DÚ č.4 - Poissonův proces, systémy hromadné obsluhy

Marek Nevole, Jan Novotný ČVUT - FIT {nevolmar, novot103}@fit.cvut.cz

21. března 2022

1 Úvod

Ve čtvrtém úkolu z předmětu vybrané statistické metody jsme se zabývali Poissonovými procesy a systémy hromadné obsluhy. Za reprezentanta byl zvolen Marek Nevole.

Úkol jsme vypracovali pomocí programovacího jazyka Python 1 v prostředí Jupyter Notebook 2 s volně dostupnými knihovnami SciPy 3 , NumPy 4 , Seaborn 5 a Matplotlib 6 .

2 Popis problému

Uvažujte model hromadné obsluhy $M|G|\infty$.

- Požadavky přichází podle Poissonova procesu s intenzitou $\lambda = 10 \text{ s}^{-1}$.
- Doba obsluhy jednoho požadavku (v sekundách) má rozdělení $S \sim \text{Ga}(4,2)$, tj. Gamma s parametry a=4, p=2.
- Časy mezi příchody a časy obsluhy jsou nezávislé.
- Systém má (teoreticky) nekonečně paralelních obslužných míst (každý příchozí je rovnou obsluhován).

Označme N_t počet zákazníků v systému v čase t. Předpokládejme, že na začátku je systém prázdný, $tj. N_0 = 0$.

3 Úloha č.1

Simulujte jednu trajektorii $\{N_t(\omega) \mid t \in (0, 10 \text{ s})\}$. Průběh trajektorie graficky znázorněte.

Zákazníci přichází podle Poissonova procesu s intenzitou $\lambda=10~s^{-1}$. Počet příchozích zákazníků v intervalu [s,t] odpovídá Poissonovu rozdělení přírůstků $N_t-N_s\sim \text{Poisson}(\lambda(t-s))$, tedy počet

²jupyter.org

Obrázek 1: Jedna trajektorie $\{N_t(\omega) \mid t \in (0, 10 \text{ s})\}.$

zákazníků této úlohy je z rozdělení Poisson(100). Toto rozdělení je implementováno v knihovně SciPy jako poisson a pro náhodný výběr obsahuje metodu rvs, které jsme předali parametr mu=100. Náhodný výběr z tohoto rozdělení vrátil hodnotu n = 98. Časy jednotlivých příchodů zákazníků odpovídají rovnoměrnému rozdělení U(0,t). Tedy jsme udělali 95 náhodných výběrů z rozdělení U(0,10), pomocí třídy uniform a metody rvs s parametry scale=t, size=n. Doba obsloužení těchto zákazníků je z rozdělení Ga(4,2) s parametry a=4, p=2. Gamma rozdělení je implementováno jako gamma s metodou pro náhodný výběr rvs. Parametry pro tuto metodu jsou shape a scale, v našem studijním textu používáme parametry, které odpovídají parametrizaci shape a rate. Pro Ga(a, p) je shape = p a rate = a. Mezi scale a rate lze převádět pomocí vzorce scale = $\frac{1}{\text{rate}}$. Tedy po 98 náhodných výběrech z Ga(4,2) jsme dostali intervaly všech zákazníků v čase a výslednou trajektorii lze pozorovat na obrázku 1.

4 Úloha č.2

Simulujte n = 500 nezávislých trajektorií pro $t \in (0, 100)$. Na základě těchto simulací odhadněte rozdělení náhodné veličiny N_{100} .

V této úloze jsme využili kód z předchozí úlohy

³scipy.org

⁴numpy.org

 $^{^5}$ seaborn.pydata.org

⁶matplotlib.org

Obrázek 2: Odhad rozdělení N_{100} pomocí histogramu a jádrového odhadu.

a simulovali jsme 500 trajektorií. Na základě hodnot z posledního časového kroku, tedy v t=100, jsme sestavili histogram a odhad hustoty rozdělení pomocí jádrového odhadu, toto lze pozorovat na obrázku 2. Dle zkoumané veličiny můžeme tvrdit, že pozorované rozdělení bude diskrétní a svojí podobou připomíná Poissonovo rozdělení s parametrem $\lambda=5$.

5 Úloha č.3

Diskutujte, jaké je limitní rozdělení tohoto systému pro $t \to +\infty$. Pomocí vhodného testu otestujte na hladině významnosti 5 %, zda výsledky simulace N_{100} odpovídají tomuto rozdělení.

Zákazníci přicházejí dle Poissonova rozdělení s intenzitou $\lambda=10~s^{-1}$. Střední hodnota doby obsluhy odpovídá E~Ga(4,2)=0.5, tedy $\mu=\frac{1}{EGa}=2$, z přednášky 23 víme, že z dlouhodobého hlediska $t\to +\infty$ má počet zákazníků v systému Poissonovo rozdělení s intenzitou λ/μ . Tedy pro tuto úlohu $N_t\sim {\rm Poisson}(10/2)$.

Úlohou bylo otestovat, zda rozdělení výsledků simulace odpovídá teoretickému rozdělení. K tomuto jsme využili test dobré shody, v tomto případě se známými parametry. Za nulovou hypotézu jsme postavili rovnost pravděpodobností $H_0: \boldsymbol{p} = \boldsymbol{p'}$, kde \boldsymbol{p} jsou teoretické pravděpodobnosti Poissonova procesu s intenzitou $\lambda = 5$ a $\boldsymbol{p'}$ jsou relativní četnosti z 500 simulací N_{100} , alternativní hypotézou byla nerovnost $H_A: \boldsymbol{p} \neq \boldsymbol{p'}$. Překryv těchto pravděpodobností lze pozorovat na obrázku 3. Testovou statistikou byla χ^2 statistika. Jelikož naměřená data nesplňovala všude podmínku teoretických četností $np_i \geq 5$, tak jsme místo pravděpodobností $P(N_{100} = 0)$ a $P(N_{100} = 1)$ vybrali pouze $P(N_{100} \leq 1)$ a pro všechna i > 10 nahradili

Obrázek 3: Graf relativních pozorovaných četností N_{100} a pravděpodobnosti hodnot z rozdělení Poisson(5).

 $P(N_{100}=i)$ za $P(N_{100}>10)=1-P(N_{100}\leq 10)$. Knihovna SciPy nabízí funkci *chisquare*, která na vstupu bere naměřené a teoretické četnosti a vrátí testovou statistiku společně s p-hodnotou. Dle $\hat{p}>\alpha$ nemůžeme zamítnout hypotézu shody.

$$\chi^2 = 8.293$$

$$\hat{p} = 0.600$$

$$\chi^2_{0.05,10} = 18.307$$