What is claimed is:

- 1. A method of operating a non-volatile memory device driver comprising: counting a number of access cycles to a non-volatile memory; and halting execution at a selected count.
- 2. The method of claim 1, wherein the driver is a low level driver.
- 3. The method of claim 1, wherein counting the number of access cycles further comprises counting the number of write cycles.
- 4. The method of claim 1, wherein counting the number of access cycles further comprises counting the number of erase cycles.
- The method of claim 1, further comprising:
 restarting execution of the non-volatile memory command after halting execution at the selected count.
- 6. The method of claim 1, further comprising: testing driver power loss recovery after halting execution at the selected count.
- 7. The method of claim 1, wherein halting execution at a selected count further comprises at a selected number of access cycles, counting the number of clock cycles and halting execution of the access cycle at a selected number of clock cycles.
- 8. The method of claim 7, wherein halting execution of the access cycle at a selected number of clock cycles further comprises removing power from the non-volatile memory.

- 9. The method of claim 7, wherein halting execution of the access cycle at a selected number of clock cycles further comprises loading an internal register in the non-volatile memory and halting execution of a command execution logic of the non-volatile memory at the selected number of clock cycles.
- 10. The method of claim 7, wherein halting execution of the access cycle at a selected number of clock cycles further comprises loading an internal register in the non-volatile memory and halting execution of a command execution logic state machine of the non-volatile memory at a selected number of steps.
- 11. A method of operating a system comprising: counting a number of access operations to a Flash memory device coupled to a host; and stopping execution at a selected number of access operations.
- 12. The method of claim 11, wherein counting the number of access operations further comprises counting the number of access operations, where the access operation is one of a write operation and an erase operation.
- 13. The method of claim 11, further comprising: examining a state of one or more host registers and/or the memory device after stopping execution.
- 14. The method of claim 11, further comprising: rebooting the host after stopping execution.
- 15. The method of claim 11, further comprising: executing power loss recovery routines on the Flash memory device.
- 16. The method of claim 11, wherein stopping execution at a selected number of access

- operations further comprises at a selected number of access operations, stopping execution of the access operation at a selected time period.
- 17. The method of claim 16, wherein stopping execution of the access operation at a selected time period further comprises removing power from the Flash memory device.
- 18. The method of claim 16, wherein stopping execution of the access operation at a selected time period further comprises loading an internal register in the Flash memory device with a selected number of clock cycles and halting execution of a command execution logic of the Flash memory device at the selected number of clock cycles.
- 19. The method of claim 16, wherein stopping execution of the access operation at a selected time period further comprises loading an internal register in the Flash memory device with a selected number of execution steps and halting execution of a command execution logic state machine of the Flash memory device at the selected number of steps.
- 20. A method of testing a Flash memory comprising: counting a number of access operations to a Flash memory for a Flash command; interrupting execution of the Flash command at a selected halt count of access operations; and executing a power loss recovery cycle to test power loss recovery at the selected halt count.
- 21. The method of claim 20, wherein counting the number of access operations further comprises counting a number of write and/or erase operations.
- 22. The method of claim 20, further comprising:

changing the selected halt count;
re-executing the Flash command;
counting a number of access operations; and
interrupting execution of the Flash command at the changed halt count.

- 23. The method of claim 22, wherein changing the selected halt count further comprises incrementing the selected halt count.
- 24. The method of claim 22, further comprising: changing the Flash command after all possible halt counts of the Flash command have been tested.
- 25. The method of claim 20, wherein interrupting execution of the Flash command at a selected halt count of access operations further comprises at a selected number of access operations, interrupting execution of the access operation at a selected number of clock cycles.
- 26. The method of claim 25, wherein interrupting execution of the access operation at a selected number of clock cycles further comprises triggering external hardware to remove power from the Flash memory.
- 27. The method of claim 25, further comprising: changing the selected number of clock cycles; re-executing the Flash command; counting a number of access operations to the selected access operation; and interrupting execution of the Flash command at the changed selected number of clock cycles.
- 28. The method of claim 25, wherein changing the selected number of clock cycles further comprises incrementing the selected number of clock cycles.

- 29. The method of claim 25, wherein interrupting execution of the access operation at a selected number of clock cycles further comprises loading an internal register in the Flash memory with the selected number of clock cycles and halting execution of a command execution logic of the Flash memory at the selected number of clock cycles.
- 30. The method of claim 25, wherein interrupting execution of the access operation at a selected number of clock cycles further comprises loading an internal register in the Flash memory device with a selected number of execution steps and halting execution of a command execution logic state machine of the Flash memory device at the selected number of steps.
- 31. A method of profiling a Flash command comprising: counting a number of access operations to a Flash memory for a Flash command; and comparing the access operation profile two or more Flash commands.
- 32. The method of claim 31, wherein counting the number of access operations further comprises counting the number of write and/or erase operations.
- 33. A system comprising:
 - at least one Flash memory device; and
 - a host coupled to the at least one Flash memory device, wherein the host is adapted to count a number of access operations to the at least one Flash memory device during a Flash command and halt execution of the Flash command at a selected count of access operations.
- 34. The system of claim 33, wherein the host is adapted to count the number of write and/or erase operations.

- 35. The system of claim 33, wherein the at least one Flash memory device is one of a NAND Flash and a NOR Flash.
- 36. The system of claim 33, wherein an interface to the Flash memory device is one of a PCMCIA-ATA, a Compact Flash (CF), a USB Flash, MemoryStick, Secure Digital Memory Card, and a multimedia card (MMC) compatible interface.
- 37. The system of claim 33, wherein the host is one of a processor and an external memory controller.
- 38. The system of claim 33, wherein the host is adapted to count a number of access operations to the at least one Flash memory device during a Flash command and halt execution of the Flash command at a selected count of access operations when a selected number of clock cycles has elapsed after issuing a last access operation that corresponds to the selected count of access operations.
- 39. The system of claim 38, wherein the system is adapted to halt execution of the last access operation at the selected number of cycles by removing power from the Flash memory.
- 40. A machine-usable medium, the machine-usable medium containing a software routine for causing a processor to execute a method, wherein the method comprises:
 counting a number of access cycles to a Flash memory; and halting execution at a selected count.
- 41. The machine-usable medium of claim 40, wherein counting the number of access cycles further comprises counting the number of write cycles and/or erase cycles.

- 42. The method of claim 40, wherein halting execution at a selected count further comprises at a selected number of access cycles, counting the number of clock cycles and halting execution of the access cycle at a selected number of clock cycles.
- 43. A system comprising:
 - at least one Flash memory device; and
 - a host coupled to the at least one Flash memory device, wherein the host comprises a means for counting the number of access cycles to the at least one Flash memory device during execution of a Flash command and comprises a means for halting execution of the Flash command on the at least one Flash memory device in response to the count of the access cycle counting means.
- 44. The system of claim 43, wherein the host comprises a means for counting the number of access cycles to the at least one Flash memory device during execution of a Flash command and comprises a means for halting execution of the Flash command on the at least one Flash memory device in response to the count of the access cycle counting means when a means for timing the execution of a last access cycle has elapsed.