Propriedades Mecânicas e Térmicas - 2022

Capacidade calorífica - aula TP

Dr. Andrei V. Kovalevsky (Kavaleuski)
Investigador Principal
DEMaC / CICECO

e-mail: akavaleuski@ua.pt

A diagrama apresenta a relação da escala de temperatura em °F com uma escala desconhecida de temperatura °Z. Determine a temperatura T em °F.

Resolução:

Os fatores de conversão entre duas escalas (lineares) de temperatura pode ser calculado utilizando duas temperaturas conhecidas. Uma escala pode ser apresentada pela outra usando uma equação linear:

$$T({}^{\circ}F) = a \times T({}^{\circ}Z) + b$$

$$T_{1}({}^{\circ}F) = a \times T_{1}({}^{\circ}Z) + b$$

$$T_{2}({}^{\circ}F) = a \times T_{2}({}^{\circ}Z) + b$$

$$a = \frac{T_2(°F) - T_1(°F)}{T_2(°Z) - T_1(°Z)}$$

$$b = T_1(°F) - \frac{T_2(°F) - T_1(°F)}{T_2(°Z) - T_1(°Z)}$$

$$T = -159.39°F$$

Calcule a energia necessária para elevar de 20 °C para 150 °C a temperatura de 5 kg dos seguintes materiais: ouro, latão, alumina, polietileno.

Material	c_p (J/kg-K)
 Polymers 	at room <i>T</i>
Polypropylene Polyethylene	1925
Polyethylene	1850
Polystyrene	1170
Teflon	1050

 Metals 	
Aluminum	900
Steel	486
Tungsten	138
Golď	128
Brass	375

Resolução:

$$Q = c_p \times m \times (T_2 - T_1)$$

Ouro:
$$Q = 900 \times 5 \times 130 = 83.2 (kJ)$$

Latão:
$$Q = 375 \times 5 \times 130 = 243.75 (kJ)$$

Alumina:
$$Q = 775 \times 5 \times 130 = 503.75 (kJ)$$

Polietileno:
$$Q = 1850 \times 5 \times 130 = 1.2025 (MJ)$$

Quatro blocos dos materiais diferentes com a densidade aproximadamente igual estão aquecidos usando mesmo quantidade de energia, provocando um aumento de temperatura de cada. Qual material tem maior capacidade calorífica?

Resolução:

$$Q = c_n \times m \times \Delta T$$

$$Q = c_p \times \rho \times V \times \Delta 7$$

$$Q = c_p \times m \times \Delta T \qquad \Longrightarrow \qquad Q = c_p \times \rho \times V \times \Delta T \qquad \Longrightarrow \qquad c_p = \frac{Q}{\rho} \times \frac{1}{V \times \Delta T}$$

Dado que $\frac{Q}{Q}$ é constante, uma maior capacidade calorifica corresponde à amostra com menor $V \times \Delta T$

Mat 3 e Mat 4 têm os valores de $V \times \Delta T$ maiores de todos. $V(Mat 1) \approx 4V(Mat 2)$

$$\frac{c_p(Mat\ 2)}{c_p(Mat\ 1)} = \frac{1}{V(Mat\ 2) \times 2} : \frac{1}{4V(Mat\ 2) \times 4} = 2$$

Assim, Mat 2 tem uma maior capacidade calorífica.

Uma peça de alumínio de 55 g a 100°C foi colocada num recipiente com 51.3 g de água a 20°C isolado termicamente do ambiente. A temperatura estabelecida depois do equilibração foi de 35°C. A capacidade calorífica da água é de 4.18 J/g/K. Qual é a capacidade calorífica de alumínio?

Resolução:

A quantidade de calor transferido de Al para agua Q_{Al} é igual a quantidade de calor recebido por água Q_{agua} . Assim:

$$c_p(Al) \times m(Al) \times (T_{Al} - T_{eq}) = c_p(\acute{a}gua) \times m(\acute{a}gua) \times (T_{eq} - T_{\acute{a}gua})$$

$$c_p(Al) = \frac{c_p(\acute{a}gua) \times m(\acute{a}gua) \times \left(T_{eq} - T_{\acute{a}gua}\right)}{m(Al) \times \left(T_{Al} - T_{eq}\right)}$$

$$c_p(Al) = 0.90 \frac{J}{g \times K}$$

Estime os valores de capacidade calorífica (em J/g/K) usando a regra de Neumann-Kopp e os dados apresentados na tabela, para H₂O (agua e gelo), alumínio metálico, K₂SO₄ (sólido e fundido) e ZrO₂ sólido.

Elemento	$c_{p,m}$, $J/(mol \times K)$	
	Sólidos	Líquidos
c.	7.5	11.7
Н	9.6	18.0
В	11.3	19.7
Si	15.9	24.3
······································	16.7	25:1
F	20.9	29.3
P, S	22.6	31.0
Restantes elementos	25.1 a 25.9	33.5

Resolução:

$$c_{p,m}(A_aB_bC_c(s)) = ac_{p,m}\big(A(s)\big) + ac_{p,m}\big(A(s)\big) + cc_{p,m}\big(C(s)\big)$$

Assumimos o valor médio de $c_{p,m}$ para restantes elementos como (25.1+25.9)/2= 25.5 J/mol/K

Relembramos que
$$c_p = \frac{c_{p,m}}{M}$$

• Para K₂SO₄ fundido:
$$c_p = \frac{2*33.5+31.0+4*25.1}{2*39.098+32.06+4*15.999} = 1.1 \frac{J}{g \times K}$$

• Para água (líquida):
$$c_p = \frac{2*18.0+25.1}{2*1.008+15.999} = 3.4 \frac{J}{g \times K}$$

• Para gelo:
$$c_p = \frac{2*9.6+16.7}{2*1.008+15.999} = 2.0 \frac{J}{g \times K}$$

• Para Al:
$$c_p = \frac{25.5}{26.982} = 0.95 \frac{J}{g \times K}$$

• Para K₂SO₄ sólido:
$$c_p = \frac{2*25.5+22.6+4*16.7}{2*39.098+32.06+4*15.999} = 0.8 \frac{J}{g \times K}$$

• Para
$$ZrO_2$$
: $c_p = \frac{25.5 + 2*16.7}{91.224 + 2*15.999} = 0.5 \frac{J}{g \times K}$

Compare a densidade de armazenamento de energia $(\frac{Q}{m})$ da água e parafina, um material de mudança de fase (PCM), no aquecimento de 30° a 48°C, assumindo que o PCM começa a fundir e funde completamente a 44°C, as capacidades caloríficas médias da água, PCM sólido e PCM líquido são 4182, 2400 e 1800 J/(kg*K), e o calor latente de fusão do PCM é de 250 kJ/kg.

Energia armazenada

densidade de armazenamento de energia da água:

$$Q_d(água) = c_p(água) \times \Delta T = 4182 \times (48 - 30) = 75276 J/kg$$

densidade de armazenamento de energia do PCM:

$$Q_d(PCM) = c_p(PCM \text{ s\'olido}) \times \Delta T_1 + L_m + c_p(PCM \text{ l\'iquido}) \times \Delta T_2 =$$

= 2400 × (44 - 30) + 250000 + 1800 × (48 - 44) = 290800 J/kg

$$\frac{Q_d(PCM)}{Q_d(\acute{a}gua)} = 3.86$$

A constante A na equação da dependência de capacidade calorífica de temperatura a $T \to 0K$ é igual a $\frac{12\pi^4R}{5\theta_D^3}$, em que R é constante dos gases e θ_D é a temperatura de Debye (K). Estime o valor de θ_D para o alumínio, dado que a capacidade calorífica a 15 K é de 4.60 J/kg/K.

Resolução:
$$c_p \sim AT^3 \ para \ T \rightarrow 0K$$
 $A = \frac{12\pi^4 R}{5\theta_D^3}$
$$c_{p,m} = \frac{12\pi^4 R}{5\theta_D^3} \times T^3 \qquad \qquad \theta_D = T \times \sqrt[3]{\frac{12\pi^4 R}{5c_{p,m}}}$$

Para serem usados na equação para θ_D , as unidades de c_p devem ser em J/mol/K

$$c_{p,m}\left[\frac{J}{mol \times K}\right] = c_{p,m}\left[\frac{J}{kg \times K}\right] : 1000 \times M(Al)\left[\frac{g}{mol}\right]$$

$$\theta_D = 15 \times \sqrt[3]{\frac{12\pi^4 \times 8.314}{5 \times \frac{4.60}{1000} *26.982}} = 375.3 \text{ (K)}$$

Quantos litros de água a 80°C devem ser misturados com 40 litros de água a 10°C para ter uma mistura com uma temperatura final de 40°C?

Resolução:

Assumimos que a capacidade calorífica e densidade de água não dependem de temperatura nesta gama de temperaturas. Depois de misturar, a água está em condição de equilíbrio térmico a 40°C. Assim:

quantidade de calor transferida da água quente para

$$Q_1 = c_p \times \rho V_{quente} \Delta T = c_p \times \rho V_{quente} \times (80 - 40) = 40 \times c_p \times \rho V_{quente} (J)$$

quantidade de calor recebida por água fria da água

$$Q_2 = c_p \times \rho V_{fria} \Delta T = c_p \times \rho \times 40 \times (40 - 10) = 1200 \times c_p \times \rho \ (J)$$

$$Q_1 = Q_2$$

$$V_{quente} = \frac{1200 \times c_p \times \rho}{40 \times c_p \times \rho} = 30 \text{ (L)}$$