

ز: دانسکده علوم ریاضی و آمار

مدرس: دکتر مجتبی رفیعی
ساختمان دادهها و الگوریتمها

۲۷
نگارنده: فرزانه کافی موسوی
۲۹
آبان ۱۴۰۰

فهرست مطالب

١	1																							یادآوری											
۲																(Traversal					sa	1	پیمایش درختها (tree			•									
٢																																در سطح	ترتیب ه	1.7	
٢																																ر در عمق	ترتیب ،	7.7	
٣																																ييش ترتيب	ييمايش	٣.٢	
۴																																ميانترتيب	پيمايش	4.7	
۵																																پسترتیب	پیمایش	۵.۲	

۱ یادآوری

در بخشهای قبلی دیدیم که روابط بازگشتی یک رویکرد برای حل مساله است که تسهیلاتی برای ما فراهم میکندمثل:

- سادهتر شدن الگوریتمی که مینویسیم

- تحلیل پیچیدگی سادهتر به کمک فرمهایی که قبلا شروع کردیم
ما میتوانیم یک خصیه را برای یک ساختار به صورت بازگشتی هم تعریف کنیم.

* تعریف یک درخت ریشهدار

*تعریف درخت (کاملا) متعادل

(Traversal tree) پیمایش درختها

پیمایش درختها (Traversal tree) میتوان به ازای نودهای درخت ، پیمایشهای مختلفی در نظر گرفت. با اینحال پیمایشهایی که دارای خواص مطلوب برای کاربردهایی در عمل هستند در دو رده تقسیمبندی کرد:

- ترتیب در عمق (Defth-frist)،
- ترتیب در سطح (breadth-first)،

۱.۲ ترتیب در سطح

به این ترتیب است که نودهای یک درخت از ریشه به سمت برگ و از چپ به راست به ترتیب ملاقات میشوند، برای نمونه به مثال زیر توجه کنید.

 $a \quad b \quad e \quad f \quad g \quad c \quad d \quad h \quad l \quad k$ پيمايش سطح

Tree - Levelorder(T)

1.X = t.root

 $2.while(x \neq null)$ do

3. $visit\ mode\ X \qquad \|visit(x)\|$

 $4.Add\ clildren\ of\ X\ toqueve\ Q \qquad ||left\ to\ right$

5.X = DeQveve(Q)

۲.۲ ترتیب در عمق

سه پیمایش مطرح در این نوع عبارتند از:

- پیشترتیب(Preorder)
- میانترتیب(Inorder)
- پسترتیب (Postorder)

نکته: در ادامه کلیه پیمایشهابرای یک درخت تایی k در نظر گرفته شده است.

٣.٢ ييمايش ييش ترتيب

پیمایش پیشترتیب: برای درخت نوعی T ، پیمایش پیشترتیب بصورت زیر است:

 $\begin{aligned} & Preorder(T) = N \ T_1 \ T_2 \dots T_k \\ & Tree - Preorder(T) \\ & 1.if(T.root \neq null) \quad then \\ & 2. \quad Visit \ node \ X = T.root \ ||Visit(X) \\ & 3. \quad Tree - Preorder(T.child_1) \\ & \vdots \\ & 4. \quad Tree - Preorder(T.child_k) \end{aligned}$

مثال پیمایش پیشترتیب:

*راهحل سادهتر برای حل دستی مثال قبل پیمایش پیشترتیب. پس در نهایت داریم:

Preorder(T) = a b c d e f g h k l

۴.۲ پیمایش میانترتیب

پیمایش میانترتیب: برای درخت چونT ، پیمایش میانترتیب بصورت زیر قابل تعریف است:

 $Inorder(T) = T_1 \ N \ T_2 \dots T_k$ Tree - Inorder(T) $1.if(T.root \neq null) \quad then$ $2.Tree - Inorder(T.child_1)$ 3.visit(T.root) $\begin{array}{l} 4. Tree-Inorder(T.child_2) \\ 5. Tree-Inorder(T.child_k) \end{array}$

مثال پیمایش میانترتیب:

اهحل دستى- ييمايش ميانترتيب:

Inorder(T) = dodaefkhgl

۵.۱ پیمایش پسترتیب

پیمایش پسترتیب: برای درخت نوعی چونT ، پیمایش پسترتیب بصورت زیر قابل تعریف است:

- ज्यां प्रा

 $Postorder(T) = T_1 T_2 ... T_k N$

Tree-Postorder(T)

 $1.if(T.root \neq null)$ then

 $2. Tree - Postorder(T.child_1)$

 $3. Tree - Postorder(T.child_2)$

4. $Tree - Postorder(T.child_k)$

 $5. \ visit(T.root)$

مثال پیمایش پسترتیب:

راهحل دستى- پيمايش پسترتيب:

برخی نکات در رابطه با پیمایش معرفی شده: ۱- از روی هر یک از پیمایشهای معرفی شده نمیتوان درخت یکتایی بازسازی کرد، به نمونههای زیر دقت کنید.

*Preorder(T) = a b

*Inorder(T) = a b

*Postorder(T) = a b

