获得的答案

a.

Consider the Language $L = \{w \mid w \text{ has at least three } a \text{'s and at least two } b \text{'s} \}$. The language L is the intersection of two simpler languages L_1 and L_2 .

Now $L_1 = \{w \mid w \text{ has at least three } a's\}$ and $L_2 = \{w \mid w \text{ has at least two } b's\}$. Let M be the DFA (Deterministic Finite automata) that recognizes L. Let M_1 and M_2 be the DFAs that recognizes L_1 and L_2 .

The state diagram of M_1 that recognizes $L_1 = \{w \mid w \text{ has at least three } a \text{'s} \}$ is as follows:

The state diagram of M_2 that recognizes $L_2 = \{w \mid w \text{ has at least two } b$'s is as follows:

The machine M will accept the input if and only if both M_1 and M_2 accept it. Because, the language L is the intersection of the languages L_1 and L_2 . Therefore, the state diagram of M that recognizes the Language L is as follows:

b.

Consider the language $L = \{w \mid w \text{ has at exactly two } a\text{'s and at least two } b\text{'s}\}$. The language L is the intersection of two simpler languages say L_1 and L_2 .

Now $L_1 = \{w \mid w \text{ has exactly two } d's\}$ and $L_2 = \{w \mid w \text{ has at least two } b's\}$. Let M be the DFA(Deterministic Finite automata) that recognizes L and M_1 and M_2 be the DFAs that recognizes L_1 and L_2 .

The state diagram of M_1 that recognizes L_1 is as follows

浙ICP备16034203号-2

https://www.512218.cn 1/7

The state diagram of ${\it M}_{\it 2}$ that recognizes ${\it L}_{\it 2}$ is as follows

The machine M will accept the input if and only if both M_1 and M_2 accept it. Because, the language L is the intersection of L_1 and L_2 . The state diagram of M that recognizes L is as follows:

Combine some states to get more simplified form as follows:

C.

Consider the language $L = \{ w \mid w \text{ has even number of } a \text{'s and one or two } b \text{'s} \}$. The language L is the intersection of two simpler languages say L_1 and L_2 .

Now $L_1 = \{w \mid w \text{ has even number of } a's \}$ and $L_2 = \{w \mid w \text{ has one or two } b's\}$. Let M be the DFA(Deterministic Finite automata) that recognizes L and M_1 and M_2 be the DFAs that recognizes L_1 and L_2 . 新ICP备16034203号-2

The state diagram of $M_{\rm I}$ that recognizes $L_{\rm I}$ is as follows

https://www.512218.cn 2/7

The state diagram of $M_{\scriptscriptstyle 2}$ that recognizes $L_{\scriptscriptstyle 2}$ is as follows

The machine M will accept the input if and only if both M_1 and M_2 accept it. Because language L is the intersection of L_1 and L_2 .

The state diagram of M which recognizes the language L is as follows

d.

Consider the language $L = \{w \mid w \text{ has an even number of } a'\text{s} \text{ and each a is a followed by at least on } b\}$. The language L is the intersection of two simpler languages say L_1 and L_2 .

Now $L_1=\{w\mid w \text{ has an even number of } \sigma's\}$ and $L_2=\{w\mid w \text{ has each a is a followed by at least on } b\}$. Let M be the DFA(Deterministic Finite automata) that recognizes L and M_1 and M_2 be the DFAs that recognizes L_1 and L_2 .

The state diagram of M_1 that recognizes L_1 is as follows where $L_1 = \{w \mid w \text{ has an even number of } a's\}$.

The state diagram of M_2 that recognizes L_2 is as follows where $L_2 = \{w \mid w \text{ has each } a \text{ is followed by at least one } b\}$.

The machine M will accept the input if and only if both M_1 and M_2 accept it. Because, the language L is the intersection of L_1 and L_2 .

The state diagram of M that recognizes L is as follows:

https://www.512218.cn 3/7

Combine some states to get more simplified form as follows:

e.

Consider the language $L = \{w \mid w \text{ Start with an } a \text{ and has at most one } b\}$. The language L is the intersection of two simpler languages say L_1 and L_2 . Now $L_1 = \{w \mid w \text{ starts with } a\}$ and $L_2 = \{w \mid w \text{ has at most one } b\}$. Let M be the DFA(Deterministic Finite automata) that recognizes L and L_2 .

The state diagram of M_1 that recognizes L_1 is as follows:

浙ICP备16034203号-2

The state diagram of ${\it M}_{\rm 2}$ that recognizes ${\it L}_{\rm 2}$ is as follows.

The machine M will accept the input if and only if both M_1 and M_2 accept it. Because, the language L is the intersection of L_1 and L_2 . The state diagram of M that recognizes L is as follows.

Combine some states to get more simplified form as follows:

f.

Consider the language $L = \{w \mid w \text{ has an odd number of } a'\text{s} \text{ and ends with } b\}$. The language L is the intersection of two simpler languages say L_1 and L_2 . Now $L_1 = \{w \mid w \text{ has an odd } a'\text{s} \text{ and } b'\text{s} \text{ and$

number of a's} and $L_2 = \{w \mid w \text{ ends with a } b\}$. Let M be the DFA(Deterministic Finite automata) that recognizes L and M_1 and M_2 be the DFAs that recognizes L_1 and L_2 .

The state diagram of M_1 that recognizes L_1 is as follows:

浙ICP备16034203号-2

https://www.512218.cn 5/7

The language L_2 accepts the strings that ends with a symbol b. The state diagram of M_2 that recognizes L_2 is as follows:

The machine M will accept the input if and only if both M_1 and M_2 accept it. Because, the language L is the intersection of L_1 and L_2 .

The state diagram of M that recognizes L is as follows:

g.

Consider the language $L = \{w \mid w \text{ has even length and an odd number of } a's \}$. The language L is the intersection of two simpler languages say L_1 and L_2 . Now $L_1 = \{w \mid w \text{ has even length } \}$ and $L_2 = \{w \mid w \text{ has odd number of } a's \}$. Let M be the DFA(Deterministic Finite automata) that recognizes L and M_1 and M_2 be the DFAs that recognizes L_1 and L_2 .

State diagram of M_1 that recognizes L_1 is as follows

State diagram of ${\it M}_{\rm 2}$ that recognizes ${\it L}_{\rm 2}$ is as follows

The machine M will accept the input if and only if both M_1 and M_2 accept it. Because, the language L is the intersection of L_1 and L_2 .

The state diagram of M that recognize L is as follows:

浙ICP备16034203号-2

6/7

https://www.512218.cn

