数学专业研究生考试试题

虞朝阳

December 31, 2017

前言

本文档是我从网络(主要是博士家园)上收集的各个学校的研究生考试数学方面的试题. 这里无法保证每一道题目的准确性, 甚至有一些题目还是不完整的.

目 录

前言

1	北京	大学硕士研究生入学试题	1
	1.1	1995年	. 1
		1.1.1 解析几何与高等代数	
		1.1.2 数学分析	
	1. 2	1996年	
		1.2.1 解析几何与高等代数	
		1.2.2 数学分析	
	1.3	1997年	
	1.0	1.3.1 解析几何与高等代数	
		1.3.2 数学分析	
	1.4	1998年	
	1.4	1.4.1 解析几何与高等代数	
		1.4.2 数学分析	
	1.5	1999年	
		1.5.1 解析几何与高等代数	
		1.5.2 数学分析	
	1.6	2000年	. 15
		1.6.1 解析几何与高等代数	. 15
		1.6.2 数学分析	. 16
	1.7	2001年	
		1.7.1 解析几何与高等代数	. 17
		1.7.2 数学分析	
	1.8	2002年	
		1.8.1 解析几何与高等代数	
		1.8.2 数学分析	
	1.9	2005年	
	1. 3	1.9.1 解析几何与高等代数	
		1.9.2 数学分析	
	1 10	1.9.2	· 24

	1.10.1解析几何与高等代数	24
	1.10.2 数学分析	26
	1.11 2007年	28
	1.11.1解析几何与高等代数	28
	1.11.2 数学分析	29
	1.12 2008年	30
	1.12.1 解析几何与高等代数	30
	1.12.2 数学分析	31
	1.13 2009年	32
	1.13.1解析几何与高等代数	32
	1.13.2 数学分析	33
	1. 14 2010年	34
	1.14.1 解析几何与高等代数	34
	1. 14. 2 数学分析	35
	1. 15 2011年	36
	1. 15. 1 解析几何与高等代数	36
	1. 15. 2 数学分析	38
	1. 16 2018年	39
	1. 16. 1 数学分析	39
	1.10.1 奴子刀卯	00
2	中国科学院研究生院入学考试	41
	2.1 2007年	41
	2.1.1 高等代数	41
	2.1.2 数学分析	42
	2.2 2012年	43
	2.2.1 高等代数	43
	2. 3 2018	44
	2.3.1 数学分析	44
	2.0.1 90 77 77	11
3	南开大学研究生入学考试	46
	3.1 2018	46
	3.1.1 高等代数	46
	3.1.2 数学分析	46
		10
4	中山大学研究生入学考试	47
	4.1 数学分析	47
5	其他	49

第 1 章 北京大学硕士研究生入学试题

1.1 1995年

1.1.1 解析几何与高等代数

1. 在空间仿射坐标系中, 直线 L_1, L_2 有方程

$$L_1: \begin{cases} x+2y-z+1=0, \\ x-4y-z-2=0, \end{cases}$$
 $L_2: \begin{cases} x-y+z-2=0, \\ 4x-2y+1=0, \end{cases}$

- (a) 设直线L过原点O, 并且与 L_1 , L_2 都相交, 求L的方程(普通方程 或标准方程);
- (b) 设平面 π 过 L_1 , 并且与 L_2 平行, 求 π 的方程.
- 2. 设直角坐标系中, 一圆柱面的轴线L有方程

$$\frac{x-1}{2} = \frac{y}{-1} = \frac{z+1}{2},$$

并且点P(1,0,1)在这个圆柱面上, 求这个圆柱面的方程.

- 3. (a) 设 $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}^n$, 证明: 如果向量组 $\alpha_1, \alpha_2, \alpha_3$ 线性无关, 则向量组 $\alpha_1 + 2\alpha_2, -\alpha_2 + 3\alpha_3, 4\alpha_1 \alpha_3$ 也线性无关.
 - (b) 设

$$A = \begin{pmatrix} -1 & 5 & 3 & 1 \\ 4 & 1 & -2 & 7 \\ 0 & 3 & 4 & -1 \\ 2 & 0 & -1 & 3 \end{pmatrix}$$

求A的秩以及A的列向量组的一个极大线性无关组.

4. 用正交线性替换把下述二次型化成标准型,并且写出所作的正交线性 替换:

$$f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3.$$

5. 设V是数域K上所有2级矩阵组成的线性空间,定义V的一个变换 \underline{A} 如下:

$$\underline{A}(X) = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} X \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1}, \quad \forall X \in V$$

- (a) 证明A是V的一个线性变换;
- (b) 求 \underline{A} 在V的一组基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵,其中 E_{ij} 表示(i,j)元为1,其余元全为零的2级矩阵.
- 6. 设A是一个n级正定矩阵,证明: 存在一个n级正定矩阵B,使得 $A = B^2$.
- 7. 设A是数域K上n维线性空间V的一个线性变换,设f(x)是数域K上的一个一元多项式,并且 $f(x) = f_1(x)f_2(x)$,其中 $f_1(x)$ 与 $f_2(x)$ 互素,用kerB表示线性变换B的核. 证明:

$$\ker f(A) = \ker f_1(A) \oplus \ker f_2(A).$$

1.1.2 数学分析

1. 求下列极限:

(a)
$$\lim_{x\to 0} \frac{\tan x - \sin x}{x^3};$$

(b)
$$\lim_{n \to +\infty} \frac{1}{n} \sqrt[n]{n(n+1)\cdots(2n-1)}.$$

2. (a) 设f(x)在 $[0,+\infty)$ 上可微,且满足

$$\int_0^x tf(t)dt = \frac{x}{3} \int_0^x f(t)dt, \quad x > 0,$$

求f(x).

(b) 设z = f(x, y)是二次可微函数,又有关系式:

$$u = x + ay$$
, $v = x - ay$. (a是常数)

证明

$$a^2 \frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = 4a^2 \frac{\partial^2 z}{\partial u \partial v}.$$

3. (a) 设f(x)是 $[1,+\infty)$ 上的可微函数,且当 $x \to +\infty$ 时,f(x)是单调下降趋于零. 若积分

$$\int_{1}^{+\infty} f(x)dx$$

收敛, 证明积分 $\int_{1}^{+\infty} xf'(x)dx$ 收敛.

1.2. 1996年

3

(b) 判别级数

$$\sum_{n=2}^{+\infty} \frac{\sin nx}{\log n}$$

的敛散性.

4. (a) 设f(x,y)是 R^2 上的连续函数, 试交换累次积分

$$\int_{-1}^{1} dx \int_{x^2+x}^{x+1} f(x,y) dy$$

的求积次序.

(b) 求线积分

在下列两种曲线C的情形下的值.

i. $C: (x-1)^2 + (y-1)^2 = 1$, 逆时针方向;

ii. C: |x| + |y| = 1, 逆时针方向.

1.2 1996年

1.2.1 解析几何与高等代数

1. 在仿射坐标系中,求过点 $M_0(0,0,-2)$,与平面 $\pi_1: 3x-y+2z-1=0$ 平 行,且与直线 $l_1:$

$$\frac{x-1}{4} = \frac{y-3}{-2} = \frac{z}{1}$$

相交的直线1的方程.

2. 作直角坐标变换, 把下述二次曲面方程化成标准方程, 并且指出它是什么曲面:

$$x^{2} + 4y^{2} + z^{2} - 4xy - 8xz - 4yz + 2x + y + 2z - \frac{25}{16} = 0.$$

- 3. 设线性空间V中的向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性无关.
 - (a) 试问: 向量组 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$ 是否线性无关? 要求说明理由.
 - (b) 求向量组 $\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_3 + \alpha_4, \alpha_4 + \alpha_1$ 生成的线性子空间W的一个基以及W的维数.

4. 设V是数域K上的n维线性空间,并且V $U \oplus W$. 任给 $\alpha \in V$,设 $\alpha = \alpha_1 + \alpha_2$, $\alpha_1 \in U$, $\alpha_2 \in W$,令

$$P(\alpha) = \alpha_1.$$

证明:

- (a) P是V上的线性变换, 并且 $P^2 = P$;
- (b) P的核ker P = W, P的象 (值域) Im P = U;
- (c) V中存在一个基, 使得P在这个基下的矩阵是

$$\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$$

其中 I_r 表示r级单位矩阵;请指出r等于什么?

- 5. n级矩阵A称为周期矩阵,如果存在正整数m,使 $A^m = I$,其中I是单位矩阵。证明:复数域上的周期矩阵一定可以对角化。
- 6. 用 $R[x]_4$ 表示实数域上次数小于4的一元多项式组成的集合,它是一个 欧几里德空间,其上的内积:

$$(f,g) = \int_0^1 f(x)g(x)dx.$$

设W是由零次多项式组成的子空间, 求W↓以及它的一个基.

1.2.2 数学分析

- 1. 判断下列命题的真伪, 不必说明理由.
 - (a) 对数列 $\{a_n\}$ 作和 $s_n = \sum_{k=1}^n a_k$,若 $\{s_n\}$ 是有界数列,则 $\{a_n\}$ 是有界列。列.
 - (b) 数列 $\{a_n\}$ 存在极限 $\lim_{n\to+\infty}a_n=a$ 的充要条件是: 对任一自然数p,都有

$$\lim_{n \to \infty} |a_{n+p} - a_n| = 0.$$

- (c) 设f(x)是 $[a, +\infty)$ 上的递增连续函数, 若f(x)在 $[a, +\infty)$ 上有界,则f(x)在 $[a, +\infty)$ 上一致连续.
- (d) 设f(x)在[a,b]上连续,且在(a,b)上可微,若存在极限

$$\lim_{x \to a+0} f'(x) = l,$$

则右导数 $f'_{+}(a)$ 存在且等于l.

1.3. 1997年

(e) 若f(x)是 $[a,+\infty)$ 上的非负连续函数,且积分

$$\int_{a}^{+\infty} f(x)dx$$

收敛, 则
$$\lim_{x\to +\infty} f(x) = 0$$
.

2. 设f(x)在x = a处可微, $f(a) \neq 0$, 求极限

$$\lim_{n \to +\infty} \left(\frac{f(a + \frac{1}{n})}{f(a)} \right)^n.$$

3. (a) 求幂级数

$$\sum_{n=1}^{\infty} nx^{n-1} \qquad (|x| < 1)$$

的和.

- (b) 求级数 $\sum_{n=1}^{\infty} \frac{2n}{3^n}$ 的和.
- 4. 求积分

$$I = \iiint\limits_{D} (x + y + z) dx dy dz,$$

的值,其中D是由平面x + y + z = 1以及三个坐标平面所围成的区域。

5. 设 $a_n \neq 0 (n = 1, 2, \cdots)$, 且 $\lim_{n \to +\infty} a_n = 0$. 若存在极限

$$\lim_{n\to +\infty}\frac{a_{n+1}}{a_n}=l,$$

证明: $|l| \leq 1$.

6. 设在[a,b]上, $f_n(x)$ 一致收敛于f(x), $g_n(x)$ 一致收敛于g(x). 若存在正数列 $\{M_n\}$,使得

$$|f_n(x)| \le M_n, |g_n(x)| \le M_n \quad (x \in [a, b], n = 1, 2, \dots)$$

证明 $f_n(x)g_n(x)$ 在[a,b]上一致收敛于f(x)g(x).

1.3 1997年

1.3.1 解析几何与高等代数

- 1. 判断下列二次曲线类型
 - (a) $x^2 3xy + y^2 + 10x 10y + 21 = 0$;
 - (b) $x^2 + 4xy + 4y^2 20x + 10y 50 = 0$.
- 2. 过x轴和y轴分别作动平面,交角 α 是常数,求交线轨迹的方程,并证明它是一个锥面.
- 3. 设A, B是数域K上的n阶方阵,X是未知量 x_1, \dots, x_n 所成的 $n \times 1$ 矩阵。已知齐次线性方程组AX = 0和BX = 0分别有l,m个线性无关解向量,这里 $l \ge 0$, $m \ge 0$.
 - (a) 证明(AB)X = 0至少有 $\max(l, m)$ 个线性无关解向量.
 - (b) 如果l + m > n, 证明(A + B)X = 0必有非零解.
 - (c) 如果AX = 0和BX = 0无公共非零解向量,且l + m = n,证明 R^n 中任一向量 α 可唯一表成 $\alpha = \beta + \gamma$,这里 β, γ 分别是AX = 0和BX = 0的解向量.
- 4. 设A是实数域R上的3维线性空间V内的一个线性变换, 对V的一组基 $\epsilon_1, \epsilon_2, \epsilon_3$,有

$$A\epsilon_1 = 3\epsilon_1 + 6\epsilon_2 + 6\epsilon_3,$$

$$A\epsilon_2 = 4\epsilon_1 + 3\epsilon_2 + 4\epsilon_3,$$

$$A\epsilon_3 = -5\epsilon_1 - 4\epsilon_2 - 6\epsilon_3.$$

- (a) 求A的全部特征值和特征向量.
- (b) 设 $B = A^3 5A$, 求B的一个非平凡的不变子空间.
- 5. 设f(x)是有理数域Q上的一个m次多项式 $(m \ge 0)$,n是大于m的正整数,证明: $\sqrt[n]{2}$ 不是f(x)的实根.
- 6. 设A是n维欧氏空间V内的一个线性空间,满足

$$(A\alpha, \beta) = -(\alpha, A\beta), \quad (\forall \alpha, \beta \in V)$$

- (a) 若 λ 是A的一个特征值,证明 $\lambda = 0$.
- (b) 证明V内存在一组标准正交基,使 A^2 在此组基下的矩阵为对角矩阵.
- (c) 设A在V的某组标准正交基下的矩阵为A, 证明: 把A看作复数域C上的n阶方阵, 其特征值必为0或纯虚数.

1.4. 1998年 7

1.3.2 数学分析

1. 将函数 $f(x) = \arctan \frac{2x}{1-x^2}$,在x = 0点展开为幂级数,并指出收敛区间。

2. 判别广义积分的收敛性:

$$\int_0^{+\infty} \frac{\ln(1+x)}{x^p} dx.$$

- 3. 设f(x)在 $(-\infty, +\infty)$ 上有任意阶导数 $f^{(n)}(x)$,且对任意有限闭区间[a, b], $f^{(n)}(x)$ 在[a, b]上一致收敛于 $\phi(x)$ $(n \to +\infty)$,求证: $\phi(x) = ce^x$,c为 常数.
- 4. 设 $x_n > 0$ $(n = 1, 2, \dots)$ 及 $\lim_{n \to +\infty} x_n = a$. 用 ϵN 语言证明 $\lim_{n \to +\infty} \sqrt{x_n} = \sqrt{a}$.
- 5. 求第二型曲面积分

$$\oint_{S} (xdydz + \cos ydzdx + dxdy)$$

其中S为 $x^2 + y^2 + z^2 = 1$ 的外侧.

6. 设x = f(u, v), y = g(u, v), w = w(x, y)有二阶连续偏导数,满足

$$\frac{\partial f}{\partial u} = \frac{\partial g}{\partial v}, \frac{\partial f}{\partial v} = -\frac{\partial g}{\partial u}, \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial u^2} = 0,$$

证明:

(a)
$$\frac{\partial^2(fg)}{\partial u^2} + \frac{\partial^2(fg)}{\partial v^2} = 0;$$

(b)
$$w(u,v) = w(f(u,v),g(u,v))$$
满足 $\frac{\partial^2 w}{\partial u^2} + \frac{\partial^2 w}{\partial v^2} = 0$.

7. 计算三重积分

$$\iiint_{\Omega: x^2 + y^2 + z^2 \leqslant 2x} (x^2 + y^2 + z^2)^{5/2} dx dy dz.$$

1.4 1998年

1.4.1 解析几何与高等代数

1. 设在直角坐标系中给出了两条互相异面的直线l₁,l₂的普通方程:

$$l1: \begin{cases} x+y+z-1=0 & 3x+y+1=0\\ x+y+2z+1=0 & y+3z+2=0 \end{cases} l2: \{$$

- (a) 过 l_1 作平面 π , 使 π 与 l_2 平行;
- (b) 求 l_1 与 l_2 间的距离;
- (c) 求 l_1 与 l_2 的公垂线的方程.
- 2. 在直角坐标系中, 球面的方程为:

$$(x-1)^+y^2 + (z+1)^2 = 4$$

求所有与向量u(1,1,1)平行的球面的切线所构成的曲面的方程.

3. 讨论a,b满足什么条件时,数域K上的下述线性方程组有唯一解,有无穷多个解,无解?当有解时,求出该方程组全部解.

$$\begin{cases} ax_1 + 3x_2 + 3x_3 = 3\\ x_1 + 4x_2 + x_3 = 1\\ 2x_1 + 2x_2 + bx_3 = 2 \end{cases}$$

4. 设V是定义域为实数集R的所有实值函数组成的集合,对于 $f,g \in V$, $a \in R$,分别用下列式子定义f + g = af:

$$(f+g)(x) = f(x) + g(x), \quad (af)(x) = a(f(x)), \quad \forall x \in R$$

则V成为实数域上的一个线性空间.

设
$$f_0(x) = 1$$
, $f_1(x) = \cos x$, $f_2(x) = \cos 2x$, $f_3(x) = \cos 3x$,

- (a) 判断 f_0, f_1, f_2, f_3 是否线性无关, 写出理由;
- (b) 用< f, g >表示f, g生成的线性子空间, 判断 $< f_0, f_1 > + < f_2, f_3 >$ 是否为直和,写出理由.
- 5. 用J表示元素全为1的n级矩阵, $n \ge 2$. 设f(x) = a + bx是有理数域上的一元多项式,令A = f(J).
 - (a) 求J的全部特征值和全部特征向量:

1.4. 1998年 9

- (b) 求A的所有特征子空间;
- (c) A是否可以对角化? 如果可对角化,求出有理数域上的一个可逆矩阵P,使得 $P^{-1}AP$ 为对角矩阵,并且写出这个对角矩阵.
- 6. 用 $M_2(C)$ 表示复数域C上所有2级矩阵组成的集合. 令

$$V = \{A \in M_2(C) | \text{Tr}(A) = 0, \exists A^* = A \},\$$

其中Tr(A)表示A的迹,A*表示A的转置共轭矩阵.

(a) 证明V对于矩阵的加法,以及实数与矩阵的数量乘法成为实数域上的线性空间,并且说明V中元素形如

$$\begin{pmatrix} a_1 & a_2 + ia_3 \\ a_2 - ia_3 & -a_1 \end{pmatrix},$$

其中 a_1, a_2, a_3 都是实数, $i = \sqrt{-1}$.

(b) 设

$$A = \begin{pmatrix} a_1 & a_2 + ia_3 \\ a_2 - ia_3 & -a_1 \end{pmatrix}, \quad B = \begin{pmatrix} b_1 & b_2 + ib_3 \\ b_2 - ib_3 & -b_1 \end{pmatrix}$$

考虑V上的一个二元函数:

$$(A, B) = a_1b_1 + a_2b_2 + a_3b_3,$$

证明这个二元函数是V上的一个内积, 从而V成为欧几里德空间; 并且求出V的一个标准正交基, 要求写出理由.

- (c) 设T是一个酉矩阵(即,T满足 $T^*T = I$,其中I是单位矩阵),对任意 $A \in V$,规定 $\Psi_T(A) = TAT^{-1}$,证明 Ψ_T 是V上的正交变换.
- (d) Ψ_T 的意义同第(3)小题, 求下述集合

$$S = \{T | \det T = 1, \exists \Psi_T = 1_V \},$$

其中 $\det T$ 表示T的行列式, 1_V 表示V上的恒等变换.

1.4.2 数学分析

- 1. 选一个最确切的答案,填入括号中.
 - (a) 设f(x)定义在[a,b]上. 若对任意的 $g \in R([a,b])$, 有 $f \cdot g \in R([a,b])$, 则 () i. $f \in R([a,b])$,

ii.
$$f \in C([a, b])$$
,

iii. f可微,

iv. f可导.

(b) 设 $f \in C((a,b))$. 若存在

$$\lim_{x \to a+} f(x) = 1, \quad \lim_{x \to b-} f(x) = 2,$$

则 ()

- i. f(x)在[a,b]一致连续,
- ii. f(x)在[a,b]连续,
- iii. f(x)在(a,b)一致连续,
- iv. f(x)在(a,b)可微.
- (c) 若反常(广义)积分 $\int_0^1 f(x)dx$, $\int_0^1 g(x)dx$ 都存在, 则反常积分

$$\int_0^1 f(x)g(x)dx$$

()

- i. 收敛,
- ii. 发散,
- iii. 不一定收敛,
 - iv. 一定不收敛.

(d) 若
$$\lim_{n\to+\infty} na_n = 1$$
, 则 $\sum_{n=1}^{+\infty} a_n$ ()

- i. 发散,
- ii. 收敛,
- iii. 不一定收敛,
 - iv. 绝对收敛.
- (e) 设f(x,y)在区域 $\{(x,y): x^2 + y^2 < 1\}$ 上有定义, 若存在偏导数

$$f'_x(0,0) = 0 = f'_y(0,0).$$

则
$$f(x,y)$$
 ()

- i. 在点(0,0)处连续,
- ii. 在点(0,0)处可微,
- iii. 在点(0,0)处不一定连续,

1.5. 1999年 11

iv. 在点(0,0)处不可微.

2. 计算下列极限(写出演算过程)

(a)
$$\lim_{n \to \infty} \sqrt[n]{1 + a^n}$$
 $(a > 0)$;

(b)
$$\lim_{x\to 0} \left(\frac{1}{x^2} - \frac{\cot x}{x}\right);$$

(c)
$$\lim_{x\to 0+} \sum_{n=1}^{\infty} \frac{1}{2^n n^x}$$
.

3. 求下列积分值.

(a)
$$\iint_{S} x^{3} dy dz + x^{2} y dz dx + x^{2} z dx dy$$
 $S: z = 0, z = b, x^{2} + y^{2} = a^{2}$:

(b)
$$\int_C \frac{1}{y} dx + \frac{1}{x} dy$$
 $C: y = 1, x = 4, y = \sqrt{x}$ 逆时针一周.

4. 解答下列问题

(a) 求幂级数
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n!} (\frac{n}{e})^n x^n$$
的收敛半径.

(b) 求级数
$$\sum_{n=0}^{\infty} \frac{2^n(n+1)}{n!}$$
的和.

5. 试证明下列命题:

(a) 反常积分
$$\int_0^{+\infty} \frac{\sin x^2}{1+x^p} dx (p \ge 0)$$
 是收敛的.

(b) 设f(x,y)在 $G = \{(x,y): x^2 + y^2 < 1\}$ 上有定义. 若f(x,0)在x = 0处连续,且 $f'_y(x,y)$ 在G上有界,则f(x,y)在(0,0)处连续.

1.5 1999年

1.5.1 解析几何与高等代数

1. 在仿射坐标系中,已知直线 l_1, l_2 的方程分别是

$$\frac{x+13}{2} = \frac{y-5}{3} = \frac{z}{1}, \quad \frac{x-10}{5} = \frac{y+7}{4} = \frac{z}{1}.$$

- 12
- (a) 判断直线 l_1 与 l_2 的位置关系s, 要求写出理由;
- (b) 设直线l的一个方向向量为 $\vec{v}(8,7,1)$, 并且l与 l_1 和 l_2 都相交, 求直线l的方程.
- 2. 在直角坐标系Oxyz中,设顶点在原点的二次锥面S的方程为

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz = 0$$

- (a) 如果三条坐标轴都是S的母线, 求 a_{11}, a_{22}, a_{33} ;
- (b) 证明: 如果S有三条互相垂直的直母线,则

$$a_{11} + a_{22} + a_{33} = 0.$$

3. 设实数域上的矩阵A为

$$A = \begin{pmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ -3 & 0 & 0 \end{pmatrix}$$

- (a) 求A的特征多项式 $f(\lambda)$;
- (b) $f(\lambda)$ 是否为实数域上的不可约多项式;
- (c) 求A的最小多项式,要求写出理由;
- (d) 实数域上的矩阵A是否可对角化,要求写出理由.
- 4. 设实数域上的矩阵 A为

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 6 & -2 \\ 1 & -2 & 2 \end{pmatrix}$$

- (a) 判断A是否为正定矩阵, 要求写出理由;
- (b) 设V是实数域上的3维线性空间,V上的一个双线性函数 $f(\alpha,\beta)$ 在V的一个基 $\alpha_1,\alpha_2,\alpha_3$ 下的度量矩阵为A. 证明 $f(\alpha,\beta)$ 是V的一个内积;并且求出V对于这个内积所成的欧氏空间的一个标准正交基.
- 5. 设V是数域K上的一个n维线性空间, $\alpha_1, \alpha_2, \cdots, \alpha_n$ 是V的一个基,用 V_1 表示由 $\alpha_1 + \alpha_2 + \cdots + \alpha_n$ 生成的线性子空间;令

$$V_2 = \{ \sum_{i=1}^n k_i \alpha_i | \sum_{i=1}^n k_i = 0, k_i \in K \}.$$

1.5. 1999年 13

- (a) 证明 V_2 是V的子空间;
- (b) 证明 $V = V_1 \oplus V_2$;
- (c) 设V上的一个线性变换A在基 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 下的矩阵A是置换矩阵(即,A的每一行与每一列都只有一个元素是1,其余元素全为0),证明 V_1 与 V_2 都是A的不变子空间.
- 6. 设V和U分别是数域K上的n维, m维线性空间, A是V到U的一个线性映射, 即A是V到U的映射, 且满足

$$A(\alpha + \beta) = A\alpha + A\beta, \quad \forall \alpha, \beta \in V,$$

 $A(k\alpha) = kA\alpha, \quad \forall \alpha \in V, k \in K,$

令

$$\operatorname{Ker} A := \{ \alpha \in V | A\alpha = 0 \},\$$

称 $Ker A \neq A$ 的核、它是V的一个子空间、用Im A表示A的象(即值域).

- (a) 证明: $\dim(\operatorname{Ker} A) + \dim(\operatorname{Im} A) = \dim V$;
- (b) 证明: 如果 $\dim V = \dim U$, 则A是单射当且仅当A是满射.
- 7. 设V是实数域R上的n维线性空间. V上的所有复值函数组成集合,对于函数的加法以及复数与函数的数量乘法,形成复数域C上的一个线性空间,记作 C^V .

证明: 如果 f_1, f_2, \dots, f_{n+1} 是 C^V 中n+1个不同的函数,并且它们满足

$$f_i(\alpha + \beta) = f_i(\alpha) + f_i(\beta), \quad \alpha, \beta \in V,$$

 $f_i(k\alpha) = kf_i(\alpha), \quad \forall k \in R, \alpha \in V.$

则 $f_1, f_2, \cdots, f_{n+1}$ 是 C^V 中的线性相关的向量组.

1.5.2 数学分析

- 1. 判断下列命题的真伪:
 - (a) 设 $\{a_n\}$ 是一个数列. 若在任一子列 $\{a_{n_k}\}$ 中均存在收敛子列 $\{a_{n_{k_i}}\}$,则 $\{a_n\}$ 必为收敛列.
 - (b) 设 $f \in C((a,b))$. 若存在

$$\lim_{x \to a^{+}} f(x) = A < 0, \quad \lim_{x \to b^{-}} f(x) = B > 0,$$

则必存在 $\xi \in (a,b)$,使得 $f(\xi) = 0$.

- 14
- (c) 设f(x)在[a,b]上有界. 若对任意的 $\delta > 0$, f(x)在 $[a+\delta,b]$ 上可积. 则f(x)在[a,b]上可积.
- (d) 设f(x), g(x)在[0,1]上的瑕积分均存在,则乘积 $f(x)\cdot g(x)$ 在[0,1]上的瑕积分必存在.
- (e) 设级数 $\sum_{n=1}^{\infty} b_n$ 收敛,若有 $a_n \leq b_n$, $(n=1,2,\cdots)$,则级数 $\sum_{n=1}^{\infty} a_n$ 必收敛.
- 2. 求下列极限(写出计算过程).

(a)
$$\lim_{x\to 0} \frac{a \tan x + b(1-\cos x)}{\alpha \log(1-x) + \beta(1-e^{-x^2})}, \quad (a^2 + \alpha^2 \neq 0);$$

(b)
$$\lim_{n \to \infty} \left(\frac{\sin \frac{\pi}{n}}{n+1} + \frac{\sin \frac{2\pi}{n}}{n+\frac{1}{2}} + \dots + \frac{\sin \pi}{n+\frac{1}{n}} \right);$$

(c)
$$\lim_{n\to\infty} \int_0^1 (1-x^2)^n dx$$
;

(d)
$$\lim_{n \to \infty} \sqrt[n]{1 + a^n}$$
, $(a > 0)$.

- 3. 求解下列命题.
 - (a) 求级数 $\sum_{n=0}^{\infty} \frac{n}{3^n} 2^n$ 之和;
 - (b) 设 $f \in C([0,1])$, 且在(0,1)上可微,若有 $8 \int_{7/8}^{1} f(x) dx = f(0)$, 证明:存在 $\xi \in (0,1)$,使得 $f'(\xi) = 0$.
 - (c) 证明: 级数 $\sum_{n=1}^{\infty} (-1)^n \frac{\arctan n}{\sqrt{n}}$ 收敛.
 - (d) 证明: 积分 $\int_0^{+\infty} xe^{-xy} dy$ 在 $(0,+\infty)$ 上不一致收敛.
 - (e) 设u = f(x, y, z), $g(x^2, e^y, z) = 0$, $y = \sin x$, 且已知f与g都有一阶连续偏导数, $\frac{\partial g}{\partial z} \neq 0$. 求 $\frac{\partial u}{\partial x}$.
 - (f) 设f(x)在[-1,1]上二次连续可微,且有

$$\lim_{x \to 0} \frac{f(x)}{x} = 0,$$

证明: 级数 $\sum_{n=1}^{\infty} f(\frac{1}{n})$ 绝对收敛.

1.6. 2000年 15

1.6 2000年

1.6.1 解析几何与高等代数

1. (a) 在直角坐标系中,一个柱面的准线方程为

$$\begin{cases} xy = 4, \\ z = 0, \end{cases}$$

母线方向为(1,-1,1), 求这个柱面的方程.

(b) 在平面直角坐标系Oxy中, 二次曲线的方程为

$$x^2 - 3xy + y^2 + 10x - 10y + 21 = 0,$$

求 I_1, I_2, I_3 ; 指出这是什么二次曲线, 并且确定其形状.

2. (a) 设实数域上的矩阵

$$A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix},$$

求正交矩阵T,使得 $T^{-1}AT$ 为对角矩阵,并且写出这个对角矩阵.

(b) 在直角坐标系Oxyz中,二次曲面S的方程为

$$2x^2 + 6y^2 + 2z^2 + 8xz = 1,$$

作直角坐标变换,把S的方程化成标准方程.并且指出它是什么二次曲面.

- 3. 设实数域上的 $s \times n$ 矩阵A的元素只有0和1,并且A的每一行元素的和 是常数r,A的每两个行向量的内积为常数m,其中m < r.
 - (a) 求|AA'|;
 - (b) 证明 $s \leq n$;
 - (c) 证明AA'的特征值全为正实数.
- 4. 设V是数域K上的n维线性空间,A是V上的线性变换,且满足 A^3 7A = -6I,其中I表示V上的恒等变换。 判断A是否可对角化,写出理由.

5. 设V和V'都是数域K上的有限维线性空间,A是V到V'的一个线性映射,证明:存在直和分解

$$V = U \oplus W, \quad V' = M \oplus N,$$

使得Ker A = U,并且 $W \cong M$.

- 6. 设f(x)和p(x)都是首项系数为1的整系数多项式,且p(x)在有理数域Q上不可约. 如果p(x)与f(x)有公共复根 α , 证明:
 - (a) 在Q[x]中, p(x)整除f(x);
 - (b) 存在首项系数为1的整系数多项式g(x), 使得

$$f(x) = p(x)g(x).$$

7. (a) 设V是实数域上的线性空间,f是V上的正定的对称双线性函数,U是V的有限维子空间,证明

$$V = U \oplus U^{\perp}$$
,

其中 $U^{\perp} = \{ \alpha \in V | f(\alpha, \beta) = 0, \forall \beta \in U \}.$

(b) 设V是数域K上的n维线性空间,g是V上的非退化的对称双线性函数,W是V的子空间,令

$$W^{\perp} = \{ \alpha \in V | g(\alpha, \beta) = 0, \forall \beta \in W \}.$$

证明:

i. $\dim V = \dim W + \dim W^{\perp}$;

ii.
$$(W^{\perp})^{\perp} = W$$
.

1.6.2 数学分析

- 1. 计算:
 - (a) 求极限

$$\lim_{x \to 0} \frac{(a+x)^x - a^x}{x^2}, \quad a > 0.$$

- (b) 求 e^{2x-x^2} 到含 x^3 项的Taylor展开式.
- (c) 求积分

$$\int_0^1 \frac{x^b - x^a}{\ln x} dx,$$

其中a > b > 0.

1.7. 2001年 17

(d) 求积分

$$\iiint\limits_V (x^2 + y^2 + z^2)^{\alpha} dx dy dz.$$

V是实心球 $x^2 + y^2 + z^2 \le R^2$, $\alpha > 0$.

(e) 求积分

$$\iint\limits_{S} x^3 dy dz + y^3 dx dz + z^3 dx dy,$$

S是 $x^2 + y^2 + z^2 = a^2$ 的外表面.

- 2. 叙述定义
 - (a) $\lim_{x \to -\infty} f(x) = +\infty$;
 - (b) 当 $x \to a 0$ 时, f(x)不以A为极限.
- 3. 函数f(x)在[a,b]上一致连续,又在[b,c]上一致连续,a < b < c,用定义证明f(x)在[a,c]上一致连续.
- 4. 构造一个二元函数f(x,y),使得它在原点(0,0)两个偏导数都存在,但在原点不可微.
- 5. 函数f(x)在[a,b]连续,证明不等式

$$\left[\int_{a}^{b} f(x)dx\right]^{2} \leqslant (b-a)\int_{a}^{b} f^{2}(x)dx.$$

6. (a) 在区间 $(0,2\pi)$ 内展开f(x)的Fourier级数:

$$f(x) = \frac{\pi - x}{2};$$

(b) 证明它的Fourier级数在 $(0,2\pi)$ 内每一点上收敛于f(x).

1.7 2001年

1.7.1 解析几何与高等代数

1. 在空间直角坐标系中, 点 A, B, C的坐标依次为:

$$(-2,1,4), (-2,-3,-4), (-1,3,3)$$

- (a) 求四面体OABC的体积;
- (b) 求三角形ABC的面积.
- 2. 在空间直角坐标系中,

$$l_1: \frac{x-a}{1} = \frac{y}{-2} = \frac{z}{3}$$

与

$$l_2: \frac{x}{2} = \frac{y-1}{1} = \frac{z}{-2}$$

是一对相交直线.

- (a) 求a.
- (b) 求 l_2 绕 l_1 旋转出的曲面的方程.
- 3. 设 ω 是复数域C上的本原n次单位根 (即 $\omega^n = 1$, 而当0 < l < n时, $\omega^l \neq 1$), s,b都是正整数, 而且s < n, 令

$$A = \begin{pmatrix} 1 & \omega^b & \omega^{2b} & \cdots & \omega^{(n-1)b} \\ 1 & \omega^{b+1} & \omega^{2(b+1)} & \cdots & \omega^{(n-1)(b+1)} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 1 & \omega^{b+s-1} & \omega^{2(b+s-1)} & \cdots & \omega^{(n-1)(b+s-1)} \end{pmatrix}$$

任取 $\beta \in C^s$,判断线性方程组 $AX = \beta$ 有无解? 有多少解? 写出理由.

4. (a) 设

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & 3 & -1 \end{pmatrix}$$

- i. 若把A看成有理数域上的矩阵, 判断A是否可对角化, 写出理由:
- ii. 若把A看成复数域上的矩阵, 判断A是否可对角化, 写出理由.
- (b) 设A是有理数域上的n级对称矩阵,并且在有理数域上A合同于单位矩阵I. 用 δ 表示元素全为1的列向量,b是有理数. 证明:在有理数域上

$$\begin{pmatrix} A & b\delta \\ b\delta' & b \end{pmatrix} \simeq \begin{pmatrix} I & 0 \\ 0 & b - b^2 \delta' A^{-1} \delta \end{pmatrix}$$

1.7. 2001年 19

5. 在实数域上的n维列向量空间 R^n 中,定义内积为 $(\alpha,\beta)=\alpha'\beta$,从而 R^n 成为欧几里得空间.

(a) 设实数域上的矩阵

$$A = \begin{pmatrix} 1 & -3 & 5 & -2 \\ -2 & 1 & -3 & 1 \\ -1 & -7 & 9 & -4 \end{pmatrix}$$

求齐次线性方程组AX = 0的解空间的一个正交基.

- (b) 设A是实数域R上的 $s \times n$ 矩阵,用W表示齐次线性方程组AX = 0的解空间,用U表示A'的列空间(即A'的列向量组生成的子空间).证明: $U = W^{\perp}$.
- 6. 设A是数域K上n维线性空间V上的一个线性变换. 在K[x]中, $f(x) = f_1(x)f_2(x)$,且 $f_1(x)$ 与 $f_2(x)$ 互素,用Ker A表示线性变换A的核. 证明:

$$\operatorname{Ker} f(A) = \operatorname{Ker} f_1(A) \oplus \operatorname{Ker} f_2(A).$$

7. 设A是数域K上n维线性空间V上的一个线性变换,I是恒等变换. 证明: $A^2 = A$ 的充分必要条件是

$$\operatorname{rank}(A) + \operatorname{rank}(A - I) = n.$$

1.7.2 数学分析

1. 求极限

$$\lim_{n\to\infty} \frac{a^{2n}}{1+a^{2n}}.$$

2. 设f(x)在点a可导, $f(a) \neq 0$. 求极限

$$\lim_{n\to\infty} \Big(\frac{f(a+\frac{1}{n})}{f(a)}\Big)^n.$$

- 3. 证明函数 $f(x) = \sqrt{x} \ln x$ 在 $[1, +\infty]$ 上一致连续.
- 4. 设D是包含原点的平面凸区域,f(x,y)在D上可微,

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 0.$$

证明: f(x,y)在D上恒为常数.

5. 计算第一型曲面积分

$$\iint\limits_{\Sigma}xdS,$$

其中 Σ 是锥面 $z = \sqrt{x^2 + y^2}$ 被柱面 $x^2 + y^2 = ax(a > 0)$ 割下的部分.

6. 求极限

$$\lim_{t\to 0+} \frac{1}{t^4} \iiint_{x^2+y^2+z^2\leqslant t^2} f(\sqrt{x^2+y^2+z^2}) dx dy dz,$$

其中f在[0,1]上连续, f(0) = 0, f'(0) = 1.

7. 求常数λ, 使得曲线积分

$$\int_{L} \frac{x}{y} r^{\lambda} dx - \frac{x^2}{y^2} r^{\lambda} dy = 0 \qquad (r = \sqrt{x^2 + y^2})$$

对上半平面的任何光滑闭曲线L成立.

- 8. 证明函数 $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^x} \text{在}(1, \infty)$ 上无穷次可微.
- 9. 求广义积分

$$\int_0^\infty \frac{\arctan bx^2 - \arctan ax^2}{x} dx, \quad b > a > 0.$$

10. 设f(x)是以 2π 为周期的周期函数,且f(x)=x, $-\pi \leqslant x < \pi$. 求f(x)与|f(x)|的Fourier级数。它们的Fourier级数是否一致收敛(给出证明)?

1.8 2002年

1.8.1 解析几何与高等代数

1. 在空间直角坐标系中,直线l₁和l₂分别有方程

$$\begin{cases} x+y+z-1 = 0 \\ x+y+2z+1 = 0 \end{cases} \begin{cases} 3x+y+z = 0 \\ x+3z+2 = 0 \end{cases}$$

- (a) 求过 l_1 平行于 l_2 的平面的方程;
- (b) 求 l_1 和 l_2 的距离;

1.8. 2002年

- (c) 求 l_1 和 l_2 的公垂线的方程.
- 2. 在空间直角坐标系中, 求直线

$$\begin{cases} x = 3x + 2 \\ y = 2y - 1 \end{cases}$$

21

绕z轴旋转所得旋转曲面的方程.

3. 用正交变换化下面二次型为标准形

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - 4x_1x_2 - 4x_1x_3 - 4x_2x_3.$$

(要求写出正交变换的矩阵和相应的标准形)

4. 对于任意非负整数n, 令 $f_n(x) = x^{n+2} - (x+1)^{2n+1}$, 证明:

$$(x^2 + x + 1, f_n(x)) = 1.$$

5. 设正整数 $n \ge 2$,用 $M_n(K)$ 表示数域K上全体 $n \times n$ 矩阵关于矩阵加法和数乘所构成的K上的线性空间. 在 $M_n(K)$ 中定义变换 σ 如下:

$$\sigma((a_{ij})_{n\times n}) = (a'_{ij})_{n\times n}, \quad \forall (a_{ij})_{n\times n} \in M_n(K),$$

其中

$$a'_{ij} = \begin{cases} a_{ij}, & i \neq j; \\ i \cdot \operatorname{tr}(A), & i = j. \end{cases}$$

- (a) 证明 σ 是 $M_n(K)$ 上的线性变换.
- (b) 求出 $\ker \sigma$ 的维数与一组基.
- (c) 求出 σ 的全部特征子空间.
- 6. 用R表示实数域, 定义 R^n 到R的映射f如下

$$f(X) = |x_1| + \dots + |x_r| - |x_{r+1}| - \dots - |x_{r+s}|, \quad \forall X = (x_1, x_2, \dots, x_n)^T \in \mathbb{R}^n,$$

其中 $r \ge s \ge 0$. 证明:

- (a) 存在 R^n 的一个n-r维子空间W, 使得f(X)=0, $\forall X \in W$;
- (b) $\overline{H}W_1, W_2$ 是 R^n 的两个n-r维子空间,且满足

$$f(X) = 0, \quad \forall X \in W_1 \cup W_2,$$

则一定有 $\dim(W_1 \cap W_2) \ge n - (r + s)$.

- 7. 设V是数域K上的n维线性空间, $V_1, \dots V_n$ 是V的s个真子空间,证明:
 - (a) 存在 $\alpha \in V$,使得 $\alpha \notin V_1 \cup V_2 \cup \cdots \cup V_n$;
 - (b) 存在V中的一组基 $\epsilon_1, \dots, \epsilon_n$, 使得

$$\{\epsilon_1, \cdots, \epsilon_n\} \cap (V_1 \cup V_2 \cup \cdots \cup V_s) = \emptyset.$$

1.8.2 数学分析

- 1. 求极限: $\lim_{x\to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{1-\cos x}}.$
- 2. 设 $\alpha \ge 0$, $x_1 = \sqrt{2 + \alpha}$, $x_{n+1} = \sqrt{2 + x_n}$, $n = 1, 2, \cdots$, 证明极限 $\lim_{n \to \infty} x_n$ 存在,并求极限值.
- 3. 设f(x)在 $[a, a + 2\alpha]$ 上连续,证明存在 $x \in [a, a + \alpha]$,使得 $f(x + \alpha) f(x) = \frac{1}{2}(f(a + 2\alpha) f(a))$.
- 4. 设 $f(x) = x\sqrt{1-x^2} + \arcsin x$, 求f'(x).
- 5. 设u(x,y)有二阶连续偏导数,证明u满足偏微分方程 $\frac{\partial^2 u}{\partial x^2} 2\frac{\partial^2 u}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} = 0$ 当且仅当: 存在二阶连续可微函数 $\varphi(t), \psi(t)$,使得 $u(x,y) = x\varphi(x+y) + y\psi(x+y)$.
- 6. 计算三重积分 $\iint_{\Omega} x^2 \sqrt{x^2 + y^2} dx dy dz$,其中 Ω 是曲面 $z = \sqrt{x^2 + y^2}$ 与 $z = x^2 + y^2$ 围成的有界区域.
- 7. 计算第二型曲面积分 $I=\iint_{\Sigma}x^2dydz+y^2dzdx+z^2dxdy$,其中 Σ 是球面 $x^2+y^2+z^2=az(a>0)$ 的外侧.
- 8. 判断级数 $\sum_{n=1}^{\infty} \ln \cos \frac{1}{n}$ 的收敛性并给出证明.
- 9. 证明: (1) 函数项级数 $\sum_{n=1}^{\infty} nxe^{-nx}$ 在区间 $(0,\infty)$ 上不一致收敛; (2) 函数项级数 $\sum_{n=1}^{\infty} nxe^{-nx}$ 在区间 $(0,\infty)$ 上可逐项求导.
- 10. 设f(x)连续, $g(x) = \int_0^x y f(x-y) dy$, 求g''(x).

1.9. 2005年 23

1.9 2005年

1.9.1 解析几何与高等代数

- 1. 在直角坐标系中,求直线 $l: \begin{cases} 2x+y-z=0 \\ x+y+2z=1 \end{cases}$ 到平面 $\pi: 3x+By+z=0$ 0的正交投影轨迹的方程.
- 2. 在直角坐标系中对于参数 λ 的不同取值,判断下面平面二次曲线的形状: $x^2 + y^2 + 2\lambda xy + \lambda = 0$. 对于中心型曲线,写出对称中心的坐标;

对于线心型曲线, 写出对称直线的方程.

- 3. 设数域K上的n阶矩阵A的(i, j)元为 $a_i b_i$.
 - (a) 求|A|;
 - (b) 当 $n \ge 2$ 时, $a_1 \ne a_2, b_1 \ne b_2$,求齐次线性方程组AX = 0的解空间的维数和一个基.
- 4. (a) 设数域 $K \perp n$ 阶矩阵,对任意正整数m,求 C^m .
 - (b) 用 $M_n(K)$ 表示数域K上所有n级矩阵组成的集合,它对于矩阵的加法和数量乘法成为K上的线性空间. 数域K上n级矩阵A=

$$\begin{bmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ \cdots & \cdots & \cdots & \ddots & \cdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{bmatrix}$$
称为循环矩阵。用 U 表示 K 上所有 n 级

循环矩阵组成的集合.

证明 $U \not\in M_n(K)$ 的一个子空间,并求U的一个基和维数.

- 5. (a) 设实数域R上n级矩阵H的(i,j)元为 $\frac{1}{i+j-1}(n>1)$. 在实数域上n维线性空间 R^n 中,对于 $\alpha, \beta \in R^n$,令 $f(\alpha, \beta) = \alpha^T H \beta$. 试问: f是不是 R^n 上的一个内积,写出理由.
 - (b) 设A是n级正定矩阵 $(n > 1), \alpha \in R^n$. 且 α 是非零向量. 令 $B = A\alpha\alpha'$,求B的最大特征值以及B的属于这个特征值的特征子空间的维数和一个基.
- 6. 设A是数域R上n维线性空间V上的一个线性变换,用I表示V上的恒等变换,证明: $A^3 = I \Leftrightarrow \text{rank}(I A) + \text{rank}(I + A + A^2) = n$.

1.9.2 数学分析

- 1. 设 $f(x) = \frac{x^2 \sin x 1}{x^2 \sin x} \sin x$, 试求 $\lim_{x \to +\infty} \sup f(x)$ 和 $\lim_{x \to +\infty} \inf f(x)$.
- 2. 证明下列各题:
 - (a) 设f(x)在开区间可微,且f'(x)在(a,b)有界,证明f(x)在(a,b)一 致连续.
 - (b) 设f(x)在开区间(a,b)($-\infty < a < b < +\infty$)可微且一致连续,试问f'(x)在(a,b)是否一定有界. (若肯定回答,请证明;若否定回答,举例说明)
- - (a) 求f(x)的麦克劳林展开式.
 - (b) $\Re f^{(n)}(0)$. $(n = 1, 2, 3, \dots)$
- 4. 试作出定义在 R^2 中的一个函数f(x,y),使得它在原点处同时满足以下三个条件:
 - (a) f(x,y)的两个偏导数都存在;
 - (b) 任何方向导数都存在;
 - (c) 原点不连续.
- 5. 计算 $\int_{L} x^{2}ds$, 其中L是球面 $x^{2} + y^{2} + z^{2} = 1$ 与平面x + y + z = 0的交线.
- 6. 设函数列 $\{f_n(x)\}$ 满足下列条件:
 - (a) $\forall n, f_n(x)$ 在[a, b]连续且有 $f_n(x) \leq f_{n+1}(x) (x \in [a, b])$,
 - (b) $\{f_n(x)\}$ 点点收敛于[a,b]上的连续函数s(x),

证明: $\{f_n(x)\}$ 在[a,b]上一致收敛于s(x).

1.10 2006年

1.10.1 解析几何与高等代数

1. (a) 设A, B分别是数域K上 $s \times n$, $s \times m$ 矩阵,叙述矩阵方程AX = B有解的充要条件。并且给予证明。

1.10. 2006年 25

(b) 设A是数域K上 $s \times n$ 列满秩矩阵, 试问: 方程 $XA = E_n$ 是否有解? 有解, 写出它的解集; 无解, 说明理由.

- (c) 设A是数域K上 $s \times n$ 列满秩矩阵,试问: 对于数域K上任意 $s \times m$ 矩阵B,矩阵方程AX = B是否一定有解? 当有解时,它有多少个解? 求出它的解集;要求说明理由.
- 2. (a)设A, B分别是数域K上的 $s \times n, n \times s$ 矩阵,证明:

$$rank(A - ABA) = rank(A) + rank(E_n - BA) - n.$$

- (b) 设A, B分别是实数域上n阶矩阵. 证明: 矩阵A与矩阵B的相似 关系不随数域扩大而改变.
- 3. (a) 设A是数域K上的n阶矩阵,证明:如果矩阵A的各阶顺序主子式都不为0,那么A可以分唯一的分解成A = BC,其中B是主对角元都为1的下三角矩阵,C是上三角阵.
 - (b) 设A是数域K上n阶可逆矩阵,试问: A是否可以分解成A = BC,其中B是主对角元都为1的下三角矩阵,C是上三角阵? 说明理由.
- 4. (a) 设A是实数域R上的n阶对称矩阵,它的特征多项式 $f(\lambda)$ 的所有不同的复根为实数 $\lambda_1, \lambda_2, \cdots, \lambda_s$, 把A的最小多项式 $m(\lambda)$ 分解成R上不可约多项式的乘积. 说明理由.
 - (b) 设A是n阶实对称矩阵,令 $A(\alpha) = A\alpha$, $\forall \alpha \in R^n$,根据第(1)问中 $m(\lambda)$ 的因式分解,把 R^n 分解成线性变换A的不变子空间的直和. 说明理由.
- 5. 设 $X = \{1, 2, \dots, n\}$,用 C^X 表示定义域为X的所有复值函数组成的集合,它对于函数的加法和数量乘法成为复数域C上的一个线性空间.

对于
$$f(x), g(x) \in C^X$$
,规定 $f(x), g(x) \le \sum_{j=1}^n f(j)g(j)$,

这个二元函数是复线性空间 C^X 上的一个内积,从而 C^X 成为一个酉空间。

设
$$p_1(x), p_2(x), \dots, p_n(x) \in C^X$$
,且满足 $p_k(j) = \frac{1}{\sqrt{n}} \omega^{kj}, \forall j \in X$,其中 $\omega = e^{\frac{2\pi}{n}i}$.

- (a) 求复线性空间 C^X 的维数;
- (b) 证明: $p_1(x), p_2(x), \dots, p_n(x)$ 是酉空间的一个标准正交基;

- (c) $\phi \sigma(f(x)) = \hat{f}(x), \forall f(x) \in C^X$, 其中 $\hat{f}(x)$ 在x = k处的函数 值 $\hat{f}(k)$ 是f(x)在标准正交基 $p_1(x), p_2(x), \cdots, p_n(x)$ 下的坐标的第k个分量. 证明: σ 是酉空间 C^X 上的一个线性变换,并且求 σ 在标准 正交基 $p_1(x), p_2(x), \cdots, p_n(x)$ 下的矩阵;
- (d) 证明第(3)题中的 σ 是酉空间 C^X 上的一个酉变换.
- 6. 设V是域K上的n维线性空间, A_1, A_2, \cdots, A_s 为V上的线性变换,令 $A = A_1 + A_2 + \cdots + A_s$,求证:A为幂等变换且 $rank(A) = rank(A_1) + \cdots + rank(A_s)$ 的充要条件是: A_i 均为幂等变换,且 $A_i A_j = 0, i \neq j$.
- 7. 求一个过x轴的平面 π ,使得其与单叶双曲面 $\frac{x^2}{4} + y^2 z^2 = 1$ 的交线为一个圆.
- 8. 证明四面体的每一个顶点到对面重心的线段共点,且这点到顶点的距离是它到对面重心距离的3倍.
- 9. 一条直线与坐标平面yoz面, xoz面, xoy面的交点分别是A,B,C,当 直线变动时,直线上的三个定点A,B,C也分别在坐标平面上变动. 此外,直线上有第四点P,点P到三点的距离分别是a,b,c,求该直线 按照保持点A,B,C分别在坐标平面上的规则移动时,点P的轨迹.
- 10. 在一个仿射坐标系中,已知直线 l_1 的方程为 $\begin{cases} x-y+z+7=0\\ 2x-y-6=0 \end{cases}$, l_2 经过点M(-1,1,2),平行于向量 $\boldsymbol{u}(1,2,-3)$. 判别这两条直线的位置关系,并说明理由.

1.10.2 数学分析

- 1. 确界存在原理是关于实数域完备性的一种描述,试给出一个描述实数域完备性的其他定理,并证明其与确界存在原理的等价性.
- 2. 设函数 $f(x,y) = x^3 + 3xy y^2 6x + 2y + 1$, 求f(x,y)在(-2,2)处二 阶二阶带Peano余项的Taloy展开; 问f(x,y)在 R^2 上有哪些关于极值的判别点, 这些点是否为极值点, 说明理由.
- 3. $\c GF(x,y) = x^2y^3 + |x|y + y 5,$
 - (a) 证明方程F(x,y) = 0在 $(-\infty, +\infty)$ 上确定唯一的隐函数y = f(x);
 - (b) 求f(x)的极值点.

1.11. 2007年 27

4. 计算第二型曲面积分 $\iint_{\Sigma} x^2 dy dz + y^2 dz dx + z^2 dx dy$, 其中曲面Σ是椭 球面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 外侧.

- 5. 证明广义积分 $\int_0^{+\infty} \frac{\sin x}{x} dx$ 收敛, 并计算此积分.
- 6. 设f(x,y)是定义在 $D = (a,b) \times [c,d]$ 上,x固定时,对y连续;设 $x_0 \in (a,b)$ 取定,对于任意 $y \in [a,b]$,极限 $\lim_{x \to x_0} f(x,y) = g(y)$ 收敛。证明:重极限 $\lim_{x \to x_0} f(x,y) = g(y_0)$ 对任意 $y_0 \in [c,d]$ 成立的充分必要条件是,极限 $\lim_{x \to x_0} f(x,y) = g(y)$ 在[c,d]上一致连续。
- 7. 若函数f(x)在区间[a,b]上有界,给出并证明f(x)在[a,b]上Riemann和的极限 $\lim_{\lambda(\Delta)\to 0}\sum_{i=1}^n f(\xi_i)(x_i-x_{i-1})$ 收敛的Cauchy准则.
- 8. 设 $\{f_n(x)\}$ 是 $(-\infty, +\infty)$ 上一连续函数列,满足存在常数M,使得对于任意 $f_n(x)$ 和 $x \in (-\infty, +\infty)$ 恒有 $|f_n(x)| \leq M$. 假定对 $(-\infty, +\infty)$ 中任意区间[a,b]都有 $\lim_{n\to\infty}\int_a^b f_n(x)dx=0$. 证明: 对任意区间 $[c,d] \subset (-\infty, +\infty)$ 以及[c,d]上绝对可积函数h(x),恒有 $\lim_{n\to\infty}\int_a^b f_n(x)h(x)dx=0$.
- 9. 设存在一区间[a,b]使得两个Fourier级数 $\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx + b_n \sin nx$, $\frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \alpha_n \cos nx + \beta_n \sin nx$ 都在[a,b]上收敛,并且其和函数在[a,b]上连续且相等,问对于任意自然数n, $a_n = \alpha_n, b_n = \beta_n$ 是否成立?如成立,请证明;如不成立,加上什么条件后能保证成立,说明理由.
- 10. 设f(x)在 $[0,+\infty)$ 上内闭Riemann可积,证明: 广义积分 $\int_0^{+\infty} f(x)dx$ 绝对可积的充分必要条件是: 对于任意满足 $x_0 = 0$, $x_n \to +\infty$ 的单调递增序列 $\{x_n\}$, 级数 $\sum_{n=0}^{\infty} \int_{x_n}^{x_{n+1}} f(x)dx$ 绝对收敛.

1.11 2007年

1.11.1 解析几何与高等代数

1. 回答下列问题:

- (a) 问何时存在n阶方阵A, B, 满足AB BA = E(单位矩阵)? 又,是否存在n维线性空间上的线性变换A, B, 满足AB BA = E(恒等变换)? 若是,举出例子;若否,给出证明.
- (b) 设n阶矩阵的各行元素之和为常数c, 则 A^3 的各行元素之和是否为常数? 若是,是多少? 说明理由.
- (c) 设 $m \times n$ 矩阵A的秩为r,任取A的r个线性无关的行向量,再取A的r个线性无关的列向量,组成的r阶子式是否一定不为0?若是,给出证明:若否,举出反例.
- (d) 设A, B都是 $m \times n$ 矩阵,线性方程组AX = 0与BX = 0同解,则A与B的列向量组是否等价?行向量组是否等价?若是,给出证明:若否,举出反例.
- (e) 把实数域R看成有理数域Q上的线性空间, $b = p^2q^2r$,这里的 $p,q,r \in Q$ 是互不相同的素数,判断向量组 $1,\sqrt[n]{b},\sqrt[n]{b^2},\cdots,\sqrt[n]{b^{n-1}}$ 是否线性相关? 说明理由.
- 2. 设n阶矩阵A, B可交换,证明: $rank(A + B) \le rank(A) + rank(B) rank(AB)$.
- 3. 设f为双线性函数,且对任意的 α , β , γ 都有 $f(\alpha, \beta)f(\gamma, \alpha) = f(\beta, \alpha)f(\alpha, \gamma)$. 求证: f为对称的或反对称的.
- 4. 设V是欧几里德空间,U是V的子空间, $\beta \in U$,求证: β 是 $\alpha \in V$ 在U上的正交投影的充分必要条件为: $\forall \gamma \in U$,都有 $|\alpha \beta| \leq |\alpha \gamma|$.
- 5. 设n阶复矩阵A满足: 对于任意正整数k,都有 $\mathrm{tr}(A^k)=0$. 求A的特征值.
- 6. 设n维线性空间V上的线性变换A的最小多项式与特征多项式相同. 求证: $\exists \alpha \in V$,使得 α , $A^2\alpha$, \cdots , $A^{n-1}\alpha$ 为V的一个基.
- 7. 设P是球内一定点,A, B, C是球面上三动点, $\angle APB = \angle BPC = \angle CPA = \frac{\pi}{2}$,以PA, PB, PC为棱作平行六面体,记与P相对的顶点为Q,求Q点的轨迹.

1.11. 2007年 29

8. 设直线L的方程为

$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0, \end{cases}$$

问系数满足什么条件时,直线L

- (a) 过原点:
- (b) 平行于x轴, 但不与x轴重合;
- (c) 与y轴相交;
- (d) 与z轴重合.
- 9. 证明双曲抛物面 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 2z$ 的相互垂直的直母线的交点在双曲线上.
- 10. 求椭球面 $\frac{x^2}{25} + \frac{y^2}{16} + \frac{z^2}{9} = 1$ 被点(2, 1, -1)平分的弦.

1.11.2 数学分析

- 1. 用有限覆盖定理证明连续函数的介值性定理.
- 2. f(x), g(x)在有界区间上一致连续,证明: f(x)g(x)在此区间上也一致连续.
- 3. 已知f(x)在[a,b]上有4阶导数,且有 $f^{(4)}(\beta) \neq 0, f'''(\beta) = 0, \beta \in (a,b)$,证明:存在 $x_1, x_2 \in (a,b)$,使得 $f(x_1) f(x_2) = f'(\beta)(x_1 x_2)$ 成立.
- 4. 构造一函数在 \mathbb{R} 上无穷次可微,且 $f^{(2n+1)}(0) = n$, $f^{(2n)}(0) = 0$, $n = 0, 1, \dots$,并说明满足条件的函数有任意多个.
- 5. 设 $D = [0,1] \times [0,1]$, f(x,y)是D上的连续函数,证明:满足 $\iint_D f(x,y) dx dy = f(\xi,\eta)$ 的点 (ξ,η) 有无穷多个.
- 6. 求 $\iint_{\Sigma} \sin^4 x dy dz + e^{-|y|} dz dx + z^2 dx dy$,其中 Σ 是 $x^2 + y^2 + z^2 = 1$,z > 0方向向上.
- 7. f(x,y)是 R^2 上的连续函数, 试作一无界区域D, 使f(x,y)在D上的广义积分收敛.
- 8. $f(x) = \ln(1 + \frac{\sin x}{x^p})$, 讨论不同p对f(x)在 $(1, +\infty)$ 上积分的敛散性.

- 9. 记 $F(x,y) = \sum_{n=1}^{+\infty} nye^{-n(x+y)}$,是否存在a > 0以及函数h(x)在(1-a,1+a)上可导,且h(1) = 0,使得F(x,h(x)) = 0.
- 10. 设f(x), g(x)在[a,b]上黎曼可积,证明: f(x), g(x)的傅立叶展开式有相同系数的充要条件是 $\int_a^b |f(x)-g(x)|dx=0$.

1.12 2008年

1.12.1 解析几何与高等代数

- 1. (a) 若 $A \to m$ 矩阵,非齐次线性方程组 $Ax = \beta$ 有解,且r(A) = r,则方程组 $Ax = \beta$ 的解向量中线性无关的最多有多少个? 并找出一组最多的线性无关的解向量.
 - (b) 若 $Ax = \beta$ 对所有m维非零向量 β 都有解,求r(A).
- 2. (a) 若A是 $s \times n$ 矩阵,B是 $n \times m$ 矩阵,r(AB) = r(B). 则对于所有 $m \times l$ 矩阵C是否有r(ABC) = r(BC)? 并给出理由.
 - (b) A是n阶实矩阵, A的每一元素的代数余子式都等于此元素, 求r(A).
- 3. (a) 设A, C分别为n, m阶实对称矩阵,B是 $n \times m$ 实矩阵, $\begin{pmatrix} A & B \\ B^T & C \end{pmatrix}$ 是 正定矩阵(实),证明: $\begin{vmatrix} A & B \\ B^T & C \end{vmatrix} \le |A| \cdot |C|$,等号当且仅当B = 0时成立.
 - (b) $\& A = (a_{ij})_{n \times n} \& B n$ $\implies |a_{ij}| \le 1, \ \, \text{xi} : \ \, |A|^2 \le n^n.$
- 4. 设f(x)为一整系数多项式,n不能整除 $f(0), f(1), \cdots, f(n-1)$,证明: f(x)无整数根.
- 5. A是数域K上的n阶矩阵,A的特征多项式的根都属于K,则A相似于上三角矩阵。
- 6. V是数域K上的线性空间,A, B是数域V上的线性变换,A, B的最小多项式互素,求满足:AC = CB的所有线性变换C.
- 7. A是n维欧氏空间V上的正交变换. 证明: A是第一类的当且仅当存在V上的正交变换B满足 $A = B^2$.

1.12. 2008年 31

- 8. 求过直线 $l: \begin{cases} x-y+z+4=0 \\ x+y-3z=0 \end{cases}$ 且与 $\pi_1: x+y+2z=0$ 垂直的平面 π_2 .
- 9. 平面Ax + By + Cz + D = 0与单叶双曲面 $x^2 + y^2 z^2 = 1$ 的交线是两条直线,证明: $A^2 + B^2 = C^2 + D^2$.
- 10. 直线 l_1 过点(1,1,1),与 l_2 : $\begin{cases} x+y+z=0\\ x-y-3z=0 \end{cases}$ 相交,交角为 $\frac{\pi}{3}$,求直线 l_1 方程.
- 11. 证明球面 $S_1: x^2 + y^2 + z^2 2x 2y 4z + 2 = 0$ 与球面 $S_2: x^2 + y^2 + z^2 + 2x 6y + 1 = 0$ 有交点,并求出交圆的圆心坐标.

1.12.2 数学分析

- 1. 证明有界闭区间上的连续函数一致连续.
- 2. 是否存在 $(-\infty, +\infty)$ 上的连续函数f(x),满足 $f(f(x)) = e^{-x}$? 证明你的结论.
- 3. 数列 $\{x_n\}$ $(n \ge 1)$, 满足 $\forall n < m, |x_n x_m| > \frac{1}{n}$, 求证 $\{x_n\}$ 无界.
- 4. f(x)是(-1,1)上的无穷次可导函数, $f(0) = 1, |f'(0)| \le 2$,令 $g(x) = \frac{f'(x)}{f(x)}, |g^{(n)}(0)| \le 2n!$,证明对所有正整数n, $|f^{(n)}(0)| \le (n+1)!$.
- 5. $\iint\limits_{\Sigma} (y-z)dydz + (z-x)dzdx + (x-y)dxdy,$
 - Σ : 球面 $x^2 + y^2 + z^2 = 2Rx$ 被圆柱面 $x^2 + y^2 = 2rx(- < r < R)$ 所截得的部分,定向取外侧.
- 6. 证明 $F(x,y) = 2 \sin x + y^3 e^{-y}$ 在全平面有唯一解y = y(x),且y(x)连续,可微.
- 7. f(x)在 $[0,+\infty)$ 上内闭Riemann可积,且 $\int_0^{+\infty} f(x)dx$ 收敛,求证 $\lim_{a\to 0^+} \int_0^{+\infty} e^{-ax} f(x)dx = \int_0^{+\infty} f(x)dx$.
- 8. f(x)是 $(-\infty, +\infty)$ 上的二阶连续可导函数,满足: 1) $\lim_{|x| \to +\infty} (f(x) |x|) = 0$; 2) $\exists x_0 \in (-\infty, +\infty)$,满足 $f(x_0) \leq 0$. 求证: f''(x)在 $(-\infty, +\infty)$ 上变号.

- 9. g(x)是周期为1的连续函数, $\int_0^1 g(x)dx = 0$, f(x)在[0,1]上有连续一阶导函数, f(0) = f(1), $a_n = \int_0^1 f(x)g(nx)dx$,求证 $\lim_{n \to +\infty} na_n = 0$.
- 10. f(x)在[0,1]上Riemann可积,且对[0,1]上任何有限个两两不交的闭区间 $[a_i,b_i]$, $1 \le i \le n$,都有 $|\sum_{i=1}^n \int_{a_i}^{b_i} f(x) dx| \le 1$,求证 $\int_0^1 |f(x)| dx \le 2$.

1.13 2009年

1.13.1 解析几何与高等代数

- 1. 一般说来一个向量组的极大线性无关部分组是不唯一的,那么什么向量组的极大线性无关部分组是唯一的?证明你的结论.
- 2. 设多项式f(x)的所有复根都是实数,证明:如果a是f(x)的导数f'(x)的 重根,则a也是f(x)的根.
- 3. 设S为n阶实对称矩阵, S_1, S_2 都是m阶实对称矩阵,证明: 若准对角矩阵 $\begin{pmatrix} S & \\ & S_1 \end{pmatrix}$ 与 $\begin{pmatrix} S & \\ & S_2 \end{pmatrix}$ 合同,则 S_1 与 S_2 合同.

4. 解方程组
$$\begin{cases} x+y+z=2\\ (x-y)^2+(y-z)^2+(z-x)^2=14.\\ x^2y^2z+x^2yz^2+xy^2z^2=2 \end{cases}$$

- 5. 设A为n阶实方阵且有 $AA' = A^2$, 证明: A是对称矩阵.
- 6. 设 $n \leq 2$, $M_n(K)$ 为K上所有n阶方阵所成集合, $M_n(K)$ 上的一个函数f即为映射 $f: M_n(K) \to K$, $M_n(K)$ 上的所有函数组成的集合记为F(K), 在F(K)中定义加法和数乘运算如下: 对任意 $f,g \in F(K)$, 对任意 $k \in K$ 和任意 $A \in M_n(K)$, (f+g)(A) = f(A) + g(A), (kf)(A) = kf(A), 则F(K)关于此运算成为数域K上的一个线性空间. 对于 $f \in F(K)$, f称为是列线性函数如果f对于矩阵的每一列都是线性的,即对 K^n 中任意列向量 $\beta_1, \beta_2, \cdots, \beta_n, \beta$, 任意 $1 \leq j \leq n$, 以及任意 $k \in K$, 都有 $f(\beta_1, \cdots, \beta_{j-1}, \beta_j + \beta, \beta_{j+1}, \cdots, \beta_n) = f(\beta_1, \cdots, \beta_{j-1}, \beta_j, \beta_{j+1}, \cdots, \beta_n) + f(\beta_1, \cdots, \beta_{j-1}, \beta, \beta_{j+1}, \cdots, \beta_n)$ 和 $f(\beta_1, \cdots, \beta_{j-1}, k\beta_j, kf(\beta_1, \cdots, \beta_{j-1}, \beta_j, \beta_{j+1}, \cdots, \beta_n)$,(其中的矩阵用它们的列向量组表示出),而f称为是反对称的若 $A \in M_n(K)$ 有两列向量相同时必有f(A) = 0. 用SP(K)表示F(K)中所有反对称列线性函数所成的集

1.13. 2009年 33

合,证明:SP(K)是F(K)的一个子空间,并求SP(K)的维数和一组基.

- 7. 设U为齐次线性方程组ABX=0的解空间,其中A为 $n\times m$ 矩阵,B为 $m\times p$ 矩阵,X为 $p\times 1$ 矩阵,证明:m维向量空间 K^m 中子集合 $W=\{Y=BX|X\in U\}$ 是子空间,它的维数等于 $\mathrm{rank}(B)-\mathrm{rank}(AB)$,并利用此结论证明对任意三个矩阵A,B,C有 $\mathrm{rank}(AB)+\mathrm{rank}(BC)$ $\leqslant \mathrm{rank}(B)+\mathrm{rank}(ABC)$.
- 8. 设R为实数域, $\alpha_1, \alpha_2, \cdots, \alpha_s$ 是n维欧氏空间 R^n 中的一线性无关向量组,其中 R^n 中的内积为标准内积 $(\alpha, \beta) = \alpha \cdot \beta'$,这里的向量 α 和 β 都看成是 $1 \times n$ 矩阵,用B表示(i,j)元为 (α_i, α_j) , $1 \leq i,j \leq s$,的 $s \times s$ 矩阵,对向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 施行施密特 (Schmidt) 正交化过程后得到向量组 $\beta_1, \beta_2, \cdots, \beta_s$,证明: $|B| = \prod_{i=1}^s \|\beta_i\|^2$,其中 $\|\beta_i\|$ 表示向量 β_i 的长度.
- 9. 请问直线 $l: \begin{cases} A_1x + B_1y + C_1z + D_1 = 0 \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$ 的系数满足什么条件时才具有以下性质?
 - (a) 经过原点;
 - (b) 与x轴平行但不重合;
 - (c) 和y轴相交;
 - (d) 与z轴垂直(不必相交).
- 10. 设平面Ax + By + Cz + D = 0与双曲抛物面 $2z = x^2 y^2$ 的交线为两条直线、证明: $A^2 B^2 2CD = 0$.
- 11. 设空间直角坐标系中的曲面Q方程为 $x^2 + y^2 z^2 = 1$,取一个过z轴的平面 Σ 并考虑全体与之平行的平面族. 问: 这些平行平面与Q的截线是什么类型的曲线? 当它们与 Σ 的距离变动时,截线的形状如何变化? 请给出清楚的描述并说明判断理由.
- 12. 给出空间中半径为1的球面S和到球心距离为2的一点P, 考虑过P点 且与S相交的任一条直线, 取两个交点的中点, 用解析几何的方法证 明这些中点的轨迹在一个球面上, 并求出球心和半径.

1.13.2 数学分析

1. 证明闭区间上的连续函数能取到最大值和最小值.

- 2. 设f(x)和g(x)是R上的有界一致连续函数,求证: f(x)g(x)在R上一致连续。
- 3. 设f(x)是周期为 2π 的连续函数,且其Fourier级数 $\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_n \cos nx + b_n \sin nx$ 处处收敛,求证:这个Fourier级数处处收敛到d(x).
- 4. 设 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ 都是有界数列,且 $a_{n+1}+2a_n=b_n$,若 $\lim_{n\to\infty}b_n$ 存在,求证 $\lim_{n\to\infty}a_n$ 也存在.
- 5. 是否存在 $R \to R$ 的连续可导函数f(x)满足: f(x) > 0, 且f'(x) = f(f(x))?
- 6. 已知f(x)是 $[0,+\infty)$ 上的单调连续函数,且 $\lim_{n\to\infty} f(x)=0$,求证: $\lim_{n\to\infty} \int_0^{+\infty} f(x) \sin nx dx=0$.
- 7. 求曲线积分 $\int_L (y-z)dx + (z-x)dy + (x-y)dz$, 其中L是球面 $x^2 + y^2 + z^2 = 1$ 与球面 $(x-1)^2 + (y-1)^2 + (z-1)^2 = 4$ 交成的曲线.
- 9. 设 $f(x) \in C(a,b)$, 对任何 $x \in (a,b)$ 都有 $\underbrace{\lim_{h \to 0^+} \frac{f(x+h) f(x-h)}{h}}_{h} \ge 0$, 求证: f(x)在(a,b)上单调不减.
- 10. 已知f(x)是 $[0,+\infty)$ 上的正的连续函数,且 $\int_0^{+\infty} \frac{1}{f(x)} dx < +\infty$,求证 $\lim_{A \to +\infty} \frac{1}{A^2} \int_0^A f(x) dx = +\infty$.

1.14 2010年

1.14.1 解析几何与高等代数

1. 整系数多项式 $f(x) = \sum_{k=0}^{n} a_k x^k (n \ge 2010)$. 若存在素数p满足: i) $p \nmid a_n$, ii) $p \mid a_i, i = 0, 1, 2, \cdots, 2008$, iii) $p^2 \nmid a_0$ 证明: f(x)必有次数不低于2009的不可约整系数因式. 1.14. 2010年 35

2. 向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关,且可以由向量组 $\beta_1, \beta_2, \dots, \beta_t$ 线性表出,证明必存在某个向量 β_j ($j=1,2,\dots,t$) 使得向量组 $\beta_j, \alpha_2,\dots,\alpha_s$ 线性无关.

- 3. 设*A*是非零矩阵,证明*A*可以写成某个列满秩矩阵与某个行满秩矩阵的乘积.
- 4. AB是n阶矩阵,且满足 $A = (B \frac{1}{110}E)'(B + \frac{1}{110}E)$,证明:对任意的n维列向量 ξ ,方程组 $A'(A^2 + A)X = A'\xi$ 必有非零解.
- 5. 设A是n阶正定矩阵,向量组 β_1 , $beta_2$, \cdots , β_n 满足 $\beta_i'A\beta_j = 0$ ($1 \le i < j \le n$). 问向量组 β_1 , β_2 , \cdots , β_n 的秩可能是多少,证明你的结论.
- 6. 线性变换A是对称变换,且A是正交变换,证明A是某个对合(即满足 $A^2 = E$, E是单位变换)
- 7. V是内积空间, ξ, η 是V中两个长度相等的向量,证明必存在某个正交变换,将 ξ 变到 η .
- 8. A是复矩阵,B是幂零矩阵,且AB = BA,证明|A + 2010B| = |A|.
- 9. 求过z轴且与平面x + 2y + 3z = 1夹角为60°的平面的方程.
- 10. 求直线 $\begin{cases} x-y+z=1 \\ x+y-z=1 \end{cases}$ 绕z轴旋转所成旋转曲面的方程,并指出这是什么曲面.
- 11. 定义仿射坐标系XOY中的一个变换 $f = \begin{cases} x' = 7x y + 1 \\ y' = 4x + 2y + 4 \end{cases}$
 - (a) 求在f下的不变直线.
 - (b) 以两条不变直线为坐标轴建立仿射坐标系X'O'Y', 求此坐标系中f的变换公式.
- 12. 用不过圆锥顶点的平面切割圆锥,证明所截的曲线只可能为椭圆,双曲线和抛物线.并说明曲线类型随切割角度的变换规律.

1.14.2 数学分析

- 1. 用有限覆盖定理证明聚点定理.
- 2. 是否存在数列 $\{x_n\}$,其极限点构成的集合为 $M = \{1, \frac{1}{2}, \frac{1}{3}, \cdots\}$,说明理由.

- 36
 - 3. 设I是无穷区间,f(x)为I上的非多项式连续函数. 证明: 不存在I上一致收敛的多项式序列{ $P_n(x)$ }, 其极限函数为f(x).
 - 4. f(x)在[0,1]上连续,在(0,1)可导,且满足 $f(1) = \frac{1}{2} \int_0^{1/2} e^{1-x^2} f(x) dx$, 求证:存在 $\xi \in (0,1)$ 使得 $f'(\xi) = 2\xi f(\xi)$.
 - 5. $f(x) \in C^1(R)$, I是有界闭区间, $F_n(x) = n[f(x + \frac{1}{n}) f(x)]$, 证明函数序列 $\{F_n(x)\}$ 在I上一致收敛. 如果I是有界开区间,问 $\{F_n(x)\}$ 在I上是否仍然一致收敛? 说明理由.
 - 6. 构造R上的函数f(x),使其在Q上间断,其他点连续. (Q表示有理数 集)
 - 7. 广义积分 $\int_0^{+\infty} xf(x)dx$ 与 $\int_0^{+\infty} \frac{f(x)}{x}dx$ 均收敛,证明 $I(t) = \int_0^{+\infty} x^t f(x)dx$ 在(-1,1)上有定义,并且有连续导函数.
 - 8. 计算曲线积分 $I = \oint_{\Gamma} ydx + zdy + xdz$, 其中 Γ 为 $x^2 + y^2 + z^2 = 1$ 与x + y + z = 0的交线,从x轴正向看是逆时针.
 - 9. 证明下面的方程在点(0,0,0)附近唯一确定了隐函数z=f(x,y),

$$x+\frac{1}{2}y^2+\frac{1}{2}z+\sin z=0$$

并将f(x,y)在点(0,0)展开为带佩亚诺余项的泰勒公式,展开到二阶.

10. f(x), g(x)是 $[0, +\infty)$ 上的非负单调递减连续函数,且 $\int_0^{+\infty} f(x) dx$ 和 $\int_0^{+\infty} g(x) dx$ 均发散,设 $h(x) = \min(f(x), g(x))$,试问 $\int_0^{+\infty} h(x) dx$ 是否一定发散?说明理由.

1.15 2011年

1.15.1 解析几何与高等代数

1. 判断题,并说明理由:

1.15. 2011年 37

(a) 矩阵A的秩是5, 其中A的第3, 4行线性无关, 第1, 3列线性无关, A的这些行列组成的子式 $A\begin{pmatrix} 3 & 4 \\ 1 & 3 \end{pmatrix} \neq 0$

- (b) 对于数域F, W是F⁵的子空间,那么存在线性变换 $\varphi: F$ ⁶ $\to F$ ⁵,使 $\varphi(F$ ⁶) = W;
- (c) 若AX = 0有唯一解,则 $AX = \beta$ 有唯一解.
- (d) 有限维空间的非零线性变换必有非零特征根.
- (e) 对任何正整数n, 存在有理数域上的n次不可约多项式 $p(x) \in Q[x]$.
- (f) V^* 是V的对称空间,W是V的真子空间,则存在 $f \in V^*$ 使f(W) = 0;.
- (g) φ 是复数域上 C^{13} 的线形变换,一定存在一个 φ 的10维不变子空间.
- (h) φ 是欧氏空间的线性变换, φ^* 是 φ 的共轭变换,那么ker $\varphi^*\varphi = \ker \varphi$.
- (i) 对角元素互不相同的上三角矩阵可以转化为对角矩阵.
- (j) 对于 $A \in M_n(F)$ 是可逆矩阵,那么存在 $a_0, a_1, \dots, a_{n-1} \in F$ 使得

$$A^{-1} = a_{n-1}A^{n-1} + a_{n-2}A^{n-2} + \dots + a_1A + a_0I_n.$$

2. 读
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$
;

- (a) 求A的最小多项式;
- (b) 求 A^{15} :
- (c) 求A的若尔当标准型.
- (d) 设 $Q[A] = \{\sum_{i=0}^{n} a_i A^i | a_i \in Q, n \in Z^+ \}$,求Q[A]的维数,要求说明理由,
- - (a) 把f写成X'AX的形式, 求A的特征值和特征向量.
 - (b) 求正交矩阵C和对角矩阵D,使得A = CDC'.
 - (c) 求 $f(x_1, x_2, x_3)$ 在 $x_1^2 + x_2^2 + x_3^3 = 1$ 中的最大值和最小值,并说明何时取到.

- 4. U, V, W分别是F上的r, s, t维线性空间, $\operatorname{Hom}_F(U, V)$ 表示U到V上的线性变换的集合.
 - (a) 证明dimHom $_F(U,V)=rs$;
 - (b) 设 σ^* 为 $\operatorname{Hom}(W,U)$ 到 $\operatorname{Hom}(W,V)$ 上线性映射,则存在单射 σ ,使 $\sigma^*(f)w = \sigma \circ (fw)$,其中 $w \in W$;
 - (c) 证明dim $Im\sigma^* = \dim Ker(I \sigma^*) + \dim Im\sigma$.
- 5. a, b, c, d是起点相同的向量, 证明a, b, c, d终点共面当且仅当[a, b, c] · $[b, c, d] + [c, d, a] \cdot [d, a, b] = 0$. ([a, b, c]表示向量a, b, c的混合积.)
- 6. 距两条异面直线距离相等的点的轨迹是什么? 用解析几何的方法加以证明.
- 7. E是一个椭球面,中心是O.
 - (a) 取与E相交的一族平行平面,则截线都是椭圆,而且中心共线.
 - (b) 对E外侧任意的点p, 由p向E作切线, 可能的切点在一个平面 Π_p 上.
 - (c) 同上过E外侧另一点q向E作切线,切点落在平面 Π_q 上,如果q在Oq连线上,则 $\Pi_p \parallel \Pi_q$,而且两个平面截E所得的椭圆中心O与p,q共线。

1.15.2 数学分析

- 1. 使用确界存在原理证明: 连续函数f(x)定义在区间I上, 证明f(I)是一个区间.
- 2. 函数f(x)在 x_0 连续并且|f(x)|在 x_0 可导,求证f(x)在 x_0 可导.
- 3. 函数f(x)在(0,1)可导,f'有界, $\lim_{x\to 0+0} f(x)$ 不存在,求证存在数列 $\{x_n\}$ 满足条件: (1) $\lim_{n\to +\infty} x_n = 0$; (2) 对所有n, $f'(x_n) = 0$.
- 4. 构造两个以 2π 为周期的函数,使之在 $[0,\pi]$ 上其Fourier级数一致收敛于0.
- 5. 证明f(x)在[0,1]上可积,其充要条件是: 对F(x,y) = f(x)在[0,1] × [0,1]上可积.
- 6. f(x,y)在其定义域中的某个点上存在方向导数,且在三个方向上的方向向量均存在且相等。证明 f(x,y)不可微。

1.16. 2018年 39

7. 设D为 R^2 上的无界闭集,试构造一个函数f(x,y),使它在一个由光滑曲线所围成的无界闭区域D上的二重积分 $\iint_D f(x,y) dx dy$ 发散.

- 8. 设T(x), x属于 R^n 的一个子集D, D是一个凸区域, T(x)在D上有连续二阶偏导数, 其Jaccobi行列式正定. 证明T(x)是单调的.
- 9. $a_n > 0$,并且 $\sum_{n=1}^{+\infty} a_n$ 收敛,求证

$$\lim_{n \to +\infty} n^2 \left(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}\right)^{-1}$$

收敛.

10. $f_n(x)$ 在[a,b]可导, $f'_n(x)$ 在[a,b]上一致有界,并且 $\{f_n(x)\}$ 点态收敛于有界函数f(x),求证f(x)在[a,b]上连续.

1.16 2018年

1.16.1 数学分析

1. 设 $f \in C(0,1)$, 且存在 $x_1, x_2, x_3, x_4 \in (0,1)$, 使得

$$\alpha = \frac{f(x_2) - f(x_1)}{x_2 - x_1} < \frac{f(x_4) - f(x_3)}{x_4 - x_3} = \beta,$$

证明: 对任意 $\lambda \in (\alpha, \beta)$, 存在 $x_5, x_6 \in (0, 1)$, 使得 $\lambda = \frac{f(x_6) - f(x_5)}{x_6 - x_5}$. 定义

$$F(x,y) = \frac{f(y) - f(x)}{y - x}, 0 < x < y < 1.$$

则F在连通开集 $D = \{(x,y): 0 < x < y < 1\}$ 上连续. 不妨设 $x_1 < x_2$, $x_3 < x_4$, 则 $(x_1, x_2) \in D$, $(x_3, x_4) \in D$, 且

$$\alpha = F(x_1, x_2) < \lambda < F(x_3, x_4) = \beta.$$

根据连通集上连续函数的节值定理, 存在 $(x_5, x_6) \in D$, 使得

$$\lambda = F(x_5, x_6),$$

即

$$\lambda = \frac{f(x_6) - f(x_5)}{x_6 - x_5}.$$

另一种方法是考虑函数

$$G(t) = \frac{f((1-t)x_2 + tx_4) - f((1-t)x_1 + tx_3)}{(1-t)(x_2 - x_1) + t(x_4 - x_3)}$$

此时 $\alpha = G(0)$, $\beta = G(1)$. 剩下的就是使用中值定理即可。

2. 设A, $B \in \mathbb{R}^3$; γ 是以A, B为端点的光滑曲线, 弧长为L; U是一个包含 γ 的开集; f是U上连续可微的函数, 它的梯度向量长度的上界是M. 求证:

$$|f(A) - f(B) \le ML.|$$

不妨设 $\gamma = \gamma(t)$, $t \in [0,1]$, $\gamma(0) = B$, $\gamma(1) = A$, 则

$$|f(A) - f(B)| = |\int_0^1 \frac{df(\gamma(t))}{dt} dt| \leqslant \int_0^1 |\frac{df(\gamma(t))}{dt}| dt$$

$$= \int_0^1 |(\operatorname{grad} f(\gamma(t)), \gamma'(t))| dt \leqslant M \int_0^1 |\gamma'(t)| dt$$

$$= ML,$$

其中 (\cdot,\cdot) 是 R^3 中的内积.

第 2 章 中国科学院研究生院入学考试

2.1 2007年

2.1.1 高等代数

- 1. 设多项式f(x), g(x), h(x)只有非零常数公因子, 证明: 存在多项式u(x), v(x), w(x), 使得u(x)f(x) + v(x)g(x) + w(x)h(x) = 1.
- 2. 设m, n, p都是非负整数,证明: (x^2+x+1) 整除 $(x^{3m}+x^{3n+1}+x^{3p+2})$.
- 3. 设A是n阶实数矩阵, $A \neq 0$,而且A的每个元素都和它的代数余子式相等. 证明A是可逆矩阵.
- 4. 计算n阶行列式

$$D_{n} = \begin{vmatrix} 2\cos\alpha & 1 \\ 1 & 2\cos\alpha & 1 \\ & 1 & 2\cos\alpha & 1 \\ & & 1 & \ddots & \ddots \\ & & & \ddots & 2\cos\alpha & 1 \\ & & & 1 & 2\cos\alpha \end{vmatrix}$$

- 5. 设 $\alpha_1, \alpha_2, \dots, \alpha_k \in R^n$ 是齐次线性方程组AX = 0的基础解系, $s, t \in R$, $\beta_1 = s\alpha_1 + t\alpha_2$, \cdots , $\beta_{k-1} = s\alpha_{k-1} + t\alpha_k$, $\beta_k = s\alpha_k + t\alpha_1$. 试问: s, t应该满足什么关系,使得 $\beta_1, \dots, \beta_{k-1}, \beta_k$ 是方程组AX = 0的基础解系,反之,当 $\beta_1, \dots, \beta_{k-1}, \beta_k$ 是方程组AX = 0的基础解系时,这个关系必须成立.
- 6. 设A是实对称矩阵,如果A是半正定的,则存在实的半正定矩阵B,使 得 $A = B^2$.
- 7. 已知 $A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$,试证明对于 $n \ge 3$ 有 $A^n = A^{n-2} + A^2 I$,并计算 A^{100} ,其中I表示单位矩阵.

- 8. 设二次型 $f=x_1^2+x_2^2+x_3^2+2ax_1x_2+2x_1x_3+4bx_2x_3$ 通过正交变换化为标准形 $f=y_2^2+2y_3^2$,求参数a,b及所用的正交变换.
- 9. 设A是复数域上6维线性空间V的线性变换,A的特征多项式为($\lambda 1$) $^3(\lambda + 1)^2(\lambda + 2)$,证明V能够分解成三个不变子空间的直和,而且它们的维数分别是1, 2, 3.

2.1.2 数学分析

- 1. 求幂级数 $\sum_{n=0}^{\infty} \frac{n^2+1}{2^n n!} x^n$ 的收敛域,并求其和.
- 2. 讨论积分 $\int_0^{+\infty} \frac{e^{\sin x} \sin 2x}{x^p} dx$ 的绝对收敛和条件收敛.
- 3. 计算曲面积分 $\iint_{\Sigma} yzdydz + (x^2 + z^2)ydzdx + xydxdy$,其中 Σ 为曲面 $4-y=x^2+z^2$ 在 xoz 平面的右侧部分的外侧.
- 4. 证明下列不等式:
 - (a) $x^n(1-x) < \frac{1}{ne}$ (0 < x < 1, n为正整数);
 - (b) $x^y + y^x > 1$ (x, y > 0).
- 5. 设级数 $\sum_{n=1}^{\infty} b_n$ 收敛,且 $\sum_{n=1}^{\infty} (a_n a_{n-1})$ 绝对收敛.证明: 级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.
- 6. 假设f(x)为二次连续可微实值函数,对于所有的实数x,满足 $|f(x)| \le 1$ 且满足 $(f(0))^2 + (f'(0))^2 = 4$. 证明存在实数 x_0 ,满足 $f(x_0) + f''(x_0) = 0$.
- 7. 假设 $|f(x)| \le 1$ 和 $|f''(x)| \le 1$ 对一切成立,证明: 在[0,2]上有 $|f'(x)| \le 2$.
- 8. 设 $D = [0,1] \times [0,1]$, f(x,y)是定义在D上的二元函数, f(0,0) = 0, 且f(x,y)在(0,0)处可微. 求极限:

$$\lim_{x \to 0+} \frac{\int_0^{x^2} dt \int_x^{\sqrt{t}} f(t, u) du}{1 - e^{\frac{x^4}{4}}}$$

2.2. 2012年 43

9. 设 $-\infty < x_0 < +\infty$, $\varphi(x)$ 和f(x)在 $[x_0, x_0 + h]$ 上连续,且存在M > 0, K > 0,使得

$$|\varphi(x)| \le M\left(1 + K \int_{x_0}^x |\varphi(t)f(t)|dt\right), \quad x \in (x_0, x_0 + h).$$

证明: $\varphi(x)$ 必满足

$$|\varphi(x)| \le M \exp\{KM \int_{x_0}^x |f(t)|dt\}, x \in (x_0, x_0 + h).$$

10. 设 $\alpha \in (0,1)$, 记 $e = (1,1,\cdots,1)^T \in R^n$, $S(\frac{e}{n},\frac{\alpha}{n}) = \{x \in R^n : \|x - \frac{e}{n}\| \leq \frac{\alpha}{n}\}$, 对于 $x \in S(\frac{e}{n},\frac{\alpha}{n})$ 且 $e^T x = 1$, 证明:

$$-\sum_{i=1}^{n} \ln x_i \le n \ln n + \frac{\alpha^2}{2(1-\alpha)^2}.$$

2.2 2012年

2.2.1 高等代数

- 1. 证明多项式 $f(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$ 没有重根.
- 2. 设多项式 $g(x) = p^k(x)g_1(x) (k \ge 1)$, 多项式p(x)与 $g_1(x)$ 互素. 证明: 对任意多项式f(x)有

$$\frac{f(x)}{g(x)} = \frac{r(x)}{p(x)} + \frac{f_1(x)}{p^{k-1}(x)g_1(x)}$$

其中, r(x), $f_1(x)$ 都是多项式, r(x) = 0或 $\deg(r(x)) < \deg(p(x))$.

3. 已知n阶方阵

$$A = \begin{pmatrix} a_1^2 & a_1 a_2 + 1 & \cdots & a_1 a_n + 1 \\ a_2 a_1 + 1 & a_2^2 & \cdots & a_2 a_n + 1 \\ \vdots & \vdots & \ddots & \vdots \\ a_n a_1 + 1 & a_n a_2 + 1 & \cdots & a_n^2 \end{pmatrix}$$

其中, $\sum_{i=1}^{n} a_i = 1$, $\sum_{i=1}^{n} a_i^2 = n$.

1) 求A的全部特征值;

- 44
- 2) 求A的行列式det(A)和迹tr(A).
- 4. 设数域k上的n阶方阵A满足 $A^2 = A$, V_1 , V_2 分别是齐次线性方程组Ax = 0和 $(A I_n)x = 0$ 在 k^n 中的解空间,试证明: $k^n = V_1 \oplus V_2$,其中 I_n 代表n阶单位矩阵, \oplus 表示直和.
- 5. 设n阶矩阵A可逆, α , β 均为n维列向量,且 $1+\beta^TA^{-1}\alpha \neq 0$,其中 β^T 表示 β 的转置.
 - 1) 证明矩阵 $P = \begin{pmatrix} A & \alpha \\ -\beta^T & 1 \end{pmatrix}$ 可逆,并求其逆矩阵.
 - 2) 证明矩阵 $Q = A + \alpha \beta^T$ 可逆, 并求其逆矩阵.
- 6. 证明: 任何复数方阵A都与它的转置矩阵 A^T 相似.
- 7. 在二阶实数矩阵构成的线性空间 $R^{2\times 2}$ 中定义:

$$(A, B) = \operatorname{tr}(A^T B), \quad \forall A, B \in R^{2 \times 2}$$

其中, A^T 表示矩阵A的转置, $\operatorname{tr}(X)$ 表示矩阵X的迹.

- 1) 证明(A, B)是线性空间 $R^{2\times 2}$ 的内积.
- 2)设W是由 $A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ 生成的子空间. 试 求 W^{\perp} 的一组标准正交基.
- 8. 设 T_1, T_2, \dots, T_n 是数域上线性空间V的非零线性变换,试证明存在向量 $\alpha \in V$,使得 $T_i(\alpha) \neq 0$, $i = 1, 2, \dots, n$.

2.3 2018

2.3.1 数学分析

1. 设x > 0, 证明 $\sqrt{1+x} - \sqrt{x} = \frac{1}{2\sqrt{x+\theta}}$, 其中 $\theta = \theta(x) > 0$, 并且 $\lim_{x\to 0} \theta(x) = \frac{1}{4}$.

根据Lagrange中值定理有

$$\sqrt{1+x} - \sqrt{x} = \frac{1}{2\sqrt{x+\theta}}$$

2. 3. 2018

$$\theta(x) = \left(\frac{\sqrt{1+x} + \sqrt{x}}{2}\right)^2 - x = \frac{1+2\sqrt{x(x+1)} - 2x}{4}$$

$$= \frac{1}{4} + \frac{1}{2}[\sqrt{x(x+1)} - x]$$

$$= \frac{1}{4} + \frac{1}{2}[\frac{x}{\sqrt{x(x+1)} + x}]$$

$$= \frac{1}{4} + \frac{1}{2}[\frac{1}{\sqrt{1+\frac{1}{x}} + 1}]$$

易知

$$0<\frac{1}{2}[\frac{1}{\sqrt{1+\frac{1}{x}}+1}]<\frac{1}{4}$$

则有

$$0<\frac{1}{4}<\theta(x)<\frac{1}{2}$$

同时根据

$$\theta(x) = \frac{1}{4} + \frac{1}{2} \left[\frac{1}{\sqrt{1 + \frac{1}{x}} + 1} \right],$$

可得

$$\lim_{x \to 0} \theta(x) = \frac{1}{4}.$$

第 3 章 南开大学研究生入学考试

3.1 2018

3.1.1 高等代数

3.1.2 数学分析

- 1. 求 $f(x) = 4 \ln x + x^2 6x$ 的极值.
- 2. 己知区域 $D=\{(x,y)|x\geqslant 0,y\geqslant 0,x+2y\leqslant 1\}$,求二重积分 $\iint_D e^{x+2y}dxdy$.

第 4 章 中山大学研究生入学考试

4.1 数学分析

1. 计算

(a)
$$\int_0^{\frac{\pi}{2}} \frac{\sin x}{\sin x + \cos x} dx;$$

(b)
$$\int \frac{\arcsin e^x}{e^x} dx;$$

(c)
$$\lim_{x \to 0+} \frac{\sqrt{x}}{1 - e^{\sqrt{x}}};$$

(d)
$$\lim_{x\to\infty} \left(\sqrt{\cos\frac{1}{x}}\right)^{x^2}$$
;

(e) 设
$$z = z(x,y)$$
由方程 $e^{-xy} - 2z + e^z = 0$ 确定,求 $\frac{\partial^2 z}{\partial x^2}$;

(f) 求曲面
$$x^2 + 2y^2 + 3z^2 = 6$$
在 $(1,1,1)$ 点处的切平面方程.

2. 判别下列级数或广义积分的收敛性,条件收敛还是绝对收敛.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \frac{(\ln n)^2}{(\ln 3)^n}$$
;

(b)
$$\sum_{n=1}^{\infty} \left(\frac{\pi}{2n^2} + \sin \frac{\pi}{n} \right);$$

(c)
$$\int_{0}^{+\infty} x^2 e^{-x^2} dx$$
;

(d)
$$\int_0^1 \frac{\ln x}{(1-x)^2} dx$$
.

3. 求平面曲线 $\begin{cases} x = a(\cos t + t \sin t) \\ y = a(\sin t - t \cos t) \end{cases}$ 上对应于 $t = t_0$ 点的法线方程,并讨论曲线在 $t \in (0, \pi)$ 一段的凹凸性.

4. 讨论函数
$$f(x,y)=\left\{ egin{array}{ll} \dfrac{xy^2}{x^2+y^2}, & (x,y)
eq (0,0) \\ 0, & (x,y)=(0,0) \end{array} \right.$$
 在 $P_0(0,0)$ 点处

- (a) 连续性;
- (b) 可微性;
- (c) 沿 $\vec{l} = (\cos \alpha, \sin \alpha)$ 的方向导数的存在性.
- 5. 计算曲线积分 $\oint_C xyzdy$,其中曲线 $C:\begin{cases} x^2+y^2+z^2=1\\ y=z \end{cases}$,其方向与z轴构成右手系.
- 6. 对幂级数 $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n+1}{n} x^{2n}$
 - (a) 求收敛域;
 - (b) 求和函数:
 - (c) 讨论幂级数在收敛域上的一致收敛性.
- 7. 在Oxy平面上,光滑曲线L过(1,0)点,并且曲线L上任意一点 $P(x,y)(x \neq 0)$ 处的切线斜率与直线OP的斜率之差等于ax(a > 0为常数).
 - (a) 求曲线L的方程;
 - (b) 如果L与直线y = ax所围成的平面图形的面积为8, 确定a的值.
- 8. 设f(x)在[0,1]连续,令

$$f_n(t) = \int_0^t f(x^n) dx, \quad t \in [0, 1], n = 1, 2, \dots$$

证明函数列 $\{f_n(t)\}$ 在[0,1]一致收敛于函数g(t)=tf(0).

第5章 其他

1.
$$\int_0^1 \sin(\pi x) \cdot x^x (1-x)^{1-x} dx$$
;

2.
$$\int_0^{\frac{1}{2}} \frac{\ln(1-x) \ln x}{x(1-x)} dx;$$

3.
$$\int_0^1 \frac{\ln x \ln^2(1-x)}{x} dx;$$

4.
$$\int_0^{+\infty} \tan \frac{x}{\sqrt{x^2 + x^3}} \frac{\ln(1 + \sqrt{x})}{x} dx$$
;

5.
$$\int_0^{\frac{\pi}{2}} \cos(k \ln(\tan(x))) dx, k \in R;$$

6.
$$\int_0^{+\infty} x^n \sin(\sqrt[4]{x}) e^{-\sqrt[4]{x}} dx, n \in N;$$

7.
$$\int_0^{\frac{\pi}{2}} \ln^2(\cos x) dx$$
;

8.
$$\int_0^{+\infty} \frac{\sin x}{xe^x} dx;$$

9.
$$\int_0^{+\infty} \frac{x \ln x}{(1+x^2)(1+x^3)^2} dx;$$

10.
$$\int_0^{+\infty} \left(\frac{x}{e^x - e^{-x}} - \frac{1}{2} \right) \frac{1}{x^2} dx;$$

11.
$$\int_{0}^{\frac{\pi}{2}}\arccos(\frac{\cos x}{1+2\cos x})dx;$$

12.
$$\int_0^{\frac{\pi}{3}}\arccos(\frac{\cos x}{1+2\cos x})dx;$$

13. 若
$$f:[0,1] \times [0,1] \to R$$
可积,求

$$\lim_{n\to +\infty} (\frac{(2n+1)!}{(n!)^2})^2 \int_0^1 \int_0^1 (xy(1-x)(1-y))^n f(x,y) dx dy;$$

14.
$$\lim_{n\to+\infty}\int_0^1|\sin nx|^3dx;$$

15.
$$\lim_{x \to 0} \int_0^x \ln \frac{|\sin(t - \frac{x}{2})|}{\sin \frac{x}{2}} \frac{dt}{\sin t};$$

16.
$$\prod_{n=1}^{+\infty} (1 + \frac{1}{n^3});$$

17.
$$\int_0^{\arccos\frac{1}{3}}\arccos\left(\frac{1-\cos x}{2\cos x}\right)dx;$$

18.
$$\int_0^{\frac{\pi}{2}} \arccos\sqrt{\frac{\cos x}{1 + 2\cos x}} dx;$$

19.
$$\vec{x}_1 + \left(\frac{1+\frac{1}{2}}{2}\right)^2 + \left(\frac{1+\frac{1}{2}+\frac{1}{3}}{3}\right)^2 + \left(\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}}{4}\right)^2 + \cdots;$$

20.
$$\Re \sum_{n=1}^{+\infty} \frac{((n-1)k)!}{(nk)!};$$

$$21. \quad \Re\sum_{n=1}^{+\infty} \frac{\left(\frac{3-\sqrt{5}}{2}\right)^n}{n^3};$$

22.
$$\vec{x} \sum_{n=1}^{+\infty} \frac{1}{n^2 (e^{n\pi} - e^{-n\pi})^2};$$

23. 求和:
$$\sum_{n=1}^{+\infty} \frac{1}{C_{2n}^n}$$
, $\sum_{n=1}^{+\infty} \frac{1}{nC_{2n}^n}$, $\sum_{n=1}^{+\infty} \frac{1}{n^2C_{2n}^n}$, $\sum_{n=1}^{+\infty} \frac{1}{n^4C_{2n}^n}$;