Министерство образования Республики Беларусь Белорусский национальный технический университет Факультет транспортных коммуникаций Кафедра «Геодезия и аэрокосмические геотехнологии»

Отчет по лабораторной работе №3(часть1) «Уравнивание минимально-ограниченной и свободной нивелирных сетей» Вариант №3

Выполнил: ст.гр. 11405118

Авхутский Н.Г.

Проверил: старший преподаватель

Будо А.Ю.

Цель: выполнить уравнивание минимально-ограниченной и свободной нивелирных сетей. Произвести оценку точности полученных результатов, выполнить статистический тест на наличие грубых ошибок в результатах измерений.

Исходные данные, использованные в ходе лабораторной работы, представлены в таблице 1.

j	таолица т исходиве данные								
От	до	h , м	Ѕ,км	Класс					
M01	Rp1	0,543	3,4	IV					
Rp1	Rp2	-1,418	5,6	IV					
Rp2	Rp3	2,336	2,7	IV					
Rp3	M02	-2,479	5,2	IV					
Rp4	Rp1	0,762	5	IV					
Rp2	Rp4	0,691	2,7	IV					
Rp4	Rp3	1,665	2,6	IV					
M02	Rp4	0,806	5,4	IV					
Высотные отметки исходных точек Н, м									
	$H_{M01} =$	•	102,	566					

Рисунок 1 – Схема нивелирной сети

1.УРАВНИВАНИЕ МИНИМАЛЬНО-ОГРАНИЧЕННОЙ НИВЕЛИРНОЙ СЕТИ

Назначим параметры

$$z_{1} = H_{Rp1}^{0} = H_{M01} + h_{1}$$

$$z_{2} = H_{Rp2}^{0} = H_{M01} + h_{1} + h_{2}$$

$$z_{3} = H_{Rp3}^{0} = H_{M01} + h_{1} + h_{2} + h_{3}$$

$$z_{4} = H_{M02}^{0} = H_{M01} + h_{1} + h_{2} + h_{3} + h_{4}$$

$$z_{5} = H_{Rp4}^{0} = H_{M01} + h_{1} - h_{5}$$

$$z_{1} = z_{2} = z_{3} = z_{4} = z_{5} = 0$$

где z – приближенное значение параметра.

Составим параметрические уравнения связи и вычислим приближенные значения измерений

$$h_1^0 = z_1 - H_{M1}$$
 $h_5^0 = z_1 - z_5$
 $h_2^0 = z_2 - z_1$ $h_6^0 = z_5 - z_2$
 $h_3^0 = z_3 - z_2$ $h_7^0 = z_3 - z_5$
 $h_4^0 = z_4 - z_3$ $h_8^0 = z_5 - z_4$

Найдем элементы вектора свободных членов по формуле:

$$l_n = (h_{\scriptscriptstyle BbI^{\scriptscriptstyle q}} - h_{\scriptscriptstyle U3M}) \tag{1.1}$$

№	$h_{выч}$, м	$h_{u_{3M}}$, M	<i>l</i> , м
1	-102,566	0,543	-103,109
2	0	-1,418	1,418
3	0	2,336	-2,336
4	0	-2,479	2,479
5	0	0,762	-0,762
6	0	0,691	-0,691
7	0	1,665	-1,665
8	0	0,806	-0,806

Создадим матрицу коэффициентов параметрических уравнений поправок A

Для составления матрицы A используем формулу переноса ошибок

$$F = f(a,b)$$

$$m_F^2 = \left(\frac{\partial F}{\partial a}\right)^2 \cdot m_a^2 + \left(\frac{\partial F}{\partial b}\right)^2 \cdot m_b^2$$

В нашем случае дифференцируем параметрические уравнения связи по каждому параметру. Например, третья строка матрицы А рассчитывается следующим образом:

$$h_3 = z_3 - z_2$$

$$m_{h_3}^2 = \left(\frac{\partial f}{\partial z_1}\right)^2 \cdot m_{z_1}^2 + \left(\frac{\partial f}{\partial z_2}\right)^2 \cdot m_{z_2}^2 + \left(\frac{\partial f}{\partial z_3}\right)^2 \cdot m_{z_3}^2 + \left(\frac{\partial f}{\partial z_4}\right)^2 \cdot m_{z_4}^2 + \left(\frac{\partial f}{\partial z_5}\right)^2 \cdot m_{z_5}^2$$

$$=0^2 \cdot m_{z_1}^2 + (-1)^2 \cdot m_{z_2}^2 + 1^2 \cdot m_{z_3}^2 + 0^2 \cdot m_{z_4}^2 + 0^2 \cdot m_{z_5}^2$$

0 -1 1 0 0

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

Создадим диагональную матрицу весов P Где вес рассчитывается по формуле:

$$P = \left(\frac{1}{\sigma_0 \cdot \sqrt{L}}\right)^2 \tag{1.2}$$

где L – длина хода, км.

$$P = \begin{pmatrix} 735 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 446 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 926 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 481 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 500 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 926 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 962 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 463 \end{pmatrix}$$

Контрольные суммы S находим по формуле:

$$S_n = a_{n1} + a_{n2} + a_{n3} + a_{n4} + l_n (1.3)$$

Таблица 2 – Контрольные суммы S

№	S	No	S
1	-102,109	5	-0,762
2	1,418	6	-0,691
3	-2,336	7	-1,665
4	2,479	8	-0,806

Составим матрицу коэффициентов нормальных уравнений N и найдем ее элементы. Матрица коэффициентов нормальных уравнений N имеет вид:

	a_1]	a_2]	a ₃]	a_4]	a_5]	1]	S]	С
[pa ₁	N ₁₁	N ₁₂	N ₁₃	N ₁₄	N ₁₅	B_1	S_1	C_1
[pa ₂	N ₂₁	N ₂₂	N ₂₃	N ₂₄	N ₂₅	\mathbf{B}_2	S_2	C_2
[pa ₃	N_{31}	N ₃₂	N ₃₃	N ₃₄	N ₃₅	\mathbf{B}_3	S_3	C_3
[pa ₄	N ₄₁	N ₄₂	N ₄₃	N ₄₄	N ₄₅	B_4	S_4	C ₄
[pa 5	N ₅₁	N ₅₂	N ₅₃	N ₅₄	N ₅₅	\mathbf{B}_{5}	S_5	C_5

Расчёт матрицы коэффициентов нормальных уравнений N в матричном виде

$$N = A^T \cdot P \cdot A \tag{1.4}$$

Расчёт матрицы свободных членов нормальных уравнений В в матричном виде

$$B = A^T \cdot P \cdot l \tag{1.5}$$

Таблица 3 – Коэффициенты нормальных уравнений

	a ₁]	a_2]	a ₃]	a ₄]	a ₅]	1]	S]	C]
[pa ₁	1681,72	-446,43	0	0	-500,00	-76829,47	-102,109	-102,109
[pa ₂	-446,43	2298,28	-925,93	0	-925,93	3435,813	1,418	1,418
[pa ₃	0	-925,93	2368,23	-480,7	-961,54	-4955,751	-2,336	-2,236
[pa 4	0	0	-480,77	943,73	-462,96	1564,975	2,479	2,479
[pa 5	-500,00	-925,93	-961,54	-462,9	2850,43	968,999	-0,762	-0,762

Расчитаем вектор высот H в матричном виде

$$H = -N^{-1} \cdot B \tag{1.6}$$

$$H = \begin{pmatrix} 103,109\\101,679\\104,020\\101,547\\102,358 \end{pmatrix}$$

Далее вычисляем уравненные превышения

$$\begin{array}{ll} h_{1}^{yp} = H_{Rp1} - H_{M1} & h_{5}^{yp} = H_{Rp1} - H_{Rp4} \\ h_{2}^{yp} = H_{Rp2} - H_{Rp1} & h_{6}^{yp} = H_{Rp4} - H_{Rp2} \\ h_{3}^{yp} = H_{Rp3} - H_{Rp2} & h_{7}^{yp} = H_{Rp3} - H_{Rp4} \\ h_{4}^{yp} = H_{M2} - H_{Rp3} & h_{8}^{yp} = H_{Rp4} - H_{M2} \end{array}$$

Вычисляем уравненные поправки

$$h^{yp} = \begin{pmatrix} 0,543 \\ -1,430 \\ 2,342 \\ -2,474 \\ 0,751 \\ 0,679 \\ 1,662 \\ 0,911 \end{pmatrix} M \qquad v = \begin{pmatrix} 0,000 \\ -0,012 \\ 0,006 \\ 0,005 \\ -0,011 \\ -0,012 \\ -0,003 \\ 0,005 \end{pmatrix}$$

Проверяем отметки реперов вычислив их несколькими способами, т.е. через разные превышения:

$$\begin{cases} H_{Rp4} = H_{M1} + h_1^{yp} - h_5^{yp} = 102,358\text{M} \\ H_{Rp4} = H_{M1} + h_1^{yp} + h_2^{yp} + h_6^{yp} = 102,358\text{M} \\ H_{Rp4} = H_{M1} + h_1^{yp} + h_2^{yp} + h_3^{yp} + h_4^{yp} + h_8^{yp} = 102,358\text{M} \end{cases}$$

ОЦЕНКА ТОЧНОСТИ МИНИМАЛЬНО-ОГРАНИЧЕННОГО УРАВНИВАНИЯ

Рассчитаем ковариационную матрицу уравненных превышений

$$Q_{vp}^h = A \cdot N^{-1} \cdot A^T \tag{1.8}$$

$$Q_{yp}^{h} = \begin{pmatrix} 0.0014 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.0012 & -0.0003 & -0.0003 & -0.0006 & -0.0006 & 0.0001 & 0.0002 \\ 0 & -0.0003 & 0.0007 & -0.0002 & -0.0001 & 0.0001 & 0.0003 & -0.0001 \\ 0 & -0.0003 & -0.0002 & 0.0012 & 0.0002 & 0.0002 & -0.0003 & -0.0006 \\ 0 & -0.0006 & -0.0001 & 0.0002 & 0.0012 & -0.0008 & 0.0002 & -0.0004 \\ 0 & -0.0004 & 0.0003 & 0.0001 & -0.0002 & 0.0006 & -0.0003 & 0.0002 \\ 0 & 0.0001 & 0.0003 & -0.0003 & 0.0002 & -0.0002 & 0.0006 & -0.0002 \\ 0 & 0.0002 & -0.0001 & -0.0006 & -0.0004 & 0.0004 & -0.0002 & 0.0012 \end{pmatrix}$$

Рассчитаем ковариационную матрицу уравненных отметок реперов

$$Q_{yp}^{H} = N^{-1} (1.9)$$

$$Q_{yp}^{H} = \begin{pmatrix} 0.0014 & 0.0014 & 0.0014 & 0.0014 \\ 0.0014 & 0.0026 & 0.0024 & 0.0023 & 0.0023 \\ 0.0014 & 0.0024 & 0.0029 & 0.0027 & 0.0024 \\ 0.0014 & 0.0023 & 0.0027 & 0.0036 & 0.0025 \\ 0.0014 & 0.0023 & 0.0024 & 0.0025 & 0.0025 \end{pmatrix}$$

СКП единицы веса

$$\mu = \sqrt{\frac{V^T \cdot P \cdot V}{N - t}} \tag{1.10}$$

$$V^T \cdot P \cdot V = 0,318$$
$$\mu = 0,325$$

СКП превышений

СКП реперов

2.УРАВНИВАНИЕ СВОБОДНОЙ НИВЕЛИРНОЙ СЕТИ

В отличие от минимально-ограниченного уравнивания, в свободном уравнивании нет исходных пунктов.

Таблица 2. Исходные данные

1	7 1 7 1			
От	до	h , м	Ѕ,км	Класс
M01	Rp1	0,543	3,4	IV
Rp1	Rp2	-1,418	5,6	IV
Rp2	Rp3	2,336	2,7	IV
Rp3	M02	-2,479	5,2	IV
Rp4	Rp1	0,762	5	IV
Rp2	Rp4	0,691	2,7	IV
Rp4	Rp3	1,665	2,6	IV
M02	Rp4	0,806	5,4	IV

Рисунок 2 – Схема нивелирной сети

Назначим параметр

$$z_{1} = H_{M01}^{0}$$

$$z_{2} = H_{Rp1}^{0}$$

$$z_{3} = H_{Rp2}^{0}$$

$$z_{4} = H_{Rp3}^{0}$$

$$z_{5} = H_{M02}^{0}$$

$$z_{6} = H_{Rp4}^{0}$$

$$z_{1} = z_{2} = z_{3} = z_{4} = z_{5} = z_{6} = 0$$

где z – приближенное значение параметра.

Составим параметрические уравнения связи и вычислим приближенные значения измерений

$$h_1^0 = z_2 - z_1$$
 $h_5^0 = z_2 - z_6$
 $h_2^0 = z_3 - z_2$ $h_6^0 = z_6 - z_3$
 $h_3^0 = z_4 - z_3$ $h_7^0 = z_4 - z_6$
 $h_4^0 = z_5 - z_4$ $h_8^0 = z_6 - z_5$

Найдем элементы вектора свободных членов по формуле:

$$l_n = (h_{\text{\tiny RMM}} - h_{\text{\tiny MSM}}) \tag{2.1}$$

№	$h_{выч}$, м	$h_{uзм}$, м	<i>l</i> , м
1	0	0,543	-0,543
2	0	-1,418	1,418
3	0	2,336	-2,336
4	0	-2,479	2,479
5	0	0,762	-0,762
6	0	0,691	-0,691
7	0	1,665	-1,665
8	0	0,806	-0,806

Создадим матрицу коэффициентов параметрических уравнений поправок A Для составления матрицы A используем формулу переноса ошибок

$$F = f(a,b)$$

$$m_F^2 = \left(\frac{\partial F}{\partial a}\right)^2 \cdot m_a^2 + \left(\frac{\partial F}{\partial b}\right)^2 \cdot m_b^2$$

В нашем случае дифференцируем параметрические уравнения связи по каждому параметру. Например, третья строка матрицы А рассчитывается следующим образом:

$$h_2 = z_3 - z_2$$

$$m_{h_2}^2 = \left(\frac{\partial f}{\partial z_1}\right)^2 \cdot m_{z_1}^2 + \left(\frac{\partial f}{\partial z_2}\right)^2 \cdot m_{z_2}^2 + \left(\frac{\partial f}{\partial z_3}\right)^2 \cdot m_{z_3}^2 + \left(\frac{\partial f}{\partial z_4}\right)^2 \cdot m_{z_4}^2 + \left(\frac{\partial f}{\partial z_5}\right)^2 \cdot m_{z_5}^2 + \left(\frac{\partial f}{\partial z_6}\right)^2 \cdot m_{z_6}^2$$

$$=0^2 \cdot m_{z_1}^2 + (-1)^2 \cdot m_{z_2}^2 + 1^2 \cdot m_{z_3}^2 + 0^2 \cdot m_{z_4}^2 + 0^2 \cdot m_{z_5}^2 + 0^2 \cdot m_{z_6}^2$$

0 -1 1 0 0 0

$$A = \begin{pmatrix} -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix}$$

Создадим диагональную матрицу весов P Где вес рассчитывается по формуле:

$$P = \left(\frac{1}{\sigma_0 \cdot \sqrt{L}}\right)^2 \tag{2.2}$$

где L – длина хода, км.

$$P = \begin{pmatrix} 735 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 446 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 926 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 481 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 500 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 926 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 962 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 463 \end{pmatrix}$$

Контрольные суммы S находим по формуле:

$$S_n = a_{n1} + a_{n2} + a_{n3} + a_{n4} + l_n (2.3)$$

Таблица 2 – Контрольные суммы S

1	<u> </u>		
No	S	No	S
1	-0,543	5	-0,762
2	1,418	6	-0,691
3	-2,336	7	-1,665
4	2,479	8	-0,806

Составим матрицу коэффициентов нормальных уравнений N и найдем ее элементы. Матрица коэффициентов нормальных уравнений N имеет вид:

	a_1]	a_2]	a_3]	a_4]	a ₅]	1]	S]	С
[pa ₁	N ₁₁	N ₁₂	N ₁₃	N ₁₄	N ₁₅	B_1	S_1	C_1
[pa ₂	N ₂₁	N ₂₂	N ₂₃	N ₂₄	N ₂₅	\mathbf{B}_2	S_2	C_2
[pa ₃	N_{31}	N_{32}	N_{33}	N ₃₄	N ₃₅	\mathbf{B}_3	S_3	C_3
[pa ₄	N ₄₁	N ₄₂	N ₄₃	N ₄₄	N ₄₅	\mathbf{B}_4	S_4	C ₄
[pa 5	N ₅₁	N ₅₂	N ₅₃	N ₅₄	N ₅₅	\mathbf{B}_{5}	S_5	C_5

Расчёт матрицы коэффициентов нормальных уравнений N в матричном виде

$$N = A^T \cdot P \cdot A \tag{2.4}$$

Расчёт матрицы свободных членов нормальных уравнений В в матричном виде

$$B = A^T \cdot P \cdot l \tag{2.5}$$

Таблица 3 – Коэффициенты нормальных уравнений

	a_1]	a ₂]	a ₃]	a ₄]	a ₅]	a ₆]	1]	S]	C]
[pa ₁	735,29	-735,29	0	0	0	0	399,26	-0,543	-0,543
[pa ₂	-735,29	1681,72	-446,43	0	0	-500,00	-1413,30	1,418	1,418
[pa ₃	0	-446,43	2298,28	-925,93	0	-925,93	3435,81	-2,336	-2,336
[pa ₄	0	0	-925,93	2368,23	-480,77	-961,54	-4955,75	2,479	2,479
[pa 5	0	0	0	-480,77	943,73	-462,96	1564,98	-0,762	-0,762
[pa ₆	0	-500,00	-925,93	-961,54	-462,96	2850,43	969,00	-0,691	-0,691

Найдем псевдообратную матрицу $N^{\scriptscriptstyle +}$

$$N^{+} = (A^{T} \cdot P \cdot A + E^{T} \cdot E)^{-1} - E^{T} (E \cdot E^{T} \cdot E \cdot E^{T})^{-1} \cdot E$$
(2.6)

$$N^{+} = \begin{pmatrix} 0,0015 & 0,0003 & -0,0004 & -0,0005 & -0,0006 & -0,0004 \\ 0,0003 & 0,0006 & -0,0001 & -0,0003 & -0,0004 & -0,0001 \\ -0,0004 & -0,0001 & 0,0004 & 0,0001 & 0,0001 & 0,0001 \\ -0,0005 & -0,0003 & 0,0001 & 0,0004 & 0,0001 & 0,0001 \\ -0,0006 & -0,0004 & -0,0001 & 0,0001 & 0,0009 & 0,0000 \\ -0,0004 & -0,0001 & 0,0001 & 0,0000 & 0,0003 \end{pmatrix}$$

Расчитаем поправки к параметрам Х:

$$X = N^{+} \cdot A^{T} \cdot P \cdot L$$

$$\begin{pmatrix} H_{M01} \\ \end{pmatrix} \begin{pmatrix} -0,0196 \\ \end{pmatrix}$$

$$(2.7)$$

$$X = \begin{pmatrix} H_{M01} \\ H_{Rp1} \\ H_{Rp2} \\ H_{Rp3} \\ H_{M02} \\ H_{Rp4} \end{pmatrix} = \begin{pmatrix} -0,0196 \\ -0,5626 \\ 0,8678 \\ -1,4738 \\ 0,9999 \\ 0,1884 \end{pmatrix}$$

Далее найдем вектор-столбец поправок в измерения V:

$$AX + L = V \tag{2.8}$$

$$V = \begin{pmatrix} 0,0000 \\ 0,0124 \\ -0,0056 \\ -0,0053 \\ 0,0110 \\ 0,0116 \\ 0,0028 \\ -0,0055 \end{pmatrix}$$

ОЦЕНКА ТОЧНОСТИ ПАРАМЕТРИЧЕСКОГО СПОСОБА УРАВНИВАНИЯ

СКП единицы веса

$$\mu = \sqrt{\frac{V^T \cdot P \cdot V}{N - t + 1}} \tag{2.9}$$

$$V^T \cdot P \cdot V = 0,318$$
$$\mu = 0,325$$

Рассчитаем ковариационную матрицу уравненных превышений

$$Q_{vp}^h = A \cdot N^+ \cdot A^T \tag{2.10}$$

$$Q_{yp}^{h} = \begin{pmatrix} 0.0014 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0,0012 & -0.0003 & -0.0003 & -0.0006 & -0.0006 & 0.0001 & 0.0002 \\ 0 & -0.0003 & 0,0007 & -0.0002 & -0.0001 & 0.0001 & 0.0003 & -0.0001 \\ 0 & -0.0003 & -0.0002 & 0,0012 & 0.0002 & 0.0002 & -0.0003 & -0.0006 \\ 0 & -0.0006 & -0.0001 & 0.0002 & 0,0012 & -0.0008 & 0.0002 & -0.0001 \\ 0 & -0.0004 & 0.0003 & 0.0001 & -0.0002 & 0,0006 & -0.0003 & 0.0001 \\ 0 & 0.0001 & 0.0003 & -0.0003 & 0.0002 & -0.0002 & 0.0006 & -0.0003 \\ 0 & -0.0001 & -0.0002 & -0.0006 & -0.0001 & 0.0001 & -0.0003 & 0,0012 \end{pmatrix}$$

Рассчитаем ковариационную матрицу уравненных отметок реперов

$$Q_{yp}^{H} = N^{+}$$

$$Q_{yp}^{H} = N^{+}$$

$$Q_{yp}^{H} = \begin{cases} 0,0015 & 0,0003 & -0,0004 & -0,0005 & -0,0006 & -0,0004 \\ 0,0003 & 0,0006 & -0,0001 & -0,0003 & -0,0004 & -0,0001 \\ -0,0004 & -0,0001 & 0,0004 & 0,0001 & 0,0001 & 0,0001 \\ -0,0005 & -0,0003 & 0,0001 & 0,0004 & 0,0001 & 0,0001 \\ -0,0006 & -0,0004 & -0,0001 & 0,0001 & 0,0009 & 0,0000 \end{cases}$$

0,0001

0,0000

0,0003

СКП превышений

-0.0004

-0,0001

$$\begin{pmatrix} m_{h_1} \\ m_{h_2} \\ m_{h_3} \\ m_{h_4} \\ m_{h_5} \\ m_{h_6} \\ m_{h_7} \\ m_{h_8} \end{pmatrix} = \mu \cdot \begin{pmatrix} \sqrt{Q_{yp11}^h} \\ \sqrt{Q_{yp22}^h} \\ \sqrt{Q_{yp33}^h} \\ \sqrt{Q_{yp44}^h} \\ \sqrt{Q_{yp55}^h} \\ \sqrt{Q_{yp55}^h} \\ \sqrt{Q_{yp66}^h} \\ \sqrt{Q_{yp77}^h} \\ \sqrt{Q_{yp88}^h} \end{pmatrix} = \begin{pmatrix} 0,012 \\ 0,011 \\ 0,008 \\ 0,011 \\ 0,008 \\ 0,008 \\ 0,011 \end{pmatrix}$$

0,0001

СКП реперов

$$\begin{pmatrix} m_{H_1} \\ m_{H_2} \\ m_{H_3} \\ m_{H_4} \\ m_{H_5} \\ m_{H_6} \end{pmatrix} = \mu \cdot \begin{pmatrix} \sqrt{Q_{yp11}^H} \\ \sqrt{Q_{yp22}^H} \\ \sqrt{Q_{yp33}^H} \\ \sqrt{Q_{yp44}^H} \\ \sqrt{Q_{yp55}^H} \\ \sqrt{Q_{yp66}^H} \end{pmatrix} = \begin{pmatrix} 0,012 \\ 0,008 \\ 0,007 \\ 0,007 \\ 0,010 \\ 0,006 \end{pmatrix}$$

СТАТИСТИЧЕСКИЙ ТЕСТ

Для оценки теоретического значения стандарта по статистическим таблицам, определяется величина χ^2 . Для нижнего интервала χ_1^2 при P_1 =1-(q/2), и для верхнего χ_2^2 при P_2 =(q/2).

$$\chi_2^2 = XM2OEP(1-0.05/2;3)$$

 $\chi_1^2 = XM2OEP(0.05/2;3)$

Об отсутствии грубых ошибок можно судить по условию:

$$\chi_1^2 \le \mu^2 \le \chi_2^2$$
$$\chi_1^2 = 0.21579528$$
$$\chi_1^2 = 9.34840360$$

Вывод: В данной работе было выполнено уравнивание минимальноограниченной и свободной нивелирных сетей, вычислены уравненные высотные отметки. Произведена оценка точности полученных результатов и проверено наличие грубых ошибок с помощью статистического теста, который не выявил грубых ошибок в измерениях.