IS5152 Data-driven decision making Preliminary Concepts and Notation

1. Vectors

(a) n-vector

An n-vector or n-dimensional vector \mathbf{x} , for any positive integer n, is an n-tuple,

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

of real numbers. The real number x_i is the *i*th component or element of the vector \mathbf{x} .

(b) \mathbb{R}^n is the n-dimensional Euclidean space. For all integer n, it is the set of all n-vectors.

2. Vector addition and multiplication by a real number

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$. The sum $\mathbf{x} + \mathbf{y}$ is defined by

$$\mathbf{x} + \mathbf{y} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

and the multiplication by a real number $\alpha \mathbf{x}$ is defined by

$$\alpha \mathbf{x} = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{pmatrix}$$

3. Linear dependence and independence

The vector $\mathbf{x}^1, \mathbf{x}^2, \dots \mathbf{x}^m \in \mathbb{R}^n$ are said to be linearly independent if

otherwise they are linearly dependent.

4. Linear combination

The vector $\mathbf{x} \in \mathbb{R}^n$ is a **linear combination** of $\mathbf{x}^1, \mathbf{x}^2, \dots \mathbf{x}^m \in \mathbb{R}^n$ if $\mathbf{x} = \lambda^1 \mathbf{x}^1 + \lambda^2 \mathbf{x}^2 + \dots + \lambda^m \mathbf{x}^m$ for some $\lambda^1, \lambda^2, \dots \lambda^m \in \mathbb{R}$.

1

5. Scalar product

The scalar (or dot) product xy of two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ is defined by

$$\mathbf{xy} = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

It is normally denoted as $\mathbf{x}^t \mathbf{y}$ for clarity.

6. Norm of a vector

The **p-norm** of a vector $\mathbf{x} \in \mathbb{R}^n$ is defined by

$$\|\mathbf{x}\|_p = (|x_1|^p + \ldots + |x_n|^p)^{1/p}$$

of which

- $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \ldots + |x_n|$
- $\|\mathbf{x}\|_2 = (|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2)^{1/2}$ and
- $\|\mathbf{x}\|_{\infty} = \max_{i} |x_{i}|$ are the most important. When the subscript is dropped from the norm, we mean the **2**-norm.

7. Distance between two points

Let $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. The nonnegative number $\delta(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|_2$ is called the Euclidean distance between the two points \mathbf{x} and \mathbf{y} in \mathbb{R}^n .

8. Matrices

 $\mathbb{R}^{m \times n}$ denotes the space of all m-by-n real matrices.

$$\mathbf{A} \in \mathbb{R}^{m \times n} \Longleftrightarrow \mathbf{A} = [A_{ij}] = \begin{pmatrix} A_{11} & \dots & A_{1n} \\ \vdots & & \vdots \\ A_{m1} & \dots & A_{mn} \end{pmatrix}$$

The linear system of the following type will be frequently encountered:

$$A_{11}x_1 + A_{12}x_2 + \ldots + A_{1n}x_n = b_1$$

$$A_{21}x_1 + A_{22}x_2 + \ldots + A_{2n}x_n = b_2$$

$$\ldots$$

$$A_{m1}x_1 + A_{m2}x_2 + \ldots + A_{mn}x_n = b_m$$

where A_{ij} and b_i , i = 1, 2, ..., m, j = 1, 2, ..., n, are given real numbers. If we let \mathbf{A}_i denote an *n*-vector whose *n* components are A_{ij} , j = 1, 2, ..., n, and if we let $\mathbf{x} \in \mathbb{R}^n$, then the above system is equivalent to

$$\mathbf{A}_i \mathbf{x} = b_i, \quad i = 1, 2, \dots, m$$

where $\mathbf{A}_i \mathbf{x}$ is interpreted as the scalar product of \mathbf{A}_i and \mathbf{x} . If we further let $\mathbf{A}\mathbf{x}$ denote an m-vector whose m components are $\mathbf{A}_i \mathbf{x}$, i = 1, 2, ..., m, and \mathbf{b} an m-vector whose m components are b_i , then the linear system can simply be written as

$$Ax = b$$

The *i*-th row of the matrix **A** will be denoted by \mathbf{A}_i and will be an *n*-vector, hence

$$\mathbf{A}_i = \begin{pmatrix} A_{i1} \\ A_{i2} \\ \vdots \\ A_{in} \end{pmatrix}$$

for $i=1,2,\ldots,m$. The j-th column of the matrix **A** will be denoted by $\mathbf{A}_{.j}$ and will be an m-vector. Hence

$$\mathbf{A}_{.j} = \left(\begin{array}{c} A_{1j} \\ A_{2j} \\ \vdots \\ A_{mj} \end{array}\right)$$

The above linear system can be written still in another form as follows

$$\sum_{j=1}^{n} \mathbf{A}_{.j} x_j = \mathbf{b}$$

The transpose of the matrix **A** is denoted by \mathbf{A}^t and is the $n \times m$ matrix defined by

$$\mathbf{A}^t = \left(\begin{array}{ccc} A_{11} & \dots & A_{m1} \\ \vdots & \dots & \vdots \\ A_{1n} & \dots & A_{mn} \end{array} \right)$$

There are several important types of square matrices. We say that $\mathbf{A} \in \mathbb{R}^{n \times n}$ is

- the identity matrix iff $A_{ij} = 1$, if i = j; $A_{ij} = 0$ otherwise, i, j = 1, 2, ..., n. The identity matrix is denoted by **I**.
- the inverse of the matrix B iff AB = BA = I. The matrix A is denoted by B^{-1} , and B is said to be invertible.
- symmetric if $\mathbf{A}^t = \mathbf{A}$.
- positive definite if $\mathbf{x}^t \mathbf{A} \mathbf{x} > 0$, $\mathbf{0} \neq \mathbf{x} \in \mathbb{R}^n$.
- positive semi-definite if $\mathbf{x}^t \mathbf{A} \mathbf{x} \geq 0$, $\mathbf{x} \in \mathbb{R}^n$.

If **A** is an $n \times n$ matrix, the following statements are equivalent

- A is invertible.
- $\mathbf{A}\mathbf{x} = 0$ has only the trivial solution.
- $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for every *n*-vector *b*.
- $det(\mathbf{A}) \neq 0$.
- A has rank n.
- The rows of **A** are linearly independent.
- The columns of **A** are linearly independent.

9. Function

• A function f is a single-valued mapping from a set X into a set Y. That is for each $\mathbf{x} \in X$, the image set $f(\mathbf{x})$ consists of a single element of Y. The domain of F is X, and we say that f is defined on X. The range of f is $f(X) = \bigcup_{\mathbf{x} \in X} f(\mathbf{x})$.

• Numerical function

A numerical function θ is a function from a set X into \mathbb{R} .

• Vector function

An *m*-dimensional vector function f is a function from a set X into \mathbb{R}^m . The m components of the vector $f(\mathbf{x})$ are denoted by $f_1(\mathbf{x}), f_2(\mathbf{x}), \ldots, f_m(\mathbf{x})$. Each f_i is a numerical function on X.

\bullet Linear vector function on \mathbb{R}^n

An m-dimensional vector function f defined on \mathbb{R}^n is said to be linear if

$$f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$$

where **A** is some fixed $m \times n$ matrix and **b** is some fixed vector in \mathbb{R}^m .

• Gradient of a numerical function

Let θ be a numerical function defined on \mathbb{R}^n , the *n*-dimensional vector of partial derivatives of θ with respect to x_1, x_2, \ldots, x_n at $\overline{\mathbf{x}}$ is called the **gradient** of θ at $\overline{\mathbf{x}}$ and is denoted by $\nabla \theta(\overline{\mathbf{x}})$, that is,

$$\nabla \theta(\overline{\mathbf{x}}) = (\partial \theta(\overline{\mathbf{x}})/\partial x_1, \partial \theta(\overline{\mathbf{x}})/\partial x_2, \dots, \partial \theta(\overline{\mathbf{x}})/\partial x_n)^t$$

• Hessian of a numerical function

Let θ be a numerical function defined in \mathbb{R}^n , if θ is twice differentiable, the $n \times n$ matrix $\nabla^2 \theta(x)$ is called the **Hessian** matrix of θ at \mathbf{x} and its ijth element is written as

$$[\nabla^2 \theta(\mathbf{x})]_{ij} = \partial^2 \theta(\mathbf{x}) / \partial x_i \partial x_j, \quad i, j = 1, 2, \dots n$$

• Jacobian of a vector function

Let f be an m-dimensional vector function in \mathbb{R}^n . The $m \times n$ matrix Jacobian of f at $\overline{\mathbf{x}}$ is

$$\nabla f(\overline{\mathbf{x}}) = \begin{pmatrix} \partial f_1(\overline{\mathbf{x}})/\partial x_1 & \dots & \partial f_1(\overline{x})/\partial x_n \\ \vdots & & \vdots \\ \partial f_m(\overline{\mathbf{x}})/\partial x_1 & \dots & \partial f_m(\overline{\mathbf{x}})/\partial x_n \end{pmatrix}$$

• Convex function

A numerical function θ defined on the convex set $\Gamma \subset \mathbb{R}^n$ is said to be **convex** (with respect to Γ) if and only if

$$\begin{cases}
\mathbf{x}, \overline{\mathbf{x}} \in \Gamma \\
0 \le \lambda \le 1
\end{cases} \Rightarrow (1 - \lambda)\theta(\overline{\mathbf{x}}) + \lambda\theta(\mathbf{x}) \ge \theta[(1 - \lambda)\overline{\mathbf{x}} + \lambda\mathbf{x}]$$

• Strictly convex function

A numerical function θ defined on the convex set $\Gamma \subset \mathbb{R}^n$ is said to be **strictly convex** (with respect to Γ) if and only if

$$\left. \begin{array}{ll} \mathbf{x}, \overline{\mathbf{x}}, \mathbf{x} \neq \overline{\mathbf{x}} & \in \Gamma \\ 0 < \lambda < 1 \end{array} \right\} \Rightarrow (1 - \lambda)\theta(\overline{\mathbf{x}}) + \lambda\theta(\mathbf{x}) > \theta[(1 - \lambda)\overline{\mathbf{x}} + \lambda\mathbf{x}]$$

• Twice differentiable convex and concave function

Let θ be a numerical twice-differentiable function on \mathbb{R}^n , θ is convex if and only if $\nabla^2 \theta(\mathbf{x})$ is positive semidefinite, that is, for each $\mathbf{x} \in \mathbb{R}^n$

$$\mathbf{y}\nabla^2\theta(\mathbf{x})\mathbf{y} \ge 0 \quad \forall \mathbf{y} \in \mathrm{I\!R}^n$$

 θ is concave if and only if $\nabla^2 \theta(x)$ is negative semidefinite, that is, for each $\mathbf{x} \in \mathbb{R}^n$

$$\mathbf{y}\nabla^2\theta(\mathbf{x})\mathbf{y} \leq 0 \quad \forall \mathbf{y} \in \mathbb{R}^n$$

REFERENCES:

- Howard, Anton. Elementary Linear Algebra, Wiley, 1981.
- Mangasarian, O.L. Nonlinear Programming, SIAM, 1994.