

Procesamiento y Visualización de Datos Espaciales en R

Profesor: José Luis Texcalac Sangrador

Laboratorio — 03

La generación de vectores y mallas de datos (data frames) es una tarea recurrente en el procesamiento de datos en \mathbb{R} , para este tercer laboratorio usted practicará la generación de vectores y su agregación en una malla de datos

¿Qué se espera de ti en este laboratorio?

Esta actividad pretende que usted desarrolle y consolide las habilidades básicas para el uso y procesamiento de datos en adquiridas a través del curso introductorio de swirl. El laboratorio requiere que explore, mediante busquedas de internet y material de apoyo, la información disponible y de utilidad para la resolución de los ejercicios a realizar en este laboratorio.

Indicaciones por considerar:

- Suba su laboratorio a la plataforma Google Classroom a más tardar antes del inicio de la próxima sesión (jueves 25 de septiembre).
- Cualquier duda puede publicarla en Google Classroom y su profesor o compañeros le pueden auxiliar.
- La cuenta de correo electrónico para cualquier asunto relacionado al curso es:

 itexcalac@insp.edu.mx
- Lo que debe usted entregar para evaluar su laboratorio es:
 - Archivo (script) con extensión .R
 - El laboratorio NO requiere enviarse por correo electrónico, evítelo.
 - Nombre a su archivo con el siguiente patrón: L03_Nombre.

Instrucciones:

Genere un nuevo script y en él programe las siguientes tareas.

- El script debe ir con encabezado y secciones
- Comente cada uno de sus ejercicios del script.

- 1. Genere vectores de 500 elementos cada uno, con las siguientes características:
 - Vector de nombre vec_1 con los siguientes valores aleatorios: ID-1, ID-2, ID-3, ID-4, ID-5 (use la función sample()).
 - Vector de nombre vec_2 con los siguientes valores aleatorios: 0, 1 (use la función sample()).
 - Vector de nombre vec_3 con los siguientes valores aleatorios: mayor de 35
 y menor de 80 (use la función sample()).
 - Vector de nombre vec_4 con los siguientes valores aleatorios: 1, 2, 3, 4, 5,
 6 (use la función sample()).
 - Vector de nombre vec_5 con valores aleatorios y redondeados a 1 decimal:
 mínimo 12.9, máximo 43.8 (use la función runif() y round()).
 - Vector de nombre vec_6 con valores aleatorios y redondeados a 1 decimal:
 media 12.9, desviación estándar de 5.1 (use la función rnorm() y round()).
- 2. Genere un data frame incorporando todos los vectores anteriores.
 - Nombre a su data frame como df_lab3.
 - Al momento de crear el data frame nombre a las columnas como: id, sexo, edad, edo_nac, dist_unif, dist_norm.
 - Ejecute las funciones head() y tail(), summary() a su data frame
 - Para esta tarea también le puede ayudar la siguiente hoja con comandos útiles, estas hojas comúnmente son llamadas "Cheat Sheet"
- 3. Genere un data frame a partir de la información de la imagen siguiente:
 - Nombre a sus variables como
 - cve_geo: Clave de la demarcación (texto);
 - alcaldia: Demarcación territorial (texto);
 - poblacion: habitantes 2020 (entero)

Clave de la demarcación territorial ≎	Demarcación terrirorial 🗢	Habitantes 2020 ♦
002	Azcapotzalco	432,205
003	Coyoacán	614,447
004	Cuajimalpa de Morelos	217,686
005	Gustavo A. Madero	1,173,351
006	Iztacalco	404,695
007	Iztapalapa	1,835,486
800	La Magdalena Contreras	247,622
009	Milpa Alta	152,685
010	Álvaro Obregón	759,137
011	Tláhuac	392,313
012	Tlalpan	699,928
013	Xochimilco	442,178
014	Benito Juárez	434,153
015	Cuauhtémoc	545,884
016	Miguel Hidalgo	414,470
017	Venustiano Carranza	443,704

FUENTE: INEGI. Censo de Población y Vivienda 2020.

Material de apoyo

Puede usted apoyarse de los siguientes recursos para la realización de su laboratorio.

- Vectores en R
- Redondear
- Números y textos aleatorios (sample y runif)
- Cheat Sheet de código base
- Funciones head y tail en R
- Diapositivas de clase