In the Claims

The listing of claims will replace all prior versions and listings of claims in the application.

Listing of claims

1. (Original) A compound having the structural formula (I):

$$\begin{array}{c|c}
A - N & R^4 \\
N & N - CH_2 \\
R^2 & R^3
\end{array}$$
(I)

wherein,

A is N or CR^I;

R^I is, independently at each instance, H, halogen, cyano, nitro, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted amino, optionally substituted carboxy, optionally substituted carbonyl, optionally substituted carbamide, optionally substituted sulfide, optionally substituted sulphamide;

R^{II} is, independently at each instance, H, halogen, cyano, nitro, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl, optionally substituted alkoxy, optionally substituted amino, optionally substituted carboxy, optionally substituted carbonyl, optionally substituted carbamide, optionally substituted sulfide, optionally substituted sulphamide;

R² is H, optionally substituted alkyl, optionally substituted alkylcycloalkyl, optionally substituted alkenyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted cycloalkynyl, optionally substituted aryl, optionally substituted alkoxy, optionally substituted amino, or optionally substituted heterocycle;

 R^3 is a monocyclic or bicyclic, saturated or unsaturated, ring system comprising 0, 1, 2 or 3 heteroatoms independently selected from N, O, or S, the ring being substituted by 0, 1, 2 or 3 substituents selected from =O, halogen, -OR^a, C₁₋₆alkyl, C₁₋₆haloalkyl, -CN, nitro, -S(=O)_nR^c, -O(CH₂)_mHet, -O(CH₂)_mC(=O)Het, -O(CH₂)_mC(=O)NR^aR^a, -O(CH₂)_mC(=O)OR^a, -O(CH₂)_mNR^aR^a, -O(CH₂)_mOR^a, -S(CH₂)_mHet, -S(CH₂)_mC(=O)Het, -S(CH₂)_mC(=O)NR^aR^a,

-S(CH₂)_mC(=O)OR^a, -S(CH₂)_mNR^aR^a, -S(CH₂)_mOR^a, -NR^aR^a, -NHC(=O)R^a, N=NR^a, aminocarbonyl, phenyl, benzyl; or R³ is represented by -Het, -Het-Het, R⁵,-R⁵-Het, -Het-R⁵, -Het-O-R⁵, -R⁵-R⁵, -R⁵-OR⁵;

R⁴ is a monocyclic or bicyclic, saturated or unsaturated, ring system, or a vicinal-fused derivative thereof, which may contain from 5 to 12, preferably 5 to 10, ring atoms, 0, 1, 2, 3 or 4 of which are heteroatoms independently selected from N, O, or S, the ring system being substituted by 0, 1, 2 or 3 substituents selected from B(OH)2, vicinal -OCH2CH2O-, vicinal -OC₁₋₂haloalkylO-, vicinal -OCH₂O-, vicinal -CH₂OCH₂O-, =O, halogen, -R^bOR^a, -SR^a, -OR^a, C_{1-6} alkyl, C_{1-6} haloalkyl, -CN, -S(=O)_nR^c, -O(CH₂)_mHet, -O(CH₂)_mC(=O)Het, - $O(CH_2)_m C(=O)NR^aR^a$, $-O(CH_2)_m C(=O)OR^a$, $-O(CH_2)_m NR^aR^a$, $-O(CH_2)_m OR^a$, $-S(CH_2)_m Het$, $-O(CH_2)_m C(=O)NR^aR^a$, $-O(CH_2)_m C(=O)OR^a$ $S(CH_2)_mC(=O)Het$, $-S(CH_2)_mC(=O)NR^aR^a$, $-S(CH_2)_mC(=O)OR^a$, $-S(CH_2)_mNR^aR^a$, $-S(CH_2)_mC(=O)OR^a$ $S(CH_2)_mOR^a$, $-NR^aR^a$, $-NHC(=O)R^a$, $-NHC(=O)OR^a$, $N=NR^a$, NO_2 , $-C(=O)NR^aR^a$, - $C(=O)NR^{a}OR^{a}$, $-C(=O)NR^{a}(R^{b}NR^{a}R^{a})$, $-C(=O)NR^{a}(R^{b}OR^{a})$, $-C(=O)NR^{a}(R^{b}S(=O)_{n}R^{a})$ $C(=O)NR^{a}(R^{b}Het)$, $-C(=O)OR^{a}$, $-OC(=O)R^{a}$, $-C(=O)OR^{b}NR^{a}R^{a}$, $-C(=O)R^{a}$, $-C(=O)R^{b}NR^{a}R^{a}$, $-C(=NOR^a)R^a, -C(=NCN)R^a, -S(=O)_2NR^aR^a, -NR^aS(=O)_2R^a, -S(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2R^a, -S(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2R^a, -S(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2R^a, -S(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2R^a, -S(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2R^a, -S(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2R^a, -S(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2NR^a(R^bC(=O)NR^aR^a), -R^aS(=O)_2NR^a(R^bC(=O)NR^a), -R^aS(=O)_2NR^a(R^a), -R^aS(O)_2NR^a(R^a), -R^aS($ S(=O)₂NR^a(R^bC(=O)OR^a), aminocarbonyl, phenyl, benzyl; or R⁴ is represented by -(CH₂)_nR⁵-Het, -(CH₂)_nR^d, -Het, -Het-Het, R⁵, -R⁵-Het, -Het-R⁵, -Het-OR⁵, R⁵-R⁵, or -R⁵-OR⁵; or R⁴ is represented by C₁₋₆alky, -NC₁₋₆alkyl, or -N(C₁₋₆alkyl)₂ wherein the C₁₋₆alkyl, -NC₁₋₆alkyl, -N(C₁₋₆alkyl) are substituted by 0, 1 or 2 substituents selected from R^a, OR^a, halogen or phenyl wherein R^4 is not $-(CH_2)_zCH_3$, $-(CH_2)_zCH_2OH$, $-(CH_2)_zCO_2H$, or $-(CH_2)_zCO_2C_1$. 6alkyl wherein z is 1,2,3,4,5, or 6;

 R^5 is independently at each instance, phenyl substituted by 0, 1, 2, or 3 groups selected from halogen, $C_{1\text{-}6}$ haloalkyl, $-OC_{1\text{-}6}$ haloalkyl, $C_{1\text{-}6}$ alkyl, -CN, nitro, $-OR^a$, $-S(=O)_nR^c$, $-O(CH_2)_mHet$, $-O(CH_2)_mC(=O)Het$, $-O(CH_2)_mC(=O)NR^aR^a$, $-O(CH_2)_mC(=O)OR^a$, $-O(CH_2)_mNR^aR^a$, $-O(CH_2)_mOR^a$, $-S(CH_2)_mHet$, $-S(CH_2)_mC(=O)Het$, $-S(CH_2)_mC(=O)NR^aR^a$, $-S(CH_2)_mC(=O)NR^aR^a$, $-S(CH_2)_mOR^a$, $-R^bOR^a$, $-SR^a$, $-C(=O)NR^aR^a$, $-C(=O)NR^aR^a$, $-C(=O)NR^aR^bNR^aR^a$, $-C(=O)NR^aR^bOR^a$, $-C(=O)NR^aR^bS(=O)_nR^a$, $-C(=O)NR^aR^bHet$, $-C(=O)OR^a$, $-OC(=O)R^a$, $-C(=O)OR^bNR^aR^a$, $-C(=O)R^a$, $-C(=O)R^bNR^aR^a$, $-C(=O)R^bNR^aR^a$, $-C(=O)R^a$, $-C(=O)R^$

R^a is, independently at each instance, H, C₁₋₆alkyl, -C(=O)C₁₋₄alkyl, C₁₋₄haloalkyl, phenyl, benzyl, or 5 or 6-membered ring, saturated or unsaturated heterocycle containing 1,2,3, or 4 heteroatoms independently selected from N, O or S;

R^b is, independently at each instance, C₁₋₆alkyl, -C(=O)C₁₋₄alkyl, C₁₋₄haloalkyl, phenyl, benzyl, or 5 or 6-membered ring, saturated or unsaturated heterocycle containing 1,2,3, or 4 heteroatoms independently selected from N, O or S;

R^c is C₁₋₆alkyl, C₁₋₄haloalkyl, phenyl or benzyl;

 R^d is phenyl substituted by 0, 1 or 2 groups selected from -CN, halogen, nitro, C_{1-6} alkyl, C_{1-4} haloalkyl, -OH, -OR^c, -NR^aR^a, -S(=O)_nR^c, -C(=O)NR^aR^a, -C(=O)OR^a, -NR^aC(=O)R^a, -OC(=O)R^a, B(OH)₂, vicinyl -OCH₂CH₂O-, vicinyl -OC₁₋₂haloalkylO-, vicinyl -OCH₂O-, vicinyl -CH₂OCH₂O-, phenyl, benzyl and a 5- or 6-membered ring, saturated or unsaturated heterocycle containing 1, 2, 3 or 4 heteroatoms independently selected from N, O, or S;

m is 1, 2 or 3; n is 0, 1 or 2; or a pharmaceutically acceptable salt thereof.

2. (Original) A compound as recited in Claim 1 wherein:

A is N or CR^{20} wherein R^{20} is H, halogen, cyano, $C_{1\text{-6}}$ alkyl, $C_{1\text{-6}}$ alkenyl, $C_{1\text{-6}}$ alkynyl, -OC_{0.4}alkyl, -N(C_{0.4}alkyl)(C_{0.4}alkyl).

3. (Original) A compound as recited in Claim 1 wherein:

 R^{I} is H, halogen, cyano, nitro, C_{1-6} alkyl, C_{1-6} alkenyl, C_{1-6} alkynyl, $S(=O)_n$ C_{1-4} alkyl, $S(=O)_n$ C_{1-4} alkyl, C_{0-4} alkyl), C_{0-4} alkyl, C_{0-4} alkyl, C_{0-4} alkyl, or C_{0-4} alkyl) where n is 0, 1 or 2.

4. (Original) A compound as recited in Claim 1 wherein:

 $R^{II} \text{ is H, halogen, cyano, nitro, C_{1-6}alkyl, C_{1-6}alkenyl, C_{1-6}alkynyl, $S(=O)_n$ C_{1-4}alkyl, $-S(=O)_n$ $N(C_{1-4}$alkyl)_n, $-OC_{0-4}$alkyl, $-N(C_{0-4}$alkyl)(C_{0-4}alkyl), $-C(=O)OC_{1-4}$alkyl, $-C(=O)$ C_{0-4}alkyl, or $-C(=O)N(C_{0-4}$alkyl)(C_{0-4}alkyl)$ where n is 0, 1 or 2.}$

5. (Original) A compound as recited in Claim 1 wherein:

 R^2 is C_{1-6} alkyl C_{3-6} cycloalkyl or $-C_{1-6}$ alkyl wherein either is optionally substituted with 0, 1, 2 or 3 substituents selected from Het, $S(=O)_nR^c$, $-S(=O)_nNR^aR^a$ halogen, -CN, $-OR^a$, $-NR^aR^a$, $-C(=O)OR^a$, $-C(=O)R^a$, $-C(=O)NR^aR^a$, $-OC(=O)C_{1-4}$ alkyl, or $-NR^aC(=O)C_{1-4}$ alkyl and n is 0, 1 or 2.

6. (Original) A compound as recited in Claim 1 wherein:
 R³ is selected from formulas (i), (ii), (iii) or (iv) set forth below:

wherein * is the location where (i) or (ii) or (iii) or (iv) is attached to structural formula (I), and X is C or N; and Z is O or S, wherein R^{10} is at any position on the ring and R^{10} and R^{11} are independently at each instance H, R^a , halogen, -CN, nitro, OR^a , CF_3 , -NR^aR^a, -C(=O)OR^a, -C(=O)RR^a, -C(=O)RR^aR^a, -OC(=O)C₁₋₄alkyl, -NR^aC(=O)C₁₋₄alkyl or -S(=O)_nR^c; and wherein R^{11a} is R^a , -S(=O)₂NR^aR^a or -S(=O)_nR^c and n=1 or 2.

(Original) A compound as recited in Claim 1 wherein:
 R⁴ is selected from formulas (a) to (z) or (aa) or (ab) set forth below:

wherein * is the location wherein R^4 is attached to the ring system and wherein wherein R^{12} , R^{13} and R^{14} are each independently represented by H, Het, $C_{1\text{-}6}$ alkyl, -CN, -NR a R a , -nitro, -C(=O)R a , -C(=O)NR a R a , -C(=O)NR a S(=O) $_2$ R a , -C(=O)NR a -Het, -

$$\begin{split} &C(=O)NR^aNR^aR^a, \ -C(=O)NR^a(R^bNR^aR^a), \ -C(=O)NR^a(R^bOR^a), \ -C(=O)NR^a(R^bS(=O)_2R^a), \ -C(=O)NR^aR^bHet, \ -C(=O)NR^aOR^a, \ -C(=O)R^bNR^aR^a, \ -C(=NOR^a)R^a, \ -C(=NCN)R^a, \ -C(=O)OR^a, \ -C(=O)OR^bNR^aR^a, \ -C(=O)R^a, \ -OC(=O)R^a, \ -C(=O)R^a-SR^a, \ =S, \ -NR^aC(=O)R^a, \ -NR^aC(=O)R^a, \ -S(=O)_2R^a, \ -S(=O)_2NR^aR^a, \ -S(=O)_2NR^aR^a, \ -S(=O)_2NR^a(R^bC(=O)NR^aR^a), \ or \ -S(=O)_2NR^a(R^bC(=O)OR^a. \end{split}$$

8. (Original) A compound as recited in Claim 1 wherein:

A is N or CR^{20} wherein R^{20} is H, halogen, cyano, C_{1-6} alkyl, C_{1-6} alkenyl, C_{1-6} alkynyl, $-OC_{0-4}$ alkyl, $-N(C_{0-4}$ alkyl)(C_{0-4} alkyl);

 R^{I} is H, halogen, cyano, nitro, C_{1-6} alkyl, C_{1-6} alkenyl, C_{1-6} alkynyl, $S(=O)_n$ C_{1-4} alkyl, - $S(=O)_n$ N(C_{1-4} alkyl), -OC₀₋₄alkyl, -N(C_{0-4} alkyl)(C_{0-4} alkyl), -C(=O)OC₁₋₄alkyl, -C(=O) C_{0-4} alkyl, or -C(=O)N(C_{0-4} alkyl)(C_{0-4} alkyl) where n is 0, 1 or 2;

 R^{II} is H, halogen, cyano, nitro, C_{1-6} alkyl, C_{1-6} alkenyl, C_{1-6} alkynyl, $S(=O)_n C_{1-4}$ alkyl, - $S(=O)_n N(C_{1-4}$ alkyl), - $O(C_{0-4}$ alkyl, - $O(C_{0-4}$ alkyl), - $O(C_{0-4}$ alkyl), - $O(C_{0-4}$ alkyl), - $O(C_{0-4}$ alkyl), or - $O(C_{0-4}$ alkyl), or - $O(C_{0-4}$ alkyl), or - $O(C_{0-4}$ alkyl), where n is 0, 1 or 2;

R² is -CH₂CH₂CH₃, -CH₂-cyclopropyl, -CH₂CH(CH₃)₂, -CH₂CH₂CH₂F, -CH₂-cyclobutyl, -CH₂C(CH₃)₃, -CH₂CH₂CH(CH₃)₂, -CH₂CF₃, -CH₂-methylphenyl, -CH₂-phenol, -CH₂-(3,5-dimethylisoxazol-4-yl), -CH₂-S-phenyl, -CH₂-phenylcarboxyl, or -CH₂SCF₃;

R³ is selected from formulas (i), (ii), (iii) or (iv) set forth below:

R11
$$\times$$
 R10 \times R10

wherein * is the location where (i) or (ii) or (iii) or (iv) is attached to structural formula (II), and X is C or N; and Z is O or S, wherein R^{10} is at any position on the ring and R^{10} and R^{11} are independently at each instance H, R^a , halogen, -CN, nitro, OR^a , CF_3 , -N R^aR^a ; -C(=O)O R^a , -C(=O)N R^aR^a , -OC(=O)C₁₋₄alkyl, -N R^aC (=O)C₁₋₄alkyl or -S(=O)_nR^c; and wherein R^{11a} is R^a , -S(=O)₂N R^aR^a or -S(=O)_nR^c and n=1 or 2;

R⁴ is selected from formulas (a) to (z) or (aa) or (ab) set forth below:

wherein * is the location wherein R^4 is attached to the ring system and wherein wherein R^{12} , R^{13} and R^{14} are each independently represented by H, Het, C_{1-6} alkyl, -CN, -NR^aR^a, -nitro, -C(=O)R^a, -C(=O)NR^aR^a, -C(=O)NR^aS(=O)₂R^a, -C(=O)NR^a-Het, -

$$\begin{split} &C(=O)NR^aNR^aR^a, \ -C(=O)NR^a(R^bNR^aR^a), \ -C(=O)NR^a(R^bOR^a), \ -C(=O)NR^a(R^bS(=O)_2R^a), \ -C(=O)NR^aR^bHet, \ -C(=O)NR^aOR^a, \ -C(=O)R^bNR^aR^a, \ -C(=NOR^a)R^a, \ -C(=NCN)R^a, \ -C(=O)OR^a, \ -C(=O)OR^bNR^aR^a, \ -C(=O)R^a, \ -OC(=O)R^a, \ -C(=O)R^a-SR^a, \ =S, \ -NR^aC(=O)R^a, \ -NR^aC(=O)R^a, \ -NR^aS(=O)_2R^b, \ -C(=NOR^a)R^a, \ -S(=O)_2R^a, \ -S(=O)_2NR^aR^a, \ -S(=O)_2NR^a(R^bC(=O)NR^aR^a), \ or \ -S(=O)_2NR^a(R^bC(=O)OR^a. \end{split}$$

- 9. (Currently Amended) A compound of formula (I) claim 1 selected from: 5-[8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-5-oxo-6,8-dihydro-5Hpyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidin-9-yl]-1-methyl-1H-pyrrole-3-carbonitrile; 5-[8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-3-methyl-5-oxo-6,8-dihydro-5Hpyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidin-9-yl]-1-methyl-1H-pyrrole-3-carbonitrile; 5-[8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-3-(dimethylamino)-5-oxo-6,8dihydro-5H-pyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidin-9-yl]-1-methyl-1H-pyrrole-3carbonitrile; 5-[3-amino-8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-5-oxo-6,8-dihydro-5Hpyrazolo[4,3-e][1,2,4]triazolo[4,3-c]pyrimidin-9-yl]-1-methyl-1H-pyrrole-3-carbonitrile; 5-[8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-5-oxo-6,8-dihydro-5Himidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-9-yl]-1-methyl-1H-pyrrole-3-carbonitrile; 5-[8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-3-methyl-5-oxo-6,8-dihydro-5Himidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-9-yl]-1-methyl-1H-pyrrole-3-carbonitrile; 8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-9-(1-methyl-1H-imidazol-5-yl)-6,8dihydro-5H-imidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-5-one; 8-{[5-chloro-1-(methylsulfonyl)-1H-indol-3-yl]methyl}-6-(cyclopropylmethyl)-9-(1-methyl-1H-imidazol-5-yl)-6,8-dihydro-5H-imidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-5-one; 8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-9-[1-methyl-4-(methylsulfonyl)-1H-pyrrol-2-yl]-6,8-dihydro-5H-imidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-5-one; 5-[8-{[5-chloro-1-(methylsulfonyl)-1H-indol-3-yl]methyl}-6-(cyclopropylmethyl)-5-oxo-6,8dihydro-5H-imidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-9-yl]-1-methyl-1H-pyrrole-3-
- 10. (Original) A compound having the structural formula (II):

carbonitrile.

wherein,

R' is H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl;

R" is independently at each instance H, optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkynyl;

y is 1 or 2;

R² is H, optionally substituted alkyl, optionally substituted alkylcycloalkyl, optionally substituted alkenyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted cycloalkynyl, optionally substituted aryl, optionally substituted alkoxy, optionally substituted amino, or optionally substituted heterocycle;

 R^3 is a monocyclic or bicyclic, saturated or unsaturated, ring system comprising 0, 1, 2 or 3 heteroatoms independently selected from N, O, or S, the ring being substituted by 0, 1, 2 or 3 substituents selected from =O, halogen, -OR^a, C₁₋₆alkyl, C₁₋₆haloalkyl, -CN, nitro, -S(=O)_nR^c, -O(CH₂)_mHet, -O(CH₂)_mC(=O)Het, -O(CH₂)_mC(=O)NR^aR^a, -O(CH₂)_mC(=O)OR^a, -O(CH₂)_mNR^aR^a, -O(CH₂)_mOR^a, -S(CH₂)_mHet, -S(CH₂)_mC(=O)Het, -S(CH₂)_mC(=O)NR^aR^a, -S(CH₂)_mC(=O)OR^a, -S(CH₂)_mNR^aR^a, -S(CH₂)_mOR^a, -NR^aR^a, -NHC(=O)R^a, N=NR^a, aminocarbonyl, phenyl, benzyl; or R³ is represented by -Het, -Het-Het, R⁵,-R⁵-Het, -Het-R⁵, -Het-O-R⁵, -R⁵-R⁵, -R⁵-OR⁵;

R⁴ is a monocyclic or bicyclic, saturated or unsaturated, ring system, or a vicinal-fused derivative thereof, which may contain from 5 to 12, preferably 5 to 10, ring atoms, 0, 1, 2, 3 or 4 of which are heteroatoms independently selected from N, O, or S, the ring system being substituted by 0, 1, 2 or 3 substituents selected from B(OH)₂, vicinal -OCH₂CH₂O-, vicinal -OC₁₋₂haloalkylO-, vicinal -OCH₂O-, vicinal -CH₂OCH₂O-, =O, halogen, -R^bOR^a, -SR^a, -OR^a, C₁₋₆alkyl, C₁₋₆haloalkyl, -CN, -S(=O)_nR^c, -O(CH₂)_mHet, -O(CH₂)_mC(=O)Het, -

 $O(CH_2)_mC(=O)NR^aR^a, -O(CH_2)_mC(=O)OR^a, -O(CH_2)_mNR^aR^a, -O(CH_2)_mOR^a, -S(CH_2)_mHet, -S(CH_2)_mC(=O)Het, -S(CH_2)_mC(=O)NR^aR^a, -S(CH_2)_mC(=O)OR^a, -S(CH_2)_mNR^aR^a, -S(CH_2)_mOR^a, -NR^aR^a, -NHC(=O)R^a, -NHC(=O)OR^a, N=NR^a, NO_2, -C(=O)NR^aR^a, -C(=O)NR^aOR^a, -C(=O)NR^a(R^bNR^aR^a), -C(=O)NR^a(R^bOR^a), -C(=O)NR^a(R^bS(=O)_nR^a), -C(=O)NR^a(R^bHet), -C(=O)OR^a, -OC(=O)R^a, -C(=O)OR^bNR^aR^a, -C(=O)R^a, -C(=O)R^bNR^aR^a, -C(=NOR^a)R^a, -C(=NCN)R^a, -S(=O)_2NR^aR^a, -NR^aS(=O)_2R^a, -S(=O)_2NR^a(R^bC(=O)NR^aR^a), -S(=O)_2NR^a(R^bC(=O)OR^a), aminocarbonyl, phenyl, benzyl; or <math>R^4$ is represented by - $(CH_2)_nR^5$ -Het, - $(CH_2)_nR^d$, -Het, -Het-Het, R^5 , - R^5 -Het, -Het- R^5 , -Het-OR 5 , R^5 -R 5 , or - R^5 -OR 5 ; or R^4 is represented by $C_{1-6}alkyl$, -NC₁₋₆alkyl, or -N(C₁₋₆alkyl) 2 wherein the C₁₋₆alkyl, -NC₁₋₆alkyl, -NC₁₋₆alkyl, -N(C₁₋₆alkyl) are substituted by 0, 1 or 2 substituents selected from R^a , OR a , halogen or phenyl wherein R^4 is not - $(CH_2)_2CH_3$, - $(CH_2)_2CH_2OH$, - $(CH_2)_2CO_2H$, or - $(CH_2)_2CO_2C_1$.

 R^5 is independently at each instance, phenyl substituted by 0, 1, 2, or 3 groups selected from halogen, C_{1-6} haloalkyl, $-OC_{1-6}$ haloalkyl, C_{1-6} alkyl, -CN, nitro, $-OR^a$, $-S(=O)_nR^c$, $-O(CH_2)_mHet$, $-O(CH_2)_mC(=O)Het$, $-O(CH_2)_mC(=O)NR^aR^a$, $-O(CH_2)_mC(=O)OR^a$, $-O(CH_2)_mNR^aR^a$, $-O(CH_2)_mOR^a$, $-S(CH_2)_mHet$, $-S(CH_2)_mC(=O)Het$, $-S(CH_2)_mC(=O)NR^aR^a$, $-S(CH_2)_mC(=O)OR^a$, $-S(CH_2)_mNR^aR^a$, $-S(CH_2)_mOR^a$, $-R^bOR^a$, $-SR^a$, $-C(=O)NR^aR^a$, $-C(=O)NR^aR^bNR^aR^a$, $-C(=O)NR^aR^bOR^a$, $-C(=O)NR^aR^bS(=O)_nR^a$, $-C(=O)NR^aR^bHet$, $-C(=O)OR^a$, $-OC(=O)R^a$, $-C(=O)OR^bNR^aR^a$, $-C(=O)R^a$, $-C(=O)R^bNR^aR^a$, $-C(=O)R^a$

 R^a is, independently at each instance, H, C_{1-6} alkyl, $-C(=O)C_{1-4}$ alkyl, C_{1-4} haloalkyl, phenyl, benzyl, or 5 or 6-membered ring, saturated or unsaturated heterocycle containing 1,2,3, or 4 heteroatoms independently selected from N, O or S;

R^b is, independently at each instance, C₁₋₆alkyl, -C(=O)C₁₋₄alkyl, C₁₋₄haloalkyl, phenyl, benzyl, or 5 or 6-membered ring, saturated or unsaturated heterocycle containing 1,2,3, or 4 heteroatoms independently selected from N, O or S;

R^c is C₁₋₆alkyl, C₁₋₄haloalkyl, phenyl or benzyl;

R^d is phenyl substituted by 0, 1 or 2 groups selected from -CN, halogen, nitro, C₁₋₆alkyl, C₁₋₄haloalkyl, -OH, -OR^c, -NR^aR^a, -S(=O)_nR^c, -C(=O)NR^aR^a, -C(=O)OR^a, -NR^aC(=O)R^a, -OC(=O)R^a, B(OH)₂, vicinyl -OCH₂CH₂O-, vicinyl -OC₁₋₂haloalkylO-, vicinyl -OCH₂O-, vicinyl -CH₂OCH₂O-, phenyl, benzyl and a 5- or 6-membered ring, saturated or

unsaturated heterocycle containing 1, 2, 3 or 4 heteroatoms independently selected from N, O, or S;

m is 1, 2 or 3; n is 0, 1 or 2; or a pharmaceutically acceptable salt thereof.

- 11. (Original) A compound as recited in Claim 10 wherein: R' is H, C₁₋₆alkyl, C₁₋₆alkenyl, C₁₋₆alkynyl.
- 12. (Original) A compound as recited in Claim 10 wherein:R" is independently at each instance H, C₁₋₆alkyl, C₁₋₆alkenyl, C₁₋₆alkynyl.
- 13. (Original) A compound as recited in Claim 10 wherein:

 R^2 is C_{1-6} alkyl C_{3-6} cycloalkyl or $-C_{1-12}$ alkyl wherein either is optionally substituted with 0, 1, 2 or 3 substituents selected from Het, $S(=O)_nR^c$, $-S(=O)_nNR^aR^a$ halogen, -CN, $-OR^a$, $-NR^aR^a$, $-C(=O)OR^a$, $-C(=O)R^a$, $-C(=O)NR^aR^a$, $-OC(=O)C_{1-4}$ alkyl, or $-NR^aC(=O)C_{1-4}$ alkyl and n is 0, 1 or 2.

(Original) A compound as recited in Claim 10 wherein:
 R³ is selected from formulas (i), (ii), (iii) or (iv) set forth below:

R11
$$+$$
 R10 $+$ R11 $+$ R10 $+$ R11 $+$ R10 $+$ R10 $+$ R11 $+$ R10 $+$ R10 $+$ R11 $+$ R10 $+$ R10

wherein * is the location where (i) or (ii) or (iii) or (iv) is attached to structural formula (I), and X is C or N; and Z is O or S, wherein R^{10} is at any position on the ring and R^{10} and R^{11} are independently at each instance H, R^a , halogen, -CN, nitro, OR^a , CF_3 , -NR^aR^a, -C(=O)OR^a, -C(=O)RaR^a, -C(=O)C₁₋₄alkyl, -NR^aC(=O)C₁₋₄alkyl or -S(=O)_nR^c; and wherein R^{11a} is R^a , -S(=O)₂NR^aR^a or -S(=O)_nR^c and n=1 or 2.

15. (Original) A compound as recited in Claim 10 wherein:

R⁴ is selected from formulas (a) to (z) or (aa) or (ab) set forth below:

wherein * is the location wherein R^4 is attached to the ring system and wherein wherein R^{12} , R^{13} and R^{14} are each independently represented by H, Het, C_{1-6} alkyl, -CN, -NR^aR^a, -nitro, -C(=O)R^a, -C(=O)NR^aR^a, -C(=O)NR^aS(=O)₂R^a, -C(=O)NR^a-Het, -

$$\begin{split} &C(=O)NR^aNR^aR^a, \ -C(=O)NR^a(R^bNR^aR^a), \ -C(=O)NR^a(R^bOR^a), \ -C(=O)NR^a(R^bS(=O)_2R^a), \ -C(=O)NR^aR^bHet, \ -C(=O)NR^aOR^a, \ -C(=O)R^bNR^aR^a, \ -C(=NOR^a)R^a, \ -C(=NCN)R^a, \ -C(=O)OR^a, \ -C(=O)OR^bNR^aR^a, \ -C(=O)R^a, \ -OC(=O)R^a, \ -C(=O)R^a-SR^a, \ =S, \ -NR^aC(=O)R^a, \ -NR^aC(=O)R^a, \ -S(=O)_2R^a, \ -S(=O)_2NR^aR^a, \ -S(=O)_2NR^aR^a, \ -S(=O)_2NR^a(R^bC(=O)NR^aR^a), \ or \ -S(=O)_2NR^a(R^bC(=O)OR^a. \end{split}$$

16. (Original) A compound as recited in Claim 10 wherein:

R' is H, C₁₋₆alkyl, C₁₋₆alkenyl, C₁₋₆alkynyl;

 $R^{"}$ is independently at each instance H, C_{1-6} alkyl, C_{1-6} alkenyl, C_{1-6} alkynyl; y is 1;

R² is -CH₂CH₂CH₃, -CH₂-cyclopropyl, -CH₂CH(CH₃)₂, -CH₂CH₂CH₂F, -CH₂-cyclobutyl, -CH₂C(CH₃)₃, -CH₂CH₂CH(CH₃)₂, -CH₂CF₃, -CH₂-methylphenyl, -CH₂-phenol, -CH₂-(3,5-dimethylisoxazol-4-yl), -CH₂-S-phenyl, -CH₂-phenylcarboxyl, or -CH₂SCF₃;

R³ is selected from formulas (i), (ii), (iii) or (iv) set forth below:

wherein * is the location where (i) or (ii) or (iii) or (iv) is attached to structural formula (I), and X is C or N; and Z is O or S, wherein R^{10} is at any position on the ring and R^{10} and R^{11} are independently at each instance H, R^a , halogen, -CN, nitro, OR^a , CF_3 , -NR^aR^a, -C(=O)OR^a, -C(=O)NR^aR^a, -OC(=O)C₁₋₄alkyl, -NR^aC(=O)C₁₋₄alkyl or -S(=O)_nR^c; and wherein R^{11a} is R^a , -S(=O)₂NR^aR^a or -S(=O)_nR^c and n=1 or 2;

R⁴ is selected from formulas (a) to (z) or (aa) or (ab) set forth below:

wherein * is the location wherein R^4 is attached to the ring system and wherein wherein R^{12} , R^{13} and R^{14} are each independently represented by H, Het, C_{1-6} alkyl, -CN, -NR^aR^a, -nitro, -C(=O)R^a, -C(=O)NR^aR^a, -C(=O)NR^aS(=O)₂R^a, -C(=O)NR^a-Het, -

$$\begin{split} &C(=O)NR^aNR^aR^a,\ -C(=O)NR^a(R^bNR^aR^a),\ -C(=O)NR^a(R^bOR^a),\ -C(=O)NR^a(R^bS(=O)_2R^a),\ -C(=O)NR^aR^bHet,\ -C(=O)NR^aOR^a,\ -C(=O)R^bNR^aR^a,\ -C(=NOR^a)R^a,\ -C(=NCN)R^a,\ -C(=O)OR^a,\ -C(=O)OR^bNR^aR^a,\ -C(=O)R^a,\ -OC(=O)R^a,\ -C(=O)R^a-SR^a,\ =S,\ -NR^aC(=O)R^a,\ -NR^aC(=O)R^a,\ -S(=O)_2R^a,\ -S(=O)_2NR^aR^a,\ -S(=O)_2NR^aR^a,\ -S(=O)_2NR^a(R^bC(=O)NR^aR^a),\ or\ -S(=O)_2NR^a(R^bC(=O)OR^a. \end{split}$$

- 17. (Currently Amended) A compound of formula (I) claim 1 selected from: 5-{8-[(6-chloroquinolin-4-yl)methyl]-6-isobutyl-5-oxo-2,5,6,8-tetrahydro-3*H*-imidazo[1,2-*c*]pyrazolo[4,3-*e*]pyrimidin-9-yl}-1-methyl-1*H*-pyrrole-3-carbonitrile;5-{8-[(6-chloroquinolin-4-yl)methyl]-6-isobutyl-5-oxo-2,5,6,8-tetrahydro-3*H*-imidazo[1,2-*c*]pyrazolo[4,3-*e*]pyrimidin-9-yl}-1-methyl-1*H*-pyrrole-3-carbonitrile; 5-[8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-3-methyl-5-oxo-2,5,6,8-tetrahydro-3*H*-imidazo[1,2-*c*]pyrazolo[4,3-*e*]pyrimidin-9-yl]-1-methyl-1*H*-pyrrole-3-carbonitrile;
- 5-[8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-2-methyl-5-oxo-2, 5, 6, 8-tetrahydro-3H-imidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-9-yl]-1-methyl-1H-pyrrole-3-carbonitrile;
- 5-[(3R)-8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-3-methyl-5-oxo-2,5,6,8-tetrahydro-3\$H-imidazo[1,2-c]pyrazolo[4,3-e]pyrimidin-9-yl]-1-methyl-1\$H-pyrrole-3-carbonitrile;
- 5-[(3S)-8-[(6-chloroquinolin-4-yl)methyl]-6-(cyclopropylmethyl)-3-methyl-5-oxo-2,5,6,8-tetrahydro-3*H*-imidazo[1,2-*c*]pyrazolo[4,3-*e*]pyrimidin-9-yl]-1-methyl-1*H*-pyrrole-3-carbonitrile;
- 5-[9-[(6-chloroquinolin-4-yl)methyl]-7-(cyclopropylmethyl)-6-oxo-2,3,4,6,7,9-hexahydropyrazolo[4,3-e]pyrimido[1,2-c]pyrimidin-[10-yl]-1-methyl-[1H-pyrrole-3-carbonitrile]
- 18. CANCELLED.
- 19. CANCELLED.

- 20. (Currently Amended) A method for the treatment of infections associated with *H. pylori* comprising administering to a host in need of such treatment a therapeutically effective amount of a compound as defined in any one of claims 1 to 17 claim 1.
- 21. (Currently Amended) A method for the prophylaxis treatment of infections associated with *H. pylori* comprising administering to a host in need of such treatment a therapeutically effective amount of a compound as defined in any one of claims 1 to 17 claim 1.
- 22. (Currently Amended) A method for the treatment or prophylaxis of *H. pylori* infection comprising administering a therapeutically effective amount of a compound as defined in any one of claims 1 to 17 claim 1 or a pharmaceutically acceptable salt thereof.
- 23. (Currently Amended) A pharmaceutical composition comprising a compound as defined in any one of claims 1 to 17 claim 1 together with at least one pharmaceutically acceptable carrier, diluent or excipent.