UA741

S G S-THOMSON

30E D

GENERAL-PURPOSE SINGLE OP-AMPs

- LARGE INPUT VOLTAGE RANGE
- NO LATCH-UP
- HIGH GAIN
- SHORT-CIRCUIT PROTECTION
- NO FREQUENCY COMPENSATION REQUIRED
- SAME PIN CONFIGURATION AS THE UA709

DESCRIPTION

The UA741 is a high performance monolithic operational constructed on a single silicon chip. It is intended for a wide range of analog applications.

- Summing amplifier
- Voltage follower
- Integrator
- Active filter
- Function generator.

The high gain and wide range of operating voltages provides superior performance integrator, summing amplifier, and general feedback applications. the internal compensation network (6 dB/octave) insures stability in closed loop applications.

ORDER CODES

Part Number	Temperature Range	Package						
		н	J	GС	N	N 14	D	
UA741I	0 °C to + 70 °C −40 °C to + 105 °C −55 °C to + 125 °C	•	•	•	•	•	•	

Note: Hi-Rel Versions Available Examples: UA741CN, UA741IH

PIN CONNECTIONS (top views)

December 1988

ABSOLUTE MAXIMUM RATINGS S G S-THOMSON

30E D

Symbol			1114		
	Parameter	UA741M, A	UA741I	UA741C, E	Unit
Vcc	Supply Voltage	± 22	± 22	± 22	V
Vi	Input Voltage	± 15	± 15	± 15	٧
V _{id}	Differential Input Voltage	± 30	± 30	± 30	٧
Ptot	Power Dissipation	500	500	500	mW
	Output Short-circuit Duration		Infinite		
Toper	Operating Free-air Temperature Range	- 55 to + 125	- 40 to + 105	0 to + 70	ô
T _{stg}	Storage Temperature Range	- 65 to 150	- 65 to 150	- 65 to 150	ů

SCHEMATIC DIAGRAM

Case	Offset Null	Inverting Input	Non- Inverting Input	Vēc	Vtc	Output	N.C.
TO99/DIP8/CERDIP8/SO8	1, 5	2	3	4	7	6	8
DIP14	3, 9	4	5	6	11	10	*
LCC20	2, 12	5	7	10	17.	15	*

^{*} TO116, LCC20 : Other pins are not connected.

S G S-THOMSON

30E D

ELECTRICAL CHARACTERISTICS

T-79-05-10

(unless otherwise specified)

Symbol	Parameter	UA	Unit		
		Min.	Тур.	Max.	Unit
V _{IO}	Input Offset Voltage R _S \leq 10 k Ω T_{amb} = 25 °C $T_{min} \leq T_{amb} \leq T_{max}$ UA741E, A T_{amb} = 25 °C $T_{min} \leq T_{amb} \leq T_{max}$		1	5 6 2 4	mV
I _{IO}	Input Offset Current $T_{amb} = 25 ^{\circ}\text{C}$ $T_{min} \leq T_{amb} \leq T_{max}$		2	20 40	nA
I _{IB}	Input Bias Current T _{amb} = 25 °C T _{min} ≤ T _{amb} ≤ T _{max}		10	100 200	nA
AvD	Large Signal Voltage Gain $(V_O=\pm~10~V,~R_L=2~k\Omega)$ $T_{amb}=25~^{\circ}C$ $T_{min}\leq T_{amb}\leq T_{max}$	50 25	200		V/mV
SVR	Supply Voltage Rejection Ratio $(R_S \le 10 \text{ k}\Omega)$ $T_{amb} = 25 ^{\circ}\text{C}$ $T_{min} \le T_{amb} \le T_{max}$	77 77	90		dB
Icc	Supply Current, no Load $T_{amb} = 25 ^{\circ}C$ $T_{min} \le T_{amb} \le T_{max}$		1.7	2.8 3.3	mA
Vı	Input Voltage Range T _{amb} = 25 °C T _{min} ≤ T _{amb} ≤ T _{max}	12 12		+ 12 + 12	٧
CMR	Common Mode Rejection Ratio $(R_S \le 10 \text{ k}\Omega)$ $T_{amb} = 25 \text{ °C}$ $T_{min} \le T_{amb} \le T_{max}$	70 70	90		dΒ
los	Output Short-circuit Current T _{amb} = 25 °C	10	25	40	mA
± V _{OPP}	$ \begin{array}{lll} \text{Output Voltage Swing} \\ T_{amb} = 25 \text{ °C} & R_L = 10 k\Omega \\ & R_L = 2 k\Omega \\ T_{min} \leq T_{amb} \leq T_{max} & R_L = 10 k\Omega \\ & R_L = 2 k\Omega \end{array} $	12 10 12 10	14 13		V
Svo	Slew-rate (V _I = \pm 10 V, R _L = 2 k Ω C _L \leq 100 pF, T _{amb} = 25 °C, unity gain)	0.25	0.5		V/µs
t _r	Rise Time ($V_I=\pm~20$ mV, $R_L=2~k\Omega$, $C_L\leq~100$ pF $T_{amb}=25$ °C, unity gain)		0.3		μs
Kov	Overshoot (V _I = \pm 20 mV, R _L = 2 k Ω , C _L \leq 100 pF, T _{amb} = 25 °C, unity gain)		5		%
Rı	Input Resistance, T _{amb} = 25 °C	0.3	2		mΩ

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Dayamatan.	UA7	Unit		
	Parameter	Min.	Тур.	Max.	_
GPB	Gain Bandwidth Product $(V_l=10 \text{ mV}, R_L=2 \text{ k}\Omega, C_L \leq 100 \text{ pF} f=100 \text{ kHz}, T_{amb}=25 ^{\circ}\text{C})$	0.7	1	1,6	MHz
THD	Total Harmonic Distortion (f = 1 kHz, A_V = 20 dB, R_L 2 k Ω , V_O = 2 V_{pp} $C_L \le 100$ pF, T_{amb} = 25 °C)		0.06		%
V _N	Equivalent Input Noise Voltage (f = 1 kHz, R _G = 100 Ω)		23		nV/√Hz
	Phase Margin		50		Degrees

S G S-THOMSON

E88UA741-02

30E D

E88UA741-03

OUTPUT VOLTAGE (mV)

7929237 0023611

E88UA741-04

E88UA741-05

E88UA741-07

E88UA741-09

OUTPUT VOLTAGE SWING

E88UA741-06

E88UA741-08

G S-THOMSON

30E D

LOAD RESISTANCE (ki)

E88UA741-10

EQUIVALENT INPUT NOISE VS FREQUENCY

E88UA741-12

EQUIVALENT INPUT NOISE VS AMBIENT TEMPERATURE

E88UA741-14

OUTPUT VOLTAGE SWING

FREQUENCY (Hz)

E88UA741-11

FREQUENCY (Hz)

E88UA741-13

LARGE SIGNAL VOLTAGE GAIN VS AMBIENT

E88UA741-15

E88UA741-17

POWER SUPPLY & COMMON MODE REJECTION RATIO VS AMBIENT TEMPERATURE

AMBIENT TEMPERATURE (°C)

INPUT BIAS CURRENT VS AMBIENT

E88UA741-16

E88UA741-18

MEASUREMENT DIAGRAMS

VOLTAGE OFFSET NULL CIRCUIT

S G S-THOMSON

30E D

TRANSIENT RESPONSE TEST CIRCUIT

MEASUREMENT DIAGRAMS (continued)

CURRENT TO VOLTAGE CONVERTER

NEUTRALIZING INPUT CAPACITANCE TO OPTIMIZE RESPONSE TIME

POSITIVE VOLTAGE REFERENCE

NEGATIVE VOLTAGE REFERENCE

S G S-THOMSON

30E D.

PACKAGE MECHANICAL DATA S G S-THOMSON

30E D

8 PINS - TO99 - METAL CAN

14 PINS - PLASTIC DIP

PACKAGE MECHANICAL DATA (continued)

8 PINS - PLASTIC DIP OR CERDIP Z G Z-THOMZON 30E D mm 0,51 min. 4,57 max. 5,08 max. 1.27 max. <u>1,27max.</u> Datum (1) Nominal dimension 6,35 (1) (2) True geometrical position Or 8 Pins

20 PINS - TRICECOP (LCC)

