Week 48: Coupled cluster theory and summary of course

Morten Hjorth-Jensen¹

Department of Physics and Center for Computing in Science Education, University of Oslo, Norway¹

November 25-29, 2024

© 1999-2024, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Week 48, November 25-29, 2024

1. Thursday:

- 1.1 Short repetition from last week
- 1.2 How to write your own coupled-cluster theory code, pairing model example
- 1.3 Coupled cluster theory, singles and doubles excitations, diagrammatic expansion

2. Friday:

- 2.1 Coupled cluster theory for singles and doubles excitations using a diagrammatic derivation
- 2.2 Summary of course and discussion of final oral exam
- Lecture material: Lecture notes and Shavitt and Bartlett chapters 9 and 10. See also slides at https://github.com/ManyBodyPhysics/FYS4480/blob/ master/doc/pub/week48/pdf/cc.pdf

CCSD with twobody Hamiltonian

Truncating the cluster operator \hat{T} at the n=2 level, defines CCSD approximation to the Coupled Cluster wavefunction. The coupled cluster wavefunction is now given by

$$|\Psi_{CC}\rangle = e^{\hat{T}_1 + \hat{T}_2} |\Phi_0\rangle, \label{eq:psi_constraint}$$

where

$$\hat{T}_1 = \sum_{ia} t_i^a a_a^\dagger a_i$$
 $\hat{T}_2 = \frac{1}{4} \sum_{iiab} t_{ij}^{ab} a_a^\dagger a_b^\dagger a_j a_i.$

Two-body normal-ordered Hamiltonian

$$\begin{split} \hat{H} &= \sum_{pq} \langle p | \hat{f} | q \rangle \left\{ a_p^\dagger a_q \right\} + \frac{1}{4} \sum_{pqrs} \langle pq | \hat{v} | rs \rangle \left\{ a_p^\dagger a_q^\dagger a_s a_r \right\} \\ &+ \mathrm{E}_0 \\ &= \hat{F}_N + \hat{V}_N + \mathrm{E}_0 = \hat{H}_N + \mathrm{E}_0, \end{split}$$

where

$$\begin{split} \langle \rho | \hat{f} | q \rangle &= \langle \rho | \hat{h}_0 | q \rangle + \sum_i \langle \rho i | \hat{v} | q i \rangle \\ \mathrm{E}_0 &= \sum_i \langle i | \hat{h}_0 | i \rangle + \frac{1}{2} \sum_{ii} \langle i j | \hat{v} | i j \rangle. \end{split}$$

Diagram equations - Derivation

- 1. Contract \hat{H}_N with \hat{T} in all possible unique combinations that satisfy a given form. The diagram equation is the sum of all these diagrams.
- 2. Contract one \hat{H}_N element with 0,1 or multiple \hat{T} elements.
- 3. All \hat{T} elements must have atleast one contraction with \hat{H}_N .
- 4. No contractions between \hat{T} elements are allowed.
- 5. A single \hat{T} element can contract with a single element of \hat{H}_N in different ways.

Diagram rules

- 1. Label all lines.
- 2. Sum over all internal indices.
- 3. Extract matrix elements.
- 4. Extract cluster amplitudes with indices in the order left to right. Incoming lines are subscripts, while outgoing lines are superscripts. $(t_{\rm in}^{\rm out}, t_{\rm lin,rin}^{\rm lout,rout})$
- 5. Calculate the phase: $(-1)^{\text{holelines} + \text{loops}}$
- 6. Multiply by a factor of $\frac{1}{2}$ for each equivalent line and each equivalent vertex.
- Antisymmetrize a pair of external particle/hole line that does not connect to the same operator.

CCSD \hat{T}_1 amplitude equation

$$0 = f_i^a + f_e^a t_i^e - f_i^m t_m^a + \langle ma|\hat{v}|ei\rangle t_m^e + f_e^m t_{im}^{ae} + \frac{1}{2} \langle am|\hat{v}|ef\rangle t_{im}^{ef} - \frac{1}{2} \langle mn|\hat{v}|ef\rangle t_{im}^{ef} + \frac{1}{2} \langle mn|\hat{v}|$$

CCSD \hat{T}_2 amplitude equation

$$0 = \langle ab|\hat{v}|ij\rangle + P(ij)\langle ab|\hat{v}|ej\rangle t_i^e - P(ab)\langle am|\hat{v}|ij\rangle t_m^b + P(ab)f_e^b t_{ij}^{ae} - P(ij)f_e^b t_{ij}^{a$$