Step-1

Suppose A is a linear transformation from the x-y plane to itself.

We have to verify why $A^{-1}(x+y) = A^{-1}x + A^{-1}y$.

Step-2

Let
$$u, v \in \mathbb{R}^2$$
 and $Au = x$, $Av = y$

$$\Rightarrow u = A^{-1}x, v = A^{-1}y$$

And $A^{-1}x$, $A^{-1}y$ are also in x-y plane.

Since *A* is linear transformation.

So

$$A(A^{-1}x + A^{-1}y) = A(A^{-1}x) + A(A^{-1})y$$

$$= \left(AA^{-1}\right)x + \left(AA^{-1}\right)y$$

$$= x + y$$
 (Since $AA^{-1} = A^{-1}A = I$)

Thus
$$A^{-1}(x+y) = A^{-1}x + A^{-1}y$$

Suppose A is represented by matrix M.

If A^{-1} exists, then A^{-1} is represented by M^{-1}

Hence A^{-1} is represented by M^{-1} .