EPITA /	'InfoS2
11014	

NOM : Prénom :

Février 2017

Groupe :

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. Questions de cours (5 points – pas de points négatifs)

Choisissez la ou les bonnes réponses :

Soit un courant sinusoïdal $i(t) = I\sqrt{2}.sin(\omega t + \varphi)$

1. Par convention, I est une grandeur réelle quelconque, en Ampère.

a. VRAI

b. FAUX

2. Quelle relation est correcte ? T représente la période de i(t) et f, sa fréquence.

a. $\omega = 2.\pi.T$

c. $f = 2.\pi.\omega$

b. $\omega T = 2.\pi$

d. $\frac{\omega}{T} = \frac{2.\pi}{f}$

On note \underline{I} , l'amplitude complexe de i(t).

3. Quel est le module de \underline{I} ?

a. $\langle i \rangle$

c. 2.1

b. *I*

d. $I.\sqrt{2}$

4. Quel est l'argument de I?

a. $\omega t + \varphi$

c. ωt

b. φ

d. *I*

5. Quelle formule représente l'impédance complexe d'un condensateur de capacité C?

a. *–jCω*

b. $\frac{-1}{iC\omega}$

c. $\frac{1}{ic}$

d. $\frac{-j}{c\omega}$

6. Dans un condensateur, la tension est :

a. En avance de $\frac{\pi}{2}$ sur le

b. En retard de $\frac{\pi}{2}$ sur le

c. En phase avec le courant.

courant

courant

- 7. $\frac{1}{c\omega}$ est homogène à des :
 - $a. \Omega$
 - b. *S*

- c. s
- d. sans dimension
- 8. Quelle formule représente l'impédance complexe d'une bobine d'inductance L?
- a. jL

- b. $\frac{1}{iL\omega}$
- c. $jL\omega$

- 9. Dans une bobine, le courant est :
- a. En avance de $\frac{\pi}{2}$ sur la b. En retard de $\frac{\pi}{2}$ sur la c. En phase avec la

tension.

- 10. Quelle est l'unité de $LC\omega^2$?
 - a. Ω

tension.

C. S

b. *S*

d. sans dimension

Identification de dipôles (3 points) Exercice 2.

On souhaite déterminer la nature d'un dipôle inconnu. Pour cela, on mesure la tension u(t) à ses bornes et le courant i(t) qui le traverse.

En justifiant votre réponse, déterminer la nature du dipôle ainsi que sa grandeur caractéristique (Résistance R pour une résistance, capacité C pour un condensateur et inductance L pour une bobine) dans les cas suivants :

1.
$$u(t) = U_{Max}.sin(\omega t)$$
 et $i(t) = I_{Max}.sin\left(\omega t - \frac{\pi}{2}\right)$ avec
$$\begin{cases} \omega = 1000 \ rd/s \\ U_{Max} = 10 \ V \\ I_{Max} = 10.10^{-3} \ A \end{cases}$$

		$\omega = 1000 rd/s$
2.	$u(t) = U_{Max} \sin(\omega t) \text{ et } i(t) = I_{Max}.\cos(\omega t - \frac{\pi}{2}) \text{ avec}$	$U_{Max} = 10 V .$
	27	$I_{Max} = 5.10^{-3} A$

3. $u(t)=U_{Max}.\sin(\omega t)$ et $i(t)=I_{Max}.\cos(\omega t)$ avec $\begin{cases} \omega=1000\ rd/s\\ U_{Max}=5\ V\\ I_{Max}=10.10^{-3}\ A \end{cases}$

Exercice 3. Valeurs moyennes et efficaces (4 points)

Donner l'expression de u(t) pour $t \in [0;T]$ (T = Période du signal) avant de déterminer (en la justifiant) la valeur moyenne et la valeur efficace du signal suivant :

Exercice 4. Régime sinusoïdal forcé (8 points)

Soit le circuit ci-contre. On donne :

$$\begin{cases} i_1(t) = I\cos(\omega t) \\ i_2(t) = I\sin(\omega t) \\ e(t) = E\sin(\omega t) \end{cases}$$

On suppose connus I, E, ω, L, R et C

1. Déterminer les amplitudes complexes associées à $i_1(t)$, $i_2(t)$ et e(t).

		:

2. Déterminer l'expression du courant i(t) dans R.

Rq: Il faut commencer par flécher ce courant Ensuite, vous pouvez utiliser le théorème de votre choix (superposition, Thévenin et/ou Norton) pour déterminer <u>I</u>. Si besoin, n'oubliez pas de justifier les calculs par des schémas partiels (pour le théorème de superpostion, par exemple).

		·····
		:

EPITA / InfoS2

Février 2017