#ret #hw

1 | 2.A Exercises

Please reconsider the questions from Friday now that we have discussed them and part of Chapter 2.A. Do

Be sure to try a few problems, so you have some ideas to share with your classmates on Thursday! Ideall

And if you haven't brought in your old quizzes, please be sure to do so!

1.0.1 | Linear Dependence Lemma

- Why do we care that j is the largest element? #question
 - So we can add up everything before it? Just arbitrary?
- How does 2.22 work? #question
 - To get to 2.22, subtract everything but $a_i v_i$ from both sides of $a_1 v_1 + ... + a_m v_m = 0$
 - Everything past v_i has to equal 0.
 - So we get $a_j v_j = -a_1 v_1 ... a_{j-1} v_{j-1}$
 - Divide by a_j and we get 2.22
 - Thus, v_j is a linear combination of the other vectors
 - And in the $span(v_1,...,v_j-1)$
- What v_i is it replacing? #question
 - It's replacing what's in the "...", which is unclear.. is v_j actually in the equation then? Or just in the value? #question
 - Now, we can remove the j^{th} finally, and represent it as the linear combination of the previous elements
 - \therefore any element of the span can be represented without v_i

1.0.2 | A few problems

~Fibonacci!

1. excr. 3 Find a number t such that (3,1,4),(2,-3,5),(5,9,t) is not linearly independent in R^3 * Set up system of equations, 3a+2b=5 a-3b=9 4a+5b=t

```
solve, get b=-2 and a=3 plug it back in, 4(3)+5(-2)=2=t
```

answer: 2

- 2. excr. 5
 - (a) show that if we think of C as a vector space over **R**, then the list (1+i, 1-i) is linearly **independent.**
 - (b) show that if we think of C as a vector space over C, then the list (1+i, 1-i) is linearly dependent.

Means: use scalars from R in the vector space C? *

(a)
$$a(1+i) + b(1-i) = 0$$

prove that the only values of a and b are 0, thus satisfying the linear independence definition.

move i to only one side, a+b=i(b-a) since a+b comes from R, and R is closed under addition, a+b cannot have a complex component. $\therefore a$ and b must =0

(a)
$$a(1+i) = b(1-i)$$

$$let b = i let a = 1$$

 $i(1-i)=i-i^2=1+i$: we can represent (1-i) in terms of (i+1) with scalars from C, and thus, it is linearly dependent.

3. excr. 8 prove or give a counterexample: If $v_1, v_2, ..., v_m$ is a linearly independent list of vectors in V and $\lambda \in F$ with $\lambda ! = 0$, then $\lambda v_1, \lambda v_2, ..., \lambda v_m$ is linearly independent. *

 $a_1v_1 + a_2v_2 + ... + a_mv_m = 0$ only if all scalars are equal to 0, as given in the definition

 $\lambda(a_1v_1+a_2v_2+...+a_mv_m)=0$ $\lambda\cdot 0=0$ $\lambda a_1v_1+\lambda a_2v_2+...+\lambda a_mv_m=0$ only if all scalars are equal to $0:\lambda v_1,\lambda v_2,...,\lambda v_m$ is linearly independent.

Draws from: KBxLinearIndependence KBxSpansLinAlg