ИССЛЕДОВАНИЕ
СИСТЕМЫ
ПРЕДВАРИТЕЛЬНОГО
ЗАРЯДА ЯЧЕЕК
ВЫСОКОВОЛЬТНОГО ПЧ

<u>ть расоты</u>

→ РАЗРАБОТКА МО-ДЕЛИ ПЛАВНОГО ЗАРЯДА ЗВЕНЬЕВ ОСТОЯННОГО ГОКА НИЗКО-ВОЛЬТНЫХ ЯЧЕЕК высоковольт-НОГО ПРЕОБРАЗО-ВАТЕЛЯ

общие определения, диодный мост и инвертор

широтно-импульсная модуляция

график импульса

$$\gamma = \frac{T}{t1}$$

формула скважности

Реализация одного вектора двумя разными способами

Состояние	100	110	010
Стойка А	Верхний	Верхний	Нижний
Стойка В	Нижний	Верхний	Верхний
Стойка С	Нижний	Нижний	Нижний
Векторная диаграмма напряжений	E 200 A	E. 53/A	23/14

График изменения среднего потенциала фазы при изменении скважности

График трехфазного напряжения

ightarrow РЕЗУЛЬТАТ

 Осциллограмма на первичной и вторичной обмотках трансформатора

→ Осциллограмма на первичной и вторичной обмотках трансформатора

осциллограмма напряжений

Осциллограмма напряжений.
 на верхнем графике – напряжение источника
 на нижнем графике – напряжение после выпрямителя

испытания модели с использованием блока PWM Generator

 Модель управления инвертором блоком PWM Generator

🔶 Диаграммы ШИМ сигналов для первого полумоста

Осциллограмма тока на исследуемом конденсаторе

создание алгоритма управления инвертора

создание алгоритма управления инвертора

 Диаграммы ШИМ сигналов для первого полумоста

создание алгоритма управления инвертора

 Осциллограммы напряжений после добавления сглаживающего фильтра

 Осциллограммы напряжений без добавления сглаживающего фильтра

опыты по заряду низковольтной ячейки без параметров

Осциллограмма тока заряда звена

 Осциллограммы напряжений над конденсаторе

опыты по заряду низковольтной ячейки с параметрами 01

Параметры скорости роста напряжения 01

блоки задаваемых величин

опыты по заряду низковольтной ячейки с параметрами 01

→ Осциллограммы тока заряда конденсатора

 Осциллограммы напряжения на конденсаторе

опыты по заряду низковольтной ячейки с параметрами 02

→ Параметры скорости роста напряжения 02

🗦 Осцилограмма тока заряда конденсатора

 Осцилограмма напряжения на конденсаторе ма заряда ячеек, ток перестал нарастать скачком. При уменьшении скорости возрастания напряжения роста подаваемого напряжения, тем меньше скачок тока и тем больше требуется времени для достижения максимума зарядного тока.

ЗА ВНИМАНИЕ!