M12-L2-P1

December 4, 2023

1 M12-L1 Problem 2

Sometimes the dimensionality is greater than the number of samples. For example,in this problem X has 19 features, but there are only 4 data points. You will need to use the alternate PCA formulation in this case. Follow the steps in the cells below to implement this method.

1.1 Computing Principal Components

1.1.1 The A matrix

[-1.75 0.25 1.25 0.25]

First, you should compute the A matrix, where A is $(X - \mu)'$. (Note the transpose)

Print this matrix below. It should have size 19×4 .

```
[]: A = (X - np.mean(X,axis=0)).T
     print("A = \n", A)
    A =
     [[-2.75 0.25 0.25 2.25]
     [ 1.25  2.25  -2.75  -0.75]
     [ 2.
                   2.
            -4.
                         0. 1
     [-3.5]
             1.5
                   0.5
                          1.5]
                 -0.5
     [ 3.5
            -4.5
                         1.5]
     [ 2.25 3.25 -1.75 -3.75]
             6.
                  -4.
                        -3. ]
            1.25 -1.75 -1.75]
     [ 2.25
```

```
[ 0.75 -0.25 1.75 -2.25]
[ 1.25 -2.75 -1.75 3.25]
[0.5 - 0.5 - 3.5]
                    3.5]
[ 1.
       -1.
             -3.
                    3. ]
[ 1.75 -0.25 -2.25
                    0.75]
[-1.5
      -1.5
              1.5
                    1.5]
[-3.
        1.
              0.
                    2. ]
[0.5 - 0.5]
              3.5 - 3.5
[ 0.25 -3.75 3.25 0.25]
[ 0.25 -1.75 2.25 -0.75]]
```

1.1.2 "Small" covariance matrix

By transposing $X - \mu$ to get A, now we can compute a smaller covariance matrix with A'A. Compute this matrix, C, below and print the result.

```
[]: C = A.T@A
print("C = \n", C)

C =
   [[ 69.875 -18.875 -26.375 -24.625]
   [-18.875 121.375 -53.125 -49.375]
   [-26.375 -53.125 98.375 -18.875]
   [-24.625 -49.375 -18.875 92.875]]
```

1.1.3 Finding nonzero eigenvectors

Next, find the useful (nonzero) eigenvectors of C.

For validation purposes, there should be 3 useful eigenvectors, and the first one is $[-0.06628148 -0.79038331 \ 0.47285044 \ 0.38381435]$.

Keep these eigenvectors in a 4×3 array e.

```
[]: w,v = np.linalg.eig(C)
w,v = np.real(w), np.real(v)
idx = np.argsort(-w)
w,v = w[idx], v[:,idx]
e = v[:,0:3]
print(e)

[[-0.06628148  0.04124587 -0.86249959]
[-0.79038331 -0.06822502  0.34733208]
[ 0.47285044 -0.69123739  0.22046165]
[ 0.38381435  0.71821654  0.29470586]]
```

1.1.4 Calculating "eigenfaces"

Now, we have all we need to compute U, the matrix of eigenfaces.

$$U_i = Ae_i$$

```
(19 \times 3) = (19 \times 4)(4 \times 3)
```

Compute and print U. Be sure to normalize your eigenvectors e before using the above equation.

```
[]: U = A @ e
U /= np.linalg.norm(U, axis=0)
print("Eigenfaces, U:\n",U)
Eigenfaces, U:
```

```
[[ 0.07294372  0.12277459  0.33008441]
[-0.26034151 0.11787331 -0.11677714]
[ 0.29998485 -0.09606164 -0.27776956]
[-0.01067529 0.04536213 0.42516696]
[ 0.27653993  0.17530224  -0.44157072]
[-0.37621372 -0.15082188 -0.23925816]
[-0.59257956 0.02265222 -0.05657115]
[-0.19897063 -0.0037123 -0.250194 ]
[ 0.04569305 -0.07236581  0.20213547]
[ 0.0084373 -0.25979087 -0.10504274]
[ 0.18948616  0.35382298 -0.1518308 ]
[ 0.03449119  0.40571147 -0.10256065]
[ 0.19396809  0.00756997  0.16057937]
[ 0.01329023  0.11639359  0.36617258]
[0.0508452 -0.45626561 -0.08985059]
[ 0.3456779 -0.16842745 -0.07563409]
[ 0.16171488 -0.18371276 -0.0569842 ]]
```

1.2 Projecting data into 3D

Now project your data into 3 dimensions with the formula:

```
\ = \ U^T A \  (3\times 4) = (3\times 19)(19\times 4) Call the projected data \Omega "W". Print W.T
```

```
[]: W = U.T@A print('Projected data in 3 dimensions:\n',W.T)
```

1.3 Reconstructing data in 19-D

We can project the transformed data W back into the original 19-D space using:

```
\begin{split} &\Gamma_f = U\Omega + \Psi \\ &\text{where:} \\ &\$ \_f = \$ \text{ reconstructed data} \\ &\$ U = \$ \text{ eigenfaces} \\ &\$ = \$ \text{ Reduced data} \\ &\$ = \$ \text{ Means} \end{split}
```

Do this, and compute the MSE between each reconstructed sample and corresponding original points. Report all 4 MSE values.

```
[]: MSE = []
  reconstructed = (U@W) + np.mean(X,axis=1)
  mse = np.mean((X - reconstructed.T) **2, axis=1)
  for i in range(4):
        print(f"MSE for sample {i}: {mse[i]}")

MSE for sample 0: 0.7468836565096959
  MSE for sample 1: 0.716412742382272
  MSE for sample 2: 0.7164127423822705
  MSE for sample 3: 0.691481994459834
```

1.4 2-D Reconstruction

What if we had only used the first 2 eigenvectors to compute the eigenfaces? Below, redo the earlier calculations, but use only two eigenfaces. Compute the 4 MSE values that you would get in this case.

(You should get an MSE of 3.626 for the first sample.)

```
[]: MSE2 = []
U2 = A @ e[:,:2]
U2 /= np.linalg.norm(U2, axis=0)
W2 = U2.T@A
reconstructed = (U2@W2) + np.mean(X,axis=1)
print("Using only 2 eigenvectors:")
mse = np.mean((X - reconstructed.T) ** 2, axis=1)
for i in range(4):
    print(f"MSE for sample {i}: {mse[i]}")
Using only 2 eigenvectors:
```

Using only 2 eigenvectors:

MSE for sample 0: 3.882784888090766 MSE for sample 1: 1.3575824909878655 MSE for sample 2: 0.9870175957576055 MSE for sample 3: 1.260330232133847