О порождении линейных групп комбинаторными группами

Резюме: Описана группа стрелочных подстановок и процедура генерации полной линейной группы и некоторых ее подгрупп.

1. Группа стрелочных подстановок как расширение симметрической группы

В комбинаторных построениях данного пункта без объяснения используется понятие цикла [1] и системы порождающих [2]. В остальном, изложение логически замкнуто и не требует дополнительных ссылок. Итак, пусть $I = \{1,...,n\},\ s:I \to I$ - биекция а $s's:I \to I(s's(i)=s'(s(i)))$ - композиция биекций. Тогда множество всех n! биекций $S = \{s\}$ относительно произведения $S \times S \to S: (s',s) \to s's$ составляет группу подстановок (симметрическую группу) степени n. Вместе с тем, множество всех четных биекций составляет подгруппу S^+ группы S, которая в общем случае порождается 3-циклами, а именно, $S^+(n) = \langle \{(i,j,k)\}_I \rangle$, где $n \ge 3$ и $i \ne j \ne k$, но если n = 1,2, то $S^+(1) = S^+(2) = e$, где e - тождественная подстановка.

Пусть также $A = \{\pm 1,..,\pm n\}$ а $p:I \to A$ - такая инъекция, что $|p|:I \to I$ - биекция, причем существует композиция этих инъекций $p'p:I \to A$: $p'p(i) = \mathrm{sgn}(p(i))p'(p(i))$. Тогда множество всех $2^n n!$ биективных по модулю инъекций $P = \{p\}$ относительно определенной ранее композиции, т.е. произведения $P \times P \to P:(p',p) \to p'p$, составляет группу, называемую нами группой стрелочных подстановок n-й степени. Вместе с тем, стрелочная подстановка называется стрелочной транспозицией, если это элементарная перестановка, т.е. $p^{j+1}(l) = p^j(m), \ p^{j+1}(m) = p^j(l), \ p^{j+1}(i) = p^j(i)$ для $l,m,i\in I \land i\neq l,m$, или элементарная инверсия, т.е. $p^{j+1}(k) = -p^j(k),$ $p^{j+1}(i) = p^j(i)$ для $k,i\in I \land i\neq k$, и где j - рекурсивный индекс, i - бегущий индекс.

По аналогии с простыми подстановками, всякая стрелочная подстановка может быть получена композицией стрелочных транспозиций, а четность стрелочной подстановки p определяется четностью числа стрелочных транспозиций для перехода к p. При этом, четность подстановки p инвариантна относительно выбора композиции транспозиций для перехода к p, т.е. $(-1)^{\sigma(p)} = (-1)^{\sigma_1(p)} = (-1)^{\sigma_2(p)}$, где $\sigma_1(p)$ и $\sigma_2(p)$ - количество транспозиций в композиции 1 и 2 соответственно, а $\sigma(p) \in \mathbb{Z}/2\mathbb{Z}$. Итак, если $(-1)^{\sigma(p)} = 1$, то p - четная подстановка, если же $(-1)^{\sigma(p)} = -1$, то p - нечетная подстановка. Множество всех четных стрелочных подстановок составляет подгруппу p группы p, которая в общем случае порождается генераторами

(j,-k): $j \to (-k), k \to j, i \to i$, где $i \neq j \neq k$, а именно, $P^+(n) = \langle \{(j,-k)\} \rangle$, но если n=1 , то $P^+(1)=e$ - тождественная стрелочная подстановка. Далее пусть $I_1=\{1,..,k\}$, $I_2=\{k+1,..,n\}$, $I_1 \cup I_2=I$, $s_1=s(I_1)$, $s_2=s(I_2)$. Тогла в можно представить как составную подстановку, $s \times s$, состоящую из

Далее пусть $I_1=\{1,..,k\},\ I_2=\{k+1,..,n\},\ I_1\cup I_2=I,\ s_1=s(I_1),\ s_2=s(I_2).$ Тогда s можно представить как составную подстановку $s_1\times s_2$, состоящую из подстановки по месту I_1 и подстановки по месту I_2 , т.е. из размещений s_1 и s_2 . Вместе с тем, размещение $s_1(s_2)$ называется транспозицией по месту $I_1(I_2)$, если это элементарная перестановка внутри $I_1(I_2)$, или элементарное замещение, а именно, для замещения из I_2 в I_1 имеем $s_1^{j+1}(l)=s^j(m)$, $s_1^{j+1}(i)=s_1^j(i)$ где $m\in I_2;\ l,i\in I_1\land i\neq l$, а для замещения из I_1 в I_2 имеем $s_2^{j+1}(l)=s^j(m),\ s_2^{j+1}(l)=s_2^j(l)$ где $m\in I_1;\ l,i\in I_2\land i\neq l$. Четность составной подстановки $s_1\times s_2$ задается четностью ее размещений, т.е. числом $(-1)^{\sigma(s_1)}\cdot (-1)^{\sigma(s_2)}$, где $\sigma(s_1),\ \sigma(s_2)$ - факторизованное число транспозиций по месту $I_1,\ I_2$ для перехода к размещению $s_1,\ s_2$ соответственно. При этом, если $(-1)^{\sigma(s_1)}\cdot (-1)^{\sigma(s_2)}=1$, то $s_1\times s_2$ называется четно-составной подстановкой, а множество всех четно-составных подстановок составляет подгруппу $S^+(k,n-k)$ группы S(n), которая в общем случае порождается 3-циклами, действующими внутри подмножеств, и произвольным 2-циклом, действующим между I_1 и I_2 , а именно, $S^+(k,n-k)=\left\langle\{(i,j,o)\}_{I_1},(l,m),\{(i,j,o)\}_{I_2}\right\rangle$, где $l\in I_1$ а $m\in I_2$.

В свою очередь, поскольку понятие составной подстановки допускает естественное расширение в группу стрелочных подстановок, то множество всех четно-составных стрелочных подстановок составляет подгруппу $P^+(k,n-k)$ группы P(n), которая в общем случае порождается генераторами (i,-j), действующими внутри подмножеств, и произвольной парой генераторов $\pm (l,m)$, действующей между ними, где +(l,m) - это элементарная перестановка, а -(l,m) - это перестановка с инверсиями, т.е. -(l,m): $l \to (-m)$, $m \to (-l)$. Тем самым, имеем $P^+(k,n-k) = \left\langle \{(i,-j)\}_{l_1}, \pm (l,m), \{(i,-j)\}_{l_2} \right\rangle$, где $l \in I_1$ а $m \in I_2$.

Далее, прежде чем приступить к матричной реализации группы стрелочных подстановок, определим детерминант подмножества строк квадратной матрицы. Пусть $I^* \subset I$; $b: I \to I$ - биекция, тогда $b(I^*): I^* \to I$ - инъекция, т.е. подстановка по месту I^* или размещение. Если $b^*: I^* \to I$ - произвольная инъекция, то $\left\{b(I^*)\right\} \approx \left\{b^*\right\}$ и четность размещения b^* определяется числом $(-1)^{\sigma(b^*)}$, где $\sigma(b^*)$ - количество транспозиций для перехода от e^* к b^* , где e^* - тождественное отображение. Тем самым, если $A = \left(a_{ij}\right)_{i,j \in I}$, $A(I^*) = \left(a_{ij}\right)_{i \in I^*, j \in I}$, тогда принимаем, что $\det\left(A(I^*)\right) = \sum_{b^*, i \in I^*} \prod_{i \in I^*} a_{ib^*(i)} (-1)^{\sigma(b^*)}$.

Пусть теперь $\left\{\left(a_{ij}\right)_{i}\right\}$ - множество всех переходных матриц, т.е. таких квадратных матриц, в которых каждый столбец и каждая строка имеют один и только один ненулевой элемент, причем, если $a_{ij}\neq 0$, то $a_{ij}\in\{\pm\,1\}$. Тогда для

группы стрелочных подстановок P(n) имеем изоморфизм $P(n) \approx \left\{ \left(a_{ij} \right)_{i,j \in I} \right\}$, где $a_{ij} = \mathrm{sgn} \left(p(i) \right) \ \forall \ j = \left| p(i) \right| \ \text{и} \ a_{ij} = 0 \ \forall \ j \neq \left| p(i) \right|.$ Кроме того, $P^+(I) \approx \left\{ \left(a_{ij} \right)_I \middle| \det A = +1 \right\}$ а $P^+(I^*, I \setminus I^*) \approx \left\{ \left(a_{ij} \right)_I \middle| \det A \left(I \setminus I^* \right) = +1 \right\}$, где $P^+(I)$, $P^+(I^*, I \setminus I^*)$ - подгруппы четных и четно-составных стрелочных подстановок соответственно. Вместе с тем, если $J = \left\{ 1, ..., m \right\}; \ m \leq n; \ I_J \equiv \left\{ I_j \right\}_J$, где $\bigcup_m I_j = I$, $\bigcap_m I_j = \emptyset$, $\operatorname{card} \left(I_j \right) = n_j$, $\sum_m n_j = n$, причем подсемейство I_{j+1} заполняется последовательной выборкой из I вслед за заполнением I_j , а $I_1 = \left\{ 1, ..., n_1 \right\}$, то $P^+(I_J) \equiv P^+(n_1, ..., n_m) \approx \left\{ \left(a_{ij} \right) \det A(I_1) \cdot \cdot \det A(I_m) = +1 \right\}$.

2. Группа стрелочных подстановок как генератор полной линейной группы

Пусть $R_+ \equiv \{x \in R \mid x > 0\}$; RP(n) - групповая алгебра над R с базисом P(n), которая порождается как линейная оболочка, натянутая на группу P(n), т.е. $RP(n) = \langle P(n) \rangle$; GP(n) - мультипликативная группа алгебры RP(n); а $Aut\ RP(n) \equiv GP(n)/R_+$ - группа автоморфизмов этой же алгебры. Тогда имеет место основное утверждение.

Lemma 1:
$$RP(n) \approx End \ R^n \equiv ML(n), \ GP(n) \approx GL_nR \equiv GL(n),$$

 $Aut \ RP(n) \approx \langle SL(n), P(n) \rangle$

Действительно, поскольку P(n) реализуется множеством переходных матриц A(I), из которых всегда можно выбрать n^2 линейно независимых матриц, то A(I) включает в себя и некоторый базис пространства ML(n), имеющего размерность n^2 , а следовательно линейная оболочка, натянутая на A(I), совпадает с ML(n). В свою очередь, поскольку $GL(n) = \langle SL(n), A(I), R_+ \cdot E \rangle$, где E - единичная матрица, то $GL(n)/R_+ \approx \langle SL(n), P(n) \rangle$ и лемма доказана.

Дополнительным источником процедуры порождения линейных групп служит утверждение о генерации общей линейной группы.

Lemma 2:

Пусть $GL_{i,j} \equiv diag \left[1,...,GL(2)_{i,j}^{i,j},...,1\right]_n$, где $i \neq j$, причем верхние индексы указывают номера строк, а нижние - номера столбцов, на пересечении которых располагается группа GL(2). Тогда $GL(n) = \left\langle \left\{GL_{i,j}\right\}_i \right\rangle = \left\langle \left\{GL_{i,i+1}\right\}_i \right\rangle$.

Действительно, поскольку $P(n) = \left\langle \left\{ P(2)_{i,j} \right\}_{l} \right\rangle = \left\langle \left\{ P(2)_{i,i+1} \right\}_{l} \right\rangle$, где $P(2)_{i,j}$ - подгруппа стрелочных подстановок степени n, изоморфная группе P(2),

которая представлена множеством стрелочных подстановок по месту $i,j\,$, то $GP(n) = \langle \{GP(2)_{i,j}\}_{I} \rangle$, но $GP(2)_{i,j} \approx GL_{i,j}$, а следовательно лемма доказана.

Далее пусть даны циклические группы стрелочных подстановок второй степени $P^+(2) \approx \left\langle \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\rangle$, $P^+(1,1) \approx \left\langle \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle$, $P^-(2) \approx \left\langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle$, которые

вместе с тривиальной подгруппой исчерпывают все подгруппы группы P(2). Тогда после элементарных построений имеем изоморфизмы $Aut\ RP^+(2) \approx$

$$\left\{ \begin{pmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{pmatrix} x \in R \right\} \equiv SO(2), Aut RP^{+}(1,1) \approx \left\{ \pm \begin{pmatrix} chx & shx \\ shx & chx \end{pmatrix}, x \in R \right\} \equiv SO(1,1),$$

Aut
$$RP^-(2) \approx \left\{ \pm \begin{pmatrix} e^x & 0 \\ 0 & e^{-x} \end{pmatrix} x \in R \right\} \equiv ST(2)$$
, а поскольку $P(2) = \frac{1}{2} \left\{ \pm \begin{pmatrix} e^x & 0 \\ 0 & e^{-x} \end{pmatrix} \right\}$

 $P^{+}(2) \oplus P^{+}(1,1) \oplus P^{-}(2)$, то $GL(2) = \langle SO(2), SO(1,1), ST(2), P(2), R_{\perp} \rangle$ и поэтому

$$SL(2) = \langle SO(2), SO(1,1), ST(2) \rangle$$
. Пусть теперь $SO(2)_{i,j} \equiv diag \left[1,...,SO(2)_{i,j}^{i,j},...,1\right]_n$, тогда

$$Aut\ RP^+(n) \approx \left\langle \left\{ SO(2)_{i,i+1} \right\}_I \right\rangle = SO(n)$$
. Аналогично, если $SO(1,1)_{i,j} \equiv I$

$$diag[1,...,SO(1,1)_{i,j}^{i,j},...,1]_n$$
, to $Aut RP^+(m,n-m)\approx$

$$\left\langle \left\{ SO(2)_{i,i+1} \right\}_{I_1}, SO(1,1)_{m,m+1}, \left\{ SO(2)_{i,i+1} \right\}_{I_2} \right\rangle = SO(m,n-m)$$
. Более того, возможно

расширение специальной ортогональной группы, а именно,
$$Aut\ RP^+(I_J) \approx \left\langle \left\{ SO(2)_{i,i+1} \right\}_{I_j} \right\}_J, \left\{ SO(1,1)_{n_j,n_j+1} \right\}_J \right\rangle \equiv SO(I_J). \ \ \text{Если же } SL_{i,j} \equiv diag\left[1,...,SL(2)_{i,j}^{i,j},...,1\right]_n, \ \text{то } Aut^+RP(n) = \left\langle \left\{ SL_{i,i+1} \right\}_I \right\rangle = SL(n), \ \text{где } Aut^+RP(n) = \left\langle Aut^+RP(n),P(n) \right\rangle.$$

В целом понятно, что всевозможные подгруппы группы стрелочных подстановок порождают всевозможные линейные группы (в том числе – унитарные, симплектические и т.д.), и поэтому задача классификации, описания и конструирования линейных групп сводится к решению такой же задачи для подгрупп конечной группы.

- 1. Курош А.Г. Курс высшей алгебры, Москва, Наука 1975
- 2. Винберг Э.Б. Курс алгебры, Москва, Факториал 1999