

סילבוס קורס

קריפטוגרפיה 7090003

פרטי הקורס

קמפוס: באר שבע **שנה אקדמית:** תשפו

מחלקה: מדעי המחשב סוג הקורס: בחירה

תחום: רמת הקורס: תואר ראשון

שנת לימוד: ב' צורת העברה: פנים אל פנים. סמסטר: א דרישות קדם: אלגברה לינארית 1 למדמ"ח 370004 .

נקודות זכות: 3 דרישות במקביל: מבוא להסתברות למדמ"ח 7000007 נקודות 4.5 :ECTS נקודות

שפונ וווו אוזו. עב סביבת עבודה:

מתרגל/ים: ד"ר ירמיהו מילר

jeremmi@sce.ac.il

מטרה

הקניית העקרונות והמושגים הבסיסיים של קריפטוגרפיה מודרנית ויישומם באפליקציות מעשיות במדעי המחשב.

תפוקות למידה

עם סיום מוצלח של הקורס, הסטודנטים יהיו מסוגלים:

- 1. להשתמש באלגוריתם של אוקליד כדי למצוא את המחלק המשותף הגדול ביותר של שני איברים בחוג, ולמצוא את השארית של מספר שלם בחלוקה במספר שלם אחר.
- ב. להבחין האם קריפטו-מערכת ניתן לפענח באמצעות המשפטים היסודיים של תורת המספרים, תכונות של מספרים. ראשוניים, משפטי פרמה ופונקצית אוילר.
 - 3. לפתור מערכת של משוואות מודולריות מעל חוגים באמצעות המשפט השאריות הסינית.
 - 4. לייצג האלפיבית הלטינית באמצעות החוג Z26, לבצע חיבור וכפל של איברים בחוג Z26, ולבצע כפל מטריצות ולהפוך מטריצה בחוג Z26, ולהכליל את היצוג הזה לאלפיביתיות בעלות m אותיות.
- להצפין טקסט גלוי ולפענח טקסט מוצפן לפי הצפנים הבסיסיים, כולל צופן הזזה (צופן קיסר), צופן החלפה, צופן של .5 תמורה, צופן היל וצופן ויז'נר. לפתור בעיות של אותנטיקציה וזיהוי.
 - 6. להשתמש בקריפטו-אנליזה לפענח טקסט מוצפן ולבנות אלגוריתמים לשיתוף סודות והסתרת מידע.
 - 7. להוכיח האם לקריפטו-מערכת יש סודיות מושלמת על ידי תורת שנון ולהשתמש בשיטות שונות לאבטחת העברת ועיבוד המידע.
 - .IDEA וצופן DES להצפין ולפענח מספרים בינארים באמצעות צופן פייסטל, צופן.
 - .9 להצפין ולפענח מספרים שלמים באמצעות צופן RSA פוצופן אל-גמאל.
 - 10. לזהות שלמות המידע

תוכן הקורס

מקורות רלוונטים	נושא	
[1] פסקאה 1.1 [2] פסקאה 2.1. [3] פסקאות 1.5-1.6	תורת המספרים: אריתמטיקה מודולרית. משפט החילוק של אוקליד, האלגוריתם של אוקליד והאלגוריתם המוכלל של אוקליד. המשפטים של פרמה. משפט הפירוק לראשוניים.	1
[1] פסקאה 1.1 [2] פסקאה 2.1-2.2. [3] פסקאות 1.5-1.6.	חוגים מתמטיים של אלפבתיות: ההגדרה הפורמלית של חוג מתמטי. קבוצת השארית מודולו p. חוגים של אלפבתיות. החוג Z26 של האלפבית הלטינית וחוגים של אלפבתיות כלליות Zm הפיכת מטריצה בחוגים.	2
[1] פסקאה 1.1-1.2 [2] פסקאה 2.1-2.2	צפנים בסיסיים: הגדרות פורמליות של פונקצית הצפנה, ופונקצית פענוח, טקסט גלוי וטקסט מוצפן. הצפנים הבסיסיים: צופן ההזזה, צופן ההחלפה, צופן האפיני, צופן התמורה, צופן ויז'נר. התנאים ההחרכיים של צופן הניתן לפענוח.	3
[1] פסקאה 1.1-1.2 [2] פסקאה 2.1-2.2	קריפטו-אנליזה: סוגים של התקפת סייבר. פונקצית ההסתברות של האותיות של האלפבית הלטינית. המדד צירוף המקרים. קריפטו-אנליזה של הצופן האפיני, צופן ההחלפה וצופן של היל.	4
[1] פסקאה 5.1-5.3 [2] פסקאה 6.1-6.3	צופן RSA: הפרוטוקול דיפי-הלמן לקביעת מפתח משותף. ההגדרה הפורמלית של צופן RSA וההוכחה שהוא ניתן לפענוח. המשפט השאריות הסיני ושימוש בפענוח של צופן RSA שימוש בשארית ריבועית מודולו ראשוני p בפענוח של צופן RSA.	5
[1] פסקאה 5.4-5.8 [2] פסקאה 6.4-6.8	הבעיית הפירוק של מספירם וצופן רבין: מבחנים ראשוניות. שימוש בקריטריון אוילר. האלגוריתם מילר-רבין לבדיקת ראשוניות. שיטת החישוב של שורש מודולו-p. אלגוריתמים לפירוק של מספרים שלמים. צופן רבין.	6
[1] פסקאות 6.1-6.7. [2] פסקאות 7.1-7.2	צופן אל-גמאל וקריפטוגרפיה של מפתח פומבי: ההגדרה הפורמלית של הצופן אל-גמאל וההוכחה שהוא ניתן לפענוח. בעיית הפירוק לגורמים ובעיית הלוגריתם הדיסקרטי. חישוב משותף של הפרמטרים הפומביים. שימוש בערך המשותף. פרוטוקול דיפי-הלמן מעל חבורה כללית. בטיחות השיטה ובעיות דיפי-הלמן.	7

	תורת שֶנוֹן של סודיות: חזרה של תורת הסתברות בסיסית. ההצפנה של האפמן ושיטת עץ ההצפנה. ההגדרות הפורמליות של אנטרופיה וסודיות מושלמת. קוד מורס.	8
[1] פסקאות 3.2 ו- 3.5-3.6. [2] פסקאות 4.1-4.6. נה	צפני בלוק וצפני זרם: הגדרה פורמלית של תמורה מתמטית וחישובים עם תמורות. רשתות החלפה-תמורה. צופן פייסטל. תקן הצפנת הנתונים (data encryption standard DES). תרגילים פשוטים של הצפנה ופענוח על ידי DES. תקן ההצפנה המתקדם (advanced encryption standard AES) . תרגילים פשוטים של הצפנ ופענוח על ידי AES.	9
[1] פסקאות 4.1-4.2. [2] פסקאות 5.1-5.2	פונקציות תמצות קריפטוגרפיות: פונקציות תמצות ואמינות המידע. בטיחות של פונקציות תמצות. מודל האורקל האקראי. אלגוריתמים במודל האורקל האקראי. השוואה בין קריטריוני בטיחות.	10
[1] פסקאות 4.3-4.5. [2] פסקאות 5.3-5.5.	פונקציות תמצות קריפטוגרפיות (המשך): פונקציות תמצות איטרטיביות. הבניית מרקל-דמגרד (Merkle Damgard). בניית ספוג ופונקציית התמצות SHA-3 . קודמים לאורתנטיקציה של הודעות: MAC מקונן, ו- HMAC.	11
[1] פסקאות 7.2-7.4. ם [2] פסקאות 8.2-8.5.	שיטות חתימה: דרישות בטיחות משיטות חתימה. שיטת החתימה של אל-גמאל. וריאנטיו של שיטת החתימה של אל-גמאל. שיטת החתימה של שנור. אלגוריתם החתימה הדיגיטלית. סרטיפיקטים.	12
נ [1] פסקאות 7.5-7.7. [2] פסקאות 9.1-9.4.	סכמת הסף של שמיר. סכמת סף (t ,t) פשוטה. מבני גישה ושיתוף סודוח כללי. בניית המעגל המונוטוני. סכימות שיתוף סודות ניתנות לאימות.	13

מקורות ספרות נדרשים ומומלצים

ספר הקורס:

- 1. D.R. Stinson, "Cryptography: Theory and Practice", 4th ed. Chapman & Hall/CRC, 2018 מקורות נוספים:
- 2. טסה תמיר, מבוא לקריפטוגרפיה מדריך למידה בהוצאת האוניברסיטה הפתוחה, פברואר 2020
- 3. Josehph J, Rotman A first course in abstract algebra .2nd ed., Upper Saddle River, N.J., Prentice Hall PTR, 2000
- Baimel A., Dolev Sh., "Anonymous message delivery", Proceeding of FUN, 2001
 Aumasson J-P, "Serious Cryptography. A practical introduction to modern encryption, No" Starch Press, 2018
- 6. Bashir I. "Mastering Blockchain", Packt Publishing Ltd., 2017
- "Smart card & Security basics", CardLogix, 2019
 Charlie Perlman Radia Kaufman, Mike Speciner, Network security: private communication in a public world .2nd ed., Upper Saddle River, N.J., Prentice Hall PTR, 2002
- 9. C. Paar, J. Pelzl, "Understanding Cryptography: A Textbook for Students and Practitioners" (available online for SCE students), Springer, 2010

פעילויות למידה מתוכננות ושיטות הוראה

ה שבועיות: 3.	
נקיים בצורה פרונטאלית.	ההוראה תח

שיטות הערכה וקריטריונים

הערות	אחוז	קריטריון
ציון 56 ומעלה במבחן הינו תנאי לשקלול עבודות ההגשה בציון הסופי. אחרת ציון המבחן הינו הציון הסופי בקורס.	75%	בחינה סופית:
במהלך הסמסטר ינתנו 3 עבודות בית. חובת הגשה.	25%	:תרגילים