DL 3 - Minimum de deux variables géométriques

On considère dans tout ce sujet

- $(\Omega, \mathcal{A}, \mathbb{P})$ un espace probabilisé sur lequel toutes les variables aléatoires seront définies.
- ▶ p un réel de]0;1[; on note q = 1 p.
- \rightarrow X et Y deux variables aléatoires de même loi géométrique $\mathcal{G}(p)$ et **indépendantes**.
- **1.** a) Rappeler l'ensemble des valeurs $X(\Omega)$ et pour $k \ge 1$, l'expression de $\mathbb{P}(X = k)$.
 - **b)** Calculer la fonction de répartition $\mathbb{P}(X \le n)$ ainsi que $\mathbb{P}(X > n)$, pour $n \in \mathbb{N}$.
- **2.** On définit la variable aléatoire : $Z = \min(X, Y)$.
 - a) Justifier, pour $k \in \mathbb{N}$, l'égalité d'événements : $[Z > k] = [X > k] \cap [Y > k]$.
 - **b)** En déduire, pour $k \ge 1$, la probabilité : $\mathbb{P}(Z > k)$.
 - c) Établir que, pour tout entier $k \ge 1$, on a : $\mathbb{P}(Z = k) = \mathbb{P}(Z > k 1) \mathbb{P}(Z > k)$
 - **d)** En déduire que Z suit la loi géométrique $\mathcal{G}(1-q^2)$.
- **3.** On définit une variable aléatoire T par : $T = \begin{cases} \frac{X}{2} & \text{si } X \text{ prend une valeur paire,} \\ \frac{X+1}{2} & \text{si } X \text{ prend une valeur impaire.} \end{cases}$
 - a) En écrivant $\begin{cases} X=2n & \text{si } X \text{ prend une valeur paire} \\ X=2n-1 & \text{si } X \text{ prend une valeur impaire} \end{cases}$ vérifier que $T=\left\lfloor \frac{X+1}{2} \right\rfloor$. En déduire que $T(\Omega)=\mathbb{N}^*$.
 - **b)** Pour $k \ge 1$, quelles valeurs de X conduisent à l'événement [T = k]?
 - c) En déduire, pour $k \ge 1$, la probabilité $\mathbb{P}(T = k)$. Vérifier que T suit la même loi que Z.

(soit: $T \hookrightarrow \mathcal{G}(1-q^2)$.)

4. On veut simuler les variables *X* et *Y*.

On donne les programmes incomplets suivants :

a) On lance une pièce donnant « Pile » avec proba p.
 On prend X = le rang du premier « Pile » obtenu.
 Compléter le programme :

```
function x = simulerX(p)
x = 0
lancer = 1
while (lancer > p)
x = ___
lancer = rand()
end
endfunction
```

(simulation de G(p) comme temps d'attente)

b) Compléter pour simuler *T*.

(Variante possible: t = floor((x+1)/2))