Ma/CS 6a

Class 28: Latin Squares

By Adam Sheffer

Latin Squares

 A Latin square is an n × n array filled with n different symbols, each occurring exactly once in each row and exactly once in each column.

Α	В	F	С	Е	D
В	С	Α	D	F	Ε
С	D	В	Е	Α	F
D	E	С	F	В	Α
Е	F	D	Α	С	В
F	Α	Е	В	D	O

Partial Latin Squares

 In this class, our goal is to investigate when we can solve partial filled Latin squares (i.e., Latin squares that are incomplete).

8			4		6			7
						4		
	1					6	5	
5		9		3		7	8	
				7				
	4	8		2		1		3
	5	2					9	
		1						
3			9		2			5

An EASY Warm-up

- Problem. What happens when only one row is missing?
 - There is a unique way of completing each column, and we can check whether the additional row is valid (it always is).

	Α	В	щ	С	Ш	D
	10 10	1980	10000 10000 1 1000		8	500 Del
ſ	С	О	В	Е	Α	F
ſ	D	Е	С	F	В	Α
ſ	Ε	F	О	Α	C	В
	F	Α	Ш	В	D	С

An Empty Square

- **Problem.** Find an easy way of building an $n \times n$ Latin Square.
 - Hint. Where have we seen Latin squares in this course before?
 - Consider a finite group $G = \{g_1, g_2, ..., g_n\}$.
 - \circ The multiplication table of G is a Latin square.
 - For example, consider the set $G = \{0,1,2,3,4\}$ under addition $mod\ 5$.

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Reminder: Why a Group is a Latin Square

- Why is the multiplication table of $G = \{g_1, g_2, ..., g_n\}$ a Latin square?
 - Consider the row/column that corresponds to g_i .
 - If two of the elements in the row/column are identical, we have $g_ig_j=g_ig_k$.
 - Multiplying by g_i^{-1} implies from the left yields $g_i = g_k$.

	0	1	2	3	4
0	0	1	2	3	4
1	1	2	3	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

Latin Rectangles

- Problem. Consider an m × n Latin rectangle with m ≤ n (i.e., no two elements in the same row/column are identical).
 - Can we always complete the rectangle to a Latin square?
 - We already know that this is true when m = 0, n 1, n.

Α	В	F	С	Ε	D
В	С	Α	D	F	Е
С	D	В	E	Α	F

Rephrasing the Problem

- Claim. Every $m \times n$ Latin rectangle (where m < n) can be extended to an $(m+1) \times n$ Latin rectangle.
- To prove the claim, we build a bipartite graph $G = (V_1 \cup V_2, E)$.
 - V₁ consists of n vertices that correspond to the n symbols of the rectangle.
 - V_2 consists of n vertices that correspond to the n entries of the new row (row m + 1).
 - An edge $(v_1, v_2) \in V_1 \times V_2$ means that symbol v_1 can be placed in cell v_2 .

The Graph

 Completing the additional row is equivalent to finding a perfect matching in the graph.

Α	В	С	D	Ε
В	С	D	Е	Α
С	Δ	Е	Α	В

Reminder: Hall's Marriage Theorem

- Theorem. Let $G = (V_1 \cup V_2, E)$ be a bipartite graph with $|V_1| = |V_2|$.
- There exists a perfect matching in G if and only if for every $A \subset V_1$, we have $|A| \leq |N(A)|$.

Philip Hall

Degrees

- Every vertex of V_1 has degree n-m.
 - \circ Every symbol is in m columns of the rectangle.
- Every vertex of V_2 has degree n-m.
 - \circ Every column already contains m symbols.

Α	В	С	D	Е
В	0	О	Е	Α
С	О	Ш	Α	В

Concluding the Proof

- Consider a subset $A \subset V_1$.
 - The sum of the degrees of the vertices of A is (n-m)|A|.
 - Since every vertex of V_2 has degree n-m, we have $|A| \ge N(A)$.
- By Hall's theorem there exists a perfect matching, which implies that we can always add another row to the Latin rectangle, as long as it is not a square.

Partially Filled Latin Square

- We define a partially filled Latin square of order n to be an n × n table such that:
 - Some of the cells of the table are filled with one of n symbols.
 - Any row and column contains each symbol at most once.

2			7	
	5		4	
		5		
4				

Completing Partially Filled Latin Squares

 What is the minimum number of filled entries in a partially filled Latin square of order n, such that the table cannot be completed into a Latin square?

2		
4		
	3	1

A Tight Bound

• **Theorem.** Any partially filled Latin square of order n with at most n-1 entries can be completed to a valid Latin square.

Matrix Representation

• An $n \times n$ Latin square can be represented as by $3 \times n^2$ matrix.

$$\begin{array}{c}
R \\
C = \begin{pmatrix} 1 & 2 & 2 & 4 & \cdots \\ 1 & 3 & 1 & 1 & \cdots \\ 1 & 4 & 2 & 4 & \cdots \end{pmatrix}
\end{array}$$

1

In Row 2, Column 3, the Entry is 4

1	2	3	4
2	1	4	3
3	4	1	2
4	3	2	1

Valid Matrix Representation

• Claim. A $3 \times n^2$ matrix M with entries in $S_n = \{1, 2, ..., n\}$ represents an $n \times n$ Latin square iff when taking any two rows of M every element of S_n^2 appears exactly once.

$$\begin{pmatrix} 1 & 2 & 2 & 2 & \cdots \\ 1 & 3 & 1 & 1 & \cdots \\ 1 & 4 & 2 & 4 & \cdots \end{pmatrix}$$

Not valid!

Proof: Valid Matrix Representation

Proof.

- Asking the first two rows to contain every pair exactly once corresponds to having a unique entry in every cell of the square.
- Asking the first and third rows to contain every pair once corresponds to having every symbol exactly once in every row.
- Asking last two rows to contain every pair once corresponds to having every symbol exactly once in every column.

Conjugate Latin Squares

- Two Latin squares of order n are conjugate if their matrix representations are identical up to a permutation of the rows.
 - By the previous claim, permuting the rows of such a matrix results in a different Latin square.

1	3	2	
2	1	3	
3	2	1	
D. 1	1 1 2	222	

1	2	3
3	1	2
2	3	1

A Weaker Theorem

- We prove a weaker variant of the theorem:
 - **Theorem.** Any partially filled $n \times n$ Latin square with at most n-1 entries consisting of $m \le n/2$ distinct symbols, can be completed to a valid Latin square

aarc.								
	2			7				
		5		4				
			5					
	4							
			2	2 5	2 7	2 7 5 4		

First Steps of the Proof

- By conjugation, we may replace the condition at most n/2 distinct symbols with all the entries being in the first n/2 rows.
 - ∘ m the number of non-empty rows (≤ n/2).
 - r_i the number of entries in row i.
 - We reorder the rows of the matrix so that $r_1 \ge r_2 \ge \cdots \ge r_m$.
 - Notice that $r_1 + r_2 + \cdots + r_m \le n 1$.

The Plan

- Suffices to prove: The partial square can be completed to an m × n Latin rectangle.
- Suffices to prove #2: For every $\ell \leq m$, if we completed rows $1, \dots, \ell 1$, we can complete row ℓ .

$$r_1 = r_2 = r_3 = 2$$
 $r_4 = 1$
 $\ell = 3$

Perfect Matchings, Yet Again

- To prove that we can complete row ℓ, we again use Hall's theorem.
- Define a bipartite graph $G = (V_1, V_2, E)$:
 - Every vertex of V_1 corresponds to a symbol that is missing in the ℓ 'th row.
 - Every vertex of V_2 corresponds to an empty cell of the ℓ 'th row.
 - \circ An edge $(v_1, v_2) \in E$ implies that "symbol" v_1 may be placed in "cell" v_2 .
 - \circ We have $|V_2| = n r_\ell$.

The End

Good luck with your exams!

