HW2

RYSP

July 11, 2025

- 1. Verify $\neg P \equiv P \Rightarrow 0$.
- 2. According to the number of input of propositional variables, we call the operation defined by the logical connectives unary, binary, ..., n-nary. What is unary, binary basic logical connectives? From the above problem 1, we can use binary logical connectives uniformly define logical connectives.
- 3. Connect the logical operation and electric circuit(series, parallel).
- 4. If x and y are any real numbers, show that

$$||x| - |y|| \le |x - y|.$$

- 5. If $A = \{\emptyset, \{\emptyset\}\}$ and f is the empty set, determine which of the following eight statements are true and which are false:
 - (a) A has exactly 2 elements.
 - (b) $f \in A$
 - (c) $f \subset A$
 - $(d) \{\} \in A$
 - (e) $\{\} \subset A$
 - (f) $\{\} \in P(A)$
 - (g) $\{\} \subset P(A)$
 - (h) P(A) has exactly 4 elements.
- 6. If $A = \{x \mid x = 4k + 3 \text{ for some } k \in \mathbb{N}\}$ and $C = \{x \mid x = 20q + 19 \text{ for some } q \in \mathbb{N}\}$, show that $C \subset A$.
- 7. What can you conclude if you know that $A \subset P(B)$ and that P(X) denotes the power set of X (i.e., the set of all subsets of X)?
- 8. Is the following "proof" correct that for any three sets A,B,C, if $A\subset B,$ $B\subset C,$ then $A\subset C$?

Let $A = \{1, 2, 3\}, B = \{1, 2, 3, 4, 5\}, C = \{1, 2, 3, 4, 5, 6, 7\}.$ Then $A \subset B, B \subset C$, and $A \subset C$.

If $A \subset B$ and $B \subset C$ then $A \subset C$.

- 9. Prove that if $A \subset B$ and $A \neq \emptyset$, then $A B = \emptyset$.
- 10. Prove that if A and B are sets, then $A \cup B = B \cup A$.
- 11. Which numbers leave a remainder of 1 when divided by 3 and a remainder of 3 when divided by 4?
- 12. What numbers leave a remainder of 2 when divided by 3 and a remainder of 3 when divided by 4?
- 13. If A = [1, 5], B = [2, 4], C = [3, 6] (intervals of real numbers), then what is A (B C)? Recall $X Y = \{a \mid a \in X, a \notin Y\}$.
- 14. Prove that $A (B \cup C) = (A B) \cap (A C)$.
- 15. Give an example of three sets whose intersection is \varnothing but no two of them are disjoint.
- 16. List all elements of $P(\{a, b, c, d\})$.
- 17. Let p_1, p_2, \ldots, p_k be the first k primes, and $M = (p_1 p_2 \cdots p_k) + 1$. Show that M has a prime factor larger than p_k .
- 18. (a) Use the Multiplication Principle of Counting to determine the number of factors of $2^3 \times 3^5 \times 7^7$.
 - (b) What number from 1 to 1000 has the greatest number of factors?
- 19. Suppose there are 15 items in A and 13 items in B, and the universe has 30 items.
 - (a) If there are 3 items in both A and B, how many items are neither in A nor B?
 - (b) What is the smallest number of items that could be neither in A nor B?
 - (c) What is the largest number of items that could be neither in A nor B?
- 20. There are 100 items in the universe. There are 33 items in A, 12 in A alone, 12 in A and B, 12 in A and C. There are 36 in B, of which 13 are also in C.
 - (a) If there are 3 items in A, B, C and 30 in neither, how many are in C alone?
 - (b) If there are 5 items in A, B, C and 30 in neither, how many are in C alone?
 - (c) If there are 4 items in A, B, C and 30 in neither, how many are in C alone?
- 21. If $P(A) \subset P(B)$, must $A \subset B$?
- 22. Prove by induction or otherwise: $1+3+5+\cdots+(2n-1)=n!$.
- 23. A chessboard has 2^n squares on each side. One corner square is removed. Prove the resulting board can be evenly covered with L-shaped tiles, each having three squares of the same size.
- 24. Using 2-cent and 5-cent stamps, show that any postage ≥ 4 can be formed.

- (a) If stamps are 3 and 7 cents, what is the smallest n so that all n or more can be formed?
- (b) What if stamps are 5 and 8 cents?
- 25. Prove by induction or otherwise:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$$

- 26. Show by induction: the sum of three consecutive positive cubes is divisible by 9.
- 27. Find and prove a formula for $1^3 + 2^3 + \cdots + n^3$.
- 28. If n is a positive integer, prove $n \leq 2^n$.
- 29. If $n \ge 4$, prove $n! \ge 2^n$.
- 30. Prove by induction: for every $n \in \mathbb{N}$,

$$1 \cdot 1! + 2 \cdot 2! + \dots + n \cdot n! = (n+1)! - 1$$

31. Prove by induction: for every $n \in \mathbb{N}$,

$$4^{n+1} > (n+4)^2$$

- 32. (Tower of Hanoi) Three posts, n disks of different sizes, each move consists of moving one disk, never place a disk on top of a smaller disk. How many moves does it take? [Hint: recursive formula]
- 33. Use the Division Algorithm to express gcd(117, 31) as a linear combination of 117 and 31.
- 34. Determine the number of $2 \times 2 \times 2$ triangles in an $n \times n \times n$ triangle.
- 35. Determine the number of triangles of any size in an $8 \times 8 \times 8$ triangle.