Formal Concept Analysis

Isabelle Bloch

LIP6, Sorbonne Université - LTCI, Télécom Paris

 $is abelle.bloch@sorbonne-universite.fr,\ is abelle.bloch@telecom-paris.fr\\$

I. Bloch Symbolic AI 1 / 18

Objectives

- Symbolic learning
- Data mining.
- Knowledge discovery
- **...**

Input

■ data expressed as a table objects × attributes

Output

- concept lattice:
 - clusters = formal concepts (nodes of the Hasse diagram)
 - sub-concept / super-concept hierarchy (partial order)
- attribute implications:
 - representative set of dependencies among data

I. Bloch Symbolic AI 2 / 18

A small example

- $x_i = \text{objects}$
- $y_i = attributes$
- example of concept: $(\{x_1, x_2\}, \{y_1, y_3\})$
- example of attribute implication: $\{y_1\} \Rightarrow \{y_3\}$

Historical notion of concept

Port-Royal logic (traditional logic): formal notion of concept A. Arnauld, P. Nicole: La logique ou l'art de penser, 1662.

$$|$$
 concept = extent (objects) + intent (attributes)

Later:

- G. Birkhoff in the 1940's: Lattice theory
- M. Barbut, B. Monjardet in the 1970's: partial order, classification
- R. Wille in the 1980's: hierarchy of concepts
- B. Ganter and R. Wille in the 1990's : formal concept analysis

I. Bloch Symbolic AI 4 / 18

Formal Concept Analysis (FCA) (Ganter et al. 1997)

- Set of objects *G*.
- Set of attributes M.
- Relation $I \subseteq G \times M$: $(g, m) \in I$ = object g has attribute m.
- Formal context: $\mathbb{K} = (G, M, I)$.
- Derivation operators $\alpha : \mathcal{P}(G) \to \mathcal{P}(M)$ and $\beta : \mathcal{P}(M) \to \mathcal{P}(G)$:

$$\forall X \subseteq G, \alpha(X) = \{m \in M \mid \forall g \in X, (g, m) \in I\}$$

$$\forall Y \subseteq M, \beta(Y) = \{g \in G \mid \forall m \in Y, (g, m) \in I\}$$

(also denoted by ' or \uparrow , \downarrow)

Example:
$$\alpha(\{x_1, x_2\}) = \{y_1, y_3\}, \beta(\{y_2\}) = \{x_1, x_3\}$$

I. Bloch Symbolic AI 5 /

Formal concept and concept lattice

 $(X,Y), X \subseteq G, Y \subseteq M$ is a formal concept if

$$\alpha(X) = Y \text{ and } \beta(Y) = X$$

Formal concept a = (e(a), i(a)), extent $e(a) \subseteq G$, intent $i(a) \subseteq M$.

- \blacksquare (X, Y) formal concept iff it is maximal for the property $X \times Y \subseteq I$.
- Partial ordering:

$$(X_1, Y_1) \leq (X_2, Y_2) \Leftrightarrow X_1 \subseteq X_2 \ (\Leftrightarrow Y_2 \subseteq Y_1)$$

reflects the sub-concept / super-concept relation.

- \mathbb{C} : set of concepts of the context $\mathbb{K} = (G, M, I)$.
- \blacksquare (\mathbb{C}, \preceq) is a complete lattice, called concept lattice.

I. Bloch Symbolic AI

Example of a context and its concept lattice from Wikipedia

K	composite	even	odd	prime	square
=			<u> </u>	p	_
1			×		×
2		×		×	
3			×	×	
4	×	×			×
5			×	×	
6	×	×			
7			×	×	
8	×	×			
9	×		×		×
10	×	×			

- Objects are integers from 1 to 10.
- Attributes are composite (c) (i.e. non prime integer strictly greater than 1), even (e), odd (o), prime (p) and square (s).
- $\blacksquare \mathbb{K} = (G = \{1, 2...10\}, M = \{c, e, o, p, s\}, I).$

I. Bloch Symbolic Al 7 / 18

\mathbb{K}	composite	even	odd	prime	square
1			X		×
2		×		×	
3			×	×	
4	×	×			×
5			×	×	
6	×	×			
7			×	×	
8	×	×			
9	×		×		×
10	×	X			

The pair $({3,5,7},{o,p})$ is a formal concept.

Galois connection

 (α, β) is a Galois connection between the posets $(\mathcal{P}(G), \subseteq)$ and $(\mathcal{P}(M), \subseteq)$:

$$\forall X \in \mathcal{P}(G), \forall Y \in \mathcal{P}(M), Y \subseteq \alpha(X) \Leftrightarrow X \subseteq \beta(Y)$$

Equivalently:

- $\forall Y_1, Y_2 \subseteq M, Y_1 \subseteq Y_2 \Rightarrow \beta(Y_2) \subseteq \beta(Y_1)$
- $\forall X \subseteq G, X \subseteq \beta(\alpha(X))$
- $\forall Y \subseteq M, Y \subseteq \alpha(\beta(Y))$

Consequently:

- $\forall X \subseteq G, \alpha(X) = \alpha(\beta(\alpha(X)))$
- $\forall Y \subseteq M, \beta(Y) = \beta(\alpha(\beta(Y)))$
- $\alpha\beta$ and $\beta\alpha$ are closure operators, i.e. increasing, extensive and idempotent.
- $\beta(\cup_j Y_j) = \cap_j \beta(Y_j)$

I. Bloch

Conversely

- \blacksquare $A: \mathcal{P}(G) \rightarrow \mathcal{P}(M)$
- lacksquare $B: \mathcal{P}(M) \to \mathcal{P}(G)$
- (A, B) Galois connection
- $\blacksquare \Rightarrow (A, B)$ is induced by a binary relation I
- $(g,m) \in I \Leftrightarrow m \in A(\{g\}) \Leftrightarrow g \in B(\{m\})$
- lacksquare the derivation operators are then exactly lpha=A and eta=B

■ Infimum and supremum of a family $(X_t, Y_t)_{t \in T}$ of formal concepts:

$$\bigwedge_{t \in T} (X_t, Y_t) = \left(\bigcap_{t \in T} X_t, \alpha \left(\beta \left(\bigcup_{t \in T} Y_t \right) \right) \right)$$

$$\bigvee_{t \in T} (X_t, Y_t) = \left(\beta \left(\alpha \left(\bigcup_{t \in T} X_t \right) \right), \bigcap_{t \in T} Y_t \right)$$

They are formal concepts.

Clarified context

= without redundant columns or rows

The concept lattices before and after clarification are isomorphic.

Example

Another possible context reduction: based on reducible elements

Concept lattice construction

Remark:

- $\forall X \subseteq G$, $(\beta(\alpha(X)), \alpha(X))$ is a formal concept
- $\forall Y \subseteq M$, $(\beta(Y), \alpha(\beta(Y)))$ is a formal concept
- smallest concept: $(\beta(\alpha(\emptyset)), \alpha(\emptyset))$
- \Rightarrow starting from the smallest concept, iteratively add objects and compute closure.

Main issue: complexity \Rightarrow several algorithms to reduce it.

Extension: add support information (frequent intents) $Supp(Y) = \frac{|\beta(Y)|}{|G|}$

I. Bloch Symbolic AI 13 / 18

Attribute implication

= description of some dependencies between data

Validity:

- \blacksquare $\mathbb{K} = (G, M, I), A \subseteq M, B \subseteq M$
- Subset M' of attributes $(M' \subseteq M)$
- Attribute implication: $A \Rightarrow B$
- $A \Rightarrow B$ valid (true) in M' iff $A \subseteq M'$ implies $B \subseteq M'$.
- $A \Rightarrow B$ valid (true) in \mathbb{K} iff $A \Rightarrow B$ valid in $M' = \{\alpha(\{g\}) \mid g \in G\}$.

Example

		<i>y</i> ₂		
<i>x</i> ₁	Х	Χ	Χ	Χ
<i>X</i> ₂	X	X	Χ	Χ
<i>X</i> 3		Χ	Χ	Χ
<i>X</i> 4		X	Χ	Χ
<i>X</i> 5	X		Χ	

I. Bloch Symbolic AI

Reasoning with attribute implications

- Theories
- Models
- Inference
- Definition of non-redundant bases of implications
- Guigues-Duquenne basis:

$$T = \{A \Rightarrow \alpha(\beta(A)) \mid A \text{ pseudo-intent of } \mathbb{K}\}$$

Pseudo-intent: $A \subseteq M$ such that

- $A \neq \alpha(\beta(A))$
- $\alpha(\beta(B)) \subseteq A$ for each pseudo-intent $B \subset A$

Extensions

- Many-valued context: (G, M, W, I), $I \subseteq G \times M \times W$ (W = set of values for attributes).
- Fuzzy context: $I: G \times M \rightarrow [0,1]$, I(g,m) = degree to which object g satisfies property m.
- Links with possibility theory.
- · ...

A few applications

- Classification and clustering.
- Recognition.
- Reinforcement learning (states / actions).
- Information retrieval, knowledge extraction.
- Social networks
- Spatial reasoning.
- Completing knowledge bases in description logics.
- Inference, abduction...
- ...

Several softwares available - See e.g. http://www.upriss.org.uk/fca/fcasoftware.html

A few references

- Marc Barbut and Bernard Monjardet, Ordre et classification, Hachette, 1970.
- Radim Belohlavek, Introduction to Formal Concept Analysis, http://belohlavek.inf.upol.cz/vyuka/IntroFCA.pdf
- Claudio Carpineto and Giovanni Romano, Concept Data Analysis: Theory and Applications, John Wiley & Sons, 2004.
- Nathalie Caspard, Bruno Leclerc and Bernard Monjardet, Finite Ordered Sets: Concepts, Results and Uses, Cambridge University Press, 2012.
- Bernhard Ganter and Rudolf Wille, Formal Concept Analysis, Springer, 1999.
- Bernhard Ganter, Gerd Stumme, Rudolf Wille (Eds.): Formal Concept Analysis Foundations and Applications. Springer, LNCS 3626, 2005.

I. Bloch Symbolic AI 18 / 18