1. Prob 8.9

(a) With the simplifying notion,

$$\langle \mathbf{a}, \mathbf{b} \rangle = \int_{V} \mathbf{a}^* \cdot \mathbf{b} d^3 x \tag{1}$$

define the functional

$$f[\mathbf{X}] \equiv \frac{\langle \mathbf{X}, \nabla \times (\nabla \times \mathbf{X}) \rangle}{\langle \mathbf{X}, \mathbf{X} \rangle}$$
 (2)

When E is the exact solution of the vector Helmholtz equation

$$\nabla \times (\nabla \times \mathbf{E}) = k^2 \mathbf{E} \tag{3}$$

we have

$$f[\mathbf{E}] = k^2 \tag{4}$$

But for the perturbed field $\mathbf{E} + \delta \mathbf{E}$, up to first order of $\delta \mathbf{E}$,

$$f\left[\mathbf{E} + \delta\mathbf{E}\right] = \frac{\langle \mathbf{E} + \delta\mathbf{E}, \nabla \times [\nabla \times (\mathbf{E} + \delta\mathbf{E})]\rangle}{\langle \mathbf{E} + \delta\mathbf{E}, \mathbf{E} + \delta\mathbf{E}\rangle}$$

$$\approx \frac{\langle \mathbf{E}, \nabla \times (\nabla \times \mathbf{E})\rangle + \langle \delta\mathbf{E}, \nabla \times (\nabla \times \mathbf{E})\rangle + \langle \mathbf{E}, \nabla \times (\nabla \times \delta\mathbf{E})\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle + \langle \mathbf{E}, \delta\mathbf{E}\rangle + \langle \delta\mathbf{E}, \mathbf{E}\rangle}$$

$$= \left[k^{2} + k^{2} \frac{\langle \delta\mathbf{E}, \mathbf{E}\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle} + \frac{\langle \mathbf{E}, \nabla \times (\nabla \times \delta\mathbf{E})\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle}\right] \left(1 + \frac{\langle \mathbf{E}, \delta\mathbf{E}\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle} + \frac{\langle \delta\mathbf{E}, \mathbf{E}\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle}\right)^{-1}$$

$$\approx \left[k^{2} + k^{2} \frac{\langle \delta\mathbf{E}, \mathbf{E}\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle} + \frac{\langle \mathbf{E}, \nabla \times (\nabla \times \delta\mathbf{E})\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle}\right] \left(1 - \frac{\langle \mathbf{E}, \delta\mathbf{E}\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle} - \frac{\langle \delta\mathbf{E}, \mathbf{E}\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle}\right)$$

$$\approx k^{2} + \frac{\langle \mathbf{E}, \nabla \times (\nabla \times \delta\mathbf{E})\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle} - k^{2} \frac{\langle \mathbf{E}, \delta\mathbf{E}\rangle}{\langle \mathbf{E}, \mathbf{E}\rangle}$$
(5)

We see that if $\langle \mathbf{E}, \nabla \times (\nabla \times \delta \mathbf{E}) \rangle = k^2 \langle \mathbf{E}, \delta \mathbf{E} \rangle$, or

$$\int_{V} \mathbf{E}^* \cdot \nabla \times (\nabla \times \delta \mathbf{E}) d^3 x = k^2 \int_{V} \mathbf{E}^* \cdot \delta \mathbf{E} d^3 x \tag{6}$$

then $f[\mathbf{E} + \delta \mathbf{E}] = k^2 + O[(\delta \mathbf{E})^2]$, i.e., $f[\mathbf{E}]$ is a variational principle for (3). We will now prove (6).

With the vector identity $\nabla \times (\nabla \times \mathbf{a}) = \nabla (\nabla \cdot \mathbf{a}) - \nabla^2 \mathbf{a}$ and the vanishing divergence of $\delta \mathbf{E}$, the LHS of (6) becomes

$$LHS_{(6)} = -\int_{V} \mathbf{E}^* \cdot (\nabla^2 \delta \mathbf{E}) d^3 x = -\int_{V} E_j^* (\nabla^2 \delta E_j) d^3 x \tag{7}$$

(where repeated index is implicitly summed over here and below).

Invoking Green's theorem

$$\int_{V} (\phi \nabla^{2} \psi - \psi \nabla^{2} \phi) d^{3} x = \int_{S} (\phi \nabla \psi - \psi \nabla \phi) \cdot \mathbf{n} da$$
 (8)

with ϕ identified to E_i^* and ψ identified to δE_i , we have

$$\int_{V} \left[\mathbf{E}^* \cdot \left(\mathbf{\nabla}^2 \delta \mathbf{E} \right) - \delta \mathbf{E} \cdot \left(\mathbf{\nabla}^2 \mathbf{E}^* \right) \right] d^3 x = \int_{S} \left(E_j^* \mathbf{\nabla} \delta E_j - \delta E_j \mathbf{\nabla} E_j^* \right) \cdot \mathbf{n} da$$
 (9)

This turns (7) into

$$LHS_{(6)} = -\int_{V} \delta \mathbf{E} \cdot (\nabla^{2} \mathbf{E}^{*}) d^{3}x - \int_{S} \left(E_{j}^{*} \nabla \delta E_{j} - \delta E_{j} \nabla E_{j}^{*} \right) \cdot \mathbf{n} da$$

$$= \int_{V} \delta \mathbf{E} \cdot \nabla \times (\nabla \times \mathbf{E}^{*}) d^{3}x - \int_{S} \left(E_{j}^{*} \nabla \delta E_{j} - \delta E_{j} \nabla E_{j}^{*} \right) \cdot \mathbf{n} da \qquad \text{assuming } k^{2} \text{ is real}$$

$$= RHS_{(6)} - \int_{S} \left(E_{j}^{*} \nabla \delta E_{j} - \delta E_{j} \nabla E_{j}^{*} \right) \cdot \mathbf{n} da \qquad (10)$$

Thus to prove (6), it suffices to show

$$\int_{S} \left(E_{j}^{*} \nabla \delta E_{j} - \delta E_{j} \nabla E_{j}^{*} \right) \cdot \mathbf{n} da = 0$$
(11)

which is rephrased and proved as the following lemma.

Lemma 1. Let \mathbf{a}, \mathbf{b} be two vector fields satisfying $\nabla \cdot \mathbf{a} = \nabla \cdot \mathbf{b} = 0$ in V and $\mathbf{n} \times \mathbf{a} = \mathbf{n} \times \mathbf{b} = 0$ on S. Then

$$\int_{S} \left(b_{j} \nabla a_{j} - a_{j} \nabla b_{j} \right) \cdot \mathbf{n} da = 0 \tag{12}$$

Proof. Since on S, $\mathbf{n} \times \mathbf{b} = 0$, then

$$0 = (\nabla \times \mathbf{a}) \cdot (\mathbf{n} \times \mathbf{b})$$

$$= \left(\epsilon_{ijk} \frac{\partial a_j}{\partial x_i} \right) (\epsilon_{lmk} n_l b_m)$$

$$= \frac{\partial a_j}{\partial x_i} n_l b_m \left(\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl} \right)$$

$$= \frac{\partial a_j}{\partial x_i} n_i b_j - \frac{\partial a_j}{\partial x_i} n_j b_i$$

$$= b_j \nabla a_j \cdot \mathbf{n} - \nabla (\mathbf{a} \cdot \mathbf{n}) \cdot \mathbf{b} \qquad \text{use } \nabla \psi \cdot \mathbf{b} = \nabla \cdot (\psi \mathbf{b}) - \psi \nabla \cdot \mathbf{b}$$

$$= b_j \nabla a_j \cdot \mathbf{n} - \left\{ \nabla \cdot [(\mathbf{a} \cdot \mathbf{n}) \mathbf{b}] - (\mathbf{a} \cdot \mathbf{n}) \stackrel{\circ}{\nabla} \cdot \mathbf{b} \right\}$$

$$= b_j \nabla a_j \cdot \mathbf{n} - \nabla \cdot [(\mathbf{a} \cdot \mathbf{n}) \mathbf{b}] \qquad (13)$$

By switching **a** with **b** and taking the difference with (12), we know at any point on *S*,

$$0 = (\nabla \times \mathbf{a}) \cdot (\mathbf{n} \times \mathbf{b}) - (\nabla \times \mathbf{b}) \cdot (\mathbf{n} \times \mathbf{a})$$

$$= (b_j \nabla a_j - a_j \nabla b_j) \cdot \mathbf{n} - \nabla \cdot [(\mathbf{a} \cdot \mathbf{n}) \mathbf{b} - (\mathbf{b} \cdot \mathbf{n}) \mathbf{a}]$$

$$= (b_j \nabla a_j - a_j \nabla b_j) \cdot \mathbf{n} - \nabla \cdot [\mathbf{n} \times (\mathbf{b} \times \mathbf{a})]$$
(14)

It is very tempting to drop the divergence term in (14) based on the fact that both \mathbf{a} and \mathbf{b} are along the normal direction on the boundary hence $\mathbf{b} \times \mathbf{a} = 0$. But this is incorrect because the vanishing field at a point does not imply vanishing divergence at that point.

In fact, with the vector identity $\nabla \cdot (\mathbf{x} \times \mathbf{y}) = \mathbf{y} \cdot (\nabla \times \mathbf{x}) - \mathbf{x} \cdot (\nabla \times \mathbf{y})$, this divergence term can be written

$$\nabla \cdot [\mathbf{n} \times (\mathbf{b} \times \mathbf{a})] = (\mathbf{b} \times \mathbf{a}) \cdot (\nabla \times \mathbf{n}) - \mathbf{n} \cdot \nabla \times (\mathbf{b} \times \mathbf{a}) = -\mathbf{n} \cdot \nabla \times (\mathbf{b} \times \mathbf{a})$$
(15)

With this substituted into (14) and taking the surface itegral, we have

$$0 = \int_{S} \left(b_{j} \nabla a_{j} - a_{j} \nabla b_{j} \right) \cdot \mathbf{n} da + \int_{S} \mathbf{n} \cdot \nabla \times (\mathbf{b} \times \mathbf{a}) da \qquad \text{by the Divergence theorem}$$

$$= \int_{S} \left(b_{j} \nabla a_{j} - a_{j} \nabla b_{j} \right) \cdot \mathbf{n} da + \int_{V} \nabla \cdot [\nabla \times (\mathbf{b} \times \mathbf{a})] d^{3}x \qquad \text{curl has vanishing divergence}$$

$$= \int_{S} \left(b_{j} \nabla a_{j} - a_{j} \nabla b_{j} \right) \cdot \mathbf{n} da \qquad (16)$$

(b) For the TM_{010} mode, $E_z \hat{z}$ is the entire electric field, so if we use the trial longitudinal field (setting $E_0 = 1$)

$$E_z = \cos\left(\frac{\pi\rho}{2R}\right) \tag{17}$$

we will have

$$\nabla \times \mathbf{E} = -\frac{\partial E_z}{\partial \rho} \hat{\boldsymbol{\phi}} = \left(\frac{\pi}{2R}\right) \sin\left(\frac{\pi \rho}{2R}\right) \hat{\boldsymbol{\phi}} \qquad \Longrightarrow \qquad \\ \nabla \times (\nabla \times \mathbf{E}) = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left[\rho\left(\frac{\pi}{2R}\right) \sin\left(\frac{\pi \rho}{2R}\right)\right] \hat{\mathbf{z}} = \left[\frac{1}{\rho} \left(\frac{\pi}{2R}\right) \sin\left(\frac{\pi \rho}{2R}\right) + \left(\frac{\pi}{2R}\right)^2 \cos\left(\frac{\pi \rho}{2R}\right)\right] \hat{\mathbf{z}} \qquad (18)$$

Then the functional f[E] can be computed

$$f\left[\mathbf{E}\right] = \frac{\int_{V} \mathbf{E}^{*} \cdot \mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{E}) d^{3}x}{\int_{V} \mathbf{E}^{*} \cdot \mathbf{E} d^{3}x} = \frac{2\pi d \int_{0}^{R} \left[\frac{1}{\rho} \left(\frac{\pi}{2R}\right) \sin\left(\frac{\pi\rho}{2R}\right) \cos\left(\frac{\pi\rho}{2R}\right) + \left(\frac{\pi}{2R}\right)^{2} \cos^{2}\left(\frac{\pi\rho}{2R}\right)\right] \rho d\rho}{2\pi d \int_{0}^{R} \cos^{2}\left(\frac{\pi\rho}{2R}\right) \rho d\rho}$$
(19)

With some explicit integrations, we will obtain

$$\int_{0}^{R} \left(\frac{\pi}{2R}\right) \sin\left(\frac{\pi\rho}{2R}\right) \cos\left(\frac{\pi\rho}{2R}\right) d\rho = \frac{1}{2} \qquad \int_{0}^{R} \cos^{2}\left(\frac{\pi\rho}{2R}\right) \rho d\rho = R^{2}\left(\frac{1}{4} - \frac{1}{\pi^{2}}\right)$$
(20)

hence

$$f[E] = k^2 = \frac{\frac{1}{2} + \left(\frac{\pi^2}{16} - \frac{1}{4}\right)}{R^2 \left(\frac{1}{4} - \frac{1}{\pi^2}\right)} \implies kR = \frac{\pi}{2} \sqrt{\frac{\pi^2 + 4}{\pi^2 - 4}} \approx 2.415$$
 (21)

which is slightly greater than $x_{01} = 2.405$.

(c) Now with another trial field

$$E_z = 1 + \alpha \left(\frac{\rho}{R}\right)^2 - (1 + \alpha)\left(\frac{\rho}{R}\right)^4 \tag{22}$$

we have

$$\nabla \times \mathbf{E} = \left[-\frac{2\alpha}{R^2} \rho + 4\left(\frac{1+\alpha}{R^4}\right) \rho^3 \right] \hat{\boldsymbol{\phi}} \qquad \nabla \times (\nabla \times \mathbf{E}) = \left[-\frac{4\alpha}{R^2} + 16\left(\frac{1+\alpha}{R^4}\right) \rho^2 \right] \hat{\mathbf{z}}$$
 (23)

Then

$$f\left[\mathbf{E}\right] = \frac{\int_{0}^{R} \left[1 + \alpha \left(\frac{\rho}{R}\right)^{2} - (1 + \alpha)\left(\frac{\rho}{R}\right)^{4}\right] \left[-\frac{4\alpha}{R^{2}} + 16\left(\frac{1 + \alpha}{R^{4}}\right)\rho^{2}\right] \rho d\rho}{\int_{0}^{R} \left[1 + \alpha\left(\frac{\rho}{R}\right)^{2} - (1 + \alpha)\left(\frac{\rho}{R}\right)^{4}\right]^{2} \rho d\rho} = \frac{1}{R^{2}} \left(\frac{\frac{1}{3}\alpha^{2} + \frac{4}{3}\alpha + 2}{\frac{1}{60}\alpha^{2} + \frac{7}{60}\alpha + \frac{4}{15}}\right) \quad (24)$$

Tedious calculations show that f[E] achieves minimum at $\alpha = (-10 + \sqrt{34})/3$, which corresponds to

$$kR = \sqrt{80\left(\frac{17 - 2\sqrt{34}}{68 + \sqrt{34}}\right)} \approx 2.405 \tag{25}$$

which is closer than the previous trial function, but the calculation is much more tedious. The exact solution and the two optimal trial solutions are plotted below.

2. Prob 8.10

(a) It suffices to prove for any electric field **E** satisfying the boundary condition $\mathbf{n} \times \mathbf{E}|_{S} = 0$,

$$\int_{V} \mathbf{E}^* \cdot \mathbf{\nabla} \times (\mathbf{\nabla} \times \mathbf{E}) d^3 x = \int_{V} (\mathbf{\nabla} \times \mathbf{E}^*) \cdot (\mathbf{\nabla} \times \mathbf{E}) d^3 x$$
 (26)

We have already seen that the LHS is

$$LHS_{(26)} = -\int_{V} \mathbf{E}^* \cdot \nabla^2 \mathbf{E} d^3 x = -\int_{V} E_j^* \nabla^2 E_j d^3 x$$
 (27)

For the RHS of (26), let's expand the curls

$$(\nabla \times \mathbf{E}^{*}) \cdot (\nabla \times \mathbf{E}) = \left(\epsilon_{ijk} \frac{\partial E_{j}^{*}}{\partial x_{i}}\right) \left(\epsilon_{lmk} \frac{\partial E_{m}}{\partial x_{l}}\right)$$

$$= \frac{\partial E_{j}^{*}}{\partial x_{i}} \frac{\partial E_{m}}{\partial x_{l}} \left(\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}\right)$$

$$= \frac{\partial E_{j}^{*}}{\partial x_{i}} \frac{\partial E_{j}}{\partial x_{i}} - \frac{\partial E_{j}^{*}}{\partial x_{i}} \frac{\partial E_{l}}{\partial x_{j}}$$

$$= \nabla E_{j}^{*} \cdot \nabla E_{j} - \nabla E_{j}^{*} \cdot \frac{\partial E}{\partial x_{j}}$$
(28)

Thus the desired identity to prove, (26), is equivalent to

$$\int_{V} \left(E_{j}^{*} \nabla^{2} E_{j} + \nabla E_{j}^{*} \cdot \nabla E_{j} \right) d^{3} x = \int_{V} \nabla E_{j}^{*} \cdot \frac{\partial \mathbf{E}}{\partial x_{j}} d^{3} x \tag{29}$$

By Green's first identity,

$$LHS_{(29)} = \int_{S} E_{j}^{*} \mathbf{n} \cdot \nabla E_{j} da$$
 (30)

The integrand of the RHS of (29) is a divergence, because

$$\nabla E_{j}^{*} \cdot \frac{\partial \mathbf{E}}{\partial x_{j}} = \nabla \cdot \left(E_{j}^{*} \frac{\partial \mathbf{E}}{\partial x_{j}} \right) - E_{j}^{*} \nabla \cdot \frac{\partial \mathbf{E}}{\partial x_{j}} = \nabla \cdot \left(E_{j}^{*} \frac{\partial \mathbf{E}}{\partial x_{j}} \right) - E_{j}^{*} \frac{\partial}{\partial x_{j}} (\nabla \cdot \mathbf{E}) = \nabla \cdot \left(E_{j}^{*} \frac{\partial \mathbf{E}}{\partial x_{j}} \right)$$
(31)

which allows us to turn its volume integral into a surface integral

$$RHS_{(29)} = \int_{V} \nabla \cdot \left(E_{j}^{*} \frac{\partial \mathbf{E}}{\partial x_{j}} \right) d^{3}x = \int_{S} E_{j}^{*} \frac{\partial \mathbf{E}}{\partial x_{j}} \cdot \mathbf{n} da = \int_{S} \nabla \left(\mathbf{E} \cdot \mathbf{n} \right) \cdot \mathbf{E}^{*} da$$
(32)

Now the equivalent claim to prove becomes

$$\int_{S} E_{j}^{*} \mathbf{n} \cdot \nabla E_{j} da = \int_{S} \nabla (\mathbf{E} \cdot \mathbf{n}) \cdot \mathbf{E}^{*} da$$
(33)

This is indeed true by applying (13) with $\mathbf{a} = \mathbf{E}, \mathbf{b} = \mathbf{E}^*$ (third to last line of (13)).

(b) With

$$B_z = B_0 \frac{\rho}{R} \left(1 - \frac{\rho}{2R} \right) \cos \phi \sin \left(\frac{\pi z}{d} \right)$$
 (34)

we have

$$\nabla_{t}\psi = \frac{\partial\psi}{\partial\rho}\hat{\boldsymbol{\rho}} + \frac{1}{\rho}\frac{\partial\psi}{\partial\phi}\hat{\boldsymbol{\phi}}$$

$$= B_{0}\left[\frac{1}{R}\left(1 - \frac{\rho}{2R}\right) + \frac{\rho}{R}\left(-\frac{1}{2R}\right)\right]\cos\phi\,\hat{\boldsymbol{\rho}} - B_{0}\frac{1}{R}\left(1 - \frac{\rho}{2R}\right)\sin\phi\,\hat{\boldsymbol{\phi}}$$

$$= \frac{B_{0}}{R}\left[\left(1 - \frac{\rho}{R}\right)\cos\phi\,\hat{\boldsymbol{\rho}} - \left(1 - \frac{\rho}{2R}\right)\sin\phi\,\hat{\boldsymbol{\phi}}\right]$$
(35)

The transverse electric field is obtained via (8.77)

$$\mathbf{E}_{t} = -\frac{i\omega\mu}{\gamma^{2}}\sin\left(\frac{\pi z}{d}\right)\hat{\mathbf{z}} \times \nabla_{t}\psi = \underbrace{-\frac{i\omega\mu}{\gamma^{2}}\frac{B_{0}}{R}}_{E_{0}}\sin\left(\frac{\pi z}{d}\right)\left[\left(1 - \frac{\rho}{R}\right)\cos\phi\,\hat{\boldsymbol{\phi}} + \left(1 - \frac{\rho}{2R}\right)\sin\phi\,\hat{\boldsymbol{\rho}}\right]$$
(36)

with

$$E_{\rho} = E_0 \left(1 - \frac{\rho}{2R} \right) \sin \phi \sin \left(\frac{\pi z}{d} \right) \qquad \qquad E_{\phi} = E_0 \left(1 - \frac{\rho}{R} \right) \cos \phi \sin \left(\frac{\pi z}{d} \right) \tag{37}$$

(c) With the curl formula in cylindrical coordinates, we have (setting $E_0=1$)

$$\nabla \times \mathbf{E} = -\frac{\partial E_{\phi}}{\partial z} \hat{\boldsymbol{\rho}} + \frac{\partial E_{\rho}}{\partial z} \hat{\boldsymbol{\phi}} + \frac{1}{\rho} \left[\frac{\partial \left(\rho E_{\phi} \right)}{\partial \rho} - \frac{\partial E_{\rho}}{\partial \phi} \right] \hat{\mathbf{z}}$$

$$= -\left(\frac{\pi}{d} \right) \left(1 - \frac{\rho}{R} \right) \cos \phi \cos \left(\frac{\pi z}{d} \right) \hat{\boldsymbol{\rho}} + \left(\frac{\pi}{d} \right) \left(1 - \frac{\rho}{2R} \right) \sin \phi \cos \left(\frac{\pi z}{d} \right) \hat{\boldsymbol{\phi}} +$$

$$\frac{1}{\rho} \left[\left(1 - \frac{2\rho}{R} \right) \cos \phi \sin \left(\frac{\pi z}{d} \right) - \left(1 - \frac{\rho}{2R} \right) \cos \phi \sin \left(\frac{\pi z}{d} \right) \right] \hat{\mathbf{z}}$$

$$= -\left(\frac{\pi}{d} \right) \left(1 - \frac{\rho}{R} \right) \cos \phi \cos \left(\frac{\pi z}{d} \right) \hat{\boldsymbol{\rho}} + \left(\frac{\pi}{d} \right) \left(1 - \frac{\rho}{2R} \right) \sin \phi \cos \left(\frac{\pi z}{d} \right) \hat{\boldsymbol{\phi}} - \frac{3}{2R} \cos \phi \sin \left(\frac{\pi z}{d} \right) \hat{\mathbf{z}}$$
(38)

Carrying out the integrals in the functional, we get

$$k^{2} = f\left[\mathbf{E}\right] = \frac{\int_{V} (\mathbf{\nabla} \times \mathbf{E}^{*}) \cdot (\mathbf{\nabla} \times \mathbf{E}) d^{3}x}{\int_{V} \mathbf{E}^{*} \cdot \mathbf{E} d^{3}x} = \frac{\left(\frac{\pi}{d}\right)^{2} \frac{R^{2}}{12} + \left(\frac{\pi}{d}\right)^{2} \frac{11R^{2}}{48} + \frac{9}{8}}{\frac{R^{2}}{12} + \frac{11R^{2}}{48}} = \frac{\pi^{2}}{d^{2}} + \frac{18}{5R^{2}}$$
(39)

Recall that the variational principle gets the overall eigenvalue $\omega_{\lambda}^2 \mu \epsilon$, this implies a γ value of (see (8.79))

$$\sqrt{k^2 - \frac{\pi^2}{d^2}} = \frac{1}{R} \sqrt{\frac{18}{5}} \approx \frac{1.897}{R} \tag{40}$$

where the exact solution is 1.841/R.

3. Prob 8.11

If we take the trial field

$$E_z = \left(\frac{\rho}{R}\right)^{\nu} \left(1 - \frac{\rho}{R}\right) \sin 2\phi \tag{41}$$

as the only component of the field, then

$$\int_{V} \mathbf{E}^{*} \cdot \mathbf{E} d^{3} x = d \int_{0}^{\pi/2} d\phi \int_{0}^{R} \rho d\rho \left(\frac{\rho}{R}\right)^{2\nu} \left(1 - \frac{\rho}{R}\right)^{2} \sin^{2} 2\phi$$

$$= \frac{\pi d}{4} \int_{0}^{R} \left(\frac{\rho^{2\nu+1}}{R^{2\nu}} - \frac{2\rho^{2\nu+2}}{R^{2\nu+1}} + \frac{\rho^{2\nu+3}}{R^{2\nu+2}}\right) d\rho$$

$$= \frac{\pi dR^{2}}{4} \left(\frac{1}{2\nu+2} - \frac{2}{2\nu+3} + \frac{1}{2\nu+4}\right)$$

$$= \frac{\pi dR^{2}}{4} \frac{2}{(2\nu+2)(2\nu+3)(2\nu+4)}$$
(42)

Also

$$\nabla \times \mathbf{E} = \frac{1}{\rho} \frac{\partial E_z}{\partial \phi} \hat{\boldsymbol{\rho}} - \frac{\partial E_z}{\partial \rho} \hat{\boldsymbol{\phi}}$$

$$= 2 \frac{\rho^{\nu - 1}}{R^{\nu}} \left(1 - \frac{\rho}{R} \right) \cos 2\phi \, \hat{\boldsymbol{\rho}} - \left[\frac{\nu \rho^{\nu - 1}}{R^{\nu}} \left(1 - \frac{\rho}{R} \right) - \frac{\rho^{\nu}}{R^{\nu + 1}} \right] \sin 2\phi \, \hat{\boldsymbol{\phi}}$$

$$= \frac{2}{R^{\nu}} \left(\rho^{\nu - 1} - \frac{\rho^{\nu}}{R} \right) \cos 2\phi \, \hat{\boldsymbol{\rho}} - \frac{1}{R^{\nu}} \left[\nu \rho^{\nu - 1} - \frac{(\nu + 1)\rho^{\nu}}{R} \right] \sin 2\phi \, \hat{\boldsymbol{\phi}}$$

$$(43)$$

hence

$$\int_{V} (\nabla \times \mathbf{E}^{*}) \cdot (\nabla \times \mathbf{E}) d^{3}x = \frac{\pi d}{4} \cdot 4 \left(\frac{1}{2\nu} - \frac{2}{2\nu + 1} + \frac{1}{2\nu + 2} \right) + \frac{\pi d}{4} \left[\frac{\nu^{2}}{2\nu} - \frac{2\nu(\nu + 1)}{2\nu + 1} + \frac{(\nu + 1)^{2}}{2\nu + 2} \right]$$

$$= \frac{\pi d}{4} \left[\frac{2\nu^{2} + 2\nu + 8}{(2\nu)(2\nu + 1)(2\nu + 2)} \right]$$
(44)

which gives the eigenvalue

$$k^{2}R^{2} = \frac{\int_{V} (\nabla \times \mathbf{E}^{*}) \cdot (\nabla \times \mathbf{E}) d^{3}x}{\int_{V} \mathbf{E}^{*} \cdot \mathbf{E}d^{3}x} = \frac{(\nu + 2)(2\nu + 3)(\nu^{2} + \nu + 4)}{\nu(2\nu + 1)}$$
(45)

Numerical calculation shows that the minimum is achieved at $v \approx 1.568$ with minimum value $kR_{\min} \approx 5.205$ where the exact eigenvalue is kR = 5.136.