```
import pandas as pd
import matplotlib.pyplot as plt
import warnings
import numpy as np
warnings.filterwarnings('ignore')
data=pd.read csv("50 Startups.csv")
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50 entries, 0 to 49
Data columns (total 5 columns):
#
     Column
                       Non-Null Count
                                        Dtype
     -----
- - -
                                        ----
 0
     R&D Spend
                       50 non-null
                                        float64
 1
     Administration
                       50 non-null
                                        float64
                                        float64
 2
     Marketing Spend
                       50 non-null
 3
     State
                       50 non-null
                                        obiect
 4
     Profit
                                        float64
                       50 non-null
dtypes: float64(4), object(1)
memory usage: 2.1+ KB
retourne la dimension du matrice (50 lignes,5 colonnes)
data.shape
(50, 5)
retourne une description statistique pour la base de données en se base sur moyen, mean,
quartile ,ecartype
data.describe()
           R&D Spend
                       Administration
                                        Marketing Spend
                                                                  Profit
           50.000000
                                               50.000000
                                                               50.000000
count
                             50.000000
        73721.615600
                        121344.639600
                                           211025.097800
                                                           112012.639200
mean
                                           122290.310726
std
        45902.256482
                         28017.802755
                                                            40306.180338
            0.000000
                         51283.140000
                                                0.000000
                                                            14681.400000
min
25%
        39936.370000
                        103730.875000
                                           129300.132500
                                                            90138.902500
50%
        73051.080000
                        122699.795000
                                           212716.240000
                                                           107978.190000
75%
       101602.800000
                        144842.180000
                                           299469.085000
                                                           139765.977500
       165349.200000
                        182645.560000
                                           471784.100000
                                                           192261.830000
max
data.head()
   R&D Spend
              Administration
                                Marketing Spend
                                                       State
                                                                  Profit
   165349.20
                                      471784.10
                                                    New York
                                                               192261.83
```

443898.53

407934.54

383199.62

366168.42

California

Florida

Florida

New York

191792.06

191050.39

182901.99

166187.94

136897.80

151377.59

101145.55

118671.85

91391.77

0

1

3

162597.70

153441.51

144372.41

142107.34

nombres de valeurs null pour chaque variable dans la base de données

data.isnull().sum()

R&D Spend 0
Administration 0
Marketing Spend 0
State 0
Profit 0
dtype: int64

data.duplicated().sum()#nombres des valeurs redondantes dans la BD data.drop\_duplicates(keep=False)#effacer les duplications et laisse une exemplaire si les duplications existe (keep=False)

```
data.duplicated().sum()
data.drop_duplicates(keep=False)
```

|    | R&D Spend | Administration | Marketing Spend | State      | Profit    |
|----|-----------|----------------|-----------------|------------|-----------|
| 0  | 165349.20 | 136897.80      | 471784.10       | New York   | 192261.83 |
| 1  | 162597.70 | 151377.59      | 443898.53       | California | 191792.06 |
| 2  | 153441.51 | 101145.55      | 407934.54       | Florida    | 191050.39 |
| 3  | 144372.41 | 118671.85      | 383199.62       | New York   | 182901.99 |
| 4  | 142107.34 | 91391.77       | 366168.42       | Florida    | 166187.94 |
| 5  | 131876.90 | 99814.71       | 362861.36       | New York   | 156991.12 |
| 6  | 134615.46 | 147198.87      | 127716.82       | California | 156122.51 |
| 7  | 130298.13 | 145530.06      | 323876.68       | Florida    | 155752.60 |
| 8  | 120542.52 | 148718.95      | 311613.29       | New York   | 152211.77 |
| 9  | 123334.88 | 108679.17      | 304981.62       | California | 149759.96 |
| 10 | 101913.08 | 110594.11      | 229160.95       | Florida    | 146121.95 |
| 11 | 100671.96 | 91790.61       | 249744.55       | California | 144259.40 |
| 12 | 93863.75  | 127320.38      | 249839.44       | Florida    | 141585.52 |
| 13 | 91992.39  | 135495.07      | 252664.93       | California | 134307.35 |
| 14 | 119943.24 | 156547.42      | 256512.92       | Florida    | 132602.65 |
| 15 | 114523.61 | 122616.84      | 261776.23       | New York   | 129917.04 |
| 16 | 78013.11  | 121597.55      | 264346.06       | California | 126992.93 |
| 17 | 94657.16  | 145077.58      | 282574.31       | New York   | 125370.37 |
| 18 | 91749.16  | 114175.79      | 294919.57       | Florida    | 124266.90 |
| 19 | 86419.70  | 153514.11      | 0.00            | New York   | 122776.86 |
| 20 | 76253.86  | 113867.30      | 298664.47       | California | 118474.03 |
| 21 | 78389.47  | 153773.43      | 299737.29       | New York   | 111313.02 |
| 22 | 73994.56  | 122782.75      | 303319.26       | Florida    | 110352.25 |
| 23 | 67532.53  | 105751.03      | 304768.73       | Florida    | 108733.99 |
| 24 | 77044.01  | 99281.34       | 140574.81       | New York   | 108552.04 |
| 25 | 64664.71  | 139553.16      | 137962.62       | California | 107404.34 |
| 26 | 75328.87  | 144135.98      | 134050.07       | Florida    | 105733.54 |
| 27 | 72107.60  | 127864.55      | 353183.81       | New York   | 105008.31 |
| 28 | 66051.52  | 182645.56      | 118148.20       | Florida    | 103282.38 |
| 29 | 65605.48  | 153032.06      | 107138.38       | New York   | 101004.64 |
| 30 | 61994.48  | 115641.28      | 91131.24        | Florida    | 99937.59  |
| 31 | 61136.38  | 152701.92      | 88218.23        | New York   | 97483.56  |

| 32 | 63408.86 | 129219.61 | 46085.25  | California | 97427.84 |
|----|----------|-----------|-----------|------------|----------|
| 33 | 55493.95 | 103057.49 | 214634.81 | Florida    | 96778.92 |
| 34 | 46426.07 | 157693.92 | 210797.67 | California | 96712.80 |
| 35 | 46014.02 | 85047.44  | 205517.64 | New York   | 96479.51 |
| 36 | 28663.76 | 127056.21 | 201126.82 | Florida    | 90708.19 |
| 37 | 44069.95 | 51283.14  | 197029.42 | California | 89949.14 |
| 38 | 20229.59 | 65947.93  | 185265.10 | New York   | 81229.06 |
| 39 | 38558.51 | 82982.09  | 174999.30 | California | 81005.76 |
| 40 | 28754.33 | 118546.05 | 172795.67 | California | 78239.91 |
| 41 | 27892.92 | 84710.77  | 164470.71 | Florida    | 77798.83 |
| 42 | 23640.93 | 96189.63  | 148001.11 | California | 71498.49 |
| 43 | 15505.73 | 127382.30 | 35534.17  | New York   | 69758.98 |
| 44 | 22177.74 | 154806.14 | 28334.72  | California | 65200.33 |
| 45 | 1000.23  | 124153.04 | 1903.93   | New York   | 64926.08 |
| 46 | 1315.46  | 115816.21 | 297114.46 | Florida    | 49490.75 |
| 47 | 0.00     | 135426.92 | 0.00      | California | 42559.73 |
| 48 | 542.05   | 51743.15  | 0.00      | New York   | 35673.41 |
| 49 | 0.00     | 116983.80 | 45173.06  | California | 14681.40 |
|    |          |           |           |            |          |

print(data.Profit.std())#calcule d'ecart-type print(data.Profit.mean())#calcule de moyenne

```
print(data.Profit.std())
print(data.Profit.mean())
40306.18033765055
112012.63920000002
```

data.skew()

R&D Spend 0.164002 Administration -0.489025 Marketing Spend -0.046472 Profit 0.023291

dtype: float64

facteur d'applatissement , le coefficient kurtosis mesure la degré d'irrégularité d'une distribution."

#### data.kurtosis()

R&D Spend -0.761465 Administration 0.225071 Marketing Spend -0.671701 Profit -0.063859

dtype: float64

retourne les parametres statistiques de BD, Nous remarquons que les valeurs de la médiane et de la moyenne ne sont pas proches, donc nous ne pouvons pas approximer cette distribution à une gaussienne.

```
dt=pd.read_csv("dataFrame.csv")
dt.describe()
```

|       | SalePrice     |
|-------|---------------|
| count | 1460.000000   |
| mean  | 180921.195890 |
| std   | 79442.502883  |
| min   | 34900.000000  |
| 25%   | 129975.000000 |
| 50%   | 163000.000000 |
| 75%   | 214000.000000 |
| max   | 755000.000000 |

Nous affichons la courbe de la distribution de la base de données et nous la comparons avec la distribution normale (fit=norm).

```
import seaborn as sb
from scipy.stats import norm
sb.distplot(dt,fit=norm)
```

<AxesSubplot:ylabel='Density'>



dt.skew()

SalePrice 1.882876

dtype: float64

On remarque l'apparition de plusieurs points abérrantes dans cette distribution sb.boxplot(data=dt)

### <AxesSubplot:>



En appliquant la fonction logarithme à la distribution initiale, nous remarquons qu'il y a une amélioration de la courbe de distribution et que nous pouvons l'approcher d'une gaussienne.

data2=np.log(dt)
sb.distplot(data2,fit=norm)
data2.skew()

SalePrice 0.121335

dtype: float64



On peut afficher la boite de moustache d'une seul variable. Cette figure indique les informations suivantes: la ligne inférieure : 1er quantile la ligne supérieure : 3eme quantile la ligne intérieur : 2eme quantile (ou mediane) la ligne inferieur au dessous : minimum limite la ligne superieur au dessus : maximum limite les points dessous minimum limite ou dessus maximum limite : les valeurs aberants On remaeque que la distribution est uniformement distribué et presque symétrique

## sb.boxplot(data=data2)

#### <AxesSubplot:>



La méthode boxplot fournit par la librairie seaborn affiche la boite de moustache pour toutes les variables.

sb.boxplot(data=data)

<AxesSubplot:>



sb.boxplot(y=data.Profit,x=data.State)

<AxesSubplot:xlabel='State', ylabel='Profit'>



A l'aide de la methode pairplot fournit par seaborn, on peut afficher la nuage des points de chaque couple de variables et des histogrammes dans la diagonale pour visualiser la distribution de chaque variable On remarque une forte correlation entre R&D Spend et Profit

sb.pairplot(data)

<seaborn.axisgrid.PairGrid at 0x1fb68dc9460>



Calcule des coefficients de corrélations entre les differents variables en utilisant la méthode de pearson

```
c=data.corr(method="pearson")
c
```

|                 | R&D Spend | Administration | Marketing Spend | Profit   |
|-----------------|-----------|----------------|-----------------|----------|
| R&D Spend       | 1.000000  | 0.241955       | 0.724248        | 0.972900 |
| Administration  | 0.241955  | 1.000000       | -0.032154       | 0.200717 |
| Marketing Spend | 0.724248  | -0.032154      | 1.000000        | 0.747766 |
| Profit          | 0.972900  | 0.200717       | 0.747766        | 1.000000 |

On peut afficher le nuage des points à l'aide de la méthode scatter de matplotlib. Cette figure présente le nuage des points de profit en fonction de R&D spend on peut constater qu'il y'a une forte correlation entre les deux variables profit et r&d spend.

```
plt.scatter(x=data["R&D Spend"],y=data["Profit"])
```

#### <matplotlib.collections.PathCollection at 0x1fb698323d0>



A l'aide de la méthode regplot fournit par la librarie seaborn,on peut afficher la nuage des point entre deux variables . Cette méthode est utilisée pour tracer les données et la courbe d'ajustement d'une régression linéaire

sb.regplot(x=data["R&D Spend"],y=data["Profit"],color="red")
<AxesSubplot:xlabel='R&D Spend', ylabel='Profit'>



# sb.heatmap(c,annot=True)#R&D spend et Profit sont fortement correlé <AxesSubplot:>



## Préparation des parametres d'entrées

x=data.iloc[:,:-1]
print(x)

|    | R&D Spend | Administration | Marketing Spend | State      |
|----|-----------|----------------|-----------------|------------|
| 0  | 165349.20 | 136897.80      | 471784.10       | New York   |
| 1  | 162597.70 | 151377.59      | 443898.53       | California |
| 2  | 153441.51 | 101145.55      | 407934.54       | Florida    |
| 3  | 144372.41 | 118671.85      | 383199.62       | New York   |
| 4  | 142107.34 | 91391.77       | 366168.42       | Florida    |
| 5  | 131876.90 | 99814.71       | 362861.36       | New York   |
| 6  | 134615.46 | 147198.87      | 127716.82       | California |
| 7  | 130298.13 | 145530.06      | 323876.68       | Florida    |
| 8  | 120542.52 | 148718.95      | 311613.29       | New York   |
| 9  | 123334.88 | 108679.17      | 304981.62       | California |
| 10 | 101913.08 | 110594.11      | 229160.95       | Florida    |
| 11 | 100671.96 | 91790.61       | 249744.55       | California |
| 12 | 93863.75  | 127320.38      | 249839.44       | Florida    |
| 13 | 91992.39  | 135495.07      | 252664.93       | California |
| 14 | 119943.24 | 156547.42      | 256512.92       | Florida    |

| 15 | 114523.61 | 122616.84 | 261776.23 | New York    |
|----|-----------|-----------|-----------|-------------|
| 16 | 78013.11  | 121597.55 | 264346.06 | California  |
| 17 | 94657.16  | 145077.58 | 282574.31 | New York    |
| 18 | 91749.16  | 114175.79 | 294919.57 | Florida     |
| 19 | 86419.70  | 153514.11 | 0.00      | New York    |
| 20 | 76253.86  | 113867.30 | 298664.47 | California  |
| 21 | 78389.47  | 153773.43 | 299737.29 | New York    |
| 22 | 73994.56  | 122782.75 | 303319.26 | Florida     |
| 23 | 67532.53  | 105751.03 | 304768.73 | Florida     |
| 24 | 77044.01  | 99281.34  | 140574.81 | New York    |
| 25 | 64664.71  | 139553.16 | 137962.62 | California  |
| 26 | 75328.87  | 144135.98 | 134050.07 | Florida     |
| 27 | 72107.60  | 127864.55 | 353183.81 | New York    |
| 28 | 66051.52  | 182645.56 | 118148.20 | Florida     |
|    |           |           |           |             |
| 29 | 65605.48  | 153032.06 | 107138.38 | New York    |
| 30 | 61994.48  | 115641.28 | 91131.24  | Florida     |
| 31 | 61136.38  | 152701.92 | 88218.23  | New York    |
| 32 | 63408.86  | 129219.61 | 46085.25  | California  |
| 33 | 55493.95  | 103057.49 | 214634.81 | Florida     |
| 34 | 46426.07  | 157693.92 | 210797.67 | California  |
| 35 | 46014.02  | 85047.44  | 205517.64 | New York    |
| 36 | 28663.76  | 127056.21 | 201126.82 | Florida     |
| 37 | 44069.95  | 51283.14  | 197029.42 | California  |
| 38 | 20229.59  | 65947.93  | 185265.10 | New York    |
| 39 | 38558.51  | 82982.09  | 174999.30 | California  |
| 40 | 28754.33  | 118546.05 | 172795.67 | California  |
| 41 | 27892.92  | 84710.77  | 164470.71 | Florida     |
| 42 | 23640.93  | 96189.63  | 148001.11 | California  |
| 43 | 15505.73  | 127382.30 | 35534.17  | New York    |
| 44 | 22177.74  | 154806.14 | 28334.72  | California  |
| 45 | 1000.23   | 124153.04 | 1903.93   | New York    |
| 46 | 1315.46   | 115816.21 | 297114.46 | Florida     |
| 47 | 0.00      | 135426.92 | 0.00      | California  |
| 48 | 542.05    | 51743.15  | 0.00      | New York    |
| 49 | 0.00      | 116983.80 | 45173.06  | California  |
|    | 5.50      | 110303.00 | 131,3100  | CGCITTOTHIC |

## Préparation de la sortie Y

y=data.iloc[:,-1]
print(y)

```
0
      192261.83
1
      191792.06
2
      191050.39
3
      182901.99
4
      166187.94
5
6
      156991.12
      156122.51
7
      155752.60
8
      152211.77
9
      149759.96
```

```
10
      146121.95
11
      144259.40
12
      141585.52
13
      134307.35
14
      132602.65
15
      129917.04
16
      126992.93
17
      125370.37
18
      124266.90
19
      122776.86
20
      118474.03
21
      111313.02
22
      110352.25
23
      108733.99
24
      108552.04
25
      107404.34
26
      105733.54
27
      105008.31
28
      103282.38
29
      101004.64
30
       99937.59
31
       97483.56
32
       97427.84
33
       96778.92
34
       96712.80
35
       96479.51
36
       90708.19
37
       89949.14
38
       81229.06
39
       81005.76
40
       78239.91
       77798.83
41
42
       71498.49
43
       69758.98
44
       65200.33
45
       64926.08
46
       49490.75
47
       42559.73
48
       35673.41
49
       14681.40
Name: Profit, dtype: float64
```

get\_dummies permet la convertion de la colonnes state de valeur non ordinal a des colonnes de valeurs binaire . Le parametre drop\_first efface la 1ere colonne transformé car la machine peut conclure les valeurs du 1ere colonne à l'aide des autres colonnes

```
x=pd.get_dummies(x,drop_first=True)
print(x)
```

R&D Spend Administration Marketing Spend State\_Florida State\_New York

| 0<br>1      | 165349.20 | 136897.80 | 471784.10 | Θ |
|-------------|-----------|-----------|-----------|---|
| 1           | 162597.70 | 151377.59 | 443898.53 | Θ |
| 0<br>2      | 153441.51 | 101145.55 | 407934.54 | 1 |
| 0<br>3<br>1 | 144372.41 | 118671.85 | 383199.62 | 0 |
| 4           | 142107.34 | 91391.77  | 366168.42 | 1 |
| 0<br>5<br>1 | 131876.90 | 99814.71  | 362861.36 | 0 |
| 6           | 134615.46 | 147198.87 | 127716.82 | 0 |
| 0<br>7<br>0 | 130298.13 | 145530.06 | 323876.68 | 1 |
| 8<br>1      | 120542.52 | 148718.95 | 311613.29 | 0 |
| 9           | 123334.88 | 108679.17 | 304981.62 | 0 |
| 10<br>0     | 101913.08 | 110594.11 | 229160.95 | 1 |
| 11<br>0     | 100671.96 | 91790.61  | 249744.55 | 0 |
|             | 93863.75  | 127320.38 | 249839.44 | 1 |
|             | 91992.39  | 135495.07 | 252664.93 | 0 |
| 14<br>0     | 119943.24 | 156547.42 | 256512.92 | 1 |
| 15<br>1     | 114523.61 | 122616.84 | 261776.23 | 0 |
|             | 78013.11  | 121597.55 | 264346.06 | 0 |
| 17<br>1     | 94657.16  | 145077.58 | 282574.31 | 0 |
|             | 91749.16  | 114175.79 | 294919.57 | 1 |
|             | 86419.70  | 153514.11 | 0.00      | 0 |
| 20<br>0     | 76253.86  | 113867.30 | 298664.47 | 0 |
| 21<br>1     | 78389.47  | 153773.43 | 299737.29 | 0 |
| 22<br>0     | 73994.56  | 122782.75 | 303319.26 | 1 |
| 23<br>0     | 67532.53  | 105751.03 | 304768.73 | 1 |
|             | 77044.01  | 99281.34  | 140574.81 | 0 |

| 25<br>0      | 64664.71 | 139553.16 | 137962.62 | 0 |
|--------------|----------|-----------|-----------|---|
| 26           | 75328.87 | 144135.98 | 134050.07 | 1 |
| 0<br>27<br>1 | 72107.60 | 127864.55 | 353183.81 | 0 |
| 28<br>0      | 66051.52 | 182645.56 | 118148.20 | 1 |
| 29<br>1      | 65605.48 | 153032.06 | 107138.38 | 0 |
| 30<br>0      | 61994.48 | 115641.28 | 91131.24  | 1 |
| 31<br>1      | 61136.38 | 152701.92 | 88218.23  | 0 |
| 32<br>0      | 63408.86 | 129219.61 | 46085.25  | 0 |
| 33<br>0      | 55493.95 | 103057.49 | 214634.81 | 1 |
| 34<br>0      | 46426.07 | 157693.92 | 210797.67 | 0 |
| 35<br>1      | 46014.02 | 85047.44  | 205517.64 | 0 |
| 36<br>0      | 28663.76 | 127056.21 | 201126.82 | 1 |
| 37<br>0      | 44069.95 | 51283.14  | 197029.42 | 0 |
| 38<br>1      | 20229.59 | 65947.93  | 185265.10 | 0 |
| 39<br>0      | 38558.51 | 82982.09  | 174999.30 | 0 |
| 40<br>0      | 28754.33 | 118546.05 | 172795.67 | 0 |
| 41<br>0      | 27892.92 | 84710.77  | 164470.71 | 1 |
| 42<br>0      | 23640.93 | 96189.63  | 148001.11 | 0 |
| 43<br>1      | 15505.73 | 127382.30 | 35534.17  | 0 |
| 44<br>0      | 22177.74 | 154806.14 | 28334.72  | 0 |
| 45<br>1      | 1000.23  | 124153.04 | 1903.93   | 0 |
| 46<br>0      | 1315.46  | 115816.21 | 297114.46 | 1 |
| 47<br>0      | 0.00     | 135426.92 | 0.00      | 0 |
| 48<br>1      | 542.05   | 51743.15  | 0.00      | 0 |
| 49<br>0      | 0.00     | 116983.80 | 45173.06  | 0 |

Préparation des parties train et test 20% partie test 80% partie train random\_state=0 pour choisir la 1ere choix

```
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,
y,random_state=0, test_size=0.2)
```

En remarquant le grand décalage des valeurs entre les 3 premières colonnes et les valeurs des colonnes (State\_Florida et State\_NewYork : valeur entre 0 et 1), nous avons utilisé la méthode StandarScaler qui permet de normaliser toutes les valeurs de la base de données entre 0 et 1.Nous faisons ce traitement pour éviter la dominance d'une variable sur une autre

```
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
sc.fit(x_train.iloc[:,:-2])
x_train.iloc[:,:-2]=sc.transform(x_train.iloc[:,:-2])
x_train
```

|              |             |           | Marketing Spend | State_Florida |
|--------------|-------------|-----------|-----------------|---------------|
| Sta          | te_New York |           |                 |               |
| 33<br>0      | -0.350065   | -0.785471 | 0.101197        | 1             |
| 35           | -0.555303   | -1.481174 | 0.027350        | 0             |
| 1<br>26<br>0 | 0.079358    | 0.801334  | -0.551521       | 1             |
| 34<br>0      | -0.546382   | 1.325058  | 0.070117        | Θ             |
| 18<br>0      | 0.434854    | -0.355987 | 0.751485        | 1             |
| 7<br>0       | 1.269431    | 0.855185  | 0.986031        | 1             |
| 14<br>0      | 1.045250    | 1.280770  | 0.440400        | 1             |
| 45<br>1      | -1.529843   | 0.029421  | -1.621875       | 0             |
| 48<br>1      | -1.539763   | -2.767673 | -1.637297       | 0             |
| 29<br>1      | -0.131152   | 1.144977  | -0.769500       | 0             |
| 15<br>1      | 0.927916    | -0.029921 | 0.483032        | 0             |
| 30<br>0      | -0.209329   | -0.299377 | -0.899154       | 1             |
| 32<br>0      | -0.178708   | 0.225135  | -1.264016       | 0             |
| 16<br>0      | 0.137471    | -0.069294 | 0.503847        | 0             |
| 42           | -1.039676   | -1.050767 | -0.438521       | 0             |

| 0            |           |           |           |   |
|--------------|-----------|-----------|-----------|---|
| 20<br>0      | 0.099383  | -0.367903 | 0.781818  | 0 |
| 43           | -1.215802 | 0.154162  | -1.349478 | Θ |
| 1<br>8<br>1  | 1.058224  | 0.978368  | 0.886701  | 0 |
| 13           | 0.440120  | 0.467547  | 0.409232  | 0 |
| 0<br>25      | -0.151519 | 0.624306  | -0.519831 | 0 |
| 0<br>5       | 1.303611  | -0.910735 | 1.301798  | 0 |
| 1<br>17      | 0.497811  | 0.837707  | 0.651491  | 0 |
| 1<br>40      | -0.928972 | -0.187170 | -0.237691 | 0 |
| 0<br>49      | -1.551498 | -0.247517 | -1.271405 | 0 |
| 0<br>1       | 1.968711  | 1.081067  | 1.958181  | 0 |
| 0<br>12      | 0.480634  | 0.151771  | 0.386346  | 1 |
| 0<br>37<br>0 | -0.597392 | -2.785442 | -0.041403 | 0 |
| 24<br>1      | 0.116490  | -0.931339 | -0.498672 | 0 |
| 6            | 1.362901  | 0.919649  | -0.602819 | Θ |
| 23<br>0      | -0.089432 | -0.681423 | 0.831261  | 1 |
| 36<br>0      | -0.930933 | 0.141566  | -0.008215 | 1 |
| 21<br>1      | 0.145619  | 1.173615  | 0.790508  | Θ |
| 19<br>1      | 0.319472  | 1.163598  | -1.637297 | Θ |
| 9            | 1.118678  | -0.568313 | 0.832985  | Θ |
| 39           | -0.716714 | -1.560956 | -0.219842 | 0 |
| 0<br>46      | -1.523018 | -0.292619 | 0.769263  | 1 |
| 0<br>3<br>1  | 1.574137  | -0.182310 | 1.466534  | Θ |
| 0<br>1       | 2.028280  | 0.521733  | 2.184048  | 0 |
| 47<br>0      | -1.551498 | 0.464915  | -1.637297 | Θ |
| U            |           |           |           |   |

| 44<br>0     | -1.071354                 | 1.213507         | -1.407792         | 0             |
|-------------|---------------------------|------------------|-------------------|---------------|
|             | est.iloc[:,<br>nt(x_test) | :-2]=sc.transfor | m(x_test.iloc[:,: | -2])          |
| C+>         |                           |                  | Marketing Spend   | State_Florida |
| 28<br>0     | te_New York<br>-0.121495  | 2.288905         | -0.680323         | 1             |
| 11<br>0     | 0.628031                  | -1.220695        | 0.385578          | 0             |
| 10<br>0     | 0.654901                  | -0.494342        | 0.218855          | 1             |
| 41<br>0     | -0.947621                 | -1.494179        | -0.305121         | 1             |
| 2           | 1.770481                  | -0.859327        | 1.666881          | 1             |
| 27<br>1     | 0.009618                  | 0.172791         | 1.223412          | 0             |
| 38<br>1     | -1.113531                 | -2.218962        | -0.136691         | 0             |
| 31<br>1     | -0.227907                 | 1.132224         | -0.922749         | 0             |
| 22          | 0.050470                  | -0.023512        | 0.819521          | 1             |
| 0<br>4<br>0 | 1.525099                  | -1.236102        | 1.328585          | 1             |

Créer un modéle lineaire à l'aide de la classe LinearRegression fournit par sklearn. le coefficient R (score)=0.95, donc le modèle est acceptable

```
from sklearn.linear model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
lr.score(x train,y train)
```

#### 0.9501847627493607

la valeur de l'intercept  $\beta$ 0 Les valeurs des paramètres des vaiables  $(X1,X2,X3,X4,X5) = > (\beta 1,\beta 2,\beta 3,\beta 4,\beta 5)$ 

```
print(f"intercept: {lr.intercept }")
print(f"slope: {lr.coef_}")
intercept: 109441.48912163253
                        851.30163448 4519.88277698 -959.28416006
slope: [35726.28774249
   699.36905252]
```

afficher les valeurs de R-squared et mean squared error

```
from sklearn.metrics import r2_score,mean_squared_error
y_pred=lr.predict(x_test)
print(r2_score(y_pred,y_test))
# y_predm
print(mean_squared_error(y_pred,y_test))
0.929374920931811
83502864.03257751
```