## Table of Contents

| Question 1:                                                 |  |  |
|-------------------------------------------------------------|--|--|
| Question 2:                                                 |  |  |
|                                                             |  |  |
| Question 3:                                                 |  |  |
| (a)<br>(b)<br>(c)                                           |  |  |
| Question 4:                                                 |  |  |
| Question 5:                                                 |  |  |
| (a)<br>(b)                                                  |  |  |
| Question 6:                                                 |  |  |
| (1)<br>(2)<br>(3)<br>(4)<br>(5)<br>(6)<br>(7)<br>(8)<br>(9) |  |  |
| Question 7:                                                 |  |  |
| (1)<br>(2)                                                  |  |  |
| Question 8:                                                 |  |  |
| Question 9:                                                 |  |  |
| Question 10:                                                |  |  |

| $\sim$                         | , •     | - | - |   |
|--------------------------------|---------|---|---|---|
| ( )11                          | estion  |   |   | ٠ |
| $\mathbf{\omega}$ $\mathbf{u}$ | resoron |   |   | • |

- $\frac{\mathbf{Qu}}{(\mathbf{a})}$
- (b) (c) (d) (e)

#### Question 12:

## Question 1.



### Question 2.

1101 1110 1010 1101 1011 1110 1110 1111

turns into:

11011 11100 10110 11011 10111 11100 11100 11101

| 1 | . 1 | L | 0 | 1      | 1    | 1 | 1 | 1      | 0 | 0 | 1 | 0 | 1         | 1     | 0 | 1      | 1 | 0  | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1     | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
|---|-----|---|---|--------|------|---|---|--------|---|---|---|---|-----------|-------|---|--------|---|----|---|---|---|---|---|---|---|---|---|---|---|---|---|-------|---|---|---|---|---|---|---|---|
|   |     |   |   | 200    | 60 m | 8 |   |        |   |   |   |   | ¥<br>2220 | is to |   |        |   | N. |   |   |   |   |   | _ |   |   |   |   |   |   |   | 10000 |   |   |   |   | N |   | 8 |   |
|   |     |   |   | $\int$ |      |   |   | $\int$ |   |   |   |   |           |       |   | $\int$ |   |    |   |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |   |   |   |   | 9 |   |

### Question 3.

(a)

011111010 10100111 110111000 11110010 100111110 101111101 11100101

(b)

00111111 01110001 11110011 11111100 10101010 11001111 11100001 turns into:

001111101 01110001 111100011 111011100 10101010 11001111 101100001

(c)

111110111 1101111101 111101111 1011111011 111011111 0111110111 1101111101

## Question 4.

01101011111010100111111110110011111110

turns into:

01101011111110100111111110110011111110

^ error, there's 7 consecutive 1's

### Question 5.

So the remainder is 10010011, so we will subtract that from the message using logical XOR:

 $\begin{array}{c} 101100100100101100000000\\ \underline{\oplus} & 10010011\\ \hline & 101100100100101111001001011 \end{array}$ 

So the final message to send is: 101100100100101110010011

(b)

If the left most bit is inverted due to noise, then the new message will be: 001100100100101110010011 In that case, the long division will give us:



Which isn't a remainder of 0. This means that an error has occurred because the remainder of the message must be 0

#### Question 6.





So the hamming distance is 3



 $\frac{101}{010}\frac{10101}{10101} = \text{Hamming distance } 3$ 

 $\begin{array}{ll} 10110101 \\ 1000000000 \\ \end{array} = \text{Hamming distance 4}$ 

 $\frac{10110101}{1111111} = \text{Hamming distance 3}$ 

So the most likely transmitted codeword is 11110111

(3)
1, 10, 11, 100, 101, 110, 111, 1000, 1001, 1010, 1011
bit number 1, 2, 4, and 8 are parity bits
the rest are all data bits.

So we have 4 parity bits.

(4)

Total bits is 4 parity + 7 bits = 11 bits.

(5) let R be a redundant parity bit. Then the message would look like:

1 0 1 R 1 0 0 R 1 R R

(6)

R1 = 0

R2 = 1

R3 = 1

R4 = 0

(7)

1 0 1 0 1 0 0 1 1 1 0

after tramsmission:

1 0 1 0 1 1 0 1 1 1 0

(8)

turns to:

(9) The redundant bits sequence is 0110, which is 6. It matches my expectations since that's the bit that has been flipped.

### Question 7.

(a)

$$dB = 10 \times \log_{10} \left(\frac{S}{N}\right)$$
$$20 = 10 \times \log_{10} \left(\frac{S}{N}\right)$$
$$\log_{10} \left(\frac{S}{N}\right) = 2$$
$$\frac{S}{N} = 100$$

$$C = B \times \log_2 \left( 1 + \frac{S}{N} \right)$$
= 16 000 × log<sub>2</sub> (1 + 100)
= 16 000 × log<sub>2</sub> (101)
$$\approx 106 531.3837 \text{ bits/second}$$

(b)

$$C = B \times \log_2 \left( 1 + \frac{S}{N} \right)$$

$$50\ 000 = 1\ 000\ 000 \times \log_2 \left( 1 + \frac{S}{N} \right)$$

$$\log_2 \left( 1 + \frac{S}{N} \right) = \frac{1}{20}$$

$$1 + \frac{S}{N} = 2^{\frac{1}{20}}$$

$$\frac{S}{N} = 2^{\frac{1}{20}} - 1$$

$$\approx 0.035265$$

For the minimum signal-to-noise ratio, there is significantly more noise than signal.

#### Question 8.

| Band           | Range (Hz) | 10dB Capacity | 20dB Capacity | 30dB Capacity |
|----------------|------------|---------------|---------------|---------------|
| Narrowband     | 300-3400   | 10724.238018  | 20640.455597  | 30898.40140   |
| Wideband       | 50-7000    | 24043.04975   | 46274.56981   | 69272.22250   |
| Super-wideband | 50-14000   | 48259.07108   | 92882.05018   | 139042.80631  |
| Fullband       | 20-20000   | 69119.44374   | 133031.065425 | 199145.18065  |

10dB

$$10dB = 10 \times \log_{10} \left(\frac{S}{N}\right)$$
$$\log_{10} \left(\frac{S}{N}\right) = 1$$
$$\frac{S}{N} = 10$$

for Narrowband

$$B = 3400 - 300 = 3100$$

$$C = 3100 \times \log_2(1+10)$$

 $\approx 10724.238018$  bits/second

for Wideband

$$B = 7000 - 50 = 6950$$

$$C=6950\times \log_2(1+10)$$

 $\approx 24043.04975$  bits/second

for Super-wideband

$$B = 14000 - 50 = 13950$$

$$C = 13950 \times \log_2(1+10)$$

 $\approx 48259.07108$  bits/second

for Fullband

$$B = 20000 - 20 = 19980$$

$$C = 19980 \times \log_2(1+10)$$

 $\approx 69119.44374$  bits/second

20 dB

$$20dB = 10 \times \log_{10} \left(\frac{S}{N}\right)$$
$$\log_{10} \left(\frac{S}{N}\right) = 2$$
$$\frac{S}{N} = 100$$

for Narrowband

$$B = 3400 - 300 = 3100$$

$$C = 3100 \times \log_2(1 + 100)$$
  
  $\approx 20640.455597 \text{ bits/second}$ 

for Wideband

$$B = 7000 - 50 = 6950$$

$$C = 6950 \times \log_2(1 + 100)$$

$$\approx 46274.56981$$
 bits/second

for Super-wideband

$$B = 14000 - 50 = 13950$$

$$C = 13950 \times \log_2(1 + 100)$$

 $\approx 92882.05018$  bits/second

for Fullband

$$B = 20000 - 20 = 19980$$

$$C = 19980 \times \log_2(1 + 100)$$

 $\approx 133031.065425$  bits/second

30dB

$$30dB = 10 \times \log_{10} \left(\frac{S}{N}\right)$$
$$\log_{10} \left(\frac{S}{N}\right) = 3$$
$$\frac{S}{N} = 1000$$

for Narrowband

$$B = 3400 - 300 = 3100$$

$$C = 3100 \times \log_2(1 + 1000)$$

 $\approx 30898.40140$  bits/second

for Wideband

$$B = 7000 - 50 = 6950$$

$$C = 6950 \times \log_2(1 + 1000)$$

 $\approx 69272.22250$  bits/second

for Super-wideband

$$B = 14000 - 50 = 13950$$

$$C = 13950 \times \log_2(1 + 1000)$$

 $\approx 139042.80631$  bits/second

for Fullband

$$B = 20000 - 20 = 19980$$

$$C = 19980 \times \log_2(1 + 1000)$$

 $\approx 199145.18065$  bits/second

# Question 9.

 $\overline{\text{Let blank cell} = \text{distance } \infty}$ 

|   | A | В | С | D | E | F |
|---|---|---|---|---|---|---|
| A | 0 | 2 |   | 5 |   |   |
| В | 2 | 0 | 2 |   | 1 |   |
| С |   | 2 | 0 | 2 |   | 3 |
| D | 5 |   | 2 | 0 |   |   |
| Е |   | 1 |   |   | 0 | 3 |
| F |   |   | 3 |   | 3 | 0 |

**A**:

| Destination | Cost | NextHop | Destination | Cost | NextHop | Destination | Cost | NextHop |
|-------------|------|---------|-------------|------|---------|-------------|------|---------|
| В           | 2    | В       | В           | 2    | В       | В           | 2    | В       |
| С           |      |         | С           | 4    | В       | С           | 4    | В       |
| D           | 5    | D       | D           | 5    | D       | D           | 5    | D       |
| E           |      |         | E           | 3    | В       | E           | 3    | В       |
| F           |      |         | F           |      |         | F           | 6    | Е       |

B:

| Destination | Cost | NextHop | Destination | Cost | NextHop | Destination | Cost | NextHop |
|-------------|------|---------|-------------|------|---------|-------------|------|---------|
| A           | 2    | A       | A           | 2    | A       | A           | 2    | A       |
| С           | 2    | С       | С           | 2    | С       | С           | 2    | С       |
| D           |      |         | D           | 4    | С       | D           | 4    | С       |
| E           | 1    | Е       | E           | 1    | Е       | E           | 1    | Е       |
| F           |      |         | F           | 4    | E       | F           | 4    | E       |

<u>C:</u>

| Destination | Cost | NextHop | Destination | Cost | NextHop | Destination | Cost | NextHop |
|-------------|------|---------|-------------|------|---------|-------------|------|---------|
| A           |      |         | A           | 4    | В       | A           | 4    | В       |
| В           | 2    | В       | В           | 2    | В       | В           | 2    | В       |
| D           | 2    | D       | D           | 2    | D       | D           | 2    | D       |
| E           |      |         | E           | 3    | В       | E           | 3    | В       |
| F           | 3    | F       | F           | 3    | F       | F           | 3    | F       |

D:

| Destination | Cost | NextHop | Destination | Cost | NextHop | Destination | Cost | NextHop |
|-------------|------|---------|-------------|------|---------|-------------|------|---------|
| A           | 5    | A       | A           | 5    | A       | A           | 5    | A       |
| В           |      |         | В           | 4    | С       | В           | 4    | С       |
| С           | 2    | С       | С           | 2    | С       | С           | 2    | С       |
| E           |      |         | E           |      |         | E           | 5    | С       |
| F           |      |         | F           | 5    | С       | F           | 5    | С       |

E:

| Destination | Cost | NextHop | Destination | Cost | NextHop | Destination | Cost | NextHop |
|-------------|------|---------|-------------|------|---------|-------------|------|---------|
| A           |      |         | A           | 3    | В       | A           | 3    | В       |
| В           | 1    | В       | В           | 1    | В       | В           | 1    | В       |
| С           |      |         | С           | 3    | В       | С           | 3    | В       |
| D           |      |         | D           |      |         | D           | 5    | С       |
| F           | 3    | F       | F           | 3    | F       | F           | 3    | F       |

<u>F:</u>

| Destination | Cost | NextHop | Destination | Cost | NextHop | Destination | Cost | NextHop |
|-------------|------|---------|-------------|------|---------|-------------|------|---------|
| A           |      |         | A           |      |         | A           | 6    | В       |
| В           |      |         | В           | 4    | Е       | В           | 4    | Е       |
| С           | 3    | С       | С           | 3    | С       | С           | 3    | С       |
| D           |      |         | D           | 5    | С       | D           | 5    | С       |
| E           | 3    | Е       | E           | 3    | E       | E           | 3    | E       |

|   | A | В | С | D | Е | F |
|---|---|---|---|---|---|---|
| A | 0 | 2 | 4 | 5 | 3 | 6 |
| В | 2 | 0 | 2 | 4 | 1 | 4 |
| С | 4 | 2 | 0 | 2 | 3 | 3 |
| D | 5 | 4 | 2 | 0 | 5 | 5 |
| Е | 3 | 1 | 3 | 5 | 0 | 3 |
| F | 6 | 4 | 3 | 5 | 3 | 0 |

# Question 10.



#### Question 11.

```
(a) 128.96.171.92 \text{ AND } 255.255.254.0 = 128.96.170.0 128.96.171.92 \text{ AND } 255.255.252.0 = 128.96.168.0 So it sends the packet to Interface 0
```

```
(b)
128.96.167.151 AND 255.255.254.0 = 128.96.166.0
128.96.167.151 AND 255.255.252.0 = 128.96.164.0
So it sends the packet to R2
```

```
(c)
128.96.163.151 AND 255.255.254.0 = 128.96.162.0
128.96.163.151 AND 255.255.252.0 = 128.96.160.0
So it sends the packet to R4 (no match)
```

```
(d) 128.96.169.192 \ \text{AND} \ 255.255.254.0 = 128.96.168.0 128.96.169.192 \ \text{AND} \ 255.255.252.0 = 128.96.168.0 So it sends the packet to Interface 1
```

```
(e)
128.96.165.121 AND 255.255.254.0 = 128.96.164.0
128.96.165.121 AND 255.255.252.0 = 128.96.164.0
So it sends the packet to R3
```

# Question 12.

| Step | Confirmed                                       | Tentative         |
|------|-------------------------------------------------|-------------------|
| 1    | (A,0,-)                                         |                   |
| 2    | (A,0,-)                                         | (B,1,B) (D,5,D)   |
| 3    | (A,0,-) (B,1,B)                                 | (D,5,D)           |
| 4    | (A,0,-) (B,1,B)                                 | (D,4,B) (C,5,D)   |
| 5    | (A,0,-) $(B,1,B)$ $(D,4,B)$                     | (C,5,D)           |
| 6    | (A,0,-) $(B,1,B)$ $(D,4,B)$ $(C,5,D)$           | (C,5,D) $(E,6,C)$ |
| 7    | (A,0,-) $(B,1,B)$ $(D,4,B)$ $(C,5,D)$           | (E,6,C)           |
| 8    | (A,0,-) $(B,1,B)$ $(D,4,B)$ $(C,5,D)$ $(E,6,C)$ |                   |