Poisoning Attacks to Graph-Based Recommender Systems

Minghong Fang, Guolei Yang, Neil Zhenqiang Gong, Jia Liu Iowa State University; Facebook, Inc.

Shilong Zhao [†] November 21, 2022

[†]Institute of Computing Technology University of Chinese Academy of Sciences

OUTLINE

- 1. Introduction
- 2. Problem Formulation
- 3. Proposed Method
- 4. Experiment
- 5. Conclusion
- 6. Supplement

Introduction

INTRODUCTION

Graph-Based Recommender Systems: 实际上是图上的 Random Walk 算法。

Introduction

Contributions:

- 1. 将投毒攻击形式化为优化问题并提出近似求解的方法
- 2. 使用真实世界数据与其他攻击方法进行比较
- 3. 提出检测假用户的反制措施并验证效果

Problem Formulation

PROBLEM FORMULATION

Attack goal: 最大化 Hit ratio, h(t) =所有正常用户 top-N 推荐中包含 了 Target Item t 的用户数量/正常用户数量

Attack approach: 攻击者向 RS 注入假用户,控制假用户给目标物品高 分、给一些其他 item 精心设计的评分(这部分 item 叫做 filler items. 每个用户有 n 个)。

Attack knowledge: white-box setting. 攻击者知道给定推荐系统使用的 推荐算法和用户-物品评分矩阵。

$$\max h(t)$$
subject to $|r_v|_0 \le n + 1, \forall v \in \{v_1, v_2, \cdots, v_m\}$

$$r_{vi} \in \{0, 1, \cdots, r_{max}\}, \forall v \in \{v_1, v_2, \cdots, v_m\}$$

0 范数:向量中非零元素的个数。 v_m: 第 m 个恶意用户

Proposed Method

PROPOSED METHOD

很难得到上面提出的优化问题的精确解,于是对其进行近似:

- 1. 不同时优化 m 个假用户的评分,而是逐个优化他们的评分。具体来说,给定目前的正常用户和假用户,我们找到下一个假用户的评分分数,以优化 HR。(贪心)
- 2. 使用其他容易优化的函数近似 HR。
- 3. 将评分的取值范围 $\{0, 1, ..., r_{max}\}$ 放宽到实数域 $[0, r_{max}]$.

使用 PGD(projected gradient descent) 解决近似后的优化问题。 最后生成假用户对 Target item 和 filler items 的评分:

- 1. fake user 对 target 打最高分;
- 2. 根据近似优化问题中求出的 w_i 从高到低选择 n 个 item 作为 filler item:
- 3. 为每个 filler item 打分: 从正常用户为这个 item 打分的分布中 sample 一个数,离散化后作为分数。

Experiment

EXPERIMENT

数据集:

- 1. MovieLens-100K(943 users, 1,682 movies, and 100,000 ratings)
- 2. Amazon Instant Video(5,073 users, 10,843 items, and 48,843 ratings)

Table 1: Dataset statistics.				
Dataset	#Users	#Items	#Ratings	Sparsity
Movie	943	1,682	100,000	93.67%
Video	5,073	10,843	48,843	99.91%

Metric: HR@N

Baseline Attacks: On paper...

Conclusion

CONCLUSION

文章提出了一种针对图模型投毒攻击,目的是让目标商品推荐给尽可 能多的用户。

实验结果表明:

- 1. 针对图模型进行攻击效果很好。
- 2. 也可以攻击其他类型的 RS, 但效果不太好。
- 3. 通过使用监督学习可以检测出很大一部分虚假用户,但也可以错误地预测一小部分正常用户是虚假用户。

Q&A

Q & A

Supplement

SUPPLEMENT: 近似 HR

在具有新加入的假用户 v 的图中,为了对普通用户 u 进行推荐,我们首先从 u 执行 Random Walk 算法并计算其平稳概率分布 P_u ,其中 P_{ui} 是项目 i 的平稳概率。我们根据平稳概率对用户 u 未评分的项目进行排名,选择平稳概率最大的前 n 项被推荐给用户 u, 生成推荐列表 L_u 。 P_u 是从用户 u 开始的随机游走的平稳概率分布,即下式的解:

$$p_{u} = (1 - \alpha) \cdot Q \cdot p_{u} + \alpha \cdot e_{u},$$

$$Q_{xy} = \begin{cases} \frac{r_{xy}}{\sum\limits_{z \in \Gamma_{x}} r_{xz}} & \text{if } (x, y) \in E \\ 0 & \text{otherwise,} \end{cases}$$

对于用户节点 x, Γx 是 x 评分的项目集; 对于项目节点 x, Γx 是评价 x 的用户集。转移矩阵 Q 是边权值 w_v 的函数。

SUPPLEMENT: 近似 HR

设计一个损失函数满足:

- 1. Filler items 排在 Target item 前时 Loss 大,反之小
- 2. Target 排的越高 Loss 越小

$$l_u = \sum_{i \in L_u} g(p_{ui} - p_{ut}),$$
$$g(x) = \frac{1}{1 + \exp(-x/b)}$$

Supplement

SUPPLEMENT: 近似 HR

对所有用户求和:

$$l = \sum_{u \in S} l_u,$$

最终的优化目标:

$$\min F(w_{\upsilon}) = ||w_{\upsilon}||_2^2 + \lambda \cdot l$$

subject to $w_{\upsilon i} \in [0, r_{max}],$

其中 $||\mathbf{w}_{\mathbf{v}}||_2^2$ 用来限制每个假用户只能对少量商品进行评分。 这样我们就可以计算 $F(\mathbf{w}_{\mathbf{v}})$ 对 $\mathbf{w}_{\mathbf{v}}$ 的导数。(On paper...)

假用户评分的生成

Algorithm 1 Our Poisoning Attacks

Input: Rating matrix R, parameters t, m, n, λ , b.

Output: m fake users v_1, v_2, \cdots, v_m .

- 1: //Add fake users one by one.
- 2: **for** $v = v_1, v_2, \cdots, v_m$ **do**
- 3: Solve the optimization problem in Equation 6 with the current rating matrix R to get w_v .
- 4: //Assign the maximum rating score to the target item.
- 5: $r_{vt} = r_{max}$.
- 6: //Find the filler items
- 7: The n items with the largest weights are filler items.
- 8: //Generate rating scores for the filler items.
- 9: $r_{vj} \sim \mathcal{N}(\mu_j, \sigma_j^2)$, for each filler item j.
- 10: //Inject the fake user with rating scores $r_{\mathcal{U}}$ to the system.
- 11: $R \leftarrow R \cup r_v$.
- 12: end for
- 13: **return** $r_{\mathcal{V}_1}, r_{\mathcal{V}_2}, \cdots, r_{\mathcal{V}_m}$.