
Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866)

217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: Tue Oct 30 17:50:12 EDT 2007

Validated By CRFValidator v 1.0.3

Application No: 10520655 Version No: 2.0

Input Set:

Output Set:

Started: 2007-10-09 12:57:55.239

Finished: 2007-10-09 12:58:00.579

Elapsed: 0 hr(s) 0 min(s) 5 sec(s) 340 ms

Total Warnings: 17

Total Errors: 30

No. of SeqIDs Defined: 18

Actual SeqID Count: 18

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
E 257	Invalid sequence data feature in <221> in SEQ ID (10)
E 257	Invalid sequence data feature in <221> in SEQ ID (10)
E 257	Invalid sequence data feature in <221> in SEQ ID (10)
E 257	Invalid sequence data feature in <221> in SEQ ID (10)
E 257	Invalid sequence data feature in <221> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
E 257	Invalid sequence data feature in <221> in SEQ ID (11)
E 257	Invalid sequence data feature in <221> in SEQ ID (11)
E 257	Invalid sequence data feature in <221> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)

Input Set:

Output Set:

Started: 2007-10-09 12:57:55.239 **Finished:** 2007-10-09 12:58:00.579

Elapsed: 0 hr(s) 0 min(s) 5 sec(s) 340 ms

Total Warnings: 17
Total Errors: 30
No. of SeqIDs Defined: 18

Actual SeqID Count: 18

Err	or code	Error Description
E	257	Invalid sequence data feature in <221> in SEQ ID (12)
E	257	Invalid sequence data feature in <221> in SEQ ID (12)
Ε	257	Invalid sequence data feature in <221> in SEQ ID (12)
E	257	Invalid sequence data feature in <221> in SEQ ID (12)
W	213	Artificial or Unknown found in <213> in SEQ ID (13)
E	257	Invalid sequence data feature in <221> in SEQ ID (13)
E	257	Invalid sequence data feature in <221> in SEQ ID (13)
E	257	Invalid sequence data feature in <221> in SEQ ID (13)
E	257	Invalid sequence data feature in <221> in SEQ ID (13)
E	257	Invalid sequence data feature in <221> in SEQ ID (13)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)
E	257	Invalid sequence data feature in <221> in SEQ ID (14)
E	257	Invalid sequence data feature in <221> in SEQ ID (14)
E	257	Invalid sequence data feature in <221> in SEQ ID (14) This error has occured more than 20 times, will not be displayed
W	213	Artificial or Unknown found in <213> in SEQ ID (15)
W	213	Artificial or Unknown found in <213> in SEQ ID (16)
W	213	Artificial or Unknown found in <213> in SEQ ID (17)

SEQUENCE LISTING

```
<110> DIDEBERG, OTTO
     VERNET, THIERRY
      MOUZ, NICOLAS
<120> STREPTOCOCCUS PNEUMONIAE PBP2X MINI-PROTEIN AND USES
      THEREOF
<130> 70457-19
<140> 10520655
<141> 2005-03-07
<150> PCT/IB03/003397
<151> 2003-07-11
<150> FR 02/08724
<151> 2002-07-11
<160> 18
<170> PatentIn Ver. 3.3
<210> 1
<211> 551
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      mini-PBP2x construct
<400> 1
Gly Ser Gly Ala Lys Arg Gly Thr Ile Tyr Asp Arg Asn Gly Val Pro
                                     10
Ile Ala Glu Asp Ala Thr Ser Gly Gly Pro Asn Arg Ser Tyr Pro Asn
                                 25
Gly Gln Phe Ala Ser Ser Phe Ile Gly Gly Met Glu Ser Ser Leu
        35
                            40
Asn Ser Ile Leu Ala Gly Gly Gly Gly Asp Gly Lys Asp Val Tyr Thr
     50
Thr Ile Ser Ser Pro Leu Gln Ser Phe Met Glu Thr Gln Met Asp Ala
65
                   70
                                        75
Phe Gln Glu Lys Val Lys Gly Lys Tyr Met Thr Ala Thr Leu Val Ser
                 85
                                     90
```

Ala Asp Thr Lys Glu Gly Ile Thr Glu Asp Phe Val Trp Arg Asp Ile

Ala Lys Thr Gly Glu Ile Leu Ala Thr Thr Gln Arg Pro Thr Phe Asp

105

100

115 120 125

Leu Tyr Gln Ser Asn Tyr Glu Pro Gly Ser Thr Met Lys Val Met Met Leu Ala Ala Ile Asp Asn Asn Thr Phe Pro Gly Gly Glu Val Phe Asn Ser Ser Glu Leu Lys Ile Ala Asp Ala Thr Ile Arg Asp Trp Asp Val Asn Glu Gly Leu Thr Gly Gly Arg Met Met Thr Phe Ser Gln Gly Phe Ala His Ser Ser Asn Val Gly Met Thr Leu Leu Glu Gln Lys Met Gly Asp Ala Thr Trp Leu Asp Tyr Leu Asn Arg Phe Lys Phe Gly Val Pro Thr Arg Phe Gly Leu Thr Asp Glu Tyr Ala Gly Gln Leu Pro Ala Asp Asn Ile Val Asn Ile Ala Gln Ser Ser Phe Gly Gln Gly Ile Ser Val Thr Gln Thr Gln Met Ile Arg Ala Phe Thr Ala Ile Ala Asn Asp Gly Val Met Leu Glu Pro Lys Phe Ile Ser Ala Ile Tyr Asp Pro Asn Asp Gln Thr Ala Arg Lys Ser Gln Lys Glu Ile Val Gly Asn Pro Val Ser Lys Asp Ala Ala Ser Leu Thr Arg Thr Asn Met Val Leu Val Gly Thr Asp Pro Val Tyr Gly Thr Met Tyr Asn His Ser Thr Gly Lys Pro Thr Val Thr Val Pro Gly Gln Asn Val Ala Leu Lys Ser Gly Thr Ala Gln Ile Ala Asp Glu Lys Asn Gly Gly Tyr Leu Val Gly Leu Thr Asp Tyr Ile Phe Ser Ala Val Ser Met Ser Pro Ala Glu Asn Pro Asp Phe Ile Leu Tyr Val Thr Val Gln Gln Pro Glu His Tyr Ser Gly Ile Gln Leu Gly Glu Phe Ala Asn Pro Ile Leu Glu Arg Ala Ser Ala Met Lys

Asp Ser Leu Asn Leu Gln Thr Thr Ala Lys Ala Leu Glu Gln Val Ser

420 425 430

Gln Gln Ser Pro Tyr Pro Met Pro Ser Val Lys Asp Ile Ser Pro Gly
435 440 445

Asp Leu Ala Glu Glu Leu Arg Arg Asn Leu Val Gln Pro Ile Val Val 450 455 460

Gly Thr Gly Thr Lys Ile Lys Asn Ser Ser Ala Glu Glu Gly Lys Asn 465 470 475 480

Leu Ala Pro Asn Gl
n Gl
n Val Leu Ile Leu Ser Asp Lys Ala Glu Glu 485
 490 495

Val Pro Asp Met Tyr Gly Trp Thr Lys Glu Thr Ala Glu Thr Leu Ala 500 505 510

Lys Trp Leu Asn Ile Glu Leu Glu Phe Gln Gly Ser Gly Ser Thr Val 515 520 525

Gln Lys Gln Asp Val Arg Ala Asn Thr Ala Ile Lys Asp Ile Lys Lys 530 540

<210> 2

<211> 46

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic primer

<400> 2

gtcgacttag tctcctaaag ttaatttaat ttttttaatg tttttg

46

<210> 3

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic primer

<400> 3

ggatccggga caggcactcg c 21

<210> 4

<211> 43

<212> DNA

<213> Artificial Sequence

```
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 4
cataaatagt cccacgtttg gccccggatc cacgcggaac cag
                                                                    43
<210> 5
<211> 51
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 5
gtttgggtaa ctacgattgg gacctccaga ggttgcatcc tcagcaatcg g
                                                                    51
<210> 6
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 6
gttcaaggaa ctctccattc caccgccgat aaaactagaa gcaaattg
                                                                   48
<210> 7
<211> 49
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 7
tgtataaaca tccttaccgt ccccacctcc ccctgcaaga atactgttc
                                                                   49
<210> 8
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
```

<220>

32

```
<210> 9
<211> 32
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 9
ggctcgagtt agtctcctaa agttaatgta at
<210> 10
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD_RES
<222> (3)
<223> variable amino acid
<220>
<221> MOD_RES
<222> (4)
<223> hydrophobic amino acid
<220>
<221> MOD_RES
<222> (5)
<223> variable amino acid
<220>
<221> MOD_RES
<222> (6)
<223> Asp or Ser
<220>
<221> MOD_RES
<222> (10)..(12)
<223> variable amino acid
Arg Gly Xaa Xaa Xaa Arg Ser Gly Xaa Xaa Xaa Ala
                  5
                                     10
```

```
<211> 6
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD_RES
<222> (1)
<223> Arg or Lys
<220>
<221> MOD_RES
<222> (2)..(3)
<223> variable amino acid
<220>
<221> MOD_RES
<222> (5)
<223> variable amino acid
<400> 11
Xaa Xaa Xaa Pro Xaa Gly
<210> 12
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD_RES
<222> (1)
<223> Gly or Tyr
<220>
<221> MOD_RES
<222> (2)
<223> hydrophobic amino acid
<220>
<221> MOD_RES
<222> (4)..(6)
<223> variable amino acid
<220>
<221> MOD_RES
<222> (8)..(9)
<223> variable amino acid
```

```
<400> 12
Xaa Xaa Glu Xaa Xaa Xaa Asp Xaa Xaa Leu
<210> 13
<211> 10
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD_RES
<222> (1)
<223> hydrophobic amino acid
<220>
<221> MOD_RES
<222> (2)..(3)
<223> variable amino acid
<220>
<221> MOD_RES
<222> (4)
<223> Ser or Thr
<220>
<221> MOD_RES
<222> (5)
<223> hydrophobic amino acid
<220>
<221> MOD_RES
<222> (7)..(9)
<223> variable amino acid
<400> 13
Xaa Xaa Xaa Xaa Asp Xaa Xaa Gln
                  5
                                      10
 1
<210> 14
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD_RES
<222> (2)
```

<223> Gly or Ser

```
<221> MOD_RES
<222> (4)..(5)
<223> hydrophobic amino acid
<220>
<221> MOD_RES
<222> (6)..(9)
<223> variable amino acid
<220>
<221> MOD_RES
<222> (12)
<223> variable amino acid
<220>
<221> MOD_RES
<222> (13)
<223> hydrophobic amino acid
<220>
<221> MOD_RES
<222> (14)
<223> Asp or Asn
<400> 14
Thr Xaa Glu Xaa Xaa Xaa Xaa Xaa Ser Pro Xaa Xaa Xaa
 1
                  5
                                     10
<210> 15
<211> 8
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD_RES
<222> (1)
<223> hydrophobic amino acid
<220>
<221> MOD_RES
<222> (4)
<223> Ala or Gly
<220>
<221> MOD_RES
<222> (6)..(7)
<223> variable amino acid
<400> 15
Xaa Glu Pro Xaa Ser Xaa Xaa Lys
```

<220>

1 5

<400> 18

```
<210> 16
<211> 7
<212> PRT
<213> Artificial Sequence
<223> Description of Artificial Sequence: Synthetic
      peptide
<220>
<221> MOD_RES
<222> (1)
<223> hydrophobic amino acid
<220>
<221> MOD_RES
<222> (2)..(3)
<223> variable amino acid
<220>
<221> MOD_RES
<222> (5)
<223> variable amino acid
<220>
<221> MOD_RES
<222> (7)
<223> hydrophobic amino acid
<400> 16
Xaa Xaa Xaa Ser Xaa Asn Xaa
<210> 17
<211> 7
<212> PRT
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      peptide
<400> 17
Ala Lys Arg Gly Thr Ile Tyr
 1
<210> 18
<211> 750
<212> PRT
<213> Streptococcus pneumoniae
```

Met 1	Lys	Trp	Thr	Lys 5	Arg	Val	Ile	Arg	Tyr 10	Ala	Thr	Lys	Asn	Arg 15	Lys
Ser	Pro	Ala	Glu 20	Asn	Arg	Arg	Arg	Val 25	Gly	Lys	Ser	Leu	Ser 30	Leu	Leu
Ser	Val	Phe 35	Val	Phe	Ala	Ile	Phe 40	Leu	Val	Asn	Phe	Ala 45	Val	Ile	Ile
Gly	Thr 50	Gly	Thr	Arg	Phe	Gly 55	Thr	Asp	Leu	Ala	Lys 60	Glu	Ala	Lys	Lys
Val 65	His	Gln	Thr	Thr	Arg 70	Thr	Val	Pro	Ala	Lys 75	Arg	Gly	Thr	Ile	Tyr 80
Asp	Arg	Asn	Gly	Val 85	Pro	Ile	Ala	Glu	Asp 90	Ala	Thr	Ser	Tyr	Asn 95	Val
Tyr	Ala	Val	Ile 100	Asp	Glu	Asn	Tyr	Lys 105	Ser	Ala	Thr	Gly	Lys 110	Ile	Leu
Tyr	Val	Glu 115	Lys	Thr	Gln	Phe	Asn 120	Lys	Val	Ala	Glu	Val 125	Phe	His	Lys
Tyr	Leu 130	Asp	Met	Glu	Glu	Ser 135	Tyr	Val	Arg	Glu	Gln 140	Leu	Ser	Gln	Pro
Asn 145	Leu	Lys	Gln	Val	Ser 150	Phe	Gly	Ala	Lys	Gly 155	Asn	Gly	Ile	Thr	Tyr 160
Ala	Asn	Met	Met	Ser 165	Ile	Lys	Lys	Glu	Leu 170	Glu	Ala	Ala	Glu	Val 175	Lys
Gly	Ile	Asp	Phe 180	Thr	Thr	Ser	Pro	Asn 185	Arg	Ser	Tyr	Pro	Asn 190	Gly	Gln
Phe	Ala	Ser 195	Ser	Phe	Ile	Gly	Leu 200	Ala	Gln	Leu	His	Glu 205	Asn	Glu	Asp
Gly	Ser 210	Lys	Ser	Leu	Leu	Gly 215	Thr	Ser	Gly	Met	Glu 220	Ser	Ser	Leu	Asn
Ser 225	Ile	Leu	Ala	Gly	Thr 230	Asp	Gly	Ile	Ile	Thr 235	Tyr	Glu	Lys	Asp	Arg 240
Leu	Gly	Asn	Ile	Val 245	Pro	Gly	Thr	Glu	Gln 250	Val	Ser	Gln	Arg	Thr 255	Met
Asp	Gly	Lys	Asp 260	Val	Tyr	Thr	Thr	Ile 265	Ser	Ser	Pro	Leu	Gln 270	Ser	Phe
Met	Glu	Thr 275	Gln	Met	Asp	Ala	Phe 280	Gln	Glu	Lys	Val	Lys 285	Gly	Lys	Tyr
Met	Thr 290	Ala	Thr	Leu	Val	Ser 295	Ala	Lys	Thr	Gly	Glu 300	Ile	Leu	Ala	Thr

Thr Gln Arg	Pro Thr	Phe Asp	Ala As	sp Thr	Lys Gl	u Gly	Ile	Thr	Glu 320
Asp Phe Val	Trp Arg 325	Asp Ile	Leu Ty	yr Gln 330	Ser As	n Tyr	Glu	Pro 335	Gly
Ser Thr Met	Lys Val 340	Met Met	Leu Al		Ala Il	e Asp	Asn 350	Asn	Thr
Phe Pro Gly 355	Gly Glu	Val Phe	Asn Se	er Ser	Glu Le	1 Lys 365	Ile	Ala	Asp
Ala Thr Ile 370	Arg Asp	Trp Asp		sn Glu	Gly Let		Gly	Gly	Arg
Met Met Thr 385	Phe Ser	Gln Gly 390	Phe Al	la His	Ser Se	r Asn	Val	Gly	Met 400
Thr Leu Leu	Glu Gln 405	Lys Met	Gly As	sp Ala 410	Thr Tr	o Leu	Asp	Tyr 415	Leu
Asn Arg Phe	Lys Phe 420	Gly Val	Pro Th	_	Phe Gl	y Leu	Thr 430	Asp	Glu
Tyr Ala Gly 435	Gln Leu	Pro Ala	Asp As 440	sn Ile	Val Ası	n Ile 445	Ala	Gln	Ser
Ser Phe Gly 450	Gln Gly	Ile Ser 455		nr Gln	Thr Gla		Ile	Arg	Ala
Phe Thr Ala	Ile Ala	Asn Asp 470	Gly Va	al Met	Leu Gl	ı Pro	Lys	Phe	Ile 480
Ser Ala Ile	Tyr Asp 485	Pro Asn	Asp Gl	ln Thr 490	Ala Ar	g Lys	Ser	Gln 495	Lys
Glu Ile Val	Gly Asn 500	Pro Val	Ser Ly	_	Ala Al	a Ser	Leu 510	Thr	Arg
Thr Asn Met 515		Val Gly	Thr As	sp Pro	Val Ty	525	Thr	Met	Tyr
Asn His Ser 530	Thr Gly	Lys Pro		al Thr	Val Pro	_	Gln	Asn	Val
Ala Leu Lys 545	Ser Gly	Thr Ala	Gln Il	le Ala	Asp Gl	ı Lys	Asn	Gly	Gly 560
Tyr Leu Val	Gly Leu 565	Thr Asp	Tyr Il	le Phe 570	Ser Al	a Val	Ser	Met 575	Ser
Pro Ala Glu	Asn Pro 580	Asp Phe	Ile Le	_	Val Th	r Val	Gln 590	Gln	Pro
Glu His Tyr 595	_	Ile Gln	Leu Gl 600	ly Glu	Phe Al	a Asn 605	Pro	Ile	Leu

Glu	Arg 610	Ala	Ser	Ala	Met	Lys 615	Asp	Ser	Leu	Asn	Leu 620	Gln	Thr	Thr	Ala
Lys 625	Ala	Leu	Glu	Gln	Val 630	Ser	Gln	Gln	Ser	Pro 635	Tyr	Pro	Met	Pro	Ser 640
Val	Lys	Asp	Ile	Ser 645	Pro	Gly	Asp	Leu	Ala 650	Glu	Glu	Leu	Arg	Arg 655	Asn
Leu	Val	Gln	Pro 660	Ile	Val	Val	Gly	Thr 665	Gly	Thr	Lys	Ile	Lys 670	Asn	Ser
Ser	Ala	Glu 675	Glu	Gly	Lys	Asn	Leu 680	Ala	Pro	Asn	Gln	Gln 685	Val	Leu	Ile
Leu	Ser 690	Asp	Lys	Ala	Glu	Glu 695	Val	Pro	Asp	Met	Tyr 700	Gly	Trp	Thr	Lys
Glu 705	Thr	Ala	Glu	Thr	Leu 710	Ala	Lys	Trp	Leu	Asn 715	Ile	Glu	Leu	Glu	Phe 720
Gln	Gly	Ser	Gly	Ser 725	Thr	Val	Gln	Lys	Gln 730	Asp	Val	Arg	Ala	Asn 735	Thr
Ala	Ile	Lys	Asp	Ile	Lys	Lys	Ile	Thr 745	Leu	Thr	Leu	Gly	Asp 750		