Paper Replication Presentation

Time-driven feature-aware Jointly Deep Reinforcement Learning (TFJ-DRL) for Financial Signal Representation and Algorithmic Trading

Problem & Flaws of Previous Attempts

- Design and train a ML algorithm that can:
 - Accurately and continuously perceive financial environment
 - Make profitable decisions in an online manner
- Flaws of Previous DL methods:
 - Costly to train
 - Mapping from price prediction to action cause second error propagation
- Flaws of Previous RL methods:
 - Cannot effectively utilize available environmental features

TFJ-DRL Model and Key Contribution

- TFJ-DRL model consists of two parts:
 - Supervised Learning (SL) for summarizing environmental features
 - Reinforcement Learning (RL) for making trading actions
- Advantage of the model:
 - SL model encodes environment instead of making price prediction: prevent second error propagation
 - SL model summarizes features for RL model: better understanding towards environment
 - Combination of SL and RL speeds up training

High Level Overview of TFJ-DRL

Data & Data Acquisition

- Source: Yahoo Finance
- Time Frame: Jan 2013 Dec 2018
- Scale: Daily [Open, Close, High, Low, Volume]

	Open	High	Low	Close	Volume
Date					
2017-01-03	11.42	11.65	11.02	11.43	55182000
2017-01-04	11.45	11.52	11.24	11.43	40781200
2017-01-05	11.43	11.69	11.23	11.24	38855200
2017-01-06	11.29	11.49	11.11	11.32	34453500
2017-01-09	11.37	11.64	11.31	11.49	37304800

Data Preprocessing

- Get all stock data given stock ticker list
- Calculate technical analysis indicators for all

Indicator category	Indicator name
Overlap studies	BBANDS, DEMA, EMA, SAREXT, SMA, TEMA, WMA
Momentum indicators	ADXR, APO, AROON, CCI, CMO, MFI, MACD, MOM, PLUS_DI, PPO, ROC, ROCP, RSI, STOCH, STOCHF, TRIX, ULTOSC, WILLR
Volume indicators	AD, OBV
Volatility indicators	ATR, NATR
Cycle indicators	HT_DCPERIOD, HT_SINE, HT_DCPHASE,
	HT_PHASOR

- Remove first 90 entries of data (some indicators are NaN)
- Perform Cointegration test for stock of interest against all others
 - Cointegration tests if two series have correlation
 - Normalize and append data from stocks with high correlation
 - Fill with 0's if no stock meets requirement
- Normalize and convert data into shorter sequences (24 days) with overlap (12)

Experiment Design

- Ideally, if we want to predict actions for 30 days starting at day t, we could train the model with some historical data immediately before day t to adapt to the market as closely as possible
- For the convenience of evaluation, given a stock ticker, the model is fit with data Mar 2013 - Oct 2017, validated with data from Oct 2017 - Mar 2018, and tested on data Apr 2018 - Dec 2018
- In real life, all historical data are fed into model, and we try to get current predicted action from the model.
- To mimic real world use, to predict action for day t, 24-day data from t-25 to t-1 is inputted to the model.
- I.e. for 30 day action prediction, 30 * 24-day data are inputted to the model, each offset by 1 day.

Experiment Result 1

Stocks considered in Cointegration (correlation) test:

```
['COO', 'COF', 'ABBV', 'CCL', 'AMD', 'GOOG', 'ABMD', 'ABT', 'ACN', 'ADBE',
'AES', 'NVDA', 'AIG', 'ALL', 'AMG', 'AMZN', 'APA', 'AAPL', 'ATVI', 'AXP',
'BA', 'BBY', 'CAT', 'GE', 'CSCO', 'DRE', 'EA', 'EQR', 'FCX', 'FE', 'HST',
'IBM', 'INTC', 'JCI', 'MMM', 'MO', 'ORCL', 'PPL', 'T', 'EXPD', 'VMC', 'VNO']
```

Experiment on COO:

Demo Stock ticker: COO, change in closing price during testing period: \$19.35

Experiment Result 2

• Experiment on COF:

Demo Stock ticker: COF, change in closing price during testing period: \$-16.23

Demonstration of Algorithm

Stock Gain

15

0

20

10

10

10

20

40

60

80

100

120

140

• Experiment on ABBV:

Demo Stock ticker: ABBV, change in closing price during testing period: \$-10.21

Loss Function Design

Original Loss Function: MSE(t+1 price, predicted price) +

Term 1: quality of environment encoding

-log(probability of taking same action as t-1)* (cumulative reward until t)

Term 2a: minimize frequency of changing actions

Term 2b: encourage action to make profit

- Why Term 2 works: penalize when probability is low but reward is high
- Problem: Penalize bad action choice, but no direct incentive for good action
- Solution: Add Term 3 to encourage high reward:
 - CrossEntropy(predicted action, greedy action)

Greedy Action: the action that maximizes profit at t

Training Comparison for Loss Function

Original Loss

Loss with Term 3

Choice Of Model Output

- Original model uses 3 logits: {-1, 0, 1} for {Short, Neutral, Long}
- Advantage: Neutral position for hard-to-decide environments
- Simplified output: Tanh: (-1, 1) for {Short, Long}
- Disadvantage: loses neutral position
- Advantage:
 - Simpler is better: slightly simplify model and code
 - Easier math with new loss function (MSE instead of CrossEntropy)
 - Generally achieve better results with new loss function

COO: One Hot

Demo Stock ticker: COO, change in closing price during testing period: \$19.35

COO: Tanh

Demo Stock ticker: COO, change in closing price during testing period: \$19.35

ABBV: One Hot

Demo Stock ticker: ABBV, change in closing price during testing period: \$-10.21

demo(net, demo_iter , device, 17, 'DLRL')

Demonstration of Algorithm

ABBV: Tanh

Demo Stock ticker: ABBV, change in closing price during testing period: \$-10.21

Demonstration of Algorithm

GOOG: One Hot

Demo Stock ticker: GOOG, change in closing price during testing period: \$-64.59

Demonstration of Algorithm

GOOG: Tanh

Demo Stock ticker: GOOG, change in closing price during testing period: \$-64.59

Thank You!