Liangji's Notes for Linear Algebra

Liangji Li

October 8, 2024

Abstract

TODO: Here is where I would say something.

Contents

1	Products of Two vectors 1.1 Inner Product	3 3 4
2	2.2 Sum of outer products	4 4 4 4
3	Gram Matrix 3.1 Information carried by Gram Matrix	4 4
4	Coordinate Systems 4.1 Coordinates relative to a Basis	5 5
5	5.2 Orthogonal Projection	6 7 8 9
6		
7	Data Projection	13
8	8.1 Rank	14 14 15
9	9.1 Eigenvectors	16 16 16

	0.7 Important Properties of Eigenvalues	20
	8.8 Spectral Decomposition on Gram Matrix	20
	9.9 Change of Variable	
10	ΓΟDO: Quadratic Form	21
	0.1 Change of Variable in a Quadratic Form	21
	0.2 A Geometric View of Principal Axes	22
	0.3 Classifying Quadratic Forms	23
11	ΓΟDO: A preview of Constrained Optimization	23
	1.1 Subject to a Unit Vector	23
12	ΓΟDO: Singular Value Decomposition	25
	2.1 Bases for Fundamental Subspaces	27
13	Vector Calculus	27
	3.1 Gradient	27
	3.2 Jacobin Matrix	28
	3.3 Multivariate Taylor's Theorem	30
	3.4 TODO: Hessian Matrix	30
	3.5 TODO: Put them together	31
14	Probability and Statistics	31
	4.1 Expectation and Variance for Random Matrix	31
	4.2 Transformations for Random Vectors	33
	4.3 Multivariate Gaussian Distribution	34
	4.4 Equivalent Representations in a Normal Linear Regression Model	36
	4.5 Standardizing a Normal Vector	
	4.6 The Distribution of LSE	37
	4.7 Estimation of σ^2	

Figure 1: Inner product: $\mathbf{a}^{\top}\mathbf{b}$

1 Products of Two vectors

1.1 Inner Product

An inner product of a and b can be expressed in several ways:

- 1. $\langle \mathbf{a}, \mathbf{b} \rangle$
- 2. $\mathbf{a} \cdot \mathbf{b}$
- 3. $\mathbf{a}^{\top}\mathbf{b}$

Definition 1.1. L_2 Norm:

$$\|\mathbf{x}\| = \sqrt{\mathbf{x}^{\mathsf{T}}}\mathbf{x} = \sqrt{\|\mathbf{x}\|^2} \tag{1.1}$$

Actually, the L_2 norm can also be considered as Euclidean distance (length).

An inner product can be expressed in terms of lengths and the angle between them.

$$\mathbf{a}^{\mathsf{T}}\mathbf{b} = \|\mathbf{a}\|\|\mathbf{b}\|\cos\alpha\tag{1.2}$$

where α is the angle between **a** and **b**, as shown in figure 1. Specially, if $\|\mathbf{a}\| = 1$, $\mathbf{a}^{\mathsf{T}}\mathbf{b}$ is said **the coordinate of b** relative to **a**.

Theorem 1.1. Cauchy-Schwarz Inequality Give two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, then

$$(\mathbf{x}^{\top}\mathbf{y})^2 \le \|\mathbf{x}\|^2 \|\mathbf{y}\|^2 \tag{1.3}$$

Proof. Let $c = \frac{\mathbf{x}^{\top} \mathbf{y}}{\mathbf{x}^{\top} \mathbf{x}}$. If \mathbf{x} is $\mathbf{0}$, then the proof is immediately completed, and therefore suppose $\mathbf{x} \neq \mathbf{0}$. Expanding

$$\|\mathbf{y} - c\mathbf{x}\|^2 = \mathbf{y}^{\mathsf{T}}\mathbf{y} - 2c\mathbf{x}^{\mathsf{T}}\mathbf{y} + c^2\mathbf{x}^{\mathsf{T}}\mathbf{x}$$
(1.4)

$$= \mathbf{y}^{\top} \mathbf{y} - 2 \frac{(\mathbf{x}^{\top} \mathbf{y})^2}{\mathbf{x}^{\top} \mathbf{x}} + \frac{(\mathbf{x}^{\top} \mathbf{y})^2}{\mathbf{x}^{\top} \mathbf{x}}$$
(1.5)

$$= \|\mathbf{y}\|^2 - \frac{(\mathbf{x}^\top \mathbf{y})^2}{\|\mathbf{x}\|^2} \ge 0 \tag{1.6}$$

Theorem 1.2. If $(\mathbf{x}^{\top}\mathbf{y})^2 = \|\mathbf{x}\|^2 \|\mathbf{y}\|^2$, then \mathbf{x}, \mathbf{y} are linearly dependent.

 $\textit{Proof.} \ \ \text{By the equation (1.6), if } (\mathbf{x}^{\top}\mathbf{y})^2 = \|\mathbf{x}\|^2\|\mathbf{y}\|^2, \ \text{then } \|\mathbf{y} - c\mathbf{x}\|^2 = 0, \ \text{implying } \mathbf{y} - c\mathbf{x} = \mathbf{0}. \ \ \text{Thus, } \mathbf{y} = c\mathbf{x}. \quad \ \Box$

1.2 Outer Product (Tensor Product)

An outer product takes as inputs two vectors and then produces a matrix:

$$\mathbf{a}\mathbf{b}^{\top} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \mathbf{b}^{\top} = \begin{bmatrix} a_1 \mathbf{b}^{\top} \\ \vdots \\ a_n \mathbf{b}^{\top} \end{bmatrix}$$

It can also be denoted by $\mathbf{a} \otimes \mathbf{b}$.

2 Views of Matrix Multiplication

2.1 Linear Combination of Columns

Given two matrices, $A_{n \times p}$ and $B_{p \times m}$, each column of their product can be expressed as a linear combination of the columns of A.

$$AB = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \cdots & A\mathbf{b}_m \end{bmatrix} \tag{2.1}$$

2.2 Sum of outer products

AB can be expressed as a sum of outer products of $\mathbf{a}_i \mathbf{b}^{(i)}$, where $\mathbf{b}^{(i)}$ is the i^{th} of B.

$$AB = \sum_{i=1}^{p} \mathbf{a}_i \mathbf{b}^{(i)} \tag{2.2}$$

Notice that $\mathbf{a}_i \mathbf{b}^{(i)}$ is of rank 1 matrix, since each column of $\mathbf{a}_i \mathbf{b}^{(i)}$ is a multiple of \mathbf{a}_i .

2.3 TODO: Linear Combination of Rows

3 Gram Matrix

3.1 Information carried by Gram Matrix

In the most cases, the data matrix, $A \in \mathbb{R}^{n \times p}$, is not square, and thus its inverse does not exist. For convenience of computation, we can "reduce" the data matrix into a square matrix:

$$A^{\top}A = \begin{bmatrix} \mathbf{a}_{1}^{\top}\mathbf{a}_{1} & \mathbf{a}_{1}^{\top}\mathbf{a}_{2} & \cdots & \mathbf{a}_{1}^{\top}\mathbf{a}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{a}_{p}^{\top}\mathbf{a}_{1} & \mathbf{a}_{p}^{\top}\mathbf{a}_{2} & \cdots & \mathbf{a}_{p}^{\top}\mathbf{a}_{p} \end{bmatrix} = \begin{bmatrix} \|\mathbf{a}_{1}\|\|\mathbf{a}_{1}\|\cos\theta_{1,1} & \|\mathbf{a}_{1}\|\|\mathbf{a}_{2}\|\cos\theta_{1,2} & \cdots & \|\mathbf{a}_{1}\|\|\mathbf{a}_{p}\|\cos\theta_{1,p} \\ \vdots & \vdots & \ddots & \vdots \\ \|\mathbf{a}_{p}\|\|\mathbf{a}_{1}\|\cos\theta_{p,1} & \|\mathbf{a}_{p}\|\|\mathbf{a}_{2}\|\cos\theta_{p,2} & \cdots & \|\mathbf{a}_{p}\|\|\mathbf{a}_{p}\|\cos\theta_{p,p} \end{bmatrix}$$
(3.1)

Suppose that n is larger than p, we can reduce A into a relatively small matrix $G \in \mathbb{R}^{p \times p}$ which contains the necessary information about the columns vector of A. The necessary information of a column vector of A consists of its length and its angles with the other column vectors, which is contained by G.

Remark 3.1. Although G contains the necessary information for the column vectors of X, we cannot use this information to directly restore X from G. However, we can find a collection of vectors with the same relations as those between the column vectors of A, by using a matrix called **cosine similarity matrix** and the **Choleskey Decomposition**.

3.2 Cosine Similarity Matrix

If we let S be a diagonal matrix

$$S = \begin{bmatrix} \|\mathbf{a}_1\| & 0 & \cdots & 0 \\ 0 & \|\mathbf{a}_2\| & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \|\mathbf{a}_p\| \end{bmatrix}$$

We can get the **Cosine Similarity Matrix** C for G:

$$C = S^{-1}GS = \begin{bmatrix} 1 & \cos\theta_{1,2} & \cdots & \cos\theta_{1,p} \\ \vdots & \vdots & \cdots & \vdots \\ \cos\theta_{p,1} & \cdots & \cos\theta_{p,2} & \cdots & 1 \end{bmatrix}$$

If the angles $\theta_{i,j}$ satisfies some conditions (TODO), C can be Cholesky-decomposed into

$$C = R^{\top}R$$

where the columns of R are unit vectors that can reflect the relations between the column vectors of X. C and G are called **similar** to each other by the definition 9.3.

4 Coordinate Systems

4.1 Coordinates relative to a Basis

Theorem 4.1. The Unique Representation Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then $\forall \mathbf{x} \in V$, there exists a unique set of scalars c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

Definition 4.1. \mathcal{B} -coordinates: Suppose $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ is a basis for V and $\mathbf{x} \in V$. The coordinates of \mathbf{x} relative to the basis \mathcal{B} (or shortly coordinates of \mathcal{B} are the weights c_1, \dots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n$$

It is denoted by

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$

Remark 4.1. It is easy to see that $[\cdot]_{\mathcal{B}}$ is a linear transformation, that is:

$$[c\mathbf{a} + \mathbf{b}]_{\mathcal{B}} = c[\mathbf{a}]_{\mathcal{B}} + [\mathbf{b}]_{\mathcal{B}}$$

In fact, for any vector \mathbf{x} in \mathbb{R}^n , its \mathcal{E} -coordinate is itself, where \mathcal{E} is standard basis

$$[\mathbf{x}]_{\mathcal{E}} = \mathbf{x}$$

4.2 Change of Coordinates

Definition 4.2. Change-of-Coordinates Matrix: Let

$$P_{\mathcal{B}} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_n \end{bmatrix}$$

Then the vector equation $\mathbf{x} = c_1 \mathbf{b}_1 + \cdots + c_n \mathbf{b}_n$ is equivalent to

$$\mathbf{x} = P_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

 $P_{\mathcal{B}}$ is called **change-of-coordinates matrix** from **B** to **the standard basis** \mathcal{E} in \mathbb{R}^n . Since \mathcal{B} is a basis in \mathbb{R}^n , its inverse $P_{\mathcal{B}}^{-1}$ always exists. Left-multiplication by $P_{\mathcal{B}}^{-1}$ converts **x** into its \mathcal{B} -coordinate vector

$$P_{\mathcal{B}}^{-1}\mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$$

Theorem 4.2. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $\mathcal{C} = \{\mathbf{c}_1, \dots, \mathbf{c}_n\}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix P such that

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [\mathbf{x}]_{\mathcal{B}}$$

The columns of $P_{C \leftarrow B}$ are the C-coordinate vectors of the vectors in the basis \mathcal{B} . That is,

$$\underset{\mathcal{C} \leftarrow \mathcal{B}}{P} = \begin{bmatrix} [\mathbf{b}_1]_{\mathcal{C}} & [\mathbf{b}_2]_{\mathcal{C}} & \cdots & [\mathbf{b}_n]_{\mathcal{C}} \end{bmatrix}$$

The matrix $P_{C \leftarrow B}$ is called **change-of-coordinates matrix from** B **to** C. That is,

$$[\mathbf{x}]_{\mathcal{C}} = \underset{\mathcal{C} \leftarrow \mathcal{B}}{P} [\mathbf{x}]_{\mathcal{B}}$$

Similarly, the inverse of $\underset{C \leftarrow \mathcal{B}}{P}$ always exists

$$(\underset{\mathcal{C}\leftarrow\mathcal{B}}{P})^{-1} = \underset{\mathcal{B}\leftarrow\mathcal{C}}{P}$$

Note that $P_{\mathcal{B}}$ implies that $P_{\mathcal{E}\leftarrow\mathcal{B}}$. One of the ways to calculate $P_{\mathcal{C}\leftarrow\mathcal{B}}$ is to place the two sets of bases into a matrix, and then solve it as if it were a simple linear equation:

$$\begin{bmatrix} \mathcal{C} \mid \mathcal{B} \end{bmatrix} \sim [\ I \mid \underset{\mathcal{C} \leftarrow \mathcal{B}}{P}\]$$

5 Orthogonality

Definition 5.1. Two vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are **orthogonal** to each other if $\mathbf{u}^\top \mathbf{v} = 0$ or $\mathbf{v}^\top \mathbf{u} = 0$,

5.1 Orthogonal Complement

If a vector \mathbf{v} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \mathbf{v} is said to be **orthogonal to** W. The set of all vectors \mathbf{v} that are orthogonal to W is called the **orthogonal complement** of W.

Definition 5.2. Orthogonal Complement: A subspace V is the orthogonal complement of W, if

$$W^{\perp} = \{ \mathbf{v} \in V \mid \forall \mathbf{u} \in W : \mathbf{v}^{\top} \mathbf{u} \}$$

Definition 5.3. Direct Sum: Let W_1 and W_2 be subspaces of a vector space V, if

$$\forall \mathbf{v} \in V : \mathbf{v} = \underbrace{\mathbf{w}_1 + \mathbf{w}_2}_{\text{uniquely}} \quad \text{where } \mathbf{w}_1 \in W_1, \mathbf{w}_2 \in W_2$$

then V is called the **direct sum** of W_1 and W_2 . In this case, we write $V = W_1 \oplus W_2$.

Theorem 5.1. If $V = W_1 \oplus W_2$, then $W_1 \cap W_2 = \{0\}$.

Proof. Let $\mathbf{v} \in W_1 \cap W_2$. Since \mathbf{v} is also in V. Then

$$\mathbf{v} = \mathbf{0} + \mathbf{w}_1$$
 and $\mathbf{v} = \mathbf{0} + \mathbf{w}_2$

with $\mathbf{w}_1 \in W_1$ and $\mathbf{w}_2 \in W_2$. By the uniqueness of direct sum representations, we have $\mathbf{w}_1 = \mathbf{w}_2 = \mathbf{0}$.

Theorem 5.2. If W is a subspace of an inner product space V, then

$$V = W \oplus W^{\perp}$$
 and $\dim(V) = \dim(W_1) + \dim(W_2)$.

Theorem 5.3. Let A be an $m \times n$ matrix, then

$$\left(\operatorname{Row}(A)\right)^{\perp} = \operatorname{Nul}(A) \quad \text{and} \quad \left(\operatorname{Col}(A)\right)^{\perp} = \operatorname{Nul}(A^{\top})$$
 (5.1)

By theorem 5.2, it is clear that

$$\dim \left(\operatorname{Row}(A) \right) + \dim \left(\operatorname{Nul}(A) \right) = m \quad \text{and} \quad \dim \left(\operatorname{Col}(A) \right) + \dim \left(\operatorname{Nul}(A^{\top}) \right) = n \tag{5.2}$$

5.2 Orthogonal Projection

The orthogonal projection of y on x can be expressed as

$$\operatorname{proj}_{\mathbf{x}}(\mathbf{y}) = \frac{\mathbf{x}^{\top} \mathbf{y}}{\mathbf{x}^{\top} \mathbf{x}} \mathbf{x} \tag{5.3}$$

The equation (5.3) can be written in a matrix-vector multiplication form:

$$\operatorname{proj}_{\mathbf{x}}(\mathbf{y}) = \frac{\mathbf{x}(\mathbf{x}^{\top}\mathbf{y})}{\|\mathbf{x}\|^{2}} = \frac{(\mathbf{x}\mathbf{x}^{\top})\mathbf{y}}{\|\mathbf{x}\|^{2}} = \left(\frac{\mathbf{x}}{\|\mathbf{x}\|} \otimes \frac{\mathbf{x}}{\|\mathbf{x}\|}\right)\mathbf{y}$$
(5.4)

 $\frac{x}{\|x\|} \otimes \frac{x}{\|x\|}$ is called **Projection Matrix**.

Example 5.1. Given two vectors $\mathbb{1}, \mathbf{y} \in \mathbb{R}^n$, calculate the projection of \mathbf{y} onto $\mathbb{1}$.

Solution. Calculate the projection matrix

$$\frac{\mathbb{1}}{\|\mathbb{1}\|} \otimes \frac{\mathbb{1}}{\|\mathbb{1}\|} = \frac{\mathbb{1} \otimes \mathbb{1}}{n}$$

The projection vector of \mathbf{y} onto $\mathbb{1}$ is given by

$$\frac{\mathbb{1} \otimes \mathbb{1}}{n} \mathbf{y} = \frac{1}{n} \begin{bmatrix} \sum_{i=1}^{n} y_i \\ \vdots \\ \sum_{i=1}^{n} y_i \end{bmatrix} = \overline{y} \, \mathbb{1}$$

That is, the projection vector of **y** onto 1 is called **sample mean vector of y**.

Remark 5.1. The project matrix of 1 is, in statistics, typically denoted by

$$H_0 = \mathbb{1}(\mathbb{1}^{\top}\mathbb{1})^{-1}\mathbb{1}^{\top} \tag{5.5}$$

The **Total Sum of Squares** in a linear model is defined as:

$$SST = \|\mathbf{y} - H_0 \mathbf{y}\|^2 = \sum_{i=1}^{n} (y_i - \overline{y})^2$$
 (5.6)

Example 5.2. Let $X = (\mathbf{x}_1 \cdots \mathbf{x}_n)^{\top}$, we can calculate the projection scalar of \mathbf{x}_i^{\top} onto a unit vector \mathbf{v}

$$\alpha = X\mathbf{v} = \begin{bmatrix} \mathbf{x}_1^{\top} \mathbf{v} \\ \vdots \\ \mathbf{x}_n^{\top} \mathbf{v} \end{bmatrix}$$
 (5.7)

And we then can calculate the projection vectors on the unit vector \mathbf{v}

$$Z = X \mathbf{v} \mathbf{v}^{\top} = \begin{bmatrix} \mathbf{x}_{1}^{\top} \mathbf{v} \mathbf{v}^{\top} \\ \vdots \\ \mathbf{x}_{n}^{\top} \mathbf{v} \mathbf{v}^{\top} \end{bmatrix} = X V = X (\mathbf{v} \otimes \mathbf{v})$$

$$(5.8)$$

where V is the projection matrix of \mathbf{v} . Note that the i^{th} row, instead of the i^{th} column, of Z is the projection of $\mathbf{x}_i^{\mathsf{T}}$ on the unit vector \mathbf{v} .

5.3 Orthogonal Matrix

An orthogonal matrix V is **one that has an orthonormal set of vectors** as its columns. V has the following properties:

- 1. $V^{\top}V = I = VV^{\top}$
- 2. $V^{\top} = V^{-1}$
- 3. V^{\top} is also an orthogonal matrix.
- 4. $||V\mathbf{x}||^2 = ||\mathbf{x}||^2$

 VV^{\top} can be viewed as

$$VV^{\top} = \mathbf{v}_1 \otimes \mathbf{v}_1 + \dots + \mathbf{v}_n \otimes \mathbf{v}_n = I \tag{5.9}$$

Note also that left-multiply VV^{\top} by X

$$XVV^{\top} = X(\mathbf{v}_1 \otimes \mathbf{v}_1 + \dots + \mathbf{v}_n \otimes \mathbf{v}_n)$$
(5.10)

$$= X\mathbf{v}_1 \otimes \mathbf{v}_1 + \dots + X\mathbf{v}_n \otimes \mathbf{v}_n \tag{5.11}$$

$$=XI=X\tag{5.12}$$

Property 4 can be easily proved

Proof.

$$||V\mathbf{x}||^2 = (V\mathbf{x})^{\top} V\mathbf{x} = \mathbf{x}^{\top} V^{\top} V\mathbf{x} = \mathbf{x}^{\top} I\mathbf{x} = ||\mathbf{x}||^2$$
(5.13)

This property implies that a linear transformation, whose transformation matrix is an orthogonal matrix, say V^{\top} , preserves the length and the angle.

Theorem 5.4. If $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n , then

$$\operatorname{proj}_W(\mathbf{y}) = (\mathbf{y}^{\top}\mathbf{u_1})\mathbf{u_1} + (\mathbf{y}^{\top}\mathbf{u_2})\mathbf{u_2} + \dots + (\mathbf{y}^{\top}\mathbf{u_p})\mathbf{u_p}$$

Let $U = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_p \end{bmatrix}$ then

$$\forall \mathbf{y} \in \mathbb{R}^n : \operatorname{proj}_W(\mathbf{y}) = UU^{\top}\mathbf{y}$$
(5.14)

5.4 The Gram-Schmidt Process and QR Factorization

The Gram-Schmidt process is a simple algorithm for producing an orthogonal or orthonormal basis for any nonzero subspace of \mathbb{R}^n .

Theorem 5.5. Given a basis $\{\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_p\}$ for a nonzero subspace W of \mathbb{R}^n , define

$$\mathbf{v}_{1} = \mathbf{x}_{1}$$

$$\mathbf{v}_{2} = \mathbf{x}_{2} - \operatorname{proj}_{\mathbf{v}_{1}}(\mathbf{x}_{2})$$

$$\mathbf{v}_{3} = \mathbf{x}_{3} - \operatorname{proj}_{\mathbf{v}_{1}}(\mathbf{v}_{3}) - \operatorname{proj}_{\mathbf{v}_{2}}(\mathbf{x}_{3})$$

$$\vdots$$

$$\mathbf{v}_{p} = \mathbf{x}_{p} - \operatorname{proj}_{\mathbf{v}_{1}}(\mathbf{x}_{p}) - \operatorname{proj}_{\mathbf{v}_{2}}(\mathbf{x}_{p}) - \cdots - \operatorname{proj}_{\mathbf{v}_{p-1}}(\mathbf{x}_{p})$$

Then $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_p\}$ is an orthogonal basis for W. In addition,

$$\operatorname{Span}\{\mathbf{v}_1,\mathbf{v}_2,\cdots,\mathbf{v}_p\} = \operatorname{Span}\{\mathbf{x}_1,\mathbf{x}_2,\cdots,\mathbf{x}_p\}$$

Remark 5.2. The theorem shows that any nonzero subspace W of \mathbb{R}^n has an orthogonal basis. We can reduce the orthogonal basis into an orthonormal basis, $\mathcal{U} = \{\mathbf{v}_1', \mathbf{v}_2', \cdots, \mathbf{v}_n'\}$, by letting

$$\mathbf{v}_i' = rac{\mathbf{v}_i}{\|\mathbf{v}_i\|}$$

Theorem 5.6. If A is an $m \times n$ matrix with linearly independent columns, then A can be factored as A = QR, where $Q \in \mathbb{R}^{m \times n}$ is a matrix whose columns form an **orthonormal basis** for $\operatorname{Col}(A)$ and $R \in \mathbb{R}^{n \times n}$ is an upper triangular non-singular matrix with positive entries on its diagonal.

Proof. Let $\mathcal{B} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ be a basis for $\operatorname{Col}(A)$. We can find a set of orthonormal basis $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ using Gram-Schmidt process. Let $Q = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_n \end{bmatrix}$. Since \mathbf{x}_k is in $\operatorname{Span}\{\mathbf{x}_1, \dots, \mathbf{x}_k\} = \operatorname{Span}\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$, there exists r_{1k}, \dots, r_{kk} such that

$$\mathbf{x}_k = r_{1k}\mathbf{u}_1 + \dots + r_{kk}\mathbf{u}_k + 0 \cdot \mathbf{u}_{k+1} + \dots + 0 \cdot \mathbf{u}_n \tag{5.15}$$

We may assume that $r_{kk} > 0$. (If $r_{kk} < 0$, multiply both r_{kk} and \mathbf{u}_k by -1.) Let

$$\mathbf{r}_k = \begin{bmatrix} r_{1k} & \cdots & r_{kk} & 0 & \cdots & 0 \end{bmatrix}^\top$$

That is, $\mathbf{x}_k = Q\mathbf{r}_k$. Let $R = \begin{bmatrix} \mathbf{r}_1 & \cdots & \mathbf{r}_n \end{bmatrix}$. Then

$$A = [\mathbf{x}_1 \quad \cdots \quad \mathbf{x}_n] = [Q\mathbf{r}_1 \quad \cdots \quad Q\mathbf{r}_n] = QR$$

The fact that R is non-singular follows easily from the fact the columns of A are linearly independent.

6 Ordinary Least Squares and its Application in Statistics

6.1 The Orthogonal Decomposition Theorem and Least-Squares Solution

Theorem 6.1. The Orthogonal Decomposition Theorem: Let W be a subspace of \mathbb{R}^n . Then, each \mathbf{y} in \mathbb{R}^n can be written **uniquely** in the form

$$\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z} \tag{6.1}$$

where $\hat{\mathbf{y}}$ is in W and \mathbf{z} is in W^{\perp} . In fact, if $\{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_p\}$ is any orthogonal basis of W, then

$$\hat{\mathbf{y}} = \frac{\mathbf{y}^{\top} \mathbf{u}_1}{\mathbf{u}_1^{\top} \mathbf{u}_1} + \frac{\mathbf{y}^{\top} \mathbf{u}_2}{\mathbf{u}_2^{\top} \mathbf{u}_2} + \dots + \frac{\mathbf{y}^{\top} \mathbf{u}_p}{\mathbf{u}_p^{\top} \mathbf{u}_p}$$

$$(6.2)$$

and $\mathbf{z} = \mathbf{y} - \hat{\mathbf{y}}$.

Definition 6.1. If X is $n \times p$ and β is in \mathbb{R}^p , a least-squares solution of $X\beta = y$ is an $\hat{\beta}$ in \mathbb{R}^p such that

$$\forall \boldsymbol{\beta} \in \mathbb{R}^p : \|\mathbf{y} - X\hat{\boldsymbol{\beta}}\| \le \|\mathbf{y} - X\boldsymbol{\beta}\| \tag{6.3}$$

We cannot ensure that the linear system $X\beta = \mathbf{y}$ is always consistent. That is, \mathbf{y} may not be in $\operatorname{Col}(X)$. But we can find a $\hat{\boldsymbol{\beta}} \in \mathbb{R}^p$ such that equation (6.3) holds. Let $\hat{\mathbf{y}} = X\hat{\boldsymbol{\beta}}$, by **Orthogonal Decomposition Theorem \mathbf{y} - \hat{\mathbf{y}}** is orthogonal to $\operatorname{Col}(X)$, this is,

$$\forall i \in \{1, 2, \cdots, p\} : \mathbf{x}_i^{\top}(\mathbf{y} - \hat{\mathbf{y}}) = 0$$

and thus,

$$X^{\top}(\mathbf{y} - \hat{\mathbf{y}}) = \mathbf{0} \Longrightarrow X^{\top}(\mathbf{y} - X\hat{\boldsymbol{\beta}}) = \mathbf{0}$$

We can find $\hat{\beta}$ by solving the following linear system, which is called **normal equation** and must be consistent

$$X^{\top} \mathbf{y} = X^{\top} X \hat{\boldsymbol{\beta}} \tag{6.4}$$

Furthermore, if $(X^{\top}X)^{-1}$ exists,

$$\hat{\boldsymbol{\beta}} = (X^{\top}X)^{-1}X^{\top}\mathbf{y} \tag{6.5}$$

The same result can be derived from example 13.1, using vector calculus. The prediction vector $\hat{\mathbf{y}}$ (the projection of \mathbf{y} onto $\mathrm{Col}(X)$) can thus be expressed as

$$\hat{\mathbf{y}} = X(X^{\top}X)^{-1}X^{\top}\mathbf{y} = X\hat{\boldsymbol{\beta}}$$
(6.6)

Figure 2: $\hat{\mathbf{y}}$ is the projection of \mathbf{y} onto W, where W is the column space of \mathbf{X} .

Remark 6.1. In linear model, we are interested in the difference of the response vector \mathbf{y} and its projection onto the column space of design matrix X. The **Sum of Squares due error** is a measurement for that purpose, which is defined as:

$$SSE(\mathbf{y}) = \|\mathbf{y} - X\hat{\boldsymbol{\beta}}\|^2 = \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top}\hat{\boldsymbol{\beta}})^2$$
(6.7)

6.2 Orthogonal Projection Matrix

By equation (6.6), we can see that the effect of $X(X^{T}X)^{-1}X^{T}$ is to project **y** onto Col(X), which is why it is called **(Orthogonal) Projection Matrix**. The projection matrix is also called **Hat Matrix** in statistics. The hat matrix differs from equation (5.4), which projects a vector onto a vector, while the hat matrix projects a vector onto the column space of X.

Remark 6.2. The hat matrix is typically denoted by H, it has the following properties:

- 1. H is symmetric and thus a square matrix.
- 2. $H^2 = H$.
- 3. If $\mathbf{x} \in \text{Col}(X)$, $H\mathbf{x} = \mathbf{x}$.

Definition 6.2. Idempotent Matrix: A square matrix A is said to be idempotent if and only if $A^2 = A$.

Definition 6.3. Orthogonal Projection Matrix: A matrix P is an orthogonal projection matrix if P is idempotent and symmetric.

Remark 6.3. For any vector \mathbf{y} , P projects \mathbf{y} onto a subspace W, resulting in $\hat{\mathbf{y}} = P\mathbf{y}$. If we project $\hat{\mathbf{y}}$ onto W again, the equation

$$\hat{\mathbf{y}} = P\hat{\mathbf{y}} = PP\mathbf{y} = P^2\mathbf{y} \tag{6.8}$$

illustrated why P is needed to be **idempotent**. Conversely, suppose we want to project a vector \mathbf{y} onto a subspace W spanned by $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$, we can find an orthonormal base by Gram-Schmidt Process, say $\mathcal{U} = \{\mathbf{u}_1, \mathbf{u}_2, \cdots, \mathbf{u}_n\}$. By theorem 5.4,

$$\hat{\mathbf{v}} = UU^{\top}\mathbf{v}$$

If we let $P = UU^{\top}$, P is clearly symmetric. Note also that P projects a vector onto the subspace spanned by the columns (or rows, since P is symmetric) of P.

We have already known that the hat matrix H is the orthogonal projection matrix onto the column space of X, and the residual vector

$$\hat{\boldsymbol{\varepsilon}} = (\mathbf{y} - H\mathbf{y}) = (I - H)\mathbf{y}$$

is orthogonal to $\operatorname{Col}(X)$. It is intuitive to say that I-H is the orthogonal projection matrix onto $\operatorname{Col}(X)^{\perp}$ or $\operatorname{Nul}(X^{\top})$.

Theorem 6.2. If P is an orthogonal projection matrix, then I - P is an orthogonal projection matrix onto $Col(P)^{\perp}$ (or $Row(P)^{\perp}$, since P is symmetric.

Theorem 6.3. The eigenvalues of an orthogonal projection matrix P are either 1's or 0's.

Proof. Since $\forall \mathbf{x} \in \operatorname{Col}(P)$: $H\mathbf{x} = \mathbf{x}$, $\operatorname{Col}(P)$ is an eigenspace of P corresponding to the eigenvalue 1. And $\forall \mathbf{v} \in \operatorname{Col}(P)^{\perp}$: $P\mathbf{v} = 0 \cdot \mathbf{v}$ says that $\operatorname{Col}(P)^{\perp}$ is another eigenspace of P corresponding to eigenvalue 0. P is a $n \times n$ symmetric matrix, and $\dim\left(\operatorname{Col}(P)\right) + \dim\left(\operatorname{Col}(P)^{\perp}\right) = n$, so by theorem 9.11 H can only have eigenvalues of 0 or 1.

Theorem 6.4. An orthogonal projection matrix is semi-positive definite.

Proof. By theorem 6.3 and theorem 10.2.

Figure 3: SST, SSE and SSR form a right triangle.

Example 6.1. Let a quadratic form $Q(\mathbf{x}) = \mathbf{x}^{\top} (I - H_0)\mathbf{x}$, where H_0 is the projection matrix onto $\mathbb{1}$ as discussed in equation (5.5). Given a vector, what does $Q(\mathbf{x})$ stand for?

$$Q(\mathbf{x}) = \mathbf{x}^{\top} (I - H_0) \mathbf{x}$$

$$= \|\mathbf{x}\|^2 - \mathbf{x}^{\top} H_0 \mathbf{x}$$

$$= \|\mathbf{x}\|^2 - \mathbf{x}^{\top} \bar{x} \mathbf{1}$$

$$= \|\mathbf{x}\|^2 - \bar{x} \sum_{i=1}^n x_i$$

$$= \|\mathbf{x}\|^2 - n\bar{x}^2$$

$$= \sum_{i=1}^n (x_i - \bar{x})^2 = (n-1)S^2$$

where S^2 is the sample variance.

6.3 Application in Linear Model

We have calculated SST by equation (5.6), and we want to calculate the projection vector of $\mathbf{y} - H_0 \mathbf{y}$ onto Col(X)

$$H(\mathbf{y} - H_0\mathbf{y}) = H\mathbf{y} - HH_0\mathbf{y} = X\hat{\boldsymbol{\beta}} - \overline{\mathbf{y}} \mathbb{1}$$

where $H\mathbf{y}$ is the prediction vector by equation (6.6) and $HH_0\mathbf{y} = H_0\mathbf{y}$ since $H_0\mathbf{y}$ is in $\mathrm{Col}(X)$. That is so-called **Sum of Squares due to Regression**, which is defined as:

$$SSR(\mathbf{y}) = \|X\hat{\boldsymbol{\beta}} - \overline{y}\|^2 = \sum_{i=1}^{n} (\mathbf{x}_i^{\top} \hat{\boldsymbol{\beta}} - \overline{y})^2$$
(6.9)

Theorem 6.5. We have calculated SST, SSR and SSE, there is a relationship between them:

$$SST(\mathbf{y}) = SSR(\mathbf{y}) + SSE(\mathbf{y}) \tag{6.10}$$

Or equivalently,

$$\|\mathbf{y} - \overline{y}\|\|^2 = \|X\hat{\boldsymbol{\beta}} - \overline{y}\|\|^2 + \|\mathbf{y} - X\hat{\boldsymbol{\beta}}\|^2$$
 (6.11)

Proof. It can be proved by Pythagorean Theorem as shown in figure 3.

Theorem 6.6. Suppose V is subspace of \mathbb{R}^p , and W is a subspace of V, that is, $W \subseteq V$ and $\dim(W) \leq \dim(V)$. Then

$$\forall \mathbf{y} \in \mathbb{R}^p : \|\operatorname{proj}_{V}(\mathbf{y})\| \ge \|\operatorname{proj}_{W}(\mathbf{y})\| \tag{6.12}$$

Proof. By theorem 6.1, $\mathbf{y} = \operatorname{proj}_W(\mathbf{y}) + \mathbf{r}_W = \operatorname{proj}_V(\mathbf{y}) + \mathbf{r}_V$. Since $W \subseteq V$, $\operatorname{proj}_V(\mathbf{y}) - \operatorname{proj}_W(\mathbf{y}) \in V$. We can draw a triangle with \mathbf{r}_W as the hypotenuse, \mathbf{r}_V and $\operatorname{proj}_V(\mathbf{y}) - \operatorname{proj}_W(\mathbf{y})$ as the legs. we have

$$\|\mathbf{r}_W\| > \|\mathbf{r}_V\| + \|\operatorname{proj}_V(\mathbf{y}) - \operatorname{proj}_W(\mathbf{y})\| \tag{6.13}$$

It indicates that $\|\mathbf{r}_W\| > \|\mathbf{r}_V\|$. By Pythagorean Theorem

$$\|\mathbf{y}\|^2 = \|\text{proj}_W(\mathbf{y})\|^2 + \|\mathbf{r}_W\|^2 = \|\text{proj}_V(\mathbf{y})\|^2 + \|\mathbf{r}_V\|^2$$

Thus, $\|\operatorname{proj}_{V}(\mathbf{y})\| > \|\operatorname{proj}_{W}(\mathbf{y})\|$. Note that $\|\operatorname{proj}_{V}(\mathbf{y})\| = \|\operatorname{proj}_{W}(\mathbf{y})\|$ if and only if V = W.

The theorem 6.6 provides an interesting insight for the design matrix X. If we add a new column (or a new feature) into X, resulting in a new matrix \tilde{X} , then SSE(y) would not increase. Looking at equation (6.11), $\|\mathbf{y} - \overline{y}\|^2$ is a constant and $\|\mathbf{r}_V\| = \|\mathbf{y} - \tilde{X}\hat{\boldsymbol{\beta}}\| \le \|\mathbf{y} - X\hat{\boldsymbol{\beta}}\| = \|\mathbf{r}_W\|$ as in equation (6.13), since $\dim(X) \le \dim(\tilde{X})$. Therefore, in no case will the SSE increase, because the model now has more capacity to minimize the residuals (or in other words, it has more freedom to find a better fit).

The three vectors, $\mathbf{y} - \bar{y} = 1$, $X\hat{\boldsymbol{\beta}} - \bar{y} = 1$ and $\mathbf{y} - X\hat{\boldsymbol{\beta}}$, forms a right triangle. We can use the cosine value, as shown in figure 3, to reflect the length of $\mathbf{y} - X\hat{\boldsymbol{\beta}}$:

$$\cos^2 \theta = \frac{SSR(\mathbf{y})}{SST(\mathbf{y})}$$

We can see that the range of $\cos^2 \theta$ is [0, 1], and its value is proportional to SSR(y).

Definition 6.4. The coefficient of determination:

$$R^{2} = 1 - \frac{\text{SSE}(\mathbf{y})}{\text{SST}(\mathbf{y})} = \frac{\text{SSR}(\mathbf{y})}{\text{SST}(\mathbf{y})}$$
(6.14)

The higher the R^2 is, the more accurate the predictions of our model are. R^2 non-decreases (by theorem 6.6) as we add new features (or columns) into the design matrix X.

7 Data Projection

Consider the following matrix multiplication

$$Z = XV$$

where $X = (\mathbf{x}_1 \cdots \mathbf{x}_n)^{\top}$ is $n \times p$ and V is $p \times p$.

$$Z = XV = \begin{bmatrix} \mathbf{x}_1^\top V \\ \vdots \\ \mathbf{x}_n^\top V \end{bmatrix} = \begin{bmatrix} \mathbf{z}^{(1)} \\ \vdots \\ \mathbf{z}^{(n)} \end{bmatrix}$$
 (7.1)

 $\mathbf{z}^{(i)} = \mathbf{x}_i^{\top} V$ can be considered as a linear combination of rows of V using the entries in \mathbf{x}_i^{\top} as weights. This implies

$$\mathbf{x}_i = V^{\top}(\mathbf{z}^{(i)})^{\top}$$

 $(\mathbf{z}^{(i)})^{\top}$ is the coordinate of \mathbf{x}_i relative to the rows of V. Furthermore, the j^{th} entry, $z_{ij} = \mathbf{x}_i^{\top} \mathbf{v}_j$, in $(\mathbf{z}^{(i)})^{\top}$ is the scalar projection of \mathbf{x}_i^{\top} on \mathbf{v}_j or on span (\mathbf{v}_j) . Looking at (11), let $X_j = X\mathbf{v}_j \otimes \mathbf{v}_j$ and $\mathbf{x}_j^{(i)}$ be the i^{th} row of X_j , then

$$\mathbf{x}_{i}^{(i)} = \mathbf{x}_{i}^{\top} \mathbf{v}_{i} \mathbf{v}_{i}^{\top} = z_{ij} \mathbf{v}_{i}^{\top}$$

which is the projection vector of \mathbf{x}_i^{\top} on \mathbf{v}_j . That is, the rows of X_j are the vector projections of rows of X on \mathbf{v}_j^{\top} .

Since all the rows of X_j are the projections on \mathbf{v}_j^{\top} , we have

$$rank(\mathbf{v}_j \otimes \mathbf{v}_j) = 1 \Longrightarrow rank(X_j) = 1$$

All data points (or rows) of X_j are on the line that goes through the origin and vector \mathbf{v}_j^{\top} . It says that we can restore XV to X by right-multiplying it by V^{\top}

$$XVV^{\top} = X\mathbf{v}_1 \otimes \mathbf{v}_1 + \dots + X\mathbf{v}_n \otimes \mathbf{v}_n$$
$$= X_1 + \dots + X_n$$
$$= X$$

Again, each row of XV represents the coordinate of $(\mathbf{v}_1 \cdots \mathbf{v}_p)^{\top}$. By right-multiplying it by its inverse V^{\top} , we can restore the coordinates to those of **standard orthonormal basis**. Another way to view XVV^{\top} is as the sum of the projections of all data points onto the orthonormal basis.

8 Rank and Trace

8.1 Rank

Definition 8.1. The rank of a matrix $A \in \mathbb{R}^{n \times p}$ is the number of its linearly independent columns (or rows), which is expressed as rank(A).

Given a matrix $A \in \mathbb{R}^{n \times p}$, it has the following properties:

- 1. $rank(A) = min\{n, p\}$
- 2. $\operatorname{rank}(AB) = \min{\{\operatorname{rank}(A), \operatorname{rank}(B)\}}$
- 3. Given two non-singular matrices $B \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{p \times p}$:

$$rank(BA) = rank(AC) = rank(A)$$
(8.1)

4. $\operatorname{rank}(A^{\top}A) = \operatorname{rank}(AA^{\top}) = \operatorname{rank}(A) = \operatorname{rank}(A^{\top})$

Note that: property 4 illustrates that multiplying A by a non-singular matrix does not change the rank of A.

Example 8.1. Show that if a matrix $A \in \mathbb{R}^{n \times p}$ with $n \geq p$ is of full column rank, then $A^{\top}A$ is non-singular.

Proof. Since A is of full column rank and $n \geq p$, we have

$$rank(A) = p = rank(A^{\top}A)$$

Since $A^{\top}A$ is a $p \times p$ matrix and has full column rank, it is non-singular.

Example 8.2. Show that if a matrix $A \in \mathbb{R}^{n \times p}$ with $n \geq p$ is not of full column rank, then $A^{\top}A$ is singular.

Proof. Since A is not of full column rank,

$$\operatorname{rank}(A) = \operatorname{rank}(A^{\top} A) < p$$

It implies that A is singular.

Example 8.3. Show that given a matrix $A \in \mathbb{R}^{n \times p}$ with n < p, $A^{\top}A$ is singular.

Proof. Since $rank(A) \leq min\{n, p\},\$

$$\operatorname{rank}(A) = \operatorname{rank}(A^{\top}A) \le n < p$$

Since $A^{\top}A$ is not of full column rank, it is singular.

8.2 Trace

Definition 8.2. The trace of a square matrix $A \in \mathbb{R}^{n \times n}$ is the sum of diagonal elements of A. It is denoted $\operatorname{tr}(A) = \sum_{i=1}^{n} = a_{ii}$.

Theorem 8.1. The trace function $tr(\cdot)$ has the following properties:

- 1. $\operatorname{tr}(cA \pm dB) = \operatorname{ctr}(A) \pm \operatorname{dtr}(B)$, where $c, d \in \mathbb{R}$.
- 2. Given two matrices $A \in \mathbb{R}^{n \times p}, B \in \mathbb{R}^{p \times n}$, then $\operatorname{tr}(AB) = \operatorname{tr}(BA)$

Proof. Let t_i be the i^{th} elements on the diagonal of AB. Then

$$\operatorname{tr}(AB) = \sum_{i=1}^{n} t_i = \sum_{i=1}^{n} \sum_{j=1}^{p} a_{ij} b_{ji} = \sum_{j=1}^{p} \sum_{i=1}^{n} b_{ji} a_{ij} = \operatorname{tr}(BA)$$

Note that n is not required to be greater or equal to p.

- 3. Given an $n \times p$ matrix, $A = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_p \end{bmatrix}$, $\operatorname{tr}(A^{\top}A) = \sum_{i=1}^{p} \mathbf{a}_i^{\top} \mathbf{a}_i$
- 4. Given an $n \times p$ matrix, $\operatorname{tr}(AA^{\top}) = \sum_{i=1}^{n} \mathbf{a}^{(i)} \mathbf{a}_{i}$, where $\mathbf{a}^{(1)}$ is the row vector of A.
- 5. By property 3 and 4, $\operatorname{tr}(A^{\top}A) = \operatorname{tr}(AA^{\top}) = \sum_{i=1}^{n} \sum_{j=1}^{p} a_{ij}^{2}$
- 6. $\operatorname{tr}(\mathbb{E}(\mathbf{X})) = \mathbb{E}(\operatorname{tr}(\mathbf{X}))$, where \mathbb{E} represents the expectation of a random matrix.

9 Eigenvalues and Diagonalization

9.1 Eigenvectors

Definition 9.1. Given a square matrix $A \in \mathbb{R}^{n \times n}$, there exists a vector $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ such that

$$\exists \lambda \in \mathbb{R} : A\mathbf{x} = \lambda \mathbf{x} \tag{9.1}$$

where λ is called an eigenvalue of A; x is called an eigenvector corresponding to λ .

The equation (9.1) can be rewritten as

$$(A - \lambda I)\mathbf{x} = \mathbf{0} \tag{9.2}$$

This implies that the set of all solutions of equation (9.2) is just the null space $Nul(A - \lambda I)$. So this set is a subspace of \mathbb{R}^n and its called the eigenspace of A corresponding to λ .

Definition 9.2. A scalar λ is an eigenvalue of a matrix $A \in \mathbb{R}^n$ if and only if λ satisfies the **characteristic equation**:

$$\det(A - \lambda I) = 0 \tag{9.3}$$

Remark 9.1. Ax = 0x holds if and only if A is singular. That is, 0 is an eigenvalue of A in and only if A is singular.

Theorem 9.1. The eigenvalues of a **triangular matrix** are the entries on its main diagonal.

Theorem 9.2. If $\mathbf{v}_1, \dots, \mathbf{v}_r$ are eigenvalues that correspond to distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_r$, then the set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is **linearly independent**.

9.2 Similarity

Definition 9.3. If A and B are $n \times n$ matrices, then A is similar to B if there is a non-singular matrix P such that

$$P^{-1}AP = B$$

Theorem 9.3. Given two matrices $A, B \in \mathbb{R}^{n \times n}$, if A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Remark 9.2. However, A and B having the exactly same eigenvalues does not imply that A and B are similar.

9.3 Diagonalization

In many cases, the eigenvalue-eigenvector information contained within a matrix A can be displayed in a useful factorization for the form $A = PDP^{-1}$ where D is a diagonal matrix.

Theorem 9.4. The Diagonalization Theorem: Given a matrix $A \in \mathbb{R}^{n \times n}$, A is diagonalizable if and only if A has n linearly independent eigenvectors.

Remark 9.3. In fact $A = PDP^{-1}$, if and only if the columns of P are n linearly independent eigenvectors of A. In this case, the diagonal entries of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P.

In other words, A is diagonalizable if and only if there are enough eigenvectors to form a basis of \mathbb{R}^n , which is called an **eigenvector basis** of \mathbb{R}^n .

Theorem 9.5. An $n \times n$ mateix with n distinct eigenvalues is diagonalizable.

Theorem 9.6. Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \dots, \lambda_p$. Let $\dim(\mathcal{E}(\lambda_k))$ denote the dimension of eigenspace for λ_k . The matrix A is diagonalizable if and only if

$$\sum_{i=1}^{p} \dim(\mathcal{E}(\lambda_i)) = n$$

Theorem 9.7. If A with p distinct eigenvalues is diagonalizable and \mathcal{B}_k is a basis for the eigenspace corresponding to λ_k , then the total collection of vectors in the sets $\mathcal{B}_1, \dots, \mathcal{B}_p$ forms an eigenvector basis in \mathbb{R}^n .

9.4 Eigenvectors and Linear Transformation

We have already understood the simple linear transformation $A\mathbf{x}$. The goal of this section is to understand the nested transformation of $A = PDP^{-1}$.

Definition 9.4. Standard Matrix: Any Linear transformation $T : \mathbb{R}^p \to \mathbb{R}^n$ can be implemented via left-multiplication by a matrix A, called the **standard matrix** of T.

Let V be a p-dimensional vector space, let W be an n-dimensional vector space, and let T be any linear transformation from V to W. To associate a matrix with T, choose ordered bases \mathcal{B} and \mathcal{C} for V and W, respectively.

 $\forall \mathbf{x} \in V$, the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ is in \mathbb{R}^p , and the coordinate vector of its image, $[T(\mathbf{x})]_{\mathcal{C}}$ is in \mathbb{R}^n . if $\mathbf{x} = r_1\mathbf{b}_1 + r_1\mathbf{b}_2 + \cdots + r_1\mathbf{b}_p$, then

$$[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} r_1 \\ \vdots \\ r_p \end{bmatrix}$$

and

$$T(\mathbf{x}) = T(r_1\mathbf{b}_1 + r_1\mathbf{b}_2 + \dots + r_1\mathbf{b}_p) = r_1T(\mathbf{b}_1) + r_2T(\mathbf{b}_2) + \dots + r_pT(\mathbf{b}_p)$$
(9.4)

Since the coordinate mapping from W to \mathbb{R}^n is linear, equation (9.4) leads to

$$[T(\mathbf{x})]_{\mathcal{C}} = r_1[T(\mathbf{b}_1)]_{\mathcal{C}} + r_2[T(\mathbf{b}_2)]_{\mathcal{C}} + \dots + r_n[T(\mathbf{b}_n)]_{\mathcal{C}}$$

$$(9.5)$$

Since C-coordinate vectors are in \mathbb{R}^n , the vector equation (9.5) can be written as a matrix equation, namely,

$$[T(\mathbf{x})]_{\mathcal{C}} = M[\mathbf{x}]_{\mathcal{B}} \tag{9.6}$$

where

$$M = \begin{bmatrix} T(\mathbf{b}_1) \end{bmatrix}_{\mathcal{C}} \quad T(\mathbf{b}_2) \end{bmatrix}_{\mathcal{C}} \quad \cdots \quad T(\mathbf{b}_p) \end{bmatrix}_{\mathcal{C}}$$

The matrix M is a matrix representation of T, called the **matrix for** T **relative to the bases** \mathcal{B} **and** \mathcal{C} . In the common case where W is the same as V and the basis \mathcal{C} is the same as \mathcal{B} , the matrix M in equation (9.6) is called the **matrix for** T **relative to** \mathcal{B} , or simply the \mathcal{B} -matrix **for** T, and is denoted by $[T]_{\mathcal{B}}$. The \mathcal{B} -matrix for $T:V\to V$ satisfies:

$$[T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}$$

Theorem 9.8. Diagonal Matrix Representation: Suppose $A = PDP^{-1}$, where D is a diagonal $n \times n$ matrix. If \mathcal{B} is the basis for \mathbb{R}^n formed from the columns of P, then D is the \mathcal{B} -matrix for the transformation.

Proof. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $P = \begin{bmatrix} \mathbf{b}_1 & \dots & \mathbf{b}_n \end{bmatrix}$. In this case, P is the change-of-coordinates matrix $P_{\mathcal{B}}$ discussed in definition 4.2, where

$$P[\mathbf{x}]_{\mathcal{B}} = \mathbf{x}$$
 and $[\mathbf{x}]_{\mathcal{B}} = P^{-1}\mathbf{x}$

If $T(\mathbf{x}) = A\mathbf{x}$ for $\mathbf{x} \in \mathbb{R}^n$, then

$$[T]_{\mathcal{B}} = [[T(\mathbf{b}_1)]_{\mathcal{B}} \cdots [T(\mathbf{b}_n)]_{\mathcal{B}}]$$

$$= [[A\mathbf{b}_1]_{\mathcal{B}} \cdots [A\mathbf{b}_n]_{\mathcal{B}}]$$

$$= [P^{-1}A\mathbf{b}_1 \cdots P^{-1}A\mathbf{b}_n]$$

$$= P^{-1}A[\mathbf{b}_1 \cdots \mathbf{b}_n]$$

$$= P^{-1}AP = D$$

Remark 9.4. The proof of theorem 9.8 didn't use the information that D was diagonal. Hence, if A is similar to a matrix C, with $A = PCP^{-1}$, then C is the \mathcal{B} -matrix for the transformation $\mathbf{x} \mapsto A\mathbf{x}$ when the basis \mathcal{B} is formed from the columns of P. Multiplying by such a matrix A has the following interpretation: given a vector $\mathbf{x} \in V$

- 1. $P^{-1}\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$
- 2. $C[\mathbf{x}]_{\mathcal{B}} \mapsto [A\mathbf{x}]_{\mathcal{B}}$
- 3. $P[A\mathbf{x}]_{\mathcal{B}} \mapsto A\mathbf{x}$

$$\begin{array}{ccc}
\mathbf{x} & \longrightarrow & A\mathbf{x} \\
P^{-1} \downarrow & & & \uparrow P \\
[\mathbf{x}]_{\mathcal{B}} & \longrightarrow & [A\mathbf{x}]_{\mathcal{B}}
\end{array}$$

Conversely, if $T: \mathbb{R}^n \to \mathbb{R}^n$ is defined by $T(\mathbf{x}) = A\mathbf{x}$, and if \mathcal{B} is any basis for \mathbb{R}^n , then the \mathcal{B} -matrix for T is similar to A. The theorem 9.8 show that if P is the matrix whose columns come from the vectors in \mathcal{B} , then

$$[T]_{\mathcal{B}} = P^{-1}AP$$

Thus, the set of all matrices similar to a matrix A coincides with the set of all matrix representations of the transformation $x \mapsto Ax$.

9.5 Symmetric Matrices

Definition 9.5. A symmetric matrix is a matrix A such that $A^{\top} = A$. Note that such a matrix is necessarily square.

Theorem 9.9. If A is symmetric, then any two eigenvectors from different eigenspaces are orthogonal.

Proof. Suppose there are two eigenvectors $\mathbf{v}_1, \mathbf{v}_2$, respectively, corresponding to distinct eigenvalues λ_1 and λ_2 . Consider the following equation:

$$\begin{split} \lambda_1 \mathbf{v}_1^\top \mathbf{v}_2 &= (A\mathbf{v}_1)^\top \mathbf{v}_2 \\ &= \mathbf{v}_1^\top A^\top \mathbf{v}_2 \\ &= \mathbf{v}_1^\top A \mathbf{v}_2 \quad \text{since } A \text{ is a symmetric matrix} \\ &= \lambda_2 \mathbf{v}_1^\top \mathbf{v}_2 \end{split}$$

We can get $(\lambda_1 - \lambda_2)\mathbf{v}_1^{\mathsf{T}}\mathbf{v}_2 = 0$. Since $\lambda_1 \neq \lambda_2$, $\mathbf{v}_1^{\mathsf{T}}\mathbf{v}_2$ must be 0.

Definition 9.6. Orthogonally dianonalizable: For an $n \times n$ matrix A, if there are an **orthogonal matrix** P with $(P^{-1} = P^{\top})$ and a diagonal matrix D such that

$$A = PDP^{\top} = PDP^{-1} \tag{9.7}$$

then A is said to be **Orthogonally dianonalizable**.

Remark 9.5. Such a diagonalization requires n linearly independent and orthonormal eigenvectors. If A is orthogonally diagonalizable as in equation (9.7), then

$$A^{\top} = (PDP^{\top})^{\top} = PDP^{\top} = A$$

Thus, A is symmetric.

Theorem 9.10. An $n \times n$ matrix A is orthogonally diagonalizable if and only if A is a symmetric matrix.

Theorem 9.11. The Spectral Theorem for Symmetric Matrices: An $n \times n$ matrix A has the following properties:

- 1. A has n real eigenvalues, counting multiplicities.
- 2. The dimension of the eigenspace for each eigenvalue λ equals the multiplicity of λ as a root of the characteristic equation.
- 3. The eigenspaces are mutually orthogonal, in the sense that eigenvectors corresponding to different eigenvalues are orthogonal.
- 4. A is orthogonally diagonalizable.

Theorem 9.12. Spectral Decomposition: Suppose A is orthogonally diagonalizable,

$$A = PDP^{\top} = \begin{bmatrix} [\mathbf{u}_1 & \cdots & \mathbf{u}_n] \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^{\top} \\ \vdots \\ \mathbf{u}_n^{\top} \end{bmatrix}$$
$$= \begin{bmatrix} \lambda_1 \mathbf{u}_1 & \cdots & \lambda_n \mathbf{u}_n \end{bmatrix} \begin{bmatrix} \mathbf{u}_1^{\top} \\ \vdots \\ \mathbf{u}_n^{\top} \end{bmatrix}$$

Using the equation (2.2), the sum of outer product representation:

$$A = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^\top + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^\top + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^\top$$

$$(9.8)$$

This representation of A is called a **spectral decomposition** of A. Note each $\mathbf{u}_i \mathbf{u}_1 i \top$ is a projection matrix with rank 1.

9.6 Intuition of Unit Eigenvectors

Suppose that a symmetric matrix $A \in \mathbb{R}^2$ with two *unit* eigenvectors \mathbf{v}_1 and \mathbf{v}_2 , which are orthogonal to each other.

- 1. We can find a unit circle that goes through the four points: $\mathbf{v}_1, \mathbf{v}_2, -\mathbf{v}_1, -\mathbf{v}_2$. After multiplying the four vectors by A, we can find an ellipse that goes through these fore vectors.
- 2. Suppose $A \in \mathbb{R}^{n \times n}$ can be diagonalized into

$$A = PDP^{-1}$$

Right-multiplying A by P:

$$AP = \begin{bmatrix} A\mathbf{v}_1 & A\mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} \lambda_1\mathbf{v}_1 & \lambda_2\mathbf{v}_2 \end{bmatrix}$$

We can find an ellipse that goes through the columns of AP. Actually P is an orthogonal matrix, its effect is to perform **a rotational transformation**, mapping a coordinate vector relative to $\{\mathbf{v}_1, \mathbf{v}_2\}$ to a vector in the standard basis. While the effect of the diagonal matrix D is to perform **a scaling transformation**.

3. Consider the linear transformation $T(\mathbf{x}) = A\mathbf{x}$,

$$A\mathbf{x} = PDP^{-1}\mathbf{x} = \mathbf{v}$$

 $P^{-1}\mathbf{x} = [\mathbf{x}]_{\mathcal{B}}$ maps \mathbf{x} into a new coordinate system with a set of orthonormal basis as its coordinate vectors, which corresponds to a **rotational action**. $D[\mathbf{x}]_{\mathcal{B}} = [\mathbf{y}]_{\mathcal{B}}$ scales the vector. $P[\mathbf{y}]_{\mathcal{B}}$ transforms $[\mathbf{y}]_{\mathcal{B}}$ back to standard basis.

4. Multiplying A by a vector or a matrix (a set of column vectors) corresponds to a sequence of operations: a rotation, followed by a scaling, and then a rotation back.

9.7 Important Properties of Eigenvalues

If v is an eigenvector of A corresponding to eigenvalue λ , then

$$A^2\mathbf{v} = AA\mathbf{v} = A\lambda\mathbf{v} = \lambda^2\mathbf{v}$$

We can generalize the equation above to

$$A^k \mathbf{v} = \lambda^k \mathbf{v} \tag{9.9}$$

Suppose $A \in \mathbb{R}^{n \times n}$ has n eigenvalues, then

$$\det(A) = \prod_{i=1}^{n} \lambda_i \tag{9.10}$$

Proof. Let the characteristic equation of A be

$$p(\lambda) = \det(A - \lambda I) = (\lambda_1 - \lambda) \cdots (\lambda_n - \lambda)$$

We can simply get the result by letting λ be zero.

9.8 Spectral Decomposition on Gram Matrix

Given a data matrix $X \in \mathbb{R}^{n \times p}$, its Gram matrix $X^{\top}X$ is symmetric and, therefore, orthogonally diagonalizable by theorem 9.10:

$$G = X^{\top}X = PDP^{\top}$$

We can get the following equation:

$$P^{\top}GP = \begin{bmatrix} \mathbf{u}_1^{\top}X^{\top}X\mathbf{u}_1 & \mathbf{u}_1^{\top}X^{\top}X\mathbf{u}_2 & \cdots & \mathbf{u}_1^{\top}X^{\top}X\mathbf{u}_p \\ \dots & \dots & \ddots & \dots \\ \mathbf{u}_p^{\top}X^{\top}X\mathbf{u}_1 & \mathbf{u}_p^{\top}X^{\top}X\mathbf{u}_2 & \cdots & \mathbf{u}_p^{\top}X^{\top}X\mathbf{u}_p \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

Let $X\mathbf{u}_i = \mathbf{y}_i$, the k^{th} entry of \mathbf{y}_i is the projection of the k^{th} data point (the k^{th} row of X) onto the eigenvector \mathbf{u}_i .

$$P^{\top}GP = \begin{bmatrix} \mathbf{y}_1^{\top} \mathbf{y}_1 & \mathbf{y}_1^{\top} \mathbf{y}_2 & \cdots & \mathbf{y}_1^{\top} \mathbf{y}_p \\ \dots & \dots & \ddots & \dots \\ \mathbf{y}_p^{\top} \mathbf{y}_1 & \mathbf{y}_p^{\top} \mathbf{y}_2 & \cdots & \mathbf{y}_p^{\top} \mathbf{y}_p \end{bmatrix} = D$$

For any $i \neq j$, we can see that \mathbf{y}_i and \mathbf{y}_j are orthogonal to each other. Meanwhile, $\|\mathbf{y}_i\|^2 = \lambda_i$, which means

$$\sum_{j=1}^{p} y_{ij}^2 = \lambda_i$$

That is, the sum of squares of the coordinates of each data point relative to \mathbf{y}_i equals to λ_i . This means that the projections of data points (rows) of X onto different eigenvectors of G have different sums of squares. We can express G in its spectral decomposition form:

$$G = \lambda_1 \mathbf{u}_1 \mathbf{u}_1^\top + \lambda_2 \mathbf{u}_2 \mathbf{u}_2^\top + \dots + \lambda_n \mathbf{u}_n \mathbf{u}_n^\top$$

$$(9.11)$$

The equation above indicates that the larger the eigenvalue, the more important the eigenvector, as the projections of data points onto it are larger.

9.9 Change of Variable

Suppose $A \in \mathbb{R}^{n \times n}$ has n eigenvectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, which can form a basis \mathcal{B} for \mathbb{R}^n . Let $\begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$. Given a sequence $\{\mathbf{x}_k\}$ satisfying

$$\mathbf{x}_{k+1} = A\mathbf{x}_k$$

which is called a difference equation. Define a new sequence $\{y_k\}$ by

$$\mathbf{y}_k = P^{-1}\mathbf{x}_k$$
, or equivalently, $\mathbf{x}_k = P\mathbf{y}_k$

 \mathbf{y}_k is clearly the coordinate of \mathbf{x}_k relative to \mathcal{B} by definition 4.2. Substituting these relations into the equation $\mathbf{x}_{k+1} = A\mathbf{x}_k$ and using the fact that $A = PDP^{-1}$:

$$\mathbf{x}_{k+1} = AP\mathbf{y}_k = PDP^{-1}P\mathbf{y}_k = PD\mathbf{y}_k$$

Left-multiplying the above equation by P^{-1} :

$$P^{-1}\mathbf{x}_{k+1} = \mathbf{y}_{k+1} = D\mathbf{y}_k$$

The change of variable from \mathbf{x}_k to \mathbf{y}_k has **decoupled** the system of difference equations. Geometrically, the only effect on \mathbf{y}_k is scaling the vector, and each entry y_i of \mathbf{y}_k is unaffected by the other entries. Decoupling the system allows for the calculation in a new coordinate system, which demonstrates the power of linear algebra.

10 TODO: Quadratic Form

Definition 10.1. A quadratic form on \mathbb{R}^n is a function $Q : \mathbb{R}^n \to \mathbb{R}$ whose input vector **x** can be computed by an expression of the form:.

$$Q(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x}$$

where A is a $n \times n$ symmetric matrix and called **the matrix of the quadratic form**. Since A is symmetric, $Q(\mathbf{x})$ can also be expressed as:

$$Q(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x} = \sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{ij} x_i x_j$$

10.1 Change of Variable in a Quadratic Form

Let $\mathbf{x} \in \mathbb{R}^n$, then a *change of variable* is an equation of the form

$$\mathbf{x} = P\mathbf{v}$$
, or equivalently $\mathbf{v} = P^{-1}\mathbf{x}$

where P is a non-singular $n \times n$ matrix. It is easy to see $\mathbf{y} = [\mathbf{x}]_{\mathcal{B}}$, where \mathcal{B} is the set of columns of P. Then

$$Q(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x} = (P \mathbf{y})^{\top} A (P \mathbf{y}) = \mathbf{y}^{\top} (P^{\top} A P) \mathbf{y} = \mathbf{y}^{\top} D \mathbf{y}$$
(10.1)

which uses the fact that A is symmetric.

Example 10.1. Let

$$A = \begin{bmatrix} a & c \\ c & b \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

where A has eigenvalues λ_1 and λ_2 . Then

$$Q(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x} = a^2 x_1^2 + b^2 x_2 + 2c x_1 x_2$$

By making the change of variable:

$$Q(\mathbf{x}) = Q'(\mathbf{y}) = \mathbf{y}^{\mathsf{T}} D \mathbf{y} = \lambda_1^2 y_1^2 + \lambda_2^2 y_2^2$$

$$\tag{10.2}$$

Remark 10.1. If we let Q'(y) = 1, then $\lambda_1^2 y_1^2 + \lambda_2^2 y_2^2 = 1$ represents an ellipse centred at the origin.

Theorem 10.1. The Principal Axes Theorem: Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix. Then there is an orthogonal change of variable, $\mathbf{x} = P\mathbf{y}$, that transforms the quadratic form $\mathbf{x}^{\top}A\mathbf{x}$ into a quadratic form $\mathbf{y}^{\top}D\mathbf{y}$ with no cross-product term. The columns of P are called the **principal axes** and \mathbf{y} is the coordinate of \mathbf{x} relative to the columns of P.

10.2 A Geometric View of Principal Axes

Suppose $Q(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x} = k$, where A is 2×2 symmetric matrix and $k \in \mathbb{R}$. The set of all $\mathbf{x} \in \mathbb{R}^2$ that satisfy

$$\mathbf{x}^{\top} A \mathbf{x} = \mathbf{x}^{\top} A \mathbf{x} = k$$

It can be expressed as

$$a^2x_1^2 + bx_1x_2 + c^2x_2^2 + dx_1 + ex_2 + f = 0$$

which either corresponds to

1. an ellipse (or a circle):

$$a^{2}x_{1}^{2} + bx_{1}x_{2} + c^{2}x_{2}^{2} + dx_{1} + ex_{2} + f = 0, \ ac > 0$$

$$(10.3)$$

2. a hyperbola:

$$a^{2}x_{1}^{2} + bx_{1}x_{2} + c^{2}x_{2}^{2} + dx_{1} + ex_{2} + f = 0, \ ac < 0$$
(10.4)

3. two intersecting lines, if the equation (10.3) can be factorized to

$$(\alpha_1 x_1 + \beta_1 x_2 + \gamma_1)(\alpha_2 x_1 + \beta_2 x_2 + \gamma_2) = 0$$

4. a single point:

$$(x_1 - x_0)(x_2 - y_0) = 0$$

If A is a diagonal matrix, the graph is in *standard position*, which implies that the ellipse or the hyperbola is centred at the origin. Therefore, the equation (10.3) can be written as:

$$\frac{x_1}{a^2} + \frac{x_2}{b^2} = 1, \ a > 0, \ b > 0$$

The equation (10.4) can be written as:

$$\frac{x_1}{a^2} - \frac{x_2}{b^2} = 1, \ a > 0, \ b > 0$$

Find the *principal axes* (determined by the eigenvectors of A) amounts to finding a new coordinate system with respect to which the graph is in standard position (centred at the origin), as shown below:

Figure 4: Finding the principal axes.

Figure 5: Graphs of quadratic forms.

10.3 Classifying Quadratic Forms

Definition 10.2. A quadratic from Q is

(a) **positive definite** if $\forall \mathbf{x} \neq \mathbf{0} : Q(\mathbf{x}) > 0$

(b) **negative definite** if $\forall \mathbf{x} \neq \mathbf{0} : Q(\mathbf{x}) < 0$

(c) **indefinite** if $Q(\mathbf{x})$ assumes both positive and negative values.

(d) **positive semi-definite** if $\forall \mathbf{x} : Q(\mathbf{x}) > 0$

(e) negative semi-definite if $\forall x : Q(x) < 0$

As shown in the figure 2.

Theorem 10.2. Quadratic Forms and Eigenvalues: Given a quadratic form $Q(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x}$, then Q is

- a. positive definite if and only if the eigenvalues of A are all positive,
- b. negative definite if and only if the eigenvalues of A are all negative, or
- c. indefinite if and only A has both positive and negative eigenvalues.

Proof. By the equation (10.2),

$$Q(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x} = \mathbf{y}^{\top} D \mathbf{y} = \sum_{i=1}^{n} \lambda_i y_i^2$$
(10.5)

Since P is non-singular, there is a one-to-one relation between \mathbf{x} and \mathbf{y} . For any nonzero \mathbf{x} , the right side of the equation above coincides with $Q(\mathbf{x})$ for $\mathbf{x} \neq \mathbf{0}$. Thereore, $Q(\mathbf{x})$ is obviously controlled by the signs of the eigenvalues of A, in the three ways described in the theorem.

Remark 10.2. If A has a nonzero eigenvalue, say $\lambda_k = 0$, then $A\mathbf{x} = 0$ has a non-trivial solution, implying $\exists \mathbf{x} \neq \mathbf{0} : Q(\mathbf{x}) = 0$.

11 TODO: A preview of Constrained Optimization

11.1 Subject to a Unit Vector

In some applications, we often need to find the maximum or minimum value of a quadratic form $Q(\mathbf{x})$ for \mathbf{x} in some specified set. For example,

$$c = \underset{\|\mathbf{x}\|=1}{\operatorname{argmin}} \ Q(\mathbf{x})$$

Figure 6: $z = 3x_1^2 + 7x_2^2$ constrained on $x_1^2 + x_2^2 = 1$

Theorem 11.1. Given a quadratic form $Q(\mathbf{x})$, and let $m = \underset{\|\mathbf{x}\|=1}{\operatorname{argmin}} Q(\mathbf{x})$ and $M = \underset{\|\mathbf{x}\|=1}{\operatorname{argmax}} Q(\mathbf{x})$. then

- 1. M is the greatest eigenvalue λ_1 of A
- 2. m is the least eigenvalue λ_n of A.

The value of $\mathbf{x}^{\top} A \mathbf{x}$ is

- 1. M when **x** is a unit eigenvector \mathbf{u}_1 corresponding to λ_1
- 2. m when \mathbf{x} is a unit eigenvector \mathbf{u}_m corresponding to λ_n

Proof. By the theorem 9.10, A can be orthogonally diagonalized as PDP^{-1} , where either P or P^{-1} is an orthogonal matrix, thus preserving the length \mathbf{x} . By equation (10.2)

$$Q(\mathbf{x}) = Q'(\mathbf{y}) = \sum_{i=1}^{n} \lambda_i y_i^2$$

where λ 's are arranged in descending order. The following inequality holds:

$$Q'(\mathbf{y}) \le \lambda_1 \sum_{i=1}^n y_i^2 = \lambda_1 \mathbf{y}^\top \mathbf{y}$$

where λ_1 is the largest eigenvalue of A. Let \mathbf{y} be \mathbf{e}_1 , a vector with the first entry being 1 and the other being 0. Then,

$$\lambda_1 \mathbf{y}^\top \mathbf{y} = \mathbf{e}_1^\top D \mathbf{e}_1$$

illustrates that $Q'(\mathbf{y})$ reaches its maximum value when $\mathbf{y} = \mathbf{e}_1$, implying that $Q(\mathbf{x})$ attains its maximum value when $\mathbf{x} = P\mathbf{e}_1 = \mathbf{u}_1$. A similar method can be applied to prove its minimum value.

Theorem 11.2. Given a quadratic form $Q(\mathbf{x}) = \mathbf{x}^{\top} A \mathbf{x}$, let λ_1 be the largest eigenvalue of A, and \mathbf{u}_1 be the eigenvector corresponding to λ_1 . then the maximum value of Q subject to the following constrains:

$$\mathbf{x}^{\mathsf{T}}\mathbf{x} = 1, \quad \mathbf{x}^{\mathsf{T}}\mathbf{u}_1 = 0$$

is the second greatest eigenvalue λ_2 , and this maximum is attained when **x** is an eigenvector **u**₂ corresponding to λ_2 .

Remark 11.1. Suppose that A is orthogonally diagonalized as PDP^{-1} with its eigenvalues arranged, in descending order, on the main diagonal of D. If there are more constrains on Q:

$$\mathbf{x}^{\mathsf{T}}\mathbf{x} = 1, \quad \mathbf{x}^{\mathsf{T}}\mathbf{u}_1 = 0, \quad \cdots, \mathbf{x}^{\mathsf{T}}\mathbf{u}_{k-1} = 0$$

then the maximum of Q is attained at $\mathbf{x} = \mathbf{u}_k$ where \mathbf{u}_k is the eigenvector corresponding to the k^{th} greatest eigenvalue.

12 TODO: Singular Value Decomposition

Unfortunately, as we know, not all matrices can be factored as $A = PDP^{-1}$ with D diagonal. However, a factorization $A = QDP^{-1}$ is possible for $any \ m \times n$ matrix A! A special factorization of this type, called the **singular value decomposition**, is **the most useful matrix decomposition in the universe.**

If $A\mathbf{x} = \lambda \mathbf{x}$ and $\|\mathbf{x}\| = 1$, then

$$||A\mathbf{x}|| = ||\lambda\mathbf{x}|| = |\lambda| ||\mathbf{x}|| = |\lambda|$$

If λ_1 is the eigenvalue with the greatest magnitude, then a corresponding unit eigenvector \mathbf{v}_1 identifies a direction in which the stretching effect of A is greatest.

Example 12.1. If the linear transformation $\mathbf{x} \to A\mathbf{x}$ maps the unit sphere $\{\mathbf{x} : \|\mathbf{x}\| = 1\}$ in \mathbb{R}^3 onto an ellipse in \mathbb{R}^2 . Find a unit vector \mathbf{x} at which the length $\|A\mathbf{x}\|$ is maximized, and compute this maximum length.

Solution. The quantity $||A\mathbf{x}||^2$ is maximized at the same \mathbf{x} that maximizes $||A\mathbf{x}||$,

$$\|A\mathbf{x}\|^2 = (A\mathbf{x})^{\top}(A\mathbf{x}) = \mathbf{x}^{\top}(A^{\top}A)\mathbf{x}$$

Since $A^{\top}A$ is symmetric, so the problem is reduced into maximizing the quadratic form $\mathbf{x}^{\top}(A^{\top}A)\mathbf{x}$ subject to the constraint $\|\mathbf{x}\| = 1$ as discussed in theorem 11.1. Hence, the maximum value is the greatest eigenvalue λ_1 of $A^{\top}A$, and the maximum value is attained at a unit eigenvector of $A^{\top}A$ corresponding to λ_1 .

The example above suggests that the effect of A on the unit sphere in \mathbb{R}^3 is related to the quadratic form $x^\top (A^\top A)\mathbf{x}$. Let $A \in \mathbb{R}^{m \times n}$. Then $A^\top A$ can be orthogonally diagonalized. Let $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ be an orthonormal basis for \mathbb{R}^n consisting of eigenvectors of $A^\top A$. Then,

$$||A\mathbf{v}_i|| = (A\mathbf{v}_i)^{\top} A\mathbf{v}_i = \mathbf{v}_i^{\top}(\lambda_i \mathbf{v}_i) = \lambda_i \ge 0$$
(12.1)

Note that $\|\mathbf{v}_i\| = 1$. So the eigenvalues of $A^{\top}A$ are all non-negative, implying that $A^{\top}A$ is a semi-positive definite matrix.

Definition 12.1. The singular values of A are the square roots of the eigenvalues of $A^{\top}A$, denoted by $\sigma_1, \dots, \sigma_n$, and they are arranged in decreasing order. By equation (12.1), the **singular values of** A **are the lengths of the vectors** $A\mathbf{v}_1, \dots, A\mathbf{v}_n$.

Remark 12.1. The first two singular values of A are the lengths of the major and minor semi-axes of the ellipse as shown figure 7.

Figure 7: $A\mathbf{v}_1$ is the major semi-axis and $A\mathbf{v}_2$ is the minor semi-axis of the ellipse.

Theorem 12.1. Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of $A^{\top}A$, arranged so that the corresponding eigenvalues of $A^{\top}A$ satisfy $\lambda_1 \geq \dots \geq \lambda_n$, and suppose that A has r nonzero singular values. Then $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is an orthogonal basis for $\operatorname{Col}(A)$, and $\operatorname{rank}(A) = r$.

Proof. Given two vectors $A\mathbf{v}_j$, $A\mathbf{v}_i$ where $i \neq j$,

$$(A\mathbf{v}_j)^{\top}A\mathbf{v}_i = \mathbf{v}_j^{\top}A^{\top}A\mathbf{v}_i = \lambda_i\mathbf{v}_j^{\top}\mathbf{v}_i = 0$$

Thus, $\{A\mathbf{v}_1,\cdots,A\mathbf{v}_n\}$ is an orthogonal set. Furthermore, since the lengths of the vector $\{A\mathbf{v}_1,\cdots,A\mathbf{v}_n\}$ are the singular values of A, and since there are r non-zero singular values, $A\mathbf{v}_i\neq\mathbf{0}$ if and only if $1\leq i\leq r$. So, $\{A\mathbf{v}_1,\cdots,A\mathbf{v}_r\}$ are linearly independent vectors, and they are in $\mathrm{Col}(A)$. $\forall \mathbf{y}\in\mathrm{Col}(A)$, say $\mathbf{y}=A\mathbf{x}$, we can write

$$\mathbf{x} = c_1 \mathbf{v}_1 + \dots + c_n \mathbf{v}_n$$

, and

$$\mathbf{y} = A\mathbf{x}$$

$$= c_1 A\mathbf{v}_1 + \dots + c_r A\mathbf{v}_r + c_{r+1} A\mathbf{v}_{r+1} + \dots + c_n A\mathbf{v}_n$$

$$= c_1 A\mathbf{v}_1 + \dots + c_r A\mathbf{v}_r + 0 + 0 + \dots + 0$$

Thus \mathbf{y} is in Span $\{A\mathbf{v}_1, \cdots, A\mathbf{v}_r\}$, which shows that $\{A\mathbf{v}_1, \cdots, A\mathbf{v}_r\}$ is an (orthogonal) basis for Col(A). Hence $\operatorname{rank}(A) = \dim\left(\operatorname{Col}(A)\right) = r$.

The decomposition of A involves an $m \times n$ "diagonal" matrix Λ of the form

$$\Lambda = \begin{bmatrix} D & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \tag{12.2}$$

where D is an $r \times r$ diagonal matrix for some r not exceeding the smaller of m and n.

Theorem 12.2. The Singular Value Decomposition or (SVD): Let A be an $m \times n$ matrix with rank r, then there exists an $m \times n$ matrix Λ as in equation (12.2) for which the diagonal entries in D are the first singular values of A, $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_r \geq 0$, and there exist an $m \times n$ orthogonal matrix U and an $n \times n$ orthogonal matrix V such that

$$A = U\Lambda V^\top$$

Proof. Let λ_i and \mathbf{v}_i be as in theorem 12.1, so that $\{A\mathbf{v}_1, \dots, A\mathbf{v}_r\}$ is an orthogonal basis for $\operatorname{Col}(A)$. Normalize each $A\mathbf{v}_i$ to obtain an orthonormal basis $\mathcal{U} = \{\mathbf{u}_1, \dots, \mathbf{u}_r\}$, where

$$\mathbf{u}_i = \frac{A\mathbf{v}_i}{\|A\mathbf{v}_i\|} = \frac{A\mathbf{v}_i}{\sigma_i} \tag{12.3}$$

and

$$A\mathbf{v}_i = \sigma_i \mathbf{u}_i \tag{12.4}$$

Now extend \mathcal{U} to an orthonormal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_m\}$ of \mathbb{R}^m , and let

$$U = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_m \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix}$$
 (12.5)

By construction, U and V are orthogonal matrices. Also,

$$AV = \begin{bmatrix} A\mathbf{v}_1 & \cdots & A\mathbf{v}_r & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \sigma_1\mathbf{u}_1 & \cdots & \sigma_r\mathbf{u}_r & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix}$$
(12.6)

Let D be the diagonal matrix with diagonal entries $\sigma_1, \dots, \sigma_r$, and let Λ be as in theorem 12.1 above. Then

$$U\Lambda = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} D & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{bmatrix} U_1D & \mathbf{0} \end{bmatrix} = AV$$
 (12.7)

where $U_1 = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_r \end{bmatrix}$ and $U_2 = \begin{bmatrix} \mathbf{u}_{r+1} & \cdots & \mathbf{u}_m \end{bmatrix}$. Since V is an orthogonal matrix,

$$U\Lambda V^\top = AVV^\top = A$$

Remark 12.2. The columns of U are called **left singular vectors** of A, and the columns of V are called **right singular vectors** of A.

12.1 Bases for Fundamental Subspaces

Given an SVD decomposition for a $m \times n$ matrix A, by observing its left singular vectors, we can find that $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ is an orthonormal basis for $\operatorname{Col}(A)$ by theorem 12.1, and $\{\mathbf{u}_{r+1}, \dots, \mathbf{u}_n\}$ is an orthonormal basis for $\operatorname{Nul}(A^{\top})$, since for any $r < i \le n$, \mathbf{u}_i is orthogonal to $\operatorname{Col}(A) = \operatorname{Span}\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$, that is, $\operatorname{Span}\{\mathbf{u}_{r+1}, \dots, \mathbf{u}_m\} = \operatorname{Col}(A)^{\perp}$.

Since $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ forms a basis for $\operatorname{Col}(A)$, $\dim(A) = r$, implying $\dim(\operatorname{Nul}(A)) = n - r$. For any i > r, since $A\mathbf{v}_i = \mathbf{0}$ and $\dim(\operatorname{Nul}(A)) = n - r$, $\operatorname{Span}\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_n\} = \operatorname{Nul}(A)$. Note that $\operatorname{Nul}(A)^{\perp} = \operatorname{Row}(A)$. Hence, $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is an orthonormal basis for $\operatorname{Row}(A)$. Observing that

$$AV = \begin{bmatrix} A\mathbf{v}_1 & \cdots & A\mathbf{v}_r & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix} = \begin{bmatrix} \sigma_1\mathbf{u}_1 & \cdots & \sigma_r\mathbf{u}_r & \mathbf{0} & \cdots & \mathbf{0} \end{bmatrix}$$

for which the non-zero vectors of AV is an orthogonal basis for $\operatorname{Col}(A)$. In other words, the matrix A transforms a collection of basis vectors of $\operatorname{Col}(A)$ and $\operatorname{Nul}(A^{\top})$ into a collection of basis of $\operatorname{Row}(A)$ and $\operatorname{Nul}(A)$.

Let $V = [\mathbf{v}_1 \cdots \mathbf{v}_r], [\mathbf{v}_{r+1} \cdots \mathbf{v}_n]$. And let $U_1 = [\mathbf{u}_1 \cdots \mathbf{u}_r], [\mathbf{u}_{r+1} \cdots \mathbf{u}_m]$, they have the relationship shown as figure 8,

13 Vector Calculus

13.1 Gradient

$$\operatorname{Row}(A) = \operatorname{Span}(V_1)$$

$$\operatorname{Row}(A) = \operatorname{Span}(V_1) = \operatorname{Col}(A)$$

$$\operatorname{Nul}(A) = \operatorname{Span}(V_2)$$

$$\operatorname{Span}(U_2) = \operatorname{Nul}(A^\top)$$

Figure 8: The effect of A on V.

Definition 13.1. Gradient: Let $f: \mathbb{R}^n \to \mathbb{R}$. The gradient of the function f with respect to \mathbf{x} is a vector of n partial derivatives:

$$\nabla_{\mathbf{x}} f(\mathbf{x}) = \begin{bmatrix} \partial_{x_1} f(\mathbf{x}) & \partial_{x_2} f(\mathbf{x}) & \cdots & \partial_{x_n} f(\mathbf{x}) \end{bmatrix}^{\top}$$
(13.1)

 $\nabla_{\mathbf{x}} f(\mathbf{x})$ is typically replaced by $\nabla f(\mathbf{x})$.

The following rules come in handy for differentiating multivariate function:

- 1. $\forall A \in \mathbb{R}^{n \times p}$: $\nabla_{\mathbf{x}} A \mathbf{x} = A^{\top}$
- 2. $\forall A \in \mathbb{R}^{p \times p}$: $\nabla_{\mathbf{x}} \mathbf{x}^{\top} A \mathbf{x} = (A + A^{\top}) \mathbf{x}$
- 3. $\nabla_{\mathbf{x}} \|\mathbf{x}\|^2 = \nabla_{\mathbf{x}} \mathbf{x}^{\mathsf{T}} \mathbf{x} = 2\mathbf{x}$

Theorem 13.1. Chain Rule: Suppose $y = f(\mathbf{u})$ has variables u_1, u_2, \dots, u_m . where each $u_i = g_i(\mathbf{x})$ has variables x_1, x_2, \dots, x_n , i.e., $\mathbf{u} = g(\mathbf{x})$. Then

$$\frac{\partial y}{\partial x_i} = \frac{\partial y}{\partial u_1} \frac{\partial u_1}{\partial x_i} + \frac{\partial y}{\partial u_2} \frac{\partial u_2}{\partial x_i} + \dots + \frac{\partial y}{\partial u_m} \frac{\partial u_m}{\partial x_i} = A \nabla_{\mathbf{u}} y. \tag{13.2}$$

where $A \in \mathbb{R}^{n \times m}$ contains the derivative of vector **u** with respect to vector **x**.

Example 13.1. Let X be an $n \times p$ matrix, find a vector $\hat{\boldsymbol{\beta}}$ such that

$$\hat{\boldsymbol{\beta}} = \underset{\mathbf{b} \in \mathbb{R}^p}{\operatorname{argmin}} \|\mathbf{y} - X\mathbf{b}\|^2$$

Solution. Let $f(\mathbf{b}) = \|\mathbf{y} - X\mathbf{b}\|^2 = (\mathbf{y} - X\mathbf{b})^{\top}(\mathbf{y} - X\mathbf{b})$. Expanding $(\mathbf{y} - X\mathbf{b})^{\top}(\mathbf{y} - X\mathbf{b})$.

$$f(\mathbf{b}) = \mathbf{y}^{\top} \mathbf{y} - \mathbf{y}^{\top} X \mathbf{b} - \mathbf{b}^{\top} X^{\top} \mathbf{y} + \mathbf{b}^{\top} X^{\top} X \mathbf{b}$$

It is easy to see the above equation has a minimum value. Let its gradient be 0:

$$\nabla f(\mathbf{b}) = -X^{\top} \mathbf{y} - X^{\top} \mathbf{y} + 2X^{\top} X \mathbf{b} = \mathbf{0}$$

If $X^{\top}X$ is non-singular, we can get $\mathbf{b} = (X^{\top}X)^{-1}X^{\top}\mathbf{y}$.

13.2 Jacobin Matrix

Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a differentiable function on region $D \subseteq \mathbb{R}^m$. That is, $\forall \mathbf{x} \in D$,

$$F(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) & f_2(\mathbf{x}) & \cdots & f_n(\mathbf{x}) \end{bmatrix}^{\top}$$

for which each f_i is an $\mathbb{R}^n \to \mathbb{R}$ function. However, since the function F can be arbitrarily complected, a good approach is to find a linear function that approximate F around a point $\mathbf{p} \in \mathbb{R}^n$. Suppose we can find such a function, say $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$. It must satisfy the following conditions:

1.
$$F(\mathbf{p}) = T(\mathbf{p})$$

$$2. \lim_{\mathbf{x} \to \mathbf{p}} F(\mathbf{p}) - T(\mathbf{x}) = 0$$

By the first condition, $T(\mathbf{p}) = A\mathbf{p} + \mathbf{b}$, we have

$$\mathbf{b} = F(\mathbf{p}) - A\mathbf{p} \tag{13.3}$$

Substitute equation above to $T(\mathbf{x})$

$$T(\mathbf{x}) = A\mathbf{x} + F(\mathbf{p}) - A\mathbf{p} = F(\mathbf{p}) + A(\mathbf{x} - \mathbf{p})$$
(13.4)

Then, the condtion 2 can be written as

$$\lim_{\mathbf{x} \to \mathbf{p}} F(\mathbf{x}) - F(\mathbf{p}) + A(\mathbf{x} - \mathbf{p}) = 0$$
(13.5)

We can handle a simple case with it: let **x** approaches to **p** along a standard coordinate axis. Let \mathbf{e}_i be a vector, where the i^{th} entry is one and all other entries are zeros, and $\mathbf{x} = \mathbf{p} + h\mathbf{e}_i$. Then

$$\lim_{h \to 0} F(\mathbf{p} + h\mathbf{e}_j) - F(\mathbf{p}) + A(h\mathbf{e}_j) = 0$$
(13.6)

where $h \neq 0$. The equation above is equiavalent to

$$\lim_{h \to 0} \frac{F(\mathbf{p} + h\mathbf{e}_j) - F(\mathbf{p}) + A(h\mathbf{e}_j)}{h} = \lim_{h \to 0} \frac{F(\mathbf{p} + h\mathbf{e}_j) - F(\mathbf{p}) + hA(h\mathbf{e}_j)}{h} = 0$$
(13.7)

We can get

$$\lim_{h \to 0} \frac{F(\mathbf{p} + h\mathbf{e}_j) - F(\mathbf{p})}{h} = A\mathbf{e}_j = \begin{bmatrix} \frac{\partial f_1}{\partial x_j}(\mathbf{p}) & \frac{\partial f_2}{\partial x_j}(\mathbf{p}) & \cdots & \frac{\partial f_m}{\partial x_j}(\mathbf{p}) \end{bmatrix}^{\top}$$
(13.8)

Hence,

$$A = \begin{bmatrix} \frac{\partial f_1}{\partial x_1}(\mathbf{p}) & \frac{\partial f_2}{\partial x_1}(\mathbf{p}) & \cdots & \frac{\partial f_n}{\partial x_1}(\mathbf{p}) \\ \frac{\partial f_1}{\partial x_2}(\mathbf{p}) & \frac{\partial f_2}{\partial x_n}(\mathbf{p}) & \cdots & \frac{\partial f_n}{\partial x_n}(\mathbf{p}) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_m}(\mathbf{p}) & \frac{\partial f_n}{\partial x_m}(\mathbf{p}) & \cdots & \frac{\partial f_n}{\partial x_m}(\mathbf{p}) \end{bmatrix}$$
(13.9)

Note that the matrix A discussed in theorem 13.1 has the similar form as the above matrix.

Definition 13.2. Jacobin Matrix: Suppose $\mathbf{y} = f(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^m$ is a continuous function with continuous partial derivatives, where each $y_i = f_i(\mathbf{x})$. Its Jacobin matrix is defined as below:

$$J_{f} = \nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial x_{1}} \\ \frac{\partial f_{1}}{\partial x_{2}} & \frac{\partial f_{2}}{\partial x_{n}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_{n}}{\partial x_{m}} & \frac{\partial f_{n}}{\partial x_{m}} & \cdots & \frac{\partial f_{n}}{\partial x_{m}} \end{bmatrix}$$

$$(13.10)$$

Theorem 13.2. Suppose a function $f: \mathbb{R}^n \to \mathbb{R}^n$ as discussed in definition 13.2 is invertible, then

$$\det(J_{f^{-1}}) = \det(J_f)^{-1} \tag{13.11}$$

13.3 Multivariate Taylor's Theorem

We've learned Taylor series for a function y = f(x) of a single variable. For an n + 1-times differentiable function $f : \mathbb{R} \to \mathbb{R}$, we have

$$f(x) = f(c) + f'(c)(x - c) + \frac{f''(c)(x - c)^2}{2!} + \dots + \frac{f^{(n)}(c)(x - c)^n}{n!} + R_n(x, c)$$
(13.12)

where $R_n(x,c)$ is called the **remained term**:

$$R_n(x,c) = \frac{f^{(n+1)}(z)(x-c)^n}{n!}$$
(13.13)

for which z is a real number between x and c. There is a very similar formula for functions of several variables. Before go further, let us define some notations. For a function $f: \mathbb{R}^n \to \mathbb{R}$ and two vectors: $\mathbf{x}_0, \mathbf{h} \in \mathbb{R}^n$:

$$D_f(\mathbf{x}_0, \mathbf{h}) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\mathbf{x}_0) h_i$$

$$D_f^2(\mathbf{x}_0, \mathbf{h}) = \sum_{i=1}^n \sum_{j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j}(\mathbf{x}_0) h_i h_j$$

$$D_f^3(\mathbf{x}_0, \mathbf{h}) = \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n \frac{\partial^3 f}{\partial x_i \partial x_j \partial x_k}(\mathbf{x}_0) h_i h_j h_k$$

and so on. Note that $D_f(\mathbf{x}_0, \mathbf{h}) = \nabla f(\mathbf{x}_0)^{\top} \mathbf{h}$.

Theorem 13.3. Let $f: \mathbb{R}^n \to \mathbb{R}$ be an n+1-times continuously differentiable function at the point $\mathbf{v_0} \in \mathbb{R}^n$. Then,

$$f(\mathbf{x}) = f(\mathbf{v}_0) + \sum_{k=1}^{n} \frac{1}{k!} D_f^k(\mathbf{v}_0, \mathbf{x} - \mathbf{v}_0) + \frac{1}{(n+1)!} D_f^{n+1}(\mathbf{z}, \mathbf{x} - \mathbf{v}_0)$$

where **z** is some point on the segment from **x** to \mathbf{v}_0 .

Example 13.2. Write out the Taylor expansion through terms of degree 2 for $f: \mathbb{R}^2 \to \mathbb{R}^2$. Let $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^\top$

$$f(\mathbf{x}) = f(\mathbf{v}_0) + \left(\frac{\partial f}{\partial x_1}(\mathbf{v}_0)(x_1 - v_1) + \frac{\partial f}{\partial x_2}(\mathbf{v}_0)(x_2 - v_2)\right) + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x_1^2}(\mathbf{v}_0)(x_1 - v_1)^2 + \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{v}_0)(x_1 - v_1)(x_2 - v_2) + \frac{\partial^2 f}{\partial x_2^2}(\mathbf{v}_0)(x_2 - v_2)^2 + \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{v}_0)(x_2 - v_2)(x_1 - v_1)\right) + \cdots$$

Note the term of degree 1 can be written as $\nabla f(\mathbf{v_0})^{\top}(\mathbf{x} - \mathbf{v_0})$, and the term of degree 2 can be written in a quadratic form:

$$\frac{1}{2}(\mathbf{x} - \mathbf{v}_0)^{\top} \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(\mathbf{v}_0) & \frac{\partial^2 f}{\partial x_2 \partial x_1}(\mathbf{v}_0) \\ \frac{\partial^2 f}{\partial x_1 \partial x_2}(\mathbf{v}_0) & \frac{\partial^2 f}{\partial x_2^2}(\mathbf{v}_0) \end{bmatrix} (\mathbf{x} - \mathbf{v}_0) \tag{13.14}$$

The matrix in equation (13.14) is called **Hessian Matrix**, denoted by $\mathbf{H}_f(\mathbf{v}_0)$.

13.4 TODO: Hessian Matrix

Definition 13.3. Suppose $f: \mathbb{R}^n \to \mathbb{R}$ has continuous second-order derivatives. Then the Hessian Matrix is a square $n \times n$ matrix, usually defined and arranged as

$$H_{f} = \begin{bmatrix} \frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\ \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}} \end{bmatrix}$$

$$(13.15)$$

13.5 TODO: Put them together

14 Probability and Statistics

In this section, an uppercase letter (e.g., X) represents a random variable, while a bold upper letter (e.g., X) represents a random vector, random matrix, or real matrix.

14.1 Expectation and Variance for Random Matrix

Definition 14.1. The expectation of a random vector $\mathbf{X} \in \mathbb{R}^p$ is a p-dimensional vector defined as:

$$\mathbb{E}(\mathbf{X}) = egin{bmatrix} \mathbb{E}(X_1) \ \mathbb{E}(X_2) \ dots \ \mathbb{E}(X_p) \end{bmatrix} = oldsymbol{\mu}_{\mathbf{X}}$$

Definition 14.2. Covariance Matrix: A $p \times p$ matrix Σ defined as

$$\boldsymbol{\Sigma} = \operatorname{Var}(\mathbf{X}) = \mathbb{E}((\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})^{\top})$$

is called the covariance matrix of **X**. We can expand the outer product:

$$\operatorname{Var}(\mathbf{X}) = \begin{bmatrix} \mathbb{E}\left((X_1 - \mu_1)^2\right) & \mathbb{E}\left((X_1 - \mu_1)(X_2 - \mu_2)\right) & \cdots & \mathbb{E}\left((X_1 - \mu_1)(X_p - \mu_p)\right) \\ \vdots & \ddots & \vdots \\ \mathbb{E}\left((X_p - \mu_p)(X_1 - \mu_1)\right) & \mathbb{E}\left((X_p - \mu_p)(X_2 - \mu_2)\right) & \cdots & \mathbb{E}\left((X_p - \mu_p)^2\right) \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \vdots & \ddots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{bmatrix}$$

where σ_{ij} stands for $Cov(X_i, X_j)$. It is easy to see that $Var(\mathbf{X})$ is symmetric due to the fact that $Cov(X_i, X_j) = Cov(X_j, X_i)$.

Remark 14.1. If **X** and **Y** are two random vectors with different joint probability distributions, then Cov(X, Y) is **NOT symmetric**, therefore $Cov(X, Y) \neq Cov(Y, X)$.

Theorem 14.1. Var(X) has the following equivalent representation:

$$Var(\mathbf{X}) = \mathbb{E}(\mathbf{X}\mathbf{X}^{\top}) - \boldsymbol{\mu}_{\mathbf{X}}\boldsymbol{\mu}_{\mathbf{X}}^{\top}$$
(14.1)

due to the fact that $Cov(X_i, X_j) = \mathbb{E}(X_i X_j) - \mathbb{E}(X_i) \mathbb{E}(X_j)$.

Theorem 14.2. The following rules come in handy for calculating expectation and variance:

- 1. $\mathbb{E}(\mathbf{X} + \mathbf{C}) = \mathbb{E}(\mathbf{X}) + \mathbf{C}$, where **X** is an $n \times p$ random matrix and $\mathbf{C} \in \mathbb{R}^{n \times p}$.
- 2. $\mathbb{E}(\mathbf{AX} + \mathbf{C}) = \mathbf{AE}(\mathbf{X}) + \mathbf{C}$, where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{C} \in \mathbb{R}^{m \times p}$.
- 3. $\mathbb{E}(\mathbf{QXP}) = \mathbf{Q}\mathbb{E}(\mathbf{X})\mathbf{P}$, where \mathbf{Q}, \mathbf{P} are properly defined real matrices.
- 4. $\mathbb{E}(\mathbf{Q}\mathbf{X}^{\mathsf{T}}\mathbf{P}) = \mathbf{Q}\mathbb{E}(\mathbf{X})^{\mathsf{T}}\mathbf{P}$, where \mathbf{Q}, \mathbf{P} are properly defined.

5.
$$\mathbb{E}(\mathbf{QXP} + \mathbf{b})^{\top} = \mathbb{E}((\mathbf{QXP} + \mathbf{b})^{\top})$$

6. $Var(\mathbf{AX} + \mathbf{b}) = \mathbf{A}Var(\mathbf{X})\mathbf{A}^{\top}$

Proof.

$$\mathbb{E}(\mathbf{A}\mathbf{X} + \mathbf{b})\mathbb{E}(\mathbf{A}\mathbf{X} + \mathbf{b})^{\top} = \mathbf{A}\boldsymbol{\mu}_{\mathbf{X}}\boldsymbol{\mu}_{\mathbf{X}}^{\top}\mathbf{A}^{\top} + \mathbf{A}\boldsymbol{\mu}_{\mathbf{X}}\mathbf{b}^{\top} + \mathbf{b}\boldsymbol{\mu}_{\mathbf{X}}^{\top}\mathbf{A}^{\top} + \mathbf{b}\mathbf{b}^{\top}$$
(14.2)

$$\mathbb{E}\Big((\mathbf{A}\mathbf{X} + \mathbf{b})(\mathbf{A}\mathbf{X} + \mathbf{b})^{\top}\Big) = \mathbf{A}\mathbb{E}(\mathbf{X}\mathbf{X}^{\top})\mathbf{A}^{\top} + \mathbf{A}\boldsymbol{\mu}_{\mathbf{X}}\mathbf{b}^{\top} + \mathbf{b}\boldsymbol{\mu}_{\mathbf{X}}^{\top}\mathbf{A}^{\top} + \mathbf{b}\mathbf{b}^{\top}$$
(14.3)

By subtracting equation (14.3) by equation (14.2),

$$\begin{split} \operatorname{Var}(\mathbf{A}\mathbf{X} + \mathbf{b}) &= \mathbf{A}\mathbb{E}(\mathbf{X}\mathbf{X}^{\top})\mathbf{A}^{\top} - \mathbf{A}\boldsymbol{\mu}_{\mathbf{X}}\boldsymbol{\mu}_{\mathbf{X}}^{\top}\mathbf{A}^{\top} \\ &= \mathbf{A}\Big(\mathbb{E}(\mathbf{X}\mathbf{X}^{\top}) - \boldsymbol{\mu}_{\mathbf{X}}\boldsymbol{\mu}_{\mathbf{X}}^{\top}\Big)\mathbf{A}^{\top} \\ &= \mathbf{A}\operatorname{Var}(\mathbf{X})\mathbf{A}^{\top} \end{split}$$

7. $Cov(\mathbf{AX}, \mathbf{BY}) = \mathbf{A}Cov(\mathbf{X}, \mathbf{Y})\mathbf{B}^{\top}$

8.
$$\mathbb{E}(\mathbf{X}^{\top}\mathbf{A}\mathbf{X}) = \operatorname{tr}(\mathbf{A}\boldsymbol{\Sigma}_{\mathbf{X}}) + \boldsymbol{\mu}_{\mathbf{X}}^{\top}\mathbf{A}\boldsymbol{\mu}_{\mathbf{X}}$$

Proof. The proof uses the properties discussed in theorem 8.1.

$$\begin{split} \mathbb{E}(\mathbf{X}^{\top}\mathbf{A}\mathbf{X}) &= \mathbb{E}\Big(\mathrm{tr}(\mathbf{X}^{\top}\mathbf{A}\mathbf{X})\Big) \quad \mathrm{Since}\mathbf{X}^{\top}\mathbf{A}\mathbf{X} \text{ is a scalar.} \\ &= \mathbb{E}\Big(\mathrm{tr}(\mathbf{A}\mathbf{X}\mathbf{X}^{\top})\Big) \\ &= \mathrm{tr}\Big(\mathbb{E}(\mathbf{A}\mathbf{X}\mathbf{X}^{\top})\Big) = \mathrm{tr}\Big(A\mathbb{E}(\mathbf{X}\mathbf{X}^{\top})\Big) \\ &= \mathrm{tr}\Big(\mathbf{A}(\mathbf{\Sigma}_{\mathbf{X}} + \boldsymbol{\mu}_{\mathbf{X}}\boldsymbol{\mu}_{\mathbf{X}}^{\top}))\Big) \\ &= \mathrm{tr}(\mathbf{A}\mathbf{\Sigma}_{\mathbf{X}}) + \mathrm{tr}(\mathbf{A}\boldsymbol{\mu}_{\mathbf{X}}\boldsymbol{\mu}_{\mathbf{X}}^{\top}) = \mathrm{tr}(\mathbf{A}\mathbf{\Sigma}_{\mathbf{X}}) + \mathrm{tr}(\boldsymbol{\mu}_{\mathbf{X}}\mathbf{A}\boldsymbol{\mu}_{\mathbf{X}}^{\top}) \\ &= \mathrm{tr}(\mathbf{A}\mathbf{\Sigma}_{\mathbf{X}}) + \boldsymbol{\mu}_{\mathbf{X}}^{\top}\mathbf{A}\boldsymbol{\mu}_{\mathbf{X}} \end{split}$$

The property 8 is useful when calculating expectation involving a quadratic from.

Example 14.1. Suppose $Y = \begin{bmatrix} Y_1 & Y_2 & \cdots & Y_n \end{bmatrix}^{\top}$ is a random vector where Y_i 's are i.i.d. distributed with mean μ and variance σ^2 . Then $\mathbb{E}(\mathbf{Y}) = \mu \mathbb{1}$ and $\mathrm{Var}(\mathbf{Y}) = \sigma^2 \mathbf{I}$. $\sum_{i=1}^n (Y_i - \bar{Y})^2$ can be expressed in a quadratic

form: $\mathbf{Y}^{\top}(\mathbf{I} - \mathbf{H}_0)\mathbf{Y}$, where \mathbf{H}_0 is the projection matrix onto vector $\mathbb{1}$. Note that \mathbf{H}_0 is full of $\frac{1}{n}$'s.

$$\begin{split} E\Big(\mathbf{Y}^{\top}(\mathbf{I} - \mathbf{H}_0)\mathbf{Y}\Big) &= \operatorname{tr}\Big((\mathbf{I} - \mathbf{H}_0)\sigma^2\mathbf{I}\Big) + \boldsymbol{\mu}_{\mathbf{Y}}^{\top}(\mathbf{I} - \mathbf{H}_0)\boldsymbol{\mu}_{\mathbf{Y}} \\ &= \sigma^2(1 - \frac{1}{n})n + \mu^2\mathbb{1}^{\top}(\mathbf{I} - (\mathbb{1}^{\top}\mathbb{1})^{-1}\mathbb{1}\mathbb{1}^{\top})\mathbb{1} \\ &= \frac{\sigma^2}{n-1} + \mu^2(\mathbb{1}^{\top} - \mathbb{1}^{\top})\mathbb{1} \\ &= \frac{\sigma^2}{n-1} \end{split}$$

We can see that $\frac{\sum_{i=1}^{n}(Y_i - \bar{Y})^2}{n-1}$ is an unbiased estimator.

Theorem 14.3. The covariance matrix Σ of a random vector $\mathbf{X} \in \mathbb{R}^n$ is **positive semi-definite** as discussed in definition 10.2.

Proof. Let $Y = \mathbf{b}^{\top}(\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})$, where $\mathbf{b} \in \mathbb{R}^n$, then

$$\begin{split} \mathbb{E}(Y^2) &= \mathbb{E}(YY^\top) \\ &= \mathbb{E}\Big(\mathbf{b}^\top (\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}}) (\mathbf{X} - \boldsymbol{\mu}_{\mathbf{X}})^\top \mathbf{b}\Big) \\ &= \mathbf{b}^\top \boldsymbol{\Sigma} \mathbf{b} \geq 0 \end{split}$$

This theorem illustrates that the eigenvalues of Σ are non-negative, and, therefore, $\det() \geq 0$. Σ is positive definite if and only if all of its eigenvalues are positive by theorem 10.2, implying that $\det() > 0$.

14.2 Transformations for Random Vectors

Theorem 14.4. Let $\mathbf{X} \in \mathbb{R}^n$ be a random vector, with joint p.d.f. $f_{\mathbf{X}}(\mathbf{x})$. Let $G : \mathbb{R}^n \to \mathbb{R}^n$ be a continuous and invertible function with continuous partial derivatives. If we let $\mathbf{Y} = G(\mathbf{X})$, then \mathbf{Y} is also a random vector with joint p.d.f.

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}\left(G^{-1}(\mathbf{Y})\right) |\det(\mathbf{J}_{G^{-1}})|$$
(14.4)

where $\mathbf{J}_{G^{-1}}$ is a Jacobin matrix defined as definition 13.2.

Example 14.2. Let $X \in \mathbb{R}^n$ be a random vector, with joint p.d.f. $f_X(x)$. Let Y = G(X) = AX + b, where A is an $n \times n$ non-singular real matrix. Find the joint p.d.f. of Y.

Solution. Obviously, the linear transformation $\mathbf{AX} + \mathbf{b}$ is invertible, since \mathbf{A}^{-1} exists. Therefor, $\mathbf{X} = \mathbf{A}^{-1}(\mathbf{Y} - \mathbf{b})$ with Jacobin matrix:

$$\mathbf{J}_{G^{-1}} = \nabla G(\mathbf{Y})^{-1} = (\mathbf{A}^{-1})^{\top} \tag{14.5}$$

Thus,

$$f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}\left(G^{-1}(\mathbf{Y})\right) |\det(A^{-1})|$$
(14.6)

The result can also be written as $f_{\mathbf{Y}}(\mathbf{y}) = f_{\mathbf{X}}(G^{-1}(\mathbf{Y})) |\det(A)|^{-1}$.

14.3 Multivariate Gaussian Distribution

We know that the linear combination of a collection of random variables following Gaussian distributions still follows a Gaussian distribution. For example, given two random variables $X \sim \mathcal{N}(\mu_X, \sigma_X)$ and $Y \sim \mathcal{N}(\mu_Y, \sigma_Y)$, then

$$aX + bY \sim \mathcal{N}(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2)$$
(14.7)

We can generalize this result to higher dimensions.

Definition 14.3. Normal Vector: A random vector \mathbf{X} is said to be normal or Gaussian, if every random variable X_i within it:

$$X_i \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_{X_i}, \sigma_{X_i}^2)$$

Definition 14.4. Standard Normal vector: A random vector \mathbf{Z} is said to be normal or Gaussian, if every random variable within it if every random variable Z_i within it:

$$Z_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$$

Theorem 14.5. A *n*-dimensional standard Normal vector **Z**, denoted by, $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ has the following join p.d.f.:

$$f_{\mathbf{z}}(\mathbf{z}) = (\sqrt{2\pi})^{-n} \exp\left(-\frac{1}{2}\mathbf{z}^{\top}\mathbf{z}\right)$$

Proof. Since $Z_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0,1)$, Their joint p.d.f. is

$$f_{\mathbf{Z}}(\mathbf{z}) = (\sqrt{2\pi})^{-n} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} Z_i^2\right)$$
$$= (\sqrt{2\pi})^{-n} \exp\left(-\frac{1}{2} \mathbf{z}^{\top} \mathbf{z}\right)$$

We can verify its expectation and covariance matrix:

$$\mu_{\mathbf{Z}} = \mathbb{E}(\mathbf{Z}) = \mathbf{0}$$

$$\boldsymbol{\Sigma}_{\mathbf{Z}} = \mathbb{E}(\mathbf{Z}\mathbf{Z}^{\top}) - \boldsymbol{\mu}_{\mathbf{Z}}\boldsymbol{\mu}_{\mathbf{Z}}^{\top} = \mathbf{I}$$

 $\Sigma_{\mathbf{Z}} = \mathbf{I}$ is derived from the fact that $\forall i \neq j : \mathbb{E}(Z_i Z_j) = \mathbb{E}(Z_i) \mathbb{E}(Z_j) = 0$ and $Z_i^2 \sim \chi_1^2$ with $\mathbb{E}(\chi_1^2) = 1$.

Next, we are going to derive the joint p.d.f. of a normal random vector $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}})$ with $\det(\boldsymbol{\Sigma}_{\mathbf{X}}) > 0$.

Remark 14.2. Here, we add an assumption, $\det(\Sigma_X) > 0$, on **X**. If $\det(\Sigma_X) = 0$, then it can be shown that some X_i

can be written as a linear combination of the others, so indeed we can remove X_i from the random vector without losing any information.

Since $\Sigma_{\mathbf{X}}$ is symmetric, by the theorem 9.10

$$\mathbf{\Sigma}_{\mathbf{X}} = \mathbf{P} \mathbf{D} \mathbf{P}^{\top}$$

where **P** is an orthogonal matrix. $\det(\Sigma_X) > 0$ guarantees that the diagonal entries of **D** is positive, so we can write **D** as $\mathbf{D}^{1/2}\mathbf{D}^{1/2}$. Let

$$\mathbf{A} = \mathbf{P} \mathbf{D}^{1/2} \mathbf{P}^{\top}$$

It is easy to check A is symmetric, non-singular and

$$\mathbf{A}\mathbf{A}^\top = \mathbf{A}^\top \mathbf{A} = \mathbf{\Sigma}_{\mathbf{X}}$$

Let \mathbf{Z} be a standard Gaussian vector as defined in theorem 14.5 and

$$X = AZ + b$$

Note that **X** is also a random vector due to the randomness of **Z**. We can get

$$\mathbb{E}(\mathbf{X}) = \mathbb{E}(\mathbf{AZ} + \mathbf{b}) = \mathbf{0} + \mathbf{b} = \mathbf{b}$$

$$Var(\mathbf{X}) = \mathbf{A}Var(\mathbf{Z})\mathbf{A}^{\top} = \mathbf{A}\mathbf{I}\mathbf{A}^{\top} = \mathbf{\Sigma}_{\mathbf{X}}$$

We can get the joint p.d.f. of **X** as in example 14.2 and theorem 14.5:

$$f_{\mathbf{X}}(\mathbf{x}) = (\sqrt{2\pi})^{-n} \exp\left(-\frac{1}{2}(\mathbf{A}^{-1}(\mathbf{x} - \mathbf{b}))^{\top}(\mathbf{A}^{-1}(\mathbf{x} - \mathbf{b}))\right) |\det \mathbf{A}|^{-1}$$

$$= (\sqrt{2\pi})^{-n} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{b})^{\top}(\mathbf{A}^{-1})^{\top}\mathbf{A}^{-1}(\mathbf{x} - \mathbf{b})\right) |\det \mathbf{A}|^{-1}$$

$$= (\sqrt{2\pi})^{-n} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{b})^{\top}(\mathbf{A}\mathbf{A}^{\top})^{-1}(\mathbf{x} - \mathbf{b})\right) |\det \mathbf{A}|^{-1}$$

$$= (\sqrt{2\pi})^{-n} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{b})^{\top}\mathbf{\Sigma}_{\mathbf{x}}^{-1}(\mathbf{x} - \mathbf{b})\right) |\det \mathbf{A}|^{-1}$$

Note that $det(\mathbf{P}) det(\mathbf{P}^{\top}) = 1$, since **P** is an orthogonal matrix.

$$\det(\mathbf{A}) = \det(\mathbf{P}) \det(\mathbf{D}^{1/2}) \det(\mathbf{P}^\top) = \sqrt{\det(\mathbf{A}) \det(\mathbf{A}^\top)} = \sqrt{\det(\boldsymbol{\Sigma}_X)}$$

By substituting $\det(\mathbf{A}) = \det(\mathbf{\Sigma}_{\mathbf{X}})$ and $\mathbf{b} = \boldsymbol{\mu}_{\mathbf{X}}$, we can get the following theorem.

Theorem 14.6. A normal vector or Gaussian vector, $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}})$ has the following joint p.d.f.:

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{n/2} \det(\mathbf{\Sigma}_{\mathbf{X}})^{1/2}} \exp\left(\frac{-(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})^{\top} \mathbf{\Sigma}_{\mathbf{X}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{X}})}{2}\right) \quad \forall \mathbf{x} \in \mathbb{R}^{n}$$
(14.8)

where Σ_{X} is positive definite.

Remark 14.3. We have performed a linear transformation,

$$\mathbf{X} = \mathbf{AZ} + \boldsymbol{\mu}_{\mathbf{X}} \tag{14.9}$$

on $\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, and then get a new normal vector $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}})$. Note that

$$\mu_{\mathbf{X}} = \mathbb{E}(\mathbf{X}) = \mathbf{A}\mu_{\mathbf{Z}} + \mu_{\mathbf{X}}$$

$$\operatorname{Var}(\mathbf{X}) = \operatorname{Var}(\mathbf{AZ} + \boldsymbol{\mu}_{\mathbf{X}}) = \mathbf{A}\boldsymbol{\Sigma}_{\mathbf{Z}}\mathbf{A}^{\top}$$

has illustrated the property of a linear transformation for a normal vector.

Theorem 14.7. Let $\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}})$ be a *p*-dimensional normal random vector, \mathbf{A} be an $n \times p$ (where $n \leq p$) real matrix with full row rank, and \mathbf{b} be an *n*-dimensional real vector, then

$$\mathbf{AX} + \mathbf{b} \sim \mathcal{N}(\mathbf{A}\boldsymbol{\mu}_{\mathbf{X}} + \mathbf{b}, \mathbf{A}\boldsymbol{\Sigma}_{\mathbf{X}}\mathbf{A}^{\top})$$
 (14.10)

Note that if n > p, then $\operatorname{rank}(\mathbf{A}\mathbf{\Sigma}_{\mathbf{X}}) \leq p$, while $\mathbf{A}\mathbf{\Sigma}_{\mathbf{X}}$ is an $n \times n$ matrix, implying that $\mathbf{A}\mathbf{\Sigma}_{\mathbf{X}}$ is singular (not invertible), and so is $\mathbf{A}\mathbf{\Sigma}_{\mathbf{X}}\mathbf{A}^{\top}$. We can check if $\mathbf{A}\mathbf{\Sigma}_{\mathbf{X}}\mathbf{A}^{\top}$ is a symmetric and positive definite matrix, which is a necessary condition for it to be a valid covariance matrix.

$$(\mathbf{A}\boldsymbol{\Sigma}_{\mathbf{X}}\mathbf{A}^{\top})^{\top} = (\mathbf{A}\mathbf{P}\mathbf{D}\mathbf{P}^{\top}\mathbf{A}^{\top})^{\top} = \mathbf{A}\mathbf{P}\mathbf{D}\mathbf{P}^{\top}\mathbf{A}^{\top} = \mathbf{A}\boldsymbol{\Sigma}_{\mathbf{X}}\mathbf{A}^{\top}$$
(14.11)

says the matrix is symmetric. We can verify whether it is positive or not by the definition 10.2. $\forall \mathbf{v} \in \mathbb{R}^n \setminus \{\mathbf{0}\},$

$$\mathbf{v}^{\top} \mathbf{A} \mathbf{\Sigma}_{\mathbf{X}} \mathbf{A}^{\top} \mathbf{v} = (\mathbf{A}^{\top} \mathbf{v})^{\top} \mathbf{\Sigma}_{\mathbf{X}} \mathbf{A}^{\top} \mathbf{v}$$
 (14.12)

Since $\Sigma_{\mathbf{X}}$ is positive definite, so is $\mathbf{A}\Sigma_{\mathbf{X}}\mathbf{A}^{\top}$. Thus, $n \leq p$ and \mathbf{A} being of full row rank are two important requirements.

Theorem 14.8. Suppose a *p*-dimensional random vector $X \sim \mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}})$. Then $X_i \sim \mathcal{N}(\mu_i, \sigma_{ii})$, where μ_i is the i^{th} element in $\boldsymbol{\mu}_{\mathbf{X}}$ and σ_{ii} is the i^{th} element of the main diagonal of $\boldsymbol{\Sigma}_{\mathbf{X}}$.

Proof. Let \mathbf{e}_i be a standard basis vector. Then,

$$X_i = \mathbf{e}_i^{\mathsf{T}} \mathbf{X} \sim \mathcal{N}(\mathbf{e}_i^{\mathsf{T}} \boldsymbol{\mu}_{\mathbf{X}}, \mathbf{e}_i^{\mathsf{T}} \boldsymbol{\Sigma}_{\mathbf{X}} \mathbf{e}_i)$$
 (14.13)

Generally, we cannot say that the two random variables X, Y are independent if Cov(X, Y) = 0, except X, Y are normally distributed.

Theorem 14.9. Suppose X, Y are two normal random variables with Cov(X, Y) = 0, then X, Y are independent.

Proof. Let $\mathbf{S} = \begin{bmatrix} \mathbf{X} & \mathbf{Y} \end{bmatrix}^{\top}$, then $\Sigma_{\mathbf{S}}$ is a diagonal matrix. By using this fact, expanding the theorem 14.6 can get $f_{\mathbf{S}}(\mathbf{s}) = f_X(x) f_Y(y)$.

14.4 Equivalent Representations in a Normal Linear Regression Model

A p-dimensional normal vector $\mathbf{X} \sim \mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{X}}, \boldsymbol{\Sigma}_{\mathbf{X}})$ is a convenient way to represent a set of mutually independent random variables, where $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$. By the theorem 14.6, we can get

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} \prod_{i=1}^{p} \sigma_i} \exp\left(-\frac{1}{2} \sum_{i=1}^{p} \frac{(X_i - \mu_i)^2}{\sigma_i^2}\right)$$

where

$$(\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})^{\top} \boldsymbol{\Sigma}_{\mathbf{X}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}}) = \sum_{i=1}^{p} \frac{(X_i - \mu_i)^2}{\sigma_i^2}$$
(14.14)

and $\det(\mathbf{\Sigma}_{\mathbf{X}})^{1/2} = \prod_{i=1}^{p} \sigma_{i}$. Thus,

$$X_i \overset{\text{independent}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2) \Longleftrightarrow \mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathbf{X}}, \operatorname{diag}(\sigma_1^2, \cdots, \sigma_p^2))$$
 (14.15)

Definition 14.5. A Normal Linear Regression Model is defined as below

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \quad \text{where } \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$
 (14.16)

where **X** is a full-column-rank $n \times p$ $(n \ge p)$ real matrix with 1 (a vector with all 1's) as its first column, and $\boldsymbol{\beta} \in \mathbb{R}^p$. The following statements are equivalent:

- 1. $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
- 2. $\varepsilon_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$
- 3. $Y_i \stackrel{\text{independent}}{\sim} \mathcal{N}(\mathbf{x}_i^{\top} \boldsymbol{\beta}, \sigma^2)$
- 4. $\mathbf{Y} \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$

14.5 Standardizing a Normal Vector

Suppose $\Sigma_X = PDP^{\top}$ is positive definite. If we let $A = PD^{1/2}P^{\top}$, it is clear that

$$\Sigma_{\mathbf{X}} = \mathbf{A}\mathbf{A} = \mathbf{A}^2 \tag{14.17}$$

Therefore, we can define

$$\boldsymbol{\Sigma}_{\mathbf{x}}^{1/2} = \mathbf{P} \mathbf{D}^{1/2} \mathbf{P}^{\top} = (\boldsymbol{\Sigma}_{\mathbf{x}}^{1/2})^{\top}$$
(14.18)

Note that $\Sigma_{\mathbf{X}}^{1/2}$ is symmetric, non-singular, and still positive definite due to the positive definiteness of $\Sigma_{\mathbf{X}}$, that is, there is no zero entry on the main diagonal of **D**. It is easy to check that $\Sigma_{\mathbf{X}}^{1/2}$ has the following property:

$$\Sigma_{\mathbf{X}}^{1/2} = \Sigma_{\mathbf{X}}^{1/2} \Sigma_{\mathbf{X}} = \Sigma_{\mathbf{X}} \Sigma_{\mathbf{X}}^{1/2}$$
(14.19)

If $X \sim \mathcal{N}(\mu_X, \Sigma_X)$, we can get a standard normal vector by letting

$$\mathbf{Z} = \mathbf{\Sigma_X}^{-1/2} (\mathbf{X} - \boldsymbol{\mu_X}) \tag{14.20}$$

It is easy to verify that $\mathbb{E}(\mathbf{Z}) = \mathbf{0}$ and $\operatorname{Var}(\mathbf{Z}) = \mathbf{I}$.

14.6 The Distribution of LSE

In a linear model, we have found an estimator according to the definition 6.1:

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{Y}$$

given that $\mathbf{X}^{\top}\mathbf{X}$ is non-singular.

Theorem 14.10. Suppose, in a linear model, the response vector \mathbf{Y} has $\mathbb{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$ and $\mathrm{Var}(\mathbf{Y}) = \boldsymbol{\Sigma}$. Then the LSE $\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$ has the following properties:

- 1. $\mathbb{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$
- 2. $\operatorname{Var}(\widehat{\boldsymbol{\beta}}) = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\boldsymbol{\Sigma}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}$

Note that the property 2 uses the fact that the inverse of a symmetric matrix is also symmetric. Note also that $\mathbf{Var}(\widehat{\boldsymbol{\beta}}) = (\mathbf{X}^{\top}\mathbf{X})^{-1}$ if the model is a normal linear model as discussed in definition 14.5.

Example 14.3. Suppose $Var(\mathbf{Y}) = \sigma^2 \mathbf{I}$. Show that $Var(\widehat{\boldsymbol{\beta}}) = \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1}$.

Proof.

$$\begin{aligned} \operatorname{Var}(\widehat{\boldsymbol{\beta}}) &= (\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \sigma^{2} \mathbf{I} ((\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top})^{\top} \\ &= \sigma^{2} (\mathbf{X}^{\top} \mathbf{X})^{-1} \end{aligned}$$

Example 14.4. Suppose $Y \sim \mathcal{N}(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I})$. Find the distribution of $\hat{\boldsymbol{\beta}}$.

Solution. Since $\widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{Y}$, $\mathbb{E}(\widehat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$ and $\operatorname{Var}(\widehat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$. By theorem 14.7,

$$\widehat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(\mathbf{X}^{\top}\mathbf{X})^{-1})$$

14.7 Estimation of σ^2

Under the assumption of a linear model, we see that $\mathbb{E}(Y_i) = \beta_0 + \beta_i x_{i1} + \dots + \beta_i x_{ik} = \mathbf{x}_i^{\top} \boldsymbol{\beta}$, where \mathbf{x}_i^{\top} is the i^{th} column of \mathbf{X} , and $\text{Var}(Y_i) = \sigma^2 = \mathbb{E}\left((Y_i - \mathbb{E}(Y_i))^2\right) = \mathbb{E}\left((Y_i - \mathbf{x}_i^{\top} \boldsymbol{\beta})^2\right)$. However, $\boldsymbol{\beta}$ is unknown. Intuitively, we can use $\widehat{\boldsymbol{\beta}}$ to estimate σ^2 .

Definition 14.6. We can estimate σ^2 by a corresponding average from the sample

$$s^{2} = \frac{1}{n-p-1} \sum_{i=1}^{n} (Y_{i} - \mathbf{x}_{i}^{\top} \widehat{\boldsymbol{\beta}})^{2} = \frac{SSE(\mathbf{Y})}{n-p-1}$$
 (14.21)

where n is the sample size and p is the number of x_i 's.

Remark 14.4. Here, the design matrix **X** is an $n \times (p+1)$ matrix with 1 as its first column.

Theorem 14.11. s^2 defined in definition 14.6 is an unbiased estimator of σ^2 .

Proof. Given $\mathbb{E}(\mathbf{Y}) = \mathbf{X}\boldsymbol{\beta}$ and $\text{Var}(\mathbf{Y}) = \sigma^2 \mathbf{I}$, by applying the property 8 in theorem 8.1,

$$E(\mathbf{Y}^{\top}(\mathbf{I} - \mathbf{H})\mathbf{Y}) = \operatorname{tr}\left((\mathbf{I} - \mathbf{H})\sigma^{2}\right) + (\mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{I} - \mathbf{H})\mathbf{X}\boldsymbol{\beta}$$

$$= \sigma^{2}\left(n - \operatorname{tr}(\mathbf{H})\right) + \mathbf{0} \quad \text{Since } \mathbf{I} - \mathbf{H} \text{ is the orthogonal projection matrix of } \operatorname{Col}(\mathbf{X})$$

$$= \sigma^{2}\left(n - \operatorname{tr}\left(\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\right)\right) = \sigma^{2}n - \operatorname{tr}\left(\mathbf{X}^{\top}\mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\right)$$

$$= \sigma^{2}\left(n - \operatorname{tr}(\mathbf{I}_{p+1})\right)$$

$$= \sigma^{2}(n - p - 1)$$

Hence, $\mathbb{E}(SSE) = \sigma^2(n-p-1)$.

Theorem 14.12. In a **normal** linear model, we can find an unbiased estimator for $\mathrm{Var}(\widehat{\pmb{\beta}})$

$$\widehat{\operatorname{Var}}(\widehat{\boldsymbol{\beta}}) = s^2 (\mathbf{X}^{\top} \mathbf{X})^{-1}$$
(14.22)

Proof. We know that $\operatorname{Var}(\widehat{\boldsymbol{\beta}}) = (\mathbf{X}^{\top}\mathbf{X})^{-1}$,

$$\mathbb{E}(s^{2}\mathbf{I}) = \sigma^{2}(\mathbf{X}^{\top}\mathbf{X})^{-1} = \operatorname{Var}(\widehat{\boldsymbol{\beta}})$$
(14.23)