Конспект по Математическому Анализу

Коченюк Анатолий 11М

Глава 1

Производные высших порядков

 $f:(a,b)\to\mathbb{R}$

 \Box f —дифференцируема на (a;b) $\exists f'$ также дифференцируема на (a,b) (f')'=f'' это называется двойной производной

Замечание 1.1. Из дифференцируемости \implies непрерывность, т.е. $\exists (f')' \implies f'$ – непрерывна \implies в итоге исходная функция $f' \in C^1(a;b)$, т.е. была непрерывно дифференцуруема (гладкая)

Аналогично по индукции определяется n-ая производная (производная n-го порядка) от f $f^{(n)} = (f^{(n-1)})'$, если правая часть имеет смысл

Обозначения:

- f^n Лагранж
- $\frac{d^n f}{dx^n}$ Лейбниц
- D^nf Коши ($D:f\to f'$ оператор дифференцирования)

Если n мало, то часто пишут нужное количество чёрточек f'', p'''. Аналогия с римскими цифрами I, II, III, иногда пишут f^{IV}, f^V

Определение 1.1. Функция f называется n раз дифференцурумеой на множестве $E \in \mathbb{R}$, если она n раз дифференцируема в каждой точке E

Если f n раз дифференцируема на множестве E и $f^{(n)}$ – непрерывна, то говорят, что f n раз непрерывно дифференцируема на E, Класс $C^n(E)$ (C^n – гладкая)

Замечание 1.2. Из n раз дифференцируемости \implies все $f^{(k)}, k = \overline{1, n-1}$ – непрерывны, m.e. $f \in C^k(E)$ Kcmamu $f^0 = f$ (0-ая производная) $C = C^0$

Определение 1.2. Функция f называется бесконечно дифференцируемой на E, если в $\forall x \in E \exists$ производные всех порядков

Класс таких функция называется $C^{\infty}(E)$ $e^x, \sin x, \cos x \in C^{\infty}(\mathbb{R})$ $\sqrt{x}, \ln x \in C^{\infty}(0; +\infty)$

Определение 1.3. f называется бесконечное число раз непрерывно дифференцируемой, если производная любого порядка существует и непрерывна

Ясно, что классы $C^n(E)$ "уменьшаются" с ростом n

Лемма 1.1. $\forall n \in \mathbb{N}$ $C^n(E) \supset C^{n+1}(E) \supset C^{\infty}(E)$, причём все включения строгие

 \mathcal{A} оказательство. Предъявим функцию $f_n: f_n \in C^n(\mathbb{R})$, но $f_n \not\in C^{n+1}(\mathbb{R})$, т.е. $f_n^{(n)}$ – не дифференцируема Заведём последовательность функций $f_n(x) = \begin{cases} \frac{x^{n+1}}{(n+1)!} &, x>0 \ (\geqslant) \\ 0 &, x\leqslant 0 \ (<) \end{cases}$

Очевидно
$$f'_n = f_{n-1}, n \in \mathbb{N}$$

$$n = 0 \quad f_0(x) = \begin{cases} x, x > 0 \\ 0, x \leqslant 0 \end{cases}$$

 $f_0 \not\in C^1(\mathbb{R})$, у неё в 0 разрыв 1-го рода $f_0'(-0)=0, f_0'(+0)=1$ Таким образом $d_n^{(n)}=f_0\in C(\mathbb{R}),$ но $f_n^{(n+1)}=f_0'\not\in C(\mathbb{R})$

1.1 Дифференциал f

$$\Delta f(x_0) = f(x_0 + \Delta x) - f(x_0) = f'(x_0) \Delta x + o(\Delta x)$$

$$df = f'(x_0) dx \quad df(x_0, dx) = f'(x_0) dx$$
 или $(df(x_0))(dx) = f'(x_0) dx$ дифференциал – линейная функция от приращения $\Delta x = dx$ – это один аргумент точка x_0 – параметр
$$f'(x_0) = \frac{df(x_0, dx)}{dx}$$
 – это не зависит от dx
$$\frac{df}{dx} = f'(x)$$

Определение 1.4 (Дифференциал n-го порядка). $\Box f - n$ раз дифференцируема в $x_0 \in E$ $(f: E \to \mathbb{R})$ Величина

$$d^n f(x_0, dx) = f^{(n)}(x_0) dx^n$$

называется дифференциалом n-го порядка в точке x_0 $dx^n = (dx)^n = dx \cdot dx \cdot \dots \cdot dx$ dx – единый символ $d(x^n) = nx^{n-1}dx$

Замечание 1.3. Дифференциал – это обычное число т.е. это числовая функция

Теорема 1.1 (Теорема об арифметических действиях со старшими производными). $\Box f, g:(a;b) \to \mathbb{R}\ u\ n$ раз дифференцируемы в $x_0 \in (a;b)$. Тогда

1.
$$\forall \alpha \beta \in \mathbb{R} \quad (\alpha f(x) + \beta g(x))^{(n)} \mid_{(x_0)} = \alpha f^{(n)}(x_0) + \beta g^{(n)}(x_0)$$

2. Формула Лейбница
$$(fg)^{(n)}\mid_{x=x_0}=\sum\limits_{k=0}^n C_n^k f^{(k)}(x_0)g^{(n-k)}(x_0)$$

Доказательство. (по индукции)

л = 1 всё известно
$$(fg)' = f'g + fg'$$
 $n \to n+1$ п.1 — очевиден $(\alpha f + \beta g)^{(n+1)} = \left((\alpha f + \beta g)^{(n)}\right)' = (\alpha f^{(n)} + \beta g^{(n)})' = \dots$ $(fg)^{(n+1)} = \left(\sum_{k=0}^n C_n^k f^{(k)} g^{(n-k)}\right)' = \sum_{k=0}^n C_n^k \left(f^{(k)} g^{(n-k)}\right)' = \sum_{k=0}^n C_n^k \left(f^{(k+1)} g^{(n-k)} + f^{(k)} g^{(n-k+1)}\right) = \sum_{k=0}^n C_n^k f^{(k+1)} g^{(n-k)} + \sum_{k=0}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} g^{(n-k)} + \sum_{k=0}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} g + f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} f^{(n+1)} g + \sum_{k=1}^n C_n^k f^{(k)} g^{(n-k+1)} = f^{(n+1)} f^{(n+1)} g^{(n-k+1)} = f^{(n+1)} f^{(n+1)} g^{(n-k+1)} = f^{(n+1)} f^{(n+1)} g^{(n-k+1)}$

Примеры:

1.
$$(x^{\alpha})^{(n)} = \alpha \cdot (\alpha - 1) \dots (\alpha - n + 1) x^{\alpha - n}$$

2.
$$\Box \alpha = -1$$
 $\left(\frac{1}{x}\right)^{(n)} = \frac{(-1)^n n!}{x^{n+1}}$ Дз – проверить В

3.
$$(\ln x)^{(n)} = \frac{(-1)^{n-1}(n-1)!}{x^n}$$
 ДЗ – проверить

4.
$$(a^x)^{(n)} = ((a^x)')^{(n-1)} = (a^x \ln a)^{(n-1)} = a^x (\ln a)^n$$

5.
$$L = \langle \cos, \sin \rangle = \{ \alpha \cos x + \beta \sin x \mid \alpha, \beta, x \in \mathbb{R} \}$$

 $P : L \to L$ "поворот на 90 градусов против часовой стрелки"
 $(P(\cos))(x) = \cos(x + \frac{\pi}{2}) \quad (P(\sin))(x) = \sin(x + \pi/2)$
 $\sin^{(n)} = P^n(\sin) \quad \cos^{(n)} = P^n(\cos)$

1.2 Формула Тейлора

 $\supset T_n(x)$ какой-то многочлен степени $n \in \mathbb{Z}_+$

$$\forall x_0 \in \mathbb{R} \quad T_n(x) = \sum_{k=0}^n a_k(x-x)^k$$
 $n=1$ $T_n(x) = ax+b = a(x-x_0)+b-ax_0$ $a_1=a$ $a_0=b+ax_0$ $n \to n+1$ $T_{n+1}(x) = P_n(x) \cdot (x-x_0)+T_{n+1}(x_0)$ P_n – какой-то многочлен, на который мы делим $P_n(x) = \sum_{k=0}^n b_k(x-x_0)$ всё $f(x) = f(x_0) + \int_{x_0}^x T_n^{(m)} = \sum_{k=m}^n a_k k(k-1) \cdot (k-m+1)(x-x_0^{k-m})$ $T_n^{(m)}(x_0) = a_m m(m-1) \dots 1 = a_m \cdot m!$ $a_m = \frac{T_n^{(m)}(x_0)}{m!}$ — готовая формула для a_m Т.О.

$$T_n(x) = \sum_{k=0}^n \frac{T_n^{(k)}(x_0)}{k!} (x - x_0)^k$$

- $\exists f$ произвольная функция $(a;b) \to \mathbb{R}$
- $\exists f n$ раз дифференцируемая а $x_0 \in (a; b)$

Конечно, формула

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

неверна, но оказывается, что она даёт хорошее приближение к функции f

Определение 1.5. Многочленом Тейлора степени n для функции f в точке x_0 называется

$$T_{n,x_0}(f) = \sum_{k=0}^{n} \frac{f^k(x_0)}{k!} (x - x_0)$$

T - Тейлор Taylor

Определение 1.6. Остаток $R_{n,x_0}f(x) = f(x) - T_{n,x_0}f(x)$ (остаточный член)

Определение 1.7. Формула Тейлора

$$f(x) = T_{n,x_0} f(x) + R_{n,x_0} f(x)$$

Пока что эта формула полностью бессодержательная и просто является переписанным определением остатка

Содержание появляется, когда что-то говориться о R_{n,x_0} в смысле малости, ограниченности и m.n.

Существуют разные форму записи этого остатка: Пеано, Лагранжа и Коши.

Лемма 1.2.
$$\forall m = \overline{0,n} \quad f^{(m)}(x_0) = T_{n,x_0}^{(m)}(x_0)$$

Доказательство. было доказано, что $T(x) = \sum_{k=0}^{n} a_k (x - x_0)^k \implies T^{(m)}(x_0) = m! a_m$ Из этого $\implies T_{n,x_0}^{(m)} f(x_0) = a_m \cdot m! = f^{(m)}(x_0) \qquad m = \frac{f^{(m)}(x_0)}{m!}$

Замечание 1.4. Существует единственный многочлен степени n, обладающим свойством из леммы выше (для данной функции f(x)) и именно он и есть многочлен Тейлора

Теорема 1.2 (Формула Тейлора - Пеано). $\exists n \in \mathbb{N}, \exists f - n \text{ раз дифференцируема в } x_0 \in (a;b).$ Тогда

$$f(x) = T_{n,x_0} f(x) + o\left((x - x_0)^n\right) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o\left((x - x_0)^n\right)$$

m.e. $R_{n,x_0}f(x) = o((x-x_0)^n)$

Доказательство. Для упрощения записи пишем T(x) вместо $T_{n,x_0}f(x)$ и R(x) вместо $R_{n,x_0}f(x)$ Дано R(x) = f(x) - T(x) и по лемме $f^{(m)}(x_0) = T^{(m)}(x_0) \forall m = \overline{0,m}$ т.е. $R^{(m)}(x_0) = 0 \forall m = \overline{0,n}$

Достаточно доказать такую лемму

Лемма 1.3. if $R^{(m)}(x_0)=0$ $\forall m=\overline{0,n} \Longrightarrow R(x)=o\left((x-x_0^n)\right)$ Из этой Леммы очевидно следует теорема

Доказательство. n=0 $R(x)=f(x)-T(x)=f(x)-f(x_0)$ $T_{0,x_0}f(x)=f(x_0)$

т.к. f – непрерывна в 0 $f(x) - f(x_0) = 0(1), x \to x_0$ (по определению)

(0 - дифференцируемость – непрерывность)

n=1 $R(x)=f(x)-T_{1,x_0}f(x)=f(x)-f(x_0)-f'(x_0)(x-x_0)=o(x-x_0)$ (по определению дифференцируемости в x_0)

$$n \to n+1 \ \exists \ R(x) = 0 \ ((x-x_0)^m), \ \text{r.e.} \ \frac{R(x)}{(x-x_0)^m} \to 0 \quad x \to x_0 \ (x \neq x_0) \quad m = \overline{0,n}$$

Надо показать, что
$$R(x)=o\left((x-x_0)^{n+1} \iff \frac{R(x)}{(x-x_0)^{n+1}}\right) \to 0$$
, при $x\to x_0$

Воспользуемся языком последовательностей (языком Гейне)

 $\exists x_i \rightarrow x_0$ и $x_i \neq x_0$ – произвольная последовательность

Считаем x_i лежит между x_0 и x

Рис. 1.1: хѕ

 $R'(c_i)$ – уже удовлетворяет индукционному предположению

$$R-n+1$$
 раз дифференцируема $\implies \tilde{R}=R'$ и .. дифференцируемо в x_0 и $\tilde{R}^{(m)}(x_0)=0, m=\overline{0,n}\implies \frac{\tilde{R}(c_i)}{(c_i-x_0)^n}\to 0, c_i\to x_0$

Определение 1.8. Формула Тейлора для $x_0 = 0$ называется формулой Маклорена

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k} + o(x^{n})$$

Замечание 1.5. \square выполнено условие теоремы и \square $P_n(x)$ – это такой многочлен степени n:f(x)= $P_n(x) + o((x - x_0)^n) => P_n(x) = T_{n,x_0}f(x)$

Иногда это замечание берут в качестве определения многочлена Тейлора

Eсли f-n раз дифференцируема в x_0 (т.е. условие теоремы), то оба определения совпадают но, если f – не дифференцируема, то второе определение шире

Пример 1.1.
$$f(x) = \begin{cases} 0 & , x \notin \mathbb{Q} \\ x^n, x \in \mathbb{Q} \end{cases}$$

f – непрерывна на $\hat{\mathbb{R}}$ (непрерывна только в 0), в остальных точках разрыв

 $T.e.\$ это означает, что f – не дифференцируема при $x \neq 0$

 $f''(0)=\lim_{x\to 0}rac{f'(x)-f'(x_0)}{x-0}$ – eta, т.к. f'(x) – не определена

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \begin{cases} 0 & , x \notin \mathbb{Q} \\ x^{n - 2} & , x \in \mathbb{Q} \end{cases} = 0$$

Y f omcymcmsyem $T_{2,0}f(x) \implies T_{\geq 2,0}f(x)$ тоже не существует

Но $P_{n-1}(x)$ в смысле второго определения существует $P_{n-1} \equiv 0$

 $f(x) = 0 + o(x^{n-1}) \iff cama \ f \ ecmb \ p(x^{n-1})$

Теорема 1.3 (Глобальная формула Тейлора). $\Box f = n+1$ раз дифференцируема на (a;b)

 $\exists \ \phi$ – произвольная функция, 1 раз дифференцируемая на (a;b) и $\phi' \neq 0$ на (a;b) $\exists \ x_0 \in (a;b)$ Тогда $\forall x \in (a;b)$

 $\exists C_x$, лежащие между x_0, x :

$$R_{n,x_0}f(x) = \frac{\phi(x) - \phi(x_0)}{\phi'(c_x)n!} f^{(n+1)}(c_x)(x - c_x)^n$$

Доказательство. На (a;b) рассмотрим функцию

$$F(t) = f(x) - T_{n,x}f(t) = f(x) - \left(f(t) + \frac{f'(t)}{1!}(x-t) + \frac{f''(t)}{2!}(x-t)^2 + \dots + \frac{f^{(n)}(t)}{n!}(x-t)^4\right) \quad x$$

- как бы фиксируется, а *t* - как бы меняется

f-(n+1) раз дифференцируема на $(a;b) \implies F(t)--1$ раз дифференцируема

$$F'(t) = = -\left(f'(t) + (-f'(t)) + f''(t)(x-t) + f''(t)(x-t)(-1) + \frac{f'''(t)}{2!}(x-t)^2 + \dots + \frac{f^{(n)}(t)}{(n-1)!}(x-t)^{n-1}(-1) + \frac{f^{(n+1)}(t)}{n!}(x-t)^{n-1}(-1) + \frac{f^{(n+1)}(t)}{n!}(x-t)^{n-1}(x-t$$

Применим к
$$F$$
 и ϕ формулу Коши. $\exists C_x$ между $x_0,x: \frac{F(x)-F(x_0)}{\phi(x)-\phi(x_0)} = \frac{F'(C_x)}{\phi'(C_x)}$ Заметим: $F(x) = F(t) \mid_{t=0} = 0; \quad F(x_0) = f(x) - T_{n,x_0}f(x) = R_{n,x_0}f(x)$
$$\frac{0-R_{n,x_0}f(x)}{\phi(x)-\phi(x_0)} = \frac{\left(-\frac{f^{(n+1)}(C_x)}{n!}\right)(x-C_x)^n}{\phi'(C_x)}$$
 $R_{n,x_0}f(x) = \frac{\phi(x)-\phi(x_0)}{\phi'(C_x)n!} \cdot f^{(n+1)}(C_x) \cdot (x-C_x)^n$

Следствие 1.1. 1. $\Box \phi(t) = x - t$ $\phi(x) = 0$ $u \phi(x_0) = x - x_0$ $\phi'(t) = -1$

$$R_{n,x_0}f(x) = \frac{-(x-x_0)}{(-1)n!}f^{(n+1)}(C_x)\cdot(x-C_x)^n = \frac{f^{(n+1)}(C_x)}{n!}(x-x_0)(x-C_x)^n$$

$$\exists \theta \in [0;1]: (x-C_x) = (1-\theta)(x-x_0) \quad \theta = \frac{C_x - x_0}{x-x_0} \quad C_x = x_0 \quad \theta = 0 \quad C_x = x \quad \theta = 1$$

$$R_{n,x_0}f(x)=\frac{f^{(n+1)}(C_x)}{n!}(1-\theta)^n(x-x_0)^{n+1},\ \text{ide }\theta=\frac{C_x-x_0}{x-x_0}\in[0;1]$$

Остаточный член в формуле Коши

2.
$$\Box \phi(t) = (x-t)^{n+1}$$
 $\phi(x) = 0$, $\phi(x_0) = (x-x_0)^{n+1}$ $\phi'(t) = -(n+1)(x-t)^4$

$$R_{n,x_0} = \frac{0 - (x - x_0)^{n+1}}{-(n+1)(x - C_x)^n n!} f^{(n+1)}(C_x) \cdot (x - C_x)^n = \frac{f^{(n+1)}(x)}{(n+1)!} (x - x_0)^{n+1}$$

3. Формула Лагранжа – частный случай формулы Тейлора-Лагранжа для n=0

$$f(x) - f(x_0) = f'(C_x) \cdot (x - x_0)$$

- 4. \Box известно, что $|f^{(n+1)}(x)| \leq M$ на (a;b) Тогда $|R_{n,x_0}f(x)| \leq \frac{M}{(n+1)!} |x-x_0|^{n+1}$
- 5. Сравним Тейлора-Пеано и Тейлора-Лагранжа

Из Пеано $R_{n,x_0}f(x) = O\left((x-x_0)^{n+1}\right)$ (в случае, если f^{n+1} локально ограничено в x_0) $O\left((x-x_0)^{n+1}\right) = o\left((x-x_0)^n\right)$, но $o\left((x-x_0)^n\right) \neq O\left((x-x_0)^{n+1}\right)$

$$R_{n,x_0}f(x) = \frac{f^{(n+1)}(C_x)}{(n+1)!}(x-x_0)^{n+1}$$

6. Снова рассмотрим в качестве $f(x) = T_n(x)$ – многочлен Лагранжа

$$m.\kappa. T_n^{(n+1)}(x) \equiv 0$$

Из формулы Тейлора-Лагранжа: $T_n(x) = \sum_{k=0}^n \frac{T_n^{(k)}(x_0)}{k!} (x - x_0)^k + 0$

7. $f-\infty$ число раз дифференцируема на (a;b) $f\in C^\infty(a;b)$

 \Box все $f^{(k)}(x)$ равномерно ограничено на $(a;b)\longleftrightarrow\exists M:|f^{(k)}(x)|\leqslant M\forall k\in\mathbb{Z}^+, \forall x\in(a;b)$

$$|R_{n,x_0}f(x)| \leq \frac{M}{(n+1)!} |x - x_0|^{n+1} \quad \forall n$$

$$\implies |f(x) - T_{n,x_0}f(x)| = |R_{n,x_0}f(x)| \leqslant \frac{M}{(n+1)!}|x - x_0|^{n+1} \to 0, n \to \infty, m.\kappa. \frac{|x - x_0|^{n+1}}{(n+1)!} \to 0, n \to \infty$$

$$f(x) = \lim_{n \to \infty} T_{n,x_0} f(x)$$

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Ряд Тейлора

Любую n раз дифференцируемую функцию можно разложить c помощью формулы Тейлора-Пеано Ho не любую, даже ∞ раз дифференцируемую функцию можно представить рядом Тейлора

Eсли функция в x_0 совпадает со своим рядом Тейлором, они называются аналитическими

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

$$f \in C^{\infty}(\mathbb{R}), f^{(k)}(0) = 0$$
 $T_{n,0}f(x) \equiv 0 \implies p$ яд Тейлора $\equiv 0$

1.3 Преобразование уравнений и неравенств

(1) f(x) (2) g(x) = 0

Если любой корень (1) является корнем (2), то (2) – следствие (1) (корни не теряются) $f(x) \implies g(x)$ Если любой корень (1) является корнем (2) и любой корень (2) является корнем (1), то уравнения называются равносильными $f(x) \iff g(x)$

корни не теряются и лишние не появляются

Типичные преобразования:

приведение подобных слагаемых

$$\overline{f(x) + h(x) = g(x) + h(x)}$$

$$f(x) = g(x)$$

приведение расширяет ОДЗ, добавление же, наоборот, сужает

$$f + h = g + h \Longleftrightarrow \begin{cases} f = g \\ \text{ОДЗ} \end{cases}$$

Деление на общий множитель Не делим, а расщипляем

$$\overline{fh = gh \iff fh - gh = 0 \iff} (f - g)h = 0$$

Когда можно "делить"?

Когда область определения функции h это всё \mathbb{R} и $h(x) \neq 0 \forall x$

Возведение в квадрат

$$\overline{f(x) = g(x)} \implies f^2(x) = g^2(x)$$

1.4 Формулы (ряды) Тейлора для элементарных функций

1.
$$f(x) = e^x$$

Ясно, что
$$(e^x)^{(k)} = e^x \quad (e^x)^{(k)} \mid_{x=0} = 1$$

Формула Тейлора-Пеано
$$e^x = \sum\limits_{k=0}^n \frac{1}{k!} x^k + o(x^n)$$

Формула Тейлора-Лагранжа
$$e^x = \sum\limits_{k=0}^n \frac{x^k}{k!} + \frac{e^{\theta}}{(n+1)!} x^{n+1}$$
 $\theta \in [0,x], x>0$ (либо $x \in [x,0],$ если $x<0$)

или
$$e^x=\sum\limits_{k=0}^n rac{x^k}{k!}+rac{e^{ heta x}}{(n+1)!}x^{n+1}, heta \in [0,1]$$

Из этого
$$\left| e^x - \sum_{k=0}^n \frac{x^k}{k!} \right| \leqslant \frac{e^{\theta x} \cdot |x|^{n+1}}{(n+1)!}$$

Если
$$x$$
 – фиксирована $\frac{e^{\theta x}\cdot|x|^{n+1}}{(n+1)!}\to 0, n\to +\infty$

$$\implies \left|e^x - \sum_{k=0}^n \frac{x^k}{k!}\right| \to 0, n \to +\infty \Longleftrightarrow e^x = \sum_{k=0}^\infty \frac{x^k}{k!} \ (\text{по определению ряда}) - \text{аналитическая функция}$$

в частности
$$x=1$$
 $e=\sum_{k=0}^{\infty}\frac{1}{k!}$

Теорема 1.4. e – uppayuonanshoe

Доказательство. Пусть не так $\implies e = \frac{m}{n}, m, n \in \mathbb{N}$

Т.к. 2 < e < 3 – известная грубая оценка, то $e \notin \mathbb{Z}$

$$\implies n \geqslant 2$$

Пишем Формулу Тейлора-Лагранжа $e=\frac{m}{n}=\sum\limits_{k=0}^{n}\frac{1}{k!}+\frac{e^{\theta}}{(n+1)!}\cdot 1^{n+1}$

$$(n+1)!m = \sum_{k=0}^n \frac{n!}{k!} + \frac{e^{\theta}}{n+1} \implies \frac{e^{\theta}}{n+1} \in \mathbb{Z}$$
, что невозможно, т.к. $n+1\geqslant 3$ $1< e^{\theta} < 3$

$$f(x) = \sin x$$

$$f^{(k)}(x) = (D^k \sin)x = \sin(x + \frac{\pi k}{2})$$

 $L=<\sin x,\sin x>=\{a\cos x+b\sin x|a,b\in\mathbb{R}\}$ – линейное пространство

$$L \to \mathbb{R}^2$$
 $a\cos x + b\sin x \to (a,b)$

$$D:L\to L$$

$$D\begin{pmatrix} \cos x \\ \sin x \end{pmatrix} = \begin{pmatrix} -\sin x \\ \cos x \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos x \\ \sin x \end{pmatrix} \quad \alpha = \frac{\pi}{2}$$

$$(\sin x)^{(m)} = \sin(x + \frac{\pi m}{2}) \quad x_0 = 0$$

$$(\sin x)^{(2k)} \mid_{x=0} = \sin(0 + \pi k) = 0$$

$$(\sin x)^{(2k+1)}|_{x=0} = \sin(\frac{\pi}{2} + \pi k) = (-1)^m$$

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + O(x^{2n+1}) \Phi T \Pi$$

 $\sin x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k+1)!} x^{2k+1} + \frac{\sin \theta}{(2x+3)!} x^{2n+3}$ $\theta \in [0,1]$ (формулы как бы до (n+1) просто (n+1)-ое слагаемое не учитывается)

T.K.
$$\left|\frac{\sin\theta x \cdot x^{2n+3}}{(2n+3)!}\right| \leqslant \frac{|x|^{2n+3}}{(2n+3)!} \to 0, n \to \infty$$

T.o.
$$\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

3.
$$f(x) = \cos x$$
 – всё по аналогии

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + o(2^{2n}) \Phi T\Pi$$

$$\cos x = \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} + \frac{\cos \theta x}{(2n+2)!} x^{2n+2}$$

$$\Phi T \Pi \left| \cos x - \sum_{k=0}^{n} \frac{(-1)^k}{(2k)!} x^{2k} \right| \le \left| \frac{\cos \theta x}{(2n+2)!} x^{2n+2} \right|$$

 $\cos x$ – аналитическая функция

$$\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$

$$e^{ix} = \sum_{k=0}^{\infty} \frac{(i)^k}{k!} x^k = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} + \sum_{k=0}^{\infty} \frac{i(-1)^k}{(2k+1)!} x^{2k+1} = \cos x + i \sin x$$

$$e^{ix} = \cos x + i\sin x$$

$$e^{a+bi} = e^a e^{bi} = e^a (\cos b + i \sin b)$$

$$e^{\pi i} = -1$$

4.
$$f(x) = \ln(1+x)$$

$$f'(x) = \frac{1}{1+x}$$

$$f''(x) = -\frac{1}{(1+x)^2}$$

$$f^{III}(x) = \frac{2}{(1+x)^3}$$

$$f^{IV} = -\frac{2 \cdot 3}{(1+x)^4}$$

$$f^{(n)} = \frac{(-1)^{n+1}(n-1)!}{(1+x)^n}$$

$$f^{(n)}(0) = (-1)^n \cdot (n-1)!$$
 $x_0 = 0$

$$\ln(1+x) = \sum_{k=0}^{n} \frac{f^{(n)}(0)}{n!} x^{n} + \frac{f^{(n+1)}(\theta x)}{(n+1)!} x^{n+1} = \sum_{k=1}^{n} \frac{(-1)^{n+1}}{n} \cdot x^{n} + \frac{(-1)^{n+2} n!}{(1+\theta x)^{n+1} \cdot (n+1)!} x^{n+1} = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} \dots + \frac{(-1)^{n+1} x^{n}}{n} + \frac{(-1)^{n+2} x^{n+1}}{(1+\theta x)^{n+1} (n+1)} \Phi T \Pi$$

$$\Phi T\Pi \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} \dots + \frac{(-1)^{n+1}x^n}{n} + o(x^n)$$

При каких x ряд Тейлора будет сходиться к $\ln(1+x)$

$$|R_n(x)| = \left| \frac{x^{n+1}}{(1+\theta x)^{n+1}(n+1)} \right| \to 0, n \to \infty$$

$$\theta \in [0,1]$$

$$x = 1$$
 $\left| \frac{1}{(1+\theta)^{n+1}(n+1)} \right| \to 0$

$$\exists x \in [0,1) \quad |R_n(x)| = \frac{x^{n+1}}{(n+1)(1+\theta x)^{n+1}} < \frac{x^{n+1}}{n+1} \to 0, n \to \infty$$

$$x=1$$
 ряд $=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\ldots=\ln 2$ $R_N=\frac{1}{n+1}\to 0$

$$x>1 \quad |R_n(x)| o \infty$$
 ряд расходится $rac{x^n}{n}
eq 0$

T.o. сходимость есть в $x \in [0, 1]$

$$\ln(1+x) = \sum_{k=1}^{n} \frac{(-1)^{n-1}x^n}{n} + \frac{(-1)^n n!}{(1+c)^{n+1} n!} \cdot x \cdot (x-c)^n = \sum_{k=1}^{n} \frac{(-1)^{n+1}x^n}{n} + \frac{(-1)^n \cdot x^{n+1}(1-\theta)^n}{(1+\theta x)^{n+1}}$$

$$|R_n(x)| = \frac{|x|^{n+1}(1-\theta)^n}{(1+\theta x)^{n+1}}$$

$$0 < \frac{1+\theta}{1+\theta x} < 1 \iff 1-\theta < 1+\theta x \iff 0 < \theta x + \theta = \theta(x-1)$$
 yes!

Фокус авансом $\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 - \dots$

$$\exists |x| < 1$$

$$\ln(1+x) = \int_{0}^{\infty} \frac{dt}{1+t} = \int_{0}^{x} (1-t+t^2-t^3...)dt = (t-\frac{t^2}{2}+\frac{t^3}{3}-\frac{t^4}{4})|_{0}^{x} = x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+...$$

5.
$$f(x) = (1+x)^{\alpha}, \alpha \in \mathbb{R} \setminus 0$$

 $f'(x) = \alpha(1+x)^{\alpha-1}$
 $f''(x) = \alpha(\alpha-1)(1+x)^{\alpha-2}$
 $f^{(k)} = \alpha(\alpha-1)(\alpha-2)\dots(\alpha-k+1)(1+x)^{\alpha-k}$
 $f^{(k)}(0) = \alpha\dots(\alpha-k+1)$

Если $\alpha \in \mathbb{N}$, то есть некторое $N f^{(N)}(x) = 0$

A если α – ненатуральное ненулевое число, то производная считается бесконечное число раз

$$(1+x)^{\alpha} = 1 + \frac{\alpha}{1!} \cdot x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1)(\alpha-2) \dots (\alpha-n+1)}{n!} x^n + o(x^n)$$

$$\frac{1}{1+x} = (1+x)^{-1} = 1 - x + \frac{(-1)(-1-1)}{2!} x^2 + \frac{(-1)(-1-1)(-1-2)}{3!} x^3 + \dots = 1 - x + x^2 - x^3 + \dots + (-1)x^n + o(x^n)$$

$$\frac{1}{(1+x)^2} = (1+x)^{-2} = 1 - \frac{2}{1!} x + \frac{-2(-3)}{2!} x^2 + \frac{(-2)(-3)(-4)}{3!} x^3 + \dots + \frac{(-2) \dots (-n-1)}{n!} x^n + o(x^n) = 1 - 2x + 3x^2 - 4x^3 + \dots + (-1)^n (n+1)x^n + o(x^n)$$

$$\frac{1}{(1+x)^2} = -\left(\frac{1}{1+x}\right) = (1-x+x^2-x^3+\dots + (-1)x^n+\dots)' = 1 - 2x + 3x^2 + \dots + (-1)^{n+1} nx^{n-1} + \dots$$

$$\sqrt{1+x} = (1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + \frac{\frac{1}{2}(\frac{1}{2}-1)(\frac{1}{2}-2)}{3!} x^3 + \dots = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + \dots$$

6. $f(x) = \operatorname{tg} x$

$$\operatorname{tg} x = \frac{\sin x}{\cos x} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + O(x^7)}{1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + O(x^8)} = \frac{x - \frac{x^3}{3!} + \frac{x^5}{5!} + O(x^7)}{1 + t} = (x - \frac{x^3}{3!} + \frac{x^5}{5!} + O(x^7))(1 + t + t^2 + O(t^3) + (x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7))(1 + (\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720}) + (1 + (\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720})^2 + o(x^5)) = (x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7))(1 + (\frac{x^2}{2} - \frac{x^4}{24}) + (\frac{x^4}{4} + o(x^5)) = (x - \frac{x^3}{6} + \frac{x^5}{120} + O(x^7))(1 + \frac{x^2}{2} + \frac{5}{24}x^4 + o(x^5)) = (x - \frac{x^3}{6} + \frac{x^5}{120}) + (\frac{x^3}{2} - \frac{x^5}{12}) + (\frac{5}{24}x^5) + o(x^5) = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + o(x^5)$$
 до $o(x^5)$

7. Гиперболические функции

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2} \quad \operatorname{sh} x = \frac{e^x - e^{-x}}{2}$$

$$\operatorname{ch} x = \frac{1}{2} \left(\sum_{k=0}^{\infty} \frac{x^k}{k!} + \sum_{k=0}^{\infty} \frac{(-x)^k}{k!} \right) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} = 1 + \frac{x^2}{2} + \frac{x^4}{4!} + \dots$$

$$\operatorname{sh} x = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots$$

$$\operatorname{ch}(ix) = \sum_{k=0}^{\infty} \frac{i^{2k} x^{2k}}{(2k)!} = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} = \cos x$$

$$\operatorname{sh}(ix) = i \sin x$$

Если
$$f$$
 – аналитическая $\iff f(x) = \sum_{k=0}^{\infty} a_k x^k$ $f(\varepsilon) = a_0 + a_1 \varepsilon + a_2 \varepsilon^2 + \ldots = a_0 + a_1 \varepsilon$ С другой стороны $f(\delta x) = f(0) + f'(0) \cdot \delta x + o(\delta x)$ Сравнивая $f'(o) = a_1$ $f(\varepsilon) = f(0) + f'(0)\varepsilon$

8. $\operatorname{arctg} x$

$$(\operatorname{arctg} x)' = rac{1}{1+x^2}$$
 $\sum_{k=0}^{\infty} a_k (x-x_0)^k$ – степенной ряд

интервал сходимости $|x-x_0| < R$ – радиус сходимости. не запрещено $R=\pm\infty$

Теорема

Теорема 1.5. Степенной ряд, внктри интервала сходимости, можно почленно дииференцировать и интегрировать, при этом интервал сходимости не меняется

1.
$$f'(x) = \sum_{k=1}^{\infty} k a_k (x - x_0)^{k-1}$$

$$\int_{x_0}^x f(t) dt = \sum_{k=0}^{\infty} \frac{a^k}{k+1} (x - x_0)^{k+1}$$

ДЗ:

- 1. $\frac{1}{1+x^2} = \dots$ разложить в ряд по формуле геометрической прогрессии
- 2. $\arctan x = \int_0^x \frac{dt}{1+t^2} = \dots$

1.5 Выпуклость функций

Определение 1.9. $f : < a, b > \to \mathbb{R}$

Tог ∂a

- 1. f называется выпуклой вниз (или просто выпуклой) , если $\forall x_1, x_2 \in < a, b > u \ \forall t \in (0,1)$ выполняется $f(tx_1 + (1-t)x_2) \leqslant tf(x_1) + (1-t)f(x_2)$ (1 \leq)
- 2. f называется выпулокі вверх (или вогнутой), если выполняется противоположное неравенство $f(tx_1+(1-t)x_2) \leqslant tf(x_1) + (1-t)f(x_2)$ (1 \leqslant)

Если неравенства строгие и $x_1 \neq x_2$, то говорят, что f строго выпуклая или строго вогнутая Так как переменные x_1 и x_2 входят в неравенство симметрично, то можно всегда считать (для удобства), что $x_1 < x_2$

1.5.1 Геометрический смысл

Рис. 1.2: Выпуклость

Выпуклость вниз означает, что график функции лежит не выше хорды, соединяющей точки графика. Или график функции, рассматриваемый между точками x_1, x_2 лежит ниже хорды

Аналогично, выпуклость вниз геометрически означает, что дуга графика лежит не ниже (выше) хорды, соединяющей точки графика.

Примеры:

1. f(x) = kx + b – аффинная функция. Нестрого выпукла и вниз и вверх одновременно

2.
$$f(x)=x^2$$
 строго выпукла на \mathbb{R}
$$(tx_1+(1-t)x_2)^2=t^2x_1^2+(1-t)^2x_2^2+2t(1-t)x_1x_2$$
 хотим $\leqslant tx_1^2+(1-t)x_2^2$ $<\ldots>$

Теорема 1.6. Пусть f, g – выпуклы (или строго выпуклы). $\alpha > 0$ Тогда

- 1. f+g выпукла (строго)
- 2. αf выпукла (строго)
- 3. f вогнута

Теорема 1.7. $\Box f$ – выпукла на $< a, b > u \; x_1 < x_2$

Тогда на
$$< a, b > \setminus [x_1, x_2]$$
 выпукла

$$f(x) \geqslant \frac{x-x_2}{x-1-x_2}f(x_1) + \frac{x_1-x}{x_1-x_2}f(x_2)$$

Тогда на $< a, b > \setminus [x_1, x_2]$ выпукла $f(x) \geqslant \frac{x-x_2}{x-1-x_2} f(x_1) + \frac{x_1-x}{x_1-x_2} f(x_2)$ Т.е. концы хорды на рисунке лежат ниже графика f

Доказательство. \triangleleft случай $a < x < x_1 < x_2$

Запишем 2^{\leqslant} заменим $x \leftrightarrow x_1$

$$f(x_1)\leqslant rac{x_1-x_2}{x-x_2}f(x)+rac{x-x_1}{x-x_2}f(x_2)$$
 Домножим на $(x-x_2)>0$ $(x-x_2)f(x_1)\geqslant (x_1-x_2)f(x)+(x-x_1)f(x_2)$

$$(x-x_2)f(x_1) \ge (x_1-x_2)f(x) + (x-x_1)f(x_2)$$

$$(x_2 - x_1)f(x) \ge (x_2 - x)f(x_1) + (x - x_1)f(x_2)$$

$$f(x)\geqslant \frac{x_2-x}{x_2-x_1}f(x_1)+\frac{x-x_1}{x_2-x_1}f(x_2)$$
 чтп Второй случай доказывается аналогично

Теорема 1.8 (О трёх хордах). $\Box f$ – выпуклая на $\langle a, b \rangle$

$$x_1, x_2, x_3 \in < a, b > u \ x_1 < x_2 < x_3$$
 $Tor \partial a \ \frac{f(x_2) - f(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - f(x_1)}{x_3 - x_1} \leqslant \frac{f(x_3) - f(x_2)}{x_3 - x_2}$ (Если f – строго выпукла, то неравенства строгие)

Доказательство.

ДЗ:

- 1. Доказать теорему
- 2. Доказать выпуклость:
 - (a) $x^n, n \in \mathbb{N}, x > 0$
 - (b) e^x на \mathbb{R}
- 3. Доказать неравенства

(a)
$$\frac{1}{2}(x^n + y^n) \le (\frac{x+y}{2})^n$$

(b)
$$\frac{e^x + e^y}{2} > e^{(\frac{x+y}{2})} \forall x \neq y; x, y > 0; n \in \mathbb{N}$$

Теорема 1.9 (Об односторонней дифференцируемости выпукллых функций). $\exists f$ – выпукла на промежутке $\langle a; b \rangle$

Тогда $\forall x_0 \in (a;b)$ $\exists f'_-(x_0), f'_+(x_0)$ лево и правосторонние производные Причём $f'_{-}(x_0) \leqslant f'_{+}(x_0)$

Доказательство. По теореме о 3-х хордах

$$\frac{f(x_2) - x(x_1)}{x_2 - x_1} \leqslant \frac{f(x_3) - x(x_4)}{x_3 - x_4} \leqslant \dots$$

$$\sphericalangle g(\xi) = rac{f(\xi) - f(x_0)}{\xi - x_0}, \xi \in (a,b)$$
 и $\xi \neq x_0$

$$g(\xi)\uparrow \iff$$
 Теорема о трёх хордах

 $\exists \eta$ – фиксированная ξ – меняется $\Longrightarrow g(\xi) \uparrow$ и ограничена сверху числом $g(\eta) \Longrightarrow \exists \lim_{\xi \uparrow x_0 = 0} g(\xi) = f'_-(x_0)$ чтд

Аналогично фиксируем ξ и меняем $\eta \implies g(\eta) \downarrow$ и ограничена снизу числом $g(\xi) \implies \exists \lim_{\eta \downarrow x_0 + 0} g(\eta) = f'_+(x_0)$

$$B(*) \xi \uparrow x_0, \quad \eta \downarrow x_0 \implies f'_{-}(x_0) \leqslant f'_{+}(x_0)$$

Следствие 1.2. Если f выпукла на $\langle a; b \rangle$, то она непрерывна на (a; b)

Доказательство. дифференцируемость \implies непрерывность

$$\exists x_0 \in (a;b)$$

Из левосторонней дифференцируемости \Longrightarrow левосторонняя непрервность в x_0 $f(x) \to f(x_0), x \uparrow x_0$ Из правосторонней дифференцируемости \Longrightarrow правосторонняя непрерывность $f(x) \to f(x_0), x \downarrow x_0$ $\Longrightarrow f$ – просто непрерывна в x_0

Замечание 1.6. На концах промежутка могут быть разрывы

$$f(x) = \begin{cases} -\sqrt{1 - x^2} & x \in (-1; 1) \\ 1 & x = \pm 1 \end{cases}$$

f – выпукла, но не непрерывна

Ho, кстати, если разрешить несобственные значения для f'_{\pm}

 $\exists f'_+(-1) = -\infty, \exists f'_-(1) = +\infty, \ m.e. \ сама \ производная \ существует$

Теорема 1.10 (выпуклость и касательные). $\Box f - \partial u \phi \phi$ еренцируема на < a; b >. Тогда f будет выпуклой в том и только в том случае, если $\forall x_0, x \in < a; b >$ выполняется $f(x) \geqslant f(x_0) + f'(x_0)(x - x_0)$

График f лежит выше касательной

Доказательство. Необходимость:

Это неравенство из определения выпуклости $t = \frac{x-x_1}{x_2-x_1}$

Замечание 1.7. Если для $x \neq x_0$ неравенство в условии теоремы строгое $\implies f$ будет строго выпуклой

Следствие 1.3. \Box f – произвольная выпуклая функция на < a;b>. Тогда $\forall x_0 \in (a;b)$ по теореме 1.9 $\exists f'_{\pm}(x_0) \implies \exists$ лево и правосторонние касательные κ f e точке e

Утверждается, что график f Лежит выше \forall односторонней касательной

$$(npasoŭ) y = f(x_0) + f'_{+}(x_0)(x - x_0)$$

(левой) $y = f(x_0) + f'_{-}(x_0)(x - x_0)$

Доказательство. Если $x_0=a$ или $x_0=b$, то это частичный случай теоремы 1.10

$$\exists x_0 \in (a;b)$$

 \sphericalangle случа
и $f\mid_{< a; x_0]} \quad f\mid_{[x_0,b>}$ – оба выпуклые

По теореме 1.10 $\forall x \in \langle a; x_0 \rangle$ $f(x) \geqslant f(x_0) + f'_-(x_0)(x - x_0)$

$$\forall x \in [x_0, b > f(x) \ge f(x_0) + f'_+(x_0)(x - x_0)$$

Теперь учтём $f'_{-}(x_0) \leqslant f'_{+}(x_0)$ (Теорема 1.9)

$$x \in [x_0, b > f(x) \ge f(x_0) + f'_+(x_0)(x - x_0) \ge f(x_0) + f'_-(x_0)(x - x_0)$$

Т.е. график лежит и выше левосторонней касательной

Аналогично $x \in \langle a; x_0]$ $f(x) \geqslant f(x_0) + f'_-(x_0)(x-x_0) \geqslant f(x_0) + f'_+(x_0)(x-x_0)$ чтп

Определение 1.10. $\Box f : < a; b > \to \mathbb{R}, \quad \Box x_0 \in < a; b >$

прямая y=l(x) называется опорной для функции f в точке x_0 , если выполняется $f(x_0)=l(x_0)$ и $f(x)\geqslant l(x) \forall x\in < a;b>$

Если же $f(x) > l(x) \forall x \in \langle a; b \rangle \setminus \{x_0\}$, то l(x) называется строго опорной

Следствие 1.4. Если f (строго) выпукла на a < a; b >, то $\forall x \in < a; b > \exists$ (строго) опорная прямая

ДЗ:

- 1. $\Box f$ выпуклая на a : b >. Тогда прямая $l(x) = f(x_0) + k(x x_0)$ будет опорной к f в точке x_0 в том и только том случае, когда $k \in [f'_-(x_0), f'_+(x_0)]$
- 2. $\sin x > \frac{2}{\pi}$ на $(0; \frac{\pi}{2})$
- 3. $\ln(1+x) < x$ при x > -1 и $x \neq 0$
- 4. $\alpha > 1$ $(1+x)^{\alpha} > 1 + \alpha x$ $\forall x \geqslant -1, x \neq 0$

Теорема 1.11 (Дифференциальные критерии выпуклости). 1. $\exists f$ – непрерывна на (a;b) и дифференцируема на (a;b)

Tогда f (строго) выпукла вниз $\iff f'(x)$ (строго) монотонна возрастает на (a;b)

2. $\exists f$ непрерывна на < a; b > u дважды дифференцируема на < a; b >. Тогда f выпукла вниз $\iff f''(x) \geqslant 0$ на < a; b >

Доказательство. 1. \Longrightarrow По Теореме 1.10 f лежит выше касательной в любой точке. В $x_1:f(x)\geqslant f(x_1)+f'(x_1)(x-x_1)$

Возьмём $x = x_2 > x_1$

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \geqslant f'(x_1)$$
 (*)

В точке
$$x_2: f(x) \geqslant f(x_2) + f'(x_2)(x - x_2)$$

Возьмём $x = x_1 < x_2$

$$-f'(x_2)(x_1 - x_2) \geqslant f(x_2) - f(x_1)$$

$$f'(x_2)(x_2 - x_1) \ge f(x_2) - f(x_1) \implies f'(x_2) \ge \frac{f(x_2) - f(x_1)}{x_2 - x_1} \quad (**)$$

Из
$$(*)$$
 и $(**) \implies f'(x_1) \leqslant f'(x_2) \implies f' \uparrow$

Если f строго выпукла, то неравенство будет строгим

 $\iff \exists f'(x) \uparrow \text{Ha}(a,b)$

Возьмём $a < x_1 < x < x_2 < b$. По Теореме Лагранжа $\exists c_1 \in (x_1, x)$ и $\exists c_2 \in (x, x_2)$: $\frac{f(x) - f(x_1)}{x - x_1} = f'(x)$ и $\frac{f(x) - f(c_2)}{x - x_2} = f'(c_2)$

Т.к.
$$f' \uparrow$$
 и $c_2 > c_1 \implies f'(c_1) \leqslant f'(c_2)$

Т.о. $\frac{f(x)-f(x_1)}{x-x_1}\leqslant \frac{f(x_2)-f(x)}{x_2-x}$ (***) $\iff f(x)\geqslant \frac{x_2-x}{x_2-x_1}f(x_1)+\frac{x-x_1}{x_2-x_1}f(x_2)$ (см. теорему 10) А это определение выпуклости

(если $f \uparrow \uparrow$, то неравенство в (**) строгое \implies выпуклость строгая

2. f – выпукла вниз $\iff f' \uparrow$ на (a,b)По критерию монотонности \iff $(f')' \geqslant 0$ чтд

Замечание 1.8. В пункте 2 нельзя по аналогии с пунктом 1 сказать "Тогда и только тогда" Это неверно Контпример: $f(x) = x^4$ – срого выпуклая вниз функция, т.к. график оежит строго выше касательной. Ho $f''(x) = 12x^2 \ u \ f''(0) = 0$

 $O \partial$ нако из f''(x) > 0 строгая выпуклость вытекает

1.
$$f(x) = a^x$$
 $f'(x) = a^x \ln a$ $f''(x) = a^x \ln^2(x) > 0 \implies f$ – строго выпукла вниз

2.
$$f(x) = \log_a x$$
 $f'(x) = \frac{1}{x \ln a}$ $f''(x) = -\frac{1}{x^2 \ln a}$ Если $a > 1 \implies \ln a > 0 \implies f''(x) < 0 \implies f$ – строго вогнута (выпукла вверх) Если $0 < a < 1 \implies \ln a < 0 \implies f''(x) > 0 \implies f$ – строго выпукла вверх

Определение 1.11. $\Box f : \langle a; b \rangle \to \mathbb{R}, x_0 \in (a; b)$ *Если:*

- 1. \exists такое $\delta > 0$: f имеет разный характер выпуклости на $(x_0 \delta, x_0]$ и $[x_0, x_0 + \delta]$
- 2. f непрерывна в x_0
- 3. $\exists f'(x_0) \in \mathbb{R} \cup \{\pm \infty\}$

Замечание 1.9. Непрерыавность \iff запрещаются разрывы первого рода Запрещается, чтобы производная терпела разрывы

Замечание 1.10. Если $f \in C^2(a;b)$, то в точках перегиба $f''(x_0) = 0$ (необходимое условие перегиба)

Теорема 1.12 (Неравенство Йенсена). $\Box f$ – выпукла вниз на < a; b >

$$\exists p_1,\ldots,p_n$$
 — набор чисел, что $\sum\limits_{i=1}^n p_i=1$
Тогда $\forall x_1,\ldots,x_n\in < a;b> f(\sum\limits_{i=1}^n p_ix_i)\leqslant \sum\limits_{i=1}^n p_if(x_i)$

Доказательство. Если $x_1 = x_2 = \ldots = x_*$

$$f(x_*) \leqslant f(x_*)$$

Будем считать, что числа различные.

Рис. 1.3: ор

Можно брать любой набор чисел $p_1,...,p_n$ и делить на их сумму

$$\exists x^* = \sum_{k=1}^n p_k x_k \in < a, b > \forall k \quad a \leqslant x_k \leqslant b \quad a = \sum_{k=1}^n a \leqslant \sum_{k=1}^n p_k x_k \leqslant \sum_{k=1}^n p_k b = b$$
 В точке x^* существует опорная прямая у графику $f(x): l_{x^*}(x) = ax + b$

$$l_{x^*}(x^*) = f(x^*)$$
 и $\forall x \quad f(x) \geqslant l_{x^*}(x)$

(причём, если f строго выпукла, то $f(x) > l_{x^*}(x) \forall x \neq x_*$)

Тогда
$$f(\sum_{k=1}^n p_k x_k = f(x^*) = l_{x^*}(x^*) = l_{x^*}(\sum_{k=1}^n p_k x_k) = a\sum_{k=1}^n p_k x_k + b = \sum_{k=1}^n p_k (ax_k + b) = \sum_{k=1}^n p_k l_{x^*}(x_k) \leqslant ax_k + b$$

$$\sum\limits_{k=1}^{n}p_{k}f(x^{k})$$
 чтд

ДЗ:

- 1. $epif=\{(x,y)\mid x\in < a;b>,y\geqslant f(x)\}$ Доказать, что f выпукла вниз $\iff epif$ выпуклое множество
- 2. $\Box f(x)$ выпукла вниз на $(a;+\infty)$ и $y=\alpha x+\beta$ её асимптота при $x\to\infty\implies f(x)\geqslant f(x)\geqslant \alpha x+\beta \forall x\in (a;+\infty)$ (аналогично при $x\to-\infty$)

Следствие 1.5. Если f строго выпукла вниз, а среди x-ов есть различные, то неравенство срогое

Следствие 1.6. Если
$$f$$
 выпукла вверх (вогнута), то $f\left(\sum_{k=1}^{n} p_k x_k\right) \geqslant \sum_{k=1}^{n} p_k f(x_k)$

Следствие 1.7. В принципе можно $\langle p_k \geqslant 0 \rangle$ (просто нулевые коэффициенты удаляются из доказательства

 ${f 3}$ амечание 1.11. $n=2\implies f\left(rac{x+y}{2}
ight)\leqslant rac{f(x)+f(y)}{2}$ (но это сразу следует из определения выпуклой функции)

Применение неравества Йенсона:

$$1. \ \, \exists \ \, x_1 \dots x_n > 0 \implies \frac{x_1 + x_2 + \dots + x_n}{n} \geqslant \sqrt[n]{x_1 x_2 \dots x_n}$$

$$f(x) = \ln x \quad f''(x) = \frac{1}{x} = -\frac{1}{x} < 0 \implies f \text{ - вогнутая (выпуклая вверх)}$$

$$\sum p_k x_k = \frac{1}{n} x_1 + \dots + \frac{1}{n} x_n$$

$$\implies \ln \left(\frac{x_1 + x_2 + \dots + x_n}{n} \right) \geqslant \frac{1}{n} (\ln x_1 + \ln x_2 + \dots + \ln x_n = \ln \sqrt[n]{x_1 \dots x_n}$$

2. Неравество Гёльдера

Теорема 1.13.

Определение 1.12. Числа p и q называются сопряжёнными, если $\frac{1}{p}+\frac{1}{q}=1$

$$p = \frac{q}{q-1} \quad p = \frac{q}{q-1}$$

Рассмоти набор чеисел $(a_1, a_2, ..., a_n) \in \mathbb{R}$, который также трактуется как вектор

$$\label{eq:bound} \exists \; \overline{a}, \overline{b} \in \mathbb{R} \quad \exists \; p > 1 \; u \; \tfrac{1}{p} + \tfrac{1}{q} = 1$$

Тогда
$$\left|\sum_{k=1}^n a_k b_k\right| \leqslant \left|\sum_{k=1}^n |a_k|^p\right|^{\frac{1}{p}} \cdot \left|\sum_{k=1}^n |b_k|^q\right|^{\frac{1}{q}}$$

Замечание 1.12. $p=q=2 \implies$ Неравенство Коши-Буняковского Шварца

Доказательство. Т.к. очевидно, что $\left|\sum_{k=1}^n a_k b_k\right| \leqslant \sum_{k=1}^n |a_k| |b_k|$ (неравенство треугольника)

То вместо a_k и b_k можно использовать $|a_k|$ и $|b_k|$, т.е. считать, что $a_k\geqslant 0$ — $b_k\geqslant 0$

И надо доказать:

$$\sum_{k=1}^{n} a_k b_k \leqslant \left(\sum_{k=1}^{n} a_k^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} b_k^q\right)^{\frac{1}{q}}$$

Далее можно считать, что все $b_k > 0$ (слагаемые, где $b_k = 0$ можно просто отбросить

$$\sphericalangle f(x) = x^p, p > 1$$
 — строго выпукла вниз на $[0, +\infty)$

$$\Box p_k = b_k^q, x_k = a_k b_k^{1-q}$$

Чтобы
$$\sum\limits_{k=1}^n p_k x_k = \sum\limits_{k=1}^n a_k b_k$$

$$f(\sum_{k=1}^{n} p_k x_k \atop \sum_{k=1}^{n} p_k \leqslant \sum_{k=1}^{n} p_k f(x_k) \atop \sum_{k=1}^{n} p_k$$
 Напишем неравенство Йенсона в общей формулировке

$$\iff \left(\frac{\sum\limits_{k=1}^{n}a_{k}b_{k}}{\sum\limits_{k=1}^{n}b_{k}^{q}}\right)^{p} \leqslant \frac{\sum\limits_{k=1}^{n}p_{k}x_{k}^{p}}{\sum\limits_{k=1}^{n}b_{k}^{q}} = \frac{\sum\limits_{k=1}^{n}a_{k}^{p}}{\sum\limits_{k=1}^{n}b_{k}^{q}}$$

$$p_{k}x_{k}^{q} = b_{k}^{q}a_{k}^{p}b_{k}^{p(1-q)} = a_{k}^{p} \quad p = \frac{q}{q-1}$$

$$b_{k}^{p(1-q)} = b_{k}^{-q}$$

$$\iff \left(\sum\limits_{k=1}^{n}a_{k}b_{k}\right)^{p} \leqslant \sum\limits_{k=1}^{n}\left(\sum\limits_{k=1}^{n}b_{k}^{q}\right)^{p-1}$$
 Возьмём корень p степени и учтём, что $\frac{p-1}{p} = 1/q$

$$\sum_{k=1}^{n}a_{k}b_{k} \leqslant \left(\sum_{k=1}^{n}a_{k}^{p}\right)^{\frac{1}{p}} \cdot \left(\sum\limits_{k=1}^{n}b_{k}^{q}\right)^{\frac{1}{q}}$$

ДЗ:

- (а) Неравенство Гёльдера обращается в равенство если и только если выполнены два условия:
 - і. Вектора $(|a_1|^p, \ldots, |a_n|^p)$ и $(|b_1|^q, \ldots, |b_n|^q)$ сонаправленны
 - іі. Все произведения $a_k b_k$ одного знака

(b)

Определение 1.13. $\exists \ n \in \mathbb{N}, r > 0, a_1, \dots, a_n \geqslant 0 \ ($ или $r < 0, a_1, \dots, a_n > 0 \)$

$$M_r(\overline{a})=\left(rac{1}{n}\sum_{k=1}^n a_k^r
ight)^{rac{1}{r}}$$
 Называется средним степенным порядка r чисел a_1,\dots,a_n

 $M_1(a)$ – среднее арифметическое, $M_2(a)$ – среднее квадратичное, $M_{-1}(a)$ – срднее гармониическое

Проверить:

i.
$$a_1, a_2, \dots, a_n > 0$$
 $M_r(a) = \frac{1}{M_{-r}(\frac{1}{r})}$

ii.
$$\min_{1 \leqslant k \leqslant n} a_k \leqslant M_r(a) \leqslant \max_{1 \leqslant k \leqslant n} a_k$$

iii.
$$\lim_{r \to +\infty} M_r(a) = \max_{1 \leqslant k \leqslant n} a_k$$
$$\lim_{r \to -\infty} M_r(a) = \min_{1 \leqslant k \leqslant n} a_k$$

Теорема 1.14 (О монотонности средних степенных). $\Box 0 < r < S \quad a_1, \dots, a_n \geqslant 0$ $\Longrightarrow M_r(a) \leqslant M_s(a)$

Доказательство. $\sphericalangle f(x) = x^{\frac{s}{r}}$ т.к. $\frac{s}{r} > 1 \implies f$ – строго выпукла (вниз) на $[0, +\infty]$

Напишем неарвенство Йенсена

$$f\left(\frac{a_1^r+...+a_n^r}{n}\right)\leqslant \frac{f(a_1^r)+...+f(a_n^r)}{n}$$

$$\left(\frac{a_1^r+...+a_n^r}{n}\right)^{\frac{s}{r}}\leqslant \frac{a_1^s+...+a_n^s}{n}$$
 Берём корень s -ой степени
$$\left(\frac{a_1^r+...+a_n^r}{n}\right)^{\frac{1}{r}}\leqslant \left(\frac{a_1^s+...+a_n^s}{n}\right)^{\frac{1}{s}}$$

Замечание 1.13. T.к. f – cmpor osunyкла, то если <math>cpedu чисел a_1, \ldots, a_n есть pasnичные, то нравенство будет cmporum.

Теорема 1.15. $\exists a_1,\ldots,a_n>0$ $\lim_{r\to 0}M_r(a)=\sqrt[n]{a_1\ldots a_n}-cpe\partial$ нее геометрическое

Доказательство.
$$M_r(a) = e^{\ln M_r(a)} = e^{\frac{1}{r} \ln \frac{1}{n} \sum\limits_{k=1}^n a_k^r} = a^r = 1 + r \cdot \ln a + O(r^2)$$

$$= e^{\frac{1}{r}\ln\left(\frac{1}{n}\left(n+r\cdot(\ln a_1+...+\ln a_n)+O(r^2)\right)\right)} = e^{\frac{1}{r}\ln\left(1+\frac{r}{n}\ln(a_1...a_n)+O(r^2)\right)} = \ln(1+z) = z + O(z^2)$$

$$= e^{\frac{1}{r}\cdot\left(\frac{r}{n}\ln(a_1...a_n)+O(r^2)\right)} = e^{\frac{1}{n}\ln(a_1...a_n)} \cdot e^{\frac{O(r^2)}{r}} = \sqrt[n]{a_1...a_n} \cdot e^{O(r)} \to \sqrt[n]{a_1,...a_n}$$

Следствие 1.8. Тогда при r > 0 $M_r(a) \geqslant M_0(a)$ (обобщённое неравенство Коши), причём равенство возможно лишь при равенстве всех a

$$\exists a1, \dots, a_n > 0 \quad \exists s < r < 0 \implies 0 < -r < -s$$

$$\exists n \in \mathbb{N} M_{-r}(\frac{1}{a}) \leqslant M_{-s}(\frac{1}{a})$$

$$\frac{1}{M_r(a)} \leqslant \frac{1}{M_s(a)}$$

T.к. седние степенные > 0

$$M_s(a) \leqslant M_r(a)$$
 $M_s(a) \leqslant M_r(a) \leqslant M_0(a)$

Вывод: Тh справедлива и для отрицатльеных степеней

Окончательно

$$r < s \text{ if } a_1, \ldots, a_n > 0 \implies M_r(a) \leqslant M_s(a) \quad \forall r, s$$

Доказательство. 1. 0 < r < s – есть

$$2. r < s < 0$$
 — есть

3.
$$r < 0 < s$$
 $M_r(a) \leq M_0(a) \leq M_s(a)$ – ok

Знаменитое неравенство
$$\frac{n}{\frac{1}{a_1}+\ldots+\frac{1}{a_n}}\leqslant \sqrt[n]{a_1\ldots a_n}\leqslant \frac{s_1+\ldots+a_n}{n}$$
 $M_{-1}(a)\leqslant M_0(a)\leqslant M_1(a)$

4 Неравество Менковского

$$\square a, b \in \mathbb{R}^n, p \geqslant 1$$
 Тогда:

$$\left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{p}}$$

Доказательство. $\Box p = 1$

$$\sum_{k=1}^{n} |a_k + b_k| \leqslant \sum_{k=1}^{n} |a_k| + \sum_{k=1}^{n} |b_k|$$

$$\iff |a_k + b_k| \leqslant |a_k| + |b_k|$$
 — неравенство Треугольника

$$\Box A = \sum_{k=1}^{n} |a_k + b_k|^p$$

$$A = \sum_{k=1}^{n} |a_k + b_k| \cdot |a_k + b_k|^{p-1} \leqslant \sum_{k=1}^{n} |a_k| \cdot |a_k + b_k|^{p-1} + \sum_{k=1}^{n} |b_k| \cdot |a_k + b_k|^{p-1} \leqslant \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{k=1}^{n} |a_k + b_k|^{(p-1)q}\right)^{\frac{1}{q}} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^{n} |a_k + b_k|^{(p-1)q}\right)^{\frac{1}{q}} = (p-1)q = p \sum_{k=1}^{n} |a_k + b_k|^{(p-1)q} = A$$

$$= \left(\left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |b_k|^p\right)^{\frac{1}{p}}\right) \cdot A^{\frac{1}{q} \geqslant A}$$

$$A^{1-\frac{1}{q}} = A^{\frac{1}{p}} = \left(\sum_{k=1}^{n} |a_k + b_k|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{n} |a_k|^p\right)^{\frac{1}{p}}\right)$$

ДЗ:

1.
$$\exists a_k > 0 \quad a_1^{a_1} a_2^{a_2} \dots a_n^{a_n} \geqslant \left(\frac{a_1 a_2 \dots a_n}{n}\right)^{a_1 a_2 \dots a_n}$$

2.
$$\sum_{k=1}^{n} \sqrt{a_k^2 + b_k^2} \ge \sqrt{\left(\sum_{k=1}^{n} a_k\right)^2 + \left(\sum_{k=1}^{n} b_k\right)^2}$$

3.
$$a, b, c > 0$$
 $\sqrt{\frac{a+b}{c}} + \sqrt{\frac{b+c}{a}} + \sqrt{\frac{c+a}{b}} \geqslant 3\sqrt{2}$

4.
$$\forall a, b, c, d > 0$$
 $\frac{a}{b+c} + \frac{b}{c+d} + \frac{c}{d+a} + \frac{d}{a+b}$