3/4 (1. Halbtag) | Transistor und Transistorverstärker

Angelo Brade, Jonas Wortmann August 23, 2024 1 CONTENTS

Contents

1	Einleitung	2
2	Theorie	3
3	Voraufgaben	4
	3.1 A	4
	3.2 B	4
	3.3 C	4
4	Auswertung	5

2 1 EINLEITUNG

1 Einleitung

jjj

3 2 THEORIE

2 Theorie

4 3 VORAUFGABEN

3 Voraufgaben

3.1 A

Figure 1: Potentialverlauf ohne (links) und mit (rechts) äußerer Spannung

3.2 B

Im Emitter ist eine hohe Elektronendichte; in der Basis ist nur eine geringe Löcherdichte; im Kollektor ist eine weniger starke Elektronendichte als im Emitter.

3.3 C

Es gilt

$$I_E = I_B + I_C$$
 $\beta = \frac{\mathrm{d}I_C}{\mathrm{d}I_B}$ $\alpha = \frac{\mathrm{d}I_C}{\mathrm{d}I_E}$ $\gamma = \frac{\mathrm{d}I_E}{\mathrm{d}I_B}$. (3.1)

Leitet man nach I_B ab folgt

$$\frac{\mathrm{d}I_E}{\mathrm{d}I_B} = \frac{\mathrm{d}I_B}{\mathrm{d}I_B} + \frac{\mathrm{d}I_C}{\mathrm{d}I_B} \tag{3.2}$$

$$\Leftrightarrow \qquad \gamma = 1 + \beta. \tag{3.3}$$

Leitet man nach I_E ab folgt

$$\frac{\mathrm{d}I_E}{\mathrm{d}I_E} = \frac{\mathrm{d}I_B}{\mathrm{d}I_E} + \frac{\mathrm{d}I_C}{\mathrm{d}I_E}$$

$$\Leftrightarrow \qquad 1 = \frac{1}{\gamma} + \alpha$$

$$\Leftrightarrow \qquad \frac{1}{1 - \alpha} = \gamma$$

$$\Leftrightarrow \qquad \frac{1}{1 - \alpha} - 1 = \beta$$

$$\Leftrightarrow \qquad \frac{\alpha}{1 - \alpha} = \beta. \tag{3.5}$$

5 4 AUSWERTUNG

4 Auswertung

6 SOURCE

List o	of F	'igu	res
--------	------	------	-----

1	D 1 1 1 1 C	. 1 1	0	7
	Potentialverlauf	Chine find mit	außerer S	Spannung 4

List of Tables

Source