代数学 I 宿題(2)

中野 竜之介 8310141H

December 10, 2019

Problem 1.

- 1. (a) The number of elements of G is n!.
 - (b) The identity element of G is $I_E: E \to E; x \mapsto x$.
- 2. (a) The number of elements of G_0 is n^n .
 - (b) G_0 is not a group because the inverse mapping of f doesn't exist when f is not a bijection.

Problem 2.

If a + b equals a + c, b equals c by adding -a from left to right

Problem 3.

	identity	element	inverse	associative
$(\mathbb{Q},+)$	0	x	-x	-
$(\mathbb{Z},-)$	-	-	-	doesn't satisfy
(\mathbb{R}, \times)	1	0	doesn't exist	-
$(\mathbb{C}^{ imes},\div)$	-	-	-	doesn't satisfy
$(\mathbb{R}[X],+)$	0	$\sum_{i=0}^{n} a_i X^i$	$\sum_{i=0}^{n} (-a_i) X^i$	-
(V, +)	zero vector 0	v	$-\mathbf{v}$	-
(S_5, \circ)	$I: \{0,, 4\} \to \{0,, 4\}; x \mapsto x$	σ	inverse mapping σ^{-1}	-

If $c \neq 0$, for all $a, b \in G$, a - (b - c) doesn't equal (a - b) - c, therefore $(\mathbb{Z}, -)$ doesn't satisfy an associative law. Hence $(\mathbb{Z}, -)$ is not a group.

Since $(1 \div 2) \div 2 = 1/4$ and $1 \div (2 \div 2) = 1$, $(\mathbb{C}^{\times}, \div)$ doesn't satisfy an associative law. Hence $(\mathbb{C}^{\times}, \div)$ is not a group.