ANTENNAS, INTRODUCTION

Definition of antenna (according to IEEE):

that part of a transmitting or receiving system that is designed to radiate or to receive electromagnetic waves.

Dipole

ANTENNA TYPES

- Eletrically small antennas: the extent of the antenna structure is much less than a wavelength
 - Low directivity
 - ➤ Low input resistance and high input reactance
 - ➤ Low radiation efficiency

- Resonant antennas: these antennas operate well at a single or selected narrow frequency bands
 - ➤ Low to moderate gain
 - > Real input impedance
 - > Narrow bandwidth

ANTENNA TYPES

 Broadband antennas: the pattern, gain, and input impedance remain acceptable and are nearly constant over a wide frequency range

- > Low to moderate constant gain
- > Real input impedance
- ➤ Wide bandwidth

Spiral

- Aperture antennas: these antennas have a physical aperture (or opening) through which electromagnetic waves flow
 - ➤ High gain, which increases with frequency
 - ➤ Moderate bandwidth

Reflector

PRELIMINARY COURSE OUTLINE (the content of the course may be different from that of the previous accademic year!)

- Fundamentals of electromagnetics and radiation
- Radiation patterns and antenna parameters
- Simple radiating systems: small dipole, half-wave dipole, small loop
- Communication links
- Wire antennas
- Array antennas
- Aperture antennas (horns)

ASSESSMENT METHOD

Mandatory written examination comprising theoretical questions and exercises on antenna analysis or design.

REFERENCE MATERIAL

Lesson slides available for download from the E-learning platform

Starting from https://elearning.unibs.it/ look for ANTENNAS (A.A. 2021), which refers to the academic year 2021/22

Reccomended bibliography

- Antenna Theory and Design, W.L. Stutzman, G.A. Thiele, 2nd edition, New York, John Wiley & Sons, 1998
- Antenna Theory: Analysis and Design, C.A. Balanis, 4th edition, Hoboken, Wiley, 2016
- Antennas for All Applications, J.D. Kraus, R. Marhefka, 3rd edition, New York, Mc-Graw-Hill, 2002
- Microwave Engineering, D.M. Pozar, 4th edition, Hoboken, Wiley, 2012
- Electromagnetic Waves, C.G. Someda, 2nd editon, Boca Raton, Taylor & Francis, 2006