EEE336 Signal Processing and Digital Filtering

Lecture 5 Discrete-Time Signals in Time Domain 5_1 Introduction

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Content: Discrete-time Signals and Systems

Discrete-time Signals in Time Domain

Lecture 5

Discrete-time Signals in Frequency Domain

Lecture 7

Discrete-time Systems in Time Domain

Lecture 6

Discrete-time Systems in Frequency Domain

Lecture 8

Content: Lecture 5

Signals (Sequences)	Operations	Properties
Unit Impulse	 Elementary (addition, multiplication, production) 	• Symmetry
• Unit Step	Time Shifting	 Periodicity
 Rectangular 	Time Reversal (folding)	• Energy
 Real Exponential 	Branching	• Power
Complex Exponential	 Decimation 	• Bound
 Sinusoidal 	 Interpolation 	 Summable (absolutely, square)

- Convolution
- Correlation

Discrete-time Signal Generation

- Method 1: Periodically sampling a continuous time signal x(t) with uniform sampling rate F_s
 - Eg: sensor signals, audio signals
- Method 2: Naturally discrete in time
 - Eg: population data, financial data
- Method 3: Sequences generated by digital devices
 - Eg: synthesize music, file/data stored in computer

Discrete-time Signal Representation

• Graphical:

• Sequence:
$$x[k] = \{1, 1, 2, -1, 1\}$$

Vector (array)
$$x[k] = \{1, 1, 2, -1, 1; k = -1, 0, 2, 3\}$$

• Functional:
$$x[k] = 2^k u[k]$$

Length of sequences

- Finite-duration or finite-length sequences:
 - Defined in the interval $N_1 \le n \le N_2$
 - Length (duration): L=N2-N1+1
 - A length-N sequence is often referred to as an N-point sequence
- Infinite-duration or infinite-length sequences:
 - Right-side sequence: x[n]=0, $n>=N_1$
 - Left-side sequence: x[n]=0, $n \le N_2$

A right-sided sequence

A left-sided sequence

Double-sides sequence

5_1 Wrap up

- Content of the following 4 lectures
 - Discrete Signal in Time D
 - Discrete System in Time D
 - Discrete Signal in Frequency D (Transform D)
 - Discrete System in Frequency D (Transform D)
- Content of lecture 5:
 - Basic sequences (signals)
 - Fundamental operations
 - Properties of signals (Classification)
- About the discrete-time signals
 - Representation
 - Length

EEE336 Signal Processing and Digital Filtering

Lecture 5 Discrete-Time Signals in Time Domain 5_2 Basic DT Sequences

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Unit Impulse

$$\delta[k] = \begin{cases} 1 & k = 0 \\ 0 & k \neq 0 \end{cases}$$

$$\delta[k-n] = \begin{cases} 1 & k=n \\ 0 & k \neq n \end{cases}$$

• Application:

Unit Step

$$u[k] = \begin{cases} 1 & k \ge 0 \\ 0 & k < 0 \end{cases}$$

$$u[k] \stackrel{1}{\longleftarrow} k$$

$$u[k-n] = \begin{cases} 1 & k \ge n \\ 0 & k < n \end{cases}$$

• Application: rectangular sequence

$$R_N[k] = \begin{cases} 1 & 0 \le k \le N - 1 \\ 0 & \text{\sharp} \text{ de} \end{cases}$$

• Real Exponential:

$$x[n] = A\alpha^n, -\infty < n < \infty$$

– If both A and α are real:

• Complex Exponential:

$$x[n] = A\alpha^n, -\infty < n < \infty$$

– If both $A = |A|e^{j\varphi}$ and $\alpha = e^{\sigma + j\omega}$ are complex, then

$$x[n] = A\alpha^n = |A|e^{j\varphi}e^{(\sigma+j\omega)n} = |A|e^{\sigma}e^{j(\omega n + \varphi)}$$

• Sinusoidal $= |A|e^{\sigma}\cos(\omega n + \varphi) + j|A|e^{\sigma}\sin(\omega n + \varphi)$

5_2 *Wrap up*

- Important and useful basic sequences are introduced
 - Unit impulse -> sequence representation
 - Unit step -> functional representation
 - Exponential sequences:
 - Real
 - Complex
 - Euler's formula -> sinusoidal

EEE336 Signal Processing and Digital Filtering

Lecture 5 Discrete-Time Signals in Time Domain 5_3 Fundamental Operations

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Elementary operations

- Addition
 - Adder

 $x[n] \xrightarrow{y[n]} y[n]$ y[n] = x[n] + w[n] w[n]

- Multiplication
 - Multiplier

$$x[n] \longrightarrow y[n] \quad y[n] = A \cdot x[n]$$

- Production
 - Productor

$$x[n] \xrightarrow{y[n]} y[n]$$

$$y[n] = x[n] \cdot w[n]$$

$$w[n]$$

• Time-reversal (folding)

$$x[k] \rightarrow x[-k]$$

• Time-shifting

$$x[k] \rightarrow x[k \pm n]$$

• Branching: used to provide multiple copies of a sequence

Decimation

$$x_D[k] = x[Mk]$$

- Take one point for every M point from original sequence

Example for M = 2

Down sampling

Interpolation

$$x_I[k] = \begin{cases} x[k/L], k = nL \\ 0, & others \end{cases}$$

Inserting L-1 points between two points of the original sequence

Combination of fundamental operations

• Example 1:

• Example 2:

Example

• x[k] is given as follows. Draw x[-3k+2].

5_3 Wrap up

• Be familiar with the fundamental operations of signals

• Be able to combine them to obtain a complex operation, or separate a complex operation into fundamental building blocks

EEE336 Signal Processing and Digital Filtering

Lecture 5 Discrete-Time Signals in Time Domain 5_4 Properties of DT Signals

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

- Symmetric: if x[n]=x[-n];
- Conjugate-symmetric sequence: x[n]=x*[-n];
 - If x[n] is real, then the symmetric is the same as conjugatesymmetric, and the signal is an even sequence

- Conjugate-antisymmetric sequence: x[n]=-x*[-n]
 - If x[n] is real, the signal is called anti-symmetric or odd sequence

- Periodic signals and aperiodic signals
 - A signal is periodic with period N (N > 0) if and only if $x_p[n]=x_p[n+kN]$, for all n
 - The smallest value of N for which the above condition holds is called the (fundamental) period

 A signal not satisfying the periodicity condition is called nonperiodic or aperiodic

Example: Sinusoidal sequence

$$x[n] = A\cos(\omega_0 n + \varphi)$$

- Note any continuous sinusoidal /exponential signal is periodic
- However, not all discrete sinusoidal sequences are periodic.
 - A discrete time sequence $\cos(\omega_0 n + \varphi)$ is periodic with period N, if and only if, there exists an integer m, such that mT_0 is an integer, where $T_0=2\pi/\omega_0$;
 - In the other word, $\omega_0 N = 2\pi r$ must be satisfied with two integers N and r, or N/r must be rational number.
- Verify $x_1[n] = \cos(\omega_o n + \varphi)$ $x_2[n] = \cos(\omega_o (n+N) + \varphi)$ $x_2[n] = \cos(\omega_o n + \varphi)\cos(\omega_o N) - \sin(\omega_o n + \varphi)\sin(\omega_o N)$ $= \cos(\omega_o n + \varphi) = x_1[n]$ iff $\sin(\omega_o N) = 0$ and $\cos(\omega_o N) = 1$
 - These two conditions are met if and only if $\omega_0 N = 2\pi r$.

• The total energy of a signal x[n] is defined by

$$E \equiv \sum_{n=-\infty}^{\infty} \left| x(n) \right|^2$$

• The average power of a discrete-time signal [x] is defined by

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} \left| x[n] \right|^2$$

- where the signal energy of x[n] over the finite interval – $N \le n \le N$:

$$E_N = \sum_{n=-N}^{N} \left| x(n) \right|^2$$

- Signal energy is: $E \equiv \lim_{N \to \infty} E_N$
- Average signal power is: $P = \lim_{N \to \infty} \frac{1}{2N+1} E_N$
- Power Signals and Energy Signals:
 - An infinite signal with finite average power is called a power signal
 - Eg.: A periodic sequence which has a finite average power but infinite energy
 - Eg.: A unit step signal
 - A finite signal with zero average power is called an energy signal
 - Eg.: A finite-length sequence which has finite energy but zero average power

- A sequence is bounded if $|x[n]| \le B_x < \infty$
 - For example: $x[k] = a^k$

• A sequence is absolutely summable if

$$\sum_{n=-\infty}^{\infty} |x[n]| < \infty$$

- Eg:
$$y[n] = \begin{cases} 0.3^n, & n \ge 0 \\ 0, & n < 0 \end{cases} = \sum_{n = -\infty}^{\infty} |0.3^n| = \frac{1}{1 - 0.3} = 1.43 < \infty$$

• A sequence is square-summable if

$$\sum_{n=-\infty}^{\infty} |x[n]|^2 < \infty$$

- Eg:
$$h[n] = \frac{\sin 0.4\pi n}{\pi n} = \sum_{n=-\infty}^{\infty} \left| \frac{\sin 0.4\pi n}{\pi n} \right| = \infty$$
 not absolutely summable

but
$$\sum_{n=-\infty}^{\infty} \left| \frac{\sin 0.4\pi n}{\pi n} \right|^2 = 0.24 < \infty$$
 square summable

5_4 Wrap up

- Signal properties are introduced
 - Symmetry
 - Periodicity
 - Energy
 - Power
 - Boundness
 - Summability
- Signals can be classified according to their properties
- Be able to analyse and determine their classification.

Chapter 5 Summary

Signals (Sequences)	Operations	Properties
Unit Impulse	 Elementary (addition, multiplication, production) 	• Symmetry
• Unit Step	Time Shifting	 Periodicity
 Rectangular 	Time Reversal (folding)	• Energy
 Real Exponential 	Branching	• Power
Complex Exponential	 Decimation 	• Bound
 Sinusoidal 	 Interpolation 	 Summable (absolutely, square)

