

Statistics and Data Science for Engineers E178 / ME276DS

Optimization theory

Pro	Random variable: sample space	I., P., probability measur
	> Expected value:	р density function D cdf.
	• LLN: E[linear] =	
	· Var [X], G_X , G_X	

2.	Maltivariate R.V	(vectors)		• •
	> Marginal distribut > Conditional RV -	lah · · · · · · · · · · · · · · · · · · ·		 0 0
	7 Conditional RV -	Bayes!	theorem.	0 0
	> Independence	correlation.		• •
3.	Parametric family	eo		
	2 Berno Wli 2 Binomial.	> Uniform > Gaussian	(CLT)	0 0
	7 Poison 7 Exponential	A Remos 2		0 0

Components of an optimization problem

1. The **decision vector**: $x \in \mathbb{R}^d$

2. The search set or feasible set : $\Omega \subseteq \mathbb{R}^d$

3. The **objective function** : $J:\Omega\to\mathbb{R}$

... stationary points: J'(x) =0
... boundary points.

Solution 2 is a stationary point.

Example: Design a rabbit enclosure Lines of constant $w\delta$ length l of fence material d=2

$$d=2$$

$$\chi = (\delta, \omega).$$

$$J(\delta, \omega) = -\delta \omega$$

Global vs. local solutions

• Global solution: $J(x^*) \leq J(x) \qquad \forall \ x \in \Omega$

$$J(x^*) \le J(x)$$

$$J(x^+) \le J(x)$$

• Local solution :
$$J(x^+) \leq J(x) \qquad \forall \ x \in \Omega \cap B_{\epsilon}(x^+)$$

Types of feasible points

• Interior vs. non-interior points

• Differentiable vs. non-differentiable points

discontinues (e.g. Xd) non-differentiable (e.g. Xc)

• Stationary vs. non-stationary points

First order optimality condition

x is a differentiable, interior, local solution \Rightarrow x is stationary All points x: -1. Differentiable and interior ... All solutions are stationary.

-2. Non-differentiable 3. Non-interior

All Solutions are Stationary, Non-diff., or Non-interior

Soundar.

The Jis smooth and no constraints.

all local solutions are amongst

the stationary points.

minimize
$$100(y-x^2)^2 + (1-x)^2$$

minimize
$$100(y-x^2)^2 + (1-x)^2$$

$$\frac{\partial J}{\partial x} = 200(y-x^2)(-2x) + 2(1-x)(-1) = 0$$

$$\frac{\partial J}{\partial x} = 200(y-x^2) = 0. \quad y = x^2$$

Unight stationary point.
$$(x,y)=(1,1)$$

Convex optimization problems

Properties of convex problems

1) For convex problems, every local solution is a global solution.

2) For unconstrained convex problems with continuously differentiable cost function, every stationary point is a global solution.

Examples of convex sets

• p-norm ball:

$$\{x \in \mathbb{R}^{\widehat{d}}: \|x\|_p \leq \widehat{r}\}$$

with
$$\left\|x\right\|_p = \left(\sum_{i=1}^d |x_i|^p\right)^{1/p}$$

2 horn bill:
$$\chi_1^2 + \chi_2^2 + \chi_3^2 \leq 100$$

3 morn $\sqrt[3]{\chi_1^3 + \chi_3^2} \leq 1$
 $\sqrt[3]{\chi_1^3 + \chi_2^3} \leq 1$

Examples of convex sets

• Affine equality constraints:

Ax = b

Hyperplane in R9 convex function.

• Convex inequality constraints:

d-2 g(x) convex x2 convex

Examples of convex functions

• Affine functions:
$$J(x) = a^T x + b$$
 $a \in \mathbb{R}^d, b \in \mathbb{R}$

• p-norms:
$$J(x) = \|x\|_p$$
 $p \ge 1$

• Function composition:
$$J(x) = g(h(x)) \qquad \qquad h \text{ convex}$$

$$g \text{ while the same sing}$$

Convex optimization problems

minimize J(x) ... convex cost function

subject to: $f_i(x) = 0$ $i = 1 \dots n$... affine equality constraints

 $g_j(x) \leq 0 \quad j=1\dots m$... convex inequality constraints

Gradient descent ... finds local

mihims.

$$x^* = \operatorname*{argmin}_x J(x)$$

Kin step counter.

- 0. Initialize: $x_0 \in \Omega, k = 0$
- 1. Loop until convergence:

•
$$x_{k+1} = x_k - \gamma \nabla J(x_k)$$

• $k \leftarrow k+1$

•
$$k \leftarrow k+1$$
 stepsize

Stochastic optimization

Full problem :
$$\underline{\theta}^* = \underset{\underline{\theta}}{\operatorname{argmin}} \ E[L(Y \ ; \ \underline{\theta})]$$

$$rac{ heta}{ heta} = \mathop{\mathsf{arginin}}_{ heta} E[L(Y; heta)]$$

$$\underline{\theta} = \underbrace{\mathsf{arginin}}_{\underline{\theta}} E[L(T;\underline{\theta})]$$

$$E[L(Y; \underline{\theta})] pprox rac{1}{N}$$

tate :
$$E[L(Y\,;\,\underline{\theta})] pprox rac{1}{N}$$

$$\begin{array}{ll} \text{Approximate} : & E[L(Y\:;\:\underline{\theta})] \approx \frac{1}{N} \sum_{i=1}^{N} L(y_i\:;\:\underline{\theta}) \end{array}$$

hate :
$$E[L(Y\,;\, {\underline{ heta}})] pprox {1\over N}$$

hate :
$$E[L(Y\,;\, { heta})] pprox {1\over N}$$

$$\begin{array}{c} \text{Approximate} \\ \text{problem} \end{array} \colon \quad \underline{\boldsymbol{\theta}}^* = \underset{\underline{\boldsymbol{\theta}}}{\operatorname{argmin}} \sum_{i=1}^N L(\underline{\boldsymbol{\theta}} \ ; \ y_i) \end{array}$$

$$rac{ heta}{ heta}: \quad rac{ heta}{ heta} = \mathop{\sf argmin}_{i=1} \sum_{i=1}^{n}$$

$$\begin{array}{ll} \text{Gradient}: & \underline{\theta}_{k+1} = \underline{\theta}_k - \gamma \nabla_{\underline{\theta}} \left(\sum_{i=1}^N L(\underline{\theta}_k \ ; \ y_i) \right) \end{array}$$

descent:
$$\underline{\theta}$$

Stochastic gradient descent (SGD)

$$\frac{\theta_{k+1}=\theta_k-\gamma\sum_{i\in\mathcal{B}}\nabla_{\underline{\theta}}\,L(\underline{\theta}\,;\,y_i)}{\text{a batch of samples}}$$

$$\frac{\mathcal{B}\subseteq\{1\dots N\}}{\text{a batch of samples}}$$

$$|\mathcal{B}|=1 \text{ (pure SGD)}$$

- \mathcal{B} chosen with replacement
- B chosen without replacement →
- $1 < |\mathcal{B}| < N$ (minibatch)
 - partition
 - shuffle / split
- $(|\mathcal{B}|) = N$ (regular gradient descent)

Gradient-less optimization

Genetic algorithms

