Tutorial 9

COMP 335: Introduction to Theoretical Computer Science

Mohammad Reza Davari

Concordia University

Outline

Proving Ambiguity

2 Ambiguous Grammars

Contents of the section

Proving Ambiguity

2 Ambiguous Grammars

Proving Ambiguity

Recipe

Show that there are 2 more *unique* parse trees for a string w in the language. In order to insure uniqueness, use either leftmost derivation or right most derivation^a.

^aThis pdf provides a good source for further tips on this topic.

Leftmost Derivation vs Rightmost Derivation

Question 1

Do the leftmost derivation and rightmost derivation parse trees for the string *aba* in the following grammar lead to the same parse tree?

$$S \rightarrow SS|a|b$$

Contents of the section

Proving Ambiguity

2 Ambiguous Grammars

Derivation Trees

Question 1

- Show that the following grammar is ambiguous.
- ② Give an unambiguous grammar with the same language.

$$S \rightarrow A|B$$

$$A \rightarrow 0S|\lambda$$

$$B \rightarrow 1S|\lambda$$

Contents of the section

Proving Ambiguity

2 Ambiguous Grammars

Derivation Trees

Question 2

- Show that the following grammar is ambiguous.
- 2 Give an unambiguous grammar with the same language.

$$S \rightarrow S1 \mid 00S1 \mid 1$$

