

FIG. 1

Fig. 2(a)

Fig. 2(b)

Fig. 2(c)

Fig. 2(d)

Fig. 2(e)

FIG. 3

FIG. 4

FIG. 5(a)

FIG. 5(b)

FIG. 5(c)

FIG. G

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

$\tilde{N}(t) = \sum_{u=0}^m b_u(t) S_{CFD}(t - \Delta - u) = \bar{B}^T(t) \bar{N}(t)$	Filtering step
$\tilde{S}(t) = \sum_{i=0}^n a_i(t) S_{CFD}(t - i) = \bar{A}^T(t) \bar{S}(t)$	
$S_{CFD}(t) = \bar{S}(t) - \tilde{N}(t)$	Jammer subtraction
$power(t+1) = power(t) + \mu_{power} (S_{CFD}(t+1) S_{CFD}^*(t+1) - power(t))$	Signal power update
$\delta = \frac{\alpha}{power(t)} S_{ON/OFF}(t)$	Updating factor normalization and learning management
$\bar{B}(t+1) = \bar{B}(t) - \delta \bar{N}(t+1) e^*(t+1)$	
$\bar{A}(t+1) = \bar{A}(t) + \delta \bar{S}(t) e^*(t+1)$	Filter coefficients update
with	
$\bar{B}(t) = [b_0(t) \ b_1(t) \ ... \ b_m(t)]$ colon vector	
$\bar{A}(t) = [1 \ a_1(t) \ ... \ a_m(t)]$ colon vector	
$\bar{S}(t) = [S_{CFD}(t) \ S_{CFD}(t-1) \ S_{CFD}(t-n)]$ colon vector	
$\bar{N}(t) = [S_{CFD}(t-\Delta) \ S_{CFD}(t-\Delta-1) \ S_{CFD}(t-\Delta-m)]$ colon vector	

FIG. 12

FIG13A

FIG13B

Figure 14B

Figure 14C

Figure 14A

FIG. 15