Mathematics 554H/703I Test 1 Name: AnswerKey. You are to use your own calculator, no sharing. Show your work to get credit.

1. What is the sum of the series $S = \sum_{k=0}^{100} \frac{(-1)^k}{x^k}$?

Solution. This is a geometric series.

$$S = \frac{\text{first} - \text{next}}{1 - \text{ratio}}$$

$$= \frac{\frac{-1}{x} - \frac{(-1)^{101}}{x^{101}}}{1 - \frac{-1}{x}}$$
(ok to have stopped here)
$$= \frac{-x^{100} + 1}{x^{101} + x^{100}}$$

$$= \frac{1 - x^{100}}{x^{101} + x^{100}}$$

2. (a) Define the binomial coefficient $\binom{n}{k}$

Solution. The definition is

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

where n and k are nonnegative integers and $0 \le k \le n$. \square (b) Simplify $\frac{(x+h)^3 - (x-h)^3}{h}$ (the answer should have no h in the denominator).

Solution. Use the binomial theorem to expand the binomials.

$$(x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3$$
$$(x-h)^3 = x^3 - 3x^2h + 3xh^2 - h^3$$

Subtracting these gives

$$(x+h)^3 - (x-h)^3 = 6x^2h + 2h^3 = h(6x^2 + h^2)$$

and therefore

$$\frac{(x+h)^3 - (x-h)^3}{h} = 6x^2 + 2h^3$$

3. For $\mathbf{a} = (a_1, a_n, \dots, a_n)$ and $\mathbf{b} \in (b_1, b_2, \dots, b_n) \in \mathbb{R}^n$ define the following:

- (a) $\mathbf{a} \cdot \mathbf{b}$.
- Solution. $\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$. Solution. $\|\mathbf{a}\| = \sqrt{\mathbf{a} \cdot \mathbf{a}} = \sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$. (b) $\|\mathbf{a}\|$.

State the following:

- (c) The **Cauchy-Schwartz** inequality for vectors in \mathbb{R}^n . tion. $|{\bf a} \cdot {\bf b}| \le ||{\bf a}|| ||{\bf b}||$
- (d) The *triangle inequality* for vectors in \mathbb{R}^n . Solution. $\|\mathbf{a} +$ $|b| \le ||a|| + ||b||$
- **4.** Give an example of a function $f: \mathbb{R} \to \mathbb{R}$ and subsets $A, B \subseteq \mathbb{R}$ such that $f(A \cap B) \neq f(A) \cap f(B)$.

Solution. There are many such examples. An easy one is let $f: \mathbb{R} \to \mathbb{R}$ be $f(x) = x^2$ and let A and B be the one element sets $A = \{-1\}$ and $B = \{1\}$. Then $A \cap B = \emptyset$, but $f[A] = f[B] = \{1\}$. Thus

$$f[A \cap B] = \emptyset \neq \{1\} = f[A] \cap f[B].$$

5. Give an example of a subset of \mathbb{R} which is bounded below, but which does not have a minimum.

Solution. And easy example here is the open interval (0,1). This is bounded below (by 0). But there is no minimum. For if $x \in (0,1)$, then also $x/2 \in (0,1)$ and x/2 < x, thus no $x \in (0,1)$ can be a minimum of the set.

6. Let $f: X \to Y$ be a function between the two sets X and Y. (a) If $U \subseteq Y$ define $f^{-1}[U]$.

Solution. The definition is

$$f^{-1}[U] = \{x \in X : f(x) \in U\}.$$

- (b) If $\{U_{\alpha} : \alpha \in I\}$ is a collection of subsets of Y define $\bigcap U_{\alpha}$.
- (c) The definition is

$$\bigcap_{\alpha \in I} U_{\alpha} = \{x : x \in U_{\alpha} \text{ for all } \alpha \in I\}.$$

(d) Prove
$$f^{-1}\Big[\bigcap_{\alpha\in I}U_{\alpha}\Big]=\bigcap_{\alpha\in I}f^{-1}[U_{\alpha}].$$

Solution.

$$x \in f^{-1} \Big[\bigcap_{\alpha \in I} U_{\alpha} \Big] \iff f(x) \in \bigcap_{\alpha \in I} U_{\alpha}$$

$$\iff \text{for all } \alpha \in I, \quad f(x) \in U_{\alpha}$$

$$\iff \text{for all } \alpha \in I, \quad x \in f^{-1}[U_{\alpha}]$$

$$\iff \bigcap_{\alpha \in A} f^{-1}[U_{\alpha}].$$

7. Let $f:[0,2]\to\mathbb{R}$ be the function

$$f(x) = 2x^3 - 2x^2 - 1.$$

(a) Prove there is a constant M such that

$$|f(x) - f(y)| \le M|x - y|$$

for all $x, y \in [0, 2]$.

Solution. Let $x, y \in [0, 2]$

$$|f(x) - f(y)| = |2x^3 - 2x^2 - 1 - (2y^3 - 2y^2 - 1)|$$

$$= |2(x^3 - y^3) - 2(x^2 - 2)|$$

$$= 2|x - y||(x^2 + xy + y^2) - (x + y)|$$

$$\leq 2|x - y|(|x|^2 + |x||y| + |y|^2 + |x| + |y|) \quad \text{(triangle inequality)}$$

$$\leq 2|x - y|(2^2 + 2 \cdot 2 + 2^2 + 2 + 2) \quad \text{(as } |x|, |y| \leq 2)$$

$$= 32|x - y|.$$

Therefore M = 32 works.

(b) Prove that there is a point $\xi \in (0,2)$ with $f(\xi) = 0$.

Solution. The form of the Intermediate Value Theorem we have proven is that if $f: [a,b] \to \mathbb{R}$ satisfies a Lipschitz condition and also f(a) < 0 and f(b) > 0 then there is $\xi \in (a,b)$ with $f(\xi) = 0$. Part (b) of this problem shows that f(x) is Lipschitz on the interval [a,b] = [0,2]. And

$$f(0) = 2(0)^3 - 2(0)^2 - 1 = -1 < 0$$

$$f(2) = 2(2)^2 - 2(2)^2 - 1 = 7 > 0$$

so the Intermediate Value Theorem applies and thus there is $\xi \in (0,2)$ with $f(\xi) = 0$.

8. Let a > 0 and let x be so that $|x - a| < \frac{a}{2}$ and $|x - a| < \delta$.

(a) Show
$$\frac{a}{2} \le x \le \frac{3a}{2}$$
.

Solution. We first show the lower bound:

$$x = a + (x - a)$$

$$\geq a - |x - a| \qquad (as (x - a) \geq -|x - a|)$$

$$\geq a - \frac{a}{2} \qquad (as -|x - a| \geq -a/2)$$

$$= \frac{a}{2}.$$

And now the upper bound:

$$x = a + (x - a)$$

$$\leq a + |x - a| \qquad (as (x - a) \leq |x - a|)$$

$$\leq a + \frac{a}{2} \qquad (as |x - a| \geq a/2)$$

$$= \frac{3a}{2}.$$
(b) Show $\left|\frac{1}{x^2} - \frac{1}{a^2}\right| < \frac{10\delta}{a^3}.$

Solution.

$$\left| \frac{1}{x^2} - \frac{1}{a^2} \right| = \frac{a^2 - x^2}{x^2 a^2}$$

$$= \frac{|a + x||a - x|}{x^2 a^2 a}$$

$$< \frac{|a + x|\delta}{x^2 a^2 a} \qquad \text{(as } |x - a| < \delta)$$

$$\leq \frac{(a + x)\delta}{x^2 a^2}$$

$$\leq \frac{(a + 3a/2)\delta}{(a/2)^2 a^2} \qquad \text{(as } x \le 3a/2 \text{ and } 1/x \le 1/(a/2))$$

$$= \frac{10\delta}{a^3}$$

9. (a) Let $S \subseteq \mathbb{R}$ be a nonempty subset of \mathbb{R} . Define what it means for S to be **bounded above**.

Solution. The set S is bounded above if there is a $c \in \mathbb{R}$ such that $s \leq c$ for all $s \in S$.

(b) Define what it means for b to be a least upper bound of S.

Solution. The number b is a least upper bound if b is an upper bound for S and $b \le c$ for all upper bounds c.

(c) State the *least upper bound axiom*.

Solution. Every nonempty subset of $\mathbb R$ that has a upper bound, has a least upper bound.

(d) State Archimedes' axiom.

Solution. For any real number, x, there is a natural number n such that n > x.

(e) Use the least upper bound axiom to prove Archimedes's axiom (big form).

Solution. Towards a contradiction, assume this is false. Then there is an $x \in \mathbb{R}$ such that for all natural numbers n the inequality $n \leq x$ holds. This implies that the set, \mathbb{N} , of natural numbers has an upper bound. Let $b = \sup(\mathbb{N})$ be the least upper bound for \mathbb{N} . Then for any natural number m we have

$$m \leq b$$
.

But for any natural number n the number m=n+1 is a natural number and whence

$$n+1 \leq b$$
.

This implies that for all $n \in \mathbb{N}$ that

$$n < b - 1$$

and thus b-1 is a upper bound for \mathbb{N} . But b-1 < b, contradicting that b was the least upper bound.

10. (a) Define the *open ball*, B(a,r), with center a and radius r in the metric space E.

Solution. $B(a,r) = \{x \in E : d(a,x) < r\}.$

(b) Define what it means for the set U to be open in the metric space E.

Solution. The set $U \subseteq E$ is open if and only if for all points $a \in U$ there is a r > 0 such that $B(a, r) \subseteq U$.

(c) Let U and V be open sets in E. Prove $U \cap V$ is also open.

Solution. Let $a \in U \cap V$. Then $a \in U$ and $a \in V$. As U is open there is $r_1 > 0$ such that $B(a, r_1) \subseteq U$. As V is open there is $r_2 > 0$ such that $B(a, r_2) \subseteq V$. Let $r = \min\{r_1, r_2\}$. Then r > 0 and $r \leq r_1$ and $r \leq r_2$. Thus

$$B(a,r) \subseteq B(a,r_1) \subseteq U$$
 and $B(a,r) \subseteq B(a,r_2) \subseteq V$.

This implies

$$B(a,r) \subseteq U \cap V$$
.

As a was any point of $U \cap V$ this implies $U \cap V$ is open.