MATEMÁTICA COMPUTACIONAL LÓGICA MATEMÁTICA (I)

Reginaldo Morais de Macedo, M.Sc., D.Sc.

- Bacharel em Administração e Matemática.
- Doutor em Administração.
- Mestre em Desenvolvimento Social.
- Especialista em Ciência de Dados; Sistema Financeiro e Mercado de Capitais; Saúde Pública; Educação a Distância; Engenharia de Produção; e Administração de Sistemas de Informação.
 MBA em Gestão de Projetos e Gestão Pública.

Lógica: Conceitos e Vertentes (Barbosa, 2017)

- É a manifestação do pensamento.
- Lógica Clássica: não-contradição;
 Lógica Anticlássica terceiro excluído; identidade.
 (Moderna): não consid
 - Lógica Formal
 - Lógica de Programação
 - Lógica Matemática/Simbólica
 - Lógica Proposicional/dos Argumentos
 - Lógica Material
 - Lógica Modal (possibilidades)
 - Lógica Epistêmica (conhecimento)
 - Lógica Deôntica (Moral e Ética)

- Lógica Anticlássica (Moderna): não considera um ou mais dentre os princípios que sustentam a Lógica Clássica
 - Lógica Paraconsistente
 - Lógica Paracompleta
 - Lógica Fuzzy

LÓGICA CLÁSSICA

- Também conhecida como Lógica Aristotélica ou Lógica Proposicional.
- É um sistema de raciocínio que estabelece regras para a validação de um determinado conjunto de argumentos (conjunto de proposições e que tem a função de demonstrar a relação lógica entre estas).

Lógica Clássica – Princípios (Barbosa, 2017; Bispo et al., 2018)

- Identidade: toda proposição é idêntica a si mesma, ou seja, se a proposição verdadeira, então ela é verdadeira;
- Não-contradição: uma proposição não pode ser verdadeira e falsa ao mesmo tempo;
- o Terceiro Excluído: uma proposição é verdadeira ou falsa exclusivamente, não havendo outra alternativaçõe

LÓGICA FORMAL

- o Estudo das formas válidas de argumentos.
- Envolve a análise de estruturas lógicas e a aplicação de regras de inferência para determinar a validade de argumentos.
- É fundamental na Matemática para provar teoremas e na Computação para verificar a correção de algoritmos.

LÓGICA FORMAL - TIPOS

- **Lógica de Programação**: utiliza princípios de lógica formal para desenvolver e verificar programas de computador.
- Lógica Matemática/Simbólica: é o estudo de sistemas formais e símbolos que representam proposições e seus relacionamentos.
- Lógica Proposicional/dos Argumentos: estuda proposições que podem ser verdadeiras ou falsas e suas combinações através de operadores lógicos.

LÓGICA MATERIAL

- Preocupa-se com o conteúdo dos argumentos. Tipos:
 - **Modal**: considera as possibilidades e necessidades, sendo útil na verificação de sistemas de computação e na modelagem de estados de sistemas.
 - **Epistêmica**: lida com conhecimento e crenças, aplicável em inteligência artificial e segurança da informação.
 - **Deôntica**: trata de obrigações e permissões, relevante para sistemas normativos e legais.

LÓGICA ANTICLÁSSICA OU MODERNA

- o Desafia as premissas da lógica clássica. Tipos:
 - **Paraconsistente**: permite a existência de contradições sem que todo o sistema lógico colapse, sendo utilizada em inteligência artificial para gerenciar informações conflitantes.
 - Paracompleta: rejeita a lei do terceiro excluído, essencial na matemática construtivista e na análise de algoritmos onde provas construtivas são necessárias.
 - Fuzzy: permite graus intermediários de verdade, aplicando-se em sistemas de controle e modelagem de incertezas, como controle de temperatura e tomada de decisões sob incerteza.

Proposições (Barbosa, 2017)

- Na Filosofia, o juízo é um ato mental e a proposição é a representação da expressão deste ato (p. 24).
- São frases declarativas que têm um valor lógico. (p. 28)
- Simples: apenas uma sentença ou enunciado: 2 + 2 = 4 (representadas por letras minúsculas: p, q, r, s...).
- Compostas: mais de uma sentença ou enunciado: Aristóteles é homem e grego (representadas por letras maiúsculas: P, Q, R, S...)

Proposições: Exemplos (Bispo; Castanheira; Souza Filho, 2018)

- Sentenças declarativas
 - o A Lua está a aprox. 384.000 km da Terra (V)
 - 111 na base 2 é igual a 6 na base 10 (F)
 - $\circ \sin(90^{\circ}) = 1 \text{ (V)}$
 - Os suíços fabricam os melhores relógios e os franceses, o melhor vinho (V, dependendo do período de tempo)
- Sentenças Não Declarativas
 - Venha aqui! (imperativa)
 - Não corra tão rápido (imperativa)
 - Quantas vezes terei de repetir isso? (interrogativa)

- o e (∧)
- o Maria foi ao cinema e Marta ao teatro
 - C=Maria foi ao cinema
 - T=Marta foi ao teatro
 - \circ C \wedge T
- o André foi ao baile, mas Maria ficou em casa
 - B=André foi ao baile
 - o C=Maria ficou em casa
 - \circ B \wedge C

- o ou (v)
- Maria foi ao cinema ou ao teatro
 - C=Maria foi ao cinema
 - T=Maria foi ao teatro
 - \circ C \vee T
- José será jogador de futebol ou seguirá carreira na Medicina
 - F=José será jogador de futebol
 - o M=José seguirá carreira na Medicina
 - \circ B \vee C

- o condicional (→): se(proposição 1) [antecedente],
 então (proposição 2) [consequente]
- o Se Alberto é poliglota, então fala várias línguas.
 - P=Alberto é poliglota; L=(Alberto) fala várias línguas
 - \circ P \rightarrow L
- Se todos os homens são mortais e Sócrates é homem, então Sócrates é mortal.
 - H=Todos os homens são mortais; S=Sócrates é um homem. M=Sócrates é mortal
 - \circ (H \wedge S) \rightarrow M.

- bicondicional (↔): (proposição 1) se, e somente se, (proposição 2), sendo que p ↔ q, equivale a p → q e q → p.
- Só ganharás o dinheiro se, e somente se, completares o trabalho.
 - D=ganharás o dinheiro.
 - T=completares o trabalho.
 - \circ D \leftrightarrow T

- negação (¬ ~): é um conectivo unário, invertendo o valor lógico analítico da proposição.
- o Luís não recebeu o seu pagamento na data prevista.
 - P=Luís recebeu seu pagamento na data prevista
 - $\circ \neg P$
- Alfredo gosta de trabalhar
 - o T=Alfredo não gosta de trabalhar
 - \circ $\neg T$

PRIORIDADES (BISPO ET AL., 2018)

- \circ (); (\neg); (\land) e (\lor); (\rightarrow) e (\leftrightarrow).
- Ex: Se tomarmos café ou comermos algo, chegaremos atrasados à conferência, mas se isso for um problema, é melhor despedirmos-nos agora.

T=Tomarmos café.

C=Comermos algo.

A=chegaremos atrasados à conferência.

P=isso é um problema.

D=é melhor desperdirmos-nos agora

$$(((T \lor C) \to A) \land (P \to D))$$

WFF (WELL-FORMED FORMULA) (BISPO ET AL., 2018)

- Fórmulas: conjunto de proposições conectadas (por conectivos lógicos), utilizando a linguagem simbólica (BARBOSA, 2017).
- Se a fórmula é aceitável (em relação às regras de formação) diz-se que é uma fórmula bem escrita (WFF).
- Regras de formação:
 - Uma letra proposicional isolada é uma WFF.
 - o Se P é uma WFF, então ¬P também é.
 - Se P e Q são WFFs, então $(P \land Q)$, $(P \lor Q)$, $(P \to Q)$ e $(P \leftrightarrow Q)_{39}$ também são.

VALOR-VERDADE (BISPO ET AL., 2018, P. 17)

o Obtido de forma única a partir dos valores-verdade atribuídos às proposições simples que a compõe.

• Depende do contexto da proposição simples e do seu estudo semântico.

Valor-Verdade: Critérios (Bispo et al., 2018, p. 17)

- Conjunção: só é verdadeiro se todas as proposições são verdadeiras.
- **Disjunção**: é verdadeiro se qualquer uma das proposições for verdadeira.
- Condicional: é falso, se e somente se, a antecedente for verdadeira, mas a consequente for falsa.
- **Bicondicional**: é verdadeiro, se e somente se, as duas proposições tiverem valores iguais.
- **Negação**: é verdadeiro se a proposição for falsa e vice-versa.

Tabelas-Verdade (Carnielli; Epstein, 2009; Bispo et al., 2018)

 Instrumento para auxiliar no processo de determinação do valor-verdade para uma proposição.

		Conjunção	Disjunção	Condicional	Bicondicional
p	\mathbf{q}	$\mathbf{p} \wedge \mathbf{q}$	$\mathbf{p} \vee \mathbf{q}$	$\mathrm{p} ightarrow \mathrm{q}$	$\mathbf{p} \leftrightarrow \mathbf{q}$
V	V	\mathbf{V}	V	V	V
V	F	${f F}$	V	${f F}$	${f F}$
\mathbf{F}	V	F	V	V	${f F}$
F	\mathbf{F}	F	F	V	V

1042

Classificação das Proposições (Bispo et al., 2018)

- Tautologia: ocorre, se, e somente se, seu valor lógico é sempre verdade (V), independente do valor lógico das proposições simples que a compõe.
- Contradição: ocorre, se, e somente se, seu valor lógico é sempre falso (F), independente do valor lógico das proposições simples que a compõe.
- Contingência: ocorre quando o valor lógico pode ser verdadeiro (V) ou falso (F).

Exemplos (Contingência)

Os acadêmicos serão aprovados (p), se e somente se, atingirem nota mínima de 70 pontos (q) e 75% de frequência (r). (p ↔ (q ∧ r))

p	q	r	$q \wedge r$	$p \leftrightarrow q \wedge r$	Entendimento
V	V	V	V	V	(V) que aprovado: nota ≥ 70 e freq. $\geq 75\%$
V	V	F	\mathbf{F}	F	(F) que aprovado: nota ≥ 70 e freq. $< 75\%$
V	F	V	\mathbf{F}	F	(F) que aprovado: nota < 70 e freq. $\ge 75\%$
V	F	F	\mathbf{F}	F	(F) que aprovado: nota < 70 e freq. $< 75\%$
\mathbf{F}	V	V	V	F	(F) que reprovado: nota ≥ 70 e freq. $\geq 75\%$
F	V	F	\mathbf{F}	V	(V) que reprovado: nota ≥ 70 e freq. $< 75\%$
F	F	V	F	V	(V) que reprovado: nota < 70 e freq. $\geq 75\%$
\mathbf{F}	F	F	\mathbf{F}	V	(V) que reprovado: nota < 70 e freq. < 75%

Exemplos (Contingência)

 Se hoje chover (p) ou o carro não estiver funcionando adequadamente (q), então não iremos ao parque (r). (p ∨ ¬q)→ ¬r

p	q	r	$\neg \mathbf{q}$	(p ∨ ¬q)		$(p \vee \neg q) \rightarrow \neg r$
V	V	V	F	V	F	F
V	V	F	F	V	V	V
V	F	V	V	V	F	$\overline{\mathbf{F}}$
V	F	F	V	V	V	V
\mathbf{F}	V	V	F	F	F	V
F	V	F	F	F	V	V
\mathbf{F}	F	V	V	V	F	F
F	F	\mathbf{F}	V	V	V	V

EXEMPLOS (TAUTOLOGIA)

 Dados p, q e r que sejam proposições quaisquer, construa a tabela-verdade para ((p→q)→(p∧r→q))

p	${f q}$	r	p→q	p∧r	p∧r→q	$(p\rightarrow q)\rightarrow (p\wedge r\rightarrow q)$
V	V	V	V	V	V	V
V	V	\mathbf{F}	V	F	V	V
V	\mathbf{F}	V	F	V	F	V
V	\mathbf{F}	F	F	F	V	V
\mathbf{F}	V	V	V	F	V	V
F	V	\mathbf{F}	V	F	V	V
F	\mathbf{F}	V	V	F	V	V
F	\mathbf{F}	\mathbf{F}	V	F	V	V

EXEMPLOS (CONTINGÊNCIA) (BISPO ET AL., 2018)

 Dados p, q e r que sejam proposições quaisquer, construa a tabela-verdade para (p→p∨q)∧(r↔q)

p	q	r	p∨q	p→p∨q	r↔q	$(p\rightarrow p\lor q)\land (r\leftrightarrow q)$
V	V	V	V	V	V	V
V	V	\mathbf{F}	V	V	\mathbf{F}	\mathbf{F}
V	\mathbf{F}	V	V	V	F	F
V	\mathbf{F}	\mathbf{F}	V	V	V	V
F	V	V	V	V	V	V
F	V	\mathbf{F}	V	V	F	\mathbf{F}
F	\mathbf{F}	V	F	V	F	\mathbf{F}
F	\mathbf{F}	\mathbf{F}	F	V	V	V

Exemplos (Contradição)

 Dados p, q e r que sejam proposições quaisquer, construa a tabela-verdade para (((p∧¬q) ∧ (¬p∧q)) ∧ r)

p	$\neg \mathbf{p}$	$ \mathbf{q} $	$\neg \mathbf{q}$	r	p∧¬q	¬p∧q	$(p \land \neg q) \land (\neg p \land q)$	$(((p \land \neg q) \land (\neg p \land q)) \land r)$
V	F	V	F	V	F	F	F	F
V	F	V	F	F	F	F	\mathbf{F}	\mathbf{F}
V	F	\mathbf{F}	V	V	V	F	F	\mathbf{F}
V	F	F	V	F	V	F	\mathbf{F}	\mathbf{F}
\mathbf{F}	V	V	F	V	F	V	\mathbf{F}	\mathbf{F}
F	V	V	F	F	F	V	\mathbf{F}	\mathbf{F}
\mathbf{F}	V	\mathbf{F}	V	V	F	F	F	F
F	V	F	V	F	F	\mathbf{F}	\mathbf{F}	\mathbf{F}

TAUTOLOGIAS (BISPO ET AL., 2018)

- São situações em que todos os valores lógicos são verdadeiros.
- Uma proposição tautológica é entendida como atômica em termos de seus resultados, uma vez que independente das proposições simples, o resultado final é sempre verdadeiro.
- São especialmente importantes para a análise da validade dos argumentos, a partir da aplicação das propriedades e regras de inferências.
- As principais operações realizadas no contexto das tautologias são a implicação e a equivalência.

Classificação das Proposições (Bispo et al., 2018)

- Implicação: define-se como uma proposição composta P que implica em outra proposição, Q, se ambas forem verdadeiras. $P(p, q, r...) \Rightarrow Q(p, q, r...)$
- \bullet Ex: $\mathbf{p} \to \mathbf{q} \Rightarrow \mathbf{p} \wedge \mathbf{q}$

p	q	$p \rightarrow q$	$\mathbf{p} \wedge \mathbf{q}$
V	V	V	V
V	F	F	\mathbf{F}
F	V	V	F
F	F	V	F

REGRAS DE INFERÊNCIA/IMPLICAÇÕES (BARBOSA, 2017)

Identificação	Forma
Modus Ponens (MP)	$p \wedge (p \to q) \Rightarrow q$
Modus Tollens (MT)	$\neg q \land (p \rightarrow q) \Rightarrow \neg p$
Silogismo Hipotético (SH)	$(p \rightarrow q) \land (q \rightarrow r) \Rightarrow (p \rightarrow r)$
Silogismo Disjuntivo (SD)	$(p \vee q) \wedge \neg p \Rightarrow q$
Simplificação (S)	$p \wedge q \Rightarrow p$
Adição (AD)	$p \Rightarrow p \lor q$
Eliminação (EL)	$(p \rightarrow (q \lor r)) \land \neg q \Rightarrow (p \rightarrow r)$
Prova por casos (CS)	$(p \to r) \land (q \to r) \Rightarrow (p \lor q) \to r$

Classificação das Proposições (Bispo et al., 2018)

- Equivalência: ocorre quando duas proposições distintas apresentam o mesmo valor lógico.
- Ex: $(r \rightarrow s) \Leftrightarrow (\neg s \rightarrow \neg r)$

r	S	$r \rightarrow s$	r	S	$\neg \mathbf{r}$	$\neg s$	$\neg s \rightarrow \neg r$
V	V	V	V	V	F	F	V
V	F	F	V	F	F	V	F
F	V	V	F	V	V	F	V
F	F	V	F	F	V	V	V

Relações de Equivalência (Barbosa, 2017; Bispo et al., 2018)

Identificação	Forma 1	Forma 2
Comutativa	$p \wedge q \Leftrightarrow q \wedge p$	$p \vee q \Leftrightarrow q \vee p$
Associativa	$(p \wedge q) \wedge r \Leftrightarrow p \wedge (q \wedge r)$	$(p \lor q) \lor r \Leftrightarrow (p \lor q) \lor r$
Idempotente	$(p \wedge p) \Leftrightarrow p$	$p \lor p \Leftrightarrow p$
Propriedades de V	$(p \land V) \Leftrightarrow p$	$p \vee V \Leftrightarrow V$
Propriedades de F	$(p \wedge F) \Leftrightarrow F$	$p \vee F \Leftrightarrow p$
Absorção	$(p \land (p \lor r) \Leftrightarrow p$	$p \lor (p \land r) \Leftrightarrow p$
Distributivas	$p \wedge (q \vee r) \Leftrightarrow (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$
Distributivas	$p{\rightarrow}(q \wedge r) \Leftrightarrow (p{\rightarrow}q) \wedge (p{\rightarrow}r)$	$p{\rightarrow}(q\vee r)\Leftrightarrow (p{\rightarrow}q)\vee (p{\rightarrow}r)$

Relações de Equivalência (Barbosa, 2017; Bispo et al., 2018)

Identificação	Forma 1	Forma 2
Leis de Morgan	$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$	$\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$
Def. Implicação	$p \rightarrow q \Leftrightarrow \neg p \lor q$	$p {\rightarrow} q \Leftrightarrow \neg (p \land \neg q)$
Def. Bicondicional	$p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p)$	$p \leftrightarrow q \Leftrightarrow (\neg p \lor q) \land (\neg q \lor p)$
Negação	$\neg(\neg p) \Leftrightarrow p$	
Contraposição	$p{\rightarrow}q \Leftrightarrow \neg q \to \neg p$	
Exportação (⇒)	Importação (⇐)	$(p \land q) \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r)$
Troca de Premissas	$p \rightarrow (q \rightarrow r) \Leftrightarrow q \rightarrow (p \rightarrow r)$	

