MN3102

CMOS CLOCK GENERATOR/DRIVER FOR LOW VOLTAGE OPERATION BBD

General description

The MN3102 is a CMOS LSI generating two phase clock signal of low output impedance necessary to drive MN3200 series low voltage operation BBD.

 V_{GG} power supply circuit is built-in exclusively used for the MN3200 series BBD* and most suitable V_{GG} voltage can be obtained when the MN3102 is used with the same supply voltage as BBD.

Self-oscillation is enabled by external capacitors and resistors and oscillation drive is possible by the separate excitation oscillation.

Clock signal frequency is 1/2 of oscillation frequency.

* MN3200 Series BBD MN3204, MN3205, MN3206, MN3207, MN3208, MN3209, N3210 MN3214.

Features

- Direct driving capability to 4096-stage low voltage BBD.
- Self oscillation and separate exitation are abled.
- Two phase clock (Duty: 1/2) output.
- V_{GG} voltage generator for low voltage BBD.
- Single supply source: 4 ~ 10V.
- 8-lead dual-in-line plastic package.

Block Diagram

■ Absolute Maximum Ratings (Ta = 25°C)

Item	Symbol	Ratings	Unit
Drain Supply Voltage	V _{DD}	-0.3~+12	V
Input Output Terminal Voltage	V _I , V _O	-0.3~V _{DD} +0.3	V
Power Dissipation	Po	200	mW
Operating Temperature	Topr	-10~ + 70	°C
Storage Temperature	Tstg	-30 ∼+125	°

■ Operating Condition (Ta = 25°C)

Item	Symbol	Condtion	Min.	Тур.	Max.	Unit
Drain Supply Voltage	V _{DD}	GND=0V	4	5	10	V

■ Electrical Characteristics (Ta = 25°C, V_{DD} = 5V, GND = 0V)

ltem .	Symbol	Condition	Min.	Тур.	Max.	Unit
Drain Supply Current	I _{DD}	No load	4/11	0.5		mΑ
Total Power Dissipation	Ptot	Clock output 40kHz	12/2	2.5		mW
OX1 Input Terminal		010				
Input Voltage "H" Level	V _{IH}		V _{DD} -1		V _{DD}	V
Input Voltage "L" Level	VIL		0		1	٧
Input Leakage Current	Leak	V _i =0~10V			30	μΑ
OX2 Output Terminal		10,00	6		Non	•
Output Current "H" Level	I _{OH(1)}	$V_{DD}=5V$, $V_0=4V$	0.5	390	, ,	mΑ
Output Current "L" Level	I _{OL(1)}	$V_{DD} = 5V, V_0 = 1V$	0.4	A. III	78,	mΑ
Output Leakage Current "L" Level	ILOL(1)	$V_{DD}=10V$, $V_{0}=GND$	1100	83 40	30	μΑ
Output Leakage Current "H" Level	ILOH(1)	$V_{DD} = 10V, V_0 = V_{DD}$	11. 10	:(0)	30	μΑ
OX3 Output Terminal		The Will Will is will	700	0///		
Output Current "H" Level	I _{OH(2)}	$V_{DD}=5V$, $V_0=4V$	0.7			mΑ
Output Current "L" Level	I _{0 L (2)}	$V_{DD}=5V, V_0=1V$	QP.			mΑ
Output Leakage Current "L" Level	LOL(2)	$V_{DD}=10V$, $V_0=GND$			30	μΑ
Output Leakage Current "H" Level	ILOH(2)	V _{DD} =10V			30	μΑ
CP1, CP2 Output Terminal		1011 11 30				
Output Current "H" Level	I _{OH (3)}	V _{DD} =5V, V ₀ =4V	5			mΑ
Output Current "L" Level	I _{OL(3)}	$V_{DD} = 5V, V_0 = 1V$	5			mΑ
Output Leakage Current "L" Level	I _{LOL(3)}	$V_{DD}=10V$, $V_0=GND$			30	μΑ
Output Leakage Current "H" Level	I _{LOH(3)}	$V_{DD}=10V$, $V_0=V_{DD}$			30	μΑ
V _{GG} (OUT) Output Terminal	•					
V _{GG} Output Voltage *1	V _{GG} (OUT)			4.67		٧

^{*1} This terminal generates V_{GG} voltage exclusively applied for low voltage operation BBD manufactured by Matsushita Electronics Corporation, Therefore, sometimes it might not applicable for the device other than V_{GG} voltage of low power operation of BBD by MEC. $V_{GG\ (OUT)}$ changes in the following formula depending on the value of V_{DD} .

 $V_{GG (OUT)} = 14/15 V_{DD}$

■ Terminal Assignments

■ Terminal Description

Terminal No.	Symbol	I/O	Terminal Name	Description	
1	V _{DD}	Power supply source	V _{DD} is applied	Supply voltage of 4 \sim 10 is applied.	
2	CP1	0	Clock output 1	The terminal outputs clock signal with the relation of reverse phase to CP2, which is a frequency with duty 1/2 and 1/2 of the oscillation frequency.	
3	GND	Power supply source	Earth	Connected to the earth of circuit.	
4	CP2	0	Clock output 2	Outputs clock signal with the reverse phase to CP1.	
5	OX3	0		In case of self- oscillation, C	
6	OX2	0	C and R are connected.	nected. (Refer to the example to the example	
7	OX1	1		of oscillation circuit).	
8	V _{GG} (OUT)	0	V _{GG} voltage output.	4.67V is output. (V _{DD} = 5V). V _{GG} (OUT) = 14/15V _{DD}	

■ Example of Oscillation Circuit

Oscillation circuit of the MN3102 is composed of 4-stage inverter and oscillation frequency is defined by the C, R time constant.

Following is an example of C, R. Figure 1 shows fcp*-R characteristics.

Example	$R(\Omega)$	C (pF)	f _{0SC} ** (kHz)	f _{CP} * (kHz)
Example (1)	5k~1M	22	20 ~1400	10 ~700
Example (2)	5k~1M	100	6.4~ 520	3.2~260
Example (3)	5k~1M	200	3.0~ 260	1.5~130

- * Clock output frequency of CP1 or CP2 terminals.
- ** Oscillation frequency of OX1, OX2 and OX3.

Figure 1 Example of Clock Oscillation Frequency Characteristics

■ The maximum clock fraquency

The upper limit of the value of clock frequency is determined depending on the load capacitance and power consumption.

The permissible dissipation for this LSI is: $P_D = 200$ mW.

If the lock frequency or the load capacitance is increased, the power consumption will be increased. (Refer to Figure 2.) Accordingly, in order to use the MN3102 with dissipation less than the permissible value, it is necessary to select adequate values for the clock frequency and load capacitance.

Figure 3 shows an example of the dependence of the maximum clock frequency in P_D = 200mW on the load capacitance. If V_{DD} is less than 7V, the dissipation will not exceed the permissible value. (Provided that the BBD equivalent to less than 4096 steps in used.)

Figure 2 Example of the dependence of power consumption on the clock frequency.

Figure 3 Example of the dependence of the maximum clock frequency on the load capacitance in the power consumption of 200mW.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.