Contents

- 线性规划与非线性规划模型
- Matlab线性规划的标准形式
- 线性规划的一个例题
- 0-1规划
- 课程选课方案
- 二次规划
- 非线性无约束规划
- 非线性有约束规划
- HTML Markup Example

线性规划与非线性规划模型

山东理工大学数学学院

```
%shixiangbupt@qq.com
%2020年3月19日
```

Matlab线性规划的标准形式

```
%[x, fval]=linprog(c, A, b, A1, b1, 1b, ub)
% 1b, ub分别表示变量x的取值上界和下界
 c=[-8,-10]; A=[2\ 1;1\ 2]; b=[11\ 10]'; 1b=[0\ 0]';
[x fval]=linprog(c,A,b,[],[],lb);
disp([x',-fval])%求最大值先转为先求最小值
% Find x that minimizes
\% \% f(x) = -5x1 - 4x2 - 6x3,
% % subject to
% % x1 - x2 + x3 \leq 20
% 3x1 + 2x2 + 4x3 \le 42
% 3x1 + 2x2 \le 30
\% \ 0 \leqslant x1, \ 0 \leqslant x2, \ 0 \leqslant x3.
clc, clear
f = [-5; -4; -6];
A = [1 -1 1]
      3 2 4
       3 2 0];
b = [20; 42; 30];
1b = zeros(3, 1):
[x, fval] = linprog(f, A, b, [], [], lb);
```

```
Optimization terminated.
4.0000 3.0000 62.0000
```

Optimization terminated.

线性规划的一个例题

```
f = -2x_1 - x_2 + x_3, \quad s.t. \quad x_1 + x_2 + 2x_3 = 6, \quad x_1 + 4x_2 - x_3 \leq 4, \quad 2x_1 - 2x_2 + x_3 \leq 12, \quad x_1 \geq 0, x_2 \geq 0, x_3 \leq 12, \quad x_1 \geq 0, x_2 \geq 0, x_3 \leq 12, \quad x_1 \geq 0, x_2 \geq 0, x_3 \leq 12, \quad x_1 \geq 0, x_2 \geq 0, x_3 \leq 12, \quad x_1 \geq 0, x_2 \geq 0, x_3 \leq 12, \quad x_1 \geq 0, x_2 \geq 0, x_3 \leq 12, \quad x_1 \geq 0, x_2 \geq 0, x_3 \leq 12, \quad x_1 \geq 0, x_2 \geq 0, x_3 \leq 12, \quad x_1 \geq 0, x_2 \geq 0, x_3 \leq 12, \quad x_1 \geq 0, x_2 \geq 0, x_3 \leq 12, \quad x_2 \geq 0, x_3 \leq 12, \quad x_3 \leq 0, x_3 \leq
```

```
c=[-2 -1 1]';
A=[1 4 -1;2 -2 1];
b=[4,12]';
AI=[1 1 1];b1=6;
1b=[0 0 -inf]';ub=[inf, inf, 5];
[x, fval]=linprog (c, A, b, AI, b1, 1b, ub);
disp([x', fval])
```

```
Optimization terminated.
5.0000 0.0000 1.0000 -9.0000
```

0-1规划

在线性规划模型中,若变量x的取值为0或1,实际问题中,涉及做与不做的问题,大多与0-1规划有关。 [x,fval]=bintprog(c,A,b,A1,b1)

```
clear, clc

c=[-3 2 -5];

A=[1 2 -1;1 4 1;1 1 0;0 4 1];

b=[2 4 63 6];

[x, fval]=bintprog(c, A, b);

disp([x', -fval])
```

```
警告: BINTPROG will be removed in a future release. Use INTLINPROG instead. Optimization terminated.

1 0 1 8
```

课程选课方案

某学校规定:运筹学专业的学生毕业时至少学习过两门数学课,三门运筹学课,和两门计算机课,这些课程的编号,名称。学分和所属类别 由下表给出。在这些限制条件下,一个学生在毕业时最少需要学习这些课程中哪些课程?又,如果某个学生既希望选修课程数量少,而又能获得较高的学分,他应该如何确定相应的选课计划。 建模 以xi=1表示该学生选课程号为i的课程,而表示未选该门课程,则问题的目标函数为 $z=\sum_{i=1}^9 x_i$ 。对毕业时选课的要求为: $x_1+x_2+x_3+x_4+x_5\geq 2,\quad x_3+x_5+x_6+x_8+x_9\geq 3,\quad x_4+x_6+x_7+x_9\geq 2$ 而先修课程的要求转化为关系: $2x_3-x_1-x_2\leq 0,\quad x_4-x_7\leq 0,\quad 2x_5-x_1-x_2\leq 0,\quad 2x_9-x_1-x_2\leq 0,\quad x_6-x_7\leq 0,\quad x_8-x_5\leq 0.$

编号	课程名	学分	类别	先修课
1	微积分	5	数学	
2	线性代数	3	数学	
3	最优化方法	3	数学,运筹学	1,2
4	数据结构	3	数学 , 计算机	7
5	应用统计	3	数学,运筹学	1,2
6	汇编语言	3	计算机,运筹学	7
7	程序设计	4	计算机	
8	自动化控制	2	运筹学	5
9	数学实验	2	计算机,运筹学	1,2

二次规划

若目标函数不是线性函数 ,而是一个二次函数 ,即 $f(x)=\sum a_{ij}^nx_ix_j+\sum_{i=1}^nc_ix_i+a$ 则相应的模型称为二次规划 ,引入矩阵 则目标函数的矩阵形式为 $f=1/2x^THx+cx+a$,这里 $x=(x_1,x_2,\cdots,x_n)^T$,而 $a_{ij}=a_{ji}(i,j=1,2,\cdots,n)$,设二次规划 的目标函数为: $f(x_1,x_2,x_3,x_4)=2x_1^2+3x_2^2+5x_3^2-3x_4^2+3x_1x_2-4x_1x_3+5x_1x_4+2x_2x_3+7x_2x_4-6x_3x_4+4x_1-x_2+3x_3+5x_3x_3+5x_3x_4+2x_2x_3+7x_2x_4-6x_3x_4+4x_1-x_2+3x_3+5x_$

```
%H=[4 3 4 5 ;3 6 2 7;4 2 10 -6;5 7 -6 -6];c=[4 -1 3 5];
H=[1 -1;-1 2];c=[-2 -6];
A=[1 1;-1 2 :2 1];b=[2 2 3];
1b=[0 0];ub=[inf 5];
[x, fval]=quadprog(H, c, A, b, [], [], 1b, ub);
disp([x', fval])
```

Minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the function tolerance, and constraints are satisfied to within the default value of the constraint tolerance.

0. 6667 1. 3333 -8. 2222

非线性无约束规划

语法:[x fval]=fminsearch(f,x0,options)。 案例: $f(x,y)=e^{2x}(x+y^2+2y)$ 的极小值。

```
clear, clc f=\emptyset(x)\exp(2*x(1))*(x(1)+x(2)^2+2*x(2)); x0=[0,0]; [x, fval]=fminsearch(f, x0); disp([x, fval])
```

0.5000 -1.0000 -1.3591

非线性有约束规划

```
\min z = (x_1 - 1.5)^2 + x_2^2, \quad x_1^2 + x_2^2 \le 1, \quad 2x_1 + x_2 \ge 1, \quad x_1, x_2 \ge 0
```

```
%function [c ceq]=con1(x)
% c=x(1)^2+x(2)^2-1;
```

```
% ceq=[];
%x = fmincon(fun, x0, A, b, Aeq, beq, lb, ub, nonlcon, options)
clear, clc
fun='(x(1)-1.5)^2+x(2)^2';%
x0=[0.5 0.5];
A=[-2-1];b=-1;Aeq=[];beq=[];lb=[0, 0];ub=[];
[x, fval, h]=fmincon(fun, x0, A, b, Aeq, beq, lb, ub, 'conl');
disp([x, fval, h])
```

Local minimum found that satisfies the constraints.

Optimization completed because the objective function is non-decreasing in feasible directions, to within the default value of the function tolerance, and constraints are satisfied to within the default value of the constraint tolerance.

1.0000 0.0006 0.2500 1.0000

HTML Markup Example

This is a table:

one	two
three	four

Published with MATLAB® R2014a