4. Vector Space

- 1) Vector spaces and Subspaces
- 2) Linear Transformation
- 3) Null Spaces, Column spaces, Row spaces
- 4) Basis
- 5) Dimension
- 6) Rank
- 7) Coordinate systems

1. vector spaces and subspaces

- 1) Vector spaces
- (1) Definition: vector spaces

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars.

- 1 V is nonempty set
- ② if \boldsymbol{v} , \boldsymbol{w} are in V, then $\boldsymbol{v} + \boldsymbol{w}$ is in V

and vectors ${\pmb u}$, ${\pmb v}$, ${\pmb w}$ in V, and for scalars c , d satisfies these axioms

- ⑤ u + (v + w) = (u + w) + v
- **6** There is a zero vector $\mathbf{0}$ in V such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$

- $(c+d)\boldsymbol{u} = c\boldsymbol{u} + d\boldsymbol{u}$
- $\bigcirc c(d\mathbf{u}) = (cd)\mathbf{u}$
- (1) 1 u = u
- ex) The spaces $R^n (n \ge 1)$: vector spaces

- 2) Subspaces
- (1) Definition: Subspaces

A subspace of a vector space V is a subset H of V that has three properties

- 1 The zero vector of V is in H
- 2 H is closed under vector addition. For each $m{u}$, $m{v}$ in H, the sum $m{u}+m{v}$ is in H

- ex) The set consisting of only the zero vector in a vector space V: zero subspace, $\{\mathbf{0}\}$
- ex) The vector space R^2 and R^3

ex)
$$H = \left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} : s \text{ and } t \text{ } are \text{ } real \right\}$$

ex) A plane in \mathbb{R}^3 not through the origin

(2) A subspace Spanned by a set

Theorem

If $\pmb{v_1}$, \cdots , $\pmb{v_p}$ are in a vector space V, then $Span\{\pmb{v_1},\,\cdots,\pmb{v_p}\}$ is a subspace of V

Given any subspace H of V, a spanning set for H is a set $\{v_1,\ \cdots,v_p\}$ in H such that $H = Span\{v_1,\ \cdots,v_p\}$

2. Linear Transformation

- 1) Linear Transformation
- (1) Definition: Transformation

A function whose inputs and outputs are vectors is called a Transformation

$$T: \mathbb{R}^n \to \mathbb{R}^m$$

A tranformation $T \colon R^n {\longrightarrow} R^n$ is called operator on R^n

ex) T : transformation that maps a vector $\pmb{x}=\left(x_1,\,x_2\right)$ in \mathbb{R}^2 into the vector $2\pmb{x}=\left(2x_1,\,2x_2\right)$ in \mathbb{R}^2

(2) Definition: Linear Transformation

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation from \mathbb{R}^n to \mathbb{R}^m if following two properties hold for all vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^n and for all scalars c

in the special case where m=n, the linear transformation T is called a linear operator on \mathbb{R}^n

ex) T : transformation that maps a vector $\pmb{x}=\left(x_1,\,x_2\right)$ in \mathbb{R}^2 into the vector $2\pmb{x}=\left(2x_1,\,2x_2\right)$ in \mathbb{R}^2

(3) Definition: Matrix Transformation

If A is an $m \times n$ matrix, and if \boldsymbol{x} is a column vector in \mathbb{R}^n , then the product $A\boldsymbol{x}$ is a vector in \mathbb{R}^m . So multiplying \boldsymbol{x} by A creates a transformation from \mathbb{R}^n to \mathbb{R}^m and this transformation is called the multiplication by A or the transforantion A, and is denoted by T_A to emphasize the matrix A.

ex)
$$A = \begin{bmatrix} 1-1\\2&5\\3&4 \end{bmatrix}$$
 $\boldsymbol{b} = \begin{bmatrix} 7\\0\\7 \end{bmatrix}$

ex) Zero transformation T_0

ex) Identity transformation T_{I}

(4) Theorem

All linear transformations are matrix transformations

(5) Theorem

Let $T\colon \mathbf{R}^{\mathbf{n}}\to\mathbf{R}^{\mathbf{m}}$ be a linear transformation. If $\pmb{e_1},\ \pmb{e_2},\ \cdots$, $\pmb{e_n}$ are standard unit vectors in $\mathbf{R}^{\mathbf{n}}$, and if \pmb{x} is any vector in R^n , then $T(\pmb{x})$ can be expressed as $T(\pmb{x})=A\,\pmb{x}$

$$A = \begin{bmatrix} T(e_1) & T(e_2) & \cdots & T(e_n) \end{bmatrix}$$

A : standard matrix for T and denoted by $A = \! [\, T]$

2) Kernel of transformation

(1) Definition: Kernel of transformation

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the set of vectors in \mathbb{R}^n that T maps into $\mathbf{0}$ is called kernel of T and is denoted by $\ker(T)$

$$\ker(T) = \{x : T(x) = 0\}$$

ex)
$$A = \begin{bmatrix} 1-1\\2&5\\3&4 \end{bmatrix}$$

ex) The zero operator

ex) The identity operator

(2)	Theorem
$\backslash \subset I$	HIEOTEIII

(1)	The	kernel	of	а	linear	transformation	alwavs	contains	the z	zero	vector.

② If
$$T:\mathbb{R}^n{\longrightarrow}\mathbb{R}^m$$
 is a linear transformation, then the kernel of T is a subspace of \mathbb{R}^n

(3) one to one

A linear transformation $T \colon R^n \to R^m$ is one to one if T maps distinct vectors in R^n into distinct vectors in R^m

(4) Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the followings are equivalent

- ② $\ker(T) = \{0\}$

(5) Theorem

If A is an $m \times n$ matrix, then the corresponding linear transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$ is one-to-one if and only if the linear system $A \mathbf{x} = \mathbf{0}$ has only the trivial solution.

- 3) Range of transformation
- (1) Definition: Range of transformation

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the range(image) of T, denoted by ran(T), is the set of all vectors in \mathbb{R}^m that are images of at least one vector in \mathbb{R}^n

$$\mathit{ran}(\mathit{T}) = \{ \mathbf{\textit{b}} : \mathbf{\textit{b}} = \mathit{T}(\mathbf{\textit{x}}) \text{ for all } \mathbf{\textit{x}} \in \mathbb{R}^{\,\mathrm{m}} \}$$

ex)
$$A = \begin{bmatrix} 1-1\\2&5\\3&4 \end{bmatrix}$$

ex) The zero operator

ex) The identity operator

(2)	Theorem
1/1	1116016111

If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then ran(T) is a subspace of \mathbb{R}^m

(3) Onto

A linear transformation $T \colon R^n \to R^m$ is said to be onto if the range of T is the entire codomain R^m

Theorem

If A is an $m \times n$ matrix, then the corresponding linear transforamtion $T_A: \mathbb{R}^n \to \mathbb{R}^m$ is onto if and only if the linear system $A \mathbf{x} = \mathbf{b}$ is consistent for every \mathbf{b} in \mathbb{R}^n

- 4) Linear operator
- (1) Theorem

If $T: \mathbb{R}^n \to \mathbb{R}^n$ is a linear operator on \mathbb{R}^n , then T is one-to-one if and only if it is onto.

(2) Unifying theorem

Let A be a square $n \times n$ matrix. Then the following statements are equivalent. That is, for a given A, the statements are either all true or all false.

- a. A is an invertible matrix
- b. A is row equivalent to the $n \times n$ identity matrix
- c. A has n pivot positions
- d. The equation Ax = 0 has only the trivial solution
- e. The columns of \boldsymbol{A} form a linearly independent set
- f. The columns of A span R^n
- g. There is an $n \times n$ matrix C such that CA = I
- h. There is an $n \times n$ matrix D such that AD = I
- j. The equation Ax = b has at least one solution for each b in \mathbb{R}^n
- k. A^{T} is an invertible matrix.
- I. $\det A \neq 0$
- $\label{eq:matter} \text{m. } T_A \ \text{is one to one}$
- ${\rm n.}\ T_{A}\ {\rm is\ onto}$

3. Column space, Null space, Row space

- 1) Null space
- (1) Definition: Null space

The null space of an $m \times n$ matrix A, written as NulA, is the set of all solutions of the homogeneous equation A x = 0.

$$Nul A = \{ \boldsymbol{x} : A \boldsymbol{x} = \boldsymbol{0}, \ \boldsymbol{x} \in \mathbb{R}^{n} \}$$

(2) Theorem

The null space of an $m \times n$ matrix A is a subspace of \mathbb{R}^n

ex)
$$A = \begin{bmatrix} 1-1\\2&5\\3&4 \end{bmatrix}$$

2) Column space

(1) Definition: Column space

$$Col A = Span \{ a_1, a_2, \cdots, a_n \}$$

(2) Theorem

The column space of an $m \times n$ is a subspace of \mathbb{R}^m

A typical vector in ColA can be written as $A\pmb{x}$ for some \pmb{x} because the notation $A\pmb{x}$ stands for a linear combination of the columns of A

$$ColA = \{ b : b = Ax \text{ for some } x \in \mathbb{R}^n \}$$

$$ex) \ A = \begin{bmatrix} 1-1\\2&5\\3&4 \end{bmatrix}$$

3) The contrast between NulA and ColA

ex)
$$A = \begin{bmatrix} 2 & 4 & -21 \\ -2 - 5 & 7 & 3 \\ 3 & 7 & -86 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 3 \\ -2 \\ -1 \\ 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ -1 \\ 3 \end{bmatrix}$

(1) Table : The contrast between NulA and ColA for an $m \times n$ matrix A

NulA

- ① NulA is a subspace of R^n
- ② NulA is implicitly defined

(you are given only condition $(A \mathbf{x} = \mathbf{0})$ that vectors in NulA must satisfy.

- $\ensuremath{\,^{\circ}}$ It takes time to find vectors in $Nul\,A$ Row operations on $[A\,\mathbf{0}]$ are required
- $\ensuremath{\mathfrak{A}}$ There is no obvious relation between NulA and the entries in A
- (§) A typical vector ${m v}$ in NulA has the property that $A{m v}={m 0}$
- 6 Given a specific vector $m{v}$, it is easy to tell if $m{v}$ is in NulA. Just compute $Am{v}$
- ① $NulA = \{0\}$ if and only if the equation Ax = 0 has only the trivial solution.

Col A

- ① ColA is a subspace of R^m
- \bigcirc Col A is explicitly defined

(you are told how to bulid the vectors in Col A)

- $\ensuremath{\mathfrak{A}}$ There is obvious relation between $\operatorname{Col} A$ and the entries of A , since each columns of A is in $\operatorname{Col} A$
- (5) A typical vector \boldsymbol{v} in ColA has the property that the equation $A\boldsymbol{x}=\boldsymbol{v}$ is consistent

Row operations on [A v] are required

- ① $Col A = R^m$ if and only if the equation $A \boldsymbol{x} = \boldsymbol{b}$ has a solution for every \boldsymbol{b} in R^m

4) Row space

(1) Definition: Row space

The row space of an $m \times n$ matrix A, written as RowA, is the set of all linear combinations of the rows of A.

Each row has n entries, so RowA is a subspace of \mathbb{R}^n

$$Row A = Col A^T$$

(2) Theorem

If two matrices A and B are row equivalent, then their row spaces are the same.

ex)
$$A = \begin{bmatrix} -2 & -5 & 8 & 0 & -17 \\ 1 & 3 & -5 & 1 & 5 \\ 3 & 11 & -19 & 7 & 1 \\ 1 & 7 & -13 & 5 & -3 \end{bmatrix}$$

- 4. Linear independent sets; Bases
- 1) Review of linear independence
- (1) Linear independence

An indexed set of vectors $\{ {\pmb v}_1, {\pmb v}_2, \ \cdots, {\pmb v}_p \}$ in V is linearly independent if the vector equation $c_1 {\pmb v}_1 + \cdots + c_p {\pmb v}_p = 0$ has only the trivial solution. $c_1 = c_2 = \cdots = c_p = 0$

The set $\{v_1,\,v_2,\,\,\cdots\,,\,v_p\}$ is linearly dependent if the vector equation has non trivial solution.

(2) Theorem

An indexed set $\{v_1,\,v_2,\,\cdots,\,v_p\}$ of two or more vectors with $v_1\neq 0$, is linearly dependent if and only if some v_j (with j>1) is linear combination of the preceding vectors $v_1,\,\cdots,\,v_p$

- 2) Basis
- (1) Definition: Basis

Let H be a subspace of a vector space V. An indexed set of vectors $B = \{b_1, b_2, \cdots, b_p\}$ in V is a basis for H if

- ${\color{black} \textcircled{1}} \ B$ is a linearly independent set
- ② The subspace spanned by B is H. That is

$$H = Span\{b_1, b_2, \cdots, b_p\}$$

The definition of a basis applies to the case when H=V, because any vector space is a subspace of itself

Thus a basis of $\,V\,$ is a linearly independent set that spans $\,V\,$

ex) Let A be an invertible $n \times n$ matrix, say $A = [\mathbf{a_1} \ \mathbf{a_2} \ \cdots \ \mathbf{a_n}]$. Then the columns of A form a basis for R^n because they are linearly independent and they span R^n , by invertible matrix theorem

ex) The nonzero row vectors of a matrix in row echelon form are linearly independent.

ex) Let $\pmb{e_1}$, $\pmb{e_2}$, \cdots , $\pmb{e_n}$ be the columns of the $n \times n$ matrix $\pmb{I_n}$. The set $\{\pmb{e_1}, \pmb{e_2}, \cdots, \pmb{e_n}\}$ is called the standard basis of \mathbb{R}^n

ex)
$$\mathbf{v_1} = \begin{bmatrix} 3 \\ 0 \\ -6 \end{bmatrix}$$
, $\mathbf{v_2} = \begin{bmatrix} -4 \\ 1 \\ 7 \end{bmatrix}$, $\mathbf{v_3} = \begin{bmatrix} -2 \\ 1 \\ 5 \end{bmatrix}$

(2) Theorem

Let S be a finite set of vectors in a nonzero subspace V. If S spans V, but is not a basis for V, then a basis for V can be obtained by removing appropriate vectors from S

Let S be a finite set of vectors in a nonzero subspace V. If S is linearly independent, but is not a basis for V, then a basis for V can be obtained by adding appropriate vectors from V to S

5. Dimension

- 1) Dimension
- (1) Definition: Dimension

If V is spanned by a finite set, then V is said to be finite-dimensional, and the dimension of V, written as $\dim V$, is the number of vectors in a basis for V.

The dimension of the zero vector space $\{0\}$ is defined to be zero.

If V is not spanned by a finite set, then V is said to be infinite-dimensional.

ex) dim Rⁿ

$$\text{ex) } H \!=\! \left\{ \begin{bmatrix} a\!-\!3b\!+\!6c \\ 5a\!+\!4d \\ b\!-\!2c\!-\!d \\ 5d \end{bmatrix} : a\,,\,b\,,\,c\,,\,d\,,\,in\,\mathbf{R^n} \right\}$$

ex) Solution space of the linear system

$$\begin{aligned} 2x_1 + 4x_2 - 2x_3 + x_4 &= 0 \\ -2x_1 - 5x_2 + 7x_3 + 3x_4 &= 0 \\ 3x_1 + 7x_2 - 8x_3 + 6x_4 &= 0 \end{aligned}$$

- (2) Theorem
- 1 If V and W are subspaces of \mathbb{R}^n , and if V is a subspace of W, then
- $0 \le \dim V \le \dim W \le n$

V = W if and only if $\dim V = \dim W$

- $\ @$ Let S be a nonempty set of vectors in a vector space V, and let S' be a set that results by adding additional vectors in V to S
- a) If the additional vectors are in SpanS , then $\mathit{SpanS}' = \mathit{SpanS}$
- b) If SpanS' = SpanS, then the additional vectors are in SpanS.
- c) If SpanS and SpanS' have the same dimension, then the additional vectors are in SpanS and SpanS' = SpanS

3 Let V be a p-dimensional vector space, $p \ge 1$.

Any linearly independent set of exactly p elements in $\,V\,$ is automatically a basis for $\,V\,$ Any set of exactly p elements that spans $\,V\,$ is automatically a basis for $\,V\,$

(3) Finding dimension of $Nul\,A$ and $Col\,A$

ex)
$$A = \begin{bmatrix} 2 & 4 & -21 \\ -2 - 5 & 7 & 3 \\ 3 & 7 & -86 \end{bmatrix}$$

6. Rank

- 1) Rank
- (1) Definition: Rank

The rank of \boldsymbol{A} is the dimension of the column space of \boldsymbol{A}

Since RowA is the same as $ColA^T$, the dimension of the row space of A is the rank of A^T

(2) Definition: Nullity

The nullity of A is the dimension of the null space of A

ex)
$$A = \begin{bmatrix} 2 & 4 & -21 \\ -2 - 5 & 7 & 3 \\ 3 & 7 & -86 \end{bmatrix}$$

2) Rank Theorem

(1) Rank Theorem

The dimensions of the column space and row space of an $m \times n$ matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation

 $rankA + \dim NulA = n$

(2) The pivot Theorem

The pivot columns of a matrix A form a basis for $\operatorname{Col} A$

Find rankA and nullityA, Find bases for ColA and RowA, and NulA

ex) Could a 6×9 matrix have a two-dimensional null space?

7. Coordinate System

- 1) Coordinate System
- (1) Theorem: The uniqueness representation theorem

Let $B = \{ \pmb{b_1}, \pmb{b_2}, \cdots, \pmb{b_n} \}$ be a basis for a vector space V. Then for each \pmb{x} in V, there exists a unique set of scalars c_1 , c_2 , \cdots , c_n such that

$$\mathbf{x} = c_1 \mathbf{b_1} + \cdots + c_n \mathbf{b_n}$$

(2) Definition: coordinate

Suppose $B = \{ \pmb{b_1}, \pmb{b_2}, \cdots, \pmb{b_n} \}$ is a basis for V and \pmb{x} is in V. The coordinates of \pmb{x} relative to the basis B (or the B-coordinate of \pmb{x}) are the weights c_1 , \cdots , c_n such that $\pmb{x} = c_1 \pmb{b_1} + \cdots + c_n \pmb{b_n}$

If $c_1\,,\,\,\cdots\,,\,\,c_n$ are the B--coordinate of $\boldsymbol{x}\,,$ then the vector in \mathbf{R}^{n}

$$\left[oldsymbol{x}
ight]_{B} = egin{bmatrix} c_{1} \ c_{2} \ \ldots \ c_{n} \end{bmatrix}$$

is the coordinate vector of ${m x}$, or the B-coordinate vector of ${m x}$

The mapping $\mathbf{x} \rightarrow [\mathbf{x}]_B$ is the coordinate mapping(determined by B)

ex) Consider a basis $B = \{ \pmb{b_1}, \pmb{b_2} \}$ for \mathbb{R}^2 , where $\pmb{b_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \pmb{b_2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Suppose an \pmb{x} in \mathbb{R}^2 has the coordinate vector $[\pmb{x}]_B = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$

ex) The entries in the vector $\pmb{x}=\begin{bmatrix}1\\6\end{bmatrix}$ are the coordinates of \pmb{x} relative to the standard basis $\epsilon=\{\pmb{e_1},\,\pmb{e_2}\}$

$$\mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix} = 1\mathbf{e_1} + 6\mathbf{e_2}$$

$$\left[oldsymbol{x}
ight]_{\epsilon}=oldsymbol{x}$$

(3) Coordinates in \mathbb{R}^n

When a basis B for \mathbb{R}^{n} is fixed, the B-coordinate vector of a specified ${m x}$ is easily found

$$\text{ex)} \quad \pmb{b_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \ \pmb{b_2} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ B = \{ \pmb{b_1}, \, \pmb{b_2} \}, \quad \pmb{x} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \text{ find the coordinate vector } [\pmb{x}]_B \text{ of } \pmb{x} \text{ relative to } B$$

The matrix in $\begin{bmatrix} 1 \ 1 \\ 0 \ 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$ changes the B-coordinates of a vector ${\pmb x}$ into the standard coordinates for ${\pmb x}$

An analogous change of coordinates can be carried out in \mathbb{R}^n for a basis $B = \{b_1, b_2, \cdots, b_n\}$

Let

$$P_{\boldsymbol{B}} = \left[\; \boldsymbol{b_1}, \; \boldsymbol{b_2}, \; \cdots, \; \boldsymbol{b_n} \right]$$

Then the vector equation

$$\mathbf{x} = c_1 \mathbf{b_1} + \cdots + c_n \mathbf{b_n}$$

is equivalent to $\mathbfit{x} = P_B[\mathbfit{x}]_B$

 P_B : change of coordinates matrix from B to the standard basis in $\mathbf{R}^{\mathbf{n}}$

Left multiplication by P_B transforms the coordinate vector $[{m x}]_B$ into ${m x}$

Since the columns of P_{B} forms a basis for \mathbf{R}^{n} , P_{B} is invertible

$$[\boldsymbol{x}]_B = P_B^{-1} \boldsymbol{x}$$

The correspondence ${\pmb x} \to [{\pmb x}]_B$, produced by ${P_B}^{-1}$, is the coordinate mapping.

Since ${P_{\scriptscriptstyle B}}^{-1}$ is an invertible matrix, the coordinate mapping is a one-to-one linear operator.

(4) The Coordinate Mapping

Theorem

Let $B = \{b_1, b_2, \cdots, b_n\}$ be basis for a vector space V. Then the coordinate mapping $x \to [x]_B$ is a one-to-one linear transformation from V onto \mathbb{R}^n

The linearity of the coordinate mapping extends to linear combinations.

If $\textbf{\textit{u}}_{\textbf{1}}\,,\,\,\cdots\,,\,\,\textbf{\textit{u}}_{\textbf{\textit{p}}}$ are in $\,V$ and if $c_1\,,\,\,c_2\,,\,\,\cdots\,,\,\,c_p$ are scalars, then

$$[c_1 \mathbf{u_1} + \cdots + c_p \mathbf{u_p}]_B = c_1 [\mathbf{u_1}]_B + \cdots + c_p [\mathbf{u_p}]_B$$

2) Change of basis

(1) change of basis

ex)
$$x = 3b_1 + b_2$$
, $x = 6c_1 + 4c_2$

$$\begin{bmatrix} \boldsymbol{x} \end{bmatrix}_B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} \boldsymbol{x} \end{bmatrix}_C = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$

if
$$\emph{b}_{1}=4\emph{c}_{1}+\emph{c}_{2}$$
 and $\emph{b}_{2}=-6\emph{c}_{1}+\emph{c}_{2}$

$$\begin{bmatrix} \boldsymbol{x} \end{bmatrix}_B = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \begin{bmatrix} \boldsymbol{x} \end{bmatrix}_C$$
 ?

Theorem

Let $B = \{ \pmb{b_1}, \pmb{b_2}, \cdots, \pmb{b_n} \}$ and $C = \{ \pmb{c_1}, \cdots, \pmb{c_n} \}$ be bases of a vector space V. Then there is a unique $n \times n$ matrix $P_{C \leftarrow B}$ such that

$$\left[\boldsymbol{x} \right]_{C} = P_{C \leftarrow B} \left[\boldsymbol{x} \right]_{B}$$

The columns of $P_{C \leftarrow B}$ are the C - coordinate vectors of the vectors in the basis B

$$P_{C \leftarrow B} = \left[\begin{array}{ccc} \left[\mathbf{\textit{b}}_{1} \right]_{C} & \left[\mathbf{\textit{b}}_{2} \right]_{C} & \cdots & \left[\mathbf{\textit{b}}_{n} \right]_{C} \end{array} \right]$$

The matrix $P_{C\leftarrow B}$ is called the change-of-coordinates matrix from B to C. Multiplication by $P_{C\leftarrow B}$ converts B-coordinates into C-coordinates.

The columns of $P_{C\leftarrow B}$ are linearly independent because they are the coordinate vectors of the linearly independent set B

Since $P_{\mathcal{C} \leftarrow B}$ is square, it must be invertible, by the invertible matrix theorem

$$\left[\boldsymbol{x} \right]_{B} = P_{C \leftarrow B}^{-1} \left[\boldsymbol{x} \right]_{C}$$

 ${P_{C \leftarrow B}}^{-1}$ is the matrix that converts C-coordinates into B-coordinates

$${P_{C \leftarrow B}}^{-1} = P_{B \leftarrow C}$$

If
$$C = \epsilon = \{e_1, \cdots, e_n\}$$

$$P_{\epsilon \leftarrow B} = P_B = \begin{bmatrix} \mathbf{b_1}, \, \mathbf{b_2}, \, \cdots, \, \mathbf{b_n} \end{bmatrix}$$

ex)
$$\mathbf{b_1} = \begin{bmatrix} -9 \\ 1 \end{bmatrix}$$
, $\mathbf{b_2} = \begin{bmatrix} -5 \\ -1 \end{bmatrix}$, $\mathbf{c_1} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$, $\mathbf{c_2} = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$,

$$B = \left\{ \textit{\textbf{b}}_{\textit{\textbf{1}}},\,\textit{\textbf{b}}_{\textit{\textbf{2}}} \right\}, \ C = \left\{ \textit{\textbf{c}}_{\textit{\textbf{1}}},\,\textit{\textbf{c}}_{\textit{\textbf{2}}} \right. \right\} \ \text{be the basis for } \mathbb{R}^2 \,.$$

Find the change-of-coordinates matrix from \boldsymbol{B} to \boldsymbol{C}

Find the change-of-coordinates matrix from ${\it C}$ to ${\it B}$