(1) Veröffentlichungsnummer:

0 051 238

A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 81108893.9

(5) Int. Ci.³: **G 03 C 1/74** B 05 D 1/34

22 Anmeldetag: 24.10.81

30 Priorität: 05.11.80 DE 3041721

(4) Veröffentlichungstag der Anmeldung: 12.05.82 Patentblatt 82/19

84 Benannte Vertragsstaaten: BE CH DE FR GB IT LI 11 Anmelder: AGFA-GEVAERT Aktiengesellschaft

D-5090 Leverkusen 1(DE)

(72) Erfinder: Engelmann, Helmut, Ing. grad. Tempelhofer Strasse 28 D-5090 Leverkusen 1(DE)

(64) Vorrichtung zum Auftragen von mindestens einer Schicht auf eine Oberfläche eines Gutes.

(3) Ein Gleitflächengießer (1) zur Beschichtung eines bewegten Gutes (14) nach dem Wulst- oder Vorhangbeschichtungsverfahren mit Beschichtungsmaterialien (5,6) besitzt Gleitflächen (4) zwischen den Austrittsschlitzen (3) und/oder der Einrichtung (12) zur Abgabe des Beschichtungsmateriales (5,6) an das bewegte Gut, die aus einem porösen Material (7) mit einer definierten Porenweite bestehen und über Hohlräumen (8) angeordnet sind, denen Flüssigkeiten zugeführt werden, die durch das poröse Material (7) hindurchtreten und eine Gleitschicht für das Beschichtungsmaterial bilden.

EP 0 051 238 A2

- 1 -

AGFA-GEVAERT AKTIENGESELLSCHAFT Patentabteilung

5090 Leverkusen, Bayerwerk HRS/m-c

.:..

Vorrichtung zum Auftragen von mindestens einer Schicht auf eine Oberfläche eines Gutes

Die Erfindung betrifft eine Vorrichtung zum gleichzeitigen Auftragen von mindestens einer Schicht flüssigen Beschichtungsmaterialies auf eine Oberfläche eines Gutes, insbesondere eines Bandes, mit einer nach abwärts geneigt verlaufenden Gleitfläche, über die mindestens eine Schicht flüssigen Beschichtungsmateriales herabfließt, bevor sie auf das Gut aufgeschichtet wird, mit in der Gleitfläche gelegenen Austrittsschlitzen für die Zufuhr von Beschichtungsmaterial zu der Gleitfläche, mit Randleisten zur seitlichen Führung der Schichten auf der Gleitfläche und mit einer am unteren Ende der Gleitfläche angeordneten Abgabe des Beschichtungsmaterials an ein quer zur Fließrichtung des Beschichtungsmaterials vorbeibewegtes Gut.

Eine Vorrichtung der obengenannten Art, die es ermöglicht, ein bewegtes, bandförmiges Trägermaterial so zu beschichten, daß diskrete Schichten, d.h. gegenseitig

5

10

unvermischte Schichten, gebildet werden, ist in der US-PS 2 761 791 aufgezeigt. Bei diesem Verfahren wird die Oberfläche des zu beschichtenden, bandförmigen Trägermaterials an einem Beschichtungswulst vorbeibewegt, in dem die Beschichtungsmaterialien der einzelnen Schichten diskret angeordnet sind, so daß auf dem Trägermaterial eine Beschichtung aufgebracht wird, die aus einer Mehrzahl diskreter, aufeinanderliegender Schichten gebildet ist. Die Beschichtungsmaterialien werden dem Beschichtungswulst von einer geeigneten Beschichtungsvorrichtung kontinuierlich zugeführt, beispielsweise von einem Gleitflächen-Gießer, der in geringem Abstand von der Oberfläche des Trägermaterials angeordnet ist, so daß der Beschichtungswulst den Abstand zwischen dem bandförmigen Trägermaterial und der Lippe der Beschichtungsvorrichtung überbrücken kann. Die Stärke der Schichten, die mit Erfolg auf dem Trägermaterial abgelegt werden können, hängt von dem Betriebsverhalten des Beschichtungswulstes ab und ist durch Faktoren wie Laufgeschwindigkeit des Trägermaterials und physikalische Eigenschaften der Beschichtungsmaterialien steuerbar.

Ein Nachteil des oben erwähnten Mehrfach-Beschichtungsverfahren besteht darin, daß es normalerweise nötig ist, die unterste Schicht, d.h. die Schicht, die mit dem bandförmigen Trägermaterial in Berührung kommt, aus einem Beschichtungsmaterial niedriger Viskosität herzustellen und diese unterste Schicht mit einer hohen Naßbeschichtung aufzutragen. Bei dem erwähnten Verfahren

10

15

20

hat z.B. die unterste Schicht typischerweise eine Viskosität im Bereich von etwa 3 bis 10 cps, und die spezifische Na3beschichtung liegt im Bereich von etwa 40 bis 100 cm³ Beschichtungsmaterial pro m² Fläche des Trägermaterials. Eine derartig hohe spezifische 5 Naßbeschichtung und eine so geringe Viskosität wendet man bei der untersten Schicht deshalb an, weil im Beschichtungswulst eine Turbulenz stattfindet. Wenn die unterste Schicht eine beträchtliche Dicke hat und aus einem Beschichtungsmaterial geringer Viskosität gebil-10 det ist, dann beschränkt sich diese Turbulenz gänzlich auf die unterste Schicht, so daß eine gegenseitige Vermischung zwischen dem Beschichtungsmaterial der untersten Schicht und dem Beschichtungsmaterial der unmittelbar darüberliegenden Schicht vermieden wird, 15 selbst bei hohen Beschichtungsgeschwindigkeiten. Der Ausdruck Turbulenz bezieht sich auf einen Scher- und Mischvorgang, bei dem es nicht unbedingt zur Wirbelbildung kommt. Die genauen Eigenschaften dieser Turbulenz hängen von mehreren Faktoren ab, u.a. von den 20 physikalischen Eigenschaften der Beschichtungsmaterialien und der Beschichtungsgeschwindigkeit. Der Umstand, daß bei dem erwähnten bekannten Verfahren eine hohe spezifische Naßbeschichtung und geringe Viskosität bei der untersten Schicht eingehalten werden müssen, kann 25 beträchtliche Nachteile mit sich bringen, da eine dicke Schicht niedrig viskosen Beschichtungsmaterials eine große Menge Wasser enthält, die anschließend in einem Trocknungsvorgang wieder entfernt werden muß. Um die Arbeitsbedingungen, wie sie für erfolgreiches 30 Mehrfach-Wulstbeschichten hierbei erforderlich sind, einhalten zu können, ist eine starke Verdünnung des

die unterste Schicht bildenden Beschichtungsmaterials erforderlich. Je stärker die Verdünnung, desto größer ist jedoch die anschließend beim Trocknungsvorgang zu entfernende Wassermenge, und wenn die Wassermenge zu groß wird, kann der Fall eintreten, daß die Leistungsfähigkeit der Trockungsvorrichtung überschritten wird. In diesem Falle richtet sich die Beschichtungsgeschwindigkeit nach der Absetz- und/oder Trocknungszeit, zur Folge haben kann, daß die Beschichtung mit ungünstig niedriger Arbeitsgeschwindigkeit durchgeführt werden muß, um die Gefahr zu vermeiden, daß die Absetzund/oder Trockner-Kapazität überschritten wird. Außerdem ergibt sich der Nachteil, daß die Leistungsfähigkeit derjenigen Einrichtungen vergrößert werden muß, die dazu dienen, die Beschichtungsmaterialien bereitzustellen, wenn die Beschichtungsmaterialien im Interesse der Erleichterung des Beschichtungsvorganges verdünnt werden müssen. Dadurch ergibt sich ein bemerkenswerter Anstieg der Einrichtungskosten.

Um die geschilderten Nachteile zu beheben, ist aus der amerikanischen Patentschrift US-4 001 024 bekannt, eine dünne und niedrigviskose unterste Schicht zusätzlich zu den übrigen dickeren und höher viskosen Schichten aus einem Gleitflächengießer austreten zu lassen, die als Transportschicht und Gleitschicht für die übrigen Schichten dient, wobei eine Vermischung der untersten Schicht mit der direkt darüberliegenden Schicht in Kauf genommen wird.

5

10

Durch dieses Verfahren wird insgesamt eine Verringerung der gesamten Auftragsmenge ermöglicht, da die zweitunterste Schicht, infolge der dünnen untersten Schicht, mit normaler Dicke und Viskosität verwendet werden kann. Aber es wird eine weitere Schicht benötigt, die bei einem Gleitflächengießer nur aus dem untersten Austrittsspalt austreten kann, um ihre Aufgabe zu erfüllen. Eine Verbesserung des Abfließens der Schichten aus den übrigen Austrittsspalten der Gleitfläche wird nicht erreicht. Die Zusatzschicht kann auch ein Antrocknen 10 von Feststoffteilchen der Beschichtungslösungen auf der .Gleitfläche, an den Austrittsschlitzen oder an der Gießerkante nicht verhindern und erlaubt keine Verringerung der Randwülste, die beim Aufbringen der 15 Schichten auf die Bahn an deren Rändern entstehen und eine erhebliche Verlängerung der Trockenzeiten für die Bahn erfordern.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs genannten Art zu schaffen, mit der es auf einfache Weise möglich ist, Gleitflächengießer für das Wulstbeschichtungs- oder das Vorhangbeschichtungs- verfahren mit dünnen Hilfsschichten auf den Gleitflächen zu versehen.

Diese Aufgabe wird bei einer Vorrichtung der einleitend genannten Ausbildung gemäß der Erfindung dadurch gelöst, daß die Gleitflächen zwischen den Austrittsschlitzen und/oder die Einrichtung zur Abgabe des Beschichtungsmaterials am unteren Ende der Gleitfläche aus einem porösen Material mit einer definierten Porenweite bestehen und über Hohlräumen angeordnet sind und den Hohlräumen Flüssigkeiten zugeführt sind, die infolge ihres statischen Druckes oder durch Kapillareinwirkung durch das poröse Material an der Oberfläche der Gleitfläche und/oder an der Einrichtung zur Abgabe des Beschichtungsmaterials austreten.

Für den Fachmann war es überraschend, daß durch die Verwendung von porösem Material für die Gleitflächen und die Zuführung von Flüssigkeiten aus unter den Gleitflächen gelegenen Hohlräumen durch das poröse Material an die Gleitfläche eine extrem dünne Hilfsschicht erzeugt werden kann, auf der die Schichten des Beschichtungsmaterials unter Schwerkraft erheblich besser gleiten, als auf den bisher bekannten Gleitflächen von Kaskaden- oder Vorhanggießern.

Überraschenderweise wird ein Ansammeln oder Antrocknen von Feststoffteilchen an den Austrittsschlitzen, an den Gleitflächen und auch an der Gießerkante oder an dem Gießerschnabel verhindert.

Durch die aus den Poren und Kapillaren des porösen Materials austretende Hilfsschicht ist es möglich, zur Beschichtung der Bahn erheblich dünnere Schichten mit hohen Viskositäten zu verwenden und so in erheblichem Maße Energie bei der Trocknung der aufgebrachten Schichten einzusparen.

10

15

20

Bei einer vorhandenen Trockenstrecke mit einer bestimmten Trockenleistung kann eine Bahn durch die lösungsmittelarmen hochviskosen Schichten mit erheblich höheren Geschwindigkeiten getrocknet werden, zumal auch bei der Beschichtung die Abfließeigenschaften der Beschichtungslösungen von der Gleitfläche durch die Hilfsschichten verbessert werden.

Ein weiterer erheblicher Vorteil der Vorrichtung liegt darin, daß die einzelnen Schichten zum Beispiel bei der Herstellung photographischer Materialien in ihren 10 physikalischen und phototechnischen Eigenschaften exakt aufeinander abgestimmt werden können. Dies gilt in besonderem Maße für die unterste Schicht, die für die Haftung auf der Oberfläche eines Gutes, zum Beispiel einer Film- oder Papierbahn, entscheidend ist. So kann mit der Vorrichtung der Grenzschicht der untersten Schicht, die auf der zu beschichtenden Bahn zu liegen kommt, kurz vor der Berührung mit der Bahn eine genau definierte Menge Gleit- oder Netzmittel zugeführt werden. 20 Dadurch, daß statt die gesamte Schicht nur die Grenzschicht das Netzmittel oder Gleitmittel aufnimmt, kann in erheblichem Maße Netz- oder Gleitmittel eingespart werden. Innerhalb der kurzen Zeit zwischen der Benetzung der Grenzschicht der untersten Schicht und dem 25 Auftreffen auf die Bahn erfolgt keine Diffusion des Netzoder Gleitmittels in die oberen Schichten, wodurch bessere Voraussetzungen für die Haftung weiterer Schichten in einem nachträglichen Auftragen eines weiteren Beschichtungspaketes gegeben sind.

Die porösen Materialien können metallische, keramische, gläserne oder aus Kunststoffen hergestellte Sinterplatten sein, die aus einem gut benetzungsfähigen Material mit einheitlicher Festkörperoberflächenspannung bestehen und so ausgewählt sind, daß durch die Poren und Kapillare eine definierte Menge Flüssigkeit gleichmäßig über die Flächen der Sinterplatten austritt.

Als besonders vorteilhaft zeigen sich Sinterplatten,
die aus Edelstahllegierungen hergestellt werden, zum
Beispiel V4A (ein Werkstoff nach DIN 14404). Das
Material wird aus vorselektiertem Metallpulver unter
Schutzgas in einem Sinterofen hergestellt. Die Metallteilchen haben eine amorphe Struktur und bilden beim
Sintern ohne Bindemittel untereinander mehrfache
Schweißähnliche Verbindungen.

Das Sintermaterial wir drucklos hergestellt, wodurch eine hohe Durchlässigkeit erreicht wird. Es kann daher eine Material und eine Porengröße von fünf bis zwanzig Mikren und einer Dicke von 1,5 bis 5 mm für die Gleitflächen und ein Profilmaterial mit einer Porengröße von zehn bis 40 Mikron verwendet werden, wobei aus dem P rofilmaterial die Abflußkante für die Gleitfläche herausgearbeitet wird. Das Sintermaterial ist in allen Größen und Dicken und in vielen Formen lieferbar und läßt sich gut verarbeiten.

Die den Hohlräumen unter den Sinterplatten zugeführten Flüssigkeiten sind Gleit- und Netzmittel oder auch andere Flüssigkeiten, die durch einen statischen Druck,

5

20

mittels Pumpen oder durch Kapillareinwirkung durch die Sinterplatten auf die Gleitfläche austreten und unter den Beschichtungsflüssigkeiten eine dünne Hilfsschicht bilden.

5 . Als Gleit- oder Netzmittel zur Verbesserung der Gleiteigenschaften für photographische Emulsionen oder andere hydrophile Kolloidschichten können beispielsweise verwendet werden, nicht-ionische oberflächenaktive Mittel, wie Saponin (Steroid-Typ), Alkylenoxidderivate (wie Polyethylenglykol, Polyethylen-10 glykol/Polypropylenglykol-Kondensate, Polyethylenglykolaklkyl- oder -alkylaryläther, Polyethylenglykolester, Polyethylenglykolsorbitansäure, Polyalkylenglykolalkylamine oder -amide, Polyethylenoxidaddukte von Silicoren), Glycidolderivate (wie 15 Alkynelbernsteinsäurepolyglyceride, Alkylphenolpolyglyceride), Fettsäureester von mehrwertigen Alkoholen, Alkylester von Saccharose, Urethane oder Äther davon und dergleichen; anionische oberflächenaktive Mittel, die eine Säuregruppen, wie z.B. eine Carboxylgruppe, 20 eine Sulfogruppe, eine Phosphorgruppe, eine Schwefelsäureestergruppen, eine Phosphorsäureestergruppe und dergleichen enthalten, wie z.B. Sapanin vom Triterpenoid-Typ, Alkylcarbonate, Alkylsulfonate, Alkylbenzolsulfonate, Alkylnaphthalinsulfate, Alkyl-25 sulfate, Alkylphosphate, N-Acyl-N-alkyltaurine, Sulfobernsteinsäureester, Sulfoalkylpolyoxyethylenalkylphenyläther, Polyoxyehtylenalkylphosphate und dergleichen; amphotere oberflächenaktive Mittel, wie

Aminosäuren, Aminoalkylsulfonsäuren, Aminoalkylsulfate oder -phosphate, Alkylbetaine, Aminimide, Aminoxide und dergleichen; kationische oberflächen-aktive Mittel, wie aliphatische oder aromatische quaternäre Ammoniumsalze, heterocyclische quaternäre Ammoniumsalze, wie Pyridinium- oder Imidazoliumsalze und dergleiche, Phosphonium- oder Sulfoniumsalze, die aliphatische oder heterocyclische Ringe enthalten, und dergleichen.

10 Es ist natürlich auch möglich oberflächenaktive Mittel für andere Zwecke den auf den Gleitflächen herabfließenden Emulsionen zuzusetzen, zum Beispiel Antistatika zur Verhinderung von elektrostatischen Aufladungen, Mittel zur Verbesserung der Emulsions15 dispersion, Mittel zur Verhinderung der Haftung oder Mittel zur Verbesserung der photographischen Eigenschaften wie Härtungsmittel, insbesondere Schnellhärtungsmittel, chemische Kuppler, Stabilisatoren, U-V-Absorber, Sensibilisatoren und dergleichen.

Eine vorteilhafte Ausführungsform der Vorrichtung zeichnet sich dadurch aus, daß die Sinterplatten austauschbar und lösbar über den Hohlräumen angeordnet sind. Durch das Lösen der Sinterplatten wird ein Reinigen der Vorrichtung erleichtert und durch das Austauschen der Sinterplatten ist es möglich, zum Beispiel durch die Wahl von Sinterplatten mit bestimmten Poren- oder Kapillargrößen,

25

die Gleitflächen den verschiedensten Anforderungen von Gießproblemen anzupassen. Eine normale Anpassung ist bereits durch den statischen Druck oder den Pumpendruck, mit dem die Gleit- oder Netzmittel gegen die Sinterplatten gedrückt werden, in weiten Grenzen möglich.

Eine besonders vorteilhafte Ausführungsart der Vorrichtung zeichnet sich dadurch aus, daß die Gleitfläche im Bereich des unteren Endes breiter ist und beidseitig mit Hohlräumen zur Aufnahme von die Oberflächenspannung der Beschichtungsflüssigkeiten verringerenden Flüssigkeiten vorgesehen sind, die mit Sinterplatten abgedeckt sind.

Es ist bekannt, den Randwulst beim Beschichten von Bahnen dadurch zu verringern, daß die Randleisten auf 15 den Gleitflächen zur Begrenzung der Begußbreite am unteren Ende der Gleitfläche unter einem Winkel nach außen gerichtet sind. Hierdurch wird die Verdickung der Schichten, die an den Randleisten durch die Oberflächenspannung entsteht, teilweise wieder ausgeglichen. 20 Hierzu muß aber die unterste Schicht insgesamt einen erheblichen Anteil an Netzmitteln besitzen, um eine Benetzung auch der verbreiterten Gleitfläche bewältigen zu können. Durch die alleinige oder zusätzliche Anbringung von besonderen Hohlräumen zur Aufnahme von Netz- und 25 Gleitmitteln in diesem erweiterten Gleitflächenbereich und die Abdeckung der Hohlräume mit Sinterplatten kann in einfacher Weise, und nur für diesen Bereich, die

5

Oberflächenspannung gesteuert so reduziert werden, daß sich der Randwulst an die Dicke der normalen Schichtdicke angleicht. Der Randwulst auf der beschichteten Bahn kann so vermieden oder erheblich reduziert werden, wodurch zusätzlich eine weitere Energieeinsparung und eine Erhöhung der Maschinengeschwindigkeit erreicht werden kann.

Die Vorrichtung zeichnet sich weiter dadurch aus, daß sie sowohl zur Beschichtung von Bahnen nach dem Wulstbeschichtungsverfahren (Kaskadenverfahren) verwendet werden kann, wobei sich am unteren Ende der Gleitfläche eine Gießerkante befindet, an der die Bahn auf einer Gießwalze in kurzem Abstand vorbeigeführt wird, als auch, daß sie in ebenso vorteilhafter Weise, zur Beschichtung von Bahnen nach dem Vorhanggießverfahren einsetzbar ist, wobei sich am unteren Ende der Gleitfläche eine schnabelartige Verlängerung der Gleitfläche befindet, über die die Beschichtungsflüssigkeit abfließt und sich als frei fallender Vorhang auf eine darunter bewegte Bahn auflegt.

Für beide Beschichtungsverfahren ist die Ausbildung der Gleitflächen aus porösem Material die gleiche. Bei beiden Gießern ist am unteren Ende der Gleitfläche eine Gießerkante angeordnet, die ebenfalls mit einem porösen Material versehen ist und mit einem Gleitmittel benetzt wird, so daß die Gießerkante von einer Hilfsschicht umgeben ist. Die Gießerkanten unterscheiden sich nur in ihrer Form, wobei die für das Wulstbeschichtungsverfahren

5

10

15

20

eine Form besitzt, an der sich mit Hilfe eines Unterdruckes zwischen Bahn und Gießerkante ein Wulst bildet,
während die Gießerkante beim Vorhanggießverfahren
vorteilhafterweise schnabelförmig, als sogenannter

5 Schnabelgleitflächengießer, ausgebildet ist, wodurch
sich bei dieser Ausführungsform die Schichten leichter
von der Gießerkante lösen und als frei fallender Vorhang
auf eine darunter bewegte Bahn gelegt werden können.

Die Erfindung wird nachstehend anhand von Zeichnungen 10 näher erläutert. Es zeigen:

- Fig. 1 einen Längsschnitt durch einen Gleitflächengießer für das Wulstbeschichtungsverfahren
- Fig. 2 einen Längsschnitt durch einen Gleitflächengießer für das Vorhangbeschichtungsverfahren
- 15 Fig. 3 eine perspektivische Darstellung eines Gleitflächengießers mit verbreiterter Gleitfläche im Bereich der Gießerkante.
 - Fig. 4 einen Querschnitt durch einen Teil eines Gleitflächengießers mit Randleiste.
- Fig. 1 zeigt eine schematische Darstellung einer Ausführungsform eines Gleitflächengießers 1 für das Wulstbeschichtungsverfahren. Ein oder mehrere Beschichtungsflüssigkeiten 5, 6 werden Verteilerrohren 2 durch Pumpen zugeführt und steigen über die gesamte Breite der

Gleitflächen 4 in Austrittsschlitzen 3 zur Gleitfläche 4 auf und fließen infolge der Schwerkraft die Gleitflächen 4 hinab, fließen übereinander und erreichen die Gießerkante 12. An der Gießerkante 12 wird ein zu beschichtendes Gut, zum Beispiel eine Materialbahn 14 mit einer Gießerwalze 15 in geringem Abstand vorbeigeführt. Zwischen der Bahn 14 und der Gießerkante 12 bilden die Schichten 5, 6 einen Wulst 13, aus dem sich die Schichten 5, 6 auf die vorbeigeführte Bahn 14 auflegen. Die Wulstbildung kann in üblicher Weise durch einen angelegten Unterdruck gesteuert werden.

Die Gleitfläche 4 besteht aus einem porösen Material wie Sinterplatten 7, die aus einem Sinterhartmetall, aus Keramik, gesintertem Glas bestehen oder aus Kunst-- 15 stoff gefertigt sind. Die Sinterplatten decken Hohlräume 8 unter der Gleitfläche 4 ab, in die aus Behältern 10, 11 mit statischem, über die Höhe der Behälter einstellbarem, Druck oder über Dosierpumpen ein Netz- oder Gleitmittel mittels Verteilerrohren 9 20 eingeführt wird. Das Netz- oder Gleitmittel durchdringt die Sinterplatten 7 von innen nach außen und benetzt die Gleitfläche 4 mit einer dünnen Hilfsschicht auf der die Schichten 5 und 6 die Gleitfläche 4 hinabgleiten. Am Ende der Gleitfläche 4 befindet sich die Gießerkante 25 12, die ebenfalls aus porösem Material gefertigt ist und vollkommen mit Netz- oder Gleitmittel benetzt ist, so daß sich die unterste Schicht 6 leicht und gleichmäßig über die Breite von der Gießerkante 12 ablöst und sich mit der stark benetzten Grenzschicht an die Bahn

14 anlegt und an dieser haftet. Die Menge des Netzoder Gleitmittels kann hierbei in einfacher Weise durch die Änderung der Höhe der Netzmittelbehälter 10, 11 eingestellt werden.

Die Gleitflächen 4 liegen formschlüssig auf den Hohlräumen auf und dichten diese so ab, daß das Netz- oder
Gleitmittel nur nach der Gleitfläche 4 hin austreten
kann. Zur Reinigung der Hohlräume 8 und der Sinterplatten
7 können die Sinterplatten 7 abgenommen werden. Auch
10 können für eine Gießeinrichtung verschiedenartige Sinterplatten mit verschiedenen Porengrößen und Kapillargrößen
vorgesehen sein, die nach Bedarf eingebaut werden. Im
allgemeinen werden jedoch keine Sinterplatten mit verschiedenen Porengrößen benötigt, da die Dicke der
15 Hilfsschicht aus Netz- oder Gleitmittel in weiten
Bereichen alleine durch Änderung des statischen
Druckes einstellbar ist.

Fig. 2 zeigt einen Längsschnitt durch eine Vorrichtung
1 gemäß der Erfindung für das Vorhangbeschichtungs20 verfahren. Mit einer derartigen Vorrichtung können ein
bis zwölf (oder auch mehr) einzelne Schichten aus den
Verteilerrohren 2 durch durch die Austrittsschlitze 3
auf die Gleitfläche 4 gebracht werden. Mit Schwerkraft
fließen diese Schichten auf der Gleitfläche 4 hinab,
25 fließen übereinander und erreichen den Schnabel 16
des Vorhanggießers. Am Schnabel 16 lösen sich die
Schichten gemeinsam ab und fallen als freifallender
Vorhang 17 über eine Höhe von 5 bis 20 cm auf eine

senkrecht unter dem Schnabel waagrecht vorbeigeführte
Bahn 14, die über eine Gießwalze 15 umgelenkt werden
kann, um die Bahn 14 an der Auftreffstelle zu unterstützen. Die Darstellung der Vorrichtung ist rein
schematisch, wobei die üblichen für einen einwandfreien
Beguß notwendigen Hilfsmittel, wie Randführungen, Luftschilder und andere bekannte Einrichtungen nicht dargestellt wurden.

Die Zuführung des Netz- oder Gleitmittels erfolgt wie bei Fig. 1 beschrieben in analoger Weise. Lediglich der unterste Hohlraum 3 ist größer ausgeführt, um mehr Netz- und Gleitmittel aufnehmen zu können und auch den Schnabel 16 bis an seine unterste Spitze mit Netz- oder Gleitmittel zu versehen. Hierdurch wird die Ober- flächenspannung beim Ablösen der untersten, die übrigen Schichten tragenden Schicht erheblich reduziert und ein gleichmäßiges Ablösen von der Kante des Schnabels 16 gewährleistet. Eine Verkrustung oder ein Ansetzen von Beschichtungsmaterialien durch Antrocknen wird ver- mieden.

In Fig. 3 ist eine spezielle Anwendung der Sinterplatten 7 dargestellt. Es ist normal, daß die Schichten, wenn sie die Gleitfläche 4 herabfließen, durch Randleisten 18 beidseitig geführt werden müssen. Durch die Oberflächenspannung haben die Schichten das Bestreben, an den Randleisten 18 hochzusteigen, wodurch eine Verdickung in diesem Bereich entsteht, während unmittelbar daneben die Schichten dünner werden und dann unten an der Gießer-

kante abreißen können. Die Randverdickungen ihrerseits fließen als verdickte Schichten von der Gießerkante ab auf die Bahn und bilden Randwülste. Die Randwülste sind bestimmend für die Trockenzeit einer Bahn nach dem Begießen, da die Bahn erst aufgewickelt werden kann, wenn alle Teile, also auch die Randwülste trocken sind. Allein wegen der Randwülste sind daher Trockenzeiten und -strecken erforderlich, die 20 bis 40 % länger sein müssen, als die für die für die normale Schicht benötigten.

10 Die Randwülste sind außerdem nicht verwendbar und werden in einem späteren Arbeitsgang beidseitig abgeschnitten.

Zur Verringerung der Randwülste ist unter anderem bekannt, die Randleisten 18 im unteren Bereich der Gleitfläche 4 nach außen um einen Betrag a abzuwinkeln,

15 so daß die Gleitfläche 4 kurz vor der Gießerkante 12 eine Breite b + 2a hat. Der Randwulst wird so vermindert, da die Schichten sich im Randbereich ausdehnen und hierzu Beschichtungsmaterial benötigen und somit die Schichtdicken reduzieren. Hierdurch entsteht die

20 Gefahr, daß die verdünnten Schichten reißen, wenn die Vorrichtung für das Vorhanggießverfahren nach Fig. 2 verwendet wird, oder daß beim Wulstbeschichtungsverfahren nach Fig. 1 Störungen im Begießwulst entstehen, wodurch ein streifiger Beguß im Randbereich entsteht, der

Eine erhebliche Verbesserung wird erreicht, wenn unter den erweiterten Bereichen a Hohlräume 19 angeordnet sind, die mit Sinterplatten 7 abgedeckt sind und die

Hohlräume 19 aus Behältern 20 über Ventile 21 und Rohrverbindungen 17 mit einem Netz- oder Gleitmittel beschickt werden. Die durch die Verteilerrohre 2 zugeführten Beschichtungsflüssigkeiten steigen in den Austrittsschlitzen 3 zur Gleitfläche 4 hoch und fließen übereinander und infolge der Schwerkraft die Gleitfläche 4 in der Breite b hinab. Die sich an den Randleisten 18 bildende Verdickung der Schichten erreichen die sich über den Sinterplatten 7 bildende Hilfsschicht aus Gleit- oder Netzmitteln und folgen, unter gleichzeitiger Verdünnung, der um die Beträge a nach außen verbreiterten Gleitfläche 4. Hierbei entstehen nur geringfügige Verdünnungen der benachbarten Schicht und die Randverdickungen gleichen sich aus, so daß die auf 15 die Bahn auftreffenden Schichten fast keine Randverdickung zeigen und die Trockenzeit erheblich verkürzt werden kann.

Die erweiterten Randleisten 18 mit darunter angeordneten Sinterplatten sind in Fig. 3 als alleinige Verbesserung dargestellt. Es kann natürlich auch bei der Vorrichtung eine Gleitfläche 4 mit Sinterplatten 7 wie in den Fig. 1 und 2 beschrieben, verwendet werden. Die Gleitfläche 4 kann im unteren Bereich eine Sinterplatte 7 besitzen, die sich über die Breite b + 2a erstreckt, wobei die Hohlräume 8, 19 für diesen Bereich gemeinsam oder getrennt ausgebildet und mit Netz- und Gleitmittel beschickt werden können.

Eine Verringerung des Randwulstes wird nach Fig. 4 auch dadurch erreicht, daß die Randleisten 18 selbst auf der der Gleitfläche 4 des Gleitflächengießers 1 zugewandten Seite aus einer Sinterplatte 7 bestehen, die 5 durch die Kanäle 22 in den Randleisten 18 mit Netzund Gleitmittel beschickt werden. An den mit Sinterplatten 7 belegten Kanten der Randleisten 18 bildet sich dann ebenfalls eine Hilfsschicht, die die Oberflächenspannung der Schichtränder reduziert und das 10 Hochsteigen der Schichten 5, 6 an den Randleisten 18 und somit den Randwulst auf der Bahn vermindert. Diese speziellen Randleisten 18 können sowohl bei einem normalen Gleitflächengießer als auch bei einem Gleitflächengießer 1 der in Fig. 1 und 2 beschriebenen 15 Art Anwendung finden.

Patentansprüche

Vorrichtung zum Auftragen von mindestens einer 1. Schicht flüssigen Beschichtungsmaterials auf eine Oberfläche eines Gutes, insbesondere eines Bandes, mit einer nach abwärts geneigt ver-5 laufenden Gleitfläche, über die mindestens eine Schicht flüssigen Beschichtungsmaterials herabfließt, bevor sie auf das Gut aufbeschichtet wird, mit in der Gleitfläche gelegenen Austrittsschlitzen für die Zufuhr von Beschichtungsmaterial zu der Gleitfläche, 10 mit Randleisten zur seitlichen Führung der Schichten auf der Gleitfläche und mit einer am unteren Ende der Gleitfläche angeordneten Einrichtung zur Abgabe des Beschichtungsmaterials an ein quer zur Fließrichtung des Beschichtungsmaterials vorbeibewegtes Gut, 15 dadurch gekennzeichnet, daß die Gleitfläche (4) zwischen den Austrittsschlitzen (3) und die Einrichtung zur Abgabe des Beschichtungsmaterials (12, 16) am unteren Ende der Gleitfläche (4) aus einem porösen Material (7) mit einer defi-20 nierten Porenweite bestehen und über Hohlräumen (8, 19) angeordnet sind und den Hohlräumen (8, 19) Flüssigkeiten zugeführt sind, die infolge ihres statischen Druckes oder durch Kapillareinwirkung durch das poröse Material (7) an der Oberfläche 25 der Gleitfläche (4) und an der Einrichtung (12, 16) zur Abgabe des Beschichtungsmaterials austreten.

- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die porösen Materialien (7) metallische, keramische, gläserne oder aus Kunststoffen hergestellte Sinterplatten (7) sind.
- 5 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Sinterplatten (7) aus einem gut benetzungsfähigen Material mit einheitlicher Festkörperoberflächenspannung bestehen und so ausgewählt sind, daß durch die Poren und Kapillare eine definierte Menge Flüssigkeit gleichmäßig über die Flächen der Sinterplatten (7) austritt.
 - 4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die den Hohlräumen (8, 19) unter den Sinterplatten (7) zugeführten Flüssigkeiten Gleit- und Netzmittel sind.
 - Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Sinterplatten (7) austauschbar und lösbar über den Hohlräumen (8, 19) angeordnet sind.
- 6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet,
 daß die Gleitfläche (4) im Bereich des unteren
 Endes breiter ist und beidseitig mit Hohlräumen (19)
 zur Aufnahme von die Oberflächenspannung der Beschichtungsflüssigkeiten verringerenden Flüssigkeiten vorgesehen sind, die mit Sinterplatten (7)
 abgedeckt sind.

6

- 7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Randleisten (18) an der der Gleitfläche (4) zugewandten Seite mit Sinterplatten (7) versehen sind, die ihrerseits über einen Kanal (22) mit einer Flüssigkeit beschickbar sind.
- 8. Verwendung der Vorrichtung nach Anspruch 1 bis 7 zur
 Beschichtung von Bahnen (14) nach dem Wulstbeschichtungsverfahren (Kaskadenverfahren), wobei sich
 am unteren Ende der Gleitfläche (4) eine Gießerkante (12) befindet, an der die Bahn (14) auf einer
 Gießwalze (15) in kurzem Abstand vorbeigeführt wird.
- 9. Verwendung der Vorrichtung nach Anspruch 1 bis 7 zur Beschichtung von Bahnen (14) nach dem Vorhanggießverfahren, wobei sich am unteren Ende der Gleitfläche (4) eine schnabelartige Verlängerung (16)
 der Gleitfläche (4) befindet, über die die Beschichtungsflüssigkeit abfließt und sich als frei
 fallender Vorhang (17) auf eine darunter bewegte
 Bahn (14) auflegt.

FIG. 2

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.