Diagnostic Classification Models

Multidimensional Measurement Models

Lecture 11: November 8, 2023

A. HENSON, JONATHAN L. TEMPLIN, AND JOHN T.

FIGURE 2. nates for the mixed fraction subtraction items requiring more than

Lecture Objectives

- Discuss relevant mathematical prerequisites for understanding diagnostic measurement models
- Introduce the loglinear cognitive diagnosis model a general measurement model for DCMs
- Show some models the LCDM subsumes

Development of Psychometric Models

- Over the past 20+ years, numerous DCMs have been developed
 - -We will focus on DCMs that use latent variables for attributes
 - -This lecture focus on the Loglinear Cognitive Diagnosis Model
- Each DCM makes assumptions about how mastered attributes combine/interact to produce an item response
 - -Compensatory/disjunctive/additive models
 - Non-compensatory/conjunctive/non-additive models
- With so many models, analysts have been unsure which model would best fit their purpose
 - Difficult to imagine all items following same assumptions

General Models for Diagnosis

- Recent developments have produced very general diagnostic models
 - General Diagnostic Model (GDM; von Davier, 2005)
 - Loglinear Cognitive Diagnosis Model (<u>LCDM</u>; Henson, Templin, & Willse, 2009)
 - Focus of this session
 - Generalized DINA Model (G-DINA; de la Torre, 2011)
 - Is equivalent to the LCDM
- The LCDM provides great modeling flexibility
 - Subsume all other latent variable DCMs
 - Allow both additive and non-additive relationships between attributes/items
 - Sync with other psychometric models allowing for greater understanding of modeling process

Lecture Overview

- Background information
 - ANOVA models and the LCDM
- Logits explained
- The LCDM
 - Parameter structure
 - One-item demonstration
- LCDM general form
- Linking the LCDM to other earlier-developed DCMs

Notation Used Throughout Lecture

- **Attributes**: a = 1, ..., A
- Respondents: r = 1, ..., R
- Attribute Profiles: $\alpha_r = [\alpha_{r1}, \alpha_{r2}, ..., \alpha_{rA}]$
 - − Each attribute α_{ra} today is defined as being 0 or 1: $\alpha_{ra} \in \{0,1\}$
- Latent Classes: c = 1, ..., C
 - We have $C = 2^A$ latent classes one for each possible attribute profile
 - An attribute profile is a specific permutation of all A attributes
- Items: i = 1, ..., I
 - Restricted to dichotomous item responses (either 0 or 1): $Y_{ri} \in \{0,1\}$
- **Q-matrix**: Elements q_{ia} are indicators an item i measures attribute a
 - q_{ia} is either 0 (does not measure a) or 1 (measures a): $q_{ia} \in \{0,1\}$

Background Information: ANOVA models

Background Information – ANOVA

- The LCDM models the probability of a correct response to an item as a function of the latent attributes of a respondent
- The latent attributes are categorical, meaning a respondent can have one of a finite set of many possible statuses

Each status corresponds to a predicted probability of a correct response

- As such, the LCDM is very similar to an ANOVA model
 - -Predicting the a dependent variable as a function of the "experimental group" of a respondent $\alpha = 0$

 $\alpha = 1$

ANOVA Refresher

- As a refresher on ANOVA, lets imagine that we are interested in the factors that have an effect on <u>work</u> <u>output</u> (denoted by Y)
- We design a two-factor study where work output may be affected by:
 - Lighting of the workplace
 - High or Low
 - Temperature
 - Cold or Warm
- This experimental design is known as a 2-Way ANOVA

ANOVA Model

Here is the 2 x 2 Factorial design:

	Low Lighting	High Lighting
Cold Temperature	$ar{Y}_{Cold,Low}$	$ar{Y}_{Cold,High}$
Warm Temperature	$ar{Y}_{Warm,Low}$	$ar{Y}_{Warm,High}$

The ANOVA model for a respondent's work output is

$$Y_r = \mu + A_t + B_l + (AB)_{tl} + \varepsilon_r$$

ANOVA Model

- The ANOVA model allows us to test for the presence of
 - -A main effect associated with *Temperature* (A_t)
 - Where $A_{Cold} + A_{Warm} = 0$
 - -A main effect associated with Lighting (B_l)
 - Where $B_{Low} + B_{High} = 0$
 - -An interaction effect associated with Temperature and $Lighting(AB)_{tl}$
 - Where $(AB)_{Cold,Low} + (AB)_{Cold,High} + (AB)_{Warm,Low} + (AB)_{Warm,High} = 0$

$$Y_r = \mu + A_t + B_l + (AB)_{tl} + \varepsilon_r$$

ANOVA with Dummy Coded Variables

 The ANOVA model can also be re-written using two dummy-coded variables

$$Warm_r =$$

- −0 for respondents in *cold temperature* condition
- -1 for respondents in warm temperature condition

$High_r =$

- −0 for respondents in *low lighting* condition
- -1 for respondents in *high lighting* condition

ANOVA with Dummy Coded Variables

	<i>High_r = 0</i> Low Lighting	<i>High_r = 1</i> High Lighting
Warm _r = 0 Cold Temperature	$\overline{Y}_{Cold,Low}$	$\overline{Y}_{Cold,High}$
<i>Warm_r = 1</i> Warm Temperature	$\overline{Y}_{Warm,Low}$	$\overline{Y}_{Warm, High}$

$$Y_r = \beta_0 + \beta_t Warm_r + \beta_l High_r + \beta_{t*l} Warm_r * High_r + \varepsilon_r$$

ANOVA Effects Explained

$$Y_r = \beta_0 + \beta_t Warm_r + \beta_l High_r + \beta_{t*l} Warm_r * High_r + \varepsilon_r$$

- $> \beta_0$ is the mean for the cold and low light condition (reference group)

 The intercept
- $\triangleright \beta_t$ is the difference in the average response for warm temperature for a business with low lights $High_r = 0$ (Conditional Main Effect)
- $\triangleright \beta_l$ is the difference in the average response for high lights for a business with cold temperature $Warm_r = 0$ (Conditional Main Effect)
- $\triangleright \beta_{t*l}$ is additional change in average that is not explained by the shift in temperature and shift and lights, when both occur (2-Way Interaction)
- Respondents from in the same condition have the same predicted value

ANOVA and the LCDM

- The ANOVA model and the LCDM take the same modeling approach
 - Predict a response using dummy coded variables
 - In LCDM dummy coded variables are latent attributes
 - Using a set of main effects and interactions
 - Links attributes to item response
 - We may look for ways to reduce the model
 - Removing non-significant interactions and/or main effects

Differences Between LCDM and ANOVA

- The LCDM and the ANOVA model differ in two ways:
 - Instead of a continuous outcome such as work output the LCDM models a function of the probability of a correct response
 - The logit of a correct response (defined next)
 - Instead of observed "factors" as predictors the LCDM uses discrete *latent* variables (the attributes being measured)
- Attributes are given dummy codes (act as latent factors)
 - $-\alpha_{ra}=1$ if respondent r has **mastered** attribute a
 - $-\alpha_{ra}=0$ if respondent r has **not mastered** attribute a
- The LCDM treats the attributes as crossed experimental factors: all combinations are assumed to exist
 - This assumption can be (and will be) modified

Logits Explained

Model Background

- The LCDM models the log-odds of a correct response conditional on a respondent's attribute pattern α_r
 - The log-odds is called a logit

$$Logit(Y_{ri} = 1|\boldsymbol{\alpha}_r) = \log\left(\frac{P(Y_{ri} = 1|\boldsymbol{\alpha}_r)}{1 - P(Y_{ri} = 1|\boldsymbol{\alpha}_r)}\right)$$

- Here $\log(\cdot)$ is the natural log
- The logit is used because the responses are binary
 - Items are either answered correctly (1) or incorrectly (0)
- The linear model with an identity link and Gaussian error is inappropriate for categorical data
 - Can lead to impossible predictions (i.e., probabilities greater than 1 or less than 0)

More on Logits

Probability	Logit	
0.5	0.0	
0.9	2.2	
0.1	-2.2	
0.99	4.6	

From Logits to Probabilities

- Logits are useful as they are unbounded continuous variables
 - But they are hard to interpret
 - Better as a probability
- The inverse logit function coverts the unbounded logit to a probability
 - This is also the form of an IRT model (and logistic regression)

$$P(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \frac{\exp(Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r))}{1 + \exp(Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r))}$$

- Here, $\exp(\cdot) = 2.718282$: the inverse function of the natural log (Euler's number)
- Sometimes this is written:

$$P(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \frac{\exp(Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r))}{1 + \exp(Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r))} = \left[1 + \exp(-Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r))\right]^{-1}$$

The LCDM

The Loglinear Cognitive Diagnosis Model

Building the LCDM

- To demonstrate the LCDM, consider the item 2+3-1=? from a basic math example
 - Measures addition (attribute 1: α_{r1}) and subtraction (attribute 2: α_{r2})
- Only attributes defined by the Q-matrix are modeled for an item
- The LCDM provides the logit of a correct response as a function of the latent attributes mastered by a respondent:

$$Logit(Y_{ri} = 1 | \alpha_r) = \lambda_{i,0} + \lambda_{i,1,(1)} \alpha_{r1} + \lambda_{i,1,(2)} \alpha_{r2} + \lambda_{i,2,(1,2)} \alpha_{r1} \alpha_{r2}$$

LCDM Explained

$$Logit(Y_{ri} = 1 | \alpha_r) = \lambda_{i,0} + \lambda_{i,1,(1)} \alpha_{r1} + \lambda_{i,1,(2)} \alpha_{r2} + \lambda_{i,2,(1,2)} \alpha_{r1} \alpha_{r2}$$

- $Logit(Y_{ri} = 1 | \alpha_r)$ is the logit of a correct response to item i by respondent r
- $\lambda_{i,0}$ is the intercept
 - -The logit for non-masters of addition and subtraction
 - -The reference group is respondents who have not mastered *either* attribute ($\alpha_{r1} = 0$ and $\alpha_{r2} = 0$)

LCDM Explained

$$Logit(Y_{ri} = 1 | \alpha_r) = \lambda_{i,0} + \lambda_{i,1,(1)} \alpha_{r1} + \lambda_{i,1,(2)} \alpha_{r2} + \lambda_{i,2,(1,2)} \alpha_{r1} \alpha_{r2}$$

- $\lambda_{i,1,(1)}$ = **conditional** main effect for addition (attribute 1)
 - The increase in the logit for mastering addition (for someone who has <u>not mastered</u> subtraction)
- $\lambda_{i,1,(2)}$ = <u>conditional</u> main effect for subtraction (attribute 2)
 - The increase in the logit for mastering subtraction (for someone who has <u>not mastered</u> addition)
- $\lambda_{i,2,(1,2)}$ = is the **2-way interaction** between addition and subtraction (attributes 1 and 2)
 - Change in the logit for mastering both addition & subtraction

Understanding LCDM Notation

The LCDM item parameters have several subscripts:

$$\lambda_{i,e,(a_1,\dots)}$$

- Subscript #1 i: the item to which parameters belong
- Subscript #2 e: the level of the effect
 - 0 is the intercept
 - 1 is the main effect
 - 2 is the two-way interaction
 - 3 is the three-way interaction
- Subscript #3 $-(a_1, ...)$: the attributes to which the effect applies
 - Same number of attributes listed as number in Subscript #2

LCDM: A Numerical example

LCDM with Example Numbers

• Imagine we obtained the following estimates for the item 2 + 3 - 1 = ?:

Parameter	Estimate	Effect Name
$\lambda_{i,0}$	-2	Intercept
$\lambda_{i,1,(1)}$	2	Addition Conditional Main Effect
$\lambda_{i,1,(2)}$	1	Subtraction Conditional Main Effect
$\lambda_{i,2,(1,2)}$	0	Addition/Subtraction Interaction

α_{r1}	α_{r2}	LCDM Logit Function	Logit	Probability
0	0	$\lambda_{i,0} + \lambda_{i,1,(1)} \times (0) + \lambda_{i,1,(2)} \times (0) + \lambda_{i,2,(1,2)} \times (0) \times (0)$	-2	0.12
0	1	$\lambda_{i,0} + \lambda_{i,1,(1)} \times (0) + \lambda_{i,1,(2)} \times (1) + \lambda_{i,2,(1,2)} \times (0) \times (1)$	-1	0.27
1	0	$\lambda_{i,0} + \lambda_{i,1,(1)} \times (1) + \lambda_{i,1,(2)} \times (0) + \lambda_{i,2,(1,2)} \times (1) \times (0)$	0	0.50
1	1	$\lambda_{i,0} + \lambda_{i,1,(1)} \times (1) + \lambda_{i,1,(2)} \times (1) + \lambda_{i,2,(1,2)} \times (1) \times (1)$	1	0.73

Logit Response Function

LCDM Interaction Plots

- The LCDM interaction term can be investigated via plots
- No interaction: parallel lines for the logit
 - Compensatory RUM (Hartz, 2002)

Logit Response Function

Strong Positive Interactions

- Positive interaction: over-additive logit model
 - Conjunctive model (i.e., all-or-none)
 - DINA model (Haertel, 1989; Junker & Sijtsma, 1999)

Logit Response Function

1.5 1 0.5 1 0.5 -0.5 -0.5 -1 -1.5 -2 -2.5

Strong Negative Interactions

- Negative interaction: under-additive logit model
 - Disjunctive model (i.e., one-or-more)
 - DINO model (Templin & Henson, 2006)

Logit Response Function

Less Extreme Interactions

- Extreme interactions are unlikely in practice
- Below: positive interaction with positive main effects

Logit Response Function

General FORM of the LCDM

More General Versions of the LCDM

- The LCDM is based on the General Diagnostic Model by von Davier (GDM; 2005)
 - The GDM allows for both categorical and continuous latent variables
- For items measuring more than two attributes, higher level interactions are possible
 - Difficult to estimate in practice
- The LCDM appears in the psychometric literature in a more general form
 - See Henson, Templin, & Willse (2009)

General Form of the LCDM

 The LCDM specifies the probability of a correct response as a function of a set of attributes and a Q-matrix:

$$P(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \frac{\exp\left(\boldsymbol{\lambda}_i^T \boldsymbol{h}(\boldsymbol{q}_i, \boldsymbol{\alpha}_r)\right)}{1 + \exp\left(\boldsymbol{\lambda}_i^T \boldsymbol{h}(\boldsymbol{q}_i, \boldsymbol{\alpha}_r)\right)}$$

Unpacking the General Form of the LCDM: Components α_r and q_i

- The key to understanding the general form of the LCDM is to understand that it is a general equation that makes any possible number of attributes be measured by an item
- To put this into context, we will continue with our basic mathematics example
 - -Overall, four attributes measured: Addition (α_{r1}) , Subtraction (α_{r2}) , Multiplication (α_{r3}) , Division (α_{r4})
 - Attribute profile vector for respondent r: $\alpha_r = \begin{bmatrix} \alpha_{r1} & \alpha_{r2} & \alpha_{r3} & \alpha_{r4} \end{bmatrix}$ (size 1 x 4)
 - -Item i: 2 + 3 1 = ?
 - Measures Addition (α_{r1}) and Subtraction (α_{r2})
 - Q-matrix row vector for item $i: q_i = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$

Unpacking the General Form of the LCDM: Parameter Vector λ_i

- From the general LCDM notation, λ_i is a vector of all possible item parameters for item i
 - All possible: if all A Q-matrix entries in q_i were equal to 1 (so size is $2^A \times 1$)
 - Not all parameters will be estimated if some $q_{ia}=0$
- Vector to the right is for a four-attribute example

Unpacking the General Form of the LCDM: Helper Function $h(q_i, \alpha_r)$

- From the general LCDM notation $h(q_i, \alpha_r)$ is a vector-valued function
 - Vector valued = result is a vector
 - Provides whether or not specific parameter from λ_i should be part of item response function

More on the Helper Function $h(q_i, \alpha_r)$

• Consider the item i: 2 + 3 - 1 = ? with $q_i = [1 \ 1 \ 0 \ 0]$

$h(q_i, \alpha_r)$		λ_i		
$h(q_i, \alpha_r) =$	$\begin{bmatrix} 1 & 1 \\ (q_{i1}\alpha_{r1}) = \alpha_{r1} \\ (q_{i2}\alpha_{r2}) = \alpha_{r2} \\ (q_{i3}\alpha_{r3}) = 0 \\ (q_{i4}\alpha_{r4}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2}) = \alpha_{r1}\alpha_{r2} \\ (q_{i1}\alpha_{r1})(q_{i3}\alpha_{r3}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i3}\alpha_{r3}) = 0 \\ (q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3}) = 0 \\ (q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3}) = 0 \\ (q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i3}\alpha_{r3})(q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \\ (q_{i1}\alpha_{r1})(q_{i2}\alpha_{r2})(q_{i3}\alpha_{r3})(q_{i4}\alpha_{r4}) = 0 \end{bmatrix}_{(16 \times 1)}$	$\boldsymbol{\lambda}_{i} = \begin{bmatrix} \lambda_{i,0} \\ \lambda_{i,1,(1)} \\ \lambda_{i,1,(2)} \\ \lambda_{i,1,(3)} \\ \lambda_{i,1,(4)} \\ \lambda_{i,2,(1,2)} \\ \lambda_{i,2,(1,3)} \\ \lambda_{i,2,(1,4)} \\ \lambda_{i,2,(2,3)} \\ \lambda_{i,2,(2,4)} \\ \lambda_{i,3,(1,2,3)} \\ \lambda_{i,3,(1,2,4)} \\ \lambda_{i,3,(1,3,4)} \\ \lambda_{i,3,(2,3,4)} \\ \lambda_{i,4,(1,2,3,4)} \end{bmatrix}_{(16 \times 1)}$		

Putting It All Together: The Matrix Product $\lambda_i^T h(q_i, \alpha_r)$

The term in the exponent is the logit we have been using all along:

For our example item:

$$(\lambda_i^T)_{(1\times 16)} h(q_i, \alpha_r)_{(16\times 1)} = \lambda_{i,0} + \lambda_{i,1,(1)} \alpha_{r1} + \lambda_{i,1,(2)} \alpha_{r2} + \lambda_{i,2,(1,2)} \alpha_{r1} \alpha_{r2}$$

• Result is a scalar (1×1)

Subsumed models

Previously Popular DCMs

- Because the advent of the GDM and LCDM has been fairly recent, other earlier DCMs are still in use
- Such DCMs are much more restrictive than the LCDM
 - Not discussed at length here
 - It is anticipated that field will adapt to more general forms
- Each of these models can be fit using the LCDM
 - Fixing certain model parameters
- Shown for reference purposes
 - See Henson, Templin, & Willse (2009) for more detail

Other DCMs with the LCDM

- The Big 6 DCMs with latent variables:
 - DINA (Deterministic Inputs, Noisy 'AND' Gate)
 - Haertel (1989); Junker and Sijtsma (1999)
 - NIDA (Noisy Inputs, Deterministic 'AND' Gate)
 - Maris (1995)
 - **RUM** (Reparameterized Unified Model)
 - Hartz (2002)
 - DINO (Deterministic Inputs, Noisy 'OR' Gate)
 - Templin & Henson (2006)
 - NIDO (Noisy Inputs, Deterministic 'OR' Gate)
 - Templin (2006)
 - C-RUM (Compensatory Reparameterized Unified Model)
 - Hartz (2002)

Other DCMs with the LCDM

LCDM	Non-compensatory Models			Compensatory Models		
Parameters	DINA	NIDA	NC-RUM	DINO	NIDO	C-RUM
Main Effects	Zero	Positive	Positive	Positive	Positive	Positive
Interactions	Positive	Positive	Positive	Negative	Zero	Zero
Parameter Restrictions	Across Attributes	Across Items		Across Attributes	Across Items	

Adapted from: Rupp, Templin, and Henson (2010)

Compensatory RUM (Hartz, 2002)

- No interactions in model
- No interaction: parallel lines for the logit

$$Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \lambda_{i,0} + \lambda_{i,1,(1)} \alpha_{r1} + \lambda_{i,1,(2)} \alpha_{r2}$$

Logit Response Function

Item Characteristic Bar Chart

DINA Model (Haertel, 1989; Junker & Sijstma, 1999)

- Positive interaction: over-additive logit model
 - Highest interaction parameter is non-zero
 - All main effects (and lower interactions) zero

$$Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \lambda_{i,0} + \lambda_{i,2,(1,2)} \alpha_{r1} \alpha_{r2}$$

Logit Response Function

Item Characteristic Bar Chart

DINO Model (Templin & Henson, 2006)

- Negative interaction: under-additive logit model
 - All main effects equal
 - Interaction terms are -1 sum of corresponding lower effects

$$Logit(Y_{ri} = 1 | \boldsymbol{\alpha}_r) = \lambda_{i,0} + \lambda_{i,1} \alpha_{r1} + \lambda_{i,1} \alpha_{r2} - \lambda_{i,1} \alpha_{r1} \alpha_{r2}$$

Logit Response Function

Item Characteristic Bar Chart

The LCDM as a Constrained Latent Class Analysis Model

Four-Attribute Example as a LCA Model

- Imagine an LCA model where an exponential number of classes are defined:
 - -Total Attributes: 4
 - Total Classes: 16
 - Model: LCA
 - Q-matrix: None
 - Equivalence Classes Per Item: None
- There is nothing to keep some skill pattern response profiles from exceeding others
 - Label for attributes is meaningless

Equal $P(X_{ij} = 1 c)$ Denoted By Symbol						
	Item					
C	α	1	2	3		
1	[0000]	$\pi_{1,1}$	$\pi_{2,1}$	$\pi_{3,1}$		
2	[0001]	$\pi_{1,2}$	$\pi_{2,2}$	$\pi_{3,2}$		
3	[0010]	$\pi_{1,3}$	$\pi_{2,3}$	$\pi_{3,3}$		
4	[0011]	$\pi_{1,4}$	$\pi_{2,4}$	$\pi_{3,4}$		
5	[0100]	$\pi_{1,5}$	$\pi_{2,5}$	$\pi_{3,5}$		
6	[0101]	$\pi_{1,6}$	$\pi_{2,6}$	$\pi_{3,6}$		
7	[0110]	$\pi_{1,7}$	$\pi_{2,7}$	$\pi_{3,7}$		
8	[0111]	$\pi_{1,8}$	$\pi_{2,8}$	$\pi_{3,8}$		
9	[1000]	$\pi_{1,9}$	$\pi_{2,9}$	$\pi_{3,9}$		
10	[1001]	$\pi_{1,10}$	$\pi_{2,10}$	$\pi_{3,10}$		
11	[1010]	$\pi_{1,11}$	$\pi_{2,11}$	$\pi_{3,11}$		
12	[1011]	$\pi_{1,12}$	$\pi_{1,12}$	$\pi_{1,12}$		
13	[1100]	$\pi_{1,13}$	$\pi_{1,13}$	$\pi_{1,13}$		
14	[1101]	$\pi_{1,14}$	$\pi_{1,14}$	$\pi_{1,14}$		
15	[1110]	$\pi_{1,15}$	$\pi_{2,15}$	$\pi_{3,15}$		
	_					

 $\pi_{1,16}$ $\pi_{2,16}$ $\pi_{3,16}$

[1111]

Four-Attribute Example with LCDM

Class #	α	2+3-1	4/2	3 x (4 - 2)
1	[0000]			
2	[0001]			
3	[0010]			
4	[0011]			
5	[0100]			
6	[0101]			
7	[0110]			
8	[0111]			
9	[1000]			
10	[1001]			
11	[1010]			
12	[1011]			
13	[1100]			
14	[1101]			
15	[1110]			
16	[1111]			

Total Attributes: 4

Total Classes: 16

Model: LCDM

Q-matrix:

Item	Add	Sub	Mult	Div
	α_1	$lpha_2$	α_3	$lpha_4$
2 + 3 - 1	1	1	0	0
$\frac{4}{2}$	0	0	0	1
$3 \times (4 - 2)$	0	1	1	0

Equivalence Classes Per Item: $(2^{q_{i\cdot}})$

Item	2+3-1	$\frac{4}{2}$	$3 \times (4 - 2)$
Classes	4	2	4

LCDM Item Response Model: Replacing LCA π

• The LCDM item response model equation serves to take the place of the π_{ic} parameter (class-specific item difficulty) in LCA models

$$\pi_{ic} = P(X_{pi} = 1 \mid \boldsymbol{\alpha}_p = \boldsymbol{\alpha}_c) = \frac{\exp(h(\boldsymbol{\alpha}_p, \boldsymbol{q}_i))}{1 + \exp(h(\boldsymbol{\alpha}_p, \boldsymbol{q}_i))}$$

For the 2+3-1 item, the LCDM linear predictor (in the exp) is

$$\lambda_{i,0} + \lambda_{i,1(1)}\alpha_{p1} + \lambda_{i,1,(2)}\alpha_{p2} + \lambda_{i,2,(1,2)}\alpha_{p1}\alpha_{p2}$$

- Thus, the four cells in the column of the table, representing equal probabilities give linear predictors of:
 - Rows 1, 2, 3, 4 (where $\alpha_{p1}=0$ and $\alpha_{p2}=0$): $\lambda_{i,0}$
 - Rows 5, 6, 7, 8 (where $\alpha_{p1} = 0$ and $\alpha_{p2} = 1$): $\lambda_{i,0} + \lambda_{i,1(2)}$
 - Rows 9, 10, 11, 12 (where $\alpha_{p1} = 1$ and $\alpha_{p2} = 0$): $\lambda_{i,0} + \lambda_{i,1(1)}$
 - Rows 13, 14, 15, 16 (where $\alpha_{p1}=1$ and $\alpha_{p2}=1$): $\lambda_{i,0}+\lambda_{i,1(1)}+\lambda_{i,1,(2)}+\lambda_{i,2,(1,2)}$

LCDM Linear Predictors

- What are the linear predictors for the $\frac{4}{2}$ item?
 - Rows 1, 3, 5, 7, 9, 11, 13, 15 (where $\alpha_{p4}=0$):
 - Rows 2, 4, 6, 8, 10, 12, 14, 16 (where $\alpha_{n4} = 1$):
- What are the linear predictors for the $3\times(4-2)$ item?
 - Rows 1, 2, 9, 10 (where $\alpha_{p2} = 0$ and $\alpha_{p3} = 0$):
 - Rows 3, 4, 11, 12 (where $\alpha_{p2} = 0$ and $\alpha_{p3} = 1$):
 - Rows 5, 6, 13, 14 (where $\alpha_{p2} = 0$ and $\alpha_{p3} = 1$):
 - Rows 7, 8, 15, 16 (where $\alpha_{p2} = 1$ and $\alpha_{p3} = 1$):

Additional Constraints

- The LCDM places an additional monotonicity constraint on the item parameters
- Profiles with higher numbers of mastered attributes have a probability of a correct response greater than or equal to those with lower numbers of mastered attributes
- Helps to ensure the label for the class is correct

Monotonicity Constraints

- To show how monotonicity constraints work, consider the item 2 + 3 1
- There are four sets of probabilities:
 - 1. Rows 1, 2, 3, 4 (where $\alpha_{p1} = 0$ and $\alpha_{p2} = 0$): $\lambda_{i,0}$
 - 2. Rows 5, 6, 7, 8 (where $\alpha_{p1} = 0$ and $\alpha_{p2} = 1$): $\lambda_{i,0} + \lambda_{i,1(2)}$
 - 3. Rows 9, 10, 11, 12 (where $\alpha_{p1} = 1$ and $\alpha_{p2} = 0$): $\lambda_{i,0} + \lambda_{i,1(1)}$
 - 4. Rows 13, 14, 15, 16 (where $\alpha_{p1} = 1$ and $\alpha_{p2} = 1$): $\lambda_{i,0} + \lambda_{i,1(1)} + \lambda_{i,1,(2)} + \lambda_{i,2,(1,2)}$
- Set #1 has zero mastered attributes, Sets #2 and 3 have one mastered attribute, and Set #4 has two mastered attributes
- So, the orderings of probabilities must be such that $Set \#1 \le [Set \#2 \ and \ Set \#3] \le Set \#4$

Showing Constraints with LCDM Item Parameters

- To show these constraints as a function of the LCDM item parameters, we first have to realize that the ordering of probabilities is not changed by the logit link function
 - -So, we can work with the linear predictors of the items directly
- We then can show that, for $Set #1 \le Set #2$:

$$\lambda_{i,0} \le \lambda_{i,0} + \lambda_{i,1,(2)} \to \lambda_{i,1,(2)} \ge 0$$

• For Set #2 \leq Set #3:

$$\lambda_{i,0} + \lambda_{i,1,(2)} \le \lambda_{i,0} + \lambda_{i,1(1)} + \lambda_{i,1,(2)} + \lambda_{i,2,(1,2)} \rightarrow \lambda_{i,2,(1,2)} \ge -\lambda_{i,1,(1)}$$

Continued on next slide...

Showing Constraints with LCDM Item Parameters

• For Set $#1 \le Set #3$:

$$\lambda_{i,0} \le \lambda_{i,0} + \lambda_{i,1,(1)} \to \lambda_{i,1,(1)} \ge 0$$

• For Set #3 \leq Set #4:

$$\lambda_{i,0} + \lambda_{i,1,(1)} \le \lambda_{i,0} + \lambda_{i,1(1)} + \lambda_{i,1,(2)} + \lambda_{i,2,(1,2)} \rightarrow \lambda_{i,2,(1,2)} \ge -\lambda_{i,1,(2)}$$

• Finally, as we have $\lambda_{i,2,(1,2)} \ge -\lambda_{i,1,(2)}$ and $\lambda_{i,2,(1,2)} \ge -\lambda_{i,1,(1)}$ and we know $\lambda_{i,1,(1)} \ge 0$ and $\lambda_{i,1,(2)} \ge 0$ then:

$$\lambda_{i,2,(1,2)} \ge -1 * \min(\lambda_{i,1,(1)}, \lambda_{i,1,(2)})$$

So, our monotonicity constraints are:

$$-\lambda_{i,1,(1)} \geq 0$$

$$-\lambda_{i,1,(2)} \geq 0$$

$$-\lambda_{i,2,(1,2)} \ge -1 * \min(\lambda_{i,1,(1)}, \lambda_{i,1,(2)})$$

Concluding Remarks

Wrapping Up

- The LCDM uses an ANOVA-like approach to map latent attributes onto item responses
 - Uses main effects and interactions for each attribute
 - Uses a logit link function
- Multiple diagnostic models are subsumed by the LCDM

