Warning notification!!!!!

- The PPTs are prepared for the offline interactive teaching in the class using the materials from different books and web. The author may not have the legal permission for online sharing those materials via social media/web/email or use in business etc in public domain.
- Therefore, students are requested not to share the PPTs outside the class/institute, which can violation the copy-write related issues.

Parseval's theorem (continuous-time periodic signals)

• The average power (i.e., energy per unit time) in one period of the periodic signal x(t) is

$$P = \frac{1}{T} \int_{T} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

Proof:
$$|x(t)|^{2} = x(t) x^{*}(t) = \sum_{k=-\infty}^{\infty} a_{k} e^{jk\omega_{0} t} \left(\sum_{L=-\infty}^{\infty} a_{L}^{*} e^{-jL\omega_{0} t} \right)$$

$$P = \frac{1}{T} \int_{T} |x(t)|^{2} dt = \frac{1}{T} \int_{T} \left\{ \sum_{k=-\infty}^{\infty} a_{k} e^{jk\omega_{0} t} \left(\sum_{L=-\infty}^{\infty} a_{L}^{*} e^{-jL\omega_{0} t} \right) \right\} dt$$

$$= \frac{1}{T} \left[\sum_{k=-\infty}^{\infty} a_{k} \left(\sum_{L=-\infty}^{\infty} a_{L}^{*} \left\{ \int_{T} e^{j(k-L)\omega_{0} t} dt \right\} \right] = \frac{1}{T} \cdot T \sum_{k=-\infty}^{\infty} |a_{k}|^{2} = \sum_{L=-\infty}^{\infty} |a_{k}|^{2}$$

• Evaluate the complex-exponential Fourier-series expansion of the signal

$$x(t) = 2 + 3\cos 2\pi t + 4\sin 3\pi t$$
 and then verify the Parseval's theorem.

By the definition of synthesis equation, we can write

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

 ω_0 is *unknown* i.e. we have to *first determine* the *T*

2 → periodic any value of T $\cos 2\pi t$ → $T_1 = 1$

$$\sin 3\pi t \rightarrow T_2 = \frac{2}{3}$$

 $T = \text{Least} - \text{common multiplier } \left(1, \frac{2}{3}\right) = 2$ $\omega_0 = 2\pi F_0 = 2\pi \cdot \frac{1}{2} = \pi$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk.\pi.t}$$

$$= \dots + a_{-2}e^{-2j\pi t} + a_{-1}e^{-j\pi t} + a_0 + a_1e^{j\pi t} + a_2e^{2j\pi t} + \dots$$

Using Euler relation, we can expand the following equation $x(t) = 2 + 3\cos 2\pi t + 4\sin 3\pi t$

$$z(t) = 2 + 3\cos 2\pi t + 4\sin 3\pi t$$

$$x(t) = 2 + 3 \cdot \frac{1}{2} \left[e^{j2\pi t} + e^{-j2\pi t} \right] + 4 \cdot \frac{1}{2j} \left[e^{j3\pi t} - e^{-j3\pi t} \right]$$
$$= 2 + \frac{3}{2} e^{-j2\pi t} + \frac{3}{2} e^{-j2\pi t} - \frac{4}{2j} e^{-j3\pi t} + \frac{4}{2j} e^{j3\pi t}$$

$$x(t) = \sum_{k=0}^{\infty} a_k e^{jk\omega_0} = \dots + a_{-2}e^{-2j\pi t} + a_{-1}e^{-j\pi t} + a_0 + a_1e^{j\pi t} + a_2e^{2j\pi t} + \dots$$

Fourier-series expansion $a_{-1} = 0 = a_1$

$$a_{-2} = \frac{3}{2} = a_2$$

$$a_{-1} = 0 = a_1$$

$$a_0 = 2$$

$$a_3 = \frac{4}{2j}$$

$$a_{-2} = -\frac{4}{2}$$

To verify Parseval's theorem:

$$x(t)$$
 has period 2

$$a_{-2} = \frac{3}{2} = a_2$$

$$a_{-1} = 0 = a_1$$

$$a_0 = 2$$

$$a_{-3} = -\frac{4}{2j}$$

$$a_3 = \frac{4}{2j}$$

$$a_{-3} = -\frac{4}{2j}$$

As per definition of power of a signal, we can write:

$$P = \frac{1}{T} \int_{0}^{T} |x(t)|^{2} dt = \frac{1}{T} \int_{0}^{T} |2 + 3\cos 2\pi t + 4\sin 3\pi t|^{2} dt = ?$$

From Parseval's theorem:
$$\sum_{k=-\infty}^{\infty} |a_k|^2 = \sum_{k=-3}^{3} |a_k|^2 = |a_{-3}|^2 + |a_{-2}|^2 + |a_{-1}|^2 + |a_0|^2 + |a_1|^2 + |a_2|^2 + |a_3|^2$$
$$= 2^2 + \left(\frac{3}{2}\right)^2 + 0^2 + 2^2 + 0^2 + \left(\frac{3}{2}\right)^2 + 2^2$$
$$= \frac{33}{2}$$
$$= 16.5$$

Conjugate: As per synthesis equation, we can write

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\left(\frac{2\pi}{T}\right)t} = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$x^*(t) = \left(\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\right)^* = \sum_{k=-\infty}^{\infty} a_k^* e^{-jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_{-k}^* e^{jk\omega_0 t}$$
 (using time-reversal property)

If
$$x(t)$$
 is real valued $\Rightarrow x(t) = x(t)$

$$\Rightarrow x(t) = \sum_{k=-\infty}^{\infty} a_{-k}^* e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

$$\Rightarrow a_{-k}^* = a_k$$

Try yourself for if x(t) is pure imaginary

A periodic signal x(t) with fundamental period T_0 has complex-exponential Fourier- Series coefficients a_k . Express the following signal in terms of a_k .

(a) $x^*(t)$

By the definition of Fourier-series for given x(t) and a_k , we can write

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\left(\frac{2\pi}{T}\right)t} = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

Let $y(t) = x^*(t)$

Now
$$y(t) = x^*(t) = \left(\sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}\right)^*$$

$$= \sum_{k=0}^{\infty} a_k^* e^{-jk\omega_0 t}$$
 (using conjugate property)

Solve problems

Q1. Determine the complex exponential Fourier series representation for each of the following signals:

$$(a) x(t) = \cos \omega_0 t$$

$$(c) x(t) = \cos(2t + \frac{\pi}{4})$$

$$(d) x(t) = \cos 4t + \sin 6t$$

$$(e) x(t) = \sin^2(t)$$

$$(f) x(t) = 2 + \cos(\frac{2\pi}{3}t) + 4\sin(\frac{5\pi}{3}t)$$

$$(g) x(t) = \begin{cases} 1.5; 0 \le t < 1 \\ -1.5; 1 \le t < 2 \end{cases}$$

Q2. Let $x_1(t)$ be a continuous-time periodic signal with fundamental frequency ω_1 and Fourier coefficients a_k . Given that

$$x_2(t) = x_1(t-1) + x_1(1-t)$$

Determine the relation of fundamental frequency ω_2 of $x_2(t)$ related to ω_1 ? Evaluate a relationship between the Fourier-series coefficients b_k of $x_2(t)$ and a_k .

Q3. Consider the triangular wave x(t) shown in Fig. Using the differentiation technique, Evaluate (a) the complex exponential Fourier series of x(t), and (b) the trigonometric Fourier series of x(t).

