Source:

1 | his intro / background

- 1.1 | used to be very into econ
- 1.2 | worked at world bank bc he thought it was a good place to meet people who were interested in math and econ and help the world
- 1.3 | was sent to a country (forgot) during communism->capitalism transition and saw that the forced capitalist policies were not working
- 1.4 | went into management because that allowed him to actually help
- 1.5 | sante fe institute
- 1.5.1 | centeripece for a global movement to involve complexity in sciences accross disciplines
- 1.5.2 | from los alamos national labs
- 1.5.3 | 'universal relationships'
- 1.5.4 | lots of nobel prizes
- 1.5.5 | applications of graph theory and network theory, and lots of econ
 - 1. understanding when societies are going to have a revolution, finiance, energy grid

2 | other related areas

- 2.1 | do individuals matter in history
- 2.2 | impacts on marketing based on faith studies?
- 3 | Overview
- 3.1 | this intersession is "interdisciplinary fixing of economics"
- 4 | Warmup
- 4.1 | insectivora, macroscelidea avg mass vs avg BMR, guess avg bmr for pholidota given avg mass
- 4.1.1 | I just took the ratios and took a high and low
- 4.1.2 | a few strategies for solving the problem
 - 1. look for a common ratio (assume θ mass = θ BMR)
 - 2. fit a line
 - it's actually not a linear relation, and the answer is relatively unexpected (much lower ratio)
- 4.2 | the monkey business illusion (ball passing -> miss other stuff)
- 4.2.1 | when you get attached to a tool, you miss loads of other things
- 5 | universality
- 5.1 | examples
- 5.1.1 | common limit theorem
 - 1. lots of common processes produce gauseian distributions
 - (a) thus, there is a "universality" in the normal distribution
- 5.1.2 | other theorem? (something with gauss)
 - 1. if things are often normal distributions, then statistics kind of works (because that's what it's all based on)
- 5.1.3 | all mamals average the same number of heartbeats
 - 1. small animals have fast hearts and die sooner, vice versa

5.1.4 | metabolic rate (first warm up problem)

- 1. log log linear → constant rate of savings? SUBLINEAR SCALING
- 2. constant increase in efficiency
- 3. roughly 3/4 or 2/3 exponent
- 4. exponent can be derived by networks (circulatory system)
 - (a) where can this be applied?
 - i. many city statistics
 - A. 15% boost/saving for every size double for amount of gas stations, boost in gdp, # of patents, new AIDs cases, etc

6 | city

- 6.1 | superlinear scaling -> city should grow
- 6.2 | results
- 6.2.1 | finite time singularity? when the growth curve goes vertical.. what does that mean. maybe environmental collapse
- 6.2.2 | trying to increase GDP and decrease crime/AIDs by growing won't really work because both scale in the same way

7 | complexity

- 7.1 | core
- 7.1.1 | taking a general tool and applying it elsewhere
- 7.2 | methodology
- 7.2.1 | start with a data rich domain and find the generative mechinism, then apply to the data sparse
- 7.3 | definition of complexity
- 7.3.1 | difficult to come up with a concrete definition
- 7.3.2 | handwavey: systems of networked adaptive agents are complex
 - 1. networked
 - (a) networks have 'finite' sides (classifications of nodes)
 - (b) complexity perspective: they provide an analyzable structure at the mezzo-level of granularity
 - i. ways networks are analyzed

- A. degree of a node
- B. betweenness centrality
- C. eigenvector complexity?
- D. avg path length
- E. degree distribution
- F. clustering
- G. community structure

2. agents

- (a) assume that all companies or consumers are equal and if they differ, then they differ along one variable
- (b) agents are actually different though?

3. adpativity

- (a) such as evolutionarily inspired adaptation
 - i. genetic algorithms / evolutionary algorithms
 - ii. often used to come up with a pretty good answer for a hard (NP complete or more difficult) problem