IBM Q Experience

Overview of Quantum Gates

Overview of Quantum Gates

H gate

The H or Hadamard gate rotates the states $|0\rangle$ and $|1\rangle$ to $|+\rangle$ and $|-\rangle$, respectively. It is useful for making superpositions. As a Clifford gate, it is useful for moving information between the x and z bases.

Composer reference	Qasm reference	Learn more
H	h q[0];	Quantum gates: Hadamard and S

CX gate

The controlled-X gate is also known as the controlled-NOT. It acts on a pair of qubits, with one acting as 'control' and the other as 'target. It performs an X on the target whenever the control is in state $|1\rangle$. If the control qubit is in a superposition, this gate creates entanglement.

Composer	Qasm	Learn more
reference	reference	Leain more

≣ Contents

H gate

CX gate

Id gate

U3 gate

U2 gate

U1 gate

Rx gate

Ry gate

Rz gate

X gate

Y gate

Z gate

S gate

cx q[0], q[1]; Quantum gates: Multiqubit gates

Sdg gate

T gate

Tdg gate

cH gate

cY gate

cZ gate

cRz gate

cU1 gate

cU3 gate

ccX gate

SWAP gate

Barrier operation

 $|0\rangle$ operation

IF operation

z measurement

Id gate

The identity gate is actually the absence of a gate. It ensures that nothing is applied to a qubit for one unit of gate time.

Composer reference Qasm reference

id q[0];

U3 gate

One of the three physical gates. The three parameters allow the construction of any single qubit gate, Has a duration of one unit of gate time.

Composer reference	Qasm reference	Learn more
U3	u3(pi/2,pi/2,pi/2 q[0];) <u>Quantum gates: Other</u> <u>single-qubit gates</u>

U2 gate

One of the three physical gates. The two parameters control two different rotations within the gate. Has a duration of one unit of gate time.

Composer reference	Qasm reference	Learn more
U2	u2(pi/2,pi/2) q[0];	Quantum gates: Other single-qubit gates

U1 gate

One of the three physical gates. Equivalent to Rz. This can be implemented by the control software, requiring no actual manipulation of the qubits, and so effectively has a duration of zero.

Composer reference	Qasm reference	Learn more
U1	u1(pi/2) q[0];	Quantum gates: Other single-qubit gates

Rx gate

The Rx gate requires a single parameter: an angle expressed in radians. On the Bloch sphere, this gate corresponds to rotating the qubit state around the x axis by the given angle.

Composer reference	Qasm reference	Learn more
Rx	rx(pi/2) q[0];	Quantum gates: Other single-qubit gates

Ry gate

The Ry gate requires a single parameter: an angle expressed in radians. On the Bloch sphere, this gate corresponds to rotating the qubit state around the y axis by the given angle.

Composer reference	Qasm reference	Learn more
Ry	ry(pi/2) q[0];	Quantum gates: Other single-qubit gates

Rz gate

The Rz gate requires a single parameter: an angle expressed in radians. On the Bloch sphere, this gate corresponds to rotating the qubit state around the z axis by the given angle.

Composer reference	Qasm reference	Learn more
Rz	rz(pi/2) q[0];	Quantum gates: Other single-qubit gates

X gate

The Pauli X gate has the property of flipping the $|0\rangle$ state to $|1\rangle$, and vice versa. It is equivalent to Rx for the angle π .

Composer	Qasm reference	Learn more
reference		

Y gate

The Pauli Y gate is equivalent to Ry for the angle π . It is also equivalent to the combined effect of X and Z.

Composer reference	Qasm reference	Learn more
Y	y q[0];	Quantum gates: The Pauli operators

Z gate

The Pauli Z gate has the property of flipping the $|+\rangle$ to $|-\rangle$, and vice versa. It is equivalent to Rz for the angle π .

Composer reference	Qasm reference	Learn more
Z	z q[0];	<u>Quantum gates: The</u> <u>Pauli operators</u>

S gate

The S gate is equivalent to Rz for the angle $\pi/2$. As a Clifford gate, it is useful for moving information between the x and y bases.

Composer reference	Qasm reference	Learn more
S	s q[0];	Quantum gates: Hadamard and S

Sdg gate

The inverse of the S gate. Equivalent to Rz for the angle $-\pi/2$. As a Clifford gate, it is useful for moving information between the x and y bases.

Composer reference	Qasm reference	Learn more
S [†]	sdg q[0];	<u>Quantum gates:</u> <u>Hadamard and S</u>

T gate

The T gate is equivalent to Rz for the angle $\pi/4$. Fault-tolerant quantum computers will compile all quantum programs down to just the T gate and its inverse, as well as the Clifford gates.

Composer reference	Qasm reference	Learn more
T	t q[0];	Quantum gates: Other single-qubit gates

Tdg gate

The inverse of the T gate, which is equivalent to Rz for the angle $-\pi/4$. Fault-tolerant quantum computers will compile all quantum programs down to just the T gate and its inverse, as well as the Clifford gates.

Composer reference	Qasm reference	Learn more			
T [†]	tdg q[0];	Quantum gates: Other single-qubit gates			

cH gate

The controlled-Hadamard gate, like the controlled-NOT, acts on a control and target qubit. It performs an H on the target whenever the control is in state $|1\rangle$.

Composer reference	Qasm reference	Learn more	
сН	ch q[0], q[1];	Quantum gates: Multiqubit gates	

cY gate

The controlled-Y gate, like the controlled-NOT, acts on a control and target qubit. It performs a Y on the target whenever the control is in state $|1\rangle$.

Composer	Qasm	Learn more
reference	reference	Leain more

cy q[0], q[1]; Quantum gates:
Multiqubit gates

cZ gate

The controlled-Z gate, like the controlled-NOT, acts on a control and target qubit. It performs a Z on the target whenever the control is in state $|1\rangle$.

Composer reference	Qasm reference	Learn more	
cZ	cz q[0], q[1];	Quantum gates: Multiqubit gates	

cRz gate

The controlled-Rz gate, like the controlled-NOT, acts on a control and target qubit. It performs a Rz rotation on the target whenever the control is in state $|1\rangle$.

Composer reference	Qasm reference		
cRz	crz(pi/2) q[0] ,q[1];		

cU1 gate

The controlled-U1 gate, like the controlled-NOT, acts on a control and target qubit. It performs a Rz rotation on the target whenever the control is in state $|1\rangle$.

Composer reference

Qasm reference

cu1(pi/2) q[0],q[1];

cU3 gate

The controlled-U3 gate, like the controlled-NOT, acts on a control and target qubit. It performs a Rz rotation on the target whenever the control is in state $|1\rangle$.

Composer reference

Qasm reference

cu3(pi/2,pi/2,pi/2) q[0],q[1];

ccX gate

The ccX gate, commonly known as the Toffoli, has two control qubits and one target. At applies an X to the target only when both controls are in state $|1\rangle$.

Composer reference	Qasm reference	Learn more
+	ccx q[0], q[1 q[2];	.], <u>Quantum gates:</u> Multiqubit gates

SWAP gate

The SWAP gate simply swaps the states of two qubits.

Composer reference	Qasm reference	Learn more		
X	swap q[0], q[1];	Basic circuit identities: Swapping qubits		

Barrier operation

To make your quantum program more efficient, the compiler will try to combine gates. The barrier is an instruction to the compiler to prevent these combinations being made.

|0 angle operation

The reset operation returns a qubit to state $|0\rangle$, irrespective of its state before the operation was applied. It is not a reversible operation.

IF operation

The IF operation allows quantum gates to be conditionally applied, depending on the state of a classical register.

z measurement

Measurement in the standard basis, also known as the z basis or computational basis. Can be used to implement any kind of measurement when combined with other gates. It is not a reversible operation.

Composer reference	Qas refe	sm erence	Learn more			
∠Z	mea	sure q[0];	The unique pof qubits	<u>roperties</u>		
IBM Q	Privacy	Terms of Use	IBM Q End User Agreement	IBM Q Privacy Policy	Cookie Preferences	v1.5.4