Evaluation Metrics for Classification

Nazerfard, Ehsan nazerfard@aut.ac.ir

Class of Interest

- □ Spam Filtering → Spam (+), Legitimate (-)
- □ Tumor Diagnosis → Malignant (+), Benign (-)
- Activity Recognition in Smart Environments
- **-** . . .

Prediction Errors: Type I, II

True Class / Correct Label **Pathology Diagnosis** Malignant: True Positive (TP) Malignant Benign: False Negative (FN) A Tumor Malignant: False Positive (FP) Benign Benign: True Negative (TN)

Evaluation Metrics

$$TP Rate = TPR = \frac{\#TP}{\#P} = \frac{\#TP}{\#TP + \#FN}$$

$$TN Rate = TNR = $\frac{\#TN}{\#N} = \frac{\#TN}{\#TN + \#FP}$$$

□ *FPR* & *FNR* are defined similarly.

$$\triangle Accuracy = \frac{\#TP + \#TN}{\#P + \#N} = \frac{\#TP + \#TN}{\#TP + \#FN + \#TN + \#FP}$$

 \square *Error Rate* = 1 - *Accuracy*

Evaluation Metrics (cont.)

$$\square TPR = \frac{TP}{TP + FN} = Sensitivity = Recall$$

how many relevant items are selected

$$\square TNR = \frac{TN}{TN+FP} = Specificity$$

$$\Box Precision = \frac{TP}{TP+FP}$$

how many selected items are relevant

Evaluation Metrics (cont.)

$$\square$$
 $TPR + FNR = 1$

$$\square TNR + FPR = 1$$

$$\square G - mean = (Precision \times Sensitivity)^{\frac{1}{2}}$$

$$\Box$$
 F_Score = 2 $\times \frac{Precision \times Sensitivity}{Precision + Sensitivity}$

Confusion Matrix

Confusion matrix for binary classification

		predicted as	
		Positive	Negative
correct	Positive	TP	FN
	Negative	FP	TN

Further Reading

- Imbalanced Learning
 - Cost sensitive learning
 - Oversampling/ undersampling techniques
 - SMOTE (Synthetic Minority Oversampling Technique)
- Receiver Operating Characteristic (ROC) Curves (later on in the course)

...