Berechnung der z-Übertragungsfunktion kontinuierlicher Systeme

Lehrbuch: Unbehauen 2: Abschnitt 2.4.2.2 "Durchführung der exakten Transformation" \rightarrow Leider zu kompliziert für diesen Rahmen \rightarrow SKIP \leftarrow

Durchführung der approximierten Transformation

Ein Integrator:

DGL	Übertragungsfunktion	
$\dot{y}(t)=u(t)$	$Y(S)=rac{1}{s}U(s)$	

Kleine Übung: Gesucht ist die

- 1. Differenzengleichung $y_{(k)}=\dots$
- 2. Z-Transformierte der Differenzengleichung $G(Z) = \frac{Y(z)}{U(z)} = \ldots$

Durchführung der approximierten Transformation

Ein Integrator:

DGL	Übertragungsfunktion
$\dot{y}(t)=u(t)$	$Y(S)=rac{1}{s}U(s)$

Differenzengleichung

$$y_{(k)}=y_{(k-1)}+T\cdot u_{(k)}$$

Übertragungsfunktion

$$\begin{split} Y(z) - z^{-1}Y(z) &= T \cdot U(z) \\ Y(z)(1 - z^{-1}) &= T \cdot U(z) \\ \frac{Y(z)}{U(z)} &= \frac{T}{1 - z^{-1}} \end{split}$$

$$\frac{Y(z)}{U(z)} = \frac{T \cdot z}{z - 1}$$

Durchführung der approximierten Transformation

Variante 1

Integrator zeitkontinuierlich	Integrator zeitdiskret
$\frac{1}{s}$	$\frac{T\cdot z}{z-1}$

Approximation

$$spprox rac{z-1}{T\cdot z}$$

Dieses Vorgehen entspricht genau der Anwendung der Differenzenquotienten $\frac{df(t)}{dt} = \frac{f_{(k)} - f_{(k-1)}}{T}$ auf die zugehorige Differentialgleichung.

Durchführung der approximierten Transformation

Variante 2 (Tustin Approximation)

$$spproxrac{2}{T}rac{z-1}{z+1}$$

- Eine etwas genauere Approximationsbeziehung
- · Beschreibt die Integrations nach Trapezregel

Beispiel

$$Y(s) = rac{C\,R\,s + 1}{C\,L\,s^2 + C\,R\,s + 1}\,U(s) \qquad o \qquad Y(s) = rac{0.5\,s + 1}{0.2\,s^2 + 0.5\,s + 1}\,U(s)$$
 $Y(s) = rac{0.5\left(rac{z - 1}{0.2 \cdot z}
ight) + 1}{0.2\left(rac{z - 1}{0.2 \cdot z}
ight)^2 + 0.5\left(rac{z - 1}{0.2 \cdot z}
ight) + 1}\,U(s)$ $Y(z) = rac{7z^2 - 5z}{17z^2 - 25z + 10}\,U(z)$

bzw:

$$Y(z) = rac{7 - 5z^{-1}}{17 - 25z^{-1} + 10z^{-2}} \, U(z)$$

Differenzengleichung:

Beispiel Reihenschwingkreis

$$Y(s) = \frac{C\,R\,s + 1}{C\,L\,s^2 + C\,R\,s + 1}\,U(s) \qquad \rightarrow \qquad Y(s) = \frac{0.5\,s + 1}{0.2\,s^2 + 0.5\,s + 1}\,U(s)$$

Approximation im Z-Bereich:

$$Y(z) = rac{0.5\left(rac{z-1}{0.2\cdot z}
ight) + 1}{0.2\left(rac{z-1}{0.2\cdot z}
ight)^2 + 0.5\left(rac{z-1}{0.2\cdot z}
ight) + 1}U(z)$$

$$Y(z) = rac{7z^2 - 5z}{17z^2 - 25z + 10}\,U(z)$$

bzw:

$$Y(z) = rac{7 - 5z^{-1}}{17 - 25z^{-1} + 10z^{-2}} \, U(z)$$

Beispiel Reihenschwingkreis

Umformung:

$$Y(z) \left(17 - 25z^{-1} + 10z^{-2}\right) = \left(7 - 5z^{-1}\right) U(z)$$

 $17Y(z) - 25z^{-1}Y(z) + 10z^{-2}Y(z) = 7U(z) - 5z^{-1}U(z)$

Transformation in Zeitbereich:

$$17y_{(k)} - 25y_{(k-1)} + 10y_{(k-2)} = 7u_{(k)} - 5u_{(k-1)}$$

Transformation in Zeitbereich:

$$y_{(k)} = rac{25}{17} y_{(k-1)} - rac{10}{17} y_{(k-2)} + rac{7}{17} u_{(k)} - rac{5}{17} u_{(k-1)}$$