

**Q.1:** Assume you are given the table below on Uber transactions made by users. Write a query to obtain the third transaction of every user. Output the user id, spend and transaction date.

#### transactions Table:

| Column Name      | Туре      |
|------------------|-----------|
| user_id          | integer   |
| spend            | decimal   |
| transaction_date | timestamp |

#### transactions Example Input:

| user_id | spend  | transaction_date    |
|---------|--------|---------------------|
| 111     | 100.50 | 01/08/2022 12:00:00 |
| 111     | 55.00  | 01/10/2022 12:00:00 |
| 121     | 36.00  | 01/18/2022 12:00:00 |
| 145     | 24.99  | 01/26/2022 12:00:00 |
| 111     | 89.60  | 02/05/2022 12:00:00 |

## **Example Output:**

| user_id | spend | transaction_date    |
|---------|-------|---------------------|
| 111     | 89.60 | 02/05/2022 12:00:00 |

**Q.2:** Assume you're given tables with information on Snapchat users, including their ages and time spent sending and opening snaps.

Write a query to obtain a breakdown of the time spent sending vs. opening snaps as a percentage of total time spent on these activities grouped by age group. Round the percentage to 2 decimal places in the output.

#### Notes:

- Calculate the following percentages:
  - time spent sending / (Time spent sending + Time spent opening)
  - Time spent opening / (Time spent sending + Time spent opening)
- To avoid integer division in percentages, multiply by 100.0 and not 100.



#### activities Table

| Column Name   | Туре                            |
|---------------|---------------------------------|
| activity_id   | integer                         |
| user_id       | integer                         |
| activity_type | string ('send', 'open', 'chat') |
| time_spent    | float                           |
| activity_date | datetime                        |

# activities Example Input

| activity_id | user_id | activity_type | time_spent | activity_date       |
|-------------|---------|---------------|------------|---------------------|
| 7274        | 123     | open          | 4.50       | 06/22/2022 12:00:00 |
| 2425        | 123     | send          | 3.50       | 06/22/2022 12:00:00 |
| 1413        | 456     | send          | 5.67       | 06/23/2022 12:00:00 |
| 1414        | 789     | chat          | 11.00      | 06/25/2022 12:00:00 |
| 2536        | 456     | open          | 3.00       | 06/25/2022 12:00:00 |

# age\_breakdown Table

| Column Name | Туре                               |
|-------------|------------------------------------|
| user_id     | integer                            |
| age_bucket  | string ('21-25', '26-30', '31-25') |



## age\_breakdown Example Input

| user_id | age_bucket |
|---------|------------|
| 123     | 31-35      |
| 456     | 26-30      |
| 789     | 21-25      |

## **Example Output**

| age_bucket | send_perc | open_perc |
|------------|-----------|-----------|
| 26-30      | 65.40     | 34.60     |
| 31-35      | 43.75     | 56.25     |

**Q.3:** Given a table of tweet data over a specified time period, calculate the 3-day rolling average of tweets for each user. Output the user ID, tweet date, and rolling averages rounded to 2 decimal places.

Notes:

- A rolling average, also known as a moving average or running mean, is a time-series technique that examines trends in data over a specified period of time.
- In this case, we want to determine how the tweet count for each user changes over a 3-day period.



#### tweets Table:

| Column Name | Туре      |
|-------------|-----------|
| user_id     | integer   |
| tweet_date  | timestamp |
| tweet_count | integer   |

### tweets Example Input:

| user_id | tweet_date          | tweet_count |
|---------|---------------------|-------------|
| 111     | 06/01/2022 00:00:00 | 2           |
| 111     | 06/02/2022 00:00:00 | 1           |
| 111     | 06/03/2022 00:00:00 | 3           |
| 111     | 06/04/2022 00:00:00 | 4           |
| 111     | 06/05/2022 00:00:00 | 5           |

## **Example Output:**

| user_id | tweet_date          | rolling_avg_3d |
|---------|---------------------|----------------|
| 111     | 06/01/2022 00:00:00 | 2.00           |
| 111     | 06/02/2022 00:00:00 | 1.50           |
| 111     | 06/03/2022 00:00:00 | 2.00           |
| 111     | 06/04/2022 00:00:00 | 2.67           |
| 111     | 06/05/2022 00:00:00 | 4.00           |

Q. 4: Assume you're given a table with information on Amazon customers and their spending on products in different categories, write a query to identify the top two highest-grossing products within each category in the year 2022. The output should include the category, product, and total spend.



### product spend Table:

| Column Name      | Туре      |
|------------------|-----------|
| category         | string    |
| product          | string    |
| user_id          | integer   |
| spend            | decimal   |
| transaction_date | timestamp |

### product\_spend Example Input:

| category    | product          | user_id | spend  | transaction_date    |
|-------------|------------------|---------|--------|---------------------|
| appliance   | refrigerator     | 165     | 246.00 | 12/26/2021 12:00:00 |
| appliance   | refrigerator     | 123     | 299.99 | 03/02/2022 12:00:00 |
| appliance   | washing machine  | 123     | 219.80 | 03/02/2022 12:00:00 |
| electronics | vacuum           | 178     | 152.00 | 04/05/2022 12:00:00 |
| electronics | wireless headset | 156     | 249.90 | 07/08/2022 12:00:00 |
| electronics | vacuum           | 145     | 189.00 | 07/15/2022 12:00:00 |

# **Example Output:**

| category    | product          | total_spend |
|-------------|------------------|-------------|
| appliance   | refrigerator     | 299.99      |
| appliance   | washing machine  | 219.80      |
| electronics | vacuum           | 341.00      |
| electronics | wireless headset | 249.90      |

Q.5: Assume there are three Spotify tables containing information about the artists, songs, and music charts. Write a query to find the top 5 artists whose songs appear most frequently in the Top 10 of the global\_song\_rank table.



Display the top 5 artist names in ascending order, along with their song appearance ranking. Note that if two artists have the same number of song appearances, they should have the same ranking, and the rank numbers should be continuous (i.e. 1, 2, 2, 3, 4, 5).

For instance, if Ed Sheeran appears in the Top 10 five times and Bad Bunning four times, Ed Sheeran should be ranked 1st, and Bad Bunny should be ranked 2nd.

#### artists Table:

| Column Name | Туре    |
|-------------|---------|
| artist_id   | integer |
| artist_name | varchar |

### artists Example Input:

| artist_id | artist_name |
|-----------|-------------|
| 101       | Ed Sheeran  |
| 120       | Drake       |

### songs Table:

| Column Name | Туре    |
|-------------|---------|
| song_id     | integer |
| artist_id   | integer |

## songs Example Input:

| song_id | artist_id |
|---------|-----------|
| 45202   | 101       |
| 19960   | 120       |

#### global\_song\_rank Table:

| Column Name | Туре           |
|-------------|----------------|
| day         | integer (1-52) |
| song_id     | integer        |



| ) |
|---|
|---|

## global\_song\_rank Example Input:

| day | song_id | rank |
|-----|---------|------|
| 1   | 45202   | 5    |
| 3   | 45202   | 2    |
| 1   | 19960   | 3    |
| 9   | 19960   | 15   |

### **Example Output:**

| artist_name | artist_rank |
|-------------|-------------|
| Ed Sheeran  | 1           |
| Drake       | 2           |

Q.6: New TikTok users sign up with their emails. They confirmed their signup by replying to the text confirmation to activate their accounts. Users may receive multiple text messages for account confirmation until they have confirmed their new account.

A senior analyst is interested to know the activation rate of specified users in the emails table. Write a query to find the activation rate. Round the percentage to 2 decimal places.

#### **Definitions:**

- The emails table contains the information of user signup details.
- The text table contains the users' activation information.

#### **Assumptions:**

- The analyst is interested in the activation rate of specific users in the emails table, which may not include all users that could potentially be found in the texts table.
- For example, user 123 in the emails table may not be in the texts table and vice versa.

Effective April 4th 2023, we added an assumption to the question to provide additional clarity.

#### emails Table:



| Column Name | Туре     |
|-------------|----------|
| email_id    | integer  |
| user_id     | integer  |
| signup_date | datetime |

# emails Example Input:

| email_id | user_id | signup_date         |
|----------|---------|---------------------|
| 125      | 7771    | 06/14/2022 00:00:00 |
| 236      | 6950    | 07/01/2022 00:00:00 |
| 433      | 1052    | 07/09/2022 00:00:00 |

# texts Table:

| Column Name   | Туре    |
|---------------|---------|
| text_id       | integer |
| email_id      | integer |
| signup_action | varchar |

# texts Example Input:

| text_id | email_id | signup_action |
|---------|----------|---------------|
| 6878    | 125      | Confirmed     |
| 6920    | 236      | Not Confirmed |
| 6994    | 236      | Confirmed     |

'Confirmed' in signup\_action means the user has activated their account and successfully completed the signup process.

## **Example Output:**

| confirm_rate |
|--------------|
| 0.67         |



Q.7: A Microsoft Azure Supercloud customer is a company which buys at least 1 product from each product category.

Write a query to report the company ID which is a Supercloud customer.

As of 5 Dec 2022, data in the customer\_contracts and products tables were updated.

### customer\_contracts Table:

| Column Name | Туре    |
|-------------|---------|
| customer_id | integer |
| product_id  | integer |
| amount      | integer |

### customer contracts Example Input:

| customer_id | product_id | amount |
|-------------|------------|--------|
| 1           | 1          | 1000   |
| 1           | 3          | 2000   |
| 1           | 5          | 1500   |
| 2           | 2          | 3000   |
| 2           | 6          | 2000   |

### products Table:

| Column Name      | Туре    |
|------------------|---------|
| product_id       | integer |
| product_category | string  |
| product_name     | string  |

## products Example Input:

| product_id | product_category | product_name           |
|------------|------------------|------------------------|
| 1          | Analytics        | Azure Databricks       |
| 2          | Analytics        | Azure Stream Analytics |



| 4 | Containers | Azure Kubernetes Service |
|---|------------|--------------------------|
| 5 | Containers | Azure Service Fabric     |
| 6 | Compute    | Virtual Machines         |
| 7 | Compute    | Azure Functions          |

| customer_id |  |
|-------------|--|
| 1           |  |

Q.8: Assume you're given a table with measurement values obtained from a Google sensor over multiple days with measurements taken multiple times within each day. Write a query to calculate the sum of odd-numbered and even-numbered measurements separately for a particular day and display the results in two different columns. Refer to the Example Output below for the desired format.

#### **Definition:**

• Within a day, measurements taken at 1st, 3rd, and 5th times are considered odd-numbered measurements, and measurements taken at 2nd, 4th, and 6th times are considered even-numbered measurements.

#### measurements Table:

| Column Name       | Туре     |
|-------------------|----------|
| measurement_id    | integer  |
| measurement_value | decimal  |
| measurement_time  | datetime |

#### measurements Example Input:

| measurement_id | measurement_value | measurement_time    |
|----------------|-------------------|---------------------|
| 131233         | 1109.51           | 07/10/2022 09:00:00 |
| 135211         | 1662.74           | 07/10/2022 11:00:00 |



| 523542 | 1246.24 | 07/10/2022 13:15:00 |
|--------|---------|---------------------|
| 143562 | 1124.50 | 07/11/2022 15:00:00 |
| 346462 | 1234.14 | 07/11/2022 16:45:00 |

| measurement_day     | odd_sum | even_sum |
|---------------------|---------|----------|
| 07/10/2022 00:00:00 | 2355.75 | 1662.74  |
| 07/11/2022 00:00:00 | 1124.50 | 1234.14  |

Q. 9: Assume you are given the table on Walmart user transactions. Based on a user's most recent transaction date, write a query to obtain the users and the number of products bought.

Output the user's most recent transaction date, user ID and the number of products sorted by the transaction date in chronological order.

P.S. As of 10 Nov 2022, the official solution was changed from output of the transaction date, number of users and number of products to the current output.

#### user transactions Table:

| Column Name      | Туре      |
|------------------|-----------|
| product_id       | integer   |
| user_id          | integer   |
| spend            | decimal   |
| transaction_date | timestamp |

### user transactions Example Input:

| product_id | user_id | spend  | transaction_date    |
|------------|---------|--------|---------------------|
| 3673       | 123     | 68.90  | 07/08/2022 12:00:00 |
| 9623       | 123     | 274.10 | 07/08/2022 12:00:00 |
| 1467       | 115     | 19.90  | 07/08/2022 12:00:00 |
| 2513       | 159     | 25.00  | 07/08/2022 12:00:00 |



| 1452 159 74.50 07/10/2022 12:00:00 |
|------------------------------------|
|------------------------------------|

| transaction_date     | user_id | purchase_count |
|----------------------|---------|----------------|
| 07/08/2022 12:00:00  | 115     | 1              |
| 07/08/2022 12:00:000 | 123     | 2              |
| 07/10/2022 12:00:00  | 159     | 1              |

Q.10: Given a table containing the item count for each order and the frequency of orders with that item count, write a query to determine the mode of the number of items purchased per order on Alibaba. If there are several item counts with the same frequency, you should sort them in ascending order.

Effective April 22nd, 2023, the problem statement and solution have been revised for enhanced clarity.

#### items per order Table:

| Column Name       | Туре    |
|-------------------|---------|
| item_count        | integer |
| order_occurrences | integer |

## items per order Example Input:

| item_count | order_occurrences |
|------------|-------------------|
| 1          | 500               |
| 2          | 1000              |
| 3          | 800               |
| 4          | 1000              |



| mode |
|------|
| 2    |
| 4    |

Q.11: Your team at JPMorgan Chase is soon launching a new credit card. You are asked to estimate how many cards you'll issue in the first month.

Before you can answer this question, you want to first get some perspective on how well new credit card launches typically do in their first month.

Write a query that outputs the name of the credit card, and how many cards were issued in its launch month. The launch month is the earliest record in the monthly\_cards\_issued table for a given card. Order the results starting from the biggest issued amount.

### monthly\_cards\_issued Table:

| Column Name   | Туре    |
|---------------|---------|
| issue_month   | integer |
| issue_year    | integer |
| card_name     | string  |
| issued_amount | integer |

#### monthly cards issued Example Input:

| issue_month | issue_year | card_name              | issued_amount |
|-------------|------------|------------------------|---------------|
| 1           | 2021       | Chase Sapphire Reserve | 170000        |
| 2           | 2021       | Chase Sapphire Reserve | 175000        |
| 3           | 2021       | Chase Sapphire Reserve | 180000        |
| 3           | 2021       | Chase Freedom Flex     | 65000         |
| 4           | 2021       | Chase Freedom Flex     | 70000         |



| card_name              | issued_amount |
|------------------------|---------------|
| Chase Sapphire Reserve | 170000        |
| Chase Freedom Flex     | 65000         |

Q.12: A phone call is considered an international call when the person calling is in a different country than the person receiving the call.

What percentage of phone calls are international? Round the result to 1 decimal.

#### **Assumption:**

• The caller id in the phone\_info table refers to both the caller and receiver.

### phone\_calls Table:

| Column Name | Туре      |
|-------------|-----------|
| caller_id   | integer   |
| receiver_id | integer   |
| call_time   | timestamp |

### phone calls Example Input:

| caller_id | receiver_id | call_time           |
|-----------|-------------|---------------------|
| 1         | 2           | 2022-07-04 10:13:49 |
| 1         | 5           | 2022-08-21 23:54:56 |
| 5         | 1           | 2022-05-13 17:24:06 |
| 5         | 6           | 2022-03-18 12:11:49 |

phone info Table:



| Column Name  | Туре    |
|--------------|---------|
| caller_id    | integer |
| country_id   | integer |
| network      | integer |
| phone_number | string  |

# phone\_info Example Input:

| caller_id | country_id | network  | phone_number    |
|-----------|------------|----------|-----------------|
| 1         | US         | Verizon  | +1-212-897-1964 |
| 2         | US         | Verizon  | +1-703-346-9529 |
| 3         | US         | Verizon  | +1-650-828-4774 |
| 4         | US         | Verizon  | +1-415-224-6663 |
| 5         | IN         | Vodafone | +91 7503-907302 |
| 6         | IN         | Vodafone | +91 2287-664895 |

# **Example Output:**

| İI | nternational | _calls_pct |  |
|----|--------------|------------|--|
| 5  | 0.0          |            |  |