Efficiently Learning Fourier Sparse Set Functions

Andisheh Amrollahi*, Amir Zandieh*, Michael Kapralov, Andreas Krause

^{*} The first two authors contributed equally

Motivation – sketching graphs

Motivation – sketching graphs

$$F(A) = 3$$

Size of the cut between A and V \ A

Motivation – hyperparameter optimization

Motivation – hyperparameter optimization

$$F(x_1 x_2 x_3 x_4 x_5)$$
 = Validation error using hyperparameters **x**

$$x_1 = \begin{cases} 0 & if optimizer is ADAM \\ 1 & if optimizer is SGD \end{cases}$$

$$x_2 = \begin{cases} 0 & if & filtersize = 3x3 \\ 1 & if & filtersize = 5x5 \end{cases}$$

...

• Given: set function $F: 2^V \to \mathbb{R}$. Can make (noisy) value queries

- Given: set function $F: 2^V \to \mathbb{R}$. Can make (noisy) value queries
- Goal: "learn" F with as few many queries as possible

- Given: set function $F: 2^V \to \mathbb{R}$. Can make (noisy) value queries
- Goal: "learn" F with as few many queries as possible
- Assumptions: 1) sparsity at most k non-zero Fourier coefficients

- Given: set function $F: 2^V \to \mathbb{R}$. Can make (noisy) value queries
- Goal: "learn" F with as few many queries as possible
- Assumptions: 1) sparsity at most $\,k$ non-zero Fourier coefficients
 - 2) low frequency degree of Fourier polynomials at most d

- Given: set function $F: 2^V o \mathbb{R}$. Can make (noisy) value queries
- Goal: "learn" F with as few many queries as possible
- Assumptions: 1) sparsity at most k non-zero Fourier coefficients 2) low frequency degree of Fourier polynomials at most d

$$A = \{2, 3, 4\}$$
 $V \setminus A = \{1, 5, 6\}$

$$k = |E| + 1 = 6$$
 $d = 2$

- Given: set function $F: 2^V \to \mathbb{R}$. Can make (noisy) value queries
- Goal: "learn" F with as few many queries as possible
- Assumptions: 1) sparsity at most k non-zero Fourier coefficients 2) low frequency degree of Fourier polynomials at most d

$$A = \{2, 3, 4\}$$
 $V \setminus A = \{1, 5, 6\}$
 $k = |E| + 1 = 6$ $d = 2$

- Given: set function $F: 2^V \to \mathbb{R}$. Can make (noisy) value queries
- Goal: "learn" F with as few many queries as possible
- Assumptions: 1) sparsity at most k non-zero Fourier coefficients 2) low frequency degree of Fourier polynomials at most d

Efficiently Learning Fourier Sparse Set Functions

k = |E| + 1 = 6 d = 2

Approximate Fourier transform of

- Given: set function $F: 2^V \to \mathbb{R}$. Can make (noisy) value queries
- Goal: "learn" F with as few many queries as possible
- Assumptions: 1) sparsity at most k non-zero Fourier coefficients 2) low frequency degree of Fourier polynomials at most d

$$k = |E| + 1 = 6$$
 $d = 2$

Efficiently Learning Fourier Sparse Set Functions

	Compressive sensing	Sparse FFT	
Runtime	$ ilde{O}(kn^d)$	$\tilde{O}(kn^{(2)})$	
Sampling complexity			
Assumptions			
Robustness			
		\hat{x}_{f_1} \hat{x}_{f_2} \hat{x}_{f_3} \hat{x}_{f_4} \hat{x}_{f_5} \hat{x}_{f_6}	
	Efficiently Learning Fourier Sparse Set Functions		

	Compressive sensing	Sparse FFT	
Runtime	$ ilde{O}(kn^d)$	$\tilde{O}(kn^{(2)})$	
Sampling complexity	$ ilde{O}(kd)$	$ ilde{O}(kn)$	
Assumptions			
Robustness			
		\hat{x}_{f_1} \hat{x}_{f_2} \hat{x}_{f_3} \hat{x}_{f_4} \hat{x}_{f_5} \hat{x}_{f_6}	
	Efficiently Learning Fourier Sparse Set Functions		

	Compressive sensing	Sparse FFT		
Runtime	$ ilde{O}(kn^d)$	$\tilde{O}(kn^{(2)})$		
Sampling complexity	$ ilde{O}(kd)$	$ ilde{O}(kn)$		
Assumptions	None	Randomness of support		
Robustness	Worst case noise	Gaussian noise +		
		\hat{x}_{f_1} \hat{x}_{f_2} \hat{x}_{f_3} \hat{x}_{f_4} \hat{x}_{f_5} \hat{x}_{f_6}		
	Efficiently Learning Fourier Sparse Set Functions			

	Compressive sensing	Sparse FFT	Ours	
Runtime	$ ilde{O}(kn^d)$	$\tilde{O}(kn^{(2)})$	$ ilde{O}(kn)$	
Sampling complexity	$ ilde{O}(kd)$	$ ilde{O}(kn)$	$ ilde{O}(kd)$	
Assumptions	None	Randomness of support		
Robustness	Worst case noise	Gaussian noise +		
=				

Efficiently Learning Fourier Sparse Set Functions

Compressive sensing over finite fields

	Compressive sensing	Sparse FFT	Ours		
Runtime	$ ilde{O}(kn^d)$	$\tilde{O}(kn^{(2)})$	$ ilde{O}(kn)$		
Sampling complexity	$ ilde{O}(kd)$	$ ilde{O}(kn)$	$ ilde{O}(kd)$	Compressive sensing over finite fields	
Assumptions	None	Randomness of support	None	New hashing schemes	
Robustness	Worst case noise	Gaussian noise +	Worst case noise		
$= \frac{\hat{x}_{f_1} \hat{x}_{f_2} \hat{x}_{f_3} \hat{x}_{f_4} \hat{x}_{f_5} \hat{x}_{f_6}}{\text{Worlds!}}$					

Efficiently Learning Fourier Sparse Set Functions

Please visit our poster for experimental results, more applications, and details of our algorithms

#91

