Najbliži susedi (lokalno uprosečavanje)

Ovo se zove nearest neighbors ili local averaging

1-NN regresija

1-NN regresija

U	la	Z
	Iu	4

•
$$T = \{(x^{(i)}, y^{(i)}), i = 1, ..., N\}$$

• $x^{(q)}$: tačka za koju treba da odredimo $y^{(q)}$ vrednost

Postupak

Inicijalizovati $Dist2NN = \infty$, $\hat{y}^{(q)} = NaN$

for
$$i = 1,2,...,N$$

$$\delta = distance(x^{(i)}, x^{(q)})$$

if
$$\delta < Dist2NN$$

$$Dist2NN = \delta$$

$$\hat{y}^{(q)} = y^{(i)}$$

Izlaz

$$\hat{y}^{(q)}$$

1-NN regresija

Voronoi-ev dijagram: vizualizacija 1-NN u više dimenzija

Ne moramo eksplicitno formirati regije, dovoljna nam je definicija udaljenosti

Svaka regija sadrži tačno jednu tačku $x^{(i)}$

svakoj tački regije "najbliža" tačka $x^{(i)}$

Metrika udaljenosti

• Euklidska udaljenost $distance(x^{(j)}, x^{(q)}) = |x^{(j)} - x^{(q)}|$

- U višedimenzionom prostoru možemo pripisati težine dimenzijama (neke varijable su bitnije)
 - Npr. u predikciji životnog veka , vakcinacija i GDP su važnije od stepena kriminala

$$distance(x^{(j)}, x^{(q)}) = \sqrt{w_1(x_1^{(j)} - x_1^{(q)})^2 + \dots + w_d(x_d^{(j)} - x_d^{(q)})^2}$$

 Druge metrike udaljenosti: Mahalanobis, rank-based, correlation-based, cosine similarity, Manhattan, Hamming,...

Metrika udaljenosti

Različite metrike udaljenosti rezultuju različitim prediktivnim površinama

1-NN regresija ima dobre performanse ako je *N* veliko, a šum mali

Šum: 0.05%

1-NN metod je osetljiv na šum u podacima – overfitting

$$N = 200$$

Kako da rešimo preprilagođavanje?

- Kod 1-NN metoda, najbliža tačka koja postoji u trening skupu može imati abnormalno veliku/malu vrednost u odnosu na stvarni trend u podacima
- Umesto da uzmemo samo jednog najbližeg suseda, možemo uzeti više (k)
- Ovo može rezultovati boljom aproksimacijom

Uticaj *k*

Uticaj *k*

Uticaj *k*

k-NN regresija

U	la	Z
	. ~	

•
$$T = \{(x^{(i)}, y^{(i)}), i = 1, ..., N\}$$

• $x^{(q)}$ – tačka za koju treba da odredimo $y^{(q)}$ vrednost

Postupak

1. U trening skupu pronaći k tačaka najbližih tački $x^{(q)}$: $\{(x^{(NN1)}, y^{(NN1)}), \dots, (x^{(NNk)}, y^{(NNk)})\}$

2. Predvideti

$$\hat{y}^{(q)} = \frac{1}{k} (y^{(NN1)} + \dots + y^{(NNk)})$$

$$\hat{y}^{(q)}$$

k-NN regresija

k-NN regresija

Problem sa diskontinuitetom

