(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 27. Dezember 2001 (27.12.2001)

PCT

(10) Internationale Veröffentlichungsnummer WO 01/98258 A1

- (51) Internationale Patentklassifikation⁷: C07C 235/34, A61K 7/42, 47/16, C11B 5/00, A23L 3/00
- (21) Internationales Aktenzeichen:

PCT/EP01/06567

(22) Internationales Anmeldedatum:

11. Juni 2001 (11.06.2001)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

100 30 880.5

23. Juni 2000 (23.06.2000) D

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): HAARMANN & REIMER GMBH [DE/DE]; 37601 Holzminden (DE).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): LEY, Jakob, Peter [DE/DE]; Schubertstrasse 5a, 37603 Holzminden (DE).
- (74) Anwalt: MANN, Volker; Bayer Aktiengesellschaft, 51368 Leverkusen (DE).

- (81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

- mit internationalem Recherchenbericht
- vor Ablauf der für Änderungen der Ansprüche geltenden Frist; Veröffentlichung wird wiederholt, falls Änderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: 3,4-DIHYDROXYMANDELIC ACID ALKYLAMIDES AND USE THEREOF

(54) Bezeichnung: 3,4-DIHYDROXYMANDELSÄUREALKYLAMIDE UND IHRE VERWENDUNG

(57) Abstract: The invention relates to novel 3,4-dihydroxymandelic acid alkylamides and cosmetic and pharmaceutical preparations, or foodstuffs, containing the above compounds which can support the natural defence mechanisms against free radicals and reactive oxygen compounds, or protect the oxidation-sensitive components in cosmetics, pharmaceuticals, or foodstuffs and luxury foodstuffs against auto-oxidation.

(57) Zusammenfassung: Neue 3,4-Dihydroxymandelsäurealkylamide sowie kosmetische und pharmazeutische Zubereitungen oder Nahrungsmittel, die diese Verbindungen enthalten, können in physiologischen Systemen die natürlichen Abwehrmechanismen gegen freie Radikale und reaktive Sauerstoffverbindungen unterstützen oder in Kosmetika, Pharmazeutika oder Nahrungs- oder Genussmitteln deren oxidationsempfindlichen Bestandteile vor Autoxidation schützen.

10

20

25

3,4-Dihydroxymandelsäurealkylamide und ihre Verwendung

Die Erfindung betrifft N-Alkyl-2-(3,4-dihydroxyphenyl)-2-hydroxy-essigsäureamide, im folgenden 3,4-Dihydroxymandelsäurealkylamide genannt, sowie diese Verbindungen enthaltende kosmetische und/oder pharmazeutische Zubereitungen und Nahrungsmittel.

Für kosmetische und/oder dermatologische Zubereitungen werden Wirkstoffe gesucht, die in physiologischen Systemen, insbesondere in oder auf der Haut, der Nägel oder Haare von Menschen und Tieren, die natürlichen Abwehrmechanismen gegen freie Radikale und reaktive Sauerstoffverbindungen unterstützen oder als Schutzstoffe in Kosmetika, Pharmazeutika oder Nahrungsmitteln deren oxidationsempfindlichen Bestandteile vor Autoxidation schützen.

Antioxidantien (Oxidationsinhibitoren) sind in der Regel organische Verbindungen, die unerwünschte, durch Sauerstoff-Einwirkungen u.a. oxidative Prozesse bedingte Veränderungen in den zu schützenden Stoffe hemmen oder verhindern (Römpp Lexikon Chemie 10. Auflage, 229 (1996)). Viele Antioxidantien fungieren gleichzeitig als Radikalfänger und/oder als Komplexbildner für Schwermetallionen.

Die Aufgabe der vorliegenden Erfindung liegt darin, Antioxidantien mit starker spezifischer radikalfangender und/oder antioxidativer Wirkung zur Verwendung in kosmetischen und pharmazeutischen Zubereitungen sowie zum Schutz von Zellen und Gewebe von Menschen und Tieren zur Verfügung zu stellen.

Es wurden neue 3,4-Dihydroxymandelsäurealkylamide der allgemeinen Formel

wobei

R¹, R² und R³ unabhängig voneinander Wasserstoff, Niederalkyl oder Gruppen -O-R⁶ darstellen, in denen R⁶ Wasserstoff oder Niederalkyl bedeutet,

und

R⁴ Wasserstoff, ein Alkylrest mit 1 bis 22 Kohlenstoffatomen oder ein Alkenyl-10 rest mit 2 bis 22 Kohlenstoffatomen darstellt,

und

R⁵ ein Alkylrest mit 1 bis 22 Kohlenstoffatomen oder ein Alkenylrest mit 2 bis 22 Kohlenstoffatomen darstellt,

einschließlich deren Stereoisomere oder deren Gemische,

gefunden.

20

15

Überraschenderweise sind die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide sehr gute Radikalfänger und besonders starke Antioxidantien.

Bevorzugt sind die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide aufgrund ihrer amphiphilen Struktur als Antioxidantien für hochungesättigte Lipide und/oder für mehrphasige Gemische solcher Lipide z.B. mit Wasser geeignet. Insbesondere sind die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide in der

10

Lage, die schädlichen Einflüsse freier Radikale und/oder oxidativer Prozesse, die durch UV-Licht induziert werden, auf und/oder in der menschlichen Haut zu unterdrücken und die natürlichen antioxidativen Prozesse zu unterstützen. Vorteilhaft ist zudem, dass die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide in wässrigen Lösungen oder wasserhaltigen Zubereitungen, insbesondere bei pH-Werten zwischen 4 und 10, nicht zu den freien Säuren hydrolisieren.

Niederalkyl steht im allgemeinen für einen kurzkettigen gesättigten, geradkettigen, cyclischen oder verzweigten Kohlenwasserstoffrest mit bevorzugt 1 bis 4 Kohlenstoffatomen. Im Einzelnen seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl, Cyclopropyl, n-Butyl, sec.-Butyl, Isobutyl, tert.-Butyl, Cyclopropylmethyl oder die verschiedenen Isomere des Methylcyclopropylrests. Insbesondere bevorzugt sind Methyl und Ethyl.

15 Alkyl mit 1 bis 22 Kohlenstoffatomen steht im allgemeinen für einen gesättigten, geradkettigen, cyclischen oder verzweigten Kohlenwasserstoffrest. Bevorzugt enthält der Rest 1 bis 18, insbesondere bevorzugt 1 bis 12 Kohlenstoffatome. Im Einzelnen seien genannt: Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec.-Butyl, Isobutyl, tert.-Butyl, die jeweiligen verschiedenen geradkettigen oder verzweigten Isomere des 20 Pentyl-, Hexyl-, Heptyl-, Octyl-, Nonyl-, Decyl-, Undecyl- und Dodecylrests, Cyclopentyl, Cyclopentylmethyl, Cyclopentylethyl, Cyclopentylpropyl, die verschiedenen Isomere des Methylcyclopentylrests, Cyclohexyl, Cycloheptyl, Cyclooctyl, Menthyl, Isomenthyl, Homomenthyl, Norbornyl, Bornyl, Lauryl, Myristyl, Cetyl, Isocetyl, Stearyl und Isostearyl. Insbesondere bevorzugt sind Methyl, Ethyl, n-25 Propyl, Isopropyl, Cyclopropyl, n-Butyl, sec.-Butyl, Isobutyl, tert.-Butyl, Cyclopentyl, Cyclohexyl, Menthyl, n-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl und Lauryl.

Alkenyl mit 2 bis 22 Kohlenstoffatomen steht im allgemeinen für einen ungesättigten geradkettigen, cyclischen oder verzweigten Kohlenwasserstoffrest. Bevorzugt enthält der Rest 2 bis 20, insbesondere bevorzugt 2 bis 12 Kohlenstoffatome. Im Einzelnen

seien genannt: Ethenyl, 1- oder 2-Propenyl, 1-, 2- oder 3-Butenyl, 2-Methyl-1-propenyl, 2-Methyl-2-propenyl, 1,3-Butadienyl, 1,3-Pentadienyl, 1,4-Pentenyl, 2,4-Pentenyl, die jeweiligen verschiedenden geradkettigen, cyclischen oder verzweigten Isomere des Pentenyl-, Hexenyl-, Heptenyl-, Octenyl-, Nonenyl und Decenylrests sowie der Oleyl-, Linolyl-, Linolenyl-, Arachidyl- und Elaidylrest. Insbesondere bevorzugt sind Ethenyl, 1- oder 2-Propenyl, 1-, 2- oder 3-Butenyl, 2-Methyl-1-propenyl, 2-Methyl-2-propenyl, 3-Methyl-1-pentenyl, 3-Methyl-2-pentenyl, 3-Methyl-3-pentenyl, Cyclopentenyl, Cyclopentenyl, Pinenyl, Norbornenyl und Bornenyl.

10

5

Bevorzugt sind die 3,4-Dihydroxymandelsäurealkylamide der Formel

wobei

15

R¹, R² und R³ unabhängig voneinander Wasserstoff, Methyl, tert.-Butyl, Hydroxy oder Methoxy darstellen,

und

20

R⁴ Wasserstoff darstellt,

und

25 R⁵ ein Alkylrest mit 1 bis 18 Kohlenstoffatomen oder ein Alkenylrest mit 2 bis 20 Kohlenstoffatomen darstellt,

einschließlich deren Stereoisomere oder deren Gemische.

Insbesondere bevorzugt sind die 3,4-Dihydroxymandelsäurealkylamide der Formel

wobei

5

R¹, R², R³ und R⁴ Wasserstoff darstellen,

10 und

R⁵ ein Alkylrest mit 1 bis 12 Kohlenstoffatomen oder ein Alkenylrest mit 2 bis
 12 Kohlenstoffatomen darstellt,

einschließlich deren Stereoisomere oder deren Gemische.

Als Einzelverbindungen seien beispielsweise 2-(3,4-Dihydroxyphenyl)-*N-n*-hexyl-2-hydroxyessigsäureamid *N*-Cyclohexyl-2-(3,4-dihydroxyphenyl)- 2-hydroxyessigsäureamid 2-(3,4-Dihydroxyphenyl)-*N*-(2-ethylhexyl)-2-hydroxyessigsäureamid genannt.

Die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide unterstützen in physiologischen Systemen der Haut, der Haare oder der Nägel die natürlichen Abwehrmechanismen gegen freie Radikale und reaktive Sauerstoffverbindungen und schützen in Kosmetika, Pharmazeutika oder Nahrungsmitteln deren oxidationsempfindlichen Bestandteile vor Autoxidation oder Photooxidation.

20

25

Die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide können bevorzugt in kosmetischen oder pharmazeutischen Präparaten, bevorzugt zum Schutz von Zellen und Geweben von Säugern, insbesondere der Haut des Menschen, sowie in Nahrungsmitteln gegenüber dem schädlichen Einfluß von freien Radikalen und reaktiven Sauerstoffspezies verwendet werden. Selbstverständlich können die erfindungsgemäßen Zubereitungen auch analog in anderen Einsatzgebieten eingesetzt werden.

Die Menge der 3,4-Dihydroxymandelsäurealkylamide in den erfindungsgemäßen kosmetischen oder pharmazeutischen Zubereitungen beträgt 0,001 Gew.-% bis 30 Gew.-%, bevorzugt 0,001 bis 20 Gew.-%, besonders bevorzugt 0,01 Gew.-% bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung.

3,4-Dihydroxymandelsäurealkylamide im Sinne der Erfindung wurden bisher nicht beschrieben. In Helvetica Chimica Acta 1963, Seiten 2271 ff. wird die Darstellung des 3,4-Dihydroxymandelsäureamids durch Hydrolyse und anschließende Abspaltung der Benzylgruppen des 2-(3,4-Dibenzyloxyphenyl)-2-hydroxyacetonitrils beschrieben. Dieses Verfahren ist allerdings für die Darstellung der erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide prinzipiell nicht geeignet.

20

25

30

5

10

15

Die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide können aber mit an sich bekannten Amidsyntheseverfahren hergestellt werden, dergestalt, dass man eine aktivierte, gegebenenfalls an den OH-Gruppen geschützten 3,4-Dihydroxymandelsäure mit einem Alkylamin der allgemeinen Formel HNR⁴R⁵ oder einem Ammoniumsalz der allgemeinen Formel (H₂NR⁴R⁵)⁺A⁻, wobei die Reste R⁴ und R⁵ die oben genannte Bedeutung haben und A⁻ ein anorganisches oder organisches Anion, beispielsweise Halogenid, Sulfat, Hydrogensulfat oder Acetat bedeutet, gegebenenfalls in Gegenwart von Lösemitteln und Hilfsbasen umsetzt. Als aktivierte Säurederivate können die Säurechloride, die Säureanhydride oder Säureester von z.B. gegebenenfalls substituierten Phenolen, N-Hydroxysuccinimid oder N-Hydroxybenzotriazol verwendet werden. Als Schutzgruppen verwendet man bevorzugt Acyl-, Carba-

10

15

20

25

mat- oder Ethergruppen, z.B. Acetyl-, Benzoyl-, Methoxycarbonyl-, tert.-Butoxy-carbonyl-, Allyl- oder Benzylgruppen. Als Lösungsmittel können z.B. Wasser, Aceton, 1,4-Dioxan, N,N-Dimethylformamid, Tetrahydrofuran, Essigsäureethylester, Chloroform oder auch Gemische der letztgenannten Lösemittel verwendet werden. Als Hilfsbasen können z.B. Ammonium-, Alkalimetall- oder Erdalkalimetall-carbonate, -hydrogencarbonate, -hydroxide, tert. Amine und anorganische oder organische basische Ionenaustauscher verwendet werden.

Die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide werden besonders bevorzugt aus gegebenenfalls an den Hydroxygruppen mit Acetyl- oder Methoxycarbonylgruppen blockierten 3,4-Dihydroxymandelsäure-N-succinimidylestern mit Alkylaminen oder deren Ammoniumsalzen in einem wasserhaltigen Lösungsmittelgemisch, bevorzugt einem Wasser/1,4-Dioxan- oder Wasser/Aceton-Gemisch mit einer der oben genannten Hilfsbasen bei 5 bis 100°C hergestellt. Vorteilhafterweise werden die gegebenenfalls an den Hydroxygruppen mit Acetyl- oder Methoxycarbonylgruppen blockierten 3,4-Dihydroxymandelsäure-N-succinimidylester aus der entsprechenden freien Säure und N-Hydroxysuccinimid (NHOSu) mittels eines Carbodiimids, vorzugsweise N,N'-Dicyclohexylcarbodiimid (DCC), in einem aprotischen Lösungsmittel, vorzugsweise 1,4-Dioxan, Diethylether, tert.-Butylmethylether, Essigsäureethylester oder Tetrahydrofuran, bei 0 bis 50°C, vorzugsweise bei 5 bis 30°C, dargestellt, das gelöste Rohprodukt durch Filtration vom Rückstand getrennt und das Filtrat direkt im Sinne der Erfindung mit dem in Wasser oder Wasser/1,4-Dioxan- oder Wasser/Aceton-Gemisch vorgelegten Alkylamin oder dessen Ammoniumsalz und einer der oben genannten Hilfsbasen umgesetzt. Das Verfahren wird durch das folgende Schema am Beispiel 2-(3,4-Dihydroxyphenyl)-N-(2-ethylhexyl)-2-hydroxyessigsäureamid verdeutlicht:

Als 3,4-Dihydroxymandelsäuren werden insbesondere 2-(3,4-Dihydroxyphenyl)-2-hydroxyessigsäure (3,4-Dihydroxymandelsäure) sowie deren Stereoisomeren oder Gemische verwendet.

Als Alkylamine werden insbesondere *n*-Hexylamin, 2-Ethylhexylamin oder Cyclohexylamin oder deren jeweiligen Ammoniumsalze verwendet.

Die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide können aber auch durch direkte Kondensation der freien Säuren mit einem Alkylamin der allgemeinen Formel HNR⁴R⁵, wobei die Reste R⁴ und R⁵ die oben genannte Bedeutung haben, mit oder ohne Lösemittel erhalten werden. Die Reaktion wird im folgenden Schema am Beispiel 2-(3,4-Dihydroxyphenyl)-N-hexyl-2-hydroxyessigsäureamid erläutert:

5

$$\begin{array}{c} OH \\ OH \\ OH \\ \end{array} \begin{array}{c} H_2N \\ \\ -H_2O \\ \end{array} \begin{array}{c} OH \\ OH \\ OH \\ \end{array}$$

Als Kondensationsmittel können z.B. Carbodiimide, bevorzugt *N,N'*-Dicyclo-hexylcarbodiimid, und als Lösemittel z.B 1,4-Dioxan, Diethylether, tert.-Butyl-methylether, Essigsäureethylester oder Tetrahydrofuran verwendet werden.

- Die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide erhält man aus diesen Reaktionsgemischen durch an sich bekannte Reinigungsschritte; gegebenenfalls müssen noch vorhandene Schutzgruppen mit an sich bekannten Methoden abgespalten werden.
- Die erfindungsgemäßen kosmetischen und pharmazeutischen Zubereitungen ent-10 halten die 3,4-Dihydroxymandelsäurealkylamide in einer wirksamen Menge, nebst anderen, ansonsten üblichen Zusammensetzungsbestandteilen. Sie 0,001 Gew.-% bis 30 Gew.-%, bevorzugt 0,001 bis 20 Gew.-%, insbesondere aber 0,01 Gew.-% bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, an 15 den erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamiden und können dabei als "Wasser in Öl"-, "Öl in Wasser"-, "Wasser in Öl in Wasser"- oder "Öl in Wasser in Öl"-Emulsionen, als Mikroemulsionen, als Gele, als Lösungen z.B. in Ölen, Alkoholen oder Siliconölen, als Stifte, als Seifen, als Aerosole, Sprays oder auch Schäume vorliegen. Weitere übliche kosmetische Hilfs- und Zusatzstoffe können in 20 Mengen von 5 – 99,999 Gew.-%, vorzugsweise 10 - 80 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, enthalten sein. Ferner können die Formulierungen Wasser in einer Menge bis zu 99,999 Gew.-%, vorzugsweise 5 - 80 Gew.-%, bezogen auf das Gesamtgewicht der Formulierung, aufweisen.
- Die erfindungsgemäßen kosmetischen oder pharmazeutischen Zubereitungen werden mit üblichen, dem Fachmann wohlvertrauten Verfahren hergestellt, dergestalt, dass eins oder mehrere der 3,4-Dihydroxymandelsäurealkylamide in kosmetischen oder pharmazeutischen Zubereitungen eingearbeitet werden, die wie üblich zusammengesetzt sind und bevorzugt zur Behandlung, dem Schutz, der Pflege und der Reinigung der Haut, der Nägel oder der Haare und als Schminkprodukte in der dekorativen Kosmetik dienen können.

Die erfindungsgemäßen Nahrungs- oder Genussmittel, insbesondere bevorzugt Zubereitungen zur Ernährung oder Nahrungsmittelergänzung, enthalten die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide in einer wirksamen Menge, nebst anderen ansonsten üblichen Zusammensetzungsbestandteilen. Sie enthalten 0,001 bis 5 Gew.-%, bevorzugt 0,001 bis 1 Gew.-%, insbesondere aber 0,01 bis 0,5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung, an den erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamiden und können dabei beispielsweise als Feststoffe, Pasten, Emulsionen, Dispersionen oder auch als trinkbare flüssige Zubereitungen vorliegen. Weitere übliche Nahrungsmittelbestandteile, z.B. Fette, Öle, Pflanzenbestandteile, Bestandteile, nieder- und hochmolekulare Kohlenhydrate, Proteine, Peptide, Aminosäuren, Gewürze, Süßstoffe, anorganische und organische Salze, geschmacksmodulierende Mittel, Riech- und Aromastoffe, Verdickungsmittel, Konservierungs-Emulgatoren und Farbstoffe können in Mengen von 0,0001 99,999 Gew.-%, vorzugsweise 1 bis 90 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung, enthalten sein. Ferner können die Formulierungen Wasser in einer Menge bis zu 99,999 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung, aufweisen.

20

25

30

5

10

15

Die erfindungsgemäßen Nahrungs- oder Genussmittel werden mit den üblichen, dem Fachmann wohlvertrauten Verfahren hergestellt, dergestalt, dass eins oder mehrere der erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide in Zubereitungen zur Ernährung oder Nahrungsmittelergänzung eingearbeitet werden, die wie üblich zusammengesetzt sind und zu Ernährung dem Genuss- und/oder als Nahrungsmittelergänzung mit antioxidativer Wirkung für den Menschen oder für Tiere geeignet sind.

Zur Herstellung der erfindungsgemäßen kosmetischen und pharmazeutischen Zubereitungen oder der Nahrungs- oder Genussmittel können in einer weiteren Ausführungsform die erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide

auch vorher in Liposomen, z.B. ausgehend von Phosphatidylcholin, in Microsphären, in Nanosphären oder auch in Kapseln aus einer geeigneten Matrix, z.B. aus natürlichen oder synthetischen Wachsen, beispielsweise Bienenwachs, Carnaubawachs, Siliconwachs oder Paraffinwachse sowie Stearylalkohol, Eicosanol, Cetylalkohol, Stearin oder aus Gelatine, eingearbeitet werden.

Zur Anwendung werden die erfindungsgemäßen kosmetischen und dermatologischen Zubereitungen in der für Kosmetika üblichen Weise auf die Haut und/oder die Haare in ausreichender Menge aufgebracht.

10

15

20

25

30

5

Die erfindungsgemäßen kosmetischen und dermatologischen Zubereitungen können kosmetische Hilfs- und Zusatzstoffe enthalten, wie sie üblicherweise in solchen Zubereitungen vewendet werden, z.B. Sonnenschutzmittel (z.B. organische oder anorganische Lichtfiltersubstanzen, bevorzugt Mikropigmente), Konservierungsmittel, Bakterizide, Fungizide, Viruzide, Kühlwirkstoffe, Pflanzenextrakte, entzündungshemmende Wirkstoffe, die Wundheilung beschleunigende Stoffe (z.B. Chitin oder Chitosan und dessen Derivate), filmbildende Substanzen (z.B. Polyvinylpyrrolidone oder Chitosan oder dessen Derivate), gebräuchliche Antioxidantien, Vitamine (z.B. Vitamin C und Derivate, Tocopherole und Derivate, Vitamin A und Derivate), 2-Hydroxycarbonsäuren (z.B. Citronensäure, Äpfelsäure, L-, D-, oder dl-Milchsäure), Hautaufhellungsmittel (z.B. Kojisäure, Hydrochinon oder Arbutin), Hautfärbungsmittel (z.B. Walnussextrakte oder Dihydroxyaceton), Parfüme, Substanzen zum Verhindern des Schäumens, Farbstoffe, Pigmente, die eine färbende Wirkung haben, Verdickungsmittel, oberflächenaktive Substanzen, Emulgatoren, weichmachende, anfeuchtende und/oder feuchthaltende Substanzen (z.B. Glycerin oder Harnstoff), Fette, Öle, ungesättigte Fettsäuren oder deren Derivate (z.B. -Linolensäure, y-Linolensäure oder Arachidonsäure und deren jeweiligen natürlichen oder synthetischen Ester), Wachse oder andere übliche Bestandteile einer kosmetischen oder dermatologischen Formulierung wie Alkohole, Polyole, Polymere, Schaumstabilisatoren, Elektrolyte, organische Lösungsmittel, Silikonderivate oder Chelatbildner (z.B. Ethylendiamintetraessigsäure und Derivate).

Die jeweils einzusetzenden Mengen an kosmetischen oder dermatologischen Hilfsund Zusatzstoffen und Parfüm können in Abhängigkeit von der Art des jeweiligen Produkts vom Fachmann durch einfaches Ausprobieren leicht ermittelt werden.

5

10

15

20

25

30

Bevorzugt können die erfindungsgemäßen Zubereitungen zusätzlich noch eines oder mehrere der erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamide oder auch eines oder mehrere andere Antioxidantien enthalten. Vorteilhaft werden die Antioxidantien ausgewählt aus der Gruppe bestehend aus Aminosäuren (z.B. Glycin, Histidin, 3,4-Dihydroxyphenylalanin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide (D,L-Carnosin, D-Carnosin, L-Carnosin, Anserin) und deren Derivate, Carotinoide, Carotine (z.B. a-Carotin, β-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate, Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl- und N-Acylderivate oder deren Alkylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate sowie Phenolsäureamide phenolischer Benzylamine (z.B. Homovanillinsäure-, 3,4-Dihydroxyphenylessigsäure-, Ferulasäure-, Sinapinsäure-, Kaffeesäure-, Dihydroferulasäure-, Dihydrokaffeesäure-, Vanillomandelsäure- oder 3.4-Dihydroxymandelsäureamide des 3,4-Dihydroxybenzyl-, 2.3.4-Trihydroxybenzyl- bzw. 3,4,5-Trihydroxybenzylamins), Catecholoxime (z.B. 3,4-Dihydroxybenzaldoxim, 3,4-Dihydroxybenzaldehyd-O-ethyloxim), ferner (Metall-)chelatoren (z.B. 2-Hydroxyfettsäuren, Phytinsäure, Lactoferrin), Huminsäure, Gallensäuren, Gallenextrakte, Bilirubin, Biliverdin, Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und dessen Derivate (z.B. Ascorbylpalmitat, Magnesiumascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-Acetat), Vitamin A und Derivate (z.B. Vitamin-A-Palmitat), Rutinsäure und deren Derivate, Flavonoide (z.B. Quercetin, Glucosylrutin) und deren Derivate, Phenolsäuren (z.B. Gallussäure, Ferulasäure) und deren Derivate (z.B. Gallussäurepropylester, -ethylester, -octylester), Furfuryli-

10

denglucitol, Dibutylhydroxytoluol, Butylhydroxyanisol, Harnsäure und deren Derivate, Mannose und deren Derivate, Zink und dessen Derivate (z.B. ZnO, ZnSO₄), Selen und dessen Derivate (z.B. Selenomethionin), Stilbene und deren Derivate (z.B. Stilbenoxid, Resveratrol) und die erfindungsgemäß geeigneten Derivate dieser genannten Wirkstoffe.

Die Menge der weiteren Antioxidantien kann in den erfindungsgemäßen Zubereitungen im allgemeinen 0,001 bis 30 Gew.-%, bevorzugt 0,001 bis 20 Gew-%, besonders bevorzugt 0,001 bis 5 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitung, betragen.

Außer den erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamiden können selbstverständlich mehrere weitere Antioxidantien eingesetzt werden.

15 In den erfindungsgemäßen kosmetischen oder pharmazeutischen Zubereitungen können aber auch UV-A- und/oder UV-B-Filtersubstanzen eingesetzt werden, wobei die Gesamtmenge an Filtersubstanzen 0,1 bis 30 Gew.-%, vorzugsweise 0,5 bis 10 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen, betragen kann, wobei man zum Beispiel Sonnenschutzmittel für Haut und Haar erhält. Als UV-A-20 und/oder UV-B-Filtersubstanzen können beispielsweise 3-Benzylidencampherderivate (z.B. 3-(4-Methylbenzyliden)-dl-campher), Aminobenzoesäurederivate (z.B. 4-(N,N-Dimethylamino)benzoesäure-2-ethylhexylester oder Menthylanthranilat), 4-Methoxycinnamate (z.B. 2-Ethylhexyl-p-methoxycinnamat oder Isoamylp-methoxycinnamat), Benzophenone (z.B. 2-Hydroxy-4-methoxybenzophenon), 25 ein- oder mehrfach sulfonierte UV-Filter [z.B. 2-Phenylbenzimidazol-5-sulfonsäure, Sulisobenzone oder 1,4-Bis(benzimidazolyl)-benzol-4,4',6,6'-tetrasulfonsäure bzw. 3,3'-(1,4-Phenylendimethyliden)-bis-(7,7-dimethyl-2-oxo-bicyclo-[2,2,1]heptan-1methansulfonsäure) und deren Salze], Salicylate (z.B. 2-Ethylhexylsalicylat oder Homomenthylsalicylat), Triazine {z.B. 2,4-Bis-[4-(2-ethylhexyloxy)-2-hydroxy-30 phenyl]-6-(4-methoxyphenyl)-1,3,5-triazin, 4,4'-([6-([(1,1-dimethylethyl)-aminocarbonyl]phenylamino)-1,3,5-triazin-2,4-diyl]diimino)bisbenzoesäurebis-(2-ethyl-

10

15

20

25

30

hexyl)-ester)}, 2-Cyanopropensäurederivate (z.B. 2-Ethylhexyl-2-cyano-3,3-diphenyl-2-propenoat), Dibenzoylderivate (z.B. 4-tert-Butyl-4'-methoxydibenzoylmethan), polymergebundende UV-Filter (z.B. Polymer von N-[2-(bzw. 4)-(2-Oxo-3-bornyliden)methyl]benzylacrylamid) oder Pigmente (z.B. Titandioxide, Zirkondioxide, Eisenoxide, Siliciumdioxide, Manganoxide, Aluminiumoxide, Ceroxide oder Zinkoxide) verwendet werden.

Die Lipidphase in den erfindungsgemäßen kosmetischen und pharmazeutischen Zubereitungen kann vorteilhaft gewählt werden aus folgenden Substanzgruppen: Mineralöle (vorteilhaft Paraffinöl), Mineralwachse, Kohlenwasserstoffe (vorteilhaft Squalan oder Squalen), synthetische oder halbsynthetische Triglyceridöle (z.B. Triglyceride der Caprin- oder Caprylsäure), natürliche Öle (z.B. Rizinusöl, Olivenöl, Sonnenblumenöl, Sojaöl, Erdnussöl, Rapsöl, Mandelöl, Palmöl, Kokusöl, Palmkernöl, Borretschsamenöl und dergleichen mehr), natürliche Esteröle (z.B. Jojobaöl), synthetische Esteröle (bevorzugt Ester von gesättigten und/oder ungesättigten, linearen und/oder verzweigten Alkancarbonsäuren von 3 bis 30 C-Atomen mit gesättigten und/oder ungesättigten, linearen und/oder verzweigten Alkoholen mit 3 bis 30 C-Atomen und Ester von aromatischen Carbonsäuren mit gesättigten und/oder ungesättigten, linearen und/oder verzweigten Alkoholen mit 3 bis 30 C-Atomen, insbesondere ausgewählt aus der Gruppe Isopropylmyristat, Isopropylstearat, Isopropylpalmitat, Isopropyloleat, n-Butylstearat, n-Hexyllaurat, n-Decyllaurat, Isooctylstearat, Isononylstearat, Isononylisononanoat, 2-Ethylhexylpalmitat, 2-Ethylhexyllaureat, 2-Hexyldecylstearat, 2-Octyldecylpalmitat, Oleyloleat, Oleylerucat, Erucyloleat, Erucylerucat sowie synthetische oder natürliche Gemische solcher Ester), Fette, Wachse und andere natürliche und synthetische Fettkörper, vorzugsweise Ester von Fettalkoholen mit Alkoholen niedriger C-Zahl (z.B. mit Isopropanol, Propylenglycol oder Glycerin) oder Ester von Fettalkoholen mit Alkansäuren niedriger C-Zahl oder mit Fettsäuren, Alkylbenzoate (z.B. Gemische von n-Dodecyl-, n-Tridecyl-, n-Tetradecyl- und n-Pentadecylbenzoat) sowie cyclische oder lineare Silikonöle (wie z.B. Dimethylpolysiloxane, Diethylpolysiloxane, Diphenylpolysiloxane sowie Mischformen daraus).

10

15

Die wässrige Phase der erfindungsgemäßen kosmetischen und pharmazeutischen Zubereitungen enthält gegebenenfalls vorteilhaft Alkohole, Diole oder Polyole niedriger C-Zahl, sowie deren Ether, vorzugsweise Ethanol, Isopropanol, Propylenglycol, Glycerin, Ethylenglycol, Ethylenglycolmonoethyl- oder -monobutylether, Propylenglycolmonomethylether-, -monoethyl- oder -monobutyl-ether, Diethylenglycolmonomethyl- oder monoethylether und analoge Produkte, ferner Alkohole niedriger C-Zahl, z.B. Ethanol, Isopropanol, 1,2-Propandiol, Glycerin, weiterhin α- oder β-Hydroxysäuren, vorzugsweise Milchsäure, Zitronensäure oder Salicylsäure, daneben Emulgatoren, welche vorteilhaft ausgewählt werden können aus der Gruppe der ionischen, nichtionischen, polymeren, phosphathaltigen und zwitterionischen Emulgatoren, sowie insbesondere ein oder mehrere Verdickungsmittel, welches oder welche vorteilhaft ausgewählt werden können aus der Gruppe Siliciumdioxid, Aluminiumsilikate, wie z.B. Bentonite, Polysaccharide bzw. deren Derivate, z.B. Hyaluronsäure, Guarkernmehl, Xanthangummi, Hydroxypropylmethylcellulose oder Allulose-Derivate, besonders vorteilhaft aus der Gruppe der Polyacrylate, bevorzugt ein Polyacrylat aus der Gruppe der sogenannten Carbopole, jeweils einzeln oder in Kombination oder aus der Gruppe der Polyurethane.

Insbesondere bevorzugt ist die Verwendung der erfindungsgemäßen kosmetischen oder pharmazeutischen Zubereitungen zum Schutz von Geweben und Zellen von Säugern, insbesondere der Haut, der Haare und/oder der Nägel des Menschen, vor oxidativer Beanspruchung und dem schädlichen Einfluß von Radikalen.

Ebenso umfaßt die vorliegende Erfindung auch ein Verfahren zum Schutze kosmetischer oder pharmazeutischer Zubereitungen sowie von Nahrungs- oder Genussmitteln gegen Oxidation oder Photooxidation, wobei es sich bei diesen Zubereitungen z.B. um Zubereitungen zur Behandlung, zum Schutz und Pflege der Haut, der Nägel oder der Haare oder ferner auch Schminkprodukte handeln kann, deren Bestandteile Stabilitätsprobleme aufgrund von Oxidation bzw. Photooxidation bei der Lagerung mit sich bringen, dadurch gekennzeichnet, dass die kosmetischen

oder pharmazeutische Zubereitungen sowie die Nahrungs- oder Genussmittel einen wirksamen Gehalt an erfindungsgemäßen 3,4-Dihydroxymandelsäurealkylamiden aufweisen.

Beispiele

Beispiel 1 2-(3,4-Dihydroxyphenyl)-N-(2-ethylhexyl)-2-hydroxyessigsäureamid

3,4-Dihydroxymandelsäure (500 mg, 2,72 mmol) wurde zusammen mit *N*-Hydroxysuccinimid (313 mg, 2,72 mmol) und *N,N*'-Dicyclohexylcarbodiimid (560 mg, 2,717 mmol) in trockenem 1,4-Dioxan (30 ml) vorgelegt und unter Stickstoff 16 h bei Raumtemperatur gerührt. Nach Abfiltrieren des Niederschlags wurde das Filtrat zu einer vorbereiteten Lösung von 2-Ethylhexylamin (376 mg, 3,26 mmol) und Natriumhydrogencarbonat (271 mg, 3,26 mmol) in 1,4-Dioxan/ Wasser (1:1, 20 ml) gegeben und die Reaktionsmischung bei 50°C im Wasserbad noch 2,5 h gerührt und abkühlen gelassen. Das Gemisch wird mit Salzsäure sauer gestellt, 3mal mit Ethylacetat extrahiert, die organische Phase mit gesättigter wässriger Natriumchloridlösung gewaschen, über Natriumsulfat getrocknet, filtriert und das Filtrat bei 40°C/160 mbar eingedampft. Das Rohprodukt wird an Kieselgel 60 mit Ethylacetat chromatografiert. Ausbeute: 567 mg (75 %, 98 % laut HPLC). ¹H-NMR (200 MHz, d₆-DMSO): δ = 7,68 (1H, t, 6 Hz), 7,77 (1H, m), 7,61 (2H, m), 4,67 (1H, s), 2,97 (dd), 1,80 – 1,05 (9 H, m), 0,90 – 0,70 (6H, m) ppm. MS (APCI neg.) m/z = 295,25 (100 %, [M-H]), 277,87 (35 %).

20

5

10

15

Nach einer analogen Vorschrift wurden die folgenden Verbindungen hergestellt:

Beispiel 2 N-Cyclohexyl-2-(3,4-dihydroxyphenyl)- 2-hydroxyessigsäureamid

¹H-NMR (200 MHz, d₆-DMSO): $\delta = 8,83$ (2H, bs), 7,55 (1H, d, 8 Hz), 6,76 (1H, m), 6,62 (2H, m), 5,83 (1H, bs), 4,66 (1H, s), 3,60 - 3,31 (m), 1,82 - 1,50 (m), 1,50 - 1,00 (m) ppm. MS (APCI neg.) m/z = 264,66 (100 %, [M-H]⁻).

15

Beispiel 3 2-(3,4-Dihydroxyphenyl)-*N-n*-hexyl-2-hydroxyessigsäureamid

¹H-NMR (400 MHz, CD₃OD): $\delta = 6.85$ (1H, m), 6.75 - 6.69 (2H, m), 4.85 (teilw. unterdrückt, s), 3.20 (2H, t, 7 Hz), 1.56 - 1.45 (2H, m), 1.40 - 1.25 (6H, m), 0.90 (3H, t, 7 Hz) ppm. MS (APCI pos.) m/z = 267.84 (100 %, [M+H]⁺), 249.92 (80 %), 222.20 (35 %), 545.67 (21 %, $[2M+H]^+$).

Herstellung der Zubereitungen

10 <u>Beispiel 4</u> Kosmetische Lösung mit 2-(3,4-Dihydroxyphenyl)-*N-n*-hexyl-2-hydroxyessigsäureamid

Rohstoffname	Gehalt in
Ronstormanie	
1,3-Butylenglycol	99,9
2-(3,4-Dihydroxyphenyl)-N-n-hexyl-2-hydroxyessigsäureamid	0,1

Beispiel 5 "Öl in Wasser"-Emulsion mit 2-(3,4-Dihydroxyphenyl)-*N-n*-hexyl-2-hydroxyessigsäureamid

Teil	Rohstoffname (Hersteller)	Chemische Bezeichnung	Gehalt in Gew%
	Arlatone 983 S [®] (ICI)	Ether von Polyethylenglycol	1,2
	mit Glycerylmonostearat	-,-	
		3,6,9,12,15,18,21,24,27,30,33,	
	Brij 76 [®] (ICI)	36-Decaoxaoctatetracontan-1-	1,2
		ol	
	Cutina MD® (Henkel)	Glycerylmonostearat	3,5
	Baysiloneöl M10® (GE Bayer)	Polydimethylsiloxan	0,8
	Eutanol G® (Henkel)	Octyldodecanol	3,0

Teil	Rohstoffname (Hersteller)	Chemische Bezeichnung	Gehalt in Gew%
	2-(3,4-Dihydroxyphenyl)- <i>N-n</i> -		0,1
	hexyl-2-hydroxyessigsäureamid		
	Paraffinöl 65 cp (Henry Lamotte)	Mineralöl	8,0
В	Wasser, dest.		49,8
		2-Phenoxyethanol und 4-Hy-	
		droxybenzoesäuremethylester	
		und 4-Hydroxybenzoesäure-	
	Phenopip [®] (Nipa Laboratorien)	ethylester und 4-Hydroxy-	0,5
	·	benzoesäurepropylester und 4-	1
		Hydroxybenzoesäurebutyl-	
		ester	
	1,2-Propylenglycol		2,0
	Glycerin 99 %		3,0
С	Wasser, dest.		25,0
		vernetztes Acrylsäure/C ₁₀ -C ₃₀ -	0,4
	Carbopol 2050® (B.F. Goodrich)	Alkylacrylat-Polymer	0,4
	wässrige Natriumhydroxidlsg., 10		1.2
	%		1,2
D	Parfümöl		0,3
	1	1	•

Teil A wurde gemischt und auf 80°C erhitzt. Teil B wurde gemischt und auf 90°C erhitzt und unter Rühren zu Teil A gegeben. Für Teil C wurde Carbopol in Wasser sorgfältig dispergiert und mit Natronlauge neutralisiert (pH 6,5). Teil C wurde dann bei 60°C zur Mischung aus den Teilen A und B gegeben. Teil D wurde zu der Mischung aus den Teilen A, B, und C bei Raumtemperatur hinzugefügt.

<u>Beispiel 6</u> "Öl in Wasser"-Emulsion mit 2-(3,4-Dihydroxyphenyl)-*N*-(2-ethylhexyl)-2-hydroxyessigsäureamid

Teil	Rohstoffname (Hersteller)	Chemische Bezeichnung	Gehalt in
, I CII	Ronstolmaine (Hersteller)	Chomisone Bozolomang	Gew%
	A -1-4 082 G® (ICD)	Ether von Polyethylenglycol	1,2
Α	Arlatone 983 S [®] (ICI)	mit Glycerylmonostearat	. 1,2 .
		3,6,9,12,15,18,21,24,27,30,33,	
	Brij 76 [®] (ICI)	36-Decaoxaoctatetracontan-1-	1,2
		ol	
	Cutina MD [®] (Henkel)	Glycerylmonostearat	3,5
,	Baysiloneöl M10 [®] (GE Bayer)	Polydimethylsiloxan	0,8
	Eutanol G [®] (Henkel)	Octyldodecanol	3,0
	2-(3,4-Dihydroxyphenyl)-N-(2-		
	ethylhexyl)-2-		0,2
	hydroxyessigsäureamid		
	Paraffinöl 65 cp (Henry Lamotte)	Mineralöl	8,0
В	Wasser, dest.		49,8
		2-Phenoxyethanol und 4-Hy-	
		droxybenzoesäuremethylester	
		und 4-Hydroxybenzoesäure-	
	Phenopip [®] (Nipa Laboratorien)	ethylester und 4-Hydroxy-	0,5
		benzoesäurepropylester und 4-	
		Hydroxybenzoesäurebutyl-	Ì
		ester	
	1,2-Propylenglycol		2,0
	Glycerin 99 %		3,0
С	Wasser, dest.		25,0
	Carbopol 2050® (B.F. Goodrich)	vernetztes Acrylsäure/C ₁₀ -C ₃₀ -	0,4
	(D.1. Goodfell)	Alkylacrylat-Polymer	

10

Teil	Rohstoffname (Hersteller)	Chemische Bezeichnung	Gehalt in Gew%
	wässrige Natriumhydroxidlsg.,		1,2
	10 %		1,2
D	Parfümöl		0,3

Teil A wurde gemischt und auf 80°C erhitzt. Teil B wurde gemischt und auf 90°C erhitzt und unter Rühren zu Teil A gegeben. Für Teil C wurde Carbopol in Wasser sorgfältig dispergiert und mit Natronlauge neutralisiert (pH 6,5). Teil C wurde dann bei 60°C zur Mischung aus den Teilen A und B gegeben. Teil D wurde zu der Mischung aus den Teilen A, B, und C bei Raumtemperatur hinzugefügt.

Beispiel 7 "Wasser in Öl"-Sonnenschutzemulsion mit UVA/B-Breitbandschutz und 2-(3,4-Dihydroxyphenyl)-N-(2-ethylhexyl)-2-hydroxyessigsäureamid

Teil	Rohstoffname (Hersteller)	Chemische Bezeichnung	Gehalt in Gew%
A	Dehymuls PGPH® (Henkel)	Polyglycerol-2	3,0
A		Dipolyhydroxystearat	5,0
	Monomuls 90-O 18 [®] (Henkel)	Glyceryloleat	1,0
	Permulgin 2550 [®] (Koster Keunen	Bienenwachs	1,0
	Holland)	Bielienwachs	1,0
	Myritol 318 [®] (Henkel)	Capryl-	6,0
	iviyittoi 518 (Heilkei)	/Capronsäuretriglyceride	0,0
	Witconol TN® (Witco)	C ₁₂ -C ₁₅ -Alkylbenzoat	6,0
	Cetiol SN® (Henkel)	Cetyl- und Stearylisononanoat	5,0
	Copherol 1250 [®] (Henkel)	Tocopherolacetat	1,0
	Solbrol P [®] (Bayer)	4-Hydroxybenzoesäurepropyl-	0.1
Soloroi P (Bayer)	ester	0,1	
	•	•	•

Teil	Rohstoffname (Hersteller)	Chemische Bezeichnung	Gehalt in Gew,-%
	Neo Heliopan® AV (Haarmann &	2-Ethylhexyl-p-methoxy-	4,0
	Reimer)	cinnamat	4,0
	Neo Heliopan [®] E 1000 (Haarmann	Isoamyl-p-methoxycinnamat	4,0
	& Reimer)	Isoamyt-p-memoxycimiamat	4,0
4	Neo Heliopan [®] MBC (Haarmann	3-(4-Methylbenzyliden)-dl-	2.0
	& Reimer)	campher	2,0
	Neo Heliopan [®] OS (Haarmann &	2-Ethylhexylsalicylat	3,0
	Reimer)	2-Ethymexylsancylat	3,0
	Octyltriazon		1,0
	2-(3,4-Dihydroxyphenyl)-N-(2-		•
	ethylhexyl)-2-		0,1
	hydroxyessigsäureamid		
	Zinkoxid neutral (Haarmann &		7,0
	Reimer)		7,0
В	Wasser, dest.		40
:	Phenoxyethanol		0,7
	Solbrol M (Bayer)	4-Hydroxybenzoesäuremethylester	0,2
	Glycerin 99 %		4,0
	Neo Heliopan [®] Hydro (Haarmann	2-Phenylbenzimidazol-5-	100
	& Reimer), 15 % als Natriumsalz	sulfonsäure	10,0
	Benzophenon-4		0,5
C	Parfümöl		0,3
	Bisabol		0,1
	· ·	T. Company of the com	1

Für Teil A wurden alle Substanzen bis auf das Zinkoxid auf 85°C erhitzt und das Zinkoxid in der Mischung sorgfältig dispergiert. Die Komponenten des Teils B wurden gemischt, auf 85°C erhitzt und unter Rühren zu Teil A gegeben. Zu der

Mischung aus den Teilen A und B wurde Teil C zugegeben und anschließend die Mischung mit einem Dispergierwerkzeug homogenisiert.

<u>Beispiel 8</u> "Öl in Wasser"-Sonnenschutzemulsion mit UVA/B-Breitbandschutz und N-Cyclohexyl-2-(3,4-dihydroxyphenyl)-2-hydroxyessigsäureamid

Teil	Rohstoffname (Hersteller)	Chemische Bezeichnung	Gehalt in Gew%
A	Arlacel 165 [®] (ICI)	Glycerylstearat und	3,0
А	Allacer 105 (101)	Polyethylenglycol 100-Stearat	<i>3,</i> 0
	Emulgin B2 [®] (Henkel)	Ceteareth-20	1,0
	Lanette O [®] (Henkel)	Cetyl- und Stearylalkohol	1,15
	Myritol 318 [®] (Henkel)	Capryl-/Capronsäure-	5.0
	(Helikei)	triglyceride	5,0
	Cetiol SN [®] (Henkel)	Cetyl- und Stearylisononanoat	4,0
	Abil 100 [®] (Goldschmidt)	Polydimethylsiloxan	1,0
	Pentone Cel MO® (Pheer)	Mineralöl und Quaternium-18-	2.0
	Bentone Gel MIO® (Rheox)	hectorit und Propylencarbonat	3,0
	•	Glycerylstearat und	
	Cutina CBS [®] (Henkel)	Cetylalkohol und	2.0
	Cullia CBS (Helikel)	Stearylalkohol und Cetyl-	2,0
		palmitat und Kokosglyceride	
	Neo Heliopan [®] 303 (Haarmann &	2-Ethylhexyl-2-cyano-3,3-	7.0
	Reimer)	diphenyl-2-propenoat	7,0
	Neo Heliopan [®] BB (Haarmann &	2-Hydroxy-4-methoxybenzo-	1.0
,	Reimer)	phenon	1,0
	Neo Heliopan [®] MA (Haarmann &	No extend and home it at	2.0
	Reimer)	Menthylanthranilat	3,0
	N,N-Dimethyl-4-aminobenzoe-		2.0
	säure-2-ethylhexylester		3,0
	1	1	

Teil	Rohstoffname (Hersteller)	Chemische Bezeichnung	Gehalt in Gew%
	N-Cyclohexyl-2-(3,4-		
•	dihydroxyphenyl)-2-		0,1
•	hydroxyessigsäureamid		
	Titandioxid mikrofein		5,0
В	Wasser, dest.		55,85
•	Veegum ultra® (Vanderbilt)	Magnesiumaluminiumsulfat	1,0
••	Natrosol 250 HHR (Hercules)	Hydroxymethylcellulose	0,3
٠.	Glycerin		3,0
		2-Phenoxyethanol und 4-	
		Hydroxybenzoesäuremethyl-	٠,
•		ester und 4-Hydroxybenzoe-	
	Phenopip [®] (Nipa Laboratorien)	säureethylester und 4-Hy-	0,3
,		droxybenzoesäurepropylester	
•		und 4-Hydroxybenzoesäure-	
-		butylester	
C	Parfümöl		0,3

Für Teil A wurden alle Substanzen bis auf das Titandioxid gemischt und auf 85°C erhitzt; in die Mischung wurde das Titandioxid sorgfältig eindispergiert. Für Teil B wurden bis auf Veegum und Natrosol alle Substanzen gemischt, auf 90°C erhitzt, Natrosol und Veegum eindispergiert und die Mischung unter Rühren zu Teil A gegeben. Zu der Mischung aus den Teilen A und B wurde Teil C zugegeben und anschließend die Mischung mit einem Dispergierwerkzeug homogenisiert (pH 5,6).

5

Beispiel 9 "Öl in Wasser"-Sonnenschutzemulsion mit UVA/B-Breitbandschutz und N-Cyclohexyl-2-(3,4-dihydroxyphenyl)-2-hydroxyessigsäureamid

. :			Gehalt in
Teil	Rohstoffname (Hersteller)	Chemische Bezeichnung	Gew%
A	Crodaphos MCA® (Croda)	Cetylphosphat	1,50
	Cutina MD [®] (Henkel)	Glycerylstearat	2,0
	Lanette 16 [®] (Henkel)	Cetylalkohol	1,2
		Capryl-/Capronsäuretri-	5,0
	Myritol 318 [®] (Henkel)	glyceride	3,0
	Cetiol SN [®] (Henkel)	Cetyl- und Stearylisononanoat	5,0
	Copherol 1250 [®] (Henkel)	Tocopherolacetat	0,5
		4-Hydroxybenzoesäurepropyl-	0,1
	Solbrol P® (Bayer)	ester	0,1
	Abil 100 [®] (Goldschmidt)	Polydimethylsiloxan	0,3
	Neo Heliopan [®] HMS (Haarmann	3,3,5-Trimethylcyclohexyl-	5,0
	& Reimer)	salicylat	3,0
	N-Cyclohexyl-2-(3,4-		
	dihydroxyphenyl)-2-		0,1
	hydroxyessigsäureamid		
	Butylmethoxydibenzoylmethan		2,0
В	Wasser, dest.		47,8
	1,3-Butylenglycol		3,0
	Sobrol M [®] (Bayer)	4-Hydroxybenzoesäuremethyl-	0,2
	Solidi W (Bayer)	ester	0,2
	Phenoxyethanol		0,7
	Carbopol ETD 2050® (B.F.	Copolymer Acrylsäure/C ₁₀ -	0,2
	Goodrich)	C ₃₀ -Alkylacrylat	,-
	Keltrol T [®] (Calgon)	Xanthan-Gummi	0,2

Teil	Rohstoffname (Hersteller)	Chemische Bezeichnung	Gehalt in Gew%
	Neo Heliopan [®] AP (Haarmann & Reimer)	2,2-(1,4-Phenylen)-bis-(1H- benzimidazol-4,6-disulfon- säure) und Dinatriumsalz	22
C	wäßr. Natriumhydroxidlsg., 10 %		2,8
D	Parfümöl		0,3
	Bisabolol		0,1

Teil A wurde auf 85°C erhitzt. Teil B: Carbopol und Keltrol wurden in die restlichen Bestandteile kalt eindispergiert, die Mischung auf 85°C erwärmt und zu Teil A gegeben. Teil C wurde sofort bei 80°C zu der Mischung aus den Teilen A und B gegeben und 5 min mit einem Dispergierwerkzeug homogensiert. Teil D wurde schließlich bei Raumtemperatur zugegeben und die Mischung mit einem Dispergierwerkzeug homogenisiert (pH 6,6).

Aktivitätsnachweis

10

15

20

5

Beispiel 10 Aktivität als Radikalfänger

Die Aktivität der beispielhaften Verbindungen nach den Beispielen 1 bis 3 als Radikalfänger wurde mit der herkömmlicher Radikalfänger verglichen. Dabei wurde der DPPH-(1,1-Diphenyl-2-picryl-hydrazyl)-Test zur Beseitigung von Radikalen angewendet.

DPPH wurde in Methanol zu einer Konzentration von 100 μmol/l gelöst. Eine Reihe von Verdünnungen der beispielhaften Verbindungen, Vitamin C, α-Tocopherol und Dibutylhydroxytoluol wurden in Methanol hergestellt. Methanol diente als Kontrolle. 2500 μl der DPPH-Lösung wurden mit 500 μl einer jeden Testlösung gemischt und die Abnahme der Absorption bei 515 nm solange abgelesen, bis die Abnahme kleiner

10

15

als 2 % pro Stunde war. Die Aktivität der Testsubstanzen als Radikalfänger wurde nach folgender Gleichung berechnet:

Aktiv. als Radikalfänger (%) = 100 - (Absorption der Testverbindungen)/(Absorption der Kontrolle) × 100.

Aus der Aktivität als Radikalfänger (%) in einer Reihe von Verdünnungen von Testverbindungen wurde für jede Testverbindung die effektive relative Konzentration EC₅₀ (bezogen auf die anfangs vorhandene Konzentration an DPPH, EC = c (Testverbindung)/c(DPPH)) einer Testverbindung berechnet, bei der das Radikal DPPH um 50 % beseitigt wurde. Die Ergebnisse sind in Tabelle 1 dargestellt:

Tabelle 1

Testverbindung nach Beispiel	EC_{50} / (mol/mol)
1	0,12
2	0,11
3	0,12
Vitamin C	0,27
α-Tocopherol	0,25

Beispiel 11 Aktivität als Antioxidantien

Dibutylhydroxytoluol

Die Aktivität der beispielhaften Verbindungen nach den Beispielen 1 bis 3 als Antioxidantien wurde mit der herkömmlicher Antioxidantien verglichen. Als Testsystem wurde die beschleunigte Autoxidation von Lipiden durch Luft mit oder ohne Antioxidans mit Hilfe der Rancimat-Apparatur angewendet (Rancimat ist ein eingetragenes Warenzeichen der Metrohm AG, Herisau, Schweiz).

0,24

20

Die beispielhaften Verbindungen, Vitamin C, α-Tocopherol und Dibutylhydroxytoluol wurden in Methanol oder Aceton gelöst und von der jeweiligen Testlösung 100 μl zu einer vorbereiteten Ölprobe von 3 g gegeben. In eine Kontrollprobe wurde nur Lösungsmittel gegeben. Durch die aufgeheizte, die Testlösung enthaltende Ölprobe wurde ein konstanter, trockener Luftstrom (20 l/h) geblasen und die flüchtigen Oxidationsprodukte (vorwiegend kurzkettige Fettsäuren wie Ameisen- oder Essigsäure) in einer Vorlage mit Wasser gesammelt. Die Leitfähigkeit dieser wäßrigen Lösung wurde kontinuierlich gemessen und dokumentiert. Die Oxidation von (ungesättigten) Fetten verläuft dabei eine Zeitlang nur sehr langsam und steigt dann plötzlich stark an. Die Zeit bis zum Anstieg wird als Induktionsperiode (IP) bezeichnet.

Nach der folgenden Gleichung wurde der antioxidative Index (AOI) erhalten:

15

10

5

Die Ergebnisse für das Experiment bei 80° C in Squalen, daß über Alumina Typ N gereinigt und mit 1 ppm α -Tocopherol stabilisiert wurde, sind in Tabelle 2 dargestellt:

20 Tabelle 2

Testverbindung nach	AOI in Squalen bei		
Beispiel	80°C mit 0,005% Test-		
•	substanz		
1	69		
2	43		
3	55		
Vitamin C	0,7		
α-Tocopherol	39		
Dibutylhydroxytoluol	38		

Patentansprüche

1. 3,4-Dihydroxymandelsäurealkylamide der allgemeinen Formel

wobei

5

10

15

20

R¹, R² und R³ unabhängig voneinander Wasserstoff, Niederalkyl oder Gruppen -O-R⁶ darstellen, in denen R⁶ Wasserstoff oder Niederalkyl bedeutet,

und

R⁴ Wasserstoff, ein Alkylrest mit 1 bis 22 Kohlenstoffatomen oder ein Alkenylrest mit 2 bis 22 Kohlenstoffatomen darstellt,

und

R⁵ ein Alkylrest mit 1 bis 22 Kohlenstoffatomen oder ein Alkenylrest mit 2 bis 22 Kohlenstoffatomen darstellt,

einschließlich deren Stereoisomere oder deren Gemische.

2. 3,4-Dihydroxymandelsäurealkylamide der Formel

3NSDOCID: <WO___0198258A1_I_>

wobei

R¹, R² und R³ unabhängig voneinander Wasserstoff, Methyl, tert.-Butyl, Hydroxy oder Methoxy darstellen,

und

R⁴ Wasserstoff darstellt,

und

5

10

15

20

R⁵ ein Alkylrest mit 1 bis 18 Kohlenstoffatomen oder ein Alkenylrest mit 2 bis 20 Kohlenstoffatomen darstellt,

einschließlich deren Stereoisomere oder deren Gemische.

3. 3,4-Dihydroxymandelsäurealkylamide der Formel

$$\begin{array}{c|c} R^3 & OH & R^5 \\ HO & HO & R^2 \\ \hline HO & R^1 \end{array}$$

wobei

 R^1 , R^2 , R^3 und R^4 Wasserstoff darstellen,

3NSDOCID: <WO___0198258A1_I_>

20

und

R⁵ ein Alkylrest mit 1 bis 12 Kohlenstoffatomen oder ein Alkenylrest mit 2 bis 12 Kohlenstoffatomen darstellt,

einschließlich deren Stereoisomere oder deren Gemische.

- 4. 2-(3,4-Dihydroxyphenyl)-*N-n*-hexyl-2-hydroxyessigsäureamid,

 N-Cyclohexyl-2-(3,4-dihydroxyphenyl)-2-hydroxyessigsäureamid und

 2-(3,4-Dihydroxyphenyl)-*N*-(2-ethylhexyl)-2-hydroxyessigsäureamid.
- Kosmetische und pharmazeutische Zubereitungen, enthaltend 0,001 Gew.-% bis 30 Gew.-%, bevorzugt 0,001 bis 20 Gew.-%, insbesondere bevorzugt 0,01
 bis 5 Gew.-% der 3,4-Dihydroxymandelsäurealkylamide nach den Ansprüchen 1 bis 4, bezogen auf das Gesamtgewicht der Zubereitungen.
 - Verwendung der der 3,4-Dihydroxymandelsäurealkylamide nach den Ansprüchen 1 bis 4 in kosmetischen und pharmazeutischen Zubereitungen.
 - 7. Nahrungs- oder Genussmittel, enthaltend 0,001 Gew.-% bis 35 Gew.-%, bevorzugt 0,001 bis 20 Gew.-%, insbesondere bevorzugt 0,01 bis 0,5 Gew.-% der 3,4-Dihydroxymandelsäurealkylamide nach den Ansprüchen 1 bis 4, bezogen auf das Gesamtgewicht der Nahrungs- oder Genussmittel.
- Verwendung der der 3,4-Dihydroxymandelsäurealkylamide nach den Ansprüchen 1 bis 4 in Nahrungs- oder Genussmitteln oder zur Nahrungs- oder Genussmittelergänzung.
- 9. Verwendung der 3,4-Dihydroxymandelsäurealkylamide nach Ansprüchen 1 bis 4 als Antioxidantien und/oder Radikalfänger.

- 10. Verwendung der Zubereitungen nach den Ansprüchen 5 bis 8 als Antioxidantien und/oder Radikalfänger.
- 5 11. Zubereitungen nach den Ansprüchen 5 bis 6, die zusätzlich mindestens eine UVA- und/oder UVB-Filtersubstanz enthalten.
 - 12. Zubereitungen nach den Ansprüchen 5 bis 8, die zusätzlich mindestens ein weiteres Antioxidans oder einen Radikalfänger enthalten.
 - 13. Zubereitungen nach den Ansprüchen 5 bis 6, die zusätzlich mindestens eine UVA- und/oder UVB-Filtersubstanz und mindestens ein weiteres Antioxidans oder einen Radikalfänger enthalten.
- 15 14. Verfahren zur Herstellung der 3,4-Dihydroxymandelsäurealkylamide der Formel

wobei

20

10

- R^1 , R^2 und R^3 unabhängig voneinander Wasserstoff, Niederalkyl oder Gruppen -O- R^6 darstellen, in denen R^6 Wasserstoff oder Niederalkyl bedeutet,
- 25 und

R⁴ Wasserstoff, ein Alkylrest mit 1 bis 22 Kohlenstoffatomen oder ein
 Alkenylrest mit 2 bis 22 Kohlenstoffatomen darstellt,

und

5

R⁵ ein Alkylrest mit 1 bis 22 Kohlenstoffatomen oder ein Alkenylrest mit
 2 bis 22 Kohlenstoffatomen darstellt,

einschließlich deren Stereoisomere oder deren Gemische,

10

15

dadurch gekennzeichnet, dass man eine in Form des Säurechlorids, des Säureanhydrids oder eines Säureesters, beispielsweise von gegebenenfalls substituierten Phenolen, N-Hydroxysuccinimid oder N-Hydroxybenzotriazol, aktivierte, gegebenenfalls an den phenolischen OH-Gruppen geschützte 3,4Dihydroxymandelsäure mit einem Alkylamin der allgemeinen Formel
HNR⁴R⁵ oder einem Ammoniumsalz der allgemeinen Formel (H₂NR⁴R⁵)⁺A⁻,
wobei die Reste R⁴ und R⁵ die oben genannte Bedeutung haben und A⁻ ein
anorganisches oder organisches Anion, beispielsweise Halogenid, Sulfat,
Hydrogensulfat oder Acetat bedeutet, gegebenenfalls in Gegenwart von
Lösemitteln und Hilfsbasen umsetzt und die gegebenenfalls vorhandenen
Schutzgruppen abspaltet.

20

15. Verfahren zur Herstellung der 3,4-Dihydroxymandelsäurealkylamide der Formel

HO
$$R^3$$
 H
 R^5
 R^4
 R^4

25

wobei

R¹, R² und R³ unabhängig voneinander Wasserstoff, Niederalkyl oder Gruppen -O-R⁶ darstellen, in denen R⁶ Wasserstoff oder Niederalkyl bedeutet,

5 und

R⁴ Wasserstoff, ein Alkylrest mit 1 bis 22 Kohlenstoffatomen oder ein
 Alkenylrest mit 2 bis 22 Kohlenstoffatomen darstellt,

10 und

- R⁵ ein Alkylrest mit 1 bis 22 Kohlenstoffatomen oder ein Alkenylrest mit 2 bis 22 Kohlenstoffatomen darstellt,
- einschließlich deren Stereoisomere oder deren Gemische,
 dadurch gekennzeichnet, dass man
 die freien 3,4-Dihydroxymandelsäuren mit einem Alkylamin der allgemeinen
 Formel HNR⁴R⁵, wobei die Reste R⁴ und R⁵ die oben genannte Bedeutung
 haben, mit oder ohne Lösemittel unter Wasserabspaltung unter Zuhilfenahme
 eines Kondensationsmittels, bevorzugt N,N'-Dicyclohexylcarbodiimid, direkt
 kondensiert.
 - 16. Verfahren nach den Ansprüchen 14 und 15, dadurch gekennzeichnet, dass als 3,4-Dihydroxymandelsäuren 2-(3,4-Dihydroxyphenyl)-2-hydroxyessigsäure, deren Stereoisomere und Gemische derselben verwendet werden.
 - 17. Verfahren nach Ansprüchen 14 bis 16, dadurch gekennzeichnet, dass als Alkylamine Hexylamin, 2-Ethylhexylamin oder Cyclohexylamin oder die jeweiligen Ammoniumsalze verwendet werden.

25

INTERNATIONAL SEARCH REPORT

PC 01/06567

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07C235/34 A61 A23L3/00 A61K47/16 C11B5/00 A61K7/42 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system tollowed by classification symbols) C07C IPC 7 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, BEILSTEIN Data, WPI Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Citation of document, with indication, where appropriate, of the relevant passages Category 9 1-17 EP 0 900 781 A (HAARMANN & REIMER GMBH) Α 10 March 1999 (1999-03-10) the whole document 1 - 17US 5 183 828 A (VAN T RIET BARTHOLOMEUS A ET AL) 2 February 1993 (1993-02-02) claims 1,2 Patent family members are listed in annex. Further documents are listed in the continuation of box C. "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the Special categories of cited documents: A' document defining the general state of the art which is not considered to be of particular relevance invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention continent or particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. O document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed *&* document member of the same patent family Date of mailing of the international search report Date of the actual completion of the international search 18/10/2001 9 October 2001 Authorized officer Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 Goetz, G

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

rul/(1/06567

Patent document cited in search report	4	Publication date		Patent family member(s)	Publication date
EP 0900781	A	10-03-1999	DE AU EP JP US	19737327 A1 8189898 A 0900781 A2 11228514 A 6117365 A	04-03-1999 11-03-1999 10-03-1999 24-08-1999 12-09-2000
US 5183828	A	02-02-1993	US AT AU CA DE DK EP IT JP JP KR NO WO	4623659 A 4942253 A 59553 T 589111 B2 3013084 A 1339221 A1 3483822 D1 13785 A 0144396 A1 843681 A 1209548 B 5078299 A 5001780 B 60501409 T 9204187 B1 843739 A 8404676 A1	18-11-1986 17-07-1990 15-01-1991 05-10-1989 18-12-1984 05-08-1997 07-02-1991 11-01-1985 19-06-1985 24-11-1984 30-08-1989 30-03-1993 11-01-1993 29-08-1985 30-05-1992 06-12-1984

INTERNATIONALER RECHERCHENBERICHT

PCT 01/06567

KLASSIFIZIERUNG DES ANMELDUNGSGEGENSTANDES C11B5/00 A23L3/00 A61K47/16 A61K7/42 C07C235/34 Nach der Internationalen Palentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK B. RECHERCHIERTE GEBIETE Recherchierter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole) IPK 7 CO7C Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe) EPO-Internal, BEILSTEIN Data, WPI Data, CHEM ABS Data C. ALS WESENTLICH ANGESEHENE UNTERLAGEN Betr. Anspruch Nr. Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile Kategorie® 1 - 17EP 0 900 781 A (HAARMANN & REIMER GMBH) 10. März 1999 (1999-03-10) das ganze Dokument 1 - 17US 5 183 828 A (VAN T RIET BARTHOLOMEUS Α ET AL) 2. Februar 1993 (1993-02-02) Ansprüche 1,2 Siehe Anhang Patentfamilie Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Besondere Kategorien von angegebenen Veröffentlichungen A Veröffentlichung, die den allgemeinen Stand der Technik definiert, Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist aber nicht als besonders bedeutsam anzusehen ist E älleres Dokument, das jedoch erst am oder nach dem internationalen Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden Anmeldedatum veröffentlicht worden ist *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-scheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt) ausgenunr)

O Veröffentlichung, die sich auf eine mündliche Offenbarung,
eine Benutzung, eine Ausstellung oder andere Maßnahmen beziehl

P Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach
dem beanspruchten Prioritätsdatum veröffentlicht worden ist *& Veröffentlichung, die Milglied derselben Patentfamilie ist Absendedatum des internationalen Recherchenberichts Datum des Abschlusses der internationalen Recherche 18/10/2001 9. Oktober 2001 Bevollmächtigter Bediensteter Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016 Goetz, G

Formblatt PCT/ISA/210 (Blatt 2) (Juli 1992)

INTERNATIONAL FR RECHERCHENBERICHT

Angaben zu Veröffentli

jen, die zustelben Patentfamilie gehören

ationales Aktenzeichen PCT/1991/1/06567

			<u> </u>		1017	17 00307
	Recherchenberich hrtes Patentdokun		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
El	P 0900781	A	10-03-1999	DE	19737327 A1	04-03-1999
				ΑU	8189898 A	11-03-1999
				EP	0900781 A2	10-03-1999
				JP-	11228514 A	24-08-1999
		· ·		US	6117365 A	12-09-2000
U:	5 5183828	Α	02-02-1993	 US	4623659 A	18-11-1986
				- US	4942253 A	17-07-1990
				ΑT	59553 T	15-01-1991
			•	AU	589111 B2	05-10-1989
			•	AU	3013084 A	18-12-1984
				CA	1339221 A1	05-08-1997
				DE	3483822 D1	07-02-1991
				DK	13785 A	11-01-1985
		•	•	EP	0144396 A1	19-06-1985
				FI	843681 A	24-11-1984
				IT	1209548 B	30-08-1989
				JP	5078299 A	30-03-1993
				JP	5001780 B	11-01-1993
				JP	60501409 T	29-08-1985
		•		KR	9204187 B1	30-05-1992
	•			NO	843739 A	06-12-1984
	•			WO	8404676 A1	06-12-1984

THIS PAGE BLANK (USPTO)