"Excellency is our best aim"

Little Flowers Secondary English Boarding School Itahari - 5, Sunsari

Third Terminal Examination - 2081

Class: Ten Time: 3 Hours. F.M.: 75

Subject: Opt. Mathematics P.M.: 29

Attempt all questions.

Group A[10x1 = 10]

- 1. Write the period of the function f(x) = sin x.
- 2. Write the equation of boundary line of the inequality $ax + by \le c$.
- 3. Write the left hand limit of f(x) at x = a in mathematical statement.
- 4. If AB = BA = I then what types of matrices are A and B?
- 5. What is the angle between two straight lines x = 0 and y = 0?
- 6. The semi vertical angle of a cone is α and the angle made by the plane with the axis of cone is θ . If $\alpha = \theta$, what is the name of the conic section formed by the intersection of a plane surface and cone?
- 7. Write the formula of cos A in terms of $sin \frac{A}{2}$.
- 8. Define angle of depression.
- 9. Write the formula to find the angle between vectors \vec{a} and \vec{b}

10. If O is the centre of circle, radius = r and P' is inversion of point P, write down the relation of OP, OP' and r.

Group B[8x2 = 16]

- 11. When a polynomial $f(x) = x^3 3x^2 + kx + k$ is divided by g(x) = x + 2 then the remainder 5 is obtained. Using remainder theorem, find the value of k.
- 12. Find the vertex of the parabola $y = x^2 4x$.
- 13. If $\begin{bmatrix} x-1 & 3 \\ x-2 & 4 \end{bmatrix}$ is a singular matrix, find the value of x.
- 14. If the equation $(k^2 + 2)x^2 + 5xy 3ky^2 = 0$ represents two perpendicular lines, find the value of k.
- 15. If $Sin \frac{A}{2} = \frac{1}{2} \left(t + \frac{1}{t} \right)$ then show that: $CosA = \frac{1}{2} \left(t^2 + \frac{1}{t^2} \right) = 0$
- 16. Solve: tan x + cot x = 2. $(0^{\circ} \le x \le 90^{\circ})$
- 17. If $\vec{a} = p\vec{i} + 3\vec{j}$, $\vec{b} = 5\vec{i} \vec{j}$ and $\vec{a} \cdot \vec{b} = 7$, find the value of p.
- 18. The inter-quartile range of a continuous data is 30 and upper quartile is 40. What is the value of quartile deviation and coefficient of quartile deviation?

Group C[11x3 = 33]

19. The image of a function f is 4 times of its pre-image plus 5. The image of composite function of g and f is 8 times

of its pre image plus 13. If $g_{\circ}f(x) = 28$, find is the value of x.

- 20. Solve graphically: $x^2 + 2x 3 = 0$.
- 21. Examine the continuity or discontinuity of

$$f(x) = \begin{cases} 4x - 1 & \text{if } x < 1 \\ 7x & \text{if } x \ge 1 \end{cases} \text{ at } x = 1 \text{ by calculating left}$$

hand limit, right hand limit and functional values.

- 22. If the men are sitting on the chair in a hall. The sum of legs of men and legs of chairs is 102 and 3 chairs are empty. Find the number of men and number of chairs by making linear equation and by using matrix method.
- 23. A (3, 5) and C (7, 9) are the opposite vertices of a rhombus ABCD, find the equation of the diagonal BD.
- 24. Prove that:

$$\frac{1 - \cos A + \cos B - \cos (A + B)}{1 + \cos A - \cos B - \cos (A - B)} = \tan \frac{A}{2} \cdot \cot \frac{B}{2}$$

- 25. If $A + B + C = 90^{\circ}$ then prove that: $sinA \cdot cosA + sinB \cdot cosB + sinC \cdot cosC = 2cosA \cdot cosB \cdot cosC$
- 26. A ladder 10 m long reaches a point 10 m below the top of a vertical flagstaff. From the foot of the ladder, the elevation of the flagstaff is 60°. Find the height of the flagstaff.
- 27. \triangle ABC with the vertices A(3, 6), B(4, 2) and C(3, 3) is mapped onto \triangle A'B'C' such that A' (6, -3), B'(2, -4) and C'(3, -3). Find the 2 × 2 transformation matrix that represents this transformation. Also, which is the single transformation for this mapping?
- 28. Find the mean deviation from mean and its coefficient

Age(In years)	0-4	4-8	8-12	12-16	16-20
No. Of Boys(f)	12	8	10	6	4

29. Compute the standard deviation from the data given below.

Class	0-10	10-20	20-30	30-40	40-50	50-60	60-70
Freque ncy	1	4	17	45	26	5	2

Group D[4x4 = 16]

- 30. The minimum value of objective function F = 6x + 10y + k subject to constraints $5x + 2y \le 10$, $3x + 5y \le 15$, $x \ge 0$, $y \ge 0$ is 20, find the value of k.
- 31. Find the equation of the circle which passes through the pints (1, 1), (4, 4) and (5, 1).
- 32. Prove by vector method: The diagonals of rhombus bisect to each other at right angle.
- 33. A quadrilateral having vertices P(0, 3), Q(-6, 1), R(-6, 5) and S(-1, 5) is reflected in the line y = x followed by rotation about origin through +900. Find the coordinates of image of quadrilateral PQRS. Also present the object and final image on same graph paper.

THE END