INF01 118

Técnicas Digitais para Computação

Portas Lógicas CMOS: Aspectos Temporais e Elétricos

Aula 7

Chaveamento

Níveis de Tensão

- Vil máx. maior tensão de entrada aceitável como sendo nível lógico '0'
- Vih min. menor tensão de entrada aceitável para nível lógico '1'
- Vol típico tensão normalmente gerada na saída da porta lógica para nível lógico '0'
- Voh típico tensão normalmente gerada na saída da porta lógica para nível lógico '1'
- Vol máx. maior tensão encontrada na saída da porta lógica para nível lógico '0'
- Voh min. menor tensão encontrada na saída da porta lógica para nível lógico '1'

Margem de Ruído

^{*} O menor valor dessas diferenças é que define a Margem de Ruído!!!

Características Temporais (timing)

Capacitância de 'Gate'

Tempos de subida e descida

- t_r Tempo de subida (*rise time*)
- t_f Tempo de descida (fall time)

Tempo de Propagação de um Sinal

- td-lh Tempo de atraso de propagação do sinal de saída quando este passa do nível lógico '0' para o nível lógico '1' (delay time _ low-high)
- t_{d-hl} Tempo de atraso de propagação do sinal de saída quando este passa do nível lógico '1' para o nível lógico '0' (*delay time _ high-low*)
- td Tempo de atraso de propagação MÉDIO do sinal de saída (delay time)

$$\mathbf{t_d} = (\mathbf{t_{d-lh}} + \mathbf{t_{d-hl}}) / 2$$

Consumo (Dissipação de Potência)

- Corrente de Carga: Iout
- Corrente de Curto-Circuito: Icc
- consumo estático ≈ 0
- consumo dinâmico (transição) = Iout + Icc
- consumo total = estático + dinâmico

* A variação de W e L afeta no tempo de transição dos sinais e no consumo da porta lógica.

Fanin e Fanout

- Fanin (f_{in}) é o valor da capacitância de entrada normalizada em função de uma capacitância de referência.
- Fanout (f_{out}) é a soma das capacitâncias de entrada normalizadas que uma porta lógica tem conectada a sua saída.

O fanout de uma porta lógica afeta diretamente as características de tempo de propagação do sinal de saída (atraso) e consumo de corrente (potência) fornecida pela Fonte de Tensão.

Exemplo:

td	$f_{out} = 1$	f _{out} =2	$f_{out} = 3$	
INV	1ns	1.2ns	1.4ns	
AND2	2ns	2.5ns	3ns	
XOR3	1.5ns	1.7ns	1.9ns	
•••				

Estudo de caso INVERSORES em Anel

O que é?

N inversores em anel.

- Variação contínua 0--> 1 --> 0--> em cada nó se N é ímpar.
- Conhecido como " oscilação" ou "corrida" se N é ímpar
- Latch bi-estável de N é par.

Resultado de Simulação Elétrica com Simulador SPICE para N=7.

Exercicio

• Sabendo que os tempos de cada porta são:

Tphl=10ns Tplh=15ns ---- NAND2

Tphl=6ns Tplh=17ns ---- NOT

