BERT & GPT 논문 요약 발표

202132033 염지현

Transformer 계보

Transformer 계보

BERT vs GPT

Transformer: 한국어 → 영어 변역 작업일 경우

BERT vs GPT

Transformer: 한국어 → 영어 변역 작업일 경우

BERT vs GPT

Transformer: 한국어 → 영어 변역 작업일 경우

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. (OpenAI)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. (OpenAI)

X 12

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. (OpenAl)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. (OpenAI)

목적	 1. 기존 연구(pre-training → fine-tuning) 방법에서 fine-tuning 단계는 실제로 미세하지 않음 2. Unlabeled text data 활용
방법	GPT-1 1. Pre-training: Unsupervised learning → label 이 없는 방대한 양의 데이터를 기반으로 language model 을 학습 2. Fine-tuning: Supervised learning
장점	1. 따로 fine-tuning을 위한 모델 불필요 2. 방대한 양의 데이터로 학습하였으므로 학습 효과 상승 3. Unsupervised datasets 사용 가능
단점	1. fine-tuning 단계를 생략하는 대신 큰 모델로 학습을 진행하여 시간과 비용이 많이 듦 2. Left to right의 단방향성 학습을 하기 때문에 전체 문맥 정보를 파악하기 한계 존재
코드	https://github.com/openai/finetune-transformer-lm

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. (Google)

2. NSP(Next Sentence Prediction)

목적	기존 단방향 fine-tuning 모델(ELMo, GPT-1)이 이전 토큰만 확인할 수 있는 한계점 개선
방법	BERT 1. Pre-training: Unsupervised learning(Contextual embedding) → MLM(Masked Language Model): 문장 중 일부 단어를 [MASK]하여 [MASK] 된 단어를 예측하도록 훈련하기 때문에 각 단어 사이 문맥 정보 조사 가능 → NSP(Next sentence prediction): 두 문장이 이어지는지/이어지지 않는지 예측하는 훈련 2. Fine-tuning: Supervised learning - 각 task별로 데이터세트와 모델 필요
장점	1. GPT-1과 다르게 양방향으로 토큰 사이 연관성을 학습하여 문맥 이해 능력이 비교적 뛰어남 2. GPT-1에 비해 적은 모델로 학습
단점	1. 작업마다 Fine-tuning을 진행해야 하므로 그에 필요한 데이터와 모델 수집 및 학습 필요
코드	https://github.com/google-research/bert

GPT2: Language Models Are Unsupervised Multitask Learners

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAl blog, 1(8), 9. (OpenAl)

024

Model Dimensionality: 1280

Model Dimensionality: 1600

GPT2: Language Models Are Unsupervised Multitask Learners

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAl blog, 1(8), 9. (OpenAl)

GPT-1: P(output|input) → GPT-2: P(output|input, task)

GPT2: Language Models Are Unsupervised Multitask Learners

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAl blog, 1(8), 9. (OpenAl)

목적	GPT-1(작업에 맞는 데이터 필요), BERT 여전히 fine-tuning 단계 필요
방법	GPT-2 1. Zero shot learning 2. 구조는 GPT-1과 동일하지만 학습 데이터와 모델을 더 크게 확장 3. P(output intput) 과 다르게 p(output input, task)와 같이 task를 입력으로 넣음 4. 저자들이 만든 WebText dataset 사용(Reddit에 게재된 글 중 최소 3개의 평가를 받은 글만 수집)
장점	1. Zero-shot learning을 기반으로 하는 대규모 NLP 모델 2. 독해 등에서는 supervised baseline 모델과 견줄 만한 성능을 보임
단점	 요약 task에서는 성능이 나오지 못함 → 실제 사용 불가 QA, Translation 작업에서도 그렇게 좋지 못한 성능을 보이지만 zero-shot learning이기 때문에 꽤나 인상적인 성능 단방향성 표현의 비효율성 극복 가능성 불명확
코드	https://github.com/openai/gpt-2

RoBERTa: A Robustly Optimized BERT Pretraining Approach

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.(University of Washington, Seattle, WA + Facebook AI)

목적	BERT 가 상당히 과소 훈련됨(전략적인 훈련 세팅 필요)
방법	 더 많은 데이터에 대해 더 큰 batch 로 모델을 오래 훈련 NSP(Next sentence prediction) 사전 훈련 제거 - NSP loss 제거 결과 성능 향상됨 BERT에서 사용한 시퀀스보다 더 긴 시퀀스로 훈련 BERT 사전 훈련 MLM에서 masking 단어 패턴을 동적으로 변경 - 기존 BERT처럼 모델 입력 전에 마스킹 하면 동일한 위치의 동일한 토큰만 마스킹 되므로 학습 효율성이 떨어지므로 동적으로 마스킹하여 학습의 효율성 높임
결과	기존 BERT, BERT로부터 아이디어를 얻은 XLNet 등보다 더 좋은 성능에 도달 → 훈련 전략의 중요성 언급
코드	https://github.com/facebookresearch/fairseq/blob/main/examples/roberta/README.md

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In International Conference on Learning Representations. (Google Research, Toyota Technological Institute at Chicago)

BERT-Base(12 layer) → 110,000,000개 파라미터 사용 BERT-Large(24 layer) → 340,000,000개 파라미터 사용

ALBERT: 이렇게 많은 파라미터가 필요한가?

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In International Conference on Learning Representations. (Google Research, Toyouta Technological Institute at Chicago)

1. Factorized embedding parameterization

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In International Conference on Learning Representations. (Google Research, Toyouta Technological Institute at Chicago)

2. Cross-layer parameter sharing

Layer 별로 가중치 공유

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In International Conference on Learning Representations. (Google Research, Toyouta Technological Institute at Chicago)

3. SOP(Sentence-Order Prediction)

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. ALBERT: A Lite BERT for Self-supervised Learning of Language Representations. In International Conference on Learning Representations. (Google Research, Toyouta Technological Institute at Chicago)

목적	큰 네트워크 훈련 시 성능 향상을 기대하지만 실제 Large network를 train 할 때 메모리 및 속도 문제 발생
방법	Parameter reduction technic 1. Factorized embedding parameterization : 기존 BERT는 input embedding vector size(context 학습 X)와 hidden layer output embedding vector size(context 학습 0)가 동일 → 굳이 size를 맞출 필요가 없음 : 따라서 두 개의 작은 매트릭스로 나누어 파라미터 수를 줄일 수 있음 2. Cross-layer parameter sharing : parameter sharing 방법으로 depth에 따라 parameter가 커지는 것을 방지 SOP(Sentence-Order Prediction)
코드	https://github.com/google-research/ALBERT

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). ELECTRA: PRE-TRAINING TEXT ENCODERS AS DISCRIMINATORS RATHER THAN GENERATORS. ELECTRA, 85, 90. (Stanford, Google)

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than Generators

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the limits of transfer learning Clark, K., Luong, M. T., Le, Q. V., & Manning, C. D. (2016). ELECTRA: PRE-TRAINING TEXT ENCODERS AS DISCRIMINATORS RATHER THAN GENERATORS. ELECTRA, 85, 90. (Stanford, Google)

목적	BERT는 MLM을 통해 양방향으로 학습이 가능하지만 masking된 단어 하나만 예측하므로 지식 습득을 위해서는 다량의 코퍼스가 필요
방법	Replaced token detection task - Generator + Discriminator → GAN 구조를 따르지만 적대적 학습은 하지 않음 : generator를 이용하여 실제 입력의 일부 토큰을 그럴싸한 가짜 토큰으로 바꾸고, discriminator로 각 토큰을 조사하여 실제/가짜(생성된) 를 예측 - Generator: 토큰을 masking 하는 대신 token을 적절한 대안으로 대체하여 input 수정하며 pre-training 이후에는 generator 제거 - Discriminator: token ID를 예측하는 대신 각 token이 generator로 예측되었는지 여부 예 측
코드	https://github.com/google-research/electra

GPT3: Language Models Are Few-Shot Learners

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901. (OpenAI)

목적	1. Task에 따라 매번 fine-tuning 필요 2. GPT-2에 task를 입력하여 범용성을 증가시키려 하였으나 fine-tuning을 거친 모델에 비해 성능이 다소 떨어짐
방법	GPT-3 1. GPT-2 구조와 동일하나 GPT-2에서 모델의 크기 데이터셋의 크기 및 학습 횟수를 전반적으로 늘린 모델 2. 1750억 개의 파라미터 학습
장점	1. 범용성 증가
단점	 1. 여전히 양방향으로 정보를 학습하지 못하기 때문에 문맥 이해도는 낮음 → 다음 단어/문장 예측에는 강세를 보이지만 빈칸 맞추기, 두 문단 비교하고 답하는 작업, 긴문단을 읽고 짧은 답변을 생성하는 태스크에서는 잠재적으로 낮은 성능을 보여줌 2. 워낙 큰 모델이기 때문에 시간 및 비용이 많이 듦
예시 샘플	https://ggoorr.net/thisthat/14882950

He, P., Liu, X., Gao, J., & Chen, W. DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION. In International Conference on Learning Representations., 2021. (Microsoft Dynamics 365 Al, Microsoft Research)

He, P., Liu, X., Gao, J., & Chen, W. DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION. In International Conference on Learning Representations., 2021. (Microsoft Dynamics 365 Al, Microsoft Research)

1. Disentangled representation

Disentangled: 얽혀 있는 것을 풀다

- 현재 embedding vector = content(단어 정보) + position(상대적인 위치 정보)
 → 이 두 정보를 분리하여 볼 필요가 있음
- 예) 'deep learning'이 같이 붙어 있을 때 강한 의미를 갖는다고 학습해야 함 → Learning deep이 강한 의미를 갖는다고 학습하면 안됨. 따라서 relative position을 분류하여 학습 필요
- 기존 attention과 다르게 content-to-content, content-to-position, position-to-content 세 개의 attention 계산
 - Content-to-content: 단어와 단어 사이 attention
 - Content-to-position: 내가 궁금한 단어의 위치가 정해졌을 때, 다른 단어들은 어떤 상대적 위치를 갖는가?
 - Position-to-content: 내가 궁금한 단어의 상대적 위치가 정해졌을 때, 나랑 관련있는 단어는 무엇인가?

He, P., Liu, X., Gao, J., & Chen, W. DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION. In International Conference on Learning Representations., 2021. (Microsoft Dynamics 365 Al, Microsoft Research)

- 2. Enhanced mask decoder(EMD)
- 현재는 상대적인 위치만 고려
- 그러나 실제로 문장에서 절대적인 위치는 중요함
 한국어 기준 → 주어는 앞 부분, 목적어는 중간 부분, 동사는 끝 부분
- 따라서 절대적인 위치 정보를 무시할 수 없으므로 마지막에 예측하기 전에 absolute position embedding 정보를 output에 더하여 예측 layer를 거치도록 유도

He, P., Liu, X., Gao, J., & Chen, W. DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION. In International Conference on Learning Representations., 2021. (Microsoft Dynamics 365 Al, Microsoft Research)

목적	BERT 및 RoBERTa 모델을 개선하는 새로운 모델 아키텍처 생성하여 사전 훈련 단계의 효율 향상
방법	 Disentangled Attention Mechanism : word embedding vector와 position vector를 독립적으로 인코딩 : content-to-content, content-to-position, position-to-content총 세 개의 어텐션을 구함 Enhanced Mask Decoder(마지막 transformer encoder layer를 decoder라고 표현) : [Mask] token을 예측하는 layer에서 absolute position 정보를 추가하여 문장의 역할(주어, 목적어 등)을 학습 유도 RoBERTa 참고 논문이므로 NSP 제거
코드	https://github.com/microsoft/DeBERTa

News

۷S

Google아, 너희들은 GPT-3 없지? 별 거 없네~

큰 거 온다… GPT-3 대항마 LaMDA 기반으로 하는 Bard 보여줄게. 기대해.