Eckstein-Keane-Wolpin models

An invitation for transdisciplinary collaboration

Computational modeling in economics

- provide learning opportunities
- assess importance of competing mechanisms
- predict the effects of public policies

Eckstein-Keane-Wolpin (EKW) models

- understanding individual decisions
 - human capital investment
 - savings and retirement
- predicting effects of policies
 - welfare programs
 - tax schedules

Transdisciplinary components

- economic model
- mathematical formulation
- computational implementation

Cooperations

Institute for Numerical Simulation

Roadmap

- Setup
- Example
- Improvements
- Extensions

Setup

Components

- economic model
- mathematical formulation
- calibration procedure

Economic model

Decision problem

 $t = 1, \dots, T$ decision period

 $s_t \in S$ state

 $a_t \in A$ action

 $a_t(s_t)$ decision rule

 $r_t(s_t, a_t)$ immediate reward

Timing of events

$$\pi=(a_1^\pi(s_1),\ldots,a_T^\pi(s_T))$$
 policy δ discount factor $p_t(s_t,a_t)$ conditional distribution

Individual's objective

$$\max_{\pi \in \Pi} \mathsf{E}_{s_1}^{\pi} \left[\sum_{t=1}^{T} \delta^{t-1} r_t(s_t, a_t^{\pi}(s_t)) \middle| \mathcal{I}_1 \right]$$

Mathematical formulation

Policy evaluation

$$v_t^{\pi}(s_t) \equiv \mathsf{E}_{s_t}^{\pi} \left[\left. \sum_{j=0}^{T-t} \delta^j r_{t+j}(s_{t+j}, a_{t+j}^{\pi}(s_{t+j})) \right| \, \mathcal{I}_t \, \right]$$

Inductive scheme

$$\boldsymbol{v}_t^{\pi}(\boldsymbol{s}_t) = r_t(\boldsymbol{s}_t, \boldsymbol{a}_t^{\pi}(\boldsymbol{s}_t)) + \delta \, \mathsf{E}_{\boldsymbol{s}_t}^{\pi} \left[\left. \boldsymbol{v}_{t+1}^{\pi}(\boldsymbol{s}_{t+1}) \right| \, \mathcal{I}_t \, \right]$$

Optimality equations

$$egin{aligned} oldsymbol{v}_t^{\pi^*}(oldsymbol{s}_t) &= \max_{oldsymbol{a}_t \in A} \left\{ r_t(oldsymbol{s}_t, oldsymbol{a}_t) + \delta \, \mathsf{E}_{oldsymbol{s}_t}^{\pi^*} \left[\left. oldsymbol{v}_{t+1}^{\pi^*}(oldsymbol{s}_{t+1}) \, \middle| \, \mathcal{I}_t \,
ight]
ight\} \end{aligned}$$

Backward induction algorithm

$$\begin{aligned} &\textbf{for } t = T, \dots, 1 \textbf{ do} \\ &\textbf{ if } t == T \textbf{ then} \\ &v_T^{\pi^*}(s_T) = \max_{a_T \in A} \left\{ r_T(s_T, a_T) \right\} \quad \forall s_T \in S \\ &\textbf{ else} \\ &\textbf{ Compute } v_t^{\pi^*}(s_t) \textbf{ for each } s_t \in S \textbf{ by} \\ &v_t^{\pi^*}(s_t) = \max_{a_t \in A} \left\{ r_t(s_t, a_t) + \delta \operatorname{E}_{s_t}^{\pi} \left[\left. v_{t+1}^{\pi^*}(s_{t+1}) \right| \mathcal{I}_t \right. \right] \right\} \\ &\text{ and set} \\ &a_t^{\pi^*}(s_t) = \underset{a_t \in A}{\operatorname{arg max}} \left\{ r_t(s_t, a_t) + \delta \operatorname{E}_{s_t}^{\pi} \left[\left. v_{t+1}^{\pi^*}(s_{t+1}) \right| \mathcal{I}_t \right. \right] \right\} \\ &\textbf{ end if} \\ &\textbf{ end for} \end{aligned}$$

Calibration procedure

Data

$$D = \{a_{it}, x_{it}, r_{it} : i = 1, ..., N; t = 1, ..., T_i\}$$

State variables

- $ightharpoonup s_t = (x_t, \epsilon_t)$
 - \triangleright x_t observed
 - \triangleright ϵ_t unobserved

Procedures

likelihood-based

$$\hat{\theta} \equiv \underset{\theta \in \Theta}{\operatorname{arg \, max}} \prod_{i=1}^{N} \prod_{t=1}^{T_i} p_{it}(a_{it}, r_{it} \mid x_{it}, \theta)$$

simulation-based

$$\hat{\theta} \equiv \underset{\theta \in \Theta}{\arg \min} (M_D - M_S(\theta))' W(M_D - M_S(\theta))$$

Example

Seminal paper

► Keane, M. P. and Wolpin, K. I. (1994). The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence. Review of Economics and Statistics, 76(4):648–672

Model of occupational choice

- ▶ 1,000 individuals starting at age 16
- life cycle histories
 - school attendance
 - occupation-specific work status
 - wages

Labor market

$$r_t(s_t, 1) = w_{1t} = \exp\{\underbrace{\alpha_{10}}_{\text{endowment}} + \underbrace{\alpha_{11}g_t}_{\text{schooling}} + \underbrace{\alpha_{12}e_{1t} + \alpha_{13}e_{1t}^2}_{\text{own experience}} + \underbrace{\alpha_{14}e_{2t} + \alpha_{15}e_{2t}^2}_{\text{other experience}} + \underbrace{\epsilon_{1t}}_{\text{shock}} \}$$

Schooling

$$r_t(s_t, 3) = \underbrace{\beta_0}_{\text{taste}} - \underbrace{\beta_1 \mathbb{I}[g_t \ge 12]}_{\text{direct cost}} - \underbrace{\beta_2 \mathbb{I}[a_{t-1} \ne 3]}_{\text{reenrollment effort}} + \underbrace{\epsilon_{3t}}_{\text{shock}}$$

Home

$$r_t(s_t, 4) = \underbrace{\gamma_0}_{\text{taste}} + \underbrace{\epsilon_{4t}}_{\text{shock}}$$

State space

$$s_t = \{g_t, e_{1t}, e_{2t}, a_{t-1}, \epsilon_{1t}, \epsilon_{2t}, \epsilon_{3t}, \epsilon_{4t}\}$$

Transitions

observed state variables

$$e_{1,t+1} = e_{1t} + \mathbb{I}[a_t = 1]$$
 $e_{2,t+1} = e_{2t} + \mathbb{I}[a_t = 2]$
 $g_{t+1} = g_t + \mathbb{I}[a_t = 3]$

unobserved state variables

$$\{\epsilon_{1t}, \epsilon_{2t}, \epsilon_{3t}, \epsilon_{4t}\} \sim N(0, \Sigma)$$

Figure: Choices over the life cycle

Figure: Economic mechanism and policy forecast

Research codes

respy

GitHub OpenSourceEconomics/respy

Docs respy.readthedocs.io

estimagic

GitHub OpenSourceEconomics/estimagic

Docs estimagic.readthedocs.io

Figure: Typical workflow

```
from estimagic.optimization.optimize import maximize
import respy as rp

# obtain model input
params, options, df = rp.get_example_model("kw_94_two")

# process model specification
crit_func = rp.get_crit_func(params, options, df)
simulate = rp.get_simulate_func(params, options)

# perform calibration
results, params_rslt = maximize(crit_func, params, "nlopt_bobyqa")

# conduct analysis
df_rslt = simulate(params_rslt)
```

Figure: Model specification

e	comment	value	name	category
	discount factor	0.9500	delta	delta
	log of rental price	9.2100	constant	wage_a
inte	return to an additional year of schooling	0.0400	exp_edu	wage_a
	return to same sector experience	0.0330	exp_a	wage_a
sit	return to same sector, quadratic experience	-0.0005	exp_a_square	wage_a
	return to other sector experience	0.0000	exp_b	wage_a
	return to other sector, quadratic experience	0.0000	exp_b_square	wage_a
	log of rental price	8.2000	constant	wage_b
monte_	return to an additional year of schooling	0.0800	exp_edu	wage_b
core_sta	return to same sector experience	0.0670	exp_b	wage_b
cov	return to same sector, quadratic experience	-0.0010	exp_b_square	wage_b
covariate	return to other sector experience	0.0220	exp_a	wage_b
covariate	return to other sector, quadratic experience	-0.0005	exp_a_square	wage_b
covariates.at_least_	constant reward for choosing education	5000.0000	constant	nonpec_edu
covariates.not_	reward for going to college (tuition, etc.)	-5000.0000	at_least_twelve_exp_edu	nonpec_edu

200	estimation_draws
500	estimation_seed
500	estimation_tau
-	interpolation_points
40	n_periods
1000	simulation_agents
133	simulation_seed
500	solution_draws
456	solution_seed
randon	monte_carlo_sequence
[period > 0 and exp_{i} == period and lagged_c	core_state_space_filters
:	covariates.constant
exp_a ** 2	covariates.exp_a_square
exp_b ** 2	covariates.exp_b_square
exp_edu >= 12	covariates.at_least_twelve_exp_edu
lagged_choice_1 != 'edu	covariates.not_edu_last_period

Parameterization

Options

Figure: Dashboard

Roadmap

Improvements

- numerical integration
- global optimization
- function approximation
- high-performance computing

Extensions

- robust decision-making
- uncertainty quantification
- model validation
- nonstandard expectations

Join us!

GitHub http://bit.ly/ose-github

Meetup http://bit.ly/ose-meetup

Chat http://bit.ly/ose-zulip

Appendix

Content

- ► Contact
- References

Contact

Philipp Eisenhauer

Mail peisenha@uni-bonn.de

Web http://eisenhauer.io

GitHub https://github.com/peisenha

References

Keane, M. P. and Wolpin, K. I. (1994). The solution and estimation of discrete choice dynamic programming models by simulation and interpolation: Monte Carlo evidence. *Review of Economics and Statistics*, 76(4):648–672.