Unsupervised Machine Learning: Clustering: Hierarchical Clustering

Alipio Jorge

January 2021

Clustering approaches

Top-down

- Divisive approach
 - e.g. k-means algorithm

Figure 1: ''

Clustering approaches

Bottom-up

- Agglomerative appraoches
 - e.g. Hierarchical Clustering

Clustering approaches

Bottom-up

- Agglomerative appraoches
 - e.g. Hierarchical Clustering

Hierarchical CLustering

Algorithm

- **Given**: data D, object distance d, cluster distance d_C
- Output: a clustering hierarchy H
- DO:
 - Each case is a cluster
 - Repeat
 - join the **two nearest** clusters A and B into C
 - A and B are the two branches of C
 - Until there is only one cluster H

Hierarchical Clustering

Simple Example

- Objects are: dog, wolf, lion, cat, zebra
- Step 1: join dog and wolf into dw
- Step 2: join lion and cat into lc
- Step 3: join dog-wolf and lion-cat into dwlc
- Step 4: join zebra and dwlc into H

Hierarchical Clustering

Dendrogram

- The resulting hierarchy can be visualized as a tree
 - that chart is called a dendrogram

Hierarchical Clustering

Obtaining clusters

- We can obtain clusters byt cutting the tree
 - different height cuts give different numbers of clusters

Distance between clusters

- In hierarchical clustering we need a cluster distance measure
- Different measures give different results
 - minimum distance (single linkage)
 - maximum distance (complete linkage)
 - average distance
 - Ward's distance

Distance between clusters

- Different distances correspond to different algorithms
 - and different strategies

Ward's distance

- Ward's distance measures the increase in within-cluster divergence
 minimizes the square distances in clusters
- Suppose we have clusters A, B and C and $m_{cluster}$ is the center of $m_{cluster}$

$$d(A,B) = \sum_{i \in A \cup B} \|x_i - m_{A \cup B}\|^2 - \sum_{i \in A} \|x_i - m_A\|^2 - \sum_{i \in B} \|x_i - m_B\|^2$$

- Computationally
 - Ward's distance is computed recursively (end efficiently)

Average linkage and Ward's distance

- Average is a good comprmise between single and complete
- Ward's distance is the standard "default" choice

Other clustering approaches

- Density based
 - find points with dense neibourhoods
 - method DBSCAN
- Artificial Neural Networks
 - Self organizing maps (Kohonen Nets)

References

- Books
 - Han, Kamber & Pei, Data Mining Concepts and Techniques, Morgan Kaufman.
- Scikit docs
 - https://scikit-learn.org/stable/modules/generated/sklearn.cluster. AgglomerativeClustering.html