

אלגוריתמים נומריים – תרגיל בית 3

:1 שאלה

נגדיר פעולת כפל חדשה על מטריצות בצורה הבאה:

$$A^{m\times n} \otimes B^{p\times q} = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix}^{mp\times nq}$$

$$A \otimes (B+C) = \begin{bmatrix} a_{11}(B+C) & \cdots & a_{1n}(B+C) \\ \vdots & \ddots & \vdots \\ a_{m1}(B+C) & \cdots & a_{mn}(B+C) \end{bmatrix} \underset{regular \ distribution \ on \ matrices}{\underbrace{= \begin{bmatrix} a_{11}B + a_{11}C & \cdots & a_{1n}B + a_{1n}C \\ \vdots & \ddots & \vdots \\ a_{m1}B + a_{m1}C & \cdots & a_{mn}B + a_{mn}C \end{bmatrix}} = \\ = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix} + \begin{bmatrix} a_{11}C & \cdots & a_{1n}C \\ \vdots & \ddots & \vdots \\ a_{m1}C & \cdots & a_{mn}C \end{bmatrix} = A \otimes B + A \otimes C$$

$$(A \otimes B)^{T} = \begin{bmatrix} a_{11}b_{11} & \cdots & a_{11}b_{1q} & \cdots & a_{1n}b_{11} & \cdots & a_{1n}b_{1q} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{11}b_{p1} & \cdots & a_{11}b_{pq} & \cdots & a_{1n}b_{p1} & \cdots & a_{1n}b_{pq} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1}b_{11} & \cdots & a_{m1}b_{1q} & \cdots & a_{mn}b_{11} & \cdots & a_{mn}b_{1q} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1}b_{p1} & \cdots & a_{m1}b_{pq} & \cdots & a_{mn}b_{p1} & \cdots & a_{mn}b_{pq} \end{bmatrix}$$

$$\begin{bmatrix} a_{11}b_{11} & \cdots & a_{11}b_{p1} & \cdots & a_{m1}b_{11} & \cdots & a_{m1}b_{p1} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{11}b_{1q} & \cdots & a_{11}b_{pq} & \cdots & a_{m1}b_{1q} & \cdots & a_{m1}b_{pq} \end{bmatrix}$$

$$=\begin{bmatrix} a_{11}b_{11} & \cdots & a_{11}b_{p1} & \cdots & a_{m1}b_{11} & \cdots & a_{m1}b_{p1} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{11}b_{1q} & \cdots & a_{11}b_{pq} & \cdots & a_{m1}b_{1q} & \cdots & a_{m1}b_{pq} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1n}b_{11} & \cdots & a_{1n}b_{p1} & \cdots & a_{mn}b_{11} & \cdots & a_{mn}b_{p1} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{1n}b_{1q} & \cdots & a_{1n}b_{pq} & \cdots & a_{mn}b_{1q} & \cdots & a_{mn}b_{pq} \end{bmatrix} = A^T \otimes B^T$$

$$(A \otimes B)(C \otimes D) = \begin{bmatrix} a_{11}B & \cdots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{m1}B & \cdots & a_{mn}B \end{bmatrix} \begin{bmatrix} c_{11}D & \cdots & c_{1n}D \\ \vdots & \ddots & \vdots \\ c_{m1}D & \cdots & c_{mn}D \end{bmatrix} \underset{multiply\ matices\ by\ blocks}{= \begin{bmatrix} a_{11}B \cdot c_{11}D + \cdots + a_{1n}B \cdot c_{m1}D & \cdots & a_{11}B \cdot c_{1n}D + \cdots + a_{1n}B \cdot c_{mn}D \\ \vdots & \ddots & \vdots \\ a_{m1}B \cdot c_{11}D + \cdots + a_{mn}B \cdot c_{m1}D & \cdots & a_{m1}B \cdot c_{1n}D + \cdots + a_{mn}B \cdot c_{mn}D \end{bmatrix} = \\ = \begin{bmatrix} a_{11}c_{11} \cdot BD + \cdots + a_{1n}c_{m1} \cdot BD & \cdots & a_{11}c_{1n} \cdot BD + \cdots + a_{1n}c_{mn} \cdot BD \\ \vdots & \ddots & \vdots \\ a_{m1}c_{11} \cdot BD + \cdots + a_{mn}c_{m1} \cdot BD & \cdots & a_{m1}c_{1n} \cdot BD + \cdots + a_{mn}c_{mn} \cdot BD \end{bmatrix} = AC \otimes BD$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$H_{2^n} = \frac{1}{\sqrt{2}} \begin{bmatrix} H_{2^{n-1}} \otimes [1,1] \\ I_{2^{n-1}} \otimes [1,-1] \end{bmatrix}$$

n נוכיח באינדוקציה על

:n=1 - בסיס

$$H_{2} \cdot (H_{2})^{T} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = I_{2}$$

$$H_{4} = \frac{1}{\sqrt{2}} \begin{bmatrix} H_{2} \otimes [1,1] \\ I_{2} \otimes [1,-1] \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \cdot [1,1] & 1 \cdot [1,1] \\ 1 \cdot [1,1] & -1 \cdot [1,1] \\ 1 \cdot [1,-1] & 0 \cdot [1,-1] \\ 0 \cdot [1,-1] & 1 \cdot [1,-1] \end{bmatrix}$$

לכן H_2 היא מטריצה אורתונורמלית לפי הגד

 H_{2^n} צעד: נניח כי $H_{2^{n-1}}$ אורתונורמלית ונוכיח עבור

$$H_{2^{n}} \cdot (H_{2^{n}})^{T} \underset{section}{\overset{=}{\underset{2}{\overset{}{\overline{\sqrt{2}}}}}} \frac{1}{\sqrt{2}} \begin{bmatrix} H_{2^{n-1}} \otimes [1,1] \\ I_{2^{n-1}} \otimes [1,-1] \end{bmatrix} \cdot \frac{1}{\sqrt{2}} [(H_{2^{n-1}})^{T} \otimes [1,1]^{T} \quad (I_{2^{n-1}})^{T} \otimes [1,-1]^{T}]$$

$$= \underset{\substack{\text{multiplying} \\ \text{the blacks}}}{=} \frac{1}{2} \begin{bmatrix} H_{2^{n-1}} \otimes [1,1] \cdot (H_{2^{n-1}})^T \otimes [1,1]^T & H_{2^{n-1}} \otimes [1,1] \cdot (I_{2^{n-1}})^T \otimes [1,-1]^T \\ I_{2^{n-1}} \otimes [1,-1] \cdot (H_{2^{n-1}})^T \otimes [1,1]^T & I_{2^{n-1}} \otimes [1,-1] \cdot (I_{2^{n-1}})^T \otimes [1,-1]^T \end{bmatrix}$$

$$= \underbrace{\frac{1}{multiplying}}_{multiplying} \frac{1}{2} \begin{bmatrix} H_{2^{n-1}} \otimes [1,1] \cdot (H_{2^{n-1}})^T \otimes [1,1]^T & H_{2^{n-1}} \otimes [1,1] \cdot (I_{2^{n-1}})^T \otimes [1,-1]^T \\ I_{2^{n-1}} \otimes [1,-1] \cdot (H_{2^{n-1}})^T \otimes [1,1]^T & I_{2^{n-1}} \otimes [1,-1] \cdot (I_{2^{n-1}})^T \otimes [1,-1]^T \end{bmatrix}$$

$$= \underbrace{\frac{1}{2}}_{section} \frac{1}{3} \begin{bmatrix} H_{2^{n-1}} \cdot (H_{2^{n-1}})^T \otimes [1,1] \cdot [1,1]^T & H_{2^{n-1}} \cdot (I_{2^{n-1}})^T \otimes [1,1] \cdot [1,-1]^T \\ I_{2^{n-1}} \cdot (H_{2^{n-1}})^T \otimes [1,-1] \cdot [1,1]^T & I_{2^{n-1}} \cdot (I_{2^{n-1}})^T \otimes [1,-1] \cdot [1,-1]^T \end{bmatrix}$$

$$= \underbrace{\frac{1}{2}}_{induction} \underbrace{\frac{1}{2}}_{l_{2^{n-1}}} \begin{bmatrix} I_{2^{n-1}} \otimes [2] & H_{2^{n-1}} \cdot (I_{2^{n-1}})^T \otimes [0] \\ H_{2^{n-1}} \cdot (I_{2^{n-1}})^T \otimes [0] & I_{2^{n-1}} \otimes [2] \end{bmatrix} = I_{2^n}$$

$$hypothesis$$

לכן H_{2^n} מטריצה אורתונורמלית לפי הגדרה.

<u>שאלה 2:</u>

.0- עמודות A לא מהווית קבוצה אורתוגונלית. ניתן לראות שבמטריצה A^TA האיברים (4,5) ו-(5,4) שונים מ-0. זה מצביע על כך שעמודות 4 ו-5 לא אורתוגונליות אחת לשנייה.

.2 נסמן ב Q_{Ai} את העמודה הi במטריצה Q_A ובאופן דומה עבור A אנכיות אחת לשנייה פרט ל-4 ו-5. ניתן לראות לפי סעיף קודם שכל העמודות במטריצה A אנכיות אחת לשנייה פרט ל-4 ו-5. לכן 4 העמודות הראשונות ב-A לאחר נרמול. ניתן לראות שמתקיים: $Q_{Ai} = \frac{1}{2} A_i$ עבור $Q_{Ai} = \frac{1}{2} A_i$ לכן $Q_{Ai} = \frac{1}{2} A_i$

.4 עבור עמודה 5, ראינו כי היא אנכית לעמודות 1-3, ולכן נדרש לבצע "קילוף" רק מעמודה 4 לפי סעיף קודם ניתן לראות כי $A_4^T A_5 = 4$ לפי סעיף קודם ניתן לראות כי

$$u_4 = A_5 - (Q_{A4})^T \cdot A_5 \cdot Q_{A4} = A_5 - \frac{1}{2} A_4^T A_5 \cdot \frac{1}{2} A_4 = A_5 - A_4 = \begin{bmatrix} 4 \\ 0 \\ 0 \\ 0 \\ -4 \\ 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow Q_{A5} = \frac{u_5}{\|u_5\|_2} = \frac{1}{4\sqrt{2}} \begin{bmatrix} 4\\0\\0\\0\\-4\\0\\0 \end{bmatrix}$$

$$\Rightarrow Q_A = \frac{1}{2\sqrt{2}} \begin{bmatrix} 1 & 1 & 1 & 2\\1 & -1 & 1 & -1 & 0\\1 & 1 & -1 & -1 & 0\\1 & 1 & 1 & 1 & -2\\1 & -1 & 1 & -1 & 0\\1 & 1 & -1 & -1 & 0\\1 & 1 & -1 & -1 & 0\\1 & 1 & -1 & -1 & 0 \end{bmatrix}$$

3. $A^T A$ מבילה את כל המכפלות הפנימיות בין כל העמודות של המטריצה $A^T A$ בכך הסיק ש-4 העמודות הראשונות כבר אורתוגונליות ושהאחרונה אנכית ל-3 הראשונות ובכך Aנמנענ מלבצע פעולות מיותרות של קילופים על 4 העמודות האלה.

שאלה 3:

1. השיטה הקלאסית:

- $u_1 = rac{w_1}{\|w_1\|_2} : w_1$ מתקבל ע"י נרמול u_1
- :לנרמל: u_1 את w_2 " אריך "לקלף" צריך צריך את כדי לקבל את בדי לקבל את פריך את בדי לקבל את פריך את את בדי ל

$$v_2 = w_2 - u_1^T w_2 u_1 \Longrightarrow u_2 = \frac{v_2}{\|v_2\|_2} = \frac{w_2 - u_1^T w_2 u_1}{\|w_2 - u_1^T w_2 u_1\|_2}$$

שיטת SGS:

- $u_1 = \frac{w_1}{\|w_1\|_2} : w_1$ מתקבל ע"י נרמול $u_1 \bullet$
 - $:w_2$ נקלף את u_1 שקיבלנו מ-

$$v_2 = w_2 - u_1^T w_2 u_1$$

:בעת בשמגיעים ל- u_2 נותר רק לנרמל את v_2 שקיבלנו מקודם •

$$u_2 = \frac{v_2}{\|v_2\|_2} = \frac{w_2 - u_1^T w_2 u_1}{\|w_2 - u_1^T w_2 u_1\|_2}$$

ניתן לראות ששני הביטויים שקיבלנו זהים.

- 2. השיטה הקלאסית:
- :פיקח את w_3 ונקלף ממנו את u_1,u_2 שקיבלנו מקודם

$$v_3 = w_3 - u_1^T w_3 u_1 - u_2^T w_3 u_2$$

 $:u_3$ כעת ננרמל כדי לקבל את \bullet

$$u_3 = \frac{v_3}{\|v_3\|_2} = \frac{w_3 - u_1^T w_3 u_1 - u_2^T w_3 u_2}{\|w_3 - u_1^T w_3 u_1 - u_2^T w_3 u_2\|_2}$$

:SGS שיטת

- $w_{3}'=w_{3}-u_{1}^{T}w_{3}u_{1}$ לאחר קבלת u_{1} מקלפים אותו מ- w_{2} ו- w_{3} . לכן עבור w_{3} נקבל: -
 - . ראינו כי u_2 המתקבל בשתי השיטות זהה u_2
- :לאחר שמוצאים את u_2 , מקלפים אותו מ w_3^\prime (שהתקבל לאחר הקילוף של u_1). לכן נקבל

$$v_3 = w'_3 - u_2^T w'_3 u_2 = w_3 - u_1^T w_3 u_1 - u_2^T (w_3 - u_1^T w_3 u_1) u_2$$

= $w_3 - u_1^T w_3 u_1 - u_2^T w_3 u_2 + u_2^T u_1^T w_3 u_1 u_2$

 $:u_3$ בעת ננרמל את v_3 כדי לקבל את \bullet

$$u_3 = \frac{v_3}{\|v_3\|_2}$$

ניתן לראות שהביטויים ל v_3 בשתי השיטות שונים (נבדלים בביטוי $u_2^T u_1^T w_3 u_1 u_2$ שנוסף (SGS). לכן הביטויים עבור u_3 בשתי השיטות שונים.

- בן. נתבונן בביטוי המבדיל בין v_3 שמצאנו בשתי השיטות: $u_2^Tu_1^Tw_3u_1u_2$. הביטוי $u_1^Tw_3u_2^Tu_1u_2$ בייתן להעביר אותו אל תחילת המכפלה. נקבל: $u_1^Tu_3u_2^Tu_1u_2$ מאונכים זה לזה, לפי דרך בניית האלגוריתם. לכן עבור חישוב בדיוק מושלם נקבל u_2 -ו u_1 , ולכן כל הביטוי הזה מתאפס, ונקבל ש u_2 בשתי השיטות יהיה זהה.
 - 4. נשתמש בביטויים שמצאנו בסעיפים קודמים:

$$\begin{aligned} u_2 &= \frac{w_2 - u_1^T w_2 u_1}{\|v_2\|_2} \; ; \; u_3 &= \frac{w_3 - u_1^T w_3 u_1 - u_2^T w_3 u_2}{\|v_3\|_2} \\ u_2^T u_3 &= u_2^T \cdot \left(\frac{w_3 - u_1^T w_3 u_1 - u_2^T w_3 u_2}{\|v_3\|_2}\right) = \frac{u_2^T w_3 - u_2^T u_1^T w_3 u_1 - u_2^T u_2^T w_3 u_2}{\|v_3\|_2} \\ &= \frac{u_2^T w_3 - \overbrace{(u_1^T w_3)}^{\mathsf{OPO}} \underbrace{u_2^T u_1 - \overbrace{(u_2^T w_3)}^{\mathsf{OPO}} \underbrace{u_2^T u_2}^{\mathsf{OPO}}}_{\|v_3\|_2} = \frac{-(u_1^T w_3) u_2^T u_1}{\|v_3\|_2} \end{aligned}$$

 $(u_1^Tw_3 \neq 0$ אם עה מ-0 (בהנחה שגם $u_2^Tu_1 \neq 0$, נקבל שהביטוי הכללי שמתקבל שונה מ-0

. נעבוד עם u_1,u_2 שחישבנו בסעיף 2 עבור אזה הוקטור אוה w_3 לאחר קילוף 2 עבור בסעיף 2. נעבוד עם .5

$$u_{2}^{T}v_{3} = u_{2}^{T}(w_{3} - u_{1}^{T}w_{3}u_{1} - u_{2}^{T}w_{3}u_{2} + u_{2}^{T}u_{1}^{T}w_{3}u_{1}u_{2})$$

$$= u_{2}^{T}w_{3} - u_{2}^{T}u_{1}^{T}w_{3}u_{1} - u_{2}^{T}u_{2}^{T}w_{2}u_{2} + u_{2}^{T}u_{2}^{T}u_{1}^{T}w_{3}u_{1}u_{2}$$

$$= u_{2}^{T}w_{3} - u_{2}^{T}u_{1}^{T}w_{3}u_{1} - u_{2}^{T}u_{2}^{T}w_{2}u_{2} + u_{2}^{T}u_{2}^{T}u_{1}^{T}w_{3}u_{1}u_{2}$$

$$= u_{2}^{T}w_{3} - (u_{1}^{T}w_{3})(u_{2}^{T}u_{1}) - (u_{2}^{T}w_{3})(u_{2}^{T}u_{2}) + (u_{1}^{T}w_{3})(u_{2}^{T}u_{1})(u_{2}^{T}u_{2})$$

$$= c_{1} - c_{2}c_{3} - c_{1} + c_{2}c_{2} = 0$$

כל ה- c_i -ים הם סימונים לשם נוחות. st

$$c_i$$
כל ה- c_i -ים הם סימונים לשם נוחות. $u_2^T u_3 = rac{u_2^T v_3}{\|v_3\|_2} = 0$ בנדרש.

$$A = Q_1 R_1 = \begin{bmatrix} q_{11} & \cdots & q_{1n} \\ \vdots & \ddots & \vdots \\ q_{n1} & \cdots & q_{nn} \end{bmatrix} \begin{bmatrix} r_{11} & \cdots & r_{1n} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & r_{nn} \end{bmatrix}$$
 .1
$$Q_2 = \begin{bmatrix} -q_{11} & \cdots & q_{1n} \\ \vdots & \ddots & \vdots \\ -q_{n1} & \cdots & q_{nn} \end{bmatrix}$$
 בלומב זכב ל Q_2 מכנו לומודה במשונה שמובחלת במונות

.1 במינוס Q_1 , פרט לעמודה הראשונה שמוכפלת במינוס Q_1

$$R_2 = egin{bmatrix} -r_{11} & \cdots & -r_{1n} \\ drain & \ddots & drain \\ 0 & \cdots & r_{nn} \end{bmatrix}$$
:בנוסף נגדיר

.1 כלומר, זהה ל- R_1 , פרט לשורה הראשונה שמוכפלת במינוס

, אז במכפלה Q_2R_2 , בכל הכפלת שורה מ- Q_2 בעמודה מ- R_2 , סימני המינוס יבטלו אחד את השני ונקבל את המטריצה A המקורית.

בנוסף, R_2 היא בבירור עדיין משולשת עליונה, ו- Q_2 היא אורתונורמלית כי הבילת עמודה במינוס 1 לא משנה את הנורמה, ומביוון שהמכפלה עם כל וקטור אחר הייתה 0, אז היא 🗷 ין תישאר בך.

נמצא את פירוק ה-QR למטריצה A^T , נקבל: $A^T=QR$, ואז נבצע טרנספוז לשני ועגפים ונקבל: $A^{T^T} = (QR)^T \Longrightarrow A = R^T Q^T = LS$

מטריצה משולשת עליונה ולבן $L=R^T$ מטריצה משולשת תחתונה. Rבנוסף Q מטריצה אורתנורמלית ולכן גם $S=Q^T$ בנוסף מטריצה אורתנורמלית.

נוכל לשנות את אלגוריתם QR כך שבבניית המטריצה Q נתחיל מימין במקום משמאל. כך נקבל שהעמודה הראשונה (השמאלית) אנכית לכל העמודות ב-A החל מהשנייה, העמודה השנייה אנכים לכל העמודות ב-A החל מהשלישית וכן הלאה. לכן לאחר קבלת מטריצה אורתונורמלית S^T - שנסמנה ב-S, המטריצה L תתקבל מהמכפלה S^T , ונקבל ש-S, ונקבל המטריצה ב-שהיא העמודה הראשון, $S_2^T \cdot A$, תהיה שורת אפסים מלבד האיבר הראשון, $S_2^T \cdot A$ תהיה

<u>שאלה 5:</u>

$$x_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$ נתונים הוקטורים

נגדיר כפי שראינו בתרגול עבור שני וקטורים שווי אורך:

$$\begin{aligned} v_1 &= \frac{x_1 - x_2}{\|x_1 - x_2\|_2} = \frac{1}{\sqrt{8}} \begin{bmatrix} -2\\0\\2 \end{bmatrix} \\ \Rightarrow H_1 &= I - 2v_1v_1^T = \begin{bmatrix} 1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1 \end{bmatrix} - \frac{2}{8} \begin{bmatrix} 4 & 0 & -4\\0 & 0 & 0\\-4 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1\\0 & 1 & 0\\1 & 0 & 0 \end{bmatrix} \\ H_1 \begin{bmatrix} 1\\x_1 & x_2\\1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1\\0 & 1 & 0\\1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3\\2 & 2\\3 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1\\2 & 2\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1\\x_2 & x_1\\1 & 1 \end{bmatrix} = \begin{bmatrix} 1\\x_1 & x_2\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1\\x_2 & x_1\\1 & 1 \end{bmatrix} = \begin{bmatrix} 1\\x_1 & x_2\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1\\x_2 & x_1\\1 & 1 \end{bmatrix} = \begin{bmatrix} 1\\x_1 & x_2\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1\\x_1 & x_2\\1 & 3 \end{bmatrix} = \begin{bmatrix} 1\\x_2 & x_1\\1 & 1 \end{bmatrix} = \begin{bmatrix} 1\\x_1 & x_2\\1 & 3 \end{bmatrix} =$$

נרצה למצוא וקטור
$$x_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 אשר הערך $x_3 \neq 0$ הוא אחד מאבריו והוא מאונך ל- v . לכן עבור $x_3 \neq 0$ נקבל $x_3 \neq 0$ נקבל $x_3 \neq 0$ ברצה למצוא וקטור $x_3 \neq 0$

$$.H_1 \begin{bmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ x_2 & x_1 & x_3 \\ 1 & 1 & 1 \end{bmatrix} :$$
ולבן יתקיים, $x^T v = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \cdot \frac{1}{\sqrt{8}} \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix} = 0$

$$H_2x_1 = -x_2$$
; $H_2x_2 = -x_1 \underset{equations \ summary}{\Longrightarrow} H_2(x_1 + x_2) = -(x_1 + x_2)$

$$v_2=rac{x_1+x_2}{\|x_1+x_2\|_2}=rac{1}{\sqrt{48}}egin{bmatrix}4\\4\\4\end{bmatrix}$$
 ביצור את המטריצה מהוקטור:
$$H_2=I-2v_2v_2^T=egin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}-rac{2}{48}egin{bmatrix}16&16&16\\16&16&16\\16&16&16\end{bmatrix}=rac{1}{3}egin{bmatrix}1&-2&-2\\-2&1&-2\\-2&-2&1\end{bmatrix}$$

$$H_{2}\begin{bmatrix} 1 & 1 \\ x_{1} & x_{2} \\ 1 & 1 \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{bmatrix} = \begin{bmatrix} -3 & -1 \\ -2 & -2 \\ -1 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ -x_{2} & -x_{1} \\ 1 & 1 & 1 \end{bmatrix}$$

עליו. $x_4 = \begin{bmatrix} x \\ 4 \end{bmatrix}$ לא משפיעה עליו. גנדיר: $x_4 = \begin{bmatrix} x \\ 4 \end{bmatrix}$ לא משפיעה עליו. 4.

. בנוסף הוא ת"ל בוקטור v_2 ולכן הכפלה במטריצה H_2 משקפת אותו

ניתן לראות שאכן מתקיים:

$$H_1 x_4 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix}$$

$$H_2 x_4 = \frac{1}{3} \begin{bmatrix} 1 & -2 & -2 \\ -2 & 1 & -2 \\ -2 & -2 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 4 \\ 4 \end{bmatrix} = \begin{bmatrix} -4 \\ -4 \\ -4 \end{bmatrix}$$