APPRENTISSAGE MACHINE & DEEP LEARNING

Deep Learning

A. Boulch, A. Chan Hon Tong, S. Herbin, B. Le Saux

retour sur innovation

Deep Learning

- Réseaux de neurones convolutifs
- Principales difficultés
- Deep learning
 - Couches de régularisation
 - Initialisation
 - Optimiseurs
 - Les données
- Réseaux et applications

Réseaux de neurones

Réseaux de neurones

Caractéristiques bien pensées Apprentissage Expertise

Réseaux de neurones

Deep learning 90's → 2005

Mise en place des premiers réseaux convolutifs

Recherche sur les architectures, les stratégies, la mise en forme des données

Fully connected

Perceptron

(présentation précédente)

Un neurone est connecté à toutes les entrées

Si dimension d'entrée grande, beaucoup de paramètres

Fully connected

- MLP de plus en plus profonds (avant 2005)
 - Très grosses difficultés d'optimisation
 - Convergence difficile
 - Peu de données
 - Entraînement très long
 - ⇒ Abandon progressif au profit des SVMs
 - Simples à utiliser
 - Preuves de convergence
 - Rapides

Réseaux convolutifs

Adapté aux données structurées

Convolution

Forward

$$x_{i,j}^{l} = \sum_{a} \sum_{b} \omega_{a,b} y_{i+a,j+b}^{l-1}$$
$$y_{i,j}^{l} = \sigma(x_{i,j}^{l})$$

Convolution

Backward, « Delta rule » → mise à jour des poids de la convolution :

$$\frac{\partial E}{\partial \omega_{a,b}} = \sum_{i} \sum_{j} \frac{\partial E}{\partial x_{i,j}^{l}} \frac{\partial x_{i,j}^{l}}{\partial \omega_{a,b}} = \sum_{i} \sum_{j} \frac{\partial E}{\partial x_{i,j}^{l}} y_{i,j}^{l-1}$$

or
$$\frac{\partial E}{\partial x_{i,j}^l} = \frac{\partial E}{\partial y_{i,j}^l} \frac{\partial y_{i,j}^l}{\partial x_{i,j}^l} = \frac{\partial E}{\partial y_{i,j}^l} \sigma'(x_{i,j}^l)$$

$$\frac{\partial E}{\partial \omega_{a,b}} = \sum_{i} \sum_{j} \frac{\partial E}{\partial y_{i,j}^{l}} \sigma'(x_{i,j}^{l}) y_{i,j}^{l-1}$$

Convolution

Backward, « Chain rule » → erreur

$$\frac{\partial E}{\partial y_{i,j}^{l-1}} = \sum_{a} \sum_{b} \frac{\partial E}{\partial x_{i-a,j-b}^{l}} \frac{\partial x_{i-a,j-b}^{l}}{\partial y_{i,j}^{l-1}}$$
$$= \sum_{a} \sum_{b} \frac{\partial E}{\partial x_{i-a,j-b}^{l}} \omega_{a,b}$$

Couches: convolution

Filtres de Gabor

Exemple poids appris par la première couche de convolution d'AlexNet

13 Formation DL 2017

Couches: Pooling

- Réduction de dimension
- Invariabilité en translation
- Mise en correspondance des pixels voisins
 - Réduction de la profondeur

14 Formation DL 2017

Couches: Max Pooling

Forward

Transmission du maximum sur une fenêtre donnée

Backward

Transmission du gradient au maximum identifié, gradient nul sinon

Formation DL 2017

LeNet

