Codage d'Huffman

Exemple

Σ:	а	b	С	d	е	f
f:	45	13	12	16	9	5

Solution 1:

а	b	С	d	е	f
000	001	010	011	100	101

 $\sum f(a).|\phi(a)| = 45x3+13x3... = 300$

Solution 2:

а	b	С	d	е	f
0	101	100	111	1101	1100

$$\sum f(a).|\phi(a)| = 45x1+13x3... = 224$$

Le problème

obj: étant donné un texte sur un alphabet ∑, le *coder* succinctement en binaire.

- données: un alphabet ∑ et une fonction de «fréquence» f : ∑→N
- résultat: un codage $\phi : \sum \rightarrow \{0,1\}^*$ tel que $\sum_{a \in \Sigma} f(a).|\phi(a)|$ soit minimal.

Codage...

Ici on se limite aux codes préfixes, ie: aucun $\phi(x)$ n'est préfixe d'un $\phi(y)$

Propriété:

Il existe un code préfixe optimal.

Avantage:

Le décodage est très simple!

Exemple de décodage

а	b	С	d	е	f
0	101	100	111	1101	1100

Codes préfixes et arbres binaires

Un code préfixe optimal est toujours représenté sous la forme d'un arbre binaire localement complet.

Coût d'un arbre T selon f:

$$B_f(T) = \sum_{a \in F(T)} f(a) \cdot prof_T(a)$$

F(T): feuilles de T

prof_T(a): profondeur du noeud a dans T

- On écrira B(T) lorsque f est fixée par le contexte.
- On étend B() aux codages: B(φ)= ∑ f(a).lφ(a)l

Codes préfixes et arbres binaires

а	b	С	d	е	f
000	001	010	011	100	101

а	b	С	d	е	f
0	101	100	111	1101	1100

Codes préfixes et arbres binaires

Σ:	а	b	С	d	е	f
f:	45	13	12	16	9	5

а	b	С	d	е	f
000	001	010	011	100	101

B(T)=(45+13+12+16+9+5)*3= 300

а	b	С	d	е	f
0	101	100	111	1101	1100

B(T')=45*1+13*3+12*3+16*3+9*4+5*4= 224

Arbres

On considère les primitives suivantes sur les arbres:

- •feuille(a) = crée une feuille étiquetée par «a»
- •arbre (t_1,t_2) = crée un arbre avec t_1 comme fils gauche et t_2 comme fils droit
- •fg(t) = retourne le fils gauche
- •fd(t): retourne le fils droit

On utilise une file de priorité pour stocker des arbres (correspondant à des codes pour des sous-ensembles de ∑) avec comme clé la somme des fréquences de ces lettres.

Algorithme d'Huffman

$$\begin{split} n &:= I \sum I \\ FP &:= FilePriorit\acute{e}(\{ (feuille(a),f(a)) \mid a \in \Sigma \}) \\ Pour i &= 1 \grave{a} n-1 : \\ & (t_1,f_1) := ExtraireMin(FP) \\ & (t_2,f_2) := ExtraireMin(FP) \\ & Ajouter(FP,(arbre(t_1,t_2),f_1+f_2)) \\ & (T,f) := ExtraireMin(FP) \\ & retourner T \end{split}$$

Exemple

Σ:	а	b	С	d	е	f
f:	45	13	12	16	9	5

(f,5) et (e,9):
$$/$$
 14 + (a,45) (b,13) (c,12) (d,16) (c,12) et (b,13): $/$ 25 + (a,45) (d,16) ($/$ 14) ($/$ 14) et (d,16): $/$ 30 + (a,45) ($/$ 25) ($/$ 25) ($/$ 25) ($/$ 25) et ($/$ 30): $/$ 30 + (a,45) ($/$ 35) ($/$ 35) ($/$ 30): $/$ 35 + (a,45) ($/$ 36)

Exemple

$$(a,45) + (/ / / / ,55) \rightarrow (c b / / c b / c b / / c b / c$$

Algorithme d'Huffman

Lemme 1:

Étant donnés (\sum,f) et $x,y \in \sum$ telles que x et y aient des fréquences minimales, alors il existe un code préfixe optimal φ avec $\varphi(x)=w.0$ et $\varphi(y)=w.1$

NB: $\varphi(x)$ et $\varphi(y)$ ont la même longueur et, x et y ont le même père dans l'arbre binaire associé à φ .

Algorithme d'Huffman

Théorème:

L'algorithme d'Huffman donne un code préfixe optimal.

Lemme 1- preuve

- soit T l'arbre associé à un code optimal.
- soit a,b deux feuilles de T, de même père et situées à la prof. max dans T

 $\mathsf{B}(\mathsf{T}') = \mathsf{B}(\mathsf{T}) - \mathsf{f}(\mathsf{x}) \cdot \mathsf{pf}_\mathsf{T}(\mathsf{x}) - \mathsf{f}(\mathsf{a}) \cdot \mathsf{pf}_\mathsf{T}(\mathsf{a}) + \mathsf{f}(\mathsf{x}) \cdot \mathsf{pf}_\mathsf{T}(\mathsf{a}) + \mathsf{f}(\mathsf{a}) \cdot \mathsf{pf}_\mathsf{T}(\mathsf{x})$

 $B(T')=B(T)+f(x).(pf_T(a)-pf_T(x))-f(a)(pf_T(a)-pf_T(x))$

 $B(T')=B(T)+(f(x)-f(a)).(pf_{T}(a)-pf_{T}(x))$

≤0

≥0

 $\Rightarrow B(T') \le B(T)$

 $B(T'') \le B(T') \le B(T) : T'' \text{ optimal } !$

hyp: $f(x) \le f(a)$ $f(y) \le f(b)$ $pf_T(a) \le pf_T(x)$

Algorithme d'Huffman

Lemme 2:

Soit T un arbre binaire représentant un code préfixe optimal pour (\sum,f) .

Soient x et y deux feuilles avec le même père z dans T. Soient $T' = T \setminus \{x,y\}$ et $f' = f_{|\Sigma|} \setminus \{x,y\}$ et $f'(z_{new}) = f(x) + f(y)$

Alors Τ' représente un code préfixe optimal pour (Σ',f')

NB: $\Sigma' = \Sigma \setminus \{x,y\} \cup \{z_{new}\}$

Théorème:

L'algorithme d'Huffman donne un code préfixe optimal.

```
Preuve: par induction sur I\sum I - I\sum I = 2: ok
-I\sum I = n+1
Soit \varphi_{algo} le code renvoyé par l'algo et \varphi_{opt} un code optimal.
Soient x et y les deux lettres choisies par l'algo avec des priorités min. Par le Lemme 1, on peut supposer \varphi_{opt}(x)=w.0 et \varphi_{opt}(y)=w.1

Par le Lemme 2, on sait que \varphi' définie par:
\varphi'(u) = \varphi_{opt}(u) \text{ si } u \in \sum \{x,y,z_{new}\} \quad \text{ET } \varphi'(z_{new}) = w
est optimal pour (\sum',f') [...]!
Et de plus: B(\varphi') = B(\varphi_{opt})-f(x)-f(y)

De son coté, l'algorithme calcule aussi un code \varphi'_{algo} pour (\sum',f') et par hypothèse d'induction, il est optimal, donc: B(\varphi'_{algo})=B(\varphi')
Et on a: B(\varphi'_{algo}) = B(\varphi_{algo})-f(x)-f(y) (car \varphi_{algo}(x)=w'.0 et \varphi_{algo}(y)=w'.1)
D'où: B(\varphi_{algo}) = B(\varphi_{opt})
```

Lemme 2 - preuve

 $pf_T(x)=pf_T(y)=pf_{T'}(z_{new})+1$

```
\begin{split} B(T) &= \sum \ f(a).pf_T(a) \\ B(T') &= B(T) \ \text{-}f(x).pf_T(x) \ \text{-}f(y).pf_T(y) \ + \ (f(x)+f(y)).pf_T(z_{new}) \\ B(T') &= B(T) \ \text{-} \ (f(x)+f(y)) \ (pf_T(x) \ \text{-} \ pf_{T'}(z_{new})) \\ B(T') &= B(T) \ \text{-} \ f(x) \ \text{-} \ f(y) \end{split} Si T' n'est pas optimal, il existe A' optimal pour (\sum',f') Et remplacer z par (x,y) dans A' donne A tq B(A) = B(A') + f(x) + f(y) < B(T') + f(x) + f(y) = B(T) \ !
```

On a donc trouvé un A meilleur que T!