Carnegie Mellon University

Introduction to Deep Learning for Engineers

Spring 2025, Deep Learning for Engineers Feb 13, 2025, 10th Session

Amir Barati Farimani
Associate Professor of Mechanical Engineering and Bio-Engineering
Carnegie Mellon University

Data

Carnegie Mellon University

Carnegie Mellon University

Event Graphs

Image credit: Wikipedia

Food Webs

Image credit: SalientNetworks

Computer Networks

Image credit: Pinterest

Particle Networks

Disease Pathways

Image credit: visitlondon.com

Underground Networks

Image credit: Medium

Image credit: Science

Image credit: <u>Lumen Learning</u>

Social Networks

Citation Networks

Economic Networks Communication Networks

Image credit: Missoula Current News

Internet

Image credit: The Conversation

Networks of Neurons

Image credit: math.hws.edu

Image credit: Maximilian Nickel et al **Knowledge Graphs**

Regulatory Networks

Image credit: ese.wustl.edu

Scene Graphs

Image credit: MDPI

Image credit: Wikipedia

Code Graphs

Molecules

3D Shapes

Carnegie

Mellon University

Networks are complex unlike images

University

A Very Regular Graph, representing an image

Networks are complex

Carnegie Mellon University

An introduction to Graph Neural Networks

Graphs are the new frontier of deep learning Graphs connect things.

Graphs

GRAPHS ARE COMPOSED OF

- Nodes (vertices)
- Edges (arcs)
- G(V,E)

Varieties

NODES

Labeled or unlabeled

EDGES

- Directed or undirected
- Labeled or unlabeled

Representing a Maze

Nodes = rooms Edge = door or passage

Carnegie Mellon University

Representing Electrical Circuits

Information Transmission in a Computer Network

Carnegie Mellon University

Non-Euclidean data structure

HOWEVER, there are lots of irregular data structure, ...

All you need is GRAPH!

Networks are not learning-friendly

Pipeline for network analysis

Learning from networks

Network Embedding

GNN

Network Embedding

Carnegie Mellon University

The goal of network embedding

Transform network nodes into vectors that are fit for off-the-shelf machine learning models.

rsity

Graph structure

Graph=G(X,A)
A: Adjacency matrix

- Edges of a graph
- Connectivity, Relationship

0	1	1	1	0	0
1	0	1	0	1	0
1	1	0	0	0	0
1	0	0	0	1	1
0 1 1 1 0 0	1	0	1	0	0 0 0 1 0 0
0	0	0	1	0	0

Represent relationship or interaction between elements of the system

Graph structure

Graph = G(X,A)X: Node, Vertex

- Individual person in a social network
- Atoms in a molecule

Represent elements of a system

Graph structure

Edge features

Adjacency Matrix

Graph Embedding

Graph embedding is an approach that is used to transform nodes, edges, and their features into vector space (a lower dimension) whilst maximally preserving properties like graph structure and information.

Graphs are complex because they can vary in terms of their scale, specificity, and subject

A molecule can be represented as a small, sparse, and static graph, whereas a social network could be represented by a large, dense, and dynamic graph.

An example: Molecule

A molecular structure can be interpreted as a mathematical graph where each atom is a node, and each bond is an edge.

Such a representation allows for the mathematical processing of molecular structures using the graph theory

Adjacency Matrix

A molecular structure with n atoms may be represented by an $n \times n$ matrix (H-atoms are often omitted)

Adjacency matrix: indicates which atoms are bonded.

Distance Matrix

Distance matrix: encodes the distances between atoms.

The distance is defined as the number of bonds between atoms on the shortest possible path.

Bond Matrix

Bond matrix: indicates which atoms are bonded, and the corresponding bond orders.

A*D*N: Topology Embedding

To create a single matrix for representation of topology, we can: A*D*N=A'

It will be an N×N matrix

Feature Matrix

Feature Matrix for molecules:

	` /
MolWt	
ExactMolWt	
HeavyAtomCount	
HeavyAtomMolWt	
NHOHCount	
NOCount	
NumHAcceptors	
NumHDonors	
NumHeteroatoms	
NumRotatableBonds	
NumValenceElectrons	
NumAmideBonds	
Num{Aromatic,Saturated,Aliphatic}I	Rings
Num{Aromatic,Saturated,Aliphatic}{	Hetero,Carbo}cycles
RingCount	
FractionCSP3	
NumSpiroAtoms	
	Number of spiro atoms
	(atoms shared between rings that
	share exactly one atom)
NumBridgeheadAtoms	Number of bridgehead atoms
	(atoms shared between rings that
	share at least two bonds)

	~ <u>~</u> ~
₽ 🔾	
	5

>	~
<u>~~</u>	
	<u></u>

1 2 3 4 5 6			
0 0 4	7	_	
0 0 4		0	
0 0 4		_	2
0 0 0	_	0	حب
		0	-
0 0 0		0	<u></u>
	0	0	6

9	9	1	~
0	0	0	U
0	0	0	
0	_	_	
0	0	0	
2		0	
	2	0	

 \sim

حب

_

Network Embedding

Caffeine Molecule

Linear Representation SMILES String

CN1C=NC2=C1C(=O)N(C(=O)N2C)C

Graph Representation Adjacency Matrix

Node Attribute Matrix

Edge Attribute Matrix

Graph Embedding

Learning for Networks vs. Learning via Graphs

- Join adjacency matrix and features
- Feed them into a deep neural net:

- Issues with this idea:
 - $\square O(|V|)$ parameters
 - Not applicable to graphs of different sizes
 - Sensitive to node ordering

Learning for Networks vs. Learning via Graphs

Carnegie Mellon University

Idea: Node's neighborhood defines a computation graph

Determine node computation graph

Propagate and transform information

Learn how to propagate information across the graph to compute node features

Idea: Node's neighborhood defines a computation graph

Determine node computation graph

Propagate and transform information

Learn how to propagate information across the graph to compute node features

Key idea: Generate node embeddings based
 on local network neighborhoods

 Key idea: Generate node embeddings based on local network neighborhoods

 Basic approach: Average information from neighbors and apply a neural network

How can we learn via graph neural nets? ReLU ReLU ReLU ReLU ReLU ReLU ReLU H(2) Set Reduction armegie
Mellon
University **Passing** Passing Transformation Transformation

Learning relation and interaction

What can we do with graph neural networks?

Learning relation and interaction

What can we do with graph neural networks?

- Node classification
- Link prediction
- Node2Vec, Subgraph2Vec, Graph2Vec: Embedding node/substructure/graph structure to a vector
- Learning physics law from data
- And you can do more amazing things with GNN!

Graph neural networks

Graph neural networks

Input: Feature matrix $\mathbf{X} \in \mathbb{R}^{N imes E}$, preprocessed adjacency matrix $\hat{\mathbf{A}}$

* slide from Thomas Kipf, University of Amsterdam

Carnegie Mellon University

- Overall architecture of graph neural networks
- Updating node states
 - -Graph Convolutional Network (GCN)
 - -Graph Attention Network (GAT)
 - -Gated Graph Neural Network (GGNN)
- Readout : permutation invariance on changing node orders
- Graph Auto-Encoders
- Practical issues
 - -Skip connection-Inception-Dropout

Principles of graph neural network

Weights using in updating hidden states of fully-connected Net, CNN and RNN

Figure 1: Reuse and sharing in common deep learning building blocks. (a) Fully connected layer, in which all weights are independent, and there is no sharing. (b) Convolutional layer, in which a local kernel function is reused multiple times across the input. Shared weights are indicated by arrows with the same color. (c) Recurrent layer, in which the same function is reused across different processing steps.

Overall neural network structure—case of supervised learning

Principles of graph neural network

Updates in a graph neural network

Figure 3: Updates in a GN block. Blue indicates the element that is being updated, and black indicates other elements which are involved in the update (note that the pre-update value of the blue element is also used in the update). See Equation 1 for details on the notation.

- Edge update: relationship or interactions, sometimes called as 'message passing'ex) the forces of spring
- Node update: aggregates the edge updates and used in the node updateex) the forces
 acting on the ball
- Global update: an update for the global attributeex) the net forces and total energy of the physical system

Principles of graph neural network

Weights using in updating hidden states of GNN

Sharing weights for all nodes in graph, but nodes are differently updated by reflecting individual node features $H_i^{(l)}$

Published as a conference paper at ICLR 2017

SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS

Thomas N. Kipf University of Amsterdam T.N.Kipf@uva.nl

http://tkipf.github.io/

Max Welling
University of Amsterdam
Canadian Institute for Advanced Research (CIFAR)
M. Welling@uva.nl

Famous for variational autoencoder (VAE)

Carnegie Mellon University

What NN learns

$$X_i^{(l+1)} = \sigma(\sum_{j \in [i-k,i+k]} W_j^{(l)} X_j^{(l)} + b_j^{(l)})$$

Carnegie Mellon University

A **Brief History** of Graph Neural Nets

SMILES

- 1. Atoms are represented by their atomic symbols.
- 2. Hydrogen atoms are omitted (are implicit).
- 3. Neighboring atoms are represented next to each other.
- 4. Double bonds are represented by '=', triple bonds by '#'.
- 5.Branches are represented by parentheses.
- 6.Rings are represented by allocating digits to the two connecting ring atoms.

