



## **Model Checking**

Linear Temporal Logic, Part 2

[Baier & Katoen, Chapter 5.1]

Prof. Dr. Nils Jansen Radboud University, 2025

Credit to the slides: Prof. Dr. Dr.h.c. Joost-Pieter Katoen

### The First Question Last Week

## What is a model?

#### What is a model?



# Do transition systems have any practical use?

# How do we specify properties?

### Summary

- Transition systems are a general formal model to capture real life (programing) problems
- Mind the state space explosion!
- LT properties are finite sets of infinite words over 2<sup>AP</sup> (= traces)
- An invariant requires a condition Φ to hold in any reachable state
- Each trace refuting a safety property has a finite prefix causing this
  - invariants are safety properties with bad prefix Φ\*(¬Φ)
  - ⇒ safety properties constrain finite behaviours

## Is There a Proper Logic to Define Properties?

Who would tell an engineer to write regular expressions for bad prefixes?

## LTL Syntax

Recap: LTL syntax

BNF grammar for LTL formulas with proposition  $a \in AP$ :

$$\varphi ::= true \left| \begin{array}{c|c} a & \varphi_1 \wedge \varphi_2 & \neg \varphi & \bigcirc \varphi & \varphi_1 \cup \varphi_2 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

## LTL Syntax

Recap: LTL syntax

BNF grammar for LTL formulas with proposition  $a \in AP$ :

$$\varphi ::= true \begin{vmatrix} a & \varphi_1 \wedge \varphi_2 & \neg \varphi & \bigcirc \varphi & \varphi_1 \cup \varphi_2 \end{vmatrix}$$

- Propositional logic
  - a ∈ AP
  - $\neg \varphi \text{ and } \varphi \wedge \psi$

atomic proposition negation and conjunction

- Temporal modalities
  - $\bullet$   $\bigcirc \varphi$
  - φ U ψ

neXt state fulfills  $\varphi$ 

arphi holds Until a  $\psi$ -state is reached

Linear Temporal Logic (LTL) is a logic to describe LT properties

## **Recap: Derived Operators**

$$\varphi \lor \psi \quad \equiv \quad \neg \left( \neg \varphi \land \neg \psi \right)$$
 
$$\varphi \Rightarrow \psi \quad \equiv \quad \neg \varphi \lor \psi$$
 
$$\varphi \Leftrightarrow \psi \quad \equiv \quad (\varphi \Rightarrow \psi) \land (\psi \Rightarrow \varphi)$$
 
$$\varphi \oplus \psi \quad \equiv \quad (\varphi \land \neg \psi) \lor (\neg \varphi \land \psi)$$
 
$$\mathsf{true} \quad \equiv \quad \varphi \lor \neg \varphi$$
 
$$\mathsf{false} \quad \equiv \quad \neg \, \mathsf{true}$$

## **Recap: Derived Operators**

$$\varphi \lor \psi \equiv$$

$$\varphi \Rightarrow \psi \equiv$$

$$\varphi \Leftrightarrow \psi \equiv$$

$$\forall \oplus \psi \equiv$$

$$\text{true} \equiv$$

$$\text{false} \equiv$$

$$\diamondsuit \varphi \equiv \qquad \text{"some time in the future"} \quad \text{``inally''}$$

$$\Box \varphi \equiv \qquad \text{"from now on forever"}$$

precedence order: the unary operators bind stronger than the binary ones.

 $\neg$  and  $\bigcirc$  bind equally strong. U takes precedence over  $\land$ ,  $\lor$ , and  $\Rightarrow$ 

## **Recap: Intuitive Semantics**



• The traffic light becomes green eventually:



• The traffic light becomes green eventually:

- ♦ green
- Once red, the light cannot become green immediately:

$$\square (red \Rightarrow \neg \bigcirc green)$$

- The traffic light becomes green eventually: ♦ green
- Once red, the light cannot become green immediately:

$$\Box (red \Rightarrow \neg \bigcirc green)$$

• Once red, the light becomes green eventually:  $\Box$  (red  $\Rightarrow$   $\Diamond$  green)

- The traffic light becomes green eventually: ♦ green
- Once red, the light cannot become green immediately:

$$\Box (red \Rightarrow \neg \bigcirc green)$$

- Once red, the light becomes green eventually:  $\Box$  (red  $\Rightarrow$   $\Diamond$  green)
- Once red, the light always becomes green eventually after being yellow for some time inbetween:

$$\Box (red \Rightarrow \bigcirc (red \cup (yellow \land \bigcirc (yellow \cup green))))$$

## **Overview**

LTL Equivalence

2 LTL Model Checking

Summary

## LTL Equivalence

#### Definition: LTL equivalence

LTL formulas  $\varphi$ ,  $\psi$  (both over AP) are equivalent:

$$\varphi \equiv_{LTL} \psi$$
 if and only if  $Words(\varphi) = Words(\psi)$ .

If it is clear from the context that we deal with LTL-formulas, we simply write  $\varphi \equiv \psi$ .

#### Equivalently:

$$\varphi \equiv_{LTL} \psi$$
 iff ( for all transition systems  $TS : TS \models \varphi$  iff  $TS \models \psi$  ).

## **Duality and Idempotence**

Duality: 
$$\neg \Box \varphi \equiv \Diamond \neg \varphi$$
 
$$\neg \Diamond \varphi \equiv \Box \neg \varphi$$
 
$$\neg \bigcirc \varphi \equiv \bigcirc \neg \varphi$$

## **Duality and Idempotence**

Duality: 
$$\neg \Box \varphi \equiv \Diamond \neg \varphi$$
$$\neg \Diamond \varphi \equiv \Box \neg \varphi$$
$$\neg \bigcirc \varphi \equiv \bigcirc \neg \varphi$$
 Idempotence: 
$$\Box \Box \varphi \equiv \Box \varphi$$
$$\Diamond \Diamond \varphi \equiv \Diamond \varphi$$
$$\varphi \cup (\varphi \cup \psi) \equiv \varphi \cup \psi$$
$$(\varphi \cup \psi) \cup \psi \equiv \varphi \cup \psi$$

## **Absorption and Distributive**



## **Absorption and Distributive**

Absorption: 
$$\diamondsuit \square \diamondsuit \varphi \equiv \square \diamondsuit \varphi$$
  $\square \diamondsuit \square \varphi \equiv \diamondsuit \square \varphi$  Distributive:  $\bigcirc (\varphi \cup \psi) \equiv (\bigcirc \varphi) \cup (\bigcirc \psi)$ 

 $\Diamond(\varphi \lor \psi) \equiv \Diamond \varphi \lor \Diamond \psi$  $\Box(\varphi \land \psi) \equiv \Box \varphi \land \Box \psi$ 

## **Absorption and Distributive**

Absorption: 
$$\diamondsuit \square \diamondsuit \varphi \equiv \square \diamondsuit \varphi$$

$$\square \diamondsuit \square \varphi \equiv \diamondsuit \square \varphi$$
Distributive:  $\bigcirc (\varphi \cup \psi) \equiv (\bigcirc \varphi) \cup (\bigcirc \psi)$ 

$$\lozenge (\varphi \lor \psi) \equiv \diamondsuit \varphi \lor \diamondsuit \psi$$

$$\square (\varphi \land \psi) \equiv \square \varphi \land \square \psi$$

$$\lozenge (\varphi \land \psi) \neq (\square \varphi) \cup (\square \psi)$$

$$\diamondsuit (\varphi \land \psi) \neq \diamondsuit \varphi \land \diamondsuit \psi$$

$$\square (\varphi \lor \psi) \neq \square (\varphi \lor \psi) \neq \square (\varphi \lor \psi)$$

#### Weak Until

#### Definition: the weak-until-operator

The weak-until (or: unless) operator is defined by

$$\varphi \mathsf{W} \psi = (\varphi \mathsf{U} \psi) \mathsf{V} \square \varphi.$$

In contrast to until, weak until does not require to establish  $\psi$  eventually

#### Weak Until

#### Definition: the weak-until-operator

The weak-until (or: unless) operator is defined by

$$\varphi \mathsf{W} \psi = (\varphi \mathsf{U} \psi) \mathsf{V} \square \varphi.$$

In contrast to until, weak until does not require to establish  $\psi$  eventually

Until U and weak until W are dual:

$$\neg(\varphi \cup \psi) \equiv (\varphi \land \neg \psi) \lor (\neg \varphi \land \neg \psi)$$

$$\neg(\varphi \, \mathsf{W} \, \psi) \quad \equiv \quad (\varphi \, \wedge \, \neg\psi) \, \mathsf{U} \, (\neg\varphi \, \wedge \, \neg\psi)$$

## Example



### **Overview**

1 LTL Equivalence

2 LTL Model Checking

Summary

## Can We Do LTL Model Checking?

## **Automata-Based LTL Model Checking**



### **Overview**

1 LTL Equivalence

2 LTL Model Checking

Summary

## Summary

- Linear temporal logic (LTL) is a logic to succinctly describe LT properties
- LTL-formulas are equivalent iff they describe the same LT properties