

Term 7- Sept 2025

Nanoelectronics and Technology (01.119/99.503)-Week 2 Class 2

Shubhakar K

25-Sept- 2025

Email: shubhakar@sutd.edu.sg

Office location: 1.602-26

Outline

- MOSFET structure
- CMOS Inverter
- CMOS Based Digital Circuits
- Noise Margin

n-channel MOS Transistor

p-channel MOS Transistor

MOS Transistor

- Add "source" and "drain" terminals to MOS capacitor
- > Transistor types
 - ➤ NMOS: p-type substrate, n+ source/drain
 - ➤ PMOS: n-type substrate, p+ source/drain

n-channel MOS Transistor

p-channel MOS Transistor

- We now turn our attention to another type of transistor, the MOSFET:
 - Metal Oxide Semiconductor Field Effect Transistor
- Many similarities to the BJT:
 - Three terminals
 - Voltage at one terminal controls current between the other two
 - A transconductance device
 - Two polarities: N-channel and P-channel MOSFETS
 - Our focus will primarily be N-channel MOSFETs (NMOS devices)

- P-type substrate
- N+ source and drain
- Metal gate electrode, and source/drain/body contacts
- Thin oxide insulates the gate from the rest of the device
- Region of substrate between the drain and source is the channel
 - Channel dimensions: W and L

- Terminal voltages and currents named as shown
 - Again, lower-case v/i and upper-case subscript represents total (AC and DC) voltage and current
- For an NMOS device in typical operation:

$$v_{GS} \geq 0$$

$$v_{DS} \geq 0$$

 Gate oxide does not allow current to flow, so

$$i_G = 0$$

and

$$i_D = i_S$$

Cut-Off Region

 Gate and source both grounded

$$v_{GS}=0$$

- Drain-to-source pathway looks like two back-to-back diodes
 - Very high drain-source resistance ($r_{DS} = \infty$)
- $\hfill \Box$ Even for $v_{DS}>0$, no current will flow

$$i_D = 0$$

Looks like an open switch

What is a Transistor?

p-channel MOS Transistor

n-channel MOS Transistor

Inversion

S

N-type channel

P-type substrate

- - Electric field established across gate oxide
 - Holes in p-type substrate repelled deeper into substrate
 - Electrons from drain and source attracted to region below the gate
- \Box For large enough v_{GS} , p-type material below the gate is **inverted** to n-type
 - An inversion layer
 - Induced n-type channel connects drain to source
 - Now, current can flow in response to v_{DS} , $i_D>0$

Threshold Voltage

- \Box Channel is induced once v_{GS} exceeds a certain voltage:
 - The threshold voltage

$$v_{GS} \ge V_t$$

- A device parameter
- Typically, $V_t = 300 \text{ mV} \dots 1 \text{ V}$
- \Box As v_{GS} increases beyond V_t , the induced channel gets deeper
- \square As long as v_{DS} is small ($v_{DS} \ll V_t$), channel depth is uniform

Overdrive Voltage

- oxdot A channel is induced once v_{GS} exceeds the threshold voltage
- v_{GS} in excess of the threshold voltage is called the **overdrive voltage** or **effective voltage**:

$$v_{OV} = v_{GS} - V_t$$

 $\ \square$ As we will soon see, v_{OV} plays an important role in determining device behavior

Channel formation basics

A channel forms when

$$V_{GS} > V_T$$

because inversion charge appears under the gate.

· Along the channel, the local inversion charge is

$$Q_n(x) \propto V_{GS} - V_T - V(x),$$

where V(x) is the channel potential at position x.

- At the source end, $V(0)=0 \implies Q_n(0) \propto V_{GS} V_T$ (strong channel).
- At the drain end, $V(L) = V_{DS} \implies Q_n(L) \propto V_{GS} V_T V_{DS}$.

Condition for pinch-off

• At the source end, $V(0)=0 \implies Q_n(0) \propto V_{GS} - V_T$ (strong channel).

• At the drain end, $V(L) = V_{DS} \implies Q_n(L) \propto V_{GS} - V_T - V_{DS}$.

• If $V_{DS} < V_{GS} - V_T$:

Channel charge is positive all along the channel → continuous inversion path from source to drain. MOSFET is in **linear/triode region**.

• If $V_{DS} = V_{GS} - V_T$: At the drain end,

$$Q_n(L) = 0$$

- → the inversion channel just disappears at the drain edge → onset of pinch-off.
- If $V_{DS} > V_{GS} V_T$:

No inversion possible near the drain. Instead:

- Channel terminates at a "pinch-off point" before the drain.
- Beyond this, a depletion region carries the extra potential drop.
- Current saturates since the effective voltage across the channel is clamped at $V_{GS}-V_{T}.$

- \square As v_{DS} increases:
 - Voltage varies along the channel
 - \mathbf{v}_S near the source, v_D near the drain
 - Gate-to-channel voltage decreases closer to the drain
 - Channel depth decreases closer to the drain
 - Channel is tapered
- $\ \square$ More current flows with increasing v_{DS} , but channel resistance increases as channel becomes more tapered

Channel Pinch-Off

- \Box Eventually, for large enough v_{DS}
 - lacktriangle Gate-to-channel voltage near the drain no longer exceeds V_t
 - Channel pinch-off occurs
 - Channel disappears at the edge of the drain
- □ Pinch-off occurs when:

$$v_{GD} = V_t = v_{GS} - v_{DS}$$
$$v_{DS} = v_{GS} - V_t$$

Saturation Region

- Once channel pinch-off occurs:
 - Voltage at the drain-end of the channel remains v_{OV} , even as v_{DS} increases
 - v_{OV} is dropped across the depletion region surrounding the drain

- $lue{}$ Voltage across the length of the channel is fixed at v_{ov}
- lacktriangle Pinched-off channel shape does not change with v_{DS}
- lacktriangle Drain current **saturates** at a constant value for constant v_{GS}

Relation between V_{DS} & V_{GS}

Case	V_T	Channel condition	
Linear region	$V_{DS} < V_{GS} - V_T$	Continuous inversion from source to drain	
Pinch-off onset	$V_{DS}=V_{GS}-V_{T}$	Channel just disappears at drain end	
Saturation	$V_{DS} > V_{GS} - V_T$	Pinch-off near drain, depletion region forms, current saturates	

I_D-V_{DS} curves for various V_{GS}:

n-channel MOS Transistor

$$\beta = \mu C_{ox} \frac{W}{L}$$

$$s = \begin{cases} 0 & V_{gs} < V_{t} & \text{cutoff} \\ \beta \left(V_{gs} - V_{t} - \frac{V_{ds}}{2} \right) V_{ds} & V_{ds} < V_{dsat} & \text{linear} \\ \frac{\beta}{2} \left(V_{gs} - V_{t} \right)^{2} & V_{ds} > V_{dsat} & \text{saturation} \end{cases}$$

 I_D - V_{DS} curves for various V_{GS} :

Transfer characteristics:

I_D-V_{DS} curves for various V_{GS}:

Load Line (Ckt Theory)

P-Channel MOSFETs

- Voltage polarities and doping types reversed relative to NMOS
 - N-type substrate
 - P+ drain and source

 - $lue{}$ Channel induced for $v_{GS} \leq V_{tp}$
 - Substrate connected to source or most positive circuit voltage

P-Channel MOSFETs

- Voltage polarities and doping types reversed relative to NMOS
 - N-type substrate
 - P+ drain and source
 - $lue{}$ Negative threshold voltage: $V_{tp} < 0$
 - $lue{r}$ Negative overdrive voltage: $v_{\it OV} = v_{\it GS} V_{\it tp} < 0$
 - lacktriangledown Channel induced for $v_{\mathit{GS}} \leq V_{tp}$
 - Substrate connected to source or most positive circuit voltage

(b) p-channel MOSFET

n-channel MOS Transistor

p-channel MOS Transistor

MOSFET type	V _{GS} = +ve	V _{GS} = 0	V _{GS} = -ve
N-Channel	ON	OFF	OFF
P-Channel	OFF	OFF	ON

MOSFET: Threshold Voltage (V_{th})

- The voltage needed on the Gate terminal of the MOSFET to form a thin channel beneath the gate electrode (between Source & Drain terminals).
- The current can flow between S and D terminals through the channel.
- So threshold voltage is the voltage needed to turn on the device.
- As the MOSFET is voltage controlled current source, the output current will depend on the gate voltage applied.

MOSFET: Threshold Voltage (V_{th})

- Lower Vth:
 - Faster in timing
 - Higher subthreshold current
- Higher Vth:
 - Less leakage
 - Higher delay
- V_{th} scales with MOSFET scaling

G = Gate Terminal

S = Source Terminal

D = Drain Terminal

Sub = Substrate Terminal

CMOS

- Complementary MOS or CMOS
 - Both NMOS and PMOS fabricated on the same chip
- P-type substrate
- PMOS devices fabricated in n wells
- Most modern MOS chips are fabricated using CMOS technology

CMOS Inverter Operation Principle

The Ideal Inverter

CMOS inverter transfer function

The Realistic Inverter

A CMOS inverter

Region	Condition	p-device	n-device	Output
A	$0 \le V_{\rm in} < V_{tn}$	linear	cutoff	$V_{\text{out}} = V_{DD}$
В	$V_{tn} \le V_{in} < V_{DD}/2$	linear	saturated	$V_{\rm out} > V_{DD}/2$
C	$V_{\rm in} = V_{DD}/2$	saturated	saturated	$V_{ m out}$ drops sharply
D	$V_{DD}/2 < V_{\rm in} \le V_{DD} - V_{tp} $	saturated	linear	$V_{\rm out} < V_{DD}/2$
E	$V_{\rm in} > V_{DD} - V_{tp} $	cutoff	linear	$V_{\text{out}} = 0$

If $\beta_p / \beta_n \neq 1$, switching point will move from $V_{DD}/2$

- · Bp > Bn HIGH SKEWED inverter $V_{in} = \frac{V_{DD}}{2} \rightarrow V_{out} > \frac{V_{DD}}{2}$
- $\beta p < \beta n$ LOW SKEWED inverter $\sqrt{m} = \frac{\sqrt{bb}}{2} \rightarrow \sqrt{out} < \frac{\sqrt{bb}}{2}$

CMOS Inverter (= NOT gate)

Table 1.1	Inverter truth table		
Α		Υ	
0		1	
1		0	

CMOS Logic NAND

Table 1.2 NAND gate truth table				
Α	В	pull-down network	pull-up network	Υ
0	0	OFF	ON	1
0	1	OFF	ON	1
1	0	OFF	ON	1
1	1	ON	OFF	0

AND Gate

NOR Gate

А	В	A NOR B
0	0	1
0	1	0
1	0	0
1	1	0

OR Gate

Α	В	Output (A OR B)
0	0	0
0	1	1
1	0	1
1	1	1

Compound gates

- Noise margin is the ratio by which the signal exceeds the minimum acceptable amount.
- It explains up to what extent IC allows noise in the transmission of logic '0' and logic '1'.
- Logic '0' and '1' represent the range of input values
- Hence, for error free digital signal transmission noise margin is required

- Noise margin refers to how much unwanted noise (disturbance in voltage levels) a circuit can tolerate without misinterpreting logic levels. It essentially defines the safety "buffer" between valid logic-0 and logic-1 signals.
- Noise margin is critical in digital IC design because it ensures reliable operation in the presence of crosstalk, supply fluctuations, or electromagnetic interference.
- Higher VDD gives bigger absolute noise margins, but modern technology scales VDD down, so circuit design must ensure sufficient margins.

- Noise margin is the ratio by which the signal exceeds the minimum acceptable amount.
- It explains up to what extent IC allows noise in the transmission of logic '0' and logic '1'.
- Logic '0' and '1' represent the range of input values
- Hence, for error free digital signal transmission noise margin is required

- Noise margin is the ratio by which the signal exceeds the minimum acceptable amount.
- It explains up to what extent IC allows noise in the transmission of logic '0' and logic '1'.
- Logic '0' and '1' represent the range of input values
- Hence, for error free digital signal transmission noise margin is required

