

Universidade Federal do Ceará – Departamento de Engenharia de Teleinformática Atividade Didática Remota - 2020.1 Introdução à Programação Prof. Tarcisio Ferreira Maciel, Dr.-Ing.

Objetivos:

- Explorar programas que expressem fórmulas matemáticas nos termos da linguagem de programação.
- Explorar programas que realizem validação de dados de entrada.
- Explorar programas que utilizem estruturas condicionais if ... else.

Para cada questão de programação da atividade, comece criando uma aplicação do tipo "Console application" seguindo o passo-a-passo apresentado em laboratório. Em seguida, modifique o programa "Hello World!" para resolver uma questão. Cada projeto deverá ser chamado QuestaoXX, onde XX é o número da questão. Por exemplo, para a Questão 1, o projeto deverá se chamar Questao01. As questões que não puderem ser solucionadas no horário do laboratório deverão ser consideradas exercícios a serem solucionados em casa.

Exercício 1. (L03) Um ano bissexto é um ano que é divisível por 4 mas não por 100 a não ser que seja divisível por 400. Escreva um programa que leia um ano e imprima uma mensagem na tela dizendo se o mesmo é bissexto ou não.

Exercício 2. (L02) Escreva um programa que leia um horário do dia na forma de três inteiros não-negativos de 16 bits: um para as horas, outro para os minutos e outro para os segundos. Considere o formato de 24h e considerando períodos de 6 horas imprima se o horário fornecido encontra-se na madrugada (primeiras 6 horas do dia), manhã, tarde, ou noite (últimas 6 horas do dia).

Exercício 3. (L03) Construa um programa para determinar se o indivíduo esta com um peso favorável. Essa situação é determinada através do IMC (Índice de Massa Corpórea), que é definida como sendo a relação entre o peso (PESO) e o quadrado da Altura (ALTURA) do indivíduo. Ou seja,

$$\mathsf{IMC} = \frac{\mathsf{PESO}}{\mathsf{ALTURA}^2}$$

e, a situação do peso é determinada pela tabela a seguir:

Condição	Situação
IMC abaixo de 20	Abaixo do peso
IMC de 20 até 25	Peso normal
IMC de 25 até 30	Sobre peso
IMC de 30 até 40	Obeso
IMC acima de 40	Obeso Mórbido

Exercício 4. (LO4) [1] Faça um programa que receba três números inteiros não-negativos **A**, **B**, e **C** e os imprima em ordem crescente. Por exemplo, se **A** = 2, **B** = 1, e **C** = 8 a saída seria 1 2 8.

Exercício 5. (L02) Escreva um programa que calcule e imprima na tela o volume V do tronco de um cone circular reto de bases paralelas (cone com a ponta cortada fora) dado por

$$V = \frac{\pi h}{3}(R^2 + Rr + r^2),$$

onde R>0 é o raio da base maior do tronco do cone, r>0 é o raio da base menor do tronco do cone e h>0 é a altura do tronco do cone. A potenciação x^y de um número real x por um número real y pode ser calculada usando a função $\mathbf{pow(x, y)}$ da biblioteca \mathbf{cmath} . O valor de π é pré-definido pela constante $\mathbf{M_PI}$ da mesma biblioteca. Realize a validação dos dados de entrada.

Exercício 6. (L02) Escreva um programa que calcule e imprima na tela o volume V e área A de um cone circular reto de altura h>0 e raio da base r>0, sendo h e r lidos pelo teclado. O volume V e a área A do cone são dados respectivamente por

 $V = \frac{1}{3} \cdot \pi \cdot r^2 \cdot h$ e $A = \pi \cdot r \cdot (r + \sqrt{r^2 + h^2}).$

A raiz quadrada \sqrt{x} de um número real x pode ser calculada usando a função **sqrt(x)** da biblioteca **cmath**. O valor de π é pré-definido pela constante **M_PI** da mesma biblioteca. Realize a validação dos dados de entrada.

Exercício 7. (L02) O volume V e área A de um toróide (sólido geométrico em formato de câmara de ar de pneu) são dados respectivamente por

$$V = (\pi r^2)(2\pi R)$$
 e $A = (2\pi r)(2\pi R)$,

onde r>0 é o raio do interior do toróide e R>0 é o raio de rotação do toróide. A potenciação x^y de um número real x por um número real y pode ser calculada usando a função pow(x, y) da biblioteca cmath. O valor de π é pré-definido pela constante M_PI da mesma biblioteca. Realize a validação dos dados de entrada.

Exercício 8. (L03) Escreva um programa que leia como inteiros o dia, o mês e o ano de duas datas e determine se as duas estão em ordem cronológica (ou seja, se a primeira data é anterior à segunda data). Imprima uma mensagem adequada em cada caso. Assuma que as duas datas fornecidas serão válidas.

Exercício 9. (L04) Um número palíndromo é um número que lido da esquerda para a direita ou da direita para a esquerda tem o mesmo valor. Por exemplo, os números 131 e 2332 são palíndromos. Escreva um programa que leia um número inteiro **N** entre 1 e 9999 pelo teclado e determine se ele é ou não palíndromo.

Exercício 10. (L02) Faça um programa que calcule e imprima a área A de um triângulo em função das coordenadas de seus três vértices. Assegure-se de que os três pontos formam de fato um triângulo.

Referências

[1] D. S. Malik, C++ programming: from problem analysis to program design, 6th ed. Cengage Learning, 2013.