QE with Cylindrical Algebraic Decomposition for real polynomials

Octavian-Eugen Ganea

December 21, 2011

Overview

Problem statement

Basic idea

Examples

Algorithm

Problem statement

- ► Solve system of eqns and ineqns of real polynomials with any number of variables:
 - $f_1(x_1, x_2, \dots x_n) < 0$
 - $f_2(x_1, x_2, \dots x_n) = 0$
 - $f_3(x_1, x_2, \dots x_n) >= 0$
 - **>** ...
- ▶ Build a choose() function that returns UNSAT or a valid assignment for variables.

Basic idea

- ▶ Split Rⁿ in cells (what are they?)
- ▶ Signs of all polynomials (+, , 0) are invariant on each cell.
- **Each** cell keeps representatives for variables $x_1 \dots x_n$
- If we know all cells, we can build choose() immediatly.
- Demos!

Examples

- First example (PDF):
 - $x_1^2 + x_1^2 1 < 0$
 - $x_1^3 x_2^2 = 0$
- ► Example of cells : fig 5 and fig 6 page 9
- ► Nice example : fig 8 page 26
- Projection: page 30

Algorithm

▶ 3 phases: Projection , Base , Extension

Projection

- ▶ We start with a family F_n of our polynomials: $F_n \subset R[x_1, ... x_n]$
- ▶ Idea: from a set $F_i \subset R[x_1, ... x_i]$ obtain a set $F_{i-1} \subset R[x_1, ... x_{i-1}]$ such that the all the real roots of polys from F_{i-1} are all representative points of all polys from F_i
- We define $F_{i-1} = proj(F_i)$
- Example pag 30 and example 5.1 page 26
- At the end, F_1 will contain just univariate polys that correspond to all real representatives of variable x_1

Projection construction

- ▶ How to build F_{n-1} from $F_n = \{g_1(x_n), \dots g_k(x_n)\} \subset R[x_1 \dots x_{n-1}][x_n]$?
- ▶ We need 3 properties to happen (theorem page 19):
- ▶ 1) For a fix δ , total number of complex roots of each $g_{i,\delta}(x_n)$ remains invariant. This means that degree of g_i remains constant. So add all coefficients of $g_i(x_n)$
- ▶ 2) For a fix δ , total number of distinct complex roots of each $g_{i,\delta}(x_n)$ remains invariant. This is equivalent with $gcd(g_i,g_i')$ is constant. Add its dominant coefficient: $psc_k(g_i,g_i')$
- ▶ 3) For a fix δ , total number of common complex roots of each pair $(g_{i,\delta}(x_n), g_{j,\delta}(x_n))$ remains invariant. This is equivalent with $gcd(g_i, g_j)$ is constant. Add its dominant coefficient: $psc_k(g_i, g_i)$

Base phase

- We start now have a family F_1 of univariate polynomials: $F_1 = \{g_1(x_1), \dots, g_k(x_1)\} \subset R[x_1]$
- ▶ All roots of g_i's and intermediary points will be sufficient for representatives of x₁
- ▶ Algorithm for finding roots of real polynomials
 - We have a procedure that gives us the number of roots of P from an interval (a,b)
 - ▶ Then what? Binary search starting from $(-\infty, \infty)$.

Base phase: Problems in paradise

Problems:

- ▶ What is ∞ ? Is it MAXINT? Not at a second thought!
- $\blacktriangleright \mathsf{Try} \; \mathit{max} \big(1, \sum_{i=0}^{n-1} \tfrac{|a_i|}{|a_n|} \big)$
- When to stop? Errors if the interval is too small. Try Newton from now on.
- ▶ What is P(x) == 0. P(x) < 0? x == y? How many epsilons? What values for them?
- ▶ How to evaluate a P(x) ? (Horner)
- Remainder computing errors: p%q
- ► How to know if different polynomials return the same values (Redundant roots will propagate exponentially later)
- ► Redundant polynomials $(x^2 = 0; 4x^5 = 0)$ \Longrightarrow Redundant computations

Problem statement

Examples Algorithm

If we know all possible representatives for $x_1, x_2 \dots x_i$ (we know all cells for R^{i}) then we can find all representatives for x_{i+1}

- ▶ How? By substituting values from each partial cell to each polynomial of projection F_{i+1}
- ▶ Then we get univariate polynomials for each cell
- Find all their roots
- Finish in Rⁿ when we get all cells.

Extension phase: Problems

- Explosion in number of cells
- Redundant cells (due to numeric errors or not)
- Big computations
- Theoretically good for any examples. Practically bad for big ones.

Thank you!

- Questions ?
- ► Thank you!