

空间广义线性混合效应模型及其应用

Spatial Generalized Linear Mixed Models with Its Applications

指导老师:李再兴 答辩学生:黄湘云

计算数学与统计系 中国矿业大学(北京)理学院

2015 级硕士学位论文答辩

绪论

- 文献综述分三段
 - 引出估计 SGLMM 模型参数的问题,实现其参数估计的算法的研究现状
 - SGLMM 模型的应用现状
 - 估计 SGLMM 模型参数在实践中遇到的瓶颈
- 论文结构
 - 论文后续章节的组织
 - 陈述自己的创新点或补充文献中的内容

空间广义线性混合效应模型是什么?

空间广义线性混合效应模型

$$g(\mu_i) = d(x_i)^{\top} \beta + S(x_i) + Z_i$$
 (1)

- 观测数据向量: $d^{\top}(x_i)$ 表示 p 个协变量在第 i 个位置 x_i 的观察值。
- 回归参数向量: β
- 假定 $S=\{S(x):x\in\mathbb{R}^2\}$ 是均值为 0 , 方差为 σ^2 , 平稳且各向同性的空间高斯过程 , $\rho(x,x')=\operatorname{Corr}\{S(x),S(x')\}\equiv\rho(\|x,x'\|)$, $\|\cdot\|$ 表示距离。
- 非空间随机效应: $Z_i \overset{i.i.d}{\sim} \mathcal{N}(0, \tau^2)$, $\tau^2 = \mathsf{Var}(Y_i | S(x_i)), \forall i = 1, 2, \dots, N$,N 是采样点的数目
- 联系函数:

, 与一般的广义线性混合混合效应模型区别在哪?

 $S(x_i)$ 是与空间位置 x_i 相关的随机效应。

空间效应 $S(x_i)$ 给参数估计带来的困难在哪?

$$g(\mu_i) = d(x_i)^{\top} \beta + S(x_i) + Z_i$$
 (2)

随机效应的协方差矩阵结构复杂,卷入的参数有 $\sigma^2, au^2, \phi, \kappa$

$$Cov(T_i(x), T_i(x)) = \sigma^2 + \tau^2, Cov(T_i(x), T_j(x)) = \sigma^2 \rho(u_{ij})$$

$$\rho(u) = \{2^{\kappa - 1} \Gamma(\kappa)\}^{-1} (u/\phi)^{\kappa} \mathcal{K}_{\kappa}(u/\phi), u > 0$$
(3)

 $\mathcal{K}_{\kappa}(u)$ 是修正的第二类贝塞尔函数

$$I_{-\kappa}(u) = \sum_{m=0}^{\infty} \frac{1}{m!\Gamma(m+\kappa+1)} \left(\frac{u}{2}\right)^{2m+\kappa}$$

$$\mathcal{K}_{\kappa}(u) = \frac{\pi}{2} \frac{I_{-\kappa}(u) - I_{\kappa}(u)}{\sin(\kappa\pi)}$$
(4)

估计 SGLMM 模型参数的困难

设研究区域 $D\subseteq\mathbb{R}^2$, 对于第 i 次观测 , s_i 表示区域 D 内的位置 , $y(s_i)$ 表示响应变量 , $\mathbf{x}(s_i), i=1,\ldots,n$ 是一个 p 维的固定效应 , 定义如下的 SGLMM 模型 :

$$E[y(s_i)|u(s_i)] = g^{-1}[\mathbf{x}(s_i)^{\top}\beta + \mathbf{u}(s_i)], \quad i = 1, \dots, n$$

其中 $g(\cdot)$ 是实值可微的逆联系函数, β 是 p 维的回归参数向量,代表 SGLMM 模型的固定效应。随机过程 $\{U(\mathbf{s}): \mathbf{s} \in D\}$ 是平稳的空间高斯过程,其均值为 $\mathbf{0}$,自协方差函数 $\mathrm{Cov}(U(\mathbf{s}),U(\mathbf{s}'))=C(\mathbf{s}-\mathbf{s}';\theta)$, θ 是其中的参数向量。 $\mathbf{u}=(u(s_1),u(s_2),\ldots,u(s_n))^{\top}$ 是平稳空间高斯过程 $U(\cdot)$ 的一个实例。给定 \mathbf{u} 的情况下,观察值 $\mathbf{y}=(y(s_1),y(s_2),\ldots,y(s_n))^{\top}$ 是相互独立的。

边际似然函数含有空间随机效应带来的高维积分

给定 $u_i = u(s_i), i = 1, \ldots, n$ 的条件下, $y_i = y(s_i)$ 的条件概率密度函数是

$$f(y_i|u_i;\beta) = \exp[a(\mu_i)y_i - b(\mu_i)]c(y_i)$$

其中 $\mu_i = \mathsf{E}(y_i|u_i)$, $\mathit{a}(\cdot), \mathit{b}(\cdot)$ 和 $\mathit{c}(\cdot)$ 是特定的函数。 SGLMM 模型的边际似然函数

$$L(\psi; \mathbf{y}) = \int \prod_{i=1}^{n} f(y_i|u_i; \beta) \phi_n(\mathbf{u}; 0, \Sigma_{\theta}) d\mathbf{u}$$
 (5)

记号 $\psi=(\beta,\theta)$ 表示 SGLMM 模型的全部参数 , $\phi_n(\cdot;0,\Sigma_\theta)$ 表示 n 元正态密度 函数 , 其均值为 $\mathbf 0$, 协方差矩阵为 $\Sigma_\theta=(c_{ij})=(C(s_i-s_j;\theta))$, $i,j=1,\ldots,n$ 。

困难

边际似然函数几乎总是卷入一个难以处理的积分,积分的维数等于观测点的个数。

估计 SGLMM 模型参数的算法主要有哪些?

- 基于似然函数的估计算法
 - 拉普拉斯近似算法 (Bonat and Ribeiro Jr., 2016)
 - 蒙特卡罗极大似然算法 (Diggle and Giorgi, 2016)
- 基于马尔科夫链蒙特卡罗的估计算法
 - R 实现的 Langevin-Hastings 算法 (Giorgi and Diggle, 2017)
 - 新提出: Stan 实现的汉密尔顿蒙特卡罗算法 (简称 Stan-HMC)

创新点在哪?怎么做的?效果怎么样?

- 借助 Stan 实现汉密尔顿蒙特卡罗算法(简称 HMC)去估计 SGLMM 模型的参数,在响应变量服从二项分布和泊松分布的两组模拟实验中,与基于 R 包geoRglm 实现的 Langevin-Hastings 算法相比,发现 HMC 算法在保持相似结果下能大大减少迭代次数,还不需要对算法进行调参;
- 在真实数据分析中研究了基于似然函数的参数估计算法,发现这类算法容易陷入局部极值,因此,在小麦数据的分析中借助样本变差图选择初值,在核污染数据的分析中利用剖面似然轮廓来确定合适的初值。

模拟实验 I: 模拟平稳空间高斯过程 S(x)

自协方差函数:

$$Cov(S(x_i), S(x_j)) = \sigma^2 \exp\left\{-\left(\frac{|x_i - x_j|}{\phi}\right)^{\kappa}\right\}, 0 < \kappa \le 2$$
 (6)

(a) 平稳空间高斯过程 S(x) 的协方差函数 (b) 平稳空间高斯过程 S(x) 的协方差函数 是指数型,均值向量为 ${\bf 0}$,协方差参数 是幂二次指数型,均值向量为 ${\bf 0}$,协方差参 $\sigma^2=1$, $\phi=0.15$, $\kappa=1$ 数 $\sigma^2=1$, $\phi=0.15$, $\kappa=2$

图 1: 模拟平稳空间高斯过程 S(x)

模拟实验 II: 模拟 SGLMM 模型 (二项型)

$$g(\mu_i) = \log \left\{ \frac{p(x_i)}{1 - p(x_i)} \right\} = \alpha + S(x_i)$$
 (7)

- 固定效应参数 $\alpha = 0$,
- 协方差参数 $\theta = (\sigma^2, \phi) = (0.5, 0.2)$,
- 采样点数目 N = 36,64,81,每个采样点抽取的样本数为 4,

模拟分两步走:

- 第一步:模拟平稳空间高斯过程 S(x),在单位区域 $[0,1] \times [0,1]$ 划分为 8×8 的网格,格点选为采样位置,用 geoR 包提供的 grf 函数产生协方差参数为 $\pmb{\theta} = (\sigma^2, \phi) = (0.5, 0.2)$ 的平稳空间高斯过程
- 第二步:根据 $p(x_i) = \exp[\alpha + S(x_i)]/\{1 + \exp[\alpha + S(x_i)]\}$,获得每个格点处二项分布的概率值,由 rbinom 函数产生服从二项分布的观察值 Y_i

模拟实验 II: 模拟 SGLMM 模型 (二项型) 续

图 2: 左图表示二维规则平面上的平稳空间高斯过程,格点是采样点的位置,其上的数字是 p(x)的值,已经四舍五入保留两位小数,右图表示观察值 Y 随空间位置的变化,格点上的值即为观察值 Y,图中的两个圈分别是第 1 个 (左下)和第 29 个 (右上)采样点

模拟实验 II: 模拟 SGLMM 模型 (二项型) 续: Langevin-Hastings 算法与 HMC 算法比较

表 5.1: 在模型(5.4)的设置下, Langevin-Hastings 算法与 HMC 算法的数值模拟比较

	true(init)	mean	var	2.5%	25%	50%	75%	97.5%	N	time(s)
α	0.0(0.387)	-0.354	0.079	-0.938	-0.524	-0.361	-0.173	0.215	36	600.12
þ	0.2(0.205)	0.121	0.006	0.005	0.055	0.110	0.180	0.285		
τ^2	0.5(1.121)	0.683	0.147	0.215	0.408	0.596	0.850	1.667		
¥	0.0(0.157)	0.003	0.089	-0.596	-0.169	0.013	0.179	0.609	64	729.19
5	0.2(0.110)	0.194	0.004	0.070	0.145	0.195	0.250	0.295		
2	0.5(0.494)	0.656	0.096	0.254	0.449	0.592	0.781	1.453		
}	0.0(-0.006)	-0.155	0.044	-0.565	-0.284	-0.156	-0.03	0.273	81	844.56
,	0.2(0.185)	0.116	0.006	0.005	0.055	0.105	0.17	0.280		
2	0.5(0.403)	0.468	0.057	0.180	0.311	0.414	0.56	1.129		
ť	0.0(-0.813)	-0.230	0.209	-1.127	-0.521	-0.214	0.056	0.653	36	6.65
5	0.2(1.692)	1.103	0.364	0.459	0.721	0.936	1.284	2.669		
.2	0.5(0.144)	0.474	0.187	0.105	0.216	0.333	0.573	1.572		
ť	0.0(0.155)	0.046	0.251	-0.947	-0.269	0.049	0.356	1.069	64	27.70
6	0.2(1.766)	1.042	0.246	0.471	0.708	0.921	1.247	2.324		
τ^2	0.5(0.808)	0.647	0.228	0.170	0.338	0.524	0.779	1.958		
ť	0.0(-0.369)	-0.082	0.170	-0.893	-0.321	-0.078	0.174	0.742	81	45.69
5	0.2(0.911)	1.110	0.331	0.453	0.721	0.986	1.330	2.506		

模拟实验 II: 模拟 SGLMM 模型 (泊松型)

$$g(\mu_i) = \log[\lambda(x_i)] = \alpha + S(x_i)$$
 (8)

- 模型参数真值为 $\alpha = 0.5, \phi = 0.2, \sigma^2 = 2.0, \kappa = 1.5$,
- 采样点数目分别为 N = 36,64,100

模拟分两步走:

- ullet 第一步:首先产生服从平稳空间高斯过程 S(x) 的随机数 $S(x_i), i=1,\ldots,N$,
- 第二步:因为 $\lambda(x_i)=\exp(\alpha+S(x_i))$, 且响应变量 $Y_i\sim \mathrm{Poisson}(\lambda(x_i))$, 根据 R 内置函数 rpois 即可产生服从参数为 $\lambda(x_i)$ 的泊松分布的随机数。

模拟实验 II: 模拟 SGLMM 模型 (泊松型) 续: Langevin-Hastings 算法与 HMC 算法比较

表 5.2: 在模型(5.6)的设置下, Langevin-Hastings 算法和 HMC 算法的比较

_				2.50/	250/	500/	750/	07.50/	3.7	
	true(init)	mean	var	2.5%	25%	50%	75%	97.5%	N	time(s)
α	0.5(1.201)	0.527	0.418	-0.759	0.189	0.514	0.855	1.864	36	642.66
φ	0.2(0.420)	0.401	0.052	0.100	0.240	0.360	0.520	0.960		
σ^2	2.0(1.038)	1.311	0.660	0.365	0.766	1.081	1.584	3.562		
α	0.5(1.211)	0.866	1.517	-1.610	0.059	0.870	1.666	3.159	64	883.76
φ	0.2(0.480)	0.682	0.073	0.300	0.480	0.640	0.820	1.380		
σ^2	2.0(2.232)	3.932	2.594	1.667	2.800	3.642	4.744	7.740		
α	0.5(0.189)	0.323	0.657	-1.449	-0.124	0.416	0.812	1.831	100	1223.28
φ	0.2(0.540)	0.617	0.085	0.220	0.400	0.560	0.785	1.320		
σ^2	2.0(1.395)	1.479	0.498	0.545	0.941	1.352	1.822	3.195		
α	0.5(0.335)	0.483	0.310	-0.608	0.094	0.488	0.851	1.613	36	11.25
φ	0.2(0.066)	0.631	0.036	0.362	0.501	0.602	0.722	1.090		
τ^2	2.0(0.347)	1.370	0.298	0.455	0.977	1.317	1.714	2.566		
α	0.5(1.021)	0.498	0.402	-0.775	0.082	0.534	0.917	1.798	64	113.04
þ	0.2(0.370)	0.385	0.003	0.285	0.343	0.380	0.422	0.509		
τ^2	2.0(2.610)	2.473	0.292	1.585	2.102	2.416	2.804	3.734		
γ	0.5(0.613)	0.400	0.297	-0.723	0.062	0.415	0.767	1.412	100	272.58

数据分析:以核污染数据分析为例

表 1: 拉普拉斯近似算法(简记 LAL)和蒙特卡罗极大似然算法(简记 MCL)估计泊松型 SGLMM 模型的参数

算法	$\hat{eta}(eta_0)$	$\hat{\sigma}^2(\sigma_0^2)$	$\hat{\phi}(\phi_0)$	$\hat{\tau}^2_{\it rel}(\tau^2_{\it rel_0})$	log L _m
LAL			151.795(50)		-1317.195
MCL	1.821(2.014)	0.265(0.231)	151.859(50)	0.132(0.1)	-8.8903
MCL	6.190(6.200)	2.401(2.400)	338.126(340)	2.053(2.074)	-5.8458

以第 4 行为例 , 块金效应的估计值应为 $\hat{ au}^2 = \hat{\sigma}^2 imes \hat{ au}_{rel}^2 = 4.929$

数据分析:以核污染数据分析为例(续)

图 3: 泊松型 SGLMM 模型关于 ϕ 和相对块金效应 $au_{rel}^2 = au^2/\sigma^2$ 的剖面似然函数轮廓

谢谢!

参考文献

- Bonat, W. H. and Ribeiro Jr., P. J. (2016). Practical likelihood analysis for spatial generalized linear mixed models. *Environmetrics*, 27(2):83–89.
- Diggle, P. J. and Giorgi, E. (2016). Model-based geostatistics for prevalence mapping in low-resource settings. *Journal of the American Statistical Association*, 111(515):1096–1120.
- Giorgi, E. and Diggle, P. J. (2017). PrevMap: An R package for prevalence mapping. *Journal of Statistical Software*, 78(8):1–29.