

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«МИРЭА – Российский технологический университет»

ИНСТИТУТ КИБЕРНЕТИКИ КАФЕДРА ВЫСШЕЙ МАТЕМАТИКИ

Лабораторная работа 2

по курсу «Случайные процессы»

Тема: Марковский процесс с непрерывным временем и пятью состояниями

Выполнил: Студент 4-го курса Гогинян Б.А. Группа: КМБО-03-16

Лабораторная работа по случайным процессам № 2

«Марковский процесс с непрерывным временем и пятью состояниями»

Задание

Дана матрица интенсивностей однородного марковского процесса с непрерывным временем

$$\Lambda = egin{pmatrix} \lambda_{11} & \lambda_{12} & \lambda_{13} & \lambda_{14} & \lambda_{15} \ \lambda_{21} & \lambda_{22} & \lambda_{23} & \lambda_{24} & \lambda_{25} \ \lambda_{31} & \lambda_{32} & \lambda_{33} & \lambda_{34} & \lambda_{35} \ \lambda_{41} & \lambda_{42} & \lambda_{43} & \lambda_{44} & \lambda_{45} \ \lambda_{51} & \lambda_{52} & \lambda_{53} & \lambda_{53} & \lambda_{55} \ \end{pmatrix}$$

Следуя Указаниям нужно:

- 1. Построить граф состояний марковского процесса.
- 2. Написать систему дифференциальных уравнений Колмогорова для вероятностей состояний (с заданными интенсивностями).
- 3. Написать систему уравнений для нахождения стационарных вероятностей.
- 4. Найти стационарное распределение вероятностей состояний $(r_1, r_2, r_3, r_4, r_5)$.
- 5. Считая, что в начальный момент времени $t\!=\!0$ система находится в состоянии 1, провести моделирование развития системы до события с номером K, при котором впервые будет выполнено неравенство $\delta_{_K}\!=\!\max(|v_{_i}(K)\!-\!v_{_i}(K\!-\!1)|;i\!=\!1,...,5)\!\leq\!0,0001,$

где $v_i(K) = \frac{R_i(K)}{K}$ — относительная частота попадания системы в состояние i с 1-го по K событие (считаем, что $v_i(0) = 0$ при всех i), $R_i(K)$ — число попаданий системы в состояние i в событиях с 1-го по K. Событием считается переход системы из одного состояния в другое.

- 6. Составить таблицу 1 с данными о событиях:
- номер события l;
- момент $t_{coo}(l)$ наступления события l;

- состояние системы после события C(l);
- время $\tau(l)$ пребывания системы в состоянии C(l) с момента $t_{coo}(l)$ до перехода системы в другое состояние;
- значение отклонения $\delta_{_{l}}$.

В таблицу поместить данные о событиях с 1-го по 100, а также о событиях $K-5,\,K-4,\,K-3,\,K-2,\,K-1,\,K$, если K>100.

- 7. Составить таблицу 2 с данными о состояниях следующего вида:
- номер состояния i;
- число $R_i(100)$ попаданий системы в состояние i в событиях с 1-го по 100 ;
- относительная частота $v_i(100)$ попадания системы в состояние i в событиях с 1-го по 100 :
- общее время $T_i(100)$ пребывания системы в состоянии i с момента $t_{coo}(1)$ до $t_{coo}(101)$, т.е. до времени наступления события 101.
- доля $\Delta_i(100)$ времени пребывания системы в состоянии i в период с $t_{coo}(1)$ до $t_{coo}(101)$.
- 8. Составить таблицу 3 с данными о состояниях следующего вида:
- номер состояния i;
- число $R_{i}(K)$ попаданий системы в состояние i в событиях с 1-го по K;
- относительная частота $v_i(K)$ попадания системы в состояние i в событиях с 1-го по K ;
- общее время $T_i(K)$ пребывания системы в состоянии i с момента $t_{coo}(1)$ до $t_{coo}(K+1)$, т.е. до времени наступления события K+1.
- доля $\Delta_i(K)$ времени пребывания системы в состоянии i в период с $t_{coo}(1)$ до $t_{coo}(K+1)$.

Вычисления и вывод результатов проводить с точностью до 0,00001.

Указания

В разделе отчета **Краткие теоретические сведения** следует дать определения марковского процесса с непрерывным временем и дискретным множеством состояний, однородного марковского процесса с непрерывным временем и дискретным множеством состояний, матрицы интенсивностей перехода, графа состояний, предельного распределения, стационарного распределения; привести дифференциальные уравнения Колмогорова для вероятностей состояний, формулы для нахождения стационарного распределения. В этом разделе должны быть описаны средства языка программирования, которые использованы в программе расчета.

В разделе отчета **Результаты расчетов** приводятся исходные данные и даются ответы на пункты задания, в том числе полностью заполненные таблицы 1, 2 и 3.

Граф состояний марковского процесса строится по данной матрице интенсивностей перехода. Вершины графа — прямоугольники — располагаются по окружности, если $\lambda_{ij} > 0$ $(i \neq j)$, то из вершины i в вершину j проводится дуга и над ней ставится значение λ_{ij} . При этом $\lambda_i = \sum_{i \neq j} \lambda_{ij} = -\lambda_{ii}$ — интенсивность выхода из состояния i.

Таблицы 1, 2 и 3 заполняются по результатам моделирования N событий, где $N = \max(K,100)$. В начальный момент времени t=0 система находится в состоянии 1 и определяется случайным образом в соответствии с показательным законом распределения с параметром λ_1 время, через которое система перейдет в следующее состояние j=C(1). Это время равно моменту $t_{coo}(1)$ наступления первого события.

Если до наступления события l система находилась в состоянии i , то следующее состояние C(l) находится в соответствии с правилом:

1) если
$$\lambda_i = \sum_{i \neq j} \lambda_{ij} = 0$$
, то $j = i$;

2) если $\lambda_i = \sum_{i \neq j} \lambda_{ij} > 0$, то определяется число k таких состояний j, что $\lambda_{ij} > 0$, и

отрезок [0,1] делится на k отрезков, длины которых равны $\frac{\lambda_{ij}}{\lambda_i}$ ($\lambda_{ij} > 0$); каждый отрезок соответствует некоторому состоянию j, у которого $\lambda_{ij} > 0$; если случайным образом выбранное из отрезка [0,1] число попало в отрезок, соответствующий состоянию j, то C(l) = j.

По этому правилу определяется и следующее состояние j = C(1) в первом событии, при этом i = 1.

Если до наступления события l система находилась в состоянии i , то время $\tau(l)$ пребывания системы в состоянии C(l)=j с момента $t_{co\delta}(l)$ до перехода системы в другое состояние определяется случайным образом в соответствии с показательным законом распределения с параметром λ_j . При этом $t_{co\delta}(l+1)=t_{co\delta}(l)+\tau(l)$.

Для каждого события l число попаданий $R_i(l)$ системы в состояние i в событиях с 1-го по l равно числу вхождений числа i в множество $\{C(1),...,C(l)\}$, $v_i(l) = \frac{R_i(l)}{l}, \;\; \delta_l = \max(|v_i(l) - v_i(K-1)|; i=1,...,5).$

Общее время $T_i(K)$ пребывания системы в состоянии i с момента $t_{coo}(1)$ до $t_{coo}(K+1)$ находится следующим образом: $T_i(K) = \sum_{l=1}^K \tau(l) \cdot \delta_{iC(l)} = \sum_{\substack{i=l \ 1 < l < K}} \tau(l)$.

Доля $\Delta_i(K)$ времени пребывания системы в состоянии i в период с $t_{co\delta}(1)$ до $t_{co\delta}(K+1)$ равна $\Delta_i(K) = \frac{T_i(K)}{t_{co\delta}(K+1) - t_{co\delta}(1)}.$

В разделе отчета Анализ результатов и выводы следует привести:

- граф состояний марковского процесса;
- значение K , удовлетворяющее условию из пункта 6 задания;
- таблицу следующего вида

i	1	2	3	4	5
r_i	r_1	r_2	r_3	r_4	r_5
<i>v_i</i> (100)					
$v_i(K)$					
$\Delta_i(100)$					
$\Delta_i(K)$					

Краткие теоретические сведения

<u>Опр.</u> Случайный процесс $X_t, t \geq 0$ называется марковским, если для любого целого неотрицательного m, любых моментов времени $0 \leq s_1 < s_2 < ... < s_m < s$, t > 0, любого набора состояний $E_{i_1}, E_{i_2}, ..., E_{i_m}, E_i, E_j$ выполнено равенство $P(X_{s+t} = E_j | X_{s_1} = E_{i_1}; ...; X_{s_m} = E_{i_m}; X_s = E_i) = P(X_{s+t} = E_j | X_s = E_i)$

<u>Опр.</u> Процесс X_t называется однородным (по времени), если условная вероятность $P(X_{s+t} = E_j | X_s = E_i)$ перехода из состояния E_i в состояние E_j не зависит от s.

Опр. матрицы интенсивностей перехода

$$p_{ii} = P(X_{s+t} = E_i | X_s = E_i);$$

 $P(t) = ||p_{ij}(t)||$ - матрица вероятностей перехода за время t.

Предполагаем, что переходные вероятности $p_{ij}(t)$ дифференцируемы в нуле:

$$p'_{ij}(0) = \lambda_{ij}, \;$$
при $i \neq j \; p'_{ij}(t) = \lambda_{ij}t + o(t); \; p'_{ii}(t) = 1 + \lambda_{ii}t + o(t)$

 $P'(0) = \Lambda = \|\lambda_{ij}\|$ - матрица интенсивностей (плотность вероятностей) перехода.

Опр.

Ориентированный граф состояний, вершины которого (обозначаемых прямоугольниками) служат состояния E_i системы, а стрелками обозначены возможные непосредственные переходы из состояния E_i в состояние E_j . При этом каждой стрелке прописана соответствующая плотность вероятности перехода λ_{ij} , $(\lambda_{ij}>0)$.

Опр.

Пределы $p_i = \lim p_i(t), t \to \infty$, если они существуют, называются *предельными* (или финитными) *вероятностями состояний*.

<u>Опр.</u> Распределение вероятностей состояний, которое не зависит от времени $p_i(t+\tau) = p_i(t) = p_i$ для любых $t, \tau \ge 0$ и любых i=1,2,... называется стационарным.

<u>Опр.</u> Дифференциальные уравнения Колмогорова для вероятностей состояний:

$$\frac{dp_i}{dt} = \lambda_{ii}p_i(t) + \sum_{i \neq j} \lambda_{ji}p_j(t) = \sum_{i \neq j} \lambda_{ji}p_j(t) - p_i(t) \sum_{i \neq j} \lambda_{ij}, i = 1, 2, \dots$$

Формулы для нахождения стационарного распределения:

$$\begin{cases} \sum_{i \neq j} \lambda_{ji} p_j - p_i \sum_{i \neq j} \lambda_{ij} = 0, i = 1, 2, \dots, n \\ p_1 + p_2 + \dots + p_n = 1 \end{cases}$$

Средства языка программирования Python, которые использованы в программе расчета:

пр.dot(A, B) - умножение матриц A и B пр.max(A) - находит максимальный элемент в матрице пр.abs(A) - модуль пр. $random.random_sample()$ - возвращает случайное число из полуинтервала [0,1)

Результаты расчетов

Матрица интенсивностей однородного марковского процесса с непрерывным временем $\Lambda =$

1 Построить граф состояний марковского процесса.

2 Выписать систему дифференциальных уравнений Колмогорова для вероятностей состояний (с заданными интенсивностями).

$$p_1'(t) = p_2 + p_4 - 3p_1$$

$$p_2'(t) = p_1 + p_3 + p_5 - 3p_2$$

$$p_3'(t) = p_2 + p_4 + p_5 - 3p_3$$

$$p_4'(t) = p_1 + p_2 + p_3 - 3p_4$$

$$p_5'(t) = p_1 + p_3 + p_4 - 2p_5$$

$$p_1 + p_2 + p_3 + p_4 + p_5 = 1$$

3. Написать систему уравнений для нахождения стационарных вероятностей.

$$\begin{array}{lll} 0 = p_2 + p_4 - 3p_1 & 3p_1 = p_2 + p_4 \\ 0 = p_1 + p_3 + p_5 - 3p_2 & 3p_2 = p_1 + p_3 + p_5 \\ 0 = p_2 + p_4 + p_5 - 3p_3 & \Rightarrow & 3p_3 = p_2 + p_4 + p_5 \\ 0 = p_1 + p_2 + p_3 - 3p_4 & 3p_4 = p_1 + p_2 + p_3 \\ 0 = p_1 + p_3 + p_4 - 2p_5 & 2p_5 = p_1 + p_3 + p_4 - \text{можно отбросить} \\ p_1 + p_2 + p_3 + p_4 + p_5 = 1 & p_1 + p_2 + p_3 + p_4 + p_5 = 1 \end{array}$$

- 4. Найти стационарное распределение вероятностей состояний $(r_1, r_2, r_3, r_4, r_5)$ Решая систему выше методом Гаусса получим: $r = (\frac{19}{147}, \frac{10}{49}, \frac{32}{147}, \frac{9}{49}, \frac{13}{49})$
- 5. Считая, что в начальный момент времени t_0 система находится в состоянии 1, провести моделирование развития системы до события с номером K.

Приложение

6. Составить таблицу 1 с данными о событиях:

Таблица 1

l	$t_{\cos}(l)$	C(l)	$\tau(l)$	$\delta(l)$
1	0.2071724587682856	4	0.36482469258730654	1.0
2	0.5719971513555921	5	0.870854586967099	0.5
3	1.442851738322691	3	0.05844556532950035	0.3333333
4	1.5012973036521915	5	0.35187397018415123	0.1666667
5	1.8531712738363426	3	0.35333675912402795	0.15
6	2.206508032960371	4	0.6231203548853144	0.1333333
7	2.829628387845685	5	0.09370954352233879	0.0952381
8	2.9233379313680237	3	0.7751411833028935	0.0892857
9	3.698479114670917	5	0.08495641951894357	0.0694444
10	3.7834355341898607	2	0.06754179723264647	0.1
11	3.850977331422507	1	0.18072282499669867	0.0909091
12	4.031700156419205	4	0.07822303761358021	0.0681818
13	4.109923194032786	5	0.20493969617152935	0.0512821
14	4.314862890204315	3	0.07223520624525961	0.0549451

15	4.387098096449575	5	0.6280640413699321	0.0428571
16	5.015162137819507	2	0.03371353610954905	0.0583333
17	5.048875673929056	1	0.16464961180415388	0.0551471
18	5.21352528573321	5	0.4755850915343966	0.0359477
19	5.689110377267607	3	0.1702207945293779	0.0409357
20	5.859331171796985	5	0.2667605741895696	0.0315789
21	6.126091745986554	3	0.1561411058657603	0.0357143
22	6.2822328518523145	5	0.5645307094374262	0.0281385
23	6.846763561289741	2	0.27210503247037154	0.0395257
24	7.118868593760112	1	0.45555250625068744	0.0380435
25	7.5744211000108	4	0.25058271065064636	0.035
26	7.825003810661446	3	0.08449667183511707	0.0292308
27	7.909500482496563	4	0.3116057114963377	0.031339
28	8.2211061939929	1	0.12618294726773682	0.031746
29	8.347289141260637	2	0.34254400531183427	0.0307882
30	8.689833146572472	1	0.6109822963429734	0.0287356
31	9.300815442915445	2	0.4071678642915746	0.027957
32	9.70798330720702	3	0.11425074060534199	0.0241935
33	9.822234047812362	2	0.05952967787923397	0.0255682
34	9.881763725691595	3	0.26484697889062037	0.0222816
35	10.146610704582216	5	0.7207564590091576	0.0210084
36	10.867367163591373	2	0.2887008608526554	0.0230159
37	11.156068024444028	1	0.18717979254052153	0.0232733
38	11.34324781698455	5	0.12158379075444292	0.0192034
39	11.464831607738992	3	0.03959313455916019	0.0195682
40	11.504424742298152	2	0.21615368897072867	0.0205128
41	11.72057843126888	3	0.6267765724405541	0.0182927
42	12.347355003709435	4	0.11593244393450883	0.0209059
43	12.463287447643944	1	0.006569210060604855	0.0199336
44	12.469856657704549	4	0.040141249394493116	0.019556
45	12.509997907099041	5	0.4655708715089359	0.0166667
46	12.975568778607977	3	0.4088444253869517	0.0164251
47	13.38441320399493	4	0.003771035719139266	0.0180389
48	13.38818423971407	3	0.21533224745289894	0.0155142

49	13.603516487166969	5	0.42032612890793425	0.0153061
50	14.023842616074903	3	0.14798790439984066	0.0146939
51	14.171830520474744	2	0.5126903891655238	0.0164706
52	14.684520909640268	1	0.19420561207673281	0.0165913
53	14.878726521717	2	0.2526159595894296	0.0156023
54	15.13134248130643	1	0.012223541262214886	0.0157233
55	15.143566022568644	5	0.7540833244522498	0.0138047
56	15.897649347020893	2	0.13032747590446464	0.0146104
57	16.027976822925357	1	0.28365646541096795	0.0147243
58	16.311633288336324	4	0.1469569821804439	0.0148215
59	16.45859027051677	1	0.22459621640231014	0.0140269
60	16.68318648691908	5	0.9581490488172707	0.0127119
61	17.64133553573635	2	0.08880507253668936	0.013388
62	17.73014060827304	4	0.1126605754757716	0.0137493
63	17.84280118374881	3	0.10724510248558035	0.0122888
64	17.950046286234393	2	0.05863231769718089	0.0126488
65	18.008678603931575	4	0.19359022113569468	0.0129808
66	18.202268825067268	1	0.379038034854981	0.0125874
67	18.58130685992225	5	1.3984099054707932	0.0115332
68	19.979716765393043	2	0.32336111364431824	0.0118525
69	20.30307787903736	1	0.194604783172245	0.0119352
70	20.497682662209606	5	0.5302788816951487	0.0109731
71	21.027961543904755	2	0.4174187339985589	0.0112676
72	21.445380277903315	4	0.3215273787525897	0.0117371
73	21.766907656655903	3	0.8657608535218065	0.0108447
74	22.63266851017771	5	0.07091158092265502	0.0103665
75	22.703580091100363	3	0.11593326775575802	0.0104505
76	22.81951335885612	5	0.14700309914445267	0.01
77	22.966516458000573	3	0.2766843430739584	0.010082
78	23.243200801074533	2	0.041809590268242304	0.010323
79	23.285010391342777	1	0.2844967866244482	0.0105485
80	23.569507177967225	5	0.577293885924168	0.0094937
81	24.14680106389139	2	0.49319373550967965	0.0098765
82	24.639994799401073	1	0.7914431335277927	0.0100873

83	25.431437932928866	2	0.4748755997170352	0.0095504
84	25.9063135326459	4	0.07222125766513644	0.0101836
85	25.978534790311038	1	0.03446677661601817	0.0096639
86	26.013001566927056	2	0.08714713872657673	0.0091655
87	26.10014870565363	1	0.4490408885207332	0.0093558
88	26.549189594174365	2	0.01698669691003637	0.0088819
89	26.5661762910844	3	0.24115104603989804	0.0089377
90	26.8073273371243	4	0.8384295170464957	0.0094881
91	27.645756854170795	3	0.031012781706990594	0.0086691
92	27.676769635877786	2	0.7106542402525218	0.0084806
93	28.387423876130306	3	0.7604152684611672	0.0084151
94	29.147839144591472	2	0.5536885437372241	0.0082361
95	29.701527688328696	4	0.023178178352750725	0.0089586
96	29.724705866681447	3	0.2977988251257589	0.008114
97	30.022504691807207	5	0.23223052199862057	0.0081615
98	30.254735213805827	2	0.2688141137145485	0.0078898
99	30.523549327520374	3	0.7302449282624908	0.0078334
100	31.253794255782864	4	0.5817556921892121	0.0084848
		•••		
7661	2882.0156602418415	2	0.07502718597208265	0.0001009
7662	2882.0906874278135	4	0.5576377327060493	0.0001046
7663	2882.6483251605196	3	0.16092787840988257	0.0001
7664	2882.8092530389295	5	0.7684430132759215	0.0001043
7665	2883.5776960522053	2	0.18910845870471726	0.0001009
7666	2883.76680451091	3	0.5317396291254142	0.0001
	l .			i e

7. Составить таблицу 2 с данными о состояниях следующего вида:

Таблица 2

i	$R_i(100)$	$v_i(100)$	$T_i(100)$	$\Delta_i(100)$
1	17	0.17	4.78678	0.15418
2	23	0.23	6.11848	0.19707
3	23	0.23	6.9139	0.22269
4	16	0.16	3.49677	0.11263
5	21	0.21	9.93787	0.320095

8. Составить таблицу 3 с данными о состояниях следующего вида:

Таблица 3

таолица 3					
i	$R_i(K)$	$v_i(K)$	$T_i(K)$	$\Delta_i(K)$	
1	1073	0.13997	362.9253	0.12586	
2	1740	0.22698	589.84544	0.20455	
3	1792	0.23376	600.74503	0.20833	
4	1521	0.19841	536.19230	0.18595	
5	1540	0.20089	794.05873	0.27537	

Анализ результатов и выводы

K = 7666

i	1	2	3	4	5
r_i	0.12925	0.20408	0.21769	0.18367	0.26531
$v_i(100)$	0.17	0.23	0.23	0.16	0.21
$v_i(K)$	0.13997	0.22698	0.23376	0.19841	0.20089
$\Delta_i(100)$	0.15418	0.19707	0.22269	0.11263	0.3201
$\Delta_i(K)$	0.12586	0.20455	0.20833	0.18595	0.27537

Литература по теории случайных процессов

- 1. Булинский А. В., А. Н. Ширяев А. Н. Теория случайных процессов: Учебник для вузов. М.: ФИЗМАТЛИТ, 2005.
- 2. Вентцель Е. С., Овчаров Л. А. Теория случайных процессов и ее инженерные приложения: Учеб. пособие для вузов. М.: Высшая школа, 2007.
- 3. Лобузов А.А., Гумляева С.Д., Норин Н.В. Задачи по теории случайных процессов. М.: МИРЭА, 1993.
- 4. Письменный Д. Т. Конспект лекций по теории вероятностей, математической статистике и случайным процессам М.: Айрис-пресс, 2007.
- 5. Прохоров А. В., Ушаков В. Г., Ушаков Н. Г. Задачи по теории вероятностей. Основные понятия, предельные теоремы, случайные процессы. М.: КДУ, 2009.
- 6. Сборник задач по теории вероятностей, математической статистике и теории случайных функций: Учеб. пособие для вузов / Б.Г. Володин, М.П.Ганин, И.Я. Динер и др.; Под ред. А. А. Свешникова. СПб.: Лань, 2008.
- 7. Кемени Д., Снелл Д. Конечные цепи Маркова. М.: Наука, 1970.
- 8. Кемени Д., Снелл Д., Кнепп А. Счетные цепи Маркова. М.: Наука, 1987.
- 9. Чжун Кай-Лай. Однородные цепи Маркова. М.: Мир, 1964.
- 10. Карлин С. Основы теории случайных процессов. М.: Мир, 1971.
- 11. Гихман И.И., Скороход А.В. Введение в теорию случайных процессов: Учеб. пособие для вузов. — М.: Наука, 1975.
- 12. Ивченко Г. И., Каштанов В. А., Коваленко И. Н. Теория массового обслуживания: Учеб. пособие для вузов. М.: Либроком, 2012.

Приложение

```
import numpy as np
 A = np.array([[-3, 1, 0, 1, 1], [1, -3, 1, 1, 0], [0, 1, -3, 1, 1], [1, 0, 1, -3, 1], [0, 1,
  1, 0, -2]])
  # интенсивность выхода из состояния і
  def OutputIntensity(l, i): # l- lambda_ij - строка матрицы А, i - string number
    for k in range(len(l)):
      if k != i:
        sum += l[k]
    return sum
  def GetItFrequency(sequenceOfStates, numberOfReturns, returnFrequency, pastFrequecy):
    #print("сработала функция GetItFreq")
    for i in range(5):
      numberOfReturns[i] = sequenceOfStates.count(i)
      #print("количество входов в состояние "+str(i)+":", numberOfReturns[i])
      pastFrequency[i] = returnFrequency[i]
      returnFrequency[i] = numberOfReturns[i] / len(sequenceOfStates)
      #print("частота вхождений в состояние(returnFreq)"+str(i)+":", returnFrequency[i])
  def PrCheck(freq, pastfreq): # проверка условия
    #print("PrCheck work...")
    a=[]
    for i in range(5):
       a.append(np.abs(freq[i] - pastfreq[i])) \# разница последней и предпоследней частоты
     # print("массив разниц частот:",а)
     # print("Значение отклонения delta 1 =", round(np.max(a), 8))
    return np.max(a) # максимум среди них
  def Delta(T, tK, t1):
    return T/(tK - t1)
 time = [0] # время
  state = [0, 1, 2, 3, 4] # - состояния системы
  i = state[0]
                    # начальное состояние
• j = 0
• numberOfReturns = [0, 0, 0, 0, 0] # R(1) -число попаданий системы в состояние i=1...5
  returnFrequency = [0, 0, 0, 0, 0] # v(1) -частота попаданий
pastFrequency = [0, 0, 0, 0, 0]
■ Т = [0, 0, 0, 0, 0] # - общее время нахождения в i-том состоянии
  sequenceOfStates = []
# time.append(np.random.exponential(scale = 1/OutputIntensity(A[0], 0))) # scale =
  1/lambda[1]
• # переменные для вывода
1 = 0 # номер события
• tl = 0 # момент наступления события l
ullet # tau_l = time[i] - время пребывания в l-ом состоянии
```

```
# delta = round(np.max(a), 6) - отклонение
  #print("Определение первого состояния...")
  lam = OutputIntensity(A[i], i) # лямбда - интенсивность
  time.append(np.random.exponential(scale = 1/OutputIntensity(A[i], i))) # время нахождения в
  новом і-том состоянии
  #print("lambda i =", lam)
  if lam == 0:
    ј = і # ј - следующее состояние
  elif lam > 0:
    num=0
    cutState = [] # список соответствующих состояний
    cutLength = [] # список длин отрезков
    for k in range(len(A[i])):
      if A[i][k] > 0:
        num += 1
                  # подсчет количества отрезков
        cutLength.append(A[i][k]/lam)
        cutState.append(k)
                              # длина і-го отрезка
    nextState = np.random.random sample() # выбираем рандомное число из отрезка [0, 1], по
  которому определяем следующее состояние
    #print("рандомное число ", nextState)
    #print("список длин отрезков", cutLength)
    #print("список соответствующих состояний", cutState)
    cutStart = 0
    cutEnd = cutLength[0]
    buf = 0
    cut = False
    while cut == False:
      #print("проверка отрезка")
      #print("[", round(cutStart, 5), ",", round(cutEnd, 5), "]")
      if cutStart <= nextState and nextState < cutEnd:</pre>
        #print("для начала подходит")
        cut = True
        st = cutEnd - cutStart
      j = cutState[buf]
        sequenceOfStates.append(j)
        1+=1
        tl += time[len(time)-1]
        T[i] += time[len(time)-1]
        #print("j=", j, end="\n")
        GetItFrequency(sequenceOfStates, numberOfReturns, returnFrequency, pastFrequency)
      else:
        #print("для начала не подходит, следующий отрезок")
        cutEnd = cutEnd + cutLength[buf]
        cutStart += cutLength[buf-1]
    tsob1 = tl
    time.append(np.random.exponential(scale = 1/OutputIntensity(A[j], j)))
    print(1, "\t", t1, "\t", j+1, "\t", time[len(time)-1], "\t", round(PrCheck(returnFrequency,
  pastFrequency) ,7))
  while PrCheck(returnFrequency, pastFrequency) >= 0.0001:
    if 1 == 100:
```

```
print(100, "\tRi(100) \tvi(100) \tTi(100) \tDelta i(100) -----")
      for i in range(5):
        print(i+1, "\t", numberOfReturns[i], "\t", returnFrequency[i], "\t", T[i], "\t",
  Delta(T[i], tl, tsob1), end="\n")
     print("----")
                         # предыдущее состояние
    lam = OutputIntensity(A[i], i)
    #time.append(np.random.exponential(scale = 1/OutputIntensity(A[i], i))) # время нахождения
  в новом і-том состоянии
    #print("Определение следующего состояния...")
    #print("lambda i =", lam)
    if lam == 0:
      j = i
                    # ј - следующее состояние
    elif lam > 0:
     num=0
     cutState = [] # список соответствующих состояний
     cutLength = [] # список длин отрезков
     for k in range(len(A[i])):
      if A[i][k] > 0:
          num += 1
                   # подсчет количества отрезков
          cutLength.append(A[i][k]/lam)
          cutState.append(k) # длина i-го отрезка
      nextState = np.random.random sample() # выбираем рандомное число из отрезка [0, 1], по
  которому определяем следующее состояние
      # print("рандомное число ", nextState)
      #print("список длин отрезков", cutLength)
      #print("список соответствующих состояний", cutState)
      cutStart = 0
     cutEnd = cutLength[0]
     cut = False
     buf = 0
      while cut == False:
       # print("проверка отрезка [", round(cutStart, 5), ",", round(cutEnd, 5), "]")
       if cutStart <= nextState and nextState < cutEnd:</pre>
          #print("подходит")
         cut = True
         st = cutEnd - cutStart
          j = cutState[buf] # определили новое состояние
          sequenceOfStates.append(j)
          1+=1
          tl += time[len(time)-1]
          T[i] += time[len(time)-1] \# общее время пребывания в событии ј
          #print("j=", j, end="\n")
          GetItFrequency(sequenceOfStates, numberOfReturns, returnFrequency, pastFrequency)
          #print("не подходит, следующий отрезок")
          buf+=1
          cutEnd = cutEnd + cutLength[buf]
          cutStart += cutLength[buf-1]
      time.append(np.random.exponential(scale = 1/OutputIntensity(A[j], j)))
      print(l, "\t", tl, "\t", j+1, "\t", time[len(time)-1], "\t",
  round(PrCheck(returnFrequency, pastFrequency) ,7))
print()
 for i in range(5):
    print(i+1, "\t", numberOfReturns[i], "\t", returnFrequency[i], "\t", T[i], "\t",
  Delta(T[i], tl, tsob1), end="\n")
```