T2 - SOR e Conjugate Gradient

George Othon NUSP 10349978

Junho 2020

1 Introdução

Este relatório tem como finalidade analisar os resultados obtidos para solução de sistemas lineares esparsos Ax = b a partir dos algoritmos SOR e Conjugate Gradient.

Para esta análise, escolhi 4 matrizes esparsas com uma distribuição de dimensões e esparsidade. E para verificar o erro relativo, foi utilizado a norma infinita, e uma variação de tolerância para aceitação. Para medir o tempo de exucução, foi utilizada a bibliioteca time e a função time() para marcar o tempo em segundos.

2 Matrizes

As matrizes escolhidas estão na tabela abaixo com suas respectivas características:

Matriz	n	% não nulos
Α	48	17,4%
В	100	5,9%
С	289	2,2%
D	468	2,4%

Figure 1: Matrizes

3 SOR - Successive Over-Relaxation

Cada matriz A, B, C e D foi testada para uma variação da tolerância de aceitação tol para os seguintes valores: 10^{-3} , 10^{-5} , 10^{-7} e 10^{-9} .

3.1 w ótimo

Para encontrar o w ótimo foi feita uma análise a partir de uma variação do w com uma casa decimal com 1 < w < 2. E obtivemos os resultados bastante diferentes com a variação das matrizes.

Matrix A

Figure 2: Matriz A

tol=10e-5					
w	Tempo	iterações	Tempo/iterações	Norma infinita	
1,9	0,545502186	163	0,003346639	6,69497E-06	
1,8	1,316233397	388	0,003392354	0,00032187	
1,7	1,957381487	584	0,003351681	0,000550969	
1,6	2,60758543	781	0,003338778	0,000794202	
1,5	3,395268917	987	0,003439989	0,001060887	
tol=	10e-7				
w	Tempo	iterações	Tempo/iterações	Norma infinita	
1,9	0,691562653	206	0,0033571	1,18157E-07	
1,8	1,827078342	542	0,003370993	3,27142E-06	
1,7	2,857907295	841	0,003398225	5,45142E-06	
1,6	3,821446419	1150	0,003322997	7,84998E-06	
1,5	5,00061059	1480	0,003378791	1,06584E-05	
tol=	10e-9				
w	Tempo	iterações	Tempo/iterações	Norma infinita	
1,9	0,82266736	248	0,003317207	1,62972E-09	
1,8	2,335055113	697	0,003350151	3,22738E-08	
1,7	3,676946163	1097	0,00335182	5,4915E-08	
1,6	5,100271225	1518	0,003359862	7,8567E-08	
1,5	6,607575417	1974	0,003347303	1,06088E-07	

Figure 3: Matriz A

Com o aumento do w, na matriz A, o número de iterações necessárias para que atingissemos a tolerância decresce, e ao classificar pelo menor número de iterações atingimos para as três tolerâncias em questão o w ótimo de 1.9. Apresentando um tempo de execução menor que um segundo.

Matrix B

Figure 4: Matriz B

tol=10e-5							
w	Tempo	iterações Tempo/iterações		Norma infinita			
1,9	0,954055786	123	0,007756551	0,00013617			
1,8	1,594798088	210	0,007594277	0,000226161			
1,7	2,59013772	337	0,007685869	0,000406167			
1,6	3,620795488	465	0,007786657	0,000592091			
1,5	4,619147539	601	0,00768577	0,000798677			
tol=	10e-7						
w	Tempo	iterações	Tempo/iterações	Norma infinita			
1,9	1,536198854	198	0,00775858	1,64674E-07			
1,8	2,451621056	318	0,0077095	2,27947E-06			
1,7	4,044366837	527	0,00767432	4,02075E-06			
1,6	5,753211498	741	0,007764118	5,9032E-06			
1,5	7,478369713	973	0,007685889	7,96661E-06			
tol=10e-9							
w	Tempo	iterações	Tempo/iterações	Norma infinita			
1,9	1,899994612	247	0,007692286	1,55549E-08			
1,8	3,283694267	426	0,007708203	2,29746E-08			
1,7	5,499526978	717	0,007670191	3,98024E-08			
1,6	7,747151136	1017	0,007617651	5,88553E-08			
1,5	10,33837986	1345	0,007686528	7,9465E-08			

Figure 5: Matriz B

A matriz B apresentou resultados parecidos com a matriz A, alcançando, também, um w ótimo de 1.9, apesar de levar um pouco mais de tempo.

Matrix C

Figure 6: Matriz C

tol=10e-5							
w	Tempo	iterações Tempo/iterações		Norma infinita			
1,1	0,367963552	13	0,028304889	3,34983E-06			
1	0,380307198	14	0,0271648	8,37802E-06			
1,2	0,428700924	16	0,026793808	1,12621E-06			
1,3	0,515076399	19	0,027109284	1,15604E-06			
1,4	0,598220348	22 0,027191834		3,09741E-06			
tol=	10e-7						
w	Tempo	iterações	Tempo/iterações	Norma infinita			
1,1	0,488557816	18	0,027142101	4,39416E-08			
1,2	0,509464502	19	0,026813921	1,62567E-08			
1	0,564845562	21	0,026897408	5,25176E-08			
1,3	0,620751619	23	0,026989201	1,43863E-08			
1,4	0,725549221	27 0,026872193		8,49973E-09			
tol=	tol=10e-9						
w	Tempo	iterações	Tempo/iterações	Norma infinita			
1,2	0,59113121	22	0,0268696	1,10238E-10			
1,1	0,620863199	23	0,026994052	1,95773E-10			
1,3	0,702260494	26	0,027010019	1,56849E-10			
1	0,722791195	27	0,026770044	7,68735E-10			
1,4	0,82448411	31	0,026596262	1,88459E-10			

Figure 7: Matriz C

Já a matriz C tem uma relação entre as iterações e o w diferente das matrizes acima, em que ela aumento de acordo com o w. Então, o número de iterações é muito menor, logo, o tempo de execução também diminui muito. O w ótimo foi escolhido como 1.1, já que na para as tolerâncias 10^{-5} e 10^{-7} foi o que se saiu melhor, mesma ficando em segundo lugar para a tolerância de 10^{-9} .

Matrix D

Figure 8: Matriz D

tol=10e-5					
w	Tempo	iterações Tempo/iterações		Norma infinita	
1,9	13,02732205	211	0,061740863	0,000168449	
1,8	29,10543585	469	0,062058499	0,000489677	
1,7	42,98445678	694	0,061937258	0,000796928	
1,6	57,02807236	919	0,062054486	0,001147021	
1,5	71,5921979	1154 0,0620383		0,001539031	
tol=	10e-7				
w	Tempo	iterações	Tempo/iterações	Norma infinita	
1,9	18,1981883	293	0,062109858	1,76467E-06	
1,8	43,02976537	697	0,061735675	4,88475E-06	
1,7	65,46490288	1066	0,061411729	8,01253E-06	
1,6	89,43244958	1451	0,061635045	1,14676E-05	
1,5	115,1427543	1866 0,061705656		1,53315E-05	
tol=10e-9					
w	Tempo	iterações	Tempo/iterações	Norma infinita	
1,9	23,58128119	378	0,062384342	1,74456E-08	
1,8	58,91669059	925	0,06369372	4,87704E-08	
1,7	89,06326509	1439	0,061892471	7,96101E-08	
1,6	121,8604968	1983	0,061452595	1,14679E-07	
1,5	158,2370079	2577	0,061403573	1,53734E-07	

Figure 9: Matriz D

A matriz D, maior das quatro, teve um tempo de execução muito maior que todas as outras, todavia, teve um número de iterações bem próximo das matrizes A e B. E, ao classificar pela quantidade de iterações, nos retornou, da mesma forma, um w ótimo de 1.9.

4 Comparação Conjugate Gradient

As matrizes que tiveram um pior desempenho foram as duas primeiras, A e B, que apresentaram um número alto de iterações levando em conta o tamanho das matrizes.

Matriz A	Tempo	Iterações	Norma infinita
Conjugate Gradient	0,02892232	49	1,147091
SOR	0,30680943	228	1,47E-08
Matriz B	Tempo	Iterações	Norma infinita
Conjugate Gradient	0,06885314	64	0,0006727
SOR	0,64926982	209	3,25E-07

Figure 10: Comparação Conjugate Gradient

Ao comparar os dois algoritmos, percebemos que o Conjugate Gradient é extremamente mais rápido em tempo computacional, e também converge com menos iterações, entretanto, perde em relação à norma infinita do valor real, quando comparado ao SOR com w ótimo.

Conclusão

Após as diversas análises feitas em relação ao w ótimo do SOR, percebese que com o aumento do w, temos também uma diminuição do número de iterações, que não era esperado, já que a cada vez que acrescentamos o resíduo multiplicado pelo w, faz parecer que o número de iterações aumentaria. Porém, a regra não vale para todas as matrizes, pois quando estamos analisando uma matriz com uma porcentagem bastante alta de zeros, a relação muda, e temos então uma correlação positiva entre o aumento de w e o número de iterações.

As tolerâncias utilizadas mostra que a relação entre w e o número de iterações se mantêm, e temos uma precisão melhor conforme a tolerância se aproxima do zero, mas exige um tempo computacional maior.

Pode-se perceber também, que o aumento do número de iterações, e por consequência, do tempo, está mais relacionado com a quantidade de elementos não nulos do que com o tamanho da matriz, ja que com menos elementos, temos menos operações, o que implica em um custo computacional menor.

Com a comparação entre o SOR e o Conjugate Gradient, foi fácil perceber que o SOR é um algoritmo mais lento em relação ao do Gradient, mas mais eficaz em relação ao erro. Em contrapartida, o método do Gradient usa bem menos iterações, e consequentemente menos tempo. Como nos exemplos mostrados, em que precisou de aproximadamente 25% das iterações necessárias para o SOR.