
FAI – Faculdades Adamantinenses Integradas Disciplina: Geometria Analítica e Vetores I

Professora: Simone

Notas de Aula 2: Determinantes

Como já vimos, matriz quadrada é a que tem o mesmo número de linhas e de colunas (ou seja, é do tipo nxn).

A toda matriz quadrada está associado um número ao qual damos o nome de determinante.

Dentre as várias aplicações dos determinantes na Matemática, temos:

- resolução de alguns tipos de sistemas de equações lineares;
- cálculo da área de um triângulo situado no plano cartesiano, quando são conhecidas as coordenadas dos seus vértices;

Determinante de 1^a ordem

Dada uma matriz quadrada de 1^a ordem $M=[a_{11}]$, o seu determinante é o número real a_{11} :

$$\det M = Ia_{11}I = a_{11}$$

Observação: Representamos o determinante de uma matriz entre duas barras verticais, que não têm o significado de módulo.

Por exemplo:

•
$$M = [5] \Rightarrow \det M = 5 \text{ ou } I 5 I = 5$$
 • $M = [-3] \Rightarrow \det M = -3 \text{ ou } I - 3 I = -3$

Determinante de 2^a ordem

Dada a matriz $M = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, de ordem 2, por definição o determinante associado a **M**, determinante de 2^a ordem, é dado por:

$$\det \mathbf{M} = \begin{vmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} \\ \mathbf{a}_{21} & \mathbf{a}_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{22}$$

Portanto, o determinante de uma matriz de ordem 2 é dado pela diferença entre o produto dos elementos da diagonal principal e o produto dos elementos da diagonal secundária. Veja o exemplo a seguir.

Sendo
$$M = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
, temos:

$$\det M = \begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2.5 - 4.3 = 10 - 12 \Rightarrow \det M = -2$$

Determinante de 3^a ordem: Regra de Sarrus

O cálculo do determinante de 3ª ordem pode ser feito por meio de um dispositivo prático, denominado *regra de Sarrus*.

Acompanhe como aplicamos essa regra para . $D = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$

1º passo: Repetimos as duas primeiras colunas ao lado da terceira:

2º passo: Encontramos a soma do produto dos elementos da diagonal principal com os dois produtos obtidos pela multiplicação dos elementos das paralelas a essa diagonal (a soma deve ser precedida do sinal positivo):

3º passo: Encontramos a soma do produto dos elementos da *diagonal secundária* com os dois produtos obtidos pela multiplicação dos elementos das paralelas a essa diagonal (a soma deve ser precedida do sinal negativo):

Seja A uma matriz quadrada de ordem $n \ge 2$ e seja a_{ij} um elemento de A.

Chama-se *cofator* de a_{ij} o número \mathbf{A}_{ij} tal que $A_{ij} = (-1)^{i+j}$. D_{ij} , em que D_{ij} é o determinante da matriz que se obtém de A, eliminando sua i-ésima linha e sua j-ésima coluna.

Veja:

a) Dada $M = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$, os cofatores relativos aos elementos \mathbf{a}_{11} e \mathbf{a}_{12} da matriz \mathbf{M} são:

$$A_{11} = (-1)^{1+1} \cdot \overbrace{\alpha_{22}} = (-1)^2 \alpha_{22} = +\alpha_{22}$$

$$A_{12} = (-1)^{1+2} \cdot \overbrace{\alpha_{21}} = (-1)^3 \alpha_{21} = -\alpha_{21}$$

b) Sendo
$$M = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, vamos calcular os cofatores \mathbf{A}_{22} , \mathbf{A}_{23} e \mathbf{A}_{31} :

$$A_{22} = (-1)^{2+2} \cdot \begin{bmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{bmatrix} = (+1)(a_{11}a_{33} - a_{13}a_{31})$$

$$A_{23} = (-1)^{2+3} \cdot \begin{bmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{bmatrix} = (-1)(a_{11}a_{32} - a_{12}a_{31})$$

$$A_{31} = (-1)^{3+1} \underbrace{ \begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{bmatrix}}_{a_{22} = a_{23}} = (+1)(a_{12}a_{23} - a_{13}a_{22})$$

Teorema de Laplace

O determinante de uma matriz quadrada $M = [a_{ij}]_m \quad (m \ge 2)$ pode ser obtido pela soma dos produtos dos elementos de uma fila qualquer (linha ou coluna) da matriz M pelos respectivos cofatores.

Assim, fixando
$$j \in N$$
, tal que $1 \le j \le m$, temos: $\det M = \sum_{i=1}^{m} a_{ij} A_{ij}$

Ou, fixando
$$i \in N$$
, tal que $1 \le i \le m$, temos $\det M = \sum_{i=1}^{m} a_{ij} A_{ij}$

Observações: 1) Se desenvolvermos os determinantes de 2ª e 3ª ordens aplicando o Teorema de Laplace, encontraremos o mesmo número real que será encontrado com a regra prática em ambos os casos.

2) Vimos que a regra de Sarrus é válida para o cálculo do determinante de uma matriz de ordem 3. Quando a matriz é de ordem superior a 3, devemos empregar o Teorema de Laplace para chegar a determinantes de ordem 3 e depois aplicar a regra de Sarrus.

Propriedades dos determinantes

 P_1) Quando todos os elementos de uma fila (linha ou coluna) são nulos, o determinante dessa matriz é nulo.

Exemplo:

P₂) Se duas filas de uma matriz são iguais, então seu determinante é nulo.

Exemplo:

$$\begin{bmatrix} 2 & 1 & 3 & 5 \\ 4 & 2 & 9 & 8 \\ 2 & 1 & 3 & 5 \\ 9 & 7 & 4 & 3 \end{bmatrix} = 0$$

P₃) Se duas filas paralelas de uma matriz são proporcionais, então seu determinante é nulo.

Exemplo:

$$\begin{bmatrix} 1 & 4 & 2 \\ 2 & 1 & 4 \\ 3 & 2 & 6 \end{bmatrix} = 0$$

$$C_3 = 2C_1$$

P₄) Se os elementos de uma fila de uma matriz são combinações lineares dos elementos correspondentes de filas paralelas, então seu determinante é nulo.

Exemplos:

 P_5) **Teorema de Jacobi**: o determinante de uma matriz não se altera quando somamos aos elementos de uma fila uma combinação linear dos elementos correspondentes de filas paralelas.

Exemplo:

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 4 & 3 \end{vmatrix} = 9$$

Substituindo a 1ª coluna pela soma dessa mesma coluna com o dobro da 2ª, temos:

$$\begin{vmatrix} 1+2.2 & 2 & 2 \\ 2+1.2 & 1 & 2 \\ 2+4.2 & 4 & 3 \end{vmatrix} = \begin{vmatrix} 5 & 2 & 3 \\ 4 & 1 & 2 \\ 10 & 4 & 3 \end{vmatrix} = 9$$

P₆) O determinante de uma matriz e o de sua transposta são iguais.

Exemplo:

$$\det A = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & 2 \\ 2 & 4 & 3 \end{vmatrix} = 9$$

$$\det A^{t} = \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 4 \\ 3 & 2 & 3 \end{vmatrix} = 9$$

P₇) Multiplicando por um número real todos os elementos de uma fila em uma matriz, o determinante dessa matriz fica multiplicado por esse número.

Exemplos:

P₈) Quando trocamos as posições de duas filas paralelas, o determinante de uma matriz muda de sinal.

Exemplo:

$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \\ 3 & 2 & 1 \end{vmatrix} = -4$$
 Trocando as posições de L_1 e L_2 : $\begin{vmatrix} 2 & 1 & -1 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{vmatrix} = +4$

P₉) Quando, em uma matriz, os elementos acima ou abaixo da diagonal principal são todos nulos, o determinante é igual ao produto dos elementos dessa diagonal.

Exemplos:

 P_{10}) Para **A** e **B** matrizes quadradas de mesma ordem **n**, $\det(AB) = \det(A \cdot \det(B))$. Como

$$A \cdot A^{-1} = I, \quad \det A^{-1} = \frac{1}{\det A}$$

Exemplo:

Se
$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 0 \\ 2 & 2 \end{bmatrix}$ e $A \cdot B = \begin{bmatrix} 4 & 2 \\ 11 & 8 \end{bmatrix}$, então:

$$\underbrace{\det(AB)}_{\text{10}} = \underbrace{\det A}_{\text{5}} \cdot \underbrace{\det B}_{\text{2}}$$

 P_{12}) Se $k \in R$ e A é uma matriz de ordem n, então $\det(k.A) = k^n$. $\det A$

Exemplo: Sendo K = 3, A =
$$\begin{bmatrix} 2 & 1 \\ 4 & 5 \end{bmatrix}$$
 e K . A = $\begin{bmatrix} 6 & 3 \\ 12 & 15 \end{bmatrix}$, temos:
$$\underbrace{\det(K.A)}_{54} = \underbrace{K^n}_{3^2} \cdot \underbrace{\det A}_{6}$$

Determinante de matrizes de ordem n ≥ 4 - Regra de Chió

Esta regra consiste em baixar a ordem do determinante. A matriz, neste caso, deve ter um elemento unitário (1), de preferência na 1^a linha e 1^a coluna.

A técnica consiste em eliminar a linha e a coluna do elemento unitário, transformando o determinante de ordem n em um determinante de ordem n - 1, subtraindo de cada elemento da nova matriz o produto dos elementos que pertenciam a sua linha e coluna e que foram retirados.

Exemplo:

$$\begin{vmatrix} 1 & 3 & 7 & 2 \\ 4 & 14 & 30 & 6 \\ 3 & 10 & 20 & 8 \\ 2 & 5 & 16 & 3 \end{vmatrix} = \begin{vmatrix} 14 - 4.3 & 30 - 4.7 & 6 - 4.2 \\ 10 - 3.3 & 20 - 3.7 & 8 - 3.2 \\ 5 - 2.3 & 16 - 2.7 & 3 - 2.2 \end{vmatrix} = \begin{vmatrix} 2 & 2 & -2 \\ 1 & -1 & 2 \\ -1 & 2 & -1 \end{vmatrix} = -10$$

Caso não tenhamos um elemento unitário, ou caso ele esteja em outra posição que não seja a 1ª linha e 1ª coluna devemos utilizar as propriedades dos determinantes para colocá-lo nesta posição.

Por exemplo:

$$\begin{vmatrix} 3 & 3 & 7 & 2 \\ 12 & 14 & 30 & 6 \\ 9 & 10 & 20 & 8 \\ 6 & 5 & 16 & 3 \end{vmatrix} = 3 \cdot \begin{vmatrix} 1 & 3 & 7 & 2 \\ 4 & 14 & 30 & 6 \\ 3 & 10 & 20 & 8 \\ 2 & 5 & 16 & 3 \end{vmatrix} = 3 \cdot (-10) = -30$$

ou

$$\begin{vmatrix} 7 & 3 & 1 & 2 \\ 30 & 14 & 4 & 6 \\ 20 & 10 & 3 & 8 \\ 16 & 5 & 2 & 3 \end{vmatrix} = - \begin{vmatrix} 1 & 3 & 7 & 2 \\ 4 & 14 & 30 & 6 \\ 3 & 10 & 20 & 8 \\ 2 & 5 & 16 & 3 \end{vmatrix} = -(-10) = 10$$

2ª. Lista de Exercícios - DETERMINANTES

1. Calcular:

(a)
$$\begin{vmatrix} 1 & 1 & 2 \\ 2 & 3 & 4 \\ 4 & 5 & 4 \end{vmatrix}$$

(b)
$$\begin{vmatrix} 4 & 1 \\ 2 & 0 \end{vmatrix}$$

$$\begin{array}{c|ccccc}
(c) & 1 & 3 & 1 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}$$

(c)
$$\begin{vmatrix} 1 & 3 & 1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$
 (d) $\begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & 3 \\ 1 & 0 & 1 \end{vmatrix}$

(e)
$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ 1 & 1 & 4 & 0 \\ 4 & 0 & 1 & -1 \end{vmatrix}$$
 (f)
$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$
 (g)
$$\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$

(f)
$$\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 2 \end{vmatrix}$$

$$(g)\begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}$$

(i)
$$\begin{vmatrix} 1 & 1 & 3 & 4 & 2 \\ 3 & 0 & 9 & 3 & 1 \\ 2 & -2 & 6 & 0 & 4 \\ 2 & 5 & 6 & 0 & 0 \\ -1 & 1 & -3 & 1 & 3 \end{vmatrix}$$
(j)
$$\begin{vmatrix} 1 & 2 & 3 & 1 \\ 4 & 2 & 1 & -1 \\ 1 & 2 & 3 & 1 \\ 0 & -1 & -1 & 2 \end{vmatrix}$$
(l)
$$\begin{vmatrix} 1 & 3 & 0 \\ 2 & 4 & 0 \\ 1 & -1 & 0 \end{vmatrix}$$
(m)
$$\begin{vmatrix} 1 & 2 & -1 & 1 \\ 0 & 2 & 1 & 0 \\ 3 & 1 & 4 & 5 \\ -1 & 1 & 1 & -1 \end{vmatrix}$$
(1)
$$\begin{vmatrix} 1 & 3 & 0 \\ 2 & 4 & 0 \\ 1 & -1 & 0 \end{vmatrix}$$
(2)
$$\begin{vmatrix} 1 & 3 & 0 \\ 4 & 5 \\ -1 & 1 & 1 & -1 \end{vmatrix}$$

$$\begin{array}{c|cccc}
 & 1 & 3 & 0 \\
2 & 4 & 0 \\
1 & -1 & 0
\end{array}$$

$$(n) \begin{vmatrix} 2 & 6 \\ 0 & 9 \end{vmatrix}$$

$$(p)\begin{vmatrix} 1 & 3 \\ -1 & -3 \end{vmatrix}$$

$$(q) \begin{vmatrix} 3 & 7 \\ 2 & 5 \end{vmatrix}$$

- 2. Calcular os cofatores de cada elemento da matriz: $A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$
- Calcular o cofator do elemento x em : B = $\begin{bmatrix} 0 & 1 & 0 & 3 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 0 & 0 \end{bmatrix}$
- Calcular det A desenvolvendo a fórmula para a 1 coluna :

(a)
$$A = \begin{pmatrix} 3 & 4 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$

(a)
$$A = \begin{pmatrix} 3 & 4 & 0 \\ 1 & 1 & 0 \\ 2 & 0 & 2 \end{pmatrix}$$
 (b) $A = \begin{pmatrix} 2 & 1 & 3 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 3 & 1 & 1 & 4 \end{pmatrix}$

5. São dadas as matrizes A e B. Determine a matriz X tal que AX = B, nos seguintes casos:

(a)
$$A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$$
 $E B = \begin{pmatrix} 18 \\ 31 \end{pmatrix}$

(b)
$$A = \begin{pmatrix} 3 & -2 \\ 4 & 5 \end{pmatrix} e B = \begin{pmatrix} -9 \\ 34 \end{pmatrix}$$

(c)
$$A = \begin{pmatrix} 2 & 3 & -1 \\ 4 & 1 & -4 \\ 1 & 6 & 5 \end{pmatrix}$$
 $e B = \begin{pmatrix} 13 \\ 28 \\ 1 \end{pmatrix}$

- 6. Dadas as matrizes $A = \begin{pmatrix} 2 & 1 \\ -1 & -1 \end{pmatrix}$ e $B = \begin{pmatrix} 4 & 1 \\ 8 & 2 \end{pmatrix}$
 - (a) Determine X tal que A X = B.
 - (b) Determine X tal que X A = B.
- 7. Resolva as equações:

(a)
$$\begin{vmatrix} x-2 & 4 & -1 \\ 4 & x & 2 \\ 6 & 3 & 3 \end{vmatrix} = 0$$
 (b) $\begin{vmatrix} 5 & x \\ x & 5 \end{vmatrix} = 0$ (c) $\begin{vmatrix} 3 & x+2 \\ x & x+4 \end{vmatrix} = 0$ (d) $\begin{vmatrix} x & 7 & 9 \\ 0 & x-1 & 2 \\ 0 & 0 & 3 \end{vmatrix} = 0$ (e) $\begin{vmatrix} 4 & 0 & 0 \\ 9 & x+5 & 0 \\ 7 & -4 & x \end{vmatrix} = 0$

8. Verifique se as matrizes são inversíveis :

(a)
$$A = \begin{pmatrix} 5 & 10 \\ 3 & 6 \end{pmatrix}$$
 (b) $B = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 0 & 3 \\ 0 & 1 & 2 \end{pmatrix}$ (c) $C = \begin{pmatrix} 1 & 4 \\ 3 & 2 \end{pmatrix}$ (d) $D = \begin{pmatrix} 1 & -4 & -9 \\ 6 & 1 & -4 \\ 2 & 5 & 8 \end{pmatrix}$ (e) $E = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 3 & -1 \\ 1 & 1 & 4 \end{pmatrix}$ (f) $F = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 2 \\ 1 & 0 & 2 \end{pmatrix}$

9. Para que valores de *a* as matrizes são inversíveis?

(a)
$$A = \begin{pmatrix} 3 & -1 & 7 \\ 2 & 6 & 0 \\ a & 7 & -7 \end{pmatrix}$$
 (b) $B = \begin{pmatrix} 2 & 3 \\ a & 9 \end{pmatrix}$ (c) $C = \begin{pmatrix} 7 & 2 & a \\ 1 & 0 & 1 \\ -5 & 3 & -8 \end{pmatrix}$

Respostas:

1. (a)
$$-4$$
 (b) -2 (c) -3 (d) 2 (e) -8 (f) 24 (g) 0 (h) -2 (i) 0 (j) 0 (l) 0 (m) 6 (n) 18 (o) 0 (p) 0 (q) 1 (r) -24 (s) 64

2.
$$A_{11} = -5$$
, $A_{12} = 4$, $A_{13} = -2$, $A_{21} = 1$, $A_{22} = -1$, $A_{23} = 1$, $A_{31} = 3$, $A_{32} = -2$, $A_{33} = 1$.

3.
$$A_{42} = -6$$

4. (a)
$$\det A = -2$$
 (b) $\det A = 35$

5. (a)
$$X = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$
 (b) $X = \begin{pmatrix} 1 \\ 6 \end{pmatrix}$ (c) $X = \begin{pmatrix} 6 \\ 0 \\ -1 \end{pmatrix}$ 7. (a) $X = \begin{pmatrix} 12 & 3 \\ -20 & -5 \end{pmatrix}$ (b) $X = \begin{pmatrix} 3 & 2 \\ 6 & 4 \end{pmatrix}$

7. (a)
$$S = \{0, 2\}$$
 (b) $S = \{-5, 5\}$ (c) $S = \{4, -3\}$ (d) $S = \{0, 1\}$ (e) $S = \{0, -5\}$

9. (a)
$$a \neq -1$$
 (b) $a \neq 6$ (c) $a \neq 5$