

Contrôle mécanique du solide Arbre vibrant

On s'intéresse aux caractéristiques cinétiques d'un arbre vibrant (1) représenté ci-après

On appelle G le centre de gravité de l'arbre 1 et on définit :

 $\overrightarrow{OG} = Y_G \cdot \overrightarrow{y_1}$; $(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ repère lié à la partie fixe; $(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$ repère lié à (1)

A tout instant, $\vec{x} = \vec{x_1}$.

On définit l'angle θ tel que $\theta = (\vec{y}, \vec{y_1}) = (\vec{z}, \vec{z_1})$ et on appelle $\omega = \theta$ la vitesse de rotation de l'arbre 1.

L'arbre est en acier de masse volumique $ho=7850~Kg/m^3$

L'accélération de la pesanteur vaut : $g=9.81 m/s^2$.

On note M la masse d'un arbre

On découpe l'arbre en 5 solides tels que : (di=2ri et Di=2Ri)

S_1	S_2	S_3	S ₄	S ₅
Cylindre	Demi-cylindre	Cylindre	Demi-cylindre	Cylindre
$D_1 = 30 mm$ $L_1 = 75 mm$	$D_2 = 120 \ mm$ $d_2 = 40 \ mm$ $L_2 = 100 \ mm$	$D_3 = 40 mm$ $L_3 = 250 mm$	$D_4 = 120 \ mm$ $d_4 = 40 \ mm$ $L_4 = 100 \ mm$	$D_5 = 30 mm$ $L_5 = 75 mm$
$\overrightarrow{OG_1} = \begin{bmatrix} -l_1 \\ 0 \\ 0 \end{bmatrix}^{\mathfrak{B}_1}$ $l_1 = 162.5 \ mm$	$\overrightarrow{OG_2} = \begin{bmatrix} -l_2 \\ Y_{G_2} \\ 0 \end{bmatrix}^{\mathfrak{B}_1}$ $l_2 = 75 \ mm$	$\overrightarrow{OG_3} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}^{\mathfrak{B}_1}$	$\overrightarrow{OG_4} = \begin{bmatrix} l_4 \\ Y_{G_4} \\ 0 \end{bmatrix}^{\mathfrak{B}_1}$ $l_4 = 75 \ mm$	$\overrightarrow{OG_5} = \begin{bmatrix} l_5 \\ 0 \\ 0 \end{bmatrix}^{\mathfrak{B}_1}$ $l_5 = 162.5 \ mm$

On appelle

- Hi les projections H2 et H4 des centres de gravité des parties S2 et S4 sur l'axe (O, \vec{x})
- Ri et ri les rayons associés aux diamètres Di et di
- Mi la masse du Si

I - Centre de gravité

On considère la forme en demi-disque de rayon

- (R) tel que ci-contre
- 1) Déterminer l'ordonnée **Y** du centre de gravité de cette surface

Vérifiez que vous trouvez : $Y = \frac{4R}{3\pi}$

On considère la surface comprise entre les demi-disques de rayons Ri et Re

- 2) En exploitant le résultat d'un demi-disque plein, retrouvez Y en exploitant 2 demi-disques
- 3) En déduire la valeur numérique de la coordonnée Y des centres de gravité des volumes S_2 et S_4
- 4) Déterminer les masses M_i et ordonnées Y_{Gi} des solides S_i , puis la masse totale M de l'arbre 1

Volume 1	Volume 2	Volume 3	Volume 4	Volume 5		
Cylindre	Demi-cylindre	Cylindre	Demi-cylindre	Cylindre		
$D_1 = 30 mm$ $L_1 = 75 mm$	$D_2 = 120 \ mm$ $d_2 = 40 \ mm$ $L_2 = 100 \ mm$	$D_3 = 40 mm$ $L_3 = 250 mm$	$D_4 = 120 mm$ $d_4 = 40 mm$ $L_4 = 100 mm$	$D_5 = 30 mm$ $L_5 = 75 mm$		
$Y_{G_1} =$	$Y_{G_2} =$	$Y_{G_3} =$	$Y_{G_4} =$	$Y_{G_5} =$		
$M_1 =$	$M_2 =$	$M_3 =$	$M_4 =$	$M_5 =$		
M =						

5) En déduire la position G du centre d'inertie de l'arbre 1 dans $\mathfrak{B}\mathbf{1}$

II - Matrice d'inertie

6) Proposer la forme (en la justifiant) de la matrice d'inertie de l'arbre 1 en O dans la base B_1

La matrice d'inertie I(Gi,Si) en son centre Gi d'un cylindre plein Si de rayon Ri, de longueur Li et de masse Mi, d'axe $(Gi, \overrightarrow{z_i})$ dans la base Bi est :

La matrice d'inertie en Gi de S_i:
$$I_{Gi}\left(S_{i}\right) = \begin{bmatrix} Mi\left(\frac{Ri^{2}}{4} + \frac{Li^{2}}{12}\right) & 0 & 0\\ 0 & Mi\left(\frac{Ri^{2}}{4} + \frac{Li^{2}}{12}\right) & 0\\ 0 & 0 & Mi\frac{Ri^{2}}{2} \end{bmatrix}_{(\overrightarrow{x_{1}},\overrightarrow{y_{1}},\overrightarrow{z_{1}})}$$

7) En déduire la matrice d'inertie $I_{Gi}(Si)$ en son centre Gi d'un cylindre plein Si de rayon Ri, de longueur Li et de masse Mi, d'axe $(Gi, \overrightarrow{x_i})$ dans la base Bi

Sachant que les matrices d'inertie des cylindres S₁, S₃ et S₅ sont telles que :

$$I_{G_1}\left(S_1\right) \ = \ \begin{bmatrix} A_1 & 0 & 0 \\ 0 & B_1 & 0 \\ 0 & 0 & C_1 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_3}\left(S_3\right) \ = \ \begin{bmatrix} A_3 & 0 & 0 \\ 0 & B_3 & 0 \\ 0 & 0 & C_3 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{x_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{x_1}')}; I_{G_5}\left(S_5\right) \ = \ \begin{bmatrix} A_5 & 0 & 0 \\ 0 & B_5 & 0 \\ 0 & 0 & C_5 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{x_1}, \overrightarrow$$

Et que le vecteur $\overrightarrow{OG_i}$ est tel que :

$$\overrightarrow{\mathbf{OG_i}} = \begin{bmatrix} a_i \\ b_i \\ c_i \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})} \operatorname{donc} \ I_O \left(S_i \right) = \ I_{G_i} \left(S_i \right) + M_i \begin{bmatrix} b_i^2 + c_i^2 & -a_i. \, b_i & -a_i. \, c_i \\ -a_i. \, b_i & a_i^2 + c_i^2 & b_i. \, c_i \\ -a_i. \, c_i & -b_i. \, c_i & a_i^2 + b_i^2 \end{bmatrix}_{(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})}$$

$$\underline{\mathsf{Rappel}: \overrightarrow{\textit{OG}_1}} = -\mathsf{I}_1.\overrightarrow{x_1}\;;\; \overrightarrow{\textit{OG}_3} = \overrightarrow{\mathsf{0}}\;;\; \overrightarrow{\textit{OG}_5} = \mathsf{I}_5.\overrightarrow{x_1}\;\;\mathsf{avec}\;\mathsf{I}_1 = \mathsf{I}_5$$

- 8) En déduire la matrice $I_0(S_1+S_3+S_5)$ des parties S_1 , S_3 et S_5 de l'arbre 1 en O dans la base B_1
- 9) Justifier le fait que nous allons préférer calculer la matrice des deux cylindres creux en leurs points H_i plutôt qu'en leurs points G_i
- 10) Déterminer la matrice d'inertie $I_{\rm Hi}(Si)$ en Hi d'un demi-cylindre creux dans le demi plan y>0, de rayon intérieur r_i , de rayon extérieur R_i et de longueur L_i , d'axe (H_i, \vec{x}) dans la base B_i (voir figure ci-contre) Remarque : Le solide étant un solide de « demi » révolution, sa matrice d'inertie se simplifie de la manière suivante

$$I_{H_i}\left(S_i\right) \ = \ \begin{bmatrix} A_i & 0 & 0 \\ 0 & B_i & 0 \\ 0 & 0 & B_i \end{bmatrix}_{\left(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1}\right)} \text{avec } B_i = \frac{A_i}{2} + \int x^2.\mathsf{dm}$$

11) En déduire la matrice d'inertie de chaque cylindre creux 2 et 4 aux points H_i dans la base B_1 Justifier le fait que y < 0 ne change pas le résultat précédent

Sachant que l'on a :

$$I_{H_2}\left(S_2\right) \; = \; \begin{bmatrix} A_2 & 0 & 0 \\ 0 & B_2 & 0 \\ 0 & 0 & C_2 \end{bmatrix}_{(\overrightarrow{x_1}, \, \overrightarrow{y_1}, \, \overrightarrow{z_1})} \text{et} \quad I_{H_4}\left(S_4\right) \; = \; \begin{bmatrix} A_4 & 0 & 0 \\ 0 & B_4 & 0 \\ 0 & 0 & C_4 \end{bmatrix}_{(\overrightarrow{x_1}, \, \overrightarrow{y_1}, \, \overrightarrow{z_1})}$$

$$\overrightarrow{\boldsymbol{H_{i}G_{i}}} = \begin{bmatrix} \alpha_{i} \\ \beta_{i} \\ \gamma_{i} \end{bmatrix}_{(\overrightarrow{x_{1}}, \overrightarrow{y_{1}}, \overrightarrow{z_{1}})} \operatorname{donc} \ I_{H_{i}}\left(S_{i}\right) = \ I_{G_{i}}\left(S_{i}\right) + M_{i} \begin{bmatrix} \beta_{i}^{2} + \gamma_{i}^{2} & -\alpha_{i}.\beta_{i} & -\alpha_{i}.\gamma_{i} \\ -\alpha_{i}.\beta_{i} & \alpha_{i}^{2} + \gamma_{i}^{2} & -\beta_{i}.\gamma_{i} \\ -\alpha_{i}.\gamma_{i} & -\beta_{i}.\gamma_{i} & \alpha_{i}^{2} + \beta_{i}^{2} \end{bmatrix}_{(\overrightarrow{x_{1}}, \overrightarrow{y_{1}}, \overrightarrow{z_{1}})}$$

$$\overrightarrow{\boldsymbol{OG_{i}}} = \begin{bmatrix} a_{i} \\ b_{i} \\ c_{i} \end{bmatrix}_{(\overrightarrow{x_{1}}, \overrightarrow{y_{1}}, \overrightarrow{z_{1}})} \operatorname{donc} \ I_{O}\left(S_{i}\right) = \ I_{G_{i}}\left(S_{i}\right) + M_{i} \begin{bmatrix} b_{i}^{2} + c_{i}^{2} & -a_{i}.b_{i} & -a_{i}.c_{i} \\ -a_{i}.b_{i} & a_{i}^{2} + c_{i}^{2} & b_{i}.c_{i} \\ -a_{i}.c_{i} & -b_{i}.c_{i} & a_{i}^{2} + b_{i}^{2} \end{bmatrix}_{(\overrightarrow{x_{1}}, \overrightarrow{y_{1}}, \overrightarrow{z_{1}})}$$

12) Exprimer les vecteurs $\overrightarrow{H_2G_2}$; $\overrightarrow{H_4G_4}$ en fonction de y_{G2} et y_{G4} , en déduire α_1 , β_1 , γ_1 , α_2 , β_2 , γ_2 Exprimer les vecteurs $\overrightarrow{OG_2}$; $\overrightarrow{OG_4}$ en fonction de I_2 et I_4 , en déduire a_2 , b_2 , b_2 , a_4 , a_4 , a_5 . Démontrer que la matrice d'inertie $I_0(S_2+S_4)$ des cylindres creux 2 et 4 au point a_5 0 dans la base a_5 1 est :

$$I_{O}(S_{2} + S_{4}) = \begin{bmatrix} 2A_{2} & 0 & 0\\ 0 & 2B_{2} + 2M_{2}l_{2}^{2} & 0\\ 0 & 0 & 2B_{2} + 2M_{2}l_{2}^{2} \end{bmatrix}_{\overrightarrow{(x_{1}, y_{1}, z_{1})}}$$

- 13) En déduire la matrice $I_0(1)$ en 0 de l'arbre 1 dans la base B_1 .
- 14) En déduire la matrice $I_G(1)$ en G de l'arbre 1 dans B_1 .

Pour la suite, on donne : $Y_G = -19,46 \text{ mm}$; M = 11.19 Kg

$$I_{G}(1) = \begin{bmatrix} 1,21. \ 10^{-2} \ kg. m^{2} & 0 & 0 \\ 0 & 9,44. \ 10^{-2} \ kg. m^{2} & 0 \\ 0 & 0 & 9,01. \ 10^{-2} \ kg. m^{2} \end{bmatrix}_{\overrightarrow{(x_{1}, y_{1}, z_{1})}} = \begin{bmatrix} A & 0 & 0 \\ 0 & B & 0 \\ 0 & 0 & C \end{bmatrix}_{\overrightarrow{(x_{1}, y_{1}, z_{1})}}$$

III - Torseur dynamique

Dans cette partie, on appelle G le centre de gravité de l'arbre 1 complet.

- 15) Déterminer la vitesse et l'accélération du centre de gravité G puis en déduire l'expression de la résultante dynamique $\overrightarrow{R_{d_{0\to 1}}}$ dans la base $B_1(\overrightarrow{x_1}, \overrightarrow{y_1}, \overrightarrow{z_1})$
- 16) Déterminer le moment cinétique de l'arbre 1 en G $\vec{\sigma}_{G(1/R_0)}$ dans la base B_1 .
- 17) Déterminer le moment dynamique de l'arbre 1 en G $\vec{\delta}_{G(1/R)}$ dans la base B1.
- 18) Déterminer le torseur dynamique de l'arbre 1 en G $\{\mathcal{D}_{(1/R)}\}$ dans la base B_1 .