Perf Eval of Comp Systems

Dr Ahmad Khonsari
ECE Dept.
The University of Tehran
Lect001 intro

Evaluation Methods

Reminder of Probability

OUTLINE:

- Outcomes and events;
- Definitions of probability;
- Probability algebra;
 - Adding events
 - Conditional probability
 - Multiplication of events
- Measure of dependence between events;

Reminder of Random Variables

OUTLINE:

- Definitions
 - (measure theoretic)
 - Classic
- Full descriptors(PDF, pdf, pmf)
 - Discrete RV
 - Continuous RV
 - mixed RVs
- parameters (summaries):
 - mean;
 - variance;
 - skewness;
 - excess
- System of RVs: jointly distributed RVs
 - Conditional distributions and Mean (we saw Cond. Prob. Before)
 - Dependence and independence of RVs
 - Measure of dependence
 - Expectations of Sum and product of correlated RVs
 - Pdf of Sum of independent RVs
- Indicator RVs

useful tools in prob.

- Functions of a Random Variable
- Transforms
 - Z-transform:
 - Definition; $P_X(z) \triangleq E(z^X) = \sum_{k=0}^{\infty} P_k z^k \quad |z| \le 1$
 - Properties;
 - Inversion.
 - Laplace transform:
 - Definition; $\phi_X(s) = E[e^{-sX}] = \int_0^\infty f_X(x)e^{-sx}dx$
 - Properties;
 - Inversion.
 - Moment GF $M_X(\theta) = E[e^{\theta X}]$
 - Characteristic function (Fourier –Stieltjes $F_X(x)$) $\phi_X(\omega) = E[e^{j\omega X}]$ = $\int_{-\infty}^{\infty} e^{j\omega x} dF_X(\omega)$ $-\infty < \omega < \infty$

Continious Random Variables

- Laplace transform of a random sum
- important continuous dist.
 - Uniform distribution $X \sim U(a, b)$
 - Exponential(λ) distribution
 - Erlang distribution $X \sim \text{Erlang}(n, \lambda)$
 - Normal distribution $X \sim N(\mu, \sigma^2)$
 - Multivariate Gaussian (normal) distribution
- Power Laws
 - Pareto distribution
 - Zipf's Law

Discrete Random Variables

- Generating function of a random sum
- Compound RV and its expectation and its distr.
- The distribution of max and min of independent RVs
- ORDER STATISTICS
- Important distributions
 - Bernouli
 - Binomial
 - Negative binomial
 - Geometric
 - Poisson

STOCHASTIC PROCESSES

Basic concepts

Classification of Stochastic Processes

State space: the set of possible values of X_t

Parameter (e.g. time) space

Characterizing Stochastic processes: Highlight

```
Specifying RPs in terms of n-th order statistics: e.g.:
Gaussian Random process
Sinusoid with random phase
IID processes
Specifying RPs in terms of 1st order statistics:
Specifying full desc. Of RPs using 2<sup>nd</sup> order statistics:
Markov processes
Specifying RPs in terms of moment 1 and moment 2:
     e.g. Poisson ((see Papoulis)): note: for Poisson we may find full desc. As well
     1st order statistics:
     mean E[X(t)] = E[n(0,t)] = \lambda t
     and variance \sigma_x^2 = E[x^2(t)] - E[X(t)]^2 = \lambda t since E[x^2(t)] = E[n^2(0,t)] = \lambda t + \lambda^2 t^2
     2<sup>nd</sup> order statistics R_X(t_1, t_2) = E[n(0, t_1)n(0, t_2)] = E[n(0, t_1)n(t_1, t_2)] = \lambda^2 t_1(t_1 - t_2)
Specifying whether a RP process is stationary (strict sense or WSS)
Specifying whether a RP is ergodic (mean-ergodic, egodic in correlation(covariance),
distribution ergodic,..., Papoulis ch. 12)
```

Examples of Stochastic process

Poisson Process

DTMC

CTMC

Semi-Markov Process

Birth-Death process

System Analysis

- Classification of Queueing Networks
 - open networks
 - closed networks.
 - Interactive (terminal-driven)
 - Batch system
- Performance Metrics:
 - Response time
 - Throughput and Utilization
- Operational Laws
 - Little (open,closed)

Queueing systems

- M/M/1 (distribution)
- M/G/1 (distribution)

- Discrete-event simulations
- Data collection and analysis
- Variance reduction techniques

- Discrete-event simulations
 - Why do we need simulations?
 - Step-by-step simulations;
 - Classifications;
 - Simulation program;
 - Basics of Discrete-event simulations;
 - Example: GI/G/1 queuing system;
 - Event advance design;
 - Unit-time advance design.

- Data collection and analysis
 - transient and steady-state simulations;
 - detecting the length of transient period;
 - characterizing central tendency;
 - characterizing variability;
 - data collection and analysis techniques;
 - comparison of methods;
 - estimations for transient simulations.

- Variance reduction techniques
 - Simulation with a given accuracy;
 - Variance reduction techniques;
 - Antithetic variates technique;
 - Control variates technique;
 - Validation of simulations.