Летняя многопредметная школа Кировской области Вишкиль. 3-28 июля

Физика 10 класс

Занятие 7. Колебания.

1 Основные определения

Колебания — это движения или процессы, которые характеризуются повторяемостью во времени. **Гармоническими** называются колебания, следующие гармоническому закону:

$$x = A\sin(\omega t + \varphi_0). \tag{1}$$

Эта функция периодическая: x(t+T) = x(t), причём её **период** T равен

$$T = 2\pi/\omega. (2)$$

Величина ω называется **циклической частотой**, а величина $\nu = \omega/2\pi$ — **частотой**. Она связана с периодом колебаний соотношением $\nu = \frac{1}{T}$.

Коэффициент A в (7) называется **амплитудой** колебания, аргумент косинуса $\varphi(t) = \omega t + \varphi_0$ — фазой колебания, а его значение $\varphi = \varphi_0$ при t = 0 — начальной фазой.

2 Уравнение гармонических колебаний

Для функции $x(t) = A\cos(\omega t + \varphi_0)$ выполняется следующие соотношения:

$$v(t) = \dot{x} = A\omega\cos(\omega t + \varphi_0),\tag{3}$$

$$a(t) = \ddot{x} = -A\omega^2 \sin(\omega t + \varphi_0). \tag{4}$$

Эти функции удовлетворяют дифференциальному уравнению гармонических колебаний

$$\ddot{x} + \omega^2 x = 0. \tag{5}$$

На самом деле важно, что функция вида (7) не только удовлетворяют уравнению (8), но и описывают все возможные решения этого уравнения.

Для гармонических колебаний, описываемых уравнением (8), период колебаний T не зависит от амплитуды A.

3 Мотивация

Рассмотрим некоторую систему, находящуюся в положении равновесия. Бывает важно понять, как ведет себя эта система при небольших отклонениях величин. Одной из главных характеристик, описывающих поведение такой системы, является период малых гармонических колебаний.

4 Динамический подход

Этот подход состоит в том, чтобы записать уравнение движения системы (2 Закон Ньютона или уравнение вращательного движения). Далее считается, что отклонения малы по сравнению с характерными для этой системы величинами.

Пусть, учитывая малость отклонений, удалось привести уравнение движения к виду уравнения гармонических колебаний:

$$x'' + \omega^2 x = 0 \tag{6}$$

где x — параметр, определяющий положение тела (смещение тела от положения равновесия), причем в положении равновесия x = 0. Тогда система будет совершать периодические колебания, величина x будет менятся по закону:

$$x = A\sin\omega t + B\cos\omega t \tag{7}$$

$$x = C\sin(\omega t + \varphi_0) \tag{8}$$

- 1. Формулы (7) и (8) описывают одно и то же семейство функций (то есть для любых констант A, B найдутся C, φ_0 такие, что (7) = (8)). Чаще всего мы будем искать решение в виде (8), однако не стоит забывать и про другое представление.
- 2. Выражение (8) имеет четкий физический смысл: величина ω называется циклической частотой гармонических колебаний. Величина C амплитуда колебаний, $\omega t + \varphi_0$ фаза колебаний, а φ_0 начальная фаза колебаний.

Алгоритм решения задач (динамический подход)

- 1. Рассмотреть положение равновесия системы. Изменить параметры системы на малую величину, тем самым вывести ее из положения равновесия.
- 2. Выбрать оси, направление оси должно быть сонаправлено с отклонением. Это делается для того, чтобы при проецировании 2 3H (уравнения вращательного движения) на ось, слагаемое $m\vec{a}$ ($J\vec{\varepsilon}$) вошло в выражение с «плюсом».
- 3. Написать 2 3H (уравнение вращательного движения) в проекции на выбранные оси, привести уравнение к виду (6).

Пример вывод периода колебаний математического маятника. *Математический маятник* — груз на достаточно длинной нитке.

Рис. 1. Математический маятник

Сначала выберем координату α и попытаемся выразить все величины через нее. Запишем 2 Закон Ньютона в проекции на Ox:

$$ml\alpha'' = -mg\underbrace{\sin\alpha}_{\sin\alpha\approx\alpha} \approx -mg\alpha$$

Получили уравнение гармонических колебаний:

$$\alpha'' + \underbrace{\left(\frac{g}{l}\right)}_{\omega^2} \alpha = 0$$

$$\omega = \sqrt{\frac{g}{l}}; \ T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{l}{g}}$$

Если же мы хотим найти явный вид решения, ищем константы из начальных условий. Для этого нужно найти в условии задачи 2 начальных условия (обычно это положение маятников в начальный и конечный момент времени или положение маятника в начальный момент времени + его скорость).

Например, пусть в нашем примере известно, что при $t=0, \alpha=\alpha_0; \alpha'=\alpha'_0$. Подставляем начальные условия в (8) и получаем 2 уравнения на 2 неизвестных:

$$\alpha(0) = \alpha_0 \to C \sin(\omega t + \varphi_0) = \alpha_0$$

$$\alpha'(0) = \alpha'_0 \to C\omega \cos(\omega t + \varphi_0) = \alpha'_0$$

Решая систему уранений, находим амплитуду и начальную фазу колебаний.

5 Энергетический подход

Если система консервативная (полная энергия сохраниется), то записывают закон coxpanenus энергии, выражая потенциальную энергию через x, а кинетическую через x'. Пусть удалось привести (с учетом малости колебаний) выражение к виду:

$$A\frac{x^2}{2} + B\frac{x'^2}{2} = E = const (9)$$

тогда сразу можно сказать, что система будет совершать гармонические колебания вблизи положения равновесия.

Важно, что привести уравнение к такому виду вы сможете только если возьмете ноль потенциальной энергии в положении равновестия системы

Дифференцируя (9) по времени, получаем:

$$Axx' + Bx'x'' = 0 \to x'' + \frac{A}{B}x = 0 \to \omega = \sqrt{\frac{A}{B}}$$
(10)

Таким образом, пришли к виду гаронических колебаний. То есть решение (9) представляется в виде (7), (8).

Пример вывод периода колебаний математического маятника с помощью энергетического подхода.

Рис. 2. Математический маятник

Сначала выберем координату α и попытаемся выразить (как и завещали выше) потенциальную энергию через α , а кинетическую через α' . Ниже учтено, что при достаточно малых углах ($\cos \alpha \approx 1 - \alpha^2/2$)

$$E_p = mgl(1 - \cos \alpha) \approx mgl\frac{\alpha^2}{2}$$

$$E_k = \frac{mV^2}{2} = \frac{ml^2\alpha'^2}{2}$$

Получили уравнение гармонических колебаний:

$$\underbrace{mgl}_{A} \frac{\alpha^{2}}{2} + \underbrace{ml^{2}}_{B} \frac{\alpha^{2}}{2} = const$$

Как и в прошлом примере, получаем выражения для циклической частоты и периода:

$$\omega = \sqrt{\frac{A}{B}} = \sqrt{\frac{g}{l}}; \ T = \frac{2\pi}{\omega} = 2\pi\sqrt{\frac{l}{g}}$$

6 Понятие псевдоколебаний

Рассмотрим систему, которая подчиняется на некотором участке траектории уравнению (6). Вводят такое понятие, как *псевдоколебания* — движение, которое не является колебательным, но в некоторый промежуток времени описывается уравнением (6). При таком движении мы можем с легкостью посчитать время движения. В листочке есть задача на это.

7 Обсуждение тонкостей

Из всего, сказанного выше, можно подчеркнуть, что по сути решение задач на колебание происходит в три этапа:

- 1. Выбор подхода (энергетический или динамический) и выбор переменной, относительно которой хотим получить уравнение гармонических колебаний (*пере*менная должна однозначно задавать положение тела)
- 2. Запись 3C9 в первом случае или 2 3H во втором
- 3. С учетом малости величин отклонения, приводим уравнения к соответствующему виду (6) или (9) и вытаскиваем оттуда ω, T

Знак в уравнении (6) важен! Если получаете уравнение вида $x'' - \omega^2 x = 0$, то что-то пошло не так :(

Если нужно найти явный вид решения, нужно воспользоваться **двумя** начальными условиями, получить 2 уравнения на 2 неизвестных.

8 Формулы приближенного вычисления

Пусть $x \ll 1$. Тогда выполнены следующие формулы приближенного вычисления:

$$\sin x \approx x$$

$$\cos x \approx 1 - x^2/2$$

$$\ln(1+x) \approx x$$

$$\forall r \in \mathbb{Q} : (1+x)^r \approx 1 + rx$$

$$\exp(x) \approx 1 + x$$

9 Понятие волны

До сих пор мы рассматривали системы с небольшим количеством степеней свободы (простейшие маятники). Рассмотрим систему, состоящую из целой цепочки связанных маятников. Наша задача — описать движение такой системы.

Рис. 3. Связанные маятники

При отклонении первого маятника возникнет сила, действующая на второй, которая выведет его из равновесия. В свою очередь тот будет действовать на следующий маятник. Таким образом, возмущение будет распространяться от первого маятника к последующим.

Оказывается, движение подобных систем приобретает коллективный характер:

индивидуальные особенности отдельных элементов как бы забываются. Колебательные процессы в системе большого числа элементов называют **волнами**.

Мы еще вернемся к этой задаче, а пока поговорим про общие понятия, необходимые для понимания происходящего.

10 Основные понятия. Простейшие примеры.

Как уже говорилось, волна — это процесс, разворачивающийся во времени и в пространстве. Для его описание нужно задать функцию, зависящую от координат и времени, которая и будет описывать состояние системы (например, в случае волны на поверхности жидкости, это может быть отклонение точек поверхности от положения равновесия).

Рис. 4. Задание отклонений точек системы на примере бегущей волны (время зафиксировано)

10.1 Бегущие волны

Рассмотрим бегущую волну в качестве простого примера. Для большего понимания можно мыслить, что далее речь идет о волне на поверхности волны, хотя бегущей волной может являться и процесс распространения колебаний в системе маятников, распространение электро-магнитных колебаний в цепи из конденстаторов и катушек, процесс распространения звука и т.п.

Рассмотрим бегущую волну (рис. 4), у которой фронт, не изменяя формы, перемещается вдоль оси Ox со скоростью c вдоль оси Ox и описывается уравнением:

$$u = a\sin k(x - ct) \tag{11}$$

такого вида волны называются **гармоническими волнами**. Мы будем рассматривать только их. Число *а* называется **амплитудой** колебаний.

Определение скорость c, с которой перемещается фронт, называется ϕ азовой скоростью волны.

Аргумент синуса: k(x-ct) называется **фазой колебаний**, а число k — **волновым числом**.

Согласно (11), точки, находящиеся на расстояниии $\lambda = 2\pi/k$, будут находится в одной фазе в любой момент времени. По определению величину λ называют **длиной волны**.

Обозначим $\omega = kc$, тогда уравнение (11) запишется в виде:

$$u = a\sin(kx - \omega t) \tag{12}$$

Зная волновое число k и частоту ω , можем найти фазовую скорость. Для этого зафиксируем фазу и посмотрим, какова скорость перемещения точки, находящейся в этой фазе:

$$kx - \omega t = const \to k \frac{dx}{dt} - \omega = 0 \to c = \frac{\omega}{k}$$

Наряду с волной, распространяющейся в положительном направлении оси Ox (т.е. имеющей скорость c>0), может возникнуть волна, двигающаяся в обратном направлении. Уравнение такой волны записывается в виде:

$$u = a\sin(kx + \omega t) \tag{13}$$

Проверьте сами, что скорость волны, описываемой уравнением (13), отрицательна. То есть волна движется против оси Ox.

10.2 Сложение двух бегущих волн

Рассмотрим вопрос сложение двух гармонических волн (12) и (13). Из принципа суперпозиции, результирующее отклонение будет суммой отклонений двух волн. Воспользовавшись формулой суммы синусов, получим:

$$u_{\text{pes}} = u_{+} + u_{-} = a(\sin(kx - \omega t) + \sin(kx + \omega t)) = [2a\sin(kx)]\cos(\omega t)$$
 (14)

Нетрудно видеть, что данное уравнение описывает простые колебания, амплитуда которых $A = 2a\sin(kx)$ зависит от координаты x. Такие колебания называются cmosumu волнами.

Рис. 5. Стоячие волны

Точки, в которых A обращается в ноль $(x = \frac{\pi n}{k})$ называются узлами стоячей волны. Если же $\sin(kx) = 1$, то A принимает максимальное значение, такие точки зовутся пучностями.

Длина волны в этом случае определяется расстоянием между соседними пучностями (или узлами).

1. Важно заметить, что длина волны бегущих волн (без тавтологии никак) $\lambda_{\text{бег}}$ и длина волны стоячей волны $\lambda_{\text{ст}}$ связаны соотношением:

$$\lambda_{\rm cr} = \frac{\lambda_{\rm 6er}}{2}$$

- 2. Вопрос о сложении двух бегущих волн был поставлен неспроста. Это явление можно увидеть, например при отражении бегущей волны от препятствия. После отражения волна «побежит» в другую сторону. Соответственно, слева от препятствия мы увидим не что иное, как сумму двух бегущих волн, то есть стоячую волну.
- 3. Рассмотрим отражение волны от препятствия. Сумма первичной и отраженной волны должна иметь нулевую амплитуду колебаний (молекулы материала «стенки» неподвижны). При отражении волны, фаза волны меняется на π . Смотри на рис. 5, голубым цветом обозначена отраженная волна. В точке расположения экрана волны имеют одинаковые по модулю величины отклонений, но разные по знаку. Этой ситуации соответствует изменение фазы на π .
- 4. В силу того, что фаза меняется на π , в точке, соответствующей положению экрана, всегда **будет узел**, так как при сложении двух отклонений получим ноль.
- 5. Спойлер: эти факты активно используются в лабораторном практикуме.

11 Волновое уравнение

Мы начали рассматривать волны с гармонических бегущих волн. На самом деле волной u(x,t) называется любое решение волнового уравнения:

$$\frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2} \tag{15}$$

Убедитесь в том, что гармоническая волна (12) подходит под данное определение, то есть удовлетворяет (15).

На самом деле волной является любая функция вида u = u(x - ct).

12 Связанные маятники

Вернемся к задаче, с которой мы начали обсуждение волн. Но для начала, нам нужно немного математики. Пусть i — мнимая единица, то есть $i^2 := -1$. Тогда выполнены формулы Эйлера:

$$e^{i\varphi} = \cos\varphi + i\sin\varphi \tag{16}$$

$$\sin \varphi = \frac{e^{i\varphi} - e^{-i\varphi}}{2i} \tag{17}$$

$$\cos \varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2} \tag{18}$$

Мы знаем, что гармоническая волна вида (12) является решением волнового уравнения. Но чаще при поиске решений волнового уравнения (15) пользуются представлением:

$$u = a \exp(ikx - i\omega t) \tag{19}$$

Зачастую такая форма записи существенно упрощает выкладки (да и экспонента просто красивая функция).

Рис. 6. Связанные маятники

Наша задача — найти возможные движения системы. Обозначим положение n-го шарика в положении покоя $x_n^{(0)} = na$, а смещение относительно положния равновесия $u_n = x_n - x_n^{(0)}$. Тогда уравнение движения n-го атома запишется в виде:

$$mu_n'' = -k(u_n - u_{n-1}) + k(u_{n+1} - u_n)$$

или

$$mu_n'' = k(u_{n+1} - 2u_n + u_{n-1}) (20)$$

Выражение (20) подозрительно похоже на волновое уравнение (15). А почему бы не попробоовать найти решение этого уравнения в виде:

$$u_n = u_0 \exp(ikx_n^{(0)} - i\omega t) \tag{21}$$

Подставив это выражение в (20), найдем связь между волновым параметром k и частотой ω .

 \mathbf{y} праженение на $\mathbf{3}$ балла — найти всевозможные частоты колебаний шариков ω .