Churn Prediction using Machine Learning

Note: All the analysis and results of this project have been obtained using Python and the Jupyter Notebook has been provided for reference.

Understanding the problem:

Customer churn, which refers to users disengaging from a platform, poses a significant challenge for e-commerce businesses since it affects both revenue and growth. This project aims to create a strong churn prediction model by examining user behaviour, engagement levels, and purchasing habits. By utilizing insights from the research paper, the project integrates behavioural metrics, time-based trends, and machine learning techniques to pinpoint users at risk of churning and suggest practical interventions.

Data Inspection and Preprocessing:

1. Data Loading and Overview:

- The dataset was loaded, inspected, and summarized to understand its structure and content.
- Missing values were identified in category_code, brand, and user_session.

2. Data Cleaning:

- Duplicates were removed (655 entries).
- Missing values in category_code and brand were imputed with "unknown" to retain user-level context.
- Rows with null user_session (0.02%) were safely dropped.

3. **Data Type Corrections**:

 event_time was converted to datetime format to enable temporal feature extraction.

Exploratory Data Analysis (EDA):

Key Findings:

1. Event Type Trends:

- Most interactions were "view" events, with significantly fewer "cart" and "purchase" events.
- Churn users showed lower engagement with "view" events compared to no-churn users.

2. Category and Brand Analysis:

- Categories like stationery.cartridge exhibited higher churn rates, indicating potential dissatisfaction.
- Brands with high churn rates (e.g., 45 out of 50 brands having a churn rate of 1.0) suggest the need for targeted retention strategies.

3. Temporal Patterns:

- Activity was highest during weekdays, with Monday being the peak day.
- Event counts dropped on weekends, with Saturday having the lowest engagement.

4. Price Analysis:

- Prices were skewed; Box-Cox transformation and winsorization improved distribution.
- Median prices were slightly lower for churn users, indicating possible price sensitivity.

5. Time of Day:

• Engagement peaked between morning and midday, declining steadily after 3 PM. Churn users showed lower activity during these peak times.

Defining Churn:

Definition: A user is considered churned if they meet one or both of the following:

- 1. **No Purchase Activity**: No purchase in the last 30 days.
- 2. **Overall Inactivity**: No activity (view, cart, or purchase) in the last 90 days.

Rationale:

- Aligns with typical e-commerce purchasing cycles.
- Combines purchase and engagement thresholds for comprehensive identification of at-risk users.

Churn Distribution:

0 216726 1 190511

0 indicates 'no churn' and 1 indicates 'churn'.

Feature Engineering:

Before feature engineering, data pre processing was carried out in which the categorical and temporal features were encoded using suitable methods.

Features Created:

1. User-Level Metrics:

- total_events, total_views, total_purchases, avg_session_duration, last_event_time, recency_days, and purchase_to_view_ratio highlight user activity and intent.
- Top viewed and purchased categories identify user preferences for personalized interventions.

2. Session-Level Metrics:

• session_length, session_events, total_sessions, avg_session_length and bounce rate measure engagement depth and interaction quality.

3. Temporal Features:

 event_day, event_hour, and event_month capture seasonal and hourly trends.

```
event time
                                     884312 non-null datetime64[ns, UTC]
     category_id
category_code
                                     884312 non-null
                                                           int64
                                     884312 non-null
     brand
                                     884312 non-null
                                                           object
                                     884312 non-null
6 user_id
7 user_session
8 churn
                                     884312 non-null
                                                           int64
                                     884312 non-null
884312 non-null
                                                           object
int64
     hour
                                     884312 non-null int32
10 day_of_week
11 brand_encoded
12 event_type_purchase
                                     884312 non-null
                                                           int64
                                     884312 non-null
13 event_type_view
14 event_day
15 event_hour
                                     884312 non-null
                                                           bool
                                     884312 non-null
884312 non-null
                                                           int32
                                                           int32
16 event_month
17 category_encoded
18 session_length
19 session_events
                                     884312 non-null
884312 non-null
                                     884312 non-null
                                                           float64
                                     884312 non-null
                                                           int64
20 total_events
21 total_views
                                     884312 non-null
                                                           int64
                                     884312 non-null
                                                           int64
22 total purchases
                                     884312 non-null
22 avg_session_duration 884312 non-null 24 last_event_time 884312 non-null 25 purchase_to_view_ratio 884312 non-null
                                    884312 non-null
884312 non-null
                                                           float64
                                                           datetime64[ns, UTC]
                                                          float64
                                     884312 non-null int64
     recency days
27 top_viewed_category
                                     884312 non-null object
28 top_purchased_category 186897 non-null object
                                    884312 non-null int64
884312 non-null float64
29 total sessions
    avg_session_length
31 bounce_rate
                                     884312 non-null float64
```

The imbalance of classes was handled using SMOTE. The feature importance of various features was determined using Random Forest.

Model Building and Evaluation:

Models Used:

1. XGBoost:

- Achieved higher recall (99.18%) and F1 score (99.45%), excelling in identifying at-risk users.
- Fewer misclassifications (1059 false negatives), making it effective in minimizing missed churn cases.

XGBoost Model Performance Metrics:

Accuracy Precision Recall F1 Score Confusion Matrix AUROC Score

XGBoost 0.994636 0.997168 0.991806 0.994480 [[135685, 364], [1059, 128186]] 0.999927

2. LightGBM:

- Delivered slightly better precision (99.76%), reducing false alarms.
- Performed consistently across folds but with slightly higher misclassifications (1306 false negatives).

 Accuracy
 Precision
 Recall
 F1 Score
 Confusion Matrix
 ROC AUC

 LightGBM
 0.993920
 0.997606
 0.989895
 0.993736
 [[135742, 307], [1306, 127939]]
 0.999920

Cross-Validation:

• XGBoost had higher mean accuracy (99.48%) with lower variability, indicating consistent performance. Hence, we select XGBoost as our final model.

Interpretation & Recommendations:

Key Insights:

1. Critical Predictors of Churn:

 recency_days: This feature indicates how recently a user interacted with the platform. Users with high recency values (longer gaps since their last interaction) are more likely to churn. This aligns with the principle that inactivity is a strong indicator of disengagement.

- **purchase_to_view_ratio**: This feature reflects the conversion efficiency, i.e., how effectively users transition from browsing to purchasing. A low ratio signals users who engage in exploratory behavior without making purchases, suggesting potential dissatisfaction or lack of intent to buy.
- **total_purchases**: Historical spending patterns are indicative of user loyalty. Users with low purchase counts may not be deriving enough value from the platform, making them more prone to churn.

2. Category and Brand-Level Churn:

- Certain categories, such as stationery.cartridge, have disproportionately high churn rates, suggesting dissatisfaction or a mismatch between user expectations and product offerings.
- Brands with high churn rates (e.g., 45 of the top 50 brands) suggest potential gaps in product quality, pricing, or post-purchase experience.

Actionable Steps:

1. Personalized Retention Campaigns:

- Target Group: Users with high recency_days and low purchase_to_view_ratio.
- o Strategies:
 - **Re-engagement Emails**: Send personalized emails highlighting products they've viewed but not purchased, along with limited-time discounts or recommendations based on their browsing history.
 - **Loyalty Rewards**: Offer loyalty points or discounts for the next purchase to encourage buying behavior.
 - Feedback Mechanisms: Prompt users to provide feedback on why they haven't completed purchases, giving insights into pain points (e.g., pricing, availability, usability).

2. Category-Specific Retention Strategies:

- o High-Churn Categories:
 - Stationery.cartridge, computers.peripherals.printer: Investigate why these categories has higher churn. Potential actions include price adjustments, bundling offers, or improving product descriptions to better set customer expectations.

Stable Categories:

 Categories such as computers.components.videocards show a higher proportion of no-churn users. Promote these categories to at-risk users to boost engagement with products that have demonstrated retention potential.

3. Peak Time Engagement:

- Morning to Midday Focus: Activity peaks during these hours, indicating when users are most engaged. Use this time window to:
 - Launch time-sensitive offers, such as flash sales or limited-time discounts.
 - Schedule push notifications or email campaigns to coincide with these hours for maximum visibility and conversion.

4. Brand Retention Strategies:

- For brands with a churn rate of 1.0, conduct an in-depth analysis to identify reasons for dissatisfaction. Actions might include:
 - Collaborating with these brands to improve product quality or resolve common complaints.
 - Providing stronger return/refund policies or post-purchase support to enhance user trust.

5. **Dynamic Pricing Strategies**:

 Observation: Churn users tend to make purchases at slightly lower median prices compared to no-churn users. Implement personalized pricing strategies, such as offering discounts or exclusive deals to users showing churn tendencies.

6. Seasonal Campaigns:

- Utilize the event_month feature to identify seasonal trends and develop campaigns tailored to those months. For example:
 - Promote school supplies during back-to-school months.
 - Highlight gifts and festive items during the holiday season.

7. Session-Based Interventions:

- Bounce Rate: Users with high bounce rates (single-event sessions) could be shown targeted exit-intent pop-ups offering discounts or relevant product recommendations.
- Session Duration: Identify users with decreasing session lengths and send personalized suggestions to rekindle interest, such as curated product lists or tutorials.

8. Enhancing Post-Purchase Experience:

- For churn-prone brands or categories, focus on improving post-purchase interactions:
 - Send follow-up emails for reviews or feedback.
 - Provide tutorials or setup guides for complex products (e.g., electronics).

Conclusion:

By utilizing insights from factors such as recency_days, purchase_to_view_ratio, and churn trends within specific categories and brands, these strategies can effectively minimize churn and improve customer retention. Merging targeted interventions, dynamic pricing, and increased engagement during peak periods creates a more tailored and efficient retention strategy, aligning with both business goals and customer satisfaction.

By:

Name: Tarun Kumar Behera

Email: tkbehera.work304@gmail.com