

www.wikimediacommons

Categorical Models

Linear Models

Fitting Lines to Data

http://web.anglia.ac.uk

Model Thinking

Scott E Page

Model Thinking

Scott E Page

Categorical Models

"Lump to Live"

Broccoli Grasshopper Banana Candy Bar Orange Asparagus Pear Strawberry

Colones

Pear 100-

Cake 250

Apple 90

Banana 110/

Pie 350


```
(100-180)^2
Pear
Cake (250-180)^2
          (90-180)^2
Apple
Banana (110-180)<sup>2</sup>
         (350-180)^2
Pie
(250-190) = 4900
```



```
Pear (100-180)^2 = 6400

Cake (250-180)^2 = 4900

Apple (90-180)^2 = 8100

Banana (110-180)^2 = 4900

Pie (350-180)^2 = 28900
```


mean =
$$100$$

 $(90 \cdot 100)^2 = (100)$
 $(100 - 100)^2 = 0$
 $(110 - 100)^2 = 100$

Mean
$$300$$
 $(350-300)^2=2500$
 $(350-300)^2=2500$
 5000

Mean = 100

Mean = 300

Variation = 200

Variation = 5000

Total Variation =
$$53,200$$

Fruit Variation = 200

Dessert Variation =
$$5000$$
 5200

How much d.J I explain?

 $53.200 - 5.200$
 $48,000$
 $53,200$

% Variation Explained

R-Squared

R-squared near I model explains a lot

R-squared near 0 model explains little

Equestrian

Photo Simon Howden

Correlation is not Causation Equestion

Model Thinking

Scott E Page

Model Thinking

Scott E Page

Linear Models

4=mx+b

Linear Model vs Line

X = Independent Variable

Y = Dependent Variable

Y depends on X

X = Length of Diagonal

$$Y = Cost of TV$$

Linear Model:

$$Cost = 15*Length + 100$$

4=50

Sign: does Y increase or decrease in X?

Magnitude: how much does Y increase for each one unit increase in X?

$$Cost = 15^* Length + 100$$

Predict

Understand Data

Cost =
$$15*$$
Length + 100

30 inch TV?

$$C = 15(30) + 100$$

$$450 + 100$$

$$550$$

Cost =
$$15*$$
Length + 100

100 inch TV?

www.wikimedia.org

Robyn Dawes 1979: "The Robust Beauty of Improper Linear Models in Decision Making"

43 bank loan officers predict which 30 of 60 firms would go bankrupt. They see financial statements.

Bankers: 75 % accurate

Linear Model: ratio of assets to liabilities 80%

Mehl (1954) 20 studies of clinicians

Sawyer (1966) 45 studies of predictions in the social world.

Experts NEVER did significantly better

Fitting Lines to Data

R-squared:

% Variation Explained

R-Squared

% Variation Explained

Grade

Variation?

$$(1/1)$$
 $(1-5)^2 = 16$
 $(2,5)$ $(3-5)^2 = 0$
 $(4,9)$ $(9-5)^2 = 16$
 (32)

Grade

$$(X,Y,2X)$$

$$(1,1/2)$$

$$(2,5/4)$$

$$(4,9,8)$$

$$(4,9,8)$$

$$(3)$$

$$(4,9,8)$$

$$(4,9,8)$$

$$(4,9,8)$$

$$(4,9,8)$$

(1,1,2)

(2,5,4)

(4,9,8)

R-Squared

$$(m+b)(1)^{2} = (n+2mb+b^{2}-2m-2b+1)$$

$$(2m+b-5)^{2}$$

$$(4m+b-9)^{2}$$

21m²+14mb+3b² -94m-30b +81

Jaratean

X,Y, MODEL (1,1,5/3) (2,5,13/3) (4,9,29/3)

R-Squared: 0.72

Standard Error: 24.21

Observations: 50

	Coeff	SE	P-value
Intercept	25	2	0.000
XI	20		0.000
X2	10	4	0.014

Multiple Variables

$$Y = cT + dZ + b$$

$$Y = aX_1 + bX_2 + c$$

R-Squared: Standard Error: 24.21 Observations: P-value Coeff 25 Intercept 0.000 0.000

Sign: does Y increase or decrease in X?

Magnitude: how much does Y increase for each one unit increase in X?

Non Linear

Non Linear Terms

The Big Coefficient

Evidence Based_____

Medicine

Philanthropy

Education

Management

Construct Model
Gather Data
Identify important variables
Change those variables

Big Data

Gather Data

Find Pattern

Identify important variables

Change those variables

Big data does not obviate the uses of models

Correlation is not Causation

Linear models tell sign and magnitude of changes in independent variables within data

The New Reality

Big Coefficient

Tax Cigarettes

New Reality

Universal Health Care

Big Coefficient

Increase HOV Lanes

New Reality

Rail System

Big Coefficient

Oat Bran Pretzels

New Reality

Fitness Regimine

American Jobs Act

- I.Tax Cuts to Help America's Small Businesses Hire and Grow
 - Cutting the payroll tax
 - Payroll tax holiday for new workers and higher wages
 - 100% expensing
- 2. Rebuilding and Modernizing America
 - Subsidies to hire veterans
 - Save 280,000 teachers jobs
 - Infrastructure and infrastructure bank
 - Modernize Schools and buildings
 - High speed wireless
- 3. Pathways to Work
 - Rewrite unemployment insurance
 - \$4000 tax credit for new employees
- 4. Tax Relief
 - Cuts in payroll taxes
 - Allowing more refinancing

Interstate Highway System

41,000 miles of roads \$25 billion

CPI: \$207 Billion today

Mile: \$10 million a mile \$410 Billion

Model Thinking

Scott E Page

