Definition

Given:

ightharpoonup a manifold \mathcal{M} ;

Definition

Given:

- \triangleright a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values;

Definition

Given:

- \triangleright a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values; the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}/\sim$$
.

Definition

Given:

- \triangleright a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values; the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}(f)$$

$$x \sim y \text{ if } f(x) = f(y) \text{ and they belong to the same connected component of } f^{-1}(f(x))$$

Definition

Given:

- ightharpoonup a manifold \mathcal{M} ;
- ▶ a Morse function $f: \mathcal{M} \to \mathbb{R}$ with distinct critical values; the **Reeb graph** of f is the 1-dimensional simplicial complex

$$\mathcal{R}(f) = \mathcal{M}/\sim$$
.

The **segmentation map** is the quotient map

Desired algorithm

Input:

ightharpoonup a PL manifold ${\cal M}$

Desired algorithm

Input:

a PL manifold M
 → a triangulated mesh M;

Desired algorithm

Input:

- a PL manifold M
 → a triangulated mesh M;
- ightharpoonup a non-degenerate PL scalar field f on ${\mathcal M}$

Desired algorithm

Input:

- ightharpoonup a PL manifold ${\cal M}$
 - \rightsquigarrow a triangulated mesh \mathcal{M} ;
- ightharpoonup a non-degenerate PL scalar field f on ${\cal M}$
 - \rightsquigarrow a scalar value f(v) for each vertex v of \mathcal{M} .
 - pairwise different, in order to ensure non-degeneracy; this can be achieved by random perturbations

Desired algorithm

Input:

- a PL manifold M
 → a triangulated mesh M;
- ▶ a non-degenerate PL scalar field f on \mathcal{M} \rightsquigarrow a scalar value f(v) for each vertex v of \mathcal{M} .

Output:

▶ the augmented Reeb graph $\mathcal{R}(f)$.

► graph + segmentation map

Desired algorithm

Input:

- a PL manifold M
 → a triangulated mesh M;
- a non-degenerate PL scalar field f on M
 → a scalar value f(v) for each vertex v of M.

Output:

▶ the augmented Reeb graph $\mathcal{R}(f)$.

Time complexity:

 \triangleright $O(m \cdot \log m)$, where m is the size of the 2-skeleton of \mathcal{M} .

#vertices + #edges + #triangles

Desired algorithm

Input:

- a PL manifold M
 → a triangulated mesh M;
- a non-degenerate PL scalar field f on M
 → a scalar value f(v) for each vertex v of M.

Output:

▶ the augmented Reeb graph $\mathcal{R}(f)$.

Time complexity:

 $ightharpoonup O(m \cdot \log m)$, where m is the size of the 2-skeleton of \mathcal{M} .

Parallel.

Geometry of critical points

There are three kinds of critical points:

Geometry of critical points

There are three kinds of critical points:

▶ (local) maxima

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
- ► (local) minima

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
- ▶ (local) minima
- saddles

Geometry of critical points

There are three kinds of critical points:

► (local) maxima

► (local) minima

saddles

How to detect them on a PL manifold?

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
- ► (local) minima
- saddles

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
- ► (local) minima
- saddles

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
- ► (local) minima
- saddles

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

$$Link^{+}(v) = \{x \in Link(v) : f(x) > f(v)\}$$

$$Link^{-}(v) = \{x \in Link(v) : f(x) < f(v)\}$$

Geometry of critical points

There are three kinds of critical points:

- (local) minima
- saddles

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

$$Link^{+}(v) = \{x \in Link(v) : f(x) > f(v)\}$$

$$Link^{-}(v) = \{x \in Link(v) : f(x) < f(v)\}$$

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
 ~> Link⁺ empty;
- ► (local) minima ~> Link⁻ empty;
- saddles

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

$$Link^{+}(v) = \{x \in Link(v) : f(x) > f(v)\}$$

$$Link^{-}(v) = \{x \in Link(v) : f(x) < f(v)\}$$

Geometry of critical points

There are three kinds of critical points:

- ► (local) maxima
 ~> Link⁺ empty;

How to detect them on a PL manifold?

Given a vertex v, the star of v is the union of all simplices containing v.

$$\mathsf{Link}^+(v) = \{ x \in \mathsf{Link}(v) : f(x) > f(v) \}$$

 $\mathsf{Link}^-(v) = \{ x \in \mathsf{Link}(v) : f(x) < f(v) \}$

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

► Maxima and minima \rightsquigarrow nodes of valence 1 (leaves).

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

- Maxima and minima → nodes of valence 1 (leaves).
- ▶ **Saddles** \rightsquigarrow nodes of valence ≥ 2 .

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

- Maxima and minima → nodes of valence 1 (leaves).
- ▶ **Saddles** \rightsquigarrow nodes of valence ≥ 2 .
 - ▶ Join saddles: multiple components below.
 - ► Split saddles: multiple components above.

Significance of critical points

The critical points of f are closely related to the topology of the Reeb graph $\mathcal{R}(f)$.

- Maxima and minima → nodes of valence 1 (leaves).
- ▶ **Saddles** \rightsquigarrow nodes of valence ≥ 2 .
 - ▶ Join saddles: multiple components below.
 - ► Split saddles: multiple components above.

non-mutually exclusive in dimension ≥ 3

