Anfängerpraktikum der Fakultät für Physik, Universität Göttingen

Dampfdruck von Wasser Protokoll:

Praktikant: Felix Kurtz

Michael Lohmann

E-Mail: felix.kurtz@stud.uni-goettingen.de

m.lohmann@stud.uni-goettingen.de

Betreuer: Martin Ochmann

Versuchsdatum: 23.06.2014

Testat:		

Inhaltsverzeichnis

Inhaltsverzeichnis

6	Anhang	3
5	Diskussion	3
4	Auswertung4.1 Druckkurven	3
3	Durchführung	3
2	Theorie	3
1	Einleitung	3

- 1 Einleitung
- 2 Theorie
- 3 Durchführung
- 4 Auswertung
- 4.1 Druckkurven

$$R_0 = 1000 \Omega$$

 $A = 3.9083 \cdot 10^{-3} \, ^{\circ}\text{C}^{-1}$
 $B = -5.775 \cdot 10^{-7} \, ^{\circ}\text{C}^{-2}$

$$R(\vartheta) = R_0 \cdot \left(1 + A\vartheta + B\vartheta^2\right) \tag{1}$$

$$R(\vartheta) = R_0 \cdot \left(1 + A\vartheta + B\vartheta^2\right)$$

$$\Rightarrow \vartheta = -\frac{A}{2B} - \sqrt{\frac{A^2}{4B^2} - \frac{1}{B} + \frac{R}{R_0 B}}$$

$$\tag{2}$$

$$\Delta \vartheta = \pm (0.3 \text{ }^{\circ}\text{C} + 0.005\vartheta) \tag{3}$$

$$T = \vartheta + 273.15 \, ^{\circ}\text{C}$$
 (4)

- 5 Diskussion
- 6 Anhang

Abbildung 1: Arrheniusplot für das Erwärmen

Abbildung 2: Arrheniusplot für das Abkühlen