Computational Physics

Epidemiological simulation, CoVid19 and percolation theory

Smit Chaudhary (5273900)

Ignacio Fernández Graña (5358809)

Georgios Sotiropoulos (5231175)

16/06/2021

Content

- Introduction
 - Motivation
 - Virus spreading models
 - Percolation theory
- Methods
 - Basic implementation
 - Correctness
- → Results
 - Mobility
 - Vaccines
- Conclusions

Introduction

Motivation

- Infectious diseases spreading
 - How does a disease spread?
 - When to impose/lift lockdowns?
 - How to impose effective measures?
 - Is vaccination indeed necessary? (YES)
 - Other viruses with different lethality/infection rates
- Percolation theory has widespread applications
 - Traffic control
 - Fluid diffusion

Percolation theory and epidemiological models

- Percolation theory:
 - Studies the behavior of a network when nodes or links are added
 - Disease spreads through this dynamical links
 - Links created between infected and susceptible people with some probability
 - Geometrical phase transition → critical probability when percolation (infinite connectivity structures) first appear
 - ⇒ Epidemiological models → population is classified as:
 - Susceptible Infected Recovered → SIR¹
 - SIR + Deceased → SIRD

Methods

Basic implementation

- People modeled as sites in a LxL grid
- SIRD model
- Basic implementation:
 - Only nearest neighbours get infected with a certain probability $P_{infection}$
 - Recovery period (R): 14 days
 - Infected population can die with a certain probability each day:

$$P_{death}^{daily} = 1 - (1 - \mathrm{P_{death}^{total}})^{(rac{1}{\mathrm{R}})}$$

Basic implementation

- Further extensions
 - lack Mobility: random long range interactions with a probability $P_{mobility}$
 - Healthcare threshold: not enough medical resources
 - Lockdowns
 - Vaccinations

$$P_{mobility} = 0$$

$$P_{mobility} = 0.01$$

- → 1 initial infected person
- → 100x100 grid
- → P_inf = 0.055
- → P_death = 0.01

Error estimation

- Select hyperparameters
- \rightarrow Run the simulation n = 10 times
 - Independent results
- Obtain:
 - Average:

$$ar{x} = rac{1}{n} \sum_{i=1} x_i$$

Standard error of the mean:

$$\sigma_{ar{x}} pprox rac{\sigma_x}{\sqrt{n}}$$

Results

Pandemic threshold

Infected population for various values of mobility

Theoretical percolation threshold probability:

$$P_{total} = \frac{1}{2} \to P_{daily} = 0.048$$

Mobility allows for a lower point of phase transition.

We fix $P_{infection} = 0.055$, slightly **above** the transition phase.

Do deadlier viruses kill more people?

How does the probability of passing away from the disease affects spreading?

Phase transition!

Pandemic → Endemic

Healthcare threshold

- The healthcare system can only support up to a percentage of active cases
- If threshold surpassed:
 - probability of death increases due to lack of medical supplies.
- o Our model: $T_H = rac{N_{ICU\,b}}{P_{
 m L}}$ $ho_{
 m Average\ hospitalisation\ risk}$

: Number of ICU beds

0.5%

$$P_{death}^{total} = egin{cases} 0.5\% & ext{Active cases} & T_H \ 0.5\% rac{ ext{Active cases}}{T_H} & T_H < ext{Active cases} < 5\,T_H \ 5*0.5\% = 2.5\% & ext{Active cases} > 5\,T_H \ \end{cases}$$

Active cases $< T_H$

Surpassing the healthcare threshold due to mobility

Mortality = percentage of **total** people deceased **Lethality** = percentage of **infected** population deceased

Flatten the curve, don't party (without corona measures)

Lockdowns during a pandemic

- Lockdown measures:
 - Mobility is set to 0
 - Local contacts are reduced from 4 to 3 for a certain fraction of the population (50%)

Probability of infection is the same, contacts are reduced

- When to impose a lockdown?
 - Imposing threshold: 0.02% of the population is infected
 - Lifting threshold: 0.002% of population is infected

Lockdowns during a pandemic

Second and third waves!

Vaccinations

Vaccinations

Performance of the Code

- Numpy operations are used whenever possible, for plotting and visualization.
- → OOP Individuals are modeled as objects → Lists
 - Modelling potential Performance trade-off
- → For a city roughly of size of Delft ~90K, the simulation with all features (mobility, lockdowns, vaccinations etc) concludes within 1 sec on our laptops.

Conclusions

- → Virus spreading is very complex → Many hyperparameters and simulation is very sensitive to these hyperparameters.
- → Exhibit phase transitions. (Endemic → Pandemic)
- → The measures we considered (lockdowns and vaccinations) do work.
- Future Outlooks:
 - Age of a Person which allows for different health, mobility, etc.
 - Allow Persons to move with a certain velocity.

Thanks for your attention! And get vaccinated at earliest!!

