Computer Vision & Pattern Recognition Course Project

Prof. Kai Hormann

Università della Svizzera italiana

- Goal: reconstruct snooker table and balls from side view
- Tasks
 - 1. pre-process video and filter only those frames that show side view
 - 2. reconstruct camera position
 - 3. reconstruct ball positions

- take a *reference frame* F_0 that shows the side view
- \blacksquare compute correlation with each other frame F_i
 - e.g., check for each "green" pixel in F_0 if corresponding pixel in F_i is also green and count the matches
 - or, compute some "distance" between F_0 and F_i
 - find a threshold that separates wanted from unwanted frames

Reconstruct Camera

- get table dimension and ball positions
 - check Wikipedia
 - compute coordinates of the (yellow, green, brown, blue, pink, black) spots
 - but what exactly is the playing area?
 - the whole "green area"?
 - the area *between* the cushions?
 - measure it in the picture
 - double check in the top-down view
 - compute coordinates of playing area or "green area" corners
 - width and height of the cushions?

Reconstruct Camera

- get corresponding image points
 - find frame where all balls are on their spots (e.g. @ 2:11:57)
 - corners of the "green area"
 - use Sobel gradients and Hough transform to find lines between baize (green) and wood (brown) and intersect
 - corners of the playing area
 - harder to find automatically
 - ball marker positions
 - x-coordinates \rightarrow ball centres
 - y-coordinates \rightarrow learn from yellow, green, brown ball and baulk line how to relate "top" of the ball to the marker
- note that the image is *symmetric* in x

- use correspondence pairs to find camera matrix P
 - DLT algorithm minimizes the *algebraic error* ||Ap|| subject to ||p|| = 1
 - the resulting P can be decomposed to get K, R, C
 - alternatively, we can try to minimize the geometric error

$$\sum_{i} \|x_i - PX_i\|^2$$

- especially useful, if we want to work with a constrained K
- non-linear optimization, requires suitable numerical solvers

manual approach

- identify key parameters of K, R, C; build P; map X_i into image
- modify parameters interactively, until you get a good visual match

- additional issues to consider
 - the result can be improved by using the normalized DLT (see Sec. 4.4.4 and Sec. 7.1)
 - make sure that the image points of the ball markers on the central vertical line (brown, blue, pink, black) have the same cross ratio as the corresponding world points

- did you notice the white reflection on the balls?
- caused by the overhead lights
 - two long white lights
 - length: approximately 4 meters
 - height: approximately 5–6 meters (check video @ 2:11:22)
- can be used to estimate the ball position

- ball centre position $\mathbf{B} = (b_x, b_y, 0.02625, 1)^T$
- camera position $\boldsymbol{C} = (0, c_y, c_z, 1)^T$
- light position $\boldsymbol{L} = (0,0,l_z,1)^T$
- highlight H
- \mathbf{c}_y , c_z , l_z known
- Goal: given the image coordinates (x, y) of the highlight, find ball position (b_x, b_y)

- first step: given (b_x, b_y) , work out (x, y)
- obey the Geometry
 - C, B, L, H, and the ball normal N lie in the same plane
 - angle between \overline{HC} and N is the same as between \overline{HL} and N
- second step: invert this relation to recover (b_x, b_y) from (x, y)

- remains to detect the (centres of the) highlights in the image
 - find red balls
 - find (approximately contiguous) white region within red region
 - compute average position of these white pixels
- alternatively
 - use correlation with prototypical image of red ball
 - adapt size, based on image y-coordinate
 - problem: partial occlusion
 - solution: match only upper 1/3 of ball image