Algebraic Topology II

Lectures by Tahl Nowik
Summary by Ari Feiglin (ari.feiglin@gmail.com)

Contents

1	Singular Homology	1
	1.1 Chain Complexes	1
	1.2 Singular Complex	2
	1.3 Singular Homology	3
	1.4 Mayer-Vietoris	11
	1.5 Excision	18
	1.6 Homology of CW Complexes	22

1 Singular Homology

1.1 Chain Complexes

We begin by defining a *chain complex*. A chain complex is a sequence of Abelian groups with homomorphisms between them:

$$\cdots \longrightarrow C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \longrightarrow \cdots \longrightarrow C_0 \longrightarrow 0$$

such that for every n, $\partial_n \circ \partial_{n+1} = 0$, in other words $\operatorname{Im} \partial_{n+1} \subseteq \ker \partial_n$. Define $Z_n = \ker \partial_n$, and its elements will be called *n*-dimensional cycles. And define $B_n = \text{Im}\partial_{n+1}$, its elements will be called boundaries. Elements of the groups C_n will be called *n*-dimensional chains.

We now want to define a category of chain complexes. To do so we must define morphisms between chain complexes. So suppose we have two chain complexes $\mathscr{C} = \{C_n, \partial_n\}$ and $\mathscr{D} = \{D_n, \partial'_n\}$. We define a morphism from \mathscr{C} to \mathscr{D} to be a sequence of homomorphisms $f_n: C_n \longrightarrow D_n$ which preserves the structure of the chain. Meaning $\partial'_n \circ f_n = f_{n-1} \circ \partial_n$, in other words the following diagram commutes:

To simplify writing, we will write $\partial \circ f = f \circ \partial$, which f and which ∂ is being referred to will be understood from context.

The composition of two morphisms $\{f_n\}: \mathscr{C} \longrightarrow \mathscr{D}$ and $\{g_n\}: \mathscr{D} \longrightarrow \mathscr{E}$ is defined to be $\{g_n \circ f_n\}: \mathscr{C} \longrightarrow \mathscr{E}$. This is indeed a morphism:

$$\partial \circ f \circ g = f \circ \partial \circ g = f \circ g \circ \partial$$

And then this implies that the identity morphism is just $\mathrm{Id}_{\mathscr{C}} = \{\mathrm{Id}_{\mathbb{C}_n}\}: \mathscr{C} \longrightarrow \mathscr{C}$, as if $\{f_n\}: \mathscr{C} \longrightarrow \mathscr{D}$ then

$$\{f_n\} \circ \operatorname{Id}_{\mathscr{C}} = \{f_n \circ \operatorname{Id}_{C_n}\} = \{f_n\}, \qquad \operatorname{Id}_{\mathscr{D}} \circ \{f_n\} = \{\operatorname{Id}_{D_n} \circ f_n\} = \{f_n\}$$

Associativity is clear, so **Comp**, the category of chain complexes, is indeed a category.

Now recall that by definition $\partial_n \circ \partial_{n+1} = 0$, meaning

$$B_n \subseteq Z_n \subseteq C_n$$

Since these groups are all Abelian, they are normal in one another, so let us define the nth homology group of a chain complex \mathscr{C} as

$$H_n(\mathscr{C}) := \frac{Z_n}{B_n} = \frac{\ker \partial_n}{\operatorname{Im} \partial_{n+1}}$$

1.1.1 Proposition

A chain complex morphism $\{f_n\}:\mathscr{C}\longrightarrow\mathscr{D}$ maps cycles to cycles and boundaries to boundaries.

Proof: let $z \in C_n$ be a cycle, i.e. $\partial z = 0$, but then f(z) is a cycle since $\partial f(z) = f(\partial z) = f(0) = 0$. And let $b \in C_n$ be a boundary, so there exists an $a \in C_{n+1}$ such that $b = \partial a$. Then $f(b) = f\partial(a) = \partial f(a) = \partial b$, so f(b)is a boundary as well.

This means that if $\{f_n\}: \mathscr{C} \longrightarrow \mathscr{D}$ is a morphism of chain complexes, $\{f_n\}: Z_n(\mathscr{C}) \longrightarrow Z_n(\mathscr{D})$ is well-defined, and so we have that

$$Z_n(\mathscr{C}) \longrightarrow Z_n(\mathscr{D})$$

$$\downarrow \qquad \qquad \downarrow$$

$$H_n(\mathscr{C}) \qquad \qquad H_n(\mathscr{D})$$

Where the blue arrow ψ is just the quotient map composed with f_n . This induces a group morphism

$$H_n(\{f_n\}) = f_*: H_n(\mathscr{C}) \longrightarrow H_n(\mathscr{D})$$

since we can define $f_*([z]) = \psi(z)$ since if [z] = [z'] then $z - z' \in B_n(\mathscr{C})$ and so $f(z - z') \in B_n(\mathscr{D})$ and thus the quotient of f(z - z') is just 0, so $\psi(z) = \psi(z')$. Explicitly,

$$f_*[z] = [f_n z]$$

We now claim that H_n is a functor from the category of chain complexes **Comp** to the category of Abelian groups **Ab**. Now suppose $\{f_n\}: \mathscr{C} \longrightarrow \mathscr{D}$ and $\{g_n\}: \mathscr{D} \longrightarrow \mathscr{E}$ are chain complex morphisms, then the following diagram commutes

$$Z_{n}(\mathscr{C}) \xrightarrow{f} Z_{n}(\mathscr{D}) \xrightarrow{g} Z_{n}(\mathscr{E})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_{n}(\mathscr{C}) \xrightarrow{f_{*}} H_{n}(\mathscr{D}) \xrightarrow{g_{*}} H_{n}(\mathscr{E})$$

And so $(g \circ f)_* = g_* \circ f_*$, and it is easily verified that $id_* = id$ so H_n is a functor $\mathbf{Comp} \longrightarrow \mathbf{Ab}$ (the category of Abelian groups).

1.2 Singular Complex

We now define a functor from **Top** to **Comp**.

1.2.1 Definition

Let B be a set, then define the **free Abelian group** over B to be

$$\operatorname{FA}(B) = \bigoplus_{b \in B} \mathbb{Z} = \{ \varphi : B \longrightarrow \mathbb{Z} \mid \varphi(b) \neq 0 \text{ for only finitely many } b \in B \}$$

Note then that there is a correspondence between B and FA(B): $b \leftrightarrow \varphi_b$ where

$$\varphi_b(x) = \begin{cases} 1 & x = b \\ 0 & x \neq b \end{cases}$$

so we can identify b with φ_b , and it is easy to see that every element of FA(B) can be written as $\sum_{i=1}^k n_i \varphi_{b_i}$, abusing notation $\sum_{i=1}^k nb_i$ and such a representation is unique.

Notice that if B is a set, G an Abelian group, and $g: B \longrightarrow G$ a function, then there exists a unique group homomorphism $L: FA(B) \longrightarrow G$ which extends g. This is defined by

$$L: \sum_{i=1}^{k} n_i b_i \longmapsto \sum_{i=1}^{k} n_i g(b_i)$$

1.2.2 Definition

The n-dimensional simplex is defined to be

$$\Delta^n := \left\{ (x_0, \dots, x_n) \in \mathbb{R}^{n+1} \mid x_i \ge 0, \sum_{i=0}^n x_i = 1 \right\}$$

 Δ^n has n+1 faces, and is homeomorphic to D^n .

1.2.3 Definition

Let X be a topological space, then an n-dimensional singular simplex in X is a morphism (in the category of topological spaces; a continuous map) $\Delta^n \longrightarrow X$. Define $S_n(x)$ to be the set of all n-dimensional

singular simplexes in X, and define $C_n(X) = \text{FA}(S_n(x))$.

We now want to define a chain complex on the sequence $C_n(X)$.

Let us define a set of maps $\tau_i^n: \Delta^{n-1} \longrightarrow \Delta^n$ for $0 \le i \le n$ which maps

$$\tau_i^n: (x_0, \dots, x_{n-1}) \mapsto (x_0, \dots, x_{i-1}, 0, x_i, \dots, x_{n-1})$$

This is a well-defined continuous map, and geometrically it maps Δ^{n-1} to one of the faces of Δ^n . Let $\sigma \in S_n(x)$, then let us define

$$\partial(\sigma) := \sum_{i=0}^{n} (-1)^{i} \sigma \circ \tau_{i}^{n}$$

Note that the composition is well-defined since $\Delta^{n-1} \xrightarrow{\tau_i^n} \Delta^n \xrightarrow{\sigma} X$, meaning $\sigma \circ \tau_i^n$ is an n-1-dimensional singular simplex. Thus ∂ can be extended to a map $\partial: C_n(X) = \operatorname{FA}(S_n(X)) \longrightarrow \operatorname{FA}(S_{n-1}(X)) = C_{n-1}(X)$ Notice that

$$\partial_{n-1}(\partial_n \sigma) = \partial_{n-1} \left(\sum_{i=0}^n (-1)^i \sigma \circ \tau_i^n \right) = \sum_{i=0}^n (-1)^i \partial_{n-1} (\sigma \circ \tau_i^n) = \sum_{i=0}^n \sum_{j=0}^{n-1} (-1)^{i+j} \sigma \circ \tau_i^n \circ \tau_j^{n-1}$$

Notice that $\tau_i^n \circ \tau_j^{n-1} = \tau_j^n \circ \tau_{i-1}^{n-1}$ which can be verified from its definition, but the first has a sign of $(-1)^{i+j}$ in the sum and the second has $-(-1)^{i+j}$. And so the sum is zero.

Thus we have defined a chain complex on $C_n(X)$, let us denote it by $\mathscr{C}(X)$, this is the first step in defining the functor. Next we must define the correspondence between morphisms.

Let $f: X \longrightarrow Y$ be a continuous map between topological spaces. Let us define $f_{\sharp}: \mathscr{C}(X) \longrightarrow \mathscr{C}(Y)$. First we define it for $\sigma \in S_n(X)$ by $f_{\sharp}(\sigma) = f \circ \sigma$. Since $\sigma: \Delta^n \longrightarrow X$ is continuous, so is $f \circ \sigma: \Delta^n \longrightarrow Y$ and so f_{\sharp} is well-defined on the generators of $C_n(X)$. This can be extended by linearity to $f_{\sharp}: C_n(X) \longrightarrow C_n(Y)$. Notice that we ignore the subscripts and superscripts $(f_{\sharp})_n^X$ for brevity and readability.

Now we must verify that this is a morphism of chain complexes, i.e. that $\partial f_{t} = f_{t}\partial$. So

$$f_{\sharp}\partial\sigma = f_{\sharp}\left(\sum_{i=0}^{n}(-1)^{i}\sigma\circ\tau_{i}^{n}\right) = \sum_{i=0}^{n}(-1)^{i}f_{\sharp}(\sigma\circ\tau_{i}^{n}) = \sum_{i=0}^{n}(-1)^{i}f\circ\sigma\circ\tau_{i}^{n} = \sum_{i=0}^{n}(-1)^{i}(f\circ\sigma)\circ\tau_{i}^{n} = \partial f_{\sharp}\sigma\circ\sigma\circ\tau_{i}^{n}$$

and since this holds for generators, by linearity it holds for all $C_n(X)$. Thus f_{\sharp} is indeed a morphism of chain complexes.

Thus we have defined a functor $\mathbf{Top} \longrightarrow \mathbf{Comp}$.

1.3 Singular Homology

We have two functors $\mathbf{Top} \longrightarrow \mathbf{Comp} \longrightarrow \mathbf{Ab}$, and so composing them together gives us a functor $\mathbf{Top} \longrightarrow \mathbf{Ab}$. For a topological space X, we will denote its image under this functor as $H_n(X)$, called the nth homological group of X. And for a continuous map f, we denote its image as f_* or $H_n(f)$.

Let us compute the homological groups of the trivial space: $X = \{p\}$. Notice that $S_n(X) = \{K_n\}$ where K_n is the constant map $\Delta^n \longrightarrow \{p\}$, and so $C_n(X) = \mathbb{Z}$. We want to now compute what the boundary operators are, so

$$\partial K_n = \sum_{i=0}^n (-1)^i K_n \circ \tau_i^n$$

but $K_n \circ \tau_i^n$ is a morphism $\Delta^{n-1} \longrightarrow \{p\}$ meaning it is equal to K_{n-1} , thus $\partial K_n = \left(\sum_{i=0}^n (-1)^i\right) K_{n-1}$. For neven this is then K_{n-1} (or 1), and 0 for n odd. This means that either $\ker \partial = 0$ or $\operatorname{Im} \partial = \mathbb{Z}$, thus $H_n = 0$ for n > 0. For n = 0, we have that $\partial_0: \mathbb{Z} \longrightarrow 0$ and so its kernel is \mathbb{Z} , but ∂_1 is trivial and so its image is 0. Thus $H_0=\mathbb{Z}$.

So we have shown

1.3.1 Proposition

Let $X = \{p\}$ be the trivial topological space, then its homological groups are

$$H_n(X) = \begin{cases} \mathbb{Z} & n = 0\\ 0 & n > 0 \end{cases}$$

1.3.2 Proposition

Let X be path connected, then $H_0(X) \cong \mathbb{Z}$.

Proof: we are concerned with the chain:

$$C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\partial_0} 0$$

So first let us understand $C_0(X)$, this is generated by $S_0(X)$, all the maps $\Delta^0 \longrightarrow X$ which are just all the points in X. And $S_1(X)$ is generated by all the maps $I \cong \Delta^1 \longrightarrow X$, so all the paths in X. The boundary of a 1-simplex is then

$$\partial_1 \sigma = \sigma(1) - \sigma(0)$$

and thus $B_1(X) = \text{Im}\partial_1$ is generated by elements of the form a-b where there exists a path between a and b. Since X is path-connected, this means that $B_1(X)$ is generated by a-b for $a,b \in X$. Now, the subgroup generated by this is $\{\sum n_i p_i \mid p_i \in X, \sum n_i = 0\}$.

And now ∂_0 's kernel is just $C_0(X)$ which is simply the free group generated by X. Thus

$$H_0(X) = \left\{ \sum n_i p_i \right\} / \left\{ \sum n_i p_i \mid \sum n_i = 0 \right\}$$

This is isomorphic to \mathbb{Z} since we can define $\varphi: C_0(X) \longrightarrow \mathbb{Z}$ by $\sum n_i p_i \mapsto \sum n_i$ and this is a group homomorphism whose image is \mathbb{Z} and whose kernel is all the points $\sum n_i p_i$ where $\sum n_i = 0$. Thus by the isomorphism theorem, $H_0(X) \cong \mathbb{Z}$.

1.3.3 Theorem

Let X be a topological space where $\{A_{\alpha}\}_{{\alpha}\in I}$ are its path connected components. Then for every n,

$$H_n(X) \cong \bigoplus_{\alpha \in I} H_n(A_\alpha)$$

Proof: notice that if $\sigma: \Delta^n \longrightarrow X$ is an *n*-simplex, then its image is contained within a path connected component. This is since Δ^n is path-connected, so $\sigma\Delta^n$ must be too. Thus for every $\gamma = \sum n_i \sigma_i \in S_n(X)$ we can write it as $\gamma = \sum \gamma_i$ for $\gamma_i \in S_n(A_i)$. And so $C_n(X) = \bigoplus_{\alpha \in I} C_n(A_\alpha)$.

Notice that γ is a cycle iff every γ_i is a cycle, since $\partial \gamma = \sum \partial \gamma_i$ and this is an element of a direct sum, so it is zero iff $\partial \gamma_i = 0$. Thus $Z_n(X) = \bigoplus_{\alpha \in I} Z_n(A_\alpha)$. And similarly we see that $B_n(X) = \bigoplus_{\alpha \in I} B_n(A_\alpha)$. Thus $H_n(X) = \bigoplus_{\alpha \in I} H_n(A_\alpha)$.

1.3.4 Corollary

If X is a topological space with $\{A_{\alpha}\}_{{\alpha}\in I}$ path connected components, $H_n(X)=\bigoplus_{{\alpha}\in I}\mathbb{Z}$.

1.3.5 Theorem

Let X be path-connected and $a \in X$, then $H_1(X) \cong \operatorname{Ab} \pi_1(X, a)$.

For two chains, $a, b \in C_n(X)$ say that they are homological if a - b is a boundary (i.e. $a - b \in B_n(X)$). Write this as $a \approx b$.

1.3.6 Lemma

Let σ, τ be 1-simplexes.

- (1) if σ is constant, then it is a boundary, i.e. $\sigma \approx 0$.
- (2) if $\sigma \stackrel{\partial I}{\sim} \tau$ (since they are maps from $I \cong \Delta^1 \longrightarrow X$), then $\sigma \approx \tau$.
- (3) if $\sigma(1) = \tau(0)$ then $\sigma * \tau \approx \sigma + \tau$.
- (4) $\sigma + \bar{\sigma} \approx 0$

Proof:

(1) If σ is constant, then it is K_p^1 for some $p \in X$. And as we have already computed

$$\partial K_p^n = \begin{cases} K_p^{n-1} & n \text{ even} \\ 0 & n \text{ odd} \end{cases}$$

Thus $\partial K_p^2 = K_p^{n-1}$, meaning σ is a boundary.

(2) Let us look at the homotopy

Since H is surjective, it induces a map on the quotient space $I \times I / I \times \{1\}$, the map G:

The quotient space can be viewed as a 2-simplex by assigning an order to its vertices. Then its boundary

$$\partial G = K_a - \sigma + \tau$$

and since ∂G is a boundary, we have that

$$K_a - \sigma + \tau \approx 0$$

by (1) we have that $K_a \approx 0$ so $\sigma - \tau \approx 0$.

The idea is to define a simplex of the form

Notice that such a simplex is possible: each horizontal line in the domain can be made constant. And its boundary is

$$\partial G = \tau - \sigma * \tau + \sigma$$

so $\sigma * \tau \approx \sigma + \tau$ since $\partial G \approx 0$.

(4) This is direct from the previous three points:

$$\sigma + \overline{\sigma} \stackrel{(3)}{\approx} \sigma * \overline{\sigma} \stackrel{(2)}{\approx} K_b \stackrel{(1)}{\approx} 0$$

Proof (of theorem 1.3.5): let us define a homomorphism

$$F: \pi_1(X, a) \longrightarrow H_1(X)$$

Denote homotopy equivalence classes by $\langle \bullet \rangle$ and the equivalence classes of $H_1(X)$ by $[\bullet]$. Then we define

$$\langle \varphi \rangle \xrightarrow{F} [\varphi]$$

This is well-defined: if $\varphi \stackrel{\partial I}{\sim} \psi$ then $\varphi \approx \psi$ and so $[\varphi] = [\psi]$ (since $H_n(X)$ is the partition of $Z_n(X)$ relative to \approx). Notice that $\langle \varphi * \psi \rangle \mapsto [\varphi * \psi] = [\varphi + \psi] = [\varphi] + [\psi]$. So this is indeed a homomorphism. Since $H_1(X)$ is Abelian, this induces a homomorphism

$$\overline{F}$$
: Ab $\pi_1(X, a) \longrightarrow H_1(X)$

Let us now define a homomorphism

$$G: C_1(X) \longrightarrow \operatorname{Ab} \pi_1(X, a)$$

denote the equivalence classes of Ab $\pi_1(X, a)$ by $\langle \langle \bullet \rangle \rangle$. For every $x \in X$, choose a path γ_x from a to x, then for $\sigma \in S_1(X)$ define

$$\hat{\sigma} = \gamma_{\sigma(0)} * \sigma * \overline{\gamma}_{\sigma(1)}$$
 from a to a

And define

$$\sigma \stackrel{G}{\longmapsto} \langle \langle \hat{\sigma} \rangle \rangle$$

And extend by linearity to $G: C_1(X) \longrightarrow \operatorname{Ab} \pi_1(X, a)$. We can then restrict G to $Z_1(X)$, and in order for this to induce a map on $Z_1(X) / B_1(X)$ we must have that $G|_{B_1(X)} = 0$. So let A be a 2-simplex, then we must show $G(\partial A) = 0$. We know

$$G(\partial A) = G(A \circ \tau_0 - A \circ \tau_1 + A \circ \tau_2) = \left\langle \left\langle \widehat{A \circ \tau_0} \right\rangle \right\rangle - \left\langle \left\langle \widehat{A \circ \tau_1} \right\rangle \right\rangle + \left\langle \left\langle \widehat{A \circ \tau_2} \right\rangle \right\rangle$$

Now, $\langle\!\langle \sigma \rangle\!\rangle + \langle\!\langle \tau \rangle\!\rangle = \langle\!\langle \sigma \rangle \langle \tau \rangle\!\rangle$ and $-\langle\!\langle \sigma \rangle\!\rangle = \langle\!\langle \sigma^{-1} \rangle\!\rangle$ by Abelianization, so this is equal to

$$\left\langle\!\left\langle \widehat{A \circ \tau_0} \right\rangle\!\left\langle \widehat{A \circ \tau_1} \right\rangle\!\left\langle \widehat{A \circ \tau_2} \right\rangle\!\right\rangle = \left\langle\!\left\langle \widehat{A \circ \tau_0} * \widehat{A \circ \tau_1} * \widehat{A \circ \tau_2} \right\rangle\!\right\rangle$$

As is easily verified,

$$=\left\langle \left\langle \widehat{A\circ\tau_0}\ast\widehat{\overline{A\circ\tau_1}}\ast\widehat{A\circ\tau_2}\right\rangle \right\rangle = \left\langle \left\langle \overline{A\circ\tau_0\ast\overline{A\circ\tau_1}\ast A\circ\tau_2}\right\rangle \right\rangle$$

Since $A: \Delta^2 \longrightarrow X$ is a simplex, $A \circ \tau_0 * \overline{A \circ \tau_1} * A \circ \tau_2$ is null-homotopic (the homotopy can condense the curve to a point through the image of A). Therefore its hat is as well, meaning this is all equal to zero, as required. So G induces a homomorphism

$$\overline{G}: H_1(X) \longrightarrow \operatorname{Ab} \pi_1(X, a)$$

Notice that

$$\overline{G} \circ \overline{F} \langle\!\langle \varphi \rangle\!\rangle = \overline{G} [\varphi] = \langle\!\langle \hat{\varphi} \rangle\!\rangle$$

We know that $\hat{\varphi} = \gamma_a \varphi \overline{\gamma}_a$ which is conjugate to φ , so in the Abelianization they are equal. So $\overline{G} \circ \overline{F} = \mathrm{id}$. Now suppose $[z] \in H_1(X)$ where $z = \sum n_i \sigma_i$ then

$$\overline{F} \circ \overline{G}[z] = \overline{F} \Big(\sum n_i \langle \langle \hat{\sigma}_i \rangle \rangle \Big) = \sum n_i [\hat{\sigma}_i] = \Big[\sum n_i \hat{\sigma}_i \Big]$$

So we need to show that if $\sum n_i \sigma_i$ is a cycle then $\sum n_i \hat{\sigma}_i \approx \sum n_i \sigma_i$. Define $T: C_0(X) \longrightarrow C_1(X)$ by $T(p) = \gamma_p$,

$$\hat{\sigma} = \gamma_{\sigma 0} * \sigma * \overline{\gamma}_{\sigma 1} \approx \gamma_{\sigma 0} + \sigma - \gamma_{\sigma 1} = \sigma - T \partial \sigma$$

And so

$$\sum n_i \hat{\sigma}_i \approx \sum n_i \sigma_i - T \partial \sum n_i \sigma_i = z - T \partial z$$

since z is a cycle, $\partial z = 0$ and so this is equal to z. Thus $\hat{z} \approx z$ as required.

So \overline{F} , \overline{G} are inverse isomorphisms, meaning $H_1(X) \cong \operatorname{Ab} \pi_1(X, a)$.

1.3.7 Definition

Let \mathscr{C}, \mathscr{D} be two categories and let $F, G: \mathscr{C} \longrightarrow \mathscr{D}$ be functors. Then a **natural transformation** η from F to G is a correspondence such that

- (1) for every object $X \in \mathcal{C}$, η associates a morphism $\eta_X : F(X) \longrightarrow G(X)$ called the **component** of X.
- (2) for every $f: X \longrightarrow Y$ morphism, $\eta_Y \circ F(f) = G(f) \circ \eta_X$, i.e. the following diagram commutes

$$F(X) \xrightarrow{\eta_X} G(X)$$

$$F(f) \downarrow \qquad \qquad \downarrow G(f)$$

$$F(Y) \xrightarrow{\eta_Y} G(Y)$$

So for every pointed topology (X,a) we defined a group homomorphism $F_{X,a}:\pi_1(X,a)\longrightarrow H_1(X)$. We claim that this is a natural transformation from π_1 to H_1 .

Suppose there is a morphism $h: (X, a) \longrightarrow (Y, b)$, so we need the following diagram to commute:

$$\begin{array}{c|c} \pi_1(X,a) & \xrightarrow{F_{X,a}} H_1(X) \\ \hline \pi_1(h) & & & H_1(h) \\ \hline \pi_1(Y,b) & \xrightarrow{F_{Y,b}} H_1(Y) \end{array}$$

This is indeed the case:

$$\langle \varphi \rangle \xrightarrow{F_{X,a}} [\varphi] \xrightarrow{H_1(h)} [h \circ \varphi], \qquad \langle \varphi \rangle \xrightarrow{\pi_1(h)} \langle h \circ \varphi \rangle \xrightarrow{F_{Y,b}} [h \circ \varphi]$$

1.3.8 Example

If we look at the identity functor (on the category of groups) and Abelianization, then ρ_{\bullet} , which is the quotient map $\bullet \longrightarrow Ab \bullet$, is a natural transformation. Indeed

$$\begin{array}{ccc} G & \xrightarrow{\rho_G} \operatorname{Ab} G \\ \varphi & & & & & \\ \varphi & & & & & \\ \downarrow & & & & \\ H & \xrightarrow{\rho_H} \operatorname{Ab} H \end{array}$$

Where $\hat{\varphi}[g] = [\varphi(g)]$. This is indeed natural:

$$\rho_H \circ \varphi(g) = [\varphi(g)], \qquad \hat{\varphi} \circ \rho_G(g) = \hat{\varphi}[g] = [\varphi(g)]$$

1.3.9 Definition

The simplified singular chain complex of a topological space X is the chain complex

$$\cdots \longrightarrow C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X) \xrightarrow{\cdots} C_0(X) \xrightarrow{\varepsilon} \mathbb{Z} \longrightarrow 0$$

Where we define ε as follows:

$$\varepsilon \sum n_i p_i = \sum n_i$$

i.e. $\varepsilon p = 1$ for every $p \in X$. And a morphism between two simplified singular chain complexes differ only from morphisms between normal singular chain complexes in that the map from \mathbb{Z} to \mathbb{Z} is the identity.

The homology induced by a simplified singular chain complex is called the **reduced homology** and denoted $\widetilde{H}_n(X)$.

Obviously for every $n \geq 1$, $\widetilde{H}_n(X) = H_n(X)$. Recall that if X is path-connected, then $B_0(X)$ is generated by a-b for $a,b \in X$, so it is $\{\sum n_i p_i \mid \sum n_i = 0\}$. Now $\ker \varepsilon = \{\sum n_i p_i \mid \sum n_i = 0\}$ as well, and so we get that when X is path-connected, $\widetilde{H}_0(X) = 0$.

1.3.10 Definition

A chain of Abelian groups

$$\cdots \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow \cdots$$

is **exact** at B if $\operatorname{Im} f = \ker g$. If the sequence is exact at every group, then the sequence itself is called an **exact sequence**. (Recall that chain complexes require $\operatorname{Im} f \subseteq \ker g$.)

If we have an exact sequence in one of the following forms, then:

- (1) $0 \longrightarrow A \stackrel{f}{\longrightarrow} B$, then $0 = \ker f$ so f is injective.
- (2) $A \xrightarrow{f} B \longrightarrow 0$, then Im f = B so f is surjective.
- (3) $0 \longrightarrow A \xrightarrow{f} B \longrightarrow 0$, then f is an isomorphism.

1.3.11 Definition

A short exact sequence is an exact sequence of the form

$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

In a short exact sequence, by above f is injective and g is surjective, and furthermore $\mathrm{Im} f = \ker g$. In such a case, we can view A as being a subgroup of B (since f is an embedding) and since by the isomorphism theorem $C \cong B/\ker g = B/\operatorname{Im} f = B/A$, a short exact sequence can be viewed as

$$0 \longrightarrow A \xrightarrow{inclusion} B \xrightarrow{quotient} B /_A \longrightarrow 0$$

1.3.12 Lemma (The Lemma of Five)

Suppose the chains $\{A_i\}_i$, $\{B_i\}_i$ are exact, and the following diagram commutes:

- (1) If f_2 , f_4 are injective and f_1 is surjective, then f_3 is injective.
- (2) If f_2 , f_4 are surjective and f_5 is injective, then f_3 is surjective.

Proof: We write $x \xrightarrow{A} y$ to mean x maps to y in the exact sequence $(x \in A_i)$.

(2) is a little more complicated, but it's just chasing.

1.3.13 Definition

Suppose $\mathscr C$ and $\mathscr D$ are two chain complexes, with two morphisms $f,g:\mathscr C\longrightarrow\mathscr D$. Then a **chain homotopy** from f to g is a sequence of maps $T_n\colon C_n\longrightarrow D_{n+1}$ such that $\partial T+T\partial=f-g$. If there exists a chain homotopy between f and g, we write $f\overset{CH}{\hookrightarrow} g$.

In a diagram, we have that T are the red arrows.

Let $X \subseteq \mathbb{R}^k$ be convex. For $a \in X$ let us define the *cone construction* $C_a : C_n(X) \longrightarrow C_{n+1}(X)$ as follows: we start with generators of $C_n(X)$, i.e. we define $C_a\sigma$ for $\sigma : \Delta^n \longrightarrow X$ an *n*-simplex. Geometrically, $C_a\sigma$ will be a cone whose tip is a and whose base is σ . We define this by:

$$C_a \sigma(t_0, \dots, t_{n+1}) = t_0 b + (1 - t_0) \sigma\left(\frac{t_1}{1 - t_0}, \dots, \frac{t_{n+1}}{1 - t_0}\right)$$

Let us now compute the faces of $C_a\sigma$. For i=0 then

$$(C_a\sigma)\tau_0^{n+1}(t_0,\ldots,t_n) = C_a\sigma(0,t_0,\ldots,t_n) = \sigma(t_0,\ldots,t_n)$$

For i > 0 then

$$(C_a\sigma)\tau_i^{n+1}(t_0,\ldots,t_n)=C_a\sigma(t_0,\ldots,0,\ldots,t_n)$$

if $t_0 = 1$ as well, then this is just

$$C_a\sigma(1,0,\ldots,0)=a$$

Otherwise,

$$= t_0 b + (1 - t_0) \sigma \left(\frac{t_1}{1 - t_0}, \dots, 0, \dots, \frac{t_n}{1 - t_0} \right)$$

$$= t_0 b + (1 - t_0) \sigma \tau_{i-1}^n \left(\frac{t_1}{1 - t_0}, \dots, \frac{t_n}{1 - t_0} \right)$$

$$= C_a^{n-1} (\sigma \tau_{i-1}^n) (t_0, \dots, t_n)$$

So we see that

$$(C_a \sigma) \tau_0^{n+1} = \sigma, \qquad (C_a \sigma) \tau_i^{n+1} = C_a^{n-1} (\sigma \tau_{i-1}^n)$$

So

$$\begin{split} \partial_{n+1} C_a^n(\sigma) &= \sum_{i=0}^{n+1} (-1)^i (C_a^n \sigma) \tau_i^{n+1} = \sigma + \sum_{i=1}^{n+1} C_a^{n-1} (\sigma \tau_{i-1}^n) \\ &= \sigma - \sum_{i=0}^n (-1)^i C_a^{n-1} (\sigma \tau_i^n) \\ &= \sigma - C_a^{n-1} \Biggl(\sum_{i=0}^n (-1)^i \sigma \tau_i^n \Biggr) \\ &= \sigma - C_a^{n-1} \partial_n \sigma \end{split}$$

So we see that

$$\partial C_a - C_a \partial = id$$

so in other words, C_a is a chain homotopy from id to 0.

1.3.14 Theorem

Let X be a convex set in \mathbb{R}^k , then for all n > 0, $H_n(X) = 0$.

Proof: let $\gamma \in C_n(X)$, then $\gamma = \partial C_a \gamma + C_a \partial \gamma$. If $\gamma \in Z_n(X)$, i.e. it is a cycle, then $\partial \gamma = 0$ and so $\gamma = \partial C_a \gamma$. Thus $\gamma \in B_n(X)$, so $Z_n(X) = B_n(X)$, and then $H_n(X) = 0$.

1.3.15 Lemma

If $f, g: X \longrightarrow Y$ are two homotopic continuous maps, then f_{\sharp} and g_{\sharp} are chain homotopic.

Proof: let us define $i, j: X \longrightarrow X \times I$ where i(x) = (x, 0) and j(x) = (x, 1). If $H: X \times I \longrightarrow Y$ is a homotopy from f to g, then $f = H \circ i$ and $g = H \circ j$. Also $i \sim j$, so if we can show that $i_{\sharp} \stackrel{CH}{\sim} j_{\sharp}$ then we have that

$$f_\sharp = H_\sharp \circ i_\sharp \overset{CH}{\sim} H_\sharp \circ j_\sharp = g_\sharp$$

so it is sufficient to show that $i_{\sharp} \stackrel{CH}{\sim} j_{\sharp}$.

So we need to define a sequence of morphisms $T_n^X: C_n(X) \longrightarrow C_{n+1}(X \times I)$ such that $\partial T^X + T^X \partial = i_{\sharp}^X - j_{\sharp}^X$. We will define T_n^X by induction on n, such that T^X is natural. Natural between what two functors? The first functor maps topological spaces X to their chain complexes $\mathscr{C}(X)$ and maps morphisms $X \xrightarrow{f} Y$ to $f_{\sharp}: \mathscr{C}(X) \longrightarrow \mathscr{C}(Y)$. The second functor maps topological spaces X to the chain complex $C_{n+1}(X \times I)$ and morphisms $X \xrightarrow{f} Y$ to $(f \times \mathrm{id})_{\sharp}: C_{n+1}(X) \longrightarrow C_{n+1}(Y)$.

 T^X being natural means that the diagram commutes for all $f: X \longrightarrow Y$:

$$C_{n}(X) \xrightarrow{T^{X}} C_{n+1}(X \times I)$$

$$f_{\sharp} \downarrow \qquad \qquad \downarrow (f \times id)_{\sharp}$$

$$C_{n}(Y) \xrightarrow{T^{Y}} C_{n+1}(Y \times I)$$

So $T_Y \circ f_{\sharp} = (f \times id)_{\sharp} \circ T_X$.

Let $I_n: \Delta^n \longrightarrow \Delta^n$ be the identity *n*-dimensional simplex. If we determine $T^{\Delta^n}(I_n)$, then we have determined $T^X(\sigma)$ for all $\sigma \in C_n(X)$ for all X. This is because $\sigma = \sigma \circ I_n = \sigma_\sharp(I_n)$, since we can view σ as a continuous map $X \longrightarrow \Delta^n$ and so σ_\sharp is defined. Thus

$$T^X(\sigma) = T^X \circ \sigma_{\sharp}(I_n) = (\sigma \times \mathrm{id})_{\sharp} \circ T^{\Delta^n}(I_n)$$

And so determining $T^{\Delta^n}(I_n)$ determines $T^X(\sigma)$. So if we define $A = T^{\Delta^n}(I_n)$, then

$$T^X(\sigma) = (\sigma \times \mathrm{id})_{\sharp}(A)$$

A is some simplex in $C_{n+1}(\Delta^n \times I)$, and we claim that for any choice of A, this defines a natural transformation. This is because

$$T^Y \circ f_{\sharp}(\sigma) = T^Y(f \circ \sigma) = ((f \circ \sigma) \times \mathrm{id})_{\sharp}(A) = (f \times \mathrm{id})_{\sharp} \circ (\sigma \times \mathrm{id})_{\sharp}(A)$$

And

$$(f \times \mathrm{id})_{\sharp} \circ T^{X}(\sigma) = (f \times \mathrm{id})_{\sharp} \circ (\sigma \times \mathrm{id})_{\sharp}(A)$$

so these are indeed equal, as required.

Now we claim that

$$(\partial T^X + T^X \partial)(\sigma) = (i_{t}^X - j_{t}^X)(\sigma)$$

for all X, σ . It is sufficient to show this for $X = \Delta^n$ and $\sigma = I_n$, since if

$$(\partial T^{\Delta^n} + T^{\Delta^n}\partial)(I_n) = (i_{\scriptscriptstyle \sharp}^{\Delta^n} - j_{\scriptscriptstyle \sharp}^{\Delta^n})(I_n)$$

if we compose it on the left with $(\sigma \times id)_{\sharp}$, the LHS gives

$$(\partial(\sigma\times\mathrm{id})_{\sharp}T^{\Delta^{n}}+(\sigma\times\mathrm{id})_{\sharp}T^{\Delta^{n}}\partial)(I_{n})=(\partial T^{X}\sigma_{\sharp}+T^{X}\partial\sigma_{\sharp})(I_{n})=\partial T^{X}\sigma+T^{X}\partial\sigma_{\sharp}$$

since T is natural, $T^Y \circ f_{\sharp} = (f \times \mathrm{id})_{\sharp} \circ T^X$ and $\partial f_{\sharp} = f_{\sharp} \partial$. The RHS is

$$\big((\sigma\times\mathrm{id})_\sharp\circ i_\sharp^{\Delta^n}-(\sigma\circ\mathrm{id})\circ j_\sharp^{\Delta^n}\big)(I_n)$$

Now notice that

$$\Delta^n \xrightarrow{i^{\Delta^n}} \Delta^n \times I \xrightarrow{\sigma \times \mathrm{id}} X \times I$$

$$s \longmapsto (s,0) \longmapsto (\sigma(s),0)$$

So $(\sigma \times id) \circ i^{\Delta^n} = i^X \circ \sigma$, and similar for j. So the RHS is just

$$i_{\sharp}^{X} \circ \sigma_{\sharp}(I_{n}) - j_{\sharp}^{X} \circ \sigma_{\sharp}(I_{n}) = i_{\sharp}^{X}(\sigma) - j_{\sharp}^{X}(\sigma)$$

So we get

$$\partial T^X(\sigma) + T^X \partial \sigma = i_{\text{f}}^X(\sigma) - j_{\text{f}}^X(\sigma)$$

as required.

So we must show that

$$\partial T I_n + T \partial I_n = i_{\sharp} I_n - j_{\sharp} I_n$$

in order to get this for every $\sigma \in C_n(\Delta^n)$. So we must show $\partial TI_n = -T\partial I_n + i_{\sharp} - j_{\sharp}I_n$, since $\partial TI_n \in C_n(\Delta^n \times I)$, and $\Delta^n \times I$ is a convex set in \mathbb{R}^{n+2} . In a convex set so a simplex is a boundary if and only if it is a cycle. We want $-T\partial I_n + i_{\sharp}I_n - j_{\sharp}I_n$ to be a boundary, and so it is sufficient to check that it is a cycle:

$$-\partial T\partial I_n + \partial i_{\sharp}I_n - \partial j_{\sharp}I_n$$

Since $\partial I_n \in C_{n-1}(\Delta^n)$, we have that

$$\partial T \partial I_n + T \partial \partial I_n = i_{\sharp} \partial I_n - j_{\sharp} \partial I_n$$

and thus we must have that the following is zero:

$$T\partial\partial I_n - i_{\sharp}\partial I_n + j_{\sharp}\partial I_n + \partial i_{\sharp}I_n - \partial j_{\sharp}I_n$$

Since $\partial \partial = 0$, and i_{\sharp}, j_{\sharp} are chain homomorphisms, this is indeed zero. So $-T\partial I_n + i_{\sharp}I_n - j_{\sharp}I_n$ is a cycle and thus a boundary since the universe is convex. So let us take A to be a chain such that ∂A is this element.

So notice now that if $f \sim g$, then $f_{\sharp} \sim g_{\sharp}$ are chain homotopic, and so $f_* = g_*$.

1.3.16 Corollary

If $f: X \longrightarrow Y$ is a homotopy equivalence, then $f_*: H_n(X) \longrightarrow H_n(Y)$ is an isomorphism.

Proof: there exists a $g: Y \longrightarrow X$ such that $fg \sim \mathrm{id}_Y$ and $gf \sim \mathrm{id}_X$. Thus

$$g_* \circ f_* = (g \circ f)_* = (\mathrm{id}_X)_* = \mathrm{id}_{H_n(X)}$$

and similarly $f_* \circ g_* = \mathrm{id}_{H_n(Y)}$, so f_* is an isomorphism.

1.4 Mayer-Vietoris

1.4.1 Definition

Let p_1, \ldots, p_n be vectors in a vector space, then their **affine hull** is

$$\operatorname{CH}(p_1,\ldots,p_n) = \left\{ \sum_{i=1}^n \alpha_i p_i \;\middle|\; \sum_{i=1}^n \alpha_i = 1 \right\}$$

Elements of the affine hull are called **affine combinations**. We similarly define the **convex hull**:

$$CH(p_1, \dots, p_n) = \left\{ \sum_{i=1}^n \alpha_i p_i \mid \sum_{i=1}^n \alpha_i = 1, \ \alpha_i \ge 0 \right\}$$

And its elements are called **convex combinations**.

1.4.2 Definition

 p_1, \ldots, p_n are **affine independent** if $\sum_{i=1}^n \alpha_i v_i = 0$ and $\sum_{i=1}^n \alpha_i = 0$ implies every α_i is 0.

1.4.3 Definition

 $A \subseteq \mathbb{R}^k$ is an *n*-simplex if it is the convex hull of a set of n+1 affine independent set of vectors.

1.4.4 Definition

Let $\Sigma = \mathrm{CH}(p_0, \ldots, p_n)$ be an *n*-simplex, then its *i*th **face** is $\mathrm{CH}(p_0, \ldots, p_{i-1}, p_i, \ldots, p_n)$. And its **barycenter** is

$$b = \frac{1}{n+1} \sum_{i=0}^{n} p_i$$

We define the **barycentric subdivision** of Σ , denoted $\operatorname{Sd}\Sigma$, to be a set of *n*-simplices which we define inductively on *n* as follows:

- (1) For a 0-simplex, $\operatorname{Sd} \Sigma = \Sigma$.
- (2) If Σ is an n-simplex, then let $\varphi_0, \ldots, \varphi_n$ be its faces (which are n-1-simplices) and b its barycenter. Then define Sd Σ to be the n-simplices spanned by b and the simplices in the barycentric subdivisions of φ_i . I.e.

$$\operatorname{Sd}\Sigma = \left\{\operatorname{CH}(b, \Sigma^{n-1}) \mid \Sigma^{n-1} \in \operatorname{Sd}\varphi_i, 0 \le i \le n\right\}$$

Inductively, $\Sigma = \bigcup \operatorname{Sd} \Sigma$ and $\# \operatorname{Sd} \Sigma = (n+1)!$.

1.4.5 Theorem

For every n, there exists a constant c < 1 such that for every n-simplex Σ then for every $\Sigma' \in \operatorname{Sd} \Sigma$:

$$\operatorname{diam}(\Sigma') \le c \operatorname{diam}(\Sigma)$$

1.4.6 Definition

We define $\operatorname{Sd}_n: C_n(\Delta^n) \longrightarrow C_n(\Delta^n)$ by induction on n. Let $\sigma: \Delta^n \longrightarrow \Delta^n$ be a generator, then

- (1) $\operatorname{Sd}_0(\sigma) = \sigma$
- (2) $\operatorname{Sd}_n(\sigma) = C_{\sigma(b)}(\operatorname{Sd}_{n-1}(\partial \sigma))$ where b is the barycenter of Δ^n .

Let X be a topological space, then let $\operatorname{Sd}_n: C_n(X) \longrightarrow C_n(X)$ be defined on generators $\sigma: \Delta^n \longrightarrow X$ by $\operatorname{Sd} \sigma = \sigma_{\sharp} \operatorname{Sd}_n \operatorname{id}_{\Delta^n}$.

1.4.7 Theorem

Sd is a chain map $(Sd = \{Sd_n\}_{n=0}^{\infty})$ and is natural (between the chain functor $Top \to Comp$ and itself).

Sd being natural means the following diagram commutes

$$C_n(X) \xrightarrow{\operatorname{Sd}_n} C_n(X)$$
 $f_{\sharp} \downarrow \qquad \qquad \downarrow f_{\sharp}$
 $C_n(Y) \xrightarrow{\operatorname{Sd}_n} C_n(Y)$

1.4.8 Theorem

Sd is chain homotopic to $id_{\mathscr{C}(X)}$.

1.4.9 Definition

Let X be a topological space, and $\mathcal{U} = \{\mathcal{U}_{\alpha}\}_{{\alpha} \in I}$ a collection of subsets of X such that $\bigcup \mathring{\mathcal{U}}_{\alpha} = X$ (where \mathcal{U} is the interior of \mathcal{U}). Such a collection will be called a **good cover** of X.

We will say that $\sigma: \Delta^n \longrightarrow X$ preserves the cover if there exists an $\alpha \in I$ such that $\sigma(\Delta^n) \subseteq \mathcal{U}_{\alpha}$. And we will say that $\sum_{i} n_{i} \sigma_{i} \in C_{n}(X)$ preserves the cover if each σ_{i} preserves the cover.

Let us define

$$C_n^{\mathcal{U}}(X) = \{ \sigma \in C_n(X) \mid \sigma \text{ preserves } \mathcal{U} \}$$

 $C_n^{\mathcal{U}}(X)$ is a subgroup of $C_n(X)$, as can be easily verified. Notice that if $\sigma(\Delta^n) \subseteq \mathcal{U}_\alpha$ then $\sigma\tau_i(\Delta^{n-1}) = \sigma(\tau_i\Delta^{n-1}) \subseteq \mathcal{U}_\alpha$ so that $\sigma\tau_i \in C_{n-1}^{\mathcal{U}}(X)$. Thus $\partial\sigma \in C_{n-1}^{\mathcal{U}}(X)$, so we can define a subcomplex of $\mathscr{C}(X)$, $\mathscr{C}^{\mathcal{U}}(X)$ whose coefficients are $C_n^{\mathcal{U}}(X)$. So we can define $H_n^{\mathcal{U}}(X)$ to be the *n*th homology group of $\mathscr{C}^{\mathcal{U}}(X)$.

The inclusion map $\iota: C_n^{\mathcal{U}}(X) \longrightarrow C_n(X)$ is a chain morphism, so this induces a $\iota_*: H_n^{\mathcal{U}}(X) \longrightarrow H_n(X)$.

1.4.10 Theorem

This ι_* is an isomorphism.

This is not a trivial proof, and it relies on the following observations. But from here on, I will only be putting in the simpler/enlightening proofs so that I can finish this summary. Notice that

$$\operatorname{Sd}_n: C_n^{\mathcal{U}}(X) \longrightarrow C_n^{\mathcal{U}}(X)$$

is defined, since if $\sigma \in C_n^{\mathcal{U}}(X)$ then that means for some $\alpha \in I$ $\sigma(\Delta^n) \subseteq \mathcal{U}_\alpha$, and $\operatorname{Sd}_n \sigma = \sigma_\sharp \operatorname{Sd}_n \operatorname{id}_n$. Thus the image of $\operatorname{Sd}_n \sigma$ is contained in the image of σ , which in turn is contained in \mathcal{U}_{α} . Now, the chain homotopy between Sd and $id_{\mathscr{C}(X)}$ can also be restricted to $\mathscr{C}^{\mathcal{U}}(X) \longrightarrow \mathscr{C}^{\mathcal{U}}(X)$. Thus Sd is chain homotopic to $id_{\mathscr{C}^{\mathcal{U}}(X)}$.

1.4.11 Definition

A short exact sequence of chain complexes is a chain of chain morphisms $\mathscr{C} \xrightarrow{f} \mathscr{D} \xrightarrow{g} E$ such that for every $n, 0 \to C_n \xrightarrow{f_n} D_n \xrightarrow{g_n} E_n \to 0$ is a short exact sequence.

1.4.12 Lemma

A short exact sequence of chain complexes $\mathscr{C} \xrightarrow{f} \mathscr{D} \xrightarrow{g} \mathscr{E}$ induces a long exact sequence on the homology groups:

$$H_{n}\mathscr{C} \xrightarrow{\longrightarrow} H_{n}\mathscr{D} \xrightarrow{\longrightarrow} H_{n}\mathscr{E}$$

$$H_{n-1}\mathscr{C} \xrightarrow{\longleftarrow}$$

Proof: a diagram chase.

1.4.13 Definition

If \mathscr{C}, \mathscr{D} are chain complexes then their **direct sum** is the chain complex $\mathscr{C} \oplus \mathscr{D}$ whose terms are $C_n \oplus D_n$ and whose boundary operator is $\partial_{\mathscr{C}} \oplus \partial_{\mathscr{D}}$ (i.e. $(a,b) \mapsto (\partial a, \partial b)$.

1.4.14 Lemma

If X is a topological space, $\mathcal{U}, V \subseteq X$ such that $\mathring{\mathcal{U}} \cup \mathring{\mathcal{V}} = X$, then there exists a short exact sequence of chain complexes

$$0 \longrightarrow \mathscr{C}(\mathcal{U} \cap \mathcal{V}) \longrightarrow \mathscr{C}(\mathcal{U}) \oplus \mathscr{C}(\mathcal{V}) \longrightarrow \mathscr{C}^{\mathcal{U},\mathcal{V}}(X) \longrightarrow 0$$

where $\mathscr{C}^{\mathcal{U},\mathcal{V}}(X)$ is the chain complex modulo the cover $\{\mathcal{U},\mathcal{V}\}$.

Proof: we have the inclusions, which commute:

And from them we build:
$$0 \xrightarrow{} C_n(\mathcal{U} \cap \mathcal{V}) \xrightarrow{} C_n(\mathcal{U}) \oplus C_n(\mathcal{V}) \xrightarrow{} C_n^{\mathcal{U},\mathcal{V}}(X) \xrightarrow{} 0$$

$$a \xrightarrow{} (i_{\sharp}a, -j_{\sharp}a)$$

$$(a,b) \xrightarrow{} k_{\sharp}a + \ell_{\sharp}b$$

This is exact because composing the two maps gives $k_{\sharp}i_{\sharp}a - \ell_{\sharp}j_{\sharp}a = (ki)_{\sharp}a - (\ell j)_{\sharp}a$, and since $ki = \ell j$, this is zero. So the image of the first is contained within the kernel of the second. And if $k_{\sharp}a=-\ell_{\sharp}b$, then a,b must be chains in $\mathcal{U} \cap \mathcal{V}$ (since k maps chains of \mathcal{U} to X, and ℓ maps chains of \mathcal{V}), so they must be in the image of the first map. It can be verified that these are chain morphisms.

Notice that the homology group of $C_n(X) \oplus C_n(Y)$ is just $H_n(X) \oplus H_n(Y)$ since the image of $\partial \oplus \partial$ is just Im $\partial \oplus \operatorname{Im} \partial$, and similar for kernel. From the previous two lemmas, the following is immediate (recall that $H_n^{\mathcal{U}}(X) \cong H_n(X)$:

1.4.15 Theorem (Mayer-Vietoris) If $\mathcal{U}, \mathcal{V} \subseteq X$ such that $\mathring{\mathcal{U}} \cup \mathring{\mathcal{V}} = X$, then there is an exact sequence $H_n(\mathcal{U}\cap\mathcal{V}) \xrightarrow{} H_n(\mathcal{U}) \oplus H_n(\mathcal{V}) \xrightarrow{} H_n(X)$ $H_{n-1}(\mathcal{U}\cap\mathcal{V})$ \longleftarrow

Notice that at n=0 for the reduced homology if $\mathcal{U} \cap \mathcal{V} \neq \emptyset$, then we get the same exact sequence but with the reduced homology.

1.4.16 Theorem

$$\widetilde{H}_i(S^n) = \begin{cases} \mathbb{Z} & i = n \\ 0 & \text{else} \end{cases}$$

Proof: by induction on n. For n=0, we have that S^0 is just the space of two points, so $H_0(S^0)=\mathbb{Z}\oplus\mathbb{Z}$ and for i > 0 it is zero since the homology of the one-point space is zero. The reduced homology removes a factor of \mathbb{Z} and so $\widetilde{H}_0(S^0) = \mathbb{Z}$ and for n > 0 $\widetilde{H}_i(S^0) = 0$. Now inductively, we can choose contractible \mathcal{U}, \mathcal{V} such that $\mathcal{U} \cap \mathcal{V}$ are homotopic to S^{n-1} (by choosing hemispheres which overlap), and so $H_i(\mathcal{U} \cap \mathcal{V}) \cong H_i(S^{n-1})$. We have an exact sequence by Mayer-Vietoris:

$$\widetilde{H}_i(\mathcal{U}) \oplus \widetilde{H}_i(\mathcal{V}) \longrightarrow \widetilde{H}_i(S^n) \longrightarrow \widetilde{H}_{i-1}(S^{n-1}) \longrightarrow \widetilde{H}_{i-1}(\mathcal{U}) \oplus \widetilde{H}_{i-1}(\mathcal{V})$$

since \mathcal{U}, \mathcal{V} are contractible, $\widetilde{H}_i(\mathcal{U}) = \widetilde{H}_i(\mathcal{V}) = 0$ for all i and so we get the exact sequence

$$0 \longrightarrow \widetilde{H}_i(S^n) \longrightarrow \widetilde{H}_{i-1}(S^{n-1}) \longrightarrow 0$$

which means that $\widetilde{H}_i(S^n) \cong \widetilde{H}_{i-1}(S^{n-1})$, and so inductively we have our result.

Since their homology groups differ, we immediately get

1.4.17 Theorem

If $n \neq m$ then S^n is not homotopic to S^m .

1.4.18 Corollary

If $n \neq m$ then \mathbb{R}^n is not homeomorphic to \mathbb{R}^m .

Proof: suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ is a homeomorphism, then it is a homeomorphism $f: \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}^m \setminus \{f(0)\}$. So we have

$$S^n \simeq \mathbb{R}^n \setminus \{0\} \cong \mathbb{R}^m \setminus \{f(0)\} \simeq S^m$$

in contradiction.

1.4.19 Theorem

 ∂D^n is not a retract of D^n .

Proof: suppose $r: D^n \longrightarrow \partial D^n$ is a retraction, then $r\iota = \mathrm{id}_{\partial D^n}$ where ι is the inclusion $\partial D^n \longrightarrow D$. Thus $r_*\iota_* = \mathrm{id}_{H_i(\partial D^n)}$. This implies that ι_* is injective, in particular for i = n - 1 and so $i_* : \widetilde{H}_{n-1}(\partial D^n) \longrightarrow \widetilde{H}_{n-1}(D^n)$. Since $\partial D^n \cong S^{n-1}$ and D^n is contractible, we have an injective map $\mathbb{Z} \longrightarrow 0$ in contradiction.

1.4.20 Lemma

Let us define $R: S^n \longrightarrow S^n$ by $R(x_1, \ldots, x_n) = (-x_1, x_2, \ldots, x_n)$. Then $R_*: \widetilde{H}_n(S^n) \longrightarrow \widetilde{H}_n(S^n)$ satisfies $R_* = -\mathrm{id}_{\widetilde{H}_n(S^n)}$.

Proof: by induction on n. For n=0, R(1)=-1 and R(-1)=1, and $\widetilde{H}_0(S^0)=\mathbb{Z}$. Now, ε must map the generator of the reduced homology to zero, so the generator must be $kp_1 - kp_2$, and composing R_* on this gives $kp_2 - kp_1$ which is the inverse of the generator, so R_* is indeed minus the identity.

Now for n>0, let us split the sphere S^n into two hemispheres \mathcal{U} and \mathcal{V} whose intersection is homotopic to S^{n-1} . By Mayer-Vietoris, we have

$$0 \longrightarrow H_n(S^n) \longrightarrow H_{n-1}(S^{n-1}) \longrightarrow 0$$

$$R_* \downarrow \qquad \qquad \downarrow R_* = -\mathrm{id}$$

$$0 \longrightarrow H_n(S^n) \longrightarrow H_{n-1}(S^{n-1}) \longrightarrow 0$$

This diagram commutes by naturality, so $R_* = -id$ for S^n .

By symmetry, we can define $R_i:(x_1,\ldots,x_i,\ldots,x_{n+1})\mapsto (x_1,\ldots,-x_i,\ldots,x_{n+1})$ and we have that $R_{i,*}=-\mathrm{id}$. Let us define

$$A: S^n \longrightarrow S^n, \qquad x \mapsto -x$$

the antipodal map. Since $A = R_1 \circ \cdots \circ R_{n+1}$, we have that $A_* = (-\mathrm{id})^{n+1} = (-1)^{n+1}\mathrm{id}$.

1.4.21 Corollary

If n is even, then the antipodal map is not homotopic to the identity.

Note that for n = 2k - 1, we can view S^n as the unit sphere in \mathbb{C}^k and take the homotopy $H(z,t) = e^{\pi it}z$ which is a homotopy from id to A.

1.4.22 Lemma

Let $n \ge 0$, and let $f, g: S^n \longrightarrow S^n$ such that for all $x \in S^n$, $f(x) \ne -g(x)$. Then $f \sim g$.

Proof: we define the homotopy

$$H(x,t) = \frac{(1-t)f(x) + tg(x)}{\|(1-t)f(x) + tg(x)\|}$$

this cannot be zero, since the line (1-t)f(x)+tg(x) connects f(x) and g(x), and it can only be zero when f(x) and g(x) are antipodal points on the sphere.

1.4.23 Theorem

Let n be even and $f: S^n \longrightarrow S^n$, then there exists an $x \in S^n$ such that either f(x) = x or f(x) = -x.

Proof: suppose not. Then for all x, $f(x) \neq x$, so $f(x) \neq -A(x)$ so $f \sim A$. And for all x, $f(x) \neq -x$, i.e. $f(x) \neq -\operatorname{id}(x)$ so $f \sim \operatorname{id}$. Thus $A \sim \operatorname{id}$, which contradicts n being even.

1.4.24 Definition

A vector field of S^n is a continuous map $f: S^n \longrightarrow \mathbb{R}^{n+1}$ such that for all $x \in S^n$, $\langle f(x), x \rangle = 0$.

1.4.25 Theorem (Hairy Ball Theorem)

Let n be even. Then for every vector field on S^n , there is an $x \in S^n$ such that f(x) = 0.

Proof: suppose not, then we can define a continuous map $x \mapsto \frac{f(x)}{\|f(x)\|}$ which is a map $S^n \longrightarrow S^n$. These points are still tangent to x, in particular they cannot be x or antipodal to x, in contradiction to n being even.

Note that in general if \mathcal{U}, \mathcal{V} is a good cover of X and $\mathcal{U} \cap \mathcal{V}$ is contractible, then by Mayer-Vietoris we have

$$0 = \widetilde{H}_i(\mathcal{U} \cap \mathcal{V}) \longrightarrow \widetilde{H}_i(\mathcal{U}) \oplus \widetilde{H}_i(\mathcal{V}) \longrightarrow \widetilde{H}_i(X) \longrightarrow \widetilde{H}_{i-1}(\mathcal{U} \cap \mathcal{V}) = 0$$

so $\widetilde{H}_i(X) \cong \widetilde{H}_i(\mathcal{U}) \oplus \widetilde{H}_i(\mathcal{V})$. In particular let us look at $S^n \vee S^m$, we can take \mathcal{U} to be S^n with a bit of S^m and \mathcal{V} to be S^m with a bit of S^n , then $\mathcal{U} \cap \mathcal{V}$ is contractible and \mathcal{U} is homotopic to S^n and \mathcal{V} to S^m so

$$\widetilde{H}_i(S^n \vee S^m) \cong \widetilde{H}_i(S^n) \oplus \widetilde{H}_i(S^m)$$

and similarly by induction

$$\widetilde{H}_i\left(\bigvee_{j=1}^k S^{n_j}\right) \cong \bigoplus_{j=1}^k \widetilde{H}_i(S^{n_j})$$

Now let us look at X = nT. Let us take \mathcal{U} to be a disk in X, and \mathcal{V} to be the rest of X with a bit of \mathcal{U} . Then \mathcal{U} is homotopic to a point, $\mathcal{U} \cap \mathcal{V} \simeq S^1$ and we showed last semester that $\mathcal{V} \simeq \bigvee_{2n} S^1$. Mayer-Vietoris gives us

$$\widetilde{H}_i(\mathcal{U}\cap\mathcal{V})\longrightarrow \widetilde{H}_i(\mathcal{U})\oplus \widetilde{H}_i(\mathcal{V})\longrightarrow \widetilde{H}_i(X)\longrightarrow \widetilde{H}_{i-1}(\mathcal{U}\cap\mathcal{V})$$

when $i \geq 2$ $\widetilde{H}_i(\mathcal{U} \cap \mathcal{V}) = \widetilde{H}_i(\mathcal{U}) \oplus \widetilde{H}_i(\mathcal{V}) = 0$, but we require $i \geq 3$ for $\widetilde{H}_{i-1}(\mathcal{U} \cap \mathcal{V}) = 0$. So when $i \geq 3$, $\tilde{H}_i(nT) = 0$. So let us look at i = 2:

$$H_2(\mathcal{U}\cap\mathcal{V})\longrightarrow H_2\mathcal{U}\oplus H_2\mathcal{V}\longrightarrow H_2X\longrightarrow H_1(\mathcal{U}\cap\mathcal{V})\longrightarrow H_1\mathcal{U}\oplus H_1\mathcal{V}\longrightarrow H_1X\longrightarrow \widetilde{H}_0(\mathcal{U}\cap\mathcal{V})\longrightarrow \widetilde{H}_0\mathcal{U}\oplus \widetilde{H}_0\mathcal{V}\longrightarrow \widetilde{H}_0X\longrightarrow 0$$

We get from this

$$0 \longrightarrow 0 \longrightarrow H_2X \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}^{2n} \longrightarrow H_1X \longrightarrow 0 \longrightarrow 0 \longrightarrow \widetilde{H}_0X \longrightarrow 0$$

So we get that $\widetilde{H}_0X = 0$. Let us focus on the map $\mathbb{Z} \longrightarrow \mathbb{Z}^{2n}$ here, that is we need to understance $H_1(\mathcal{U} \cap \mathcal{V}) \longrightarrow$ $H_1(\mathcal{U}) \oplus H_1(\mathcal{V}) = H_1(\mathcal{V})$. Visually, this can be shown to just be zero (using abelianization of π_1). We can then just insert 0 into the sequence where the zero morphism was:

$$0 \longrightarrow 0 \longrightarrow H_2X \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow \mathbb{Z}^{2n} \longrightarrow H_1X \longrightarrow 0 \longrightarrow 0 \longrightarrow \widetilde{H}_0X \longrightarrow 0$$

So we get that $H_2X \cong \mathbb{Z}$ and $H_1X \cong \mathbb{Z}^{2n}$.

1.4.26 Theorem

If $f: D^k \longrightarrow S^n$ is injective, then $\widetilde{H}_i(S^n - f(D^k)) = 0$ for all i.

Proof: by induction on k. For k=0, $S^n-\{\cdot\}\cong\mathbb{R}^n$ which is contractible and thus has a homotopy group of zero. We will be working with the k-dimensional cube $I^k \cong D^k$. So $f: I^k \times I \longrightarrow S^n$ is injective. Define $A_1 = I^k \times [0, 1/2]$ and $B_1 = I^k \times [1/2, 1]$, and let $\mathcal{U} = S^n - f(A_1) = f(A_1)^c$ and $\mathcal{V} = S^n - f(B_1) = f(B_1)^c$. So $\mathcal{U} \cup \mathcal{V} = f(A_1 \cap B_1)^c = f(I^k \times \{1/2\})^c$. So inductively, $\widetilde{H}_i(\mathcal{U} \cup \mathcal{V}) = 0$ for all i. And $\mathcal{U} \cap \mathcal{V} = f(A_1 \cup B_1)^c = f(I_{k+1})^c$ which is the space we want to compute the homology groups of. By Mayer-Vietoris:

$$0 = \widetilde{H}_{i+1}(\mathcal{U} \cup \mathcal{V}) \longrightarrow \widetilde{H}_{i}(\mathcal{U} \cap \mathcal{V}) \longrightarrow \widetilde{H}_{i}(\mathcal{U}) \oplus \widetilde{H}_{i}(\mathcal{V}) \longrightarrow \widetilde{H}_{i}(\mathcal{U} \cup \mathcal{V}) = 0$$

So $\widetilde{H}_i(\mathcal{U} \cap \mathcal{V}) \cong \widetilde{H}_i\mathcal{U} \oplus \widetilde{H}_i\mathcal{V}$. So suppose that $\widetilde{H}_i(\mathcal{U} \cap \mathcal{V}) \neq 0$, then take $[z] \neq 0$ in $\widetilde{H}_i(\mathcal{U} \cap \mathcal{V})$. Taking the inclusion maps i, j we have that one of $i_*[z]$ and $-j_*[z]$ is nonzero. Continue.

1.4.27 Theorem

Let $f: S^k \longrightarrow S^n$ be injective, then

$$\widetilde{H}_i(S^n - f(S^k)) = \begin{cases} \mathbb{Z} & i = n - k - 1 \\ 0 & \text{else} \end{cases}$$

Proof: similarly by induction on k.

1.4.28 Theorem (Jordan's Theorem)

Let $f: S^{n-1} \longrightarrow S^n$ injective then $S^n - f(S^{n-1})$ has two path-connected components and they are open.

1.4.29 Theorem (Invariance of Domain)

Let $\mathcal{U} \subseteq \mathbb{R}^n$ be open, and $f: \mathcal{U} \longrightarrow \mathbb{R}^n$ injective. Then $f(\mathcal{U})$ is open.

Proof: let $x \in \mathcal{U}$ then let us look at the restriction of f to a closed ball around x, and show that the image of its interior is open. If we choose this closed ball to lie in \mathcal{U} , looking at the union of these balls, we see that \mathcal{U} 's image is open. So we must show that if $f: D^n \longrightarrow \mathbb{R}^n$ is injective, then $f(\mathring{D}^n)$ is open.

Now, $\mathbb{R}^n - f(\partial D^n) = f(\mathring{D}^n) \sqcup (\mathbb{R}^n - f(D^n))$. This is the union of two disjoint path-connected spaces (the left is the continuous map of a path-connected space, and the right is because $\widetilde{H}_i(\mathbb{R}^n - f(D^n)) = 0$ as an exercise). By Jordan's theorem, there are two path-connected components and they are open. So these are the two open path-connected components, in particular $f(\mathring{D}^n)$ is open.

Note then that if $\mathcal{U} \subseteq \mathbb{R}^n$ is open, then it is not homeomorphic to any subspace $A \subseteq \mathbb{R}^n$ which is not open. This is because the homeomorphism $\mathcal{U} \longrightarrow A$ would mean by the invariance of domain that A is open. In particular, an open set in \mathbb{R}^n is not homeomorphic to any open set in \mathbb{R}^m for $n \neq m$. This is because $\mathbb{R}^m \subset \mathbb{R}^n$ assuming m < n, and so $\mathcal{U} \longrightarrow A$ means that A is open, but the last coordinates of A are all zero and so it cannot be open.

1.4.30 Definition

An *n*-dimensional **manifold** is a Hausdorff topological space M with a countable basis such that for every $x \in M$ there exists a neighborhood homeomorphic to an open ball in \mathbb{R}^n . An *n*-dimensional **manifold** with boundary is a Hausdorff topological space M with a countable basis such that every $x \in M$ has a neighborhood homeomorphic either to an open ball or to the half-open ball (which is defined to be $\{(x_1,\ldots,x_n) \mid \|(x_1,\ldots,x_n)\| < 1, x_1 \geq 0\}$). A closed manifold is a compact manifold (without a boundary).

1.5 Excision

Let $A \subseteq X$ be a subspace, then $\mathscr{C}(A) \subseteq \mathscr{C}(X)$ is a subcomplex, so we can define the quotient complex $\mathscr{C}(X,A) = \mathscr{C}(X)/\mathscr{C}(A)$. Explicitly, $C_n(X,A) = C_n(X)/C_n(A)$. The boundary operator ∂ maps from $C_n(A)$ to $C_{n-1}(A)$, so we can simply take $\partial[z] = [\partial z]$ in the quotient complex. Thus we can define the relative homology groups of X with respect to A to be

$$H_n(X,A) := H_n(\mathscr{C}(X,A))$$

Now, suppose $f:(X,A) \longrightarrow (Y,B)$ is a map, then we have $f_{\sharp}:C_n(X) \longrightarrow C_n(Y)$. Do we have that this induces a map $f_{\sharp}:C_n(X,A) \longrightarrow C_n(Y,B)$? In order for this to occur we must have $f_{\sharp}(C_n(A)) \subseteq C_n(B)$, which is indeed the case (since $f:A \longrightarrow B$). Thus we have a function $f_{\sharp}:C_n(X,A) \longrightarrow C_n(Y,B)$ and we can see that this is a chain morphism. So we have defined a functor $\mathbf{Top}^2 \longrightarrow \mathbf{Comp}$. And in particular we can compose this with our functor $\mathbf{Comp} \longrightarrow \mathbf{Ab}$ to get $\mathbf{Top}^2 \longrightarrow \mathbf{Ab}$.

Now, we have a short exact sequence of chain complexes

$$0 \longrightarrow C_n(A) \longrightarrow C_n(X) \longrightarrow C_n(X,A) \longrightarrow 0$$

since this is precisely an inclusion-quotient chain, and the boundary operators are defined in such a way so that the diagram commutes. Thus we have an exact sequence of homology groups:

$$H_{n+1}(X, A)$$

$$H_{n}(X) \xrightarrow{H_{n+1}(X, A)} H_{n}(X, A)$$

$$H_{n-1}(A) \xrightarrow{H_{n+1}(X, A)} H_{n}(X, A)$$

And this short exact sequence of chain complexes is natural, so this exact sequence is natural as well.

1.5.1 Theorem

$$H_i(D^n, \partial D^n) = \begin{cases} \mathbb{Z} & i = n \\ 0 & \text{else} \end{cases}$$

Proof: by the exact sequence of homology groups we have

$$0 = \widetilde{H}_i(D^n) \longrightarrow H_i(D^n, \partial D^n) \longrightarrow \widetilde{H}_{i-1}(\partial D^n) \longrightarrow \widetilde{H}_{i-1}(D^n) = 0$$

so $H_i(D^n, \partial D^n) \cong \widetilde{H}_{i-1}(\partial D^n) = \widetilde{H}_{i-1}(S^{n-1})$ which is exactly what we want.

We can generalize this:

1.5.2 Lemma

Let $A \subseteq X$ then

- (1) if A is contractible, then $\widetilde{H}_i(X) \cong H_i(X, A)$;
- (2) if X is contractible, then $\widetilde{H}_{i-1}(A) \cong H_i(X, A)$.

Proof: again we use the exact sequence:

$$0 = \widetilde{H}_i(A) \longrightarrow \widetilde{H}_i(X) \longrightarrow H_i(X,A) \longrightarrow \widetilde{H}_{i-1}(A) = 0$$

so $H_i(X,A) \cong \widetilde{H}_i(X)$. Similar for the second case.

1.5.3 Proposition

Note if we have $f:(X,A) \longrightarrow (Y,B)$ then we have

$$f_*: H_n(X) \longrightarrow H_n(Y), \quad f_*: H_n(A) \longrightarrow H_n(Y), \quad f_*: H_n(X,A) \longrightarrow H_n(Y,B)$$

If any two of these are isomorphisms, so is the third.

Proof: immediate from the naturality of the exact sequence of homology groups, and the lemma of five.

In particular we have that

1.5.4 Corollary

If $f: X \longrightarrow Y$ and $f: A \longrightarrow B$ are both homotopic equivalences, then $f_*: H_n(X, A) \longrightarrow H_n(Y, B)$ is an isomorphism.

In particular, the inclusion map $(D^n, \partial D^n) \subseteq (D^n, D^n - \{0\})$ is a homotopic equivalence, and so $H_i(D^n, \partial D^n) \cong H_i(D^n, D^n - \{0\})$. Thus

$$H_i(D^n, D^n - \{0\}) = \begin{cases} \mathbb{Z} & i = n \\ 0 & \text{else} \end{cases}$$

And we can look at our good friend $R:(x_1,\ldots,x_n)\mapsto (-x_1,x_2,\ldots,x_n)$ which can be viewed as $R:(D^n,\partial D^n)\longrightarrow (D^n,\partial D^n)$ and we have the commutative diagram \sim

ve diagram
$$\begin{array}{ccc}
H_n(D^n, \partial D^n) & \xrightarrow{\cong} & \widetilde{H}_{n-1}(\partial D^n) \\
R_* \downarrow & & \downarrow & R_* = -\mathrm{id} \\
H_n(D^n, \partial D^n) & \xrightarrow{\cong} & \widetilde{H}_{n-1}(\partial D^n)
\end{array}$$

And so $R_* = -id$ for the map over $H_n(D^n, \partial D^n)$.

1.5.5 Definition

Let $\mathcal{U} = \{\mathcal{U}_{\alpha}\}_{\alpha \in I}$ be a good covering of X, and let $A \subseteq X$, then we define

$$C_n^{\mathcal{U}}(X,A) = \frac{C_n^{\mathcal{U}}(X)}{C_n^{\mathcal{U}}(X) \cap C_n(A)}$$

This is indeed a chain complex, since if a chain preserves \mathcal{U} and is contained in A, then its boundary preserves \mathcal{U} and is contained in A.

Similar to before, the inclusion map $\iota: C_n^{\mathcal{U}}(X,A) \longrightarrow C_n(X,A)$ induces an isomorphism $\iota_*: H_n^{\mathcal{U}}(X,A) \longrightarrow H_n(X,A)$.

1.5.6 Theorem (Excision)

Let $K \subseteq A \subseteq X$ such that $\overline{K} \subseteq \mathring{A}$, then the inclusion $(X - K, A - K) \longrightarrow (X, A)$ induces an isomorphism of all homology groups $H_n(X - K, A - K) \longrightarrow H_n(X, A)$.

Proof: note that $\overline{K} \subseteq \mathring{A}$ is equivalent to $\mathcal{U} = \{A, K^c\}$ being a good cover. So $C_n(A), C_n(X - K) \subseteq C_n^{\mathcal{U}}(X)$. So we can compose the inclusion map with the quotient map to get $C_n(X - K) \longrightarrow C_n^{\mathcal{U}}(X)/C_n(A) \cap C_n^{\mathcal{U}}(X) = C_n^{\mathcal{U}}(X)/C_n(A)$. We claim that this is a surjective map, as chains in $C_n^{\mathcal{U}}(X)/C_n(A)$ are classes of chains which respect $\{X - K, A\}$, but the simplexes which respect A are identified with zero, so we are left with formal sums of simplexes which respect X - K. The kernel is just $C_n(X - K) \cap C_n(A) = C_n((X - K) \cap A) = C_n(A - K)$. Thus by the first isomorphism theorem

$$C_n(X - K, A - K) = \frac{C_n(X - K)}{C_n(A - K)} \cong \frac{C_n^{\mathcal{U}}(X)}{C_n(A)} = C_n^{\mathcal{U}}(X, A)$$

Thus we get that

$$H_n(X-K,A-K) \cong H_n^{\mathcal{U}}(X,A) \cong H_n(X,A)$$

1.5.7 Theorem

Let M be an n-dimensional manifold with or without a boundary, and $p \in M$ be a point in its interior. Then

$$H_i(M, M - \{p\}) = \begin{cases} \mathbb{Z} & i = n \\ 0 & \text{else} \end{cases}$$

Proof: let $j: D^n \longrightarrow M$ be an embedding of D^n into M which maps 0 to p and which maps \mathring{D}^n to a neighborhood of p. Let us identify D^n with its image in M and p with 0. Then $(D^n, D^n - \{0\}) \subseteq (M, M - \{0\})$ is an excision: take $A = M - \{0\}$ and $K = M - D^n$. Thus $H_i(M, M - \{0\}) \cong H_i(D^n, D^n - \{0\})$ which is precisely what we want.

1.5.8 Corollary

The dimension of a manifold M is a topological property of M (i.e. it is unique).

Proof: this is since it is determined by its homology groups.

1.5.9 Theorem

Let M be a manifold with a boundary and p a point on its boundary. Then $H_i(M, M - \{p\}) = 0$ for all i.

Proof: take $j: C \longrightarrow M$ an embedding of the half-open ball into M. Then as before $(C, C - \{0\}) \subseteq (M, M - \{0\})$ is an excision and both C and $C - \{0\}$ are contractible. We have the exact sequence

$$0 = \widetilde{H}_i(C) \longrightarrow H_i(C, C - \{0\}) \longrightarrow \widetilde{H}_i(C - \{0\}) = 0$$

so
$$H_i(M, M - \{p\}) \cong H_i(C, C - \{0\}) = 0.$$

1.5.10 Corollary

The boundary of a manifold is a topological property of M (a point cannot be both in its boundary and interior).

Note that if $p \in M$ is a boundary point, then it has a neighborhood homeomorphic to $\{\vec{x} \in B_1^n(0) \mid x_n \geq 0\}$. Thus it has a neighborhood homeomorphic to $B_1^{n-1}(0)$ (taking the last coordinate equal to 0), and all the points in this neighborhood must also be boundary points. Thus the boundary of an n-dimensional manifold is an n-1-dimensional manifold.

 $[\mathrm{id}_n] \in H_n(\Delta^n, \partial \Delta^n)$ generates the homological group.

1.5.12 Theorem

Let $A \subseteq X$ be closed and suppose that there exists an open \mathcal{U} such that $A \subseteq \mathcal{U} \subseteq X$ and A is a deformation retract of \mathcal{U} . Then

$$H_n(X, A) = \widetilde{H}_n(X/A)$$

Proof: since A is a deformation retract, the inclusion $(X,A) \longrightarrow (X,\mathcal{U})$ induces an isomorphism $H_n(X,A) \cong H_n(X,\mathcal{U})$. Furthermore by excision, $H_n(X-A,\mathcal{U}-A) \cong H_n(X,\mathcal{U})$. Let a be the point which represents A in X/A. Then $H_n(X/A, \{a\}) \cong H_n(X/A, \mathcal{U}/A)$ similar to above. And by excision $H_n(X/A - \{a\}, \mathcal{U}/A - \{a\}) \cong H_n(X/A, \mathcal{U}/A)$. Note though that $(X-A,\mathcal{U}-A)$ is homeomorphic to $(X/A - \{a\}, \mathcal{U}/A - \{a\})$ (both just remove A). Thus

$$H_n(X,A) \cong H_n(X,\mathcal{U}) \cong H_n(X-A,\mathcal{U}-A) \cong H_n(X/A-\{a\},\mathcal{U}/A-\{a\}) \cong H_n(X/A,\mathcal{U}/A) \cong H_n(X/A,\{a\})$$

But since $\{a\}$ is contractible, by our exact sequence we see that this isomorphic to $H_n(X/A)$.

1.5.13 Definition

An **orientation** on an n-dimensional manifold M is a choice of a generator of $a_p \in H_n(M, M - \{p\})$ such that for every $p \in M$ there is a euclidean neighborhood \mathcal{U} and a choice of generator $a \in H_n(M, M - \mathcal{U})$ such that for every $q \in \mathcal{U}$ with the inclusion $i_q: (M, M - \mathcal{U}) \longrightarrow (M, M - \{q\})$ we have $i_{q,*}(a) = a_q$.

If we can choose an orientation of a manifold, call it **orientable**.

Note that since $H_n(M, M - \{p\}) \cong \mathbb{Z}$, there are two choices of orientation for each $p \in M$.

Further note that if we have a path on a manifold, $\gamma: I \longrightarrow M$, we can choose an orientation for $p = \gamma(0)$. Then by covering the path with open balls, we can ensure that this orientation is consistent in each open ball. This will give us an orientation for $q = \gamma(1)$. This is independent on the choice of covering of the path. If M is orientable then the orientation of q is also independent on the choice of the path (and is dependent only on p's orientation). Notice then that a closed loop in M must start and end with the same orientation (i.e. it is orientation-preserving), in fact this is equivalent to M being orientable.

1.5.14 Theorem

M is orientable if and only if every closed loop in M is orientation-preserving.

So for example, since a loop on the center of the Möbius strip is not orientation-preserving, the Möbius strip is not orientable.

Furthermore, if we have two paths γ, δ which are homotopic relative to their endpoints, then they have the same orientation (i.e. if $p = \gamma(0) = \delta(0)$ is given an orientation, both paths give the same orientation to $q = \gamma(1) = \delta(1)$). Further note that if γ preserves orientation and δ flips orientation then $\gamma * \delta$ flips orientation, and so on for all combinations. So we can assign to orientation-preserving loops the value 0, and to orientation-flipping loops the value 1. For example if γ, δ are both orientation-flipping, the value of $\gamma * \delta$ is 0. By these two facts, we can define a homomorphism

$$\varphi: \pi_1(M,b) \longrightarrow \mathbb{Z}/2\mathbb{Z}$$

which assigns to each closed loop on b 0 if it preserves orientation and 1 if it flips orientation. M is orientable if and only if this is the trivial homomorphism for all b (all closed loops preserve orientation).

The issue is to check if M is orientable we must check this homomorphism for every path-connected component of M. But since $\mathbb{Z}/2\mathbb{Z}$ is Abelian and $H_1(M) = \mathrm{Ab}\pi_1(M,b)$, there is an induced homomorphism $H_1(M) \longrightarrow \mathbb{Z}/2\mathbb{Z}$. And M is orientable if and only if this homomorphism is trivial. And this homomorphism is trivial if it is trivial on the generators of $H_1(M)$.

So M is orientable if and only if the generators of $H_1(M)$ preserve orientation.

For example take M = nT. All of the generators of $H_1(M)$ (which are the center circles of the torii) preserve orientation, so M is orientable.

Note that if M is not orientable, there exists a closed loop on M which flips orientation. This loop can be blown up (since the orientation is taken in a neighborhood) to a quotient of $D^{n-1} \times I$ where $D^{n-1} \times \{0\}$ and $D^{n-1} \times \{1\}$ are identified but with the orientation swapped. Such a space is called a *full Klein bottle*. So M is not orientable if and only if a full Klein bottle can be embedded into it.

1.6 Homology of CW Complexes

Let a CW complex K be constructed out of skeletons $K^0 \subseteq K^1 \subseteq \cdots \subseteq K^m = K$. We would like to compute $H_i(K^n, K^{n-1})$. We claim that there exists an open \mathcal{U} such that $K^{n-1} \subseteq \mathcal{U} \subseteq K^n$ and K^{n-1} is a deformation retract of \mathcal{U} . This \mathcal{U} can be taken to include part of the cells added to K^{n-1} (in particular, something like $D^n - \{0\}$). Thus we have that $H_i(K^n, K^{n-1}) = \widetilde{H}_i(K^n/K^{n-1})$.

Recall that K^n is obtained by adding disks to K^{n-1} . So if we contract K^{n-1} to a point, we have essentially just added these disks to a point. And we know that contracting the disk D^n at its boundary to a point is just S^n , so we have that $K^{n-1}/K^n = \bigvee_{f_n} S^n$, and thus

$$H_i(K^n, K^{n-1}) = H_i\left(\bigvee_{f_n} S^n\right) = \begin{cases} \mathbb{Z}^{f_n} & i = n\\ 0 & \text{else} \end{cases}$$

We have an exact sequence

$$H_{i+1}(K^n, K^{n-1}) \longrightarrow H_i(K^{n-1}) \longrightarrow H_i(K^n) \longrightarrow H_i(K^n, K^{n-1})$$

If $n \neq i, i+1$ then $H_i(K^n) = H_i(K^{n-1})$. In particular for n < i we have $H_i(K^n) = 0$ (since $H_i(K^n) = H_i(K^0)$ and the homology group of a set of points is 0). We have a sequence of homomorphisms (not necessarily exact, it is induced by the inclusion maps):

$$0 = H_i(K^{i-1}) \longrightarrow H_i(K^i) \longrightarrow H_i(K^{i+1})$$

So let $A = H_i(K^i)$ and $B = H_i(K^{i+1})$, then we know that for n > i + 1 we have $H_i(K^n) = H_i(K^{i+1}) = B$. In particular $H_i(K) = H_i(K^{i+1})$. Thus we get the following

1.6.1 Theorem

Let $K^0 \subseteq \cdots \subseteq K^m = K$ be a CW complex. Then

(1)

$$H_i(K^n, K^{n-1}) = \begin{cases} \mathbb{Z}^{f_n} & i = n \\ 0 & \text{else} \end{cases}$$

- (2) $H_i(K^n) = 0$ for i < n.
- (3) $H_i(K^n) = H_i(K) \text{ for } n > i$

Let us define $E_n = H_n(K^n, K^{n-1}) = \mathbb{Z}^{f_n}$. Now, recall that we have two exact sequences:

$$E_n = H_n(K^n, K^{n-1}) \longrightarrow H_{n-1}(K^{n-1})$$

and

$$E_{n-1} = H_{n-1}(K^{n-1}) \longrightarrow H_{n-1}(K^{n-1}, K^{n-2})$$

composing them gives a sequence (not necessarily exact):

$$E_n \xrightarrow{\Delta} H_{n-1}(K^{n-1}) \xrightarrow{i_*} E_{n-1}$$

If we now look at the composition of these maps, we get a sequence

$$\cdots \longrightarrow E_n \longrightarrow E_{n-1} \longrightarrow \cdots \longrightarrow E_0$$

This is a chain complex, as if we look at

$$E_n \xrightarrow{\Delta} H_{n-1}(K^{n-1}) \xrightarrow{i_*} E_{n-1} \xrightarrow{\Delta} H_{n-2}(K^{n-2}) \xrightarrow{i_*} E_{n-2}$$

Let us look at the K^n skeleton of a CW complex, it is of the form $K^{n-1}\coprod_{i=1,\varphi_i}^{f_n}D^n$, meaning

$$K^n = \frac{K^{n-1} \coprod_{i=1}^{f_n} D_i^n}{\bigg/ x} \sim \varphi_i(x) \text{ for } x \in \partial D_i^n$$

where $\varphi_i:\partial D_i^n\longrightarrow K^{n-1}$ are the attaching maps. We can look at the sequence

$$D^n \coprod \cdots \coprod D^n \xrightarrow{i} K^{n-1} \coprod D^n \coprod \cdots \coprod D^n \xrightarrow{\rho} K^n$$

where i is the inclusion map and ρ is the quotient map. Note that $\rho \circ i$ restricted to ∂D_i^n s the attaching map, i.e. φ_i .