

SNC7600 Datasheet

Audio Codec SoC

Version 1.1b

History

Version	Release Date	Description
V1.0b	06/08/2020	Initial creation
V1.1b	05/15/2021	Fix the errors for descriptions of peripherals

Content

Hist	ory		2
1	Introdu	ıction:	4
2	Key fea	itures:	4
3	Function	onal applications:	5
4	System	block diagram:	6
5	Absolu	te maximum ratings:	7
6	System	bus structure:	7
7	Data p	rocessing flow:	8
8	HiFi3 c	ore specification:	8
9	Memo	ry mapping:	9
10	DI	MA description:	10
11		errupt description:	
12	CI	ock network description:	11
13		L description	
14		ystal oscillator description:	
15	Co	dec description:	14
16	Co	dec characteristics:	16
	16.1	Frequencies:	
	16.2	Analog microphone/line input to ADC path:	
	16.3	DAC to headphone output path:	
	16.4	DAC to line output path	
	16.5	Digital microphone interface to decimating filter output path	19
	16.6	Voice detection on digital microphone interface	
17		specification:	
18		/IU specification:	
19		set network:	
20	² (C/UART:	22
21	_	ıxiliary ADC:	
22	Pi	nout Name List:	23
23		ckage information:	
24	Ar	pplication BOM list:	27

1 Introduction:

SNC7600 is designed basing on Soundec filed noise reduction patents to provide best-in-class clear and enjoyable listening experience to end-users.

SNC7600 is a standalone single-chip with a high-quality audio Codec, a high-performance DSP, and a low power management unit. The high-level integration permits to achieve low application BOM cost.

It incorporates a HiFi3 DSP core, a stereo 24-bit/192Ksps ADC and DAC with 106 dB and 100dB dynamic range respectively; a headphone driver which doesn't require coupling capacitors to reduce BOM cost; also, 4 DMIC inputs to extend its application scope. A full power management unit provides all power supply necessary in the chip with low power consumption. On-chip PLL generate all necessary clocks with different frequencies for function blocks.

It provides a rich set of interfaces such as I2S(Standard I2S, Left Justified, Right Justified), as well as I²C, UART, etc.

There is another dedicated circuit "front-end audio" which works together with this Codec SoC to form a complete and unique audio solution around Soundec patents. This front-end audio circuit is defined in a separate document.

2 Key features:

- ♦ Core:
 - ✓ HiFi3 core as the controller and audio DSP, up to 200MHz
 - ✓ MAC, vector FPU, SIMD
 - ✓ Proprietary hardware accelerators
 - ✓ 512KB zero-wait RAM
 - √ 48KB zero-wait cache RAM
 - ✓ On-chip 1MB NOR Flash memory
- Codec:
 - ✓ Stereo 24-bit ADC and DAC, with 106 dB and 110dB dynamic range respectively
 - ✓ Support sampling rate: 8k, 16k, 32k, 44.1k, 48k, 88.2k, 96k, 176.4k, 192k
 - ✓ 4 DMIC inputs
 - ✓ 2 AMIC inputs
 - ✓ Low power voice detection
 - ✓ Wind noise suppression
 - ✓ Audio local DSP: AGC, DRC, mixing
- ♦ Noise cancellation:
 - ✓ Patented noise cancellation for both near-end and far-end
 - ✓ Active echo cancellation

- ✓ Active noise cancellation
- ♦ The on-chip ultra-low power management unit
 - ✓ One unique power supply from 3.3V to 5.5V
 - ✓ DC-DC regulators and LDOs for all on-chip supply voltages
 - ✓ POR-BOR, overvoltage protection
 - ✓ Always-on domain for ultra-low-power sleep mode
- ♦ Crystal oscillator reference clock plus PLL
 - ✓ Crystal oscillator @24MHz
 - ✓ PLL provides all necessary clocks to meet SoC proper operation
- ♦ Interface:
 - ✓ Two I2S, support ADC and DAC with the different sampling rate
 - √ one I2C interfaces for system setting
 - ✓ One UART for firmware update and system setting
 - √ 16 GPIO multiplexing with other interfaces
- Auxiliary ADC for button detection, battery monitor, other analog sensors

3 Functional applications:

- ♦ Wireless headset with ANC, AEC, and ENC
- ♦ Audio conference device
- ♦ AloT device with smart voice processing
- ♦ Beamforming voice command product

4 System block diagram:

With on-chip 24-bits/192Ksps digital and analog interface, microphone preamplifiers, and a cap-less headphone amplifier, SNC7600 is a truly single-chip solution for applications that demand high audio quality and low power consumption.

SNC7600 integrates a Cadence HiFi3 core up to 200MHz for system control and digital signal processing, and a high-quality 24-bits/192Ksps Codec with stereo input and stereo output, 2 AMIC inputs, 4 DMIC inputs. It provides up to 512KB zero-wait RAM and a size configurable Flash memory(1MB by default). The on-chip power management unit provides all power supply to meet the on-chip requirements with one power input. There is one always-on domain to achieve ultra-low power consumption target. The peripheral complement includes two I²S, one I²C, one UART, GPIOs. The auxiliary ADC can be used for button recognition, analog sensor monitoring, etc.

SNC7600 provides the digital processing power needed to maximize the features and performance of headsets and other audio products, including acoustic echo canceling, noise reduction, equalization, automatic gain control (AGC), and volume control.

5 Absolute maximum ratings:

Parameter	Symbol	Min	Max	Unit
	AVDPWR	-0.3	5.5	V
	AVDD	-0.3	3.63	V
Power	VDD_IP33	-0.3	3.63	V
	VDD_IO33	-0.3	3.63	V
	VDD_OPM	-0.3	3.63	V
Ambient	Та	-20	+80	°C
Temperature				
ESD	НВМ	-2000	+2000	V
E3D	CMD	-500	+500	V

6 System bus structure:

The following figure shows the multi-layer bus matrix, where HiFi3, DMA, and ROM, SPI Flash controller, Codec data, BQ filter, and peripherals are slaves. I-RAM and D-RAM are TCM type SRAM with 1 cycle operation. 64KB ROM is used for system boot. The Hardware BQ filter is connected on the AHB bus.

Here are AHB and AHP peripherals:

7 Data processing flow:

BT Audio Case

The above figure shows the data flow with I²S as the interface to HiFi3 core. This is the application case for Bluetooth headset, or the case of beamforming voice command product.

8 HiFi3 core specification:

A powerful Cadence H3Fi3 core is used for system control and audio digital signal processing. The following figure shows the HiFi3 architecture.

The following table shows the key features and configuration of the HiFi3 core:

the following table shows the key reactives and configuration of the fill is cole.					
Item	Specification	Comment			
Core	Cadence HiFi3	As system controller and audio			
	32 bit instruction	signal processing			
Processor Clock	Up to 200 MHz				
MAC	MAC				
FPU	Vector FPU, half-precision				
SIMD	Full type of operation				
MIPS	600 MIPS max	3 slots in HiFi3			
I-RAM	256KB	Local zero-wait RAM for instruction			
D-RAM	256KB	Local zero-wait RAM for data			
I-Cache	16 KB	4 cache way, 64 Byte cache line			
D-Cache	32 KB	4 cache way, 64 Byte cache line			
Bus protocol	AHB-lite	32-bit data width			
Timer	3 timers				

9 Memory mapping:

Memory usage over 4GB space:

Address range	General Use	Address range details and description				
0x0000 0000 to 0x6FFF FFFF	Not used	0x0000 0000 - 0x6FFF FFFF	Not used			
0x7000 0000 to 0x7FFF FFFF	APB peripherals	0x7000 0000 - 0x7FFF FFFF	APB1, APB2, AHB			
0x8000 0000 to 0x8FFF FFFF	Not used	0x8000 0000 - 0x8FFF FFFF	Not used			
0.0000.0000.4-	ROM	0x9000 0000 - 0x9001 FFFF	64KB			
0x9000 0000 to 0x9FFF FFFF	dRAM	0x9FF4 0000 - 0x9FF7 FFFF	256KB			
	iRAM	0x9FFC 0000 - 0x9FFF FFFF	256KB			
0xA000 0000 to	Flash memory	0xA000 0000 - 0xA00F FFFF	External Flash memory,			

0xAFFF FFFF			1024 kB
	Not used	0xA010 0000 - 0xAFFF FFFF	Not used
0xB000 0000 to 0xFFFF FFFF	Not used	0x2000 0000 - 0x6FFF FFFF	Not used

10 DMA description:

There is one DMA master controller connected to the AHB bus. Data can be transferred between RAM, Flash controller, and I2S through the DMA controller. The following figure shows the DMA function implementation.

DMA is an AHB-Central DMA Controller core that transfers data from a source peripheral to a destination peripheral over one or more AHB bus, which consists of:

- DMA hardware request interface
- Up to six channels.
- FIFO per channel for source and destination
- Arbiter
- AHB master interface
- AHB slave interface

The following figure shows the DMA block diagram.

11 Interrupt description:

HiFi3 supports 32 interrupts. There are 32 interrupts defined in the SoC, that are listed in the following table with priority, where higher-level number means higher priority.

Function	Interrupt	Priority	Comments
	ADC12 MLRO	4	ADC MIC1/2 master word clock interrupt
]	ADC34 MLRO	4	ADC MIC3/4/ master word clock interrupt
ADC	ADC56 MLRO	4	ADC MIC5/6/ master word clock interrupt
]	ADC12 SLRO	4	ADC MIC1/2 slave word dock interrupt
	ADC3456 SLRO	4	ADC MIC3/4/5/6 slave word clock interrupt
DAC	DAC MLRO	4	DAC master word clock interrupt
DAC	DAC SLRO	4	DAC slave word clock interrupt
12S-1	I2S-1 IRQ	4	I2S-1 word clock interrupt
12S-2	I2S-2 IRQ	4	I2S-2 word clock interrupt
DMA	DMA-IRQ	4	DMA interrupt for 4 channels
Maestro (PMU)	Maestro-IRQ	4	Maestro Interrupt
Codec	Codec-IRQ	4	Codec interrupt on AIAS lock event and headphone output short-circuit detection
	Codec-IRQ-WT	4	Codec interrupt for VAD
I2C-1	I2C IRQ	3	I2C-1 IRQ
UART	UART IRQ	3	
Timer	Timer0-IRQ	3	Hifi3 own timer
	GPIO6-IRQ	3	
GPIO	GPIO7-IRQ	3	Group to one IRQ
	GPIO8-IRQ	3	
RTC	RTC-IRQ	2	alarm/minute/second/sample interrupt (32KHz oscillator)
KIC	Watchdog-IRQ	2	watchdog interrupt (32KHz)
	GPIO9-IRQ	2	
GPIO	GPIO10-IRQ	2	Group to one IRQ
	GPIO11-IRQ	2	(A)
	GPIO12-IRQ	1	
GPIO	GPIO13-IRQ	1	Group to one IRQ
Gr 10	GPIO14-IRQ	1	Gloup to one INQ
	GPIO15-IRQ	1	·
Software	SW IRQ	1	Software IRQ from HiFi3
Timer	Timer1-IRQ	1	Hifi3 own timer
Tilliel	Timer2-IRQ	1	Hifi3 own timer
ADC	ADC-IRQ	1	ADC IRQ with eoc signal
PWM •	PWM interrupt	1	

12 Clock network description:

The clock generation module includes PLL to provide clocks to HiFi3 core, Codec. and 12S, SPI, and other interfaces.

There are two reference oscillators. One is an on-chip 32kHz RC oscillator using during power-up and in low power mode. 24MHz crystal oscillator is used to provide reference clocks in active mode.

Codec master clock is 12MHz, the system clock can be up to 200MHz. SPI interface maximum clock is at 108MHz.

Clock request for each function block:

Clock	Active mode (max MHz)	Sleep mode (MHz)	Duty-cycle
СРИ/АНВ	200	0	45%-55%
APB1	50	0	45%-55%
APB2	100	0	
Flash	108	0	45%-55%
Codec	12	0	45%-55%
125	24	0	45%-55%
PLL ref clk	24	0	45%-55%

13 PLL description

The following figure shows the PLL architecture where the reference clock is 24MHz.

This table shows the signals for PLL operation:

Signal	Usage		Limitation
DIVR[4:0]	Reference Divider	Value	Both REF and post-divide REF must be
	(binary value + 1	$: 00000 = \div 1)$	within the specified range
DIVF[6:0]	Feedback Divider	Value	VCO must be within the specified range
	(binary value + 1 :	$0000000 = \div 1$	
DIVQ[2:0]	Output Divider Va	lue (2^ binary value)	
	001 = ÷2	$100 = \div 16$	
	010 = ÷4	101 = ÷32	
	011 = ÷8	110 = ÷64	
FSE	Chooses between internal and external		
	input paths:		
	0 = FB pin input		
	1 = internal feedb	ack	
RANGE [2:0]	PLL Filter Range		This sets the PLL loop filter to work with
	000=BYPASS	100=26-42MHz	the post-reference divider frequency.
	001=Reserved	101=42-68MHz	Choose the highest valid range for best
	010=10-16MHz	110=68-110MHz	jitter performance, or optimize with
	011=16-26MHz	111=110-200MH	post-silicon characterization.

This table shows the key parameters of PLL:

Description	Symbol	Min	Тур	Max	Units
Input Frequency	Fref		24		MHz
VCO Frequency	Fvco	1000		2000	MHz
Output Frequency	Fout	20		1000	MHz
Output Duty Cycle	t-do	45		55	%
Maximum Lock Time	t-lock			50	μs
Reset Time	t-reset	1			μs
Maximum Long Term Jitter	LTJ	±1% Divided-Ref Period			
Maximum Cycle to Cycle Jitte	CCI	±1% Outpu	t Period		
Total Power (unloaded)	IDD		2		mA

14 Crystal oscillator description:

The above figure shows the crystal oscillator circuit and the crystal equivalent circuit. Only the crystal (XTAL) and the capacitances CX1 and CX2 need to be connected externally on XTAL-In and XTAL-Out. The oscillator has also a bypass mode where an external clock can be applied directly to the XTAL-In pin.

For the best results, it's very critical to select a matching crystal for the on-chip oscillator. The load capacitance CL, series resistance Rs, and drive level DL are important parameters to consider while choosing the crystal. Rf is the feedback resistor important for the crystal to start oscillation. After selecting the proper crystal, the external load capacitor CX1 and CX2 values can be generally determined by the following expression:

CX1=CX2= CL - (Cpad + Cparasitic)

Where:

CL: Crystal load capacitance per terminal

Cpad: Pad capacitance of the XTAL-In and XTAL-Out pins

Cparasitic: Parasitic or stray capacitance of the external circuit.

This table shows the electrical characteristics of the crystal oscillator:

Description	Symbol	Min	Тур	Max	Units
Frequency range (crystal mode)	Fref		24		MHz
Frequency range (bypass mode)	Fref		24		MHz
Frequency accuracy		-20		+20	ppm
Cycle-to-cycle Jitter	CCI	-10		+10	ps
Output Duty Cycle	t-do	40	50	60	%
Equivalent Series Resistance				40	Ω
CL			8		pF
Rf			1		ΜΩ
Total Power (unloaded)	IDD		TBD		mA

15 Codec description:

CODEC includes the following function blocks:

One stereo Analog to Digital Converter (ADC) and additional analog circuitry:

- ♦ Two single-ended or differential analog inputs with boost gain, which can be used either for line-in or mic-in application in cap-less configuration.
 - ✓ The two-stage gain for record path: an analog boost gain from -2 dB to +24 dB with 2 dB step and a digitally programmable gain from -64 to +63 dB with 1 dB step.
- ♦ 4 mono or 2 stereo digital microphone interfaces with programmable DMIC clock frequency.

One stereo Digital to Analog Converter (DAC) and additional analog circuitry:

- One stereo differential cap-less headphone and line output.
- ♦ One dedicated mono differential line output

Built-in power regulation:

- ♦ One low noise linear voltage regulator to supply part of the analog circuits.
- ♦ Two microphone biasing outputs for driving up to two microphones.

Signal processing function:

- ♦ An Automatic Gain/Level Control (AGC) enables a self-adaptive recording of the sound level during recording.
- ♦ A Wind Noise filter (WNF), a programmable high pass filter feature enabling to reduce wind noise during recording in a windy environment or an open window vehicle.
- ♦ A digital WhisperTriggerTM for digital microphones which wake-up the chip when voice activity is detected.
- An Audio Interface Adaptive Synchronizer (AIAS) system enables to synchronize automatically the input data if the mean sample frequency is close to a standardized value (up to 3% difference).

Its main features include:

- ♦ Operating conditions
 - ✓ Main clock: 12MHz or 13MHz
 - ✓ Single 3.3 V (2.97 V to 3.63 V) analog power supply
 - ✓ Ambient temperature range from -25°C to 80°C
- One stereo 24-bit/192Ksps ADC and One stereo 24-bit/192Ksps DAC
- ♦ Low BOM capacitor-less input and output
- ♦ 4 digital microphone interfaces with programmable DMIC clock frequency and support of low power mode
- ♦ Serial and parallel audio interface for digital audio data
- 24 to 16-bit signed linear PCM format, support sampling rate of 8, 11.025, 12,
 16, 22.05, 24, 32, 44.1, 48, 88.2, 96, 176.4, 192kHz
- Embedded low noise linear regulator for high resilience to power supply noise
- Low power operating mode on the ADC path
- ♦ Reduction of audible glitches systems:
 - ✓ Soft mute mode
 - ✓ Zero-crossing gain change
- ♦ Automatic Gain/Level Control (AGC) with SNR optimizer feature
- ♦ Programmable Wind Noise Filter (WNF)
- ♦ WhisperTriggerTM, voice activity detection for digital microphone
- ♦ Slave mode interface on DAC with AIAS automatic data rate synchronization
- ♦ Slave mode interface on ADC with AIAS automatic data rate synchronization

16 Codec characteristics:

16.1 Frequencies:

Sampling frequency and main clock frequency:

Parameter	Description	Min.	Тур.	Max.	Unit
Fs	Sampling frequency in normal mode	8		192	kHz
Fs	Sampling frequency in low power consumption mode (ADC only)	8		16	kHz
F _{mclk}	Main clock frequency		12 or 13		MHz
D _{mclk}	Main clock duty cycle	0.45	0.50	0.55	-

The relation between MCLK, DMIC_CLK frequencies, and available Fs:

Clock	DMIC-CLK: frequency	DMIC-CLK: frequency	Available Fs (kHz)
division ratio	(F _{dmic} ≠clk) for Fmclk=12Mhz	(F _{dmic} ≠clk) for Fmclk=13Mhz	
(DMIC_RATE)			
16	750 kHz	812.5 kHz	8, 11.025, 12, 16
12	1 MHz	1.08 MHz	8, 11.025, 12, 16
5	2.4 MHz	2.6 MHz	8, 11.025, 12, 16, 22.05, 24,
		& O	32, 44.1, 48, 88.2, 96, 176.4,
			192
4	3.0 MHz	3.25 MHz	8, 11.025, 12, 16, 22.05, 24,
			32, 44.1, 48, 88.2, 96, 176.4,
	. 0		192

16.2 Analog microphone/line input to ADC path:

Condition: - 40° C to + 100° C, AVDD=3.3Vm DVDD=1.1V. Input sine wave with a frequency of 1 kHz, measurement bandwidth 20 Hz - Fs/2 for Fs < 48 kHz, measurement bandwidth 20 Hz - 20 kHz for Fs = 48 kHz to 192 kHz, normal mode, capacitor-less input configuration, unless otherwise specified.

Parameter	Test condition	Min.	Тур.	Max.	Unit
Input level	Full Scale, Gain GID* = 0 dB, boost gain GIM*		2.12		Vpp
	= 0 dB				
	Full Scale, Gain GID* = 0 dB, boost gain GIM*		0.212		Vpp
	= 20 dB				
THD+N	1 kHz sine wave @ Full Scale -3 dB and gain		88		dB
	GID* = 0 dB, boost gain GIM* = 0 dB, normal				
	mode and low power mode				
Dynamic Range	A-weighted, 1 kHz sine wave, normal mode		106.5		dB
	A-weighted, 1 kHz sine wave, low power mode		103.5		dB
SNR	A-weighted, 1 kHz sine wave, with activation of		106		dB
	the SNR optimizer feature				
	A-weighted, 1 kHz sine wave, gain $GID^* = 0 dB$,		94.5		dB
	boost gain GIM* = 0 dB, normal mode				
	A-weighted, 1 kHz sine wave, gain $GID^* = 0 dB$,		90.5		dB

		1			
	boost gain GIM* = 0 dB, low power mode				
PSRR	100 mVpp 1 kHz sinewave is applied to AVD,		90		dB
	input data is 0 and gain $GID^* = 0$ dB, boost				
	gain GIM* = 0 dB				
Input referred	A-weighted, 1 kHz sine wave @ Full Scale and		3.6		uVrms
noise	gain GID* = 0 dB, boost gain GIM* = 20 dB,				
	normal mode				
	A-weighted, 1 kHz sine wave @ Full Scale and		5.0		uVrms
	gain GID* = 0 dB, boost gain GIM* = 20 dB,				
	low power mode				
Channel	1 kHz sine wave @ Full Scale on one channel,		108		dB
separation	no signal on the other channel and gain GID*				1
	= 0 dB, boost gain GIM* = 0 dB				11
Inter-channel	1 kHz sine wave @ Full Scale on two channels			0.1	°
phase mismatch	and gain GID* = 0 dB, boost gain GIM* = 0 dB,				
	input bypass capacitor inter-channel mismatch				
	= 10% max, master mode				
Gain range	Boost gain GIM* when activated	-2		+24	dB
	Digital gain GID*	-64		+63	dB
Gain step	GIM* @1kHz		2		dB
	GID* @1kHz		1		dB
Gain accuracy	GIM* @1kHz	-1		+1	dB
	GID* @1kHz	-0.5		+0.5	dB
Input impedance	Boost gain GIM* = 20 dB Includes 10 pF for		20		pF
(differential	ESD, bonding and package pins capacitances				
configuration)					
Input impedance	Boost gain GIM* = 20 dB Includes 10 pF for		20		pF
(single-ended	ESD, bonding and package pins capacitances				
configuration)					
Polarity	AIP*-AIN* to DIL/R		+1		
2.5.1.9		l			

16.3 DAC to headphone output path:

Condition: -40° C to $+100^{\circ}$ C, AVDD=3.3Vm DVDD=1.1V. Input sinewave with a frequency of 1kHz, measurement bandwidth 20Hz-20kHz, unless otherwise specified.

Parameter	Test condition	Min.	Тур.	Max.	Unit
Output level	Full Scale, gain GOL/R = +6 dB, GODL/R = 0 dB,		5.6		Vpp
	10 kOhms load				
	Full Scale, gain GOL/R = +6 dB, GODL/R = 0 dB,		5.6		Vpp
	200 Ohms load				
	Full Scale, gain GOL/R = +6 dB, GODL/R = 0 dB,			3.96	Vpp
	32 Ohms load				
Output power	200 Ohms load		19.6		mW

	32 Ohms load			61.3	mW
SNR	A-weighted, 1 kHz sine wave @ Full Scale, gain		101		dB
	GOL/R = +6 dB, GODL/R = 0 dB, 10 kOhms load				
Dynamic Range	A-weighted, 1 kHz sine wave @ Full Scale, gain		110		dB
	GOL/R = [-10 +6] dB, GODL/R = 0 dB, 10 kOhms				
	load				
Idle Noise	A-weighted with no signal, gain GOL/R=-10dB,		-104.9		dBV
	GODL/R = 0 dB, 10k Ohms load				
THD+N	1 kHz sine wave @ Full Scale -1 dB, gain GOL/R =		87		dB
	+6 dB, GODL/R = 0 dB, 10 kOhms load				
	1 kHz sine wave @ Full Scale -1 dB, gain GOL/R =		85		dB
	+6 dB, GODL/R = 0 dB, 200 Ohms load				\
	1 kHz sine wave @ Full Scale -1 dB, gain GOL/R =		79		dB
	-3 dB, GODL/R = 0 dB, 32 Ohms load				
PSRR	100 mVpp 1 kHz is applied to AVD, input data is 0		90		dB
	and gain GOL/R = 0 dB, GODL/R = 0 dB, 10				
	kOhms load capacitor inter-channel mismatch =	1			
	10% max, master mode				
	100 mVpp 1kHz is applied to VDDAO, input data		70		dB
	is 0 and gain GOL/R = 0 dB, GODL/R = 0 dB, 10				
	kOhms load				
Analog gain	Gain GOL/R	-19		+12	dB
Digital gain	Gain GODL/R	-31		+32	dB
Gain step	GOL/R, GODL/R @1 kHz		1		dB
Gain accuracy	GOL/R, GODL/R @1 kHz	-0.5		+0.5	dB
Pop-up Noise	Active <-> Inactive, 10 kOhms load		-60		dBV
	Active <-> Inactive, 16 Ohms load		-60		dBV
Output load		32			ohms
resistance (RI)					
Output load				200	pF
capacitance (Cp)					

16.4 DAC to line output path

Condition: -40°C to +100°C, AVDD=3.3Vm DVDD=1.1V. Input sinewave with a frequency of 1kHz, measurement bandwidth 20Hz-20kHz, unless otherwise specified.

Parameter	Test condition	Min.	Тур.	Max.	Unit
Output level	Full Scale and gain GODL/R = 0 dB	2.3	2.55	2.8	Vpp
SNR	A-weighted,1kHz sinewave @ Full Scale and gain		95		dB
	GODL/R = 0 dB				
Dynamic Range	A-weighted, 1 kHz sine wave @ Full Scale -60 dB		95		dB
	and gain GODL/R = 0 dB				
THD+N	1 kHz sine wave @ Full Scale -1 dB and gain		85		dB

	GODL/R = 0 dB				
PSRR	100 mVpp 1 kHz sine wave is applied to AVD and		90		dB
	VDDAO, input data is 0 and gain GODL/R = 0 dB				
Output load		100K			ohms
resistance (RI)					
Output bypass			1		uF
capacitance (Cp)					
Output load				100	pF
capacitance (Cp)					

16.5 Digital microphone interface to decimating filter output path

Condition: Input sine wave with a frequency of 1 kHz, MCLK = 12 MHz or 13 MHz, DMIC_CLK = Fmclk/4, measurement bandwidth 20 Hz - Fs/2 for Fs = 8 to 32 kHz, measurement bandwidth 20 Hz - 20 kHz for Fs = 44.1 kHz to 192 kHz, unless otherwise specified.

Parameter	Test condition	Min.	Тур.	Max.	Unit
Input level	Full Scale max value, Gain GID* = 0 dB		85.6		%
	Full Scale min value, Gain GID* = 0 dB		14.4		%
SNR	A-weighted,1kHz sinewave @Full Scale and gain		100		dB
	GIDL, GIDR = 0 dB				
Dynamic Range	A-weighted, 1 kHz sine wave @ Full Scale -60 dB		100		dB
	and gain GID* = 0 dB				
THD+N	1kHz sinewave @Full Scale-1dB and gain GIDL,		90		dB
	GIDR = 0 dB				
Digital gain	Gain GID* when activated	-64		63	dB
Gain step	GID* @1 kHz		1		dB
Gain accuracy	GID* @1 kHz	-0.25	1	+0.25	dB

16.6 Voice detection on digital microphone interface

Parameter	Test condition	Min.	Тур.	Max.	Unit
Detection	Detection results based on MIWOK≠CTM r1.0,		25.7		ms
Latency	Far-Field configuration, Power Level Sensitivity				
VDV (Voice	set to 5 dB, within 60% truncation of the first		93.5		%
Detected as	phoneme				
Voice)					
NDV (Noise			7		%
Detected as					
Voice)					
VTE (Voice			93.25		%
Trigger					
Efficiency)					

Detection	Detection results based on MIWOK≠CTM r1.0,		25.7		ms
Latency	Far-Field configuration, Power Level Sensitivity				
VDV (Voice	set to 5 dB, within 60% truncation of the first		98.5		%
Detected as	phoneme				
Voice)					
NDV (Noise			7		%
Detected as					
Voice)					
VTE (Voice			95.75		%
Trigger					
Efficiency)					
VDV (Voice	Detection results based on MIWOK≠CTM r1.0,		100		%
Detected as	Far-Field configuration, Power Level Sensitivity				
Voice)	set to 5 dB, within the word length				
Minimum				-80	dBFS
Absolute					
Detection					
Threshold					
Power Level		0		31	dB
Sensitivity					
Power Level			1		dB
Sensitivity					

17 I²S specification:

There are three I²S interfaces, which are specified in the following table.

		es, which are specified in the re	
Item	Unit	Specification	Comment
Interface number		2 I ² S interface, with word	
\ (clock, bit clock, data-in, data-	
		out	
Word clock	kHz	Up to 192	8, 16, 32, 44.1, 48, 88.2, 96,
6			176.4, 192
Data width	bits	16/20/24	
Format		Standard, left-justified, right-	
		justified	

 I^2S pin are GPIO reuse pins, GPIO mapping is described in the following table, where CLK is the bit clock, WS is the word clock, SDI is the input data, SDO is the output data.

125	5-1	I2S-2		
I2S1_clk	GPIO0	I2S2_clk	GPIO12	
I2S1_ws	GPIO1	I2S2_ws	GPIO13	
I2S1_sdi	GPIO2	I2S2_sdi	GPIO14	
I2S1_sdo	GPIO3	I2S2_sdo	GPIO15	

18 PMU specification:

One single power supply comes either from the host device VBUS either from Li-ion battery. The on-chip power management unit (PMU) provides all necessary voltage to run all functional blocks with low power consumption.

MIC bias for external microphones. 2.5V LDO for audio analog is included in Codec module. PMU includes also function for power-on-reset (POR) and brown-out-detect (BOD), also OVP/OCP/ULP protection. PMU should be programmable via APB bus to work in active mode, sleep mode, and power-down mode.

This figure shows the power tree architecture, where:

- ♦ Single power input from 3.3V to 5.5V
- ♦ One DC-DC regulator for Core and digital: 1.1V
- ♦ One Always-on ultra-low-power LDO for sleep-mode: 1.1V
- ♦ One DC-DC regulator for Codec analog part: 3.3V
- ♦ One LDO generate 3.3V power for other analog parts
- One LDO generate 3.3V power for digital IO

Vin (3.3V-5.5V, USB Vbus or Li-ion battery) Switch mode LDO Switch mode LDO LDO Regulator Regulator Regulator Regulator 1.8V/3.3V 1.1V 1.1V 3.3 3.3V for I/O for core / digital Always On for analog For CODEC BOD Vdd Always On FLASH/USB/PLL/ADC Vcc I/O Vdd CODEC ► Vda PLL/ADC Vcc CODEC analog LDO 2,5V In CODEC MIC Bias LDO MIC Bias RET SRAM 32k RC AHB-Lite (lin CODAC) Interface Vcc DAC last driver MAESTRO valid eSR/iLR1/iLR2 valid RAR auto - boot ALL three 3.3V OK Codec /ADC/flash/IO pa analog vdd OK 1.1V OK

♦ Two Mic-bias for microphone biasing: 2.5V

OR_BOR start-up finis elease POR reset sign

The startup sequence is described in the left figure, where POR gives the general reset signal, and Maestro sets all regulators into the right states.

Start-up done

19 Reset network:

The following figure shows the reset network, where 4 reset signals reset different function blocks. Reset 1 is only generated by POR and BOR, the other 3 reset signals can be from POR/BOR, hardware reset and software reset, also from o_sus_done and o_sus_fail.

20 I²C/UART:

Item	Quantity	Unit	Specification	Comment
UART •	1	bps	Up to 3M	TX and RX
l ² C		kbps	Up to 400	

21 Auxiliary ADC:

This is a 12-bit SAR ADC, which can be used for headset button detection, battery monitor, or other analog sensor input measurement.

Parameters	Min	Тур	Max	Unit
Resolution		12		Bits
ENOB		11		Bits
Sampling rate		5.0		Msps
Channel		TBD		
AVDD-aux-ADC		3.3		V
DVDD-aux-ADC		1.1		٧

Input voltage range	0		3.3	V
INL accuracy	-2		+2	LSB
DNL accuracy	-1		+1	LSB
Offset	-2		+2	LSB
Gain error	-1		1	%
Hardware conversion time		1.0		us

22 **Pinout Name List:**

Pin name list with description and ball position:

Function	Pin name	63 Ball BGA	Туре	Description
Vtal Carillatas	XI	D1	Analog	24MHz crystal port
Xtal Oscillator	XO	C1	Analog	24MHz crystal port
	VDD_IP33	D3	Analog	3.3V for analog block
	VDD_IO33	E3	Analog	3.3V for IO
	CODEC_VDD	F8	Analog	3.3V for Codec
	AVDPWR_RAR	G3	Analog	External power supply
	AVDPWR_ESR	G6	Analog	External power supply
	OPM_VOUT	G7	Analog	Protection LDO output
	VDD_CORE11	F2,F7	Analog	1.1V for digital core
	ESR_LX	G4	Analog	DCDC2 switch pin
	VSENSE_ESR	G5	Analog	DCDC2 sense pin
	RAR_LX	G2	Analog	DCDC1 switch pin
	VSENSE-RAR	G1	Analog	DCDC1 sense pin
	NC	F6	Analog	
	VREG	D7	Analog	Audio supply
PMU •	VCAP	D9	Analog	Audio biasing decap
РМО	GPIO0	В3	I/O	I2S1_clk
	GPIO1	B4	I/O	I2s1_ws
	GPIO2	A4	I/O	I2s1_sdi
•	GPIO3	B5	I/O	I2s1_sdo
*	GPIO9	B8	1	
	DMIC_IN2	В7	I	DMIC3/4 input
	DMIC_IN3	В6	1	DMIC5/6 input
	GPIO8	A7	0	
	DMIC_CLK21	A6	0	DMIC3/4 clock
	DMIC_CLK31	A5	0	DMIC5/6 clock
	RST_N	D8	1	Chip reset
	GPIOAO	F5	1	Always-on wake up
	UART_TXD	F4	0	UART TX data
	UART_RXD	F3	I	UART RX data

DFU_N					
GPIO11 C2		DFU_N	E8	I	Firmware update enable
GPIO12 B2 I I2S2_CLK		GPIO10	D2	1	I2C_CLK
GPIO13		GPIO11	C2	I	I2C_SDA
GPIO14		GPIO12	B2	1	I2S2_CLK
GPIO15		GPIO13	A1	1	12S2_WS
TEST-EN C6		GPIO14	A2	1	12S2_SDI
AIP1		GPIO15	A3	I	12S2_SDO
AIN1 A9 Analog MIC1 input N port AIP2 C9 Analog MIC2 input N port AIN2 B9 Analog MIC2 input P port AIN2 B9 Analog Mic2 input P port MICBIAS1 C8 Analog Micbias 1 MICBIAS2 D8 Analog Micbias 2 AOHPLP E9 Analog Left DAC P port AOHPLN F9 Analog Left DAC N port AOHPRN G9 Analog Right DAC N port AOHPRP G8 Analog Right DAC P port AOHPRP G8 Analog Right DAC P port NC E2 Analog NC NC E2 Analog NC NC E1 Analog VSSA_ADC C3 Analog Analog GND VSSA D4 Analog Analog GND VSSA D4 Analog Digital GND VSSA_AVS D6 Analog Codec analog GND AVS_ESR E6 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_AO E7 Analog DAC driver GND		TEST-EN	C6		Test mode enable
Audio MICBIAS1 C8 Analog MiC2 input N port Audio MICBIAS1 C8 Analog Micbias 1 Interface MICBIAS2 D8 Analog Micbias 2 AOHPLP E9 Analog Left DAC P port AOHPRN G9 Analog Right DAC N port AOHPRP G8 Analog Right DAC N port NC E2 Analog NC NC F1 Analog NC NC F1 Analog NC NC E1 Analog D VSSA_ADC C3 Analog Analog GND VSSA D4 Analog Analog GND VSSA D4 Analog Digital GND VSSA_AVS D6 Analog Codec analog GND AVS_ESR E6 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_AO E7 Analog DAC driver GND		AIP1	A8	Analog	MIC1 input P port
Audio AlN2		AIN1	A9	Analog	MIC1 input N port
Audio MICBIAS1 C8 Analog Micbias 1 Interface MICBIAS2 D8 Analog Micbias 2 AOHPLP E9 Analog Left DAC P port AOHPRN F9 Analog Right DAC N port AOHPRN G9 Analog Right DAC P port AOHPRP G8 Analog GPADCO input NC E2 Analog NC NC F1 Analog NC NC E1 Analog Analog GND VSSA_ADC C3 Analog Analog GND VSSA D4 Analog Digital GND VSSA_AVS D6 Analog Codec analog GND AVS_ESR E6 Analog DCDC2 GND AVS_ESR E5 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_A0 E7 Analog DAC driver GND		AIP2	C9	Analog	MIC2 input N port
MICBIAS2 D8		AIN2	В9	Analog	MIC2 input P port
AOHPLP E9 Analog Left DAC P port AOHPLN F9 Analog Left DAC N port AOHPRN G9 Analog Right DAC N port AOHPRP G8 Analog Right DAC P port AOHPRP G8 Analog Right DAC P port AUxiliary ADC VINPO_ADC B1 Analog GPADCO input NC E2 Analog NC NC F1 Analog NC E1 Analog VSSA_ADC C3 Analog Analog GND VSSA D4 Analog Analog GND VSSA D4 Analog Digital GND VSSA_AVS D6 Analog Codec analog GND AVS_ESR E6 Analog DCDC2 GND AVS_ESR E5 Analog DCDC1 GND GNDSENSE E4 Analog DAC driver GND	Audio	MICBIAS1	C8	Analog	Micbias 1
AOHPLN F9 Analog Left DAC N port AOHPRN G9 Analog Right DAC N port AOHPRP G8 Analog Right DAC P port AUxiliary ADC VINPO_ADC B1 Analog GPADC0 input NC E2 Analog NC NC F1 Analog NC E1 Analog VSSA_ADC C3 Analog Analog GND VSSA D4 Analog Analog GND VSSA_AVS D6 Analog Digital GND AVS_ESR E6 Analog DCDC2 GND AVS_RAR E5 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_AOO E7 Analog DAC driver GND	Interface	MICBIAS2	D8	Analog	Micbias 2
AOHPRN G9 Analog Right DAC N port AOHPRP G8 Analog Right DAC P port Auxiliary ADC VINPO_ADC B1 Analog GPADCO input NC E2 Analog NC NC F1 Analog NC E1 Analog Analog GND VSSA_ADC C3 Analog Analog GND VSSA D4 Analog Analog GND VSSD C4,C5,D5 Analog Digital GND VSSA_AVS D6 Analog Codec analog GND AVS_ESR E6 Analog DCDC2 GND AVS_RAR E5 Analog All regulator GNDsenses VSSA_AO E7 Analog DAC driver GND		AOHPLP	E9	Analog	Left DAC P port
AOHPRP G8 Analog Right DAC P port Auxiliary ADC VINPO_ADC B1 Analog GPADC0 input NC E2 Analog NC NC F1 Analog NC E1 Analog VSSA_ADC C3 Analog Analog GND VSSA D4 Analog Analog GND VSSA D4 Analog Digital GND VSSA_AVS D6 Analog Codec analog GND AVS_ESR E6 Analog DCDC2 GND AVS_RAR E5 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_AO E7 Analog DAC driver GND		AOHPLN	F9	Analog	Left DAC N port
Auxiliary ADC VINP0_ADC B1 Analog GPADC0 input NC E2 Analog NC NC F1 Analog NC E1 Analog VSSA_ADC C3 Analog Analog GND VSSA D4 Analog Analog GND VSSD C4,C5,D5 Analog Digital GND VSSA_AVS D6 Analog Codec analog GND AVS_ESR E6 Analog DCDC2 GND AVS_RAR E5 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_A0 E7 Analog DAC driver GND		AOHPRN	G9	Analog	Right DAC N port
NC E2 Analog NC NC F1 Analog Analog NC E1 Analog Analog GND VSSA_ADC C3 Analog Analog GND VSSA D4 Analog Analog GND VSSD C4,C5,D5 Analog Digital GND VSSA_AVS D6 Analog Codec analog GND AVS_ESR E6 Analog DCDC2 GND AVS_RAR E5 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_A0 E7 Analog DAC driver GND		AOHPRP	G8	Analog	Right DAC P port
NC F1 Analog NC E1 Analog VSSA_ADC C3 Analog Analog GND VSSA D4 Analog Analog GND VSSD C4,C5,D5 Analog Digital GND VSSA_AVS D6 Analog Codec analog GND AVS_ESR E6 Analog DCDC2 GND AVS_RAR E5 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_A0 E7 Analog DAC driver GND	Auxiliary ADC	VINP0_ADC	B1	Analog	GPADC0 input
NC E1 Analog		NC	E2	Analog	NC
VSSA_ADC	NC	NC	F1	Analog	
VSSA		NC	E1	Analog	
VSSD		VSSA_ADC	C3	Analog	Analog GND
VSSA_AVS D6 Analog Codec analog GND AVS_ESR E6 Analog DCDC2 GND AVS_RAR E5 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_A0 E7 Analog DAC driver GND		VSSA	D4	Analog	Analog GND
GND AVS_ESR E6 Analog DCDC2 GND AVS_RAR E5 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_A0 E7 Analog DAC driver GND		VSSD	C4,C5,D5	Analog	Digital GND
AVS_RAR E5 Analog DCDC1 GND GNDSENSE E4 Analog All regulator GNDsenses VSSA_A0 E7 Analog DAC driver GND		VSSA_AVS	D6	Analog	Codec analog GND
GNDSENSE E4 Analog All regulator GNDsenses VSSA_A0 E7 Analog DAC driver GND	GND	AVS_ESR	E6	Analog	DCDC2 GND
GNDSENSE E4 Analog All regulator GNDsenses VSSA_A0 E7 Analog DAC driver GND VREFN C7 Analog Codec reference GND	7(AVS_RAR	E5	Analog	DCDC1 GND
VSSA_A0 E7 Analog DAC driver GND VREFN C7 Analog Codec reference GND	+	GNDSENSE	E4	Analog	All regulator GNDsenses
VREFN C7 Analog Codec reference GND	10	VSSA_A0	E7	Analog	DAC driver GND
	X	VREFN	C7	Analog	Codec reference GND

23 Package information:

63 balls BGA: 0.5mm pitch for both x-direction and y-direction. Body size is $5.0\,\mathrm{x}$ 3.5mm.

BGA63 dimension information:

b - 1	Dimension in mm			Dimension in inch			
symbol	MIN	NOM	MAX	MIN	NOM	MAX	
A	Diversi	====	1. 120	200	(02000)	0.0441	
A1	0. 130	0.180	0. 230	0.005	0.007	0.009	
A2	0.790	0.840	0.890	0.031	0.033	0.035	
С	0. 220	0.260	0.300	0.009	0.010	0.012	
D	3. 400	3. 500	3.600	0.134	0. 138	0.142	
Е	4.900	5. 000	5. 100	0. 193	0. 197	0.201	
D1	22.2	3.000	22/2	200	0.118	3	
E1		4.000			0. 157		
е	1	0.500			0.020		
b	0. 200	0.250	0.300	0.008	0.010	0.012	
aaa	0.100		0.004				
bbb		0.100		0.004			
ddd		0.080		0.003			
eee		0.150		0.006			
fff	0.050			0.002			
Ball Diam	0. 250			0.010			
N	63		63				
MD/ME	7/9		7/9				

1. BALL PAD OPENING: 0.230mm; [球形防焊开口: 0.230mm;

APRIMARY DATUM C AND SEATING PLANE ARE THE SOLDER BALLS;

[主要基准C和底面是锡球;]

ADDIMENSION b IS MEASURED AT THE MAXIMUM SOLDER BALL DIAMETER, PARALLEL

TO PRIMARY DATUM C; [尺寸b是测量最大锡球直径,平行于主要基准C;]

4. SPECIAL CHARACTERISTICS C CLASS: bbb, ddd; [特殊特性C类: bbb, ddd;]

ATHE PATTERN OF PIN 1 FIDUCIAL IS FOR REFERENCE ONLY;

[PIN 1 标识仅供参考:]

6. BAN TO USE THE LEVEL 1 ENVIRONMENT-RELATED SUBSTANCES;

[禁止使用一级环境管理物质;]

24 Application BOM list:

BOM list only convers electrical part, Mic & Speaker connection not included.

BOM list								
Function	Description	R/L/C	Value	Comment				
	VCAP to VREFN	Cext1	10uF					
	VCAP (O VREFIN	Cext2	100nF					
CODEC	Vreg to VSSA	Cext3	4.7uF					
	Micbias1 to GND	CMic1	100nF	if Micbias1 in use				
	Micbias2 to GND	CMic2	100nF	if Micbias2 in use				
Power-in	AVDPWR to GND	Cin1	10uF					
5.05.04	Switch inductor	L	3.3uH					
DCDC1	Vout to GND	C1	10uF					
DCDC3	Switch inductor	L	3.3uH					
DCDC2	Vout to GND	C1	10uF					
LDO-IP33	Vout to GND	C1	1uF					
LDO-IO33	Vout to GND	C1	1uF					
LDO_OPM	Vout to GND	C1	1uF					
	XI to XO	Crystal	24MHz					
Xtal	XI to GND	Cx1	8pF					
Oscillator	XO to GND	Cx2	8pF					
	XI to XO	Rf	1ΜΩ					
Total		17	part					