2.1. MC Fragen: Folgenkonvergenz. Wählen Sie die einzige richtige Antwort.

- (a) Welche der folgenden Aussagen ist richtig?
 - Eine Folge kann höchstens einen Grenzwert haben.

Richtig: Dies folgt aus Lemma 2.1.3 im Skript.

O Jede monotone und nach oben beschränkte Folge ist konvergent.

Falsch: Zum Beispiel ist die Folge gegeben durch $a_n = -n$ für $n \ge 1$ monoton (nämlich monoton fallend) und nach oben beschränkt, aber sie konvergiert nicht.

○ Es gibt konvergente Folgen, die nicht beschränkt sind.

Falsch: Siehe Bemerkung 2.1.5 im Skript.

○ Eine divergente Folge ist nicht beschränkt.

Falsch: Zum Beispiel ist die Folge gegeben durch $a_n = (-1)^n$ für $n \ge 1$ divergent und beschränkt.

- (b) Seien $(a_n)_{n\geq 1}$, $(b_n)_{n\geq 1}$ und $(c_n)_{n\geq 1}$ Folgen in \mathbb{R} mit $c_n=a_n+b_n$.
- \bigcirc Falls $\lim_{n\to\infty} c_n$ existiert, dann existieren $\lim_{n\to\infty} a_n$ und $\lim_{n\to\infty} b_n$ und es gilt:

$$\lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n.$$

Falsch: Seien zum Beispiel $a_n = -(-1)^n$ und $b_n = (-1)^n$ für $n \ge 1$. Dann gilt $c_n = 0$ für alle $n \ge 1$ und somit $\lim_{n \to \infty} c_n = 0$. Die Folgen $(a_n)_{n \ge 1}$ und $(b_n)_{n \ge 1}$ konvergieren jedoch nicht.

• Falls $\lim_{n\to\infty} c_n$ und $\lim_{n\to\infty} b_n$ existieren, dann existiert $\lim_{n\to\infty} a_n$ und es gilt:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n - \lim_{n \to \infty} b_n.$$

Richtig: Dies folgt aus Satz 2.1.8 im Skript.

 \bigcirc Falls $(c_n)_{n\geq 1}$ beschränkt ist, dann muss mindestens eine der Folgen $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ beschränkt sein.

Falsch: Seien zum Beispiel $a_n = n$ und $b_n = -n$ für $n \ge 1$. Dann ist $c_n = 0$ für alle $n \ge 1$, somit ist $(c_n)_{n \ge 1}$ beschränkt, jedoch sind $(a_n)_{n \ge 1}$ und $(b_n)_{n \ge 1}$ unbeschränkt.

2. März 2024

 \bigcirc Falls $(c_n)_{n\geq 1}$ konvergiert, dann konvergiert mindestens eine der Folgen $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$.

Falsch: Die Folgen definiert durch $a_n = -(-1)^n$ und $b_n = (-1)^n$ für $n \ge 1$ sind wieder ein Gegenbeispiel.

(c) Sei $(a_n)_{n\geq 1}$ eine Folge in \mathbb{R} . Welche der folgenden Aussagen impliziert, dass $\lim_{n\to\infty}a_n=\infty$?

• Es gibt $N \in \mathbb{N}$, so dass $a_n \ge 12n$ für alle $n \ge N$.

Richtig: Gegeben $t \in \mathbb{R}$ wähle $N \in \mathbb{N}$ mit $12N \ge t$. Dann folgt aus der Bedingung für alle $n \ge N$, dass $a_n \ge 12n \ge 12N \ge t$.

 $\bigcirc \ a_n = 1/b_n$ für eine Folge $(b_n)_{n \ge 1}$ mit $b_n \to 0$ für $n \to \infty$.

Falsch: Ein Gegenbeispiel ist gegeben durch $b_n = -1/n$. Dann konvergiert $(b_n)_{n\geq 1}$ gegen 0, aber $a_n = -n \to -\infty$ für $n \to \infty$.

 \bigcirc Für jedes $N \in \mathbb{N}$ existiert $n \geq N$, so dass $a_n > 2^n$.

Falsch: Ein Gegenbeispiel ist gegeben durch $a_n = 0$ wenn n gerade und $a_n = 2^n + 1$ wenn n ungerade ist. Dann erfüllt $(a_n)_{n \ge 1}$ die geforderte Bedingung, konvergiert allerdings nicht gegen ∞ .

 $\bigcirc \{a_{n+1} - a_n \mid n \ge 1\}$ ist unbeschränkt.

Falsch: Ein Gegenbeispiel ist gegeben durch $a_n = n(-1)^n$ für $n \ge 1$. Dann ist $a_{n+1} - a_n = (-1)^{n+1}(2n+1)$, also ist $\{a_{n+1} - a_n \mid n \ge 1\}$ unbeschränkt. Allerdings konvergiert $(a_n)_{n \ge 1}$ nicht gegen ∞ .

- (d) Sei $(a_n)_{n>1}$ eine Folge in \mathbb{R} .
 - \bigcirc Falls $\varepsilon > 0$ und $a \in \mathbb{R}$ existieren, so dass

$$|a_n - a| < \varepsilon \quad \forall n \ge 1$$

gilt, dann konvergiert $(a_n)_{n\geq 1}$.

Falsch: Setze für ein Gegenbeispiel zum Beispiel a = 0, $a_n = (-1)^n$ für $n \ge 1$ und $\varepsilon = 2$.

ullet Falls $(a_n)_{n\geq 1}$ konvergiert, dann ist die Folge $b_n=a_{n+1}+a_n$ konvergent.

Richtig: Aufgrund von Bemerkung 2.2.4 im Skript ist auch die Folge $(a_{n+1})_{n\geq 1}$ konvergent, bei der die Indizes um 1 verschoben wurden. Aus Satz 2.1.8 folgt dann, dass die Folge $(b_n)_{n\geq 1}$ auch konvergent ist, da sie die Summe der Folgen $(a_n)_{n\geq 1}$ und $(a_{n+1})_{n\geq 1}$ ist.

 \bigcirc Falls die Folge $b_n = a_{n+1} - a_n$ gegen 0 konvergiert, dann ist $(a_n)_{n \ge 1}$ konvergent.

Falsch: Sei für ein Gegenbeispiel $a_n = \sum_{k=1}^n \frac{1}{k}$ für $n \ge 1$. Dann ist $b_n = \sum_{k=1}^{n+1} \frac{1}{k} - \sum_{k=1}^n \frac{1}{k} = \frac{1}{n+1}$, sodass $(b_n)_{n\ge 1}$ gegen 0 konvergiert. Allerdings ist $(a_n)_{n\ge 1}$ unbeschränkt, wie aus Beispiel 1.1.17(ii) im Skript folgt.

 \bigcirc Falls $a_{n+1} \ge a_n$ für alle $n \ge 1$, dann ist $(a_n)_{n \ge 1}$ unbeschränkt.

Falsch: Ein einfaches Gegenbeispiel ist Beispiel 2.1.7 im Skript.

- (e) Welche der folgenden Aussagen ist äquivalent zu $\lim_{n\to\infty} a_n = 2$?
 - $\bigcirc \forall N \ge 1 \,\exists n \ge N \colon |a_n 2| < \frac{1}{N}.$
 - $\bigcirc \ \forall \varepsilon > 0 \,\exists n \ge 1 \colon a_n \le 2 + \varepsilon.$
 - $\bullet \ \forall \varepsilon > 0 \,\exists N \ge 1 \,\forall n \ge N \colon |a_n 2| < \varepsilon.$
 - $\bigcirc \exists \varepsilon > 0 \exists N > 1 \forall n > N : |a_n 2| < \varepsilon.$
- **2.2. Grenzwert I.** Sei $a \in \mathbb{R}$, a > 0. Beweisen Sie, dass $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

Lösung: Wir unterscheiden die beiden Fälle $a \ge 1$ und 0 < a < 1.

Sei zuerst $a \geq 1$. Sei $\varepsilon > 0$. Aus der Vorlesung (Beispiel 2.2.3) wissen wir, dass $\lim_{n \to \infty} \frac{1}{(1+\varepsilon)^n} = 0$. Es gibt also $N \in \mathbb{N}$ mit $\frac{1}{(1+\varepsilon)^n} < \frac{1}{a}$ für alle $n \geq N$. Unter Verwendung der Monotonie der n-ten Wurzel folgt hieraus durch Umformen, dass $\sqrt[n]{a} < 1 + \varepsilon$ für alle $n \geq N$. Da $\sqrt[n]{a} \geq 1$ für alle $n \geq 1$ gilt, zeigt dies die Konvergenz von $\sqrt[n]{a}$ gegen 1.

Falls 0 < a < 1, definieren wir $c = \frac{1}{a}$. Dann ist c > 1 und es folgt aus dem ersten Fall oben, dass $\lim_{n\to\infty} \sqrt[n]{c} = 1$. Wir erhalten durch Anwendung von Satz 2.1.8(3) im Skript, dass

$$\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{c}} = 1.$$

2.3. Grenzwert II. Man untersuche die untenstehenden Zahlenfolgen. Sind sie beschränkt? Konvergieren sie? Wenn ja: Was ist ihr Grenzwert?

(a)
$$a_n = \frac{3n^5 + 2n^3 + 5n}{10 + 2n^5};$$

Lösung: Es gilt

$$\frac{3n^5 + 2n^3 + 5n}{10 + 2n^5} = \frac{3 + 2/n^2 + 5/n^4}{10/n^5 + 2}.$$

2. März 2024

Da in dieser Darstellung Zähler und Nenner konvergieren, konvergiert $(a_n)_{n\geq 1}$ und es gilt

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{3n^5 + 2n^3 + 5n}{10 + 2n^5} = \lim_{n \to \infty} \frac{3 + 2/n^2 + 5/n^4}{10/n^5 + 2} = \frac{3}{2}.$$

Insbesondere ist die Folge beschränkt.

(b)
$$b_n = \sqrt{n^2 + 3n} - n;$$

Lösung: Es gilt

$$\sqrt{n^2 + 3n} - n = \frac{(n^2 + 3n) - n^2}{\sqrt{n^2 + 3n} + n} = \frac{3n}{n\sqrt{1 + 3/n} + n} = \frac{3}{\sqrt{1 + 3/n} + 1}.$$

Wegen $1 \le \sqrt{1+3/n} \le 1+3/n$ konvergiert der Nenner in der obigen Darstellung gegen 2. Es folgt

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} \left(\sqrt{n^2 + 3n} - n \right) = \lim_{n \to \infty} \frac{3}{\sqrt{1 + 3/n} + 1} = \frac{3}{2}.$$

Insbesondere ist die Folge beschränkt.

(c)
$$c_n = \frac{3^n + (-2)^n}{3^n - 2^n};$$

Lösung: Es gilt

$$\frac{3^n + (-2)^n}{3^n - 2^n} = \frac{1 + (-2/3)^n}{1 - (2/3)^n}.$$

In der Vorlesung haben wir gesehen, dass für q=2/3 die Folge $(q^n)_{n\geq 1}$ gegen 0 konvergiert. Also konvergieren in der obigen Darstellung sowohl Zähler als auch Nenner gegen 1. Daraus folgt

$$\lim_{n \to \infty} \frac{3^n + (-2)^n}{3^n - 2^n} = \lim_{n \to \infty} \frac{1 + (-2/3)^n}{1 - (2/3)^n} = 1.$$

Insbesondere ist die Folge beschränkt.

(d)
$$d_n = \left(\frac{n}{n^2} + \frac{n+1}{n^2} + \dots + \frac{3n}{n^2}\right);$$

Lösung: Nach der Formel für die Summe von arithmetischen Progressionen haben wir:

$$n + (n+1) + \dots + 3n = (1+2+\dots+n+\dots+3n) - (1+2+\dots+(n-1))$$
$$= \frac{3n(3n+1)}{2} - \frac{(n-1)n}{2} = 4n^2 + 2n.$$

4/7

Daher gilt

$$\frac{n}{n^2} + \frac{n+1}{n^2} + \dots + \frac{3n}{n^2} = \frac{4n^2 + 2n}{n^2} = 4 + 2/n.$$

Es folgt

$$\lim_{n \to \infty} \left(\frac{n}{n^2} + \frac{n+1}{n^2} + \dots + \frac{3n}{n^2} \right) = \lim_{n \to \infty} (4+2/n) = 4.$$

Insbesondere ist die Folge beschränkt.

(e)
$$e_n = \sqrt[n]{5^n + 11^n + 17^n}$$

Lösung: Für alle $n \ge 1$ gilt:

$$17^n < 5^n + 11^n + 17^n < 17^n + 17^n + 17^n = 3 \cdot 17^n$$

Dies impliziert Folgendes:

$$17 = \sqrt[n]{17^n} < \sqrt[n]{5^n + 11^n + 17^n} < \sqrt[n]{3 \cdot 17^n} = \sqrt[n]{3} \cdot 17. \tag{1}$$

Aus Aufgabe 2.2 folgt, dass $\sqrt[n]{3}$ gegen 1 konvergiert. Daher konvergieren beide Seiten von (1) gegen 17. Mit dem Sandwichlemma schliessen wir, dass $(e_n)_{n\geq 1}$ gegen 17 konvergiert. Insbesondere ist die Folge beschränkt.

2.4. Rekursive Folge. Es sei $(x_n)_{n\geq 1}$ rekursiv gegeben durch $x_1:=1$ und

$$x_{n+1} := 1 + \frac{1}{x_n}, \quad n \ge 1.$$

- (i) Nehmen Sie an, dass $(x_n)_{n\geq 1}$ gegen $g\in\mathbb{R}$ konvergiert. Bestimmen Sie den einzigen möglichen Wert von g, indem Sie auf beiden Seiten der Rekursionsgleichung den Grenzwert nehmen und dann nach g auflösen.
- (ii) Zeigen Sie, dass $|x_{n+1} g| \le g^{-1}|x_n g|$ für alle $n \ge 1$. Folgern Sie, dass $(x_n)_{n \ge 1}$ gegen g konvergiert.

Lösung:

(i) Der Grenzwert $g = \lim_{n \to \infty} x_n$ muss, falls er existiert, die Fixpunktgleichung $g = 1 + \frac{1}{g}$ erfüllen, wie durch Durchführung des Grenzübergangs in der Rekursionsformel folgt. Diese Gleichung hat als einzige Lösungen die Zahlen $\frac{1 \pm \sqrt{5}}{2}$. Da $\frac{1 - \sqrt{5}}{2} < 0$ ist, aber $x_n \ge 0$ für alle $n \ge 1$, bleibt als einziger Kandidat für den Grenzwert der goldene Schnitt $g = \frac{1 + \sqrt{5}}{2}$ übrig.

2. März 2024 5/7

(ii) Wir verwenden die Rekursionsgleichung für x_{n+1} und die Gleichung $g = 1 + \frac{1}{g}$ und finden:

$$|x_{n+1} - g| = \left| 1 + \frac{1}{x_n} - \left(1 + \frac{1}{g} \right) \right| = \frac{|x_n - g|}{x_n \cdot g} \le g^{-1} |x_n - g|,$$

wobei wir im letzten Schritt verwendet haben, dass $x_n \ge 1$ für alle $n \ge 1$ gilt. Mit vollständiger Induktion folgt

$$0 \le |x_{n+1} - g| \le g^{-n}|x_1 - g|$$

für alle $n \ge 1$. Wegen $g^{-1} < 1$ konvergiert g^{-n} für $n \to \infty$ gegen 0. Es folgt $\lim_{n \to \infty} |x_n - g| = 0$, also $\lim_{n \to \infty} x_n = g$.

2.5. Eulersche Zahl. Wir definieren die Folgen $(e_n)_{n\geq 1}$ und $(x_n)_{n\geq 1}$ durch

$$e_n := \left(1 + \frac{1}{n}\right)^n, \quad x_n := \left(1 + \frac{1}{n}\right)^{n+1},$$

für $n \ge 1$. In der Vorlesung wurde bewiesen, dass $(x_n)_{n\ge 1}$ monoton fallend ist und dass

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} e_n = e.$$

- (i) Zeigen Sie, dass die Folge $(e_n)_{n\geq 1}$ monoton wachsend ist. Folgern Sie, dass $e_n\leq e\leq x_n$ für alle $n\geq 1$.
- (ii) Sei $k \in \mathbb{N}$. Bestimmen Sie ein $n \ge 1$, so dass $|e e_n| < 10^{-k}$.

Lösung:

(i) Es gilt

$$\frac{e_{n+1}}{e_n} = \left(\frac{n+2}{n+1}\right)^{n+1} \cdot \left(\frac{n}{n+1}\right)^n = \left(\frac{n^2+2n}{(n+1)^2}\right)^{n+1} \cdot \frac{n+1}{n}$$
$$= \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \cdot \frac{n+1}{n}.$$

Den ersten Faktor im letzten Term schätzen wir mithilfe der Bernoullischen Ungleichung (Lemma 2.2.7) wie folgt ab:

$$\left(1 - \frac{1}{(n+1)^2}\right)^{n+1} \ge 1 - \frac{1}{n+1} = \frac{n}{n+1}.$$

Somit erhalten wir die Ungleichung $\frac{e_{n+1}}{e_n} \geq 1$, welche zeigt, dass $(e_n)_{n\geq 1}$ monoton wachsend ist. Wegen $\lim_{n\to\infty} x_n = \lim_{n\to\infty} e_n = e$ und den gezeigten Monotonieeigenschaften von $(e_n)_{n\geq 1}$ und $(x_n)_{n\geq 1}$ ergibt sich die Ungleichung $e_n \leq e \leq x_n$ für alle $n \geq 1$; vgl. den Satz von Weierstrass (Satz 2.2.2 im Skript).

D-INFK Dr. R. Prohaska

Analysis I Lösung 2

ETH Zürich FS 2024

(ii) Wir wissen, dass für alle $n \ge 1$ die Ungleichung $e_n \le e \le x_n$ gilt. Daraus folgt, dass die Differenz $x_n - e_n$ eine obere Schranke für $|e - e_n| = e - e_n$ ist. Nun berechnen wir

$$x_n - e_n = \left(1 + \frac{1}{n}\right)^n \cdot \left(1 + \frac{1}{n}\right) - \left(1 + \frac{1}{n}\right)^n = \frac{e_n}{n}.$$

Beachten wir nun noch, dass $e_n \le e \le x_1 = 4$ ist, so folgt, dass für alle $n > 4 \cdot 10^k$ gilt, dass

$$|e - e_n| = e - e_n \le x_n - e_n \le \frac{e_n}{n} \le \frac{4}{n} < 10^{-k},$$

wie gewünscht.

- **2.6. Divergente Folgen.** Finden Sie Beispiele für reelle Folgen $(x_n)_{n\geq 1}$ und $(y_n)_{n\geq 1}$, so dass $x_n\to\infty$ und $y_n\to-\infty$ für $n\to\infty$ und...
- (a) $x_n + y_n \to \infty$ für $n \to \infty$;

Lösung: Seien zum Beispiel $x_n = n^2$ und $y_n = -n$ für $n \ge 1$. Dann gilt $x_n + y_n = n^2 - n = n(n-1) \to \infty$ für $n \to \infty$.

(b) $x_n + y_n \to -\infty$ für $n \to \infty$;

Lösung: Seien zum Beispiel $x_n = n$ und $y_n = -n^2$ für $n \ge 1$. Dann gilt $x_n + y_n = n - n^2 = -n(n-1) \to -\infty$ für $n \to \infty$.

(c) $(x_n + y_n)_{n \ge 1}$ konvergiert;

Lösung: Seien zum Beispiel $x_n = n$ und $y_n = -n$ für $n \ge 1$. Dann gilt $x_n + y_n = n - n = 0 \to 0$ für $n \to \infty$.

(d) $(x_n + y_n)_{n>1}$ beschränkt ist und divergiert.

Lösung: Seien zum Beispiel $x_n = (-1)^n + n$ und $y_n = -n$ für $n \ge 1$. Dann gilt $x_n + y_n = (-1)^n + n - n = (-1)^n$, eine beschränkte und divergente Folge.