Importing the Dependencies

import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score

loading the dataset to a Pandas DataFrame credit_card_data = pd.read_csv('/content/credit_data.csv')

first 5 rows of the dataset credit_card_data.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11	\
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	0.090794	-0.551600	-0.6178
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	-0.166974	1.612727	1.0652
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	0.207643	0.624501	0.0660
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	-0.054952	-0.226487	0.1782
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	0.753074	-0.822843	0.5381

credit_card_data.tail()

	Time	V1	V2	V3	V4	V5	V6	
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.9182
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.0243
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.2968
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.6861
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577(
4								•

dataset informations credit_card_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 284807 entries, 0 to 284806 Data columns (total 31 columns):

Column Non-Null Count Dtype

0 Time 284807 non-null float64 1 V1 284807 non-null float64 2 V2 284807 non-null float64 3 V3 284807 non-null float64 4 V4 284807 non-null float64 5 V5 284807 non-null float64 6 V6 284807 non-null float64 7 V7 284807 non-null float64 8 V8 284807 non-null float64 284807 non-null float64 9 V9 10 V10 284807 non-null float64 11 V11 284807 non-null float64 12 V12 284807 non-null float64 13 V13 284807 non-null float64 14 V14 284807 non-null float64 15 V15 284807 non-null float64 16 V16 284807 non-null float64 284807 non-null float64 17 V17 18 V18 284807 non-null float64 19 V19 284807 non-null float64 20 V20 284807 non-null float64 21 V21 284807 non-null float64 22 V22 284807 non-null float64 23 V23 284807 non-null float64 24 V24 284807 non-null float64 25 V25 284807 non-null float64 284807 non-null float64 26 V26 27 V27 284807 non-null float64 28 V28 284807 non-null float64 29 Amount 284807 non-null float64 30 Class 284807 non-null int64

dtypes: float64(30), int64(1) memory usage: 67.4 MB

checking the number of missing values in each column credit_card_data.isnull().sum()

Time 0 V1 V2 0 V3 0 V4 0 V5 0 V6 V7 0 ٧8 0 V9 0 V10 0 V11 V12 V13 0 V14 0 V15 0 V16 0 V17 0 V18 0 V19 0 V20 0 V21 0 V22 0 V23 V24 0 V25 0 V26 0 V27 0 V28 0 Amount 0 Class 0 dtype: int64

distribution of legit transactions & fraudulent transactions credit_card_data['Class'].value_counts()

0 284315 1 492 Name: Class, dtype: int64

This Dataset is highly unblanced

0 --> Normal Transaction

1 --> fraudulent transaction

separating the data for analysis legit = credit_card_data[credit_card_data.Class == 0] fraud = credit_card_data[credit_card_data.Class == 1]

print(legit.shape)
print(fraud.shape)

(284315, 31) (492, 31)

statistical measures of the data legit.Amount.describe()

count 284315.000000 88.291022 mean 250.105092 std 0.000000 min 25% 5.650000 50% 22.000000 77.050000 75% max 25691.160000 Name: Amount, dtype: float64

fraud.Amount.describe()

count 492.000000 mean 122.211321 std 256.683288 min 0.000000 25% 1.000000 50% 9.250000 75% 105.890000 max 2125.870000 Name: Amount, dtype: float64

compare the values for both transactions credit_card_data.groupby('Class').mean()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	
Class												
0	94838.202258	0.008258	-0.006271	0.012171	-0.007860	0.005453	0.002419	0.009637	-0.000987	0.004467	0.009824	-0.000
1	80746 806911	-4 771948	3 623778	-7 033281	4 542029	-3 151225	-1 397737	-5 568731	0.570636	-2 581123	-5 676883	3.80(

Under-Sampling

Build a sample dataset containing similar distribution of normal transactions and Fraudulent Transactions

Number of Fraudulent Transactions -> 492

legit_sample = legit.sample(n=492)

Concatenating two DataFrames

 $new_dataset = pd.concat([legit_sample, fraud], axis=0)$

new_dataset.head()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V1
203131	134666.0	-1.220220	-1.729458	-1.118957	-0.266099	0.823338	-0.098556	-0.407751	0.563010	-1.007790	0.261245	-0.84160
95383	65279.0	-1.295124	0.157326	1.544771	-2.468209	-1.683113	-0.623764	-0.371798	0.505656	-2.243475	0.856381	-0.40215
99706	67246.0	-1.481168	1.226490	1.857550	2.980777	-0.672645	0.581449	-0.143172	0.302713	-0.624670	1.452271	0.94077
153895	100541.0	-0.181013	1.395877	1.204669	4.349279	1.330126	1.277520	1.568221	-0.633374	-0.860482	1.483849	-0.04059
249976	154664.0	0.475977	-0.573662	0.480520	-2.524647	-0.616284	-0.361317	-0.347861	-0.108238	-1.876507	0.871271	-1.20118

new_dataset.tail()

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V11
279863	169142.0	-1.927883	1.125653	-4.518331	1.749293	-1.566487	-2.010494	-0.882850	0.697211	-2.064945	-5.587794	2.115795
280143	169347.0	1.378559	1.289381	-5.004247	1.411850	0.442581	-1.326536	-1.413170	0.248525	-1.127396	-3.232153	2.858466
280149	169351.0	-0.676143	1.126366	-2.213700	0.468308	-1.120541	-0.003346	-2.234739	1.210158	-0.652250	-3.463891	1.794969
281144	169966.0	-3.113832	0.585864	-5.399730	1.817092	-0.840618	-2.943548	-2.208002	1.058733	-1.632333	-5.245984	1.933520
281674	170348.0	1.991976	0.158476	-2.583441	0.408670	1.151147	-0.096695	0.223050	-0.068384	0.577829	-0.888722	0.491140

new_dataset['Class'].value_counts()

1 492

0 492

Name: Class, dtype: int64

 $new_dataset.group by ('Class').mean ()$

	Time	V1	V2	V3	V4	V5	V6	V7	V8	V9	V10	\
Class												
0	96783.638211	-0.053037	0.055150	-0.036786	-0.046439	0.077614	-0.023218	-0.000703	-0.057620	-0.053438	0.006904	0.0035
1	80746.806911	-4.771948	3.623778	-7.033281	4.542029	-3.151225	-1.397737	-5.568731	0.570636	-2.581123	-5.676883	3.8001

```
X = new_dataset.drop(columns='Class', axis=1)
Y = new_dataset['Class']
print(X)
      Time V1 V2 ... V27 V28 Amount 203131 134666.0 -1.220220 -1.729458 ... 0.173995 -0.023852 155.00
      95383 \quad 65279.0 \ -1.295124 \quad 0.157326 \quad \dots \quad 0.317321 \quad 0.105345 \quad 70.00
      99706 67246.0 -1.481168 1.226490 ... -0.546577 0.076538 40.14
      153895 \ \ 100541.0 \ \ -0.181013 \ \ 1.395877 \ \dots \ \ -0.229857 \ \ -0.329608 \ \ 137.04
      249976 154664.0 0.475977 -0.573662 ... 0.058961 0.012816 19.60
      279863 169142.0 -1.927883 1.125653 ... 0.292680 0.147968 390.00 280143 169347.0 1.378559 1.289381 ... 0.389152 0.186637 0.76
      280149 169351.0 -0.676143 1.126366 ... 0.385107 0.194361 77.89
      281144\ 169966.0\ -3.113832\ 0.585864\ \dots\ 0.884876\ -0.253700\ 245.00
      281674 170348.0 1.991976 0.158476 ... 0.002988 -0.015309 42.53
      [984 rows x 30 columns]
print(Y)
      203131 0
      95383 0
      99706 0
      153895 0
      249976 0
      279863 1
      280143
      280149
      281144
      281674
      Name: Class, Length: 984, dtype: int64
Split the data into Training data & Testing Data
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)
      (984, 30) (787, 30) (197, 30)
Model Training
Logistic Regression
model = LogisticRegression()
# training the Logistic Regression Model with Training Data
model.fit(X_train, Y_train)
      LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, I1_ratio=None, max_iter=100,
                   multi_class='auto', n_jobs=None, penalty='l2',
                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                   warm_start=False)
Model Evaluation
Accuracy Score
# accuracy on training data
X_train_prediction = model.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy on Training data : ', training_data_accuracy)
      Accuracy on Training data: 0.9415501905972046
```

accuracy on test data X_test_prediction = model.predict(X_test) test_data_accuracy = accuracy_score(X_test_prediction, Y_test)

print('Accuracy score on Test Data : ', test_data_accuracy)

Accuracy score on Test Data: 0.9390862944162437