# Business Diversification

Phase 1 project, November 2024

DSF-PT09 CLASS

#### Overview

The company in concern, intends to diversify its business portfolio to purchasing and operating airplanes for commercial and private enterprises.

Due to the high capital investment required this project intends to determine the lowest risk aircraft, the company can purchase to start this new business endeavor.

The project, intends to translate the findings into actionable insights that the head of the new aviation division can use to help decide which aircraft to purchase.

### Business Undestanding

#### Objectives

- 1. Develop an accident risk frequency for the different aircraft makes and models from historical accident records
- 2. Develop an acquisition strategy based on potential risk portfolio for different make of aircraft
- 3. Evaluate and determine lowest risk aircraft for purchase for private and commercial enterprises

# Import libraries import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns

#importing the dataset
df=pd.read\_csv('/content/AviationData.csv', encoding='latin-1', low\_memory=False )

df.head()

| ₹ | Event.Id |                  | Investigation.Type | Accident.Number | Event.Date | Location           | Country          | Latitude  | Longitude  | Airport.Code | 1 |
|---|----------|------------------|--------------------|-----------------|------------|--------------------|------------------|-----------|------------|--------------|---|
|   | 0        | 20001218X45444   | Accident           | SEA87LA080      | 1948-10-24 | MOOSE<br>CREEK, ID | United<br>States | NaN       | NaN        | NaN          |   |
|   | 1        | 20001218X45447   | Accident           | LAX94LA336      | 1962-07-19 | BRIDGEPORT,<br>CA  | United<br>States | NaN       | NaN        | NaN          |   |
|   | 2        | 20061025X01555   | Accident           | NYC07LA005      | 1974-08-30 | Saltville, VA      | United<br>States | 36.922223 | -81.878056 | NaN          |   |
|   | 3        | 20001218X45448   | Accident           | LAX96LA321      | 1977-06-19 | EUREKA, CA         | United<br>States | NaN       | NaN        | NaN          |   |
|   | 4        | 20041105X01764   | Accident           | CHI79FA064      | 1979-08-02 | Canton, OH         | United<br>States | NaN       | NaN        | NaN          |   |
|   | 5 rc     | ows × 31 columns |                    |                 |            |                    |                  |           |            |              |   |
|   | 4        |                  |                    |                 |            |                    |                  |           |            | <b>→</b>     |   |

df.tail()

| 3 |          | Event.Id       | Investigation.Type | Accident.Number | Event.Date | Location            | Country          | Latitude | Longitude | Airport.Code | Α |
|---|----------|----------------|--------------------|-----------------|------------|---------------------|------------------|----------|-----------|--------------|---|
|   | 71718    | 20120522X53206 | Accident           | ERA12CA351      | 2012-05-05 | Umatilla,<br>FL     | United<br>States | 285527N  | 0081397W  | X23          |   |
|   | 71719    | 20120506X80918 | Accident           | ERA12CA321      | 2012-05-06 | Eagleville,<br>TN   | United<br>States | 354140N  | 0086370W  | 50M          |   |
|   | 71720    | 20120507X35707 | Accident           | CEN12CA279      | 2012-05-06 | Hallsville,<br>MO   | United<br>States | 039118N  | 0922746W  | NaN          |   |
|   | 71721    | 20120507X51002 | Accident           | ERA12CA322      | 2012-05-06 | Newport,<br>VT      | United<br>States | 445259N  | 0721328W  | EFK          | 1 |
|   | 71722    | 20120517X05337 | Accident           | WPR12CA215      | 2012-05-06 | Brigham<br>City, UT | United<br>States | 413315N  | 0112344W  | ВМС          |   |
|   | 5 rows × | 31 columns     |                    |                 |            |                     |                  |          |           |              |   |
|   | 4        |                |                    |                 |            |                     |                  |          |           | )            | • |

## Data Understanding

- 1. Extract the few first and last rows in the dataset to View content
- 2. View the % of missing values per column and datatypes in the dataset
- 3. Do a statistical analysis for the numerical columns
- 4. View the size of the dataset

Airport.Code

Airport.Name

5. Visualize raw data

```
df.shape
→ (71723, 31)
df.columns
'Aircraft.Category', 'Registration.Number', 'Make', 'Model',
           'Amateur.Built', 'Number.of.Engines', 'Engine.Type', 'FAR.Description',
           'Schedule', 'Purpose.of.flight', 'Air.carrier', 'Total.Fatal.Injuries', 'Total.Serious.Injuries', 'Total.Minor.Injuries', 'Total.Uninjured',
            'Weather.Condition', 'Broad.phase.of.flight', 'Report.Status',
            'Publication.Date'],
          dtype='object')
df.info()
<<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 71723 entries, 0 to 71722
    Data columns (total 31 columns):
     # Column
                                Non-Null Count Dtype
         -----
                                -----
         Event.Id
                                71723 non-null object
                                71723 non-null object
         Investigation.Type
         Accident.Number
                                71723 non-null object
         Event.Date
                                71723 non-null object
         Location
                                71671 non-null
                                                object
         Country
                                71497 non-null object
                                19263 non-null object
         Latitude
                                19254 non-null object
         Longitude
```

object

39910 non-null

42530 non-null object

| 10 | Injury.Severity        | 71557 non-null | object  |
|----|------------------------|----------------|---------|
| 11 | Aircraft.damage        | 69729 non-null | object  |
| 12 | Aircraft.Category      | 15416 non-null | object  |
| 13 | Registration.Number    | 70349 non-null | object  |
| 14 | Make                   | 71669 non-null | object  |
| 15 | Model                  | 71645 non-null | object  |
| 16 | Amateur.Built          | 71620 non-null | object  |
| 17 | Number.of.Engines      | 68730 non-null | float64 |
| 18 | Engine.Type            | 69421 non-null | object  |
| 19 | FAR.Description        | 15559 non-null | object  |
| 20 | Schedule               | 10905 non-null | object  |
| 21 | Purpose.of.flight      | 68997 non-null | object  |
| 22 | Air.carrier            | 8501 non-null  | object  |
| 23 | Total.Fatal.Injuries   | 60321 non-null | float64 |
| 24 | Total.Serious.Injuries | 59212 non-null | float64 |
| 25 | Total.Minor.Injuries   | 59789 non-null | float64 |
| 26 | Total.Uninjured        | 65810 non-null | float64 |
| 27 | Weather.Condition      | 70562 non-null | object  |
| 28 | Broad.phase.of.flight  | 61724 non-null | object  |
| 29 | Report.Status          | 70951 non-null | object  |
| 30 | Publication.Date       | 58964 non-null | object  |
|    |                        |                |         |

dtypes: float64(5), object(26) memory usage: 17.0+ MB

df.describe()

**₹** 

| • |       | Number.of.Engines | Total.Fatal.Injuries | Total.Serious.Injuries | Total.Minor.Injuries | Total.Uninjured |     |
|---|-------|-------------------|----------------------|------------------------|----------------------|-----------------|-----|
|   | count | 68730.000000      | 60321.000000         | 59212.000000           | 59789.000000         | 65810.000000    | ılı |
|   | mean  | 1.150560          | 0.673795             | 0.276143               | 0.404188             | 5.191992        |     |
|   | std   | 0.454254          | 5.594691             | 1.352885               | 2.504597             | 27.485822       |     |
|   | min   | 0.000000          | 0.000000             | 0.000000               | 0.000000             | 0.000000        |     |
|   | 25%   | 1.000000          | 0.000000             | 0.000000               | 0.000000             | 0.000000        |     |
|   | 50%   | 1.000000          | 0.000000             | 0.000000               | 0.000000             | 1.000000        |     |
|   | 75%   | 1.000000          | 0.000000             | 0.000000               | 0.000000             | 2.000000        |     |
|   | max   | 4.000000          | 349.000000           | 106.000000             | 380.000000           | 699.000000      |     |

df.isna().sum()



|                        | 0     |
|------------------------|-------|
| Event.ld               | 0     |
| Investigation.Type     | 0     |
| Accident.Number        | 0     |
| Event.Date             | 0     |
| Location               | 52    |
| Country                | 226   |
| Latitude               | 52460 |
| Longitude              | 52469 |
| Airport.Code           | 31813 |
| Airport.Name           | 29193 |
| Injury.Severity        | 166   |
| Aircraft.damage        | 1994  |
| Aircraft.Category      | 56307 |
| Registration.Number    | 1374  |
| Make                   | 54    |
| Model                  | 78    |
| Amateur.Built          | 103   |
| Number.of.Engines      | 2993  |
| Engine.Type            | 2302  |
| FAR.Description        | 56164 |
| Schedule               | 60818 |
| Purpose.of.flight      | 2726  |
| Air.carrier            | 63222 |
| Total.Fatal.Injuries   | 11402 |
| Total.Serious.Injuries | 12511 |
| Total.Minor.Injuries   | 11934 |
| Total.Uninjured        | 5913  |
| Weather.Condition      | 1161  |
| Broad.phase.of.flight  | 9999  |
| Report.Status          | 772   |
| Publication.Date       | 12759 |
|                        |       |

# Visualize the missing values
plt.figure(figsize=(10, 8))
sns.heatmap(df.isnull(), cbar=True, cmap="plasma")
plt.title("Missing Values Heatmap")
plt.show()



#### Data Preparation

The data cleaning process will be as follows;

- 1. Drop columns with more than 70% missing values
- 2. Drop of all columns that are not of immediate concern to the objective of low risk airplanes. For example
  - \* Investigation.Type
  - \* Registration.Number
  - \* Publication.Date
  - \* Airport.Code
  - \* Airport.Name
- 3. Substitute the object type column with mode and float64 columns with mean
- 4. Remove fuzzy duplicates and aliases in Make, Model and Weather conditions column
- 5. Define the target market by country with the greatest % of available data
- 6. Import changes to CSV for onward processing in Tableau and visualization
- 7. As per the business problem a risk matrix best answers the hypothesis. In this case therefore;

- o Develop risk metrics
- o Assign severity as per the string values provided in the dataset
- Aggregate the risk metrics
- · Assign risk scores

Amateur.Built

10 Number.of.Engines

Develop a risk matrix

```
# Drop columns with more than 70% of missing data
df = df.dropna(axis=1, thresh=0.7 * df.shape[0])
print(df.columns)
☐ Index(['Event.Id', 'Investigation.Type', 'Accident.Number', 'Event.Date', 'Location', 'Country', 'Injury.Severity', 'Aircraft.damage', 'Registration.Number', 'Make', 'Model', 'Amateur.Built', 'Number.of.Engines', 'Engine.Type', 'Purpose.of.flight',
              'Total.Fatal.Injuries', 'Total.Serious.Injuries',
'Total.Minor.Injuries', 'Total.Uninjured', 'Weather.Condition',
'Broad.phase.of.flight', 'Report.Status', 'Publication.Date'],
             dtype='object')
# Drop more columns
df = df.drop(columns=['Investigation.Type', 'Publication.Date', 'Registration.Number'])
# View new dataset
df.info()
<<class 'pandas.core.frame.DataFrame'>
     RangeIndex: 71723 entries, 0 to 71722
     Data columns (total 20 columns):
      # Column
                                     Non-Null Count Dtype
                                       -----
      0
          Event.Id
                                       71723 non-null object
           Accident.Number
                                       71723 non-null object
                                      71723 non-null object
           Event.Date
           Location
                                       71671 non-null object
                                       71497 non-null object
           Country
           Injury.Severity
                                       71557 non-null object
                                       69729 non-null object
           Aircraft.damage
       6
                                      71669 non-null object
           Make
                                      71645 non-null object
       8
           Model
           Amateur.Built
                                      71620 non-null object
       10 Number.of.Engines
                                     68730 non-null float64
       11 Engine.Type
                                       69421 non-null object
                                       68997 non-null object
       12 Purpose.of.flight
       13 Total.Fatal.Injuries
                                       60321 non-null float64
       14 Total.Serious.Injuries 59212 non-null float64
       15 Total.Minor.Injuries
                                       59789 non-null float64
       16 Total.Uninjured
                                       65810 non-null float64
       17 Weather.Condition
                                       70562 non-null object
       18 Broad.phase.of.flight 61724 non-null object
       19 Report.Status
                                       70951 non-null object
     dtypes: float64(5), object(15)
     memory usage: 10.9+ MB
#Dropping data before Year 1982. Too few details available in prior years
df= df[df['Event.Date'] >= '1982-01-01']
df.info()
→ <class 'pandas.core.frame.DataFrame'>
     Index: 71716 entries, 7 to 71722
     Data columns (total 20 columns):
      # Column
                                     Non-Null Count Dtype
      0
          Event. Td
                                       71716 non-null object
           Accident.Number
                                       71716 non-null object
           Event.Date
                                       71716 non-null object
           Location
                                       71664 non-null object
           Country
                                       71490 non-null object
           Injury.Severity
                                       71550 non-null object
                                       69722 non-null object
       6
           Aircraft.damage
           Make
                                       71662 non-null object
       8
           Model
                                       71638 non-null object
```

71613 non-null object

68724 non-null float64

```
11 Engine.Type
                                   69415 non-null object
      12
          Purpose.of.flight
                                   68991 non-null
                                                    object
      13 Total.Fatal.Injuries
                                   60315 non-null float64
                                   59207 non-null float64
      14 Total.Serious.Injuries
      15 Total.Minor.Injuries
                                   59784 non-null float64
                                    65804 non-null
      16
          Total.Uninjured
                                                    float64
      17 Weather.Condition
                                   70555 non-null object
      18 Broad.phase.of.flight
                                   61717 non-null object
      19 Report.Status
                                   70944 non-null object
     dtypes: float64(5), object(15)
     memory usage: 11.5+ MB
# fill the missing values in columns with object data type with mode
for column in df.select_dtypes(include='object'):
  df[column].fillna(df[column].mode()[0], \ inplace=True)\\
    <ipython-input-18-2d2f287ce685>:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chaine
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are set
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = d
       df[column].fillna(df[column].mode()[0], inplace=True)
# fill float64 data type columns with mean as integer if respective columns
for column in df.select_dtypes(include='float64'):
   df[column].fillna(int(df[column].mean()), inplace=True)
     <ipython-input-19-eb1defcb7aad>:3: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chaine
     The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are set
     For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = d
       df[column].fillna(int(df[column].mean()), inplace=True)
# Relevant data in Purpose.of.flight
df['Purpose.of.flight'].value counts()
# relevant rows = Personal, Business and Executive/Corporate
df = df[df['Purpose.of.flight'].isin(['Personal', 'Business', 'Executive/Corporate'])]
print(df['Purpose.of.flight'].value_counts())
    Purpose.of.flight
     Personal
                  43114
     Business
                  3618
     Name: count, dtype: int64
# view new data set
df.info()
<<class 'pandas.core.frame.DataFrame'>
     Index: 46732 entries, 7 to 71722
     Data columns (total 20 columns):
                                   Non-Null Count Dtype
      #
         Column
     ---
          _____
                                    _____
      0
          Event.Id
                                   46732 non-null object
          Accident.Number
                                   46732 non-null
      2
          Event.Date
                                   46732 non-null
                                                    object
      3
          Location
                                   46732 non-null
                                                    object
          Country
                                   46732 non-null
                                                    object
      5
          Injury.Severity
                                   46732 non-null
                                                    object
      6
          Aircraft.damage
                                   46732 non-null
                                                    object
                                   46732 non-null
                                                    object
      8
          Model
                                   46732 non-null
                                                    object
          Amateur.Built
                                   46732 non-null
                                                    object
      10 Number.of.Engines
                                   46732 non-null
                                                    float64
          Engine.Type
                                   46732 non-null
      11
                                                    object
                                   46732 non-null object
          Purpose.of.flight
      12
      13 Total.Fatal.Injuries
                                   46732 non-null float64
      14 Total.Serious.Injuries
                                   46732 non-null float64
      15
          Total.Minor.Injuries
                                   46732 non-null float64
                                   46732 non-null float64
          Total.Uniniured
      16
      17 Weather.Condition
                                    46732 non-null object
      18 Broad.phase.of.flight
                                   46732 non-null object
```

```
19 Report.Status
                                             46732 non-null object
      dtypes: float64(5), object(15)
      memory usage: 7.5+ MB
# Check duplicates
df.duplicated().sum()
# View duplicated data
df[df.duplicated()]
# Remove the duplicated data
df = df.drop_duplicates()
# all strings to upper casing in dataset
df = df.apply(lambda col: col.str.upper() if col.dtype == 'object' else col)
# For pilot purposes by start up, the target market USA is chosen because of the available data count
df['Country'].value_counts()
print(df['Country'].value_counts())
     Country
      UNITED STATES
                              44800
      BAHAMAS
                                 124
      CANADA
                                 122
      MEXICO
                                 117
      UNITED KINGDOM
                                  90
      KAZAKHSTAN
      MAURITIUS
                                    1
      ALGERIA
                                    1
      CAMEROON
                                    1
                                    1
      Name: count, Length: 166, dtype: int64
# Extract the US dataset
df = df[df['Country'].str.strip().eq('UNITED STATES')]
# export to CSV the cleaned dataset for onward processing in tableau
df.to csv('cleaned aviation data.csv', index=False)
# Assigning the cleaned dataset correctly
df_clean = df.copy()
# A risk Matrix best answers the business problem in question
# Group the make and Model columns and specifiy the funtion to apply to each risk column and regularize new column
risk_metrics = df.groupby(['Make', 'Model']).agg(
   Total_Incidents=('Aircraft.damage', 'count'),
   Average_Fatal_Injuries=('Total.Fatal.Injuries', 'mean'),
   Average_Serious_Injuries=('Total.Serious.Injuries', 'mean'),
   Average_Minor_Injuries=('Total.Minor.Injuries', 'mean'),
   Damage_Frequency=('Aircraft.damage', lambda x: x.value_counts().to_dict())
).reset_index()
# Quantify the severity of damage. create new column to store frequencies
df['Severe.Damage.Frequency'] = df['Aircraft.damage'].apply(lambda x: x.count('Destroyed') + x.count('Substantial') if isinstance(x, str) else 0)
# calculate the severity of score frequency for each row as string and Create new 'Severe.Damage.Frequency' to store the damage scores as int
df['Severe_Damage_Frequency'] = df['Aircraft.damage'].str.count('Destroyed') + df['Aircraft.damage'].str.count('Substantial')
# Aggregate identified risk metrics by Make and Model
# This provides incident counts, injury trends and damage severity
# Allows therefore risk analysis and comparisons
aggregated_metrics = df.groupby(['Make', 'Model']).agg(
   Total_Incidents=('Event.Id', 'count'),
   Average_Fatal_Injuries=('Total.Fatal.Injuries', 'mean'),
   Average_Serious_Injuries=('Total.Serious.Injuries', 'mean'),
   Average_Minor_Injuries=('Total.Minor.Injuries', 'mean'),
   # Changed from 'Severe.Damage.Frequency' to 'Severe_Damage_Frequency
   Severe_Damage_Frequency=('Severe_Damage_Frequency', 'sum')
).reset_index()
```

```
# Assign weight to each risk factor
    'Total_Incidents': 0.4,
    'Average_Fatal_Injuries': 0.3,
    'Average_Serious_Injuries': 0.2,
    'Severe_Damage_Frequency': 0.1
# Calculate overall risk score for each aircraft based on weighted score
aggregated_metrics['Risk_Score'] = (
    weights['Total_Incidents'] * aggregated_metrics['Total_Incidents'] +
   weights['Average_Fatal_Injuries'] * aggregated_metrics['Average_Fatal_Injuries'].fillna(0) +
    weights['Average_Serious_Injuries'] * aggregated_metrics['Average_Serious_Injuries'].fillna(0) +
   weights['Severe_Damage_Frequency'] * aggregated_metrics['Severe_Damage_Frequency']
# Sort by Risk Score in ascending order
low_risk_aircraft = aggregated_metrics.sort_values(by='Risk_Score', ascending=True)
df new=low risk aircraft
df.to_csv('aggregated_metrics.csv', index=False)
df_metrics=aggregated_metrics
df new.head()
\overline{\mathbf{x}}
```

| →* |      | Make                | Model            | Total_Incidents | Average_Fatal_Injuries | Average_Serious_Injuries | Average_Minor_Injuries | Risl |
|----|------|---------------------|------------------|-----------------|------------------------|--------------------------|------------------------|------|
|    | 5336 | HOMER<br>DAVIS      | RV4              | 1               | 0.0                    | 0.0                      | 0.0                    |      |
|    | 5756 | KAUFFMAN            | BEDE IV          | 1               | 0.0                    | 0.0                      | 0.0                    |      |
|    | 5754 | KASHPUREFF          | NIEUPORT<br>II   | 1               | 0.0                    | 0.0                      | 0.0                    |      |
|    | 5751 | KARMY               | ROTORWAY<br>EXEC | 1               | 0.0                    | 0.0                      | 1.0                    |      |
|    | 5750 | KARL & DOT,<br>INC. | COMP AIR<br>7SL  | 1               | 0.0                    | 0.0                      | 0.0                    |      |
|    | 4    |                     |                  |                 |                        |                          |                        |      |

Next steps:

Generate code with df\_new



New interactive sheet

#### Data Visualization

```
#Drop severe damage frequency from aggregated_metrics
df_new.drop(columns=['Severe_Damage_Frequency'], inplace=True)

# Calculate the correlation matrix based on the aggregated metrics without 'Severe.Damage.Frequency'
correlation_matrix = df_new.select_dtypes(include=['float64', 'int64']).corr()

# visualization of a heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(df_new.select_dtypes(include=['float64', 'int64']).corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```





```
low\_risk\_aircraft['Make\_Model'] \cdot = \cdot low\_risk\_aircraft['Make'] \cdot + \cdot " \cdot " \cdot + \cdot low\_risk\_aircraft['Model']
 \begin{tabular}{ll} \# \cdot Create \cdot a \cdot figure \cdot with \cdot specific \cdot size \\ \end{tabular}
plt.figure(figsize=(10, 8))
\# \cdot \mathsf{Create} \cdot \mathsf{the} \cdot \mathsf{scatter} \cdot \mathsf{plot} \cdot \mathsf{using} \cdot \mathsf{seaborn}
\verb"sns.scatterplot" (
    data=low_risk_aircraft,
    x='Total_Incidents', · · ·
     y='Risk_Score',
     hue='Make_Model',
     palette='tab10', · · · · · · · ·
     legend=False
\mbox{\#}\cdot\mbox{Title}\cdot\mbox{and}\cdot\mbox{labels}\cdot\mbox{with}\cdot\mbox{customized}\cdot\mbox{font}\cdot\mbox{sizes}
plt.title('Risk Scores vs. Total Incidents', fontsize=16)
plt.xlabel('Total Incidents', fontsize=12)
plt.ylabel('Risk Score', fontsize=12)
# Add gridlines for better readability
plt.grid(linestyle='--', alpha=0.7)
# Ensure everything fits within the plot
plt.tight_layout()
# Show the plot
plt.show()
```



## Risk Scores vs. Total Incidents



```
# combine the make and aircraft model data in to one column
low_risk_aircraft['Make_Model'] = low_risk_aircraft['Make'] + " " + low_risk_aircraft['Model']
# View the top 10 lowest risk aircraft
top_low_risk = low_risk_aircraft.head(10)
plt.figure(figsize=(8, 6))
sns.barplot(
   data=top_low_risk,
    x='Risk_Score',
    y='Make_Model',
    hue='Make_Model',
    palette='tab10',
    order=top_low_risk.sort_values('Risk_Score')['Make_Model']
plt.title('Top 10 Lowest-Risk Aircraft by Risk Score', fontsize=14)
plt.xlabel('Risk Score', fontsize=10)
plt.ylabel('Aircraft (Make & Model)', fontsize=14)
plt.grid(axis='x', linestyle='-')
plt.show()
```



#### Top 10 Lowest-Risk Aircraft by Risk Score



```
# Sort aircraft by Risk Score in ascending order
lowest_risk_aircraft = aggregated_metrics[['Make', 'Model', 'Risk_Score']].sort_values(by='Risk_Score', ascending=True)
# Select top 5 lowest-risk models
top_low_risk_aircraft = lowest_risk_aircraft.head(10)
# Plot the Risk Score for the top 5 lowest-risk aircraft
plt.figure(figsize=(10, 6))
plt.bar(
    top_low_risk_aircraft['Make'] + " " + top_low_risk_aircraft['Model'],
    top_low_risk_aircraft['Risk_Score'],
   color='olive'
plt.xlabel('Aircraft (Make and Model)', fontsize=12)
plt.ylabel('Risk Score', fontsize=12)
plt.title('Top 10 Lowest-Risk Aircraft (Make & Model)', fontsize=14)
plt.xticks(rotation=45, ha='right')
plt.tight_layout()
# Show plot
plt.show()
# Display acquisition strategy
print("Acquisition Strategy:")
for index, row in top_low_risk_aircraft.iterrows():
   print(f"Make: {row['Make']}, Model: {row['Model']}, Risk Score: {row['Risk_Score']:.2f}")
```

