

Lesson 17C

Khải có một dãy A gồm N phần tử $A_1, A_2, ..., A_N$.

Hưng cho Khải Q truy vấn, mỗi truy vấn gồm hai vị trí L,R mà $1 \le L \le R \le N$ sau đó yêu cầu Khải thực hiện tăng các giá trị A_L,A_{L+1},\ldots,A_R lên 1 đơn vị và sau khi kết thúc Q truy vấn thì phải đưa ra dãy A.

Ở bài toán này Khải nhận thấy không thể thực hiện như các bài toán trước đó Khải đã nghiên cứu vì không có tính chất $A_1 = A_2 = \cdots = A_N = 0$. Các bạn không tin có thể thử xem?

Do đó Khải nghĩ ra một cách rất trí tuệ đó là Khải sẽ tự tạo cho mình một dãy B cũng có N phần tử mà ban đầu có $B_1 = B_2 = \cdots = B_N = 0$. Để thực hiện các truy vấn của Hưng thì Khải sẽ thực hiện tăng các giá trị $B_L \to B_R$ thay vì tác động vào dãy A. Như vậy sau khi kết thúc Q truy vấn, Khải chỉ cần thêm một vòng FOR để dồn tổng trên B như cách mà bài LES17B của Khải đã thực hiện. Khải nhận xét rằng B_i lúc này chính là một lượng tăng lên của A_i do đó cậu lại thực hiện A[i]+=B[i] và sau đó in ra dãy A là sẽ có ngay kết quả mà Hưng yêu cầu ban đầu.

Như vậy theo cách của Khải thì chỉ cần thực hiện với độ phức tạp O(2Q + N) thay vì O(NQ) trong trường hợp xấu nhất.

Việc chứng minh điều này khá đơn giản nên Khải nhường lại cho các bạn.

Yêu cầu: Thực hiện Q truy vấn của Hưng và in ra dãy đó theo cách của Khải (hoặc không).

Input:

- Dòng đầu chứa hai số nguyên dương N và Q (N, $Q \le 10^5$).
- Dòng thứ hai chứa N số nguyên $A_1, A_2, ..., A_N$ ($|A_i| \le 100$).
- Q dòng tiếp theo chứa hai số nguyên dương L, R yêu cầu bạn tăng các giá trị từ $A_L \to A_R$ lên 1 đơn vị $(1 \le L \le R \le N)$.

Output: In ra dãy A sau khi thực hiện Q truy vấn.

Ví dụ:

Sample Input	Sample Output
5 2	2 4 5 5 5
1 2 3 4 5	
1 3	

Trần Lê Hiệp

