Rayleigh quotient

 Assume A is real and symmetric. Thus A has real eigenvalues and a complete set of orthogonal eigenvectors.

$$\{\lambda_1, \ldots, \lambda_n\}, \{q_1, \ldots, q_n\} \quad ||q_i|| = 1$$

<u>Def</u>: The Rayleigh quotient of a vector x is:

$$r(x) = \frac{x^T A x}{x^T x}$$

<u>Notes</u>

- 1) If x is an eigenvector, then r(x) is an eigenvalue.
- 2) Given x, find α such that

$$\min_{\alpha} \left\| \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \alpha - Ax \right\|_{2} \qquad (n \times 1 \text{ least squares})$$

The normal equations: $(x^T x) \alpha = x^T (Ax)$

$$\alpha = r(x)$$

3) Theorem: Let q_i be an eigenvector and $x \approx q_i$. Then

$$r(x) - r(q_J) = O(||x-q_J||^2)$$
 as $x \rightarrow q_J$

Power iteration

Let $v^{(0)} = approx$. eigenvector, $||v^{(0)}|| = 1$, and $\{q_i\} = set$ of eigenvectors.

Then
$$\mathbf{v}^{(0)} = \mathbf{c}_1 \, \mathbf{q}_1 + \mathbf{c}_2 \, \mathbf{q}_2 + \ldots + \mathbf{c}_n \, \mathbf{q}_n$$

$$\mathbf{A} \, \mathbf{v}^{(0)} = \mathbf{c}_1 \, \lambda_1 \, \mathbf{q}_1 + \mathbf{c}_2 \, \lambda_2 \, \mathbf{q}_2 + \ldots + \mathbf{c}_n \, \lambda_n \, \mathbf{q}_n$$

Similarly,
$$A^k v^{(0)} = c_1 \lambda_1^k q_1 + c_2 \lambda_2^k q_2 + \dots + c_n \lambda_n^k q_n$$

= $\lambda_1^k (c_1 q_1 + c_2 (\lambda_2/\lambda_1)^k q_2 + \dots + c_n (\lambda_n/\lambda_1)^k q_n)$

Suppose $|\lambda_1| > |\lambda_2| \ge \ldots \ge |\lambda_n|$. Then $|\lambda_i/\lambda_1|^k \to 0$ as $k \to \infty$.

$$A^k v^{(0)} \sim c_1 \lambda_1^k q_1$$
 for large k

i.e.
$$q_{1} \sim \frac{A^{k} v^{(0)}}{\left\|A^{k} v^{(0)}\right\|}$$

Example

$$A = \begin{bmatrix} 21 & 7 & -1 \\ 5 & 7 & 7 \\ 4 & -4 & 20 \end{bmatrix}, \qquad v^{(0)} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$w = A v^{(0)} = (27, 19, 20)^{T}$$

$$v^{(1)} = w/||w|| = (0.70, 0.49, 0.52)^{T}$$

$$\lambda^{(1)} = r(v^{(1)}) = 23.3235$$

$$w = A v^{(1)} = (17.62, 10.57, 11.19)^{T}$$

$$v^{(2)} = w/||w|| = (0.75, 0.45, 0.48)^{T}$$

$$\lambda^{(2)} = r(v^{(2)}) = 23.7250$$

$$w = A v^{(2)} = (18.50, 10.28, 10.71)^{T}$$

$$v^{(3)} = w/||w|| = (0.78, 0.43, 0.45)^{T}$$

$$\lambda^{(3)} = r(v^{(3)}) = 23.8670$$

$$\vdots$$

$$\vdots$$

 $q_1 = (0.8165, 0.4082, 0.4082)^T, \lambda_1 = 24.$

Algorithm

```
v^{(0)} = \text{initial guess, } ||v^{(0)}|| = 1 for k = 1, 2, ... w = A v^{(k-1)} v^{(k)} = w / ||w|| \lambda^{(k)} = (v^{(k)})^T A v^{(k)} (Rayleigh quotient) end
```

Notes

- 1) We normalize A $v^{(k-1)}$ in each computation of $v^{(k)}$.
- 2) <u>Theorem</u>: Suppose $|\lambda_1| > |\lambda_2| \ge |\lambda_3| \ge \dots \ge |\lambda_n|$, $q_1^T v^{(0)} \ne 0$. Then

$$\left\| v^{(k)} - (\pm q_1) \right\| = O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^k \right), \quad \left| \lambda^{(k)} - \lambda_1 \right| = O\left(\left| \frac{\lambda_2}{\lambda_1} \right|^{2k} \right)$$
as $k \to \infty$

- 3) It only computes q₁.
- 4) The convergence is linear, the convergence rate = $|\lambda_2|/|\lambda_1|$.
- 5) The convergence can be slow if $|\lambda_1| \sim |\lambda_2|$.

Inverse iteration

<u>Idea 1</u>: Use A⁻¹ to compute the smallest eigenvalue.

(Note:
$$\Lambda(A^{-1}) = \{ 1/\lambda_1, 1/\lambda_2, \dots, 1/\lambda_n \}.$$
)

Thus
$$v^{(0)} = c_1 q_1 + c_2 q_2 + ... + c_n q_n$$

 $A^{-1} v^{(0)} = c_1 1/\lambda_1 q_1 + ... + c_n 1/\lambda_n q_n$

$$A^{-k} v^{(0)} = c_1 (1/\lambda_1)^k q_1 + \ldots + c_n (1/\lambda_n)^k q_n$$

$$= (1/\lambda_n)^k [c_1 (\lambda_n/\lambda_1)^k q_1 + \ldots + c_{n-1} (\lambda_n/\lambda_{n-1})^k q_{n-1} + c_n q_n]$$

...
$$A^{-k} v^{(0)} \sim c_n (1/\lambda_n)^k q_n$$
 for large k

Idea 2: Shifting.

Consider B = A - μ I, μ is not an eigenvalue of A. Then B has the same eigenvectors of A and its eigenvalues are $\{\lambda_i - \mu\}$, $\lambda_i \subseteq \Lambda(A)$.

If $\,\mu\,$ is close to $\lambda_{_J}$, $\,\lambda_{_J}$ - $\,\mu\,$ would be the smallest eigenvalue of B.

We can apply idea 1 to compute λ_{J} - μ .

Example

$$A = \begin{bmatrix} 21 & 7 & -1 \\ 5 & 7 & 7 \\ 4 & -4 & 20 \end{bmatrix}, \quad \Lambda(A) = \{8, 16, 24\}, \quad \mu = 15$$

$$v^{(0)} = (1, 1, 1)^{T}$$

$$w = (A-\mu I)^{-1} v^{(0)} = (0.032, 0.16, 0.30)^{T}$$

$$v^{(1)} = w/||w|| = (0.093, 0.46, 0.88)^{T}$$

$$\lambda^{(1)} = r(v^{(1)}) = 19.2000$$

$$w = (A-\mu I)^{-1} v^{(1)} = (-0.33, 0.40, 0.76)^{T}$$

$$v^{(2)} = w/||w|| = (-0.36, 0.44, 0.83)^{T}$$

$$\lambda^{(2)} = r(v^{(2)}) = 15.9749$$

$$w = (A-\mu I)^{-1} v^{(2)} = (-0.39, 0.40, 0.79)^{T}$$

$$v^{(3)} = w/||w|| = (-0.40, 0.41, 0.82)^{T}$$

$$\lambda^{(3)} = r(v^{(3)}) = 16.0290$$

:

 $q_2 = (-0.4082, 0.4082, 0.8165)^T, \lambda_2 = 16.$