Model Documentation of the:

PVTOL with 2 Forces

1 Nomenclature

1.1 Nomenclature for Model Equations

x horizontal displacement

y vertical displacement θ roll angle

 F_1, F_2 Forces on the left and right site of the PVTOL

g acceleration due to gravity

distance between mass center of PVTOL and target point of the forces

m mass of the PVTOL

J moment of inertia of the PVTOL

1.2 Nomenclature for Derivation

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6)^T = (x \ \dot{x} \ y \ \dot{y} \ \theta \ \dot{\theta})^T$$
$$\underline{u} = (u_1 \ u_2)^T = (F_1 \ F_2)^T$$

Model Equations:

$$\dot{x_1} = x_2 \tag{1a}$$

$$\dot{x}_2 = -\frac{\sin(x_5)}{m}(u_1 + u_2) \tag{1b}$$

$$\dot{x_3} = x_4 \tag{1c}$$

$$\dot{x_4} = \frac{\cos(x_5)}{m}(u_1 + u_2) - g \tag{1d}$$

$$\dot{x_5} = x_6 \tag{1e}$$

$$\dot{x_6} = \frac{l}{J}(u_2 - u_1) \tag{1f}$$

Parameters: m, J, lOutputs: x, y, θ

2.1 Assumptions

1. forces target the body of the PVTOL in a 90° angle

2.2 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
acceleration due to gravity	g	9.81	$\frac{m}{s^2}$
distance of forces to mass center	l	0.1	m
mass	m	0.25	$_{ m kg}$
moment of inertia	J	0.00076	$kg \cdot m^2$

3 Derivation and Explanation

References

[1] Knoll, C: Regelungstheoretische Analyse- und Entwurfsansätze für unteraktuierte mechanische Systeme, p. 169, TU Dresden, 2016