

Fachbereich Mathematik Sommersemester 2014 Christian Eder Lucas Ruhstorfer

Einführung in die Topologie Übungsblatt 01

Abgabetermin: Mittwoch, 07.05.2014, 13:30 Uhr

Aufgabe 1. Es seien *A* und *B* zwei Teilmengen eines topologischen Raums *X*. Beweise oder widerlege folgende Aussagen:

- (a) $(A \cup B)^{\circ} \subset A^{\circ} \cup B^{\circ}$,
- (b) $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$,
- (c) $\partial (A \cup B) \subset \partial A \cup \partial B$,
- (d) $\overline{A} \cap \overline{B} = \emptyset \Longrightarrow \partial (A \cup B) = \partial A \cup \partial B$.

Aufgabe 2. Sei (X, d) ein metrischer Raum. Definiere die 3 Abbildungen $\mu, \nu, \eta : X \times X \to \mathbb{R}$ durch

$$\mu(x,y) := \frac{d(x,y)}{1+d(x,y)}, v(x,y) := \ln(1+d(x,y)), \eta(x,y) := \min(1,d(x,y)).$$

Zeige, dass μ , ν und η ebenfalls Metriken auf X sind und $\mathcal{T}_d = \mathcal{T}_\mu = \mathcal{T}_\nu = \mathcal{T}_\eta$ gilt. Mit anderen Worten: Die Topologie kennt keinen Abstandsbegriff.

Aufgabe 3. Die SNCF Metrik

$$d(x,y) = \begin{cases} 0 & \text{für } x = y \\ \|x\| + \|y\| & \text{für } x \neq y \end{cases}$$

definiert auf \mathbb{R}^2 eine Topologie \mathscr{T} , wobei $\|\cdot\|$ die euklidische Norm bezeichnet.

- (a) Zeige, dass die einpunktige Menge $\{x\}$ mit $x \in \mathbb{R}^2$ genau dann offen bzgl. \mathscr{T} ist, wenn $x \neq 0$.
- (b) Bestimme eine (möglichst einfache) Basis von \mathcal{T} .
- (c) In welchen Punkten ist die Abbildung $f:(\mathbb{R}^2,\mathcal{T})\to(\mathbb{R}^2,\mathcal{T})$ mit f(x,y)=(x+1,y) stetig?

Aufgabe 4. Es seien X ein metrischer Raum, $a \in X$, $r \ge 0$ und $K_a := \{x \in X \mid d(x, a) \le r\}$. Zeige:

- (a) Ist X ein normierter Raum (d. h. d(x, y) = ||x y|| für eine Norm $||\cdot||$ auf einem reellen Vektorraum X) ungleich dem Nullvektorraum, so gilt $\partial K_a = \{x \in X \mid d(x, a) = r\}$.
- (b) In einem beliebigen metrischen Raum ist die Aussage in (a) falsch.