Parallel programming: Introduction to GPU architecture

Sylvain Collange Inria Rennes – Bretagne Atlantique

> sylvain.collange@inria.fr http://www.irisa.fr/alf/collange/

> > PPAR - 2018

Outline of the course

- March 6: Introduction to GPU architecture
 - Parallelism and how to exploit it
 - Performance models
- March 13: GPU programming
 - The software side
 - Programming model
- March 20: Performance optimization
 - Possible bottlenecks
 - Common optimization techniques
- 4 lab sessions, starting March 14-15
 - Labs 1&2: computing log(2) the hard way
 - Labs 3&4: Conway's Game of Life

Graphics processing unit (GPU)

- Graphics rendering accelerator for computer games
 - Mass market: low unit price, amortized R&D
 - Increasing programmability and flexibility
- Inexpensive, high-performance parallel processor
 - GPUs are everywhere, from cell phones to supercomputers
- General-Purpose computation on GPU (GPGPU)

GPUs in high-performance computing

GPU/accelerator share in Top500 supercomputers

In 2010: 2%

In 2016: 17%

 2016+ trend: Heterogeneous multi-core processors influenced by GPUs

#1 Sunway TaihuLight (China) 40,960 × SW26010 (4 big + 256 small cores)

#2 Tianhe-2 (China) 16,000 × (2×12-core Xeon + 3×57-core Xeon Phi)

GPGPU in the future?

- Yesterday (2000-2010)
 - Homogeneous multi-core
 - Discrete components
- Today (2011-...)Chip-level integration
 - Many embedded SoCs
 - Intel Sandy Bridge
 - AMD Fusion
 - NVIDIA Denver/Maxwell project...
- Tomorrow
 Heterogeneous multi-core
 - GPUs to blend into throughput-optimized cores?

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling

The free lunch era... was yesterday

- 1980's to 2002: Moore's law, Dennard scaling, micro-architecture improvements
 - Exponential performance increase
 - Software compatibility preserved

Hennessy, Patterson. Computer Architecture, a quantitative approach. 4th Ed. 2006

Do not rewrite software, buy a new machine!

Technology evolution

Memory wall

- Memory speed does not increase as fast as computing speed
- Harder to hide memory latency

Power wall

- Power consumption of transistors does not decrease as fast as density increases
- Performance is now limited by power consumption

ILP wall

- Law of diminishing returns on Instruction-Level Parallelism
- Pollack rule: cost ≃ performance²

Usage changes

- New applications demand parallel processing
 - Computer games : 3D graphics
 - Search engines, social networks...
 "big data" processing
- New computing devices are power-constrained
 - Laptops, cell phones, tablets...
 - Small, light, battery-powered
 - Datacenters
 - High power supply and cooling costs

Latency vs. throughput

- Latency: time to solution
 - Minimize time, at the expense of power
 - Metric: time e.g. seconds
- Throughput: quantity of tasks processed per unit of time
 - Assumes unlimited parallelism
 - Minimize energy per operation
 - Metric: operations / time e.g. Gflops / s
- CPU: optimized for latency
- GPU: optimized for throughput

Amdahl's law

Bounds speedup attainable on a parallel machine

- S Speedup
- P Ratio of parallel portions
- N Number of processors

G. Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities. AFIPS 1967.

Why heterogeneous architectures?

Time to run sequential portions $S = \underbrace{\frac{1}{(1-P)+(P-N)}}$ Time to run parallel portions

- Latency-optimized multi-core (CPU)
 - Low efficiency on parallel portions: spends too much resources

- Low performance on sequential portions
- Heterogeneous multi-core (CPU+GPU)
 - Use the right tool for the right job
 - Allows aggressive optimization for latency or for throughput

Example: System on Chip for smartphone

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling

The (simplest) graphics rendering pipeline

How much performance do we need

... to run 3DMark 11 at 50 frames/second?

Element	Per frame	Per second
Vertices	12.0M	600M
Primitives	12.6M	630M
Fragments	180M	9.0G
Instructions	14.4G	720G

- Intel Core i7 2700K: 56 Ginsn/s peak
 - We need to go 13x faster
 - Make a special-purpose accelerator

Beginnings of GPGPU

Microsoft DirectX

7.x	8.0	8.1	9.0 a	9.0b	9.0c	10.0	10.1	11
Unified shaders								

NVIDIA

NV10	NV20	NV30	NV40	G70	G80-G90	GT200	GF100
FP 16	Programmable shaders	FP 32	Dynamic control flow	SIMT	CUDA		

ATI	/AMD		FP 24		СТМ	FP 64		CAL	
	R100	R200	R300	R400	R500	R60	0	R700	Evergreen

Today: what do we need GPUs for?

1. 3D graphics rendering for games

Complex texture mapping, lighting computations...

2. Computer Aided Design workstations

Complex geometry

3. GPGPU

- Complex synchronization, data movements
- One chip to rule them all
 - Find the common denominator

Today: what do we need GPUs for?

1. 3D graphics rendering for games

Complex texture in appling, lighting computations.

Complex geometry

3. GPGPU

- Complex synchronization, data movements
- One chip to fule them all
 - Find the common minator

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
 - Hardware trends
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling

Trends: compute performance

Caveat: only considers desktop CPUs. Gap with server CPUs is "only" 4×!

Trends: memory bandwidth

Trends: energy efficiency

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
 - Hardware trends
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling

What is parallelism?

Parallelism: independent operations which execution can be overlapped

Operations: memory accesses or computations

How much parallelism do I need?

- Little's law in queuing theory
 - Average customer arrival rate λ ← throughput
 - ◆ Average time spent W ← latency
 - Average number of customers
 L = λ×W
- ← Parallelism = throughput × latency

- Units
 - For memory: B = GB/s × ns
 - For arithmetic: flops = Gflops/s × ns

Throughput and latency: CPU vs. GPU

→ Need 56 times more parallelism!

Sources of parallelism

- ILP: Instruction-Level Parallelism
 - Between independent instructions in sequential program

add
$$r3 \leftarrow r1$$
, $r2$
mul $r0 \leftarrow r0$, $r1$
sub $r1 \leftarrow r3$, $r0$

- TLP: Thread-Level Parallelism
 - Between independent execution contexts: threads

- DLP: Data-Level Parallelism
 - Between elements of a vector: same operation on several elements

vadd r
$$\leftarrow$$
 a, b $a_1 \ a_2 \ a_3 \ b_1 \ b_2 \ b_3 \ \hline r_1 \ r_2 \ r_3$

Example: $X \leftarrow a \times X$

In-place scalar-vector product: X ← a×X

Sequential (ILP) For
$$i = 0$$
 to $n-1$ do:
 $X[i] \leftarrow a * X[i]$

Threads (TLP) Launch n threads: $X[tid] \leftarrow a * X[tid]$

Vector (DLP) $X \leftarrow a * X$

Or any combination of the above

Uses of parallelism

- "Horizontal" parallelism for throughput
 - More units working in parallel

- "Vertical" parallelism for latency hiding
 - Pipelining: keep units busy when waiting for dependencies, memory

How to extract parallelism?

	Horizontal	Vertical
ILP	Superscalar	Pipelined
TLP	Multi-core SMT	Interleaved / switch-on-event multithreading
DLP	SIMD / SIMT	Vector / temporal SIMT

- We have seen the first row: ILP
- We will now review techniques for the next rows: TLP, DLP

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling

Sequential processor

```
for i = 0 to n-1
  X[i] ← a * X[i]

  Source code

move i ← 0
loop:
  load t ← X[i]
  mul t ← a×t
  store X[i] ← t
  add i ← i+1
  branch i<n? loop

Machine code</pre>
```


- Focuses on instruction-level parallelism
 - Exploits ILP: vertically (pipelining) and horizontally (superscalar)

The incremental approach: multi-core

Several processors
 on a single chip
 sharing one memory space

Intel Sandy Bridge

- Area: benefits from Moore's law
- Power: extra cores consume little when not in use
 - e.g. Intel Turbo Boost

Source: Intel

Homogeneous multi-core

Horizontal use of thread-level parallelism

Threads: T0 T1

Improves peak throughput

Example: Tilera Tile-GX

- Grid of (up to) 72 tiles
- Each tile: 3-way VLIW processor,
 5 pipeline stages, 1.2 GHz

Tile (9,1)

Interleaved multi-threading

Vertical use of thread-level parallelism

Threads: T0 T1 T2 T3

 Hides latency thanks to explicit parallelism improves achieved throughput

Example: Oracle Sparc T5

- 16 cores / chip
- Core: out-of-order superscalar, 8 threads
- 15 pipeline stages, 3.6 GHz

Clustered multi-core

- For each individual unit, select between
 - Horizontal replication
 - Vertical time-multiplexing
- Examples
 - Sun UltraSparc T2, T3
 - AMD Bulldozer
 - IBM Power 7

- Area-efficient tradeoff
- Blurs boundaries between cores

Implicit SIMD

- Factorization of fetch/decode, load-store units
 - Fetch 1 instruction on behalf of several threads
 - Read 1 memory location and broadcast to several registers

- In NVIDIA-speak
 - SIMT: Single Instruction, Multiple Threads
 - Convoy of synchronized threads: warp
- Extracts DLP from multi-thread applications

Explicit SIMD

- Single Instruction Multiple Data
- Horizontal use of data level parallelism

```
loop:
    vload T ← X[i]
    vmul T ← a×T
    vstore X[i] ← T
    add i ← i+4
    branch i<n? loop

Machine code
```


- Examples
 - Intel MIC (16-wide)
 - AMD GCN GPU (16-wide×4-deep)
 - Most general purpose CPUs (4-wide to 8-wide)

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling

Example CPU: Intel Core i7

- Is a wide superscalar, but has also
 - Multicore
 - Multi-thread / core
 - SIMD units
- Up to 117 operations/cycle from 8 threads

Example GPU: NVIDIA GeForce GTX 980

- SIMT: warps of 32 threads
- 16 SMs / chip
- 4×32 cores / SM, 64 warps / SM

- 4612 Gflop/s
- Up to 32768 threads in flight

Taxonomy of parallel architectures

	Horizontal	Vertical
ILP	Superscalar / VLIW	Pipelined
TLP	Multi-core SMT	Interleaved / switch-on- event multithreading
DLP	SIMD / SIMT	Vector / temporal SIMT

Classification: multi-core

How to read the table

- Given an application with known ILP, TLP, DLP how much throughput / latency hiding can I expect?
 - For each cell, take minimum of existing parallelism and hardware capability
 - The column-wise product gives throughput / latency hiding

Classification: GPU and many small-core

Takeaway

- Parallelism for throughput and latency hiding
- Types of parallelism: ILP, TLP, DLP
- All modern processors exploit the 3 kinds of parallelism
- GPUs focus on Thread-level and Data-level parallelism

Outline

- Computer architecture crash course
 - The simplest processor
 - Exploiting instruction-level parallelism
- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory

What is inside a graphics card?

NVIDIA GeForce GTX 980 Maxwell GPU. Artistic rendering!

External memory: discrete GPU

Classical CPU-GPU model

- Split memory spaces
- Need to transfer data explicitly
- Highest bandwidth from GPU memory
- Transfers to main memory are slower

Example configuration: Intel Core i7 4790, Nvidia GeForce GTX 980

We will assume this model for CUDA programming

External memory: embedded GPU

Most GPUs today are integrated

- Same physical memory
- May support memory coherence
 - GPU can read directly from CPU caches
- More contention on external memory

GPU high-level organization

- Processing units
 - Streaming Multiprocessors (SM) in Nvidia jargon
 - Compute Unit (CU) in AMD's
 - Closest equivalent to a CPU core
 - Today: from 1 to 20 SMs in a GPU
- Memory system: caches
 - Keep frequently-accessed data
 - Reduce throughput demand on main memory
 - Managed by hardware (L1, L2) or software (Shared Memory)

GPU processing unit organization

Each SM is a highly-multithreaded processor

- Today: 24 to 48 warps of 32 threads each
 - → ~1K threads on each SM, ~10K threads on a GPU

Outline

- GPU, many-core: why, what for?
 - Technological trends and constraints
 - From graphics to general purpose
- Forms of parallelism, how to exploit them
 - Why we need (so much) parallelism: latency and throughput
 - Sources of parallelism: ILP, TLP, DLP
 - Uses of parallelism: horizontal, vertical
- Let's design a GPU!
 - Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD
 - Putting it all together
 - Architecture of current GPUs: cores, memory
- High-level performance modeling

First-order performance model

Questions you should ask yourself, before starting to code or optimize

- Will my code run faster on the GPU?
- Is my existing code running as fast as it should?
- Is performance limited by computations or memory bandwidth?

Pen-and-pencil calculations can (often) answer such questions

Performance: metrics and definitions

Optimistic evaluation: upper bound on performance

Assume perfect overlap of computations and memory accesses

- Memory accesses: bytes
 - Only external memory, not caches or registers
- Computations: flops
 - Only "useful" computations (usually floating-point) not address calculations, loop iterators..
- Arithmetic intensity: flops / bytes
 = computations / memory accesses
 - Property of the code
- Arithmetic throughput: flops / s
 - Property of code + architecture

The roofline model

- How much performance can I get for a given arithmetic intensity?
 - Upper bound on arithmetic throughput, as a function of arithmetic intensity
 - Property of the architecture

S. Williams, A. Waterman, D. Patterson. *Roofline: an insightful visual performance model* 73 for multicore architectures. Communications of the ACM, 2009

Building the machine model

- Compute or measure:
 - Peak memory throughput GTX 980: 224 GB/s
 - Ideal arithmetic intensity = peak compute throughput / mem throughput

```
GTX 980: 4612 (Gflop/s) / 224 (GB/s) = 20.6 flop/B \times 4 (B/flop) = 82 (dimensionless)
```


- Achievable peaks may be lower than theoretical peaks
 - Lower curves when adding realistic constraints

Using the model

- Compute arithmetic intensity, measure performance of program
- Identify bottleneck: memory or computation
- Take optimization decision

Example: dot product

```
for i = 1 to n
r += a[i] * b[i]
```

- How many computations?
- How many memory accesses?
- Arithmetic intensity?
- Compute-bound or memory-bound?
- How many Gflop/s on a GTX 980 GPU?
 - With data in GPU memory?
 - With data in CPU memory?
- How many Gflop/s on an i7 4790 CPU?

GTX 980: 4612 Gflop/s, 224 GB/s i7 4790: 460 Gflop/s, 25.6 GB/s

PCIe link: 16 GB/s

Example: dot product

- How many computations?
- How many memory accesses?
- Arithmetic intensity?
- Compute-bound or memory-bound?
- How many Gflop/s on a GTX 980 GPU?
 - With data in GPU memory?
 - With data in CPU memory?
- 224 GB/s \times 0.25 flop/B \rightarrow 56 Gflop/s

 \rightarrow 1 flop/word = 0.25 flop/B

→ Highly memory-bound

16 GB/s \times 0.25 flop/B \rightarrow 4 Gflop/s

→ 2 n flops

 \rightarrow 2 n words

How many Gflop/s on an i7 4790 CPU?

25.6 GB/s × 0.25 flop/B → 6.4 Gflop/s Conclusion: don't bother porting to GPU!

GTX 980: 4612 Gflop/s, 224 GB/s i7 4790: 460 Gflop/s, 25.6 GB/s

PCIe link: 16 GB/s

Takeaway

- Result of many tradeoffs
 - Between locality and parallelism
 - Between core complexity and interconnect complexity
- GPU optimized for throughput
 - Exploits primarily DLP, TLP
 - Energy-efficient on parallel applications with regular behavior
- CPU optimized for latency
 - Exploits primarily ILP
 - Can use TLP and DLP when available
- Performance models
 - Back-of-the-envelope calculations and common sense can save time
- Next time: GPU programming in CUDA