The probability functions of the GEV distribution and their derivatives

Yves Deville deville.yves@alpestat.com

June 29, 2022

Contents

1	Sco	pe
2	Log	g-density $\log f$
	2.1	Expression
	2.2	Taylor expansion at $\xi = 0$
	2.3	First-order derivatives: expression
	2.4	First-order derivatives: Taylor expansions for $\xi \approx 0 \ldots \ldots \ldots \ldots \ldots \ldots$
	2.5	Second-order derivatives: expressions
	2.6	Second-order derivatives: limits for $\xi \to 0$
3	Dis	stribution function F
	3.1	Expression
	3.2	Taylor expansions for $\xi \approx 0$
	3.3	First-order derivatives: expressions
	3.4	First-order derivatives: Taylor expansions for $\xi \approx 0$
4	Qua	antile or return level
	4.1	Expression
	4.2	Taylor expansion for $\xi \approx 0$
	4.3	First-order derivatives: expressions
	4.4	First-order derivatives: Taylor expansion for $\xi \approx 0$
	4.5	Second-order derivatives: expressions
	4.6	Second-order derivatives: limit for $\xi \to 0$

1 Scope

We consider a "quantity" related to the GEV distribution: the log-density log $f(x; \theta)$, the distribution $F(q; \theta)$ and or quantile $q(p; \theta)$. The vector θ is formed by the trhee elements: location μ , scale σ and shape ξ . We want to have a closed-form expression for each quantity and its first-order derivative w.r.t. θ and possibly the second-order derivative.

As is weel-known, the expressions defining the quantities take depending on $\xi = 0$ or $\xi \neq 0$. The expressions for $\xi \neq 0$ are usable for very small ξ , say $\xi \approx 1e - 7$, but will show some inacuracy when ξ is very small. We will use specific expression for $|\xi| < \epsilon$ where ϵ is a very small positive real. These expressions are derived from Taylor expansions at $\xi = 0$. More precisely we use

• Second order Taylor approximation for the quantity,

- First order Taylor approximation for the derivative of the quantity,
- Zero order Taylor approximation for the 2-nd order derivative of the quantity.

So the derivatives up to order two will be continuous and moreover they will be consistent. For instance the approximation of the 1-st order derivative is the derivative of the approximation at $\xi = 0$.

As a rule, we implement the formulas given in red but we give the formulas given by **maxima** in green. This document was generated by using the Maxima Computer Algebra System and the **maxiplot** package for LATEX.

2 Log-density $\log f$

2.1 Expression

Define z by

$$z := \frac{y - \mu}{\sigma}$$

and then V and U by

$$V := \xi z + 1, \qquad U := \frac{1}{\sigma V} \left[1 + \xi - V^{-1/\xi} \right].$$

The log-likelihood is defined by

$$\log f = -\left(\frac{1}{\xi} + 1\right) \log (\xi z + 1) - \frac{1}{(\xi z + 1)^{\frac{1}{\xi}}} - \log \sigma$$

2.2 Taylor expansion at $\xi = 0$

$$\log f = -\frac{e^z \log \sigma + e^z z + 1}{e^z} + \frac{\left((e^z - 1) z^2 - 2 e^z z \right) \xi}{2 e^z} - \frac{\left(3 z^4 + (8 e^z - 8) z^3 - 12 e^z z^2 \right) \xi^2}{24 e^z} + \cdots$$

which can be simplified as

$$\log f = -\left[\log \sigma + z + e^{-z}\right] + \frac{1}{2} \left[(1 - e^{-z})z - 2 \right] z\xi - \frac{1}{24} \left[3z^2 e^{-z} + 8z(1 - e^{-z}) - 12 \right] z^2 \xi^2$$

2.3 First-order derivatives: expression

Remark: scaling

In order to get quite simple expressions, we remark that $\log f$ depends on μ only through z, so

$$\frac{\partial \log f}{\partial u} = \frac{\partial \log f}{\partial z} \frac{\partial z}{\partial u} = -\frac{1}{\sigma} \frac{\partial \log f}{\partial z}$$

and up to the term $-\log \sigma$ in $\log f$, the same is true for σ so

$$\frac{\partial \log f}{\partial \sigma} = -\frac{1}{\sigma} + \frac{\partial \log f}{\partial z} \frac{\partial z}{\partial \sigma} = -\frac{1}{\sigma} - \frac{z}{\sigma} \frac{\partial \log f}{\partial z}.$$

So it is simpler to compute the derivative w.r.t. z and then find the derivatives w.r.t. μ and σ .

Raw expressions

Here are the raw expressions found by Maxima

$$\frac{\partial \log f}{\partial z} = (\xi z + 1)^{-\frac{1}{\xi} - 1} - \frac{\left(\frac{1}{\xi} + 1\right) \xi}{\xi z + 1}$$

$$\frac{\partial \log f}{\partial \xi} = -\frac{\frac{\log(\xi z + 1)}{\xi^2} - \frac{z}{\xi (\xi z + 1)}}{(\xi z + 1)^{\frac{1}{\xi}}} + \frac{\log(\xi z + 1)}{\xi^2} - \frac{\left(\frac{1}{\xi} + 1\right) z}{\xi z + 1}$$

Simplified expressions

We use the following simplifications

$$\begin{split} &\frac{\partial \log f}{\partial z} = -\sigma U, \\ &\frac{\partial \log f}{\partial \xi} = \frac{1}{\xi^2} \left[1 - V^{-1/\xi} \right] \log V - z \, U \frac{\sigma}{\xi}. \end{split}$$

so eventually

$$\begin{split} \frac{\partial \log f}{\partial \mu} &= U, \\ \frac{\partial \log f}{\partial \sigma} &= \frac{-1}{\sigma} + zU, \\ \frac{\partial \log f}{\partial \xi} &= \frac{1}{\xi^2} \left[1 - V^{-1/\xi} \right] \log V - z \, U \frac{\sigma}{\xi}. \end{split}$$

2.4 First-order derivatives: Taylor expansions for $\xi \approx 0$

$$U = \frac{e^z - 1}{e^z \sigma} - \frac{(z^2 + (2e^z - 2)z - 2e^z)\xi}{2e^z \sigma} + \cdots$$

$$\frac{\partial \log f}{\partial z} = -\frac{e^z - 1}{e^z} + \frac{\left(z^2 + (2e^z - 2)z - 2e^z\right)\xi}{2e^z} + \cdots$$

$$\frac{\partial \log f}{\partial \xi} = \frac{\left(e^z - 1\right)z^2 - 2e^zz}{2e^z} - \frac{\left(3z^4 + (8e^z - 8)z^3 - 12e^zz^2\right)\xi}{12e^z} + \cdots$$

$$\begin{split} \frac{\partial \log f}{\partial z} &= -\left[1 - e^{-z}\right] - \frac{1}{2}\left[2 - 2(1 - e^{-z})z - e^{-z}z^2\right]\,\xi + o(\xi) \\ \frac{\partial \log f}{\partial \xi} &= -\frac{1}{2}\left[2z - (1 - e^{-z})z^2\right] + \frac{1}{12}\left[12 - 8(1 - e^{-z})z - 3z^2\right]\,z^2\xi + o(\xi) \end{split}$$

Limits for $\xi \to 0$

Here are the limits for $\xi \to 0$

$$\begin{split} &\lim_{\xi \to 0} \frac{\partial \log f}{\partial z} = -e^{-z} \, \left(e^z - 1 \right) \\ &\lim_{\xi \to 0} \frac{\partial \log f}{\partial \xi} = \frac{e^{-z} \, \left(z^2 \, \left(e^z - 1 \right) - 2 \, z \, e^z \right)}{2} \end{split}$$

that is

$$\begin{split} &\lim_{\xi \to 0} \frac{\partial \log f}{\partial z} = 1 - e^{-z} \\ &\lim_{\xi \to 0} \frac{\partial \log f}{\partial \xi} = -\frac{z}{2} \left[2 - (1 - e^{-z})z \right] \end{split}$$

2.5 Second-order derivatives: expressions

Scaling

$$\begin{split} \frac{\partial^2 \log f}{\partial \mu^2} &= \frac{1}{\sigma^2} \, \frac{\partial^2 \log f}{\partial z^2} \\ \frac{\partial^2 \log f}{\partial \mu \partial \sigma} &= \frac{z}{\sigma^2} \, \frac{\partial^2 \log f}{\partial z^2} \\ \frac{\partial^2 \log f}{\partial \mu \partial \xi} &= \frac{-1}{\sigma} \, \frac{\partial^2 \log f}{\partial z \partial \xi} \\ \frac{\partial^2 \log f}{\partial \sigma^2} &= \frac{1}{\sigma^2} + \frac{z^2}{\sigma^2} \, \frac{\partial \log f}{\partial z} - \frac{z}{\sigma} \, \frac{\partial^2 \log f}{\partial z^2} \\ \frac{\partial^2 \log f}{\partial \sigma \partial \xi} &= \frac{-z}{\sigma} \, \frac{\partial^2 \log f}{\partial z \partial \xi} \end{split}$$

Raw expressions

$$\begin{split} \frac{\partial^2 \log f}{\partial z^2} &= \left(-\frac{1}{\xi} - 1\right) \, \xi \, \left(\xi \, z + 1\right)^{-\frac{1}{\xi} - 2} + \frac{\left(\frac{1}{\xi} + 1\right) \, \xi^2}{\left(\xi \, z + 1\right)^2} \\ \frac{\partial^2 \log f}{\partial z \partial \xi} &= \left(\xi \, z + 1\right)^{-\frac{1}{\xi} - 1} \, \left(\frac{\log \left(\xi \, z + 1\right)}{\xi^2} + \frac{\left(-\frac{1}{\xi} - 1\right) \, z}{\xi \, z + 1}\right) - \frac{\frac{1}{\xi} + 1}{\xi \, z + 1} + \frac{1}{\xi \, \left(\xi \, z + 1\right)} + \frac{\left(\frac{1}{\xi} + 1\right) \, \xi \, z}{\left(\xi \, z + 1\right)^2} \\ \frac{\partial^2 \log f}{\partial \xi^2} &= -\frac{\left(\frac{\log \left(\xi \, z + 1\right)}{\xi^2} - \frac{z}{\xi \, \left(\xi \, z + 1\right)}\right)^2}{\left(\xi \, z + 1\right)^{\frac{1}{\xi}}} - \frac{-\frac{2 \, \log \left(\xi \, z + 1\right)}{\xi^3} + \frac{z}{\xi \, \left(\xi \, z + 1\right)} + \frac{z^2}{\xi \, \left(\xi \, z + 1\right)^2}}{\left(\xi \, z + 1\right)^{\frac{1}{\xi}}} - \frac{2 \, \log \left(\xi \, z + 1\right)}{\xi^3} + \frac{2 \, z}{\xi^2 \, \left(\xi \, z + 1\right)} + \frac{\left(\frac{1}{\xi} + 1\right) \, z^2}{\left(\xi \, z + 1\right)^2} \end{split}$$

Simplified expressions

$$\begin{split} \frac{\partial^2 \log f}{\partial z^2} &= -(\xi+1) \left[V^{-1/\xi} - \xi \right] \times \frac{1}{V^2} \\ \frac{\partial^2 \log f}{\partial z \partial \xi} &= V^{-1/\xi-1} \left[\frac{1}{\xi^2} \log V - \frac{(\xi+1)}{\xi} \frac{z}{V} \right] - \frac{1}{V} + (\xi+1) \frac{z}{V^2} \\ \frac{\partial^2 \log f}{\partial \xi^2} &= -\left\{ \left[\frac{1}{\xi^2} \log V - \frac{1}{\xi} \frac{z}{V} \right]^2 + \left[-\frac{2}{\xi^2} \log V + \frac{2}{\xi} \frac{z}{V} + \frac{z^2}{V^2} \right] \times \frac{1}{\xi} \right\} \times V^{-1/\xi} - \frac{2}{\xi^3} \log V + \frac{2}{\xi^2} \frac{z}{V} + \frac{\xi+1}{\xi} \frac{z^2}{V^2} \end{split}$$

2.6 Second-order derivatives: limits for $\xi \to 0$

Here are the limits for $\xi \to 0$

$$\begin{split} & \lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial^2 z^2} = -e^{-z} \\ & \lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial z \partial \xi} = \frac{e^{-z} \, \left(z \, \left(2 \, e^z - 2 \right) - 2 \, e^z + z^2 \right)}{2} \\ & \lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial^2 \xi^2} = -\frac{e^{-z} \, \left(z^3 \, \left(8 \, e^z - 8 \right) - 12 \, z^2 \, e^z + 3 \, z^4 \right)}{12} \end{split}$$

$$\begin{split} &\lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial^2 z^2} = -e^{-z} \\ &\lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial z \partial \xi} = \frac{1}{2} \left[-2 - 2(1 - e^{-z})z + e^{-z}z^2 \right] \\ &\lim_{\xi \to 0} \frac{\partial^2 \log f}{\partial^2 \xi^2} = \frac{z^2}{12} \left[12 + 8(1 - e^{-z})z - 3e^{-z}z^2 \right] \end{split}$$

3 Distribution function F

3.1 Expression

Define

$$W := V^{-1/\xi} = [1 + \xi z]^{-1/\xi}.$$

Then

$$F := \exp\{-W\}.$$

For the distribution function we will only consider the first-order derivatives since the second-order derivatives are not needed in most applications.

3.2 Taylor expansions for $\xi \approx 0$

Raw expression

$$F = \frac{1}{e^{\frac{1}{e^z}}} - \frac{z^2 \xi}{2 e^{\frac{1}{e^z}} e^z} - \frac{\left((3 e^z - 3) z^4 - 8 e^z z^3 \right) \xi^2}{24 e^{\frac{1}{e^z}} (e^z)^2} + \cdots$$

Simplified expression

$$F = \exp\{-e^{-z}\} \left\{ 1 - e^{-z} \frac{z^2}{2} \xi + e^{-z} \frac{z^3}{24} \left[8 - 3(1 - e^{-z})z \right] \xi^2 \right\} + o(\xi^2)$$

3.3 First-order derivatives: expressions

Scaling

$$\begin{split} \frac{\partial F}{\partial \mu} &= \frac{-1}{\sigma} \frac{\partial F}{\partial z} \\ \frac{\partial F}{\partial \sigma} &= \frac{z}{\sigma} \frac{\partial F}{\partial z} \end{split}$$

Raw expressions

$$\frac{\partial F}{\partial z} = (\xi z + 1)^{-\frac{1}{\xi} - 1} e^{-\frac{1}{(\xi z + 1)^{\frac{1}{\xi}}}}$$

$$\frac{\partial F}{\partial \xi} = -\frac{e^{-\frac{1}{(\xi z + 1)^{\frac{1}{\xi}}}} \left(\frac{\log(\xi z + 1)}{\xi^2} - \frac{z}{\xi (\xi z + 1)}\right)}{(\xi z + 1)^{\frac{1}{\xi}}}$$

Simplified expressions

$$\begin{split} \frac{\partial F}{\partial z} &= FW \, \frac{1}{V} \\ \frac{\partial F}{\partial \xi} &= -FW \left\{ \frac{\log V}{\xi^2} - \frac{z}{\xi V} \right\} \end{split}$$

3.4 First-order derivatives: Taylor expansions for $\xi \approx 0$ Raw expressions

$$\begin{split} \frac{\partial F}{\partial z} &= \frac{1}{e^{\frac{z\,e^z+1}{e^z}}} + \frac{\left((e^z-1)\;z^2 - 2\,e^z\,z \right)\,\xi}{2\,e^{\frac{z\,e^z+1}{e^z}}\,e^z} + \cdots \\ \frac{\partial F}{\partial \xi} &= -\frac{z^2}{2\,e^{\frac{z\,e^z+1}{e^z}}} - \frac{\left((3\,e^z-3)\;z^4 - 8\,e^z\,z^3 \right)\,\xi}{12\,e^{\frac{z\,e^z+1}{e^z}}\,e^z} + \cdots \end{split}$$

Simplified expressions

$$\begin{split} \frac{\partial F}{\partial z} &= \exp\{-z - e^{-z}\} \left\{ 1 + \frac{z}{2} \left[-2 + (1 - e^{-z})z \right] \xi \right\} + o(\xi^2) \\ \frac{\partial F}{\partial \xi} &= \exp\{-z - e^{-z}\} \left\{ -\frac{z^2}{2} + \frac{z^3}{12} \left[8 - 3(1 - e^{-z})z \right] \xi \right\} + o(\xi^2) \end{split}$$

4 Quantile or return level

4.1 Expression

With $A := -\log p$, the quantile $\rho := q_{\text{GEV}}(p)$ is given by

$$\rho = \mu - \frac{\left(1 - \frac{1}{A^{\xi}}\right)\sigma}{\xi}$$

4.2 Taylor expansion for $\xi \approx 0$

$$\rho = \mu - \log A \, \sigma + \frac{(\log A)^2 \, \sigma \, \xi}{2} - \frac{(\log A)^3 \, \sigma \, \xi^2}{6} + \cdots$$

4.3 First-order derivatives: expressions

When $\xi \neq 0$ we have

$$\begin{split} \frac{\partial \rho}{\partial \mu} &= 1 \\ \frac{\partial \rho}{\partial \sigma} &= -\frac{1 - \frac{1}{A^{\xi}}}{\xi} \\ \frac{\partial \rho}{\partial \xi} &= \frac{\left(1 - \frac{1}{A^{\xi}}\right) \, \sigma}{\xi^2} - \frac{\log A \, \sigma}{A^{\xi} \, \xi} \end{split}$$

$$\begin{split} &\lim_{\xi \to 0} \frac{\partial \rho}{\partial \mu} = 1 \\ &\lim_{\xi \to 0} \frac{\partial \rho}{\partial \sigma} = -\log A \\ &\lim_{\xi \to 0} \frac{\partial \rho}{\partial \xi} = \frac{(\log A)^2 \ \sigma}{2} \end{split}$$

4.4 First-order derivatives: Taylor expansion for $\xi \approx 0$

$$\begin{split} \frac{\partial \rho}{\partial \mu} &= +1 + \cdots \\ \frac{\partial \rho}{\partial \sigma} &= -\log A + \frac{(\log A)^2 \xi}{2} + \cdots \\ \frac{\partial \rho}{\partial \xi} &= \frac{(\log A)^2 \sigma}{2} - \frac{(\log A)^3 \sigma \xi}{3} + \cdots \end{split}$$

4.5 Second-order derivatives: expressions

Scaling

Since ρ is a linear function of μ and σ , we consider only the standardised return level

$$\rho^{\star} = \frac{\frac{1}{A^{\xi}} - 1}{\xi}$$

so that $\rho = \mu + \sigma \rho^*$.

Raw expressions

$$\frac{\partial \rho^*}{\partial \xi} = -\frac{\log A}{A^{\xi} \xi} - \frac{\frac{1}{A^{\xi}} - 1}{\xi^2}$$

$$\frac{\partial^2 \rho^*}{\partial \xi^2} = \frac{(\log A)^2}{A^{\xi} \, \xi} + \frac{2 \, \log A}{A^{\xi} \, \xi^2} + \frac{2 \, \left(\frac{1}{A^{\xi}} - 1\right)}{\xi^3}$$

Simplified expression

$$\frac{\partial \rho^{\star}}{\partial \xi} = -\frac{1}{\xi} \left[\rho^{\star} + \log A \right] - \rho^{\star} \log A$$

$$\frac{\partial^2 \rho^\star}{\partial \xi^2} = \frac{1}{\xi^2} \left[\rho^\star + \log A \right] - \frac{\partial \rho^\star}{\partial \xi} \left[\log A + \frac{1}{\xi} \right]$$

$$\frac{\partial \rho}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\top}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{\partial \rho^{\star}}{\partial \xi} \\ 0 & \frac{\partial \rho^{\star}}{\partial \xi} & \sigma \frac{\partial^{2} \rho^{\star}}{\partial \xi^{2}} \end{bmatrix}$$

4.6 Second-order derivatives: limit for $\xi \to 0$

Here are the limits for $\xi \to 0$

$$\lim_{\xi \to 0} \frac{\partial \rho^{\star}}{\partial \xi} = \frac{\left(\log A\right)^{2}}{2}$$
$$\lim_{\xi \to 0} \frac{\partial^{2} \rho^{\star}}{\partial \xi^{2}} = -\frac{\left(\log A\right)^{3}}{3}$$