ELEMENTOS DE ÁLGEBRA RECURSADO 2023

Trabajo Práctico N°6: NÚMEROS COMPLEJOS

1. Resolver:

a)
$$\frac{(2-2i).(3+5i)}{2+2i}$$

c)
$$\frac{(1+3i)(1+2i)}{1-2i}$$
 + $(1+2i)^2$

b)
$$\frac{2+i^{25}}{3+i^{19}}$$

d) 3.
$$(2 - i^{24}) - (\frac{-4+i}{3-2i})$$

2. Encontrar el valor de a y b, para que se verifiquen las siguientes igualdades:

a)
$$(2 + ai) + (b + 5i) = -1 + 9i$$

b)
$$a - 5i = \frac{16 + bi}{3 + 2i}$$

- 3. Dados $z_1 = 2 3i$, $z_2 = -1 + i$, $z_3 = 3$, $z_4 = \sqrt{2}i$
 - a) Graficarlos.
 - b) ¿Cuál es imaginario puro? ¿Cuál es real? Justificar.
 - c) Hallar el conjugado de $z_1, z_2, z_3 y z_4$
 - d) Encontrar: $z_1 + z_2$, $\frac{z_2}{-i}$ y $(z_1 3z_2).z_3:z_4$
- 4. Hallar los $z \in \mathbb{C}$ que verifiquen las siguientes ecuaciones:

a)
$$(2+3i)z - (1+2i) = 2+3i$$

c)
$$(z-1+4i) \cdot (z-2i) = 0$$

b)
$$\overline{z}(4-i) + 8 = \overline{z}(3+2i) + 3i$$

d)
$$z^2(\overline{4+i}) - 3z = 0$$

5. Expresar a los siguientes complejos en forma polar o trigonométrica:

a)
$$z = 3 + 3\sqrt{3}i$$

d)
$$u = \frac{\sqrt{3}}{2} - \frac{1}{2}i$$

g)
$$r = 7i$$

b)
$$w = -3 + 3i$$

e)
$$s = -6i$$

h)
$$l = 5$$

c)
$$v = -1 - \sqrt{3}i$$

f)
$$t = -9$$

6. Dados los siguientes complejos:

$$z_1 = \sqrt{3} \left(\cos \frac{5}{3} \pi + i \operatorname{sen} \frac{5}{3} \pi \right)$$
 $z_2 = 6 \operatorname{cis} \left(\frac{2}{3} \pi \right)$ $z_3 = 2 \operatorname{cis} (270^\circ)$

- a) Resolver en forma polar: $z_1 \cdot z_2$, $z_1 \cdot z_3$, $\frac{z_3}{z_2}$, $\frac{z_1}{z_2}$
- b) Expresar los resultados hallados en el inciso a) en forma binómica.
- 7. Calcular y dejar expresado el resultado en forma binómica.

a)
$$(1-i)^{47}$$

c)
$$\frac{\left(-\sqrt{3}-i\right)^{100}}{(-2i)^{30}}$$

b)
$$(-\sqrt{3} - i)^{100}$$

d)
$$(1-i)^{47} \cdot \left(\sqrt{2}cis(60^\circ)\right)^{45}$$

ELEMENTOS DE ÁLGEBRA RECURSADO 2023

- 8. Resolver los siguientes problemas.
 - a) La suma de dos números complejos es 5 + i. La parte real de uno de ellos es 4 y el cociente entre este complejo y el otro es un número real. Hallar ambos números complejos.
 - b) Hallar un número complejo z que verifique simultáneamente las siguientes condiciones:
 - La suma de z y de su conjugado es 10, y
 - La suma de los módulos de z y de su conjugado es 26.
 - c) El producto de dos complejos es -8 y dividiendo el cubo de uno de ellos por el otro se obtiene como resultado el número 2. Hallar dos números complejos que verifiquen lo pedido indicando módulo y argumento de cada uno de ellos. Escribir los números complejos encontrados en forma binómica.
- 9. Decir si las siguientes afirmaciones son verdaderos o falsas, justificar:
 - a) Si un complejo z es un real entonces su argumento es nulo.
 - b) Si un complejo tiene como argumento a $\frac{3}{2}\pi$ es imaginario puro.
 - c) Si un complejo z tiene módulo 5 está en el primer cuadrante.
 - d) Si dos complejos tienen argumentos complementarios el producto de ambos es imaginario puro.
- 10. Dados los conjuntos $A = \{z \in \mathbb{C}: (x 2 + 3i)(x 2i) = 0\}$ y $B = \{z \in \mathbb{C}: \frac{1}{x 2 + 3i} = \frac{1}{x 2i}\}$

Analizar si las siguientes proposiciones son verdaderas o falsas. Justificar cada respuesta.

- a) A es un conjunto unitario
- c) $A \cap B = \emptyset$

b) $3 - 11i \in B$

- d) $\exists a \in \mathbb{R}/(a-i)^2 \in A$
- 11. Sean $z = 2cis\left(\frac{5}{3}\pi\right)$, $w = 4cis(\alpha)$ y $u = \rho cis\left(\frac{5}{6}\pi\right)$, donde $0 \le \alpha < 2\pi$ y $\rho > 0$. Analizar, justificando las respuestas, la veracidad de las siguientes afirmaciones:
 - a) La forma binómica de z es $\sqrt{3} i$
 - b) Existen α , ρ tales que $\frac{u}{z}w = 3$
 - c) No hay valores de α para que $\frac{z}{w}$ sea real negativo.
 - d) z^{27} . i^{222} es imaginario puro

ELEMENTOS DE ÁLGEBRA **RECURSADO 2023**

EJERCICIOS ADICIONALES

1. Encontrar los valores de a y b, para que los cuáles se verifique la siguiente ecuación:

$$a - i = \frac{2 + bi}{1 + 2i}$$

2. Resolver:

a)
$$\frac{\sqrt{2}-\sqrt{3}i}{\sqrt{2}+\sqrt{3}i}$$

c)
$$(-1+2i)^3$$

b)
$$(3+i)(-2-3i)$$

d)
$$3 + i^5 - i^{14} + 6i^{43} - 2 + i^{12} - 1$$

3. Dados los números complejos $z_1=2cis$ (60°), $z_2=-2i$, $z_3=-\sqrt{2}+\sqrt{2}i$ resolver:

a)
$$\frac{(z_3)^6}{(z_2)^7}$$

a)
$$\frac{(z_3)^6}{(z_2)^7}$$
 b) $(z_1)^4 \cdot z_3$

- 4. Analizar si las siguientes proposiciones son verdaderos o falsas, justificar las respuestas:
 - a) Sean los conjuntos $C = \left\{ x \in \mathbb{C} : \frac{x+2+15i}{x-i} = -4+4i \right\}$ y $D = \left\{ x \in \mathbb{C} : (-1-2i) : x = 2-9i \right\}$
 - i) $-4 + 4i \in D$
 - ii) C = D
 - b) Sean $z=2cis\left(\frac{5}{3}\pi\right)$, $w=4cis(\alpha)$ y $u=\rho$ $cis\left(\frac{5}{6}\pi\right)$, y $A=\{n\in\mathbb{N}\ (z)^n\ es\ real\ positivo\}$, donde $0 \le \alpha < 2\pi \text{ y } \rho > 0$
 - Existe w que no está en el segundo cuadrante para que z. w sea real
 - ii) $A \neq \emptyset$
 - iii) No existe ρ tal que $\frac{z}{u} = u$