Want more revision exercises? Get MathsFit - New from projectmaths.

7b The diagram shows a sector with radius r and angle θ where $0 \le \theta \le 2\pi$.

The arc length is $\frac{10\pi}{3}$.

- (i) Show that $r \ge \frac{5}{3}$.
- (ii) Calculate the area of the sector when r = 4.

2

2

i. Arc length $I = r\theta$ $\frac{10\pi}{3} = r\theta$

As $\theta \le 2\pi$, then $r\theta \le 2r\pi$ $\therefore 2r\pi \ge r\theta$ $2r\pi \ge \frac{10\pi}{3}$ $r \ge \frac{5}{3}$ ii. If r = 4, and $\frac{10\pi}{3} = r\theta$ from i., then

$$4\theta = \frac{10\pi}{3}$$
$$\theta = \frac{10\pi}{12}$$
$$= \frac{5\pi}{6}$$

Area of sector $A = \frac{1}{2}r^2\theta$ = $\frac{1}{2} \times 4^2 \times \frac{5\pi}{6}$ = $\frac{20\pi}{3}$

 \therefore area is $\frac{20\pi}{3}$ units²

Board of Studies: Notes from the Marking Centre

- (i) Most candidates used the formula $l = r\theta$ and stated $l = \frac{10\pi}{3}$. The better responses used $\theta \le 2\pi$ or $\frac{10\pi}{3} \le 2\pi r$ to show $r \ge \frac{5}{3}$.
- (ii) Typical responses applied the formula $A = \frac{1}{2}r^2\theta$ and substituted r = 4. Quality responses calculated $\theta = \frac{5\pi}{6}$ and correctly evaluated the area of the sector.

Source: http://www.boardofstudies.nsw.edu.au/hsc_exams/

^{*} These solutions have been provided by projectmaths and are not supplied or endorsed by the Board of Studies