CO 250: Introduction to Optimization

Module 2: Linear Programs (Finding a Feasible Solution)

©University of Waterloo 1/2

The Problem

Consider

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}.$$

To run Simplex, we need a feasible basis.

Question

How do we find a feasible basis?

Is there an easier question to answer?

Question

How do we find a feasible solution?

These two questions are equivalent.

Exercise

There is an algorithm that, given a feasible solution, finds a feasible basis.

We will focus on the second question.

©University of Waterloo 2 /

The Key Idea

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Algorithm 1

INPUT: A, b, c, and a feasible solution

OUTPUT: Optimal solution/detect LP unbounded.

OK Simplex + exercise

Algorithm 2

INPUT: A and b

OUTPUT: Feasible solution/detect there is none

HOW?

We will show that...

Proposition

We can use Algorithm 1 to get Algorithm 2.

©University of Waterloo 3/

A First Example

Problem: Find a feasible solution/detect none exist for

Remark

It does not depend on the objective function.

©University of Waterloo 4/:

$$\begin{pmatrix} 1 & 5 & 2 & 1 \\ -2 & -9 & 0 & 3 \end{pmatrix} x = \begin{pmatrix} 7 \\ -13 \end{pmatrix} \qquad \text{and} \qquad x \ge \mathbf{0} \tag{\star}$$

Step 1. Multiply the equations such that the RHS is non-negative.

$$\begin{pmatrix} 1 & 5 & 2 & 1 \\ 2 & 9 & 0 & -3 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 5 & 2 & 1 \\ 2 & 9 & 0 & -3 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \tag{*}$$

- **Step 1.** Multiply the equations such that the RHS is non-negative. OK
- Step 2. Construct an auxiliary problem.

$$\begin{array}{llll} \min & x_5+x_6\\ \text{s.t.} & & \\ & \begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0\\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7\\ 13 \end{pmatrix}\\ & x \geq \mathbf{0} & & \end{array}$$

 x_5, x_6 are auxiliary variables

Remark

This auxiliary problem is

- feasible, since $(0,0,0,0,7,13)^{\top}$ is a solution, and
- bounded, as 0 is the lower bound.
- Therefore, this auxiliary problem has an optimal solution.

$$\begin{pmatrix} 1 & 5 & 2 & 1 \\ 2 & 9 & 0 & -3 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \tag{\star}$$

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct an auxiliary problem.

$$\begin{array}{llll} \min & x_5 + x_6 \\ \text{s.t.} & & \\ & \begin{pmatrix} 1 & 5 & 2 & 1 & 1 & 0 \\ 2 & 9 & 0 & -3 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 7 \\ 13 \end{pmatrix} \\ & x \geq \mathbf{0} & & \end{array}$$

 x_5, x_6 are auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(2,1,0,0,0,0)^{\top}$ is an optimal solution to the auxiliary problem,

since
$$x_5 = x_6 = 0$$
.

Therefore, $(2,1,0,0)^{\top}$ is a feasible solution to (\star) .

©University of Waterloo 7

A Second Example

Problem: Find a feasible solution/detect none exist for

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \tag{*}$$

 $\textbf{Step 1.} \ \ \textbf{Multiply the equations such that the RHS is non-negative.} \qquad \textbf{OK}$

Step 2. Construct an auxiliary problem.

$$\begin{array}{lll} & \min & z = x_4 + x_5 \\ \text{s.t.} & & \\ & \begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \\ & x \geq \mathbf{0} & & \end{array}$$

 x_4, x_5 are auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(0,0,1,0,3)^{\top}$ is the optimal solution to the auxiliary problem.

However, $(0,0,1)^{\top}$ is **NOT** a solution to (\star) .

©University of Waterloo 8/

$$\begin{pmatrix} 5 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \tag{*}$$

$$\min \quad z = x_4 + x_5$$

s.t.

$$\begin{pmatrix} 5 & 1 & 1 & 1 & 0 \\ -1 & 1 & 2 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 5 \end{pmatrix}$$
$$x > \mathbf{0}$$

auxiliary problem

optimal solution $(0,0,1,0,3)^{\top}$ optimal value = 0 + 3 = 3.

Claim

 (\star) does not have a solution.

Proof

Suppose, for a contradiction, (\star) has a solution x'_1, x'_2, x'_3 .

Then, $(x_1', x_2', x_3', 0, 0)^{\top}$ is a feasible solution to the auxiliary problem,

but that solution has of value 0. This is a contradiction.

Formalize

Problem: Find a feasible solution/detect none exist for

$$Ax = b$$
 and $x \ge \mathbf{0}$ (\star)

- **Step 1.** Multiply the equations such that b is non-negative.
- **Step 2.** Construct an auxiliary problem $(A m \times n \text{ matrix})$.

$$\min \quad z = x_{n+1} + \ldots + x_{n+m}$$
 s.t. x_{n+1}, \ldots, x_{n+m} a x_{n+1}, \ldots, x_{n+m} a auxiliary variables $x \geq \mathbf{0}$

$$x_{n+1},\ldots,x_{n+m}$$
 are

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(x_1,\ldots,x_n,x_{n+1},\ldots,x_{n+m})^{\top}$ is the optimal solution to the auxiliary problem.

Proposition

If z = 0, then $(x_1, \ldots, x_n)^{\top}$ is a solution to (\star) .

©University of Waterloo

$$Ax = b$$
 and $x \ge \mathbf{0}$ (\star)

- **Step 1.** Multiply the equations such that b is non-negative.
- **Step 2.** Construct an auxiliary problem ($A m \times n$ matrix).

min
$$z = x_{n+1} + \ldots + x_{n+m}$$

s.t. $\begin{pmatrix} A & | & I \end{pmatrix} x = b$
 $x \ge \mathbf{0}$

 x_{n+1}, \dots, x_{n+m} are auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(x_1,\ldots,x_n,x_{n+1},\ldots,x_{n+m})^{\top}$ is the optimal solution to the auxiliary problem.

Proposition

If z = 0, then $(x_1, \ldots, x_n)^{\top}$ is a solution to (\star) .

Proof

When z = 0, we must have $x_{n+1} = \ldots = x_{n+m} = 0$.

$$Ax = b$$
 and $x \ge \mathbf{0}$ (\star)

- **Step 1.** Multiply the equations such that b is non-negative.
- **Step 2.** Construct an auxiliary problem ($A m \times n$ matrix).

min
$$z=x_{n+1}+\ldots+x_{n+m}$$

s.t. $\begin{pmatrix} A & | & I \end{pmatrix} x=b$
 $x\geq \mathbf{0}$

 x_{n+1}, \dots, x_{n+m} are auxiliary variables

Step 3. Solve the auxiliary problem using Algorithm 1.

 $(x_1,\ldots,x_n,x_{n+1},\ldots,x_{n+m})^{\top}$ is the optimal solution to the auxiliary problem.

Proposition

When z > 0, then (\star) has no solution.

©University of Waterloo 12 /

$$Ax = b$$
 and $x \ge 0$ (*)

min
$$z = x_{n+1} + \ldots + x_{n+m}$$

s.t.
$$\left(\begin{array}{c|c} A & I \end{array} \right) x = b$$
 $x \ge \mathbf{0}$

auxiliary problem

Proposition

When z > 0, then (\star) has no solution.

Proof

Suppose, for a contradiction, (\star) has a solution x'_1, \ldots, x'_n .

Then $(x'_1,\ldots,x'_n,0,\ldots,0)^{\top}$ is feasible solution to auxiliary problem,

but that solution has of value 0. This is a contradiction.

© University of Waterloo

The 2-Phase Method

To solve

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\},\,$$

we proceed in two phases:

Phase 1. Find a feasible solution/detect none exist.

Phase 2. Given the feasible solution, find an optimal solution/detect LP unbounded.

Problem: Solve the following LP,

$$\max \quad (1,1,1)x$$
 s.t.
$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$x \geq \mathbf{0}$$

$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \tag{*}$$

- **Step 1.** Multiply the equations such that the RHS is non-negative. OK
- Step 2. Construct an auxiliary problem.

min
$$z = x_4 + x_5$$

s.t.
$$\begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

NOT in SEF

©University of Waterloo 15/28

$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \tag{*}$$

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct an auxiliary problem.

$$\begin{array}{llll} \max & z = -x_4 - x_5 \\ \text{s.t.} & & \\ \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & & \\ x \geq \mathbf{0} & & \\ \end{array}$$

In SEF

feasible basis $B = \{4, 5\}$

NOT in canonical form

To rewrite $B = \{4, 5\}$ in canonical form, you can

- use the formulae, OR
- notice $A_B = I$ and rewrite the objective function as follows...

©University of Waterloo 16/2

$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \tag{*}$$

Step 1. Multiply the equations such that the RHS is non-negative. OK

Step 2. Construct an auxiliary problem.

In SEF

feasible basis $B = \{4, 5\}$

NOT in canonical form

$$z = (0 \quad 0 \quad 0 \quad -1 \quad -1)x$$

$$0 = (1 \quad 2 \quad -1 \quad 1 \quad 0)x \quad -4$$

$$0 = (1 \quad -1 \quad 1 \quad 0 \quad 1)x \quad -4$$

$$z = (2 \quad 1 \quad 0 \quad 0 \quad 0)x \quad -8$$

$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \quad \text{and} \quad x \ge \mathbf{0} \tag{*}$$

- **Step 1.** Multiply the equations such that the RHS is non-negative. OK
- Step 2. Construct an auxiliary problem.

$$\begin{array}{llll} \max & z = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 \end{pmatrix} - 8 \\ \text{s.t.} & & & \begin{pmatrix} 1 & 2 & -1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ & & x \geq \mathbf{0} \\ \end{array}$$

In SEF

feasible basis $B = \{4, 5\}$

canonical form for B

Step 3. Solve the auxiliary problem using Simplex, starting from B.

 $B = \{1,4\}$ is an optimal basis with the basic solution $(4,0,0,0,0)^{\top}$.

z=0 implies that $(4,0,0)^{\top}$ is a feasible solution for (\star) .

©University of Waterloo

Phase 1. $(4,0,0)^{T}$ is a feasible solution for

$$\max \quad (2, -1, 2)x$$
s.t.
$$\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \mathbf{0}$$

Remark

 $(4,0,0)^{\top}$ is a basic solution.

Exercise

Show that this will always be the case!

Phase 1. $(4,0,0)^{T}$ is a feasible solution for

$$\max_{\textbf{s.t.}} \quad (2, -1, 2)x$$

$$\textbf{s.t.}$$

$$\underbrace{\begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix}}_{A} x = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$x \ge \textbf{0}$$

Question

For what basis, B, is $x = (4,0,0)^{\top}$ a basic solution?

$$x_1 \neq 0 \implies 1 \in B$$

Cardinality of maximal set of independent columns of A= Cardinality of maximal set of independent rows of A=2

Thus, for some $i \in \{2,3\}$, columns 1 and i of A are independent.

In this case, we can pick i=2. In particular, $B=\{1,2\}$ is a basis.

© University of Waterloo

Phase 2. Find an optimal solution/detect LP unbounded.

$$\max_{\textbf{s.t.}} \quad (1,1,1)x$$

$$\text{s.t.} \quad \begin{pmatrix} 1 & 2 & -1 \\ 1 & -1 & 1 \end{pmatrix} x = \begin{pmatrix} 4 \\ 4 \end{pmatrix}$$

$$x \geq \textbf{0}$$

$$B = \{1, 2\}$$
 is a feasible basis (from Phase 1).

We can now solve the problem using Simplex, starting from B. $x = (0, 8, 12)^{\top}$ is an optimal solution.

©University of Waterloo

Consequences

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

- (A) it is infeasible,
- (B) it is unbounded, or
- (C) it has an optimal solution that is basic.

Proof

Run 2-Phase method with Simplex using Bland's rule. (Recall that Bland's rule ensures that Simplex terminates.)

©University of Waterloo 22 / 2

Theorem

$$\max\left\{c^{\top}x: Ax = b, x \ge \mathbf{0}\right\}$$

Exactly one of the following holds for the LP:

- (A) it is infeasible,
- (B) it is unbounded, or
- (C) it has an optimal solution that is basic.

Remark

A finite number of basis implies a finite number of basic solutions.

If a LP has at least two feasible solutions and one optimal solution,

©University of Waterloo 23 /

Fundamental Theorem of Linear Programming

Consider an arbitrary LP. Exactly one of the following holds:

- (A) it is infeasible,
- (B) it is unbounded, or
- (C) it has an optimal solution.

Proof

Convert the LP into an equivalent LP in SEF.

Apply the previous theorem.

©University of Waterloo 24 / 25

Recap

- Using 2-Phase + the Simplex algorithm, we can solve arbitrary LPs.
- We proved the fundamental theorem of linear programming.

We have given a bare bone version of the Simplex procedure.

Careful implementation is key to having a practical algorithm.

If Simplex were a bike,

Our implementation