8 Page 54

- **4.1** Fix some $k, m \in N$, we proceed by induction on n, for n = 0, (k+m) + 0 = k + (m+0) implies k+m = k+m so we are done. Now assume (*) (k+m)+n = k+(m+n) holds for n, then (k+m)+(n+1) = [(k+m)+n]+1 by 4.3, by induction hypothesis (*) it follows that (k+m)+(n+1) = [k+(m+n)]+1, hence 4.3 implies [k+(m+n)]+1=k+((m+n)+1)=k+(m+(n+1)), thus (k+m)+(n+1)=k+(m+(n+1)), this completes the proof. since k,m were arbitrary the propositions holds for all $k,m,n \in N$.
- **4.2** We prove by induction on k, Let k=0 then m< n iff m+0< n+0 trivially. Now assume that m< n iff m+k< n+k holds for k, we must prove that m< n implies m+(k+1)< n+(k+1). Assume m< n, then m+k< n+k by induction hypothesis, exercise 2.2 (page 45) implies that (m+k)+1<(n+k)+1, by previous exercise m+(k+1)< n+(k+1), this completes the induction. the other side can be done by the fact that S(n) is one-to-one.
- **4.3** We prove it by induction on m, if m = 0 then $0 \le n$ iff there is some $k \in N$ such that n = 0 + k, namely k = n. Let $m + 1 \le n$, since m < m + 1 we have (*) m < n and $m \le n$, by induction hypothesis we get n = m + k for some $k \in N$, $k \ne 0$ since otherwise we get n = m which contradicts (*), hence k = k' + 1 for some $k' \in N$, thus n = m + k = m + (k' + 1) = m + (1 + k') = (m + 1) + k' for some $k' \in N$, thus we are done.
- **4.4** We use parametric version of Recursion Theorem, let P = A = N and $a: P \to N$ be such that a(p) = 0 for every $p \in P = N$ and $g: N \times N \times N \to N$ such that g(p, x, n) = x + p, then there is a function \cdot such that $m \cdot 0 = \cdot (m, 0) = a(m) = 0$ for all $m \in N$ and $m \cdot (n + 1) = \cdot (m, n + 1) = g(m, \cdot (m, n), n) = \cdot (m, n) + m = m \cdot n + m$.
- **4.5** We should prove that $m \cdot n = n \cdot m$ for every $m, n \in N$. we proceed by induction on n, if n = 0 then $m \cdot 0 = 0$, we need to show that $0 = 0 \cdot m$ for all m, if m = 0 then $0 = 0 \cdot 0$, now assume that $0 = 0 \cdot m$ holds then $0 \cdot (m+1) = 0 \cdot m + 0$, by induction hypothesis we get $0 \cdot (m+1) = 0 + 0 = 0$, thus for every m we have $m \cdot 0 = 0 \cdot m$. Now assume that $m \cdot n = n \cdot m$ holds for n, we should prove (*) $m \cdot (n+1) = (n+1) \cdot m$ for all $m \in N$, we proceed

```
by induction on m, if m=0 it trivially holds. Now assume that (*) holds for
m, we should prove that (m+1) \cdot (n+1) = (n+1) \cdot (m+1). but we know
that (m+1) \cdot (n+1) = [(m+1) \cdot n] + (m+1) = [n \cdot (m+1)] + (m+1) =
    = (n \cdot m + n) + (m+1)
   = (n \cdot +m) + (n+1)
   = (m \cdot n + m) + (n+1)
   = (m \cdot (n+1)) + (n+1)
    = (n+1) \cdot m + (n+1)
   = (n+1) \cdot (m+1) and this completes the proof.
   To prove that multiplication is distributive over addition we must show
that m \cdot (n+k) = m \cdot n + m \cdot k. we proceed by induction on k, if k=0 then
m \cdot (n+0) = m \cdot n on the other hand m \cdot n = m \cdot n + 0 = m \cdot n + m \cdot 0, thus
m \cdot (n+0) = m \cdot n + m \cdot 0. Now assume that m \cdot (n+k) = m \cdot n + m \cdot k holds
for k, then m \cdot (n + (k+1))
    = m \cdot ((n+k)+1)
   = m \cdot (n+k) + m
   = (m \cdot n + m \cdot k) + m (by induction hypothesis)
   = m \cdot n + (m \cdot k + m)
   = m \cdot n + m \cdot (k+1)
```

this completes the induction.

To prove that it is associative we need to prove $(m \cdot n) \cdot k = m \cdot (n \cdot k)$ for all $m, n, k \in N$. Fix some $m, n \in N$, we proceed by induction on k, for $k=0, (m\cdot n)\cdot 0=m\cdot (n\cdot 0)=0$ holds, since $m\cdot 0=0$. Assume that $(m \cdot n) \cdot k = m \cdot (n \cdot k)$ holds for k, then: $(m \cdot n) \cdot (k+1)$ $= (m \cdot n) \cdot k + m \cdot n$

```
= m \cdot (n \cdot k) + m \cdot n by induction hypothesis
= m \cdot ((n \cdot k) + n) by distributive property
= m \cdot (n \cdot (k+1))
```