PROCESAMIENTO DIGITAL DE SEÑALES

Ingeniería en Electrónica y Telecomunicaciones IET 802

Dr. Alan David Blanco Miranda

Procesamiento Digital de Señales

Convertidor analógico / digital y digital / analógico, CPU, DSP, ASIC, FPGA, ŞDR.

Ventajas:

- el ruido es fácil de controlar después de la cuantificación inicial
- altamente lineal (dentro del rango dinámico limitado)
- · algoritmos complejos que se implementan en un solo chip
- flexibilidad, los parámetros se pueden variar fácilmente en el software
- el procesamiento digital es insensible a las tolerancias de componentes, envejecimiento, condiciones ambientales, interferencia electromagnética

Desventajas:

- artefactos de procesamiento de tiempo discreto (alias)
- puede requerir significativamente más energía (batería, enfriamiento)
- reloj digital y conmutación causan interferencia

La transformada (discreta) de Fourier de la señal completa

Componente de DC (offset de la señal)

zoom del offset de la señal

aparece una señal senoidal alrededor de 0.5 Hz

zoom de la señal senoidal alrededor de 0.5 Hz

analizando el primer armónico de la señal senoidal alrededor de 0.5 Hz

zoom del primer armónico de la señal senoidal alrededor de 0.5 Hz

¡No es evidente encontrar este armónico alrededor de 1 Hz!

Conceptos Básicos

Señales de estudio: Señales discretas en el tiempo

Conversión Analógica-Digital (ADC)

1.4 Repaso del Muestreo de Señales

Aplicando diversas frecuencias (o tasas) de muestreo:

Cuantización

n	1	2	3	4	5	6	7	8	9	10	11
Señal discreta	1.3	1.5	1.6	1.6	1.3	1.1	0.9	1.1	1.5	1.75	1.9
Señal cuantizada	1.25	1.5	1.5	1.5	1.25	1	1	1	1.5	1.75	2
error	0.05	0	0.1	0.1	0.05	0.1	0.1	0.1	0	0	0.1

n	1	2	3	4	5	6	7	8	9	10	11
Señal	1.3	1.5	1.6	1.6	1.3	1.1	0.9	1.1	1.5	1.75	1.9
discreta											
Señal	1.25	1.5	1.5	1.5	1.25	1	1	1	1.5	1.75	2
cuantizada											
Señal	100	101	101	101	100	011	011	011	101	110	111
digital											

1.5 Sucesiones

Una sucesión $\{x_n\}_{n=-\infty}^{\infty}$ es una secuencia de números (reales o complejos)

$$\dots, x_{-2}, x_{-1}, x_0, x_1, x_2, \dots$$

donde x_n denota el n-ésimo número en la sucesión ($n \in \mathbb{Z}$).

Normalmente abreviamos $\{x_n\}_{n=-\infty}^{\infty}$ como $\{x_n\}$. En el procesamiento digital de señales es más común escribir las sucesiones o señales discretas en el tiempo como:

$$x[n] \circ x(n)$$

Esta es la notación que utilizaremos a lo largo del curso.

En la práctica trataremos con señales que vienen de un proceso de muestreo, es decir:

$$x(t) \rightarrow x(nT_s) = x(n)$$
señal analógica señal muestreada sucesión

consideramos que el periodo de muestreo T_s =1, sin embargo hay que tenerlo siempre en cuenta en nuestros desarrollos.

1.5.1 Sucesiones básicas

➤ Impulso Unitario o Delta de Kronecker

$$x(n) = \delta(n) = \begin{cases} 1 & n = 0 \\ 0 & n \neq 0 \end{cases}$$

Escalón Unitario

$$x(n) = u(n) = \begin{cases} 1 & n \ge 0 \\ 0 & n < 0 \end{cases}$$

Exponencial real

 $x(n) = a^n u(n)$ a es una constante real

> Senoidal o sinusoidal

$$x(n) = A\cos(\omega_0 n) = A\cos(2\pi f_0 n)$$

donde ω_0 es la frecuencia angular (rad/s) y f_0 la frecuencia de oscilación (Hz), ligadas por: $\omega_0 = 2\pi f_0$

Recordemos que en los casos prácticos (señales reales) estas sucesiones son el resultado de un muestreo. En el caso de una señal senoidal:

frecuencia angular analógica

$$x(t) = A\cos(\Omega_0 t) = A\cos(2\pi f_0 t)$$
 es la señal analógica

$$f_s = \frac{1}{T_s}$$
 que cumple la condición $f_s \ge 2f_0$

Los instantes de muestreo son nT_s

$$x(nT_s) = A\cos(\omega_0 nT_s) = A\cos(2\pi f_0 nT_s)$$

$$x(nT_s) = A\cos\left[2\pi\left(\frac{f_0}{f_s}\right)n\right] = \underline{A\cos(\omega_0 n)} = x(n)$$

frecuencia angular discreta (digital)

¡Muchas combinaciones de fs y fo darían la misma sucesión!

Aquí un ejemplo de ello:

1.6 Periodicidad de una señal discreta en el tiempo

Determinar si una señal discreta es o no periódica, y en caso de serlo, identificar el periodo fundamental, es necesario para el análisis de Fourier.

Una sucesión x(n) es periódica si y sólo si cumple la siguiente condición:

$$x(n) = x(n+N)$$
 $\forall n \ N > 0 \ N, n \in \mathbb{Z}$

Donde el entero *N* más pequeño diferente de cero se denomina periodo fundamental

Ejercicios sobre la periodicidad de sucesiones

 Determina si las sucesiones siguientes son periódicas o no. En caso de serlo determina su periodo fundamental.

a)
$$x(n) = A\cos(\omega_0 n + \phi)$$

b) $x(n) = Ae^{j\omega_0 n}$
c) $x(n) = e^{-j0.4n}$
d) $x(n) = 2\cos(1.1\pi n - 05\pi) + 2\sin(0.7\pi n)$
e) $x(n) = \cos(3n)$

2. Una señal continua en el tiempo $x_a(t) = \cos(\Omega_0 t)$ es muestreada en t = nTs generando una señal discreta en el tiempo $x(n) = x_a(nTs) = \cos(\Omega_0 nTs)$. Para qué valores de Ts, x(n) es un sucesión periódica? ¿Cuál es el periodo fundamental de x(n) si $\Omega_0 = 18$ rad y $Ts = \pi/6$ s?

inicio

clear all % señal 1: impulso unitario x1=[000010000]; n1=-4:4: stem(n1,x1) xlabel('n') ylabel('Amplitud') title('Impulso Unitario') %señal 2: escalón unitario x2=[zeros(1,10) ones(1,11)];n2=-10:10: figure(2) stem(n2,x2) xlabel('n') ylabel('Amplitud') title('Escalón Unitario') %señal 3: exponencial a=-1.5: $x3=[zeros(1,5) a.^{(0:20)}];$ n3=-5:20:

... continuación

```
figure(3)
stem(n3,x3)
xlabel('n')
ylabel('Amplitud')
title('Exponencial real')
% señales senoidales
f0=3; % Hz frecuencia de oscilación
fs=10; %Hz frecuencia de muestreo 1
fs1=100; %Hz frecuencia de muestreo 2
n4=0:200:
x4=cos(2*pi*(f0/fs1)*n4);
n5=0:20:
x5=cos(0.6*pi*n5);
x6=cos(2*pi*((f0-fs)/fs1)*n4);
figure(4)
plot(n4*(1/fs1),x4)
hold on
stem(n5*(1/fs),x5,'r')
plot(n4*(1/fs1),x6,'g')
xlabel('nTs')
ylabel('Amplitud')
title('Senoidal')
hold off
```