Sistemas e Controlo

Dezembro de 2019

Telmo Reis Cunha

Exercícios

Exercícios sobre Aplicação da Transformada de Laplace:

Exercício 01

Sabe-se que um determinado filtro passa-baixo pode ser modelado pela seguinte equação diferencial, onde u(t) é o sinal de entrada e y(t) o sinal de saída:

$$\frac{dy(t)}{dt} + ay(t) = au(t), \quad a \in \mathbb{R}^+$$

- a) Determine a expressão do sinal de saída (resposta do sistema) quando a entrada comuta repentinamente de 0 para 1, permanecendo depois neste valor (i.e., a entrada é um degrau unitário). Assuma que, no instante da transição, o filtro não tinha energia interna acumulada (i.e., condições iniciais nulas).
- b) No teste anterior, para que valor tende o sinal de saída?
- c) Considerando alguns valores para o parâmetro a (por exemplo, $\{0.1; 1; 10\}$), visualize a evolução deste sinal no MATLAB, constatando que se trata de um filtro passa-baixo. Qual é o papel do parâmetro a no comportamento do filtro?

Exercício 02

Considere um sistema que é modelado pela seguinte função de transferência G(s):

$$U(s) \qquad ab \qquad Y(s) \qquad ab \qquad Ab \in \Re^+ \land a \neq b$$

- a) Determine a expressão da resposta do sistema a um degrau unitário. Assuma condições iniciais nulas.
- b) No teste anterior, para que valor tende o sinal de saída?
- c) Simule o sistema para $\{a,b\} = \{0.1;0.2\},\{1;2\},\{10;12\}$ e identifique semelhanças e diferenças na forma das respostas observadas no exercício 01.
- d) Por que é que a abordagem seguida nas alíneas anteriores não pode considerar o caso em que a=b? O que teria que ser feito neste caso?

Considere um sistema que é modelado pela seguinte função de transferência G(s):

- a) Determine a expressão da resposta do sistema a um degrau unitário. Assuma condições iniciais nulas.
- b) No teste anterior, para que valor tende o sinal de saída?
- c) Visualize, no MATLAB, o sinal de saída obtido no referido teste e identifique semelhanças e diferenças na forma das respostas observadas nos exercícios 01 e 02.

Exercício 04

Determine a solução da seguinte equação diferencial que satisfaz as condições iniciais y(0) = 3 e $\dot{y}(0) = 2$:

$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = 0$$

Exercícios sobre Transformada de Laplace e a Resposta de Sistemas:

Exercício 05

Considere o seguinte filtro RC passa-alto:

- a) Determine a equação diferencial da dinâmica deste sistema, onde apenas $v_o(t)$ figura como variável dependente.
- b) Assumindo que, antes do instante t=0 segundos, o sinal de entrada $v_i(t)$ é 0 V e o condensador não tem carga armazenada, determine a expressão da evolução de $v_o(t)$ a partir de t=0, instante em que se aplica em v_i uma tensão constante de 5 V.
- c) No teste anterior, para que valor tende $v_o(t)$?
- d) Visualize o sinal $v_o(t)$ no MATLAB.
- e) Considere, agora, o mesmo teste mas assumindo que o condensador apresenta aos seus terminais, em t=0, uma tensão de $1\,V$ (do terminal esquerdo para o direito) devido à carga que tem acumulada nesse instante. Repita as alíneas anteriores.

Aplicou-se o sinal u(t) da figura da esquerda a um sistema modelado pela função de transferência à direita (sistema esse que não tinha, inicialmente, energia acumulada).

- a) Determine a expressão do sinal y(t).
- b) Visualize u(t) e y(t) no MATLAB, sobrepostos.

Exercício 07

Verifique as respostas obtidas nos exercícios 05 e 06 através do uso das funções step e lsim.

Exercício 08

Considere o seguinte filtro RLC:

- a) Determine a equação diferencial da dinâmica deste sistema, onde apenas $v_o(t)$ figura como variável dependente.
- b) Determine a função de transferência $G(s) = \frac{V_o(s)}{V_i(s)}$
- c) Assumindo condições iniciais nulas, represente a resposta do circuito quando, no instante t=0 segundos, se aplica na entrada uma tensão constante de 2 V.
- d) Repita a alínea anterior para o caso em que se aplica o seguinte sinal:

- e) Repita, ainda, para o caso em que o sinal de entrada é uma sinusoide de amplitude unitária, e cuja frequência adquire os seguintes valores: 100 Hz, 1 kHz, 1.6 kHz, 3 kHz e 16 kHz.
- f) Represente o Traçado de Bode (apenas em amplitude) deste circuito.

Exercícios sobre uso do SIMULINK:

Exercício 09

Considere o filtro RLC do exercício 04 da aula anterior:

- a) Implemente um modelo deste circuito, no SIMULINK, usando apenas blocos de ganho, somadores e integradores. Simule a sua resposta ao degrau de 2 V de amplitude, verificando que este modelo produz o mesmo resultado que a simulação do exercício anterior.
- b) Prepare um modelo de SIMULINK para obter a resposta deste filtro a uma onda sinusoidal de amplitude unitária (e de frequência configurável). Desenvolva um script no MATLAB que permita obter a resposta em frequência (traçado de Bode, apenas ganho) deste filtro através da simulação do modelo do SIMULINK na resposta a várias sinusoides, de diferentes frequências. Compare com o resultado obtido no exercício anterior.

Exercício 10

Considere o seguinte acelerómetro mecânico, cuja equação da dinâmica é: $\ddot{y} + \frac{D}{M}\dot{y} + \frac{K}{M}y = a$.

- a) Represente-o por um diagrama de blocos que use apenas blocos de ganho, somadores e integradores.
- b) Simule o seu comportamento no SIMULINK quando submetido a uma aceleração constante de $1 m/s^2$, considerando: K = 1; M = 1; $D = \{1; 2; 4\}$. Interprete os distintos comportamentos do ponteiro para os três coeficientes de atrito considerados.
- c) Simule, agora, a função de transferência do acelerómetro, confirmando os resultados da alínea anterior.
- d) Demonstre que, nos testes anteriores, a posição final do ponteiro não depende do coeficiente de atrito dinâmico, *D*.

Exercícios sobre Simplificação de Diagramas de Blocos:

Exercício 11

(Exercício do Exame de 11/Jan/2019) Por simplificação do seguinte diagrama de blocos, determine a expressão da função de transferência Y(s)/U(s):

Exercício 12

(Exercício do Exame de 02/Fev/2017 — Sistemas e Controlo I) Por simplificação do seguinte diagrama de blocos, determine a expressão da função de transferência Y(s)/U(s):

Exercícios sobre Diagramas de Fluxo de Sinal:

Exercício 13

(Exercício do exame de 30/Jan/2019) Transforme, sem o simplificar, o seguinte diagrama de blocos num diagrama de fluxo de sinal e, por aplicação da regra de Mason, determine a expressão da função de transferência Y(s)/U(s).

(Exercício do exame de 07/Jan/2016 — Sistemas e Controlo I) Considere um sistema representado pelo seguinte diagrama de fluxo de sinal. Por aplicação da regra de Mason determine a função de transferência Y(s)/U(s).

Exercício 15

(Exercício do exame de 12/Jan/2018 – Sistemas e Controlo I) Considere o seguinte circuito elétrico. Represente-o por um diagrama de fluxo de sinal onde as transmitâncias dos ramos são, no máximo, de primeira ordem e, por aplicação da regra de Mason, determine a função de transferência $G(s) = V_o(s)/V_i(s)$.

Exercícios sobre Modelação de Sistemas Físicos:

Exercício 16

Considere o seguinte sistema mecânico de translação, onde a força externa F(t) é aplicada sobre o corpo de massa M_1 (nas superfícies de contacto existe atrito dinâmico de coeficiente f):

- a) Determine as equações da dinâmica deste sistema.
- b) Obtenha a expressão da posição final de cada um dos dois corpos quando se aplica uma força constante $F(t) = \mathbf{F}$.
- c) Compare a ordem do modelo com os graus de armazenamento de energia do sistema.

Considere o seguinte sistema mecânico de translação, onde a força externa F(t) é aplicada sobre o corpo de massa M_1 (nas superfícies de contacto existe atrito dinâmico de coeficiente f_1 e f_2):

- a) Determine as equações da dinâmica deste sistema.
- b) Represente o sistema por um diagrama de fluxo de sinal onde apenas figurem os sinais $X_1(s)$, $X_2(s)$ e F(s), sendo $X_2(s)$ a saída do sistema.
- c) Compare a ordem do modelo com os graus de armazenamento de energia do sistema.

Exercício 18

Considere o seguinte sistema mecânico de rotação, onde o binário externo T(t) é aplicado sobre o eixo 1:

- a) Determine as equações da dinâmica deste sistema.
- b) Considerando que se aplica um binário constante $T(t) = \mathbf{T}$, determine a expressão da velocidade angular final de cada um dos eixos.

Exercício 19

O seguinte sistema apresenta dois tanques cilíndricos, com área de secção A_1 e A_2 , que acumulam a água que vai saindo de uma torneira (que debita o caudal q(t)). No fundo de cada tanque existe uma saída de água (de diâmetro desprezável face à altura de água no tanque) que apresenta uma determinada resistência fluídica (R_1 e R_2).

a) Determine as equações da dinâmica deste sistema, onde apenas figurem como variáveis dependentes a altura de água em cada tanque $(h_1 e h_2)$.

- b) Se se aplicar um caudal de entrada constante, q(t) = Q, para que valor (expressão) tende a altura de água em cada tanque?
- c) Simule o sistema, no SIMULINK, para o caso da alínea anterior, considerando que:
 - c.1) no início os tanques estão vazios;
 - c.2) no início tem-se $h_1(0) = 0.2 m$ e $h_2(0) = 1.0 m$;
 - e assumindo os seguintes valores para ambos os casos:

$$A_1 = 3.14 \ m^2 \quad A_2 = 0.79 \ m^2 \quad R_1 = 10^6 \quad R_2 = 2 R_1 \quad Q = 0.01 \ m^3/s \quad g = 9.8 \ m/s^2$$
 Visualize $h_1(t)$ e $h_2(t)$ em simultâneo.

d) Determine um equivalente elétrico deste sistema.

Exercício 20

Considere o seguinte sistema representativo de uma suspensão de um automóvel. O corpo de massa M_1 representa a fração da massa do chassis que é suportado pela suspensão, e de massa M_2 representa a roda (jante + pneu). Como o pneu é elástico, este efeito é representado pela mola K_2 . A suspensão em si é o conjunto mola + amortecedor de coeficiente de elasticidade K_1 e coeficiente de atrito dinâmico D, respetivamente.

Assume-se que:

- o pneu toca sempre no pavimento;
- o impacto da atração gravítica não é considerado;
- as irregularidades do pavimento constituem o sinal de entrada do sistema $(x_3(t))$;
- a saída do sistema é a movimentação do chassis $(x_1(t))$.
- a) Determine as equações da dinâmica deste sistema, onde apenas figurem x_1 e x_2 como variáveis dependentes.
- b) Que modificação teria que considerar na alínea anterior para considerar a atração gravítica?
- c) Implemente este modelo no SIMULINK, com os seguintes valores dos parâmetros, e simule (com e sem a inclusão da atração gravítica) a sua reação quando a viatura passa por irregularidades do pavimento com forma sinusoidal, de $A=10\ cm$ de amplitude, provocando um movimento oscilatório de frequência $f=3\ Hz$.

 $M_1=400~kg$ $M_2=20~kg$ $K_1=2000~N/m$ $K_2=25000~N/m$ D=3000~Ns/m Verifique se a suspensão efetua, ou não, a função a que se destina.

Exercício 21

(Exame Prático de Dez/2016 – Sistemas e Controlo I) Considere o sistema seguinte onde apenas se considera o atrito dinâmico (de coeficiente f) entre o corpo de massa M_2 e o solo. A roldana tem inércia J (não desprezável) e raio R. O cabo é não elástico e é sempre mantido em tensão. Antes do instante t=0, o sistema está parado (sem energia armazenada), com o corpo de massa M_1 fixo, sendo libertado em t=0.

- a) Determine as equações da dinâmica do sistema, onde apenas figurem $x_1(t)$ e $x_2(t)$ como variáveis dependentes.
- b) Considere os seguintes valores dos parâmetros do sistema:

$$J = 0.4 \text{ kg m}^2$$
 $R = 0.2 \text{ m}$ $f = 3 \text{ Ns/m}$ $M_2 = 2M_1 = 1 \text{ kg}$ $K = 1 \text{ N/m}$

- b.1) Usando o SIMULINK determine o tempo (desde t=0) que demora o corpo de massa M_1 a percorrer 1 metro. Apresente o diagrama implementado e o gráfico da evolução de $x_1(t)$ e $x_2(t)$ nesse intervalo de tempo.
- b.2) Determine, em função dos parâmetros do sistema, a expressão do valor para que tenderia a velocidade do corpo de massa M_2 , e verifique esse valor pela simulação.

(Exame Prático de Dez/2014 — Sistemas e Controlo I) Considere o sistema seguinte onde um binário T(t) aplicado ao eixo de uma roda (de inércia J, raio R e cuja fixação produz um atrito dinâmico de coeficiente D) faz elevar o corpo de massa M. Este corpo encontra-se ligado ao solo através de uma mola (de coeficiente de elasticidade K). O cabo (não elástico) está sempre em tensão.

a) Determine a equação da dinâmica onde apenas figure x(t) como variável dependente.

b) Por simulação no SIMULINK, observe a evolução de x(t) quando se aplica, em t=0, um binário constante $T(t)=10\ Nm$. Sabe-se que, em t=0, a mola não tinha energia armazenada e todo o sistema estava parado. Considere os seguintes valores dos parâmetros do sistema:

$$M = 5 kg$$
 $K = 1 N/m$ $J = 1 kg m^2$ $R = 0.2 m$ $D = 0.4 Ns/m$

c) Determine analiticamente a expressão do valor para o qual tende x(t) quando se aplica um binário constante $T(t) = \mathbf{T}$. Verifique que a expressão determinada está de acordo com o gráfico obtido na alínea b).

Exercício 23

O seguinte esquema apresenta um motor de de ímanes permanentes, controlado pelo induzido. Ao eixo do motor encontra-se acoplado um disco metálico, de inércia J_L , cuja superfície externa é usada para efetuar o corte de diferentes materiais.

- a) Assumindo que o disco não se encontra em contacto com o material a cortar (carga em vazio), determine a função de transferência $\omega_{rpm}(s)/V(s)$, onde ω_{rpm} é a velocidade de rotação em rotações por minuto.
- b) Simule o sistema no SIMULINK, por forma a visualizar a evolução da velocidade de rotação (em rpm) e da corrente fornecida ao motor quando: i) em t=0 segundos, com o sistema em repouso, se aplica uma tensão de $10\ V$ ao motor (com o disco em vazio); ii) e em t=50 segundos o disco entra em esforço, cortando um material de uma forma muito uniforme, provocando este corte um binário de carga constante $T_L(t)=5\ N\cdot m$. Considere os seguintes valores dos elementos do sistema:

$$\begin{split} J_M &= 1 \; Kg \cdot m^2 \quad J_L = 0.1 \; Kg \cdot m^2 \quad R = 1.3 \; \Omega \quad L = 0.2 \; H \\ K_m &= 1 \; N \cdot m/A \quad K_g = 0.1 \; V/rad \cdot s^{-1} \quad D = 0.1 \; N \cdot m/rad \cdot s^{-1} \end{split}$$

Exercícios sobre a Resposta de Sistemas de 2ª Ordem (sem zeros):

Exercício 24

Considere o seguinte sistema realimentado que contém o parâmetro ajustável $K \in \mathbb{R}^+$.

- a) Desenhe o trajeto seguido pelos polos do sistema à medida que o parâmetro K varia o seu valor.
- b) Identifique os regimes de operação deste sistema em função do parâmetro K, e visualize a resposta ao degrau do sistema em cada um desses regimes.
- c) Determine o valor de K para o qual a resposta ao degrau do sistema atinge uma sobrelevação de PO=30%. Verifique por simulação no MATLAB.
- d) Verifique que o tempo de estabelecimento (a ± 2 %) na resposta ao degrau permanece aproximadamente constante à medida que o valor de K aumenta, no regime subamortecido.

(Exame Teórico-Prático de Recurso de Jan/2019) Considere o seguinte sistema com dois parâmetros ajustáveis $a,b \in \mathbb{R}^+$, sendo este submetido a um degrau unitário.

- a) Determine a gama de valores que a saída do sistema pode adquirir quando em regime estacionário.
- b) Demonstre, ainda, que a saída apresenta sempre sobrelevação (independentemente dos valores dos parâmetros a e b).

Exercício 26

(Exame Teórico-Prático de Jan/2019, época normal) Considere o seguinte sistema com dois parâmetros ajustáveis $a,b \in \mathbb{R}^+$. Determine os valores de a e b por forma a que a resposta do sistema ao degrau unitário apresente uma sobrelevação de 10%, com um erro em regime estacionário (e_{ss}) igual a 0.2. Verifique o resultado por simulação no MATLAB e relacione cada

resposta ao degrau observada com a posição dos polos do sistema.

Exercício 27

Pretende-se dimensionar o seguinte circuito RLC série para que a sua resposta apresente características específicas.

a) Determine as expressões de ξ e ω_n em função dos valores dos componentes do circuito.

- b) Assumindo L=0.1~mH e $C=10~\mu F$, determine o valor de R que coloca o circuito a operar no regime criticamente amortecido.
- c) Simule, no MATLAB, a resposta do circuito no caso anterior quando se aplica subitamente de uma tensão de $10\ V$ (constante) na entrada. Visualize também, no mesmo gráfico, a resposta para os casos em que a resistência apresenta metade e o dobro do valor calculado em b).
- d) Considere, agora, que L=0.1~mH. Determine os valores de R e C para que, para o sinal de entrada anterior, o circuito apresente uma sobrelevação PO=20~% e um tempo de subida de $t_r\approx 50~\mu s$. Verifique o resultado por simulação no MATLAB.

(Exame Prático de Dez/2018) Aplicou-se, em laboratório, um degrau unitário à entrada de um determinado sistema físico (cujo comportamento se sabe ser aproximadamente linear), tendose obtido o seguinte sinal na sua saída:

Obtenha, justificando, um modelo para este sistema que aproxime o comportamento observado, e comprove-o por simulação

Exercícios sobre a Erro em Regime Estacionário de Sistemas Realimentados:

Exercício 29

Pretende-se controlar a velocidade de rotação de um motor de através do seguinte esquema de realimentação com controlador proporcional $K \in \mathbb{R}^+$ (sendo este imposto pelo ganho de um amplificador). A velocidade de rotação do motor é medida com um taquímetro que produz uma tensão proporcional à velocidade de rotação ($v_f(t) = A\omega(t), A \in \mathbb{R}^+$). A tensão aplicada ao motor não pode exceder 12 V.

- a) Mostre que a velocidade do motor, em regime estacionário, nunca chega a atingir o valor pretendido, especificado por um valor constante em $\omega_R(t)$. Obtenha a expressão para o erro em regime estacionário, e_{ss} .
- b) Indique de que forma seria possível modificar o sistema, apenas por substituição de um componente eletrónico, para se garantir que a velocidade de rotação do motor tenderia sempre para o valor especificado em ω_R .
- c) No caso da alínea anterior, o que aconteceria às características da resposta transitória do sistema? Use o MATLAB para simular esse comportamento e, assim, obter a resposta a esta questão (use, para tal, os valores dos parâmetros do motor considerados no exercício 23, e A=1/100).

Considere o seguinte sistema com parâmetro ajustável $K \in \mathbb{R}^+$ (controlador proporcional).

- a) Determine a expressão, em função de K, do erro em regime estacionário deste sistema na resposta ao degrau unitário.
- b) Pretendendo obter um erro em regime estacionário de 10% na resposta ao degrau unitário, determine o valor de K apropriado e verifique a solução no MATLAB. Explique o resultado observado.
- c) Visualize, no MATLAB, o trajeto que os polos do sistema efetuam no plano complexo à medida que o valor de K vai aumentando. Com base neste gráfico verifique que o regime transitório do sistema vai sendo deteriorado à medida que o regime estacionário vai melhorando.

Exercício 31

Considere o seguinte sistema realimentado com controlador proporcional $K \in \mathbb{R}^+$.

- a) Determine o valor de K que coloca o sistema a operar no regime criticamente amortecido.
- b) Determine *K* para que a resposta ao degrau unitário apresente o valor máximo de 0.745. Verifique no MATLAB.
- c) Determine, na resposta ao degrau, a expressão do erro em regime estacionário em função de K, e verifique-a no MATLAB.

Exercícios sobre a Aplicação do Critério de Routh-Hurwitz:

Exercício 32

Considere o seguinte sistema de controlo com controlador proporcional $K \in \mathbb{R}^+$.

Por aplicação do Critério de Routh-Hurwitz, determine a gama de valores de K para os quais o sistema é estável.

Exercício 33

Seja o seguinte sistema realimentado e compensado com compensador proporcional $K \in \mathbb{R}$.

Por aplicação do critério de Routh-Hurwitz, determine a gama de valores de K para a qual o sistema é estável segundo o critério BIBO.

Exercício 34

Considere o seguinte sistema com parâmetro ajustável $p \in \mathbb{R}$.

$$U(s) = \begin{cases} G(s) \\ \hline 10s + 100 \\ \hline s^5 + 2s^4 + (p+2)s^3 + 2s^2 + (p+3)s + 4 \end{cases}$$

Demonstre que o sistema é sempre instável para qualquer valor de p.

Considere o seguinte sistema com parâmetro ajustável $p \in \mathbb{R}$.

Averigue a estabilidade deste sistema em função de p.

Exercício 36

Considere o seguinte sistema realimentado com controlador proporcional $K \in \mathbb{R}^+$.

- a) Determine a gama de valores de K para os quais o sistema é estável.
- b) Nas condições de limiar de estabilidade, determine a localização dos polos que se encontram sobre o eixo imaginário.

Exercícios sobre a Aplicação do Método do Lugar de Raízes:

Exercício 37

Considere o seguinte sistema de controlo com controlador proporcional $K \in \mathbb{R}^+$.

- a) Por aplicação do Critério de Routh-Hurwitz, determine a gama de valores de *K* para os quais o sistema é estável.
- b) Desenhe o lugar de raízes deste sistema:
 - i) Usando as regras de Evans.
 - ii) Através da ferramenta SISOTOOL.
- c) Verifique a condição de estabilidade:
 - i) Pelo SISOTOOL.
 - ii) Pela resolução analítica da equação característica.

Considere o seguinte sistema de controlo com controlador proporcional $K \in \mathbb{R}^+$.

- a) Desenhe o lugar de raízes deste sistema:
 - i) Usando as regras de Evans.
 - ii) Pelo SISOTOOL.
- b) Verifique a condição de estabilidade:
 - i) Por aplicação do critério de Routh-Hurwitz.
 - ii) Pela resolução analítica da equação característica.
 - iii) Pelo SISOTOOL.
- c) Determine K para o qual a resposta ao degrau unitário apresenta uma sobrelevação de 30%.
- d) Verifique que o sistema, nas condições da alínea c), se comporta aproximadamente como um sistema de 2ª ordem. Determine o modelo desse sistema de 2ª ordem e represente, em simultâneo, a resposta ao degrau dos dois modelos.

Exercício 39

(Exame de Época Normal – 11/Jan/2019) O sistema representado na figura do lado (onde $K \in \mathbb{R}^+$) apresenta o traçado do lugar de raízes representado em baixo.

Sabendo que o sistema apresenta um polo duplo para K=1, determine completamente a função de transferência G(s).

Exercício 40

(Exame de Época de Recurso – 30/Jan/2019) O sistema representado na figura do lado (onde $K \in \mathbb{R}^+$) apresenta o traçado do lugar de raízes indicado em baixo.

Sabendo que o sistema se encontra no limiar de estabilidade para K=2, determine completamente a função de transferência G(s).

Exercícios sobre Projeto de Controladores:

Exercício 41

Considere o seguinte sistema de controlo cujo controlador tem uma função de transferência $G_C(s)$ costumizável. O sinal de controlo a aplicar ao sistema não poderá estar fora da gama [-10; +10] por limitação da entrada desse sistema. Pretende-se que o sistema controlado tenha os polos dominantes em $-2 \pm j$. O sinal de teste é o degrau unitário.

- a) Mostre que um controlador proporcional não é suficiente para este objetivo.
- b) Introduza, agora, uma ação derivativa no controlador (mantendo também a ação proporcional). Ou seja, considere $G_C(s) = K_P(s+z)$. Averigue da possibilidade de este controlador conduzir à especificação desejada.
- c) Projete, agora, o controlador $G_C(s) = K_P \frac{s+z}{s+p}$. Conclua sobre esta implementação e a da alínea anterior.

Exercício 42

Considere o seguinte sistema de controlo com controlador $G_{\mathcal{C}}(s)$.

Determine os parâmetros (realistas) do controlador $G_C(s) = K \frac{s+a}{s+b}$ por forma que a resposta do sistema compensado ao degrau unitário apresente aproximadamente as seguintes características:

$$\begin{cases} \text{Valor final: } V_F \approx 0.5\\ \text{Sobrelevação: } PO \approx 10\%\\ \text{Tempo de pico: } t_P \approx 1.4 \ seg \end{cases}$$

Exercícios sobre Diagramas de Bode de Sistemas Realimentados:

Exercício 43

(Exame de Época Recurso – 25/Jan/2016 – Sistemas e Controlo I) Na figura à direita apresenta-se o diagrama de Bode assintótico (apenas magnitude) do bloco representado por G(s) no diagrama de blocos da esquerda (onde β é um número real positivo).

- a) Considerando $\beta=1$, apresente (justificando) uma estimativa para a margem de fase deste sistema.
- b) Para que valor de eta se obtém uma margem de fase nula? Justifique.

(Exame de Época Normal – 07/Jan/2016 – Sistemas e Controlo I) Considere o seguinte sistema realimentado. Sabe-se que G(s) é de fase mínima e apresenta o traçado (assintótico)

de Bode indicado à direita (apenas em magnitude). Comente, justificadamente, sobre a estabilidade deste sistema realimentado.