No-Fuss Compiler Fuzzing

Abstract

2

10

11

12

14

15

16

17

18

19

20

21

22

23

24

25

26

27

29

31

33

34

35

36

37

38

39

40

41

42

43

44

45

46

48

50

52

53

54

55

Developing a bug-free compiler is difficult; modern optimizing compilers are among the most complex software systems humans build. Fuzzing is one way to identify subtle compiler bugs that are hard to find with human-constructed tests. Grammar-based fuzzing, however, requires a grammar for a compiler's input language, and can miss bugs induced by code that does not actually satisfy the grammar the compiler should accept. Grammar-based fuzzing also seldom uses advanced modern fuzzing techniques based on coverage feedback. However, modern mutation-based fuzzers are often ineffective for testing compilers because most inputs they generate do not even come close to getting past the parsing stage of compilation. This paper introduces a technique for taking a modern mutation-based fuzzer (AFL in our case, but the method is general) and adding mutation rules, based on operators used in mutation testing, to make such fuzzing more effective. We show that adding such mutations significantly improves fuzzing effectiveness. Our approach has allowed us to report more than 100 confirmed and fixed bugs in production compilers, and found a bug in the Solidity compiler that earned a security bounty. The most important feature of our approach is that for compilers written in C, C++, Go, Rust, or another language supported by AFL, the process of fuzzing is extremely low-effort for compiler developers. They essentially build their system with fuzzer instrumentation, point the fuzzer to a set of example programs that compile without error, and examine any crashes detected.

CCS Concepts: • Software and its engineering \rightarrow Dynamic analysis; Software testing and debugging.

Keywords: fuzzing, compiler development, mutation testing

ACM Reference Format:

. 2022. No-Fuss Compiler Fuzzing. In ,. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3486607.3486772

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

foo, baz

© 2022 Association for Computing Machinery. ACM ISBN 978-1-4503-9110-8/21/10...\$15.00 https://doi.org/10.1145/3486607.3486772

1 Introduction

2 Mutation-Testing-Based Compiler Fuzzing

57

59

61

63

67

71

72

74

75

76

78

82

84

85

86

90

91

93

94

95

97

98

99

101

102

103

105

106

107

108

109

110

2.1 Mutation-Based Fuzzing

One use of the term "mutation" appears in the context of mutation-based fuzzing [5]. One can consider two basic kinds of compiler testing based on the generation of random input programs. One, in recent years paradigmatically expressed in the Csmith tool [8], works by using a grammar and deep knowledge of the language accepted by the compiler, to generate progams to test the compiler. This is sometimes called generative fuzzing. A second approach is to use an off-the-shelf fuzzer, such is used to find security vulnerabilities (e.g., the ubiquitous American Fuzzy Lop (afl) https://github.com/google/AFL), and a corpus of example programs, such as the set of regression tests for the compiler or a set of real-world programs. A fuzzer such as AFL operates by executing the program under test (here, the compiler) on inputs (initially those in the corpus), using instrumentation to determine code coverage in the compiler for each executed input. The fuzzer then takes inputs that look interesting and adds them to a *queue*. The basic loop is then to take some input from the queue, mutate it by making some essentially random change (e.g., flipping a single bit, or removing a random chunk of bytes), execute the new, mutated input under instrumentation, and add the new input to the queue if it seems "interesting" — typically, if it hits some kind of coverage target that has not previously been hit. The details of selecting inputs from the queue and determining how to mutate an input vary widely, and improving the effectiveness of this basic approach has been a major topic of recent software testing and security research. However, the basic strategy usually still fits into a simple basic model:

- 1. Select an input from the queue.
- 2. Mutate that input in order to obtain a new input.
- 3. Execute the new input, and if it is deemed interesting, add it to the queue.
- 4. Go back to the first step.

Any inputs that crash the compiler in step 3 are reported to the user. Using such a fuzzer is often extremely easy, involving no more work than 1) building the compiler with special instrumentation and 2) finding a set of initial programs to use as a corpus. Even compiling with instrumentation can be optional; some fuzzers (including AFL) can use QEMU to fuzz arbitrary binaries. However, for compilers, it is usually best if possible to rebuild the compiler, since QEMU-based execution is much slower, and compilers are slow enough to seriously degrade fuzzing throughput.

1

foo, baz us folks

Our work focuses on improving step 2 of this process, in a way that is agnostic to how the details of the other aspects of fuzzing are implemented. In particular, the problem with most approaches to mutation in the literature, for compiler fuzzing, is that changes such as byte-level-transformations almost always take compiling programs that exercise interesting compiler behavior, and transform them into programs that don't make it past early stages of parsing. Alternative approaches to what are called "havoc"-style mutations tend to involve solving constraints or following taint, which in the case of compilers tends to be ineffective, since the relationships to be preserved are quite complex, and implemented in complex code. We propose a cheap way to produce a much larger number of useful, interesting mutations, without paying a price that makes fuzzing practically infeasible, or requiring any effort on the part of compiler developers.

2.2 Mutation Testing

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

146

147

148

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

A different use of the term "mutation" appears in the field of mutation testing. Mutation testing [3, 4, 6] is an approach to evaluating and improving software tests that works by introducing small syntactic changes into a program, under the assumption that if the original program was correct, then a program with slightly different semantics will be incorrect, and should be flagged as such by effective tests. Mutation testing is now widely used in software testing research, and is used to varying degrees in industry at-scale and for especially critical software development [1, 2, 7].

2.3 Limitations

The most important limitation for the mutation-testing-based approach is that if compiler crashes are mostly uninteresting, fuzzing of this kind will probably not be very useful. This applies, of course, to all AFL-style fuzzing, not just to fuzzing using the technique proposed in this paper. For example, C and C++ include a large variety of undefined behaviors. Code that crashes a C or C++ compiler, but that includes (unusual) undefined behavior may well be ignored by developers. Csmith [8] devotes a great deal of effort to avoiding generating code that falls outside the "ineresting" part of the language. On the other hand, many languages more recent than C and C++ attempt to provide a more "total" language where, while a program may be considered absurd by a human, fewer (or no) programs are undefined in the sense that C and C++ use the term. For example, smart contract languages such as those studied in this paper, generally aim to make all programs that compile well-defined, or at least minimize the problem to more managable cases such as order of evaluation of sub-expressions. Similarly, Rust code without use of unsafe or libraries using unsafe should be well-defined. For most more recent languages, and some older languages such as Java, a program that crashes the

compiler is, in general, likely of interest to compiler developers. However, the proposed technique will be much more limited in effectiveness for C and C++ compilers.

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

189

190

191

192

193

194

195

197

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

3 Conclusions

References

- Iftekhar Ahmed, Carlos Jensen, Alex Groce, and Paul E. McKenney.
 Applying Mutation Analysis on Kernel Test Suites: an Experience Report. In *International Workshop on Mutation Analysis*. 110–115.
- [2] Moritz Beller, Chu-Pan Wong, Johannes Bader, Andrew Scott, Mateusz Machalica, Satish Chandra, and Erik Meijer. 2021. What It Would Take to Use Mutation Testing in Industry—A Study at Facebook. In 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). 268–277. https://doi.org/ 10.1109/ICSE-SEIP52600.2021.00036
- [3] Timothy Budd, Richard J. Lipton, Richard A DeMillo, and Frederick G Sayward. 1979. *Mutation analysis*. Yale University, Department of Computer Science.
- [4] Richard J. Lipton, Richard A DeMillo, and Frederick G Sayward. 1978. Hints on test data selection: Help for the practicing programmer. Computer 11, 4 (1978), 34–41.
- [5] V. Manes, H. Han, C. Han, s. cha, M. Egele, E. J. Schwartz, and M. Woo. 5555. The Art, Science, and Engineering of Fuzzing: A Survey. *IEEE Transactions on Software Engineering* 01 (oct 5555), 1–1. https://doi.org/10.1109/TSE.2019.2946563
- [6] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark Harman. 2019. Mutation testing advances: an analysis and survey. In Advances in Computers. Vol. 112. Elsevier, 275–378.
- [7] Goran Petrović and Marko Ivanković. 2018. State of Mutation Testing at Google. In Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice (Gothenburg, Sweden) (ICSE-SEIP '18). Association for Computing Machinery, New York, NY, USA, 163–171. https://doi.org/10.1145/3183519.3183521
- [8] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and understanding bugs in C compilers. In Proceedings of the 32nd ACM SIG-PLAN conference on Programming language design and implementation. 283–294

2