Wiederholung AP / Datenbanken

12. Klasse

Überblick über wichtige ER-Diagrammsymbole:

Relationales Datenbankmodell (RDM)

- RDM besteht aus drei wichtigen Bausteinen
 - Tabellen
 - Attributen
 - Beziehungen
- Relationales Datenbankmodell ist eine Ansammlung von
 Tabellen, die miteinander verknüpft sind (Relationen)
- Jede Zeile (auch Tupel genannt) in einer Tabelle ist ein
 Datensatz
- Jedes Tupel besteht aus einer großen Reihe von Eigenschaften (Attributen)
- Relationsschema legt die Anzahl und den Typ der Attribute für eine Tabelle fest

Schema des relationalen Datenmodells

Schema

gibt Auskunft über die Struktur der Daten

- > Art und Weise, wie der Datenbestand zur Verfügung gestellt wird
- gleichartige Datenobjekte haben gemeinsames Schema (Gerüst)

Schueler	Eintrittsjahr	Nr	Name	Konfession	gehoert_zu

Schema gibt keinerlei Aussagen über die eigentlichen Werte (gespeicherte Datenobjekte).

Instanz eines relationalen Datenmodells

Instanz

- Instanz muss dem Schema entsprechen
- D.h. den passenden Aufbau haben

> Beispiel: Tabelle der Lehrkräfte

PersNr	Name	Geschlecht	Wohnort	Geburtsjahr
245	Gauß	m	Passau	1925
73	Zuse	m	München	1936
35	Rinser	W	Passau	1946
566	Schumann	W	Passau	1959

Darf die Instanz der Tabelle Lehrkraft so sein?

123 Huber m	Vilshofen	1971	2000
-------------	-----------	------	------

Beziehungen zwischen Tabellen herstellen

Warum?

➤ Möglichkeit, die Gesamtinformation(en) zurückzugewinnen (Aufgabe des DBMS).

Wie?

Über je "eine" Spalte einer Tabelle, die das "gleiche Attribut" beschreibt.

Tag	Stunde	Fach
Montag	1	D
Montag	2	М
Montag	3	М
Montag	4	Е
Dienstag	1	M
Dienstag	2	D
Dienstag	3	D
Dienstag	4	Е
Mittwoch	1	Е
Mittwoch	2	Е
Mittwoch	3	М
Mittwoch	4	D

Fach	Lehrkraft	Raum
D	Rinser	202
Е	Thatcher	302
M	Gauß	200

Beziehungen zwischen Tabellen herstellen

Primärschlüssel (Primary-Key)

- Wert darf innerhalb einer Tabelle nicht doppelt vorkommen
- jede Tabelle kann nur einen Primärschlüssel haben
 - zusammengesetzter Primärschlüssel ist jedoch möglich
- Primärschlüssel darf nicht "leer" bzw. "NULL" sein

Fremdschlüssel (Foreign-Key)

- Wert eines Fremdschlüsselfeldes darf öfters vorkommen
- eine Tabelle kann mehrere Fremdschlüssel enthalten
- ein Fremdschlüssel kann aus mehreren Feldern einer Tabelle bestehen
- ein Fremdschlüssel kann auch "leer" sein

Schlüsselformen

- > Superschlüssel
 - > Schlüsselkandidat

Primärschlüssel

Normalisierung / Normalformen

- gutes Datenbankdesign wird durch ein Minimum an Redundanz erreicht
- Redundante Daten führen zu semantischen Anomalien
 - Insert-Anomalie
 - Delete-Anomalie
 - Update-Anomalie
- Normalisierung ist eine Strategie, Redundanzen in relationalen Datenbanken zu beseitigen
- Normalisierung bezeichnet die Überführung einer Datenbanktabelle in eine Normalform höheren Grades
- Normalformen beschreiben einen definierten Zielzustand
- Überführung in eine Normalform geringeren Grades wird **Denormalisierung** genannt

Strukturelle Integritätsbedingungen

- bei relationalen Datenbanken gibt es drei Integritätsbedingungen
 - Eindeutigkeits-Bedingung (auf Satzebene, Zeile)
 - wird durch Primärschlüssel sichergestellt
 - Wertebereichs-Bedingung (auf Feldebene, Spalte)
 - wird durch vordefinierten Wertebereich (Datentyp) erreicht
 - Referenzielle Integritätsbedingung (auf Beziehungsebene, zw. Tabellen)
 - jeder Wert eines Fremdschlüssels muss als Primärschlüsselwert (in der referenzierten Tabelle) existieren
 - > stellt die Konsistenz der Verknüpfungen sicher

Normalisierung / Normalformen

- gebräuchliche Normalformen für relationale Datenbanktabellen sind
 - 1. Normalform (1NF)
 - 2. Normalform (2NF)
 - 3. Normalform (3NF)
 - Boyce-Codd-Normalform (BCNF)
 - 4. Normalform (4NF)
 - 5. Normalform (5NF)
- in der Praxis (auch in den Prüfungen) endet die Normalisierung meist mit der 3. Normalform (3NF)
 - gewährleistet i.d.R. perfekte Balance aus Redundanz, Performance und Flexibilität für eine Datenbank

1. Normalform (1NF)

- eine Tabelle einer relationalen Datenbank entspricht der 1. Normalform (1NF), wenn folgende Voraussetzungen erfüllt sind:
 - alle Daten liegen atomar vor
 - alle Tabellenspalten beinhalten gleichartige Werte
- Beispiel: Tabelle Rechnungsinformation

RNr.	Datum	Name	Straße	Ort	Artikel	Anzahl	Preis
187	01.01.2012	Max Mustermann	Musterstr. 1	12345 Musterort	Bleistift	5	1,00€

1 NF?

■ Lösung: 1. Normalform der Tabelle Rechnungsinformation

RNr.	Datum	Name	Vorname	Straße	Hnr.	PLZ	Ort	Artikel	Anzahl	Preis	Währung
187	01.01.2012	Mustermann	Max	Musterstr.	1	12345	Musterort	Bleistift	5	1,00	Euro

2. Normalform (2NF)

- Eine Tabelle, die der 2. Normalform entsprechen soll, muss alle Voraussetzungen der 1. Normalform und zusätzlich folgende Bedingung erfüllen:
 - Jedes Nichtschlüsselattribut muss vom Primärschlüssel voll funktional abhängig sein
- Beispiel: Tabelle Rechnungsinformationen

Rechnung				
RNr.	Datum Knr			
187	01.01.2012	007		

Kunde						
Knr.	Name	Vorname	Straße	Hnr.	PLZ	Ort
007	Mustermann	Max	Musterstr.	1	12345	Musterort

Re	chnung	gspositio	n
RPNr.	RNr.	ArtNr.	Anzahl
1	187	69	5

Artikel					
ArtNr.	Artikel	Preis			
69	Bleistift	1,00			

3. Normalform (3NF)

- Soll eine Tabelle in die 3. Normalform überführt werden, müssen alle Voraussetzungen der 1. und 2.
 Normalform erfüllt sein und zusätzlich die folgende Bedingung:
 - kein Nichtschlüsselattribut darf von einem Schlüsselkandidaten transitiv abhängig sein
 - > D.h. kein Nicht-Schlüssel-Attribut hängt von einem anderen Nicht-Schlüssel-Attribut ab
- Beispiel: Tabelle Kundeninformation in 2NF

Kunde								
Knr.	Name	Vorname	Straße	Hnr.	PLZ	Ort		
007	Mustermann	Max	Musterstr.	1	12345	Musterort		

> 3. Normalform

		Kunde	9		
Knr.	Name	Vorname	Straße	Hnr.	PLZ
007	Mustermann	Max	Musterstr.	1	12345

Postleitzahl				
PLZ	Ort			
12345	Musterort			

Vorgehen:

- 1. Untersuchung, ob aus Nichtschlüsselattributen andere Nichtschlüsselattribute folgen. Falls nicht liegt bereits die 3. NF vor. Falls Abhängigkeiten gefunden werden, dann
- 2. Neue Relation bilden, die das Nichtschlüsselattribut (wird nun Primärschlüssel der neuen Relation) und die von ihm abhängigen Attribute enthält.
- 3. Löschen der ausgelagerten Nichtschlüsselattribute mit Ausnahme des Attributes, das in der neuen Relation Primärschlüssel ist.
- 4. Vorgang ab 2. wiederholen, bis keine Abhängigkeiten mehr bestehen

Übungsaufgaben

Aufgabenstellung!

➤ Bearbeiten Sie die Arbeitsaufträge 1 und 2 im Dokument "AP12_DB_Aufgaben_Wiederholung…"!

Präsentieren Sie nach der Bearbeitungszeit Ihre Ergebnisse!

Ende der Bearbeitungszeit:

12:20 Uhr

