

AC SERVO SYSTEM

Introduction

About Us

Larsen & Toubro (L&T) is a technology-driven USD 9.8 billion company that infuses engineering with imagination. The Company offers a wide range of advanced solutions, in the fields of Engineering, Construction, Electrical & Automation, Machinery and Information Technology.

L&T Switchgear, which forms part of the Electrical & Automation business, is India's largest manufacturer of low voltage switchgear, with the scale, sophistication and range to meet global benchmarks. With over four decades of experience in this field, the Company today enjoys a leadership position in the Indian market with growing presence in international markets.

It offers a complete range of products including; controlgear, powergear, motor starters, energy meters, wires and host of other accessories. Most of our products conform to international standards, carry CE markings and are KEMA= certified.

Switchgear Factory, Mumbai

Servo Power

Larsen & Toubro's New Generation Servomotor and Drive incorporates the latest technological advancements in motion control system.

Servomotor and Servopack are used in closed loop control systems in which work is the control variable. The digital Servomotor controller directs operation of the Servomotor by sending velocity command signals to the Servopack, which drives the Servomotor. An integral feedback device provide the Servomotor's position and velocity feedback that the controller compares to its programmed motion profile and uses to alter its velocity signal.

AC Servomotors are used in AC Servo mechanisms which require rapid and accurate response characteristics. To obtain these characteristics, Servomotors have small-diameter high-resistance rotors. The small diameter provides

low inertia for fast starts, stops, and reversals, while the high resistance provides a nearly linear speedtorque relationship for accurate control.

In an ideal Servomotor, torque at any speed is directly proportional to control-winding voltage. In practice, however, this relationship exists only at zero speed because of the inherent inability of an induction motor to respond to voltage input changes under conditions of light load.

L&T introduces Servo system with enhanced performance and functions. - II series, - V series, Junma series and MP series controllers are easy to use and conforms to world standard.

Manufactured by :
YASKAWA Electric Corporation
JAPAN

Range of Servo Products

Sigma-II Series Servo Drives - 30W to 90 kW

- Choice of Low inertia, Middle inertia and High inertia motors
- Very good peak torque performance (approx 300%) for longer period of time to help in quick acceleration
- 17 bit incremental encoder* (resolution-131072 PPR) as standard with Serial Interface to Servopack. Option for absolute encoder
- Choice of Servo Drives with 200V & 400V
- Speed Control, Position Control, Torque Control and Contact Speed as Standard
- On the fly mode change through digital input possible as standard
- Analog / Pulse train reference as standard with network option of Mechatrolink-II, Profibus, Devicenet

- Excellent cost to performance ratio for Position Control
- · Industry's first plug and play type Servo Drive
- Achieve optimum Servo performance without gain setting and tuning parameters (No gain tuning and parameter setting required)
- Great stability despite of load changes
- Encoder resolution: 10000 PPR
- · Option for servomotor with electromagnetic brake
- Selectable electronic gear 1000 PPR, 2500 PPR, 5000 PPR and 10000 PPR
- · Option of Mechatrolink- II communication

Sigma-V Series Servo Drives - 50W to 15 kW

- Very High Performance Servo with outstanding frequency response of 1600 Hz (best in Industry)
- Choice of Low inertia, Middle inertia and High inertia motors
- Very good peak torque performance (approx 350%) for longer period of time to help in quick acceleration
- 20 bit incremental encoder (resolution-1,048,576 PPR) as standard with Serial Interface to the Servopack
- Max speed upto 6000 rpm
- · Option for Servomotor with electromagnetic brake
- Faster setup, simple tuning process with tuneless function

^{*} Except SGMAH & SGMPH series

Servo Drives - 30 W to 90 kW

Easy setup and operation/Online auto-tuning

Simple set-up: Just plug-and-play enhanced inertia matching precision eliminates the need for Servo gain adjustment.

Current (torque) limit

The peak current input to the motor can be limited to minimize occurrence of overtorque and reduce machinery damage.

High resolution serial encoder

- Error checking eliminates positioning inaccuracies due to electrical noise
- Reduces number of wires to half
 - · Absolute encoder: 15 to 7 wires
 - Incremental encoder: 9 to 5 wires
- Amplifier automatically recognizes the motor and optimizes parameters

All-in-one control

Position, torque and speed can be controlled independently, with simple switching between control modes.

Selection of internal speed presets

The motor can be operated at any of the three preset user speeds.

Feed forward compensation

Feed forward compensation provides reduced positioning time.

Type Designation

Shart	LIIU	Specification	3 (0111	Digit)

		Ту	ре
Code	Shaft End	SGMAH	SGMGH
2	Straight, no key	•	•
3	Taper 1/10, with parallel key		0
4	Straight, key	0	
5	Taper 1/10, with woodruff key		0
6	Straight, key, tapped	0	0
8	Straight, tapped	0	

●-Standard O-Optional

Color Code	Voltage (V)
	200
	200/400

Ratings (30 W to 90 kW) *

	Series	Capacity (kW)	Rated Torque (N.m)	Peak Torque (N.m)	Rated Speed (Peak Speed) (rpm)	Inertia (kg. m² 10 ⁻⁴)	Maximum Allowed Load Moment of Inertia	Rated Power (kW/s)
	SGMAH	0.03	0.0955	0.286		0.0166		5.49
>	Super High Power Rate	0.05	0.159	0.477		0.022	00 (5	11.5
apacit	Series.	0.1	0.318	0.955	3000	0.0364	30 times	27.8
Small-Capacity	Faster acceleration	0.2	0.637	1.91	(5000)	0.106		38.2
Š	with lower inertia	0.4	1.27	3.82		0.173	00 (1)	93.7
	includ	0.75	2.39	7.16		0.672	20 times	84.8
	SGMGH	0.45	2.84	8.92		7.24		11.2
	High Speed Feed Series.	0.85	5.39	13.8		13.9		20.9
		1.3	8.34	23.3		20.5		33.8
ity	High speed rotation	1.8	11.5	28.7	1500	31.7		41.5
Medium-Capacity	required without load	2.9	18.6	45.1	(3000)	46	46 5 times	
dium-	William	4.4	28.4	71.1		67.5	o times	120
Me		5.5	35	87.6		89		137
		7.5	48	119		125		184
		11	70	175	1500	281		174
		15	95.4	224	(2000)	315		289

- All Π Servomotors are available with an absolute encoder, electromagnetic brake and oil seal as option
- All Π Servomotor use serial encoder
- Refer to $-\Pi$ Servo user manual for detailed specifications and dimensions
- * For ratings beyond 15kW please contact branch office

SGMAH series

Specifications

	Applied V				23	0V				
	Servomotor Typ	oe SGMAH - []]	A3A	A5A	01A	02A	04A	08A		
Rate	ed Output	W	30	50	100	200	400	750		
Rate	ed Torque	N•m	0.0955	0.159	0.318	0.637	1.27	2.39		
Insta	Instantaneous Peak Torque N•m		0.286	0.477	0.955	1.91	3.82	7.16		
Rate	Rated Rotation Speed min ⁻¹				30	00				
Max	Max. Rotation Speed min ⁻¹				50	00				
Mon	nent of Inertia (JM)	kg·m² x 10−4	0.0166	0.0220	0.0364	0.106	0.173	0.672		
	Allowable Load as much as the Moment of Inertia (JL) Moment of Inertia			30 ti or le	mes		20 times or less			
Rate	Rated Power Rate kW/s		5.49	5.49 11.5 27.8 38.2 93.7						
Annl	licable Encoder	Standard	Incremental Encoder (13 bits: 2048P/R)							
Appi	ilcable Lilcodel	Option	Incremental Encoder (16 bits: 16384P/R), Absolute Encoder (16 bits: 16384P/R)							
	Time Rating		Continuous							
St	Insulation Class		Class B							
Specifications	Ambient Temperature		0 to + 40°C							
oific	Ambient Humidity		20 to 80% (nor	n-condensing)						
Spe	Vibration Class		15µm or below	/						
Basic	Enclosure		Totally-enclosed, self-cooled, IP55 (excluding shaft opening)							
ä	Vibration Resistance	Vibration acceleration 49m/s ²								
	Mounting		Flange-mounte	ed						

Torque-Speed characteristics (A: Continuous Duty Zone B: Intermittent Duty Zone)

How to read a graph of speed and torque characteristics

Servomotor - Specifications

SGMGH series

Specifications

	Applied Volt		230V									
	Servomotor Type	SGMGH - []]	05A□A	09A□A	13A□A	20A□A	30A□A	44A□A	55A□A	75A□A	1AA□A	1EA□A
Rate	ed Output	kW	0.45	0.85	1.3	1.8	2.9	4.4	5.5	7.5	11	15
Rate	ed Torque	N•m	2.84	5.39	8.34	11.5	18.6	28.4	35.0	48.0	70.0	95.4
Insta	antaneous Peak Torque	N•m	8.92	8.92 13.8 23.3 28.7 45.1 71.1 87.6 119								221
Rate	ed Rotation Speed	min ⁻¹					15	00				
Max	Max. Rotation Speed min ⁻¹					30	00				20	00
Mon	nent of Inertia (J)	kg•m² x10 ⁻⁴	7.24	13.9	20.5	31.7	46.0	67.5	89.0	125	281	315
	wable Load nent of Inertia	as much as the Moment of Inertia					5 times	or less				
Rate	ed Power Rate	kW/s	11.2	20.9	33.8	41.5	75.3	120	137	184	174	289
Ann	licable Encoder	Standard	Incremental Encoder (17 bits: 16384P/R*)									
Appi	ilicable Efficace	Option	Absolute Encoder (17 bits/20 bits: 16384P/R*)									
	Time Rating		Continuous									
દ	Insulation Class		Class F									
Specifications	Ambient Temperature		0 to +40°C									
cific	Ambient Humidity		20 to 80	0% (non-co	ondensing)							
Spe	Vibration Class		15µm o	r below								
Basic	Enclosure		Totally-	enclosed,	self-cooled	, IP67 (exc	luding sha	ft opening)			
Ä	Vibration Resistance	Vibration acceleration 24.5m/s ² (2.5G)										
	Mounting		Flange-	mounted								

^{*:} For 17-bit and 20-bit encoders (without divider), pulses output from Servopack are also 16384 P/R.

Torque-Speed characteristics (A: Continuous duty zone B: Intermittent duty zone)

SGMGH series

Specifications

	Applied V						40	0V				
	Servomotor Typ	e SGMGH - []]	05D□A	09D□A	13D□A	20D□A	30D□A	44D□A	55D□A	75D□A	1AD□A	1ED□A
Rate	ed Output	kW	0.45	0.85	1.3	1.8	2.9	4.4	5.5	7.5	11	15
Rate	ed Torque	N•m	2.84	5.39	8.34	11.5	18.6	28.4	35.0	48.0	70.0	95.4
Insta	antaneous Peak Torque	N•m	8.92	13.8	23.3	28.7	45.1	71.1	90.7	123	175	221
Rate	Rated Rotation Speed min ⁻¹		1500									
Max	. Rotation Speed	min ⁻¹					30	00			20	00
Mon	nent of Inertia (J)	kg∙m² x 10 ⁻⁴	7.24	13.9	20.5	31.7	46.0	67.5	89.0	125	281	315
	wable Load nent of Inertia	as much as the Moment of Inertia					5 tir or le	nes ess		•	•	
Rate	Rated Power Rate kW/s		11.2	20.9	33.8	41.5	75.3	120	137	184	174	289
Ann	licable Encoder	Standard	Incremental Encoder (17 bits: 16384P/R)									
Appl	licable Elicodei	Option	Absolute Encoder (17 bits: 16384P/R)									
	Time Rating		Continu	ious								
ટ	Insulation Class		Class F									
Specifications	Ambient Temperature		0 to + 4	0°C								
cific	Ambient Humidity		20 to 80	0% (non-co	ondensing)							
Spe	Vibration Class		15μm or below									
Basic	Enclosure		Totally-enclosed, self-cooled, IP67 (excluding shaft opening)									
m	Vibration Resistance			Vibration acceleration 24.5m/s ²								
	Mounting		Flange-	mounted								

Torque-Speed characteristics (A: Continuous Duty Zone B: Intermittent Duty Zone)

Servopack - Type Designation

Type Designation

SGDM/SGDH Servopack

Color Code	Voltage (V)
	200
	200/400

Servopack - Specifications

SGDM/SGDH series

Specifications

Single-phase, 200V

Se	ervop	ack Type	SGDH []	A3AE	A5AE	01AE	02AE	04AE	08AE-S	15AE-S				
	oplica ervon	ible notor	SGMAH []	A3A	A5A	08A	13A							
	Input Power Main Circuit			For single-ph	For single-phase, 200 to 230VAC (+10%, -15%) (50/60Hz) 220 TO 230VAC									
	Su	pply	Control Circuit	For single-ph	ase, 200 to 230V	AC (+10%, -15%) (50/60Hz)		+10 to-15%	(50/60hZ)				
Suc	Co	ntrol Method		Single-phase	Single-phase full-wave rectification / IGBT / PWM / sine-wave current drive method									
Specifications	Fe	edback		Serial encoder (incremental/absolute value)										
ecifi	S	Usage/Stora	ge Temperature	0 to 55°C / -2	0 to 55°C / -20 to 85°C									
	ition	Usage/Stora	ge Humidity	90%RH or les	90%RH or less (non-condensing)									
Basic	Conditions	Altitude		1000m or less	s above sea leve	I								
Vibration/Shock Resistance 4.9m/s²/19.6m/s²														
	Co	nfiguration		Base mounte	d (Rack mount is	also available)								
Approx. Mass kg						.8		1.1	1.7	3.8				

Three-phase, 200V

Se	ervop	ack Type	SGDH [05AE	10AE	15AE	20AE	30AE	50AE	60AE	75AE	1AAE	1EAE	
	oplica ervon	able notor	SGMGH[]	05A□A	09A□A	13A□A	20A□A	30A□A	44A□A	55A□A	75A□A	1AA□A	1EA□A	
	Input Power Main Circuit			For Thre	For Three-phase, 200 to 230VAC +10%, -15% (50/60Hz)									
	Supply Control Circuit			For The	e-phase, 20	0 to 230VAC	C +10%, -15	% (50/60Hz)					
ons	Control Method			Single-p	Single-phase full-wave rectification / IGBT / PWM / sine-wave current drive method									
Specifications	Feedback			Serial er	Serial encoder (incremental/absolute value)									
ecifi	S	Usage/Stora	ge Temperature	0 to 55°0	0 to 55°C / -20 to 85°C									
	ition	Usage/Stora	ge Humidity	90%RH	90%RH or less (non-condensing)									
Basic	Conditions	Altitude		1000m c	1000m or less above sea level									
	Vibration/Shock Resistance			4.9m/s ² /	4.9m/s²/19.6m/s²									
	Configuration			Base mo	Base mounted (Rack mount is also available)									
	Approx. Mass kg			1.	.7	2	.8	3.8	5.5	1	5	2	6	

Three-phase, 400V

Se	ervopa	ack Type	SGDH	05DE	10DE	15DE	20DE	30DE	50DE	60DE	75DE	1ADE	1EDE
	Applicable SGMGH SGMGH		SGMGH[]	05D□A	09D□A	13D□A	20D□A	30D□A	44D□A	55D□A	75D□A	1AD□A	1ED□A
	Input Power Main Circuit			For The	For Thee-phase, 380 to 480VAC +10%, -15% (50/60Hz)								
	Su	ipply	24VDC :	± 15%									
Suc	Со	ontrol Method	Three-pl	Three-phase full-wave rectification / IGBT / PWM / sine-wave current drive method									
Specifications	Fe	edback		Serial er	Serial encoder (incremental/absolute value)								
ecif	w	Usage/Stora	ge Temperature	0 to 55°0	0 to 55°C / -20 to 85°C								
	onditions	Usage/Stora	ge Humidity	90%RH	90%RH or less (non-condensing)								
Basic	ond	Altitude		1000m or less above sea level									
_	Ŏ	Vibration/Sh	4.9m/s ² /19.6m/s ²										
	Configuration			Base mo	Base mounted (Rack mount is also available)								
	Approx. Mass kg				2.8		3	.8	5.5	1	5	2	2

Servopack - Specifications

SGDM/SGDH series

Specifications

<u> </u>		curions		
		Speed Contro	ol Range	1:5000
		0	Load Variance	From 0 to 100% load: ±0.01% max. (at rated speed)
	ınce	Speed Variance	Voltage Variance	Rated voltage ±10%: 0% (at rated speed)
o l	rme		Temperature Variance	25 ±25°C: ±0.1% max. (at rated speed)
Mod	Performance	Frequency C	haracteristics	400Hz (at JL = JM)
ro I		Torque Control	Accuracy (Reproducibility)	±2%
Con		Soft Start Tim	ne Setting	0 to 10s (Acceleration, deceleration can each be set)
Speed/Torque Control Mode		Speed Reference	Reference Voltage	Variable setting range: ±2 to ±10VDC at rated speed / max. input voltage: ±12V
Speed/	Input Signal	Input	Input Impedance	Approx. 14kΩ
	Reference		Reference Voltage	±3VDC (forward rotation torque if positive reference) at rated speed: set at delivery Variable setting range: ±1 to ±10VDC at rated torque reference
		Input Impedance		Approx. 14kΩ
			Circuit Time Constant	Approx. 47μs
	ance	Bias Setting		0 to 450 min ⁻¹ (setting resolution: 1 min ⁻¹)
lode	Performance	Feed Forwar	d Compensation	0 to 100% (setting resolution: 1%)
≥	Pel	Position Com	pleted Width Setting	0 to 250 command units (setting resolution: 1 command unit)
Sontr	a	Command Input Pulse Type		Sign +pulse train, 90° phase displacement 2-phase pulse (A-phase / B-phase), or CCW/CW pulse train
Position Control Mode	Input Signal	Command Pulse	Input Pulse Form	Line driver (5V level), open collector (5V or 12V)
ositi	put (Input Pulse Frequency	0 to 500kpps (200kpps max. at open collector)
"	= -	Control Signa	al	Clear signal (input pulse is same as reference pulse)
	Pos	sition Signal Ou	ıtput	A-phase, B-phase, C-phase: Line driver output S-phase is for absolute encoder only
Signal	Sec	quence Input S	ignal	Servo ON, P control (or control mode switching, zero clamp, command pulse inhibit), forward/reverse run prohibit, alarm reset, forward/ reverse current limit (or internal speed switching)
S 0/I				Servo alarm, alarm codes (3-bit output): CN1 output terminal is fixed
_	Sec	quence Output	Signal	It is possible to output three types of signals from among: positioning complete (speed agree), motor rotation, Servo ready, current limit, speed limit, brake release, warning, NEAR, and zero point pulse signal
			Interface	Digital operator (hand-held type), RS-422A port for PCs, etc. (RS-232C ports under some conditions)
	Con		1:N Communications	N may equal up to 14 when an RS-422A port is used
	COI	mmunications	Axis Address Setting	Set by user setting
			Functions	Status display, user constant setting, monitor display, alarm traceback display, JOG run / autotuning operations, and graphing functions for speed/torque command signal, etc.
ω l		to Tuning Func		Position/speed loop gain and integral time constant can be automatically set
tion		namic Brake (D	,	Operates during main power OFF, Servo alarm, Servo OFF or overtravel
Į.	-	generative Pro	ŭ	Regenerative resistor externally mounted (option)
Integrated Functions		. ,	revention Function	DB stop, deceleration stop or coast to stop during P-OT, N-OT operation
graf	Encoder Divider Function			Optional division possible
ırte	Electronic Gearing		,	0.01 <a b<100<="" td="">
	Inte	Internal Speed Setting Function		3 speeds may be set internally
		Protective Functions		Overcurrent, overvoltage, insufficient voltage, overload, main circuit sensor error, heatsink overheat, power phase loss, overflow, overspeed, encoder error, runaway,CPU error, parameter error, etc.
			unctions for Supervision	Integrates analog monitor connectors for supervision of the speed and torque reference signals, etc.
	Dis	play Functions		Charge, Power, 7-segment LED5 (Integrated digital operator function)
	Oth	ners		Reverse connection, zero search, automatic motor discrimination function, and DC reactor connection terminal for high frequency power suppression function (except: 6 to 15kW)

Features

- 100W to 750W
- · No parameters setting required
- Encoder resolution 10,000 pulses per revolution
- Selectable electronic gearing ratio (10000 ppr, 5000 ppr, 2500 ppr, 1000 ppr)
- Automatic real time tunning to adjust for dynamically changing load condition
- Mechatrolink- II communication (Optional)

Fast & easy setup

Servomotor - Specifications

Specifications

Voltage			200 VA	(C		Description			
Servomotor Model: SJME		01	02	04	08				
Applicable Servopack	SJDE	01	02	04	08	_			
Rated Output*1	W	100	200	400	750	Motor output at the rated operating point			
Rated Torque*1,*2	N.m	0.318	0.637	1.27	2.39	Torque at the rated operating point			
Instantaneous Peak Torque*1	N.m	0.955	1.91	3.82	7.16	Maximum instantaneous torque of the motor			
Rated Current*1	Amp	0.84	1.1	2.0	3.7	Current flowing to the motor at the rated operating point			
Instantaneous Max. Current*1	Amp	2.5	3.3	6.0	11.1	Maximum instantaneous current that is allowed to flow to the motor			
Rated Speed*1	min-1		300	00		Speed at the rated operating point			
Max. Speed*1	min-1		450	00		Highest possible speed			
Torque Constant	N.m/Amp	0.413	0.645	0.682	0.699	Generated torque ratio for current flowing to the motor			
Rotor Moment of Inertia	kg. m ² x 10 ⁻⁴	0.0634	0.330	0.603	1.50	Inertia moment at the rotor shaft			
Rated Power Rate*1	kW/s	16.0	12.3	26.7	38.1	Motor output per unit time			
Rated Angular Acceleration*1	rad/s ²	50200	19300	21100	15900	The oretical angular acceleration(also called torque-to- inertia ratio) at the rated torque			
Time Rating			Со	ntinuous		"Continuous rating" means that the temperature of the Servomotor in continuous operation under specified conditions will not exceed specified temperature or other limitation			
Thermal Class				В		Highest allowable temperature for armature winding: 130°C			
Vibration Class			15µn	n or below		The maximum vibration amplitude of the motor expressed in units of micrometers on the condition that the vibration is measured with a vibrometer parallel to the shaft and in two directions perpendicular to the shaft.			
Withstand Voltage			1500 VAC	for one mir	nute	_			
Insulation Resistance			500 V	DC, 10 M		_			
Enclosure		Totally enclosed,	self-cooled, IP55	(excluding shaft	opening and connectors)	Level of protection from dust and water drops			
Impact Resistance			and front to bac		ections — vertical,	Impact resistance of the motor in three directions (up and down, left and right, and back and forth) with the motor shaft mounted horizontally			
Vibration Resistance			cceleration: 4 side to side,		hree directions back.	Vibration resistance of the motor in three directions (up and down, left and right, and back and forth) with the motor shaft mounted horizontally			

^{*1.} These items and speed/torque characteristics quoted in combination with an SJDE Servopack are at an armature winding temperature of 100°C. Other values are quoted at 20°C

Speed / Torque characteristics

Model Designations

1: No option C: 24 VDC brake

^{*2.} The rated torques listed here are the values for the continuous allowable torque at 40°C with an aluminum heatsink (250 mm × 250 mm × 6 mm) attached

Servopack - Specifications

Specifications

Ser	vopack model SJD	E-	01APA	02APA	04APA	08APA						
Max	c. applicable Servo	motor capacity [kW]	0.1	0.2	0.4	0.75						
Cor	ntinuous output cu	rrent [Amps]	0.84	1.1	2.0	3.7						
		output current [Amps]	2.5	3.3	6.0	11.1						
IIISI	1		2.0			11.1						
	it power supply	ltage			230 VAC, +10% to -15% Hz ± 5%							
	control circuit)	equency	0.40		T							
	Ca	pacity at rated output [kVA]	0.40	0.75	1.2	2.2						
Pow	er loss at rated out	out [W]	14	16	24	35						
Inpu	ut control method		Capacitor-input type, sing	le-phase full-wave rectifica	ation with resistance to pre-	vent inrush currents						
Out	put control metho	d	PWM control, sine wave	power driven system								
Fee	dback		Analog output encoder									
Allo	wable load inertia	[kgm ²]*1	0.6 x 10 ⁻⁴	3 x 10 ⁻⁴	5 x 10 ⁻⁴	10 x 10 ⁻⁴						
	Input signal for Reference Designated pulse type	Pulse type	Select one of the followin 1. CCW + CW 2. Sign + pulse train 3. CCW + CW (logic reve 4. Sign + pulse train (log	ersal) ic reversal)								
I/O Signals	and Pulse resolution with PULSE switch	Pulse resolution	1. 1000 pulses/rev (Oper 2. 2500 pulses/rev (Oper 3. 5000 pulses/rev (Line	Select one of the following signals: 1. 1000 pulses/rev (Open collector/line driver) 75 kpps max. 2. 2500 pulses/rev (Open collector/line driver) 187.5 kpps max. 3. 5000 pulses/rev (Line driver) 375 kpps max. 4. 10000 pulses/rev (Line driver) 750 kpps max.								
) Sić	Clear input signa	al	Clears the positioning er	ror when turned ON								
ĭ	Servo ON input	signal	Turns the Servomotor ON or OFF									
	Alarm output sig	nal	OFF if an alarm occurs Note: OFF for 2s when power is turned ON									
	Brake output sig	nal	External signal to control brakes. Turn ON to release the brake									
	Positioning com	oleted output signal	ON if the current position is equal to the reference position ± 10 pulses									
	Origin output sig	nal	ON if the motor is at the origin. (Width: 1/500 rev) Note: Use the pulse edge that changes the signal from OFF to ON									
	Dynamic brake (DB)		OFF, Servo alarm, Servo ON if the motor power is c								
ctions	Regenerative pr	ocessing	Optional (If the regenerated enery	r is too large, install a rege	enerative unit)							
Built-in functions	Protection		Speed erros, overload, e cooling fan, system error Note: No built-in circuit for gr	s	ors, overcurrents, disable	ment of the built-in						
_	LED display		5 (PWR, REF, AL1, AL2,	AL3)								
	Reference filter		Select one of eight levels	s with FIL switch								
Coc	oling method		Forced cooling (built-in fa	an)								
Орє	erating temperatur	е	0°C to + 55°C									
Орє	erating humidity		90% RH or less (with no	condensation)								
Sto	rage temperature		-20°C to + 70°C									
Sto	rage humidity		90% RH or less (with no									
Inst	allation site		Free of corrosive gases Free of dust and iron po Clean and dry									
Altit	ude		1000 m or below									
Vibr	ration resistance		4.9m/s ²									
Sho	ock resistance		19.6m/s ²									
Оре	erating conditions		Installation category (over Pollution degree: 2 Protection class: IP1X (E	0 0 1,								

^{*1.} Be sure to use the motor within the allowable load inertia moment. The operation of the motor will become unstable if the allowable load Inertia moment is exceeded

Features & Type Designation

- V Delivers the highest performance in industry

SIGMA-V series Servo Drives - 50W to 15kW

Build the machine you've dreamed of with Sigma-V

Features

Simple Tuning

Get up and running quickly after hooking up the motor

 New tuning-less function

Even without Servo adjustment and with load changes, oscillation and vibration free drive is possible up to 20 times the load movement of Inertia.

Setting time: 100 to 150 ms level

Minimize setting time with less vibration

 New advanced autotuning

The reference filter and feedback gain adjustment functions have a new automatic fee forward gain adjustment for optimal adjustment performance. The friction compensation function automatically cancels out the effect of friction on machine characteristics.

Setting time:10 ms level

Fine tuning is a must

 New 1-parameter tuning

Fine tuning can tweak machine performance to the max

Setting time:0 to 4 ms level

Encoder Resolution

Encoder with 20 bit (1,048,576)pulses / revolution

Enhanced Vibration Suppression

Improved tracking and settling time

USB1.1 Support

Realtime trace of adjustment state means you can check instantly

Type Designation

SGMJV-01 A D A 21

Sigma V Servomotor Type SGMJV (Medium Inertia, Small capacity)
SGMAV (Low Inertia, Small capacity)
SGMGV (Medium Inertia, Medium capacity)

Capacity KW (1st & 2nd Digit) ⊢

Code SGMJV SGMAV SGMGV							
			SGMGV				
A5	0.05	0.05					
01	0.1	0.1					
C2		0.15					
02	0.2	0.2					
03			0.3				
04	0.4	0.4					
05			0.45				
06		0.55					
08	0.75	0.75					
09			0.85				
13			1.3				
20			1.8				
30			2.9				
44			4.4				
55			5.5				
75			7.5				
1A			11				
1E			15				

Voltage (3rd Digit) ⊢

Voltage(V)
200
400

└ Brake, Oil Seal Specifications (7th Digit)

1	No Brake, No Oil Seal
S	Oil Seal
С	24VDC Brake
Е	Oil Seal +24VDC Brake

→ Shaft End Specifications (6th Digit)

			Туре	
Code	Shaft End	SGMJV	SGMAV	SGMGV
2	Straight without key (standard)	0	0	0
6	Straight with key and tap (optional)	0	0	0
8	Straight without key and with tap (optional)	0	0	
В	With two flat seats (optional)	0	0	

Design Procedure (5th Digit)

(A

→ Serial Encoder Specifications (4th Digit)

			Type	
Code	Shaft End	SGMJV	SGMAV	SGMGV
3	20-Bit Absolute	0	0	0
D	20-Bit Incremental	0	0	0
Α	13-Bit Incremental	0		

Color Code	Voltage (V)
	200
	200/400

Servomotor - Ratings & Specifications

Ratings & Specifications

Series	Capacity (kW)	Rated Torque (N.m)	Peak Torque (N.m)	Rated Speed (Peak Speed) (rpm)	Maximum Inertia (kg.m2 x e-4)	Allowed Load Moment of Inertia	Rate Power Rate (kW/s)	E	Basic	spe	cifica	tions	
	0.05	0.159	0.557		0.0414	20 times	6.11						
SGMJV	0.1	0.318	1.11		0.0665	20 times	15.2						
Medium inertia,	0.2	0.637	2.23	3000 (6000)	0.259	15 times	15.7						
low capacity	0.4	1.27	4.46		0.442	10 times	36.5	ning)					
	0.75	2.39	8.36		1.57	10 times	36.3	aft ope					
	0.05	0.159	0.477		0.0242		10.4	Enclosure: IP65 (ex. shaft opening)					
	0.1	0.318	0.955		0.038	30 times	26.6	IP65 (e					
COMAN	0.15	0.477	1.43		0.0531	30 times	42.8	sure:				ensing)	
SGMAV Low inertia, small capacity	0.2	0.637	1.91	3000 (6000)	0.116		35	Enck	min.				
Sinaii capacity	0.4	1.27	3.82		0.19	20 times	84.9		, 10 M	snor	+40°0	-cond	
	0.55	1.75	5.25		0.326		93.9) VDC	Operation Type: Continuous	Ambient Temperature: 0 to +40°C	Ambient Humidy: 20 to 80% (non-condensing)	ss: V15
	0.75	2.39	7.16		0.769		74.1		ce: 500				Vibration Class: V15
	0.3	1.96	5.88		2.48		15.5		Insulation Resistance: 500 VDC, 10 M			idy: 20	/ibratic
	0.45	2.86	8.92		3.33		24.6		ion Re			t Hum	
	0.85	5.39	13.8		13.9		20.9	g)	nsulat		∢	mbien	
	1.3	8.34	23.3		19.9		35	pening				٩	
SGMGV	1.8	11.5	28.7	1500 (3000)	26		50.9	shaft c					
Medium inertia, medium	2.9	18.6	45.1		46	5 times	75.2	7 (ex.					
capacity	4.4	28.4	71.1		67.5		119	re: IP6					
	5.5	35	87.6		89		138	Enclosure: IP67 (ex. shaft opening)					
	7.5	48	119		125		184	Ū					
	11	70	175	1500	242		202						
	15	95.4	224	(2000)	303		300						

Ratings and Specifications (SGMJV series)

Time Rating: Continuous Vibration Class: V15

Insulation Resistance: 500 VDC, 10 M min.

Ambient Temperature: 0 to 40°C Excitation: Permanent magnet Mounting: Flange-mounted Thermal Class: B

Withstand Voltage: 1500 VAC for one minute Enclosure: Totally enclosed, self-cooled, IP65 (except for shaft opening)

Ambient Humidity: 20% to 80% (no condensation)

Drive Method: Direct drive

Rotation Direction: Counter clockwise (CCW) with forward run

reference when viewed from the load side

Voltage		200 V							
Servomotor Model: SGMJV-		A5A	01A	02A	04A	08A			
Rated Output*1	W	50	100	200	400	750			
Rated Torque*1, *2	N•m	0.159	0.318	0.637	1.27	2.39			
Instantaneous Peak Torque*1	N•m	0.557	1.11	2.23	4.46	8.36			
Rated Current*1	Arms	0.61	0.84	1.6	2.7	4.7			
Instantaneous Max. Current*1	Arms	2.1	2.9	5.8	9.3	16.9			
Rated Speed*1	min ⁻¹	3000							
Max.Speed*1	min ⁻¹			6000					
Torque Constant	N•m/Arms	0.285	0.413	0.435	0.512	0.544			
Rotor Moment of Inertia	x 10 ⁻⁴ kg•m ²	0.0414	0.0665	0.259	0.442	1.57			
Rotor Mornerit or Therita	x 10 kg•m=	(0.0561)	(0.0812)	(0.323)	(0.506)	(1.74)			
Rated Power Rate*1	KW/s	6.11	15.2	15.7	36.5	36.3			
Rated Angular Acceleration*1	rad/s ²	38400	47800	24600	28800	15200			
Applicable Servopack	SGDV-	R70□	R90□	1R6A, 2R1F	2R8□	5R5A			

^{*1.} These items and torque-motor speed characteristics quoted in combination with an SGDV Servopack are at an armature winding temperature of 100°C. Other values quoted are at 20°C.

Note: The values in parentheses are for servomotors with holding brakes.

В

Torque (N•m)

• Torque-Motor Speed Characteristics A: Continuous Duty Zone

B: Intermittent Duty Zone^(Note3)

6000

5000

4000

3000

2000

1000

Motor Speed (min-1)

Notes: 1. The Solid, dotted, and dashed-dotted lines of the intermittent duty zone indicate the characteristics when a servomotor runs with the following combinations:

- The solid line: With a three-phase 200 V or a single-phase 230 V Servopack
- The dotted line: With a single-phase 200 V Servopack
- The dashed-dotted line: With a single-phase 100 V Servopack

An SGMAV-A5A servomotor has the same characteristics in combination with three-phase 200 V and single-phase 200 V servopack.

- 2. The characteristics of the intermittent duty zone differ depending on the supply voltages.
- 3. When the effective torque during intermittent duty is within the rated torque, the servomotor can be used within the intermittent duty zone.
- 4. When the main circuit cable length exceeds 20 m, note that the intermittent duty zone of the *Torque-Motor Speed Characteristics* will shrink as the line-to-line voltage drops.

^{*2.} Rated torques are continuous allowable torque values at 40°C with an aluminium heat sink of the following dimensions attached. SGMJV-A5A, -01A: 200 mm x 200 mm x 6 mm SGMJV-02A, -04A, -08A: 250 mm x 250 mm x 6 mm

Servomotor - Ratings & Specifications

Ratings and Specifications (SGMAV series)

Time Rating: Continuous Vibration Class: V15

Insulation Resistance: 500 VDC, 10 M

Ambient Temperature: 0 to 40°C **Excitation:** Permanent magnet Mounting: Flange-mounted Thermal Class: B

Withstand Voltage: 1500 VAC for one minute Enclosure: Totally enclosed, self-cooled, IP65 (except for shaft opening)

Ambient Humidity: 20% to 80% (no condensation)

Drive Method: Direct drive

Rotation Direction: Counterclockwise (CCW) with forward run

reference when viewed from the load side

Voltage		200 V									
Servomotor Model: SGMAV-		A5A	01A	C2A	02A	04A	06A	08A	10A		
Rated Output*1	W	50	100	150	200	400	550	750	1000		
Rated Torque*1, *2	N•m	0.159	0.318	0.477	0.637	1.25	1.75	2.39	3.18		
Instantaneous Peak Torque*1	N•m	0.477	0.955	1.43	1.91	3.82	5.25	7.16	9.55		
Rated Current*1	Arms	0.66	0.91	1.3	1.5	2.6	3.8	5.3	7.4		
Instantaneous Max. Current*1	Arms	2.1	2.8	4.2	5.3	8.5	12.2	16.6	23.9		
Rated Speed*1	min ⁻¹	3000									
Max.Speed*1	min ⁻¹				60	00					
Torque Constant	N•m/Arms	0.265	0.375	0.381	0.450	0.539	0.496	0.487	0.467		
Rotor Moment of Inertia	x 10 ⁻⁴ kg•m ²	0.0242	0.0380	0.0531	0.116	0.190	0.326	0.769	1.20		
Rotor Moment of Thertia	x 10 ' kg•m-	(0.0389)	(0.0527)	(0.0678)	(0.180)	(0.254)	(0.403)	(0.940)	(1.41)		
Rated Power Rate*1	KW/s	10.4	26.6	42.8	35.0	84.9	93.9	74.1	84.1		
Rated Angular Acceleration*1	rad/s ²	65800	83800	89900	54900	67000	53700	31000	26500		
Applicable Servopack	SGDV-	R70□	R90□	1R6A,	2R1F	2R8□	5R5A	5R5A	120A		

These items and torque-motor speed characteristics quoted in combination with an SGDV Servopack are at an armature winding temperature of 100°C. Other values quoted are at 20°C.

SGMAV-10A: 300 mm x 300 mm x 12 mm Note: The values in parentheses are for servomotors with holding brakes.

• Torque-Motor Speed Characteristics A: Continuous Duty Zone B: Intermittent Duty Zone(Note3)

Notes: 1. The Solid, dotted, and dashed-dotted lines of the intermittent duty zone indicate the characteristics when a servomotor runs with the following combinations:

- The solid line: With a three-phase 200 V or a single-phase 230 V Servopack
- The dotted line: With a single-phase 200 V Servopack
 The dashed-dotted line: With a single-phase 100 V Servopack
- An SGMAV-A5A servomotor has the same characteristics in combination with three-phase 200 V and single-phase 200 V Servopacks
- The characteristics of the intermittent duty zone differ depending on the supply voltages.
 When the effective torque during intermittent duty is within the rated torque, the servomotor can be used within the intermittent duty zone.
- 4. When the main circuit cable length exceeds 20 m, note that the intermittent duty zone of the Torque-Motor Speed Characteristics will shrink as the line-to-line voltage drops

Rated torques are continuous allowable torque values at 40°C with an aluminium heat sink of the following dimensions attached. SGMAV-A5A, -01A: 200 mm x 200 mm x 6 mm SGMAV-C2A, -02A, -04A, -06A, -08A: 250 mm x 250 mm x 6 mm

Servomotor - Ratings & Specifications

Ratings and Specifications (SGMGV series)

Time Rating: Continuous Vibration Class: V15

Insulation Resistance: 500 VDC, 10 M min.

Ambient Temperature: 0 to 40°C **Excitation:** Permanent magnet Mounting: Flange-mounted

Thermal Class: F

Withstand Voltage: 1500 VAC for one minute (200-V Class)

1800 VAC for one minute (400-V Class)

Enclosure: Totally enclosed, self-cooled, IP67

(except for shaft opening)

Ambient Humidity: 20% to 80% (no condensation)

Drive Method: Direct drive

Rotation Direction: Counter clockwise (CCW) with forward run

reference when viewed from the load side

200-V Class

200 1 0.000												
Servomotor Model: SGMGV-		03A	05A	09A	13A	20A	30A	44A	55A	75A	1AA	1EA
Rated Output*1	kW	0.3	0.45	0.85	1.3	1.8	2.9	4.4	5.5	7.5	11	15
Rated Torque*1	N•m	196	2.86	5.39	8.34	11.5	18.6	28.4	35.0	48.0	70.0	95.4
Instantaneous Peak Torque*1	N•m	5.88	8.92	13.8	23.3	28.7	45.1	71.1	87.6	119	175	224
Rated Current*1	Arms	2.8	3.8	6.9	10.7	16.7	23.8	32.8	42.1	54.7	58.6	78
Instantaneous Max. Current*1	Arms	8	11	17	28	42	56	84	110	130	140	170
Rated Speed*1	min ⁻¹		1500									
Max. Speed*1	min ⁻¹		3000					2000				
Torque Constant	N•m/Arms	0.776	0.854	0.859	0.891	0.748	0.848	0.934	0.871	0.957	1.32	1.37
Rotor Moment of Inertia	x10 ⁻⁴ kg•m ²	2.48 (2.73)	3.33 (3.58)	13.9 (16)	19.9 (22)	26 (28.1)	46 (54.5)	67.5 (76.0)	89.0 (97.5)	125 (134)	242 (261)	303 (341)
Rated Power Rate*1	kW/s	15.5 (14.1)	24.6 (22.8)	20.9 (18.2)	35.0 (31.6)	50.9 (47.1)	75.2 (63.5)	119 (106)	138 (126)	184 (172)	202 (188)	300 (283)
Rated Angular Acceleration*1	rad/s ²	7900 (7180)	8590 (7990)	3880 (3370)	4190 (3790)	4420 (4090)	4040 (3410)	4210 (3740)	3930 (3590)	3840 (3580)	2890 (2680)	3150 (2960)
Applicable Servopack	SGDV-	3R8A	3R8A	7R6A	120A	180A	330A 220A*2	330A	470A	550A	590A	780A

^{*1.} These items and torque-motor speed characteristics quoted in combination with a Servopack are at an armature winding temperature of 20°C.

SGMGV-09A/-13A/-20A: 400 mm x 400 mm x 20 mm (iron) SGMGV-30A/-44A/-55A/-75A: 550 mm x 550 mm x 30 mm (iron) SGMGV-1AA/-1EA: 650 mm x 650 mm x 35 mm (iron)

400-V Class

Servomotor Model: SGMGV-		03D	05D	09D	13D	20D	30D	44D	55D	75D	1AD	1ED
Rated Output*	kW	0.3	0.45	0.85	1.3	1.8	2.9	4.4	5.5	7.5	11	15
Rated Torque*	N•m	196	2.86	5.39	8.34	11.5	18.6	28.4	35.0	48.0	70.0	95.4
Instantaneous Peak Torque*	N•m	5.88	8.92	13.8	23.3	28.7	45.1	71.1	87.6	119	175	224
Rated Current*	Arms	1.4	1.9	3.5	5.4	8.4	11.9	16.5	20.8	25.7	28.1	37.2
Instantaneous Max. Current*	Arms	8	11	17	28	42	56	84	110	130	140	170
Rated Speed* min ⁻¹			1500									
Max. Speed* min-1			3000						20	00		
Torque Constant	N•m/Arms	1.55	1.71	1.72	1.78	1.50	1.70	1.93	1.80	1.92	2.64	2.74
Rotor Moment of Inertia	x10 ⁻⁴ kg•m ²	2.48 (2.73)	3.33 (3.58)	13.9 (16)	19.9 (22)	26 (28.1)	46 (54.5)	67.5 (76.0)	89.0 (97.5)	125 (134)	242 (261)	303 (341)
Rated Power Rate*	kW/s	15.5 (14.1)	24.6 (22.8)	20.9 (18.2)	35.0 (31.6)	50.9 (47.1)	75.2 (63.5)	119 (106)	138 (126)	184 (172)	202 (188)	300 (283)
Rated Angular Acceleration*	rad/s ²	7900 (7180)	8590 (7990)	3880 (3370)	4190 (3790)	4420 (4090)	4040 (3410)	4210 (3740)	3930 (3590)	3840 (3580)	2890 (2680)	3150 (2960)
Applicable Servopack	SGDV-	1R9D	1R9D	3R5D	5R4D	8R4D	120D	170D	210D	260D	280D	370D

^{*1:} These items and torque-motor speed characteristics quoted in combination with a Servopack are at an armature winding temperature of 20°C. Notes: 1. The values in parentheses are for servomotors with holding brakes.

SGMGV-30D/-44D/-55D/-75D: 550 mm x 550 mm x 30 mm (iron) SGMGV-1AD/-1ED: 650 mm x 650 mm x 35 mm (iron)

^{*2.} Some restrictions apply when using an SGDV-200A Servopack in combination with an SGMGV-30A servomotor.

Notes: 1. The values in parentheses are for servomotors with holding brakes.

^{2.} The above specifications show the values under the cooling condition when the following heat sinks are mounted on the servomotors. SGMGV-03A/-05A: 250 mm x 250 mm x 6 mm (aluminum)

^{2.}The above specifications show the values under the cooling condition when the following heat sinks are mounted on the servomotors. SGMGV-03D/-05D: 250 mm x 250 mm x 6 mm (aluminum) SGMGV-09D/-13D/-20D: 400 mm x 400 mm x 20 mm (iron)

Servopack - Type Designation

Type Designation

Α

D

200

400

- V Series ⊦

Color Code	Voltage (V)	
	200	
	200/400	

Connector list for - II SGMAH, SGMGH series (with brake and without brake)

- II --SGMAH Without Brake Connectors

Sr. No.	Category	Model
1 Interface Connector CN1		JZSP-CKI9
2	Motor Power Mating Connector without brake	JZSP-CMM9-1
3 Drive CN2 Amplifier Mating Connector		JZSP-CMP9-1
4	Motor Encoder Mating Connector	JZSP-CMP9-2

- II --SGMAH With Brake Connectors

Sr. No. Category		Model
1 Interface Connector CN1		JZSP-CKI9
2 Motor Power Mating Connector with brake		JZSP-CMM9-2
3 Drive CN2 Amplifier Mating Connector		JZSP-CMP9-1
4	Motor Encoder Mating Connector	JZSP-CMP9-2

- II --SGMGH Without Brake (1.8kW,2.9kW,4.4kW) Connectors

Sr. No.	Category	Model
1	Interface Connector CN1	JZSP-CKI9
2	Motor Connector Straight-type (2.0,3.0&4.4kW)	MS3106B22-22S
3	Motor Connector cable clamp	MS3057-12A
4	Encoder Straight-type Connector	MS3106B20-29S
5	Encoder Connector cable clamp	MS3057-12A
6	Drive CN2 Amplifier Mating Connector	JZSP-CMP9-1

- II --SGMGH With Brake (1.8kW,2.9kW,4.4kW) Connectors

Sr. No.	Category	Model
1	Interface Connector CN1	JZSP-CKI9
2	Motor Connector Straight-type (2.0,3.0&4.4kW)	MS3106B24-10S
3	Motor Connector cable clamp	MS3057-16A
4	Encoder Straight-type Connector	MS3106B20-29S
5	Encoder Connector cable clamp	MS3057-12A
6	Drive CN2 Amplifier Mating Connector	JZSP-CMP9-1

- II --SGMGH Without Brake (0.45kW,0.85kW,1.3kW) Connectors

Sr. No.	Category	Model
1	Interface Connector CN1	JZSP-CKI9
2	Motor Connector Straight-type (0.45,0.9&1.3kW)	MS3106B18-10S
3	Motor Connector cable clamp	MS3057-10A
4	Encoder Straight-type Connector	MS3106B20-29S
5	Encoder Connector cable clamp	MS3057-12A
6	Drive CN2 Amplifier Mating Connector	JZSP-CMP9-1

Accessories

- II --SGMGH With Brake (0.45kW,0.85kW,1.3kW) Connectors

Sr. No.	Category	Model
1	Interface Connector CN1	JZSP-CKI9
2	Motor Connector Straight-type (0.45,0.9&1.3kW)	MS3106B20-15S
3	Motor Connector cable clamp	MS3057-12A
4	Encoder Straight-type Connector	MS3106B20-29S
5	Encoder Connector cable clamp	MS3057-12A
6	Drive CN2 Amplifier Mating Connector	JZSP-CMP9-1

- II --SGMGH Without Brake (5.5kW,7.5kW,11kW,15kW) Connectors

Sr. No.	Category	Model
1	Interface Connector CN1	JZSP-CKI9
2	Motor Connector Straight-type (5.5kW,7.5kW,11kW,15kW)	MS3106B32-17S
3	Motor Connector cable clamp	MS3057-20A
4	Encoder Straight-type Connector	MS3106B20-29S
5	Encoder Connector cable clamp	MS3057-12A
6	Drive CN2 Amplifier Mating Connector	JZSP-CMP9-1

- II --SGMGH With Brake(5.5kW,7.5kW,11kW,15kW) Connectors

Sr. No.	Category	Model
1	Interface Connector CN1	JZSP-CKI9
2	Motor Connector Straight-type (5.5kW,7.5kW,11kW,15kW)	MS3106B32-17S
3	Motor Connector cable clamp	MS3057-20A
4	Brake power supply Connector	MS3106A10SL-3S
5	Cable clamp for brake power Connector	MS3057-4A
6	Encoder Straight-type Connector	MS3106B20-29S
7	Encoder Connector cable clamp	MS3057-12A
8	Drive CN2 Amplifier Mating Connector	JZSP-CMP9-1

Connector list for JUNMA Series

Sr. No.	Category	Model
1	Drive I/P power Connector (JST Made)	JZSP-CHG9-1
2	CN1-Interface Connector(14 pin connect-Plug)(3M)	JZSP-CHI9-1
3	Motor end Connector receptacle housing(Molex)	JZSP-CHM9-1
4	Drive to motor O/P power Connector (JST Made)	JZSP-CHM9-2
5	Encoder end Connector receptacle housing(Molex)	JZSP-CHP9-1
6	Drive end encoder Connector Shell Kit(3M)	JZSP-CHP9-2

 $^{^{\}star}$ For prefab cables, please contact branch office.

Servo Selection Software

SigmaJunma Size+ Servo Drive sizing software

- · Very Simple to use
- Driving method are shown in comprehensible figures
- Sizing tool models various parameters such as the mechanism, friction, external forces, etc. in the calculation process
- · Inertia is automatically calculated
- · Velocity diagram can be set
- · Sizing information is saved and it is reusable

Selection of Servomotor Size

Formulae for selecting Servomotor capacity

Matina	2	Linear M	1otion		
Motions	Rotational Motion	Horizontal Axis	Vartical Axis		
Mechanical Configuration	1/R Servomotor N : Load axis speed (min ⁻¹)	Servomotor Lead: PB PB: Ball screw lead (m)	Counterbalance 1/R Lead: PB 1/R:Gear ratio		
	V: Load speed (m/min) T: Effective load torque at motor shaft (N⋅m) μ: Friction coefficient	M : Mass of linear-motion unit (kg)Mc : Mass of counterbalance (kg)	 η :Combined efficiency T_M :Servomotor maximum torque (N⋅m) 		
Speed Diagram		Speed Speed V_ℓ For motion V_R For V_R	on of vertical axis		
Travel Distance (m)	$R = \frac{V\ell}{60}.$	$\frac{t_a + 2t_c + t_d}{2}$ (Where $t_a = t_d$, R=	$=\frac{V\ell}{60}(tm-ta)$		
Load axis speed (min ⁻¹)	N.e	$N\ell = \frac{V\ell}{P_B}$	$N\ell = \frac{V\ell}{P_B}$		
Motor Speed (min ⁻¹)		NM = Nl · R			
Effective Load Torque at Motor Shaft (N·m)	$T_L = \frac{T\ell}{R \cdot \eta}$	$T_L = \frac{9.8 \times \mu \cdot M \cdot P_B}{2\pi \cdot R \cdot \eta}$	$T_L = \frac{9.8 \times (M - M_C) P_B}{2\pi \cdot R \cdot \eta}$		
Effective Load Inertia at Motor Shaft (kg·m²)	$J_L = J_{L1} + J_{L2} + J_{L3}$				
Motor Chart (kg m)	J _{L2} - J _{L3}	JL3 JL3 JL2	JL1 JL3 JL1		
Linear Motion	_	$J_{L1} = M \cdot \left(\frac{P_B}{2\pi R}\right)^2$	$J_{L1} = (M + M_C) \cdot \left(\frac{P_B}{2\pi R}\right)^2$		
	• Solid cylinder L (m)	$J\kappa = \frac{1}{8}M\kappa \cdot D^2$ or	$J_K = \frac{\pi}{32} \rho \cdot L \cdot D^4$		
	<u> </u>	ρ (m) ρ : Density (kg/m ²	$\rho = 7.87 \times 10^{3} (\text{kg/m}^{3})$ Aluminum $\rho = 2.70 \times 10^{3} (\text{kg/m}^{3})$		
Rotational Motion	<pre><inertia for="" motor="" shaft=""> At gear input side $J_{L2} = J_K$</inertia></pre>				
	At gear output side $J_{L3} = \frac{J_K}{R^2}$				
Running Power (W)	$P_0 = \frac{2\pi \cdot N_M \cdot T_L}{60}$				
Acceleration Power(W)	$P_{a} = \left(\frac{2\pi}{60} \cdot N_{M}\right)^{2} \frac{J_{L}}{t_{a}}$				
Required Starting Torque (N·m)	$T_P = \frac{2\pi \cdot N_M \left(J_M + J_L\right)}{60 \times t_a} + T_L$				
Required Braking Torque (N·m)		$T_S = \frac{2\pi \cdot N_M \left(J_M + J_L\right)}{60 \times t_d} - T_L$			
Effective Torque (N·m)	$T_{rms} = \sqrt{\frac{T_P^2 \cdot t_a + t_b}{T_{rms}}}$	$\frac{T_L^2 \cdot t_c + T_S^2 \cdot t_d}{t}$	$T_{rms} = \sqrt{\frac{T_P^2 \cdot t_a + T_L^2 (t_c + t_e) + T_S^2 \cdot t_d}{t}}$		
Min. Starting Time (S)	$t_{am} = \frac{2\pi \cdot N_M \left(J_M + J_L\right)}{60 \left(T_M - T_L\right)}$				
Min. Braking Time (S)		$t_{dm} = \frac{2\pi \cdot N_M (J_M + J_L)}{60 (T_M + T_L)}$			

Selection of Servomotor Size Formulae

A4-41	Linear Motion
Motions	Rack & Pinion Chain and Timin Belt
Mechanical Configuration	1/R
	$N\ell$: Load axis speed (min-1) M : Mass of linear-motion unit (kg) d_p : Pitch diameter (m) $V\ell$: Load speed (m/min) $1/R$: Gear ratio Z_p : Number of gear $T\ell$: Effective load torque at motor shaft (N·m) \square : Combined efficiency L_p : Pitch (m) \square : Friction coefficient T_M : Servomotor maximum torque (N·m) $P_B = Z_p \cdot L_p$ or $\pi \cdot d_p$
Speed Diagram	Speed Torque V_{ℓ}
Travel Distance (m)	$R = \frac{V\ell}{60} \cdot \frac{t_a + 2t_c + t_d}{2} \qquad \left(\text{Where } t_a = t_d, \ R = \frac{V\ell}{60} (tm - t_a) \right)$
Load axis speed (min ⁻¹)	$N\ell = \frac{V\ell}{P_B}$
Motor Speed (min ⁻¹)	N _M = N _ℓ · R
Effective Load Torque at Motor Shaft (N·m)	$T_L = \frac{9.8 \times \mu \cdot M \cdot P_B + 2\pi \cdot T_{\ell}}{2\pi \cdot R \cdot \eta}$
Effective Load Inertia at Motor Shaft (kg·m²)	$J_L = J_{L1} + J_{L2} + J_{L3}$
	J_{L3} J_{L3} J_{L3} J_{L2}
Linear Motion	$J_{L\tau} = M \cdot \left(\frac{P_B}{2\pi R}\right)^2$
Rotational Motion	Solid cylinder $ A = \frac{1}{8} M \kappa \cdot D^2 \text{or} J \kappa = \frac{\pi}{32} \rho \cdot L \cdot D^4$ MK: Mass (kg) $\rho : \text{Density (kg/m}^3) \left(\text{Iron} \qquad \rho = 7.87 \times 10^3 (\text{kg/m}^3) \right)$ Inertia for motor shafts At gear input side $J_{L2} = J \kappa$ At gear output side $J_{L3} = \frac{J \kappa}{R^2}$
Running Power (W)	$P_0 = \frac{2\pi \cdot N_M \cdot T_L}{60}$
Acceleration Power(W)	$P_a = \left(\frac{2\pi}{60} \cdot N_M\right)^2 \frac{J_L}{t_a}$
Required Starting Torque (N·m)	$T_P = \frac{2\pi \cdot N_M \left(J_M + J_L\right)}{60 \times t_0} + T_L$
Required Braking Torque (N·m)	$T_{S} = \frac{2\pi \cdot N_{M} \left(J_{M} + J_{L}\right)}{60 \times t_{d}} - T_{L}$
Effective Torque (N·m)	$T_{rms} = \sqrt{\frac{TP^2 \cdot t_a + TL^2 \cdot t_c + Ts^2 \cdot t_d}{t}}$
Min. Starting Time (S)	$t_{am} = \frac{2\pi \cdot N_M \left(J_M + J_L\right)}{60 \left(T_M - T_L\right)}$
Min. Braking Time (S)	$t_{dm} = \frac{2\pi \cdot N_M \left(J_M + J_L\right)}{60 \left(T_M + T_L\right)}$

Selection of Servomotor Size

Servomotor selection example

Mechanical Specifications

- : $V_{\ell} = 30 \text{m/min}$ Load speed
- Mass of linear-motion unit: M = 4 kg
- : DP = 0.064m
- : LP = 0.02m· Pulley thickness
- : $MC = 2690 \text{kg/m}^3$
- Coupling outer diameter : DC = 0.03m • Gear A outer diameter : DA = 0.02m
- $: L_A = 0.02m$ · Gear A thickness
- Gear B outer diameter: DB = 0.1m
- $: L_B = 0.02m$ Gear B thickness

- $: \square A, \square B = 7870 \text{kg/m}^3$ Gear density
- = 5 · Gear ratio

• Positioning interval : tm

- = 40 times/min • Positioning frequency : n
- = 0.5 m Traveling distance = 1.2 S max.
- Friction coefficient : µ
- = 0.05N·m • Effective load torque : Tℓ
- at motor shaft
- Combined efficiency : [(90%)

Speed diagram

Cycle time
$$t = \frac{60}{n} = \frac{60}{40} = 1.5$$
 (s)

Where acceleration time (ta) = deceleration time (ta) and

Acceleration time : $t_a = t_d = t_m - t_s - \frac{60 \times \ell}{V\ell} = 1.2 - 0.1 - \frac{60 \times 0.5}{30} = 0.1$ (s) Constant-speed time : $t_c = t_m - t_s - t_a - t_d = 1.2 - 0.1 - 0.1 - 0.1 = 0.9$ (s)

Speed

 $P_B = \pi d = \pi \times 0.064 = 0.201$

- · Load axis speed
- $N\ell = \frac{V\ell}{P_B} = \frac{30}{0.201} = 149 \text{ (min}^{-1}\text{)}$
- · Motor speed
- $N_M = N_\ell \cdot R = 149 \times 5 = 745 \text{ (min}^{-1})$

Effective torque at motor shaft

$$T_L = \frac{\mu \cdot 9.8 \cdot M \cdot P_B + 2\pi \cdot T_L}{2\pi R \cdot \Box} = \frac{0.2 \times 9.8 \times 4 \times 0.201 + 2\pi \times 0.05}{2\pi \times 5 \times 0.9} = 0.0669 \text{ (N·m)}$$

Effective load moment of inertia at motor shaft

 $J_L = J_{L1} + J_{L2} + J_{L3} = (1.639 + 0.687 + 0.362) \times 10^{-4} = 2.69 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$

- Linear motion
 - $J_{L1} = M \left(\frac{P_B}{2\pi R} \right)^2 = 4 \times \left(\frac{0.201}{2\pi \times 5} \right)^2 = 1.639 \times 10^{-4} \text{ (kg·m}^2)$
- Load-shaft motion: Pulley × 2 + Gear B

$$J_{L2} = \frac{\prod J_i}{R^2} = \frac{1}{5^2} \times \frac{\pi}{32} \times (2690 \times 0.02 \times (0.064)^4 \times 2 + 7870 \times 0.02 \times (0.1)^4) = 0.687 \times 10^{-4} \text{ (kg·m}^2)$$

• Motor-shaft motion: Gear A + Coupling

$$J_{L3} = \frac{\pi}{32} \times 7870 \times 0.02 \times (0.02)^4 + \frac{1}{8} \times 0.3 \times (0.03)^2 = 0.362 \times 10^{-4} \text{ (kg·m}^2)$$

Load running power

$$P_o = \frac{2\pi N_M \cdot T_L}{60} = \frac{2\pi \times 745 \times 0.0669}{60} = 5.2(W)$$

Load acceleration power

$$P_a = \left(\frac{2\pi}{60} N_M\right)^2 \frac{J_L}{I_a} = \left(\frac{2\pi}{60} \times 745\right)^2 \times \frac{2.69 \times 10^{-4}}{0.1} = 16.4(\text{W})$$

Recommended Servomotor selections

Conditions

· TL≦ Motor rated torque

 $\cdot P_a + P_o = (1 \text{ to } 2) \times \text{Motor rated output}$

· N_M ≤ Motor rated speed or maximum speed

· $J_L \leq$ Allowable load inertia of Servopack

From these conditions, the following selections are recommended:

· Servomotor : SJME-02AMA4 · Servopack : SJDE-02APA

<Ratings>

 Rated output : 200(W) : 3000(min-1) · Rated speed : 4500(min⁻¹) · Maximum speed Rated torque

: 0.637(N·m) • Instantaneous peak torque : 1.91(N·m)

 Rotor moment of inertia : 0.417×10⁻⁴(kg·m²)

• Allowable load inertia of Servopack : 3×10-4(kg·m²)

Servomotor check Required starting torque

$$T_{P} = \frac{2\pi N_{M} \left(J_{M} + J_{L}\right)}{60 \, t_{a}} + T_{L} = \frac{2\pi \times 745 \times (0.417 + 2.69) \times 10^{-4}}{60 \times 0.1} + 0.0669 = 0.309 (\text{N} \cdot \text{m})$$

<1.91(N·m) = Instantaneous peak torque Therefore, the Servomotor can be used.

Required breaking troque

$$T_S = \frac{2\pi N_M \left(J_M + J_L\right)}{60 t_a} - T_L = \frac{2\pi \times 745 \times (0.417 + 2.69) \times 10^{-4}}{60 \times 0.1} - 0.0669 = 0.175 (\text{N} \cdot \text{m})$$

<1.91(N·m) = Instantaneous peak torque Therefore, the Servomotor can be used

Effective torque

$$T_{rms} = \sqrt{\frac{T_P{}^2 \cdot t_a + T_L{}^2 \cdot t_c + T_S{}^2 \cdot t_d}{t}} = \sqrt{\frac{(0.297)^2 \times 0.1 + (0.0669)^2 \times 0.9 + (0.177)^2 \times 0.1}{1.5}}$$

= 0.1032(N·m)

< 0.637(N·m) = Rated torque

Therefore, the Servomotor can be used

Therefore the recommended selection of servomotors and Servopacks has sufficient capacity and can be used.

Selection of Servomotor Size

Servomotor selection example

Mechanical Specifications

- Load speed
- : *V*ℓ = 15m/min
- Positioning frequency
- n = 40 times/min

- Mass of linear motion unit: M = 80 kg
- · Traveling distance
- = 0.25m $t_m = 1.2 \text{ s max}.$

- · Ball screw length
 - : DB = 0.016m
- · Positioning interval • Friction coefficient
- = 0.2

- Ball screw diameter Ball screw lead
 - $: P_B = 0.005 \text{m}$: MC = 0.3 kg
- · Combined efficiency
- (90%)

Speed diagram

Cycle time
$$t = \frac{60}{n} = \frac{60}{40} = 1.5$$
 (s)

Where acceleration time (t_a) = deceleration time (t_d) and setting time (t_c) = 0.1

Acceleration time : $t_a = t_d = t_m - t_s - \frac{60 \times l}{Vl} = 1.2 - 0.1 - \frac{60 \times 0.5}{30} = 0.1$ (s) Constant-speed time : $t_c = t_m - t_s - t_a - t_d = 1.2 - 0.1 - 0.1 - 0.1 = 0.9$ (s)

Speed

$$N\ell = \frac{V\ell}{P_B} = \frac{15}{0.005} = 3000 \text{ (min}^{-1})$$

· Motor speed

Because of direct coupling, the gear ratio is 1/R = 1/1.

Then. $N_M = N_\ell \cdot R = 3000 \times 1 = 3000 \text{ (min}^{-1})$

Effective torque at motor shaft

$$T_L = \frac{\mu \cdot 9.8 \cdot M \cdot P_B}{2\pi R \cdot \Box} = \frac{0.2 \times 9.8 \times 80 \times 0.005}{2\pi \times 1 \times 0.9} = 0.139 \text{ (N·m)}$$

Effective load moment of inertia at motor shaft

 $J_L = J_{L1} + J_B + J_C = 1.25 \times 10^{-4} \text{ (kg} \cdot \text{m}^2\text{)}$

$$J_{L1} = M \left(\frac{P_B}{2\pi R} \right)^2 = 80 \times \left(\frac{0.005}{2\pi \times 1} \right)^2 = 0.507 \times 10^{-4} \text{ (kg·m}^2)$$

$$J_B = \frac{\pi}{32} \left[1 \cdot L_B \cdot D_B^4 = \frac{\pi}{32} \times 7.87 \times 10^3 \times 0.8 \times (0.016)^4 = 0.405 \times 10^{-4} \right] (\text{kg·m}^2)$$

$$J_C = \frac{1}{8} M_C \cdot D_C^2 = \frac{1}{8} \times 0.3 \times (0.03)^2 = 0.338 \times 10^{-4} \text{ (kg·m}^2)$$

Load running power

$$P_o = \frac{2\pi N_M \cdot T_L}{60} = \frac{2\pi \times 3000 \times 0.139}{60} = 43.7(W)$$

Load running power

$$P_{\theta} = \left(\frac{2\pi}{60} N_{M}\right)^{2} \frac{J_{L}}{t_{\theta}} = \left(\frac{2\pi}{60} \times 3000\right)^{2} \times \frac{1.25 \times 10^{-4}}{0.1} = 123.4(\text{W})$$

Recommended Servomotor selections

Conditions $TL \leq Motor rated torque$

· P_a + P_o =(1 to 2) × Motor rated output · $N_M \le$ Motor rated speed or maximum speed

· $J_L \le$ Allowable load inertia of Servopack

From these conditions, the following selections are recommended:

Servomotor : SJME-02AMA4Servopack : SJDE-02APA

<Ratings>

Rated output : 200(W)
 Rated speed : 3000(min⁻¹)
 Maximum speed : 4500(min⁻¹)
 Rated torque : 0.637(N⋅m)
 Instantaneous peak torque : 1.91(N⋅m)

Rotor moment of inertia : 0.417 × 10⁻⁴ (kg·m²)
 Allowable load inertia of Servopack : 3 × 10⁻⁴ (kg·m²)

Servomotor check Required starting torque

$$T_P = \frac{2\pi N_M (J_M + J_L)}{60 t_a} + T_L = \frac{2\pi \times 3000 \times (0.417 + 1.25) \times 10^{-4}}{60 \times 0.1} + 0.139 = 0.662 (\text{N} \cdot \text{m})$$

< 1.91(N·m)=Instantaneous peak torque

Therefore, the Servomotor can be used.

Required breaking troque

$$T_S = \frac{2\pi N_M \left(J_M + J_L \right)}{60 t_a} - T_L = \frac{2\pi \times 3000 \times (0.417 + 1.25) \times 10^{-4}}{60 \times 0.1} - 0.139 \stackrel{.}{=} 0.384 (\text{N} \cdot \text{m})$$

< 1.91(N·m)= Instantaneous peak torque Therefore, the Servomotor can be used

Effective torque

$$T_{ms} = \sqrt{\frac{T_P{}^2 \cdot t_a + T_L{}^2 \cdot t_c + T_S{}^2 \cdot t_d}{t}} = \sqrt{\frac{(0.662)^2 \times 0.1 + (0.139)^2 \times 0.9 + (0.384)^2 \times 0.1}{1.5}}$$

≒ 0.225(N·m)

< 0.637(N·m)= Rated torque

Therefore, the Servomotor can be used

Therefore the recommended selection of Servomotor's and Servopacks has sufficient capacity and can be used.

Electrical Standard Products (ESP) Branch Offices:

REGISTERED OFFICE AND HEAD OFFICE

L&T House, Ballard Estate P. O. Box 278

Mumbai 400 001 Tel: 022-6752 5656 Fax: 022-6752 5858

Website: www.Larsentoubro.com

ELECTRICAL STANDARD PRODUCTS (ESP)

501, Sakar Complex I Opp. Gandhigram Rly. Station Ashram Road

Ahmedabad 380 009 Tel: 079-66304007-11

Fax: 079-26580491 / 66304025 e-mail: esp-ahm@LNTEBG.com

38, Cubbon Road, Post Box 5098

Bangalore 560 001

Tel: 080-25020100, 25593613

Fax: 080-25580525

e-mail: esp-blr@LNTEBG.com

131/1, Zone II Maharana Pratap Nagar **Bhopal 462 011**

Tel: 0755-4098706 / 7 / 8 / 9

Fax: 0755-2769264

e-mail: esp-bho@LNTEBG.com

Plot No. 559, Annapurna Complex

Lewis Road

Bhubaneswar 751 014 Tel: 0674-6451342, 2436696

Fax: 0674-2537309

e-mail: esp-bbi@LNTEBG.com

SCO 32, Sector 26-D Madhya Marg, P. O. Box 14 **Chandigarh 160 026** Tel: 0172-4646841 to 7 Fax: 0172-4646802

e-mail: esp-chd@LNTEBG.com

10, Club House Road Chennai 600 002

Tel: 044-28462072 / 4 / 5 / 2109 Fax: 044-28462102 / 3 e-mail: esp-maa@LNTEBG.com

67, Appuswamy Road Post Bag 7156 Opp. Nirmala College **Coimbatore 641 045** Tel: 0422-2588120 / 1 / 5 Fax: 0422-2588148

e-mail: esp-cbe@LNTEBG.com

L&T House, Group MIG - 5 Padmanabhpur

Durg 491 001

Tel: 0788-2213833 / 14 / 28 / 29

Fax: 0788-2213820

A1/11, Astronauts Avenue Bidhan Nagar

Durgapur 713 212

Tel: 0343-2536891 / 8952 / 7844

Fax: 0343-2536493

e-mail: esp-dgp@LNTEBG.com

Milanpur Road, Bamuni Maidan

Guwahati 781 021 Tel: 0361-2651297

Fax: 0361-2551308

e-mail: esp-gau@LNTEBG.com

II Floor, Vasantha Chambers 5-10- 173, Fateh Maidan Road

Hyderabad 500004 Tel: 040-66720250

Fax: 040-23296468 e-mail: esp-hyd@LNTEBG.com

D-24, Prithvi Raj Road, C-Scheme Jaipur 302 001

Tel: 0141-2385916 / 18 Fax: 0141-2373280

e-mail: esp-jai@LNTEBG.com

Akashdeep Plaza, 2nd Floor

P. O. Golmuri

Jamshedpur 831 003

Jharkhand

Tel: 0657-2340864 / 387 Fax: 0657-2341250

e-mail: esp-jam@LNTEBG.com

Skybright Bldg. M. G. Road Ravipuram Junction, Ernakulam

Kochi 682 016

Tel: 0484-4409420 / 4 / 5 / 7 Fax: 0484-4409426

e-mail: esp-cok@LNTEBG.com

3-B, Shakespeare Sarani

Kolkata 700 071

Tel: 033-44002572 / 3 / 4 Fax: 033-22822589

e-mail: esp-ccu@LNTEBG.com

A28,Indira Nagar, Faizabad Road Uttar Pradesh,

Lucknow 226 016
Tel: 0522-2312904 / 5 / 6

Fax: 0522-2311671 e-mail: esp-Lko@LNTEBG.com Plot No. 518 4th Main Road K. K. Nagar **Madurai 625 020**

Tel: 0452-2537404, 2521068

Fax: 0452-2537552

e-mail: esp-mdu@LNTEBG.com

EBG North Wing Office - 2 Powai Campus **Mumbai 400 072**

Tel: 022-67052874 / 2737 / 1156

Fax: 022-67051112

e-mail: esp-bom@LNTEBG.com

#12, Shivaji Nagar North Ambazari Road **Nagpur 440 010** Tel: 0712-2260012 / 13

Tel: 0712-2260012 / 13 Fax: 0712-2260020 / 30 e-mail: esp-nag@LNTEBG.com

32, Shivaji Marg P. O. Box 6223 **New Delhi 110 015**

Tel: 011-41419514 / 15 / 16

Fax: 011-41419600

e-mail: esp-del@LNTEBG.com

L&T House P. O. Box 119 191/1, Dhole Patil Road

Pune 411 001 Tel: 020-26135048

Fax: 020-26124910, 26135048 e-mail: esp-pnq@LNTEBG.com

3rd Floor Vishwakarma Chambers Majura Gate, Ring Road

Surat 395 002 Tel: 0261-2473726 Fax: 0261-2477078

e-mail: esp-sur@LNTEBG.com

Radhadaya Complex Old Padra Road Near Charotar Society Vadodara 390 015

Tel: 0265-2311744, 6613610 / 11 / 12

Fax: 0265-2336184

e-mail: esp-bar@LNTEBG.com

48-8-16, Dwarakanagar **Visakhapatnam 530 016** Tel: 0891-6620411-3

Fax: 0891-6620416 e-mail: esp-viz@LNTEBG.com

Product improvement is a continuous process. For the latest information and special applications, please contact any of L&T's offices listed here.

Electrical Standard Products
Larsen & Toubro Limited
Powai Campus, Mumbai 400 072
Customer Interaction Center (CIC)
BSNL / MTNL (toll free): 1800 233 5858
Reliance (toll free): 1800 200 5858

Tel: 022 6774 5858 Fax: 022 6774 5859 E-mail: cic@LNTEBG.com Website: www.LNTEBG.com

