# Training Camp 2024

First Day – 4<sup>th</sup> September 2024

#### **Alessandro Nicolosi**



https://github.com/alenic



https://www.linkedin.com/in/alessandro-nicolosi/



## Single Modality - Classification Problem

Rome vs Milan:

1-0

## **Computer Vision**

- **Task**: Image Classification
- Input Modality: Image

```
idx2label = {
    0: "dog"
    1: "cat"
}
```



## **Natural Language Processing**

- Task: Text Classification
- Input Modality: Text

```
idx2label = {
    0: "sport"
    1: "health"
    2: "economy"
}
```



#### **Time Series Analysis**

- **Task**: Time Series Classification
- **Input Modality**: Time series

```
idx2label = {
    0: "sinusoid"
    1: "pulse"
}
```



## Multimodal Classification Problem



## Binary Classification Problem

## **Given a training dataset**

$$D_{train} = \{ (x^{(i)}, y^{(i)})_{i=1}^{N_{train}} : x^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{0, 1\} \}$$

$$D_{test} = \{x_{test}^{(1)}, x_{test}^{(2)}, ..., x_{test}^{(N_t)}\}$$

What is the probability that a point  $x_{test}^{(i)}$  belong to the class 1?  $P(Y = 1 \mid X = x_{test}^{(i)})$ ?



# Neural Networks - Single Neuron



| Input                                  | $x = [x_1 \ x_2 \ \dots \ x_n] \in \mathbb{R}^n$                                                                                  |  |  |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Output                                 | $z = \left(\sum_{i=1}^{n} \mathbf{w}_{i} x_{i}\right) + \mathbf{b}$ $a(x) = \sigma(z(x)) = \sigma(\mathbf{w}^{T} x + \mathbf{b})$ |  |  |  |
| Weights or<br>Parameters               | $w = [w_1 \ w_2 \ \dots \ w_n] \in \mathbb{R}^n$ $b \in \mathbb{R}$                                                               |  |  |  |
| Some Activation Functions: $\sigma(x)$ |                                                                                                                                   |  |  |  |
| Linear                                 | $\boldsymbol{x}$                                                                                                                  |  |  |  |
| Hyperbolic<br>Tangent                  | tanh(x)                                                                                                                           |  |  |  |
| ReLU                                   | $\begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$                                                                            |  |  |  |
| LeakyReLU                              | $\begin{cases} x, & x \ge 0 \\ \alpha x, & x < 0 \end{cases}$                                                                     |  |  |  |

# Single Neuron for classification



Activation Functions:  $\sigma(x) = 0$ 

## **Training Dataset**

$$\{(x^{(i)}, y^{(i)})_{i=1}^{N}: x^{(i)} \in \mathbb{R}^{2}, y^{(i)} \in \{0, 1\}\}$$

#### Hyperplane



# Single Neuron for classification - Logistic function



$$y'(x) = y(x)(1 - y(x))$$

# Single Neuron for classification



## **Apply Logistc Function to squash in 0-1**

$$\hat{y}(x^{(i)}) = \frac{e^{a(x^{(i)})}}{1 + e^{a(x^{(i)})}} = P(Y = 1 | X = x^{(i)})$$

## **Training Dataset**

$$\{(x^{(i)}, y^{(i)})_{i=1}^{N} : x^{(i)} \in \mathbb{R}^{2}, y^{(i)} \in \{0, 1\}\}$$

## Hyperplane



#### Squash in 0-1



## Multiclass Classification Problem

## **Given a training dataset**

$$D_{train} = \{ (x^{(i)}, y^{(i)})_{i=1}^{N_{train}} : x^{(i)} \in \mathbb{R}^n, y^{(i)} \in \{0, 1, \dots, C-1\} \}$$

$$D_{test} = \{x_{test}^{(1)}, x_{test}^{(2)}, ..., x_{test}^{(N_t)}\}$$

What is the probability that a point  $x_{test}^{(i)}$  belong to the class 1?  $P(Y = 1 \mid X = x_{test}^{(i)})$ ?



## Multiclass Classification Problem





$$\hat{y}(x^{(i)}, \boldsymbol{W}, \boldsymbol{b}) = \operatorname{softmax}(x^{(i)}) = \begin{bmatrix} \frac{e^{a_1(x^{(i)})}}{\sum_{j=1}^{3} e^{a_j(x^{(i)})}} \\ \frac{e^{a_2(x^{(i)})}}{\sum_{j=1}^{3} e^{a_j(x^{(i)})}} \\ \frac{e^{a_3(x^{(i)})}}{\sum_{j=1}^{3} e^{a_j(x^{(i)})}} \end{bmatrix} = \begin{bmatrix} P(Y = 0 | X = x^{(i)}; \boldsymbol{W}, \boldsymbol{b}) \\ P(Y = 1 | X = x^{(i)}; \boldsymbol{W}, \boldsymbol{b}) \\ P(Y = 2 | X = x^{(i)}; \boldsymbol{W}, \boldsymbol{b}) \end{bmatrix}$$

$$y_{pred}(x^{(i)}) = \operatorname{argmax} \hat{y}(x^{(i)}, \boldsymbol{W}, \boldsymbol{b}) \in \{0, 1, 2\}$$

$$y_{pred}(x^{(i)}) = \operatorname{argmax} \hat{y}(x^{(i)}, \mathbf{W}, \mathbf{b}) \in \{0,1,2\}$$

# Linear Separability



# Single-Layer Perceptron



$$z_1^{[2]} = \left(\sum_{i=1}^h w_{1i}^{[2]} a_i^{[1]}\right) + b_1^{[2]}$$

- $\checkmark \quad a_i^{[1]}$  are Non-linear functions!
- $\checkmark$   $z_1^{[2]}$  is a linear combination of non-linear functions
- ✓ If h increases, then  $z_1^{[2]}$  have more approximation power
- ✓ In the ideal case,  $a^{[1]}(x) = [a_1^{[1]} a_2^{[1]}, ..., a_h^{[1]}]$  is forced to be a new space, where the features are linearly separable!

# Single-Layer Perceptron



| Input                    | $x = [x_1 \ x_2 \ \dots \ x_n] \in \mathbb{R}^n$                                                                                                                                                                                                                     |  |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Output                   | $z_{1}^{[2]} = \left(\sum_{j=1}^{h} w_{1j}^{[2]} a_{j}^{[1]}\right) + b_{1}^{[2]} \qquad a^{[2]} = \sigma^{[2]}(z_{1}^{[2]})$ $z_{i}^{[1]} = \left(\sum_{j=1}^{n} w_{ij}^{[1]} x_{j}\right) + b_{i}^{[1]} \qquad a_{i}^{[1]} = \sigma^{[1]}\left(z_{i}^{[1]}\right)$ |  |
| Weights or<br>Parameters | $\begin{cases} W^{[1]} \in \mathbb{R}^{h \times n} & b^{[1]} \in \mathbb{R}^h \\ W^{[2]} \in \mathbb{R}^h & b^{[2]} \in \mathbb{R} \end{cases}$                                                                                                                      |  |

| Some Activation Functions: $\sigma(x)$ |                                                               |  |  |  |
|----------------------------------------|---------------------------------------------------------------|--|--|--|
| Sigmoid                                | x                                                             |  |  |  |
| Hyperbolic<br>Tangent                  | tanh(x)                                                       |  |  |  |
| ReLU                                   | $\begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$        |  |  |  |
| LeakyReLU                              | $\begin{cases} x, & x \ge 0 \\ \alpha x, & x < 0 \end{cases}$ |  |  |  |

# Multi-layer Perceptron (MLP)



| Input                    | $x = [x_1 \ x_2 \ \dots \ x_n] \in \mathbb{R}^n$                                                                                            |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| Output                   | $z_i^{[l]} = \left(\sum_{j=1}^{h_{l-1}} w_{ij}^{[l]} a_i^{[l-1]}\right) + b_i^{[l]}  a_i^{[l]} = \sigma^{[l]}(z_i^{[l]})$ $a_i^{[0]} = x_i$ |  |
| Weights or<br>Parameters | $W^{[L]} \in \mathbb{R}^{h_l 	imes h_{[l-1]}}$ $b^{[l]} \in \mathbb{R}^{h_l}$ $l=1,,L$                                                      |  |

| Some Activation Functions: $\sigma(x)$ |                                                               |  |  |  |
|----------------------------------------|---------------------------------------------------------------|--|--|--|
| Sigmoid                                | $\frac{e^x}{1+e^x}$                                           |  |  |  |
| Hyperbolic<br>Tangent                  | tanh(x)                                                       |  |  |  |
| ReLU                                   | $\begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$        |  |  |  |
| LeakyReLU                              | $\begin{cases} x, & x \ge 0 \\ \alpha x, & x < 0 \end{cases}$ |  |  |  |

## Multi-layer Perceptron (MLP)



## **Decision Boundary**



# Multi-layer Perceptron (MLP)





https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html



# Single Neuron for classification - Loss



# Binary Cross Entropy minimization

$$(\boldsymbol{w}, \boldsymbol{b})^* = \underset{\boldsymbol{w}, \boldsymbol{b}}{\operatorname{argmin}} C(\boldsymbol{w}, \boldsymbol{b}) = \underset{\boldsymbol{w}, \boldsymbol{b}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\widehat{y}(x^{(i)}, \boldsymbol{w}, \boldsymbol{b}), y^{(i)})$$

$$\mathcal{L}(\hat{y}(x^{(i)}, \mathbf{w}, \mathbf{b}), y^{(i)}) = -y^{(i)} \log(\hat{y}(x^{(i)}, \mathbf{w}, \mathbf{b}) - (1 - y^{(i)}) \log(1 - \hat{y}(x^{(i)}, \mathbf{w}, \mathbf{b}))$$

## Multi-class classification - Loss



$$\hat{y}(x^{(i)}, W, b) = softmax(x^{(i)}) = \begin{bmatrix} \frac{e^{a_1(x^{(i)})}}{\sum_{j=1}^{3} e^{a_j(x^{(i)})}} \\ \frac{e^{a_2(x^{(i)})}}{\sum_{j=1}^{3} e^{a_j(x^{(i)})}} \\ \frac{e^{a_3(x^{(i)})}}{\sum_{j=1}^{3} e^{a_j(x^{(i)})}} \end{bmatrix} = \begin{bmatrix} P(Y = 0 | X = x^{(i)}; W, b) \\ P(Y = 1 | X = x^{(i)}; W, b) \\ P(Y = 2 | X = x^{(i)}; W, b) \end{bmatrix}$$

## If $x^{(i)}$ belong to class 0:

$$y^{(i)} = [1,0,0]$$

If  $x^{(i)}$  belong to class 1:

$$y^{(i)} = [0,1,0]$$

If  $x^{(i)}$  belong to class 2:

$$y^{(i)} = [0,0,1]$$

## Cross Entropy minimization

$$(\boldsymbol{W}, \boldsymbol{b})^* = \underset{\boldsymbol{w}, \boldsymbol{b}}{\operatorname{argmin}} C(\boldsymbol{W}, \boldsymbol{b}) = \underset{\boldsymbol{w}, \boldsymbol{b}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(\widehat{y}(x^{(i)}, \boldsymbol{W}, \boldsymbol{b}), y^{(i)})$$

$$\mathcal{L}(\hat{y}(x^{(i)}, \boldsymbol{W}, \boldsymbol{b}), y^{(i)}) = -\sum_{j=1}^{C} y_j^{(i)} \log(\hat{y}(x^{(i)}, \boldsymbol{W}, \boldsymbol{b}))$$

## **Optimizers**

Without loss of generality suppose  $b^* = 0$ 

$$C(W^{0})$$

$$C(W^{0})$$

$$C(W^{2})$$

$$W^{0}$$

$$C(W^{0})$$

$$W^{0}$$

$$W^{1}$$

$$W^{2}$$

$$W^{2}$$

$$W^{3}$$

$$W^{2}$$

$$W^{3}$$

$$W^{2}$$

$$W^{3}$$

$$W^{2}$$

$$W^{3}$$

$$W^{2}$$

$$W^{3}$$

$$W^{3}$$

$$W^{3}$$

$$W^{4}$$

$$W^{2}$$

$$W^{3}$$

$$W^{4}$$

$$W^{2}$$

$$W^{3}$$

$$W^{4}$$

$$W^{4}$$

$$W^{5}$$

$$\begin{aligned} & \boldsymbol{W} = (\boldsymbol{w}, \boldsymbol{b}) \\ & \boldsymbol{W}^* = \operatorname*{argmin} \boldsymbol{C}(\boldsymbol{W}) = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{\mathcal{L}} \big( \widehat{\boldsymbol{y}} \big( \boldsymbol{x}^{(i)}, \boldsymbol{W} \big), \boldsymbol{y}^{(i)} \big) \end{aligned}$$

 $W_2$ 

## **Gradient Descent Algorithm**

- 0.1 Choose learning rate  $\alpha$
- 0.2 Initilize weights  $W = W^0$

For epoch=1..num\_epochs do

- 1. Compute  $\nabla_W C(W^k)$
- 2. Update weights  $W = W \alpha \nabla_W C(W^k)$

## Optimizers - Batch Size

batch\_size = N

batch\_size = 1

## Gradient Descent Algorithm

- 0.1. Choose learning rate  $\alpha$
- 0.2. Initilize weights  $W = W^0$

for epoch=1..num\_epochs do

- 1. Compute  $\nabla_W C(W)$  on the
- 2. Update the weights  $W = W \alpha \nabla_W C(W)$



### Stochastic Gradient Descent

- 0.1. Choose learning rate  $\alpha$
- 0.2. Initilize weights  $W = W^0$

for epoch=1..num\_epochs do

- 1. shuffle the dataset
- for i=1..N do
  - 2. Compute  $\nabla_W \mathcal{L}_W(y^{(i)}, a(x^{(i)}, W))$
  - 3. Update the weights

$$W = W - \alpha \nabla_W \mathcal{L}_W (y^{(i)}, a(x^{(i)}, W))$$

batch\_size = b, 1<b<N</pre>

#### Mini-batch Gradient Descent

- 0.1. Choose learning rate  $\alpha$
- 0.2. Choose the batch size b
- 0.3. Initilize weights  $W = W^0$

for epoch=1..num\_epochs do

- 1. shuffle the dataset
  for k=0,...,floor(N/b) 1
  - 2. Compute

$$\nabla_{W}B(W) = \frac{1}{b} \sum_{i=kb}^{(k+1)b} \nabla_{W}\mathcal{L}_{W}(y^{(i)}, a(x^{(i)}, W))$$

3. Update the weights  $W = W - \alpha \nabla_W B(W)$ 

## Optimizers - Algorithms

## Basic Mini-Batch algorithms

#### **SGD: Stochastic Gradient Descent**

SGD is a foundational algorithm that can sometimes outperform others, especially in certain problem domains. However, it can be slow to converge and may struggle with local minima. The momentum parameter can help improve convergence by smoothing out the updates

#### **Adam**

Adam is a popular optimization algorithm that combines the benefits of adaptive learning rates and momentum, making it an excellent starting choice for many applications

#### **AdamW**

AdamW is similar to Adam but decouples weight decay from the gradient updates, providing more effective regularization. This makes AdamW more suitable when weight regularization is desired, helping to improve generalization



# Anatomy of a Neural Network



| Embeddings (or high level features) | $e(x^{(i)}) = f(x^{(i)}, \theta_f)$               |  |
|-------------------------------------|---------------------------------------------------|--|
| Logits                              | $a(x^{(i)}) = g(e(x^{(i)}), \theta_g)$            |  |
| Output                              | $\hat{y}(x^{(i)}) = \sigma(a(x^{(i)}))$           |  |
|                                     | $	heta_f$ , $	heta_g$                             |  |
| Parameters/Weights                  | $\theta_f$ :All weights and biases of the encoder |  |
|                                     | $	heta_g$ :All weights and biases of the head     |  |

# Anatomy of a Neural Network - A single neuron





# Anatomy of a Neural Network - Single-Layer Perceptron





## Anatomy of a Neural Network - Multi-Layer Perceptron



## Classification Summary



| Number of classes C                 | Dimensions                                                                                                                            | Output function $\hat{y}(x)$ | Loss function           |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|
| Binary Classification (C=2)         | $a(x) \in \mathbb{R}$ $\hat{y}(x) \in [0,1]$ $y(x) \in \{0,1\}$                                                                       | $\hat{y}(x) = logistic(x)$   | Binary Cross<br>Entropy |
| Multi-class classification<br>(C>2) | $a(x) \in \mathbb{R}^C$ $\hat{y}(x) \in \mathbb{S}_1^C(0)$ (unit sphere) $y(x) \in \{1^1, 1^2,, 1^C\}$ $1^i = 1$ in i-th, 0 otherwise | $\hat{y}(x) = softmax(x)$    | Cross Entropy           |

## **Logistic function / sigmoid**

$$y(x^{(i)}) = \frac{e^{x^{(i)}}}{1 + e^{x^{(i)}}} = \frac{1}{1 + e^{-x^{(i)}}}$$

#### **Binary Cross Entropy (BCE) Loss:**

$$y(x^{(i)}) = \frac{e^{x^{(i)}}}{1 + e^{x^{(i)}}} = \frac{1}{1 + e^{-x^{(i)}}}$$

$$\mathcal{L}(\hat{y}(x^{(i)}), y^{(i)}) = -y^{(i)} \log(\hat{y}(x^{(i)}) - (1 - y^{(i)}) \log(1 - \hat{y}(x^{(i)}))$$

#### **Softmax**

$$y(x^{(i)}) = \operatorname{softmax}(x^{(i)}) = \left[\frac{e^{a_1(x^{(i)})}}{\sum_{i=1}^{C} e^{a_j(x^{(i)})}}, \dots, \frac{e^{a_C(x^{(i)})}}{\sum_{i=1}^{C} e^{a_j(x^{(i)})}}\right] \qquad \mathcal{L}(\hat{y}(x^{(i)}), y^{(i)}) = -\sum_{j=1}^{C} y_j^{(i)} \log(\hat{y}(x^{(i)}))$$

## **Cross Entropy (CE) Loss:**

$$\mathcal{L}(\hat{y}(x^{(i)}), y^{(i)}) = -\sum_{j=1}^{C} y_j^{(i)} \log(\hat{y}(x^{(i)}))$$

# Training recipe



# Classification Summary



## The challenge!





#### **Description of the training features**

- image\_name: the file name of the image generated from an unknown text-2-image generator from the relative description
- object: categorical value in {cat, dog, bus, car, person, house}
- description: the "scene description", generated from an unknown LLM
- target: the unknown context to be predicted, there are only 4 different contexts (from 0 to 3)



# The challenge!





- **End Date:** Friday 06<sup>th</sup> at 15:00
- **Private Leaderboard:** Friday 06<sup>th</sup> at 15:00!
- Award and Presentations: Friday 06<sup>th</sup> at 16:00



- Maximum Daily submission limit: 12
- Scored private submissions: 2



• **Team:** Groups should be of 4 people. Groups of 3 or 5 are also accepted, but no exception will be granted for other sizes



# Thank you for your attention!