Projektni zadatak Smart Home Energy System

Potrebno je napraviti dizajn sistema, arhitekturu sistema, implementirati i istestirati rešenje koji simulira rad i komunikaciju Smart Home Energy Sistema. SHES je sistem koji upravlja radom kućnog energetskog sistema i obezbeđuje optimalan i stabilan rad.

Sistem sadrži 3 komponente:

- 1. Solarne panele
- 2. Baterije
- 3. Potrošače
- 4. Elektrodistribuciju (utility)

Solarni paneli

Solarni paneli proizvode električnu energiju proporcionalno vremenskim uslovima. U jednom kućnom sistemu može viti više solarnih panela.

Prilikom dodavanja solarnog panela u sistem on se definiše pomoću sledećih parametara:

- Jedinstveno ime
- Maksimalna snaga

Pošto se solarni panel doda u kućni sistem, on počinje da generiše električnu energiju na sledeći način, u zavisnosti od trenutnog vremena:

Od 20h do 6h: 0% maksimalne snage

- Od 6h do 8h: 20% maksimalne snage

- Od 8h do 11h: 50% maksimalne snage

- Od 11h do 16h: 100% maksimalne snage

- Od 16h do 18h: 50% maksimalne snage

- Od 18h do 20h: 20% maksimalne snage

Merenje snage svakog od solarnih panela šalje se SHES svake sekunde.

Baterija

Baterija služi da skladišti električnu energiju kako bi se ona optimalno koristila. Optimalno korišćenje podrazumeva punjenje baterije kada je energija jeftina/potrošnja mala i pražnjenje kada je energija skupa/potrošnja velika.

Prilikom dodavanja baterije u sistem ona se definiše pomoću sledećih parametara:

- Jedinstveno ime
- Maksimalna snaga
- Kapacitet (u satima rada)

SHES upravlja baterijom na sledeći način:

- Od 3h do 6h punjenje
- Od 14h do 17h pražnjenje

Prilikom punjenja i pražnjenja kapacitet u satima se menja. Svaki minut pražnjenja smajuje kapacitet za jedan minut, svaki minut punjenja povećava kapacitet za 1 minut.

SHES komunicira sa baterijom tako što joj šalje komandu za punjenj i pražnjenje. Baterija komunicira sa SHES tako što šalje kapacitet i režim rada. Kada se baterija puni ona se ponaša kao potrošač u sistemu, kada se prazni ponaša se kao generator električne energije.

Potrošač

Potrošači u sistemu troše električnu energiju. Mogu se paliti i gasiti proizvoljno i može ih biti proizvoljno u sistemu.

Svaki potrošač se definiše preko:

- Jedinstveno ime
- Potrošnja

Utility (elektrodistribucija)

SHES dobavlja višak električne energije od elektrodistribucije. Višak je razlika izmedju trenutne potrošnje i trenutne proizvodnje. Višak se šalje elektrodistribuciji kao zahtev za energijom i elektrodistribucija zatim šalje cenu za tu energiju definisanu po jednom kWh.

Rad sa elektrodistribucijom se definiše kao:

- Snaga razmene (pozitivno ili negativno)
- Cena

SHES

SHES je centralni upravljčki sistem. Cilj sistema je upravljanje električnom energijom na opimalan način i proračun troškova.

Cene rada:

Baterija: 0 \$/kWhSolarni panel: 0 \$/kWh

Utility: X \$/kWh

SHES šalje komande baterijama za punjenje i pražnjenje i prima informacije o trenutnom radu baterije, solarnih panela i cene energije elektrodistribucije. Sve ove informacije se čuvaju u bazi.

SHES proračunava izveštaj o radu za izabrani datum. Izveštaj podrazumeva grafik sa sledećim krivima:

- Proizvodnja solarnih panela
- Energija iz baterije (pozitivno i negativno)
- Uvoz iz elektrodistribucije (pozitivno i negativno)
- Potrošnja svih potrošača

Pored grafika SHES proračunava ukupan trošak u \$ za izabrani datum.

Scenario rada aplikacije

Priliom početka rada inicijalizuju se komunikacije sa svim uređajima u sistemu.

SHES proračunava potrebnu količinu energije od elektrodistribucije, svake sekunde, koja može biti pozitivna i negativna. Pozitivna količina podrazumeva trošak za SHES jer se energija uvozi po ceni koju šalje elektrodistribucija. Cena se izražava u \$/kWh. Negativna razlika podrazumeva prodaju energije kućnog sistema ka elektrodistribuciji po istom cenovniku.

Kriterijum ocenjivanja

- 1. Dizajn I arhitektura rešenja
- 2. Korišćenje Scrum metodologije razvoja definisanje User Story-a i taskova, planiranje i estimacija
- 3. Implementacija rešenja
- 4. CI ciklus
 - a. Build
 - b. UnitTestovi
 - c. Pokrivenost koda testovima