PROCESSAMENTO DE LINGUAGEM NATURAL

Representação vetorial de textos

TÓPICOS

- 1. Representação vetorial
- 2. One-hot
- 3. Matrizes de Frequência

LINGUAGENS

• O que é a linguagem?

"Sistema de símbolos de um vocabulário que, quando colocados numa determinada ordem e expressos num determinado contexto, emitem um significado."

REPRESENTAÇÃO DISCRETA X CONTÍNUA

- Representação discreta
 - palavras, tokens, listas de tokens
 - é difícil de fazer manutenção (p. ex. WordNet)
 - é difícil de usar para calcular similaridade entre palavras
- Representação contínua
 - vetores numéricos
 - permite aproximações
 - cálculo de similaridade facilitado

VETORES

Estruturas compostas por várias dimensões

Cada dimensão "representa um pouco" do conteúdo

Dimensões

- 1. Início com caractere maiúsculo (1: sim, 0: não)
- 2. Quantidade de caracteres
- 3. Quantidade de *tokens*
- 4. Quantidade de vogais
- 5. Quantidade de consoantes

cachorro

0	8	1	3	5
---	---	---	---	---

Lua de mel

1 10 3 4 4

ONE-HOT

ESPAÇO VETORIAL

- Conjunto de vetores de mesma dimensão
 - Estudado pela Álgebra Linear (Python: numpy)
- Cálculo de similaridade (distância) nesse espaço
 - Similaridade de cosseno
 - sklearn.metrics.pairwise tem cosine_similarity

$$sim(A,B) = cos(\theta) = \frac{A.B}{\|A\| \|B\|}$$

- One-hot encoding
 - A representação tem o tamanho do vocabulário
 - No vetor de uma palavra, a sua posição no vocabulário recebe o valor 1, as demais, 0

	1	0	0	0		0	0
Index:	0	1	2	3		99998	99999
	0	1	0	0	/	0	0
Index:	0	1	2	3		99998	99999

- One-hot encoding
 - A representação tem o tamanho do vocabulário
 - No vetor de uma sentença, as posições de suas palavras recebem valor 1, as demais, 0

<u>Colab -</u> <u>Vetores</u>

•	O	menino	foi	para	а	escola	de	ônibus
O menino foi para a escola	1	1	1	1	1	1	0	0

MATRIZES DE FREQUÊNCIA

- Hipótese Distributiva
 - Formulada pela primeira vez por Joss (1950), Harris (1954) e Firth (1957)
 - Assume que palavras semelhantes têm contextos similares

"Diga-me com quem andas e eu te direi quem tu és"

Matriz de Frequência Termo-Documento

 Associa frequência de co-ocorrência de termos em documentos (sentenças)

"e" ocorre 1 vez no documento

	doc1	doc2	doc3	doc4	doc5	 doc / N
е	1	0	0	0	0	 1
agora	1	0	0	0	0	 1
josé	1	0	0	0	0	 1
а	0	1	1	0	1	 0

<u>Colab -</u> <u>Vetores</u>

representação do documento N

representação de "a"

- Matriz de Frequência Termo-Termo
 - Associa frequência de co-ocorrência entre termos

E agora, José?

A festa acabou,

a luz apagou,

o povo sumiu,

a noite esfriou,

e agora, José?

e agora, você?

você que é sem nome, que zomba dos outros,

você que faz versos,

que ama, protesta?

e agora, José?

	е	agora	josé	а	festa	Ø	protesta
е	0	4	3	0	0		0
agora	4	0	3	0	0		0
josé	3	3	0	0	0		0
а	0	0	0	0	1		0
você	1	1	0	0	0		0

Colab - Vetores

- Matriz de TF-IDF
 - Calcula a dimensão de uma palavra pela sua frequência X a frequência inversa de documentos que aparece

Colab - Vetores

$$\mathbf{w}_{i,j} = \mathbf{t} f_{i,j} \times \log \left(\frac{N}{df_i} \right)$$

- $f_{i,j}$ = # de ocorrências de i em j
- df_i = # de documentos contendo i
- *N* = # total de documentos

Problemas

- Esparsidade
 - Representações vetoriais geradas por métodos de contagem são muito esparsas, ou seja, possuem muitos zeros
- Não escalável
 - À medida que o número de documentos e vocabulário cresce, a dimensão dos vetores torna-se um gargalo

O QUE VIMOS?

- Representação vetorial
- One-hot
- Matrizes de Frequência

PRÓXIMA VIDEOAULA

 Prática: Modelos de Linguagem e Representações Vetoriais

REFERÊNCIAS

- Curso de Processamento de Linguagem Natural
 - Profa. Helena Caseli (UFSCar)
- Curso de Processamento de Linguagem Natural
 - Prof. Thiago Pardo (ICMC-USP)
- Curso de Linguística Computacional
 - Prof. Thiago Castro Ferreira (UFMG)