ASSIGNMENT - I

(1)
$$f(x,y) = (x+y)/(x-y)$$

$$x = 1.5001$$
 $y = 1.4999$

or 10 and y how 5 digits

. True value => 5-dyst orlthemetic (chopping)

True value

Type of arithmental chapping	CApprox value) $f(a,y) = \frac{\alpha + y}{\alpha - y}$	(Round of error 7% + 1) z 15000 - Appx Value		
5 digits	f (1.5001,1.4999)=15000	O (Taleer of free pol		
4 diguts	f(1.500,1.499) = 2999	80.00%		
3 duy its	f (1.50, 1.49) = 299	all. 000%		
2 digets	f(1.5,1.4) = 29	94.806%		
		600-0 a 35		

(2) Toylor savis:

$$I(x+h) = I(x) + I^{1}(x)h + I^{11}(x)\frac{h^{2}}{2!} + \dots - I^{1}(x)h + I^{11}(x)\frac{h^{2}}{2!} + \dots - I^{1}(x) = I^{1}(x) + I^{1}(x)\frac{h^{2}}{2!} + I^{1}(x)\frac{h^{2$$

2nd order (Approx Value 1.625)

Et 20,014

(c)
$$h = 0.25$$
 [Assume true value $e^{0.25} = 1.284$]
$$f(0+0.25) = e^{0.25} = f(0) + f'(0) + (0.25) + f''(0) (0.25)^{2} + ...$$

$$e^{0.25} = 1 + (0.25) + (0.25)^{2} + ...$$

$$\frac{20\% \text{ onder}}{e^{0.25}} = \frac{1}{1 - 1.2841} = 0.221$$

$$\frac{1}{1.284} = 0.221$$

$$\frac{1)^{2} \text{ onder}}{e^{0.25}} = 1 + 0.25 = 1.25$$

$$\frac{1.25 - 1.2841}{1.234} = 0.026$$

$$\frac{200 \text{ orden}}{e^{0.25}} = 1 + 0.25 + (0.25)^2 = 1.28125$$

$$E = 11.28125 - 1.2841 = 0.002$$

$$|h| = 1 \qquad (A \text{ sume true value } e^1 = 2.718)$$

$$|f(0+1)| = e^1 = |f(0)| + |f'(0)| +$$

$$e^{1} = 1$$

$$EL = \frac{12.718 - 11}{2.718} = 0.632$$

$$e' = 1 + 1 = 2$$

$$E_{L} = \frac{|2 - 419 - 2|}{2 - 713} = 0.264$$

$$e^{1} = 1 + 1 + \frac{1}{2} = 2.5$$

$$\epsilon_{L} = \frac{12.719 - 2.51}{2.713} = 0.080$$

Tobulating Ex for each h and each approximation,

step size(h)	True red entror (Fn)	True rel enor cors	There red wow (br)
0.25	0.221	0.026	0.002
0.5	0.393	0-090	0.014
1	0.632	0. 264	0.080

OBSERVATIONS

Expl:

Expl:

Expl:

$$(\xi) h^{n+1}$$
 $(\xi) h^{n+1}$
 $(\eta + 1)!$

when h 1, ever will also 1

and we are down to true value (as more from of Toylor sudu are considered)

(3):
$$f(x) = ax^3 + bx^2 + cx + d$$

 $f(0) = d$ $f'(0) = c$ $f''(0) = 2b$ $f'''(0) = 6a$

(a) boun point:
$$x = 0$$
 $h = 1$

Taylor survis
$$f(x+h) = f(x) + f(x) +$$

$$\mu(0) = d + c + \frac{2b}{2!} = \frac{b + c + d}{2!}$$

Associated truncation even =
$$R_2 = f^3(\xi) h^3$$

$$\frac{3!}{3!}$$

$$R_2 = e^{(3)}(\S)$$
 $0 < \S < 1$

$$R_2 = \frac{6a}{6} = \frac{a}{6} \quad [as \quad f^{m}(x) = 6a \quad \forall x]$$

(b) Toylor surils
$$f(x+h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2!} + f'''(x)\frac{h^3}{3!}$$

As the is a
$$3^{th}$$
 degree polynomial,
$$f^{(n)}(x) = 0 \quad \forall \quad \text{if } n \geq 4 \text{ for any } x$$

:. 5th turn onwards (664) turn onwards) vanishes.

$$f(x+h) = f(x) + f'(x)h + f''(x)\frac{h^2}{2!} + f'''(x)\frac{h^3}{3!}$$

(4)
$$Q = Ac - T^4 = KT^4$$
 when $L = Acr = 0.76745 \times 10^6$
 $L(x) = Kx^4$

Thus value
 $Q(T = 670K) = L(650)^4 = 1366.376$
 $L^1(x) = 4Kx^3$
 $L^1(x) = 12 Lx^2$

Tay for such (taking medium)
$$|\Delta + CX| = |L^1(X)\Delta X + |L^1(X)(\Delta X)|^2 + ...$$

(a) $T = 650 \pm 10$
 $X = 650$, $\Delta X = 10$

Actual $Q_{min} = Q(T = 640) = L(640)^4 = 1274.211$

Actual $Q_{mox} = Q(T = 640) = L(640)^4 = 1452.421$

1st order approximation
$$|\Delta L(X)| = |L^1(X)\Delta X| = 4L(650)^3(10) = 24.084$$
 2^{cd} order approximation
$$|\Delta L(X)| = |L^1(X)\Delta X + |L^1(X)(\Delta X)|^2$$
 $|L^1(X)| = |L^1(X)\Delta X + |L^1(X)(\Delta X)|^2$
 $|L^1(X)| = |L^1(X)\Delta X + |L^1(X)(\Delta X)|^2$

1t we see $\Delta X = +10$: both terms +ve Clarge value)
1t we see $\Delta X = +10$: both terms +ve Camell value)

1t we see $\Delta X = +10$: both terms +ve Camell value)

1t we see $\Delta X = +10$: left one of $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = +10$ and $\Delta X = -10$

1th see $\Delta X = -10$

(b)
$$T = 650 \pm 50$$
 $\tilde{\chi} = 650$ $\Delta \tilde{\chi} = 50$

Adual amin = Q(T= 600) = 992.023

Actual amax = a (+=700) = 1837.843

1st order approximation:

| \ \ \((\chi)) = \ \ \ \ \((\chi)\) \ \\ \ \ \ \ = 4 \ \ \ \((650)^3 \) (50) = 420.423

2nd order approximation:

 $|\Delta L(x)| = |L'(x)\Delta x + L''(x)(\Delta x)^2$

[Like (0), we consider only Af(x) for Ax = +50] 1. | A1 (x) = 4k (650)350 +12k (650)2 (50)2

= 468.933

OBSERVATIONS

Exal envor

In first order approx, (stex)) -> same for + Doc d - Doc But in sewnd order approx, we considered only +Dr as /D+(x) / due to + Dr is more.

In exact europe, we have tre deviation = 12mox - 2actual due to

-ve diviation = | amin - Ractual | due to - 12

Hur also, we comider + Do deviation only it gives maximum everon

can be explained in a similar way as the and order approx care

: Excad umon

Exoct vinor 86.045

471.467

-7 In both (a) and (b),

11t order approx \(\alpha \) 2nd order approx \(\alpha \) Exact whor

Riason:

ensur becomes closer to exact vision.

- FEWION (4) L ENVION (6)

Quaron:

As Down which occur is Toylor sour