

#### Instituto de Ciências Exatas e Biológicas – ICEB



Departamento de Computação - DECOM

# PROGRAMAÇÃO DE COMPUTADORES I BCC701 : Aula Prática 10

# Exercício 1

Um engenheiro de som gravou um sinal de som para testar um microfone, fazendo amostragens desse sinal em intervalos discretos de tempo (ao invés de gravar o sinal continuamente). A unidade de cada amostragem é volts. Entretanto, o microfone estava falhando e, em algumas amostragens, o sinal estava abaixo de certo limite, devendo portanto ser descartado para efeito do cálculo do valor médio do sinal.

Escreva um programa que leia o limite inferior para que um sinal seja considerado válido. Também, o programa faz a leitura de várias amostragens, valores do sinal do microfone. Quando o usuário desejar encerrar as entradas de dados ele digita -1.

Ao final, o programa imprime o número de sinais válidos e valor médio dos sinais das amostragens válidas, isto é, daquelas em que o sinal estava acima do limite inferior válido.

Um exemplo da entrada e saída do programa é mostrado a seguir.

## Execução:

| INFOR                                        | 1E ( | LIMI1 | CE : | INFE | RIOR | PARA  | UM  | SINAL | VÁLIDO: | 3 |  |  |
|----------------------------------------------|------|-------|------|------|------|-------|-----|-------|---------|---|--|--|
| VALOR                                        | DO   | SINAL | DE   | UMA  | AMOS | STRAG | EM: | 8.1   |         |   |  |  |
| VALOR                                        | DO   | SINAL | DE   | UMA  | AMOS | STRAG | EM: | 2     |         |   |  |  |
| VALOR                                        | DO   | SINAL | DE   | UMA  | AMOS | STRAG | EM: | 4     |         |   |  |  |
| VALOR                                        | DO   | SINAL | DE   | UMA  | AMOS | STRAG | EM: | 6.2   |         |   |  |  |
| VALOR                                        | DO   | SINAL | DE   | UMA  | AMOS | STRAG | EM: | 5.8   |         |   |  |  |
| VALOR                                        | DO   | SINAL | DE   | UMA  | AMOS | STRAG | EM: | 1     |         |   |  |  |
| VALOR                                        | DO   | SINAL | DE   | UMA  | AMOS | STRAG | EM: | 2.88  |         |   |  |  |
| VALOR                                        | DO   | SINAL | DE   | UMA  | AMOS | STRAG | EM: | -1    |         |   |  |  |
| VALOR MÉDIO DAS 4 AMOSTRAGENS VÁLIDAS: 6.025 |      |       |      |      |      |       |     |       |         |   |  |  |



## Instituto de Ciências Exatas e Biológicas – ICEB



### Departamento de Computação - DECOM

# Exercício 2

Codificar um programa Scilab que realize as seguintes tarefas:

- 1) leia **n** números reais pelo teclado,  $x_i$  com  $1 \le i \le 4$ ;
- 2) calcule a média aritmética M, dos números lidos:

$$M = \frac{x_1 + x_2 + x_3 + x_4}{n}$$

- 3) calcule o desvio padrão D, dos números lidos. O cálculo do desvio padrão é realizado através dos seguintes passos, com  $1 \le i \le 4$ :
  - a. calcule o somatório das parcelas  $(x_i M)^2$ ;
  - b. multiplique o resultado do item a) por 1/(n-1);
  - c. extraia a raiz quadrada do resultado do passo b), obtendo-se o desvio padrão.

A fórmula que resume os passos 1, 2 e 3 é:

$$D = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - M)^2}$$

- 4) imprima o valor da média aritmética e do desvio padrão conforme o exemplo de execução exibido abaixo.
- 5) a média aritmética e o desvio padrão devem ser implementadas por Funções Definidas Pelo Usuário, por exemplo, MediaAritmetica e DesvioPadrao, respectivamente.

Um exemplo de execução do programa é mostrado a seguir.

## Exemplo

LEITURA DOS 4 NÚMEROS:
DIGITE UM NÚMERO REAL: 2.2
DIGITE UM NÚMERO REAL: 8.6
DIGITE UM NÚMERO REAL: 9.1
DIGITE UM NÚMERO REAL: 3.5

IMPRESSÃO DOS RESULTADOS: MÉDIA ARITMÉTICA: 5.85 DESVIO PADRÃO: 3.51046



## Instituto de Ciências Exatas e Biológicas - ICEB



## Departamento de Computação - DECOM

# Exercício 3

Implementar um programa para calcular o cos(x). O valor de x deverá ser digitado em graus. O valor do cosseno de x (em radianos) será calculado pela soma dos 100 primeiros termos da série a seguir:

$$\cos(X) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \frac{x^{10}}{10!} + \dots$$

A seguir, uma ilustração da entrada e saída de uma execução do programa.

### Entrada

| DICIME O MATOR | DO ÂNCIII O | (GRAUS): 45.69   |
|----------------|-------------|------------------|
| DIGITE O AMPOR | DO MUGOTO X | . (GRAUS): 45.69 |

#### Saída

cos(45.69) = 0.69854



### Instituto de Ciências Exatas e Biológicas - ICEB



## Departamento de Computação - DECOM

# Exercício 4

O valor da função exponencial no ponto x pode ser aproximado pela seguinte expansão da série de Taylor:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots$$

Faça um programa em Scilab que leia o valor de  $\mathbf{x}$  e o número de parcelas da série, calcule o valor aproximado de  $e^x$  pela série acima e imprima essa informação. Suponha que a quantidade de parcelas digitadas será sempre maior que 1.

A seguir um exemplo de execução do programa.

## Execução

CÁLCULO DE e^x
DIGITE O VALOR DE x: 2.68
DIGITE A QUANTIDADE DE PARCELAS: 200

VALOR DE e^2.68 = 14.585093 com 200 parcelas