Pengolahan Citra dan Visi Komputer Digital Image and Computer Vision RTI196006

#02 – Dasar DIP, Format Citra, Warna

Team Teaching PCVK 2021/2022 23-02-2022

Materi

- Cara kerja mata
- Model Kamera
- Sampling dan Kuantisasi
- Jenis-jenis Citra
- Model Citra Berwarna
- Format Warna RGB
- Membaca dan menampilkan citra

FIGURE 2.3
Graphical representation of the eye looking at a palm tree. Point C is the optical center of the lens.

15/100 = h/17 H=2.55mm

Image

 a physical likeness or representation of a person, animal, or thing, photographed, painted, sculptured, or otherwise made visible.

Analog Image

- an image that is continuous, like a picture on a TV monitor, x-rays, the photos are printed on paper, paintings, landscapes, CT scans and so forth.
- can not be presented in a computer that can not be processed in the computer directly.
- generated from analog devices include an analog video camera, analog photo camera, CT scan, etc.

Image that can be processed with computer

- Bitmap
- Vector

Zoom in: Photoshop minimises the jagged staircase effect by softening the edges of the line with blended pixels in a process known as antialiasing. The higher the resolution of the file, the better the image will look - aliasing (staircase effect) will be minimised.

Large prints require large images and/or large resolutions. Colour images for printing presses are typically created at 300 ppi at actual size.

Zoom in: Because vector art is mathematically calculated and pixel independent, no matter how much you zoom in or enlarge the image, the edges remain as sharp as the viewing screen (or printer) will allow.

Although you will be looking at a bitmap pixel-based display on the computer screen, internally, Illustrator keeps track of its graphics as vectors.

Image operation

Image acquisition

Process to Acquire Digital Image

Illumination source →
Scene Element →
reflected light → Sensor
in Imaging system →
Image Plane → Electrical
current → Digital data
converter → digitized
Image

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy ("illumination") source, (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

Image digitalization

- Sampling
- Quantizing
- Resolution

Sampling

Sistem koordinat citra berukuran M x N

Image and pixel component

Pixel notation in image

f(4,7) = 237

quiz!

1	2	3	4	5
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

Tentukan notasi *dari* tiap *pixel!*

quantization

Quantization image samples

resolution

Question!

- Scanner 500 DPI dan 300 DPI digunakan untuk mengakuisisi citra foto berwarna ukuran 3x4 inch,
 - Berapa ukuran *pixel* citra hasil *scan* dari tiap *scanner* ?
 - Jika tiap *pixel* terdiri dari 3 *byte* data (masing2 merepresentasikan *RGB*) dan *header* 1089 byte, berapa *file size* dari tiap citra?

Kinds of digital image

- Monochrome
- Grayscale
- True colour

Monochrome (binary image)

Digitalisasi citra biner 8x8 piksel

(a) Citra yang akan dinyatakan dalam isyarat digital

(b) Citra ditumpangkan pada grid

\perp		_	_		L
	_,,				
П					
	_				-
	- 1				L

1	1	1	1	1	0	1	1
1	1	1	1	0	1	1	1
1	0	0	0	0	0	1	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	1	1	1	0	1	1	1

Grayscale image

Citra 1 bit = 21 = 2 gradasi warna

Citra 2 bit = 22 = 4 gradasi warna

Citra 3 bit = 23 = 8 gradasi warna

Citra 5 bit = 25 = 32 gradasi warna

Citra 6 bit = 26 = 64 gradasi warna

Citra 7 bit = 27 = 128 gradasi warna

Citra 8 bit = 28 = 256 gradasi warna

TrueColor image

TABLE 2.1 Number of storage bits for various values of N and k. L is the number of intensity levels.

N/k	1(L=2)	2(L=4)	3 (L=8)	4(L=16)	5 (L=32)	6 (L=64)	7(L = 128)	8 (L=256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

- N = ukuran citra
- K = bit depth citra
- Dengan ukuran citra n=32 (Asumsi citra tinggi dan lebar sama) dan kedalaman k=8, maka ukuran citra adalah:
- b = 32 x 32 x 8 = 8192 bit

Ukuran Citra

- Citra Grayscale 8-bit berukuran 640 x 480 = 640 x 480 x 8 = 2.457.600bit = 307.200 byte = 300KB
- Citra Warna 24-bit berukuran 640 x 480 = 640 x 480 x 24 = 7.372.800bit = 921.600 byte = 900KB (921KB??)

File Format

- •Raster (JPEG, Exif, TIFF, GIF, BMP, PNG)
- Vector (CGM,SVG, VML, CDR, BLEND, VRML)

Bitmap image formats

FORMAT	FILE EXTENTI ON	TYPE OF COMPRESSIO N	METHODS	USAGE
BMP (bitmap)	.bmp	Cosiderably compressed with lossless	ZIP	used to store bitmap digital images
JPEG (Joint Photographic Experts Group)	.jpg , .jpeg , .jpe	Lossy	- Discrete Cosine Transform (DCT) & Chroma Subsampling - Run-Length Encoding (RLE)	For natural images
GIF (Graphics Interchange Format	.gif , .giff , .gfa	Lossless	LZW (Lempel-Ziv- Welch)	For artificial images (sharp-edge lines and few colors) & support animation
PNG (Portable Network Graphics)	.png	Lossless	DEFLATE	Better compression & features than GIF, but don't support animation
TIFF (Tagged Image File Format)	.tiff , .tif	Lossless	RLE / LZW / DEFLATE / ZIP	Flexible file format, can store multiple images in a single file
JPEG2000	jp2, .j2c, jpc, j2k, jpx	Lossy & Lossless	Discrete Wavelet Transform (DWT)	Better image quality than JPEG (up to 20%), not widely used because of some patent issues.

Vector image formats

COMMON VECTOR FORMATS					
AI	Adobe Illustrator file				
CDR	CORELDraw file				
CGM	Computer Graphics Metafile				
DXF or DWG	AutoCAD file				
EMF	Enhance Metafile				
EPS	Encapsulated PostScript file				
FH	Macromedia FreeHand file				
PIC or PCT	Macintosh PICT				
SWF	ShockWave Flash				
SVG	Scaleable Vector Graphis				
WMF	Windows Metafiles				

RGB

- RGB Color Mode bersifat additive
- Jika menggunakan 8 bit perchannel, maka memiliki 16,777,216 warna (256x256x256)
- Menggabungkan dua warna utama RGB menghasilkan warna sekunder, yang disebut dengan model CMY.
- Biru-Hijau = Cyan, Biru-Merah = Magenta,
 Merah-Hijau = Kuning (Yellow)

Format warna 24 BIT dinyatakan dengan:

11001001 01011001 00001011 R (8 bit) G (8 bit) B (8 bit)

Warna		R	G	В
Merah		255	0	0
Hijau		0	255	0
Biru		0	0	255
Kuning		255	255	0
Magenta		255	0	255
Cyan		0	255	255
Putih		255	255	255
Hitam		0	0	0
Abu-abu		128	128	128

Nilai	Warna	Nilai	Warna
0×00000000	Hitam	0x0000AAFF	Orange
0x000000FF	Merah	0×00888888	Abu-abu
0x0000FF00	Hijau	0x00FF00AA	Ungu
0x00FF0000	Biru	0x00AAFF00	Hijau Muda
0x0000FFFF	Kuning	0x00AA00FF	Merah Muda
0x00FF00FF	Magenta	0x00AAFFFF	Kuning Muda
0x00FFFF00	Cyan	0×000088AA	Coklat
0x00FFFFFF	Putih	0×00AA0088	Ungu

Image Elements

- Brightness
- Contrast
- Contour
- Color
- Shape
- Texture

Kecerahan (brightness)

Kecerahan adalah kata lain untuk intensitas cahaya.

Kecerahan pada titik (*pixel*) di dalam citra bukanlah intensitas yang riil. Tetapi sebenarnya adalah intensitas rata-rata dari suatu area yang melingkupinya.

Sistem visual manusia mampu menyesuaikan dirinya dengan tingkat kecerahan mulai dari yang paling rendah sampai yang paling tinggi

Kontras (contrast)

Kontras menyatakan sebaran terang (*lightness*) dan gelap (*darkness*) di dalam gambar.

Citra dengan kontras rendah dicirikan oleh komposisi citranya adalah sebagian besar terang atau gelap. Pada citra dengan kontras yang baik, komposisi gelap dan terang tersebar secara merata.

Kontur (contour)

Kontur adalah keadaan yang ditimbulkan oleh perubahan intensitas pada *pixel-pixel* yang bertetangga.

Karena adanya perubahan intensitas inilah, maka tepitepi (edge) objek pada citra dapat dideteksi.

Warna (color)

Warna adalah persepsi yang dirasakan oleh sistem visual manusia terhadap panjang gelombang cahaya yang dipantulkan oleh objek.

Setiap warna mempunyai panjang gelombang yang berbeda-beda.

Warna yang diterima oleh sistem visual manusia (mata) merupakan hasil kombinasi cahaya dengan panjang gelombang yang berbeda-beda. Kombinasi warna yang memberikan rentang warna yang paling lebar adalah red (R), green(G), dan blue(B).

Bentuk (shape)

Bentuk adalah properti intrinsik dari objek tiga dimensi.

Bentuk merupakan properti intrinsik utama untuk sistem visual manusia karena manusia lebih sering menginterpretasikan suatu objek berdasarkan bentuknya daripada elemen lainnya.

Tekstur (texture)

Tekstur dicirikan sebagai distribusi spasial dari derajat keabuan di dalam sekumpulan *pixel-pixel* yang bertetangga. Sehingga, tekstur tidak dapat didefinisikan untuk sebuah *pixel*.

Tekstur merupakan karakteristik untuk menganalisa permukaan

berbagai jenis citra

Gray-scale images I(x,y) ∈ [0..255]

Binary images I(x,y) ∈ {0, 1}

Color images $I_R(x,y) \quad I_G(x,y) \quad I_B(x,y)$

