Phase Margin vs Delay Margin


```
%% Plot results
figure;
legend_V = cell(length(delay_V)+1, 1);
for C_idx = 1:length(C_V)
   subplot(length(C_V), 1, C_idx);
   stp = out_V{C_idx, 1}.logsout.get('setpoint').Values.Data;
    t_stp = out_V{C_idx, 1}.logsout.get('setpoint').Values.Time;
   plot(t_stp, stp, '--', 'LineWidth', 2);
   hold on;
   legend_V{1} = 'Setpoint';
    for d_idx = 1:length(delay_V)
        y = out_V{C_idx, d_idx}.logsout.get('y').Values.Data;
        t_y = out_V{C_idx, d_idx}.logsout.get('y').Values.Time;
        legend_V\{d\_idx + 1\} = ['Response with delay = ' num2str(delay_V\{d\_idx\}) 's'];
   title(['Controller ' num2str(C_idx) ' performance']);
   ylabel('Output');
    legend(legend_V, 'FontSize', 12);
   set(gca, 'FontSize', 12);
   grid on;
```


Model

https://github.com/simorxb/delay-margin

SIMONE BERTONI CONTROL LAB

Control Architecture

Plant

$$ullet$$
 $G(s)=rac{1}{S^2+0.5s+1}$

Controllers - 2 Options

$$ullet C_1(s) = rac{4(2s+1)}{0.2s+1}$$

$$ullet C_2(s) = rac{14(s+1)}{0.1s+1}$$

© Simone Bertoni 2024 - simonebertonilab.com

Controller 1 Bode & Margins

Controller 2 Bode & Margins

Simulation

Let's simulate the close loop system with 3 different delays in the loop: 0.01s, 0.05s, 0.075s.

Delay Margin

Controller 1 performs a lot better than Controller 2 when the system is subject to time delay.

Even though the closed-loop systems have the same phase margin!

WHY??

Delay margin! Let's define:

- P_m : phase margin in radians
- ω_p : Frequency (rad/s) at which the magnitude of $C(j\omega_p)G(j\omega_p)$ is = 0 dB
- D_m : time delay margin in seconds

If you look back to the Bode diagrams you'll see that delay margin for **Controller 1** is 0.13s and for **Controller 2** is 0.073s!

Simulink Model

Matlab Code Design

```
%% Design
3 % Define transfer function G
4 s = tf('s');
   G = 1/(s^2 + 0.5*s + 1);
7 % Define controllers
8 C_V{1} = 4*(2*s+1)/(0.2*s+1);
   C_V{2} = 14*(s+1)/(0.1*s+1);
    for C_idx = 1:length(C_V)
11
12
     % Controller
       C = C_V\{C_idx\};
       % Loop function
       L = C * G;
18
       % Closed-loop transfer function
19
        T = feedback(L, 1);
       % Plot Bode diagram for L
       figure;
        bode(L);
        title(['Bode Diagram for L_' num2str(C_idx) ' = C_' num2str(C_idx) 'G']);
25
        grid on;
    end
```

Matlab Code Simulation

```
%% Simulation
3 % Define delays
4 delay_V = {0.01, 0.05, 0.075};
6 % Clear out_V
   out_V = cell(length(C_V), length(delay_V));
   % Cycle through controllers
10 for C_idx = 1:length(C_V)
11
   % Controller
12
       C = C_V{C_idx};
14
       % Cycle through delays
       for d_idx = 1:length(delay_V)
16
           % Delay
18
            delay = delay_V{d_idx};
           % Simulate
            out = sim("Delay_Margin.slx");
           % Store output data
            out_V{C_idx, d_idx} = out;
        end
28
29
    end
```

Matlab Code Plot

```
%% Plot results
    figure;
    legend_V = cell(length(delay_V)+1, 1);
    for C_idx = 1:length(C_V)
        % Subplot for controller
        subplot(length(C_V), 1, C_idx);
        stp = out_V{C_idx, 1}.logsout.get('setpoint').Values.Data;
        t_stp = out_V{C_idx, 1}.logsout.get('setpoint').Values.Time;
        % Plot setpoint
        plot(t_stp, stp, '--', 'LineWidth', 2);
        hold on;
        legend_V{1} = 'Setpoint';
        for d_idx = 1:length(delay_V)
            y = out_V{C_idx, d_idx}.logsout.get('y').Values.Data;
            t_y = out_V{C_idx, d_idx}.logsout.get('y').Values.Time;
            % Plot response
            plot(t_y, y, 'LineWidth', 2);
            legend_V{d_idx + 1} = ['Response with delay = ' num2str(delay_V{d_idx}) 's'];
        end
        hold off;
        title(['Controller ' num2str(C_idx) ' performance']);
        xlabel('Time (s)');
        ylabel('Output');
        legend(legend_V, 'FontSize', 12);
        set(gca, 'FontSize', 12);
        grid on;
48 end
```

PID Controller Course

https://simonebertonilab.com

Understand the control theory

★★★★★ April 28, 2024

I think the most important thing is to understand the meaning behind the mathematical formula. I guess this is the mission of Simone in this course and from my point of view he fully achivied this target. I hope to see in the future other courses (e.g advanced controls) structered in the same way with the same passion and examples.

Thank you Simone. **Show less**

Emidio Verified

Very helpful and practical

Yoav Golan

I enjoyed this course very much. I learned a lot of practical knowledge in a short time. Simone is very clear and teaches well, thank you! In the future, I would be very interested if Simone added a course with more subjects, such as cascading controllers, rate limiting, and how the controllers look in actual code. Thanks again!

Intuitive and Practical

Ranya Badawi

Simone's explanation of PID control was very intuitive. This is a great starter course to gain a fundamental understanding and some practical knowledge of PID controllers. I highly recommend it. For future topics, I'd be interested in frequency response, transfer functions, Bode plots (including phase/gain margin), Nyquist plots, and stability.

Very good sharing of experience

Romy Domingo Bompart Ballache

I have background in control system for power electronics, I see every lesson very useful.

Great course

★★★★★ April 15, 2024

Right to the point, easy to follow and very practical. I missed the zero/pole placement and phase margin analysis. It would also be interesting if you could provide other plants examples. Anyway, a great course to help designing and tuning a PID controller.

Leonardo Starling Verified

A different way to learn PID!

★★★★★ *May 31, 2023*

The teacher explains PID in a clear way adding his experience there where formulas alone cannot do much. Furthermore, each topic covered is included in a practical example to better fix ideas.

Michele De Palma