# **RL Assignment 3**

Suraj Pandey MT18025

**Question 4 : -** Figures in Blackjack game





**Question 6: -** Figure in Example 6.2



## **Question 7:-**

Environment used: Maze 5\*5 open Al gym

### **Q-learning**

 $Q(st,at) = Q(st,at) + learning_factor*(reward_t + discount_factor*max_on_a(Q(st+1,at+1)) - Q(st,at))$ 

#### **SARSA**

 $Q(st,at)=Q(st,at)+learning_factor*(reward_t+discount_factor*Q(st+1,at+1)-Q(st,at))$ 

# **Observation Table for Q-learning learning:**

| S. No. | Learning Rate | Discount Factor | Episodes Taken | Time taken |
|--------|---------------|-----------------|----------------|------------|
| 2      | 0.2           | 0.2             | 253            | 169        |
| 3      | 0.2           | 0.8             | 55             | 62         |
| 4      | 0.4           | 0.8             | 32             | 38         |

| 6 | 0.6 | 0.8 | 25 | 25 |
|---|-----|-----|----|----|
| 7 | 0.8 | 0.6 | 23 | 23 |



#### **Conclusion / Inferences:**

- Q-learning directly learns the optimal policy, whereas SARSA learns a near-optimal policy while exploring
- Q-learning takes more time to converge than SARSA.
- From Observation, when discount factor is large then, the Q-learning algorithm will work more faster i.e, converges faster than SARSA.
- Number of Episodes taken to converge in SARSA will be small in comparison to Q-learning. And when the discount factor and exploration rate increases then, SARSA takes more number of episodes than Q-learning.