

Vectors: evaluate at (xo, yo)

$$\rightarrow$$
 normal to tangent plane: $\vec{n} = \langle f_x, f_y, -1 \rangle$

$$\rightarrow$$
 gradient: $\nabla f = \langle f_x, f_y \rangle$ $L(x,y) = f_x(x-x_0) + f_y(y-y_0) + z_0$ (direction of max increase in z)

Scalars: evaluate at (xo, yo)

$$\rightarrow$$
 r.o.c. in z as x increases, y constant: = f_x

$$\rightarrow$$
 r.o.c. in z as x increases, y constant: = f_x \rightarrow r.o.c. in z as y increases, x constant: = f_y

$$\rightarrow$$
 max r.o.c. in $z := |\nabla f|$.

$$\rightarrow$$
 r.o.c. in z in direction \vec{v} : $\vec{D}_{\vec{v}} f = \nabla f \cdot \vec{v}$

Test r.o.c. in
$$\frac{7}{2}$$
 w.r.t. $\frac{1}{2}$ v.o.c. in $\frac{7}{2}$ w.r.t. $\frac{1}{2}$ v.o.c. $\frac{1$

Lagrange multipliers

$$f_x = cg_x | f_y = cg_y | g(x,y) = 0$$
 $f_x = 0 | f_y = 0$