

San Francisco | April 16-20 | Moscone Center

SESSION ID: IDY-F03

Research Engineer Micro Focus

Pratyusa K. Manadhata

#RSAC

Principal Researcher Micro Focus

Motivation

Problem statement

Scalable, reliable, and timely detection of *malicious authentication events*

Challenges

MATTERS #RSAC

- Base rate fallacy
- Similarity of good and bad events

Wikimedia.org

A machine learning based solution

An authentication event

- Time of authentication
- Source device and source user
- Destination device and destination user
- Authentication type, orientation, logon type, outcome

Hard to differentiate malicious from benign

The context of an event

Modified problem statement

Scalable, reliable, and timely *classification* of an *authentication event's context*

EXPERIMENTAL RESULTS

Los Alamos National Labs data

Collected from Los Alamos National Labs' network over 58 days

Users	12.4K
Devices	17.7K
Events (Authentication, DNS, Netflow, Process)	1.65B
Authentication events	1.05B

https://csr.lanl.gov/data/cyber1/

Malicious authentication events

749 events performed by a red team using stolen credentials

How to distinguish 749 malicious events from 1.05B events?

Data reduction for scalability

Examples

- Filter out local events
- Focus on network authentication
- Focus on successful authentication

• ..

Rule matching shouldn't have false negatives, but false positives

Feature extraction

- Given an authentication event at time T, extract features from
 - Events on the source device in the time period (T-W)
 - Network events between the source and the destination
 - Events on the destination device in the time period (T + W)

Feature identification via domain expertise

Example features

- Authentication logs
 - Failures/successes at the source and the destination

- Netflow logs
 - Connections per protocol, Number of bytes/packets on standard/non-standard ports, ..

- DNS logs
 - Frequency of DNS events at the source and the destination, ...

Model selection

- Model selection data
 - Randomly chosen 10K legitimate events and 3.5K compromised events
 - 5 fold replication of compromised events to handle class imbalance

Training and test split: 75%:25% and 10 fold cross validation

Performance of different models

Model	True Positive Rate	False Positive Rate
Random Forest	0.988	0.030
Logistic Regression	0.977	0.056
Naïve Bayes	0.929	0.154
Multilayer Perceptron	0.973	0.076
SMO	0.951	0.135

Reporting 75:25 split results (10 fold CV results are similar)

An 'end to end' experiment

- Model generation
 - 8K benign and 2.5K malicious (5 fold replication)

- Parameter selection
 - 80M benign and 124 malicious

- Error estimation on Test data
 - 20M benign and 124 malicious

Precision-recall plots

- Better than ROC plots for imbalanced data sets
 - Even a very low FPR produces many FPs
- Precision
 - Fraction of true positives in events detected as malicious
 - TP /(TP + FP)
- Recall:
 - Fraction of malicious events detected
 - TP / (TP + FN)

Threshold selection

Recall

reshold = 0.99 recision = 0.19 Recall = 0.75

Test data results

hreshold = 0.99 Precision = 0.48

In order to identify 3/4th of the malicious events, the model will generate 52% false positives.

That is, 1 out of every 2 detections will be a false positive.

A note about false positives

- 1 false positive for each true positive may seem high
- But the number of true positives are very low
 - so the absolute number of false positives will be low.

Test data: 120 true positives over 60 days.

Features from only authentication events

Threshold = 0.99

Precision = 0.3

Recall = 0.70

2 out of every 3 detections will be false positives.

Recall

MODEL GENERATION INFRASTRUCTURE

Model generation and prediction challenges

Scalable feature computation and model learning

Real time detection of compromised authentication events

- Performance issues
 - Feature extraction takes too long

Scale and performance assumptions

- Data volume in a large enterprise
 - •5 billion events/day (with 0.5 KB/event, 2.5 TB/day, without compression)
 - Higher number of events when including high volume sources such as Netflow

- Streaming data in nature
- Analytics is continuous, not just on data at rest

Event streaming framework

Streaming malicious authentication detection

Ranked list of malicious events

Feature values for an authentication event

RSAConference2018

Anamoly Detection

C22409 (OCT 28,2017,7.00 PM)

Details of malicious event

MICRO

RSAConference2018

70 >

Feature values for an authentication event

Feature values for an authentication event

Applying today's lesson in your enterprise

- Start collecting event logs in your enterprise
 - Authentication logs
 - DNS logs, Netflow logs, ...
- Learn a classifier
 - Collect a labeled data set
 - Extract features
 - Learn a classifier and validate the classifier
- Apply the classifier to future authentication events
 - Flag the identified events for further examination

Related work

- Data set
 - https://csr.lanl.gov/data/cyber1/
 - A. D. Kent, "Cybersecurity Data Sources for Dynamic Network Research," in Dynamic Networks in Cybersecurity, 2015.
- Data Breaches, Phishing, or Malware? Understanding the Risks of Stolen Credentials, Thomas et al., ACM Conference on Computer and Communications Security (CCS), Nov 2017, Dallas, TX.
- Detecting Credential Compromise in Enterprise Networks, Mobin Javed, PhD Thesis, UC Berkeley, 2016.

THANK YOU!

manadhata@alumni.cmu.edu

m.kim@microfocus.com