Second order systems Mechatronics, Lecture 6

by Sergei Savin

Fall 2023

CONTENT

- Eigenvalues
- Characteristic Polynomial
- Poles
- Natural Frequency
- Frequency response

SECOND-ORDER SYSTEMS

Some of the second-order dynamical systems we have seen before:

- Spring-mass-damper dynamics.
- RLC circuit.
- DC motor angular velocity dynamics.
- Linearized model of a pendulum.

In a few lectures we will see that PID controller also acts in a way similar to a second-order dynamical system.

Since any polynomial can be represented as a product of linear polynomials and quadratic polynomials, we can also re-write any transfer function as a product of transfer functions with quadratic polynomials in the denominator. We can see second-order dynamical systems as fundamental building blocks of dynamical systems.

Observing eq. $m\ddot{y} + \mu_0\dot{y} + c_0y = 0$ we can tell that it is stable if (sufficient but not necessary condition) m > 0, $\mu > 0$, and c > 0 - this follows from the physics of the system.

A more principled approach is to find eigenvalues of the linear system. We start by dividing the equation by m:

$$\ddot{y} + \mu \dot{y} + cy = 0 \tag{1}$$

where $\mu = \mu_0/m$ and $c = c_0/m$. Defining $x_1 = y$ and $x_2 = \dot{y}$, the system can be equivalently represented as:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -c & -\mu \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \tag{2}$$

With linear system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -c & -\mu \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, we need to find its eigenvalues. We know that there is a formula for eigenvalues based on trace and determinant:

$$\lambda = \frac{T \pm \sqrt{T^2 - 4D}}{2} \tag{3}$$

where T is trace and D is the determinant.

In our case $T = -\mu$ and D = c, and eigenvalues are:

$$\lambda = \frac{-\mu \pm \sqrt{\mu^2 - 4c}}{2} \tag{4}$$

Lets analyze eigenvalues $\lambda = \frac{-\mu \pm \sqrt{\mu^2 - 4c}}{2}$. We can see that if $\mu \ge 0$ and $c \ge 0$, there are only two scenarios:

- $\mu^2 4c \ge 0$, in which case $\sqrt{\mu^2 4c} \le \mu$, the eigenvalues are purely real and negative.
- ② $\mu^2 4c < 0$, in which case $\sqrt{\mu^2 4c}$ is a purely imaginary number, the eigenvalues are complex with negative real parts.

If $\mu \ge 0$ and c = 0, $\lambda_1 = -\mu$, $\lambda_2 = 0$, hence the system is marginally stable.

If $\mu \geq 0$ and c < 0, then $\sqrt{\mu^2 - 4c} \geq \mu$, and eigenvalues are purely real and one of them is positive, the system is unstable. If $\mu < 0$ and c < 0 at least one of the eigenvalues is still positive.

If $\mu < 0$ and $c \ge 0$, then again there are only two scenarios:

- $\mu^2 4c \ge 0$, in which case $\sqrt{\mu^2 4c} \le \mu$, the eigenvalues are purely real and positive.

Definition

If $\mu \geq 0$ and $c \geq 0$ the system is stable, if $\mu < 0$ or c < 0 it is unstable.

CHARACTERISTIC POLYNOMIAL

Going back to the eq. $\ddot{y} + \mu \dot{y} + cy = 0$ we can write characteristic eq. for it:

$$k^2y + \mu k + c = 0 \tag{5}$$

Its roots are given by the formula:

$$k = \frac{-\mu \pm \sqrt{\mu^2 - 4c}}{2} \tag{6}$$

As we can see, it is exactly the same as the determinant-trace formula.

TRANSFER FUNCTION POLES

Now, lets consider the transfer function:

$$W(s) = \frac{1}{s^2 + \mu s + c} \tag{7}$$

Poles of the transfer functions are solutions of the polynomial in its denominator; notice that this polynomial is exactly the same as the previously discussed characteristic polynomial. Meaning the poles of the transfer function are eigenvalues of the linear system.

NATURAL FREQUENCY REPRESENTATION, 1

Another popular form of writing a second-order ODE is the following:

$$\ddot{y} + 2\zeta\omega_n\dot{y} + \omega_n^2 y = 0 \tag{8}$$

where ω_n is a natural frequency and ζ is damping factor. The quantity $\zeta \omega_n$ is called damping attenuation. The relation between ζ, ω_n and μ, c is:

$$\omega_n = \sqrt{c}, \quad \zeta = \frac{\mu}{2\sqrt{c}} \tag{9}$$

With this, the expression for eigenvalues is:

$$\lambda = -\zeta \omega_n \pm \omega_n \sqrt{\zeta^2 - 1} \tag{10}$$

NATURAL FREQUENCY REPRESENTATION, 2

With the representation $\ddot{y} + 2\zeta\omega_n\dot{y} + \omega_n^2y = 0$ we can tell:

- the system is overdamped (has pure real negative eigenvalues) is $\zeta > 1$, critically damped if $\zeta = 1$ and underdamped (produces oscillations) if $0 \le \zeta < 1$;
- the system has purely imaginary eigenvalues (non-decaying oscillations) iff $\zeta = 0$ (since $\omega_n = 0$ corresponds to the trivial solution).

NATURAL FREQUENCY REPRESENTATION, 3

Figure 1: Poles and ζ, ω_n . Credit: MIT.

PURE IMAGINARY POLES, 1

Given $\zeta = 0$ (implying $\mu = 0$) we have pure imaginary poles / eigenvalues $\lambda = \pm i\omega_n$. Moreover, the dynamics equations become:

$$\ddot{y} + \omega_n^2 y = 0 \tag{11}$$

Proposing solution $y = A \sin(\omega_n t + \varphi)$, noting that $\dot{y} = \omega_n A \cos(\omega_n t + \varphi)$ and $\ddot{y} = -\omega_n^2 A \sin(\omega_n t + \varphi)$, we see:

$$-\omega_n^2 A \sin(\omega_n t + \varphi) + \omega_n^2 A \sin(\omega_n t + \varphi) = 0$$
 (12)

which is an equality.

Pure imaginary poles, 2

Previous slide showed that the system without damping $\ddot{y} + \omega_n^2 y = 0$ will oscillate with angular frequency ω_n ; this motivates the name "natural frequency".

Also it shows that, if we pass a harmonic signal with angular frequency ω_n through a transfer function $W(s) = s^2 + \omega_n^2$ we will get a zero output.

Alternately, passing a harmonic signal with angular frequency ω_n through a transfer function $W(s) = \frac{1}{s^2 + \omega_n^2}$ we observe an infinite gain. Same can be observed by substituting $i\omega$ for s and evaluating the absolute value of the transfer function at $\omega = \omega_n$. This effect is called *resonance*.

FREQUENCY RESPONSE

Given a transfer function $W(s) = \frac{1}{s^2 + 2\zeta\omega_n s + \omega_n^2}$ we can find frequency response gain by computing absolute value of $W(i\omega)$:

$$G = |W(i\omega)| = \frac{1}{\sqrt{(\omega_n^2 - \omega^2)^2 + (2\zeta\omega_n\omega)^2}}$$
 (13)

- \blacksquare As $\omega \to 0$, $G \to \frac{1}{\omega_n^2}$.
- $\blacksquare \text{ As } \omega \to \infty, G \to 0.$

READ MORE

■ MIT. 2.14 Analysis and Design of Feedback Control Systems. Understanding Poles and Zeros

Lecture slides are available via Github, links are on Moodle

You can help improve these slides at: github.com/SergeiSa/Mechatronics-2023

