

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057

Telephone: +86 (0) 755 2601 2053 Report No.: SZEM170800935302

Fax: +86 (0) 755 2671 0594 Page: 1 of 45

TEST REPORT

Application No.: SZEM1708009353CR

Applicant: Guangdong Cheerson Hobby Technology., Ltd.

Address of Applicant: FENGXIN No.2 ROAD & LAIMEI ROAD FENGXIN INDUSTRIAL ZONE,

CHENGHAI, Shantou, China

Manufacturer: Guangdong Cheerson Hobby Technology., Ltd.

Address of Manufacturer: FENGXIN No.2 ROAD & LAIMEI ROAD FENGXIN INDUSTRIAL ZONE,

CHENGHAI, Shantou, China

Factory: Guangdong Cheerson Hobby Technology., Ltd.

Address of Factory: FENGXIN No.2 ROAD & LAIMEI ROAD FENGXIN INDUSTRIAL ZONE,

CHENGHAI, Shantou, China

Equipment Under Test (EUT):

EUT Name: UFO

Model No.: Please refer to section 2 *

Please refer to section 2 of this report which indicates which model was actually

tested and which were electrically identical.

FCC ID: 2AD6LGC03241506

Standard(s): 47 CFR Part 15, Subpart C 15.249

Date of Receipt: 2017-09-18

Date of Test: 2017-09-19 to 2017-09-25

Date of Issue: 2017-09-28

Test Result: Pass*

* In the configuration tested, the EUT complied with the standards specified above.

.

Jack Zhang EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is and vised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM170800935302

Page: 2 of 45

Revision Record						
Version	Chapter	Date	Modifier	Remark		
01		2017-09-28		Original		

Authorized for issue by:		
	Brir Chen	
	Bill Chen /Project Engineer	
	Eric Fu	
	Eric Fu /Reviewer	

Report No.: SZEM170800935302

Page: 3 of 45

2 Test Summary

Radio Spectrum Technical Requirement					
Item	Standard	Method	Requirement	Result	
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	47 CFR Part 15, Subpart C 15.203	Pass	

Radio Spectrum Matter Part							
Item	Standard	Method	Requirement	Result			
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass			
20dB Bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	47 CFR Part 15, Subpart C 15.215	Pass			
Field Strength of the Fundamental Signal (15.249(a))	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.5&6.6	47 CFR Part 15, Subpart C 15.249(a)	Pass			
Restricted Band Around Fundamental Frequency	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209	Pass			
Radiated Emissions	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.4&6.5&6.6	47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)	Pass			

Remark:

Model No.: CX-OF, CX-OF-TX, CX-95D, CX-23, CX-93S, CX-95W, CX-70, CX-10WD, CX-10WD-TX, CX-10W, CX-10W-TX, CX-35, CX-37, CX-37-TX, CX-36, CX-41, CX-40, CX-42, CX-43, CX-44, CX-45, CX-32, CX-32C, CX-32W, CX-32S, CX-33, CX-33C, CX-33W, CX-33S, CX-20, CX-22, CX-10C, CX-10DS, CX-10D, V-3, M6, CX-30

Only the model CX-OF was tested, since the electrical circuit design, layout, components used, internal wiring and functions were identical for the above models, with only difference on model No..

Report No.: SZEM170800935302

Page: 4 of 45

3 Contents

		Page
1	COVER PAGE	1
2	TEST SUMMARY	3
3	CONTENTS	4
4		
	4.1 DETAILS OF E.U.T.	
	4.2 DESCRIPTION OF SUPPORT UNITS	
	4.3 MEASUREMENT UNCERTAINTY	
	4.5 TEST FACILITY	
	4.6 DEVIATION FROM STANDARDS	
	4.7 ABNORMALITIES FROM STANDARD CONDITIONS	
5	EQUIPMENT LIST	8
٠		
6	RADIO SPECTRUM TECHNICAL REQUIREMENT	10
	6.1 Antenna Requirement	10
	6.1.1 Test Requirement:	10
	6.1.2 Conclusion	10
7	RADIO SPECTRUM MATTER TEST RESULTS	11
	7.1 CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz)	11
	7.1.1 E.U.T. Operation	11
	7.1.2 Measurement Procedure and Data	
	7.2 20DB BANDWIDTH	
	7.2.1 E.U.T. Operation	
	7.2.2 Test Setup Diagram	
	7.2.3 Measurement Procedure and Data	
	7.3.1 E.U.T. Operation	
	7.3.2 Test Setup Diagram	
	7.3.3 Measurement Procedure and Data	
	7.4 RESTRICTED BAND AROUND FUNDAMENTAL FREQUENCY	
	7.4.1 E.U.T. Operation	
	7.4.2 Test Setup Diagram	
	7.4.3 Measurement Procedure and Data	
	7.5 RADIATED EMISSIONS	
	7.5.2 Test Setup Diagram	
	7.5.3 Measurement Procedure and Data	
8		
•	8.1 CONDUCTED EMISSIONS AT AC POWER LINE (150kHz-30MHz) TEST SETUP	
	8.2 RADIATED EMISSIONS TEST SETUP	
	8.3 FUT CONSTRUCTIONAL DETAILS	45

Report No.: SZEM170800935302

Page: 5 of 45

4 General Information

4.1 Details of E.U.T.

Power supply: Remote control rechargeable battery: DC 3.7V (Charge by USB)

Test voltage AC 120V 60Hz

Cable: Remote control charge cable:32cm unshielded

Frequency Range: 2420MHz ~ 2460MHz

Modulation Type: GFSK

Number of Channels: 41 (declared by the client)

Antenna type: Integral antenna

Antenna Gain: 1dBi

Operation Fr	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2420MHz	12	2431MHz	23	2442MHz	34	2453MHz
2	2421MHz	13	2432MHz	24	2443MHz	35	2454MHz
3	2422MHz	14	2433MHz	25	2444MHz	36	2455MHz
4	2423MHz	15	2434MHz	26	2445MHz	37	2456MHz
5	2424MHz	16	2435MHz	27	2446MHz	38	2457MHz
6	2425MHz	17	2436MHz	28	2447MHz	39	2458MHz
7	2426MHz	18	2437MHz	29	2448MHz	40	2459MHz
8	2427MHz	19	2438MHz	30	2449MHz	41	2460MHz
9	2428MHz	20	2439MHz	31	2450MHz		
10	2429MHz	21	2440MHz	32	2451MHz		
11	2430MHz	22	2441MHz	33	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel(CH1)	2420MHz
The Middle channel(CH21)	2440MHz
The Highest channel(CH41)	2460MHz

4.2 Description of Support Units

The EUT has been tested with the equipment below

Description Manufacturer		Model No.	Serial No.	
Adapter	Apple	A1357 W010A051	REF. No.:SEA0500	

Report No.: SZEM170800935302

Page: 6 of 45

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.25 x 10 ⁻⁸
2	Duty cycle	0.37%
3	Occupied Bandwidth	3%
4	RF conducted power	0.75dB
5	RF power density	2.84dB
6	Conducted Spurious emissions	0.75dB
7	DE Dodieted newer	4.5dB (below 1GHz)
1	RF Radiated power	4.8dB (above 1GHz)
8	Dadiated Caurious emission test	4.5dB (30MHz-1GHz)
0	Radiated Spurious emission test	4.8dB (1GHz-18GHz)
9	Temperature test	1℃
10	Humidity test	3%
11	Supply voltages	1.5%
12	Time	3%

Report No.: SZEM170800935302

Page: 7 of 45

4.4 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

· CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

FCC –Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

Report No.: SZEM170800935302

Page: 8 of 45

5 Equipment List

	Conducted Emission						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)	
1	Shielding Room	ZhongYu Electron	GB-88	SEM001-06	2017-05-10	2018-05-09	
2	LISN	Rohde & Schwarz	ENV216	SEM007-01	2017-09-27	2018-09-26	
3	LISN	ETS-LINDGREN	3816/2	SEM007-02	2017-04-14	2018-04-13	
4	EMI Test Receiver(9kHz- 3GHz)	Rohde & Schwarz	ESCI	SEM004-02	2017-04-14	2018-04-13	
5	Measurement Software	AUDIX	e3 V5.4.1221d	N/A	N/A	N/A	
6	Coaxial Cable	SGS	N/A	SEM024-01	2017-07-13	2018-07-12	

	RF conducted test						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)	
1	DC Power Supply	ZhaoXin	PS-3005D	SEM011-05	2017-09-27	2018-09-26	
2	Spectrum Analyzer (20Hz- 43GHz)	Rohde & Schwarz	FSU43	SEM004-08	2017-04-14	2018-04-13	
3	Signal Generator (9kHz- 40GHz)	KEYSIGHT	N5173B	SEM006-05	2017-09-27	2018-09-26	
4	Measurement Software	JS Tonscend	JS1120-2 BT/WIFI V2.6	N/A	N/A	N/A	
5	Coaxial Cable	SGS	N/A	SEM031-01	2017-07-13	2018-07-12	
6	Attenuator	Weinschel Associates	WA41	SEM021-09	N/A	N/A	

	RE in Chamber							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)		
1	3m Semi-Anechoic Chamber	ETS-LINDGREN	N/A	SEM001-01	2017-08-05	2020-08-04		
2	MXE EMI Receiver (20Hz-8.4GHz)	Agilent Technologies	N9038A	SEM004-05	2017-09-27	2018-09-26		
3	BiConiLog Antenna (26-3000MHz)	ETS-LINDGREN	3142C	SEM003-02	2017-03-05	2020-03-04		
4	Pre-amplifier (0.1-1300MHz)	Agilent Technologies	8447D	SEM005-01	2017-04-14	2018-04-13		
5	Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A		
6	Coaxial Cable	SGS	N/A	SEM025-01	2017-07-13	2018-07-12		

Report No.: SZEM170800935302

Page: 9 of 45

	RE in Chamber					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (yyyy-mm-dd)	Cal. Due date (yyyy-mm-dd)
1	3m Semi-Anechoic Chamber	AUDIX	N/A	SEM001-02	2017-05-10	2018-05-09
2	EXA Signal Analyzer (10Hz- 26.5GHz)	Agilent Technologies Inc	N9010A	SEM004-09	2017-06-05	2018-06-04
3	BiConiLog Antenna (26-3000MHz)	ETS-Lindgren	3142C	SEM003-01	2017-06-27	2020-06-26
4	Horn Antenna (1-18GHz)	Rohde & Schwarz	HF907	SEM003-07	2015-06-14	2018-06-13
5	Amplifier (0.1-1300MHz)	HP	8447D	SEM005-02	2017-09-27	2018-09-26
6	Low Noise Amplifier (100MHz- 18GHz)	Black Diamond Series	BDLNA-0118- 352810	SEM005-05	2017-09-27	2018-09-26
7	Band filter	N/A	N/A	N/A	N/A	N/A
8	Measurement Software	AUDIX	e3 V8.2014-6- 27	N/A	N/A	N/A
9	Coaxial Cable	SGS	N/A	SEM026-01	2017-07-13	2018-07-12

General used equipment										
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date					
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-03	2016-10-12	2017-10-12					
Humidity/ Temperature Indicator	Shanghai Meteorological Industry Factory	ZJ1-2B	SEM002-04	2016-10-12	2017-10-12					
Humidity/ Temperature Indicator	Mingle	N/A	SEM002-08	2016-10-12	2017-10-12					
Barometer	Changchun Meteorological Industry Factory	DYM3	SEM002-01	2017-04-18	2018-04-18					

Report No.: SZEM170800935302

Page: 10 of 45

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203

6.1.2 Conclusion

Standard Requirment:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently

attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 1dBi.

Report No.: SZEM170800935302

Page: 11 of 45

7 Radio Spectrum Matter Test Results

7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

Fraguanay ranga (MII-)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

7.1.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 45 % RH Atmospheric Pressure: 1010 mbar

Test mode: b:Charge + TX mode_Keep the EUT in charging and transmitting with modulation

mode.

7.1.2 Measurement Procedure and Data

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50µH + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Report No.: SZEM170800935302

Page: 12 of 45

Mode:b; Line:Live Line

Site : Shielding Room

Condition: Line Job No. : 09353CR

Test mode: b

		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.15	0.02	9.64	35.04	44.70	55.96	-11.26	Peak
2	0.20	0.02	9.63	30.47	40.12	53.62	-13.50	Peak
3	0.24	0.01	9.63	30.29	39.93	52.13	-12.20	Peak
4	0.29	0.01	9.63	30.68	40.32	50.50	-10.18	Peak
5	0.33	0.01	9.63	28.85	38.49	49.49	-11.00	Peak
6	0.63	0.02	9.63	27.84	37.49	46.00	-8.51	Peak

Report No.: SZEM170800935302

Page: 13 of 45

Mode:b; Line:Neutral Line

Site : Shielding Room

Condition: Neutral Job No. : 09353CR

Test mode: b

		Cable	LISN	Read		Limit	0ver	
	Freq	Loss	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB	dBuV	dBuV	dBuV	dB	
1	0.18	0.02	9.63	32.12	41.77	54.59	-12.82	Peak
2	0.26	0.01	9.63	30.87	40.51	51.29	-10.78	Peak
3	0.29	0.01	9.63	31.95	41.59	50.46	-8.87	Peak
4	0.32	0.01	9.63	30.71	40.35	49.71	-9.36	Peak
5	0.48	0.01	9.63	26.83	36.47	46.41	-9.94	Peak
6	0.63	0.02	9.63	30.04	39.69	46.00	-6.31	Peak

Report No.: SZEM170800935302

Page: 14 of 45

7.2 20dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.215 Test Method: ANSI C63.10 (2013) Section 6.9

Limit: N/A

7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 55 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

Test channel	20dB bandwidth (MHz)	Results
Lowest	3.39	Pass
Middle	5.07	Pass
Highest	4.08	Pass

Report No.: SZEM170800935302

Page: 15 of 45

Test plot as follows:

Report No.: SZEM170800935302

Page: 16 of 45

Report No.: SZEM170800935302

Page: 17 of 45

7.3 Field Strength of the Fundamental Signal (15.249(a))

Test Requirement 47 CFR Part 15, Subpart C 15.249(a)
Test Method: ANSI C63.10 (2013) Section 6.5&6.6

Measurement Distance: 3m

Limit:

Frequency	Limit (dBuV/m @3m)	Remark
0400MI I= 0400 EMI I=	94.0	Average Value
2400MHz-2483.5MHz	114.0	Peak Value

7.3.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 54 % RH Atmospheric Pressure: 1010 mbar

Test mode a:TX mode_Keep the EUT in transmitting with modulation mode.

7.3.2 Test Setup Diagram

30MHz-1GHz Above 1GHz

Report No.: SZEM170800935302

Page: 18 of 45

7.3.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM170800935302

Page: 19 of 45

Mode:a; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low

Condition: 3m Horizontal

Job No : 09352CR

Mode : 2420 Field Strength

Cable Ant Preamp Read Limit Over
Freq Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB

3 pp 2419.807 5.51 29.17 37.95 97.07 93.80 114.00 -20.20 Peak

Report No.: SZEM170800935302

Page: 20 of 45

Mode:a; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

Condition: 3m VERTICAL Job No : 09352CR

Mode : 2420 Field Strength

Cable Ant Preamp Read Limit Over
Freq Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB

3 pp 2419.807 5.51 29.17 37.95 96.79 93.52 114.00 -20.48 peak

Report No.: SZEM170800935302

Page: 21 of 45

Mode:a; Polarization:Horizontal; Modulation Type:GFSK; Channel:middle

Condition: 3m HORIZONTAL

Job No : 09353CR

Mode : 2440 Field strength

Cable Ant Preamp Read Limit Over
Freq Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB

1 pp 2439.939 5.54 29.23 37.95 87.46 84.28 114.00 -29.72 Peak

Report No.: SZEM170800935302

Page: 22 of 45

Mode:a; Polarization:Vertical; Modulation Type:GFSK; Channel:middle

Condition: 3m VERTICAL Job No : 09353CR

Mode : 2440 Field strength

Cable Ant Preamp Read Limit Over

Freq Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB

1 pp 2440.000 5.54 29.23 37.95 90.84 87.66 114.00 -26.34 Peak

Report No.: SZEM170800935302

Page: 23 of 45

Mode:a; Polarization:Horizontal; Modulation Type:GFSK; Channel:High

Condition: 3m HORIZONTAL

Job No : 09352CR

Mode : 2460 Field Strength

Cable Ant Preamp Read Limit Over

Freq Loss Factor Factor Level Level Line Limit Remark

MHz dB dB/m dB dBuV dBuV/m dBuV/m dB

1 pp 2460.416 5.57 29.29 37.95 90.26 87.17 114.00 -26.83 peak

Report No.: SZEM170800935302

Page: 24 of 45

Mode:a; Polarization: Vertical; Modulation Type: GFSK; Channel: High

Condition: 3m VERTICAL Job No : 09352CR

Mode : 2460 Field Strength

Cable Ant Preamp Read Limit 0ver Freq Loss Factor Factor Level Level Line Limit Remark dBuV dBuV/m dBuV/m MHz dB dB/m dB dB

1 pp 2459.770 5.57 29.28 37.95 90.35 87.25 114.00 -26.75 Peak

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only above measurement data were shown in the report.

Report No.: SZEM170800935302

Page: 25 of 45

7.4 Restricted Band Around Fundamental Frequency

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.249(d) & 15.209

Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6

Measurement Distance: 3m

Limit:

Frequency	Limit (dBuV/m @3m)	Remark		
30MHz-88MHz	40.0	Quasi-peak Value		
88MHz-216MHz	43.5	Quasi-peak Value		
216MHz-960MHz	46.0	Quasi-peak Value		
960MHz-1GHz	54.0	Quasi-peak Value		
Above 1GHz	54.0	Average Value		
Above 1GHz	74.0	Peak Value		

Emission radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in Section 15.209, whichever is the lesser attenuation.

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 23 °C Humidity: 54 % RH Atmospheric Pressure: 1010 mbar

Pretest these a:TX mode Keep the EUT in transmitting with modulation mode.

mode to find the b:Charge + TX mode_Keep the EUT in charging and transmitting with modulation

worst case: mode.

The worst case b:Charge + TX mode_Keep the EUT in charging and transmitting with modulation

for final test: mode.

7.4.2 Test Setup Diagram

30MHz-1GHz Above 1GHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

Report No.: SZEM170800935302

Page: 26 of 45

7.4.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM170800935302

Page: 27 of 45

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low

Condition: 3m Horizontal

Job No : 09352CR

Mode : 2420 Band edge

Jue	. 242	o Daniu	euge							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
1	2397.606	5.49	29.10	37.96	56.05	52.68	74.00	-21.32	Peak	
2	2400.000	5.49	29.11	37.96	52.66	49.30	74.00	-24.70	Peak	
3	pp 2419.807	5.51	29.17	37.95	97.07	93.80	114.00	-20.20	Peak	

Report No.: SZEM170800935302

Page: 28 of 45

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

Condition: 3m VERTICAL Job No : 09352CR

1 2

Mode : 2420 Band edge

	. 2421	Danu	cuge							
		Cable	Ant	Preamp	Read		Limit	0ver		
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark	
Ī	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB		
	2396.635	5.48	29.10	37.96	54.59	51.21	74.00	-22.79	Peak	
	2400.000	5.49	29.11	37.96	54.49	51.13	74.00	-22.87	Peak	
,	2419.807	5.51	29.17	37.95	96.79	93.52	114.00	-20.48	neak	

Report No.: SZEM170800935302

Page: 29 of 45

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:High

Condition: 3m HORIZONTAL

Job No : 09352CR

Mode : 2460 Band edge

	Freq			Preamp Factor					Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
	2460.416 2483.500								•
3	2485.647	5.60	29.36	37.95	46.32	43.33	74.00	-30.67	peak

Report No.: SZEM170800935302

Page: 30 of 45

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:High

Condition: 3m VERTICAL Job No : 09352CR

Mode : 2460 Band edge

	F			Preamp					DI-
	Freq	Loss	Factor	Factor	revei	revei	Line	Limit	Kemark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1 pp	2459.770	5.57	29.28	37.95	90.35	87.25	114.00	-26.75	Peak
2	2483.500	5.60	29.35	37.95	43.58	40.58	74.00	-33.42	Peak
3	2489.366	5.61	29.37	37.95	46.70	43.73	74.00	-30.27	Peak

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only above measurement data were shown in the report.

Report No.: SZEM170800935302

Page: 31 of 45

7.5 Radiated Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.209 & 15.249 (a),(d)

Test Method: ANSI C63.10 (2013) Section 6.4&6.5&6.6

Measurement Distance: 3m

Limit:

Frequency(MHz)	Field strength (microvolts/meter)	Limit (dBuV/m)	Detector	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	-	-	300
0.490-1.705	24000/F(kHz)	-	-	30
1.705-30	30	-	-	30
30-88	100	40.0	QP	3
88-216	150	43.5	QP	3
216-960	200	46.0	QP	3
960-1000	500	54.0	QP	3
Above 1000	500	54.0	AV	3

Report No.: SZEM170800935302

Page: 32 of 45

7.5.1 E.U.T. Operation

Operating Environment:

Temperature: 25 °C Humidity: 45 % RH Atmospheric Pressure: 1010 mbar

Pretest these a:TX mode Keep the EUT in transmitting with modulation mode.

mode to find the b:Charge + TX mode_Keep the EUT in charging and transmitting with modulation

worst case: mode

The worst case b:Charge + TX mode_Keep the EUT in charging and transmitting with modulation

for final test: mode.

7.5.2 Test Setup Diagram

Below 30MHz 30MHz-1GHz

Above 1GHz

7.5.3 Measurement Procedure and Data

For testing performed with the loop antenna, the center of the loop was positioned 1 m above the ground and positioned with its plane vertical at the specified distance from the EUT. During testing the loop was rotated about its vertical axis for maximum response at each azimuth and also investigated with the loop positioned in the horizontal plane. Only the worst position of vertical was shown in the report.

Report No.: SZEM170800935302

Page: 33 of 45

30MHz~1GHz Detector:QP

Mode:b; Polarization:Horizontal

Condition: 10m HORIZONTAL

Job No. : 09353CR

Test Mode: b

	Freq			Preamp Factor				
-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB
1	36.38	6.73	12.84	32.48	32.02	19.11	29.50	-10.39
2	58.41	7.00	12.12	32.44	30.60	17.28	29.50	-12.22
3	160.91	7.50	13.30	32.44	32.17	20.53	33.10	-12.57
4	390.72	8.30	14.69	32.33	34.63	25.29	35.60	-10.31
5	687.15	9.12	19.97	32.27	31.07	27.89	35.60	-7.71
6 pp	945.44	9.56	22.70	31.03	29.70	30.93	35.60	-4.67

Report No.: SZEM170800935302

Page: 34 of 45

Mode:b; Polarization:Vertical

Condition: 10m VERTICAL

Job No. : 09353CR

Test Mode: b

		Cable	Ant	Preamp	Read		Limit	0ver
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit
-	MII-					JD: 377:	JD: 3//	
	MHz	dB	ab/m	dB	abuv	abuv/m	abuv/m	dB
1	36.38	6.73	12.84	32.48	31.49	18.58	29.50	-10.92
2	58.61	7.00	12.10	32.44	31.97	18.63	29.50	-10.87
3	128.56	7.34	11.96	32.48	33.01	19.83	33.10	-13.27
4	157.01	7.49	13.40	32.43	31.81	20.27	33.10	-12.83
5	338.40	8.19	13.63	32.36	31.31	20.77	35.60	-14.83
6 рр	938.83	9.55	22.65	31.08	30.44	31.56	35.60	-4.04

Report No.: SZEM170800935302

Page: 35 of 45

Test Result:

i est i tesuit.							
Frequency (MHz)	Level @ 10m (dBuV/m)	Level @ 10m (uV/m)	Level @ 3m (uV/m)	Level @ 3m (dBuV/m)	Limit @ 3m (dBuV/m)	Margin (dB)	Ant. Polarization
36.38	19.11	9.03	30.09	29.57	40.00	-10.43	Н
58.41	17.28	7.31	24.37	27.74	40.00	-12.26	Н
160.91	20.53	10.63	35.43	30.99	43.50	-12.51	Н
390.72	25.29	18.39	61.29	35.75	46.00	-10.25	Н
687.15	27.89	24.80	82.68	38.35	46.00	-7.65	Н
945.44	30.93	35.20	117.32	41.39	46.00	-4.61	Н
36.38	18.58	8.49	28.31	29.04	40.00	-10.96	V
58.61	18.63	8.54	28.47	29.09	40.00	-10.91	V
128.56	19.83	9.81	32.69	30.29	43.50	-13.21	V
157.01	20.27	10.32	34.39	30.73	43.50	-12.77	V
338.40	20.77	10.93	36.42	31.23	46.00	-14.77	V
938.83	31.56	37.84	126.15	42.02	46.00	-3.98	V

Report No.: SZEM170800935302

Page: 36 of 45

Above 1GHz

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:Low

Condition: 3m HORIZONTAL

Job No : 09353CR

Mode : 2420 TX RSE

ou	_	. 272	0 17 10	J.						
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	-	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1682.477	5.25	26.60	38.02	44.30	38.13	74.00	-35.87	peak
2		4405.090	7.46	33.60	38.22	44.45	47.29	74.00	-26.71	peak
3	pp	4840.000	7.93	34.22	38.43	41.50	45.22	54.00	-8.78	Average
4	pk	4840.000	7.93	34.22	38.43	51.51	55.23	74.00	-18.77	peak
5		6815.551	10.64	36.00	37.47	43.92	53.09	74.00	-20.91	peak
6		7260.000	10.06	36.39	37.05	43.92	53.32	74.00	-20.68	peak
7		9680.000	10.78	37.54	35.05	40.66	53.93	74.00	-20.07	peak

Report No.: SZEM170800935302

Page: 37 of 45

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:Low

Condition: 3m VERTICAL

Job No : 09353CR Mode : 2420 TX RSE

Cable Ant Preamp Read Limit 0ver Loss Factor Factor Level Level Line Limit Remark Freq dBuV dBuV/m dBuV/m MHz dB dB/m dB 1 1468.761 5.38 25.68 38.04 44.71 37.73 74.00 -36.27 peak 2 4086.182 7.08 33.60 38.05 44.62 47.25 74.00 -26.75 peak 3 pp 4840.000 7.93 34.22 38.43 40.60 44.32 54.00 -9.68 Average 4 pk 4840.000 7.93 34.22 38.43 50.69 54.41 74.00 -19.59 peak 5 6340.436 11.24 34.98 37.94 44.70 52.98 74.00 -21.02 peak 6 7260.000 10.06 36.39 37.05 42.02 51.42 74.00 -22.58 peak 7 9680.000 10.78 37.54 35.05 40.58 53.85 74.00 -20.15 peak

Report No.: SZEM170800935302

Page: 38 of 45

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:middle

Condition: 3m HORIZONTAL

Job No : 09353CR

Mode : 2440 TX RSE

loue	. 244	O IV V	3E						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1639.274	5.30	26.42	38.03	43.93	37.62	74.00	-36.38	peak
2	4121.768	7.13	33.60	38.07	44.27	46.93	74.00	-27.07	peak
3	pp 4880.000	7.97	34.29	38.45	41.50	45.31	54.00	-8.69	Average
4	pk 4880.000	7.97	34.29	38.45	51.53	55.34	74.00	-18.66	peak
5	6698.373	10.97	35.67	37.59	43.96	53.01	74.00	-20.99	peak
6	7320.000	10.05	36.37	37.00	43.18	52.60	74.00	-21.40	peak
7	9760.000	10.82	37.55	35.02	40.01	53.36	74.00	-20.64	peak

Report No.: SZEM170800935302

Page: 39 of 45

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:middle

Condition: 3m VERTICAL Job No : 09353CR

Mode : 2440 TX RSE

. 277	0 17 10	JL						
	Cable	Ant	Preamp	Read		Limit	0ver	
Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1490.142	5.45	25.76	38.04	43.69	36.86	74.00	-37.14	peak
4392.376	7.44	33.60	38.21	43.98	46.81	74.00	-27.19	peak
4880.000	7.97	34.29	38.45	42.06	45.87	54.00	-8.13	Average
4880.000	7.97	34.29	38.45	52.07	55.88	74.00	-18.12	peak
6377.195	11.31	35.00	37.90	44.16	52.57	74.00	-21.43	peak
7320.000	10.05	36.37	37.00	42.18	51.60	74.00	-22.40	peak
9760.000	10.82	37.55	35.02	39.73	53.08	74.00	-20.92	peak
	Freq MHz 1490.142 4392.376 4880.000 4880.000 6377.195 7320.000	Cable Loss MHz dB 1490.142 5.45 4392.376 7.44 0 4880.000 7.97 6377.195 11.31 7320.000 10.05	Freq Loss Factor MHz dB dB/m 1490.142 5.45 25.76 4392.376 7.44 33.60 4880.000 7.97 34.29 4880.000 7.97 34.29 6377.195 11.31 35.00 7320.000 10.05 36.37	Cable Ant Preamp Loss Factor Factor MHz dB dB/m dB 1490.142 5.45 25.76 38.04 4392.376 7.44 33.60 38.21 4880.000 7.97 34.29 38.45 6377.195 11.31 35.00 37.90 7320.000 10.05 36.37 37.00	Kreq Cable Loss Factor Factor Level Ant Preamp Level Read Level MHz dB dB/m dB dBuV 1490.142 5.45 25.76 38.04 43.69 4392.376 7.44 33.60 38.21 43.98 4880.000 7.97 34.29 38.45 42.06 4880.000 7.97 34.29 38.45 52.07 6377.195 11.31 35.00 37.90 44.16 7320.000 10.05 36.37 37.00 42.18	Cable Ant Preamp Read Loss Factor Factor Level Level MHz dB dB/m dB dBuV dBuV/m 1490.142 5.45 25.76 38.04 43.69 36.86 4392.376 7.44 33.60 38.21 43.98 46.81 4880.000 7.97 34.29 38.45 42.06 45.87 4880.000 7.97 34.29 38.45 52.07 55.88 6377.195 11.31 35.00 37.90 44.16 52.57 7320.000 10.05 36.37 37.00 42.18 51.60	Cable Ant Preamp Read Limit Freq Loss Factor Factor Level Level Line MHz dB dB/m dB dBuV dBuV/m dBuV/m 1490.142 5.45 25.76 38.04 43.69 36.86 74.00 4392.376 7.44 33.60 38.21 43.98 46.81 74.00 4880.000 7.97 34.29 38.45 42.06 45.87 54.00 4880.000 7.97 34.29 38.45 52.07 55.88 74.00 6377.195 11.31 35.00 37.90 44.16 52.57 74.00 7320.000 10.05 36.37 37.00 42.18 51.60 74.00	Cable Ant Preamp Read Limit Over Freq Loss Factor Factor Level Level Line Limit MHz dB dB/m dB dBuV dBuV/m dBuV/m dB

Report No.: SZEM170800935302

Page: 40 of 45

Mode:b; Polarization:Horizontal; Modulation Type:GFSK; Channel:High

Condition: 3m HORIZONTAL

Job No : 09353CR

Mode : 2480 TX RSE

oue	. 240	O IA I	JL.						
		Cable	Ant	Preamp	Read		Limit	0ver	
	Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1	1560.673	5.40	26.08	38.04	43.60	37.04	74.00	-36.96	peak
2	4405.090	7.46	33.60	38.22	44.41	47.25	74.00	-26.75	peak
3 p	p 4920.000	8.01	34.36	38.46	44.93	48.84	54.00	-5.16	Average
4 p	k 4920.000	8.01	34.36	38.46	54.94	58.85	74.00	-15.15	peak
5	6874.906	10.47	36.16	37.42	43.30	52.51	74.00	-21.49	peak
6	7380.000	10.03	36.35	36.94	44.13	53.57	74.00	-20.43	peak
7	9840.000	10.86	37.57	34.98	39.13	52.58	74.00	-21.42	peak

Report No.: SZEM170800935302

Page: 41 of 45

Mode:b; Polarization:Vertical; Modulation Type:GFSK; Channel:High

Condition: 3m VERTICAL Job No : 09353CR

Mode : 2480 TX RSE

loae	=	: 240	O IX K	30						
			Cable	Ant	Preamp	Read		Limit	0ver	
		Freq	Loss	Factor	Factor	Level	Level	Line	Limit	Remark
	_									
		MHz	dB	dB/m	dB	dBuV	dBuV/m	dBuV/m	dB	
1		1503.119	5.48	25.81	38.04	43.78	37.03	74.00	-36.97	peak
2		4456.315	7.51	33.60	38.24	44.12	46.99	74.00	-27.01	peak
3	pp	4920.000	8.01	34.36	38.46	44.60	48.51	54.00	-5.49	Average
4	pk	4920.000	8.01	34.36	38.46	54.60	58.51	74.00	-15.49	peak
5		6954.852	10.25	36.38	37.34	43.55	52.84	74.00	-21.16	peak
6		7380.000	10.03	36.35	36.94	43.01	52.45	74.00	-21.55	peak
7		9840.000	10.86	37.57	34.98	39.61	53.06	74.00	-20.94	peak

Report No.: SZEM170800935302

Page: 42 of 45

Remark:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

- 2) Scan from 9kHz to 25GHz, the disturbance above 18GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3) As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only above measurement data were shown in the report.

Report No.: SZEM170800935302

Page: 43 of 45

8 Photographs

8.1 Conducted Emissions at AC Power Line (150kHz-30MHz) Test Setup

Report No.: SZEM170800935302

Page: 44 of 45

8.2 Radiated Emissions Test Setup

Report No.: SZEM170800935302

Page: 45 of 45

8.3 EUT Constructional Details

Refer to Appendix A - Photographs of EUT Constructional Details for SZEM1708009353CR.