

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по курсу "Архитектура ЭВМ"

Тема Разработка СнК на ПЛИС Altera
Студент Лемешев А. П.
Группа ИУ7-52Б
Преподаватель Дубровин Е.Н.

Цель работы

Изучить основы построения микропроцессорных систем на ПЛИС. В ходе работы ознакомиться с принципами построения систем на кристалле (СНК) на основе ПЛИС, получить навыки проектирования СНК в САПР Altera Quartus II, выполнить проектирование и верификацию системы с использованием отладочного комплекта Altera DE1Board.

Задание 2

Рис 1. Функциональная схема разрабатываемой СНК

Задание 3

Рис 2. Копия экрана готового модуля в системе проектирования CHK Altera Qsys

Задание 4

Node Name	Direction	Location	I/O Bank	VREF Group	Fitter Location	I/O Standard	Reserved	Current Strength	Differential Pair
in_ dk_dk	Input	PIN_L1	2	B2_N1	PIN_L1	3.3-V LVdefault)		24mA (default)	
in_ reset_reset_n	Input	PIN_R22	6	B6_N0	PIN_R22	3.3-V LVdefault)		24mA (default)	
in_ uart0_rxd	Input	PIN_F14	4	B4_N1	PIN_F14	3.3-V LVdefault)		24mA (default)	
out uart0_txd	Output	PIN_G12	4	B4_N1	PIN_G12	3.3-V LVdefault)		24mA (default)	

Рис 3. Таблица распределения адресов модулей в СНК

Задание 5

```
#include "sys/alt_stdio.h"
#include "system.h"
#include "altera_avalon_sysid_qsys.h"
#include "altera_avalon_sysid_qsys_regs.h"

int main()
{
    char ch;
    alt_putstr("Hello from System on Chip\n");
    alt_putstr("Send any character\n");

    int addr = IORD_ALTERA_AVALON_SYSID_QSYS_ID(SYSID_QSYS_0_BASE);
    alt_putchar(addr / 0x1000 + '0');
    alt_putchar(addr / 0x100 % 0x10 + '0');
    alt_putchar(addr / 0x10 % 0x10 + '0');
    alt_putchar(addr % 0x10 + '0');

    while (1) {
        ch = alt_getchar();
        alt_putchar(ch);
    }

    return 0;
}
```

Рис 4. Код программного проекта Nios II Software Build Tools for Eclipse

Задание 6

Рис 5. Результаты тестирования программируемой СНК на отладочной плате **Выво**д

В ходе выполнения лабораторной работы были изучены основы построения микропроцессорных систем на ПЛИС; проведено ознакомление с принципами построения систем на кристалле на основе ПЛИС; получены навыки проектирования СНК в САПР Altera Quartus II; выполнено проектирование и верификация системы с использованием отладочного комплекта Altera DE1Board.