AuW-pg06-bf

In dieser Aufgabe entwickeln wir einen Algorithmus, der die konvexe Hülle einer Menge von n Punkten in der Ebene mit der Divide-and-Conquer-Technik berechnet. In der gesamten Aufgabe dürfen Sie annehmen, dass keine drei Punkte auf einer Geraden liegen, und dass keine zwei Punkte die selbe x-Koordinate haben. Weiter dürfen Sie ohne Beweis verwenden, dass der Median einer Liste von k Zahlen in Zeit O(k) gefunden werden kann.

Seien P_1 und P_2 zwei konvexe Polygone mit insgesamt n Punkten, gegeben im Gegenuhrzeigersinn, welche durch eine vertikale Gerade voneinander getrennt sind. Zeigen Sie, dass die konvexe Hülle von $P_1 \cup P_2$ in Zeit O(n) berechnet werden kann.

Algorithm to Merge Two Convex Hulls:

1. Find Upper and Lower Tangents:

- **Upper Tangent**: Start with the rightmost point of P_1 and the leftmost point of P_2 . Adjust the points to find the upper tangent.
- **Lower Tangent**: Similarly, find the lower tangent starting with the rightmost point of P_1 and the leftmost point of P_2 .

2. Merge the Hulls:

- Remove points that are inside the tangents.
- Concatenate the points of P_1 and P_2 from the tangents.

Steps in Detail:

1. Initialize:

- Let $p = \text{rightmost point of } P_1$.
- Let q =leftmost point of P_2 .

2. Find Upper Tangent:

- While there exist points above the line joining p and q in P_1 , move p counterclockwise.
- While there exist points above the line joining p and q in P_2 , move q clockwise.
- Repeat the adjustments until no more moves can be made.

3. Find Lower Tangent:

- While there exist points below the line joining p and q in P_1 , move p clockwise.
- While there exist points below the line joining p and q in P₂, move q counterclockwise.
- Repeat the adjustments until no more moves can be made.

4. Merge:

- Include points from P_1 from the upper tangent to the lower tangent.
- Include points from P_2 from the lower tangent to the upper tangent.

Complexity Analysis:

- Each point is visited a constant number of times during the tangent finding process.
- Hence, the merging process runs in O(n) time.

Verwenden Sie Ihren Algorithmus aus (a) um einen Divide-and-Conquer-Algorithmus zu konstruieren, der die konvexe Hülle einer Menge von n Punkten in der Ebene in Zeit $O(n \log n)$ berechnet.

Algorithm:

- 1. **Base Case**: If there are 1 or 2 points, the convex hull is the points themselves.
- 2. **Divide**: Divide the points into two equal halves by the median x-coordinate.
- 3. Conquer:
 - Recursively compute the convex hull for the left half.
 - Recursively compute the convex hull for the right half.

4. Combine:

Merge the two convex hulls using the algorithm from part (a).

Steps in Detail:

- 1. **Sort Points by x-coordinate** (if not already sorted):
 - Use a linear time selection algorithm to find the median, which ensures O(n) time.
 - Partition the points into two halves based on the median x-coordinate.

2. Recursive Computation:

- Compute the convex hull for the left half.
- Compute the convex hull for the right half.

3. Merge:

Combine the two convex hulls using the merge algorithm from part (a).

Complexity Analysis:

- **Divide Step**: Finding the median and partitioning takes O(n) time.
- Conquer Step: Solving two subproblems of size n/2.
- Combine Step: Merging two convex hulls takes O(n) time.

Using the Master Theorem for divide-and-conquer recurrences T(n) = 2T(n/2) + O(n).

This recurrence solves to $T(n) = O(n \log n)$.

Proof of Correctness:

• Each step of the algorithm maintains the properties of the convex hull.

- Base cases are trivially correct.
- The divide step correctly partitions the problem.
- The merge step is proven to be correct in part (a).

Thus, the divide-and-conquer algorithm correctly computes the convex hull in $O(n \log n)$ time.