МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3342	 Малахов А.И.
Преподаватель	Иванов Д.В.

Санкт-Петербург 2023

Цель работы

Целью работы реализация машины Тьюринга на языке программирования Python.

Задание

Вариант 3.

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}.

Напишите программу, которая заменяет в исходной строке символ, предшествующий первому встретившемуся символу 'c' на символ, следующий за первым встретившимся символом 'a'. Если первый встретившийся символ 'a' в конце строки, то используйте его в качестве заменяющего.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит:

a

b

c

" " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длина строки не менее 5 символов и не более 15.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы.

Выполнение работы

На основе условия задачи была составлена таблица состояний №1.

Таблица 1: Таблица состояний №1

	«a»	«b»	«c»	« »
q0	«a», R, q1	«c», R, q0	«c», R, q0	« », R, q0
q1	«a», L, q2-	«b», L, q3-	«c», L, q4-	« », L, q2-
q2-	«a», L, q2-	«b», L, q2-	«c», L, q2-	« », R, q2+
q2+	«a», R, q2+	«b», R, q2+	«c», L, q5	
q 5	«a», N, q8	«a», N, q8	«a», N, q8	«a», N, q8
q3-	«a», L, q3-	«b», L, q3-	«c», L, q3-	« », R, q3+
q3+	«a», R, q3+	«b», R, q3+	«c», L, q6	
q6	«b», N, q8	«b», N, q8	«b», N, q8	«b», N, q8
q4-	«a», L, q4-	«b», L, q4-	«c», L, q4-	« », R, q4+
q4+	«a», R, q4+	«b», R, q4+	«c», L, q7	
q7	«c», N, q8	«c», N, q8	«c», N, q8	«c», N, q8

- «q0» начальное состояние, поиск первого символа «а»
- «q1» нахождение символа, стоящего после «а»
- «q2-», «q3-», «q4-» возвращение к началу строки и сохранение найденного символа в зависимости от состояния
- «q5», «q6», «q7» перезаписывание символа, стоящего перед «с», на символ, найденный после символа «а»
- «q8» конечное положение

Тестирование

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

№	Входные данные	Выходные данные	Комментарии	
Π/Π				
1.	abcabc	abcabc	Функция	работает
			корректно	
2.	cbbaa	acbbaa	Функция	работает
			корректно	
3.	cbbab	bcbbab	Функция	работает
			корректно	

Выводы

Была разработана программа на языке Python, которая проводит работу со строкой по определенному алгоритму Машины Тьюринга. Изучена Машина Тьюринга.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

```
table = {
    'q0':{
         'a': ['a', 1, 'q1'],
         'b': ['b', 1, 'q0'],
         'c': ['c', 1, 'q0'],
         ' ': [' ', 1, 'q0']
    },
     'q1':{
         'a': ['a', -1, 'q2-'],
         'b': ['b', -1, 'q3-'],
         'c': ['c', -1, 'q4-'],
         ' ': [' ', -1, 'q2-']
    } ,
     'q2-':{
         'a': ['a', -1, 'q2-'],
         'b': ['b', -1, 'q2-'],
         'c': ['c', -1, 'q2-'],
'': [' ', 1, 'q2+']
    },
     'q2+': {
         'a': ['a', 1, 'q2+'],
'b': ['b', 1, 'q2+'],
         'c': ['c', -1, 'q5']
    },
     'q5': {
         'a': ['a', 0, 'q8'],
'b': ['a', 0, 'q8'],
         'c': ['a', 0, 'q8'],
         ' ': ['a', 0, 'q8']
    },
     'q3-': {
         'a': ['a', -1, 'q3-'],
         'b': ['b', -1, 'q3-'],
         'c': ['c', -1, 'q3-'],
         ' ': [' ', 1, 'q3+']
    },
     'q3+': {
         'a': ['a', 1, 'q3+'],
         'b': ['b', 1, 'q3+'],
         'c': ['c', -1, 'q6']
    },
     'q6': {
         'a': ['b', 0, 'q8'],
         'b': ['b', 0, 'q8'],
'c': ['b', 0, 'q8'],
         ' ': ['b', 0, 'q8']
     'q4-': {
         'a': ['a', -1, 'q4-'],
         'b': ['b', -1, 'q4-'],
```

```
'c': ['c', -1, 'q4-'],
'': ['', 1, 'q4+']
    },
'q4+': {
        'a': ['a', 1, 'q4+'],
        'b': ['b', 1, 'q4+'],
        'c': ['c', -1, 'q7']
    'q7': {
         'a': ['c', 0, 'q8'],
        'b': ['c', 0, 'q8'],
        'c': ['c', 0, 'q8'],
        ' ': ['c', 0, 'q8']
    } ,
}
memory = list(input())
q = 'q0'
index = 0
while q != 'q8':
    s, move, state = table[q][memory[index]]
    memory[index] = s
    index += move
    q = state
print(''.join(memory), sep='\n')
```