SRN	T				Γ	Г	Г	
DIGIT								

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE17EC204 / UE15EC252

December 2018: END SEMESTER ASSESSMENT B.Tech. ECE III Semester ESA

UE17EC204/UE15EC252 - SIGNALS & SYSTEMS

Time: 3 hours

Answer All Questions

Max Marks: 100

	a	Calculate the Energy and Average Power of (i) $x_1(t) = e^{-2t}u(t)$ and (ii) $x_2[n] = \cos(\frac{\pi}{4})n$.	6m		
		Identify whether they are Energy or Power signal.			
1	_b_	A continuous-time signal $x(t)$ is as shown. Sketch and label (i) $x(t)u(1-t)$, (ii) $x(t)\{u(t)-u(t-1)\}$ and (iii) $x(t)\delta(t-\frac{3}{2})$.	7m		

	-				
		- 1 0 1 2 >t			
		A discrete-time system has the following input - output relation;			
=					
	С	$y[n] = x[n^2]$			
	-4	Determine whether the system is (i) Memoryless, (ii) Stable, (iii) Causal, (iv) Linear and (v) Time-Invariant.			
2	a	Find the convolution of following two continuous-time signals; $x(t)=e^{ t }\text{for all }t$ $h(t)=\begin{cases}e^{-2t}; t\geq 1\\0; t<1\end{cases}$	7m		
	b	Find the convolution of following two discrete-time sequences; $x[n] = \begin{cases} 0; & n < -5 \\ (\frac{1}{2})^n; & n \ge -5 \end{cases}$ $h[n] = \begin{cases} 0; & n < 3 \\ (\frac{1}{3})^n; & n \ge 3 \end{cases}$	7m		
1	-	Find the total response of an LTI discrete-time system described by;			
	С	y[n] + 4y[n-1] + 3y[n-2] = u[n]	6m		
		with $y[-1] = 0$ and $y[-2] = 1$.			

		A continuous-time periodic signal with a fundamental period (T) as π and fundamental frequency (ω_0) as 2 rad/sec is defined as;	
	a	$x(t) = e^{-\frac{t}{2}} \qquad 0 < t < \pi$	7m
3		Find the expression for the Fourier Series co-efficients (a_k) . What would be the general expression for the magnitude and phase of these co-efficients? Finally, express $x(t)$ in terms of its Fourier Series co-efficients (Synthesis equation).	
	ь	Evaluate $x[n]$, if its Fourier Series co-efficients are periodic with a period of 8 and given by; $a_k = \begin{cases} sin(\frac{k\pi}{3}); & 0 \le k \le 6 \\ 0; & k = 7 \end{cases}$	7m
		Let $y(t)$ be a periodic signal whose Fourier Series co-efficients are given by;	
		$a_k = egin{cases} 4; & k = 0 \ j(rac{1}{4})^{ k }; & ext{elsewhere} \end{cases}$	
	С		6m
		Using the properties of Fourier Series, examine if (i) $y(t)$ is real; (ii) $y(t)$ is even and (iii) $\frac{dy(t)}{dt}$ is even.	
		Consider the rectangular pulse $x(t)$ defined as;	1.8
	a	$x(t) = egin{cases} A; & t < T_0 \ 0; & t > T_0 \end{cases}$	6m
4			
		Evaluate the Fourier Transform of $x(t)$ and sketch the spectrum of $X(j\omega)$. Evaluate and sketch the Fourier Transform of the periodic Impulse train defined by;	
	b	$x(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT_0)$	4m
		Find the Fourier Transform of the discrete-time sequence $x[n]$ defined by;	
	С	$x[n] = a^n u[-n-1]; a > 1$	6m
		Evaluate the Inverse Discrete Fourier Transform of $Y(e^{j\omega})$ described over $ \omega \leq \pi$ as;	
	đ		4m
		$-\frac{1}{2} - \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$	
		Determine the z - transform of;	
2			- 1
	a	$x[n] = -\left(\frac{1}{2}\right)^n u[-n-1] + 2^n u[-n-1]$	6m

5	b	Consider the following z - transform of a discrete-time sequence $x[n]$; $X(z) = \frac{3 - \frac{5}{6}z^{-1}}{(1 - \frac{1}{4}z^{-1})(1 - \frac{1}{3}z^{-1})}$	8m
	c	Determine the sequence $x[n]$ for (i) $ z > \frac{1}{3}$, (ii) $\frac{1}{4} < z < \frac{1}{3}$ and (iii) $ z < \frac{1}{4}$. Evaluate the Unilteral z - transform of; $x[n] = 2^n u[-n] + \left(\frac{1}{4}\right)^n u[n-1]$	6m