## Faculdade de Engenharia da Universidade do Porto Mestrado Integrado em Engenharia Electrotécnica e Computadores

| Disciplin   | aa de PGRE                                                    | Exame exemplo, duração: 2h00min                                                                                                                                                                                                                 |
|-------------|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Nome:       |                                                               |                                                                                                                                                                                                                                                 |
| • Aprese    | ente as respostas na sua folha<br>tentamente o enunciado e pr | eçalho de todas as folhas de exame que entregar;<br>a de exame segundo a ordem correspondente do enunciado;<br>ocure responder de uma forma clara e sucinta às questões que se lhe                                                              |
| Grupo I – I | delas se a considera ver<br>considera falsas fazeno           | na das afirmações abaixo apresentadas e indique para cada uma rdadeira ou falsa. Reescreva completamente as afirmações que do as correcções necessárias para as tornar verdadeiras (A fo falsa recorrendo apenas à negação desta não é cotada). |
| 1.          | Uma estação pode ter m<br>IP.                                 | ais que um endereço Ethernet no interface que a liga a uma rede                                                                                                                                                                                 |
| 2.          | A agregação do bloco 200.11.159.0 com a másca                 | de endereços 200.11.159.0 – 200.11.167.255 resulta na <i>superne</i><br>ara 255.255.248.0.                                                                                                                                                      |
| 3.          | -                                                             | P entre duas estações em redes diferentes, o endereço IP do<br>vida pela estação de destino é o do router responsável pela                                                                                                                      |
| 4.          | Sempre que é gerado um                                        | n trap SNMP só é possível enviá-lo para um agente.                                                                                                                                                                                              |
| 5.          | -                                                             | gmentada na comunicação entre duas estações apenas uma vez<br>no router que serve a estação de destino.                                                                                                                                         |
|             |                                                               |                                                                                                                                                                                                                                                 |

| das c | nde vantagem do serviço de DHCP é permitir a gestão administrativa centralizad<br>onfigurações (por exemplo: endereços IP, default gateways, nome do domínio) da<br>ses de uma rede.           |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | omínio Internet pode ter configurado nos mapas do DNS do seu servidor primário<br>do que um registo do tipo MX.                                                                                |
| equip | das grandes vantagens do SNMPv2 é permitir fazer a gestão remota de amento de uma rede, garantindo a segurança das comunicações entre o sistema de o e os agentes residentes nos equipamentos. |
|       |                                                                                                                                                                                                |
|       | viço IMAP implementa o protocolo de comunicação para o envio de ficheiro para raixa de correio remotamente localizada.                                                                         |
|       | viço IMAP implementa o protocolo de comunicação para o envio de ficheiro para e<br>caixa de correio remotamente localizada.                                                                    |

## **Grupo II** – Responda objectiva e sucintamente às seguintes questões:

- 1. Apresente o modelo TCP/IP de gestão de redes e descreva cada uma das componentes.
- **2.** Apresente o serviço FTP e explique os passos do processo de estabelecimento de uma ligação e transferência de um ficheiro, como por exemplo a resultante da sequência de comandos indicados abaixo

## \$ftp teste.fe.up.pt

Connected to teste.fe.up.pt.

220 FTPD Server (Servidor de teste FTP da FEUP) [teste.fe.up.pt]

Name (teste.fe.up.pt:test): test

331 Anonymous login ok, send your complete email address as your password.

Password:

230 Login successful.

ftp> put teste.tgz

- **3.** Considerando a topologia de rede abaixo apresentada e assumindo que há uma interface do router B que não está activa porque não tem configurado um endereço IP, responda a cada alínea justificando a resposta:
  - a) É possível a estação C comunicar com a estação A? Descreva o processo da descoberta dos endereços, prévio ao envio efectivo dos pacotes IP de dados.
  - b) A estação C consegue comunicar com a estação B?
  - c) Atribua um endereço IP à interface que falta configurar no router B, de modo a que todas as estações possam comunicar entre si.
  - d) Considerando o endereço que atribuiu na alínea anterior, indique os endereços IP e MAC intervenientes no envio de um pacote de IP de B para C
  - e) O que é que acontecia se substituisse os dois routers por duas bridges Ethernet? Era possível algumas estações comunicarem entre si?
  - f) Neste cenário com bridges o que necessitava de alterar para que todas as estações possam comunicar entre si?



- **Grupo III –** Considere o seguinte problema de interligação das redes da empresa BEREASY Lda. As características principais da infra-estrutura de rede da empresa são as seguintes:
  - Todos os serviços da rede são suportados na pilha de protocolos TCP/IP;
  - A interface do SW-B de acesso ao ISP (*Internet Service Provider*) tem o endereço 62.190.1.184/30;
  - O router/switch SW-B tem ligações em Ethernet, a 100 Mb/s, com o router GW2 e os router/switches SW1 e SW3;
  - Os router/switches SW-B, SW1 e SW3 partilham todos o mesmo domínio de VLANs, sendo a gestão do domínio efectuada no SW-B. Estes têm configurado 3 VLANs (para além da VLAN1 da gestão e que se pretende acessível), a VLAN10 para servidores de serviços básicos e aplicações, a VLAN30 para os utilizadores do departamento administrativo e a VLAN40 para os restantes utilizadores;
  - O router/switch SW-B é a default gateway para toda a rede da empresa;
  - Ao router/switch SW1 estão ligados em Gigabit Ethernet dois switches Ethernet, SW11 e SW12, com auto-detecção 10/100/1000 Mb/s, ambos com 48 portas disponíveis para ligar estações, e estão inseridos no mesmo domínio de VLANs de SW1. Estes dão acesso na VLAN10 a 10 estações, a 21 estações na VLAN30 e a 50 estações na VLAN40;
  - O router GW2 dá conectividade a duas redes locais em Ethernet com máximo de 200 e 32 estações, respectivamente, e troca informação de routing em OSPF com o router/switch SW-B;
  - Ao router/switch SW3 estão ligados em Gigabit Ethernet dois switches Ethernet, SW31 e SW32, com auto- detecção 10/100/1000 Mb/s, ambos com 96 portas disponíveis para ligar estações, e estão inseridos no mesmo domínio de VLANs de SW3. Estes dão acesso na VLAN10 a 16 estações, a 28 estações na VLAN30 e a 120 estações na VLAN40.



Para resolver o problema de endereçamento desta empresa está disponível o conjunto de endereços 81.17.160/22.

- 1. Diga qual o número mínimo de redes, do bloco acima, que utilizava para resolver o endereçamento da empresa e qual o respectivo tamanho. Explique porquê.
- 2. Faça a atribuição dos vários endereços, identificação da rede e *broadcast*, e as respectivas máscaras para cada uma das redes.
- 3. Apresente uma possível tabela de *routing* do *router/switch* SW-B que lhe garanta a conectividade à Internet e a todas as estações da rede da empresa BEREASY Lda
- 4. Como requisitos para o serviço de E-mail da empresa BEREASY Lda foram especificados o acesso às caixas do correio dos utilizadores em dialup, em roaming e local em cada edifício.
- a) Apresente a solução que implementaria para resolver este problema, indicando os servidores e os protocolos escolhidos para cada um dos requisitos.
- b) Indique os requisitos e as configurações necessárias no serviço de DNS para permitir os requisitos do serviço de e-mail.

**FIM**