Introduction for MATLAB

MATLAB is a numerical computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, and implementation of algorithms

Getting help

You can get help by typing the commands help or lookfor at the >> prompt, e.g.

Arithmetic operators

Symbol Operation Example
+ Addition 3.1 + 9
- Subtraction 6.2 - 5
* Multiplication 2 * 3
/ Division 5 / 2
^ Power 3^2

Data Representations in MATLAB

Variables: Variables are defined as the assignment operator "=" . The syntax of variable assignment is

variable name = a value (or an expression)
For example,

>>
$$x = 5$$

 $x = 5$
>> $y = [3*7, pi/3];$ % pi is π in MATLAB

Vectors/Matrices: MATLAB can create and manipulate arrays of 1 (vectors), 2 (matrices), or more dimensions

row vectors: a = [1, 2, 3, 4] is a 1X4 matrix column vectors: b = [5; 6; 7; 8; 9] is a 5X1 matrix, e.g. >> A = [1 2 3; 7 8 9; 4 5 6] A = 1 2 3

Mathematical Functions in MATLAB

MATLAB offers many predefined mathematical functions for technical computing, e.g.

cos(x)	Cosine	abs(x)	Absolute value
sin(x)	Sine	angle(x)	Phase angle
exp(x)	Exponential	conj(x)	Complex conjugate
sqrt(x)	Square root	log(x)	Natural logarithm

Colon operator (:)

Suppose we want to enter a vector x consisting of points (0,0.1,0.2,0.3,...,5). We can use the command >> x = 0:0.1:5;

Most of the work you will do in MATLAB will be stored in files called *scripts*, or m-files, containing sequences of MATLAB commands to be executed over and over again

Basic plotting in MATLAB

MATLAB has an excellent set of graphic tools. Plotting a given data set or the results of computation is possible with very few commands

The MATLAB command to plot a graph is plot(x,y), e.g.

```
>> x = 0:pi/100:2*pi;
>> y = sin(x);
>> plot(x,y)
```

MATLAB enables you to add axis Labels and titles, e.g.

```
>> xlabel('x=0:2\pi');
>> ylabel('Sine of x');
>> tile('Sine function')
```


Example 1: Sine Wave


```
Fs = 150; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
f = 5; % Create a sine wave of f Hz.
x = \sin(2*pi*t*f);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that length(X)
is equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% Frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Sine Wave Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Sine Wave');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 2: Cosine Wave


```
Fs = 150; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
f = 5; % Create a sine wave of f Hz.
x = cos(2*pi*t*f);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that length(X) is
equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% Frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Sine Wave Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Sine Wave');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 3: Cosine Wave with Phase Shift


```
Fs = 150; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
f = 5; % Create a sine wave of f Hz.
pha = 1/3*pi; % phase shift
x = cos(2*pi*t*f + pha);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that length(X) is
equal to nfft
X = fft(x, nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% Frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Sine Wave Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Sine Wave');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 4: Square Wave


```
Fs = 150; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
f = 5; % Create a sine wave of f Hz.
x = square(2*pi*t*f);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that length(X) is
equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% Frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Square Wave Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Square Wave');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 5: Square Pulse


```
Fs = 150; % Sampling frequency
t = -0.5:1/Fs:0.5; % Time vector of 1 second
w = .2; % width of rectangle
x = rectpuls(t, w); % Generate Square Pulse
nfft = 512; % Length of FFT
% Take fft, padding with zeros so that length(X) is
equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% Frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Square Pulse Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Square Pulse');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 6: Gaussian Pulse


```
Fs = 60; % Sampling frequency
t = -.5:1/Fs:.5;
x = 1/(sqrt(2*pi*0.01))*(exp(-t.^2/(2*0.01)));
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that
length(X) is equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% This is an evenly spaced frequency vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Gaussian Pulse Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of a Gaussian Pulse');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 7: Exponential Decay


```
Fs = 150; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
x = 2*exp(-5*t);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that
length(X) is equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second
half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% This is an evenly spaced frequency
vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Exponential Decay Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of Exponential
Decay Signal');
xlabel('Frequency (Hz)');
ylabel('Power');
```

Example 8: Chirp Signal


```
Fs = 200; % Sampling frequency
t = 0:1/Fs:1; % Time vector of 1 second
x = chirp(t, 0, 1, Fs/6);
nfft = 1024; % Length of FFT
% Take fft, padding with zeros so that
length(X) is equal to nfft
X = fft(x,nfft);
% FFT is symmetric, throw away second half
X = X(1:nfft/2);
% Take the magnitude of fft of x
mx = abs(X);
% This is an evenly spaced frequency
vector
f = (0:nfft/2-1)*Fs/nfft;
% Generate the plot, title and labels.
figure(1);
plot(t,x);
title('Chirp Signal');
xlabel('Time (s)');
ylabel('Amplitude');
figure(2);
plot(f,mx);
title('Power Spectrum of Chirp Signal');
xlabel('Frequency (Hz)');
ylabel('Power');
```