California State University, Northridge
College of Engineering & Computer Science
Electrical and Computer Engineering
Department

ECE 443L Digital Electronics Laboratory
Report 6

CMOS based Astable Multivibrator Circuit
Design, Simulation and Experimental Test as
well as Analysis

By Evan Thomas, Haroutun Haroutunian,
Clayton Lawton

Professor: Sequare Daniel-Berhe

Abstract:

An astable multivibrator is a cross-coupled transistor with an astable output state as the input states transition from high to low. Main utilizations of astable multivibrators can be found in pulse position modulation and frequency modulation. The construction of such circuit is simple, as the most difficult part would be to calculate the input frequency and time constant.

Key Terms:

Astable, multivibrator, modulation, pulse, time constant (0.7*R*C)

Simulation and Experimental Result:

Figure 6.1: Case 1 CLAYTON Astable Multivibrator Schematic @ 100kHz

Trace Color			0.000	Y1 - Y2 13.830u	Y1(Cursor1) - Y2(Cursor2)		-3.2452		
					Y1 - Y1(Cursor1)	Y2 - Y2(Cursor2)	Max Y	Min Y	Avg Y
	V(M17:d)	4.3200m	2.6232	-2.6189	626.313m	-29.000p	2.6232	4.3200m	1.3138
	V(M9:d)	4.9937	2.6232	2.3705	5.6157	-29.000p	4.9937	2.6232	3.8084
CURSOR 1,2	V(M9:g)	-621.993m	2.6232	-3.2452	0.000	0.000	2.6232	-621.993m	1.0006

Figure 6.2: Case 1 CLAYTON Astable Multivibrator Waveform @ 100kHz

Figure 6.3: Case 1 EVAN Astable Multivibrator Schematic @ 111kHz

Figure 6.4: Case 1 EVAN Astable Multivibrator Waveform @ 111kHz

Figure 6.5: Case 2 HAROUTUN Astable Multivibrator Schematic @ 500kHz

Figure 6.6: Case 2 HAROUTUN Astable Multivibrator Waveform @ 500kHz

Figure 6.7: Case 3 CLAYTON Astable Multivibrator Schematic @ 670kHz

Figure 6.8: Case 3 CLAYTON Astable Multivibrator Waveform @ 670kHz

Figure 6.9: Case 3 EVAN Astable Multivibrator Schematic @ 800kHz

Figure 6.10: Case 3 EVAN Astable Multivibrator Waveform @ 800kHz

Figure 6.11: Case 4 HAROUTUN Astable Multivibrator Schematic @ 1Mhz

Figure 6.12: Case 4 HAROUTUN Astable Multivibrator
Waveform @ 1Mhz

Conclusion:

Astable Multivibrators, although aren't found in everyday electronics, are very useful within the medical field. Such circuits are utilized in heartbeat sensor machines and any modulation device. Pulse synchronization is a common area for such circuits.