In re Appln. of ANDRIESSEN Application No. 10/628,618

CLAIM AMENDMENTS

- 1. (Currently Amended) A nano-porous metal oxide semiconductor with a bandgap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing comprising at least one metal chalcogenide, wherein said nano-porous metal oxide further contains comprises a phosphoric acid of and a phosphate.
- 2. (Original) Nano-porous metal oxide according to claim 1, wherein said metal oxide is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides and zinc oxides.
- 3. (Currently Amended) Nano-porous metal oxide according to claim 1, wherein said nano-porous metal oxide further contains comprises a triazole or diazole compound.
- 4. (Withdrawn) A process for in-situ spectral sensitization of nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV, containing at least one metal chalcogenide, comprising a metal chalcogenide-forming cycle comprising the steps of: contacting nano-porous metal oxide with a solution of metal ions; contacting nano-porous metal oxide with a solution of chalcogenide ions; and subsequent to metal chalcogenide formation rinsing said nano-porous metal oxide with an aqueous solution containing a phosphoric acid or a phosphate.
- 5. (Withdrawn) Process according to claim 4, wherein said contact with a solution of metal ions occurs before said contact with a solution of chalcogenide ions.
- 6. (Withdrawn) Process according to claim 4, wherein said metal chalcogenideforming cycle is repeated.
- 7. (Withdrawn) Process according to claim 4, wherein said solution of metal ions contains a triazole or diazole compound.
- 8. (Withdrawn) Process according to claim 4, wherein said solution of metal ions and said solution of chalcogenide ions contains a triazole or diazole compound.

In re Appln. of ANDRIESSEN Application No. 10/628,618

- 9. (Withdrawn) Process according to claim 4, wherein said solution of chalcogenide ions contains a triazole or diazole compound.
- 10. (Withdrawn) Process according to claim 4, wherein said nano-porous metal oxide is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides and zinc oxides.
- 11. (Withdrawn) Process according to claim 4, wherein said nano-porous metal oxide further contains a triazole or diazole compound.
- 12. (Currently Amended) A photovoltaic device eentaining comprising a nanoporous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally
 sensitized on its internal and external surface with metal chalcogenide nano-particles with a
 band-gap of less than 2.9 eV eentaining comprising at least one metal chalcogenide, wherein
 said nano-porous metal oxide further eentains comprises a phosphoric acid or a phosphate.
- 13. (Original) Photovoltaic device according to claim 12, wherein said nanoporous metal oxide is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides and zinc oxides.
- 14. (Currently Amended) Photovoltaic device according to claim 12, wherein said nano-porous metal oxide further contains comprises a triazole or diazole compound.
- 15. (Currently Amended) A second photovoltaic device containing comprising a nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV containing comprising at least one metal chalcogenide prepared according to a process for in-situ spectral sensitization of nano-porous metal oxide semiconductor comprising a metal chalcogenide-forming cycle comprising the steps of: contacting nano-porous metal oxide with a solution of metal ions; contacting nano-porous metal oxide with a solution of chalcogenide ions; and subsequent to metal chalcogenide formation rinsing said nano-porous metal oxide with an aqueous solution containing comprising a phosphoric acid or a phosphate.

In re Appln. of ANDRIESSEN Application No. 10/628,618

- 16. (Original) Second photovoltaic device according to claim 15, wherein said contact with a solution of metal ions occurs before said contact with a solution of chalcogenide ions.
- 17. (Original) Second photovoltaic device according to claim 15, wherein said metal chalcogenide-forming cycle is repeated.
- 18. (Currently Amended) Second photovoltaic device according to claim 15, wherein said solution of metal ions comprises a triazole or diazole compound.
- 19. (Currently Amended) Second photovoltaic device according to claim 15, wherein said solution of metal ions and said solution of chalcogenide ions eontains comprises a triazole or diazole compound.
- 20. (Currently Amended) Second photovoltaic device according to claim 15, wherein said solution of chalcogenide ions eontains comprises a triazole or diazole compound.
- 21. (Original) Second photovoltaic device according to claim 15, wherein said nano-porous metal oxide is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides and zinc oxides.
- 22. (Currently Amended) Photovoltaic device according to claim 15, wherein said nano-porous metal oxide further contains comprises a triazole or diazole compound.
- 23. (New) A nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV comprising at least one metal chalcogenide, wherein said nano-porous metal oxide further comprises a phosphate and said metal chalcogenide is selected from the group consisting of lead sulphide, cadmium sulphide, silver sulphide, indium sulphide, copper sulphide, cadmium selenide, copper selenide, indium selenide, cadmium telluride and mixtures thereof.

In re Appln. of ANDRIESSEN Application No. 10/628,618

- 24 (New) Nano-porous metal oxide according to claim 23, wherein said metal oxide is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides and zinc oxides.
- 25. (New) Nano-porous metal oxide according to claim 23, wherein said nano-porous metal oxide further comprises a triazole or diazole compound.
- 26. (New) A nano-porous metal oxide semiconductor with a band-gap of greater than 2.9 eV in-situ spectrally sensitized on its internal and external surface with metal chalcogenide nano-particles with a band-gap of less than 2.9 eV comprising at least one metal chalcogenide, wherein said nano-porous metal oxide further comprises a phosphate or phosphoric acid and a triazole or diazole compound.
- 27. (New) Nano-porous metal oxide according to claim 26, wherein said metal oxide is selected from the group consisting of titanium oxides, tin oxides, niobium oxides, tantalum oxides and zinc oxides.