Digital Storage Oscilloscope

Stephen Shanko Au Ka Wai

ADC Specifications

- 3 x 12 bit ADCs
- ADC range 0-3.6V
- Minimum conversion time 1 uS (1MHz Fs)
- Max 3 ch in continuous mode
- Max 1 ch in interleaved mode

This is more than a business card Check it out at www.t4f.org/projects/business-card Interface Features

- Display waveforms from -6V to +6V peak to peak
- Two channels of data
- Frequency analysis of waveform
- Touch control of settings and axis scaling
- Simple computations such as peak voltage, RMS voltage, cursors, phase difference, signal addition and subtraction, to be implemented in software

LCD Touchscreen Display

Capacitive Touch Panel Registers

07h

- Touch gestures to control features such as time scale, amplitude scale, DC offset, etc
- Hardware detects
 gestures and touches
 and communicates with
 STM32 via I2C
- Color LCD allows for each channel to have a different color
- LCD is controlled via GPIO bus

Address	Name	B7	B6	B5	B4	B3	B2	B1	В0
						_			
00h	DEVICE_MODE		Device Mode [20]						
01h	GEST_ID	Gestu	re ID [7	0]					
02h	TD_STATUS			_			Touch	Points [3	30]
03h	TOUCH1_XH	Event	Event Flag			1st Touch X Position MSB [118]			B [118]
04h	TOUCH1_XL	1st To	ouch X Po	sition LSE	3 [70]				
05h	TOUCH1_YH	Touch	1D [30]			1st To	uch Y Pos	ition MS	B [118]
06h	TOUCH1 VI	1st To	1st Touch Y Position ISB [7, 0]						

LCD Control

We will use different colors each channel, and have dedicated channel selection buttons on the touchscreen

$$\frac{T \ sec}{div} * x \ div * Fs * \frac{1}{H \ px} = \frac{samples}{px}$$

Fs and H are fixed based on the implementation, the user will select T, and we will calculate how many samples will represent each pixel

~Range
$$20Hz \rightarrow 500kHz \frac{5mS}{div} \rightarrow \frac{.5uS}{div}$$

~Domain $-6 \rightarrow 6V \frac{10mV}{div} \rightarrow \frac{1V}{div}$

For the domain $0 \rightarrow 3.6V$ maps to 272 pixels

For example:

A 4.3" Screen contains 480x272 px 10 x divisions and 6 y divisions with Fs=1Mhz User inputs T = 10uS

$$\frac{10^7}{480} * T = \frac{samples}{px} = \frac{.208 \text{samples}}{px}$$

In the real system there are two distinct cases where

$$\frac{samples}{px} > 1$$
 and where $\frac{samples}{px} < 1$

These correspond to averaging and interpolating and with a fixed Fs this is based entirely on T

