

	Planeten	
Aufgabennummer: B_167		
Technologieeinsatz:	möglich □	erforderlich ⊠

In der nachstehenden Tabelle sind die Entfernungen von Planeten zur Sonne in AE (AE = astronomische Einheit = mittlere Entfernung von der Sonne zur Erde) und deren Umlaufzeiten um die Sonne angegeben.

	Merkur	Venus	Erde	Jupiter	Saturn
mittlere Entfernung <i>x</i> zur Sonne in astronomischen Einheiten (AE)	0,39	0,72	1	5,2	9,54
gerundete Umlaufzeit y in Tagen (d)	88	225	365	4 330	10 760

- a) Der Zusammenhang zwischen Entfernung und Umlaufzeit wird durch $y = a \cdot x^c$ beschrieben.
 - Bestimmen Sie aus den Werten von Venus und Erde die Parameter a und c.
- b) Die Anwendung der natürlichen Logarithmusfunktion auf die Werte der obigen Tabelle führt auf die folgende Tabelle:

		Merkur	Venus	Erde	Jupiter	Saturn
Logarithmus der mittleren Entfernung zur Sonne in astronomischen Einheiten (AE)	X	-0,94	-0,33	0	1,65	2,26
Logarithmus der Umlaufzeit in Tagen (d)	У	4,48	5,42	5,9	8,37	9,28

Die logarithmierten Werte müssen auf einer Geraden liegen. Durch Bestimmung der Regressionsgeraden kann man Ungenauigkeiten ausgleichen.

- Berechnen Sie die Gleichung der Regressionsgeraden.
- Berechnen Sie mithilfe der Regressionsgeraden die Umlaufzeit in Tagen für den Mars (mittlere Entfernung zur Sonne = 1,53 AE).

Planeten 2

 Erklären Sie, warum die beiden im Folgenden angegebenen Korrelationskoeffizienten für die in der Grafik dargestellten Regression nicht richtig sein können.

$$r_1 \approx -0.999$$

 $r_2 \approx 1.01$

Hinweis zur Aufgabe:

Lösungen müssen der Problemstellung entsprechen und klar erkennbar sein. Ergebnisse sind mit passenden Maßeinheiten anzugeben.

Planeten 3

Möglicher Lösungsweg

a)
$$y = a \cdot x^c$$

$$365 = a \cdot 1^{c}$$

$$225 = a \cdot 0,72^{c}$$

$$a = 365$$

$$\frac{225}{365} = 0.72^{\circ}$$

$$C = \frac{\ln\left(\frac{225}{365}\right)}{\ln(0,72)} \approx 1,47$$

b) Berechnung mit Technologie: y = 1,49716x + 5,89950Geradensteigung 1,49716 (Steigungsdreieck) Ordinatenabschnitt 5,89950

Berechnung Mars:

$$y = 1,49716 \ln(1,53) + 5,89950 \approx 6,536$$

 $e^{6,536} \approx 690$

Die Umlaufzeit beträgt gerundet 690 Tage.

Beobachtung: Alle Punkte liegen beinahe auf der Geraden, die Steigung ist positiv. Der Korrelationskoeffizient muss sich daher sehr nahe an 1 befinden und positiv sein.

 $r_1 \approx -0,999$ nicht passend, weil zwar nahe genug an 1, aber negativ; passt nicht zu positiver Steigung der Regressionsgeraden

 $r_2 \approx 1,01$ nicht passend, weil größer als 1

Planeten

⊠ Teil B

a) 2 Algebra und Geometrie

b) 5 Stochastik

Nebeninhaltsdimension:

Nebenhandlungsdimension:

Schwierigkeitsgrad:

□ Teil A

b) —

a) —

a) mittel

b) mittel

Thema: Physik

Quellen: -

Klassifikation Wesentlicher Bereich der Inhaltsdimension: a) 3 Funktionale Zusammenhänge Wesentlicher Bereich der Handlungsdimension: a) B Operieren und Technologieeinsatz b) B Operieren und Technologieeinsatz b) D Argumentieren und Kommunizieren

Punkteanzahl:

a) 3

b) 4