Sensitive Information Disentanglement with Generative Model

Taeuk Jang 24th, April, 2022

Preliminary

Biased decision making by algorithms

Make favorable decisions to white defendants

*Images from ProPublica

What is Fairness?

Individual Fairness

Similar samples should be treated similarly.

Group Fairness

• Demographic Parity [Dwork et al. 2012]

$$P(\hat{Y} = 1 | A = 0) = P(\hat{Y} = 1 | A = 1)$$

• Equalized Odds [Hardt et al. 2016]

$$P(\widehat{Y} = Y | A = 0) = P(\widehat{Y} = Y | A = 1)$$

Predictive Parity and more...

What is Fairness?

Achieving Group Fairness is non-trivial problem

- Removing sensitive information (Fairness through blindness) is not enough
- There are features that are highly correlated to sensitive information.
 e.g., ZIP code, graduated college, etc

To achieve group fairness...

- Data Perspective
- Model Perspective
- Post processing

Disentangle observed data into independent latent features

We assume $Z^i \perp Z^r$

 Z^r : sensitive relevant features

 Z^i : sensitive irrelevant features

Goal #1: Maximize $\log p_{\theta}(X)$

$$\log p_{\theta}(X) \ge \mathcal{L}_{ELBO}$$

$$= \mathbb{E}_{q_{\phi}(Z^{r}, Z^{i}|X)} [p_{\theta}(X|Z^{r}, Z^{i})] - D_{KL}(q_{\phi}(Z^{r}, Z^{i}|X)) || p(Z^{r}, Z^{i}))$$

$$= \mathbb{E}_{q_{\phi}(Z^{r}, Z^{i}|X)} [p_{\theta}(X|Z^{r}, Z^{i})] - D_{KL}(q_{\phi}(Z^{r}|X)) || p(Z^{r}))$$

$$- D_{KL}(q_{\phi}(Z^{i}|X)) || p(Z^{i})),$$

 Z^r : sensitive relevant features

 Z^i : sensitive irrelevant features

Goal #2: Maximize $\log p_{\theta}(A|Z^r)$ and $\log p_{\theta}(Y|Z^i,Z^r)$

We minimize
$$\mathcal{L}_{CE}(Y, C_{\omega 1}(Z^r \oplus Z^i)) + \mathcal{L}_{CE}(A, C_{\omega 2}(Z^r))$$

 Z^r : sensitive relevant features

 Z^i : sensitive irrelevant features

Final Objective:

$$\arg\min_{\theta,\phi,\omega} \mathcal{L}_{MSE}(X, D_{\theta}(Z^r \oplus Z^i)) + D_{KL}(q_{\phi}(Z^r|X))||p(Z^r))$$
$$+ D_{KL}(q_{\phi}(Z^i|X))||p(Z^i)) + \mathcal{L}_{CE}(Y, C_{\omega 1}(Z^r \oplus Z^i)) + \mathcal{L}_{CE}(A, C_{\omega 2}(Z^r))$$

Experimental Result

Multi-class Classification (MNIST-USPS)

Tabular Dataset (Adult Income Dataset)

	Acc	Acc diff	EOp	EOd	DP
Baseline	0.853	0.108	0.119	0.098	0.186
SD-VAE	0.838	0.099	0.047	0.050	0.155

Table 1: Comparison of SD-VAE with Logistic regression on Adult dataset.

Experimental Result

CelebA Dataset

$$\widehat{X} = D_{\theta} \left(\left[Z^{i}, Z^{r} \right] \right)$$

$$\widehat{X}' = D_{\theta}(\left[Z^i, \widetilde{Z}^r\right])$$

$$\widehat{X}^{\prime\prime}=D_{\theta}\left(\left[\widetilde{Z}^{i},Z^{r}\right]\right)$$

X

Experimental Result

CelebA Dataset

$$\hat{X}' = D_{\theta} \left(\left[Z^i, \tilde{Z}^r \right] \right)$$

$$\hat{X}^{\prime\prime} = D_{\theta} \left(\left[\tilde{Z}^i, Z^r \right] \right)$$

