Understanding Cryptography

Christof Paar · Jan Pelzl

Understanding Cryptography

A Textbook for Students and Practitioners

Foreword by Bart Preneel

Prof. Dr.-Ing. Christof Paar Lehrstuhl für Kommunikationssicherheit Fakultät für Elektrotechnik und Informationstechnik Ruhr-Universität Bochum 44780 Bochum Germany christof.paar@rub.de Dr. Jan Pelzl escrypt GmbH - Embedded Security Zentrum für IT-Sicherheit Lise-Meitner-Allee 4 44801 Bochum Germany jpelzl@escrypt.com

ISBN 978-3-642-44649-8 ISBN 978-3-642-04101-3 (eBook) DOI 10.1007/978-3-642-04101-3 Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2009940447

ACM Computing Classification (1998): E.3, K.4.4, K.6.5.

© Springer-Verlag Berlin Heidelberg 2010, 2nd Corrected printing 2010

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: KuenkelLopka GmbH

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

П	٦.
1	0
	-

Flora, Maja, Noah and Sarah

as well as to

Karl, Greta and Nele

While writing this book we noticed that for some reason the names of our spouses and children are limited to five letters. As far as we know, this has no cryptographic relevance.

Foreword

Academic research in cryptology started in the mid-1970s; today it is a mature research discipline with an established professional organization (IACR, International Association for Cryptologic Research), thousands of researchers, and dozens of international conferences. Every year more than a thousand scientific papers are published on cryptology and its applications.

Until the 1970s, cryptography was almost exclusively found in diplomatic, military and government applications. During the 1980s, the financial and telecommunications industries deployed hardware cryptographic devices. The first mass-market cryptographic application was the digital mobile phone system of the late 1980s. Today, everyone uses cryptography on a daily basis: Examples include unlocking a car or garage door with a remote-control device, connecting to a wireless LAN, buying goods with a credit or debit card in a brick and mortar store or on the Internet, installing a software update, making a phone call via voice-over-IP, or paying for a ride on a public transport system. There is no doubt that emerging application areas such as e-health, car telematics and smart buildings will make cryptography even more ubiquitous.

Cryptology is a fascinating discipline at the intersection of computer science, mathematics and electrical engineering. As cryptology is moving fast, it is hard to keep up with all the developments. During the last 25 years, the theoretical foundations of the area have been strengthened; we now have a solid understanding of security definitions and of ways to prove constructions secure. Also in the area of applied cryptography we witness very fast developments: old algorithms are broken and withdrawn and new algorithms and protocols emerge.

While several excellent textbooks on cryptology have been published in the last decade, they tend to focus on readers with a strong mathematical background. Moreover, the exciting new developments and advanced protocols form a temptation to add ever more fancy material. It is the great merit of this textbook that it restricts itself to those topics that are relevant to practitioners today. Moreover, the mathematical background and formalism is limited to what is strictly necessary and it is introduced exactly in the place where it is needed. This "less is more" approach is very suitable to address the needs of newcomers in the field, as they get introduced

viii Foreword

step by step to the basic concepts and judiciously chosen algorithms and protocols. Each chapter contains very helpful pointers to further reading, for those who want to expand and deepen their knowledge.

Overall, I am very pleased that the authors have succeeded in creating a highly valuable introduction to the subject of applied cryptography. I hope that it can serve as a guide for practitioners to build more secure systems based on cryptography, and as a stepping stone for future researchers to explore the exciting world of cryptography and its applications.

Leuven, August 2009

Bart Preneel

Preface

Cryptography has crept into everything, from Web browsers and e-mail programs to cell phones, bank cards, cars and even into medical implants. In the near future we will see many new exciting applications for cryptography such as radio frequency identification (RFID) tags for anti-counterfeiting or car-to-car communications (we've worked on securing both of these applications). This is quite a change from the past, where cryptography had been traditionally confined to very specific applications, especially government communications and banking systems. As a consequence of the pervasiveness of crypto algorithms, an increasing number of people must understand how they work and how they can be applied in practice. This book addresses this issue by providing a comprehensive introduction to modern applied cryptography that is equally suited for students and practitioners in industry.

Our book provides the reader with a deep understanding of how modern cryptographic schemes work. We introduce the necessary mathematical concepts in a way that is accessible for every reader with a minimum background in college-level calculus. It is thus equally well suited as a textbook for undergraduate or beginning graduate classes, or as a reference book for practicing engineers and computer scientists who are interested in a solid understanding of modern cryptography.

The book has many features that make it a unique source for practitioners and students. We focused on practical relevance by introducing most crypto algorithms that are used in modern real-world applications. For every crypto scheme, up-to-date security estimations and key length recommendations are given. We also discuss the important issue of software and hardware implementation for every algorithm. In addition to crypto algorithms, we introduce topics such as important cryptographic protocols, modes of operation, security services and key establishment techniques. Many very timely topics, e.g., lightweight ciphers which are optimized for constrained applications (such as RFID tags or smart cards) or new modes of operations, are also contained in the book.

A discussion section at the end of each chapter with annotated references provides plenty of material for further reading. For classroom use, these sections are

x Preface

an excellent source for course projects. In particular, when used as a textbook, the companion website for the book is highly recommended:

```
www.crypto-textbook.com
```

Readers will find many ideas for course projects, links to open-source software, test vectors, and much more information on contemporary cryptography. In addition, links to video lectures are provided.

How to Use the Book

The material in this book has evolved over many years and is "classroom proven". We've taught it both as a course for beginning graduate students and advanced undergraduate students and as a pure undergraduate course for students majoring in our IT security programs. We found that one can teach most of the book content in a two-semester course, with 90 minutes of lecture time plus 45 minutes of help session with exercises per week (total of 10 ECTS credits). In a typical US-style three-credit course, or in a one-semester European course, some of the material should be omitted. Here are some reasonable choices for a one-semester course:

Curriculum 1 Focus on the *application of cryptography*, e.g., in a computer science or electrical engineering program. This crypto course is a good addition to courses in computer networks or more advanced security courses: Chap. 1; Sects. 2.1–2.2; Chap. 4; Sect. 5.1; Chap. 6; Sects. 7.1–7.3; Sects. 8.1–8.4; Sects. 10.1–10.2; Chap. 11; Chap. 12; and Chap. 13.

Curriculum 2 Focus on *cryptographic algorithms and their mathematical background*, e.g., as an applied cryptography course in computer science, electrical engineering or in an (undergraduate) math program. This crypto course works also nicely as preparation for a more theoretical graduate courses in cryptography: Chap. 1; Chap. 2; Chap. 3; Chap. 4; Chap. 6; Chap. 7; Sects. 8.1–8.4; Chap. 9; Chap. 10; and Sects. 11.1–11.2.

Trained as engineers, we have worked in applied cryptography and security for more than 15 years and hope that the readers will have as much fun with this fascinating field as we've had!

Bochum, September 2009 Christof Paar Jan Pelzl

Acknowledgements

Writing this book would have been impossible without the help of many people. We hope we did not forget anyone in our list.

We are grateful for the excellent work of Daehyun Strobel and Pascal Wißmann, who provided most of the artwork in the book and never complained about our many changes. Axel Poschmann provided the section about the PRESENT block cipher, a very timely topic, and we are thankful for his excellent work. Help with technical questions was provided by Frederick Armknecht (stream ciphers), Roberto Avanzi (finite fields and elliptic curves), Alex May (number theory), Alfred Menezes and Neal Koblitz (history of elliptic curve cryptography), Matt Robshaw (AES), and Damian Weber (discrete logarithms).

Many thanks go the members of the Embedded Security group at the University of Bochum — Andrey Bogdanov, Benedikt Driessen, Thomas Eisenbarth, Tim Güneysu, Stefan Heyse, Markus Kasper, Timo Kasper, Amir Moradi and Daehyun Strobel — who did much of the technical proofreading and provided numerous suggestions for improving the presentation of the material. Special thanks to Daehyun for helping with examples and some advanced LaTeX work, and to Markus for his help with problems. Olga Paustjan's help with artwork and typesetting is also very much appreciated.

An earlier generation of doctoral students from our group — Sandeep Kumar, Kerstin Lemke-Rust, Andy Rupp, Kai Schramm, and Marko Wolf — helped to create an online course that covered similar material. Their work was very useful and was a great inspiration when writing the book.

Bart Preneel's willingness to provide the Foreword is a great honor for us and we would like to thank him at this point again. Last but not least, we thank the people from Springer for their support and encouragement. In particular, thanks to our editor Ronan Nugent and to Alfred Hofmann.

Table of Contents

1	Intr	oductio	on to Cryptography and Data Security	1
	1.1	Overv	iew of Cryptology (and This Book)	2
	1.2	Symm	netric Cryptography	4
		1.2.1	Basics	4
		1.2.2	Simple Symmetric Encryption: The Substitution Cipher	6
	1.3	Crypta	analysis	9
		1.3.1	General Thoughts on Breaking Cryptosystems	9
		1.3.2	How Many Key Bits Are Enough?	
	1.4	Modu	lar Arithmetic and More Historical Ciphers	13
		1.4.1	Modular Arithmetic	13
		1.4.2	Integer Rings	16
		1.4.3	Shift Cipher (or Caesar Cipher)	18
		1.4.4	Affine Cipher	19
	1.5	Discus	ssion and Further Reading	
	1.6	Lesson	ns Learned	22
	Prob	olems .		24
_	α.	~		•
2		_	ohers	
	2.1		uction	
		2.1.1	Stream Ciphers vs. Block Ciphers	
		2.1.2	Encryption and Decryption with Stream Ciphers	
	2.2		om Numbers and an Unbreakable Stream Cipher	
		2.2.1	Random Number Generators	
		2.2.2	The One-Time Pad	
		2.2.3	Towards Practical Stream Ciphers	38
	2.3		Register-Based Stream Ciphers	41
		2.3.1	Linear Feedback Shift Registers (LFSR)	
		2.3.2	Known-Plaintext Attack Against Single LFSRs	
		2.3.3	Trivium	
	2.4		ssion and Further Reading	
	2.5	Lesson	ns Learned	50

xiv Table of Contents

	Prob	olems	52
3	The Data Encryption Standard (DES) and Alternatives		
	3.1	Introduction to DES	56
		3.1.1 Confusion and Diffusion	57
	3.2	Overview of the DES Algorithm	58
	3.3	Internal Structure of DES	61
		3.3.1 Initial and Final Permutation	61
		3.3.2 The <i>f</i> -Function	62
		3.3.3 Key Schedule	67
	3.4	Decryption	69
	3.5	Security of DES	72
		3.5.1 Exhaustive Key Search	73
		3.5.2 Analytical Attacks	75
	3.6	Implementation in Software and Hardware	75
	3.7	DES Alternatives	77
		3.7.1 The Advanced Encryption Standard (AES) and the AES	
		Finalist Ciphers	77
		3.7.2 Triple DES (3DES) and DESX	78
		3.7.3 Lightweight Cipher PRESENT	78
	3.8	Discussion and Further Reading	81
	3.9	Lessons Learned	82
	Prob	olems	83
1	The	Advanced Encryption Standard (AES)	87
•	4.1	Introduction	88
	4.2	Overview of the AES Algorithm	89
	4.3	Some Mathematics: A Brief Introduction to Galois Fields	90
	1.5	4.3.1 Existence of Finite Fields	90
		4.3.2 Prime Fields	93
		4.3.3 Extension Fields $GF(2^m)$	94
		4.3.4 Addition and Subtraction in $GF(2^m)$	95
		4.3.5 Multiplication in $GF(2^m)$	96
		4.3.6 Inversion in $GF(2^m)$	98
	4.4	Internal Structure of AES	99
	7.7	4.4.1 Byte Substitution Layer	
		4.4.2 Diffusion Layer	
		4.4.3 Key Addition Layer	
		4.4.4 Key Schedule	
	4.5	Decryption	
	4.6	Implementation in Software and Hardware	
	4.0	Discussion and Further Reading	
	4.8	Lessons Learned	
		slems	

Table of Contents xv

5	Moı	e About Block Ciphers	123
	5.1	Encryption with Block Ciphers: Modes of Operation	124
		5.1.1 Electronic Codebook Mode (ECB)	124
		5.1.2 Cipher Block Chaining Mode (CBC)	128
		5.1.3 Output Feedback Mode (OFB)	130
		5.1.4 Cipher Feedback Mode (CFB)	131
		5.1.5 Counter Mode (CTR)	132
		5.1.6 Galois Counter Mode (GCM)	134
	5.2	Exhaustive Key Search Revisited	136
	5.3	Increasing the Security of Block Ciphers	137
		5.3.1 Double Encryption and Meet-in-the-Middle Attack	138
		5.3.2 Triple Encryption	140
		5.3.3 Key Whitening	141
	5.4	Discussion and Further Reading	143
	5.5	Lessons Learned	144
	Prob	olems	145
6		oduction to Public-Key Cryptography	
	6.1	Symmetric vs. Asymmetric Cryptography	
	6.2	Practical Aspects of Public-Key Cryptography	
		6.2.1 Security Mechanisms	
		6.2.2 The Remaining Problem: Authenticity of Public Keys	
		6.2.3 Important Public-Key Algorithms	
		6.2.4 Key Lengths and Security Levels	
	6.3	Essential Number Theory for Public-Key Algorithms	
		6.3.1 Euclidean Algorithm	
		6.3.2 Extended Euclidean Algorithm	
		6.3.3 Euler's Phi Function	
		6.3.4 Fermat's Little Theorem and Euler's Theorem	
	6.4	Discussion and Further Reading	
	6.5	Lessons Learned	
	Prob	olems	170
_	an.	Pak a	4.50
7		RSA Cryptosystem	
	7.1	Introduction	
	7.2	Encryption and Decryption	
	7.3	Key Generation and Proof of Correctness	
	7.4	Encryption and Decryption: Fast Exponentiation	
	7.5	Speed-up Techniques for RSA	
		7.5.1 Fast Encryption with Short Public Exponents	
	7.	7.5.2 Fast Decryption with the Chinese Remainder Theorem	
	7.6	Finding Large Primes	
		7.6.1 How Common Are Primes?	
		7.6.2 Primality Tests	
	7.7	RSA in Practice: Padding	192

xvi Table of Contents

	7.8	Attacks	194
	7.9	Implementation in Software and Hardware	197
	7.10	Discussion and Further Reading	198
		Lessons Learned	
	Prob	lems	200
_			
8	Publ 8.1	lic-Key Cryptosystems Based on the Discrete Logarithm Problem	
	8.2	Diffie–Hellman Key Exchange	
	0.2	8.2.1 Groups	
		8.2.2 Cyclic Groups	
		•	
	0.2	8 1	
	8.3	The Discrete Logarithm Problem	
		8.3.1 The Discrete Logarithm Problem in Prime Fields	
		8.3.2 The Generalized Discrete Logarithm Problem	
	0.4	8.3.3 Attacks Against the Discrete Logarithm Problem	
	8.4	Security of the Diffie-Hellman Key Exchange	
	8.5	The Elgamal Encryption Scheme	
		8.5.1 From Diffie–Hellman Key Exchange to Elgamal Encryption	
		8.5.2 The Elgamal Protocol	
		8.5.3 Computational Aspects	
	8.6		
	8.7	Discussion and Further Reading	
		lems	
	1100	icilis	234
9	Ellip	otic Curve Cryptosystems	239
	9.1	How to Compute with Elliptic Curves	240
		9.1.1 Definition of Elliptic Curves	241
		9.1.2 Group Operations on Elliptic Curves	242
	9.2	Building a Discrete Logarithm Problem with Elliptic Curves	246
	9.3	Diffie-Hellman Key Exchange with Elliptic Curves	249
	9.4	Security	251
	9.5	Implementation in Software and Hardware	252
	9.6	Discussion and Further Reading	253
	9.7	Lessons Learned	255
	Prob	lems	256
10	Digi	tal Signatures	250
10		Introduction	
	10.1	10.1.1 Odd Colors for Cars, or: Why Symmetric Cryptography Is	200
		Not Sufficient	260
		10.1.2 Principles of Digital Signatures	
		10.1.3 Security Services	
	10.2	The RSA Signature Scheme	264

Table of Contents xviii

		10.2.1 Schoolbook RSA Digital Signature	. 265
		10.2.2 Computational Aspects	
		10.2.3 Security	. 267
	10.3	The Elgamal Digital Signature Scheme	. 270
		10.3.1 Schoolbook Elgamal Digital Signature	. 270
		10.3.2 Computational Aspects	. 273
		10.3.3 Security	
	10.4	The Digital Signature Algorithm (DSA)	. 277
		10.4.1 The DSA Algorithm	. 277
		10.4.2 Computational Aspects	. 280
		10.4.3 Security	
	10.5	The Elliptic Curve Digital Signature Algorithm (ECDSA)	. 282
		10.5.1 The ECDSA Algorithm	. 282
		10.5.2 Computational Aspects	. 285
		10.5.3 Security	
	10.6	Discussion and Further Reading	. 287
	10.7	Lessons Learned	. 288
	Prob	lems	. 289
11		n Functions	
		Motivation: Signing Long Messages	
	11.2	Security Requirements of Hash Functions	
		11.2.1 Preimage Resistance or One-Wayness	
		11.2.2 Second Preimage Resistance or Weak Collision Resistance	
	11.0	11.2.3 Collision Resistance and the Birthday Attack	
	11.3	Overview of Hash Algorithms	
		11.3.1 Dedicated Hash Functions: The MD4 Family	
	11 /	11.3.2 Hash Functions from Block Ciphers	
	11.4	The Secure Hash Algorithm SHA-1	
		11.4.1 Preprocessing	
		11.4.2 Hash Computation	
	115	Discussion and Further Reading	
		Lessons Learned	
		lems	
	1100	icilis	. 313
12	Mes	sage Authentication Codes (MACs)	. 319
		Principles of Message Authentication Codes	
	12.2	MACs from Hash Functions: HMAC	. 321
		MACs from Block Ciphers: CBC-MAC	
		Galois Counter Message Authentication Code (GMAC)	
		Discussion and Further Reading	
		Lessons Learned	
		lems	

xviii Table of Contents

13	Key Establishment	331
	13.1 Introduction	332
	13.1.1 Some Terminology	
	13.1.2 Key Freshness and Key Derivation	
	13.1.3 The n^2 Key Distribution Problem	
	13.2 Key Establishment Using Symmetric-Key Techniques	
	13.2.1 Key Establishment with a Key Distribution Center	336
	13.2.2 Kerberos	339
	13.2.3 Remaining Problems with Symmetric-Key Distribution	
	13.3 Key Establishment Using Asymmetric Techniques	
	13.3.1 Man-in-the-Middle Attack	
	13.3.2 Certificates	344
	13.3.3 Public-Key Infrastructures (PKI) and CAs	
	13.4 Discussion and Further Reading	
	13.5 Lessons Learned	
	Problems	
Ref	erences	359
Ind	ev	367