DISEÑO CONCEPTUAL DE ALMACENES DE DATOS

Tema 2

Profesores:

Juan C. Trujillo Alejandro Reina Reina LUCENTIA Research Group

Departamento de Lenguajes y Sistemas Informáticos

Modelos utilizados en BD

- Modelo Conceptual
- Modelo Logico
- Modelo Físico

APD. 2025

Sistemas operacionales

Diseño conceptual de DW

- Modelado multidimensional (MD)
 - Parte estructural
 - Parte dinámica
- Parte estructural
 - Hechos y dimensiones
- Parte dinámica
 - Operaciones de consulta al modelo MD

Modelado multidimensional

- Tal y como el usuario percibe el mundo real objeto de estudio
 - Perspectiva estructural
 - Modelado o Modelo Multidimensional (MD)
 - Hechos y Dimensiones
 - Perspectiva dinámica
 - Definición de requerimientos iniciales sobre el modelo MD
 - Operaciones de consulta avanzada

- □ Perspectiva estructural → modelo MD
 - Hechos
 - Objeto de análisis
 - Ej. Ventas de productos, compras, alquileres, transportes
 - Dimensiones
 - Diferentes perspectivas para analizar los hechos
 - Ej. Productos, almacenes, tiempo, vehículos, etc.

- Hechos representan normalmente relaciones muchos a muchos con todas las dimensiones y, muchos a uno con cada dimensión en particular
 - Ej. Ventas de productos (H) por producto (D), almacenes (D)y tiempo (D)
 - Un producto (D) \rightarrow varias ventas (H)
 - Una venta (H) → un solo producto (D) y almacén (D)

- Sin embargo, a veces hechos son muchos a muchos con dimensiones en particular
 - □ Ej. Tickets emitidos (H) por
 - Un ticket (H) puede contener muchos productos
- Hechos y Dimensiones se caracterizan por atributos
 - □ Hechos → atributos de hecho o medidas
 - Dimensiones -> atributos de dimensión

- ¿Cómo se representa el modelo MD intuitivamente?
 - Cubos
 - Hipercubos (Cubos sobre cubos)
 - Tablas multidimensionales tipo hoja de cálculo, etc.

Tema 2. Diseño conceptual de almacenes de datos Modelado multidimensional

Parte estructural. Cubo

Parte estructural. Tablas MD.

■ Tablas multidimensionales

		Producto.Grupo = "Supermercado"				
Ventas			Comida		Bebida	
		Cong	Fresco	Refresco	Alcohol	
Almacén.	A 1: 4 -	Albatera	100	200	300	400
comunidad = Allcan	Alicante	Elche	500	600	700	800
"Comunidad	Valencia	Burjasot	900	1000	1100	1200
Valenciana"		Cullera	1300	1400	1500	1600

Parte estructural. Cubo vs. Tabla relacional.

- Para recuperar los datos necesarios:
 - \blacksquare En una SGBDR: 4*3*3 = 36 tuplas (filas)
 - En una BD Multidimensional: 4+3+3=10 valores en los ejes

Region	Producto	Año	Llam	tupla
Vaud	Fax	1997	12	1
Vaud	Mobiles	1998	23	2
Vaud	Standard	1999	22	3
Fribourg	Fax	1997	34	4
Fribourg	Mobiles	1998	45	5
Fribourg	Standard	1999	48	6
Neuchatel	Fax	1986	55	7
Neuchatel	Mobiles	1987	66	8
•••	•••	•••	•••	•••
Neuchatel	Standard	1998	55	35
Neuchatel	Mobiles	1999	466 20°	36

Parte estructural. Dimensiones

- Puede haber alto grado de categorización
 - Atributos en función de instancias
 - Ej. Volumen y porcentaje de alcohol sólo para bebidas
 - Ej. Tiempo y modo preparación sólo para comidas
- 🗆 Atributos dimensión 🔿 jerarquías clasificación
 - Los niveles de jerarquía serán usados para la agregación de las medidas
 - Ej. Ciudad, comunidad, tipos de productos, etc.

Modelado multidimensional

Parte estructural. Dimensiones. Jerarquías de clasificación

- □ Las instancias de niveles ≡ miembros
- Clasificación
 - Cardinalidad
 - Por defecto \rightarrow estrictas (1-m)
 - Una instancia sólo se relaciona con una instancia del nivel superior de jerarquía
 - Ej. Un almacén está ubicado en una sola ciudad
 - Sin embargo algunas pueden ser no estrictas (m-m)
 - Ej. Un almacén pertenece a más de una zona de ventas

Tema 2. Diseño conceptual de almacenes de datos Modelado multidimensional

Parte estructural. Dimensiones. Jerarquías de clasificación

Caminos

■ Simples → Representación mediante árbol

■ Múltiples → Representación mediante grafo

Parte estructural. Dimensiones. Jerarquías de clasificación simples.

Ejemplo de Asimétrica

17

Tema 2. Diseño conceptual de almacenes de datos

Modelado multidimensional

Parte estructural. Dimensiones. Jerarquías de clasificación

- Jerarquías múltiples y de camino alternativo
 - Rep. → D.A.G.
 - Ej. Ciudad se puede clasificar en comunidad y,
 - Ciudad también se puede clasificar en zona ventas
- □ Jerarquías paralelas → Más de una jerarquía definida para la misma dimensión
 - Independiente → Las distintas jerarquías no comparten niveles
 - Dependientes → Las distintas jerarquías comparten algún nivel

Tema 2. Diseño conceptual de almacenes de datos

Modelado multidimensional

Parte estructural. Dimensiones. Jerarquías de clasificación

 ■ Multiples → Normalmente se representan mediante Grafos Acíclicos dirigidos (G.A.D.)

Parte estructural. Dimensiones. Jerarquías de clasificación

- Jerarquías completas
 - Además de estrictas, un miembro o instancia de un nivel superior está compuesto únicamente por los del nivel inferior
 - relación fija entre instancias

Parte estructural. Dimensiones. Jerarquías de clasificación y cubos

- Si utilizamos un cierto nivel de agregación
 - Ventas es una función del producto, mes y región

Dimensiones: Producto, Almacén, Tiempo Caminos de jerarquía por los que agregar

Parte estructural. Un ejemplo de cubo de datos

Parte estructural. Hechos

- Atributos de hecho o medidas
 - Atómicos
 - Ej. Cantidad vendida, precio, etc.
 - Derivados
 - Utilizan una fórmula para calcularlos
 - Ej. Precio_total = precio * cantidad_vendida

Parte estructural. Hechos

Aditividad

- Conjunto de operadores de agregación (SUM, AVG, etc.) que se pueden aplicar para agregar los valores de medidas a lo largo de las jerarquías de clasificación (Kimball, 1996)
- Es aditiva → SUM sobre todas las dimensiones
- □ Semi-aditiva → SUM sólo sobre algunas dimensiones
- No aditiva → SUM sobre ninguna dimensión

Parte estructural. Hechos

- □ Si no aditiva → otros operadores pueden aplicarse (ej. AVG, MIN, etc.)
 - Ej. Atributos que miden niveles (ej. Inventarios) no son aditivos sobre la dimensión tiempo
 - Es aditivo sobre la dimensión producto
 - Las medidas de temperatura no son aditivas
 - Algunas son semánticamente incorrectas
 - Ej. Atributo número de clientes que cuenta el número de tickets emitidos no es aditiva sobre la dimensión producto

Modelado multidimensional

- □ En aplicaciones OLTP...
 - Modelado conceptual → Entidad-Relación (EER)
 - ¿ Podría reflejar la multidimensionalidad de los datos ?
 - Hechos,...
 - Dimensiones,...
 - 🗖 ¿ Podría ser interrogado por un analista de la información ?

Modelado multidimensional

- BD Multidimensionales parecen más naturales y
- → Queries son también más naturales
- Ejemplo: llamadas de tfno. por producto y región
 - En un cubo: print total.(calls keep product, region)

Producto/Comun.	C. Valenciana	Cast. Mancha
Fax	44	28
E-mail	27	51
Mobiles	46	11

En tablas relacionales:

Select producto, comunidad, sum(llamadas) from Llamadas, Comunidad where llamadas.comunidad= Comunidad.comunidad Group by producto, comunidad Order by producto, comunidad;

Product	Region	Sum(calls)
Fax	Vaud	44
Fax	Valais	28
Mobile	Vaud	27
Mobile	Valais	51
Standard	Vaud	46
Standard	Valais	11

- □ Definición de requerimientos iniciales de usuario
 - Están basados en jerarquías definidas en Dimensiones

Cantidad vendida de productos comestibles agrupados por su familia y tipo, vendidos en la comunidad valenciana y, agrupados por la provincia y ciudad donde se vendieron

marc**O**

Parte dinámica.

- Operaciones de consulta (OLAP)
 - Roll-up
 - Agregar valores de medidas a lo largo de jerarquías de clasificación

grupo

nombre

famili

tipo

marc

grupo

nombre

famili

tipo

- Operaciones de consulta (OLAP)
 - Drill-down
 - Desagregar valores de medidas a lo largo de jerarquías de clasificación

- Operaciones de consulta (OLAP)
 - Drill-accross
 - Consultar medidas de varios hechos en el mismo cubo
 - Ej. Que en la tabla MD analizaramos el ratio de ventas respecto de compras.
 - 1000 / 400

- Operaciones de consulta (OLAP)
 - Slice-dice
 - Definir restricciones sobre niveles de jerarquías
 - Ej. Analizar datos donde el año sea 1999

- □ Slice-dice (cont.)
 - Otro ejemplo

- Operaciones de consulta (OLAP)
 - Pivoting
 - Reorientar la vista multidimensional de los datos, es decir,
 cambiar la distribución de filas/columnas
 - Algunos autores consideran también el intercambio de medidas y hechos como pivoting (kimball, 1996) (Inmon, 1996)

Diseño conceptual de almacenes de datos Bibliografía

- Giovinnazo (2000). Object-Oriented Data
 Warehouse Design: Building a star schema
- □ Inmon (2005). Building the Data Warehouse (4° ed.)
- Kimball & Ross (2013). The Data Warehouse Toolkit (4^a ed.)
- Thomsen (2000). OLAP solutions: Building Multidimensional Information Systems

Diseño conceptual de almacenes de datos

Apéndice: Guías de diseño del Modelo EER -> Esq. Estrella

38

-APD, 2025

DISEÑO CONCEPTUAL DE ALMACENES DE DATOS

Tema 2

Profesores:

Juan C. Trujillo Alejandro Reina Reina LUCENTIA Research Group

Departamento de Lenguajes y Sistemas Informáticos