第 1 章

双線形形式

直積集合とは、2 つの集合からそれぞれ要素を取り出してつくったペアをすべて集めた集合である。

ただし、ペアには順序があり、たとえば、(a,b) と (b,a) は異なるものとみなす。このような順序を考慮したペアを順序対という。

直積集合は、順序対の集合である。

 直積集合 2 つの集合 A, B に対して、A と B の直積集合は次のように定義 される。

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$

直積集合の例:座標平面 ℝ2

たとえば、2次元平面内の各点は、2つの実数の組 (x, y) で表すことができる。

このとき、x 座標と y 座標はそれぞれ実数の集合 $\mathbb R$ の要素であり、平面上の点 (x,y) を集めたものが、直積集合 $\mathbb R \times \mathbb R$ となる。

この $\mathbb{R} \times \mathbb{R}$ を、 \mathbb{R}^2 と表記することが多い。

2次元平面を №2 と表記していたのは、このような直積集合の考え方が背景にある。

内積と双線形形式

 \mathbb{R}^n 上の内積は、2 つのベクトル $\boldsymbol{a},\boldsymbol{b}\in\mathbb{R}^n$ のペアから、スカラー値 \mathbb{R} を返す関数として捉えることができる。

このように内積を写像に見立てて、この写像を b とおくと、

$$b: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

と表すことができる。

さらに、 \mathbb{R}^n 上の内積は次のような \mathbf{Z} 線形性を満たすものだった。

i.
$$(\boldsymbol{u}_1 + \boldsymbol{u}_2, \boldsymbol{v}) = (\boldsymbol{u}_1, \boldsymbol{v}) + (\boldsymbol{u}_2, \boldsymbol{v})$$

ii.
$$(\boldsymbol{u}, \boldsymbol{v}_1 + \boldsymbol{v}_2) = (\boldsymbol{u}, \boldsymbol{v}_1) + (\boldsymbol{u}, \boldsymbol{v}_2)$$

iii.
$$(c\boldsymbol{u}, \boldsymbol{v}) = (\boldsymbol{u}, c\boldsymbol{v}) = c(\boldsymbol{u}, \boldsymbol{v})$$

双線形性とは、2 つの引数それぞれに対して線形性があるという性質である。

線形性をもつ写像を線形写像として特別視したように、双線形性をもつ写像について考えて みよう。

双線形形式 U,V を線型空間とする。直積集合 $U\times V$ から \mathbb{R} への写像 b が次の条件を満たすとき、b は $U\times V$ 上の双線形形式(bilinear form)であるという。

i.
$$b(\boldsymbol{u}_1 + \boldsymbol{u}_2, \boldsymbol{v}) = b(\boldsymbol{u}_1, \boldsymbol{v}) + b(\boldsymbol{u}_2, \boldsymbol{v})$$

ii.
$$b(\boldsymbol{u}, \boldsymbol{v}_1 + \boldsymbol{v}_2) = b(\boldsymbol{u}, \boldsymbol{v}_1) + b(\boldsymbol{u}, \boldsymbol{v}_2)$$

iii.
$$b(c\boldsymbol{u}, \boldsymbol{v}) = b(\boldsymbol{u}, c\boldsymbol{v}) = cb(\boldsymbol{u}, \boldsymbol{v})$$

例:行列による双線形形式

 $oldsymbol{\iota}$ 行列による双線形形式の構成 A を $m \times n$ 型行列とするとき、 $oldsymbol{u} \in \mathbb{R}^m$, $oldsymbol{v} \in \mathbb{R}^n$ に対して

$$b(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{u}^{\mathsf{T}} A \boldsymbol{v}$$

により $\mathbb{R}^m \times \mathbb{R}^n$ 上の双線形形式が得られる。

証明 証明

和に対する双線形性 (i)

行列の和に対して転置を分配できることを用いて、

$$b(\boldsymbol{u}_1 + \boldsymbol{u}_2, \boldsymbol{v}) = (\boldsymbol{u}_1 + \boldsymbol{u}_2)^T A \boldsymbol{v}$$
$$= \boldsymbol{u}_1^T A \boldsymbol{v} + \boldsymbol{u}_2^T A \boldsymbol{v}$$
$$= b(\boldsymbol{u}_1, \boldsymbol{v}) + b(\boldsymbol{u}_2, \boldsymbol{v})$$

和に対する双線形性 (ii)

(i) と同様に、

$$b(\boldsymbol{u}, \boldsymbol{v}_1 + \boldsymbol{v}_2) = \boldsymbol{u}^T A(\boldsymbol{v}_1 + \boldsymbol{v}_2)$$

$$= \boldsymbol{u}^T A \boldsymbol{v}_1 + \boldsymbol{u}^T A \boldsymbol{v}_2$$

$$= b(\boldsymbol{u}, \boldsymbol{v}_1) + b(\boldsymbol{u}, \boldsymbol{v}_2)$$

スカラー倍に対する双線形性 (iii)

行列の積に対する転置の性質と、スカラー(1×1型行列)を転置しても変わ

らないことを用いて、

$$b(c\mathbf{u}, \mathbf{v}) = (c\mathbf{u})^{T} A \mathbf{v}$$
$$= c(\mathbf{u}^{T} A \mathbf{v})$$
$$= cb(\mathbf{u}, \mathbf{v})$$

以上より、b は $\mathbb{R}^m \times \mathbb{R}^n$ 上の双線形形式である。

特に、m=n で A=E の場合、

$$b(\boldsymbol{u}, \boldsymbol{v}) = \boldsymbol{u}^{\top} \boldsymbol{v}$$

となり、 \mathbb{R}^n 上の内積と一致する。