Refactorización de una infraestructura de bucles MAPE-K como microservicios

Autor: Adriano Vega Llobell
Tutor: Joan Fons i Cors

Curso 2021 - 2022

Índice

- 1. Introducción
- 2. Bucle MAPE-K distribuido: nuestra propuesta arquitectónica
- 3. DEMO
- 4. Pruebas y propuestas de mejora
- 5. Conclusiones

1. Introducción

Sistemas Autoadaptativos

- Dos componentes: Aire acondicionado y termómetro.
- Regula la temperatura de una habitación en base a una temperatura de confort.
- Sistema autoadaptativo básico.

Sistemas Autoadaptativos (II)

- Surgen de la computación autónoma (autonomic computing).
- Usan bucles de control (feedback loops)
- Son sistemas capaces de reconfigurarse en tiempo de ejecución para adaptarse a cambios en el entorno.

Bucle MAPE-K

- Monitor, Analyse, Plan, Execute Knowledge.
- Patrón arquitectónico de IBM para desarrollar sistemas software autoadaptativos.
- Basada en elementos autónomos.
 Compuestos por:
 - Controlador autónomo (bucle MAPE-K)
 - Recurso manejado (nuestro sistema).

Bucle MAPE-K *Lite*

- Parte del framework FAdA: Desarrollo de sistemas autoadaptativos MDD.
- Desarrollado por el grupo PROS/Tatami del instituto VRAIN/UPV.
- Bucle genérico para gestionar sistemas basados en microservicios.

Bucle MAPE-K Lite - Problemática

- Problema: Se despliega como servicio monolítico.
 - Dificulta el despliegue de cambios.
 - Debemos replicarlo entero.
 - No permite estrategias alternativas.

Objetivos

- Rediseñar la arquitectura para que funcione como un sistema distribuido.
 - Multitennancy: Infraestructura común para distintos clientes.
- Verificar sobre un caso práctico para demostrar la viabilidad de nuestra propuesta.
 - Sistema de climatización

2. Bucle MAPE-K distribuido Nuestra propuesta arquitectónica

¿Cómo abordamos el desarrollo?

- Planificado en 4 hitos:
 - Monitor + Conocimiento
 - Análisis
 - Planificación
 - Ejecución
- **Diseño**: definir componentes, conexiones y mecanismos de comunicación.
- Implementación de un prototipo.

Bucle MAPE-K - Punto de partida

- Servicio monolítico.
- Un solo componente, con varios módulos.

Bucle MAPE-K Distribuido - Primera división

- Cada etapa del bucle pasa a tener su propio microservicio
- Nos permite escalarlas individualmente
- Permite ofrecer implementaciones alternativas.

Bucle MAPE-K Distribuido - Segunda división

- Separamos los componentes de las solución autoadaptativa de las etapas del bucle.
- Permite reutilizar la infraestructura del bucle.
- Pueden activarse y desactivarse componentes en tiempo de ejecución.

Bucle MAPE-K Distribuido - Comunicación

- Arquitectura jerárquica: microservicios agrupados en niveles.
- Capas en base al nivel de abstracción:
 - Nivel del recurso manejado
 - Nivel de las soluciones
 - Nivel del bucle genérico
 - Nivel del conocimiento

Bucle MAPE-K Distribuido - Patrones de comunicación

- Peticiones síncronas : Punto a punto.
 Desde un servicio en una capa superior a otro en la inferior.
- Notificaciones ↑: Broadcast. Desde un servicio en una capa inferior a todos en la capa superior.
- Peticiones asíncronas →: Punto a punto.
 Entre servicios de la misma capa.

Bucle MAPE-K Distribuido - Propuesta inicial

Bucle MAPE-K Distribuido - Implementación

- Prototipo para verificar la arquitectura.
- Servicios ASP.NET.
- Gran variedad de tecnologías empleadas.
 - O Priorizamos multi plataforma.

DEMO

Vídeo de youtube si todo explota:

https://youtu.be/VaOiSxPz1xk

4. Pruebas y propuestas de mejora

Pruebas

- Pruebas de la solución: Verificar el correcto funcionamiento del sistema.
 - Se ejecutan las adaptaciones correspondientes.
- **Pruebas de la arquitectura**: Verificar comunicación entre componentes
 - Pruebas de carga para detectar cuellos de botella.

Pruebas solución: verificar ejecución de las adaptaciones

Pruebas de arquitectura - Comunicación

Pruebas de arquitectura - Cuellos de botella

Bucle MAPE-K Distribuido - Propuesta revisada

5. Conclusiones

Conclusiones

- Se ha diseñado y prototipado el Bucle MAPE-K Distribuido
- Sistema de climatización para verificar su funcionamiento.
- Falta aplicar la refactorización sobre el bucle real.

FIN. iMuchas gracias por su atención!

¿Preguntas?

Introducción

- Gran parte del software que usamos día a día tiene algún componente web.
 - o Redes sociales, comercio on-line...
- Estas aplicaciones suelen ser accesibles globalmente y en cualquier momento.
- Tienen un requisito de alta disponibilidad.

Introducción (II) - Disponibilidad

- ¿Cómo aseguramos la alta disponibilidad?
- Operarios humanos = muy costoso.
 - Recurrir a ellos debería ser nuestro último recurso
- El sistema debería recuperarse automáticamente.
 Autoadaptación.

Caso de estudio: Sistema de climatización (II)

- Dos componentes:
 - **Termómetro**: Reporta la temperatura actual
 - **Aire acondicionado**: Cuenta con tres modos de funcionamiento:
 - Apagado
 - Calentar
 - Enfriar

Introducción (III) - Bucles de control

- Concepto de la teoría de control.
- Proceso secuencial de 4 etapas:
 - Recoger información
 - Detectar síntomas
 - Decidir si requiere corrección
 - Aplicar correcciones.

Framework FAdA

- FAdA: Framework para el desarrollo de sistemas autoadaptativos.
 - Model Driven Development, herramientas de generación de código....
- Desarrollado por el grupo PROS/Tatami del instituto VRAIN/UPV.
- Cuenta con varios bucles de control genéricos distintos.

Objetivos

- 1. **Rediseñar la arquitectura existente** para soluciones autoadaptativas y prepararla para desplegarse como microservicios en la nube.
- 2. **Definir directrices para la implementación de los diferentes componentes adaptativos** específicos de una solución: sondas, monitores, efectores...
- Desarrollar un caso práctico para demostrar la viabilidad y aplicabilidad de nuestra propuesta.

Bucle MAPE-K - Monitorización

- Sondas: Recopilan información del mundo real (entorno y recurso manejado).
 - Ej: T^a de la estancia.
- Monitores: la traducen a nuestro modelo abstracto del sistema.
 - Propiedades de adaptación.

Bucle MAPE-K - Conocimiento

- Componente transversal.
- Almacena el modelo abstracto.
- Informa todas las etapas del bucle.

Bucle MAPE-K - Análisis

- Determina si es necesaria una acción correctiva.
- MAPE-K Lite: Implementado como reglas de adaptación. Compuestas por:
 - Condición
 - Acción: Solicitud de cambio de configuración.

Bucle MAPE-K - Reglas de Adaptación

Regla: EnableAirConditionerCoolingModeWhenTemperatureThresholdExceeded

Descripción: Activa el aire acondicionado en modo enfriar cuando la temperatura sea

superior al umbral de calor.

Condición: *airconditioner-mode* != *Cooling* **AND** *temperature* >= *hot-temperature-threshold*

Cuerpo:

Bucle MAPE-K - Planificación

- Recibe solicitudes de cambio.
- Determina acciones necesarias para alcanzar la configuración deseada.
 - Operadores arquitectónicos.
- Genera el plan de cambio.

Bucle MAPE-K - Ejecución

- Ejecutor: Recibe plan de cambio y distribuye las acciones entre los efectores
- **Efectores**: Ejecutan las acciones de adaptación.
 - Interpretan acciones y determinan cómo ejecutarlas.
 - Ej: Activar modo enfriar del aire acondicionado.

Plataforma de observabilidad

- Nos permitió ver y comprender el estado del sistema.
- Nos ayudó a detectar bugs y problemas con nuestra arquitectura

Pruebas de arquitectura - Pruebas de carga

Pruebas de arquitectura - Cuello de botella

v1.0.Climatisation.Monitor.Service: Measurement/Temperature

7e1280e779505b919126dfbd610c9e49

Trace Start: 20	22-08-21 18:27 :25.375 Du	ration: 16.39s Services: 9	Depth: 43 Total Spans: 1	95
0µs	4.1s	8.19s	12.29s	16.39s
				7
				1
	,			1

Pruebas de arquitectura - Cuello de botella

v1.0.Climatisation.Monitor.Service: Measurement/Temperature

7e1280e779505b919126dfbd610c9e49

Mensaje encolado esperando evaluar reglas