Optimization in Machine Learning

Mathematical Concepts Quadratic forms I

Learning goals

- Definition of quadratic forms
- Gradient, Hessian
- Optima

UNIVARIATE QUADRATIC FUNCTIONS

Consider a quadratic function $q:\mathbb{R} \to \mathbb{R}$

$$q(x) = a \cdot x^2 + b \cdot x + c, \qquad a \neq 0.$$

A quadratic function $q_1(x) = x^2$ (**left**) and $q_2(x) = -x^2$ (**right**).

UNIVARIATE QUADRATIC FUNCTIONS / 2

Basic properties:

• Slope of tangent at point (x, q(x)) is given by $q'(x) = 2 \cdot a \cdot x + b$

• Curvature of q is given by $q''(x) = 2 \cdot a$.

$$q_1 = x^2$$
 (orange), $q_2 = 2x^2$ (green), $q_3(x) = -x^2$ (blue), $q_4 = -3x^2$ (magenta)

UNIVARIATE QUADRATIC FUNCTIONS / 3

- Convexity/Concavity:
 - *a* > 0: *q* convex, bounded from below, unique global **minimum**
 - ullet a < 0: q concave, bounded from above, unique global **maximum**
- Optimum x^* :

$$q'(x^*) = 0 \Leftrightarrow 2ax^* + b = 0 \Leftrightarrow x^* = \frac{-b}{2a}$$

Left:
$$q_1(x) = x^2$$
 (convex). **Right:** $q_2(x) = -x^2$ (concave).

MULTIVARIATE QUADRATIC FUNCTIONS

A quadratic function $q: \mathbb{R}^d \to \mathbb{R}$ has the following form:

$$q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$

with $\mathbf{A} \in \mathbb{R}^{d \times d}$ full-rank matrix, $\mathbf{b} \in \mathbb{R}^d$, $c \in \mathbb{R}$.

MULTIVARIATE QUADRATIC FUNCTIONS / 2

W.l.o.g., assume **A symmetric**, i.e., $\mathbf{A}^T = \mathbf{A}$.

If \boldsymbol{A} not symmetric, there is always a symmetric matrix $\tilde{\boldsymbol{A}}$ s.t.

$$q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x} = \tilde{q}(\mathbf{x}).$$

Justification: We write

$$q(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x} = \frac{1}{2} \mathbf{x}^T \underbrace{(\mathbf{A} + \mathbf{A}^T)}_{\tilde{\mathbf{A}}_1} \mathbf{x} + \frac{1}{2} \mathbf{x}^T \underbrace{(\mathbf{A} - \mathbf{A}^T)}_{\tilde{\mathbf{A}}_2} \mathbf{x}$$

with $\tilde{\mathbf{A}}_1$ symmetric, $\tilde{\mathbf{A}}_2$ anti-symmetric (i.e., $\tilde{\mathbf{A}}_2^T = -\tilde{\mathbf{A}}_2$). Since $\mathbf{x}^T \mathbf{A}^T \mathbf{x}$ is a scalar, it is equal to its transpose:

$$\mathbf{x}^{T}(\mathbf{A} - \mathbf{A}^{T})\mathbf{x} = \mathbf{x}^{T}\mathbf{A}\mathbf{x} - \mathbf{x}^{T}\mathbf{A}^{T}\mathbf{x} = \mathbf{x}^{T}\mathbf{A}\mathbf{x} - (\mathbf{x}^{T}\mathbf{A}^{T}\mathbf{x})^{T}$$
$$= \mathbf{x}^{T}\mathbf{A}\mathbf{x} - \mathbf{x}^{T}\mathbf{A}\mathbf{x} = 0.$$

Therefore, $q(\mathbf{x}) = \tilde{q}(\mathbf{x})$ with $\tilde{q}(\mathbf{x}) = \mathbf{x}^T \tilde{\mathbf{A}} \mathbf{x}$ with $\tilde{\mathbf{A}} = \tilde{\mathbf{A}}_1/2$.

GRADIENT AND HESSIAN

• The gradient of q is

$$abla q(\mathbf{x}) = (\mathbf{A}^T + \mathbf{A}) \mathbf{x} + \mathbf{b} = 2\mathbf{A}\mathbf{x} + \mathbf{b} \in \mathbb{R}^d$$

Derivative in direction $\mathbf{v} \in \mathbb{R}^d$ is (by chain rule)

$$\frac{\mathrm{d}q(\mathbf{x}+h\cdot\mathbf{v})}{\mathrm{d}h}\bigg|_{h=0} = \nabla q(\mathbf{x}+h\mathbf{v})^{\mathsf{T}}\mathbf{v}\bigg|_{h=0} = \nabla q(\mathbf{x})^{\mathsf{T}}\mathbf{v}.$$

• The **Hessian** of *q* is

$$abla^2 q(\mathbf{x}) = (\mathbf{A}^T + \mathbf{A}) = 2\mathbf{A} =: \mathbf{H} \in \mathbb{R}^{d \times d}$$

Curvature in direction of $\mathbf{v} \in \mathbb{R}^d$ is (by chain rule)

$$\frac{d^2q(\mathbf{x}+h\cdot\mathbf{v})}{dh^2}\bigg|_{h=0}=\mathbf{v}^T\nabla^2q(\mathbf{x}+h\mathbf{v})\mathbf{v}\bigg|_{h=0}=\mathbf{v}^T\mathbf{H}\mathbf{v}.$$

OPTIMUM

Since **A** has full rank, there exists a *unique* stationary point **x*** (minimum, maximum, or saddle point):

$$egin{aligned}
abla q(\mathbf{x}^*) &= 0 \ 2\mathbf{A}\mathbf{x}^* + \mathbf{b} &= 0 \ \mathbf{x}^* &= -rac{1}{2}\mathbf{A}^{-1}\mathbf{b}. \end{aligned}$$

Left: A positive definite. **Middle:** A negative definite. **Right:** A indefinite.

OPTIMA: RANK-DEFICIENT CASE

Example: Assume **A** is **not** full rank but has a zero eigenvalue with eigenvector \mathbf{v}_0 .

- ullet Recall: $oldsymbol{v}_0$ spans null space of $oldsymbol{A}$, i.e., $oldsymbol{A}(lphaoldsymbol{v}_0)=0$ for each $lpha\in\mathbb{R}$
- $\bullet \implies \mathbf{A}(\mathbf{x} + \alpha \mathbf{v}_0) = \mathbf{A}\mathbf{x}$
- Since $\nabla q(\mathbf{x}) = 2\mathbf{A}\mathbf{x} + \mathbf{b}$:

$$\nabla q(\mathbf{x} + \alpha \mathbf{v}_0) = 2\mathbf{A}(\mathbf{x} + \alpha \mathbf{v}_0) + \mathbf{b} = 2\mathbf{A}\mathbf{x} + \mathbf{b} = \nabla q(\mathbf{x})$$

- $\implies q$ has infinitely many stationary points along line $\mathbf{x}^* + \alpha \mathbf{v}_0$
- Since $\mathbf{H} = 2\mathbf{A}$, kind of stationary point not changing along \mathbf{v}_0

