"ALGORITMI"

CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

 1^a prova in itinere – 13 gennaio 2015

Si svolgano i seguenti esercizi, argomentando adeguatamente le risposte.

ESERCIZIO 1

Si risolva l'equazione di ricorrenza

$$T(n) = \frac{27}{a} \cdot T\left(\frac{n}{a}\right) + \Theta\left(n^2 \log n\right)$$

al variare del parametro reale a > 1.

ESERCIZIO 2

Si ordinino le funzioni $n^2 \log n$, $\log^2 n$, 2^n , $4^{\log n}$ per tasso di crescita.

ESERCIZIO 3

- (a) Si stabilisca se l'array [25, 12, 13, 6, 9, 7, 5, 1, 8, 4] è un max-heap.
- (b) Si descriva la procedura MAX-HEAPIFY e quindi si illustri l'azione di MAX-HEAPIFY(A, 3) sull'array A = [1, 3, 9, 2, 2, 14, 12, 1, 1, 1, 1, 10, 11, 11, 9].

ESERCIZIO 4

Si descriva l'algoritmo Counting Sort (campo di applicazione, pseudocodice, complessità, proprietà, ecc.) e lo si illustri sull'array A = [2, 0, 3, 6, 2, 0, 4, 2].

ESERCIZIO 5

Si illustri un semplice algoritmo che risolva in tempo lineare il problema della selezione per un'arbitraria statistica d'ordine, basato su una subroutine data, MEDIAN, che trova la mediana in tempo lineare.

ESERCIZIO 6

(a) Sia T una tabella hash di dimensione 16, inizialmente vuota, organizzata con il metodo dell'indirizzamento aperto. Sia $h(x,i): \mathbb{N} \times \{0,1,\ldots,15\} \to \{0,1,\ldots,15\}$ la funzione hash quadratica definita da

$$h(x,i) = \left(x + \frac{i(i+1)}{2}\right) \mod 16.$$

Si illustri l'inserimento delle chiavi 84, 6, 116, 18, 100, 97, 96, 113, 22, 7, 10, 71 (nell'ordine dato) nella tabella T utilizzando la funzione hash h.

- (b) Si enunci l'ipotesi di hashing uniforme e si forniscano dei limiti superiori al numero medio di scansioni in ricerche con e senza successo in una tabella hash con fattore di carico α , assumendo l'ipotesi di hashing uniforme.
- (c) La funzione h(x,i) definita sopra soddisfa l'ipotesi di hashing uniforme? Perchè?