CSE251: Electronic Devices and Circuits

Lecture: 14 - 16 – MOSFET

Prepared By:

Shadman Shahid (SHD)

Lecturer, Department of Computer Science and Engineering, School of Data and Sciences, BRAC University

Email: ext.shadman.shahid@bracu.ac.bd

Outline

- Introduction to Electronic Switches
- Basic Inverter
- Introduction to Controlled Sources
- Introduction to MOSFET
- MOSFET as digital switch
- Designing Logic gates with MOSFETs

Two terminal Devices

Linear Devices

IV characteristics of two terminal devices are fixed.

Non-linear Devices

IV characteristics of three terminal devices can be changed

Three terminal Devices

IV of two terminal can be controlled using a third terminal.

Example: Switch, MOSFET, BJT $C \longrightarrow Control Signal (Physical/Voltage/Current)$ Switch $T_1 \longrightarrow T_2$

IV characteristics between T_1 and T_2 can be controlled by C

Switch – Types

- Depending on the control, the switch can be
 - Analog: Controlled using physical toggle/button
 - **Digital**: Controlled using voltage or current. Example MOSFET (voltage controlled), BJT (current controlled)

Analog switches

Digital switches (Transistors)

We can use switches to build logic gates

В	Bulb
0	OFF
1	OFF
0	OFF
1	ON
	0 1 0

AND operation

Α	В	Bulb
0	0	OFF
0	1	ON
1	0	ON
1	1	ON

OR operation

These circuits are "preferred" – because they can be cascaded to build combinational logic circuits -> if we remove the bulb and use the voltage across instead to cascade and drive the next gate

Alternative representations:

Alternative representations:

A	V_{OUT}
0	5V
1	0V

A	В	V_{out}
0	0	5V
0	1	5V
1	0	5V
1	1	0V

A	В	V_{out}
0	0	5V
0	1	0V
1	0	0V
1	1	0V

Examples

Example

Implement using switches: f = (A + B)C

Practice Problem 1

In digital systems, binary data may be subjected to noise that can alter a 0 to a 1 or a 1 to a 0.

A simple way to check if any error has occurred is to use an **even parity checker**. If there are two input bits x and y, the output of the even parity checker (denoted as f) will be **HIGH** if there are even number of 1s, i.e., if both x and y are 0 or if both of them are 1.

Digital Representation

- Binary → Two states (0/False, 1/True)
- Binary variables in circuit, need to use two states of device/parameters

Transistors as Digital Switch

- Transistors are 3 terminal non-linear devices, can be used as switch
- 2 types –

Voltage Controlled,

Current Controlled

- Metal Oxide Semiconductor Field Effect Transistor (MOSFET) are voltage controlled
- Control, $C = V_{GS}$. The IV characteristics $(I_{DS} \text{ vs } V_{DS})$ depends on V_{GS}
- Actual dependency is complex.
- Will start with a simple (but approximate) one **S-Model** (Switch Model)

MOSFET S-Model

- The MOSFET (approximately) behaves like a switch
- C = V_{GS} . Here, $C = "0" \Rightarrow V_{GS} < V_T$, and $C = "1" \Rightarrow V_{GS} < V_T$

MOSFET S-Model

We can summarize the S model for the MOSFET in algebraic form by stating its v-i characteristics as follows:

for
$$v_{GS} < V_T$$
, $i_{DS} = 0$

and

for
$$v_{GS} \ge V_T$$
, $v_{DS} = 0$ (6.2)

Logic Gates using MOSFET

Just replace the switches with MOSFETs!

NOT Gate (Inverter)

NAND Gate (Inverter)

NOR Gate (Inverter)

MOSFET Logic Gates – More Examples

$$Out = \overline{(A+B)CD} = (A+B)CD$$

Practice Problem 2

• **Design** a circuit using ideal MOSFETs (S-model) to implement the logic function

$$f = \overline{AC} + \overline{(B+C)}$$

$$= \overline{\overline{AC} + \overline{(B+C)}}$$

$$= \overline{\overline{AC} \cdot \overline{(B+C)}}$$
 [De Morgan's Theorem]
$$= \overline{AC \cdot (B+C)}$$

Practice Problem 1

In digital systems, binary data may be subjected to noise that can alter a 0 to a 1 or a 1 to a 0.

A simple way to check if any error has occurred is to use an **even parity checker**. If there are two input bits x and y, the output of the even parity checker (denoted as f) will be **HIGH** if there are even number of 1s, i.e., if both x and y are 0 or if both of them are 1.

Voltage Transfer Characteristics (VTC)

- Reminder: VTC is a graph where x —axis = input voltage, y-axis = output voltage
- Why? Design logic gates to follow a given static discipline

When $v_{IN} < V_T$ (Logical 0) $v_{OUT} = V_S = 5 \text{ V}$ (Logical 1)

When $v_{IN} \ge V_T$ (Logical 1) $v_{OUT} = 0 \text{ V}$ (Logical 0)

VTC of NAND gate

- We only have one x —axis, but two inputs
- Solution: Draw two VTC, one considering $V_A = 0$ one considering $V_A = 1$

Outline

- Constructing a *real* MOSFET n/p-channel
- Operation of an MOSFET-
 - 1. Cut-Off
 - 2. Saturation
 - 3. Triode Mode
- Output Characteristics
- PWL Model and Non-ideal Analysis: SR model
- Real MOSFET equations
- Introduction to Static analysis

Construction of Real MOSFET

Top view of several n-channel MOSFETs fabricated on a chip. The square MOSFETs in the center of the photograph have a width and length of 100 μm . (Photograph Courtesy of Maxim Integrated Products.)

Real MOSFET – Enhancement Type

Device Structure (n-channel MOSFET)

n-channel MOSFET (NMOS) Physical Structure

NMOS in Equilibrium

When the transistor is left alone, some electrons from the n-type wells diffuse into the p-type material to fill holes.

This creates negative ions in the p-type material and positive ions are left behind in the n-type material.

NMOS in Cutoff

When a small, positive V_{GS} is applied, holes "move away" from the gate.

Electrons from complete atoms elsewhere in the p-type material move to fill holes near the gate instead.

NMOS Transistor channel

When V_{GS} is larger than a **threshold** voltage $V_{TH(n)}$, the attraction to the gate is so great that free electrons collect there.

The applied V_{GS} creates an **induced n-type channel** under the gate (an area with free electrons).

NMOS Transistor Drain Current

When a positive V_{DS} is applied, the free electrons flow from the source to the drain. (Positive current flows from drain to source).

The amount of current depends on V_{DS} , as well as the number of electrons in the channel, channel dimensions, and material.

NMOS Transistor Circuit symbol, DS

NMOS I-V Characteristic

- Since the transistor is a 3-terminal device, there is no single I-V characteristic.
- Note that because of the insulator, $I_G = 0$ A.
- We typically define the MOS I-V characteristic as I_D vs. V_{DS} for a fixed V_{GS} .
- The I-V characteristic changes as V_{GS} changes.

NMOS I-V Characteristic

Modes of Operation

- □ For small values of V_{GS} , $V_{GS} \le V_{TH(n)}$, the n-type channel is not formed. No current flows. This is **cutoff mode**.
- □ When $V_{GS} > V_{TH(n)}$, current I_D may flow from drain to source, and the following modes of current flow are possible.
 - The mode of current flow depends on the propelling voltage, V_{DS}, and the channel-inducing voltage,

$$V_{GS} - V_{TH(n)}$$
.

- When $V_{DS} < V_{GS} V_{TH(n)}$, current is starting to flow. I_D increases rapidly with increased V_{DS} . This is **triode mode**.
- When $V_{DS} \ge V_{GS} V_{TH(n)}$, current is reaching its maximum value. I_D does not increase much with increased V_{DS} . This is called saturation mode.

Water Tap Analogy

Imagine the water tap on your kitchen sink.

- □ To make water flow, the water supply has to be connected to the water tap. This establishes a path for water to flow.
- Setting V_{GS} above the threshold voltage is like connecting the water supply.
- Cutoff = water supply disconnected (no path for current flow)
- Setting V_{GS} to a larger value is like connecting a high-pressure water supply—more flow can potentially occur.

Water Tap Analogy

- The water tap itself is used to adjust water flow. You can turn the flow up and down.
- V_{DS} is like the water tap. It controls the amount of flow.
- There is, of course, a saturation point. If you keep turning the water tap control, eventually you won't get any more flow.
- Triode = water tap in "normal range", controls flow
- Saturation = water tap turned up to (or past) point for maximum flow

NMOS Equations

Cutoff Mode

Occurs when $v_{GS} < V_T$

$$I_D = 0$$

Triode Mode

Occurs when $v_{GS} \geq V_T$ and $v_{DS} < v_{GS} - V_T$

$$I_{DS} = k_n' \frac{W}{L} \left(v_{GS} - V_T - \frac{1}{2} v_{DS} \right) v_{DS}$$

Saturation Mode

Occurs when $v_{GS} > V_T$ and $v_{DS} \geq v_{GS} - V_T$

$$I_{DS} = \frac{1}{2} k_n' \frac{W}{L} (v_{GS} - V_T)^2$$

 $v_{GS} - V_T = V_{OV}$: Overdrive Voltage

V_{oV}
 Indicates the available excess voltage at **gate** after forming the n-channel.

 V_T

The minimum voltage necessary at the **gate** terminal to form a channel.

Real MOSFET

NMOS Triode Mode

Occurs when $v_{GS} \ge V_T$ and $v_{DS} < v_{GS} - V_T$

Overdrive Voltage is defined as:

$$V_{OV} = v_{GS} - V_T$$

In triode mode, average voltage across channel is actually:

$$(V_{OV}-\frac{1}{2}v_{DS})$$

NMOS Triode Mode

$$I_{DS} = k_n' \frac{W}{L} \left(v_{GS} - V_T - \frac{1}{2} v_{DS} \right) v_{DS}$$

$$I_{DS} = \frac{1}{R_{ON}} v_{DS}$$

$$R_{ON} = \frac{1}{k'_n \frac{W}{L} (v_{GS} - V_T - \frac{1}{2} v_{DS})}$$

$$= \frac{1}{k_n (V_{OV} - \frac{1}{2} v_{DS})}$$

NMOS Saturation mode

Occurs when $v_{GS} > V_T$ and $v_{DS} \geq v_{GS} - V_T$

Overdrive Voltage is defined as:

$$V_{OV} = v_{GS} - V_T$$

In **Saturation** mode, average voltage across channel fixed at:

$$\frac{1}{2}V_{OV}$$

n-channel MOSFET - Summary

No channel, open ckt

G – Gate: Trigger terminal

S – Source: Charge carrier reservoir

Ground

will have some R

The created **channel**

D – Drain: Charge carrier sink

-> SR model

Cut off mode

Small v_{DS} : Triode Mode

++++++Gate+++++

Gate oxide

n channel

p substrate

Ground

Large v_{DS} : Saturation Mode

Solving Circuits with MOSFET

- Use Method of Assumed State!
- Three steps:
 - Assume: One of the modes (Cutoff, Triode, Saturation)
 - Solve: Use corresponding equation and KCL+KVL
 - **Verify**: Check if the conditions of V_{DS} and V_{GS} are satisfied. If not, repeat.
- Might need to solve quadratic equation $(ax^2 + bx + c = 0)$.
- If we get two roots, choose the one that's <u>favorable</u> to your assumption

Analyze the circuit to find i_D and v_{02} using the Method of Assumed State. Here, the input of the MOSFET is $v_{o1} = 1 \ V$. You must validate your assumptions.

• Design the circuit, that is, determine the values of R_D and R, so that the transistor operates at $I_D = 0.4 \, \text{mA}$ and $V_D = +0.5 \, \text{V}$. The NMOS transistor has $V_T = 0.7 \, \text{V}$, $k = 3.2 \, \text{mA/V}^2$.

What is the mode of this transistor?

• For the circuit, find the value of R that results in $V_D=0.8$ V. The MOSFET has $V_T=0.5$ V, $k_n'=\mu_n C_{OX}=0.4$ mA/V², $\frac{W}{L}=\frac{0.72~\mu \text{m}}{0.18~\mu \text{m}}$

$$k_n = k_n' \frac{W}{L} = 1.6 \text{ mA/V}^2$$

Analyze the circuit shown in Fig. 5.24(a) to determine the voltages at all nodes and the currents through all branches. Let $V_{tn} = 1$ V and $k'_n(W/L) = 1$ mA/V². Neglect the channel-length modulation effect (i.e., assume $\lambda = 0$).

n-channel MOSFET - Summary

SR Model:

$$R_{ON} = \frac{1}{k_n(V_{OV} - \frac{1}{2}v_{DS})}$$

- SR model is a better approximation than S model.
- Triode Mode exists until: $v_{DS} <= (v_{GS} V_T)$

V_{oV}Indicates the available excess voltage at **gate** after forming the n-channel.

SR Model - Inverter

 $v_{\text{IN}} = \text{High}$

Vss

Design of logic gates

Expected

IN	В	OUT
$Low\left(V_{IN} < V_{T}\right)$	High (5V)	$Low\left(V_{OUT} = V_{OUT,Low}\right)$
$High\; (V_{IN} > V_T)$	$Low\left(V_{\mathit{OUT},\mathit{Low}}\right)$	High (5V)

Actual

IN	В	OUT
$Low(V_{IN} < V_T)$	High (5V)	$Low(V_{OUT}=V_{OUT,Low})$
$High\; (V_{IN} > V_T)$	$L_{OW}(V_{OUT,Low} = 0.5 \text{ V} \checkmark V_{T})$	$Low(V_{OUT,Low} = 0.5 V)$

$$V_T = 0.4 \text{ V}$$

$$V_{SS} = 5 \text{ V},$$

$$V_{SS} = 5$$
 V, $R_{ON} = 1 \text{ k}\Omega$, $R_L = 9 \text{k}\Omega$

$$R_L = 9k\Omega$$

Therefore, need to design logic gates properly such that

$$V_{OUT, HI} = V_{SS}$$

$$\frac{R_{ON}}{R_{ON} + R_L} \ V_{SS} < V_T$$

Design of logic gates - Example

Assume the following values for the inverter circuit parameters: $V_{SS}=5~{\rm V}, V_T=1~{\rm V}$, and $R_L=10~{\rm k}\Omega$. Assume, further, that $\frac{1}{k_n' V_{OV}}=5$ for the MOSFET. Determine a $(\frac{W}{L})$ sizing for the MOSFET so that the inverter gate output for a logical 0 is able to switch OFF the MOSFET of another inverter.

Solution:

[Assume
$$R_{ON} = \frac{1}{k_n V_{OV}}$$
 if v_{DS} is not given or low]

$$V_{SS} \cdot \frac{R_{ON}}{R_{ON} + R_L} < V_T$$

$$\Rightarrow 5 \frac{R_{ON}}{R_{ON} + R_L} < 1$$

$$\Rightarrow 5R_{ON} < R_{ON} + 10$$
Hence
$$\frac{5}{W/L} < 2.5$$

$$\Rightarrow R_{ON} < \frac{10}{4} \text{ k}\Omega = 2.5 \text{ k}\Omega$$

$$\Rightarrow \frac{1}{k_n V_{OV}} = \frac{1}{k_n V_{OV}} = \frac{1}{k_n V_{OV}} = \frac{1}{5} \times \frac{1}{W/L}$$

$$\Rightarrow \frac{5}{W/L} < 2.5$$

$$\Rightarrow \frac{W}{L} > \frac{5}{2.5} = 2$$

Review – MOSFET

Control = V_{GS} = $V_G - V_S$ controls the IV between drain-source (I_{DS} vs V_{DS})

Threshold voltage = $V_{\rm T}$, minimum voltage required to create the channel

Models

- 1. S Mode: Assumes an ideal channel with zero resistance
- 2. SR Model: Assumes finite channel resistance, R_{ON} , depends on $V_{GS} V_T = V_{OV}$

MOSFET Linear Models

SR Model

$$R_{ON} = \frac{1}{k'_{n} \frac{W}{L} (v_{GS} - V_{T} - \frac{1}{2} v_{DS})}$$

Construction of Real MOSFET

Simplified cross section and 3D view

Real MOSFET

- For small V_{DS} , uniform channel, hence fixed R_{ON} therefore SR model valid.
- As V_{DS} is increased, channel becomes tapered cause $V_{GD} \downarrow$. Resistance \uparrow , slope \downarrow .
- This mode is called the **triode mode**. Condition: $V_{DS} < V_{OV}$

Real MOSFET

- When $V_{DS} = V_{OV}$, channel pinches off.
- Increasing V_{DS} further have no effect on channel shape. Hence, current saturates
- This mode is called the **saturation mode**. Condition: $V_{DS} \ge V_{OV}$
- Behaves like a <u>current source</u> (constant current) that depends on V_{OV}

IV Characteristics of Real MOSFET

Mode	Condition	Equation
Cutoff	$V_{GS} < V_T$	$I_D = 0$
Triode	$V_{GS} \ge V_T$ $V_{DS} < V_{OV}$	$I_D = k[V_{OV}V_{DS} - \frac{1}{2}V_{DS}^2]$
Saturation	$V_{GS} \ge V_T$ $V_{DS} \ge V_{OV}$	$I_D = \frac{k}{2} V_{OV}^2$

$$V_{GS} - V_T = V_{OV}$$

$$k_n = \frac{k_n'W}{L}$$

Digital Representation

Suppose you want to send 010110

- Single value based representaion fails in the presence of noise
- Better approach threshold-based system
- Simplest: Logical $0 = V < V_T$ Logical $1 = V > V_T$

- Specification for "all" digital devices
- Requires devices to adhere to common representation to ensure that valid input produces valid output
- This means, if
 - Sender sends "0"

Receiver interprets as "0"

Sender sends "1"

Receiver interprets as "1"

Naïve approach: Single threshold-based system

Double threshold based system

 V_H = High voltage threshold = 3V

 V_L = High voltage threshold = 2 V

sender

Logical 0: $V_o < V_L$ Logical 1: $V_o > V_H$

receiver

Logical 0: $V_i < V_L$ Logical 1: $V_i > V_H$

What if $V_o = 1.9V$ and channel noise is 0.5V?

$$V_i = 1.9V + 0.5V = 2.4V =$$
invalid

→ valid output producing invalid input, i.e., no margin for noise

Four threshold-based system

Tighter restriction on sender (output)

 $NM_1 = V_{OH} - V_{IH} = 4.5 - 3 = 1.5 \text{ V (significance?)}$

 $NM_0 = V_{IL} - V_{OL} = 2 - 0.5 = 1.5 \text{ V (significance?)}$

Four threshold-based system Tighter restriction on sender (output)

 V_{OH} : The <u>lowest output voltage</u> value that a digital device can produce when it outputs a logical 1. V_{OL} : The <u>highest output voltage</u> value that a digital device can produce when it outputs a logical 0.

 V_{IH} : The lowest input voltage value that a digital device must recognize as a logical 1.

 V_{IL} : The highest input voltage value that a digital device must recognize as a logical $\bf 0$.

Static Discipline and VTC graph

Four threshold-based system

Tighter restriction on sender (output)

During high to low or low to high **transition**:

Higher Slope in VTC graph

While **not** in **transition**; at logical **HIGH** or **LOW** voltage level:

Smaller Slope in VTC graph

Static Discipline and VTC graph

