UTKARSH GUPTA

J (832) 814-4935 ■ utkarshpgupta@outlook.com 🛅 linkedin.com/in/utkarshpgupta 🖶 utkarshpgupta/portfolio

Education

University of Houston

May 2025

Master of Science in Electrical Engineering

Houston, Texas

University of Mumbai

May 2023

Bachelor of Engineering in Electronic Engineering

Mumbai, India

Technical Skills

Languages: C, C++, Embedded C, Python, MATLAB, ROS2

MCU & SBC: STM32 (Cortex-M, Mbed), ESP32-S3 (FreeRTOS via ESP-IDF), Raspberry Pi 4/5, Jetson (Linux)

Protocols & Buses: Wi-Fi, I²C, SPI, UART, CAN

Tools: Git, Mbed Studio, Oscilloscope, Docker, KiCad, Onshape

area measurement, improving consistency across experiments.

Work Experience

University of Houston

Feb 2024 - May 2025

 $Research\ Assistant$ $\bullet\ Designed\ and\ programmed\ a\ Self-Driving\ Lab\ that\ orchestrates\ a\ \mathbf{SCARA}\ \mathbf{robotic}\ \mathbf{arm},\ syringe\ pumps,\ and$

- electrochemical test equipment, boosting experimental throughput by 8x. (Project Video)

 Developed C/C++ firmware and Python control software to integrate ESP32-S3, stepper-driven actuators, and RS-485
- Modbus devices for fully automated fluid-handling workflows.

 Implemented a dual-camera system with **AprilTags** for automated workbench calibration and **OpenCV**-based deposition
- Created data dashboards with **Matplotlib**, **Plotly** and Flask, enabling monitoring of electrochemical performance across all experiments.

Samsung June 2022 – Aug 2023

Network Engineer

 $Mumbai,\ India$

- Monitored a 100,000-site LTE network across 21 regions, writing Python scripts that parsed KPI alarms and flagged critical faults 120 min sooner than the legacy manual workflow.
- Built Excel/Python dashboards that visualized eNB health and trending faults, enabling field teams to reduce unplanned outages by 12% quarter-over-quarter.

Projects

Real-Time CO₂ Monitoring System | Website

 ${\bf ESP32\text{-}S3} \mid {\bf FreeRTOS} \mid {\bf Flask} \mid {\bf Wi\text{-}Fi}$

- Programmed ESP32-S3 firmware in C++/FreeRTOS to acquire sensor data (SCD30/40 via I²C) and publish packets over Wi-Fi every 2s.
- Deployed 10+ wireless nodes and a Raspberry Pi Flask dashboard that streamed live CO₂ and VOC index metrics.
- Optimized task scheduling and non-blocking I²C drivers, achieving 24/7 uptime for three months with zero watchdog resets. This system helped secure a \$100 K USDA Climate-Smart grant by enabling data-driven soil management for farmers.

4-DOF Robotic Arm with Magnetic Encoder Feedback

STM32 | Mbed OS | I²C Encoders | PID

- Designed and assembled a stepper-driven 4-DOF arm; integrated AS5600 magnetic encoders via I²C for feedback.
- Implemented inverse kinematics and **PID** loops in Mbed C++, driving GPIO step/dir outputs at up to 5 kHz.
- Achieved sub-degree positioning accuracy and smooth trajectory execution across 1000+ point-to-point moves.
- Debugged timing jitter using logic analyzer traces and refined control code to cut overshoot by 60%.

Wall-Following TurtleBot 3 Robot | Certificate

ROS2 | Python | LiDAR & Odometry

- Developed an autonomous wall-following system using the ROS2 Navigation Stack and Python, enabling the TurtleBot 3 to navigate complex indoor environments.
- Integrated LiDAR and wheel odometry to support real-time obstacle avoidance and smooth trajectory correction.
- Manually tuned a PI controller to minimize lateral deviation, optimizing wall-following stability through iterative testing.
- Validated system in real-world test environments, demonstrating core skills in robotic control, sensor fusion, and autonomous mobility.