MA4270 Data Modelling and Computation

Midterm Examination Helpsheet

AY2023/24 Semester 2 · Prepared by Tian Xiao @snoidetx

Perceptron

Classification Problems: To learn a classifier f_{θ} that classifies labels

- Dataset: $\mathcal{D} = \{(\mathbf{x}_t, y_t)\}_{t=1}^n$ where $\mathbf{x}_t \in \mathbb{R}^d$ and $y_t \in \{-1, +1\}$. Classifier: $f_{\boldsymbol{\theta}} : \mathbb{R}^d \to \{-1, +1\}$.
- - $\qquad \qquad \triangleright \text{ Linear classifier: } f_{\boldsymbol{\theta}} = \text{sign } (\boldsymbol{\theta}^{\top} \mathbf{x}).$
- Training error: $\hat{E}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{t=1}^{n} \text{Loss}(y_t, f_{\boldsymbol{\theta}}(\mathbf{x}_t)).$
 - ${\rm \triangleright}\ \operatorname{Loss}(y,\hat{y}) = \mathbf{1}\{\hat{y} \neq y\} = \begin{cases} 1 & \hat{y} \neq y \\ 0 & \text{otherwise} \end{cases}.$
 - ightharpoonup A dataset is linearly separable if $\exists \pmb{\theta} \ \left[\hat{E}(\pmb{\theta}) = 0 \right]$

The Perceptron Algorithm:

- ① Initialize $\boldsymbol{\theta}^{(0)}$ to some value (e.g., $\boldsymbol{0}$), and initialize index k to 0. ② Repeatedly perform the following:
 - ightharpoonup Select the next example (\mathbf{x}_t, y_t) from the training set and check whether $\boldsymbol{\theta}^{(k)}$ classifies it correctly.
 - $\qquad \qquad \text{If it is incorrect (i.e., } y_t \left(\boldsymbol{\theta}^{(k)} \right)^\top \mathbf{x}_t < 0), \text{ set } \boldsymbol{\theta}^{(k+1)} \leftarrow \boldsymbol{\theta}^{(k)} + \\ y_t \mathbf{x}_t \text{ and increment } k \leftarrow k+1.$
- Assumptions:
 - (1) Inputs are bounded: $\exists R \in (0, \infty) \ \forall \mathbf{x}_t \in \mathcal{D} \ [\|\mathbf{x}_t\| \leq R].$
 - (2) Linearly separable: $\exists \boldsymbol{\theta}^* \ \exists \gamma > 0 \ \left[\min_{t=1,2,\cdots,n} y_t \left(\boldsymbol{\theta}^* \right)^\top \mathbf{x}_t \geq \gamma \right].$
- Convergence: Under the initial vector $\boldsymbol{\theta}^{(0)} = \mathbf{0}$, for any dataset \mathcal{D} satisfying the above assumptions, the perceptron algorithm produces a vector $\boldsymbol{\theta}^{(k)}$ classifying every example correctly after at most $k_{\max} =$ $\frac{R^2 \|\boldsymbol{\theta}^*\|^2}{\gamma^2}$ mistakes (and hence update steps).

Proof. Let
$$R = \max \|\mathbf{x}_t\|$$
, $\gamma = \min y_t(\boldsymbol{\theta}^*)^\top \mathbf{x}_t$ for $t = 1, 2, \dots, n$.
① $(\boldsymbol{\theta}^*)^\top \boldsymbol{\theta}^{(k)} = (\boldsymbol{\theta}^*)^\top (\boldsymbol{\theta}^{(k-1)} + y_t \mathbf{x}_t) \ge (\boldsymbol{\theta}^*)^\top \boldsymbol{\theta}^{(k-1)} + \gamma$. So $(\boldsymbol{\theta}^*)^\top \boldsymbol{\theta}^{(k)} > k\gamma$

- $\begin{aligned} & (\boldsymbol{\theta}^*)^{\top} \boldsymbol{\theta}^{(k)} \geq k\gamma \\ & (\boldsymbol{\theta}^*)^{\top} \boldsymbol{\theta}^{(k)} \geq k\gamma \\ & (\boldsymbol{\theta}^{(k)})^{\parallel 2} = \|\boldsymbol{\theta}^{(k-1)}\|^2 + 2\langle \boldsymbol{\theta}^{(k-1)}, y_t \mathbf{x}_t \rangle + \|\mathbf{x}_t\|^2 \leq \|\boldsymbol{\theta}^{(k-1)}\|^2 + \|\mathbf{x}_t\|^2. \text{ So } \|\boldsymbol{\theta}^{(k)}\|^2 \leq kR^2. \\ & (\mathbf{g}) \text{ By Cauchy-Schwarz inequality } \langle \mathbf{v}, \mathbf{w} \rangle \leq \|\mathbf{v}\| \cdot \|\mathbf{w}\|, \text{ we have } \\ & 1 \geq \frac{\langle \boldsymbol{\theta}^{(k)}, \boldsymbol{\theta}^* \rangle}{\|\boldsymbol{\theta}^{(k)}\| \cdot \|\boldsymbol{\theta}^*\|} \geq \frac{k\gamma}{\sqrt{kR^2}\|\boldsymbol{\theta}^*\|}, \text{ hence } k \leq \frac{R^2\|\boldsymbol{\theta}^*\|^2}{\gamma^2}. \end{aligned}$
- Margin: Let $\gamma = \min_{t=1,2,\cdots,n} y_t \boldsymbol{\theta}^{\top} \mathbf{x}_t$. The quantity $\gamma_{\text{geom}} = \frac{\gamma}{\|\boldsymbol{\theta}\|}$ is the smallest distance from any example \mathbf{x}_t to the decision boundary specified by θ .

Support Vector Machine (SVM)

Maximum Margin Classifier: $\min_{\mathbf{a}} \frac{1}{2} \|\boldsymbol{\theta}\|^2 \text{ s.t. } \forall t \ \left[y_t \boldsymbol{\theta}^\top \mathbf{x}_t \ge 1 \right] \text{ (unique)}.$

- SVM with offset: $\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2$ s.t. $\forall t \ [y_t (\boldsymbol{\theta}^\top \mathbf{x}_t + \theta_0) \ge 1]$.
 - \triangleright Support vectors: On margin $(y_t (\boldsymbol{\theta}^\top \mathbf{x}_t + \theta_0) = 1)$.
- Soft-margin SVM: $\min_{\boldsymbol{\theta}, \theta_0, \zeta} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{t=1}^n \zeta_t \text{ s.t. } \forall t \ \left[y_t \left(\boldsymbol{\theta}^\top \mathbf{x}_t + \theta_0 \right) \ge 1 \zeta_t \right].$ $\triangleright \boldsymbol{\zeta} = (\zeta_1, \zeta_2, \cdots, \zeta_n) \ge \mathbf{0} \text{ is called } slack \ variables.}$ $\triangleright \text{ Support vectors: On margin/within margin/misclassified.}$
- Hinge-loss formulation: $\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{t=1}^n \left[1 y_t \left(\boldsymbol{\theta}^\top \mathbf{x}_t + \theta_0 \right) \right]_+.$ \triangleright Hinge loss: $z \to [1-z]_+ = \max\{0, 1-z\}.$ \triangleright Interpretation: Total hinge loss with regularization term $\frac{1}{2} \|\boldsymbol{\theta}\|^2.$

Logistic Regression

 $\textbf{Logistic Likelihood Model:} \ \Pr(y \mid \mathbf{x}) = \frac{1}{1 + \exp(-y(\pmb{\theta}^{\top}\mathbf{x} + \theta_0))}$

- $g(z) = \frac{1}{1+e^{-z}} \in (0,1)$ assigns likelihood to points.
 - \triangleright Scaling the dataset by c > 1 pushes prediction closer to 0 or 1.
 - \triangleright Linear classifier chooses the label that is more likely under the logistic model. \triangleright Log-odds log $\frac{\Pr(y=1|\mathbf{x})}{\Pr(y=-1|\mathbf{x})}$ is a linear function $\langle \boldsymbol{\theta}, \mathbf{x} \rangle + \theta_0$ of inputs.

• Maximum likelihood estimate (MLE) of parameters:

$$\begin{split} \left(\hat{\boldsymbol{\theta}}, \hat{\theta}_{0}\right) &= \underset{\boldsymbol{\theta}, \theta_{0}}{\operatorname{arg \, max}} \prod_{t=1}^{n} \operatorname{Pr}(y_{t} \mid \mathbf{x}_{t}; \boldsymbol{\theta}, \theta_{0}) \quad (\operatorname{likelihood}) \\ &= \underset{\boldsymbol{\theta}, \theta_{0}}{\operatorname{arg \, max}} \prod_{t=1}^{n} \frac{1}{1 + \exp(-y_{t}(\boldsymbol{\theta}^{\top}\mathbf{x}_{t} + \theta_{0}))} \quad (\operatorname{likelihood}) \\ &= \underset{\boldsymbol{\theta}, \theta_{0}}{\operatorname{arg \, max}} \sum_{t=1}^{n} \log \frac{1}{1 + \exp(-y_{t}(\boldsymbol{\theta}^{\top}\mathbf{x}_{t} + \theta_{0}))} \quad (\operatorname{log-likelihood}) \\ &= \underset{\boldsymbol{\theta}, \theta_{0}}{\operatorname{arg \, min}} \sum_{t=1}^{n} \log \left(1 + \exp\left(-y_{t}\left(\boldsymbol{\theta}^{\top}\mathbf{x}_{t} + \theta_{0}\right)\right)\right). \end{split}$$

- Regularization: $\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{t=1}^n \log (1 + \exp(-y_t(\boldsymbol{\theta}^\top \mathbf{x}_t + \theta_0))).$
 - \triangleright Logistic loss: $z \to \log(1 + e^{-z})$.
 - \triangleright Interpretation: Total logistic loss with regularization term $\frac{1}{2} ||\boldsymbol{\theta}||^2$.
- Softmax function: $\Pr(y = c \mid \mathbf{x}) = \frac{\exp(\boldsymbol{\theta}_c^\top \mathbf{x} + \theta_{0,c})}{\sum\limits_{c'=1}^{M} \exp(\boldsymbol{\theta}_{c'}^\top \mathbf{x} + \theta_{0,c'})}$.

 > When M = 2, we recover logistic model by setting $(\boldsymbol{\theta}_c, \theta_{0,c}) = (\boldsymbol{\theta}_c, \theta_{0,c})$
 - (0,0) for one of the two classes.

Linear Regression

- Least squares estimate (LSE): $\hat{\mathbf{\Theta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$.
- ▶ Unique solution if $\mathbf{X}^{\top}\mathbf{X}$ is invertible. Gaussian model: $y_t = (\boldsymbol{\theta}^*)^{\top}\mathbf{x}_t + \theta_0^* + z_t$, where $z_t \sim \mathcal{N}(0, \sigma^2)$.
 - $\triangleright \text{ Gaussian PDF: } \mathcal{N}(z; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(z-\mu)^2}{2\sigma^2}\right).$ $\triangleright \text{ Pr}(y \mid \mathbf{x}) = \mathcal{N}(y; (\boldsymbol{\theta}^*)^\top \mathbf{x} + \theta_0^*, \sigma^2).$ $\triangleright \text{ Log-likelihoods}$

$$\log \prod_{t=1}^{n} \Pr(y_t \mid \mathbf{x}_t) = \text{const.} - \frac{n}{2} \log \sigma^2 - \frac{1}{2\sigma^2} \sum_{t=1}^{n} \left(y_t - \boldsymbol{\theta}^\top \mathbf{x}_t - \theta_0 \right)^2.$$

- $\quad \triangleright \text{ MLE of } \boldsymbol{\theta} \text{ and } \boldsymbol{\theta}_0 \text{: } \left(\hat{\boldsymbol{\theta}}, \hat{\boldsymbol{\theta}}_0 \right) = \mathop{\arg\min}_{\boldsymbol{\theta}, \boldsymbol{\theta}_0} \sum_{t=1}^n \left(y_t \boldsymbol{\theta}^\top \mathbf{x}_t \boldsymbol{\theta}_0 \right)^2.$
- * σ^2 is assumed to be known. * MLE of σ^2 : $\hat{\sigma}^2 = \frac{1}{n} \sum_{t=1}^n \left(y_t \hat{\boldsymbol{\theta}}^\top \mathbf{x}_t \hat{\theta}_0 \right)^2$. Gaussian model in matrix form: $\mathbf{y} = \mathbf{X} \mathbf{\Theta}^* + \mathbf{z}$. > LSE: $\hat{\mathbf{\Theta}} = \mathbf{\Theta}^* + \left(\mathbf{X}^\top \mathbf{X} \right)^{-1} \mathbf{X}^\top \mathbf{z}$.
- - - * No bias: $\mathbb{E}[\hat{\mathbf{\Theta}}] = \mathbf{\Theta}^*$.
 - * Covariance: $Cov[\hat{\boldsymbol{\Theta}}] = \sigma^2 (\mathbf{X}^\top \mathbf{X})^{-1}$.
- Ridge regression: $(\hat{\boldsymbol{\theta}}, \hat{\theta}_0) = \underset{\boldsymbol{\theta}, \theta_0}{\arg\min} \sum_{t=1}^n (y_t \boldsymbol{\theta}^\top \mathbf{x}_t \theta_0)^2 + \lambda \sum_{j=1}^d \theta_j^2$.
 - \triangleright Closed-form solution (w/o offset): $\hat{\boldsymbol{\theta}} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}$.
 - * $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}$ is always invertible when $\lambda > 0$.
 - \triangleright Assuming no offset θ_0 :

 - * Bias: $\mathbb{E}[\hat{\boldsymbol{\theta}}] \boldsymbol{\theta}^* = -\lambda \left(\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I} \right)^{-1} \boldsymbol{\theta}^*.$ * Covariance: $\sigma^2 \left(\left(\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I} \right)^{-1} \lambda \left(\mathbf{X}^\top \mathbf{X} + \lambda \mathbf{I} \right)^{-2} \right).$

Bias-Variance Tradeoff: Decomposition of MSE:

$$\mathbb{E}[\|\hat{\mathbf{\Theta}} - \mathbf{\Theta}^*\|^2] = \underbrace{\|\mathbb{E}[\hat{\mathbf{\Theta}}] - \mathbf{\Theta}^*\|^2}_{\text{bias}} + \underbrace{\mathbb{E}[\|\hat{\mathbf{\Theta}} - \mathbb{E}[\hat{\mathbf{\Theta}}]\|^2]}_{\text{variance}}.$$

Proof. Let $\boldsymbol{\mu} = \mathbb{E}[\hat{\boldsymbol{\Theta}}].$

- ② variance = $\mathbb{E}[\|\hat{\boldsymbol{\Theta}}\|^2 2\langle\hat{\boldsymbol{\Theta}}, \boldsymbol{\mu}\rangle + \|\boldsymbol{\mu}\|^2] = \mathbb{E}[\|\hat{\boldsymbol{\Theta}}\|^2] 2\langle\mathbb{E}[\hat{\boldsymbol{\theta}}], \boldsymbol{\mu}\rangle + \|\boldsymbol{\mu}\|^2 =$
- ③ bias + variance = $\mathbb{E}[\|\hat{\mathbf{\Theta}}\|^2] 2\langle \boldsymbol{\mu}, \mathbf{\Theta}^* \rangle + \|\mathbf{\Theta}^*\|^2 = \text{LHS}.$

Appendix

Matrix Properties:

PSD	$\forall \mathbf{x} \in \mathbb{R}^n \ [\mathbf{x}^\top \mathbf{A} \mathbf{x} \ge 0]$	$\forall \lambda \ [\lambda \geq 0]$	⇔ convex
PD	$\forall \mathbf{x} \neq 0 [\mathbf{x}^{\top} \mathbf{A} \mathbf{x} > 0]$	$\forall \lambda \ [\lambda > 0]$	⇒ strictly convex
NSD	$\forall \mathbf{x} \in \mathbb{R}^n \ [\mathbf{x}^\top \mathbf{A} \mathbf{x} \le 0]$	$\forall \lambda \ [\lambda \leq 0]$	⇔ concave
ND	$\forall \mathbf{x} \neq 0 [\mathbf{x}^{\top} \mathbf{A} \mathbf{x} < 0]$	$\forall \lambda \ [\lambda < 0]$	⇒ strictly concave
ID	none of the above	$\lambda_1 > 0; \lambda_2 < 0$	\Rightarrow neither nor

- $\mathbf{X}^{\top}\mathbf{X}$ is symmetric and PSD; $\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I}$ is PD.
- Eig($\mathbf{A} + \mathbf{I}$) = Eig(\mathbf{A}) + 1. PSD + PD = PD. Trace: ① linear ($\mathrm{Tr}(\mathbb{E}[\mathbf{A}]) = \mathbb{E}[\mathrm{Tr}(\mathbf{A})]$); ② $\mathbf{u}^{\top}\mathbf{v} = \mathrm{Tr}(\mathbf{u}^{\top}\mathbf{v}) = \mathrm{Tr}(\mathbf{v}^{\top}\mathbf{u})$. Derivative: $\nabla_{\mathbf{x}} \|\mathbf{A}\mathbf{x} + \mathbf{b}\|^2 = 2\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} + \mathbf{b})$.