DIALOG(R) File 347: JAPIO
(c) 2000 JPO & JAPIO. All rts. reserv.

03931479 \*\*Image available\*\*

DRIVING OF LIGHT-EMITTING ELEMENT ARRAY

PUB. NO.: 04-296579 [\*J\*P 4296579 A] PUBLISHED: October 20, 1992 (19921020)

INVENTOR(s): KUSUDA YUKIHISA

APPLICANT(s): NIPPON SHEET GLASS CO LTD [000400] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.: 03-086279 [JP 9186279] FILED: March 26, 1991 (19910326)

INTL CLASS: [5] B41J-002/44; B41J-002/45; B41J-002/45; B41J-002/30;

G03G-015/04

JAPIO CLASS: 29.4 (PRECISION INSTRUMENTS -- Business Machines)

JAPIO KEYWORD: R002 (LASERS); R116 (ELECTRONIC MATERIALS -- Light Emitting

Diodes, LED)

JOURNAL: Section: M, Section No. 1375, Vol. 17, No. 106, Pg. 140,

March 04, 1993 (19930304)

#### ABSTRACT

PURPOSE: To make the life of a light-emitting element long by allowing the light-emitting element for increasing luminescent intensity to emit light for a longer time than does the other light-emitting elements.

CONSTITUTION: The luminescent state of a light-emitting element T (1) is transferred to a light-emitting element (2) to cause the latter to emit light with a transfer clock pulse .phi.(sub 2) set to a high level while the light-emitting element T (1) is left luminescent. Almost at the same time, a transfer clock pulse .phi.(sub 1) is set to a low level and thereby the light-emitting element T (2) is turned OFF. Next, the transfer clock pulse .phi.(sub 1) is set to a high level while the light-emitting element T (2) remains luminescent and thereby the luminescent state of the light-emitting T (2) is transferred to the light-emitting element T (3) to cause the light-emitting element T (3) to emit light. Immediately after that, the pulse .phi.(sub 2) becomes low level and the light-emitting element T (2) is turned OFF. Thus the luminescent intensity is increased at light-emitting elements up to the one (3328) sequentially using the clock pulses .phi.I(sub 1), .phi.(sub 12) for luminescent intensity modulation. Subsequently, the light-emitting elements T (1) to T (3328) last longer.



THIS PAGE BLANK (USPTO)

DIALOG(R) File 345: Inpadoc/R . & Legal Stat (c) 2000 EPO. All rts. reserv. 10819863 Basic Patent (No, Kind, Date): JP 4296579 A2 921020 <No. of Patents: 002> Patent Family: Patent No Kind Date Applic No Kind Date JP 4296579 A2 921020 JP 9186279 910326 Α (BASIC) JP 2846136 B2 990113 JP 9186279 910326 Α Priority Data (No, Kind, Date): JP 9186279 A 910326 PATENT FAMILY: JAPAN (JP) Patent (No, Kind, Date): JP 4296579 A2 921020 DRIVING OF LIGHT-EMITTING ELEMENT ARRAY (English) Patent Assignee: NIPPON SHEET GLASS CO LTD Author (Inventor): KUSUDA YUKIHISA Priority (No, Kind, Date): JP 9186279 A 910326 Applic (No, Kind, Date): JP 9186279 A 910326 B41J-002/44; B41J-002/45; B41J-002/455; B41J-002/30; IPC: G03G-015/04 JAPIO Reference No: ; 170106M000140 Language of Document: Japanese Patent (No, Kind, Date): JP 2846136 B2 990113 Patent Assignee: NIPPON SHEET GLASS CO LTD Author (Inventor): KUSUDA YUKIHISA Priority (No, Kind, Date): JP 9186279 A 910326 Applic (No, Kind, Date): JP 9186279 A 910326

IPC: \* B41J-002/44; B41J-002/30; B41J-002/45; B41J-002/455

Language of Document: Japanese

THIS PAGE BLANK (USPTO)

?s pn=jp 4296579 S5 0 PN=JP 4296579

THIS PAGE BLANK (USPTO)

(19)日本国特許庁 (JP)

# (12) 公開特許公報(A)

## (11)特許出顧公開番号

特開平4-296579

(43)公開日 平成4年(1992)10月20日

| (51) Int.Cl.*<br>B 4 1 J | 2/44<br>2/45<br>2/455 | 識別記号              | 庁内整理番号             | FI                 | <b>技術表示値</b> 所                                                                               |
|--------------------------|-----------------------|-------------------|--------------------|--------------------|----------------------------------------------------------------------------------------------|
|                          | 2/ 100                |                   | 9110-2C<br>7318-2C | B41月<br>審查請求 未請求   | 3/21 L<br>3/10 114 E<br>対策項の数6(全 8 頁) 最終頁に続く                                                 |
| (21)出顧番号                 |                       | <b>特顧平3-86279</b> |                    | (71)出願人            |                                                                                              |
| (22)出顧日                  |                       | 平成3年(1991)3       | 月26日               | (72)発明者<br>(74)代理人 | 日本板硝子株式会社<br>大阪府大阪市中央区道修町3丁目5番11号<br>械田 幸久<br>大阪府大阪市中央区道修町3丁目5番11号<br>日本板硝子株式会社内<br>弁理士 土屋 勝 |

## (54) 【発明の名称】 発光素子アレイの駆動方法

#### (57)【要約】

【構成】第1群のクロックパルスφ1、φ1 は互いにハイレベル時間をわずかな時間だけ重ね合わせながら交互にハイレベルとなり、そのハイレベル時間は、発光強度を増大させる発光素子を発光状態とするときの方が発光強度を増大させない発光素子を発光状態とするときよりも十分長く、第2群のクロックパルスφ11、φ12は、対応する第1群のクロックパルスφ1、φ2 がハイレベルでありかつそのとき発光している発光素子の発光強度を増大させるときのみハイレベルとなる。

【効果】 発光強度を増大させる発光素子のみの発光時間 が長くなり、その結果、この発光素子に一定のエネルギーを放射させるには、この発光素子の発光強度は弱くてよいから、第2群のクロックバルスのハイレベルでの電流量は小さくて済み、発光素子を長寿命化させることに なる。





#### 【特許請求の範囲】

【請求項1】しさい電圧もしくはしさい電流を制御する ためのゲート電極と、外部電圧もしくは外部電流が印加 されるアノード電極とを有する発光素子を一次元的、二 次元的もしくは三次元的に多数個配列し、上記各発光素 子のゲート電極をこの発光素子の近傍に位置する少なく とも1つの上記発光素子のゲート電極と電気的手段を介 して接続してネットワーク配線を形成し、上配発光素子 の発光状態を他の発光素子に転送するための信号である 第1群のクロックパルスをそれぞれ個別に印加する複数 10 本のクロックラインを、上配各発光素子のアノード電極 に一本ずつ接続し、上配発光素子の発光強度を増大させ るための信号である第2群のクロックパルスを供給する 電流源を、上記各クロックラインに接続した発光素子ア レイの駆動方法において、上記第1群のクロックパルス は、互いにハイレベル時間をわずかな時間だけ重なり合 わせながらハイレベルを他の第1群のクロックパルスに 移し、上記発光強度を増大させるべき発光素子を発光状 態とするときの第1群のクロックパルスのハイレベル時 間は、発光強度を増大させるべきどの発光素子を発光さ 20 せるときでもすべて略同じ長さであり、上記発光強度を 増大させない発光素子を発光状態とするときの第1群の クロックパルスのハイレベル時間は、発光強度を増大さ せないどの発光素子を発光させるときでもすべて略同じ 長さであり、上記発光強度を増大させるべき発光素子を 発光状態とするときの第1群のクロックパルスのハイレ ベル時間は、上記発光強度を増大させない発光素子を発 光状態とするときの第1群のクロックパルスのハイレベ ル時間よりも十分長く、上記第2群のクロックパルス は、対応する第1群のクロックパルスがハイレベルであ 30 り、かつ、そのとき発光している発光素子の発光強度を 増大させるときのみハイレベルとなることを特徴とする 発光素子アレイの駆動方法。

【請求項2】しきい電圧もしくはしきい電流を制御する ためのゲート電極と、外部電圧もしくは外部電流が印加 されるアノード電極とを有するスイッチ索子及び発光素 子それぞれ1つずつからなる組を一次元的、二次元的も しくは三次元的に多数個に配列し、 上記各スイッチ素 子のゲート電極を、このスイッチ素子の近傍に位置する 少なくとも1つのスイッチ素子のゲート電板、及び上記 40 法。 各スイッチ素子と組をなす発光素子のゲート電極と電気 的手段を介して接続してネットワーク配線を形成し、 上記スイッチ素子のオン状態及び上記発光素子の発光状 態を他のスイッチ素子及び発光素子の組にそれぞれ転送 するための信号である第1群のクロックパルスをそれぞ れ個別に印加する複数本のクロックラインを、上記各ス イッチ素子のアノード電極に一本ずつ接続し、上記発光 **素子の発光強度を増大させるための信号である第2群の** 

クロックパルスを供給する電流源を、上記各発光素子の

いて、上記第1群のクロックパルスは、互いにハイレベ ル時間をわずかな時間だけ重なり合わせながらハイレベ ルを他の第1群のクロックパルスに移し、上配発光強度 を増大させるべき発光素子を発光状態とするときの第1 群のクロックパルスのハイレベル時間は、発光強度を増 大させるべきどの発光素子を発光させるときでもすべて 略同じ長さであり、上配発光強度を増大させない発光素 子を発光状態とするときの第1群のクロックパルスのハ イレベル時間は、発光強度を増大させないどの発光素子 を発光させるときでもすべて略同じ長さであり、上記発 光強度を増大させるべき発光素子を発光状態とするとき の第1群のクロックパルスのハイレベル時間は、上記発 光強度を増大させない発光素子を発光状態とするときの 第1群のクロックパルスのハイレベル時間よりも十分長 く、上記第2群のクロックパルスは、対応する発光素子 が発光状態であり、かつ、その発光している発光素子の 発光強度を増大させるときのみハイレベルとなることを 特徴とする発光素子アレイの駆動方法。

【請求項3】発光強度を増大させるべき上記発光素子を 発光状態とするときの第1群のクロックパルスのハイレ ベル時間が、発光強度を増大させる上配発光楽子の数に よって決められる最大時間、又はそれ以下であってそれ に十分近い時間である請求項1又は2記載の発光素子ア レイの駆動方法。

【請求項4】発光強度を増大させたときの上記発光素子 の発光強度と、この発光強度を増大させた時間との積 が、光プリンタの感光ドラムを感光させるための最小 値、又はそれ以上であってそれに十分近い値となるよう に上配発光強度が決められる請求項1、2又は3記載の 発光素子アレイの駆動方法。

【請求項5】上記第2群のクロックパルスを構成するク ロックパルスの数が1つであり、このクロックパルスを 供給する電流源がすべてのクロックラインに共通に接続 されている請求項1、3又は4記載の発光素子アレイの 駆動方法。

【請求項6】上記第2群のクロックパルスを構成するク ロックパルスの数が1つであり、このクロックパルスを 供給する電流源がすべての発光素子に共通に接続されて いる請求項2、3又は4記載の発光素子アレイの駆動方

#### 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、多数個の発光素子を同 一基板上に集積することにより形成された発光素子アレ イの駆動方法に関し、特にこの発光素子アレイの長寿命 化に関する。

[0002]

【従来の技術】多数個の発光素子を同一基板上に集積し た発光素子アレイはその駆動用ICと組み合わせて光ブ アノード電極に接続した発光素子アレイの駆動方法にお 50 リンタ等の書き込み用光源として利用されている。本発

明者らは発光素子アレイの構成要素としてPNPN構造 を持つ発光サイリスタに注目し、発光点の自己走査が実 現できることを既に特許出顧(特開平1-238962 号、特開平2-14584号、特開平2-92650 号、特開平2-92651号) し、光ブリンタ用光源と して実装上簡便となること、発光素子ピッチを細かくで きること、コンパクトな発光装置を作製できること等を 示した。

【0003】本発明者らが行ったこれらの発明の一例と して、特開平2-14584号に示すダイオードによる 10 電位結合を用いた、2相クロック駆動により自己走査が 可能な発光素子アレイを図4に示す。 φ1 、φ2 は共 に、ハイレベル時間とローレベル時間との比 (デューテ イ比)がほぼ1:1である転送用クロックパルスであ り、Vcxは電源(通常5V)である。T (1) ~T (5) は発光素子として用いられる発光サイリスタ、D 1 ~Ds は電位結合用ダイオード、G1 ~Gs は発光サ イリスタT (1) ~T (5) のゲート電板である。R<sub>L</sub> はゲート電極の負荷抵抗であり、ゲート電極への電流を 制限する。

【0004】動作を簡単に説明する。まず転送用クロッ クパルス 4: の電圧がハイレベルで発光サイリスタ T (2) がオン状態 (発光状態) であるとする。このと き、ゲート電極Gzの電位はVczの5Vからほぼ等Vに まで低下する。この電位降下の影響はダイオードD2に よってゲート電極Gs に伝えられ、その電位を約1Vに 設定する。しかし、ダイオードD」は逆パイアス状態で あるためゲート電極Giへの電位の接続は行われず、ゲ 一ト電極G: の電位は5Vのままとなる。発光サイリス タのオン電位はゲート電極電位+拡散電位(約1V)で 30 近似されるから、次の転送用クロックパルスぁ」のハイ レベル電圧は約2V(発光サイリスタT(3)をオンさ せるために必要な電圧)以上でありかつ約4V(発光サ イリスタT(5)をオンさせるために必要な電圧)以下 に設定しておけば発光サイリスタT(3)のみがオン し、これ以外の発光サイリスタはオフのままにすること ができる。従って2本の転送用クロックパルスで発光状 態が転送されることになる。

【0005】図5は、図4の発光素子アレイを同一半導 体基板上に形成した場合の例を示す。N型GaAs基板 40 上にGaAsのPNPN構造を形成し、ホトエッチング 等の手法により図5の構造を形成する。

【0006】光プリンタの感光ドラムに画像を書き込む (感光させる) ためには、ある最低エネルギー以上のエ ネルギーを感光ドラムに与えることが必要である。感光 ドラムに与えられるエネルギーは、画像を書き込みたい 位置に相当する発光素子の発光時間とこの素子の発光強 度との積で与えられる。よって、図4の発光素子アレイ を光プリンタ用光源として使用するためには、発光点の

方法は特開平1-238962号により示されている。 【0007】図6に、特開平1-238962号によ る、発光素子の発光強度変調を行うための発光素子アレ イの駆動方法を簡略化した駆動方法が示されている。図 6の回路は、発光強度変調用クロックパルス(電流パル ス) φ11 及びφ12 を提供するクロックラインが、転送用 クロックパルス 6 及び62を提供するクロックライン にそれぞれ接続されている以外は図4と同一である。転 送用クロックパルスφ: 及びφ:は共にハイレベル時間 とローレベル時間との比(デューティ比)がほぼ1:1 でありかつ互いに略反転パルスである。発光強度変調用 クロックバルスもい及びもほは、画像を書き込みたい位 置に相当する発光素子が発光状態にあるときのみハイレ ペルとなる(その電流値は、このときの発光時間と発光 強度との積が、感光ドラムに画像を書き込むための最低 エネルギー以上となるように設定される)。その結果、 対応するクロックラインに電流が印加され、面像を書き 込みたい位置に相当する発光素子の発光強度は増大し、 感光ドラムに前記最低エネルギーを与えることができ 20 3.

[0008]

【発明が解決しようとする課題】しかし、上述の方法に より、画像を書き込みたい位置に相当する発光素子の発 光強度を増大させると、その発光素子に流れる電流量も 増加する。発光素子の寿命は、その素子に流れる量流量 の増加に伴って加速度的に短くなることが知られてお り、特に大電流が流れた場合、発光素子の寿命は著しく 低下する。従って、特関平1-238962号の方法で 発光強度の変調を行うと、発光素子の寿命を短くしてし まうことになる。

【0009】本発明の目的は、発光素子の寿命を短くす ることなく、発光素子の発光強度変調を行うことのでき る発光素子アレイの駆動方法を提供することである。 [0 0 1 0]

【課題を解決するための手段】上記目的を解決するため に、本発明の発光衆子アレイの駆動方法は、発光強度を 増大させるべき発光素子の発光時間を、他の発光素子の 発光時間よりも長くする構成とした。すなわち、本発明 の、しきい電圧もしくはしきい電流を制御するためのゲ 一ト電極と、外部電圧もしくは外部電流が印加されるア ノード電極とを有する発光素子を一次元的、二次元的も しくは三次元的に多数個配列し、上記各発光素子のゲー ト電極をこの発光素子の近傍に位置する少なくとも1つ の上記発光素子のゲート電極と電気的手段を介して接続 してネットワーク配線を形成し、上記発光素子の発光状 態を他の発光素子に転送するための信号である第1群の クロックパルスをそれぞれ個別に印加するた複数本のク ロックラインを、上配各発光素子のアノード電極に一本 ずつ接続し、上記発光素子の発光強度を増大させるため 転送のみならず、発光強度の変調が必要となるが、この 50 の信号である第2群のクロックパルスを供給する電流源

5

を、上記各クロックラインに接続した発光素子アレイの 駆動方法は、

【0011】上記第1群のクロックパルスが、互いにハ イレベル時間をわずかな時間だけ重なり合わせながらハ イレベルを他の第1群のクロックパルスに移し、上記発 光強度を増大させるべき充光素子を充光状態とするとき の第1群のクロックバルスのハイレベル時間が、発光強 度を増大させるべきどの発光素子を発光させるときでも すべて略同じ長さであり、上記発光強度を増大させない 発光素子を発光状態とするときの第1群のクロックパル 10 スのハイレベル時間は、発光強度を増大させないどの発 光素子を発光させるときでもすべて略同じ長さであり、 上記発光強度を増大させる発光素子を発光状態とすると きの第1群のクロックパルスのハイレベル時間は、上記 発光強度を増大させない発光素子を発光状態とするとき の第1群クロックパルスのハイレベル時間よりも十分長 く、上記第2群のクロックパルスは、対応する第1群の クロックパルスがハイレベルであり、かつ、そのとき発 光している発光素子の発光強度を増大させるときのみハ イレベルとなることを特徴とする。

【0012】つまり、従来の転送用クロックパルスは、発光強度を増大させる発光素子及び発光強度を増大させない発光素子が共に同じ時間だけ発光する(ハイレベル時間どうし、ローレベル時間どうしをすべて同じ長さとする)ようにしていたが、本発明においては、発光強度を増大させる発光素子の発光時間が発光強度を増大させない発光素子の発光時間よりも長くなるように転送用クロックパルスを制御する。それと同時に、発光強度変調用クロックパルスは、対応する転送用クロックパルスがハイレベルであり、かつ、そのとき発光している発光素 30子の発光強度を増大させるときのみハイレベルとなる。

【0013】本発明における、転送用クロックパルスをそれぞれ個別に印加するクロックラインの本数は、発光 が態が態の転送動作に必要な最小限の本数で十分であるが、発光状態の転送動作に必要な最小限の本数以上の本数であってもよい。また、発光強度を増大させる時間とそのときの発光強度との積は、感光ドラムに画像を書き込むための最低エネルギー以上となるように設定される。さらに、本発明は、スイッチ素子と発光素子を共に配列することにより形成された発光来子アレイにも適用することが可能である。また、上配第2のクロックパルスを供給する電流源はクロックラインの本数と同数あり、それを記述が1対1に接続されていてもよいし、電流源が1つ 度をされていてもよい。

### [0014]

【作用】本発明により、発光強度を増大させる発光素子  $0.1 \mu s \times 3300$  の発光時間が従来に比べて大巾に長くなるから、上述の これは、従来の転送用 最低エネルギーを感光ドラムに与える場合、発光強度を (1.28 m s ÷ 33 増大させたときの発光素子の発光強度を従来よりも大巾 50 5 倍も長い時間である。

に弱くすることができる。すなわち、発光強度変額用クロックパルス(電流パルス)のハイレベル時での電流を小さくすることができるから、発光強度を増大させる発光来子に流れる電流量を少なくでき、それにより発光素子の寿命を長寿命化することができる。

[0015]

【実施例】以下、本発明の実施例について、図1、図2 及び図3を参照しながら説明する。

【0016】図1は、本発明の第1の実施例を示す図であって、(A)の部分は上述の発光素子アレイを光ブリンタ用光額として用いた場合を表している。光ブリンタの解像度を400DP1(ドット・パー・インチ)としているので、A4版の短辺の1ライン(約21cm)に約3300個の発光素子が一次元的に配列されている。この場合、128個の発光素子を一次元的に配列した発光素子アレイを直列に26個接続し、3328個の発光素子からなる一次元発光素子アレイを形成しており、図6(A)と回路構成は同じである。

【0017】(B)の部分は、(A)の回路を自己走査 の させるための、本発明による発光素子アレイの駆動方法 を表す図である。

【0018】図1(B)に示した転送用クロックパルス φι、φι及び発光強度変調用クロックパルスφιι、φιを得るためのプロックダイヤグラムを図2に示す。まず画像情報は、1ラインメモリに保存される(1)。この画像情報は1ラインメモリから発光強度変調案子数カウンタへ行き(2)、1ラインあたりの発光強度を増大させる発光素子数を計算する。

【0019】この計算結果と、1ラインに割り当てられる時間と、発光強度を増大させない発光素子を発光状態とするときの転送用クロックバルスのハイレベル時間(本実施例では、発光素子アレイを動作させるための最小時間である0、1 μ秒 (オーンス (S.Ohns) 他、Extended Abstract of the 22nd Conference on Solid State Device and Materials, Sendai 1990, pp801-804】に固定されている)とから、発光強度を増大させる発光素子を発光状態とするときの転送用クロックバルスのハイレベル時間(1発光素子が画像を感光ドラムに書き込む時間)が、発光強度変調素子数カウンタにおいて計算される

【0020】本実施例では、1ラインに割り当てられる時間を1.28m秒とし、この1ラインについて発光強度を増大させる発光素子数を166個(通常の黒化率(5%)に相当)とする。すると、発光強度を増大させる発光素子を発光状態にするときの転送用クロックパルス $\phi_1$ 、 $\phi_2$  のハイレベル時間は、 $(1.28ms-0.1\mu s \times 3300) \div 166=5.7 \mu$ 秒となる。これは、従来の転送用クロックパルスのハイレベル時間( $1.28ms\div3300=0.39\mu$ 秒)よりも約15倍も長い時間である。

【0021】発光強度変調素子数カウンタでの上述の計 算結果(4)と、1ラインメモリからの画像情報(3) とが転送用クロックパルス発生器へ送られる。転送用ク ロックパルス発生器は、発光強度を増大させる発光素子 を発光状態とするときのハイレベル時間を5.7 4秒と し、発光強度を増大させない発光素子を発光状態とする ときのハイレベル時間を0.1μ秒とした転送用クロッ クパルスφ<sub>1</sub> 、φ<sub>2</sub> を発生する (図1には発光素子T) (2)、T(7)の発光強度を増大する転送用クロック クパルスφι、φ₂は、発光強度ばらつき補正用メモリ と(5)、発光強度変調用クロックパルス発生器と (6)、発光素子アレイへ(7)送られる。

【0022】発光強度ばらつき補正用メモリは、1つ1 つの発光素子の発光強度のばらつきを記憶しており、発 光強度変調用クロックパルスのハイレベル電流値の微調 整のために用いられる。

【0023】発光強度変調素子数カウンタからの信号 (8)、発光強度ばらつき補正用メモリからの信号

(9) 及び転送用クロックパルス発生器からの信号 20

(6) を取り入れることにより、発光強度変調用クロッ クパルス発生器は発光強度変調用クロックパルスもロ、 φ<sub>12</sub>を発生する。図1では発光素子T(2)、T(7) が発光しているときのみ、それぞれずは及びずいがハイ レベルとなる発光強度変調用クロックパルスが示されて いる。この発光強度変調用クロックパルスの」」、のはは 発光素子アレイに送られる(10)。以上のような手段 により、図1 (B) に示した転送用クロックパルス及び 発光強度変調用クロックバルスが得られる。

【0024】次に、図1(B)のパルスによる図1 30 (A) の動作を説明する。まず、スタートパルス as を ローレベル(約0V)にすると同時に転送用クロックバ ルスφ: をハイレベル(約2~約4V)とし、発光素子 T(1)を発光させる。その後すぐ、スタートパルスφ s はハイレベルに戻される。

【0025】次に、発光素子T(1)の発光状態を発光 秦子丁(2)へ転送するために、発光秦子丁(1)が発 光したままの状態で転送用クロックパルス φェ をハイレ ベル (約2~約4V) とする。すると発光素子T (2) ーレベルとするので発光素子T(1)はオフ状態となる (このとき転送用クロックパルスφιは0.1μs 間ハ イレベルであった)。 発光素子丁(2) が発光した後で あってそれとほぼ同じ時刻に発光強度変調用クロックバ ルス Φι ε をハイレベルとする。 すると、発光素子 T (2) へ流れる電流が増え、発光素子T(2) は発光強 度を増す。

【0026】次に、発光素子T(2)の発光状態を発光 素子T(3)へ転送するために、発光素子T(2)が発

ペル(約2~約4V)とする。すると発光素子丁 (3) が発光する。その後すぐ転送用クロックパルスφ: はロ ーレベルとなり発光素子T(2)はオフ状態となる(こ のとき転送用クロックパルスφ。は5. 7μs間ハイレ ペルであった)。 発光素子T (3)、T (4)、T (5) 及びT(6) はそれぞれ0.1 µs ずつ発光し次 に発光する発光素子に発光状態を転送する。発光素子T (7) は5. 7 µ s 間発光し、その間発光強度変調用ク ロックパルス φ 11 はハイレベルにされる。以下発光素子 パルスφ:、φ:が示されている)。この転送用クロッ 10 T (3328)まで発光状態が転送されるが、その間に 発光素子T(2)及びT(7)を含めて166個の発光 素子の発光強度が発光強度変調用クロックパルスもい、 **Φ12により増大させられる。** 

> 【0027】以上の過程において、発光強度を増大させ た発光素子の発光強度と、その発光強度が増大させられ た時間との積が、光プリンタの感光ドラムを感光させる ための最小値となるように上配発光強度は調節されてい る。これら166個の発光素子は画像を書き込むのであ るが、そこを流れる電流値は従来の約15分の1に抑え られる。よって、これら発光素子の寿命は長寿命化さ れ、ひいては発光素子アレイ全体は長寿命化される。

【0028】上述の実施例では166個の発光素子の発 光強度を増大させる場合を示した。しかし、発光強度を 増大させる素子数が、例えばこれの倍(332個)とな った場合、対応する転送用クロックパルスのハイレベル 時間は半分になるので、発光強度を倍にしなければなら ない。つまり、1ラインあたりの発光強度を増大させる 発光素子の数によって、常にその発光強度と発光時間 が、上述の最低エネルギー以上となるように制御されな ければならない。

【0029】また、上述の実施例では、1ライン中での 発光状態にある発光素子の数を1つとして説明したが、 本発明は必ずしもこれに限定されない。例えば、128 個の発光素子を一次元的に配列した発光素子アレイを直 列に26個接続した3328個の発光素子からなる一次 元発光素子アレイにおいて、この128個の発光素子か らなる発光素子アレイそれぞれが1つずつ発光状態の発 光素子を有するようにし、それら26個の発光状態が転 送されるようにしてもよい。この場合、128素子に が発光する。その後すぐ転送用クロックパルス $\phi_1$  をロ $\theta_2$  1.28 m秒が割り当てられることになるので、上述の 実施例と同じように黒化率を5%として計算すると、従 来の方法の18分の1の電流量で画像書き込みを行うこ とができる。

【0030】図3は、本発明の第2の実施例を示す図で あって、この場合も図1と同じく発光素子アレイを光プ リンタ用光源として用いた場合を表している。(A)の 部分の上半分の回路は、図6で発光素子T(1)~T (4) をスイッチ案子S (1) ~S (3328) と置き 換えさらに数を増やしたものである。各スイッチ素子の 光したままの状態で転送用クロックパルスφ:をハイレ 50 ゲート電極は、それぞれそのスイッチ素子と組をなす1

9

個の発光素子のゲート電極に接続されている。その結果 各発光素子は、対応するスイッチ素子がオン状態であれ ば発光状態となる。さらに、この発光素子のアノード電 極には、共通の発光強度変調用クロックパルスφ! を供 給する電流源が接続されている。

【0032】動作は図1に示した第1の実施例と全く同じである。第1の実施例との相違点は、発光強度変調用クロックパルスが1種類しかないことであって、この場合の発光強度変調用クロックパルスφιは、第1の実施例での発光強度変調用クロックパルスφι、φιο破形を重ね合わせた波形となっている。本実施例においても、発光強度を増大させる発光素子の数により発光強度が制御される。また、発光状態の発光素子の数を増加さ20せることも可能である。

【0033】なお、上述の第1及び第2の実施例においては、クロックラインの本数が2本の例を示したが、本発明はこれに限定されるものではなく、クロックラインの本数を3本以上で実施することも可能である。また、以上の説明においては、クロックパルスはハイレベル及びローレベルの2相駆動型であったが、3相駆動型のクロックパルスにも適用できる。さらに各発光素子の結合部分はダイオードに限らず、トランジスタ、抵抗などの電気的結合手段であってもよい。さらに、本発明が適用30できる発光素子アレイは、上述のような発光素子を一次元的に配列した発光素子アレイに限るものではなく、発光素子を二次元的または三次元的に配列した発光素子アレイであってもよい。

[0034]

【発明の効果】本発明により発光素子アレイを構成する 各発光素子が長寿命化されるので、発光素子アレイを使 用した機器の長期信頼性を増すことができる。

10

【図面の簡単な説明】

【図1】本発明の発光素子アレイの駆動方法の第1の実 施例を示す図。

【図2】図1 (B) に示すクロックパルスを得るための プロックダイヤグラム。

【図3】本発明の発光素子アレイの駆動方法の第2の実 0 施例を示す図。

【図4】特開平2-14584号において提案された発 光素子アレイの駆動方法を示す図。

【図5】図4に示した発光素子アレイの部分断面構造概略図。

【図6】特開平1-238962号において提案された 発光素子アレイの駆動方法を簡略化した駆動方法を示す 図。

#### 【符号の説明】

- T(1) 発光素子
- 0 T(2) 発光素子
  - T(3) 発光素子
  - T(4) 発光素子
  - T(5) 発光离子
  - D: 結合用ダイオード
  - D: 結合用ダイオード
  - Da 結合用ダイオード
  - D4 結合用ダイオード
  - Ds 結合用ダイオード
  - φ: 転送用クロックパルス
  - Φ1 転送用クロックパルス
  - φ: x 発光強度変調用クロックパルス

発光強度変調用クロックパルス

- φ: **発光強度変調**用クロックパルス
- φs スタートパルス

[図5]

Φ11





技術表示箇所

图6]





フロントページの続き

B 4 1 J 2/30

G 0 3 G 15/04

116

9122-2H

\_\_\_\_\_\_