1. Let function f be defined by the polynomial below:

$$f(x) = -3x^4 - 7x^3 - 4x^2 - 6x - 9$$

Draw lines that match each function reflection with its polynomial:

Reflections	Polynomials
f(-x) •	$3x^4 - 7x^3 + 4x^2 - 6x + 9$
-f(-x)	$3x^4 + 7x^3 + 4x^2 + 6x + 9$
-f(x) ●	$-3x^4+7x^3-4x^2+6x-9$

2. In each xy plane shown below, a function is graphed with blue. Draw the indicated reflections (as a second curve, indicated in legend) with black (or with whatever you have). The x axis is horizontal and the y axis is vertical (as typical), and the scale is equal on both axes.

For all questions on this page, the functions f, g, and h are defined by the table below.

\boldsymbol{x}	f(x)	g(x) 5	h(x)
1	9	5	6
2	1	9	4
3	7	2	1
4	5	7	3
5	2	4	7
6	3	8	9
7	8	1	2
8	6	6	5
9	4	3	8

3. Evaluate h(3).

$$h(3) = 1$$

4. Evaluate $f^{-1}(4)$.

$$f^{-1}(4) = 9$$

5. Assuming f is an **even** function, evaluate f(-8).

If function f is even, then

$$f(-8) = 6$$

6. Assuming g is an **odd** function, evaluate g(-7).

If function g is odd, then

$$g(-7) = -1$$

7. A function, f, is **even** if f(x) = f(-x) for all x in the domain. A function, g, is **odd** if g(x) = -g(-x) for all x in the domain.

Let polynomial p be defined with the following equation:

$$p(x) = x^2 - 1$$

a. Express p(-x) as a polynomial in standard form.

$$p(-x) = (-x)^2 - 1$$
$$p(-x) = x^2 - 1$$

b. Express -p(-x) as a polynomial in standard form.

$$-p(-x) = -(x^2 - 1)$$

 $-p(-x) = -x^2 + 1$

c. Is polynomial p even, odd, or neither?

even

d. Explain how you know the answer to part c.

We see that p(x) = p(-x) for all x because p(x) and p(-x) are equivalent polynomials. Thus function p satisfies the criterion for being an even function.

8. I have drawn half of a function. Draw the other half to make it even or odd.

9. Let function f be defined with the equation below.

$$f(x) = 9(x-2)$$

a. Evaluate f(10).

step 1: subtract 2

step 2: multiply by 9

$$f(10) = 9((10) - 2)$$
$$f(10) = 72$$

b. Evaluate $f^{-1}(36)$.

step 1: divide by 9

step 2: add 2

$$f^{-1}(x) = \frac{x}{9} + 2$$
$$f^{-1}(36) = \frac{(36)}{9} + 2$$
$$f^{-1}(36) = 6$$

10. The function b is represented by the curve y = b(x) graphed below.

a. Evaluate b(7).

$$b(7) = 3$$

b. Evaluate $b^{-1}(2)$.

$$b^{-1}(2) = 6$$

- 11. Function f is defined by the table below.
 - a. Complete the columns for -f(x) and f(-x) and -f(-x).

\overline{x}	f(x)	-f(x)	f(-x)	-f(-x)
-2	5	-5	-5	5
-1	-3	3	3	-3
0	0	0	0	0
1	3	-3	-3	3
2	-5	5	5	-5

b. Is function f even, odd, or neither?

odd

c. How do you know the answer to part b?

Function f is odd because column -f(-x) matches column f(x) exactly.