Joseph Crop Robert Pawlowski

Regaining Throughput Using Completion Detection for Error-Resilient Near-Threshold Logic

(cropj; pawlowsr; pchiang) @eecs.oregonstate.edu http://eecs.oregonstate.edu/research/vlsi

Patrick Chiang

The Problem

Near-threshold operation can provide a substantial reduction in energy. However, as lowered, timing variations are exacerbated and circuit performance becomes unpredictable beyond tolerances.

Near-Threshold (NTV) = Low Energy + Longer Delays

Lower VDD \rightarrow Delay Uncertainty

Conventional Methods

Delay Margining **Example NTV Margin for 16-bit adder** 150_r **Worst-case** S 100 Margin 30 Adder Delay (ns)

 Can result in over 200% speed decrease across Monte Carlo [6]

Timing Error Detection (Razor)

Our Goal

Error detectors that significantly improve throughput at NTV

Detector must be robust and resilient to variation at NTV

Detector 1: Transition Detecting Completion Detection (TACD)

TACD Operation (4-bit adder example)

 Throughput increase limited by added transition detector delays in error signal

clock __ in[0] _ in[1] TD[0] TD[1] error 🕒

Timing Requirements

$d_{inv} = d_{NAND tree} + \Delta_{toggle max} + d_{margin}$

- **d**_{inv}: delay of tunable TDs
- d_{NAND tree}: delay of global NAND
- **∆**_{toggle max}: worst case time between any two • **d**_{margin}: PVT margins from EDA output transitions
- Output Glitch Tolerance: $\Delta_{toggle\ max}$ must be less than the time between two consecutive output transitions or unwanted glitches.

Detector 2: Current Sensing Completion Detection (CSCD)

CSCD Circuit Schematic

- Digitally controlled sensing threshold
- Supply noise rejection filter
- Tunable across PVT variations

Large sensing droops can be achieved with minimal speed loss 46mV droop with

Power Gate Size (μm)

100um power gate

(minimal speed loss)

Pertormance Comparison

	No Detection (16-bit Adder)	Razor	TACD	CSCD
Detection Window	none	~20% after clock	> 70% before clock	~95% before clock
Throughput Potential	none	< 20%	Dependent on TDs (> 20%)	Limited by Sensing Margin (> 50%)
NYV Adaptability	none	none	Tunable Transition Detectors	Sensor Calibration

	No Detection (16-bit Adder)	Razor	TACD	CSCD
Average Energy (fJ/cycle)	192.5	976.5	910.3	195.9
Simulated Throughput (MIPS)	32	38.4 (20%)	41 (28%)	49.9 (56%)
Area Overhead (µm²)	15495	24080 (155%)	15796 (102%)	16005 (103%)

INSIGHT: Larger Detection Window → Larger Throughput Potential

Throughput Comparison

- 35 40 45 Clock Frequency (MHz) TACD Throughput saturates due to finite TD and NAND tree delay
- CSCD throughput saturates due to settling time of virtual supply