1	2	3	4	5

APELLIDO Y NOMBRE:

No. de libreta:

Carrera:

ALGEBRA - FINAL (5/4/02)

1.— Sea a un entero impar. Probar que para todo $n \in \mathbb{N} \cup \{0\}$ se tiene que

$$2^{n+1} \mid a^{2^n} - 1.$$

2.— Sea $a \in \mathbb{N}$ fijado. Se define la sucesión $(x_n)_{n \in \mathbb{N}}$ de la forma siguiente :

$$x_1 := 3 a$$
 , $x_{n+1} := 3 x_n - a$.

Probar que $(x_1 : x_n) = a$ para todo $n \ge 2$.

- **3.** Calcular el resto de dividir por 11 el producto de todos los divisores positivos de $23 \cdot 5^{32}$.
- 4.— Probar que si $w\in\mathbb{C}$ es una raíz primitiva de la unidad de orden 5, entonces $w+\overline{w}$ es raíz del polinomio X^2+X-1 .
- **5.** Sea la sucesión $(f_n)_{n\in\mathbb{N}}$ de polinomios definida por :

$$f_1 := X^3 + X^2 - X - 1$$
 , $f_{n+1} := f_n^2 + (X^4 + X^3)^{3^{n+1}}$.

Determinar y probar una fórmula para la multiplicidad exacta de -1 como raíz de f_n , $\forall n \in \mathbb{N}$.

Se considerarán sólo las respuestas bien justificadas.