Работа 5.4.1

Определение энергии α -частиц по величине их пробега в воздухе

Работу выполнил Матренин Василий Б01-008

Цель работы: Измерить пробег α -частиц в воздухе с помощью ионизационной камеры

1 Теория

1.1 Ионизационная камера

Рис 1. Схема устройства ионизационной камеры

Ионизационная камера — прибор для количественного измерения ионизации, произведенной заряженными частицами при прохождении через газ. Камера представляет собой наполненный газом сосуд с двумя электродами. Схема камеры приведена на рисунке 1.

Заполняющий сосуд газ сам по себе не проводит электрический ток, возникает он только при прохождении быстрой заряженной частицы, которая порождает в газе на своем пути ионы.

Поместим на торец внутреннего электрода источник ионизирующего излучения (в нашем случае это источник альфа-частиц $^{239}_{94}Pu$), заполним объем камеры воздухом и начнем постепенно увеличивать разность потенциалов между электродами. Ток, протекающий через камеру, вначале будет резко возрастать, а затем, начиная с некоторого напряжения V_0 , станет постоянным. Предельный ток I_0 будет равен $I_0=n_0e$, где n_0 — число пар ионов, образуемых в секунду в объеме камеры, а e— заряд электрона.

Прохождение тока через камеру регистрируется посредством измерения напряжения на включенном в цепь камеры сопротивлении R. Так как средняя энергия ионизации атомов воздуха составляет около 30 эВ, то альфа-частица с энергией 3 МэВ образует на своем пути около 10^5 электронов, им соответствует заряд $1,6\cdot 10^{-14}$ Кл. Чтобы столь малое количество заряда, создаваемое проходящей через камеру одной альфа-частицей, вызывало измеряемое напряжение, емкость C должна быть мала.

При изменении давления в камере ионизационный ток меняется сначала линейно, а потом выходит на насыщение. При небольших давлениях газа альфа-частицы передают часть энергии стенкам камеры. По достижении давления P_0 все они заканчивают свой пробег внутри газа, и дальнейшее возрастание тока прекращается.

В данной работе измерение пробега альфа-частицы проводится по величине тока ионизации в сферической камере. Вакуумная установка содержит кран и манометр. Она позволяет

изменять давление в камере от атмосферного до 10 мм рт. ст. Величина тока ионизации измеряется электрометром, состоящим из нескольких стандартных микросхем, по величине падения напряжения на сопротивлении $R=100~{\rm MOm}~(C=10^{-8}~{\rm Фарад},{\rm так}~{\rm что}~RC=1~{\rm c}).$ Значение измеряемого ионизационного тока (в пикоамперах) высвечивается на цифровом табло.

1.2 Сцинтилляционный счетчик

Puc 2. Схема устройства сцинтилляционный счетчика

1.3 Счетчик Гейгера

Рис 3. Схема устройства счетчика Гейгера

Для определения пробега альфа-частиц с помощью счетчика радиоактивный источник помещается на дно стальной цилиндрической бомбы (рис. 3), в которой может перемещаться торцевой счетчик Гейгера. Его чувствительный объем отделен от наружной среды тонким слюдяным

окошком, сквозь которое могут проходить альфа-частицы. Рабочее напряжение счетчика указано на установке.

Импульсы, возникающие в счетчике, усиливаются и регистрируются пересчетной схемой. Путь частиц в воздухе зависит от расстояния между источником и счетчиком. Перемещение счетчика производится путем вращения гайки, находящейся на крышке бомбы. Расстояние между счетчиком и препаратом измеряется по шкале, нанесенной на держатель счетчика. Счетчик не может быть придвинут к препарату ближе чем на 10 мм, т. к. между источником и счетчиком установлен коллиматор, изготовленный из плотно сжатых металлических трубок. Отверстия трубок пропускают к счетчику только те альфа-частицы, которые вылетают из источника почти перпендикулярно его поверхности.

1.4 Вычисление энергии по длинне пробега

Для энергий в диапазоне 4-9 МэВ выполняется эмперическое соотношение:

$$E = 0.32 \cdot E^{\frac{3}{2}} \tag{1}$$

2 Ход работы

Сняли данные для всех трех установок.

2.1 Ионизационная камера

Представил результаты измерений на рисунке 4.

Зависимость I(Р) в ионизационной камере

 $Puc\ 4.\ 3 ависимость\ I\ (P)\ в\ ионизационной\ камере$

По графику определил:

$$P_{
m экстр} = (570 \pm 10) \ {
m торр}$$

Тогда рассчитаю пробег частиц:

$$R = \frac{288}{T} \cdot \frac{P}{760} \cdot \frac{10 - 0.5}{2} = (3.42 \pm 0.08)$$
 см

 Γ де 0.5 и 10 - диаметры первого и второго электродов соответственно.

И соответствующую ему энергию частиц:

$$E = \left(\frac{R}{0.32}\right)^{\frac{2}{3}} = (4.85 \pm 0.11)$$
 МэВ

2.2 Сцинтилляционный счетчик

Представил результаты измерений на рисунке 5.

 $Puc\ 5.\ 3aвисимость\ N(P)\ для\ сцинтилляционного\ счетчика$

По графику определил:

$$N''\left(P_{\mathrm{cp}}\right)=0\Rightarrow P_{\mathrm{cp}}=\left(139\pm10\right)$$
 торр

Тогда пробег:

$$R = \frac{288}{T} \cdot \frac{P}{760} \cdot 9 = (1.61 \pm 0.12) \text{ cm}$$

И энергия:

$$E = (2.94 \pm 0.22) \text{ МэВ}$$

2.3 Счетчик Гейгера

Представил результаты измерений на рисунке 6.

 $Puc\ 6.\ Зависимость\ N(x)\ для\ счетчика\ Гейгера$

По графику определил:

$$N''(R_{\mathrm{cp}}) = 0 \Rightarrow R_{\mathrm{cp}} = (18 \pm 1) \; \mathrm{mm}$$

Тогда энергия:

$$E = (3.16 \pm 0.18) \text{ МэВ}$$

3 Вывод

В ходе данной работы энергия α -частиц была посчитана 3 способами. Полученные значения:

$$E_1 = (4.85 \pm 0.11) \text{ M} \cdot \text{B}$$

$$E_2 = (2.94 \pm 0.22)$$
 МэВ

$$E_3 = (3.16 \pm 0.18) \text{ M} \circ \text{B}$$

Расхождение с реальным значением энергии частиц может быть обусловленно:

- Конечными размерами пучков частиц, что приводит к угловой расходимости.
- Наличием слюдяной пленки на источнике излучения.
- Неточностью эмперической формулы (1)