

Modèles Volumiques

Gilles Gesquière

Ce cours est une compilation :

- Du cours de Modélisation géométrique (IRIT-UPS Toulouse; Equipe Vortex)
- Cours de Christian Jacquemin (LIMSI- Paris 11)
- Cours de Marc Daniel (LSIS- Marseille)
- Cours G. Gesquière (Gamagora)

Quel modèle?

Représentation

2D

Polygonale

Modèle 3D

Points

Surfacique

Paramétrique

Volumique

Voxels- Octrees Surfaces implicites

Modèles Volumiques: Voxels

Volumes discrets

- Voxel = éléments d'une grille 3D
- Présence ou absence de matière

Modèle volumique : octree régulier

Arbre à huit branches.

Octree régulier : subdivise de façon récursive un volume cubique en huit souscubes de tailles égales. Les feuilles de l'octree sont appelées des « voxels ».

Modèle volumique : Octree adaptatif

Octree adaptatif, la profondeur de chaque branche peut être de taille différente Permet de subdiviser l'espace de départ de façon irrégulière.

Modèles Volumiques : Octree adaptatif

Illustration sur un quadtree

- Un quadtree est un arbre à quatre branches. C'est l'équivalent de l'octree en deux dimensions.
 - Dessinez les feuilles du quadtree adaptatif de profondeur quatre représentant l'objet ci-dessous.
 - Représentez le quadtree sous forme d'arbre en supposant que l'on a une représentation « volumique » de l'objet (ne développez que la 1^{ère} branche).

Représentation surfacique par octree

- Octree régulier : on subdivise jusqu'à la précision souhaitée et
 - soit la cellule n'est pas sécante à la surface et la feuille est vide (valeur 0 par exemple),
 - soit elle est sécante et la feuille est pleine (valeur 1 par exemple).

• Octree adaptatif:

- soit la cellule n'est pas sécante à la surface :
 - c'est une feuille vide de l'octree,
- soit la cellule est sécante à la surface :
 - si on est au niveau de précision désiré, c'est une feuille pleine de l'octree,
 - sinon, c'est un noeud qui va être subdivisé.

Représentation volumique par octree

• Octree régulier : on subdivise jusqu'à la précision souhaitée et

- soit elle est sécante et la feuille est pleine (valeur 0 par exemple).,
- soit elle est à l'intérieure de l'objet et elle vaut 1 par exemple,
- soit elle est à l'extérieure de l'objet et elle vaut -1 par exemple.

Octree adaptatif :

- soit la cellule est sécante à la surface : si on est au niveau de précision désiré, c'est une feuille pleine de l'octree, sinon, c'est un noeud qui va être subdivisé,
- soit la cellule n'est pas sécante à la surface : c'est soit une feuille « extérieure », soit une feuille « intérieure ».

Octree: +/-

• Les +

- Représentation hiérarchique de l'objet : il peut être affiché à différentes résolutions.
- Possibilité de représentation volumique.
- Simplicité de positionnement d'un volume par rapport à l'objet : sécant ou non (éventuellement intérieur/extérieur).
- Construction et parcours récursifs simples.

• Les -

- Visualisation surfacique des voxels ?
- Rendu temps réel pour des scènes complexes ?
- Coup de stockage excessif.

Modèles Volumiques : n-tree

Réduire encore le nombre de cubes

Modèles Volumiques : Level Set

- Réduire encore le nombre de cubes (Level Set)
 - Volume stocké dans une grille hiérarchique sur deux niveaux.

Énumération uniforme Matrice 3D

Données : binaire ou niveau de

gris

Matrice IMAGE3D

Énumération par ondelettes

Matrices ERREUR

Matrice REDUC

Niveau: n

Plus d'informations dans la thèse de X. Heurtebise, LSIS, Marseille

Matrice MOYENNE

On ne code en mémoire que la matrice REDUC et les matrices ERREUR.

Modèles Volumiques : ondelettes

Surfaces Implicites- Définitions

Surfaceimplicite={Points(x,y,z) tels que $F_i(x,y,z) = cste$ }

Objet Implicite Bi

- Centre Pi
- Fonction de densité Fi

Surfaces Implicites- Définition

Surfaces implicites- Définitions

Définitions ...

Si on a *n* Objets Implicites alors:

$$F(\mathbf{r}) = \sum_{i=1}^{n} \mathbf{F}_{i}(\mathbf{r})$$

$$ObjetImplicite = \left\{ (r) \in \mathbb{R}^{p} / F(r) = T \right\}$$

Exemple de fusion

Rapprochement des centres

Influence positive ou négative

Influence positive

$$\mathbf{F(r)} = \mathbf{F_1} + \mathbf{F_2}$$

Influence négative

$$\mathbf{F(r)} = \mathbf{F_1} - \mathbf{F_2}$$

Déformation

• Chocs entre objets

http://w3imagis.imag.fr/Phototheque2/index.html

Animation

Exemple d'animation image par image

http://w3imagis.imag.fr/Phototheque2/index.html

construction à l'aide de surfaces implicites

• Reconstruction 3D à partir d'un nuage de points

• Reconstruction à d'un ensemble de tranches

Extrait de : « Reconstruction Implicite de Surfaces 3D à partir de Régions 2D dans des Plans Parallèles », Adeline Pihuit, Olivier Palombi et Marie-Paule Cani , Afig 2009

Hiérarchie

Gestion de fusions non voulues

FIGURE 1: blending ...

Extrait de : A. Opalach and S. Maddock "Implicit surfaces: Appearance, blending and consistency". In

Fourth Eurographics Workshop on Animation and Simulation, Barcelona, Spain, September 1993

FIGURE 2 A skeleton which defines an arm

FIGURE 3 A model of an arm being bent a. Unwanted blending - the upper arm blends with the lower arm b. Unwanted blending is prevented

Hiérarchie

• Possibilité d'aller plus loin dans la gestion des formes de mélange

Extrait de la thèse de Cédric Zanni : « Modélisation implicite par squelette et Applications », Université Joseph-Fourier -Grenoble I, 2013

Les différentes fonctions

Blinn (82)

Exponentielle

Nishimura (85)

Wyvill (86)

Quadriques

Murakami (87)

Polynôme de degré 6

Gascuel (93)

Blanc (95)

Polynôme de degré 4

Fonctions infinies ...

Blinn

Fi non nulle à l'infinie

$$F_i(r) = \exp(-ar^2)$$

a paramètre $\in \mathbb{R}$

r distance entre le centre du Blob et le point étudié Possibilité d'ajout d'un facteur de raideur Influence infinie...

Fonctions finies

Nishimura

- » Polynômes quadriques
- » Ri fixée explicitement

$$F_{i}(r) = \begin{cases} 1 - 3(\frac{r}{R_{i}})^{2} & \text{si } (0 \le r \le \frac{R_{i}}{3}) \\ \frac{3}{2}(1 - (\frac{r}{R_{i}}))^{2} & \text{si } (\frac{R_{i}}{3} \le r \le R_{i}) \end{cases}$$

$$Fi(Ri) = 0$$

Fonctions finies

Wyvill

» Polynômes de degré 6

$$\mathbf{F_i}(\frac{\mathbf{R}}{2}) = \frac{1}{2}$$

$$F_{i}(r) = -\frac{4}{9} \left(\frac{r}{R_{i}}\right)^{6} + \frac{17}{9} \left(\frac{r}{R_{i}}\right)^{4} - \frac{22}{9} \left(\frac{r}{R_{i}}\right)^{2} + 1$$

Fonctions finies...

Murakami

» Polynômes de degré 4

$$F_i(r) = (1 - (\frac{r}{R_i})^2)^2 \text{ Si } r \le R_i; 0 \text{ Sinon}$$

Fonctions finies ...

Gascuel

Régie par 5 paramètres a, b, c, d, e.

Ils dépendent de :

k raideur de la courbe

v épaisseur de la courbe

Ri rayon d'influence

Réglage de la forme de la courbe

$$F_{i}(r) = \begin{pmatrix} ar^{2} + br + c & si & r \in [0, v] \\ (r - Ri)^{2}(dr + e) & si & r \in [v, Ri] \\ 0 & sinon \end{pmatrix}$$

Fonctions particulières

Modification de la fonction de distance

Extensions ...

Fusion

Potentiel sous forme de R-fonctions

Union_{$$f_1,f_2$$} (**p**)=Max(f_1 (**p**), f_2 (**p**))

Intersection_{f₁,f₂} (
$$\mathbf{p}$$
)=Min(f₁(\mathbf{p}), f₂(\mathbf{p}))

Potentiel sous forme de R-fonctions

Redéfinition des fonctions:

$$f_1 \vee \alpha f_2 = \frac{f_{1+} f_{2+} \sqrt{f_{1}^2 + f_{2}^2 - 2\alpha f_{1} f_{2}}}{1+\alpha}$$

$$f_{1} \wedge \alpha f_{2} = \frac{f_{1} + f_{2} - \sqrt{f_{1}^{2} + f_{2}^{2} - 2\alpha f_{1}f_{2}}}{1 + \alpha}$$

Distance Surfaces

S Squelette

p point de l'espace

Surfaces de convolution-Définition

Processus où le signal est modifié par un filtre

Surfaces implicites- Application

 Représentation mathématique adaptée à la modélisation de volumes (de géométrie et de topologie changeante)

Extrait de : Terminator 2

Surfaces implicites

- Modélisation de terrains
 - Apport des surfaces implicites
 - Caractérisation volumique des matériaux
 - Lissage de la surface par convolution
 - Représentation implicite des rochers

Extrait de : http://liris.cnrs.fr/~egalin/Slides/blob-0-overview.pdf

Surfaces implicites- Applications

A. Peytavie, E. Galin, S. Merillou, J. Grosjean. Arches: a Framework for Modeling Complex Terrains, Computer Graphics Forum (Proceedings of Eurographics) 2009, 28 (2), 457 - 467

Modèles volumiques : Surfaces implicites

Surfaces implicites discrètes

Composition arborescente de solides

- Ce formalisme est un des plus répandus actuellement. Il est généralement nommé par l'acronyme *CSG*, qui vient de son nom en anglais, *Constructive Solid Geometry*
- On dispose dans ce modèle d'un ensemble de primitives solides (parallélépipèdes, sphères, cylindres, cônes, ...), chaque famille ayant des paramètres spécifiant ses dimensions
- On dispose ces éléments dans l'espace à l'aide de transformations géométriques (translations et rotations) et d'un ensemble d'opérateurs de composition permettant de combiner des solides de base

Composition arborescente de solides

La représentation interne de l'objet construit suivant cette méthode est un arbre binaire (nommé *arbre CSG*)

Modèles volumiques : Arbres CSG

Constructive Solid Geometry : arbre de composition

Modèles volumiques : Arbres CSG

Exemple avec 2 primitives:

CSG + Surfaces implicites

Modèle hiérarchique à squelette

Combinaison de primitives dans un arbre de construction

B. Wyvill, A. Guy, E. Galin. Extending the CSG-Tree. Computer Graphics Forum. 18 (4), 149 – 158, 1999

Passage du volumique vers surfacique

Algorithme du marching cube

• Illustration en 2D

Passage du volumique vers surfacique

• En 3D, aprés exploitation des symmétries, il reste 14 cas différents. Exemples :

- A partir d'un ensemble de cellules intersectant une surface, on obtient un maillage triangulaire de la surface.
- Problème des arêtes franches :

Extended marching cube

- Pour reconstruire correctement les arêtes, il existe des version étendues du marching cube [1]. En général, ces méthodes utilisent:
 - Le calcul d'intersection entre une arête et la surface est effectué par interpolation linéaire:

- La normale à la surface est évaluée aux points d'intersection
- On maille le cube à partir des plans passant par les points d'intersection (ayant comme normale la normale à la surface au point)
- [1] L. Kobbelt et al. "Feature Sensitive Surface Extraction from Data Volume". SIGGRAPH 2001

Modèle B-rep

- Définition : B-Rep (Boundary Representation en anglais ou Représentation Frontière ou Représentation par les Bords en français)
 - Technique de modélisation 3D géométrique des solides par les surfaces.
 - Consiste à représenter la peau des objets géométriques en « cousant» des carreaux géométriques restreints, portés par des surfaces canoniques (en général des surfaces B-splines, des Bézier, des NURBS)

B-Rep Solide

Modèle B-Rep

Représentation d'un tétraèdre sous forme de BRep

