In [1]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from IPython import get_ipython
import warnings
warnings.filterwarnings("ignore")
```

In [2]:

```
data = pd.read_csv('customer_data.csv')
```

In [3]:

data.head()

Out[3]:

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Customer
0	5524	1957	Graduation	Single	58138	0	0	04-09-2012
1	2174	1954	Graduation	Single	46344	1	1	08-03-2014
2	4141	1965	Graduation	Together	71613	0	0	21-08-2013
3	6182	1984	Graduation	Together	26646	1	0	10-02-2014
4	5324	1981	PhD	Married	58293	1	0	19-01-2014

5 rows × 29 columns

→

In [4]:

data.tail()

Out[4]:

	ID	Year_Birth	Education	Marital_Status	Income	Kidhome	Teenhome	Dt_Custome
195	9265	1953	Graduation	Married	75027	0	1	09-01-201
196	8867	1988	PhD	Married	67546	0	0	31-08-201
197	8932	1969	Master	Together	65176	0	1	29-10-201
198	10236	1975	Master	Single	31160	1	0	16-09-201
199	6340	1985	Graduation	Single	29938	1	0	27-10-201

5 rows × 29 columns

```
In [5]:
data.shape
Out[5]:
(200, 29)
In [6]:
data.columns
Out[6]:
Index(['ID', 'Year_Birth', 'Education', 'Marital_Status', 'Income', 'Kidho
        'Teenhome', 'Dt_Customer', 'Recency', 'MntWines', 'MntFruits',
        'MntMeatProducts', 'MntFishProducts', 'MntSweetProducts', 'MntGoldProds', 'NumDealsPurchases', 'NumWebPurchases',
        'NumCatalogPurchases', 'NumStorePurchases', 'NumWebVisitsMonth',
        'AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1',
        'AcceptedCmp2', 'Complain', 'Z_CostContact', 'Z_Revenue', 'Respons
e'],
      dtype='object')
In [7]:
data.duplicated().sum()
Out[7]:
```

0

In [8]:

```
data.isnull().sum()
```

Out[8]:

ID	0
Year_Birth	0
Education	0
Marital_Status	0
Income	0
Kidhome	0
Teenhome	0
Dt_Customer	0
Recency	0
MntWines	0
MntFruits	0
MntMeatProducts	0
MntFishProducts	0
MntSweetProducts	0
MntGoldProds	0
NumDealsPurchases	0
NumWebPurchases	0
NumCatalogPurchases	0
NumStorePurchases	0
NumWebVisitsMonth	0
AcceptedCmp3	0
AcceptedCmp4	0
AcceptedCmp5	0
AcceptedCmp1	0
AcceptedCmp2	0
Complain	0
<pre>Z_CostContact</pre>	0
Z_Revenue	0
Response	0
dtype: int64	

In [9]:

```
data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 29 columns):

Jaca	COLUMNIS (COCAL 25 CO.	rumis).	
#	Column	Non-Null Count	Dtype
0	ID	200 non-null	int64
1	Year_Birth	200 non-null	int64
2	Education	200 non-null	object
3	Marital_Status	200 non-null	object
4	Income	200 non-null	int64
5	Kidhome	200 non-null	int64
6	Teenhome	200 non-null	int64
7	Dt_Customer	200 non-null	object
8	Recency	200 non-null	int64
9	MntWines	200 non-null	int64
10	MntFruits	200 non-null	int64
11	MntMeatProducts	200 non-null	int64
12	MntFishProducts	200 non-null	int64
13	MntSweetProducts	200 non-null	int64
14	MntGoldProds	200 non-null	int64
15	NumDealsPurchases	200 non-null	int64
16	NumWebPurchases	200 non-null	int64
17	NumCatalogPurchases	200 non-null	int64
18	NumStorePurchases	200 non-null	int64
19	NumWebVisitsMonth	200 non-null	int64
20	AcceptedCmp3	200 non-null	int64
21	AcceptedCmp4	200 non-null	int64
22	AcceptedCmp5	200 non-null	int64
23	AcceptedCmp1	200 non-null	int64
24	AcceptedCmp2	200 non-null	int64
25	Complain	200 non-null	int64
26	<pre>Z_CostContact</pre>	200 non-null	int64
27	Z_Revenue	200 non-null	int64
28	Response	200 non-null	int64

dtypes: int64(26), object(3)
memory usage: 45.4+ KB

In [10]:

data.describe()

Out[10]:

	ID	Year_Birth	Income	Kidhome	Teenhome	Recency	MntW
count	200.000000	200.000	200.000000	200.000000	200.000000	200.000000	200.000
mean	5633.330000	1968.260	53405.395000	0.460000	0.515000	46.860000	321.00
std	3270.834831	12.064	22701.597661	0.556731	0.566906	27.962832	333.05
min	0.000000	1943.000	2447.000000	0.000000	0.000000	0.000000	0.000
25%	2681.500000	1958.000	35842.500000	0.000000	0.000000	24.000000	21.500
50%	6038.000000	1969.000	53857.500000	0.000000	0.000000	47.000000	222.000
75%	8450.250000	1977.000	69406.000000	1.000000	1.000000	69.000000	524.000
max	11178.000000	1992.000	157243.000000	2.000000	2.000000	99.000000	1349.000

8 rows × 26 columns

localhost:8888/notebooks/Customer Personality Analysis.ipynb

```
In [11]:
```

```
data.nunique()
Out[11]:
ID
                        200
Year_Birth
                         48
Education
                          4
Marital_Status
                          6
Income
                        197
Kidhome
                          3
                          3
Teenhome
                        173
Dt_Customer
Recency
                         85
MntWines
                        156
MntFruits
                         71
MntMeatProducts
                        133
MntFishProducts
                         77
MntSweetProducts
                         70
MntGoldProds
                         85
NumDealsPurchases
                         12
NumWebPurchases
                         12
NumCatalogPurchases
                         14
NumStorePurchases
                         13
NumWebVisitsMonth
                         11
AcceptedCmp3
                          2
AcceptedCmp4
                          2
                          2
AcceptedCmp5
AcceptedCmp1
                          2
                          1
AcceptedCmp2
Complain
                          2
Z_CostContact
                          1
Z_Revenue
                          1
                          2
Response
dtype: int64
In [12]:
data["Dt Customer"] = pd.to datetime(data["Dt Customer"])
In [13]:
```

```
dates = []
for i in data["Dt_Customer"]:
   i = i.date()
   dates.append(i)
#Dates of the newest and oldest recorded customer
print("The newest customer's enrolment date in therecords:",max(dates))
print("The oldest customer's enrolment date in the records:",min(dates))
```

The newest customer's enrolment date in therecords: 2014-12-05 The oldest customer's enrolment date in the records: 2012-02-11

In [14]:

```
days = []
d1 = max(dates) #taking it to be the newest customer
for i in dates:
    delta = d1 - i
    days.append(delta)
data["Customer_For"] = days
data["Customer_For"] = pd.to_numeric(data["Customer_For"], errors="coerce")
```

In [15]:

```
print("Total categories in the feature Marital_Status:\n", data["Marital_Status"].value_
print("Total categories in the feature Education:\n", data["Education"].value_counts())
```

Total categories in the feature Marital_Status: Married 83

Together 48
Single 40
Divorced 23
Widow 4
Alone 2

Name: Marital_Status, dtype: int64

Total categories in the feature Education:

Graduation 111 PhD 49 Master 35 Basic 5

Name: Education, dtype: int64

In [16]:

```
#Feature Engineering
#Age of customer today
data["Age"] = 2021-data["Year_Birth"]
#Total spendings on various items
data["Spent"] = data["MntWines"]+ data["MntFruits"]+ data["MntMeatProducts"]+ data["MntF
#Deriving living situation by marital status"Alone"
data["Living_With"]=data["Marital_Status"].replace({"Married":"Partner", "Together":"Par
#Feature indicating total children living in the household
data["Children"]=data["Kidhome"]+data["Teenhome"]
#Feature for total members in the householde
data["Family_Size"] = data["Living_With"].replace({"Alone": 1, "Partner":2})+ data["Chil
#Feature pertaining parenthood
data["Is_Parent"] = np.where(data.Children> 0, 1, 0)
#Segmenting education levels in three groups
data["Education"]=data["Education"].replace({"Basic":"Undergraduate","2n Cycle":"Undergr
#For clarity
data=data.rename(columns={"MntWines": "Wines", "MntFruits": "Fruits", "MntMeatProducts": "Me
#Dropping some of the redundant features
to_drop = ["Marital_Status", "Dt_Customer", "Z_CostContact", "Z_Revenue", "Year Birth",
data = data.drop(to drop, axis=1)
```

In [17]:

from matplotlib import colors

In [18]:

```
#To plot some selected features
#Setting up colors prefrences
sns.set(rc={"axes.facecolor":"#FFF9ED","figure.facecolor":"#FFF9ED"})
pallet = ["#682F2F", "#9E726F", "#D6B2B1", "#B9C0C9", "#9F8A78", "#F3AB60"]
cmap = colors.ListedColormap(["#682F2F", "#9E726F", "#D6B2B1", "#B9C0C9", "#9F8A78", "#F
#Plotting following features
To_Plot = [ "Income", "Recency", "Customer_For", "Age", "Spent", "Is_Parent"]
print("Reletive Plot Of Some Selected Features: A Data Subset")
plt.figure()
sns.pairplot(data[To_Plot], hue= "Is_Parent",palette= (["#682F2F","#F3AB60"]))
#Taking hue
plt.show()
```

Reletive Plot Of Some Selected Features: A Data Subset

<Figure size 432x288 with 0 Axes>

In [19]:

```
#Dropping the outliers by setting a cap on Age and income.
data = data[(data["Age"]<90)]
data = data[(data["Income"]<600000)]
print("The total number of data-points after removing the outliers are:", len(data))</pre>
```

The total number of data-points after removing the outliers are: 200

In [20]:

```
#correlation matrix
corrmat= data.corr()
plt.figure(figsize=(20,20))
sns.heatmap(corrmat,annot=True, cmap=cmap, center=0)
```

Out[20]:

<AxesSubplot: >

In [21]:

```
#Get list of categorical variables
s = (data.dtypes == 'object')
object_cols = list(s[s].index)
print("Categorical variables in the dataset:", object_cols)
```

Categorical variables in the dataset: ['Education', 'Living_With']

In [22]:

```
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from yellowbrick.cluster import KElbowVisualizer
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt, numpy as np
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cluster import AgglomerativeClustering
from matplotlib.colors import ListedColormap
from sklearn import metrics
import warnings
import sys
if not sys.warnoptions:
    warnings.simplefilter("ignore")
np.random.seed(42)
```

In [23]:

```
#Label Encoding the object dtypes.
LE=LabelEncoder()
for i in object_cols:
    data[i]=data[[i]].apply(LE.fit_transform)
print("All features are now numerical")
```

All features are now numerical

In [24]:

```
#Creating a copy of data
ds = data.copy()
# creating a subset of dataframe by dropping the features on deals accepted and promotion
cols_del = ['AcceptedCmp3', 'AcceptedCmp4', 'AcceptedCmp5', 'AcceptedCmp1','AcceptedCmp2
ds = ds.drop(cols_del, axis=1)
#Scaling
scaler = StandardScaler()
scaler.fit(ds)
scaled_ds = pd.DataFrame(scaler.transform(ds),columns= ds.columns )
print("All features are now scaled")
```

All features are now scaled

In [25]:

```
#Scaled data to be used for reducing the dimensionality
print("Dataframe to be used for further modelling:")
scaled_ds.head()
```

Dataframe to be used for further modelling:

Out[25]:

	Education	Income	Kidhome	Teenhome	Recency	Wines	Fruits	Meat	
0	-0.859389	0.208993	-0.828325	-0.910720	0.399386	0.945144	1.551001	1.372401	2.
1	-0.859389	-0.311833	0.972381	0.857669	-0.317644	-0.933133	-0.615097	-0.671862	-0.
2	-0.859389	0.804053	-0.828325	-0.910720	-0.747862	0.316041	0.579991	-0.213796	1.
3	-0.859389	-1.181703	0.972381	-0.910720	-0.747862	-0.933133	-0.540404	-0.618863	-0.
4	0.969098	0.215838	0.972381	-0.910720	1.690040	-0.445504	0.430605	-0.247867	0.

5 rows × 23 columns

```
→
```

In [26]:

```
#Initiating PCA to reduce dimentions aka features to 3
pca = PCA(n_components=3)
pca.fit(scaled_ds)
PCA_ds = pd.DataFrame(pca.transform(scaled_ds), columns=(["col1","col2", "col3"]))
PCA_ds.describe().T
```

Out[26]:

	count	mean	std	min	25%	50%	75%	max
СО	200.0	1.154632e-16	2.852054	-5.251310	-2.549512	-0.788624	2.758482	6.389774
СО	200.0	-3.552714e-17	1.715182	-3.930605	-1.321979	-0.190908	1.324170	4.583010
co	200.0	4.107825e-17	1.313574	-2.745802	-0.719173	-0.017188	0.603005	8.107841

In [27]:

```
#A 3D Projection Of Data In The Reduced Dimension
x =PCA_ds["col1"]
y =PCA_ds["col2"]
z =PCA_ds["col3"]
#To plot
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection="3d")
ax.scatter(x,y,z, c="maroon", marker="o")
ax.set_title("A 3D Projection Of Data In The Reduced Dimension")
plt.show()
```

A3D Projection Of Data In The Reduced Dimension

In [28]:

```
# Quick examination of elbow method to find numbers of clusters to make.
print('Elbow Method to determine the number of clusters to be formed:')
Elbow_M = KElbowVisualizer(KMeans(), k=10)
Elbow_M.fit(PCA_ds)
Elbow_M.show()
```

Elbow Method to determine the number of clusters to be formed:

Out[28]:

<AxesSubplot: title={'center': 'Distortion Score Elbow for KMeans Clusteri
ng'}, xlabel='k', ylabel='distortion score'>

In [29]:

```
#Initiating the Agglomerative Clustering model
AC = AgglomerativeClustering(n_clusters=4)
# fit model and predict clusters
yhat_AC = AC.fit_predict(PCA_ds)
PCA_ds["Clusters"] = yhat_AC
#Adding the Clusters feature to the orignal dataframe.
data["Clusters"]= yhat_AC
```

In [30]:

```
#Plotting the clusters
fig = plt.figure(figsize=(10,8))
ax = plt.subplot(111, projection='3d', label="bla")
ax.scatter(x, y, z, s=40, c=PCA_ds["Clusters"], marker='o', cmap = cmap )
ax.set_title("The Plot Of The Clusters")
plt.show()
```

The Plot Of The Clusters

In [31]:

```
#Plotting countplot of clusters
pal = ["#682F2F","#B9C0C9", "#9F8A78","#F3AB60"]
pl = sns.countplot(x=data["Clusters"], palette= pal)
pl.set_title("Distribution Of The Clusters")
plt.show()
```


In [32]:

```
pl = sns.scatterplot(data = data,x=data["Spent"], y=data["Income"],hue=data["Clusters"],
pl.set_title("Cluster's Profile Based On Income And Spending")
plt.legend()
plt.show()
```


In [33]:

```
plt.figure()
pl=sns.swarmplot(x=data["Clusters"], y=data["Spent"], color= "#CBEDDD", alpha=0.5 )
pl=sns.boxenplot(x=data["Clusters"], y=data["Spent"], palette=pal)
plt.show()
```


In [34]:

```
#Creating a feature to get a sum of accepted promotions
data["Total_Promos"] = data["AcceptedCmp1"]+ data["AcceptedCmp2"]+ data["AcceptedCmp3"]+
#PLotting count of total campaign accepted.
plt.figure()
pl = sns.countplot(x=data["Total_Promos"],hue=data["Clusters"], palette= pal)
pl.set_title("Count Of Promotion Accepted")
pl.set_xlabel("Number Of Total Accepted Promotions")
plt.show()
```


In [35]:

```
#Plotting the number of deals purchased
plt.figure()
pl=sns.boxenplot(y=data["NumDealsPurchases"],x=data["Clusters"], palette= pal)
pl.set_title("Number of Deals Purchased")
plt.show()
```


In [36]: