

Discrete Mathematics 2025 Spring

魏可佶 kejiwei@tongji.edu.cn

Chapter 8 Elementary Number Theory

- 8.1 Prime Numbers
- 8.2 Greatest Common Divisor and Least Common Multiple
- ■8.3 Congruence
- 8.4 Linear Congruence Equations and the Chinese Remainder Theorem
- 8.5 Euler's Theorem and Fermat's Little Theorem

- Fermat's Little Theorem
- **Euler's Totient Function**
- **Euler's Theorem**

4 Fermat's Little Theorem and Applications

Theorem 8.15 (Fermat's Little Theorem): Let p be a prime number and a an integer such that a and p are coprime. Then: $a^{p-1} \equiv 1 \pmod{p}$.

Note:

- Furthermore, for any integer a, it holds that $a^p \equiv a \pmod{p}$.
- P is prime, a and p coprime, then a^{p-1} 1 is divisible by p.
- $a^{p-1}\equiv 1 \pmod{p}$ is also $a^*a^{p-2}\equiv 1 \pmod{p}$, $a^{p-2}\mod p$ is the modular inverse of a.

Fermat's Little Theorem and Applications

- Applications of Fermat's Little Theorem:
 - Solving congruences $ax \equiv b \pmod{p}$, When p is a prime, the theorem helps simplify the computation of powers modulo p.
 - **Primality testing**: While not absolutely reliable, Fermat's Little Theorem is effective in many cases for checking whether a number is prime.
 - Proving a number is composite:

 If the theorem fails for a particular base a, it can be used to confirm that a number is not prime.
 - To test whether a number p is prime: If there exists any integer a (1 < a < p and a is coprime to p) such that $a^{p-1} \mod p \neq 1$, then p can be definitively identified as a composite number.
- **Example:** 2^{9-1} **=** 4 (mod 9), so we can conclude that 9 is composite.

- **Euler's Totient Function** $\phi(n)$: It is the number of integers in the set $\{0,1,...,n-1\}$ that are coprime to n.
- Properties of $\phi(n)$: If n is a prime number, then $\phi(n)=n-1$. If n is a composite number, then $\phi(n)< n-1$.
- Formula for computing $\phi(n)$: If the prime factorization of n is $n=p_1^{k1}\cdot p_2^{k2}\cdots p_r^{kr}$, where $p_1,p_2,...,p_r$ are distinct prime numbers,

then
$$\phi(n) = n \cdot \left(1 - \frac{1}{p_1}\right) \cdot \left(1 - \frac{1}{p_2}\right) \cdot \dots \cdot \left(1 - \frac{1}{p_r}\right)$$

- **Example 1:** Direct Counting Method to Find $\phi(4)$. {0, 1,..., 3}, only 1 and 3 are coprime to 4, $\phi(4)$ =2.
- **Example 2:** Prime Factorization Method to Find $\phi(12)$.

The prime factorization of 12 is $2^2 \times 3$, $p_1=2$ and $p_2=3$,

Therefore:
$$\phi(12) = 12 \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) = 4$$
.

Theorem 8.16 (Euler's Theorem): If a is coprime to n, then $a^{\phi(n)}$ ≡ 1(mod n).

Note:

- Since $\phi(n)$ when n is a prime, Euler's Theorem becomes Fermat's Little Theorem in that case.
- Thus, Euler's Theorem is a generalization of Fermat's Little Theorem, and it can be applied to any positive integer n.
- When n is a composite number, Euler's Theorem provides a way to find the modular inverse of a modulo n, because $a^{\phi(n)-1} \equiv a^{-1} \pmod{n}$.

Chapter 8 Elementary Number Theory • Brief summary

Objective:

Key Concepts:

