CLAIMS

Having thus described my invention, what I claim as new and desire to secure by Letters Patent is as follows:

1	1. A method of image compression comprising the steps of:
2	analyzing an image in terms of perceptual constructs of the human
3	visual system;
4	searching for patterns among analyzed abstractions of the image;
5	describing the image in terms of the perceptual constructs and the
6	patterns found among them;
7	for a given image that is in a same "class" as the image, re-representing
8	the image by describing the image as a collection of parameterized versions of
9	the patterns prevalent in that class of image;
0	taking a resulting description outside of the context of abstract
1	patterns; and
2	looking for redundancies in the description, then re-representing the
3	data so as to eliminate the redundancies and thereby compress the description.
1	2. The method of image compression recited in claim 1, wherein the patterns
2	identified, image components, parameterization of patterns, and lower level
3	numerical encodings are all designed around images belonging to a narrow
4	class of images.
1	3. The method of image compression recited in claim 2, wherein the narrow
2	class of images are two-dimensional projections of three-dimensional
3	visualizations of data generated by numerical weather simulations.

1	4. The method of image compression recited in claim 1, wherein the images
2	are of the class exemplified by 2-D projections of 3-D weather model images,
3	said method further comprising the steps of:
4	re-representing entities with smoothly curved borders and an interior
5	fill that can be parameterized and is either largely derivable from other image
6	data or constant, as curve sequences and parameters required to describe the
7	interior; and
8	re-representing entity groups with constant structure that vary only in
9	terms of a spatial parameter as references to the entity group, and a list of the
10	values for the required parameters, each value being for each subsequent entity
11	for the group.
1	5. The method of image compression recited in claim 4, wherein the spatial
2	parameter is orientation or color.
1	6. A method of compression of two-dimensional projections of three-
2	dimensional visualizations of image data comprising the steps of:
3	inputting a two-dimensional image;
4	dismantling the two-dimensional image into components;
5	tracing contours by fitting parametric curves their borders;
6	tracing iso-surface projections by fitting curves to their borders;
7	representing numerical values of curve nodes as distances from one
8	another or a local origin; and
9	storing compact border and color description of contours and compact
10	border and color description of iso-surfaces.
1	7. The method of compression of two-dimensional projections of three-
2	dimensional visualizations of image data recited in claim 6, wherein the data

3	are generated by numerical weather simulations.
1	8. The method of compression of two-dimensional projections of three-
2	dimensional visualizations of image data recited in claim 7, wherein the step
3	of dismantling the input image into components includes separation of solid
4	filled contours, transparent, shaded colored two-dimensional projections of
5	three-dimensional iso-surfaces, arrow color and orientations in three-
6	dimensional space, and text and further comprising the steps of:
7	representing numerical values of arrow colors and orientations as
8	differences; and
9	storing compact color and orientation information for arrows and
10	separated text.
1	9. The method of compression of two-dimensional projections of three-
2	dimensional visualizations of image data recited in claim 8, further comprising
3	the steps of:
4	receiving the compact border and color description of contours, the
5	compact border and color description of iso-surfaces, the compact color and
6	orientation information for arrows, and text; and
7	decompressing the received information to generate a representation of
8	the original two-dimensional image.
1	10. The method of compression of two-dimensional projections of three-
2	dimensional visualizations of image data recited in claim 9, wherein the step
3	of decompressing comprises the steps of:
4	accessing a static background image representing geography and
5	drawing the background;
6	accessing a static description of arrow locations and skew structure

7	and definition of an arrow, and received compact color and orientation
8	information for arrows and drawing arrows;
9	accessing structure and definition of an iso-surface and received
0	compact border and color description of iso-surfaces and drawing iso-surfaces;
1	accessing structure and definition of a contour and received compact
2	border and color descriptions of contours and drawing color contours; and
3	accessing received text and drawing text.