Explicit Model Predictive Control via Piecewise Nonlinear Approximations

Vuong V. Trinh, Mazen Alamir, Patrick Bonnay and François Bonne

CNRS, GIPSA-lab & CEA

NOLCOS 2016, California

Explicit MPC As Identification Problem

Concepts

Implicit MPC: control law is computed via online programming

Explicit MPC: control law is computed offline

Main idea

Assume that an implicit MPC is available, we try to identify each control input as piecewise nonlinear function of a regressor

Explicit MPC As Identification Problem

Concepts

Implicit MPC: control law is computed via online programming

Explicit MPC: control law is computed offline

Main idea

Assume that an implicit MPC is available, we try to identify each control input as piecewise nonlinear function of a regressor

Problem statement

Given data $\mathcal{D} = \{q(k), Z(k)\}_{k=1}^{N}$ generated from implicit MPC

- A scalar quantity $q(k) \in \mathbb{R}$ which is a control input
- A regressor $Z(k) \in \mathbb{R}^{n_z}$ which is problem-dependent (trivial choice is plant states)

Find a multi-input single-output nonlinear map F such that

$$q \approx F(Z)$$

Search F of the form

$$q \approx F(Z) = \mathbf{\Gamma}^{-1}(\mathbf{L}^T Z)$$

- $L \in \mathbb{R}^{n_z}$ is linear parameter
- \blacksquare Γ is strictly increasing

Search F of the form

$$q \approx F(Z) = \mathbf{\Gamma}^{-1}(\mathbf{L}^T Z)$$

 \Downarrow

$$\Gamma(q) \approx \mathbf{L}^T Z$$

- **L** is linear parameter
- \blacksquare Γ is strictly increasing

Search *F* of the form

$$q \approx F(Z) = \mathbf{\Gamma}^{-1}(\mathbf{L}^T Z)$$

$$\downarrow \downarrow$$

$$B(\xi(q)) \mu = \mathbf{\Gamma}(q) \approx \mathbf{L}^T Z$$

- $\blacksquare \mu$ is nonlinear parameter
- $B(\cdot)$ is a basis function
- $lackbox{ } \xi(q)$ is a normalization map

Search F of the form

$$q \approx F(Z) = \mathbf{\Gamma}^{-1}(\mathbf{L}^T Z)$$

$$B(\xi(q))\mu = \Gamma(q) \approx L^T Z$$

- *L* is linear parameter
- \blacksquare μ is nonlinear parameter
- $B(\cdot)$ is a basis function
- $lackbox{ } \xi(q)$ is a normalization map

Optimization problem

Finding (μ, L) such that

$$B(\xi(q))\mu \approx Z^T \mathbf{L}$$

and Γ is strictly increasing

Search F of the form

$$q \approx F(Z) = \frac{\Gamma^{-1}(\mathbf{L}^T Z)}{\Gamma}$$

$$B(\xi(q))\mu = \Gamma(q) \approx L^T Z$$

- *L* is linear parameter
- $\mathbf{\mu}$ is nonlinear parameter
- $B(\cdot)$ is a basis function
- $lackbox{ } \xi(q)$ is a normalization map

Optimization problem

Finding (μ, L) such that

$$\left\| \begin{bmatrix} B(\xi(q)) & -Z^T \end{bmatrix} \begin{bmatrix} \mu \\ L \end{bmatrix} \right\| \approx 0$$

and
$$\left[\frac{dB}{d\eta}(\eta)\right] \mu \geq \epsilon$$
 for all $\eta \in [0, 1]$

Search *F* of the form

$$q \approx F(Z) = \mathbf{\Gamma}^{-1}(\mathbf{L}^T Z)$$

$$B(\xi(q))\mu = \Gamma(q) \approx L^T Z$$

- *L* is linear parameter
- $\mathbf{\mu}$ is nonlinear parameter
- $B(\cdot)$ is a basis function
- $lackbox{ } \xi(q)$ is a normalization map

Optimization problem

Finding (μ, L) such that

$$\left\| \begin{bmatrix} B(\xi(q)) & -Z^T \end{bmatrix} \begin{bmatrix} \mu \\ L \end{bmatrix} \right\| \approx 0$$

and
$$\left[\frac{dB}{dn}(\eta_i)\right] \mu \geq \epsilon$$
 for some $0 = \eta_1 < \eta_2 \cdots < \eta_{n_{\text{grid}}} = 1$

Search F of the form

$$q \approx F(Z) = \Gamma^{-1}(L^T Z)$$

$$\downarrow \downarrow$$

$$B(\mathcal{E}(q)) \mu = \Gamma(q) \approx L^T Z$$

- L is linear parameter
- \blacksquare μ is nonlinear parameter
- $B(\cdot)$ is a basis function
- $lackbox{ } \xi(q)$ is a normalization map
- lacksquare $\omega(q,Z)$ is positive weight

Optimization problem

$$\min_{\boldsymbol{\mu}, \boldsymbol{L}} \quad \omega(q, Z) \left\| \begin{bmatrix} B(\xi(q)) & -Z^T \end{bmatrix} \begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{L} \end{bmatrix} \right\|$$
s.t.
$$[\frac{dB}{dn}(\boldsymbol{\eta})] \boldsymbol{\mu} \ge \epsilon \cdot \mathbf{1}$$

Extension to Piecewise Nonlinear Approximations

Search the partitions $\{\mathcal{R}_{(i)}\}_{i=1}^{s}$ of the regression domain such that

$$q \approx F(Z) = \begin{cases} \Gamma_{(1)}^{-1} (L_{(1)}^T Z) & \text{if } Z \in \mathcal{R}_{(1)} \\ \vdots \\ \Gamma_{(s)}^{-1} (L_{(s)}^T Z) & \text{if } Z \in \mathcal{R}_{(s)} \end{cases}$$

Extension to Piecewise Nonlinear Approximations

Search the partitions $\{\mathcal{R}_{(i)}\}_{i=1}^{s}$ of the regression domain such that

$$q \approx F(Z) = \begin{cases} \Gamma_{(1)}^{-1} (L_{(1)}^{T} Z) & \text{if } Z \in \mathcal{R}_{(1)} \\ \vdots \\ \Gamma_{(s)}^{-1} (L_{(s)}^{T} Z) & \text{if } Z \in \mathcal{R}_{(s)} \end{cases}$$

A common strategy to find the satisfactory partitions

Iterative partitioning the regression domain into regions (by some heuristic rules) until a sufficiently small approximation error is obtained

Extension to

Hyper-rectangular domain partitioning ons

Search the part

A common st Iterative partit rules) until a s

ı that

some heuristic

Extension to Piecewise Nonlinear Approximations

Search the partitions $\{\mathcal{R}_{(i)}\}_{i=1}^{s}$ of the regression domain such that

$$q \approx F(Z) = \begin{cases} \Gamma_{(1)}^{-1} (L_{(1)}^{T} Z) & \text{if } Z \in \mathcal{R}_{(1)} \\ \vdots \\ \Gamma_{(s)}^{-1} (L_{(s)}^{T} Z) & \text{if } Z \in \mathcal{R}_{(s)} \end{cases}$$

A common strategy to find the satisfactory partitions

Iterative partitioning the regression domain into regions (by some heuristic rules) until a sufficiently small approximation error is obtained

Post-processing: complexity reduction

The number of regions s can be reduced by forcing the model parameters of some regions to be identical \implies see paper for details

Control Concept, Challenge & Solution

Control Concept, Challenge & Solution

Control Concept, Challenge & Solution

Control Concept, Challenge & Solution

Objective Force x_4 to track a reference signal x_4^r

Challenge Fast sampling period 100μ s Input saturation $u \in [0, 1]$ Positivity constraint $x_i \ge 0$, i = 1, ..., 4

Solution Fast nonlinear model predictive control

 $100 \mu s$

 $100 \mu s$

Data & Weight Tuning

Data cardinality > 24000 generated from a 10s simulation scenario

Data & Weight Tuning

Data cardinality > 24000 generated from a 10s simulation scenario

Identification Results

Identification Results

Closed-Loop Validation

Control Input & Region Index

Closed-Loop Validation

Constraint Satisfaction, Setpoint Stabilization & Tracking Error

Real-Time Comparison

Platform: 2.6 GHz Intel(R) Core(TM) i7 and 16GB of RAM.

Conclusion, Future Work & Acknowledgement

Conclusion

- A practical computational methodology for explicit piecewise nonlinear representation of MPC control laws derived from learning data
- Illustrative example with a fast constrained nonlinear application

Conclusion, Future Work & Acknowledgement

Conclusion

- A practical computational methodology for explicit piecewise nonlinear representation of MPC control laws derived from learning data
- Illustrative example with a fast constrained nonlinear application

Future work

- An experimental validation is in progress for a MIMO system
- Application outside MPC context, for example, off-line computation of moving-horizon observers

Conclusion, Future Work & Acknowledgement

Conclusion

- A practical computational methodology for explicit piecewise nonlinear representation of MPC control laws derived from learning data
- Illustrative example with a fast constrained nonlinear application

Future work

- An experimental validation is in progress for a MIMO system
- Application outside MPC context, for example, off-line computation of moving-horizon observers

Acknowledgement

This work is financially supported by the project CRYOGREEN from French National Research Agency (ANR)