Predictions for failures in dyeing process

Dr. Sapana Tripathi

Contents

- Situation: Analysis of given dataset
- Task: Identification of issues and complications
- Action: Implementation of models
- Results and recommendations

Training dataset: Features

- Number of features : 68
- Unique identification: Parent.batch.ID., Batch.ID
- Substrate related features
- Dye related features
- Recipe related features
- Yarn weight features
- Thread features
- Colour related features

Situation

- * Objective: Textile industry requires same coloured fibres in a batch
- * <u>Issue</u>: Failure in dyeing batches with same colour
- * Given: Dataset of dyed batches of 2017
- * Actions:
 - * Identify features responsible for failures
 - Create a model

Dataset (2017): How the data is recorded?

Distribution of target in training dataset

We see an imbalanced dataset (approximately 20 % faliure)

Task

- * Treatment of raw and imbalanced dataset
- * Classification of failed and passed batches:
 - * Successful batch : class = 1
 - * Failed batch : class = 0
- * Estimation of probability of failed batches for the given dataset

How to solve the imbalanced dataset problem?

- * K-Fold cross-validation (Stratified)
- * Hyper- parameter tuning
- * Evaluation matrix like recall, precision, confusion matrix
- * AUC_ROC curve
- * Under-sampling
- * Over-sampling
- * SMOTE

Actions

- * Data cleaning: Missing values, Duplicates, Outliers (Z-Score)
- * Decoding coded features
- * Feature engineering: Label Encoding, Feature Importance
- * Primary Modelling: Logistic regression, Random Forest, Adaboost
- * Secondary Modelling: Selection of one model
- * Results and Evaluation of model
- * Application of model on test dataset

Univariant analysis of features

Univariant analysis of features

Before outlier removal

Ply

1500

Count.dtex

-40 -20 0 Delta.h Delta.l Hue.value Delta.c Max.colour.difference Ticket

Thread.size.weightdtex

After outlier removal

Feature selection using Feature Importance

Results

Baseline Modelling results: Confusion Matrix

Stratified CrossValidation Results

Cross Validation + Hyper-parameter Tuning

Cross Validation + Hyper-parameter Tuning Comparison

Baseline model

CrossValidation + Hyper-parameter tuning

How to find threshold for the binary classification problem?

AUC-ROC and Threshold value curve

Conclusions

- * Presence of skewness and kurtosis.
- * Lowest False positive values for Adaboost.
- * Highest roc_auc_score (0.6) for Adaboost.
- * Threshold value for the binary classification is 0.4793.

Future-Prospects

- * Need for further refinement of data
- * Scaling and transformations
- * One Hot encoding
- * Dimensionality reduction: PCA, UMAP
- * Testing of data with additional models
- * SMOTE