Ensemble Averages	
First Order	$E\{f(x[k])\} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n[k])$
Linear Mean	$\mu_x[k] = E\{x[k]\}$
Quadratic Mean	$E\{x^2[k]\}$
Variance	$\sigma_x^2[k] = E\{(x[k] - \mu_x[k])^2\} = E\{x^2[k]\} - \mu_x^2[k]$
Second Order Order	$E\{f(x[k_1], x[k_2])\} = \lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n[k_1], x_n[k_2])$
Auto-Correlation Function (ACF)	$\varphi_{xx}[k_1, k_2] = E\{x[k_1] \cdot x[k_2]\}$
Properties	
Linearity	$E\{a\cdot x[k]+b\cdot y[k]\}=a\cdot E\{x[k]\}+b\cdot E\{y[k]\}$
Deterministic Signal $s[k]$	$E\{s[k]\} = s[k]$

Stationary and Ergodic Processes	
Stationarity	$E\{f(x[k_1], x[k_2])\} = E\{f(x[k_1 + \Delta], x[k_2 + \Delta])\}$
First Order Ensemble Average	$E\{f(x[k_1])\} = E\{f(x[k_1 + \Delta])\}\$
Linear Mean	$\mu_x[k] = \mu_x$
Variance	$\sigma_x^2[k] = \sigma_x^2$
Auto-Correlation Function (ACF)	$\varphi_{xx}[\kappa] = E\{x[k] \cdot x[k-\kappa]\} = E\{x[k+\kappa] \cdot x[k]\}$
Cross-Correlation Function (CCF)	$\varphi_{xy}[\kappa] = E\{x[k+\kappa] \cdot y[k]\} = E\{x[k] \cdot y[k-\kappa]\}$
Power Spectral Density (PSD)	$\Phi_{xx}(e^{j\Omega}) = \mathcal{F}_*\{\varphi_{xx}[\kappa]\}$
Cross Power Spectral Density (CSD)	$\Phi_{xy}(e^{j\Omega}) = \mathcal{F}_*\{\varphi_{xy}[\kappa]\}$
Ergodicity	$\overline{f(x_n[k], x_n[k-\kappa_1], x_n[k-\kappa_2], \dots)}$
	$= E\{f(x[k], x[k-\kappa_1], x[k-\kappa_2], \dots)\} \forall n$

Amplitude Distribution

Cumulative Distribution Function (CDF)

Univariate $P_x(\theta, k) = \mathcal{W}\{x[k] \le \theta\}$

Stationary Process $P_x(\theta, k) = P_x(\theta)$

Bivariate $P_{x_1x_2}(\theta_1, \theta_2, k_1, k_2) = \mathcal{W}\{(x_1[k_1] \leq \theta_1) \land (x_2[k_2] \leq \theta_2)\}$

Stationary Process $P_{x_1x_2}(\theta_1, \theta_2, k_1, k_2) = P_{x_1x_2}(\theta_1, \theta_2, \kappa) \text{ mit } \kappa = k_2 - k_1$

Probability Density Function (PDF)

Univariate $p_x(\theta,k) = \frac{\mathrm{d}}{\mathrm{d}\theta} P_x(\theta,k)$

Bivariate $p_x(\theta_1, \theta_2, k_1, k_2) = \frac{\partial^2}{\partial \theta_1 \partial \theta_2} P_{x_1 x_2}(\theta_1, \theta_2, k_1, k_2)$

Ensemble Averages for a Stationary Process

First Order $E\{f(x[k])\} = \int_{-\infty}^{\infty} f(\theta) \; p_x(\theta) \, \mathrm{d}\theta$

Second Order $E\{f(x_1[k], x_2[k+\kappa])\} = \iint_{-\infty}^{\infty} f(\theta_1, \theta_2) \ p_{x_1 x_2}(\theta_1, \theta_2, \kappa) \, d\theta_1 \, d\theta_2$

Linear Mean $\mu_x = E\{x[k]\} = \int_0^\infty \theta \, p_x(\theta) \, d\theta$

Variance $\sigma_x^2 = E\{x^2[k]\} - \mu_x^2 = \int_{-\infty}^{\infty} \theta^2 \, p_x(\theta) \, \mathrm{d}\theta - \mu_x^2$

Auto-Correlation Function $\varphi_{xx}[\kappa] = E\{x[k] \cdot x[k-\kappa]\} = \iint_{-\infty}^{\infty} \theta_1 \theta_2 \ p_x(\theta_1, \theta_2, \kappa) \, d\theta_1 \, d\theta_2$

Selected Amplitude Distributions

Uniform Distribution

$$p_x(\theta) = \begin{cases} \frac{1}{x_o - x_u} & \text{for } x_u < \theta \le x_o \\ 0 & \text{otherwise} \end{cases}$$

$$P_x(\theta) = \begin{cases} 0 & \text{for } \theta \le x_u \\ \frac{\theta - x_u}{x_o - x_u} & \text{for } x_u < \theta \le x_o \\ 1 & \text{for } \theta > x_o \end{cases}$$

$$\mu_x = \frac{x_o - x_u}{2}, \ \sigma_x^2 = \frac{(x_o - x_u)^2}{12}$$

Normal (Gaussian) Distribution

$$p_x(\theta) = \frac{1}{\sqrt{2\pi}\sigma_x} e^{-\frac{(\theta - \mu_x)^2}{2\sigma_x^2}}$$

$$P_x(\theta) = \frac{1}{\sqrt{2\pi}\sigma_x} \int_{-\infty}^{\theta} e^{-\frac{(\xi - \mu_x)^2}{2\sigma_x^2}} d\xi$$

Laplace Distribution

$$p_x(\theta) = \frac{1}{\sqrt{2}\sigma_x} e^{-\sqrt{2}\frac{|\theta - \mu_x|}{\sigma_x}}$$

$$P_x(\theta) = \begin{cases} \frac{1}{2} e^{\sqrt{2} \frac{\theta - \mu_x}{\sigma_x}} & \text{for } \theta \le \mu_x \\ 1 - \frac{1}{2} e^{-\sqrt{2} \frac{\theta - \mu_x}{\sigma_x}} & \text{for } \theta > \mu_x \end{cases}$$