FINDING

Correlation

Here x define number of absences and y define final grade.

	Х	У	ху	x^2	y^2
	6	82	492	36	6724
	2	86	172	4	7396
	15	43	645	225	1849
	9	74	666	81	5476
	12	58	696	144	3364
	5	90	450	25	8100
	8	78	624	64	6084
Sum	57	511	3745	579	38993

n	7
x_bar	8.142857
y_bar	73

Numerator	-416	
Denominator	440.5775	

$$r = \frac{\sum x_i y_i - n\bar{x}\bar{y}}{\sqrt{\left\{\sum x_i^2 - n\bar{x}^2\right\} \times \left\{\sum y_i^2 - n\bar{y}^2\right\}}}$$
Correlation, r= -0.9442

The bivariate correlation between these two variables was negative and strong, r=-0.9442.

Correlation analysis(IBM SPSS)

To assess the size and direction of the linear relationship between Number of Absences and Final Grade, a bivariate Pearson's correlation coefficient(r) was calculated. The bivariate correlation between these two variables was negative and strong, r=-0.9442,p<0.001, two tailed which is statistically significance. Therefore, the null hypothesis that there is no relationship between Number of Absence and Final Grade in the population is rejected. It can be concluded that there is relationship between Number of Absence and Final Grade in the population.

Correlations

		Number of Absence	Final Grade
Number of Absence	Pearson Correlation	1	944**
	Sig. (2-tailed)		.001

^{**.} Correlation is significant at the 0.01 level (2-tailed).