Sección 3.3 División de polinomios y teorema del factor

Universidad de Puerto Rico Recinto Universitario de Mayagüez Facultad de Artes y Ciencias Departamento de Ciencias Matemáticas

Contenido

- Algoritmo de la división
- 2 División sintética

3 Teorema del residuo y teorema del factor

Será útil recordar cómo se dividen números enteros, ya que se va a usar el mismo proceso para dividir polinomios.

Ejemplo. Divida 37,658 entre 24 (sin usar calculadora).

Algoritmo de la división

El procedimiento para dividir un polinomio por otro es bastante similar al proceso de división larga usado con números enteros.

La técnica para dividir polinomios se ilustra en los siguientes ejemplos.

Ejemplos

1. Divida
$$f(x) = 6x^4 + x^3 - 3x - 5$$
 por $d(x) = 3x^2 + 5x + 6$.

El resultado se puede escribir como:

$$\underbrace{\frac{6x^4+x^3-3x-5}{3x^2+5x+6}}_{\text{División}} = \underbrace{2x^2-3x+1}_{\text{Cociente}} + \underbrace{\frac{10x-11}{3x^2+5x+6}}_{\text{Residuo/Divisor}}$$

También se escribe como:

$$\underbrace{6x^4 + x^3 - 3x - 5}_{\text{Dividendo}} = \underbrace{(3x^2 + 5x + 6)}_{\text{Divisor}} \underbrace{(2x^2 - 3x + 1)}_{\text{Cociente}} + \underbrace{10x - 11}_{\text{Residuo}}$$

2. Divida
$$f(x) = 2x^3 - 5x^2 - 11x - 4$$
 por $d(x) = x - 4$.

En este ejemplo el residuo es 0.

Esto significa que x-4 divide exactamente a $2x^3-5x^2-11x-4$. En otras palabras, x-4 es un factor de $2x^3-5x^2-11x-4$.

Se escribe:

$$\frac{2x^3 - 5x^2 - 11x - 4}{x - 4} = 2x^2 + 3x + 1$$

También se puede escribir:

$$\underbrace{2x^3 - 5x^2 - 11x - 4}_{\text{Divisor}} = \underbrace{(x - 4)}_{\text{Divisor}}\underbrace{(2x^2 + 3x + 1)}_{\text{Cociente}}$$

En cada uno de los ejemplos se pudo escribir el dividendo como el producto del divisor por el cociente más el residuo. Esto es siempre cierto. Este hecho se conoce como el algoritmo de la división.

Algoritmo de la división

Si un polinomio f(x) se divide por un polinomio $d(x) \neq 0$, entonces existen polinomios únicos q(x) y r(x) tales que:

$$f(x) = d(x) \cdot q(x) + r(x),$$

donde el grado de r(x) es estrictamente menor que el grado de d(x) (en particular, r(x) podría ser el *polinomio cero*).

Al polinomio f(x) se le llama **dividendo**, d(x) se llama **divisor**, q(x) se llama **cociente** y r(x) se llama **residuo**.

Note que el algoritmo de la división implica que:

$$\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}.$$

División sintética

La división sintética es un método simplificado para dividir un polinomio entre un binomio de la forma x-c.

Ejemplos

1. Para ilustrar este método (división sintética), se hará la división de $f(x)=2x^3-5x^2-6x+1$ por x-3.

El resultado se obtiene a partir de los números escritos en la tercera fila: el *cociente* es $2x^2 + x - 3$ y el *residuo* es -8.

Observe que el cociente es de un grado menor que el dividendo.

El resultado de la división se puede expresar como:

$$\underbrace{2x^3 - 5x^2 - 6x + 1}_{\text{Dividendo}} = \underbrace{(x - 3)}_{\text{Divisor}}\underbrace{(2x^2 + x - 3)}_{\text{Cociente}}\underbrace{-8}_{\text{Residuo}}.$$

Equivalentemente, también se puede expresar como:

$$\frac{2x^3 - 5x^2 - 6x + 1}{x - 3} = (2x^2 + x - 3) + \frac{-8}{x - 3}.$$

2. Use división sintética para dividir $p(x)=x^4-3x^3+2x-1$ por d(x)=x+2.

El resultado se puede expresar como:

$$x^4 - 3x^3 + 2x - 1 = (x+2)(x^3 - 5x^2 + 10x - 18) + 35$$

Equivalente,

$$\frac{x^4 - 3x^3 + 2x - 1}{x + 2} = x^3 - 5x^2 + 10x - 18 + \frac{35}{x + 2}$$

WARNING

La división sintética solo funciona cuando se divide por un polinomio lineal mónico x-c, si se divide por algún otro polinomio se debe hacer la división larga.

Teorema del residuo y teorema del factor

En general, cuando se divide un polinomio P(x) por un divisor lineal x-c, se puede concluir del algoritmo de división que

$$P(x) = (x - c)Q(x) + r,$$

donde Q(x) es el cociente y el residuo r tiene que ser constante, pues es de grado menor que el divisor x-c. Evaluando en c se obtiene:

$$P(c) = (c - c)Q(c) + r,$$

y por consiguiente P(c) = r.

Este resultado se resume a continuación.

Teorema del residuo

El residuo obtenido cuando se divide un polinomio P(x) por un binomio de la forma x-c, es igual al número que se obtiene cuando se evalúa el polinomio en c, es decir P(c).

Ejemplo

Si
$$p(x) = x^4 + 4x^2 - 3x - 1$$
, use el teorema del residuo para evaluar $p(2)$.

El siguiente resultado ya se ha aplicado para graficar polinomios. Ahora se puede demostrar usando el algoritmo de división:

Si x-c es un factor de p(x), entonces p(x) factoriza en la forma

$$p(x) = (x - c)q(x),$$

de aquí

$$p(c) = (c - c)q(c) = 0$$

y por ende c es un cero de p(x).

Recíprocamente, si c es un cero de p(x), entonces p(c)=0, y por el teorema del residuo

$$p(x) = (x - c)q(x) + 0 = (x - c)q(x).$$

Teorema del factor

El número c es un cero del polinomio p(x) si, y solo si, x-c es un factor de p(x).

El teorema del factor es muy útil cuando se quiere factorizar un polinomio. Esto se ilustra en los siguientes ejemplos.

Ejemplos

1. Factorice el polinomio $p(x) = x^3 - 6x^2 + 5x + 12$.

2. Demuestre que q(x)=x-a es un factor de $f(x)=x^n-a^n$ para cualquier entero positivo n.

3. Encuentre un polinomio p(x) de grado 4, con ceros -2 de multiplicidad uno, 3 de multiplicidad uno y 1 de multiplicidad dos.