Proof

Faris B. Mismar

September 2021

1 Introduction

Let an arbitrary star S have a length ℓ and N points, with $N, \ell \in \mathbb{Z}_{++}$. To draw this star, as shown in g. 1, the angle that the graphics turtle would need to rotate in each of the N line segments of length ℓ is:

$$\theta = \frac{360^{\circ}}{N} \times 2. \tag{1}$$

Let α be the measure of the circumferential angles formed by the vertices of the star \mathcal{S} at the circumference of the inscribing circle. It is easy to show that the radius of the circle r splits $\triangle AXY$ into two identical triangles and therefore $\angle XAO = \alpha/2$. Due to the same reason, the interior angle of the N-polygon formed by the star $\angle XOY = \frac{\theta}{4}$.

It should be easy to find out that $\alpha = 180^{\circ} - \theta$ since both angles fall on a straight line. These two angles are *supplementary*.

We inspect $\triangle AOB$ and $\triangle ADB$ knowing that $\angle ADB := \alpha$ due to symmetry. Therefore, the central angle $\angle BOA$ sharing the same arc with the circumferential angle has the measure of 2α .

 $\triangle AOB$ is an isosceles triangle with the base angle measure of γ . Therefore, the measure of $\angle BOA$ is $\zeta := 180^{\circ} - 2\gamma$. We can use the law of sines and write:

$$\frac{r}{\sin \gamma} = \frac{\overline{AB}}{\sin \zeta},\tag{2}$$

which makes it easy to write r as

$$r = \overline{AB} \frac{\sin \gamma}{\sin(180^{\circ} - 2\gamma)}$$

$$= \overline{AB} \frac{\sin \gamma}{\sin 2\gamma}$$

$$= \overline{AB} \frac{1}{\cos \gamma},$$
(3)

where the last steps comes from the trigonometric identity of the sine of a double-angle. We can write γ in terms of the circumferential angle α since

 $\zeta = 2\alpha = 180^{\circ} - 2\gamma$ (all from $\triangle AOB).$ Thus:

$$\gamma = \frac{1}{2}(180^{\circ} - 2\alpha) = 90^{\circ} - \alpha. \tag{4}$$

Now we can write r using the cosine of the complementary angle as follows

$$r = \overline{AB} \frac{1}{\sin \alpha}.$$
 (5)

We inspect $\triangle ABD$, which again is an isosceles triangle. The base angles have the measure of $\gamma + \alpha/2 = 90^{\circ} - \alpha/2$ each. The law of sines enables us to write:

$$\frac{\ell}{\sin(90^\circ - \alpha/2)} = \frac{\overline{AB}}{\sin \alpha}.$$
 (6)

Here we can compute:

$$\overline{AB} = \ell \frac{\sin \alpha}{\cos \alpha / 2},\tag{7}$$

where the use of the sine of the double-angle identity again allows us to write $\overline{AB} = 2\ell \sin \alpha/2$. What is left now is finding r substituting \overline{AB} in (5) in terms of N and ℓ :

$$r = \frac{2\ell \sin \alpha/2}{\sin \alpha} = \frac{\ell}{\cos \alpha/2} = \frac{\ell}{\sin \frac{360^{\circ}}{N}}$$
 (8)

$$\therefore r = \ell \csc\left(\frac{360^{\circ}}{N}\right) \qquad \blacksquare \tag{9}$$

Figure 1: Solving the triangles