Компромиссные планы для дробно-рациональных моделей

Страшко Владислав Алексеевич, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: д.ф.-м.н. профессор Мелас В.Б. Рецензент: к.ф.-м.н. доцент Шпилев П.В.

Санкт-Петербург 2018г.

Регрессионная модель

Рассмотрим регрессионную модель:

$$y_i = \eta(x_i, \Theta) + \varepsilon_i, i = 1, \dots, n, \Theta \in \Omega \subset \mathbb{R}^m$$

где:

- $\eta(x_i,\Theta)$ функция, известная с точностью до вектора параметров;
- $\Theta = (\theta_1, \dots, \theta_m)^{\mathrm{T}};$
- Ω компактное множество в \mathbb{R}^m ;
- x_1, \ldots, x_n входные данные;
- $y_i, ..., y_n$ сигналы на выходе;
- ε_i независимые одинаково распределенные случайные величины такие, что $E\varepsilon_i=0, D\varepsilon_i=\sigma^2.$

Задачи

- Выбор одной из двух конкурирующих регрессионных моделей,
- Оценка параметров выбранной модели.

Регрессионная модель: задачи

Рассмотрим два класса моделей:

•
$$\eta_1(x,\Theta_1) = \theta_{0,1} + \theta_{1,1}x + \ldots + \theta_{n,1}x^n$$
,

•
$$\eta_2(x,\Theta_2) = \theta_{0,2} + \theta_{1,2}x + \ldots + \theta_{n,2}x^n + \sum_{i=1}^k \frac{\theta_{n+i}}{x - \theta_{i+n+k}}$$
,

$$x \in \mathcal{X} = [0, d], \theta_{i+n+k} > d \quad \forall i$$

Возникают две задачи:

Оценка параметров

МНК-оценка

$$\sum_{i=1}^{n} (\eta_i(x_j, \Theta_i) - y_j)^2 \to \min_{\Theta}, \qquad i = 1, 2$$

 $m{0}$ Задача дискриминации: $\eta_1(x,\Theta_1)$ «вложена» в $\eta_2(x,\Theta_2)$ Задача проверки гипотезы

$$H_0: (\theta_{n+1}, \dots, \theta_{n+k}) = (0, \dots, 0)$$

Против альтернативы

$$H_1: (\theta_{n+1}, \dots, \theta_{n+k}) \neq (0, \dots, 0).$$

Планирование эксперимента

Определение

План эксперимента — дискретная вероятностная мера

$$\xi = \begin{pmatrix} x_1 & \dots & x_n \\ \omega_1 & \dots & \omega_n \end{pmatrix}, x_i \in \mathcal{X}, i = 1, \dots, n,$$

где \mathcal{X} — множество планирования, $\omega_i \geq 0, \sum_{i=1}^n \omega_i = 1, \omega_i$ — весовые коэффициенты, n — число точек в плане.

Если нужно выполнить N измерений, в опорных точках плана реализуется примерно Nw_i вычислений.

Информационная матрица

$$M(\xi,\Theta) = \int_{\mathcal{X}} f(x,\Theta) f^{\mathrm{T}}(x,\Theta) \xi(dx) = \begin{pmatrix} M_{11}(\xi,\Theta) & M_{12}(\xi,\Theta) \\ M_{21}(\xi,\Theta) & M_{22}(\xi,\Theta) \end{pmatrix},$$

где

$$f^{\mathrm{T}}(x,\Theta) = (f_1,\ldots,f_m), f_i(x,\Theta) = \frac{\partial \eta(x,\Theta)}{\partial \theta_i}.$$

$$M_s(\xi,\Theta) = M_{22}(\xi,\Theta) - X^{\mathrm{T}} M_{11}(\xi,\Theta) X,$$

где X — любое решение матричного уравнения $M_{11}(\xi,\Theta)X=M_{12}(\xi,\Theta).$

Планирование эксперимента

D-критерий

План ξ^* , максимизирующий $\det M(\xi,\Theta)$ при $\Theta=\Theta_0$, называется локально D-оптимальным.

D_s -критерий

План ξ^* , максимизирующий $\det M_s(\xi,\Theta)$ при $\Theta=\Theta_0$, называется локально D_s -оптимальным.

Замечание [Карлин, Стадден, 1976]

$$\det M_s(\xi,\Theta) = \frac{\det M(\xi,\Theta)}{\det M_{11}(\xi,\Theta)}$$

Эффективность

$$\mathsf{Eff}(\xi) = \frac{\sqrt[m]{\det \Phi(\xi, \Theta)}}{\sqrt[m]{\det \Phi(\xi^*, \Theta)}},$$

где Φ — некоторый критерий оптимальности, m — количество оцениваемых параметров, ξ^* — оптимальный план в смысле критения Φ

<u>Пост</u>ановка задачи

Задача

Построение плана эксперимента, который позволит эффективно решить две задачи одновременно:

- Выбор одной из двух регрессионных моделей,
- Оценка параметров выбранной модели.

Максиминная постановка:

$$\xi_{opt} = \arg\max_{\xi} \min \left\{ \frac{\sqrt[m]{\det M(\xi,\Theta)}}{\sqrt[m]{\det M(\xi_{pol},\Theta)}}, \frac{\sqrt[m]{\det M(\xi,\Theta)}}{\sqrt[m]{\det M(\xi_{rat},\Theta)}}, \frac{\sqrt[s]{\frac{\det M_n(\xi,\Theta)}{\det M_s(\xi,\Theta)}}}{\sqrt[s]{\frac{\det M_n(\xi_s,\Theta)}{\det M_s(\xi_s,\Theta)}}} \right\},$$

где ξ_{pol} — D-оптимальный план для полиномиальной модели, ξ_{rat} — для дробно-рациональной, ξ_s — усеченный D-оптимальный план.

Компромиссные планы

Рассматриваемые модели:

$$\eta_1(x,\Theta_1) = \theta_{0,1} + \theta_{1,1}x + \ldots + \theta_{n,1}x^n,$$
(1)

$$\eta_2(x,\Theta_2) = \theta_{0,2} + \theta_{1,2}x + \ldots + \theta_{n,2}x^n + \sum_{i=1}^k \frac{\theta_{n+i}}{x - \theta_{i+n+k}},$$
(2)

$$\mathcal{X} = [0, d], \theta_{i+n+k} > d.$$

Обозначим M_1 информационную матрицу для модели (1), а M_2 — информационную матрицу модели (2).

Выпуклая комбинация [Cook, Wong, 1994]

$$\Psi_{\alpha}(\xi,\Theta) = (1-\alpha) \ln \frac{\det M_2(\xi,\Theta)}{\det M_1(\xi,\Theta)} + \alpha \ln(\det M_1(\xi,\Theta)) \to \max_{\xi}.$$

План ξ_{α}^* , максимизирующий $\Psi_{\alpha}(\xi,\Theta)$ при $\Theta=\Theta_0$ будем называть локально Ψ_{α} -оптимальным, или компромиссным.

Три частных случая:

- $\alpha = 0$: усеченный D-оптимальный план;
- ullet $lpha = rac{1}{2}$: D-оптимальный план для полной модели;
- ullet $lpha = \overset{\,\, ilde{1}}{1}$: D-оптимальный план для полиномиальной модели.

Компромиссные планы: основные результаты

Теорема (Эквивалентности)

$$d_{\alpha}(x,\xi) = \alpha d_1(x,\xi) + (1-\alpha)d_s(x,\xi),$$

где
$$d_1(x,\xi)=f_1^{\rm T}(x)M_1^{-1}(\xi)f_1(x),$$
 $d_s(x,\xi)=f^{\rm T}(x)M_2^{-1}(\xi)f(x)-f_1^{\rm T}(x)M_1^{-1}(\xi)f_1(x).$ Для любого $\alpha\in[0,1]$ следующие условия эквивалентны:

- \bullet План ξ^* локально Ψ_{α} оптимальный;

Кроме того, существует единственный локально Ψ_{γ} -оптимальный план. Он сосредоточен в n+2k+1 точках, причем концы отрезка 0 и d являются опорными точками плана.

Теорема

Существует единственное $\alpha\in[0,1]$, такое, что $\xi_{\alpha}=\xi_{opt}$ — решение максиминной задачи, где $\xi_{\alpha}=\Psi_{\alpha}$ -оптимальный план.

Численное построение планов для n=1,2

Рассмотрим модели

$$\eta_1(x, \Theta_1) = \theta_{0,1} + \theta_{1,1}x + \dots + \theta_{n,1}x^n,
\eta_2(x, \Theta_2) = \theta_{0,2} + \theta_{1,2}x + \dots + \theta_{n,2}x^n + \frac{\theta_{n+1}}{x - \theta_{n+2}},$$

для случаев n=1,2. Положим $\mathcal{X}=[0,1], \theta_{n+2}^0=5.$ Компромиссный план для линейной модели имеет вид

$$\xi_{\alpha}^* = \begin{pmatrix} 0 & x_2^* & x_3^* & 1 \\ \omega_1 & \omega_2 & \omega_3 & \omega_4 \end{pmatrix}.$$

Компромиссный план для квадратичной модели имеет вид

$$\xi_{\alpha}^* = \begin{pmatrix} 0 & x_2^* & x_3^* & x_4^* & 1 \\ \omega_1 & \omega_2 & \omega_3 & \omega_4 & \omega_5 \end{pmatrix}.$$

Задача построения компромиссного плана представляет собой векторную оптимизацию функции $\Psi_{\alpha}(\xi)=\Psi_{\alpha}(x_2,\dots,x_{n+1},\omega_1,\dots,\omega_{n+2}).$

Построение компромиссных планов реализовано на языке R при помощи метода Nelder-Mead (пакет nloptr).

Таблица: Компромиссные планы при различных значениях lpha для линейной модели

α	x1	x2	x3	x4	w1	w2	w3	w4
0	0	0.329	0.736	1	0.191	0.301	0.299	0.209
0.15	0	0.324	0.739	1	0.203	0.291	0.288	0.217
0.3	0	0.318	0.744	1	0.219	0.278	0.275	0.228
0.45	0	0.31	0.750	1	0.241	0.258	0.257	0.243
0.5	0	0.304	0.755	1	0.25	0.25	0.25	0.25
0.6	0	0.3	0.759	1	0.272	0.229	0.232	0.267
0.75	0	0.287	0.773	1	0.319	0.183	0.192	0.305
0.9	0	0.268	0.796	1	0.401	0.101	0.115	0.383
1	0	0.033	0.976	1	0.5	0	0	0.5

n = 1: сравнение эффективности

Таблица: Эффективность компромиссных планов относительно различных критериев оптимальности

α	rational	linear	truncate	
0	0.974	0.705	1	
0.15	0.984	0.721	0.998	
0.3	0.993	0.740	0.990	
0.45	0.999	0.764	0.970	
0.5	1	0.774	0.959	
0.6	0.996	0.798	0.924	
0.73	0.971	0.838	0.836	
0.9	0.803	0.920	0.521	
1	0.0003	1	0.0005	

Рис.: Эффективность компромиссных планов при различных α относительно D-оптимального для линейной модели, D-оптимального плана для дробно-рациональной модели, усеченного D-оптимального плана

Таблица: Компромиссные планы для различных lpha для квадратичной модели

α	x1	x2	x3	×4	x5	w1	w2	w3	w4	w5
0	0	0.193	0.533	0.838	1	0.134	0.251	0.2	0.263	0.152
0.15	0	0.191	0.532	0.840	1	0.149	0.241	0.199	0.249	0.162
0.3	0	0.188	0.531	0.842	1	0.169	0.227	0.197	0.231	0.176
0.45	0	0.188	0.529	0.843	1	0.191	0.208	0.198	0.209	0.194
0.5	0	0.189	0.528	0.843	1	0.2	0.2	0.2	0.2	0.2
0.6	0	0.191	0.526	0.843	1	0.219	0.181	0.205	0.179	0.216
0.75	0	0.199	0.522	0.841	1	0.253	0.143	0.22	0.137	0.24
0.9	0	0.219	0.513	0.835	1	0.297	0.079	0.261	0.072	0.29
1	0	0.033	0.5	0.6	1	0.333	0	0.333	0	0.333

n = 2: сравнение эффективности

Таблица: Эффективность компромиссных планов относительно различных критериев оптимальности

α	rational	quadratic	trunc
0	0.965	0.748	1
0.15	0.979	0.769	0.996
0.3	0.991	0.791	0.983
0.45	0.999	0.817	0.954
0.5	1	0.827	0.939
0.6	0.996	0.849	0.895
0.65	0.99	0.86	0.86
0.75	0.964	0.888	0.772
0.9	0.824	0.944	0.475
1	0.037	1	0.0001

Рис.: Эффективность компромиссных планов при различных α относительно D-оптимального для квадратичной модели, D-оптимального плана для дробно-рациональной модели, 1 усеченного D-оптимального плана

Влияние начального приближения

•
$$\eta_1(x, \Theta_1) = \theta_{0,1} + \theta_{1,1}x + \ldots + \theta_{n,1}x^n$$
,

•
$$\eta_2(x,\Theta_2) = \theta_{0,2} + \theta_{1,2}x + \ldots + \theta_{n,2}x^n + \frac{\theta_{n+1}}{x - \theta_{n+2}}$$
,

Компромиссные планы являются локально оптимальными.

- ullet $\xi^* = \xi^*(heta^0_{n+2})$, где $heta^0_{n+2}$ начальное приближение $heta_{n+2}$;
- Зафиксируем θ_{n+2} ;
- ullet найдем компромиссные планы при различных $heta^0_{n+2}$, вычислим эффективности.

Влияние начального приближения: n=1

Пусть $\theta_3 = 5$, $\theta_3^0 \in [1.5, 10]$.

Рис.: Зависимость эффективности максиминного плана от начального приближения $heta_0^0$ для линейной модели при истинном значении равном 5

Влияние начального приближения: n=2

Пусть $\theta_4 = 5$, $\theta_4^0 \in [1.5, 6.5]$.

Рис.: Зависимость эффективности максиминного плана от начального приближения $heta_4^0$ для квадратичной модели при истинном значении равном 5

Итоги:

- Предложен компромиссный критерий оптимальности, доказана теорема эквивалентности;
- Доказано утверждение о том, что решение максиминной задачи содержится в классе компромиссных планов;
- Численно построены планы для $n=1,2,\ k=1$ и также исследованы показатели эффективности;
- Исследовано влияние начального приближения на эффективность.

Список литературы

Cook R., Wong W. K. On Equivalence of Constrained and Compound Optimal Designs // Journal of the American Statistical Association. — 1994 —

Vol. 89, no. 426. — P. 687–692.

Карлин С., Стадден В. Чебышевские системы и их применение в анализе и статистике. —

М.: Наука, 1976.—

Мелас В.Б. Локально оптимальные планы эксперимента: учеб. пособие. —

СПб : Изд-во СПбГТУ, 1999. — 48 с.