Sedmá přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Sedmá přednáška

Program

- podstruktury, expanze, redukty
- extenze teorií, extenze o definice
- definovatelnost a databázové dotazy
- vztah výrokové a predikátové logiky

Materiály

Zápisky z přednáškySekce 6.6-6.9 z Kapitoly 6

6.6 Podstruktura, expanze, redukt

Podstruktura

- podstruktura zobecňuje podgrupu, podprostor vektorového prostoru, (indukovaný) podgraf: na podmnožině B univerza vytvoříme strukturu, která "zdědí" relace, operace a konstanty
- B musí být uzavřená na všechny operace (vč. konstant)

Struktura $\mathcal{B} = \langle \mathcal{B}, \mathcal{R}^{\mathcal{B}}, \mathcal{F}^{\mathcal{B}} \rangle$ je (indukovaná) podstruktura struktury $\mathcal{A} = \langle \mathcal{A}, \mathcal{R}^{\mathcal{A}}, \mathcal{F}^{\mathcal{A}} \rangle$ (v též signatuře $\langle \mathcal{R}, \mathcal{F} \rangle$), značíme $\mathcal{B} \subseteq \mathcal{A}$, jestliže:

- ∅ ≠ B ⊆ A
- $R^{\mathcal{B}} = R^{\mathcal{A}} \cap B^{\operatorname{ar}(\mathrm{R})}$ pro každý relační symbol $R \in \mathcal{R}$
- $f^{\mathcal{B}} = f^{\mathcal{A}} \cap (B^{\operatorname{ar}(f)} \times B)$ pro každý funkční symbol $f \in \mathcal{F}$ (tj. $f^{\mathcal{B}}$ je restrikce $f^{\mathcal{A}}$ na množinu B, a výstupy jsou všechny z B)
- speciálně, pro konstantní symbol $c \in \mathcal{F}$ máme $c^{\mathcal{B}} = c^{\mathcal{A}} \in \mathcal{B}$.

Restrikce na podmnožinu, příklady

Množina $C \subseteq A$ je uzavřená na funkci $f: A^n \to A$, pokud $f(x_1, \ldots, x_n) \in C$ pro všechna $x_i \in C$.

Pozorování: Množina $\emptyset \neq C \subseteq A$ je univerzem podstruktury, právě když je uzavřená na všechny funkce struktury \mathcal{A} (včetně konstant). V tom případě je to restrikce \mathcal{A} na množinu C, značíme $\mathcal{A} \upharpoonright C$.

- $\begin{array}{c} \blacksquare & \underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle \text{ je podstrukturou obou těchto struktur, platí:} \\ \underline{\mathbb{N}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N} \\ \end{array}$
- Množina $\{k \in \mathbb{Z} \mid k \le 0\}$ není univerzem podstruktury $\underline{\mathbb{Z}}$ ani \mathbb{Q} , není uzavřená na násobení.

Platnost v podstruktuře

Generovaná podstruktura

Expanze a redukt

Věta o konstantách

6.7 Extenze teorií

6.8 Definovatelnost ve struktuře

6.9 Vztah výrokové a predikátové

logiky