A)

Vg	Vmst	Cmst
${A,B,C,D,E,F,G,H}$	{}	0
{B,C,D,E,F,G,H}	{A}	0
{B,C,E,F,G,H}	{A,D}	6
{C,E,F,G,H}	{A,D,B}	7
{C,F,G,H}	{A,D,B,E}	10
{C,F.H}	{A,D,B,E,G}	11
{C,H}	{A,B,D,E,F,G}	13
{C}	{A,B,D,E,F,G,H}	17
{}	{A,B,C,D,E,F,G,H}	22

Respuesta= El costo minimo del arbol abarcador es de 22

B) Si el algoritmo hubiese empezado en el vertice B

Nodo D-Nodo E- Nodo G- Nodo F- Nodo H- Nodo C- Nodo A

Vg	Vmst	Cmst
{A,B,C,D,E,F,G,H}	{}	0
{A,C,D,E,F,G,H}	{B}	0
{A,C,E,F,G,H}	{B,D}	1
{A,C,F,G,H}	{B,D,E}	1+3=4
{A,C,F,H}	{B,D,E,G}	4+1=5
{A,C,H}	{B,D,E,F,G}	5+2=7
{A,C}	{B,D,E,F,G,H}	7+4=11
{A}	{B,C,D,E,F,G,H}	11+5=16
{}	{A,B,C,D,E,F,G,H}	16+6=22

El orden de Agregacion seria= {B,D,E,G,F,H,C,A}

C)Si el algoritmo empleado fuese Kruskal:

Aristas	Mst	Cmst
B-D 1	{B,D}	1
E-G 1	{B,D} {E,G}	1+1=2
E-F 2	{B,D} {E,F,G}	2+2=4
F-G 3		
D-E-3	{B,D,E,F,G}	4+3=7
F H 4	{B,D,E,F,G,H}	7+4=11

C-D-5	{B,C,D,E,F,G,H}	11+5=16
A-D-6	{A,B,C,D,E,F,G,H}	16+6=22
A-B 7		
A-C 9		
G-H 12		

Ejercicio 4:

4)a)

Cantidad de Nodos: 5

Cantidad de Aristas: 10

El grafo es completamente conexo, por lo que cada nodo tendra el mismo grado

Nodo	Grado
Α	4
В	4
С	4
D	4
E	4

Esto me indica que el conjunto minimo de colores para cada nodo sera igual a la cantidad de nodos del grafo ya que es la unica manera de lograr que cada nodo tenga un color distinto a su adyascente. Entonces C(g)=5.

4)b)

Nodo	Grado
Α	5
В	4
С	2
Во	4

Р	3
U	2

4. Es decir C(g)=4. para si luego comenzar a colorear.

Welsh-Powell		
Ord. Decreciente		
Nodo Grado		
Α	5	
В	4	
Во	4	
Р	3	
U	2	
С	2	

Utilizando el algoritmo de Welsh-Powell logro obtener un numero cromático igual a Obteniendo primero el grado de cada nada acomodarlos en orden decreciente y luego

4)c)

Nodo	Grado
Α	4
В	4
D	4
E	4
G	4
Н	4

En este caso nos encontramos con un grafo de condición N-Partito por lo cual, el número cromático es igual a la cantidad de particiones que tiene un grafo, en nuestro caso 3 por ser un grafo tri partito. C(g)= 3.

Hallamos 3 subconjuntos dentro del grafo: ab, de, hg los cuales cada uno no tiene relación entre si. Por esa razón podemos asignarles el

mismo color a cada "Sub conjunto", ya que ellos entre si no son adyacentes. Y conceptualmente en el coloreo no puedo tener 2 nodos adyacentes con el mismo color

