VE281

Data Structures and Algorithms

Tree; Binary Tree Traversal

Announcement

- Midterm exam time
 - Oct. 25 (Wed.), in class

Outline

- Trees
- Binary Trees
- Binary Tree Traversal

Trees

- Tree is an extension of linked list data structure:
 - Each node connects to **multiple** nodes.
- A tree is a "natural" way to represent hierarchical structure and organization.
- Many problems in computer science can be solved by breaking it down into smaller pieces and arranging the pieces in some form of hierarchical structure.
 - For example: merge sort.

Tree Terminology

- Just like lists, trees are collections of nodes.
- The node at the top of the hierarchy is the **root**.
- Nodes are connected by edges.
- Edges define **parent-child** relationship.
 - Root has no parent.
 - All other node has **exactly one** parent.
- A node with no children is called a **leaf**.

Subtrees

Subtree can be defined for any node in general, not just for the root node.

More Tree Terminology

- f is the **child** of b.
- b is the **parent** of f.
- Nodes that share the same parent are **siblings**.
 - b and c are the **siblings** of d.
 - e is the **sibling** of f.

Path

- A **path** is a sequence of nodes such that the next node in the sequence is a child of the previous.
 - E.g., $a \rightarrow b \rightarrow e \rightarrow h$ is a path.
 - The path length is 3.
- Path length may be 0, e.g., b going to itself is a path and its length is 0.
- <u>Claim</u>: If there exists a path between two nodes, then this path is the <u>unique</u> path between these two nodes.

Ancestors and Descendants

- If there exists a path from a node A to a node B, then A is an **ancestor** of B and B is a **descendant** of A.
 - E.g., a is an ancestor of h and h is a descendant of a.

Depth, Level, and Height of a Node

- The **depth** or **level of a node** is the length of the unique path from the **root** to the node.
 - E.g., depth(b)=1, depth(a)=0.
- The height of a node is the length of the longest path from the node to a leaf.
 - E.g., height(b)=2, height(a)=3.
 - All leaves have height zero.

Depth, Level, and Height of a Tree

- The **height of a tree** is the height of its root.
 - This is also known as the **depth of a tree**.
 - The depth of the tree on the right is 3.
- The **number of levels of a tree** is the height of the tree **plus one**.
 - The number of levels of the tree on the right is 4.

Degree

- The **degree of a node** is the number of children of a node.
 - E.g., degree(a) = 3, degree(c) = 1.
- The degree of a tree is the maximum degree of a node in the tree.
 - The degree of the tree on the right is 3.

A Simple Implementation of Tree

- Each node is part of a **linked list** of **siblings**.
- Additionally, each node stores a pointer to its **first child**.

```
struct node {
  Item item;
  node *firstChild;
  node *nextSibling;
};
```

Outline

- Trees
- Binary Trees
- Binary Tree Traversal

Binary Tree

• Every node can only have **at most two** children.

• An empty tree is a special binary tree.

Binary Tree Properties

- What is the **minimum** number of nodes in a binary tree of height h (i.e., has h + 1 levels)?
 - Answer: At least one node at each level.
 - h + 1 levels means at least h + 1 nodes.
- What is the **maximum** number of nodes in a binary tree of height h (i.e., has h+1 levels)?
 - Answer: At most 2^k nodes at level k.
 - Maximum number of nodes is

$$1 + 2 + 2^2 + \dots + 2^h = 2^{h+1} - 1$$

Number Of Nodes and Height

- Claim (from the previous slide): Let n be the number of nodes in a binary tree whose height is h (i.e., has h+1 levels).
 - We have $h + 1 \le n \le 2^{h+1} 1$.
- Question: given n nodes, what is the height h of the tree?
 - $\log_2(n+1) 1 \le h \le n-1$

Types of Binary Trees

- A binary tree is **proper** if every node has 0 or 2 children.
- A binary tree is **complete** if:
- 1. every level **except** the lowest is fully populated, and
- 2. the lowest level is populated from left to right.
- A binary tree is **perfect** if **every level** is fully populated.

Exercises

• Identify any **proper**, **complete**, and **perfect** binary trees below:

Numbering Nodes In a Perfect Binary Tree

- Numbering nodes from 1 to $2^{h+1} 1$.
- Numbering from top to bottom level.
- Within a level, numbering from left to right.

Numbering Nodes In a Perfect Binary Tree

- What is the parent of node i?
 - For $i \neq 1$, it is $\lfloor i/2 \rfloor$. For node 1, it has no parent.
- What is the left child of node i? Let *n* be the number of nodes.
 - If $2i \le n$, it is 2i; If 2i > n, no left child.
- What is the right child of node i?
 - If $2i + 1 \le n$, it is 2i + 1; If 2i + 1 > n, no right child.

Representing Binary Tree Using Array

- Based on the numbering scheme for a perfect binary tree.
- If the number of the node in a perfect binary tree is i, then the node is put at index i of the array.

Representing Binary Tree Using Array

Space Efficiency

• How would you represent a **right-skewed** binary tree?

An n node binary tree needs an array whose length is between n + 1 and 2^n .

Representing Binary Tree Using Linked Structure

```
struct node {
  Item item;
  node *left;
  node *right;
};
```

- left/right points to a left/right subtree.
 - If the subtree is an empty one, the pointer points to **NULL**.
- For a leaf node, both its left and right pointers are NULL.

Outline

- Trees
- Binary Trees
- Binary Tree Traversal

Binary Tree Traversal

- Many binary tree operations are done by performing a traversal of the binary tree.
- In a traversal, each node of the binary tree is visited **exactly** once.

• During the visit of a node, all actions (making a clone, displaying, evaluating the operator, etc.) with respect to this node are taken.

Binary Tree Traversal Methods

- Depth-first traversal
 - Pre-order
 - Post-order
 - In-order

• Level order traversal

Pre-Order Depth-First Traversal

Procedure

- Visit the node
- Visit its left subtree
- Visit its right subtree


```
void preOrder(node *n) {
  if(!n) return;
  visit(n);
  preOrder(n->left);
  preOrder(n->right);
}
```

Pre-Order Depth-First Traversal

Example

$$a \rightarrow b \rightarrow d \rightarrow g \rightarrow h \rightarrow e \rightarrow i \rightarrow c \rightarrow f \rightarrow j$$

Post-Order Depth-First Traversal

Procedure

- Visit the left subtree
- Visit the right subtree
- Visit the node


```
void postOrder(node *n) {
  if(!n) return;
  postOrder(n->left);
  postOrder(n->right);
  visit(n);
}
```

Post-Order Depth-First Traversal Example

$$g \rightarrow h \rightarrow d \rightarrow i \rightarrow e \rightarrow b \rightarrow j \rightarrow f \rightarrow c \rightarrow a$$

In-Order Depth-First Traversal

Procedure

- Visit the left subtree
- Visit the node
- Visit the right subtree


```
void inOrder(node *n) {
  if(!n) return;
  inOrder(n->left);
  visit(n);
  inOrder(n->right);
}
```

In-Order Depth-First Traversal

Example

$$g \rightarrow d \rightarrow h \rightarrow b \rightarrow e \rightarrow i \rightarrow a \rightarrow f \rightarrow j \rightarrow c$$

Level-Order Traversal

- We want to traverse the tree level by level **from top to** bottom.
- Within each level, traverse from left to right.

How can we implement this traversal?

Level-Order Traversal

Procedure

- Use a queue!
- 1. Enqueue the root node into an empty queue.
- 2. While the queue is not empty, dequeue a node from the front of the queue.
 - 1. Visit the node.
 - 2. Enqueue its left child (if exists) and right child (if exists) into the queue.

Loop

Level-Order Traversal

Code and Example

```
void levelOrder(node *root) {
  queue q; // Empty queue
  q.enqueue(root);
  while(!q.isEmpty()) {
    node *n = q.dequeue();
    visit(n);
    if(n->left) q.enqueue(n->left);
    if (n->right) q.enqueue (n->right);
                     Queue:
                     Output: a b c d e f
```

Binary Tree Traversal

Application

- The expression a/b + (c d)e has been encoded as a tree T.
 - The leaves are **operands**.
 - The internal nodes are **operators**.
- How would you traverse the tree T to print out the expression (ignoring parentheses)?
 - In-order depth-first traversal.
- What is the expression printed out by post-order depth-first traversal?
 - ab/cd e * +
 - Reverse Polish Notation

