CLAIMS:

1. A silicon-containing polymer comprising recurring units of at least one of the following general formulae (1) and (2):

$$\begin{array}{c|c}
R^1 & R^2 \\
\hline
\begin{pmatrix} C & C \\
C & C \\
R^3 \\
R^4 & R^5 \\
\end{array}$$
(1)

wherein R^1 , R^2 and R^3 each are hydrogen or a straight, branched or cyclic alkyl group of 1 to 10 carbon atoms, R^4 , R^5 and R^6 each are independently an alkyl or haloalkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a silicon-containing group attached to the silicon atom through a siloxane or silalkylene linkage,

$$\begin{array}{c|c}
R^{1} & R^{2} \\
\hline
\begin{pmatrix} C & C \\
 & C \\
 & R^{3} \\
 & R^{8} \\
 & R^{9} \\
 & R^{10}
\end{array}$$
(2)

wherein R¹ to R³ are as defined above, R⁷ is an oxygen atom, a straight, branched or cyclic alkylene group of 1 to 10 carbon atoms or an arylene group, R⁸ to R¹⁰ each are independently a straight, branched or cyclic alkyl or fluorinated alkyl group having 1 to 10 carbon atoms or an aryl group, and n is an integer of 2 to 10.

15

2. The silicon-containing polymer of claim 1 further comprising recurring units of the general formula (3):

- wherein X is an oxygen atom, a sulfur atom or -NR-, R is hydrogen, hydroxyl, a straight, branched or cyclic alkyl group of 1 to 10 carbon atoms, or an aryl group, and may contain an acid labile group, Rf¹ and Rf² each are independently hydrogen, fluorine or trifluoromethyl.
- 10 3. The silicon-containing polymer of claim 1 further comprising recurring units of the general formula (4):

$$\begin{array}{c|c}
Y^1 & Y^2 \\
- C - C - C - C \\
Y^3 & Y^4
\end{array}$$

(4)

wherein Y^1 , Y^2 , Y^3 and Y^4 are independently selected from the class consisting of hydrogen, fluorine, chlorine, bromine, cyano, alkoxycarbonyl, fluorinated alkyl and fluorinated alkoxycarbonyl groups.

4. The silicon-containing polymer of claim 1 further comprising recurring units of the general formula (5):

(5)

10

15

25

wherein R^{11} and R^{12} each are hydrogen or a straight, branched or cyclic alkyl group of 1 to 10 carbon atoms, and R^{13} is an acid labile group or adhesive group.

- 5 5. A resist composition comprising the polymer of claim 1.
 - 6. A chemically amplified, positive resist composition comprising
 - (A) the polymer of claim 1,
 - (B) a photoacid generator, and
 - (C) an organic solvent.
 - 7. The resist composition of claim 6 further comprising
 - (D) a dissolution inhibitor.
 - 8. The resist composition of claim 6 further comprising
 - (E) a basic compound.
- 9. A process for forming a resist pattern comprising the steps of:

applying the resist composition of any one of claims 5 to 8 onto a substrate to form a resist layer,

heat treating the resist layer and then exposing it to high-energy radiation having a wavelength of up to 300 nm or electron beam through a photo mask, and

optionally heat treating the exposed resist layer and developing it with a developer.

10. A process for forming a resist pattern comprising the 30 steps of:

applying the resist composition of any one of claims 5 to 8 onto a processable substrate formed on a support substrate through an organic film to form a resist layer,

heat treating the resist layer and then exposing it to
high-energy radiation having a wavelength of up to 300 nm or
electron beam through a photo mask,

10

15

20

optionally heat treating the exposed resist layer and developing it with a developer, and

treating the organic film and the processable substrate by an etching process including oxygen plasma etching at the portions where the exposed resist layer portions are removed by developing.

- 11. The process of claim 10 wherein the organic film is a novolac resin or polyhydroxystyrene layer.
- 12. A process for forming a resist pattern comprising the steps of:

applying the resist composition of any one of claims 5 to 8 onto a processable substrate formed on a support substrate to form a resist layer,

heat treating the resist layer and then exposing it to high-energy radiation having a wavelength of up to 300 nm or electron beam through a photo mask,

optionally heat treating the exposed resist layer and developing it with a developer, and

treating the processable substrate by an etching with a halogen gas containing chlorine or bromine at the portions where the exposed resist layer portions are removed by developing.