Time Series

Sudipta Das

Assistant Professor,

Department of Computer Science,
Ramakrishna Mission Vivekananda Educational & Research Institute

Outline I

- Estimation for Stationary Time Series
 - Sample Mean
 - Sample ACF
 - Sample PACF

Sample Mean I

• The mean μ of a stationary process, $\{X_n\}$, is estimated by its sample mean, defined as follows

$$\bar{X}_n = \frac{1}{n}(X_1 + \ldots + X_n)$$

Sample Mean II

- Remarks:
 - Expectation of \bar{X}_n is

• Thus, \bar{X}_n is unbiased

$$E[\bar{X}_n] = \mu$$

Sample Mean III

• Mean squared error of \bar{X}_n is

$$E(\bar{X}_n - \mu)^2 = Var(\bar{X}_n) = \frac{1}{n^2} \left[\sum_{i=1}^n Var(X_i) + \sum_{i=1}^n \sum_{j=1}^n Cov(X_i, X_j) \right]$$
$$= \frac{1}{n} \sum_{h=-n}^n \left(1 - \frac{|h|}{n} \right) \gamma(h)$$

- If $\gamma(\underline{h}) \to 0$, then $Var(\bar{X}_n) = E(\bar{X}_n \mu)^2 \to 0$. Hence, $\bar{X}_n \stackrel{\mathcal{L}^2}{\to} \mu$
- If $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$, then $nVar(\bar{X}_n) = \sum_{|h| < \infty} \gamma(h)$

Sample Mean IV

• For linear and ARMA models time series.

$$n^{1/2}(\bar{X}_n-\mu)\stackrel{D}{\to} N\left(0,\sum_{|h|<\infty}\gamma(h)\right)$$

• \bar{X}_n , for large n, is approximately normal with mean μ and variance $n^{-1} \sum_{|h| < \infty} \gamma(h)$

Sample ACF I

• The autocorrelation function at lag h [i.e., $\rho(h)$] of a stationary process, $\{X_n\}$, is estimated by its sample autocorrelation function which is defined as follows

$$\hat{
ho}(h) = rac{\hat{\gamma}(h)}{\hat{\gamma}(0)},$$

where,
$$\hat{\gamma}(h) = n^{-1} \sum_{t=1}^{n-|h|} (X_{t+|h|} - \bar{X}_n)(X_t - \bar{X}_n)$$
, the sample autocovariance of $\{X_n\}$ at lag h and $h = 0, \pm 1, \ldots$

Sample ACF II

Remarks

- The estimator $\hat{\rho}(h)$ is biased (even if the factor n^{-1} is replaced by $(n-h)^{-1}$)
 - Nevertheless, under general assumptions they are nearly unbiased for large sample sizes.

Sample ACF III

• The sample ACVF has the desirable property that for each $k \ge 1$ the k-dimensional sample covariance matrix

$$\hat{\Gamma}_{k} = \begin{bmatrix} \hat{\gamma}(0) & \hat{\gamma}(1) & \dots & \hat{\gamma}(k-1) \\ \hat{\gamma}(1) & \hat{\gamma}(0) & \dots & \hat{\gamma}(k-2) \\ \vdots & \vdots & \dots & \vdots \\ \hat{\gamma}(k-1) & \hat{\gamma}(k-2) & \dots & \hat{\gamma}(0) \end{bmatrix}$$

is non-negative definite.

- The sample autocorrelation matrix $\hat{R}_k = \hat{\Gamma}_k/\hat{\gamma}(0)$, is also non-negative definite.
- If the factor n^{-1} is replaced by $(n-h)^{-1}$ in the definition of $\hat{\gamma}(h)$, the resulting covariance and correlation matrices $\hat{\Gamma}_k$ and \hat{R}_k may not then be non-negative definite.
- The matrices $\hat{\Gamma}_k$ and \hat{R}_k are in fact non-singular (hence, positive definite) if there is at least one nonzero $X_i \bar{X}_n$

Sample ACF IV

- As h goes closer to n, the estimates $\hat{\gamma}(h)$ and $\hat{\rho}(h)$ becomes unreliable, since there are so few pairs (X_{t+h}, X_t) available
- A rule of thumb, provided by Box and Jenkins: n should be at least about 50 and $h \le n/4$.

Sample ACF V

For linear and ARMA models time series,

$$\begin{bmatrix} \hat{\rho}(1) \\ \hat{\rho}(2) \\ \vdots \\ \hat{\rho}(h) \end{bmatrix} = \hat{\rho} \stackrel{D}{\to} N \left(\rho = \begin{bmatrix} \rho(1) \\ \rho(2) \\ \vdots \\ \rho(h) \end{bmatrix}, n^{-1} W = n^{-1} [w_{ij}]_{h \times h} \right)$$

• $\hat{\rho}$, for large n, is approximately normal with mean ρ and covariance matrix $n^{-1}W$, where

$$w_{ij} = \sum_{k=1}^{\infty} \{ \rho(k+i) + \rho(k-i) - 2\rho(i)\rho(k) \} \{ \rho(k+j) + \rho(k-j) - 2\rho(j)\rho(k) \}$$

(Bartlett's formula)

In particular, when sample size is large

$$\hat{\rho}(I) \sim N(\rho(I), n^{-1} w_{II}),$$

for
$$l=1,\ldots,h$$
.

Sample ACF VI

- Examples
 - WN(0, σ²)

$$\rho_X(h) = \begin{cases} 1, & \text{if } h = 0, \\ 0, & \text{if } h \neq 0. \end{cases}$$

Thus,

$$w_{ij} = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{if } i \neq j. \end{cases}$$

Hence,

$$\hat{\rho}(I) \sim N(0, n^{-1}),$$

for I = 1, ..., h.

Sample ACF VII

• MA(1) process,

$$w_{ii} = \begin{cases} 1 - 3\rho^{2}(1) + 4\rho^{4}(1), & \text{if } i = 1, \\ 1 + 2\rho^{2}(1), & \text{if } i > 1. \end{cases}$$

Hence,

$$\hat{
ho}(1) \sim N\left(
ho(1), n^{-1}\left[1 - 3
ho^2(1) + 4
ho^4(1)
ight]\right)$$

and

$$\hat{
ho}(I) \sim N\left(0, n^{-1}\left[1 + 2\rho^2(1)
ight]
ight),$$

for I = 2, ..., h.

Sample ACF VIII

• AR(1) process,

$$w_{ii} = (1 - \phi^{2i})(1 + \phi^2)(1 - \phi^2)^{-1} - 2i\phi^{2i}$$

Hence,

$$\hat{
ho}(I) \sim N\left(\phi^I, n^{-1}\left[(1-\phi^{2I})(1+\phi^2)(1-\phi^2)^{-1}-2I\phi^{2I}
ight]
ight),$$

for I = 1, ..., h.

Sample PACF I

• The partial autocorrelation function $\alpha(h)$ of a stationary process, $\{X_n\}$, is estimated by its sample partial autocorrelation function which is defined as follows

$$\hat{\alpha}(0) = 1$$

and

$$\hat{\alpha}(h) = \hat{\phi}_{hh}, \ h \geq 1$$

where $\hat{\phi}_{hh}$ is the last component of $\hat{\phi_h} = \hat{\Gamma}_h^{-1} \hat{\gamma_h}$.