- (1) Define a random process. Identify the type of random process for the following stochastic process.
 - (a) $\{W_k; k \in T\}$ where W_k be the time that the kth customer has to wait in the system before service.
 - (b) The price of a share observed over days.
 - (c) $\{Y(t); t \in T\}$ where Y(t) denotes the number of phone calls recorded in the system at time
- (2) Find out the mean, autocorrelation, power, auto-covariance, and variance functions for the following stochastic process $\{X(t); t \in T\}$: Check if the processes are WSS and White noise.
 - (a) $X(t) = cos(2\pi ft + \theta)$; where $t \ge 0$ and f are constant and $\theta \sim U[-\pi, \pi]$.
 - (b) $X(t) = A_0 + A_1t + A_2t^2$ where A_0, A_1 , and A_2 are independent RVs with equal mean 0 and variance 1.
 - (c) X(t) = 1 when there are even numbers of failures in the system during interval [0, t] and X(t) = -1 when there are odd number of failures in the system during [0, t].
 - (d) $P(X(t) = n) = \frac{(at)^{n-1}}{(1+at)^{n+1}}; n = 1, 2, \dots \text{ and } P(X(t) = 0) = \frac{at}{1+at}.$
- (3) Let $Y_n = a_0 X_n + a_1 X_{n-1}$; n = 1, 2, ..., where X_i are iid RVs with equal mean 0 and variance 2. Is $\{Y_n; n \ge 1\}$ SSS? Is $\{Y_n; n \ge 1\}$ WSS?
- (4) Let X(t) and Y(t) be independent Gaussian random processes with zero means and the same covariance function $C_X(\tau)$, where τ is the difference of two distinct time points, define the amplitude-modulated signal by $Z(t) = X(t)cos\omega t + Y(t)sin\omega t$. Find the pdf of Z(t). Determine if Z(t) is a SSS or/and WSS.
- (5) Let $\{X_n : n \ge 1\}$ be a Gaussian rangom process with mean 0 and variance σ^2 . If $Y_n = \frac{1}{2}(X_n + X_{n-1})$, check if Y_n is WSS or/and SSS. Is $\{Y_n : n \ge 1\}$ a Markov process?
- (6) Let $\{X(t); t \geq 0\}$ follows the poisson process with average arrival rate of 5 people per 1/2 hour.
 - (a) Find the probability of 10 arrivals in the interval of 10 minutes to 20 minutes.
 - (b) Find the probability that any arrival has to wait for than 15 minutes.
 - (c) $P(X(10) = 10 \mid X(20) = 15)$.
 - (d) $P(X(20) = 15 \mid X(10) = 10)$.
 - (e) $P(X(20) = 10 \mid X(19) = 8, X(18) = 6, X(17) = 4).$
- (7) Let $X_n, n = 0, 1, ...$ be a Markov chain (a discrete Markov process) with $P(X_0 = 0, X_1 = 1) = P(X_0 = 0, X_2 = 1) = P(X_1 = 1, X_2 = 1) = 1/3$. Compute $P(X_0 = 0, X_1 = 1, X_2 = 1)$.
- (8) A certain calculating machine uses only the digits 0 and 1. It is supposed to transmit one of these digits through several stages. However, at every stage, there is a probability p that the digit that enters this stage will be changed when it leaves and a probability q = 1 p that it wont. Form a Markov chain to represent the process of transmission by taking as states the digits 0 and 1. What is the probability that the machine, after two stages, produces the digit 0 (i.e., the correct digit)? [Ans: $p^2 + q^2$]
- (9) I have 4 umbrellas, some at home, some in the office. I keep moving between home and office. I take an umbrella with me only if it rains. If it does not rain I leave the umbrella behind (at home or in the office). It may happen that all umbrellas are in one place, I am at the other, it starts raining and must leave, so I get wet.
 - (a) If the probability of rain is p, what is the probability that I get wet? [Ans: $\frac{pq}{q+4}$, where q=1-p.
 - (b) Current estimates show that p = 0.6 in Guwahati. How many umbrellas should I have so that, if I follow the strategy above, the probability I get wet is less than 0.01? [Ans: 24]
- (10) A critical part of a machine has an exponentially distributed lifetime with parameter α . Suppose that n spare parts are initially at stock, and let N(t) be the number of spares left at time t.
 - (a) Find P(N(s+t) = j | N(s) = i).
 - (b) Find the transition probability matrix.
 - (c) Find $P_i(t)$.