DIG CIRC HW3

O. Kürşat Karayılan 150140011

 $y=F(x_1,x_2,x_3,x_4)=\bigcup_1(0,1,2,4,7,10,13)+\bigcup_\varnothing(5,8,14)$

X3X4				
X_1X_2	00	01	11	10
00	10	11	03	12
01	14	\emptyset_5	17	0_{6}
11	0 ₁₂	1 ₁₃	015	Ø 14
10	Ø 8	09	0 ₁₁	1 ₁₀

X3X4				
x_1x_2	00	01	11	10
00	10	11	03	12
01	14	$\mathbf{Ø}_{5}$	17	06
11	0 ₁₂	1 ₁₃	0 ₁₅	Ø 14
10	Ø ₈	09	011	1 ₁₀

Prime implicants = $\overline{x_1}x_2x_4 + x_2\overline{x_3}x_4 + x_1x_3\overline{x_4} + \overline{x_1x_3} + \overline{x_2x_4}$

Essential ones = $\overline{x_1x_3}$, $\overline{x_2x_4}$, $\overline{x_1}x_2x_4$, $x_2\overline{x_3}x_4$

$$E = \overline{x_2 x_4}$$
 $D = \overline{x_1 x_3}$ $C = x_1 x_3 \overline{x_4}$ $B = x_2 \overline{x_3} x_4$ $A = \overline{x_1} x_2 x_4$

Cost and covered points table

	0	1	2	4	7	10	13	Cost
Α					X			7
В							X	7
C						X		7
D	X	X		X				6
Ε	X		X			X		6

Since 1, 2, 4, 13 essential points we need to choose E, A and B, D.

	1	4	Cost
D	X	X	6

Finally, we take D.

Total cost is E = 6, A = 7, B = 7, $D = 6 \rightarrow 26$

$$F = \overline{x_2 x_4} + \overline{x_1} x_2 x_4 + x_2 \overline{x_3} x_4 + \overline{x_1} x_3$$

Using Tabular (Quine-McCluskey) Method

	X_1	X_2	X_3	X_4
0	0	0	0	0
0 1 2 4 7	0	0	0	1
2	0	0	1	0
4	0	1	0	0
	0	1	1	1
10	1	0	1	0
13	1	1	0	1
13 5 8	0	1	0	1
8	1	0	0	0
14	1	1	1	0

	X_1	X_2	X_3	X_4	1's amount	
0	0	0	0	0	0	/
1	0	0	0	1		√
2	0	0	1	0	1	
2 4 8	0	1	0	0	1	\checkmark
8	1	0	0	0		√
5	0	1	0	1	2	/
10	1	0	1	0	2	>
7	0	1	1	1		/
14	1	1	1	0	3	\checkmark
13	1	1	0	1		√

Compare each group with below group.

	X ₁	X_2	X 3	X_4	
0,1	0	0	0	_	√
0,2	0	0	-	0	✓
0,4	0	_	0	0	✓
0,8	-	0	0	0	\checkmark
1,5	0		0	1	/
2,10	_	0	1	0	\checkmark
4,5	0	1	0	-	√
8,10	1	0	_	0	√
5,7	0	1	-	1	*
5,13	_	1	0	1	*
10,14	1	_	1	0	*

Next step:

	X_1	X_2	X_3	X_4	
0,1,4,5	0	-	0	-	*
0,2,8,10	-	0	1	0	*
0,4,1,5	0	-	0	-	
0,8,2,10	-	0		0	

Finally, we have prime implicants from (*) terms since they can't be simplified more.

$$\overline{x_1}x_2x_4 + x_2\overline{x_3}x_4 + x_1x_3\overline{x_4} + \overline{x_1}x_3 + \overline{x_2}x_4 \qquad \textbf{tabular}$$

$$\overline{x_1}x_2x_4 + x_2\overline{x_3}x_4 + x_1x_3\overline{x_4} + \overline{x_1}x_3 + \overline{x_2}x_4 \qquad \textbf{karnaugh}$$

5)

- a) In order to cover max 1 generating points with less prime implicant it's better to cover with 4 units if possible.
- b) We take don't care values as 1 when we drawing rectangles to cover max amount of 1 with less prime implicant. Then we take as 0 when simplifying because we don't need to cover them.

Let's look at below example Karnaugh map. We a don't care value at 8. Since we can't include 8 to rectangles it has no use.

K				
X32	X4			
X_1X_2	$\bigcup 0$	$0 \mid 0$	1 11	10
0	0 1	0 1	0_3	12
0	1 0	04	0_6	17
1	1 o	8 0	9 011	010
10	0 0	12 01	3 015	014