CSC410 A5

Joshua Prier,

November 21, 2019

1. (a) All Paths:

1,2,3,9,10,11 1,2,3,9,13,14 1,5,6,7,9,10,111,5,6,7,9,13,14

	Infeasible Path				
(b)	Line No.	Assignment	Path Conditions		
	1,2,3	$x \leftarrow X - 5$	X + Y > 10		
		$y \leftarrow Y + 5$			
	9,10,11	$x \leftarrow -(X-5)$	X + Y > 10		
		$y \leftarrow -(Y+5)$	AND $(X-5) + (Y+5) < 0$		

This path is infeasible because of the conflicting path conditions. $10 < (X + Y) = (X - 5) + (Y + 5) \nleq 0$.

	Assertion Violation Path					
(c)	Line No.	Assignment	Path Conditions			
	1,5,6,7	$x \leftarrow Y$	$X + Y \le 10$			
		$y \leftarrow X$				
	9,13,14	$x \leftarrow Y - 1$	$X + Y \le 10$			
		$y \leftarrow X - 1$	AND $X + Y \ge 0$			

This path will cause an assertion violation in the case that $X+Y \le 2$ since the assignments from 9,13,14 subtract 2 from the sum, (X-1)+(Y-1)=X+Y-2

Why the other 2 paths never cause an assertion violation:

Assertion Violation Path				
Line No.	Assignment	Path Conditions		
1,5,6,7	$x \leftarrow Y$	$X + Y \le 10$		
	$y \leftarrow X$			
9,10,11	$x \leftarrow -Y$	$X + Y \le 10$		
	$y \leftarrow -X$	AND X + Y < 0		

Since $x \leftarrow -Y$ and $y \leftarrow -X$ and X + Y < 0 then (X - 1) + (Y - 1) = -(X + Y) > 0

Assertion Violation Path					
Line No.	Assignment	Path Conditions			
1,2,3	$x \leftarrow X - 5$	X + Y > 10			
	$y \leftarrow Y + 5$				
9,13,14	$x \leftarrow (X-5) - 1 = X - 6$	X + Y > 10			
	$y \leftarrow (Y+5) - 1 = Y+4$	AND $X + Y \ge 0$			

Since X+Y>10 then (X-6)+(Y+4)=X+Y-2>10-2=8 therefore x+y>0

- 2. (a) $\Box b \rightarrow b \cup o$
 - (b) $\Box \neg o \rightarrow ((r \rightarrow \bigcirc w) \land (w \rightarrow \bigcirc r)$
 - (c) $\Box \neg o \rightarrow r \cup (b \cup (w \cup r))$
 - (d) $\Box (r \land b \land g) \rightarrow \bigcirc w$
 - (e) $\Box r \rightarrow r \cup \neg r$

3.

4.

- 5.
- 6.
- 7.