Project Development Phase Model Performance Test

Date	10 November 2022	
Team ID	PNT2022TMID06255	
Project Name	Project – Early Detection of Chronic Kidney	
	Disease using Machine Learning	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE - , MSE - , RMSE - , R2 score - Classification Model:	See Below
		Confusion Matrix - , Accuracy Score- & Classification Report -	
2.	Tune the Model	Hyperparameter Tuning - Validation Method -	See Below

1. Metrics

Model: Random Forest Classifier

2. Tune the Model

Hyperparameter Tuning:

- The number of features is important and should be tuned in random forest classification.
- Initially all parameters in the dataset are taken as independent values to arrive at the dependent decision of Chronic Kidney Disease or No Chronic Kidney Disease.
- But the result was not accurate so used only 8 more correlated values as independent values to arrive at the dependent decision of Chronic Kidney Disease or not.

Validation Method:

It involves partitioning the training data set into subsets, where one subset is held out to test the performance of the model. This data set is called the validation data set.

Cross validation is to use different models and identify the best:

Decision Tree Model performance values:

Hence we tested with Logistic regression and Random Forest Classification wherein the accuracy of Random Forest classification is 95% compared with Logistic Regression.

The above table shows that Random Forest Classification gives better results over Decision TreeRegression.