala Leu Asn Ile Gln Trp Gly Ile Phe Ala 165 170 175	646
agt ttc tcc tca gga caa gtt gga gga att tgc taa actc agcaaattgg Ser Phe Ser Ser Gly Gln Val Gly Gly Ile Cys * 180 185	696
actcctcgaa gcactggaaa gttcaatggg cccccagaaa ttgcgcaata tcctgtgtac	756
tccaaactgt ggagaagaag aacagtcccg acccctgcgc agagaaactg ctgtctctcg	816
cgaaatggtg tgcccgcttc gaggattata cccccggtgg gagggcttct agcagggccg	876
cacatattcg agctgccacc cacagcacgc tggacaaaag ctcgcgcctc agagacatat	936
tgacgcggag cgcatcacag gcactccact catgcacagg agccctgcgg cgcggaacgg	996
cgcacacacc g	1007
<210> 278 <211> 439 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (18)(131)	
<221> CDS	50
<pre><221> CDS <222> (18)(131) <400> 278 cgacgatttc gtccaaa atg gcg gca gcg atg gat gtg gat acc ccg agc</pre>	50 98
<pre> <221> CDS <222> (18)(131) <400> 278 cgacgatttc gtccaaa</pre>	
<pre> <221> CDS <222> (18)(131) <400> 278 cgacgatttc gtccaaa</pre>	98
<pre> <221> CDS <222> (18)(131) <400> 278 cgacgatttc gtccaaa atg gcg gca gcg atg gat gtg gat acc ccg agc Met Ala Ala Ala Met Asp Val Asp Thr Pro Ser</pre>	98

ttattgagat acgcggggtt gcgacttggc ggcgggagcc aagcgcttga gctgtcactg	389											
gagtggttga gaggtggggg aaggacaggg tatggtggag tggggtgggt	439											
<210> 279 <211> 1771 <212> DNA <213> Homo sapiens												
<220> <221> CDS <222> (24)(1049)												
<pre><400> 279 tttcgtcacg ggccttgttc acc</pre>												
gat cgg gat gtc cgt ttc gac ctg tcc gcg cag caa atg aaa aca aga Asp Arg Asp Val Arg Phe Asp Leu Ser Ala Gln Gln Met Lys Thr Arg 10 15 20 25	98											
cct gga gaa gtc ctt att gat tgt tta gat tcc att gaa gac acc aaa Pro Gly Glu Val Leu Ile Asp Cys Leu Asp Ser Ile Glu Asp Thr Lys 30 35 40	146											
gga aat aat gga gat aga ggt aga ctc ttg gta aca aat tta aga att Gly Asn Asn Gly Asp Arg Gly Arg Leu Leu Val Thr Asn Leu Arg Ile 45 50 55	194											
ctc tgg cac tct ttg gca tta tca aga gtc aat gtt tct gtc ggt tac Leu Trp His Ser Leu Ala Leu Ser Arg Val Asn Val Ser Val Gly Tyr 60 65 70	242											
aat tgc ata ttg aat att aca aca agg act gct aac tct aaa tta cga Asn Cys Ile Leu Asn Ile Thr Thr Arg Thr Ala Asn Ser Lys Leu Arg 75 · 80 85	290											
ggc caa act gaa gct ctc tat ata cta aca aaa tgt aac agt act cgt Gly Gln Thr Glu Ala Leu Tyr Ile Leu Thr Lys Cys Asn Ser Thr Arg 90 95 100 105	338											
ttt gaa ttt ata ttt aca aat ttg gtt cct gga agc cct aga ctt ttt Phe Glu Phe Ile Phe Thr Asn Leu Val Pro Gly Ser Pro Arg Leu Phe 110 115 120	386											
act tot gtg atg gca gta cac aga gct tat gaa act tot aaa atg tat Thr Ser Val Met Ala Val His Arg Ala Tyr Glu Thr Ser Lys Met Tyr 125 130 135	434											
cgt gat ttt aaa tta aga agt gca cta att cag aac aag caa cta aga Arg Asp Phe Lys Leu Arg Ser Ala Leu Ile Gln Asn Lys Gln Leu Arg 140 145 150	482											

														tgg Trp		530
tta Leu 170	tcc Ser	agt Ser	gat Asp	cag Gln	ggc Gly 175	aat Asn	tta Leu	gga Gly	acc Thr	ttt Phe 180	ttt Phe	att Ile	acc Thr	aat Asn	gtg Val 185	578
														agt Ser 200		626
														ttt Phe		674
														gtt Val		722
														aag Lys		770
atc Ile 250	aat Asn	tca Ser	ctt Leu	cac His	aaa Lys 255	gtc Val	tat Tyr	tct Ser	gcc Ala	agt Ser 260	ccc Pro	ata Ile	ttt Phe	gga Gly	gtt Val 265	818
														aca Thr 280		866
														acg Thr		914
														cgt Arg		962
	_			_	_	_			-					aag Lys		1010
					gga Gly 335							tga *	ttg	acct [.]	tga	1059
gtt	gaga	tgg (attt	ctat	ta aa	agata	atct	c tag	gttta	aaag	ata	ctag	tca (cctg	ccataa	a 1119
gtc	atgga	aat a	agtt [.]	ttta	ta ti	ttaca	agct	t tta	atati	ttaa	aac	ttgt	aag (agtt	ttttta	a 1179
atg	attga	agg (aaaa	agtc	at ti	taga	aaac	t tc	agtti	ttcg	gcc	agcg	cgt	cgag	ggaggg	1239
gcc	agcga	aca (catg	gcct	ag ta	aacc	gtcc	g gc	cgcg	gcgc	tgg	ctta	agc	catg	gctgag	1299

1359 qqtaqccqqa ttcctcaggc ccgggcgctc ctacagcagt gcctgcacgc ccggctgcaa attcgcccag ccgatgggga cgtcgcggcc cagtgggtgg aggtccaaag aggactggtg 1419 1479 atctacqtqt qctttttcaa qqqaqctqat aaaqaacttc ttcccaaaaat qgatctacqa 1539 ctctggctcc actgattacc ttaaccatat tacatggaat gatgtaaggg agaaacagaa qactettqtt gaacagetce tgtetttgtt gaacagetce ecagggeete etaceegeaa 1599 actgcttgct aagaatctag ccatacttta tagtattgga gacacattct ccgttcatga 1659 agcaatcgat aaatgtaatg atcttattcg tagcaaagat gattctccaa gttatcttcc 1719 1771

<210> 280 <211> 1109 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (162)..(1064)

<400> 280

gtttgggccc tttggggtgg tacggaacac aacatcgggg ttgccataca ccggaattcc

cgggtcgacg atttcgttgc gcgttccgga actggtttcc cggaaggatt atgtctgcgc 120

60

cctcgatccg accggaagtt gcacgctgag ccgcggacac c atg cag tcg gat 173

Met Gln Ser Asp

1

gat gtt atc tgg gat aca cta gga aac aag caa ttt tgt tcc ttc aaa 221
Asp Val Ile Trp Asp Thr Leu Gly Asn Lys Gln Phe Cys Ser Phe Lys
5 10 15 20

ata aga acc aag act cag agc ttc tgc cga aat gaa tat agc ctg act

11e Arg Thr Lys Thr Gln Ser Phe Cys Arg Asn Glu Tyr Ser Leu Thr

25 30 35

gga ctg tgt aat cgg tca tcc tgt ccc ctg gca aat agt cag tat gcc

Gly Leu Cys Asn Arg Ser Ser Cys Pro Leu Ala Asn Ser Gln Tyr Ala

40

45

50

act att aaa gaa gag aaa gga cag tgc tac ttg tat atg aag gtt ata

Thr Ile Lys Glu Glu Lys Gly Gln Cys Tyr Leu Tyr Met Lys Val Ile

55 60 65

gaa cga gcg gct ttt cct cgg cgt ctc tgg gaa cgg gtc cgg ctt agt
Glu Arg Ala Ala Phe Pro Arg Arg Leu Trp Glu Arg Val Arg Leu Ser
70 75 80

					_	ctg Leu				_	_					461
		_			-	cac His		-								509
					_	att Ile	_					_	_	_		557
		_		_	-	aag Lys	_			-				_	-	605
						gct Ala 155										653
_		_		_	_	aaa Lys		-	_			_				701
				_		gac Asp		_	_	_		_	~ ~	_		749
_	-			-		gag Glu	-		-	-	-	-	_	_		797
						gaa Glu										845
_	-		_	_		gag Glu 235	-	_	_		_	_	-	-	-	893
_	_	_	_	_		aaa Lys			_			-	_	-	-	941
_		~	~ ~			aaa Lys			_		_	_			_	989
_	_		_	_		gtg Val	_		_			_	-			1037
		_		_		acc Thr	_	tga *	tttc	cc ct	ttca	agtca	a ttt	atad	ccca	1089
ggad	ctgaa	aca t	gcag	gaact	g											1109

	<21 <21	10> 2 11> 2 12> I 13> H	2018	sapi	lens											
	<220> <221> CDS <222> (36)(1520)															
<220> <221> misc_feature <222> (1)(2018) <223> n = a,t,c or g																
acag)0> 2 cca a		acago	gc ag	gaago	CCC	a caç	gag	-	Gli				a ggg	53
aag Lys	ctc Leu	tct Ser	gag Glu 10	gat Asp	ggg ggg	acc Thr	acc Thr	gtc Val 15	tcc Ser	cca Pro	gct Ala	gcg Ala	gac Asp 20	aac Asn	cct Pro	101
gag Glu	atg Met	tca Ser 25	gga Gly	ggt Gly	gga Gly	gcc Ala	cct Pro 30	gca Ala	gag Glu	gag Glu	acc Thr	aaa Lys 35	ggc Gly	aca Thr	gct Ala	149
gga Gly	aag Lys 40	gcc Ala	atc Ile	aat Asn	gag Glu	ggg Gly 45	cct Pro	ccc Pro	act Thr	gag Glu	tca Ser 50	gga Gly	aag Lys	cag Gln	gaa Glu	197
aag Lys 55	gca Ala	cca Pro	gcc Ala	gag Glu	gac Asp 60	ggc Gly	atg Met	tca Ser	gca Ala	gaa Glu 65	ctc Leu	cag Gln	Gly	gaa Glu	gca Ala 70	245
aat Asn	gga Gly	tta Leu	gat Asp	gag Glu 75	gtc Val	aaa Lys	gtg Val	gaa Glu	tct Ser 80	cag Gln	agg Arg	gag Glu	gct Ala	ggt Gly 85	ggg Gly	293
aaa Lys	gag Glu	gat Asp	gct Ala 90	gag Glu	gct Ala	gaa Glu	ctt Leu	aaa Lys 95	aag Lys	gag Glu	gat Asp	ggt Gly	gag Glu 100	aag Lys	gaa Glu	341
gag Glu	acc Thr	act Thr 105	gtg Val	ggt Gly	tct Ser	cag Gln	gag Glu 110	atg Met	act Thr	ggc Gly	agg Arg	aaa Lys 115	gaa Glu	gag Glu	acc Thr	389
aaa Lys	tct Ser 120	gaa Glu	ccc Pro	aaa Lys	gag Glu	gct Ala 125	gag Glu	gaa Glu	aag Lys	gag Glu	agc Ser 130	acg Thr	ctg Leu	gcc Ala	tct Ser	437
gag Glu	aag Lys	cag Gln	aag Lys	gct Ala	gag Glu	gag Glu	aaa Lys	gag Glu	gcc Ala	aaa Lys	cct Pro	gaa Glu	tct Ser	Gly ggg	cag Gln	485

135					140					145					150	
	gcc Ala															533
gag Glu	gag Glu	gag Glu	gac Asp 170	gcc Ala	aag Lys	aca Thr	gcc Ala	tct Ser 175	cag Gln	gag Glu	gag Glu	aca Thr	ggc Gly 180	cag Gln	agg Arg	581
aaa Lys	gag Glu	tgc Cys 185	agc Ser	act Thr	gaa Glu	ccc Pro	aag Lys 190	gag Glu	aag Lys	gct Ala	act Thr	gat Asp 195	gaa Glu	gag Glu	gcc Ala	629
aag Lys	gct Ala 200	gaa Glu	tcg Ser	cag Gln	aag Lys	gct Ala 205	gtt Val	gtg Val	gag Glu	gat Asp	gag Glu 210	gct Ala	aag Lys	gct Ala	gaa Glu	677
	aag Lys															725
gag Glu	gct Ala	gat Asp	gca Ala	aaa Lys 235	gag Glu	gag Glu	gcg Ala	gag Glu	gat Asp 240	gca Ala	gag Glu	gag Glu	gca Ala	gag Glu 245	cca Pro	773
ggc Gly	agt Ser	ccc Pro	agc Ser 250	gaa Glu	gag Glu	cag Gln	gag Glu	cag Gln 255	gac Asp	gtg Val	gaa Glu	aaa Lys	gag Glu 260	cca Pro	gag Glu	821
gga Gly	Gly aga	gca Ala 265	Gly	gtg Val	att Ile	ccc Pro	agc Ser 270	tcc Ser	cca Pro	gag Glu	gag Glu	tgg Trp 275	cct Pro	gag Glu	agc Ser	869
ccc Pro	act Thr 280	Gly	gag Glu	ggg ggg	cac His	aac Asn 285	ctc Leu	agc Ser	aca Thr	gat Asp	ggg Gly 290	ctg Leu	ggt Gly	cca Pro	gac Asp	917
tgt Cys 295	gta Val	gct Ala	tcc Ser	gga Gly	cag Gln 300	acc Thr	agt Ser	cct Pro	tca Ser	gcc Ala 305	agt Ser	gag Glu	tct Ser	tca Ser	ccc Pro 310	965
agc Ser	gac Asp	gtg Val	ccc Pro	cag Gln 315	agt Ser	ccc Pro	cct Pro	gag Glu	tcc Ser 320	cct Pro	tcc Ser	tca Ser	ggg	gag Glu 325	aag Lys	1013
aag Lys	gag Glu	aag Lys	gca Ala 330	cca Pro	gag Glu	cgc Arg	agg Arg	gta Val 335	tca Ser	gcc Ala	cct Pro	gct Ala	cgg Arg 340	ccc Pro	cgg Arg	1061
gly	ccc Pro	ggg Gly 345	gca Ala	cag Gln	aac Asn	cgc Arg	aaa Lys 350	gcc Ala	atc Ile	gtg Val	gac Asp	aag Lys 355	ttt Phe	ggc	ggg Gly	1109
gca Ala	gct Ala 360	tcc Ser	ggc Gly	ccc Pro	acg Thr	gcc Ala 365	ttg Leu	ttc Phe	cgc Arg	aac Asn	act Thr 370	aag Lys	gca Ala	gcc Ala	ggg Gly	1157

gca gcc att ggt ggt gtc aag aac atg ctc ttg gag tgg tgc cga gcc Ala Ala Ile Gly Gly Val Lys Asn Met Leu Leu Glu Trp Cys Arg Ala 375 380 385 390	1205
atg aca aaa aaa tac gag cat gtg gac atc cag aac ttc tcc tcc agc Met Thr Lys Lys Tyr Glu His Val Asp Ile Gln Asn Phe Ser Ser Ser 395 400 405	1253
tgg agc agt ggt atg gcc ttc tgt gcc ctc atc cac aag ttc ttc cct Trp Ser Ser Gly Met Ala Phe Cys Ala Leu Ile His Lys Phe Phe Pro 410 415 420	1301
gac gcc ttt gac tac gca gag ctg gat ccc gca aag cgc cgg cac aac Asp Ala Phe Asp Tyr Ala Glu Leu Asp Pro Ala Lys Arg Arg His Asn 425 430 435	1349
ttc acc ctg gcc ttc tcc aca gca gag aaa ctg gct gac tgt gct cag Phe Thr Leu Ala Phe Ser Thr Ala Glu Lys Leu Ala Asp Cys Ala Gln 440 445 450	1397
ctg ctg gac gtg gat gac atg gtg cgg ttg gct gtg ccc gac tcc aag Leu Leu Asp Val Asp Asp Met Val Arg Leu Ala Val Pro Asp Ser Lys 455 460 465 470	1445
tgc gtc tac aca tac atc cag gaa ctg tac cgc agc ctt gtg cag aaa Cys Val Tyr Thr Tyr Ile Gln Glu Leu Tyr Arg Ser Leu Val Gln Lys 475 480 485	1493
gga ctg gtg aag acc aag aag tga ggagg tgactggctc tgtgggcaga Gly Leu Val Lys Thr Lys Lys Lys * 490 495	1545
gatgggcagg gtgcccagct cagcagccac ggcccggggg ttcccttctg ctccatggag	1605
gcaccagagc caggggctta ggcaagggtg tgtggcgttg gttttaactg cattaaaagt	1665
acttttgtaa aatcctgtct ggccccctca gtgctctctc ccatacttgg ncccaggaac	1725
ctctgcactc tgggataata aactctggcc cataggggat tcctcacctg ctgaggtctc	1785
aataactgcg caaggtgttt gggaaaggac aatggcctgg tcccaccact aaccagctgt	1845
gtgacacata cagttaacct ctctgggccc cagtttacag tctgaaaggg gataatgaga	1905
gttccaacct tatgaaggtg ttgcaagagt taaacgagat aatgaaatgg gcaaaaagct	1965
ttgcccagtc ctgccactca agtgttcagt aagtggtcgc caaaaataaa aaa	2018

<210> 282

<211> 706

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (39)..(377)

<400> 282 atg act ctg gtt ctg cgcctccccg ctgaccccgc gatctgaggc tgtcagag Met Thr Leu Val Leu tcc atg aat aga ttc tgc gag ccc att gtc tcg gaa gga gct gct gaa 101 Ser Met Asn Arg Phe Cys Glu Pro Ile Val Ser Glu Gly Ala Ala Glu 15 10 149 att gct ggg tac caa aca cta tgg gag gct gac agc tac gga ggc cca Ile Ala Gly Tyr Gln Thr Leu Trp Glu Ala Asp Ser Tyr Gly Gly Pro 25 30 197 agc ccc cca ggg cca gca caa gct cct ttg cag gga gac cgg gga gct Ser Pro Pro Gly Pro Ala Gln Ala Pro Leu Gln Gly Asp Arg Gly Ala ggt ccc cca ctg gca gct cca ctt ggt gac ttc ctt tct gtg tat cag 245 Gly Pro Pro Leu Ala Ala Pro Leu Gly Asp Phe Leu Ser Val Tyr Gln gag cag agc aga gga caa ctt gta gaa gac atg acc att aag aga cat 293 Glu Gln Ser Arg Gly Gln Leu Val Glu Asp Met Thr Ile Lys Arg His 70 75 341 caa ctt cgc aac aaa tat aag aca agg ata caa gga ttc cta tgt gat Gln Leu Arg Asn Lys Tyr Lys Thr Arg Ile Gln Gly Phe Leu Cys Asp 95 100 90 391 gca gct agg ttt tta tat cct tct aac aaa tgg tga gcag gagacttttt Ala Ala Arg Phe Leu Tyr Pro Ser Asn Lys Trp 105 110 tggaaataat tagttgtgaa attccatttt tctgacagcc ccttaaattt gaagttattt 451 catttgtagt taaggttatc acatccctgc caattttact agatttttc agagacaagc 511 571 attcagcatg gcattagtaa tgatggttta aactaggtgc agaactgtcc catgaagaga agaatgatat cagtatttaa ataataaaag aagagacaat gtatggttta tagtgattca 631 ttttaagatt gctgtatttt gattttgtgg tttaaaataa atgcattaag gatcttttaa 691 706

<210> 283

gttaaaaaaa aaaaa

<211> 758

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (539)..(697) <400> 283 60 agattatqtq tcatcatttc ttqcttctta gacatagtqc gtataagaac agtggaaatc 120 aaagtagaaa atttcacact aggatgaaca tactgtattc tctactaggt agcgaagctg agtagctgac ctgtgatatc attaggagtt gagctgaaac tacttaaaac tgctctagcc 180 240 ccaacccagc tcaactccta atgatatcac aggtcagcta ctcagcttcg ctacctagta 300 gagaatacag tatgttcatc ctagtgtgaa attttctact ttgatttcca ctgttcttat 360 acgcattatg tctaagaagc aagaaatgat gacacataat ctaaagaaga aacaatcgat 420 agaaaaagac cttatggatc acccaagtgt tggaatttag acaaagactt taaaattcca tgaaaaattt totttatgtt aaagaaaaac gagaggcaga atgattgaga gaatagaaaa 480 538 tttgagcaga gaaaaaaagt aacaaaatag aaaatctaga actgaaaata tatccgaa atg aat aaa ttg ttt tat ttg tta ttt att ttt gta gaa aca gga tct 586 Met Asn Lys Leu Phe Tyr Leu Leu Phe Ile Phe Val Glu Thr Gly Ser cat ggt gtt gcc cag gtt ggt ctt gaa ctc ctg agc tca aga gat cct 634 His Gly Val Ala Gln Val Gly Leu Glu Leu Leu Ser Ser Arg Asp Pro 25 cct gcc tct gcc tcc caa gct gct ggg att aca ggc atg aac cac tgt 682 Pro Ala Ser Ala Ser Gln Ala Ala Gly Ile Thr Gly Met Asn His Cys gcc cag ctg aaa tga ataaattgga taggcttaac aaaatggata caacaaaatg 737 Ala Gln Leu Lys * 50 758 gatacaacag aaaaaaaaa a <210> 284 <211> 1482 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (939)..(1475) <400> 284 ccagcctgcc ctcttagtcc ctgacagctg cagtgacagc atctgtgatt gcaaagcatg 60

acaatttata teteteattt cateacacea tetateagea gacagteagg etttaaaaaat

caatcccaca ctgactcagt ccccagcaga gatggcctct gacaacagta tccacactgc 180 aggctggaca agggccctat taattttgag actcagccaa atttccttct gaccctaagc 240 300 tggtgaatcc ctgctccttt gctttggttg gggttggtgt gagctaaggc tgtgatccca tttgctccta tggcctccag gtggcctggg cctccatgaa tgggccacat ggtcatactg 360 aatgcttgat tacactcaga cctagcagtc gtctgggcgc agctggttta tggatcactt 420 480 tqtcacaatq ttccatcctt ccaggtcccc atccccgcgg tgggaaaaca ttgctttagg cagtgctaga ggacttcagc aggcattggc agcttctgga ttcaggatta gaacaaagaa 540 600 ggaggagtca cagcaaagat aggaacagaa ggcagagaga acagacagat gggggtgttt 660 gagaaggagg gcctttgaga cctcagggag tgggagacac tggctcgaga ataataataa tggcaatttc tctcatctgt gttttcaggg catggactgg aactcccaat acccctgaca 720 780 tqqqctqaqt caacqtggtc atgaacatgt gacaggaggc agcagaagtt gcagagaaga gtgaggcacg tttgaaaaag gctgaaaaat gtttctgtcc aggcaagggt gtgtgctgaa 840 tgactcaagg attttttggt gcattgaatg aacagcggga cattggacac ctgctgatcc 900 atg gag aag acc agg 953 atcacccgg gcccgggcag gcccgtggat gaagagag Met Glu Lys Thr Arg cat gag act gtg gag aag cca cac cac cag aaa ccc ctg ccc cat gcg 1001 His Glu Thr Val Glu Lys Pro His His Gln Lys Pro Leu Pro His Ala ccg tcc agc cca cac ctg tgg atg cac ggg gga ttg cag gca ggg ctc 1049 Pro Ser Ser Pro His Leu Trp Met His Gly Gly Leu Gln Ala Gly Leu 30 25 cca ccg tgg act cag gaa cag gca ggg aag ctg ctg cct cac cag gcg 1097 Pro Pro Trp Thr Gln Glu Gln Ala Gly Lys Leu Leu Pro His Gln Ala 40 aag ggg cca gga ggg gga ggc gga gag gcc cgt cta gcc cct gcg gct 1145 Lys Gly Pro Gly Gly Gly Gly Glu Ala Arg Leu Ala Pro Ala Ala 55 1193 qtc acc gtg gtg cct cct cac tgg cca gtg cgg tcg cgc ctc agc ttc Val Thr Val Val Pro Pro His Trp Pro Val Arg Ser Arg Leu Ser Phe 85 70 75 gtt aat agg gga ggg ggc cta aga gtt ttc acg tcc agg ctc ggg cag 1241 Val Asn Arg Gly Gly Gly Leu Arg Val Phe Thr Ser Arg Leu Gly Gln 100 90 tgg gga ggc agg cag gag tgg ccg ctg gtt ttt cag acc tcc cag gga 1289 Trp Gly Gly Arg Gln Glu Trp Pro Leu Val Phe Gln Thr Ser Gln Gly 110

ggc cga gga aat ggc ccg tcc tgg agt ggg cgt ggt tct gtc ttc aga Gly Arg Gly Asn Gly Pro Ser Trp Ser Gly Arg Gly Ser Val Phe Arg 120 125 130	1337
tgg atg ctg gag ggt tgg gct gcg tgg gac cct ggg ccc tgc ttc Trp Met Leu Glu Gly Trp Ala Ala Trp Asp Pro Gly Pro Cys Cys Phe 135 140 145	1385
ccg gag gat gcg ctg tcc ggg gct gca cag gtt ggc tgt gtt ttt tggPro Glu Asp Ala Leu Ser Gly Ala Ala Gln Val Gly Cys Val Phe Trp150155	1433
atg ctt gtt att ttt ttt ctt ctc ttc act ctg tca tga aactggc Met Leu Val Ile Phe Phe Phe Leu Leu Phe Thr Leu Ser * 170 175	1482
<210> 285 <211> 3504 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (392)(1120)	
<400> 285 caatgttaag tcattgcctt gtggggatac gcctacagat aggtcagact aaatgttgtt	60
ccttttgact taggagctga agttgccctc ctataaaggc cagtcccctc agttaagtct	120
cagacggtat tttgccgact tgattgccat tgtgagcaat cgcttcacac tctgcccttc	180
tgcccgccat cttgctgtct atttactgga cctgtttatg gaccgctatg acatctctat	240
ccagcagctg catttagttg cgctttcctg cctgcttcta gcaagtaaat ttgaagaaaa	300
agaagacagt gtgcctaagc tggagcagct caacagcctg ggttgtatga ctaatatgaa	360
tctagtatta acaaaacaaa atttgctaca t atg gaa cta tta tta tta gaa Met Glu Leu Leu Leu Glu 1 5	412
acc ttt cag tgg aac ctc tgc ctt cca aca gcc gcc cat ttc att gag Thr Phe Gln Trp Asn Leu Cys Leu Pro Thr Ala Ala His Phe Ile Glu 10 15 20	460
tat tat ctc tct gaa gca gta cac gaa aca gat ctt cat gac ggc tgg Tyr Tyr Leu Ser Glu Ala Val His Glu Thr Asp Leu His Asp Gly Trp 25 30 35	508

40					45					50					55	
gat Asp	tac Tyr	ttc Phe	ctg Leu	gaa Glu 60	gta Val	tct Ser	ttg Leu	caa Gln	gct Ala 65	gct Ala	gca Ala	tgt Cys	gtg Val	gct Ala 70	tct Ser	604
tcg Ser	agg Arg	att Ile	ata Ile 75	ctt Leu	cgt Arg	ctt Leu	tct Ser	cca Pro 80	acg Thr	tgg Trp	cct Pro	aca Thr	aga Arg 85	cta Leu	cat His	652
cgt Arg	ctt Leu	act Thr 90	gcc Ala	tac Tyr	tct Ser	tgg Trp	gat Asp 95	ttc Phe	tta Leu	gtg Val	cag Gln	tgt Cys 100	att Ile	gaa Glu	cga Arg	700
ctg Leu	ttg Leu 105	atc Ile	gct Ala	cat His	gat Asp	aat Asn 110	gat Asp	gtg Val	aaa Lys	gaa Glu	gca Ala 115	aac Asn	aaa Lys	cag Gln	aga Arg	748
ggg Gly 120	caa Gln	gca Ala	gga Gly	cct Pro	cag Gln 125	tca Ser	gcg Ala	caa Gln	cta Leu	agt Ser 130	gta Val	ttc Phe	cag Gln	aca Thr	gcc Ala 135	796
tcc Ser	cag Gln	cca Pro	tca Ser	cgg Arg 140	cca Pro	gtt Val	cac His	ttt Phe	cag Gln 145	caa Gln	cct Pro	cag Gln	tat Tyr	ctc Leu 150	cat His	844
cag Gln	aca Thr	cat His	cag Gln 155	acc Thr	tca Ser	ctg Leu	cag Gln	tat Tyr 160	cgc Arg	cat His	cct Pro	acg Thr	tca Ser 165	gaa Glu	caa Gln	892
cca Pro	agc Ser	tgt Cys 170	cag Gln	cag Gln	att Ile	gta Val	tcg Ser 175	acc Thr	aca Thr	cac His	acc Thr	tca Ser 180	tct Ser	tac Tyr	aca Thr	940
cta Leu	cag Gln 185	aca Thr	tgt Cys	cct Pro	gct Ala	ggc Gly 190	ttc Phe	caa Gln	act Thr	agt Ser	gtt Val 195	cag Gln	ggc Gly	ctt Leu	G]À aaa	988
cac His 200	atg Met	cag Gln	act Thr	ggt Gly	gtt Val 205	ggg	atg Met	tca Ser	ctg Leu	gca Ala 210	Ile	cca Pro	gta Val	gaa Glu	gtt Val 215	1036
aag Lys	ccc Pro	tgt Cys	ctg Leu	agt Ser 220	gtt Val	tct Ser	tac Tyr	aac Asn	cgg Arg 225	agt Ser	tat Tyr	cag Gln	ata Ile	aat Asn 230	gaa Glu	1084
cat His	tac Tyr	cct Pro	tgt Cys 235	att Ile	act Thr	cca Pro	tgt Cys	ttt Phe 240	gaa Glu	agg Arg	tga *	tta	t tt	gtga	agct	1134
gat	aacc	gac ·	ccag	actg	ct t	tgtg	acat	g aa	gcta	tggg	taa	gcgt	ttt	gtaa	acttc	1194
gtt	caaa	agg .	aaag	ggat	ct a	aatg	acat	c ag	aact	cttc	agg	tacc	agc	acca	ggaaga	a 1254
ctg	aata	tcc	tttt	taat	gc a	ccat	gaat	c ct	ggga	gact	aag	caaa	tta	acag	tatgt	c 1314
aaa	ttct	gtt	acaa	caaa	tc c	ctgt	atga	c aa	aaat	gttc	aag	tcct	ggc	tgat	ggtcc	a 1374

1434 aatatttcaa aaatattcag tacaacagaa aatttggaca gacttcaatt tgccattttg 1494 agatttgacc tgtggtagca tctgggccta atgttggctt ctaagtcaaa gactaaatgt ttatctcatc tatggacttg ccaaacagtc ttttatgaag gaaagttaca gtattaattt 1554 ttgaaaaggt tttttttatt ctgcaatttt ttatttttgt tctacacatg aatttttgac 1614 1674 taagtttaaa ctcatgaatt gttatgctat accaatctgc agtaaaaaaa attttttag 1734 atgattctat ataacttcgt ctcacaaata gtgtaggtat ctgggtttat atactaaaat taagggtgga gaagatetta ttttttaaat catggteata atttttettt tttteectaa 1794 1854 gtgatcaaca tcaaattttt agaattaaaa tacatttaac tcagggaatt tgtactactt 1914 ggaaacactt aactgtaatg caacatgcct tgggaatgtt atagtgtgaa ctacctttat 1974 aacataggtt aaaatacgct tgctagggtg tgttttcaaa tgagaacata atatagctca 2034 qaatqaaqtq qtaqttcctg tgattcataa tacatatgta ggttttgcat atctcagtgc aatccatgat ttatactcag aatcgacatt cttaaaaagt tatttcaagg gatggcataa 2094 2154 ctgtaagagg tcagtgctag aataaagtcc tgtaggttta ttttggaagg gactgtggcc agggtagttc tcaggttgtg ctagagcagc actttgttat gtggaagaca ggttttttaa 2214 gcaacctttg aatccagctc tagtcagtct aagcaggcaa aggtaactga tgactaaatt 2274 2334 tcagtagcta ctttcattgg attgacccta caactgccct gggacatttc actgtaccag 2394 tattaactgc aaacagcaat aattgtcatt acagcaaggg cagtttgggg gtaaagcatt 2454 ttggaggaat aaccttaaaa agttaaaaag tcattgtaat aactgataaa ctgtatacat tqtqctcctt tctqqqqqaa qaaagatttq gtgqagggaa gctttctggt ttaaaaatta 2514 2574 gtaaggtgtg tctttttgtt ttttttaaga tagcacttga atagaaggga aaactgcatg 2634 gcagatacgt gactgccaca atatgcatcg aagacaaact tactataaag atgttgtggg 2694 tatgcagcag gagtctcagt aatcaagcca atggcctttg tcaggaaggg aaggggctca acacagtgat ggactgatcc agatggctcc cggggatgaa tgtgggtggg tagcttctgt 2754 cagtatcaat gcttagagaa atatcctttc cttaaaaaaga aaataacttt tatatttaga 2814 gtacataggg catgatgtgg atttattagt ctggtagata aaatgaaaaa ccactcaggt 2874 aagaacactc actcatggca gtttttaagc atgaaaattg ttttctgaaa gtatcatcac 2934 ttttcctttt taaagaaggc tgctaattgg attttggtag ttcttacctc aagaaaactt 2994 3054 gaattatttg ggggaaagta ggctcaaaag agaatatatc tttcacattc acattcagaa

cccagcaacc tggagtccaa ttttcagtat tttaactacc tcaataatgc tatgaatgta 3114 agatattggg atagagatcc caacttgaaa caacagccag tgcctgtggt aacttaatgt 3174 cttgtcaaat acttttattg attggtttat atgccattct tgttatagaa gaatatgcct 3234 tttaaaaaag cttattaata acactttccc aatttatatt ttaaaaagct aaagaacact 3294 ggattaataa tcttttggga gggtagaata aaataattga ttactattgc tgcatacccg 3354 gggtgggatg gggtggttgg agaaccagaa ctatttttaa aacattaggt ttcaatataa 3414 atacaactca caactgctag ctttgggggg tggggggaaca ttgtttgggt tttgtttgt 3474 ttaatttatt gattagtctt taaagtaggc 3504

<210> 286 <211> 650 <212> DNA <213> Homo sapiens <220> <221> CDS

<222> (217)..(510)

<400> 286

25

ttctgggggt aacaccagca aaactgtgta gaagatgtcc tgaggccacc gcctcccagg 120 gaagagccca ggtccctgcc ccagttctac cacagctctc atgcccacag ccctgtctgt 180 ctggacacat tactaggcac agactgctga cagggg atg tcc tgg gcg gtt gac 234 Met Ser Trp Ala Val Asp 1 ctg cct gtg tgt caa agg aca cct cac tgc agg gtc caa gac aga gtg

60

282

ccacaccacc atgcccagtc ataccagcat ctgaagcaac aatataaaaa tcactgtggt

Leu Pro Val Cys Gln Arg Thr Pro His Cys Arg Val Gln Asp Arg Val 10 15 ctc cac tgt ggc ttc ctg gga agc ccg ctg gtg gga gct cct ggg agc 330 Leu His Cys Gly Phe Leu Gly Ser Pro Leu Val Gly Ala Pro Gly Ser

agg aga cag ctg tgc tct ccc cac tcc tcc ctc cgg cct cag cac cca 378 Arg Arg Gln Leu Cys Ser Pro His Ser Ser Leu Arg Pro Gln His Pro

cag gtg gcc tct gct ctc ttg gag gcg aag ctg ctc ccc tct cct cca 426 Gln Val Ala Ser Ala Leu Leu Glu Ala Lys Leu Leu Pro Ser Pro Pro 55 65 70

acc tca ttc tct gcc tgc ttc atc cgg ccc cac aca cac acc ggt aat 474 Thr Ser Phe Ser Ala Cys Phe Ile Arg Pro His Thr His Thr Gly Asn

<210> 287 <211> 1619

	75		80		85	
0 0			ctc ctc atg Leu Leu Met 95		cccaatact	524
ctttcagtcc	ccaaagcca	at aggcccaca	t ctgcttgtgg	atcagaaaca	tgctggcaga	584
gcgcggtggg	actgctgcc	cc cctggccct	t aggagtgggg	tctggggcgc	cctcagaaca	644
acgaca						650

<212> DNA <213> Homo sapiens <220> <221> CDS <222> (120)..(1619) <400> 287 geggeeteet tgeeeggget tggggegeeg egetggggaa ageeggggge eeggaeaeat 60 tggcgtgaga cctgggagta cgttgtgcca aatcattgcc acttgccaca tgagtgtaa 119 atg atg gcg gat gcc aag tat gtc ctc tgc cga tgg gaa aag cga tta 167 Met Met Ala Asp Ala Lys Tyr Val Leu Cys Arg Trp Glu Lys Arg Leu tgg cct gcg aag gtt ttg gcc cga acc gcg act tca aca aaa aat aag 215 Trp Pro Ala Lys Val Leu Ala Arg Thr Ala Thr Ser Thr Lys Asn Lys 20 25 aga aga aag gaa tat ttt cta gct gtg caa atc ctc tcc cta gag gaa 263 Arg Arg Lys Glu Tyr Phe Leu Ala Val Gln Ile Leu Ser Leu Glu Glu 40 311 aaa att aag gtg aaa agc act gaa gtt gag atc cta gag aag tct caa Lys Ile Lys Val Lys Ser Thr Glu Val Glu Ile Leu Glu Lys Ser Gln 50 55 att gaa gcc att gct tcc tcg tta gcc tca cag aat gag gtt cct gcg 359 Ile Glu Ala Ile Ala Ser Ser Leu Ala Ser Gln Asn Glu Val Pro Ala 65 70 75 80 407 gca ccc ctg gaa gaa ctg gcc tac aga cgg tcg ctt cgc gtg gct ctg Ala Pro Leu Glu Glu Leu Ala Tyr Arg Arg Ser Leu Arg Val Ala Leu 85 90 95 gac gtt ctg agc gag ggc tcg att tgg agt caa gaa agc tct gca ggg 455 Asp Val Leu Ser Glu Gly Ser Ile Trp Ser Gln Glu Ser Ser Ala Gly 100 105 110 aca ggt aga gct gac cgg tct ctg cga ggg aag ccc atg gag cat gtc 503

Thr	Gly	Arg		Asp	Arg	Ser	Leu 120		Gly	. Lys	Pro	Met 125		His	: Val	
tcc Ser	tcg Ser 130	Pro	tgt Cys	gat Asp	tcg Ser	aac Asn 135	Ser	tca Ser	tct Ser	ctt Leu	ccc Pro	Arg	gga Gly	gac Asp	gtg Val	551
ttg Leu 145	Gly	agt Ser	tcc Ser	aga Arg	cct Pro 150	cac His	agg Arg	agg Arg	agg Arg	cca Pro 155	Cys	gtg Val	caa Gln	. caa . Gln	agc Ser 160	599
ctg Leu	tca Ser	agt Ser	tcg Ser	ttc Phe 165	act Thr	tgt Cys	gaa Glu	aag Lys	gac Asp 170	ccc Pro	gag Glu	tgc Cys	aaa Lys	gtg Val 175	gac Asp	647
cac His	aag Lys	aag Lys	ggg Gly 180	Leu	agg Arg	aaa Lys	agt Ser	gaa Glu 185	aac Asn	cca Pro	aga Arg	ggc Gly	ccg Pro 190	ttg Leu	gtc Val	695
ctc Leu	cca Pro	gct Ala 195	gga Gly	ggt Gly	ggt Gly	gcc Ala	caa Gln 200	gat Asp	gag Glu	agt Ser	Gly	tcc Ser 205	aga Arg	atc Ile	cac His	743
cac His	aaa Lys 210	aat Asn	tgg Trp	act Thr	ctt Leu	gca Ala 215	agt Ser	aag Lys	agg Arg	gga Gly	aga Arg 220	aac Asn	tca Ser	gcg Ala	cag Gln	791
aag Lys 225	gct Ala	agc Ser	ttg Leu	tgc Cys	ctg Leu 230	aat Asn	gga Gly	tct Ser	tcc Ser	ctt Leu 235	tca Ser	gag Glu	gac Asp	gac Asp	acg Thr 240	839
gag Glu	aga Arg	gac Asp	atg Met	ggg Gly 245	agc Ser	aaa Lys	gga Gly	ggc Gly	agc Ser 250	tgg Trp	gca Ala	gcc Ala	ccg Pro	tcc Ser 255	ttg Leu	887
ccc Pro	tcc Ser	ggg Gly	gtc Val 260	agg Arg	gag Glu	gac Asp	gat Asp	ccc Pro 265	tgt Cys	gcc Ala	aac Asn	gct Ala	gag Glu 270	gga Gly	cac His	935
gac Asp	ccc Pro	ggt Gly 275	ctg Leu	ccg Pro	ttg Leu	ggc Gly	agc Ser 280	ctc Leu	act Thr	gcg Ala	ccc Pro	cca Pro 285	gcc Ala	cct Pro	gag Glu	983
Pro	tcg Ser 290	gcc Ala	tgc Cys	tca Ser	gag Glu	cct Pro 295	gga Gly	gaa Glu	tgc Cys	cct Pro	gcg Ala 300	aaa Lys	aag Lys	agg Arg	ccg Pro	1031
cgc Arg 305	ctg Leu	gat Asp	ggc Gly	agc Ser	caa Gln 310	agg Arg	ccg Pro	cct Pro	gcc Ala	gtg Val 315	cag Gln	ctg Leu	gag Glu	ccc Pro	atg Met 320	1079
gca Ala	gca Ala	Gly aaa	gcc Ala	gca Ala 325	cca Pro	tcc Ser	ccc Pro	Gly aaa	ccg Pro 330	Gly aaa	cca Pro	ggg Gly	ccc Pro	aga Arg 335	gag Glu	1127
tct Ser	gtg Val	acc Thr	ccg Pro	cgc Arg	agc Ser	acc Thr	gcc Ala	agg Arg	ctg Leu	ggc Gly	ccg Pro	cct Pro	ccc Pro	tcc Ser	cac His	1175

340 345 350 gcc tct gcg gat gca acc aga tgt ctt cct tgc ccg gat tcc cag aag 1223 Ala Ser Ala Asp Ala Thr Arg Cys Leu Pro Cys Pro Asp Ser Gln Lys 360 ctg gag aaa gag tgc cag tct tcc gaa gag tcc atg ggg tct aat tcc 1271 Leu Glu Lys Glu Cys Gln Ser Ser Glu Glu Ser Met Gly Ser Asn Ser 375 380 1319 Met Arg Ser Ile Leu Glu Glu Asp Glu Glu Asp Glu Glu Pro Pro Arg 390 395 gtc ctt tta tac cac gaa cca cgt tcg ttt gaa gta gga atg cta gtc 1367 Val Leu Tyr His Glu Pro Arg Ser Phe Glu Val Gly Met Leu Val 405 410 tgg cat aaa cat aaa aaa tac ccc ttc tgg cca gca gtg gtc aaa agc 1415 Trp His Lys His Lys Lys Tyr Pro Phe Trp Pro Ala Val Lys Ser 420 430 gtc agg cag aga gat aag aaa gca agt gtg cta tac atc gaa gga cac 1463 Val Arg Gln Arg Asp Lys Lys Ala Ser Val Leu Tyr Ile Glu Gly His 435 440 atg aac ccg aaa atg aaa ggt ttc aca gtg tct ctt aaa agt tta aag 1511 Met Asn Pro Lys Met Lys Gly Phe Thr Val Ser Leu Lys Ser Leu Lys 450 455 cac ttt gat tgt aaa gag aaa cag acg ctt ctg aat caa gcc agg gag 1559 His Phe Asp Cys Lys Glu Lys Gln Thr Leu Leu Asn Gln Ala Arg Glu 470 475 gac ttc aac cag gac atc ggc tgg tgt gct ccc tca tca ccg act aca 1607 Asp Phe Asn Gln Asp Ile Gly Trp Cys Ala Pro Ser Ser Pro Thr Thr 485 490 ggg tcc ggt tag 1619 Gly Ser Gly * 500

```
<210> 288 <211> 713
```

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (202)..(435)

<400> 288

gattatcaga ataatattta ttgatatgct cggtgctacc ttgttaattc tgcatgacat

ggtctccatg gctgaggtat ttagggtggg accagccggg tgccggccgg gg	geteceaca 1	L20
ggaagccatg tggcctcagc cgcggcgggg ggcccgggtg ggggacgtgg tt	attgcgtt 1	180
gggccccttc actcctcata c atg ggc cac gcg ctg gcg tgc act Met Gly His Ala Leu Ala Cys Thr $ 1 \qquad \qquad 5 \qquad \qquad 5 $		231
ctc gcc cgc ctg ctc aca ctc aca cac tcc cac tca agc tgg c Leu Ala Arg Leu Leu Thr Leu Thr His Ser His Ser Ser Trp H 15 20	ac cac 2 is His 25	79
acc ctc tgt gca cac gca cac acg tgc aca ctc gta cat aca c. Thr Leu Cys Ala His Ala His Thr Cys Thr Leu Val His Thr H 30 35 40	ac ccg 3 is Pro	27
ctc gct cac gct cac ctc tgc tca tgc ccg ttc aca cac aca cc Leu Ala His Ala His Leu Cys Ser Cys Pro Phe Thr His Thr P: 45 50 55	ca tcc 3 ro Ser	75
tgc ttt aaa ccc atc ctg tct cct gat gat aaa tat gct tgt tc Cys Phe Lys Pro Ile Leu Ser Pro Asp Asp Lys Tyr Ala Cys Se 60 65 70	cg gta 4 er Val	23
cag cag tct tag taa aataaaatgt ctgtcaggcg acaaggagaa agtgo Gln Gln Ser * 75	cacgtt 4	78
gacetttgae eegagggtgg aceteggtee eteceaeeeg agggeateag gte	ccctgcag 5	38
ggggtgaccc ctgagcatgt gaccccatgg gcgtggccac cccactggtg gga	actggccc 5	98
cacetteete tteeetgget etgggetggg ggagetggge tgggggagtt ggg	gctgtctc 6	58
gCCaCaggCCC gggggccagga tgaaaacggac taaaaaaaata aactcttcac ctc	7207 7	1 2

<210> 289

<211> 975

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (393)..(935)

<400> 289

aaatctegtg tetttgtete getgeageg gtgetgeagg tttggeette actttetge 60 gteetettae teetagagge eeageetetg tggegetgtg atetggttat egggagatte 120 acagetaaga egeeaggate eeeeggaage etagaaatge tetgtgtet egttttgeee 180 aagaeetttg getagageag aacataaaag attettteea aaaagtgaca etgageagat 240

atggaaaata tggacataag aatttacagt taagaaaagg ctgtaaaagt gtggatgagt	300
gtaagggaca ccaaggaggt tataatggac ttaaccaatg tttgaaaatt accacaagca	360
aaatatttca atgtaataaa tatgtaaaag to atg cat aaa ttt tca aat tca Met His Lys Phe Ser Asn Ser 1 5	413
aat aga cac aag ata aga cat act gaa aat aaa cat ttc aga tgt aaa Asn Arg His Lys Ile Arg His Thr Glu Asn Lys His Phe Arg Cys Lys 10 15 20	461
gaa tgt gac aaa tca ctt tgc atg ctt tca cgc cta act caa cat aaa Glu Cys Asp Lys Ser Leu Cys Met Leu Ser Arg Leu Thr Gln His Lys 25 30 35	509
aaa att cat act aga gag aat ttc tac aaa tgt gaa gag tgt gga aaa Lys Ile His Thr Arg Glu Asn Phe Tyr Lys Cys Glu Glu Cys Gly Lys 40 45 50 55	557
acc ttt aac tgg tcc aca aac ctt tct aaa cct aag aaa att cat act Thr Phe Asn Trp Ser Thr Asn Leu Ser Lys Pro Lys Lys Ile His Thr 60 65 70	605
gga gaa aaa ccc tac aaa tgt gaa gta tgt gga aaa gcc ttt cac caa Gly Glu Lys Pro Tyr Lys Cys Glu Val Cys Gly Lys Ala Phe His Gln 75 80 85	653
tcc tca atc ctt act aaa cat aag ata att cgt act gga gaa aaa ccc Ser Ser Ile Leu Thr Lys His Lys Ile Ile Arg Thr Gly Glu Lys Pro 90 95 100	701
tat aaa tgt gca cac tgt ggc aaa gcc ttt aaa cag tcc tca cac ctt Tyr Lys Cys Ala His Cys Gly Lys Ala Phe Lys Gln Ser Ser His Leu 105 110 115	749
act aga cat aag ata att cat act gaa gag aaa ccc tac aaa tgt gaa Thr Arg His Lys Ile Ile His Thr Glu Glu Lys Pro Tyr Lys Cys Glu 120 125 130 135	797
caa tgt ggc aag gtc ttt aag cag tcc cca acc ctt act aaa cat cag Gln Cys Gly Lys Val Phe Lys Gln Ser Pro Thr Leu Thr Lys His Gln 140 145 150	845
ata att tat act gga ggt cga cgc gac cgc gaa ttc gga tcc tcg aga Ile Ile Tyr Thr Gly Gly Arg Arg Asp Arg Glu Phe Gly Ser Ser Arg 155 160 165	893
gat ctc ttt ttt tgg gtt tgg tgg ggt atc ttc gtc atg taa tagggcg Asp Leu Phe Phe Trp Val Trp Trp Gly Ile Phe Val Met * 170 175 180	942
ttetateate geetteaagg ggggggggeg ggg	975

<210> 290 <211> 1336 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (126)(1091)	
<400> 290 gcacgagggg cgcagagagg agtgtaaact ctagcggggc tagagcaaac attggattag	60
cggcagcagc ctgccagcct gcccgaggag tgctgggacc agcgcgctgc acgccgactg	120
gcacg atg gcc tcg tct cag ggg aaa aac gag ctg aaa tta gcc gac Met Ala Ser Ser Gln Gly Lys Asn Glu Leu Lys Leu Ala Asp 1 5 10	167
tgg atg gca act ctg ccg gag agc atg cac agc atc ccc ctc acc aat Trp Met Ala Thr Leu Pro Glu Ser Met His Ser Ile Pro Leu Thr Asn 15 20 25 30	215
tta gcc att cca ggg tct cat gat tcc ttc agc ttc tac att gat gaa Leu Ala Ile Pro Gly Ser His Asp Ser Phe Ser Phe Tyr Ile Asp Glu 35 40 45	263
gcc tct cca gta ggt cct gag cag cca gaa act gtc cag aat ttt gtc Ala Ser Pro Val Gly Pro Glu Gln Pro Glu Thr Val Gln Asn Phe Val 50 55 60	311
tct gtg ttt gga act gtg gcc aaa aag ctc atg cgg aaa tgg tta gcc Ser Val Phe Gly Thr Val Ala Lys Lys Leu Met Arg Lys Trp Leu Ala 65 70 75	359
act cag aca atg aat ttt act ggc cag cta gga gct gga att cgt tat Thr Gln Thr Met Asn Phe Thr Gly Gln Leu Gly Ala Gly Ile Arg Tyr 80 85 90	407
ttt gat ctt cga att tcc acc aag ccc aga gac ccc gac aat gaa ctc Phe Asp Leu Arg Ile Ser Thr Lys Pro Arg Asp Pro Asp Asn Glu Leu 95 100 105 110	455
tat ttt gct cat ggt ttg ttc agt gcc aaa gtc aat gaa ggc ctt gag Tyr Phe Ala His Gly Leu Phe Ser Ala Lys Val Asn Glu Gly Leu Glu 115 120 125	503
gag atc aat gca ttc ctc aca gat cac cat aag gag gta gtg ttc ttg Glu Ile Asn Ala Phe Leu Thr Asp His His Lys Glu Val Val Phe Leu 130 135 140	551
gac ttc aac cac ttc tat ggg atg cag aaa tat cac cat gaa aaa ctg Asp Phe Asn His Phe Tyr Gly Met Gln Lys Tyr His His Glu Lys Leu 145 150 155	599
gtc caa atg ctg aaa gac atc tat gga aat aaa atg tgc cca gcg att Val Gln Met Leu Lys Asp Ile Tyr Gly Asn Lys Met Cys Pro Ala Ile	647

ttt gcc cag gaa gtt agt tta aag tac ctg tgg gag aag gac tat caa Phe Ala Gln Glu Val Ser Leu Lys Tyr Leu Trp Glu Lys Asp Tyr Gln 175 180 185 190	695
gtg ctg gtc ttc tac cat agt cca gtg gct ctg gaa gtg ccc ttt ctc Val Leu Val Phe Tyr His Ser Pro Val Ala Leu Glu Val Pro Phe Leu 195 200 205	743
tgg cct ggg cag atg atg cca gca ccc tgg gcc aac acc aca gac ccc Trp Pro Gly Gln Met Met Pro Ala Pro Trp Ala Asn Thr Thr Asp Pro 210 215 220	791
gag aaa ctg atc cag ttt ctt caa gca tcc atc act gag aga aga aag Glu Lys Leu Ile Gln Phe Leu Gln Ala Ser Ile Thr Glu Arg Arg Lys 225 230 235	839
aag gga tcg ttt ttt ata tct cag gtg gtg ctg acc ccc aaa gct agcLys Gly Ser Phe Phe Ile Ser Gln Val Val Leu Thr Pro Lys Ala Ser240245	887
act gtg gtc aaa ggg gtg gca agt ggc ctc aga gaa aca atc aca gaa Thr Val Val Lys Gly Val Ala Ser Gly Leu Arg Glu Thr Ile Thr Glu 255 260 265 270	935
aga gct ctt cct gcc atg atg cag tgg gtc cgc acg cag aag cca gga Arg Ala Leu Pro Ala Met Met Gln Trp Val Arg Thr Gln Lys Pro Gly 275 280 285	983
gag agt ggc atc aat att gtc act gcc gat ttt gta gaa ctt ggt gac Glu Ser Gly Ile Asn Ile Val Thr Ala Asp Phe Val Glu Leu Gly Asp 290 295 300	1031
ttt atc agc act gtc ata aag ctc aac tat gtc ttt gat gaa gga gaa Phe Ile Ser Thr Val Ile Lys Leu Asn Tyr Val Phe Asp Glu Gly Glu 305 310 315	1079
gcc aac act tga tag cactacttgg agtttccatg aataagatgg agaaagctca Ala Asn Thr * 320	1134
ttgtattagg gcatactatc tgtaaacact ctgatcttcc tattccactg agtctctgaa	1194
gggaataggg ctggtagtgg gtgggaaaaag gggaaaaact gtttcttcag tgattacaat	1254
catactette attactataa atatteeatt teecatttga tgageaaaat etaettetag	1314
tgttaggaat aaaaaaaaa aa	1336

<210> 291 <211> 3764 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (148)..(3207) <400> 291 caagtgttct tcttgagcaa tgaccttgac ctgtatgatg aagagaccga tttatccatt 60 caatgtcgag ccctcaacat cgcagaggac ttgggccaga tccagtacat cttctccgat 120 aagacgggga ccctgacaga gaacaag atg gtg ttc cga cgt tgc acc atc 171 Met Val Phe Arg Arg Cys Thr Ile atg ggc agc gag tat tct cac caa gaa aat gct aag cga ctg gag acc 219 Met Gly Ser Glu Tyr Ser His Gln Glu Asn Ala Lys Arg Leu Glu Thr 10 cca aag gag ctg gac tca gat ggt gaa gag tgg acc caa tac caa tgc 267 Pro Lys Glu Leu Asp Ser Asp Gly Glu Glu Trp Thr Gln Tyr Gln Cys 25 30 ctg tcc ttc tcg gct aga tgg gcc cag gat cca gca act atg aga agc 315 Leu Ser Phe Ser Ala Arg Trp Ala Gln Asp Pro Ala Thr Met Arg Ser 45 50 55 caa aaa ggt gct cag cct ctg agg agg agc cag agt gcc cgg gtg ccc 363 Gln Lys Gly Ala Gln Pro Leu Arg Arg Ser Gln Ser Ala Arg Val Pro 65 atc cag ggc cac tac cgg caa agg tct atg ggg cac cgt gaa agc tca 411 Ile Gln Gly His Tyr Arg Gln Arg Ser Met Gly His Arg Glu Ser Ser 80 cag cct cct gtg gcc ttc agc agc tcc ata gaa aaa gat gta act cca 459 Gln Pro Pro Val Ala Phe Ser Ser Ser Ile Glu Lys Asp Val Thr Pro 95 gat aaa aac cta ctg acc aag gtt cga gat gct gcc ctg tgg ttg gag 507 Asp Lys Asn Leu Leu. Thr Lys Val Arg Asp Ala Ala Leu Trp Leu Glu 105 110 115 acc ttg tca gac agc aga cct gcc aag gct tcc ctc tcc acc acc tcc 555 Thr Leu Ser Asp Ser Arg Pro Ala Lys Ala Ser Leu Ser Thr Thr Ser 125 135 tcc att gct gat ttc ttc ctt gcc tta acc atc tgc aac tct gtc atg 603 Ser Ile Ala Asp Phe Phe Leu Ala Leu Thr Ile Cys Asn Ser Val Met 140 gtg tcc aca acc acc gag ccc agg cag agg gtc acc atc aaa ccc tca 651 Val Ser Thr Thr Thr Glu Pro Arg Gln Arg Val Thr Ile Lys Pro Ser 155 age aag get etg ggg aeg tee etg gag aag att eag eag ete tte eag 699 Ser Lys Ala Leu Gly Thr Ser Leu Glu Lys Ile Gln Gln Leu Phe Gln 170 175

	aag Lys								747
	aca Thr								795
	gat Asp				 _	_		 -	843
	gac Asp 235								891
	tct Ser								939
	gac Asp								987
	gcc Ala						_		1035
	cgg Arg								1083
	acc Thr 315						_	-	 1131
	atg Met								1179
	acc Thr								1227
_	tgc Cys								1275
	cgg Arg								1323
	cta Leu 395								1371

															cga Arg	14	119
					gaa Glu 430											14	167
					Gly											15	515
					ctg Leu											15	563
					gag Glu											16	511
					gac Asp											16	559
					atc Ile 510											17	07
					aag Lys											17	'55
					tcc Ser											18	103
					Gly ggg											18	51
					ctg Leu											18	99
					cca Pro 590											19	47
					gtc Val											19	95
					caa Gln											20	43
cag	gaa	ggc	atg	cag	gct	gtc	atg	tcc	agc	gac	ttt	gcc	atc	acc	cgc	20	91

Gln	Glu	Gly 635	Met	Gln	Ala	Val	Met 640	Ser	Ser	Asp	Phe	Ala 645	Ile	Thr	Arg	
	aag Lys 650															2139
	cgc Arg															2187
	gtc Val															2235
	acc Thr															2283
	tcc Ser															2331
	gaa Glu 730			_	_	_					_	_	~ ~	_		2379
	gag Glu															2427
	tac Tyr															2475
	tct Ser															2523
	ctc Leu															2571
	att Ile 810															2,619
	gta Val															2667
	aat Asn															2715
	ctc Leu															2763

860 865 870 ttt ttc ctg tct ctg caa gga act tgt ggg aag tct cta atc tca aaa 2811 Phe Phe Leu Ser Leu Gln Gly Thr Cys Gly Lys Ser Leu Ile Ser Lys 875 880 gct cag aaa att gac aaa ctc ccc cca gac aaa aga aac ctg gaa atc 2859 Ala Gln Lys Ile Asp Lys Leu Pro Pro Asp Lys Arg Asn Leu Glu Ile 895 2907 cag agt tgg aga agc aga cag agg cct gcc cct gtc ccc gaa gtg gct Gln Ser Trp Arg Ser Arg Gln Arg Pro Ala Pro Val Pro Glu Val Ala 910 915 cga cca act cac cac cca gtg tca tct atc aca gga cag gac ttc agt 2955 Arg Pro Thr His His Pro Val Ser Ser Ile Thr Gly Gln Asp Phe Ser 925 930 gcc agc acc cca aag agc tct aac cct ccc aag agg aag cat gtg gaa 3003 Ala Ser Thr Pro Lys Ser Ser Asn Pro Pro Lys Arg Lys His Val Glu 940 945 950 gag tca gta ctc cac gaa cag aga tgt ggc acg gag tgc atg agg gat 3051 Glu Ser Val Leu His Glu Gln Arg Cys Gly Thr Glu Cys Met Arg Asp 955 960 gac tca tgc tca ggg gac tcc tca gct caa ctc tca tcc ggg gag cac 3099 Asp Ser Cys Ser Gly Asp Ser Ser Ala Gln Leu Ser Ser Gly Glu His 970 975 ctg ctg gga cct aac agg ata atg gcc tac tca aga gga cag act gat 3147 Leu Leu Gly Pro Asn Arg Ile Met Ala Tyr Ser Arg Gly Gln Thr Asp 990 995 atg tgc cgg tgc tca aag agg agc cat cgc cga tcc cag agt tca 3195 Met Cys Arg Cys Ser Lys Arg Ser Ser His Arg Arg Ser Gln Ser Ser 1005 1010 3250 ctg acc ata tga gga gctgcagaaa tctgtacaaa ctcaacagag gccacctagt Leu Thr Ile 1020 cactggtcca cataaccett gaccecttet tetteataga ggaaacaatg tgccagtett 3310 attetttet teaacaacet tgactteeat ggaggaagtg etggeeceaa ggggtetgae 3370 acaaagacgg gaaacccagt cggcctctag ttttctgctg ctctcaggca gcacatcttg 3430 caaacagttt ggagaaggag gctgtttttg ttgaatcgag ttctcaaatc ggtttagacc 3490 aaagccattc ttctgaccct ctagataagc gtagcctaca acccagtgcc gtaagtttcc 3550 aagattcaag aagtgtatca acccaggcaa tatctcagga tatggaagtt tctgggttta 3610 tttacccctc agtgcccaga gttaaagttt cagaagagac ttgtgcacat aagggcttca 3670

3730

tctcaagtgt attgcagtaa tggctgaatc ggggttaaca tcccttccag gcacagcgag

<210> 292 <211> 614 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (361)(462)	
<400> 292 gccacaagaa tgtatacttc tagcaagttt tgttatccta taaggcccag tccaacatat	60
aagtagtcag aaagacttat atgaccataa gaagtagcat acatttcttt ctttgcagtg	120
gtccaatggc aatttgttca cctctaattt ttataatcat agtttagggt tgtggctaaa	180
agcacaaact ctggaactag actgctagat atataatctt gggtatgctg tttgattgct	240
ctggtactct gtacctcaat tttcaccagt taaatgcaga tttagggtgg gtagttgtga	300
ggattaaaat gtatgggtat accttagaaa ggtgccaaat atggctgggt gtggtggctc	360
atg tct gta atc cca acc cct tgg aag gcc gag gcg ggt ggc tca caa Met Ser Val Ile Pro Thr Pro Trp Lys Ala Glu Ala Gly Gly Ser Gln 1 5 10 15	408
ggt cag gag atc aag acc act ctg gcc aac acg gtg aaa cac cgt ctc Gly Gln Glu Ile Lys Thr Thr Leu Ala Asn Thr Val Lys His Arg Leu 20 25 30	456
cac taa aaatacaaaa tacaaaaaat tacaaaaaata caaagtacaa aaaatacaaa His *	512
aaatacaaaa tactgaaaat actaaaaatt agccgggcat agtggcacgt gcctatagtc	572
CCagCtactt gggaatctgc ggacgcgtgg gtcgacccgg gt	614

```
<210> 293
<211> 830
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (219)..(467)
<400> 293
```

cgcctgc	gaa	ccgg	cccg	ga a	ttcc	cggg	g cg	accca	acgc	gtc	cggag	gcc	tgcga	agctgo	60
cgaagca	aaa	ttcc	gagt	cc a	ttcg	aact	g cc	atct	gatc	cgc	tctta	atc	aatga	aagcag	120
ccgatca	tgg	cgga	tggg	cc c	cggt	gcaa	g ag	gcgca	aaac	aag	ccaat	tcc	cagga	aggaaa	a 180
aacgcct	tgg ,	agtca	agaa	at g	agca	ctcg	g ag	cggga	ag	Me	-	_	_	c tgc s Cys 5	233
ttg cca Leu Pro					_	_		_		-	_	_		_	281
ccc ctg Pro Leu								_		_				_	329
ctc cca Leu Pro															377
cca gca Pro Ala 55															425
aaa atc Lys Ile 70					-	_		-	-	_		tga *	agtt	gtc	474
ttttaaa	gaa a	aaact	gaat	t ag	ggagg	gagag	g aaa	aaggg	gaaa	tagg	gagaa	aga a	aagga	aaagt	534
taaattt	gat t	ttttc	ctcca	ag ag	gtttc	ccact	aaa	agggt	tgg	ggad	cagto	gtg a	aagga	agaagg	594
ggagctt	ttt a	acaaa	ataco	ct tt	ggto	ctctc	g aad	cttca	agtg	gcaa	agaa	ıca ç	gggat	caagt	654
tgaatgt	tct d	caggg	gcttt	g ga	atcct	agag	gag	gaaac	caat	caga	agag	jca (gaaat	ggtta	714
tccctgti	tta a	aaata	agco	cc to	cacto	cttta	ı cca	actto	cctt	aaag	gagt	gg a	aggtg	gctggt	774

```
<210> 294
```

<400> 294

taaaaaaaca actcagactg aacccatgtg aaaaaaaccta cctaaaatca gaacatacat

agtgatggtt agaggcaatg agggacggag aagttgctcc cgtttcagag atgctt

830

<211> 757

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (493)..(735)

acgaggcaac	ctcgagga	aa ccacc	cttat aa	tggccaag	aacaggatt	g acgat	tacaa 12	0
tctcagctgg	cctgtcat	at aaaac	atact gt	cattgagc	ttaagctcc	g cttgt	tctga 18	0
ggtttcacct	ccatgtgt	tt cattg	gtgca aa	agtggatc	tcttagttg	g tcact	taatt 24	0
ctttcttttt	cagaaaga	ta ggatg	ttcac tg	gtatattt	ggtcactct	t agaac	ecttcc 30	0
ttcacattgt	tttttatg	gg accca	tgaat gg	ttagcctt	tcttttcta	ıt tgtag	yaagga 36	0
aataaatagg	agtaaaaa	ga ccatt	gtagt aa	ataagttc	aaggggaac	t tggga	iccaga 42	0
aaccactgtt	atgtacaa	aa aaatg	gcaaa tt	caataaac	tcaaattta	a aataa	ttttt 480	0
aaattaacag	Me	-	n Phe Il		aca aat Thr Asn			8
aga atg gtt Arg Met Val 15	Leu Lys			_	-			6
ttt tat aat Phe Tyr Asr 30								4
ttt tac att Phe Tyr Ile 45								2
ggt ctt ttt Gly Leu Phe								0
aat aaa tco Asn Lys Ser		ttaaaac	gtt aaaaa	aaaaa aa	ì		757	7

<210> 295

<211> 2388

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (125)..(1258)

<400> 295

tgcaggcacc ggtcctgaat tcccgggtcg acccacgcgt ccgaaaggat tggctaaaag 60 caagcaactg gattgaacac cctaagaaga aagattcaca ctgcaccagg agacatcaga 120 aaga atg aaa act ctg ccg ctg ttt gtg tgc atc tgt gca ctg agt gct 169

Met Lys Thr Leu Pro Leu Phe Val Cys Ile Cys Ala Leu Ser Ala 10 tgc ttc tcg ttc agt gaa ggt cga gaa agg gat cat gaa cta cgt cac 217 Cys Phe Ser Phe Ser Glu Gly Arg Glu Arg Asp His Glu Leu Arg His 20 aga agg cat cat cac caa tca ccc aaa tct cac ttt gaa tta cca cat 265 Arg Arg His His Gln Ser Pro Lys Ser His Phe Glu Leu Pro His 35 tat cct gga ctg cta gct cac cag aag ccg ttc att aga aag tcc tat 313 Tyr Pro Gly Leu Leu Ala His Gln Lys Pro Phe Ile Arg Lys Ser Tyr 50 55 aaa tgt ctg cac aaa cgc tgt agg cct aag ctt cca cct tca cct aat 361 Lys Cys Leu His Lys Arg Cys Arg Pro Lys Leu Pro Pro Ser Pro Asn 70 aac ccc ccc aaa ttc cca aat cct cac cag cca cct aaa cat cca gat 409 Asn Pro Pro Lys Phe Pro Asn Pro His Gln Pro Pro Lys His Pro Asp 85 90 457 aaa aat agc agt gtg gtc aac cct acc tta gtg gct aca acc caa att Lys Asn Ser Ser Val Val Asn Pro Thr Leu Val Ala Thr Thr Gln Ile 100 105 cca tct gtg act ttc cca tca gct tcc acc aaa att act acc ctt cca 505 Pro Ser Val Thr Phe Pro Ser Ala Ser Thr Lys Ile Thr Thr Leu Pro 115 120 aat gtg act ttt ctt ccc cag aat gcc acc aca ata tct tca aga gaa 553 Asn Val Thr Phe Leu Pro Gln Asn Ala Thr Thr Ile Ser Ser Arg Glu 130 aat gtt aac aca agc tct tct gta gct aca tta gca cca gtg aat tcc 601 Asn Val Asn Thr Ser Ser Ser Val Ala Thr Leu Ala Pro Val Asn Ser 145 150 cca gct cca caa gac acc aca gct gcc cca ccc aca cct tct gca act 649 Pro Ala Pro Gln Asp Thr Thr Ala Ala Pro Pro Thr Pro Ser Ala Thr 165 aca cca gct cca cca tct tcc tca gct cca cca gag acc aca gct gcc 697 Thr Pro Ala Pro Pro Ser Ser Ser Ala Pro Pro Glu Thr Thr Ala Ala 180 185 cca ccc aca cct tct gca act aca caa gct cca cca tct tcc tca gct 745 Pro Pro Thr Pro Ser Ala Thr Thr Gln Ala Pro Pro Ser Ser Ser Ala 195 200 793 cca cca gag acc aca gct gcc cca ccc aca cct cct gca act aca caa Pro Pro Glu Thr Thr Ala Ala Pro Pro Thr Pro Pro Ala Thr Thr Gln 210 215 gct cca cca tct tcc tca gct cca cca gag acc aca gct gcc cca ccc 841 Ala Pro Pro Ser Ser Ser Ala Pro Pro Glu Thr Thr Ala Ala Pro Pro

225 230 235 aca cct cct gca act aca cca gct cca cca tct tcc tca gct cca cca 889 Thr Pro Pro Ala Thr Thr Pro Ala Pro Pro Ser Ser Ala Pro Pro 245 gag acc aca gct gtc cca ccc aca cct tct gca act acc cta gac cca 937 Glu Thr Thr Ala Val Pro Pro Thr Pro Ser Ala Thr Thr Leu Asp Pro 260 265 985 tca tcc gcc tca gct cca cca gag acc aca gct gcc cca ccc aca cct Ser Ser Ala Ser Ala Pro Pro Glu Thr Thr Ala Ala Pro Pro Thr Pro 280 tet gea act aca eea get eea eeg tet tee eea get eea eaa gag ace 1033 Ser Ala Thr Thr Pro Ala Pro Pro Ser Ser Pro Ala Pro Gln Glu Thr 290 295 1081 Thr Ala Ala Pro Ile Thr Thr Pro Asn Ser Ser Pro Thr Thr Leu Ala 305 310 315 cct gac act tct gaa act tca gct gca ccc aca cac cag act act act 1129 Pro Asp Thr Ser Glu Thr Ser Ala Ala Pro Thr His Gln Thr Thr 320 325 330 335 tcg gtc act act caa act act act aca aca cca act tca gct cct 1177 Ser Val Thr Thr Gln Thr Thr Thr Lys Gln Pro Thr Ser Ala Pro 340 345 ggc caa aat aaa att tct cga ttt ctt tta tat atg aag aat cta cta 1225 Gly Gln Asn Lys Ile Ser Arg Phe Leu Leu Tyr Met Lys Asn Leu Leu 360 aac aga att att gac gac atg gtg gag caa tag tatattgt atgttgtaaa 1276 Asn Arg Ile Ile Asp Asp Met Val Glu Gln * 370 375 gtgttctgtc atttacaaga tgtgattcat gagtgcagaa ctaccacctt tcttttagca 1336 ccaatcccaa catgaaatta tattactcag atttaaagca ctatcattaa tctttcaatc 1396 taattattca ccaccacaag acctattaac aagacaaaat gcctctatcc cacaagccag 1456 atgcaggtct ggggttcaaa ataactcttt ggatcctaca gagatagcct actgagggca 1516 1576 gagaaagtcc ttagataaag agagaatatt gtatgggcca tcaaccattt acttttccct gaatgttaga aactacaaaa ccactacctt gtacccccat caaaatccca cctgaaccat 1636 ctaatcctat aaacataaag gggtaaaatt ggaactctcc agatgaacaa agacatctaa 1696 atatctgtag atagaaacat ttatctatct aaatatattg atagacctgt cattgtattg 1756 attaatgaca aaacccttta gataattatc ttccatttta aataaaattt tatttcacaa 1816 1876 atatgagcca agaaagagga aagttgattt gaagtgagga ttagaagtga atgacaataa

agtetggeag ceaageacga aceaagactg geactatttt tettagtgta tataattgtt 1936 taaactgcaa ggttgacatt tattgtgttg tgtctaagtt aatttcgatc taatgtacct 1996 gattctagcc tctgtgaaca acaagaatat gtttgtgtat gttcacatgg tgcttataat 2056 atttcactat caattcaatt aattcacata aattccatgt gaaatgtatt caacaatgga 2116 2176 atattttcta aaacatttag tatacatttg aatgtatttt aaaccatgcc aaactactgc tttaatgtca agtttgcaga attgtctctg aaaataaaaa ccctgacttt agttgtaaaa 2236 caataaaagt tagctacttg gtatacggag atgttaattt gggatatgga ggcattttta 2296 tcttctgtca ctactactta aaactctgat gattatgtta gattttttttg ctaactaata 2356 2388 aagatttcaa atggcaattt aaaaaaaaaa aa

<210> 296 <211> 810 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (175)..(444) <400> 296

ttttatagaa cggcttcaca tgtggccagg cagtcgtgat gtctgtctca atgaatcatc 60 agettggeet etgaaatgag gagattatag gggggaeeae eacacecage geetacaaat 120 aaaattattt cacaagatga agagggtata acggcccatg attcccttgg gaat 177 atg Met caa tgg ttt gtt tcc ata act ctg ctg gta ggg atg gaa ttg aaa ccc 225 Gln Trp Phe Val Ser Ile Thr Leu Leu Val Gly Met Glu Leu Lys Pro 10 acc aca aaa tat aac aac ctg gaa ccc tgc ctt atc acc ttg ata aaa 273 Thr Thr Lys Tyr Asn Asn Leu Glu Pro Cys Leu Ile Thr Leu Ile Lys 20 25 321 cgg gct gtt agg cta gga tac att att caa gag agc aga gtg gga atg Arg Ala Val Arg Leu Gly Tyr Ile Ile Gln Glu Ser Arg Val Gly Met 35 40 369 aga ttt gta ctc aca cct ttt aag gtt gtc cca ctt tca caa gat gtc Arg Phe Val Leu Thr Pro Phe Lys Val Val Pro Leu Ser Gln Asp Val 50 55 60

417

aaa gtg aca cat cat att ggg cct tca att ctg gcc tta tac caa aat

Lys Val Thr His His Ile Gly Pro Ser Ile Leu Ala Leu Tyr Gln Asn 70 75 80	
gtg gat aag cat cca gac tat gct tga caaat acaaatagca tccaatatta Val Asp Lys His Pro Asp Tyr Ala * 85 90	469
acacagaatt tecatggttt acaatagcag tggtaateee aaateateet gtgaacgtet	529
cctggaatga ctccatagcc acacagaacc acatatggct tcagatagcc atggccctat	589
ttcacttttg tgctgcacca gctgagacct cagctgtagc aaccctcctc tgtccaccta	649
atgccgttta aagcccagcc cctggatttg tgaaccaaat cacatctact atcacagatg	709
agcatatttt tcactgccca tatgcaccag gctgaatgaa actccccatc cactcccaaa	769
gtcatctcaa aatgtttatg aatccagaca gtgataaata g	810
<210> 297 <211> 883 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (495)(833)	
<400> 297 tttcgtcagg aagctgctgg ggtgggggtt gaggacgctg ggcctccctc cagctcccca	60
cccctcctcc tcaagacacc tgcatgcgca gggctgaggg gtgggagcag ggctctctgc	120
ctccagaacc cccatcctct gggctctttt taggccccta gattggcctg cagctgggag	180
cagagtggca agcatgcagg caggcagttg agaaagagga agtcgaggtg ctattgggtc	240
attetgtggt tateceagge tetacecage cageggttee ettgggeeag etegaaacge	300
tggccgtagg tcatgggagc tgcaggagct gttagccagg ctaggtgcct gcaggttgaa	360
gaactgaget ctatetgget etgageecaa gteatgtgte eageettttg actetggage	420
tgtggcttca gccaccaaga gcagcagtgg atcctggaaa cctgagaacc cagacttctt	480
ctctgccatg gggg atg atc agg agg atg att ttc cca ggc ggc tca gcg Met Ile Arg Arg Met Ile Phe Pro Gly Gly Ser Ala 1 5 10	530
aga gta tgg agg acc tca gcc tgg att tgg ggg ccc ttc agg gca gcg Arg Val Trp Arg Thr Ser Ala Trp Ile Trp Gly Pro Phe Arg Ala Ala 15 20 25	578

agt atc tgc agg acc tgg gcc ttg ggg ccc ctt ccc aca gcc agc ctg 626

Ser Ile Cys Arg Thr Trp Ala Leu Gly Pro Leu Pro Thr Ala Ser Leu 30 35 40	
ggg aga ccc cag aca gcc gcc cca ccg gtg aag aac cag gaa gag att Gly Arg Pro Gln Thr Ala Ala Pro Pro Val Lys Asn Gln Glu Glu Ile 45 50 55 60	674
ctc ttt tct cca gct tgg cag ggt ccc aag acc tgt caa ggc ggc gca Leu Phe Ser Pro Ala Trp Gln Gly Pro Lys Thr Cys Gln Gly Gly Ala 65 70 75	722
act ggg aaa ggt cgc gga gct gct cac aga gct ggc gga ggc tca acc Thr Gly Lys Gly Arg Gly Ala Ala His Arg Ala Gly Gly Gly Ser Thr 80 85 90	770
tcg atg cct cag ctg tgg atg agg aac cct gtc tcc ccc gaa cac tgg Ser Met Pro Gln Leu Trp Met Arg Asn Pro Val Ser Pro Glu His Trp 95 100 105	818
cca gcc ttg ctt tga acctgccagg aggagggctg aagacctgga ctcaagggtg Pro Ala Leu Leu * 110	873
tctctctggg	883
<210> 298 <211> 1920 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (15)(1664) <400> 298	
ctcctgagtg ggga atg tgg ttc gtg gtg ata cct caa gca gaa tat gaa Met Trp Phe Val Val Ile Pro Gln Ala Glu Tyr Glu 1 5 10	50
tgg gac gga aac agc caa gta gga att gga gac tac aga att cct aag Trp Asp Gly Asn Ser Gln Val Gly Ile Gly Asp Tyr Arg Ile Pro Lys 15 20 25	98
gcg atg ctc aca ttc ttg aat gga agt aga att cct gtc act gag aaa Ala Met Leu Thr Phe Leu Asn Gly Ser Arg Ile Pro Val Thr Glu Lys 30 35 40	146
gca cct cat aaa gga att att aga gat tca acc tgt aag tac ctt cca Ala Pro His Lys Gly Ile Ile Arg Asp Ser Thr Cys Lys Tyr Leu Pro 45 50 55 60	194
gag tgg cag agc tat cag tgc ttt ggg atg gaa tat gca atg gtt Glu Trp Gln Ser Tyr Gln Cys Phe Gly Met Glu Tyr Ala Met Met Val 65 70 75	242

	_	~	_	~	cct Pro	_	_	-	-		-	290
-					ggt Gly							338
					gga Gly							386
					ctg Leu 130							434
	-				ctt Leu							482
_	-	_		-	gga Gly							530
					tta Leu							578
					tgt Cys							626
					gat Asp 210							674
					ctt Leu							722
					aca Thr							770
					ttt Phe							818
					ata Ile							866
					agg Arg 290							914

														acc Thr 315		962
														ctt Leu		1010
														aac Asn		1058
_														tct Ser	_	1106
			~ ~		_	_		_	-			-		cct Pro		1154
														ccg Pro 395		1202
														aag Lys		1250
	-		_			-	-		_					cta Leu		1298
_		_			_	-								ggc Gly		1346
_						-		_	_	_		_		tac Tyr	_	1394
_					_		~ ~						_	ttt Phe 475		1442
_	~		_	_		-	_		-			-	-	ctg Leu	_	1490
		_		_	_		_	_	_	-				aaa Lys	_	1538
														agc Ser		1586
ctg	gtt	gga	aga	atg	tgg	ctc	ttg	gaa	ata	ttt	atg	gct	gca	gtt	tca	1634

Leu Val Gly Arg Met Trp Leu Leu Glu Ile Phe Met Ala Ala Val Ser 525 530 535 540	
act ttg aat ata act tta aga agc tac taa a gtgctgttcc gaagaatagg Thr Leu Asn Ile Thr Leu Arg Ser Tyr * 545 550	1685
ctgaaacaaa aatataagaa ttattagcta ctttgttggg caataggcaa aagtctatag	1745
cattttcatg aaaatatact aaaaatattt ttatgatata taaaatgtac taattagctt	1805
taaacactaa aatcagattt cttcaaaata taaatttgtt ttgattcttt atatttatat	1865
gtttttattt catttcaata aacttccaga aatttgtcat ttgaaaaaaa aaaaa	1920
<210> 299 <211> 573 <212> DNA <213> Homo sapiens <220>	
<221> CDS <222> (191)(379)	
<400> 299 tatacgacca ctatagggat ttggccctcg aggcaagaat tcggcacgag ggatactttg	60
ccctttcctc agttgccacc aaggtgcttg gtccttccga ggaagctaag gccacattgg	120
ggtgaggcca tcacttcatc cagtgactag caccacctct ggcaatgtca gcccacact	180
cgcccgcgcc atg gcc tcc atc tcc gag ctt gcc tgt gtc tac ttg gcc Met Ala Ser Ile Ser Glu Leu Ala Cys Val Tyr Leu Ala 1 5 10	229
ctc att ctg cac gat gac gag gtg atc atc atg gag gtt aat atc aat Leu Ile Leu His Asp Asp Glu Val Ile Ile Met Glu Val Asn Ile Asn 15 20 25	277
acc ctc att aaa gca gcc agt gta aat gtt gaa cct ttt ggc ctg gct Thr Leu Ile Lys Ala Ala Ser Val Asn Val Glu Pro Phe Gly Leu Ala 30 35 40 45	325
tgt ttg gaa agg ccc tgg cca acg tca aca ttg gaa gcc tca tct gca Cys Leu Glu Arg Pro Trp Pro Thr Ser Thr Leu Glu Ala Ser Ser Ala 50 55 60	373
atg tag gggctggtgg acctgctcta gcagctggtg ctgcaccagc aggaggtcct Met *	429
gcccctcca ttgctgctgc ttcagctgag gagaagaaaa tggaagcaaa gaaagaagaa	489
tctgaggagt ctgatgatga catgggcttt ggtcttttta ctaaacctgt tttataatgt	549

<210> 300 <211> 1718 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (247)(1245)	
<400> 300 ccggtcgacg atttcgtgga cgctggcagc tgggttctcc cgtttccctt gggcaggagc	60
agggtcgggt tcaaagcctc cggaacgcgt tgtggcccct tctccggctc gcagccgacc	120
ggtaagcccg cctcctccct cggccggccc tggggccgtg tccgccgggc aactccagcc	180
gaggcctggg cttctgcctg caggtgtctg cggcgaggcc cctagggtac agcccgattt	240
ggcccc atg gtg ggt ttc ggg gcc aac cgg cgg gct ggc cgc ctg ccc Met Val Gly Phe Gly Ala Asn Arg Arg Ala Gly Arg Leu Pro 1 5 10	288
tct ctc gtg ctg gtg gtg ctg ctg gtg gtg	336
aac tac tgg agc atc tcc tcc cgc cac gtc ctg ctt cag gag gag gtg Asn Tyr Trp Ser Ile Ser Ser Arg His Val Leu Leu Gln Glu Glu Val 35 40 45	384
gcc gag ctg cag ggc cag gtc cag cgc acc gaa gtg gcc cgc ggg cgg Ala Glu Leu Gln Gly Gln Val Gln Arg Thr Glu Val Ala Arg Gly Arg 50 55 60	432
ctg gaa aag cgc aat tcg gac ctc ttg ctg ttg gtg gac acg cac aag Leu Glu Lys Arg Asn Ser Asp Leu Leu Leu Val Asp Thr His Lys 65 70 75	480
aaa cag atc gac cag aag gag gcc gac tac ggc cgc ctc agc agc cgg Lys Gln Ile Asp Gln Lys Glu Ala Asp Tyr Gly Arg Leu Ser Ser Arg 80 85 90	528
ctg cag gcc aga gag ggc ctc ggg aag aga tgc gag gat gac aag gtt Leu Gln Ala Arg Glu Gly Leu Gly Lys Arg Cys Glu Asp Asp Lys Val 95 100 105 110	576
aaa cta cag aac aac ata tcg tat cag atg gca gac ata cat cat tta Lys Leu Gln Asn Asn Ile Ser Tyr Gln Met Ala Asp Ile His His Leu 115 120 125	624
aag gag caa ctt gct gag ctt cgt cag gaa ttt ctt cga caa gaa gac	672

Lys Glu Gln Leu Ala Glu Leu Arg Gln Glu Phe Leu Arg Gln Glu Asp 130 135 720 cag ctt cag gac tat agg aag aac aat act tac ctt gtg aag agg tta Gln Leu Gln Asp Tyr Arg Lys Asn Asn Thr Tyr Leu Val Lys Arg Leu gaa tat gaa agt ttt cag tgt gga cag cag atg aag gaa ttg aga gca 768 Glu Tyr Glu Ser Phe Gln Cys Gly Gln Gln Met Lys Glu Leu Arg Ala 160 cag cat gaa gaa aat att aaa aag tta gca gac cag ttt tta gag gaa 816 Gln His Glu Glu Asn Ile Lys Lys Leu Ala Asp Gln Phe Leu Glu Glu 180 caa aag caa gag acc caa aag att caa tca aat gat gga aag gaa ttg 864 Gln Lys Gln Glu Thr Gln Lys Ile Gln Ser Asn Asp Gly Lys Glu Leu 200 gat ata aac aat caa gta gta cct aaa aat att cca aaa gta gct gag 912 Asp Ile Asn Asn Gln Val Val Pro Lys Asn Ile Pro Lys Val Ala Glu 210 215 960 aat gtt gca gat aag aat gaa gaa ccc tca agc aat cat att cca cat Asn Val Ala Asp Lys Asn Glu Glu Pro Ser Ser Asn His Ile Pro His 225 230 ggg aaa gaa caa atc aaa aga ggt ggt gat gca ggg atg cct gga ata 1008 Gly Lys Glu Gln Ile Lys Arg Gly Gly Asp Ala Gly Met Pro Gly Ile 240 245 gaa gag aat gac cta gca aaa gtt gat gat ctt ccc cct gct tta agg 1056 Glu Glu Asn Asp Leu Ala Lys Val Asp Asp Leu Pro Pro Ala Leu Arg 255 aag cct cct att tca gtt tct caa cat gaa agt cat caa gca atc tcc 1104 Lys Pro Pro Ile Ser Val Ser Gln His Glu Ser His Gln Ala Ile Ser 275 cat ctt cca act gga caa gct ctc tcc cca aat atg cct cca gat tca 1152 His Leu Pro Thr Gly Gln Ala Leu Ser Pro Asn Met Pro Pro Asp Ser 295 cac att aaa cac aat gga aac ccc ggt act tca aaa aca gaa tcc ttc 1200 His Ile Lys His Asn Gly Asn Pro Gly Thr Ser Lys Thr Glu Ser Phe 310 cag tcc tct tca gcg ttt aat tcc agg ctc aaa ctt gga cag tag aac 1248 Gln Ser Ser Ser Ala Phe Asn Ser Arg Leu Lys Leu Gly Gln * 320 325 ccagaaattc caaacagatt atactaaagg caggttacca aggacagaag ccggggattc 1308 ccataaaatt ggcaccaatg tgaacacaga gagctcgtaa actgggtcct ggaccttggc 1368 agcacgcttc accgacgtcc tcaaaaccca gaggacacac tcgaaaacga aaagggggcg 1428

aaccgcaaca cccacggccc ccccgacccg gaagggacga aagacagggt acaccaggac 1488
acacaaaatg gcaaaacaaa ggcaacacgc tccaagaaag aacagccata cacaaaagaa 1548
caaaagggca cacaccaaac aaccccgcac gaaccaacac cacaccaaga catgtcaaca 1608
aacaagacca cataggagac gacaacgcaa agacaccgat cgagtaaccc caaagccacc 1668
aaaccaccaa cggacaccca ctgcccagcc tgtatcattc ctactagaca 1718

```
<210> 301
     <211> 423
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> CDS
     <222> (178)..(348)
     <400> 301
tcttttcaca tgattactgg ccatttgtat accttctgtg gaaatgtggt aacaccttt
                                                                       60
gctgatttta aaatagggtt atttgtttat tattgagttg aaataattcc ttcttttgag
                                                                     120
tgtcagtgac tgaggttcgc tgtgacacag aggggttctc ctggagagct atggcac
                                                                     177
atg ctc cat att aaa agg caa cat gat gct cgc tcc acc cag agg ccc
                                                                      225
Met Leu His Ile Lys Arg Gln His Asp Ala Arg Ser Thr Gln Arg Pro
cgg tcc ccg cca ttc att ccg ctc ccg gcc gag agt cgc tct agc caa
                                                                     273
Arg Ser Pro Pro Phe Ile Pro Leu Pro Ala Glu Ser Arg Ser Ser Gln
tca cct tcc agg ctc agg gcc gag gca ggg cct ctg cct ctt cgg
                                                                     321
Ser Pro Ser Arg Leu Arg Ala Ala Glu Ala Gly Pro Leu Pro Leu Arg
         35
ggg gcc tct ccc tcc ccc tgc ccc tga ttgtg gctgaactgc caccgcttga
                                                                     373
Gly Ala Ser Pro Ser Pro Cys Pro *
     50
                         55
```

tagcaaacca cacteggeac aggaaggaga acagegeeeg eggeacgaaa

```
<210> 302
<211> 408
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (44)..(343)
```

<400> 302	
agggeteaag gaageeeeaa gteeagtetg eeeagaaeeg age atg tea tet eee Met Ser Ser Pro 1	55
ccg cca aga cgc tcc aac cgc cgc aat cct tgt cca tca ggc atc cagPro Pro Arg Arg Ser Asn Arg Arg Asn Pro Cys Pro Ser Gly Ile Gln5101520	103
gcc aga aac tct ggc tgc ccc cac ctc ccc aat ggt ccc cat caa gta Ala Arg Asn Ser Gly Cys Pro His Leu Pro Asn Gly Pro His Gln Val 25 30 35	151
ggt aac atc ctg ctg att tta act cct gtg cag ccc tca aat gca caa Gly Asn Ile Leu Leu Ile Leu Thr Pro Val Gln Pro Ser Asn Ala Gln 40 45 50	199
ctg cct ccc att cct gca cag tgc ccc agt tca ggc ctt cac cac ctt Leu Pro Pro Ile Pro Ala Gln Cys Pro Ser Ser Gly Leu His His Leu 55 60 65	247
gtt cct ggg cca ctg ccc aag tct ccc ccg act ggt ggc tgg act tct Val Pro Gly Pro Leu Pro Lys Ser Pro Pro Thr Gly Gly Trp Thr Ser 70 75 80	295
aat act ttt cca act ccc cac tca tta aat cca tcc ccc tct cat taa Asn Thr Phe Pro Thr Pro His Ser Leu Asn Pro Ser Pro Ser His * 85 90 95 100	343
ctggtgggaa ttgaggaaaa ctgagttcca gccttgtcat cctcatactc atgacccttc	403
caggc	408
<210> 303 <211> 822 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (69)(590)	
<400> 303 cagatcaaga cacaggagaa gagtgcaaaa atactgatca ggaagagtct accatttcat	60
ccaaggaa atg cca caa tca ttt tct gca atc aca tta agt aac aca gag Met Pro Gln Ser Phe Ser Ala Ile Thr Leu Ser Asn Thr Glu 1 5 10	110
atg aat aat att aat act aat gcc ccg aga aac aaa ctt cca ata aag Met Asn Asn Ile Asn Thr Asn Ala Pro Arg Asn Lys Leu Pro Ile Lys 15 20 25 30	158

206 gaa ctt ggt aaa gtt tct aaa cat aaa att gcc act aaa aga aca cca Glu Leu Gly Lys Val Ser Lys His Lys Ile Ala Thr Lys Arg Thr Pro 254 cat aaa gaa gat gag gca atg agc tgt tct gaa aat tgt tcg agt gcc His Lys Glu Asp Glu Ala Met Ser Cys Ser Glu Asn Cys Ser Ser Ala cag ggc gac tca ctt cag gat gag tct caa ggg tct cat tct gag tcc 302 Gln Gly Asp Ser Leu Gln Asp Glu Ser Gln Gly Ser His Ser Glu Ser 70 age tet aat eee tee aat eet gaa aet ttg cat gea aag gea aet gat 350 Ser Ser Asn Pro Ser Asn Pro Glu Thr Leu His Ala Lys Ala Thr Asp 80 85 398 tca gtt cta caa ggt tct gaa gga aac aag gtc aag agg aca tcc tgc Ser Val Leu Gln Gly Ser Glu Gly Asn Lys Val Lys Arg Thr Ser Cys 95 100 atg tat ggg gca aac tgc tat agg aag aat cct gtt cat ttt caa cat 446 Met Tyr Gly Ala Asn Cys Tyr Arg Lys Asn Pro Val His Phe Gln His 115 120 ttt agc cat cct ggt gat agt gat tat gga ggt gta caa atc gtg ggc 494 Phe Ser His Pro Gly Asp Ser Asp Tyr Gly Gly Val Gln Ile Val Gly caa gat gag act gat gac cgg cct gaa tgt ccc tat gga cca tcc tgt 542 Gln Asp Glu Thr Asp Asp Arg Pro Glu Cys Pro Tyr Gly Pro Ser Cys 590 tat agg ttg gaa gtt cag tgt cca gtt gaa aaa cac caa ctc agc tag Tyr Arg Leu Glu Val Gln Cys Pro Val Glu Lys His Gln Leu Ser * tttcttctgg tctgcattac agtattttac ctgtcttttt atgaaaagag cacgttctag 650 gaaaggatgg aagattetea aagaaacaac tttccccttc taaggcagat gaaaacctgt 710

acatgtacct aacatttttt ccccttttta aaatataaaa tttcacatta cattttctgc

770

```
<210> 304
```

<211> 457

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (121)..(309)

<400> 304

tttgaaagct gattgatage egtacegeae egcaaaceee gggtegaeee aegegteege	60
ttcacttcac cttcactact tctgtagtct gatcttgtgt aatagagaac ccagccaact	120
atg aag ttc ctt gac ttt gct ttc atc ttg gct ctc aag gtt tcc atg Met Lys Phe Leu Asp Phe Ala Phe Ile Leu Ala Leu Lys Val Ser Met 1 5 10 15	168
att gga gct gat tcc tct gaa gag aaa ttt ttg cgt ata att gta cga Ile Gly Ala Asp Ser Ser Glu Glu Lys Phe Leu Arg Ile Ile Val Arg 20 25 30	216
atc ggt tat ggg tat ggc cct tat cat tca gtt tca gaa caa cca cta Ile Gly Tyr Gly Tyr Gly Pro Tyr His Ser Val Ser Glu Gln Pro Leu 35 40 45	264
tac cca caa cca tac caa cca caa tac caa caa	312
catcagtaac tgcaggacat gattattgag gcttgattgg ctgatacgac ttctacatcc	372
atattctcat gtttcatacc atatcgcact actaccactt tttgaagaat catcatagag	432
<pre><210> 305 <211> 1749 <212> DNA <213> Homo sapiens</pre>	457
<220> <221> CDS <222> (85)(873)	
<400> 305 ccgcgccgga attcccgggt cgacccacgc gtccgccgca gcccccagct cgccccaag	60
atgatgaaga ggcagctgca ccgc atg cgg cag ctg gcc cag acg ggc agc Met Arg Gln Leu Ala Gln Thr Gly Ser 1 5	111
ttg gga cgc acc ccg gag acc gct gag ttc ctg ggt gag gac ctg ctg Leu Gly Arg Thr Pro Glu Thr Ala Glu Phe Leu Gly Glu Asp Leu Leu 10 15 20 25	159
cag gta gaa cag cgg ctg gag ccg gcc aag cgg gca gcc cac aac atc Gln Val Glu Gln Arg Leu Glu Pro Ala Lys Arg Ala Ala His Asn Ile 30 35 40	207
cac aag cgg ctg cag gcc tgt ctg cag ggc cag agc ggg gca gac atg His Lys Arg Leu Gln Ala Cys Leu Gln Gly Gln Ser Gly Ala Asp Met 45 50 55	255

gac aag cgg gtg aag aag ctt ccc ctc atg gct ctg tcc acc acg atg Asp Lys Arg Val Lys Lys Leu Pro Leu Met Ala Leu Ser Thr Thr Met 60 65 70	303								
gct gag agc ctc aag gag ctg gac cct gat tcc agc atg ggg aag gcc Ala Glu Ser Leu Lys Glu Leu Asp Pro Asp Ser Ser Met Gly Lys Ala 75 80 85	351								
ttg gag atg agc tgt gcc atc cag aat cag ctg gcc cgc atc ctg gcc Leu Glu Met Ser Cys Ala Ile Gln Asn Gln Leu Ala Arg Ile Leu Ala 90 95 100 105	399								
gag ttt gag atg acc ctg gag agg gac gtc ctg cag cca ctc agc agg Glu Phe Glu Met Thr Leu Glu Arg Asp Val Leu Gln Pro Leu Ser Arg 110 115 120	447								
ctg agt gag gag ctg cca gcc atc ctc aaa cac aag aaa agc ctc Leu Ser Glu Glu Leu Pro Ala Ile Leu Lys His Lys Lys Ser Leu 125 130 135	495								
cag aag ctc gtg tcc gac tgg aac aca ctc aag agc agg ctc agt cag Gln Lys Leu Val Ser Asp Trp Asn Thr Leu Lys Ser Arg Leu Ser Gln 140 145 150	543								
gca acc aag aat tca ggc agc agt caa ggc cta gga ggc agc ccg ggt Ala Thr Lys Asn Ser Gly Ser Ser Gln Gly Leu Gly Gly Ser Pro Gly 155 160 165	591								
agt cac agc cat acg acc atg gcc aac aag gtg gag acg ctg aag gag Ser His Ser His Thr Thr Met Ala Asn Lys Val Glu Thr Leu Lys Glu 170 175 180 185	639								
gag gag gag gag ctg aag agg aaa gtg gag caa tgc agg gac gag tac Glu Glu Glu Glu Leu Lys Arg Lys Val Glu Gln Cys Arg Asp Glu Tyr 190 195 200	687								
ttg gct gac ctg tac cac ttt gtt acc aag gag gac tcc tat gcc aac Leu Ala Asp Leu Tyr His Phe Val Thr Lys Glu Asp Ser Tyr Ala Asn 205 210 215	735								
tac ttc att cgt ctc ctg gag att cag gcc gat tac cat cgc agg tca Tyr Phe Ile Arg Leu Leu Glu Ile Gln Ala Asp Tyr His Arg Arg Ser 220 225 230	783								
ctg agc tcg ctg gac aca gcc ctg gct gag ctg agg gag aac cac ggc Leu Ser Ser Leu Asp Thr Ala Leu Ala Glu Leu Arg Glu Asn His Gly 235 240 245	831								
caa gca ggt ggg gac ata ggc ccg gcg ata cca cac ccc tga ccctgcc Gln Ala Gly Gly Asp Ile Gly Pro Ala Ile Pro His Pro * 250 260	880								
ctgctcgggg cttattgaga agctcgcact tcatcctgaa aggtagcagg aagctgtgg	a 940								
tgggttctga gagctaggct caatctgtga tggagaggca gctctggcta ctgtgtgga	g 1000								
ggtggagtga agcgggcagg actagagcca ggcctgtgag gcagaaggag gcaacggtgg									

1120 cctggactag gacagaggca gtggaggcgg gctgattcga gagatgtgac ggatgatttc agatgtgtgc ctggacagtc agtggcaggt ggtaccacct tgaggacatg aagggggggt 1180 gcccctgcct gactgctcgg ggtgggaagg ccctgggccg ctgatctgtt tcatccctgc 1240 agaccactcc ccttcgatga cagccaccca cttccccagg gtgtatgggg tgtcgctggc 1300 aacccacctg caagagctgg geogggagat tgeeetgeee atcgaggeet gegteatgat 1360 gctgctttct gagggcatga aggaagaggg tctcttccgt ctggctgctg gggcctcggt 1420 1480 gctgaagcgt gtcaagcaga caatggcctc ggaccccgac agcctggagg agttctgctc 1540 cgacccgcac gctgtggcag gtgccctcaa gtcctatctg cgggagctgc cagagcctct 1600 gatgacette gacetetatg atgactggat gagggeagee ageetgaagg ageeagggge ccggctgcag gccctccaag aggtgtgcag ccgcctaccc cccgagaacc tcagcaacct 1660 caggtacctg atgaagttcc tggcacggct ggccgaggag caggaggtga acaagacgaa 1720 atctcgacag cgaagtcgac ccgggaatt 1749

<210> 306 <211> 496 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (55)..(372)

<400> 306

aaggateett aattaaatta ateeeceece eegaacegtt egetaaetga aatg 57 atq Met gcg act gga acg cca gag tct caa gcg cgg ttc ggt cag tcc gtg aag 105 Ala Thr Gly Thr Pro Glu Ser Gln Ala Arg Phe Gly Gln Ser Val Lys ggg ctt ctc acg gag aag gtg acc acc tgt ggt act gac gta atc gcg 153 Gly Leu Leu Thr Glu Lys Val Thr Thr Cys Gly Thr Asp Val Ile Ala 20 30 201 ctc acc aag cag gtg ctg aaa ggc tcc cgg agc tcc gag ctg cta ggt Leu Thr Lys Gln Val Leu Lys Gly Ser Arg Ser Ser Glu Leu Leu Gly 35 249 cag gca gct cga aac atg gta ctc cag gaa gat gcc atc ttg cac tca Gln Ala Ala Arg Asn Met Val Leu Gln Glu Asp Ala Ile Leu His Ser 50

gaa gat agt tta agg aag atg gca ata ata aca aca cat ctt caa tac Glu Asp Ser Leu Arg Lys Met Ala Ile Ile Thr Thr His Leu Gln Tyr 70 75 80	297
cag caa gaa gct att cag aag aat gtt gaa cag tca tcg gat cta cag Gln Gln Glu Ala Ile Gln Lys Asn Val Glu Gln Ser Ser Asp Leu Gln 85 90 95	345
gac cag ttg aat cat ctg ttg aaa tag aatga catgtaagag tgctgtagga Asp Gln Leu Asn His Leu Leu Lys * 100 105	397
ctcctttgcc taatgctgag gagtaaatac cttacacagc tgtcctctgg gtttggtttt	457
ctattttctt ctccaaaagt taagttagaa aagttcttg	496
<210> 307 <211> 1438 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (88)(840)	
<400> 307 catggaggag gaaggagatg gcatggctta ccataaagaa gcactggacg ccgggtgcac	60
	60 111
catggaggag gaaggagatg gcatggctta ccataaagaa gcactggacg ccgggtgcac gttccaggat ccaggtgccc aggggtc atg aag ctg gga ctc ctc tgt gct Met Lys Leu Gly Leu Leu Cys Ala	
catggaggag gaaggagatg gcatggctta ccataaagaa gcactggacg ccgggtgcac gttccaggat ccaggtgccc aggggtc	111
catggaggag gaaggagatg gcatggctta ccataaagaa gcactggacg ccgggtgcac gttccaggat ccaggtgccc aggggtc	111 159
catggaggag gaaggagatg gcatggctta ccataaagaa gcactggacg ccgggtgcac gttccaggat ccaggtgccc aggggtc	111 159 207
catggaggag gaaggagtg gcatggctta ccataaagaa gcactggacg ccgggtgcac gttccaggat ccaggtgccc aggggtc at gas ctg gga ctc ctc tgt gct Met Lys Leu Gly Leu Leu Cys Ala 1 5 ctg ctc tct ctg ctg gca ggg cat ggc tgg gca gac acc cgt gcc atc Leu Leu Ser Leu Leu Ala Gly His Gly Trp Ala Asp Thr Arg Ala Ile 10 15 20 ggg gcc gag gaa tgt cgc ccc aac tcc cag cct tgg cag gcc ggc ctc Gly Ala Glu Glu Cys Arg Pro Asn Ser Gln Pro Trp Gln Ala Gly Leu 25 30 35 40 ttc cac ctt act cgg ctc ttc tgt ggg gcg acc ctc atc agt gac cgc Phe His Leu Thr Arg Leu Phe Cys Gly Ala Thr Leu Ile Ser Asp Arg 50 55 tgg ctg ctc aca gct gcc cac tgc cgc aag ccg tat ctg tgg gtc cgc Trp Leu Leu Thr Ala Ala His Cys Arg Lys Pro Tyr Leu Trp Val Arg	111159207255

Arg Val Thr Asp Phe Phe Pro His Pro Gly Phe Asn Lys Asp Leu Ser 90 95 100	
gcc aat gac cac aat gat gac atc atg ctg atc cgc ctg ccc agg cag Ala Asn Asp His Asn Asp Asp Ile Met Leu Ile Arg Leu Pro Arg Gln 105 110 115 120	447
gca cgt ctg agt cct gct gtg cag ccc ctc aac ctc agc cag acc tgt Ala Arg Leu Ser Pro Ala Val Gln Pro Leu Asn Leu Ser Gln Thr Cys 125 130 135	495
gtc tcc cca ggc atg cag tgt ctc atc tca ggc tgg ggg gcc gtg tcc Val Ser Pro Gly Met Gln Cys Leu Ile Ser Gly Trp Gly Ala Val Ser 140 145 150	543
agc ccc aag gcg ctg ttt cca gtc aca ctg cag tgt gcc aac atc agc Ser Pro Lys Ala Leu Phe Pro Val Thr Leu Gln Cys Ala Asn Ile Ser 155 160 165	591
atc ctg gag aac aaa ctc tgt cac tgg gca tac cct gga cac atc tcg Ile Leu Glu Asn Lys Leu Cys His Trp Ala Tyr Pro Gly His Ile Ser 170 180	639
gac agc atg ctc tgt gcg ggc ctg tgg gag ggg ggc cga ggt tcc tgc Asp Ser Met Leu Cys Ala Gly Leu Trp Glu Gly Gly Arg Gly Ser Cys 185 190 195 200	687
cag ggt gac tct ggg ggc ccc ctg gtt tgc aat gga acc ttg gca ggc Gln Gly Asp Ser Gly Gly Pro Leu Val Cys Asn Gly Thr Leu Ala Gly 205 210 215	735
gtg gtg tct ggg ggt gct gag ccc tgc tcc aga ccc cgg cgc ccc gca Val Val Ser Gly Gly Ala Glu Pro Cys Ser Arg Pro Arg Arg Pro Ala 220 225 230	783
gtc tac acc agc gta tgc cac tac ctt gac tgg atc caa gaa atc atg Val Tyr Thr Ser Val Cys His Tyr Leu Asp Trp Ile Gln Glu Ile Met 235 240 245	831
gag aac tga gcccgcg cgccacgggg gcaccttgga agaccaagag aggccgaagg Glu Asn * 250	887
gcacggggta gggggttctc gtagggtccc agcctcaatg gttcccgccc tggacctcca	947
gctgccctga ctcccctctg gacactaaga ctccgcccct gaggctccgc cccctcacga	1007
ggtcaagcaa gacacagtcg cgcccctcg gaacggagca gggacacgcc cttcagagcc	1067
cgtctctatg acgtcaccga cagccatcac ctccttcttg gaacagcaca gcctgtggct	1127
ccgccccaag gaaccactta cacaaaatag ctccgcccct cggaactttg cccagtggga	1187
cttcccctcg ggactccacc ccttgtggcc ccgcctcctt caccagagat ctcgccctc	1247
gtgatgtcag gggcgcagta gctccgccca cgtggagctc gggcggtgta gagctcagcc	1307

115

1367 ccttgtggcc ccgtcctggg cgtgtgctgg gtttgaatcc tggcggagac ctggggggaa attgagggag ggtctggata cctttagagc caatgcaacg gatgattttt cagtaaacgc 1427 gggaaacctc a 1438 <210> 308 <211> 675 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (110)..(613) <400> 308 taggagatcc ttagcggact gggatcttaa tggtctcact gtgtttatct ctttgtaaag 60 gccagccctc acctgacttg tctggttccc tcctggggct aggggatgg 115 atg aga Met Arg agg gct agg ctg gag ctg tca gca gct tct tgg tgc ctg ctg ttt ctc 163 Arg Ala Arg Leu Glu Leu Ser Ala Ala Ser Trp Cys Leu Leu Phe Leu 5 10 ttg tct tgt ctg tct tcg gtg tat tgc aat cct gtc ctc tta gca ggc 211 Leu Ser Cys Leu Ser Ser Val Tyr Cys Asn Pro Val Leu Leu Ala Gly 20 25 ccc gca gag tca tac ttt ttc tcc ctg gcc ttc cag ctc cct ctc ttc 259 Pro Ala Glu Ser Tyr Phe Phe Ser Leu Ala Phe Gln Leu Pro Leu Phe 35 40 50 cac cca gta tgc cca cct ccc tct ccc ttg act acc cca gcc tct gcc 307 His Pro Val Cys Pro Pro Pro Ser Pro Leu Thr Thr Pro Ala Ser Ala 55 60 caa tca cgc cct gcc ctc tac cct tca gag gac acc ttg ccg tct gtg 355 Gln Ser Arg Pro Ala Leu Tyr Pro Ser Glu Asp Thr Leu Pro Ser Val 70 75 403 gag ctg gag cta ttc cta tgg tct ctc tgg gtc cac atg acc tta cat Glu Leu Glu Leu Phe Leu Trp Ser Leu Trp Val His Met Thr Leu His 85 90 ggc act cct ctc acc ttc tgt cca tcc aac aaa att ctc tgt tcc ttt 451 Gly Thr Pro Leu Thr Phe Cys Pro Ser Asn Lys Ile Leu Cys Ser Phe 100 105 110 gaa gct ctc ttt tca gta agg cct tcc ttg gcc cct aac agg atg gat 499

125

130

Glu Ala Leu Phe Ser Val Arg Pro Ser Leu Ala Pro Asn Arg Met Asp

cac cct ccc ctg agc cct ggt cat tgc ctc tct gtt atg gcc tct cca His Pro Pro Leu Ser Pro Gly His Cys Leu Ser Val Met Ala Ser Pro 135 140 145	547
ttg gta aac gct ctg ccg atg tgt ttc atc ttc cca cta gat cct tgc Leu Val Asn Ala Leu Pro Met Cys Phe Ile Phe Pro Leu Asp Pro Cys 150 155 160	595
gcc cac gca cgc ggc tga atcatc tttacatccc cagaggccct ggtatgtggt Ala His Ala Arg Gly * 165	649
ggacaggett gtttetgeeg ggeeet	675
<210> 309 <211> 1042 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (779)(952)	
<400> 309 gtcccctact actactaaat tcgcggccgc gtcgacgttt aggggaggca tcaccagatt	60
aagagtggag atattagagt tgtgtgatcc cagctctgtc gttaatcacc tgtgtctatg	120
cagtcactta ttcccttcat acctgtcagc cgagagcact gactgcgtga tttccagggt	180
cctttacagc tttagagtat aggggctctg tttttgctgc tcccgaattt ccacctccca	240
tcatccacgc atttcacaga tgcatctgaa tgctcacagt gctctatttg tgctcttctg	300
tttgtccctg ttttttatgt ggatgcgtat cgaccgccat gatagactgc acactccctg	360
tgggcaggag ccatgttcat ttcatttttg tgtcccaggc ataatgtagg tgcgctcacc	420
tcatctctcc catatcttga acctgtgaat ctcagtggac tcttttcagc agatgaacct	480
gtataagtct ttcctgtctt gaaaggacag atgggtggcc cccatcctcc actgagcttc	540
ctgttgaact ccctttgcag gtgacgtcaa aatagaagaa gccctcattc accatatcta	600
ctgttaccet cctcctttcc cctctacttc ccatgaccag ttgttcactg cccctccaca	660
gaacctactt ctgataaatc ccgtgaagaa ttttttattg ccagatccaa attctttggc	720
ctctcacagt gtttgctgtg gcctgattct ccctcattct ggaaactcct ctcctctc atg gct ccc atg gga cca gtt gct cct gca gct cct cct gcc cct cac Met Ala Pro Met Gly Pro Val Ala Pro Ala Ala Pro Pro Ala Pro His 1 5 10 15	778 826
tot got etc ett gga etc etc ttt ect ggt att etc tge agt tet gte	874

Ser Ala Leu Leu Gly Leu Leu Phe Pro Gly Ile Leu Cys Ser Ser Val 20 25 30	
ctt cgc tct cag ctc ttt gca ccc ttc ttt ccc tcg ctg aca gct tcg Leu Arg Ser Gln Leu Phe Ala Pro Phe Phe Pro Ser Leu Thr Ala Ser 35 40 45	922
cgc ata cct gtg gct tca ctg tca cgc taa g gaacattctc tgtggccctg Arg Ile Pro Val Ala Ser Leu Ser Arg * 50 55	973
gcccgtctct cgagcctgag ccccatgatt acaacttctg tctgtacccc acagtacata	1033
accttagcc	1042
<210> 310 <211> 1333 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (43)(555)	
<pre><400> 310 accggtccgg aattcccggg tcgacgattt cgtccttcta cc atg agg ctc cct</pre>	54
gct cag ctc ctg ggg ctg cta atg ctc tgg gtc cct gga tcc agt gag Ala Gln Leu Leu Gly Leu Leu Met Leu Trp Val Pro Gly Ser Ser Glu 5 10 15 20	102
gat att gtg atg acc cag act cca ctc tcc ctg ccc gtc acc cct gga Asp Ile Val Met Thr Gln Thr Pro Leu Ser Leu Pro Val Thr Pro Gly 25 30 35	150
gag ccg gcc tcc atc tcc tgc agg tct agt cag agc ctc ttg gat agt Glu Pro Ala Ser Ile Ser Cys Arg Ser Ser Gln Ser Leu Leu Asp Ser 40 45 50	198
gat gat gga aac acc tat ttg gac tgg tac ctg cag aag cca ggg cag Asp Asp Gly Asn Thr Tyr Leu Asp Trp Tyr Leu Gln Lys Pro Gly Gln 55 60 65	246
tct cca cag ctc ctg atc tat acg ctt tcc tat cgg gcc tct gga gtc Ser Pro Gln Leu Leu Ile Tyr Thr Leu Ser Tyr Arg Ala Ser Gly Val 70 75 80	294
cca gac agg ttc agt ggc agt ggg tca ggc act gat ttc aca ctg aaa Pro Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys 85 90 95 100	342
atc agc agg gtg gag gct gag gat gtt gga gtt tat tac tgc atg caa	390

Ile Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Met Gln 105 110 438 cgt ata gag ttt cct tgg act ttt ggc cag ggg acc aag ctg gag atc Arg Ile Glu Phe Pro Trp Thr Phe Gly Gln Gly Thr Lys Leu Glu Ile 120 aaa cga act gtt gct gca cca tct gtc ttc atc ttc ccg cca tct gat 486 Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp 135 140 145 gag cag ttg aaa tct gga act gcc tct gtt gtg tgc ctg ctg aat aac 534 Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn 150 155 ttc tat ccc aga gag gcc taa gt acagtggaaa gtggtaaacg gcctccaaac 587 Phe Tyr Pro Arg Glu Ala tggttaaatc cagtaaagtg tcacagagca agacagtaag gacagcacct acgtactcag 647 cagcaaccag aagctgagca aagttgactt atgagatacc acaagtctag gcctgacgaa 707 gtcaaccatt atggacttgg gctgtgtcca atctgaatat agttatacct gggcagagtg 767 gttaaaaggt atagtgtgtc ccctaaattg tatcctaggt ttcaagctcg tagtcacttg 827 cccaggettt ttgtcccttg taggtccttt tttcccaatg ggggacctaa gacactaagt 887 gacgggactc tccaaagtta atgatttaaa acttaaaatc actctctaag ggatcatcag 947 gagttatgaa gtcgatgact aattgttttt gatacgagta tatctgaaaa tgattgaaag 1007 tgtgaattcc tcatggtagg tgagataaac tagtcgttat agtatctagt agatgaccgg 1067 agcatttata gagtagaagt ccgcatactc ccggataatc taccacgaca catgattaga 1127 ctctcgcgat ggtaaacaga tggatgtaaa ctcaatcgtg ggagtaccga aagaggtggc 1187 tatgatgttg acatgatagg gtctaggatg cgtgatcgtg tgacggaatt gtcaaatacg 1247 tgtgaataca catttattgg caatttctgt atgacgtgat atgacgattag cagaggttta 1307

```
<210> 311
```

tgaatgagtg acatcttgcg tgtggt

<211> 803

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (77)..(433)

<400> 311 cgcctgcagg taccggtccg gaattcccgg gtcgacgatt tcgtgcttca ttcctgtatg	60
gggtggtatt cctgcc atg ggt cct ggg ctt ctc cac tgg atg gcc ctt Met Gly Pro Gly Leu Leu His Trp Met Ala Leu 1 5 10	109
tgt ctc ctt gga aca ggt cat ggg gat gcc atg gtc atc cag aac cca Cys Leu Leu Gly Thr Gly His Gly Asp Ala Met Val Ile Gln Asn Pro 15 20 25	157
aga tac cag gtt acc cag ttt gga aag cca gtg acc ctg agt tgt tct Arg Tyr Gln Val Thr Gln Phe Gly Lys Pro Val Thr Leu Ser Cys Ser 30 35 40	205
cag act ttg aac cat aac gtc atg tac tgg tac cag cag aag tca agt Gln Thr Leu Asn His Asn Val Met Tyr Trp Tyr Gln Gln Lys Ser Ser 45 50 55	253
cag gcc cca aag ctg ctg ttc cac tac tat gac aaa gat ttt aac aat Gln Ala Pro Lys Leu Leu Phe His Tyr Tyr Asp Lys Asp Phe Asn Asn 60 65 70 75	301
gaa gca gac acc cct gat aac ttc caa tcc agg agg ccg aac act tct Glu Ala Asp Thr Pro Asp Asn Phe Gln Ser Arg Arg Pro Asn Thr Ser 80 85 90	349
ttc tgc ttt ctt gac atc cgc tca cca ggc ctg ggg gac gca gcc atg Phe Cys Phe Leu Asp Ile Arg Ser Pro Gly Leu Gly Asp Ala Ala Met 95 100 105	397
tac ctg tgt gcc acc agc gtc cac cgg gac cca tga acac tgaagctttc Tyr Leu Cys Ala Thr Ser Val His Arg Asp Pro * 110 115	447
tttggacaag gcaccagact cacagttgta gcatgtgaaa aggtccagag ctctgcagtg	507
tgagctttct actgaaatgg cccttggact ttgtggttca ttcatactca gtggtctagc	567
ttgtactact tttgagaatg caaagcttaa ctgtggacgg attccaatcc tggccaggca	627
gggttgctgg acactctgag agaagaaagg gttaatccca tgaccatcaa cttccatggg	687
atttcagcca tcctggacaa gctaccacac cctcctgccc caaggggagg aggaaatgtg	747
gaccatecea teagaaattg accaaaggae etgaacaagt ggteeeece eeecee	803

<210> 312

<211> 687

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (6)..(605)

<pre><400> 312 agctg atg ctc tgc aga caa caa ctc agg aat ttg act gaa aa</pre>									
gaa tot gag ttg cag tgt oto ttt caa cag ata gaa agg cag gag Glu Ser Glu Leu Gln Cys Leu Phe Gln Gln Ile Glu Arg Gln Glu 15 20 25	-								
ctt ctg gat gaa ata cat cgt gag aag aga gat cta ctg gaa gag Leu Leu Asp Glu Ile His Arg Glu Lys Arg Asp Leu Leu Glu Glu 35 40	Thr								
caa aga aaa gat gaa gaa atg gga tct ctg cag gac cgt gta att Gln Arg Lys Asp Glu Glu Met Gly Ser Leu Gln Asp Arg Val Ile 50 55 60									
tta gaa acg agt acc caa gtg gcc ttg gac cat ctg gag tct gtg Leu Glu Thr Ser Thr Gln Val Ala Leu Asp His Leu Glu Ser Val 65 70 75									
gag aaa ctg agc cta cta gaa gat ttc aaa gac ttc aga gat tcc Glu Lys Leu Ser Leu Leu Glu Asp Phe Lys Asp Phe Arg Asp Ser 80 85 90	-								
agt tca tct gag aga act gat gga aga tat tcc aaa tac agg gtt Ser Ser Ser Glu Arg Thr Asp Gly Arg Tyr Ser Lys Tyr Arg Val 95 100 105									
aga aat tot ott oag oat oac oaa gat gac acc aag tac aga acc Arg Asn Ser Leu Gln His His Gln Asp Asp Thr Lys Tyr Arg Thr 115 120 125	Lys								
agt ttc aaa ggt gac aga acc ttt ctg gaa ggt tcc cac act cgt Ser Phe Lys Gly Asp Arg Thr Phe Leu Glu Gly Ser His Thr Arg 130 135 140									
tta gat cac tca tcc tct tgg cag gat cac agt cgc ttc ctg tct Leu Asp His Ser Ser Ser Trp Gln Asp His Ser Arg Phe Leu Ser 145 150 155									
cca aga ttt tca tac gtg aac tca ttt acc aaa aga act gtt gct Pro Arg Phe Ser Tyr Val Asn Ser Phe Thr Lys Arg Thr Val Ala 160 165 170									
gat tca gct tca aac aag gaa gat gcc aca atg aat gga aca agt Asp Ser Ala Ser Asn Lys Glu Asp Ala Thr Met Asn Gly Thr Ser 175 180 185									
caa ccc aaa aaa gag gaa tat ggg agc taa a aaagcaaatg taattt Gln Pro Lys Lys Glu Glu Tyr Gly Ser * 195 200	gtta 626								
ttttacatga gtatgttaca aataataaca tctctattct tacagcaaaa aaaaaaaaaa									

<210> 313

a 687

<211> <212> <213>		ns			
<220> <221> <222>	CDS (714)(94	7)			
<400> atttggccct		aattcggcac	c gaggatgaat	aacaggataa cac	gttgtta 60
cattgtcaca	actcctgatc	caggaattga	a tggctaagat	attcgtaatt ctt	atccttt 120
tcagttgtaa	cttattccta	tttgtcagca	a ttcaggttat	tageggetge tgg	cgaagtc 180
cttgagaaat	aaactgcaca	ctggatggtg	g ggggtagtgt	aggaaaatgg agg	ggaagga 240
agtaaagttt	caaattaagc	ctgaacagca	a aagttcccct	gagaaggcca cct	ggattct 300
atcagaaact	cgaatgtcca	tcttgcaaaa	a cttccttgcc	caaaccccac ccc	tggagtc 360
acaacccacc	cttgaccaat	agattcattt	cactgaggga	ggcaaagggc tgg	tcaatag 420
attcatttca	ctgggagagg	caaagggctg	g ggggccagag	aggagaagta aaa	agccaca 480
catgaagcag	caatgcaggc	atgcttctgg	g ctcatctgtg	atcaccagga aac	cccaga 540
tctgacactg	tagtgcattt	cactgctgac	aagaaggctg	ctgccaccag ccts	gtgaagc 600
aaggttaagg	tgagaaggct	ggaggtgaga	ttctgggcag	tctcctggtt gtc	tacccat 660
ggacctagag	gtactttgaa	agttttggat	atctgggctc	tgactgtgca ata	atg 716 Met 1
				gtg ctg atc tcc Val Leu Ile Se: 15	
	a Val Met L			ggc acc ttt gc: Gly Thr Phe Ala 30	
				gac cct gag aad Asp Pro Glu Ası 45	
	ı Gly Asn V			gca acc cac tto Ala Thr His Pho	

gag gat ttt acc cta cag ata cag gct tct tgg cag taa ctaacaaatg Glu Asp Phe Thr Leu Gln Ile Gln Ala Ser Trp Gln * 70 75	957
ctgtggttaa tgctgtagcc cacaagacca ctgagttccc tgtccactat gtttgtacct	1017
atggtccact atgtttgtac ctatgtccca aaatctcatc tcctttagat gggggaggtt	1077
ggggagaaga gcagtatcct gcctgctgat tcagttcctg catgataaaa atagaataaa	1137
gaaatatgct ctctaagaaa	1157
<210> 314 <211> 583 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (219)(479)	
<400> 314 ctatgatete tgaateettg gatgeeacee caacacacet aacceecaac teteaggeea	60
agatagtaaa aagagagtca gagaacagga accgcataaa aagttcttca ttttccatca	120
cttggtggtg actttgaagg tagaggctga cagtgagtgg agtatggaca tgtcacccac	180
aaccagatga agagggactc cgagatagcg actcggct atg cac aca gtc acc Met His Thr Val Thr 1 5	233
cac aga gga gga ggg aag ggg gaa agt agc ctc tct cag cac atg His Arg Gly Gly Ala Gly Lys Gly Glu Ser Ser Leu Ser Gln His Met 10 15 20	281
His Arg Gly Gly Ala Gly Lys Gly Glu Ser Ser Leu Ser Gln His Met	281 329
His Arg Gly Gly Ala Gly Lys Gly Glu Ser Ser Leu Ser Gln His Met 10 15 20 ata aaa aga cct gga tgg gga ggt gga gca gag gcc ttc act cca tca Ile Lys Arg Pro Gly Trp Gly Gly Gly Ala Glu Ala Phe Thr Pro Ser	
His Arg Gly Gly Ala Gly Lys Gly Glu Ser Ser Leu Ser Gln His Met 10 15 20 ata aaa aga cct gga tgg gga ggt gga gca gag gcc ttc act cca tca Ile Lys Arg Pro Gly Trp Gly Gly Gly Ala Glu Ala Phe Thr Pro Ser 25 30 35 ttt ttt aaa tcc atc ctt caa tat ttt caa gag gaa ggg aaa cca gac Phe Phe Lys Ser Ile Leu Gln Tyr Phe Gln Glu Glu Gly Lys Pro Asp	329
His Arg Gly Gly Ala Gly Lys Gly Glu Ser Ser Leu Ser Gln His Met 10 15 20 ata aaa aga cct gga tgg gga ggt gga gca gag gcc ttc act cca tca Ile Lys Arg Pro Gly Trp Gly Gly Gly Ala Glu Ala Phe Thr Pro Ser 25 30 35 ttt ttt aaa tcc atc ctt caa tat ttt caa gag gaa ggg aaa cca gac Phe Phe Lys Ser Ile Leu Gln Tyr Phe Gln Glu Gly Lys Pro Asp 40 45 50 agg cca aac cac agc ctt cag tgg ggc ttg act tta gtt cta cgg acc Arg Pro Asn His Ser Leu Gln Trp Gly Leu Thr Leu Val Leu Arg Thr	329 377

	<2	10> 1 11> 1 12> 1	931													
	<2	13> 1	Homo	sap	iens											
	<2: <2:		(75)	(6	77)											
gga		00> : gtt :		gagg	at ci	ttct	gctc	c tci	ttca [.]	tctg	gtc	cgtt	tcc ·	ttcc	aaggcc	60
ccc	gaga	gga a	aggc	Me				a Lei						a Ph	c ctg e Leu	110
					aaa Lys											158
					ggg Gly											206
					tac Tyr 50											254
					ctg Leu											302
					agt Ser			_								350
					ttg Leu											398
					gcc Ala											446
					aaa Lys 130											494
					tct Ser											542

145 150 155	
gaa caa gag aaa gac agc tta act cct gat ctc cct cct aat atc aca Glu Gln Glu Lys Asp Ser Leu Thr Pro Asp Leu Pro Pro Asn Ile Thr 160 165 170	590
ctg tcc tgg cag cag ctg cat cct gtt ccc cac ccc tcc ccc aca act Leu Ser Trp Gln Gln Leu His Pro Val Pro His Pro Ser Pro Thr Thr 175 180 185	638
ttc ctg aag atc aag ctg cca tct cca ggc ctc agc taa gcagcctggc Phe Leu Lys Ile Lys Leu Pro Ser Pro Gly Leu Ser * 190 195 200	687
tgagagcaag gttctctcag ctctcctagg acatggggga ggcccactca ctctgcttcc	747
tatgacacac aggtacaact agggtccagc tgtgaagcga gatattttgg acagcaaatg	807
ggaagggtat ttatactgaa tcatgtatcc actcatggtc cagagatcac agctgagagt	867
ggtgcttatt ccttatgtct ataacaacat aagcaatact ataatgacca ctaaaacact	927
aggc	931
<210> 316 <211> 943 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (228)(737) <400> 316	
aatgccctcc acaagccaag cctcccgctc ttaggagctg agcatctgtc agctgcccaa	60
gcccgtggcc tcttgatggg gtgtttgagc aaccatcctg tttttcgccc caggcccttg	120
gaattgaaag tgaggatgac ttgtataaac tggtgaactt cttccttaaa tatcgagctc	180
accgtttatc ttccagcctc cagatcaagc cctgcagtca ggcgagc atg gag aag Met Glu Lys 1	236
gcg agc atg gag gag aca agc acg agg tca gaa ttg gag ctg gca gag Ala Ser Met Glu Glu Thr Ser Thr Arg Ser Glu Leu Glu Leu Ala Glu 5 10 15	284
cag acg gag atg gag gga gaa aag gaa gaa agc ctg gtg gaa ggg gagGln Thr Glu Met Glu Gly Glu Lys Glu Glu Ser Leu Val Glu Gly Glu20253035	332
aag gag gaa gag gag acc cca ccc tcc ccc tgg gtc atc cac ccc Lys Glu Glu Glu Glu Thr Pro Pro Ser Pro Trp Val Ile His Pro	380

				40					45					50		
aat Asn	gat Asp	gtc Val	ctc Leu 55	aag Lys	att Ile	ctg Leu	gag Glu	gcc Ala 60	ttc Phe	ttc Phe	atg Met	ggt Gly	ctg Leu 65	aag Lys	aag Lys	428
cct Pro	agg Arg	gac Asp 70	tcg Ser	cgg Arg	gcc Ala	ccg Pro	ctg Leu 75	agg Arg	gta Val	cag Gln	aag Lys	aat Asn 80	gtg Val	cgt Arg	gac Asp	476
aac Asn	tcc Ser 85	aag Lys	gac Asp	tcg Ser	gag Glu	tac Tyr 90	tgg Trp	cag Gln	gcc Ala	ctg Leu	acc Thr 95	aca Thr	gtg Val	atc Ile	cct Pro	524
tcc Ser 100	tcc Ser	aag Lys	cag Gln	aac Asn	ctc Leu 105	tgg Trp	gat Asp	gcc Ala	ctc Leu	tac Tyr 110	aca Thr	gcc Ala	ttg Leu	gag Glu	aag Lys 115	572
tac Tyr	cac His	ctt Leu	gtc Val	ctg Leu 120	acc Thr	cag Gln	agg Arg	gcc Ala	aag Lys 125	ctg Leu	ctg Leu	ctg Leu	gaa Glu	aac Asn 130	agt Ser	620
tct Ser	ctg Leu	gag Glu	cag Gln 135	cag Gln	aac Asn	aca Thr	gag Glu	ctg Leu 140	cag Gln	gcg Ala	cta Leu	ctg Leu	cag Gln 145	cag Gln	tat Tyr	668
ctg Leu	aac Asn	tcc Ser 150	aag Lys	atc Ile	aac Asn	tct Ser	gaa Glu 155	ctg Leu	caa Gln	gtt Val	cct Pro	ccc Pro 160	act Thr	cag Gln	gtg Val	716
	cgg Arg 165						gc	tgga	ccgc	ca a	aggc	tgat	g tg	ttag	ggct	769
ggc	ctga	tgc	tggt	gtct	gt g	ccgg	agcc	a gc	tcat	atca	ccc	actg	ggc	cgca	cctggg	829
cct	gctc	tct	ggat	tttc	ca g	ggct	gtct	t ta	tagc	ctgt	cga	aata	agg	agcc	agagga	889
gtt	acct	gtg	tcct	gcat	ta t	gatt	aaag	c ct	ttta	aagt	tga	aaaa	aaa	aaaa		943
	<2 <2	10> 11> 12> 13>	793	sap	iens											
	<2	20>														

ttaatacgac cactataggg aatttggccc tcgagcgacg taattcggca cgagagaacg

gactactggt cttttaaaaa cacacctcac caagctcagc caccaactta aaaaggactt

653

60

120

<221> CDS

<400> 317

<222> (339)..(623)

gataatactt ttaccacttg cccttctcag aattcgggcc	tgtcttcgga atgcgacagg	180
atacagccca tttgagctcc tgtatagatg ctccttttta	ttaggcccca gtctcattcc	240
agacaccaga ccaacttgga ctgtgccccc aaaaacttgt	catccctact atcttctctc	300
tagtcatact cctattcacc gttctcaact actcatac	atg ccc tgc tct tgt Met Pro Cys Ser Cys 1 5	353
tta cac tgc cgg ttt aca ctg ttt ctc caa gcc Leu His Cys Arg Phe Thr Leu Phe Leu Gln Ala 10	atc aca gct gat atc Ile Thr Ala Asp Ile 20	401
tcc tgg tgc tat cct caa act acc act ctt aac Ser Trp Cys Tyr Pro Gln Thr Thr Thr Leu Asn 25	tcc ctc ttg gat ttg Ser Leu Leu Asp Leu 35	449
tta tat gat ctt tgc cgg cag gca ccc ctc caa Leu Tyr Asp Leu Cys Arg Gln Ala Pro Leu Gln 40 45	tac ttt cac cct gat Tyr Phe His Pro Asp 50	497
gaa gtt cta ttc ttt act ttt ata ctc act ctt Glu Val Leu Phe Phe Thr Phe Ile Leu Thr Leu 55 60	att ctc att ccc att Ile Leu Ile Pro Ile 65	545
ctt atg cca ccc ttt acc tct ccc cag cta tct Leu Met Pro Pro Phe Thr Ser Pro Gln Leu Ser 70 75 80	Pro Pro His Tyr Gln	593
tct cac tgt ctc tct cct agc cat ttc taa t c Ser His Cys Leu Ser Pro Ser His Phe * 90 95	cttctttaa caaacaattg	644
ctggctttgc atttctcttt cctctaaaac cactgaggco	tcaacttact cactgctgaa	704
aaaggaggac ttttcatatt tctaaatgaa gaatgttgtt	tttacctaaa tcaatctggc	764
ctartarctr acaacataaa aaaaaaaaaa		793

<210> 318 <211> 1024 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (28)..(366)

 $<\!400\!>$ 318 gtggggggg ggcctgcagc cagcaag atg tac cac tgc agc gag tgc ctg $\,$ 51 Met Tyr His Cys Ser Glu Cys Leu $\,$ 1 $\,$ 5

cgc ttc ttc cag cag cgc aag agc ctg ctg ctg cac cag cgc ctg cac Arg Phe Phe Gln Gln Arg Lys Ser Leu Leu Leu His Gln Arg Leu His 10 15 20	99
acc ggc aat ggc cag ggc tgg ccc gcc tgc ccc tac tgc ggc aag gcc Thr Gly Asn Gly Gln Gly Trp Pro Ala Cys Pro Tyr Cys Gly Lys Ala 25 30 35 40	147
ttc cgc cgg ccc tcg gac ctc ttc cgg cac cag cgc atc cac acc ggt Phe Arg Arg Pro Ser Asp Leu Phe Arg His Gln Arg Ile His Thr Gly 45 50 55	195
gag cgg ccc tac cag tgc ccc cag tgt ggc cgg acc ttc aac cgc aac Glu Arg Pro Tyr Gln Cys Pro Gln Cys Gly Arg Thr Phe Asn Arg Asn 60 65 70	243
cac cac ctg gcc gtg cac atg cag acc cac gcc cga ggc cag gtg ggc His His Leu Ala Val His Met Gln Thr His Ala Arg Gly Gln Val Gly 75 80 85	291
cca cac ttc cct gcc gcc ccc gcc cgc cac ggg agc ctg ccc ctg ccc Pro His Phe Pro Ala Ala Pro Ala Arg His Gly Ser Leu Pro Leu Pro 90 95 100	339
tgg ccc agc cgg aag gag ggc tga cctgg caggagccca cagaggaccc Trp Pro Ser Arg Lys Glu Glu Gly * 105 110	391
ctggcggggt ctctcccctg tgcctgacgc aggttcttcc ttttcctggg atggagagag	451
gtttgttgtt tttacccatt caaatgggaa gctagctgcc cttctggtga cattgtgtgt	511
gaccgggtgc tttctgtttc ctgtttgcac tcttcgctgc cttttctgca ttcctgactt	571
ctaaaagatg ccttaaggct taagggatgc catatttttg ataaggcctc tggtaggtac	631
cacagccaag aggaccagag atcatggccc ttccagtatg ggggcgatag agacatcggg	691
gacctgggat ctcagttttg tgcagagatc tcctgcctgc tgtcaccatg agaaacagtg	751
gagtggagtg gatggatggc ctgacttgaa gaaagggccc tggaaagttt tctactttgc	811
tatattgaaa tataaatccc ttcttataga gactttgaaa tacttctgta aatgtgtgta	871
gtagtcaatg gaactttgcc tttagcaaag tcggaaagag tcggcttttc catgtgaggc	931
tcgcagagct gaaaggggag ctacgtccac caagcctgta ggtcataagg gacacaaaca	991
aggacgagga agaggaccct taaagaacgg acc	1024

<210> 319

<211> 2552

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (281)..(2518) <400> 319 tttaaaggca aagacacgcc ttccccccc acttcagccg cgcgcctttc cttcccccaa 60 120 attcctcaaa gatggtttgt ctcacgtgtt gcagggcgta aaagcggctt gcattcaatt 180 agcagcgaag ctcgcgggcg ctggcgggac aggcgcgtga ggccacaaca catgcgtgta tettgettgg getatettee etgetetgee aegeegggte tggagaaggg gttteageee 240 295 atg ttc ccc ctt cgg caggacattt actgagagtc ggcgaatatt gggagccgcg Met Phe Pro Leu Arg 343 gcc ctg tgg ttg gtc tgg gcg ctt cta gga gtg gcc gga tca tgc ccg Ala Leu Trp Leu Val Trp Ala Leu Leu Gly Val Ala Gly Ser Cys Pro 15 10 gag ccg tgc gcc tgc gtg gac aag tac gct cac cag ttc gcg gac tgc 391 Glu Pro Cys Ala Cys Val Asp Lys Tyr Ala His Gln Phe Ala Asp Cys 30 439 gct tac aaa gag ttg cgt gag gtg ccg gaa gga ctg cct gcc aac gtg Ala Tyr Lys Glu Leu Arg Glu Val Pro Glu Gly Leu Pro Ala Asn Val 45 acg acg ctt agt ctg tcc gcg aac aag atc act gtg ctg cgg cgc ggg 487 Thr Thr Leu Ser Leu Ser Ala Asn Lys Ile Thr Val Leu Arg Arg Gly 535 gcc ttc gcc gac gtc aca cag gtc acg tcg ctg tgg ctg gcg cac aat Ala Phe Ala Asp Val Thr Gln Val Thr Ser Leu Trp Leu Ala His Asn 75 70 583 gag gtg cgc acc gtg gag cca ggc gca ctg gcc gtg ctg agt cag ctc Glu Val Arg Thr Val Glu Pro Gly Ala Leu Ala Val Leu Ser Gln Leu 95 90 631 aag aac ctc gat ctg agc cac aac ttc ata tcc agc ttt ccg tgg agc Lys Asn Leu Asp Leu Ser His Asn Phe Ile Ser Ser Phe Pro Trp Ser 115 110 105 gac ctg cgc aac ctg agc gcg ctg cag ctg ctc aaa atg aac cac aac 679 Asp Leu Arg Asn Leu Ser Ala Leu Gln Leu Leu Lys Met Asn His Asn 120

160

145

727

775

cgc ctg ggc tct ctg ccc cgg gac gca ctc ggt gcg cta ccc gac ctg

Arg Leu Gly Ser Leu Pro Arg Asp Ala Leu Gly Ala Leu Pro Asp Leu

cgt tcc ctg cgc atc aac aac cgg ctg cgt acg ctg gcg cct ggc Arg Ser Leu Arg Ile Asn Asn Asn Arg Leu Arg Thr Leu Ala Pro Gly

140

155

135

acc Thr	ttc Phe	gac Asp	gcg Ala	ctt Leu 170	agc Ser	gcg Ala	ctg Leu	tca Ser	cac His 175	ttg Leu	caa Gln	ctc Leu	tat Tyr	cac His 180	aat Asn	823
ccc Pro	ttc Phe	cac His	tgc Cys 185	ggc Gly	tgc Cys	ggc Gly	ctt Leu	gtg Val 190	tgg Trp	ctg Leu	cag Gln	gcc Ala	tgg Trp 195	gcc Ala	gcg Ala	871
agc Ser	acc Thr	cgg Arg 200	gtg Val	tcc Ser	tta Leu	ccc Pro	gag Glu 205	ccc Pro	gac Asp	tcc Ser	att Ile	gct Ala 210	tgt Cys	gcc Ala	tcg Ser	919
cct Pro	ccc Pro 215	gcg Ala	ctg Leu	cag Gln	Gly ggg	gtg Val 220	ccg Pro	gtg Val	tac Tyr	cgc Arg	ctg Leu 225	ccc Pro	gcc Ala	ctg Leu	ccc Pro	967
tgt Cys 230	gca Ala	ccg Pro	ccc Pro	agc Ser	gtg Val 235	cat His	ctg Leu	agt Ser	gcc Ala	gag Glu 240	cca Pro	ccg Pro	ctt Leu	gaa Glu	gca Ala 245	1015
ccc Pro	ggc Gly	acc Thr	cca Pro	ctg Leu 250	cgc Arg	gca Ala	gga Gly	ctg Leu	gcg Ala 255	ttc Phe	gtg Val	tta Leu	cac His	tgc Cys 260	atc Ile	1063
gcc Ala	gac Asp	ggc Gly	cac His 265	cct Pro	acg Thr	cct Pro	cgc Arg	ctg Leu 270	caa Gln	tgg Trp	caa Gln	ctt Leu	cag Gln 275	atc Ile	ccc Pro	1111
ggt Gly	ggc Gly	acc Thr 280	gta Val	gtc Val	tta Leu	gag Glu	cca Pro 285	ccg Pro	gtt Val	ctg Leu	agc Ser	ggg Gly 290	gag Glu	gac Asp	gac Asp	1159
G]Ā āāā	gtt Val 295	ggg	gcg Ala	gag Glu	gaa Glu	gga Gly 300	gag Glu	gga Gly	gaa Glu	gga Gly	gat Asp 305	Gly	gat Asp	ttg Leu	ctg Leu	1207
acg Thr 310	cag Gln	acc Thr	caa Gln	gcc Ala	caa Gln 315	acg Thr	ccg Pro	act Thr	cca Pro	gca Ala 320	ccc Pro	gct Ala	tgg Trp	ccg Pro	gcg Ala 325	1255
ccc Pro	cca Pro	gcc Ala	aca Thr	ccg Pro 330	cgc Arg	ttc Phe	ctg Leu	gcc Ala	ctc Leu 335	gca Ala	aat Asn	ggc Gly	tcc Ser	ctg Leu 340	ttg Leu	1303
gtg Val	ccc Pro	ctc Leu	ctg Leu 345	agt Ser	gcc Ala	aag Lys	gag Glu	gcg Ala 350	ggc Gly	gtc Val	tac Tyr	act Thr	tgc Cys 355	cgt Arg	gca Ala	1351
cac His	aat Asn	gag Glu 360	ctg Leu	ggc Gly	gcc Ala	aac Asn	tct Ser 365	acg Thr	tca Ser	ata Ile	cgc Arg	gtg Val 370	gcg Ala	gtg Val	gca Ala	1399
gca Ala	acc Thr 375	G1y ggg	ccc Pro	cca Pro	aaa Lys	cac His 380	Ala	cct Pro	ggc Gly	gcc Ala	ggg 385	gga Gly	gaa Glu	ccc Pro	gac Asp	1447

gga Gly 390	cag Gln	gcc Ala	ccg Pro	acc Thr	tct Ser 395	gag Glu	cgc Arg	aag Lys	tcc Ser	aca Thr 400	gcc Ala	aag Lys	ggc Gly	cgg Arg	ggc Gly 405	1495
aac Asn	agc Ser	gtc Val	ctg Leu	cct Pro 410	tcc Ser	aaa Lys	ccc Pro	gag Glu	ggc Gly 415	aaa Lys	atc Ile	aaa Lys	ggc Gly	caa Gln 420	ggc Gly	1543
ctg Leu	gcc Ala	aag Lys	gtc Val 425	agc Ser	att Ile	ctc Leu	ggg Gly	gag Glu 430	acc Thr	gag Glu	acg Thr	gag Glu	ccg Pro 435	gag Glu	gag Glu	1591
gac Asp	aca Thr	agt Ser 440	gag Glu	gga Gly	gag Glu	gag Glu	gcc Ala 445	gaa Glu	gac Asp	cag Gln	atc Ile	ctc Leu 450	gcg Ala	gac Asp	ccg Pro	1639
gcg Ala	gag Glu 455	gag Glu	cag Gln	cgc Arg	tgt Cys	ggc Gly 460	aac Asn	GJÀ aaa	gac Asp	ccc Pro	tct Ser 465	cgg Arg	tac Tyr	gtt Val	tct Ser	1687
aac Asn 470	cac His	gcg Ala	ttc Phe	aac Asn	cag Gln 475	agc Ser	gca Ala	gag Glu	ctc Leu	aag Lys 480	ccg Pro	cac His	gtc Val	ttc Phe	gag Glu 485	1735
ctg Leu	ggc Gly	gtc Val	atc Ile	gcg Ala 490	ctg Leu	gat Asp	gtg Val	gcg Ala	gag Glu 495	cgc Arg	gag Glu	gcg Ala	cgg Arg	gtg Val 500	cag Gln	1783
ctg Leu	act Thr	ccg Pro	ctg Leu 505	gct Ala	gcg Ala	cgc Arg	tgg Trp	ggc Gly 510	cct Pro	Gly	ccc Pro	ggc	ggg Gly 515	gct Ala	ggc Gly	1831
gga Gly	gcc Ala	ccg Pro 520	cga Arg	ccc Pro	ggg Gly	cgg Arg	cga Arg 525	ccc Pro	ctg Leu	cgc Arg	cta Leu	ctc Leu 530	tat Tyr	ctg Leu	tgt Cys	1879
cca Pro	gcg Ala 535	Gly ggg	ggc Gly	ggc Gly	gcg Ala	gca Ala 540	gtg Val	cag Gln	tgg Trp	tcc Ser	cgc Arg 545	gta Val	gag Glu	gaa Glu	ggc Gly	1927
gtc Val 550	aac Asn	gcc Ala	tac Tyr	tgg Trp	ttc Phe 555	cgc Arg	ggc	ctg Leu	cgg Arg	ccg Pro 560	ggt Gly	acc Thr	aac Asn	tac Tyr	tcc Ser 565	1975
gtg Val	tgc Cys	ctg Leu	gcg Ala	ctg Leu 570	gcg Ala	ggc Gly	gaa Glu	gcc Ala	tgc Cys 575	cac His	gtg Val	caa Gln	gtg Val	gtg Val 580	ttt Phe	2023
tcc Ser	acc Thr	aag Lys	aag Lys 585	gag Glu	ctc Leu	cca Pro	tcg Ser	ctg Leu 590	ctg Leu	gtc Val	ata Ile	gtg Val	gca Ala 595	gtg Val	agc Ser	2071
gta Val	ttc Phe	ctc Leu 600	ctg Leu	gtg Val	ctg Leu	gcc Ala	aca Thr 605	gtg Val	ccc Pro	ctt Leu	ctg Leu	ggc Gly 610	gcc Ala	gcc Ala	tgc Cys	2119
tgc	cat	ctg	ctg	gct	aaa	cac	ccg	ggc	aag	ccc	tac	cgt	ctg	atc	ctg	2167

Cys	His 615	Leu	Leu	Ala	Lys	His 620	Pro	Gly	Lys	Pro	Tyr 625	Arg	Leu	Ile	Leu	
cgg Arg 630	cct Pro	cag Gln	gcc Ala	cct Pro	gac Asp 635	cct Pro	atg Met	gag Glu	aag Lys	cgc Arg 640	atc Ile	gcc Ala	gca Ala	gac Asp	ttc Phe 645	2215
gac Asp	ccg Pro	cgt Arg	gct Ala	tcg Ser 650	tac Tyr	ctc Leu	gag Glu	tcc Ser	gag Glu 655	aaa Lys	agc Ser	tac Tyr	ccg Pro	gca Ala 660	ggc Gly	2263
ggc Gly	gag Glu	gcg Ala	ggc Gly 665	ggc Gly	gag Glu	gag Glu	cca Pro	gag Glu 670	gac Asp	gtg Val	cag Gln	Gly ggg	gag Glu 675	ggc Gly	ctt Leu	2311
gat Asp	gaa Glu	gac Asp 680	gcg Ala	gly ggg	cag Gln	gga Gly	gac Asp 685	cca Pro	agt Ser	Gly ggg	gac Asp	ctg Leu 690	cag Gln	aga Arg	gag Glu	2359
gag Glu	agc Ser 695	ctg Leu	gcg Ala	gcc Ala	tgc Cys	tca Ser 700	ctg Leu	gtg Val	gag Glu	tcc Ser	cag Gln 705	tcc Ser	aag Lys	gcc Ala	aac Asn	2407
caa Gln 710	gag Glu	gag Glu	ttc Phe	gag Glu	gcg Ala 715	ggc Gly	tct Ser	gag Glu	tac Tyr	agc Ser 720	gat Asp	cgg Arg	ctg Leu	ccc Pro	ctg Leu 725	2455
ggc Gly	gcc Ala	gag Glu	gcg Ala	gtc Val 730	aac Asn	atc Ile	gcc Ala	cag Gln	gag Glu 735	att Ile	aat Asn	ggc Gly	aac Asn	tac Tyr 740	agg Arg	2503
			ggc Gly 745		acc	tacg	ccc (gtcc	ggcc	cg c	ccat	tccg	a cc	tg		2552

<210> 320 <211> 2400 <212> DNA <213> Homo sapiens

<220> <221> CDS

<222> (212)..(1537)

ctt Leu	cac His	ttc Phe 10	aag Lys	ttt Phe	gaa Glu	aat Asn	tat Tyr 15	gga Gly	gat Asp	tca Ser	atg Met	tta Leu 20	caa Gln	aaa Lys	atg Met	280
aac Asn	aaa Lys 25	tta Leu	aga Arg	gaa Glu	gag Glu	aat Asn 30	aaa Lys	ttt Phe	tgt Cys	gat Asp	gtt Val 35	aca Thr	gtt Val	ctc Leu	ata Ile	328
gat Asp 40	gat Asp	att Ile	gag Glu	gta Val	cag Gln 45	gga Gly	cat His	aaa Lys	att Ile	gtg Val 50	ttt Phe	gct Ala	gca Ala	ggt Gly	tcc Ser 55	376
ccc Pro	ttc Phe	tta Leu	aga Arg	gac Asp 60	caa Gln	ttt Phe	tta Leu	ctg Leu	aat Asn 65	gat Asp	tcc Ser	aga Arg	gag Glu	gtg Val 70	aaa Lys	424
atc Ile	tcc Ser	ata Ile	tta Leu 75	cag Gln	agt Ser	tcc Ser	gaa Glu	gtg Val 80	gly ggg	aga Arg	caa Gln	ttg Leu	ctc Leu 85	tta Leu	tcc Ser	472
tgt Cys	tat Tyr	agt Ser 90	ggt Gly	gtg Val	ctg Leu	gaa Glu	ttc Phe 95	cct Pro	gag Glu	atg Met	gaa Glu	ctg Leu 100	gta Val	aat Asn	tac Tyr	520
ttg Leu	act Thr 105	gct Ala	gca Ala	agt Ser	ttt Phe	ctt Leu 110	cag Gln	atg Met	agc Ser	cac His	att Ile 115	gta Val	gaa Glu	cgg Arg	tgc Cys	568
aca Thr 120	cag Gln	gcc Ala	ctg Leu	tgg Trp	aag Lys 125	ttt Phe	ata Ile	aag Lys	cca Pro	aaa Lys 130	caa Gln	cca Pro	atg Met	gat Asp	agt Ser 135	616
aaa Lys	gag Glu	gga Gly	tgt Cys	gaa Glu 140	cca Pro	cag Gln	agt Ser	gct Ala	tct Ser 145	ccc Pro	cag Gln	tca Ser	aaa Lys	gaa Glu 150	cag Gln	664
Gln	gga Gly	Asp	Ala 155	Arg	Gly	Ser	Pro	Lys 160	Gln	Asp	Ser	Pro	Cys 165	Ile	His	712
Pro	tct Ser	Glu 170	Asp	Ser	Met	Asp	Met 175	Glu	Asp	Ser	Asp	Ile 180	Gln	Ile	Val	760
Lys	gta Val 185	Glu	Ser	Ile	Gly	Asp 190	Va1	Ser	Glu	Val	Arg 195	Ser	Lys	Lys	Asp	808
cag Gln 200	aac Asn	cag Gln	ttt Phe	att Ile	tct Ser 205	tct Ser	gaa Glu	ccc Pro	act Thr	gct Ala 210	tta Leu	cat His	tca Ser	tca Ser	gag Glu 215	856
ccc Pro	cag Gln	cac His	tcc Ser	ctg Leu 220	ata Ile	aat Asn	tca Ser	act Thr	gtg Val 225	gaa Glu	aac Asn	aga Arg	gta Val	agt Ser 230	gaa Glu	904

ata Ile	gaa Glu	caa Gln	aac Asn 235	cat His	ctc Leu	cac His	aat Asn	tat Tyr 240	gcc Ala	ctt Leu	tct Ser	tat Tyr	aca Thr 245	ggc Gly	agt Ser	952
gat Asp	aac Asn	atc Ile 250	atc Ile	atg Met	gcc Ala	tca Ser	aaa Lys 255	gat Asp	gtc Val	ttt Phe	ggc Gly	cct Pro 260	aat Asn	att Ile	cga Arg	1000
ggt Gly	gta Val 265	gac Asp	aaa Lys	ggc Gly	cta Leu	cag Gln 270	tgg Trp	cat His	cac His	cag Gln	tgc Cys 275	cca Pro	aag Lys	tgt Cys	acc Thr	1048
agg Arg 280	gtg Val	ttt Phe	cgt Arg	cac His	ctg Leu 285	gag Glu	aac Asn	tac Tyr	gcc Ala	aac Asn 290	cat His	tta Leu	aaa Lys	atg Met	cac His 295	1096
aaa Lys	ctc Leu	ttt Phe	atg Met	tgt Cys 300	cta Leu	ctc Leu	tgc Cys	ggc Gly	aag Lys 305	act Thr	ttc Phe	act Thr	cag Gln	aaa Lys 310	ggc Gly	1144
aac Asn	ctt Leu	cat His	cga Arg 315	cac His	atg Met	cgt Arg	gtg Val	cat His 320	gcc Ala	gga Gly	att Ile	aaa Lys	cct Pro 325	ttc Phe	cag Gln	1192
tgt Cys	aaa Lys	atc Ile 330	tgt Cys	ggg Gly	aaa Lys	acc Thr	ttt Phe 335	tct Ser	cag Gln	aag Lys	tgt Cys	tcc Ser 340	tta Leu	cag Gln	gat Asp	1240
cat His	ctt Leu 345	aac Asn	ctt Leu	cac His	agt Ser	gga Gly 350	gat Asp	aag Lys	ccc Pro	cat His	aaa Lys 355	tgt Cys	aac Asn	tat Tyr	tgt Cys	1288
gat Asp 360	atg Met	gtt Val	ttt Phe	gca Ala	cat His 365	aaa Lys	cca Pro	gtt Val	ttg Leu	agg Arg 370	aaa Lys	cac His	ctt Leu	aaa Lys	cag Gln 375	1336
ctg Leu	cat His	ggc Gly	aaa Lys	aac Asn 380	agc Ser	ttt Phe	gat Asp	aat Asn	gcc Ala 385	aat Asn	gag Glu	aga Arg	aat Asn	gta Val 390	caa Gln	1384
gac Asp	ctc Leu	aca Thr	gtg Val 395	Asp	ttt Phe	gat Asp	tct Ser	ttt Phe 400	Ala	tgt Cys	aca Thr	aca Thr	gtc Val 405	Thr	gac Asp	1432
tct Ser	aaa Lys	ggg Gly 410	Cys	cag Gln	cca Pro	caa Gln	ccc Pro 415	Asp	gca Ala	aca Thr	cag Gln	gtc Val 420	Leu	gat Asp	gca Ala	1480
ggt Gly	aaa Lys 425	Leu	gcc Ala	caa Gln	gct Ala	gtc Val 430	Leu	aac Asn	tta Leu	aga Arg	aat Asn 435	Asp	agt Ser	act Thr	tgt Cys	1528
	Asn		gta	.gggg	ctt	catg	ccc	acaa	.ctcg	aa c	tgac	tgac	a at	gtgg	caat	1584

agtettagte titttaggag tgattttget agtttgaett etecaaagee tetgtgtagg 1644 tggtagggag tgagtcaaag cactaataga ccaggcaact taccacttgg agtggatttg 1704 1764 ccttactttt gccctctccc attttctgtt ttgagttatt tatcttgtaa agtctgtttt cctttcccaa ggaataattc cttttgtcta cctaacattg acttatgtct tagactgaca 1824 ctgttttagg cttttcacta ggcacattcc gaaggtacca acaagttaat aacatcaact 1884 aatctccact aatagaatgc tatgctaaga agaagtgaat aatctttctt aggtagaaaa 1944 2004 taggctggat tttaagggtg aatattggta ttgactggaa atgtgtgttg aattttggtt 2064 gaccaatgga tattcacact ccatgtcgga ttaagtaaac tggggtccat accattggta ctgtcctagg aagcgcgata taagaaaata tgccgaactg caacggaccc atacacagat 2124 tattgcacaa aacacacaca ttcaatggca catatcacga agacctatat agagcacctc 2184 gtgaacatat ctattgggag atcatagaga aagtaaaaaa gcgcgtaaac ataattataa 2244 acaacaaagc ggaggtatct gaatagacca gaggaagtag tatatctagg aatagtactg 2304 2364 accaaggaga acacacaagt agagttgaac acatacagag agcagtagca cagaacaaca 2400 agacgatgta gtcgcttaac tttaactact agtctt

<210> 321 <211> 640 <212> DNA <213> Homo sapiens

<220> <221> CDS

<400> 321

,

<222> (167)..(409)

gaggagacac ttggatgtag ctcaagtgct gcttaggcag tcctgatctc tcctctcgtc

tcttcccagg gagctgaaaa gccagattcg acctggtagc caagca atg tca cag Met Ser Gln

1

cag aag cag caa tct tgg aag cct cca aat gtt ccc aaa tgc tcc cct
Gln Lys Gln Gln Ser Trp Lys Pro Pro Asn Val Pro Lys Cys Ser Pro

5

120

223

60

ggactcctcc tgggataact tgtccacaca tcttccacta gggtaaggct acttctggct

ccc caa aga tca aac ccc tgc cta gct ccc tac tcg act cct tgt ggt
Pro Gln Arg Ser Asn Pro Cys Leu Ala Pro Tyr Ser Thr Pro Cys Gly
20 25 30 35

gct ccc cat tca gaa ggt tgt cat tcc agt tcc caa agg cct gag gtt Ala Pro His Ser Glu Gly Cys His Ser Ser Ser Gln Arg Pro Glu Val 40 45 50	319													
cag aag cct agg agg gct cgt caa aag ctg cgc tgc cta agt agg ggc Gln Lys Pro Arg Arg Ala Arg Gln Lys Leu Arg Cys Leu Ser Arg Gly 55 60 65	367													
aca acc tac cac tgc aaa gag gaa gag tgt gaa ggc gac tga gcccaga Thr Thr Tyr His Cys Lys Glu Glu Glu Cys Glu Gly Asp * 70 75 80	416													
agagttgagg cacaggtgca gttactctct ccctgcccca cctttgggta ctaattcccc	476													
cttggaaagc caggccctca acctctcatt tggactgaga aacacttcct gatccccagc	536													
tctagagaag cgagaactag gctgagccac gctgctactg ctctcttcca ttcacccctt	596													
cagctcagca acaataaagc tgctttactt ggaaaaaaaa aaaa	640													
<210> 322 <211> 2906 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (162)(2906) <400> 322														
<400> 322 ttttattccc gggtcgacga tttgtgcagc tgtcttttcc ggcccccgtg cactctcttt	60													
ccgaggcgga gcccccggc tcgcggggat cgccccgag cgctgcgtcc tgcgggtggg	120													
tcacctaacc catttgtggc ttcctctacc tgtgctcagc c atg gcc agc gag Met Ala Ser Glu 1	173													
agc tca cct ctg ctg gcc tac cgg ctc ctg ggg gag gag ggg gtt gcc Ser Ser Pro Leu Leu Ala Tyr Arg Leu Leu Gly Glu Glu Gly Val Ala 5 10 20	221													
ctc cct gcc aat ggg gcc ggg ggt cct gga ggg gcg tct gcc cgg aag Leu Pro Ala Asn Gly Ala Gly Gly Pro Gly Gly Ala Ser Ala Arg Lys 25 30 35	269													
ctg tcc acc ttc ctg ggt gtg gtg ccc act gtc ctg tcc atg ttc Leu Ser Thr Phe Leu Gly Val Val Val Pro Thr Val Leu Ser Met Phe 40 45 50	317													

cta Leu	ctg Leu 70	cag Gln	gcc Ala	ctg Leu	gcc Ala	atg Met 75	ctg Leu	ctg Leu	gtt Val	gcc Ala	tac Tyr 80	ttc Phe	atc Ile	ctg Leu	gca Ala	413
ctc Leu 85	acc Thr	gtc Val	ctc Leu	tct Ser	gtc Val 90	tgt Cys	gcc Ala	atc Ile	gcc Ala	acc Thr 95	aat Asn	gga Gly	gcc Ala	gtg Val	cag Gln 100	461
Glà aaa	ggc Gly	gga Gly	gcc Ala	tac Tyr 105	ttc Phe	atg Met	atc Ile	agc Ser	cgc Arg 110	aca Thr	ctg Leu	Gly ggg	ccc Pro	gag Glu 115	gtc Val	509
Gl ^A aaa	ggc Gly	agc Ser	att Ile 120	Gly ggg	ctc Leu	atg Met	ttc Phe	tac Tyr 125	ctg Leu	gct Ala	aac Asn	gtc Val	tgt Cys 130	ggc Gly	tgt Cys	557
gcc Ala	gtc Val	tcc Ser 135	ctc Leu	ctg Leu	Gly ggg	ctg Leu	gtg Val 140	gag Glu	tct Ser	gtg Val	ctt Leu	gat Asp 145	gtc Val	ttc Phe	Gly ggg	605
gcc Ala	gat Asp 150	gcc Ala	aca Thr	Gly	ccc Pro	agt Ser 155	Gly ggg	ctc Leu	cgg Arg	gtc Val	ctg Leu 160	ccc Pro	cag Gln	ggc Gly	tac Tyr	653
ggc Gly 165	tgg Trp	aac Asn	ctg Leu	ctg Leu	tat Tyr 170	ggc Gly	tcc Ser	ctg Leu	ctg Leu	ctg Leu 175	ggc Gly	ctt Leu	gtg Val	ggt Gly	ggg Gly 180	701
gtc Val	tgc Cys	acc Thr	ctg Leu	gga Gly 185	gcc Ala	ggc Gly	ctc Leu	tat Tyr	gcc Ala 190	cgg Arg	gcc Ala	tca Ser	ttc Phe	ctc Leu 195	aca Thr	749
ttc Phe	ctg Leu	ctg Leu	gtc Val 200	tct Ser	ggc Gly	tcc Ser	ctg Leu	gcc Ala 205	tct Ser	gtg Val	ctc Leu	atc Ile	agt Ser 210	ttt Phe	gtg Val	797
gct Ala	gtg Val	ggg Gly 215	ccg Pro	agg Arg	gac Asp	atc Ile	cgc Arg 220	ttg Leu	act Thr	cct Pro	agg Arg	cct Pro 225	ggc	ccc Pro	aat Asn	845
ggc	tcc Ser 230	tcc Ser	ctg Leu	ccg Pro	ccc Pro	cgg Arg 235	ttt Phe	ggc Gly	cac His	ttc Phe	acc Thr 240	ggc Gly	ttc Phe	aac Asn	agc Ser	893
agt Ser 245	acc Thr	ctg Leu	aag Lys	gac Asp	aac Asn 250	ttg Leu	ggc	gct Ala	ggc Gly	tat Tyr 255	gct Ala	gag Glu	gac Asp	tac Tyr	acc Thr 260	941
acg Thr	gga Gly	gcc Ala	gtg Val	atg Met 265	aat Asn	ttt Phe	gcc Ala	aac Asn	gtc Val 270	Phe	gct Ala	gtc Val	ctc Leu	ttt Phe 275	Asn	989
ggc Gly	tgt Cys	aca Thr	ggc Gly 280	Ile	atg Met	gct Ala	Gly	gcc Ala 285	Asn	atg Met	tca Ser	ggg	gag Glu 290	Leu	aag Lys	1037
gac	ccc	agc	cgg	gcg	atc	cct	ctg	ggc	acg	atc	gtc	gcc	gto	gcc	tac	1085

Asp	Pro	Ser 295	Arg	Ala	Ile	Pro	Leu 300	Gly	Thr	Ile	Val	Ala 305	Val	Ala	Tyr	
acc Thr	ttc Phe 310	ttc Phe	gtc Val	tat Tyr	gtc Val	ctg Leu 315	ctt Leu	ttc Phe	ttt Phe	ctc Leu	tcc Ser 320	agc Ser	ttc Phe	act Thr	tgt Cys	1133
gac Asp 325	agg Arg	acc Thr	ctg Leu	ctg Leu	cag Gln 330	gaa Glu	gac Asp	tat Tyr	GJÀ ããã	ttc Phe 335	ttc Phe	cgc Arg	gcc Ala	atc Ile	agc Ser 340	1181
ctg Leu	tgg Trp	ccc Pro	cca Pro	ctg Leu 345	gtg Val	ttg Leu	atc Ile	gga Gly	atc Ile 350	tat Tyr	gcc Ala	aca Thr	gcg Ala	ctc Leu 355	tca Ser	1229
gcg Ala	tcc Ser	atg Met	agc Ser 360	tcg Ser	ctc Leu	att Ile	ggt Gly	gcc Ala 365	tcc Ser	cgc Arg	atc Ile	ctc Leu	cat His 370	gcc Ala	ctg Leu	1277
gcc Ala	cgg Arg	gat Asp 375	gac Asp	ctc Leu	ttt Phe	ggc Gly	gtg Val 380	atc Ile	ttg Leu	gca Ala	ccg Pro	gcc Ala 385	aag Lys	gtt Val	gtg Val	1325
tcc Ser	cga Arg 390	Gly aaa	gga Gly	aac Asn	ccc Pro	tgg Trp 395	gca Ala	gct Ala	gta Val	ctt Leu	tat Tyr 400	tct Ser	tgg Trp	ggc Gly	ctg Leu	1373
gtg Val 405	cag Gln	ctg Leu	gtg Val	ctc Leu	ctg Leu 410	gct Ala	Glà aaa	aag Lys	ctg Leu	aac Asn 415	aca Thr	ctg Leu	gcc Ala	gct Ala	gtg Val 420	1421
gtc Val	act Thr	gtc Val	ttc Phe	tac Tyr 425	ctg Leu	gtg Val	gcc Ala	tat Tyr	gct Ala 430	gcc Ala	gtg Val	gac Asp	ctg Leu	tcc Ser 435	tgc Cys	1469
ctg Leu	agc Ser	ctg Leu	gag Glu 440	tgg Trp	gcc Ala	tcg Ser	gcc Ala	ccc Pro 445	aac Asn	ttc Phe	cgc Arg	ccc Pro	acc Thr 450	ttc Phe	agc Ser	1517
ctg Leu	ttc Phe	tcc Ser 455	tgg Trp	cac His	acc Thr	tgc Cys	ctg Leu 460	ctg Leu	ggg Gly	gtg Val	gcc Ala	tcc Ser 465	tgc Cys	ctg Leu	ctc Leu	1565
atg Met	atg Met 470	ttc Phe	ctc Leu	atc Ile	agt Ser	cct Pro 475	ggc Gly	gcg Ala	gct Ala	ggt Gly	ggc Gly 480	tcc Ser	ctg Leu	ctc Leu	ctc Leu	1613
atg Met 485	ggt Gly	ctg Leu	ctg Leu	gct Ala	gcc Ala 490	ctg Leu	ctc Leu	acc Thr	gcg Ala	cga Arg 495	gga Gly	ggc Gly	ccc Pro	agt Ser	agc Ser 500	1661
tgg Trp	ggc Gly	tat Tyr	gtc Val	agc Ser 505	cag Gln	gcc Ala	ttg Leu	ctt Leu	ttc Phe 510	His	cag Gln	gtg Val	cgt Arg	aag Lys 515	tat Tyr	1709
ctg Leu	ctt Leu	cgg Arg	ctg Leu	gac Asp	gtc Val	cgg Arg	aag Lys	gat Asp	cac His	gtg Val	aag Lys	ttc Phe	tgg Trp	cgg Arg	ccc Pro	1757

530 525 520 1805 cag ctg ctc ctg gtg ggg aac ccc cgg ggc gcc ctg cct ctg ctg Gln Leu Leu Leu Val Gly Asn Pro Arg Gly Ala Leu Pro Leu Leu 540 cgg ttg gcc aac cag ctt aag aag ggg ggg ctg tat gtg ctg ggc cac 1853 Arg Leu Ala Asn Gln Leu Lys Lys Gly Gly Leu Tyr Val Leu Gly His 560 555 1901 gtc acc ctg gga gac ctc gac tcc ctg ccc tcg gac cct gta cag ccg Val Thr Leu Gly Asp Leu Asp Ser Leu Pro Ser Asp Pro Val Gln Pro 570 565 1949 cag tat ggg gca tgg ctc agc ctg gtg gac cgt gcc cag gtg aag gct Gln Tyr Gly Ala Trp Leu Ser Leu Val Asp Arg Ala Gln Val Lys Ala 595 585 590 1997 ttt gtg gat cta acc ttc tca ccc tcc gtg cgc cag ggg gct cag cat Phe Val Asp Leu Thr Phe Ser Pro Ser Val Arg Gln Gly Ala Gln His 605 600 ctg ctg cga atc tcc ggc ctc ggt ggc atg aag ccc aac acg ttg gtc 2045 Leu Leu Arg Ile Ser Gly Leu Gly Gly Met Lys Pro Asn Thr Leu Val 620 615 2093 cta ggt ttc tac gat gac gct cca ccg cag gac cat ttc ctg acg gac Leu Gly Phe Tyr Asp Asp Ala Pro Pro Gln Asp His Phe Leu Thr Asp 635 2141 ccg gct ttc tct gag cct gca gac agc acc agg gag ggc agt tcc cca Pro Ala Phe Ser Glu Pro Ala Asp Ser Thr Arg Glu Gly Ser Ser Pro 650 655 645 2189 gct ctg agc acc ctg ttc cct ccc cgg gct cct ggg agc ccc cgg Ala Leu Ser Thr Leu Phe Pro Pro Pro Arg Ala Pro Gly Ser Pro Arg 670 665 gcc ctc aat ccc cag gac tat gtg gcc acg gtg gcc gac gcc ctc aag 2237 Ala Leu Asn Pro Gln Asp Tyr Val Ala Thr Val Ala Asp Ala Leu Lys 685 680 atg aac aag aat gtg gtg ctg gcc cgg gcc agc ggg gcc ttg ccc cct 2285 Met Asn Lys Asn Val Val Leu Ala Arg Ala Ser Gly Ala Leu Pro Pro 695 gag cgg ctg agc cgg ggg tct ggg ggc acc tct cag ttg cac cat gtg 2333 Glu Arg Leu Ser Arg Gly Ser Gly Gly Thr Ser Gln Leu His His Val 715 710 gac gtg tgg ccc ctc aac ttg ttg cgg ccc cgg ggt ggg ccc ggc tat 2381 Asp Val Trp Pro Leu Asn Leu Leu Arg Pro Arg Gly Gly Pro Gly Tyr 740 735 730 725 2429 gtg gat gtc tgc ggc ctc ttc ctg ctg cag atg gca acc atc ttg ggc Val Asp Val Cys Gly Leu Phe Leu Leu Gln Met Ala Thr Ile Leu Gly 750

atg Met	gtg Val	ccc Pro	gct Ala 760	tgg Trp	cat His	agc Ser	gcc Ala	cgg Arg 765	ctc Leu	cgg Arg	atc Ile	ttc Phe	ctg Leu 770	tgc Cys	ctg Leu	2477
ggg Gly	cct Pro	cgg Arg 775	gag Glu	gcg Ala	cct Pro	Gly aaa	gcg Ala 780	gcc Ala	gag Glu	ggg Gly	cgg Arg	ctg Leu 785	cgg Arg	gca Ala	ctg Leu	2525
ctg Leu	agc Ser 790	caa Gln	ctg Leu	agg Arg	atc Ile	cgg Arg 795	gct Ala	gag Glu	gtg Val	cag Gln	gag Glu 800	gtg Val	gtg Val	tgg Trp	ggc Gly	2573
gag Glu 805	Gly ggg	gcc Ala	Gly ggg	gct Ala	ggg Gly 810	gaa Glu	ccc Pro	gag Glu	gcg Ala	gag Glu 815	gag Glu	gaa Glu	Gly ggg	gac Asp	ttt Phe 820	2621
gtg Val	aac Asn	agt Ser	Gly ggg	cgg Arg 825	gga Gly	gac Asp	gca Ala	gag Glu	gca Ala 830	gag Glu	gcc Ala	ctg Leu	gca Ala	cgc Arg 835	agc Ser	2669
gcc Ala	aac Asn	gcc Ala	ctg Leu 840	gtt Val	cgg Arg	gcc Ala	cag Gln	cag Gln 845	ggg Gly	cgc Arg	ggc Gly	aca Thr	gga Gly 850	gga Gly	Gly aaa	2717
ccg Pro	ggt Gly	ggg 855	ccg Pro	gag Glu	ggt Gly	ggg Gly	gat Asp 860	gct Ala	gag Glu	ggc Gly	ccc Pro	atc Ile 865	aca Thr	gcc Ala	ctc Leu	2765
acc Thr	ttc Phe 870	ctg Leu	tac Tyr	ttg Leu	cct Pro	cgg Arg 875	ccg Pro	cca Pro	gcc Ala	gat Asp	ccc Pro 880	gcc Ala	cga Arg	tac Tyr	ccc Pro	2813
cgc Arg 885	tac Tyr	ctg Leu	gcg Ala	cta Leu	ctg Leu 890	gag Glu	act Thr	cta Leu	acc Thr	cga Arg 895	gac Asp	ctg Leu	ggc	ccc Pro	acg Thr 900	2861
ctg Leu	ctg Leu	gtt Val	cat His	ggg Gly 905	gtc Val	act Thr	cca Pro	gtc Val	acc Thr 910	tgc Cys	act Thr	gat Asp	ctg Leu	tga * 915		2906

```
<210> 323
```

<211> 607

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (78)..(416)

<400> 323

actagcgtgg ttccagtgtc gtcatcgctg ctaaaaaagg ggtttcccgg tgacaggccc

cgacagagga gcaggcc atg agg cag gca gga gcc acg tat ctg ggc cca Met Arg Gln Ala Gly Ala Thr Tyr Leu Gly Pro 1 5 10	110
gcg cac ccg cca agc tct cta gcc tct cct ggc ctc agt ata ctt ctc Ala His Pro Pro Ser Ser Leu Ala Ser Pro Gly Leu Ser Ile Leu Leu 15 20 25	158
tgg gag atg gtc cag ctg aaa atc ccc agc atc cac aag aaa ggg tgg Trp Glu Met Val Gln Leu Lys Ile Pro Ser Ile His Lys Lys Gly Trp 30 35 40	206
aag ccc tgg ggg ccc tgg cct ggc cca ggt gca ggc tgc atg gcc ggg Lys Pro Trp Gly Pro Trp Pro Gly Pro Gly Ala Gly Cys Met Ala Gly 45 50 55	254
cgg agc ggt gtc tcc ttt cac agc ttc ccc gtc tgt ccg cag cct cca Arg Ser Gly Val Ser Phe His Ser Phe Pro Val Cys Pro Gln Pro Pro 60 65 70 75	302
gga gcc cca cac agg gct ggg gct ctg tgc ccc caa ctc aca ccc gtc Gly Ala Pro His Arg Ala Gly Ala Leu Cys Pro Gln Leu Thr Pro Val 80 85 90	350
ggc tcc ccc agg agg agc agg ctg ggc cca gag ccg cag ggt ggg ctg Gly Ser Pro Arg Arg Ser Arg Leu Gly Pro Glu Pro Gln Gly Gly Leu 95 100 105	398
cag gga ggt ctg act tag ctgggg aaagtgccat ccctgccatt gctagtgaca Gln Gly Gly Leu Thr * 110	452
ageteggget getgtggeee cageacagat teaacaetea etgegetaeg tgecagetgt	512
tgcacactca cctccacacc caactcacag gaagcaaggc tgggaaggag ggaactggcc	572
ccaggccaca cagatgctgc gagttgggat tatga	607

<210> 324 <211> 505 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (73)..(252)

<400> 324

ccctgattag tgtataaatt tgaatatctt tcatatttat tggctattgg gatttcctct

gccataactt ga \$ atg tta gga tct act ggt tat ttt tat ttc ctt gcc \$ Met Leu Gly Ser Thr Gly Tyr Phe Tyr Phe Leu Ala \$ 1 \$ 5 \$ 10

gat ttg ctg ata tta aca ata gat ttt aat ctc ttg tta ata ata tac Asp Leu Leu Ile Leu Thr Ile Asp Phe Asn Leu Leu Leu Ile Ile Tyr 15 20 25	156
ctt gca aac tac ttt tct cag tct gtg gct tat ctt ttc att tct tta Leu Ala Asn Tyr Phe Ser Gln Ser Val Ala Tyr Leu Phe Ile Ser Leu 30 35 40	204
tgg gtt ttc ttt ggc atg agg gta caa gtt tta ctt tta atg aag taa Trp Val Phe Phe Gly Met Arg Val Gln Val Leu Leu Met Lys * 45 50 55 60	252
aatatgtaac tttacattac agtttgtgct tatttgtatt acttatgaaa catttcccta	312
cccagaagtc atgaaggtat tctcctctat ttccttctag aagtttggct cttcagattt	372
ccaatgttcc tgaaattaac ttctatgtag ggtgaggtag caacccaatt ttattttctt	432
ccatataatc acttgaccta gcaaaatata attgcctatt ctttccccaa tgatctacaa	492
tgccatattt agt	505
<210> 325 <211> 670 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (232)(624)	
<221> CDS	60
<221 > CDS <222 > (232)(624) <400 > 325	60 120
<221> CDS <222> (232)(624) <400> 325 ccggatactg cccgggtcga cccacgcgtc cggtagacag ggagctgtga cgagagcaag	
<pre><221> CDS <222> (232)(624) <400> 325 ccggatactg cccgggtcga cccacgcgtc cggtagacag ggagctgtga cgagagcaag aggtcataac acatccagac tccttaagag aaagcctttc tgttttggaa acttttcaaa</pre>	120
<pre><221> CDS <222> (232)(624) <400> 325 ccggatactg cccgggtcga cccacgcgtc cggtagacag ggagctgtga cgagagcaag aggtcataac acatccagac tccttaagag aaagcctttc tgttttggaa actttcaaa gccagggact tgtccagccc aacctccca ttgctcctag ctcctgaggc tcaggacccc tggcttctgt cctccctgct cagggtcctg cagcgttgcc tctgctcagc c atg ctc Met Leu</pre>	120 180
<pre><221> CDS <222> (232)(624) <400> 325 ccggatactg cccgggtcga cccacgcgtc cggtagacag ggagctgtga cgagagcaag aggtcataac acatccagac tccttaagag aaagcctttc tgttttggaa acttttcaaa gccagggact tgtccagccc aacctcccca ttgctcctag ctcctgaggc tcaggacccc tggcttctgt cctccctgct cagggtcctg cagcgttgcc tctgctcagc c atg ctc</pre>	120 180 237

tct ctc ttc tgg tat gtg caa cac ccc aac aaa gga ctc cag ctt ctc Ser Leu Phe Trp Tyr Val Gln His Pro Asn Lys Gly Leu Gln Leu Leu 55 60 65	429
ctg aag tac aca tca gcg gcc acc ctg gtt aaa ggc atc aac ggt ttt Leu Lys Tyr Thr Ser Ala Ala Thr Leu Val Lys Gly Ile Asn Gly Phe 70 75 80	477
gag gct gaa ttt aag aag agt gaa acc tcc ttc cac ctg acg aaa ccc Glu Ala Glu Phe Lys Lys Ser Glu Thr Ser Phe His Leu Thr Lys Pro 85 90 95	525
tca gcc cat atg agc gac gcg gct gag tac ttc tgt gtt gtg agt gac Ser Ala His Met Ser Asp Ala Ala Glu Tyr Phe Cys Val Val Ser Asp 100 105 110	573
aca gtg ctt gag act gca gga gag ctg aac aca agc ctc ctg aga tgc Thr Val Leu Glu Thr Ala Gly Glu Leu Asn Thr Ser Leu Leu Arg Cys 115 120 125 130	621
tga gactttctgt gactcaagaa ctcgaccttg aagtctgttt tataat *	670
,	
<210> 326 <211> 794	
<212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (200)(304)	
<220> <221> misc_feature	
<222> (1)(794) <223> n = a,t,c or g	
<400> 326	
gtcagcaatg gtctcatgga agagggaagc tttatttaca ccatcaaggg cccatggatg	60
acccacagtc tgtgtgactg ctgtgtgatt ggttttcaga cattagcttt aataggaatc	120
ataggagaag ggacatggtg gctactgcaa ggggtttttt tgtttaggga gaacgcactg	180
tggaactcaa attccgggt atg cac tca acc tcg gca aag gca cct cgc tgt Met His Ser Thr Ser Ala Lys Ala Pro Arg Cys 1 5 10	232
tgg tca cac ccc gtg agt ttt tgt ggt tta cta att gtc ctc tct gga Trp Ser His Pro Val Ser Phe Cys Gly Leu Leu Ile Val Leu Ser Gly 15 20 25	280

			aat Asn				tga * 35	aaca	cago	tg a	attt	aatt	g ct	tatgo	ttag	3	334
catg	cagt	tg t	taac	tato	ıt ct	gatg	ıtgtg	ago	aaga	tat	gaat	acat	gt t	tccc	tggag	g 3	94
gctg	gatt	tg g	gttat	cago	ıt ct	cggg	gcag	r ttt	gata	aat	tgta	ctaa	tg o	ctgca	atcad	c 4	154
tgtt	tttc	aa a	aggto	caca	ıa aç	gcacg	ıttgt	ggc	tttg	ıgga	aagg	caga	.ga t	aaga	agcaa	a 5	514
agct	ttgt	ga t	agag	gacag	ja aa	caaç	ıgcca	ı tga	aaag	ıgga	agct	acca	aa g	gcaat	ggcat	t 5	574
agcc	aagg	jaa ç	gtgtg	tctt	c ac	aaga	ıtaaç	r tgg	rcaag	gac	cctg	rttga	.gt t	gato	rcttg	t 6	534
gttg	rtttg	ıgt a	agaat	taaa	a at	taag	gatga	gtg	ggtt	ggc	ссса	ıgtgg	rtc (catgo	ctgta	a 6	594
atto	cctc	ac t	ttgg	gagg	ga to	gaggo	aggt	gga	tago	tga	ggtc	aaga	ıgt t	caag	gacca	c 7	754
gaaa	tcgt	cg a	acago	gann	nc nt	tccg	gggaa	tto	cgga	cgg						7	794
	<21 <21 <21 <22 <22 <22 <22	?0> ?1> (ONA Homo CDS (44).														
tttc	gtga	aaa a	atttt	taato	ec to	cagto	gaaco	agg	ıgcaç	gaaa	aga		: Met		tcc Ser		55
						Ile								gtt Val		1	103
agc Ser	caa Gln	cgg Arg	aag Lys	gag Glu 25	gtg Val	gag Glu	cag Gln	gat Asp	cct Pro 30	gga Gly	ccc Pro	ttc Phe	aat Asn	gtt Val 35	cca Pro	1	151
gag Glu	gga Gly	gcc Ala	act Thr 40	gtc Val	gct Ala	ttc Phe	aac Asn	tgt Cys 45	act Thr	tac Tyr	agc Ser	aac Asn	agt Ser 50	gct Ala	tct Ser	í	199
														aag Lys		2	247
														aca Thr		2	295

cag ctc aat aga gcc agc cag tat att tcc ctg ctc atc aga gac tcc Gln Leu Asn Arg Ala Ser Gln Tyr Ile Ser Leu Leu Ile Arg Asp Ser 85 90 95 100	343
aag ctc agt gat tca gcc acc tac ctc tgt gtg gtg aac att cgc cca Lys Leu Ser Asp Ser Ala Thr Tyr Leu Cys Val Val Asn Ile Arg Pro 105 110 115	391
gga aac aca cct ttg gga ctg gaa caa gac ttc agg tca cgc tcg ata Gly Asn Thr Pro Leu Gly Leu Glu Gln Asp Phe Arg Ser Arg Ser Ile 120 125 130	439
tcc aga acc ctg acc ctg ccg tgt acc agc tga gagactct aaatccagtg Ser Arg Thr Leu Thr Leu Pro Cys Thr Ser * 135 140	490
acaatgctgt cgaccta	507
<210> 328 <211> 1043 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS <222> (210)(1043)	
<400> 328 accggtccgg aattcccggg tcgacgattt cgtccggtgt cgggaagcac cagtgccctg	60
aggaagggcc atttccaaaa gccctgtgct gacacagggt tgctggttcc tcttcaagag	120
cccactctct ggggtggggc catatctcca gcagaggtgg gctggaaagg acccccccaa	180
tcccgcccgc cgtgagctta gctggagcc atg gcc tct gca ccc atc tcg atg Met Ala Ser Ala Pro Ile Ser Met 1 5	233
ctt gcg atg ctc ttc aca ttg agt ggg ctg aga gct cag tca gtg gct Leu Ala Met Leu Phe Thr Leu Ser Gly Leu Arg Ala Gln Ser Val Ala 10 15 20	281
cag ccg gaa gat cag gtc aac gtt gct gaa ggg aat cct ctg act gtg Gln Pro Glu Asp Gln Val Asn Val Ala Glu Gly Asn Pro Leu Thr Val 25 30 35 40	329
aaa tgc acc tat tca gtc tct gga aac cct tat ctt ttt tgg tat gtt Lys Cys Thr Tyr Ser Val Ser Gly Asn Pro Tyr Leu Phe Trp Tyr Val 45 50 55	377
caa tac ccc aac cga ggc ctc cag ttc ctt ctg aaa tac atc aca ggg Gln Tyr Pro Asn Arg Gly Leu Gln Phe Leu Leu Lys Tyr Ile Thr Gly	425

aac Asn									473
caa Gln 90									521
gct Ala									569
aac Asn									617
atc Ile									665
agt Ser									713
gtg Val 170									761
cta Leu									809
 agc Ser		_	-	_	-				857
att Ile									905
aag Lys									953
aac Asn 250									1001
ttt Phe							tga *		1043

<210> 329

<211> 1037 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(831) <400> 329 48 atg agc atc agc ctc ctg tgc tgt gca gcc ttt cct ctc ctg tgg gca Met Ser Ile Ser Leu Leu Cys Cys Ala Ala Phe Pro Leu Leu Trp Ala 5 1 96 ggt cca gtg aat gct ggt gtc act cag acc cca aaa ttc cgc atc Gly Pro Val Asn Ala Gly Gly Val Thr Gln Thr Pro Lys Phe Arg Ile ctg aag ata gga cag agc atg aca ctg cag tgt gcc cag gat atg aac 144 Leu Lys Ile Gly Gln Ser Met Thr Leu Gln Cys Ala Gln Asp Met Asn cat aac tac atg tac tgg tat cga caa gac cca ggc atg ggg ctg aag 192 His Asn Tyr Met Tyr Trp Tyr Arg Gln Asp Pro Gly Met Gly Leu Lys 55 50 240 ctg att tat tat tca gtt ggt gct ggt atc act gac aaa gga gaa gtc Leu Ile Tyr Tyr Ser Val Gly Ala Gly Ile Thr Asp Lys Gly Glu Val 75 70 65 288 ccg aat ggc tac aac gtc tcc aga tca acc aca gag gat ttc ccg ctc Pro Asn Gly Tyr Asn Val Ser Arg Ser Thr Thr Glu Asp Phe Pro Leu 85 336 agg ctg gag ttg gct gct ccc tcc cag aca tct gtg tac ttc tgt gcc Arg Leu Glu Leu Ala Ala Pro Ser Gln Thr Ser Val Tyr Phe Cys Ala 110 100 105 agc agt agg ggt ggg gcc ggg ctc aat gag cag ttc ttc ggg cca ggg 384 Ser Ser Arg Gly Gly Ala Gly Leu Asn Glu Gln Phe Phe Gly Pro Gly aca cgg ctc acc gtg cta gag gac ctg aaa aac gtg ttc cca ccc gag 432 Thr Arg Leu Thr Val Leu Glu Asp Leu Lys Asn Val Phe Pro Pro Glu 135 140 gtc gct gtg ttt gag cca tca gaa gca gag atc tcc cac acc caa aag 480 Val Ala Val Phe Glu Pro Ser Glu Ala Glu Ile Ser His Thr Gln Lys 155 145 gcc aca ctg gta tgc ctg gcc aca ggc ttc tac ccc gac cac gtg gag 528 Ala Thr Leu Val Cys Leu Ala Thr Gly Phe Tyr Pro Asp His Val Glu 170 165 ctg agc tgg tgg gtg aat ggg aag gag gtg cac agt ggg gtc agc aca 576 Leu Ser Trp Trp Val Asn Gly Lys Glu Val His Ser Gly Val Ser Thr 185 190 180

gac ccg cag ccc ctc aag gag cag ccc gcc ctc aat gac tcc aga tac Asp Pro Gln Pro Leu Lys Glu Gln Pro Ala Leu Asn Asp Ser Arg Tyr 195 200 205	624
tgc ctg agc agc cgc ctg agg gtc tcg gcc acc ttc tgg cag aac ccc Cys Leu Ser Ser Arg Leu Arg Val Ser Ala Thr Phe Trp Gln Asn Pro 210 215 220	672
cgc aac cac ttc cgc tgt caa gtc cag ttc tac ggg ctc tcg gag aat Arg Asn His Phe Arg Cys Gln Val Gln Phe Tyr Gly Leu Ser Glu Asn 225 230 235 240	720
gac gag tgg acc cag gat agg gcc aaa cct gtc acc cag atc gtc agc Asp Glu Trp Thr Gln Asp Arg Ala Lys Pro Val Thr Gln Ile Val Ser 245 250 255	768
gcc gag gcc tgg ggt aga gca ggt gag tgg ggc ctg ggg aga tgc ctg Ala Glu Ala Trp Gly Arg Ala Gly Glu Trp Gly Leu Gly Arg Cys Leu 260 265 270	816
gag gag att agg tga gaccagctac cagggaaaat ggaaagatcc aggtagcgga Glu Glu Ile Arg * 275	871
caagactata tccagaagaa agccagagtg gacaaggtgg gatgatcaag gttcacaggg	931
tcagcaaagc acggtgtgca cttcccccac caagaagcat ataggctgaa tggagcacct	991
caageteatt etteetteag ateetgacae ettagageta agettt	1037
<210> 330 <211> 738 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (300)(608)	
<220> <221> CDS	60
<220> <221> CDS <222> (300)(608) <400> 330	60 120
<220> <221> CDS <222> (300)(608) <400> 330 tagttcaaag aagaaaagtc agctggatgt gatgcctcat gcctgtaatc ctaccacttt	
<pre><220> <221> CDS <222> (300)(608) <400> 330 tagttcaaag aagaaaagtc agctggatgt gatgcctcat gcctgtaatc ctaccacttt gggaggccaa cacggttgga tctcttgagc ccaggagttc gagactagcc tggccaacat</pre>	120
<pre><220> <221> CDS <222> (300)(608) <400> 330 tagttcaaag aagaaaagtc agctggatgt gatgcctcat gcctgtaatc ctaccacttt gggaggccaa cacggttgga tctcttgagc ccaggagttc gagactagcc tggccaacat ggcgaaaccc cttctcttt tctttttta aaattttta gttagaaatg aaaaaaagaa</pre>	120 180

Trp Ser Leu Ser Pro His Leu Val Thr His Phe Gln Pro Met Gly Val 20 25 30	
agt tgg gaa att cta cac aag atc cta gta gat gta att aca tat aat Ser Trp Glu Ile Leu His Lys Ile Leu Val Asp Val Ile Thr Tyr Asn 35 40 45	443
tca atg gtt ttt gat gat ggg gtt tta aaa tca agt tat tca ata ggt Ser Met Val Phe Asp Asp Gly Val Leu Lys Ser Ser Tyr Ser Ile Gly 50 55 60	491
ggg gtg cag tgg ctc acg cct gta att cca gca ctt tgg gag gcc gag Gly Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Glu Ala Glu 65 70 75 80	539
gag ggc aga tca caa ggt cgg gag ttc aag acc agc ctg acc aac atg Glu Gly Arg Ser Gln Gly Arg Glu Phe Lys Thr Ser Leu Thr Asn Met 85 90 95	587
gta aaa ctc cgt ctc tac taa aa attcaaaaat tagccggccg tggtggtgga Val Lys Leu Arg Leu Tyr * 100	640
catctgtaat cccagctact tagggggctg aggcaggaga atcgcttgaa cgggggcagg	700
tcggggcagg gcggcaactc cctcttaaaa aaaaaaaaa	738
<pre><210> 331 <211> 679 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (243)(449) <220> <221> misc_feature <222> (1)(679) <223> n = a,t,c or g</pre>	
<400> 331 aacaagcagc agtgaggaca ccaaagccaa gccacgccac	60
cggagtttaa ggaccgcgtc teeegagatg ceagagggae etgegteege actgeeecag	120
tgtgacccgc atacctaccg gccccgaccc cgaaccgcgt ggcgtccgcc cgagccctgg	180
cgctgctggg tctcctgctg ctgccgctgc tcgcagagcc caggaaactc tgcccgcagc	240
tt atg acg gtc att aac cag ttt ctg acc aag gac aag gac acc tac Met Thr Val Ile Asn Gln Phe Leu Thr Lys Asp Lys Asp Thr Tyr 1 5 10 15	287

atg gac act gtc aac aga tac cac ctc acg gag ccg gaa aga aac aca Met Asp Thr Val Asn Arg Tyr His Leu Thr Glu Pro Glu Arg Asn Thr 20 25 30	335
tcc tct aaa ctc aag gac tgc gtg acc gac aca atg acc ccc gag gag Ser Ser Lys Leu Lys Asp Cys Val Thr Asp Thr Met Thr Pro Glu Glu 35 40 45	383
aca gag gcc gtc gtg cag caa ctg gaa gaa atc aac aac cag tgt gcc Thr Glu Ala Val Val Gln Gln Leu Glu Glu Ile Asn Asn Gln Cys Ala 50 55 60	431
gac acg ata ctg aag taa caccat ccataggcac ctcgggttcc tgtccaggct Asp Thr Ile Leu Lys * 65	485
gcctgtccca accatgagaa tctgggccca gggccccacc ctccctagct cccgccctgc	545
tgctgcctct actctctctc ctgctgtgct gattggggca agcctgggaa cggctgcccc	605
ccacctcccc acccaggncc tgtcctgcgg gacaatgctg cctaataaac tcacctgcat	665
ccaaaaaaaa aaaa	679
<210> 332 <211> 445 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (200)(400) <400> 332	
ctttagtcca gcgtggtgga attcgtagat ccccgcgtgg caccagccct tctgccacag	60
	100
ctgccattgg agagcagcag ccatggctct gtgctaccca ctatggccgt gtgccttgac	120
aagggccaca agatgaccaa gaacatgagc aagcccaggc acagctgccg ccgcgggcgc	180
aagggccaca agatgaccaa gaacatgagc aagcccaggc acagctgccg ccgcgggcgc ctgaccaaac accaaattc atg tgg gac atg atc cga gag gtg tgt ggt ttc Met Trp Asp Met Ile Arg Glu Val Cys Gly Phe	180
aagggccaca agatgaccaa gaacatgagc aagcccaggc acagctgccg ccgcgggcgc ctgaccaaac accaaattc atg tgg gac atg atc cga gag gtg tgt ggt ttc Met Trp Asp Met Ile Arg Glu Val Cys Gly Phe 1 5 10 gcc ccg tat gag cgg cac gcc atg gtg tta ctc aag gtc tcc aag gac Ala Pro Tyr Glu Arg His Ala Met Val Leu Leu Lys Val Ser Lys Asp	180 232

aaa gct gat gcc aag aaa gac tga gccccctgtc ctgccctctc tctgaaataa Lys Ala Asp Ala Lys Lys Asp * 60 65	430
agaacacctt gacag	445
<210> 333 <211> 1716 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (633)(1433)	
<400> 333 cccgggtcga cgattcgtag gatatccaag ggacctcagg ctgtgggctg ggcttcaggg	60
agggagccag agggtcagtg tccctagagg atccccaggg aagtgccaag gaggagaagg	120
aatgtcctgg ctgacctaag ggacgacaga agattgggga agagggggta tcaggaagaa	180
atgggtttca gttcagttta acaaacatct attgtgtgtt cactgggcca ggccagtgct	240
aggtgctagg gagacagagg tgaagagcct gccctctagc agctgacagc ctggcaaaaa	300
aataagacag aataaggtag accetgattt tggaacetga agaccaaagt gcaagattag	360
ctctgctact tccatctgtg gaccattggg caggtatctc tgggccttca cttactcttt	420
gtgaaatgag gacaggggca atccctaccc taccaagtca ttgggagtga agacatgatg	480
acacggtgat tgtgaaaaga ttttgtcaat cgcaccagca ttaagggtgc ccatctccag	540
gttcccccag gcctcaaggc tcccaaggcc tgagtgggca ggtagcaccc aggtatagac	600
cttccacgtg cagcacccag gacacagcca gc atg aac tgg gca ttt ctg cag Met Asn Trp Ala Phe Leu Gln 1 5	653
ggc ctg ctg agt ggc gtg aac aag tac tcc aca gtg ctg agc cgc atc Gly Leu Leu Ser Gly Val Asn Lys Tyr Ser Thr Val Leu Ser Arg Ile	701
tgg ctg tct gtg gtg ttc atc ttt cgt gtg ctg gtg tac gtg gtg gca Trp Leu Ser Val Val Phe Ile Phe Arg Val Leu Val Tyr Val Val Ala 25 30 35	749
gcg gag gag gtg tgg gac gat gag cag aag gac ttt gtc tgc aac acc Ala Glu Glu Val Trp Asp Asp Glu Gln Lys Asp Phe Val Cys Asn Thr 40 45 50 55	797

_	-	ccc Pro		_			-									845
		gtg Val														893
		ctc Leu 90														941
		cac His														989
		aag Lys														1037
		aag Lys														1085
		aag Lys														1133
	-	ccc Pro 170				-	_						_		_	1181
		ttc Phe														1229
		ctc Leu	_	_	~			_			_		_	_		1277
		ggc Gly								_		_	_			1325
_	_	tgc Cys														1373
		tct Ser 250	_		_	_	-									1421
	tat Tyr 265	cca Pro	taa *	cct	gcga	agato	cag o	cagat	aaga	at ca	aacaç	ggtco	c cc	cca	catg	1476
aggo	ccaco	cca g	ggaaa	aaaag	gg ca	agggg	gcagt	ggo	catco	cttg	ccgt	tagca	agg g	gtggt	gagga	1536

gggtggctgt gggggctcag gaagctcgcc caggggccaa tgtgggaggt tggggggtagt 1596 ttggtccctg ggtcctgagc ctcaggggag ggaggttgat agctactggg gattatgtat 1656 1716 <210> 334 <211> 407 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (44)..(340) <400> 334 aacagacttc tctcaactca acaaaaaccc acctcccatt gcc atg tat tgc tgt 55 Met Tyr Cys Cys 1 get etc ege tee tge age gte eec ace gge eet gee ace ace tte tge 103 Ala Leu Arg Ser Cys Ser Val Pro Thr Gly Pro Ala Thr Thr Phe Cys 10 tca ttt gat aaa agc tgc cgc tgt gga gtc tgc cta ccc agc acc tgc 151 Ser Phe Asp Lys Ser Cys Arg Cys Gly Val Cys Leu Pro Ser Thr Cys 2.5 cca cat gag atc agc ctc ctt cag ccc atc tgc tgt gac acc tgc ccc 199 Pro His Glu Ile Ser Leu Leu Gln Pro Ile Cys Cys Asp Thr Cys Pro 40 45 247 cca ccc tqc tqc aaq cct gat acc tat gtg cca act tgc tgg ctg ctc Pro Pro Cys Cys Lys Pro Asp Thr Tyr Val Pro Thr Cys Trp Leu Leu 60 55 aac aac tgt cac ccg act ccc gga ctg agt ggg atc aac ctg acc acc 295 Asn Asn Cys His Pro Thr Pro Gly Leu Ser Gly Ile Asn Leu Thr Thr 70 75 80 tat gtt cag cct ggc tgt gag agt ccc tgt gag ccc cgc tgt taa cca 343

<210> 335 <211> 2530

85

cage

95

403

407

Tyr Val Gln Pro Gly Cys Glu Ser Pro Cys Glu Pro Arg Cys *

gccgagtctg cacaggttcc gtgaggtggc tgcccaatgt cctctgcacc atctgggctt

	212> DN 213> Ho	NA omo sapi	iens										
<2	220> 221> CE 222> (2	os 23)(12	249)										
<2 <2	222> (1	sc_feat 1)(25 = a,t,c	530)	ſ									
	100> 33 1cag ga	35 Accggtco		atg gag Met Gl				ı Arç					52
		cac ctg His Leu 15											100
		aaa gag .ys Glu 30											148
		atc gcc lle Ala											196
	e Ser S	ct ggg Ser Gly											244
		cac agc His Ser											292
-	ı Gln G	gag ctg Slu Leu 95	Lys C	ys Leu	Ser	Gly	Gln	Leu	Asp	Gly	Tyr	Arg	340
	pro P	tc ccg Phe Pro											388
		ctc ctc Leu Leu											436
	Ser I	ctg ctg Leu Leu	Gly I										484
		ctg cag Leu Gln											532

						gtc Val										580
						gag Glu										628
						gtg Val										676
						ttt Phe 225										724
						ggg Gly										772
						ggc Gly										820
						gtg Val										868
						ccc Pro										916
_				_		ctg Leu 305										964
						ttc Phe								_	_	1012
	_	_		_	-	ctc Leu	_	-			_					1060
						cat His										1108
						cct Pro										1156
						tcc Ser 385										1204
ctc	cgc	ctg	ccg	cct	ctg	cac	cca	cct	cct	gat	ctc	agg	ttc	tga	agg	1252

Leu Arg Leu Pro Pro Leu His Pro Pro Pro Asp Leu Arg Phe * 395 400 405

cggctgtggt	ggctgctcct	gtgctcccct	ggggaggtcc	ccacccctcc	cctccaggag	1312
caggcctggt	gcagcccact	ctgtgcctgg	acateceeeg	caggccgccg	cgtctgtgtt	1372
ggggagcgcc	tggccaggac	cgagctcttc	ctgctgtttg	ccggcctcct	gcagaggtac	1432
cgcctgctgc	ccccgcctgg	cgtcagtccg	gcctccctgg	acaccacgcc	cgcccgggct	1492
tttaccatga	ggccgagggc	ccaggccctg	tgtgcggtgc	ccaggcccta	ggagctcccc	1552
cagcccccag	gtcctcctga	ccactcccct	cccagccctg	ggtcctccca	ccctctctcc	1612
tcccacccca	cagctcggac	tgctctggga	gggccctgag	gactcccacc	ctcaccccca	1672
ccccacagg	gtcagcaact	gcttccggtt	acacccagga	ctacccctgc	ccgaccctgt	1732
gggaccccca	cccctctgat	gctgtctgca	gctcagtccc	tgccagcccc	caggagcgcc	1792
tccagggccc	cgcccactct	cccacccctg	aagctgcact	cccacccacc	tagctccccc	1852
cagggccccc	cagcacctac	agctggggct	gcagggagac	aacgggtggc	tgcaatccag	1912
ccagagacag	gcgcaggtgg	gtgtcctcag	cgtgcgagcc	ctgcaccccc	caggtcctgg	1972
gactcctgca	gaccccactc	cattcccgct	cctggaacac	ttcctgcagc	tgtgcctgga	2032
ggcagtcggc	ctgcagtgcc	agactctgag	ccaagccact	ggggccatgc	gtatgactgg	2092
tgcagggagg	caaggcccac	attctccttc	agagacaggc	actggcgcca	gaggetteet	2152
tggggcgggg	ggagggcacc	tcagcccctg	aagacaagca	gcactgcagt	ggcaaaaatg	2212
gaaacactga	cccggtgcgg	tggctcatgc	ctgtaatccc	agcactttgg	gaggccaagg	2272
tgggcggatc	acgaggtcag	gagttcgaga	ccagcctgac	caacatggtg	aaaccctgtc	2332
tctactaaaa	atacaaaaat	tagnctgggc	gtggtggcat	gcacccctgc	aatcccaagc	2392
tactcggcgg	gggggctgag	gcaggaagna	attgcttgaa	cctgggaggt	gaaggggttg	2452
cagtgagccg	nnagatcatg	ccactgcact	ccagcctggg	ggacagagcg	agactccatc	2512
tcacaaaaaa	aaaaaaaa					2530

<210> 336

<211> 765

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (107)..(322)

<400> 336 ctcattacaa aagttgatgt tatttctcgt ggtaaattca gaaaaacatc agggagtaaa 115 caatgccaac atctgagcaa acattttggg gtatatctct attttc atg ttt aca Met Phe Thr 1 ttg tcg ttt aaa aaa caa tca aac gac att agc agt ttt aca aca ttt 163 Leu Ser Phe Lys Lys Gln Ser Asn Asp Ile Ser Ser Phe Thr Thr Phe 5 10 211 tcc ttt cca gtt aaa act gta tac cgt tac cat ttt ccc atc ata ctc Ser Phe Pro Val Lys Thr Val Tyr Arg Tyr His Phe Pro Ile Ile Leu 20 25 259 ttc acc tac gat act gtt tta agt ggc tgt ata gat ttc cac ttt cac Phe Thr Tyr Asp Thr Val Leu Ser Gly Cys Ile Asp Phe His Phe His 307 aac aga att agc aga ttc cca aaa ctt gaa tat tta att tta aaa aaa Asn Arg Ile Ser Arg Phe Pro Lys Leu Glu Tyr Leu Ile Leu Lys Lys 60 att ctt aat aac tga tattaaattt atatacgcaa atctgacaca ttacttcctt 362 Ile Leu Asn Asn * 70 aggataaatt cctgtacgca cagtctttcc attttaagcc tattatacta tgaaggagtc 422 tgaatcaaca tctaagagct ccgagagttc aacaccagcc tgggccatat tgtgagaaca 482 cgtctctaca gacgatcaaa aaattagctt ggtgtggtgg cgcgcgcctg tgatctcagc 542 tacccaggag gctgaggtgg gaggatcact taagcccggg aggtcgaggc tgctgtgagc 602 cgtgagccac tgatcatacc actgcactcc agtctgggca acagagcgat cctgtttcag 662 agaaaaaaaa gatccaagac ctctgtagac cacactgaca gccctgctac tatttgcaac 722 tggtcgcgcc ctcgtgccga attcttggcc tcgagggcca aat 765

```
<210> 337
```

<211> 773

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (528)..(695)

<400> 337

aatgaaaaaa gtacaattta taatagtatc tcaaaaagga aatatttagg gataatgtaa

caatatgtac	aagatcaata tattgaatac tacaaaacac ttgagagaaa cttaaaaaga	120
ctcaaataaa	tggagaaata tagtgtgttt atggatcaaa ggactcaata ttgttaagat	180
gtcaactctt	cctaaatcaa tccatacagt cagtgtaatt ccattcaatg cccaaccagc	240
acccccacc	tgccccgcat tttttttggt aagaattaat aagctagtcc tgaaattcaa	300
atagaaatgc	aaagggtgac actcctattt ggcagccatt tctcttaaag ctcagtggtt	360
ctggacctgc	agtatctgct gagttaggag ggacaggaga gtagcagcta ggtcggtggc	420
aaatagcccg	caacattccc tttagttaca atgagtttac ccctcaatct caaatatttc	480
ctcagtggat	taacaggaga gccagtgatg gtgaagctta agtggga atg gag tat Met Glu Tyr 1	536
	c ctg gta tct gta gat ggc tat atg aac atg cag ctt gca r Leu Val Ser Val Asp Gly Tyr Met Asn Met Gln Leu Ala 10 15	584
•	a ttc ata aat gag gca ttg cct gga cat cta ggt gaa gtt u Phe Ile Asn Glu Ala Leu Pro Gly His Leu Gly Glu Val 25 30 35	632
	g tgt aat aat gtc ctt tat atc aga gat gtg gaa gaa gag g Cys Asn Asn Val Leu Tyr Ile Arg Asp Val Glu Glu 40 45 50	680
gaa atg ggg Glu Met Gly	g aaa tga gtgaatagca tcttttgaag aggatttttt aaatatgtat y Lys * 55	735
ttctagacaa	taaagatttg tttttcaaaa aaaaaaaa	773

<210> 338

<211> 1251

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (84)..(1085)

<400> 338

atttggcct cgaggccaag aattcggcac gaggagagag ctagcaccat gagcttcaat 60

acccttcaga tacctttcat aca atg aat act cag caa agt aca ccc tca Met Asn Thr Gln Gln Ser Thr Pro Ser

1

aat aat gtt cat acc tca tta agc cat gtt cag aat gga gca cct ttt 158

Asn 10	Asn	Val	His	Thr	Ser 15	Leu	Ser	His	Val	Gln 20	Asn	Gly	Ala	Pro	Phe 25	
		-			_	_					aag Lys					206
											gac Asp					254
											gaa Glu					302
		_	-					_			gga Gly 85	_		_		350
											agc Ser					398
											cat His					446
											acc Thr					494
											cag Gln					542
											tgt Cys 165					590
											cac His					638
											gtt Val					686
											aga Arg					734
											aaa Lys					782
											tgg Trp					830

235 240 245	
cac cag tgt tcc aag tgc cgg cta cag ttt tta act ttc aag gag aaa His Gln Cys Ser Lys Cys Arg Leu Gln Phe Leu Thr Phe Lys Glu Lys 250 265	878
atg gag cac aag acc cag tgt cat caa atg ttt aag aag cct aag caa Met Glu His Lys Thr Gln Cys His Gln Met Phe Lys Lys Pro Lys Gln 270 275 280	926
cta gaa gga tta cct cct gaa aca aaa gtt act att caa gtg tca ctg Leu Glu Gly Leu Pro Pro Glu Thr Lys Val Thr Ile Gln Val Ser Leu 285 290 295	974
gaa cct ctt cag cca gga tca gtg gat gta gca tcc ata act gtg agc Glu Pro Leu Gln Pro Gly Ser Val Asp Val Ala Ser Ile Thr Val Ser 300 305 310	1022
aca tct gac tct gaa cca tca ctc ccc agg tct aaa agc aaa att tca Thr Ser Asp Ser Glu Pro Ser Leu Pro Arg Ser Lys Ser Lys Ile Ser 315 320 325	1070
aaa aag tcc cat taa ttctagtttc agtaaatcta aagcaagtat ttcaaaccaa Lys Lys Ser His * 330	1125
attaaaaaac ctcataaaac aaaaaataca aaccatacat tattcagtag caccaaaaat	1185
agtgaaacta gtggattata tatgactttt taaacaagat tcaggatata tattaaaaaa	1245
aaaaaa	1251
<210> 339 <211> 2638 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (106)(1845) <400> 339	
gcgggttgat tttctcactt tggactggtt tttacttccc gacttctgga ctcatctttc	60
aagaggactt tagactaatt gcagataatt aaggtggtag agaat atg cct tct Met Pro Ser 1	114
gca tcc tgt gat aca cta ctg gat gac atc gaa gat atc gtg tct cag Ala Ser Cys Asp Thr Leu Leu Asp Asp Ile Glu Asp Ile Val Ser Gln 5 10 15	162
gaa gat tca aaa cca caa gat agg cat ttt gta aga aag gat gtt gtc Glu Asp Ser Lys Pro Gln Asp Arg His Phe Val Arg Lys Asp Val Val	210

25 30 35 20 258 ccg aag gta cga agg cga aat acc caa aaa tat ttg caa gag gaa gaa Pro Lys Val Arg Arg Arg Asn Thr Gln Lys Tyr Leu Gln Glu Glu Glu 306 aac agt cca cca agt gac agc act att cca ggc ata cag aaa att tgg Asn Ser Pro Pro Ser Asp Ser Thr Ile Pro Gly Ile Gln Lys Ile Trp 354 ata cga aca tgg ggt tgt tct cat aat aat tca gat gga gaa tat atg Ile Arg Thr Trp Gly Cys Ser His Asn Asn Ser Asp Gly Glu Tyr Met 75 gct gga cag cta gct gct tat ggc tat aaa att aca gaa aat gca tcc 402 Ala Gly Gln Leu Ala Ala Tyr Gly Tyr Lys Ile Thr Glu Asn Ala Ser 85 gat gca gat tta tgg ctc ctg aac agt tgc act gta aaa aac cca gct 450 Asp Ala Asp Leu Trp Leu Leu Asn Ser Cys Thr Val Lys Asn Pro Ala 100 105 110 115 498 gaa gac cac ttt aga aac tca att aaa aaa gct caa gag gag aac aag Glu Asp His Phe Arg Asn Ser Ile Lys Lys Ala Gln Glu Glu Asn Lys 120 aaa atc gta ctg gct gga tgc gtt cct caa gcc cag cct cgc cag gac 546 Lys Ile Val Leu Ala Gly Cys Val Pro Gln Ala Gln Pro Arg Gln Asp 140 594 tac ctt aag gga ctg agt atc att ggg gtt cag cag ata gat cgt gtg Tyr Leu Lys Gly Leu Ser Ile Ile Gly Val Gln Gln Ile Asp Arg Val 155 gta gaa gtt gtg gag gag aca att aaa ggt cac tct gtg aga ctg ctg 642 Val Glu Val Val Glu Glu Thr Ile Lys Gly His Ser Val Arg Leu Leu 165 170 175 690 ggt cag aaa aag gat aat gga agg cgg ctt ggg gga gca cga ttg gat Gly Gln Lys Lys Asp Asn Gly Arg Arg Leu Gly Gly Ala Arg Leu Asp 180 190 195 738 ttg ccg aag att agg aag aat cca ctg ata gaa atc att tcc atc aat Leu Pro Lys Ile Arg Lys Asn Pro Leu Ile Glu Ile Ile Ser Ile Asn 200 786 acc ggg tgt ctc aat gct tgt acc tac tgc aaa act aaa cac gcc aga Thr Gly Cys Leu Asn Ala Cys Thr Tyr Cys Lys Thr Lys His Ala Arg 215 gga aat ttg gcc agt tat cca att gat gaa cta gta gat aga gcc aaa 834 Gly Asn Leu Ala Ser Tyr Pro Ile Asp Glu Leu Val Asp Arg Ala Lys 230 caa tct ttt caa gag ggt gtt tgt gag ata tgg ttg acc agt gaa gac 882 Gln Ser Phe Gln Glu Gly Val Cys Glu Ile Trp Leu Thr Ser Glu Asp 245 250

	Gly		tat Tyr													930
			gtt Val													978
			ccg Pro 295													1026
atc Ile	ctt Leu	aat Asn 310	cac His	ccc Pro	aga Arg	gtc Val	tac Tyr 315	gct Ala	ttt Phe	ctg Leu	cac His	ata Ile 320	cca Pro	gtc Val	cag Gln	1074
			gac Asp													1122
			aaa Lys													1170
			gct Ala													1218
			caa Gln 375													1266
			att Ile													1314
			caa Gln													1362
			gtg Val													1410
			caa Gln													1458
			cac His 455													1506
			atg Met													1554

aaa cat ttt atg aaa ggg cag cca gta tct gat gcc aaa gtg tac acg Lys His Phe Met Lys Gly Gln Pro Val Ser Asp Ala Lys Val Tyr Thr 485 490 495	1602
ccc tcc atc agc aaa ccg cta gca aag gga gaa gtc tca ggt ttg acaPro Ser Ile Ser Lys Pro Leu Ala Lys Gly Glu Val Ser Gly Leu Thr500505 515	1650
aag gac ttc aga aat ggg ctt ggg aac cag ctg agt tca gga tcc cacLys Asp Phe Arg Asn Gly Leu Gly Asn Gln Leu Ser Ser Gly Ser His520525	1698
acc tct gct gca tct cag tgt gac tca gcg agt tcc aga atg gtg ctg Thr Ser Ala Ala Ser Gln Cys Asp Ser Ala Ser Ser Arg Met Val Leu 535 540 545	1746
ccc atg cca agg cta cat caa gac tgt gcg ctg agg atg tcc gtg ggc Pro Met Pro Arg Leu His Gln Asp Cys Ala Leu Arg Met Ser Val Gly 550 555 560	1794
ttg gct ctg ctg ggt ctt ctt ttt gct ttt tt	1842
tag aata caactaatgg aaacatctat aaagaagaat acatttctaa ttaaaatctt * 580	1899
caatgaacag gaaagcgaca tctccattct ccaagggcaa taatttgtac tggtcatgct	1959
gcctccttct cagccactct tcttaatgag gctccccctg tctcacattg agttgggccc	2019
attggttatt tgacctaaaa cctaatcacc gctaccatag cacatccttc aaattaaact	2079
gcttttggtt tacttttagc aagaaatgca agcggttgca ttttttctgt ttgtttcaat	2139
ctctaatctt taagtcagaa cctaattgta cagtggctct ggccatcttt tcctcatgtg	2199
gaagaatttt ctatctttaa taaacttttt ctttgttttt tttttccaga tggagtttcg	2259
ctcttgtccc ccaggctgga gtggtgcagt ggcacgatct caggtcactg cagccttgac	2319
ctcctgggtt caagcagtcc tcctacctca gcctccctaa tagccagggg ctacaggcat	2379
ataccaccat gcccaactaa ttttttaatt ttttgtagag atgagtgtca ctatgttgcc	2439
caggettgee tggaacteet ageeteaage agtettettg ceteageete ecaaagtget	2499
gggattacag gcgtgagcca ctccacccag cccagattaa atgtttttat ttctacctgc	2559
catcattggt ctttactaag tgaagtgact tctttcttta acaataaatg gaattggtat	2619
actaagcaaa aaaaaaaaa	2638

<210> 340 <211> 1301 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (250)..(1275) <400> 340 tegettegae gatttegtga getteateta gaecegtggt ettgagtetg aggggeaect 60 tetecaggae teteteace etgtecagee ttgeceatgg aaatgeagea etgttetage 120 tggctggagg ggagggtagt gagatgggcg gccatctgct ggtagacatg cgggaggact 180 ttccggggca gtgggtttcc agccccaca tgcccctcag tggggccctg tgccctagag 240 tacaccaag atg aag act gca gat cac ttc tgg acc gat ccc tcg gct 288 Met Lys Thr Ala Asp His Phe Trp Thr Asp Pro Ser Ala 1 10 gac gaa ctt gtc cag agg cac cgc atc cac agc tcc cac gtg cgg cag 336 Asp Glu Leu Val Gln Arg His Arg Ile His Ser Ser His Val Arg Gln 15 gac teg eec ace aag egt eet gee etc tgt ate eag aag agg eat tee 384 Asp Ser Pro Thr Lys Arg Pro Ala Leu Cys Ile Gln Lys Arg His Ser 35 agt ggc agc atg gat gac cgg cca tcc ctc tct gcc cgc gac tac gtg 432 Ser Gly Ser Met Asp Asp Arg Pro Ser Leu Ser Ala Arg Asp Tyr Val gag tcc ctg cat cag aac tcc cgt gcc acc ctt ctc tat ggc aaa aac 480 Glu Ser Leu His Gln Asn Ser Arg Ala Thr Leu Leu Tyr Gly Lys Asn 65 70 aac gtt ctt gtt cag ccg agg gac gac atg gag gct gtg cca ggg tac 528 Asn Val Leu Val Gln Pro Arg Asp Met Glu Ala Val Pro Gly Tyr 80 85 ctg tcc ctg cac cag acg gct gac gtc atg acc ttg aag tgg aca ccc 576 Leu Ser Leu His Gln Thr Ala Asp Val Met Thr Leu Lys Trp Thr Pro 95 100 aac cag ctg atg aac ggg tct gtg ggg gac ctg gac tat gag aag agc 624 Asn Gln Leu Met Asn Gly Ser Val Gly Asp Leu Asp Tyr Glu Lys Ser 110 115 gtc tac tgg gac tat gcc atg acc atc cgc ttg gag gag att gtc tac 672 Val Tyr Trp Asp Tyr Ala Met Thr Ile Arg Leu Glu Glu Ile Val Tyr 130 135 ctg cac tgc cac cag caa gtt gac agc ggc ggg aca gtg gta ttg gtc 720 Leu His Cys His Gln Gln Val Asp Ser Gly Gly Thr Val Val Leu Val 145 150

agc cag gac ggg atc cag agg ccg ccc ttc cgc ttc ccc Ser Gln Asp Gly Ile Gln Arg Pro Pro Phe Arg Phe Pro 160 165 17	o Lys Gly Gly
cac ctc ctg cag ttc ctc tcg tgc ctg gag aat ggg ctc His Leu Leu Gln Phe Leu Ser Cys Leu Glu Asn Gly Le 175 180 185	
ggg cag ttg gac ccg cca ctg tgg tcc cag agg ggt aa Gly Gln Leu Asp Pro Pro Leu Trp Ser Gln Arg Gly Ly 190 195 200	
ttt cct aaa ctg cgc aag cga agc cct cag ggt tct gce Phe Pro Lys Leu Arg Lys Arg Ser Pro Gln Gly Ser Ala 210 215	
tct tca gac aaa gat gat gat gag gcc acg gat tat gt Ser Ser Asp Lys Asp Asp Asp Glu Ala Thr Asp Tyr Va 225 230	
atc tac cct ggc atg cag tcg gaa ttc gtt gcc ccc gad Ile Tyr Pro Gly Met Gln Ser Glu Phe Val Ala Pro Asp 240 245 256	p Phe Leu Gly
agc act tcc tcc gtc tct gtg ggc cct gcc tgg atg atg Ser Thr Ser Ser Val Ser Val Gly Pro Ala Trp Met Met 255 260 265	
ggc cgg tcc atg ctg gtg gtc aga ggg agt cag tgg Gly Arg Ser Met Leu Val Val Ala Arg Gly Ser Gln Trp 270 275 280	
aga tgg gac act act ctc ccc acg cca agc ccg aag gag Arg Trp Asp Thr Thr Leu Pro Thr Pro Ser Pro Lys Glu 290 295	
agt aat gtc tgg gat ctc ccc gtc ccc agg ggc tgg gtc Ser Asn Val Trp Asp Leu Pro Val Pro Arg Gly Trp Val 305 310	_
tct gcc atg ttg tca att gag ttc tgg tcc caa ggg agg Ser Ala Met Leu Ser Ile Glu Phe Trp Ser Gln Gly Arg 320 325 330	g Trp Arg Gln
gaa ggg aga tgg agg cag agg gat tga tgccc tcctgctgt Glu Gly Arg Trp Arg Gln Arg Asp * 335 340	te cageetecae 1300
t	1301

<210> 341 <211> 723 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (101)(637)													
<400> 341 tttcgtgtca tcgcggctta tcgttacaag acttggctgc caaattacca aactggttga													
aaggagcgtc acacgattaa gtatcgtgtc acataatagg atg aca aag ttt tta Met Thr Lys Phe Leu 1 5													
att gtt tca gat aca cat ggt gat cgt gag atc att gct gat att ttt Ile Val Ser Asp Thr His Gly Asp Arg Glu Ile Ile Ala Asp Ile Phe 10 15 20	163												
gac aaa tgg cgg gat agc gtt gcc ggc att ttt tac aat ggg gat tct Asp Lys Trp Arg Asp Ser Val Ala Gly Ile Phe Tyr Asn Gly Asp Ser 25 30 35	211												
gaa tta gcg gct gat gac aca gta ttt gat ggc gta tcc act gtg att Glu Leu Ala Ala Asp Asp Thr Val Phe Asp Gly Val Ser Thr Val Ile 40 45 50	259												
ggc aat atg gat gat gat cct gat ttc gtg gcc gca agg gcg aca acg Gly Asn Met Asp Asp Asp Pro Asp Phe Val Ala Ala Arg Ala Thr Thr 55 60 65	307												
att gat ggg att act ttt ttc caa acg cac gga cat ctc tat gac gcg Ile Asp Gly Ile Thr Phe Phe Gln Thr His Gly His Leu Tyr Asp Ala 70 75 80 85	355												
acc caa ttt aac gct tgg gcg aac cta aaa tta atg gcc gtg gca gca Thr Gln Phe Asn Ala Trp Ala Asn Leu Lys Leu Met Ala Val Ala Ala 90 95 100	403												
cag gaa gct aac gca cag gtc gcc ctc ttt ggg cat acc cat ctg gaa Gln Glu Ala Asn Ala Gln Val Ala Leu Phe Gly His Thr His Leu Glu 105 110 115	451												
ggg gcg gtt gtg ttt gat gat atc ttg ttt att aat cca ggt tca atc Gly Ala Val Val Phe Asp Asp Ile Leu Phe Ile Asn Pro Gly Ser Ile 120 125 130	499												
cgg ctg cct aaa ggg cca cat gcc aac tta ggt ggt act tat gct gtg Arg Leu Pro Lys Gly Pro His Ala Asn Leu Gly Gly Thr Tyr Ala Val 135 140 145	547												
ttg gat gtg acg gag acg agc tat gac gtg aga ttt tat aat cgt cag Leu Asp Val Thr Glu Thr Ser Tyr Asp Val Arg Phe Tyr Asn Arg Gln 150 165	595												
cat caa cca ttg cca caa ctc acg gta cag gtc gca cgt taa gtgaccc His Gln Pro Leu Pro Gln Leu Thr Val Gln Val Ala Arg * 170 175	644												

caatttaatc aatggtatg 7	723
, caacetaate aatggtatg	23
<210> 342 <211> 637	
<211> 637 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> (364)(543)	
<pre><400> 342 tgcgagggtg gaatgggata aagcgcaaaa agccctggca cttggcgagc gtctggtcag</pre>	60
tggcgctgcc ctcgatcact ctgcccctct gggtgcctgt cacctcatta gtgcagttac 1	.20
tcctgggacc aagaccagga aatctaacca ataagcaatg gtaacagtga ctcagtgctc 1	.80
agtccgccct cagtggcccg agtccgaggt gggcatcatg gcaccagttt acatctcgga 2	40
aagggaggct cagagaggtc aagtcacttg cctaaggtca cccagggact gcttagctgg 3	00
ctaggatgag aaccagcctg ctccaacgcc ccctcgtgga acagttgcga gcctaggaat 3	60
taa atg ttc cct ccc cca ggc tat gcc aat gag gtg ggc gag gct ttc Met Phe Pro Pro Pro Gly Tyr Ala Asn Glu Val Gly Glu Ala Phe 1 5 10 15	08
cgc tct ctt gtg cca gcg gcg gtg gtg tgg ctg agc tat ggc gtg gcc 4. Arg Ser Leu Val Pro Ala Ala Val Val Trp Leu Ser Tyr Gly Val Ala 20 25 30	56
agc tcc tac gtg ctg gcg gat gcc att gac aaa ggc aag aag gct gga 5 Ser Ser Tyr Val Leu Ala Asp Ala Ile Asp Lys Gly Lys Lys Ala Gly 35 40 45	04
gag gtg agt gtt agc cta ttt tcc aac ccc caa ccc tag ctctcctctt Glu Val Ser Val Ser Leu Phe Ser Asn Pro Gln Pro * 50 55 60	53
gtgtggctca gtccacagcc tggcatgtga taaagtccct gtgggacact ccagtcccta 63	13
caacttgcct agtgcagtcc ataa 63	37

gtactgattt gcaggcaata aatgtggtaa aatggtagtt atggcaaatg aaaaacacca 704

<210> 343

<211> 998

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (7)..(399)

<400> 343	
aagaag atg agt ttt aac aga ctc ctt tct gta aaa ctg aat gat gga Met Ser Phe Asn Arg Leu Leu Ser Val Lys Leu Asn Asp Gly 1 5 10	48
aag ttc atg cct att ctg ggg ttt ggc acc tct gtt gct agg aag gtt Lys Phe Met Pro Ile Leu Gly Phe Gly Thr Ser Val Ala Arg Lys Val 15 20 25 30	96
gct atg agt aat gta gaa gaa gcc gtc cag gta gca att gat gta ggc Ala Met Ser Asn Val Glu Glu Ala Val Gln Val Ala Ile Asp Val Gly 35 40 45	144
tac cgc cat att gac tca gct tat aca cac ctg aat gaa gaa ggc atc Tyr Arg His Ile Asp Ser Ala Tyr Thr His Leu Asn Glu Glu Gly Ile 50 55 60	192
ggg cag gcc atc cga aag aag att gcc aac ggc act gtg aag aga aaa Gly Gln Ala Ile Arg Lys Lys Ile Ala Asn Gly Thr Val Lys Arg Lys 65 70 75	240
gat ata ttc tat acc aca aag gtg tgg ggc acc ttt tcc cgc cca gaa Asp Ile Phe Tyr Thr Thr Lys Val Trp Gly Thr Phe Ser Arg Pro Glu 80 85 90	288
ttg gtc caa aga ggc ctt gaa atg tca ctg aag aaa ctt cag ctg agc Leu Val Gln Arg Gly Leu Glu Met Ser Leu Lys Lys Leu Gln Leu Ser 95 100 105 110	336
tac atg gat ctt tac ctt ttt cat ttc cca gta cct ttg cag cct ggg Tyr Met Asp Leu Tyr Leu Phe His Phe Pro Val Pro Leu Gln Pro Gly 115 120 125	384
agg agc ttt tgc tga cggatgcaca gggaaagatc atgtttgaca cagtgggtct Arg Ser Phe Cys * 130	439
ctgcagcaca tgggagagtt ttactcctgt tgccaaggct ggagtacagt ggcacgatct	499
cggctcactg caacctccgc ctcccaggtt caagcatgta cctctgcctc ccacatagct	559
gggaatacag gtggaatatc accettacet caaccaaage aaacteetgg agtactgtaa	619
gtccaaggac attgtcatga ctgcatattc tgccttgggg tctgactcag acaaagactg	679
gtaatcatct tcataaagtt attttgttta ttttttttag gtgggggtct cattctgtca	739
tccaggctgg agtgcagggg cacaatcaca gcttgttgca ggcttgacct tccaggctca	799
agtcaggatc ttccctccta gacctcctaa gtagctggga ctacaggagt gcaccaccat	859
gcctggctaa ttgtttattt tcatttttgt agagacaggg tctcactacg ttacccaagc	919

cagtcttgaa	ttcctgggct caagtgatco	tcccaccttg	gcctcccaaa gt	gctgggat 979
tagaggtgta	agccacggt			998
<210>	2.4.4			
<211>				
<212> <213>	DNA Homo sapiens			
<220>	-			
<221>				
<222>	(188)(376)			
<400>	344 gtgaagtagt atgtaacata	tagtacagtt	tacttaagag ac	raaatacaq 60
				, 5
atgtatatac	acattaccta aagcaaaatg	, aggaccctac	tgggctgcca to	ccagctgg 120
actgctgctg	tggagctcag catcaagtac	: ttccaggaga	agcttcagca gg	sacctagag 180
	og gta gag gta gag gat et Val Glu Val Glu Asp 1 5			
	c ttt caa gtc ctg gtg e Phe Gln Val Leu Val 20		Glu Phe Glu G	
	t cag aga tac cag gtg 1 Gln Arg Tyr Gln Val 35			
	t gca tct atg cct ttg r Ala Ser Met Pro Leu 50			
tag tggg c	ccatgagtg gccaaaatga g	ggactggga c	ctgtatagc cgtt	aaacta 430
taaatcaggg	ccaaaaagga aagataaatt	ataagtttaa	agaaaatg	478

```
<210> 345
<211> 459
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> (201)..(368)
```

<400> 345 cagtagtcta atctgagttc tctggataat gacttcctgt cattaattat caacatgact	60
tttatacaaa ttaagaaatc tatgggcgtg tgctcttggg ctgctctctg gccagcaccc	120
teteetgtgt cacetetett gtgteeacag tetaaceeat etetteattt eeeteaacet	180
caggtggagc ctccaccaaa atg cag att ttt cca aaa atc ctt aca ggg Met Gln Ile Phe Pro Lys Ile Leu Thr Gly 1 5 10	230
acg atc atc acc cta gag gtt gaa ccc ttg gat aca aca gaa aaa tgt Thr Ile Ile Thr Leu Glu Val Glu Pro Leu Asp Thr Thr Glu Lys Cys 15 20 25	278
aaa ggc caa tat cag gat aag gaa cga att cct cct gat cag caa aga Lys Gly Gln Tyr Gln Asp Lys Glu Arg Ile Pro Pro Asp Gln Gln Arg 30 35 40	326
caa gtg act gga agc tgg caa gta act gga aga tgg aca taa ctttctc Gln Val Thr Gly Ser Trp Gln Val Thr Gly Arg Trp Thr * 45 50 55	375
tgactacaac attcaaaagg aatttactct ttttatgttg tgttgagact tcatggtagt	435
gctaaaacta ggaagaaatc ttac	459
<210> 346 <211> 1867 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (9)(1835) <400> 346	
<220> <221> CDS <222> (9)(1835)	50
<pre><220> <221> CDS <222> (9)(1835) <400> 346 atctgcag atg tta aca tac ctt aac att agc cga aat ctt tta tca aca</pre>	50 98
<pre> <220> <221> CDS <222> (9)(1835) <400> 346 atctgcag atg tta aca tac ctt aac att agc cga aat ctt tta tca aca</pre>	
<pre></pre>	98

Gln	Met	Gly 65	Lys	Leu	His	Ser	Leu 70	Arg	Glu	Leu	Asn	Ile 75	Arg	Arg	Asn		
												ccc Pro					290
				_					_			gtt Val	_		_		338
												aat Asn					386
												cac His					434
												aaa Lys 155					482
												cag Gln					530
												ggc Gly					578
												aca Thr					626
												tca Ser					674
												gga Gly 235				•	722
												gac Asp					770
												att Ile				\$	818
gta Val	tca Ser	ttc Phe	ttt Phe	aag Lys 275	gga Gly	aaa Lys	gaa Glu	aaa Lys	tgt Cys 280	tct Ser	gaa Glu	aaa Lys	tct Ser	cgg Arg 285	aaa Lys	8	366
												gaa Glu				9	914

290 295 300

			Glu										Leu		aaa Lys	962
			cag Gln												aat Asn	1010
			tct Ser													1058
			gtc Val													1106
acc Thr	tgg Trp	cag Gln	ccc Pro 370	tta Leu	gaa Glu	aat Asn	cag Gln	aag Lys 375	gat Asp	caa Gln	ata Ile	gat Asp	gaa Glu 380	caa Gln	ccg Pro	1154
			tct Ser													1202
			att Ile													1250
agt Ser 415	tca Ser	agt Ser	ggc Gly	aat Asn	gaa Glu 420	aat Asn	gat Asp	gag Glu	caa Gln	gac Asp 425	agt Ser	gat Asp	aat Asn	gct Ala	aat Asn 430	1298
			caa Gln													1346
ggt Gly	ttt Phe	tca Ser	cac His 450	agt Ser	ccc Pro	ttt Phe	ggc Gly	ttg Leu 455	aag Lys	cct Pro	aga Arg	tca Ser	gct Ala 460	ttt Phe	agc Ser	1394
			cgc Arg													1442
			atg Met													1490
ctt Leu 495	cgc Arg	aac Asn	aat Asn	ctt Leu	gaa Glu 500	tcc Ser	agg Arg	tta Leu	aaa Lys	gta Val 505	att Ile	ttg Leu	cct Pro	gat Asp	gac Asp 510	1538
att Ile																1586

cat ata agg cca cgt tct gtt gct agt att cat gta cca tca cca gca His Ile Arg Pro Arg Ser Val Ala Ser Ile His Val Pro Ser Pro Ala 530 535 540	1634
gtg ccc aaa ctg agc atg gca aaa tgt cga aga aat gta gaa aat ttt Val Pro Lys Leu Ser Met Ala Lys Cys Arg Arg Asn Val Glu Asn Phe 545 550 555	1682
ctt gat gct tgt aaa aag ttg ggt gtc tca cag gaa aga ctt tgt ttg Leu Asp Ala Cys Lys Lys Leu Gly Val Ser Gln Glu Arg Leu Cys Leu 560 565 570	1730
cct cat cat att ttg gaa gaa cga gga ctt gtg aaa gtt ggt gtc aca Pro His His Ile Leu Glu Glu Arg Gly Leu Val Lys Val Gly Val Thr 575 580 585 590	1778
gtt cag gcg ctc ctt gaa tta cca aca acc aag gca tct cag ctt tct Val Gln Ala Leu Leu Glu Leu Pro Thr Thr Lys Ala Ser Gln Leu Ser 595 600 605	1826
gtg gct taa tataacattt taaaattcta aaaaaaaaaa	1867
<pre><210> 347 <211> 527 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (133)(336) <400> 347 Catcaggica attached attached acceptance acceptance.</pre>	
catgaggica gitccittit citatgicat tagtaacati gcatatatit attittagit tacataactc tittatcigc agittigggg gagiccaatt ccaccattit tiatgictgi	60 120
tactgtcatt ca atg tgg att gct tcc tta tgt ttc att att ttg gat Met Trp Ile Ala Ser Leu Cys Phe Ile Ile Leu Asp 1 5 10	168
tgt gag ctc atc ttt tgt agg gtg tta gct aca gaa atc cta tgc tgc Cys Glu Leu Ile Phe Cys Arg Val Leu Ala Thr Glu Ile Leu Cys Cys 15 20 25	216
agg gtt gag att tgt ccc tat ttg ctt ctg tat tac tgc cta agg acc Arg Val Glu Ile Cys Pro Tyr Leu Leu Leu Tyr Tyr Cys Leu Arg Thr 30 35 40	264
aac ttt gct cat tta aaa tat att tat ata agc tca aag att aaa gct Asn Phe Ala His Leu Lys Tyr Ile Tyr Ile Ser Ser Lys Ile Lys Ala	312

45				50					55					60		
gac to				Tyr			aaa	tttt.	caa	ggga	gatt	tc t	tccc	ccta	a 3	66
tctgg	ctaag	atgg	gcag	at t	ccca	ttgt	c tt	cctg	tgcc	agt	gtgc	aga	tatc	atct	ag 4	26
tatac	tcttt	cact	gcaa	gc a	tggc	tctt	c ga	gggt	cctg	gct	ctat	gac	gaag	tctt	ca 4	86
gttcc	aaatc	ttca	tctt	gt g	ccag	ccta	a cg	cctt	tgtt	t					5:	27
< <	<210><211><211><212><213>	2112 DNA	sap	iens												
<	<220> <221> <222>)(868)												
atgcta	<400> acggc		tggc	ac ga	aggga	actgo	g ga	aaac	aaat	gca	agga	ggg	ctag	ttca	ca (60
gcaaat	tcac	tgcc	tcct	cc ca	atgca	acgto	g gt	agaga	agta	cca	gtato	caa	catg	gaca	tg 12	20
ttttct	gcta	aaac	caga	tt ti	tgagg	gaato	c aga	agac	cccc	aaca	actad	ctc	actca	agtag	gc 18	80
tagcaç	gcccc	ttcc	tttc	aa ct	tggga	agtgt	t ta	ttaga	aatg	aaaa	agtaa	att	agtta	agaag	gg 24	40
gcatao	catct	cagt	ggcai	tg ag	gcatt	gtgg	g aa	tatco	cttt	ccta	aggca	aca	tttg	tccad	ct 30	00
aaggga	acag	cctc	agaaa	ac to	ggtad	cagca	a at	gggt	gaga	tgag	gatco	ctg	gaga	gagaa	ac 36	60
acagco	catcc	ccta	tagaa	aa gg	gcaca	agctt	t tt	gggct	tct	ctgg	gcctç	ga		g cct E Pro L		15
tct gg Ser Gl		Phe													46	53
cca ca Pro Hi 2								_							51	L1
cac ca His Hi 35															55	59
ccc ca Pro Gl															60)7

caa cca atg gcc agc tat gcg cct cat cct Gln Pro Met Ala Ser Tyr Ala Pro His Pro 70 75	
gta aat gaa acc aaa ggc ctc agc ata tcc Val Asn Glu Thr Lys Gly Leu Ser Ile Ser 85 90	tgg gag gac tgg ggg ctg 703 Trp Glu Asp Trp Gly Leu 95
tta cct aat ggt cct ctc tgt ccc att ata Leu Pro Asn Gly Pro Leu Cys Pro Ile Ile 100 105	
cac aca ttt gca cca cta ctc caa gat agt His Thr Phe Ala Pro Leu Leu Gln Asp Ser 115	
tct ctt tac agc aga atc cag agt tgg gtt Ser Leu Tyr Ser Arg Ile Gln Ser Trp Val 135 140	
aag ctc att atc ttt gtt tga at taacattto Lys Leu Ile Ile Phe Val * 150	a gcatggaact aactgggcgg 900
aggaaggatc gttatacgtc ttcagaaagt tctcatt	gcc ccagctgcct agtactatac 960
aagaagctct actttgatgg cagatctaag aaggcta	tag gcctttgttt gtaggaagca 1020
gtgtcattac attcaagctt cacttctctg attggct	tcc aaccactggg attcaaagag 1080
aatccaaggt tctgcctatg tctgatgaca taaggaa	aac ttggcttcct ctgctcaagg 1140
ttcccctctg ctcatccctc ctcattcaga catcctc	cac cataccagtg tttagaagca 1200
aaacatgaag ggctagcgcc accaggatag ttagcag	aaa tattgtctgt aaagctaggc 1260
aggtgagccc agaagaatgg tcccagagaa agcagac	tgg ctccaataga tatcaggcag 1320
caatcccaat aaattctgac atgtccttgg caatgga	agc ctgggttgga gatcctgagg 1380
cagctgtgcc tactgttccc cacctcagaa gcttcct	gcc cagagagcca gcagccttgg 1440
gatactaatg aggatgcaac tggcttattg gtatgaa	ata gaaggtggct ttgtaggggc 1500
aagcaggcaa agagtactat ccacatggca ggcaggt	ggc tttgtgtctg gaaagctttg 1560
cctagccagt acagctgtga gcagaggctg gttataa	att tgaactccct cagcccattt 1620
gcaactctgc ctctgttccc ttgcattctg tttggtt	gcc ctttagtttc ctagtaaatg 1680
ctccttttga aaaactccaa ccttgtctta tttaact	tgg gggaagggga ttctccaatg 1740
tcttttccag gataaagaag gaaattaaaa taccatga	aaa aaatggacat ggcagtagaa 1800
aggaaacatt ctgatcagac cttgggaaaa gctggtg	ccg agagaggag aggccaggtg 1860
tcccccacc caactggcac tgattctcag ccccttc	ctc ttacttctgt tggcttcaag 1920

gag	gacct	gcc	cttg	ratgt	gt g	rttga	tgct	g aa	gcac	cctc	сса	.gcca	.gtg	agtt	ggacat	1980
atg	gcago	agg	cact	ttga	tg t	.ccag	gaag	t ac	actg	gtac	atg	acag	gag	caag	ggtcag	2040
gga	raaaa	agg	ggaa	aggt	tt c	taca	atgc	a ga	tgtt.	ttca	aaa	ttct	cca	acaa	tcatga	2100
ctc	taaa	.tgg	ta													2112
	<210> 349 <211> 1385 <212> DNA <213> Homo sapiens															
			Homo	sap	ıens											
	<2	20> 21>														
	<2	22>	(19)	(9	84)											
		20> 21>	misc	_fea	ture											
			(1). n =			g										
	<4	00>	349													
att	tagt	aat	taaa	agca	Me				a Ly						g gtg l Val O	51
			cag Gln 15													99
ctc Leu	aac Asn	cac His 30	gct Ala	ctg Leu	agc Ser	aca Thr	gag Glu 35	aag Lys	gag Glu	gaa Glu	gta Val	atg Met 40	ggg Gly	ctg L e u	tgc Cys	147
			ttg Leu													195
			gaa Glu													243
			att Ile													291
			gta Val 95													339
			agg Arg													387

		110					115					120				
ggc Gly	tgg Trp 125	Tyr	cat His	tcc Ser	cat His	cct Pro 130	cat His	ata Ile	act Thr	gtt Val	tgg Trp 135	cct Pro	tca Ser	cat His	gtt Val	435
gat Asp 140	Val	cgc Arg	aca Thr	caa Gln	gcc Ala 145	atg Met	tac Tyr	cag Gln	atg Met	atg Met 150	gat Asp	caa Gln	ggc Gly	ttt Phe	gta Val 155	483
								gaa Glu								531
								tcc Ser 180								579
gag Glu	tcc Ser	ctt Leu 190	cat His	ggt Gly	cca Pro	cga Arg	gac Asp 195	ttc Phe	tgg Trp	agc Ser	tcc Ser	agc Ser 200	cag Gln	cac His	atc Ile	627
								gaa Glu								675
								act Thr								723
tca Ser	gca Ala	gta Val	gag Glu	ctg Leu 240	ccc Pro	aag Lys	atc Ile	ctg Leu	tgc Cys 245	cag Gln	gag Glu	gag Glu	cag Gln	gat Asp 250	gcg Ala	771
								cat His 260								819
cat His	aat Asn	ggc Gly 270	tca Ser	gtg Val	ttt Phe	acc Thr	aag Lys 275	aat Asn	ctg Leu	tgc Cys	agt Ser	cag Gln 280	atg Met	tcg Ser	gca Ala	867
gtc Val	agc Ser 285	ggg Gly	cct Pro	ctc Leu	cta Leu	cag Gln 290	tgg Trp	ttg Leu	gag Glu	gac Asp	aga Arg 295	ctg Leu	gag Glu	caa Gln	aac Asn	915
caa Gln 300	cag Gln	cat His	ttg Leu	cag Gln	gaa Glu 305	tta Leu	caa Gln	caa Gln	gaa Glu	aag Lys 310	gaa Glu	gag Glu	ctt Leu	atg Met	caa Gln 315	963
			tct Ser			taa *	at c	agga	gaca	a aa	itggg	rgaaa	ı gat	gaaa	ata	1016
tcca	ıgtgt	aa a	ıgtta	ctta	ıa go	taaa	tcaa	a ttt	caaa	ıgaa	gaaa	aact	tg g	agga	ctcat	1076
tccagtgtaa agttacttaa gctaaatcaa tttcaaagaa gaaaaacttg gaggactcat tttacctgac ttcaagactt actataaagc tatagtaatc aagatagatg gtattggcag											1136					

tttttttt ttaaaaaaaa aa

agg	aacag	gac	acat	acgt	ca a	tgga.	acag	a tg	agag	aacc	cag	aaat	aaa	ccca	tataa	aa :	1196
tat	gctca	agc	tgat	tttg	aa a	.aagt	gaaa	a ag	caat	tcaa	tgg	agga	aga	atag	ccttt	cc :	1256
tga	.caaat	ta	tgct	agag	ca a	ttag	acac	c ca	tggc	gagg	aga	aaaa	aga	acct	ctact	it :	1316
ana	cctca	aca	tctt	atat	aa a	attt	aact	c aa	aatg	tata	acg	gact	taa	atgt	gatac	ca :	1376
taa	aacta	ag														:	1385
	<210> 350 <211> 437 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (146)(394)																
		0> :															
ctc	actat	ag (ggaa	ttgg	gc c	ctcg	aggc	c aa	gaat [.]	tcgg	cac	gaggt	tta	agga	cgtac	:t	60
cgt	cttgg	rtg a	agago	cgtga	ag c	tgct	gagat	tt	ggga	gtct	gcg	ctago	gcc	cgcti	tggag	rt	120
tct	gagco	ga t	tgtaa	agagt	ct c	actc		Ph			Ala				t gct g Ala		172
	cgc Arg																220
	gag Glu																268
	tat Tyr																316
	gga Gly																364
	gaa Glu 75								tga *	c to	etget	gatt	ct:	tttt	cct		415

<210> 351 <211> 1415 <212> DNA <213> Homo sapiens														
<220> <221> CDS <222> (25)(1239)														
<pre><400> 351 gccaggaccc tggaaggaag cagg atg gca gcc gga aca gca gtt gga gcc</pre>														
tgg gtg ctg gtc ctc agt ctg tgg ggg gca gta gta ggt gct caa aac Trp Val Leu Val Leu Ser Leu Trp Gly Ala Val Val Gly Ala Gln Asn 10 15 20 25	99													
atc aca gcc cgg att ggc gag cca ctg gtg ctg aag tgt aag ggg gcc Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys Lys Gly Ala 30 35 40	147													
ccc aag aaa cca ccc cag cgg ctg gaa tgg aaa ctg aac aca ggc cgg Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn Thr Gly Arg 45 50 55	195													
aca gaa gct tgg aag gtc ctg tct ccc cag gga gga ggc ccc tgg gac Thr Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly Pro Trp Asp 60 65 70	243													
agt gtg gct cgt gtc ctt ccc aac ggc tcc ctc ttc ctt ccg gct gtc Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe Leu Pro Ala Val 75 80 85	291													
ggg atc cag gat gag ggg att ttc cgg tgc cag gca atg aac agg aat Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met Asn Arg Asn 90 95 100 105	339													
gga aag gag acc aag tcc aac tac cga gtc cgt gtc tac cag att cct Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr Gln Ile Pro 110 115 120	387													
ggg aag cca gaa att gta gat tct gcc tct gaa ctc acg gct ggt gtt Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu Leu Thr Ala Gly Val 125 130 135	435													
ccc aat aag gtg ggg aca tgt gtg tca gag gga agc tac cct gca ggg Pro Asn Lys Val Gly Thr Cys Val Ser Glu Gly Ser Tyr Pro Ala Gly 140 145 150	483													
act ctt agc tgg cac ttg gat ggg aag ccc ctg gtg cct aat gag aag Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro Asn Glu Lys 155 160 165	531													
gga gta tct gtg aag gaa cag acc agg aga cac cct gag aca ggg ctc Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu Thr Gly Leu 170 175 180 185	579													

												cgg Arg				627
												ctt Leu				675
												tgg Trp 230				723
												ggt Gly				771
												cct Pro				819
						_	_	~				ttg Leu				867
												cag Gln				915
												ccc Pro 310				963
												gag Glu				1011
												gcc Ala				1059
												att Ile				1107
ttg Leu	tgg Trp	caa Gln	agg Arg 365	cgg Arg	caa Gln	cgc Arg	cga Arg	gga Gly 370	gag Glu	gag Glu	agg Arg	aag Lys	gcc Ala 375	cca Pro	gaa Glu	1155
												cag Gln 390				1203
Pro			ggc Gly								tga * 405	gggg	ı ccc	acag	jaca	1253

gatcccatcc atcagctccc ttttcttttt cccttgaact gttctggcct cagaccaact	1313												
ctctcctgta taatctctct cctgtataac cccaccttgc caagctttct tctacaacca	1373												
gagccccca caatgatgat taaacacctg acacatcttg ca	1415												
<210> 352 <211> 1463 <212> DNA <213> Homo sapiens													
<220> <221> CDS <222> (25)(1287)													
<pre><400> 352 gccaggaccc tggaaggaag cagg atg gca gcc gga aca gca gtt gga gcc</pre>	51												
tgg gtg ctg gtc ctc agt ctg tgg ggg gca gta gta ggt gct caa aac Trp Val Leu Val Leu Ser Leu Trp Gly Ala Val Val Gly Ala Gln Asn 10 15 20 25	99												
atc aca gcc cgg att ggc gag cca ctg gtg ctg aag tgt aag ggg gcc Ile Thr Ala Arg Ile Gly Glu Pro Leu Val Leu Lys Cys Lys Gly Ala 30 35 40	147												
ccc aag aaa cca ccc cag cgg ctg gaa tgg aaa ctg aac aca ggc cgg Pro Lys Lys Pro Pro Gln Arg Leu Glu Trp Lys Leu Asn Thr Gly Arg 45 50 55	195												
aca gaa gct tgg aag gtc ctg tct ccc cag gga gga ggc ccc tgg gac Thr Glu Ala Trp Lys Val Leu Ser Pro Gln Gly Gly Gly Pro Trp Asp 60 65 70	243												
agt gtg gct cgt gtc ctt ccc aac ggc tcc ctc ttc ctt ccg gct gtc Ser Val Ala Arg Val Leu Pro Asn Gly Ser Leu Phe Leu Pro Ala Val 75 80 85	291												
ggg atc cag gat gag ggg att ttc cgg tgc cag gca atg aac agg aat Gly Ile Gln Asp Glu Gly Ile Phe Arg Cys Gln Ala Met Asn Arg Asn 90 95 100 105	339												
gga aag gag acc aag tcc aac tac cga gtc cgt gtc tac cag att cct Gly Lys Glu Thr Lys Ser Asn Tyr Arg Val Arg Val Tyr Gln Ile Pro 110 115 120	387												
ggg aag cca gaa att gta gat tct gcc tct gaa ctc acg gct ggt gtt Gly Lys Pro Glu Ile Val Asp Ser Ala Ser Glu Leu Thr Ala Gly Val 125 130 135	435												
ccc aat aag gta gtg gaa gaa agc agg aga agt aga aaa cgg ccc tgt Pro Asn Lys Val Val Glu Glu Ser Arg Arg Ser Arg Lys Arg Pro Cys	483												

170

		140					145					150				
										Gly				gca Ala		531
act	ctt	agc	tgg	cac	ttg	gat	aga	aaq	ccc	cta	ata	cct	aat	gag	aaq	579

180 185 gga gta tct gtg aag gaa cag acc agg aga cac cct gag aca ggg ctc 627 Gly Val Ser Val Lys Glu Gln Thr Arg Arg His Pro Glu Thr Gly Leu 190 195

Thr Leu Ser Trp His Leu Asp Gly Lys Pro Leu Val Pro Asn Glu Lys

175

ttc aca ctg cag tcg gag cta atg gtg acc cca gcc cgg gga gga gat 675 Phe Thr Leu Gln Ser Glu Leu Met Val Thr Pro Ala Arg Gly Gly Asp 205 210

ccc cgt ccc acc ttc tcc tgt agc ttc agc cca ggc ctt ccc cga cac 723 Pro Arg Pro Thr Phe Ser Cys Ser Phe Ser Pro Gly Leu Pro Arg His 220 225 230

cgg gcc ttg cgc aca gcc ccc atc cag ccc cgt gtc tgg gag cct gtg 771 Arg Ala Leu Arg Thr Ala Pro Ile Gln Pro Arg Val Trp Glu Pro Val 235 240

cct ctg gag gag gtc caa ttg gtg gtg gag cca gaa ggt gga gca gta 819 Pro Leu Glu Glu Val Gln Leu Val Val Glu Pro Glu Gly Gly Ala Val 255

gct cct ggt gga acc gta acc ctg acc tgt gaa gtc cct gcc cag ccc 867 Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Val Pro Ala Gln Pro 270 275

tct cct caa atc cac tgg atg aag gat ggt gtg ccc ttg ccc ctt ccc 915 Ser Pro Gln Ile His Trp Met Lys Asp Gly Val Pro Leu Pro Leu Pro 285 290 295

ccc agc cct gtg ctg atc ctc cct gag ata ggg cct cag gac cag gga 963 Pro Ser Pro Val Leu Ile Leu Pro Glu Ile Gly Pro Gln Asp Gln Gly 300 305

acc tac agc tgt gtg gcc acc cat tcc agc cac ggg ccc cag gaa agc 1011 Thr Tyr Ser Cys Val Ala Thr His Ser Ser His Gly Pro Gln Glu Ser 315 320

cgt gct gtc agc atc agc atc atc gaa cca ggc gag gag ggg cca act 1059 Arg Ala Val Ser Ile Ser Ile Ile Glu Pro Gly Glu Glu Gly Pro Thr 330 335 345

gca ggc tct gtg gga gga tca ggg ctg gga act cta gcc ctg gcc ctg 1107 Ala Gly Ser Val Gly Gly Ser Gly Leu Gly Thr Leu Ala Leu Ala Leu

ggg atc ctg gga ggc ctg ggg aca gcc gcc ctg ctc att ggg gtc atc 1155 Gly Ile Leu Gly Gly Leu Gly Thr Ala Ala Leu Leu Ile Gly Val Ile 370

ttg tgg caa agg cgg caa cgc cga gga gag gag agg aag gcc cca gaa Leu Trp Gln Arg Arg Gln Arg Arg Gly Glu Glu Arg Lys Ala Pro Glu 380 385 390	1203											
aac cag gag gaa gag gag cgt gca gaa ctg aat cag tcg gag gaa Asn Gln Glu Glu Glu Glu Arg Ala Glu Leu Asn Gln Ser Glu Glu 395 400 405	1251											
cct gag gca ggc gag agt agt act gga ggg cct tga gggg cccacagaca Pro Glu Ala Gly Glu Ser Ser Thr Gly Gly Pro * 410 415 420	1301											
gatcccatcc atcagctccc ttttcttttt cccttgaact gttctggcct cagaccaact	1361											
ctctcctgta taatctctct cctgtataac cccaccttgc caagctttct tctacaacca	1421											
gagccccca caatgatgat taaacacctg acacatcttg ca	1463											
<210> 353 <211> 926 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (10)(600)												
<222> (10)(600)												
<pre><222> (10)(600) <400> 353 tttcgtggt atg gtc ccc ggg tcc gag ggc ccg gcc cgc gcc ggg agc</pre>	48											
<pre><400> 353 tttcgtggt</pre>	48 96											
<pre><400> 353 tttcgtggt</pre>												
<pre> <400> 353 tttcgtggt</pre>	96											
<pre></pre>	96											
<pre></pre>	96 144 192											

Phe Val Thr Trp Leu Asp Gly Ile Lys Phe Met Gly Gly Gly Glu 95 100 105	
agc tgc agc ctc atc gcg gaa gga ctc agc aca gcc ttg cag ctg ttt Ser Cys Ser Leu Ile Ala Glu Gly Leu Ser Thr Ala Leu Gln Leu Phe 110 115 120 125	384
gat gac ttc aag aag atg cgc gag cag att ggc cag acg cac cgg gtc Asp Asp Phe Lys Lys Met Arg Glu Gln Ile Gly Gln Thr His Arg Val 130 135 140	432
tgc ctc ctc atc tgc aac tca ccc cca tac ttg ttg cct gct gtt gag Cys Leu Leu Ile Cys Asn Ser Pro Pro Tyr Leu Leu Pro Ala Val Glu 145 150 155	480
agc acc acg tac tct gga tgc aca act gag aat ctt gtg cag cca gat Ser Thr Thr Tyr Ser Gly Cys Thr Thr Glu Asn Leu Val Gln Pro Asp 160 165 170	528
tgg gga agc ggg gga tcc act tct cca ttg gtg tct ccc cgg aag ctg Trp Gly Ser Gly Gly Ser Thr Ser Pro Leu Val Ser Pro Arg Lys Leu 175 180 185	576
cct gcg ctt cgg ctt cct ggt tga agaaaggcag cccccggcc tgggtggagc Pro Ala Leu Arg Leu Pro Gly * 190 195	630
cgctgaggcc tccgacagat gttgaggcac tgaccgaggg acatggtggt ggttcgggga	690
ctcgtgctgc tgggggggt ggtcagccca gggccttcaa taaagaagca gggcctgcca	750
acagagcgag cagagacgga accgcaccac cgcagagaac caaagaaag	810
aagcaacaga ggcaaaaaag cacacaaacg cacacgacac agccgcgcga caacacgacg	870
agccaacaca aaagacgacg cacaaggcac gccagaaaag aggcgagaga acacaa	926

<210> 354

<211> 510

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (149)..(493)

<400> 354

gataccagct tccttcagca gcgcaggcgg tggtccctga ggcccgtgga aggagtcaaa 60 120 172

ggaaggaaga gaggtagaca gatacaag atg aaa tcc tgt caa aaa atg gaa

Met Lys Ser Cys Gln Lys Met Glu

					gag Glu											220
					gaa Glu 30											268
					aga Arg											316
					aac Asn											364
					gat Asp											412
					gta Val											460
					cat His 110					tag * 115	cgct	ctta	ita g	gcago	cac	510
		.0> 3 .1> 1														
	<21	.2> E .3> H	NA	sapi	lens											
		0> 1> C 2> (.(10)45)											
taga		0> 3 ta g		.ccga	ıg aa	ıaaat	atco	cat	cagt	gag	gaga	tttt	.cg g	rtato	accag	60
aaag	acca	aa g	atca	.gggc	t gc	ttaa	ittgc	: tga	ıc		Met				gag Glu	112
Gly																160
gtc Val	aat Asn	tgt Cys 25	ttc Phe	att Ile	gag Glu	ttg Leu	gtc Val 30	aat Asn	ggt Gly	agc Ser	agc Ser	tgg Trp 35	ttc Phe	aag Lys	acc Thr	208

						gac Asp 45						_	-		_	256
						att Ile										304
						gat Asp										352
-						aac Asn		_	_		~ ~		9		_	400
	_				_	ctg Leu			-	-						448
						aga Arg 125										496
						tcc Ser										544
						gtc Val										592
						aag Lys										640
						tac Tyr										688
						ttc Phe 205										736
_					_	tcc Ser	-	_					-		_	784
			-			ctt Leu										832
		_				gca Ala										880
aag	atg	gct	aag	atg	att	ggc	gaa	gta	atg	aca	atg	ttt	tat	cct	gct	928

Lys Met Ala Lys Met Ile Gly Glu Val Met Thr Met Phe Tyr Pro Ala 265 270 275	
ggc cac tca ttt att ctc att ctg ggg aac agt aag ctg aag cag aca Gly His Ser Phe Ile Leu Ile Leu Gly Asn Ser Lys Leu Lys Gln Thr 280 285 290	976
ttt gta gtg atg ctc cgg tgt gag tct ggt cat ctg aag cct gga tcc Phe Val Val Met Leu Arg Cys Glu Ser Gly His Leu Lys Pro Gly Ser 295 300 305 310	1024
aag gga ccc att ttc tct tag Lys Gly Pro Ile Phe Ser * 315	1045
<210> 356 <211> 790 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (86)(310)	
<220> <221> misc_feature <222> (1)(790) <223> n = a,t,c or g	
<400> 356 agacaaacct catctgccct gttgtttttt gttctcacct tcttattcag tatgagtgtc	60
gtttggtgct tctaatggtc ttcta atg gtc ctc ctg gaa ccc aag ccc tgg Met Val Leu Leu Glu Pro Lys Pro Trp 1 5	112
ctg gaa ctg atg ctg ctg tgg tgg tca ggg ttc agt gag cag gag gaa Leu Glu Leu Met Leu Leu Trp Trp Ser Gly Phe Ser Glu Gln Glu Glu 10 15 20 25	160
gga ctt ggt gtt tac ccc ttg ttt acc cct ttc ctt ggc ttc ctt cca Gly Leu Gly Val Tyr Pro Leu Phe Thr Pro Phe Leu Gly Phe Leu Pro 30 35 40	208
tgc agg cca ccc tgt gac ccc gtg gtg gcc ccc tct gga acc aag agc Cys Arg Pro Pro Cys Asp Pro Val Val Ala Pro Ser Gly Thr Lys Ser 45 50 55	256
tgc cga ctt cca gca gca cac aca gga tca gtg ctg ggg cca tct gtg Cys Arg Leu Pro Ala Ala His Thr Gly Ser Val Leu Gly Pro Ser Val 60 65 70	304
cac tga ccaaagcctc tgctggcctc accagaccaa ggccagtgag tgcttcaggg	360

His

75												
agccttggat cctccaggct gccaacagaa acaccggccc tctcggcagc agccccatcc	420											
ttccacccct gcactgggtc ctgaaaagcc cattttgggg ccgttgctat ttagccaacc	480											
tgccctccct tgctctcctg tgatttctca ctattccggc tgcagctcgc tgggagaaac	540											
acttgagagt cttttgtgct ccacacccat gtacttaaaa taccaggcct ataggtcatt	600											
tcaatgaggg aatttggctc ataacacgtg tgccccgagg cnagnatcct acttctgcag	660											
atgctggcca agaagggctg tgtcccagcc gccatggggt ggggccacag agagggcagg	720											
gccacgtgga gggcagagca tgtggctcct gtcaggtgcg cccattgctt nacttcagcc	780											
cagtatcaag	790											
<210> 357 <211> 433 <212> DNA <213> Homo sapiens <220> <221> CDS												
<222> (67)(246)												
<400> 357 ggcatatttc aggtttcagt gacatagatc aagtaatttt aaaccaattt ggttattcta	60											
tctaag atg agg gac atg gct att aag gtc aag cca aac tat act aaa	108											
Met Arg Asp Met Ala Ile Lys Val Lys Pro Asn Tyr Thr Lys 1 5 10												
agt agt ata ggg cag cag tta aaa tta tct ttt gaa aat caa gta tta Ser Ser Ile Gly Gln Gln Leu Lys Leu Ser Phe Glu Asn Gln Val Leu 15 20 25 30	156											
cct ggt ttc ttc tgt cac aac aga ata gct ggt tac cta gtc agt cac Pro Gly Phe Phe Cys His Asn Arg Ile Ala Gly Tyr Leu Val Ser His 35 40 45	204											
agt tgc cct tgc ctt ccc ttg tta gtc cct gga ggt act tga gtggaac Ser Cys Pro Cys Leu Pro Leu Leu Val Pro Gly Gly Thr * 50 55 60	253											
agaaggtaga attagcaaca gctcaatcac tttaggtagc atttctcctg aattctgctg	313											

373

433

ccaaatcctc agggtctatg gattggttga aatagtaaaa tcacacatag tgatttcttg

cacagcgtaa aggcgtttaa ttttagtgta tagtgaacaa agaaggaaaa ctgggtcata

<210> 358 <211> 1483 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (117)..(911) <400> 358 agttgattgc aggtcctcct ggggccagaa gggtgcctgg gaggccaggt tctggggatc ccctccatcc agaagaacca cctgctcact ctgtcccttc gcctgctgct gggacc 116 atg ggg gct ggg gcc agt gct gag gag aag cac tcc agg gag ctg gaa 164 Met Gly Ala Gly Ala Ser Ala Glu Glu Lys His Ser Arg Glu Leu Glu aag aag ctg aaa gag gac gct gag aag gat gct cga acc gtg aag ctg 212 Lys Lys Leu Lys Glu Asp Ala Glu Lys Asp Ala Arg Thr Val Lys Leu 2.0 ctg ctt ctg ggt gcc ggt gag tcc ggg aag agc acc atc gtc aag cag 260 Leu Leu Gly Ala Gly Glu Ser Gly Lys Ser Thr Ile Val Lys Gln 35 40 45 atg aag att atc cac cag gac ggg tac tcg ctg gaa gag tgc ctc gag 308 Met Lys Ile Ile His Gln Asp Gly Tyr Ser Leu Glu Glu Cys Leu Glu 50 55 60 ttt atc gcc atc atc tac ggc aac acg ttg cag tcc atc ctg gcc atc 356 Phe Ile Ala Ile Ile Tyr Gly Asn Thr Leu Gln Ser Ile Leu Ala Ile 65 70 gta cgc gcc atg acc aca ctc aac atc cag tac gga gac tct gca cgc 404 Val Arg Ala Met Thr Thr Leu Asn Ile Gln Tyr Gly Asp Ser Ala Arg 85 95 cag gac gac gcc cgg aag ctg atg cac atg gca gac act atc gag gag 452 Gln Asp Asp Ala Arg Lys Leu Met His Met Ala Asp Thr Ile Glu Glu 100 105 ggc acg atg ccc aag gag atg tcg gac atc atc cag cgg ctg tgg aag 500 Gly Thr Met Pro Lys Glu Met Ser Asp Ile Ile Gln Arg Leu Trp Lys 115 120 gac tcc ggt atc cag gcc tgt ttt gag cgc gcc tcg gag tac cag ctc 548 Asp Ser Gly Ile Gln Ala Cys Phe Glu Arg Ala Ser Glu Tyr Gln Leu 130 135 aac gac teg geg gge tae tae etc tee gae etg gag ege etg gta ace 596 Asn Asp Ser Ala Gly Tyr Tyr Leu Ser Asp Leu Glu Arg Leu Val Thr 145 150 155 ccg ggc tac gtg ccc acc gag cag gac gtg ctg cgc tcg cga gtc aag 644 Pro Gly Tyr Val Pro Thr Glu Gln Asp Val Leu Arg Ser Arg Val Lys

	165	17	0	175	
Thr Thr Gly I	atc atc gag acg Ile Ile Glu Thr 180	-			692
	gat gtg ggc ggg Asp Val Gly Gly				740
	gag ggc gtg acc Slu Gly Val Thr 215				788
	cat ggt gct agt His Gly Ala Ser 230				836
	gca cct gtt caa Ala Pro Val Gln 245		u Gln Pro Pro		884
His Asp Val H	cat cgt gct ctt His Arg Ala Leu 260		aga aggacgtctt	cttcgagaag	936
atcaagaagg cg	gcacctcag catcto	gtttc ccgga	ctacg atggacco	aa cacctacgag	996
gacgccggca ac	tacatcaa ggtgca	agttc ctcga	gctca acatgcgg	cg cgacgtgaag	1056
gagatctatt cc	cacatgac gtgcg	ccacc gacac	gcaga acgtcaaa	tt tgtcttcgac	1116
gctgtcaccg ac	catcatcat caagga	agaac ctcaa	agact gtggcctc	tt ctgagcacca	1176
aatctttgct ta	itagateca cageea	agggc ctgtg	ctgca gtcgggga	ca aggagettee	1236
gtctggcaag gg	aagctgag agccat	igget gaacta	atcag ggacaaag	gc ccatgtcccc	1296
acatecetge te	ectectte eteate	ccagc accaaa	atctt tgcttatg	ct ccacagccag	1356
ggcctgtgct gc	agtcgggg acaagg	gaget teegta	actgg caaggccg	gg gcacaatttg	1416
cactcccctc ag	ctagacgc acagad	ctcag caataa	aacct ttgcatca	gg caaaaaaaaa	1476

<210> 359

aaaaaaa

<211> 714

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (1)..(441)

1483

<400> 359 atg aag ccc acc ctc atc tca gtg ctt gtg ata ata ttt ata ctc aga 48 Met Lys Pro Thr Leu Ile Ser Val Leu Val Ile Ile Phe Ile Leu Arg 10 gga aca aga gcc cag aga gtg act cag ccc gag aag ctc ctc tct gtc 96 Gly Thr Arg Ala Gln Arg Val Thr Gln Pro Glu Lys Leu Leu Ser Val ttt aaa ggg gcc cca gtg gag ctg aag tgc aac tat tcc tat tct ggg 144 Phe Lys Gly Ala Pro Val Glu Leu Lys Cys Asn Tyr Ser Tyr Ser Gly 40 agt cct gaa ctc ttc tgg tat gtc cag tac tcc aga caa cgc ctc cag 192 Ser Pro Glu Leu Phe Trp Tyr Val Gln Tyr Ser Arg Gln Arg Leu Gln 50 tta ctc ttg aga cac atc tct aga gag agc atc aaa ggc ttc act gct 240 Leu Leu Arg His Ile Ser Arg Glu Ser Ile Lys Gly Phe Thr Ala 65 70 75 gac ctt aac aaa ggc gag aca tct ttc cac ctg aag aaa cca ttt gct 288 Asp Leu Asn Lys Gly Glu Thr Ser Phe His Leu Lys Lys Pro Phe Ala 85 90 95 caa gag gaa gac tca gcc atg tat tac tgt gct cta agt ggc aca gta 336 Gln Glu Glu Asp Ser Ala Met Tyr Tyr Cys Ala Leu Ser Gly Thr Val 100 105 gct ggt ttt gca agg aag cag aac aca aac cct tta aat aca gga aat 384 Ala Gly Phe Ala Arg Lys Gln Asn Thr Asn Pro Leu Asn Thr Gly Asn 120 att tot ttg caa act ctc tgt atg gcc aca gca ggg cat tot ttc tcc 432 Ile Ser Leu Gln Thr Leu Cys Met Ala Thr Ala Gly His Ser Phe Ser 135 140 aga aat taa tattgag tttatctcgt agatattata tcatcactca tcagctagcc 488 Arg Asn 145 atacacccac ctcacaattt tgtccaaaaa attctcatca tttaccctgc ctaaattaaa 548 tttaaaaaata gtaaacgtat tcatttcgtc tagcagcact ggacacacac cttcgaaata 608 aaaactacct tgcactgcac aaaaaacaaa aacaaaaaca cattgccggc cgcccctta 668 ttcccctcag tcagggctac cctaccttcc acctcatccg ctcatt 714

<210> 360

<211> 3154

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> (278)..(1483)

<400> 360 tggtttcttg gaagaacgtg ctcagcgcgg tctcgtatga aggagttttc cgcctgcagc 60 aactgcttcq cctqqtcqqc cqcqcacccq ccgqtctagc gaactggttg atcatgacct 120 180 ggtgccgcag ctcgtccatg ttcaccgaca tggcgcggcc gcgcggggcc cggcgtctcc 240 ggccggacgc agacgcgggg ctgcgctcgt agcggggccc cggatccccg agtggcggcc ggagcctcga aaagagattc tcagcgctga ttttgag atg atg ggc ttg gga aac 295 Met Met Gly Leu Gly Asn ggg cgt cgc agc atg aag tcg ccc ctc gtg ctg gcc gcc ctg gtg 343 Gly Arg Arg Ser Met Lys Ser Pro Pro Leu Val Leu Ala Ala Leu Val 10 gcc tgc atc atc gtc ttg ggc ttc aac tac tgg att gcg agc tcc cgg 391 Ala Cys Ile Ile Val Leu Gly Phe Asn Tyr Trp Ile Ala Ser Ser Arg 30 2.5 age gtg gac etc cag aca egg atc atg gag etg gaa gge agg gte ege 439 Ser Val Asp Leu Gln Thr Arg Ile Met Glu Leu Glu Gly Arg Val Arg 40 45 agg gcg gct gca gag aga ggc gcc gtg gag ctg aag aac gag ttc 487 Arg Ala Ala Ala Glu Arg Gly Ala Val Glu Leu Lys Lys Asn Glu Phe 60 535 cag gga gag ctg gag aag cag cgg gag cag ctt gac aaa atc cag tcc Gln Gly Glu Leu Glu Lys Gln Arg Glu Gln Leu Asp Lys Ile Gln Ser 75 583 age cac aac tte cag etg gag age gte aac aag etg tae cag gae gaa Ser His Asn Phe Gln Leu Glu Ser Val Asn Lys Leu Tyr Gln Asp Glu 90 631 aag gcg gtt ttg gtg aat aac atc acc aca ggt gag agg ctc atc cga Lys Ala Val Leu Val Asn Asn Ile Thr Thr Gly Glu Arg Leu Ile Arg 105 115 gtg ctg caa gac cag tta aag acc ctg cag agg aat tac ggc agg ctg 679 Val Leu Gln Asp Gln Leu Lys Thr Leu Gln Arg Asn Tyr Gly Arg Leu 120 727 cag cag gat gtc ctc cag ttt cag aag aac cag acc aac ctg gag agg Gln Gln Asp Val Leu Gln Phe Gln Lys Asn Gln Thr Asn Leu Glu Arg 135 150 775 aag ttc tcc tac gac ctg agc cag tgc atc aat cag atg aag gag gtg Lys Phe Ser Tyr Asp Leu Ser Gln Cys Ile Asn Gln Met Lys Glu Val

_	-	_	_		gag Glu	_		-		_			_			823
_		_	_		aga Arg	_	_	_	_			-				871
-			-		agt Ser			_			-	_	-	_		919
					gtg Val 220											967
					cca Pro											1015
_	_		_		aaa Lys		_					_				1063
			_		gac Asp		_	_	_						_	1111
					cct Pro											1159
					cca Pro 300											1207
-				-	gag Glu				_	_	_		_			1255
_		_			gag Glu	_	-	-	-							1303
-		_	_		gaa Glu	_	-			_	_	-				1351
_		-		-	aag Lys			_	_	-			-	_		1399
	-	-			gtt Val 380	_	_	_		_	_					1447

1497 ctt gat cag cgt gaa aag cgg aat cat aca ctc tga attg aactggaatc Leu Asp Gln Arg Glu Lys Arg Asn His Thr Leu acatatttca caacagggcc gaagagatga ctataaaatg ttcatgaggg actgaatact 1557 gaaaactgtg aaatgtacta aataaaatgt acatctgaag atgattattg tgaaatttta 1617 gtatgcactt tgtgtaggaa aaaatggaat ggtcttttaa acagcttttg ggggggtact 1677 ttggaagtgt ctaataaggt gtcacaattt ttggtagtag gtatttcgtg agaagttcaa 1737 caccaaaact ggaacatagt teteetteaa gtgttggega cagegggget teetgattet 1797 ggaatataac tttgtgtaaa ttaacagcca cctatagaag agtccatctg ctgtgaagga 1857 gagacagaga actotgggtt ccgtcgtcct gtccacgtgc tgtaccaagt gctggtgcca 1917 gcctgttacc tgttctcact gaaaagtctg gctaatgctc ttgtgtagtc acttctgatt 1977 ctgacaatca atcaatcaat ggcctagagc actgactgtt aacacaaacg tcactagcaa 2037 agtagcaaca gctttaagtc taaatacaaa gctgttctgt gtgagaattt tttaaaaggc 2097 tacttgtata ataacccttg tcatttttaa tgtacaaaac gctattaagt ggcttagaat 2157 ttgaacattt gtggtcttta tttactttgc ttcgtgtgtg ggcaaagcaa catcttccct 2217 aaatatatat taccaagaaa agcaagaagc agattaggtt tttgacaaaa caaacaggcc 2277 aaaagggggc tgacctggag cagagcatgg tgagaggcaa ggcatgagag ggcaagtttg 2337 ttgtggacag atctgtgcct actttattac tggagtaaaa gaaaacaaag ttcattgatq 2397 tcgaaggata tatacagtgt tagaaattag gactgtttag aaaaacagga atacaatggt 2457 tgtttttatc atagtgtaca catttagctt gtggtaaatg actcacaaaa ctgattttaa 2517 aatcaagtta atgtgaattt tgaaaattac tacttaatcc taattcacaa taacaatggc 2577 attaaggttt gacttgagtt ggttcttagt attatttatg gtaaataggc tcttaccact 2637 tgcaaataac tggccacatc attaatgact gacttcccag taaggctctc taaggggtaa 2697 gtaggaggat ccacaggatt tgagatgcta aggccccaga gatcgtttga tccaaccctc 2757 ttattttcag aggggaaaat ggggcctaga agttacagag catctagctg gtgcgctggc 2817 accectggce teacacagae teecgagtag etgggaetae aggeaeacag teactgaage 2877 aggccctgtt tgcaattcac gttgccacct ccaacttaaa cattcttcat atgtgatgtc 2937 cttagtcact aaggttaaac tttcccaccc agaaaaggca acttagataa aatcttagag 2997 tactttcata ctcttctaag tcctcttcca gcctcacttt gagtcctcct tggggttgat 3057 aggaattttc tcttgctttc tcaataaagt ctctattcat ctcatgttta atttgtacgc 3117

<210> 361 <211> 566 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> (129)(329)	
<400> 361 tttcgtgtta ttcctaattt aaacaggcaa atcacttact ctactgcagt gtttgtcaac	60
cttgttttca ttatctcccc ctaaggagcc tttacaggca ttattttcct agtcctcccc	120
atgtcctc atg ata ttt gaa tta cac aga tat acc tta tat ctg ctt atg Met Ile Phe Glu Leu His Arg Tyr Thr Leu Tyr Leu Leu Met 1 5 10	170
tac tgt ata tac atc tta gtt tta tat att aat cat aag att ttt tca Tyr Cys Ile Tyr Ile Leu Val Leu Tyr Ile Asn His Lys Ile Phe Ser 15 20 25 30	218
ccc ttc ctc ctc caa gaa caa att ttt acc ccc ttc aaa gca ata tgg Pro Phe Leu Leu Gln Glu Gln Ile Phe Thr Pro Phe Lys Ala Ile Trp 35 40 45	266
ccc cac tgt tcc att gct tta agg gaa ata cca tgt aag cct cta tta Pro His Cys Ser Ile Ala Leu Arg Glu Ile Pro Cys Lys Pro Leu Leu 50 55 60	314
tct acc aag ctc tga gcaggctctt cacatagttt cattaactca tcaaaaccct Ser Thr Lys Leu * 65	369
gcttcctgat ctctaatcct tttcctcatt ttggtaccaa caaacatgac cttcagtgga	429
gatatttgtt tagcaaaaga gattacctat ttttttctcc aaccagttgt tgatgccatg	489
aatttctatt aagaaaagcc tggatagttc tttcaaattt gccgaaacac aacttgacct	549
ttttttgtgt gtgcgcc	566

```
<210> 362
```

<220>

<211> 691

<212> DNA

<213> Homo sapiens

<221> CDS <222> (364)..(588)

<400> 362	
atattatgca actttcagta ttagtactct cagcaagttg gactgttact acatcatagt	60
tattgttgct gtaaatattc tgtggtaggt aatacactga tactgtgttt ttgccaagaa	120
gtatagtttt tcatttatca gctgatttgt cactgaaagc atgtgcacca tacccataaa	180
tactggatga agtttttcag cccttactat gacccatatt tcttttgcac actgattgtc	240
tttctcctta agatttgcgg aacagctctc tgagctcgga cgtagttcac agcaacgtgg	300
ctaaaccaag aagttggaat cgttggtaaa tacaggaccc gctatggggt ctccctccag	360
aaa atg gtg aag aaa att gaa atc agc cag tac gcc aag tac att tgc Met Val Lys Lys Ile Glu Ile Ser Gln Tyr Ala Lys Tyr Ile Cys 1 5 10 15	408
tct ttt ctg tgg caa aac caa gat gaa gag acg agc tgt ggg gat ctg Ser Phe Leu Trp Gln Asn Gln Asp Glu Glu Thr Ser Cys Gly Asp Leu 20 25 30	456
gtg ctg tgg ttt tgc atg aag aca gta aag gtg tct tca tcc agg aac Val Leu Trp Phe Cys Met Lys Thr Val Lys Val Ser Ser Ser Arg Asn 35 40 45	504
cac att gtc tgg acc tac aat acc act tca gct gtc acg gta aag tcc His Ile Val Trp Thr Tyr Asn Thr Thr Ser Ala Val Thr Val Lys Ser 50 55 60	552
acc atc aga aga ctg aag caa ttg aaa gac cag tag acgc tcctctactc Thr Ile Arg Arg Leu Lys Gln Leu Lys Asp Gln * 65 70 75	602
tttgagacat cactagccta taataaatgg gttaatttat gtaaccaaaa aaattaaaaa	662
ggtttgtgga aaaactgaaa aaaaaaaaa	691