Kombinatorika - zapiski s predavanj prof. Konvalinke

Domen Vogrin — Tomaž Poljanšek — Yon Ploj

jesen/zima 2021

Kazalo

1 Osnovni principi kombinatorike

1.1 Funkcije in štetje

Definicija 1.1 (Funkcija).

- injektivna (y je slika največ enega x) $(x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2))$
- surjektivna (y je slika vsaj enega x) $(\forall y \in Y \exists x \in X : f(x) = y)$
- bijektivna (y je slika natanko enega x) (injektivna in surjektivna)

$$\exists$$
 injekcija $f: X \to Y \implies |X| \leqslant |Y|$

$$\exists$$
 surjekcija $f: X \to Y \implies |X| \geqslant |Y|$

$$\exists$$
bijekcija $f:X\to Y\implies |X|=|Y|$

 $f:X\to Y$ lahko interpretiramo kot razporejanje kroglic(X)v škatle (Y). Oznake:

$$\mathbb{N} := \{0, 1, 2, \dots\}$$
$$[n] := \{1, 2, \dots, n\}, \quad |[n]| = n$$
$$2^X := \{A \subseteq X\} (= P(x))$$
$$Y^X := \{f : X \to Y\}$$

Izrek 1.2 (Binomski).

$$\sum_{k=0}^{n} \binom{n}{k} x^k = (1+x)^n$$

1.2 Osnovna načela

Izrek 1.3 (Dirichletovo načelo).

$$\exists$$
 injektivna $f: X \to Y \implies |X| \leqslant |Y|$

Ekvivalentno:

$$|X| > |Y| \implies \neg \exists$$
 injektivna $f: X \to Y$

ali z besedami: "če damo n kroglic v k škatel in velja n>k, sta v vsaj eni škatli vsaj dve kroglici."

Izrek 1.4 (Načelo vsote).

$$A \cap B = \emptyset \implies |A \cup B| = |A| + |B|$$

Izrek 1.5 (Načelo vključitev in izkjučitev).

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Izrek 1.6 (Načelo produkta).

$$|A \times B| = |A| \cdot |B|$$

Kako uporabljamo ti dve načeli?

- načelo vsote: dve (disjunktni) možnosti, obarvamo vsako posebej, rezultata seštejemo
- načelo produkta: naredimo dve <u>neodvisni</u> izbiri, število možnosti za eno in drugo zmnožimo

Trditev 1.7. $|2^X| = 2^{|X|}$

Dokaz. (Formalen)

$$\Phi = 2^{X} \to \{0, 1\} \times \{0, 1\} \times \dots \times \{0, 1\} \ (n\text{-krat})$$

$$\Phi(A) = (\varepsilon_{1}, \dots, \varepsilon_{n}), A \subseteq X$$

$$\varepsilon_{i} = \begin{cases} 0: & x_{i} \notin A \\ 1; & x_{i} \in A \end{cases}$$

$$\Psi : \{0, 1\}^{n} \to 2^{X}$$

$$\Psi(\varepsilon_{1}, \dots, \varepsilon_{n}) = \{x_{i} : \varepsilon_{i} = 1\}$$

$$\Psi \circ \Phi = id_{2^X}$$

$$\Phi \circ \Psi = id_{\{0,1\}^n}$$
 $\Longrightarrow \Phi$ je bijekcija

 $|\{0,1\}^n|=2^n$ po načelu produkta $\implies |2^X|=2^{|X|}$

Dokaz. (Intuitiven)

Za vsakega od n elementov imamo dve izbiri (damo / ne damo v podmnožico). Izbire so neodvisne, torej imamo $2 \cdot 2 \cdot \ldots \cdot 2 = 2^n$ izbir.

Trditev 1.8. $|Y^X| = |Y|^{|X|}$

Dokaz. (Formalen)

$$\Phi: Y^{X} \to Y^{|X|}$$

$$X = \{x_{1}, ..., x_{n}\}$$

$$\Phi(f) = (f(x_{1}), ..., f(x_{n}))$$

$$\Psi(y_{1}, ..., y_{n}) = f$$

$$f(x_{i}) = y_{i}$$

Dokaz. (Intuitiven)

Za vsak element iz X imamo |Y| izbir. Izbire so neodvisne, torej imamo $|Y|\cdot |Y|\cdot ...\cdot |Y|=|Y|^{|X|}$ izbir.

Trditev 1.9. Število injektivnih preslikav v Y^X je

$$|Y|\cdot (|Y|-1)\cdot \ldots \cdot (|Y|-|X|+1)$$

Dokaz. Za sliko prvega elementa imamo |Y|izbir, za drugega $(|Y|-1),\,\dots$

Opomba. Tu smo uporabili varianto pravila produkta - izbire niso neodvisne, je pa neodvisno število izbir.

Opomba. Velja tudi za |X|>|Y|(=0)

1.3 Permutacije

Definicija 1.10 (Permutacija). Bijektivna preslikava iz X v X se imenuje permutacija. Množico permutacij [n] označimo S_n .

Definicija 1.11 (Relacija). Je množica $R \subseteq X \times Y$. Zapis $(x,y) \in R$ krajšamo kot xRy.

Definicija 1.12 (Preslikava). Relacija f je preslikava, kadar velja:

$$\forall x \in X \; \exists ! y \in Y : x f y$$

Pišemo y = f(x).

Trditev 1.13.

$$|S_n| = n!$$

Dokaz. Za sliko 1 imamo n možnosti, za sliko 2 jih je $(n-1), \ldots$

Primer. Komponiranje permutacij

$$(4\ 2\ 6\ 1\ 3\ 5) \cdot (3\ 6\ 1\ 2\ 5\ 4) = (6\ 5\ 4\ 2\ 3\ 1)$$

Kompozitum je asociativen, a ni komutativen. Ima enoto, $id = (1 \ 2 \dots n)$ in inverz, npr. $(4 \ 2 \ 6 \ 1 \ 3 \ 5)^{-1} = (4 \ 2 \ 5 \ 1 \ 6 \ 3)$.

Definicija 1.14 (Simetrična grupa). Množica permutacij s komponiranjem tvori grupo (S_n, \cdot) .

Naj bo $\pi \in S_n$, $i \in [n]$

$$i, \pi(i), \pi^2(i), \pi^3(i), \cdots$$

Po Dirichletovem principu obstajata j in j', j < j', tako da

$$\pi^{j}(i) = \pi^{j'}(i) \implies i = \pi^{j'-j}(i)$$

$$(i \pi(i) \pi^2(i) \cdots \pi^{n-1}(i))$$

Trditev 1.15. Permutacijo lahko zapišemo kot produkt disjunktnih ciklov *Primer*.

$$\pi = (4\ 2\ 6\ 1\ 3\ 5) = (1\ 4)(2)(3\ 6\ 5)$$

2 Podmnožice in načrti

2.1 Binomski koeficienti

Definicija 2.1 (Potenčna množica).

$$2^A := \{B \subseteq A\}$$

Definicija 2.2 (Binomski simbol). Lahko definiramo tudi za množice

$$\binom{A}{k} := \{B \subseteq A : |B| = k\}$$

Beremo "A nad k".

Definicija 2.3 (Binomski koeficient).

$$\binom{n}{k} := \left| \binom{[n]}{k} \right|$$

Beremo "n nad k" ("n choose k").

Izrek 2.4 (Pomen binomskega koeficienta). $\binom{n}{k}$ nam pove število k-elementnih podmnožic množice z n elementi, oziroma število načinov, da izberemo k elementov izmed n elementov.

Primer.

$$\binom{[4]}{2} = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}\}$$

Trditev 2.5.

$$\binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k!}$$

Definicija 2.6 (n na k padajoče). $n^{\underline{k}} := n(n-1)\cdots(n-k+1)$

Definicija 2.7 (n na k naraščajoče). $n^{\overline{k}} := (n)(n+1)\cdots(n+k-1)$

Trditev 2.8.

$$\binom{n}{k} = \frac{n(n-1)...(n-k+1)}{k!} = \frac{n^{\underline{k}}}{k!} = \begin{cases} \frac{n!}{k!(n-k)!} : & 0 \leqslant k \leqslant n \\ 0 : & \text{sicer} \end{cases}$$

Dokaz. (1. način)

Po eno strani lahko izberemo k števil izmed n števil brez ponavljanja, vrstni red je pomemben. Torej: izberemo k-terico različnih števil

$$n(n-1)\cdots(n-k+1)$$

Po drugi strani pa lahko vzamemo $\binom{n}{k}$ (izberemo k-elementno podmnožico v [n]), krat k! (izberemo vrstni red)

$$\implies \binom{n}{k} k! = n^{\underline{k}}$$

$$\implies \binom{n}{k} = \frac{n^{\underline{k}}}{k!}$$

Dokaz. (2. način)

Če k < 0 ali k > n, potem očitno $\binom{n}{k} = 0$. Vemo, da je n! število permutacij [n], a vsako k-podmnožico smo šteli $k! \cdot (n-k)!$ -krat, zato delimo s tem izrazom.

$$\implies \frac{n!}{k!(n-k)!}$$

Trditev 2.9 (Rekurzivna formula).

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Dokaz. (1. način)

k-elementna podmnožica [n] bodisi vsebuje ali ne vsebuje zadnji element (n).

- vsebuje n: člen $\binom{n-1}{k-1}$ izbere ostalih k-1 elementov iz (preostale) [n-1]
- ne vsebuje n: člen $\binom{n-1}{k}$ izbere vseh potrebnih k elementov izmed preostalih [n-1].

Dokaz. (2. način)

$$\Phi: \binom{[n]}{k} \to \binom{[n-1]}{k-1} \cup \binom{[n-1]}{k}$$

$$\Phi(A) = A \setminus \{n\}$$

$$\text{inverz}: \Psi(B) = \begin{cases} B \cup \{n\} : & |B| = k-1 \\ B : & |B| = k \end{cases}$$

Dokaz. (3. način)

$$\binom{n-1}{k-1} + \binom{n-1}{k} = \frac{(n-1)^{\underline{k-1}}}{(k-1)!} + \frac{(n-1)^{\underline{k}}}{k!} = \frac{(n-1)^{\underline{k-1}}(k+n-k)}{k!} = \frac{n^{\underline{k}}}{k!}, \ k \geqslant 1$$

2.1.1 Pascalov trikotnik

Število v n-ti vrstici in k-tem stolpcu pascalovega trikotnika je enako $\binom{n}{k}$. Trikotnik konstruiramo tako, da napišemo zunanji plašč enic, nato pa vsak par sosenjih števil seštejemo in zapišemo vsoto pod niju.

2.2 Binomski izrek

Definicija 2.10.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Dokaz. (1. način) - indukcija po nBaza indukcije, n=0: $1=\binom{0}{0}a^0b^0=1$. OK Indukcijski korak, $n-1\Rightarrow n$:

$$(a+b)^{n} = (a+b)^{n-1}(a+b) = \left(\sum_{k=0}^{n-1} \binom{n-1}{k} a^{n-1-k} b^{k}\right) (a+b) =$$

$$= \sum_{k=0}^{n-1} \binom{n-1}{k} a^{n-k} b^{k} + \sum_{k=0}^{n-1} \binom{n-1}{k} a^{n-1-k} b^{k+1} =$$

$$k' \stackrel{k}{=} k^{+1} \sum_{k=0}^{n-1} \binom{n-1}{k} a^{n-k} b^{k} + \sum_{k'=1}^{n} \binom{n-1}{k'-1} a^{n-k'} b^{k'} =$$

$$k' \stackrel{k}{=} k \sum_{k=0}^{n} \binom{n-1}{k} a^{n-k} b^{k} + \sum_{k=0}^{n} \binom{n-1}{k-1} a^{n-k} b^{k} =$$

$$= \sum_{k=0}^{n} \left(\binom{n-1}{k} + \binom{n-1}{k-1}\right) a^{n-k} b^{k} =$$

$$\stackrel{\text{rekurzija}}{=} \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

Dokaz. (2. način) - isti

Namesto $\sum_{k=0}^{n-1}$ oz. podobno se uporabi kar \sum_k - vsi ostali členi so po definiciji binomskih koeficientov enaki 0. Postopek je podoben, samo vse skupaj je malo hitreje, ker preskočimo vmesne razmiselke.

Dokaz. (3. način) - boljši

$$(a+b)\cdot(a+b)\cdot\ldots\cdot(a+b)$$

Po distributivnosti iz vsakega oklepaja izberemo a ali b. Če smo b izbrali k-krat, smo a izbrali (n-k)-krat in dobimo $a^{n-k}b^k$. Kolikokrat dobimo $a^{n-k}b^k$? $\binom{n}{k}$ -krat, ker izberemo k oklepajev, v katerih izberemo k.

2.3 Izbori

Na voljo imamo n oštevilčenih kroglic. Na koliko načinov lahko izberemo k kroglic? Ali dovolimo ponavljanje? Je vrstni red pomemben?

	s ponavljanjem	brez ponavljanja
vrstni red je pomemben	n^k	$n^{\underline{k}}$
vrstni red ni pomemben	$\binom{n+k-1}{k}$	$\binom{n}{k}$

Opomba. V prvi vrstici gre za variacije, v drugi pa za kombinacije.

Primer. Želimo prešteti rešitve tega sistema neenačb.

$$1 \leqslant i_1 \leqslant \dots \leqslant i_k \leqslant n$$

To so kombinacije s ponavljanjem, n = 4, k = 3.

Ideja:

$$j_1 = i_1, \ j_2 = i_2 + 1, \ j_3 = i_3 + 2, \ \dots, \ j_k = i_k + k - 1$$

2.4 Kompozicije

Definicija 2.11 (Kompozicija). Kompozicija naravnega števila n je taka l-terica

$$\lambda = (\lambda_1, \dots, \lambda_l), \quad \lambda_i > 0,$$

da velja

$$\lambda_1 + \lambda_2 + \dots + \lambda_l = n$$

Lambde imenujemo členi kompozicije, l je dolžina kompozicije, n pa velikost kompozicije.

Primer. (3, 1, 5, 2) je kompozicija števila 11.

Trditev 2.12. Obstaja 2^{n-1} kompozicij števila $n \ge 1$ in obstaja $\binom{n-1}{k-1}$ kompozicij števila n s k členi.

Dokaz. Kompozicijo lahko predstavimo s k kroglicami in pregradami:

$$3+1+5+2$$
: $\circ \circ \circ | \circ | \circ \circ \circ \circ \circ | \circ \circ$

n-1 prostorov za pregrado \implies 2 izbiri za vsako pregrado $(\exists, \not\equiv)$ k-1 pregrad na n-1 mestih: $\binom{n-1}{k-1}$

Definicija 2.13 (Šibka kompozicija).

$$\lambda = (\lambda_1, \dots, \lambda_l) \quad \lambda_i \geqslant 0$$

tako da velja

$$\lambda_1 + \cdots + \lambda_l = n$$

Opomba. Šibkih kompozicij števila n je ∞ .

Primer. (0,0,3,1,0,5,0,2)

Trditev 2.14. Število šibkih kompozicij n s k členi je $\binom{n+k-1}{k-1}$.

Dokaz. (1. način)

Štejemo rešitve $\lambda_1 + \lambda_2 + \cdots + \lambda_k = n$, zahtevamo $\lambda_1 \geqslant 0$.

$$\mu_i = \lambda_i + 1$$

$$\mu_1 + \dots + \mu_k = n + k, \quad \mu_i \geqslant 1$$

$$\binom{n+k-1}{k-1} \text{ je rešitev.}$$

Dokaz. (2. način)

Šibko kompozicijo predstavino s kroglicami in pregradami.

$$0 + 0 + 3 + 1 + 0 + 5 + 0 + 2$$
: $|| \circ \circ \circ | \circ || \circ \circ \circ \circ \circ || \circ \circ$

Imamo n + (k-1) objektov, izberemo položaje pregrad na $\binom{n+k-1}{k-1}$ načinov - to so kombinacije s ponavljanjem (n kroglic, izberemo jih k).

 $x_i \dots$ kolikokrat smo izbrali kroglico i

$$x_i \geqslant 0, \quad i = 1, ..., n$$
 $x_i + x_2 + ... + x_n = k$

 \implies šibke kompozicije kz nčleni = $\binom{k+n-1}{n-1} = \binom{n+k-1}{k}$

2.5 Načelo vključitev in izključitev (NVI)

Primer. $|A \cup B| = |A| + |B| - |A \cap B|$

Primer. $|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$

Izrek 2.15 (NVI).

$$|A_1 \cup \dots \cup A_n| = \sum_{j=1}^n (-1)^{j-1} \sum_{1 < i_1 < \dots < i_j < n} |A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_j}|$$

Definicija 2.16.

$$A_I := \bigcap_{i \in I} A_i$$

Primer. $A_{\{1,4,6,7\}} = A_1 \cap A_4 \cap A_6 \cap A_7$

Primer. $A_{\emptyset} = \bigcap_{i \in \emptyset} A_i = \{a; \ a \in A \land \forall i \in \emptyset \ a \in A_i\} = A$

Izrek 2.17 (Poenostavljen zapis NVI).

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I|-1} \left| \bigcap_{i \in I} A_i \right|$$

Izrek 2.18 (Druga oblika NVI).

$$\left| \bigcap_{i=1}^{n} A_i^c \right| = \sum_{I \subseteq [n]} (-1)^{|I|} |A_I|$$

Dokaz. Označimo $A_1, \ldots, A_n \subseteq A$ in se spomnimo, da $A_\emptyset = A$

$$\left| \bigcap_{i=1}^{n} A_{i}^{c} \right| = \left| (\bigcup_{i=1}^{n} A_{i})^{c} \right| = |A| - \left| \bigcup_{i=1}^{n} A_{i} \right| = |A_{\emptyset}| - \sum_{\emptyset \neq I \subseteq [n]} (-1)^{|I| - 1} |A_{I}| = \sum_{I \subseteq [n]} (-1)^{|I|} |A_{I}|$$

Lema 2.19.

$$k \geqslant 1 \implies \sum_{j=0}^{k} (-1)^j \binom{k}{j} = 0$$

Dokaz. V binomski izrek vstavimo x = -1

$$(1-x)^n = \sum_{j=0}^k \binom{k}{j} x^j$$

$$(1-1)^n = \sum_{j=0}^k \binom{k}{j} (-1)^j = 0$$

Opomba. Lema pravi $\sum_{j \text{ sod}} \binom{k}{j} = \sum_{j \text{ lih}} \binom{k}{j}$ oziroma število sodih podmnožic je vedno enako številu lihih podmnožic.

To lahko pokažemo tudi s sledečo bijekcijo

 $\varphi: \{\text{sode podmnožice } [k]\} \rightarrow \{\text{lihe podmnožice } [k]\}$

$$\varphi(S) = \begin{cases} S \setminus \{k\} : & k \in S \\ S \cup \{k\} : & k \notin S \end{cases}$$

Dokaz. (NVI)

$$a \in \bigcup_{i=1}^{n} A_i$$
, a vsebovana v natanko k množicah

Dokazati želimo, da je doprinos a-ju k vsoti na desni enak 1.

$$k - \binom{k}{2} + \binom{k}{3} - \dots + (-1)^{k-1} \binom{k}{k} = \sum_{j=1}^{k} (-1)^{j-1} \binom{k}{j} = -\left(\sum_{j=0}^{k} (-1)^{j} \binom{k}{j} - 1\right) = 1$$

 $k \dots$ doprinos v prvi vrstici $\binom{k}{2} \dots$ doprinos v drugi vrstici

$$\sum_{j=0}^{k} (-1)^j \binom{k}{j} = 0 \text{ (po lemi)}$$

Primer. Koliko je surjekcij $[n] \rightarrow [k]$?

Vseh preslikav: $A = k^n$

 $A_i :=$ preslikave, ki nobenega elementa ne slikajo v i

$$A_i = \{f : [n] \to [k] : f(j) \neq i \quad \forall j \in [n]\} = ([k] \setminus \{i\})^{[n]}$$

$$|A_i| = (k-1)^n$$

$$|A_S| = (k-|S|)^n$$

Uporabimo formulo za NVI

$$\left| \bigcup_{i=1}^{k} A_{i}^{c} \right| = \sum_{S \subseteq [k]} (-1)^{|S|} (k - |S|)^{n} = \sum_{j=0}^{k} (-1)^{j} \binom{k}{j} (k - j)^{n} = \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{k-j} j^{n} = \sum_{j=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

2.6 Eulerjeva funkcija ϕ

Definicija 2.20 (Eulerjeva funkcija).

$$\phi(n) = \left| \{ i \in [n] : \gcd(i, n) = 1 \} \right|$$

Trditev 2.21.

$$\sum_{a|n} \phi(a) = n$$

(= število števil med 1 in n, ki so tuje n)

Dokaz. Zapišimo $\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \ldots, \frac{n}{n}$ in jih pokrajšajmo.

Ulomkov je n, imenovalci so delitelji števila n, števci so števila, ki so manjša od a in tuja z a.

Izrek 2.22 (Formula za ϕ).

$$\phi(n) = n \cdot \prod_{p|n} (1 - \frac{1}{p})$$

Dokaz.

$$A = [n], \quad n = p_1^{\alpha_1} \cdots p_k^{\alpha_k} \quad \alpha_i > 0$$

$$A_i = \{j \in [n] : p_i | j\}$$

$$|A_i| = \frac{n}{p_i}$$

$$|A_i \cap A_j| = \frac{n}{p_i p_j}$$

$$|A_I| = \frac{n}{\prod_{i \in I} p_i}$$

$$\phi(n) = \sum_{I \subseteq [k]} (-1)^{|I|} \frac{n}{\prod_{i \in I} p_i}$$

Kjer je k število praštevilskih faktorjev n (glej prvo vrstico dokaza). Vzemimo za primer k=2:

$$n \cdot (1 - \frac{1}{p_1} - \frac{1}{p_2} + \frac{1}{p_1 p_2}) = n \cdot (1 - \frac{1}{p_1}) \cdot (1 - \frac{1}{p_2})$$
$$\phi(n) \stackrel{\text{distributivnost}}{=} n \cdot (1 - \frac{1}{p_1}) \cdot (1 - \frac{1}{p_2}) \cdot \dots \cdot (1 - \frac{1}{p_k})$$

V splošnem torej velja

$$\phi(n) = n \cdot \prod_{p|n} (1 - \frac{1}{p})$$

2.7 Multinomski koeficienti

Spomnimo se na binomske koeficiente

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \ 0 \leqslant k \leqslant n$$

Imamo a enic in b ničel. Premešamo jih lahko na

$$\binom{a+b}{a} = \binom{a+b}{b} = \frac{(a+b)!}{a!b!}$$

načinov. Kaj pa če imamo več enakih elementov? Števila 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 4 lahko premešamo na.

$$\begin{pmatrix} a_1 + a_2 + \dots + a_n \\ a_1 \end{pmatrix} \cdot \begin{pmatrix} a_2 + a_3 + \dots + a_n \\ a_2 \end{pmatrix} \cdot \begin{pmatrix} a_3 + a_4 + \dots + a_n \\ a_3 \end{pmatrix} \cdots$$

načinov. V prvem binomu izberemo enke, v drugem dvojke, v tretjem trojke \dots . To razpišemo kot

$$\frac{(a_1+a_2+\ldots+a_n)!}{a_1!(a_2+a_3+\ldots+a_n)!}\cdot\frac{(a_2+a_3+\ldots+a_n)!}{a_2!(a_3+a_4+\ldots+a_n)!}\cdot\frac{(a_3+a_4+\ldots+a_n)!}{a_1!(a_4+a_5+\ldots+a_n)!}\cdot\frac{(a_{n-1}+a_n)!}{a_{n-1}!a_n!}=$$

$$= \frac{(a_1 + a_2 + \dots + a_n)!}{a_1! a_2! \dots a_n!} = \frac{\left(\sum_{i=1}^n a_i\right)!}{\prod_{i=1}^n a_i!} = \binom{a_1 + a_2 + \dots + a_n}{a_1, a_2, \dots, a_n}$$

Alternativno: dodamo indekse $1_1, 1_2, 1_3, 2_1, 2_2, 3_1, 3_2, 3_3, 3_4, 3_5, 4_1$. Premešamo na

$$\frac{(a_1+a_2+\cdots+a_n)!}{a_1!a_2!\cdots a_n!}$$

načinov; najprej smo premešali vse na $(a_1 + a_2 + \cdots + a_n)!$ načinov, potem pa z $a_i!$ izbrisali indekse)

Opomba.

$$\binom{a+b}{a,b} = \frac{(a+b)!}{a!b!} = \binom{a+b}{a} = \binom{a+b}{b}$$

Izrek 2.23 (Multinomski izrek).

$$(x_1 + x_2 + \dots + x_n)^m = \sum_{(a_1,\dots,a_n) \text{ §ibka kompozicija } m} {m \choose a_1,\dots,a_n} x_1^{a_1} \dots x_n^{a_n}$$

Dokaz.

$$(x_1 + x_2 + \cdots + x_n) \cdot (x_1 + x_2 + \cdots + x_n) \cdot \cdots \cdot (x_1 + x_2 + \cdots + x_n)$$

Iz vsakega oklepaja izberemo x_i , kar skupaj pride $x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}$, pri čemer je $\sum_{i=1}^n a_i = m, \ a_i \geqslant 0.$ Koeficient je očitno $\binom{a_1+a_2+\ldots+a_n}{a_1,a_2,\ldots,a_n}$.

Primer. $x_1 = x_2 = \cdots = x_n$

$$n^{m} = \sum_{(a_{1},\dots,a_{n})_{\text{šibka kompozicija m}}} {m \choose a_{1},\dots,a_{n}}$$

2.8 Načrti in t-načrti

Podjetje proizvaja več različic izdelka, želi jih testirati pri potrošnikih. Vsak potrošnik mora testirati enako število različic, vsako različico mora testirati enako število potrošnikov.

8 različic, 6 potrošnikov, vsak potrošnik testira 4, vsako različico testirajo 3 potrošniki.

Definicija 2.24 (Načrt). $B = \{B_1, \ldots, B_b\}$ je narčt s parametri (v, k, λ) , kadar velja

- $B_1, \ldots, B_b \subset [v]$
- $|B_1| = \ldots = |B_b| = k$
- vsak $i \in [v]$ se pojavi v natanko λ množicah oz. "blokih".

Primer. Načrt s parametri (8, 4, 3).

Kljukico damo tam, kjer je $i \in B_j$. V vsakem stolpcu tako dobimo k kljukic, skupaj $k \cdot b$, v vsaki vrstici dobimo λ kljukic, skupaj $\lambda \cdot v$. Iz tega sledi, da $k \cdot b = \lambda \cdot v$, oziroma $b = \frac{\lambda v}{k}$

Velja še b $\leqslant \binom{v}{k}$

$$\frac{\lambda v}{k} \leqslant \frac{v!}{k!(v-k)!}$$

Pokrajšamo $\frac{v}{k}$ na obeh straneh neenačbe in dobimo

$$\lambda \leqslant \frac{(v-1)!}{(k-1)!(v-k)!} = \begin{pmatrix} v-1\\k-1 \end{pmatrix}$$

Izrek 2.25.

Načrt s parametri (v,k,λ) obstaja natanko tedaj, ko velja $k|v\cdot\lambda$ in $\lambda\leqslant \binom{v-1}{k-1}$

Dokaz.

 (\Rightarrow) Že dokazano.

 (\Leftarrow) Izberemo $\frac{\lambda v}{k}$ k-elementnih podmnožic množice [v]. To lahko naredimo, ker je $\frac{\lambda v}{k} \leqslant \binom{v-1}{k-1} \cdot \frac{v}{k} = \binom{v}{k}$.

$$v = 8, \ k = 4, \ \lambda = 3$$

$$\frac{\lambda v}{k} = 6 \Rightarrow 1234, 1356, 1567, 1568, 2356, 3457$$

To ni nujno načrt.

 $\lambda_i \dots$ v koliko blokih je vsebovan i

$$\lambda_1 = 4, \ \lambda_2 = 2, \ \lambda_3 = 4, \ \lambda_4 = 2, \ \lambda_5 = 5, \ \lambda_6 = 4, \ \lambda_7 = 2, \ \lambda_8 = 1$$

Naredimo isto tabelo kot prej in ugotovimo, da je $\lambda = \frac{\sum_{i=1}^v \lambda_i}{v}$. Če to ni načrt, zagotovo obstajata i, j, da je $\lambda_i > \lambda > \lambda_j$.

Bloki so 4 tipov:

- (I) vsebujejo i in j
- (II) vsebujejo i, ne pa j
- (III) vsebujejo j, ne pa i
- (IV) ne vsebujejo ne i ne j

Bloki tipa (I) in (IV) vsebujejo enako i-jev in j-jev.

$$\lambda_i = \text{blokov tipa (I)} + (\text{II})$$

$$\lambda_j = \text{blokov tipa (I)} + (\text{III})$$

Sledi, da je več blokov tipa (II) kot (III). Iz tega sledi, da obstaja blok tipa (II), tako da po zamenjavi i z n ne dobimo že obstoječega bloka.

V splošnem: $\lambda_i - -, \lambda_j + +$

Postopek ponovimo, dokler ni $\lambda_1=\lambda_2=\ldots=\lambda_6$

1234, 1456, 2567, 1568, 2356, 3457

1234, 1457, 2567, 1568, 2356, 3457

1234, 1457, 2678, 1568, 2356, 3457

1234, 147<mark>8</mark>, 2678, 1568, 2356, 3457

kar je načrt.

Na vsakem koraku se zmanjša $\sum_{i=1}^v (\lambda_i - \lambda)$ za 2, po končno korakih je to = 0 in dobimo načrt.

Definicija 2.26 (t-načrt). $B = \{B_1, \dots, B_b\}$ je t-narčt s parametri (v, k, λ_t) , kadar velja

- $B_1, \ldots, B_b \subseteq [v]$
- $|B_1| = \cdots = |B_b| = k$
- vsaka t-elementna podmnožica [v] je vsebovana v točno λ_t blokih.

Opomba. 1-načrt = načrt

Primer. 124, 137, 156, 235, 267, 346, 457 je 2-načrt (7, 3, 1)

Opomba. Tudi načrt s parametri (7, 3, 3) NI 3-načrt!!

Slika 1: Fanova ravnina

Opomba. Fanova ravnina je skica načrta (7,3,3).

Izrek 2.27. Če je B t-načrt s parametri (v,k,λ_t) , je B tudi (t-1)-načrt s parametri (v,k,λ_{t-1}) . Velja formula

$$\lambda_{t-1} = \lambda_t \cdot \frac{v - t + 1}{k - t + 1}$$

 $Dokaz.\ S\subseteq [v],\, |S|=t-1.\ S$ je vsebovana v λ_s blokih. Narišemo tabelo

 $i \notin S, S \cup \{i\} \subseteq B_i$.

Skupno je po stolpcih:

- $S \setminus B_j$: 0 kljukic
- $S \subseteq B_j$: k t + 1 kljukic skupaj: $\lambda_s \cdot (k - t + 1)$

in po vrsticah:

- $i \in S$: 0 kljukic
- $i \notin S$: λ_t kljukic

skupaj: $\lambda_t \cdot (v - t + 1)$

$$\implies \lambda_s = \frac{\lambda_t \cdot (v - t + 1)}{k - t + 1}$$

3 Permutacije, razdelitve, razčlenitve

3.1 Stirlingova števila prve vrste

 $\pi \in S_n$ lahko zapišemo kot produkt disjunktnih ciklov

$$(1\ 4\ 6\ 3\ 5\ 8\ 2\ 7) = (1)(2\ 4\ 3\ 6\ 8\ 7)(5)$$

$n \backslash k$	0	1	2	3	4	5
0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	1	1	0	0	0
3	0	2	3	1	0	0
4	0	6	11	6	1	0
5	0	24	50	36	10	1

Slika 2: Tabela Stirlingovih števil 1. vrste

Opomba. Konstruiramo jo podobno kot Pascalov trikotnik za binomske koeficiente (??), samo da uporabimo drugo rekurzivno formulo; najprej damo diagonalne elemente na 1, naddiagonalne na 0, nato vse elemente v 1. stoplcu na 0 (razen prvega elementa, ki je že 1), za ostale pa uporabimo rekurzivno forumlo (seštejemo element levo zgoraj in (n-1) krat zgornji).

Definicija 3.1 (Stirlingovo število prve vrste). Je število permutacij v S_n , ki imajo natanko k ciklov (negibne točke štejemo kot cikle dolžine 1). Označimo c(n,k)

Za c(n,k) ni "lepe" formule. Vemo pa naslednje lastnosti

- c(n,n) = 1
- $c(n, n-1) = \binom{n}{2}$ (transpozicija)
- c(n,0) = 0 (če n > 0, oziroma 1, če je n = 0)
- c(n,1) = (n-1)!
- c(n,k) = 0 za k > n ali k < 0
- $\sum_{k} c(n,k) = n!$

Trditev 3.2 (Rekurzivna zveza).

$$c(n,k) = c(n-1,k-1) + c(n-1,k) \cdot (n-1)$$

Dokaz. Permutacije v S_n s k cikli:

- n je negibna točka: c(n-1, k-1)
- n ni negibna točka: $c(n-1,k)\cdot (n-1)$ (izbrišem n, dobim permutacijo v S_{n-1} s k cikli) · (vsako dobimo (n-1)-krat)

Trditev 3.3 (Formula za c(n, k)).

$$\sum_{k} c(n,k)x^{k} = x^{\overline{n}}$$

Dokaz. Indukcija po n:

Baza indukcije: n = 0: $(1x^0 = x^0)$. OK.

Indukcijski korak: $n-1 \implies n$:

$$x^{\overline{n}} = x^{\overline{n-1}}(x+n-1) = \sum_{k} c(n-1,k)x^{k}(x+n-1) =$$
$$= \sum_{k} c(n-1,k)x^{k+1} + \sum_{k} c(n-1,k)x^{k}(n-1) =$$

Pri prvem členu nastavimo k = k - 1, ker itak seštevamo za vse k.

$$= \sum_{k} c(n-1, k-1)x^{k} + \sum_{k} c(n-1, k)x^{k}(n-1) =$$

Združimo vsoti in izpostavimo x^k

$$= \sum_{k} x^{k} \cdot (c(n-1, k-1) + (n-1) \cdot c(n-1, k)) =$$

Uporabimo rekurzivno zvezo, da dobimo

$$= \sum_{k} c(n,k)x^{k}$$

Dokaz. Še eno alternativo tega dokaza bomo naredili pri Pólyjevi teoriji (??).

Definicija 3.4 (Predznačeno Stirlingovo število).

$$s(n,k) := (-1)^{n-k}c(n,k)$$

Trditev 3.5 (Rekurzivna zveza za predznačena Stirlingova števila).

$$\sum_{k} s(n,k)x^{k} = x^{\underline{n}}$$

Dokaz. Zamenjajmo x z - x v formuli za c(n, k).

$$\sum_{k} c(n,k)(-1)^{k} x^{k} = (-x)^{\overline{n}}$$

Če na desni izpostavimo $(-1)^n$, se $x^{\overline{n}}$ spremeni v $x^{\underline{n}}$.

$$\sum_{k} (-1)^{n-k} c(n,k) x^k = x^{\underline{n}}$$

$$\implies \sum_{k} s(n,k)x^{k} = x^{\underline{n}}$$

3.2 Stirlingova števila druge vrste

Definicija 3.6 (Razdelitev množice). Razdelitev, razbitje ali particija je $\{B_1, \ldots, B_n\}$, pri čemer

- $B_i \neq \emptyset$ $i = 1 \dots k$
- $B_i \cap B_j = \emptyset$ za $i \neq j$
- $\bullet \ \cup_{i=0}^k B_i = A$
- B_1, \ldots, B_n so bloki razdelitve

Primer. A = [8] lahko razdelimo na $\{\{1,4,5\},\{2\},\{3,6,7,8\}\}$, kar lahko zapišemo kot 145 - 2 - 3678 oziroma urejeno 2 - 415 - 8763.

Opomba. Če je R je ekvivalenčna relacija nad A (refleksivna, simetrična, tranzitivna), je množica ekvivalenčnih razredov R ravno razdelitev množice A.

Definicija 3.7 (Stirlingovo število druge vrste). S(n, k) je število razdelitev [n] z natanko k bloki.

Definicija 3.8 (Bellovo število). B(n) je število razdelitev [n]. Velja

$$B(n) = \sum_{k} S(n, k)$$

 $Opomba. B(n) \neq B_n. B_n = Bernoulijevo število$

Preproste formule za S(n,k) in B(n) nimamo, poznamo pa naslednje identitete:

• S(n,n) = 1

•
$$S(n,n-1) = \binom{n}{2}$$

•
$$S(n,1) = 1 - \delta_{n0}$$

•
$$S(n,0) = \delta_{n0}$$

•
$$S(n,k) = 0$$
 za $k < 0$ ali $k > n$

•
$$S(n,k) \leqslant c(n,k)$$

Trditev 3.9 (Rekurzivna formula za S(n)).

$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$$

Dokaz. Razdelitve [n] s k bloki:

- n je (samostojen) blok: S(n-1, k-1)
- n je v bloku velikosti ≥ 1 : $k \cdot S(n-1,k)$ (n lahko vstavimo v katerega koli izmed k blokov: n vstavimo nazaj na k načinov)

Opomba. Za konstrukcijo glej Stirlingova števila prve vrste.

Trditev 3.10 (Pomen S(n)). S(n,k) je število ekvivalenčnih relacij na [n] s k ekvivalenčnimi razredi. B(n) je število ekvivalenčnih relacij na [n]

Trditev 3.11. Število surjekcij $[n] \rightarrow [k]$ je $k! \cdot S(n, k)$

Dokaz. Naj bo $f:[n] \to [k]$ surjekcija. Množica $\{f^{-1}(1), f^{-1}(2) \cdots f^{-1}(k)\}$, kjer $f^{-1}(i)$ predstavlja množico praslik i-ja $(=\{j:f(j)=i\})$ je razdelitev [n] s k bloki. Vsaka razdelitev [n] s k bloki nam da k! surjekcij (bloke linearno uredimo).

Ekvivalentno: urejena razdelitev \equiv surjekcija.

Posledica 3.12.

$$S(n,k) = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{k-j} {k \choose j} j^n = \sum_{j=0}^{k} \frac{(-1)^{k-j} j^n}{j! (k-j)!}$$

(dokazano z NVI ??)

Trditev 3.13 (Rekurzivna formula za S(n)).

$$\sum_{k} S(n,k) x^{\underline{k}} = x^{n}$$

Dokaz. (1. način) Z indukcijo (na vajah, sicer je domača naloga)

Dokaz. (2. način) Naj bo $x \in \mathbb{N}$. x^n je število preslikav iz [n] v [x]. Vsaka preslikava je surjekcija na svojo sliko (zalogo vrednosti).

$$x^{n} = \sum_{T \subseteq [x]} \left(|T|! \cdot S(n, |T|) \right) = \sum_{k} \left(k! \cdot S(n, k) \cdot {x \choose k} \right)$$

kjer je T slika preslikave, $\binom{x}{k} = \frac{x^k}{k!}$ pa predstavlja število k-elementnih podmnožic od [x].

Dokaz. (3. način) Dva polinoma stopnje $\leq n$, ki se ujemata v n+1 točkah, sta enaka (razlika je polonom stopnje $\leq n$ z n+1 ničlami, torej je ekvivalentna 0)

 $\sum_{k} S(n,k) x^{\underline{k}}$ in x^n sta polinoma stopnje n, ujemata se v neskončno točkah (ker gremo v vsoti po vseh $x \in \mathbb{N}$), torej sta enaka.

Velja tudi:

$$\sum_{k} (-1)^{n-k} S(n,k) x^{\overline{k}} = x^n$$

Trditev 3.14 (Rekurzivna formula za B(n)).

$$B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(k)$$

Dokaz. Izberemo razdelitev $[n+1],\ k$ pa naj bo število elementov, ki so v istem bloku kotn+1

$$B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(n-k)$$

 $\binom{n}{k}$: izbira elementov, ki so v istem bloku (skupaj z n+1).

B(n-k): izberemo razdelitev na preostalih n-k elementih (ta izbira je neodvisna in takih je B(n-k)).

Če zamenjamo n-k s k, in uporabimo $\binom{n}{n-k}=\binom{n}{k}$ lahko poenostavimo

$$B(n+1) = \sum_{k=0}^{n} \binom{n}{k} B(k)$$

3.3 Lahova števila

Definicija 3.15 (Lahovo število). L(n, k) je število razdelitev [n] na k linearno urejenih blokov.

Opomba. Spomnimo se: S(n,k) je število razdelitev [n] na k blokov, c(n,k) pa število razdelitev [n] na k ciklično urejenih blokov.

- L(n,n) = 1
- $L(n, n-1) = \binom{n}{2} \cdot 2 = n(n-1)$
- $L(n,0) = \delta_{n0}$
- L(n,1) = n!
- L(n,k) = 0 za k < 0 ali k > n
- $S(n,k) \leqslant c(n,k) \leqslant L(n,k)$

Trditev 3.16 (Eksplicitna formula za L(n, k)).

$$L(n,k) = \frac{n!}{k!} \binom{n-1}{k-1}$$

Dokaz. Preštejemo urejene razdelitve [n] s k linearno urejenimi bloki

$$k! \cdot L(n,k) = n! \cdot \binom{n-1}{k-1}$$

k! - uredimo bloke, n! - premutacija, $\binom{n-1}{k-1}$ - kompozicija

Trditev 3.17.

$$L(n,k) = L(n-1,k-1) + (n-1+k)L(n-1,k)$$

Dokaz. Ekvivalentno kot ostale rekurzije, samo "podrobnost" (n-1+k): n vstavimo za obstoječim številom (n-1) ali pa na začetek bloka (k)

Primerjajmo rekurzije:

$$\bullet \quad \binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

•
$$c(n,k) = c(n-1,k-1) + (n-1) \cdot c(n-1,k)$$

•
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$$

•
$$L(n,k) = L(n-1,k-1) + (n-1+k) \cdot L(n-1,k)$$

Trditev 3.18 (Rekurzivna formula za L(n,k)).

$$\sum_{k} L(n,k) x^{\underline{k}} = x^{\overline{n}}$$

Dokaz. Dokaz bomo prepustili bralcu za vajo (uporabi indukcijo).

Primerjajmo:

•
$$\sum_{k} \binom{n}{k} x^k = (1+x)^n$$

•
$$\sum_{k} c(n,k)x^{k} = x^{\overline{n}}$$
 $\sum_{k} (-1)^{n-k} c(n,k)x^{k} = x^{\underline{n}}$

•
$$\sum_{k} S(n,k)x^{\underline{k}} = x^n$$
 $\sum_{k} (-1)^{n-k} S(n,k)x^{\overline{k}} = x^n$

•
$$\sum_{k} L(n,k)x^{\underline{k}} = x^{\overline{n}}$$
 $\sum_{k} (-1)^{n-k} L(n,k)x^{\overline{k}} = x^{\underline{n}}$

3.4 Razčlenitve naravnih števil in Eulerjev petkotniški izrek

Definicija 3.19 (Razčlenitev naravnega števila). Razčlenitev ali particija $n \in \mathbb{N}$ je l-terica

$$\lambda = (\lambda_1, \lambda_2, ..., \lambda_l)$$
$$\lambda_1 \geqslant \lambda_2 \geqslant ... \geqslant \lambda_l > 0$$
$$\lambda_1 + \lambda_2 + \dots + \lambda_l = n$$

 λ_i so členi razčlenitve, n je velikost razčlenitve, l je dolžina razčlenitve.

Primer. (5,4,4,2,1,1) je razčlenitev števila 17 s 6 členi.

Opomba. Označimo tudi 5 + 4 + 4 + 2 + 1 + 1 ali $5 \ 4 \ 4 \ 2 \ 1 \ 1$.

Razčletnive lahko prikažemo grafično s pomočjo Ferresovih diagramov.

Primer. Diagram za $\lambda = (5, 4, 4, 2, 1, 1)$

Definicija 3.20 (Razčlenitve).

- S p(n) označimo število vseh razčlenitev n.
- S $p_k(n)$ označimo število razčlenite
vnskčleni.
- S $\overline{p_k}(n)$ označimo število razčlenitev $n \ z \leqslant k$ členi.

Prvih nekaj števil p(n) = 1, 1, 2, 3, 5, 7, 11, 15, ...

Opomba. Ni lepe formule za p(n), $p_k(n)$ ali $\overline{p_k}(n)$.

Primer.

n = 1:1

n = 2:2,11

n = 3:3,21,111

n = 4:4,31,22,211,1111

n = 5: 5, 41, 32, 311, 221, 2111, 11111

 $p_2(5) = 2$

 $\overline{p_3}(5) = 5$

Definicija 3.21 (Konjugirana razčlenitev λ'). Dobimo s transpozicijo Ferresovega diagrama (stolpce napišemo kot vrstice).

Veljajo naslednje lastnosti:

- $\lambda_i' = |\{i : \lambda_j \geqslant i\}| = \max\{j : \lambda_j \geqslant i\}$
- $\lambda'' = \lambda$
- $\lambda'_1 = l(\lambda)$
- $l(\lambda') = \lambda_1$

Primer. $5\ 4\ 4\ 2\ 1\ 1' = 6\ 4\ 3\ 3\ 1$

Trditev 3.22 (Lastnosti $p_k(n)$).

1.
$$p_k(n) = \overline{p_k}(n-k)$$

2.
$$p_k(n) = p_{k-1}(n-1) + p_k(n-k)$$

3.
$$\overline{p_k}(n) = \overline{p_{k-1}}(n) + p_k(n) = \overline{p_{k-1}}(n) + \overline{p_k}(n-k)$$

Dokaz. Precej trivialno;

- 1. Izbrišemo prvi stolpec (ima dolžino k)
- 2. Imamo razčlenitevns kčleni: $\lambda_l=1~(p_{k-1}(n-1))$ in $\lambda_l\geqslant 2~(p_k(n-k))$
- 3. Razčlenitev skčleni ima lahko strogo manj kot kčlenov, ali pa natanko kčlenov.

Opomba. Do zdaj obravnavane rekurzivne formule):

•
$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

•
$$c(n,k) = c(n-1,k-1) + (n-1) \cdot c(n-1,k)$$

•
$$S(n,k) = S(n-1,k-1) + k \cdot S(n-1,k)$$

•
$$L(n,k) = L(n-1,k-1) + (n+k-1) \cdot L(n-1,k)$$

•
$$p_k(n) = p_{k-1}(n-1) + p_k(n-k)$$

•
$$\overline{p_k}(n) = \overline{p_{k-1}}(n) + \overline{p_k}(n-k)$$

	$n \backslash k$	0	1	2	3	4	5	6	$\sum_{k} p_k(n) = p(n)$
Tabela za $p_k(n)$:	0	1	0	0	0	0	0	0	1
	1	0	1	0	0	0	0	0	1
	2	0	1	1	0	0	0	0	2
	3	0	1	1	1	0	0	0	3
	4	0	1	2	1	1	0	0	5
	5	0	1	2	3	1	1	0	7
	6	0	1	3	3	2	1	1	11

Za postopek izpolnitve tabele glej Stirlingova števila 1. vrste (??). Uporabi formulo $p_k(n) = p_{k-1}(n-1) + p_k(n-k)$.

Kaj pa rekurzija za p(n)?

$$A = \{ \text{raz\'elenitve } n \} = \bigcup_{i=1}^{n} A_i$$

$$A_i = \{ \text{razčlenitve } n, \text{ ki vsebujejo } i \text{ kot člen} \}$$

$$|A_i| = p(n-i)$$

$$|A_i \bigcap_{i \neq j} A_j| = p(n-i-j)$$

$$|A_I| = p(n - \sum_{i \in I} i)$$

$$|\bigcup_{i=1}^{n} A_{i}| = |A_{1}| + \dots + |A_{n}|$$

$$-|A_{1} \cap A_{2}| - |A_{1} \cap A_{3}| \dots$$

$$+|A_{1} \cap A_{2} \cap A_{3}| \dots$$

$$- \dots$$

$$+ \dots$$

$$p(n) = p(n-1) + p(n-2) + p(n-3) + p(n-4) + p(n-5) + \dots$$

$$-p(n-1-2) - p(n-1-3) - p(n-2-3) - p(n-1-4) - \dots$$

$$+ p(n-1-2-3) + p(n-1-2-4) + \dots$$

$$-p(n-1-2-3-4) - \dots$$

$$+ \dots$$

Torej očitno:
$$p(n) = \sum_{m=1}^{\infty} ?p(n-m)$$
.

Relevantne so razčlenitve m z različnimi členi

$$7 = 7 = 6 + 1 = 5 + 2 = 4 + 3 = 4 + 2 + 1$$

 $\alpha(m)$... število razčlenitev m z liho mnogo različnimi členi $\beta(m)$... število razčlenitev m z sodo mnogo različnimi členi $p(n) = \sum_{m=1}^{\infty} (\alpha(m) - \beta(m) \cdot p(n-m))$

Trditev 3.23.

$$\alpha(m) - \beta(m) = \begin{cases} (-1)^{k-1}: & m = \frac{k(3k\pm1)}{2} \\ 0: & \text{sicer} \end{cases}$$
$$\frac{k(3k-1)}{2}: 1, 5, 12, 22, \dots$$
$$\frac{k(3k+1)}{2}: 2, 7, 15, 26, \dots$$

Posledica 3.24 (Eulerjev petkotniški izrek).

$$p(n) = p(n-1) + p(n-2) - p(n-5) - p(n-7) + p(n-12) + p(n-15) - p(n-22) - p(n-26) \cdots$$
$$p(n) = \sum_{k=1}^{\infty} (-1)^{k-1} \left(p(n - \frac{k(3k-1)}{2}) + p(n - \frac{k(3k+1)}{2}) \right)$$

Dokaz. Iščemo "skoraj bijekcijo"

{razčlenitve m z liho mnogo členi} \iff {razčlenitve m s sodo mnogo členi} m=10:

 $s(\lambda) := \lambda_{l(\lambda)}$ najmanjši člen

Recimo diagonali, ki se pojavi ob koncu prvih treh vrstic, bok.

$$b(\lambda) := \max\{i : \lambda_i = \lambda_1 - i + 1\}$$

- 1. Če je $s(\lambda) > b(\lambda)$: bok postavimo pod najmanjši člen
- 2. Če je $s(\lambda) \leqslant b(\lambda)$: najmanjši člen postavimo desno od boka

Zakaj to ni vselej bijekcija? Prvo pravilo ne deluje, če se bok seka z najmanjšim členom, oziroma kadar velja $b(\lambda) = l(\lambda) = s(\lambda)$.

$$(k+1) + (k+2) + \dots + (k+k) = \frac{2k(2k+1)}{2} - \frac{k(k+1)}{2} = \frac{k(3k+1)}{2}$$

Drugo pravilo ne deluje, če

$$b(\lambda) = l(\lambda) = s(\lambda) - 1 = k$$

$$k + (k+1) + (k+2) + \dots + (k+k-1) = \frac{(2k-1)2k}{2} - \frac{(k-1)k}{2} = \frac{k(3k-1)}{2}$$

- če m $\neq \frac{k \cdot (3k \pm 1)}{2}$, smo našli bijekcijo, $\alpha(m) \beta(m) = 0$.
- če m $=\frac{k\cdot(3k\pm1)}{2},$ imamo bijekcijo, če odstavimo eno razčlenitev skčleni.
 - * $k \text{ sod: } \alpha(m) \beta(m) = -1$
 - * $k \text{ lih: } \alpha(m) \beta(m) = 1$

Torej: $\alpha(m) - \beta(m) = (-1)^{k-1}$

3.5 Dvanajstera pot

Imamo n = |N| kroglic in k = |K| škatel. Zanimajo nas razporeditve teh kroglic v škatle, glede na to ali kroglice in škatle med seboj ločimo ali ne.

Spomnimo se na definiciji injektivnosti in surjektivnosti

- injektivna razporeditev: v vsaki škatli je največ ena kroglica
- surjektivna razporeditev: v vsaki škatli je vsaj ena kroglica

N	$\mid K$	vse	injektivne	$\operatorname{surjektivne}$
Ločimo	Ločimo	k^n	$k^{\underline{n}}$	$k! \cdot S(n,k)$
Ne ločimo	Ločimo	$\binom{n+k-1}{k-1}$	$\binom{k}{n}$	$\binom{n-1}{k-1}$
Ločimo	Ne ločimo	$\sum_{i \leqslant k} S(n,i)$	$k \geqslant n ? 1 : 0$	S(n,k)
Ne ločimo	Ne ločimo	$\overline{p_k}(n)$	$k \geqslant n ? 1 : 0$	$p_k(n)$

4 Rodovne funkcije

4.1 Uvod

Na kakšne načine lahko predstavimo zaporedje?

1. Z eksplicitno formulo

$$a_n = 2^n$$
 $b_n = n!$ $F_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right)$

2. Z rekurzivno zvezo

$$a_n = F_{n \geqslant d}(a_{n-1}, a_{n-2}, \ldots) +$$
začetni členi $a_0, \ldots a_{d-1}$

$$a_n = 2a_{n-1}, \quad a_0 = 1$$

$$b_n = nb_{n-1}, \quad n \geqslant 1, \quad b_0 = 1$$

$$F_n = F_{n-1} + F_{n-2}, \quad n \geqslant 2, \quad F_0 = 1, \quad F_1 = 1$$

3. Z asimptotsko formulo

$$F_n \sim \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^{n+1}$$
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Definicija 4.1 (Asimptotska enakost). $a_n \sim b_n := \lim_{n \to \infty} \frac{a_n}{b_n} = 1$

Opomba. $\sqrt{2\pi n}(\frac{n}{e})^n$ smatramo za preprostejšo formulo kot n!, saj je prejšnja bolj uporabna pri računanju.

Za izračun potence a^b potrebujemo $log_2(b)$ operacij, računanje n! pa je izjemno počasno.

Primer. $2^{64} = (((((2^2)^2)^2)^2)^2)^2$

Primer. $2^{100} = ((2^{24} \cdot 2)^2)^2$

Ponavadi zaporedja poenostavimo tako, da jih ocenimo s pribižkom, ki ima splošni člen oblike $a_n \sim A n^B C^n$.

4. Z rodovno funkcijo

Spomnimo se iz analize: $\sum_{n=0}^{\infty} a_n x^n$ je potenčna vrsta, ki konvergira na $x \in (-R, R)$, divergira pa na $x \in (-\infty, -R) \cup (R, \infty)$, kjer je $R \in [0, \infty]$ (lahko je tudi ∞) konvergenčni polmer. V $x = \pm R$ ne moremo zagotovo trditi ničesar.

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
, če limita obstaja

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} \in [0, \infty]$$

Za $\sum_{n=0}^{\infty} a_n z^n$, z $\in \mathbb{C}$ velja podobno: konvergira za |z| < R, divergira za |z| > R.

Primer.
$$\sum_{n=0}^{\infty} 2^n x^n$$
, $R = \lim_{n \to \infty} \left(\frac{2^n}{2^{n+1}}\right) = \frac{1}{2}$, $\frac{1}{\limsup \sqrt[n]{|2^n|}} = \frac{1}{2}$

Primer.
$$\sum_{n=0}^{\infty} n! x^n$$
, $R = \lim_{n \to \infty} \left(\frac{n!}{(n+1)!} \right) = 0$, divergira za $x \neq 0$

Primer.
$$e^x = \sum_{n=0}^{\infty} \frac{1}{n!} x^n$$

Vzemimo sedaj zaporedje $a_n=2^n=1,2,4,8,\ldots$ in ga zapišimo kot polinom, nato pa uporabimo formulo za potenčno vrsto.

$$1 + 2x + 4x^2 + 8x^3 + \dots = \sum_{n=0}^{\infty} 2^n x^n = \frac{1}{1 - 2x}, \quad |x| < \frac{1}{2}$$

Zaporedje lahko na ta način "zakodiramo" v funkcijo.

$$a_n = n! \to \sum_{n=0}^{\infty} n! \cdot x^n$$

Ampak tega (za primer $a_n = n!$) žal ne znamo izračunati. Zato bomo vpeljali eksponentno rodovno funkcijo.

- $\sum_{n=0}^{\infty} a_n \cdot x^n$ je (običajna) rodovna funkcija $(a_n)_n$
- $\sum_{n=0}^{\infty} a_n \cdot \frac{x^n}{n!}$ je eksponentna rodovna funkcija $(a_n)_n$

$$\sum_{n=0}^{\infty} n! \cdot \frac{x^n}{n!} = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$
$$\sum_{n=0}^{\infty} 2^n \cdot \frac{x^n}{n!} = e^{2x}$$
$$\sum_{n=0}^{\infty} F_n \cdot x^n = \frac{1}{1-x-x^2}$$

Zadnji primer bomo izpeljali kasneje.

4.2 Formalne potenčne vrste

Definicija 4.2 (Polinom).

$$\mathbb{R}[x] = \{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n : a_0, \dots, a_n \in \mathbb{R}\}\$$

Množica realnih ($\mathbb{R}[x]$) oziroma kompleksnih ($\mathbb{C}[x]$) polinomov tvori polje za seštevanje in množenje (v resnici tudi $\mathbb{Q}[x]$, $\mathbb{Z}_p[x]$ in ostali obsegi).

$$\sum_{i=0}^{n} a_i x^i + \sum_{j=0}^{m} b_j x^j = \sum_{i=0}^{\max(n,m)} (a_i + b_i) x^i$$
$$(a_i = 0 : i > n; b_j = 0, j > m)$$

Ker se želimo ukvarjati zgolj s poljem polinomov (ne s funkcijami), bomo polinom definirali drugače

Definicija 4.3 (Polinom kot zaporedje).

$$\mathbb{R}[x] = \{(a_0, a_1, \dots) : a_i \in \mathbb{R}. \text{ Le končno mnogo } a_i \neq 0\}$$

 $(\mathbb{R}[x],+,\cdot)$ je (neskončnorazsežen) vektorski prostor (za · množenje s skalarjem)

 $\mathbb{R}_n[x] = \{a_0 + a_1 x + \ldots + a_n x^n : a_0, \ldots, a_n \in \mathbb{R}\}$ (polinomi stopnje $\leq n$) je (n+1)-dimenzionalen vektorski prostor. Njegova baza je npr. $1, x, x^2, \ldots, x^n$, lahko

pa tudi $1, x^{\underline{1}}, x^{\underline{2}}, ..., x^{\underline{n}}$ ali $1, x^{\overline{1}}, x^{\overline{2}}, ..., x^{\overline{n}}$. Prehodni matriki bi bili [c(n, k)] in [S(n, k)].

 $\sum_{k} c(n,k)x^{k} = x^{\overline{n}} \qquad \sum_{k} S(n,k)x^{\underline{k}} = x^{n}$

Definicija 4.4 (Konvolucijsko množenje). Produkt polinomov po pravilu "vsak z vsakim".

$$\sum_{n} a_n x^n \cdot \sum_{n} b_n x^n = \sum_{n} \left(\sum_{k=0}^{n} (a_k b_{n-k}) \right) x^n$$

Primer. $(a_0 + a_1x + ... + a_nx^n)(b_0 + b_1x + ... + b_mx^m) = a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + (a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0)x^3 + ... + a_nb_mx^{n+m}$

Koeficienti pri x^k so

$$a_0b_k + a_1b_{k-1} + \dots + a_kb_0 = \sum_{i=0}^k a_ib_{k-i} = \sum_{\substack{i,j \ge 0\\i+j=k}} a_ib_j$$

 $(\mathbb{R}[x], +, \cdot)$ je sedaj komutativen kolobar (kjer je · konvolucijski produkt). $\mathbb{R}[x]$, z vsemi temi operacijami tvori komutativno algebro. Lahko bi za kolobar vzeli tudi $\mathbb{C}([0,1])$. Če vzamemo polinome fiksne stopnje $\mathbb{R}^{n\times n}$, dobimo nekomutativno algebro.

Definicija 4.5 (Algebra). Algebraična struktura $((F, +, \cdot), (V, +, \circ))$ je algebra, če je $((F, +, \cdot), (V, +))$ vektorski prostor in \circ produkt med vektorji, za katerega velja distributivnost.

Definicija 4.6 (Algebra formalnih potenčnih vrst). $\mathbb{R}[[x]]$ je komutativna algebra zaporedij v \mathbb{R} .

$$\mathbb{R}[[x]] = \{(a_0, a_1, a_2, \dots) : a_i \in \mathbb{R}\} = \{f : \mathbb{N} \to \mathbb{R}\} = \mathbb{R}^{\mathbb{N}}$$

Za operacije

$$(a_n)_n + (b_n)_n = (a_n + b_n)_n$$
$$\lambda(a_n)_n = (\lambda a_n)_n \quad \lambda \in \mathbb{R}$$
$$(a_n)_n(b_n)_n = (\sum_{k=0}^n a_k b_{n-k})_n$$

Namesto $(a_n)_n$ ali a_0, a_1, a_2, \ldots pišemo $\sum_{n=0}^{\infty} a_n x^n$ oziroma $a_0 + a_1 x + a_2 x^2 + \ldots$ V tem primeru x ni spremenljivka, x^n ni potenciranje, · ni množenje in + ni seštevanje, temveč so samo oznake, da ločimo med členi. Z izrazom "formalna potenčna vrsta" se nanašamo na neko zaporedje. "Rodovna funkcija zaporedja" (ang. "generating function") je v bistvu tudi formalna potenčna vrsta (torej zaporedje), ampak ponavadi s tem mislimo bolj na zaporedje kot celoto, t.j. na funkcijski zapis, npr. $\frac{1}{1-2x}$.

Enota za množenje je $1=1+0x+0x^2+...$ Velja tudi $(1+x+x^2+...)(1-x)=1$, torej je (1-x) multiplikativni inverz za $(1+x+x^2+...)$. To poznamo kot formulo za potenčno vrsto.

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

Trditev 4.7. $\sum_{n=0}^{\infty} a_n x^n$ ima inverz za množenje natanko tedaj, ko $a_0 \neq 0$.

Dokaz. (
$$\Rightarrow$$
)
$$\sum_{n=0}^{\infty} a_n x^n \cdot \sum_{n=0}^{\infty} b_n x^n = 1$$

$$a_0 b_0 = 1$$

$$a_0 b_1 + a_1 b_0 = 0$$

$$a_0 b_2 + a_1 b_1 + a_2 b_0 = 0$$
... = 0

 (\Leftarrow) Skonstruirajmo inverz za $\sum_{n=0}^{\infty}b_nx^n$

$$b_0 = \frac{1}{a_0}$$

$$b_1 = -\frac{a_1 b_0}{a_0}$$

$$b_2 = -\frac{a_1 b_1 + a_2 b_0}{a_0}$$

Vpeljimo nekaj oznak, ki jih bomo uporabljali v nadaljevanju.

$$F(x) := \sum_{n=0}^{\infty} a_n x^n$$
$$[x^n] F(x) := a_n \text{ (n-ti člen zaporedja)}$$
$$F(0) := [x^0] F(x)$$

$$(F \cdot G)(0) := F(0) \cdot G(0)$$

Definicija 4.8 (Odvod formalne potenčne vrste). Definiramo po zgledu odvajanja polinomov pri analizi.

$$F(x) = \sum_{n} a_n x^n \implies F'(x) := \sum_{n} (n+1)a_{n+1} x^n$$
$$(a_0, a_1, a_2, \dots) \longmapsto (a_1, 2a_2, 3a_3, \dots)$$

Trditev 4.9 (Odvod produkta). Deluje enako kot pri analizi.

$$(F(x)G(x))' = F'(x)G(x) + F(x)G'(x)$$

Dokaz. Preverimo, da se koeficienti ujemajo pri splošnem členu $[\boldsymbol{x}^n].$ Na levi imamo

$$(n+1)(a_0b_{n+1}+a_1b_n+\ldots+a_{n+1}b_0)$$

Na desni pa

 $a_1b_n + 2a_2b_{n-1}3a_3b_{n-2} + \ldots + (n+1)a_{n+1}b_0 + a_0(n+1)b_{n+1} + a_1nb_n + a_2(n-1)b_{n-1} + \ldots + a_nb_1a_{n+1}b_0 + a_0(n+1)b_{n+1} + a_1nb_n + a_0(n-1)b_{n-1} + \ldots + a_nb_1a_{n+1}b_0 + a_0(n+1)b_{n+1} + a_1nb_n + a_0(n-1)b_{n-1} + \ldots + a_nb_1a_{n+1}b_0 + a_0(n+1)b_{n+1} + a_1nb_n + a_0(n-1)b_{n-1} + \ldots + a_nb_1a_{n+1}b_0 + a_0(n+1)b_{n+1} + a_1nb_n + a_0(n-1)b_{n-1} + \ldots + a_nb_1a_{n+1}b_0 + a_0(n+1)b_{n+1} + a_1nb_n + a_0(n-1)b_{n+1} + a_0(n-1)b_{n+$

kar lahko zapišemo kot

$$(0+n+1)(a_0b_{n+1})+(1+n)(a_1b_n)+(2+n-1)(a_2b_{n-1})+\ldots+(n+1)(a_nb_1)+(n+1+0)(a_{n+1}b_0)$$

Od tod neposredno sledi naša formula.

Definicija 4.10.

$$e^{\lambda x} \coloneqq \sum_{n} \frac{\lambda^n}{n!} x^n$$

Trditev 4.11. Velja $e^{\lambda x} \cdot e^{\mu x} = e^{(\lambda + \mu)x}$

Dokaz. Uporabimo formulo za splošni člen konvolucijskega produkta

$$e^{\lambda x} \cdot e^{\mu x} = \sum_{k=0}^{n} \frac{\lambda^{k}}{k!} \frac{\mu^{n-k}}{(n-k)!} \stackrel{?}{=} \frac{(\lambda+\mu)^{n}}{n!} = e^{(\lambda+\mu)x}$$

Če enakost z vprašajem pomnožimo z n!, dobimo

$$\sum_{k=0}^{n} \binom{n}{k} \lambda^k \mu^{n-k} = (\lambda + \mu)^n$$

kar pa drži po binomskem izreku.

Opomba. Ni nujno, da se omejimo na realne polinome. Tudi $\mathbb{C}[[x]]$ in $\mathbb{Q}[[x]]$ tvorita algebri. Splošneje, vzamemo lahko poljuben K[[x]], kjer je K komutativen obseg, (K, +) abelova grupa, $(K \setminus \{0\}, \cdot)$ abelova grupa in med operacijama velja distributivnost. To vključuje tudi končna polja, npr. \mathbb{Z}_p , kjer je p praštevilo.

Izrek 4.12. Polje velikosti n obstaja natanko tedaj, ko je n potenca praštevila $(n = p^k)$. Za nek n obstaja samo eno tako polje (do izomorfizma natančno).

Definicija 4.13 (Karakteristika). Je najmanjše tako število k, da velja $\underbrace{1+1+\cdots}_{k \text{ lent}}=id$.

Obseg ima karakteristiko 0, če $1+1+...+1\neq 0$.

Primer. V \mathbb{Z}_5 velja 1+1+1+1+1=0, torej \mathbb{Z}_5 ima karakteristiko 5.

Primer. \mathbb{Q} , \mathbb{R} in \mathbb{C} imajo karakteristiko 0.

Končna polja imajo karakteristiko p, če so velikosti p^k .

V \mathbb{Z}_5 za vsa števila večja od 5 velja $5! = 6! = \dots = 0$. V obsegu s karakteristiko > 0 zato izraz $\frac{1}{n!}$ ni nujno definiran. Zato se omejimo na obsege s karakteristiko 0.

4.3 Uporaba rodovnih funkcij pri reševanju rekurzivnih enačb

Opomba. Dejanski primeri v tem poglavju niso vključeni.

Spomnimo se na dekompozicijo parcialnih ulomkov.

$$\frac{x+1}{(1-2x)(1-x)} = \frac{A}{1-2x} + \frac{B}{1-x}$$

Opomba (Parcialna dekompozicija z metodo prekrivanja). V zgornjem primeru obe strani pomnožimo z (1-2x), nato pa vstavimo $x=\frac{1}{2}$. Ostane samo A=3. Pomnožimo še z (1-x) in vstavimo x=1. Dobimo B=-2. Požvižgamo se na deljenje z nič, ker deluje.

Pozor! Ta metoda deluje samo takrat, ko imamo v imenovalcu samo enostavne ničle. Če imamo tudi ničle višjih stopenj, lahko enostavne ničle izračunamo z metodo prekrivanja, ostale pa ročno.

Ugotovili smo, da $\frac{x+1}{(1-2x)(1-x)}$, kar je v bistvu $\frac{3}{1-2x}-\frac{2}{1-x}$ lahko interpretiramo kot $a_n=3\cdot 2^n-2$.

Spomnimo se še na kvadratno enačbo.

$$ax^{2} + bx + c = a(x - x_{1})(x - x_{2}), \ x_{1,2} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

Pri kombinatoriki jo bomo nekoliko obrnili.

$$c + bx + ax^2 = c(1 - y_1x)(1 - y_2x)$$

 $\frac{1}{y_1}$ in $\frac{1}{y_2}$ sta ničli našega polinoma $c+bx+ax^2.$

$$c + b\frac{1}{y} + a\frac{1}{y^2} = 0 \quad / \cdot y^2$$

$$a + by + cy^2 = 0$$

 $y_{1,2}$ sta torej ničli obratnega polinoma.

Trditev 4.14.

$$\frac{1}{(1-x)^k} = \sum_{n=0}^{\infty} \binom{n+k-1}{k-1} x^n$$

Dokaz.

$$\frac{1}{1-x} \cdot \frac{1}{1-x} \cdot \dots \cdot \frac{1}{1-x} = (1+x+x^2+\dots)(1+x+x^2+\dots) \cdot \dots \cdot (1+x+x^2+\dots)$$

Tako na levi kot na desni strani je k členov. Vzemimo za primer k=3 in analizirajmo člen $[x^5]$:

$$x^5 \cdot x^0 \cdot x^0$$
, $x^3 \cdot x^1 \cdot x^1$, $x^1 \cdot x^2 \cdot x^2$, ...

Ugotovimo, da delamo šibke kompozicije moči k, teh pa je ravno $\binom{n+k-1}{k-1}$.

Dokaz. (Z indukcijo) Dokaz z indukcijo je bralcu prepuščen za vajo. ■

Primer. $\frac{1}{1-x} = \sum_{n} x^n$.

Primer. $\frac{1}{(1-x)^2} = \sum_{n} (n+1)x^n$.

Primer. $\frac{1}{(1-x)^3} = \sum_{n} {n+2 \choose 2} x^n$.

4.3.1 Fibonaccijeva rodovna funkcija

Poskusimo sestaviti rodovno funkcijo za Fibonaccijevo zaporedje $1, 1, 2, 3, 5, 8, \ldots$ Uporabili bomo oznaki $F_n = n$ -ti člen Fibonaccijevega zaporedja in $F(x) = \sum_{k=0}^{\infty} F_n \cdot x^n$, t.j. Fibonaccijeva formalna potenčna vrsta.

$$F_n: 1, 1, 2, 3, 5, 8, 13, 21, \dots$$

 $F_{n-1}: 0, 1, 1, 2, 3, 5, 8, 13, \dots = x \cdot F(x)$
 $F_{n-2}: 0, 0, 1, 1, 2, 3, 5, 8, \dots = x^2 \cdot F(x)$

Opazimo, da velja $F(x) = 1 + x \cdot F(x) + x^2 \cdot F(x)$. Če ta izraz malo uredimo, dobimo

$$F(x)(1 - x - x^{2}) = 1$$
$$F(x) = \frac{1}{1 - x - x^{2}}$$

Kar je rodovna funkcija za Fibonaccijevo zaporedje.

Primer. $a_n = 2a_{n-1}, a_0 = 1$. Pomnožimo rekurzivno formulo z x^n in seštejmo $\sum_{n=1}^{\infty}$.

$$\sum_{n=1}^{\infty} a_n x^n = \sum_{n=1}^{\infty} 2a_{n-1} x^n$$

Leva stran je F(x) - 1, ker seštevamo od n = 1 namesto od n = 0. Na desni strani nesemo pred vsoto 2 in izpostavimo en x, da imamo pri a isto številko.

$$F(x) - 1 = 2x \sum_{n=1}^{\infty} a_{n-1} x^{n-1} = 2x \sum_{n=0}^{\infty} a_n x^n = 2x F(x)$$

Izpostavimo F(x) kot prej

$$F(x)(1-2x) = 1 \implies F(x) = \frac{1}{1-2x}$$

Če želimo, lahko to pretvorimo še v eksplicitno formulo.

$$F(x) = \frac{1}{1 - 2x} = \sum_{n=0}^{\infty} 2^n x^n \implies a_n = 2^n$$

Primer. $a_n=3a_{n-1}-2a_{n-2},$ $a_0=1,$ $a_1=4.$ Primer je prepuščen bralcu. Rešitev je $F(x)=\frac{1+x}{1-3x+2x^2}$ oziroma $a_n=3\cdot 2^n-2$

Poskusimo posplošiti zgornji postopek za poljubno homogeno linearno rekurzivno enačbo.

Izrek 4.15 (Recept za reševanje homogene linearne rekurzivne enačbe s konstantnimi koeficienti).

$$c_d a_n + c_{d-1} a_{n-1} + \dots + c_0 a_{n-d} = 0 \quad n \geqslant d$$

Zapišimo karakteristični polinom

$$c_d \lambda^d + c_{d-1} \lambda^{d-1} + \dots + c_0 \quad (c_d, c_0 \neq 0, c_i \in \mathbb{C})$$

kjer so $\lambda_1, \ldots, \lambda_k$ ničle z večkratnostmi $\alpha_1, \ldots \alpha_k$.

$$a_n = \sum_{i=1}^k p_i(n)\lambda_i^n, \quad deg(p_i) < \alpha_i$$

Dokaz. Pomnožimo vrsto z x^n in seštejmo od d do ∞ .

$$c_d a_n + c_{d-1} a_{n-1} + \dots + c_0 a_{n-d} = 0$$
 $/x^n / \sum_{n=d}^{\infty}$

$$0 = c_d(F(x) - a_0 - a_1x - \dots - a_{d-3}x^{d-3} - a_{d-2}x^{d-2} - a_{d-1}x^{d-1})$$

$$+ c_{d-1}x(F(x) - a_0 - a_1x - \dots - a_{d-3}x^{d-3} - a_{d-2}x^{d-2})$$

$$+ c_{d-2}x^2(F(x) - a_0 - a_1x - \dots - a_{d-3}x^{d-3})$$

$$+ \dots$$

$$+ c_1x^{d-1}(F(x) - a_0)$$

$$+ c_0x^dF(x)$$

$$F(x)(c_d + c_{d-1}x + c_{d-2}x^2 + \dots + c_1x^{d-1} + c_0x^d) = P(x) \text{ polinom stopnje} < d$$

$$F(x) = \frac{P(x)}{c_d + c_{d-1}x + c_{d-2}x^2 + \dots + c_1x^{d-1} + c_0x^d}$$

Karakteristični polinom: $c_d \lambda^d + c_{d-1} + \lambda^{d-1} + \cdots + c_0$ z ničlami $\lambda_1, \ldots, \lambda_k$

$$F(x) = \frac{P(x)}{c_d \prod_{i=1}^k (1 - \lambda_i x)^{\alpha_i}} =$$

$$= \sum_{i=1}^k \sum_{j=1}^{\alpha_i} \frac{A_{i,j}}{(1 - \lambda_i x)^j} =$$

$$= \sum_{i=1}^k \sum_{j=1}^{\alpha_i} A_{ij} \sum_{n=0}^{\infty} \binom{n+j-1}{j-1} \lambda_i^n x^n$$

$$a_n = \sum_{i=1}^k \left(\sum_{j=1}^{\alpha_i} A_{ij} \binom{n+j-1}{j-1}\right) \lambda_i^n = \sum_{i=1}^k p_i(n) \lambda_i^n$$

$$\binom{n+j-1}{j-1} = \frac{(n+j-1)(n+j-2)...(n+1)}{(j+1)!}$$
polinom stopnje (j-1) $\implies deg(p_i) < \alpha_i$

Izrek 4.16 (Reševanje nekaterih nehomogenih rekurzivnih enačb).

$$c_d a_n + c_{d-1} a_{n-1} + \dots + c_0 a_{n-d} = q(n) \lambda^n$$

Rešitev je vsota rešitve homogene enačbe in partikularne rešitve, ki jo poiščemo z nastavkom

$$a_n = n^{\alpha} r(n) \lambda^n$$

 $\deg(r(n)) \leq \deg(q)$, α -kratnost λ v karakterističnem polinomu,

$$\alpha \geqslant 0$$
, $\alpha = 0 \iff \lambda$ ni ničla

Dokaz. Prepuščen bralcu.

4.4 Binomska vrsta

Spomnimo se biomskega koeficienta za $n, k \in \mathbb{N}$

$$\binom{n}{k} = \left| \binom{[n]}{k} \right| = \frac{n^{\underline{k}}}{k!} = \begin{cases} \frac{n!}{k!(n-k)!} : 0 \leqslant k \leqslant n \\ 0 : k > n \end{cases}$$

Definicija 4.17 (Posplošeni binomski koeficient). Zahtevamo samo $n \in \mathbb{N}$.

$$\binom{\lambda}{n} = \frac{\lambda^n}{n!} = \frac{\lambda \cdot (\lambda - 1) \cdots (\lambda - n + 1)}{n!}$$

Kjer je $\lambda \in K,\, K$ konvergentni obseg s karakteristiko 0, npr \mathbb{R}^2 ali $\mathbb{C}^2.$

Primer.
$$\binom{5}{2}{3} = \frac{\frac{5}{2} \cdot \frac{3}{2} \cdot \frac{1}{2}}{6} = \frac{5}{16}$$

Primer.
$$\binom{i}{2} = \frac{i(i-1)}{2} = \frac{-1-i}{2}$$

Primer.
$$\binom{-1}{n} \frac{(-1)(-2)...(-n)}{n!} = (-1)^n$$

Primer. $k \in \mathbb{N}$:

$$\binom{-k}{n} = \frac{-k(-k-1)...(-k-n+1)}{n!} = \frac{(-1)^n(n+k-1)...(k+1)k}{n!} \cdot \frac{(k-1)!}{(k-1)!} =$$

$$= \frac{(-1)^n(n+l+k-1)!}{n!(k-1)!} = (-1)^n \binom{n+k-1}{k-1}$$

Primer.

$$\binom{\frac{1}{2}}{n} = \frac{\frac{1}{2} \cdot (-\frac{1}{2}) \cdot (-\frac{3}{2}) \cdot \dots \cdot (\frac{1}{2} - n + 1)}{n!} = \frac{(-1)^{n-1} \cdot 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n - 3)}{2^n \cdot n!}$$

Uporabimo simbol !!. Velja $7!! = 1 \cdot 3 \cdot 5 \cdot 7$ oziroma za soda števila: $6!! = 2 \cdot 4 \cdot 6$. Pri sodih številih pa lahko izpostavimo 2, da dobimo $6!! = 2^3 \cdot 3!$.

$$\frac{(-1)^{n-1}(2n-3)!!}{2^n \cdot n!} \cdot \frac{(2n-2)!!}{(2n-2)!!} = \frac{(-1)^{n-1}(2n-2)!}{2^n \cdot n! \cdot 2^{n-1}(n-1)!} = \frac{(-1)^{n-1}}{2^{2n-1} \cdot n} \binom{2n-2}{n-1}$$

Če smo malo previdni, opazimo, da to deluje samo pod pogojem $n \ge 1$, sicer je $\binom{1}{2} = 0$.

Definicija 4.18 (Binomska vrsta). Naj bo K obseg in $\lambda \in K$.

$$B_{\lambda}(x) = \sum_{n=0}^{\infty} {\lambda \choose n} x^n$$
$$= 1 + \lambda x + \frac{\lambda(\lambda - 1)}{2} x^2 + \frac{\lambda(\lambda - 1)(\lambda - 2)}{6} x^3 + \dots$$

Opomba. Zapis $B_{\lambda}(x) = \sum_{n=0}^{\infty} {\lambda \choose n} x^n$ je napačen! Lahko je bodisi $\sum_{n\in\mathbb{N}_0}^{\infty}$, $\sum_{n=0}^{\infty}$ ali $\sum_{n=0}^{\lambda}$.

Primer. Če za λ vzamemo $n \in \mathbb{N}$, dobimo binomski izrek.

$$B_n(x) = \sum_{k=0}^{\infty} {n \choose k} x^k = \sum_{k=0}^{n} {n \choose k} x^k = (1+x)^n$$

Primer. Če za λ vzamemo $-k, k \in \mathbb{N}$, dobimo

$$B_{-k}(x) = \sum_{n=0}^{\infty} {\binom{-k}{n}} x^n = \sum_{n=0}^{\infty} (-1)^n {\binom{n+k-1}{k-1}} x^n = (1+x)^{-k}$$

Zadnjo enakost smo dokazali v prejšnjem razdelku (glej??).

Opazimo očiten vzorec. Ali bi lahko posplošili pravilo $B_{\lambda}(x) = (1+x)^{\lambda}$? Natančneje, če bi definirali npr. $(1+x)^{\frac{1}{2}}$ tako, da velja $((1+x)^{\frac{1}{2}})^2 = 1$, ali lahko pričakujemo, da je $B_{\frac{1}{2}} = (1+x)^{\frac{1}{2}}$? Vse to in še več bomo lahko trdili, ko dokažemo $B_{\lambda}(x) \cdot B_{\mu}(x) = B_{\lambda+\mu}(x)$.

Lema 4.19 (Binomski izrek s črtico).

$$(a+b)^{\overline{n}} = \sum_{k=0}^{n} \binom{n}{k} a^{\overline{n-k}} b^{\overline{k}}$$
$$(a+b)^{\underline{n}} = \sum_{k=0}^{n} \binom{n}{k} a^{\underline{n-k}} b^{\underline{k}}$$

Dokaz. Z indukcijo.

Baza indukcije: $n = 0, 1 = 1 \checkmark$ Indukcijski korak: $n - 1 \implies n$

$$\begin{split} (\lambda+\mu)^{\underline{n}} &= (\lambda+\mu)^{\underline{n-1}}(\lambda+\mu-n+1) = \\ &\stackrel{IP}{=} \sum_k \binom{n-1}{k} \lambda^{\underline{k}} \mu^{\underline{n-1-k}}(\lambda-k+\mu+k-n+1) = \\ &= \sum_k \binom{n-1}{k} \lambda^{\underline{k+1}} \mu^{\underline{n-1-k}} + \sum_k \binom{n-1}{k} \lambda^{\underline{k}} \mu^{\underline{n-k}} = \\ &= \sum_k \binom{n-1}{k-1} \lambda^{\underline{k}} \mu^{\underline{n-k}} + \sum_k \binom{n-1}{k} \lambda^{\underline{k}} \mu^{\underline{n-k}} = \\ &= \sum_k \binom{n}{k} \lambda^{\underline{k}} \mu^{\underline{n-k}} \end{split}$$

Dokaz za naraščajoče potence prepustimo bralcu.

4.4.1 Catalanova števila

Definicija 4.20 (Catalanovo število). C_n je število pravilnih postavitev oklepajev na nizu n+1 števil $(t_0 \ t_1 \ t_2 \ \dots \ t_n)$.

Prvih nekaj Catalanovih števil (od n = 0 dalje): 1, 1, 2, 5, 14, 42,

$$\begin{array}{lll} n=0 & (t_0) \\ n=1 & (t_0t_1) \\ n=2 & (t_0t_1)t_2 & t_0(t_1t_2) \\ n=3 & ((t_0t_1)t_2)t_3 & (t_0t_1)(t_2t_3) & t_0(t_1(t_2t_3)) & (t_0(t_1t_2))t_3 & t_0((t_1t_2)t_3) \end{array}$$

Poiščimo rekurzivno zvezo za C_n . Za rekurzivni korak bomo izbrali lokacijo zadnjega množenja (stik najbolj zunanjih oklepajev).

Primer. Pri $((t_0t_1)t_2)t_3$ je "zadnje množenje" med $((t_0t_1)t_2)$ in t_3 , pri $(t_0t_1)(t_2t_3)$ pa med (t_0t_1) in (t_2t_3) .

V splošnem, $(t_0t_1 \dots t_k) \cdot (t_{k+1} \dots t_{n+1})$, kjer velja $0 \le k \le n$. Ostane nam še izbira oklepajev med k členi in (n+1) - (k+1) = n - k členi.

Izrek 4.21 (Rekurzivna zveza za C_n).

$$C_{n+1} = \sum_{k=0}^{n} C_k C_{n-k} \qquad n \geqslant 0$$

Ker smo kul matematiki, se ne bomo zadovoljili zgolj z rekurzivno zvezo.

Izrek 4.22 (Eksplicitna formula za C_n).

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Dokaz. Definirajmo $F(x) = \sum_{n=0}^{\infty} C_n x^n$. Pomnožimo rekurzijo z x^{n+1} in seštejmo člene $\sum_{n=0}^{\infty}$, kot smo to počeli pri linearnih rekurzijah.

$$\sum_{n=0}^{\infty} C_{n+1} x^{n+1} = \sum_{n=0}^{\infty} (\sum_{k=0}^{n} C_k C_{n-k}) x^{n+1}$$

Levo stran izrazimo kot F(x)-1, na desni strani pa opazimo konvolucijo F(x) s samim sabo. Dobimo torej $xF^2(x)$. Če enakost preoblikujemo, dobimo $xF^2(x)-F(x)+1=0$.

Kaj pa zdaj? No, ko vidimo kvadratno enačbo, nas ima, da bi jo rešili. Poskusimo s kvadratno enačbo

$$F(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}$$

Sedaj pa se vprašajmo, če je ta izraz kaj smiseln. Če začnemo s členom $\sqrt{1-4x}$, lahko uporabimo binomsko vrsto.

$$\sqrt{1+x} = 1 - 2\sum_{n=1}^{\infty} \frac{(-1)^n}{2^{2n}n} {2n-2 \choose n-1} x^n$$

$$\sqrt{1-4x} = 1 - 2\sum_{n=1}^{\infty} \frac{(-1)^n}{2^{2n}n} {2n-2 \choose n-1} (-4x)^n$$

$$= 1 - 2\sum_{n=1}^{\infty} \frac{1}{n} {2n-2 \choose n-1} x^n$$

Nadaljujemo tako, da izračunano vstavimo v prvotno ničlo.

$$\frac{1+\sqrt{1-4x}}{2x} = \frac{2-2\sum_{n=1}^{\infty} \frac{1}{n} \binom{2n-2}{n-1} x^n}{2x} \qquad \notin k[[x]]$$

To na žalost ni formalna potenčna vrsta, saj delimo neko vrsto z x-om, ki se ne more izpostaviti.

Po drugi strani, če vzamemo drugo ničlo, se nam člen 1 krajša, ostane pa lepa formalna potenčna vrsta.

$$\frac{1 - \sqrt{1 - 4x}}{2x} = \sum_{n=1}^{\infty} \frac{1}{n} {2n-2 \choose n-1} x^{n-1}$$

Ta vrsta tudi reši našo kvadratno enačbo.

$$x(\frac{1-\sqrt{1-4x}}{2x})^2 - \frac{1-\sqrt{1-4x}}{2x} + 1 = 0$$

Zato je to naša rešitev.

$$F(x) = \sum_{n=0}^{\infty} \frac{1}{n+1} {2n \choose n} x^n$$

Primer. $C_3 = \frac{1}{4} \binom{6}{3} = \frac{\cancel{6} \cdot 5 \cdot \cancel{4}}{\cancel{4} \cdot \cancel{6}} = 5$

Primer.
$$C_5 = \frac{1}{6} {10 \choose 5} = \frac{\cancel{\cancel{2}} \cdot \cancel{\cancel{6}} \cdot \cancel{\cancel{6}} \cdot \cancel{\cancel{7}} \cdot \cancel{\cancel{6}}}{\cancel{\cancel{6}} \cdot \cancel{\cancel{5}} \cdot \cancel{\cancel{4}} \cdot \cancel{\cancel{3}} \cdot \cancel{\cancel{2}}} = 42$$

Catalanova števila so zelo pogosta v kombinatoriki. Dva primera uporabe sta:

- Dyckove poti dolžine n. To so poti od (0,0) do (2n,0) s koraki diagonalno gor (1,1) in diagonalno dol (1,-1), a nikoli ne grejo pod x os.
- Triangulacije (n+2)-kotnika. To pomeni dodajanje diagonal (n+2)-kotniku, dokler nimamo samih trikotnikov.

Te dve uporabi lahko dokažete bodisi tako, da najdete bijekcijo med želenimi konstrukcijami in postavljanjem oklepajev, bosidi pokažete, da ima konstrukcija isto rekurzivno zvezo.

V knjigi Enumerative Combinatorics je 66 matematičnih struktur, ki jih preštevajo Catalanova števila. Na spletni strani Richarda Stanlyja jih je še več kot 100.

Slika 3: Triangulacije sedemkotnika

Slika 4: Dyckova pot

4.5 Rodovne funkcije razčlenitev

Spomnimo se na razčlenitve in števila $p_k(n), \overline{p_k}(n), p(n)$.

Primer.
$$n = 5, k = 3: (3\ 2), (3\ 1\ 1), (2\ 2\ 1), (2\ 1\ 1\ 1), (1\ 1\ 1\ 1\ 1)$$

Ugotovili smo že, kako izračunati koeficient pri $[x^5]$ pri izrazu kot je $(1+x+x^2+\ldots)(1+x+x^2+\ldots)$ Kaj pa če koeficienti niso povsod enaki?

$$(1+x+x^2+\ldots)(1+x^2+x^4+\ldots)(1+x^3+x^6+\ldots)$$
 [x⁵]

Izberemo nekaj iz prvega oklepaja, prištejemo $2 \cdot$ nekaj iz drugega in $3 \cdot$ nekaj iz tretjega.

$$x^5 = x^{0 \cdot 1} \cdot x^{1 \cdot 2} \cdot x^{1 \cdot 3} = x^{2 \cdot 1} \cdot x^{0 \cdot 2} \cdot x^{1 \cdot 3} = x^{1 \cdot 1} \cdot x^{2 \cdot 2} \cdot x^{0 \cdot 3} = x^{3 \cdot 1} \cdot x^{1 \cdot 2} \cdot x^{0 \cdot 3} = x^{5 \cdot 1} \cdot x^{0 \cdot 2} \cdot x^{0 \cdot 3}$$

To je enak problem, kot če bi hoteli zapisati število 5 kot vsoto števil 1, 2 in

3. Zgoraj bi to izgledalo (z enakim vrstnim redom)

$$5 = 2 + 3 = 1 + 1 + 3 = 1 + 2 + 2 = 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 + 1$$

Trditev 4.23.

$$\sum_{n=0}^{\infty} \overline{p_k}(n) x^n = \prod_{i=1}^k \frac{1}{1 - x^i}$$

Dokaz. Koeficient na obeh straneh je število rešitev enačbe

$$a_1\cdot 1+a_2\cdot 2+\ldots+a_k\cdot k=n$$

$$\sum_n p_k(n)x^n=(1+x+x^2+\ldots)(1+x^2+x^4+\ldots)\ldots(1+x^k+x^{2k}+\ldots)$$

$$p_k(n)=\text{ število razčlenitev } n\text{ s } k\text{ členi}\leqslant k\text{, kjer je vsaj en člen}=k.$$

Trditev 4.24.

$$\sum_{n} p_{k}(n)x^{n} = \frac{x^{k}}{\prod_{i=1}^{k} (1 - x^{i})}$$

Trditev 4.25.

$$\sum_{n} p(n)x^{n} = \prod_{i=1}^{\infty} \frac{1}{1 - x^{i}}$$

Pri
$$[x^n]$$
: $(1+x+x^2+...)(1+x^2+x^4+...)(1+x^n+x^{2n}+...)(1+x^{n+1}+x^{2n+2}+...)$ $\Longrightarrow \overline{p_n}(n) = p(n)$

Primer. o(n) je število razčlenitev n s samimi lihimi členi

$$\sum_{n} o(n)x^{n} = \prod_{i=0}^{\infty} \frac{1}{1 - x^{2i-1}}$$

 $Primer.\ d(n)$ je število razčlenitev n z različnimi členi

$$\sum_{n} d(n)x^{n} = \prod_{i=1}^{\infty} (1+x^{i}) \cdot \frac{\prod_{i=1}^{\infty} (1-x^{i})}{\prod_{i=1}^{\infty} (1-x^{i})}$$

$$= \frac{\prod_{i=1}^{\infty} (1-x^{2i})}{\prod_{i=1}^{\infty} (1-x^{i})}$$

$$= \prod_{i=1}^{\infty} \frac{1}{1-x^{2i-1}}$$

$$\implies o(n) = d(n)$$

4.6 Uporaba rodovnih funkcij

(1) Rodovna funkcija je pogosto "lepa", tudi če za zaporedje nimamo "lepe" formule.

Primer. $\sum_{k} c(n,k) x^{k} = x^{\overline{n}}$.

(2) Rodovno funkcijo se da pogosto zapisati iz kombinatoričnega problema (več pri Kombinatoriki 2).

Primer. i_n je število involucij v S_n , torej $\pi^2 = id$, $\sum i_n \frac{x^n}{n!} = e^{x + \frac{x^2}{2}}$. Pomen: e na nekaj sestavljeno iz x (cikli dolžine 1) in $\frac{x^2}{2}$ (cikli dolžine 2).

(3) V rodovni funkciji so "skriti" vsi drugi zapisi zaporedja.

Primer.
$$\sum_{n} F_n x^n = \frac{1}{1-x-x^2} \to (1-x-x^2) \sum_{n} F_n x^n = 1.$$

$$[x^n]: F_n - F_{n-1} - F_{n-2} = 0$$

asimptotika: vzamemo singularnost (x_0) , ki je najbližje izhodišču

$$F_n \sim An^B (\frac{1}{x_0})^n$$

(4) Iz rodovnih funkcij lahko izračunamo še drugo: povprečje, varianco . . . npr. koliko elementov ima v povprečju podmnožica [n]?

$$\frac{\sum_{S \subseteq [n]} |S|}{2^n} = \frac{\sum_k k \cdot \binom{n}{k}}{2^n} = \frac{n2^{n-1}}{2^n} = \frac{n}{2}$$

5 Pólyeva teorija

Primer. Koliko je ogrlic znkoraldami kbarv? Dve ogrlici sta enaki, če eno iz druge dobimo z rotacijo.

Primer. Koliko je zapestnic z n koraldami r barvami? Dve zapestnici sta enaki, če eno iz druge dobimo z rotacijo ali zrcaljenjem.

Nekateri objekti so ekvivalentni, zanima nas število ekvivaletnih razredov barvanj.

Definicija 5.1 (Permutacijska grupa). je grupa $G \leq S_n$

Izrek 5.2 (Cayleyev). Vsaka grupa je izomorfna neki permutacijski grupi.

Dokaz. Naj bo G poljubna grupa in $g \in G$. Definirajmo $T_g : G \to G$:

$$T_q(x) = gx$$

 T_g je permutacija množice G.

 $H = \{T_g : g \in G\}$ je grupa za komponiranje.

Primer (Ciklična grupa). $C_n = \{(1 \ 2 \ 3 \ \dots \ n)^i : 0 \leqslant i < n\} \leqslant S_n$ $C_n \cong \mathbb{Z}_n$ $\phi : \mathbb{Z}_n \to C_n := i \to (1 \ 2 \ \dots \ n)^i$

Primer (Diedrska grupa). $D_n = \{\text{rotacije} + \text{zrcaljenja}\} \leq S_n$ $|D_n| = 2n \ (n \ \text{zrcaljenj in} \ n \ \text{rotacij})$

+1. +1.

Definicija 5.3 $(x \sim y)$. $\exists g \in G : g \cdot x = y$

Trditev 5.4. \sim je ekvivalenčna relacija.

X z operacijo \sim razpade na ekvivalenčne razrede, ki jih imenujemo orbite. Orbito elementa x v G označimo Gx ($\neq G_x!!$).

5.1 Orbite, stabilizatorji in negibne točke

Definicija 5.5 (Orbita).

$$Gx = \{g \cdot x : g \in G\}$$

Opomba 5.6. Koncept orbit spominja na leve (desne) odseke, a ni isto. Pri odsekih imamo podgrupo, tukaj pa x niti ni element G. Pomembna posledica je, da so orbite lahko različno velike, odseki pa so po moči vedno enaki (|aH| = |bH|).

Primer. Za $G = C_n, D_n$ ali S_n velja Gx = X (samo ena orbita).

Primer.

$$G = \{ id, zrcaljenje \} \leqslant S_n$$

$$\text{število orbit} = \begin{cases} \frac{n+1}{2}; & n \text{ lih} \\ \frac{n}{2}; & n \text{ sod, zrcaljenje tipa 1} \\ \frac{n}{2}+1; & n \text{ sod, zrcaljenje tipa 2} \end{cases}$$

Množico orbit označimo z X/G.

Opomba. Na enak način smo označili tudi faktorske grupe (množice odsekov), a koncept ni isti, ker orbita \neq odsek (glej opombo ??).

Definicija 5.7 (Stabilizator).

$$G_x = \{ g \in G : g \cdot x = x \}$$

Elemente $G_x \neq Gx!!$) imenujemo stabilizatorji x-a.

Definicija 5.8 (Negibna točka).

$$X_q = \{x \in X : g \cdot x = x\}$$

Elemente X_g imenujemo negibne točke g-ja.

Izrek 5.9.

$$G_r \leqslant G$$

Dokaz.

$$id \in G_x$$

$$g, h \in G_x \implies g \cdot x = x, h \cdot x = x$$

$$\implies (g \cdot h) \cdot x = g \cdot (g \cdot x) = g \cdot x = x$$

$$\implies g \cdot h \in G_x$$

$$g \in G_x \implies g \cdot x = c \implies g^{-1} \cdot x = g^{-1} \cdot g \cdot x = x$$

$$\implies g^{-1} \in G_x$$

Primer.
$$G = C_n$$

 $G_x = \{id\}$
 $X_g = \begin{cases} x : g = id \\ \emptyset : g \neq id \end{cases}$

$$Primer. \ G = D_n$$

$$G_x = \{id, \text{zrcaljenje}\}$$

$$X_g = \begin{cases} n: g = id \\ 0: (g \text{ rotacija}) \text{ ali } (g \text{ zrcaljenje tipa 1 in } n \text{ sod}) \\ 1: g \text{ zrcaljenje}, n \text{ lih} \\ 2: g \text{ zrcaljenje tipa 2}, n \text{ sod} \end{cases}$$

Trditev 5.10.

$$|G| = |G_x| \cdot |Gx| \quad \forall x \in X$$

Dokaz. Spomnimo se levih odsekov . . .

$$H \leqslant G \models g \cdot H = \{g \cdot h : h \in H\}$$
 je levi odsek v G
$$q = e \implies g \cdot H = H$$

 $g\cdot H$ in $g'\cdot H$ sta bodisi enaka, bodisi disjunktna. G torej razpade na leve odseke, ki imajo enako moč $(H\to gH$ je bijekcija; inverz $g\to g^{-1}h)$ in kvocientnih množic

$$G/H=\{gH:g\in G\}$$

$$|G/H| = \frac{|G|}{|H|}$$
 (torej $|H|$ deli $|G|$)

Uporabimo za $H = G_x$ Vemo, da velja

$$|G/G_x| = \frac{|G|}{|G_x|}$$

Definirajmo

$$\phi: Gx \to G/G_x \text{ kot } g \cdot x \to gG_x$$

 ϕ je očitno bijekcija, torej imata Gx in G/G_x enako moč. Velja torej

$$|G_x| \cdot |Gx| = |G_x| \cdot |G/G_x| = |G_x| \cdot \frac{|G|}{|G_x|} = |G|$$

Pozor! g ni enolično določen. Pokažimo, da je ϕ dobro definirana (za nek vhod dobimo enoličen izhod).

$$g \cdot x = h \cdot x \iff h^{-1} \cdot g \cdot x = x \iff h^{-1} \cdot g \in G_x \iff h^{-1} \cdot g \cdot G_x = G_x \iff g \cdot G_x = h \cdot G_x$$

Hkrati smo pokazali, da je injektivna (ker so vmes ekvivalence, ne samo implikacije). Pokažimo še, da je surjektivna:

$$gG_x = \phi(g \cdot x)$$

$$\implies |Gx| = \frac{|G|}{|G_x|}$$

Primer. Preštej simetrije tetraedra.

$$|G| = |G_x||Gx| = 3 \cdot 4 = 12$$

id + rotacije za 120° + rotacije za 180°

$$1 + 4 \cdot 2 + 3 = 12$$

Primer. Preštej simetrije kocke.

$$|G| = |G_x||Gx| = 3 \cdot 8 = 24$$

5.2 Burnsidova lema

Lema 5.11 (Burnsidova). Število orbit je enako povprečnemu številu negibnih točk.

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X_g|$$

Dokaz.

$$\sum_{g \in G} |X_g| = \sum_{g \in G} \sum_{x \in X_g} 1 = \sum_{g \in G} \sum_{\substack{x \in X \\ g : x = x}} 1 = \sum_{x \in X} \sum_{\substack{g \in G \\ g : x = x}} 1 = \sum_{x \in X} \sum_{g \in G_x} 1 = \sum_{x \in X} |G_x|$$

Opomba. Ta del bi lahko utemeljili tudi s tabelco: v vrstice napišemo elemente X, v stolpce elemente G. Na polju (g,x) naredimo kljukico ntk. $g \cdot x = x$. Število kljukic po vrsticah je $\sum_{x \in X} |G_x|$, število kljukic po stolpcih pa $\sum_{g \in G} |X_g|$.

$$\sum_{g \in G} |X_g| = \sum_{x \in X} |G_x| = \sum_{x \in X} \frac{|G|}{|Gx|} = |G| \sum_{x \in X} \frac{1}{|Gx|}$$

Analizirajmo pomen faktorja $\sum_{x \in X} \frac{1}{|Gx|}$. Za vsak x iz naše množice vzamemo inverz moči njegove orbite. Ker vsak x pripada natanko eni orbiti, in ker ima vsaka orbita natanko toliko x-ov, kolikor je njena moč, dobimo sledečo sliko

$$\underbrace{\frac{1}{2} + \frac{1}{2}}_{=1} + \underbrace{\frac{1}{1}}_{=1} + \underbrace{\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}}_{=1} + \dots =$$
število orbit

oziroma računsko (oznaka $\sigma = \text{orbita}$)

$$\sum_{x \in \sigma} \frac{1}{|\sigma|} = |\sigma| \cdot \frac{1}{|\sigma|} = 1$$

kar lahko uporabimo, da poenostavimo

$$|G| \sum_{x \in X} \frac{1}{|Gx|} = |G| \sum_{\sigma \in X/G} \sum_{x \in \sigma} \frac{1}{|\sigma|} = |G| \sum_{\sigma \in X/G} 1 = |G| \cdot |X/G|$$

Primer. $G = C_n$. |X/G| je očitno 1, saj lahko iz ene točke z rotacijami v ciklu pridemo kamorkoli, torej imamo samo eno orbito. Ko seštevamo števila negibnih točk, ugotovimo, da jih je pri identiteti n, pri ostalih n-1 ciklih pa nobene.

$$1 = \frac{1}{n}(n + (n-1) \cdot 0)$$

Primer. $G = D_n$. Spet imamo očitno samo 1 orbito. Na desni strani pa štejemo: n negibnih točk pri identiteti, (n-1) pravih rotacij, ki nimajo nobene negibne točke, n zrcaljenj z 1 negibno točko če je n lih, sicer pa še $\frac{n}{2}$ zrcaljenj preko simetrale stranic (0 negibnih točk) in $\frac{n}{2}$ zrcaljenj preko diagonale (2 negibni točki).

$$n \text{ lih:} \quad 1 = \frac{1}{2n}(n + (n-1) \cdot 0 + n \cdot 1)$$

$$n \text{ sod:} \quad 1 = \frac{1}{2n}(n + (n-1) \cdot 0 + \frac{n}{2} \cdot 0 + \frac{n}{2} \cdot 2)$$

Primer. $G=\{\mathrm{id},\,\mathrm{zrcaljenje}\}.$ Ločimo primera glede na parnost n-ja in tip zrcaljenja.

$$n$$
 lih, zrcaljenje preko točke: $1 + \frac{n-1}{2} = \frac{1}{2}(n+1)$
 n sod, zrcaljenje preko točk: $2 + \frac{n-2}{2} = \frac{1}{2}(n+2)$
 n sod, zrcaljenje preko stranice: $\frac{n}{2} = \frac{1}{2}(n+0)$

Primer. $G = S_n$.

$$1 = \frac{1}{n!} \sum_{\pi \in S_n} \#$$
negibnih točk π

Ugotovili smo, da je vsota števil negibnih točk vseh permutacij enaka n!. To ni povsem očitno, ampak lahko sami preverite.

Primer. 3×3 mreža z 2 luknjama. Koliko različnih konfiguracij obstaja, če konfiguraciji smatramo za enaki ntk. lahko eno dobimo iz druge z rotacijami in zrcaljenji?

Vzemimo za X množico vseh izbir lukenj na plošči ($|X| = \binom{9}{2} = 36$). Na tej množici deluje D_4 ($|D_4| = 8$). Pri identiteti imamo torej 36 negibnih točk, pri rotacijah za 90° vedno 0, pri rotacijah za 180° lahko izberemo katerkoli nasprotni par lukenj (4 možne izbire), pri vodoravnih in navpičnih zrcaljenjih 6+6, pri diagonalnih zrcaljenjih pa še $2\cdot 6$ izbir.

$$\frac{1}{8}(36+0+4+12+12) = 8$$

Opomba. Če tu ne dobimo naravnega števila, smo falili.

5.3 Ciklični indeks

Naj bo $G \leq S_n$ permuatacijska grupa, n = |X|. $g \in G$ je permutacija elementov iz X, ki jo seveda lahko enolično zapišemo g kot produkt disjunktih ciklov.

Definicija 5.12 (Ciklični indeks). Označimo z $\alpha_i(g)$ število ciklov dolžine i. Ciklični indeks $Z_G(t_1, \ldots, t_n)$ definiramo kot

$$Z_G(t_1, \dots, t_n) = \frac{1}{|G|} \sum_{g \in G} t_1^{\alpha_1(g)} t_2^{\alpha_2(g)} \cdots t_n^{\alpha_n(g)}$$

Primer. $G=C_4$. |G|=4. Za vsak element grupe pogledamo kakšna je ciklična struktura. id ima 4 cikle dolžine 1, torej dobimo člen $(t_1)^4$. Rotacija za 180° ima 2 cikla dolžine 2 ((1 2 3 4) in (1 4 3 2)), torej $(t_2)^2$, vsaka od dveh rotacij za 90° pa je cikle dolžine 4, torej $2 \cdot (t_4)^1$.

$$Z_{C_4}(t_1, t_2, t_3, t_4) = \frac{1}{4}((t_1)^4 + (t_2)^2 + 2 \cdot t_4)$$

Primer. $G=D_4$. Imamo identiteto, rotacijo za 180°, dve rotaciji za 90°, 4 zrcaljenja (vodoravno, navpično in dve diagonalni). $Z_{D_4}(t_1,t_2,t_3,t_4)=\frac{1}{8}((t_1)^4+(t_2)^2+2t_4+2(t_2)^2+2(t_1)^2t_2)$.

Izrek 5.13 (Ciklični indeks C_n).

$$Z_{C_n}(t_1,\ldots,t_n) = \frac{1}{n} \sum_{d|n} \phi\left(\frac{n}{d}\right) \cdot (t_{\frac{n}{d}})^d$$

Izrek 5.14 (Ciklični indeks D_n).

$$Z_{D_n} = \frac{1}{2} Z_{C_n} + \begin{cases} \frac{1}{2} t_1 t_2^{\frac{n-1}{2}} : n \text{ lih} \\ \frac{1}{4} t_2^{\frac{n}{2}} + \frac{1}{4} t_1^2 t_2^{\frac{n}{2}-1} : n \text{ sod} \end{cases}$$

Opomba (Formula za Eulerjevo funkcijo).

$$\phi(n) = n \prod_{\substack{p \mid n \\ p \in \mathbb{P}}} (1 - \frac{1}{p})$$

Dokaz. Ciklična grupa je sestavljena iz dolgega cikla in vseh njegovih potenc. $C_n = \{(1 \dots n)^i : 0 \le i \le n-1\}$. Kakšnega tipa je dolg cikel na neko potenco?

$$(1\ 2\ 3\ 4\ 5\ 6)^2 = (1\ 3\ 5)(2\ 4\ 6).$$

$$(1\ 2\ 3\ 4\ 5\ 6)^3 = (1\ 4)(2\ 5)(3\ 6).$$

$$(1\ 2\ 3\ 4\ 5\ 6)^4 = (1\ 5\ 3)(2\ 6\ 4).$$

$$(1\ 2\ 3\ 4\ 5\ 6)^5 = (1\ 6\ 5\ 4\ 3\ 2).$$

Opazimo, da velja

$$d|n \implies (1 \ 2 \dots n)^d = (1 \ (d+1) \ (2d+1) \ \dots)(2 \ (d+2) \ (2d+2) \ \dots) \cdots$$

Kar pomeni, da je $(1\ 2\ \dots\ n)^d$ produkt d ciklov dolžine $\frac{n}{d}$. Hkrati, če $d\perp n$, je $(1\ 2\ \dots\ n)^d$ en sam cikel dolžine d.

Vzemimo $d=\gcd(n,i),\ n=d\cdot n',\ i=d\cdot i'.$ Vemo, da $\gcd(n',i')=1.$ Po prejšnjih ugotovitvah velja

$$(1\ 2\ \dots\ n)^i = ((1\ 2\ \dots\ n)^d)^{i'}$$

Ker je $(1\ 2\ \dots\ n)^d$ produkt d ciklov dolžine n' in ker sta si n' in i' tuji, je rezultat še vedno produkt d ciklov dolžine $n' = \frac{n}{d}$. Doprinos k cikličnemu indeksu bo $(t_{\frac{n}{d}})^d$. Kolikokrat pa dobimo ta člen? Tolikokrat, kolikor je i-jev, da je $\gcd(n,i)=d$. To nam pove Eulerjeva funkcija $\phi(\frac{n}{d})$.

 $Opomba.\ d$ lahko zamenjamo z $\frac{n}{d}.$ Dobimo popolnoma ekvivalentno formulo

$$Z_{C_n}(t_1,\ldots,t_n) = \frac{1}{n} \sum_{d|n} \phi(d) \cdot (t_d)^{\frac{n}{d}}$$

Dokaz. Še za D_n .

$$Z_{D_n} = \frac{1}{2} Z_{C_n} + \begin{cases} \frac{1}{2} t_1 t_2^{\frac{n-1}{2}} : n \text{ lih} \\ \frac{1}{4} t_2^{\frac{n}{2}} + \frac{1}{4} t_1^2 t_2^{\frac{n}{2}-1} : n \text{ sod} \end{cases}$$

Prvi del so rotacije, ki jih je enako kot pri C_n (deliti moramo z $\frac{1}{2}$, ker ima D_n dvakrat več elementov; na začetku delimo z 2n namesto z n). Prišteti moramo le še zrcaljenja.

Če je n lih, so vsa zrcaljenja istega tipa. Takih zrcaljenj je n. Ko delimo s številom elemenotov (2n), je to $\frac{1}{2}$. Doprinos od enega zrcaljenja je 1 negibna točka in $\frac{n-1}{2}$ parov točk, ki se izmenjajo.

Če je n sod, ločimo na $\frac{n}{2}$ zrcaljenj prek točke in $\frac{n}{2}$ zrcaljenj prek stranice. Spet delimo še z 2n, ostane $\frac{1}{4}$. Pri zrcaljenju čez simetralo stranic dobimo $\frac{n}{2}$ 2-ciklov. Pri zrcaljenju čez točki imamo 2 negibni točki, nato pa ostalih n-2 oglišč razdelimo v pare.

5.4 Število neekvialentnih barvanj

V tem razdelku bomo ugotovili pravo uporabnost Burnsidove leme in cikličnega indeksa.

Definicija 5.15 (Barvanje). Če je R množica barv, je barvanje $b \in R$ preslikava iz množice korald v množico barv $b: X \to R$. R^X je tedaj množica barvanj.

Namesto da permutiramo koralde, lahko G razumemo tudi kot grupo permutacij barvanj (podgrupo S_{R^X}). Ker je g permutacija korald, moramo posebej definirati, kako uporabimo $g \in G$ na barvanju $b \in R^X$.

Definicija 5.16 (Permutacija barvanja).
$$g \cdot b(x) \coloneqq b(g^{-1} \cdot x)$$

S tem smo dobili izomorfno permutacijsko grupo. Ne bom bolj natančno povedal, kaj s tem mislim.

Nas zanima število neekvivalentnih barvanj naše ogrlice. To je ravno število orbit naše grupe permutacij barvanj ($G = C_n$ za število barvanj ogrlic, $G = D_n$ za število barvanj zapestnic). Po Burnsidovi lemi moramo izračunati povprečno število negibnih točk.

Primer. n=6, r=2, g je rotacija za 120°. Koliko je negibnih točk za barvanje? Pozor: za permutacijo korald pri taki rotaciji nimamo negibnih točk. Mi štejemo negibne točke barvanj. Take negibne točke so: barvanje, kjer

so vse koralde bele/črne in barvanje kjer je vsaka druga koralda bela/črna. Imamo torej 4 negibne točke.

Primer. Če bi v prejšnjem primeru vzeli rotacijo za 60°, bi imeli 2 negibni točki. Če bi vzeli rotacijo za 180°, bi imeli 8 negibnih točk.

V splošnem: iščemo permutacij barvanj, kjer je $b=g\cdot b$, oziroma $g\cdot b(x)=b(g^{-1}\cdot x)=b(x)$ za vsak $x\in X$. Drugače rečeno, iščemo število g-jev, kjer sta x in $g^{-1}\cdot x$ vedno iste barve. Za vsak tak g velja, da so tudi gx,g^2x,g^3x,\ldots iste barve.

Ugotovimo, da je edina zahteva, da mora biti vsak cikel g v celoti iste barve. Torej je število negibnih barvanj enako $r^{c(g)}$, kjer je c(g) število ciklov v g, oziroma $c(g) = \sum_{i} \alpha_{i}(g)$.

Izrek 5.17 (Pólyev izrek). Število neekvivalentnih barvanj je enako

$$\frac{1}{|G|} \sum_{g \in G} r^{c(g)} = Z_g(r, \dots, r)$$

Primer. Število ogrlic z n koraldami in r barvami je $\frac{1}{n} \sum_{d|n} \phi(d) \cdot r^{\frac{n}{d}}$.

Primer. Število zapestnic z n koraldami in r barvami je

$$\frac{1}{2n} \sum_{d|n} \phi\left(\frac{n}{d}\right) r^d + \begin{cases} \frac{1}{2} r^{\frac{n+1}{2}}; n \text{ lih} \\ \frac{1}{4} r^{\frac{n}{2}} + \frac{1}{4} r^{\frac{n}{2}+1}; n \text{ sod} \end{cases}$$

Primer. Na koliko načinov lahko pobarvamo oglišča tetraedra z r (različnimi) barvami? Izračunajmo ciklični indeks grupe rotacij tetraedra.

$$Z_G(t_1, t_2, t_3, t_4) = \frac{1}{12} (t_1^4 + 8t_1t_3 + 3t_2^2)$$
grupa rotacij tetraedra

nato le še vstavimo $t_1 = t_2 = t_3 = t_4 = r$.

Primer 5.18. Naj bo $G=S_n$. Barvanji sta v tem primeru ekvivalentni natanko tedaj, ko imata enako število korald iste barve. Število možnih barvanj torej dobimo kot šibke kompozicije n (št. korald) z r (št. barv) členi.

$$\binom{n+r-1}{r-1}$$

Po drugi strani bi lahko to zapisali po Pólyevem izreku.

$$\frac{1}{n!} \sum_{\pi \in S_n} r^{c(\pi)} = \frac{1}{n!} \sum_{k} c(n, k) r^k$$

Tukaj smo uporabili razmislek, da permutacija s k cikli doprinese člen r^k , pojavi pa se ravno c(n,k)-krat (definicija Stirlingovih števil prve vrste).

Če enačimo rezultata obeh metod, se nam nekaj členov krajša.

$$\binom{n+r-1}{r-1} = \frac{(n+r-1)!}{(r-1)!n!} = \frac{(n+r-1)\cdots r\cdot (r-1)\cdots 1}{((r-1)\cdot (r-2)\cdots 2\cdot 1)\cdot n!} = r^{\overline{n}} \cdot \frac{1}{n!}$$

$$\implies \sum_{k} c(n,k)r^{k} = r^{\overline{n}}$$

Opomba. To formulo smo že dokazali z indukcijo - glej rekurzivna zveza za c(n,k) (??).

Recimo, da nas zanima, koliko je možnih barvanj zapestnic s točno določenim številom korald za vsako barvo. Imamo srečo, da so to pred nami želeli tudi nekateri pametni matematiki.

Primer. Enumerator barvanj

$$u_1^4 + u_1^3 u_2 + 2u_1^2 u_2^2 + u_1 u_2^3 + u_2^4$$

Definicija 5.19 (Enumerator barvanj).

$$E_G(u_1, \dots, u_r) = \sum_{Gb \in R^x/G} \prod_{i=1}^r u_i^{|b^{-1}(i)|}$$

 $Opomba. R^x/G$ je množica vseh neekvivalentnih barvanj.

Izrek 5.20 (Posplošitev Pólyevega izreka).

$$E_G(u_1, \dots, u_r) = Z_G(u_1 + \dots + u_r, u_1^2 + \dots + u_r^2, u_1^3 + \dots + u_r^3, \dots, u_1^n + \dots + u_r^n)$$

Dokaz.Brez dokaza. Namig: Burnsidova lema na množici barvanj s fiksnimi $|b^{-1}(i)|.$

Opomba. Če v posplošitev Pólyevega izreka vstavimo $u_i = 1$, dobimo Pólyev izrek.

Primer. Poglejmo si ogrlico s 4 koraldami in 2 barvama. Grupa bo torej $G = C_4$.

$$Z_{C_4}(t_1, t_2, t_3, t_4) = \frac{1}{4}(t_1^4 + t_2^2 + 2t_4)$$

$$Z_{C_4}(u_1 + u_2, u_1^2 + u_2^2, u_1^3 + u_2^3, u_1^4 + u_2^4) = u_1^4 + u_1^3 u_2 + 2u_1^2 u_2^2 + u_1 u_2^3 + u_2^4$$

Koeficient pred $u_1^3u_2$ je 1, kar pomeni da imamo 1 neekvivalentno barvanje ogrlice s 3 belimi in 1 črno koraldo. Koeficient pred $u_1^2u_2^2$ je 2, kar pomeni da imamo 2 neekvivalentni barvanji ogrlice z 2 belima in 2 črnima koraldama.

Opomba. Polinom, ki ga dobimo s tem izrekom bo očitno vedno simetričen (koeficient pred $u_1^n \cdots u_r^m$ bo enak ne glede na to, kako permutiramo eksponente).

Primer. Koliko je neekvivalentnih zapestnic s 6 koraldami, če imamo 1 črno, 3 bele in 2 rdeči koraldi? Parametri so torej n = 6, r = 3, $G = D_6$.

$$Z_{D_6}(t_1,\ldots,t_6) = \frac{1}{12}(t_1^6 + t_2^3 + 2t_3^2 + 2t_6) + \frac{1}{4}(t_2^3 + t_1^2t_2^2)$$

$$[u_1u_2^3u_3^2]\left(Z_{D_6}(u_1+u_2+u_3,\ldots,u_1^6+u_2^6+u_3^6)\right)=6$$

Izračunajte sami, pomagajte si z multinomskim koeficientom, da ne računate vseh potenc.

6 Trije klasični izreki iz teorije delno urejenih množic

Definicija 6.1 (Delno urejena množica). Množica opremljena z relacijo delne urejenosti (P, \leq) .

Opomba. Izraz "delno urejena množica" bomo krajšali z "DUM", ampak izgovorimo s celim izrazom. V angleščini delno urejenim množicam pravimo "partially ordered sets", krajšamo "poset" in okrajšano tudi izgovarjamo.

Definicija 6.2 (Relacija delne urejenosti). Relacija, za katero veljajo naslednje lastnosti

- refleksivnost $x \leq x$
- antisimetričnost $x \leq y \land y \leq x \implies x = y$
- tranzitivnost $x \leq y \land y \leq z \implies x \leq z$

Primer. Označujemo $\underline{n} := ([n], \leq)$, kjer je \leq običajna relacija manjše ali enako.

Primer. Boolova algebra $B_n := (2^{[n]}, \subseteq)$. To je algebra za operaciji \cup , \cap . V računalništvu pogosto srečamo dvoelementno Boolovo algebro $B_1 = \{0, 1\}$.

Primer. $D_n := (\{\text{delitelji } n\}, |)$. Za množico bi lahko vzeli tudi $\mathbb{N}_{>0}$

Definicija 6.3 (Stroga neenakost).

$$x < y \iff x \leqslant y \land x \neq y$$

Definicija 6.4 (Predhodnik). x je predhodnik y, če sta v relaciji \lessdot

$$x \lessdot y \iff x < y \land \nexists z : x < z < y$$

Primer. $B_3 = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$. $A \in B_3$ je predhodnik elementov $A \cup \{i\}$ za vsak $i \notin A$.

Definicija 6.5 (Hassejev diagram). Graf (V, E), kjer so vozlišča V = P (elementi naše množice), robovi pa $E = \{(x, y); x \le y \lor y \le x\}$. Običajno narišemo tako, da je y nad x, če je x < y.

Slika 5: Hassejev diagram B_3

Trditev 6.6. Hassejev diagram B_n je hiperkocka Q_n .

Trditev 6.7. Če je n produkt različnih praštevil, je Hassejev diagram D_n hiperkocka.

Definicija 6.8 (Izomorfnost). Delno urejeni množici P in Q sta izomorfni, če obstaja bijekcija $\phi: P \to Q$, da velja $a \leq b \iff \phi(a) \leq \phi(b)$.

Slika 6: Hassejeva diagrama za D_{30} in D_{60}

Definicija 6.9 (Kartezični produkt). $P \times Q$ je delno urejena množica z elementi $(x, y), x \in P, y \in Q$, in relacijo $(x, y) \leqslant (x', y') \iff x \leqslant x' \land y \leqslant y'$.

Dokaz. Bralec lahko za zabavo dokaže, da je kartezični produkt delno urejenih množic tudi delno urejena množica. ■

Primer. $\underline{2} \times \underline{2} \times \cdots \times \underline{2} \cong B_n$. Izomorfizem dokažemo z $\phi(A) := (\varepsilon_1, \dots, \varepsilon_n)$.

Primer. $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$. Opazimo, da je D_n izomorfen $[0, \alpha_1] \times [0, \alpha_2] \cdots \times [0, \alpha_k]$, kjer smo z $[0, \alpha_i]$ označili $\underline{\alpha_i} \cup \{0\}$.

Iz zgornjih dveh primerov je razvidno, da če je n produkt različnih praštevil, je D_n izomorfen B_k , kjer je k moč faktorizacije n. Iz tega sledi zgornja trditev o Hassejevih diagramih D_n (??).

Definicija 6.10 (Veriga). Naj bo (P, \leq) delno urejena množica. Tedaj je $(C \subseteq P, \leq)$ veriga, če velja $\forall x, y \in C : x \leq y \vee y \leq x$ (vsi elementi so med seboj primerljivi).

Primer. $\{\emptyset, \{1,3\}, \{1,3,4\}\} \subseteq B_4$ je veriga.

Definicija 6.11 (Antiveriga). Naj bo (P, \leq) delno urejena množica. Tedaj je $(C \subseteq P, \leq)$ antiveriga, če velja $\forall x, y \in C : \neg(x \leq y \lor y \leq x)$ (nobena dva elementa nista primerljiva).

Primer. $\{\{1,3\},\{2,4\},\{1,2\}\}\subseteq B_5$ je antiveriga.

Definicija 6.12 (Višina delno urejene množice). Velikost najdaljše verige.

Definicija 6.13 (Širina delno urejene množice). Velikost najdaljše antiverige.

Primer.
$$\begin{array}{ccc} & \text{množica} & \text{višina} & \text{širina} \\ \frac{n}{B_n} & n & 1 \\ & n+1 & {n \choose \left\lfloor\frac{n}{2}\right\rfloor} \\ D_n & \alpha_1 + \dots + \alpha_k + 1 & ? \end{array}$$

Opomba. * To je malo težje dokazati, ampak bomo pokazali kasneje (Spernerjev izrek).

Definicija 6.14 (Maksimalni element). Tak x, da velja $\nexists y : x \leqslant y$.

Definicija 6.15 (Največji element). Tak x, da velja $\forall y : x \geqslant y$.

Opomba. Če je x največji, potem je x maksimalen. Obratno ne velja.

Opomba. Če je P končna, obstaja maksimalen element.

Opomba. Obstaja največ en največji element.

Izrek 6.16 (Minskyjev izrek). Naj bo (P, \leq) končna delno urejena množica, M dolžina najdaljše verige (višina), m pa najmanjše število antiverig, s katerimi lahko pokrijemo P. Tedaj velja M = m.

Dokaz. Očitno velja $M\leqslant m$, saj bo vsak element najdaljše verige moral imeti svojo antiverigo. $m\leqslant M$ bomo pokazali z indukcijo po moči P. Baza indukcije: |P|=1. m=M=1.

Indukcijski korak: definirajmo $A\coloneqq\{$ maksimalni elementi v $P\}$. Vemo, da je višina $P\setminus A$ je zagotovo M-1 (vsaka najdaljša veriga ima natanko en maksimalen element). Po indukcijski predpostavki jo zato lahko pokrijemo zM-1 antiverigami. Ker je A antiveriga, lahko P pokrijemo zM antiverigami.

Opomba. Ta dokaz služi tudi kot algoritem za iskanje antiverig.

6.1 Dilworthov izrek

Izrek 6.17 (Dilworthov izrek). Naj bo (P, \leq) končna delno urejena množica, M dolžina najdaljše antiverige (širina), m pa najmanjše število verig, s katerimi lahko pokrijemo P. Tedaj velja M=m.

Dokaz. Podobno kot pri Minskyjevem izreku, opazimo da $M \leq m$, ker mora vsak element najdaljše antiverige imeti svojo verigo v pokritju. $m \leq M$ bomo pokazali z indukcijo po moči P.

Baza indukcije: |P| = 1. m = M = 1.

Indukcijski korak: definirajmo $C \coloneqq$ katerakoli najdaljša veriga v P. Problem nastane (za razliko od dokaza Minskyjevega), ker $P \setminus C$ nima nujno manjše širine kot P.

Če je se širina zmanjšala, lahko (enako kot pri Minskyjevem) $P \setminus C$ pokrijemo $z \leq M-1$ verigami, torej lahko P pokrijemo $z \leq M$ verigami.

Slika 7: Primer DUM, kjer se širina ne zmanjša, če odstranimo najdaljšo verigo $\{A, B, E, F\}$ (najdaljša antiveriga je potem $\{C, D\}$).

Če se širina ni zmanjšala, izberimo neko najdaljšo antiverigo $A = \{a_1, \dots, a_n\}$ iz $P \setminus C$. Definirajmo

- $S^+ := \{x \in P; \exists i : x \geqslant a_i\}$
- $S^- := \{x \in P; \exists i : x \leqslant a_i\}$

Pokažimo nekaj lastnosti glede S^+ in S^- .

1.
$$S^+ \cap S^- = A$$

Dokaz. A je očitno vsebovan v obeh množicah zaradi refleksivnosti $(\forall a \in A \exists i : a \leqslant a_i)$. Če je $x \in S^+ \cap S^-$, potem $a_i \leqslant x \leqslant a_j$, zaradi tranzitivnosti pa $a_i \leqslant a_j$. Ker sta a_i in a_j iz iste antiverige, mora veljati i = j, kar pomeni da je $x = a_i$ in zato $x \in A$.

2.
$$S^+ \cup S^- = P$$

Dokaz. Očitno je, da je unija vsebovana v P. Če $x \notin S^+$ in $x \notin S^-$, potem $\forall i : x \not\ge a_i \land x \not\le a_i$, kar pomeni da je $A \cup \{x\}$ antiveriga, ki je večja od A, kar je v nasprotju z definicijo A.

3.
$$S^+ \neq P$$

Dokaz. Najmanjši element v C zagotovo ni v S^+ ; če bi obstajal i, da $x \ge a_i$, bi $C \cup \{a_i\}$ bila daljša veriga kot C. Pomembno je opaziti, da $x \ne a_i$, ker je A sestavljena iz elementov $P \setminus C$.

4.
$$S^{-} \neq P$$

Dokaz. Iz istega razloga kot zgoraj največji element C zagotovo ni v S^- .

Z drugimi besedami, S^+ ima širino M, a je njena moč strogo manjša od |P|. Po indukcijski predpostavki lahko S^+ pokrijemo z M verigami C_1^+,\ldots,C_M^+ , S^- pa z C_1^-,\ldots,C_M^- . Vsak element A mora imeti svojo verigo C_i^+ . Brez škode za splošnost privzemimo $a_i \in C_i^+$ in $a_i \in C_i^-$. Naše pokritje Pja sestavljajo $C_i = C_i^+ \cup C_i^-$.

6.2 Spernerjev izrek

Lema 6.18. $\forall k : \binom{n}{k} \leqslant \binom{n}{\lfloor \frac{n}{2} \rfloor}$. Povedano z besedami: trdimo, da je največji binomski koeficient neke vrstice vedno v njeni sredini.

Dokaz. Oglejmo si zaporedna binomska koeficienta in izračunajmo kriterij, kdaj je naslednji večji od prejšnjega.

$$\binom{n}{k} \leqslant \binom{n}{k+1}$$

$$\frac{\binom{n}{k}}{\binom{n}{k+1}} \leqslant 1$$

$$\frac{n!(k+1)!(n-k-1)!}{k!(n-k)!n!} \leqslant 1$$

$$\frac{k+1}{n-k} \leqslant 1$$

$$k+1 \leqslant n-k$$

$$2k+1 \leqslant n$$

$$k \leqslant \frac{n-1}{2}$$

Opomba. Zaporedje, za katerega velja $a_0 \leqslant a_1 \leqslant \cdots \leqslant a_k \geqslant a_{k+1} \geqslant \cdots$ imenujemo unimodalno.

Izrek 6.19 (Spernerjev). Širina B_n je $\binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Dokaz. Če vzamemo $A = \binom{[n]}{\lfloor \frac{n}{2} \rfloor}$ je to ravno antiveriga velikosti $\binom{n}{\lfloor \frac{n}{2} \rfloor}$. S tem smo fiksirali minimalno vrednost širine. Dokažimo, da ne obstaja daljša antiveriga.

Naj bo A poljubna antiveriga v B_n . Naj bo a_i število elementov A, ki so i-elementne množice. Očitno je $a_0 + a_1 + \cdots + a_n = |A|$.

Preštejmo maksimalne verige v B_n

• Vse: n!

Dokaz. Verigo $\emptyset \subseteq \{i_1\} \subseteq \{i_1, i_2\} \subseteq \cdots \subseteq [n]$ dobimo tako, da izberemo nek vrstni red dodajanja elementov proti [n].

- Tiste, ki vsebujejo izbrano podmnožico $S \in B_n$ velikosti k: k!(n-k)! Dokaz. Dobimo jih tako, da konstruiramo verigo do S (k! načinov), nato pa dodajamo še ostalih n-k elementov do [n].
- Tiste, ki vsebujejo katerikoli element iz A: $\sum_{k=0}^n a_k k! (n-k)!$

Dokaz. Vsak element A ima lahko med 0 in n elementov. Če za vsako od teh števil dodamo seštejemo število verig, ki vsebuje ta element (teh je dokazano k!(n-k)!), dobimo ravno naš rezultat. Nobene verige nismo šteli dvakrat, ker vsaka od naših verig vsebuje natanko en element A-ja (A je antiveriga, zato ne sme obstajati veriga med dvema elementoma iz A).

Zaključimo lahko, da je $\sum_{k=0}^{n} a_k k! (n-k)! \leq n!$, saj je množica maksimalnih verig, ki vsebujejo elemente iz A pomnožica vseh maksimalnih verig. Če delimo z n!, dobimo

$$\sum_{k=0}^{n} \frac{a_k}{\binom{n}{k}} \leqslant 1$$

$$1 \ge \sum_{k=0}^{n} \frac{a_k}{\binom{n}{k}} \ge \sum_{k=0}^{n} \frac{a_k}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} = \frac{1}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} \sum_{k=0}^{n} a_k$$

$$\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} \ge \sum_{k=0}^{n} a_k$$
$$\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor} \ge |A|$$

Posledica 6.20 (Dilworth-Sperner). B_n lahko pokrijemo z $\binom{n}{\left\lfloor \frac{n}{2} \right\rfloor}$ verigami.

6.3 Hallov izrek

Definicija 6.21 (Prirejanje). Naj bo G = (V, E) graf. $M \subseteq E$ je prirejanje, če velja $e \cap f = \emptyset$ za vsaka $e, f \in M$.

Če pobarvamo povezave iz M z rdečo barvo, potem nobeno vozlišče iz G nima več kot ene rdeče povezave.

Definicija 6.22 (Popolno prirejanje). Naj bo M prirejanje grafa G. M je popolno prirejanje, če velja $\forall v \in V : \exists e \in M : v \in e$.

Opomba. Angleško: "matching" in "perfect matching".

Opomba. Če ima G popolno prirejanje, je |V| sodo.

Definicija 6.23 (Popolno prirejanje iz X v Y). Naj bo G dvodelen graf na particiji X in Y. Prirejanje M je popolno prirejanje iz X v Y če velja $\forall x \in X : \exists e \in M : x \in e$.

Opomba. Če obstaja popolno prirejanje iz X v Y, je $|X|\leqslant |Y|.$ Popolno prirejanje namreč deluje kot injekcija.

Definicija 6.24 (Soseščina A). $N(A) = \{v \in V : \exists u \in A : u \sim v\}$

Opomba 6.25. Če obstaja popolno prirejanje iz X v Y, je $|A| \leq |N(A)|$. Popolno prirejanje je v tem primeru injekcija $A \to N(A)$.

Definicija 6.26 (Alternirajoča pot). Pot, v kateri se izmenjujejo rdeče in črne povezave (tj. povezave, ki so element prirejanja in povezave, ki niso).

Izrek 6.27 (Hall). Naj bo G dvodelen graf na particiji X in Y. Tedaj obstaja popolno prirejanje iz X v Y natanko tedaj, ko $|A| \leq |N(A)|$ za vsak $A \subseteq X$.

Opomba. Če predpostavimo Dilworthov izrek, je Hallov izrek zelo lahko dokazati. Velja tudi obratno.

Opomba. Hallov izrek nam poda ekvivalenco oblike $\exists\iff\forall$. Tako ekvivalenco imenujemo dobra karakterizacija. Kadar imamo tako ekvivalenco, lahko dokažemo ali ovržemo trditev na levi ali desni strani s tem da dokažemo obstoj največ enega objekta.

Dokaz. Dokaz v desno smo že razmislili (??). Začnimo s poljubnim prirejanjem in predpostavimo $|A| \leq |N(A)|$. Če je to prirejanje popolno iz X v Y, potem smo končali. Sicer poskusimo to prirejanje povečati. To bomo lahko ponavljali, dokler ne pridemo do popolnega prirejanja.

Po predpostavi (naše prirejanje ni popolno) obstaja neko vozlišče $a \in X$, ki ni v nobeni povezavi v prirejanju (ni element rdeče povezave). Definirajmo

 $A := \{x \in X; \exists \text{ alternirajoča pot od } a \text{ do } x\}$ in

 $B := \{ y \in Y; \exists \text{ alternirajoča pot od } a \text{ do } y \}.$

Zagotovo velja $a \in A$. Pokažimo, da je $N(A) \subseteq B$.

$$y \in N(A) \implies \exists x \in A : x \sim y \implies \exists$$
 alternirajoča pot od a do $x, x \sim y$

Ker smo v dvodelnem grafu in ker a nima rdečih povezav, bo zadnja povezava v alternirajoči poti do x rdeča (v Y vedno pridemo po črni in v X vedno pridemo po rdeči). Če je povezava xy črna, potem jo lahko dodamo k alternirajoči poti in dobimo alternirajočo pot od a do y, torej je $y \in B$. Če pa je xy rdeča, mora biti y predzadnje vozlišče naše poti od a do x, ker ima x lahko največ eno rdečo povezavo (tisto, po kateri smo prišli do njega). Torej je $y \in B$.

Po predpostavki in pravkaršnji ugotovitvi, imamo

$$|A| \leqslant |N(A)| \leqslant |B|$$

Iz A gre |A|-1 rdečih povezav (vsi elementi razen a morajo imeti natanko eno rdečo povezavo, ker so del alternirajoče poti). To pomeni, da v B obstaja vozlišče b, ki nima nobene rdeče povezave (ker je $|A| \leq |B|$). Če vsem povezavam v poti od a do b zamenjamo barvo, ne bomo pokvarili prirejanja; vsako vozlišče bo imelo še vedno največ eno rdečo povezavo. Ker se alternirajoča pot od a do b začne in konča s črno, smo s to inverzijo hkrati povečali število rdečih povezav za 1.

Postopek ponavljamo dokler ne dosežemo popolnega prirejanja.

Opomba. To je algoritem, ki bodisi poišče popolno prirejanje, bodisi dokaže, da le-to ne more obstajati (če slučajno naletimo na primer, ko |A| > |N(A)|).

Posledica 6.28. Naj bo G dvodelni graf na X in Y. Tedaj velja

$$\forall x \in X : \forall y \in Y : \deg(x) \geqslant \deg(y) \implies \exists$$
 popolno prirejanje $X \to Y$

Dokaz. Želimo pokazati, da je $|A| \leq |N(A)|$. Označimo število povezav med A in B kot e(A, B) in B := N(A). Naj bo d neko število, ki je med deg(x) in deg(y) za vsaka x in y (d obstaja po naši predpostavki).

$$d \cdot |B| \geqslant \sum_{y \in B} \deg(y) \geqslant e(A, B) = \sum_{x \in A} \deg(x) \geqslant d \cdot |A|$$

 $\implies |A| \leqslant |B|$

Po Hallovem izreku je to vse, kar moramo pokazati.

Posledica 6.29. Naj boG biregularen (stopnja vsakega vozlišča na levi/desni strani je enaka) dvodelen graf. Tedaj obstaja popolno prirejanje iz X v Yali iz Y v X.

Dokaz.

$$|E| = \sum_{x \in X} \deg(x) = r \cdot |X|$$
$$|E| = \sum_{y \in Y} \deg(y) = s \cdot |Y|$$

 $|X|\leqslant |Y|\iff r\geqslant s\iff \exists$ popolno prirejanje $X\to Y$

 $|X|\geqslant |Y|\iff r\leqslant s\iff \exists$ popolno prirejanje $Y\to X$