Riešenie 1. zadania

ANALÝZA KOMBINAČNÝCH OBVODOV

Zadanie:

Urobte analýzu kombinačného logického obvodu, ktorého štruktúra je daná na obrázku nižšie.

- 1. Zo známej štruktúry obvodu:
 - Odvoďte boolovské funkcie zodpovedajúce výstupom Y a Z obvodu,
 - Boolovské funkcie s použitím pravidiel boolovskej algebry upravte na minimálnu DNF a zapíšte do Karnaughových máp (najskôr do máp, v ktorých vystupujú všetky vstupné premenné obvodu a potom do najmenších máp),
 - Boolovské funkcie s použitím pravidiel boolovskej algebry upravte na minimálnu KNF a zapíšte do Karnaughových máp (najskôr do máp, v ktorých vystupujú všetky vstupné premenné obvodu a potom do najmenších máp).
- 2. Pomocou systému LOGISIM (príp. LOG/FITBOARD):
 - Vytvorte schému zadaného obvodu a simuláciou overte správnosť mapových zápisov boolovských funkcií (pre jednotlivé kombinácie hodnôt na vstupoch porovnajte výstupy s hodnotami v mapách),
 - Vytvorte schému obvodu z rovníc, ktoré ste získali pri úprave na DNF formu,
 - Vytvorte schému obvodu z rovníc, ktoré ste získali pri úprave na KNF formu,
 - Všetky tri vytvorené schémy pripojte na spoločné vstupy a zodpovedajúce si výstupy obvodov umiestnite vedľa seba (viď. obrázok príkladu).

Zadanie 1: AND - NAND - AND - XOR - NOR

1. Schéma zadaného obvodu

Typy použitých logických členov: AND – NAND – AND – XOR – NOR

AND Funkcia

Y = A.B

Schéma

Α	В	Y
0	0	0
0	1	0
1	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
1	1	1

Tabuľka pravdivostných hodnôt

NAND Funkcia

$$C=\overline{A.B}$$

Kristián Červenka, ID: 120772 Streda 18:00

A	В	C	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

AND Funkcia

$$Y = A.B$$

Schéma

Α	В	Y
0	0	0
0	1	$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
1	0	0
1	1	1

Tabuľka pravdivostných hodnôt

XOR Funkcia

$$Y = \underline{A} \oplus B$$
$$Y = \overline{A}B + A\overline{B}$$

D V

Kristián Červenka, ID: 120772 Streda 18:00

$$\begin{array}{ccc|c} 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}$$

Tabuľka pravdivostných hodnôt

NOR Funkcia

$$Y = \overline{A + B}$$

Schéma

Α	В	Y
0	0	1
0	1	0
1	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
1	1	0

Tabuľka pravdivostných hodnôt

Odvodenie výrazov pre výstupné funkcie Y a Z

1) Vyjdeme zo štruktúry obvodu a zostavíme výrazy zodpovedajúce výstupom Y a Z:

$$Y = \overline{\overline{A.B.}\overline{C.\overline{D}}}$$
$$Z = \overline{\overline{C.\overline{D}}.\overline{B.D}}$$

Pre l'ubovol'né výrazy A,B platí:

1.
$$A+B=B+A$$
 Komutatívnosť

$$A.B = B.A$$

2.
$$A+(B+C)=(A+B)+C$$
 Asociatívnosť

$$A.(B.C) = A.(B.C)$$

3.
$$A+B.C = (A+B).(A+C)$$
 Distributívnosť

$$A.(B+C) = A.B+A.C$$

4.
$$A+A+...+A=A$$

 $A.A....A=A$

5.
$$\overline{A+B} = \overline{A}.\overline{B}$$
 de Morganové pravidlá

$$\overline{A.B} = \overline{A} + \overline{B}$$

6.
$$\bar{A} = A$$
 Pravidlá o dvojnásobnej a viacnásobnej negácii

$$ar{ar{A}} = ar{A}$$
7. $A + ar{A} = 1$ Pravidlá o komplemente

$$A. \bar{A} = 0$$
8. $A+1=1$ Pravidlá o adresívnosti hodnôt O a 1

Kristián Červenka, ID: 120772 Streda 18:00

$$A.0 = 0$$
 $9. A+0 = A$
 $A + 0 = A$

2) Výrazy prepíšeme na ekvivalentné normálne formy typu DNF: Funkcia Y:

Počet použitých logických členov: 10 (4xNOT, 5xAND, 1xOR)

Kristián Červenka, ID: 120772

Streda 18:00

Počet vstupov pre logickú funkciu: 21 (4 do NOT, 2 do AND, 2 do AND, 2 do AND, 4 do AND, 5 do OR)

Funkcia Z:

Počet použitých logických členov: 2 (1xNOT, 1xAND) Počet vstupov pre logickú funkciu: 3 (1 do NOT, 2 do AND)

Sumár obvodu:

Počet použitých logických členov: 11 Počet vstupov pre logickú funkciu: 23

3) Zostavíme mapové zápisy funkcií, ktoré zodpovedajú výrazom Y a Z:

					C
			D		
		1	1	1	0
	В	1	1	1	0
		0	0	0	1
A		1	1	1	0
			Y		
				(2
			D		
		0	0	0	1
	В	0	0	0	1
		0	0	0	1
A		0	0	0	1

Z

4) Výrazy prepíšeme na ekvivalentné normálne formy typu KNF:

Funkcia Y

Počet použitých logických členov: 9 (4xNOT,1xAND, 4xOR) Počet vstupov pre logickú funkciu: 20 (4 do NOT, 3 do OR, 3 do OR, 3 do OR, 3 do OR, 4 do AND)

Funkcia Z

Kristián Červenka, ID: 120772

Streda 18:00

Z_KNF =	== C D = C + D	Bavidlo o dvoj o vraensednej negocić Demorganovo pravidlo
	T+D	Bavidlo o viaenasobnej negocii
All see 187	Ē D	Demorganovs provido
Martine grade	CD	Pravidlo o varnosolinej negocii

Počet použitých logických členov: 2 (1xNOT, 1xAND) Počet vstupov pre logickú funkciu: 3 (1 do NOT, 2 do AND)

Sumár obvodu:

Počet použitých logických členov: 10 Počet vstupov pre logickú funkciu: 22

5) Zostavíme mapové zápisy funkcií, ktoré zodpovedajú výrazom Y a Z:

C											(
			D							D		
]						
		1	1	1	0				0	0	0	1
	В	1	1	1	0			В	0	0	0	1
		0	0	0	1				0	0	0	1
A	·	1	1	1	0		A	-	0	0	0	1
Y					-				Z			

Kristián Červenka, ID: 120772

Streda 18:00

Zhodnotenie:

Zo schémy som vyjadril funkcie Y a Z, ktoré sme následne vhodnými pravidlami upravili do základného tvaru. Tvar , ktorý nám vyšiel sa nazýva DNF tvar obvodu. Pomocou pravidla dvojitej negácie a následnou úpravou využitím Demorganových pravidiel a pravidiel absorbcie ,distributívnosti a pravidla dvojitej negácie som sa dopracoval ku požadovanému KNF tvaru pre obe funkcie. Pri riešení som najviac využíval absorbčné pravidlo , Demorganové pravidlá a pravidlá dvojitej negácie . Vyriešené rovnice som nahral do programu Logisim a overil si tým ich správnosť riešenia. Dopracoval som sa ku tvrdeniu , že funkciu Y je z hľadiska menšieho počtu logických členov lepšie realizovať pomocou KNF. Funkciu Z je z hľadiska menšieho počtu logických členov prijateľnejšie realizovať pomocou DNF.

