Blockchain Workshop

Learn Blockchain by Building One

Presenter: Samaneh Miri

July 30, 2021

• What is a Blockchain?

- What is a Blockchain?
- Hash Cryptography

- What is a Blockchain?
- Hash Cryptography
- Immutable Ledger

- What is a Blockchain?
- Hash Cryptography
- Immutable Ledger
- Distributed P2P Network

- What is a Blockchain?
- Hash Cryptography
- Immutable Ledger
- Distributed P2P Network
- Mining

- What is a Blockchain?
- Hash Cryptography
- Immutable Ledger
- Distributed P2P Network
- Mining
- Consensus Protocol

A blockchain is a growing list of records, called blocks, that are linked using cryptography (Wikipedia).

Blockchain Applications

- The blockchain technology first came into the spotlight through bitcoin.
- The technology is not only for cryptocurrencies.
- Features:
 - Immutability
 - Decentralized
 - Enhanced Security

Stuart Haber

W. Scott Stornetta

How to Time-Stamp a Digital Document*

Stuart Haber stuart@bellcore.com

W. Scott Stornetta stornetta@bellcore.com

Year: 1991

Goal: to implement a system where document timestamps could not be tampered with.

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto satoshin@gmx.com www.bitcoin.org

Year introduced: 2008 Year Implemented: 2009

Goal: to timestamp blocks without requiring them to be signed by a trusted party and introducing a difficulty parameter to stabilize rate with which blocks are added to the chain.

Technology

Blockchain

Protocol

Bitcoin

A blockchain is a growing list of records, called blocks, that are linked using cryptography (Wikipedia).

Block

- 1. Index:
- 2. Timestamp:
- 3. Data:
- 4. Prev. Hash:
- 5. Hash:

A blockchain is a growing list of records, called blocks, that are linked using cryptography (Wikipedia).

- 1. Index:
- 2. Timestamp:
- 3. Data:
- 4. Prev. Hash:
- 5. Hash:

Hash of data is like a fingerprint of a human being.

A sequence of linked blocks creates a chain.

• A sequence of **linked blocks** creates **a chain**.

A sequence of linked blocks creates a chain.

Hash Cryptography

A hash function is a function which takes an arbitrary length input and produces a fixed length "fingerprint" string.

Hash Value

Different people have different fingerprints.

Hash Value

SHA256

- Several cryptocurrencies use Secure Hash Function (SHA) family for verifying transactions or proof of work.
- Bitcoin uses SHA256.
- SHA256 is always 256 bits long, equivalent to 64 bytes in hexadecimal string format.

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

https://demoblockchain.org/hash

One-way

- One-way
- Deterministic

- One-way
- Deterministic
- Fast Computation

- One-way
- Deterministic
- Fast Computation
- Avalanche Effect

- One-way
- Deterministic
- Fast Computation
- Avalanche Effect
- Must withstand collision

Blockchain Components

Hash Cryptography

Immutable Ledger

Distributed P2P Network

Mining

Consensus Protocol

An Immutable Ledger is a record that cannot be changed.

Blocks are cryptographically linked together.

Buying a house: from payment to a deed registration

9

Traditional ledger

Buying a house: from payment to a deed registration

Traditional ledger

Buying a house: from payment to a deed registration

9

9

 Θ

Traditional ledger

Buying a house: from payment to a deed registration

Traditional ledger

Blockchain Components

Hash Cryptography

Immutable Ledger

Distributed P2P Network

Mining

Consensus Protocol

Blockchain Components

Mining

Mining is all about miners using their time and processing power to solve cryptographically hard puzzles.

9

Data:

Sam -> Sarah 200 samcoins Sam -> Dave 100 samcoins

Robert -> Joe 80 samcoins

Prev. Hash: 0000DF2E68FB432A

Hash: 9765C432AE2312B7

The nonce value helps miners to solve the puzzle.

The nonce field gives miners extra control and flexibility to vary the hash of current block.

- A Hash is a Number.
- Hash of number 1:

Hexadecimal:

6b86b273ff34fce19d6b804eff5a3f5747ada4eaa22f1d49c01e52 ddb7875b4b

Hash of "Hello World!":

Hexadecimal:

7f83b1657ff1fc53b92dc18148a1d65dfc2d4b1fa3d677284addd 200126d9069

- A Hash is a Number.
- Hash of number 1:

Hexadecimal:

6b86b273ff34fce19d6b804eff5a3f5747ada4eaa22f1d49c01e52 ddb7875b4b

Hash of "Hello World!":

Hexadecimal:

7f83b1657ff1fc53b92dc18148a1d65dfc2d4b1fa3d677284addd 200126d9069

TARGET Hash leading zeros (e.g. '0000')

A target hash is a number that a hash of block must be less than or equal to it to be added to the chain.

Hash leading zeros (e.g. '0000')

00000000000000000000c18148a1d65dfc2d4b1fa3d67

TARGET

7284addd200126d9069

FFFFF.....FF **LARGEST** A Hash is a Number. Hash of number 1: Hexadecimal: 6b86b273ff34fce19d6b804eff5a3f5747ada4eaa22f1d49c01e52 ddb7875b4b Hash of "Hello World!": Hexadecimal: 7f83b1657ff1fc53b92dc18148a1d65dfc2d4b1fa3d677284addd 200126d9069 **TARGET '0000'**

ALL POSSIBLE HASHES

SMALLEST

Blockchain Components

Hash Cryptography

Immutable Ledger

Distributed P2P Network

Mining

Consensus Protocol

Generals must agree are they attacking or retreating.

Question: To what level the algorithm can tolerate?

The number of traitors should not exceed 33% of the total.

They came to the consensus to attack.

A consensus protocol is a process through which all the peers of a Blockchain network reach a common agreement about the present state of the distributed ledger.

 A consensus algorithm is a procedure through which all the peers of the Blockchain network reach a common agreement about the present state of the distributed ledger.

Main Consensus Protocols

Proof-of-Work (PoW)

Proof-of-Stack (PoS)

Others(E.g. DPoS, PBFT, Ripple)

ALL POSSIBLE HASHES

- 1. Check syntactic correctness
- 2. Reject if duplicate of block we have in any of the three categories
- 3. Transaction list must be non-empty
- 4. Block hash must satisfy claimed *nBits* proof of work
- 5. Block timestamp must not be more than two hours in the future
- 6. First transaction must be coinbase (i.e. only 1 input, with hash=0, n=-1), the rest must not be
- 7. For each transaction, apply "tx" checks 2-4
- 8. For the coinbase (first) transaction, scriptSig length must be 2-100
- 9. Reject if sum of transaction sig opcounts > MAX_BLOCK_SIGOPS
- 10. Verify Merkle hash
- 11. Check if prev block (matching *prev* hash) is in main branch or side branches. If not, add this to orphadone with block
- 12. Check that *nBits* value matches the difficulty rules
- 13. Reject if timestamp is the median time of the last 11 blocks or before
- 14. For certain old blocks (i.e. on initial block download) check that hash matches known values
- 15. Add block into the tree. There are three cases: 1. block further extends the main branch; 2. block ext main branch; 3. block extends a side branch and makes it the new main branch.
- 16. For case 1, adding to main branch:
 - 1. For all but the coinbase transaction, apply the following:

- 1. Check syntactic correctness
- 2. Reject if duplicate of block we have in any of the three categories
- 3. Transaction list must be non-empty
- 4. Block hash must satisfy claimed *nBits* proof of work
- 5. Block timestamp must not be more than two hours in the future
- 6. First transaction must be coinbase (i.e. only 1 input, with hash=0, n=-1), the rest must not be
- 7. For each transaction, apply "tx" checks 2-4
- 8. For the coinbase (first) transaction, scriptSig length must be 2-100
- 9. Reject if sum of transaction sig opcounts > MAX_BLOCK_SIGOPS
- 10. Verify Merkle hash
- 11. Check if prev block (matching prev hash) is in main branch or side t done with block
- 12. Check that *nBits* value matches the difficulty rules
- 13. Reject if timestamp is the median time of the last 11 blocks or before
- 14. For certain old blocks (i.e. on initial block download) check that hash matches known values
- 15. Add block into the tree. There are three cases: 1. block further extends the main branch: 2. block ext main branch; 3. block extends a side branch and makes it the new main branch.
- 16. For case 1, adding to main branch:
 - 1. For all but the coinbase transaction, apply the following:

Challenge 1 **Attackers**

Cryptographic Puzzles:

Hard to Solve – Easy to

Verify

Blockchain Components

References

- [1] Haber, Stuart, and W. Scott Stornetta. "How to time-stamp a digital document." Conference on the Theory and Application of Cryptography. Springer, Berlin, Heidelberg, 1990. https://www.anf.es/pdf/Haber_Stornetta.pdf
- [2] Nakamoto, S. "Bitcoin: A P2P Electronic Cash System." (2009). https://bitcoin.org/bitcoin.pdf
- [3] Wouter, Penard, and Tim V. Werkhoven. "On the Secure Hash Algorithm family" Chapter one of Cryptography in Context, 2008. https://webspace.science.uu.nl/~tel00101/liter/Books/CrypCont.pdf