	on 5: Drift and Diffusion (Worksheet)
Saturday, C	October 16, 2021 7:44 PM
(\tilde{I})	Carrier Concentration Numerical Example
	For Cilican
	2 2 4 4
	$N_C = 2.0 \times 10$ cm
	For Silicon, $N_c = 2.8 \times 10^{19} \text{ cm}^{-3}$ $N_s = 1.04 \times 10^{19} \text{ cm}^{-3}$
	Eg = 1.12 eV
a) 1	What is no as a function of temperature?
'	What is n; as a function of temperature? At T= 300 K 7
	M 1 - 500 F 2
6)	How does this compare to the atomic
	How does this compare to the atomic density of Silicon? a = 5.43 Å
	dersing of Silicon:
	a = 5.43 Å
(د	What is 1/7 if Np= 10'7 cm-3?
	Where is Ef? (Assume (=300K).
	Take N; = 1010 cm-3.
2)	Suppose EF-E; = -0.3 eV. Is the
	material u or p type? What is
	n and p?

1673 Shall a gare of hint
A. that some other effect is
Laumating in the law doping region.
This effect is phonon scattering —
lattere vibrations from the finite crystal
temperature are the domint some of
Scattery in this regime. In fact,
u = le planon + Moon
If upina a uphonon
It won ce yourn, u a won
Q: Why is the trend flat in the
large dopont region?
A: The scattering potential is partially
"Screened" by the carriers themselves.
Essentially, the comies vedistribute
to come 1 out some of the field.
let me
ger to

D. differenty
Pr. convention (amount of substance)
b) Emstem Relator
In equilibroum, diffuson and drift
particle from). Can show this leads to.
$\frac{D_n}{u_n} = \frac{k_a T}{g}$
(and similarly for holes)
This is a very profond result. A
tonsport coefficient Dn is velided
to a dissipature process (scattery -> un)
through themal fructions kgT.
This is on example of the fluctuation - dissipation thousand
Andre example might be drag, whose
conferpert is Brownian motion. The
Enstern relation would than be:
diffusify & = kgT ~ thomas function
J J O Viscos; ty

