Lec 9 (MRI: the role of B_o field)

What decides how many spins will be up and how many will be down?

- Temperature
- The actual numbers are given by the Boltzmann distribution

Boltzmann distribution of spins

$N^-/N^+ = \exp(-\Delta E/kT)$

N: Number of spins at higher energy

N⁺: Number of spins at lower energy

 ΔE : Energy difference between two states

Signal ~ population <u>difference</u> between two states $(N^+ - N^-)$.

- 1. What will be the value of N^- when T = 0?
- 2. When do you think N^+ and N^- are likely to be equal?

$$N^-/N^+ = \exp(-\Delta E/kT)$$

What happens during MRI? (1)

1. Hydrogen nuclei in tissue have "spin angular momentum" and associated magnetic moment.

2. In an external magnetic field (B_o), M_z lines up with B_o (along z-axis).

3. A rotating magnetic field (B₁) pulse is applied along x-axis.

What happens during MRI? (2)

4. B_1 pulls away magnetization (M_z) from the z-axis with an angle α .

5. M_z rotates around z-axis at the "Larmor frequency".

What happens during MRI? (3)

6. B₁ is turned off. Only B₀ remains.

7. The XY-projection of M_z reduces with time, while Z-projection increases and returns to its equilibrium value ("relaxation").

8. Relaxation of M_z to its equilibrium value produces a voltage signal, which we measure.

Once we have grasped these concepts, we will bring on gradient field.

Larmor equation

Torque
$$(\mathbf{T}) = (\mathbf{m}_i \times \mathbf{B}_o) = d\mathbf{L}_i/dt$$

$$\gamma (\mathbf{m_i} \times \mathbf{B_o}) = d\mathbf{m_i}/dt$$

(since
$$\mathbf{m} = \gamma \mathbf{L}$$
)

For hydrogen, gyromagnetic ratio $(\gamma) \square = 42.58$ MHz/Tesla

Larmor precession

Individual spin magnetic moments will precess about the magnetic field with Larmor frequency ($v = \gamma B_o$).

Gyromagnetic ratio (γ)

Individual spin magnetic moments will precess about the magnetic field with Larmor frequency ($v = \gamma B_o$).

For hydrogen, gyromagnetic ratio (γ) = 42.58 MHz/Tesla

Nuclei with higher γ will precess faster in a given magnetic field.

Precession angle

- Quantum mechanics allows specific values of m_{z} . This makes only specific precession angles possible.
- Precession angle can have <u>any value</u> in *classical mechanics*.

Different nuclei precess with different Larmor frequencies (due to different g)

Element	Biological Abundance	γ
¹ H	0.63	42.58
13 C	0.094	10.71
²³ Na	0.00041	11.26
39 K	0.0024	1. 99

Need unpaired spin. Why?

Nuclear magnetic moment

- Both protons and neutrons can have magnetic moment. This is why our current-carrying loop explanation of spin is oversimplified (i.e. this can't explain why neutrons have magnetic moment).
- The magnetic moments of a proton and a neutron <u>do not</u> exactly cancel each other.

- A nucleus with either an <u>odd number of protons</u> or <u>odd</u> <u>number of neutrons</u> will have a net magnetic moment.
- Why does ¹⁴N have a net magnetic moment then?

Nuclide	Number of Protons	Number of Neutrons
¹ H	1	0
^{2}H	1	1
¹³ C	6	7
¹⁴ N	7	7
¹⁷ O	8	9
¹⁹ F	9	10
²³ Na	11	12
³¹ P	15	16
³⁹ K	19	20

Net bulk magnetization is along B_o

Bulk magnetization:
$$\mathbf{M} = \sum_{i=1}^{N} \mathbf{m}_{i}$$

$$< M_z > \neq 0, < M_x > = 0, < M_y > = 0$$

What happens during MRI? (1)

1. Hydrogen nuclei in tissue have "spin angular momentum" and associated magnetic moment.

2. In an external magnetic field (B_o), M_z lines up with B_o (along z-axis).

3. A rotating magnetic field (B₁) pulse is applied along x-axis.

What happens during MRI? (2)

4. B_1 pulls away magnetization (M_z) from the z-axis with an angle α .

5. M_z rotates around z-axis at the "Larmor frequency".

