Глава 10. ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

10.1. Основные определения и примеры

При решении многих задач математики, физики и механики часто не удается установить непосредственную зависимость между искомыми и данными переменными величинами, но зато удается составить уравнение, связывающее независимую переменную, искомую функцию и ее производные. Такое уравнение называется дифференциальным.

ПРИМЕР. Тело охладилось за 10 минут от 100° C до 60° C. Температура окружающего воздуха поддерживается постоянной и равной 10° C. Определить через сколько минут температура тела станет равной 20° C.

Как известно из физики, скорость охлаждения пропорциональна разности между температурой тела и температурой окружающей среды.

Обозначим T(t) — температуру тела в некоторый момент времени t . Тогда скорость изменения температуры равна производной $\frac{dT}{dt}$, и поэтому данный физический процесс описывается уравнением

$$\frac{dT}{dt} = k\left(T - 10\right),\tag{10.1}$$

где k — коэффициент пропорциональности, подлежащий определению. Это уравнение является дифференциальным. Искомая функция должна удовлетворять условиям задачи, а именно, T(0) = 100, T(10) = 60.

ПРИМЕР. Гибкая однородная нить подвешена за два конца. Найти уравнение кривой, по которой расположится нить под действием собственного веса (такую форму имеют подвешенные канаты, провода, цепи, поэтому уравнение этой кривой называется *уравнением цепной линии*).

Рис. 1

Пусть A(0,b) — самая низкая точка нити, а M(x,y) — произвольная точка. Часть AM находится в равновесии под действием трех сил (рис.1):

- 1) сила натяжения \overrightarrow{T} , направленная по касательной в точке M и составляющая угол φ с осью OX,
- 2) сила натяжения \overrightarrow{H} в точке A, действующая горизонтально,
- 3) вес \vec{P} , приложенный в центре масс и направленный вниз, $|\vec{P}| = P = \rho \ell$, где ρ линейная плотность, ℓ длина дуги.

Разложив вектор \vec{T} на вертикальную и горизонтальную составляющие, получим уравнения равновесия:

$$T\cos\varphi = H$$
, $T\sin\varphi = \rho\ell \implies \operatorname{tg}\varphi = \frac{\rho}{H}\ell \quad (|\overrightarrow{T}| = T, |\overrightarrow{H}| = H)$.

Пусть уравнение нити имеет вид y = y(x), тогда $tg \varphi = \frac{dy}{dx} \Rightarrow \frac{dy}{dx} = \frac{\rho}{H} \ell$.

Как известно (см. гл.8),
$$\frac{d\ell}{dx} = \sqrt{1 + {y'}^2(x)}$$
, поэтому $\frac{d^2y}{dx^2} = \frac{\rho}{H}\frac{d\ell}{dx} = \frac{\rho}{H}\sqrt{1 + {y'}^2}$.

Таким образом, получено дифференциальное уравнение цепной линии:

$$\frac{d^2y}{dx^2} = \frac{\rho}{H}\sqrt{1 + {y'}^2} \,. \tag{10.2}$$

Это уравнение связывает первую и вторую производные неизвестной функции. Заметим, что искомое решение удовлетворяет условиям y(0) = b, y'(0) = 0 (puc.1).

Как показывают эти примеры, дифференциальное уравнение может содержать первую, вторую, а также производные более высоких порядков неизвестной функции.

ОПРЕДЕЛЕНИЕ. Уравнение, которое связывает неизвестную функцию (или функции), ее производные и независимую переменную (или переменные), называется *дифференциальным уравнением*. Если неизвестная функция зависит от одной переменной, то дифференциальное уравнение называется *обыкновенным*, если от нескольких – *уравнением с частными производными*.

ОПРЕДЕЛЕНИЕ. *Порядком* дифференциального уравнения называется старший из порядков входящих в него производных.

ПРИМЕР. Уравнение (10.1) является обыкновенным дифференциальным уравнением первого порядка, (10.2) — обыкновенным дифференциальным уравнением второго порядка.

$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2} + x \sin t - \text{уравнение с частными производными второго порядка.}$$

ОПРЕДЕЛЕНИЕ. *Решением* дифференциального уравнения называется функция, подстановка которой в уравнение обращает его в тождество. Если решение найдено в *неявном виде*, оно называется *интегралом* данного дифференциального уравнения. График решения дифференциального уравнения называется *интегральной кривой*.

ПРИМЕР. $y'' - \frac{2}{x}y' = 0$ — дифференциальное уравнение второго порядка. Легко проверить, что, например, y = C, $C \in \Box$ является его решением. Также является решением $y = x^3 : y' = 3x^2$, $y'' = 6x \Rightarrow 6x - \frac{6x^2}{x} = 0$.

Функция $y = x^2$ этому уравнению не удовлетворяет, значит, решением не является.

Перейдем к изучению дифференциальных уравнений первого порядка.

10.2. Дифференциальные уравнения первого порядка

Дифференциальное уравнение первого порядка связывает независимую переменную, неизвестную функцию и ее первую производную, то есть имеет вид F(x, y, y') = 0.

Уравнение вида

$$y' = f\left(x, y\right) \tag{10.3}$$

называется уравнением, разрешенным относительно производной.

Так как $y' = \frac{dy}{dx}$, то (10.3) можно переписать в виде dy - f(x,y)dx = 0. В общем виде дифференциальное уравнение первого порядка может быть записано и таким образом:

$$P(x,y)dx + Q(x,y)dy = 0.$$

ПРИМЕР. $y \, y' = y \ln x + 1 - \text{дифференциальное}$ уравнение первого порядка. Перепишем его: $y \frac{dy}{dx} = y \ln x + 1 \Rightarrow \left(y \ln x + 1 \right) dx - y \, dy = 0$. Наоборот, уравнение первого порядка $2x \, y \, dx + \left(x^2 + y^2 \right) dy = 0$ может быть после деления обеих его частей на $dx \neq 0$ записано так: $\left(x^2 + y^2 \right) y' + 2x \, y = 0 \Rightarrow \left(x^2 + y^2 \right) y' = -2x \, y$.

Рассмотрим дифференциальное уравнение $y' = \frac{y}{x}$.