Lehninger

SIXTH EDITION

Principles of Biochemistry

David L. Nelson | Michael M. Cox

Media Connections

Below is a chapter-by-chapter list of the media resources available on the Instructor's CD-ROM and website www.courses.bfwpub.com/lehninger6e.

- Mechanism Animations (12 total) show key reactions in detail.
- Technique Animations (10 total) reveal the experimental techniques available to researchers today.
- Living Graphs (15 total) allow students to alter the parameters in key equations and graph the results.
- Molecular Structure Tutorials (9 total) guide students through concepts using threedimensional molecular models.

New animations will be added throughout the life of the edition.

Chapter 2 Water

Living Graph: Henderson-Hasselbalch Equation

Chapter 3 Amino Acids, Peptides, and Proteins

Molecular Structure Tutorials: Protein Architecture—Amino Acids

Technique Animation: SDS Gel Electrophoresis

Chapter 4 The Three-Dimensional Structure of Proteins

Molecular Structure Tutorials:

Protein Architecture—Sequence and Primary Structure

Protein Architecture—The α Helix

Protein Architecture—The β Sheet

Protein Architecture—Turn

Protein Architecture—Introduction to Tertiary Structure

Protein Architecture—Tertiary Structure of Fibrous Proteins

Protein Architecture—Tertiary Structure of Small Globular Proteins

Protein Architecture—Tertiary Structure of Large Globular Proteins

Protein Architecture—Quaternary Structure

Chapter 5 Protein Function

Molecular Structure Tutorial: Oxygen-Binding Proteins—Myoglobin: Oxygen Storage

Living Graphs:

Protein-Ligand Interactions

Binding Curve for Myoglobin

Molecular Structure Tutorial: Oxygen-Binding Proteins—Hemoglobin: Oxygen Transport

Living Graphs:

Cooperative Ligand Binding

Hill Equation

Molecular Structure Tutorials:

Oxygen-Binding Proteins—Hemoglobin Is Susceptible to Allosteric Regulation

Oxygen-Binding Proteins—Defects in Hb Lead to Serious Genetic Disease

MHC Molecules

Technique Animation: Immunoblotting

Chapter 6 Enzymes

Living Graphs:

Michaelis-Menten Equation

Competitive Inhibitor

Uncompetitive Inhibitor

Mixed Inhibitor

Mechanism Animation: Chymotrypsin

Mechanism

Living Graph: Lineweaver-Burk Equation

Chapter 8 Nucleotides and Nucleic Acids

Molecular Structure Tutorial: Nucleotides, Building Blocks of Amino Acids

Technique Animation: Dideoxy Sequencing of DNA

Chapter 9 DNA-Based Information Technologies

Molecular Structure Tutorial: Restriction

Endonucleases

Technique Animations:

Plasmid Cloning

Reporter Constructs

Polymerase Chain Reaction

Synthesizing an Oligonucleotide Array

Screening an Oligonucleotide Array for Patterns of Gene Expression

Yeast Two-Hybrid Systems

Creating a Transgenic Mouse

Chapter 11 Biological Membranes and Transport

Living Graphs:

Free-Energy Change for Transport

Free-Energy Change for Transport of an Ion

Chapter 12 Biosignaling

Molecular Structure Tutorial: Trimeric G Proteins—Molecular On/Off Switches

Chapter 13 Bioenergetics and Biochemical Reaction Types

Living Graphs:

Free-Energy Change

Free-Energy of Hydrolysis of ATP

Chapter 14 Glycolysis, Gluconeogenesis, and the Pentose Phosphate Pathway

Mechanism Animations:

Phosphohexose Isomerase Mechanism

Alcohol Dehydrogenase Mechanism

Thiamine Pyrophosphate Mechanism

Chapter 16 The Citric Acid Cycle

Mechanism Animation: Citrate Synthase

Mechanism

Chapter 17 Fatty Acid Catabolism

Mechanism Animation: Fatty Acyl-CoA

Synthetase Mechanism

Chapter 18 Amino Acid Oxidation and the Production of Urea

Mechanism Animations:

Pyridoxal Phosphate Reaction Mechanism

Carbamoyl Phosphate Synthetase I Mechanism Argininosuccinate Synthetase Mechanism

${\bf Chapter~19~Oxidative~Phosphorylation~and}$

Photophosphorylation

Living Graph: Free-Energy Change for Transport of an Ion

Molecular Structure Tutorial: Bacteriorhodopsin

Chapter 20 Carbohydrate Biosynthesis in

Plants and Bacteria

Mechanism Animation: Rubisco Mechanism

Chapter 22 Biosynthesis of Amino Acids, Nucleotides, and Related Molecules

Mechanism Animations:

Tryptophan Synthase Mechanism

Thymidylate Synthase Mechanism

Chapter 24 Genes and Chromosomes

Animation: Three-Dimensional Packaging of Nuclear Chromosomes

Chapter 25 DNA Metabolism

Molecular Structure Tutorial: Restriction

Endonucleases

Animation:

Nucleotide Polymerization by DNA Polymerase

DNA Synthesis

Chapter 26 RNA Metabolism

Animation: mRNA Splicing

Molecular Structure Tutorial: Hammerhead

Ribozyme

Animation: Life Cycle of an mRNA

Chapter 28 Regulation of Gene Expression

Molecular Structure Tutorial: Lac Repressor

Lehninger

Principles of Biochemistry

SIXTH EDITION

David L. Nelson

Professor of Biochemistry
University of Wisconsin-Madison

Michael M. Cox

Professor of Biochemistry University of Wisconsin-Madison

W. H. FREEMAN AND COMPANY • New York

Publisher: SUSAN WINSLOW

Senior Acquisitions Editor: LAUREN SCHULTZ Senior Developmental Editor: SUSAN MORAN

Developmental Editor: MATTHEW TONTONOZ

Associate Director of Marketing: DEBBIE CLARE

Marketing Director: JOHN BRITCH
Marketing Assistant LINDSAY NEFF
Media Editor: ALLISON MICHAEL

Managing Editor: PHILIP McCAFFREY
Project Editor: JANE O'NEILL

Photo Editor: TED SZCZEPANSKI
Photo Researcher: ELYSE RIEDER

Art Director: DIANA BLUME
Illustration Coordinator: JANICE DONNOLA

Illustrations: H. ADAM STEINBERG

and DRAGONFLY MEDIA GROUP

Molecular Graphics: H. ADAM STEINBERG

Production Manager: SUSAN WEIN Composition: APTARA, INC.

Printing and binding: QUAD/GRAPHICS VERSAILLES

North American Edition

Cover image: The network of interactions in an animal mitochondrion. Each dot represents a compound, and each line, an enzyme that interconverts the two compounds. The major nodes include ADP, ATP, NAD⁺, and NADH. The image was constructed with Cytoscape software by Anthony Smith in the laboratory of Alan Robinson, Medical Research Council Mitochondrial Biology Unit, Cambridge, UK, using data from MitoMiner (Smith, A.C., Blackshaw, J.A., & Robinson, A.J. (2012) MitoMiner: a data warehouse for mitochondrial proteomics data. Nucleic Acids Res. 40, D1160–D1167). Background: Transmission electron micrograph of interscapular brown adipose cell from a bat. (Don W. Fawcett/Science Source/Photo Researchers)

International Edition
Cover design: Dirk Kaufman

Cover image: Nastco/iStockphoto.com

Library of Congress Control Number: 2012948755

 North American Edition
 International Edition

 ISBN-13: 978-1-4292-3414-6
 ISBN-13: 978-1-4641-0962-1

 ISBN-10: 1-4292-3414-8
 ISBN-10: 1-4641-0962-1

©2013, 2008, 2005, 2000 by W. H. Freeman and Company All rights reserved

Printed in the United States of America

First printing

W. H. Freeman and Company 41 Madison Avenue New York, NY 10010 www.whfreeman.com Macmillan Higher Education Houndmills, Basingstoke RG21 6XS, England

www.macmillanhighered.com/international

To Our Teachers

Paul R. Burton

Albert Finholt

William P. Jencks

Eugene P. Kennedy

Homer Knoss

Arthur Kornberg

I. Robert Lehman

Earl K. Nelson

Wesley A. Pearson

David E. Sheppard

Harold B. White

About the Authors

David L. Nelson, born in Fairmont, Minnesota, received his BS in Chemistry and Biology from St. Olaf College in 1964 and earned his PhD in Biochemistry at Stanford Medical School under Arthur Kornberg. He was a postdoctoral fellow at the Harvard Medical School with Eugene P. Kennedy, who was one of Albert Lehninger's first graduate students. Nelson joined the faculty of the University of Wisconsin–Madison in 1971 and became a full professor of biochemistry in 1982. He was for eight years the Director of the Center for Biology Education at the University of Wisconsin–Madison.

Nelson's research has focused on the signal transductions that regulate ciliary motion and exocytosis in the protozoan *Paramecium*. The enzymes of signal transductions, including a variety of protein kinases, are primary targets of study. His research group has used enzyme purification, immunological techniques, electron microscopy, genetics, molecular biology, and electrophysiology to study these processes.

Dave Nelson has a distinguished record as a lecturer and research supervisor. For 40 years he has taught an intensive survey of biochemistry for advanced biochemistry undergraduates in the life sciences. He has also taught a survey of biochemistry for nursing students, and graduate courses on membrane structure and function and on molecular neurobiology. He has sponsored numerous PhD, MS, and undergraduate honors theses and has received awards for his outstanding teaching, including the Dreyfus Teacher-Scholar Award, the Atwood Distinguished Professorship, and the Unterkofler Excellence in Teaching Award from the University of Wisconsin System. In 1991–1992 he was a visiting professor of chemistry and biology at Spelman College. His second love is history, and in his dotage he has begun to teach the history of biochemistry to undergraduates and to collect antique scientific instruments for use in a laboratory course he teaches.

Michael M. Cox was born in Wilmington, Delaware. In his first biochemistry course, Lehninger's *Biochemistry* was a major influence in refocusing his fascination with biology and inspiring him to pursue a career in biochemistry. After graduating from the University of Delaware in 1974, Cox went to Brandeis University to do his doctoral work with William P. Jencks, and then to Stanford in 1979 for postdoctoral study with I. Robert Lehman. He moved to the University of Wisconsin–Madison in 1983 and became a full professor of biochemistry in 1992.

Cox's doctoral research was on general acid and base catalysis as a model for enzyme-catalyzed reactions. At Stanford, he began work on the enzymes involved in genetic recombination. The work focused

David L. Nelson and Michael M. Cox

particularly on the RecA protein, designing purification and assay methods that are still in use, and illuminating the process of DNA branch migration. Exploration of the enzymes of genetic recombination has remained the central theme of his research.

Mike Cox has coordinated a large and active research team at Wisconsin, investigating the enzymology, topology, and energetics of genetic recombination. A primary focus has been the mechanism of RecA protein–mediated DNA strand exchange, the role of ATP in the RecA system, and the regulation of recombinational DNA repair. Part of the research program now focuses on organisms that exhibit an especially robust capacity for DNA repair, such as *Deinococcus radiodurans*, and the applications of those repair systems to biotechnology.

For almost 30 years he has taught (with Dave Nelson) the survey of biochemistry to undergraduates and has lectured in graduate courses on DNA structure and topology, protein-DNA interactions, and the biochemistry of recombination. More recent projects have been the organization of a new course on professional responsibility for first-year graduate students and the establishment of a systematic program to draw talented biochemistry undergraduates into the laboratory at an early stage of their collegiate career. He has received awards for both his teaching and his research, including the Dreyfus Teacher-Scholar Award, the 1989 Eli Lilly Award in Biological Chemistry, and the 2009 Regents Teaching Excellence Award from the University of Wisconsin. He is also highly active in national efforts to provide new guidelines for undergraduate biochemistry education. His hobbies include turning 18 acres of Wisconsin farmland into an arboretum, wine collecting, and assisting in the design of laboratory buildings.

A Note on the Nature of Science

n this twenty-first century, a typical science education often leaves the philosophical underpinnings of science unstated, or relies on oversimplified definitions. As you contemplate a career in science, it may be useful to consider once again the terms **science**, **scientist**, and **scientific method**.

Science is both a way of thinking about the natural world and the sum of the information and theory that result from such thinking. The power and success of science flow directly from its reliance on ideas that can be tested: information on natural phenomena that can be observed, measured, and reproduced and theories that have predictive value. The progress of science rests on a foundational assumption that is often unstated but crucial to the enterprise: that the laws governing forces and phenomena existing in the universe are not subject to change. The Nobel laureate Jacques Monod referred to this underlying assumption as the "postulate of objectivity." The natural world can therefore be understood by applying a process of inquiry—the scientific method. Science could not succeed in a universe that played tricks on us. Other than the postulate of objectivity, science makes no inviolate assumptions about the natural world. A useful scientific idea is one that (1) has been or can be reproducibly substantiated and (2) can be used to accurately predict new phenomena.

Scientific ideas take many forms. The terms that scientists use to describe these forms have meanings quite different from those applied by nonscientists. A *hypothesis* is an idea or assumption that provides a reasonable and testable explanation for one or more observations, but it may lack extensive experimental substantiation. A *scientific theory* is much more than a hunch. It is an idea that has been substantiated to some extent and provides an explanation for a body of experimental observations. A theory can be tested and built upon and is thus a basis for further advance and innovation. When a scientific theory has been repeatedly tested and validated on many fronts, it can be accepted as a fact.

In one important sense, what constitutes science or a scientific idea is defined by whether or not it is published in the scientific literature after peer review by other working scientists. About 16,000 peer-reviewed scientific journals worldwide publish some 1.4 million articles each year, a continuing rich harvest of information that is the birthright of every human being.

Scientists are individuals who rigorously apply the scientific method to understand the natural world. Merely having an advanced degree in a scientific discipline does not make one a scientist, nor does the lack of such a degree prevent one from making important scientific contributions. A scientist must be willing to challenge any idea when new findings demand it. The

ideas that a scientist accepts must be based on measurable, reproducible observations, and the scientist must report these observations with complete honesty.

The **scientific method** is actually a collection of paths, all of which may lead to scientific discovery. In the *hypothesis and experiment* path, a scientist poses a hypothesis, then subjects it to experimental test. Many of the processes that biochemists work with every day were discovered in this manner. The DNA structure elucidated by James Watson and Francis Crick led to the hypothesis that base pairing is the basis for information transfer in polynucleotide synthesis. This hypothesis helped inspire the discovery of DNA and RNA polymerases.

Watson and Crick produced their DNA structure through a process of model building and calculation. No actual experiments were involved, although the model building and calculations used data collected by other scientists. Many adventurous scientists have applied the process of exploration and observation as a path to discovery. Historical voyages of discovery (Charles Darwin's 1831 voyage on H.M.S. Beagle among them) helped to map the planet, catalog its living occupants, and change the way we view the world. Modern scientists follow a similar path when they explore the ocean depths or launch probes to other planets. An analog of hypothesis and experiment is hypothesis and deduction. Crick reasoned that there must be an adaptor molecule that facilitated translation of the information in messenger RNA into protein. This adaptor hypothesis led to the discovery of transfer RNA by Mahlon Hoagland and Paul Zamecnik.

Not all paths to discovery involve planning. Serendipity often plays a role. The discovery of penicillin by Alexander Fleming in 1928 and of RNA catalysts by Thomas Cech in the early 1980s were both chance discoveries, albeit by scientists well prepared to exploit them. Inspiration can also lead to important advances. The polymerase chain reaction (PCR), now a central part of biotechnology, was developed by Kary Mullis after a flash of inspiration during a road trip in northern California in 1983.

These many paths to scientific discovery can seem quite different, but they have some important things in common. They are focused on the natural world. They rely on *reproducible observation* and/or *experiment*. All of the ideas, insights, and experimental facts that arise from these endeavors can be tested and reproduced by scientists anywhere in the world. All can be used by other scientists to build new hypotheses and make new discoveries. All lead to information that is properly included in the realm of science. Understanding our universe requires hard work. At the same time, no human endeavor is more exciting and potentially rewarding than trying, and occasionally succeeding, to understand some part of the natural world.

Preface

As we complete our work on this sixth edition of Lehninger Principles of Biochemistry, we are again struck by the remarkable changes in the field of biochemistry that have occurred between editions. The sheer volume of new information from high-throughput DNA sequencing, x-ray crystallography, and the manipulation of genes and gene expression, to cite only three examples, challenges both the seasoned researcher and the first-time biochemistry student. Our goal here is to strike a balance: to include new and exciting research findings without making the book overwhelming for students. The primary criterion for inclusion is that the new finding helps to illustrate an important principle of biochemistry.

The image on our cover, a map of the known metabolic transformations in a mitochondrion, illustrates the richness of factual material now available about biochemical transformations. We can no longer treat metabolic "pathways" as though they occurred in isolation; a single metabolite may be simultaneously part of many pathways in a three-dimensional network of metabolic transformations. Biochemical research focuses more and more upon the interactions among these pathways, the regulation of their interactions at the level of gene and protein, and the effects of regulation upon the activities of a whole cell or organism.

This edition of *LPOB* reflects these realities. Much of the new material that we have added reflects our increasingly sophisticated understanding of regulatory mechanisms, including those involved in altering the synthesis of enzymes and their degradation, those responsible for the control and timing of DNA synthesis and the cell cycle, and those that integrate the metabolism of carbohydrates, fats, and proteins over time in response to changes in the environment and in different cell types.

Even as we strive to incorporate the latest major advances, certain hallmarks of the book remain unchanged. We continue to emphasize the relevance of biochemistry to the molecular mechanisms of disease, highlighting the special role that biochemistry plays in advancing human health and welfare. A special theme is the metabolic basis of diabetes and the factors that predispose to the disease. This theme is interwoven through many chapters and serves to integrate the discussion of metabolism. We also underscore the importance of evolution to biochemistry. Evolutionary theory is the bedrock upon which all biological sciences rest, and we have not wasted opportunities to highlight its important role in our discipline.

To a significant degree, research progress in biochemistry runs in parallel with the development of better tools and techniques. We have therefore highlighted some of these crucial developments. Chapter 9, DNA-Based Information Technologies, in particular, has been significantly revised to include the latest advances in genomics and next-generation sequencing.

Finally, we have devoted considerable attention to making the text and the art even more useful to students learning biochemistry for the first time. To those familiar with the book, some of these changes will be obvious as soon as you crack the cover.

With every revision of this textbook, we have striven to maintain the qualities that made the original Lehninger text a classic—clear writing, careful explanations of difficult concepts, and insightful communication to students of the ways in which biochemistry is understood and practiced today. The authors have written together for almost 25 years and taught introductory biochemistry together for nearly 30. Our thousands of students at the University of Wisconsin—Madison over those years have been an endless source of ideas about how to present biochemistry more clearly; they have enlightened and inspired us. We hope that this sixth edition of *Lehninger* will in turn enlighten and inspire current students of biochemistry everywhere, and perhaps lead some of them to love biochemistry as we do.

New Art

The most obvious change to the book is the completely revamped art program. Our goal throughout has been to improve pedagogy, drawing on modern graphic resources to make our subject as clear as humanly possible. Many figures illustrate new topics, and much of the art has been reconceived and modernized in style. Defining features of the new art program include:

Smarter renditions of classic figures are easier to interpret and learn from;

Chaperonins in protein folding

- ▶ Figures that pair molecular models with schematic cartoons, generated specifically for this book, use shapes and color schemes that are internally consistent;
- Figures with **numbered**, **annotated steps** help explain complex processes; in many cases, we have moved descriptive text out of the legends and into the figure itself;
- **Summary figures** help the student to keep the big picture in mind while learning the specifics.

Fuel metabolism in the liver during prolonged fasting or in uncontrolled diabetes mellitus

Updated Genomics

Modern genomic techniques have transformed our understanding of biochemistry. In this edition, we have dramatically updated our coverage of genomic methods and their applications. Chapter 9, DNA-Based Information Technologies, has been completely revised to incorporate the latest genomic methods. Many other chapters have been updated to reflect advances gained from these methods. Among the new genomic methods discussed in this edition are:

- Next-generation DNA sequencing, including the Illumina and 454 sequencing methods and platforms (Chapter 9)
- ▶ Applications of genomics, including the use of haplotypes to trace human migrations and phylogenetics to locate human genes associated with inherited diseases (Chapter 9)
- ► Forensic genotyping and the use of personalized genomics in medicine (Chapter 9)

Next-generation reversible terminator sequencing

New Science

Every chapter has been thoroughly revised and updated to include both the most important advances in biochemistry and information needed in a modern biochemistry text. Among the new and updated topics in this edition are:

- Prebiotic evolution, black smokers, and the RNA world (Chapter 1)
- ▶ Intrinsically disordered proteins (Chapter 4)
- Transition-state analogs and irreversible inhibition (Chapter 6)
- ▶ Blood coagulation pathways in the context of enzymatic regulation (Chapter 6)

Binding of the intrinsically disordered carboxyl terminus of p53 to its binding partners

- Asymmetric lipid distribution in bilayers (Chapter 11)
- ▶ Role of BAR superfamily proteins in membrane curvature (Chapter 11)
- Scaffold proteins (AKAPS and others) and their regulatory roles (Chapter 12)
- Reactive oxygen species as byproducts and as signals (Chapter 19)
- ➤ Structure and function of the oxygen-evolving metal cluster in PSII (Chapter 19)
- Formation and transport of lipoproteins in mammals, including the roles of SREBP SCAP, and Insig in cholesterol regulation (Chapter 21)
- ► Integration of carbohydrate and lipid metabolism by PPARs, SREBPs, mTORC1, and LXR (Chapters 21, 23)
- Creatine phosphate and the role of creatine kinase in moving ATP to the cytosol (Chapter 23)

- Microbial symbionts in the gut and their influence on energy metabolism and adipogenesis (Chapter 23)
- Nucleosomes: their modification and positioning and higher-order chromatin structure (Chapter 24)
- ▶ DNA polymerases and homologous recombination (Chapter 25)
- ► Loading of eukaryotic RNA polymerase II (Chapter 26)
- ► Mutation-resistant nature of the genetic code (Chapter 27)
- ► Regulation of eukaryotic gene expression by miRNAs (Chapters 26 and 28).
- ▶ DNA looping, combinatorial control, chromatin remodeling, and positive regulation in eukaryotes (Chapter 28)
- ► Regulation of the initiation of transcription in eukaryotes (Chapter 28)
- ▶ Steroid-binding nuclear receptors (Chapter 28)

New Biochemical Methods

An appreciation of biochemistry often requires an understanding of how biochemical information is obtained. Some of the new methods or updates described in this edition are:

- Modern Sanger protein sequencing and mass spectrometry (Chapter 3)
- ► Mass spectrometry applied to proteomics, glycomics, lipidomics, and metabolomics (Chapters 3, 7, 10)
- Oligosaccharide microarrays to explore proteinoligosaccharide interactions and the "carbohydrate code" (Chapter 7)

- ▶ Modern genomic methods (Chapter 9)
- Genetic engineering of photosynthetic organisms (Chapter 20)
- Use of positron emission tomography (PET) to visualize tumors and brown adipose tissue (Chapter 23)
- ▶ Development of bacterial strains with altered genetic codes for site-specific insertion of novel amino acids into proteins (Chapter 27)

New Medical Applications

This icon is used throughout the book to denote material of special medical interest. As teachers, our goal is for students to learn biochemistry and to understand its relevance to a healthier life and a healthier planet. Many sections explore what we know about the molecular mechanisms of disease. A few of the new or revised medical applications in this edition are:

- ▶ Box 4-6, Death by Misfolding: The Prion Diseases
- ▶ Paganini and Ehlers-Danlos syndrome (Chapter 4)
- ► HIV protease inhibitors and how basic enzymatic principles influenced their design (Chapter 6)
- Blood coagulation cascade and hemophilia (Chapter 6)
- Curing African sleeping sickness with an enzymatic suicide inhibitor (Chapter 6)
- ► How researchers locate human genes involved in inherited diseases (Chapter 9)

- ► Multidrug resistance transporters and their importance in clinical medicine (Chapter 11)
- Multistep progression to colorectal cancer (Chapter 12)
- Cholesterol metabolism, cardiovascular disease, and mechanism of plaque formation in atherosclerosis (Chapter 21)
- ▶ P-450 and drug interactions (Chapter 21)
- ► HMG-CoA reductase (Chapter 21) and Box 21–3, The Lipid Hypothesis and the Development of Statins
- ▶ Box 24–1, Curing Disease by Inhibiting Topoisomerases, describing the use of topoisomerase inhibitors in the treatment of bacterial infections and cancer, including material on ciprofloxacin (the antibiotic effective for anthrax)
- ▶ Stem cells (Chapter 28)

Special Theme: Understanding Metabolism through Obesity and Diabetes

Obesity and its medical consequences—cardiovascular disease and diabetes—are fast becoming epidemic in the industrialized world, and we include new material on the biochemical connections between obesity and health throughout this edition. Our focus on diabetes provides an integrating theme throughout the chapters on metabolism and its control, and this will, we hope, inspire some students to find solutions for this disease. Some of the sections and boxes that highlight the interplay of metabolism, obesity, and diabetes are:

- Untreated Diabetes Produces Life-Threatening Acidosis (Chapter 2)
- Box 7-1, Blood Glucose Measurements in the Diagnosis and Treatment of Diabetes, introduces hemoglobin glycation and AGEs and their role in the pathology of advanced diabetes
- Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus (Chapter 14)
- Ketone Bodies Are Overproduced in Diabetes and during Starvation (Chapter 17)
- Some Mutations in Mitochondrial Genomes Cause Disease (Chapter 19)
- Diabetes Can Result from Defects in the Mitochondria of Pancreatic β Cells (Chapter 19)

- Adipose Tissue Generates Glycerol 3-phosphate by Glyceroneogenesis (Chapter 21)
- Diabetes Mellitus Arises from Defects in Insulin Production or Action (Chapter 23)
- Section 23.4, Obesity and the Regulation of Body Mass, includes a new discussion of the roles of TORC1 in regulating cell growth
- ▶ Section 23.5, Obesity, the Metabolic Syndrome, and Type 2 Diabetes, discusses the role of ectopic lipids and inflammation in the development of insulin resistance and the management of type 2 diabetes with exercise, diet, and medication

Overloading adipocytes with triacylglycerols triggers inflammation in fat tissue, ectopic lipid deposition, and insulin resistance.

Special Theme: Evolution

Every time a biochemist studies a developmental pathway in nematodes, identifies key parts of an enzyme active site by determining what parts are conserved between species, or searches for the gene underlying a human genetic disease, he or she is relying on evolutionary theory. Funding agencies support the work in nematodes knowing that the insights will be relevant to humans. The conservation of functional residues in an enzyme active site telegraphs the shared history of every organism on the planet. More often than not, the search for a disease gene is a sophisticated exercise in phylogenetics. Evolution is thus a foundational concept to our discipline. Some of the many sections and boxes that deal with evolution include:

- Section 1.5, Evolutionary Foundations, discusses how life may have evolved and recounts some of the early milestones in the evolution of eukaryotic cells
- Genome Sequencing Informs Us about Our Humanity (Chapter 9)
- Genome Comparisons Help Locate Genes Involved in Disease (Chapter 9)
- ► Genome Sequences Inform Us about Our Past and Provide Opportunities for the Future (Chapter 9)

- ▶ Box 9–3, Getting to Know the Neanderthals
- ► ABC Transporters Use ATP to Drive the Active Transport of a Wide Variety of Substrates (Chapter 11)
- Signaling Systems of Plants Have Some of the Same Components Used by Microbes and Mammals (Chapter 12)
- The β-Oxidation Enzymes of Different Organelles Have Diverged during Evolution (Chapter 17)
- Section 19.10, The Evolution of Oxygenic Photosynthesis
- Mitochondria and Chloroplasts Evolved from Endosymbiotic Bacteria (Chapter 19)
- ▶ Photosystems I and II Evolved from Bacterial Photosystems (Chapter 19)
- RNA Synthesis Offers Important Clues to Biochemical Evolution (Chapter 26)
- ▶ Box 27–1, Exceptions That Prove the Rule: Natural Variations in the Genetic Code
- ▶ Box 27–2, From an RNA World to a Protein World
- ▶ Box 28-1, Of Fins, Wings, Beaks, and Things

Lehninger Teaching Hallmarks

Students encountering biochemistry for the first time often have difficulty with two key aspects of the course: approaching quantitative problems and drawing on what they learned in organic chemistry to help them understand biochemistry. Those same students must also learn a complex language, with conventions that are often unstated. To help students cope with these challenges, we provide the following study aids:

Focus on Chemical Logic

- Section 13.2, Chemical Logic and Common Biochemical Reactions, discusses the common biochemical reaction types that underlie all metabolic reactions, helping students to connect organic chemistry with biochemistry.
- ▶ **NEW chemical logic figures** highlight the conservation of mechanism and illustrate patterns that make learning pathways easier. Chemical logic figures are provided for each of the central metabolic pathways, including glycolysis (Fig. 14–3), citric acid cycle (Fig. 16–7), and fatty acid oxidation (Fig. 17–9).

Reactions of the citric acid cycle

▶ **Mechanism figures** feature step-by-step descriptions to help students understand the reaction process. These figures use a consistent set of conventions introduced and explained in detail with the first enzyme mechanism encountered (chymotrypsin, pp. 216–217).

Tryptophan synthase reaction

Problem-Solving Tools

- ▶ **In-text Worked Examples** help students improve their quantitative problem-solving skills, taking them through some of the most difficult equations. New worked examples appear in Chapters 1, 2, and 19.
- More than 600 end-of-chapter problems (about 25 of them new) give students further opportunity to practice what they have learned.
- ▶ **Data Analysis Problems** (one at the end of each chapter), contributed by Brian White of the University of Massachusetts–Boston, encourage students to synthesize what they have learned and apply their knowledge to the interpretation of data from the literature.

Key Conventions

Many of the conventions that are so necessary for understanding each biochemical topic and the biochemical literature are broken out of the text and highlighted. These **Key Conventions** include clear statements of many assumptions and conventions that students are often expected to assimilate without being told (for example, peptide sequences are written from amino- to carboxyl-terminal end, left to right; nucleotide sequences are written from 5' to 3' end, left to right).

Media and Supplements

A full package of media resources and supplements provides instructors and students with innovative tools to support a variety of teaching and learning approaches. All these resources are fully integrated with the style and goals of the sixth-edition textbook.

NEW BiochemPortal (courses.bfwpub.com/lehninger6e)

This comprehensive and robust online teaching and learning tool incorporates the e-Book, all instructor and student resources, instructor assignment and gradebook functionality, and a new LearningCurve quizzing tool.

- ▶ BiochemPortal includes the **e-Book**, with the full contents of the text, highlighting and note-taking tools, and links to important media assets (listed below).
- In addition to all **instructor resources** (listed below), BiochemPortal provides instructors with the **ability to assign** any resource, as well as e-Book readings, discussion board posts, and their own materials. A gradebook tracks all student scores and can be easily exported to Excel or a campus Course Management System.
- New BiochemPortal also includes LearningCurve, a self-paced adaptive quizzing tool. With questions tailored to students' target difficulty level and an engaging scoring system, LearningCurve encourages students to incorporate content from

WORKED EXAMPLE 19–2 Stoichiometry of ATP Production: Effect of c Ring Size

(a) If bovine mitochondria have 8 c subunits per c ring, what is the predicted ratio of ATP formed per NADH oxidized? (b) What is the predicted value for yeast mitochondria, with 10 c subunits? (c) What are the comparable values for electrons entering the respiratory chain from FADH₂?

Solution: (a) The question asks us to determine how many ATP are produced per NADH. This is another way of asking us to calculate the P/O ratio, or α in Equation 19–11. If the c ring has 8 c subunits, then one full rotation will transfer 8 protons to the matrix and produce 3 ATP molecules. But this synthesis also requires the transport of 3 P, into the matrix, at a cost of 1 proton each, adding 3 more protons to the total number required. This brings the total cost to (11 protons)/(3 ATP) = 3.7 protons/ATP. The consensus value for the number of protons pumped out per pair of electrons transferred from NADH is 10 (see Fig. 19–19). So, oxidizing 1 NADH produces (10 protons)/(3.7 protons/ATP) = 2.7 ATP.

(b) If the c ring has 10 c subunits, then one full rotation will transfer 10 protons to the matrix and produce 3 ATP molecules. Adding in the 3 protons to transport the 3 P₁ into the matrix brings the total cost to (13 protons)/ (3 ATP) = 4.3 protons/ATP. Oxidizing 1 NADH produces (10 protons)/(4.3 protons/ATP) = 2.3 ATP.

(c) When electrons enter the respiratory chain from FADH₂ (at ubiquinone), only 6 protons are available to drive ATP synthesis. This changes the calculation for bovine mitochondria to (6 protons)/(3.7 protons/ ATP) = 1.6 ATP per pair of electrons from FADH₂. For yeast mitochondria, the calculation is (6 protons)/(4.3 protons/ATP) = 1.4 ATP per pair of electrons from FADH₂.

These calculated values of x or the P/O ratio define a range that includes the experimental values of 2.5 ATP/NADH and 1.5 ATP/FADH₂, and we therefore use these values throughout this book.

- the text into their study routine and provides them with a study plan on completion.
- Students can access any of the **student resources** provided with the text (see below) through links in the e-Book or the handy Resources tab.

e-Book (ebooks.bfwpub.com/lehninger6e)

This online version of the textbook combines the contents of the printed book with electronic study tools and a full complement of student media specifically created to support the text. The e-Book also provides useful material for instructors.

- e-Book study tools include instant navigation to any section or page of the book, bookmarks, highlighting, note-taking, instant search for any term, pop-up key-term definitions, and a spoken glossary.
- ▶ The text-specific **student media**, fully integrated throughout the e-Book, include animated enzyme mechanisms, animated biochemical techniques, problem-solving videos, molecular structure tutorials in Jmol, Protein Data Bank IDs in Jmol, and Living Graphs (each described under "Student Resources" below).
- ▶ **Instructor features** include the ability to add notes or files to any page and to share these notes with students. Notes may include text, Web links, animations, or photos. Instructors can also assign the entire text or a custom version of the e-Book.

Instructor Resources

Instructors are provided with a comprehensive set of teaching tools, each developed to support the text, lecture presentations, and individual teaching styles. All instructor media are available for download on the **book website** (www.whfreeman.com/lehninger6e) and on the **Instructor Resource DVD** (ISBN 1-4641-0969-9).

- ▶ **New clicker questions** provide instructors with dynamic multiple-choice questions to be used with iClicker or other classroom response systems. The clicker questions have been written specifically to foster active learning in the classroom and better inform instructors on student misunderstandings.
- ▶ **Fully optimized JPEG files** of every figure, photo, and table in the text feature enhanced color, higher resolution, and enlarged fonts. The files have been reviewed by course instructors and

tested in a large lecture hall to ensure maximum clarity and visibility. The JPEGs are also offered in separate files and in **PowerPoint** format for each chapter.

- Animated Enzyme Mechanisms and Animated Biochemical Techniques are available in Flash files and preloaded into PowerPoint, in both PC and Macintosh formats, for lecture presentation.
- ▶ A list of **Protein Data Bank IDs** for the structures in the text are arranged by figure number. A new feature in this edition is an index to all structures in the Jmol interactive Web browser applet.
- ► **Living Graphs**, illustrating key equations from the textbook, show the graphic results of changing parameters.
- A comprehensive **Test Bank** in PDF and editable Word formats includes 150 multiple-choice and short-answer problems per chapter, rated by level of difficulty.

Student Resources

Students are provided with media designed to enhance their understanding of biochemical principles and improve their problem-solving ability. All student media, along with the **PDB Structures** and **Living Graphs**, are also in the e-Book, and many are available on the book website (www.whfreeman.com/lehninger6e). Cons in the text indicate the availability of relevant animation, Living Graph, or Molecular Structure Tutorial.

Problem-Solving Videos, created by Scott Ensign of Utah State University, provide 24/7 online

- problem-solving help to students. Through a two-part approach, each 10-minute video covers a key textbook problem representing a topic that students traditionally struggle to master. Dr. Ensign first describes a proven problem-solving strategy and then applies the strategy to the problem at hand in clear, concise steps. Students can easily pause, rewind, and review any steps as they wish until they firmly grasp not just the solution but also the reasoning behind it. Working through the problems in this way is designed to make students better and more confident at applying key strategies as they solve other textbook and exam problems.
- Student versions of the Animated Enzyme
 Mechanisms and Animated Biochemical
 Techniques help students understand key
 mechanisms and techniques at their own pace.

Protein Architecture Molecular Structure Tutorial

▶ **Molecular Structure Tutorials**, using the Jmol-Web browser applet, allow students to explore in more depth the molecular structures included in the textbook, including:

Protein Architecture

Bacteriorhodopsin

Lac Repressor

Nucleotides

MHC Molecules

Trimeric G Proteins

Oxygen-Binding Proteins

Restriction Endonucleases

Hammerhead Ribozyme

The Absolute, Ultimate Guide to Lehninger Principles of Biochemistry, Sixth Edition, Study Guide and Solutions Manual, by Marcy Osgood (University of New Mexico School of Medicine) and Karen Ocorr (Sanford-Burnham Medical Research Institute); ISBN 1429294760

The Absolute, Ultimate Guide combines an innovative study guide with a reliable solutions manual (providing extended solutions to end-of-chapter problems) in one convenient volume. Thoroughly class-tested, the study guide includes for each chapter:

- Major Concepts: a road map through the chapter
- What to Review: questions that recap key points from previous chapters
- Discussion Questions: provided for each section; designed for individual review, study groups, or classroom discussion
- ▶ **A Self-Test:** "Do you know the terms?"; crossword puzzles; multiple-choice, fact-driven questions; and questions that ask students to apply their new knowledge in new directions—plus answers!

Acknowledgments

This book is a team effort, and producing it would be impossible without the outstanding people at W. H. Freeman and Company who supported us at every step along the way. Susan Moran (Senior Developmental Editor), Susan Winslow (Publisher), and Lauren Schultz (Senior Acquisitions Editor) helped develop the revision plan for this edition, made many helpful suggestions, encouraged us, and tried valiantly (if not always successfully) to keep us on schedule. Matthew Tontonoz (Developmental Editor) provided extremely helpful feedback on many chapters. Our outstanding Project Editor, Jane O'Neill, somehow kept the book moving through production in spite of our missed deadlines and last-minute changes, and did so with her usual grace and skill. We thank Art Director Diana Blume for her artistry in designing both the text and cover for the book. We appreciate the work of present and past copyeditors, including Karen Taschek, Liz Geller, and Linda Strange. Although Linda did not copyedit this edition, her lasting contributions from the first through the fifth editions are still clearly evident in the text. We thank Photo Research Manager Ted Szczepanski and Photo Researcher Elyse Rieder for their help in locating images and Courtney Lyons for help in orchestrating reviews and providing administrative assistance at many turns. We also thank Allison Michael, Media Editor, for assembling the ever more important media components to accompany the text. Our gratitude also goes to Debbie Clare, Associate Director of Marketing, for her creativity and good humor in coordinating the sales and marketing effort. A very special thanks goes to Kate Parker, who oversaw this project for the past three editions, and contributed much to its success, before moving on to other things; we will miss her insight, humor, and excellent taste in restaurants.

In Madison, Brook Soltvedt is (and has been for all the editions we have worked on) our first-line editor and critic. She is the first to see manuscript chapters, aids in manuscript and art development, ensures internal consistency in content and nomenclature, and keeps us on task with more-or-less gentle prodding. As she did for the fourth and fifth editions, Shelley Lusetti of New Mexico State University read every word of the text in proofs, caught numerous mistakes, and made many suggestions that improved the book.

The new art in this edition, including the new molecular graphics, was done by Adam Steinberg, here in Madison, who often made valuable suggestions that led to better and clearer illustrations. We feel very fortunate to have such gifted partners as Brook, Shelley, and Adam on our team.

We are also deeply indebted to Brian White of the University of Massachusetts–Boston, who wrote the data analysis problems at the end of each chapter.

Many colleagues played a special role through their interest in the project and their timely input. Prominent among these are Jeffrey D. Esko of the University of California, San Diego; and Jack Kirsch and his students at the University of California, Berkeley. Charles G. Hoogstraten of Michigan State University made many incisive and helpful comments on the manuscript and figures. We also thank Jeffrey A. Cohlberg of California State University at Long Beach for his critical comments. Many others helped us shape this sixth edition with their comments, suggestions, and criticisms. To all of them, we are deeply grateful:

Richard Amasino, University of Wisconsin-Madison
Laurens Anderson, University of Wisconsin-Madison
Alan Attie, University of Wisconsin-Madison
Kenneth Balazovich, University of Michigan
James Blankenship, Cornell University
Tracey Boncher, Ferris State College of Pharmacy
Brian Bothner, Montana State University
Mary Bryk, Texas A&M University
Sharada Buddha, Saint Xavier University
Jeff DeJong, University of Texas, Dallas
Keith Dunker, Indiana University
Kelly Elkins, Metropolitan State College of Denver
Gerald Feigenson, Cornell University
Brent Feske, Armstrong Atlantic State University

XiV Preface

Marcello Forconi, College of Charleston Wilson Francisco, Arizona State University Greta Giles, Georgia Gwinnett College Glenda Gillaspy, Virginia Tech University Margaret Glasner, Texas A&M University James Gober, University of California, Los Angeles Burt Goldberg, New York University Julie Gosse, University of Maine Lesley Greene, Old Dominion University Eric Hegg, Michigan State University Justin Hines, Lafayette College Peter Hinkle, Cornell University Pui Ho, Colorado State University David Hurley, Gatton College of Pharmacy, ETSU Joseph Jez, Washington University in St. Louis Kelly Johanson, Xavier University of Louisiana Douglas Julin, University of Maryland Mark Kearley, Florida State University Dmitry Kolpashchikov, University of Central Florida Min-Hao Kuo, Michigan State University Nicole LaRonde-LeBlanc, University of Maryland Scott Lefler, Arizona State University Andy LiWang, University of California, Merced Thomas Marsh, University of St. Thomas Michele McGuirl, The University of Montana Michael Mendenhall, University of Kentucky David Merkler, University of South Florida Debra Moriarity, University of Alabama: Huntsville Hunter Moseley, University of Louisville Allen Nicholson, Temple University James Ntambi, University of Wisconsin-Madison Neil Osheroff, Vanderbilt University School of Medicine Donald Ourth, University of Memphis Terry Platt, University of Rochester Wendy Pogozelski, State University of New York, Geneseo Joseph Provost, Minnesota State University, Moorhead Gregory Raner, University of North Carolina, Greensboro Lisa Rezende, University of Arizona Douglas Root, University of North Texas Johannes Rudolph, University of Colorado

Phillip Ryals, University of West Florida
Kevin Siebenlist, Marquette University
Kerry Smith, Clemson University
Julian Snow, University of the Sciences
Alejandra Stenger, University of Illinois,
Urbana—Champaign
Amy Stockert, Ohio Northern University
Jon Stoltzfus, Michigan State University
Toni Vidal-Puig, University of Cambridge
Chuan Xiao, University of Texas, El Paso
Michael Yaffe, Massachusetts Institute of Technology
Laura Zapanta, University of Pittsburgh

We lack the space here to acknowledge all the other individuals whose special efforts went into this book. We offer instead our sincere thanks—and the finished book that they helped guide to completion. We, of course, assume full responsibility for errors of fact or emphasis.

We want especially to thank our students at the University of Wisconsin–Madison for their numerous comments and suggestions. If something in the book does not work, they are never shy about letting us know it. We are grateful to the students and staff of our research groups, who helped us balance the competing demands on our time; to our colleagues in the Department of Biochemistry at the University of Wisconsin–Madison, who helped us with advice and criticism; and to the many students and teachers who have written to suggest ways of improving the book. We hope our readers will continue to provide input for future editions.

Finally, we express our deepest appreciation to our wives, Brook and Beth, and our families, who showed extraordinary patience with, and support for, our book writing.

David L. Nelson Michael M. Cox Madison, Wisconsin June 2012

Contents in Brief

	Preface	vi
1	The Foundations of Biochemistry	1
ī	STRUCTURE AND CATALYSIS	45
2	Water	47
3	Amino Acids, Peptides, and Proteins	75
4	The Three-Dimensional Structure of Proteins	115
5	Protein Function	157
6	Enzymes	189
7	Carbohydrates and Glycobiology	243
8	Nucleotides and Nucleic Acids	281
9	DNA-Based Information Technologies	313
10	Lipids	357
11	Biological Membranes and Transport	385
12	Biosignaling	433
Ш	BIOENERGETICS AND METABOLISM	501
13	Bioenergetics and Biochemical Reaction Types	505
14	3. 3,	
	Phosphate Pathway	543
15	Principles of Metabolic Regulation	587
	The Citric Acid Cycle	633
17		667
18		695
19	Oxidative Phosphorylation and Photophosphorylation	731
20	Carbohydrate Biosynthesis in Plants and Bacteria	799
21	Lipid Biosynthesis	833
22	Biosynthesis of Amino Acids, Nucleotides,	
	and Related Molecules	881
23	Hormonal Regulation and Integration of	
	Mammalian Metabolism	929
Ш	INFORMATION PATHWAYS	977
24	Genes and Chromosomes	979
25	DNA Metabolism	1009
	RNA Metabolism	1057
27	Protein Metabolism	1103
28	Regulation of Gene Expression	1155
	Abbreviated Solutions to Problems	AS-1
	Glossary	G-1
	Credits	C-1
	Index	I-1

Contents

1	The Foundations of Biochemistry	1
1.1	Cellular Foundations	2
	Cells Are the Structural and Functional Units	
	of All Living Organisms	3
	Cellular Dimensions Are Limited by Diffusion	3
	There Are Three Distinct Domains of Life Organisms Differ Widely in Their Sources of Energy	3
	and Biosynthetic Precursors Bacterial and Archaeal Cells Share Common	4
	Features but Differ in Important Ways	4
	Eukaryotic Cells Have a Variety of Membranous	
	Organelles, Which Can Be Isolated for Study The Cytoplasm Is Organized by the Cytoskeleton	6
	and Is Highly Dynamic	8
	Cells Build Supramolecular Structures	9
	In Vitro Studies May Overlook Important Interactions among Molecules	9
	interactions among molecules	9
1.2	Chemical Foundations	11
	Biomolecules Are Compounds of Carbon with a	
	Variety of Functional Groups	12
	Cells Contain a Universal Set of Small Molecules	14
	BOX 1–1 Molecular Weight, Molecular Mass, and	14
	Their Correct Units	14
	Macromolecules Are the Major Constituents of Cells	15
	Three-Dimensional Structure Is Described by	
	Configuration and Conformation	16
	BOX 1-2 Louis Pasteur and Optical Activity:	1.0
	In Vino, Veritas Interactions between Biomolecules	18
	Are Stereospecific	19
	The Stereospeeme	10
1.3	Physical Foundations	20
	Living Organisms Exist in a Dynamic Steady State, Never at Equilibrium with Their Surroundings	21
	Organisms Transform Energy and Matter from Their	0.4
	Surroundings	21
	BOX 1-3 Entropy: Things Fall Apart The Flow of Electrons Provides Energy for	22
	Organisms	22
	Creating and Maintaining Order Requires Work and Energy	22
	Energy Coupling Links Reactions in Biology	24
	$K_{ m eq}$ and ΔG° Are Measures of a Reaction's Tendency to Proceed Spontaneously	25
	Enzymes Promote Sequences of Chemical Reactions	$\frac{25}{27}$
	Metabolism Is Regulated to Achieve Balance and	
	Economy	28
L.4	Genetic Foundations	29
	Genetic Continuity Is Vested in Single DNA	
	Molecules	30
	The Structure of DNA Allows for Its Replication and	9.0
	Repair with Near-Perfect Fidelity The Linear Sequence in DNA Encodes Proteins with	30
	Three-Dimensional Structures	30

1.5	Evolutionary Foundations	32	2.4	Water as a Reactant	69
	Changes in the Hereditary Instructions Allow Evolution Biomolecules First Arose by Chemical Evolution RNA or Related Precursors May Have Been the	32 33	2.5	The Fitness of the Aqueous Environment for Living Organisms	69
	First Genes and Catalysts Biological Evolution Began More Than Three	34	3	Amino Acids, Peptides, and Proteins	75
	and a Half Billion Years Ago The First Cell Probably Used Inorganic Fuels	35 35	3.1	Amino Acids	76
	Eukaryotic Cells Evolved from Simpler Precursors in Several Stages	36		Amino Acids Share Common Structural Features The Amino Acid Residues in Proteins Are	76
	Molecular Anatomy Reveals Evolutionary Relationships	37		L Stereoisomers Amino Acids Can Be Classified by R Group	78 78
	Functional Genomics Shows the Allocations of Genes to Specific Cellular Processes	38		BOX 3-1 METHODS: Absorption of Light by Molecules: The Lambert-Beer Law	80
	Genomic Comparisons Have Increasing Importance in Human Biology and Medicine	39		Uncommon Amino Acids Also Have Important Functions	81
_	STRUCTURE AND CATALYSIS	45		Amino Acids Can Act as Acids and Bases Amino Acids Have Characteristic Titration Curves	81 82
<u>'</u>				Titration Curves Predict the Electric Charge of Amino Acids	84
2	Water	47		Amino Acids Differ in Their Acid-Base Properties	84
2.1	Weak Interactions in Aqueous Systems Hydrogen Bonding Gives Water Its Unusual	47	3.2	Peptides and Proteins Peptides Are Chains of Amino Acids	85 85
	Properties Water Forms Hydrogen Bonds with Polar Solutes Water Interacts Electrostatically with Charged	47 49		Peptides Can Be Distinguished by Their Ionization Behavior Biologically Active Peptides and Polypeptides Occu	86
	Solutes Entropy Increases as Crystalline Substances	50		in a Vast Range of Sizes and Compositions Some Proteins Contain Chemical Groups Other Tha	87
	Dissolve	51 51		Amino Acids	89
	Nonpolar Gases Are Poorly Soluble in Water Nonpolar Compounds Force Energetically	51	3.3	Working with Proteins	89
	Unfavorable Changes in the Structure of Water van der Waals Interactions Are Weak Interatomic	51		Proteins Can Be Separated and Purified Proteins Can Be Separated and Characterized by	89
	Attractions Weak Interactions Are Crucial to Macromolecular	53		Electrophoresis Unseparated Proteins Can Be Quantified	92 95
	Structure and Function Solutes Affect the Colligative Properties of Aqueous	54	3.4	The Structure of Proteins: Primary Structure	96
	Solutions	55		The Function of a Protein Depends on Its Amino Acid Sequence	97
2.2	Ionization of Water, Weak Acids, and Weak Bases Pure Water Is Slightly Ionized	58 58		The Amino Acid Sequences of Millions of Proteins Have Been Determined	97
	The Ionization of Water Is Expressed by an Equilibrium Constant	59		Protein Chemistry Is Enriched by Methods Derived from Classical Polypeptide Sequencing	98
	The pH Scale Designates the H ⁺ and OH ⁻ Concentrations	60		Mass Spectrometry Offers an Alternative Method to Determine Amino Acid Sequences	100
	Weak Acids and Bases Have Characteristic Acid Dissociation Constants	61		Small Peptides and Proteins Can Be Chemically Synthesized	102
	Titration Curves Reveal the $\mathbf{p}K_{\mathbf{a}}$ of Weak Acids	62		Amino Acid Sequences Provide Important Biochemical Information	104
2.3	Buffering against pH Changes in Biological Systems	63		Protein Sequences Can Elucidate the History of Life on Earth	104
	Buffers Are Mixtures of Weak Acids and Their Conjugate Bases	64		BOX 3-2 Consensus Sequences and Sequence Logos	105
	The Henderson-Hasselbalch Equation Relates pH , pK_a , and Buffer Concentration	64	4	The Three-Dimensional Structure	
	Weak Acids or Bases Buffer Cells and Tissues		•	of Proteins	115
	against pH Changes Untreated Diabetes Produces Life-Threatening Acidosis	65 67	4.1	Overview of Protein Structure A Protein's Conformation Is Stabilized Largely by	115
	BOX 2-1 MEDICINE: On Being One's Own Rabbit			Weak Interactions	116
	(Don't Try This at Home!)	68		The Peptide Bond Is Rigid and Planar	117

4.2	Protein Secondary Structure	119		Hemoglobin Binds Oxygen Cooperatively Cooperative Ligand Binding Can Be Described	165
	The α Helix Is a Common Protein Secondary	100		Quantitatively	167
	Structure Amino Acid Sequence Affects Stability of the α Helix	120 121		Two Models Suggest Mechanisms for	
	BOX 4–1 METHODS: Knowing the Right Hand from the Left	121		Cooperative Binding	167
	The $oldsymbol{eta}$ Conformation Organizes Polypeptide			BOX 5-1 MEDICINE: Carbon Monoxide: A Stealthy Killer	168
	Chains into Sheets	123		Hemoglobin Also Transports H ⁺ and CO ₂	169
	$oldsymbol{eta}$ Turns Are Common in Proteins	123		Oxygen Binding to Hemoglobin Is Regulated by 2,3-Bisphosphoglycerate	171
	Common Secondary Structures Have Characteristic	100		Sickle-Cell Anemia Is a Molecular Disease of	111
	Dihedral Angles Common Secondary Structures Can Be Assessed by	123		Hemoglobin	172
	Circular Dichroism	124	5.2	Complementary Interactions between Proteins	
4.2			3.2	and Ligands: The Immune System and	
4.3	Protein Tertiary and Quaternary Structures	125		Immunoglobulins	174
	Fibrous Proteins Are Adapted for a Structural Function	125		The Immune Response Features a Specialized	174
	BOX 4–2 Permanent Waving Is Biochemical Engineering	127		Array of Cells and Proteins	174
	BOX 4-3 MEDICINE: Why Sailors, Explorers, and College			Antibodies Have Two Identical Antigen-Binding	
	Students Should Eat Their Fresh Fruits and Vegetables	128		Sites	175
	Structural Diversity Reflects Functional Diversity			Antibodies Bind Tightly and Specifically to	
	in Globular Proteins	130		Antigen The Antibody-Antigen Interaction Is the Basis for a	177
	Myoglobin Provided Early Clues about the	101		Variety of Important Analytical Procedures	178
	Complexity of Globular Protein Structure BOX 4-4 The Protein Data Bank	131 132			110
	Globular Proteins Have a Variety of Tertiary	132	5.3	Protein Interactions Modulated by Chemical	
	Structures	133		Energy: Actin, Myosin, and Molecular Motors	179
	BOX 4-5 METHODS: Methods for Determining the Three-			The Major Proteins of Muscle Are Myosin and	1.50
	Dimensional Structure of a Protein	134		Actin Additional Proteins Organize the Thin and Thick	179
	Protein Motifs Are the Basis for Protein Structural	100		Filaments into Ordered Structures	181
	Classification Protein Quaternary Structures Range from Simple	138		Myosin Thick Filaments Slide along Actin	
	Dimers to Large Complexes	140		Thin Filaments	182
	Some Proteins or Protein Segments Are	110	6	Enzumos	100
	Intrinsically Disordered	141	6	Enzymes	189
4.4	Protein Denaturation and Folding	143	6.1	An Introduction to Enzymes	189
	Loss of Protein Structure Results in Loss			Most Enzymes Are Proteins	190
	of Function	143		Enzymes Are Classified by the Reactions They Catalyza	190
	Amino Acid Sequence Determines Tertiary			They Catalyze	
	Structure Polymentides Fold Panidly by a Stanying Process	144	6.2	How Enzymes Work	192
	Polypeptides Fold Rapidly by a Stepwise Process Some Proteins Undergo Assisted Folding	144 146		Enzymes Affect Reaction Rates, Not Equilibria	192
	Defects in Protein Folding Provide the Molecular	140		Reaction Rates and Equilibria Have Precise Thermodynamic Definitions	194
	Basis for a Wide Range of Human Genetic			A Few Principles Explain the Catalytic Power and	194
	Disorders	148		Specificity of Enzymes	194
	BOX 4–6 MEDICINE: Death by Misfolding: The Prion Diseases	150		Weak Interactions between Enzyme and Substrate	
_	B. C. F. C.	455		Are Optimized in the Transition State	195
5	Protein Function	157		Binding Energy Contributes to Reaction Specificity	197
5.1	Reversible Binding of a Protein to a Ligand:			and Catalysis Specific Catalytic Groups Contribute to Catalysis	199
	Oxygen-Binding Proteins	158			
	Oxygen Can Bind to a Heme Prosthetic Group	158	0.3	Enzyme Kinetics as an Approach to	200
	Globins Are a Family of Oxygen-Binding Proteins	159		Understanding Mechanism	200
	Myoglobin Has a Single Binding Site for Oxygen	159		Substrate Concentration Affects the Rate of	200
	Protein-Ligand Interactions Can Be Described	159		Enzyme-Catalyzed Reactions The Relationship between Substrate Concentration	200
	Quantitatively Protein Structure Affects How Ligands Bind	162		and Reaction Rate Can Be Expressed	
	Hemoglobin Transports Oxygen in Blood	163		Quantitatively	202
	Hemoglobin Subunits Are Structurally Similar to			Kinetic Parameters Are Used to Compare Enzyme	
	Myoglobin	163		Activities	203
	Hemoglobin Undergoes a Structural Change on	169		BOX 6-1 Transformations of the Michaelis-Menten	20.4
	Binding Oxygen	163		Equation: The Double-Reciprocal Plot	204

xvii

Contents

	Many Enzymes Catalyze Reactions with Two or More Substrates Pre–Steady State Kinetics Can Provide Evidence for Specific Reaction Steps Enzymes Are Subject to Reversible or Irreversible Inhibition BOX 6-2 Kinetic Tests for Determining Inhibition	206207207		Steric Factors and Hydrogen Bonding Influence Homopolysaccharide Folding Bacterial and Algal Cell Walls Contain Structural Heteropolysaccharides Glycosaminoglycans Are Heteropolysaccharides of the Extracellular Matrix	257 259 260
	Mechanisms BOX 6–3 MEDICINE: Curing African Sleeping Sickness with a Biochemical Trojan Horse Enzyme Activity Depends on pH	209211212	7.3	Glycoconjugates: Proteoglycans, Glycoproteins, and Glycosphingolipids Proteoglycans Are Glycosaminoglycan-Containing Macromolecules of the Cell Surface and Extracellular Matrix	263
6.4	Examples of Enzymatic Reactions The Chymotrypsin Mechanism Involves Acylation and Deacylation of a Ser Residue An Understanding of Protease Mechanisms	214 214		Glycoproteins Have Covalently Attached Oligosaccharides Glycolipids and Lipopolysaccharides Are Membrane Components	266 268
	Leads to New Treatments for HIV Infections Hexokinase Undergoes Induced Fit on Substrate Binding The Enolase Reaction Mechanism Requires	218219	7.4	Carbohydrates as Informational Molecules: The Sugar Code Lectins Are Proteins That Read the Sugar Code and	269
	Metal Ions Lysozyme Uses Two Successive Nucleophilic Displacement Reactions An Understanding of Enzyme Mechanism	220 220		Mediate Many Biological Processes Lectin-Carbohydrate Interactions Are Highly Specific and Often Multivalent	269 272
6.5	Produces Useful Antibiotics Regulatory Enzymes Allosteric Enzymes Undergo Conformational	224 226	7.5	Working with Carbohydrates Nucleotides and Nucleic Acids	274 281
	Changes in Response to Modulator Binding	226	8 1	Some Basics	281
	The Kinetic Properties of Allosteric Enzymes Diverge from Michaelis-Menten Behavior Some Enzymes Are Regulated by Reversible	227	0.1	Nucleotides and Nucleic Acids Have Characteristic Bases and Pentoses	281
	Covalent Modification Phosphoryl Groups Affect the Structure and Catalytic Activity of Enzymes Multiple Phosphorylations Allow Exquisite	228 229		Phosphodiester Bonds Link Successive Nucleotides in Nucleic Acids The Properties of Nucleotide Bases Affect the Three-Dimensional Structure of Nucleic Acids	284 286
	Regulatory Control Some Enzymes and Other Proteins Are Regulated by Proteolytic Cleavage of an Enzyme Precursor	230 231	8.2	Nucleic Acid Structure DNA Is a Double Helix That Stores Genetic	287
	A Cascade of Proteolytically Activated Zymogens Leads to Blood Coagulation Some Regulatory Enzymes Use Several Regulatory	232		Information DNA Can Occur in Different Three-Dimensional Forms Certain DNA Sequences Adopt Unusual Structures	288 290 291
7	Mechanisms Carbohydrates and Glycobiology	235 243		Messenger RNAs Code for Polypeptide Chains Many RNAs Have More Complex Three-Dimensional Structures	293 294
7.1		243	8.3	Nucleic Acid Chemistry	297
	The Two Families of Monosaccharides Are Aldoses and Ketoses Monosaccharides Have Asymmetric Centers The Common Monosaccharides Have Cyclic	244 244		Double-Helical DNA and RNA Can Be Denatured Nucleic Acids from Different Species Can Form Hybrids Nucleotides and Nucleic Acids Undergo	297 298
	Structures Organisms Contain a Variety of Hexose Derivatives BOX 7-1 MEDICINE: Blood Glucose Measurements in the	245 249		Nonenzymatic Transformations Some Bases of DNA Are Methylated The Sequences of Long DNA Strands Can Be	299 302
	Diagnosis and Treatment of Diabetes Monosaccharides Are Reducing Agents Disaccharides Contain a Glycosidic Bond	250 251 252		Determined The Chemical Synthesis of DNA Has Been Automated	302 304
	BOX 7-2 Sugar Is Sweet, and So Are a Few Other Things		8.4	Other Functions of Nucleotides	306
7.2	Polysaccharides Some Homopolysaccharides Are Stored Forms of Fuel	254 255	J. 1	Nucleotides Carry Chemical Energy in Cells Adenine Nucleotides Are Components of Many Enzyme Cofactors	306 306
	Some Homopolysaccharides Serve Structural Roles	256		Some Nucleotides Are Regulatory Molecules	308

9	DNA-Based Information Technologies	313		Some Glycerophospholipids Have Ether-Linked Fatty Acids	364
9.1	Studying Genes and Their Products	314		Chloroplasts Contain Galactolipids and Sulfolipids	365
•••	Genes Can Be Isolated by DNA Cloning	314		Archaea Contain Unique Membrane Lipids	365
	Restriction Endonucleases and DNA Ligases Yield			Sphingolipids Are Derivatives of Sphingosine	366
	Recombinant DNA	314		Sphingolipids at Cell Surfaces Are Sites of Biologic Recognition	aı 367
	Cloning Vectors Allow Amplification of Inserted DNA Segments	317		Phospholipids and Sphingolipids Are Degraded in	501
	Cloned Genes Can Be Expressed to Amplify Protein			Lysosomes	368
	Production	321		Sterols Have Four Fused Carbon Rings	368
	Many Different Systems Are Used to Express			BOX 10-1 MEDICINE: Abnormal Accumulations of	200
	Recombinant Proteins	322		Membrane Lipids: Some Inherited Human Diseases	369
	Alteration of Cloned Genes Produces Altered Proteins	323	10.3	Lipids as Signals, Cofactors, and Pigments	370
	Terminal Tags Provide Handles for Affinity	01 0		Phosphatidylinositols and Sphingosine Derivatives	
	Purification	325		Act as Intracellular Signals	370
	Gene Sequences Can Be Amplified with the	225		Eicosanoids Carry Messages to Nearby Cells Steroid Hormones Carry Messages between	371
	Polymerase Chain Reaction BOX 9-1 METHODS: A Powerful Tool in Forensic Medicine	327 329		Tissues	372
	BOX 9-1 METHODS: A POWERFUL TOOL III FOREIIST MEDICINE	329		Vascular Plants Produce Thousands of Volatile	
9.2	Using DNA-Based Methods to Understand			Signals	372
	Protein Function	331		Vitamins A and D Are Hormone Precursors Vitamins E and K and the Lipid Quinones Are	373
	DNA Libraries Are Specialized Catalogs of Genetic	222		Oxidation-Reduction Cofactors	374
	Information Sequence or Structural Relationships Provide	332		Dolichols Activate Sugar Precursors for	
	Information on Protein Function	333		Biosynthesis	375
	Fusion Proteins and Immunofluorescence Can	333		Many Natural Pigments Are Lipidic Conjugated	276
	Localize Proteins in Cells	333		Dienes Polyketides Are Natural Products with Potent	376
	Protein-Protein Interactions Can Help Elucidate	004		Biological Activities	376
	Protein Function DNA Microarrays Reveal RNA Expression Patterns	334	10.4		377
	and Other Information	337	10.4	Working with Lipids Lipid Extraction Requires Organic Solvents	377
0.2	Conomics and the Human Stave	339		Adsorption Chromatography Separates Lipids of	311
9.5	Genomics and the Human Story Genomic Sequencing Is Aided by New Generations	339		Different Polarity	378
	of DNA-Sequencing Methods	339		Gas-Liquid Chromatography Resolves Mixtures of	
	BOX 9-2 MEDICINE: Personalized Genomic Medicine	340		Volatile Lipid Derivatives Specific Hydrolysis Aids in Determination of Lipid	378
	The Human Genome Contains Genes and Many			Structure	378
	Other Types of Sequences Genome Sequencing Informs Us about Our	342		Mass Spectrometry Reveals Complete Lipid	
	Humanity	345		Structure	378
	Genome Comparisons Help Locate Genes			Lipidomics Seeks to Catalog All Lipids and Their Functions	379
	Involved in Disease	347		Functions	515
	Genome Sequences Inform Us about Our Past and Provide Opportunities for the Future	349			
	BOX 9–3 Getting to Know the Neanderthals	350	11	Biological Membranes and Transport	385
	son o acting to mon the neutronians	550			
10	11.11	257	11.1	The Composition and Architecture of Membranes Each Type of Membrane Has Characteristic	386
10	Lipids	357		Lipids and Proteins	386
10.1	Storage Lipids	357		All Biological Membranes Share Some Fundamenta	
	Fatty Acids Are Hydrocarbon Derivatives	357		Properties	387
	Triacylglycerols Are Fatty Acid Esters of Glycerol	360		A Lipid Bilayer Is the Basic Structural Element of Membranes	387
	Triacylglycerols Provide Stored Energy and Insulation	360		Three Types of Membrane Proteins Differ in Their	301
	Partial Hydrogenation of Cooking Oils Produces	300		Association with the Membrane	389
	Trans Fatty Acids	361		Many Membrane Proteins Span the Lipid Bilayer	390
	Waxes Serve as Energy Stores and Water	0.00		Integral Proteins Are Held in the Membrane by	200
	Repellents	362		Hydrophobic Interactions with Lipids The Topology of an Integral Membrane Protein	390
10.2	Structural Lipids in Membranes	362		Can Sometimes Be Predicted from Its Sequence	391
	Glycerophospholipids Are Derivatives of			Covalently Attached Lipids Anchor Some	
	Phosphatidic Acid	363		Membrane Proteins	394

11.2	Membrane Dynamics	395		BOX 12-2 MEDICINE: G Proteins: Binary Switches in Healt	
	Acyl Groups in the Bilayer Interior Are Ordered to	205		and Disease Several Mechanisms Cause Termination of the	441
	Varying Degrees Transbilayer Movement of Lipids Requires	395		β -Adrenergic Response	444
	Catalysis	396		The β -Adrenergic Receptor Is Desensitized by	111
	Lipids and Proteins Diffuse Laterally in	300		Phosphorylation and by Association with	
	the Bilayer	397		Arrestin	445
	Sphingolipids and Cholesterol Cluster Together in			Cyclic AMP Acts as a Second Messenger for Many	4.40
	Membrane Rafts	398		Regulatory Molecules	446
	Membrane Curvature and Fusion Are Central to	200		Diacylglycerol, Inositol Trisphosphate, and Ca ²⁺ Have Related Roles as Second Messengers	447
	Many Biological Processes Integral Proteins of the Plasma Membrane	399		BOX 12-3 METHODS: FRET: Biochemistry Visualized in a	771
	Are Involved in Surface Adhesion, Signaling,			Living Cell	448
	and Other Cellular Processes	402		Calcium Is a Second Messenger That May Be	
	Colute Transport and a Manufacture	402		Localized in Space and Time	451
11.3	Solute Transport across Membranes	402		GPCRs Mediate the Actions of a Wide Variety of	
	Passive Transport Is Facilitated by Membrane	409		Signals	452
	Proteins Transporters and Ion Channels Are	403	122	Receptor Tyrosine Kinases	453
	Fundamentally Different	404	12.5	Stimulation of the Insulin Receptor Initiates a	433
	The Glucose Transporter of Erythrocytes	101		Cascade of Protein Phosphorylation Reactions	453
	Mediates Passive Transport	405		The Membrane Phospholipid PIP ₃ Functions at a	100
	The Chloride-Bicarbonate Exchanger Catalyzes			Branch in Insulin Signaling	456
	Electroneutral Cotransport of Anions across			The JAK-STAT Signaling System Also Involves	
	the Plasma Membrane	407		Tyrosine Kinase Activity	457
	BOX 11-1 MEDICINE: Defective Glucose and Water	400		Cross Talk among Signaling Systems Is Common	450
	Transport in Two Forms of Diabetes Active Transport Results in Solute Movement	408		and Complex	458
	against a Concentration or Electrochemical		12.4	Receptor Guanylyl Cyclases, cGMP, and	
	Gradient	409		Protein Kinase G	459
	P-Type ATPases Undergo Phosphorylation during			Trotelli Killase a	433
	Their Catalytic Cycles	410	12.5	Multivalent Adaptor Proteins and Membrane	
	V-Type and F-Type ATPases Are Reversible,			Rafts	460
	ATP-Driven Proton Pumps	412		Protein Modules Bind Phosphorylated Tyr, Ser, or	
	ABC Transporters Use ATP to Drive the Active	419		Thr Residues in Partner Proteins	460
	Transport of a Wide Variety of Substrates Ion Gradients Provide the Energy for Secondary	413		Membrane Rafts and Caveolae May Segregate	
	Active Transport	414		Signaling Proteins	463
	BOX 11-2 MEDICINE: A Defective Ion Channel in		12.6	Gated Ion Channels	464
	Cystic Fibrosis	415	12.0	Ion Channels Underlie Electrical Signaling in	404
	Aquaporins Form Hydrophilic Transmembrane			Excitable Cells	464
	Channels for the Passage of Water	418		Voltage-Gated Ion Channels Produce Neuronal	101
	Ion-Selective Channels Allow Rapid Movement	400		Action Potentials	465
	of Ions across Membranes Ion-Channel Function Is Measured Electrically	420 421		The Acetylcholine Receptor Is a Ligand-Gated Ion	
	The Structure of a K ⁺ Channel Reveals the Basis	441		Channel	467
	for Its Specificity	422		Neurons Have Receptor Channels That Respond to	
	Gated Ion Channels Are Central in Neuronal			Different Neurotransmitters Toxins Target Ion Channels	468 468
	Function	424		TOXILIS Target TOTI CHarmers	400
	Defective Ion Channels Can Have Severe		12.7	Integrins: Bidirectional Cell Adhesion	
	Physiological Consequences	424		Receptors	470
		485	45.5	•	
12	Biosignaling	433	12.8	Regulation of Transcription by Nuclear	474
12.1	General Features of Signal Transduction	433		Hormone Receptors	471
	BOX 12-1 METHODS: Scatchard Analysis Quantifies		12.9	Signaling in Microorganisms and Plants	473
	the Receptor-Ligand Interaction	435		Bacterial Signaling Entails Phosphorylation in a	
12.2				Two-Component System	473
12.2	G Protein-Coupled Receptors and Second	427		Signaling Systems of Plants Have Some of the Same	
	Messengers	437		Components Used by Microbes and Mammals	473
	The β -Adrenergic Receptor System Acts through	490		Plants Detect Ethylene through a Two-Component	100
	the Second Messenger cAMP	438		System and a MAPK Cascade	475

	Receptorlike Protein Kinases Transduce Signals from Peptides	476		Simple Hydrolysis ATP Donates Phosphoryl, Pyrophosphoryl, and	522
12.10	Sensory Transduction in Vision, Olfaction,	477		Adenylyl Groups Assembly of Informational Macromolecules	523
12.11 12.12 13	and Gustation	477		Requires Energy	524
	The Visual System Uses Classic GPCR Mechanisms	477		BOX 13-1 Firefly Flashes: Glowing Reports of ATP ATP Energizes Active Transport and Muscle	525
	Excited Rhodopsin Acts through the G Protein Transducin to Reduce the cGMP			Contraction Transphosphorylations between Nucleotides	525
	Concentration	478		Occur in All Cell Types	526
	The Visual Signal Is Quickly Terminated	480		Inorganic Polyphosphate Is a Potential	F07
	Cone Cells Specialize in Color Vision BOX 12-4 MEDICINE: Color Blindness: John Dalton's	480		Phosphoryl Group Donor	527
	Experiment from the Grave Vertebrate Olfaction and Gustation Use	481	13.4	Biological Oxidation-Reduction Reactions The Flow of Electrons Can Do Biological Work	528 528
	Mechanisms Similar to the Visual System	481		Oxidation-Reductions Can Be Described as	
	GPCRs of the Sensory Systems Share Several Feat			Half-Reactions	528
	with GPCRs of Hormone Signaling Systems	482		Biological Oxidations Often Involve Dehydrogenation	529
12.11	Regulation of the Cell Cycle by Protein Kinases	484		Reduction Potentials Measure Affinity for Electrons	530
	The Cell Cycle Has Four Stages	484		Standard Reduction Potentials Can Be Used to Calculate Free-Energy Change	531
	Levels of Cyclin-Dependent Protein Kinases Oscillate	484		Cellular Oxidation of Glucose to Carbon Dioxide	551
12 12	CDKs Regulate Cell Division by Phosphorylating Critical Proteins	487		Requires Specialized Electron Carriers A Few Types of Coenzymes and Proteins Serve as	532
12.12	Oncogenes, Tumor Suppressor Genes, and	101		Universal Electron Carriers NADH and NADPH Act with Dehydrogenases as	532
	Programmed Cell Death Oncogenes Are Mutant Forms of the Genes for	488		Soluble Electron Carriers Dietary Deficiency of Niacin, the Vitamin Form	532
	Proteins That Regulate the Cell Cycle Defects in Certain Genes Remove Normal	489		of NAD and NADP, Causes Pellagra Flavin Nucleotides Are Tightly Bound in	535
	Restraints on Cell Division	489		Flavoproteins	535
	BOX 12-5 MEDICINE: Development of Protein Kinase Inhibitors for Cancer Treatment	490	14	Glycolysis, Gluconeogenesis, and	
	Apoptosis Is Programmed Cell Suicide	492		the Pentose Phosphate Pathway	543
II I	BIOENERGETICS AND METABOLISM	501	14.1	Glycolysis An Overview: Glycolysis Has Two Phases	544 544
13	Bioenergetics and Biochemical			The Preparatory Phase of Glycolysis Requires ATP The Payoff Phase of Glycolysis Yields ATP	
	Reaction Types	505		and NADH The Overall Balance Sheet Shows a Net Gain	550
13.1	Bioenergetics and Thermodynamics	506		of ATP	555
	Biological Energy Transformations Obey the			Glycolysis Is under Tight Regulation	555
	Laws of Thermodynamics	506		BOX 14-1 MEDICINE: High Rate of Glycolysis in Tumors	
	Cells Require Sources of Free Energy	507		Suggests Targets for Chemotherapy and Facilitates	
	Standard Free-Energy Change Is Directly Related			Diagnosis	556
	to the Equilibrium Constant Actual Free-Energy Changes Depend on Reactant	507		Glucose Uptake Is Deficient in Type 1 Diabetes Mellitus	558
	and Product Concentrations	509	14.2	Feeder Pathways for Glycolysis	558
	Standard Free-Energy Changes Are Additive	510		Dietary Polysaccharides and Disaccharides	
13.2	Chemical Logic and Common Biochemical			Undergo Hydrolysis to Monosaccharides	558
	Reactions	511		Endogenous Glycogen and Starch Are Degraded	
	Biochemical and Chemical Equations Are Not			by Phosphorolysis	560
	Identical	517		Other Monosaccharides Enter the Glycolytic Pathway at Several Points	561
13.3	Phosphoryl Group Transfers and ATP	517		-	501
	The Free-Energy Change for ATP Hydrolysis		14.3	Fates of Pyruvate under Anaerobic Conditions:	
	Is Large and Negative	518		Fermentation	563
	Other Phosphorylated Compounds and Thioesters			Pyruvate Is the Terminal Electron Acceptor in	
	Also Have Large Free Energies of Hydrolysis ATP Provides Energy by Group Transfers, Not by	520		Lactic Acid Fermentation BOX 14–2 Athletes, Alligators, and Coelacanths:	563

	BOX 14–2 Athletes, Alligators, and Coelacanths: Glycolysis at Limiting Concentrations of Oxygen Ethanol Is the Reduced Product in Ethanol Fermentation Thiamine Pyrophosphate Carries "Active	564 565		The Response Coefficient Expresses the Effect of an Outside Controller on Flux through a Pathway Metabolic Control Analysis Has Been Applied to Carbohydrate Metabolism, with Surprising	598
	Acetaldehyde" Groups BOX 14–3 Ethanol Fermentations: Brewing Beer and	565		Results Metabolic Control Analysis Suggests a General Method for Increasing Flux through a Pathway	599 600
	Producing Biofuels Fermentations Are Used to Produce Some Common Foods and Industrial Chemicals	566	15.3	Coordinated Regulation of Glycolysis and	
14.4	Gluconeogenesis Conversion of Pyruvate to Phosphoenolpyruvate	568		Gluconeogenesis Hexokinase Isozymes of Muscle and Liver Are	601
	Requires Two Exergonic Reactions Conversion of Fructose 1,6-Bisphosphate to	570		Affected Differently by Their Product, Glucose 6-Phosphate	602
	Fructose 6-Phosphate Is the Second Bypass Conversion of Glucose 6-Phosphate to Glucose	572		BOX 15-2 Isozymes: Different Proteins That Catalyze the Same Reaction	602
	Is the Third Bypass Gluconeogenesis Is Energetically Expensive,	573		Hexokinase IV (Glucokinase) and Glucose 6-Phosphatase Are Transcriptionally Regulated Phosphofructokinase-1 and Fructose	603
	but Essential Citric Acid Cycle Intermediates and Some Amino Acids Are Glucogenic	573 574		1,6-Bisphosphatase Are Reciprocally Regulated	604
	Mammals Cannot Convert Fatty Acids to Glucose Glycolysis and Gluconeogenesis Are Reciprocally	574		Fructose 2,6-Bisphosphate Is a Potent Allosteric Regulator of PFK-1 and FBPase-1	605
	Regulated	574		Xylulose 5-Phosphate Is a Key Regulator of Carbohydrate and Fat Metabolism	606
14.5	Pentose Phosphate Pathway of Glucose Oxidation	575		The Glycolytic Enzyme Pyruvate Kinase Is Allosterically Inhibited by ATP The Gluconeogenic Conversion of Pyruvate to	606
	The Oxidative Phase Produces Pentose Phosphates and NADPH	575		Phosphoenol Pyruvate Is Under Multiple Types of Regulation	608
	BOX 14-4 MEDICINE: Why Pythagoras Wouldn't Eat Falafo Glucose 6-Phosphate Dehydrogenase Deficiency The Nonoxidative Phase Recycles Pentose	el: 576		Transcriptional Regulation of Glycolysis and Gluconeogenesis Changes the Number of Enzyme Molecules	608
	Phosphates to Glucose 6-Phosphate Wernicke-Korsakoff Syndrome Is Exacerbated by a			BOX 15-3 MEDICINE: Genetic Mutations That Lead to Rare Forms of Diabetes	611
	Defect in Transketolase Glucose 6-Phosphate Is Partitioned between	580	15.4	The Metabolism of Glycogen in Animals	612
	Glycolysis and the Pentose Phosphate Pathway	580		Glycogen Breakdown Is Catalyzed by Glycogen Phosphorylase	613
15	Principles of Metabolic Regulation	587		Glucose 1-Phosphate Can Enter Glycolysis or, in Liver, Replenish Blood Glucose	614
15.1	Regulation of Metabolic Pathways Cells and Organisms Maintain a Dynamic	588		The Sugar Nucleotide UDP-Glucose Donates Glucose for Glycogen Synthesis POY 15 4 Carl and Carty Carl, Diagnose in Glycogen	615
	Steady State Both the Amount and the Catalytic Activity of an	589		BOX 15-4 Carl and Gerty Cori: Pioneers in Glycogen Metabolism and Disease	616
	Enzyme Can Be Regulated Reactions Far from Equilibrium in Cells Are	589		Glycogenin Primes the Initial Sugar Residues in Glycogen	619
	Common Points of Regulation Adenine Nucleotides Play Special Roles in	592	15.5	Coordinated Regulation of Glycogen	C20
	Metabolic Regulation	594		Synthesis and Breakdown Glycogen Phosphorylase Is Regulated Allosterically	620 '
15.2	Analysis of Metabolic Control The Contribution of Each Enzyme to Flux through	596		and Hormonally Glycogen Synthase Is Also Regulated by	621
	a Pathway Is Experimentally Measurable The Flux Control Coefficient Quantifies the Effect	596		Phosphorylation and Dephosphorylation Glycogen Synthase Kinase 3 Mediates Some of the	623
	of a Change in Enzyme Activity on Metabolite Flux through a Pathway	597		Actions of Insulin Phosphoprotein Phosphatase 1 Is Central to	624
	The Elasticity Coefficient Is Related to an Enzyme's Responsiveness to Changes in Metabolite or			Glycogen Metabolism Allosteric and Hormonal Signals Coordinate	624
	Regulator Concentrations BOX 15-1 METHODS: Metabolic Control Analysis:	597		Carbohydrate Metabolism Globally Carbohydrate and Lipid Metabolism Are Integrated	
	Quantitative Aspects	598		by Hormonal and Allosteric Mechanisms	626

16	The Citric Acid Cycle	633		Acetyl-CoA Can Be Further Oxidized in	G7E
16.1	Production of Acetyl-CoA (Activated Acetate)	633		the Citric Acid Cycle BOX 17–1 Fat Bears Carry Out β Oxidation in Their Sleep	675 676
10.1	Pyruvate Is Oxidized to Acetyl-CoA and CO ₂	634		Oxidation of Unsaturated Fatty Acids Requires	010
	The Pyruvate Dehydrogenase Complex Requires	001		Two Additional Reactions	677
	Five Coenzymes	634		Complete Oxidation of Odd-Number Fatty Acids	0.55
	The Pyruvate Dehydrogenase Complex Consists of	00F		Requires Three Extra Reactions Fatty Acid Oxidation Is Tightly Regulated	677 678
	Three Distinct Enzymes In Substrate Channeling, Intermediates Never	635		Transcription Factors Turn on the Synthesis of	010
	Leave the Enzyme Surface	636		Proteins for Lipid Catabolism	679
				BOX 17–2 Coenzyme B ₁₂ : A Radical Solution to a	
16.2	Reactions of the Citric Acid Cycle	638		Perplexing Problem	680
	The Sequence of Reactions in the Citric Acid	600		Genetic Defects in Fatty Acyl–CoA Dehydrogenase	
	Cycle Makes Chemical Sense The Citric Acid Cycle Has Eight Steps	638 640		Cause Serious Disease Peroxisomes Also Carry Out $oldsymbol{eta}$ Oxidation	682 682
	BOX 16-1 Moonlighting Enzymes: Proteins with More	040		Plant Peroxisomes and Glyoxysomes Use	002
	Than One Job	642		Acetyl-CoA from $oldsymbol{eta}$ Oxidation as a Biosynthetic	
	BOX 16-2 Synthases and Synthetases; Ligases and Lyases	; ;		Precursor	683
	Kinases, Phosphatases, and Phosphorylases: Yes, the			The β -Oxidation Enzymes of Different Organelles Have Diverged during Evolution	683
	Names Are Confusing!	646		The ω Oxidation of Fatty Acids Occurs in the	000
	The Energy of Oxidations in the Cycle Is Efficiently			Endoplasmic Reticulum	684
	Conserved BOX 16-3 Citrate: A Symmetric Molecule That Reacts	647		Phytanic Acid Undergoes α Oxidation in	
	Asymmetrically	648		Peroxisomes	685
	Why Is the Oxidation of Acetate So Complicated?	649	17.3	Ketone Bodies	686
	Citric Acid Cycle Components Are Important			Ketone Bodies, Formed in the Liver, Are	
	Biosynthetic Intermediates	650		Exported to Other Organs as Fuel	686
	Anaplerotic Reactions Replenish Citric Acid Cycle Intermediates	650		Ketone Bodies Are Overproduced in Diabetes and during Starvation	688
	Biotin in Pyruvate Carboxylase Carries CO ₂ Groups	651		and during bear varion	000
16.2		CEO	18	Amino Acid Oxidation and the	
16.3	Regulation of the Citric Acid Cycle	653	10		COF
	Production of Acetyl-CoA by the Pyruvate Dehydrogenase Complex Is Regulated by			Production of Urea	695
	Allosteric and Covalent Mechanisms	654	18.1	Metabolic Fates of Amino Groups	696
	The Citric Acid Cycle Is Regulated at Its Three			Dietary Protein Is Enzymatically Degraded to	
	Exergonic Steps	655		Amino Acids	697
	Substrate Channeling through Multienzyme Complexes May Occur in the Citric Acid Cycle	655		Pyridoxal Phosphate Participates in the Transfer of α -Amino Groups to α -Ketoglutarate	699
	Some Mutations in Enzymes of the Citric Acid	000		Glutamate Releases Its Amino Group As Ammonia	
	Cycle Lead to Cancer	656		in the Liver	700
16.4	The Cluevulete Cuelo	CEC		Glutamine Transports Ammonia in the Bloodstream	1 702
10.4	The Chronylete Cycle Produces Four Corbon	656		Alanine Transports Ammonia from Skeletal Muscles to the Liver	703
	The Glyoxylate Cycle Produces Four-Carbon Compounds from Acetate	657		Ammonia Is Toxic to Animals	703
	The Citric Acid and Glyoxylate Cycles Are		10 2	Nitrogen Excretion and the Urea Cycle	704
	Coordinately Regulated	658	10.2	Urea Is Produced from Ammonia in Five	704
				Enzymatic Steps	704
17	Fatty Acid Catabolism	667		The Citric Acid and Urea Cycles Can Be Linked	706
17.1	Digestion, Mobilization, and Transport of Fats	668		The Activity of the Urea Cycle Is Regulated at	
17.1	Dietary Fats Are Absorbed in the Small Intestine	668		Two Levels Pathway Interconnections Reduce the Energetic	708
	Hormones Trigger Mobilization of Stored	000		Pathway Interconnections Reduce the Energetic Cost of Urea Synthesis	708
	Triacylglycerols	669		BOX 18-1 MEDICINE: Assays for Tissue Damage	708
	Fatty Acids Are Activated and Transported into			Genetic Defects in the Urea Cycle Can Be Life-	
	Mitochondria	670		Threatening	709
17.2	Oxidation of Fatty Acids	672	18.3	Pathways of Amino Acid Degradation	710
	The β Oxidation of Saturated Fatty Acids Has Four			Some Amino Acids Are Converted to Glucose,	
	Basic Steps The Four 9 Ovidation Steps Are Beneated to Viold	673		Others to Ketone Bodies	711
	The Four β -Oxidation Steps Are Repeated to Yield	G7.4		Several Enzyme Cofactors Play Important Roles in Amino Acid Catabolism	710
	Acetyl-CoA and ATP	674		III AIIIIIO ACIO Galabolistii	712

xxiv Contents

	Six Amino Acids Are Degraded to Pyruvate Seven Amino Acids Are Degraded to Acetyl-CoA Phenylalanine Catabolism Is Genetically Defective in Some People Five Amino Acids Are Converted to α-Ketoglutarate	715 717 719 721		Adaptive Responses ATP-Producing Pathways Are Coordinately Regulated	760 761
	Four Amino Acids Are Converted to Succinyl-CoA Branched-Chain Amino Acids Are Not Degraded	722	19.4	Mitochondria in Thermogenesis, Steroid Synthesis, and Apoptosis	762
	in the Liver BOX 18-2 MEDICINE: Scientific Sleuths Solve a	723		Uncoupled Mitochondria in Brown Adipose Tissue Produce Heat Mitochondrial P. 450 Organization Catalyna	762
	Murder Mystery Asparagine and Aspartate Are Degraded to	724		Mitochondrial P-450 Oxygenases Catalyze Steroid Hydroxylations Mitochondria Are Central to the Initiation of	763
19	Oxaloacetate Oxidative Phosphorylation and	724		Apoptosis	764
13	Photophosphorylation	731	19.5	Mitochondrial Genes: Their Origin and the Effects of Mutations	765
חואט	ATIVE PHOSPHORYLATION	732		Mitochondria Evolved from Endosymbiotic	703
	Electron-Transfer Reactions in Mitochondria	732		Bacteria Mutations in Mitochondrial DNA Accumulate	765
15.1	Electrons Are Funneled to Universal Electron Acceptors	734		throughout the Life of the Organism Some Mutations in Mitochondrial Genomes Cause Disease	766 767
	Electrons Pass through a Series of Membrane- Bound Carriers	735		Diabetes Can Result from Defects in the	
	Electron Carriers Function in Multienzyme	737		Mitochondria of Pancreatic $oldsymbol{eta}$ Cells	768
	Complexes Mitochondrial Complexes May Associate in		PHOT	OSYNTHESIS: HARVESTING LIGHT ENERGY	769
	Respirasomes The Energy of Electron Transfer Is Efficiently	743	19.6	General Features of Photophosphorylation	769
	Conserved in a Proton Gradient Reactive Oxygen Species Are Generated during Oxidative Phosphorylation BOX 19-1 Hot, Stinking Plants and Alternative	743 745		Photosynthesis in Plants Takes Place in Chloroplasts Light Drives Electron Flow in Chloroplasts	769 770
			19.7	Light Absorption	771
	Respiratory Pathways Plant Mitochondria Have Alternative Mechanisms for Oxidizing NADH	746		Chlorophylls Absorb Light Energy for Photosynthesis Accessory Pigments Extend the Range of Light	771
19 2	ATP Synthesis	747		Absorption	773
	ATP Synthase Has Two Functional Domains,			Chlorophyll Funnels the Absorbed Energy to Reaction Centers by Exciton Transfer	774
	F_o and F_1 ATP Is Stabilized Relative to ADP on the	750	19.8	The Central Photochemical Event: Light-Driven	
	Surface of F_1	750		Electron Flow	776
	The Proton Gradient Drives the Release of ATP from the Enzyme Surface Each β Subunit of ATP Synthase Can Assume	751		Bacteria Have One of Two Types of Single Photochemical Reaction Center Kinetic and Thermodynamic Factors Prevent the	776
	Three Different Conformations Rotational Catalysis Is Key to the Binding-Change Mechanism for ATP Synthesis	752 752		Dissipation of Energy by Internal Conversion In Plants, Two Reaction Centers Act in Tandem Antenna Chlorophylls Are Tightly Integrated with	778 779
	How Does Proton Flow through the $F_{\mbox{\tiny o}}$ Complex			Electron Carriers	781
	Produce Rotary Motion? Chemiosmotic Coupling Allows Nonintegral Stoichiometries of O ₂ Consumption and ATP	755 		The Cytochrome b_6f Complex Links Photosystems II and I Cyclic Electron Flow between PSI and the	782
	Synthesis BOX 19-2 METHODS: Atomic Force Microscopy to	755		Cytochrome $b_6 f$ Complex Increases the Production of ATP Relative to NADPH	783
	Visualize Membrane Proteins The Proton-Motive Force Energizes Active Transport	756 757		State Transitions Change the Distribution of LHCII between the Two Photosystems Water Is Split by the Oxygen-Evolving Complex	
	Shuttle Systems Indirectly Convey Cytosolic		19.9	ATP Synthesis by Photophosphorylation	786
10.	NADH into Mitochondria for Oxidation	758		A Proton Gradient Couples Electron Flow and	
19.3	Regulation of Oxidative Phosphorylation Oxidative Phosphorylation Is Regulated by	759		Phosphorylation The Approximate Stoichiometry of	786
	Cellular Energy Needs An Inhibitory Protein Prevents ATP Hydrolysis	760		Photophosphorylation Has Been Established The ATP Synthase of Chloroplasts Is Like That of	787
	during Hypoxia	760		Mitochondria	787

19.10	The Evolution of Oxygenic Photosynthesis	788		Fatty Acid Synthase Receives the Acetyl and Malonyl Groups	836
	Chloroplasts Evolved from Ancient	700		The Fatty Acid Synthase Reactions Are Repeated	000
	Photosynthetic Bacteria In <i>Halobacterium</i> , a Single Protein Absorbs Light	788		to Form Palmitate	838
	and Pumps Protons to Drive ATP Synthesis	789		Fatty Acid Synthesis Occurs in the Cytosol of Many	У
20	and I unips I Totolis to Drive III Synthesis	100		Organisms but in the Chloroplasts of Plants	839
20	Carbohydrate Biosynthesis in			Acetate Is Shuttled out of Mitochondria as Citrate	840
	Plants and Bacteria	799		Fatty Acid Biosynthesis Is Tightly Regulated	840
				Long-Chain Saturated Fatty Acids Are Synthesized from Palmitate	ι 842
20.1	Photosynthetic Carbohydrate Synthesis	799		Desaturation of Fatty Acids Requires a	012
	Plastids Are Organelles Unique to Plant			Mixed-Function Oxidase	842
	Cells and Algae	800		BOX 21-1 MEDICINE: Mixed-Function Oxidases,	
	Carbon Dioxide Assimilation Occurs in	801		Cytochrome P-450 Enzymes, and Drug Overdoses	844
	Three Stages Synthesis of Each Triose Phosphate from CO ₂	001		Eicosanoids Are Formed from 20-Carbon	
	Requires Six NADPH and Nine ATP	808		Polyunsaturated Fatty Acids	845
	A Transport System Exports Triose Phosphates		21.2	Biosynthesis of Triacylglycerols	848
	from the Chloroplast and Imports Phosphate	809		Triacylglycerols and Glycerophospholipids Are	
	Four Enzymes of the Calvin Cycle Are Indirectly			Synthesized from the Same Precursors	848
	Activated by Light	810		Triacylglycerol Biosynthesis in Animals Is	
20.2	Photorespiration and the C ₄ and CAM Pathways	812		Regulated by Hormones	849
	Photorespiration Results from Rubisco's	011		Adipose Tissue Generates Glycerol 3-phosphate	
	Oxygenase Activity	812		by Glyceroneogenesis	850
	The Salvage of Phosphoglycolate Is Costly	813		Thiazolidinediones Treat Type 2 Diabetes by	050
	In C_4 Plants, CO_2 Fixation and Rubisco Activity Are			Increasing Glyceroneogenesis	852
	Spatially Separated	815	21.3	Biosynthesis of Membrane Phospholipids	852
	BOX 20-1 Will Genetic Engineering of Photosynthetic	046		Cells Have Two Strategies for Attaching	
	Organisms Increase Their Efficiency?	816		Phospholipid Head Groups	852
	In CAM Plants, CO ₂ Capture and Rubisco Action Are Temporally Separated	818		Phospholipid Synthesis in <i>E. coli</i> Employs	050
				CDP-Diacylglycerol	853
20.3	Biosynthesis of Starch and Sucrose	818		Eukaryotes Synthesize Anionic Phospholipids from CDP-Diacylglycerol	855
	ADP-Glucose Is the Substrate for Starch Synthesis			Eukaryotic Pathways to Phosphatidylserine,	000
	in Plant Plastids and for Glycogen Synthesis in	010		Phosphatidylethanolamine, and	
	Bacteria	818		Phosphatidylcholine Are Interrelated	855
	UDP-Glucose Is the Substrate for Sucrose Synthes in the Cytosol of Leaf Cells	819		Plasmalogen Synthesis Requires Formation of	
	Conversion of Triose Phosphates to Sucrose and	010		an Ether-Linked Fatty Alcohol	856
	Starch Is Tightly Regulated	820		Sphingolipid and Glycerophospholipid Synthesis	857
20.4	Synthesis of Cell Wall Polysaccharides: Plant			Share Precursors and Some Mechanisms Polar Lipids Are Targeted to Specific Cellular	097
20.4	3	021		Membranes	857
	Cellulose and Bacterial Peptidoglycan	821			
	Cellulose Is Synthesized by Supramolecular Structures in the Plasma Membrane	822	21.4	Cholesterol, Steroids, and Isoprenoids:	
	Lipid-Linked Oligosaccharides Are Precursors for	044		Biosynthesis, Regulation, and Transport	859
	Bacterial Cell Wall Synthesis	823		Cholesterol Is Made from Acetyl-CoA in	
20.5				Four Stages	860
20.5	Integration of Carbohydrate Metabolism in			Cholesterol Has Several Fates Cholesterol and Other Lipids Are Carried on	864
	the Plant Cell	825		Plasma Lipoproteins	864
	Gluconeogenesis Converts Fats and Proteins to	005		BOX 21–2 MEDICINE: ApoE Alleles Predict Incidence of	001
	Glucose in Germinating Seeds Pools of Common Intermediates Link Pathways in	825		Alzheimer Disease	866
	Different Organelles	826		Cholesteryl Esters Enter Cells by Receptor-	
	Different Organienes	020		Mediated Endocytosis	868
21	Lipid Biosynthesis	833		HDL Carries Out Reverse Cholesterol Transport	869
24.4		022		Cholesterol Synthesis and Transport Is Regulated	0.00
21.1	Biosynthesis of Fatty Acids and Eicosanoids	833		at Several Levels	869
	Malonyl-CoA Is Formed from Acetyl-CoA and	000		Dysregulation of Cholesterol Metabolism Can Lead to Cardiovascular Disease	871
	Bicarbonate Fatty Acid Synthesis Proceeds in a Repeating	833		BOX 21–3 MEDICINE: The Lipid Hypothesis and the	011
	Reaction Sequence	834		Development of Statins	872
	The Mammalian Fatty Acid Synthase Has Multiple			Reverse Cholesterol Transport by HDL Counters	
	Active Sites	834		Plaque Formation and Atherosclerosis	873

22	Steroid Hormones Are Formed by Side-Chain Cleavage and Oxidation of Cholesterol Intermediates in Cholesterol Biosynthesis Have Many Alternative Fates Biosynthesis of Amino Acids, Nucleotides, and Related Molecules	874 874 881		Degradation of Purines and Pyrimidines Produces Uric Acid and Urea, Respectively Purine and Pyrimidine Bases Are Recycled by Salvage Pathways Excess Uric Acid Causes Gout Many Chemotherapeutic Agents Target Enzymes in the Nucleotide Biosynthetic Pathways	920 922 922 923
22.1	Overview of Nitrogen Metabolism	881	23	Hormonal Regulation and Integration	
	The Nitrogen Cycle Maintains a Pool of Biologically Available Nitrogen	882		of Mammalian Metabolism	929
	Nitrogen Is Fixed by Enzymes of the Nitrogenase Complex	882	23.1	Hormones: Diverse Structures for Diverse Functions	929
	BOX 22–1 Unusual Lifestyles of the Obscure but Abundant Ammonia Is Incorporated into Biomolecules	884		The Detection and Purification of Hormones Requires a Bioassay	930
	through Glutamate and Glutamine Glutamine Synthetase Is a Primary Regulatory Reject in Nitrogon Metabolism	888 889		BOX 23-1 MEDICINE: How Is a Hormone Discovered? The Arduous Path to Purified Insulin	931
	Point in Nitrogen Metabolism Several Classes of Reactions Play Special Roles in the Biosynthesis of Amino Acids and Nucleotides			Hormones Act through Specific High-Affinity Cellular Receptors Hormones Are Chemically Diverse	932 933
22.2	Biosynthesis of Amino Acids α -Ketoglutarate Gives Rise to Glutamate,	891		Hormone Release Is Regulated by a Hierarchy of Neuronal and Hormonal Signals	936
	Glutamine, Proline, and Arginine Serine, Glycine, and Cysteine Are Derived from	892	23.2	Tissue-Specific Metabolism: The Division of Labor The Liver Processes and Distributes Nutrients	939
	3-Phosphoglycerate Three Nonessential and Six Essential Amino Acids Are Synthesized from Oxaloacetate	892 895		Adipose Tissues Store and Supply Fatty Acids Brown Adipose Tissue Is Thermogenic Muscles Use ATP for Mechanical Work	943 944 944
	and Pyruvate Chorismate Is a Key Intermediate in the Synthesis of Tryptophan, Phenylalanine, and Tyrosine	898		BOX 23-2 Creatine and Creatine Kinase: Invaluable Diagnostic Aids and the Muscle Builder's Friends The Brain Uses Energy for Transmission of	946
	Histidine Biosynthesis Uses Precursors of Purine Biosynthesis Amino Acid Biosynthesis Is under Allosteric	898		Electrical Impulses Blood Carries Oxygen, Metabolites, and Hormones	948 949
	Regulation	899	23.3	Hormonal Regulation of Fuel Metabolism Insulin Counters High Blood Glucose	951 951
22.3		902		Pancreatic $oldsymbol{eta}$ Cells Secrete Insulin in Response to	901
	Glycine Is a Precursor of Porphyrins	902 904		Changes in Blood Glucose	953
	Heme Is the Source of Bile Pigments BOX 22-2 MEDICINE: On Kings and Vampires Amino Acids Are Precursors of Creatine and	904		Glucagon Counters Low Blood Glucose During Fasting and Starvation, Metabolism Shifts to Provide Fuel for the Brain	955
	Glutathione	906		Epinephrine Signals Impending Activity	956 958
	D-Amino Acids Are Found Primarily in Bacteria Aromatic Amino Acids Are Precursors of Many	907		Cortisol Signals Stress, Including Low Blood Glucose Diabetes Mellitus Arises from Defects in Insulin	958
	Plant Substances Biological Amines Are Products of Amino Acid	908		Production or Action	959
	Decarboxylation Arginine Is the Precursor for Biological Synthesis	908	23.4	Obesity and the Regulation of Body Mass Adipose Tissue Has Important Endocrine Functions	960 960
	of Nitric Oxide	909		Leptin Stimulates Production of Anorexigenic Peptide Hormones	962
22.4	Biosynthesis and Degradation of Nucleotides De Novo Purine Nucleotide Synthesis	910		Leptin Triggers a Signaling Cascade That Regulates Gene Expression	s 962
	Begins with PRPP Purine Nucleotide Biosynthesis Is Regulated by	912		The Leptin System May Have Evolved to Regulate the Starvation Response	963
	Feedback Inhibition Pyrimidine Nucleotides Are Made from Aspartate,	914		Insulin Acts in the Arcuate Nucleus to Regulate Eating and Energy Conservation	963
	PRPP, and Carbamoyl Phosphate Pyrimidine Nucleotide Biosynthesis Is Regulated	915		Adiponectin Acts through AMPK to Increase Insulin Sensitivity	964
	by Feedback Inhibition Nucleoside Monophosphates Are Converted to	916		mTORC1 Activity Coordinates Cell Growth with the Supply of Nutrients and Energy	965
	Nucleoside Triphosphates Ribonucleotides Are the Precursors of	916		Diet Regulates the Expression of Genes Central to Maintaining Body Mass	965
	Deoxyribonucleotides Thymidylate Is Derived from dCDP and dUMP	917 920		Short-Term Eating Behavior Is Influenced by Ghrelin and PYY _{3–36}	966

	Microbial Symbionts in the Gut Influence Energy Metabolism and Adipogenesis	968	25.2	DNA Repair Mutations Are Linked to Cancer	1027 1027
23.5	Obesity, the Metabolic Syndrome, and Type 2 Diabetes In Type 2 Diabetes the Tissues Become Insensitive to Insulin	968 968		All Cells Have Multiple DNA Repair Systems The Interaction of Replication Forks with DNA Damage Can Lead to Error-Prone Translesion DNA Synthesis BOX 25-1 MEDICINE: DNA Repair and Cancer	1028 1034 1037
	Type 2 Diabetes Is Managed with Diet, Exercise,	070	25.3	DNA Recombination	1037
	and Medication	970	23.3	Bacterial Homologous Recombination Is a DNA Repair Function	1030
Ш	INFORMATION PATHWAYS	977		Eukaryotic Homologous Recombination Is Required for Proper Chromosome	
24	Genes and Chromosomes	979		Segregation during Meiosis Recombination during Meiosis Is Initiated with	1041
24.1	Chromosomal Elements Genes Are Segments of DNA That Code for	979		Double-Strand Breaks BOX 25-2 MEDICINE: Why Proper Chromosomal	1043
	Polypeptide Chains and RNAs DNA Molecules Are Much Longer Than the	979		Segregation Matters Site-Specific Recombination Results in Precise	1045
	Cellular or Viral Packages That Contain Them Eukaryotic Genes and Chromosomes Are	980		DNA Rearrangements Transposable Genetic Elements Move from One	1046
24.2	Very Complex DNA Supercoiling	984 985		Location to Another Immunoglobulin Genes Assemble by Recombination	1049 1049
24.2	Most Cellular DNA Is Underwound DNA Underwinding Is Defined by Topological	986	26	RNA Metabolism	1057
	Linking Number	988	26.1	DNA-Dependent Synthesis of RNA	1058
	Topoisomerases Catalyze Changes in the Linking Number of DNA	989		RNA Is Synthesized by RNA Polymerases	1058
	DNA Compaction Requires a Special Form of	505		RNA Synthesis Begins at Promoters Transcription Is Possulated at Several Levels	1060 1061
	Supercoiling BOX 24-1 MEDICINE: Curing Disease by Inhibiting	990		Transcription Is Regulated at Several Levels BOX 26–1 METHODS: RNA Polymerase Leaves Its Footprint on a Promoter	1061
	Topoisomerases	992		Specific Sequences Signal Termination of RNA	
24.3	The Structure of Chromosomes Chromatin Consists of DNA and Proteins	994 994		Synthesis Eukaryotic Cells Have Three Kinds of Nuclear	1063
	Histones Are Small, Basic Proteins	995		RNA Polymerases RNA Polymerase II Requires Many Other Protein	1064
	Nucleosomes Are the Fundamental Organizational Units of Chromatin Nucleosomes Are Packed into Successively	995		Factors for Its Activity DNA-Dependent RNA Polymerase Undergoes	1064
	Higher-Order Structures	997		Selective Inhibition	1068
	BOX 24-2 MEDICINE: Epigenetics, Nucleosome		26.2	RNA Processing	1069
	Structure, and Histone Variants Condensed Chromosome Structures Are	998		Eukaryotic mRNAs Are Capped at the 5' End Both Introns and Exons Are Transcribed from	1070
	Maintained by SMC Proteins Bacterial DNA Is Also Highly Organized	1000 1002		DNA into RNA RNA Catalyzes the Splicing of Introns	1070 1070
25		L009		Eukaryotic mRNAs Have a Distinctive 3' End	
				Structure A Gene Can Give Rise to Multiple Products by	1075
25.1	DNA Replication Follows a Set of Fundamental	1011		Differential RNA Processing Ribosomal RNAs and tRNAs Also Undergo	1075
	Rules DNA Is Degraded by Nucleases	1011 1013		Processing	1077
	DNA Is Degrated by Nucleases DNA Is Synthesized by DNA Polymerases	1013		Special-Function RNAs Undergo Several Types of Processing	1081
	Replication Is Very Accurate	1015		RNA Enzymes Are the Catalysts of Some	1001
	E. coli Has at Least Five DNA Polymerases	1016		Events in RNA Metabolism	1082
	DNA Replication Requires Many Enzymes and Protein Factors Replication of the <i>E. coli</i> Chromosome Proceeds	1017		Cellular mRNAs Are Degraded at Different Rates Polynucleotide Phosphorylase Makes Random RNA-Like Polymers	1084 1085
	in Stages	1019		-	
	Replication in Eukaryotic Cells Is Similar but More Complex	1025	26.3	RNA-Dependent Synthesis of RNA and DNA Reverse Transcriptase Produces DNA from	1085
	Viral DNA Polymerases Provide Targets for Antiviral Therapy	1026		Viral RNA Some Retroviruses Cause Cancer and AIDS	1086 1088

	Many Transposons, Retroviruses, and Introns May Have a Common Evolutionary Origin BOX 26–2 MEDICINE: Fighting AIDS with Inhibitors of			Protein Degradation Is Mediated by Specialized Systems in All Cells 1		
	HIV Reverse Transcriptase	1089	28	Regulation of Gene Expression	1155	
	Telomerase Is a Specialized Reverse Transcriptase	1089	28.1	Principles of Gene Regulation	1156	
	Some Viral RNAs Are Replicated by RNA-Dependent RNA Polymerase	1092		RNA Polymerase Binds to DNA at Promoters	1156	
	RNA Synthesis Offers Important Clues to Biochemical Evolution	1092		Transcription Initiation Is Regulated by Proteins That Bind to or near Promoters Many Posterial Connector And Clustered and	1157	
	BOX 26-3 METHODS: The SELEX Method for Generating			Many Bacterial Genes Are Clustered and Regulated in Operons	1158	
	RNA Polymers with New Functions BOX 26–4 An Expanding RNA Universe Filled with TUF RNAS	1095 s 1096		The <i>lac</i> Operon Is Subject to Negative Regulation Regulatory Proteins Have Discrete DNA-Binding		
					S	
27	Protein Metabolism	1103		Domains Regulatory Proteins Also Have Protein-Protein	1160	
27.1	The Genetic Code	1103		Interaction Domains	1163	
	The Genetic Code Was Cracked Using Artificial mRNA Templates	1104	28.2	Regulation of Gene Expression in Bacteria The <i>lac</i> Operon Undergoes Positive Regulation	1165	
	BOX 27-1 Exceptions That Prove the Rule: Natural	1100		Many Genes for Amino Acid Biosynthetic Enzym	nes	
	Variations in the Genetic Code Wobble Allows Some tRNAs to Recognize More	1108		Are Regulated by Transcription Attenuation Induction of the SOS Response Requires	1167	
	than One Codon	1108		Destruction of Repressor Proteins	1169	
	The Genetic Code Is Mutation-Resistant Translational Frameshifting and RNA Editing	1110		Synthesis of Ribosomal Proteins Is Coordinated	1170	
	Affect How the Code Is Read	1111		with rRNA Synthesis The Function of Some mRNAs Is Regulated by	1170	
27.2	Dratain Cunthacic	1113		Small RNAs in Cis or in Trans	1171	
21.2	Protein Synthesis Protein Biosynthesis Takes Place in Five Stages	1113		Some Genes Are Regulated by Genetic		
	The Ribosome Is a Complex Supramolecular			Recombination	1173	
	Machine BOX 27–2 From an RNA World to a Protein World	1115 1117	28.3	Regulation of Gene Expression in Eukaryotes	1175	
	Transfer RNAs Have Characteristic Structural	1117		Transcriptionally Active Chromatin Is Structural Distinct from Inactive Chromatin	ly 1175	
	Features	1118		Most Eukaryotic Promoters Are Positively	1116	
	Stage 1: Aminoacyl-tRNA Synthetases Attach the			Regulated	1176	
	Correct Amino Acids to Their tRNAs	1119		DNA-Binding Activators and Coactivators Facilit		
	Proofreading by Aminoacyl-tRNA Synthetases Interaction between an Aminoacyl-tRNA Syntheta	1121 ase		Assembly of the General Transcription Factor The Genes of Galactose Metabolism in Yeast Are		
	and a tRNA: A "Second Genetic Code"	1122		Subject to Both Positive and Negative		
	BOX 27-3 Natural and Unnatural Expansion of			Regulation	1180	
	the Genetic Code	1124		Transcription Activators Have a Modular Structur		
	Stage 2: A Specific Amino Acid Initiates Protein	1127		Eukaryotic Gene Expression Can Be Regulated & Intercellular and Intracellular Signals	оу 1182	
	Synthesis Stage 3: Peptide Bonds Are Formed in the	1141		Regulation Can Result from Phosphorylation of	1102	
	Elongation Stage	1129		Nuclear Transcription Factors	1184	
	Stage 4: Termination of Polypeptide Synthesis		I	Many Eukaryotic mRNAs Are Subject to		
	Requires a Special Signal	1134	1	Translational Repression	1184	
	BOX 27-4 Induced Variation in the Genetic Code:	1134]	Posttranscriptional Gene Silencing Is Mediated by RNA Interference	1185	
	Nonsense Suppression Stage 5: Newly Synthesized Polypeptide Chains	1154]	RNA-Mediated Regulation of Gene Expression	1100	
	Undergo Folding and Processing	1136		Takes Many Forms in Eukaryotes	1186	
	Protein Synthesis Is Inhibited by Many Antibiotics	S]	Development Is Controlled by Cascades of	***	
	and Toxins	1138		Regulatory Proteins Stem Cells Have Developmental Potential That	1186	
27.3	Protein Targeting and Degradation	1139	k	Can Be Controlled	1191	
	Posttranslational Modification of Many Eukaryotic Proteins Begins in the Endoplasmic Reticulum		ı	30X 28-1 Of Fins, Wings, Beaks, and Things	1194	
	Glycosylation Plays a Key Role in Protein Targeting		A 1 1	oriene d Calendaria e Doubl		
	Signal Sequences for Nuclear Transport Are Not Cleaved	1143		eviated Solutions to Problems	AS-1	
	Bacteria Also Use Signal Sequences for Protein	1140	Gloss	ary	G-1	
	Targeting Cells Import Proteins by Receptor-Mediated	1145	Credi	ts	C-0	
	Endocytosis	1146	Index		I-1	