P2002 對稱式加密演算法

網際網路發達後,訊息在網路上流通很容易被竊取,資料加密後再傳送實有必要;加密後傳送的資料必須確保唯有當資料抵達正確的接收方後,才能夠 經解密過程還原原文,如此才能真正達到機密不外洩的目的。

以下為對稱式加密的基本概念,加密者與解密者持有共同的密鑰(Secrete key),加密者以該密鑰加密,解密者亦以同樣的密鑰解密,甚至加解密程式也完全一樣,將介紹的 XOR 加解密過程即具備如此特性;例如,茲利用一十六進位密鑰 AC(10101100)對一 byte 的明文資料(01110110)加密,如下:

01110110(明文)

XOR 10101100(密鑰)

11011010(密文)

經加密後,密文與明文顯然不同,接收端只要對密文用相同的密鑰進行 XOR 運算,便可還原,如下:

11011010(密文)

XOR 10101100(密鑰)

01110110(明文)

XOR 加解密演算法雖然簡單,但若密鑰只有一個 byte,要破解並不困難,例如以暴力法或字元頻率分析,不難解密;為增加解密的困難度,本題中所給的密鑰將有 $n(1 \le n \le 128)$ 個 bytes $(k_1k_2 \cdots k_n)$; 加解密時,對明文或密文中的內容從 k_1 開始,依序用不同密鑰中的 byte 施以 XOR 運算,密鑰用到 k_n 後,又回到 k_1 ,直到明文或密文結束。

本題中,你將被要求對一個檔案的內容進行加密或解密,程式中你須要正確使用不同檔案應被開啟的模式;若要求的工作是解密,你除了將解密後的明文寫入指定的檔案中外,也須將其內容輸出至 stdout;若所要求的工作是加密,你除了將加密後的密文寫入指定的檔案中外,也須將其內容以十六進制方式輸出至 stdout,輸出方式見稍後說明與範例輸出。

輸入說明

測資第一行依序為一字元('d'或'e')與兩個檔名(file1與file2),字元'd'表示進行解密,字元'e'表示加密,file1為讀入的明文或密文的檔名,file2為寫入的明文或密文的檔名;第二行為密鑰資訊,該行最前方為一整數說明密鑰的長度n,隨後為n個以空白間隔之密鑰值 k_1 , k_2 ,…, k_n ,密鑰值均為 $0\sim255$ 的十進位數字。

輸出說明

依測資要求讀入明文或密文檔案 file1,加解密後將明文或密文寫入檔案

file2;若為解密工作,file2內容亦須輸出至 stdout。若為加密工作,需將密為內容以二進制方式輸出至 stdout,每行輸出 16 bytes (最後一行除外),並以空白區隔每個 byte。

以下範例假設明文檔名為 plain.txt,檔案內容為;

"CodingPass, \nNice to meet you!\n"

假設密文檔名 cypher.bin 之內容為以上檔案加密後之二進制檔案。

以下範例輸出中將僅呈現 stdout 的結果。

範例輸入(I)

e plain.txt cypher.bin

2 121 212

範例輸出(I)

3A BB 1D BD 17 B3 29 B5 0A A7 55 DE 37 BD 1A B1 59 A0 16 F4 14 B1 1C A0 59 AD 16 A1 58 DE

範例輸入(II)

d cypher.bin any.txt
2 121 212

範例輸出(II)

CodingPass,

Nice to meet you!