```
In [159]:
          import pandas as pd
          import matplotlib.pyplot as plt
          import datetime as dt
          import seaborn as sns
          from numpy.polynomial.polynomial import polyfit
          import matplotlib.gridspec as gridspec
          import numpy as np
          import matplotlib as mpl
          mpl.rcParams.update(mpl.rcParamsDefault)
          import math
          import os
          import requests, io
          import zipfile as zf
          import shutil
          import statsmodels.formula.api as smf
          import matplotlib.ticker as mtick
          from sklearn.neighbors import KNeighborsRegressor as knn
          from sklearn.model_selection import train test split
          from sklearn.model selection import cross_val_score
          from sklearn.linear model import LinearRegression as linreg
          from scipy.stats import kde
          import matplotlib.dates as mdates
          from sklearn.preprocessing import MinMaxScaler
          import plotly.graph_objects as go
          %matplotlib inline
```

```
In [ ]:
```

```
In [2]: path_world_covid = '/Users/jarrodhoran/Downloads/COVID-19-geographic-d
    isbtribution-worldwide.csv'
    world_covid = pd.read_csv(path_world_covid)
    world_covid['dateRep'] = pd.to_datetime(world_covid['dateRep'])
    world_covid
```

Out[2]:

	dateRep	day	month	year	cases	deaths	countriesAndTerritories	geold	countryterri
0	2020- 10-27	27	10	2020	199	8	Afghanistan	AF	
1	2020- 10-26	26	10	2020	65	3	Afghanistan	AF	
2	2020- 10-25	25	10	2020	81	4	Afghanistan	AF	
3	2020- 10-24	24	10	2020	61	2	Afghanistan	AF	
4	2020- 10-23	23	10	2020	116	4	Afghanistan	AF	
51678	2020- 03-25	25	3	2020	0	0	Zimbabwe	ZW	
51679	2020- 03-24	24	3	2020	0	1	Zimbabwe	ZW	
51680	2020- 03-23	23	3	2020	0	0	Zimbabwe	ZW	
51681	2020- 03-22	22	3	2020	1	0	Zimbabwe	ZW	
51682	2020- 03-21	21	3	2020	1	0	Zimbabwe	ZW	

51683 rows × 12 columns

```
In [3]: world_covid['geoId'].nunique()
world_covid['countriesAndTerritories'].nunique()
```

Out[3]: 212

```
In [4]: #drop the countries that aren't in world COVID
    path_country_coordinate = '/Users/jarrodhoran/Downloads/countries.csv'
    country_coord = pd.read_csv(path_country_coordinate)
    #country_coord
```

```
In [5]: path us counties = '/Users/jarrodhoran/Downloads/us-counties.csv'
         us counties = pd.read csv(path us counties)
         us counties['date'] = pd.to datetime(us counties['date'])
         #us counties
 In [6]: path netflix = '/Users/jarrodhoran/Downloads/Netflix.csv'
         netflix = pd.read csv(path netflix).tail(365)
         netflix['Date'] = pd.to datetime(netflix['Date'])
         netflix = netflix[netflix['Date'].dt.year == 2020]
         #pd.reset option('display.max rows', None)
         #pd.set option('display.max rows', None)
         #netflix
         path amazon = '/Users/jarrodhoran/Downloads/Amazon.csv'
 In [7]:
         amazon = pd.read csv(path amazon).tail(365)
         amazon['Date'] = pd.to datetime(amazon['Date'])
         amazon = amazon[amazon['Date'].dt.year == 2020]
         #pd.reset option('display.max rows', None)
         #amazon
         path google = '/Users/jarrodhoran/Downloads/Google.csv'
 In [8]:
         google = pd.read csv(path google).tail(365)
         google['Date'] = pd.to datetime(google['Date'])
         google = google[google['Date'].dt.year == 2020]
         #pd.reset option('display.max rows', None)
         #google
         path apple = '/Users/jarrodhoran/Downloads/Apple.csv'
 In [9]:
         apple = pd.read csv(path apple).tail(365)
         apple['Date'] = pd.to datetime(apple['Date'])
         apple = apple[apple['Date'].dt.year == 2020]
         #pd.reset option('display.max rows', None)
         #apple
         path facebook = '/Users/jarrodhoran/Downloads/Facebook.csv'
In [10]:
         facebook = pd.read csv(path facebook).tail(365)
         facebook = facebook
         facebook['Date'] = pd.to datetime(facebook['Date'])
         facebook = facebook[facebook['Date'].dt.year == 2020]
         #pd.reset option('display.max rows', None)
         #facebook
```

```
In [11]:
         path usd adv econ = '/Users/jarrodhoran/Downloads/DTWEXAFEGS.csv'
         usd adv econ = pd.read csv(path usd adv econ)
         usd_adv_econ['DATE'] = pd.to_datetime(usd_adv_econ['DATE'])
         usd adv econ = usd adv econ[usd adv econ['DATE'].dt.year == 2020]
         #pd.reset_option('display.max_rows', None)
         #usd adv econ
In [12]: path usd em econ = '/Users/jarrodhoran/Downloads/DTWEXEMEGS.csv'
         usd em econ = pd.read csv(path usd em econ)
         usd_em_econ['DATE'] = pd.to_datetime(usd_em_econ['DATE'])
         usd_em_econ = usd_em_econ[usd_em_econ['DATE'].dt.year == 2020]
         #usd em econ
In [13]: path usd rmb = '/Users/jarrodhoran/Downloads/DEXCHUS.csv'
         usd_rmb = pd.read_csv(path_usd rmb)
         usd rmb['DATE'] = pd.to datetime(usd rmb['DATE'])
         usd rmb = usd rmb[usd rmb['DATE'].dt.year == 2020]
         #usd rmb
```

World Covid per Month and FAANGs

```
In [14]:
         # merge stocks
         netflix2 = netflix.drop(columns = ['Open', 'High', 'Low', 'Adj Close', 'Vo
         lume'))
         netflix2 = netflix2.rename(columns={"Close": "Close Netflix"})
         google2 = google.drop(columns = ['Open','High','Low','Adj Close','Volu
         me'])
         google2 = google2.rename(columns={"Close": "Close Google"})
         amazon2 = amazon.drop(columns = ['Open', 'High', 'Low', 'Adj Close', 'Volu
         me'])
         amazon2 = amazon2.rename(columns={"Close": "Close Amazon"})
         apple2 = apple.drop(columns = ['Open', 'High', 'Low', 'Adj Close', 'Volume
         '])
         apple2 = apple2.rename(columns={"Close": "Close Apple"})
         facebook2 = facebook.drop(columns = ['Open', 'High', 'Low', 'Adj Close', '
         facebook2 = facebook2.rename(columns={"Close": "Close FB"})
         faangs = facebook2.merge(apple2, on = 'Date', how = 'left')
         faangs = faangs.merge(amazon2, on = 'Date', how = 'left')
         faangs = faangs.merge(google2, on = 'Date', how = 'left')
         faangs = faangs.merge(netflix2, on = 'Date', how = 'left')
         faangs['Date'] = faangs['Date'].dt.strftime('%Y-%m-%d')
         faangs.drop([147,148,149,150,151,152,153,154,155,156,157,158], inplace
         = True)
         #faangs
```

```
faangs may = faangs.loc[faangs['Month'] == '5']
faangs may['Day Close'] = (faangs may['Close FB'] + faangs may['Close
Apple'] +
                           faangs may['Close Amazon'] + faangs may['Cl
ose Google'; +
                           faangs may['Close Netflix'])
faangs may['Date'] = pd.to datetime(faangs may['Date'])
f5 piv = faangs may.pivot table(index = 'Date',columns = 'Month',value
s = 'Day Close', aggfunc = 'sum')
f5 piv = f5 piv.pct change()
#f5 piv
#June
faangs june = faangs.loc[faangs['Month'] == '6']
faangs june['Day Close'] = (faangs june['Close FB'] + faangs june['Clo
se Apple'] +
                           faangs june['Close Amazon'] + faangs june['
Close Google'] +
                           faangs june['Close Netflix'])
faangs june['Date'] = pd.to datetime(faangs june['Date'])
f6_piv = faangs_june.pivot_table(index = 'Date',columns = 'Month',valu
es = 'Day Close', aggfunc = 'sum')
f6 piv = f6 piv.pct change()
#f6 piv
#July
faangs july = faangs.loc[faangs['Month'] == '7']
faangs july['Day Close'] = (faangs july['Close FB'] + faangs july['Close FB']
se Apple'] +
                           faangs july['Close Amazon'] + faangs july['
Close Google' | +
                           faangs july['Close Netflix'])
faangs july['Date'] = pd.to datetime(faangs july['Date'])
f7 piv = faangs july.pivot table(index = 'Date',columns = 'Month',valu
es = 'Day Close', aggfunc = 'sum')
f7 piv = f7 piv.pct change()
#f7 piv
```

/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:9:

```
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/panda
s-docs/stable/user quide/indexing.html#returning-a-view-versus-a-cop
У
 if name == ' main ':
/opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:11:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/panda
s-docs/stable/user guide/indexing.html#returning-a-view-versus-a-cop
 # This is added back by InteractiveShellApp.init path()
/opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:23:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/panda
s-docs/stable/user guide/indexing.html#returning-a-view-versus-a-cop
/opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:25:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/panda
s-docs/stable/user guide/indexing.html#returning-a-view-versus-a-cop
У
/opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:37:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/panda
s-docs/stable/user guide/indexing.html#returning-a-view-versus-a-cop
/opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:39:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: http://pandas.pydata.org/panda
s-docs/stable/user guide/indexing.html#returning-a-view-versus-a-cop
У
/opt/anaconda3/lib/python3.7/site-packages/ipykernel launcher.py:51:
```

SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

/opt/anaconda3/lib/python3.7/site-packages/ipykernel_launcher.py:53:
SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

```
In [16]: #f6_piv = f6_piv.reset_index()
    #f6_piv.dtypes
    #f6_piv.ix[index.to_datetime()]
    f6_piv.index
```

```
Out[16]: DatetimeIndex(['2020-06-01', '2020-06-02', '2020-06-03', '2020-06-04 ', '2020-06-05', '2020-06-08', '2020-06-09', '2020-06-10 ', '2020-06-11', '2020-06-12', '2020-06-15', '2020-06-16 ', '2020-06-17', '2020-06-18', '2020-06-19', '2020-06-22 ', '2020-06-23', '2020-06-24', '2020-06-25', '2020-06-26 ', '2020-06-29', '2020-06-30'], dtype='datetime64[ns]', name='Date', freq=None)
```

```
In [17]: #fig, ax = plt.subplots()
    #ax.axhline(june_mean, color = 'red',linestyle = 'dashed')
    #f6_piv.plot.line(ax = ax,x = 'Date', y = '6')
```

```
In [114]: country_coord = country_coord.rename(columns={"country": "geoId"})
#country_coord
```

```
In [116]:
          covid location = world covid.merge(country coord, on = 'geoId', how =
          'left', indicator = True)
          covid location = covid location[covid location[' merge']=='both']
          covid location = covid location.drop(columns = ['day','year',
                                          'popData2019', 'name', 'Cumulative number
          for 14 days of COVID-19 cases per 100000'])
          covid location = covid location.rename(columns={"dateRep": "Date", "con
          tinentExp":"Continent",
                                                           "countriesAndTerritori
          es":"Country", "latitude": "Latitude",
                                                          "longitude": "Longitude"
          ,"cases": "New Cases",
                                                           'deaths':"Deaths"})
          covid location['month'] = covid location['month'].astype(str)
          covid location = covid location.loc[(covid location['month'].str.conta
          ins('4|5|6|7|8') == True),:]
          covid location = covid location.groupby(['month','Date','Country',
                                                    'Continent', 'Latitude', 'Longi
          tude','countryterritoryCode'], as index = False)[['New Cases', 'Deaths
          ']].sum()
          covid location.loc[covid location['Country'] == 'Afghanistan',:]
          covid location['month'] = covid location['month'].astype(int)
          covid_april = covid_location.loc[covid location['month'] == 4]
          covid april = covid april.groupby(['Country','Latitude','Longitude','C
          ontinent','month','countryterritoryCode'], as index = False)[['New Cas
          es', 'Deaths']].sum()
          covid may = covid location.loc[covid location['month'] == 5]
          covid may = covid may.groupby(['Country', 'Latitude', 'Longitude', 'Conti
          nent','month','countryterritoryCode'], as index = False)[['New Cases',
          'Deaths']].sum()
          covid june = covid location.loc[covid location['month'] == 6]
          covid june = covid june.groupby(['Country', 'Latitude', 'Longitude', 'Con
          tinent','month','countryterritoryCode'], as index = False)[['New Cases
          ', 'Deaths']].sum()
          covid_july = covid_location.loc[covid_location['month'] == 7]
          covid july = covid july.groupby(['Country','Latitude','Longitude','Con
          tinent', 'month', 'countryterritoryCode'], as index = False)[['New Cases
           , 'Deaths']].sum()
```

In [117]: covid_july

Out[117]:

	Country	Latitude	Longitude	Continent	month	countryterritoryCode	New Cases	ı _
0	Afghanistan	33.939110	67.709953	Asia	7	AFG	5304	
1	Albania	41.153332	20.168331	Europe	7	ALB	2731	
2	Algeria	28.033886	1.659626	Africa	7	DZA	16260	
3	Andorra	42.546245	1.601554	Europe	7	AND	67	
4	Angola	-11.202692	17.873887	Africa	7	AGO	802	
198	Vietnam	14.058324	108.277199	Asia	7	VNM	154	
199	Western_Sahara	24.215527	-12.885834	Africa	7	ESH	558	
200	Yemen	15.552727	48.516388	Asia	7	YEM	598	
201	Zambia	-13.133897	27.849332	Africa	7	ZMB	3987	
202	Zimbabwe	-19.015438	29.154857	Africa	7	ZWE	2518	

203 rows × 8 columns

```
In [108]: world covid = world covid.rename(columns={"dateRep": "Date"})
In [109]: cmap = mpl.cm.RdYlGn
          reversed cmap = cmap.reversed()
          n = mpl.colors.Normalize()
          plt.style.use('dark background')
In [110]: fig, ax = plt.subplots(ncols = 2, nrows = 4)
          plt.subplots adjust(bottom = .7)
          #APRIL
          covid april.plot.scatter(ax = ax[0,0],figsize=(20,30), y='Latitude',x=
          'Longitude', s=covid april['New Cases'] * .01,
                                    color=reversed cmap(n(covid april['Deaths'].v
          alues * 2500)),
                                   edgecolors = 'white',alpha = .9)
          ax[0,0].set title("Global COVID-19 (April)", fontsize = 16, fontweight
          = 'bold')
          f4 piv.plot.line(ax = ax[0,1])
          ax[0,1].axhline(0, color = 'white')
```

```
april mean = f4 piv['4'].mean()
ax[0,1].axhline(april mean, color = 'red',linestyle = 'dashed')
ax[0,1].legend(bbox to anchor = (1, 1), labels = ['Growth Rate','Zero
Growth','Mean Rate'])
ax[0,1].set title("FAANG Growth Rate (April)", fontsize = 16, fontweig
ht = 'bold')
ax[0,1].set ylim(-.06, .06)
ax[0,1].set xlabel(xlabel = '')
ax[0,1].yaxis.set major formatter(mtick.PercentFormatter(1.0))
#MAY
covid may.plot.scatter(ax = ax[1,0], y='Latitude',x='Longitude',s=covi
d may['New Cases'] * .01,
                         color=reversed cmap(n(covid may['Deaths'].val
ues * 2500)),
                        edgecolors = 'white',alpha = .9)
ax[1,0].set title("Global COVID-19 (May)", fontsize = 16, fontweight =
'bold')
ax[1,0].set xlabel(xlabel = '')
f5 piv.plot.line(ax = ax[1,1])
ax[1,1].axhline(0, color = 'white')
may mean = f5 piv['5'].mean()
ax[1,1].axhline(may mean, color = 'red',linestyle = 'dashed')
ax[1,1].legend().remove()
ax[1,1].set title("FAANG Growth Rate (May)", fontsize = 16, fontweight
= 'bold')
ax[1,1].set ylim(-.06, .06)
ax[1,1].set xlabel(xlabel = '')
ax[1,1].yaxis.set major formatter(mtick.PercentFormatter(1.0))
#JUNE
covid_june.plot.scatter(ax = ax[2,0], y='Latitude',x='Longitude',s=cov
id june['New Cases'] * .01,
                         color=reversed cmap(n(covid june['Deaths'].va
lues * 2500)),
                        edgecolors = 'white',alpha = .9)
ax[2,0].set title("Global COVID-19 (June)", fontsize = 16, fontweight
= 'bold')
ax[2,0].set xlabel(xlabel = '')
f6 piv.plot.line(ax = ax[2,1])
ax[2,1].set title("FAANG Growth Rate (June)", fontsize = 16, fontweigh
t = 'bold')
ax[2,1].axhline(0, color = 'white')
```

```
june mean = f6 piv['6'].mean()
ax[2,1].axhline(june mean, color = 'red', linestyle = 'dashed')
ax[2,1].legend().remove()
ax[2,1].set ylim(-.06, .06)
ax[2,1].set xlabel(xlabel = '')
ax[2,1].yaxis.set major formatter(mtick.PercentFormatter(1.0))
#JULY
covid july.plot.scatter(ax = ax[3,0], y='Latitude',x='Longitude',s=cov
id july['New Cases'] * .01,
                         color=reversed cmap(n(covid july['Deaths'].va
lues * 2500)),
                        edgecolors = 'white',alpha = .9)
ax[3,0].set title("Global COVID-19 (July)", fontsize = 16, fontweight
= 'bold')
f7 piv.plot.line(ax = ax[3,1])
ax[3,1].axhline(0, color = 'white')
july mean = f7_piv['7'].mean()
ax[3,1].axhline(july mean, color = 'red', linestyle = 'dashed')
ax[3,1].legend().remove()
ax[3,1].set title("FAANG Growth Rate (July)", fontsize = 16, fontweigh
t = 'bold')
ax[3,1].set ylim(-.06, .06)
ax[3,1].yaxis.set major_formatter(mtick.PercentFormatter(1.0))
plt.savefig('Covid stocks.png')
```


Graphs below show neew cases per country as represented by the scatter plots above

```
In [163]: fig a = go.Figure(data=go.Choropleth(
               locations = covid april['countryterritoryCode'],
              z = covid april['New Cases'],
              text = covid april['Country'],
              colorscale = 'RdYlGn',
              autocolorscale=False,
              reversescale=True,
              marker line color='darkgray',
              marker_line_width=0.5,
              colorbar_title = 'New Cases',))
          fig a.update layout(
              title text='April COVID Cases',
              geo=dict(
                   showframe=False,
                   showcoastlines=True,
                   projection_type='equirectangular'
               ),
              annotations = [dict(
                  x=0.55,
                  y=0.1,
                  xref='paper',
                  yref='paper',
                   text='Source: Kaggle',
                   showarrow = False
              ) ]
          )
```

```
In [164]: | fig m = go.Figure(data=go.Choropleth(
               locations = covid may['countryterritoryCode'],
              z = covid_may['New Cases'],
              text = covid may['Country'],
              colorscale = 'RdYlGn',
              autocolorscale=False,
              reversescale=True,
              marker line color='darkgray',
              marker line width=0.5,
              colorbar title = 'New Cases',))
          fig m.update layout(
              title text='May COVID Cases',
              geo=dict(
                   showframe=False,
                   showcoastlines=True,
                   projection_type='equirectangular'
               ),
              annotations = [dict(
                  x=0.55,
                  y=0.1,
                  xref='paper',
                  yref='paper',
                   text='Source: Kaggle',
                   showarrow = False
              )]
           )
```

```
In [165]: fig june = go.Figure(data=go.Choropleth(
              locations = covid_june['countryterritoryCode'],
               z = covid_june['New Cases'],
              text = covid_june['Country'],
              colorscale = 'RdYlGn',
              autocolorscale=False,
              reversescale=True,
              marker line color='darkgray',
              marker_line_width=0.5,
              colorbar title = 'New Cases',))
          fig june.update layout(
              title text='June COVID Cases',
              geo=dict(
                   showframe=False,
                   showcoastlines=True,
                   projection_type='equirectangular'
               ),
              annotations = [dict(
                  x=0.55,
                  y=0.1,
                  xref='paper',
                  yref='paper',
                   text='Source: Kaggle',
                   showarrow = False
              ) ]
          )
```

```
In [166]: fig july = go.Figure(data=go.Choropleth(
              locations = covid_july['countryterritoryCode'],
               z = covid_july['New Cases'],
              text = covid_july['Country'],
              colorscale = 'RdYlGn',
              autocolorscale=False,
              reversescale=True,
              marker line color='darkgray',
              marker line width=0.5,
              colorbar title = 'New Cases',
          ))
          fig july.update layout(
              title text='July COVID Cases',
              geo=dict(
                   showframe=False,
                   showcoastlines=True,
                   projection type='equirectangular'
              annotations = [dict(
                  x=0.55,
                  y=0.1,
                  xref='paper',
                  yref='paper',
                  text='Source: Kaggle',
                   showarrow = False
              )]
          )
```

In []:	
In []:	

Analysis

The column one scatter plots visualize the relationship between the number of new COVID-19 cases (size of bubble) and the number of COVID-19 related deaths (color of bubble) per country from April to July. Smaller and green bubbles are indicative of fewer new cases and deaths, whereas larger and red bubbles are the opposite. The general trends by continent are as follows:

-In North America the United States experiences a decrease in monthly deaths and cases from April to June. However, in July, the resurgence of new cases in America reaches new heights. Canada sees a general of decreasing cases with consistently low fatalities. In Mexico the graphs indicate an increase in both cases and deaths.

- -In South America, Brazil is the serious case of the trend, which is increasing new cases and deaths. Brazil's situation can be considered a result of the lack of lockdown measures.
- -Europe undergoes a decrease in both new cases and deaths during the summer months. Likely a result of strict lockdown measures utilized during the first wave of COVID. Russia is an exception and experiences higher levels of new cases.
- -Africa does see an increase in cases, especially in South Africa. However, there does not appear to be a substantial increase in COVID-19 related deaths.
- -Both Australia and New Zealand retain both low case growth and fatalities.
- -In Asia there is a contrast between East Asia and India/Middle East. East Asian countries have near miniscule new cases and deaths, with exception to Japan, which experienced case growth in July. However, the Middle East and India are the opposite, experiencing both an increase in new cases and deaths throughout the summer. India is the most notable as it appears to have the largest case and death increase in Asia. There is also an increase in new cases in South East Asia countries: Indonesia and the Philippines.

Column two line charts depict the aggregated growth rate of FAANG stocks in the aforementioned time period. The dashed, red line represents the mean growth rate for that month. In April the FAANG growth rate was larger, slightly higher than 1%, however from May-July that rate was depressed and near zero growth (~.3%)

What is surprising is the FAANG growth rate was higher when the United States' death count was its worst and started to decrease as deaths decreased, but cases rose. Potentially due to stock speculation.

Given that East Asian and European cases are low/decreasing there does not seem to be much of a visual relationship between these continents and the FAANG growth rate. In fact when the new cases were at the highest level in the United States in July, the FAANG growth rate had slightly increased from .32% in June to .35% in July.

Monthly FAANG growth rates are below:

April FAANG Rate: 1.18% May FAANG Rate: 0.37% June FAANG Rate: 0.32% July FAANG Rate: 0.35%

```
In [23]: #print("April FAANG Rate: {:.2%}".format(april_mean))
    #print("May FAANG Rate: {:.2%}".format(may_mean))
    #print("June FAANG Rate: {:.2%}".format(june_mean))
    #print("July FAANG Rate: {:.2%}".format(july_mean))
```

U.S. COVID vs. USD/EM, USD/AFE

```
In [24]:
         #us counties
In [25]: #usd em econ
In [26]: usd afe = usd adv econ[usd adv econ['DATE'].dt.date.astype(str) >= '20
         20-01-21']
         #usd afe
         usd em = usd em econ[usd em econ['DATE'].dt.date.astype(str) >= '2020-
In [27]:
         01-21']
         #usd em
In [28]: us covid = us counties[us counties['date'].dt.date.astype(str) <= '202</pre>
         0-11-06']
         us covid = us covid.drop(columns = ['fips'], axis = 1)
         us covid = us covid.set index(['date'])
         us covid = us covid.rename(columns={"date":"Date", "state": "State", "cas
         es": "Cases", "deaths": "Deaths"})
         #us covid = us covid.iloc[::,:]
         #us covid = us covid.groupby(['Date', 'State'])['Cases', 'Deaths'].sum()
         us covid = us covid.groupby([(us covid.index.month)]).sum()
         #piv = us covid.pivot table(index = 'date',columns = 'State', values =
          'Cases', aggfunc = 'sum')
         #piv.pct change()
In [29]:
         #us covid
In [30]: #usd afe
In [31]:
         usd em
         usd = usd em.merge(usd afe, on = 'DATE', how = 'left')
         usd['DTWEXAFEGS'] = pd.to numeric(usd['DTWEXAFEGS'],errors = 'coerce')
         usd['DTWEXEMEGS'] = pd.to numeric(usd['DTWEXEMEGS'],errors = 'coerce')
         numeric = usd.copy()
         usd.dtypes
         numeric['EM Rolling'] = numeric.iloc[:,1].rolling(window=5).mean()
         numeric['AFE Rolling'] = numeric.iloc[:,2].rolling(window=5).mean()
         #numeric
```

```
In [32]: usd pct = usd.copy()
         usd pct['DTWEXEMEGS'] = pd.to numeric(usd pct['DTWEXEMEGS'],errors = '
         coerce').pct change()
         usd pct['DTWEXAFEGS'] = pd.to numeric(usd pct['DTWEXAFEGS'],errors = '
         coerce').pct change()
In [33]: plt.style.use('dark background')
         fig2 = plt.figure(constrained layout = True, figsize = (15,10))
         gs = fig2.add gridspec(2,2)
         covid = fig2.add subplot(gs[:,0])
         us covid[['Cases', 'Deaths']].plot(ax = covid, color = ['cyan', 'red'])
         covid.set yscale('log')
         covid.set title('Monthly U.S. COVID-19 Cases & Deaths', fontsize = 16,
         fontweight = 'bold', fontstyle = 'oblique')
         covid.set_xlabel('Month', fontsize = 14)
         covid.set ylabel('Cases & Deaths (log-scale)', fontsize = 14)
         covid.set_xticklabels(['','February', 'April','June','August','October
         '], fontsize = 10, rotation = 'horizontal')
         covid.grid(color = 'white', linestyle = '-.', linewidth = 1, axis = 'y
         ')
         ### top right
         num = fig2.add subplot(gs[0,1:])
         numeric.plot(ax = num, color = 'tab:green', x = 'DATE', y = 'DTWEXEMEGS'
          ')
         numeric.plot(ax = num, color = 'cornflowerblue', x = 'DATE', y = 'DTWE
         XAFEGS')
         numeric.plot(ax = num, color = 'red', x='DATE', y= 'EM Rolling')
         numeric.plot(ax = num, color = 'gold', x='DATE', y= 'AFE Rolling')
         num.legend(title = 'Regions', labels = ['Emerging Markets', """Advance
         d Foreign
               Economies"", """EM 5-Day Moving
Average"", """AFE 5-Day Moving
                 Average"""], loc='upper right',bbox_to_anchor=(1.36, 1.02))
         num.set title('USD Trade Weighted Indices', fontsize = 16, fontweight
         = 'bold', fontstyle = 'oblique')
         num.set xlabel('Month', fontsize = 14)
         num.grid(color = 'white', linestyle = '-.', linewidth = .5, axis = 'y'
         num.set ylabel('Index Jan 2006 = 100', fontsize = 10)
         ### bottom right
         pct = fig2.add subplot(gs[1:,1:])
```


Analysis

The first graph depicts daily U.S. COVID cases from 1/21 - 11/6 on the logarithmic scale. It is visible that from February to March cases and deaths more than doubled, experiencing the greatest growth of any month. From March to April the growth slows however both cases and deaths still nearly double. In the months after the curve begins to flatten and in October begins to decrease.

The graph in the top right corner shows a Trade Weighted USD compared to Advanced Foreign Economies (AFE) and Emerging Markets (EM) for goods & services. There is an initial appreciation of the dollar against both regions before depreciation beginning in late March. This depreciation trend continues through the end of the graphed time period. The dollar is weaker in November than in March.

The lower right corner graph visualizes daily growth rates in both Trade Weighted USD vs. AFE and EM for goods & services. Heading into March volatility begins to increase and growth rates will break +2% and nearly break -2%. The USD had both substantial increases and decreases relative to both regions, appreciating 2% against EMs and depreciating nearly -2% to AFEs. From the end of March onwards volatility decreased, and with exception to a few days, remained between -1% and 1%.

What's interesting is that in March, when the U.S. COVID cases and deaths growth substantially increases there is both an increase in volatility and an appreciation of the USD. However, when COVID cases begin to flatten circa beginning of April both Trade Weighted Indices also flatten until late-May, early-June before a depreciation trend. Volatility also decreases from the beginning of April, remaining in the -1% to 1% bounds throughout the rest of the time period. However, after April, as U.S. case and death curves continue to flatten, the depreciation trend continues. Thus, the depreciation of the USD is likely not solely due to COVID but relates to other factors in the economy at large.

However, during the period the USD actually appreciated to EMs by 3.1615 from 122.1471 to 125.3086 while the USD depreciated to AFEs by 4.6691 from 109.7980 to 105.1289.

Does USD or COVID Cases Best Explain FAANG Data

```
In [34]: usd rmb.dtypes
         usd rmb.DEXCHUS = pd.to numeric(usd rmb.DEXCHUS, errors='coerce')
         usd rmb = usd rmb.rename(columns={"DATE": "Date"})
         usd rmb = usd rmb.set index('Date')
         usd rmb = usd rmb.loc['2020-01-21':'2020-07-31']
         usd rmb = usd rmb.reset index()
         #usd rmb = usd rmb.drop(columns = ['RMB Growth Rate'], axis = 1)
         usd rmb['RMB GR'] = usd rmb['DEXCHUS'].pct change()
         usd rmb = usd rmb.iloc[1:]
         #usd rmb
In [35]: #faangs = faangs.drop(columns = ['total', 'Month'], axis = 1)
         faangs1 = faangs
         faangs1['Total'] = (faangs['Close FB'] + faangs['Close Apple'] + faang
         s['Close Amazon'] +
                            faangs['Close Google'] + faangs['Close Netflix'])
         faangs1['Date'] = pd.to datetime(faangs1['Date'])
         faangs1 = faangs1.set index('Date')
         faangs1 = faangs1.loc['2020-01-21':'2020-07-31']
         faangs1 = faangs1.reset index()
         faangs1 = faangs1.groupby('Date', as index = False)['Total'].sum()
         faangs1['Faang GR'] = faangs1['Total'].pct change()
         faangs1 = faangs1.iloc[1:]
         #faangs1
In [36]: | us covid2 = us counties.rename(columns={"date":"Date", "state": "State",
         "cases": "Cases", "deaths": "Deaths"})
         us covid2 = us covid2.set index('Date')
         us covid2 = us covid2.loc['2020-01-21':'2020-07-31']
         us covid2 = us covid2.reset index()
         us covid2 = us covid2.groupby('Date', as index = False)['Cases'].sum()
         us_covid2['Case_GR'] = us_covid2['Cases'].pct_change()
         us covid2 = us covid2.iloc[1:]
         #us covid2
In [37]: covid faang = us covid2.merge(faangs1, on = 'Date', how = 'left')
         covid faang = covid faang.dropna()
         covid faang = usd rmb.merge(covid faang, on = 'Date', how = 'left')
         covid faang = covid faang.drop(columns = ['Total','Cases','DEXCHUS'])
         covid faang = covid faang.dropna()
         covid faang = covid faang.drop(2)
         #covid faang
```

```
In [38]: reg = linreg().fit(X = covid faang[['Case GR']], y = covid faang['Faan
         g GR'])
         covid faang['yhat1'] = reg.predict(covid faang[['Case GR']])
In [39]: reg2 = linreg().fit(X = covid faang[['RMB GR']], y = covid faang['Faan
         g GR'])
         covid faang['yhat2'] = reg.predict(covid faang[['RMB GR']])
In [40]: plt.style.use('dark background')
         fig, ax = plt.subplots(nrows = 1, ncols = 2, figsize = (14,6))
         #COVID, FAANG
         covid_faang.plot.scatter(ax = ax[0], x = 'Case_GR',y='Faang_GR')
         covid faang.sort values('Case GR').set index('Case GR')['yhat1'].plot(
         ax = ax[0], color = 'gold', lw = 4)
         vals = ax[0].get yticks()
         ax[0].set yticklabels(['{:,.2%}'.format(x) for x in vals])
         valsx = ax[0].get xticks()
         ax[0].set_xticklabels(['{:,.2%}'.format(y) for y in valsx])
         ax[0].set title('U.S. COVID Case GR v. FAANG GR', fontsize = 18, fontw
         eight = 'bold')
         ax[0].set ylabel('FAANG Stock Growth Rate', fontsize = 14)
         ax[0].set xlabel('U.S. COVID Case Growth Rate', fontsize = 14)
         #RMB, FAANG
         covid faang.plot.scatter(ax = ax[1], x = 'RMB GR', y = 'Faang GR')
         covid faang.sort values('RMB GR').set index('RMB GR')['yhat2'].plot(ax
         = ax[1], color = 'gold', lw = 4)
         vals1 = ax[1].get yticks()
         ax[1].set_yticklabels(['{:,.2%}'.format(x) for x in vals1])
         valsx1 = ax[1].qet xticks()
         ax[1].set xticklabels(['{:,.2%}'.format(y) for y in valsx1])
         ax[1].set title('USD/RMB ER v. FAANG GR', fontsize = 18, fontweight =
         'bold')
         ax[1].set ylabel('USD v. RMB Growth Rate', fontsize = 14)
         ax[1].set xlabel('U.S. COVID Case Growth Rate', fontsize = 14)
```

Out[40]: Text(0.5, 0, 'U.S. COVID Case Growth Rate')


```
In [41]: reg.score(X = covid_faang[['Case_GR']], y = covid_faang['Faang_GR'])
Out[41]: 0.009477868000497658
In [42]: reg2.score(X = covid_faang[['RMB_GR']], y = covid_faang['Faang_GR'])
Out[42]: 0.048063144472155546
```

Analysis

The graphs depict the relationships between USD v. RMB and FAANG stock growth rates with U.S. COVID case percent change from 1/21 - 9/31. It is visible that increases in COVID growth rates caused a decrease in FAANG growth rate, while a slight increase in USD v. RMB growth rate. While it is expected that increased COVID cases is correlated worse stock performance, it is surprising that increases in COVID growth had a relationship with USD appreciation.

The analysis that US COVID Case GR and FAANGs are negatively correlated. However, there is a slight positive correlation between the the USD v. RMB GR and FAANG GR.

```
In [43]:
         import pandas as pd
         import matplotlib.pyplot as plt
         import datetime as dt
         import seaborn as sns
         from numpy.polynomial.polynomial import polyfit
         import matplotlib.gridspec as gridspec
         import numpy as np
         import matplotlib as mpl
         mpl.rcParams.update(mpl.rcParamsDefault)
         import math
         import os
         import requests, io
         import zipfile as zf
         import shutil
         import statsmodels.formula.api as smf
         %matplotlib inline
In [44]: state level = pd.DataFrame(us counties.groupby(['date','state'])['deat
         hs'].sum())
         state level = state level.reset index('state')
         state level = state level.reset index('date')
         state level = state level.sort values(by=['date','state'])
         state level = state level.set index('date')
         #state level
```

```
In [45]: state = pd.Series(state_level['state'].unique())
#plt.style.available
```



```
In [176]: for i in range(0,55):
        state_level_pivot['death_'+str(i)] = state_level_pivot.iloc[:,i].r
        olling(window=7).mean()

#state_level_pivot
```

```
In [175]: import datetime
          df2 2 = state level.reset index('date')
          df2 2['Date'] = pd.to datetime(df2 2['date'])
          df2 2['Date'] = df2 2['Date'].dt.strftime('%d.%m.%Y')
          df2 2['month'] = pd.DatetimeIndex(df2 2['Date']).month
          df2 2['day'] = pd.DatetimeIndex(df2 2['Date']).day
          df2 2['dayofyear'] = pd.DatetimeIndex(df2 2['Date']).dayofyear
          df2 2['weekofyear'] = pd.DatetimeIndex(df2 2['Date']).weekofyear
          df2 2['weekday'] = pd.DatetimeIndex(df2 2['Date']).weekday
          df2 2['quarter'] = pd.DatetimeIndex(df2 2['Date']).quarter
          df2 2['is month start'] = pd.DatetimeIndex(df2 2['Date']).is month sta
          df2 2['is month end'] = pd.DatetimeIndex(df2 2['Date']).is month end
          df2 = df2 = df2 = (['Date'], axis = 1)
          df2 = df2 = df2 = (['date'], axis = 1)
          df2 2= pd.get dummies(df2 2, columns=['month'], drop first=True, prefi
          x='month')
          df2 2 = pd.get dummies(df2 2, columns=['weekday'], drop first=True, pr
          efix='wday')
          df2_2 = pd.get_dummies(df2_2, columns=['quarter'], drop_first=True, pr
          efix='qrtr')
          df2 2= pd.get dummies(df2 2, columns=['is month start'], drop first=Tr
          ue, prefix='m start')
          df2 2 = pd.get dummies(df2 2, columns=['is month end'], drop first=Tru
          e, prefix='m end')
          df2 2= pd.get dummies(df2 2, columns=['state'], drop first=True, prefi
          x='state')
          #df2 2
          #df2 2
```

```
In [51]: from sklearn.model_selection import train_test_split

X = df2_2.drop(columns=["deaths"]).values
y = df2_2.deaths.values
X_train, X_holdout, y_train, y_holdout = train_test_split(X, y, shuffl e=False, test_size=0.5, random_state = 0)
X_val, X_test, y_val, y_test = train_test_split(X_holdout, y_holdout, shuffle=False, test_size=0.5, random_state = 0)
```

```
In [52]:
          from sklearn.linear model import LinearRegression
          from sklearn.metrics import mean absolute error
          model 1 = LinearRegression()
          model 1.fit(X train,y train)
                         = model 1.predict(X val)
          y predicted
          MAE sklearn = mean absolute error(y val, y predicted)
          yy = model 1.predict(X train)
          MAE sklearn train = mean absolute error(y train, yy)
 In [53]: MAE sklearn
Out[53]: 1846.8099381232194
 In [54]: us level = pd.DataFrame(state level.groupby('date')['deaths'].sum())
          #us level
 In [55]: path netflix = '/Users/jarrodhoran/Downloads/Netflix.csv'
          netflix = pd.read csv(path netflix).tail(365)
          netflix['Date'] = pd.to datetime(netflix['Date'])
          netflix = netflix[netflix['Date'].dt.year == 2020]
          #pd.reset option('display.max rows', None)
          #pd.set option('display.max rows', None)
          netflix = netflix.set index('Date')
          #netflix
 In [56]: netflix sub = netflix.iloc[:,3:4]
          #netflix sub
          path amazon = '/Users/jarrodhoran/Downloads/Amazon.csv'
 In [57]:
          amazon = pd.read csv(path amazon).tail(365)
          amazon['Date'] = pd.to datetime(amazon['Date'])
          amazon = amazon[amazon['Date'].dt.year == 2020]
          #pd.reset option('display.max rows', None)
          amazon = amazon.set index('Date')
 In [58]: amazon sub = amazon.iloc[:,3:4]
          #amazon sub
In [174]: | amazon_sub1 = amazon sub.reset index('Date')
          #amazon sub1
```

```
In [60]: | path google = '/Users/jarrodhoran/Downloads/Google.csv'
          google = pd.read csv(path google).tail(365)
          google['Date'] = pd.to datetime(google['Date'])
          google = google[google['Date'].dt.year == 2020]
          #pd.reset option('display.max rows', None)
          google = google.set index('Date')
          #google
 In [61]: google sub = google.iloc[:,3:4]
          #google sub
In [173]: | google sub1 = google sub.reset index('Date')
          #google sub1
 In [63]: path apple = '/Users/jarrodhoran/Downloads/Apple.csv'
          apple = pd.read csv(path apple).tail(365)
          apple['Date'] = pd.to datetime(apple['Date'])
          apple = apple[apple['Date'].dt.year == 2020]
          #pd.reset option('display.max rows', None)
          apple = apple.set index('Date')
          #apple
In [172]: apple sub = apple.iloc[:,3:4]
          apple sub1 = apple sub.reset index('Date')
          #apple sub1
In [65]: path facebook = '/Users/jarrodhoran/Downloads/Facebook.csv'
          facebook = pd.read csv(path facebook).tail(365)
          facebook = facebook
          facebook['Date'] = pd.to datetime(facebook['Date'])
          facebook = facebook[facebook['Date'].dt.year == 2020]
          #pd.reset option('display.max rows', None)
          facebook = facebook.set index('Date')
          #facebook
In [171]: | facebook sub = facebook.iloc[:,3:4]
          facebook sub1 = facebook sub.reset index('Date')
          #facebook sub1
```

```
In [67]:
         fig, ax1 = plt.subplots()
         fig.suptitle('Deaths Cases for US by Date & Trends with the FAANG Stoc
         ks Prices by Date', fontsize=25)
         us level['deaths'].plot(ax =ax1,figsize = (20,10), lw=3.5,alpha = 0.5)
         #us_level['SMA_3'] = us_level.iloc[:,0].rolling(window=3).mean()
         #us level['SMA 4'] = us level.iloc[:,0].rolling(window=4).mean()
         us level['SMA 5'] = us level.iloc[:,0].rolling(window=5).mean()
         us level['CMA 5'] = us level.iloc[:,0].expanding(min periods=5).mean()
         us level['EMA'] = us level.iloc[:,0].ewm(span=40,adjust=False).mean()
         #us level['SMA 3'].plot(ax=ax, lw=4)
         #us_level['SMA_4'].plot(ax=ax)
         us level['SMA_5'].plot(ax=ax1,alpha = 0.5,lw=3.5)
         us level['CMA 5'].plot(ax=ax1,alpha = 0.5,lw=3.5)
         us level['EMA'].plot(ax=ax1,alpha = 0.5,lw=3.5)
         ax1.legend(fontsize=25)
         plt.savefig('COVID19.png')
```



```
In [170]: #amazon_sub1
In [169]: #us_level
In [69]: netflix_sub1 = netflix_sub.reset_index('Date')
```

```
In [70]:
         fig,ax = plt.subplots(5,figsize=(20,25),sharex=True)
         from statsmodels.tsa.stattools import adfuller
         def test stationarity(timeseries,i,name):
             #Determing rolling statistics
             timeseries['rolmean'] = timeseries.iloc[:,1:2].rolling(window=12).
         mean()
             timeseries['rolstd'] = timeseries.iloc[:,1:2].rolling(window=12).st
         d()
             #Plot rolling statistics:
             plt.style.use('dark background')
             timeseries.plot(x='Date',y='Close',color='blue',label='Original'+'
         - '+str(name).title(),ax=ax[i])
             timeseries.plot(x='Date',y='rolmean',color='red', label='12 Day Ro
         lling Mean',ax=ax[i])
             timeseries.plot(x='Date',y='rolstd',color='orange', label = '12 Da
         y Rolling Std',ax=ax[i])
             ax[i].legend(loc='best')
             #ax[i].show(block=False)
         #ax[0].title('Rolling Mean & Standard Deviation - Netflix')
         fig.suptitle('Change of FAANG Stock Price by Date', fontsize = 30)
         test stationarity(netflix sub1,0,'netflix')
         test stationarity(google sub1,1,'google')
         test stationarity(apple sub1,2,'apple')
         test stationarity(amazon sub1,3,'amazon')
         test stationarity(facebook sub1,4,'facebook')
         plt.savefig('FAANG1.png')
```



```
In [167]:
          netflix sub1 = netflix sub1.rename(columns={"Close": "Close Netflix",'
          rolmean': 'rolmean Netflix',
                                                      'rolstd':'rolstd Netflix'})
          amazon sub1 = amazon sub1.rename(columns={"Close": "Close Amazon",'rol
          mean': 'rolmean Amazon',
                                                    "rolstd":'rolstd Amazon'})
          apple_sub1 = apple_sub1.rename(columns={"Close": "Close Apple",
                                                   'rolmean': 'rolmean Apple',
                                                  'rolstd':'rolstd Apple'})
          google sub1 = google sub1.rename(columns={"Close": "Close Google",
                                                     "rolmean": "rolmean Google",
                                                    "rolstd":'rolstd Google'})
          facebook sub1 = facebook sub1.rename(columns={"Close": "Close Facebook
                                                          'rolmean':'rolmean FB',
                                                          'rolstd':'rolstd FB'})
          #facebook sub1
          stonks = apple_sub1.merge(google_sub1, on = 'Date', how = 'left')
 In [72]:
          stonks = stonks.merge(amazon sub1, on = 'Date', how = 'left')
          stonks = stonks.merge(netflix sub1, on ='Date', how = 'left')
          stonks = stonks.merge(facebook sub1, on ='Date', how = 'left')
          #stonks = stonks.rename(columns = {"Close x": "Close Apple"})
          stonks = stonks.set index('Date')
In [73]:
 In [74]: | normalized stonks = pd.DataFrame(index = stonks.index)
 In [75]: from sklearn import preprocessing
          x = stonks.values #returns a numpy array
          min max scaler = preprocessing.MinMaxScaler()
          x scaled = min max scaler.fit transform(x)
          normalized stonks = pd.DataFrame(x scaled)
 In [76]: | normalized_stonks = normalized_stonks.rename(columns = {0:"Close Apple
          ",1:'rolmean Apple',2:'rolstd Apple',
                                              3: "Close Google", 4: "rolmean Google
          ",5:'rolstd Google',
                                              6: "Close Amazon",7:'rolmean Amazon
           ',8:'rolstd Amazon',
                                              9: "Close Netflix", 10: 'rolmean Netf
          lix',11:'rolstd Netflix',
                                              12: "Close Facebook", 13: 'rolmean FB
           ',14:'rolstd FB'})
 In [77]: | normalized stonks=normalized stonks.dropna()
```

```
In [168]:
          #normalized stonks
 In [79]: reg1 = smf.ols('Close Google ~ Close Amazon', normalized_stonks).fit()
          normalized stonks['yhat1'] = reg1.predict()
 In [80]: reg2 = smf.ols('Close Google ~ Close Apple', normalized stonks).fit()
          normalized stonks['yhat2'] = reg2.predict()
          reg3 = smf.ols('Close Google ~ Close Netflix', normalized stonks).fit()
In [81]:
          normalized stonks['yhat3'] = reg3.predict()
In [82]: reg4 = smf.ols('Close Google ~ Close Facebook', normalized stonks).fit(
          normalized stonks['yhat4'] = reg4.predict()
 In [83]: | fig,ax = plt.subplots(nrows = 2, ncols = 2, figsize = (16,14))
          #top left
          normalized_stonks.plot.scatter(ax = ax[0,0], x = 'Close_Amazon', y = '
          Close Google')
          normalized stonks.sort values('Close Amazon').set index('Close Amazon'
          )['yhat1'].plot(ax = ax[0,0],
          color = 'orchid', lw = 4)
          ax[0,0].set xlabel('Amazon Daily Close', fontsize = 14)
          ax[0,0].set ylabel('Google Daily Close', fontsize = 14)
          ax[0,0].set title('Amazon & Google', fontsize = 16, fontweight = 'bold
          ')
          #top right
          normalized stonks.plot.scatter(ax = ax[0,1], x = 'Close Apple', y = 'C
          lose Google')
          normalized stonks.sort values('Close Apple').set index('Close Apple')[
          'yhat2'].plot(ax = ax[0,1],
          color = 'orchid', lw = 4)
          ax[0,1].set xlabel('Apple Daily Close', fontsize = 14)
          ax[0,1].set ylabel('Google Daily Close', fontsize = 14)
          ax[0,1].set title('Apple & Google', fontsize = 16, fontweight = 'bold'
          )
```

```
#bottom left
normalized_stonks.plot.scatter(ax = ax[1,1], x = 'Close_Facebook', y =
'Close Google')
normalized stonks.sort values('Close Facebook').set index('Close Faceb
ook')['yhat4'].plot(ax = ax[1,1],
color = 'orchid', lw = 4)
ax[1,1].set xlabel('Facebook Daily Close', fontsize = 14)
ax[1,1].set_ylabel('Google Daily Close', fontsize = 14)
ax[1,1].set_title('Facebook & Google', fontsize = 16, fontweight = 'bo
ld')
#bottom right
normalized stonks.plot.scatter(ax = ax[1,0], x = 'Close Netflix', y =
'Close Google')
normalized stonks.sort_values('Close_Netflix').set_index('Close_Netfli
x')['yhat3'].plot(ax = ax[1,0],
color = ['orchid']
1w = 4
ax[1,0].set xlabel('Netflix Daily Close', fontsize = 14)
ax[1,0].set_ylabel('Google Daily Close', fontsize = 14)
ax[1,0].set title('Netflix & Google', fontsize = 16, fontweight = 'bol
d')
```

Out[83]: Text(0.5, 1.0, 'Netflix & Google')

In [84]: print(reg4.summary(),reg2.summary(),reg1.summary(),reg3.summary())

OLS Regression Results

======== Dep. Variable: Close Google R-squared: 0.848 Model: OLS Adj. R-squared: 0.847 Method: F-statistic: Least Squares 753.0 Date: Fri, 11 Dec 2020 Prob (F-statistic): 4.47e-57 Time: 10:10:51 Log-Likelihood: 141.27 No. Observations: 137 AIC: -278.5

-272.7 Df Model: Covariance Type: coef std err t P> t [0.0 25 0.975]
Covariance Type: nonrobust
coef std err t P> t [0.0 25 0.975] Intercept 0.0922 0.018 5.216 0.000 0.0 57 0.127 Close_Facebook 0.8769 0.032 27.441 0.000 0.8 14 0.940
coef std err t P> t [0.0 25 0.975]
Coef std err t P> t [0.0
25
Intercept 0.0922 0.018 5.216 0.000 0.0 57 0.127 Close_Facebook 0.8769 0.032 27.441 0.000 0.8 14 0.940
57
57
Close_Facebook
14
Second Company Com
Omnibus: 10.678 Durbin-Watson: 0.193 Prob(Omnibus): 0.005 Jarque-Bera (JB): 11.732 Skew: 0.706 Prob(JB): 0.00283 Kurtosis: 2.755 Cond. No. 5.44
Omnibus: 10.678 Durbin-Watson: 0.193 Prob(Omnibus): 0.005 Jarque-Bera (JB): 11.732 Skew: 0.706 Prob(JB): 0.00283 Kurtosis: 2.755 Cond. No. 5.44
0.193 Prob(Omnibus): 0.005 Jarque-Bera (JB): 11.732 Skew: 0.706 Prob(JB): 0.00283 Kurtosis: 2.755 Cond. No. 5.44 =================================
Prob(Omnibus): 0.005 Jarque-Bera (JB): 11.732 Skew: 0.706 Prob(JB): 0.00283 Kurtosis: 2.755 Cond. No. 5.44 =================================
11.732 Skew: 0.706 Prob(JB): 0.00283 Kurtosis: 2.755 Cond. No. 5.44
Skew: 0.706 Prob(JB): 0.00283 Kurtosis: 2.755 Cond. No. 5.44
<pre>0.00283 Kurtosis:</pre>
<pre>Kurtosis:</pre>
5.44
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. esults
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. esults
Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. esults ======== Dep. Variable: Close_Google R-squared: 0.762 Model: OLS Adj. R-squared: 0.760 Method: Least Squares F-statistic: 431.2 Date: Fri, 11 Dec 2020 Prob (F-statistic): 7.33e-44 Time: 10:10:51 Log-Likelihood:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. esults
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. esults
is correctly specified. esults
Dep. Variable: Close_Google R-squared: 0.762 Model: OLS Adj. R-squared: 0.760 Method: Least Squares F-statistic: 431.2 Date: Fri, 11 Dec 2020 Prob (F-statistic): 7.33e-44 Time: 10:10:51 Log-Likelihood:
Dep. Variable: Close_Google R-squared: 0.762 Model: OLS Adj. R-squared: 0.760 Method: Least Squares F-statistic: 431.2 Date: Fri, 11 Dec 2020 Prob (F-statistic): 7.33e-44 Time: 10:10:51 Log-Likelihood:
Dep. Variable: Close_Google R-squared: 0.762 Model: OLS Adj. R-squared: 0.760 Method: Least Squares F-statistic: 431.2 Date: Fri, 11 Dec 2020 Prob (F-statistic): 7.33e-44 Time: 10:10:51 Log-Likelihood:
0.762 Model: 0.760 Method: 431.2 Date: 7.33e-44 Time: OLS Adj. R-squared: P-statistic: OLS Adj. R-squared: F-statistic: 10:10:51 Log-Likelihood:
Model: 0.760 Method: 431.2 Date: 7.33e-44 Time: OLS Adj. R-squared: F-statistic: P-statistic: F-statistic: Foliable (F-statistic): Log-Likelihood:
0.760 Method: Least Squares F-statistic: 431.2 Date: Fri, 11 Dec 2020 Prob (F-statistic): 7.33e-44 Time: 10:10:51 Log-Likelihood:
Method: Least Squares F-statistic: 431.2 Date: Fri, 11 Dec 2020 Prob (F-statistic): 7.33e-44 Time: 10:10:51 Log-Likelihood:
431.2 Date: Fri, 11 Dec 2020 Prob (F-statistic): 7.33e-44 Time: 10:10:51 Log-Likelihood:
Date: Fri, 11 Dec 2020 Prob (F-statistic): 7.33e-44 Time: 10:10:51 Log-Likelihood:
7.33e-44 Time: 10:10:51 Log-Likelihood:
Time: 10:10:51 Log-Likelihood:
110.44
No. Observations: 137 AIC:
-216.9
Df Residuals: 135 BIC:
-211.0
Df Model: 1
THE CHARLES
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025
0.975] 					
Intercept	0.1324	0.021	6.188	0.000	0.090
0.175 Close_Apple 1.501	1.3703		20.766	0.000	1.240
=======================================		========			
Omnibus:		0.145	Durbin-	Watson:	
0.130			_		
Prob(Omnibus): 0.043		0.930	Jarque-	Bera (JB):	
Skew:		0.043	Prob(JB	١.	
0.979		0.013	1100,00	, -	
Kurtosis: 7.71		3.013	Cond. No	0.	
[1] Standard Er is correctly sp	ecified.			OLS Rec	gression
[1] Standard Er is correctly sp esults	ecified.	:=======:	======	OLS Reg	gression
[1] Standard Er is correctly sp esults ====================================	ecified.		======	OLS Reg	gression
[1] Standard Er is correctly specults ====================================	ecified.	:=======:	======= R-squar	OLS Reg	gression
[1] Standard Er is correctly spesults ====================================	ecified.	Close_Google	R-square	OLS Rec	gression
[1] Standard Er is correctly spesults ====================================	ecified.	Close_Google	R-square	OLS Rec	gression
[1] Standard Er is correctly specults ====================================	ecified.	Close_Google	R-squar Adj. R- F-stati	OLS Requestions of the contract of the contrac	ression
[1] Standard Er is correctly specults ====================================	ecified.	Close_Google OLS Least Squares	R-square Adj. R- F-stati	OLS Received: squared: stic: -statistic):	ression
[1] Standard Er is correctly specults ====================================	ecified.	Close_Google OLS Least Squares	R-squar Adj. R- F-stati	OLS Received: squared: stic: -statistic):	ression
[1] Standard Er is correctly specults ====================================	ecified.	Close_Google OLS Least Squares , 11 Dec 2020 10:10:51	R-square Adj. R- F-stati	OLS Received: squared: stic: -statistic):	ression
[1] Standard Er is correctly specults ====================================	ecified.	Close_Google OLS Least Squares , 11 Dec 2020 10:10:51	R-square Adj. R- F-stati Prob (F-	OLS Received: squared: stic: -statistic):	ression
[1] Standard Er is correctly specults ====================================	ecified.	Close_Google OLS Least Squares , 11 Dec 2020 10:10:51 137	R-square Adj. R- F-stati Prob (F- Log-Like	OLS Received: squared: stic: -statistic):	ression
[1] Standard Er is correctly specults ====================================	rri	Close_Google OLS Least Squares , 11 Dec 2020 10:10:51 137 135 1 nonrobust	R-square Adj. R- F-stati Prob (F- Log-Like AIC: BIC:	OLS Rec	ression
[1] Standard Er is correctly specults ====================================	rri	Close_Google OLS Least Squares , 11 Dec 2020 10:10:51 137 135 1 nonrobust	R-square Adj. R- F-stati Prob (F- Log-Like AIC: BIC:	OLS Rec	ression
Dep. Variable: 0.361 Model: 0.357 Method: 76.41 Date: 8.01e-15 Time: 42.954 No. Observation -81.91 Df Residuals: -76.07 Df Model: Covariance Type	Fri	Close_Google OLS Least Squares , 11 Dec 2020 10:10:51 137 135 1 nonrobust	R-square Adj. R- F-statie Prob (F- Log-Like AIC: BIC:	OLS Rec	gression

Intercept	0.3174	0.029	10.964	0.000	0.260
0.375 Close_Amazon	0.4960	0.057	8.741	0.000	0.384
0.608					
========					
Omnibus:		2.358	Durbin-W	atson:	
Prob(Omnibus):		0.308	Jarque-B	era (JB):	
Skew:		0.084	Prob(JB)	:	
0.416 Kurtosis: 4.47		2.472	Cond. No	•	
==========	=======	========		=======	======
=======					
Warnings:					
[1] Standard Err		that the co	ovariance m		
is correctly spe	ecified.			OLS Regr	ression R
==========	=======				=======
=======					
Dep. Variable: 0.301	C	:lose_Google	R-square	d:	
Model:		OLS	Adj. R-s	quared:	
0.295			_	_	
Method:	Le	east Squares	F-statis	tic:	
58.03 Date:	Fri.	11 Dec 2020	Prob (F-	statistic):	
4.05e-12	,	11 200 2020	1100 (1	seactscio, .	
Time:		10:10:51	Log-Like	lihood:	
36.725		127	7.T.C		
No. Observations -69.45	; :	137	AIC:		
Df Residuals:		135	BIC:		
-63.61					
Df Model:		1			
Covariance Type:					
=========					
	coef	std err	t	P> t	[0.02
5 0.975]					
Intercept	0.2781	0.037	7.513	0.000	0.20
5 0.351					
Close_Netflix	0.5582	0.073	7.618	0.000	0.41
3 0.703	:=======	.=======		========	

======== Omnibus: 4.002 Durbin-Watson: 0.071 Prob(Omnibus): 0.135 Jarque-Bera (JB): 2.337 0.033 Skew: Prob(JB): 0.311 Kurtosis: 2.363 Cond. No. 5.59 ______

=======

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Analysis

The charts above use a normalized end-of-day price for the FAANG stocks. The analysis reveals that when predicting the stock price of Google, the end-of-day price for Facebook is the best predictor with an R^2 of .848. The remaining order is Apple (R^2: .762), Amazon (R^2: .361), and Netflix (R^2: .301). Thus, it is likely that the stock prices for Facebook and Google experienced the most similar percent change throughout the time period.

There is a low P-value, which is indicative that the results are unlikely to occur randomly.