Circulant Matrices

A square matrix C_h is circulant if each row vector is rotated one element to the right relative to the preceding row vector.

$$C_{h} = \begin{bmatrix} h_{0} & h_{N-1} & \cdots & h_{2} & h_{1} \\ h_{1} & h_{0} & h_{N-1} & & h_{2} \\ \vdots & h_{1} & h_{0} & \ddots & \vdots \\ h_{N-2} & \vdots & \ddots & \ddots & h_{N-1} \\ h_{N-1} & h_{N-2} & \cdots & h_{1} & h_{0} \end{bmatrix}$$

$$(1)$$

Recall from lecture that we can describe the input-output relationship of a periodic discrete-time LTI system via a circulant matrix.

$$\vec{y} = C_h \vec{x} \tag{2}$$

In this case, the first column of C_h is the impulse response h[n] of the system.

$$\vec{h} = \begin{bmatrix} h_0 & h_1 & \cdots & h_{N-2} & h_{N-1} \end{bmatrix}$$
 (3)

Rather beautifully, the DFT basis vectors are eigenvectors of C_h . We will have N DFT vectors, since that is the dimensionality of our model.

$$\vec{u_k} = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 & e^{j\frac{2\pi}{N}k \cdot 1} & \cdots & e^{j\frac{2\pi}{N}k \cdot (N-1)} \end{bmatrix}$$
 (4)

Letting H[k] be the k^{th} DFT coefficient of h[n], we can write the following eigenvalue equation for $k = 0, 1, \dots, N - 1$.

$$C_h \vec{u}_k = \underbrace{\left(\sqrt{N} \times H[k]\right)}_{\text{eigenvalue}} \vec{u}_k \tag{5}$$

In this discussion you'll see why this is useful by representing convolution as a circulant matrix C_h , and then diagonalizing it. This will draw the connection between the DFT and LTI systems.

Sampling theorem

Let *x* be continuous signal bandlimited by frequency ω_{max} . We sample *x* with a period of T_s .

Given the discrete samples, we can try reconstructing the original signal f through sincinterpolation where $\Phi(t) = \mathrm{sinc}\left(\frac{t}{T_s}\right)$

$$\hat{x}(t) = \sum_{n=-\infty}^{\infty} x[n]\Phi(t - nT_s)$$

We define the **sampling frequency** as $\omega_s = \frac{2\pi}{T_s}$. The Sampling Theorem says if $\omega_{max} < \frac{\pi}{T_s}$, or $\omega_s > 2\omega_{max}$, then we are able to recover the original signal, i.e. $x = \hat{x}$.

1 Circulant Matrices & Convolution

Consider the signal x[n] of length 3 and an impulse response h[n] of length 2. You may assume that they are zero everywhere else.

$$\vec{x} = \begin{bmatrix} -1 & 3 & -2 \end{bmatrix}^T \qquad \vec{h} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}^T \tag{6}$$

a) What is the convolution y[n] = x[n] * h[n]? Also what is the length of this output signal?

Answer

We can find the convolution by writing out the summation formula and the nonzero terms will remain

$$y[n] = (x * h)[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = \sum_{k=0}^{\infty} x[k]h[n-k]$$

$$y[0] = x[0]h[0] = -0.5$$

$$y[1] = x[0]h[1] + x[1]h[0] = 1$$

$$y[2] = x[1]h[1] + x[2]h[0] = 0.5$$

$$y[3] = x[2]h[1] = -1$$
(7)

The length of the output is 4 and we show a visual of the result below

b) Now write each term of the output signal y[n] as a sum using the convolution formula and set up a matrix equation $\vec{y} = A\vec{x}$. What is the size of this matrix?

Answer

$$y[0] = x[0]h[0] = -0.5$$

$$y[1] = x[0]h[1] + x[1]h[0] = 1$$

$$y[2] = x[1]h[1] + x[2]h[0] = 0.5$$

$$y[3] = x[2]h[1] = -1$$

We can write this as the following matrix-vector equation

$$\begin{bmatrix} y[0] \\ y[1] \\ y[2] \\ y[3] \end{bmatrix} = \begin{bmatrix} h[0] & 0 & 0 \\ h[1] & h[0] & 0 \\ 0 & h[1] & h[0] \\ 0 & 0 & h[1] \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \end{bmatrix}$$

The matrix *A* is 4×3 .

c) Add elements to the matrix A and zeros to the vector \vec{x} to create a square matrix C_h that is circulant.

Answer

Note the first three rows of the matrix follow the pattern of a circulant matrix. Therefore, we will add one more cycle as columns and pad a zero to \vec{x} to get

$$\begin{bmatrix} y[0] \\ y[1] \\ y[2] \\ y[3] \end{bmatrix} = \begin{bmatrix} h[0] & 0 & 0 & h[1] \\ h[1] & h[0] & 0 & 0 \\ 0 & h[1] & h[0] & 0 \\ 0 & 0 & h[1] & h[0] \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ 0 \end{bmatrix}$$

- d) Since the DFT diagonalizes circulant matrices, lets try to solve for the output signal y[n] using the DFT instead of convolution.
 - Step 1: Compute the DFT of x[n] and h[n]: $\vec{X} = F\vec{x}$, $\vec{H} = F\vec{h}$.
 - Step 2: Take the elementwise product of the DFTs and scale: $\vec{Y} = \sqrt{N}\vec{X} \odot \vec{H}$.
 - Step 3: Perform the inverse DFT to get the result $\vec{y} = F^* \vec{Y}$.

Answer

Since N = 4, the DFT and IDFT matrices are as follows

$$F = \frac{1}{\sqrt{4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & 1 & -j \end{bmatrix} \qquad F^* = \frac{1}{\sqrt{4}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & 1 & j \end{bmatrix}$$

• Step 1: Compute the DFT of both signals x[n] and h[n]

$$\vec{X} = F\vec{x} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} -1 \\ 3 \\ -2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0.5 - 1.5j \\ -3 \\ 0.5 + 1.5j \end{bmatrix}$$

$$\vec{H} = F\vec{h} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 0.5 \\ 0.5 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.25 - 0.25j \\ 0 \\ 0.25 + 0.25j \end{bmatrix}$$

• Step 2: Take the elementwise product of the DFTs and scale $\vec{Y} = \sqrt{N}\vec{X} \odot \vec{H}$.

$$Y[k] = 2 \cdot X[k] \odot H[k] = \begin{bmatrix} 0 \\ -0.5 - j \\ 0 \\ -0.5 + j \end{bmatrix}$$

• Step 3: Perform the inverse DFT to get the result $\vec{y} = F^* \vec{Y}$.

$$y[n] = F^*Y[k] = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & j & -1 & -j \\ 1 & -1 & 1 & -1 \\ 1 & -j & = 1 & j \end{bmatrix} \begin{bmatrix} 0 \\ -0.5 - j \\ 0 \\ -0.5 + j \end{bmatrix} = \begin{bmatrix} -0.5 \\ 1 \\ 0.5 \\ -1 \end{bmatrix}$$

e) What is the importance behind this result? Compare the runtimes between convolution and the Fast Fourier Transform (FFT) which takes $O(N \log N)$ operations.

Answer

If x[n] and h[n] are signals of length N, then convolution as matrix-vector multiplication takes $O(N^2)$ operations. On the other hand, the DFT can be computed using $O(N \log N)$ operations through the FFT. This means we can find the output of any LTI system efficiently using the FFT.

As a reference for $N=10^6$, convolution will take approximately 1 trillion operations while the FFT takes approximately 6 million operations. When ran in numpy for $N=10^6$, convolution took 20 minutes while the FFT took 0.25 seconds.

2 Sampling Theorem basics

Consider the following signal, x(t) defined as,

$$x(t) = \cos(2\pi t)$$

a) Find the maximum frequency, ω_{max} , in radians per second? In Hertz? (From now on, frequencies will refer to radians per second.)

Answer

 $\omega_{\text{max}} = 2\pi$ in radians per second, which is 1 Hertz.

b) If I sample every *T* seconds, what is the sampling frequency?

Answer

$$\omega_s = \frac{2\pi}{T}$$
.

c) What is the smallest sampling period T that would result in an imperfect reconstruction?

Answer

From the sampling theorem, we know that T has an upperbound of $\frac{\pi}{\omega_{max}}$ for perfect reconstruction. Hence the smallest T for which we cannot reconstruct our signal is,

$$T = \frac{\pi}{2\pi} = \frac{1}{2}$$

.

3 More Sampling

Let's sample the signal from the previous question x with sampling period $T_m = \frac{1}{4}s$ and $T_n = 1s$ and perform sinc interpolation on the resulting samples. Let the reconstructed functions be f_m and f_n .

a) Have we satisfied the Nyquist limit (i.e. the sampling theorem) in any case?

Answer

To satisfy the Nyquist limit, we need the sampling period $T < \frac{1}{2}$. Hence, T_m satisfies Nyquist, but T_n does not.

b) What is the highest frequency we can reconstruct with the sampling rate T_n ?

Answer

The sinc functions used to reconstruct f_n are,

$$\left\{\operatorname{sinc}\left(\frac{t-k}{1}\right)\right\}_{k\in\mathbb{Z}}.$$

These functions can represent a maximum frequency of π .

c) Based on this answer, can you think of any periodic function that has a frequencies less than or equal to π that samples the same as f_n ?

Answer

Since the frequencies vary from 0 to π , the smallest period that can be represented is 2. That is to say, functions of period < 2 cannot be captured with the sinc function derived from T_n . Since the period must be greater than 2, no sine or cosin function can give the same samples as f_n . This means suggests looking into a fairly trivial kind of periodic function: a constant. In particular, the answer to this problem is the constant function that is 1 everywhere.

4 Aliasing

Consider the signal $x(t) = \sin(0.2\pi t)$.

a) At what period T should we sample so that sinc interpolation recovers a function that is identically zero?

Answer

We want to sample such that our resultant discrete time signal is all zeros. To do this, we can sample at t = 5k, for integral values of k. Hence, T = 5.

We could also do this graphically by plotting $x(t) = \sin(0.2\pi t)$ and x(t) = 0 on the same plot and seeing where they interesect.

b) At what period T can we sample at so that sinc interpolation recovers the function $f(t) = -\sin\left(\frac{\pi}{15}t\right)$?

Answer

$$T = 7.5$$

$$x[n] = \sin(0.2\pi nT)$$
 sampling x(t)
 $= -\sin(-0.2\pi nT)$ sin(t) is odd
 $= -\sin(-0.2\pi nT + 2\pi n)$ For $n \in \mathbb{Z}$ since $\sin(t)$ is periodic.
 $= -\sin\left(\frac{\pi}{15}nT\right)$

As a result,

$$2\pi - 0.2\pi T = \frac{\pi}{15}T$$
$$T = 7.5$$

As with part (a), we could also do this graphically by plotting $x(t) = \sin(0.2\pi t)$ and $x(t) = -\sin(\frac{\pi}{15}t)$ on the same plot and looking at the intersection points.

