MATH 312: HOMEWORK 1

In all the questions below, show your work.

Question 1. Let X be a set. Let $\{\tau_{\alpha}\}$ be a family of topologies on X.

- (1) Is $\cap_{\alpha \in I} \tau_{\alpha}$ a topology on X?
- (2) Is $\bigcup_{\alpha \in I} \tau_{\alpha}$ a topology on X?

Question 2. Compare the following topologies on the real line \mathbb{R} . Are they comparable? Which one is finer/coarser than the others?

- (1) τ_1 is the topology is generated by the base $\mathcal{B}_1 = \{(a,b) : a,b \in \mathbb{R}\}$. This is the standard topology on \mathbb{R} .
- (2) τ_2 is the topology is generated by the base $\mathcal{B}_2 = \{[a,b) : a,b \in \mathbb{R}\}$. This is called the lower limit topology on \mathbb{R} .
- (3) Let $K = \{1/n : n \in \mathbb{N}\}$. τ_3 is the topology generated by the base $\mathcal{B}_3 = \{(a,b) \setminus K : a,b \in \mathbb{R}\} \cup \mathcal{B}_1$. This is called the K topology on \mathbb{R} .

Question 3. Compare the box topology and the product topology on $\mathbb{R}^{\mathbb{N}}$.

Question 4. Given topological space (X, τ) . Let A be a subset of X. Show that \bar{A} (the closure of A) is the smallest closed set in X that contains A.

Question 5. Consider the metric spaces (\mathbb{R}^N, d_p) , where $p \in [1, \infty)$

$$d_p(x,y) = \left(\sum_{i=1}^N |x_i - y_i|^p\right)^{1/p}.$$

(1) Show that for $p > q \geqslant 1$,

$$d_p(x,y) \leqslant d_q(x,y)$$
.

(2) Explain why we can now define

$$d_{\infty}(x,y) = \lim_{p \to \infty} d_p(x,y) ?$$

- (3) Show that d_{∞} is a metric on \mathbb{R}^N .
- (4) Show that $d_{\infty}(x,y) = \max_{i} |x_i y_i|$.
- (5) Let τ_p be the topology associated with the metric d_p . Is it true that $\tau_p = \tau_q$ for all $p, q \in [1, \infty)$?
- (6) Is it true that $\tau_p = \tau_\infty$ for all $p \in [1, \infty)$?

Question 6. Exercise 20.2 in Bass.

Question 7. Exercise 20.3 in Bass.

Question 8. Exercise 20.4 in Bass.

Question 9. Exercise 20.5 in Bass.

Date: February 9, 2025.

Question 10. Exercise 20.6 in Bass.

Question 11. Exercise 20.11 in Bass.

Question 12. Exercise 20.12 in Bass.