DROWING - BOT

검은콩

조두현 문경한 이유빈

000

목차

- ▶ 개요
- Drawing Bot 소개
- Project 기술 소개
- ▶ 시연 영상
- ▶ Q/A

개요

- ▶ CNC : Computer Numerical Control
 - ▶ 뜻 : 컴퓨터 수치제어
 - ▶ 컴퓨터를 내장해 프로그램으로 정밀하게 기계를 가공하는 기계 를 뜻함

Drawing-Bot 소개

Process

모터제어

Bluetooth 전송

Image 처리 Software

- BlueTooth **연** 결

Image Edge 추출

- Line 개수

그림 정보 추출 - 각 라인당 점 개수

- 라인을 이루는 점들의 좌표

패킷 형식

	Header	Data	
char	0 2		1024

		Head	er	iData			
type	ı	image's Line number					
	р	image's point numbers					
	x line's points		<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	data1 data2 data3 data4			
tot	al	data's total amounts	<type total current check></type total current check>	dararjaarazjaarasjaara4j			
curre	current data index						
che	ck	index for checking					

ex) <x|6|2|13>33|4|2|10|

000

패킷 해석기 원리

Header Data

20

라인 개수

ACK 패킷 해석 과정

마지막으로 보낸 Line 정보

현재 모터에서 처리된 Line 정보

ACK **패킷 해석...**

000

Step Motor

- ▶ 스텝 모터는 하나의 입력 펄스 당 일정 각도만큼 로터가 회전.
- 브레이크 기구가 없어도 자체적으로 위치 결정 능력을 지님.
- 기동 토크가 낮아 커다란 기동 토크를 요구하는 장비에서는 사용하기 어렵다.
- ▶ 고속으로 회전 시, 홀딩 토크가 거의 ⊙이 되기 때문에 저속의 응용에 적합하다.
- 정밀제어를 요하는 산업용 로봇의 관절기구 등에 주로 쓰임

Step Motor

○○○ 바이폴라스텝모터(Bipola Step Motor) ○○

- 모선에 권선에 흐르는 전류의 방향이 바뀌는 구동방식
- 저속 구동 시 토크가 높다.
- 코일에 저장된 전류가 회생되 어 효율이 높다.
- 고속 구동 시 토크가 급격하게 저하되어 탈조가 발생할 우려 가 있다.
- 구동 회로의 구성이 복잡하다.

1상 여자방식

구분	1	2	3	4	5	6	7	8	9
Α	1	0	0	0	1	0	0	0	1
В	0	1	0	0	0	1	0	0	0
/A	0	0	1	0	0	0	1	0	0
/B	0	0	0	1	0	0	0	1	0

▶ 구동 방식

- 스텝모터를 구동하기 위한 최소 한의 구동방법
- > STEP_A → STEP_/A → STEP_B
 → STEP_/B → 정회전

| 특징

- ▶ 1개의 코일만을 차례로 여자하 는 방식
- ▶ 소비전력이 낮고 ₁스텝 당 각 정 밀도가 높다.

2상 여자방식

구분	1	2	3	4	5	6	7	8	9
Α	1	0	0	1	1	0	0	1	1
В	1	1	0	0	1	1	0	0	1
/A	0	1	1	0	0	1	1	0	0
/B	0	0	1	1	0	0	1	1	0

1꾸기

구동방식

- 항상 2상이 여자되므로 기동 토크가 주어져 난조가 일어나 기 어렵고 항상 2개의 상에서 전류가 흐르게 하도록 해야 한 다.
- > STEP_A, STEP_/A → STEP_/A, STEP_B → STEP_B, STEP_/B → STEP_/B, STEP_A

▶특징

♪ 1상 여자방식에 비해 2배의 전 류가 필요하지만 토크가 크다.

1-2상 여자방식

구분	1	2	3	4	5	6	7	8	9
Α	1	1	0	0	0	0	0	1	1
В	0	1	1	1	0	0	0	0	0
/A	0	0	0	1	1	1	0	0	0
/B	0	0	0	0	0	1	1	1	0

1꾸기

구동방식

- 하나의 상과 두 개의 상에 교대 로 전류를 흐르게 하는 방식
- 스텝각은 1,2상 여자방식의 1/2 이 며 응답스텝비율은 1,2상의 2배이다.

| 특징

- ▶ 1상 여자방식에 비해 1.5배의 전 류가 필요하다.
- ▶ 1펄스에 대한 스텝각은 1상 여자 방식과 2상여자방식에 의한 스 탭각의 ½
- 각도를 정밀하게 제어하는 경우 에 사용

000

L298N Motor Driver

Coatex-M₄

Stm32F4 Discvoery

| 특징

- 32-bit ARM Cortex® -M4 with FPU core,
 1-Mbyte Flash memory, 192-Kbyte RAM
- On-board ST-LINK/V2 on
- LIS302DL or LIS3DSH ST MEMS 3-axis accelerometer
- Eight LEDs
- Two push buttons (user and reset)
- USB OTG FS with micro-AB connector
- ▶ Up to 3 × I2C interfaces
- Up to 4 USARTs/2 UARTs
- Up to 3 SPIs
- ▶ 2 × 12-bit D/A converters
- ▶ 3 × 12-bit A/D converters:

Coatex-M₄

000

STM32F4 Block Diagram

Servo Motor제어

000

SG-90

- Servo Motor
 - 회전각도를 제어할 수 있으며, 현재의 회전각도를 피드백하여 현재의 회전각도(상태)를 알 수 있다.
 - ▶ 엔코더에 따른 가격차이가 심하다.

Servo Motor제어

Position "0" (1.5 ms pulse) is middle, "90" (~2 ms pulse) is all the way to the right, "-90" (~1 ms pulse) is all the way to the left.

Servo Motor제어

시연영상

개발환경 및 사용언어

Servo motor

L298N Motor Driver

Step Motor

000

Q/A