

http://al9ahira.com/

La Propriété (H)

I.A. Préliminaires

- ψ est une application linéaire et transforme la base ((1,0),(0,1)) de \mathbb{R}^2 en la base (1,i) de \mathbb{C} , donc ψ est un isomorphisme et ψ^{-1} l'est aussi.

 Comme \mathbb{R}^2 (respectivement \mathbb{C}) est de dimension finie alors ψ est continue (resp ψ^{-1} est continue).
- **2** Soit Ω un ouvert de \mathbb{C} . Alors,

$$\{(x,y) \in \mathbb{R}^2; x + iy \in \Omega\} = \psi^{-1}(\Omega)$$

est l'image réciproque d'un ouvert par une application continue, c'est donc un ouvert de \mathbb{R}^2 .

I.B. La propriété (H)

1 1.a. $f: \mathbb{C} \longrightarrow \mathbb{C}$, donc, $\tilde{f}: \mathbb{R}^2 \longrightarrow \mathbb{C}$ est une application de classe \mathbb{C}^1 avec, pour tout $(x,y) \in \mathbb{R}^2$:

$$\frac{\partial \widetilde{f}}{\partial x}(x,y) = 2x + 2iy \text{ et } \frac{\partial \widetilde{f}}{\partial y}(x,y) = -2y + 2ix$$

par suite $\frac{\partial \widetilde{f}}{\partial y}(x,y) = i \frac{\partial \widetilde{f}}{\partial x}(x,y)$. Ainsi, f vérifie la propriété **(H)**.

1.b. De manière similaire à la question précédente $f: \mathbb{C} \longrightarrow \mathbb{C}$, donc $z \longmapsto e^z$

 $\widetilde{f}: \mathbb{R}^2 \longrightarrow \mathbb{C}$ est une application de classe C^1 avec, pour tout $(x,y) \longmapsto e^{x+iy}$ e^{x+iy}

$$\frac{\partial \widetilde{f}}{\partial x}(x,y) = e^{x+iy}$$
 et $\frac{\partial \widetilde{f}}{\partial y}(x,y) = ie^{x+iy}$

par suite $\frac{\partial \widetilde{f}}{\partial y}(x,y) = i \frac{\partial \widetilde{f}}{\partial x}(x,y)$. Ainsi, f vérifie la propriété **(H)**.

1.c. Pour $f: \mathbb{C} \longrightarrow \mathbb{C}$, on $a: \tilde{f}: \mathbb{R}^2 \longrightarrow \mathbb{C}$ qui est bien de $z \longmapsto \bar{z} \qquad (x,y) \longmapsto x-iy$ classe C^1 avec, pour tout $(x,y) \in \mathbb{R}^2$:

$$\frac{\partial \widetilde{f}}{\partial x}(x,y) = 1$$
 et $\frac{\partial \widetilde{f}}{\partial y}(x,y) = -i$

Donc $\frac{\partial \widetilde{f}}{\partial y}(0,0) \neq i \frac{\partial \widetilde{f}}{\partial x}(0,0)$ et par suite f ne vérifie pas la propriété **(H)**.

- 2 Cas d'une fonction définie par une intégrale
 - **2.a.** Soit $z \in \mathbb{C}$, l'application $t \mapsto e^{-zt^2}$ est continue sur \mathbb{R} et pour tout $t \in \mathbb{R}$, $\left| e^{-zt^2} \right| = e^{-\operatorname{Re}(z)t^2}$.
 - Si $\operatorname{Re}(z) > 0$, alors $e^{-\operatorname{Re}(z)t^2} = \underset{|t| \to +\infty}{o} \left(\frac{1}{t^2}\right)$, donc la fonction $t \mapsto e^{-zt^2}$ est intégrable sur \mathbb{R} .
 - Si $\operatorname{Re}(z) \leq 0$, alors $\frac{1}{t} = \underset{|t| \to +\infty}{o} \left(e^{-\operatorname{Re}(z)t^2} \right)$, donc la fonction $t \longmapsto e^{-zt^2}$ n'est pas intégrable sur \mathbb{R} .

Ainsi la fonction $t \mapsto e^{-zt^2}$ est intégrable sur \mathbb{R} si et seulement si $\mathrm{R}e(z) > 0$.

- **2.b.** L'application $\varphi: z \longmapsto \operatorname{Re}(z)$ est continue de \mathbb{C} dans \mathbb{R} , $]0, +\infty[$ est un ouvert de \mathbb{R} et $\Omega = \{z \in \mathbb{C}, \operatorname{Re}(z) > 0\} = \varphi^{-1}(]0, +\infty[)$, donc Ω est un ouvert de \mathbb{C} .
- **2.c.** Pour tout $(x,y) \in \mathcal{U} = \{(x,y) \in \mathbb{R}^2, x > 0\}$ nous avons :

$$\widetilde{f}(x,y) = \int_0^{+\infty} e^{-xt^2 - iyt^2} dt$$

Fixons $x \in \mathbb{R}$ tel que x > 0, et posons pour tout $(y, t) \in \mathbb{R} \times [0, +\infty[$, $h(y, t) = e^{-xt^2 - iyt^2}$. Alors nous avons :

• h est continue sur $\mathbb{R} \times [0, +\infty[$.

• h admet une dérivée partielle par rapport à la première composante :

$$\forall (y,t) \in \mathbb{R} \times [0,+\infty[: \frac{\partial h}{\partial y}(y,t) = -it^2 e^{-xt^2 - iyt^2}]$$

et $\frac{\partial h}{\partial y}$ est continue sur $\mathbb{R} \times [0, +\infty[$.

• $\forall (y,t) \in \mathbb{R} \times [0,+\infty[,|h(y,t)| = e^{-xt^2} \text{ et la fonction } t \longmapsto e^{-xt^2} \text{ est continue}$

intégrable sur $[0, +\infty[$.

• $\forall (y,t) \in \mathbb{R} \times \mathbb{R}, \left| \frac{\partial h}{\partial y}(y,t) \right| = t^2 e^{-xt^2}$ et la fonction $t \longmapsto t^2 e^{-xt^2}$ est continue et

intégrable sur $[0, +\infty[$.

D'après la formule de Leibniz, nous déduisons que \tilde{f} admet une dérivée partielle par rapport à sa deuxième variable et

$$\forall (x,y) \in \mathcal{U}, \ \frac{\partial \widetilde{f}}{\partial y}(x,y) = \int_0^{+\infty} \frac{\partial h}{\partial y}(y,t) \, \mathrm{d}t = \int_0^{+\infty} -i \, t^2 e^{-xt^2 - iyt^2} \, \mathrm{d}t.$$

- **2.d.** Soit $y \in \mathbb{R}$. Posons pour tout $(x,t) \in]0,+\infty[\times[0,+\infty[,g(x,t)=e^{-xt^2-iyt^2}.$ Alors:
 - g est continue sur $]0,+\infty[\times[0,+\infty[$.
 - g admet une dérivée partielle par rapport à la première composante donnée par :

$$\forall (x,t) \in]0,+\infty[\times[0,+\infty[,\frac{\partial g}{\partial x}(x,t)]] = -t^2 e^{-xt^2 - iyt^2}$$

 $\frac{\partial g}{\partial x}$ est ainsi continue sur $]0,+\infty[\times[0,+\infty[$.

• Soit $a \in]0, +\infty[$.

 $\forall (x,t) \in [a,+\infty[\times[0,+\infty[,|g(x,t)|=e^{-xt^2} \le e^{-at^2}] \text{ et la fonction } t \longmapsto e^{-at^2}]$ est continue et intégrable sur $[0,+\infty[$. De plus :

$$\forall (x,t) \in [a,+\infty[\times[0,+\infty[,\left|\frac{\partial g}{\partial x}(x,t)\right| = t^2 e^{-xt^2} \le t^2 e^{-at^2} \text{ et la fonction}$$

$$t \longmapsto t^2 e^{-at^2} \text{ est continue et intégrable sur } [0,+\infty[.$$

Alors et d'après la formule de Leibniz, nous déduisons que \widetilde{f} admet une dérivée partielle par rapport à sa premième variable avec :

$$\forall (x,y) \in \mathcal{U}, \ \frac{\partial \widetilde{f}}{\partial x}(x,y) = \int_0^{+\infty} \frac{\partial g}{\partial x}(x,t) dt = \int_0^{+\infty} -t^2 e^{-xt^2 - iyt^2} dt$$

Ainsi on remarque que : pour tout $(x,y) \in \mathcal{U}$, $\frac{\partial f}{\partial x}(x,y) = \frac{1}{i} \frac{\partial f}{\partial y}(x,y)$.

2.e. Pour tout $(x,y) \in \mathcal{U}$, nous avons $: \frac{\partial \widetilde{f}}{\partial y}(x,y) = \int_{-\infty}^{+\infty} -it^2 e^{-xt^2 - iyt^2} dt$.

Posons pour tout $((x,y),t) \in \mathcal{U} \times [0,+\infty[$, $h((x,y),t) = -it^2e^{-xt^2-iyt^2}$.

- *h* est continue sur $\mathcal{U} \times [0, +\infty[$.
- Soit $a \in]0,+\infty[$, on a $\forall ((x,y),t) \in ([a,+\infty[\times\mathbb{R})\times[0,+\infty[, |h((x,y),t)| = t^2e^{-xt^2} \le t^2e^{-at^2})$ et la fonction $t \mapsto t^2e^{-at^2}$ est continue et intégrable sur $[0,+\infty[$.

Alors d'après le théorème de continuité sous le signe intégrale, nous déduisons que : $\frac{\partial \widetilde{f}}{\partial v}$ est continue sur \mathcal{U} .

Or, et d'après la question précédente, nous avons :

$$\forall (x,y) \in \mathcal{U}, \quad \frac{\partial \widetilde{f}}{\partial x}(x,y) = \frac{1}{i} \frac{\partial \widetilde{f}}{\partial y}(x,y)$$

donc $\frac{\partial \widetilde{f}}{\partial x}$ est continue sur \mathcal{U} . Ainsi \widetilde{f} est de classe C^1 sur \mathcal{U} .

Comme, de plus, pour tout $(x,y) \in \mathcal{U}$, $\frac{\partial \widetilde{f}}{\partial y}(x,y) = i \frac{\partial \widetilde{f}}{\partial x}(x,y)$ nous déduisons que f vérifie la propriété **(H)**.

3 Quelques propriétés générales.

Soit Ω un ouvert non vide de $\mathbb C$ et soient f, g deux applications définies sur Ω à valeurs complexes et vérifiant la propriété (H); on pose $\mathcal U=\psi^{-1}(\Omega)$.

3.a. Soit $\lambda \in \mathbb{C}$. Nous avons $(\lambda f + g) = \lambda \tilde{f} + \tilde{g}$, donc $(\lambda f + g)$ est de classe C^1 sur \mathcal{U} . Avec pour tout $(x,y) \in \mathcal{U}$:

$$\frac{\partial \widetilde{(\lambda f + g)}}{\partial y}(x, y) = \lambda \frac{\partial \widetilde{f}}{\partial y}(x, y) + \frac{\partial \widetilde{g}}{\partial y}(x, y)$$

$$= i \left(\lambda \frac{\partial \widetilde{f}}{\partial x}(x, y) + \frac{\partial \widetilde{g}}{\partial x}(x, y)\right)$$

$$= i \frac{\partial \widetilde{(\lambda f + g)}}{\partial x}(x, y)$$

Ainsi $\lambda f + g$ vérifie la propriété (H).

3.b. Il est clair que $(fg) = \widetilde{f} \widetilde{g}$, donc (fg) est de classe $C^1 \operatorname{sur} \mathcal{U} \cdot \forall (x,y) \in \mathcal{U}$,

$$\frac{\partial \widetilde{(f g)}}{\partial y}(x, y) = \frac{\partial \widetilde{f}}{\partial y}(x, y) \times \widetilde{g}(x, y) + \widetilde{f}(x, y) \frac{\partial \widetilde{g}}{\partial y}(x, y)$$

$$= i \left(\frac{\partial \widetilde{f}}{\partial x}(x, y) \times \widetilde{g}(x, y) + \widetilde{f}(x, y) \frac{\partial \widetilde{g}}{\partial x}(x, y) \right)$$
$$= i \frac{\partial \widetilde{(f g)}}{\partial x}(x, y).$$

Ainsi f g vérifie la propriété (H).

3.c. On suppose que, pour tout $z \in \Omega$, $f(z) \neq 0$. Par $\underbrace{\left(\frac{1}{f}\right)}_{f} = \frac{1}{\widetilde{f}}$ nous avons $\underbrace{\left(\frac{1}{f}\right)}_{f}$ est de classe C^{1} sur \mathcal{U} . Pour tout $(x,y) \in \mathcal{U}$:

$$\frac{\partial \widetilde{\left(\frac{1}{f}\right)}}{\partial y}(x,y) = \frac{\partial \left(\frac{1}{\widetilde{f}}\right)}{\partial y}(x,y) = \frac{-\frac{\partial \widetilde{f}}{\partial y}(x,y)}{\left(\widetilde{f}(x,y)\right)^{2}} = \frac{-i\frac{\partial \widetilde{f}}{\partial x}(x,y)}{\left(\widetilde{f}(x,y)\right)^{2}} = i\frac{\partial \widetilde{\left(\frac{1}{f}\right)}}{\partial x}(x,y)$$

Donc $\frac{1}{f}$ vérifie la propriété (**H**).

- 3.d. Soit $z_0 = x_0 + iy_0 \in \Omega$ et posons $\frac{\partial \widetilde{f}}{\partial x}(x_0, y_0) = a + ib$. $a, b \in \mathbb{R}$.
 - i) \widetilde{f} est de classe C^1 sur \mathcal{U} , donc la différentielle de \widetilde{f} en (x_0, y_0) existe et pour tout $(h, k) \in \mathbb{R}^2$,

$$d\widetilde{f}(x_0, y_0)(h, k) = \frac{\partial \widetilde{f}}{\partial x}(x_0, y_0)h + \frac{\partial \widetilde{f}}{\partial y}(x_0, y_0)k$$
$$= (h + ik)\frac{\partial \widetilde{f}}{\partial x}(x_0, y_0) = ah - bk + i(bh + ak).$$

Ainsi:

$$d\widetilde{f}(x_0, y_0)(e_1) = a + ib \text{ et } d\widetilde{f}(x_0, y_0)(e_2) = -b + ia$$
Par suite, $A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$.

ii) On suppose que $a + ib \neq 0$ et on oriente l'espace euclidien \mathbb{R}^2 par sa base canonique. Soit u l'endomorphisme canoniquement associé à A.

$$A = \begin{pmatrix} \sqrt{a^2 + b^2} & 0 \\ 0 & \sqrt{a^2 + b^2} \end{pmatrix} \begin{pmatrix} \frac{a}{\sqrt{a^2 + b^2}} & \frac{-b}{\sqrt{a^2 + b^2}} \\ \frac{b}{\sqrt{a^2 + b^2}} & \frac{a}{\sqrt{a^2 + b^2}} \end{pmatrix}$$

Soient h l'endomorphisme canoniquement associé à $\begin{pmatrix} \sqrt{a^2+b^2} & 0 \\ 0 & \sqrt{a^2+b^2} \end{pmatrix}$ et ω l'endomorphisme canoniquement associé à $\begin{pmatrix} \frac{a}{\sqrt{a^2+b^2}} & \frac{-b}{\sqrt{a^2+b^2}} \\ \frac{b}{\sqrt{a^2+b^2}} & \frac{a}{\sqrt{a^2+b^2}} \end{pmatrix}$.

b est une homothétie de \mathbb{R}^2 et ω est une rotation de \mathbb{R}^2 donc u est une similitude directe de \mathbb{R}^2 . u est une rotation si, et seulement si, $\sqrt{a^2+b^2}=1$ c'est à dire $a^2+b^2=1$.

3.e. Supposons que \tilde{f} est de classe C^2 . f vérifie la propriété (**H**), donc, pour tout (x,y), on a : $\frac{\partial \tilde{f}}{\partial y}(x,y) = i\frac{\partial \tilde{f}}{\partial x}(x,y)$ et alors

$$\frac{\partial^2 \widetilde{f}}{\partial x \partial y}(x, y) = i \frac{\partial^2 \widetilde{f}}{\partial x^2}(x, y) \text{ et } \frac{\partial^2 \widetilde{f}}{\partial y^2}(x, y) = i \frac{\partial^2 \widetilde{f}}{\partial y \partial x}(x, y).$$

Le théorème de Schwarz permet d'obtenir : $\frac{\partial^2 \widetilde{f}}{\partial x \partial y}(x,y) = \frac{\partial^2 \widetilde{f}}{\partial y \partial x}(x,y)$

et par suite : $i \frac{\partial^2 \widetilde{f}}{\partial x^2}(x, y) = \frac{1}{i} \frac{\partial^2 \widetilde{f}}{\partial y^2}(x, y)$ puis : $\Delta \widetilde{f}(x, y) = 0$.

III Intégrales curvilignes et applications

II.A. Intégrales curvilignes

- **Exemples:** Soient $\alpha \in \mathbb{R}$ et r > 0; on considère $\gamma_{r,\alpha} : [0,1] \longrightarrow \mathbb{C}$, $t \longmapsto re^{i\alpha t}$.
 - **1.***a.* $\gamma_{r,\alpha}$ est clairement de classe C¹, avec

$$\gamma'_{r,\alpha}(t) = i \, r \, \alpha e^{i \alpha t}$$

De plus et comme $r \neq 0$, l'image de $\gamma_{r,\alpha}$ est contenu dans $\mathbb{C} \setminus \{0\}$. Ainsi, $\gamma_{r,\alpha}$ est un chemin contenu dans $\mathbb{C} \setminus \{0\}$. D'autre part nous avons par définition :

$$\int_{\gamma_{x,z}} \frac{\mathrm{d}z}{z} = \int_0^1 \frac{i \, r \, \alpha e^{i \alpha t}}{r \, e^{i \alpha t}} \, \mathrm{d}t = i \, \alpha$$

1.b. i) Nous avons

$$I(r) = \int_{\gamma_{r,\pi}} \frac{e^{iz} - 1}{z} dz$$
$$= \int_{0}^{1} i \pi (e^{ire^{i\pi t}} - 1) dt$$

$$= -i\pi + i \int_0^1 e^{ire^{i\pi t}} \pi \, \mathrm{d}t$$

En effectuant le changement de variables $u = \pi t$, nous déduisons :

$$I(r) = -i\pi + i \int_0^{\pi} e^{ir(\cos u + i\sin u)} du$$

Ce qui entraîne le résultat.

ii) Par le théorème de majoration, nous obtenons :

$$\left| \int_0^{\pi} e^{-r\sin u + ir\cos u} \, du \right| \leq \int_0^{\pi} \left| e^{-r\sin u + ir\cos u} \right| du$$
$$= \int_0^{\pi} e^{-r\sin u} \, du$$

Or et par la relation de Chasles nous avons :

$$\int_0^{\pi} e^{-r \sin u} du = \int_0^{\pi/2} e^{-r \sin u} du + \int_{\pi/2}^{\pi} e^{-r \sin u} du$$

et en effectuant le changement de variables $v = \pi - u$, nous remarquons que $\int_{0}^{\pi/2} e^{-r\sin u} du = \int_{0}^{\pi} e^{-r\sin u} du$. On déduit ainsi l'inégalité :

$$\left| \int_{-\pi}^{\pi} e^{-r\sin u + ir\cos u} \, du \right| \leqslant 2 \int_{-\pi}^{\pi/2} e^{-r\sin u} \, du$$

iii) Sachant que la fonction sin est concave sur l'intervalle $[0, \pi/2]$ et que la corde joignant les points de son graphe d'abscisses 0 et $\pi/2$ respectivement a pour équation $y = \frac{2}{\pi}x$, on déduit que pour tout $u \in [0, \pi/2]$: $\frac{2}{\pi}x \le \sin u$. Ce qui entraı̂ne par croissance des intégrales que :

$$\int_{0}^{\pi/2} e^{-r\sin u} du \leq \int_{0}^{\pi/2} e^{-r\frac{2}{\pi}u} du = \frac{\pi}{2r} [1 - e^{-r}]$$

qui tend vers 0 quand r tend vers $+\infty$. D'où, $I(r) \underset{r \to +\infty}{\longrightarrow} -i\pi$.

2 2.a. Comme γ est continue sur [a,b] à valeurs dans Ω et que F est continue sur Ω , alors et par composition $F \circ \gamma$ est continue. De plus, considérons une subdivision $\sigma = (a_0, a_1, \ldots, a_N)$ associée à γ . Par composition d'applications de classe C^1 , nous déduisons que $F \circ \gamma$ est de classe C^1 sur les intervalles $[a_{i-1}, a_i]$ pour tout $1 \le i \le N$. Ce qui montre que $F \circ \gamma$ est C^1 par morceaux sur [a,b]. D'autre part, on pose $\gamma(t) = x(t) + iy(t)$ pour tout $t \in [a,b]$ et on identifie $\gamma(t)$ au couple (x(t),y(t)) et $\gamma'(t)$ au couple (x'(t),y'(t)) quand cela a un sens, on obtient alors pour tout $t \in [a,b] \setminus \{a_0,a_1,\ldots,a_N\}$:

$$(F \circ \gamma)'(t) = (\widetilde{F} \circ \gamma)'(t)$$
$$= d\widetilde{F}(\gamma(t)).\gamma'(t)$$

$$= \frac{\partial \tilde{F}}{\partial x} (\gamma(t)) x'(t) + \frac{\partial \tilde{F}}{\partial y} (\gamma(t)) y'(t)$$

et comme : $\frac{\partial \widetilde{\mathbf{F}}}{\partial y} = i \frac{\partial \widetilde{\mathbf{F}}}{\partial x} = \widetilde{\mathbf{f}}$, nous déduisons que :

$$(\mathbf{F} \circ \gamma)'(t) = \widetilde{f}(\gamma(t)).\gamma'(t) = f(\gamma(t)).\gamma'(t)$$

Ainsi:

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

$$= \sum_{i=1}^{i=N} \int_{a_{i-1}}^{a_{i}} f(\gamma(t)) \gamma'(t) dt$$

$$= \sum_{i=1}^{i=N} \int_{a_{i-1}}^{a_{i}} \widetilde{f}(\gamma(t)) \gamma'(t) dt$$

$$= \sum_{i=1}^{i=N} \int_{a_{i-1}}^{a_{i}} (F \circ \gamma)'(t) dt$$

En utilisant le théorème fondamental d'intégration, nous déduisons que :

$$\int_{\gamma} f(z) dz = \sum_{i=1}^{i=N} [F(\gamma(a_i)) - F(\gamma(a_{i-1}))] = F(\gamma(b)) - F(\gamma(a)).$$

- **2.b.** Lorsque γ est un lacet alors $\gamma(b) = \gamma(a)$ et par suite : $\int_{\gamma} f(z) dz = 0$
- Soient $\gamma_1 : [a, b] \longrightarrow \mathbb{C}$, a < b, et $\gamma_2 : [c, d] \longrightarrow \mathbb{C}$, c < d, deux chemins tels que $\gamma_1(b) = \gamma_2(c)$; on leur associe l'application $\gamma : [a, b + d c] \longrightarrow \mathbb{C}$, notée $\gamma = \gamma_1 \vee \gamma_2$, définie par

$$\gamma(t) = \begin{cases} \gamma_1(t) & \text{si } a \leq t \leq b, \\ \gamma_2(t-b+c) & \text{si } b \leq t \leq b+d-c. \end{cases}$$

3.a. La restriction de γ à [a,b] coïncide avec γ_1 , ce qui entraine que : γ est continue en tout point de [a,b[et que $\lim_{t\to b^-} \gamma(t) = \gamma_1(b)$. La restriction de γ à [b,b+d-c] est la composée de l'application $t\mapsto t-b+c$ continue de [b,b+d-c] à valeurs dans [c,d] avec $gamma_2$ qui est continue sur [c,d]. On déduit alors que γ est continue sur]b,b+d-c] et que $\lim_{t\to b^-} \gamma(t) = \gamma_1(b)$ et comme $\gamma_1(b) = \gamma_2(c)$ nous déduisons que γ est continue sur [a,b+d-c]. De plus, en considèrant une subdivision $\sigma_1 = (a_0,a_1,\ldots,a_N)$ de [a,b] associée au chemin γ_1 et une subdivision $\sigma_2 = (c_0,c_1,\ldots,c_N')$ de [c,d] associée au chemin γ_2 , pour tout $0 \le i \le N'$, posons : $a_{N+i} = c_i + b - c$, de sorte que $\sigma = (a_0,a_1,\ldots,a_{N+N'})$ soit une subdivision du segment [a,b+d-c], telle qu'on ait :

- pour chaque $0 \le i \le N$, la restriction de γ à $[a_{i-1}, a_i]$ coïncide avec la restriction de γ_1 à cet intervalle et donc elle est de classe C^1 .
- pour N+1 $\leq i \leq$ N+N', la restriction de γ à $[a_{i-1}, a_i]$ coïncide avec la composée de l'application $t \mapsto t - b + c$ et de la restriction de γ_2 à l'intervalle $[c_{i-1-N}, c_{i-N}]$ et qui sont de classe C¹ alors et par composition la restriction de γ à $[a_{i-1}, a_i]$ est de classe C^1 sur $[a_{i-1}, a_i]$.

On conclut ainsi que γ est bien un chemin.

De la définition, et en utilisant la relation de Chasles pour les intégrales nous obtenons:

$$\int_{\gamma} f(z) dz = \int_{a}^{b+d-c} f(\gamma(t)) \gamma'(t) dt$$

$$= \int_{a}^{b} f(\gamma_{1}(t)) \gamma'_{1}(t) dt + \int_{b}^{b+d-c} f(\gamma_{2}(t-b+c)) \gamma'_{2}(t-b+c) dt$$

Or, $\int_{-\infty}^{b} f(\gamma_1(t))\gamma_1'(t) dt = \int_{-\infty}^{\infty} f(z) dz$ et en effectuant le changement de variables

$$\int_{b}^{b+d-c} f(\gamma_2(t-b+c))\gamma_2'(t-b+c) dt = \int_{c}^{d} f(\gamma_2(u))\gamma_2'(u) du = \int_{\gamma_2} f(z) dz$$
Ainsi:

$$\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz$$

II.B. Étude de la somme d'une série entière et application

1 1.a. Soit $y_0 \in]-R, R[$, posons $I =]-\sqrt{R^2 - y_0^2}, \sqrt{R^2 - y_0^2}[$ $(= \mathbb{R} \text{ si } R = +\infty) \text{ et}$ pour tout $x \in I$, $g(x) = f(x + i v_n)$.

Pour tout $x \in I$, nous avons : $|x + iy_0| = \sqrt{x^2 + y_0^2} < \sqrt{R^2 - y_0^2 + y_0^2} = R$, donc g est bien définie sur I et de plus $g(x) = \sum_{n=0}^{\infty} a_n (x + iy_0)^n$.

Posons pour $n \in \mathbb{N}$ et $x \in I$, : $g_n(x) = a_n(x + iy_0)^n$. Nous avons :

- ∀n∈N, g_n est de classe C¹ sur I.
 La série ∑g_n converge simplement sur I, de somme g.
- $\forall n \in \mathbb{N}^*$, $\forall x \in I$, $g'_n(x) = na_n(x + iy_0)^{n-1}$ et $g'_0(x) = 0$.

Soit J un compact inclus dans I, l'application $\phi: x \longmapsto x + iy_0$ est continue de \mathbb{R} dans \mathbb{C} , donc $\phi(J)$ est un compact de \mathbb{C} tel que $\phi(J)\subset D(0,R)$.

La série entière $\sum na_nz^{n-1}$ est de rayon de convergence R (c'est la série dérivée

de $\sum a_n z^n$) donc, elle converge uniformément sur tout compact inclus dans $D(0, \overline{R})$, en particulier sur $\phi(J)$.

Et par suite la série entière $\sum na_n(x+iy_0)^{n-1}$ converge uniformément sur J. En conclusion : g est de classe C^1 sur I et pour tout $x \in I$, $g'(x) = \sum_{n=1}^{+\infty} na_n(x+iy_0)^{n-1}$.

- **1.b.** Soit $\mathcal{U} = \psi^{-1}(D(0,R))$, pour tout $(x,y) \in \mathcal{U}$, $\widetilde{f}(x,y) = f(x+iy) = \sum_{n=0}^{+\infty} a_n (x+iy)^n$. Soit $y \in]-R$, R[, posons $I_y =]-\sqrt{R^2-y^2}$, $\sqrt{R^2-y^2}[$ $(=\mathbb{R} \text{ si } R = +\infty)$ D'après la question (a), l'application $g_y : x \longmapsto f(x+iy)$ est dérivable sur I_y et pour tout $x \in I_y$, $g_y'(x) = \sum_{n=1}^{+\infty} na_n(x+iy)^{n-1}$. Ainsi, \widetilde{f} admet une dérivée partielle par rapport à sa première variable et pour tout $(x,y) \in \mathcal{U}$, $\frac{\partial \widetilde{f}}{\partial x}(x,y) = \sum_{n=1}^{+\infty} na_n(x+iy)^{n-1}$.
 - Soit $x \in]-R,R[$, posons $I_x =]-\sqrt{R^2-x^2}, \sqrt{R^2-x^2}[$ $(=\mathbb{R} \text{ si } R = +\infty) \text{ on montre de la même façon que l'application } h_x : y \longmapsto f(x+iy) \text{ est dérivable sur } I_x \text{ et pour tout } y \in I_x \text{ , } h'_x(y) = \sum_{n=1}^{+\infty} ina_n(x+iy)^{n-1}.$

Donc \widetilde{f} admet une dérivée partielle par rapport à sa deuxième variable et pour tout $(x,y) \in \mathcal{U}$, $\frac{\partial \widetilde{f}}{\partial y}(x,y) = \sum_{n=1}^{+\infty} i n a_n (x+iy)^{n-1}$. On en déduit que pour tout $(x,y) \in \mathcal{U}$,

$$\frac{\partial \widetilde{f}}{\partial y}(x,y) = i \frac{\partial \widetilde{f}}{\partial x}(x,y)$$

- **1.c.** Nous avons pour tout $(x,y) \in \mathcal{U}$, $\frac{\partial f}{\partial x}(x,y) = \sum_{n=1}^{+\infty} na_n(x+iy)^{n-1}$. Pour tout $n \in \mathbb{N}^*$, et pour tout $(x,y) \in \mathcal{U}$, posons $g_n(x,y) = na_n(x+iy)^{n-1}$. Nous avons :
 - $\forall n \in \mathbb{N}^*$, g_n est continue sur \mathcal{U} .
 - ullet Soit K un compact inclus dans $\mathcal U$, comme ψ est continue sur $\mathbb R^2$ alors $\psi(K)$ est un compact inclus dans D(0,R).

Ainsi la série entière $\sum na_nz^{n-1}$ converge uniformément sur $\psi(K)$, donc la série $\sum g_n(x,y)$ converge uniformément sur K. La fonction, $\frac{\partial \widetilde{f}}{\partial z}$ est donc continue

D'après (b) $\forall (x,y) \in \mathcal{U}, \ \frac{\partial \widetilde{f}}{\partial y}(x,y) = i \frac{\partial \widetilde{f}}{\partial x}(x,y), \text{ donc } \frac{\partial \widetilde{f}}{\partial y} \text{ est continue sur } \mathcal{U}.$

Ainsi \widetilde{f} est de classe C^1 sur \mathcal{U} et pour tout $(x,y) \in \mathcal{U}$, $\frac{\partial \widetilde{f}}{\partial y}(x,y) = i \frac{\partial \widetilde{f}}{\partial x}(x,y)$. Donc f vérifie la propriété **(H)**.

1.d. Il suffit de considérer la fonction $F: D(0,R) \longrightarrow \mathbb{C}$ définie comme étant la somme de la série entière $\sum_{n\geqslant 0} \frac{a_{n+1}}{n+1} z^{n+1}$ qui admet le même rayon de convergence que

 $\sum_{n\geq 0} a_n z^n$: R ce qui montre, en remplaçant dans les questions II.B.1.a et II.B.1.a,

f par F, que F vérifie la propriété (**H**) et que : $\frac{\partial \widetilde{F}}{\partial x} = \widetilde{f}$.

2 Application

2.a. Pour tout $n \in \mathbb{N}$, posons : $a_n = \frac{i^{n+1}}{(n+1)!}$. On a alors : $|a_n| = \frac{1}{(n+1)!}$, ce qui montre que le rayon de convergence de cette série est $+\infty$ et pour tout $z \in \mathbb{C}$, non nul nous avons :

$$g(z) = \sum_{n=0}^{+\infty} \frac{i^{n+1}}{(n+1)!} z^n = \frac{1}{z} \sum_{n=0}^{+\infty} \frac{(iz)^{n+1}}{(n+1)!} = \frac{e^{iz} - 1}{z}$$

2.b. On remarque que γ_r^1 et γ_r^2 définissent bien des chemins (puisqu'elles sont de classe C^1) et de plus on a : $\gamma_r^1(1) = r = \gamma_r^2(0)$, ce qui montre, d'après la question II.A.3.a, que $\gamma_r := \gamma_r^1 \vee \gamma_r^2$ défini bien un chemin.

De plus, $\gamma(0) = \gamma_r^1(0) = -r = \gamma_r^2(1) = \gamma(1)$ ce qui montre que γ est un lacet. Alors et d'après la question II.A.2.b, on déduit que : $\int_{\gamma_r} g(z) dz = 0$.

2.c. De la question II.A.3.b, nous obtenons

$$\int_{\gamma_r^1} g(z) \, dz = \int_{\gamma_r^1} g(z) dz + \int_{\gamma_r^2} \frac{e^{iz} - 1}{z} dz$$

et comme $\int_{\gamma_r} g(z) dz = 0$ alors,

$$\int_{\gamma_r^1} g(z) dz = -\int_{\gamma_r^2} \frac{e^{iz} - 1}{z} dz$$

2.d. On note h la fonction $u \mapsto \frac{\sin u}{u}$ prolongée par continuité en 0 ; montrer que Par définition de l'intégrale le long d'un chemin nous obtenons :

$$\int_{\gamma_{+}^{1}} g(z) dz = \int_{0}^{1} \frac{e^{ir(2t-1)} - 1}{(2t-1)} 2 dt$$

En effectuant le changement de variables u = (2t - 1)r, nous obtenons :

$$\int_{\gamma_{-}^{1}} g(z) dz = \int_{-r}^{r} \frac{e^{iu} - 1}{u} du = \int_{-r}^{r} 2i e^{iu/2} \frac{\sin(u/2)}{u} du$$

En séparant la partie réelle et imaginaire, nous obtenons :

$$\int_{\gamma_{-}^{1}} g(z) dz = i \int_{-r}^{r} \frac{\sin(u)}{u} du - 2 \int_{-r}^{r} \frac{\sin^{2}(u/2)}{u} du$$

et comme les fonctions à intégrer sont respectivement paire et impaire, il vient que :

$$\int_{\gamma_r^1} g(z) dz = 2i \int_0^r h(u) du$$

D'autre part, et d'après la question II.A.1, on reconnaît que :

$$\int_{\gamma_r^2} \frac{e^{iz} - 1}{z} dz = \int_{\gamma_{r,\pi}} \frac{e^{iz} - 1}{z} dz = I(r)$$

On déduit, en comparant avec l'égalité de la question précédente, que :

$$\int_0^r h(u) \, \mathrm{d}u = \frac{i}{2} \mathrm{I}(r)$$

et comme $I(r) \xrightarrow[r \to +\infty]{} -i\pi$ alors

$$\int_0^r h(u) du \xrightarrow[r \to +\infty]{\pi} \frac{\pi}{2}$$

3^{ème} Partie: Analyticité des applications vérifiant la propriété (H).

Soient Ω un ouvert non vide de \mathbb{C} , $z_0 = x_0 + iy_0 \in \Omega$ et $f: \Omega \longmapsto \mathbb{C}$ vérifiant la propriété (H).

1 Ω est un ouvert de \mathbb{C} et $z_0 \in \Omega$, donc il existe $\rho_0 > 0$ tel que $D(z_0, \rho_0) \subset \Omega$, alors l'ensemble $\{\rho > 0; D(z_0, \rho) \subset \Omega\}$ n'est pas vide.

Si cet ensemble est majoré, on note R sa borne supérieure, sinon on pose $R = +\infty$.

On note φ l'application de $]0, \mathbb{R}[\times \mathbb{R}]$ dans \mathbb{C} définie par

$$\varphi(r,\theta) = f(z_0 + re^{i\theta}) = \widetilde{f}(x_0 + r\cos\theta, y_0 + r\sin\theta)$$

On a l'application $(r,\theta) \longmapsto (x_0 + r\cos\theta, y_0 + r\sin\theta)$ est de classe C^1 sur $]0,R[\times\mathbb{R}]$ et f est de classe C^1 sur $\psi^{-1}(\Omega)$ donc φ est de classe C^1 sur $]0,R[\times\mathbb{R}]$. Pour tout $(r,\theta) \in]0,R[\times\mathbb{R}]$

$$\frac{\partial \varphi}{\partial r}(r,\theta) = \frac{\partial \widetilde{f}}{\partial x}(x_0 + r\cos\theta, y_0 + r\sin\theta) \times \cos\theta + \frac{\partial \widetilde{f}}{\partial y}(x_0 + r\cos\theta, y_0 + r\sin\theta) \times \sin\theta$$
$$= e^{i\theta} \frac{\partial \widetilde{f}}{\partial x}(x_0 + r\cos\theta, y_0 + r\sin\theta)$$

et

$$\frac{\partial \varphi}{\partial \theta}(r,\theta) = \frac{\partial \widetilde{f}}{\partial x}(x_0 + r\cos\theta, y_0 + r\sin\theta) \times (-r\sin\theta) + \frac{\partial \widetilde{f}}{\partial y}(x_0 + r\cos\theta, y_0 + r\sin\theta) \times (r\cos\theta, y_0 + r\sin\theta) \times (r\cos\theta, y_0 + r\sin\theta)$$

$$= ire^{i\theta} \frac{\partial \widetilde{f}}{\partial x}(x_0 + r\cos\theta, y_0 + r\sin\theta)$$

Ainsi

$$\forall (r,\theta) \in]0,R[\times \mathbb{R}, \frac{\partial \varphi}{\partial \theta}(r,\theta) = ir \frac{\partial \varphi}{\partial r}(r,\theta)$$

3 Pour tout $r\in]0,R[$, on note φ_r l'application définie sur $\mathbb R$ par :

$$\varphi_r(\theta) = \varphi(r,\theta) = f(z_0 + re^{i\theta})$$

3.a. Soit $r \in]0, \mathbb{R}[.\ \varphi \text{ est de classe } \mathbf{C}^1 \text{ sur }]0, \mathbb{R}[\times \mathbb{R}, \text{ donc } \varphi_r \text{ est de classe } \mathbf{C}^1 \text{ sur } \mathbb{R}.$ Pour tout $\theta \in \mathbb{R}, \ \varphi_r(\theta + 2\pi) = f(z_0 + re^{i(\theta + 2\pi)}) = f(z_0 + re^{i\theta}) = \varphi_r(\theta), \text{ donc } \varphi_r \text{ est } 2\pi \text{ périodique sur } \mathbb{R}.$ D'autre part, pour tout $\theta \in \mathbb{R}$:

$$\varphi'_r(\theta) = \frac{\partial \varphi}{\partial \theta}(r,\theta) = i r e^{i\theta} \frac{\partial f}{\partial x}(x_0 + r \cos \theta, y_0 + r \sin \theta)$$

On note $(c_n(r))_{n\in\mathbb{Z}}$ la suite des coefficients de Fourier complexes de φ_r .

3.b. φ_r est 2π périodique, de classe C^1 sur $\mathbb R$ donc la suite $(c_n(r))_{n\in\mathbb Z}$ est sommable, alors la série de Fourier de la fonction φ_r converge normalement sur $\mathbb R$ et d'après le théorème de Dirichlet, la somme de cette série est φ_r .

$$\forall \theta \in \mathbb{R}, \, \varphi_r(\theta) = c_0(r) + \sum_{n=1}^{+\infty} \left(c_n(r) e^{in\theta} + c_{-n}(r) e^{-in\theta} \right)$$

On pose $h_n(r) = \frac{c_n(r)}{r^n}$, $r \in]0, \mathbb{R}[$, $n \in \mathbb{Z}$.

- **4.a.** $\forall r \in]0, \mathbb{R}[, \forall n \in \mathbb{Z}, c_n(r) = \frac{1}{2\pi} \int_0^{2\pi} \varphi_r(\theta) e^{-in\theta} d\theta$
- **4.b.** Soit $n \in \mathbb{Z}$, posons $g(r,\theta) = \varphi_r(\theta)e^{-in\theta} = \varphi(r,\theta)e^{-in\theta}$ pour tout $(r,\theta) \in]0, \mathbb{R}[\times[0,2\pi]. \varphi$ est de classe \mathbb{C}^1 sur $]0, \mathbb{R}[\times\mathbb{R}$ donc g est de classe \mathbb{C}^1 sur $]0, \mathbb{R}[\times[0,2\pi].$

D'après la formule de Leibniz (Dérivation sous le signe intégrale), la fonction $r \mapsto c_n(r)$ est de classe C^1 sur]0,R[et

$$\forall r \in]0, \mathbb{R}[c'_n(r) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial g}{\partial r}(r, \theta) d\theta = \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial \varphi}{\partial r}(r, \theta) e^{-in\theta} d\theta$$

Pour tout $(r,\theta) \in]0, \mathbb{R}[\times \mathbb{R} \frac{\partial \varphi}{\partial \theta}(r,\theta) = i \ r \frac{\partial \varphi}{\partial r}(r,\theta), \text{ alors } c'_n(r) = \frac{1}{2\pi} \frac{1}{ir} \int_0^{2\pi} \frac{\partial \varphi}{\partial \theta}(r,\theta) e^{-in\theta} d\theta.$

Une intégration par parties donne

$$c_n'(r) = \left[\varphi_r(\theta)e^{-in\theta}\right]_0^{2\pi} + \frac{1}{2\pi}\frac{1}{ir} \times in \int_0^{2\pi} \varphi_r(\theta)e^{-in\theta} d\theta = \frac{n}{r}c_n(r)$$

- **4.c.** Puisque la fonction $r \mapsto c_n(r)$ est de classe C^1 sur]0,R[, alors h_n est de classe C^1 sur]0,R[et $\forall r \in]0,R[$, $h'_n(r)=\frac{rc'_n(r)-nc_n(r)}{r^{n+1}}=0$. Donc h_n est constante sur]0,R[.
- **4.d.** Soit $n \in \mathbb{N}^*$, et $\rho \in]0,R[$. L'application $h(r,\theta) = \int_0^\infty (x_0 + r\cos\theta, y_0 + r\sin\theta)e^{in\theta}$ est continue sur $[-\rho,\rho] \times [0,2\pi]$, donc, par le théorème d'intégration sous le signe intégral, l'application

 $r \longmapsto \frac{1}{2\pi} \int_0^{2\pi} \tilde{f}(x_0 + r\cos\theta, y_0 + r\sin\theta)e^{in\theta} d\theta$ est continue sur le compact $[-\rho, \rho]$, par suite elle est bornée sur $[-\rho, \rho]$.

 $[-\rho,\rho], \text{ par suite elle est bornée sur } [-\rho,\rho].$ Par suite l'application $r\longmapsto c_{-n}(r)=\frac{1}{2\pi}\int_0^{2\pi} \widetilde{f}(x_0+r\cos\theta,y_0+r\sin\theta)e^{in\theta}\,\mathrm{d}\theta$ est bornée sur $]0,\rho]$ et alors $\lim_{r\longmapsto 0^+}h_{-n}(r)=\lim_{r\longmapsto 0^+}c_{-n}(r)\times r^n=0.$ Comme h_{-n} est constante sur $]0,\mathrm{R}[$, alors $h_{-n}=0$ sur $]0,\mathrm{R}[$. Ainsi, pour tout $r\in]0,\mathrm{R}[$, $c_{-n}(r)=\frac{h_{-n}(r)}{r^n}=0.$

Soit $n \in \mathbb{N}$, il existe $a_n \in \mathbb{C}$ tel que $a_n = b_n(r)$. Soit $r \in]0, \mathbb{R}[$, on a pour tout $n \in \mathbb{N}$, $|a_n r^n| = |c_n(r)|$. D'après (3.b) Partie 3), la suite $(c_n(r))_{n \in \mathbb{Z}}$ est sommable, donc la série $\sum_{n>0} a_n r^n$ est absolument convergente, et par suite le rayon de convergence de la

série entière $\sum_{n\geq 0} a_n z^n$ est supérieur ou égal à R.

Soit $z \in D(z_0, \mathbb{R})$ tel que $z \neq z_0$, alors il existe $(r, \theta) \in]0, \mathbb{R}[\times \mathbb{R}$ tel que $z = z_0 + re^{i\theta}$. Pour tout $n \in \mathbb{Z}^{-*}$, $c_n(r) = 0$ donc

$$f(z) = f(z_0 + re^{i\theta}) = \varphi_r(\theta) = \sum_{n=0}^{+\infty} c_n(r)e^{in\theta} = \sum_{n=0}^{+\infty} a_n(re^{i\theta})^n = \sum_{n=0}^{+\infty} a_n(z - z_0)^n.$$

Posons
$$\forall z \in D(z_0, R), g(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$$
 et $A = D(z_0, R) \setminus \{z_0\}.$

On a f et g sont continues sur $D(z_0, R)$ et pour tout $z \in A$, f(z) = g(z), donc $\forall z \in \overline{A}$ f(z) = g(z), en particulier, $\forall z \in D(z_0, R)$ $f(z) = \sum_{n=0}^{+\infty} a_n (z - z_0)^n$.

- Posons pour tout $z \in D(0,R)$, $h(z) = f(z+z_0) = \sum_{n=0}^{+\infty} a_n z^n$. Pour tout $x \in]-R,R[$, $h(x) = \sum_{n=0}^{+\infty} a_n x^n$. Donc h est développable en série entière en 0 et d'après l'unicité du développement en série entière, on déduit l'unicité de la suite $(a_n)_{n \in \mathbb{N}}$.
- On a φ_r est continue et 2π périodique sur $\mathbb R$ alors et d'après la formule de Parseval , $\|\varphi_r\|_2^2 = \sum_{n=0}^{+\infty} |c_n(r)|^2 \text{ c'est à dire }:$ $\frac{1}{2\pi} \int_0^{2\pi} \left| f(z_0 + re^{i\theta}) \right|^2 d\theta = \sum_{n=0}^{+\infty} |a_n|^2 r^{2n} \quad \text{(Formule de Gutzmer)}$
- Application au théorème de Liouville Supposons que f est bornée, alors il existe M > 0 tel que : $\forall z \in \mathbb{C}, |f(z)| \leq M$. Soit $n \in \mathbb{N}^*$, on a d'après la formule de Gutzmer, pour tout $r \in]0, +\infty[$,

$$\left| a_n r^{2n} \right| \le \sum_{k=0}^{+\infty} |a_k|^2 r^{2k} = \frac{1}{2\pi} \int_0^{2\pi} \left| f(re^{i\theta}) \right|^2 d\theta \le M^2 \text{ donc } a_n = 0,$$

car sinon et en faisant tendre r vers $+\infty$, on obtient une absurdité. Alors pour tout $z \in \mathbb{C}$, $f(z) = a_0$; et donc f est constante.

FIN DU CORRIGÉ

Rien ne saurait remplacer un livre en papier

Des livres de prépas très joliment imprimés à des prix très accessibles

La qualité est notre point fort.

Vos commentaires sont importants pour nous Pour toute information, n'hésitez pas à nous contacter

> mailto:al9ahira@gmail.com http://al9ahira.com/

> > 7, rue Égypte. Tanger