Práctico 9

COORDENADAS Y MATRICES DE TRANSFORMACIONES LINEALES

Objetivos.

- Aprender a calcular coordenadas y la matriz de cambio de base.
- Aprender a calcular la matriz de una transformación lineal.
- Saber decidir si una transformación lineal es diagonalizable.
- Aprender a construir transformaciones lineales que satisfagan las propiedades solicitadas.

Ejercicios.

- (1) Sean C_n , n = 2, 3, las bases canónicas de \mathbb{R}^2 y \mathbb{R}^3 respectivamente. Sean $\mathcal{B}_2 = \{(1,0),(1,1)\}$ y $\mathcal{B}_3 = \{(1,0,0),(1,1,0),(1,1,1)\}$ bases de \mathbb{R}^2 y \mathbb{R}^3 , respectivamente.
 - (a) Escribir la matriz de cambio de base $P_{\mathcal{C}_n,\mathcal{B}_n}$ de \mathcal{C}_n a \mathcal{B}_n , n=2,3.
 - (b) Escribir la matriz de cambio de base $P_{\mathcal{B}_n,\mathcal{C}_n}$ de \mathcal{B}_n a \mathcal{C}_n , n=2,3.
 - (c) ¿Qué relación hay entre $P_{\mathcal{C}_n,\mathcal{B}_n}$ y $P_{\mathcal{B}_n,\mathcal{C}_n}$?
 - (d) Determinar los vectores de \mathbb{R}^2 y \mathbb{R}^3 que tienen coordenadas (1,4) y (1,1,1) en las bases \mathcal{B}_2 y \mathcal{B}_3 , respectivamente.
 - (e) Determinar las coordenadas de (2,3) y (1,2,3) en las bases \mathcal{B}_2 y \mathcal{B}_3 , respectivamente.
- (2) Sean \mathcal{C}_n , \mathcal{B}_n como en el ejercicio anterior y consideremos las transformaciones lineales
 - $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$, T(x,y) = (x-y, x+y, 2x+3y).
 - $S: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$, S(x, y, z) = (x y + z, 2x y + 2z).
 - (a) Dar las matrices de las transformaciones respecto de las bases \mathcal{B}_n y \mathcal{C}_n .
 - (b) Dar las matrices de las transformaciones respecto de las bases C_n y \mathcal{B}_n .
 - (c) Dar las matrices de las transformaciones respecto de las bases \mathcal{B}_n y \mathcal{B}_n .
 - (d) Calcular $[TS]_{\mathcal{B}_3}$ y verificar que es igual al producto $[T]_{\mathcal{C}_2\mathcal{B}_3}[S]_{\mathcal{B}_3\mathcal{C}_2}$.
- (3) Para cada una de las siguientes transformaciones lineales, hallar sus autovalores, y para cada uno de ellos, dar una base de autovectores del espacio propio asociado. Luego, decir si la transformación considerada es o no diagonalizable.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (y, 0).
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x + 2z, -x y + z, x + 2y + z).
 - (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (4x + y + 5z, 4x y + 3z, -12x + y 11z).
 - (d) $T: \mathbb{R}^4 \to \mathbb{R}^4$, T(x, y, z, w) = (2x y, x + 4y, z + 3w, z w).
- (4) Definir en cada caso una transformación lineal $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ que satisfaga las condiciones requeridas. ¿Es posible definir más de una transformación lineal?
 - (a) $(1,0,0) \in Nu(T)$
 - (b) $(1,0,0) \in \text{Im}(T)$
 - (c) $(1,1,0) \in \text{Im}(T) \text{ y } (0,1,1), (1,2,1) \in \text{Nu}(T)$
 - (d) $(1,1,0) \in \text{Im}(T) \cap \text{Nu}(T)$ y (0,1,1) es autovector con autovalor 2.
 - (e) Los vectores de la base \mathcal{B}_3 son autovectores con autovalores 1, 2 y 3 respectivamente.
 - (f) La imagen de T es el subespacio generado por (1,0,-1) y (1,2,2)
 - (g) El núcleo de T está generado por los vectores (1,1,0), (1,0,0) y (2,1,0).
- (5) Sea V un espacio vectorial con base $\mathcal{B} = \{v_1, ..., v_n\}$ y $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ una matriz. Sea $\mathcal{B}' = \{v'_1, ..., v'_n\}$ donde

$$v'_j = \sum_{i=1}^n a_{ij} v_i$$
 para todo $1 \le j \le n$.

Probar que \mathcal{B}' es una base de V si y sólo si A es inversible. En tal caso determinar la matriz de cambio de base de la base \mathcal{B}' a la base \mathcal{B} y viceversa.