

VI. Országos Magyar Matematikaolimpia XXXIII. EMMV

országos szakasz, Nagybánya, 2024. február 26-29.

XI-XII. osztály – II. forduló

1. feladat (10 pont). Határozd meg az összes olyan természetes számot, amelynek pontosan hat pozitív osztója van, és pozitív valódi osztóinak összege 2024-gyel egyenlő!

Kajántó Tünde, Kolozsvár

Megoldás. Hivatalból

(1 pont)

Ha az n természetes számnak 6 osztója van, akkor $n=p^5$ vagy $n=p^2\cdot q$, ahol p,q különböző prímek. (1 pont)

Ha $n=p^5,$ akkor a feltétel alapján $p+p^2+p^3+p^4=2024,$ ahonnan

$$p \cdot (1 + p + p^2 + p^3) = 2024 = 2^3 \cdot 11 \cdot 23.$$
 (1 pont)

Innen a p=2 eset behelyettesítés alapján nem jó, hisz az összeg kisebb lesz, mint 2024. A p=11 vagy p=23 értékek sem jók, mivel $10^4=10000$, vagyis az 10-nél nagyobb prímszámok esetén az összeg már meghaladja a 2024-et. Tehát n nem lehet p^5 alakú. (2 pont)

Ha $n=p^2q$, akkor a feltétel alapján $p+p^2+q+pq=2024$, ahonnan

$$(1+p)\cdot(q+p) = 2024 = 2^3\cdot 11\cdot 23.$$
 (1 pont)

A baloldali tényezők egyike se lehet 1 vagy 2, valamint 1+p < q+p. Ezt felhasználva az alábbi táblázatban vizsgáljuk a 2024 lehetséges tényezőre bontásait:

1+p	q+p	$\mid p \mid$	q
4	506	3	503
8	253	7	246 nem prím
11	184	10 nem prím	
22	92	21 nem prím	
23	88	22 nem prím	
44	46	43	3

(3 pont)

Tehát az egyik lehetséges eset a p=3, q=503, ekkor $n=3^2\cdot 503=4527$. A másik esetben p=43, q=3, ekkor $n=43^2\cdot 3=5547$.

2. feladat (10 pont). Oldd meg a valós számok halmazán a

$$\begin{cases} \log_5(22+x) = \log_3(12-y) \\ \log_5(22+y) = \log_3(12-z) \\ \log_5(22+z) = \log_3(12-x) \end{cases}$$

egyenletrendszert!

Bencze Mihály, Brassó

Megoldás. Hivatalból (1 pont)

Mivel a három változó cirkulárisan permutálható, bármelyről feltételezhetjük, hogy a legnagyobb. Legyen a legnagyobb az y, azaz $z \le y$ és $x \le y$. (1 pont)

$$\log_3(12-x) = \log_5(22+z) \le \log_5(22+y) = \log_3(12-z) \Longrightarrow 12-x \le 12-z \Longrightarrow z \le x.$$
 (1 pont)

$$\log_3(12-x) = \log_5(22+z) \le \log_5(22+x) = \log_3(12-y) \Longrightarrow 12-x \le 12-y \Longrightarrow y \le x.$$

(1 pont)

Tehát $z \leq x = y$.

(1 pont)

Így az első egyenlet a

$$\log_5(22+x) = \log_3(12-x) \tag{1}$$

egyenlettel egyenértékű.

(1 pont)

Az

$$f: (-22, +\infty) \to \mathbb{R}, f(x) = \log_5(22 + x)$$

függvény szigorúan növekvő, a

$$g: (-\infty, 12) \to \mathbb{R}, g(x) = \log_3(12 - x)$$

függvény szigorúan csökkenő, így grafikus képeik legtöbb egy pontban metszik egymást, vagyis a (1)-es egyenletnek legtöbb egy megoldása van. (1 pont)

Ha x = 3, akkor

$$\log_5(22+3) = \log_3(12-3) \Longleftrightarrow 2 = 2 \text{ igaz}.$$

Következik, hogy x = 3 az egyenlet egyetlen megoldása.

(1 pont)

A harmadik egyenletbe behelyettesítve ezt az értéket, z=3 megoldást kapjuk.

(1 pont)

Tehát az egyenletrendszer megoldása: (x, y, z) = (3, 3, 3).

(1 pont)

- **3. feladat** (10 pont). Az ABCD húrnégyszög átlói merőlegesek egymásra, E az átlók metszéspontja. A négyszög köré írható kör középpontja O és M az AB oldal felezőpontja.
- a) Igazold, hogy $EM \perp CD!$
- b) Igazold, hogy $OM = \frac{CD}{2}!$

(***

Megoldás. Hivatalból

(1 pont)

a) Legyen $ME \cap DC = \{F\}.$

Az AEB_{\triangle} -ben az E derékszög és $AM \equiv MB$, tehát $AM \equiv ME$. (1 pont)

Ugyanakkor $\widehat{MAE} \equiv \widehat{AEM}$, mert MAE_{\triangle} egyenlő szárú háromszög és $\widehat{AEM} \equiv \widehat{CEF}$, mert csúcsszögek, tehát $\widehat{BAE} \equiv \widehat{CEF}$. (1 pont)

Mivel
$$\widehat{DCE} = \frac{\widehat{AD}}{2}$$
 és $\widehat{ABD} = \frac{\widehat{AD}}{2} \Longrightarrow \widehat{ABE} \equiv \widehat{DCE}$. (1 pont)

Az AEB háromszögben és az EFC háromszögben $\widehat{BAE} \equiv \widehat{CEF}$ és $\widehat{ABE} \equiv \widehat{FCE}$, tehát AEB_{\triangle} hasonló az EFC_{\triangle} háromszöggel, azaz $\widehat{AEB} \equiv \widehat{EFC}$. (1 pont)

Tehát
$$EF \perp DC$$
, de $M \in EF \Longrightarrow ME \perp DC$. (1 pont)

b) Legyen N a DC felezőpontja. O a köré írt kör középpontja, tehát $ON \perp DC$ és $DN \equiv NC$.

Mivel
$$ON \perp DC$$
 és $ME \perp DC$ ezért $ME \parallel ON$. (1 pont)

Az a)alponthoz hasonlóan belátható, hogy $NE\perp AB$ ugyanakkor $OM\perp AB,$

tehát
$$NE \parallel OM$$
. (1 pont)

Mivel
$$ME \parallel ON$$
 és $NE \parallel OM \Longrightarrow MONE$ paralelogramma $\Longrightarrow MO \equiv NE$. (1 pont)

Az NE a DEC derékszögű háromszögben oldalfelező, tehát

$$NE = \frac{DC}{2}$$
 és mivel $MO \equiv NE \Longrightarrow MO = \frac{DC}{2}$. (1 pont)

4. feladat (10 pont). Az 1, 2, 3, ..., 4n számokat szétosztjuk n darab halmazba. Igazold, hogy bármely szétosztás esetén létezik az n darab halmaz valamelyikében három olyan szám, amely egy háromszög oldalainak mérőszáma! (***)

Megoldás. Hivatalból (1 pont)

Annak szükséges és elégséges feltétele, hogy az a < b < c számok egy háromszög oldalainak mérőszámai legyenek, az hogy a + b > c. (2 pont)

Észrevesszük, hogy a 2n, 2n + 1, ..., 4n számokból alkotható bármely számhármas esetén teljesül a háromszög-egyenlőtlenség, hiszen a két legkisebb elem összege 4n + 1, ami nagyobb 4n-nél, a halmaz legnagyobb eleménél. (4 pont)

Viszont ezek száma 2n + 1, így a skatulya elv alapján biztosan lesz köztük három, ami ugyanabba a halmazba kerül. (2 pont)

Tehát ebben a halmazban van három szám, amelyek egy háromszög oldalainak mérőszámai. (1 pont)

5. feladat (10 pont). Az ABC háromszögben fennáll a

$$\cos A \cdot \cos B \cdot \cos C + \sqrt{3}\sin A \cdot \sin B \cdot \sin C = \frac{5}{4}$$

összefüggés. Igazold, hogy az ABC háromszög egyenlő oldalú!

Longáver Lajos, Nagybánya

Megoldás. Hivatalból (1 pont)

Összeggé alakítjuk a $\cos A \cdot \cos B \cdot \cos C$ szorzatot.

$$\cos A \cdot \cos B \cdot \cos C = \frac{1}{2} \cdot \left[\cos(A+B) + \cos(A-B) \right] \cdot \cos C =$$

$$\frac{1}{2} \cdot \left[\cos(\pi - C) + \cos(A-B) \right] \cdot \cos C = \frac{1}{2} \cdot \left[-\cos C + \cos(A-B) \right] \cdot \cos C =$$

$$\frac{1}{2} \cdot \left[-\cos^2 C + \cos(A-B) \cdot \cos C \right] =$$

$$\frac{1}{2} \cdot \left[-\cos^2 C + \frac{\cos(A-B+C) + \cos(A-B-C)}{2} \right] =$$

$$\frac{-2\cos^2 C + \cos(\pi - 2B) + \cos(2A-\pi)}{4} =$$

$$\frac{-2\frac{1+\cos(2C)}{2} - \cos(2B) - \cos(2A)}{4}.$$

Tehát

$$\cos A \cdot \cos B \cdot \cos C = -\frac{1 + \cos 2A + \cos 2B + \cos 2C}{4}.$$

(**2** pont)

Hasonlóan igazolható, hogy

$$\sin A \cdot \sin B \cdot \sin C = \frac{\sin 2A + \sin 2B + \sin 2C}{4}.$$

(2 pont)

Felhasználva az azonosságokat, a kezdeti feltétel:

$$\cos A \cdot \cos B \cdot \cos C + \sqrt{3} \sin A \cdot \sin B \cdot \sin C = \frac{5}{4} \iff$$

$$-\frac{1 + \cos 2A + \cos 2B + \cos 2C}{4} + \sqrt{3} \cdot \frac{\sin 2A + \sin 2B + \sin 2C}{4} = \frac{5}{4} \iff$$

$$\cos 2A + \cos 2B + \cos 2C - \sqrt{3}(\sin 2A + \sin 2B + \sin 2C) + 6 = 0$$

alakba írható.

Csoportosítva a tagokat azt kapjuk, hogy:

$$(\cos 2A - \sqrt{3}\sin 2A + 2) + (\cos 2B - \sqrt{3}\sin 2B + 2) + (\cos 2C - \sqrt{3}\sin 2C + 2) = 0.$$
(1 pont)

Felhasználva a

$$\cos 2A - \sqrt{3}\sin 2A + 2 = \cos^2 A - \sin^2 A - 2\sqrt{3}\cdot \sin A \cdot \cos A + 2(\cos^2 A + \sin^2 A) =$$

$$= 3\cos^{2} A - 2\sqrt{3} \cdot \sin A \cdot \cos A + \sin^{2} A = (\sin A - \sqrt{3}\cos A)^{2}$$

(2 pont)

azonosságot kapjuk, hogy:

$$(\sin A - \sqrt{3}\cos A)^{2} + (\sin B - \sqrt{3}\cos B)^{2} + (\sin C - \sqrt{3}\cos C)^{2} = 0 \iff$$

$$\sin A - \sqrt{3}\cos A = \sin B - \sqrt{3}\cos B = \sin C - \sqrt{3}\cos C = 0 \iff$$

(1 pont)

$$\operatorname{tg} A = \operatorname{tg} B = \operatorname{tg} C = \sqrt{3} \Longleftrightarrow A = B = C = \frac{\pi}{3}$$

Tehát a háromszög egyenlő oldalú.

(1 pont)

6. feladat (10 pont). Tekintsük az $(S_n)_{n\geq 1}$ sorozatot, ahol S_n az első n darab prímszám összegét jelöli $(S_1=2,S_2=5,S_3=10,...)$. Igazold, hogy a sorozatnak nem lehet két egymás utáni tagja négyzetszám!

Dávid Géza, Székelyudvarhely

Megoldás. Hivatalból (1 pont)

$$S_1 = 2$$
, $S_2 = 5$, $S_3 = 10$, $S_4 = 17$, ...

Legyen $p_1, p_2, p_3, ..., p_n, ...$ a prímszámok sorozata. Feltételezzük, hogy az $(S_n)_{n\geq 1}$ sorozatban van két olyan egymásutáni tag, amely négyzetszám. Legyenek ezek S_m és S_{m+1} . Ekkor

$$p_1 + p_2 + ... + p_m = k^2$$
 és $p_1 + p_2 + ... + p_m + p_{m+1} = l^2$, ahol $k, l \in \mathbb{N}$ és $l > k$.

(1 pont)

Innen azt kapjuk, hogy $l^2 - k^2 = p_{m+1}$, azaz $(l-k)(l+k) = p_{m+1}$. Mivel p_{m+1} prímszám, ezért l-k=1 és $l+k=p_{m+1}$, tehát

$$\begin{cases} l = \frac{p_{m+1}+1}{2} \\ k = \frac{p_{m+1}-1}{2} \end{cases}.$$

(**2** pont)

Tehát

$$p_1 + p_2 + \dots + p_m + p_{m+1} = \left(\frac{p_{m+1} + 1}{2}\right)^2.$$
 (2)

(1 pont)

Feltételezhetjük, hogy m>4, mert S_1,S_2,S_3,S_4 nem négyzetszámok. Ugyanakkor a prímszámok összege kisebb, mint a páratlan számok összege, vagyis

$$p_1 + p_2 + \dots + p_m + p_{m+1} < 1 + 3 + 5 + \dots + p_{m+1} = \left(\frac{p_{m+1} + 1}{2}\right)^2$$
 (3)

(**3 pont**)

Az (2) és (3) alapján

$$\left(\frac{p_{m+1}+1}{2}\right)^2 < \left(\frac{p_{m+1}+1}{2}\right)^2,$$

ami ellentmondás. Tehát a feltételezésünk hamis.

(1 **pont**)