《线性代数》复习题(初稿) 第一章 矩阵

一、填空题

1、如果
$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}$$
 $X = \begin{pmatrix} 4 & -6 \\ 2 & 1 \end{pmatrix}$,则 $X =$ _____.

2、矩阵(1,2,3)
$$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix} = _____.$$

3、矩阵
$$\binom{2}{1}$$
 $(-1,2) = ____.$

4、设
$$\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} X = \begin{pmatrix} 1 & 2 \\ 1 & 4 \end{pmatrix}$$
,则 $X =$ ______.

5、已知
$$\begin{vmatrix} 1 & 2 & 3 \\ 1 & -1 & x \\ 1 & 1 & -1 \end{vmatrix}$$
 是关于 x 的一次多项式,该式中 x 的系数为______.

$$6、若方程组 \begin{bmatrix} \lambda & -1 & 0 \\ -1 & 1 & -1 \\ 0 & -2 & \lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
有非零解,则 $\lambda = 0$ 或 $\lambda = \underline{\qquad}$.

7、设行列式
$$|A| = \begin{vmatrix} 3 & 0 & 4 & 0 \\ 2 & 2 & 2 & 2 \\ 0 & -7 & 0 & 0 \\ 5 & 3 & -2 & 2 \end{vmatrix}$$
, 则第四行各元素的代数余子式之和为______.

8、已知四阶行列式D中第三列元素依次为 -1,2,0,1,它们的代数余子式依次分别为 5,-3,-7,-4,则D= 。

9、 设
$$A = (a_{ij})_{3\times3}$$
, $|A| = 2$, A_{ij} 表示 $|A|$ 中元素 a_{ij} 的代数余子式 $(i, j = 1, 2, 3)$,则
$$(a_{11}A_{21} + a_{12}A_{22} + a_{13}A_{23})^2 + (a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23})^2 + (a_{31}A_{21} + a_{32}A_{22} + a_{33}A_{23})^2 = _$$

 $D = \begin{vmatrix} 2 & 7 & 6 & 8 \\ 4 & 4 & 4 & 4 \\ 2 & 4 & 7 & 9 \\ 8 & 1 & 8 & 8 \end{vmatrix}$, $A_{4j}(j=1,2,3,4)$ 为 D 中 第 4 行 元 素 的 代 数 余 子 式 , 则

$$\sum_{i=1}^{4} A_{4j} = \underline{\ }.$$

11、行列式
$$\begin{vmatrix} a & b & c \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = _____.$$

12、行列式
$$\begin{vmatrix} 0 & -a & b \\ a & 0 & -c \\ -b & c & 0 \end{vmatrix} =$$
______.

14、当
$$a =$$
 时,方程组
$$\begin{cases} (a+2)x_1 + 4x_2 + x_3 = 0 \\ -4x_1 + (a-3)x_2 + 4x_3 = 0 \end{cases}$$
有非零解.
$$-x_1 + 4x_2 + (a+4)x_3 = 0$$

15、设
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
,且 $\det(A) = ad - bc \neq 0$,则 $A^{-1} = \underline{\qquad}$

16、矩阵
$$\begin{pmatrix} 4 & 3 & 1 \\ 1 & -2 & 3 \\ 5 & 7 & 0 \end{pmatrix}$$
 $\begin{pmatrix} 7 \\ 2 \\ 1 \end{pmatrix} = \underline{\qquad}$

18、设
$$A = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & -1 & 1 \end{pmatrix}$, $\mathcal{M}(AB)^T = \underline{\hspace{1cm}}$.

19、设
$$A = \begin{pmatrix} 2 & 1 & 4 \\ 1 & -1 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 & 1 \\ 0 & -1 & 2 \\ 1 & -3 & 1 \end{pmatrix}$, 则 $AB =$ ______

20、
$$i \times A = \begin{pmatrix} 1 & -2 \\ 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 0 & 3 \end{pmatrix}, \quad C = (2, -1), \quad \text{Iff } (A - B)C^T = \underline{\hspace{1cm}}.$$

21、设 $A=(\alpha_1,\alpha_2,\alpha_3)$, $\alpha_1,\alpha_2,\alpha_3$ 为3维列向量, |A|=-4, 则行列式

$$|\alpha_3 + 3\alpha_1, \alpha_2, 4\alpha_1| = \underline{\hspace{1cm}}.$$

- 22、设 $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$,则A 的伴随矩阵 A^* 等于_______.
- 23、若n阶方阵A满足|A|=0, $A^* \neq 0$, 则R(A)=______.
- 24、设 A^* 是n阶方阵A的伴随矩阵, $\left|A\right|=d$,则 $\left\|A\right|A^*\right|=$ ______.
- 25、设A 是n 阶方阵, 若线性方程组AX = 0 有非零解, 则必有 $|A| = _____.$
- 26、设n阶方阵A满足 $A^2 + 3A + 4E = O$,则 $(A + E)^{-1} =$ ______.

- 29、 六阶行列式 |A| 中 a_{35} 的代数余子式的符号是_____.
- 30、 设 $\alpha = \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$,则矩阵 $A = \alpha \alpha^T =$ ______.
- 31、已知矩阵 A满足 $A^2 + 2A E = 0$,则 $A^{-1} =$ ______.
- 32、 设矩阵 $A = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 0 & 0 \\ 7 & 4 & 9 \end{pmatrix}$,则 $|A^{-1}| =$ ______.
- 33、 设 $\begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$ $A\begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$,则 $A = \underline{\qquad}$

34、设矩阵
$$A = \begin{pmatrix} 1 & -2 & 3 \\ 1 & 0 & 0 \\ 7 & 2 & 2 \end{pmatrix}$$
,则 $|A^{-1}| =$ ______。

- 35、 设三阶方阵 A的行列式为 |A|=2, A^* 为 A的伴随矩阵,则行列式 $|A^{-1}+A^*|$ ______.
- 36、设A是3阶矩阵,且|A|=5,则 $|-A^TA|=$ _____.
- 37、设A是n阶方阵,且行列式|A|=25,则行列式|-4A|=______
- 38、设A是n阶方阵,且行列式 $|A|=8, B=-\frac{1}{2}A$,则|B|=______.
- 39、设A、B为3阶矩阵且|A|=-1,|B|=2,则 $|2A^TB|=$ _____.
- 40、若 $\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2$ 都是4维列向量,且4阶行列式
- $\left|lpha_{_{1}},lpha_{_{2}},lpha_{_{3}},eta_{_{1}}
 ight|=m$, $\left|lpha_{_{1}},lpha_{_{2}},eta_{_{2}},lpha_{_{3}}
 ight|=n$,则 4 阶行列式
- $\left|\alpha_3,\alpha_2,\alpha_1,\beta_1+\beta_2\right|=$ ______.
- 41、设A是n阶方阵,且|A|=2,则 $|A|A^T|=$ ______.
- 42、设A是n阶可逆方阵, A^* 是A的伴随矩阵, 则 $A^* =$ ______.
- 43、设A, B 都是n 阶方阵,|A| = 2, |B| = -3, 则 $|2A^2B^{-1}| = ______$.
- 44、设A是5阶方阵,|A|=-1,则|-2A|=_____.
- 45、设A是n阶方阵,且|A|=3, A^* 是A的伴随矩阵,则 $|3A^*|=$ ______.
- 47、设 $A = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix}$,则 $A^{-1} =$ ______.

48、矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & -5 \\ 4 & 7 & 1 \end{pmatrix}$$
的秩为_____.

50、设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 1 \\ 3 & 4 & 3 \end{pmatrix}$$
,则 $R(A) =$ ______.

51、设
$$A$$
是 4×3 矩阵, $R(A) = 2$,又 $B = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 1 & 0 & 3 \end{pmatrix}$,则 $R(AB) = \underline{\qquad}$

52、 设矩阵
$$A = \begin{pmatrix} 1 & -1 & 2 \\ 3 & 2 & 1 \\ 1 & -2 & 0 \end{pmatrix}$$
, 则 $R(A) =$ _____.

54、矩阵
$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & -1 & 2 \\ 1 & 3 & -4 \end{pmatrix}$$
的秩为 ______.

55、设
$$A = \begin{pmatrix} 3 & 1 & 0 & 2 \\ 1 & -1 & 2 & -1 \\ 1 & 3 & -4 & 4 \end{pmatrix}$$
, 则 $R(A) =$ _____.

56、已知四阶行列式D中第三列元素依次为-1,2,0,1,它们的代数余子式依次分别为 5,-3,-7,-4 ,则D= .

57、行列式
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = ____.$$

58、设
$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} X = \begin{pmatrix} 4 & -6 \\ 2 & 1 \end{pmatrix}$$
,则 $X =$ ______

二、判断题

- 1、() 若 n 阶方阵 A 可逆,则其伴随矩阵 A^* 同样可逆.
- 2、() 设 A 为方阵,则 |A|=0 的必要条件是 A 中至少有一行元素全为零.
- 3、() n 阶方阵 A 满足 $A^2 A 2E = 0$,则 E A 可逆.
- 4、() 设 A, B 都是 n 阶方阵, Ξ A, B 都可逆, 则 AB 与 A + B 均可逆.
- 5、() 设 A.B.C 是同阶方阵,若 A 可逆且 AB = AC ,则 B = C 。
- 6、() 设 A, B, C 是同阶非零方阵,若 AB = AC,则 B = C。
- 7、() 设 A,B,C 都是 n 阶矩阵,且 AB = E,CA = E ,则 B = C .
- 8、() 若n阶方阵A满足 $A^2 = O$,则A = O.
- 9、() 方阵 A 满足 $A^2 = A$, 则 A = E 或 A = 0.
- 10、() 对任意 n 阶方阵 A,B,C,若 AB = AC,且 $A \neq 0$,则一定有 B = C.
- 11、() 设A, B 都是n 阶方阵, 且A 是对称矩阵, 则 B^TAB 也是对称矩阵.
- 12、() 设A, B, C都是n阶方阵, 若A与B等价, B与C等价, 则A与C等价.
- 13、() 设 4 阶方阵 A 的秩为 2,则其伴随矩阵 A*的秩为零.
- 14、() 设A是n阶方阵, k是常数,则|kA|=k|A|.
- 15、() 对于同阶方阵 A, B , 其行列式运算具有性质: |A+B| = |A| + |B| .
- 16、() 设 A 是 n 阶方阵, 且 $|A| = a \neq 0$, 则 $|A^*| = \frac{1}{|A|} = \frac{1}{a}$.

- 17、() 设A是4阶矩阵,则|2A|=8|A|.
- 18、()对于 n 阶非奇异矩阵 A,其伴随矩阵 A^* 的行列式成立计算式: $\left|A^*\right| = \left|A\right|^{n-1}$.
- 19、 () 对于同阶方阵 A, B , 其行列式运算具有性质: |A+B|=|A|+|B|.
- 20、() 设 $A \in n$ 阶方阵, $\Xi |A| = 0$, 则 A 中必有两行元素对应成比例.
- 22、() 设A,B,C为三个n阶矩阵,AB = AC, $|A| \neq 0$,则B = C.
- 24、() 设 A = B 都是 n 级方阵,则一定有 $(A + B)^2 = A^2 + 2AB + B^2$.
- 25、() 若 $A^2 = 0$, 则必有 A = 0.
- 26、()设 A 是 n 阶矩阵, A^* 是 A 的伴随矩阵,则当 A 为非奇异阵时, A^* 也非奇异,且 $\left|A^*\right|=\left|A\right|^{n-1}$.
- 27、() 设 A , B 都是 n 阶方阵, 若 R(A) = k, (1 < k < n), R(B) = n k , 则必有 R(A+B) = n.
- 28、() 若n 阶方阵A 的秩R(A) < n-1,则其伴随阵 $A^* = 0$
- 29、() 若矩阵 A 的秩为r,则 A 中必有某一个r-1阶子式不等于零.

三、综合题

1、解方程:
$$\begin{vmatrix} 1 & 1 & 2 & 3 \\ 1 & 2-x^2 & 2 & 3 \\ 2 & 3 & 1 & 5 \\ 2 & 3 & 1 & 9-x^2 \end{vmatrix} = 0.$$

$$2$$
、计算行列式 $D = \begin{vmatrix} a & b & a+b \\ b & a+b & a \\ a+b & a & b \end{vmatrix}$.

3、求行列式
$$|A| = \begin{vmatrix} 3 & 2 & 5 & 1 \\ 1 & 0 & 3 & 1 \\ -1 & -1 & -2 & 0 \\ 3 & 2 & 0 & 4 \end{vmatrix}$$
的值.

4、设
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$, 且满足 $XA = B$, 求 X .

5、计算 4 阶行列式
$$D = \begin{vmatrix} a+1 & 1 & 1 & 1 \\ -1 & a-1 & -1 & -1 \\ 1 & 1 & a+1 & 1 \\ -1 & -1 & -1 & a-1 \end{vmatrix}$$
.

6、计算 4 阶行列式
$$D = \begin{vmatrix} a & 1 & 0 & 1 \\ -1 & b & 1 & 0 \\ 0 & -1 & c & 1 \\ 0 & 0 & -1 & d \end{vmatrix}$$
.

7、设
$$A = \begin{pmatrix} -1 & 0 & 0 \\ 1 & -1 & 0 \\ 1 & 1 & -1 \end{pmatrix}$$
,求 $(A+2E)^{-1}(A-2E)$.

8、已知
$$A = \begin{pmatrix} 1 & 1 & 1 & -1 & 2 \\ 2 & 2 & 2 & 2 & 0 \\ -1 & -1 & -1 & 2 & 2 \\ 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$
,用初等变换法将 A 化为行阶梯形矩阵、行最简形矩

阵,并写出 A 的等价标准形.

9、计算行列式
$$|A| = \begin{vmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 1 \\ 1 & 2 & 4 & -1 \end{vmatrix}$$
.

11、已知
$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 1 & 1 \\ 2 & 3 & 4 & 1 \\ 1 & 2 & 4 & -1 \end{bmatrix}$$
,求逆矩阵 A^{-1} .

12、设
$$3A + \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} -1 & 2 & -3 \\ 3 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 8 & -3 & 2 \end{bmatrix}$$
 , 求 $|A|$.

13、设
$$A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ -1 & -2 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 & 3 \\ 1 & 4 & 2 \\ 8 & -3 & 2 \end{bmatrix}$$
, $|\vec{x}||A|$.

14、求方阵
$$A = \begin{pmatrix} 0 & -2 & 1 \\ 3 & 0 & -2 \\ -2 & 3 & 0 \end{pmatrix}$$
 的逆矩阵 A^{-1} .

15、求方阵
$$A = \begin{pmatrix} -1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 2 & 3 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix}$$
 的逆矩阵 A^{-1} .

16、已知
$$A = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$
, 求矩阵 $(A-2E)^{-1}$.

14、设
$$A = \begin{pmatrix} 2 & 2 & -1 \\ 3 & 5 & -2 \\ 5 & -4 & 2 \end{pmatrix}$$
, 求 $(A - E)^{-1}$.

17、计算行列式
$$\begin{vmatrix} \lambda - 4 & -5 & 2 \\ 2 & \lambda + 2 & -1 \\ 1 & 1 & \lambda - 1 \end{vmatrix}$$
.

18、计算 4 阶行列式
$$D = \begin{vmatrix} 0 & a & 0 & b \\ a & 0 & b & 0 \\ 0 & b & 0 & a \\ b & 0 & a & 0 \end{vmatrix}$$
.

$$19、计算 4 阶行列式 D = \begin{vmatrix} 4 & 1 & 2 & 4 \\ 1 & 2 & 0 & 2 \\ 10 & 5 & 2 & 0 \\ 0 & 1 & 1 & 7 \end{vmatrix}.$$

$$20$$
、设 $A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 0 & 1 \\ 5 & 2 & 2 \end{pmatrix}$,用初等行变换将 A 化为行最简形矩阵.

21、设
$$A$$
为3阶方阵, $|A|=\frac{1}{2}$,求 $|(2A)^{-1}-5A^*|$.

22、设
$$A = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 3 & 0 & 0 \\ 0 & 0 & -3 & 1 \\ 0 & 0 & 2 & 4 \end{pmatrix}$$
, 求 A^{-1} .

23、 设
$$A = \begin{pmatrix} 0 & 1 & 2 \\ 2 & 3 & 4 \\ 4 & 7 & 9 \end{pmatrix}$$
, 求 A^{-1} .

24、设四阶矩阵
$$A = \begin{pmatrix} 5 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$
, 试求 A 的逆矩阵 A^{-1} .

25、已知矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 & -1 \\ 2 & 3 & \lambda & 1 \\ -1 & 1 & 2 & -8 \end{pmatrix}$$
的秩 $R(A) = 2$,求 λ 的值.

26、求两个矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 1 & 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 & 5 & 12 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 的秩.

27、设
$$|A|$$
 = $\begin{vmatrix} 1 & 2 & 1 & 3 \\ 0 & 1 & 1 & 4 \\ 2 & 3 & 4 & -1 \\ -2 & 1 & 3 & 0 \end{vmatrix}$, 求 $A_{31} + A_{32} + A_{33} + A_{34}$

28、设三阶矩阵
$$A, B$$
 满足方程 $A^2 + ABA = E$,其中 $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 2 & 2 \\ 2 & 1 & 1 \end{pmatrix}$,试求矩阵 B .

29、已知
$$AX = B$$
 且 $A = \begin{pmatrix} 2 & 1 & -3 \\ 1 & 2 & -2 \\ -1 & 3 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 8 & 5 \end{pmatrix}$, 求 X .

30、已知矩阵
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 3 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$. 计算 AB , $AB - AB^T$.

31、设A是n阶方阵,且|A|=2,求 $|3A^{-1}-2A^*|$,其中 A^* 是A的伴随矩阵.

第二章 线性方程组

一、填空题

1、设
$$\alpha_1 = (1,2,3)^T$$
, $\alpha_2 = (2,1,3)^T$, $\alpha_3 = (-1,1,0)^T$,则向量组 $\alpha_1,\alpha_2,\alpha_3$ 的秩是__.

- 2、设 α_1,α_2 是 $n(n \ge 3)$ 元齐次线性方程组Ax = 0的基础解系,则秩(A) =______.
- 3、设向量组 α_1 = (1,2,3), α_2 = (2,1,3), α_3 = (-1,1,0),则向量组 $\alpha_1,\alpha_2,\alpha_3$ 的秩是_____.
- 4、设 α_1,α_2 是分别属于方阵 A 的不同特征值 λ_1,λ_2 的特征向量,则 α_1,α_2 必线性______.

5、已知一个向量组含有两个或两个以上的极大线性无关组,则各个极大线性无关组所含向量的个数必定 _____.

6、设
$$\alpha_1$$
 = (1,3,5), α_2 = (1,1,3), α_3 = (1, a ,6) 线性相关,则 a 的值为_____.

- 7、已知向量组 $\alpha_1 = (1,4,3)^T, \alpha_2 = (2,t,-1)^T, \alpha_3 = (-2,3,1)^T$ 线性相关,则t应满足____.
- 8、设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性相关,则向量组 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1$ 线性______.
- 9、若向量 (2,3,-1,0,1) 与 (-4,-6,2,a,-2) 线性相关,则 a 的取值为_____.
- 10、方程组 $\begin{cases} 2x_1 3x_2 + 3x_3 2x_4 = 0 \\ 7x_1 2x_2 + x_3 + 3x_4 = 0 \end{cases}$ 的基础解系中含______个解向量.
- 11、设 A 是 n 阶方阵, R(A) = n 2, 则方程组 AX = 0 的基础解系所含向量的个数是_____.
- 12、设 A 是 n 阶方阵, 且秩 (A) = r < n,则齐次线性方程组 Ax = 0 的基础解系中含_____个解向量.
- 13、向量 β 能被向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表出的充要条件为______
- 14、设向量组 $I: \alpha_1, \cdots, \alpha_r$ 的秩为 p , 向量组 $II: \beta_1, \cdots, \beta_s$ 秩为 q , 且向量组 I 能由向量组 II 线性表出,则 p 与 q 的大小关系是______.
- 16、设 $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 \end{pmatrix}$,则齐次线性方程组Ax = 0的基础解系中含_____个解向量.
- 17、方程组 $\begin{cases} 2x_1 3x_2 + 3x_3 2x_4 = 0 \\ 7x_1 2x_2 + x_3 + 3x_4 = 0 \end{cases}$ 的基础解系中含____个解向量.
- 18. $A = \begin{pmatrix} 1 & -1 & 2 & 0 \\ 2 & -3 & 5 & -1 \\ 0 & 1 & -1 & 1 \end{pmatrix}$,则齐次线性方程组 Ax = 0 的任一基础解系所含向量个数为
- 19、设A是n阶方阵, R(A) = n-2, 则线性方程组AX = 0的基础解系含______个向量.
- 20、向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性无关的充分必要条件_____.

- 21、设向量组 $I: \alpha_1, \dots, \alpha_s$ 线性无关,而 β_1, β_2 都能由向量组 I 线性表出,则秩 $(\alpha_1, \dots, \alpha_s, \beta_1, \beta_2)$ = ______.
- 22、 设向量 $(1,5,-1)^T$ 与向量 $(-2,m,2)^T$ 线性相关 , 则 $m = ____$.
- 23、设向量组 I : $\alpha_1,\alpha_2,\cdots,\alpha_s$, 向量组 II : $\beta_1,\beta_2,\cdots,\beta_t$, 若向量组 II 可由向量组 I 线性表出,则秩(I)与秩(II)间成立大小关系式:
- 24、当 a= ______时,向量组 $\alpha_1=(a,-\frac{1}{2},\frac{1}{2}),\alpha_2=(-\frac{1}{2},a,-\frac{1}{2}),\alpha_3=(-\frac{1}{2},-\frac{1}{2},a)$ 线性相关.
- 25 、 已 知 向 量 组 $\alpha = (1, a, a^2), \beta = (1, b, b^2), \gamma = (1, c, c^2),$ 则 当 常 数 a, b, c 满 足 ______ 时该向量组线性无关.
- 26. 设 A 是 3 阶方阵, 若已知线性方程组 AX = 0 有解 $X_1 = (1,0,2)^T$, 则 $|A| = ______$ 。
- 27、已知齐次线性方程组 $\begin{cases} x_1-2x_2-6x_3=0\\ x_1+\lambda x_2-3x_3=0 \end{cases}$ 有无穷多解,则必有 $\lambda=$ ______. $2x_1+x_2+3x_3=0$
- 二、判断题
- 1、() 对于线性方程组 Ax = b (这里 A 为 n 阶方阵),如果该方程组有解,则必有 R(A) = n .
- 2、 () n 元线性方程组 $Ax = b(b \neq 0)$ 当 R(A) < n 时有无穷多解.
- 3、() 设 $A \in n$ 阶方阵, 若方程组 AX = b 满足 R(A) = R(A,b), 则 AX = b 有解。
- 4、() 若 α , β 是线性方程组 Ax = b 的解向量,则 $\alpha \beta$ 是方程组 Ax = 0 的解.
- 5、() 若 η_1 , η_2 是 $AX = b(b \neq 0)$ 的解,则 $\eta_1 + \eta_2$ 也是 AX = b 的解...
- 6、() 对于n 阶矩阵A,如果齐次方程组Ax = 0 存在无穷多组解,则对于任何一个非零n 维列向量b,对应的非齐次线性方程组Ax = b 至少存在一个解.
- 7、() 向 量 组: $\alpha_1 = (1,2), \alpha_2 = (2,-3)$ 与向量组: $\beta_1 = (1,-1), \beta_2 = (2,1)$ 等价.
- 8、() 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 中任意两个向量都线性无关,则向量组线性无关.
- 9、() 3维向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 必线性相关
- 10、() 3维向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 必线性相关.

- 11、() 若向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性相关,则 α_1 一定可由 α_2,\cdots,α_n 线性表示.
- 12、() 若矩阵 A 的秩为 r(r>1) ,则 A 中必有某一个 r-1 阶子式不等于零。
- 13、() 设A是n阶方阵,若AX = b满足R(A) = R(A,b),则AX = b有唯一解.
- 14、() 设向量组(Ⅰ)与向量组(Ⅱ)可互相线性表示,则秩(Ⅰ)= 秩(Ⅱ).
- 15、() 设 a_1 , a_2 线性相关, b_1 , b_2 也线性相关,则 a_1+b_1 , a_2+b_2 一定线性相关.
- 16、() 3维向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 必线性相关.
- 17、() 如果向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关,那么向量组中一定有两个向量成比例.
- 18、() 若向量组 a_1, a_2, \cdots, a_r 线性相关,则组中任一向量都可由其余向量线性表示.
- 19、() 如果向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关,则该向量组的任何部分组必线性无关.
- 20、()如果向量组 $\alpha_1,\cdots,\alpha_s,\beta_1,\beta_2$ 线性无关,则向量组 α_1,\cdots,α_s 也线性无关.
- 21、()设向量组 I: $\alpha_{k_1},\alpha_{k_2},\cdots,\alpha_{k_s}$ 是向量组 II: $\alpha_1,\alpha_2,\cdots,\alpha_p$ 的部分组,如果向量组 I 线性无关,则向量组 II 也线性无关.
- 21. ()设向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,于是向量组 $\alpha_1+\alpha_2,\alpha_2+\alpha_3,\alpha_3+\alpha_1$ 也线性无关.

三、综合题

- 1、对于非齐次线性方程组: $\begin{cases} 3x_1 + 2x_2 + x_3 = 1 \\ x_1 + 2x_2 3x_3 = 2 \end{cases}$ (1)证明该线性方程组有解且有无穷多 $4x_1 + 4x_2 2x_3 = 3.$
- 解. (2)写出该线性方程组的基础解系及通解.
- $2、证明线性方程组 \begin{cases} x_1-x_2+3x_3+2x_4=1\\ 2x_1+14x_3+12x_4=2\\ x_1-2x_2-x_3-2x_4=1\\ 3x_1-3x_2+9x_3+6x_4=3 \end{cases}$ 有解,并求该方程组的通解.
- $3、求线性方程组 \begin{cases} 2x_1 + x_2 x_3 + x_4 = 1 \\ 4x_1 + 2x_2 2x_3 + x_4 = 2 \text{ 的通解}. \\ 2x_1 + x_2 x_3 x_4 = 1 \end{cases}$

$$4、求方程组 \begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ 2x_1 + x_2 - x_3 + x_4 = 1 \text{ 的通解.} \\ x_1 \qquad -2x_3 + x_4 = 1 \end{cases}$$

5、
$$\lambda$$
 取何值时,线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = \lambda - 3 \\ x_1 + \lambda x_2 + x_3 = -2 \end{cases}$$
 有唯一解,无解或有无穷多解?
$$x_1 + x_2 + \lambda x_3 = -2$$

6. 判别方程组
$$\begin{cases} x_1 + 4x_2 - 7x_3 + 5x_4 = 0 \\ 2x_1 - 4x_2 - 8x_3 + 6x_4 = 0 \end{cases}$$
 是否有非零解, 如果存在非零解, 请写出方程组的
$$-x_1 + 2x_2 + 4x_3 - 3x_4 = 0$$

通解.

7、求线性方程组
$$\begin{cases} x_1 + x_2 - x_3 + 2x_4 = 3 \\ 2x_1 + x_2 & -3x_4 = 1 \end{cases}$$
 的通解与对应齐次线性方程组的基础解系.
$$-4x_1 - 2x_2 & +6x_4 = -2 \end{cases}$$

8、求线性方程组
$$\begin{cases} x_1+x_2-x_3+2x_4=3\\ 2x_1+x_2&-3x_4=1\\ -4x_1-2x_2&+6x_4=-2 \end{cases}$$
 的通解与对应齐次线性方程组的基础解系.

9、求线性方程组
$$\begin{cases} 2x_1+x_2-x_3+x_4=1\\ 3x_1-2x_2+x_3-3x_4=4 \text{ 的通解与对应齐次线性方程组的基础解系.}\\ x_1+4x_2-3x_3+5x_4=-2 \end{cases}$$

$$10、求线性方程组 \begin{cases} x_1-x_2-x_3+x_4=0\\ x_1-x_2+x_3-3x_4=1 \end{cases} 的通解与对应齐次线性方程组的基础解系. \\ x_1-x_2-2x_3+3x_4=-1/2 \end{cases}$$

$$10$$
、求线性方程组 $\begin{cases} x_1-x_2+x_3-3x_4=1 \\ x_1-x_2-2x_3+3x_4=-1/2 \end{cases}$ 的通解与对应齐次线性方程组的基础解系. $\begin{cases} x_1-2x_2+x_3+x_4=1 \\ x_1-2x_2-x_3+x_4=-1 \end{cases}$,设确定常数 a ,使得该线性方程组有解,并 $x_1-2x_2+5x_3+x_4=a$ 写出方程组的通解.

写出方程组的通解.

12. 试问当
$$\lambda$$
取何值时,非齐次线性方程组
$$\begin{cases} x_1+x_2+\lambda x_3=1\\ x_1+\lambda x_2+x_3=\lambda\\ \lambda x_1+x_2+x_3=\lambda^2 \end{cases}$$

(1) 有唯一解; (2) 无解; (3) 有无穷多解,并求通解.

13. 已知非齐次线性方程组
$$\begin{cases} x_1 - 5x_2 + 2x_3 - 3x_4 = 11 \\ 5x_1 + 3x_2 + 6x_3 - x_4 = -1 \\ 2x_1 + 4x_2 + 2x_3 + x_4 = -6 \end{cases}$$

- (1) 求对应齐次线性方程组的基础解系;
- (2) 求原非齐次线性方程组的一个特解:
- (3) 求原非齐次线性方程组的通解.
- 13、已知向量 $\beta = (-1,2,0)$ 可由向量组 $\alpha_1 = (1,-1,2)$, $\alpha_2 = (0,1,-1)$,
- 14、 $\alpha_3 = (2, -3, \lambda)$ 唯一地线性表示,讨论 λ 的取值范围.

14、求向量组 $\alpha_1 = (1,-1,0,1)^T$, $\alpha_2 = (0,1,0,1)^T$, $\alpha_3 = (-1,0,0,-2)^T$, $\alpha_4 = (0,0,1,1)^T$, $\alpha_5 = (4,-1,-3,4)^T$ 的秩和一个极大无关组,并将其余向量用该极大无关组线性表示.

15、判别向量组 $\alpha_1 = (1,2,1,0)^T$, $\alpha_2 = (4,1,0,2)^T$, $\alpha_3 = (1,-1,-3,-6)^T$, $\alpha_4 = (0,-3,-1,3)^T$ 是否线性相关? 并求该向量组的极大无关组及该向量组的秩.

16、判别向量组 $\alpha_1 = (1,1,1,1)^T$, $\alpha_2 = (0,1,1,2)^T$, $\alpha_3 = (3,2,0,0)^T$, $\alpha_4 = (3,3,1,2)^T$ 是否线性相关?并求该向量组的该向量组的秩及极大无关组.

17、设向量组 $\alpha_1 = (1,0,-1,0)^T$, $\alpha_2 = (-1,2,0,1)^T$, $\alpha_3 = (-1,4,-1,2)^T$, $\alpha_4 = (0,0,5,5)^T$,

 $\alpha_{5} = (0,1,1,2)^{T}$. 试求该向量组的秩和极大无关组;并将其余向量由此极大无关组线性表出.

18.
$$\alpha_1 = (1,1,-2,1)^T$$
 , $\alpha_2 = (-1,2,-1,5)^T$, $\alpha_3 = (1,-1,0,-3)^T$,

 $\alpha_4 = (3,-1,-2,-5)^T$, 求向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 的秩及其最大无关组.

19. 对于向量组 $\alpha = (4,-1,3,-2)^T$, $\beta = (-2,1,-5,2)^T$, $\gamma = (3,-1,4,-2)^T$,

试求该向量组的秩,并从中找出一个最大线性无关组.

20.
$$\alpha_1 = (1,0,1,2)^T$$
, $\alpha_2 = (2,4,0,3)^T$, $\alpha_3 = (3,-4,-3,5)^T$,

 $\alpha_4 = (-1, -2, 2, -1)^T$, $\alpha_5 = (2, 10, -1, 0)^T$, 求向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 的秩及其最大无关组.

21. 已知向量 $\alpha_1 = (0,1,3)^T, \alpha_2 = (1,2,3)^T, \beta_1 = (1,3,6)^T, \beta_2 = (1,1,1)^T$. 设向量组 $\Delta = \{\alpha_1,\alpha_2\}$,

 $\Omega = \{\beta_1, \beta_2\}$, 问向量 β_1, β_2 及向量组 Ω 是否可以由向量组 Δ 线性表示?若能线性表示, 试给

出一个具体的表达式.

22、设向量组
$$\alpha_1=\begin{pmatrix}a\\1\\3\end{pmatrix}, \alpha_2=\begin{pmatrix}2\\b\\3\end{pmatrix}, \alpha_3=\begin{pmatrix}1\\2\\1\end{pmatrix}, \alpha_4=\begin{pmatrix}2\\3\\1\end{pmatrix}$$
的秩为 2 , 求 a,b .

23、求向量组 $a_1 = (2, 1, 4, 3)^T$, $a_2 = (-1, 1, -6, 6)^T$, $a_3 = (-1, -2, 2, -9)^T$, $a_4 = (1, 1, -2, 7)^T$, $a_5 = (2, 4, 4, 9)^T$ 的一个最大无关组并将其余向量用其线性表出.

24、设向量组 $\alpha_1 = (1,0,-1,0)^T$, $\alpha_2 = (-1,2,0,1)^T$, $\alpha_3 = (-1,4,-1,2)^T$, $\alpha_4 = (0,0,5,5)^T$, $\alpha_5 = (0,1,1,2)^T$,试求该向量组的秩和一个最大无关组;并将其余向量用其线性表出.

25、求向量组 $a_1=(2,4,2)^T$, $a_2=(1,1,0)^T$, $a_3=(2,3,1)^T$, $a_4=(3,5,2)^T$ 的一个最大无关组并将其余向量用其线性表出.

第三章 相似矩阵与二次型

一、填空题

2. 若向量
$$\alpha_1 = (1,0,-1)^T$$
, $\alpha_2 = (2a,10,6-a)^T$ 正交,则 $a =$ ______.

3、已知
$$\alpha = (1,1,0,-1)^T$$
, $\beta = (-1,-2,0,1)^T$ 。则内积 $[3\alpha - \beta, \alpha + \beta] =$ ______.

4、设
$$\alpha = (1,2,a,4)^T$$
, $\beta = (-4,b,-2,1)^T$,若 α 与 β 正交,则 a,b 应满足的关系为______.

5、设向量
$$\alpha = (1,5,k,-1)^T$$
 与向量 $\beta = (2k,3,-2,k)^T$ 相互正交,则 $k =$ ______.

6、向量
$$\alpha = (1,2,3)^T$$
与 $\beta = (-1,2,b)^T$ 正交,则 $b =$

7、已知 a_1, a_2, a_3, a_4 为非零 3 维向量组,且 a_1, a_2, a_3 两两正交,则向量组 a_1, a_2, a_3, a_4 的秩为_____.

- 8、设A是正交矩阵,则|A|=_______, $A^{-1}=$ _______.
- 9、与n阶单位矩阵E相似的矩阵是 .
- 10、矩阵 $A = \begin{bmatrix} 0 & 2 \\ 2 & 3 \end{bmatrix}$ 的两个特征值为_____.
- 11、已知三阶矩阵 A 的特征值为1,2,3,则|A|= .
- 12. 3 阶方阵 A 的特征值分别为 3,-1,2,则 $|A| = _____.$
- 14、若实数 λ 是实矩阵 A 的某个特征值,则矩阵 $B = A^3 2A^2 + E$ 的某个特征值 $\mu = \underline{\hspace{1cm}}$.
- 15. 已知 3 阶矩阵 A 的特征值为 1,-1,2,则矩阵 $B = A^3 2A^2$ 的特征值为_____.
- 16、设方阵 A 的特征多项式为 $f(\lambda) = |\lambda E A| = (\lambda 2)^k (\lambda + 1)$,则 $|A| = _____.$
- 17、设 $\lambda=1$ 是方阵A的一个特征值,则矩阵 A^3+3A^2+3A 的一个特征值是
- 18、n阶方阵A的属于不同特征值的特征向量必定线性______.
- 20、已知 3 阶方阵 A 的特征值为 1,2,-3,则 $A^2 + 2A + E$ 的特征值为______.
- 21、设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是n 阶矩阵 A 的 n 个特征值, 则|A| =_____。
- 22、若n阶方阵A与B相似,且|A|=2,则|BA|=______.
- 23、若n阶方阵A与B相似,且|A|=2,则|BA|=_____。
- 24. 设 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是n 阶矩阵 A 的n 个特征值,则|A| =______.

- 27. 已知 1 是 A 的一个特征值,则| $A^2 + 4A 5E$ |=_____。
- 28. 设 $\lambda_1, \lambda_2, \cdots, \lambda_n$ 是方阵 $A = (a_{ij})_{n \times n}$ 的n个特征值,则

$$\lambda_1 + \lambda_2 + \cdots + \lambda_n = \underline{\hspace{1cm}}$$

- 29. 向量 $\alpha = (1,2,3)^T 与 \beta = (-1,2,b)^T$ 正交,则b =.
- 30. 若方阵 A 与 B 相似,且|A| = 2,则 $|B| = ______$ 。
- 31、若n阶方阵A与B相似,且|A|=2,则|BA|=_____
- 32. 已知 3 阶矩阵 A 的特征值为1,-1,2,则矩阵 $B = A^3 2A^2$ 所有的特征值为
- 33. 若已知 n 阶方阵 A 的行列式 |A|=2 , $\lambda=2$ 是矩阵 A 的一个特征值,则其伴随矩阵 A^* 必有一个特征值为 ______.
- 34、3 阶方阵 *A* 的特征值分别为 3,-1,2,则 A^{-1} 的特征值为 .

- 37、3 阶方阵 A 的特征值为 3, -1, 2, 则 $|A| = ____.$
- 39、3 阶方阵 A 的特征值为 3, -1, 2,则 $|A^2 3A 2E|$ _____.
- 40、若 $\lambda = 3$ 是可逆方阵 A 的一个特征值,则 A^{-1} 必有一个特征值为______.

二、判断题

- 1、() 设A为正交阵,则矩阵A的特征值 λ 满足等式: $\lambda^2 = 1$.
- 2、() 若 λ 是n 阶矩阵A的特征值,则 λ^2 是 A^2 的特征值.
- 3、() 可逆矩阵的特征值一定不为零.
- 4、()设 λ_1,λ_2 是矩阵 A 的两个不同的特征值, ξ_1,ξ_2 是对应的特征向量,则 $\xi_1+\xi_2$ 也是 A 的特征向量.
- 5、() 若方阵 A = B 等价, 则 A = B 一定有相同的特征值。
- 6、() 设A,B相似,则A,B有相同的特征多项式,从而有相同的特征值.
- 7、() 设A为n阶矩阵,则 A^T 与A具有不同的特征多项式,从而有不同的特征 值.
- 8、() 相似矩阵的行列式相等.
- 9、() n 阶矩阵 A = B 相似,则 A = B 也等价.
- 10、() 设A, B 都是n 阶方阵, 若A, B 有相同的特征值, 则A 与B 相似.
- 11、() n 阶矩阵 A = B 相似,则 A = B 也等价.
- 12、() 如果两个n阶矩阵A与B等价,则A与B也相似.
- 13、() 若 A 是正交方阵, 则 $A^{-1} = A^{T}$ 也是正交阵, 且 |A| = -1 或 -1.
- 14、() 设A, B都是n阶正交方阵, 则AB 也是n阶正交方阵.
- 15、() 设A, B 都是n 阶正交方阵, 则AB 也是n 阶正交方阵.
- 16、() 正交阵的列向量都是单位向量,且两两正交.
- 17、() 如果两个n阶矩阵A = B等价,则A = B也相似.
- 18、() 对于任意矩阵 A , $A^T A$ 必为对称矩阵.
- 19、 () 可逆矩阵的特征值一定不为零。
- 20、() 如果矩阵 A 相似于矩阵 B,则 A^2 与 B^2 也必相似.
- 21、() 若n阶方阵A与某对角矩阵相似,则方阵A的秩等于n.

三、综合题

1、设
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 3 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$
, (1) 求 A 的特征值和特征向量;

(2) A 是否可对角化, 若可对角化, 试求矩阵 P, 使得 $P^{-1}AP$ 成为对角形.

2、已知
$$A = \begin{pmatrix} -1 & 2 & 2 \\ 2 & -1 & -2 \\ 2 & -2 & -1 \end{pmatrix}$$
. (1) 求 A 的特征值和特征向量; (2) 求可逆矩阵 P ,使得

 $P^{-1}AP$ 成为对角形

3、设
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \\ 3 & 3 & 6 \end{pmatrix}$$
, (1) 求 A 的特征值和特征向量; (2) 求可逆矩阵 P , 使得 $P^{-1}AP$ 为对

角形.

4、设
$$A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
, 求一个矩阵 P ,使 $P^{-1}AP = \Lambda$ 为对角阵.

5、 设矩阵
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$
, 求可逆矩阵 P ,使得 $P^{-1}AP$ 为对角阵。

6、设
$$A = \begin{pmatrix} 3 & 1 & -1 \\ 3 & 5 & -3 \\ 0 & 0 & 2 \end{pmatrix}$$
, 求矩阵 P , 使 $P^{-1}AP = \Lambda$ 为对角阵.

7、设矩阵
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 1 & a \\ 1 & 0 & 0 \end{pmatrix}$$
,问 a 为何值时 A 可对角化,此时求可逆矩阵 P 使得 $P^{-1}AP$ 为对角

阵.

8、设矩阵
$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 0 & 1 \end{pmatrix}$$
,求 A 的特征值和特征向量,并将其进行对角阵.

9、设矩阵
$$A = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & 4 \\ 0 & 4 & 3 \end{pmatrix}$$
, 求 A 的特征值和特征向量,并将其进行对角阵.

10、设矩阵
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$
, 求 A 的特征值和特征向量,并将其进行对角阵.

11、设矩阵
$$A = \begin{pmatrix} 3 & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & 3 \end{pmatrix}$$
, 求 A 的特征值和特征向量,并将其进行对角阵.

12、设
$$A = \begin{pmatrix} 2 & 0 & 1 \\ 3 & 1 & 3 \\ 4 & 0 & 5 \end{pmatrix}$$
, 求可逆矩阵 P , 使得 $P^{-1}AP$ 为对角阵,并求此对角阵.

13、求方阵
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
的特征值及特征向量.

14、设
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
, 求 A^n , 其中 n 是自然数.

15、设
$$\alpha_1 = (2,-2,1)^T$$
, $\alpha_2 = (0,1,-1)^T$, 试求数 k_1 , k_2 , 使向量 $\beta = k_1\alpha_1 + k_2\alpha_2$ 是与 α_1 正交的单位向量,并求 β .

、设三阶方阵 A 的特征值为1,0,-1 , 其相应的特征向量分别为

$$\alpha_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \alpha_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad \vec{x} A^{88}.$$