

Threats

Speculation

An "unknown unknown" until recently

A "known unknown" for decades

Microarchitectural Timing Channel

Security enforcement must be mandatory, i.e. not dependent on application/user cooperation!

Enforce policies

HW-SW Contract

Operating System

Hardware (CPU etc)

Provide mechanisms

Proved OS-Enforced Spatial Isolation

2100

Confidentiality

Integrity

Proof

Abstract Model

C Implementation

Binary code

Availability

Security properties: Model enforces isolation

Functional correctness:
C code only behaves
as specified by model

Limitations (work in progress):

- Kernel initialisation not yet verified
- MMU & caches modelled abstractly
- Multicore kernel not yet verified
- Timing channels not ruled out

Translation validation:
Binary retains
C-code semantics

Sound worst-case execution time (WCET) bound

Timing Channels

Information leakage through timing of events

Typically by observing response latencies or own execution speed

Covert channel: Information flow that bypasses the security policy

Victim executes normally

Attacker observes

Side channel: Covert channel exploitable without insider help

Cause: Competition for Shared HW Resources

Shared hardware

Affect execution speed

- Inter-process interference
- Competing access to microarchitectural features
- Hidden by the HW-SW contract!

Confidentiality Needs Time Protection

Traditionally OSes enforce security by *memory protection*, i.e. enforcing spatial isolation

Time protection: A collection of *OS mechanisms* which collectively *prevent interference* between security domains that make execution speed in one domain dependent on the activities of another.

[Ge et al. EuroSys'19]

Time Protection: Partition Hardware

Temporally partition

Flush

Need

both!

Cache

Spatially partition

Cannot spatially partition oncore caches (L1, TLB, branch predictor, pre-fetchers)

- virtually-indexed
- OS cannot control

Flushing useless for concurrent access

- HW threads
- cores

Requirements for Time Protection

Off-core state & stateless HW

Timing channels can be closed iff the OS can

- (spatially) partition or
- reset

all shared hardware

On-core state

Sharing 1: Stateless Interconnect

Shared interconnect

Memory

Outside Privspec TC scope

H/W is bandwidth-limited

- Interference during concurrent access
- Generally reveals no data or addresses
- Must encode info into access patterns
- Only usable as covert channel, not side channel

No effective defence with present hardware!

Sharing 2: Stateful Hardware

HW is capacity-limited

- Interference during
 - concurrent access
 - time-shared access
- Collisions reveal addresses
- Usable as side channel

Any state-holding microarchitectural feature:

Cache

• cache, branch predictor, pre-fetcher state machine

Solvable problem – focus of this work

Spatial Partitioning: Cache Colouring

- Partitions get frames of disjoint colours
- seL4: userland supplies kernel memory
 ⇒ colouring userland colours dynamic kernel memory
- Per-partition kernel image to colour kernel
 [Ge et al. EuroSys'19]

Temporal Partitioning: Flush on Switch

Must remove any history dependence!

Latency depends on prior execution!

- 1. T₀ = current_time()
- 2. Switch user context
- 3. Flush on-core state
- 4. Touch all shared data needed for return
- 5. while (T₀+WCET < current_time());
- 6. Reprogram timer
- 7. return

Ensure deterministic execution

Time padding to Remove dependency

Cost of Reset

osel4

- Flushing on-core state is not a performance issue:
- no cost when not used
- direct flush cost for dirty L1-D in the order of 1µs
- direct flush cost for everything else in the order of 100 cycles
- indirect cost is negligible, if used on security-partition switch
 - eg VM switch, 10–100 Hz rate
 - no hot data in cache after other partition's execution
- Hardware support (eg targeted L1 flush) is essential!

Performance Impact of Colouring

Architecture	x86	Arm
Mean slowdown	3.4%	1.1%

- Overhead mostly low
- Not evaluated is cost of not using super pages
 [Ge et al., EuroSys'19]

Arch	seL4 clone	Linux fork+exec
x86	79 µs	257 µs
Arm	608 µs	4,300 µs

Evaluating Intra-Core Channels

Flush

Mitigation on Intel and Arm processors:

- Disable data prefetcher (just to be sure)
- On context switch, perform all architected flush operations:
 - Intel: wbinvd + invpcid (no targeted L1-cache flush supported!)
 - Arm: DCCISW + ICIALLU + TLBIALL + BPIALL

Methodology: Prime and Probe

Trojan encodes

Spy observes

2. Touch *n* cache lines

Input Signal 1. Fill cache with own data

Traverse cache,measure execution time

Output Signal

Methodology: Channel Matrix

Horizontal variation indicates channel

Channel Matrix:

- Conditional probability of observing time, t, given input, n.
- Represented as heat map:
 - bright = high probability

I-Cache Channel With Full State Flush

CHANNEL!

CHANNEL!

No evidence of channel

SMALL CHANNEL!

Intel Sandy Bridge

Intel Haswell

Intel Skylake

HiSilicon A53

HiSilicon A53 Branch History Buffer

Branch history buffer (BHB)

- One-bit channel
- All reset operations applied

Channel!

Intel Haswell Branch Target Buffer

Found residual channels in all recent Intel and ARM processors examined!

Intel Spectre Defences

Intel added indirect branch control (IBC) feature, which closes most channels, but...

Intel Skylake
Branch history buffer

Also residual state in pre-fetchers

https://ts.data61.csiro.au/projects/TS/timingchannels/arch-mitigation.pml

Security enforcement must be **mandatory**, i.e. not dependent on application/user cooperation!

Enforce policies

HW-SW Contract

Operating System

Hardware (CPU etc)

Provide mechanisms

Why Hardware Cannot Do Security Alone

- Security policies are high-level
 - Course-grain: "applications" are sets of cooperating processes
- Hardware mechanisms are fine-grain: instructions, pages, address spaces
 - Much semantics lost in mapping to hardware level
- Security policies are complex: "Can A talk to B?" is too simple
 - maybe one-way communication is allowed
 - maybe communication is allowed under certain conditions
 - maybe low-bandwidth leakage doesn't matter
 - maybe secrets only matter for a short time
 - maybe only subset of {confidentiality, integrity, availability} is important

Why the ISA is an Insufficient Contract

- The ISA is a purely operational contract
 - Sufficient for ensuring functional correctness
 - Insufficient for ensuring confidentiality or availability

The ISA intentionally abstracts time away

New HW/SW Contract: aISA

Augmented ISA supporting time protection

Security Standing Committee agrees

For all shared microarchitectural resources:

- 1. Resource must be spatially partitionable or flushable
- 2. Concurrently shared resources must be spatially partitioned
- 3. Resource accessed solely by virtual address must be flushed and not concurrently accessed
 - Implies cannot share HW threads across security domains!
- 4. Mechanisms must be sufficiently specified for OS to partition or reset
- 5. Mechanisms must be constant time, or of specified, bounded latency
- 6. Desirable: OS should know if resettable state is derived from data, instructions, data addresses or instruction addresses
- 7. Desirable: Flush only affects state that *must* be flushed

What's Needed from Privspec?

- Requirement that all on-chip state satisfies alSA
- Mechanisms for resetting temporally-partitioned state:
- L1-I, L1-D cache: Sect 1.8 looks good
- Need similar for TLB, branch predictor, prefetchers, ...
 - should not require any write-back?
 - ok to pump into single abstraction
- Latency bound requirement?
- Support for efficiently co-scheduling harts?

