Objectif. Etudier les variations d'une fonction en utilisant la dérivée

Exercice 1. Soit f une fonction définie et dérivable sur l'intervalle [-5; 6]. La courbe représentative de f est tracée ci-dessous.

- 1. Décrire les variations de f sur [-5; 6]
- 2. En déduire le tableau de signes de la fonction dérivée f' sur [-5; 6]

Exercice 2. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 + 2x - 4$

- 1. Justifier que f est dérivable sur \mathbb{R} et déterminer sa dérivée f'.
- 2. Etudier le signe de f' sur \mathbb{R}
- 3. En déduire les variations de f sur $\mathbb R$

Exercice 3. Même exercice avec la fonction définie sur \mathbb{R} par $f(x) = -2x^2 + 7x - 1$

Exercice 4. Même exercice avec la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{4}x^2 - 8x + 3$

Exercice 5. Même exercice avec la fonction définie sur \mathbb{R} par $f(x) = x^3 - x^2 - x$

Exercice 6. Même exercice avec la fonction définie sur \mathbb{R} par $f(x) = \frac{1}{3}x^3 + 2x$

Exercice 7. Même exercice avec la fonction définie sur \mathbb{R} par $f(x) = -2x^3 + x^2 + 8x - 7$

Exercice 8. On a tracé ci-contre la courbe représentative d'une fonction g définie sur \mathbb{R} , ainsi que la tangente à C_g au point A d'abscisse 0.

Parmi les 4 graphiques ci-dessous, déterminer celui qui correspond à g'.

Exercice 9.

Soit f la fonction définie par $f(x) = \frac{1}{2x+5}$

- 1. Déterminer l'ensemble de définition D_f de f puis l'ensemble de dérivabilité D_{f^\prime} de f
- 2. Déterminer f'.
- 3. Dans un tableau étudier le signe de f', puis les variations de f.

Exercice 10. Même exercice avec la fonction définie par $f(x) = \frac{7}{3} - \frac{100}{1-4x}$

Exercice 11. Même exercice avec la fonction définie par $f(x) = \frac{1}{x} - \frac{x}{8}$

Exercice 12. Même exercice avec la fonction définie par $f(x) = \frac{6-x}{x^2+13}$

Exercice 13. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3 - 3x^2 + ax$ où a est réel.

Pour quelles valeurs de a la fonction f est-elle croissante sur \mathbb{R} ?

Objectif. Résoudre des inéquations

Exercice 14. Soient x et y deux nombres strictement négatifs tels que x < y. Pour chaque inégalité ci-dessous, dire si elle est vraie ou fausse en justifiant. (Penser à la définition d'une fonction croissante / décroissante)

1.
$$x^2 > y^2$$

2.
$$\frac{1}{r} > \frac{1}{r}$$

3.
$$x^3 < y^3$$

4.
$$-y < -x$$

Exercice 15. Soit f définie sur I = [0; 1] par $f(x) = 4x^2 - 12x + 1$.

Etudier les variations de f sur I puis en déduire que pour tout $x \in I$, $f(x) \ge -7$.

Exercice 16. Démontrer que pour tout réel x tel que $3 \le x \le 5$, alors $0 \le (3 - x)^2 \le 4$

Exercice 17. Soit la fonction f définie sur \mathbb{R} par $f(x) = x^3 - 3x$

- 1. Etudier les variations de f sur \mathbb{R}
- 2. En déduire que pour $a, b \in [-1; 1]$, si a < b alors $a^3 b^3 > 3(a b)$

Exercice 18. Soit f et g deux fonctions définies sur \mathbb{R} par $f(x) = x^3$ et $g(x) = -3x^2 + 9x + 1$ On cherche à démontrer que pour tout $x \ge 2$, $f(x) \ge g(x)$

Soit h définie sur \mathbb{R} par h(x) = f(x) - g(x).

- 1. Déterminer h'.
- 2. Etudier le signe de h' sur \mathbb{R} .
- 3. En déduire que h est croissante sur $[2; +\infty[$
- 4. Calculer h(2). Conclure.

Objectif. Etudier la position relative de 2 courbes

Exercice 19. Dans ce repère, la parabole \mathcal{P} est la courbe représentative d'une fonction f et la droite d est la courbe représentative d'une fonction affine g.

- 1. Étudier la position relative de la parabole $\mathcal P$ et de la droite d
- 2. En déduire les solutions des inéquations suivantes (A): f(x) > g(x) et (B): f(x) < g(x)

Exercice 20. Soit f et g définies sur \mathbb{R} par $f(x) = x^2 - 3x + 7$ et g(x) = 5x - 9

- 1. Calculer pour tout $x \in \mathbb{R}$, f(x) g(x)
- 2. Etudier le signe de f(x) g(x) sur \mathbb{R}
- 3. En déduire la position relative de C_f et C_q

Exercice 21. Même exercice avec f et g définies sur \mathbb{R} par :

$$f(x) = -3x^2 + 7$$
 et $g(x) = x^2 - 1$

Objectif. Résoudre un problème d'optimisation, rechercher un extremum

Exercice 22. Soit f une fonction dérivable sur \mathbb{R} . On donne le tableau de signes de f'.

x	-∞	5	+∞
Signe de $f'(x)$	+	0	_

f admet-elle un extremum local ? Si oui, est-ce un maximum ou un minimum ?

Exercice 23. Soit g une fonction dérivable sur $[0; +\infty[$. On donne le tableau de signes de g'.

х	-8	3	+∞
Signe de $g'(x)$	+	0	_

g admet-elle un extremum local ? Si oui, est-ce un maximum ou un minimum ?

Exercice 24. Soit f une fonction dérivable sur \mathbb{R} . On donne le tableau de signes de f'.

x	-∞	5	+∞
Signe de $f'(x)$	+	0	_

- 1. *f* admet-elle un minimum local ? Si oui, en quelle valeur ?
- 2. *f* admet-elle un maximum local ? Si oui, en quelle valeur ?

Exercice 25. Soit f définie sur \mathbb{R} par $f(x) = \frac{3}{2} x^2 + \frac{15}{2} x + \frac{100}{2}$

 $\frac{3}{4}x^2 - 15x + 100.$

1. Justifier que f est dérivable sur $\mathbb R$ et calculer f'(x) pour tout réel x

- 2. Dresser le tableau de signe de f' sur \mathbb{R}
- 3. En déduire que f admet un extremum local en une valeur à déterminer.

Exercice 26. Soit f définie sur \mathbb{R} par $f(x) = -4x^3 + 9x$.

- 1. Justifier que f est dérivable sur $\mathbb R$ et calculer f'(x) pour tout réel x
- 2. Dresser le tableau de signe de f' sur $\mathbb R$
- 3. En déduire que f admet un maximum local en une valeur à déterminer, et un minimum local en une valeur à déterminer.

Exercice 27. Soit la figure ci-dessous :

On note x = AM. On suppose AB = 10. On note f(x) l'aire totale des 2 carrés en fonction de x

- 1. A quel intervalle *I* appartient le réel *x*
- 2. Montrer que pour tout $x \in I$, $f(x) = 2x^2 20x + 100$
- 3. Justifier que f est dérivable sur I et déterminer f'
- 4. En déduire les variations de f sur I et la valeur de x pour laquelle l'aire du domaine est minimale.

Exercice 28. Voici un programme de calcul :

Choisir un nombre positif

Ajouter $\frac{1}{2}$

Mettre au carré

Soustraire le cube du nombre initial

Quel nombre choisir au départ afin que le résultat trouvé soit le plus grand possible ?

Exercice 29. Déterminer deux nombres réels non nuls tels que leur produit soit minimal, sachant que leur différence est égale à 100.

Exercice 30. Une coopérative fabrique du jus de pomme. Elle produit entre 0 et 200 litres de jus. Elle a établi que ses coûts de production, en euros, de x litres de jus de pommes étaient donnés par la fonction $C: x \mapsto 100x^2 - 10x + 10$ Chaque litre produit sera vendu $1,9 \in$.

- 1. Quel est l'ensemble de définition de *C* ?
- 2. On appelle R(x) la recette gagnée par la coopérative pour x litres vendus. Exprimer R(x) en fonction de x.
- 3. On appelle B(x) = R(x) C(x) le bénéfice réalisé par la coopérative lorsqu'elle produit et vend x litres de jus de pomme.

Calculer B(x) pour $x \in [0; 200]$

- 4. Etudier les variations de *B* sur [0; 200]
- 5. En déduire le nombre de litres à produire pour obtenir un bénéfice maximum.

Exercice 31. Un rectangle a pour périmètre 50 cm. On note x sa largeur.

- 1. Exprimer sa longueur en fonction de x.
- 2. Exprimer son aire en fonction de x.
- 3. En déduire l'aire maximum de ce rectangle.

Exercice 32. Un mobile se déplace sur un axe [0x) gradué en cm. On observe son déplacement pendant une durée de 6s. Sa position sur l'axe est donnée, en fonction du temps t (en s), par la fonction $f(t) = \frac{1}{3}t^3 - 3t^2 + 9t$.

- 1. Etudier les variations de la fonction f sur [0; 6]
- 2. Décrire le mouvement du mobile sur son axe.
- 3. La vitesse instantanée du mobile à un instant t est égale à f'(t) et est exprimée en cm/s.
- a) Quelle est sa vitesse initiale?
- b) A quels instants sa vitesse est-elle inférieure à 1 cm/s ?

Exercice 33. Soit ABC un triangle isocèle en A de périmètre p donné. On cherche à construire ce triangle de facon à maximiser son aire.

Plus précisément, on cherche la valeur de x = BC qui maximise l'aire A(x) de ABC.

On note [AH] la hauteur issue de A dans ABC.

- 1. Justifier que $0 \le x < \frac{p}{2}$
- 2. Exprimer AH en fonction de x
- 3. En déduire que l'aire du triangle vérifie :

$$A(x) = \frac{x}{2} \sqrt{p^2 - \frac{p}{2}x}$$

- 4. Justifier que A est dérivable sur $[0; \frac{p}{2}[$ et déterminer A' sur cet intervalle.
- 5. Répondre au problème posé.