Statistical Machine Learning 2016

Assignment 3 Deadline: Tuesday 29 November 2016

Instructions:

- IMPORTANT: Write the full name of all team members on the first page of the report.
- Weights of the exercises in this assignment:
 - Exercise 1: 8
 - Exercise 2, part 1: 5
 - Exercise 2, part 2: 7
- Working together in **pairs** (that is, at most two persons) and handing in a single set of solutions per couple is recommended.
- Write a **self-contained report** with the answers to each question, **including** comments, derivations, explanations, graphs, etc.
- Note: Answers like 'No', or 'x=27.2' by themselves are not sufficient; this hold also for results that are only available by running your code.
- Note: All figures should have axis labels and a caption or title that states to which exercise (and part) they belong.
- If an exercise requires coding, put **relevant code snippets** in your answer to the question in the report, and describe what it does. E.g. for a plot show how you compute the function.
- Upload reports to **Blackboard** as a **single pdf** file: 'SML_A3_<Namestudent(s)>.pdf', in combination with **one zip-file** with the executable source/data files (e.g. matlab m-files).
- The grading will solely be based on the report pdf file. The source files are considered as supplementary material.
- Email addresses: tomc@cs.ru.nl and b.kappen@science.ru.nl
- For problems or questions: use the BB discussion board, email, or just ask.

Exercise 1 – Bayesian linear regression

This exercise builds on exercise 2, week 8, "Fitting a straight line to data". For a detailed description (and explanation) see file SML16_ex08+an.pdf in Blackboard.

The final part of that exercise computed the predictive distribution after a single data point was observed. Here we consider a new data set, consisting of no less than two points: $\{x_1, t_1\} = (0.4, 0.05)$ and $\{x_2, t_2\} = (0.6, -0.35)$.

- 1. Assume $\alpha = 2$ and $\beta = 10$. Compute the predictive distribution $p(t|x, \mathbf{t}, \mathbf{x}, \alpha, \beta)$ after these two points are observed.
- 2. Plot the mean of the predictive Gaussian distribution and one standard deviation on both sides as a function of x over the interval [0,1]. Plot the data in the same figure. See a009plotideas.m in Blackboard for some plotting hints. Compare your plot with fig.3.8b (Bishop, p.157) and explain the difference.
- 3. Sample five functions $y(x, \mathbf{w})$ from the posterior distribution over \mathbf{w} for this data set and plot them in the same graph (i.e. with the predictive distribution). You may use the Matlab function mvnrnd. See again a009plotideas.m for some plotting hints.

Exercise 2 – Logistic regression

Part 1 - The IRLS algorithm

Many machine learning problems require minimizing some function $f(\mathbf{x})$. For this, an alternative to the familiar gradient descent technique, is the so called Newton-Raphson iterative method:

$$\mathbf{x}^{(n+1)} = \mathbf{x}^{(n)} - \mathbf{H}^{-1} \nabla f(\mathbf{x}^{(n)}) \tag{1}$$

where **H** represents the Hessian matrix of second derivatives of $f(\mathbf{x})$, see Bishop, §4.3.3.

1. Derive an expression for the minimization of the function $f(x) = \sin(x)$, using the Newton-Raphson iterative optimization scheme (1), and verify (using Matlab, just up to, e.g., five iterations) how quickly it converges when starting from $x^{(0)} = 1$. What happens when you start from $x^{(0)} = -1$?

Hint: The Hessian of a 1-dimensional function f(x) is just the second derivative f''. So, the Newton-Raphson iterative method reduces in 1-d to

$$x^{(n+1)} = x^{(n)} - \frac{f'(x^{(n)})}{f''(x^{(n)})}$$
 (2)

We want to apply this method to the logistic regression model for classification (see Bishop, §4.3.2):

$$p(\mathcal{C}_1|\boldsymbol{\phi}) = y(\boldsymbol{\phi}) = \sigma(\mathbf{w}^{\mathrm{T}}\boldsymbol{\phi}) \tag{3}$$

For a data set $\{\phi_n, t_n\}_{n=1}^N$, with $t_n \in \{0, 1\}$, using $y_n = p(\mathcal{C}_1 | \phi_n)$ the corresponding cross entropy error function to minimize is

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$
(4)

With one basis function ϕ and the dummy basis function 1, the feature vector in (3) becomes $\phi = [1, \phi]^{\mathrm{T}}$. The weight vector including the bias term is then also two dimensional, $\mathbf{w} = [w_0, w_1]^{\mathrm{T}}$. Expressions for the gradient $\nabla E(\mathbf{w})$ and Hessian \mathbf{H} in terms of the data set are given in Bishop, eq.4.96-98. As both are implicitly dependent on the weights \mathbf{w} , they have to be recalculated after each step: hence this is known as the 'Iterative Reweighted Least Squares' algorithm.

Consider the following data set: $\{\phi_1, t_1\} = \{0.3, 1\}, \{\phi_2, t_2\} = \{0.44, 0\}, \{\phi_3, t_3\} = \{0.46, 1\}$ and $\{\phi_4, t_4\} = \{0.6, 0\},$ and initial weight vector $\mathbf{w}^{(0)} = [1.0, 1.0]^{\mathrm{T}}.$

2. Show using e.g. a Matlab implementation that for this situation the IRLS algorithm converges in a few iterations to the optimal solution $\widehat{\mathbf{w}}^{\mathrm{T}} \approx [9.8, -21.7]$, and show that this solution corresponding to a decision boundary $\phi = 0.45$ in the logistic regression model. (The IRLS algorithm should take about five lines of Matlab code inside a loop + initialization).

Part 2 - Two-class classification using logistic regression

Figure 2.1 - Two class data for logistic regression.

Two-class classification using logistic regression in the IRLS algorithm. The data consists of 1000 pairs $\{x_1, x_2\}$ with corresponding class labels $C_1 = 0$ or $C_2 = 1$. Load it into Matlab using

```
data = load('a010_irlsdata.txt','-ASCII');
X = data(:,1:2); C = data(:,3);
```

- 1. Make a scatter plot of the data, similar to Figure 2.1. (Have a look at Matlab file a010plotideas.m in Blackboard for some ideas to make such a scatter plot and the plots later on.) Do you think logistic regression can be a good approach to classification for this type of data? Explain why.
- 2. Modify the Iterative Reweighted Least Squares algorithm from part 1 to calculate the optimal weights for this data set. Use again a dummy basis function. Initialize with the weight vector $\mathbf{w}^{\mathrm{T}} = [0,0,0]$. With these initial weights, what are the class probabilities according to the logistic regression model (i.e., before optimization)?
- 3. Run the algorithm. Make a scatter plot of the data, similar to Figure 2.1, but now with colors that represent the data point probabilities $P(C=1|X_n)$ according to the model after optimization. Compare the cross entropy error with the initial value. Did it improve? Much? Explain your findings.
- 4. Introduce two Gaussian basis functions as features ϕ_1 , ϕ_2 , similar to Bishop, fig.4.12. Use identical, isotropic covariance matrices $\Sigma = \sigma^2 I$ with $\sigma^2 = 0.2$, and center the basis functions around $\mu_1 = (0,0)$ and $\mu_2 = (1,1)$. Make a scatter plot of the data in the feature domain. Do you think logistic regression can be a good approach to classification with these features? Explain why.

5. Modify the IRLS algorithm to use the features $\{\phi_1, \phi_2\}$ and the dummy basis function. Initialize with the weight vector $\mathbf{w}^T = [0, 0, 0]$.

Run the algorithm. Make a scatter plot of the data, similar to Figure 2.1, but now with colors that represent the data point probabilities $P(C=1|X_n)$ according to this second model (after optimization). Compare the cross entropy error with the initial value. Did it improve? Much? Explain your findings.