Government College of Engineering, Amravati

(An Autonomous Institute of Government of Maharashtra)

B. Tech. (Computer Science & Engineering)

Summer - 2017

Course Code: CSU802

Course Name: Digital Signal Processing

Time: 2 Hr. 30min.

Max. Marks: 60

Instructions to Candidate

1) All questions are compulsory.

2) Assume suitable data wherever necessary and clearly state the assumptions made.

3) Diagrams/sketches should be given wherever necessary.

4) Use of logarithmic table, drawing instruments and non-programmable calculators is permitted.

5) Figures to the right indicate full marks.

1 Solve any Two

- a What do u understand the by the term signal and 6M signal processing? Explain the basic element of DSP system
- b Determine the given system are causal or non- 6M causal, linear or non-linear, time variant or time-invariant
 - i. Y(n)=x(-n+2)
 - ii. Y(n)=x(2n)

Contd..

	c	Determine the convolution sum of two sequence $X(n)=\{3,3,1,2\}$ and $h(n)=\{1,2,1,2\}$ using mathematical method	6М		c	X(n the Det foll
2	a	Determine the response $y(n),n>=0$ of the system describe by the second order difference equation $Y(n)-3y(n-1)-4y(n-2)=x(n)+2x(n-1)$ when input sequence $x(n)=4^n$ $u(n)$	6М			Sol
	b	Determine the cross correlation sequence $r_{xy}(l)$ of the sequence	6M	5	a	Diff
		$X(n) = \{\dots, 0,0,2,-1,3,7,1,2,-3,0,0,\dots\}$ and				Cor
		$X(n)=\{0,0,2,-1,3,7,1,2,-3,0,0,\}$ and $Y(n)=\{0,0,1-1,2,-2,4,1,-2,5,0,0\}$			b	
		Ť				Into
3	a	State and prove the following property of Discrete Fourier transform	4M		c	inva
		1. Circular time shift of a sequence				stru
	b	Given $x(n)=\{0,1,2,3,4,5,6,7\}$ find $x(k)$ using DIT FFT algorithm	8M			
		Solve any Two				
4	a	What is ROC ? determine the z transform of following signal	6M			
	b	i. $X(n)=(\cos \omega_0 n) u(n)$ ii. $X(n)=(\sin \omega_0 n) u(n)$ Determine the zero state response of the system $X(n)=1/2 \ y(n-1)+4x(n)+3x(n-1) \text{ to the input}$	6M			

m on	6M		$X(n)=e^{jw0n}$ u(n) what is steady-state response of the system Determine the inverse z transform of the following system using partial fraction expansion $X(z)=\frac{1}{1-1.5 \ z^{-1}+0.5 \ z^{-2}}$	6M
of	6M	5 8	example.	6M
rete	4M	ŀ	Convert the analog filter with the system function. $H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$ Into digital IIR filter by means of impulse invariance method	6M
IT	8M	C	Draw the Direct form I and Direct Form II structure for IIR filter $H(Z) = \frac{b0 + b1 z^{-1} + b2 z^{-2}}{1 + a1 z^{-1} + a2 z^{-2}}$	6M
	6M			
n	6M			
	-			