

Module 8 Analog-to-Digital Conversion

19th December 2024

ADC Architecture

Analog-to-Digital Converters

Analog-to-digital converters (ADCs) are peripheral devices that convert continuous analog signals into discrete digital values suitable for processing by a digital system, allowing microcontrollers to interface with analog sensors and signals.

Comparator

Conditions	Output (O)
A > B = +ve	5
A < B = -ve	0
A = B	X

SAR ADC

SAR ADC

Iteration	Vin	Ca	A1 –Past	A0 - Past	A1- Curr	A0- Curr
1	1.3	2.475	1	0	0	1
2	1.3	1.65	0	1	0	0

Output codes = 2^N

2-bit ADC:

Total output codes: 2^2 = 4

Vref = 3.3v

1 code voltage(LSB) = 3.3/4 = 0.825V

O/P v

0.825

1.65

A0

0

0

0

SAR ADC - Analogy

Flash ADC

The flash ADC also known as parallel ADC is a very fast ADC.

The application of flash ADC

- Radar data acquisition
- IMU measurements in missiles

Vref = 3.3v , Vin = 1.3	Sv ~	Thynk Loop
A3 = V1 – Vin = 2.47 – 1.3 = +ve	1	
A2 = V2 - Vin = 1.65 - 1.3 = +ve	1	
A1 = V3 - Vin = 0.8 - 1.3 = -ve	0	

Priority	А3	A2	A1	A0	B1	В0
	0	0	0	1	0	0
1	0	0	1	0	0	1
2	0	1	0	0	1	0
3	1	0	0	0	1	1

High Level Comparison

ADC TYPE	PROS	CONS	MAX RESOLUTION	MAX SAMPLE RATE	MAIN APPLICATIONS
Successive Approximation (SAR)	Good speed/resolution ratio	No inherent anti- aliasing protection	18 bits	10 MHz	Data Acquisition
Delta-sigma (ΔΣ)	High dynamic performance, inherent antialiasing protection	Hysteresis on unnatural signals	32 bits	1 MHz	Data Acquisition, Noise & Vibration, Audio
Dual Slope	Accurate, inexpensive	Low speed	20 bits	100 Hz	Voltmeters
Pipelined	Very fast	Limited resolution	16 bits	1 GHz	Oscilloscopes
Flash	Fastest	Low bit resolution	12 bits	10 GHz	Oscilloscopes

ADC & STM32

ADC & STM32

STM32 - AN3116

ADC in STM32F401

STM32F401 Architecture

STM32F401 ADC Parameter Configurations

Conversion Modes

Registers of Interest

Configuration Registers:

- SDC_SR STRT, EOC
- ADC_CR1 RES, SCAN
- ADC_CR2 SWSTART, ALIGN
- ADC_SMPR1 SMPx
- ADC_SMPR2 SMPx
- ADC_SQR1 L, SQ
- ADC_SQR2 SQ
- ADC SQR3 SQ
- ADC_CCR ADCPRE

Data Register:

• ADC_DR

- ADC_SR

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							Res	served							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Pos	onvod					OVR	STRT	JSTRT	JEOC	EOC	AWD
				Res	served					rc_w0	rc_w0	rc_w0	rc_w0	rc_w0	rc_w0

Bit 1 **EOC**: Regular channel end of conversion

This bit is set by hardware at the end of the conversion of a regular group of channels. It is cleared by software or by reading the ADC_DR register.

0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1)

1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1)

ADC_CR1

Address offset: 0x04

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Reserve	od		OVRIE	RE	S	AWDEN	JAWDEN			Poss	n rod		
		Reserv	eu		rw	rw	rw	rw	rw						
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DIS	SCNUM[2:0]	JDISCE N	DISC EN	JAUTO	AWDSG L	SCAN	JEOCIE	AWDIE	EOCIE	E AWDCH[4:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 25:24 RES[1:0]: Resolution

These bits are written by software to select the resolution of the conversion.

00: 12-bit (15 ADCCLK cycles)
01: 10-bit (13 ADCCLK cycles)
10: 8-bit (11 ADCCLK cycles)
11: 6-bit (9 ADCCLK cycles)

Bit 8 SCAN: Scan mode

This bit is set and cleared by software to enable/disable the Scan mode. In Scan mode, the inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted.

0: Scan mode disabled

1: Scan mode enabled

ADC_CR2

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
reserved	SWST ART	EXT	ΓEN		EXTS	EL[3:0]		reserved	JSWST ART	JEXTEN			JEXTS	EL[3:0]	
	rw	rw	rw	rw	rw	rw	rw		rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reser	wad		ALIGN	EOCS	DDS	DMA		Reserved					CONT	ADON
	16261	veu		rw	rw	rw	rw			iveseiv	eu			rw	rw

Bit 30 **SWSTART**: Start conversion of regular channels

This bit is set by software to start conversion and cleared by hardware as soon as the conversion starts.

0: Reset state

1: Starts conversion of regular channels

Note: This bit can be set only when ADON = 1 otherwise no conversion is launched.

Bit 0 ADON: A/D Converter ON / OFF

This bit is set and cleared by software.

Note: 0: Disable ADC conversion and go to power down mode

1: Enable ADC

Bit 10 EOCS: End of conversion selection

This bit is set and cleared by software.

0: The EOC bit is set at the end of each sequence of regular conversions. Overrun detection is enabled only if DMA=1.

1: The EOC bit is set at the end of each regular conversion. Overrun detection is enabled.

ADC_SMPR1

Address offset: 0x0C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	В	eserved			5	SMP18[2:0	0]	S	MP17[2:0	0]	S	SMP16[2:0	0]	SMP1	5[2:1]
	Neserved				rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP15_0	S	MP14[2:	0]	S	MP13[2:	0]	S	MP12[2:0	0]	S	SMP11[2:0	0]	9	MP10[2:0	0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 26:0 **SMPx[2:0]**: Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel.

During sampling cycles, the channel selection bits must remain unchanged.

Note: 000: 3 cycles

001: 15 cycles

010: 28 cycles

011: 56 cycles

100: 84 cycles

101: 112 cycles

110: 144 cycles

111: 480 cycles

ADC_SMPR2

Address offset: 0x10

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	arvod	Ç	SMP9[2:0)]		SMP8[2:0]	,	SMP7[2:0]	,	SMP6[2:0]	SMP	5[2:1]
Rese	erveu	rw	rw rw rw			rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SMP 5_0	(SMP4[2:0)]	,	SMP3[2:0)]	SMP2[2:0]]	;	SMP1[2:0]		SMP0[2:0]
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 26:0 **SMPx[2:0]**: Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel.

During sampling cycles, the channel selection bits must remain unchanged.

Note: 000: 3 cycles

001: 15 cycles

010: 28 cycles

011: 56 cycles

100: 84 cycles

101: 112 cycles

110: 144 cycles

111: 480 cycles

ADC_SQR1

Address offset: 0x2C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Pos	erved					L[3	3:0]			SQ1	6[4:1]	
			Rese	erveu				rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ16_0		;	SQ15[4:0]				SQ14[4:0]				SQ13[4:0]	
rw	rw	rw	rw	rw	rw	rw	rw				rw	rw	rw	rw	rw

Bits 23:20 L[3:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular channel conversion sequence.

0000: 1 conversion 0001: 2 conversions

...

1111: 16 conversions

Bits 19:15 **SQ16[4:0]**: 16th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 16th in the conversion sequence.

ADC_SQR2

Address offset: 0x30

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rved			SQ12[4:0)]				SQ11[4:0]]			SQ1	0[4:1]	
i vese	iveu	rw rw rw				rw	rw rw rw rw rw rw rw					rw	rw	rw	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SQ10_0		SQ9[4:0]						SQ8[4:0]					SQ7[4:0]		
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:26 **SQ12[4:0]:** 12th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 12th in the sequence to be converted.

Bits 24:20 **SQ11[4:0]**: 11th conversion in regular sequence

Bits 19:15 **SQ10[4:0]:** 10th conversion in regular sequence

Bits 14:10 **SQ9[4:0]:** 9th conversion in regular sequence

Bits 9:5 **SQ8[4:0]:** 8th conversion in regular sequence

Bits 4:0 **SQ7[4:0]**: 7th conversion in regular sequence

ADC_SQR3

Address offset: 0x34

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
Rese	nved			SQ6[4:0]					SQ5[4:0]		SQ4[4:1]						
1/636	i veu	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
SQ4_0		SQ3[4:0]						SQ2[4:0]					SQ1[4:0]				
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw		

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:25 **SQ6[4:0]:** 6th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 6th in the sequence to be converted.

Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence

Bits 19:15 **SQ4[4:0]:** 4th conversion in regular sequence

Bits 14:10 **SQ3[4:0]:** 3rd conversion in regular sequence

Bits 9:5 **SQ2[4:0]:** 2nd conversion in regular sequence

Bits 4:0 **SQ1[4:0]:** 1st conversion in regular sequence

ADC_CCR

Address offset: 0x04 (this offset address is relative to ADC1 base address + 0x300)

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			Pos	Deserved				TSVREFE	VBATE		Bosowied			ADCPRE	
		Reserved						rw	rw	Reserved				rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Reserved															

Bits 17:16 **ADCPRE**: ADC prescaler

Set and cleared by software to select the frequency of the clock to the ADC. .

Note: 00: PCLK2 divided by 2

01: PCLK2 divided by 4 10: PCLK2 divided by 6 11: PCLK2 divided by 8

Bits 15:0 Reserved, must be kept at reset value.

ADC_DR

Address offset: 0x4C

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
DATA[15:0]															
r	r	r	r	r	r	r	r	r	r	r	r	r	r	r	r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 DATA[15:0]: Regular data

These bits are read-only. They contain the conversion result from the regular channels. The data are left- or right-aligned as shown in *Figure 35* and *Figure 36*.

ADC Configuration Sequence

ADC CONFIGURATION SEQUENCE

Thynk Loop

- →Enable ADC clock bus
- →Enable ADC clock
- → Configure the GPIO as Analog
- →Turn off the ADC
- → Configure the ADC clock prescalar
- → Configure the resolution, ADC Mode
- →Configure the sequence
- → Configure the sampling time
- →Turn on the ADC

Reading Data From ADC

Reading Data From ADC

Thynk Loop

- → Start the ADC conversion
- →Pol the EOC flag for conversion End
- → Read the data from DR register

Circuit Connection

Circuit Connection - Multi ADC

ADC CONFIGURATION SEQUENCE – Multi Channel

- →Enable ADC clock bus
- →Enable ADC clock
- → Configure the GPIO as Analog
- →Turn off the ADC
- → Configure the ADC clock pre scalar
- → Configure the resolution, ADC Mode
- → Configure the sampling time CH0
- → Configure the sampling time CH1
- →Turn on the ADC

Reading Data From ADC

Thynk Loop

- → Configure the sequence 1 to CH0
- → Start the ADC conversion
- → Pol the EOC flag for conversion End
- → Read the data from DR register
- → Configure the sequence 1 to CH1
- → Start the ADC conversion
- → Pol the EOC flag for conversion End
- → Read the data from DR register

BlackPill – Pin Configurations

GitHub Repo

