Reliability Estimation in Series Systems

Maximum Likelihood Techniques for Right-Censored and Masked Failure

Data

Alex Towell (lex@metafunctor.com)

2023-09-30

Context & Motivation

Reliability in **Series Systems** is like a chain's strength – determined by its weakest link.

• Essential for system design and maintenance.

Main Goal: Estimate individual component reliability from failure data.

Challenges:

- Masked component-level failure data.
- Right-censoring system-level failure data.

Our Response:

- Derive techniques to interpret such ambiguous data.
- Aim for precise and accurate reliability estimates for individual components using maximum likelihood estimation (MLE)
- Quantify uncertainty in estimates with bootstrap confidence intervals (Cls).

Core Contributions

Likelihood Model for **Series Systems**.

Accounts for right-censoring and masked component failure.

Specifications of Conditions:

- Assumptions about the masking of component failures.
- Simplifies and makes the model more tractable.

Simulation Studies:

- Components with Weibull lifetimes.
- Evaluate MLE and confidence intervals under different scenarios.

R Library: Methods available on GitHub.

• See: www.github.com/queelius/wei.series.md.c1.c2.c3

Section 1

Series System

What Is A Series System?

Critical Components: Complex systems often comprise *critical* components. If any component fails, the entire system fails.

- We call such systems series systems.
- Example: A car's engine and brakes.

System Lifetime is dictated by its shortest-lived component:

$$T_i = \min(T_{i1}, \ldots, T_{i5})$$

where:

- T_i is the lifetime of i^{th} system.
- T_{ij} is the j^{th} component of i^{th} system.

Reliability Function

Reliability Function represents the probability that a system or component functions beyond a specified time.

• Essential for understanding longevity and dependability.

Series System Reliability: Product of the reliability of its components:

$$R_{T_i}(t; \boldsymbol{\theta}) = \prod_{j=1}^m R_j(t; \boldsymbol{\theta_j}).$$

- If any component has low reliability, it can impact the whole system.
- Here, $R_{T_i}(t; \theta)$ and $R_j(t; \theta_j)$ are the reliability functions for the system i and component j, respectively.

Hazard Function: Understanding Risks

Hazard Function: Measures the immediate risk of failure at a given time, assuming survival up to that moment.

- Reveals how the risk of failure evolves over time.
- Guides maintenance schedules and interventions.

Series System Hazard Function: Sum of the component hazard functions:

$$h_{T_i}(t;\boldsymbol{\theta}) = \sum_{j=1}^m h_j(t;\boldsymbol{\theta_j}).$$

• Components' risks are additive.

Joint Distribution of Component Failure and System Lifetime

Our likelihood model depends on the **joint distribution** of the system lifetime and the component that caused the failure.

• **Formula**: Product of the failing component's hazard function and the system reliability function:

$$f_{K_i,T_i}(j,t;\theta) = h_i(t;\theta_i)R_{T_i}(t;\theta).$$

• Here, K_i denotes component cause of i^{th} system's failure.

Component Cause of Failure

We can use the joint distribution to calculate the probability of component cause of failure.

- Helps predict the cause of failure.
- **Derivation**: Marginalize the joint distribution over the system lifetime:

$$\Pr\{K_i = j\} = E_{\theta} \left[\frac{h_j(T_i; \theta_j)}{h_{T_i}(T_i; \theta_l)} \right].$$

- Well-Designed Series System: Components exhibit comparable chances of causing system failures.
- **Relevance**: Our simulation study employs a (reasonably) well-designed series system.

Section 2

Likelihood Model

Data Generating Process

The data generating process (DGP) is the underlying process that generates the data. *Green* elements are observed, *red* elements are latent:

- **Right-Censored** lifetime: $S_i = \min(T_i, \tau_i)$.
- Event Indicator: $\delta_i = 1_{\{T_i < \tau_i\}}$.
- Candidate Set: C_i related to components (T_{ij}) and other unknowns.

Likelihood Function

Likelihood Function measures how well model explains the data:

- **Right-Censored** data $(\delta_i = 0)$.
- Candidate Sets or Masked Failure data ($\delta_i = 1$)

System	Right-Censored Lifetime (S_i)	Event Indicator (δ_i)	Candidate Set (C_i)
1	1.1	1	{1,2}
2	5	0	Ø

Each system contributes to total likelihood via its likelihood contribution:

$$L(\boldsymbol{ heta}|\mathsf{data}) = \prod_{i=1}^n L_i(\boldsymbol{ heta}|\mathsf{data}_i)$$

where $data_i$ is data for i^{th} system and L_i is its contribution.

Likelihood Contribution: Right-Censoring

Right-Censoring: For the i^{th} system, if right-censored ($\delta_i = 0$) at duration τ , its likelihood contribution is proportional to the system reliability function evaluated at τ :

$$L_i(\boldsymbol{\theta}) \propto R_{T_i}(\tau; \boldsymbol{\theta}).$$

- We only know that a failure occurred after the right-censoring time.
- This is captured by the system reliability function.

Key Assumptions:

- Censoring time (τ) independent of parameters.
- Event indicator (δ_i) is observed.
- Reasonable in many cases, e.g., right-censoring time τ predetermined by length of study.

Likelihood Contribution: Candidate Sets

Masking Component Failure: If the i^{th} system fails ($\delta_i = 1$), it is masked by a candidate set C_i . Its likelihood contribution is complex and we use simplifying assumptions to make it tractable.

• Condition 1: The candidate set includes the failed component: $\Pr\{K_i \in \mathcal{C}_i\} = 1.$

• Condition 2: The condition probability of a candidate set given a

cause of failure and a system lifetime is constant across conditioning on different failure causes within the candidate set: $\Pr\{C_i = c_i | T_i = t_i, K_i = j\} = \Pr\{C_i = c_i | T_i = t_i, K_i = j'\} \text{ for } j, j' \in c_i.$

$$\Pr\{C_i = c_i | T_i = t_i, K_i = j\} = \Pr\{C_i = c_i | T_i = t_i, K_i = j'\} \text{ for } j, j' \in c_i$$

 Condition 3: The masking probabilities when conditioned on the system lifetime and the failed component aren't functions of the system parameter.

Likelihood Contribution: Derivation for Candidate Sets

Take the **joint distribution** of T_i , K_i , and C_i and marginalize over K_i :

$$f_{T_i,C_i}(t_i,c_i;\boldsymbol{\theta}) = \sum_{j=1}^m f_{T_i,K_i}(t_i,j;\boldsymbol{\theta}) \operatorname{Pr}_{\boldsymbol{\theta}} \{ C_i = c_i | T_i = t_i, K_i = j \}.$$

Apply **Condition 1** to get a sum over candidate set:

$$f_{T_i,C_i}(t_i,c_i;\boldsymbol{\theta}) = \sum_{j \in c_i} f_{T_i,K_i}(t_i,j;\boldsymbol{\theta}) \operatorname{Pr}_{\boldsymbol{\theta}} \{ C_i = c_i | T_i = t_i, K_i = j \}.$$

Apply Condition 2 to move probability outside the sum:

$$f_{\mathcal{T}_i,\mathcal{C}_i}(t_i,c_i;\boldsymbol{\theta}) = \mathsf{Pr}_{\boldsymbol{\theta}}\{\mathcal{C}_i = c_i | \mathcal{T}_i = t_i, K_i = j'\} \sum_{j \in c_i} f_{\mathcal{T}_i,K_i}(t_i,j;\boldsymbol{\theta}).$$

Apply **Condition 3** to remove the probability's dependence on θ :

$$f_{T_i,C_i}(t_i,c_i;\boldsymbol{\theta}) = \beta_i \sum_{i \in c_i} f_{T_i,K_i}(t_i,j;\boldsymbol{\theta}).$$

Result: $L_i(\theta) \propto \sum_{j \in c_i} f_{T_i, K_i}(t_i, j; \theta) = R_{T_i}(t_i; \theta) \sum_{j \in c_i} h_j(t_i; \theta_j)$.

Bootstrap Confidence Intervals (CIs)

Confidence Intervals (CI) help capture the *uncertainty* in our estimate.

- Normal assumption for constructing CIs may not be accurate.
 - Masking and censoring.
- Bootstrapped Cls: Resample data and obtain MLE for each.
 - Use percentiles of bootstrapped MLEs for Cls.
- Coverage Probability: Probability the interval covers the true parameter value.
 - ▶ Challenge: Actual coverage may deviate to bias and skew in MLEs.
- BCa adjusts the CIs to counteract bias and skew in the MLEs.

Challenges with Masked Data

Like any model, ours has its challenges:

- Convergence Issues: Nearly flat likelihood regions can occur.
 - Ambiguity in masked, censored data
 - ▶ Complexities of estimating latent parameters.
- Bootstrap Issues: Relies on the empirical sampling distribution.
 - ▶ May not represent true variability for small samples.
 - Censoring and masking compound issue by reducing the effective sample size.
- Mitigation: In simulation, discard non-convergent samples for MLE on original data but retain all resamples for Cls.
 - More robust assessment at the cost of possible bias towards "well-behaved" data.
 - ▶ Convergence Rates reported to provide context.

Section 3

Simulation Study: Series System with Weibull Components

Series System Parameters

Component	Shape (k_j)	Scale (λ_j)	Failure Probability $(Pr\{K_i\})$
1	1.26	994.37	0.17
2	1.16	908.95	0.21
3	1.13	840.11	0.23
4	1.18	940.13	0.20
5	1.20	923.16	0.20

Lifetime of j^{th} component of i^{th} system: $T_{ij} \sim \text{Weibull}(k_j, \lambda_j)$.

- Based on (Guo, Niu, and Szidarovszky 2013)
- Extended to include components 4 and 5
 - Shapes greater than 1 indicates wear-outs.
 - Probabilities comparable: reasonably well-designed.
- Focus on Components 1 and 3 (most and least reliable) in study.

Synthetic Data and Simulation Values

How is the data generated in our simulation study?

- Component Lifetimes (latent T_{i1}, \dots, T_{im}) generated for each system.
 - Observed Data is a function of latent components.
- **Right-Censoring** amount controlled with simulation value *q*.
 - Quantile q is probability system won't be right-censored.
 - ▶ Solve for right-censoring time τ in $Pr\{T_i \leq \tau\} = q$.
 - $S_i = \min(T_i, \tau)$ and $\delta_i = 1_{\{T_i < \tau\}}$.
- Candidate Sets are generated using the Bernoulli Masking Model.
 - ▶ Masking level controlled with simulation value *p*.
 - ▶ Failed component (latent K_i) placed in candidate set (observed C_i).
 - ▶ Each functioning component included with probability p.

Bernoulli Masking Model: Satisfying Masking Conditions

The Bernoulli Masking Model satisfies the masking conditions:

- Condition 1: The failed component deterministically placed in candidate set.
- **Condition 2** and **3**: Bernoulli probability *p* is same for all components and fixed by us.
 - Probability of candidate set is constant conditioned on component failure within set.
 - ▶ Probability of candidate set, conditioned on a component failure, only depends on the *p*.

Future Research: Realistically conditions may be violated.

Explore sensitivity of likelihood model to violations.

Performance Metrics

Objective: Evaluate the MLE and BCa confidence intervals' performance across various scenarios.

- Visualize the simulated sampling distribution of MLEs and 95% Cls.
- MLE Evaluation:
 - Accuracy: Bias
 - ▶ **Precision**: Dispersion of MLEs
 - ★ 95% quantile range of MLEs.
- 95% CI Evaluation:
 - ► Accuracy: Coverage probability (CP).
 - ★ Correctly Specified Cls: CP near 95% (> 90% acceptable).
 - ▶ **Precision**: Width of median Cl.

Scenario: Impact of Right-Censoring

Assess the impact of right-censoring on MLE and CIs.

- **Right-Censoring**: Failure observed with probability q: 60% to 100%.
 - ▶ Right censoring occurs with probability 1 q: 40% to 0%.
- **Bernoulli Masking Probability**: Each component is a candidate with probability p fixed at 21.5%.
 - Estimated from original study (Guo, Niu, and Szidarovszky 2013).
- Sample Size: *n* fixed at 90.
 - Small enough to show impact of right-censoring.

Scale Parameters

- Dispersion: Less censoring improves MLE precision.
 - Most reliable component more affected by censoring.
- Bias: MLE positively biased; decreases with less censoring.
- Median Cls: Tracks MLE dispersion.

Shape Parameters

• Show a similar pattern as scale parameters.

Coverage Probability and Convergence Rate

- Coverage (left figure): Cls show good empirical coverage.
 - Scale parameters correctly specified (CP \approx 95%)
 - ▶ Shape parameters good enough (CP > 90%).
- Convergence Rate (right figure): Increases with less censoring.
 - ▶ Caution: Dips below 95% with more than 30% censoring.

Key Takeaways: Right-Censoring

Right-censoring has a notable impact on the MLE:

- MLE Precision:
 - Improves notably with reduced right-censoring levels.
 - ▶ More reliable components benefit more from reduced right-censoring.
- Bias:
 - MLEs show positive bias, but decreases with reduced right-censoring.
- Convergence Rates:
 - ▶ MLE convergence rate improves with reduced right-censoring.
 - ▶ Dips: < 95% at > 30% right-censoring.

BCa confidence intervals show good empirical coverage.

- Cls offer reliable empirical coverage.
- Scale parameters *correctly specified* across all right-censoring levels.

Scenario: Impact of Failure Masking

Assessing the impact of the failure masking level on MLE and Cls.

- Bernoulli Masking Probability: Vary Bernoulli probability p from 10% to 70%.
- **Right-Censoring**: *q* fixed at 82.5%.
 - ▶ Right-censoring occurs with probability 1 q: 17.5%.
 - ► Censoring less prevalent than masking.
- Sample Size: *n* fixed at 90.
 - Small enough to show impact of masking.

Shape Parameters

- **Dispersion**: Precision decreases with masking level (p).
- Bias: MLE positively biased and increases with masking level.
 - ▶ Applies a right-censoring like effect to the components.
- Median Cls: Tracks MLE dispersion.

Scale Parameters

• These graphs resemble the last ones for shape parameters.

Coverage Probability and Convergence Rate

- **Coverage**: Caution advised for severe masking with small samples.
 - ▶ Scale parameter CIs show acceptable coverage across all masking levels.
 - ▶ Shape parameter CIs dip below 90% when p > 0.4.
- Convergence Rate: Increases with less masking.
 - **Caution**: Dips under 95% when p > 0.4 (consistent with CP behavior).

Key Takeaways: Masking

The masking level of component failures profoundly affects the MLE:

- MLE Precision:
 - Decreases with more masking.
- MLE Bias:
 - Positive bias is amplified with increased masking.
 - Masking exhibits a right-censoring-like effect.
- Convergence Rate:
 - ▶ Commendable for Bernoulli masking levels $p \le 0.4$.
 - ***** Extreme masking: some masking occurs 90% of the time at p = 0.4.

The BCa confidence intervals show good coverage:

- Scale parameters maintain good coverage across all masking levels.
- **Shape** parameter coverage dip below 90% when p > 0.4.
 - Caution advised for severe masking with small samples.

Scenario: Impact of Sample Size

Assess the mitigating affects of sample size on MLE and Cls.

- **Sample Size**: We vary the same size *n* from 50 to 500...
- **Right-Censoring**: *q* fixed at 82.5%
 - 17.5% chance of right-censoring.
- Bernoulli Masking Probability: p fixed at 21.5%
 - ▶ Some masking occurs 62% of the time.

Scale Parameters

- **Dispersion**: Increasing sample size improves MLE precision.
 - ▶ Extremely precise for $n \ge 250$.
- Bias: Large positive bias initially, but diminishes to zero.
 - ▶ Large samples counteract right-censoring and masking effects.
- **Median CIs**: Track MLE dispersion. Very tight for $n \ge 250$.

Shape Parameters

• These graphs resemble the last ones for scale parameters.

Coverage Probability and Convergence Rate

- Coverage: Good empirical coverage.
 - ▶ Correctly specified CIs for n > 250.
- **Convergence Rate**: Total convergence for $n \ge 250$.
 - ▶ Caution advised for estimates with n < 100 in specific setups.

Key Takeaways: Sample Size

Sample size has a notable impact on the MLE:

- **Precision**: Very precise for large samples (n > 200).
- Bias: Diminishes to near zero for large samples.
- **Coverage**: Correctly specified Cls for large samples.
- Convergence Rate: Total convergence for large samples.

Summary

Larger samples lead to more accurate, unbiased, and reliable estimations.

Mitigates the effects of right-censoring and masking.

Section 4

Conclusion

Key Findings

MLE Performance:

- Right-censoring and masking introduce positive bias for our setup.
 - More reliable components are more affected.
- Shape parameters harder to estimate than scale parameters.
- Large samples can mitigate the affects of masking and right-censoring.

BCa Confidence Interval Performance:

- Width of CIs tracked MLE dispersion.
- Good empirical coverage in most scenarios.

Big Picture

MLE and CIs robust despite masking and right-censoring challenges.

Future Work

Directions to enhance learning from masked data:

- Relax Masking Conditions: Assess sensitivity to violations and and explore alternative likelihood models.
- System Design Deviations: Assess estimator sensitivity to deviations.
- Homogenous Shape Parameter: Analyze trade-offs with the full model.
- Bootstrap Techniques: Semi-parametric approaches and prediction intervals.
- Regularization: Data augmentation and penalized likelihood methods.
- Additional Likelihood Contributions: Predictors, etc.
- # Discussion