Universidade Federal de Pelotas

Centro de Desenvolvimento Tecnológico Curso de Engenharia de Computação

Disciplina: 22000271 – Eletrônica Básica II

Turma: 2021/2 – M1 **Professor:** Alan Rossetto

Roteiro de Aula Prática

Aula P1: simulação de par diferencial com transistor bipolar de junção.

Objetivo:

- Praticar uso de ferramenta de simulação elétrica para circuitos analógicos;
- Melhorar a compreensão do circuito par diferencial e suas características.

Procedimento prático:

Figura 1: Circuito estudo de caso.

- 1. Descreva o circuito da **Figura 1** no simulador elétrico Micro-Cap considerando $V_{\text{CC}} = V_{\text{EE}} = 12 \text{ V}$, $v_{\text{ripple}} = v_{\text{in}1} = v_{\text{in}2} = 0 \text{ V}$, $I_{\text{B}} = 2 \text{ mA}$, $R_{\text{C}} = 10 \text{ k}\Omega$, $R_{\text{L}} = 1 \text{ G}\Omega$ e $Q_1 = Q_2 = 2\text{N}2219\text{A}$ ($\beta \approx 200 \text{ e } V_{\text{BE}} \approx 0,7 \text{ V}$). Calcule analiticamente o ponto quiescente do circuito (I_{C} e V_{CE}) e compare com os resultados de uma simulação DC;
- 2. Calcule analiticamente o ganho de tensão diferencial $A_{\rm d}$ do circuito, desprezando o efeito Early (i.e., $V_{\rm A}=-\infty$ V). Lembre-se que $A_{\rm d}=v_{\rm out}/v_{\rm d}$, onde $v_{\rm d}=v_{\rm in1}-v_{\rm in2}$. Se necessário, recorra à leitura da seção 10.2.3 do livro do Razavi, 2017.
- 3. Mantendo $v_{in2} = 0$ V, ajuste a fonte v_{in1} para uma forma de onda senoidal com amplitude 1 mV e frequência de 1 kHz e verifique o ganho de tensão diferencial do circuito a partir de uma simulação transiente. Compare com o resultado calculado analiticamente e discuta o resultado;
- 4. Mantenha o ajuste da fonte $v_{\text{in}1}$ e altere a fonte de tensão $v_{\text{in}2}$ de tal modo que $v_{\text{in}2} = -v_{\text{in}1}$. Verifique o ganho de tensão diferencial do circuito, compare com o resultado calculado analiticamente e discuta o resultado;
- 5. Repita a tarefa do item anterior considerando diferentes resistências de carga, a saber $R_L = 1 \text{ k}\Omega$ e $R_L = 1 \text{ m}\Omega$. A partir dos resultados, o que é possível inferir acerca da resistência de saída do circuito? Explique;
- 6. Altere $R_{\rm L}$ novamente para 1 G Ω , faça $v_{\rm in2} = v_{\rm in1}$ e determine o ganho de tensão diferencial de modo comum $A_{\rm cm}$, i.e., quando ambas as entradas apresentam o mesmo sinal. Faça uma pesquisa sobre a razão de rejeição de modo comum (CMRR) e quantifique esta métrica para o circuito em questão;

Universidade Federal de Pelotas Centro de Desenvolvimento Tecnológico Curso de Engenharia de Computação

Disciplina: 22000271 – Eletrônica Básica II

Turma: 2021/2 – M1 **Professor:** Alan Rossetto

- 7. Altere o transistor Q_2 para o modelo NPN 2N2219 para emular um ligeiro descasamento do par diferencial e repita a tarefa do item anterior. Qualitativamente, o que acontece com a forma de onda da tensão de saída e com a CMRR? Meça a tensão de *offset* V_{os} entre v_{out1} e v_{out2} e discuta sua possível origem;
- 8. Reverta a alteração do transistor Q_2 para o modelo NPN 2N2219A e faça $v_{\rm in2} = -v_{\rm in1}$. Ajuste a fonte $v_{\rm ripple}$ para uma forma de onda senoidal de amplitude 100 mV e frequência de 10 kHz. Verifique o impacto desta ondulação nas tensões terminais $v_{\rm out1}$, $v_{\rm out2}$ e na tensão diferencial $v_{\rm out}$. Discuta os resultados obtidos.

Anotações, comentários e conclusões: