F5 (Tidigare i F6) Tvådimensionella fördelningar: simultanfördelning, marginalfördelning*, oberoende fördelningar, betingad fördelning*

Tillämpad sannolikhetslära och statistik

Karl-Olof Lindahl

Innehåll

- 1. Tvådimensionella fördelningar (simultanfördelning/joint distribution)
- 2. Marginalfördelning*
- 3. Oberoende slumpvariabler
- 4. Betingad fördelning*
- * ej obligatorisk för 1MA511

På agendan

Tillämpad sannolikhetslära och statistik, Karl-Olof Lindahl

- 1. Tvådimensionella fördelningar (simultanfördelning/joint distribution)
- 2. Marginalfördelning*
- 3. Oberoende slumpvariabler
- 4. Betingad fördelning*
- st ej obligatorisk för 1MA511

Tvådimensionell diskret slumpvariabel

- Då man man samtidigt studerar två slumpmässigt varierande storheter X och Y får man en tvådimensionell slumpvariabel.
- ► Till exempel skulle X kunna vara antalet pojkar och Y vara antalet flickor i en slumpvis vald familj.
- ▶ Den simultana sannolikhetsfunktionen (joint PDF) för två slumpvariabler X och Y definieras som

$$p_{X,Y}(x,y) = P(\{X = x\} \cap \{Y = y\}) = P(X = x, Y = y),$$

där alla $p_{X,Y}(x,y) \ge 0$ och $\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$.

Tvådimensionell diskret slumpvariabel

- Då man man samtidigt studerar två slumpmässigt varierande storheter X och Y får man en tvådimensionell slumpvariabel.
- ► Till exempel skulle X kunna vara antalet pojkar och Y vara antalet flickor i en slumpvis vald familj.
- ▶ Den simultana sannolikhetsfunktionen (joint PDF) för två slumpvariabler X och Y definieras som

$$p_{X,Y}(x,y) = P(\{X = x\} \cap \{Y = y\}) = P(X = x, Y = y),$$

där alla $p_{X,Y}(x,y) \ge 0$ och $\sum_{x} \sum_{y} p_{X,Y}(x,y) = 1$.

	Y = 0	Y = 1	Y = 2
X = 0	0.15	0.3	0.125
X = 1	0.125	0.15	0.15

Exempelvis är $p_{X,Y}(1,2) = 0.3$ och

$$F_{X,Y}(1,1) = P(X \le 1, Y \le 1) = 0.15 + 0.3 + 0.125 + 0.15 = 0.725$$

► Tagna var för sig är X och Y endimensionella.

- ► Tagna var för sig är X och Y endimensionella.
- Deras fördelningar kallas marginalfördelningar.

- ► Tagna var för sig är X och Y endimensionella.
- Deras fördelningar kallas marginalfördelningar.
- Motsvarande marginella sannolikhetsfunkteioner kan uttryckas i termer av simultanfördelningen. Till exempel är

$$p_X(x) = \sum_{y=0}^{\infty} p_{X,Y}(x,y).$$

- ► Tagna var för sig är X och Y endimensionella.
- Deras fördelningar kallas marginalfördelningar.
- Motsvarande marginella sannolikhetsfunkteioner kan uttryckas i termer av simultanfördelningen. Till exempel är

$$p_X(x) = \sum_{y=0}^{\infty} p_{X,Y}(x,y).$$

 De marginella sannolikhetsfunktionerna för exemplet på föregående sida utgörs av raden längst ner respektive kolonnen längst till höger i följande tabell

	Y=0	Y=1	Y=2	S:a dvs $p_X(x)$
X = 0	0.15	0.3	0.125	0.575
X = 1	0.125	0.15	0.15	0.425
S:a dvs $p_Y(y)$	0.275	0.45	0.275	

► Två slumpvariabler X och Y är oberoende om

$$P(X=x,Y=y)=P(X=x)\cdot P(Y=y), \quad \text{för alla } (x,y) \text{ där } p_{XY}(x,y)>0.$$

► Två slumpvariabler X och Y är oberoende om

$$P(X=x,Y=y)=P(X=x)\cdot P(Y=y), \quad \text{för alla } (x,y) \text{ där } p_{XY}(x,y)>0.$$

I termer av marginella sannolikhetsfunktionerna $p_X(x)$ och $p_Y(y)$ är detta ekvivalent med

$$p_{X,Y}(x,y)=p_X(x)p_Y(y).$$

► Två slumpvariabler X och Y är oberoende om

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$
, för alla (x, y) där $p_{XY}(x, y) > 0$.

▶ I termer av marginella sannolikhetsfunktionerna $p_X(x)$ och $p_Y(y)$ är detta ekvivalent med

$$p_{X,Y}(x,y)=p_X(x)p_Y(y).$$

▶ I termer av marginella fördelningsfunktioner $F_X(x)$ och $F_Y(y)$ är detta i sin tur ekvivalent med

$$F_{X,Y}(x,y) = F_X(x)F_Y(y).$$

► Två slumpvariabler X och Y är oberoende om

$$P(X = x, Y = y) = P(X = x) \cdot P(Y = y)$$
, för alla (x, y) där $p_{XY}(x, y) > 0$.

▶ I termer av marginella sannolikhetsfunktionerna $p_X(x)$ och $p_Y(y)$ är detta ekvivalent med

$$p_{X,Y}(x,y)=p_X(x)p_Y(y).$$

I termer av marginella fördelningsfunktioner $F_X(x)$ och $F_Y(y)$ är detta i sin tur ekvivalent med

$$F_{X,Y}(x,y) = F_X(x)F_Y(y).$$

 Slumpvariablerna i tidigare exempel är inte oberoende eftersom enligt tabellen nedan

	Y=0	Y=1	Y=2	S:a dvs $p_X(x)$
X = 0	0.15	0.3	0.125	0.575
X = 1	0.125	0.15	0.15	0.425
S:a dvs $p_Y(y)$	0.275	0.45	0.275	

har vi

$$p_{X,Y}(0,1) = 0.3 \neq p_X(0)p_Y(1) = 0.575 \cdot 0.45 = 0.2565.$$

Betingad fördelning (Conditional distribution)*

Storheterna

$$P(X = x | Y = y) = \frac{P(X = x), P(Y = y)}{P(Y = y)} = \frac{p_{X,Y}(x,y)}{p_Y(y)}, \quad p_Y(y) > 0,$$

betecknas $p_{X|Y}(x|y)$ och kallas den betingade sannolikhetsfunktionen för X, givet att Y=y.

Betingad fördelning (Conditional distribution)*

Storheterna

$$P(X = x | Y = y) = \frac{P(X = x), P(Y = y)}{P(Y = y)} = \frac{p_{X,Y}(x,y)}{p_Y(y)}, \quad p_Y(y) > 0,$$

betecknas $p_{X|Y}(x|y)$ och kallas den betingade sannolikhetsfunktionen för X, givet att Y=y.

 Den betingade f\u00f6rdelningen f\u00e3s allts\u00e4 fr\u00e3n simultanf\u00f6rdelningen genom att v\u00e4lja l\u00e4mplig rad eller kolonn och multiplicera med l\u00e4mplig skalfaktor

Betingad fördelning (Conditional distribution)*

Storheterna

$$P(X = x | Y = y) = \frac{P(X = x), P(Y = y)}{P(Y = y)} = \frac{p_{X,Y}(x,y)}{p_Y(y)}, \quad p_Y(y) > 0,$$

betecknas $p_{X|Y}(x|y)$ och kallas den betingade sannolikhetsfunktionen för X, givet att Y=y.

- Den betingade f\u00f6rdelningen f\u00e3s allts\u00e4 fr\u00e3n simultanf\u00f6rdelningen genom att v\u00e4lja l\u00e4mplig rad eller kolonn och multiplicera med l\u00e4mplig skalfaktor
- ► Till exempel är