Roll No.

D-3701

B. Sc. (Part III) EXAMINATION, 2020

MATHEMATICS

(Optional)

Paper Third (B)

(Discrete Mathematics)

Time: Three Hours]

[Maximum Marks : 50

नोट: प्रत्येक इकाई से कोई **दो** भाग हल कीजिए। सभी प्रश्नों के अंक समान हैं।

Attempt any two parts from each Unit. All questions carry equal marks.

इकाई—1 (UNIT—1)

1. (अ) गणितीय आगमन विधि से दर्शाइये कि $n^4 - 4n^2$, 3 से विभाजित होगा $\forall n \geq 2$ ।

Show that $n^4 - 4n^2$ is divisible by 3 for all $n \ge 2$ by mathematical induction method.

(ब) 1 से 500 तक कितने पूर्णांक हैं जो 3 से या 11 से भाज्य हैं किन्तु 3, 5 और 11 सभी से नहीं ?

How many integers from 1 to 500 are divisible by 3 or by 11 but not all 3, 5 and 11?

(A-69) P. T. O.

(स) यदि E_1 और E_2 कोई दो घटनाएँ हैं, तब सिद्ध कीजिए कि घटना (E_1 या E_2) के घटने की प्रायिकता $P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$ ।

If E_1 and E_2 are any two events, then prove that the probability of happening an event (E_1 or E_2) is:

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$
 इकाई—2 (UNIT—2)

2. (अ) यदि धन पूर्णांकों का समुच्चय N हो और समुच्चय N×N में परिभाषित कोई सम्बन्ध R ऐसा हो कि :

$$(a,b)$$
R (c,d) $\Leftrightarrow a+d=b+c$

जहाँ $a,b,c,d\in \mathbb{N}$, तो सिद्ध कीजिए कि \mathbb{R} तुल्यता सम्बन्ध है।

If N be the set of positive integers and a relation R be defined in $N \times N$ by :

$$(a,b)$$
R (c,d) $\Leftrightarrow a+d=b+c$

where $a, b, c, d \in \mathbb{N}$, then prove that R is an equivalence relation.

(ब) मान लो (L, \leq) एक लैटिस है तब मान लीजिए \wedge तथा \vee, L में क्रमशः अवसंधि तथा सम्मिलन संक्रियाओं को निरूपित करते हैं, तब किन्हीं $a,b,c\in L$ के लिए सिद्ध कीजिए कि :

$$(a \wedge b) \wedge c = a \wedge (b \wedge c)$$

जहाँ $\forall a, b, c \in L$ |

Let (L, \leq) be a lattice and let \wedge and \vee denote the operations of meet and join in L, then for any $a,b,c\in L$, $\forall a,b,c\in L$, prove that:

$$(a \wedge b) \wedge c = a \wedge (b \wedge c) \forall a, b, c \in L.$$

(A-69)

(स) दर्शाइये कि n शीर्षों सहित एक सरल ग्राफ में कोरों की महत्तम संख्या $\frac{n(n-1)}{2}$ होती है।

Show that the maximum number of edges in a simple graph with *n* vertices is $\frac{n(n-1)}{2}$.

इकाई—3 (UNIT—3)

परिमित अवस्था यन्त्र M की न्यूनतमीकृत (Minimize) कीजिए, जहाँ M निम्नांकित अवस्था सारणी से दिया गया है :

अवस्था	निवेश		निर्गम
	0	1	
\Rightarrow S ₀	S_1	S_5	0
S_1	S_0	S_5	0
S_2	S_6	S_0	0
S_3	S ₇	S_1	0
S_4	S_0	S_6	0
S ₅	S ₇	S_2	1
S_6	S_0	S_3	1
S ₇	S_0	S_2	1

(A-69) P. T. O.

Minimize the finite state machine M whose state table is given below:

State	Input		Output
	0	1	Output
\Rightarrow S ₀	S_1	S_5	0
S_1	S_0	S_5	0
S_2	S_6	S_0	0
S_3	S_7	S_1	0
S_4	S_0	S_6	0
S_5	S_7	S_2	1
S_6	S_0	S_3	1
S ₇	S_0	S_2	1

एक परिमित अवस्था यन्त्र की अभिकल्पना कीजिए जो ठीक एक निर्गम 1 रखता है जब निवेश अनुक्रम अंकों 101 पर समाप्त होता है।

Design a finite state machine having an output of 1 exactly when the input sequence ends with the digits 101.

मान लीजिए a तथा b दो संख्यात्मक फलन हैं जो :

$$a_r = \begin{cases} 0 & , & 0 \le r \le 4 \\ 2^{-r} + 3, & r \ge 5 \end{cases}$$

$$b_r = \begin{cases} 1 - 2^r, & 0 \le r \le 2 \\ r + 2, & r \ge 2 \end{cases}$$

से परिभाषित हैं, तब a+b तथा ab ज्ञात कीजिए।

Let a and b be two numeric functions defined by :

$$a_r = \begin{cases} 0 & , & 0 \le r \le 4 \\ 2^{-r} + 3, & r \ge 5 \end{cases}$$

$$b_r = \begin{cases} 1 - 2^r, & 0 \le r \le 2\\ r + 2, & r \ge 2 \end{cases}$$

obtain a + b and ab.

इकाई—4

(UNIT-4)

4. (अ) निम्नलिखित अन्तर समीकरण को हल कीजिए :

$$a_{r+2} + 2 a_{r+1} + a_r = r + 2^r$$

Solve the following difference equation:

$$a_{r+2} + 2a_{r+1} + a_r = r + 2^r$$

(ब) जनक फलन विधि से निम्नलिखित अन्तर समीकरण का हल ज्ञात कीजिए:

$$a_r - 5 a_{r-1} + 6 a_{r-2} = 2$$

दिया गया है :

$$a_0 = 1, a_1 = 2$$

Solve the following difference equation by using generating function method:

$$a_r - 5 a_{r-1} + 6 a_{r-2} = 2$$

given that:

$$a_0 = 1, a_1 = 2$$
.

(A-69) P. T. O.

(स) सिद्ध कीजिए कि निम्न चार आव्यूहों :

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}; \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}; \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

का समुच्चय आव्यूह गुणन के अन्तर्गत एक समूह है। क्या यह आबेली है ?

Show that the four matrices:

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}; \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}; \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}; \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

form a multiplicative group. Is this abelian?

- 5. (अ) निम्नलिखित को एक उदाहरण देकर परिभाषित कीजिए :
 - (i) पूर्ण क्रम एवं पूर्ण लैटिस
 - (ii) बंटनीय जालक

Define the following with an example:

- (i) Complete order and complete lattice
- (ii) Distributive lattices
- (ब) निम्निलिखित बूलीयन फलनों को वियोजनीय प्रसामान्य रूप में परिवर्तित कीजिए :

$$F(x, y, z) = [(x + y)' + (y + z)']' + y.z$$

Change the following Boolean function to disjunctive normal form :

$$f(x,y,z) = \left[(x+y)' + (y+z)' \right]' + y.z$$

(A-69)

[7]

D-3701

(स) निम्नलिखित परिपथ का सरलीकरण कीजिए :

Simplify the following circuit:

D-3701

2,600

(A-69)