Lecture 23: Changing the range of integration

Ciaran Evans

Gauss-Legendre quadrature

- Let $x_1,...,x_n \in (-1,1)$ be the n roots of the nth Legendre polynomial p_n
- ▶ Use $x_1, ..., x_n$ as quadrature nodes to approximate integrals:

$$\int_{-1}^{1} f(x)dx \approx \sum_{i=1}^{n} w_i f(x_i) \qquad w_i = \int_{-1}^{1} L_{n,i}(x)dx$$

▶ If f(x) is a polynomial of degree $\leq 2n-1$, approximation is **exact**:

$$\int_{-1}^{1} f(x)dx = \sum_{i=1}^{n} w_i f(x_i)$$

Changing the range of integration

Gauss-Legendre quadrature allows us to approximate $\int_{1}^{1} f(x)dx$.

Question: What should I do if I want to approximate

$$\int_{a}^{b} f(x) dx$$

for a finite interval [a, b]?

Integrating over an infinite range

Integrals in statistics often involve an infinite range. For example, standard normal cdf:

$$\int_{-\infty}^{\iota} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

Question: How could we use Gauss-Legendre quadrature to approximate the integral?

Integrating over an infinite range: truncation

The standard normal density is mostly concentrated around 0, so for many values of \boldsymbol{t}

$$\int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx \approx \int_{-5}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

```
pnorm(-1)
```

[1] 0.1586553

$$pnorm(-1) - pnorm(-5)$$

[1] 0.158655

Integrating over an infinite range: truncation

```
library(rootSolve)
p4_roots <- uniroot.all(function(x){
  (1/8) * (35*x^4 - 30*x^2 + 3)
                        c(-1, 1), tol=1e-12)
weights <-c((18 - sqrt(30))/36,
             (18 + sqrt(30))/36,
             (18 + sqrt(30))/36,
             (18 - sqrt(30))/36)
a < -5: b < -1
(b - a)/2*sum(weights*dnorm((b-a)/2*p4_roots + (a+b)/2))
## [1] 0.1585709
pnorm(-1)
## [1] 0.1586553
```

Integrating over an infinite range: transformation

Find a transformation x = h(u) such that

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f(h(u))h'(u)du$$

Question: For

$$\int_{-\infty}^{t} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

what transformations could I consider?

Integrating over an infinite range: transformation

$$\int_{-\infty}^{L} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx$$

Let
$$x = t + \log\left(\frac{u+1}{2}\right)$$

Integrating over an infinite range: transformation

```
f <- function(u){
  \exp(-0.5*(-1 + \log(0.5*(u+1)))^2)/(u+1)
}
sum(weights * f(p4_roots))/sqrt(2*pi)
## [1] 0.1586723
pnorm(-1)
## [1] 0.1586553
```

Gauss-Hermite quadrature

Lots of integrals in statistics involve the normal distribution, and so look like

$$\int_{-\infty}^{\infty} f(x)e^{-\frac{1}{2}x^2}dx$$

Gauss-Hermite quadrature is a quadrature rule that is good at these types of integrals:

$$\int_{-\infty}^{\infty} f(x)e^{-\frac{1}{2}x^2}dx \approx \sum_{i=1}^{n} w_i f(x_i)$$

Need to choose the x_i and w_i differently to Gauss-Legendre quadrature

Gauss-Hermite quadrature

Gauss-Legendre quadrature: $\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} w_i f(x_i)$

 $x_1, ..., x_n$ are the roots of the *n*th Legendre polynomial p_n . Legendre polynomials satisfy

$$\int_{-1}^{1} (c_0 + c_1 x + \dots + c_{n-1} x^{n-1}) p_n(x) dx$$

Gauss-Hermite quadrature: $\int_{-\infty}^{\infty} f(x)e^{-\frac{1}{2}x^2}dx \approx \sum_{i=1}^{n} w_i f(x_i)$

$$\sim w_i =$$

Gauss-Hermite quadrature

Gauss-Legendre quadrature: $\int_{-1}^{1} f(x) dx \approx \sum_{i=1}^{n} w_i f(x_i)$

$$w_i = \int_{-1}^1 L_{n,i}(x) dx$$

 $x_1, ..., x_n$ are the roots of the *n*th Legendre polynomial p_n . Legendre polynomials satisfy

$$\int_{-1}^{1} (c_0 + c_1 x + \dots + c_{n-1} x^{n-1}) p_n(x) dx$$

Gauss-Hermite quadrature: $\int_{-\infty}^{\infty} f(x)e^{-\frac{1}{2}x^2}dx \approx \sum_{i=1}^{n} w_i f(x_i)$

 $x_1, ..., x_n$ are the roots of the *n*th **Hermite** polynomial h_n . Hermite polynomials satisfy

$$\int_{-\infty}^{\infty} (c_0 + c_1 x + \dots + c_{n-1} x^{n-1}) h_n(x) e^{-\frac{1}{2}x^2} dx = 0$$

Example

Hermite polynomial for n = 2: $h_2(x) = x^2 - 1$

- ightharpoonup Roots of h_2 :
- Weights: $w_i = \int_{-\infty}^{\infty} L_{n,i}(x)e^{-\frac{1}{2}x^2}dx$

Example

$$\int_{-\infty}^{\infty} x^2 e^{-\frac{1}{2}x^2} dx =$$

Gauss-Hermite quadrature with n = 2: $w_1 f(x_1) + w_2 f(x_2) =$

Example

$$\int_{-\infty}^{\infty} x^2 e^{-\frac{1}{2}x^2} dx = \sqrt{2\pi}$$

Gauss-Hermite quadrature with n = 2:

$$w_1 f(x_1) + w_2 f(x_2) = \sqrt{\frac{\pi}{2}} \cdot (-1)^2 + \sqrt{\frac{\pi}{2}} \cdot (1)^2 = \sqrt{2\pi}$$

```
nodes <- c(-1, 1)
weights <- c(sqrt(pi/2), sqrt(pi/2))
sum(weights * nodes^2)</pre>
```

```
## [1] 2.506628
```

```
sqrt(2*pi)
```

```
## [1] 2.506628
```

Your turn

Try Gauss-Hermite quadrature for calculating expectations of functions of normal distributions:

https://sta379-s25.github.io/practice_questions/pq_23.html

- Start in class
- You are welcome and encouraged to work with your neighbors
- Solutions posted on course website