

Day 43

DIY

Q1. Problem Statement: Principal Component Analysis (PCA)

Load the "vehicle.csv" dataset into a DataFrame and perform the following tasks:

- Find out the null values in the DataFrame and drop them using dropna() function
- 2. Considering the "class" column as the target variable/column, separate the target and the feature vectors
- Scale the numeric data in the independent variables (Feature vectors) using the Standard scalar
- 4. Convert the independent variables into 2-D data using PCA (Principal Component Analysis)
- 5. Combine the target data with the 2-D independent data/feature vectors to create final DataFrame
- 6. Plot the final DataFrame using a scatter plot
- 7. Calculate the variance ratio of the 2-D data converted using PCA

Dataset:

	compactness	circularity	distance_circularity	radius_ratio	pr.axis_aspect_ratio	max.length_aspect_ratio	scatter_ratio	elongatedness
0	95	48.0	83.0	178.0	72.0	10	162.0	42.0
1	91	41.0	84.0	141.0	57.0	9	149.0	45.0
2	104	50.0	106.0	209.0	66.0	10	207.0	32.0
3	93	41.0	82.0	159.0	63.0	9	144.0	46.0
4	85	44.0	70.0	205.0	103.0	52	149.0	45.0

Sample Output:

Find out the null values in the DataFrame and drop them using dropna ()
function

2. Considering the "class" column as the target variable/column, separate the target and the feature vectors

3. Scale the numeric data in the independent variables (Feature vectors) using the Standard scalar

4. Convert the independent variables into 2-D data using PCA (Principal Component Analysis)

Combine the target data with the 2-D independent data/feature vectors to create final DataFrame

terprise

6. Plot the final DataFrame using a scatter p

7. Calculate the variance ratio of the 2-D data converted using PCA

