Design and Analysis of Algorithms

Section VI: Graph Algorithms

Chapter 25: All-Pairs Shortest Paths

Graph Algorithms

All-Pairs Shortest Paths

CLIFFORD STEIN

$$\begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix} \quad L^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

Chapter 25 All-Pairs Shortest Paths

$$\begin{pmatrix}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{pmatrix}$$

INTRODUCTION TO

ALGORITH

All-Pairs Shortest Paths Problem

- Given:
 - Weighted, Directed Graph G=(V, E)
 - Weight Function w: E ->
 - Edges -> Real-Valued Weights
- Weight of path $P=\langle v_0, v_1, ..., v_k \rangle$
 - $w(p) = \sum w(v_{i-1}, v_i)$
- Shortest-Path Weight $\delta(u,v)$ is the minimum weight path w(p) that goes from u to v, otherwise ∞
- The shortest path from u to v is any path p with a weight of $\delta(u,v)$
- ALL-PAIRS SHORTEST PATHS
 - − For all pairs of vertices $u,v \in V$, $\delta(u,v)$

All-Pairs Shortest Paths

- Adjacency-List Representation
- Assume vertices are numbered 1, 2, ..., |V|
- Input: n x n weight matrix W of an n-vertex directed graph G=(V,E)
- $W = (w_{ij}), w_{ij} =$
 - > 0,
 - > the weight of directed edge (i, j),
 - $\geqslant \infty$

if i ≠ j & (i,j)∈E

if i ≠ j & (i,j)∉E

All-Pairs Shortest Paths Output

- $n \times n$ matrix D = (d_{ij})
 - d_{ij} = weight of shortest path from vertex i to vertexj.
 - $>\delta(i,j)$
- Predecessor Matrix $\Pi = (\pi_{ij})$
- π_{ii}=
 - > NIL, if i=j or no path from i to j.
 - predecessor to j on some shortest path from i to j.

Predecessor Subgraph

- $G_{\pi,i} = (V_{\pi,i}, E_{\pi,i})$
- $V_{\pi,i} = \{j \in V : \pi_{ij} \neq nil\} \cup \{i\}$
- $E_{\pi,i} = \{(\pi_{ij}, j) : j \in V_{\pi,l} \{i\}$

Print-All-Pairs-Shortest-Path

```
PRINT-ALL-PAIRS-SHORTEST-PATH (\Pi, i, j)

1 if i == j

2 print i

3 elseif \pi_{ij} == \text{NIL}

4 print "no path from" i "to" j "exists"

5 else PRINT-ALL-PAIRS-SHORTEST-PATH (\Pi, i, \pi_{ij})

6 print j
```

Dynamic Programming Steps

- Characterize the structure of optimal solution
- Recursively define the value of an optimal solution
- Compute the value of an optimal solution bottom-up.

 Construct the optimal solution from computed information.

Recursive Solution

- Define $l_{ij}^{(m)}$ as the minimum weight of any path from vertex i to j that contains at most m edges.
- $l_{ij}^{(0)} =$ > 0 if i = j $> \infty \text{ if } i \neq j$

Single Source Relaxation Process

- Relax Edge (u, v) By:
 - Testing possible shortest path improvement to
 v by using current path to u
 - When improvements are possible update:
 - v.d: estimated shortest-path weight
 - v.π: v's parent

Recursive Solution

- Define $l_{ij}^{(m)}$ as the minimum weight of any path from vertex i to j that contains at most m edges.
- $l_{ij}^{(0)} =$ > 0 if i = j $> \infty \text{ if } i \neq j$
- Compute $l_{ij}^{(m)}$ as the minimum
 - $> l_{ij}^{(m-1)}$ the minimum weight path from i to j with m-1 edges
 - $> l_{ik}^{(m)} + w_{kj}$: for all possible k's.

Example Graph

690

Chapter 25 All-Pairs Shortest Paths

L(1)

$$\begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

Shortest Path of length 1 weights =

$$-(1, 2)$$
 w/ w(1,2) = 3

- Shortest Path of length 1 weights =
 - -(1, 2) w/ w(1,2) = 3
 - -(4, 1) w/w(4,1) = 2

- Shortest Path of length 1 weights =
 - -(1, 2) w/ w(1,2) = 3
 - -(4, 1) w/w(4,1) = 2
 - -(3, 2) w/ w(3,2) = 4

Shortest Path of length 1 weights =

$$-(1, 2)$$
 w/ w(1,2) = 3

$$-(4, 1) w/w(4,1) = 2$$

$$-(3, 2)$$
 w/ w(3,2) = 4

L(2)

/	0	3	8	2	-4 ∖
/	3	0	-4	1	7 \
ı	∞	4	0	5	11
١	2	-1	-5	0	-2
/	8	∞	1	6	0/

L(3)

L(4)

/ 0	1	-3	2	-4\
3	0	-4	1	-1
7	4	0	5	3
2	-1	-5	0	-2
\ 8	5	1	6	0 /

• $L^{(m)} = L^{(4)}$, for all $m \ge 4$

$$\begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

```
EXTEND-SHORTEST-PATHS (L, W)
   n = L.rows
   let L' = (l'_{ij}) be a new n \times n matrix
3 for i = 1 to n
         for j = 1 to n
              l'_{ij} = \infty
             for k = 1 to n
                   l'_{ii} = \min(l'_{ii}, l_{ik} + w_{kj})
    return L'
```

```
RELAX(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.\pi = u
```

```
EXTEND-SHORTEST-PATHS (L, W)
   n = L.rows
   let L' = (l'_{ij}) be a new n \times n matrix
    for i = 1 to n
         for j = 1 to n
              l'_{ii} = \infty
              for k = 1 to n
                   l'_{ii} = \min(l'_{ii}, l_{ik} + w_{kj})
```

EXTEND-SHORTEST-PA

n = L.rows

return L'

SQUARE-MATRIX-MULTIPLY (A, B)

n = A.rows

```
let C be a new n \times n matrix
3 for i = 1 to n
        for j = 1 to n
              c_{ij} = 0
              for k = 1 to n
                          c_{ij} + a_{ik} \cdot b_{ki}
   return C
```

```
2 let L' = (l'_{ij}) be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 l'_{ij} = \infty

6 for k = 1 to n

l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})
```

EXTEND-SHORTEST-PATHS (L, W)

```
1 n = L.rows

2 let L' = (l'_{ij}) be a new n \times n matrix

3 for i = 1 to n

4 for j = 1 to n

5 l'_{ij} = \infty

6 for k = 1 to n

7 l'_{ij} = \min(l'_{ij}, l_{ik} + w_{kj})

8 return L'
```

$$L^{(n-1)} = L^{(n-2)} \cdot W = W^{n-1}$$
.

Algorithm $- O(n^3)$

```
1 \quad n = L.rows
          2 let L' = (l'_{ij}) be a new n \times n matrix
          3 for i = 1 to n
   L^{(1)} = L^{(0)} \cdot W = W,

L^{(2)} = L^{(1)} \cdot W = W^2,

L^{(3)} = L^{(2)} \cdot W = W^3,
L^{(n-1)} = L^{(n-2)} \cdot W = W^{n-1}
```

EXTEND-SHORTEST-PATHS (L, W)

```
SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

1 n = W.rows

2 L^{(1)} = W

3 for m = 2 to n - 1

4 let L^{(m)} be a new n \times n matrix

5 L^{(m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W)

6 return L^{(n-1)}
```

Algorithm $- O(n^4)$

```
SLOW-ALL-PAIRS-SHORTEST-PATHS (W)

1 n = W.rows

2 L^{(1)} = W

3 for m = 2 to n - 1

4 let L^{(m)} be a new n \times n matrix

5 L^{(m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m-1)}, W)

6 return L^{(n-1)}
```

$$L^{(1)} = L^{(0)} \cdot W = W,$$
 $L^{(2)} = L^{(1)} \cdot W = W^{2},$
 $L^{(3)} = L^{(2)} \cdot W = W^{3},$
 \vdots
 $L^{(n-1)} = L^{(n-2)} \cdot W = W^{n-1}.$

FASTER-ALL-PAIRS-SHORTEST-PATHS (W)

```
1 n = W.rows

2 L^{(1)} = W

3 m = 1

4 while m < n - 1

5 let L^{(2m)} be a new n \times n matrix

6 L^{(2m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m)}, L^{(m)})

7 m = 2m

8 return L^{(m)}
```

FASTER-ALL-PAIRS-SHORTEST-PATHS (W)

```
1 n = W.rows

2 L^{(1)} = W

3 m = 1

4 while m < n - 1

5 let L^{(2m)} be a new n \times n matrix

6 L^{(2m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m)}, L^{(m)})

7 m = 2m

8 return L^{(m)}
```

Algorithm – O(n³ lg n)

```
FASTER-ALL-PAIRS-SHORTEST-PATHS (W)
  n = W.rows
2 L^{(1)} = W
3 m = 1
  while m < n - 1
       let L^{(2m)} be a new n \times n matrix
       L^{(2m)} = \text{EXTEND-SHORTEST-PATHS}(L^{(m)}, L^{(m)})
       m=2m
   return L^{(m)}
```