Geometria com aplicações na gráfica computacional

Folha 2 de exercícios

csaba@mat.ufmg.br

- 1. Seja V um espaço vetorial de dimensão finita, seja $\mathcal{T}(V)$ o grupo de translações de V, seja $\mathrm{GL}(V)$ o grupo de transformações lineares invertíveis de V e seja $\mathrm{End}(V)$ o conjunto de transformações lineares (não necessariamente invertíveis) de V.
 - (1) Mostre que $\mathcal{T}(V)GL(V) = GL(V)\mathcal{T}(V)$.
 - (2) Mostre que $\mathcal{T}(V)$ End $(V) \neq \text{End}(V)\mathcal{T}(V)$.

[Dica: Na parte (2), considere a translação T por (1, 1) e a projeção $P:(x,y)\mapsto (0,y)$ sobre \mathbb{R}^2 . Mostre que $P\circ T$ não pode ser escrito na forma $T'\circ X$ com $T'\in \mathcal{T}(V)$ e $X\in \mathrm{End}(V)$.]

2. Seja X um elemento de $AGL(\mathbb{R}^2) = \mathcal{T}(\mathbb{R}^2)GL(\mathbb{R}^2)$ tal que

$$X(0) = (2,3), \quad X(1,0) = (-3,3), \quad X(0,1) = (-4,2).$$

Escreva X na forma $T_{t_1}Y$ e também na forma ZT_{t_2} onde $Y, Z \in GL(\mathbb{R}^2)$ e $T_{t_1}, T_{t_2} \in \mathcal{T}(\mathbb{R}^2)$. Qual é a relação entre T_{t_1} e T_{t_2} e entre Y e Z.

- 3. Seja $R_{\alpha}: \mathbb{R}^2 \to \mathbb{R}^2$ uma rotação em \mathbb{R}^2 pelo ângulo α ao redor da origem. Calcule os autovalores complexos R_{α} e os autovetores correspondentes.
- **4.** Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação ortogonal e seja $\alpha \in \mathbb{C}$ um autovalor de T.
 - (1) Mostre que $\det T \in \{1, -1\}.$
 - (2) Mostre que $|\alpha| = 1$.
 - (3) Deduza que se $\alpha \in \mathbb{R}$, então $\alpha \in \{1, -1\}$.
 - (4) Mostre que o conjugado complexo $\bar{\alpha}$ é também um autovalor de T.
 - (5) Deduza que se n for impar, então det T é autovalor de T.
- 5. Seja $T_{(1,1)}: \mathbb{R}^2 \to \mathbb{R}^2$ a translação pelo vetor (1,1) e $R_\alpha: \mathbb{R}^2 \to \mathbb{R}^2$ a rotação por um ângulo α ao redor da origem. Como pode caraterizar a transformação $TR_\alpha T^{-1}$?
- **6.** Seja X a reflexão de \mathbb{R}^2 em torno da reta com equação x-y+1=0. Escreva X na forma $T_{t_1}Y$ e também na forma ZT_{t_2} onde $Y,Z\in \mathrm{GL}(V)$ e $T_{t_1},T_{t_2}\in \mathcal{T}(\mathbb{R}^2)$.