Derivative-Free Optimization via Classification

Yang Yu, Hong Qian and Yi-Qi Hu

Nanjing University

May 25, 2017 Presented by Yifan Ge

Section 1

Background

Derivative-Free Optimization

- $\operatorname{argmin}_{x \in X} f(x)$
- linearity, convexity, differentiability
- genetic algorithms, randomized local search, estimation of distribution algorithms, cross-entropy methods, Bayesian optimization methods, optimistic optimization methods, etc.
- usually model-based

Classification-based Optimization

Algorithm 1 classification-based optimization

Input:

f: Objective function to be minimized;

C: A binary classification algorithm;

 $\lambda \in [0,1]$: Balancing parameter;

 $\alpha_1 > \ldots > \alpha_T$: Threshold for labeling;

 $T \in \mathbb{N}^+$: Number of iterations;

 $m \in \mathbb{N}^+$: Sample size in each iteration;

Sampling: Sampling sub-procedure.

Procedure:

```
1: Collect S_0 = \{x_1, \dots, x_m\} by i.i.d. sampling from \mathcal{U}_X
```

2: Let $\tilde{x} = \operatorname{argmin}_{x \in S_0} f(x)$ 3: **for** t = 1 to T **do**

4: Construct $B_t = \{(x_1, y_1), \dots, (x_m, y_m)\},$ where $x_i \in S_{t-1}$ and $y_i = \text{sign}[\alpha_t - f(x_i)]$

5: Let $S_t = \emptyset$

6: **for** i = 1 to m **do**

7: $h_t = \mathcal{C}(B_t)$, where $h_t \in \mathcal{H}$

8: $x_i = \text{Sampling}(h_t, \lambda)$, and let $S_t = S_t \cup \{x_i\}$

9: end for

10: $\tilde{x} = \operatorname{argmin}_{x \in S_t \cup \{\tilde{x}\}} f(x)$

11: end for

12: **return** \tilde{x} and $f(\tilde{x})$

- Let sign[v] be the sign function returning 1 if v ≥ 0 and 1 otherwise.
- We specify the Sampling(h, λ) as that, it samples with probability λ from \mathcal{U}_{D_h} (the uniform distribution over the positive region classified by h), and with the remaining probability from \mathcal{U}_X (the uniform distribution over X).

Section 2

Theoretical Study

(ϵ, δ) -Query Complexity

Given $f \in \mathcal{F}$, an algorithm A, $0 < \delta < 1$ and $\epsilon > 0$, the (ϵ, δ) -query complexity is the number of calls to f such that, with probability at least $1 - \delta$, A finds at least one solution $\tilde{x} \in X \subseteq \mathbb{R}^n$ satisfying

$$f(\tilde{x}) - f(x^*) \leq \epsilon$$
,

where $f(x^*) = \min_{x \in X} f(x)$.

Section 3

RACOS

Randomized Coordinate Shrinking

Algorithm 2 The randomized coordinate shrinking classification algorithm for $X = \{0,1\}^n$ or $[0,1]^n$

Input:

- t: Current iteration number;
- B_t : Solution set in iteration t;
- X: Solution space $(\{0,1\}^n \text{ or } [0,1]^n)$;
- I: Index set of coordinates;
- $M \in \mathbb{N}^+$: Maximum number of uncertain coordinates.

Procedure:

- B_t⁺ = the positive solutions in B_t
- 2: $B_t^- = B_t B_t^+$
- 3: Randomly select $x_+ = (x_\perp^{(1)}, \dots, x_\perp^{(n)})$ from B_t^+
- 4: Let $D_{h_*} = X$, $I = \{1, \dots, n\}$
- 5: while $\exists x \in B_t^-$ s.t. $h_t(x) = +1$ do
- if $X = \{0, 1\}^n$ then
- k = randomly selected index from the index set I7:
- $D_{h_t} = D_{h_t} \{x \in X \mid x^{(k)} \neq x_+^{(k)}\}, I = I \{k\}$ end if 9:
- if $X = [0, 1]^n$ then 10:
- 11: k = randomly selected index from the index set I12: x^- = randomly selected solution from B_t^-
- if $x_{\perp}^{(k)} > x_{\perp}^{(k)}$ then 13:
- $r = \text{uniformly sampled value in } (x_{-}^{(k)}, x_{\perp}^{(k)})$ 14:

15:
$$D_{h_t} = D_{h_t} - \{ x \in X \mid x^{(k)} < r \}$$

$$\begin{array}{lll} 16: & \textbf{else} \\ 17: & r = \text{uniformly sampled value in } (x_+^{(k)}, x_-^{(k)}) \\ 18: & D_{h_t} = D_{h_t} - \{x \in X \,|\, x^{(k)} > r\} \\ 19: & \textbf{end if} \\ 20: & \textbf{end if} \\ 21: & \textbf{end while} \end{array}$$

- 22: while #I > M do
- k = randomly selected index from the index set I23:
- $D_{h_*} = D_{h_*} \{x \in X \mid x^{(k)} \neq x_{\perp}^{(k)}\}, I = I \{k\}$ 25: end while
- 26: return h_t
 - For a subset $D \subseteq X$. let $\#D = \int_{x \in X} \mathbb{I}[x \in D] dx$ (or $\#D = \sum_{x \in X} \mathbb{I}[x \in D]$ for finite discrete domains), where $\mathbb{I}[\cdot]$ is the indicator function.
 - $D_h = \{x \in X | h(x) = +1\}.$

Experiments

Ackley Function & Sphere Function

(a) Ackley function for n = 2

(b) Sphere function for n = 2

1

¹Wikipedia

Ackley Function & Sphere Function

Figure: Comparing the scalability with 30n evaluations

Ackley Function & Sphere Function

Figure: Comparing the convergence rate with n = 500

Classification with Ramp Loss

- Hinge Loss: $H_s(z) = \max 0, s z$.
- Ramp Loss: $R_s(z) = H_1(z) H_s(z)$, s < 1.
- Objective Function:

$$f(w,b) = \frac{1}{2} \|w\|_2^2 + C \sum_{l}^{L} R_s(y_l(w^T v_l + b)).$$

NON-CONVEX!

Classification with Ramp Loss

Figure: Comparing the achieved objective function values with 40n evaluations against the parameter C of the classification with Ramp loss.

Classification with Ramp Loss

Figure: Comparing the achieved objective function values with 40n evaluations against the parameter C of the classification with Ramp loss.

