Unlocking Potential

Author: Michael Govaerts

2 3

3 4

4 5

218353

218353

218353

```
In [332]:
            # Import salite3 for interacting with the local relational database
            # Import pandas and numpy for data manipulation and analysis
            # Import matplotlib and seaborn for data visualization [Use magic function to ensure inline plotting]
            import sqlite3
            import pandas as pd
            import numpy as np
            import matplotlib.pyplot as plt
            %matplotlib inline
            # Ingest the data set
In [333]:
            brn = sqlite3.connect('database.sqlite')
            df = pd.read_sql_query("SELECT * FROM Player Attributes", brn)
            #Review data set in tabular form to confirm it has been processed correctly
In [334]:
            df.head()
Out[334]:
              id player_fifa_api_id player_api_id
                                                date overall_rating potential preferred_foot attacking_work_rate defensive_work_rate crossing finish
                                                2016-
           0
                                                              67.0
              1
                          218353
                                       505942
                                                02-18
                                                                        71.0
                                                                                      right
                                                                                                      medium
                                                                                                                         medium
                                                                                                                                     49.0
                                              00:00:00
                                                2015-
           1 2
                          218353
                                       505942
                                                11-19
                                                              67.0
                                                                        71.0
                                                                                      right
                                                                                                      medium
                                                                                                                         medium
                                                                                                                                     49.0
                                              00:00:00
```

2015-

09-21

2015-

03-20

2007-

02-22

00:00:00

00:00:00

00:00:00

62.0

61.0

61.0

66.0

65.0

65.0

right

right

right

medium

medium

medium

medium

medium

medium

49.0

48.0

48.0

505942

505942

505942

```
# Determine if we need to do any data cleaning by checking if any row contains null values
In [335]:
            df.isnull().any().any(), df.shape
Out[335]: (True, (183978, 42))
In [336]:
            # Remove the rows with the null values that we identified
            # Determine the initial number of rows for comparison purposes
            rows = df.shape[0]
            # Drop the rows that contain null values
            df = df.dropna()
In [337]:
            # Confirm that all null values were successfully removed
            print(rows)
            df.isnull().any().any(), df.shape
           183978
Out[337]: (False, (180354, 42))
            # Determine how many rows were removed
In [338]:
            rows - df.shape[0]
Out[338]:
           3624
In [339]:
            # Review descriptive statistics of our data to begin our analyses
            df.describe()
Out[339]:
                            id player_fifa_api_id
                                                player_api_id overall_rating
                                                                               potential
                                                                                             crossing
                                                                                                          finishing heading_accuracy short_passing
           count 180354.000000
                                  180354.000000
                                                180354.000000
                                                             180354.000000
                                                                          180354.000000 180354.000000 180354.000000
                                                                                                                      180354.000000 180354.000000
                                  166822.125803 137653.145514
           mean
                   91995.886274
                                                                 68.635317
                                                                              73.479457
                                                                                            55.142071
                                                                                                         49.962136
                                                                                                                          57.263476
                                                                                                                                       62.486726
                                                                                                                          16.478716
                   53092.657914
                                   52821.443279 137599.735284
                                                                  7.027950
                                                                               6.581963
                                                                                            17.247231
                                                                                                         19.041760
                                                                                                                                       14.172493
             std
```

33.000000

39.000000

1.000000

1.000000

1.000000

3.000000

1.000000

min

2.000000

2625.000000

	id	player_fifa_api_id	player_api_id	overall_rating	potential	crossing	finishing	heading_accuracy	short_passing
25%	46074.250000	156616.000000	35451.000000	64.000000	69.000000	45.000000	34.000000	49.000000	57.000000
50%	92003.500000	183792.000000	80291.000000	69.000000	74.000000	59.000000	53.000000	60.000000	65.000000
75%	137935.750000	200138.000000	192841.000000	73.000000	78.000000	68.000000	65.000000	68.000000	72.000000
max	183978.000000	234141.000000	750584.000000	94.000000	97.000000	95.000000	97.000000	98.000000	97.000000

In [340]:

Review data to determine if there are any columns we want to omit before going deeper into our analysis df.head()

Out[340]:	i	id	player_fifa_api_id	player_api_id	date	overall_rating	potential	preferred_foot	attacking_work_rate	defensive_work_rate	crossing	finisł
	0	1	218353	505942	2016- 02-18 00:00:00	67.0	71.0	right	medium	medium	49.0	
	1	2	218353	505942	2015- 11-19 00:00:00	67.0	71.0	right	medium	medium	49.0	
	2	3	218353	505942	2015- 09-21 00:00:00	62.0	66.0	right	medium	medium	49.0	
	3	4	218353	505942	2015- 03-20 00:00:00	61.0	65.0	right	medium	medium	48.0	
	4	5	218353	505942	2007- 02-22 00:00:00	61.0	65.0	right	medium	medium	48.0	

In [341]:

Drop id, api_id and date columns, as they don't add much to our analyses of the player attributes
df2 = df.drop(['id', 'player_fifa_api_id', 'player_api_id', 'date'], axis=1)

Remove column display limitations and review dataframe
pd.set_option('display.max_columns', None)
df2.head()

Out[341]: overall_rating potential preferred_foot attacking_work_rate defensive_work_rate crossing finishing heading_accuracy short_passing volleys

	overall_rating	potential	preferred_foot	attacking_work_rate	defensive_work_rate	crossing	finishing	heading_accuracy	short_passing	volleys
0	67.0	71.0	right	medium	medium	49.0	44.0	71.0	61.0	44.0
1	67.0	71.0	right	medium	medium	49.0	44.0	71.0	61.0	44.0
2	62.0	66.0	right	medium	medium	49.0	44.0	71.0	61.0	44.0
3	61.0	65.0	right	medium	medium	48.0	43.0	70.0	60.0	43.0
4	61.0	65.0	right	medium	medium	48.0	43.0	70.0	60.0	43.0

In [342]: # Identify any clear correlations in tabular form

df2.corr()

Out[342]:		overall_rating	potential	crossing	finishing	heading_accuracy	short_passing	volleys	dribbling	curve	free_kick_accurad
	overall_rating	1.000000	0.765435	0.357320	0.330079	0.313324	0.458243	0.361739	0.354191	0.357566	0.34980
	potential	0.765435	1.000000	0.277284	0.287838	0.206063	0.382538	0.301678	0.339978	0.296050	0.26284
	crossing	0.357320	0.277284	1.000000	0.576896	0.368956	0.790323	0.637527	0.809747	0.788924	0.70876
	finishing	0.330079	0.287838	0.576896	1.000000	0.373459	0.580245	0.851482	0.784988	0.691082	0.63327
	heading_accuracy	0.313324	0.206063	0.368956	0.373459	1.000000	0.548435	0.391129	0.400803	0.320384	0.30601
	short_passing	0.458243	0.382538	0.790323	0.580245	0.548435	1.000000	0.639995	0.788935	0.731948	0.69349
	volleys	0.361739	0.301678	0.637527	0.851482	0.391129	0.639995	1.000000	0.784247	0.752410	0.68290
	dribbling	0.354191	0.339978	0.809747	0.784988	0.400803	0.788935	0.784247	1.000000	0.810353	0.70732
	curve	0.357566	0.296050	0.788924	0.691082	0.320384	0.731948	0.752410	0.810353	1.000000	0.79784
	free_kick_accuracy	0.349800	0.262842	0.708763	0.633274	0.306013	0.693490	0.682909	0.707322	0.797842	1.00000
	long_passing	0.434525	0.343133	0.685649	0.341121	0.362741	0.803073	0.414520	0.579201	0.586313	0.60328
	ball_control	0.443991	0.401803	0.807721	0.720694	0.550956	0.890622	0.749459	0.901730	0.798598	0.72067
	acceleration	0.243998	0.338820	0.599439	0.529355	0.198164	0.502893	0.512931	0.698906	0.549135	0.43065
	sprint_speed	0.253048	0.340698	0.579506	0.509647	0.265430	0.490562	0.493721	0.669779	0.516366	0.39400
	agility	0.239963	0.293714	0.599561	0.554396	0.068570	0.510650	0.560021	0.703528	0.619243	0.50525
	reactions	0.771856	0.580991	0.384999	0.354769	0.295601	0.460469	0.397448	0.377852	0.392756	0.36919

	overall_rating	potential	crossing	finishing	heading_accuracy	short_passing	volleys	dribbling	curve	free_kick_accurac
balance	0.160211	0.202232	0.519778	0.394978	0.077255	0.462617	0.416578	0.547666	0.494479	0.43148
shot_power	0.428053	0.325459	0.656740	0.727835	0.541365	0.722320	0.746622	0.744960	0.694945	0.68419
jumping	0.258978	0.174532	0.021270	0.008948	0.286305	0.060067	0.023143	0.008645	-0.017059	-0.03355
stamina	0.325606	0.259432	0.565935	0.347853	0.477830	0.611422	0.382636	0.527134	0.454458	0.41676
strength	0.315684	0.122392	-0.072915	-0.054596	0.493543	0.089782	-0.037103	-0.114107	-0.115739	-0.05910
long_shots	0.392668	0.313059	0.716515	0.806895	0.406003	0.729741	0.814894	0.807175	0.783732	0.77388
aggression	0.322782	0.162137	0.324625	0.044465	0.577304	0.455426	0.127425	0.204592	0.203332	0.23239
interceptions	0.249094	0.163292	0.306446	-0.152560	0.454187	0.425764	-0.038534	0.106897	0.136119	0.17624
positioning	0.368978	0.326898	0.684803	0.803687	0.408972	0.679014	0.779166	0.798720	0.721106	0.65625
vision	0.431493	0.379278	0.693978	0.652376	0.336472	0.766401	0.690716	0.734119	0.728198	0.69794
penalties	0.392715	0.315207	0.574208	0.726234	0.431291	0.612511	0.713116	0.663420	0.649737	0.66901
marking	0.132185	0.054094	0.234886	-0.285416	0.460831	0.349578	-0.170094	0.004345	0.032956	0.07291
standing_tackle	0.163986	0.082073	0.285018	-0.230453	0.480054	0.415427	-0.108062	0.067306	0.094466	0.13314
sliding_tackle	0.128054	0.063284	0.274673	-0.262144	0.441134	0.380148	-0.127810	0.044988	0.080110	0.10589
gk_diving	0.027675	-0.012283	-0.604567	-0.479370	-0.665600	-0.694111	-0.508029	-0.654097	-0.556625	-0.49834
gk_handling	0.006717	0.005865	-0.595646	-0.465135	-0.649145	-0.689874	-0.486178	-0.650645	-0.544940	-0.49163
gk_kicking	0.028799	0.092299	-0.356728	-0.292349	-0.402865	-0.422659	-0.279492	-0.432452	-0.333784	-0.27971
$gk_{\mathtt{positioning}}$	0.008029	0.004472	-0.597742	-0.470758	-0.648981	-0.691030	-0.490148	-0.653560	-0.549870	-0.49425
gk_reflexes	0.007804	0.004936	-0.601696	-0.473302	-0.652494	-0.693260	-0.492267	-0.656195	-0.551574	-0.49586

In [343]: # It's not easy to see the correlations in tabular form. Since player potential and player rating are our key # attributes to measure correlations with, let's just visualize those correlations against the other player attributes df2.columns

Out[343]: Index(['overall_rating', 'potential', 'preferred_foot', 'attacking_work_rate', 'defensive_work_rate', 'crossing', 'finishing', 'heading_accuracy', 'short_passing', 'volleys', 'dribbling', 'curve', 'free_kick_accuracy', 'long_passing', 'ball_control', 'acceleration', 'sprint_speed',

```
'agility', 'reactions', 'balance', 'shot_power', 'jumping', 'stamina',
                  'strength', 'long_shots', 'aggression', 'interceptions', 'positioning',
                 'vision', 'penalties', 'marking', 'standing tackle', 'sliding tackle',
                  'gk diving', 'gk handling', 'gk kicking', 'gk positioning',
                  'gk reflexes'],
                dtype='object')
           #Create a list of features to correlate with player potential and rating
In [344]:
           Comps = ['crossing', 'finishing', 'heading_accuracy',
                  'short_passing', 'volleys', 'dribbling', 'curve', 'free_kick_accuracy',
                  'long_passing', 'ball_control', 'acceleration', 'sprint_speed',
                  'agility', 'reactions', 'balance', 'shot power', 'jumping', 'stamina',
                   'strength', 'long shots', 'aggression', 'interceptions', 'positioning',
                   'vision', 'penalties', 'marking', 'standing tackle', 'sliding tackle',
                  'gk diving', 'gk_handling', 'gk_kicking', 'gk_positioning',
                   'gk reflexes']
           # create a list containing Pearson's correlation between 'overall rating' with each column in list
In [345]:
           correlations1 = [ df2['overall rating'].corr(df2[f]) for f in Comps ]
           #Confirm that the number of correlations we calculated match the number of features we wanted to correlate
In [346]:
           len(correlations1), len(Comps)
Out[346]: (33, 33)
           # create a function for plotting a dataframe with string columns and numeric values
In [347]:
           def plot dataframe(df2, y label):
               color='blue'
               fig = plt.gcf()
               fig.set size inches(20, 12)
               plt.ylabel(y label, fontsize=20)
               plt.vticks(fontsize=18)
               ax = df2.correlation.plot(linewidth=3.3, color=color)
               ax.set xticks(df2.index)
               ax.set xticklabels(df2.attributes, rotation=85, fontsize=20);
               plt.grid()
               plt.show()
In [348]:
           # create an overall rating dataframe using our Comps and correlations1 lists
```

```
df3 = pd.DataFrame({'attributes': Comps, 'correlation': correlations1})

In [349]: # Plot the above dataframe using the created function
    plot_dataframe(df3, 'Player\'s Overall Rating [Correlation]')
```



```
In [350]: ##From the graph above, the attributes with the strongest correlations to a player's rating are
    ## reactions (0.771856), short_passing (0.458243), ball_control (0.44391), long_passing (0.434525),
    ## vision (0.431493), and shot_power (0.428053)

strong1 = ['reactions','short_passing', 'ball_control','long_passing','vision','shot_power']
```

```
In [351]:
           #List correlations to confirm our conclusions
           for f in strong1:
               related = df2['overall rating'].corr(df2[f])
               print("%s: %f" % (f,related))
          reactions: 0.771856
          short passing: 0.458243
          ball control: 0.443991
          long passing: 0.434525
          vision: 0.431493
          shot power: 0.428053
          # Let's now repeat the process for Player Potential rating to see if the correlations are similar
In [352]:
           # create a list containing Pearson's correlation between 'potential' with each column in list
           correlations2 = [ df2['potential'].corr(df2[f]) for f in Comps ]
           #Confirm that the number of correlations we calculated match the number of features we wanted to correlate
In [353]:
           len(correlations2), len(Comps)
Out[353]: (33, 33)
In [354]:
           # create a function for plotting a dataframe with string columns and numeric values
           def plot dataframe2(df2, y label):
               color='green'
               fig = plt.gcf()
               fig.set size inches(20, 12)
               plt.ylabel(y label, fontsize=20)
               plt.yticks(fontsize=18)
               ax = df2.correlation.plot(linewidth=3.3, color=color)
               ax.set xticks(df2.index)
               ax.set xticklabels(df2.attributes, rotation=85, fontsize=20);
               plt.grid()
               plt.show()
           #create a dataframe using our Comps and correlations2 lists
In [355]:
           df4 = pd.DataFrame({'attributes': Comps, 'correlation': correlations2})
```

In [356]: # Plot the 'potential' dataframe, above, using the function we created
plot_dataframe2(df4, 'Player\'s Potential [Correlation]')


```
strong2 = ['reactions', 'ball control', 'vision', 'short passing', 'long passing', 'positioning', 'penalties', 'short power']
           #List correlations to confirm our conclusions
In [358]:
           for f in strong2:
               related = df2['potential'].corr(df2[f])
               print("%s: %f" % (f,related))
          reactions: 0.580991
          ball control: 0.401803
          vision: 0.379278
          short passing: 0.382538
          long passing: 0.343133
          positioning: 0.326898
          penalties: 0.315207
          shot power: 0.325459
In [359]:
           # Create and display a correlation heatmap of highly correlated attributes to player potential and player rating
           # by eliminating other attributes from the correlation
           import seaborn as sns
           corr df2=df2.corr()
           heatmap df3=corr df2.drop(['crossing', 'finishing', 'heading accuracy','volleys', 'dribbling', 'curve', 'free kick accuracy
                                       'acceleration', 'sprint speed', 'agility', 'balance', 'jumping', 'stamina',
                   'strength', 'long_shots', 'aggression', 'interceptions', 'marking', 'standing_tackle', 'sliding_tackle',
                  'gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning',
                  'gk_reflexes']).drop(['crossing', 'finishing', 'heading_accuracy',
           'volleys', 'dribbling', 'curve', 'free_kick_accuracy', 'acceleration', 'sprint_speed',
                   'agility', 'balance', 'jumping', 'stamina',
                   'strength', 'long shots', 'aggression', 'interceptions', 'marking', 'standing tackle', 'sliding tackle',
                  'gk_diving', 'gk_handling', 'gk_kicking', 'gk_positioning',
                   'gk reflexes'],axis=1)
           plt.figure(figsize=(18, 8))
In [363]:
           heatmap = sns.heatmap(heatmap df3,annot=True, cmap='BrBG',)
           heatmap.set title('Correlation Heatmap', fontdict={'fontsize':16}, pad=12);
```


Return to Presentation and Report Findings