

Universidade Federal do Ceará Engenharia de Computação Sistema de Presença e Planos de Aula

Plano de Ensino

Código: QXD0043 Turma: 01A - EC Disciplina: SISTEMAS DISTRIBUÍDOS

Período: 2022.1 Créditos: 4.0 Créditos Práticos: 2.0

Professor(a): Marcos Dantas Ortiz

Horários: SEGUNDA 15h30-17h30; TERCA 15h30-17h30;

Justificativa:

Os sistemas distribuídos permitem a implantação de sistemas que, de outra forma, seriam inviáveis ou necessitariam de maquinário (hardware) muito caro e complexo. Diversos desafios até então inexistentes apresentam-se aos se criar um sistema distribuídos e esta disciplina pretende prover ao aluno o conhecimento necessário para lidar com tais problemas e resolvê-los. O conhecimento adquirido na disciplina permitirá ao aluno implementar sistemas distribuídos respeitando as características de transparência, concorrência e tolerância a falhas.

Ementa:

Introdução: caracterização de sistemas de computação distribuída; aplicações distribuídas (caracterização e aspectos de projeto); objetivos básicos de sistemas distribuídos (transparência, abertura, escalabilidade, etc.). Modelos de sistemas distribuídos: sistemas cliente/servidor e sistemas multicamadas; sistemas peer-to-peer. Objetos distribuídos: interface versus implementação; objetos remotos; chamadas de métodos remotos (RMI). Processos em sistemas distribuídos: threads e seu uso em sistemas distribuídos; processos clientes e processos servidores; noções de código móvel e agentes de software. Sincronização e Coordenação: o conceito de tempo em sistemas distribuídos; consenso; exclusão mútua distribuída; eleição.

Objetivos Gerais e Específicos:

Fornecer ao aluno informações sobre os conceitos e a organização interna dos sistemas distribuídos Apresentar os recursos que os sistemas distribuídos tratam, em especial transparência, concorrência e tolerância a falhas

Mostrar os problemas que podem acontecer em processos concorrentes e falhas de sincronização e apresentar soluções para evitar ou minimizar tais problemas

Aula	Data	Plano de Aula
1	21/03/2022	Apresentação da Disciplina e Plano de Ensino.
2	22/03/2022	Caracterização de sistemas distribuídos
3	28/03/2022	Caracterização de sistemas distribuídos
4	29/03/2022	Desafios de projeto
5	04/04/2022	Desafios de projeto
6	05/04/2022	Modelos de sistema
7	11/04/2022	Modelos de sistema
8	12/04/2022	Comunicação entre processos
9	18/04/2022	Comunicação entre processos
10	19/04/2022	Comunicação entre processos
11	25/04/2022	Comunicação entre processos
12	26/04/2022	Comunicação entre processos
13	02/05/2022	Comunicação entre processos
14	03/05/2022	Comunicação entre processos
15	09/05/2022	Primeira Avaliação Parcial - AP1
16	10/05/2022	Primeira Avaliação Parcial - AP1 - Segunda Chamada
17	16/05/2022	Objetos distribuídos
18	17/05/2022	Objetos distribuídos
19	23/05/2022	Objetos distribuídos

20	24/05/2022	Objetos distribuídos
21	30/05/2022	Objetos distribuídos
22	31/05/2022	Objetos distribuídos
23	06/06/2022	Objetos distribuídos
24	07/06/2022	Serviços de nomes e serviços de diretórios
25	13/06/2022	Serviços de nomes e serviços de diretórios
26	14/06/2022	Novos modelos de sistemas distribuídos
27	20/06/2022	Novos modelos de sistemas distribuídos
28	21/06/2022	Replicação e tolerância a falhas
29	27/06/2022	Replicação e tolerância a falhas
30	28/06/2022	Algoritmos distribuídos
31	04/07/2022	Segunda Avaliação Parcial - AP2
32	05/07/2022	Segunda Avaliação Parcial - AP2 - Segunda Chamada

Data da Prova Final:

18/07/2022

Metodologia de Ensino:

- Aulas expositivas
- Trabalhos didáticos (individuais e/ou em grupo)
- Estudos Dirigidos
- Pesquisas
- Aulas práticas em laboratório

Atividades Discentes:

- Trabalhos didáticos (individuais e/ou em grupo)
- Estudos Dirigidos
- Pesquisas
- Aulas práticas em laboratório

Avaliação:

Duas avaliações escritas e um trabalho prático. Para desenvolver o trabalho prático, o aluno aplicará os conceitos aprendidos em comunicação entre processos e objetos distribuídos. Além de um trabalho extra que trate dos novos modelos de sistemas distribuídos. Média = (AvaliaçãoParcial1 + AvaliaçãoParcial2 + Trabalho) /3

Bibliografia Básica:

COSTA, D. G. Java em rede: programação distribuída na internet. Brasport, 2008. ISBN: 9788574523361.

COULOURIS, G. F.; DOLLIMORE, J.; KINDBERG, T. Sistemas distribuídos: conceitos e projetos. 4 ed. Bookman, 2007. ISBN: 9788560031498.

TANENBAUM, A.; STEEN, V. M. Sistemas distribuídos: princípios e paradigmas. 2 ed. Prentice Hall, 2007. ISBN: 9788576051428.

Bibliografia Complementar:

WHITE, T. Hadoop: the definitive guide. O'Reilly Media, 2009.

TANENBAUM, A. S. Sistemas operacionais modernos. 2 ed. Prentice Hall, 2003.

ALONSO, G.; CASATI, F.; KUNO, K.; MACHIRAJU, V. Web Services: Concepts, Architectures and Applications. Springer, 2004. ISBN: 9783540440086

NAKAMURA, E. T.; GEUS, P.L. Segurança de redes em ambientes cooperativos. Novatec, 2007. ISBN: 9788575221365.

ERL, THOMAS. SOA. Principios de design de serviço. Prentice Hall, 2009. ISBN: 9788576051893.

Recursos Didáticos:

- Notebook em sala
 Projetor multimídia
 Textos
 Livros
 Laboratório de informática
 Notas de Aula
 Pesquisas Periódicos da CAPES