Computer Vision

CS-E4850, 5 study credits

Lecturer: Juho Kannala

Lecture 4: Model estimation (fitting)

- Least-squares
- Robust fitting
- RANSAC
- Hough transform

These topics are covered in Szeliski's book briefly, but more thoroughly in Chapter 17 of Forsyth & Ponce:

http://courses.cs.washington.edu/courses/cse455/02wi/readings/book-7-revised-a-indx.pdf

Acknowledgement: many slides from Svetlana Lazebnik, Derek Hoiem, Kristen Grauman, David Forsyth, Marc Pollefeys, and others (detailed credits on individual slides)

Relevant reading

 These topics are covered in Szeliski's book briefly, but more thoroughly in the following books:

– Chapter 17 of Forsyth & Ponce:

http://cmuems.com/excap/readings/forsyth-ponce-computer-vision-a-modern-approach.pdf

– Chapter 4 of Hartley & Zisserman:

http://cvrs.whu.edu.cn/downloads/ebooks/
Multiple%20View%20Geometry%20in%20Computer%20Vision%2
O(Second%20Edition).pdf

Fitting

- We've learned how to detect edges, corners, blobs. Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model

Fitting

Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car

Fitting: Issues

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Source: S. Lazebnik

Fitting: Overview

- If we know which points belong to the line, how do we find the "optimal" line parameters?
 - Least squares
- What if there are outliers?
 - Robust fitting, RANSAC
- What if there are many lines?
 - Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
 - Model selection (not covered)

Least squares line fitting

Data: $(x_1, y_1), ..., (x_n, y_n)$

Line equation: $y_i = mx_i + b$

Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

Least squares line fitting

Data: $(x_1, y_1), ..., (x_n, y_n)$

Line equation: $y_i = mx_i + b$

Find (m, b) to minimize

$$E = \sum_{i=1}^{n} (y_i - mx_i - b)^2$$

$$E = \|Y - XB\|^2 \quad \text{where} \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \qquad X = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_n & 1 \end{bmatrix} \qquad B = \begin{bmatrix} m \\ b \end{bmatrix}$$

$$E = ||Y - XB||^2 = (Y - XB)^T (Y - XB) = Y^T Y - 2(XB)^T Y + (XB)^T (XB)$$

$$\frac{dE}{dB} = 2X^T XB - 2X^T Y = 0$$

$$X^T X B = X^T Y$$

Normal equations: least squares solution to

Source: S. Lazebnik

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$: $|ax_i+by_i-d|$

Distance between point (x_i, y_i) and line ax+by=d $(a^2+b^2=1)$: $|ax_i+by_i-d|$

Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

Distance between point (x_i, y_i) and line $ax+by=d (a^2+b^2=1)$: $|ax_i + by_i - d|$

Find (a, b, d) to minimize the sum of squared perpendicular distances

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0$$

$$ax+by=d$$
Unit normal:
$$(x_i, y_i) \quad N=(a, b)$$

$$E = \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

$$\frac{\partial E}{\partial d} = \sum_{i=1}^{n} -2(ax_i + by_i - d) = 0$$

$$d = \frac{a}{n} \sum_{i=1}^{n} x_i + \frac{b}{n} \sum_{i=1}^{n} y_i = a\bar{x} + b\bar{y}$$

$$\frac{\partial d}{\partial x} = \sum_{i=1}^{n} (a(x_i - \bar{x}) + b(y_i - \bar{y}))^2 = \begin{bmatrix} x_1 - \bar{x} & y_1 - \bar{y} \\ \vdots & \vdots \\ x_n - \bar{x} & y_n - \bar{y} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}^2 = (UN)^T (UN)$$

$$\frac{dE}{dN} = 2(U^T U)N = 0$$

Solution to $(U^TU)N = 0$, subject to $||N||^2 = 1$: eigenvector of U^TU associated with the smallest eigenvalue (least squares solution to homogeneous linear system UN = 0)

$$U = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \overline{x})^2 & \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) & \sum_{i=1}^n (y_i - \overline{y})^2 \end{bmatrix}$$

second moment matrix

$$U = \begin{bmatrix} x_1 - \overline{x} & y_1 - \overline{y} \\ \vdots & \vdots \\ x_n - \overline{x} & y_n - \overline{y} \end{bmatrix} \quad U^T U = \begin{bmatrix} \sum_{i=1}^n (x_i - \overline{x})^2 & \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) \\ \sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y}) & \sum_{i=1}^n (y_i - \overline{y})^2 \end{bmatrix}$$

ax+by=d

(u, v)

Least squares as likelihood maximization

 Generative model: line points are sampled independently and corrupted by Gaussian noise in the direction perpendicular to the line

Least squares as likelihood maximization

 Generative model: line points are sampled independently and corrupted by Gaussian noise in the direction perpendicular to the line

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix} + \varepsilon \begin{pmatrix} a \\ b \end{pmatrix}$$

Likelihood of points given line parameters (a, b, d):

$$P(x_1, y_1, ..., x_n, y_n \mid a, b, d) = \prod_{i=1}^n P(x_i, y_i \mid a, b, d) \propto \prod_{i=1}^n \exp\left(-\frac{(ax_i + by_i - d)^2}{2\sigma^2}\right)$$

Log-likelihood:
$$L(x_1, y_1, ..., x_n, y_n \mid a, b, d) = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} (ax_i + by_i - d)^2$$

Least squares: Robustness to noise

Least squares fit to the red points:

Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators

• General approach: find model parameters θ that minimize

$$\sum_{i} \rho(r_{i}(x_{i},\theta);\sigma)$$

 $r_i(x_i, \theta)$ – residual of ith point w.r.t. model parameters θ ρ – robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u

Choosing the scale: Just right

The effect of the outlier is minimized

Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large

Behaves much the same as least squares

Source: S. Lazebnik

Robust estimation: Details

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Scale of robust function should be chosen adaptively based on median residual

RANSAC

- Robust fitting can deal with a few outliers what if we have very many?
- Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers
- Outline
 - Choose a small subset of points uniformly at random
 - Fit a model to that subset
 - Find all remaining points that are "close" to the model and reject the rest as outliers
 - Do this many times and choose the best model

M. A. Fischler, R. C. Bolles.

Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

Least-squares fit

 Randomly select minimal subset of points

- Randomly select minimal subset of points
- 2. Hypothesize a model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

Uncontaminated sample

- Randomly select minimal subset of points
- Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat hypothesize-andverify loop

- Randomly select minimal subset of points
- 2. Hypothesize a model
- 3. Compute error function
- 4. Select points consistent with model
- 5. Repeat

 hypothesize-andverify loop

RANSAC for line fitting

Repeat N times:

- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are d or more inliers, accept the line and refit using all inliers

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

$$\left(1 - \left(1 - e\right)^{s}\right)^{N} = 1 - p$$

$$N = \log(1-p)/\log(1-(1-e)^{s})$$

		proportion of outliers <i>e</i>						
S	5%	10%	20%	25%	30%	40%	50%	
2	2	3	5	6	7	11	17	
3	3	4	7	9	11	19	35	
4	3	5	9	13	17	34	72	
5	4	6	12	17	26	57	146	
6	4	7	16	24	37	97	293	
7	4	8	20	33	54	163	588	
8	5	9	26	44	78	272	1177	

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

$$\left(1 - \left(1 - e\right)^{s}\right)^{N} = 1 - p$$

$$N = \log(1-p)/\log(1-(1-e)^s)$$

- Initial number of points s
 - Typically minimum number needed to fit the model
- Distance threshold t
 - Choose t so probability for inlier is p (e.g. 0.95)
 - Zero-mean Gaussian noise with std. dev. σ: t²=3.84σ²
- Number of samples N
 - Choose N so that, with probability p, at least one random sample is free from outliers (e.g. p=0.99) (outlier ratio: e)
- Consensus set size d
 - Should match expected inlier ratio

Adaptively determining the number of samples

- Outlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80% would yield e=0.2
- Adaptive procedure:
 - *N*=∞, *sample_count* =0
 - While N >sample_count
 - Choose a sample and count the number of inliers
 - If inlier ratio is highest of any found so far, sete = 1 (number of inliers)/(total number of points)
 - Recompute N from e:

$$N = \log(1-p)/\log(1-(1-e)^s)$$

Increment the sample_count by 1

RANSAC pros and cons

Pros

- Simple and general
- Applicable to many different problems
- Often works well in practice

Cons

- Lots of parameters to tune
- Doesn't work well for low inlier ratios (too many iterations, or can fail completely)
- Can't always get a good initialization of the model based on the minimum number of samples

Fitting: Review

- Least squares
- Robust fitting
- RANSAC

Fitting: Review

- ✓ If we know which points belong to the line, how do we find the "optimal" line parameters?
 - ✓ Least squares
- ✓ What if there are outliers?
 - ✓ Robust fitting, RANSAC
- What if there are many lines?
 - Voting methods: RANSAC, Hough transform

Fitting: The Hough transform

Voting schemes

- Let each feature vote for all the models that are compatible with it
- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

Hough transform

- An early type of voting scheme
- General outline:
 - Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - Find bins that have the most votes

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

 A line in the image corresponds to a point in Hough space

• What does a point (x_0, y_0) in the image space map to in the Hough space?

- What does a point (x₀, y₀) in the image space map to in the Hough space?
 - Answer: the solutions of b = -x₀m + y₀
 - This is a line in Hough space

Where is the line that contains both (x₀, y₀) and (x₁, y₁)?

- Where is the line that contains both (x₀, y₀) and (x₁, y₁)?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$

Image space

 X_0

Hough parameter space

Parameter space representation

- Problems with the (m,b) space:
 - Unbounded parameter domains
 - Vertical lines require infinite m

- Problems with the (m,b) space:
 - Unbounded parameter domains
 - Vertical lines require infinite m
- Alternative: polar representation

Each point (x,y) will add a sinusoid in the (θ,ρ) parameter space

Algorithm outline

end

end

- Initialize accumulator H to all zeros
- For each feature point (x,y) in the image
 For θ = 0 to 180
 ρ = x cos θ + y sin θ

 $H(\theta, \rho) = H(\theta, \rho) + 1$

ρ

H: accumulator array (votes)

- Find the value(s) of (θ, ρ) where H(θ, ρ) is a local maximum
 - The detected line in the image is given by $\rho = x \cos \theta + y \sin \theta$

Basic illustration

Hough transform demo

Other shapes

Several lines

A more complicated image

Effect of noise

Effect of noise

Peak gets fuzzy and hard to locate

Effect of noise

 Number of votes for a line of 20 points with increasing noise:

Random points

Uniform noise can lead to spurious peaks in the array

Random points

 As the level of uniform noise increases, the maximum number of votes increases too:

Dealing with noise

- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Increment neighboring bins (smoothing in accumulator array)
- Try to get rid of irrelevant features
 - E.g., take only edge points with significant gradient magnitude

Incorporating image gradients

- Recall: when we detect an edge point, we also know its gradient direction
- But this means that the line is uniquely determined!

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Modified Hough transform:

```
For each edge point (x,y)

\theta = gradient orientation at (x,y)

\rho = x \cos \theta + y \sin \theta

H(\theta, \rho) = H(\theta, \rho) + 1

end
```

Hough transform for circles

- How many dimensions will the parameter space have?
- Given an unoriented edge point, what are all possible bins that it can vote for?
- What about an oriented edge point?

Hough transform for circles

image space

Hough parameter space

Hough transform for circles

 Conceptually equivalent procedure: for each (x,y,r), draw the corresponding circle in the image and compute its "support"

Is this more or less efficient than voting with features?

Generalized Hough transform

 We want to find a template defined by its reference point (center) and several distinct types of landmark points in stable spatial configuration

Generalized Hough transform

 Template representation: for each type of landmark point, store all possible displacement vectors towards the center

Template

Model

Generalized Hough transform

Detecting the template:

 For each feature in a new image, look up that feature type in the model and vote for the possible center locations associated with that type in the model

Test image

Model

Application in recognition

Index displacements by "visual codeword"

visual codeword with displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Application in recognition

Index displacements by "visual codeword"

test image

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

Implicit shape models: Training

 Build codebook of patches around extracted interest points using clustering (more on this later in the course)

Implicit shape models: Training

- Build codebook of patches around extracted interest points using clustering
- 2. Map the patch around each interest point to closest codebook entry

Implicit shape models: Training

- Build codebook of patches around extracted interest points using clustering
- 2. Map the patch around each interest point to closest codebook entry
- 3. For each codebook entry, store all positions it was found, relative to object center

Implicit shape models: Testing

- Given test image, extract patches, match to codebook entry
- 2. Cast votes for possible positions of object center
- 3. Search for maxima in voting space
- Extract weighted segmentation mask based on stored masks for the codebook occurrences

Additional examples

B. Leibe, A. Leonardis, and B. Schiele, Robust Object Detection with Interleaved Categorization and Segmentation, IJCV 77 (1-3), pp. 259-289, 2008.

Implicit shape models: Details

Supervised training

- Need reference location and segmentation mask for each training car
- Voting space is continuous, not discrete
 - Clustering algorithm needed to find maxima
- How about dealing with scale changes?
 - Option 1: search a range of scales, as in Hough transform for circles
 - Option 2: use interest points with characteristic scale
- Verification stage is very important
 - Once we have a location hypothesis, we can overlay a more detailed template over the image and compare pixel-bypixel, transfer segmentation masks, etc.

Review: Hough transform

- Hough transform for lines
- Hough transform for circles
- Hough transform pros and cons

Hough transform: Pros and cons

Pros

- Can deal with non-locality and occlusion
- Can detect multiple instances of a model
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- It's hard to pick a good grid size