Projet de Machine learning

Prédiction de la Consommation d'Energie des Bâtiments de Seattle

Réalisé par:

Marie Agathe SECK Diakhou NDAO Pathé DIAGNE Fallou BADJI

Formatrice:
Mme Mously DIAW

INTRODUCTION

SEATTLE: ville de l'Etat de

Washington, Nord-Ouest des USA;

Superficie: 369,2 km2;

Habitants: 737 015 en 2020

CONTEXTE

La ville de Seattle s'intéresse de près aux émissions des bâtiments non destinés à l'habitation. En 2013, la ville de Seattle a adopté un plan d'action climatique visant à atteindre zéro émission nette de gaz à effet de serre (GES) d'ici 2050.

Objectif et Mission

Notre équipe s'intéresse à la prédiction de la consommation totale d'énergie des bâtiments non destinés à l'habitation.

De manière spécifique on se chargera de :

- Réaliser une analyse exploratoire.
- ✓ Tester différents modèles de prédiction afin de répondre au mieux à la problématique.
- ✓ Mettre en place une application pour prédire la consommation d'un bâtiment.

PLAN

INTRODUCTION

O1 Analyse exploratoire des données

O2 Apurement des données

03 Modélisation

O4 Choix du modèle définitif

Déploiement et test de l'application de prédiction

Analyse exploratoire

Statistiques globales

3376

bâtiments

1540

Bâtiments non destinés à l'Habitation

5.403667 KBtu

Consommation moyenne d'énergie

1.175916

Emission moyenne de gaz à effet de serre

Quelques illustrations

Consommation d'énergie en fonction du nombre de bâtiments

Quelques illustrations

Boxplot de la consommation annuelle énergetique selon l'utilisation principale

Boxplot de la consommation annuelle énergetique selon le Quartier

Quelques illustrations

2

Apurement et transformations

Traitement des données

manquantes

ENERGYSTARScore	539
LargestPropertyUseType	6
LargestPropertyUseTypeGFA	6
SiteEUI(kBtu/sf)	3
TotalGHGEmissions	2
NaturalGas(kBtu)	2
Electricity(kBtu)	2
NumberofBuildings	2
SteamUse(kBtu)	2
SiteEnergyUse(kBtu)	2
OSEBuildingID	0
BuildingType	0
PropertyGFABuilding(s)	0
PropertyGFAParking	0
PropertyGFATotal	0
NumberofFloors	0
YearBuilt	0
Neighborhood	0
PrimaryPropertyType	0
UseTypeNumber	0

ENERGYSTARScore: imputation par KNN

Les autres : Imputation par la médiane et le mode

Incohérences

- nombres de bâtiments (au sein d'un building) nulle
- valeurs négatives des quantités d'électricité consommées
- valeurs négatives de la quantité d'émissions de gaz à effet de serre

- Traitement:

- nombres de bâtiments (imputation par la médiane)
- Valeur absolue pour les données négatives

Valeurs aberrantes

Valeurs abérrante : une observation qui se situe à une distance significative des autres valeurs dans un ensemble de données

- Méthode de Traitement : WINSORISATION

technique qui consiste à ajuster les valeurs extrêmes d'un ensemble de données à des seuils spécifiques (selon les centilles etc) plutôt que de les supprimer.

Création et recodage de variables

- Age_building: une variable qui calcule l'âge du batiments
- Calcul: 2016 YearBuilt
- proplargestUseGFA: Le pourcentage de la surface du LargestProperty sur le total
- Calcul: LargestPropertyUseTypeGFA/PropertyGFATotal
- UseTypeNumber : nombre de touts les types d'utilisation de la propriété

- Recodages des modalités de la variable Neighborhood

Hodélisation 3

Spécification des modèles

La matrice X des variables explicatives

- PrimaryPropertyType
- Neighborhood
- NumberofBuildings
- NumberofFloors
- PropertyGFATotal
- ☐ SteamUse(kBtu)
- ☐ Electricity(kBtu)
- NaturalGas(kBtu)
- TotalGHGEmissions
- ☐ UseTypeNumber
- Age_building
- proplargestUseGFA
- ENERGYSTARScore

La variable à **expliquer**

☐ SiteEnergyUse(kBtu)

Métriques d'évaluation

- \square R²
- mean_squared_error
- mean_absolute_percentage_error
- max_error

Preprocessor

numeric_transformer

Standardisation

categorical_transformer

OneHotEncoder

Modèles paramétriques Régression linéaire

Formule mathématique: $y = f(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_r x_r + \varepsilon$

Explication du modèle:

L'analyse de régression calcule la relation estimée entre une variable dépendante et une ou plusieurs variables explicatives. Elle **permet de modéliser la relation entre les variables choisies et de prévoir des valeurs en fonction du modèle**.

Elastic-net

Formule mathématique :

Explication:

C'est une solution au problème de l'overfitting des modèles. La conséquence est de rétrécir les coefficients (comme dans la régression ridge) et de mettre certains coefficients à zéro (comme dans le LASSO).

Présentation des résultats

Sans EnergyStarScore

Regression linéaire Elastic Net Scores Avant hyperparameters tuning Training dataset 0.909 0.815 Test dataset 0.849 0.784 Après Hyperparameters Tuning Training dataset 0.909 0.879 Test dataset 0.849 0.843

Avec EnergyStarScore

Scores	Regression linéaire	Elastic Net						
Avant hyperparameters tuning								
Training dataset	0.909	0.815						
Test dataset	0.849	0.784						
Après Hyperparameters Tuning								
Training dataset	0.909	0.878						
Test dataset	0.849	0.843						

Méthodes ensemblistes

Random forest

Le Random Forest combine plusieurs arbres de décision, formés aléatoirement sur des sous-ensembles de données et de caractéristiques, pour améliorer la robustesse du modèle par le vote majoritaire ou la moyenne.

XGBOOST

C'est une méthode de **Boosting** .Elle fait un assemblage d'arbres décisionnels (weak learners) qui prédisent les résidus et corrige les erreurs des arbres décisionnels précédents.

L'anvantage est qu'elle permet de réduire les biais, et rend plus performent les prédiction.

Méthodes ensemblistes

LightGBM

Light GBM est un cadre de renforcement de gradient qui utilise un algorithme d'apprentissage basé sur des arbres.

Light GBM fait croître l'arbre verticalement tandis que d'autres algorithmes font pousser des arbres horizontalement, ce qui signifie que Light GBM fait pousser l'arbre par feuille tandis que l'autre algorithme se développe par niveau. Il choisira la feuille avec une perte de delta maximale pour se développer. Lors de la croissance de la même feuille, l'algorithme par feuille peut réduire plus de perte qu'un algorithme par niveau.

Présentation des résultats

Sans EnergiesStarScore ,				,	Avec EnergyStarScore				
So	CORE F	andom Forest Regresso	r Xgboos	st LightGBM		SCORE	RandomForestRegressor	Xgboost	LightGBM
Avant Hyperparametre Tuning					Avant Hyperparametre Tuning				
					Availt Hyperparametre fulling				
Traii data		0,976	0,999	0,884		Training dataset	0,983	0,999	0,884
Test	dataset	0,946	0,993	0,784		Test dataset	0,963	0,992	0,789
Apres Hyperparametre Tuning					Apres Hyperparametre Tuning				
Traii data		0,959	0,999	0,999		Training dataset	0,960	0,999	0,962
Test	dataset	0,945	0,997	0,991		Test dataset	0,944	0,996	0,952

⁻ Pas d'impact majeur de EnergyStarScore dans la prédiction

Choix définitif

Modèle définitif

XGBOOST retenu

Déploiement du modèle XGBOOST

Prédiction de la consommation annuelle d'énergie des propriétés de la ville de SEATTLE Activer Windows

Accédez aux paramètres pour activer Windows.

Merci!