Lab 6.1. First AR Exercises: Wikitude, Vuforia & Mixamo

Augmented Reality Browsers

No programming needed

What is an AR Browser?

Besides the possibility of developing individual AR-Apps, AR contents can also be published on existing platforms.

They perform standardise AR features and they allow to easily create and manage **contents**

What is an AR Browser?

Functionality is based on 2D image markers, 3D object markers, SLAM methods (simultaneous localization and mapping) or GPS tracking.

Overlapping of contents: texts, 2D images, videos and 3D objects.

Available AR Browsers

Layar (2009) -> BlippAR (2011)

Wikitude

Video: Wikitude (boardshop example)

Part 1. Introducing Marker-based AR Wikitude Studio (AR Browser)

Sign up at https://signup.wikitude.com

If you already have an accou	nt, login <mark>here</mark> .			
First Name	Last Name			
Email				
Password				
Password One lowercase character One number	• 7 characters minimum			
One lowercase character One number	 7 characters minimum privacy, please visit our Privacy Policy. 			
One lowercase character One number	privacy, please visit our Privacy Policy.			
One lowercase character One number For further details regarding	privacy, please visit our Privacy Policy. vice			

CREATE YOUR FREE ACCOUNT

Go to Wikitude Studio and create a new project https://signup.wikitude.com

Add image targets

∠ Laputa Castle in the Sky
→
∠
→

witc

ADD IMAGE TARGETS

AR Marker generator: http://www.brosvision.com/ar-marker-generator/

Download a 3D model (.fbx)

https://free3d.com/3d-models/fbx

Format your model using Wikitude 3D Encoder

Insert your 3D model (.wt3)

Download Wikitude app and preview your project

Download the Wikitude App from <u>Google Play</u> or <u>Apple App Store</u>

Open the app, choose Developer from the menu and enter your Wikitude Studio username and password

Or scan the QR Code with a QR code reader of your choice. Open the scanned link with Wikitude and preview your project

Developing Augmented Reality

Native programming

Part 2. Augmented Reality with Vuforia

Easy and Intuitive

Integration with Unity

Compatibility with mid-range phones

Good set of AR tools (not the best)

SDK Comparison

	Wikitude	EasyAR	Vuforia	ARToolKit	Kudan	MaxST	DeepAR	NyARToolKi
Maximum distance capturing / holding marker (m)	2.4 / 5	0.9 / 2.7	1.2 / 3.7	3/3	0.8 / 3	0.5 / 0.9	0.7 / 5	0.7 / 1
Recognition stability of immovable marker	6	7	10	8	10	7	8	5
Recognition stability of movable marker	6	3	6	6	6	2	7	3
Minimum angle recognition	10	35	30	10	30	50	35	45
Minimum visibility for recognition overlapped marker	100%	10%	20%	100%	25%	50%	10%	75%
2D Recognition	1	V	Ÿ.	ý.	1	1	1	1
3D Recognition	✓	9	V	-	Ų.	V	-	=
Geo-Location	1	5.) =	133	=		E.
Cloud Recognition	€.	-	7	ž	-	=	S=R	<u> </u>
SLAM	V	-	4	=	1	4		=
Total (rating)	8.0	4.4	7.7	2.8	6.9	5.2	4.7	3.1

Augmented Reality SDKs

It's party time

Exercise supported by Udemy's course: "Discover Augmented Reality Games – Unity/Vuforia"

Import Vuforia Assets

Shaders

version

As sets/Vuforia

Textures

Remove Main Camera and prepare your build settings Android/iPhone

Dance Stage (window frame): download/import UI Unity Sample

UI (2+2) buttons

AR dance scene shows a window frame with 4 buttons

Maximize On Play Mute

Vuforia: License → https://developer.vuforia.com

Add a free Development License Key App Name RAAExample1 You can License Key Develop Price: No Charge Reco Usage: 1,000 per month Cloud Targets: 1,000 VuMark Templates: 1 active VuMarks: 100 By checking this box, I acknowledge that this license key is subjeand conditions of the Vuforia Developer Agreement.

Vuforia: Add license to Unity project

Image Tracking (AR Marker) with Vuforia

License Manager

Target Manager

Target Manager

Develop – Targer Manager – Add Database

Create Database

Single Image

Download Database (All)

File:

Width:

Cancel Download

How image rating works

Home

Pricing

Downloads

Library

Develop

Support

Target Image Rating .jpg/.png max 2MB

Laputa

Type: Single Image Status: Active

Target ID: b23317e4c4914c2d8f1f33d4cd89c637

Augmentable: ** * * * Added: Nov 16, 2018 12:23

Modified: Nov 16, 2018 12:23

Add Image Target to Scene (download database and import on Unity)

Add Image Target to Scene

Magic! Unity adds the image target automatically

Problem: Newer versions detect an Astronaut

This is why:

https://library.vuforia.com/articles/Training/getting-started-with-vuforia-in-unity.html

Solution

Change

- 1. Image Target Behaviour
- 2. AR Camera Vuforia Databases

Our database needs to be loaded and active

The rest are examples we didn't ask for

Mixamo – Animated Character

Mixamo – Animations (one-by-one download)

Import and configure character

Place sporty granny on the AR marker

Add Tag & downsize

Animation -> add Animator Controller

Granny dances to music

Scripting: Play music (only) when tracker is detected

Coding:

```
private AudioSource audioSource;

protected virtual void Start()
{
   audioSource = GetComponent<AudioSource>();
```



```
protected virtual void OnTrackingFound()
{
    //Play music
    audioSource.Play();

protected virtual void OnTrackingLost()
{
    //Pause music
    audioSource.Pause();
```

Scripting: Expand/Shrink Granny (upper buttons)

Scripting: Animation Transition

Add new moves

- Sporty_granny Sporty_granny@Bboy Hip Hop Move
 Sporty_Granny@gangnam_style
 Sporty_granny@Samba Dancing
- Select Granny > Animator Panel

Add triggers: dance 1 & dance 2 (not triggered)

Gangnam Style

Length 12.367

0:00

Start

Loop Time

Choose transition > Select trigger

Doesn't wait to finish

All dances with loop

When btn1 is triggered change to hip hop

Scripting: Animation Transition

```
Inspector

✓ ButtonDance1

✓ GrannyMoves

                                                                                     On Click ()
                                                           Tag Untagged
                                                                           ‡ Layer
E-public class DanceMoves : MonoBehaviour {
                                                                                                    DanceMoves.Dancel
                                                            Transform
                                                                                     Runtime Only
                                                         Dance Moves (Script)
      public float scaleSpeed = 0.2f;
                                                                                     ■ GrannyMoves (D ○
                                                                        DanceMoves
      public GameObject granny;
                                                         Scale Speed
                                                                       0.2
      private Animator animator;
                                                         Granny
                                                                       €Granny
      void Start()
          animator = granny.GetComponent<Animator> ();
          public void Big()
          GameObject.FindWithTag("Granny").transform.localScale += new Vector3(scaleSpeed, scaleSpeed, scaleSpeed);
      public void Small()
          GameObject.FindWithTag("Granny").transform.localScale -= new Vector3(scaleSpeed, scaleSpeed, scaleSpeed);
      public void Dance1()
          animator.SetTrigger("dance1");
      public void Dance2()
          animator.SetTrigger("dance2");
```

Build & Dance!

