32Kx8 Bit High Speed CMOS Static RAM

FEATURES

• Fast Access Time: 70, 85, 100ns (Max.)

· Low Power Dissipation

Standby (CMOS): 550μW (max.) L Version

110μW (max.) LL Version

Operating : 385mW(max.)

Single 5V±10% Power Supply

• TTL Compatible Inputs and Outputs

Fully Static Operation

- No clock or refresh required

Three state Output

• Low Data Retention Voltage : 2V (Min.)

· Standard Pin Configuration

KM62256BLS/BLS-L : 28-pin DIP-300 KM62256BLP/BLP-L : 28-pin DIP-600B KM62256BLG/BLG-L : 28-pin SOP-450 KM62256BLTG/BLTG-L : 28-pin TSOP1-0813.4F

KM62256BLRG/BLRG-L: 28-pin TSOP1-0813.4R

FUNCTIONAL BLOCK DIAGRAM

Precharge Circuit CLK GEN Α3 → Vss MEMORY ARRAY A6 Select 512 Rows Α7 512 Columns 8A 1/01 I/O Circuit Column Select CLK GEN. A10 A11 Α9 WE AO Α1 A2 ŌΕ

GENERAL DESCRIPTION

The KM62256BL/BL-L is a 262,144-bit high-speed Static Random Access Memory organized as 32,768 words by 8 bits.

The device is fabricated using Samsung's advanced CMOS process with poly resistors.

The KM62256BL/BL-L has an output enable input for precise control of the data outputs.

It also has a chip enable input for the minimum current power down mode.

The KM62256BL/BL-L has been designed for high speed and low power application. It is particularly well suited for battery back-up nonvolatile memory application.

PIN CONFIGURATION (TOP VIEW)

A14 II 0 A12 II A7 II A6 II A6 II A7	型 Vcc 对 WE 理 A13 理 A8 型 A9 型 A11	KM62256BLTG/BLTG-L 28-pin TSOP Standard	28
A2	A10 전통 VO8 III VO7 III VO6 III VO4	KM62256BLRG/BLRG-L 28-pin TSOP Reversed	15 A2 16 E1 A1 17 A0 18 E1 B02 18 E1 B02 20 D 803 21 D 803 22 D 803 22 D 803 23 D 803 24 D 803 25 D 803 26 D 803 27 D 803 28 D 803

Pin Name	Pin Function
A0-A14	Address Inputs
WE	Write Enable Input
CS	Chip Select Input
OE	Output Enable Input
I/O1~I/O8	Data Inputs/Outputs
Vcc	Power(5V)
Vss	Ground

ABSOLUTE MAXIMUM RATINGS *

Item	Symbol	Rating	Unit
Voltage on Any Pin Relative to Vss	V·IN,OUT	-0.5 toVcc+0.5	V
Voltage on Vcc Supply Relative to Vss	Vcc	-0.5 to 7.0	V
Power Dissipation	Po	1.0	w
Storage Temperature	Tstg	-65 to 150	°C
Operating Temperature	TA	0 to 70	°C
Soldering Temperature and Time	Tsolder	260°C, 10sec(Lead Only)	-

^{*} Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS (TA=0 to 70 °C)

Item	Symbol	Min.	Тур.	Max.	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	· V
Input High Voltage	ViH	2.2	-	Vcc+0.5	V
Input Low Voltage	ViL	-0.5 *	-	0.8	٧

^{*} VIL(Min.)= -3.0V for ≤50 ns Pulse

DC AND OPERATING CHARACTERISTICS

(Ta=0 to 70 °C, Vcc=5V±10%, unless otherwise specified)

Item	Symbol	Test Condition		Min.	Typ*	Мах.	Unit
Input Leakage Current	lu .	Vin=Vss to Vcc		-	-	±1	μА
Output Leakage Current	llo	CS=VIH or OE=VIH or WE=V	IL,	-	-	±1	μА
		Vvo=Vss to Vcc		1	1		
Operating Power Supply Current	Icc	CS=VIL, VIN= or VIH or VIL, IV	o=0mA	-	7	15	mA
Average Operating Current	ICC 1	Cycle Time=1µs,100% Duty			-	7	mA
		CS≤0.2V, ViL≤0.2V,					
		ViH≥Vcc-0.2V, Ii/o=0mA					
	ICC 2	Min Cycle, 100% Duty		-	45	70	mA
		CS=VIL,IVO=0mA					
Standby Power Supply Current	IsB	<u>CS</u> =Viн		-	-	1	mA
	ISB1	CS≥Vcc-0.2V	L	-	2	100	μА
		Vin≤0.2V or Vin≥Vcc-0.2V	L-L	-	1	20	μA
Output Low Voltage	Vol	Iol=2.1 mA		-	-	0.4	٧
Output High Voltage	Vон	loh=-1.0 mA		2.4	-	-	٧

^{*} Typ; Vcc=5V, Ta=25°C

CAPACITANCE *(f=1MHz, Ta=25 °C)

Item	Symbol	Test Condition	Min.	Max.	Unit
Input Capacitance	Cin	Vin=0V	-	6	pF
Input/Output Capacitance	Ci/O	Vvo=0V	-	8	pF

^{*} Note: Capacitance is sampled and not 100% tested.

TEST CONDITIONS

(TA=0 to 70 °C,Vcc=5V±10%,unless otherwise specified.)

Parameter	Value
Input Pulse Level	0.8 to2.4V
Input Rise and Fall Time	5 ns
Input and Output Timing Reference Levels	1.5V
Output Load	C _L =100pF+1TTL

* Including Scope and Jig Capacitance

READ CYCLE

Parameter	Symbol	KM62256BL-7 KM62256BL-7L		KM62256BL-8 KM62256BL-8L		KM62256BL-10 KM62256BL-10L		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read Cycle Time	tric	70	-	85	-	100	-	ns
Address Access Time	taa	-	70	-	85	Γ	100	ns
Chip Select to Output	tco	-	70	-	85	-	100	ns
Output Enable to Valid Output	toe	-	35	-	45	-	50	ns
Chip Select to Low-Z Output	tLZ	10	-	10	-	10	-	ns
Output Enable to Low-Z Output	toLZ	5	-	5	-	5	-	ns
Chip Disable to High-Z Output	tHZ	0	30	0	30	0	35	ns
Output Disable to High-Z Output	tonz	0,	30	0	30	0	35	ns
Output Hold from Address Change	tон	5	-	5	-	10	-	ns

WRITE CYCLE

Farameter	Symbol	KM62256BL-7 KM62256BL-7L		KM62256BL-8 KM62256BL-8L		KM62256BL-10 KM62256BL-10L		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Write Cycle Time	twc	70	-	80	-	100	-	ns
Chip Select to End of Write	tcw	60	-	75	-	80	-	ns
Address Set-up Time	tas	0	-	0	-	0	-	ns
Address Valid to End of Write	taw	60	-	75	-	80	-	ns
Write Pulse Width	twp	50	-	60	-	60	-	ns
Write Recovery Time	twn	0	-	0	-	0	-	ns
Write to Output High-Z	twnz	0	25	0	30	0	30	ns
Data to Write Time Overlap	tow	30	-	40	-	40	-	· ns
Data Hold from Write Time	tDH	0	-	0	-	0	-	ns
End Write to Output Low-Z	tow	5	-	5	-	5	-	ns

TIMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled)

(CS=OE=VIL, WE=VIH)

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

NOTES (READ CYCLE)

- 1. tHz and toHz are defined as the time at which the outputs achieve the open circuit condition and are referenced to the VoH or VoL.
- 2. At any given temperature and voltage condition thz(max) is less than tLz(min) both for a given device and from device to device.
- 3. WE is high for read cycle.
- 4. Address valid prior to or coincident with $\overline{\text{CS}}$ transition Low.

TIMING WAVEFORM OF WRITE CYCLE(1) (OE Clock)

TIMING WAVEFORM OF WRITE CYCLE(2) (OE Fixed)

NOTES (WRITE CYCLE)

- 1. A write occurs during the overlap(twp) of a low \overline{CS} and low \overline{WE} . A write begins at the latest transition among \overline{CS} going low and \overline{WE} going low: A write end at the earliest transition among \overline{CS} going high and \overline{WE} going high, twp is measured from the beginning of write to the end of write.
- 2. tcw is measured from the later of CS going low to end of write.
- 3. tas is measured from the address valid to the beginning of write.
- 4. twn is measured from the end of write to the address change.
- 5. If OE,WE are in the read mode during this period, the I/O pins are in the outputs Low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
- 6. If CS goes low simultaneously with WE going low or after WE going low, the outputs remain high impedance state.
- 7. Dout is the same phase of the latest written data in this write cycle
- 8. Dout is the read data of new address

FUNCTIONAL DESCRIPTION

ĊŚ	WE	OE	Mode	I/O Pin	Vcc Current
Н	Х	Х	Power down	High-Z	ISB, ISB1
L	Н	Н	Output Disable	High-Z	loc
L	Н	L	Read	Dout	lcc
L	L	Х	Write	Din	lec

Note: X means Don't Care.

DATA RETENTION CHARACTERISTICS (Ta=0 to 70 °C)

PARAMETER	SYMBOL	TEST CONDITION		MIN	TYP	MAX	UNIT
Vcc for Data Retention	Vdr	CS≥Vcc-0.2V		2.0		5.5	٧
Data Retention Current	ldr	Vcc=3.0V	Ł		1	50*	μА
		CS≥VCC-0.2V	L-L		0.5	10**	μА
Data Retention Set-up Time	tSDR	See Data Retention		0			ns
Recovery Time	tRDR	Waveforms (below)		5			ms

^{* 20}µA(Max.) at 0°C~40°C

DATA RETENTION WAVEFORM 1 (CS Controlled)

^{** 3}µA (Max.) at 0°C~40°C