CS 61B Spring 2018

More Sorting

Discussion 13: April 17, 2018

Quicksort

Sort the following unordered list using stable quicksort. Assume that the pivot you 1.1 use is always the first element and that we use the 3-way merge partitioning process described in lecture and lab last week. Show the steps taken at each partitioning

18, 7, 22, 34, 99, 18, 11, 4

- What is the worst case running time of quicksort? Give an example of a list that jorted list, always select the first item. meets this worst case running time. (N2)
- What is the best case running time of quicksort? Briefly justify why you can't do 1.3 any better than this best case running time. $O(N \log N) \rightarrow level : log N$, every level N. What are two techniques that can be used to reduce the probability of quicksort
- 1.4 taking the worst case running time?

2.1

random select pivot smarted pivot selection.

Select the median

Comparing Sorting Algorithms

When choosing an appropriate algorithm, there are often several trade-offs that we need to consider. For the following sorting algorithms, give the expected space complexity and time complexity, as well as whether or not each sort is stable.

	Time Complexity	Space Complexity	Stability
Insertion Sort	0(N ²)	0(1)	$\sqrt{}$
Heapsort	O(NGN)	D(M))	X
Mergesort	O(NIGN)	OCN)	
Quicksort	o(N(gW)	o ClogN)	×

> in place neopitication

can, but will be slower

the stack space