

Universidade Federal de Ouro Preto Departamento de Computação - DECOM BCC241 - Projeto e Análise de Algoritmos Prof. Anderson Almeida Ferreira

Nome : Caio Silas de Araujo Amaro

Matrícula: 21.1.4111

Para o problema da mochila 0-1 com a mochila suportando no máximo 15 quilos e os pesos e valores dos itens mostrados na tabela a seguir, construa a árvore de execução usando Branch-and-bound.

Valor	Peso
45	3
45	9
30	5
10	2

Variáveis: I₁, I₂, I₃, I₄

Domínio: {0,1}

Restrições: A soma do peso dos itens não pode exceder o limite da mochila (15).

Solução: A atribuição de itens de tal forma que o lucro seja máximo.

Solução inicial a partir do algoritmo guloso:

Valor	Peso	Valor/Peso
45	3	15
45	9	5
30	5	6
10	2	5

(1, 0, 1, 1) [85]

Universidade Federal de Ouro Preto Departamento de Computação - DECOM BCC241 - Projeto e Análise de Algoritmos Prof. Anderson Almeida Ferreira

Dentro dos parênteses estão as atribuições de cada variável. Dentro dos colchetes estão o lucro atual, o peso restante na mochila e o lucro máximo teórico, calculado pelo problema da mochila fracionária.

Solução ótima final: (1, 1, 0, 1) [100], ou seja, colocar os itens 1, 2 e 4 na mochila, que vai gerar um lucro de 100.