18.06 - Recitation 6 - Solutions

Sam Turton

April 2, 2019

1 Review problems for midterm 2

Problem 1.

The matrix A has a nullspace N(A) spanned by

$$\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

and a left nullspace $N(A^T)$ spanned by

$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \quad \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}.$$

- (a) What is the **shape** of the matrix A and what is its **rank**?
- (b) If we consider the vector

$$b = \begin{pmatrix} -1 \\ \alpha \\ 0 \\ \beta \end{pmatrix},$$

for what value(s) of α and β (if any) is Ax = b solvable? Will the solution (if any) be unique?

(c) Give the orthogonal **projections** of

$$y = \begin{pmatrix} 1\\2\\-3 \end{pmatrix}$$

onto **two** of the four fundamental subspaces of A.

Solution

- (a) Since N(A) is a subspace of \mathbb{R}^3 , the matrix A must have three columns. Since $N(A^T)$ is a subspace of \mathbb{R}^4 , the matrix A must have four rows. So A is a 4×3 matrix. The matrix has 3 columns and the null space has dimension 1, and so the rank of the matrix is r = 3 1 = 2.
- (b) If Ax = b is solvable, then $b \in C(A)$. Since C(A) is the orthogonal complement of $N(A^T)$, this means that an equivalent condition for Ax = b to be solvable is that b is orthogonal to $N(A^T)$. This gives us two constraints

on b:

$$b^{T} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = 0 \implies -1 + \alpha + \beta = 0,$$

$$b^{T} \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix} = 0 \implies -1 + \alpha - \beta = 0.$$

And so $b \in C(A)$ requires $\alpha = 1$, $\beta = 0$. For these values of α and β , the solution of Ax = b is not unique, since N(A) has dimension 1. Given any particular solution of Ax = b, we can add on any multiple of $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ and the resulting vector would still be a solution.

(c) The vector $y = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ is in \mathbb{R}^3 , and so we can project onto N(A) and $C(A^T)$. To project onto N(A), we use the formula to project y onto $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$:

$$p_{N(A)} = \frac{\begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}}{\begin{pmatrix} 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ -2 \end{pmatrix}.$$

To compute the projection onto $C(A^T)$, recall that if p = Py is the projection of y onto some subspace, then (I - P)y will project y onto the orthogonal complement of this subspace. Since $C(A^T)$ is orthogonal to N(A), the projection of y onto $C(A^T)$ is given by:

$$p_{C(A^T)} = \begin{pmatrix} 1\\2\\-3 \end{pmatrix} - p_{N(A)}$$
$$= \begin{pmatrix} 1\\2\\-3 \end{pmatrix} - \begin{pmatrix} 2\\0\\-2 \end{pmatrix}$$
$$= \begin{pmatrix} -1\\2\\-1 \end{pmatrix}.$$

Problem 2.

You have a matrix

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}.$$

- (a) Give the **ranks** of A, A^T , and A^TA , and also give **bases** for C(A), N(A), and $N(A^TA)$. (Look carefully at the columns of A, since very little calculation is needed!)
- (b) Suppose we are looking for a least squares solution \hat{x} that minimizes ||b-Ax|| for $b = \begin{pmatrix} 0 \\ 2 \\ 1 \\ -1 \end{pmatrix}$. At this minimum, $p = A\hat{x}$ will be the projection of b onto? **Find** p.

Solution

(a) The first and third columns of A are the same, while the first and second columns are linearly independent. This means that the rank of A is 2. The rank of A^T and the rank of A^TA are equal to the rank of A. A basis for C(A) is then just the first two columns $\begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ 1 \\ 1 \\ 0 \end{pmatrix}$. The nullspace of A is one dimensional, and since the first $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

and third columns are the same, a basis for N(A) is given by the vector $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$. Finally, $N(A) = N(A^T A)$, and so our basis for N(A) is also a basis for $N(A^T A)$.

(b) Firstly, $p = A\hat{x}$ is the projection of b onto C(A). To find \hat{x} we must solve the normal equations $A^TA\hat{x} = A^Tb$. However, since A only has two linearly independent columns we can simplify our calculations by instead using the matrix $B = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$, and solve the normal equations $B^TB\hat{x} = B^Tb$. We can calculate

$$B^T B = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 6 \end{pmatrix}$$

and

$$B^T b = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 2 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}.$$

The normal equations are then:

$$\begin{pmatrix} 3 & 3 \\ 3 & 6 \end{pmatrix} \hat{x} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$
$$\implies \hat{x} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}$$

Finally, we can compute

$$p = B\hat{x} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -1 \end{pmatrix}.$$

Problem 3.

(a) Show that the trace of A^TA must always be ≥ 0 by deriving a simple formula for trace (A^TA) in terms of the matrix entries a_{ij} (i-th row, j-th column) of A. This is called the *Frobenius norm*

$$||A||_F = \sqrt{\operatorname{trace}(A^T A)}$$

of the matrix.

(b) Using the compact SVD $A = U\Sigma V^T$, derive a simple relationship between the Frobenius norm $||A||_F$ and the singular values $\sigma_1, \ldots, \sigma_r$ of A.

Solution

(a) Suppose A is an $m \times n$ matrix. The trace of $A^T A$ is the sum of the n diagonal entries $(A^T A)_{ii}$. Each of these diagonal entries is given by the sum $(A^T A)_{ii} = \sum_{j=1}^m a_{ji}^2$. So

$$trace(A^{T}A) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ji}^{2},$$
(1)

which is necessarily ≥ 0 since every term in this sum is squared.

(b) We can use the SVD to derive a simple relationship between the Frobenius norm $||A||_F$ and the singular values by considering trace(A^TA):

$$trace(A^{T}A) = trace\left[(U\Sigma V^{T})^{T}(U\Sigma V^{T})\right]$$
(2)

$$= \operatorname{trace} \left[V \Sigma^T U^T U \Sigma V^T \right] \tag{3}$$

$$= \operatorname{trace} \left[V \Sigma \Sigma V^T \right] \tag{4}$$

$$= \operatorname{trace} \left[\Sigma V^T V \Sigma \right] \tag{5}$$

$$= \operatorname{trace}\left[\Sigma^2\right] \tag{6}$$

$$=\sum_{i=1}^{r}\sigma_{i}^{2}\tag{7}$$

And so

$$||A||_F = \sqrt{\sum_{i=1}^r \sigma_i^2}$$
(8)

Problem 4.

- (a) If Q is an orthogonal matrix $(Q^T = Q^{-1})$, explain why it follows from the rules for determinants that $\det Q$ must be or?
- (b) If P is a 3×3 projection matrix onto a 2d subspace, then its determinant must be?
- (c) An anti-symmetric matrix is a $n \times n$ matrix A with $A^T = -A$. What is det A when n is odd?

Solution

- (a) If Q is an orthogonal, square matrix then we know that $Q^T = Q^{-1}$. By the rules of determinants, we know that $\det Q^T = \det Q$ and that $\det Q^{-1} = \frac{1}{\det Q}$. We can then equate these two expressions, to deduce that $\det Q = \frac{1}{\det Q} \implies (\det Q)^2 = 1$, which means that $\det Q = \pm 1$.
- (b) If P is a 3×3 projection matrix onto a 2d subspace, then P has rank 2. This means that one of the pivots of P will be zero, and so det P = 0.
- (c) If A is an $n \times n$ matrix, then $\det(-A) = (-1)^n \det A$. If A is skew symmetric, then $A^T = -A \implies \det A^T = \det(-A) \implies \det A = (-1)^n \det A$. If m is odd, then this necessarily means $\det A = 0$. However, if n is even, then generally $\det A \neq 0$.