

1. A compound of the formula #

 $R_a - A - Het - B \oint Ar - E$ (I)

wherein

5

A denotes a carbonyl or sulphonyl group linked to the benzo, pyrido, pyrimido, pyrazino, pyridazino or thieno moiety of the group Het, whilst moreover the abovementioned moieties may not contain an R₁ group,

B denotes an ethylene group, wherein a methylene group, linked either to the group Het or Ar, may be replaced by an oxygen or sulphur atom or by a sulphinyl, sulphonyl, carbonyl or -NR₁ group, wherein

 R_1 denotes a hydrogen atom or a C_{1-6} -alkyl group,

20 E denotes a cyano of R_{p} NH-C(=NH) - group wherein

 $R_{\rm b}$ denotes a hydrogen atom, a hydroxy group, a C_{1-3} -alkyl group or a group which may be cleaved in vivo,

Ar denotes a phenylene or naphthylene group optionally substituted by a fluorine, chlorine or bromine atom or by a trifluoromethyl C_{1-3} -alkyl or C_{1-3} -alkoxy group,

a thienylene, thiazolylene, pyridinylene, pyrimidinylene, pyrazinylene or pyridazinylene group optionally substituted in the carbon skeleton by a C_{1-3} -alkyl group,

Het denotes a bicyclic heterocycle of formula

Attorney Docket No. 5/1213

wherein

X is a nitrogen atom and

Y is an oxygen or sulphur atom or a nitrogen atom optionally substituted by a C_1 -alkyl or C_{3-7} -cycloalkyl group, whilst additionally one or two non-angular methyne groups in the phenyl moiety of the above-mentioned bicyclic heterocycle may each be replaced by a nitrogen atom,

or X denotes a methyne group optionally substituted by the group R_1 , wherein R_1 is as hereinbefore defined, and

Y denotes a nitrogen atom optionally substituted by a C_{1-6} -alkyl or C_{3-7} -cycloalkyl group,

or Het denotes a group of the formula

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

25

10

15

20

30

R₁ is as hereinbefore defined,

Z denotes an oxygen or sulphur atom,

one of the groups or G denotes a nitrogen atom and the other group D or G denotes a methyne group,

and R_a denotes a C_{1-6} -alkyl group, a C_{3-7} -cycloalkyl group optionally substituted by a C_{1-3} -alkyl group, wherein the C_{1-3} -alkyl group may additionally be substituted by a carboxyl group or by a group which may be converted *in vivo* into a carboxy group,

or an R_2NR_3 - group/wherein

 $R_2 \ \ denotes \ \ denotes$

10

15

20

25

35

a C_{2-4} -alkyl group substituted by a hydroxy, phenyl- C_{1-3} -alkoxy, carboxy- C_{1-3} -alkylamino, C_{1-3} -alkylamino or C_{1-3} -alkylamino or C_{1-3} -alkylamino or C_{1-3} -alkylamino or C_{1-3} -alkylamino group, whilst in the abovementioned groups the carbon atom in the α -position relative to the adjacent nitrogen atom may not be substituted, or

a piperidinyl group optionally/substituted by a C_{1-3} -alkyl group and

 R_3 denotes a hydrogen atom, a C_{1-6} -alkyl group, a C_{3-7} -cycloalkyl group optionally substituted by a C_{1-3} -alkyl group, a C_{3-6} -alkenyl or alkynyl group, wherein the unsaturated part may not be linked directly to the nitrogen atom of the R_2NR_3 - group, a phenyl group optionally substituted by a fluorine, chlorine or bromine atom or by a C_{1-3} -alkyl or C_{1-3} -alkoxy group, a benzyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, pyrrolyl, thienyl or imidazolyl group or

 R_2 and R_3 together with the nitrogen atom between them denote a 5- to 7-membered cycloalkyleneimino group, optionally substituted by a carboxymethyl or C_{1-4} -alkoxycarbonyl group, onto which a phenyl ring may additionally be fused,

30 or a tautomer or salt thereof.

2. A compound of the formula I according to claim 1, wherein

A denotes a carbonyl or sulphonyl group linked to the benzo, pyrido, pyrimido, pyrazino, pyridazino or thieno

15

20

30

moiety of the group Het, whilst moreover the abovementioned moieties may not contain an R_1 group,

B denotes an ethylene group, in which a methylene group,

linked either to the group Het or Ar, may be replaced by an oxygen or sulphur atom or by a sulphingl, sulphonyl,

carbonyl or -NR₁- group, wherein

 R_1 denotes a hydrogen atom or a/C_{1-5} -alkyl group,

E denotes an R_bNH-C(=NH) - group wherein

 R_b denotes a hydrogen atom, a hydroxy group, a C_{1-3} -alkyl group or a group which may be cleaved in vivo,

Ar denotes a phenylene group optionally substituted by a fluorine, chlorine or bromine atom or by a trifluoromethyl, C_{1-3} -alkyl or C_{1-3} -alkoxy group,

a thienylene, thiazolylene, pyridinylene, pyrimidinylene, pyrazinylene or pyridazinylene group optionally substituted in the carbon skeleton by a C_{1-3} -alkyl group,

25 Het denotes a bicyclic heterocycle of formula

$$X$$
 , wherein

/

X is a nitrogen at om and

Y is an oxygen of sulphur atom or a nitrogen atom optionally substituted by a C_{1-6} -alkyl or C_{3-7} -cycloalkyl group, whilst additionally one or two non-angular methyne groups in the phenyl moiety of the

above-mentioned bicyclic heterocycle may each be replaced by a nitrogen atom,

or X denotes a methyne group optionally substituted by the group R_1 , wherein R_1 is as hereinbefore defined, and

Y denotes a nitrogen atom optionally substituted by a C_{1-6} -alkyl or C_{3-7} -cycloalkyl group,

or Het denotes a group of the formulae

20

5

10

30

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

5 R₁ is as hereinbefore defined,

Z denotes an oxygen or sulphur/atom

one of the groups D or G denotes a nitrogen atom and the other group D or G denotes a methyne group,

and R_a denotes a C_{1-6} -alkyl group, a C_{3-7} -cycloalkyl group optionally substituted by a C_{1-3} -alkyl group, wherein the C_{1-3} -alkyl group may additionally be substituted by a carboxyl group or by a group which may be converted *in vivo* into a carboxy group,

or a R_2NR_3 - group wherein

R₂ denotes a C₁₋₄-alkyl group, which may be substituted by a carboxy, C₁₋₆-alkyloxycarbonyl, benzyloxycarbonyl, C₁₋₃-alkylsulphonylaminocarbonyl, phenylsulphonylaminocarbonyl, trifluorosulphonylamino, trifluorosulphonylaminocarbonyl or 1H-tetrazolyl group,

a C_{2-4} -alkyl group substituted by a hydroxy, phenyl- C_{1-3} -alkoxy, carboxy- C_{1-3} -alkylamino, C_{1-3} -alkylamino, C_{1-3} -alkylamino or C_{1-3} -alkylamino or C_{1-3} -alkylamino or C_{1-3} -alkylamino group, whilst in the abovementioned groups the carbon atom in the α -position relative to the adjacent nitrogen atom may not be substituted, or

25

a piperidinyl group optionally substituted by a C_{1-3} -alkyl group and

 R_3 denotes a hydrogen atom, a C_{1-6} -alkyl group, a C_{3-7} -cycloalkyl group optionally substituted by a C_{1-3} -alkyl group, a C_{3-6} -alkenyl or alkynyl group, wherein the unsaturated part may not be linked directly to the nitrogen atom of the R_2NR_3 - group,

a phenyl group optionally substituted by a fluorine, chlorine or bromine atom or by a C₁₋₃-alkyl or C₁₋₃-alkoxy group, a benzyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, pyrazolyl, pyrrolyl, thienyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, imidazolyl or piperidinyl group or

 R_2 and R_3 together with the hitrogen atom between them denote a 5- to 7-membered cycloalkyleneimino group, optionally substituted by a carboxymethyl or C_{1-4} -alkoxycarbonyl group, onto which additionally a phenyl ring may be fused,

or a tautomer or salt thereoff.

3. A compound of the formula I according to claim 1, wherein

A denotes a carbonyl or sulphonyl group linked to the

30 benzo, pyrido, pyrimido, pyrazino, pyridazino or thieno
moiety of the group Het, whilst moreover the abovementioned
moieties may not contain an R₁ group,

B denotes an ethylene group in which the methylene group 35 linked to the group Ar may be replaced by an oxygen or sulphur atom or by an -NR₁- group, wherein

 R_1 denotes a hydrogen atom or a C_{1-4} -alkyl group, E denotes an $R_b NH-C (=NH)$ - group wherein

 R_b denotes a hydrogen atom, a hydroxy, C_{1-9} -alkoxycarbonyl, cyclohexyloxycarbonyl, phenyl- C_{1-3} -alkoxycarbonyl, benzoyl, p- C_{1-3} -alkyl-benzoyl or pyridinoyl group, whilst the ethoxy moiety in the 2-position of the abovementioned C_{1-9} -alkoxycarbonyl group may additionally be substituted by a C_{1-3} -alkyl-sulfonyl or 2- $(C_{1-3}$ -alkoxy)-ethyl group,

Ar denotes a 1,4-phenylene group optionally substituted by a chlorine atom or by a methyl, ethyl or methoxy group or it denotes a 2,5-thienylene group,

Het denotes a $1-(C_{1-3}-alkyl)-2$, benzimidazolylene, 1-cyclopropyl-2,5-benzimidazolylene, 2,5-benzothiazolylene, 1- $(C_{1-3}-alkyl)-2$,5-indolylene, 1- $(C_{1-3}-alkyl)-2$

20 2,5-imidazo[4,5-b]pyridinylene, 3-(C_{1-3} -alkyl)-2,7-imidazo[1,2-a]pyridinylene or 1-(C_{1-3} -alkyl)-2,5-thieno[2,3-d]imidazolylene group and

Ra denotes an R2NR3- group wherein

R₂ is a C_{1-4} -alkyl group substituted by a carboxy,

 C_{1-6} -alkyloxycarbonyl, benzyloxycarbonyl, C_{1-3} -alkylsulphonylaminocarbonyl or 1H-tetrazol-5-yl

group,

a C_{2-4} -alkyl group substituted by a hydroxy, benzyloxy, carboxy- C_{1-3} -alkylamino, C_{1-3} -alkoxycarbonyl- C_{1-3} -alkylamino, N- $(C_{1-3}$ -alkyl)-carboxy- C_{1-3} -alkylamino or N- $(C_{1-3}$ -alkyl)- C_{1-3} -alkoxycarbonyl- C_{1-3} -alkylamino group, whilst in the abovementioned groups the carbon

10

15

20

atom in the α -position to the adjacent nitrogen atom may not be substituted,

 R_3 denotes a C_{3-7} -cycloalkyl group, a propargyl group, wherein the unsaturated part may not be linked directly to the nitrogen atom of the R_2NR_3 group, a phenyl group optionally substituted by a fluorine or chlorine atom, or by a methyl or methoxy group, a pyrazolyl, pyridazolyl or pyridinyl group optionally substituted by a methyl group or

 R_2 and R_3 together with the nitrogen atom between them denote a 5- to 7-membered cycloalkyleneimino group, optionally substituted by a carboxy or C_{1-4} -alk-oxycarbonyl group, to which a phenyl ring may additionally be fused,

or a tautomer or salt thereof

4. A compound of the formula I according to claim 1, wherein

A denotes a carbonyl or sulphonyl group linked to the

25 benzo, pyrido or thieno moiety of the group Het, whilst
moreover the abovementioned moieties may not contain an R₁
group,

R₁ denotes a hydrogen atom or a methyl group,

35 E denotes an $R_bNH-C(=NH)$ - group, wherein

25

30

35

 R_b denotes a hydrogen atom or a hydroxy, $C_{1-9}\text{-alkoxycarbonyl}, \text{ cyclohexyloxycarbonyl}, \\ \text{benzyloxycarbonyl}, \text{ benzoyl}, \text{ p-}C_{1-3}\text{-alkylbenzoyl} \text{ or } \\ \text{nicotinoyl group}, \text{ whilst the ethoxy moiety in the 2-position of the abovementioned } C_{1-9}\text{-alkoxycarbonyl} \\ \text{group may additionally be substituted by a } C_{1-3}\text{-alkylsulphonyl or } 2\text{-}(C_{1-3}\text{-alkoxy})\text{-ethyl group},$

Ar denotes a 1,4-phenylene group optionally substituted by a chlorine atom or by a methyl, ethyl or methoxy group, or it denotes a 2,5-thienylene group,

Het denotes a 1-methyl-2,5-benzimidazolylene, 1-cyclopropyl-2,5-benzimidazolylene, 2,5-benzothiazolylene,

15 1-methyl-2,5-indolylene, 1-methyl-2,5-imidazo[4,5-b]pyridinylene, 3-methyl-2,7-imidazo[1,2-a]pyridinylene or 1-methyl-2,5-thieno[2,3-d]imidazolylene group and

20 Ra denotes a R2NR3- group wherein

 R_2 denotes a C_{1-3} -alkyl group which may be substituted by a carboxy, C_{1-6} -alkyloxycarbonyl, benzyloxycarbonyl, methylsulphonylaminocarbonyl or 1H-tetrazol-5-yl group,

a C_{2-3} -alkyl group substituted by a hydroxy, benzyloxy, carboxy- C_{1-3} -alkylamino, C_{1-3} -alkoxycarbonyl- C_{1-3} -alkylamino, N- $(C_{1-3}$ -alkyl)-carboxy- C_{1-3} -alkylamino or N- $(C_{1-3}$ -alkyl)- C_{1-3} -alkoxycarbonyl- C_{1-3} -alkylamino group, whilst in the abovementioned groups the carbon atom in the α -position to the adjacent nitrogen atom may not be substituted, and

 R_3 denotes a propargyl group, wherein the unsaturated moiety may not be linked directly to the nitrogen atom of the R_2NR_3 group a phenyl group optionally

25

35

substituted by a fluorine or chlorine atom, or by a methyl or methoxy group or it denotes a pyridinyl group,

- 5 or a tautomer or salt thereof.
 - 5. A compound of the formula I according to claim 1, wherein

A denotes a carbonyl group linked to the benzo or thieno moiety of the group Het,

B denotes an ethylene group wherein the methylene group

15 attached to the group Ar may be replaced by an -NR₁ group,

whilst

R₁ denotes a hydrogen atom/of a methyl group,

20 E denotes an RbNH-C(=NH) - group wherein

 R_{b} is a hydrogen atom, a hydroxy, C_{1-9} -alkoxycarbonyl, cyclohexyloxycarbonyl, benzyloxycarbonyl, benzoyl, $p-C_{1-3}$ -alkyl-benzoyl or nicotinoyl group, whilst the ethoxy moiety in the 2-position of the abovementioned C_{1-9} -alkoxycarbonyl group may additionally be substituted by a methyl sulfonyl or 2-ethoxy-ethyl group,

Ar denotes a 1,4-phenylene group optionally substituted by a methoxy group or it denotes a 2,5-thienylene group,

Het denotes a 1-methyl-2,5-benzimidazolylene, 2,5-benzothiazolylene, 1-methyl-2,5-indolylene or 1-methyl-2,5-thieno[2,3-d]imidazolylene group and R_a denotes an R_2NR_3 - group wherein

 R_2 denotes a C_{1-3} -alkyl group which may be substituted by a carboxy, C_{1-6} -alkyloxycarbonyl, benzyloxycarbonyl, methylsulfonylaminocarbonyl or 1H-tetrazol-5-yl group,

a C_{2-3} -alkyl group substituted by a hydroxy, benzyloxy, carboxy- C_{1-3} -alkylamino, C_{1-3} -alkoxycarbonyl- C_{1-3} -alkylamino, N- $(C_{1-3}$ -alkyl)-carboxy- C_{1-3} -alkylamino or N- $(C_{1-3}$ -alkyl)- C_{1-3} -alkoxycarbonyl- C_{1-3} -alkylamino group, whilst in the abovementioned groups the carbon atom in the α -position to the adjacent nitrogen atom may not be substituted, and

15 R₃ denotes a phenyl group optionally substituted by a fluorine atom, or it denotes 2-pyridinyl group,

or a tautomer or salt thereof.

20

25

5

- 6. A compound selected from the group consisting of:
- (a) 2-[N-(4-amidinophenyl)-aminomethyl]-benzthiazole-5-carboxylic acid-N-phenyl-N/(2-carboxyethyl)-amide,

(b) 2-[N-(4-midinophenyl)-N/methyl-aminomethyl]-benzthiazol-5-yl-carboxylic acid-N-phenyl-N-(2-hydroxycarbonylethyl)-amide,

- 30 (c) 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-phenyl-N-(2-hydroxycarbonylethyl)-amide,
- (d) 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]35 benzimidazol-5-yl-carboxylic acid-N-phenylN-(3-hydroxycarbonylpropyl)-amide,

- (e) 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-(2-pyridyl)-N-(hydroxycarbonylmethyl)-amide,
- (f) 1-Methyl-2-[2-(2-amidinothiophen-5-yl)ethyl]-benzimidazol-5-yl-carboxylic acid-N-(2-pyridyl)-N-(2-hydroxycarbonylethyl)-amide,
- 10 (g) 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]benzimidazol-5-yl-carboxylic acid-N-(2-pyridyl)-N-(2hydroxycarbonylethyl)-amide,
- (h) 1-Methyl-2-[2-(4-amidinophenyl) ethyl]-benzimidazol-515 yl-carboxylic acid-N-(2-pyridyl)-N-(2hydroxycarbonylethyl)-amide,
- (i) 1-Methyl-2-[2-(4-amidinophehyl)ethyl]-benzimidazol-5-yl-carboxylic acid-N-phenyl-N-(2-hydroxycarbonylethyl) amide,
 - (j) 1-Methyl-2-[2-(4-amidinophenyl)ethyl]-benzimidazol-5-yl-carboxylic acid-N-phenyl N-[2-(1H-tetrazol-5-yl)ethyl]-amide,
 - (k) 1-Methyl-2-[N-(4-amid nophenyl)-aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-phenyl-N-[2-(1H-tetrazol-5-yl)ethyl]-amide,
- 30 (1) 1-Methyl-2-[N-(4-amidinophenyl)-N-methyl-aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-(2-pyridyl)-N-(2-hydroxycarbonylethyl) amide,
- (m) 1-Methyl-2-[N-(4-amidinophenyl)-N-methyl-aminomethyl]35 benzimidazol-5-yl-carboxylic acid-N-(3-pyridyl)-N-(2-hydroxycarbonylethyl)-amide,

- (n) 1-Methyl-2-[N-(4-amidinophenyl)-N-methyl-aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-phenyl-N-(2-hydroxycarbonylethyl)-amide,
- 5 (o) 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-phenyl-N-[(N-hydroxycarbonylethyl-N-methyl)-2-aminoethyl]-amide,
- (p) 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]10 benzimidazol-5-yl-carboxylic acid-N-(3-fluorophenyl)-N-(2-hydroxycarbonylethyl)-amide,
- (q) 1-Methyl-2-[N-(4-amidinophenyl)/-aminomethyl]benzimidazol-5-yl-carboxylic acid-N-(4-fluorophenyl)-N-(215 hydroxycarbonylethyl)-amide,
 - (r) 1-Methyl-2-[N-(4-amidino-2-methoxy-phenyl)aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-phenyl-N(2-hydroxycarbonylethyl)-amide,
 - (s) 1-Methyl-2-[N-(4-amidino-2-methoxy-phenyl)aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-(2pyridyl)-N-(2-hydroxycarbonylethyl)-amide,
- 25 (t) 1-Methyl-2-[N-(4-amidinophenyl)aminomethyl]-indol-5-yl-carboxylic acid-N-phenyl-N-(2-methoxycarbonylethyl)-amide and
- (u) 1-Methyl-2-[N-(4-amidinophenyl) aminomethyl] 30 thieno[2.3-d]imidazol-5-yl-carboxylic acid-N-phenyl-N-(2-hydroxycarbonylethyl) -amide,
 - or a prodrug, double prodrug or salt thereof.

7. 1-Methyl-2-[N-(4-amidinophenyl)-aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-phenyl-N-(2-hydroxycarbonylethyl)-amide, or a prodrug, double prodrug or salt thereof.

5

- 8. 1-Methyl-2-[N-(4-amidinophenyl)-amihomethyl]benzimidazol-5-yl-carboxylic acid-N-(2-pyridyl)-N-(2hydroxycarbonylethyl)-amide or a prodrug, double prodrug or
 salt thereof.
 - 9. 1-Methyl-2-[N-(4-amidino-2-methoxy-phenyl)aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-(2-
- pyridyl)-N-(2-hydroxycarbonylethyl) famide, or a prodrug, double prodrug or salt thereof.
 - 10. 1-Methyl-2-[N-[4-(N-n-
- 20 hexyloxycarbonylamidino)phenyl]aminomethyl]-benzimidazol-5-yl-carboxylic acid-N-(2-pyridyl) N-(2-ethoxycarbonylethyl) amide.
- 25 11. A physiologically acceptable salt of a compound according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 wherein E denotes an R_bNH-C(=NH) group.
- 12. A pharmaceutical composition containing a compound according to claim 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, wherein E denotes an $R_bNH-C(=NH)$ group, or a physiologically acceptable salt thereof, together with a pharmaceutically acceptable carrier or diluent.

- 14. The method of claim 13 wherein said thrombotic disease is selected from the group consisting of deep leg vein thrombosis, reocclusion after a bypass operation or angioplasty (PT(C)A), occlusion in peripheral arterial disease, pulmonary embolism, disseminated intravascular coagulation, coronary thrombosis, stroke, and the occlusion of a shunt or stent.
- 15. A method for providing antithrombotic support in thrombolytic treatment utilizing at PA or streptokinase,
 20 which comprises administering a therapeutically effective amount of a compound according claim 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, wherein E denotes an R_bNH-C(=NH) group, or a physiologically acceptable salt thereof.
- 16. A method for preventing metastasis or the growth of clot-dependent tumours, which comprises administering a therapeutically effective amount of a compound according claim 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, wherein E denotes an R_bNH-C(=NH)- group, or a physiologically acceptable salt thereof.

all y