

M.S. Ramaiah Institute of Technology (Autonomous Institute, Affiliated to VTU) Department of Computer Science and Engineering

Course Name: Distributed Systems

Course Code: CSE20/CSE751

Credits: 3:0:0

Term: Oct 2021-Feb 2022

Faculty: Sini Anna Alex

DHT=DISTRIBUTED HASH TABLE

- A hash table allows you to insert, lookup and delete objects with keys
- A distributed hash table allows you to do the same in a distributed setting (objects=files)
- Performance Concerns:
 - Load balancing
 - Fault-tolerance
 - Efficiency of lookups and inserts
 - Locality
- Napster, Gnutella, FastTrack are all DHTs (sort of)
- So is Chord, a structured peer to peer system that we study next

CHORD

- Developers: I. Stoica, D. Karger, F. Kaashoek, H. Balakrishnan, R. Morris, Berkeley and MIT
- Intelligent choice of neighbors to reduce latency and message cost of routing (lookups/inserts)
- Uses Consistent Hashing on node's (peer's) address
 - SHA-1(ip_address,port) → 160 bit string
 - Truncated to m bits
 - Called peer id (number between 0 and 2^m −1)
 - Not unique but id conflicts very unlikely
 - Can then map peers to one of 2^m logical points on a circle

RING OF PEERS

PEER POINTERS (1): SUCCESSORS

PEER POINTERS (2): FINGER TABLES

80+2⁶=144 mod 128

Notes

https://wiki.zhen-zhang.com/tech/notes/books/Distributed/Distributed%20-%20Intro/

Thank you