Problema B. SenTia

Arquivo de entrada: standard input Arquivo de saída: standard output

Limite de tempo: 1 segundo

Tia Marilda era muito sensível às mudanças, especialmente quando se tratava de maquiagem. Sempre que alguém, principalmente sua sobrinha, trocava de base, ela **sentia** na hora:

— "Ah, trocou de base? Sabia... ficou horrorosa, Jéssica!"

Mas o que ninguém sabia é que Tia Marilda era uma mestra secreta de Álgebra Linear. Quando ela falava sobre "trocar de base", estava se referindo à mudança de base de um vetor! Agora, para Jéssica poder trocar de base mais rápido, vamos ajudá-la a calcular essas mudanças... antes que a Tia Marilda pergunte:

— "Já acabou trocou de base, Jéssica?"

Dada a representação de um vetor v em uma base B_1 , você deve encontrar sua representação na base B_2 , para que Tia Marilda possa ficar feliz!

Regras do problema: - Você receberá duas bases B_1 e B_2 do espaço \mathbb{R}^d , e um vetor v representado em B_1 . - Seu trabalho é calcular a nova representação de v na base B_2 , ou seja, as coordenadas de v na base B_2 . - As respostas devem ser apresentadas com precisão de até 4 casas decimais (print(.4f)). É permitido usar as funções (np.linalg.inv()) e (np.dot()) da biblioteca numpy.

Entrada

A primeira linha contém um inteiro d ($1 \le d \le 100$), que é a dimensão do espaço.

As próximas d linhas descrevem a base B_1 , onde cada linha contém d números reais $b_{1i1}, b_{1i2}, \ldots, b_{1id}$, que correspondem aos vetores da base B_1 .

As próximas d linhas descrevem a base B_2 , onde cada linha contém d números reais $b_{2i1}, b_{2i2}, \ldots, b_{2id}$, que correspondem aos vetores da base B_2 .

A última linha contém d números reais v_1, v_2, \ldots, v_d , que são as coordenadas do vetor v na base B_1 .

Saída

Imprima d números reais correspondendo à representação do vetor v na base B_2 , com precisão de até 6 casas decimais.

Álgebra Linear e Aplicações Universidade de São Paulo, Campus de São Carlos

Exemplos

standard input	standard output
2	4.0000 3.0000
1 0	
0 1	
0 1	
1 0	
3 4	

standard input	standard output
3	6.0000 2.0000 3.0000
1 0 0	
0 1 0	
0 0 1	
1 1 1	
0 1 0	
1 0 0	
3 2 1	

Notas

No primeiro exemplo, temos duas bases B_1 e B_2 no espaço \mathbb{R}^2 . O vetor v=(3,4) em B_1 tem sua representação trocada para B_2 , resultando em (4.0000,3.0000).

No segundo exemplo, o vetor $v = (3, 2, 1) \in \mathbb{R}^3$ é representado em B_1 , e ao mudar para a base B_2 , obtemos a nova representação (6.0000, 2.0000, 3.0000).

Assim como Tia Marilda **sentia** a diferença na troca de base, aqui você viu como a representação de um vetor pode mudar dependendo da base escolhida!

JLF