Probability

Dr. Umesh Aundhakar

Why to Learn Probability?

- Nothing in life is certain.
- In everything we guess the chances of successful outcomes, from business to medicine to the weather.
- A probability provides a quantitative description of the chances or likelihoods associated with various outcomes
- It provides a bridge between descriptive and inferential statistics

PROBABILITY:

It is a numerical measure which indicates the chance of occurrence.

RANDOM EXPERIMENT:

Random Experiment is an experiment which may not result in the same output when repeated under the same conditions.

OUTCOME:

The result of an experiment is Outcome.

SAMPLE SPACE:

The set of all possible outcomes of a random experiment is called sample space.

Finite Sample Space:

A sample space with finite number of outcomes is called **Finite Sample Space**.

Infinite Sample Space:

A sample space with infinite number of outcomes is called **Infinite Sample Space**.

EVENT:

It is a subset of sample space.

Null/Impossible Event:

An event which does not contain any outcome is a Null event. It is denoted by Φ .

Simple/Elementary Event:

An event which has only one outcome is called Simple event.

Compound Event:

An event which has more than one outcome is a Compound event.

Sure/Certain Event:

An event which contains all the outcomes (It is same as Sample space) is called sure event.

COMPLEMENT OF AN EVENT:

The complement of an **event A** is the event of non-occurrence of **event A**.

If A is an event, the complement of A is denoted as A'.

SUB-EVENT:

Let A and B be two events such that event A occurs whenever event B occurs. Then, event B is sub-event of event A. It is denoted by BCA.

UNION OF EVENTS:

Union of two or more events is the event of occurrence of at least one of these events. The union of A and B is denoted by AUB or AorB or A+B.

INTERSECTION OF EVENTS:

Intersection of two or more events is the event of simultaneous occurrence of all these events. The union of A and B is denoted by $A \cap B$ or AandB or AB.

EQUALLY LIKELY EVENTS (Equiprobable events):

Two or more events are equally likely if they have equal chance of occurrence.

MUTUALLY EXCLUSIVE EVENTS (Disjoint events):

Two or more events are mutually exclusive if only one of them can occur at a time. Mutually exclusive events cannot occur together.

Note:

If A is an event, A and A' are mutually exclusive.

If **A** and **B** is an mutually exclusive events, then, $A \cap B = \Phi$.

EXHAUSTIVE EVENTS:

A set of events is exhaustive if one or the other of the events in the set occurs whenever the experiment is conducted.

Probability

If an experiment has n equally likely simple events and if m be the favorable number of outcomes to an event A. Then the probability of A, P(A), is

$$P(A) = \frac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes} = \frac{m}{n}$$

Results:

$$1.0 \le P(A) \le 1$$

$$2.P(A)=1-P(A')$$

3.P(Φ)=0 where Φ is null event.

EXPERIMENTS AND EVENTS

Experiment: Record an age

A: person is 30 years old

B: person is older than 65

Experiment: Toss a die

A: observe an odd number

B: observe a number greater than 2

EXAMPLE: THE DIE TOSS

Simple events:

Sample space:

$$S = \{E_1, E_2, E_3, E_4, E_5, E_6\}$$

BASIC CONCEPTS

An event is a collection of one or more simple

events (outcomes).

•The die toss:

-A: an odd number

-B: a number > 2

$$A = \{E_1, E_3, E_5\}$$

$$B = \{E_3, E_4, E_5, E_6\}$$

EMPIRICAL APPROACH

Let a random experiment be repeated n times essentially under identical conditions. Let m of these repetition result in the occurrence of an event A. Then probability of event A

$$P(A) = \lim_{n \to \infty} \frac{m}{n}$$

PROBABILITY OF AN EVENT

P(A) must be between 0 and 1.

If event A can never occur, P(A) = 0. If event A always occurs when the experiment is performed, P(A) = 1.

The sum of the probabilities for all simple events in S equals 1.

EXAMPLE 1

Toss a fair coin twice. What is the probability of observing at least one head?

EXAMPLE 2

A bowl contains three marbles, one red, one blue and one green. A child selects two balls at random. What is the probability that at least one is red?

SCHOOL OF TELECOMMUNICATION

CONDITIONAL PROBABILITIES

The probability that A occurs, given that event B has occurred is called the **conditional probability** of A given B and is defined as

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \text{ if } P(B) \neq 0$$
"given"

THE LAW OF TOTAL PROBABILITY

Let S_1 , S_2 , S_3 ,..., S_k be mutually exclusive and exhaustive events (that is, one and only one must happen). Then the probability of any event A can be written as

$$P(A) = P(A \cap S_1) + P(A \cap S_2) + ... + P(A \cap S_k)$$

= P(S_1)P(A|S_1) + P(S_2)P(A|S_2) + ... + P(S_k)P(A|S_k)

The Law of Total Probability

$$P(A) = P(A \cap S_1) + P(A \cap S_2) + ... + P(A \cap S_k)$$

= P(S_1)P(A|S_1) + P(S_2)P(A|S_2) + ... + P(S_k)P(A|S_k)

BAYES' RULE

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Let S_1 , S_2 , S_3 ,..., S_k be mutually exclusive and exhaustive events with prior probabilities $P(S_1)$, $P(S_2)$,..., $P(S_k)$. If an event A occurs, the posterior probability of S_k given that A occurred is

$$P(S_i | A) = \frac{P(S_i)P(A | S_i)}{\sum P(S_i)P(A | S_i)} \text{ for } i = 1, 2,...k$$

Probability

Examples!

Next Lecture

Topic: Random Variables and Mathematical Expectations

Discrete and continuous random variable Mathematical expectations

Background material to study Business Statistics, Chpt3, pp.92

We will have MCQ on this lec: 10-15 Questions And will have recap of the lec one. Discuss on the assignment of this lec.

