벽면 이미지로부터 콘크리트 균열 여부를 인식하는 인공지능

모두를 위한 인공지능의 활용 Project TEAM 14

21900401 신예은

21900649 정가원

ABOUT PROJECT

HOW WE WORK

RUN CODE

프로젝트 소개 및 기대효과

기본 기술 소개 Dataset 소개 Package 소개 Code 설명 및 실행

PART ABOUT PART OI ABOUT PROJECT

프로젝트 소개 및 기대효과

노후된 건물에서 벽면 콘크리트의 균열 발생을 가볍게 여기기가 쉬우나, 그 정도가 심할수록 구조물의 안정성 에도 영향을 끼치는 큰 문제로 발전할 수 있으므로 이 를 초기에 파악하고 대안을 제시하는 것이 중요하다.

벽면 콘크리트 이미지를 입력으로 받아 균열의 유무를 인식하는 인공지능을 학습시킬 것이다. → OUTLIER DETECTION 기술을 이해할 수 있다.

- → VAE(VARIATIONAL AUTO ENCODER) 를 이해할 수 있다.
- → 벽면의 이미지를 통해 보다 빠르게 균열의 유무를 판별하고 그 결과를 제공한다.

→ 콘크리트 구조물의 보수 필요성을 편리하게 판단할 수 있다.

PART O2

WEWORK

기본 기술 소개

Dataset 소개

Package 소개

정상 샘플을 이용하여 훈련 후 입력 샘플의 정상여부를 판단하여 이상치를 추출하거나 자동으로 제거하는 것

OUTLIER DETECTION

Original Image를 통해 이미지 재생성 Original Image - Reconstruction Image = Outlier Score

https://www.kaggle.com/arunrk7/surface-crack-detection

SURFACE CRACK DETECTION

- Kaggle
- 콘크리트 표면의 Sample Image 40,000장
- Negative Image(정상 이미지) 20,000장
- Positive Image(금이 간 이미지) 20,000장

Algorithm Overview

The following tables summarize the advised use cases for the current algorithms. Please consult the method specific pages for a more detailed breakdown of each method. The column *Feature Level* indicates whether the detection can be done and returned at the feature level, e.g. per pixel for an image.

Outlier Detection

Detector	Tabular	Image	Time Series	Text	Categorical Features	Online	Feature Level
Isolation Forest	✓				✓		
Mahalanobis Distance	✓				✓	✓	
AE	✓	✓					✓
VAE	✓	✓					✓
AEGMM	✓	✓					
VAEGMM	✓	✓					
Likelihood Ratios	✓	✓	✓		✓		✓
Prophet			✓				
Spectral Residual			✓			✓	✓
Seq2Seq			✓				✓

https://docs.seldon.io/projects/alibi-detect/en/latest/overview/algorithms.html

ALIBI DETECT

- 다양한 강력한 알고리즘 및 기술을 포함하는 이상치, 적대적 및 드리프트 감지를 위한 오픈 소스 Python 라이브러리
- Outlier Detection에 특화된 Package
- Image Data
- VAE(Variational Auto Encoder) Detector

https://en.wikipedia.org/wiki/Variational_autoencoder

VAE

- Variational Auto Encoder
- Encoding하는 Encoder
- Decoding하는 Decoder
- Input Data를 Encoder로 압축한 후 평균과 분산을 통해 잠재적 표현을 만들어 Decoder로 새로운 데이터를 만들어 내는 것을 목표
- 원본 데이터의 일정 부분을 유지하며 새로운 출력을 만들고자 할때 주로 사용
- Latent Space에 Latent Vector가 성능 결정

PART DIN CODE

Code 설명 및 실행

벽면 이미지로부터 콘크리트 균열 여부를 인식하는 인공지능

출처:https://youtu.be/RJ4oB6MWTsA

모두를 위한 인공지능의 활용 Project TEAM 14

21900401 신예은

21900649 정가원