

Quantification of BODIPY-conjugated 17\beta-estradiol and estrone by HPLC-PDA following solid phase extraction versus traditional GC-MS

<u>Felion, Celeste¹</u>, Haig, Sarah-Jane², Marquez, Rodolfo³ and Gauchotte-Lindsay, Caroline¹

¹James Watt School of Engineering, University Of Glasgow, Glasgow G12 8LT, UK, ²Department of Civil & Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA, ³School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8140, NZ

Introduction

Estrogens—including estrone (E1), 17β-estradiol (E2), estriol (E3), and their synthetic derivatives—have been identified as emerging contaminants which disrupt endocrine and reproductive functions in fish^{1,2}. Currently, the most common platform for trace analysis of estrogens, GC-MS, can be prohibitively expensive to maintain and operate³. Therefore, there is incentive to develop sensitive analytical methods which are accessible to facilities not equipped with mass spectrometers.

In the present work, we developed an HPLC-diode array detection method for quantifying E1 and E2. BODIPY azide was previously coupled to E1 and E2 at -OH of C3 via click chemistry, forming a 1,2,3-triazole linker between the structures (work done by R. Marquez et al)⁴.

Experimental Methods

We evaluated the HPLC and GCMS methods using unextracted standards, adhering to both the Eurachem Guidelines of Analytical Method Validation and the EU Method Validation of Estrone and 17β-Estradiol^{5,6}. The non-tagged HPLC⁷, GCMS⁸ and SPE⁶ methods used for comparison were adapted from the literature.

Shimadzu Prominence HPLC-PDA				
Mobile Phase A:B	H ₂ O:CH ₃ CN, 0.5 mL/min			
Gradient	40%-100%B (+5%B/min)			
Column	Purospher RP-18 (35°C) 4.6×150mm, 5μm			
Acquisition	Non-tagged: 230 nm;			

Agilent 6890/5975C GC-MSD				
Derivatization BSTFA:ACN, 100min 85°C				
El Source	70eV, 230°C			
Column	DB-5 30m×0.25mm×0.25μm			
Injection	Splitless			
Acquisition	SIM: TMS-E1 @ 342 <i>m/z</i> ; bisTMS-E2 @ 416 <i>m/z</i>			

BDP-tagged: 503 nm

Conclusions & Future Work

the present work, we have demonstrated that BODIPYconjugated estrogens have greater analytical performance than non-tagged estrogens analyzed by HPLC and TMS-derivatized estrogens analyzed by GCMS.

hope incorporate the Cu(I)-catalysed 1,3-dipolar cycloaddition click reaction into a derivatization protocol for trace analysis of estrogens.

Potential Applications

- Pre-Experimental Derivatization Applications
 - BODIPY is widely used in biological imaging, and therefore, could be used for biological degradation studies, as shown in the fluorescent microscope image.
 - This approach is useful for studies not dependent on physical properties of the analyte (e.g. size, polarity).
- Post-Experimental Derivatization Applications
 - Size exclusion, nanofiltration and sorption removal studies; studies which are dependent on physical properties of the analyte.

Fluorescent image of *Nitrosomonas europaea* NCIMB11850. Fluorescent dye is BODIPY-E2.

Results

The target analytes (E1, E2) and internal standards (E3) were well resolved into discrete peaks for each chromatographic method.

All assays met the acceptance criteria of <15% RSD for

- Repeatability (n=6): replicate injections, Intra-Assay Precision (n=12): replicate injections at the start and end of a batch, and
- Inter-Assay Precision (n=12): replicate injections at the start of a batch on two non-

_										
	0/ BSD	HPLC			HPLC with BODIPY		GCMS			
	%RSD	Repeat.	Intra-Assay	Inter-Assay	Repeat.	Intra-Assay	Inter-Assay	Repeat.	Intra-Assay	Inter-Assay
	E1	12.2	10.4	10.5	1.0	1.1	1.0	4.3	5.7	8.9
1										

3. Linearity

consecutive days.

R ² (n=3)	HPLC	HPLC with BODIPY	GCMS		
Range	0.22-0.88µM	0.074-0.74µM	0.074-0.74µM		
E1	0.9911 ±0.005	0.9989 ±0.001	0.9923 ±0.005		
E2	0.9878 ±0.009	0.9990 ±0.001	0.9920 ±0.001		
R ² presented is the average from three 6-point calibration standard curves.					

10.9

4. Limits of Detection

Instrument LOD (n=3)	HPLC	HPLC with BODIPY	GCMS	
Ε1 μΜ	0.079	0.027	0.072	
	±0.026	±0.013	±0.030	
Ε2 μΜ	0.090	0.025	0.077	
	±0.040	±0.012	±0.006	

LOD=3·S_{v/x}/slope, averaged from 3 standard curves

5. Quantitative Accuracy & Precision

P-values greater than 0.05 were considered not significant.

11.3

Quantitative accuracy and precision were evaluated by 3 quality controls (High, Mid, Low concentration), measured in duplicate on three different days

5. SPE Recovery SPE Recovery

Recovery was evaluated by comparing the response of analyte spiked before extraction (n=6) against response of post-extraction spike (n=6), measured in duplicate by HPLC.

In Brief

- BDP-E1 and -E2 were detectable with greater S/N than HPLC of non-tagged estrogens.
- HPLC of BDP-E1 and -E2 showed greater repeatability and quantitative accuracy and precision than HPLC of non-tagged estrogens and GCMS of TMS-estrogens.
- BDP-E1 and -E2 had a calculated instrument LOD of 0.025 and 0.027µM. This is equivalent to **7 ppb** of estrogen.

References & Acknowledgements

We thank Dr Rudolfo Marquez and his group for synthesizing the BODIPY-tagged estrogens. This work was funded by The James Watt School of Engineering and EPSRC.

[1] K. A. Kidd, P. J. Blanchfield, K. H. Mills, V. P. Palace, R. E. Evans, J. M. Lazorchak and R. W. Flick, *Proc. Natl. Acad. Sci. U. S. A.*, 2007, 104,

- 8897-8901 [2] A. M. Vajda, L. B. Barber, J. L. Gray, E. M. Lopez, J. D. Woodling and D. O. Norris, *Environ. Sci. Technol.*, 2008, 42, 3407-3414.
- [3] J. M. El-Khoury, "Financial considerations for purchasing a mass spectrometer," MSACL, 2018.
- [4] A. M. Hansen, A. L. Sewell, R. H. Pedersen, D-L. Long, N. Gadegaard, R. Marquez, Tetrahedron, 2013, 69, 8527-8533. [5] B. Magnusson and U. Örnemark, "The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related
- Topics", 2014. [6] S. Tavazzi, S. Comero, M. Ricci, B. Paracchini, G. Mariani and B. M. Gawlik, "Water Framework Directive Watch List Method Analysis of 17βestradiol and estrone", 2016, EUR 27970 EN.
- [7] Y.-L. Chen, C.-P. Yu, T.-H. Lee, K.-S. Goh, K.-H. Chu, P.-H. Wang, W. Ismail, C.-J. Shih and Y.-R. Chiang, Cell Chem. Biol., 2017 24, 712-724.e7. [8] J. B. Quintana, J. Carpinteiro, I. Rodríguez, R. A. Lorenzo, A. M. Carro and R. Cela, J. Chromatogr. A, 2004, 1024 (1–2), 177–185.