REGINALDO GREGÓRIO DE SOUZA NETO 2252813

2 - Instruções: A linguagem de Máquina

2.21 Exercícios¹

¹ Contribuição de John Oliver, da Cal Poly, San Luis Obispo, com colaborações de Nicole Kaiyan (Universidade de Adelaide) e Milos Prvulovic (Georgia Tech)

O Apêndice B descreve o simulador do MIPS, que é útil para estes exercícios. Embora o simulador aceite pseudoinstruções, tente não usá-las em qualquer exercício que pedir para produzir código do MIPS. Seu objetivo deverá ser aprender o conjunto de instruções MIPS real, e se você tiver de contar instruções, sua contagem deverá refletir as instruções reais executadas, e não as pseudoinstruções.

Existem alguns casos em que as pseudoinstruções precisam ser usadas (por exemplo, a instrução la quando um valor real não é conhecido durante a codificação em assembly).

Em muitos casos, elas são muito convenientes e resultam em código mais legível (por exemplo, as instruções li e move. Se você decidir usar pseudoinstruções por esses motivos, por favor, acrescente uma sentença ou duas à sua solução, indicando quais pseudoinstruções usou e por quê.

Exercício 2.10

Nos problemas a seguir, a tabela de dados contém bits que representam o opcode de uma instrução. Você deverá traduzir as entradas para o código assembly e determinar que formato da instrução MIPS os bits representam.

- **a.** 0000 0010 0001 0000 1000 0000 0010 0000_{dois}
- **b.** 0000 0001 0100 1011 0100 1000 0010 0010_{dois}

Utilizar MIPS Reference Data Card.pdf																			
R Op (6 bits)		Rs (5	Rt (5 bits)			Rd (5 bits)			Shamt (5 bits)				Funct (6 bits)						
I Op	Rs			Rt			Endereço (16 bits)												
J Op Endereço (26 bits)																			
a. 0000 0010 0001 0000 1000 0000 0010 0000 _{dois}																			
add \$s0, \$s0, \$s0 (R[rd] = R[rs] + R[rt])							OPCODE = 0X0 FUNCTION = 0X20												
0X0		16			16			16				0					0X20		
0 0 0 0	0 0	1 0	0 0 0	1 0 0 0 0		1	0	0 0	0	0	0 0	0 0)	1 0	0	0 0	0		
0 2			1		0			8			0		2		0		·		
b. 0000 0001 0100 1011 0100 1000 0010 0010 _{dois}																			
sub \$t1, \$t2, \$t3 (R[rd] = R[rs] - R[rt])							OPCODE = 0X0 $FUNCTION = 0X22$												
0X0	10			11			9			0						0X22			
0 0 0 0 0	$0 \mid 0 \mid$	0 1	0 1 0	0	1 0	1 1	0	1	0 0	1	0	0 0	0 0)	1 0	0	0 1	0	
0		4			1		4			8			2			2			

2.10.1 [5] <2.5> Para essas entradas binárias, que instrução elas representam?

add \$s0, \$s0, \$s0 sub \$t1, \$t2, \$t3

2.10.2 [5] <2.5> Que tipo de instrução (tipo I, tipo R) as mesmas entradas binárias representam?

Ambas são do tipo R.

- 2.10.3 [5] <2.4, 2.5> Se as entradas binárias anteriores fossem bits de dados, que número elas representariam em hexadecimal?
- **a.** 0000 0010 0001 0000 1000 0000 0010 0000 $_{dois}$
 - 0 2 1 0 8 0 2 0 hex
- b. 0000 0001 0100 1011 0100 1000 0010 0010_{dois}
 0 1 4 b 5 8 2 2 her

Nos problemas a seguir, a tabela de dados contém instruções MIPS. Você deverá traduzir as entradas para os bits do opcode e determinar qual é o formato da instrução MIPS.

- a. addi \$t0 ,\$t0 ,0
- b. sw \$t1, 32(\$t2)

R Op (6 bits)	Rs (5	bits)	Rt (Rt (5 bits)				Rd (5 bits) Shamt (5 bits) Funct (6 bits)													
I Ор	Rs		Rt			Е	Endereço (16 bits)														
J Op	Ender	·																			
I Op	Rs		Rt	E	Endereço (16 bits)																
a. addi \$t0 ,\$t0 ,0 (R[rt] = R[rs] + SignExtImm)							OPCODE = 0X8														
0X8		8		8												(0x0000		
0 0 1 0 0 0	0 1	0 0 0	0 1	0	0 0	0	0 0 0 0 0				0	0	0	0	0	0	0	0	0	0	0
2	1	0	8				0				0			0				0			
I Op		Rt	Е	Endereço (16 bits)																	
b. sw \$t1, 32(\$t2) M[R[rs]+SignExtImm] = R[rt]							OPCODE = 0X2b														
0X2b		9				32															
1 0 1 0 1 1	0 1	0 1 0	0 1	0	0 1	0	0) (0	0	0	0	0	0	0	1	0	0	0	0	0
10	13	4	9				0				0			2				0			

- 2.10.4 [5] <2.4, 2.5 Mostre a representação hexadecimal dessas instruções.
 - $a. 21080000_{hex}$
 - $b.\ ad490020_{\text{hex}}$

2.10.5 [5] <2.5> Que tipo (tipo I, tipo R) essas instruções representam?

Ambas são do tipo I.

2.10.6 [5] <2.5> Qual é a representação binária e hexadecimal dos campos opcode, Rs e Rt nessa instrução? Para as instruções de tipo R, qual é a representação hexadecimal dos campos Rd e funct? Para as instruções de tipo I, qual é a representação hexadecimal do campo imediato?

É possível observar as notações hexadecimais e binárias nos exercícios anteriores.

Exercício 2.16

DONE:

Para estes problemas, a tabela mantém diversos valores binários para o registrador \$t0.

Dado o valor de \$t0, você deverá avaliar o resultado de diferentes desvios.

```
a. $t0 = 0010 \ 0100 \ 1001 \ 0010 \ 0100 \ 1001 \ 0010 \ 0100_{dois}
b. $t0 = 0101\ 1111\ 1011\ 1110\ 0100\ 0000\ 0000\ 0000_{dois}
```

2.16.1 [5] <2.7> Suponha que o registrador \$t0 contenha um desses valor e \$t1 tenha o valor

```
$t1 = 0011 \ 1111 \ 1111 \ 1000 \ 0000 \ 0000 \ 0000 \ 0000_{dois}
```

Note o resultado da execução de tais instruções em certos registradores. Qual é o valor de \$t2 depois das seguintes instruções?

```
slt $t2, $t0, $t1
     beg $t2, $ZERO, ELSE
      j DONE
ELSE: addi $t2, $0, 2
```

No caso A, o valor final de \$t2 será 1 No caso B, o valor final de \$t2 será 0

2.16.4 [5] <2.7> Suponha que o registrador \$t0 contenha um valor da tabela anterior.

Qual é o valor de \$t2 após as instruções a seguir?

```
slt $t2, $0, $t0
      bne $t2, $ZERO, ELSE
      j DONE
ELSE: addi $t2, $t2, 2
DONE:
```

Em ambos os casos o valor de \$t2 será 1