

Università di Pisa

Computer Engineering
Formal Methods for Secure Systems

Project Report

TEAM MEMBERS: Matteo Biondi Olgerti Xhanej

Academic Year: 2020/2021

Contents

1	Introduzione		2
	1.1	Descrizione del problema	2
2	Sce	lte di Sviluppo	3
	2.1	Strategia Attacco	3
	2.2	Scelta dei parametri	3
3	Imp	plementazione	4
	3.1	VanillaCase	4
	3.2	Attacco all'accelerazione	4
	3.3	Attacco alla Posizione	5
	3.4	Configurazione in Comune	5
	3.5	Comportamento degli Attacchi	6
4	Ana	alisi dei Risultati	7
	4.1	VanillaCase	7
		4.1.1 Risultati Co-Simulazione	7
	4.2	Attacco all'accelerazione	7
		4.2.1 Attacco Semplice	7

1 — Introduzione

1.1 Descrizione del problema

Tramite il software Into-CPS viene richiesto di modellare degli scenari con una following car che insegue una leading Car ad una distanza desiderata di 15m. L'unica dimensione presa in oggetto è l'asse x.

L'obiettivo del progetto è il seguente: analizzare possibili attacchi al suddetto sistema che possono causare uno scontro tra i due veicoli.

2 — Scelte di Sviluppo

2.1 Strategia Attacco

Gli attacchi verrano implementati utilizzando la tecnica del *Man-in-the-Middle*: verrà introdotta una FMU semplificata tra un punto di comunicazione di due FMU, questo consentirà di semplificare la modifica dell'implementazione dell'attacco in quanto non è necessario conoscere i dettagli implementativi delle FMU in gioco. Questo a patto di un maggior overhead del sistema per effettuare la comunicazione dei parametri tra le varie FMU.

2.2 Scelta dei parametri

- Step-size: 0.01s. E' un buon trade-off tra un sensoring più preciso ed una durata di simulazione accettabile.
- Tempo di Simulazione: 100s. Abbiamo valutato questo tempo come un ragionevole trade-off tra la capacità di computazione delle nostre macchine ed i risultati che possiamo mettere in luce.

3 — Implementazione

3.1 VanillaCase

Nella seguente figura è possibile osservare le connessioni logiche tra tre FMU principali:

- FMU of the leading car: questa FMU implementa il comportamento della leading car. Per funzionare non ha bisogno di alcun input da altre FMU e produce in output la posizione della macchina, la velocità e la sua accelerazione.
- FMU of the following algorithm: questa FMU implementa l'algoritmo di inseguimento. Presi in ingresso i parametri di posizione, velocità e accelerazione della leading car ed i parametri di posizione e velocità della following car produce in output l'accelerazione per la following car.
- FMU of the following car: questa FMU implementa il comportamento della following carò Per funzionare prende in ingresso l'accelerazione dalla precedente FMU e produce in output la sua posizione e velocità.

Figure 1: Multi-Model schema del VanillaCase

In figura 2 viene rappresentata l'overview del relativo Multi-Model sviluppato con il tool INTO-CPS.

... Overview Vanilla Case ...

3.2 Attacco all'accelerazione

A differenza dello schema presentato nel VanillaCase, viene ora aggiunto un ulteriore FMU situato fra "FMU of the following algorithm" e "FMU of the following car" già presenti. Il nuovo FMU implementa con strategia *Man-in-the-Middle* un attacco di tipo data alteration sull'accelerazione passata tra il following algorithm e la following car. Fare riferimento alla sezione 3.5 per dettagli sul comportamento dell'attacco.

Figure 2: Multi-Model schema dell'Attacco alla Accelerazione

In figura 4 viene rappresentata l'overview del relativo Multi-Model sviluppato con il tool INTO-CPS.

... Overview Caso Singolo Overview Caso Multiplo ...

3.3 Attacco alla Posizione

A differenza dello schema presentato nel VanillaCase, viene ora aggiunto un ulteriore FMU situato fra "FMU of the following car" e "FMU of the following algorithm" già presenti. Il nuovo FMU implementa con strategia *Man-in-the-Middle* un attacco di tipo data alteration sulla posizione passata tra la following car e il following algorithm. Fare riferimento alla sezione 3.5 per dettagli sul comportamento dell'attacco.

Figure 3: Multi-Model schema dell'Attacco alla Posizione

In figura 6 viene rappresentata l'overview del relativo Multi-Model sviluppato con il tool INTO-CPS.

... Overview Caso Singolo Overview Caso Multiplo ...

3.4 Configurazione in Comune

La configurazione dei seguenti FMU verrà applicata per tutte le simulazioni che verranno effettuate.

• LeadingCar:

- Posizione iniziale $\mathbf{x0}$: 50m

− Velocità iniziale v0: 0m/s

• Following Algorithm:

- **c1**: 0.5

- **eps**: 1

- omega_n: 0.2

• FollowingCar:

- Posizione iniziale **x0**: 0m

- Velocità iniziale **v0**: 0m/s

3.5 Comportamento degli Attacchi

L'FMU che verrà utilizzata negli attacchi MITM presenterà due implementazioni diverse:

- Attacco Semplice: l'attacco consiste nel modificare l'input dell'AttackFMU con il valore del parametro attack_value dall'istante temporale attack_time fino al termine della simulazione. Tale valore viene restituito in output dall'AttackFMU. Tale FMU è implementata tramite il file Attack_fmu.fmu.
- Attacco Multi-step: l'attacco consiste nel modificare l'input dell'AttackFMU con il valore del parametro attack_value per un tempo pari a attack_duration, ripetuto attack_occurrencies volte e separato nel tempo da attack_distance secondi. Tale valore viene restituito in output dall'AttackFMU. L'attacco inizierà dall'istante temporale attack_time. Tale FMU è implementata tramite il file MultiStep_MultiAttacks_Fmu.fmu.

4 - Analisi dei Risultati

4.1 VanillaCase

4.1.1 Risultati Co-Simulazione

E' stata effettuata una simulazione nel caso base per accertarsi che il comportamento del sistema conduca alla convergenza delle due macchine.

Figure 4: Posizione x della LeadingCar (verde) e FollowingCar (blu)

La distanze media tra le due auto è pari a **18.49m**. Dopo un iniziale periodo di transizione di circa 20s il sistema raggiunge la convergenza attesa e i due veicoli proseguono il percorso ad una distanza approssimativa di 15m fino a fine simulazione.

... immagine accel_speed ...

Dalla figura sopra riportata è inoltre osservabile come negli istanti iniziali la following car abbia una accelerazione positiva maggiore di quella della leading. Questo si riflette inoltre sulle relative velocità. Il motivo di questo comportamento è dovuto all'iniziale periodo di transizione in cui la following car recupera la distanza iniziale (molto maggiore di 15m) dalla leading car.

4.2 Attacco all'accelerazione

4.2.1 Attacco Semplice

Risultati DSE Come primo approccio all'analisi al sistema è stato scelto di fare uso del DSE, configurato andando a variare l'attack_value e l'attack_time con i seguenti parametri::

• Attack_value: [-5, -1, 0, 1, 5]

• Simulation_time: [0s, .., 40s] con step a 5

I risultati ottenuti sono stati successivamente eleborati così da estrapolare il seguente grafico che mostra la percentuale degli incidenti per ogni **attack_value** al variare di **attack_time**. Per individuare le condizioni di attacco è stato necessario estrapolare la distanza minima delle due macchine sull'intero tempo di simulazione.

Figure 5: Rappresentazione delle percentuali di incidenti nei casi testati con studio DSE

Come si può notare, è possibile individuare tre casi ben distinti:

- Attacchi con accelerazione negativa: La following car è portata a rallentare con andamento lineare fino a cambiare la propria direzione di marcia. In questo caso le macchine tendono ad allontanarsi e l'incidente non avrà luogo. Inoltre è doveroso sottolineare che la following car perde completamente la capacità di inseguimento della leading car. Non ci sarà quindi convergenza fra following e leading car.
- Attacchi con accelerazione pari a 0: dal grafico emerge una chiara necessità di uno studio più approfondito di questa casistica in quanto non si delinea alcun risultato conclusivo. Essendo che l'accelerazione resta costante e pari a 0, la velocità della following car rimane costante al valore nel momento Attack_time. La presenza o meno di incidenti dipende quindi proprio dal valore della velocità e quindi da Attack_time
- Attacchi con accelerazione positiva: La following car è portata ad aumentare la propria velocità con andamento lineare . In questo caso le macchine tendono ad avvicinarsi e l'incidente avrà luogo.

Esistono tuttavia condizioni speciali che è doveroso sottolineare:

• Attacchi con accelerazione negativa: Se la leading car decellerasse con continuità (per un intervallo di tempo sufficientemente ampio) più di quanto non faccia la following car sotto attacco, allora in tal caso l'incidente avverrebbe

• Attacchi con accelerazione positiva: Se la leading car accelerasse con continuità (per un intervallo di tempo sufficientemente ampio) più di quanto non faccia la following car sotto attacco, allora in tal caso l'incidente non avverrebbe

Risultati Co-Simulazione Con l'obiettivo di rafforzare quanto appena descritto e individuato tramite l'analisi dei risultati del DSE, vengono qui riportati tre casi fondamentali.

Attacchi con accelerazione positiva pari a 1 Diseguito sono riportati i grafici in cui sono raffigurati l'attacco alle accelerazioni (Fig ...) e le posizioni dei due veicoli (Fig ...) L'attacco è stato eseguito con:

• attack_value: 1

• attack_time: 20s

Figure 6

Figure 7

Figure 8

Figure 9

Dalle osservazioni fatte si può evincere quanto segue:

- La following car e la leading car fanno un incidente. Essendo che l'accelerazione è costante e tale che |Attack_value| > 0, allora la velocità tende ad aumentare linearmente. L'allontanamento da leading avverrà in modo quadratico nel tempo
- L'accellerazione che following algorithm pensa di dire a following car è sempre minore con andamento non lineare. Avrà sicuramente delle micro-oscillazioni ma sono quasi impercettibili a causa dell'elevata distanza dalla leading car. Quindi una decellerazione/accellerazione della leading car ha un effetto quasi trascurabile su following Algorithm

Attacchi con accelerazione negativa pari a -1 Diseguito sono riportati i grafici in cui sono raffigurati l'attacco alle accelerazioni (Fig ...) e le posizioni dei due veicoli (Fig ...) L'attacco è stato eseguito con:

• attack_value: -1

• attack_time: 20s

Figure 10: Ingrandimento del grafico delle posizioni dei due veicoli

Dalle osservazioni fatte si può evincere quanto segue:

- La following car non fa un incidente e continua la sua corsa in senso opposto rispetto alla leading car. Ogni considerazione fatta per il caso precedente rispetto a accelerazione e velocità sono ancora valide ma speculari.
- La velocità di following car decresce linearmente fino ad annullarsi e poi a cambiare segno (facendo muovere la macchina in retromarcia)
- Ogni considerazione fatta nel caso precedente rispetto all'accelerazione che following algorithm pensa di dire a following car è tutt'ora valida e speculare al caso precedente.

Attacchi con accelerazione pari a 0

Stato Convergenza	Tempo di At-	Valore Velocità dopo	Risultato
	tacco	Attacco	
Prima della Convergenza	10	Circa Valore Massimo	La following car fa un incidente azione di following Algorithm sinu crescente, posizione leading car n abile
	15	Circa Valore Medio	Incidenti multipli ma la macchina lontana troppo dalla leading Ca erazione decrescente con andan soidale
	20	Circa Valore Minino	Following car non fa un incidente la sua corsa distanziandosi sempi leading car. l'accelerazione che algorithm pensa di dire a followir andamento sinusoidale e crescente
Dopo la Convergenza	40	Circa Valore Minimo	Accelerazione crescente con andar soidale. Nessun incidente ma allor con movimento di Following Car i posto.
	45	Circa Valore Medio	Susseguirsi di avvicinamenti e menti fra i due veicoli. Se pro tempo può portare ad un lente mento e ad incidente. Accelerazi lowing Algorithm ha un andan soidale che presenta un valore di valore minimo sempre minore.
	50	Circa Valore Massimo	Following Car fa incidente. Accel following algorithm sinusoidale de

Prova

Figure 11: Grafico posizione veicoli nel caso Tempo di Attacco a 45s

Figure 12: Grafico posizione veicoli nel caso Tempo di Attacco a 50s

4.2.2 Attacco Multiplo

In questa sezione vengono riportati due diverse condizioni di attacco in cui quest'ultimo ha una durata di un certo numero di step e si ripete più volte nel tempo. L'obiettivo è quello di individuare una condizione in cui,nonostante gli attacchi ripetuti, il sistema risulta tollerante e uno invece in cui l'attacco porta a un incidente fra i due veicoli

Risultati Co-Simulazione

Attacco senza incidente

• Attack_occurencies: 2

• Attack_duration: 5s

• Attack_time: 30s

• Attack_value: -5

• Attack_distance: 10s

• **Step_size**: 0.01s

Figure 13

Figure 14

Figure 15

 \dots immagini + spiegazione \dots

Attacco con incidente

• Attack_occurencies: 2

• Attack_duration: 2s

• Attack_time: 30s

• Attack_value: +2

• Attack_distance: 5s

• **Step_size**: 0.01s

 \dots immagini + dati + spiegazione \dots

4.3 Attacco alla X

Attacco Semplice

4.3.1 Risultati Co-Simulazione

Per cercare di dare un'interpretazione ai risultati del successivo studio verrà prima analizzato un caso d'esempio con i seguenti parametri:

• attack_value: 200

• attack_time: 20s

Si ottiene il seguente plot:

Figure 16: Posizione x della LeadingCar (verde) e FollowingCar (blu)

Dal seguente risultato è possibile evincere tre differenti zone di comportamento della following car: nel **primo caso** nel quale l'attacco non viene ancora effettuato, la following

car tende ad avvicinarsi alla leading car alla distanza configurata; nel **secondo caso**, dal un tempo di 20s ad uno di circa 40s, l'attacco inizierà ma la leading car non avrà superato ancora l'attack_value impostato, che rappresenta la (alterata) posizione della following car: quest'ultima penserà di trovarsi davanti e decelererà; il **terzo caso**, dopo 40s, nel quale la leading car ha superato l'attack value e perciò la following car inizierà a riavvicinarsi fino all'impatto tra le due auto. Per come è configurata la leading car, ovvero che tenderà sempre ad andare "in avanti" con qualche oscillazione nella velocità, è facile intuire che **un incidente con questo tipo di attacco per un tempo sufficiente avrà sempre luogo**, in quanto esisterà sempre un tempo nella quale la leading car supererà l'attack_value, per quanto elevato possa essere quest'ultimo.

4.3.2 Risultati DSE

E' stato studiato l'esito dell'attacco (INCIDENTE/NON INCIDENTE) andando a variare l'**attack_value** e l'**attack_time** con i seguenti parametri:

• Attack_value: [0 ... 200] con step a 1

• Simulation_time: [50s, 100s]

I risultati ottenuti possono essere riassunti nella seguente tabella

Tempo di Simulazione	Attack Value	Risultato
50s	[0, 149]	INCIDENTE
	[150, 199]	NO INCIDENTE
100s	[0, 199]	INCIDENTE
	-	NO INCIDENTE

Come si può notare il tempo è una variabile importante per questo tipo di attacco, con un tempo sufficientemente alto l'attacco ha sempre luogo come detto in precedenza.

Attacco Multiplo Sono stati individuati quattro diverse configurazioni che portano luogo a quattro classi di risultati diversi:

• Attack_occurencies: 3

• Attack_duration: 2s

• Attack_time: [30s, 50s, 70s]

• Attack_value: 200

• Attack_distance: 5s

• **Step_size**: 0.01s

L'attacco pertanto avrà un pattern simile a livello temporale, la variabile è l'inizio dell'attacco stesso. I risultati degli esperimenti sono riassunti nella seguente tabella

Attack Time	Distanza Min-	Risultato
	ima	
30s	14.9368	NO INCIDENTE
50s	0.639284	NO INCIDENTE
70s	-20.38	INCIDENTE

Una semplice interpretazione di questi risultati si basa sul fatto che il following algorithm produce un'accelerazione maggiore in caso la distanza tra le due auto sia maggiore: considerato che la distanza della following car vista dal following è fissa (per via dell'attacco in corso), nel caso il tempo di inizio sia maggiore, maggiore sarà la posizione della leading car e perciò maggiore sarà l'accelerazione in input che porterà ad una collisione nel caso di Attack time pari a 70s.

5 — Conclusioni

- 5.1 VanillaCase
- 5.2 Attacco all'accelerazione
- 5.3 Attacco alla X