Algebraic Function Field on Riemann Surfaces

David Gu

Computer Science Department Stony Brook University

gu@cs.stonybrook.edu

September 10, 2023

Lemma

Suppose $f \in \mathfrak{M}(M)$ is not constant, then $\mathbb{C}(f)$ is a pure transcendental extension of \mathbb{C} .

Proof.

Otherwise, $\exists P(x) \in \mathbb{C}[x]$, such that $P(x) \equiv 0$. Assume $P(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$,

$$P(f) = a_0 f^n + a_1 f^{n-1} + \cdots + a_n \equiv 0,$$

for any point $p \in M$, $f(p) \in \mathbb{C} \cup \{\infty\}$, f(p) is a root of P(x), therefore the range of f consists of finite number of points. This contradicts to the fact that $f: M \to \mathbb{S}^2$ is a branched covering with finite number of sheets. \square

Figure: Construction of γ_i , holomorphic map $Q_i: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$, $Q_i = R_i \circ f \circ z^{-1}$. a rational polynomial.

$$Q_i: \hat{\mathbb{C}} \xrightarrow{z^{-1}} M^n \xrightarrow{f} \hat{\mathbb{C}}^n \xrightarrow{R_i} \hat{\mathbb{C}}$$

$$Q_i: q \xrightarrow{z^{-1}} (p_1, p_2, \ldots, p_n) \xrightarrow{f} (f(p_1), \ldots, f(p_n)) \xrightarrow{R_i} R_i(f(p_1), \ldots, f(p_n))$$

Theorem (Algebraic Function Field)

Suppose M is a compact Riemann surface, then $\mathfrak{M}(M)$ is an algebraic function field in one variable: if z is a meromorphic function with n (n > 0) poles, then

$$[\mathfrak{M}(M):\mathbb{C}(z)]=n.$$

Assume $(z)=(z)_0-(z)_\infty$, where $(z)_0$ represent the zeros of z, $(z)_\infty$ the poles of z. Let $A=(dz)_0$, the zeros of dz (branch points of z), choose a point $a\in\mathbb{S}^2-\{z(A),\infty\}$, then z-a has simple zeros, $(z-a)^{-1}$ has simple poles. Since $\mathbb{C}(z)=\mathbb{C}(\frac{1}{z-a})$, if it is necessary we use $(z-a)^{-1}$ to replace z. Hence we can assume $(z)_\infty=p_1+p_2+\cdots+p_n$ consists of distinct points. Then we show

$$[\mathfrak{M}(M):\mathbb{C}(z)]\geq n$$
 and $[\mathfrak{M}(M):\mathbb{C}(z)]\leq n$.

Lemma

$$[\mathfrak{M}(M):\mathbb{C}(z)]\leq n.$$

Proof.

Claim: if $f_0 \in \mathfrak{M}(M)$, and $[\mathbb{C}(z)(f_0) : \mathbb{C}(z)]$ is maximized, then

$$\mathfrak{M}(M) = \mathbb{C}(z)(f_0) = \mathbb{C}(z, f_0)$$

Otherwise, there is $h \in \mathfrak{M}(M) - \mathbb{C}(z)(f_0)$, such that

$$[\mathbb{C}(z,f_0)(h):\mathbb{C}(z,f_0)]=I>1.$$

The classical primitive element theorem states: Every separable field extension of finite degree is simple.

continued.

The field $\mathbb{C}(z, f_0)(h) = \mathbb{C}(z)(f_0, h)$ must be a simple extension of $\mathbb{C}(z)$. Hence there is a $h_1 \in \mathfrak{M}(M)$, such that

$$\mathbb{C}(z)(f_0, h) = \mathbb{C}(z)(h_1).$$

$$[\mathbb{C}(z)(h_1) : \mathbb{C}(z)] = [\mathbb{C}(z, f_0)(h) : \mathbb{C}(z)]$$

$$= [\mathbb{C}(z, f_0)(h) : \mathbb{C}(z, f_0)][\mathbb{C}(z, f_0) : \mathbb{C}]$$

$$= I[\mathbb{C}(z, f_0) : \mathbb{C}(z)]$$

$$> [\mathbb{C}(z, f_0) : \mathbb{C}(z)]$$

Contradiction to the assumption that $[\mathbb{C}(z)(f_0):\mathbb{C}(z)]$ is maximized. Therefore $\mathbb{C}(z)(f_0)=\mathfrak{M}(M)$.

continued.

Claim,

$$\forall f \in \mathfrak{M}(M) \quad [\mathbb{C}(z)(f) : \mathbb{C}(z)] \leq n$$

Fix a $f \in \mathfrak{M}(M)$, assume there are $r_i(z) \in \mathbb{C}(z)$, $i = 1, 2, \ldots, n$,

$$P(z,f) = f^{n} + r_{1}(z)f^{n-1} + r_{2}(z)f^{n-2} + \dots + r_{n}(z) \equiv 0.$$
 (1)

The problem boils down how to find $r_i(z)$'s.

continued.

Now z is an n-sheet branched covering from M to \mathbb{S}^2 . Suppose $q \in \mathbb{S}^2$, such that $z^{-1}(q) = \{p_1, p_2, \dots, p_n\}$ are distinct. It is obvious that every point on \mathbb{S}^2 except a finite number of points has distinct pre-images. Let

$$\alpha_i = r_i(z(p_i)) = r_i(q).$$

If Eqn. (1) holds, then $f(p_1), f(p_2), \ldots, f(p_n)$ are all the roots of the following polynomial:

$$W^n + \alpha_1 W^{n-1} + \cdots + \alpha_n$$

and $\alpha_i = (-1)^i R_i(f(p_1), \dots, f(p_n))$, where R_i is the i-th elementary symmetric polynomial,

$$R_i(x_1,\cdots,x_n)=\sum_{j_1< j_2<\cdots< j_i}x_{j_1}\cdots x_{j_i},\quad 1\leq i\leq n.$$

continued.

Define map $Q_i: \mathbb{S}^2 \to \mathbb{S}^2$,

$$Q_i(q) = (-1)^i R_i(f(p_1), f(p_2), \cdots, f(p_n)).$$

It can be shown that Q_i is a holomorphic map from \mathbb{S}^2 to itself, hence Q_i is a rational function.

$$Q_i(z(p_j)) = Q_i(q) = (-1)^i R_i(f(p_1), \cdots, f(p_n)) = \alpha_i,$$

but $\alpha_i = r_i(z(p_i))$, hence we define

$$r_i(z) := Q_i(z)$$

which is a rational function of z. The construction of $Q_i(z)$ depends on f.

continued.

Now reverse the whole process, $\forall f \in \mathfrak{M}(M)$, we can construct $r_i(z) \in \mathbb{C}(z)$, such that

$$P(z, f) \equiv f^{n} + r_{1}(z)f^{n-1} + \cdots + r_{n}(z) = 0$$

holds on M, this completes the proof of the lemma.

Lemma

$$[\mathfrak{M}(M):\mathbb{C}(z)]\geq n.$$

Proof.

Assume $(z)_{\infty} = p_1 + p_2 + \cdots + p_n$ consisting of distinct points, all poles are simple.

Claim: $\forall i = 1, 2, \dots, n, \exists \omega_i \in \mathfrak{M}(M)$, such that

$$\omega_i(p_1) = \omega_i(p_2) = \cdots = \omega_i(p_{i-1}) = 0, \omega_i(p_i) = 1$$

continued.

We show $\omega_1, w_2, \cdots, \omega_n$ are linearly independent with respect to $\mathbb{C}(z) = \mathbb{C}(\frac{1}{z})$. Otherwise, there are $\alpha_1, \alpha_2, \cdots, \alpha_n \in \mathbb{C}(\frac{1}{z})$, such that

$$\sum_{i=1}^n \alpha_i \omega_i = 0.$$

Let β be the least common multiple of the denominators of $\alpha_1, \alpha_2, \cdots, \alpha_n$. Let $\gamma_i = \beta \alpha_i$, thus

$$\sum_{i=1}^{n} \gamma_{i} \omega_{i} = 0, \quad \gamma_{i} \in \mathbb{C}[1/z], 1 \leq i \leq n.$$

Let d be the greatest common divisor of $\gamma_1, \gamma_2, \cdots, \gamma_n$, multiply the above equation by 1/d, the coefficient γ_i/d is still denoted as α_i , then $\alpha_i \in \mathbb{C}(1/z)$ and α_i has no trivial common divisor.

continued.

Hence at least one α_i has non-zero constant term, namely there is a $r \leq n$, such that $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}$ has zero constant terms, and α_r has non-zero constant term. At p_r , $1/z(p_r) = 0$, therefore

$$\alpha_1(p_r) = \alpha_2(p_r) = \cdots = \alpha_{r-1}(p_r) = 0.$$

By the choice of ω_i , we know

$$\omega_{r+1}(p_r) = \omega_{r+2}(p_r) = \cdots = \omega_n(p_r) = 0.$$

plug into $\sum_{i=1}^{n} \alpha_i \omega_i = 0$, we obtain

$$\alpha_r(p_r)\cdot\omega_r(p_r)=0.$$

This contradicts to the fact that $\alpha_r(p_r) \neq 0$ and $\omega_r(p_r) \neq 0$.

Lemma

Suppose M is a compact Riemann surface, D is a divisor and $deg(D) \ge 2g - 1$, then

$$diml(-D) = deg(D) + (1 - g)$$
(2)

Proof.

Since $deg(D) \ge 2g - 1$,

$$\deg((\omega)-D)=\deg(\omega)-\deg(D)=2g-2-\deg(D)<0$$
, therefore

$$\Omega(D) \cong I(-((\omega)-D)) = \{0\}.$$

By Riemann-Roch

$$\dim I(-D) = \dim \Omega(D) + \deg(D) + (1-g) = \deg(D) + (1-g).$$

continued.

Now we prove the claim. Select a point $q \in M - \{p_1, p_2, \cdots, p_n\}$ and $k \ge 2g - 1 + n$. Let $D = kq - (p_1 + p_2 + \cdots + p_{i-1})$, $\deg(D) > 2g - 1$, by lemma (Eqn. 2), $\dim(-D) = \deg(D) + (1 - g)$, hence $\forall i = 1, \dots, n$

$$\dim I(-(kq-(p_1+p_2+\cdots+p_{i-1}))=1+\dim I(-(kq-(p_1+p_2+\cdots+p_i)).$$

Therefore, there exists

$$\omega_i \in I(-(kq - (p_1 + p_2 + \cdots + p_{i-1})) - I(-(kq - (p_1 + p_2 + \cdots + p_i)),$$

namely

$$\omega_i(p_1) = \omega_i(p_2) = \cdots = \omega_i(p_{i-1}) = 0, \omega_i(p_i) \neq 0.$$

This completes the proof for the claim.

Definition (Valuation)

Let K be a field. A (discrete) valuation on K is a surjective map $v: K \to \mathbb{Z} \cup \{\infty\}$ with the following properties:

- $v^{-1}(\infty) = \{0\}.$
- $v(f+g) \ge \min(v(f), v(g))$ for all $f, g \in K$.

Valuation $v: K^* \to \mathbb{Z}$ has the properties: we define $v(0) = +\infty$,

- v(1) = 0, v(-1) = 0, v(f) = v(-f);
- when $v(f) \neq v(g)$, $v(f+g) = \min\{v(f), v(g)\}$.
- if $\mathbb{C} \subset K$, then v(c) = 0, $\forall c \in \mathbb{C}^*$. Since $v(c) = n \cdot v(c^{1/n})$, if $v(c) \neq 0$, then $v(c^{1/n}) \neq 0$, let $n \to \infty$, induce contradiction.

Lemma (Valuation)

Suppose M is a compact Riemann surface, v is a valuation on $\mathfrak{M}(M)$, then there is a unique point $p \in M$, such that $v = \nu_p$.

Proof.

Take a meromorphic function h, such that v(h) = 1, obviously h is not constant (since v(c) = 0). If $a \in \mathbb{C}^*$, then $v(h-a) = \min\{v(h), v(-a)\} = 0$. Therefore, if r is a rational function, then

$$v(r(h))=\nu_0(r).$$

Denote the zeros of h as p_1, \dots, p_n . Choose an arbitrary meromorphic function f, then f satisfies the equation

$$f^{n} + r_{1}(h)f^{n-1} + \cdots + r_{n}(h) = 0,$$

ri's are rational functions. David Gu (Stony Brook University)

continued.

$$nv(f) \ge \min\{v(r_i(h)f^{n-i}), i = 1, \dots, n\}$$

$$= \min\{v(r_i(h)) + (n-i)v(f), i = 1, \dots, n\}$$

$$= \min\{\nu_0(r_i) + (n-i)v(f), i = 1, \dots, n\}$$

 r_i 's are rational functions. If v(f) < 0, then there is an i, such that $\nu_0(r_i) < 0$. Because $r_i(0)$ is the elementary symmetric function of the values of f at p_1, p_2, \cdots, p_n , hence f must have a pole at some p_j . By similar argument on 1/f, we have if v(f) > 0, then f must have a zero at some p_k .

continued.

Now we label distinct points in $\{p_1, p_2, \cdots, p_n\}$ by $\{q_1, q_2, \cdots, q_m\}$. Choose a meromorphic function g, such that g is holomorphic at $\{q_i\}$, $g(q_i)$ are mutually different nonzero complex numbers, furthermore each $dg(q_i)$ is non-zero. By above argument, $g(q_i)$ is neither 0 nor ∞ , v(g) can not be positive or negative, hence v(g) = 0.

Consider function

$$h\Pi_{i=1}^{m}(g-g(q_{i}))^{-\nu_{q_{i}}(h)}$$
(3)

At q_i , the order of h is $\nu_{q_i}(h)$, the order of $g-g(q_i)$ is 1, hence the order of $h(g-g(q_i))^{-\nu_{q_i}(h)}$ is 0. Function (3) is holomorphic at $\{q_i\}$ with non-zero value, therefore its valuation is zero. Hence

$$1 = v(h) = \sum_{i=1}^{m} \nu_{q_i}(h) v(g - g(q_i)).$$

continued.

Because $v(g - g(q_i)) \ge \min\{v(g), v(g(q_i))\} = 0$, there is a unique q_k , such that

$$v(g-g(q_k))=1=\nu_{q_k}(h),\quad v(g-g(q_j))=0,\quad j\neq k.$$

For any meromorphic function f, consider function

$$f \prod_{i=1}^{m} (g - g(q_i))^{-\nu_{q_i}(f)}$$

It is holomorphic at $\{q_i\}$ with non-zero value, therefore its valuation is zero. Hence

$$v(f) = \sum_{i=1}^{m} \nu_{q_i}(f) v(g - g(q_i)) = \nu_{q_k}(f).$$

This completes the proof.

Theorem

Suppose M, N are compact Riemann surfaces, $\varphi : \mathfrak{M}(N) \to \mathfrak{M}(M)$ is a field isomorphism and its restriction on \mathbb{C} is identity, then there exists a unique holomorphic map $h : M \to N$, such that

$$\varphi = h^*$$
.

Proof.

Suppose $p \in M$, $\forall f \in \mathfrak{M}(N)$, $\varphi(f) \in \mathfrak{M}(M)$, define valuation ν_p on $\mathfrak{M}(N)$ as

$$\nu_p(f) = \nu_p(\varphi(f)), \quad f \in \mathfrak{M}(N).$$

According to previous Valuation Lemma, there exists a unique point $h(p) \in N$, such that $\nu_p = \nu_{h(p)}$, namely

$$\nu_p(\varphi(f)) = \nu_{h(p)}(f), \quad f \in \mathfrak{M}(N).$$

In this way, we obtain the map $h: M \to N$. We claim

$$\varphi(f)(p) = f(h(p)), \quad f \in \mathfrak{M}(N), p \in M.$$

continued.

Assume $c \in \mathbb{C}$, we have

$$f(h(p)) = c \iff \nu_{h(p)}(f - c) > 0$$

$$\iff \nu_{p}(\varphi(f - c)) > 0$$

$$\iff \nu_{p}(\varphi(f) - c) > 0$$

$$\iff \varphi(f)(p) = c.$$

therefore
$$f(h(p)) = \varphi(f)(p)$$
.

continued.

Claim: h is continuous. Otherwise, there exist a point sequence $\{p_n\} \subset M$, such that $p_n \to p_0 \in M$, $h(p_n) \to q \in N$ and $q \neq h(p_0) = q_0$. On the other hand, for any meromorphic function $f \in \mathfrak{M}(N)$, we have

$$f(q) = \lim_{n \to \infty} f(h(p_n))$$

$$= \lim_{n \to \infty} \varphi(f)(p_n)$$

$$= \varphi(f)(p_0) = f(h(p_0)) = f(q_0),$$

therefore f can't differentiate q and q_0 , contradict to previous conclusion.

continued.

Claim: h is holomorphic. Select an arbitrarily point $p \in M$, choose a meromorphic function $f \in \mathfrak{M}(N)$, such that f is biholomorphic in a local coordinate disk U of h(p). $\varphi(f)$ is not constant (as an isomomorphism, φ is injective and identity on \mathbb{C}). Choose an open neighborhood $V \subset M$ of p, such that $h(V) \subset U$, and $\varphi(f)(V) \subset f(U)$. By $\varphi(f)(p) = f(h(p))$, we have

$$h(p') = f^{-1} \circ \varphi(f)(p'), \quad p' \in V.$$

Hence *h* is holomorphic.

Corollary

If $\varphi: \mathfrak{M}(N) \to \mathfrak{M}(M)$ is a field isomorphism, then $h: M \to N$ is an isomorphism between Riemann surfaces.

The second proof doesn't use valuation.

Proof.

Suppose $f \in \mathfrak{M}(M)$, its minimal polynomial with respect to $\mathbb{C}(z)$ is

$$W^{n} + r_{1}(z)W^{n-1} + r_{2}(z)W^{n-2} + \cdots + r_{n}(z),$$

where $r_i(z) \in \mathbb{C}(z)$. After multiply the least common multiple, we obtain

$$G(W,z) \equiv S_0(z)W^n + S_1(z)W^{n-1} + S_2(z)W^{n-2} + \cdots + S_n(z),$$

where $S_i(z) \in \mathbb{C}[z]$, $G(f,z) \equiv 0$.

Proof.

 $G(W,z)\in\mathbb{C}[W,z]$ is an algebraic function, and G(W,z) is irreducible in $\mathbb{C}[W,z]$. $G(W,z)\equiv 0$ determines a n-valued holomorphic function in z on \mathbb{C} , namely for each z (with finite number of exceptions $z\in\mathbb{C}$), W(z) has n values. By the fundamental theorem on algebraic functions, this locally determines n single valued holomorphic functions $W_1(z),\cdots,W_n(z)$, such that $G(W_i(z),z)\equiv 0,\ \forall 1\leq i\leq n;$ furthermore, every $W_i(z)$ is the analytic extension of each $W_j(z)$. $\{W_i(z)\}$ induces a Riemann surface M_0 , such that W(z) on M_0 is a single valued holomorphic function. M_0 is the so-called Riemann surface of the algebraic function G(W,z).

By the construction of M_0 , there is a canonical map $\varphi: M \to M_0$ and φ is biholomorphic. The construction of M_0 is solely determined by $\mathfrak{M}(M)$. \square

Proof.

Similarly, we can construct N_0 from $\mathfrak{M}(N)$. If $\mathfrak{M}(M)$ is isomorphic to $\mathfrak{M}(N)$, then M_0 is isomorphic to N_0 , so M and N are isomorphic.

