

Foundation Calculus and Mathematical Techniques (CELEN037)

Topics: Definite Integrals

Problem Sheet 9

Topic 1: Area Calculation Using Definite Integrals

- 1. Find the area of the region bounded by the given curves.
 - (i) $y = x^2$, lines x = 3, x = 4 and the X-axis.
 - (ii) $y = x^3 + 3$, lines x = 2, x = 4 and the X-axis.
 - (iii) $x = 4y y^2$, lines y = 1, y = 3 and the Y-axis.
 - (iv) $x = 1 + y^2$ and line x = 10.
 - (v) $x = 3y^2 9$, lines y = 0, y = 1 and the Y-axis.
 - (vi) $x = y^2 + 4y$ and line x = 0.
 - (vii) $y = \sin x$, lines x = 0, $x = 2\pi$ and the X-axis.
 - (viii) $y = \cos x$, lines x = 0, $x = 2\pi$ and the X-axis.
 - (ix) $y = x^2 4$ and $y = 8 2x^2$.
 - (x) $x = y^2 6$ and x = -y + 6.

Topic 2: Volumn Calculation Using Definite Integrals

- 2. Find the volume of solid of revolution when region bounded by the following curve(s) is revolved about the given axis/line. Use any appropriate method.
 - (i) The region bounded by $y=2x^2$, lines x=0, x=5 and the X-axis is revolved about the X-axis.
 - (ii) The region bounded by $y = e^{2x}$, lines x = 1, x = 2 and the X-axis is revolved about the X-axis.
 - (iii) The region bounded by $x^2-y^2=16$, line x=8 and the X-axis is revolved about the X-axis.
 - (iv) The region bounded by $x=y^3$, lines $y=1,\ y=2$ and the Y-axis is revolved about the Y-axis.
 - (v) The region bounded by $x = \cos y$, lines y = 0, $y = \pi$ and the Y-axis is revolved about the Y-axis.
 - (vi) The region bounded by $y=4x^2$, line y=16 and the X-axis is revolved about line y=16.

- (vii) The region bounded by $y=x^3$, $y=\sqrt[3]{x}$, lines x=0 and x=1 is revolved about the X-axis.
- (viii) The region bounded by $y=e^{-x^2}$, lines x=0, x=1 and the X-axis is revolved about the Y-axis.
- (ix) The region bounded by $y = 3x^2$ and y = 3x is revolved about the X-axis.
- (x) The region bounded by $x^2+y^2=9$ and the $Y-{\sf axis}$ is revolved about the $Y-{\sf axis}$.
- 3. Consider the region R bounded by $y=-x^2-3x+6$ and x+y=3. Find the volume of the solid generated by revolving R about:
 - (i) the X-axis;

(ii) line y = 2.

Topic 3: Numerical Integration

- 4. Evaluate $\int_0^1 x^3 dx$ by using:
 - (a) Trapezoidal rule with 10 sub-intervals of equal width;
 - (b) Simpson's rule with 10 sub-intervals of equal width.

Give approximation to 4 d.p.

- 5. Evaluate $\int_1^2 x^3 \sqrt{x^5 + 2x^2 1} \ dx$ by using:
 - (a) Trapezoidal rule with 4 sub-intervals of equal width;
 - (b) Simpson's rule with 4 sub-intervals of equal width.

Give approximation to 6 d.p.

Answers

1. (i) $\frac{37}{3}$

(ii) 66

(iii) $\frac{22}{3}$

(iv) 36

(v) 8

(vi) $\frac{32}{3}$

(vii) 4

(viii) 4

(ix) 32

- (x) $\frac{343}{6}$
- 2. (i) 2500π

- (ii) $\frac{(e^8 e^4)\pi}{4}$
- (iii) $\frac{256\pi}{3}$

(iv) $\frac{127\pi}{7}$

(v) $\frac{\pi^2}{2}$

(vi) $\frac{8192\pi}{15}$

(vii) $\frac{16\pi}{35}$

- (viii) $\left(1-\frac{1}{e}\right)\pi$
- (ix) $\frac{6\pi}{5}$

- (x) 36π
- 3. (i) $\frac{1792\pi}{15}$

(ii) $\frac{384\pi}{5}$

4. (a) 0.2525

- (b) 0.2500
- 5. (a) 16.561138
- (b) 15.926800