A Unified Paradigm: SFT, RFT, DPO, Online RFT, PPO, GRPO

Main Reference: DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Key Concepts:

Supervised Fine-tuning (SFT) Rejection Sampling Fine-tuning (RFT) Direct Preference Optimization (DPO)

Online Rejection Sampling Fine-tuning (Online RFT) Proximal Policy Optimization (PPO)

Group Relative Policy Optimization (GRPO)

Table of Contents:

🔁 A Unified Paradigm: SFT, RFT, DPO, Online RFT, PPO, GRPO

Supervised Fine-tuning (SFT)

® Rejection Sampling Fine-tuning (RFT)

☑Online Rejection Sampling Fine-tuning (Online RFT)

Direct Preference Optimization (DPO)

Proximal Policy Optimization (PPO)

A Unified Paradigm: SFT, RFT, DPO, Online RFT, PPO, GRPO

- Supervised Fine-tuning (SFT): Fine-tunes a pretrained model on human-curated SFT data.
- **Rejection Sampling Fine-tuning (RFT):** Further fine-tunes the SFT model on filtered outputs sampled from it, keeping only answers deemed correct.
- **Direct Preference Optimization (DPO):** Refines the SFT model using augmented outputs sampled from it, optimized with pairwise DPO loss.
- Online Rejection Sampling Fine-tuning (Online RFT): Similar to RFT, but samples outputs from the real-time policy model (initialized from the SFT model).
- **PPO / GRPO:** Initialize the policy model from the SFT model and reinforce it with outputs sampled from the real-time policy model.

General Gradient Formulation

In general, the gradient of a training method ${\cal A}$ with respect to the parameter θ can be written as:

$$abla_{ heta} J_{\mathcal{A}}(heta) = \mathbb{E}[\underbrace{(q,o) \sim \mathcal{D}}_{ ext{Data Source}}] \left[rac{1}{|o|} \sum_{t=1}^{|o|} \underbrace{GC_{\mathcal{A}}(q,o,t,oldsymbol{\pi_{rf}})}_{ ext{Gradient Coefficient}}
abla_{ heta} \log \pi_{ heta}(o_t \mid q,o_{< t})
ight]$$

Key components:

- **Data Source** \mathcal{D} : defines the training data.
- **Reward Function** π_{rf} : provides the reward signal during training.
- **Algorithm** A: processes data and reward to compute the gradient coefficient GC, which determines the strength of reinforcement or penalty.

Table 1 | Data Source and Gradient Coefficient of Different Methods

Methods	Data Source	Objective	Reward Function	Gradient Coefficient
SFT	$q,o \sim P_{ m sft}(Q,O)$	Eq. (1)	-	1
RFT	$q \sim P_{ m sft}(Q), o \sim \pi_{ m sft}(O q)$	Eq. (3)	Rule	Eq. (5)
DPO	$q \sim P_{ m sft}(Q), o^+, o^- \sim \pi_{ m sft}(O q)$	Eq. (6)	Rule	Eq. (5)
Online RFT	$q \sim P_{ m sft}(Q), o \sim \pi_{ heta}(O q)$	Eq. (8)	Rule	Eq. (10)
PPO	$q \sim P_{ m sft}(Q), o \sim \pi_{ heta}(O q)$	Eq. (11)	Model	Eq. (14)
GRPO	$q \sim P_{ ext{sft}}(Q), \{o_i\}_{i=1}^G \sim \pi_{ heta}(O q)$	Eq. (15)	Model	Eq. (17)

Notes:

- $\bullet \ \ P_{\rm sft}$:= supervised fine-tuning dataset distribution.
- π_{sft} := supervised fine-tuned model.
- π_{θ} := real-time policy model during online training.
- o := a sampled output sequence (e.g., a generated answer).
- o^+ := the preferred (or higher-quality) output in human-labeled preference pairs.
- ullet o^- := the less-preferred (or lower-quality) output in preference pairs.

Supervised Fine-tuning (SFT)

Objective: The goal is to maximize

$$J_{ ext{SFT}}(heta) = \mathbb{E}_{(q,o) \sim P_{ ext{sft}}(Q,O)} \left[rac{1}{|o|} \sum_{t=1}^{|o|} \log \pi_{ heta}(o_t \mid q, o_{< t})
ight]$$
 (1)

Gradient:

$$abla_{ heta} J_{ ext{SFT}}(heta) = \mathbb{E}_{(q,o) \sim P_{ ext{sft}}(Q,O)} \left[rac{1}{|o|} \sum_{t=1}^{|o|}
abla_{ heta} \log \pi_{ heta}(o_t \mid q, o_{< t})
ight]$$

• Data Source: SFT dataset

• Reward Function: Human selection

• Gradient Coefficient: Always 1

Rejection Sampling Fine-tuning (RFT)

Objective: Multiple outputs are first sampled from the SFT model for each question. The model is then trained on the sampled outputs that correspond to the correct answers:

$$J_{ ext{RFT}}(heta) = \mathbb{E}_{q \sim P_{ ext{sft}}(Q), \, o \sim \pi_{ ext{sft}}(O|q)} \left[rac{1}{|o|} \sum_{t=1}^{|o|} I(o) \log \pi_{ heta}(o_t \mid q, o_{< t})
ight]$$
 (3)

Gradient:

$$abla_{ heta} J_{ ext{RFT}}(heta) = \mathbb{E}_{q \sim P_{ ext{sft}}(Q), \, o \sim \pi_{ ext{sft}}(O|q)} \left[rac{1}{|o|} \sum_{t=1}^{|o|} I(o)
abla_{ heta} \log \pi_{ heta}(o_t \mid q, o_{< t})
ight]$$

- Data Source: Questions from the SFT dataset with outputs sampled from the SFT model
- Reward Function: Rule-based (answer correctness)
- Gradient Coefficient:

$$GC_{RFT}(q, o, t) = I(o) = \begin{cases} 1, & \text{if answer of } o \text{ is correct} \\ 0, & \text{if answer of } o \text{ is incorrect} \end{cases}$$
 (5)

Online Rejection Sampling Fine-tuning (Online RFT)

The only difference from RFT is that outputs are sampled from the **real-time policy model** π_{θ} , instead of the SFT model π_{sft} :

$$J_{ ext{OnRFT}}(heta) = \mathbb{E}_{q \sim P_{ ext{sft}}(Q), \, o \sim \pi_{ heta}(O|q)} \left[rac{1}{|o|} \sum_{t=1}^{|o|} I(o) \log \pi_{ heta}(o_t \mid q, o_{< t})
ight]$$
 (6)

Gradient:

$$\nabla_{\theta} J_{\text{OnRFT}}(\theta) = \mathbb{E}_{q \sim P_{\text{sft}}(Q), \ o \sim \pi_{\theta}(O|q)} \left[\frac{1}{|o|} \sum_{t=1}^{|o|} I(o) \nabla_{\theta} \log \pi_{\theta}(o_t \mid q, o_{< t}) \right]$$

$$(7)$$

Direct Preference Optimization (DPO)

Objective:

$$J_{\text{DPO}}(\theta) = \mathbb{E}_{q \sim P_{\text{sft}}(Q), \ o^+, o^- \sim \pi_{\text{sft}}(O|q)} \left[\log \sigma \left(\beta \frac{1}{|o^+|} \sum_{t=1}^{|o^+|} \log \frac{\pi_{\theta}(o_t^+ \mid q, o_{< t}^+)}{\pi_{\text{ref}}(o_t^+ \mid q, o_{< t}^+)} - \beta \frac{1}{|o^-|} \sum_{t=1}^{|o^-|} \log \frac{\pi_{\theta}(o_t^- \mid q, o_{< t}^-)}{\pi_{\text{ref}}(o_t^- \mid q, o_{< t}^-)} \right) \right] \quad (8)$$

Gradient:

$$\nabla_{\theta} J_{\text{DPO}}(\theta) = \mathbb{E}_{q \sim P_{\text{sft}}(Q), \ o^{+}, o^{-} \sim \pi_{\text{sft}}(O|q)} \left[\frac{1}{|o^{+}|} \sum_{t=1}^{|o^{+}|} GC_{\text{DPO}}(q, o, t) \nabla_{\theta} \log \pi_{\theta}(o_{t}^{+} \mid q, o_{< t}^{+}) \right. \\
\left. - \frac{1}{|o^{-}|} \sum_{t=1}^{|o^{-}|} GC_{\text{DPO}}(q, o, t) \nabla_{\theta} \log \pi_{\theta}(o_{t}^{-} \mid q, o_{< t}^{-}) \right] \tag{9}$$

- Data Source: Questions in the SFT dataset with outputs sampled from the SFT model
- **Reward Function:** Human preference (or rule-based for math tasks)
- Gradient Coefficient:

$$GC_{\text{DPO}}(q, o, t) = \sigma \left(\beta \log \frac{\pi_{\theta}(o_{t}^{-} \mid q, o_{< t}^{-})}{\pi_{\text{ref}}(o_{t}^{-} \mid q, o_{< t}^{-})} - \beta \log \frac{\pi_{\theta}(o_{t}^{+} \mid q, o_{< t}^{+})}{\pi_{\text{ref}}(o_{t}^{+} \mid q, o_{< t}^{+})}\right)$$
(10)

Proximal Policy Optimization (PPO)

Objective:

$$J_{\text{PPO}}(\theta) = \mathbb{E}_{q \sim P_{\text{sft}}(Q), \ o \sim \pi_{\theta}^{old}(O|q)} \left[\frac{1}{|o|} \sum_{t=1}^{|o|} \min \left(\frac{\pi_{\theta}(o_t \mid q, o_{< t})}{\pi_{\theta}^{old}(o_t \mid q, o_{< t})} A_t, \ \text{clip}\left(\frac{\pi_{\theta}(o_t \mid q, o_{< t})}{\pi_{\theta}^{old}(o_t \mid q, o_{< t})}, 1 - \epsilon, 1 + \epsilon \right) A_t \right) \right]$$

$$(11)$$

Simplification: If we assume a single update step such that $\pi_{\theta}^{old}=\pi_{\theta}$, the objective reduces to:

$$J_{\text{PPO}}(\theta) = \mathbb{E}_{q \sim P_{\text{sft}}(Q), \ o \sim \pi_{\theta}^{old}(O|q)} \left[\frac{1}{|o|} \sum_{t=1}^{|o|} \frac{\pi_{\theta}(o_t \mid q, o_{< t})}{\pi_{\theta}^{old}(o_t \mid q, o_{< t})} A_t \right]$$
(12)

Gradient:

$$abla_{ heta} J_{ ext{PPO}}(heta) = \mathbb{E}_{q \sim P_{ ext{sft}}(Q), \ o \sim \pi_{ heta}^{old}(O|q)} \left[rac{1}{|o|} \sum_{t=1}^{|o|} A_t
abla_{ heta} \log \pi_{ heta}(o_t \mid q, o_{< t})
ight]$$

$$(13)$$

- Data Source: Questions in the SFT dataset with outputs sampled from the policy model
- Reward Function: Reward model
- Gradient Coefficient:

$$GC_{\text{PPO}}(q, o, t, \pi_{\theta}^{rm}) = A_t, \tag{14}$$

where A_t denotes the advantage function, computed using **Generalized Advantage Estimation (GAE)** based on rewards $r_{\geq t}$ and a learned value function V_{ψ} . See the below figure for a reference:

Group Relative Policy Optimization (GRPO)

Objective (also assume $\pi_{ heta}^{old}=\pi_{ heta}$ for simplified analysis):

$$J_{\text{GRPO}}(\theta) = \mathbb{E}_{q \sim P_{\text{sft}}(Q), \ \{o_{i}\}_{i=1}^{G} \sim \pi_{\theta}^{old}(O|q)} \left[\frac{1}{G} \sum_{i=1}^{G} \frac{1}{|o_{i}|} \sum_{t=1}^{|o_{i}|} \left(\frac{\pi_{\theta}(o_{i,t} \mid q, o_{i, < t})}{\pi_{\theta}^{old}(o_{i,t} \mid q, o_{i, < t})} \hat{A}_{i,t} \right. \\ \left. - \beta \left(\frac{\pi_{ref}(o_{i,t} \mid q, o_{i, < t})}{\pi_{\theta}(o_{i,t} \mid q, o_{i, < t})} - \log \frac{\pi_{ref}(o_{i,t} \mid q, o_{i, < t})}{\pi_{\theta}(o_{i,t} \mid q, o_{i, < t})} - 1 \right) \right) \right]$$

$$(15)$$

Gradient:

$$\nabla_{\theta} J_{\text{GRPO}}(\theta) = \mathbb{E}_{q \sim P_{\text{sft}}(Q), \ \{o_{i}\}_{i=1}^{G} \sim \pi_{\theta}^{old}(O|q)} \left[\frac{1}{G} \sum_{i=1}^{G} \frac{1}{|o_{i}|} \sum_{t=1}^{|o_{i}|} \left(\hat{A}_{i,t} + \beta \left(\frac{\pi_{ref}(o_{i,t} \mid o_{i,
(16)$$

- Data Source: Questions in the SFT dataset with outputs sampled from the policy model
- Reward Function: Reward model
- Gradient Coefficient

$$GC_{\mathrm{GRPO}}(q, o, t, \pi_{\theta}^{rm}) = \hat{A}_{i,t} + \beta \Big(\frac{\pi_{ref}(o_{i,t} \mid o_{i, < t})}{\pi_{\theta}(o_{i,t} \mid o_{i, < t})} - 1 \Big),$$
 (17)

where $\hat{A}_{i,t}$ is the advantage term computed from **group reward scores**.