МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В.ЛОМОНОСОВА

Механико-математический факультет

Кафедра Высшей алгебры

Курс лекций по высшей алгебре

Лектор — Эрнест Борисович Винберг

Летописец — Бибиков Павел Витальевич (группа 212)

II курс, 2 поток, отделение математики (2006 – 2007 гг.)

Лекция 1.

1. Определение и примеры групп.

 $\Gamma pynnoй$ называется множество G с операцией умножения, удовлетворяющей условиям

- 1) (ab)c = a(bc) (ассоциативность),
- 2) $\exists e \ (e \partial u + u u u a) : a e = e a = a \quad \forall a \in G,$
- $3) \ \forall a \in G \ \exists \, a^{-1} \in G \ (oбратный элемент) : aa^{-1} = a^{-1}a = e.$

Группа G называется коммутативной (или абелевой), если $ab = ba \ \forall a,b \in G.$

 $A\partial\partial umu$ вной группой называется множество G с операцией сложения, удовлетворяющей условиям

- 1) (a+b)+c=a+(b+c) (accoquamus ность)
- 2) $\exists 0 \ (\textit{нуль}) : a + 0 = 0 + a = a \ \forall a \in G$
- $3) \ \forall a \in G \ \exists (-a) \in G \ (противоположный элемент) : a + (-a) = = (-a) + a = 0.$

Обычно аддитивная группа предполагается абелевой: a+b=b+a $\forall a,b\in G.$

Подмножество H группы G называется nodepynnoй, если

- 1) $ab \in H \ \forall a, b \in H$,
- 2) $a^{-1} \in H \ \forall a \in H$,
- 3) $e \in H$.

Подгруппа сама является группой относительно той же операции.

Отображение $f\colon G\to H$ называется изоморфизмом группы G на группу H, если

- 1) f биективно,
- 2) $f(ab) = f(a)f(b) \ \forall a, b \in G$.

Свойства изоморфизма: f(e) = e, $f(a^{-1}) = f(a)^{-1}$.

Примеры.

- 1. \mathbb{Z} (по сложению) абелева группа. По определению, всякое кольцо является абелевой группой по сложению.
- 2. $\mathbb{R}^+ = \mathbb{R} \setminus \{0\}$ абелева группа по умножению. По определению, совокупность ненулевых элементов любого поля K является абелевой группой по умножению и обозначается через K^* .
- 3. $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$ подгруппа в \mathbb{C}^* .

- 4. $C_n = \{z \in \mathbb{C} : z^n = 1\}$ подгруппа в \mathbb{T} .
- 5. Векторы плоскости (или пространства) образуют абелеву группу относительно сложения. П определению, всякое векторное пространство является абелевой группой по сложению.
- 6. S(X) группа преобразований (биективных отображений в себя) множества X (единица id_X). В частности, $S(\{1,2,\ldots,n\}) = S_n$ симметрическая группа подстановок степени n. Всякая подгруппа группы S(X) называется группой преобразований множества X.
- 7. Іsom \mathbb{E}^2 (Іsom \mathbb{E}^3) группа движений евклидовой плоскости (пространства). Іsom $_+$ \mathbb{E}^2 (Іsom $_+$ \mathbb{E}^3) подгруппа собственных (сохраняющих ориентацию) движений.
- 8. Группа симметрий правильных многоугольников (или многогранников): $P \subset \mathbb{E}^2$ (\mathbb{E}^3). Sym $P = \{g \in \text{Isom } \mathbb{E}^2 (\mathbb{E}^3) : gP = P\}$. D_n группа симметрий правильного n-угольника ($\mathit{группа}\ \mathit{диэ}\mathit{дрa}$). $|D_n| = 2n$. C_n это группа вращений правильного n-угольника. $|C_n| = n$.
- 9. Кристаллографические группы (группы симметрий кристаллических структур).
- 10. $\mathrm{GL}(V)$ группа невырожденных линейных преобразований n-мерного векторного пространства над полем K. $\mathrm{GL}(V) \simeq \mathrm{GL}_n(K)$ группа невырожденных матриц $n \times n$ над полем K.
- 11. O(V) группа преобразований евклидова векторного пространства $V.\ O(V) \simeq \mathrm{O}_n$ группа ортогональных матриц. Отказываясь от требования положительной определенности скалярного умножения (но предполагая невырожденность), получаем группу псевдоортогональных преобразований, изоморфную $\mathrm{O}_{p,q}$ (группа псевдоортогональных матриц), где (p,q) curnamypa скалярного умножения (т.е. число плюсов и минусов). В частности, $\mathrm{O}_{3,1}$ группа Лоренца.
- 12. $GL_n(\mathbb{Z})$ группа обратимых целочисленных матриц.
- 13. K поле, $f \in K[x]$ неприводимый многочлен степени $n; K \subset L$ поле разложения многочлена f. Gal $L/K = \{\varphi \in \text{Aut } L : \varphi|_K = = \text{id}\}$ группа Галуа поля L над K. Gal $L/K \subset S_n$. Например, $\text{Gal } \mathbb{C}/\mathbb{R} \simeq C_2$.

2. Циклические группы.

Cтепень элемента: $g^n = \underbrace{g \cdot \ldots \cdot g}_n$ при n > 0, e при n = 0 и $\underbrace{g^{-1} \cdot \ldots \cdot g^{-1}}_n$

при n < 0. $g^m \cdot g^n = g^{m+n}$, $(g^n)^{-1} = g^{-n}$.

 $\langle g \rangle = \{g^n : n \in \mathbb{Z}\}$ — циклическая группа, порожденная элементом g. Если $\exists g \in G : G = \langle g \rangle$, то G называется циклической группой.

Либо все g^n различны, либо нет. Во втором случае они циклически повторяются с некоторым периодом $m = \operatorname{ord} g$ (порядок элемента g). $\operatorname{ord} g = \min_{g^n = e} \{n > 0\}.$

Теорема 2.1. 1. Все бесконечные циклические группы изоморфны \mathbb{Z} .

2. Всякие конечные циклические группы порядка n изоморфны C_n . \square

Лекция 2.

3. Факторгруппа.

Отношение на множестве X — это подмножество $\mathcal{R} \in X \times X$. Если $(x,y) \in \mathcal{R}$, то говорят, что x и y находятся в отношении \mathcal{R} и пишут $x\mathcal{R}y$. Отношение \mathcal{R} называется отношением эквивалентности, если

- 1) $x\mathcal{R}x \ \forall x \in X \ (peфлексивность),$
- 2) $xRy \Rightarrow yRx$ (симметричность),
- 3) $x\mathcal{R}y \& y\mathcal{R}z \Rightarrow x\mathcal{R}z$ (транзитивность).

Обычно пишут $x \underset{\mathcal{R}}{\sim} y$, или просто $x \sim y$.

Класс эквивалентности, содержащий x: $\mathcal{R}(x) = [x] = \{y \in X : x \sim y\}$. Классы эквивалентности задают разбиение множества X. Множество классов эквивалентности называется фактормножеством множества X по отношению эквивалентности \mathcal{R} и обозначается X/\mathcal{R} .

Есть естественное отображение $\pi: X \to X/\mathcal{R}, x \mapsto \mathcal{R}(x)$. Оно называется *отображением факторизации*.

Для любого отображения $f: X \to Y$ определяется отношение эквивалентности \mathcal{R}_f на $X: x_1 \sim x_2$, если $f(x_1) = f(x_2)$. Получается следующая диаграмма:

По определению, $\bar{f}([x]) = f(x)$. $f = \bar{f} \circ \pi$, π сюръективен, \bar{f} инъективен. Это разложение называется факторизацией f.

Пусть (X, \circ) — множество с операцией. Отношение эквивалентности \mathcal{R} на множестве X называется согласованным с операцией \circ , если $x \sim x'$, $y \sim y' \Rightarrow x \circ y \sim x' \circ y'$. Тогда на фактормножестве X/\mathcal{R} можно ввести операцию \circ : $[x] \circ [y] = [x \circ y]$. Это определение корректно. Из определения следует, что отображение факторизации является гомоморфизмом, т.е. $\pi(x \circ y) = \pi(x) \circ \pi(y)$.

Пусть (X, \circ) и (Y, *) — два множества с операциями, $f: X \to Y$ — гомоморфизм, т.е. $f(x_1 \circ x_2) = f(x_1) * f(x_2) \ \forall x_1, x_2 \in X$. Имеем: $f = \bar{f}\pi$, где $\pi: X \to X/\mathcal{R}_f$, $\bar{f}([x]) = f(x)$.

Теорема 3.1. \bar{f} — гомоморфизм, а если f сюръективен, то \bar{f} — изоморфизм X/\mathcal{R}_f на Y.

Доказательство.
$$\bar{f}([x_1] \circ [x_2]) = \bar{f}([x_1 \circ x_2]) = f(x_1 \circ x_2) = f(x_1) * f(x_2) = \bar{f}([x_1]) * \bar{f}([x_2]).$$

Пусть G — группа, $H \subset G$ — подгруппа. Отношение сравнимости по модулю $H \colon g_1 \equiv g_2 \pmod{H}$, если $g_1^{-1}g_2 \in H$. Это отношение является отношением эквивалентности. Классы эквивалентности имеют вид $[g] = gH = \{gh : h \in H\}$ и называются левыми смежеными классами группы G по H.

Аналогично, можно определить $g_1 \equiv g_2 \pmod{H}$, если $g_2g_1^{-1} \in H$. Тогда классы эквивалентности имеют вид [g] = Hg и называются правыми смежными классами группы G по H.

Инверсия (взятие обратного элемента) в группе G осуществляет биекцию между множествами левых и правых смежных классов: $(gH)^{-1} = Hg^{-1}$. Количество левых и правых смежных классов одинаково и обозначается |G:H|.

Теорема 3.2 (Лагранж). *Если*
$$|G| < \infty$$
, *mo* $|G| = |G:H| \cdot |H|$. \square

Подгруппа $H\subset G$ называется нормальной, если $\forall g\in G$ gH=Hg $(\Leftrightarrow gHg^{-1}=H).$ Обозначение: $H\lhd G.$

Примеры.

- 1. $S_{n-1} \not < S_n$ при $n \ge 3$.
- 2. Если G абелева, то всякая ее подгруппа нормальна.

Теорема 3.3. Отношение сравнимости по модулю подгруппы H согласовано c операцией в G тогда и только тогда. когда H нормальна.

Доказательство. Пусть $H \triangleleft G$, $g_1 \equiv g_1' \pmod{H}$, $g_2 \equiv g_2' \pmod{H}$. Тогда $g_1' = g_1 h_1$, $g_2' = g_2 h_2$ (где $h_1, h_2 \in H$) $\Rightarrow g_1' g_2' = g_1 (h_1 g_2) h_2 = g_1 (g_2 h_1') h_2 = (g_1 g_2) (h_1' h_2) \equiv g_1 g_2 \pmod{H}$.

Обратно, пусть отношение сравнимости согласовано с операцией. Тогда $\forall g \in G, \ h \in H \ ghg^{-1} \equiv geg^{-1} \equiv e \pmod{H} \Rightarrow ghg^{-1} \in H$, т.е. $gHg^{-1} \subset H$. Аналогично, $g^{-1}Hg \subset H$. Но тогда $H \subset gHg^{-1} \Rightarrow gHg^{-1} = H$.

Теорема 3.4. Всякое отношение эквивалентности в G, согласованное c операцией, есть отношение сравнимости по модулю некоторой подгруппы.

Доказательство. Рассмотрим $H = [e] = \{h \in G : e \sim h\}$. Докажем, что H - подгруппа: $h_1, h_2 \sim e \Rightarrow h_1 h_2 \sim e$; $h \sim e \Rightarrow e = h h^{-1} \sim e h^{-1} = h^{-1}$; $e \sim e$. Тогда $g_1 \sim g_2 \Leftrightarrow e \sim g_1^{-1} g_2 \Leftrightarrow g_1^{-1} g_2 \in H \Leftrightarrow g_1 \equiv g_2 \pmod{H}$.

Т.о., если $N \triangleleft G$, то на множестве классов сравнимости по модулю N определяется операция: $(g_1N)(g_2N)=(g_1g_2)N$. Множество классов сопряженности обозначается G/N и относительно такой операции оно является группой. Она называется факторгруппой группы G по N.

Отображение факторизации $\pi\colon G\to G/N,\ g\mapsto gN$ является гомоморфизмом. Обратно, пусть $f\colon G\to H$ — гомоморфизм групп. Тогда соответствующее отношение эквивалентности \mathcal{R}_f согласовано с операцией. Значит, это отношение сравнимости по модулю нормальной подгруппы $N=\{g\in G: f(g)=e\}$. Эта подгруппа называется ядром и обозначается как $N=\ker f$.

Имеет место следующая диаграмма:

Теорема 3.5. Если $f\colon G\to H$ — гомоморфизм групп, то $\bar f\colon G/N\to H$ — гомоморфизм. Если f сюръективен, то $\bar f$ — изоморфизм. \square

Замечание. В общем случае $G/\ker f \simeq \operatorname{Im} f$.

Примеры.

- 1. $\operatorname{sgn}: S_n \to \{\pm 1\}$. $\operatorname{ker} \operatorname{sgn} = A_n$. T.o., $S_n/A_n \simeq \{\pm 1\}$.
- 2. det: $GL_n(K) \to K^*$. ker det = $SL_n(K)$. T.o., $GL_n(K)/SL_n(K) \simeq K^*$.
- 3. $f: \mathbb{C}^* \to \mathbb{C}^*, z \mapsto z^n$. $\ker f = C_n \Rightarrow \mathbb{C}^*/C_n \simeq \mathbb{C}^*$.
- 4. $f: \mathbb{C}^* \to \mathbb{R}_+^*, z \mapsto |z|$. $\ker f = \mathbb{T} \Rightarrow \mathbb{C}^*/\mathbb{T} \simeq \mathbb{R}_+^*$.
- 5. $\exp : \mathbb{R} \to \mathbb{R}^*, x \mapsto e^x$. $\ker \exp = \{0\}$, $\operatorname{Im} \exp = \mathbb{R}_+^* \Rightarrow \mathbb{R} \simeq \mathbb{R}_+^*$. $\exp : \mathbb{C} \to \mathbb{C}^*, z \mapsto e^z$. $\ker \exp = 2\pi i \mathbb{Z}$, $\operatorname{Im} \exp = \mathbb{C}^* \Rightarrow \mathbb{C}/2\pi i \mathbb{Z} \simeq \mathbb{C}^*$ (также $\mathbb{C}/\mathbb{Z} \simeq \mathbb{C}^*$).
- 6. Линейное отображение $f \colon K^n \to K^m, \ (x_1, \dots, x_n) \mapsto (y_1, \dots, y_n),$ $y_i = \sum_{j=1}^n a_{ij}x_j, \ i=1,\dots,m.$ ker f множество решений системы однородных линейных уравнений $\sum_{j=1}^n a_{ij}x_j = 0.$ $b = (b_1, \dots, b_m) \in K$ $\Rightarrow f^{-1}(b)$ либо пуст, либо класс сопряженности (mod ker f), т.е. $f^{-1}(b) = x_0 + \ker f$. С другой стороны, $f^{-1}(b)$ есть множество решений системы $\sum_{j=1}^n a_{ij}x_j = b_i \ (i=1,\dots,m).$
- 7. $f: S_4 \to S_3$. $y_1 = x_1x_2 + x_3x_4$, $y_2 = x_1x_3 + x_2x_4$, $y_3 = x_1x_4 + x_2x_3$. ker $f = \{e, (12)(34), (13)(24), (14)(23)\} = V_4$ (четверная группа Клейна) $\Rightarrow S_4/V_4 \simeq S_3$.

Лекция 3.

4. Прямые произведения групп.

Говорят, что группа G разлагается в прямое произведение своих подгрупп G_1, \ldots, G_k , если

- 1) каждый элемент $g \in G$ единственным образом представляется в виде $g = g_1 \dots g_k$, где $g_i \in G_i$,
 - 2) при $i \neq j$ $g_i g_j = g_j g_i \ \forall g_i \in G_i, g_j \in G_j$.

Правило умножения: $(g_1 \dots g_k)(g'_1 \dots g'_k) = (g_1 g'_1) \dots (g_k g'_k)$. Обозначение: $G = G_1 \times \dots \times G_k$.

Свойства.

- 1. $G_i \cap G_j = \{e\}$ при $i \neq j$: $g \in G_i \cap G_j \Rightarrow g = e \dots \stackrel{i}{g} \dots e = e \dots \stackrel{j}{g} \dots e \Rightarrow g = e$.
- 2. $G_i \triangleleft G$: $h \in G_i, g_1, \dots, g_k \in G, g = g_1 \dots g_k \Rightarrow$ $ghg^{-1} = (g_1 e g_1^{-1}) \dots (g_i h g_i^{-1}) \dots (g_k e g_k^{-1}) = g_i h g_i^{-1} \in G_i.$

Лемма 4.1. Если $G', G'' \in G$, $G', G'' \triangleleft G$ и $G' \cap G'' = \{e\}$, то $g'g'' = g''g' \forall g' \in G', g'' \in G''$.

Доказательство. $g'g''g'^{-1}g''^{-1} \in G' \cap G'' = \{e\} \Rightarrow g'g''g'^{-1}g''^{-1} = e$. \square

Теорема 4.1. Пусть $G_1, G_2 \triangleleft G, G_1 \cap G_2 = \{e\}, G_1G_2 = G.$ Тогда $G = G_1 \times G_2$.

Доказательство. 1) Любой элемент $g \in G$ представляется в виде $g = g_1g_2$ (где $g_1 \in G_1, g_2 \in G_2$) по условию теоремы. Докажем, что такое представление единственно. $g = g_1g_2 = g_1'g_2' \Rightarrow G_1 \ni g_1'^{-1}g_1 = g_2'g_2^{-1} \in G_2$ $\Rightarrow g_1'^{-1}g_1 = g_2'g_2^{-1} = e \Rightarrow g_1 = g_1', g_2 = g_2'$.

2)
$$\forall g_1 \in G_1, g_2 \in G_2 \ g_1g_2 = g_2g_1$$
 по лемме 4.1.

Примеры.

- 1. Разложение векторного пространства в прямую сумму подпространств: $V = V_1 \oplus \ldots \oplus V_k$ есть разложение аддитивной группы в прямую сумму подгрупп.
- 2. $\mathbb{C}^* = \mathbb{R}_+^* \times \mathbb{T}$, r.e. $z = r(\cos \varphi + i \sin \varphi)$.
- 3. $\operatorname{GL}_n^+(\mathbb{R})$ группа вещественных матриц с положительным определителем; $\operatorname{GL}_n^+(\mathbb{R}) = \operatorname{SL}_n(\mathbb{R}) \times \{\lambda E\}$, где $\lambda \in \mathbb{R}_+$.

Пусть G_1, \ldots, G_k — произвольные группы. Внешним произведением групп G_1, \ldots, G_k называется прямое произведение множеств G_1, \ldots, G_k с операцией умножения $(g_1, \ldots, g_k)(g_1', \ldots, g_k') = (g_1g_1', \ldots, g_kg_k')$. Это также группа, обозначаемая $G_1 \times \ldots \times G_k$. Если группа G разлагается в прямое произведение подгрупп G_1, \ldots, G_k , то $G \simeq G_1 \times \ldots \times G_k$ (внешнее прямое произведение): $g = g_1 \cdot \ldots \cdot g_k \leftrightarrow (g_1, \ldots, g_k)$.

Примеры.

1. $K^* \times \ldots \times K^* = (K^*)^n$ изоморфна группе невырожденных диагональных матриц порядка n.

5. Абелевы группы 1 .

Пусть A — абелева группа. $\forall a \in A, \, \forall k \in \mathbb{Z}$ определен элемент $ka \in A$. Свойства.

- $1. \ k(a+b) = ka + kb,$
- 2. (k+l)a = ka + la,
- 3. (kl)a = k(la),
- 4. $1 \cdot a = a$.

Линейная комбинация элементов $a_1, \ldots, a_n \in A$ есть элемент $k_1a_1 + \ldots + k_na_n$ ($k_1, \ldots, k_n \in \mathbb{Z}$). Совокупность всех линейных комбинаций элементов a_1, \ldots, a_n есть наименьшая подгруппа, содержащая a_1, \ldots, a_n . Она называется подгруппой, порожденной a_1, \ldots, a_n и обозначается как $\langle a_1, \ldots, a_n \rangle$. Если $\langle a_1, \ldots, a_n \rangle = A$, то говорят, что группа A порождается элементами a_1, \ldots, a_n . Группа, порожденная конечным числом элементов, называется конечно-порожденной. В частности, группа, порожденная одним элементом, — это циклическая группа.

Элементы a_1, \ldots, a_n называются линейно зависимыми, если существуют числа $k_1, \ldots, k_n \in \mathbb{Z}$, не все равные 0, такие, что $k_1a_1 + \ldots + k_na_n = 0$. В противном случае a_1, \ldots, a_n называются линейно независимыми. Линейно независимая система элементов, порождающих группу A, называется базисом группы A. Не всякая конечно порожденная абелева группа обладает базисом, например, группа \mathbb{Z}_m не обладает базисом.

Конечно порожденная абелева группа, обладающая базисом, называется csofodhoŭ. Если $\{e_1,\ldots,e_n\}$ — базис группы A, то

$$A = \langle e_1 \rangle \oplus \ldots \oplus \langle e_n \rangle \simeq \mathbb{Z} \oplus \ldots \oplus \mathbb{Z} = \mathbb{Z}^n.$$

¹В этой теме все рассматриваемые подгруппы считаются аддитивными, если не оговорено противное.

Теорема 5.1. Все базисы свободной абелевой группы равномощны.

Доказательство. Пусть $\{e_1,\ldots,e_n\}$ и $\{e'_1,\ldots,e'_m\}$ — два базиса. Предположим, что m>n. Имеем $(e'_1,\ldots,e'_m)=(e_1,\ldots,e_n)$ C . Можно рассматривать C как матрицу над $\mathbb Q$. Т.к. m>n, то столбцы линейно зависимы над $\mathbb Q$, а значит, и над $\mathbb Z$. Но тогда e'_1,\ldots,e'_m линейно зависимы в A — противоречие.

Число элементов базиса свободной абелевой группы называется ее panrom и обозначается rk A.

Опишем все базисы свободной абелевой группы. Пусть $\{e_1, \ldots, e_n\}$ — базис и $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C$.

Теорема 5.2. $\{e'_1,\ldots,e'_n\}$ — базис \Leftrightarrow det $C=\pm 1$.

Доказательство. 1) Пусть $\det C = \pm 1$. Тогда C^{-1} целочисленна и $(e_1, \ldots, e_n) = (e'_1, \ldots, e'_n)C^{-1} \Rightarrow e'_1, \ldots, e'_n$ порождают A. Т.к. столбцы матрицы C линейно независимы, то $\{e'_1, \ldots, e'_n\}$ линейно независимы.

2) Пусть $\{e'_1, \ldots, e'_n\}$ — базис. Тогда $(e_1, \ldots, e_n) = (e'_1, \ldots, e'_n)D$, где D — целочисленная матрица $\Rightarrow (e_1, \ldots, e_n) = (e_1, \ldots, e_n)CD \Rightarrow CD = E$ $\Rightarrow \det C \cdot \det D = 1 \Rightarrow \det C = \pm 1$.

Лекция 4.

Теорема 5.3. Всякая подгруппа N свободной абелевой группы L ранга n есть свободная абелева группа ранга не больше n.

Доказательство. Индукция по n.

 $n=1\Rightarrow L\simeq \mathbb{Z}$. Будем считать, что $L=\mathbb{Z}$. Если $N=\{0\}$, то N- свободная абелева группа ранга 0. Если $N\neq \{0\}$, то N содержит положительные числа, и k- наименьшее из них. Докажем, что $N=k\mathbb{Z}$. Пусть $m\in N$, тогда $m=qk+r,\ 0\leqslant r< k$. Тогда $r=m-qk\in N\Rightarrow r=0$.

Пусть теперь $\{e_1,\ldots,e_n\}$ — базис L и $L_1=\langle e_1,\ldots,e_{n-1}\rangle$. Тогда L_1 — это свободная абелева группа ранга n-1. Рассмотрим группу $N_1=N\cap L_1\subset L_1$. По предположению индукции N_1 — свободная абелева группа ранга $m\leqslant n-1$. Пусть $\{f_1,\ldots,f_m\}$ — базис N_1 . Если $N=N_1$, то все

доказано. Если $N \neq N_1$, то рассмотрим последние координаты всех элементов из N в базисе $\{e_1, \ldots, e_n\}$ группы L. Они образуют ненулевую подгруппу в группе \mathbb{Z} . Значит, она имеет вид $k\mathbb{Z}$. Пусть $f_{m+1} \in N$ имеет последнюю координату k. Тогда $\{f_1, \ldots, f_m, f_{m+1}\}$ — базис N.

Замечание. $\operatorname{rk} N = n \Rightarrow N = L$. Например, $k\mathbb{Z} \subsetneq \mathbb{Z}$ при k > 1 и $\operatorname{rk} k\mathbb{Z} = \operatorname{rk} \mathbb{Z} = 1$.

Пусть $\mathbb{E}^n - n$ -мерное евклидово векторное пространство, $\{e_1, \dots, e_n\}$ — его базис. Тогда $L = \Big\{ \sum_{i=1}^n k_i e_i : k_i \in \mathbb{Z} \Big\}$ — свободная абелева группа ранга n с базисом $\{e_1, \dots, e_n\}$. Такие подгруппы называются pewemkamu e \mathbb{E}^n .

Подмножество $A \subset \mathbb{E}^n$ дискретно, если в любом ограниченном подмножестве $K \subset \mathbb{E}^n$ имеется лишь конечное число точек из A (по-другому: у A нет предельных точек). Очевидно, что всякая решетка является дискретным подмножеством.

Теорема 5.4. Всякая дискретная подгруппа L в \mathbb{E}^n , порождающая \mathbb{E}^n как векторное пространство, является решеткой.

Доказательство. Существует базис $\{e_1,\ldots,e_n\}$ пространства \mathbb{E}^n , содержащийся в L. Пусть L_0 — решетка, порожденная этим базисом. Ясно, что $L_0\subset L$.

Докажем, что L_0 — подгруппа конечного индекса в L. Рассмотрим параллелепипед $P = \left\{ \sum_{i=1}^n x_i e_i : 0 \leqslant x_i \leqslant 1 \right\}$. Тогда $\forall x \in L \ \exists \, k_1, \dots, k_n \in \mathbb{Z} : x - (k_1 e_1 + \dots + k_n e_n) \in P$. Это означает, что каждый смежный класс L по L_0 содержит элемент из P. По условию дискретности $L \cap P$ конечно, а значит, $|L:L_0| = d < \infty$.

 $|L/L_0| = d \Rightarrow dL \subset L_0$. Т.о., $L_0 \subset L \subset d^{-1}L_0$. $d^{-1}L_0$ есть свободная абелева группа ранга n с базисом $\{d^{-1}e_1, \ldots, d^{-1}e_n\}$. По теореме 5.3 L — свободная абелева группа ранга n. Всякий базис группы L содержит n элементов и порождает \mathbb{E}^n , а значит, является базисом \mathbb{E}^n .

 $Kристаллической структурой в <math>\mathbb{E}^3$ называется конечный набор дискретных подмножеств $A_1,\ldots,A_k\subset\mathbb{E}^3$ со следующим свойством: существует такой базис $\{e_1,e_2,e_3\}$ пространства \mathbb{E}^3 , то $A_i+e_j=A_i,\ i=1,\ldots,k,\ j=1,2,3$. Рассмотрим группу $L=\{a\in\mathbb{E}^3:t_aA_i=A_i,i=1,\ldots,k\}$. По теореме 5.4 это решетка.

Группа симметрий кристаллической структуры $A = \{A_1, \dots, A_k\}$ это группа $\Gamma = \operatorname{Sym} A = \{g \in \operatorname{Isom} \mathbb{E}^3 : gA_i = A_i, i = 1, \dots, k\}$. Такие группы называются кристаллографическими.

 Γ руппа симметрий направлений в кристаллической структуре это группа $G = d\Gamma = \{dq : q \in \Gamma\} \subset \mathcal{O}_3$.

Теорема 5.5. Группа G конечна и может содержать повороты или зеркальные повороты только на углы $0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi$.

Доказательство. Пусть $L=\{a\in\mathbb{E}^3:t_a\in\Gamma\}$ — решетка и $\{e_1,e_2,e_3\}$ базис этой решетки. Тогда $\forall a \in \mathbb{E}^n, \ \forall \gamma \in \mathrm{Isom}\,\mathbb{E}^n \quad \gamma t_a \gamma^{-1} = t_{d\gamma(a)} \Rightarrow$ $d\gamma(a)\in\Gamma$. Т.о., $\forall g\in G$ gL=L, т.е. в базисе $\{e_1,e_2,e_3\}$ g записывается целочисленной матрицей. Значит, G — дискретное подмножество в пространстве всех матриц. Но $G \subset \mathcal{O}_3$ — ограниченное подмножество (в ортонормированном базисе все матричные элементы по модулю не больше 1). Значит, $|G| < \infty$. Далее, $\forall g \in G \text{ tr} g \in \mathbb{Z}$. Но в некотором ортонормированном базисе g записывается матрицей $\begin{pmatrix} \cos \varphi - \sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & \pm 1 \end{pmatrix}$ $\operatorname{tr} g = 2\cos\varphi \pm 1 \Rightarrow 2\cos\varphi \in \mathbb{Z} \Rightarrow |\cos\varphi| = \{\frac{1}{2}, 1\}.$

Лекция 5.

Элементарные преобразования базисов:

- 1) $e'_i = e_i + ce_j \ (c \in \mathbb{Z}), \ e'_k = e_k \text{ при } k \neq i,$ 2) $e'_i = e_j, \ e'_j = e_i, \ e'_k = e_k \text{ при } k \neq i, j,$
- 3) $e'_i = -e_i, e'_k = e_k$ при $k \neq i$.

Прямоугольная матрица $C=(c_{ij})$ размера $m \times n$ называется ∂ua гональной, если $c_{ij} = 0$ при $i \neq j$. Обозначение: $C = \operatorname{diag}(c_{11}, \ldots, c_{pp}),$ $p = \min\{m, n\}.$

 $oldsymbol{\Pi}$ емма $oldsymbol{5.1.}$ Всякую целочисленную матрицу C размера m imes n c noмощью целочисленных элементарных преобразований строк и столбцов можно привести к виду $\operatorname{diag}(u_1,\ldots,u_p)$ $(p=\min\{m,n\})$, где $u_i\in\mathbb{Z}$, $u_i \geqslant 0 \ u \ u_i \mid u_{i+1} \ npu \ i = 1, \dots, p-1.$

Доказательство. Если C=0, то доказывать нечего. Если $C\neq 0$, то путем элементарных преобразований строк и столбцов можно добиться, чтобы $c_{11} > 0$. Далее будем минимизировать c_{11} .

Если c_{i1} не делится на c_{11} , то разделим с остатком: $c_{i1} = qc_{11} + r$, $0 < r < c_{11}$ и, вычитая из i-й строки 1-ю, умноженную на q, получим r на месте i, 1. Переставив 1-ю и i-ю строки, получим r на месте (1,1).

Аналогично, если c_{1j} не делится на c_{11} , то с помощью целочисленных элементарных преобразований столбцов можно также уменьшить c_{11} .

Пусть все элементы 1-й строки и 1-го столбца делятся на c_{11} . Тогда с помощью целочисленных элементарных преобразований строк и столбцов их можно сделать нулями, т.е. привести C к виду

$$\begin{pmatrix} c_{11} & 0 & \cdots & 0 \\ 0 & * & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \cdots & * \end{pmatrix}$$

Предположим теперь, что c_{ij} $(i,j \ge 2)$ не делится на c_{11} . Прибавив к 1-й строке i-ю строку, мы не изменим c_{11} , но получим, что c_{1j} не делится на c_{11} и придем к рассмотренной ранее ситуации.

В конце концов

$$C = \begin{pmatrix} c_{11} & 0 & \cdots & 0 \\ 0 & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & c_{p2} & \cdots & c_{pp} \end{pmatrix}$$

где всякий элемент матрицы

$$C_1 = \begin{pmatrix} c_{22} & \cdots & c_{2p} \\ \vdots & \ddots & \vdots \\ c_{p2} & \cdots & c_{pp} \end{pmatrix}$$

делится на $c_{11} = u_1$. Далее, делая то же самое с матрицей C_1 , свойство делимости на u_1 сохранится, и мы приведем матрицу C к требуемому виду.

Теорема 5.6. Для всякой подгруппы N свободной абелевой группы L существует такой базис $\{e_1, \ldots, e_n\}$ группы L и такие натуральные числа u_1, \ldots, u_m ($m \le n$), что $\{u_1e_1, \ldots, u_me_m\}$ — базис N и $u_i \mid u_{i+1}$ при $i=1,\ldots,m-1$.

Доказательство. Пусть $\{e_1,\ldots,e_n\}$ — произвольный базис группы L и $\{f_1,\ldots,f_m\}$ — базис N. Тогда $(f_1,\ldots,f_m)=(e_1,\ldots,e_n)$ C (C — целочисленная матрица). При элементарных преобразованиях базиса группы L $(e'_1,\ldots,e'_n)=(e_1,\ldots,e_n)U$ (U — элементарная матрица) \Rightarrow $(f_1,\ldots,f_m)=(e'_1,\ldots,e'_n)U^{-1}C$, т.е. в C происходят целочисленные элементарные преобразования строк.

При элементарных преобразованиях базиса подгруппы N получаем: $(f'_1, \ldots, f'_m) = (f_1, \ldots, f_m)V \Rightarrow (f'_1, \ldots, f'_m) = (e_1, \ldots, e_n)CV$, т.е. в C происходят целочисленные элементарные преобразования столбцов.

По лемме 5.1 матрицу C можно таким образом привести к виду $C = \operatorname{diag}(u_1, \ldots, u_m)$. Т.к. $\operatorname{rk} C = m$, то $u_i \neq 0$ и $f_i = u_1 e_i, i = 1, \ldots, m$.

Теорема 5.7. Всякая конечно порожденная абелева группа A разлагается в прямую сумму циклических групп.

Доказательство. Пусть $A = \langle a_1, \ldots, a_n \rangle$. Рассмотрим гомоморфизм

$$\varphi \colon \mathbb{Z}^n \xrightarrow{\text{Ha}} A, \ (k_1, \dots, k_n) \mapsto k_1 a_1 + \dots + a_n e_n.$$

Пусть $N = \ker \varphi$, тогда $A \simeq \mathbb{Z}^n/N$. По теореме 5.6 существуют базис $\{e_1, \ldots, e_n\}$ группы \mathbb{Z}^n и натуральные числа u_1, \ldots, u_m $(m \leqslant n)$, такие, что $\{u_1e_1, \ldots, u_me_m\}$ — базис N и $u_i \mid u_{i+1}$ при $i=1,\ldots,m-1$.

Рассмотрим гомоморфизм

$$\psi \colon \mathbb{Z}^n \stackrel{\text{\tiny Ha}}{\to} \mathbb{Z}_{u_1} \oplus \ldots \oplus \mathbb{Z}_{u_m} \oplus \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n-m},$$

$$l_1e_1 + \ldots + l_ne_n \mapsto ([l_1]_{u_1}, \ldots, [l_m]_{u_m}, l_{m+1}, \ldots, l_n).$$

 $\ker \psi = \langle u_1 e_1, \dots, u_m e_m \rangle = N$. Следовательно,

$$A \simeq \mathbb{Z}^n/N \simeq \mathbb{Z}_{u_1} \oplus \ldots \oplus \mathbb{Z}_{u_m} \oplus \underbrace{\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}}_{n-m}.$$

Замечание. 1) На самом деле мы доказали, что A разлагается в прямую сумму циклических групп порядков u_1, \ldots, u_m, ∞ , где $u_i \mid u_{i+1}$.

2) Если A конечна, то слагаемых \mathbb{Z} нет.

Лемма 5.2. Если n = kl, (k, l) = 1, то $\mathbb{Z}_n \simeq \mathbb{Z}_k \oplus \mathbb{Z}_l$.

Доказательство. Нужно доказать, что группа $\mathbb{Z}_k \oplus \mathbb{Z}_l$ циклическая, т.е. что в ней есть элемент порядка n. Таким элементом является $([1]_k, [1]_l)$. В самом деле, $m([1]_k, [1]_l) = ([m]_k, [m]_l) = 0 \Leftrightarrow k, l \mid m \Leftrightarrow n \mid m$. Следовательно, $\operatorname{ord}([1]_k, [1]_l) = n$.

Теорема 5.8. Если $n = p_1^{k_1} \dots p_s^{k_s}$ $(p_1, \dots, p_s - paзличные простые числа), то <math>\mathbb{Z}_n \simeq \mathbb{Z}_{p_1^{k_1}} \oplus \dots \oplus \mathbb{Z}_{p_s^{k_s}}$.

Доказательство. По лемме 5.2

$$\mathbb{Z}_n \simeq \mathbb{Z}_{p_1^{k_1}} \oplus \mathbb{Z}_{p_2^{k_2} \dots p_s^{k_s}} \simeq \dots \simeq \mathbb{Z}_{p_1^{k_1}} \oplus \dots \oplus \mathbb{Z}_{p_s^{k_s}}.$$

Примеры.

1. $\mathbb{Z}_{60} \simeq \mathbb{Z}_4 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}_5 = \langle [15] \rangle \oplus \langle [20] \rangle \oplus \langle [12] \rangle$. Например, $[1] = -[15] - [20] + 3 \cdot [12]$.

 Γ руппа называется nримарной, если ее порядок есть степень простого числа.

Теорема 5.9. Всякая конечно порожденная абелева группа A разлагается в прямую сумму примарных и бесконечных циклических групп, причем число слагаемых и набор порядков определены однозначно.

Доказательство. 1) Существование такого разложения следует из теорем 5.2 и 5.3.

2) Покажем единственность числа слагаемых и наборов их порядков. Пусть $A = \langle a_1 \rangle_{p_1^{k_1}} \oplus \ldots \oplus \langle a_s \rangle_{p_s^{k_s}} \oplus \langle a_{s+1} \rangle_{\infty} \oplus \ldots \oplus \langle a_{s+t} \rangle_{\infty}$ (среди чисел p_1, \ldots, p_s могут быть одинаковые).

Рассмотрим подгруппу кручения $\operatorname{Tor} A = \{a \in A : \operatorname{ord} a < \infty\}$. Ясно, что $\operatorname{Tor} A = \langle a_1 \rangle_{p_1^{k_1}} \oplus \ldots \oplus \langle a_s \rangle_{p_s^{k_s}}$ и $A / \operatorname{Tor} A \simeq \mathbb{Z}^t$. Т.к. определение $\operatorname{Tor} A$ не зависит от разложения, то и число t не зависит от разложения.

Рассмотрим *подгруппу р-кручения* $\mathrm{Tor}_p A = \{a \in A : p^k a = 0\}$. Ясно, что $\mathrm{Tor}\, A - \mathrm{сумма}\, \mathrm{tex}\, \left\langle a_i \right\rangle_{p_i^{k_i}},$ для которых $p_i = p$. Т.к. определение $\mathrm{Tor}_p A$ не зависит от разложения, то и $\bigoplus_{p_i = p} \left\langle a_i \right\rangle_{p_i^{k_i}}$ не зависит от разложения.

Т.о., доказательство теоремы сводится к случаю, когда A — примарная группа.

3) Случай примарной группы: $A = \langle a_1 \rangle_{p^{k_1}} \oplus \ldots \oplus \langle a_r \rangle_{p^{k_r}} \ (k_1 \leqslant \ldots \leqslant k_r),$ $|A| = p^k, \ k = k_1 + \ldots + k_r.$

Докажем индукцией по k, что набор (k_1, \ldots, k_r) определен однозначно. При k=1 это очевидно. Предположим, что утверждение верно для групп порядка p^l , $l \leq k$. Пусть $k_1 = \ldots = k_s = 1$, $k_{s+1} > 1$.

Рассмотрим подгруппу $pA = \{pa : a \in A\}$. Ясно, что

$$pA = \langle pa_s \rangle_{p^{k_{s+1}-1}} \oplus \ldots \oplus \langle pa_r \rangle_{p^{k_r-1}}.$$

По предположению индукции (для pA) набор $(k_{s+1}-1,\ldots,k_r-1)$ определен однозначно. Значит, набор (k_{s+1},\ldots,k_r) определен однозначно.

Число s определяется из равенства $s + k_{s+1} + \ldots + k_r = k$.

Лекция 6.

Замечание. Сами слагаемые разложения, о которых идет речь в теореме, вообще говоря. не определены однозначно. Например, $\langle a_1 \rangle_2 \oplus \langle a_2 \rangle_2 = \langle a_1 + a_2 \rangle_2 \oplus \langle a_2 \rangle_2$. Вообще. если $G = \mathbb{Z}_p^r$, то G можно рассматривать как r-мерное векторное пространство над \mathbb{Z}_p , и разложение G в прямую сумму циклических подгрупп — это разложение векторного пространства в сумму одномерных подпространств.

Экспонентой конечной группы G называется н.о.к. порядков всех своих элементов. Обозначение: e(G). Ясно, что $e(G) \mid |G|$ и что $g^{e(G)} = e \ \forall g \in G$.

Вообще говоря, элемента порядка e(G) не существут: $e(S_3)=6$, но элементов порядка 6 в S_3 нет.

Теорема 5.10. В любой конечной абелевой группе A существует элемент порядка e(A).

Доказательство.
$$A = \langle a_1 \rangle_{u_1} \oplus \ldots \langle a_m \rangle_{u_m} \oplus$$
, где $u_i \mid u_{i+1} \ (i=1,\ldots,m-1)$. $e(A) = u_m = \operatorname{ord} a_m$.

Теорема 5.11. Мультипликативная группа F^* любого конечного поля F циклическая.

Доказательство.
$$|F| = q \Rightarrow |F^*| = q - 1$$
. Докажем, что $e(F^*) = q - 1$. $\forall x \in F^* \ x^{e(F^*)} - 1 = 0 \Rightarrow q - 1 \leqslant e(F^*) \Rightarrow e(F^*) = q - 1$. По теореме 5.10 $\exists a \in F^* : \text{ord } a = q - 1 \Rightarrow F^* = \langle a \rangle$.

Пусть p — нечетное простое число. $\mathbb{Z}_p^* = \langle a \rangle_{p-1}$.

Элемент $c \in \mathbb{Z}_p^*$ называется $\kappa вадратичным вычетом, если он является квадратом в <math>\mathbb{Z}_p^*$. $c = a^k$ — квадратичный вычет $\Leftrightarrow k$ четно.

Примеры.

1. $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}, 1, 2, 4$ — квадратичные вычеты, 3, 5, 6 — квадратичные невычеты.

Теорема 5.12. Уравнение $x^2 + 1$ имеет корень в $\mathbb{Z}_p^* \Leftrightarrow p \equiv 1 \pmod{4}$.

 \mathcal{A} оказательство. -1 — единственный элемент порядка 2 в \mathbb{Z}_p^* . Если $\mathbb{Z}_p^* = \langle a \rangle$, то $-1 = a^{\frac{p-1}{2}} \Rightarrow -1$ — квадратичный вычет $\Leftrightarrow \frac{p-1}{2}$ четно.

6. Действия групп.

Пусть S(X) — группа всех преобразований множества X. Действием группы G на множестве X называется всякий гомоморфизм $\alpha \colon G \to S(X)\colon \alpha(gh) = \alpha(g)\alpha(h) \Rightarrow \alpha(e) = \mathrm{id},\ \alpha(g^{-1}) = \alpha(g)^{-1}.$ Обозначения: $G\colon X,\ \alpha(g)x = gx;$ условие гомоморфизма: (gh)x = g(hx). $\ker \alpha \triangleleft G$ — ядро неэффективности действия α . Если $\ker \alpha = \{e\}$, то действие эффективно.

 $\operatorname{Im} \alpha$ — группа преобразований множества X. По теореме о гомоморфизме $\operatorname{Im} \alpha \simeq G/\ker \alpha$.

Если G:X, то G действуют

- 1) на любом инвариантном подмножестве $Y \subset X$,
- 2) на множестве всех подмножеств множества X.

Примеры.

1. Isom $\mathbb{E}^2: \mathbb{E}^2 \Rightarrow \text{Isom } \mathbb{E}^2$ действует на множестве треугольников.

Если G: X и $H \subset G$ — подгруппа, то H: X.

 $g \in G$ }. Действия с одной орбитой называются *транзитивными*. Число точек в орбите называется ее длиной и обозначается |Gx|.

Стабилизатор элемента x — это $G_x = \{g \in G : gx = x\}$.

Теорема 6.1. Пусть G: X. Тогда $G_{gx} = gG_xg^{-1}$.

Доказательство.
$$h \in G_x \Rightarrow (ghg^{-1})(gx) = g(hx) = gx \Rightarrow ghg^{-1} \in G_{gx}$$
. $h \in G_{gx} \Rightarrow (g^{-1}hg)x = g^{-1}(gx) = x \Rightarrow g^{-1}hg \in G_x$.

Примеры.

- 1. $SO_2 : \mathbb{E}^2$, $G_o = SO_2$, $G_p = \{e\}$, $p \neq o$.
- 2. $\operatorname{GL}_n(\mathbb{C}): \operatorname{GL}_n(\mathbb{C}), \ A \circ X = AXA^{-1}$. Ядро неэффективности есть $\{\lambda E: \lambda \in \mathbb{C}^*\}. \ A \sim B \Leftrightarrow A$ и B имеют одну и ту же жорданову форму.
- 3. $GL_n(\mathbb{C}): L_n(\mathbb{C}), A \circ X = AXA^t$.
- 4. $S_4: \{1,2,3,4\} \rightsquigarrow V_4: \{1,2,3,4\}$. Действие $V_4: \{1,2,3,4\}$ транзитивно, стабилизаторы тривиальны.

Лекция 7.

Теорема 6.2. Если группа G конечна, то $|Gx| = |G:G_x|$.

Доказательство. Рассмотрим отображение $G/G_x \to Gx, gG_x \mapsto gx$. Это определение корректно: $\forall h \in G_x \ (gh)x = g(hx) = gx$. Построенное отображение сюръективно по определению орбиты. Оно также инъективно: $g_1x = g_2x \Rightarrow (g_2g_1^{-1})x = x$, т.е. $g_2g_1^{-1} \in G_x \Rightarrow g_1G_x = g_2G_x$.

Пусть P — выпуклый многогранник. Φ лагом многогранника P назовем тройку $\{v,e,f\}$, где v — вершина, e — ребро, содержащее v,f — грань, содержащая e. P — nравильный многогранник, если n Бут n действует транзитивно на множестве флагов.

Пусть V — множество вершин многогранника P. Рассмотрим действие $\operatorname{Sym} P:V$. Это транзитивное действие. По теореме $6.2 |\operatorname{Sym} P| = |V| \cdot |(\operatorname{Sym} P)_v|$.

Пусть E_v — множество ребер, выходящих из v. Действие $(\operatorname{Sym} P)_v : E_v$ транзитивно \Rightarrow по теореме $6.2 |(\operatorname{Sym} P)_v| = |E_v| \cdot 2$.

Окончательно получаем, что

$$|\operatorname{Sym} P| = 2(\operatorname{число} \operatorname{вершин})(\operatorname{степень} \operatorname{вершины}).$$

Для куба $|\operatorname{Sym} P| = 48$, для икосаэдра $|\operatorname{Sym} P| = 120$. G; G, l(g)x = gx — действие группы на себе:

$$l(g_1g_2)x = g_1(g_2x) = l(g_1)l(g_2)x.$$

Это действие транзитивно. Стабилизатор тривиален.

Если $H \subset G$ — подгруппа, то орбитами H будут правые смежные классы Hx.

Аналогично, $G:_{r}G, r(g)x = xg^{-1}$:

$$r(g_1g_2)x = x(g_1g_2)^{-1} = xg_2^{-1}g_1^{-1} = r(g_1)r(g_2)x.$$

Орбиты подгруппы — левые смежные классы xH.

$$G: G, a(g)x = gxg^{-1}$$
:

$$a(g_1g_2)x = g_1g_2xg_2^{-1}g_1^{-1} = a(g_1)a(g_2)x.$$

 $\forall x \in G \ a(g)$ — автоморфизм группы G:

$$a(g)(xy) = g(xy)g^{-1} = (gxg^{-1})(gyg^{-1}) = (a(g)x)(a(g)y).$$

Эквивалентные элементы называются сопряженными, т.е. x и y сопряжены, если $\exists g \in G: gxg^{-1} = y$. Орбиты — классы сопряженности. Обозначение: C(x).

Стабилизатор элемента x называется y и обозначается z(x). По определению, $z(x) = \{g \in G : gx = xg\}$. Ядро неэффективности — y и y группы y.

Следствие 6.1. Если G конечна, то $|C(x)| = \frac{|G|}{|Z(x)|}$.

Примеры.

1. $G = S_n$. Пусть $\sigma = (i_1 \dots i_k)(j_1 \dots j_l) \dots$ — разложение на независимые циклы, $\tau \in S_n$. Если $\sigma(p) = q$, то $\tau \sigma \tau^{-1}(\tau(p)) = \tau(q)$. Следовательно, $\tau \sigma \tau^{-1} = (\tau(i_1) \dots \tau(i_k))(\tau(j_1) \dots \tau(j_l)) \dots$ Т.о., сопряженные подстановки характеризуются тем, что наборы длин независимых циклов в их разложениях совпадают.

Рассмотрим S_4 : e-1, (ij)-6, (ij)(kl)-3, (ijk)-8, (ijkl)-6.

Докажем, что $Z(S_n) = \{e\}$. Пусть $\tau \in Z(S_n) \Rightarrow$

$$\tau(ij)\tau^{-1} = (\tau(i)\tau(j)) = (ij) \ \forall i, j,$$

т.е. τ сохраняет любую пару $\{i,j\} \Rightarrow \tau = e$, т.к. любой элемент из $\{1,2,\ldots,n\}$ есть пересечение двух пар.

2. $G = \mathrm{GL}_n(\mathbb{C})$. A и B сопряжены тогда и только тогда. когда они имеют одну и ту же жорданову форму. $Z(\mathrm{GL}_n(\mathbb{C})) = \{\lambda E : \lambda \in \mathbb{C}^*\}$.

Рассмотрим действие группы G на множестве своих подгрупп сопряжениями: $a(g)H = gHg^{-1}$. Эквивалентные подгруппы называются сопряженными, т.е. H_1 и H_2 сопряжены, если $\exists g \in G : gH_1g^{-1} = H_2$. Орбита называется классом сопряженной подгруппы. Стабилизатор подгруппы H называется ее нормализатором и обозначается N(H). Т.о., $N(H) = \{g \in G : gHg^{-1} = H\}$. Очевидно, что $H \triangleleft N(H)$.

Теорема 6.3. Если G конечна, то число подгрупп, сопряженных H, делит |G:H|.

Доказательство. По теореме 6.2 это число равно

$$|G:N(H)| = \frac{|G|}{|N(H)|} = \frac{|G|}{|H|} : \frac{|N(H)|}{|H|}$$

и делит $\frac{|G|}{|H|} = |G:H|$.

Теорема 6.4. Центр примарной конечной группы нетривиален.

Доказательство. Пусть $|G| = p^k$, $k \in \mathbb{N}$. Разложим G на классы сопряженности, тогда $G = Z \sqcup C(x_1) \sqcup \ldots \sqcup C(x_s)$. $\forall i = 1, \ldots, s \ |C(x_i)| = p^l$, $l \in \mathbb{N} \Rightarrow p \mid |C(x_i)| \Rightarrow p \mid |Z| \Rightarrow Z \neq \{e\}$.

Следствие 6.2. Всякая группа порядка p^2 абелева.

Доказательство. Пусть $|G| = p^2$, Z = Z(G). Предположим, что |Z| = p. Тогда |G:Z|=p, и значит, G/Z — циклическая группа. Пусть aZ — ее порождающий элемент $\Rightarrow \forall g \in G \ gZ = (aZ)^k = a^kZ \Rightarrow g = a^kz, z \in Z$ $\Rightarrow G$ абелева — противоречие.

7. Теоремы Силова.

Пусть $|G| = p^k m$, где p простое, $p \nmid m$.

Cиловской p-подгруппой группы G называется всякая подгруппа порядка p^k . Если G абелева, то ее единственная силовская p-подгруппа есть подгруппа p-кручения $\operatorname{Tor}_p G$.

Теорема 7.1. Силовские p-подгруппы существуют.

Теорема 7.2. Все силовские р-подгруппы сопряжены. Более того, всякая р-подгруппа содержится в некоторой силовской р-подгруппе.

Теорема 7.3. Число силовских p-подгрупп сравнимо $c \ 1 \pmod{p}$.

Примеры.

1. $|A_5| = 60 = 2^2 \cdot 3 \cdot 5$. Силовские 2-подгруппы: $V_4 \subset A_4 \subset A_5 - 5$; 3-подгруппы: $\langle (ijk) \rangle - 10$; 5-подгруппы: $\langle (i_1 \dots i_5) \rangle - 6$.

Лекция 8.

Доказательство теоремы 7.1. Доказывать будем индукцией по |G|. Если |G| = 1, то утверждение тривиально.

Пусть |G| = n > 1 и для всех групп порядка меньше n утверждение

верно. $G = Z \sqcup C(x_1) \sqcup \ldots \sqcup C(x_s), |C(x_i)| > 1$. Рассмотрим два случая. 1) $\exists i : p \nmid |C(x_i)|. |C(x_i)| = \frac{|G|}{|Z(x_i)|} \Rightarrow p^k \mid |Z(x_i)|.$ Но $|Z(x_i)| < n$, поэтому по предположению индукции существует силовская p-подгруппа в $Z(x_i)$. Она будет силовской p-подгруппой в G.

 $2)\ \forall i\ p\ |\ |C(x_i)|$. Тогда $p\ |\ |Z|$. Пусть $|Z|=p^{k_0}m_0$, где $0< k_0\leqslant k$ и $p\nmid m_0$, и пусть $Z_0={
m Tor}_p Z$ (силовская p-подгруппа в Z). Имеем $|Z_0|=p^{k_0}$. Рассмотрим G/Z_0 и канонический гомоморфизм $\pi\colon G\to G/Z_0$. Имеем $|G/Z_0|=p^{k-k_0}m$. По предположению индукции в G/Z_0 существует силовская p-подгруппа $S_1,\ |S_1|=p^{k-k_0}$. Тогда $\pi^{-1}(S_1)=S$ имеет порядок $|S_1|\cdot |Z_0|=p^k$ и является силовской p-подгруппой в G.

Доказательство теоремы 7.2. Пусть S — какая-то силовская p- подгруппа и H — какая-то p-подгруппа. Рассмотрим H:G/S, $h \circ gS = hgS$. Длина каждой нетривиальной орбиты делится на p (т.к. она делит $|H| = p^l$). Но |G/S| = |G:S| не делится на p. Значит, существуют неподвижные точки, т.е. $\exists g \in G: H \subset gSg^{-1}$. Т.о., H содержится в силовской p-подгруппе gSg^{-1} . Если же $|H| = p^k$, то $H = gSg^{-1}$.

Доказательство теоремы 7.3. Пусть S — какая-то силовская p-подгруппа и C(S) — множество всех подгрупп, сопряженных с S, т.е. по теореме множество всех силовских p-подгрупп. Рассмотрим действие S:C(S) сопряжениями. Длина каждой нетривиальной орбиты делится на p. Найдем все тривиальные орбиты, т.е. неподвижные точки данного действия. Если $S_1 \in C(S)$ — неподвижная точка, то $S \subset N(S_1) = \{g \in G: gS_1g^{-1} = S_1\}$. Но тогда S и S_1 — силовские p-подгруппы в $N(S_1)$ и по теореме они сопряжены в $N(S_1)$. Т.к. $S_1 \triangleleft N(S_1)$, то $S_1 = S$.

Итак, для действия S:C(S) имеется единственная неподвижная точка, а именно сама подгруппа S. Следовательно, $|C(S)| \equiv 1 \pmod{p}$. \square

Примеры.

- 1. |G|=pq, где p>q различные простые числа. Тогда число силовских p-подгрупп $N_p\equiv 1\pmod p$ и $N_p\mid q\Rightarrow N_p=1$, т.е. силовская p-подгруппа нормальна и единственна. Обозначим ее G_p . Тогда $|G_p|=p\Rightarrow G_p\simeq \mathbb{Z}_p$ и G_p циклическая. Далее, $N_q\equiv 1\pmod q$ и $N_q\mid p$. Если $p\not\equiv 1\pmod q$, то $N_q=1$, т.е. силовская q-подгруппа G_q также единственна и нормальна. Т.к. $G_p\cap G_q=\{e\}$, то $G_p\cdot G_q=G$ и, значит, $G=G_p\times G_q$, т.е. G циклическая.
- 2. $|G|=45=3^2\cdot 5.\ N_3\equiv 1\pmod 3$ и $N_3\mid 5\Rightarrow N_3=1.\ N_5\equiv 1\pmod q$ и $N_5\mid 9\Rightarrow N_5=1.\ G=G_3\times G_5.\ G_5$ циклическая, G_3 абелева $\Rightarrow G$ абелева.

8. Полупрямые произведения групп.

Группа G разлагается в *полупрямое произведение своих подгрупп* N u H, если

- 1) $N \triangleleft G$,
- 2) $N \cap H = \{e\},\$
- 3) NH = G, т.е. $\forall g \in G \ g = nh$, где $n \in N$, $h \in H$.

Из этих условий следует, что представление g=nh единственно: $g=n_1h_1=n_2h_2\Rightarrow N\ni n_2^{-1}n_1=h_2h_1^{-1}\in H\Rightarrow n_1=n_2,\ h_1=h_2.$ Обозначение: $G=N\leftthreetimes H=H\rightthreetimes N.$

Примеры.

- 1. $S_n = A_n \setminus \langle (12) \rangle$.
- 2. $S_4 = V_4 \times S_3$.
- 3. $D_n = C_n \setminus \langle r \rangle, r \in D_n$ отражение.
- 4. $\operatorname{GL}_n(K) = \operatorname{SL}_n(K) \setminus \{\operatorname{diag}(1,\ldots,\lambda)\}.$
- 5. $GA(S) = N \times GA(S)_{\alpha}$.

Правило умножения: $(n_1h_1)(n_2h_2) = (n_1(h_1n_2h_1^{-1}))(h_1h_2)$. В частности, отображение $G \to H$, $nh \mapsto h$, является гомоморфизмом, и по теореме о гомоморфизме $G/N \simeq H$.

Отображение $N \to N$, $n \mapsto hnh^{-1}$ является автоморфизмом группы N. Обозначим его через $\alpha(h)$. Отображение $\alpha \colon H \to \operatorname{Aut} N$ является гомоморфизмом. Оно определяет структуру полупрямого произведения. В частности, это произведение является прямым $\Leftrightarrow \alpha$ тривиален: $\alpha = \operatorname{id} \ \forall h \in H$.

Внешнее полупрямое произведение групп N и H определяется гомоморфизмом $\alpha \colon H \to \operatorname{Aut} N$. Тогда $G = N \times H$, $(n_1, h_1)(n_2, h_2) = (n_1(\alpha(h_1)n_2), h_1h_2)$. Выполнены все аксиомы группы: $e = (e_N, e_H)$ и $(n, h)^{-1} = (\alpha(h^{-1})n^{-1}, h^{-1})$.

Опишем полупрямые произведения циклической группы. Для этого пишем группу автоморфизмов циклической группы.

Теорема 8.1. Всякий автоморфизм циклической группы $\langle a \rangle_n$ имеет вид $\varphi_k(x) = x^k$, где (k,n) = 1.

Доказательство. Пусть $\varphi \in \operatorname{Aut}\langle a \rangle_n$, $\varphi(a) = a^k$. Тогда $\forall x = a^m \ \varphi(x) = \varphi(a)^m = a^{km} = x^k$.

 $\ker \varphi = \{a^m : n \mid km\}$. Если (k,n) = 1, то $\ker \varphi = \{e\}$. Если (k,n) = d > 1, то $\ker \varphi = \langle a^{\frac{n}{d}} \rangle \neq \{e\}$. Т.о., если $\varphi \in \operatorname{Aut}\langle a \rangle_n$, то (k,n) = 1.

Обратно, пусть (k,n)=1. Рассмотрим $\varphi_k:\langle a\rangle_n\to\langle a\rangle_n,\, \varphi_k(x)=x^k$. Это гомоморфизм: $(xy)^k=x^ky^k$ и $\ker\varphi_k=\{e\}\Rightarrow \operatorname{Im}\varphi_k=\langle a\rangle_n\Rightarrow \varphi_k\in \operatorname{Aut}\langle a\rangle_n$.

Следствие 8.1. $\operatorname{Aut}\langle a\rangle_n\simeq\mathbb{Z}_n^*$.

Доказательство. Автоморфизмы нумеруются элементами этого кольца: $\mathbb{Z}_n^* \to \operatorname{Aut}\langle a \rangle_n$, $[k]_n \mapsto \varphi_k$. Это гомоморфизм: $\varphi_{kl} = \varphi_k \varphi_l$, и он биективен \Rightarrow он изоморфизм.

Т.о., полупрямое произведение $\langle a \rangle_n \leftthreetimes \langle b \rangle_m$ задается гомоморфизмом $\alpha \colon \langle b \rangle_m \to \operatorname{Aut} \langle a \rangle_n \simeq \mathbb{Z}_n^*$, определяющийся образом $b \colon \alpha(b) = [k]_n, \ k^m \equiv 1 \pmod{n}$.

Лекция 9.

Таким образом, полупрямое произведение $\langle a \rangle_n \gtrsim_k \langle b \rangle_m$ определяется образом $\varphi_k \in \operatorname{Aut}\langle a \rangle_n$ элемента b. При этом должны выполняться следующие условия: (k,n) = 1 и $k^m \equiv 1 \pmod{n}$. Произведение будет прямым $\Leftrightarrow k \equiv 1 \pmod{n}$.

Отсюда получается следующая формула умножения: $(a^pb^s)(a^qb^t) = a^p(b^sa^qb^{-s})(b^sb^t) = a^{p+k^sq}b^{s+t}$.

Примеры.

1. Группа диэдра $D_n=\langle a\rangle_n \leftthreetimes \langle b\rangle_2$. Поскольку $bab^{-1}=a^{-1}$, то k=-1 и $D_n=\langle a\rangle_n \succsim_{-1} \langle b\rangle_2$.

Замечание. Может быть так, что $\langle a \rangle_n \underset{k}{\searrow} \langle b \rangle_m \simeq \langle a \rangle_n \underset{k'}{\searrow} \langle b \rangle_m$ при $k \not\equiv k'$ (mod n) при другом выборе порождающего элемента группы $\langle b \rangle_m$. А именно, при замене b на $b' = b^s$, где (s, m) = 1, k заменяется на k^s .

Рассмотрим группу порядка pq, где p > q — простые.

Теорема 8.2. 1) Если $p \not\equiv 1 \pmod{q}$, то всякая группа порядка pq циклическая.

2) Если $p \equiv 1 \pmod{q}$, то существуют ровно две неизоморфные группы порядка pq: одна циклическая, другая неабелева.

Доказательство. Пусть $G_p = \langle a \rangle_p$ — силовская p-подгруппа, $G_q = \langle b \rangle_q$ — силовская q-подгруппа. Тогда $G_p \triangleleft G$, $G_p \cap G_q = \{e\}$, $G_p \cdot G_q = G \Rightarrow G = \langle a \rangle_p \underset{k}{\searrow} \langle b \rangle_q$, где (k,p) = 1 и $k^q \equiv 1 \pmod p$, т.е. $[k]^q = 1$ в \mathbb{Z}_p^* .

- 1) $p \not\equiv 1 \pmod q$. Тогда в $\operatorname{Aut}\langle a \rangle_p \simeq \mathbb{Z}_p^*$ (циклическая группа порядка p-1) нет элементов порядка $q \Rightarrow [k]_p = 1$, т.е. $G = \langle a \rangle_p \times \langle b \rangle_q \Rightarrow G$ циклическая.
- 2) $p \equiv 1 \pmod q$. Тогда в $\operatorname{Aut}\langle a \rangle_p \simeq \mathbb{Z}_p^*$ есть единственная циклическая подгруппа порядка q, скажем, $\langle \varphi_k \rangle_q$. Либо $[k]_p = 1$, и тогда G циклическая, либо $[k]_p \neq 1$, и тогда для любого $[l]_p = [k]_p^s$ (где (s,q) = 1) заменяя b на $b' = b^s$, перейдем от k к l. В этом случае $G \simeq \langle a \rangle_p \underset{k}{\searrow} \langle b \rangle_q \simeq \langle a \rangle_p \underset{l}{\searrow} \langle b' \rangle_q$.

9. Разрешимые группы.

Пусть G — группа. Коммутатор элементов $x, y \in G$ — это элемент $(x; y) = xyx^{-1}y^{-1}$.

Свойства.

- 1. $(x;y) = e \Leftrightarrow xy = yx$,
- 2. $(y;x) = (x;y)^{-1}$.

Коммутант группы G — это подгруппа G' = (G; G), порожденная всеми коммутаторами, т.е. совокупность всех произведений вида $(x_1; y_1) \cdot \ldots \cdot (x_n; y_n)$. G абелева $\Leftrightarrow G' = \{e\}$.

Если $\varphi \colon G \to H$ — гомоморфизм группы G на группу H, то $\varphi(G') = H'$.

Теорема 9.1. Коммутант G' группы G — это наименьшая нормальная подгруппа, фактор по которой абелев.

Доказательство. 1) Докажем, что $G' \triangleleft G$. Коммутант G' инвариантен относительно всех автоморфизмов группы G, и, в частности, относительно внутренних автоморфизмов $a(g), g \in G \Rightarrow G' \triangleleft G$.

2) Докажем минимальность. Пусть $N \triangleleft G$ и $\pi\colon G \to G/N$ — канонический гомоморфизм. Тогда G/N = A — абелева $\Leftrightarrow A' = \{e\} \Leftrightarrow \pi(G') = \{e\} \Leftrightarrow G' \subseteq N$.

Примеры.

- 1. $S_3' \subset A_3$, но $S_3' \neq \{e\}$, т.к. S_3 неабелева $\Rightarrow S_3' = A_3$.
- 2. $S_4'\subset A_4,\ S_4'\neq \{e\}$ и $S_4'\supset S_3'=A_3\Rightarrow S_4'$ содержит все тройные циклы $\Rightarrow |S_4'|\geqslant 9\Rightarrow S_4'=A_4.$
- 3. $V_4 \triangleleft A_4$, A_4/V_4 циклическая порядка $3 \Rightarrow A_4' \subset V_4$, $A_4' \neq \{e\}$. Пусть $A_4' \ni (12)(34)$. Но все произведения двух нетривиальных транспозиций сопряжены в $A_4 \Rightarrow A_4' = V_4$.

Лемма 9.1. При любом n A_n порождается тройными циклами, а при $n \geqslant 5$ — также произведениями пар независимых транспозиций.

Доказательство. Т.к. группа S_n порождается транспозициями, то группа A_n порождается произведениями пар транспозиций. Но (ij)(jk) = (ijk), (ij)(kl) = (ijk)(jkl). Значит, A_n порождается тройными циклами. Аналогично, при $n \ge 5$ (ij)(jk) = [(ij)(lm)][(jk)(lm)], и A_n порождается произведениями пар независимых транспозиций.

Теорема 9.2. $S'_n = A_n$, при $n \ge 5$ $A'_n = A_n$.

Доказательство. $S'_n\subset A_n,\ S'_n\supset S'_3=A_3\Rightarrow S'_n$ содержит все тройные циклы $\Rightarrow S'_n=A_n.$

При $n\geqslant 5$ $A'_n\supset A_4=V_4\Rightarrow A'_n$ содержит все произведения пар независимых транспозиций $\Rightarrow A'_n=A_n.$

Замечание. Все произведения пар независимых транспозиций сопряжены не только в S_n но и в A_n : $\forall i, j, k, l$ $(ij)(kl) = \tau((12)(34))\tau^{-1}$. Если τ четна, то все доказано. Если τ нечетна, то заменим τ на $\tau' = \tau(12)$. Тогда $\tau'((12)(34))\tau'^{-1} = \tau((12)(34))\tau^{-1}$.

Лемма 9.2. Группа $\mathrm{SL}_n(K)$ порождается элементарными матрицами первого типа.

Доказательство. Пусть $\det A = 1$. Докажем, что матрицу A можно привести к E с помощью элементарных преобразований строк первого типа. Вначале сделаем $a_{11} = 1$. Если $a_{i1} \neq 0$, то добавим к первой строке i-ю строку с подходящим коэффициентом.

Если все $a_{i1} = 0$ при i > 1, то $a_{11} \neq 0$ и, прибавив ко второй строке первую, придем к предыдущему случаю.

Пусть теперь $a_{11} = 1$. Вычитаем из всех строк первую с подходящими коэффициентами, получаем, что $a_{i1} = 0$ при i > 1.

Аналогично A приводится к унитреугольному виду. Дальше — обратный ход метода Гаусса. \square

Лекция 10.

Теорема 9.3. $\Pi pu |K| > 3 \operatorname{GL}_n(K)' = \operatorname{SL}_n(K) = \operatorname{SL}_n(K)'.$

Доказательство. Во-первых, $\operatorname{GL}_n(K)/\operatorname{SL}_n(K) \simeq K^*$ — абелева, поэтому $\operatorname{GL}_n(K)' \subset \operatorname{SL}_n(K)$.

Во-вторых, $(\binom{\lambda}{0}, \binom{0}{\lambda^{-1}})$; $\binom{1}{0}, \binom{c}{0}$ $= \binom{1}{0}, \binom{(\lambda^2 - 1)c}{1}$. Если |K| > 3, то беря $\lambda \neq 0$, ± 1 и подходящее c, можно получить любую матрицу вида $\binom{1}{0}, \binom{a}{1}$.

 $\forall n \geqslant 2, \forall i, j \in \{1, \dots, n\}, i \neq j$ имеется вложение $\operatorname{SL}_2(K) \hookrightarrow \operatorname{SL}_n(K)$:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \begin{pmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1 & & & \\ & & & 1 & & \\ & & & \ddots & \vdots & \\ & & & & 1 & \\ & & & & \ddots & \\ & & & & & 1 \end{pmatrix}$$

Из предыдущего вычисления следует, что $E + aE_{ij} \in SK_n(K)'$. По лемме 9.2 получаем, что $SL_n(K) = SL_n(K)$. Т.к. $GL_n(K)' \supset SL_n(K)' = SL_n(K)$ и $GL_n(K)' \subset SL_n(K)$, то $GL_n(K)' = SL_n(K)$.

Кратные коммутанты $G^{(n)}$ определяются по индуктивному правилу: $G^{(0)} = G, \ G^{(1)} = G', \ G^{(n+1)} = (G^{(n)})'$. Если $\varphi \colon G \overset{\text{на}}{\to} H$, то $\varphi(G^{(n)}) = H^{(n)}$. Отсюда следует, что $\forall n \ G^{(n)} \triangleleft G$.

Группа G называется pазрешимой, если $\exists n \in \mathbb{N} : G^{(n)} = \{e\}.$

Примеры.

- 1. S_n разрешима $\Leftrightarrow n \leqslant 4$ $(S_4^{(3)} = \{e\}, S_3^{(2)} = \{e\}, S_2' = \{e\}).$
- 2. $GL_n(K)$ не разрешима при $n \ge 2$ и |K| > 3.

Свойства.

- 1. G разрешима \Rightarrow всякая подгруппа $H \subset G$ и всякая факторгруппа G/N разрешима: $G^{(n)} = \{e\} \Rightarrow H^{(n)} = \{e\}$; пусть $\pi \colon G \to G/N$ канонический гомоморфизм, тогда $(G/N)^{(n)} = \pi(G^{(n)}) = \pi(e) = e$.
- 2. Если нормальная подгруппа $N \triangleleft G$ и факторгруппа G/N разрешимы, то и группа G разрешима: пусть $N^{(k)} = \{e\}$ и $(G/N)^{(l)} = \{e\}$, тогда $\pi(G) = (G/N)^{(l)} = \{e\} \Rightarrow G^{(l)} \subset N \Rightarrow G^{l+k} \subset N^{(k)} = \{e\}$.

Теорема 9.4. Всякая р-примарная конечная группа разрешима.

Доказательство. Индукция по n. При n=1 — очевидно. Пусть n>1, тогда $Z(G)\neq \{e\}$ — абелева (а значит, и разрешимая), G/Z(G) разрешима по предположению индукции.

Теорема 9.5. Группа $B_n(K)$ треугольных матриц порядка n над полем K разрешима.

Доказательство. Рассмотрим гомоморфизм $\varphi \colon B_n(K) \to (K^*)^n$:

$$\begin{pmatrix} \lambda_1 & * & * \\ \vdots & \ddots & * \\ 0 & \cdots & \lambda_n \end{pmatrix} \mapsto (\lambda_1, \dots, \lambda_n),$$

причем группа $(K^*)^n$ абелева. $\ker \varphi = \mathrm{U}_n(K)$. Если $\mathrm{U}_n(K)$ разрешима, то и $\mathrm{B}_n(K)$ разрешима.

Докажем разрешимость группы $U_n(K)$ индукцией по n. При n=1 — очевидно. При n>1 рассмотрим гомоморфизм $\psi\colon U_n(K)\to U_{n-1}(K)$,

$$\begin{pmatrix} 1 & * & * & \vdots \\ \vdots & \ddots & * & \vdots \\ 0 & \cdots & 1 & \vdots \\ \cdots & 0 & \cdots & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & * & * \\ \vdots & \ddots & * \\ 0 & \cdots & 1 \end{pmatrix}.$$

Очевидно, что

$$\ker \psi = \begin{pmatrix} 1 & \cdots & 0 & a_1 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \cdots & 1 & a_{n-1} \\ \cdots & 0 & \cdots & 1 \end{pmatrix} \simeq (K^*)^{n-1}$$

—абелева группа. $U_n(K)/\ker\psi\simeq U_{n-1}(K)$ — разрешима по предположению индукции. Значит, $U_n(K)$ разрешима.

10. Простые группы.

Группа G называется npocmoй, если она не содержит нетривиальных нормальных подгрупп.

Простая группа G разрешима $\Leftrightarrow G$ — циклическая группа простого порядка.

Существуют некоммутативные простые группы.

Пемма 10.1. Если G — конечная группа u p | |G|, то существует элемент $g \in G$ порядка p.

Доказательство. Возьмем нетривиальную силовскую p-подгруппу $S \subset G$. Тогда $\forall q \in S, q \neq e \text{ ord } q = p^k$ и ord $q^{p^{k-1}} = p$.

Теорема 10.1. $\Gamma pynna A_5 npocma.$

Доказательство. Поскольку $|A_5|=2^2\cdot 3\cdot 5$, то все элементы, не равные e, имеют порядок 2, 3 или 5. Пусть N — нетривиальная нормальная подгруппа.

- 1) Если 2 | |N|, то по лемме 10.1 N содержит элемент порядка $2 \Rightarrow N$ содержит все транспозиции вида $(ij)(kl) \Rightarrow N = A_5$ противоречие.
- 2) Если 3 | |N|, то по лемме 10.1 N содержит тройной цикл $\Rightarrow N$ содержит все тройные циклы $\Rightarrow N = A_5$ противоречие.
- 3) Если |N|=5, то $N=\langle (ijklm)\rangle$ силовская 5-подгруппа. Но в A_5 силовская 5-подгруппа не единственна, а значит, не нормальна противоречие.

Замечание. Можно доказать, что не существует некоммутативных простых групп порядка меньше 60. Более того. всякая группа порядка меньше 60 разрешима. Группа $\mathrm{PSL}_n(K) = \mathrm{SL}_n(K)/\{\lambda E : \lambda^n = 1\}$ проста, кроме случая n=2, |K|=2,3.

Лекция 11.

11. Линейные представления групп.

Линейным представлением группы G в векторном пространстве V называется всякий гомоморфизм $R\colon G\to \mathrm{GL}(V)$. Пространство V называется пространством представления, а его размерность — размерностью представления.

 $Mampuчным \ npedcmaвлением \ группы \ G$ называется всякий гомоморфизм $R\colon G\to \mathrm{GL}_n(K)\ (K-$ поле).

Всякую матрицу $A \in GL_n(K)$ можно рассматривать как линейный оператор $X \mapsto AX$ в пространстве K^n . Соответственно, всякое матричное представление можно рассматривать как линейное представление в пространстве K^n .

Обратно, если $R: G \to \operatorname{GL}(V)$ — линейное представление и $e = (e_1, \dots, e_n)$ — базис пространства V, то, записывая линейные операторы R(g) матрицами в базисе e, получим следующее матричное представление: $R_e: G \to \operatorname{GL}_n(K)$.

При переходе от старого базиса к новому e' = eC, получаем другое матричное представление $R_{e'}$, связанное с R_e формулой $R_{e'}(g) = C^{-1}R_e(g)C$.

Линейные представления одной и той же группы $R\colon G\to \mathrm{GL}(V)$ и $S\colon G\to \mathrm{GL}(U)$ изоморфны, если есть такой изоморфизм $\varphi\colon V\to U$ векторных пространств, что $\forall\,g\in G\quad \varphi R(g)=S(g)\varphi$, т.е. следующая диаграмма коммутативна:

$$V \xrightarrow{R(g)} V$$

$$\varphi \downarrow \qquad \qquad \downarrow \varphi$$

$$U \xrightarrow{S(g)} U$$

Пусть $e=(e_1,\ldots,e_n)$ — базис V. Тогда $\varphi(e)=(\varphi(e_1),\ldots,\varphi(e_n))$ — базис U. Условие коммутативности диаграммы означает, что $R_e(g)=S_{\varphi(e)}(g)$ $\forall\,g\in G$.

Примеры.

- 1. $G = \mathbb{R}$, $R_1(t) = \begin{pmatrix} \cos t \sin t \\ \sin t & \cos t \end{pmatrix}$, $R_2(t) = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}$, $R_3(t) = \begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$, $R_4(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$. $R_2 \simeq R_3$.
- 2. $G = S_4$, $R_1: S_4 \rightarrow \operatorname{Sym} T \subset \operatorname{GL}(\mathbb{E}^3)$, $R_2: S_4 \rightarrow \operatorname{Sym}_+ K \subset \operatorname{GL}(\mathbb{E}^3)$. $\det R_2(g) \equiv 1 \ \forall g, \det R_1(g) \neq 1$ при $g \notin A_4 \Rightarrow R_1 \not\simeq R_2$.
- 3. $G = S_3$, $R: S_3 \widetilde{\longrightarrow} \operatorname{Sym} \triangle \subset \operatorname{GL}(\mathbb{E}^2)$.
- 4. $G = S_4, S: S_4 \to S_3 \xrightarrow{\sim} \operatorname{Sym} \triangle \subset \operatorname{GL}(\mathbb{E}^2).$
- 5. Одномерные представления гомоморфизмы $G \to K^*$. В частности, det: $GL_n(K) \to K^*$, sgn: $S_n \to \{\pm 1\}$.
- 6. Тривиальные представления: $I: G \to \mathrm{GL}(V), I(g) = \mathcal{E} \ \forall g \in G.$

Расширение поля $K \subset L$ (например, $\mathbb{R} \subset \mathbb{C}$), $R: G \to \mathrm{GL}_n(K) \subset \mathrm{GL}_n(L)$.

Сумма представлений $R\colon G\to \mathrm{GL}(V)$ и $S\colon G\to \mathrm{GL}(U)$ — это представление $R+S\colon G\to \mathrm{GL}(V\oplus U)$, определяемое по следующим формулам: (R+S)(g)(v,u)=(R(g)v,S(g)u) или $(R+S)(g)=\left(\begin{smallmatrix} R(g)&0\\0&S(g)\end{smallmatrix}\right)$.

Примеры.

1. Пусть $R_3: \mathbb{R} \to \mathrm{GL}(\mathbb{R})$, тогда оно является суммой двух представлений $t \mapsto e^t, t \mapsto e^{-t}$.

Пусть $R: G \to \operatorname{GL}(V)$ — некоторое представление Подпространство $U \subset V$ называется инвариантным относительно представления R, если оно инвариантно относительно всех операторов $R(g), g \in G$, т.е. $R(g)u \in U \ \forall u \in U, g \in G$. В матричной форме (в базисе пространства V, согласованным с U) это означает, что $R(g) = \binom{*}{0} \binom{*}{0}$ $\forall g \in G$.

Если U инвариантно, то можно рассматривать ограничение представления R на U: $R_U(g)u = R(g)u \quad \forall u \in U$. В матричной форме $R(g) = \begin{pmatrix} R_U(g) & * \\ 0 & * \end{pmatrix}$.

Линейное представление $R \colon G \to \mathrm{GL}(V)$ называется $\mathit{henpusodumыm},$ если в V нет нетривиальных инвариантных подпространств.

Линейное представление $R\colon G\to \mathrm{GL}(V)$ называется вполне приводимым, если для всякого инвариантного подпространства $U\subset V$ существует инвариантное дополнительное подпространство $W\subset V$.

Всякое неприводимое представление вполне приводимо.

Всякое одномерное представление неприводимо.

Неприводимое представление может стать приводимым после расширения поля.

Примеры.

1. $G = \mathbb{R}$. Представление R_1 неприводимо над \mathbb{R} , но разлагается в сумму двух одномерных представлений над \mathbb{C} : $R_1 = \begin{pmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{pmatrix}$ в базисе $(e_1 - ie_2, e_1 + ie_2)$.

Представление R_3 разлагается в сумму двух одномерных над \mathbb{R} . Представление R_4 приводимо, но не вполне приводимо.

2. $G = S_4$. Представления R_1 и R_2 неприводимы, т.к. у них повороты на 120° вокруг осей, проходящих через вершины, не имеют 1-мерных инвариантных подпространств.

ЛЕКЦИЯ 12.

Теорема 11.1. Ограничение вполне приводимого представления на инвариантное подпространство U также вполне приводимо.

Доказательство. Пусть $U_1 \subset U$ — инвариантное подпространство. Тогда существует инвариантное подпространство $V_2 \subset V$: $V = U_1 \oplus V_2$. Рассмотрим инвариантное подпространство $U_2 = V_2 \cap U$. Докажем, что $U = U_1 \oplus U_2$.

- 1) $U_1 \cap U_2 \subset U_1 \cap V_2 = 0$.
- 2) $\forall u \in U \ u = u_1 + u_2$, где $u_1 \in U_1, u_2 \in V_2$. Но $u_2 = u u_1 \in U \Rightarrow u_2 \in U_2$.

Теорема 11.2. Линейное представление $R: G \to \mathrm{GL}(V)$ является вполне приводимым \Leftrightarrow оно раскладывается в сумму неприводимых представлений.

Доказательство. 1) Пусть R вполне приводимо. Пусть $0 \neq V_1 \subset V$ — минимальное инвариантное подпространство. Тогда $R|_{V_1} = R_1$ неприводимо. Существует инвариантное дополнение — подпространство V_1' : $V = V_1 \oplus V_1'$. Пусть $0 \neq V_2 \subset V_1'$ — минимальное инвариантное подпространство и V_2' — инвариантное дополнительное подпространство: $V_1' = V_2 \oplus V_2'$. Тогда $R|_{V_2} = R_2$ неприводимо, и т.д. В конце концов мы получим сумму минимальных инвариантных подпространств: $V = V_1 \oplus \ldots \oplus V_s$. Это означает, что $R = R_1 + \ldots + R_s$, где $R_i = R|_{V_i}$ — неприводимые представления.

2) Обратно, пусть R разлагается в сумму неприводимых представлений. Это означает, что пространство V разлагается в прямую сумму минимальных инвариантных подпространств: $V = V_1 \oplus \ldots \oplus V_s$.

Пусть $U \subset V$ — инвариантное подпространство. Будем искать дополнительное инвариантное подпространство в виде суммы некоторых из V_1, \ldots, V_s . Для всякого $I \subset \{1, \ldots, s\}$ положим $V_I = \bigoplus_{i \in I} V_i$. Пусть I — максимальное подмножество, для которого $U \cap V_I = 0$. Докажем, что $V = U \oplus V_I$. По построению $U \cap V_I = 0$. $\forall j \notin I$ $U \cap V_{I \cup \{j\}} \neq 0$, т.е. $\exists u \in U : u = \sum_{i \in I} v_i + v_j$, где $v_i \in V_I$, $v_j \in V_j$. Тогда $v_j = u - \sum_{i \in I} v_i \in U \oplus V_i$. Значит, $V_j \cap (U \oplus V_i) \neq 0$. Т.к. V_j — минимальное инвариантное подпространство, то $V_i \subset U \oplus V_I$. Значит, $V = U \oplus V_I$.

Примеры.

1. $G = \mathbb{Z}, R: \mathbb{Z} \to \operatorname{GL}(V), R(1) = \mathcal{A} \in \operatorname{GL}(V) \Rightarrow R(k) = \mathcal{A}^k$. Т.о., представление R определяется однозначно линейным оператором \mathcal{A} . Обратно, $\forall \mathcal{A} \in \operatorname{GL}(V)$ формула $R(k) = \mathcal{A}^k$ определяет линейное представление группы \mathbb{Z} .

Если R — комплексное представление группы \mathbb{Z} , то его неприводимость означает, что $\dim V = 1$, а полная приводимость — что R есть сумма одномерных представлений, т.е. матрица оператора \mathcal{A} приводится к диагональному виду.

Теорема 11.3. Всякое линейное представление $R: G \to \mathrm{GL}(V)$ конечной группы G над полем характеристики θ вполне приводимо.

Доказательство. Пусть $U\subset V$ — инвариантное подпространство и $W\subset C$ — дополнительное подпространство к $U\colon V=U\oplus W$. Пусть \mathcal{P} —

проектор на U параллельно W, т.е. $\forall v = u + w$, где $u \in U$, $w \in W$ $\mathcal{P}v = u$. Рассмотрим усреднение проектора \mathcal{P} по группе G:

$$\mathcal{P}_0 = \frac{1}{|G|} \sum_{g \in G} R(g) \mathcal{P} R(g)^{-1}.$$

Докажем некоторые свойства оператора \mathcal{P}_0 .

1) $\forall u \in U$ $\mathcal{P}_0 u = u$: т.к. $R(g)^{-1} u \in U$, то $\mathcal{P}R(g)^{-1} u = R(g)^{-1} u$ и $\mathcal{P}_0 u = \frac{1}{|G|} \sum_{g \in G} R(g) R(g)^{-1} u = u$.

2) $\forall v \in V \ \mathcal{P}_0 v \in U$: T.K. $\mathcal{P}R(g)^{-1}v \in U$, TO

$$\mathcal{P}_0 v = \frac{1}{|G|} \sum_{g \in G} R(g) \mathcal{P} R(g)^{-1} v \in U.$$

Положим $W_0 = \ker \mathcal{P}_0$. Тогда

- 1) $U \cap W_0 = 0$.
- 2) $U + W_0 = V : \forall v \in V \ v = \mathcal{P}_0 v + (v \mathcal{P}_0 v).$

Таким образом, $V=U\oplus W_0$. Покажем, что W_0 инвариантно. Пусть $w\in W_0,\,h\in G.$ Тогда

$$\begin{split} \mathcal{P}_0 R(h) w &= \frac{1}{|G|} \sum_{g \in G} R(g) \mathcal{P} R(g)^{-1} R(h) w = \\ &= \frac{1}{|G|} R(h) \sum_{g \in G} (R(h)^{-1} R(g)) \mathcal{P} (R(g)^{-1} R(h)) w = \\ &= \frac{1}{|G|} R(h) \sum_{g \in G} R(h^{-1} g) \mathcal{P} R(h^{-1} g)^{-1} w = \\ &= \frac{1}{|G|} R(h) \sum_{g \in G} R(g) \mathcal{P} R(g)^{-1} w = R(h) \mathcal{P}_0 w = 0. \end{split}$$

Примеры.

1. Докажем, что два трехмерных представлений группы S_4 неприводимы над \mathbb{C} .

 $R_{1,2} \colon S_4 \to \mathrm{GL}(\mathbb{E}^3)$. Если существует двумерное комплексное инвариантное подпространство, то в силу полной приводимости есть и

одномерное инвариантное подпространство, например. $\langle z=x+iy\rangle$. Тогда $\forall g\in G$ $R(g)z=(\lambda+i\mu)z$, где $\lambda,\mu\in\mathbb{R}$, т.е. $R(g)x=\lambda x-\mu y$, $R(g)y=\mu x+\lambda y\Rightarrow$ вещественное подпространство $\langle x,y\rangle$ инвариантно — противоречие.

2. Мономиальное представление группы S_n . Пусть V — векторное пространство с базисом $\{e_1,\ldots,e_n\}$ (т.е. $\dim V=n$). Определим представление $M\colon S_n\to \operatorname{GL}(V)$ по правилу $R(\sigma)e_i=e_{\sigma(i)}$. Подпространства $\langle e_1+\ldots+e_n\rangle$ и $V_0=\left\{\sum_{i=1}^n x_ie_i:\sum_{i=1}^n x_i=0\right\}$ являются инвариантными и взаимно дополнительными. Тогда M раскладывается в сумму одномерного представления и (n-1)-мерного представления $M_0=M|_{V_0}$. Докажем, что оно неприводимо. Пусть $U\subset V_0$ — инвариантное подпространство. Возьмем $0\neq u=\sum_i x_ie_i\in U$. Т.к. мы можем переставлять координаты, то можно считать. что $X_1\neq x_2$. Тогда $R((12))u-u=(x_2-x_1)(e_1-e_2)\in U\Rightarrow e_1-e_2\in U\Rightarrow e_i=e_j\in U \ \forall i,j\Rightarrow V_0=U$. В частности при n=4 $M_0=R_1$.

ЛЕКЦИЯ 13.

Теорема 11.4 (Лемма Шура). Пусть $R: G \to GL(V)$ — неприводимое комплексное линейное представление группы G. Тогда всякий линейный оператор \mathcal{A} в пространстве V, перестановочный со всеми операторами R(g) (где $g \in G$), скалярен.

Доказательство. Пусть λ — собственное значение оператора \mathcal{A} и $V_{\lambda} = \{v \in V : \mathcal{A}v = \lambda v\}$. Тогда V_{λ} инвариантно относительно всех операторов представления: $\forall v \in V_{\lambda} \quad \mathcal{A}R(g)v = R(g)\mathcal{A}v = \lambda R(g)v \Rightarrow V_{\lambda} = V$, т.е. $\mathcal{A} = \lambda \mathcal{E}$.

Следствие 11.1. Всякое неприводимое комплексное представление абелевой группы одномерно.

Доказательство. Пусть G — абелева группа и $R \colon G \to \mathrm{GL}(V)$ — неприводимое комплексное представление. Тогда

$$\forall q, h \in G \ R(q)R(h) = R(qh) = R(hq) = R(h)R(q),$$

т.е. R(h) перестановочен со всеми операторами представления, и по лемме Шура R(h) — скалярный оператор.

Опишем все комплексные линейные представления конечных абелевых групп.

Т.к. всякое представление есть сумма неприводимых, а всякое неприводимое представление одномерно, то достаточно описать одномерные представления.

Пусть $G = \langle a_1 \rangle_{n_1} \times \ldots \times \langle a_s \rangle_{n_s}$. Одномерное представление есть гомоморфизм $R \colon G \to \mathbb{C}^*$. Оно определяется числами $R(a_1) = \varepsilon_1, \ldots, R(a_s) = \varepsilon_s$, т.к. $R(a_1^{k_1} \ldots a_s^{k_s})$. Далее, т.к. $a_i^{n_i} = e$, то должно быть $\varepsilon_i^{n_i} = 1$. Обратно, если $\varepsilon_1, \ldots, \varepsilon_s$ удовлетворяют этим условиям, то предыдущая формула определяет одномерное представление группы G. Т.о., получается $n_1 \ldots n_s = |G|$ представлений.

Теорема 11.5. Пусть R — это одномерное представление группы G и π : $G \to G/(G,G)$ — канонический гомоморфизм. Тогда существует такое одномерное представление \bar{R} группы G/(G,G), что $R=\bar{R}\circ\pi$.

Доказательство. Очевидно, что если \bar{R} — одномерное представление группы G/(G,G), то $R=\bar{R}\circ\pi$ — одномерное представление группы G.

Докажем, что $(G,G) \subset \ker R$: R((g,h)) = (R(g),R(h)) = 1. Следовательно, все элементы каждого смежного класса g(G,G) при представлении R переходят в одно и то же число. Значит, $\exists \bar{R} : G/(G,G) \to K^*$: $R = \bar{R} \circ \pi$. А именно, $\bar{R}(g(G,G)) = R(g)$.

Отображение
$$\bar{R}$$
 — гомоморфизм: $\bar{R}(g(G,G)\cdot h(G,G)) = \bar{R}(gh(G,G)) = R(gh) = R(g)R(h) = \bar{R}(g(G,G))\cdot \bar{R}(h(G,G)).$

Примеры.

- 1. $G = S_n$, $(G, G) = A_n$, $S_n/A_n \simeq C_2$. Значит, группа S_n имеет два одномерных комплексных представления: тривиальное и sgn.
- 2. $G = D_n = \langle a, b \rangle$, где a поворот на угол $\frac{2\pi}{n}$, b отражение. Элементы a и b удовлетворяют соотношениям $a^n = e$, $b^2 = e$, $(ab)^2 = e$. Значит, $(a,b) = a^2$ и $(G,G) \supset \langle a^2 \rangle$. Если n четно, то ord $a^2 = n/2 \Rightarrow |D_n/\langle a^2 \rangle| = 4 \Rightarrow D_n/\langle a^2 \rangle$ абелева $\Rightarrow (G,G) = \langle a^2 \rangle$. Если n нечетно, то ord $a^2 = n \Rightarrow \langle a^2 \rangle = C_n \Rightarrow (G,G) = C_n$. Т.о., группа D_n имеет 4 одномерных представления, если n четно, и 2, если n нечетно.

Опишем все неприводимые комплексные представления группы D_n . Заметим, что всякий элемент группы D_n представляется в виде a^k или $a^k b$, причем этот вид определен однозначно с точностью до прибавления к k целого кратного n.

Пусть $R: D_n \to \operatorname{GL}(V)$ — неприводимое комплексное представление, $\dim V > 1$. Положим $R(a) = \mathcal{A}$, $R(b) = \mathcal{B}$. Операторы \mathcal{A} и \mathcal{B} удовлетворяют соотношениям $\mathcal{A}^n = \mathcal{E}$, $\mathcal{B}^2 = \mathcal{E}$, $\mathcal{B}\mathcal{A}\mathcal{B} = \mathcal{A}^{-1}$. Обратно, формулы $R(a^k) = \mathcal{A}^k$, $R(a^kb) = \mathcal{A}^k\mathcal{B}$ определяют представление группы D_n в пространстве D_n : $R(a^k \cdot a^l) = R(a^{k+l}) = \mathcal{A}^{k+l} = \mathcal{A}^k \cdot \mathcal{A}^l = R(a^k) \cdot R(a^l)$, $R(a^k \cdot a^lb) = \mathcal{A}^{k+l}\mathcal{B} = R(a^{k+l}b) = R(a^k) \cdot R(a^lb)$, $R(a^kb \cdot a^l) = R(a^k(ba^lb^{-1})b) = R(a^{k-l}b) = \mathcal{A}^{k-l}\mathcal{B} = \mathcal{A}^k\mathcal{B}\cdot\mathcal{A}^l = R(a^kb)\cdot R(a^l)$, $R(a^kb \cdot a^lb) = R(a^kb) \cdot R(a^lb)$.

Пусть $e \in V$ — собственный вектор оператора \mathcal{A} : $\mathcal{A}e = \lambda e$. Положим $f = \mathcal{B}e$. Заметим, что e и f не коллинеарны, т.к. иначе $\langle e \rangle$ инвариантно и $V = \langle e \rangle$ одномерно. Далее, $\mathcal{A}f = \mathcal{A}\mathcal{B}e = \mathcal{B}\mathcal{A}^{-1}e = \lambda^{-1}\mathcal{B}e = \lambda^{-1}f$, т.е. f — собственный вектор оператора \mathcal{A} . $\mathcal{B}f = \mathcal{B}^2e = e \Rightarrow$ подпространство $\langle e, f \rangle$ инвариантно $\Rightarrow V = \langle e, f \rangle$. В базисе $\{e, f\}$ $\mathcal{A} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$, $\mathcal{B} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. При этом $\lambda^n = 1$ и $\lambda \neq \pm 1$, т.к. иначе $\lambda = \lambda^{-1}$ и подпространство $\langle e + f \rangle$ инвариантно.

Построенное таким образом неприводимое двумерное представление группы D_n обозначим R_{λ} .

Очевидно, что $R_{\lambda} \simeq R_{\mu} \Leftrightarrow \mu = \lambda^{\pm 1}$. Т.о., получается $\frac{n-2}{2}$ двумерных неприводимых представлений при четном n и $\frac{n-1}{2}$ при нечетном n.

12. Морфизмы представлений.

Морфизмом представления $R\colon G\to \mathrm{GL}(V)$ в представление $S\colon G\to \mathrm{GL}(U)$ называется всякое линейное отображение $f\colon V\to U$, для которого коммутативна следующая диаграмма:

$$V \xrightarrow{R(g)} V$$

$$f \downarrow \qquad \qquad \downarrow f$$

$$U \xrightarrow{S(g)} U$$

Все линейные отображения $f\colon V\to U$ образуют векторное пространство, а морфизмы представлений образуют в нем подпространство, обозначаемое $\mathrm{Mor}(R,S).$

Предложение 12.1. $Mor(R_1 + R_2, S) \simeq Mor(R_1, S) \oplus Mor(R_2, S)$.

Доказательство. Пусть $R_1\colon G\to \mathrm{GL}(V_1),\ R_2\colon G\to \mathrm{GL}(V_2),\ S\colon G\to \mathrm{GL}(U)$. Тогда $R_1+R_2\colon G\to \mathrm{GL}(V_1\oplus V_2)$ и любой морфизм $f\in \mathrm{Mor}(R_1+R_2,S)$ имеет вид

$$f((v_1, v_2)) = f_1(v_1) + f_2(v_2)$$
, где $f_1 \in \text{Mor}(R_1, S), f_2 \in \text{Mor}(R_2, S)$.

Отображение $f \mapsto (f_1, f_2)$ и есть искомый изоморфизм. \square

В частности, Mor(R, R) есть пространство линейных операторов, перестановочных со всеми операторами представления.

Если R — неприводимое комплексное представление, то по лемме Шура $\dim \operatorname{Mor}(R,R) = 1$.

Теорема 12.1. Если R, S — неприводимые комплексные представления, то

$$\dim \operatorname{Mor}(R,S) = \begin{cases} 1, & ecnu \ R \simeq S \\ 0, & ecnu \ R \not\simeq S. \end{cases}$$

Доказательство. Если $R\simeq S$, то можно считать, что R=S и тогда $\dim\operatorname{Mor}(R,R)=1.$

Пусть $R\not\simeq S$ и $0\not=f\in {\rm Mor}(R,S)$. Тогда $\ker f$ инвариантно \Rightarrow $\ker f=0$. Далее, $\mathop{\rm Im} f$ инвариантно \Rightarrow $\mathop{\rm Im} f=U\Rightarrow f$ — изоморфизм — противоречие.

Следствие 12.1. Пусть $R = \sum_{i} k_i R_i$ — разложение представления R в сумму неприводимых. Тогда $k_j = \dim \operatorname{Mor}(R, R_j)$.

Доказательство.
$$\operatorname{Mor}(R, R_j) \simeq \bigoplus_i k_i \operatorname{Mor}(R_i, R_j) = k_j \operatorname{Mor}(R_j, R_j) = k_j$$
.

Примеры.

1. Найдем число 4-мерных комплексных представлений группы D_6 . Имеется 4 одномерных и 2 двумерных неприводимых комплексных представления. $4=\underbrace{2+2}_3=\underbrace{2+1+1}_{2(4+6)=20}=\underbrace{1+1+1+1}_{CC_4^4=35}$, значит, всего

58 4-мерных представлений

²Здесь в лекции было сказано «нетривиальных». Полагаю, это оговорка.

ЛЕКЦИЯ 14.

13. РЕГУЛЯРНЫЕ ПРЕДСТАВЛЕНИЯ.

Пусть G — конечная группа, A — векторное пространство с базисом $\{a_g:g\in G\}\ (\dim A=|G|)$. Рассмотрим представление $L\colon G\to \mathrm{GL}(A),$ $L(g)a_h=a_{gh}$. Это представление называется регулярным.

Для простоты будем писать просто g вместо a_q . Тогда L(g)h = gh.

Теорема 13.1. Кратность вхождения каждого неприводимого³ комплексного линейного представления R группы G в регулярное представление равна $\dim R$.

Доказательство. Опишем пространство $\mathrm{Mor}(L,R)$, где $R\colon G\to \mathrm{GL}(V)$ — любое представление. Пусть $f\in \mathrm{Mor}(L,R)$, $f\colon A\to V$ перестановочно с действием G. f(e)=v однозначно определяет $f\colon f(g)=f(L(g)e)==R(g)v$.

Обратно, $\forall v \in V$ определим линейное отображение $f_v \colon A \to V$ по формуле $f_v(g) = R(g)v$. Оно будет перестановочно с действием G:

$$f_v(L(g)h) = f_v(gh) = R(gh)v = R(g)R(h)v = R(g)f_v(h).$$

Кроме того, f_v линейно зависит от v: $f_{v_1+v_2} = f_{v_1} + f_{v_2}$, $f_{\lambda v} = \lambda f_v$. T.o., $\operatorname{Mor}(L, R) \simeq V$ и $\operatorname{dim} \operatorname{Mor}(L, R) = \operatorname{dim} V$.

Если R неприводимо, то по теореме 12.1 dim $\mathrm{Mor}(L,R)$ равно кратности вхождения R в L.

Следствие 13.1. Конечная группа имеет лишь конечное число неприводимых комплексных представлений и сумма квадратов их размерностей равна порядку группы. \square

Примеры.

- 1. G абелева: $\underbrace{1^2 + \ldots + 1^2}_{n=|G|} = n$.
- 2. $G = D_n$. Пусть n четно $\Rightarrow \frac{n-2}{2} \cdot 2^2 + 4 \cdot 1^2 = 2n$. Пусть n нечетно $\Rightarrow \frac{n-1}{2} \cdot 2^2 + 2 \cdot 1^2 = 2n$.

 $^{{}^{3}{}m B}$ лекциях опять-таки было сказано «нетривиального».

⁴И здесь в лекции было «нетривиальных».

3. $G = S_4$: $1^2 + 1^2 + 2^2 + 3^2 + 3^2 = 24 = |G|$. Значит, других нетривиальных комплексных линейных представлений нет.

Теорема 13.2 (Без доказательства). Число неприводимых комплексных линейных представлений конечной группы G равно числу классов сопряженности в G.

Примеры.

- 1. G абелева: число неприводимых представлений равно |G|.
- 2. $G = S_4$: 5 классов сопряженности \Rightarrow есть 5 неприводимых представлений.
- 3. $G = A_5$. $|G| = 60 = 1^2 + 3^2 + 4^2 + 34$. Число классов сопряженности равно $5 \Rightarrow |G| = 1^2 + 3^2 + 4^2 + (3^2 + 5^2)$.

14. Линейные представления группы \mathbb{R} .

Рассмотрим представление $F: \mathbb{R} \to \operatorname{GL}(V)$ аддитивной группы \mathbb{R} , где V — векторное пространство над полем $K = \mathbb{R}$ или $K = \mathbb{C}$. $F(t+u) = F(t) \cdot F(u) \quad \forall t, u \in \mathbb{R}$ (однопараметрическая группа линейных операторов).В матричной записи $F(t) = (F_{ij}(t))$. Потребуем, чтобы функции $F_{ij}(t)$ были непрерывно дифференцируемы.

Теорема 14.1. Дифференцируемое отображение $F: \mathbb{R} \to \operatorname{GL}(V)$ является линейным представлением $\Leftrightarrow F'(t) = \mathcal{A}F(t)$ для некоторого оператора $\mathcal{A} \in V^*$, $u F(0) = \mathcal{E}$.

Замечание. $\mathcal{A} = F'(0)$.

Доказательство. 1) Пусть F — гомоморфизм. Тогда $\forall t, u \in \mathbb{R}$ $F(u+t) = F(u) \cdot F(t)$. Дифференцируя по u при u = 0, получаем $F'(t) = F'(0) \cdot F(t) = \mathcal{A}F(t)$.

2) Обратно, пусть $F'(t) = \mathcal{A}F(t)$, $F(0) = \mathcal{E}$. Данное дифференциальное уравнение можно рассматривать как систему из n^2 обычных дифференциальных уравнений с n^2 неизвестными функциями. По общей теореме о решениях системы дифференциальных уравнений решение однозначно определяется начальным условием.

 $\forall \mathcal{C} \in V^*$ рассмотрим функцию $F_{\mathcal{C}}(t) = F(t)\mathcal{C}$. Она удовлетворяет тому же уравнению: $F'_{\mathcal{C}}(t) = F'(t)\mathcal{C} = \mathcal{A}F(t)\mathcal{C} = \mathcal{A}F_{\mathcal{C}}(t)$ с начальным условием $F_{\mathcal{C}}(0) = \mathcal{C}$.

 $\forall u \in \mathbb{R}$ рассмотрим матричную функцию $F_u(t) = F(t+u)$. Имеем: $F'_u(t) = F'(t+u) = \mathcal{A}F(t+u) = \mathcal{A}F_u(t)$. Следовательно, $F_u(t) = F(t)\mathcal{C}$, где $\mathcal{C} = F_u(0) = F(u)$.

T.o.,
$$F(t+u) = F(t) \cdot F(u) \ \forall t, u \in \mathbb{R}$$
.

В случае dim V=1 мы получаем обычное дифференциальное уравнение f'(t)=af(t), f(0)=1. Его решение — это экспонента: $f(t)=e^{at}$.

Экспонента — это сумма бесконечного ряда: $e^a = \sum_{k=0}^{\infty} \frac{a^k}{k!}$. Можно попробовать написать такой же ряд для линейного оператора \mathcal{A} : $e^{\mathcal{A}} = \sum_{k=0}^{\infty} \frac{\mathcal{A}^k}{k!}$. Чтобы придать смысл этому ряду, надо определить сходимость последовательности матриц.

Рассмотрим матрицы над полем $K = \mathbb{R}$ или $K = \mathbb{C}$. Норма матрицы $A = (a_{ij})$: $||A|| = \max_i \sum_i |a_{ij}|$.

Свойства.

- 1. $||A|| \ge 0$, причем $||A|| = 0 \Leftrightarrow A = 0$
- 2. $\sum_{j} |a_{ij}| \leq ||A||$
- 3. $||A+B|| \le ||A|| + ||B|| : \forall i \sum_{i} |a_{ik} + b_{ij}| \le \sum_{i} |a_{ik}| + \sum_{i} |b_{ij}| \le ||A|| + ||B||.$
- 4. $||AB|| \leq ||A|| \cdot ||B||$: пусть $C = AB = (c_{ij}) \Rightarrow \forall i$

$$\sum_{k} |c_{ik}| = \sum_{k} \sum_{j} |a_{ij}| \cdot |b_{jk}| \leqslant \sum_{j} |a_{ij}| \cdot ||B|| \leqslant ||A|| \cdot ||B||.$$

Последовательность матриц A_k сходится κ матрице A, если $\|A - A_k\| \to 0$. Это равносильно поэлементной сходимости. Пишут: $A_k \to A$.

Теорема 14.2 (Критерий Коши). Ряд $\sum_{k=1}^{\infty} A_k$ сходится $\Leftrightarrow A_{p+1} + \ldots + A_q \to 0$ при $p, g \to \infty$. \square

Предложение 14.1. Если числовой ряд $\sum_{k=1}^{\infty} \|A_k\|$ сходится, то и матричный ряд $\sum_{k=1}^{\infty} A_k$ сходится, причем его сумма не зависит от порядка слагаемых.

Доказательство. Если ряд $\sum_{k=1}^{\infty}\|A_k\|$ сходится, то $\|A_{p+1}+\ldots+A_q\| \leqslant \|A_{p+1}\|+\ldots+\|A_q\| \to 0$ при $p,q\to\infty$ \Rightarrow ряд $\sum_{k=1}^{\infty}A_k$ сходится по критерию Коши, причем каждый ряд из матричных элементов сходится абсолютно \Rightarrow сумма ряда не зависит от порядка слагаемых.

Теорема 14.3. $\forall A \text{ ряд } \sum_{k=1}^{\infty} \frac{A^k}{k!} \text{ сходится абсолютно.}$

Доказательство.
$$\sum_{k=0}^{\infty} \left\| \frac{A^k}{k!} \right\| \leqslant \sum_{k=0}^{\infty} \frac{\|A\|^k}{k!} -$$
сходится абсолютно.

Экспонента матрицы A: $e^A = \sum_{k=1}^{\infty} \frac{A^k}{k!}$.

Лекция 15.

 $e^{C^{-1}AC} = \sum_{k=0}^{\infty} \frac{C^{-1}A^kC}{k!} = C^{-1}e^AC$. Это позволяет определить экспоненту линейного оператора: e^A — это линейный оператор с матрицей e^A , где A — матрица оператора \mathcal{A} .

Лемма 14.1. Если AB = BA, то $e^{A+B} = e^A \cdot e^B$.

Доказательство. Т.к. ряд $\sum\limits_{k=0}^{\infty}\sum\limits_{\substack{p,q=0\\p+q=k}}^{k}\frac{A^{p}B^{q}}{p!q!}$ сходится абсолютно, то суммировать можно в любом порядке \Rightarrow

$$\begin{split} e^{A+B} &= \sum_{k=0}^{\infty} \frac{(A+B)^k}{k!} = \sum_{k=0}^{\infty} \sum_{\substack{p,q=0\\p+q=k}}^k \frac{C_k^p A^p B^q}{k!} = \\ &= \sum_{k=0}^{\infty} \sum_{\substack{p,q=0\\p+q=k}}^k \frac{A^p B^q}{p! q!} = \sum_{p=0}^{\infty} \frac{A^p}{p!} \cdot \sum_{q=0}^{\infty} \frac{B^q}{q!} = e^A \cdot e^B. \end{split}$$

Теорема 14.4. $\forall A$ отображение F_A : $t \mapsto e^{tA}$ есть линейное представление группы \mathbb{R} , причем F'(0) = A.

Доказательство. Нужно проверить, что $F'_A(t) = AF_A(t), F_A(0) = E$. Вычислим производную $F'_A(0)$:

$$\frac{e^{tA} - E}{t} = \sum_{k=1}^{\infty} \frac{t^{k-1} A^k}{k!} = A + t \sum_{k=2}^{\infty} \frac{A^k t^{k-2}}{k!}.$$

При |t| < 1 ряд мажорируется числовым рядом

$$\frac{\|A\|^2}{2!} + \frac{\|A\|^3}{3!} + \dots = C(=e^{\|A\|} - 1 - \|A\|),$$

и, следовательно, сходится, причем его сумма по норме не больше C. Значит, $F_A'(0) = \lim_{t\to 0} \frac{e^{tA}-E}{t} = A$.

Т.к. матрицы
$$tA$$
 и uA коммутируют $\forall t, u \in \mathbb{R}$, то $F_A(t+u) = F_A(t) \times F_A(u)$. $F'_A(t) = \frac{d}{du}F_A(u+t)\big|_{u=0} = \frac{d}{du}F_A(u)\big|_{u=0} \cdot F_A(t) = AF_A(t)$.

Примеры.

1. Рассмотрим 4 двумерных представления группы ℝ:

$$R_{1}(t) = \begin{pmatrix} \cos t - \sin t \\ \sin t \cos t \end{pmatrix}, R'_{1}(0) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = A_{1} \Rightarrow R_{1}(t) = e^{t\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}}.$$

$$R_{2}(t) = \begin{pmatrix} \cot t & \cot t \\ \cot t & \cot t \end{pmatrix}, R'_{2}(0) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = A_{2} \Rightarrow R_{2}(t) = e^{t\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}.$$

$$R_{3}(t) = \begin{pmatrix} e^{t} & 0 \\ 0 & e^{-t} \end{pmatrix}, R'_{3}(0) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = A_{3} \Rightarrow R_{3}(t) = e^{t\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}.$$

$$R_{4}(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}, R'_{4}(0) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = A_{4} \Rightarrow R_{1}(t) = e^{t\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}}.$$

15. Идеалы и факторкольца.

Если в кольце A имеется отношение эквивалентности, согласованное со сложением и умножением, то на множестве классов эквивалентности можно ввести операции сложения и умножения по формулам $[a] + [b] = [a+b], [a] \cdot [b] = [ab].$

Найдем отношения эквивалентности, согласованные с операциями. Т.к. кольцо — это абелева группа, то всякое такое отношение есть отношение сравнимости по модулю подгруппы $I: a \sim b \Leftrightarrow a \equiv b \pmod{I} \Leftrightarrow a-b \in I$.

Найдем, какой должна быть подгруппа I, чтобы это отношение было согласовано с операцией умножения.

Теорема 15.1. Отношение сравнимости по модулю подгруппы $I \subset A$ согласовано с умножением $\Leftrightarrow I$ — идеал кольца A (m.e. AI = IA = I).

Доказательство. 1) Пусть отношение эквивалентности по модулю I согласовано с умножением. Тогда $\forall u \in I \ u \equiv 0 \pmod{I}$, и, значит, $au \equiv a \cdot 0 \equiv 0 \pmod{I}$, $ua \equiv 0 \cdot a \equiv 0 \pmod{I}$.

2) Обратно, пусть I — идеал и $a \equiv a' \pmod{I}$, $b \equiv b' \pmod{I}$. Тогда a' = a + u, b' = b + v, где $u, v \in I$. Значит, $a'b' = ab + (ub + av + uv) \equiv ab \pmod{I}$.

Если I — идеал кольца A, то в факторгруппе A/I можно определить операцию умножения по формуле (a+I)(b+I) = ab+I. Определенное таким образом умножение в A/I дистрибутивно относительно сложения.

Построенное таким образом кольцо A/I называется факторкольцом кольца A по идеалу I.

Примеры.

1. $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$ (кольцо вычетов по модулю n).

Имеется канонический гомоморфизм $\pi: A \to A/I, a \mapsto a+I.$

Теорема 15.2 (О гомоморфизме колец). Пусть $f: A \to B$ — гомоморфизм колец. Тогда $\ker f = I$ — идеал кольца A и $f = \bar{f} \circ \pi$, где $\pi: A \to A/I$ — канонический гомоморфизм, а $\bar{f}: A/I \to B$ — некоторый гомоморфизм. Если f сюръективен. то \bar{f} — изоморфизм. \square

Пусть A — коммутативное ассоциативное кольцо с единицей. Тогда всякое факторкольцо также является коммутативным ассоциативным кольцом с единицей.

 $\forall a \in A$ определим главный идеал $(a) = \{ua : u \in A\}$. Легко проверить, что это идеал.

Примеры.

1. В кольце $\mathbb{Z}(n) = n\mathbb{Z}$.

Отношение сравнимости по модулю главного идеала (u) — это то, что в 1-м семестре называлось отношением сравнимости по модулю u: $a \equiv b \pmod{(u)} \Leftrightarrow a - b \in (u) \Leftrightarrow a - b = cu \Leftrightarrow a \equiv b \pmod{u}$.

Не все идеалы являются главными.

Примеры.

1. В кольце K[x,y] (K — поле) идеал $I = \{f \in K[x,y] : f(0,0) = 0\}$ не является главным.

Целостное кольцо A, не являющееся полем, называется eвклидовым кольцом, если задано отображение $N\colon A\setminus\{0\}\to\mathbb{Z}_+$ (которое называется нормой), удовлетворяющее условиям

- 1) $N(ab) \geqslant N(a)$, причем равенство достигается $\Leftrightarrow b$ обратим,
- 2) $\forall a \in b, \ \forall b \in A \setminus \{0\}$ $\exists q, r \in A : a = bq + r$ и либо r = 0, либо N(r) < N(b).

Теорема 15.3. В евклидовом кольце всякий идеал главный.

Доказательство. Пусть I — идеал евклидова кольца A. Если I=0, то I=(0). Если $I\neq 0$, то пусть $u\in I$ — элемент наименьшей нормы. Тогда $I\supset (u)$. Докажем, что на самом деле I=(u). Пусть $a\in I$, тогда a=qu+r, где r=0 или N(r)< N(u). Но $r=a-qu\in I\Rightarrow r=0$.

ЛЕКЦИЯ 16.

 $a \equiv b \pmod{(u)} \Leftrightarrow a \equiv b \pmod{u}$. Т.о., факторкольцо A/(u) — это то же самое, что кольцо вычетов по модулю u. Например, $\mathbb{Z}/(n) = \mathbb{Z}_n$.

Теорема 15.4. Пусть A - eвклидово кольцо $u \ u \in A$. Тогда A/(u) является полем $\Leftrightarrow u - n$ ростой элемент.

Доказательство. 1) Если u=0, то A/(u)=A — не поле по определению евклидова кольца.

- 2) Если u обратим, то (u) = A и $A/(u) = \{0\}$ не поле по определению поля.
- 3) Если $u = v \cdot w$, где v и w необратимы, то $[v] \cdot [w] = 0$ в A/(u). Но $[v], [w] \neq 0$, т.к. v и w не делятся на u. Значит, A/(u) не поле.
- 4) Пусть u простой элемент, $a \notin (u)$. Тогда $(a,u) = 1 \Rightarrow \exists x,y \in A$: $ax + uy = 1 \Rightarrow [a] \cdot [x] = 1$, т.е. $[x] = [a]^{-1}$. Значит, A/(u) поле.

Применим эту теорему к кольцу многочленов K[x] над полем K. Получаем, что K[x]/(f(x)) — поле $\Leftrightarrow f(x)$ — неприводимый многочлен.

Пусть f(x) — любой многочлен степени n>0. Тогда для $a,b\in K$ $a\equiv b\pmod{f(x)}\Leftrightarrow a=b$. Следовательно, K вкладывается в кольцо K[x]/(f(x))=L. Будем отождествлять элемент $a\in K$ с $[a]\in L$. Введем обозначение: $\alpha=[x]\in L$. Тогда $f(\alpha)=[f(x)]=0$, т.е. α — корень многочлена f(x). Если f(x) неприводим, то L — поле. Говорят, что L получается из K присоединением корня многочлена f(x).

В силу единственности деления с остатком в кольце K[x] в каждом классе g(x) + f(x) имеется единственный многочлен степени меньше $\deg f(x)$. Это означает, что каждый элемент кольца L единственным образом представляется в виде $a_0 + a_1\alpha + \ldots + a_{n-1}\alpha^{n-1}$ $(a_0, \ldots, a_{n-1} \in K)$.

Кольцо L можно рассматривать как векторное пространство над K. Из предыдущего следует, что $\{1,\alpha,\alpha^2,\ldots,\alpha^{n-1}\}$ — базис этого пространства, и, значит, $\dim_K L = n$.

Примеры.

- 1. $\mathbb{R}[x]/(x^2+1) \simeq \mathbb{C}$.
- 2. $\mathbb{Q}[x]/(x^3-2)=\{a_0+a_1\alpha+a_2\alpha^2:a_0,a_1,a_2\in\mathbb{Q},\alpha^3=2\}$. В поле $L=\mathbb{Q}[x]/(x^3-2)$ многочлен x^3-2 имеет ровно один корень.

Расширение L поля K называется конечным, если $\dim_K L < \infty$.

Примеры.

- 1. $\mathbb{R} \supset \mathbb{Q}$.
- $2. K(x) \supset K.$

Пусть F — конечное поле характеристики p. Тогда $\langle 1 \rangle$ (аддитивная подгруппа, порожденная 1) есть подкольцо: $\underbrace{(1+\ldots+1)}_k \cdot \underbrace{(1+\ldots+1)}_l = \underbrace{(1+\ldots+1)}_k$. Более того, это подполе, изоморфное \mathbb{Z}_p :

$$[k]_p \leftrightarrow \underbrace{1 + \ldots + 1}_k.$$

T.o., $F \supset \mathbb{Z}_p$, и, следовательно, $|F| = p^n$.

Построим поле из p^2 элементов. $F = \mathbb{Z}_p[x]/(f(x))$, где $f(x) \in \mathbb{Z}_p[x]$ — неприводимый многочлен степени 2.

Если $p \neq 2$, то \mathbb{Z}_p^* — циклическая группа четного порядка p-1. Ровно половина ее элементов являются квадратами. Пусть $a \in \mathbb{Z}_p^*$ — квадратичный невычет. Тогда x^2-a не имеет корней в \mathbb{Z}_p и, следовательно, неприводим.

Если p=2, то можно взять $f(x)=x^2+x+1$. На самом деле, верна

Теорема 15.5 (Без доказательства). Для любого простого $p\ u\ \forall\ n\in\mathbb{N}$ существует поле из p^n элементов. Более того, все такие поля изоморфны.