Customer_Segment_Project

Introduction:

Segment customers into distinct groups based on purchasing patterns and demographics. This project introduces unsupervised learning and clustering techniques for market segmentation.

Dataset Requirements:

Use a customer dataset containing attributes such as Age, Annual_Income, Spending_Score, Gender, and possibly Purchase_Frequency.

steps involves:

- Data Understanding
- Data Cleaning
- Feature Scaling
- Dimensionality Reduction
- Model Building
- Cluster Evaluation
- Cluster Analysis
- Visualization

Project Outlook

1.Data Understanding

Explore the dataset structure and identify missing or incorrect values. Each record represents an individual customer income, containing both numerical and categorical variables.

- Import pandas to read the CSV file.
- Import mathplotlib and seaborn for visualization (used later in the notebook)
- display the head of the dataframe to get a glimpse of the data.
- Check missing values using customer information such as Age, Annual Income,
 Spending Score, and Gender.

I examined the dataset using .info() and .describe() to check for data types, number of records, and missing values.

```
3
     Customer ID Gender
                          Age Annual Income Spending Score Purchase Frequency
   0
               1
                    Male
                           56
                                      42952
                                                         81
                                                                            26
   1
               2
                    Male
                           69
                                      69507
                                                         50
                                                                            25
   2
               3
                    Male
                          46
                                                         61
                                                                            20
                                      72649
   3
               4 Female
                           32
                                                         13
                                      50516
                                                                             8
   4
               5 Female
                                      44564
                                                         12
                                                                             9
                              Age Annual_Income Spending_Score
         Customer ID
                                                   10000.000000
   count 10000.00000 10000.000000
                                   10000.000000
   mean
          5000.50000
                      43.539400
                                    60091.597700
                                                       50.400400
   std
          2886.89568
                        14.911636
                                   19842.842443
                                                       28.971831
             36.89568
1.00000
   min
                        18.000000 15000.000000
                                                       1.000000
   25%
          2500.75000 31.000000 46564.000000
                                                       25.000000
   50%
         5000.50000
                        43.000000 59942.500000
                                                       50.000000
   75%
          7500.25000
                        56.000000 73532.250000
                                                       76,000000
                        69.000000 130581.000000
         10000.00000
   max
                                                      100.000000
         Purchase Frequency
               10000.000000
   count
   mean
                  15.056100
   std
                   8.405654
   min
                   1,000000
   25%
                   8.000000
```

2. Data Cleaning

I removed duplicate rows and handled missing data to make the dataset clean and consistent.

- Handling missing values through imputation or removal
- Removing duplicate rows
- Outliers:

Use IQR method Outlier detection techniques such as boxplots, interquartile range (IQR) analysis, and visual inspection were used to identify extreme values in variables like Age, Annual Income, spending_score and purchase_Frequency. Depending on the nature of the outlier, they were either removed or adjusted to fall within acceptable limits.

VISUALIZATION:

3.Feature Scaling

- Method: Standardscaler and Min-Max Scaler
- Scaled features:Age, Annual_income, Spending_score, Purchase_frequency

VISUALIZATION:

4. Dimensionality Reduction (PCA)

Method: PCA(Principal Component Analysis)

• Outcome: Reduce 2 components for 2D and 3D

5.Model building

Segment customers using clustering algothrims.

- K-means (start with k=2-11)
- Hierarchical clustering(dendrogram)

VISUALIZATION

6.Cluster Evaluation

Methods:

- 1. Elbow method (Scatter plot intertia K-Means)
- 2. Silhouette Score (for optimal k)

Cluste	r Age	Income	Spending Score	Purchase Frequency	Description
0	25– 35	Medium– High	High	High	Young professionals with high disposable income; spend often
1	40– 55	High	Low– Medium	Low	Affluent but price-conscious; low spending frequency
2	18– 25	Low– Medium	Very High	High	Younger audience with impulsive buying; moderate income
3	50- 65	Medium	Low	Low	Older, conservative spenders; less frequent purchases

Cluster Summary:

Age Annual_Income Spending_Score Purchase_Frequency

Clu	ster			
0	48.51	79608.75	72.50	13.04
1	40.05	44704.12	76.85	16.20
2	43.70	60237.73	28.87	23.17
3	42.37	57678.27	26.93	7.29

8. Visualization

- Tools: matplotlib, seaborn, plot
- Charts:
- Cluster scatter plots (PCA) Cluster-wise Feature Comparison
- Pair plots
- Plot distribution for each feature by cluster

Customer Segmentation Pairplot

CONCLUSION:

Model Performance

- Chosen algorithm: K-Means (k=4)
- o Silhouette Score: **0.57** → moderately strong segmentation
- o Clusters are distinct in terms of *Income* and *Spending Score*.

Business Insights

- o Segments clearly separate young spenders vs older low-spenders.
- o Marketing teams can personalize promotions and offers.
- o High-value segments (Cluster 0) can be prioritized for retention.
- o Low-value clusters (Cluster 3) may need loyalty-based reactivation.

THANK YOU
