与考试无关

 单选题	(每小题	3分	共 42	(分)
一九世紀		<i>J I</i> I	.77 42	- // 1

	1. 关于标准	主正态分布的分位数 u_{α}	$(0 < \alpha < 1)$ 正确的选项是	
	(A)	$\Phi(u_{\alpha}) = \alpha$	$(B) u_{\alpha} + u_{1-\alpha} = 1$	
	(C)	$\Phi(u_{\alpha}) = 1 - \alpha$	(D) $0 \le u_{\alpha} \le 1$	
,	2. 美于自由	由度为 n 的 t-分布的分位	T 数 $t_{\alpha}(n)$ ($0 < \alpha < 1$)错误的选项是(
	(A)	$t_{0.5}(n) \equiv 0$	(B) 若 X~t(n), 则 P{X $\leq t_{\alpha}(n)$ } = α	
	(C)	$t_{\alpha}(n) + t_{1-\alpha}(n) \equiv 0$	(D) 若 X~t(n), 则 $P{X \ge t_{\alpha}(n)} = \alpha$	
	3. 设 <i>F~F</i>	$F(m,n)$, $0 < \alpha < 1$,则关于	F 分布的分位数错误的选项是 ().	
	(A)	$F_{\alpha}(m,n) \ge 0$	(B) $F_{\alpha}(m,n) = \frac{1}{F_{1-\alpha}(n,m)}$	
	(C)	$F_{\alpha}(m,n) = -F_{1-\alpha}(m,n)$	(D) $P\{F > F_{\alpha}(m,n)\} = 1 - \alpha$	
4	4. 设(X ₁ ,	(X_2,\cdots,X_n) 是总体 ξ 的样	本,总体的各阶矩存在,则错误的是(`
	(A)	样本均值 \overline{X} 是总体期望的	无偏估计	
	(B)	X_i (i = 1,2,,n)均是总	体期望的无偏估计	
	(C)	样本方差是总体方差的无	偏估计	
	(D)	$\frac{n}{n-1}S^2$ 是总体方差的无偏	估计	
:	5. 设(X ₁ ,X	(X_{2},\cdots,X_{n}) 是总体 ξ 的样本	$\xi,\; \xi \sim N(\mu,\sigma^2)$,其中 σ^2 未知,参数 μ 的	 力量
	(A)	J 1-α 的置信区间的长度记 样本方差越大, L 越大 L 大小与样本均值无关	(B) 样本容量越小,L越大	
,	6. 设总体 <i>ξ</i>	$\sim N(\mu, \sigma^2)$, (X_1, X_2, \cdots)	(X_n) 是 ξ 的样本, $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$ 是 ξ 的样	羊本
	均值,总	体方差 σ^2 的无偏估计是()	
	(A)	$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}-\overline{X}^{2}$	(B) $\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \frac{n-1}{n} \overline{X}^2$	

	(A) 拒绝 H_0	(B)接受 H_0
	(C) 不能确定是否接受 H_0	(D) 犯第一类错误的概率更大了
12.	设 (X_1, X_2, \cdots, X_n) 是总体 ξ 的样本, ξ	$N(\mu, {\sigma_0}^2)$,其中 ${\sigma_0}^2$ 已知,参数 μ
	的置信水平为 $1-\alpha$ 的置信区间 L 包	见含 μ_0 ,则显著性水平 $lpha$ 下,对原假设
	H_0 : $\mu = \mu_0$ 的检验 ()	
	(A) 不能确定是否接受 H_0	(B) 拒绝 H_0
	(C)接受 H_0	(D) 犯第二类错误的概率为 1- α
13.	设灯管寿命服从正态分布, 按规定寿命	不低于2000小时的灯管才算合格,要检验
	某厂灯管是否合格,则原假设 H_0 应选为	
	$(A) \mu = \mu_0$	(B) $\mu > \mu_0$
	(C) $\mu \ge \mu_0$	(D) $\mu \leq \mu_0$
14.	设 $(X_1, X_2,, X_n)$ 为总体 $\xi \sim N(\mu, \sigma^2)$)的样本, \overline{X} 为样本均值, S^* 为样本修
	正标准差,则().	
	(A) $\frac{\overline{X} - \mu}{S^*} \sqrt{n} \sim t(n-1)$	(B) $\frac{\overline{X} - \mu}{\sigma} \sqrt{n} \sim N(0,1)$
	(C) \overline{X} 与 S^* 相互独立	(D) 以上选项全对
二. 填空是	⑨ (每空 2 分,共 38 分)	
1. 设(X ₁ ,	$(X_2,,X_n)$ 为总体 $\xi \sim N(\mu,\sigma^2)$ 的样本	, �
$Y = \frac{1}{2}$	$\frac{(X_1 - \mu)^2 + (X_2 - \mu)^2 + \dots + (X_n - \mu)^2}{\sigma^2}$	- Ed
	O.	□ Y ~ ·

2. 设 $X \sim \chi^2(3)$, $Y \sim \chi^2(7)$, 且 X 与 Y 相互独立,用分位数表示有 $P\{X+Y<___\}=0.95$

3. 设
$$X \sim \chi^2(3)$$
, $Y \sim \chi^2(7)$, 且 $X 与 Y$ 相互独立,令 $F = \frac{X/3}{Y/7}$,则 $\frac{1}{F} \sim$ ______.

4. 设 $X \sim N(0,1), Y \sim \chi^2(9),$ 且 X 与 Y 相互独立,令 $T = \frac{3X}{\sqrt{Y}}$,则 $T \sim _____; E(T) = ____.$

5. 设 $(X_1,X_2,,X_n)$ 为总体 $\xi\sim N(\mu,\sigma^2)$ 的样本, \overline{X} 为样本均值, S^* 为样本修正标准
差,则 $P\{\frac{\overline{X} - \mu}{S^*}\sqrt{n} \le 0\} = \underline{\qquad}$; $P\{(\frac{\overline{X} - \mu}{\sigma}\sqrt{n})^2 \ge \chi_{0.95}^2(1)\} = \underline{\qquad}$.
6. 设 ($X_1, X_2,, X_m$) 为 总 体 $\xi \sim N(\mu_1, {\sigma_1}^2)$ 的 样 本 , ($Y_1, Y_2,, Y_n$) 为 总 体
$\eta \sim N(\mu_2, {\sigma_2}^2)$ 的样本,且两个样本相互独立. \overline{X} 与 \overline{Y} 分别为两个样本的样本均值,
${S_X}^{*^2}$ 与 \Box 分别为两个样本的修正样本方差,则 $\dfrac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\dfrac{\sigma_1^2}{m}+\dfrac{\sigma_2^2}{n}}}$ ~;
$\frac{(m-1)S_X^{*2}}{\sigma_1^2} + \frac{(n-1)S_Y^{*2}}{\sigma_2^2} \sim \frac{S_X^{*2}/\sigma_1^2}{S_Y^{*2}/\sigma_2^2} \sim \frac{S_X^{*2}/\sigma_1^2}{S_Y^{*2}/\sigma_2^2} \sim \frac{S_X^{*2}/\sigma_1^2}{\sigma_2^2}$
1 2
7. 设 $(X_1, X_2,, X_n)$ 为总体 $\xi \sim N(\mu, \sigma^2)$ 的样本,则:
参数 μ 的矩法估计是
参数 μ 的极大似然估计是
8. 设 $(X_1,X_2,,X_n)$ 为总体 $\xi\sim N(\mu,\sigma^2)$ 的样本,总体期望和方差未知,则:
参数 μ 的置信水平为 $1-\alpha$ 的置信区间是
参数 σ^2 的置信水平为 $1-\alpha$ 的置信区间是
9. 设总体 $\xi\sim N(\mu,4)$,样本均值 \overline{X} ,要使总体均值 μ 的置信水平为 95% 的置信区间
为[\overline{X} -0.55, \overline{X} +0.55],样本容量(观测次数)n 至少为
(注: $\Phi(1.645) = 0.95$; $\Phi(1.96) = 0.975$)
10.设 $\xi \sim N(\mu, \sigma^2)$, σ^2 未知时,显著性水平 α 下检验 H_0 : $\mu = \mu_0$,
选用统计量, $oldsymbol{H_0}$ 的拒绝域为
三. (10 分) 设总体 X 服从正态分布 $X\sim N(\mu,\sigma^2)$, \bar{X} 和 $S_n^2=\frac{1}{n}\sum_{i=1}^n(X_i-\bar{X})^2$ 分别为样本

 $(X_1,X_2,...,X_n)$ 的样本均值与样本方差,又 $X_{n+1} \sim N(\mu,\sigma^2)$,且 X_{n+1} 与 $X_1,X_2,...,X_n$ 相互独立。试求统计量 $\frac{X_{n+1}-\overline{X}}{S_n}\sqrt{\frac{n-1}{n+1}}$ 的分布

$$\frac{(X_{n+1} - \bar{X}) - E(X_{n+1} - \bar{X})}{\sqrt{D(X_{n+1} - \bar{X})}} = \frac{(X_{n+1} - \bar{X}) - 0}{\sqrt{\sigma^2 + \frac{\sigma^2}{n}}} \sim N(0,1)$$

$$\frac{nS_n^2}{\sigma^2} \sim \chi^2(n-1)$$

$$S_n^2 = \bar{X}, \quad X_{n+1} + \overline{B} = \overline{A} + \overline{A} + \overline{A}$$

$$\frac{(X_{n+1} - \bar{X}) - 0}{\sqrt{\sigma^2 + \frac{\sigma^2}{n}}}$$

$$\frac{(X_{n+1} - \bar{X}) - 0}{\sqrt{\frac{nS_n^2}{\sigma^2}}{n-1}} = \frac{X_{n+1} - \bar{X}}{S_n} \sqrt{\frac{n-1}{n+1}} \sim t(n-1) \leftrightarrow$$

四. (10分) 已知随机变量 X 的密度函数为

其中 θ 均为未知参数,求 θ 的矩估计量与极大似然估计量.

四. 解:
$$EX = \int_5^6 x(\theta+1)(x-5)^\theta dx = \int_5^6 xd(x-5)^{\theta+1} = 6 - \int_5^6 (x-5)^{\theta+1} dx = 6 - \frac{1}{\theta+2}$$
 故 θ 的矩估计量为 $\hat{\theta} = \frac{1}{6-\bar{X}} - 2$

似然函数
$$L(\theta) = \prod_{i=1}^{n} f(x_i; \theta) = (\theta+1)^n \prod_{i=1}^{n} (x_i - 5)^{\theta}$$
,故

$$\ln L(\theta) = n \ln(1+\theta) + \theta \sum_{i=1}^{n} \ln(x_i - 5)$$

$$\frac{d \ln L(\theta)}{d \theta} = \frac{n}{1+\theta} + \sum_{i=1}^{n} \ln(x_i - 5) = 0$$

$$\theta$$
的极大似然估计量为 $\hat{\theta} = -\frac{n}{\sum_{i=1}^{n} \ln(X_i - 5)} - 1$