

## Status of the SARAF-Phase2 Control System



MOPV001

F. Gougnaud<sup>†</sup>, F. Gohier<sup>†</sup>, P. Bargueden, D. Darde, G. Desmarchelier, G. Ferrand, A. Gaget, P. Guiho, T. Joannem, A. Lotode, Y. Mariette, S. Monnereau, V. Nadot, N. Solenne, V. Silva CEA Irfu Saclay, France

E. Reinfeld, I. Shmuely, H. Isakov, A. Perry, Y. Solomon, N. Tamim, T. Zchut, SNRC, Yavne, Israel

SNRC and CEA collaborate to the upgrade of the SARAF accelerator and control for the Injector, MEBT and Super Conducting Linac made up of 4 cryomodules hosting HWR cavities and solenoid packages.

#### Control hardware standards



#### PLC architecture for 1 CryoModule



#### MEBT and Super Conducting Linac control



#### SARAF EPICS Environment (IEE to SEE)





superconducting

solenoids

SARAF Cinac

# **Irfu** SARAF Control Hardware Standardization



| DEVICES             | Choice & standard for IEE             |
|---------------------|---------------------------------------|
| MTCA.4 crate base   | NATIVE-R2 crate                       |
|                     | NAT MCH-PHYS80 & COMex-E3             |
| MRF Timing System   | mtca-EVM-300 THPV022                  |
| MTCA.4 boards       | mtca-EVR-300U                         |
| Faraday Cups, ACCTs | IOxOS FMC ADC-3117/MTCA.4 IFC1410     |
|                     | & Beckhoff modules                    |
|                     |                                       |
| Neutron sensitive   | IOxOS FMC ADC-3111/MTCA.4 IFC1410     |
| Beam Loss Monitors  |                                       |
| LLRFs               | Seven Solutions AMC board             |
|                     | 2 LLRF/board WEPV031                  |
| BPMs                | Seven Solutions AMC board             |
|                     | 2 BPM/board                           |
| Harps (Sem-Grids)   | Proactive VME solution & Kontron IPC  |
|                     |                                       |
| Cryogenics, vacuum, | Siemens 1500 PLC series & Kontron IPC |
| current leads &     | TUPV007                               |
| interlocks          | 4                                     |
| Power supplies for  | CAENels power converters/EPICS        |
| MEBT quadrupoles,   | streamdevice                          |
| steerers and        |                                       |



MTCA.4 standard platform based on NAT-R2 & MRF & IOxOS boards



LLRF cabinet based on NAT-R2, MRF and Seven Solutions AMC board



# SARAF MEBT & SCL control architecture overview







## rfu PLC architecture template for 1 Cryomodule



The SARAF Super Conducting Linac offers four CryoModules (including 6 cavities for CM1 and 7 cavities for CM2, CM3 and CM4 and 20 superconducting solenoids (6 solenoids for CM1 and CM2 and 4 for CM3 and CM4). Each cryomodule can be divided into four control type applications for the PLC architecture part: cryogenics, vacuum, solenoid current lead and LLRF cold tuning system.





### **CEA and SNRC EPICS ENVIRONMENT**



IEE guaranties homogenous EPICS developments and devices' OS via network boot.

IEE Ansible scripts were successfully run on premise beginning of 2021.

Production environment uses containers for EPICS and boot server, within an high availability cluster. Machine developments rely either on local install, or virtual machine within VirtualBox.

