Bayesian Mixture Models and Expectation Maximization STATS 305C: Applied Statistics

Scott Linderman

April 18, 2022

Outline

- ► Model: Bayesian mixture models
- ► Algorithm: MAP Estimation / K-Means
- ► Algorithm: Expectation Maximization

Motivation: Clustering scRNA-seq data

From Kiselev et al. [2019]

Motivation: Foreground/background segmentation

https://ai.stanford.edu/~syyeung/cvweb/tutorial3.html

Motivation: Density estimation

Notation

Constants: Let

- ► *N* denote the number of data points.
- ► *K* denote the number of mixture components (i.e. clusters)

Data: Let

 $ightharpoonup x_n \in \mathbb{R}^D$ denote the *n*-th data point.

Latent Variables: Let

 $ightharpoonup z_n \in \{1, ..., K\}$ denote the *assignment* of the *n*-th data point.

Notation II

Parameters: Let

- \triangleright θ_k denote the *natural parameters* of component k
- lacktriangledown $\pi \in \Delta_{\mathcal{K}=1}$ denote the component *proportions* (i.e. probabilities).

$$T = [T_1, \dots, T_k]$$

Hyperparameters: Let

- $ightharpoonup \phi$, v denote hyperparameters of the prior on θ
- lacksquare $\alpha \in \mathbb{R}_+^K$ denote the concentration of the prior on proportions.

Generative Model

1. Sample the proportions from a Dirichlet prior:

$$\pi \sim \text{Dir}(\alpha)$$

The beta distribution

Figure: The beta distribution over $\pi \in [0,1]$ is a special case of the Dirichlet distribution. https://en.wikipedia.org/wiki/Beta_distribution

The Dirichlet distribution

If the beta distribution generates weighted coins, the Dirichlet generates weighted dice.

Figure: The Dirichlet distribution over $\pi \in \Delta_2$; i.e. distributions over K=3 outcomes. From https://en.wikipedia.org/wiki/Dirichlet_distribution

Generative Model

1. Sample the proportions from a Dirichlet prior:

$$\pi \sim \mathrm{Dir}(\alpha)$$

2. Sample the parameters for each component:

 $\theta_{\,\nu} \stackrel{\mathsf{iid}}{\sim} p(\theta \mid \boldsymbol{\phi}, \, \nu) \qquad \mathsf{for} \, k = 1, \dots, K$

3. Sample the assignment of each data point:

$$z_n \stackrel{\text{iid}}{\sim} \pi$$
 for $n = 1, ..., N$

4. Sample data points given their assignments:

 $\mathbf{x}_n \sim p(\mathbf{x} \mid \boldsymbol{\theta}_{z_n})$ for $n = 1, \dots, N$

(3)

(4)

(5)

11/36

Joint distribution

► This generative model corresponds to the following factorization of the joint distribution,

$$p(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{v}, \boldsymbol{\alpha}) = p(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K p(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, \boldsymbol{v}) \prod_{n=1}^N p(\boldsymbol{z}_n \mid \boldsymbol{\pi}) p(\boldsymbol{x}_n \mid \boldsymbol{z}_n, \{\boldsymbol{\theta}_k\}_{k=1}^K)$$
(6)

► Equivalently,

$$p(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(z_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{v}, \boldsymbol{\alpha}) = p(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K p(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, \boldsymbol{v}) \prod_{n=1}^N \prod_{k=1}^K \left[\Pr(z_n = k \mid \boldsymbol{\pi}) p(\boldsymbol{x}_n \mid \boldsymbol{\theta}_k) \right]^{\mathbb{I}[z_n = k]}$$
(7)

Substituting in the assumed forms

$$p(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{\nu}, \boldsymbol{\alpha}) = \mathrm{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K p(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, \boldsymbol{\nu}) \prod_{n=1}^N \prod_{k=1}^K [\pi_k p(\boldsymbol{x}_n \mid \boldsymbol{\theta}_k)]^{\mathbb{I}[\boldsymbol{z}_n = k]}$$

Joint distribution

► This generative model corresponds to the following factorization of the joint distribution,

$$p(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{v}, \boldsymbol{\alpha}) = p(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K p(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, \boldsymbol{v}) \prod_{n=1}^N p(\boldsymbol{z}_n \mid \boldsymbol{\pi}) p(\boldsymbol{x}_n \mid \boldsymbol{z}_n, \{\boldsymbol{\theta}_k\}_{k=1}^K)$$
(6)

► Equivalently,

$$\rho(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{v}, \boldsymbol{\alpha}) = \rho(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K \rho(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, \boldsymbol{v}) \prod_{k=1}^N \prod_{k=1}^K \left[\Pr(\boldsymbol{z}_n = k \mid \boldsymbol{\pi}) \rho(\boldsymbol{x}_n \mid \boldsymbol{\theta}_k) \right]^{\mathbb{I}[\boldsymbol{z}_n = k]}$$
(7)

Substituting in the assumed forms

$$p(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{v}, \boldsymbol{\alpha}) = \operatorname{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K p(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, \boldsymbol{v}) \prod_{n=1}^N \prod_{k=1}^K [\pi_k p(\boldsymbol{x}_n \mid \boldsymbol{\theta}_k)]^{\mathbb{I}[\boldsymbol{z}_n = 1]}$$

Joint distribution

► This generative model corresponds to the following factorization of the joint distribution,

$$p(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{\nu}, \boldsymbol{\alpha}) = p(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K p(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, \boldsymbol{\nu}) \prod_{n=1}^N p(\boldsymbol{z}_n \mid \boldsymbol{\pi}) p(\boldsymbol{x}_n \mid \boldsymbol{z}_n, \{\boldsymbol{\theta}_k\}_{k=1}^K)$$
(6)

► Equivalently,

$$\rho(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(z_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{\nu}, \boldsymbol{\alpha}) = \\ \rho(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{n=1}^K \rho(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, \boldsymbol{\nu}) \prod_{n=1}^K \left[\Pr(z_n = k \mid \boldsymbol{\pi}) \rho(\boldsymbol{x}_n \mid \boldsymbol{\theta}_k) \right]^{\mathbb{I}[z_n = k]}$$
(7)

Substituting in the assumed forms

$$p(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{v}, \boldsymbol{\alpha}) = \operatorname{Dir}(\boldsymbol{\pi} \mid \boldsymbol{\alpha}) \prod_{k=1}^K p(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, \boldsymbol{v}) \prod_{n=1}^N \prod_{k=1}^K [\pi_k p(\boldsymbol{x}_n \mid \boldsymbol{\theta}_k)]^{\mathbb{I}[\boldsymbol{z}_n = k]}$$

Exponential family mixture models

What about $p(\mathbf{x} \mid \boldsymbol{\theta}_k)$ and $p(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, v)$?

Let's assume an **exponential family** likelihood,

suff stats natural params
$$p(\mathbf{x} \mid \boldsymbol{\theta}_k) = h(\mathbf{x}_n) \exp\left\{ \langle t(\mathbf{x}_n), \boldsymbol{\theta}_k \rangle - A(\boldsymbol{\theta}_k) \right\}. \tag{9}$$

Then assume a **conjugate prior**,

$$p(\boldsymbol{\theta}_k \mid \boldsymbol{\phi}, \boldsymbol{\nu}) \propto \exp\left\{\langle \boldsymbol{\phi}, \boldsymbol{\theta}_k \rangle - \boldsymbol{\nu} A(\boldsymbol{\theta}_k)\right\}. \tag{10}$$

The hyperparmeters ϕ are **pseudo-observations** of the sufficient statistics (like statistics from fake data points) and ν is a **pseudo-count** (like the number of fake data points).

Note that the product of prior and likelihood remains in the same family as the prior. That's why we call it conjugate.

Example: Gaussian mixture model

Assume the conditional distribution of \mathbf{x}_n is a Gaussian with mean $\boldsymbol{\theta}_k \in \mathbb{R}^D$ and identity covariance.

$$p(\mathbf{x}_{n} \mid \boldsymbol{\theta}_{k}) = \mathcal{N}(\mathbf{x}_{n} \mid \boldsymbol{\theta}_{k}, \mathbf{I})$$

$$= (2\pi)^{-D/2} \exp\left\{-\frac{1}{2}(\mathbf{x}_{n} - \boldsymbol{\theta}_{k})^{T}(\mathbf{x}_{n} - \boldsymbol{\theta}_{k})\right\}$$

$$= (2\pi)^{-D/2} \exp\left\{-\frac{1}{2}\mathbf{x}_{n}^{T}\mathbf{x}_{n} + \mathbf{x}_{n}^{T}\boldsymbol{\theta}_{k} - \frac{1}{2}\boldsymbol{\theta}_{k}^{T}\boldsymbol{\theta}_{k}\right\},$$

$$= (2\pi)^{-D/2} \exp\left\{-\frac{1}{2}\mathbf{x}_{n}^{T}\mathbf{x}_{n} + \mathbf{x}_{n}^{T}\boldsymbol{\theta}_{k} - \frac{1}{2}\boldsymbol{\theta}_{k}^{T}\boldsymbol{\theta}_{k}\right\},$$

$$(13)$$
which is an exponential family distribution with base measure $h(\mathbf{x}_{n}) = (2\pi)^{-D/2}e^{-\frac{1}{2}\mathbf{x}_{n}^{T}\mathbf{x}_{n}},$ sufficient

statistics $t(\mathbf{x}_n) = \mathbf{x}_n$, and log normalizer $A(\theta_k) = \frac{1}{2} \theta_k^{\top} \theta_k$.

The conjugate prior is a Gaussian prior on the mean,

$$p(\boldsymbol{\theta}_{k} \mid \boldsymbol{\phi}, \boldsymbol{\nu}) = \mathcal{N}(\boldsymbol{\nu}^{-1} \boldsymbol{\phi}, \boldsymbol{\nu}^{-1} \boldsymbol{I}) \propto \exp\left\{\boldsymbol{\phi}^{\top} \boldsymbol{\theta}_{k} - \frac{\boldsymbol{\nu}}{2} \boldsymbol{\theta}_{k}^{\top} \boldsymbol{\theta}_{k}\right\} = \exp\left\{\boldsymbol{\phi}^{\top} \boldsymbol{\theta}_{k} - \boldsymbol{\nu} \boldsymbol{A}(\boldsymbol{\theta}_{k})\right\}. \tag{14}$$

Note that ϕ sets the location and ν sets the precision (i.e. inverse variance).

Outline

- ► Model: Bayesian mixture models
- ► Algorithm: MAP Estimation / K-Means
- ► Algorithm: Expectation Maximization

MAP inference via coordinate ascent

Let's first consider maximum a posteriori (MAP) inference.

Idea: find the mode of $p(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{z_n\}_{n=1}^N \mid \{\boldsymbol{x}_n\}_{n=1}^N, \boldsymbol{\phi}, \boldsymbol{v}, \boldsymbol{\alpha})$ by **coordinate ascent**.

For now, set $\phi = 0$, and v = 0 so that the prior is an (improper) uniform distribution. Then maximizing the posterior is equivalent to maximizing the likelihood.

While we're simplifying, let's even fix $\pi = \frac{1}{K} \mathbf{1}_K$.

Coordinate ascent in the Gaussian mixture model

For the Gaussian mixture model (with uniform prior and $\pi = \frac{1}{K} \mathbf{1}_K$), coordinate ascent amounts to:

1. For each n = 1, ..., N, fix all variables but z_n and find z_n^* that maximizes

$$p(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(z_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{\nu}, \boldsymbol{\alpha}) \propto p(\boldsymbol{x}_n \mid z_n, \{\boldsymbol{\theta}_k\}_{k=1}^K) = \mathcal{N}(\boldsymbol{x}_n \mid \boldsymbol{\theta}_{z_n}, \boldsymbol{I})$$
(15)

The cluster assignment that maximizes the likelihood is the one with the closest mean to x_n , so set

$$z_n^* = \underset{k \in \{1, \dots, K\}}{\min} \| \mathbf{x}_n - \boldsymbol{\theta}_k \|_2. \tag{16}$$

Coordinate ascent in the Gaussian mixture model II

2 For each k = 1, ..., K, fix all variables but θ_k and find θ_k^* that maximizes,

$$p(\boldsymbol{\pi}, \{\boldsymbol{\theta}_k\}_{k=1}^K, \{(\boldsymbol{z}_n, \boldsymbol{x}_n)\}_{n=1}^N \mid \boldsymbol{\phi}, \boldsymbol{\nu}, \boldsymbol{\alpha}) \propto \prod_{n=1}^N p(\boldsymbol{x}_n \mid \boldsymbol{\theta}_k)^{\mathbb{I}[\boldsymbol{z}_n = k]}$$
(17)

$$\propto \exp \left\{ \sum_{n=1}^{N} \mathbb{I}[z_n = k] \left(\mathbf{x}_n^{\top} \boldsymbol{\theta}_k - \frac{1}{2} \boldsymbol{\theta}_k^{\top} \boldsymbol{\theta}_k \right) \right\}$$
 (18)

Taking the derivative of the log and setting to zero yields,

$$\boldsymbol{\theta}_{k}^{\star} = \frac{1}{N_{k}} \sum_{n=1}^{K} \mathbb{I}[z_{n} = k] \boldsymbol{x}_{n}, \tag{19}$$

where
$$N_k = \sum_{n=1}^N \mathbb{I}[z_n = k]$$
.

This is the **k-means algorithm!**