

Comparable Multi-Agent Knowledge-Graph Systems

Recent literature and industry sources reveal several efforts that echo aspects of the described hierarchical, knowledge-graph-enabled multi-agent system. For example, Broadridge's LTX subsidiary secured US Patent No. 12,061,970 in 2025 for an AI-assisted bond-trading assistant ("BondGPT") that **organizes specialist AI agents under a supervisory controller**, with features like step-by-step "show your work" provenance and adversarial/compliance agents 1 2 . Similarly, Google Cloud's new **Agent2Agent (A2A) protocol** (April 2025) is an open standard enabling **heterogeneous agents to interoperate** across enterprise systems; importantly, Neo4j and others highlight support for *knowledge graphs* (via GraphRAG) within A2A to keep agent interactions contextually relevant and explainable 3 4 .

In the enterprise AI space, MasterControl (Qualer) has deployed a **Regulatory Q&A system** built on RAG + knowledge graph. It **splits regulatory text into SPO triplets**, indexes them in a knowledge graph, and uses a "swarm" of specialized agents (Ingestion, Extraction, Cleaning, etc.) to ensure facts are verified and traced back to sources ⁵ ⁶. C3.ai has published blog posts on "multi-hop orchestration agents", noting that enterprise workflows often employ an orchestrator agent delegating to specialized domain agents (geospatial, supply-chain, etc.) ⁷. These corporate examples emphasize modular agents, explicit hand-offs, and structured provenance (e.g. BondGPT's explainability).

Several startups and frameworks support similar multi-agent architectures. AG2 (AutoGen 2.0) is an open-source **multi-agent orchestration library** in which agents can integrate with a high-performance graph database (FalkorDB) for **GraphRAG** workflows ⁸ ⁹. LangChain's LangGraph documentation likewise illustrates hierarchical supervisor models and message-passing among agents. Microsoft's **AutoGen** framework and OpenAI's Agents SDK similarly provide plug-and-play agent constructs (e.g. Planner, Coder, Reviewer roles) but don't natively include a shared knowledge graph. FalkorDB and WhyHowAI's platforms build on these ideas: for instance, WhyHow's "Knowledge Graph Studio" and LangGraph were used to create multi-agent RAG pipelines (legal-clause retrieval) with *multiple co-existing graphs* (lexical graph, definitions graph, etc.) ¹⁰. In short, modern agent frameworks allow new agents to be onboarded and communicate via shared state (including graphs), though many focus more on tool-calling or vector databases than on a unified KG memory.

In research, novel hierarchies and shared KGs have been explored. For example, **KG4Diagnosis** (Zuo et al. 2024) presents a two-tier agent system (a GP "triage" agent coordinating specialist diagnosis agents) built on an **automatically constructed medical knowledge graph** 11 . "HM-RAG" (Liu et al. 2025) uses a three-tier hierarchy of agents in a multimodal retrieval task, explicitly building *multimodal knowledge graphs* to enable cross-domain reasoning 12 13 . **AGENTIGraph** (Zhao et al. 2024) describes a platform where a multi-agent architecture continuously expands a shared KG, dynamically integrating new domain knowledge via specialized intent agents 14 15 . In material science, Markus Buehler et al. demonstrate an "agentic deep graph reasoning" loop: a single LLM agent iteratively adds nodes/edges to a KG in an autonomous, self-organizing fashion 16 . Cooperative KGC (Zhejiang/Ant Group, 2023) shows a team of

extraction agents jointly building a KG by exchanging information each round, improving graph completeness via synergy 17 .

Overall, while none of these efforts identically match the full vision, there is clear overlap: **hierarchical or swarm agent structures**, explicit *provenance tracking*, and **knowledge-graph-centric memory** appear in multiple projects. Corporates like Broadridge and MasterControl highlight explainability and compliance in finance/regulation domains; frameworks like AG2 and LangGraph offer extensible agent "plug-and-play" networks; and researchers demonstrate automated KG enrichment and cross-domain reasoning. Key differences lie in focus (domain-specific vs. general), formality (patent/protocol vs. open research), and depth of KG integration. Some ventures (e.g. Google's A2A) signal broad ecosystem standards forming, which could pose **competition** or interoperability benefits. In sum, the concept's novelty is partly shared by these initiatives, but the combination of *CEO/master orchestrator*, multi-domain agents logging to a single evolving KG with built-in reasoning trails, still appears distinctive.

Comparative Summary: The table below lists representative systems, patents, and tools, summarizing their focus and how they align or differ from the described hierarchical multi-agent/KG concept.

Organization (Source)	System / Patent	Focus Area	Key Similarities	Key Differences
Broadridge/ LTX (patent)	US 12,061,970 (2025)	Bond trading AI assistant (BondGPT)	* Multi-agent orchestration with specialized agents step by- step "show your work" logs 1 2 Built-in compliance/ adversarial agent	Domain-specific (finance); no explicit semantic KG (uses data APIs) br>* Orchestration is proprietary
Google Cloud / Neo4j	Agent2Agent Protocol (A2A, 2025)	Agent interoperability standard	* Enables multi- agent collaboration across systems ³ br>* Explicit integration with knowledge graphs / 	Protocol (not a single product); broad scope * Not limited to one enterprise's KG
MasterControl (Qualer)	RAG/KG Regulatory QA (2025)	Life-science regulatory compliance	* Multi-agent RAG architecture (Ingest, Extract, Clean, etc.) of triplets with provenance-backed answers 5 6 	Focused on regulated QA; not corporate functions "Ontology-free" emergent KG (no fixed schema)

Organization (Source)	System / Patent	Focus Area	Key Similarities	Key Differences
C3.ai	Multi-hop Orchestration (blog)	Enterprise AI workflows	* Hierarchical multi- agent design (orchestrator + specialized agents) 7 5 Emphasis on modularity and agent roles	Blog conceptual piece (not a product) * No detailed KG or provenance mechanism described
AG2 / AutoGen (open source)	AG2 Framework (2024)	Multi-agent LLM orchestration	* Swarm-based agent orchestration 8 9 in Graph RAG capability via FalkorDB (real-time KG support)	General-purpose developer framework * Knowledge graph support via integration, not mandatory
LangChain (LangGraph)	LangGraph Multi-Agent modules	LLM agent architectures	* Supports hierarchical/ supervisor patterns, handoffs between agents 18 Focus on agent communication/ control flow	Framework for coding agents; KG use is up to developer built-in semantic KG by default
Microsoft AutoGen	AutoGen (2023)	Multi-agent conversation frameworks	* Easily defines agents with roles (Planner, Coder, etc.) ¹⁹ structured messaging between agents	Doesn't inherently use a knowledge graph br>* Focus on conversation management, not KG memory
WhyHowAI (Startup)	Knowledge Graph Studio + LangGraph	Multi-graph RAG for legal docs	* Multi-agent workflow over multiple KGs (lexical, definition graphs) 10 for>* Agents retrieve and cross- link clauses within a shared semantic graph	Niche use-case (legal document retrieval) * Experimental/demo on Medium, not formal product

Organization (Source)	System / Patent	Focus Area	Key Similarities	Key Differences
The World Avatar (EPFL)	Distributed Self-driving Labs (2024)	Automated lab workflows	* Autonomous agents linked via a central, evolving knowledge graph ²⁰ br>* Records provenance of experimental data to 	Domain: chemistry/ engineering labs * Focus on physical automation not business functions
KG4Diagnosis (Zuo et al.)	AAA I-25 paper (2024)	Medical diagnosis	* Two-tier hierarchical agents (GP triage + specialist agents) 11 Automated medical knowledge graph construction for reasoning	Domain-specific (healthcare); published research prototype * Not built for enterprise deployment
HM-RAG (Shanghai AI Lab)	arXiv 2025	Multimodal info retrieval	* 3-tier hierarchical agents for retrieval tasks 12 br>* Builds and uses multimodal 	Research prototype for RAG tasks * Focus on images+text, not general business us
AGENTiGraph (Tokyo et al.)	arXiv 2024	LLM chatbot + KG platform	* Platform uses a multi-agent architecture to interpret intent and expand a shared KG dynamically 14 15	Academic system (chatbot setting); no hierarchical CEO- agent per se Emphasizes user- friendly KG interaction
Agentic Deep Graph (Buehler)	arXiv 2025	Self-organizing KG (materials sci)	* Single-agent iterative graph expansion yielding scale-free knowledge networks	Not multi-agent, but agentic (self-loop) construction Focus on scientific discovery, not corporate workflow

Organization (Source)	System / Patent	Focus Area	Key Similarities	Key Differences
CooperKGC (Zhejiang/Ant)	arXiv 2023	Collaborative KG construction	* Multiple specialized extraction agents form a collaboration network, jointly building a KG ¹⁷	Older study (2018) republished; emphasis on IE tasks, not an orchestrator hierarchy br>* No explicit agent hierarchy or logging
MasterControl (Secondary ref)	N/A	Compliance QA (outlined above)	* (Same as above: multi-agent + KG approach)	

Each entry is drawn from 2023–2025 sources, highlighting overlaps (multi-agent orchestration, shared KGs, provenance) and distinctions (domain, maturity, whether KG is integral). While many initiatives incorporate agent hierarchies and graph-based memory, the integrated *CEO/master orchestrator plus evolving corporate KG* with ubiquitous cross-domain collaboration remains relatively unique. The table and above discussion should help gauge where the described concept stands relative to emerging state-of-the-art.

Sources: Corporate press releases and blogs 1 2 3 4 5 6 7; open-source framework docs 8 9; and recent papers 11 12 13 14 16 17 10.

1 Broadridge Secures Patent for AI Agent Orchestration - A-Team

https://a-teaminsight.com/blog/broadridge-secures-patent-for-ai-agent-orchestration/

2 Broadridge doubles down on agentic AI for workflows – Finadium

https://finadium.com/broadridge-doubles-down-on-agentic-ai-for-workflows/

(3) 4 Announcing the Agent2Agent Protocol (A2A) - Google Developers Blog

https://developers.googleblog.com/en/a2a-a-new-era-of-agent-interoperability/

5 6 AI for Regulatory Compliance: MasterControl's Knowledge Graph Solution

https://www.mastercontrol.com/gxp-lifeline/rag-compliance-with-genai-multi-agent-knowledge-graph-approach-for-regulatory-qa/

7 Enhancing Enterprise AI with Multi-hop Orchestration Agents: Advanced Reasoning for Accurate, Reliable Decision Making

https://c3.ai/blog/enhancing-enterprise-ai-with-multi-hop-orchestration-agents-advanced-reasoning-for-accurate-reliable-decision-making-part-2/

8 Knowledgeable Agents with FalkorDB Graph RAG - AG2

https://docs.ag2.ai/latest/docs/blog/2024/12/06/FalkorDB-Structured/

9 AG2 - AI Agent Reviews, Features, Use Cases & Alternatives (2025)

https://aiagentsdirectory.com/agent/ag2

10 Legal Document RAG: Multi-Graph Multi-Agent Recursive Retrieval through Legal Clauses | by Chia Jeng Yang | Knowledge Graph RAG | Medium

https://medium.com/enterprise-rag/legal-document-rag-multi-graph-multi-agent-recursive-retrieval-through-legal-clauses-c90e073e0052

[11] [2412.16833] KG4Diagnosis: A Hierarchical Multi-Agent LLM Framework with Knowledge Graph Enhancement for Medical Diagnosis

https://arxiv.org/abs/2412.16833

- 12 13 HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation https://arxiv.org/html/2504.12330v1
- 14 15 AGENTiGraph: An Interactive Knowledge Graph Platform for LLM-based Chatbots Utilizing Private Data

https://arxiv.org/html/2410.11531v1

- ¹⁶ Agentic Deep Graph Reasoning Yields Self-Organizing Knowledge Networks https://arxiv.org/html/2502.13025v1
- Beyond Isolation: Multi-Agent Synergy for Improving Knowledge Graph Construction https://arxiv.org/html/2312.03022v2
- 18 Overview

https://langchain-ai.github.io/langgraph/concepts/multi_agent/

¹⁹ Agents — AutoGen

https://microsoft.github.io/autogen/stable//user-guide/agentchat-user-guide/tutorial/agents.html

A dynamic knowledge graph approach to distributed self-driving laboratories | Nature Communications https://www.nature.com/articles/s41467-023-44599-9?error=cookies_not_supported&code=835d6dac-2148-4273-8b05-e6f317a4a36a