		/086443					
5	CTGAACCGCA GTCTTAGTCC AGTTCTCTGT	GTCAGACCTG CTGAAGAACT TGCAGAATCA TCCTGAGGAA TGATTAAAGA	CTTGTCCTCA GGAGTCACCA CTAAATTTAA	CTGGCTGATG GATGATGCAG GGAAAAAATG	CAGCAGAACT AGTTGAGATC GGATTTTGTT	CTTGGGAAAT ATCATTGCAA TTAGAGTTGG	2280 2340 2400 2460
	-	97 Protein cession #: 1	_				
10	1	11 	21 	31	41 	51 	
15	KRIVAHAVEV EAESSSKEGE	AAQRSGPRAP PAVQSPRRSP LDARDLEMSK VPRVCAKPWA VE	RISFFLEKEN KVRRSYSRLE	EPPGRELTKE TLGSASTSTP	DLFKTHSVPA GRRSCFGFEG	TPTSTPVPNP LLGAEDLSGV	60 120 180 240
20	Nucleic Ac	98 DNA sequid Accession	ı #: Eos sed	quence			
	1	11	21	31	41	51	
	1	CGGGTCCGGG	1	1	1	1	60
25	GCGGGCTCCG GCGGACCGCT	GAGCCGGTGT GCGGTGCTGC GCAGCAGCCC	GCGTTGCTCC CCTGGCCGGT	CTGCTGCGGC CATCAACTGA	TGCAGGAGAC TCCGCGGCCT	CTTGTCCGCT GGGGCAGGAA	120 180 240
	GATTTCGGTT	TGCTTGTATT	TGTCCGGAAG	TCACTCAACA	GTATTGAATT	TCGTGAATGT	300 360
30	CCTTACTCTG	TCCTAAAGTT TTGAAATTAA	GAACACTTGT	ACCAGTGTTT	ATACAAAAGA	TAGAGCTGCT	420
		TTCCAGCCCT ATGAATTTAA					480 540
	TTGAAAAAAA	AAATACCAGA ATCCTAGTGA	TACAGTTTTA	${\tt GAAAAAGTAT}$	ATGAGCTCCT	AGGATTATTG	600
35	GGTGAACTTA	AGACCCAGAT	GACATCAGCA	GTAAGAGAGC	CCAAACTACC	TGTTCTGGCA	660 720
		AGGGGTTGTC CAAGGGAGAT					780 840
	CTGAAGAGAT	ATGCTGTGCC	${\tt CTCAGCTGGC}$	${\tt TTGCGCCTAT}$	TTGCCCTGCA	TGCATCTCAG	900
40		GCCTTCTGGA ATGTAGAATT					960 1020
	CAGGTTTCTA	ATATGGTGGC	GAAAAATGCA	GAAATGCATA	AAAATAAACT	GCAGTACTTT	1080
		TTTATGGAAT GATATGGACT					1140 1200
45		ACGTTGAGCT					1260 1320
73	CTGTACCTTG	ACCGTGTTTA ACACAGTTCC	TGAGGTGTAT	ACTCCAGTTC	TGGAGCACCT	CGTGGTGATG	1380
		GTTTCCCACA TCCTAGCTTT					1440 1500
50	GTGGTGCATC	AGGGTTTAAT	CAGAATATGT	TCTAAACCAG	TGGTCCTTCC	AAAGGGCCCT	1560
50		CTGAAGACCA AAGACTACGT					1620 1680
	GATTCTATTT	TAGCAGATGA	AGCATTTTTC	TCTGTGAATT	CCTCCAGTGA	AAGTCTGAAT	1740
		ATGATGAATT TACAGACTGT					1800 1860
55		CTTCAGATCC ACCTGGTGGA					1920 1980
	TTTGAACCAT	GGGTGTACTC	ATTTTCATAT	GAATTAATTT	TGCAATCTAC	AAGGTTGCCC	2040
		GTTTCTACAA GAGTTAGTCC					2100 2160
60	TCTTGCTTTG	CTTTATTTGT	GAAATTTGGC	AAAGAGGTGG	CAGTTAAAAT	GAAGCAGTAC	2220
		TTTTGGCCTC TTAGAGCCTA					2280 2340
	TATACCCCCT	TGGCAGAAGT	AGGCCTGAAT	GCTCTAGAAG	AATGGTCAAT	TTATATTGAC	2400
65		TGCAGCCTTA TGTCAGATGA					2460 2520
	GCCCAGAAAG	GATTTAATAA	AGTGGTGTTA	AAGCATCTGA	AGAAGACAAA	GAACCTTTCA	2580
		CAATATCCTT AAATAAACAA					2640 2700
70		CCTGGGACAG TTTTCCTGGA					2760 2820
70	AGTGACAGAC	AAACTAAAGT	TGCAGCCTGT	GAACTTTTAC	ATAGCATGGT	TATGTTTATG	2880
		CCACGCAGAT CGTTTCCTGT					2940 3000
75	CAACTGTATG	AGCCACTAGT	TATGCAGCTG	ATTCACTGGT	TCACTAACAA	CAAGAAATTT	3060
75		ATACTGTTGC TAAGAGATTT					3120 3180
	AAGCAAATAA	CACCACAGCA	GCAGGAGAAG	AGTCCAGTAA	ACACCAAATC	GCTTTTCAAG	3240
00		GCCTTGCGCT TCTACAGGGA					3300 3360
80	GAAGCCTTGG	TGATATACAT	GGAGAGTCTG	GCCTTAGCAC	ATGCAGATGA	GAAGTCCTTA	3420
	CATGTTTCTT	AACAGTGTTG TAAATAAAGC	AAAGAAACGA	CGTTTGCCGC	GAGGATTTCC	ACCTTCCGCA	3480 3540
	TCATTGTGTT	TATTGGATCT ACAAATCCAT	GGTCAAGTGG	CTTTTAGCTC	ATTGTGGGAG	GCCCCAGACA	3600 3660
85	AGATCCCCTA	ATTTGTGGCT	GAAAGATGTT	CTCAAGGAAG	AAGGTGTCTC	TTTTCTCATC	3720
	AACACCTTTG	AGGGGGGTGG GGGGGCCATT	CTGTGGCCAG	CCCTCGGGCA	TCCTGGCCCA	GCCCACCCTC	3780 3840
	TIGINCCIIC	TIMUUDOODOO	CHOCAGONG	CCCACGCIAI	COLUCION		3040

	GCCGCGTTGG	AGTGCTACAA	CACGTTCATT	GGCGAGAGAA	CTGTAGGAGC	GCTCCAGGTC	3900
			TTCACTTTTG				3960
	GCCATGCATG	ACATTATAGC	AGCAGAAAAG	TGCTTTGGCA	CTGGGGCAGC	AGGTAACAGA	4020
-	ACAAGCCCAC	AAGAGGGAGA	AAGGTACAAC	TACAGCAAAT	GCACCGTTGT	GGTCCGGATT	4080
5			GCTAAACACC				4140
	GACTTGTGTA	ATACACACCT	GATGAGAGTC	CTGGTGCAGA	CGCTGTGTGA	GCCCGCAAGC	4200
	ATAGGTTTCA	ACATCGGAGA	CGTCCAGGTT	ATGGCTCATC	TTCCTGATGT	TTGTGTGAAT	4260
			GTCCCCATAC				4320
10			TGAGGAGCTT				4380
10			GGCTGCTGTT				4440
			ACCGTCTCAG				4500 4560
			TAAAGGCATT GCAGCTGGCC				4620
			TGTGAGTCTT				4680
15			CAGCGTCATC				4740
10			CACGGAATTA				4800
			TAATACCAAA				4860
			AGCAAACCAG				4920
			GTGTGATTCA				4980
20			ACTGGCAAAA				5040
	AATACAAGTC	ATGGTTCATT	CCCTGAAGTC	TTTACAACAT	ATATTAGTCT	ACTTGCTGAC	5100
			AAAGGGCCAA				5160
			GGAACTTAGA				5220
25	TTCCCCATGC	AGTCCAGGGA	ATTTCCTCCA	GGAACTCCGC	GGTTCAATAA	TTATGTGGAC	5280
25			TGCATTGGAA				5340
	ATGACAGAAG	TTCTTTGTCG	GGAACAGCAG	CATGTCATGG	AAGAATTATT	TCAATCCAGT	5400
	TTCAGGAGGA	TTGCCAGAAG	GGGTTCATGT	GTCACACAAG	CAGGGGGAGEG	CHURTOTTCT	5460 5520
			TGACCCCCGC				5580
30			GTGGCACTGT TGATGTGTTG				5640
50	ACAATTGTGG	CECATOCCAT	CAAGAAGATG	CCCTACTATA	AGATTOTAGA	CCTCATCTAT	5700
			TGTTCATGCT				5760
	CCCCCCTCCTA	TTACAGAAGG	AAATGAACTT	ACAAAGACAT	TGATTAAATT	GTGCTACGAT	5820
	GCATTTACAG	AGAACATGGC	AGGAGAGAAT	CAGCTGCTGG	AGAGGAGAAG	ACTTTACCAT	5880
35			CATATCTGTC				5940
			TGAAAAACCA				6000
	ATCGACCTGA	AGCGCCGCTA	TAATTTTCCT	GTAGAAGTTG	AGGTTCCTAT	GGAAAGAAAG	6060
			GAAAGAAGCC				6120
40			GTCATATTTG				6180
40			AGTTCAGAGC				6240
			ACGGGAGCAG				6300
	GAGCTGGAGA	TGGACGAGCT	CAATCGGCAT	GAGTGCATGG	CGCCCCTGAC	GGCCCTGGTC	6360
			GGGCCCGCCT				6420
45	CTTCCTTCTT	GGATGAAATT	CCTCCATGGC	AAACTGGGAA	ATCCAATAGT	ACCATTAAAT	6480
43	ATCCGTCTCT	TCTTAGCCAA	GCTTGTTATT GCTGCAGCTG	AATACAGAAG	AGGICTITCG	ACCACAACGA	6540 6600
	AAGCACTGGC	TTAGCCCCTT	GATAGTGGCC	ACTACTICIO	CATCCACACG	CTTCCCCACT	6660
	CCAACIACA	TCCCTAAACA	TGAAGTGTTA	GCANATCGAT	TGCTTAATTT	CCTAATGAAA	6720
	CATGTCTTTC	ATCCAAAAAG	AGCTGTGTTT	AGACACAACC	TTGAAATTAT	AAAGACCCTT	6780
50	GTCGAGTGCT	GGAAGGATTG	TTTATCCATC	CCTTATAGGT	TAATATTTGA	AAAGTTTTCC	6840
-	GGTAAAGATC	CTAATTCTAA	AGACAACTCA	GTAGGGATTC	AATTGCTAGG	CATCGTGATG	6900
			TGACCCACAG				6960
			CTTTGTAAGA				7020
			ATATGTTATG				7080
55			ATTGAAGCAA				7140
			CAAGAGCTTC				7200
			ATTTCATGGA				7260
			GACAGAGCTG				7320
60	CAAGTCATGA	GACATAGAGA	TGATGAAAGA AGTAGAACTC	CAAAAAGTAT	TCN ACCCCCT	TOTOGATTA	7380 7440
00	ATGATGCCAA	AGTTAAAACC	ATGTAGGGAA	CAAAACIIC	ATATTCTCAT	CTCCATTCAT	7500
	GITTCCCATC	CITCIACAAC	AAGTGAGACA	CARAIGIAIA	CCCAGGAAAT	ATTTAAGTTG	7560
	GCAAAAGATG	TGCTGATTCA	AGGATTGATC	GATGAGAACC	CTGGACTTCA	ATTAATTATT	7620
			AACTAGGTTA				7680
65			TAAGATAGAA				7740
	CTGCTCGAAA	TGACCAGCAT	GAGCCCAGAT	TATCCAAACC	CCATGTTCGA	GCATCCTCTG	7800
	TCAGAATGCG	AATTTCAGGA	ATATACCATT	GATTCTGATT	GGCGTTTCCG	AAGTACTGTT	7860
	CTCACTCCGA	TGTTTGTGGA	GACCCAGGCC	TCCCAGGGCA	CTCTCCAGAC	CCGTACCCAG	7920
			CTGGCCAGTG				7980
70	CATGACTTCA	CACTGACACA	GACTGCAGAT	GGAAGAAGCT	CATTTGATTG	GCTGACCGGG	8040
			CGACCACACC				8100
	CACAAGAGGA	GTGAAAGGTT	ACAGAGAGCA	CCCTTGAAGT	CAGTGGGGCC	TGATTTTGGG	8160
	AAAAAAAGGC	TGGGCCTTCC	AGGGGACGAG	GTGGATAACA	AAGTGAAAGG	TGCGGCCGGC	8220
75	CGGACGGACC	TACTACGACT	GCGCAGACGG	TTTATGAGGG	ACCAGGAGAA	GCTCAGTTTG	8280
75	ATGTATGCCA	GAAAAGGCGT	TGCTGAGCAA	AAACGAGAGA	AGGAAATCAA	GAGTGAGTTA	8340 8400
	AAAATGAAGC	AGGATGCCCA	GGTCGTTCTG	ACCCCCTTT C	ACCCCCTCCC	AGACCTTCCT	8460 8460
	CCAAMAAMM	CAAGCACAG	CTTTAGCAGC	TOCCOGIANCE	CAPALALAGA	CCAGAGGGAC	8520
	ADAMMATIC	CACTCTCTCT	ANANANCANC	ATCACTCAAA	AGTTGCTTCA	AGACTTCAAT	8580
80	CGddddddddddd	ATACCACCTO	Cutchdutchin	CCACCCTTTC	TCTCTTGTAT	TCAGGACATT	8640
	AGCTGTCAGC	ACGCAGCCCT	GCTGAGCCTC	GACCCAGCGG	CTGTTAGCGC	TGGTTGCCTG	8700
	GCCAGCCTAC	AGCAGCCCGT	GGGCATCCGC	CTGCTAGAGG	AGGCTCTGCT	CCGCCTGCTG	8760
	CCTGCTGAGC	TGCCTGCCAA	GCGAGTCCGT	GGGAAGGCCC	GCCTCCCTCC	TGATGTCCTC	8820
	AGATGGGTGG	AGCTTGCTAA	GCTGTATAGA	TCAATTGGAG	AATACGACGT	CCTCCGTGGG	8880
85	ATTTTTACCA	GTGAGATAGG	AACAAAGCAA	ATCACTCAGA	GTGCATTATT	AGCAGAAGCC	8940
	AGAAGTGATT	ATTCTGAAGC	TGCTAAGCAG	TATGATGAGG	CTCTCAATAA	ACAAGACTGG	9000
	GTAGATGGTG	AGCCCACAGA	AGCCGAGAAG	GATTTTTGGG	AACTTGCATC	CCTTGACTGT	9060

WO 02/086443 PCT/US02/12476
TACAACCACC TTGCTGAGTG GAAATCACTT GAATACTGTT CTACAGCCAG TATAGACAGT 9120

		TTGCTGAGTG					9120
	GAGAACCCCC	CAGACCTAAA	TAAAATCTGG	AGTGAACCAT	TTTATCAGGA	AACATATCTA	9180
	CCTTACATGA	TCCGCAGCAA	GCTGAAGCTG	CTGCTCCAGG	GAGAGGCTGA	CCAGTCCCTG	9240
_		TTGACAAAGC					9300
5	TACAGTCAAG	AGCTGAGTCT	GCTTTACCTC	CTGCAAGATG	ATGTTGACAG	AGCCAAATAT	9360
	TACATTCAAA	ATGGCATTCA	GAGTTTTATG	CAGAATTATT	CTAGTATTGA	TGTCCTCTTA	9420
	CACCAAAGTA	GACTCACCAA TAAGCAAACA	ATTGCAGTCT	GTACAGGCTT	TAACAGAAAT	CACACTTCTC	9480 9540
	ATCAGCTTTA	CAAACAGATA	AGGCAATTTA	AAAATCCAAG	CAATCAACAT	CTCCCATCAC	9600
10	AACACCIGGA	ATCGATGTTT	CTTTCTCTCTCC	AAAAIGGACC	ACAACCTTAC	CCCTCTTCCA	9660
10	CAACATAATA	GTATGAATGT	CITICICAGC	GGAGACCCCCA	GTGACAGGAT	GGAAGTGCAA	9720
	GAGCAGGAAG	AAGATATCAG	CTCCCTGATC	AGGAGTTGCA	AGTTTTCCAT	GAAAATGAAG	9780
		GTGCCCGGAA					9840
		AGTCAAAAAC					9900
15	CGCCTGAGCC	ACTGCCGGAG	CCGGTCCCAG	GGCTGCTCTG	AGCAGGTGCT	CACTGTGCTG	9960
		CTTTGTTGGA					
	GCTTTCCGTG	ACCAGAACAT	TCTCTTGGGT	ACAACTTACA	GGATCATAGC	GAATGCTCTC	10080
	AGCAGTGAGC	CAGCCTGCCT	TGCTGAAATC	GAGGAGGACA	AGGCTAGAAG	AATCTTAGAG	10140
20	CTTTCTGGAT	CCAGTTCAGA	GGATTCAGAG	AAGGTGATCG	CGGGTCTGTA	CCAGAGAGCA	10200
20	TTCCAGCACC	TCTCTGAGGC	TGTGCAGGCG	GCTGAGGAGG	AGGCCCAGCC	TCCCTCCTGG	10260
	AGCTGTGGGC	CTGCAGCTGG	GGTGATTGAT	GCTTACATGA	CGCTGGCAGA	TTTCTGTGAC	10320
		GCAAGGAGGA					
	TATCCAGCAC	TTGTGGTGGA TTCCTAGATT	GAAAATGTTG	AAAGCTTTAA	ARTTARATTC	CAATGAAGCC	10440
25	AGATTGAAGT	AAGAGATCTC	ACTICAGATI	TCCTCCCACT	TCATCAGAGGA	GATCAGCCAC	10560
23	AUCCUCCCCC	TACTGGACAA	ACACCAACCC	CTTCCTCTTC	ACCACTCTCT	GGAAGAAATC	10620
		ACCCGCAGGC					
		CTTCTACTGG					
		GAGGAGTGAT					
30		TTAAGGATTG					
	AATAAAAAAA	ACATTGAAAA	AATGTATGAA	AGAATGTATG	CAGCCTTGGG	TGACCCAAAG	10920
		TGGGGGCCTT					
	AAACATTTTG	GGAAAGGAGG	TTCTAAACTA	CTGAGAATGA	AGCTCAGTGA	CTTCAACGAC	11040
25	ATTACCAACA	TGCTACTTTT	AAAAATGAAC	AAAGACTCAA	AGCCCCCTGG	GAATCTGAAA	11100
35		CCTGGATGAG					
		ATGACGGTAG					
		GGGTGACAGT					
		AGAGGGAACA AGCAGCTCTT					
40		CCCTGCAGCT					
-10		GGCTTGAAAA					
		AGGCGGCTTA					
		AAATGTCAGG					
		CTGAAACAGT					
45		GGGCCTTCGT					
		CCAGCTCTCA					
	GACAGACATC	TGAACAACTT	TATGGTGGCC	ATGGAGACTG	GCGGCGTGAT	CGGGATCGAC	11880
		${\tt CGTTTGGATC}$					
50	CGGCTAACTC	GCCAGTTTAT	CAATCTGATG	TTACCAATGA	AAGAAACGGG	CCTTATGTAC	12000
50	AGCATCATGG	TACACGCACT	CCGGGCCTTC	CGCTCAGACC	CTGGCCTGCT	CACCAACACC	12060
	ATGGATGTGT	TTGTCAAGGA GGTCATGGAT	GCCCTCCTTT	GATTGGAAAA	ATTTIGAACA	CTACCCCCCA	12120
	AAAAAAGGAG	GTTACGCTAA	CACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	GCAGGTGCCA	AMAMAMATIG	CATTACTTGT	12240
	CAGAAAATAT	TCCTGGGTCA	TCACAAAGIIA	CCTCCCTTCA	CACACTATCT	GGCTGTGGCA	12300
55	CCACCAACCA	AAGATCACAA	CATTCGTGCC	CAAGAACCAG	AGAGTGGGCT	TTCAGAAGAG	12360
	ACTCAAGTGA	AGTGCCTGAT	GGACCAGGCA	ACAGACCCCA	ACATCCTTGG	CAGAACCTGG	12420
	GAAGGATGGG	AGCCCTGGAT	GTGAGGTCTG	TGGGAGTCTG	CAGATAGAAA	GCATTACATT	12480
	GTTTAAAGAA	TCTACTATAC	TTTGGTTGGC	AGCATTCCAT	GAGCTGATTT	TCCTGAAACA	12540
	CTAAAGAGAA	ATGTCTTTTG	TGCTACAGTT	TCGTAGCATG	AGTTTAAATC	AAGATTATGA	12600
60	TGAGTAAATG	TGTATGGGTT	AAATCAAAGA	TAAGGTTATA	GTAACATCAA	AGATTAGGTG	12660
	AGGTTTATAG	AAAGATAGAT	ATCCAGGCTT	ACCAAAGTAT	TAAGTCAAGA	ATATAATATG	12720
	TGATCAGCTT	TCAAAGCATT	TACAAGTGCT	GCAAGTTAGT	GAAACAGCTG	TCTCCGTAAA	12780
	TGGAGGAAAT	GTGGGGAAGC	CTTGGAATGC	CCTTCTGGTT	CTGGCACATT	GGAAAGCACA	12840
65	CTCAGAAGGC	TTCATCACCA	AGATTTTGGG	AGAGTAAAGC	TAAGTATAGT	TGATGTAACA	12900
05	TTGTAGAAGC	AGCATAGGAA CTGCATTTGA	CAATAAGAAC	MATAGGIAAA MATAGGIAAA	CCUTTTTTTCC	TGGCTIATAL	12000
	TTAGAAATGA	GTTTTGACAT	TATTTIAGGA	ATTITICIA	TAGAAGGAAA	CCTCTTTATT	13020
	TACCACCCCA	AAAATTTTGG	TCATAGCATT	CACTTTTCCTC	ATTCCAATCT	ACAACTGGAA	13140
	CATACATAAA	AGTGCTTTGC	ATTCALAGUATTC	CGATAACTTC	AAAAATCCCA	TGGTTGTTGT	13200
70	TACCCATACT	ACTAAGCATT	TCAGTTCCAG	GAGAATAAAA	GAAATTCCTA	TTTGAAATGA	13260
, 0	ATTCCTCATT	TGGAGGAAAA	AAAGCATGCA	TTCTAGCACA	ACAAGATGAA	ATTATGGAAT	13320
	ACAAAAGTGG	CTCCTTCCCA	TGTGCAGTCC	CTGTCCCCCC	CCGCCAGTCC	TCCACACCCA	13380
	AACTGTTTCT	GATTGGCTTT	TAGCTTTTTG	TTGTTTTTT	TTTTCCTTCT	AACACTTGTA	13440
	TTTGGAGGCT	CTTCTGTGAT	TTTGAGAAGT	ATACTCTTGA	GTGTTTAATA	AAGTTTTTTT	13500
75	CCAAAAGTA						
		99 Protein					
	Protein Acc	cession #: 1	NP_008835.5				
80	1	11	21	31	41	51	
		1	1	1		1	
	MAGSGAGVRC	SLLRLQETLS	AADRCGAALA	GHQLIRGLGQ	ECVLSSSPAV	LALQTSLVFS	60
	RDFGLLVFVR	KSLNSIEFRE	CREEILKFLC	IFLEKMGQKI	APYSVEIKNT	CTSVYTKDRA	120
85	TYPOTET DEFEN	T.TKT.T.OTERS	SRLMDEFKIG	ELFSKFYGEL	ALKKKIPDTV	LEKVYELLGL	180
α	AKCKIPALDL	DIMBERGINO	* OFF ****	ATTO DOTTE THE	ACCT VOT COT	T CHITCHITECTE ATTIC	240
00	LGEVHPSEMI	NNAENLFRAF	LGELKTQMTS	AVREPKLPVL	AGCLKGLSSL	LCNFTKSMEE	240 300
0.0	LGEVHPSEMI DPOTSREIFN	NNAENLFRAF FVLKAIRPQI AALSALESFL	LGELKTQMTS DLKRYAVPSA	AVREPKLPVL GLRLFALHAS	AGCLKGLSSL QFSTCLLDNY	LCNFTKSMEE VSLFEVLLKW	240 300 360

	WO 02	/086443					
	IAIRGYGLFA	GPCKVINAKD	VDFMYVELIQ	RCKQMFLTQT	DTGDDRVYQM	PSFLQSVASV	420
		YTPVLEHLVV					480
	TVVHQGLIRI	CSKPVVLPKG	PESESEDHRA	SGEVRTGKWK	VPTYKDYVDL	FRHLLSSDQM	540
_	MDSILADEAF	FSVNSSSESL	NHLLYDEFVK	SVLKIVEKLD	LTLEIQTVGE	QENGDEAPGV	600
5	WMIPTSDPAA	NLHPAKPKDF	SAFINLVEFC	REILPEKQAE	FFEPWVYSFS	YELILQSTRL	660
	PLISGFYKLL	SITVRNAKKI	KYFEGVSPKS	LKHSPEDPEK	YSCFALFVKF	GKEVAVKMKQ	720
		TFLLSLPHNI					780
		DILPCLDGYL					840
10	SSNEAISLEE	IRIRVVQMLG	SLGGQINKNL	LTVTSSDEMM	KSYVAWDREK	RLSFAVPFRE	900
10		LPRVTELALT					960
	LYKRTFPVLL	RLACDVDQVT	RQLYEPLVMQ	LIHWFTNNKK	FESQDTVALL	EAILDGIVDP	1020
		RCIREFLKWS					1080
		EEESLVEQFV					1140
1.5		RRLPRGFPPS					1200
15		VLKEEGVSFL					1260
		IGERTVGALQ					1320
		${\tt NYSKCTVVVR}$					1380
		VMAHLPDVCV					1440
20		VVSACKQLHR					1500
20		ASGLLELAFA					1560
		LLKNLDLAVL					1620
		SWWAKDSPLE					1680
		QAVTLLPFFT					1740
25		ELSQSPMLLE					1800
25	VYEMFRKDDP	RLSFTRQSFV	DRSLLTLLWH	CSLDALREFF	STIVVDAIDV	LKSRFTKLNE	1860
	STFDTQITKK	MGYYKILDVM	YSRLPKDDVH	AKESKINQVF	HGSCITEGNE	ETRTLIKECY	1920
	DAFTENMAGE	NQLLERRRLY	HCAAYNCAIS	VICCVFNELK	FYQGFLFSEK	PERNLLIFEN	1980
	LIDLKRRYNF	PVEVEVPMER	KKKYTETRKE	AREAANGDSD	GPSYMSSLSI	LADSTLSEEM	2040
20	SQFDFSTGVQ	SYSYSSQDPR	PATGRERRE	QRDPTVHDDV	PEPEMDERNK	HECMAPLIAL	2100
30	VKHMHRSLGP	PQGEEDSVPR	DLPSWMKFLH	GKTGN51A5T	NIKEPEAKEV	INTERVERPY	2160
		LAASENNGGE					2220 2280
		FRHNLEIIKT					2340
		QCGIQSSEYF					2400
35		QHQNTMEDKF					2460
55		LYFQLKSKDF EOMYNILMWI					2520
		LPSNTLDRLL					2580
		IDSDWRFRST					2640
		DGRSSFDWLT					2700
40		EVDNKVKGAA					2760
40		LYRSYRHGDL					2820
		NITQKLLQDF					2880
	LACTOODUCT	RLLEEALLRL	I.DAEI.DAKDU	DCKYDI DDDA	T.DWVET.AKT.Y	RSTGEVDVLR	2940
		QITQSALLAE					3000
45		LEYCSTASID					3060
75		GELQKAILEL					3120
		SVQALTEIQE					3180
		SKIEEKLTPL					3240
		NFSLAMKLLK					3300
50	LKTUSLLDEN	NVSSYLSKNI	LAFRDONTLL	GTTYRTTANA	LSSEPACLAE	IEEDKARRIL	3360
•		EKVIAGLYQR					3420
	DOOLRKEEEN	ASVIDSAELQ	AYPALVVEKM	LKALKLNSNE	ARLKFPRLLQ	IIERYPEETL	3480
	SLMTKEISSV	PCWQFISWIS	HMVALLDKDO	AVAVOHSVEE	ITDNYPQAIV	YPFIISSESY	3540
	SFKDTSTGHK	NKEFVARIKS	KLDOGGVIOD	FINALDOLSN	PELLFKDWSN	DVRAELAKTP	3600
55	VNKKNIEKMY	ERMYAALGDP	KAPGLGAFRR	KFIQTFGKEF	DKHFGKGGSK	LLRMKLSDFN	3660
		NKDSKPPGNL					3720
		SLRRPKRIII					3780
	CSQRALQLRT	YSVVPMTSRL	GLIEWLENTV	TLKDLLLNTM	SQEEKAAYLS	DPRAPPCEYK	3840
	DWLTKMSGKH	DVGAYMLMYK	GANRTETVTS	FRKRESKVPA	DLLKRAFVRM	STSPEAFLAL	3900
60	RSHFASSHAL	ICISHWILGI	GDRHLNNFMV	AMETGGVIGI	DFGHAFGSAT	QFLPVPELMP	3960
	FRLTRQFINL	MLPMKETGLM	YSIMVHALRA	FRSDPGLLTN	TMDVFVKEPS	FDWKNFEQKM	4020
	LKKGGSWIQE	INVAEKNWYP	RQKICYAKRK	LAGANPAVIT	CDELLLGHEK	APAFRDYVAV	4080
	ARGSKDHNIR	AQEPESGLSE	ETQVKCLMDQ	ATDPNILGRT	WEGWEPWM		
C =							
65		100 DNA sec					
		id Accession	_	573			
	Coding sequ	uence: 101-	1225				
70	1	ļ1 ,	21	31	41	51	
70						(mananaaa	
		ACAAGCTGCT					60 120
		GCAGAAATAC					
		AAAGCAGCTG					180
75		CCACCAAAGA					240
15		GACCATGTGA ACTGGGATTG					300 360
		ACTGGGATTG					420
		CTTTGCATTA					480
		ACATGCAAGG					540
80		GTGGTGGATG					600
50		TTAATTGGCT					660
		CCTGGTTCCA					720
		TGTAAGTCAG					780
		AAGGCCATGG					840
85		AGTGAGGTGC					900
55		CATCTTGAAA					960
		GTTGTAGGAG					1020

```
GCTCTTCACT GGACGCACAT GGAAGGGATG TGTCTTTGGA GGTTTGAAAA GCAGAGATGA
       TGTCCCAAAA CTAGTGACTG AGTTCCTGGC AAAGAAATTT GACCTGGACC AGTTGATAAC
                                                                               1140
       TCATGTTTTA CCATTTAAAA AAATCAGTGA AGGATTTGAG CTGCTCAATT CAGGACAAAG
                                                                               1200
       CATTCGAACG GTCCTGACGT TTTGAGATCC AAAGTGGCAG GAGGTCTGTG TTGTCATGGT
                                                                               1260
 5
       GAACTGGAGT TTCTCTTGTG AGAGTTCCCT CATCTGAAAT CATGTATCTG TCTCACAAAT
                                                                               1320
       ACAGCATAA GTAGAAGAT TGTTGAAGAC ATAGAACCT TATAAAGAAT TATTAACCTT
TATAAACATT TAAAGTCTTG TGAGCACCTG GGAATTAGTA TAATAACAAT GTTAATATTT
                                                                               1380
                                                                               1440
                                                                               1500
       TTGATTTACA TTTTGTAAGG CTATAATTGT ATCTTTTAAG AAAACATACA CTTGGATTTC
                                                                               1560
       TATGTTGAAA TGGAGATTTT TAAGAGTTTT AACCAGCTGC TGCAGATATA TAACTCAAAA
10
       CAGATATAGC GTATAAAGAT ATAGTAAATG CATCTCCCAG AGTAATATTC ACTTAACACA
                                                                               1620
       1680
                                                                               1740
       AGAAAGACAG AAAAGATTAA GGGACGGGCA CATTTTTCAA CGATTAAGAA TCATCATTAC
                                                                               1800
       ATAACTTGGT GAAACTGAAA AAGTATATCA TATGGGTACA CAAGGCTATT TGCCAGCATA
                                                                               1860
       TATTAATATT TTAGAAAATA TTCCTTTTGT AATACTGAAT ATAAACATAG AGCTAGAGTC
15
                                                                               1920
       ATATTATCAT ACTTATCATA ATGTTCAATT TGATACAGTA GAATTGCAAG TCCCTAAGTC
                                                                               1980
                                                                               2040
       CCTATTCACT GTGCTTAGTA GTGACTCCAT TTAATAAAAA GTGTTTTTAG TTTTTAACAA
20
       Seg ID NO: 101 Protein sequence:
       Protein Accession #: NP_000664
                                           31
                                                       41
                                                                  51
25
       MGTAGKVIKC KAAVLWEQKQ PFSIEEIEVA PPKTKEVRIK ILATGICRTD DHVIKGTMVS
       KFPVIVGHEA TGIVESIGEG VTTVKPGDKV IPLFLPQCRE CNACRNPDGN LCIRSDITGR
                                                                                120
       GVLADGTTRF TCKGKPVHHF MNTSTFTEYT VVDESSVAKI DDAAPPEKVC LIGCGFSTGY
                                                                                180
       GAAVKTGKVK PGSTCVVFGL GGVGLSVIMG CKSAGASRII GIDLNKDKFE KAMAVGATEC
                                                                                240
       ISPKDSTKPI SEVLSEMTGN NVGYTFEVIG HLETMIDALA SCHMNYGTSV VVGVPPSAKM
                                                                                 300
30
       LTYDPMLLFT GRTWKGCVFG GLKSRDDVPK LVTEFLAKKF DLDQLITHVL PFKKISEGFE
                                                                                 360
       LLNSGOSIRT VLTF
       Seg ID NO: 102 DNA seguence
       Nucleic Acid Accession #: NM_006783.1
35
       Coding sequence: 1..786
                                                                  51
                                                       41
                   11
                               21
                                           3.1
       ATGGATTGGG GGACGCTGCA CACTTTCATC GGGGGTGTCA ACAAACACTC CACCAGCATC
40
       GGGAAGGTGT GGATCACAGT CATCTTTATT TTCCGAGTCA TGATCCTAGT GGTGGCTGCC
                                                                                 120
       CAGGAAGTGT GGGGTGACGA GCAAGAGGAC TTCGTCTGCA ACACACTGCA ACCGGGATGC
                                                                                 180
       AAAAATGTGT GCTATGACCA CTTTTTCCCG GTGTCCCACA TCCGGCTGTG GGCCCTCCAG
CTGATCTTCG TCTCCACCCC AGCGCTGCTG GTGGCCATGC ATGTGGCCTA CTACAGGCAC
                                                                                 240
       GAAACCACTC GCAAGTTCAG GCGAGGAGAG AAGAGGAATG ATTTCAAAGA CATAGAGGAC
                                                                                 360
45
       ATTAAAAAGC ACAAGGTTCG GATAGAGGGG TCGCTGTGGT GGACGTACAC CAGCAGCATC
                                                                                 420
       TTTTCCGAA TCATCTTGA AGCAGCCTTT ATGTATGTGT TTTACTTCCT TTACAATGGG
                                                                                 480
       TACCACCTGC CCTGGGTGTT GAAATGTGGG ATTGACCCCT GCCCCAACCT TGTTGACTGC
                                                                                 540
       TTTATTTCTA GGCCAACAGA GAAGACCGTG TTTACCATTT TTATGATTTC TGCGTCTGTG
                                                                                 600
       TITATTICIA GECCAACA GAGACCEGIO TITACATTI INGATITE AGETTACEGE AGTTTACGE TGCTGAAAGT GTGTTTTAGG AGATCAAAGA GAGCACAGAC GCAAAAAAAT CACCCCAATC ATGCCCTAAA GGAGAGTAAG
                                                                                 660
50
        CAGAATGAAA TGAATGAGCT GATTTCAGAT AGTGGTCAAA ATGCAATCAC AGGTTTCCCA
                                                                                 780
        Seq ID NO: 103 Protein sequence:
55
       Protein Accession #: NP_006774.1
                                                       41
                                                                   51
                                           31
       MDWGTLHTFI GGVNKHSTSI GKVWITVIFI FRVMILVVAA QEVWGDEQED FVCNTLQPGC
                                                                                  60
       KNVCYDHFFP VSHIRLWALQ LIFVSTPALL VAMHVAYYRH ETTRKFRRGE KRNDFKDIED
60
                                                                                 120
        IKKHKVRIEG SLWWTYTSSI FFRIIFEAAF MYVFYFLYNG YHLPWVLKCG IDPCPNLVDC
       FISRPTEKTV FTIFMISASV ICMLLNVAEL CYLLLKVCFR RSKRAQTQKN HPNHALKESK
       QNEMNELISD SGQNAITGFP S
65
        Seq ID NO: 104 DNA sequence
       Nucleic Acid Accession #: NM_020411
       Coding sequence: 86-526
                                                       41
                               21
                                           31
70
        GGACCTGGGA AGGAGCATAG GACAGGGCAA GGCGGGATAA GGAGGGGCAC CACAGCCCTT
                                                                                  60
       AAGGCACGAG GGAACCTCAC TGCGCATGCT CCTTTGGTGC CCACCTCAGT GCGCATGTTC ACTGGGCGTC TTCCCATCGG CCCCTTCGCC AGTGTGGGGA ACGCGGCGGA GCTGTGAGCC
                                                                                 120
                                                                                 180
        GGCGACTCGG GTCCCTGAGG TCTGGATTCT TTCTCCGCTA CTGAGACACG GCGGACACAC
                                                                                 240
75
        ACAAACACAG AACCACACAG CCAGTCCCAG GAGCCCAGTA ATGGAGAGCC CCAAAAAGAA
                                                                                 300
        GAACCAGCAG CTGAAAGTCG GGATCCTACA CCTGGGCAGC AGACAGAAGA AGATCAGGAT
                                                                                 360
                                                                                 420
        ACAGCTGAGA TCCCAGTGCG CGACATGGAA GGTGATCTGC AAGAGCTGCA TCAGTCAAAC
        ACCGGGGATA AATCTGGATT TGGGTTCCGG CGTCAAGGTG AAGATAATAC CTAAAGAGGA
                                                                                 480
        ACACTGTAAA ATGCCAGAAG CAGGTGAAGA GCAACCACAA GTTTAAATGA AGACAAGCTG
80
        AAACAACGCA AGCTGGTTTT ATATTAGATA TTTGACTTAA ACTATCTCAA TAAAGTTTTG
                                                                                 600
        CAGCTTTCAC CAAAAAAAAA AAAAAA
        Seq ID NO: 105 Protein sequence:
85
        Protein Accession #: NP_065144.1
                               21
                                           31
                                                       41
        1
                   11
```

```
MLLWCPPQCA CSLGVFPSAP SPVWGTRRSC EPATRVPEVW ILSPLLRHGG HTQTQNHTAS
       PRSPVMESPK KKNOOLKVGI LHLGSRQKKI RIQLRSQCAT WKVICKSCIS QTPGINLDLG
       SGVKVKTIPK EEHCKMPEAG EEOPOV
 5
       Seg ID NO: 106 DNA seguence
      Nucleic Acid Accession #: J04129
       Coding sequence: 99-587
10
                                                              51
                                        31
                                                   41
                             21
       CATCCCTCTG GCTCCAGAGC TCAGAGCCAC CCACAGCCGC AGCCATGCTG TGCCTCCTGC
       TCACCCTGGG CGTGGCCCTG GTCTGTGGTG TCCCGGCCAT GGACATCCCC CAGACCAAGC
       AGGACCTGGA GCTCCCAAAG TTGGCAGGGA CCTGGCACTC CATGGCCATG GCGACCAACA
                                                                           180
15
       ACATCTCCCT CATGGCGACA CTGAAGGCCC CTCTGAGGGT CCACATCACC TCACTGTTGC
                                                                           240
       CCACCCCGA GGACAACCTG GAGATCGTTC TGCACAGATG GGAGAACAAC AGCTGTGTTG
                                                                            300
       AGAAGAAGGT CCTTGGAGAG AAGACTGGGA ATCCAAAGAA GTTCAAGATC AACTATACGG
                                                                           360
       TGGCGAACGA GGCCACGCTG CTCGATACTG ACTACGACAA TTTCCTGTTT CTCTGCCTAC
                                                                            420
       AGGACACCAC CACCCCCATC CAGAGCATGA TGTGCCAGTA CCTGGCCAGA GTCCTGGTGG
20
       AGGACGATGA GATCATGCAG GGATTCATCA GGGCTTTCAG GCCCCTGCCC AGGCACCTAT
                                                                            540
       GGTACTTGCT GGACTTGAAA CAGATGGAAG AGCCGTGCCG TTTCTAGCTC ACCTCCGCCT
                                                                            600
       CCAGGAAGAC CAGACTCCCA CCCTTCCACA CCTCCAGAGC AGTGGGACTT CCTCCTGCCC
                                                                            660
       TTTCAAAGAA TAACCACAGC TCAGAAGACG ATGACGTGGT CATCTGTGTC GCCATCCCCT
                                                                            720
       TCCTGCTGCA CACCTGCACC ATTGCCATGG GGAGGCTGCT CCCTGGGGGC AGAGTCTCTG
                                                                            780
25
       GCAGAGGTTA TTAATAAACC CTTGGAGCAT G
       Seg ID NO: 107 Protein sequence:
       Protein Accession #: AAA60147
30
                             21
                                        31
                                                   41
                  11
       MDIPOTKODL ELPKLAGTWH SMAMATNNIS LMATLKAPLR VHITSLLPTP EDNLEIVLHR
       WENNSCVEKK VLGEKTGNPK KFKINYTVAN EATLLDTDYD NFLFLCLQDT TTPIQSMMCQ
35
       YLARVLVEDD EIMOGFIRAF RPLPRHLWYL LDLKQMEEPC RF
       Seq ID NO: 108 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 48-794
40
                                        31
                                                   41
                                                               51
                             21
       TCCCAGGCAG CAGTTAGCCC GCCGCCCGCC TGTGTGTCCC CAGAGCCATG GAGAGAGCCA
       GTCTGATCCA GAAGGCCAAG CTGGCAGAGC AGGCCGAACG CTATGAGGAC ATGGCAGCCT
                                                                            120
45
       TCATGAAAGG CGCCGTGGAG AAGGGCGAGG AGCTCTCCTG CGAAGAGCGA AACCTGCTCT
                                                                            180
       CAGTAGCCTA TAAGAACGTG GTGGGCGGCC AGAGGGCTGC CTGGAGGGTG CTGTCCAGTA
                                                                            240
       TTGAGCAGAA AAGCAACGAG GAGGGCTCGG AGGAGAAGGG GCCCGAGGTG CGTGAGTACC
                                                                            300
       GGGAGAAGGT GGAGACTGAG CTCCAGGGCG TGTGCGACAC CGTGCTGGGC CTGCTGGACA
                                                                            360
       GCCACCTCAT CAAGGAGGCC GGGGACGCCG AGAGCCGGGT CTTCTACCTG AAGATGAAGG
50
       GTGACTACTA CCGCTACCTG GCCGAGGTGG CCACCGGTGA CGACAAGAAG CGCATCATTG
                                                                            480
       ACTCAGCCCG GTCAGCCTAC CAGGAGGCCA TGGACATCAG CAAGAAGGAG ATGCCGCCCA
                                                                            540
       CCAACCCCAT CCGCCTGGGC CTGGCCCTGA ACTTTTCCGT CTTCCACTAC GAGATCGCCA
                                                                            600
       ACAGCCCCGA GGAGGCCATC TCTCTGGCCA AGACCACTTT CGACGAGGCC ATGGCTGATC
                                                                            660
       TGCACACCCT CAGCGAGGAC TCCTACAAAG ACAGCACCCT CATCATGCAG CTGCTGCGAG
                                                                            720
55
       ACAACCTGAC ACTGTGGACG GCCGACAACG CCGGGGAAGA GGGGGGCGAG GCTCCCCAGG
       AGCCCCAGAG CTGAGTGTTG CCCGCCACCG CCCCGCCCTG CCCCCTCCAG TCCCCCACCC
                                                                            840
       TGCCGAGAGG ACTAGTATGG GGTGGGAGGC CCCACCCTTC TCCCCTAGGC GCTGTTCTTG
                                                                            900
       CTCCAAAGGG CTCCGTGGAG AGGGACTGGC AGAGCTGAGG CCACCTGGGG CTGGGGATCC
                                                                            960
       CACTCTTCTT GCAGCTGTTG AGCGCACCTA ACCACTGGTC ATGCCCCCAC CCCTGCTCTC
                                                                           1020
60
       CGCACCCGCT TCCTCCCGAC CCCAGGACCA GGCTACTTCT CCCCTCCTCT TGCCTCCCTC
                                                                           1080
       CTGCCCCTGC TGCCTCTGAT CGTAGGAATT GAGGAGTGTC CCGCCTTGTG GCTGAGAACT
                                                                           1140
       GGACAGTGGC AGGGGCTGGA GATGGGTGTG TGTGTGTGTG TGTGTGTGTG
       CGCGCGCGC AGTGCAAGAC CGAGATTGAG GGAAAGCATG TCTGCTGGGT GTGACCATGT
                                                                           1260
       TTCCTCTCAA TAAAGTTCCC CTGTGACACT C
65
       Seq ID NO: 109 Protein sequence:
       Protein Accession #: NP 006133.1
                                                               51
70
       MERASLIQKA KLAEQAERYE DMAAFMKGAV EKGEELSCEE RNLLSVAYKN VVGGQRAAWR
                                                                             60
       VLSSIEQKSN EEGSEEKGPE VREYREKVET ELQGVCDTVL GLLDSHLIKE AGDAESRVFY
                                                                            120
       LKMKGDYYRY LAEVATGDDK KRIIDSARSA YQEAMDISKK EMPPTNPIRL GLALNFSVFH
                                                                            180
       YEIANSPEEA ISLAKTTFDE AMADLHTLSE DSYKDSTLIM QLLRDNLTLW TADNAGEEGG
75
       EAPQEPQS
       Seq ID NO: 110 DNA sequence
       Nucleic Acid Accession #: NM_000695
       Coding sequence: 407-1564
80
                                                               51
                                                    41
       CACGAGTTGG TTTGGGAGCT GCCAGTCTCC TGGGAGGATC GCAGTCAGCA GAGCAGGGCT
                                                                             60
       GAGGCCTGGG GGTAGGAGCA GAGCCTGCGC ATCTGGAGGC AGCATGTCCA AGAAAGGGAG
                                                                            120
85
       TGGAGGTGCA GCGAAGGACC CAGGGGCAGA GCCCACGCTG GGGATGGACC CCTTCGAGGA
       CACACTGCGG CGGCTGCGTG AGGCCTTCAA CTGAGGGCGC ACGCGGCCGG CCGAGTTCCG
                                                                            240
       GGCTGCGCAG CTCCAGGGCC TGGGCCACTT CCTTCAAGAA AACAAGCAGC TTCTGCGCGA
                                                                            300
```

```
CGTGCTGGCC CAGGACCTGC ATAAGCCAGC TTTCGAGGCA GACATATCTG AGCTCATCCT
                                                                            360
       TTGCCAGAAC GAGGTTGACT ACGCTCTCAA GAACCTTCAG GCCTGGATGA AGGATGAACC
       ACGGTCCACG AACCTGTTCA TGAAGCTGGA CTCGGTCTTC ATCTGGAAGG AACCCTTTGG
                                                                            480
       CCTGGTCCTC ATCATCGCAC CCTGGAACTA CCCATTGAAC CTGACCCTGG TGCTCCTGGT
                                                                            540
 5
       GGGCACCCTC CCCGCAGGGA ATTGCGTGGT GCTGAAGCCG TCAGAAATCA GCCAGGGCAC
                                                                            600
       AGAGAAGGTC CTGGCTGAGG TGCTGCCCCA GTACCTGGAC CAGAGCTGCT TTGCCGTGGT
                                                                            660
       GCTGGGCGGA CCCCAGGAGA CAGGGCAGCT GCTAGAGCAC AAGTTGGACT ACATCTTCTT
                                                                            720
       CACAGGGAGC CCTCGTGTGG GCAAGATTGT CATGACTGCT GCCACCAAGC ACCTGACGCC
       TGTCACCCTG GAGCTGGGGG GCAAGAACCC CTGCTACGTG GACGACAACT GCGACCCCCA
10
       GACCGTGGCC AACCGCGTGG CCTGGTTCTG CTACTTCAAT GCCGGCCAGA CCTGCGTGGC
                                                                            900
       CCCTGACTAC GTCCTGTGCA GCCCCGAGAT GCAGGAGAGG CTGCTGCCCG CCCTGCAGAG
                                                                            960
       CACCATCACC CGTTTCTATG GCGACGACCC CCAGAGCTCC CCAAACCTGG GCCGCATCAT
                                                                           1020
       CAACCAGAAA CAGTTCCAGC GGCTGCGGGC ATTGCTGGGC TGCGGCCGCG TGGCCATTGG
                                                                           1080
       GGGCCAGAGC AACGAGAGCG ATCGCTACAT CGCCCCCACG GTGCTGGTGG ACGTGCAGGA
15
       GACGGAGCCT GTGATGCAGG AGGAGATCTT CGGGCCCATC CTGCCCATCG TGAACGTGCA
                                                                           1200
       GAGCGTGGAC GAGGCCATCA AGTTCATCAA CCGGCAGGAG AAGCCCCTGG CCCTGTACGC
                                                                           1260
       CTTCTCCAAC AGCAGACAGG TTGTGAACCA GATGCTGGAG CGGACCAGCA GCGGCAGCTT
                                                                          1320
       TGGAGGCAAT GAGGGCTTCA CCTACATATC TCTGCTGTCC GTGCCATTCG GGGGAGTCGG
                                                                           1380
       CCACAGTGGG ATGGGCCGGT ACCACGGCAA GTTCACCTTC GACACCTTCT CCCACCACCG
                                                                           1440
20
       CACCTGCCTG CTCGCCCCCT CCGGCCTGGA GAAATTAAAG GAGATCCGCT ACCCACCCTA
                                                                           1500
       TACCGACTGG AACCAGCAGC TGTTACGCTG GGGCATGGGC TCCCAGAGCT GCACCCTCCT
                                                                           1560
       GTGAGCGTCC CACCCGCCTC CAACGGGTCA CACAGAGAAA CCTGAGTCTA GCCATGAGGG
                                                                           1620
       GCTTATGCTC CCAACTCACA TTGTTCCTCC AGACCGCAGG CTCCCCCAGC CTCAGGTTGC
                                                                           1680
       TGGAGCTGTC ACATGACTGC ATCCTGCCTG CCAGGGCTGC AAAGCAAGGT CTTGCTTCTA
                                                                           1740
25
       TCTGGGGGAC GCTGCTCGAG AGAGGCCGAG AGGCCGCAGA ACATGCCAGG TGTCCTCACT
                                                                           1800
       CACCCCACCC TCCCCAATTC CAGCCCTTTG CCCTCTCGGT CAGGGTTGGC CAGGCCCAGT
       CACAGGGGCA GTGTCACCCT GGAAAATACA GTGCCCTGCC TTCTTAGGGG CATCAGCCCT
                                                                           1920
       GAACGGTTGA GAGCGTGGAG CCCTCCAGGC CTTTGCTCTC CCCTCTAGGC ACACGCGCAC
                                                                           1980
       TTCCACCTCT GCCCCATCCC AACTGCACCA GCACTGCCTC CCCCAGGGAT CCTCTCACAT
                                                                           2040
30
       CCCACACTGG TCTCTGCACC ACCCCTCTGG TTCACACCGC ACCCTGCACT CACCCACAGC
                                                                           2100
       AGCTCCATCC ACTGGGAAAA CTGGGGTTTG CATCACTCCA CTGCACAGTG TTAGTGGGAC
                                                                           2160
       CTGGGGGCAA GTCCCTTGAC TTCTCTGAGC CTCAGTTTCC TTATGTGAAA GTTGCTGGAA
                                                                           2220
       CCAAAATGGA GTCACTTATG CCAAACTCTA ATAAAATGGA GTCGGGGGGG CACATAGAAG
                                                                           2280
       CCCTCACACA CACATGCCCG TAACAGGATT TATCACCAAG ACACGCCTGC ATGTAAGACC
                                                                           2340
35
       AGACACAGGG CGTATGGAAA AGCACGTCCT CAAAGACTGT AGTATTCCAG ATGAGCTGCA
                                                                           2400
       GATGCTTACC TACCACGGCC GTCTCCACCA GAAAACCATC GCCAACTCCT GCGATCAGCT
                                                                           2460
       TGTGACTTAC AAACCTTGTT TAAAAGCTGC TTACATGGAC TTCTGTCCTT TAAAACGTTC
                                                                           2520
       CCCTTGGCTG TGGCCCTCTG TGTATGCCTG GGATCCTTCC AAGCACTCAT AGCCCAGATA
       GGAATCCTCT GCTCCTCCCA AATAAATTCA TCTGTTC
40
       Seg ID NO: 111 Protein seguence:
       Protein Accession #: NP_000686
45
                             21
                                        31
                                                    41
                  11
       MKDEPRSTNL FMKLDSVFIW KEPFGLVLII APWNYPLNLT LVLLVGTLPA GNCVVLKPSE
                                                                             60
       ISQGTEKVLA EVLPQYLDQS CFAVVLGGPQ ETGQLLEHKL DYIFFTGSPR VGKIVMTAAT
                                                                            120
       KHLTPVTLEL GGKNPCYVDD NCDPQTVANR VAWFCYFNAG QTCVAPDYVL CSPEMQERLL
                                                                            180
50
       PALOSTITRF YGDDPOSSPN LGRIINOKOF ORLRALLGCG RVAIGGQSNE SDRYIAPTVL
       VDVQETEPVM QEEIFGPILP IVNVQSVDEA IKFINRQEKP LALYAFSNSR QVVNQMLERT
                                                                            300
       SSGSFGGNEG FTYISLLSVP FGGVGHSGMG RYHGKFTFDT FSHHRTCLLA PSGLEKLKEI
                                                                            360
       RYPPYTDWNQ QLLRWGMGSQ SCTLL
55
       Seq ID NO: 112 DNA sequence
       Nucleic Acid Accession #: NM 004456
       Coding sequence: 58-2298
                                                    41
                                                               51
                  11
                             21
                                        31
60
       GAATTCCGGG CGACGCGCGG GAACAACGCG AGTCGGCGCG CGGGACGAAG AATAATCATG
                                                                             60
       GGCCAGACTG GGAAGAAATC TGAGAAGGGA CCAGTTTGTT GGCGGAAGCG TGTAAAATCA
       GAGTACATGC GACTGAGACA GCTCAAGAGG TTCAGACGAG CTGATGAAGT AAAGAGTATG
                                                                            180
       TTTAGTTCCA ATCGTCAGAA AATTTTGGAA AGAACGGAAA TCTTAAACCA AGAATGGAAA
                                                                            240
65
       CAGCGAAGGA TACAGCCTGT GCACATCCTG ACTTCTGTGA GCTCATTGCG CGGGACTAGG
                                                                            300
       GAGTGTTCGG TGACCAGTGA CTTGGATTTT CCAACACAAG TCATCCCATT AAAGACTCTG
                                                                            360
       AATGCAGTTG CTTCAGTACC CATAATGTAT TCTTGGTCTC CCCTACAGCA GAATTTTATG
       GTGGAAGATG AAACTGTTTT ACATAACATT CCTTATATGG GAGATGAAGT TTTAGATCAG
       GATGGTACTT TCATTGAAGA ACTAATAAAA AATTATGATG GGAAAGTACA CGGGGATAGA
70
       GAATGTGGGT TTATAAATGA TGAAATTTTT GTGGAGTTGG TGAATGCCCT TGGTCAATAT
                                                                            600
       AATGATGATG ACGATGATGA TGATGGAGAC GATCCTGAAG AAAGAGAAGA AAAGCAGAAA
                                                                            660
       GATCTGGAGG ATCACCGAGA TGATAAAGAA AGCCGCCCAC CTCGGAAATT TCCTTCTGAT
                                                                            720
       AAAATTTTGG AGGCCATTTC CTCAATGTTT CCAGATAAGG GCACAGCAGA AGAACTAAAG
                                                                            780
       GAAAAATATA AAGAACTCAC CGAACAGCAG CTCCCAGGCG CACTTCCTCC TGAATGTACC
75
       CCCAACATAG ATGGACCAAA TGCTAAATCT GTTCAGAGAG AGCAAAGCTT ACACTCCTTT
                                                                            900
       CATACGCTTT TCTGTAGGCG ATGTTTTAAA TATGACTGCT TCCTACATCC TTTTCATGCA
                                                                            960
       ACACCCAACA CTTATAAGCG GAAGAACACA GAAACAGCTC TAGACAACAA ACCTTGTGGA
                                                                           1020
       CCACAGTGTT ACCAGCATTT GGAGGGAGCA AAGGAGTTTG CTGCTGCTCT CACCGCTGAG
                                                                           1080
       CGGATAAAGA CCCCACCAAA ACGTCCAGGA GGCCGCAGAA GAGGACGGCT TCCCAATAAC
                                                                           1140
80
       AGTAGCAGGC CCAGCACCCC CACCATTAAT GTGCTGGAAT CAAAGGATAC AGACAGTGAT
                                                                           1200
       AGGGAAGCAG GGACTGAAAC GGGGGGAGAG AACAATGATA AAGAAGAAGA AGAGAAGAAA
                                                                           1260
       GATGAAACTT CGAGCTCCTC TGAAGCAAAT TCTCGGTGTC AAACACCAAT AAAGATGAAG
                                                                           1320
       CCAAATATTG AACCTCCTGA GAATGTGGAG TGGAGTGGTG CTGAAGCCTC AATGTTTAGA
                                                                           1380
       GTCCTCATTG GCACTTACTA TGACAATTTC TGTGCCATTG CTAGGTTAAT TGGGACCAAA
                                                                           1440
85
       ACATGTAGAC AGGTGTATGA GTTTAGAGTC AAAGAATCTA GCATCATAGC TCCAGCTCCC
                                                                           1500
       GCTGAGGATG TGGATACTCC TCCAAGGAAA AAGAAGAGGA AACACCGGTT GTGGGCTGCA
                                                                           1560
       CACTGCAGAA AGATACAGCT GAAAAAGGAC GGCTCCTCTA ACCATGTTTA CAACTATCAA
```

```
CCCTGTGATC ATCCACGGCA GCCTTGTGAC AGTTCGTGCC CTTGTGTGAT AGCACAAAAT
       TTTTGTGAAA AGTTTTGTCA ATGTAGTTCA GAGTGTCAAA ACCGCTTTCC GGGATGCCGC
                                                                          1740
       TGCAAAGCAC AGTGCAACAC CAAGCAGTGC CCGTGCTACC TGGCTGTCCG AGAGTGTGAC
                                                                          1800
       CCTGACCTCT GTCTTACTTG TGGAGCCGCT GACCATTGGG ACAGTAAAAA TGTGTCCTGC
                                                                          1860
 5
                                                                          1920
       AAGAACTGCA GTATTCAGCG GGGCTCCAAA AAGCATCTAT TGCTGGCACC ATCTGACGTG
       GCAGGCTGGG GGATTTTTAT CAAAGATCCT GTGCAGAAAA ATGAATTCAT CTCAGAATAC
                                                                          1980
       TGTGGAGAGA TTATTTCTCA AGATGAAGCT GACAGAAGAG GGAAAGTGTA TGATAAATAC
       ATGTGCAGCT TTCTGTTCAA CTTGAACAAT GATTTTGTGG TGGATGCAAC CCGCAAGGGT
                                                                          2100
       AACAAAATTC GTTTTGCAAA TCATTCGGTA AATCCAAACT GCTATGCAAA AGTTATGATG
                                                                          2160
10
       GTTAACGGTG ATCACAGGAT AGGTATTTTT GCCAAGAGAG CCATCCAGAC TGGCGAAGAG
                                                                          2220
       CTGTTTGTTG ATTACAGATA CAGCCAGGCT GATGCCCTGA AGTATGTCGG CATCGAAAGA
                                                                          2280
       GAAATGGAAA TCCCTTGACA TCTGCTACCT CCTCCCCCTC CTCTGAAACA GCTGCCTTAG
       CTTCAGGAAC CTCGAGTACT GTGGGCAATT TAGAAAAAGA ACATGCAGTT TGAAATTCTG
                                                                          2400
       AATTTGCAAA GTACTGTAAG AATAATTTAT AGTAATGAGT TTAAAAATCA ACTTTTTATT
                                                                          2460
15
       GCCTTCTCAC CAGCTGCAAA GTGTTTTGTA CCAGTGAATT TTTGCAATAA TGCAGTATGG
                                                                          2520
       TACATTTTTC AACTTTGAAT AAAGAATACT TGAACTTGAA AAAAAAAAA AAAAAA
       Seg ID NO: 113 Protein seguence:
20
       Protein Accession #: NP 004447
                                                    41
       MGQTGKKSEK GPVCWRKRVK SEYMRLRQLK RFRRADEVKS MFSSNRQKIL ERTEILNQEW
25
       KORRIOPVHI LTSVSSLRGT RECSVTSDLD FPTQVIPLKT LNAVASVPIM YSWSPLQQNF
       MVEDETVLHN IPYMGDEVLD QDGTFIEELI KNYDGKVHGD RECGFINDEI FVELVNALGQ
                                                                            180
       YNDDDDDDDG DDPEEREEKQ KDLEDHRDDK ESRPPRKFPS DKILEAISSM FPDKGTAEEL
                                                                            240
       KEKYKELTEQ QLPGALPPEC TPNIDGPNAK SVQREQSLHS FHTLFCRRCF KYDCFLHPFH
                                                                            300
       ATPNTYKRKN TETALDNKPC GPQCYQHLEG AKEFAAALTA ERIKTPPKRP GGRRRGRLPN
                                                                            360
30
       NSSRPSTPTI NVLESKDTDS DREAGTETGG ENNDKEEEEK KDETSSSEA NSRCQTPIKM
                                                                            420
       KPNIEPPENV EWSGAEASMF RVLIGTYYDN FCAIARLIGT KTCRQVYEFR VKESSIIAPA
                                                                            480
       PAEDVDTPPR KKKRKHRLWA AHCRKIQLKK DGSSNHVYNY QPCDHPRQPC DSSCPCVIAQ
                                                                            540
       NFCEKFCQCS SECONRFPGC RCKAQCNTKQ CPCYLAVREC DPDLCLTCGA ADHWDSKNVS
                                                                            600
       CKNCSIQRGS KKHLLLAPSD VAGWGIFIKD PVQKNEFISE YCGEIISQDE ADRRGKVYDK
                                                                            660
35
       YMCSFLFNLN NDFVVDATRK GNKIRFANHS VNPNCYAKVM MVNGDHRIGI FAKRAIQTGE
                                                                            720
       ELFVDYRYSO ADALKYVGIE REMEIP
       Seq ID NO: 114 DNA sequence
       Nucleic Acid Accession #: NM_001827
40
       Coding sequence: 96-335
                  11
                             21
                                        31
                                                   41
                                                              51
       AGTCTCCGGC GAGTTGTTGC CTGGGCTGGA CGTGGTTTTG TCTGCTGCGC CCGCTCTTCG
45
       CGCTCTCGTT TCATTTTCTG CAGCGCCCA CGAGGATGGC CCACAAGCAG ATCTACTACT
                                                                            120
       CGGACAAGTA CTTCGACGAA CACTACGAGT ACCGGCATGT TATGTTACCC AGAGAACTTT
                                                                            180
       CCAAACAAGT ACCTAAAACT CATCTGATGT CTGAAGAGGA GTGGAGGAGA CTTGGTGTCC
                                                                            240
       AACAGAGTCT AGGCTGGGTT CATTACATGA TTCATGAGCC AGAACCACAT ATTCTTCTCT
                                                                            300
       TTAGACGACC TCTTCCAAAA GATCAACAAA AATGAAGTTT ATCTGGGGAT CGTCAAATCT
50
       TTTTCAAATT TAATGTATAT GTGTATATAA GGTAGTATTC AGTGAATACT TGAGAAATGT
                                                                            420
       ACAAATCTTT CATCCATACC TGTGCATGAG CTGTATTCTT CACAGCAACA GAGCTCAGTT
                                                                            480
       AAATGCAACT GCAAGTAGGT TACTGTAAGA TGTTTAAGAT AAAAGTTCTT CCAGTCAGTT
                                                                            540
       TTTCTCTTAA GTGCCTGTTT GAGTTTACTG AAACAGTTTA CTTTTGTTCA ATAAAGTTTG
                                                                            600
       TATGTTGCAT TTAAAAAAA AAAAAA
55
       Seg ID NO: 115 Protein seguence:
       Protein Accession #: NP_001818
                             21
                                        31
                                                    41
                                                              51
60
       MAHKQIYYSD KYFDEHYEYR HVMLPRELSK QVPKTHLMSE EEWRRLGVQQ SLGWVHYMIH
       EPEPHILLFR RPLPKDQQK
       Seq ID NO: 116 DNA sequence
65
       Nucleic Acid Accession #: CAT cluster
                             21
                                        31
       TCAGACCTCA TGAGTCACTT GGACTCTTGA GCCACCTCTG GGGGTGGAGT CTCTCTCCTG
                                                                             60
70
       GCATCTGGAC CCTTGGTGCT ATCGACGAAG CTTGGGTGGG GCTCTTAGCT GCTATGTGCA
                                                                            120
       AGAGGTGTGT TCCAGGGAAA GCCCCTATCT CTCTGCAGAG GTCAAGTGAA AGCGACGGCC
                                                                            180
       GCAGCCAACA GAGTTCAAAA TGCAGGCTTG GAAAGTACAG GGGGCTCTGT GGAGGATGGG
                                                                            240
       AAGGACTGAT CCACATTCCC ACCAGGAAGT TTAGCAGAAC CCCCGCGTGC CAACTGGACC
                                                                            300
       CCTTGGAAGG ACCTGGCTCA GGCTGGACCA CCTCTTGAGA GGGAGGAGCT CTGGATTTGA
75
       TCAAGAATTC TTTGCTGAGC ATGGTGCCTC ATGCCTATAA TACCAACACT TTGGGAGGCC
                                                                            420
       AGTGTGGGAG GATCTCTTGA GCCCAGGAGT TCAAGACTAG CCTGGGCAAC ACAGAGAGAA
                                                                            480
       CCCATCTCTA AAATAATAAT AATAATAAAA TAAAAAATTA GCAGGGCATG GTGGCATGTG
                                                                            540
       CCTGTAGTTC CAGCTACCCA GGAGGCTGAG GCAAGAGGAT GGCTGGAGCC TGGGATGTTG
                                                                            600
       AGGCTGCAAT GAACTGTGAT TACCCCACTG CACTCCAGCC TGGGCAAAAG AGCGAGAGAA
80
       CCTGTCTCAA ATAATAATAA TAATAATAAT CTTATTTTGG AGAATAAAGA GACCTCTGGA
                                                                            720
       TTTGAGGTGC CATTTGGGTA GAAAGAAAAG ACGTTTACAC CGAGAAATAG TCTGTGTTGC
                                                                            780
       CCTGAAGGAG CAGAGGGATG CATCGCTGGA GGTGACCTAC AGTTGAAGAA GACTCATTAT
                                                                            840
       GACAGACCTT GTCCTTCTTC CTTGTGGAAA GTGTTTCCTC TGCTGCTACT GCTCATGAGA
                                                                            900
       CTCTTCCCCC TCCCTGTCCC AGGGAACCAA AGGGCTTTCT ACCACACCCT TTCTTGCCCC
                                                                            960
85
       CCGCCTCCCA TGTCTGCTGT GCCTTTGTAC TCAGCAATTC TTGTTTGCTC CATTATCTTC
                                                                           1020
       CAGCCGGATA CAGAGTGAAT AGTTAACCAC ACTTAGGTCA AATAGGATCT AAATTTTTGT
       TCCTGCTCCG TGTAAAGAGG CCAGTGTTTG TGTGTTGCAA GCAGCCTTGG AATAGTAACT
```

```
CTTCTCATTT GTTTGGGATC TGGCCACCAA GTTCCAGAAT GATACACGGA TCAGTGCAGA
                                                                             1200
       AGTTCATCAG GCTCTCGGAC CTTAGGGCTG TTGGAGAAGG CTTCAGCAGC AGAACTGATG
                                                                              1260
       GTGAAGGCTC GTGTTCTCCA TCCTCAACTT TCTTTGCTTC GATCATACAC AAGAATACAT
                                                                              1320
       TTGGAAGGC AAAAATGAA CACTGTCGTT CATTGCAGCC GTGTTTTGTG ACACAGATGC
                                                                              1380
 5
       ACAGTCTGCT GTGAAGACCT TCTCTCAAGT GGCATTTGGG AGTCCATGCC AGATCATGGT GCTTCATGAG AGACTGACAG CTATCAGGGG TTGTGGCACT TAGTGAGGAC TCTCCTCCCC
                                                                              1440
                                                                              1500
       CAGTGTGTGC TGATGACACA TACACACCTG ACAATAGCTT GAGTCTTCTC TGTTCCTTTT
                                                                              1560
       ACTCTGTAGC CAACATACAC ATGATTTAAA ACCCTTTCTA AATATCTATC ATGGTTCATC
                                                                              1620
       CTTGTCCAAA TGCAGAGTCA GAGCTATTTG TACTTCATTA TTATTTCCAA GGCGAATAGT
10
       Seq ID NO: 117 DNA sequence
       Nucleic Acid Accession #: BC012178.1
15
       Coding sequence: 204-2285
                               21
                                          31
                                                      41
       CTTCTCTCCC GCGGCGCTGG GGCCCGCGCT CCGCTGCTGT TGCTCCATTC GGCGCTTTTC
                                                                                60
20
       TGGCGGCTGG CTCCTCTCCG CTGCCGGCTG CTCCTCGACC AGGCCTCCTT CTCAACCTCA
                                                                               120
       GCCCGCGGG CCGACCCTTC CGGCACCCTC CCGCCCCGTC TCGTACTGTC GCCGTCACCG
                                                                               180
       CCGCGGCTCC GGCCCTGGCC CCGATGGCTC TGTGCAACGG AGACTCCAAG CTGGAGAATG
                                                                               240
       CTGGAGGAGA CCTTAAGGAT GGCCACCACC ACTATGAAGG AGCTGTTGTC ATTCTGGATG
                                                                               300
       CTGGTGCTCA GTACGGGAAA GTCATAGACC GAAGAGTGAG GGAACTGTTC GTGCAGTCTG
                                                                               360
25
       AAATTTTCCC CTTGGAAACA CCAGCATTTG CTATAAAGGA ACAAGGATTC CGTGCTATTA
                                                                               420
       TCATCTCTGG AGGACCTAAT TCTGTGTATG CTGAAGATGC TCCCTGGTTT GATCCAGCAA
                                                                               480
       TATTCACTAT TGGCAAGCCT GTTCTTGGAA TTTGCTATGG TATGCAGATG ATGAATAAGG
       TATTTGGAGG TACTGTGCAC AAAAAAAGTG TCAGAGAAGA TGGAGTTTTC AACATTAGTG
                                                                               600
       TGGATAATAC ATGTTCATTA TTCAGGGGCC TTCAGAAGGA AGAAGTTGTT TTGCTTACAC
                                                                               660
30
       ATGGAGATAG TGTAGACAAA GTAGCTGATG GATTCAAGGT TGTGGCACGT TCTGGAAACA
                                                                               720
       TAGTAGCAGG CATAGCAAAT GAATCTAAAA AGTTATATGG AGCACAGTTC CACCCTGAAG
TTGGCCTTAC AGAAAATGGA AAAGTAATAC TGAAGAATTT CCTTTATGAT ATAGCTGGAT
                                                                               780
                                                                               840
       GCAGTGGAAC CTTCACCGTG CAGAACAGAG AACTTGAGTG TATTCGAGAG ATCAAAGAGA
                                                                               900
       GAGTAGGCAC GTCAAAAGTT TTGGTTTTAC TCAGTGGTGG AGTAGACTCA ACAGTTTGTA
                                                                               960
35
       CAGCTTTGCT AAATCGTGCT TTGAACCAAG AACAAGTCAT TGCTGTGCAC ATTGATAATG
                                                                              1020
       GCTTTATGAG AAAACGAGAA AGCCAGTCTG TTGAAGAGGC CCTCAAAAAG CTTGGAATTC
                                                                              1080
       AGGTCAAAGT GATAAATGCT GCTCATTCTT TCTACAATGG AACAACAACC CTACCAATAT
                                                                              1140
       CAGATGAAGA TAGAACCCCA CGGAAAAGAA TTAGCAAAAC GTTAAATATG ACCACAAGTC
                                                                              1200
       CTGAAGAGA AAGAAAAATC ATTGGGGATA CTTTTGTTAA GATTGCCAAT GAAGTAATTG
                                                                              1260
40
       GAGAAATGAA CTTGAAACCA GAGGAGGTTT TCCTTGCCCA AGGTACTTTA CGGCCTGATC
                                                                              1320
       TAATTGAAAG TGCATCCCTT GTTGCAAGTG GCAAAGCTGA ACTCATCAAA ACCCATCACA
                                                                              1380
       ATGACACAGA GCTCATCAGA AAGTTGAGAG AGGAGGGAAA AGTAATAGAA CCTCTGAAAG
                                                                              1440
       ATTTTCATAA AGATGAAGTG AGAATTTTGG GCAGAGAACT TGGACTTCCA GAAGAGTTAG
                                                                              1500
       TTTCCAGGCA TCCATTTCCA GGTCCTGGCC TGGCAATCAG AGTAATATGT GCTGAAGAAC
                                                                              1560
       CTTATATTTG TAAGGACTTT CCTGAAACCA ACAATATTT GAAAATAGTA GCTGATTTTT
CTGCAAGTGT TAAAAAGCCA CATACCCTAT TACAGAGAGT CAAAGCCTGC ACAACAGAAG
45
                                                                              1620
                                                                              1680
       AGGATCAGGA GAAGCTGATG CAAATTACCA GTCTGCATTC ACTGAATGCC TTCTTGCTGC
                                                                              1740
       CAATTAAAAC TGTAGGTGTG CAGGGTGACT GTCGTTCCTA CAGTTACGTG TGTGGAATCT
                                                                              1800
       CCAGTAAAGA TGAACCTGAC TGGGAATCAC TTATTTTTCT GGCTAGGCTT ATACCTCGCA
                                                                              1860
       TGTGTCACAA GGTTAACAGA GTTGTTTATA TATTTGGCCC ACCAGTTAAA GAACCTCCTA CAGATGTTAC TCCCACTTTC TTGACAACAG GGGTGCTCAG TACTTTACGC CAAGCTGATT
50
                                                                              1920
                                                                              1980
       TTGAGGCCCA TAACATTCTC AGGGAGTCTG GGTATGCTGG GAAAATCAGC CAGATGCCGG
                                                                              2040
       TGATTTTGAC ACCATTACAT TTTGATCGGG ACCCACTTCA AAAGCAGCCT TCATGCCAGA
                                                                              2100
       GATCTGTGGT TATTCGAACC TTTATTACTA GTGACTTCAT GACTGGTATA CCTGCAACAC
                                                                              2160
55
       CTGGCAATGA GATCCCTGTA GAGGTGGTAT TAAAGATGGT CACTGAGATT AAGAAGATTC
                                                                              2220
       CTGGTATTTC TCGAATTATG TATGACTTAA CATCAAAGCC CCCAGGAACT ACTGAGTGGG
       AGTAATAAAC TTCTTGTTCT ATTAAAA
60
       Seq ID NO: 118 Protein sequence:
       Protein Accession #: AAH12178.1
                                                      41
                                                                 51
                                          31
65
                                                                                60
       MALCNGDSKL ENAGGDLKDG HHHYEGAVVI LDAGAQYGKV IDRRVRELFV QSEIFPLETP
       AFAIKEQGFR AIIISGGPNS VYAEDAPWFD PAIFTIGKPV LGICYGMQMM NKVFGGTVHK
                                                                               120
       KSVREDGVFN ISVDNTCSLF RGLQKEEVVL LTHGDSVDKV ADGFKVVARS GNIVAGIANE
                                                                               180
       SKKLYGAOFH PEVGLTENGK VILKNFLYDI AGCSGTFTVO NRELECIREI KERVGTSKVL
                                                                               240
       VLLSGGVDST VCTALLNRAL NQEQVIAVHI DNGFMRKRES QSVEEALKKL GIQVKVINAA
                                                                               300
70
       HSFYNGTTTL PISDEDRTPR KRISKTLNMT TSPEEKRKII GDTFVKIANE VIGEMNLKPE
       EVFLAOGTLR PDLIESASLV ASGKAELIKT HHNDTELIRK LREEGKVIEP LKDFHKDEVR
                                                                               420
       ILGRELGLPE ELVSRHPFPG PGLAIRVICA EEPYICKDFP ETNNILKIVA DFSASVKKPH
                                                                               480
       TLLQRVKACT TEEDQEKLMQ ITSLHSLNAF LLPIKTVGVQ GDCRSYSYVC GISSKDEPDW
                                                                               540
       ESLIFLARLI PRMCHNVNRV VYIFGPPVKE PPTDVTPTFL TTGVLSTLRQ ADFEAHNILR
                                                                               600
75
       ESGYAGKISO MPVILTPLHF DRDPLQKQPS CQRSVVIRTF ITSDFMTGIP ATPGNEIPVE
        VVLKMVTEIK KIPGISRIMY DLTSKPPGTT EWE
       Seq ID NO: 119 DNA sequence
       Nucleic Acid Accession #: NM_006500.1
80
       Coding sequence: 27..1967
                   11
                               21
                                          31
                                                                 51
       ACTTGCGTCT CGCCCTCCGG CCAAGCATGG GGCTTCCCAG GCTGGTCTGC GCCTTCTTGC
                                                                                60
85
       TCGCCGCCTG CTGCTGCTGT CCTCGCGTCG CGGGTGTGCC CGGAGAGGCT GAGCAGCCTG
                                                                               120
       CGCCTGAGCT GGTGGAGGTG GAAGTGGGCA GCACAGCCCT TCTGAAGTGC GGCCTCTCCC
                                                                               180
       AGTCCCAAGG CAACCTCAGC CATGTCGACT GGTTTTCTGT CCACAAGGAG AAGCGGACGC
```

```
WO 02/086443
       TCATCTTCCG TGTGCGCCAG GGCCAGGGCC AGAGCGAACC TGGGGAGTAC GAGCAGCGGC
       TCAGCCTCCA GGACAGAGGG GCTACTCTGG CCCTGACTCA AGTCACCCCC CAAGACGAGC
                                                                           360
       GCATCTTCTT GTGCCAGGGC AAGCGCCCTC GGTCCCAGGA GTACCGCATC CAGCTCCGCG
                                                                           420
       TCTACAAAGC TCCGGAGGAG CCAAACATCC AGGTCAACCC CCTGGGCATC CCTGTGAACA
                                                                           480
 5
       GTAAGGAGCC TGAGGAGGTC GCTACCTGTG TAGGGAGGAA CGGGTACCCC ATTCCTCAAG
                                                                           540
                                                                           600
       TCATCTGGTA CAAGAATGGC CGGCCTCTGA AGGAGGAGAA GAACCGGGTC CACATTCAGT
       CGTCCCAGAC TGTGGAGTCG AGTGGTTTGT ACACCTTGCA GAGTATTCTG AAGGCACAGC
                                                                           660
       TGGTTAAAGA AGACAAAGAT GCCCAGTTTT ACTGTGAGCT CAACTACCGG CTGCCCAGTG
       GGAACCACAT GAAGGAGTCC AGGGAAGTCA CCGTCCCTGT TTTCTACCCG ACAGAAAAAG
                                                                           780
10
       TGTGGCTGGA AGTGGAGCCC GTGGGAATGC TGAAGGAAGG GGACCGCGTG GAAATCAGGT
                                                                           840
       GTTTGGCTGA TGGCAACCCT CCACCACACT TCAGCATCAG CAAGCAGAAC CCCAGCACCA
                                                                           900
       GGGAGGCAGA GGAAGAGACA ACCAACGACA ACGGGGTCCT GGTGCTGGAG CCTGCCCGGA
                                                                           960
       AGGAACACAG TGGGCGCTAT GAATGTCAGG CCTGGAACTT GGACACCATG ATATCGCTGC
                                                                          1020
       TGAGTGAACC ACAGGAACTA CTGGTGAACT ATGTGTCTGA CGTCCGAGTG AGTCCCGCAG
                                                                          1080
15
       CCCCTGAGAG ACAGGAAGGC AGCAGCCTCA CCCTGACCTG TGAGGCAGAG AGTAGCCAGG
                                                                          1140
                                                                          1200
       ACCTCGAGTT CCAGTGGCTG AGAGAAGAGA CAGACCAGGT GCTGGAAAGG GGGCCTGTGC
       TTCAGTTGCA TGACCTGAAA CGGGAGGCAG GAGGCGGCTA TCGCTGCGTG GCGTCTGTGC
                                                                          1260
       CCAGCATACC CGGCCTGAAC CGCACACAGC TGGTCAAGCT GGCCATTTTT GGCCCCCTT
                                                                          1320
       GGATGGCATT CAAGGAGAG AAGGTGTGGG TGAAAGAGAA TATGGTGTTG AATCTGTCTT
                                                                          1380
20
       GTGAAGCGTC AGGGCACCCC CGGCCCACCA TCTCCTGGAA CGTCAACGGC ACGGCAAGTG
                                                                          1440
       AACAAGACCA AGATCCACAG CGAGTCCTGA GCACCCTGAA TGTCCTCGTG ACCCCGGAGC
                                                                          1500
                                                                          1560
       TGTTGGAGAC AGGTGTTGAA TGCACGGCCT CCAACGACCT GGGCAAAAAC ACCAGCATCC
       TCTTCCTGGA GCTGGTCAAT TTAACCACCC TCACACCAGA CTCCAACACA ACCACTGGCC
                                                                          1620
       TCAGCACTTC CACTGCCAGT CCTCATACCA GAGCCAACAG CACCTCCACA GAGAGAAAGC
                                                                          1680
25
       TGCCGGAGCC GGAGAGCCGG GGCGTGGTCA TCGTGGCTGT GATTGTGTGC ATCCTGGTCC
                                                                          1740.
       TGGCGGTGCT GGGCGCTGTC CTCTATTTCC TCTATAAGAA GGGCAAGCTG CCGTGCAGGC
                                                                          1800
       GCTCAGGGAA GCAGGAGATC ACGCTGCCCC CGTCTCGTAA GACCGAACTT GTAGTTGAAG
                                                                          1860
       TTAAGTCAGA TAAGCTCCCA GAAGAGATGG GCCTCCTGCA GGGCAGCAGC GGTGACAAGA
                                                                          1920
       GGGCTCCGGG AGACCAGGGA GAGAAATACA TCGATCTGAG GCATTAGCCC CGAATCACTT
                                                                          1980
30
       CAGCTCCCTT CCCTGCCTGG ACCATTCCCA GCTCCCTGCT CACTCTTCTC TCAGCCAAAG
                                                                          2040
       CCTCCAAAGG GACTAGAGAG AAGCCTCCTG CTCCCCTCAC CTGCACACCC CCTTTCAGAG
                                                                          2100
       GGCCACTGGG TTAGGACCTG AGGACCTCAC TTGGCCCTGC AAGCCGCTTT TCAGGGACCA
                                                                          2160
       GTCCACCACC ATCTCCTCCA CGTTGAGTGA AGCTCATCCC AAGCAAGGAG CCCCAGTCTC
                                                                          2220
       CCGAGCGGGT AGGAGAGTTT CTTGCAGAAC GTGTTTTTC TTTACACACA TTATGGCTGT
                                                                          2280
35
       AAATACCTGG CTCCTGCCAG CAGCTGAGCT GGGTAGCCTC TCTGAGCTGG TTTCCTGCCC
                                                                          2340
       CAAAGGCTGG CTTCCACCAT CCAGGTGCAC CACTGAAGTG AGGACACACC GGAGCCAGGC
                                                                          2400
       GCCTGCTCAT GTTGAAGTGC GCTGTTCACA CCCGCTCCGG AGAGCACCCC AGCGGCATCC
                                                                          2460
       AGAAGCAGCT GCAGTGTTGC TGCCACCACC CTCCTGCTCG CCTCTTCAAA GTCTCCTGTG
                                                                          2520
       ACATTTTTC TTTGGTCAGA AGCCAGGAAC TGGTGTCATT CCTTAAAAGA TACGTGCCGG
                                                                          2580
40
       GGCCAGGTGT GGTGGCTCAC GCCTGTAATC CCAGCACTTT GGGAGGCCGA GGCGGGCGGA
                                                                          2640
       TCACAAAGTC AGGACGAGAC CATCCTGGCT AACACGGTGA AACCCTGTCT CTACTAAAAA
                                                                          2700
                                                                          2760
       TACAAAAAA AATTAGCTAG GCGTAGTGGT TGGCACCTAT AGTCCCAGCT ACTCGGAAGG
       CTGAAGCAGG AGAATGGTAT GAATCCAGGA GGTGGAGCTT GCAGTGAGCC GAGACCGTGC
                                                                          2820
       2880
45
       ACGCGTACCT GCGGTGAGGA AGCTGGGCGC TGTTTTCGAG TTCAGGTGAA TTAGCCTCAA
                                                                          2940
       TCCCCGTGTT CACTTGCTCC CATAGCCCTC TTGATGGATC ACGTAAAACT GAAAGGCAGC
                                                                          3000
       GGGGAGCAGA CAAAGATGAG GTCTACACTG TCCTTCATGG GGATTAAAGC TATGGTTATA
                                                                          3060
       TTAGCACCAA ACTTCTACAA ACCAAGCTCA GGGCCCCAAC CCTAGAAGGG CCCAAATGAG
                                                                          3120
       AGAATGGTAC TTAGGGATGG AAAACGGGGC CTGGCTAGAG CTTCGGGTGT GTGTGTCTGT
                                                                          3180
50
       CTGTGTGTAT GCATACATAT GTGTGTATAT ATGGTTTTGT CAGGTGTGTA AATTTGCAAA
                                                                          3240
       3300
       AAAGCTTAAT TGTCCCAGAA AATCATACAT TGCTTTTTTA TTCTACATGG GTACCACAGG
                                                                          3360
       AACCTGGGGG CCTGTGAAAC TACAACCAAA AGGCACACAA AACCGTTTCC AGTTGGCAGC
                                                                          3420
       AGAGATCAGG GGTTACCTCT GCTTCTGAGC AAATGGCTCA AGCTCTACCA GAGCAGACAG
                                                                          3480
       CTACCCTACT TTTCAGCAGC AAAACGTCCC GTATGACGCA GCACGAAGGG CCTGGCAGGC TGTTAGCAGG AGCTATGTCC CTTCCTATCG TTTCCGTCCA CTT
55
                                                                          3540
       Seq ID NO: 120 Protein sequence:
60
       Protein Accession #: NP_006491.1
                             21
                                        31
                                                   41
                  11
65
       MGLPRLVCAF LLAACCCCPR VAGVPGEAEQ PAPELVEVEV GSTALLKCGL SQSQGNLSHV
                                                                            60
       DWFSVHKEKR TLIFRVRQGQ GQSEPGEYEQ RLSLQDRGAT LALTQVTPQD ERIFLCQGKR
                                                                           120
       PRSQEYRIQL RVYKAPEEPN IQVNPLGIPV NSKEPEEVAT CVGRNGYPIP QVIWYKNGRP
                                                                           180
       LKEEKNRVHI OSSOTVESSG LYTLOSILKA OLVKEDKDAO FYCELNYRLP SGNHMKESRE
       VTVPVFYPTE KVWLEVEPVG MLKEGDRVEI RCLADGNPPP HFSISKQNPS TREAEEETTN
                                                                           300
70
       DNGVLVLEPA RKEHSGRYEC QAWNLDTMIS LLSEPQELLV NYVSDVRVSP AAPERQEGSS
                                                                           360
       LTLTCEAESS ODLEFOWLRE ETDQVLERGP VLQLHDLKRE AGGGYRCVAS VPS1PGLNRT
                                                                           420
       QLVKLAIFGP PWMAFKERKV WVKENMVLNL SCEASGHPRP TISWNVNGTA SEQDQDPQRV
                                                                           480
       LSTLNVLVTP ELLETGVECT ASNDLGKNTS ILFLELVNLT TLTPDSNTTT GLSTSTASPH
                                                                           540
       TRANSTSTER KLPEPESRGV VIVAVIVCIL VLAVLGAVLY FLYKKGKLPC RRSGKQEITL
75
       PPSRKTELVV EVKSDKLPEE MGLLQGSSGD KRAPGDQGEK YIDLRH
       Sea ID NO: 121 DNA sequence
       Nucleic Acid Accession #: NM_018306
       Coding sequence: 60-671
80
                                                   41
                                                              51
                  11
                             21
                                        31
       ATAGTCTACA CAGAGCTCCC CTTGCTGCCC AGACAAGCTG AAGGACCACA GGAAAAGCCA
                                                                            60
       TGGAGACTTC AGCATCCTCC TCCCAGCCTC AGGACAACAG TCAAGTCCAC AGAGAAACAG
                                                                           120
85
       AAGATGTAGA CTATGGAGAG ACAGATTTCC ACAAGCAAGA CGGGAAGGCT GGACTCTTTT
                                                                           180
       CCCAAGAACA ATATGAGAGA AACAAGTCTT CTTCCTCCTC CTTCTCTCC TCCTCATCCT CCTCATCTT TTCATCCTCC TCCTCCTCAG GTCCTGGGCA TGGGGAGCCT GACGTTTTGA
                                                                            240
```

```
WO 02/086443
       AGGATGAGCT TCAACTCTAT GGAGATGCTC CTGGAGAGGT GGTACCCTCT GGGGAATCAG
                                                                            360
       GACTCCGAAG GAGAGGCTCT GACCCAGCAA GTGGAGAAGT GGAGGCCTCT CAGTTAAGAA
       GACTGAATAT AAAGAAAGAT GATGAGTTTT TCCATTTCGT CCTCCTGTGC TTTGCCATCG
                                                                            480
       GGGCCTTGCT GGTGTGTTAT CACTATTACG CAGACTGGTT CATGTCTCTT GGGGTCGGCC
                                                                            540
 5
       TGCTCACCTT CGCCTCCCTG GAAACCGTTG GCATCTACTT CGGACTAGTG TACCGTATCC
                                                                            600
                                                                            660
       ACAGCGTCCT CCAAGGCTTC ATCCCCCTCT TCCAGAAGTT TAGGCTGACA GGGTTCAGGA
       AGACTGACTG AGGCCACTTC CAGGTGGGCA GCAGAGGCAG GCCCCAGTGT GACCACCACT
                                                                            720
       GCGACCCCTG AGCCCACAAG GGCAGAGCAG CATTCTGAGA GACGCACAGG AGACCAAGCC
       AGACCAATAA ACAGAACACT TTTCCTTCCA TGTGGTCTGA ATGTTGGCAC CAGCCCGGGC
                                                                            840
10
       AGGGGCATCT CATTTGGGCA GTACTGCTGT GCAACCCAGC TGCAAGGATG GAAGGCAGAG
                                                                            900
       GGTGGGTGTG GGGCCTGAGG CTTCACAGTA CCTGGACCAG CAGGAAGATT CTGGGAGGTC
                                                                            960
       ACTGCTCTCA GAGGACAGCA AGGGACCCTG AGCTCTGCAA GCTGTGATCT GTCTGGGTTC
                                                                           1020
       ATGGTTTTC TCAAATCCCA GGCTATCTGC ATGCGCTCTC AGGTGCTACC GAGCCATCCT
                                                                           1080
       GGGAGAGATG GATGGTCCAC TGCTTTGAGG CAGGGAGCCA TCGGGCTGGG GCCCCTTGGT
15
       GAACCTGATG CAGGTAAGAT GCTGAGGACT AAAACCATTT TTTTTGCACC CAAAAAAAAA
                                                                           1200
       GGCAGGAAAA TGATCATCAG AAACTAAATG GCAGCCAGGC ATGGGGGCTC ACGACTGTAA
                                                                           1260
       TCCTCGCACT TTGGGAGGCT CAGGCTAAGG GTCGCTTGAA GCTGAGAGTT CAAGACCAAC
                                                                           1320
       CTGGGCAACA TAGTGAGACC CCCATCTCTA CAATTTTTTT TTAATGACCA AATGTGGCGG
                                                                           1380
       TACATACCTG TACATACCTG CGGTTCCAGC TACTCAAGAG GCTGAGGCAG GAGGACTGCT
                                                                           1440
20
       TGAGCCCAGG AGTTCAGGGC TGCAGTGAGG TACGATCAAG CCACTGCACT CCAGCCTGGG
       CGACAGAGCA AGATCGTTTC TCTAAAATT
       Seq ID NO: 122 Protein sequence:
25
       Protein Accession #: NP_060776
                                        31
       METSASSSQP QDNSQVHRET EDVDYGETDF HKQDGKAGLF SQEQYERNKS SSSSFSSSS
                                                                             60
30
       SSSSSSSS GPGHGEPDVL KDELQLYGDA PGEVVPSGES GLRRRGSDPA SGEVEASQLR
                                                                            120
       RLNIKKDDEF FHFVLLCFAI GALLVCYHYY ADWFMSLGVG LLTFASLETV GIYFGLVYRI
                                                                            1.80
       HSVLOGFIPL FOKFRLTGFR KTD
       Seq ID NO: 123 DNA sequence
35
       Nucleic Acid Accession #: BC022542
       Coding sequence: 243..896
                                                    41
                                                               51
                             21
                                         31
40
       ACTTGGTCCC AGCCGATAAA TCTGGGGCAG CGCGCGGTAG GAGCTGCGGG CGGCCAGGCC
       CCTTCCTGCG TCCGCACCTG GCCCCGCGCG CCCCTCTCGG GCGTCCGGCT TCCGGCGTCC
                                                                            120
                                                                            180
       TEGCCGCTCG GGTGGCGGCG GTTCGGGCGG CCGCCTGGCT GCTCCTCGGG GCGGCGACGG
       GGCTCACGCG CGGGCCCGCC ACGGCCTTCA CCGCCGCGCG CTCTGACGCC GGCATAAGGG
                                                                            240
       CCATGTGTTC TGAAATTATT TTGAGGCAAG AAGTTTTGAA AGATGGTTTC CACAGAGACC
                                                                            300
45
       TTTTAATCAA AGTGAAGTTT GGGGAAAGCA TTGAGGACTT GCACACGTGC CGTCTCTTAA
                                                                             360
       TTAAACAGGA CATTCCTGCA GGACTTTATG TGGATCCGTA TGAGTTGGCT TCATTACGAG
                                                                            420
       AGAGAAACAT AACAGAGGCA GTGATGGTTT CAGAAAATTT TGATATAGAG GCCCCTAACT
                                                                            480
       ATTTGTCCAA GGAGTCTGAA GTTCTCATTT ATGCCAGACG AGATTCACAG TGCATTGACT
                                                                            540
       GTTTTCAAGC CTTTTTGCCT GTGCACTGCC GCTATCATCG GCCGCACAGT GAAGATGGAG
                                                                            600
50
       AAGCCTCGAT TGTGGTCAAT AACCCAGATT TGTTGATGTT TTGTGACCAA GAGTTCCCGA
       TTTTGAAATG CTGGGCTCAC TCAGAAGTGG CAGCCCCTTG TGCTTTGGAT AATGAGGATA
                                                                             720
       TATGCCAATG GAACAAGATG AAGTATAAAT CAGTATATAA GAATGTGATT CTACAAGTTC
                                                                            780
       CAGTGGGACT GACTGTACAT ACCTCTCTAG TATGTTCTGT GACTCTGCTC ATTACAATCC
                                                                            840
       TGTGCTCTAC ATTGATCCTT GTAGCAGTTT TCAAATATGG CCATTTTTCC CTATAAGTTT
                                                                            900
55
       TATGTAGTTA AATGCTTCCT AGAAACCTAA ATAAGATCTA TTAATTTCTG ACGAGAGGTG
                                                                            960
       TTCTTCTAGA ATTAATTACT TTTATCTTTT GTCTTCATTT GTGGCCAAAA TTATGTTTAC
       TAGAGGAAAT TTGGGATCAT TCTCAGCTAA TTCCAAAATG TAGTGCTCTA TTGCATGGAT
       CCTTGGTAAT CCTCAAGCAT CAGATGCCAT AAGGGGAAAC TTAATTCTGC TAAATTAATG
                                                                           1140
       TTTATTTTGT GAGAAGTGAC TTTATCTTCA TTTGGGGTAG AAAAATTATT TCTTTATGTA
                                                                           1200
       GTAGAGACAA ATTATTCTCA TTTTGCAAGT ACTTTCAATT TAAGCTACAA ATTGAGAAAA
CCGTTATAAA TAAGAATAAA ATAGGCCAGG CACAGTGGCT CACACCTGTA ATCCCAGCAC
60
                                                                           1260
                                                                           1320
       TTTGGGAGGC CGAGGTGGGC GGATCACCAG AGGTCAAGAG TTTGAGACCA GCTTGGTGAA
                                                                            1380
       ACCCTGTCTC TACTAAAAAT ACAAAAGTTA GCTGGGGCTG GTGGTGGGCA TCTGTAGTCC
       CAGCTAATTG GAAGGGTGAG GCGGGAGGAT CGCTTGAACC TGGGAGGCGG AGGTTCCAGA
                                                                           1500
65
       GAGCCAAGAT CGCACCACTG CACTACAGCC TGGGCGACAG AACGAGACCC TGTCTCCAAA
                                                                           1560
       GGAAAAACAA AAAAGAAGAA TAAAATAATT TGGATGAAAA TCATGTTTAT TTAAATAGTA
                                                                           1620
       ATGTCATGAG ACTATTAAAG ATGTGCCAGA GTTTCAATGA AAATCATTAA AGTAGGACAG
                                                                           1680
       CTAAGAAATT AATATTAATA TAAAAATTAT TGATAATCTT AAATTATTGA TTATTCCTTA
        ACGCACTCCA TTCTCCTTTT ACATTTTATC ATGTTTCTTT TGAATATATG AATTGGCAAA
70
        GGACTTGATG AAACTGAGTA CTAAGATTTG GTACAGAGTA TGTCAGGAAG ACAACTCAGA
        TTGCCATTTT AAATAAAGTT GTACATGAAC AAAAAAAAA AAAAAA
       Seg ID NO: 124 Protein seguence:
75
       Protein Accession #: AAH22542
                                                               51
                                         31
                                                    41
       MCSEIILRQE VLKDGFHRDL LIKVKFGESI EDLHTCRLLI KQDIPAGLYV DPYELASLRE
                                                                              60
80
       RNITEAVMVS ENFDIEAPNY LSKESEVLIY ARRDSQCIDC FQAFLPVHCR YHRPHSEDGE
                                                                             120
       ASIVVNNPDL LMFCDQAGSR RMIRFRFDSF DKTIEFPILK CWAHSEVAAP CALENEDICQ
                                                                            180
       WNKMKYKSVY KNVILQVPVG LTVHTSLVCS VTLLITILCS KKKKK
       Seg ID NO: 125 DNA sequence
85
       Nucleic Acid Accession #: NM_004994.1
       Coding sequence: 20..2143
```

```
WO 02/086443
                                                   41
                                                              51
       AGACACCTCT GCCCTCACCA TGAGCCTCTG GCAGCCCCTG GTCCTGGTGC TCCTGGTGCT
       GGGCTGCTGC TTTGCTGCCC CCAGACAGCG CCAGTCCACC CTTGTGCTCT TCCCTGGAGA
                                                                            120
 5
       CCTGAGAACC AATCTCACCG ACAGGCAGCT GGCAGAGGAA TACCTGTACC GCTATGGTTA
                                                                            180
       CACTCGGGTG GCAGAGATGC GTGGAGAGTC GAAATCTCTG GGGCCTGCGC TGCTGCTTCT
                                                                            240
       CCAGAAGCAA CTGTCCCTGC CCGAGACCGG TGAGCTGGAT AGCGCCACGC TGAAGGCCAT
                                                                            300
       GCGAACCCCA CGGTGCGGGG TCCCAGACCT GGGCAGATTC CAAACCTTTG AGGGCGACCT
                                                                            360
       CAAGTGGCAC CACCACAACA TCACCTATTG GATCCAAAAC TACTCGGAAG ACTTGCCGCG
10
       GGCGGTGATT GACGACGCCT TTGCCCGCGC CTTCGCACTG TGGAGCGCGG TGACGCCGCT
                                                                            480
       CACCTTCACT CGCGTGTACA GCCGGGACGC AGACATCGTC ATCCAGTTTG GTGTCGCGGA
                                                                            540
       GCACGGAGAC GGGTATCCCT TCGACGGGAA GGACGGGCTC CTGGCACACG CCTTTCCTCC
                                                                            600
       TGGCCCCGGC ATTCAGGGAG ACGCCCATTT CGACGATGAC GAGTTGTGGT CCCTGGGCAA
                                                                            660
       GGGCGTCGTG GTTCCAACTC GGTTTGGAAA CGCAGATGGC GCGGCCTGCC ACTTCCCCTT
                                                                            720
15
       CATCTTCGAG GGCCGCTCCT ACTCTGCCTG CACCACCGAC GGTCGCTCCG ACGGCTTGCC
       CTGGTGCAGT ACCACGGCCA ACTACGACAC CGACGACCGG TTTGGCTTCT GCCCCAGCGA
                                                                            840
       GAGACTCTAC ACCCGGGACG GCAATGCTGA TGGGAAACCC TGCCAGTTTC CATTCATCTT
                                                                            900
       CCAAGGCCAA TCCTACTCCG CCTGCACCAC GGACGGTCGC TCCGACGGCT ACCGCTGGTG
                                                                            960
       CGCCACCACC GCCAACTACG ACCGGGACAA GCTCTTCGGC TTCTGCCCGA CCCGAGCTGA
                                                                           1020
20
       CTCGACGGTG ATGGGGGGCA ACTCGGCGGG GGAGCTGTGC GTCTTCCCT TCACTTTCCT
                                                                           1080
       GGGTAAGGAG TACTCGACCT GTACCAGCGA GGGCCGCGGA GATGGGCGCC TCTGGTGCGC
                                                                           1140
       TACCACCTCG AACTTTGACA GCGACAAGAA GTGGGGCTTC TGCCCGGACC AAGGATACAG
                                                                           1200
       TTTGTTCCTC GTGGCGGCGC ATGAGTTCGG CCACGCGCTG GGCTTAGATC ATTCCTCAGT
                                                                          1260
       GCCGGAGGCG CTCATGTACC CTATGTACCG CTTCACTGAG GGGCCCCCCT TGCATAAGGA
                                                                           1320
25
       CGACGTGAAT GGCATCCGGC ACCTCTATGG TCCTCGCCCT GAACCTGAGC CACGGCCTCC
                                                                           1380
       AACCACCACC ACACCGCAGC CCACGGCTCC CCCGACGGTC TGCCCCACCG GACCCCCCAC
                                                                           1440
       TGTCCACCCC TCAGAGCGCC CCACAGCTGG CCCCACAGGT CCCCCCTCAG CTGGCCCCAC
                                                                           1500
       AGGTCCCCCC ACTGCTGGCC CTTCTACGGC CACTACTGTG CCTTTGAGTC CGGTGGACGA
                                                                           1560
       TGCCTGCAAC GTGAACATCT TCGACGCCAT CGCGGAGATT GGGAACCAGC TGTATTTGTT
                                                                           1620
30
       CAAGGATGGG AAGTACTGGC GATTCTCTGA GGGCAGGGGG AGCCGGCCGC AGGGCCCCTT
                                                                           1680
       CCTTATCGCC GACAAGTGGC CCGCGCTGCC CCGCAAGCTG GACTCGGTCT TTGAGGAGCC
                                                                           1740
       GCTCTCCAAG AAGCTTTCT TCTTCTCTGG GCGCCAGGTG TGGGTGTACA CAGGCGCGTC
                                                                           1800
       GGTGCTGGGC CCGAGGCGTC TGGACAAGCT GGGCCTGGGA GCCGACGTGG CCCAGGTGAC
                                                                           1860
       CGGGGCCCTC CGGAGTGGCA GGGGGAAGAT GCTGCTGTTC AGCGGGCGGC GCCTCTGGAG
                                                                           1920
35
       GTTCGACGTG AAGGCGCAGA TGGTGGATCC CCGGAGCGCC AGCGAGGTGG ACCGGATGTT
                                                                           1980
       CCCCGGGGTG CCTTTGGACA CGCACGACGT CTTCCAGTAC CGAGAGAAAG CCTATTTCTG
                                                                           2040
       CCAGGACCGC TTCTACTGGC GCGTGAGTTC CCGGAGTGAG TTGAACCAGG TGGACCAAGT
                                                                           2100
       GGGCTACGTG ACCTATGACA TCCTGCAGTG CCCTGAGGAC TAGGGCTCCC GTCCTGCTTT
                                                                           2160
       GCAGTGCCAT GTAAATCCCC ACTGGGACCA ACCCTGGGGA AGGAGCCAGT TTGCCGGATA
40
       CAAACTGGTA TTCTGTTCTG GAGGAAAGGG AGGAGTGGAG GTGGGCTGGG CCCTCTCTTC
                                                                           2280
       TCACCTTTGT TTTTTGTTGG AGTGTTTCTA ATAAACTTGG ATTCTCTAAC CTTT
       Seg ID NO: 126 Protein seguence:
       Protein Accession #: NP_004985.1
45
                                        31
                                                              51
       MSLWQPLVLV LLVLGCCFAA PROROSTLVL FPGDLRTNLT DRQLAEEYLY RYGYTRVAEM
                                                                             60
       RGESKSLGPA LLLLQKQLSL PETGELDSAT LKAMRTPRCG VPDLGRFQTF EGDLKWHHHN
                                                                            120
50
       ITYWIONYSE DLPRAVIDDA FARAFALWSA VTPLTFTRVY SRDADIVIQF GVAEHGDGYP
                                                                            180
       FDGKDGLLAH AFPPGPGIQG DAHFDDDELW SLGKGVVVPT RFGNADGAAC HFPFIFEGRS
       YSACTTDGRS DGLPWCSTTA NYDTDDRFGF CPSERLYTRD GNADGKPCQF PF1FQGQSYS
                                                                            300
       ACTTDGRSDG YRWCATTANY DRDKLFGFCP TRADSTVMGG NSAGELCVFP FTFLGKEYST
                                                                            360
       CTSEGRGDGR LWCATTSNFD SDKKWGFCPD QGYSLFLVAA HEFGHALGLD HSSVPEALMY
                                                                            420
55
       PMYRFTEGPP LHKDDVNGIR HLYGPRPEPE PRPPTTTTPQ PTAPPTVCPT GPPTVHPSER
                                                                            480
       PTAGPTGPPS AGPTGPPTAG PSTATTVPLS PVDDACNVNI FDAIAEIGNQ LYLFKDGKYW
                                                                            540
       RFSEGRGSRP OGPFLIADKW PALPRKLDSV FEEPLSKKLF FFSGRQVWVY TGASVLGPRR
                                                                            600
       LDKLGLGADV AQVTGALRSG RGKMLLFSGR RLWRFDVKAQ MVDPRSASEV DRMFPGVPLD
                                                                            660
       THDVFQYREK AYFCQDRFYW RVSSRSELNQ VDQVGYVTYD ILQCPED
60
       Seq ID NO: 127 DNA sequence
       Nucleic Acid Accession #: NM 004181
       Coding sequence: 32-670
65
                  11
                             21
                                        31
                                                   41
                                                              51
       GCAGAAATAG CCTAGGGAGA TCAACCCCGA GATGCTGAAC AAAGTGCTGT CCCGGCTGGG
                                                                             60
       GGTCGCCGGC CAGTGGCGCT TCGTGGACGT GCTGGGGCTG GAAGAGGAGT CTCTGGGCTC
                                                                            120
       GGTGCCAGCG CCTGCCTGCG CGCTGCTGCT GCTGTTTCCC CTCACGGCCC AGCATGAGAA
70
       CTTCAGGAAA AAGCAGATTG AAGAGCTGAA GGGACAAGAA GTTAGTCCTA AAGTGTACTT
                                                                            240
       CATGAAGCAG ACCATTGGGA ATTCCTGTGG CACAATCGGA CTTATTCACG CAGTGGCCAA
                                                                            300
       TAATCAAGAC AAACTGGGAT TTGAGGATGG ATCAGTTCTG AAACAGTTTC TTTCTGAAAC
                                                                            360
       AGAGAAAATG TCCCCTGAAG ACAGAGCAAA ATGCTTTGAA AAGAATGAGG CCATACAGGC
                                                                            420
       AGCCCATGAT GCCGTGGCAC AGGAAGGCCA ATGTCGGGTA GATGACAAGG TGAATTTCCA
                                                                            480
75
       TTTTATTCTG TTTAACAACG TGGATGGCCA CCTCTATGAA CTTGATGGAC GAATGCCTTT
       TCCGGTGAAC CATGGCGCCA GTTCAGAGGA CACCCTGCTG AAGGACGCTG CCAAGGTGTG
                                                                            600
       CAGAGAATTC ACCGAGCGTG AGCAAGGAGA AGTCCGCTTC TCTGCCGTGG CTCTCTGCAA
                                                                            660
       GGCAGCCTAA TGCTCTGTGG GAGGGACTTT GCTGATTTCC CCTCTTCCCT TCAACATGAA
                                                                            720
       AATATATACC CCCCATGCAG TCTAAAATGC TTCAGTACTT GTGAAACACA GCTGTTCTTC
                                                                            780
80
       TGTTCTGCAG ACACGCCTTC CCCTCAGCCA CACCCAGGCA CTTAAGCACA AGCAGAGTGC
                                                                            840
       ACAGCTGTCC ACTGGGCCAT TGTGGTGTGA GCTTCAGATG GTGAAGCATT CTCCCCAGTG
                                                                            900
       TATGTCTTGT ATCCGATATC TAACGCTTTA AATGGCTACT TTGGTTTCTG TCTGTAAGTT
       AAGACCTTGG ATGTGGTTAT GTTGTCCTAA AGAATAAATT TTGCTGATAG TAGC
85
       Seq ID NO: 128 Protein sequence:
```

Protein Accession #: NP_004172

	WO 02	1006112					
	1 WO 02	/086443	21	31	41	51	
5	GQEVSPKVYF	MKQTIGNSCG	TIGLIHAVAN	VPAPACALLL NQDKLGFEDG FILFNNVDGH	SVLKQFLSET	EKMSPEDRAK	60 120 180
3	TLLKDAAKVC	REFTEREQGE	VRFSAVALCK		II EDDGKMEF	FVNHGASSED	100
10	Nucleic Aci	129 DNA sec id Accession mence: 127-5	1 #: NM_0002	13			
1.5	ì	11	21	31 	41	51	
15	CCCCGAGGTA AAGAGGATGG	GGTCCAGGAC CAGGGCCACG	GGGCGCACAG CCCCAGCCCA	GGCAGCCCAG CAGCAGCCGA TGGGCCAGGC CGCTGCAAGA	GGCTGGCCGG TGCTCCTGGC	GAGAGGGAGG AGCCTTGATC	60 120 180 240
				GCCTACTGCA			300
20				GCCGCGGGCT			360
	AGCCAGATGT	CCCCCAAGG	CCTGCGGGTC	GAGACCCAGA CGTCTGCGGC	CCGGTGAGGA	GCGGCATTTT	420 480
	GAGCTGGAGG	TGTTTGAGCC	ACTGGAGAGC	CCCGTGGACC	TGTACATCCT	CATGGACTTC	540
25				CTCAAGAAGA ATTGGATTTG			600 660
23				AAGCTGAAGG			720
	CCCCCCTTCT	CCTTCAAGAA	CGTCATCAGC	CTGACAGAAG	ATGTGGATGA	GTTCCGGAAT	780
				CTGGATGCTC			840 900
30				ATTGGCTGGC TATGAGGCTG			960
	GGCATCATGA	GCCGCAACGA	TGAACGGTGC	CACCTGGACA	CCACGGGCAC	CTACACCCAG	1020
				ACCCTGGTGC			1080 1140
				TCCTATAGCT CAGGAGGACT			1200
35	CTGGAGGAGG	CCTTCAATCG	GATCCGCTCC	AACCTGGACA	TCCGGGCCCT	AGACAGCCCC	1260
				ATGTTCCAGA			1320
				CAGGTGCAGC GACCAGAAGG			1380 1440
				GGCATCATCT			1500
40	CTGCAAAAAG	AGGTGCGGTC	AGCTCGCTGC	AGCTTCAACG	GAGACTTCGT	GTGCGGACAG	1560
				ACCTGCAACT GACAAGCCGT			1620 1680
	CAGTGCGGGC	ACTGTGTGTG	CTACGGCGAA	GGCCGCTACG	AGGGTCAGTT	CTGCGAGTAT	1740
45	GACAACTTCC	AGTGTCCCCG	CACTTCCGGG	TTCCTCTGCA	ATGACCGAGG	ACGCTGCTCC	1800
45	ATGGGCCAGT	GTGTGTGTGA	GCCTGGTTGG	ACAGGCCCAA ATCTGTAATG	GCTGTGACTG	TCCCCTCAGC	1860 1920
				TACACGGACA			1980
				CTACGCTCCT			2040
50				GAGGAATGCA			2100 2160
30	GACGAGCTTA	ACAGCTACAC	CATGGAAGGT	GTGCGCTGCT GACGGCGCCC	CTGGGCCCAA	CAGCACTGTC	2220
	CTGGTGCACA	AGAAGAAGGA	CTGCCCTCCG	GGCTCCTTCT	GGTGGCTCAT	CCCCCTGCTC	2280
				CTGCTGCTAT			2340
55				TGCAACCGAG ATGGCCTCTG			2400 2460
	CTGCGCAGCG	GGAACCTCAA	GGGCCGTGAC	GTGGTCCGCT	GGAAGGTCAC	CAACAACATG	2520
	CAGCGGCCTG	GCTTTGCCAC	TCATGCCGCC	AGCATCAACC	CCACAGAGCT	GGTGCCCTAC	2580
	GGGCTGTCCT	TGCGCCTGGC	CCGCCTTTGC	ACCGAGAACC GAGAACCTGA	TGCTGAAGCC	CAGGCAGATC	2640 2700
60	TCCGGTGTAC	ACAAGCTCCA	GCAGACCAAG	TTCCGGCAGC	AGCCCAATGC	CGGGAAAAAG	2760
	CAAGACCACA	CCATTGTGGA	CACAGTGCTG	ATGGCGCCCC	GCTCGGCCAA	GCCGGCCCTG	2820
	CTGAAGCTTA	CAGAGAAGCA	GGTGGAACAG	AGGGCCTTCC GCCCGGGGCA	TGGTGGAGTT	CCAGGAGGGC	2880 2940
	GTGGAGCTGG	TGGACGTACG	GGTGCCCCTC	TTTATCCGGC	CTGAGGATGA	CGACGAGAAG	3000
65	CAGCTGCTGG	TGGAGGCCAT	CGACGTGCCC	GCAGGCACTG	CCACCCTCGG	CCGCCGCCTG	3060
	GTAAACATCA	CCATCATCAA	GGAGCAAGCC	AGAGACGTGG CGCATCCCTG	TGTCCTTTGA	TGTCCTGGAC	3120 3180
	GGCGGGAAGT	CCCAGGTCTC	CTACCGCACA	CAGGATGGCA	CCGCGCAGGG	CAACCGGGAC	3240
70	TACATCCCCG	TGGAGGGTGA	GCTGCTGTTC	CAGCCTGGGG	AGGCCTGGAA	AGAGCTGCAG	3300
70	GTGAAGCTCC	TGGAGCTGCA	AGAAGTTGAC	TCCCTCCTGC GGGGCCCACC	GGGGCCGCCA	GGTCCGCCGT	3360 3420
	ACCATCATCA	TCAGGGACCC	AGATGAACTG	GACCGGAGCT	TCACGAGTCA	GATGTTGTCA	3480
	TCACAGCCAC	CCCCTCACGG	CGACCTGGGC	GCCCCGCAGA	ACCCCAATGC	TAAGGCCGCT	3540
75	GGGTCCAGGA	AGATCCATTT	CAACTGGCTG	CCCCCTTCTG	GCAAGCCAAT	GGGGTACAGG	3600
13	CCCTCAGTGG	AGCTCACCAA	CCTGTACCCG	TCCGAAGCCC TATTGCGACT	ATGAGATGAA	GGTGTGCGCC	3660 3720
	TACGGGGCTC	AGGGCGAGGG	ACCCTACAGC	TCCCTGGTGT	CCTGCCGCAC	CCACCAGGAA	3780
	GTGCCCAGCG	AGCCAGGGCG	TCTGGCCTTC	AATGTCGTCT	CCTCCACGGT	GACCCAGCTG	3840
80	AGCTGGGCTG	AGCCGGCTGA	GACCAACGGT ACCTATTGGG	GAGATCACAG CCCATGAAGA	AAGTGCTGGT	TGACAACCCT	3900 3960
	AAGAACCGGA	TGCTGCTTAT	TGAGAACCTT	CGGGAGTCCC	AGCCCTACCG	CTACACGGTG	4020
	AAGGCGCGCA	ACGGGGCCGG	CTGGGGGCCT	GAGCGGGAGG	CCATCATCAA	CCTGGCCACC	4080
				ATCCCTGACA TACAGCGATG			4140 4200
85	GGCAGCCAGA	GGCCCAGCGT	CTCCGATGAC	ACTGAGCACC	TGGTGAATGG	CCGGATGGAC	4260
	TTTGCCTTCC	CGGGCAGCAC	CAACTCCCTG	CACAGGATGA	CCACGACCAG	TGCTGCTGCC	4320
	TATGGCACCC	ACCTGAGCCC	ACACGTGCCC	CACCGCGTGC	TAAGCACATC	CTCCACCCTC	4380

```
WO 02/086443
       ACACGGGACT ACAACTCACT GACCCGCTCA GAACACTCAC ACTCGACCAC ACTGCCGAGG
                                                                          4440
       GACTACTCCA CCCTCACCTC CGTCTCCTCC CACGACTCTC GCCTGACTGC TGGTGTGCCC
                                                                          4500
       GACACGCCCA CCCGCCTGGT GTTCTCTGCC CTGGGGCCCA CATCTCTCAG AGTGAGCTGG
                                                                          4560
       CAGGAGCCGC GGTGCGAGCG GCCGCTGCAG GGCTACAGTG TGGAGTACCA GCTGCTGAAC
                                                                          4620
 5
       GGCGGTGAGC TGCATCGGCT CAACATCCCC AACCCTGCCC AGACCTCGGT GGTGGTGGAA
                                                                          4680
       GACCTCCTGC CCAACCACTC CTACGTGTTC CGCGTGCGGG CCCAGAGCCA GGAAGGCTGG
                                                                          4740
       GGCCGAGAGC GTGAGGGTGT CATCACCATT GAATCCCAGG TGCACCCGCA GAGCCCACTG
                                                                          4800
       TGTCCCCTGC CAGGCTCCGC CTTCACTTTG AGCACTCCCA GTGCCCCAGG CCCGCTGGTG
                                                                          4860
       TTCACTGCCC TGAGCCCAGA CTCGCTGCAG CTGAGCTGGG AGCGGCCACG GAGGCCCAAT
                                                                          4920
10
       GGGGATATCG TCGGCTACCT GGTGACCTGT GAGATGGCCC AAGGAGGAGG GCCAGCCACC
                                                                          4980
       GCATTCCGGG TGGATGGAGA CAGCCCCGAG AGCCGGCTGA CCGTGCCGGG CCTCAGCGAG
                                                                          5040
       AACGTGCCCT ACAAGTTCAA GGTGCAGGCC AGGACCACTG AGGGCTTCGG GCCAGAGCGC
                                                                          5100
       GAGGGCATCA TCACCATAGA GTCCCAGGAT GGAGGACCCT TCCCGCAGCT GGGCAGCCGT
                                                                          5160
       GCCGGGCTCT TCCAGCACCC GCTGCAAAGC GAGTACAGCA GCATCACCAC CACCCACACC
15
       AGCGCCACCG AGCCCTTCCT AGTGGATGGG CCGACCCTGG GGGCCCAGCA CCTGGAGGCA
                                                                          5280
       GGCGGCTCCC TCACCCGGCA TGTGACCCAG GAGTTTGTGA GCCGGACACT GACCACCAGC
                                                                          5340
       GGAACCCTTA GCACCCACAT GGACCAACAG TTCTTCCAAA CTTGACCGCA CCCTGCCCCA
                                                                          5400
       CCCCCCCAT GTCCCACTAG GCGTCCTCCC GACTCCTCTC CCGGAGCCTC CTCAGCTACT
                                                                          5460
       CCATCCTTGC ACCCCTGGGG GCCCAGCCCA CCCGCATGCA CAGAGCAGGG GCTAGGTGTC
                                                                          5520
20
       TCCTGGGAGG CATGAAGGGG GCAAGGTCCG TCCTCTGTGG GCCCAAACCT ATTTGTAACC
       AAAGAGCTGG GAGCAGCACA AGGACCCAGC CTTTGTTCTG CACTTAATAA ATGGTTTTGC
                                                                          5640
25
       Seg ID NO: 130 Protein seguence:
       Protein Accession #: NP 000204
30
       MAGPRPSPWA RLLLAALISV SLSGTLANRC KKAPVKSCTE CVRVDKDCAY CTDEMFRDRR
                                                                            60
       CNTOAELLAA GCORESIVVM ESSFOITEET OIDTTLRRSQ MSPQGLRVRL RPGEERHFEL
                                                                           120
       EVFEPLESPV DLYILMDFSN SMSDDLDNLK KMGQNLARVL SQLTSDYTIG FGKFVDKVSV
       PQTDMRPEKL KEPWPNSDPP FSFKNVISLT EDVDEFRNKL QGERISGNLD APEGGFDAIL
                                                                            240
       QTAVCTRDIG WRPDSTHLLV FSTESAFHYE ADGANVLAGI MSRNDERCHL DTTGTYTQYR
                                                                            300
35
       TQDYPSVPTL VRLLAKHNII PIFAVTNYSY SYYEKLHTYF PVSSLGVLQE DSSNIVELLE
                                                                           360
       EAFNRIRSNL DIRALDSPRG LRTEVTSKMF OKTRTGSFHI RRGEVGIYOV OLRALEHVDG
                                                                            420
       THYCOLPEDO KGNIHLKPSF SDGLKMDAGI ICDVCTCELQ KEVRSARCSF NGDFVCGQCV
                                                                           480
       CSEGWSGOTC NCSTGSLSDI OPCLREGEDK PCSGRGECQC GHCVCYGEGR YEGQFCEYDN
                                                                           540
       FQCPRTSGFL CNDRGRCSMG QCVCEPGWTG PSCDCPLSNA TCIDSNGGIC NGRGHCECGR
40
       CHCHOOSLYT DTICEINYSA IHPGLCEDLR SCVQCQAWGT GEKKGRTCEE CNFKVKMVDE
                                                                            660
       LKRAEEVVVR CSFRDEDDDC TYSYTMEGDG APGPNSTVLV HKKKDCPPGS FWWLIPLLLL
                                                                           720
       LLPLLALLL LCWKYCACCK ACLALLPCCN RGHMVGFKED HYMLRENLMA SDHLDTPMLR
                                                                            780
       SGNLKGRDVV RWKVTNNMOR PGFATHAASI NPTELVPYGL SLRLARLCTE NLLKPDTREC
                                                                           840
       AOLROEVEEN LNEVYROISG VHKLQQTKFR QQPNAGKKQD HTIVDTVLMA PRSAKPALLK
45
       LTEKQVEQRA FHDLKVAPGY YTLTADQDAR GMVEFQEGVE LVDVRVPLFI RPEDDDEKQL
                                                                            960
       LVEAIDVPAG TATLGRRLVN ITIIKEQARD VVSFEQPEFS VSRGDQVARI PVIRRVLDGG
                                                                          1020
       KSQVSYRTQD GTAQGNRDYI PVEGELLFQP GEAWKELQVK LLELQEVDSL LRGRQVRRFH
                                                                          1080
       VQLSNPKFGA HLGQPHSTTI IIRDPDELDR SFTSQMLSSQ PPPHGDLGAP QNPNAKAAGS
                                                                          1140
       RKIHFNWLPP SGKPMGYRVK YWIOGDSESE AHLLDSKVPS VELTNLYPYC DYEMKVCAYG
                                                                          1200
50
       AQGEGPYSSL VSCRTHQEVP SEPGRLAFNV VSSTVTQLSW AEPAETNGEI TAYEVCYGLV
                                                                          1260
       NDDNRPIGPM KKVLVDNPKN RMLLIENLRE SQPYRYTVKA RNGAGWGPER EAIINLATQP
                                                                          1320
       KRPMSIPIIP DIPIVDAQSG EDYDSFLMYS DDVLRSPSGS QRPSVSDDTE HLVNGRMDFA
                                                                          1380
       FPGSTNSLHR MTTTSAAAYG THLSPHVPHR VLSTSSTLTR DYNSLTRSEH SHSTTLPRDY
                                                                          1440
       STLTSVSSHD SRLTAGVPDT PTRLVFSALG PTSLRVSWQE PRCERPLQGY SVEYQLLNGG
                                                                          1500
55
       ELHRLNIPNP AOTSVVVEDL LPNHSYVFRV RAOSOEGWGR EREGVITIES QVHPQSPLCP
                                                                          1560
       LPGSAFTLST PSAPGPLVFT ALSPDSLQLS WERPRRPNGD IVGYLVTCEM AQGGGPATAF
                                                                          1620
       RVDGDSPESR LTVPGLSENV PYKFKVQART TEGFGPEREG IITIESQDGG PFPQLGSRAG
                                                                          1680
       LFQHPLQSEY SSITTTHTSA TEPFLVDGPT LGAQHLEAGG SLTRHVTQEF VSRTLTTSGT
                                                                          1740
       LSTHMDQQFF QT
60
       Seq ID NO: 131 DNA sequence
       Nucleic Acid Accession #: BC004372
       Coding sequence: 132..2231
65
                  11
                             21
                                        31 ,
                                                   41
                                                              51
       CCTCGTGCCG CGGACCCCAG CCTCTGCCAG GTTCGGTCCG CCATCCTCGT CCCGTCCTCC
                                                                            60
       GCCGGCCCT GCCCGCGCC CAGGGATCCT CCAGCTCCTT TCGCCCGCGC CCTCCGTTCG
       CTCCGGACAC CATGGACAAG TTTTGGTGGC ACGCAGCCTG GGGACTCTGC CTCGTGCCGC
                                                                           180
70
       TGAGCCTGGC GCAGATCGAT TTGAATATAA CCTGCCGCTT TGCAGGTGTA TTCCACGTGG
                                                                           240
       AGAAAAATGG TCGCTACAGC ATCTCTCGGA CGGAGGCCGC TGACCTCTGC AAGGCTTTCA
                                                                           300
       ATAGCACCTT GCCCACAATG GCCCAGATGG AGAAAGCTCT GAGCATCGGA TTTGAGACCT
                                                                           360
       GCAGGTATGG GTTCATAGAA GGGCATGTGG TGATTCCCCG GATCCACCC AACTCCATCT
                                                                           420
       GTGCAGCAAA CAACACAGGG GTGTACATCC TCACATCCAA CACCTCCCAG TATGACACAT
                                                                           480
75
       ATTGCTTCAA TGCTTCAGCT CCACCTGAAG AAGATTGTAC ATCAGTCACA GACCTGCCCA
       ATGCCTTTGA TGGACCAATT ACCATAACTA TTGTTAACCG TGATGGCACC CGCTATGTCC
                                                                            600
       AGAAAGGAGA ATACAGAACG AATCCTGAAG ACATCTACCC CAGCAACCCT ACTGATGATG
                                                                           660
       ACGTGAGCAG CGGCTCCTCC AGTGAAAGGA GCAGCACTTC AGGAGGTTAC ATCTTTTACA
                                                                           720
       CCTTTTCTAC TGTACACCCC ATCCCAGACG AAGACAGTCC CTGGATCACC GACAGCACAG
                                                                           780
80
       ACAGAATCCC TGCTACCAGT ACGTCTTCAA ATACCATCTC AGCAGGCTGG GAGCCAAATG
                                                                           840
       AAGAAAATGA AGATGAAAGA GACAGACACC TCAGTTTTTC TGGATCAGGC ATTGATGATG
                                                                           900
       ATGAAGATTT TATCTCCAGC ACCATTTCAA CCACACCACG GGCTTTTGAC CACACAAAAC
                                                                           960
       AGAACCAGGA CTGGACCCAG TGGAACCCAA GCCATTCAAA TCCGGAAGTG CTACTTCAGA
                                                                          1020
       CAACCACAAG GATGACTGAT GTAGACAGAA ATGGCACCAC TGCTTATGAA GGAAACTGGA
                                                                          1080
85
       ACCCAGAAGC ACACCCTCCC CTCATTCACC ATGAGCATCA TGAGGAAGAA GAGACCCCAC
                                                                          1140
       ATTCTACAAG CACAATCCAG GCAACTCCTA GTAGTACAAC GGAAGAAACA GCTACCCAGA
                                                                          1200
       AGGAACAGTG GTTTGGCAAC AGATGGCATG AGGGATATCG CCAAACACCC AGAGAAGACT
```

```
WO 02/086443
      CCCATTCGAC AACAGGGACA GCTGCAGCCT CAGCTCATAC CAGCCATCCA ATGCAAGGAA
      GGACAACACC AAGCCCAGAG GACAGTTCCT GGACTGATTT CTTCAACCCA ATCTCACACC
                                                                        1380
      CCATGGGACG AGGTCATCAA GCAGGAAGAA GGATGGATAT GGACTCCAGT CATAGTACAA
                                                                        1440
      1500
 5
      CTCTTCAAT GACAACGCAG CAGAGTAATT CTCAGAGCTT CTCTACATCA CATGAAGGCT
                                                                        1560
      TGGAAGAAGA TAAAGACCAT CCAACAACTT CTACTCTGAC ATCAAGCAAT AGGAATGATG
                                                                        1620
      TCACAGGTGG AAGAAGAGC CCAAATCATT CTGAAGGCTC AACTACTTTA CTGGAAGGTT
                                                                        1680
      ATACCTCTCA TTACCCACAC ACGAAGGAAA GCAGGACCTT CATCCCAGTG ACCTCAGCTA
      AGACTGGGTC CTTTGGAGTT ACTGCAGTTA CTGTTGGAGA TTCCAACTCT AATGTCAATC
                                                                        1800
10
      GTTCCTTATC AGGAGACCAA GACACATTCC ACCCCAGTGG GGGGTCCCAT ACCACTCATG
                                                                        1.860
      GATCTGAATC AGATGGACAC TCACATGGGA GTCAAGAAGG TGGAGCAAAC ACAACCTCTG
                                                                        1920
      GTCCTATAAG GACACCCCAA ATTCCAGAAT GGCTGATCAT CTTGGCATCC CTCTTGGCCT
                                                                        1980
      TGGCTTTGAT TCTTGCAGTT TGCATTGCAG TCAACAGTCG AAGAAGGTGT GGGCAGAAGA
      AAAAGCTAGT GATCAACAGT GGCAATGGAG CTGTGGAGGA CAGAAAGCCA AGTGGACTCA
                                                                        2100
15
      ACGGAGAGGC CAGCAAGTCT CAGGAAATGG TGCATTTGGT GAACAAGGAG TCGTCAGAAA
                                                                        2160
      CTCCAGACCA GTTTATGACA GCTGATGAGA CAAGGAACCT GCAGAATGTG GACATGAAGA
                                                                        2220
      TTGGGGTGTA ACACCTACAC CATTATCTTG GAAAGAAACA ACCGTTGGAA ACATAACCAT
                                                                        2280
      TACAGGGAGC TGGGACACTT AACAGATGCA ATGTGCTACT GATTGTTTCA TTGCGAATCT
                                                                        2340
      TTTTTAGCAT AAAATTTTCT ACTCTTAAAA AAAAAAAAA AAAAAAA
20
      Seq ID NO: 132 Protein sequence:
      Protein Accession #: AAH04372
25
                                       31
                 11
                            21
      MDKFWWHAAW GLCLVPLSLA QIDLNITCRF AGVFHVEKNG RYSISRTEAA DLCKAFNSTL
                                                                          60
      PTMAQMEKAL SIGFETCRYG FIEGHVVIPR IHPNSICAAN NTGVYILTSN TSQYDTYCFN
                                                                          120
30
      ASAPPEEDCT SVTDLPNAFD GPITITIVNR DGTRYVQKGE YRTNPEDIYP SNPTDDDVSS
                                                                         180
      GSSSERSSTS GGYIFYTFST VHPIPDEDSP WITDSTDRIP ATSTSSNTIS AGWEPNEENE
                                                                          240
      DERDRHLSFS GSGIDDDEDF ISSTISTTPR AFDHTKQNQD WTQWNPSHSN PEVLLQTTTR
      MTDVDRNGTT AYEGNWNPEA HPPLIHHEHH EEEETPHSTS TIQATPSSTT EETATQKEQW
                                                                          360
      FGNRWHEGYR QTPREDSHST TGTAAASAHT SHPMQGRTTP SPEDSSWTDF FNPISHPMGR
                                                                          420
35
      GHQAGRRMDM DSSHSTTLQP TANPNTGLVE DLDRTGPLSM TTQQSNSQSF STSHEGLEED
                                                                          480
      KDHPTTSTLT SSNRNDVTGG RRDPNHSEGS TTLLEGYTSH YPHTKESRTF IPVTSAKTGS
                                                                          540
      FGVTAVTVGD SNSNVNRSLS GDQDTFHPSG GSHTTHGSES DGHSHGSQEG GANTTSGPIR
                                                                          600
      TPOIPEWLII LASLLALALI LAVCIAVNSR RRCGQKKKLV INSGNGAVED RKPSGLNGEA
                                                                          660
       SKSOEMVHLV NKESSETPDO FMTADETRNL ONVDMKIGV
40
      Seq ID NO: 133 DNA sequence
      Nucleic Acid Accession #: NM_002882
      Coding sequence: 150-755
45
                                                             51
                 11
                            21
                                       31
                                                  41
      CGAGGTTCGG GTCGTGGGGC GGAGGGAAGA GCGGGCGGGC GGGAGGCGCC GGCGCCAGAC
                                                                           60
      120
50
      AGCCGAGCCG CCGCCGCCGC CGCGCCCCCA TGGCGGCCGC CAAGGACACT CATGAGGACC
                                                                          180
      ATGATACTTC CACTGAGAAT ACAGACGAGT CCAACCATGA CCCTCAGTTT GAGCCAATAG
                                                                          240
       TTTCTCTTCC TGAGCAAGAA ATTAAAACAC TGGAAGAAGA TGAAGAGGAA CTTTTTAAAA
                                                                          300
      TGCGGGCAAA ACTGTTCCGA TTTGCCTCTG AGAACGATCT CCCAGAATGG AAGGAGCGAG
                                                                          360
      GCACTGGTGA CGTCAAGCTC CTGAAGCACA AGGAGAAAGG GGCCATCCGC CTCCTCATGC
                                                                          420
55
      GGAGGGACAA GACCCTGAAG ATCTGTGCCA ACCACTACAT CACGCCGATG ATGGAGCTGA
                                                                          480
      AGCCCAACGC AGGTAGCGAC CGTGCCTGGG TCTGGAACAC CCACGCTGAC TTCGCCGACG
                                                                          540
      AGTGCCCCAA GCCAGAGCTG CTGGCCATCC GCTTCCTGAA TGCTGAGAAT GCACAGAAAT
                                                                          600
      TCAAAACAAA GTTTGAAGAA TGCAGGAAAG AGATCGAAGA GAGAGAAAAG AAAGCAGGAT
                                                                          660
                                                                          720
      CAGGCAAAAA TGATCATGCC GAAAAAGTGG CGGAAAAGCT AGAAGCTCTC TCGGTGAAGG
60
      AGGAGACCAA GGAGGATGCT GAGGAGAAGC AATAAATCGT CTTATTTTAT TTTCTTTTCC
                                                                          780
      TCTCTTTCCT TTCCTTTTT TAAAAAATTT TACCCTGCCC CTCTTTTTCG GTTTGTTTTT
                                                                          840
      ATTCTTTCAT TTTTACAAGG GACGTTATAT AAAGAACTGA ACTC
       Seq ID NO: 134 Protein sequence:
65
      Protein Accession #: NP_002873
                                       31
                                                  41
      MAAAKDTHED HDTSTENTDE SNHDPQFEPI VSLPEQEIKT LEEDEEELFK MRAKLFRFAS
                                                                           60
70
       ENDLPEWKER GTGDVKLLKH KEKGAIRLLM RRDKTLKICA NHYITPMMEL KPNAGSDRAW
                                                                          120
      VWNTHADFAD ECPKPELLAI RFLNAENAQK FKTKFEECRK EIEEREKKAG SGKNDHAEKV
                                                                          180
      AEKLEALSVK EETKEDAEEK O
      Seg ID NO: 135 DNA seguence
75
      Nucleic Acid Accession #: NM_000077.2
       Coding sequence: 277-742
                            21
                                       31
                                                             51
80
      CCCAACCTGG GGCGACTTCA GGTGTGCCAC ATTCGCTAAG TGCTCGGAGT TAATAGCACC
      TCCTCCGAGC ACTCGCTCAC GGCGTCCCCT TGCCTGGAAA GATACCGCGG TCCCTCCAGA
                                                                          120
                                                                          180
      GGATTTGAGG GACAGGGTCG GAGGGGGCTC TTCCGCCAGC ACCGGAGGAA GAAAGAGGAG
      GGGCTGGCTG GTCACCAGAG GGTGGGGCGG ACCGCGTGCG CTCGGCGGCT GCGGAGAGGG
                                                                          240
       GGAGAGCAGG CAGCGGGCGG CGGGGAGCAG CATGGAGCCG GCGGCGGGGA GCAGCATGGA
                                                                          300
85
       GCCTTCGGCT GACTGGCTGG CCACGGCCGC GGCCCGGGGT CGGGTAGAGG AGGTGCGGGC
                                                                          360
       GCTGCTGGAG GCGGGGGCGC TGCCCAACGC ACCGAATAGT TACGGTCGGA GGCCGATCCA
                                                                          420
       GGTCATGATG ATGGGCAGCG CCCGAGTGGC GGAGCTGCTG CTGCTCCACG GCGCGGAGCC
                                                                          480
```

	WO 03	1007.112					
		/086443 GACCCCGCCA	CTCTCACCCG	ACCCGTGCAC	GACGCTGCCC	GGGAGGGCTT	540
	CCTGGACACG	CTGGTGGTGC	TGCACCGGGC	CGGGGCGCGG	${\tt CTGGACGTGC}$	GCGATGCCTG	600
		CCCGTGGACC GCGGGGGGCA					660 720
5	TCCCTCAGAC	ATCCCCGATT	GAAAGAACCA	GAGAGGCTCT	GAGAAACCTC	GGGAAACTTA	780
		CACCGAAGGT					840 900
		TTCATTTAGA CCCCACTACC					960
10	AAATGTAAAA	AAGAAAAACA	CCGCTTCTGC	${\tt CTTTTCACTG}$	${\tt TGTTGGAGTT}$	TTCTGGAGTG	1020
10		CCCTAAGCGC ACTTCATGAC					1080 1140
		GTCACACTGC					1200
	ATTTTCATTC						
15	Sea ID NO:	136 Proteir	sequence:				
		cession #: N					
	1	11	21	31	41	51	
20	}	}	}	}	}	1	
20		PSADWLATAA					60
		NCADPATLTR RAAAGGTRGS			GARLDVRDAW	GREPVDLAGE	120
25	Sea ID NO:	137 DNA sec	nience				
	Nucleic Ac:	id Accession	1 #: NM_058	196.1			
	Coding sequ	uence: 104-4	121				
20							
30	1	11	21	31	41	51 !	
	TGTGTGGGGG	TCTGCTTGGC	GGTGAGGGG	CTCTACACAA	GCTTCCTTTC	CGTCATGCCG	60
	GCCCCCACCC	TGGCTCTGAC	CATTCTGTTC	TCTCTGGCAG	GTCATGATGA	TGGGCAGCGC	120
35	TCTCACCCGA	GAGCTGCTGC CCCGTGCACG	ACGCTCCACGG	GGAGGGCTTC	CTGGACACGC	TGGTGGTGCT	180 240
-	GCACCGGGCC	GGGGCGCGGC	TGGACGTGCG	CGATGCCTGG	GGCCGTCTGC	CCGTGGACCT	300
		CTGGGCCATC AACCATGCCC					360 420
40	AAAGAACCAG	AGAGGCTCTG	AGAAACCTCG	GGAAACTTAG	ATCATCAGTC	ACCGAAGGTC	480
40	CTACAGGGCC	ACAACTGCCC	CCGCCACAAC	CCACCCCGCT	TTCGTAGTTT	TCATTTAGAA	540
	AATAGAGCTT	TTAAAAATGT	CCTGCCTTTT	AACGTAGATA	AAGCCTTCC	AGAAAAACAC	600 660
	TAAATGTCCA	TTTATATCAT	TTTTTATATA	TICTIALAAA			
		TTTTCACTGT	GTTGGAGTTT	TCTGGAGTGA	GCACTCACGC	CCTAAGCGCA	720
45	CGCTTCTGCC CATTCATGTG	TTTTCACTGT GGCATTTCTT	GTTGGAGTTT GCGAGCCTCG	TCTGGAGTGA CAGCCTCCGG	GCACTCACGC AAGCTGTCGA	CCTAAGCGCA CTTCATGACA	780
45	CGCTTCTGCC CATTCATGTG AGCATTTTGT	TTTTCACTGT	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC	GCACTCACGC AAGCTGTCGA TTCTCTTGAG	CCTAAGCGCA CTTCATGACA TCACACTGCT	
45	CGCTTCTGCC CATTCATGTG AGCATTTTGT	TTTTCACTGT GGCATTTCTT GAACTAGGGA	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC	GCACTCACGC AAGCTGTCGA TTCTCTTGAG	CCTAAGCGCA CTTCATGACA TCACACTGCT	780
•	CGCTTCTGCC CATTCATGTG AGCATTTTGT AGCAAATGGC	TTTTCACTGT GGCATTTCTT GAACTAGGGA	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC	GCACTCACGC AAGCTGTCGA TTCTCTTGAG	CCTAAGCGCA CTTCATGACA TCACACTGCT	780
45 50	CGCTTCTGCC CATTCATGTG AGCATTTTGT AGCAAATGGC Seq ID NO:	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC	GCACTCACGC AAGCTGTCGA TTCTCTTGAG	CCTAAGCGCA CTTCATGACA TCACACTGCT	780
•	CGCTTCTGCC CATTCATGTG AGCATTTTGT AGCAAATGGC Seq ID NO:	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC	GCACTCACGC AAGCTGTCGA TTCTCTTGAG	CCTAAGCGCA CTTCATGACA TCACACTGCT	780
•	CGCTTCTGCC CATTCATGTG AGCAAATGGC AGCAAATGGC Seq ID NO: Protein Acc	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA n sequence: NP_478103.1	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA	CCTAAGCGCA CTTCATGACA TCACACTGCT TTCACTC	780 840
50	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA sequence: NP_478103.1 21 CADPATLTRP	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG	CCTAAGCGCA CTTCATGACA TCACACTGCT TTCACTC	780
•	CGCTTCTGCC CATTCATGTG AGCATTTTGT AGCAAATGGC Seq ID NO: Protein Acc 1 MMMGSARVAE RLPVDLAEEL	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA n sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG	CCTAAGCGCA CTTCATGACA TCACACTGCT TTCACTC	780 840
50	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA sec	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: NP_478103.1 21 i CADPATLTRP AAAGGTRGSN Quence	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG	CCTAAGCGCA CTTCATGACA TCACACTGCT TTCACTC	780 840
50 55	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence 1 #: NM_058	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG	CCTAAGCGCA CTTCATGACA TCACACTGCT TTCACTC	780 840
50	CGCTTCTGCC CATTCATGTG AGCATTTTGT AGCAAATGGC Seq ID NO: Protein Act	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secind Accession uence: 272-6	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN quence 1 #: NM_058	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD	CCTAAGCGCA CTTCATGACA TCACACTGCT TTCACTC 51 ARLDVRDAWG	780 840
50 55	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 LLLLHGAEPN GHRDVARYLR 139 DNA sec id Accession uence: 272-6	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence n #: NM_058 684 21	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41	CCTAAGCGCA CTTCATGACA TCACACTGCT TTCACTC 51 ARLDVRDAWG	780 840
50 55	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac. Coding seq 1 CCCCAACCTGG	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA sec id Accession nence: 272-6	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence 1 #: NM_058 684 21 GGTGTGCCAC	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT	CCTAAGCGCA CTTCATGACA TCACACTGCT TTCACTC 51 ARLDVRDAWG 51 1 TAATAGCACC	780 840 60
50 55	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession uence: 272-6 11 GGCGACTTCA ACTCGCTCAC	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence 1 #: NM_058 684 21 GGTGTGCCAC GGCGTCCCCT	TCTGGAGTGA CAGCCTCCGG AATAAAATAA 31 VHDAAREGFL HARIDAAEGP 31 31 31 ATTCGCTAAG TGCCTGGAAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG	CCTAAGCGCA CTTCATGACA TCACACTGCT TTCACTC 51 ARLDVRDAWG	60 120 180
505560	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac. Coding seq 1 CCCAACCTGG TCCTCCGAGC GGATTGAGG GGGTTGGCTG	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 LLLLHGAEPN GHRDVARYLR 139 DNA sec id Accession uence: 272-6 11 GGCGACTTCA ACTCGCTCAC GACAGGGTCG GTCACCAGAG	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG AGCTCAGGGG CTCAAATAAA sequence: 19_478103.1 21 CADPATLTRP AAAGGTRGSN Quence 1 #: NM_058 684 21 GGTGTGCCAC GGCGTCCCCT GAGGGGGCTC GGTGGGGCGG	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT TGATACCGCGG ACCGGAGGAA CTCGGCGGCT	CCTAAGCGCA CTTCATGACA TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGGG GCGGAGAGGG	780 840 60 120 180 240
505560	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac. Coding seq 1 CCCCAACCTGG TCCTCCGAGC GGATTTGAGG GGGCTGGCTG GGAGAGCAGG	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession uence: 272-6 11 GGCGACTTCA ACTGCCTCAC GACAGGGTCG	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence 1 #: NM_058 684 21 GGTGTGCCAC GGCGTCCCCT GAGGGGGCTC GGTGGGCGGC CGGGGAGCAG	TCTGGAGTGA CAGCCTCCGG AATAAAATAA 31 VHDAAREGFL HARIDAAEGP 31 31 31 TCGCTAAG TGCCTGGAAA TTCGCCTAGG ACCGCGTGCG CATGGAGCCC	GCACTCACGC AGGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGAA ACCGGGGGCGGGGGA	CCTAAGCGCA CTTCATGACA CTTCATGACA TCACACTGCT TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAGG GCGGAGAGGG GCGGAGAGGG GCAGCATGGA	60 120 180
50556065	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Act Coding seq 1 CCCAACCTGG TCCCGAGC GGATTTGAGG GGGTGGCTG GGAGAGCAGG GCCGCGGGGG GGGTCGGGTA	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession uence: 272-6 11 GGCGACTTCA ACTGGCTCAC GACAGGGTCG GTCACCAGAG CAGCGGGCGG GGGAGCAGCA GAGAGGGTGC GAGAGGTGC GAGAGGTGC	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA sequence: NP_478103.1 CADPATLTRP AAAGGTRGSN Quence #: NM_058 684 21 GGTGTGCCAC GGCGTCCCCT GAGGGGGCTC GGTGGGGCGC CGGGGAGCCTTC GGGGGGCTTC GGGGGCTTCC GGGGGCTTCC GGGGGCTTC	TCTGGAGTGA CAGCCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGAA CTCGGCGGGGA CTGGCCACGG GCGCCGCGGGGG CTGCCCCA	CCTAAGCGCA CTTCATGACA TTCACTCT TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGGAGAGGG GCAGCATGGA ACGCCCCACA ACGCACCCAA	60 120 180 240 300 420
505560	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac. Coding seq CCCCAACCTGG TCCTCCGAGC GGATTTGAGG GGGCTGGCTG GGAGAGCAGG GCCGGCGGG GGGTCGGGTA TAGTTACGGT	TTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession uence: 272-6 11 GGCGACTTCA ACTCGCTCAC GACAGGGTCG GTCACCAGAG CTGACCAGAG CTGACGAGGTGC CGGAGGGTGC CGGAGGGTGC CGGAGGCCGA	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence 1 #: NM_058 684 21 GGTGTGCCAC GGGGGCCCCCT GAGGGGGCTC GAGGGGGCT CGGGGGAGCAG TGGAGCCTTC TCCAGGTGGG	TCTGGAGTGA CAGCCTCCGG AATAAAATAA 31 VHDAAREGFL HARIDAAEGP 31 ATTCGCTAAG TCCGCCAGC ACCGCGTGCG CATGGAGCCGG GGAGGCGGG TAGAAGGTCT	GCACTCACGC AGCTGTCGA TTCTTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCG ACCGAGGAA CTCGCGGGGGA CTGGCCACGG GCGCTGCCCA GCACCGAGGA GCACCGAGGAG CTGGCCCACG	CCTAAGCGCA CTTCATGACA CTTCATGACA TCACACTGCT TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGGAGAGGG GCAGCATGGA CAGGGGATCGA CAGGGGATCGA	60 120 180 240 300 360 420 480
50556065	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Ac I MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac Coding seq I CCCCAACCTGG TCCTCCGAGC GGATTTGAGG GGAGCAGG GGAGCAGG GGCGGGCG GGGTCGGGTA TAGTTACGGT CGGGGAAAAAG	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession uence: 272-6 11 GGCGACTTCA ACTGGCTCAC GACAGGGTCG GTCACCAGAG CAGCGGGCGG GGGAGCAGCA GAGAGGCTGC GGGAGGCCGA TGGAGGACGAC TGGAGGCCGA TGGAGGCCTTC	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: nP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence n #: NM_058 584 21 GGTGTGCCAC GGGGGGCTC GAGGGGGCTC GAGGGGGCTC GGTGGGCGG CGGGGAGCAG TGGAGCTTC GGCGTTTCCAGGTGGG AGTTTGCAGG AGTTTGCAGG CTGGGGGGTTT CCAGGTGGG CTGGGGGGTTT CCAGGTGGG CTGGGGGGTTT	TCTGGAGTGA CAGCCTCCGG AATAAAATAA 31 VHDAAREGFL HARIDAAEGP 4197.1 31 ATTCGCTAAG TCCGCCAGC ACGCGTGCG CATGGAGCCG GCTGACTGG GCAGCCGGGGCTAGAAGGTCT GCAATTGGAA	GCACTCACGC AAGCTGTCGA TTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGAA CTCGGCGGGGA CTGGCCGCGGGGG CTGGCCAC GCAGCGGGGG TCAGCTGCCCA GCAGCGGGGG TCAGGTAGCG GTTTGTAATC	CCTAAGCGCA CTTCATGACA TTCACTC TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGGAGAGGG GCAGCATGGA CCGCGGCCCG ACGCACCGAA CAGGGGATGG CTTCGATTCT ACAGACCTCC	60 120 180 240 300 420 480 540 600
50556065	CGCTTCTGCC CATTCATGTG AGCANATGGC Seq ID NO: Protein Act MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac. Coding seq CCCAACCTGG TCCCGAGC GGATTGAGG GGGCTGGCTG GGAGAGCAGG GCCGCGGGC GGGTCGGGTA TAGTTACGGT CGGGAAAAAG TCCTGGCGAC TCCTGGCAAC	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession mence: 272-6 11 GGCGACTTCA ACTGGCTCAC ACAGGGTCG GTCACCAGAG CAGCAGGCGG GGGAGCAGCA CAGCAGGCGCG GGGAGCACCA CAGCAGGCCGA TGGAGGACGC GGGAGGCCGA TGGAGGACGTTC GCCCTGGGGG GCCACTTCGCCTCC GCCTGGGGG GCCACTTCC GCCCTGGGGG	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA 1 sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence 1 #: NM_058 684 21 GGTGTGCCAC GGCGTCCCCT GAGGGGGCTC GGTGGGGCGC CGGGGAGCCTT CGGCGCTTC GGCGCTTC GGCGCTTC GGCGCTTC TCCAGGTGGG AGTTTGCAGG AGTTTGCAGG TCTTGGGGAAAC	TCTGGAGTGA CAGCTCCGG GGTTACTGGC AATAAAATAA	GCACTCACGC AAGCTGTCGA TTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGGAA CTCGGCGGCG CGGCGGGGG CTGCCCA GCAGCGGGGG CCAGCGGGGG CCAGCGGGGGGGG	CCTAAGCGCA CTTCATGAC CTTCATGAC TCACACCT TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGGAGAGGG GCAGCATGGA CCGCGGCCCG ACGCACCGAA CAGGGGATGG CTTCGATTCT ACAGACCTCC CCACGCGGCT	60 120 180 240 300 420 480 540 600 660
5055606570	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Act Coding seq CCCAACCTGG TCCTCCGAGC GGATTTGAGG GGGCTGGGTG GGAGAGCAGG GCGGCGGCG GGGTCGGGTA TAGTTACGGT CCGGAAAAAG TCCTGGCGAC ACAGATCTCT	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession dence: 272-6 11 GGCGACTTCA ACTCGCTCAC GACAGGGTCG GTCACCAGGG CGGAGGAGCAGCA TGGAGGAGGTGC CGGAGGCCGA TGGAGGACGAG GGGAGGTCAC GGCACCGGAGGCCGA GGGAGGCCGA GGGAGGCCGA GGGAGGCTGC GCCCTGGGGG CGAATGCTGA	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence a #: NM_058 684 21 GGTGTGCCAC GGCGTCCCCT GAGGGGGCTC CGGGGAGCAG TGGAGCCTTC GGGGCGCG CGGGGAGCAG TCCAGGTGGG AGTTTGCAGG CTTGGGAGTT CCAGGTGGG CTTGGGAGTT CCAGGTGGG CTTGGGAGTT CCAGGTGGG AGTTTGCAGG CTTGGGAAGTT CAAGATCTGA	TCTGGAGTGA CAGCCTCCGG AATAAATAA 31 VHDAAREGFL HARIDAAEGP 31 31 CTGCTAGA TCCGCCAGC GCTGACAG GGAGCGGG GGAGCGGG GGAGCGGG GGAGCGGG GGAGCGGG GGAATTGGAA TTCAGAAGGA TTCAGAAGGA AGGGGAAA CTCAGAAGGA AGGGGGGAAA CTCAGAAGGA	GCACTCACGC AGCTGTCGA TTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGAA ACTCGCGGGCG CCGCCGCGCGCGCGCGCGCGCGCGCGCGC	CCTAAGCGCA CTTCATGACA CTTCATGACA TCACACTGCT TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGAGGAGGGG GCAGCATGAA CCGCGCCCAA ACGCGCCCAA ACGGCACTCAA ACAGGCATTCAACAGCCTCC ACAGCGCCT TAGATGGAAG TAGATGGAAG	60 120 180 240 300 420 480 540 600
50556065	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Ac I MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac Coding seq CCCCAACCTGG GCATTTGAGG GGGTTGGGTA GGAGACAGG GCCGCGGGCG GGTCGGGTA TAGTTACGGT CCGGAAAAAG TCCTGGCGAC TCATGATGAT ACTGCGCGAGA ACTGCTCCGAA	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession mence: 272-6 11 GGCGACTTCA ACTGGCTCAC GACAGGGTCG GTCACCAGAG CAGCGGCGCG GGAGGCGGC GGAGGCGGC GGAGGCGGC GGAGGCGGC GGCAGGTTC GCCTGGGGG CCCCGGCACT CCCCGCCACT	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence #: NM_058 684 21 GGTGTGCCAC GGGGGCTC GGGGGGGCT GGGGGGGCT TCCAGGTGGCAC AGGTGTCCCT TCCAGGTGGC AGTTGCAG AGTTTCCAG CTGGGAAAC CTGGGAAAC CAAGATCTGA CGAGTGCGG CTCACCCGAC CTCACCCGAC	TCTGGAGTGA CAGCCTCCGG AATAAAATAA 31 VHDAAREGFL HARIDAAEGP 4197.1 31 ATTCGCTAAG TCCGCCAGC ACGGGTGCG CATGGAGCCG GGAGGCGGG TAGAAGGTCT GGAATTGGAA TTCAGAAGGG CAAGGAAGAG AGGGGGGAAC CAGGGGGAAC CAGGGGGGAC CAGGAAC CCGTGCT	GCACTCACGC AAGCTGTCGA TTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGAA CTCGGCGGGGA CTGGCCGCG GCAGCGGGGA CTGGCCAC GCAGCGGGGA TCAGGTAGCC GCAGCTGCCCA GCAGGTAGCC GCATGCCCAC GCAGCGGGAG TCAGGTAGCC GCTTCTAATC GAATGAGGG ATATTGTAT GCTCACGGC GCGTGCCCG	CCTAAGCGCA CTTCATGACA TTCACTCT TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGGAGAGGG GCAGCATGGA CCGCGGCCCG ACGCACCGAA CAGGGGATGG CTTCGATTCT ACAGACCTC CCACGCGCT TAGATGGAAC GCGGAGCCCC GCAGGGCCCCC GCAGGCCCCC CCACGCGCCT TAGATGCAAC GCGGAGCCCCC GCAGGGCCCCC	60 120 180 240 300 420 480 540 600 660 720 780 840
5055606570	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac. Coding seq CCCAACCTGG TCCTCCGAGC GGATTTGAGG GGGCTGGCTG GGAGAGCAGG GCCGCGGGGCG GGGTCGGGTA TAGTTACGGT CCGGAAAAAG TCCTCGGGAC ACAGATCTCT TCATGATGAT ACTGCGCCGA TGGACACGCT	TTTTCACTGT GGCATTTCTT GAACTAGGA AGAACCAAAG 138 Protein cession #: 1 11 LILLHGAEPN GHRDVARYLR 139 DNA secid Accession uence: 272-6 GGCGACTTCA ACTCGCTCAC GACAGGGTCG GTCACCAGAG CTCACCAGAG CGCAGGCGCG CGCAGGCTGC CGCAGGGCTGC CGCAGGGCTGC CCCCGGGGG CCCCCCCCACT GGTGGTGCTG	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence a #: NM_058 584 21 GGTGTGCCAC GGGGGCTCCCT GAGGGGGCT CGGGGAGCAG TGGAGCCTT GGGCGTCT TCCAGGTGGG CTGGGGAGT TCCAGGTGGG CTGGGAAC CTGGGAAC CTGGGAAC CTGGGAAC CTGGGAAC CTGGGAAC CTACCGGC CACCGGCCC CACCGGCCGAC CACCGGGCCGAC CACCGGGCCGGCC	TCTGGAGTGA CAGCCTCCGG AATAAATAA 31 VHDAAREGFL HARIDAAEGP 31 ATTCGCTAAG TCCGCCAGC ACGCGTGCAGC GATGGAGCG GGAGGCGGG GAAGGAGGG CAAGGAAGGG CAAGGAAGG	GCACTCACGC AGCTGTCGA ATTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGAA CTCGGCGCGCG GCGCTGCCCA GCAGCGAGGAG TCAGGTAGCG GTTTGTAATC GAATGAGGAG ATATTGTAT GCTCCACGGC GGACGCCGCG GGACGCCGCGGGGAG ATATTGTAT GCTCCACGGC GGACGCCGCG GGACGCCGCG	CCTAAGCGCA CTTCATGACA CTTCATGACA TCACACTGCT TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGGAGACGA CCGCGCCCG ACGCACCGAA CAGGGGATGC CTTCGATTCT ACAGACCTCC CCACGCGCT TAGATGGAAG GCGGAGGCGG GCGGAGCGGA	60 120 180 240 300 420 480 540 600 660 720 780 840 900
505560657075	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Ac MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac Coding seq CCCCAACCTGG TCCTCCGAGC GGATTTGAGG GGAGCAGG GGAGCAGG GCGGGGGG GGTCGGGTA TAGTTACGGT TCGGCGACTC CCGGAAAAAG TCCTGGCGAC TCATGATGAT ACTGCCCGA TGGACACGC GCGCGCGGCG GGCGCGGCG GGCGGCGCGGCG GGCGGC	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession uence: 272-6 11 GGCGACTTCA GACAGGGTCG GTCACCAGAG CAGCGGGCGG CAGCAGGCCGA GAGAGCAGCA GAGAGGCTG GGGAGCCGG GGGAGCCGCA GGGAGGCCG CCCTGGGGG CGCATTCGCCTGGGGC CCCCGCCACT GGTGGACCTG GGGGGCCCCCCCCCC	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence #: NM_058 684 21 GGTGTGCCAC GGGGGGCTC GAGGGGGCTC GGGGGAGCAC GGGGAGCAC CTGGGGAGTT CTCAGGTGGC CTGGGGAGT CTTGGGAAC CTTGGGAAC CAAGTGGGA CATTGCAG CTGGGGAGT CTTGGGAAC CAAGTGGCG CTGGGGAGT CTTGGGAAC CAAGTGGCG CTCACCGAC CACCGGCCG CTCACCGAC CACCGGCCG AGAGCCATA	TCTGGAGTGA CAGCCTCCGG AATAAAATAA 31 VHDAAREGFL HARIDAAEGP 4197.1 31 ATTCGCTAAG TCCCCGGAAA TCCGCCAGC CATGAGGCG CATGAGGCG CATGAGGCG GGAGGCGGGG TAGAAGGTCT GGAATTGGAA TTCAGAAGGTC CAGAGGAGC CAGGAGCGGGG CAGGAGCGGGG CAGGAGCGGGG CAGGAGCGGGG CAGGAGCGGGGG CAGGAGCGGGGG CAGGGGGGGG	GCACTCACGC AGCTGTCGA AGCTGTCGA TTTTCATTCA TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGAA CTCGGCGGCC CCGCGCGCA CCAGCGGGA CTCACCGCA GCATGCCCAC GCATGTAATC GAATGATGCC GCATGCCACGG GCATGCCACGG CGCTGCCCACGC CATAGATGCC CATAGATGCC	CCTAAGCGCA CTTCATGACA CTTCATGACA TCACACTGCT TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGGAGAGGG CCGGGCCCG ACGCACCGAA CAGGGGATCT ACAGACCTCC CCACGGCCCG ACGCACCGAA CAGGGCATCC CCACGCGCCT ACGACCTCC CCACGCGCCT ACGACCTCC CCACGCGCCT ACGACCTCC CCACGCGCCT GCGGATGCCTCC GATGCCTGGG CCGGTACCTGC GCGGAAGGTC	780 840 60 120 180 240 420 480 540 600 660 720 780 840 900 960 1020
5055606570	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Ac MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac Coding seq CCCCAACCTGG GCATTTGAGG GGATTTGAGG GGATTTGAGG GGAGCAGG GGCTGCGGTA TAGTTACGGT TCGTGCGAC CCGGAAAAAG TCCTGGCGAC TCATGATGAT ACTGCGCGAC TCATGATGAT ACTGCGCCGA TGGACACGT GCCGTTGCC GCGCGTTGCC GCGCGTTGCC CCTCAGACAT	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession mence: 272-6 11 GGCGACTTCA ACTGGTCAC GACAGGGTCG GTCACCAGAG CAGCGGGCGG GGGAGCAGCA GAGAGGTGC GGCAGCTGA GGCAGCTGC GCCTGGGGG CCCCGCCACT GGTGGTGCTG CCCCGGCACT GGTGGTCTG CCCCGGCTACT GGGGGGCACC CCCCGCTTGA	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence #: NM_058 684 21 GGTGTGCCAC GGGGGGCTC GGGGGGGCT GGGGGGGCT GGGGGGGCT TCCAGGTGGC TGGAGGGGCT TCCAGGTGGG AGTTTGCAG CGGGGAGTT CTTGGGAAAC CAAGATCTGA CGAGTGCGG CTCACCGGCC GCTGAGGAGC CTCACCGGCC GCTGAGGAGC AGAGCAGT AAGAACCAGA	TCTGGAGTGA CAGCCTCCGG AATAAAATAA 31 VHDAAREGFL HARIDAAEGP 4197.1 31 ATTCGCTAAG TCCGCCAGC ACGGGTGCG CATGGAGCCG GGAGGCGGG TAGAAGGTCT GGAATTGCAA TTCAGCAAG CAGGGGGAA CCGTGCTGCACGA AGGGGGAAC CCGTGCACGA AGGGGGGAC CCGTGCACGA AGGGGGGAC CCGTGCACGA AGGGGGGAC CCGTGCACGA AGGGGCACC CCGTGCACGA AGGGCCCCG GAGCCCCG GAGCCCCG GAGCCCCG GAGCCCCG GAGCCCCG	GCACTCACGC AAGCTGTCGA ATTCTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGAA CTCGGCGGGGA CTGGCCACGG GCACCGGAG GCACGGGGAG TCAGGTAGCC GCAGGGAGA ATATTGTAT GCTCCACGG CGATGCCCG GCATGCCCG GCATGCCCG GCATGCCCG GCATGCCCG GCATGCCCGC GCATGCCCG GCATGCCCG GCATGCCCG GCACGTCCCCG GCACCTCCCCG GCACCTCCCCG GCACCTCCCCG GCACCTCCCCC GCACCTCCCCCC GCACCTCCCCC GCACCTCCCCC GCACCTCCCCC GCACCCCCCC GCACCCCCC GCACCCCCC GCACCCCCCC GCACCCCCC GCACCCCC GCACCCCC GCACCCCCC GCACCCCCC GCACCCCC GCACCCCC GCACCCCC GCACCCCC GCACCCCC GCACCCCC GCACCCCC GCACCCC GCACCCC GCACCCC GCACCCC GCACCCC GCACCCC GCACCCC GCACCC GCACCCC GCACCC GCACC GCACCC G	CCTAAGCGCA CTTCATGACA TTCACTCT TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGGAGAGGG GCGGACATGGA CAGGGCCCG ACGCACCGAA CAGGGGATGG CTTCGATTCT ACAGACCTC CCACGCGGT TAGATGCAAG GCGGAGCCCG GAGGGCTTCC GATGCCTGGG CGGGAGCTCC GATGCCTGGG CGGGAAGGTTC GATGCTTGGT GAACTTAGAT GAACTTAGAT GAACTTAGAT GAAGGTACCTG GCGGAAGGTTC GATGCCTGGG GCGGAAGGTTC GAACTTAGAT GAACTTAGAT GAACTTAGAT	60 120 180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080
505560657075	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Act Coding seq CCCAACCTGG TCCTCCGAGC GGATTTGAGG GGAGTTGAGG GGAGTTGGGG GGAGTTACGGT CCGGAAAAAG TCCTGGCGGA TCCTGGCGGAC TCAGACTCT TCATGATGAT ACTGCGCCGA GCGCGCTCTGCC GCGCGGCTGC GCGCGCTCTGCC GCGCGGCTGC CCTCAGACAT CATCAGTCAC	TTTTCACTGT GGCATTTCTT GACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession dence: 272-6 11 GGCGACTTCA ACTCGCTCAC GACAGGGTCG GTCACCAGAG GCACCAGGGCGC CGGAGGCGCA TGGAGGAGGTGC CCCCGCCACT GCTGGACCT GGTGGACCT GGTGGACCT GGTGGACCT GGTGGACCT GGTGGACCT CCCCGCACT CCTGGACCT CCCCGATTGA CCCCGATTGA CCAAGGTCCC CCCCGATTGA CCAAGGTCCCT CCAGGGTCCC CCCCGATTGA CCAAGGTCCCT CCAGGGTCCC CCCCGATTGA CCAAGGTCCCT CCAGGGTCCC CCCCGATTGA CCAAGGTCCCT CCAGGGTCCC CCCCGATTGA CCAAGGTCCCT	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence 1 #: NM_058 684 21 GGTGTGCCAC GGCGTCCCCT GAGGGGCTG CGGGGAGCAG TGGAGCCTTC TCCAGGTGGG AGTTTGCAG CTGGGGAGCAG CTGAGGAGCT CTTGGGAAGCT CTTGGGAAGCT CTTGGGAAGCT CACCGGC CACCGGGCG CTCACCGAG CAAGATCTAC CACCGGCCG CTCACCGAG CACCGGGCCG CTCACCGAG AGAGACCACA AAGAACCAGA AAGAACCAGA AACAACAGA	TCTGGAGTGA CAGCCTCCGG GATTACTGGC AATAAATAA 31 VHDAAREGFL HARIDAAEGP 31 31 31 TCGCTAGG TCGCTAGG TCCGCAGC GCTGACTGG GAAGGCCGG GGAGCCGGG CAAGGAGCC GGAATTGGAA TTCAGAAGGG CAAGGAGCA TCCAGAGCC TGGAATTGGA TCCGCTGCACGG CAAGGAGCC CATGGAGCC CCGTGCCACG CAGGCGGCT TCGCCCCC CCGTGCCACG ACCATGCCCG ACCATGCCCC GAGGCTCTGA AACTGCCCCC	GCACTCACGC AGCTGTCGA TTCTTGAG TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCG ACCGGAGGAA ACTCGCGGGGGG CTGCCCGA GCAGCGGGGG TCAGGTAGCG GTTGTAATC GATAGAGGA ATATTGTAT GCTCCACGGC GCTGCCCG GGACTGCCCG GGACTGCCCG GGACTGCCCG GGACTGCCCG GAAACCTCGG GAAACCTCGG	CCTAAGCGCA CTTCATGACA CTTCATGACA TCACACTGCT TCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGGAGCACGA CCGCGCCCACGCCCCACGCCCCACGCCCCACGCGCT TAGATGGACTCC CACAGCGCGT CAGAGCCTCC CACAGCCCCA GAGGCCTCC CACAGCCCCACGCGCGT ACAGACCTCC CACAGCCCCACGCGCGT CACACCGCGT CACACCCCACGCCGCGT CACACCCCCACGCCCCACGCCCCACGCGCGT CACACCCCCACGCCGCGT CACACCCCCACGCCCCACGCCGCGT CACACCCCCACGCCCCACGCCGCGGAAGGTCCACACGCCTCCACGCCCCCCCC	60 120 180 240 300 420 480 540 600 660 720 780 840 900 960 1020 1080
505560657075	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Ac MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac Coding seq CCCCAACCTGG GCTCTCGGGGCGGGGGGGGGGGGGGG	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession tence: 272-6 11 GGCGACTTCA GACAGGGTCG GTCACCAGAG CAGCGGGCGG CAGCGGCGG GGAGGCGG GGAGGCGG GGAGGCGG GGAGGCGG CGCAGTTG GCCTGGGGG CCCCGCCACT GGTGGTCTC CCTGGGCG CCCCGCACT GGTGGTCTC CCTGGGCG CCCCGCACT GGTGGTCTC CCTGGGCC CCCCGCACT GGTGGTCTG CCCCGCACT ATTTAGAAAG CAAAGGTCCT ATTTAGCAAA	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence #: NM_058 584 21 GGTGTGCCAC GAGGGGCTC GAGGGGGCTC GAGGGGGCTC GAGGGGAGCAC GAGGGGAGCAC TGCAGGTGGC CTTCCAGGTGGG CTTGGGAAC CAACGGGAGT CTTGGGAAC CAACGGGCCG CTCACCCGAC CACCGGCC GCTGAGGAGC CTCACCCGAC CACCGGCCG CTGAGGAGC CACCGGCCG CTGAGGAGC CACCGGCCG CTGAGGAGC CACCGGCCC CTGAGGAGC CACCGGCCC CTCACCCGAC CACCGCC CTCACCCC CACCGCC CTCACCCC CACCGCC CTCACCCC CTCACCCC CACCGCC CTCACCCC CACCGCC CTCACCC CACCGCC CTCACCCC CACCC CTCACCC CACCC C	TCTGGAGTGA CAGCCTCCGG AATAAATAA 31 VHDAAREGFL HARIDAAEGP 4197.1 31 ATTCGCTAAG TCCGCCAGC ACCGCGTGCG CATGGAGCCG GCAGGCGGGC TAGAAGGTCT GCAATTGGAA ACGGCGGGC CATGGAGCG GAGGCGGGC TCGGAAA TCCGCAGC AAGGAAGA AGGGGGAAC ACCATGCCCG GAGGCCGCT TGGGCCATCG AACTGCCCC AAAAATGTCC TATATCATTT	GCACTCACGC AGCTGTCGA AGCTGTCGA TTTTCATTCA TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GCACGGGGAA CTCGGCGGCG ACCGGAGGAA CTCGGCGGCG GCACTGCCCA GCAGTACCCGG GCACACCC GCACACCC GCACACCC GCACCTCTCCACCGC GCACACCC GCACACCC GCACACCC GCACACCC GCACACCC TTCTTATTT	CCTAAGCGCA CTTCATGACA CTTCATGAC TCACCTC TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGA GCGGAGAGGG CCGGCACCGA CAGGCACCGA ACAGGCACCGA ACAGGCACCGA ACAGGCACCGA CCGCGCTT ACAGACCTC CCACGCGCT TAGATGCAC GAGGCTTCC GATGCCTGGC GCGGAAGGTCC CCACCCGCTTT CCTAGATTAAAAA	60 120 180 240 300 420 480 540 660 720 840 900 1020 1080 1140 1200 1200 1260
50 55 60 65 70 75 80	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Act MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac. Coding seq CCCAACCTGG TCCTCCGAGC GGATTTGAGG GGCTTGGCGGGGGGGGGG	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession uence: 272-6 GGCGACTTCA ACTCGCTCAC GACAGGGTCG GTCACCAGAG GTCACCAGAG GTCACCAGAG CTCACCAGAG CGGAGGCTGC CCCCGCACT CCCCGGCACT CCCCGGCACT CCTGGACCTG CGAGGGGCCC CCCCGCACT CCTGGACCTG CCTGGACCTG CCAGAGGTCCT ATTTAGAAAA ACACCGTA AAAAACCCGTA	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN GUENCE 1 #: NM_058 584 21 GGTGTGCCAC GGGGGCTCCCCT GAGGGGGCTC GGGGGAGCAG TGGAGCTCTC GGGGGAGCAG CTGGGGAGT CTCAGGGGGCT CTCAGGGGAT CTACCGGA CTACCGGAC CACCGGGCCG GCTAGGGAAC CACCGGCCG GCTAGGGAAC AGAGCAGTA AGAACCAGA ACAGGGCCAC TAGAGCTTTT AATGTCCATT CTTCTGCCTT	TCTGGAGTGA CAGCCTCCGG AATAAATAA 31 VHDAAREGFL HARIDAAEGP 31 31 ATTCGCTAAG TCCCCGGAAA TCCGCCAGC GAGTGAGCCGG GAAGGCGGGG CATGGAGCGG GAAGGCGGGG CAAGGAAGAG AGCGGGGAAC AGCTGCTGCACCA CCAGCCACC CCAGCCACC CAAAATGCCC AAAAATGTCC TATACATTT TTCACTGTGT	GCACTCACGC AGCTGTCGA TTCTTGAG TTTTCATTCA TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGAA CTCGCCACGGCGCGCGCGCGCGCCCACAACCC GCATGCCCGCGGGGAG TTGTATTGTA	CCTAAGCGCA CTTCATGACA CTTCATGAC TCACACTGCT TCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGAG GCGGAGAGGG CCACCGAA CAGGGGATGG CCTCCACGAA CAGGGGCTC TAGATGGAAG CCTCCACGAC CCACGGACTCC CCACGGCCT TAGATGGAAG CCGAGGCCTC TAGATGGAAG CCGAGGCCTC CGATGCCTGG CGGAAGGT CGATCCTGAACTTAGAT ACCCCGCTTT CGTAGATTAGAT	60 120 180 240 300 420 480 540 660 720 780 960 1020 1080 1140 1200 1260 1320
505560657075	CGCTTCTGCC CATTCATGTG AGCAAATGGC Seq ID NO: Protein Ac MMMGSARVAE RLPVDLAEEL Seq ID NO: Nucleic Ac Coding seq CCCCAACCTGG TCCTCCGAGC GGATTTGAGG GGCTGGCTG GGAGCAGG GGCTGGGTA TAGTTACGGT CCGGAAAAAG TCCTGGGGCA CCGGAACTCT CCGGACTCT CCGGACTCT CCGCTCTGC GCCGCTCTCC CCTCAGCCT CCTCAGCACT TCATCATTCT TCATCATCAC CATCACTCCC TGTAAAAAAG ACTCACGCC GCTCTCCCC TGTAAAAAAAAAA	TTTTCACTGT GGCATTTCTT GAACTAGGGA AGAACCAAAG 138 Protein cession #: 1 11 LLLLHGAEPN GHRDVARYLR 139 DNA secid Accession dence: 272-6 16 Accession dence: 272-6 ACTCGCTCAC ACTGGTCAC ACTGGTCAC GACAGGGTCG GGCAGCTCAC GACAGGGTCG GGCAGCTGA GGCAGCTGA GGCAGCGCC CCCGGCACT GGCGAATGCTGA CGCTGGACCTG GGGGGCACCTC GCTGGTGACCTG GGGGGCACCT CCCCGCACT ATTTAGAAAA CACTACCGTA AAAAACACCG TAAGCGCACA TCATGACAAG	GTTGGAGTTT GCGAGCCTCG AGCTCAGGGG CTCAAATAAA a sequence: NP_478103.1 21 CADPATLTRP AAAGGTRGSN Quence #: NM_058 684 21 GGTGTGCCAC GGGGGGCTC GGGGGGGCTC GGGGGGGCTC CTCAGGTGGC TCCAGGTGGT TCCAGGTGGC TTCCAGGTGGC CTGGGGAGT CTGGGAAAC CAACGGGCCT CTGGGAGAT CTGGGAAAC CAACGGGCCA CAACGGGCCA TGAGACTCTA AAGACCAGA ACAGGCCAC TGAGGACCT TCCAGGTGGGC TTCACCCGAC CACCGGCCC TTCACCCGAC AGAGCCAC TTCACCCGAC TTCACCCCAC TTCACCCAC TTCACCCAC TTCACCCAC TTCACCCCAC TTCACCCCAC TTCACCCCAC TTCACCCCAC TTCACCCAC TTCACCCA	TCTGGAGTGA CAGCCTCCGG AATAAATAA 31 VHDAAREGFL HARIDAAEGP 197.1 31 ATTCGCTAAG TCCCCGGAAA TCCGCCAGC ACCAGGCCGGCCGGAGGCCGGC GAGGAGGCGGGG CAGGAGAGACAC AGCTGCTGCACACACACCCCCCACCCCCCACCCCCCCCCC	GCACTCACGC AGCTGTCGA TTTTCATTCA TTTTCATTCA TTTTCATTCA 41 DTLVVLHRAG SDIPD 41 TGCTCGGAGT GATACCGCGG ACCGGAGGAA CTCGGCGGCG CCAGCGGGAG CTAGCTAGCGAG GCATGCCACGG GCATGTCGACGC GCATGTAATC GAATGAGGAG CCATGGCGC CATAGATGCC GAAACCTCGG GCACAACCC TGCCTTTTAA TTTATATATT TGGAGTTTTC GACCTTCCA CATCAGGGGGG CCTCACACCC TGCCTTTTAA TTTATATATT TGGAGTTTTC GACCTTCCA CTCAGGGGGG	CCTAAGCGCA CTTCATGACA CTTCATGAC TCACCTC TTCACTC 51 ARLDVRDAWG 51 TAATAGCACC TCCCTCCAGA GAAAGAGGA GCGGAGAGGG CCGGCACCGA CAGGCACCGA ACAGGCACCGA ACAGGCACCGA ACAGGCACCGA CCGCGCTT ACAGACCTC CCACGCGCT TAGATGCAC GAGGCTTCC GATGCCTGGC GCGGAAGGTCC CCACCCGCTTT CCTAGATTAAAAA	60 120 180 240 360 420 480 540 660 720 1020 1020 1140 1200 1260 1320 1380 1440

```
Seq ID NO: 140 Protein sequence:
       Protein Accession #: NP_478104.1
 5
                  11
                             21
                                        31
                                                   41
                                                               51
       MEPAAGSSME PAAGSSMEPS ADWLATAAAR GRVEEVRALL EAGALPNAPN SYGRRPIQVG
       RRSAAGAGDG GRLWRTKFAG ELESGSASIL RKKGRLPGEF SEGVCNHRPP PGDALGAWET
10
       Seq ID NO: 141 DNA sequence
       Nucleic Acid Accession #: NM_058195.1
       Coding sequence: 163-684
15
                                                               51
                                        31
                                                    41
       CCTCCCTACG GGCGCCTCCG GCAGCCCTTC CCGCGTGCGC AGGGCTCAGA GCCGTTCCGA
                                                                             60
       GATCTTGGAG GTCCGGGTGG GAGTGGGGGT GGGGTGGGGG TGGGGGTGAA GGTGGGGGGC
                                                                            120
20
       GGGCGCGCTC AGGGAAGGCG GGTGCGCGCC TGCGGGGCGG AGATGGGCAG GGGGCGGTGC
       GTGGGTCCCA GTCTGCAGTT AAGGGGGCAG GAGTGGCGCT GCTCACCTCT GGTGCCAAAG
                                                                            240
       GGCGGCGCAG CGGCTGCCGA GCTCGGCCCT GGAGGCGGCG AGAACATGGT GCGCAGGTTC
                                                                            300
       TTGGTGACCC TCCGGATTCG GCGCGCGTGC GGCCCGCCGC GAGTGAGGGT TTTCGTGGTT
                                                                            360
       CACATCCCGC GGCTCACGGG GGAGTGGGCA GCGCCAGGGG CGCCCGCCGC TGTGGCCCTC
                                                                            420
25
       GTGCTGATGC TACTGAGGAG CCAGCGTCTA GGGCAGCAGC CGCTTCCTAG AAGACCAGGT
                                                                            480
       CATGATGATG GGCAGCGCCC GAGTGGCGGA GCTGCTGCTG CTCCACGGCG CGGAGCCCAA
                                                                            540
       CTGCGCCGAC CCCGCCACTC TCACCCGACC CGTGCACGAC GCTGCCCGGG AGGGCTTCCT
                                                                            600
       GGACACGCTG GTGGTGCTGC ACCGGGCCGG GGCGCGGCTG GACGTGCGCG ATGCCTGGGG
                                                                            660
       CCGTCTGCCC GTGGACCTGG CTGAGGAGCT GGGCCATCGC GATGTCGCAC GGTACCTGCG
                                                                            720
30
       CGCGGCTGCG GGGGGCACCA GAGGCAGTAA CCATGCCCGC ATAGATGCCG CGGAAGGTCC
                                                                            780
       CTCAGACATC CCCGATTGAA AGAACCAGAG AGGCTCTGAG AAACCTCGGG AAACTTAGAT
                                                                            840
       CATCAGTCAC CGAAGGTCCT ACAGGGCCAC AACTGCCCCC GCCACAACCC ACCCCGCTTT
                                                                            900
       CGTAGTTTTC ATTTAGAAAA TAGAGCTTTT AAAAATGTCC TGCCTTTTAA CGTAGATATA
                                                                            960
       TGCCTTCCCC CACTACCGTA AATGTCCATT TATATCATTT TTTATATATT CTTATAAAAA
                                                                           1020
35
       TGTAAAAAG AAAAACACCG CTTCTGCCTT TTCACTGTGT TGGAGTTTTC TGGAGTGAGC
                                                                           1080
       ACTCACGCCC TAAGCGCACA TTCATGTGGG CATTTCTTGC GAGCCTCGCA GCCTCCGGAA
                                                                           1140
       GCTGTCGACT TCATGACAG CATTTTGTGA ACTAGGGAAG CTCAGGGGGG TTACTGGCTT
                                                                           1200
       CTCTTGAGTC ACACTGCTAG CAAATGGCAG AACCAAAGCT CAAATAAAAA TAAAATAATT
                                                                           1260
       TTCATTCATT CACTC
40
       Seq ID NO: 142 Protein sequence:
       Protein Accession #: NP_478102.1
45
                             21
                                        31
                  11
       MGRGRCVGPS LQLRGQEWRC SPLVPKGGAA AAELGPGGGE NMVRRFLVTL RIRRACGPPR
                                                                             60
       VRVFVVHIPR LTGEWAAPGA PAAVALVLML LRSQRLGQQP LPRRPGHDDG QRPSGGAAAA
                                                                            120
       PRRGAOLERP RHSHPTRARE CPGGLPGHAG GAAPGEGAAG RAECLGPSAE GPG
50
       Seq ID NO: 143 DNA sequence
       Nucleic Acid Accession #: NM_018131
       Coding sequence: 412..1107
55
                                        31
                                                    41
                  11
                             21
       GAAATTGCAC ACTTAAAGAC ATCAGTGGAT GAAATCACAA GTGGGAAAGG AAAGCTGACT
                                                                             60
       GATAAAGAGA GACAGAGACT TTTGGAGAAA ATTCGAGTCC TTGAGGCTGA GAAGGAGAAG
                                                                            120
60
       AATGCTTATC AACTCACAGA GAAGGACAAA GAAATACAGC GACTGAGAGA CCAACTGAAG
                                                                            180
       GCCAGATATA GTACTACCGC ATTGCTTGAA CAGCTGGAAG AGACAACGAG AGAAGGAGAA
                                                                            240
       AGGAGGGAGC AGGTGTTGAA AGCCTTATCT GAAGAGAAAG ACGTATTGAA ACAACAGTTG
       TCTGCTGCAA CCTCACGAAT TGCTGAACTT GAAAGCAAAA CCAATACACT CCGTTTATCA
                                                                            360
       CAGACTGTGG CTCCAAACTG CTTCAACTCA TCAATAAATA ATATTCATGA AATGGAAATA
                                                                            420
65
       CAGCTGAAAG ATGCTCTGGA GAAAAATCAG CAGTGGCTCG TGTATGATCA GCAGCGGGAA
                                                                            480
       GTCTATGTAA AAGGACTTTT AGCAAAGATC TTTGAGTTGG AAAAGAAAAC GGAAACAGCT
                                                                            540
       GCTCATTCAC TCCCACAGCA GACAAAAAAG CCTGAATCAG AAGGTTATCT TCAAGAAGAG
                                                                            600
       AAGCAGAAAT GTTACAACGA TCTCTTGGCA AGTGCAAAAA AAGATCTTGA GGTTGAACGA
                                                                            660
       CAAACCATAA CTCAGCTGAG TTTTGAACTG AGTGAATTTC GAAGAAAATA TGAAGAAACC
                                                                            720
70
       CAAAAAGAAG TTCACAATTT AAATCAGCTG TTGTATTCAC AAAGAAGGGC AGATGTGCAA
                                                                            780
       CATCTGGAAG ATGATAGGCA TAAAACAGAG AAGATACAAA AACTCAGGGA AGAGAATGAT
                                                                            840
       ATTGCTAGGG GAAAACTTGA AGAAGAGAAG AAGAGATCCG AAGAGCTCTT ATCTCAGGTC
                                                                            900
       CAGTCTCTTT ACACATCTCT GCTAAAGCAG CAAGAAGAAC AAACAAGGGT AGCTCTGTTG
                                                                            960
       GAACAACAGA TGCAGGCATG TACTTTAGAC TTTGAAAATG AAAAACTCGA CCGTCAACAT
                                                                           1020
75
       GTGCAGCATC AATTGCATGT AATTCTTAAG GAGCTCCGAA AAGCAAGAAA AAATAACACA
                                                                           1080
       GTTGGAATCC TTGAAACAGC TTCATGAGTT TGCCATCACA GAGCCATTAG TCACTTTCCA
                                                                           1140
       AGGAGAGACT GAAAACAGAG AAAAAGTTGC CGCCTCACCA AAAAGTCCCA CTGCTGCACT
                                                                           1200
       CAATGGAAGC CTGGTGGAAT GTCCCAAGTG CAATATACAG TATCCAGCCA CTGAGCATCG
                                                                           1260
       CGATCTGCTT GTCCATGTGG AATACTGTTC AAAGTAGCAA AATAAGTATT TGTTTTGATA
                                                                           1320
80
       TTAAAAGATT CAATACTGTA TTTTCTGTTA GCTTGTGGGC ATTTTGAATT ATATATTTCA
                                                                           1380
       CATTTTGCAT AAAACTGCCT ATCTACCTTT GACACTCCAG CATGCTAGTG AATCATGTAT
                                                                           1440
       CTTTTAGGCT GCTGTGCATT TCTCTTGGCA GTGATACCTC CCTGACATGG TTCATCATCA
                                                                           1500
       GGCTGCAATG ACAGAATGTG GTGAGCAGCG TCTACTGAGA TACTAACATT TTGCACTGTC
                                                                           1560
       AAAATACTTG GTGAGGAAAA GATAGCTCAG GTTATTGCTA ATGGGTTAAT GCACCAGCAA
                                                                           1620
85
       GCAAAATATT TTATGTTTCG GGGGTTTTGA AAAATCAAAG ATAATTAACC AAGGATCTTA
                                                                           1680
       ACTGTGTTCG CATTTTTTAT CCAAGCACTT AGAAAACCTA CAATCCTAAT TTTGATGTCC
       ATTGTTAAGA GGTGGTGATA GATACTATTT TTTTTTCATA TTGTATAGCG GTTATTAGAA
```

```
YVVV2/1004+3
AGTTGGGGA TTTCTTGAT CTTTATTGCT GCTTACCATT GAAACTTAAC CCAGCTGTGT
TCCCCAACTC TGTTCTGCGC ACGAAACAGT ATCTGTTTGA GGCATAATCT TAAGTGGCCA
       CACACATGT TTTCTCTTAT GTTATCTGGC AGTAACTGTA ACTTGAATTA CATTAGCACA
                                                                            1980
       TTCTGCTTAG CTAAAATTGT TAAAATAAAC TTTAATAAAC CCATGTAGCC CTCTCATTTG
                                                                            2040
 5
       ATTGACAGTA TTTTAGTTAT TTTTGGCATT CTTAAAGCTG GGCAATGTAA TGATCAGATC
                                                                            2100
       TTTGTTTGTC TGAACAGGTA TTTTTATACA TGCTTTTTGT AAACCAAAAA CTTTTAAATT
                                                                            2160
       TCTTCAGGTT TTCTAACATG CTTACCACTG GGCTACTGTA AATGAGAAAA GAATAAAATT ATTTAATGTT TT
                                                                            2220
10
       Seq ID NO: 144 Protein sequence:
       Protein Accession #: NP_060601
15
                  11
                              21
                                         31
       MEIQLKDALE KNQQWLVYDQ QREVYVKGLL AKIFELEKKT ETAAHSLPQQ TKKPESEGYL
                                                                              60
       QEEKQKCYND LLASAKKDLE VERQTITQLS FELSEFRRKY EETQKEVHNL NQLLYSQRRA
                                                                              120
       DVOHLEDDRH KTEKIOKLRE ENDIARGKLE EEKKRSEELL SOVOSLYTSL LKOOEEOTRV
                                                                             180
20
       ALLEQOMOAC TLDFENEKLD ROHVOHOLHV ILKELRKARK NNTVGILETA S
       Seq ID NO: 145 DNA sequence
       Nucleic Acid Accession #: NM_001168
       Coding sequence: 50..478
25
                              21
                                         31
                                                     41
                  11
       CCGCCAGATT TGAATCGCGG GACCCGTTGG CAGAGGTGGC GGCGGCGGCA TGGGTGCCCC
                                                                              60
30
       GACGTTGCCC CCTGCCTGGC AGCCCTTTCT CAAGGACCAC CGCATCTCTA CATTCAAGAA
                                                                             120
       CTGGCCCTTC TTGGAGGGCT GCGCCTGCAC CCCGGAGCGG ATGGCCGAGG CTGGCTTCAT
                                                                              180
       CCACTGCCC ACTGAGAACG AGCCAGACTT GGCCCAGTGT TTCTTCTGCT TCAAGGAGCT
                                                                              240
       GGAAGGCTGG GAGCCAGATG ACGACCCCAT AGAGGAACAT AAAAAGCATT CGTCCGGTTG
       CGCTTTCCTT TCTGTCAAGA AGCAGTTTGA AGAATTAACC CTTGGTGAAT TTTTGAAACT
                                                                             360
35
       GGACAGAGA AGAGCCAAGA ACAAAATTGC AAAGGAAACC AACAATAAGA AGAAAGAATT
                                                                              420
       TGAGGAAACT GCGAAGAAAG TGCGCCGTGC CATCGAGCAG CTGGCTGCCA TGGATTGAGG
                                                                              480
       CCTCTGGCCG GAGCTGCCTG GTCCCAGAGT GGCTGCACCA CTTCCAGGGT TTATTCCCTG
                                                                             540
       GTGCCACCAG CCTTCCTGTG GGCCCCTTAG CAATGTCTTA GGAAAGGAGA TCAACATTTT
                                                                              600
       CAAATTAGAT GTTTCAACTG TGCTCCTGTT TTGTCTTGAA AGTGGCACCA GAGGTGCTTC
40
       TGCCTGTGCA GCGGGTGCTG CTGGTAACAG TGGCTGCTTC TCTCTCTCT TCTCTTTTTT
                                                                              720
       GGGGGCTCAT TTTTGCTGTT TTGATTCCCG GGCTTACCAG GTGAGAAGTG AGGGAGGAAG
                                                                              780
       AAGGCAGTGT CCCTTTTGCT AGAGCTGACA GCTTTGTTCG CGTGGGCAGA GCCTTCCACA
                                                                              840
       GTGAATGTGT CTGGACCTCA TGTTGTTGAG GCTGTCACAG TCCTGAGTGT GGACTTGGCA
                                                                              900
       GGTGCCTGTT GAATCTGAGC TGCAGGTTCC TTATCTGTCA CACCTGTGCC TCCTCAGAGG
                                                                              960
45
       GTGATGAGAG AATGGAGACA GAGTCCCTGG CTCCTCTACT GTTTAACAAC ATGGCTTTCT
                                                                            1080
       TATTTTGTTT GAATTGTTAA TTCACAGAAT AGCACAAACT ACAATTAAAA CTAAGCACAA
                                                                            1140
       AGCCATTCTA AGTCATTGGG GAAACGGGGT GAACTTCAGG TGGATGAGGA GACAGAATAG
                                                                            1200
       AGTGATAGGA AGCGTCTGGC AGATACTCCT TTTGCCACTG CTGTGTGATT AGACAGGCCC
                                                                            1260
50
       AGTGAGCCGC GGGGCACATG CTGGCCGCTC CTCCCTCAGA AAAAGGCAGT GGCCTAAATC
                                                                            1320
       CTTTTTAAAT GACTTGGCTC GATGCTGTGG GGGACTGGCT GGGCTGCTGC AGGCCGTGTG
       TCTGTCAGCC CAACCTTCAC ATCTGTCACG TTCTCCACAC GGGGGAGAGA CGCAGTCCGC
                                                                            1440
       CCAGGTCCCC GCTTTCTTTG GAGGCAGCAG CTCCCGCAGG GCTGAAGTCT GGCGTAAGAT
                                                                            1500
       GATGGATTG ATTCGCCCTC CTCCCTGTCA TAGAGCTGCA GGGTGGATTG TTACAGCTTC
                                                                            1560
55
       GCTGGAAACC TCTGGAGGTC ATCTCGGCTG TTCCTGAGAA ATAAAAAGCC TGTCATTTC
       Seg ID NO: 146 Protein seguence:
       Protein Accession #: NP_001159
60
                                                     41
                                                                51
                  11
                              21
                                         31
       MGAPTLPPAW QPFLKDHRIS TFKNWPFLEG CACTPERMAE AGFIHCPTEN EPDLAQCFFC
       FKELEGWEPD DDPIEEHKKH SSGCAFLSVK KQFEELTLGE FLKLDRERAK NKIAKETNNK
                                                                             120
65
       KKEFEETAKK VRRAIEQLAA MD
       Seg ID NO: 147 DNA seguence
       Nucleic Acid Accession #: NM 014176.1
       Coding sequence: 127-720
70
                  11
                              21
                                         31
                                                     41
                                                                51 '
       GCGCGCAGCG CTGGTACCCC GTTGGTCCGC GCGTTGCTGC GTTGTGAGGG GTGTCAGCTC
                                                                              60
       AGTGCATCCC AGGCAGCTCT TAGTGTGGAG CAGTGAACTG TGTGTGGTTC CTTCTACTTG
                                                                             120
75
       GGGATCATGC AGAGAGCTTC ACGTCTGAAG AGAGAGCTGC ACATGTTAGC CACAGAGCCA
       CCCCCAGGCA TCACATGTTG GCAAGATAAA GACCAAATGG ATGACCTGCG AGCTCAAATA
                                                                             240
       TTAGGTGGAG CCAACACAC TTATGAGAAA GGTGTTTTTA AGCTAGAAGT TATCATTCCT
                                                                             300
       GAGAGGTACC CATTTGAACC TCCTCAGATC CGATTTCTCA CTCCAATTTA TCATCCAAAC
                                                                             360
       ATTGATTCTG CTGGAAGGAT TTGTCTGGAT GTTCTCAAAT TGCCACCAAA AGGTGCTTGG
                                                                              420
80
       AGACCATCCC TCAACATCGC AACTGTGTTG ACCTCTATTC AGCTGCTCAT GTCAGAACCC
                                                                             480
       AACCCTGATG ACCCGCTCAT GGCTGACATA TCCTCAGAAT TTAAATATAA TAAGCCAGCC
                                                                              540
       TTCCTCAAGA ATGCCAGACA GTGGACAGAG AAGCATGCAA GACAGAAACA AAAGGCTGAT
                                                                              600
       GAGGAAGAGA TGCTTGATAA TCTACCAGAG GCTGGTGACT CCAGAGTACA CAACTCAACA
                                                                             660
       CAGAAAAGGA AGGCCAGTCA GCTAGTAGGC ATAGAAAAGA AATTTCATCC TGATGTTTAG
                                                                              720
85
       GGGACTTGTC CTGGTTCATC TTAGTTAATG TGTTCTTTGC CAAGGTGATC TAAGTTGCCT
                                                                              780
       ACCTTGAATT TITTTTTAAA TATATTTGAT GACATAATTT TTGTGTAGTT TATTTTATCTT GTACATATGT ATTTTGAAAT CTTTTAAACC TGAAAAATAA ATAGTCATTT AATGTTGAAA
                                                                             840
```

```
Seq ID NO: 148 Protein sequence:
       Protein Accession #: NP 054895.1
 5
                  11
                             21
                                        31
                                                   41
                                                               51
       MQRASRLKRE LHMLATEPPP GITCWQDKDQ MDDLRAQILG GANTPYEKGV FKLEVIIPER
                                                                             60
       YPFEPPQIRF LTPIYHPNID SAGRICLDVL KLPPKGAWRP SLNIATVLTS IQLLMSEPNP
                                                                            120
10
       DDPLMADISS EFKYNKPAFL KNARQWTEKH ARQKQKADEE EMLDNLPEAG DSRVHNSTQK
                                                                            180
       RKASQLVGIE KKFHPDV
       Sea ID NO: 149 DNA sequence
       Nucleic Acid Accession #: NM 003812
15
       Coding sequence: 224-2722
                             21
                                                               51
                  11
                                        31
                                                    41
       TCCTCTGCGT CCCGCCCGG GAGTGGCTGC GAGCTAGGC GAGCCGGGAA AGGGGGCGCC
                                                                             60
20
       GCCCAGCCCC GAGCCCCGCG CCCCGTGCCC CGAGCCCGGA GCCCCCTGCC CGCGGCGGCA
                                                                            120
       CCATGCGCGC CGAGCCGGCG TGACCGGCTC CGCCCGCGGC CGCCCCGCAG CTAGCCCGGC
                                                                            180
       GCTCTCGCCG GCCACACGGA GCGGCGCCCG GGAGCTATGA GCCATGAAGC CGCCCGGCAG
                                                                            240
       CAGCTCGCGG CAGCCGCCCC TGGCGGGCTG CAGCCTTGCC GGCGCTTCCT GCGGCCCCCA
                                                                            300
       ACGCGGCCCC GCCGGCTCGG TGCCTGCCAG CGCCCCGGCC CGCACGCCGC CCTGCCGCCT
                                                                            360
25
       GCTTCTCGTC CTTCTCCTGC TGCCTCCGCT CGCCGCCTCG TCCCGGCCCC GCGCCTGGGG
                                                                            420
       GGCTGCTGCG CCCAGCGCTC CGCATTGGAA TGAAACTGCA GAAAAAAATT TGGGAGTCCT
                                                                            480
       GGCAGATGAA GACAATACAT TGCAACAGAA TAGCAGCAGT AATATCAGTT ACAGCAATGC
                                                                            540
       AATGCAGAAA GAAATCACAC TGCCTTCAAG ACTCATATAT TACATCAACC AAGACTCGGA
                                                                            600
       AAGCCCTTAT CACGTTCTTG ACACAAAGGC AAGACACCAG CAAAAACATA ATAAGGCTGT
                                                                            660
30
       CCATCTGGCC CAGGCAAGCT TCCAGATTGA AGCCTTCGGC TCCAAATTCA TTCTTGACCT
                                                                            720
       CATACTGAAC AATGGTTTGT TGTCTTCTGA TTATGTGGAG ATTCACTACG AAAATGGGAA
                                                                            780
       ACCACAGTAC TCTAAGGGTG GAGAGCACTG TTACTACCAT GGAAGCATCA GAGGCGTCAA
                                                                            840
       AGACTCCAAG GTGGCTCTGT CAACCTGCAA TGGACTTCAT GGCATGTTTG AAGATGATAC
                                                                            900
       CTTCGTGTAT ATGATAGAGC CACTAGAGCT GGTTCATGAT GAGAAAAGCA CAGGTCGACC
                                                                            960
35
       ACATATAATC CAGAAAACCT TGGCAGGACA GTATTCTAAG CAAATGAAGA ATCTCACTAT
                                                                          1020
                                                                          1080
       GGAAAGAGGT GACCAGTGGC CCTTTCTCTC TGAATTACAG TGGTTGAAAA GAAGGAAGAG
       AGCAGTGAAT CCATCACGTG GTATATTTGA AGAAATGAAA TATTTGGAAC TTATGATTGT
                                                                          1140
       TAATGATCAC AAAACGTATA AGAAGCATCG CTCTTCTCAT GCACATACCA ACAACTTTGC
                                                                          1200
       AAAGTCCGTG GTCAACCTTG TGGATTCTAT TTACAAGGAG CAGCTCAACA CCAGGGTTGT
                                                                           1260
40
       CCTGGTGGCT GTAGAGACCT GGACTGAGAA GGATCAGATT GACATCACCA CCAACCCTGT
                                                                           1320
       GCAGATGCTC CATGAGTTCT CAAAATACCG GCAGCGCATT AAGCAGCATG CTGATGCTGT
                                                                          1380
       GCACCTCATC TCGCGGGTGA CATTTCACTA TAAGAGAAGC AGTCTGAGTT ACTTTGGAGG
                                                                          1440
       TGTCTGTTCT CGCACAAGAG GAGTTGGTGT GAATGAGTAT GGTCTTCCAA TGGCAGTGGC
                                                                          1500
       ACAAGTATTA TCGCAGAGCC TGGCTCAAAA CCTTGGAATC CAATGGGAAC CTTCTAGCAG
                                                                          1560
45
       AAAGCCAAAA TGTGACTGCA CAGAATCCTG GGGTGGCTGC ATCATGGAGG AAACAGGGGT
                                                                           1620
       GTCCCATTCT CGAAAATTTT CAAAGTGCAG CATTTTGGAG TATAGAGACT TTTTACAGAG
                                                                          1680
       AGGAGGTGGA GCCTGCCTTT TCAACAGGCC AACAAAGCTA TTTGAGCCCA CGGAATGTGG
                                                                          1740
       AAATGGATAC GTGGAAGCTG GGGAGGAGTG TGATTGTGGT TTTCATGTGG AATGCTATGG
                                                                          1800
       ATTATGCTGT AAGAAATGTT CCCTCTCCAA CGGGGCTCAC TGCAGCGACG GGCCCTGCTG
                                                                          1860
50
       TAACAATACC TCATGTCTTT TTCAGCCACG AGGGTATGAA TGCCGGGATG CTGTGAACGA
                                                                          1920
       GTGTGATATT ACTGAATATT GTACTGGAGA CTCTGGTCAG TGCCCACCAA ATCTTCATAA
                                                                           1980
       GCAAGACGGA TATGCATGCA ATCAAAATCA GGGCCGCTGC TACAATGGCG AGTGCAAGAC
                                                                          2040
       CAGAGACAAC CAGTGTCAGT ACATCTGGGG AACAAAGGCT GCAGGGTCTG ACAAGTTCTG
                                                                          2100
       CTATGAAAAG CTGAATACAG AAGGCACTGA GAAGGGAAAC TGCGGGAAGG ATGGAGACCG
                                                                          2160
55
       GTGGATTCAG TGCAGCAAAC ATGATGTGTT CTGTGGATTC TTACTCTGTA CCAATCTTAC
                                                                          2220
       TCGAGCTCCA CGTATTGGTC AACTTCAGGG TGAGATCATT CCAACTTCCT TCTACCATCA
                                                                          2280
       AGGCCGGGTG ATTGACTGCA GTGGTGCCCA TGTAGTTTTA GATGATGATA CGGATGTGGG
                                                                           2340
       CTATGTAGAA GATGGAACGC CATGTGGCCC GTCTATGATG TGTTTAGATC GGAAGTGCCT
                                                                           2400
       ACAAATTCAA GCCCTAAATA TGAGCAGCTG TCCACTCGAT TCCAAGGGTA AAGTCTGTTC
                                                                          2460
60
       GGGCCATGGG GTGTGTAGTA ATGAAGCCAC CTGCATTTGT GATTTCACCT GGGCAGGGAC
                                                                          2520
       AGATTGCAGT ATCCGGGATC CAGTTAGGAA CCTTCACCCC CCCAAGGATG AAGGACCCAA
                                                                          2580
       GGGTCCTAGT GCCACCAATC TCATAATAGG CTCCATCGCT GGTGCCATCC TGGTAGCAGC
                                                                          2640
       TATTGTCCTT GGGGGCACAG GCTGGGGATT TAAAAATGTC AAGAAGAGAA GGTTCGATCC
                                                                           2700
       TACTCAGCAA GGCCCCATCT GAATCAGCTG CGCTGGATGG ACACCGCCTT GCACTGTTGG
                                                                          2760
65
       ATTCTGGGTA TGACATACTC GCAGCAGTGT TACTGGAACT ATTAAGTTTG TAAACAAAAC
                                                                          2820
       CTTTGGGTGG TAATGACTAC GGAGCTAAAG TTGGGGTGAC AAGGATGGGG TAAAAGAAAA
                                                                          2880
       CTGTCTCTTT TGGAAATAAT GTCAAAGAAC ACCTTTCACC ACCTGTCAGT AAACGGGGGA
                                                                          2940
       GGGGGCAAAA GACCATGCTA TAAAAAGAAC TGTTCCAGAA TCTTTTTTT
                                                              TCCCTAATGG
                                                                          3000
       ACGAAGGAAC AACACACAC CAAAAATTAA ATGCAATAAA GGAATCATTA AAAA
70
       Seq ID NO: 150 Protein sequence:
       Protein Accession #: NP_003803
75
                                        31
                                                   41
       MKPPGSSSRQ PPLAGCSLAG ASCGPQRGPA GSVPASAPAR TPPCRLLLVL LLLPPLAASS
                                                                            60
       RPRAWGAAAP SAPHWNETAE KNLGVLADED NTLQQNSSSN ISYSNAMQKE ITLPSRLIYY
                                                                            120
       INQDSESPYH VLDTKARHQQ KHNKAVHLAQ ASFQIEAFGS KFILDLILNN GLLSSDYVEI
                                                                            180
80
       HYENGKPOYS KGGEHCYYHG SIRGVKDSKV ALSTCNGLHG MFEDDTFVYM IEPLELVHDE
                                                                            240
       KSTGRPHIIQ KTLAGQYSKQ MKNLTMERGD QWPFLSELQW LKRRKRAVNP SRGIFEEMKY
                                                                            300
       LELMIVNDHK TYKKHRSSHA HTNNFAKSVV NLVDSIYKEQ LNTRVVLVAV ETWTEKDQID
                                                                            360
       ITTNPVQMLH EFSKYRQRIK QHADAVHLIS RVTFHYKRSS LSYFGGVCSR TRGVGVNEYG
                                                                            420
       LPMAVAQVLS QSLAQNLGIQ WEPSSRKPKC DCTESWGGCI MEETGVSHSR KFSKCSILEY
                                                                            480
85
       RDFLORGGGA CLFNRPTKLF EPTECGNGYV EAGEECDCGF HVECYGLCCK KCSLSNGAHC
                                                                            540
       SDGPCCNNTS CLFOPRGYEC RDAVNECDIT EYCTGDSGQC PPNLHKQDGY ACNQNQGRCY
                                                                            600
       NGECKTRDNQ CQYIWGTKAA GSDKFCYEKL NTEGTEKGNC GKDGDRWIQC SKHDVFCGFL
```

	T.CTMI.TRAPR	USO443 IGQLQGEIIP	TSFYHOGRVI	DCSGAHVVLD	DDTDVGYVED	GTPCGPSMMC	720
		LNMSSCPLDS					780
	KDEGPKGPSA	TNLIIGSIAG	AILVAAIVLG	GTGWGFKNVK	KRRFDPTQQG	PI	
5	Sea ID NO:	151 DNA sec	nience				
-		d Accession		15			
	Coding sequ	ience: 250-1	.326				
	1	11	21	31	41	51	
10	i	i i	1]]	Ĭ	
		TTTCGTTTTC					60
	TCAAAGCTTA	TTCTTAATTA	GAGACAAGAA	ACCTGTTTCA	ACTTGAAGAC	ACCGTATGAG	120
	GTGAATGGAC	AGCCAGCCAC AATCGTCCCC	CACAATGAAA	GAAATCAAAC	CAGGAATAAC	AGTGCATCAC	180 240
15		TGGGGTTCAA					300
	CAAGAGAGTC	ACAATTCAGG	CAACAGGAGC	GACGGGCCAG	GAAAGAACAC	CACCCTTCAC	360
	AATGAATTTG	ACACAATTGT	CTTGCCGGTG	CTTTATCTCA	TTATATTTGT	GGCAAGCATC	420
	TTGCTGAATG	GTTTAGCAGT	GTGGATCTTC	TTCCACATTA	GGAATAAAAC	CAGCTTCATA	480 540
20		AAAACATAGT ATGCAGGATT					600
20		TTTATGCAAA					660
	GATCGCTATC	TGAAGGTGGT	CAAGCCATTT	GGGGACTCTC	GGATGTACAG	CATAACCTTC	720
		TATCTGTTTG					780
25		ATGGTCAGCC TCAAATGGCA					840 900
23		TTCTGATCGG					960
		TAAGTCAGTC					1020
	GTGGCTGTGT	TTTTTACCTG	CTTTCTACCA	TATCACTTGT	GCAGAATTCC	TTTTACTTTT	1080
20		ACAGGCTTTT					1140
30		TCTTGTCTGC TTTCAAGAAG					1200 1260
		TGCAAAGTGT					1320
		TTTATTGTTT					1380
25	TTCATTATCC	TTAAAAAAAA	AA				
35							
	Sea ID NO:	152 Protein	semience:				
		cession #: 1					
40			_				
40	1	11	21	31	41	51 1	
	MCGENT.TLAKI.	 PNNELHGQES	HNSCNESDGE	GKNTTLHNEF	DTIVI.PVI.YI.	TIFVASILLN	60
		RNKTSFIFYL					120
		FLGLISIDRY	LKVVKPFGDS	RMYSITFTKV	LSVCVWVIMA	VLSLPNIILT	180
45	NGQPTEDNIH	DCSKLKSPLG	LKVVKPFGDS VKWHTAVTYV	RMYSITFTKV NSCLFVAVLV	LSVCVWVIMA ILIGCYIAIS	VLSLPNIILT RYIHKSSRQF	240
45	NGQPTEDNIH ISQSSRKRKH	DCSKLKSPLG NQSIRVVVAV	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK	VLSLPNIILT RYIHKSSRQF ILYYCKEITL	
45	NGQPTEDNIH ISQSSRKRKH	DCSKLKSPLG	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK	VLSLPNIILT RYIHKSSRQF ILYYCKEITL	240
	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD	DCSKLKSPLG NQSIRVVVAV	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK	VLSLPNIILT RYIHKSSRQF ILYYCKEITL	240
45 50	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac:	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA sec id Accession	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN quence n #: D80008	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK	VLSLPNIILT RYIHKSSRQF ILYYCKEITL	240
	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac:	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA sec	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN quence n #: D80008	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK	VLSLPNIILT RYIHKSSRQF ILYYCKEITL	240
	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac:	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA sec id Accession	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN quence n #: D80008	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK	VLSLPNIILT RYIHKSSRQF ILYYCKEITL	240
50	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession mence: 149-	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN Quence n #: D80008 739	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41	VLSLPNIILT RYIHKSSROF ILYYCKEITL IYYDYTDV	240 300
	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding seq. 1 GTTCGGCGCCC	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession dence: 149-'	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN QUENCE 1 #: D80008 739 21] GCGGAGGCCG	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK LQSVRRSEVR 41 CTGGCGCTGT	VLSLPNIILT RYIHKSSROF ILYYCKEITL IYYDYTDV 51 AGGACTAGAA	240 300
50	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ 1 GTTCGGCGCC CGAAAGGAGT	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA sed id Accession Lence: 149-' 11 AAAGCGCGGA GAGGCGCCGA	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN Quence 1 #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT	RMYSITFTKV NSCLFVAVLV CRIPFTFSH IRTRSESIRS 1.1 31 31 31 AGGCGAGAGC ACCATTTTGG	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCCT	VLSLPNIILT RYIHKSSROF ILYYCKEITL IYYDYTDV 51 AGGACTAGAA GGTGGTTGGC	240 300 60 120
50	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ 1 GTTCGGCGCC CGAAAGGAGT AAGGCCGCGG	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149- 11 AAAGCGCGGA GAGTGGGAAG	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN Quence 1 #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCCGCCAT	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTTGG GTTCTGCGAA	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTCAGAGCT AAAGCCATGG	VLSLPNIILT RYIHKSSROF ILYYCKEITL IYYDYTDV 51 AGGACTAGAA GGTGGTTGGC AACTGATCCG	240 300
50 55	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ 1 GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AGGTCTGGAT	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession Lence: 149-' 11 AAAGCGCGGA GAGTGGAAG GCGCGCCCG GAGTGGAAG GGCGCCCCG GAGTGGAAG	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN QUENCE 1 #: D80008 739 21] GCGGAGGCCG GAGCCCAGAT GTCCGCCAT AGGGCAACT CTTTGTATGA	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTTGG GTCTGCGAA GCCTGCCTTC ACAAAACCAG	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGG ACCGGGGTGT TCTGATGTGA	VLSLPNIILT RYIHKSSROF ILYYCKEITL IYYDYTDV 51 AGGACTAGAA GGTGGTTGGC AACTGATCCG GACTCAGACCA ATGAAGCAAA	240 300 60 120 180 240 300
50	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ 1 GTTCGGCGCC CGAAAGGAGT AAGGCCGCGG CGAGCTGCAT AGTCTCTGGAG GTTCAGGTGGAG GTCAGGTGGAG	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession Lence: 149-' 11 AAAGCGCGGA GAGGGGCCCGA GAGTGGGAAG CGGGGCCCG CGAGTGGAAG CGAGTGATGAAAG CGAAGTGATT	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FSRRLFKKSN Quence 1 #: D80008 739 21) GCGGAGGCCG GAGCCCAGAT CGTCCGCCAT AAGGGCAACT CTTTGTATGA TGATACCAAC	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGG AACGAGGATG TCTGATGTGA CGACACTGTT	VLSLPNIILT RYIHKSSROF ILYYCKEITL IYYDYTDV 51 AGGACTAGAA GGTGGTTGGC AACTGATCCG GACTCAGACC AATGAAGCAAA CTCTGTTAAG	240 300 60 120 180 240 300 360
50 55	NGQPTEDNIH ISQSSRKRKH PLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ 1 GTTCGGCGCC CGAAAGGAGT AAGGCCGCG CGAGCTGCAT AGTTCTGGAG GTCAGGTGGA AAATCGACGC	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149-' 11 AAAGCGCGGA GAGTGGGAAG GAGTGGGAAG CGCGCGCCCG GAGATGAAAG CGCAATGAAAG TGCATTT TGCACTGTAG	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCGGCAT AAGGGCAACT CTTTGTATGA TGATACCAAC CATACCTGTA	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGG AACGAGGATG TCTGATGTGA CGACACTGTT CTTCGGATCA	VLSLPNIILT RYIHKSSROF ILYYCKETTL IYYDYTDV 51 AGGACTAGAA GGTGGTTGGC AACTGATCCG GACTCAGACA ATGAAGCAAA CTCTGTTAAG GAGCACTCAG	240 300 60 120 180 240 300 360 420
50 55	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA sec id Accession lence: 149-' 11 AAAGCGCGGA GAGTGGGAAG CGGGGCCGA GAGTGGAAG CGGAGGATGAAAG CGAAGTGAT TGCACTGTAG GGTAGCGTCT	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence 1 #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCCGCAT AAGGGCAACT CTTTGTATGA TGATACCTATA TGCCAAATGC	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK LQSVRRSEVR 41) CTGGCGCTGT CGTGAGAGCT AACGAGGATG TCTGATGGA TCTGATGGA CGACACTGTT CGACACTGTC CACATGGCTCA CACATGGCTCA	VLSLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA GGTGGTTGGC AACTGATCCG GACTCAGACA ATGAAGCAAA CTCTGTTTAAG CAGCACTCAG CAGCACTCAG CTGAAGAAAT	240 300 60 120 180 240 300 360
50 55 60	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ 1 GTTCGGCGCC CGAAAGGAGT AAGGCCGCG GAAGGAGT AGTCTGGAG GTTCTGGAG GTTCTGGAG ATTCTGGAG AAATCGACGC ATGGGAATAT TGAAGGTGGTT TGAAGGTTGTTT TGAAGGTTGTTT	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession Lence: 149-' 11 AAAGCGCGGA GAGGGGCCGA GAGTGGGAAG CGGGGCCCG GAGATGAAG CGAATGAAAG CGAAGTGATT TGCACTGTAG GGTAGCGTCT AATAATTATA	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCCGCCAT AAGGGCAACT CTTTGTATGA TGATACCAAC CATACCTGTA TGACAACT TGCAAATGC AAGAATTCT AAGAATTCT AGGATATGAA	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGG ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAA TATCAAATTT TGACCGCTTG ATTACGATTT TGTACTTACTTACTACTTAT ACCACCAAAA	LSYCVWYIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTCAGGGCTGT CTGATGGGA CGACACTGTT CTTCGGATCA CACATGGCTCA ATGAGGTCA AGGGTCA AGGGTCA AGGGTCA AGGCTCATATATA	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCHTDV 51 AGGACTAGAA AGGACTAGAA ACTGATCCG GACTCAGACCA ATGAAGCAAA ATGAAGCACA CTCTGTTAAG GAGCACTCAG CTGAAGAAAT TGGGAGGAGA TTGAAGTCCC	60 120 180 240 300 420 480
50 55	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ I GTTCGGCGCC CGAAAGGAGT AGTTCTGGAG GTCAGGTGGA AAATCGACGC AAAGGAGT GGAATGTTT TGAAGGTTT TGAAGGTTT TGAAGGTTT TGAAGGTTT	DCSKLKSPLG NOSIRVVVAV PIIYFFMCRS 153 DNA set id Accession tence: 149- 11 AAAGCGCGGA GAGGGCGCGG GAGATGAAAG CCGAGTGGAAG CCGAGTGGTAG GGTAGCGTCT AATAATTATA GACATTACAC GACTATGGAG GACTATGGAG	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCGGCAT AAGGGCAACT CTTTGTATGA TGATACCAAC CATACCTGTA TGCCAAATGC AAAGATCTCT AGGATATGAA AATTTGAAGT	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT TGACGCTTTG ATTACGATTT TGACCACAAAA TGATGATGGC	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGG AACGAGGATG TCTGATGTGA CGACACTGTT CTTCGGATCA CACATGGCTC ATCAGGTCA ACCATGGCTCAAGCTCAAGCTAATAA ACTTCAGTCC	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGAGACTAGAA GGTGGTTGGC AACTGATCCG GACTCAGACAA ATGAAGCAAA CTCTGTTAAG GAGCACTCAG CTGAAGAAAT TGGGAGGAGA TTGAAGTCCG TATTAAAAAAA	60 120 180 240 300 420 480 540 600 660
50 55 60	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding seq 1 GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AAGTCTGGAG GTCAGGTGGA AAATCGACGG ATGGAATAT TGAAAGTTTT TGAAGGTTTT TGAAGGTTTT TGAAGGTTTT TGTCTAAAA AAATAGCCAG	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA sec id Accession lence: 149-' 11 AAAGCGCGGA GAGTGGAAG GCGCGCCG GAGATGAAAG CGCACTGTAG GGTAGCGTCT AATAATTATA GACATTACAC GACTATGGAG GACTATGGAG GACTATGGAG GACTATGGAG CACTTTTAC	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFTCFLPYHL FSRRLFKKSN Quence 1 #: D80008 739 21 GCGGAGGCCG GAGCCAGAT CGTCCGCAT AAGGGCAACT CTTTGTATGA TGATACCTATA TGCAAATGC AAGATCTCT AGGATATGAA AATTTGAAGT CTCGATGGAA	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT TGCTACTTAT ACCACCAAAA TGATGATGAGC ATGTGAGCAG	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK LQSVRRSEVR 41) CTGGCGCTGT CGTGAGAGCT TCTGATGGA ACGAGGATG TCTGATGGA CGACACTGTA CTTCGGATCA CACATGGCTA ACGACGTTA ACGACTATATA ACTTCAGTCC CTGATCAGAC CTGATCAGAC	VLSLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA GGTGGTTGGGC AACTGATCCG GACTCAGACA ATGAAGCAAA CTCTGTTTAAG CTCGAAGAAAT TGGGAGGAGA TTGAAGTCCAG TTGAAGTCCT TTATAAAAAA AAGGAGTCCT	60 120 180 360 420 480 540 600 720
50 55 60	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequence 1 GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AGGTCGAT AGTTCTGGAG GTCAGGGATAT GTAGGAATAT TGAAGGTTTT GGAGTGGAT TGAAGGTTTT GGAGTGGTTT GGAGTGGATAAAAAAAA	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession Lence: 149-' 11 AAAGCGCGGA GAGTGGGACG GAGTGGAAG GAGTGGAAG GAGTGGAAG GGAATGAAAG GGAATGAAAG GGAATGAAAG GGTAGCGTCT AATAATTATA GACATTACAC GACTATGAG CACTTTTTAC CTGTCATGAC CTGTCATGAG	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence 1 #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCCGCCAT AAGGCCAACT CTTTGTATGA TGCCAAATGC CATACCTGTA TGCCAAATGC AAGATCTCT AAGATCGATCGAAATGCA CATGCGCCGAAGAACAC CTCGATCGAA	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAA TATCAAATTT TGACCGCTTG ATTACGATTT TGCTACTTAT ACCACCAAAA TGATGATGAG ATGTGAGCAG AGGCACTTCCA	LSVCWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTCAGAGCT AAAGCCATGG ACGAGGATG TCTGATGTGA CGACACTGTT CTTCGGATCA ACATGCTA ACTTCAGGTC AGCCTATATA ACTTCAGTCC CTGATCAGAC GGCTTCACTC	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA AGGACTAGAA ATGATCCG GACTCAGACA ATGAAGCAAA ATGAAGCAAA CTCTGTTAAG GAGCACTCAG CTGAAGAAAT TGGGAGGAGA TTGAAGTCCG TATTAAAAAA AAGGAGTCCT AACTCATGGA	60 120 180 240 360 420 600 660 720 780
50 55 60	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequence GTTCGGCGCC CGAAAGGAGT AAGCCGCGG GAACTGCAT AGTTCTGGAG GTTCTGGAG AAATCGACGC ATGGAATAT GGAGTGGTT TGAAGGTGGTT TGAAGGTTGTT TGAAGGTTTT GGAGTTTT GGAGTTTT GGAGTTTT GGAGTTTT GGAGTTTT GGAGTTT TGAAGGTTTT GGAGTTTT GGAGTTTT GGAGTTTT GGAGTTTT GGAGTTTT GGAGTTT TGAAGGTTTT GGAGTTTT GTGTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession Lence: 149-' 11 AAAGCGCGGA GAGGGGCCGA GAGTGGGAAG CGGGGCCCG GAGATGAAAG CGAATGAAAG CGAATGAT TGCACTGTAT AATAATTATA AACATTACAC GACTATGGAG CACTTTTTAC CACTGTCATGAC CTCACTCTCT	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCGGCAT AAGGGCAACT CTTTGTATGA TGATACCAAC CATACCTGTA TGCCAAATGC AAAGATCTCT AAGGATCTCT AAGATCTCT AAGATCTCT AGGATATGAA AATTTGAAGT CTCGATGGAC CCACACTCC	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT TGCTACTTAT ACCACCAAAA TGATGATGGC ATGTGAGCAG GCACTTCCA GTTCACCTACT CTTCACCTCC	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGGG ACGAGGATG TCTGATGTGA CGACACTGTT CTTCGGATCA CACATGGCTG ATGAGGTCA AGCCTATATA ACTTCAGTCC CTGATCAGAC GCTTCACTC	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGAGACTAGAA GGTGGTTGGC AACTGATCCG GACTCAGACAA ATCAGAGACAAA AGGAGACTCATGAGAGAAAT TGGGAGGAGA TTGAAGTCCC TATTAAAAAA AAGGAGTCCT TATTAAAAAA AAGGAGTCCT TATTAAAAAA AAGGAGTCCT TATTAAAAAA	60 120 180 360 420 480 540 600 720
50 55 60	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding seq 1 GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AAGTCTGGAG GTCAGGTGGA AAATCGAAGGAATAT GGAGTGGTTT TGAAGGTTTT GGAAGGTTGTTT GTGTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTGT AAGACATTGT AAGACATTGT AAGACATTGT AAGACATTGT	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149-' 11 AAAGCGCGGA GAGTGGAAG GAGTGGAAG CGCACTGTAG CGCACTGTAG GGTAGCACT AATAATTATA GACATTACAC GACTATGGAG CACTTTTTAC CTGTCATGAC CTGTCATCTCT TTAAGATAAC TTTTTAATG	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFTCFLPYHL FFRRLFKKSN Quence 1 #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCCGCCAT AAGGGCAACTCC AAGATACTAT AGGATATGAA ATTGAAGT CTCGATGGAA CTTGGTATGGAA CATACCGTC AGGATATGAA CATGCGCCGA CCACACTCC TAGGAATACT TTGTACACTA	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTTGG GTTCTGCGAA ACCAGC TATCAAATTT TGCTACTTAT ACCACCAAAA TCATCACTCC ATGAGAGG ATGAGGC ATGAGAGAG GGCACTTCCA CTTCACCTCC TGGCTAAGAA TCTTCCTAC	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK LQSVRRSEVR 41) CTGGCGCTGT CGTGAGAGCT TCTGATGGA ACGAGGATG TCTGATGGA ACGACACTGTA ACTAGGCTA ACTAGGCTA ACTAGGCTA ACTAGGTCA CACATGGCTA ACTAGACTA ACTTCAGTCC CTGATCACTC CTGATCACTC CTGATCACTC TCTTTAGATT CTTTTTGGTTT TCTTTTTTGG	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA GGTGTTTGGC GACTCAGACA ATGAGCAAA CTCTGTTTAAG CTGAGACTCAG CTGAAGAAAT TGGGAGGAGA TTGAAGTCCG TATTAAAAAA AAGGAGTCCT AACTCATGGA TTAGAAGTTCT TTAGAAGTTTT TTTTGGTTTTT	240 300 120 180 240 480 420 480 540 660 720 840
50556065	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequence GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AGGTCTGAG GTCAGGTGGA AAATCGACGC ATGGAATAT TGAAGGTTTT TGAAGGTTTT GGAGTGGAT AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTCT AGGACTTCT AGGACTTCT GGAGTATCT GGAGTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTCT GTTTTGTAGA	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149-' 11 AAAGCGCGGA GAGTGGGACG GAGTGGAAG CGAGTGGAT TGCACTGTAG GGTAGCGTCT AATAATTATA GACATTATGAC CACTTATGAC CACTTATGAC CACTTATGAC CACTTATTAC CACTTATGAC CACTTATTAC CACTTATAC CACTTATTAC CACTTATAC CACTTATTAC CTCTCATGAC CTCTCATTAC CTCTCATTAC CTCACTCTCT TTAAGATAAC CTTTTTAATG GACTGTCTCA	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCGCCAT AAGGCCAACT CTTTGTATGA TGATACCAA CATACCTGTA TGCCAAATGC AATTTGAAGT CTCGATGGAA AATTTGAAGT CTCGATGGAG CATGATGCACC CTAAGATACCA CATACCTCT AGGATATGAA CATGCGCGA CCACCACTCC TAAGAATACT CTAGATACCA CCACTCC TAAGAATACT CTAGTTACACTA CTATGTTGCC CTATGTTGCC	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGG ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT ACTACTATT ACCACCAAAA TGATGATGGC ATGTTGAGCAG GGCACTTCCA CTTCACTCC CTTCACTCC CTTCACTCC CTGCAAGCA ATCTTCCTAC CAAGCTGGTC CAAGCTGGTC CAAGCTGGTC CAAGCTGGTC CAAGCTGGTC CAAGCTGGTC CAAGCTGGTC CAAGCTGGTC	LSYCVWYIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTCAGAGGCT AAAGCCATGG AACGAGGATG CGACACTGTT CTTCGGATCAA ACTTCAGGCTC AGCCTATATA ACTTCAGCC CTGATCAGC CGCTTCACTC CTCTTTGATT GTATCAGT CTCTTTGATCAT CTCTTTCACT CTCTTTTTTTG TCTATATTTG	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA AGGACTAGAA ATGATCCG GACTCAGACAA ACTCAGTTAAG GAGCACTCAG CTGAAGAAAT TTGAAGCATA AAGGAGTCCT TATTAAAAAA AAGGAGTCCT TATTAACTATTA TTTTGGTTTTT GGCCTCAAGC	240 300 120 180 240 420 480 600 600 620 780 840 900 1020
50556065	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ 1 GTTCGGCGCC CGAAAGGAGT AGTTCTGGAG GTCAGGTGGA AAATCGACGC ATGGAATAT GGAGTGGTTT TGAAGGTTT TGAAGGTTT TGAAGGTTT TGAAGGTTT TGAAGGTTT TGAAGTTTT TAGACATTT TAGACATTT TAGACATTT TAGACATTT TAGACATTGT AGGACTTTCT GTTTTTTTAGA AATTGCAGT AGGACTTTCT GTTTTTTTTAGA AGTTCTCCCCA	DCSKLKSPLG NOSIRVVVAV PIIYFFMCRS 153 DNA set id Accession lence: 149- 11 AAAGCGCGGA GAGGGCGGA GAGTGGAAG CGGGGCCGG GAGATGAAG CGAGTGTAT GGACTGTAG GGTAGCGTCT AATAATTATA GACATTACAC GACTATGGAG CACTTTTAC CTGTAGTAGAG CTCTCTCT TTAAGATAAC TTTTTTAATG GACTGTTCA GACTGTCTCA CTGTGTCATGAC CTCACTCTCT CTCAGCTTCA CTTTTTAATG CACTGTCTCA CCTTAGCTTCA CCTTAGCTTCA	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCAGAT CGTCGCCAT AAGGGCAACT CTTTGTATGA TGCAAATGCAAACT AAGATCTCT AGGATATGAA AATTGAAGT CTGGCGCGA CCACCCC TAAGAATACT TTGTACACT TTACACT TTACACT TTGTACACT TTACACT TTGTACACT TTACACT TTGTACACT TTACACT TTGTACACT TTG	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT TGACCACTAAA TGATGATGGC ATGATGAGGG ATGTGAGGG ACTTCCA CTTCACCTCC TGGCTAAGAA TCTTCCTAC TGGCTAAGAA TCTTCCTAC GAGATCACAG GAGATCACAG	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGG ACGAGGATG CTTCATGTGA CGACACTGTT CTTCGGATCA CACATGGCTG ATCAGGCCC CTGATCAGAC GGCTTCACTC CTTTTTTTGG TTATATTTTTGG TCTATTTTTTGG TCAAACTCCT GCGTAACCCCT GCGTGAGCCA	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA AGGACTCAGAC CTGATCCG GACTCAGACAA ATGAAGCAAA AGGAGCACTCAG CTGAAGAAAT TCGGAGGAGA TTGAAGTCCG TATTAAAAAA AAGGAGTCCT TATTAAAAAA AAGGAGTCCT TATTAGGTTTT CTTAGGTTTT TTTTGGTTTT TGCCCTCAAGC CTGCACCCGG	240 300 120 180 240 300 360 420 480 540 660 720 900 900 900 1020 1080
50556065	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding seq I GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AATTCTGGAG GTCAGGTGGA AATTCAGGAG AAATCGACGG GTGTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA AGGACTTCT GTTTTGTAGA AGTCTCTC GTTTTGTAGA AGTCCTCCCA	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA sec id Accession lence: 149-' 11 AAAGCGCGGA GAGTGGAAG GAGTGGAAG CGCAGCCCG GAGATGAAAG CGAAGTGATA TGCACTGTAG GGTAGCGTCT AATAATTATA GACATTACAC GACTATGGAG CACTTTTTAC CTCTCTCT TTTAAGATAAC TTTTTTAATG GACTGTCTCA TTTTAATG GACTGTCTCT CTTTTTAATG TTTTTTAATG TTTTTTAATG TTTTTTAATG TTTTTTAATT TTTTTTTT	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFTCFLPYHL FFRRLFKKSN Quence 1 #: D80008 739 21 GCGGAGGCCAGAT CGTCCGCAT AAGGCCAGAT CGTTGTATGA TGATACCTAGT TGATACCTAGT AGGATATGAA TGCGAATGC AAGATCTC AGGATATGAA CATGCGCGA CACCACTC TTAGTATGAC TTGTACACTA CTATGTTGCC TAAGAATACT TTGTACACTA CTATGTTGCC TAAGAATACT TTGTACACTA CTATGTTGCC TCAAAGTGTT AAGCTGTATC	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT TGACCGCTTG ATTACGATTT TGCTACTTAT ACCACCAAAA TCTTACCTCC TGGCTAGGAGA TTCACCTCC CTGGCTAAGAA TCTTCCTAC CAAGCTGGTC CAAGCTGGTC CAAGCTGGTC CAAGCTGGTC CAAGCTGACACA TTTAACACAC	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK LQSVRRSEVR 41 CTGGCGCTGT CTGAGAGCT AAAGCCATGG TCTGATGTG CTAGAGGATG CTAGAGGATG CTAGAGGATCA CACATGGCTG ATCAGGCTG ATCAGGCTC CTGATCAGTC CGCTGAGCCA GCATTCCTAC	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA AGGACTAGAA AGGACTAGAA ATGAAGCAAA ATGAAGCAAA ATGAAGCAAA TTGGAAGTACC CTGAAGAAAT TGGGAGGAGA TTGAAGTCCT AACTCATGGA TTAGAAGTCT ATTAGAAGTTA TTTTGGTTTT GGCCTCAAGC CTGCACCCGC AGTTGTTACA	240 300 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140
5055606570	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding seq. 1 GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AAGTCTGGAG GTCAGGTGAA AAATCGACAG ATGGAATAT TGAAGGTTT TGAAGGTTTT TGAAGGTTTT GTGACACTC CTCCTCTGTA AAGACATTGT AGACATTGT AGGACTTCT GTTTTGTAGA AGTCCTCCCC GTGTGTTTTT	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149-' 11 AAAGCGCGGA GAGTGGGAAG GAGTGGGAAG CGAGTGATACAC CGAATTACAC GACTATGGA GACTATGGAC GACTTATGAC CTCTCTT TTAAGATAAC TTTATAATGAC CTCACTCTCT TTAAGATAAC TTTTTTAATG GACTGTCCA CTTTAGCTTC CTTTAGCTTC CTTTAGCTTC TTATTTTAATT TAAATGAAAAG	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFTCFLPYHL FFRRLFKKSN Quence 1 #: D80008 739 21 GCGGAGGCCG GAGCCAGAT CGTCCGCCAT AAGGGCAACTCC CATACCTGTA TGCAAATGCA AATTGAAGT CTCGGCGA AAGATACTC TAGGATATGAA CATGCGCCGA CCACCACTCC TAAGAATACT TTGTACACTA CTATGTTGCC TAAAGTGTT AAGCTGTAT CTAAACTGTT TAAACATGGT	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 3.1 31 AGGCGAGAGC ACCATTTTGG ACCATTTTGGGA TATCAAATTT TGACAGCTTT TGACCGCTTT TGACCGCTTG ATTACGATTAT ACCACCAAAA TGATGAGGC ATGTGAGCAG GGCACTTCCA CTTCACCTCC TGGCTAAGAA TTCTTCCTAC CAGCTAAGAA TTCTTCCTAC CAAGCTGGTC GAGATCACA TACATTTGAA	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT CGTGAGAGCT TCTGATGGA ACGACTGT ACTGATGCA CACATGGCTA ACTACATCA CACATGGCTC CTCATCAGTC CTCATCAGTC CTCATCAGTC CTCATCAGTC CTCATCAGTC CTCATCAGTC CTCATTCAGTC CTCATTCAGTC CTCATTCAGTC CTCATTAATTT CTTTTTTTGG TCAAACTCCT GCGTGAGCCA TCTCTTAAAT TCTCTTAAAT	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA GGTGGTTGGGC AACTAGAACA ATGAGCAAA ATGAGCAAA ATGAGCACTCAG CTGAAGAAAT TGGGAGGAGA TTGAAGTCCG TATTAAAAAA AAGGAGTCCT AACTATTA TTTTGGTTTT GGCCTCAAGC CTGCACCCGG CTGCACCCGA AGCAGTCAC AAGCAGTCAC	240 300 120 180 240 300 360 420 480 540 660 720 900 900 900 1020 1080
50556065	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ 1 GTTCGGCGCC CGAAAGGAGT AAGGCCGCGG GCAGCTGCAT AGTTCTGGAG GTTCTGGAG GTTCTGGAG GTTCTGGAG GTTCTGAGTTGA AAATCGACGC ATGGGAATAT GGAGTTTT TGAAGGTTTT TGAAGGTTTT TGACATTCT CTCTCTGTAAA AAATAGCCAG GGAGCACATCT CTCTCTTTTTTTTTT	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149-7 11 AAAGCGCGGA GAGGCGCGGA GAGTGGAAAG CGCAGGCCCG GAGATGAAAG CGCACTGTAG GACTATACAG CACTTTTAC GACTATGAG CACTTTTAC CTCTCTTTAAGTAAC CTCTCTCTTTAAGATAAC TTTTTTAATG GACTGCTCC TTTAGACTTCC TTTTTCTAAT TAAATGAAAG AGGAAAGAAG AGGAAAGAAG AGGAAAGAAG AGGAAAGAAG	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCGCCAT AAGGCCAAAT CGTCAGAT TGATACCAAC CATACCTGTA TGCAAATGCAAAC AAGATCTCT AGGATATGAA AATTTGAAGT CTCGATGGAA CCACACTCC TAAGAATACT TTGTACACT	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 3.1 31 AGGCGAGAGC ACCATTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT ACCACCAAA TCATGAGTTT ACCACCACAAA TCATGAGGC ATGTGAGCAG GGCACTTCCA CTTCACCTCC TGGCTAAGAA TTCTTCCTAC CAAGCTGGT GAGATCACAG TGTAATCACA TGTAATCACA TGTAATCACA TGTAATCACA TGTAATCACA TGTATTGTT CATTTTCTAAA	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGG ACGAGGATG TCTGGTGTCA CGACACTGTT CTTCGGATCA ACTCAGTCA ACTTCAGTCC CTGATCAGAC GGCTTCACTT GTATATATA ACTTCAGTCC CTCTTTGATT GTATATTTG TCTTTTTTTG TCTATTTTTTG TCTATTTTTTTG TCTATATCGT TCAGTCCA GCATTCCTT TCTTTAAATTTG TCAGTCCA TCTCTTAAAT TCAGTCAATCCAT TCACATGCAAT TCACATGCAAT	VISLPNIILT RYIHKSROF ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI IYYDYTDV 51 AGGACTAGAA GGTGGTTGGC AACTGATCCG GACTCAGACA ATGAAGCAAA CTCTGTTAAG GAGCACTCAG CTGAAGAAAT TGGGAGGAGA ATGAAGCTCAT TGAAGCTCAT AACTCATGGA TTAAAAAA AAGGAGTCCT TAACTATTA TTTTGGTTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA AAGCAGTCAC GTGTATTGTA GTGAAGATGA	240 300 120 180 240 480 420 480 540 660 720 900 900 91080 1140 1220 1260 1320
5055606570	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding seq 1 GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AAGTCTGGAG GTCAGGTGGA AAATCGACGC ATGGGAATAT GGAGTGGTT TGAAGGTTT TGAAGGTTCT GTGTTCTAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGACATTGT AGGACTTCT GTTTTGTAGA AGTCCTCCCA GTGTGTTTT TTGGCTGGAC CAAGCTAGAC CAAGCTAGAC CAAGCTAGAC TGGTTGTTTT TTGGCTGGAC CGAGCTAGAC CAAGCTAGAC CAAGCTAGAC	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149-' 11 AAAGCGCGGA GAGTGGGAGG GAGTGGGAGG CGCACCCG GACATGAAAG CGCACTGTAG GGTAGCGTCT AATAATTATA GACATTACAC GACTATGGAG CACTTTTAC CTCTCTT TTAAGATAAC TTATATATG GACTGTCTC TTAAGATAAC CTCTACTCTCT TTAAGATAAC CTCTACTCTCT TTAAGATAAC CTCTACTCTCT TTAAGATAAC CTCTACTCTCT TAAAGATAAC CTTTTTTAATG GACTGTCC CTTTAGCTTC CTTTAGCTTC CTTTTCTAAT TAAATGAAAG AGGAAGAAGG AGCTGAATTT AAATTTCAG	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFTCFLPYHL FFRRLFKKSN Quence 1 #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCCGCCAT AAGGGCACACTC AGCATATGAA AATTTGAAGT CTAGATACTAT TGCAAATGCT AGGATATGAA ATTTGAAGT CTAAGATACT TTGTACACTA CTAAGTGCT AAGATACT TTGTACACTA CTAAGTGT TAAACATGCT TAAACATGCT TAAACATGCT TAAACATGT	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTAT ACCACCAAAA TCATCATATT ACCACCAAAA TCATCACTCC CTTCACCTCC CTGCTAAGAA TCTTCACCTCC CAGATCACAG TGGCTAAGAA TCTTCCTAC CAAGCTGGTC CAAGCTGGTC CAAGCTGTC CAAGCTCTCAC CAAGCTGTC CAAGCTCTCAC CAAGCTGTC CAAGCTCTCAC TCTTACACAG TCTTAATCACA GTTTTACAGA GTTTTACATA	LSVCVWVIMA ILIGCYIAIS DRLLDESAQK LQSVRRSEVR 41) CTGGCGCTGT CGTGAGAGCT CGTGAGAGCT TCTGATGGA ACGAGGATG TCTGATGGATCA CACATGGCTG ATGAGGTCA CTCTTTGATT GGATCACTC CTCTTTGATT GTATAATTTG TCTTTTTTGG TCAAACTCCT GCGTGAGCCA GCCTTCACTC TCTTTTTTTTG TCTTTTTTTG TCTTTTTTTG TCTTTTTTTG TCTTTTTTTG TCTTTTTTTG TCTTTTTTTG TCTTTTTTTG TCAAACTCCT TCTTTAAAT TTCTGGTCAC TCTCTTAAAT TTCTGGTCAA ATACTAATTT	VISLPNIILT RYIHKSROF ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI AGGACTAGAA AGGACTAGAA AGGACTAGAA ATGAAGCAAA ATGAAGCAAA ATGAAGCAAA TTGAAGTCCG GAGCACTCAG TTAGAAGTCCT AACTCATGGA TTAGAAGTCT TTTTGGTTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA AAGCAGTCAC GTGTATTGTA AGGAGTCAC GTGTATTGTA GTGAAGATGA ATCATCTGGG	60 120 180 360 420 540 600 780 900 960 1020 1140 1200 12320 1380
5055606570	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequence 1 GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AAGTCTGGAG GTCAGGTGGA AAATCGACGC ATGGAATAT TGAAGGTTTT TGAAGATTTT GTATCTTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA TAGAACTTGT AGGACTTCT TTGTTGTAGA AGTCCTCCCA CCCCTACTCT TTGTTGTAGA CTTTTTGTAGA TGTTTTTTTTTT	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149-' 11 AAAGCGCGGA GAGTGGGAAG GAGTGGAAAG CGCGCCCG GAGATGAAAG CGAAGTGATT TGCACTGTAG GGTAGCGTCT AATAATTATA GACATTACAC GACTATTGGAC CTCACTCT TTAAGATAAC CTTTTTTAAT GACTTCTCT TTAAGATAAC CTTATCATAAT TAATGAAG AGCTGATTAAAT AGAAGAAGAAG AGCTGAATTT AAATTATAA GGAAGAAGAAG AGCTGAATTT AAATTTTCAA GGGAAGGACAC GGGAAGGACAC	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCGCCAT AAGGCCAACT CTTTGTATGA TGATACCAAC CATACCTGTA TGCAAATGC AAGATTCT AAGATATCT AGATATGAA AATTTGAAGT CTCGATGGAA CATGCCGCA CACACTCC TAGAGATACT TTGTACACT TTGTACACT TTGTACACT TTGTACACT TTGTACACT TAGATGTGC TAAAGTGTT AAGCTGTATC TAAACATGGT TAAACATGGT TAAACATGGT TAGATCCTGT TAGATCCTGT CTGAGATACA TATATATATA	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGG ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATT TGACCGCTTG ATTACGATTA ACCACCAAAA TGATGATGGC ATGTGAGCAG GGCACTTCCA CTTCACCTCC CGGCTAGGAA ATCTTCACTCC CGAGCTGCA TTCTCTAC CAAGCTGGTC GAGATCACAG TCTTAATCACA GTTTATTGAA GTTTATTGAA GTTTATATGAC GTGCACATTTC CATTTAATGAC TTGCACATTTC CATTTAATGAC TTGCACATTTC CATTTAATGAC	LSYCVWYIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTCAGAGGCT AAAGCCATGG AACGAGGATG CCACATGGTA CCACATGGTA ACTACAGCC CTCATCAGC CTCATCAGC CTCTTTGATT GTATCAGC CTCATCAGC CTCTTTGATT GTATCAGC CTCTTTGAT CTCTCTCC CTCTTTGAT CTCTTTTTG TCTATCAGC CTCTTTGAT TCACATGCA CCTCTATAT TCACATGCA TTCAGCC TCATCTAAT TCACATGCAA ATACTACTT CACCATGCAA ATACTAATTT CACCATGGTG	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAC AGGACTAGAC AGGACTAGAC ATGAAGCAA ATGAAGCAA ATGAAGCAA TTGAAGAAAT TTGAAGAGAAAT TTTAGATTATA AATTATAA AATTATAA TTTTGGTTTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA AGCAGTCAC GTGTATTGTA GTGAAGATGA ATCATCTGGC GCTGTTTGG GCTGTTGTGG GCTGTGTTGG	60 120 180 240 360 420 600 660 600 720 780 840 900 1020 1140 1200 1260 1320 1440
505560657075	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequence 1 GTTCGGCGCC CGAAAGGAGT AAGGCCGCGG GGAGCTGCAT AGTTCTGGAG GTTCAGGTGGA AAATCGACGC ATGGGAATAT GGAGTGTT TGAAGGTTT TGAAGGTTT TGAAGGTTT AGACATTCT AGTTCTAAAA AAATAGCCAG GGAGCACATC CTCCTCTGTT AGGACTTCT GTTTTTTTTTGAGA ACTCTCCCCA CCCTACTCC GTGTGTTTTT TTGGCTGGAC CAAGCTAGAG TGGTCTGTAG TATTTGGGAG TGGTCTGTAG TATTTGGGAG TGTTGTTAGA TATTTGGGAG TGGTCTGTAG TATTTGGGAG TGGTCTGTAG TTTTTGGGATAG TTTTTGGGATAG TTTTTGGGATAG TGTTGTGTTAG TTTTTTGGGATAG TGTTGTGTTAG TTTTTGGGATAG TGTTTTTTGGGATAG TGTTGTGGCTAG TTTTTGGGATAG TTTTTGGGATAG TTTTTGGGATAG TTTTTGGGATAG TTTTTTGGGATAG TTTTTGGGATAG TTTTTTGGGATAG TTTTTTGGGATAG TTTTTGGGATAG TTTTTGGGATAG TTTTTTGGGATAG TTTTTGGGATAG TTTTTTGGGATAG TTTTTTGGGATAG TTTTTTGGGATAG TTTTTTGGGATAG TTTTTTGGATAG TTTTTTGGATAG TTTTTTGGATAG TTTTTTGGATAG TTTTTTGGATAG TTTTTTGGATAG TTTTTTGGATAG TTTTTTGGATAG TTTTTTTGGATAG TTTTTTGGATAG TTTTTTTGGATAG TTTTTTTT	DCSKLKSPLG NOSIRVVVAV PIIYFFMCRS 153 DNA set id Accession lence: 149- 11 AAAGCGCGGA GAGGGCCGGA GAGTGGAAAG CGCAGGTGATAGAAG GCTGTAGAT GACTATACAC GACTATGAGAG CACTTTTACAC TTTTTAATG GACTGTCTC TTAAGATAAC TTTTTTAATG GACTGTCTC TTTAGATAAC GACTGTCTC TTTAGATAAC TTTTTTAATG GACTGTCTC TTTTTTAATG GACTGTCTC TTTTTCTAAT TAAATGAAAG AGGAAAGAAGA AGGAAAGAAGA TGGGGTGATTT AAATTTCAG GGAAAGGACAC TTGGGGGAACC TTGGGGTGATC TGGGGTGATC	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCAGAT CGTCGCCAT AAGGGCAACT CTTTGTATGA TGATACCAAC CATACCTGTA TGCAAATGCA AATTGAAGT CTCGATGGAC AAGATATCAAC TTGATGGAC TAGATATCACT TTGTACACT TAGATATCACT TTGTACACT TTGACTGTT TAGACTGTT TAGACTGTT TAGATACT TTGATGTACT TTGATGTACT TTGATGTACT TTGATGTACT TAGATACT TTGATGTACT TACAGTATCA	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT TGACTACTATT TGCTACTACT TGCTACTACT TGGCTAAGAA TCTTCCTAC TGGCTAAGAA TCTTCCTAC TGGCTAAGAA TCTTCCTAC TGGCTAAGAA TCTTTCCTAC TGGCTAAGAA TCTTTCCTAC TGAGATCACA TGTAATCACA TGTAATCACA TGCACTTTGT CAATTTCAAA GTTTTAATGAC TGCACATTTC TGCACATTTC TCCACTTTGGA	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGG AACGAGGATG TCTGATGTGA ACGACTGTT CTTCGGATCA CGCATGTCATCAGACC GGCTTCACTC GTATATA ACTTCAGTCC CTGATCAGAC GGCTTCACTC GCTTAGATT GTATAATTTG TCTTTTTTTGG TCAAACTCCT TCAAACTCCT TCATAACT TCTCTTAAAT TCTCTTAAAT TCTCTTAAAT TCACATGCAA ATACTAATT CACATGGTG AGGGGACAGT	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA GGTGGTTGGC AACTGATCCG GACTCAGACAA ATCATGACAAA AAGGAGTCAT TTGAGAGAAAT TTGAGAGTCCG TATTAAAAAA AAGGAGTCCT AACTCATGGA TTAGAAGCTA CTAACTATTA TTTTGGTTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA AAGCAGTCAA GCTGTAATTGAT GTGAAGATGA ATCATCGGC GTGAATTGGG GTAATTGGGG GAAATTGGGG GAAATTGGGG	60 120 180 240 360 420 480 660 720 840 900 1020 1080 11200 1200 1200 1320 1320 1340 1500
5055606570	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding seq. 1 GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AAGTCTGGAG GTCAGGTAGAAAT GGAGTGGTTT TGAAGGTTTT TGAAGGTTTT GGAGTGGTTT TGAACATTG AGACTTCTCGTAA AGACATTGT AGACATTGT AGGACTTCTC GTTTTGTAGA AGTCCTCCCA CCTACTC CTCTCTGTA TGGACATTGT TGGCTGGAC CCAAGCTAGAG TGGTTGTTTT TTGGCTGGAC CAAGCTAGAG TGGTCTGTAG TATTTGGGAA CTTGTGGAA CTTGTGGCTA CTAGTGAGAAG CTTGTGGCTA CTTAGAGAAGC CTAGAGAAG CTTGTGGCTA	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149-' 11 AAAGCGCGGA GAGTGGGAAG GAGTGGAAAG CGAGTGATAT TGCACTGTAG GACTATGAG CACTTATGAC CACTTATGAC CACTTATAC CACTTATAC CACTTATAC CACTTATAC CACTTATAC CACTTCTCT TTAAGATAAC TTTTTAATG GACTGCTCA TTAATTAATG GACTGCTCA CCTTAGCTTC TTAAGATAAC TTTTTCTAAT TAAATTACAG AGGAAGAAGG AGGAAGAAGG AGGAAGAAGG AGGAAGAA	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCCGCCAT AAGGGCAACT CTTTGTATGA TGATACCAAC CATACCTGTA TGCAAATGC TCGATGGAA AATTTGAAGT CTCGATGGAA CATGCGCGA CCACCACTCC TAAGAATACT TTGTACACT TTGTACACT TTGTACACT CTAAGATACT CTAAGATACT AAGATATCA AATTTGACAT TTGTACACT TAGAATACT TAGAATACT TAGAATACT AAGATATCA AATTTTACACT TAAACATGT TAGAATCCTGT TAGAATCCTGT TAGAATCCTGT CTGAGATACA AATTTTTCCTT ACCAGTATCA AGTTTTTCCTT GGTATGTTT	RMYSITFTKV NSCLFVAVLV CRIPFTSHL IRTRSESIRS 31 AGGCGAGAGGC ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCACATTT TGACCGCTTG ATTACGATTT TGCTACTTAT TGCTACTTAT ACCACCAAAA TGATGATGGC ATGTGAGCAA TTCTTCCTAC CTTCACTCC CTGCTACAGAA TTCTTCCTAC CAAGCTGGTC GAGATCACAG TGTAATCACA TTCATTTCTAC GAGATCACA GTTTAATGAC GTGTTTTATGAA GTTTTAATGAC GTGTTTTAATGAC GTGTTTTAATGAC TGCACATTTC CAACTTTGAA AAACAGTGAA AAACAGCTGA AAACAGCTGA	LSYCVWYIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTCAGAGCT AAAGCCATGG AACGAGGATG CGACACTGTT CTTCGGATCAG AGCCTATATA ACTTCAGCC CTGATCAGC CGCTATATATA ACTTCAGCC GGCTTCACTC CTCTTTGATT GTATAATTTG TCAAACTCCT GCGTGAGCCA GCATTCCTAC TCACATGCAA ATACTAAT TCCGGTCAT TCACATGCAA ATACTAATTT CACCATGGTG AGGGGACAGT TTGACTGAA ATACTAATTT CACCATGGTG AGGGGACAGT TTGACTGAAA CATTTTAAAT	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA AGGACTAGAA ATGATCCG GACTCAGACAA ATCAAGCAAA AGGAGTCCG TATTAAAAAA AAGGAGTCCT TATGAAGCTA TTTGGTTTT GCCTCATGGA TTTGACTATT GCCTCAAGC CTGCACCCG AGTTGTTAC AGCACTCAC GTGTATTGTA GTGAAGATGA ATCATCTGGC GCTGGTGTGG GAAATTGGGG GCTGGTGTGG AGTCACATGA TTTGGTGTGG AGTCACATGA TTTGATGAAAA	60 120 180 240 300 360 420 780 840 900 960 1020 1140 1200 1320 1380 1440 1560
505560657075	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequence 1 GTTCGGCGCC CGAAAGGAGT AAGGCTGCAT AGGCTGCAG GTCAGGTGGA AAATCGACGC ATGGAATAT TGAAGGTTTT TGAAGGTTTT TGAACATTGT AGACATTCT AGGACTTCT TTGTTGTAGA AGTCCTCCCA CCCCTACTCC CCCTACTCC CTCTTGTATAT TGGTTTTTTTTTT	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149-' 11 AAAGCGCGGA GAGTGGGAAG GAGTGGAAG CGAGTGATT TGCACTGTAG GACTATGAG CACTTATAG CACTTATAG CACTTATAG CACTTATAG CACTTATAG CACTTTTTAC CTCTCATGAC CTCACTCT TTAAGATAAC CTCTCATGAC CTCTCTTTAAT AAAATTATAA AGAAGAAAG AGCTGAATT AAAATTTCAA CGCTGAATTT AAATTTTAA TGGAGGACAC TGGGGTGAT AAATTTTTAA TGGAGGACAC TGGGGTGAT TAATTGTAC TTCTTTTAAT TGGGTTGTTC TTCTTTTAAT TCGTTTTTTTT TCGTTTTTTTTTT	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFTCFLPYHL FFRRLFKKSN Quence 1 #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCGCCAT AAGGGCAACT CTTTGTATGA TGATACCAAC CATACCTGTA TGCCAAATGC AAGATATGAA AATTTGAAGT CTGATGGAA AATTTGAAGT CTAGATATGAA CATACCACTCC TAAGAATACT TAGAATACT TTGAAGATACT TAGATATCAAC CTAAGATATCA AATTTGAAGT CTCAAAGTGT CTCAAAGTGT AAGCTGTATC TAAACATGGT CTGAGATACA AGTTTTCCT TAGATCCTGT TAGATCCTGT CTGAGATTCA AGTTTTCCCT GGTATGTTT TTTTTATGCTT	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 31 AGGCGAGAGGC ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT TGACTGCTTG ATTACGATTT TGCTACTTAC ACTACTACTAC TGGCTAGCA TGCTACTACCACAAA TGCTCCACTCC TGGCTAAGAA TTCTTCCTAC CAAGCTGGTC GAGATCACAG TGTAATCACA TGTTAATCACA TCTTTAATCACA TCTTTAATCACA TCTTTTAATAGAC GTTTAATTGAA GTTTTAATGAC GTGCACATTTC CCACTTTGGA AAACAGCTGA TGGGTGTGAACAGTTGAT TGCACTTTGGA AAACAGCTGA TGGGTGTTGCACTTGGA TGGGTGTTGCACTTGGA TGGGTGTTGCACTTTGGA TGGGTGTTGCACTTTGGA TGGGTGTTGCACTTGGA TGGGTGTTGCACTTTGGA TGGGTGTTGCACTTTGGA TGGGTGTTGCACTTTGGA TGGGTGTTGCACTTTGGA TGGGTGTTGCACTTTGGA TGGGTGTTGCACTTTGGA TGGGTGTTGCACTTTGGA TGGGTGTTGCACTTTGGA TGGGTGTTGCACTTTGCACTTGGA TGGGTGTTTGCACTTGTTGCACTTTGCACTTTGCACTTTGCACTTTGCACTTGTTGCACTTGTTGCACTTGTTGCACTTGTTGCACT	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGG AACGAGGATG CTTCGGATCA CGACACTGTT CTTCGGATCA ACGACTGTT CTTCGGATCA ACCATGGCTG CTCTTTGATTTG GTATAATT GTATAATTTG TCAATCAAC GCCTTCAACT GCGTGACCAA CACTCTTTGATT GCGTGACCA GCATTCCTAC CTCTTTAATT TCACATGCAA ATACTAATT TCACCATGGTG AGGGGACAGT TTGACTGACT AGGGGACAGT TTGACTGAAA ATACTAATT CACCATGGTG AGGGGACAGT TTGACTGAAA ATACTAATT ACCATGAAAA ATACTAATT	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGAGCACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	60 120 180 240 300 360 420 780 840 900 960 1020 1140 1200 1320 1380 1440 1560
505560657075	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequ 1 GTTCGGCGCC CGAAAGGAGT AAGGCCGCGG CGAAAGGAGT AAGTTCTGAG GTCAGGTGGA AAATCGACGC ATGGGAATAT GGAGTTTT TGAAGGTTTT TGAAGGTTTT AGGACTTCT GTTTTTTTTTT	DCSKLKSPLG NOSIRVVAVV PIIYFFMCRS 153 DNA sec id Accession lence: 149- 11 AAAGCGCGGA GAGGGCCGGA GAGTGGAAAG CGCAGGCCCG GAGATGAAAG CGACTGTAG GACTATACAG CACTTTTAC CACTTTTT TAAATGAGAG CACTTTTTAAT GACATTCTCT TTTTTCTAAT TAAATGAAAG ACGAAGAGAG ACGAAGAGAG ACGTGACTTC TTTTTCTAAT TAAATGAAAG ACGAAGAGAAG ACGAAGAGAAG ACGAAGAGAAG ACGTGATTT CAATTTCAA TGAGGGTGATT CAATTTTTAAT CGTTTTTTAAT CGGTGATTT CACTTTTTTAAT TGGGTGATT AAATTTTAAT CGTTTTTTAAT TCGGTGTAT TCACTTTTTTAAT TCGTTTCTAAT TCGTTTTTTAAT TCGTTTTTTAAT TCGTTTTTTTAAT TCGTTTTTTTTAAT TCGTTTTTTTTTT	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCGCCAT AAGGGCAACT CTTTGTATGA TGATACCAAC CATACCTGTA TGCCAAATGC AAAGATCTCT AGGATATGAA AATTTGAAGT CTCGATGGAA CCACACTCC TAAGAATACT TTGACACAC TATGATGGC TAAGAATACT TTGACACAC CTATGTTGC TAAGAATACT TTGACACAC TATGTTGC TAAGAATACT TTGACACT AAGTGTT AAGCTGTAT CTAAGATCTGT TAGATCTGT TTGACAGTATCA ACTTTTCCCT GGTATGTTT TTTTATGCTT TTTTTTTTTT	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 31 AGGCGAGAGC ACCATTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT ACCACCAAAA TCATGAGATT TGACGCTTG ATTACGATTCA ATGATGACCTCC TGGCTAAGAA TCTTCACCTCC TGGCTAAGAA TCTTCCTAC TGGCTAAGAA TCTTCCTAC TGAGATCACAC TGAGATCACAC TGAATCACAC TGAATCACAC TGAATCACAC TGAATCACAC TGAATCACAC TGAATCACAC TGAATCACAC TGACATTTGAA GTTTAATGAC TGCACATTTC CCACTTTGGA GAGATTCAGA AAACAGCTGA AAACAGCTGA TGGGTGTTGC CTTCTAGAAG TGTTTTT	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGG AACGAGGATG TCTGATGTGA CGACTGTT CTTCGGATCA CACATGGTC CTCATCAGTCC CTGATCAGTC CTCTTTAATT GTATATATT GTATATTTG TCTTTTTTTGG TCAAACTCCT GCGTGAGCCA GCATTCCTAAA TTCTCTTAAAT TCACATGCAA ATACTAATT CACCATGGTG TCACATGCAA ATACTAATTT CACCATGGTA ATACTAATTT CACCATGAAA TCTTAAAAT TTTGACTGAAA TGTTATAAATT	VISLPNIILT RYIHKSROF ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI ILYYCKETTI AGCACTAGAA GGTGGTTGGC AACTGATCCG GACTCAGACA ATGAAGCAAA CTCTGTTAAG GAGCACTCAG CTGAAGAAAT TGGGAGGAGA ATGAAGCTCAT AACTCATGGA TTAAAAAA AAGGAGTCCT AACTCATGAT TTTTGGTTTT GGCCTCAAGC CTGCACCCGG AGTTGTTACA AAGCAGTCAC GTGTATTGTA ATCATCTGGC GCTGGTGTGG GCAAATTGGGG AGTCACATGA TTTGATGAAA TCTTTTCCCA TTAAGCTTTA	240 300 120 120 240 300 360 420 480 540 660 720 780 960 1020 1140 1220 1320 1320 1440 1560 1560 1680 1740
50 55 60 65 70 75	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding seq 1 GTTCGGCGCC CGAAAGGAGT AAGGCTGGA AAGTCGAGG GTAAGGTGGA AATTCAGGAG GTCAGGTGGA ATGGAATAT GGAGTTGTT TGAAGGTTGT AGGACTTCT GTTTTTGTAGA AGTCCTCCCAGTA AGTCCTCCC GTGTTTTT TGAGAGCTAGC AGTCCTCCAGTA AGTCTCTCGAG AGTCTCTCGAG AGTCTTCT GTTTTTTGGAG CCCCTACTCC GTGTGTTTTT TCAGAGAGC TAGTTGTGGAA CTTGTGGAA CTTGTGGAA CTTGTGGAA CTTGTGGAA CTAGAAAG AGAGTTGAT TCCCAGTTTAT TCCCAGATT TCCCAGATC TACTTTGGTC	DCSKLKSPLG NOSIRVVVAV PIIYFFMCRS 153 DNA sec id Accession lence: 149-' 11 AAAAGCGCGGA GAGTGGGAAG GAGTGGAAAG CGAAGTGATA TGCACTGTAG GACATTACAC GACTATGGAC GACTATGGAC CTCACTCTT TTAAGATACAC TTTTTTAATG GACTGATAC CTTCACTCTCT TTAAGATACAC TTTTTTTAATG GACTGACTAC CCTCACTCTCT TTAAGATACAC CTTTTTTCTAAT TAAATGAAAG AGCAGAGAAGAGT TAAATTTTCAAT TAAATGAAAG AGCTGACTTC CTTTTTCTTAAT TAAATGAAAG AGCAGAGAAGAC TGGGGTGATC CGCTGATTTTTT TACGTTTTTTT TATGACCGT	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCCGCCAT AAGGGCAACT CTTTGTATGA TGATACCAAC CATACCTGTA TGCCAAATGC AAAGATCTCT AGGATATGA AATTGAAGT CTCGATGGA CCTCC TAAGAATACT TTGTACACTA TGATCGCCT TAGAATACT TTGTACACTA CTATGTTGCC TAAGAATACT TTGTACACTA CTATGTTGCC TCAAGATATC TAAACATGGT TAAACATGGT TAAACATGGT TAGAATCTGT TAGATCCTGT CTGAGGATACA TATATATATA ACCAGTATC AGGTTTTCCCT GGTATGTTT TTTTTTTTTT	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 3.1 31 AGGCGAGAGC GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT ACCACCAAAA TCATGATTT ACCACCAAAA TCATGATCACTCC CTGCTAAGAGA TTTCCTACCTCC CTGCTAAGAA TCTTCCTAC CAAGCTGGTC TGACTAGCACACA TCTTCCTAC CAAGCTGGTC TGACTAGCACACACACACACACACACACACACACACACAC	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGG AACGAGGATG TCTGATGTGA CGACACTGTT CTTCGGATCA ACCATGGCTG TCTTCAGTCC CTGATCAGTC CTGATCAGTC CTGATCAGTC CTGATCAGTC CTCTTTGATT GTATAATTTG TCTTTTTTTGG TCAAACTCCT TCCTTAAAT TCCTGTACAT TCCTGGTACA ATACTACTACAT TTCTTGGTAT TCACTGGACA ATACTAATTT CACCATGCAA ATACTAATTT CACCATGCAA ATACTAATTT CACCATGCAA ATACTAATTT CACCATGCAA ATACTAATTT CACCATGCAA ATACTAATTT CACCATGCAA ATACTAATT CACCATGCAA ATACTAATTT CACCATGCAA ATACTAATTT CACCATGCAAA CATTTTAAAT ATCCGAGAAAA ATCCTAAATT GTTTTTTCGT	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA AGGACTAGAA AGGACTAGACA ATGAAGCAAA ATGAAGCAAA ATGAAGCAAA ATGAAGCAC CTGAAGAAAT TGGGAGGAGA ATTGAAGTCCT AACTCATGGA ATTAGAAGCTA CTAACTATTA TTTTGGTTTT GGCCTCAAGC AGGTGTTATCA AGCAGTCAC CTGTATTGTA GTGAAGATGA ATCATCTGGC GGTATTGTA TTGTATGTA ATCATCTGGC GCTGGTGGG AAATTGGG AAATTGGG AAATTGGG AAATTGGG AAATTGGG ATCACATGA TTTGATGAAA TCTTTTCCCA TTTGATCTTT	240 300 120 180 240 300 360 420 780 840 900 960 1020 1140 1200 1140 1560 1620 1620 1620 1740 1800
505560657075	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding seq. 1 GTTCGGCGCC CGAAAGGAGT AAGCCGCG GCAAAGGAGT AATCTCTGGAG GTCAGGTGGAT AATCGAGGAATAT GGAGTGGTTT TGAAGGTTGT TGAAGGTTCTAAA AAATAGCCAG GGAGCACATC CTCCTCTGTA AGGACTTCT GTTTTGTAGA AGTCCTCCC GTTTGTTTTT TTGGCTGGAC CAAGCTAGAG TGGTTTTT TTGGCTGGAC CAAGCTAGAG TATTTGGGAA CTTGTGAGAAGT TATTTGGGAA CTTGTGAGAAGT TATTTGGGAA CTTGTGAGT TCCCAAGATC TACTTTGTT TCCCAAGATC TACTTTGGTT TCCCAAGATC TACTTTGGTC TACTTTGGTT TCCCAAGATC TACTTTGGTC TACTTTGAGAA	DCSKLKSPLG NQSIRVVVAV PIIYFFMCRS 153 DNA secid Accession lence: 149-' 11 AAAGCGCGGA GAGTGGGAAG GAGTGGGAAG CGAAGTGATT TGCACTGTAG GACTATGAG CACTTATAC GACTATGAC CTCACTCTT TTAAGATAAC TTTTTAAT GACTTTCCA TTTTTCTAAT TAAATTATA GGAAGAAGA AGGAAGAAG AGGAAGAAG AGGAAGAA	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCCAGAT CGTCGCCAT AAGGCCAACT CTTTGTATGA TGATACCAA CATACCTGTA TGCCAAATGC TCGATGGAA AATTTGAAGT CTCGATGGAA CATACCTGT AAGATATCA CATACCTGT AGATATGAA TCTCAATGGAT TTGTACACT TTGTACACT CTAAGATACT CTAAGATACT TTAGACTAT TTGTACACT TAAACATGT TAAACATGT TAAACATGT TAAACATGT TAAACATGT TAAACATGT TTAGATTCCT TCGGTATGTT ACCAGTATCA AGTTTTCCTT TTCTTTTTA TTTTTTTTTT	RMYSITFTKV NSCLFVAVLV CRIPFTSHL IRTRSESIRS 31 AGGCGAGAGGC ACCATTTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG ATTACGATTT TGACCGCTTG ATTACGATTT TGCTACTTAT ACCACCAAAA TGATGATGGC ATGTAGAGAA TGATGATGCC CTTCACCTCC CGCTACACAC CTTCACTCC CTGCTACACAC CTTCACTCC CAGCTTCAC CTTCACTCC CAGCTTGAGAA GTTAATCACA GTTTATTGAA GTTTATTGAA GTTTATTGAA GTTTATTGAA GTTTATTGAA GTTTATTGAA GTTTATTGAA GTGCTTTGC CAACTTTGC CAACTTTGC CAACTTTGC CAACTTTGC CACTTTGGA GGATTCAGA TGGCTGTTGC TTCTAGAAG CTTTTTTTTTAAAAG GTTTTTTTTTAAAAG GTTTTTTTT	LSYCVWYIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTCAGAGCT AAAGCCATGG AACGAGGATG CGACACTGTT CTTCGGATCAG ACGATGATCAGC CTGATCAGC CTGATCAGC CTGATCAGC CTGATCAGC AGCCTATATA ACTTCAGTCC CTCTTTGATT GTATAATTTG TCTATCTGC GCGTGACCAG CATTCCTAC TCACATGCAA ATACTAATT TCACATGCAA ATACTAATT TACCATGCAA ATACTAATT TACCATGCAA ATACTAATTT CACCATGGTG AGGGGACAGT TTGACTGAAA CATTTTAAAT ATCCGAGAAA TGTTATAATT GTTTTTTCGT GCACTGGCGT GCACTGGCGT	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA AGGACTCAGACAA ACTGATCCG GACTCAGACAA ACTCATCAGAAAA TCGAAGCAAA AAGCAGTCCT TAAAAAAAA AAGGAGTCCT TAAACTATTA TTTTGGTTTTTGGTTTTGGCTCTAACCACCCGG AGTTGTTACAC GTGAACTACAC GTGTATTGTA GTGAAGATGA ATCATCTGGC GCTGGTGTGG GAAATTGGGG GCTGGTGTGG GAAATTGGGC TTTGATGAAAA TCTTTTCCCA TTAAAGCTTTA TTTTCTTTTC	240 300 120 180 240 360 420 540 600 600 720 780 840 900 1020 1140 1200 1140 1500 1500 1620 1680 1740 1680 1740 1860
50 55 60 65 70 75	NGQPTEDNIH ISQSSRKRKH FLSACNVCLD Seq ID NO: Nucleic Ac: Coding sequence 1 GTTCGGCGCC CGAAAGGAGT AAGGCCGCGG GGAGCTGCAT AGTTCTGGAG GTTCAGGTGGA AAATCGACGC ATGGGAATAT GGAGTGGTT TGAAGGTTT TGAAGGTTT TGAAGGTTT TGAAGGTTT TGAAGCTTCT GTTTTTATAA AAATAGCCAG GGACACATC CTCCTCTGTT TGTGTTTTT TGGCTGGC CCCTACTCC GTGTGTTTTT TGGCTGGCT CCAAGCTAGAG TGGTTGTGTTT TTGGCTGAG CTTGGCTAG CTTTTGGCATC TCCTTTGGAATC TCCCAAGATC TCCTTTGGAATC TCCTTTGGAATC	DCSKLKSPLG NOSIRVVAVV PIIYFFMCRS 153 DNA set id Accession lence: 149- 11 AAAGCGCGGA GAGGGCCGA GAGTGGGAAG CGGAGGTGGTAGA GGTAGCTCT AATAATTATA GACATTACAC GACTATGGAG CACTTTTACAC TTTTTAATG GACTGTCTC TTAAGATAAC TTTTTTAATG GACTGTCTC TTTTTCTAAT TAAATGAAG AGGAAGAAGA AGGAAGAAGT AGGAAGAAGA AGGAAGAAG AGGAAGAAG TGGGGTGAT CACTTTTCTAAT TAAATGAAG GGAAGAAGA AGGAAGAAG AGGAAGAAG TTGTTCTAAT TAAATTTCAA TGGGTGATC ACTTTTTAAT TATGACCGT GGAGTCTTGT TCTATCCCT TTTTCCTCT TTTTCTTATT TATGACCGT TCCTCTCT TTTTTTTTTT	LKVVKPFGDS VKWHTAVTYV FFTCFLPYHL FFTCFLPYHL FFRRLFKKSN Quence n #: D80008 739 21 GCGGAGGCCG GAGCCAGAT CGTCGCCAT AAGGGCAACT CTTTGTATGA TGATACCAAC CATACCTGTA TGCAAATGC AAAGATCTCT TAGATGAA CATGCGCCGA CCACCCCC TAAGAATACT TTGTACACT TTGTACACT TAGATATGA CATACTGTC TCAAGGTTT AAGCTGTATC TAAACATGGT TAAACATGGT TAAACATGGT TAGATCCT TAGATCCT TAGATCCT TAGATCCT TAGATCCT TAGATCCT TAGATCCT TTATATATAT ACTAGTATT ACCAGTATCA AGTTTTCCCT GGTATGTTTT TTTTTTTTTT	RMYSITFTKV NSCLFVAVLV CRIPFTFSHL IRTRSESIRS 1.1 31 AGGCGAGAGC ACCATTTGG GTTCTGCGAA GCCTGCCTTC ACAAAACCAG TATCAAATTT TGACCGCTTG ATTACGATTT TGACTACTTAC ACCACAAAA TGATGATGGC ATGCTACTAC ACTACACACAC TGCACTCC TGGCTAAGAA TGATGATGCAC TCTCACCTCC TGGCTAAGAA TTTTCCTAC TCACTTCC AGATTTCCTAC CACTTTTGAA GTTTAATGAC TGTAATCACA GTTTAATGAC TGCACATTTC CACTTTGGA AAACAGCTGGA AAACAGCTGA AAACAGCTGA AGGTTTTCTTAGAA GTTTTTAGAA GTTTTAGAA GTTTTAGAA GTTTTAGAA GGTTTTTTAGAA GGTTTTTTTT	LSVCVWVIMA ILIGCYIAIS DRILDESAQK LQSVRRSEVR 41 CTGGCGCTGT CGTGAGAGCT AAAGCCATGGG ACGAGGATG CTTCAGTGTGA ACGACACTGTT CTTCGGATCA ACCATGGCTG ATCAGACC GCTTCACTC GCTTATATA ACTTCAGTC GCTTTAGATT GTATAATTTG TCTTTTTTGG TCAACTCCTC GCGTGAGCCA GCATTCCTAC ACATGGCTAAAT TCACATGGTG TCAACTCCTTAAAT TCACATGGTG AGGGACAGT TTGACTGAAA TTCTTTAAT TCACATGGTG AGGGACAGT TTGACTGAAA TGTTTTAAAT TGTTTTTTCGGTCAT CACATGGTG TCACAGGAAA TGTTTATAATT GTTTTTTCGT GTTTTTTCGT GTTTTTTCGT TCCAGGAAA TGTTATAATT GTTTTTTCGT GTTTTTTCGT GTTTTTTCGT TCCAGGAGAA TGTTATAATT GTTTTTTCGT TCTCAGCCTC TCTCAGCCTC	VISLPNIILT RYIHKSSROF ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL ILYYCKETTL AGGACTAGAA AGGACTAGAA AGGACTAGACA ATGAAGCAAA ATGAAGCAAA ATGAAGCAAA ATGAAGCAC CTGAAGAAAT TGGGAGGAGA ATTGAAGTCCT AACTCATGGA ATTAGAAGCTA CTAACTATTA TTTTGGTTTT GGCCTCAAGC AGGTGTTATCA AGCAGTCAC CTGTATTGTA GTGAAGATGA ATCATCTGGC GGTATTGTA TTGTATGTA ATCATCTGGC GCTGGTGGG AAATTGGG AAATTGGG AAATTGGG AAATTGGG AAATTGGG ATCACATGA TTTGATGAAA TCTTTTCCCA TTTGATCTTT	240 300 120 180 240 360 420 540 600 600 720 780 840 900 1020 1140 1200 1140 1500 1500 1620 1680 1740 1680 1740 1860

	WO 02	086443 TTGGCCAGGC	ጥርርጥጥጥር አ አ አ	CTCCTCACCT	CAAGTGACCC	ACCTTGGCCT	2040
		TGGGATTACA					2100
	GAATTTTTTA	TATGGTGCAA	GGTGTCAATC	CACCTTCACT	TTTTCTTGGG	AATATAGATA	2160
5	TCCAGCTGTT	TCACTACCAT AGTAGTTGTC	TTTTTGAAAG	GACTGCCCTT	TCACCACTCT	CCTTTGCATT	2220 2280
5	ATTGACCTGT	TTTTCTCTCC	TGAATGCCAA	TACCATATTT	GTATGTAGTG	TATGTAATTT	2340
		CTTGAAACAG					2400
		TGGGGTTTCA CTCGTCCTCC					2460 2520
10	CAGTGTACCA	CATTTCTTTT	TGAGATTTGT	TTTGGCTATG	TTAAGTCCTT	TGCTTTTGAT	2580
	GTGAAATTTG	GGAACAGGCA	GGGTGTGGTG	GCTTATGCCT	GTAATCCTAG	AACTTTGGGA	2640
		GGTGGATCAC CTACAAAAAA					2700 2760
		CGGCAGGCTG					2820
15	GTGAGCTGAG	ATCACACCAC	TGTACTCCAG	CCTGGGTGAC	AAAGTGAGAC	TCTATCTCAA	2880
		GGATCAATTT GAGATTGCAT					2940 3000
	AATATTGAGT	CTTCTGGCCT	ATAAACAAGG	TCTGTCTTCC	TAGGTATTAA	TGTTTTGTCT	3060
00	TCTATTTCTC	TTAATAATCT	TTTGTAGTTT	TCAGTGTACA	GGTCTACCAT	GTCAGCATTT	3120
20		ATGCTAAATG CAATTGATGT					3180 3240
	ATTAGAAATA	TGTAAATTAC	ATCAACAGTC	ATGTGTTCTA	TGAATAAAGA	GTTTTACTCC	3300
	TTC						
25	0 TD NO	154 Dunkain					
23		154 Proteir ession #: E					
	1	11	21 1	31	41 I	51 I	
30	MFCEKAMELI	 RELHRAPEGQ	I LPAFNEDGLR	OVLEEMKALY	EQNQSDVNEA	KSGGRSDLIP	60
•	TIKFRHCSLL	RNRRCTVAYL	YDRLLRIRAL	RWEYGSVLPN	ALRFHMAAEE	MEWFNNYKRS	120
		DEGLDITQDM	KPPKSLYIEV	RCLKDYGEFE	VDDGTSVLLK	KNSQHFLPRW	180
	KCEQLIRQGV	PEHITZ	•				
35	Seq ID NO:	155 DNA sec	quence				
		id Accession		quence			
	Coaing sequ	ience: 149-7	709				
40	1	11	21	31	41	51	
40		AAAGCGCGGA		A GGGGA GA GG	Curacacacacaca	ACCACTACAA	60
		GAGGCGCCGA					120
	AAGGCCGCGG	GAGTGGGAAG	CGTCCGCCAT	GTTCTGCGAA	AAAGCCATGG	AACTGATCCG	180
45	CGAGCTGCAT	CGCGCGCCCG	AAGGGCAACT	GCCTGCCTTC	AACGAGGATG	GACTCAGACA	240
43	AGTTCTGGAG	GAGATGAAAG CGAAGTGATT	TCATACCAAC	ACAAAACCAG	CGACACTGTT	CTCTGTTAAG	300 360
	AAATCGACGC	TGCACTGTAG	CATACCTGTA	TGACCGCTTG	CTTCGGATCA	GAGCACTCAG	420
	ATGGGAATAT	GGTAGCGTCT	TGCCAAATGC	ATTACGATTT	CACATGGCTG	CTGAAGAAAT	480
50		AATAATTATA GACATTACAC					540 600
50		GCGATCTCGG					660
	CAACCTCCAC	CTCCCAGGTC	CGGTGTCTAA	AAGACTATGG	AGAATTTGAA	GTTGATGATG	720
	GCACTTCAGT	CCTATTAAAA	AAAAATAGCC	AGCACTTTTT	ACCTCGATGG	AAATGTGAGC	780 840
55	CAGGCTTCAC	ACAAGGAGTC TCAACTCATG	GACTCCTCTG	TACTCACTCT	CTCCACCACT	CCCTTCACCT	900
	CCCTCTTTGA	TTTTAGAAGC	TATAGACATT	GTTTAAGATA	ACTAAGAATA	CTTGGCTAAG	960
	AAGTATAATT	TGCTAACTAT	TAAGGACTTT	CTTTTTTTAA	TGTTGTACAC	TATTCTTCCT	1020 1080
	ACTCTTTTTT	GGTTTTGGTT CTGGCCTCAA	CAGTCCTCC	CACCTTAGCT	TCTCAAAGTG	TTGAGATCAC	1140
60	AGGCGTGAGC	CACTGCACCC	GGCCCCTACT	CCTTTTTCTA	ATAAGCTGTA	TCTGTAATCA	1200
	CAGCATTCCT	ACAGTTGTTA	CAGTGTGTTT	TTTAAATGAA	AGTAAACATG	GTTACATTTG	1260
		ATAAGCAGTC ATGTGTATTG					1320 1380
		AAGTGAAGAT					1440
65	ACATACTAAT	TTATCATCTG	GCTATTTGGG	AAGGAAGGAC	ACACATGGAT	TTTGCACATT	1500
		TGGCTGGTGT GTGAAATTGG					1560 1620
	GATTGACTGA	AAAGTCACAT	GAAGAGTTGA	TTGTCTTTTA	ATGGTATGTT	TTAAACAGCT	1680
70	GACATTTTAA	ATTTTGATGA	AATCCAGTTT	ATTCGTTTGT	TCTTTTATGC	TTTGGGTGTT	1740
70	GCATCCGAGA	AATCTTTTCC TTTTAAGCTT	CATCCCAAGA	TCACAATTTT	TTTTCCTTTT	TACTTCTAGA	1800 1860
	TTGTTTTTTC	GTTTGTTTCT	TTGTTTTGAG	ATGGAGTCTT	GTTCTGTCAC	CCAGGCTGGG	1920
	GTGCAGTGGC	GTGATCTTGG	CTCACTGCAA	TCTCTATCCC	CTGGGTTCAA	GTGATTCTCT	1980
75	TGTCTCAGCC	TCCCAAGTAG	CTGGGATTAC	AGGCACAGGC	CGCCACGCCT	GGCTAATTTT	2040 2100
15	TGTATTTTA CTCAACTCAC	GTAGAGACAG CCACCTTGGC	CTCCCAAAGT	TTTGGGGATTA	CAAGTGTGGG	CCACCGCGGC	2160
	CAGCCTATGA	TCCATTTTGA	ATGAATTTTT	TATATGGTGC	AAGGTGTCAA	TCCACCTTCA	2220
	CTTTTTCTTG	GGAATATAGA	TATCCAGCTG	TTTCACTACC	ATTTTTTGAA	AGGACTGCCC	2280
80	TTTGCTCTAT	CACCTTTGCA CTGTTTTGTT	TTTTTTTTTAA	AAAGTAGTTG CTTTTTTCTCT	CCTGAATGCC	AATACCATAT	2340 2400
	TTGTATGTAG	TGTATGTAAT	TTTCTAATAA	TTCTTGAAAC	AGATAGTATT	AATGTGTCAT	2460
	ATTTTTGCTG	TTGTTTGTAT	TTTTTGTAGA	GATGGGGTTT	CACCGTGTTG	GCCAGGCTGT	2520
	GTTGAACTCC	TGAGCTAAAG	CAATACACTT	GCCTCGTCCT	CCCCATGTGC	TGGGATTACA	2580 2640
85	TGTTAAGTCC	TTGGTGCTGG TTTGCTTTTG	ATGTGAAATT	TGGGAACAGG	CAGGGTGTGG	TGGCTTATGC	2700
	CTGTAATCCT	AGAACTTTGG	GAGGCCTAGA	TGGGTGGATC	ACTTGAGCTC	AGGAGTTCCA	2760
	GACCAGCCCG	GGCCTATGGC	AAAACTCCGT	CTCTACAAAA	AATAGAAAAA	ATTAGCCAGG	2820

```
TGTGGTGGTG CATGCCTGTA GTCACAGTTA CACGGCAGGC TGAGGTGGGA GGATCACTTG
       AACCCCAGAG GTCAAGACTG CAGTGAGCTG AGATCACACC ACTGTACTCC AGCCTGGGTG
                                                                          2940
       ACAAAGTGAG ACTCTATCTC AAAAAGAAAT TAGGATCAAT TTGTCAATTT CTACAACAAC
                                                                           3000
       AACAACAAAA ACCCCTGTTG GGCACCTTGA TTGAGATTGC ATTGAATTTA TATAAAACTG
                                                                          3060
 5
       TTGGGAGAAT TGACATCTTA ATAATATTGA GTCTTCTGGC CTATAAACAA GGTCTGTCTT
                                                                          3120
       CCTAGGTATT AATGTTTTGT CTTCTATTTC TCTTAATAAT CTTTTGTAGT TTTCAGTGTA
                                                                           3180
       CAGGTCTACC ATGTCAGCAT TTCATAGTTT TGATGCTAAA TGGTATTTTA AAATTTCAAA
                                                                          3240
       TTCTAACCAC TTGTTGCTAG TAAATAGAAA TACAATTGAT GTTGAACTTG TATCCTTCAG
       CCTTGCTAAA CTGTGAGTTC TCATGGTGTT TTTGTAAATT ACATCAACAG TCATGTGTTC
10
       TATGAATAAA GAGTTTTACT CCTTC
       Sea ID NO: 156 Protein sequence:
      Protein Accession #: Eos sequence
15
                                                              51
                                                   41
       MFCEKAMELI RELHRAPEGQ LPAFNEDGLR QVLEEMKALY EQNQSDVNEA KSGGRSDLIP
                                                                            60
       TIKFRHCSLL RNRRCTVAYL YDRLLRIRAL RWEYGSVLPN ALRFHMAAEE MEWFNNYKRS
                                                                            120
       LATYMRSLGG DEGLDITODM KPPKSLYIEA GCSGAISAQP ATSTSQVHLN CNLHLPGPVS
20
       KRIWRT
       Seq ID NO: 157 DNA sequence
      Nucleic Acid Accession #: Eos sequence
       Coding sequence: 148-621
25
                                                    41
                                                               51
                  11
                             21
                                        31
       TTCGGCGCCA AAGCGCGGAG CGGAGGCCGA GGCGAGAGCC TGGCGCTGTA GGACTAGAAC
                                                                             60
       GAAAGGAGTG AGGCGCCGAG AGCCCAGATA CCATTTTGGC GTGAGAGCTG GTGGTTGGCA
                                                                            120
30
       AGGCCGCGGG AGTGGGAAGC GTCCGCCATG TTCTGCGAAA AAGCCATGGA ACTGATCCGC
                                                                            180
       GAGCTGCATC GCGCGCCCGA AGGGCAACTG CCTGCCTTCA ACGAGGATGG ACTCAGACAA
                                                                            240
       GTTCTGGAGG AGATGAAAGC TTTGTATGAA CAAAACCAGT CTGATGTGAA TGAAGCAAAG
       TCAGGTGGAC GAAGTGATTT GATACCAACT ATCAAATTTC GACACTGTTC TCTGTTAAGA
                                                                            360
       AATCGACGCT GCACTGTAGC ATACCTGTAT GACCGCTTGC TTCGGATCAG AGCACTCAGA
                                                                            420
35
       TGGGAATATG GTAGCGTCTT GCCAAATGCA TTACGATTTC ACATGGCTGC TGAAGAAGTC
                                                                            480
       CGGTGTCTAA AAGACTATGG AGAATTTGAA GTTGATGATG GCACTTCAGT CCTATTAAAA
                                                                            540
       AAAAATAGCC AGCACTTTTT ACCTCGATGG AAATGTGAGC AGCTGATCAG ACAAGGAGTC
                                                                            600
       CTGGAGCACA TCCTGTCATG ACCATGCGCC GAGGCACTTC CAGGCTTCAC TCAACTCATG
       GACTCCTCTG TACTCACTCT CTCCACCACT CCCTTCACCT CCCTCTTTGA TTTTAGAAGC
                                                                            720
40
       TATAGACATT GTTTAAGATA ACTAAGAATA CTTGGCTAAG AAGTATAATT TGCTAACTAT
                                                                            780
       TAAGGACTTT CTTTTTTTAA TGTTGTACAC TATTCTTCCT ACTCTTTTTT GGTTTTGGTT
                                                                            840
       TTGTTTTGTA GAGACTGTCT CACTATGTTG CCCAAGCTGG TCTCAAACTC CTGGCCTCAA
                                                                            900
       GCAGTCCTCC CACCTTAGCT TCTCAAAGTG TTGAGATCAC AGGCGTGAGC CACTGCACCC
                                                                            960
       GGCCCCTACT CCTTTTCTA ATAAGCTGTA TCTGTAATCA CAGCATTCCT ACAGTTGTTA
                                                                           1020
45
       CAGTGTGTTT TTTAAATGAA AGTAAACATG GTTACATTTG AATCTCTTAA ATAAGCAGTC
                                                                           1080
       ACTTGGCTGG ACAGGAAGAA GGTAGATCCT GTGTGTCTTG TTTTCTGGTC ATGTGTATTG
                                                                           1140
      TACAAGCTAG AGAGCTGAAT TTCTGAGATA CACATTTCA AATCACATGC AAGTGAAGAT GATGGTCTGT AGAAATTTTC AGTATATATA ATGTTTAATG ACATACTAAT TTATCATCTG
                                                                          1200
                                                                           1260
       GCTATTTGGG AAGGAAGGAC ACACATGGAT TTTGCACATT TCCACCATGG TGGCTGGTGT
                                                                           1320
50
       GGCTTGTGGC TATGGGGTGA TCACCAGTAT CACCACTTTG GAAGGGGACA GTGAAATTGG
       GGCTAGAGAA GGAACTTTGT ACAGTTTTCC CTGAGATTCA GATTGACTGA AAAGTCACAT
                                                                           1440
       GAAGAGTTGA TTGTCTTTTA ATGGTATGTT TTAAACAGCT GACATTTTAA ATTTTGATGA
                                                                          1500
       AATCCAGTTT ATTCGTTTGT TCTTTTATGC TTTGGGTGTT GCATCCGAGA AATCTTTTCC
                                                                           1560
       CATCCCAAGA TCACAATTTT TTTTCCTTTT TACTTCTAGA AGTGTTATAA TTTTAAGCTT
                                                                           1620
55
       1680
       TTGTTTTGAG ATGGAGTCTT GTTCTGTCAC CCAGGCTGGG GTGCAGTGGC GTGATCTTGG
                                                                           1740
       CTCACTGCAA TCTCTATCCC CTGGGTTCAA GTGATTCTCT TGTCTCAGCC TCCCAAGTAG
                                                                           1800
       CTGGGATTAC AGGCACAGGC CGCCACGCCT GGCTAATTTT TGTATTTTTA GTAGAGACAG
                                                                           1860
       AGTTTTACCA TGTTGGCCAG GCTGGTTTCA AACTCCTGAC CTCAAGTGAC CCACCTTGGC
                                                                           1920
60
       CTCCCAAAGT TTTGGGATTA CAAGTGTGGG CCACCGCGGC CAGCCTATGA TCCATTTTGA
                                                                           1980
       ATGAATTTTT TATATGGTGC AAGGTGTCAA TCCACCTTCA CTTTTTCTTG GGAATATAGA
                                                                           2040
       TATCCAGCTG TTTCACTACC ATTTTTTGAA AGGACTGCCC TTTGCTCTAT CACCTTTGCA
                                                                           2100
       TTTTTGTTAA AAAGTAGTTG TCAATGTATA TGTGGGTTTA TTTCAGGACT CTGTTTTGTT
                                                                           2160
       CCATTGACCT GTTTTCTCT CCTGAATGCC AATACCATAT TTGTATGTAG TGTATGTAAT
                                                                           2220
65
       TTTCTAATAA TTCTTGAAAC AGATAGTATT AATGTGTCAT ATTTTTGCTG TTGTTTGTAT
                                                                           2280
       TTTTTGTAGA GATGGGGTTT CACCGTGTTG GCCAGGCTGT GTTGAACTCC TGAGCTAAAG
                                                                           2340
       CAATACACTT GCCTCGTCCT CCCCATGTGC TGGGATTACA GGCGTGAGCC TTGGTGCTGG
                                                                           2400
       CCCAGTGTAC CACATTTCTT TTTGAGATTT GTTTTGGCTA TGTTAAGTCC TTTGCTTTTG
       ATGTGAAATT TGGGAACAGG CAGGGTGTGG TGGCTTATGC CTGTAATCCT AGAACTTTGG
                                                                           2520
70
       GAGGCCTAGA TGGGTGGATC ACTTGAGCTC AGGAGTTCCA GACCAGCCCG GGCCTATGGC
                                                                           2580
       AAAACTCCGT CTCTACAAAA AATAGAAAAA ATTAGCCAGG TGTGGTGGTG CATGCCTGTA
                                                                           2640
       GTCACAGTTA CACGGCAGGC TGAGGTGGGA GGATCACTTG AACCCCAGAG GTCAAGACTG
                                                                           2700
       CAGTGAGCTG AGATCACACC ACTGTACTCC AGCCTGGGTG ACAAAGTGAG ACTCTATCTC
                                                                           2760
       AAAAAGAAAT TAGGATCAAT TTGTCAATTT CTACAACAAC AACAACAAAA ACCCCTGTTG
                                                                           2820
75
       GGCACCTTGA TTGAGATTGC ATTGAATTTA TATAAAACTG TTGGGAGAAT TGACATCTTA
                                                                           2880
       ATAATATTGA GTCTTCTGGC CTATAAACAA GGTCTGTCTT CCTAGGTATT AATGTTTTGT
                                                                           2940
       CTTCTATTTC TCTTAATAAT CTTTTGTAGT TTTCAGTGTA CAGGTCTACC ATGTCAGCAT
                                                                           3000
       TTCATAGTTT TGATGCTAAA TGGTATTTTA AAATTTCAAA TTCTAACCAC TTGTTGCTAG
                                                                           3060
       TAAATAGAAA TACAATTGAT GTTGAACTTG TATCCTTCAG CCTTGCTAAA CTGTGAGTTC
                                                                           3120
80
       TCATGGTGTT TTTGTAAATT ACATCAACAG TCATGTGTTC TATGAATAAA GAGTTTTACT
       CCTTC
       Seq ID NO: 158 Protein sequence:
       Protein Accession #: Eos sequence
85
```

	WO 02/						
	TIKFRHCSLL		${\tt YDRLLRIRAL}$	QVLEEMKALY RWEYGSVLPN VLEHILS			60 120
5	Cog ID NO.	159 DNA sec	nience				
3	Nucleic Aci	id Accession Lence: 149-2	ı#: Eos se	quence			
10	1	11	21	31	41	51	
10	CETCCCCCCC) AAACCCCCCA	 	 AGGCGAGAGC	 CTGGCGCTGT	ACCACTAGAA	60
				ACCATTTTGG			120
	AAGGCCGCGG	GAGTGGGAAG	CGTCCGCCAT	GTTCTGCGAA	AAAGCCATGG	AACTGATCCG	180
15				GCCTGCCTTC			240 300
13				AGGCTGAAGT CGCTATTACA			360
				ATGGACTCAG			420
				TGTTCTCTGT		ACGCTGCACT	480
20	GTAGCATACC	TGTATGACCG	CTTGCTTCGG	ATCAGAGCAC	TCAGATGG		
20		160 Proteir cession #: P		e			
	1	11	21	31	41	51	
25	1	1	1	1]	1	
		AAAAAGCCAT TCAACAATTA		CGCGAGCTGC	ATCGCGCGCC	CGAAGGGCAA	60
	CIGCCIGCCI	ICAACAAIIA	G				
20		161 DNA sec					
30		id Accession Lence: 1333-					
	Couring sequ	rence: 1333	-2250				
	1	11	21	31	41	51 1	
35	GGATCCGGCC	GGATCTCAGG	GAGGTGAGGA	CTTTGTTCTC	AGAGGGTGTG	I TGTGGACAAA	60
50	ACAGGGAGGC	CCTGTGTTCG	ACAGACACAG	TGGTCCCAGG	ATTGGAGAGC	AGTCCAGGTG	120
	AGGAACCTAA	GGGAGGATCG	AGGGTACCTC	CAGGCCAGAG	AAACTCTCAG	ATCAAGAGAG	180 240
				GCCCGGGCAG GGGCTGGCCT			300
40	CACGTCAGCA	GAGGGAGGGT	CCCAGGCCCT	GCCAGGAGTC	CAGGTGCAGA	CTGAGGGGAC	360
				CACCCTGCCC			420 480
				TCTTCAGGTG CAGGCATCAA			540
4.5	CTCACCCCAG	GACACATGGA	CCCCATTGAA	TTTAGACATC	TCTTACTGTA	CTTCCGAGGA	600
45				TGGGGCATGT			660 720
				GCAAGTAGAG CAGAGGGGAC			780
	AGAACTCAAG	AGTGTCCAGC	CCGCCCTCTT	GACAGCACTG	AGGGACCGGG	GCTCTGCCTG	840
50				TCTTCCAGGA			900 960
50	TGAAGGTGAA	GTGTTCACCC	TGAATGTGCA	GAGCAGAGGA CCAAGGGCCC	CACCTGCCCC	AGCACACATG	1020
	GGACCCCATA	GCACCTGGCC	CCATTCCCCC	TACTGTCACT	CATAGAGCCT	TGATCTCTGC	1080
				CTTCCTCCCT AGAGCAGCAC			1140 1200
55				TCAGCTGAAG			1260
	TCCCCAGGCC	TGTGGGTCTC	CATCGCCCAG	CTCCTGCCCA	CGCTCCTGAC	TGCTGCCCTG	1320
	ACCAGAGTCA	TCATGTCTCT	CGAGCAGAGG	AGTCCGCACT GGTGCACAGG	GCAAGCCTGA	TGAAGACCTT	1380 1440
	GAGACTACCT	CCTCCTCTGA	CAGCAAGGAG	GAGGAGGTGT	CTGCTGCTGG	GTCATCAAGT	1500
60				TCCTCCATTT			1560
	AGCCAATTCG	TGGAGTTCAT	CAGCAGTCAA	GAAGAGGAAG GCACTGAAAT	TGAAGGTGGC	TGAGTTGGTT	1620 1680
	CATTTCCTGC	TCCACAAATA	TCGAGTCAAG	GAGCCGGTCA	CAAAGGCAGA	AATGCTGGAG	1740
65				CCTGTGATCT			1800 1860
05	CTTCTCACTG	CTCTTGGCAC	CTCGTGCGAT	GAGGTGGACC AGCATGCTGG	GTGATGGTCA	TAGCATGCCC	1920
	AAGGCCGCCC	TCCTGATCAT	TGTCCTGGGT	GTGATCCTAA	CCAAAGACAA	CTGCGCCCCT	1980
						GGAGCACATG	2040 2100
70	TACCGGCAGG	TGCCCGGCAG	TGATCCTGCG	CACTACGAGT	TCCTGTGGGG	CTACCTGGAG TTCCAAGGCC	2160
, ,				AATTATTTGG			2220
						GGGAGTCTGA	2280
						CAGCTGCCCT TCAGTGTTCT	2340 2400
75	CAGTGGCAGT	GGGTGGAAGT	GAGCACACTG	TATGTCATCT	CTGGGTTCCT	TGTCTATTGG	2460
	GTGATTTGGA	GATTTATCCT	TGCTCCCTTT	TGGAATTGTT	CAAATGTTCT	TTTAATGGTC	2520 2580
	AGTTTAATGA ATGTTATTTA	GGAGTAAGAT	TCTTGCTTTT	GAGTCACATG	GGGAAATCCC	ATTGCTGTTT TGTTATTTTG	2640
00	TGAATTGGGA	CAAGATAACA	TAGCAGAGGA	ATTAATAATT	TTTTTGAAAC	TTGAACTTAG	2700
80				AAATGAAAAT			2760 2820
	TCTTTGAGCA	TGTAAGAGAA	ATAAAAATTG	ATATACATGT AAAGAATAAT	TTTTCCTGTT	CACTGGCTCA	
				TTATTCGGAA			
85							
0.5	Seq ID NO:	162 Protei	n sequence:				

Seq ID NO: 162 Protein sequence: Protein Accession #: AAA68877.1

```
MSLEORSPHC KPDEDLEAQG EDLGLMGAQE PTGEEEETTS SSDSKEEEVS AAGSSSPPQS
                                                                           60
 5
       POGGASSSIS VYYTLWSQFD EGSSSQEEEE PSSSVDPAQL EFMFQEALKL KVAELVHFLL
                                                                          120
       HKYRVKEPVT KAEMLESVIK NYKRYFPVIF GKASEFMOVI FGTDVKEVDP AGHSYILVTA
                                                                          180
       LGLSCDSMLG DGHSMPKAAL LIIVLGVILT KDNCAPEEVI WEALSVMGVY VGKEHMFYGE
       PRKLLTQDWV QENYLEYRQV PGSDPAHYEF LWGSKAHAET SYEKVINYLV MLNAREPICY
                                                                          300
10
       Seg ID NO: 163 DNA seguence
       Nucleic Acid Accession #: AF292100
       Coding sequence: 30-809
15
                                                             51
                                       31
                                                  41
       GGGGGGGGAG AGGCCTGGAG GACACCAACA TGAACAAGTT GAAATCATCG CAGAAGGATA
                                                                           60
       AAGTTCGTCA GTTTATGATC TTCACACAAT CTAGTGAAAA AACAGCAGTA AGTTGTCTTT
                                                                          120
       CTCAAAATGA CTGGAAGTTA GATGTTGCAA CAGATAATTT TTTCCAAAAT CCTGAACTTT
20
       ATATACGAGA GAGTGTAAAA GGATCATTGG ACAGGAAGAA GTTAGAACAG CTGTACAATA
       GATACAAAGA CCCTCAAGAT GAGAATAAAA TTGGAATAGA TGGCATACAG CAGTTCTGTG
                                                                          300
       ATGACCTGGC ACTCGATCCA GCCAGCATTA GTGTGTTGAT TATTGCGTGG AAGTTCAGAG
                                                                          360
       CAGCAACACA GTGCGAGTTC TCCAAACAGG AGTTCATGGA TGGCATGACA GAATTAGGAT
                                                                          420
       GTGACAGCAT AGAACAACTA AAGGCCCAGA TACCCAAGAT GGAACAAGAA TTGAAAGAAC
                                                                          480
25
       CAGGACGATT TAAGGATTTT TACCAGTTTA CTTTTAATTT TGCAAAGAAT CCAGGACAAA
                                                                          540
       AAGGATTAGA TCTAGAAATG GCCATTGCCT ACTGGAACTT AGTGCTTAAT GGAAGATTTA
                                                                          600
       AATTCTTAGA CTTATGGAAT AAATTTTTGT TGGAACATCA TAAACGATCA ATACCAAAAG
                                                                          660
       ACACTTGGAA TCTTCTTTA GACTTCAGTA CGATGATTGC AGATGACATG TCTAATTATG
                                                                          720
       ATGAGAGG AGCATGGCCT GTTCTTATTG ATGACTTTGT GGAATTTGCA CGCCCTCAAA
                                                                          780
30
       TTGCTGGGAC AAAAAGTACA ACAGTGTAGC ACTAAAGGAA CCTTTTAGAA TGTACATAGT
                                                                          840
       900
       AGATCAATCC TCACAATTCA GACTGAGGGT TGAGACAAAA CTTTAAGGAT ACATCTTGGA
       CCATATCGTA TTTCATTCTT CTAATGGTGG TTTGGGCTTG TCTTCTAGTC TGGGCCGCTC
                                                                         1020
       TAAACATTTA TAATTCCAAC ATTGTGGATT TCATCTTATA TCTGTGGACC ATCCTAGTTT
                                                                         1080
35
       ATTCTCCCAT AAGTCTTAGA AGCTTTATGG TGATTATTTT GAGGTTTTCA TTCTCGCATA
                                                                         1140
       AAGCACAATG CTGTCTTCAT CAGAAAACAG TTGGCATAAG AATTAAACAT ATGAACATCA
                                                                         1200
       CAAAACAATT TATAAAAACT TCTTAAATAT ACGCTTTGGG CTAGTTGCAA AGACTATGCT
                                                                         1260
       AATAGCACTT CCAGTGAGAG TGATATATTT AAGTGTACTG GATCTGGAAT GGTGTTTTGG
       TTTGGGGGGA ATTTTTTTT TTTCCTGGCA AATCACATAT GTTGTTGATG TGAGTATCTG
                                                                         1380
40
       ATGAAAAAC AATGTCAGAA TAACCGACAT GAAAATTTTT TAGGATAACT TGGTGCCTAC
                                                                         1440
       CTGAAAAATG TATTGTGTTT TAGACTCTTG ATTTCAAAAG GTTCCACAGA ACTAGTCTGC
                                                                         1500
       GCTTACCTTA CCCATGTTTA TATATAGCTG TCCTACAGGG AGCTTTTATT TAGAAAATGT
                                                                         1560
       CTGCATAATG TTAGATTCTT CTCCTGTCTA CATTATGCAC TACATAATTG GACTTCATTA
                                                                         1620
       TGCTTTTGAA ATGCTTATCT GCCTGTCACA TAAGTTAAAC TATTTAATTT GTTTTGAATG
                                                                         1680
45
       TTTTGGATTG CTACACAATA CAATATTCTA AATTTAGGCA TGAGGGTTTT TTTGTTTTAT
                                                                         1740
       TTTTACTTTT TTTTTGTCAT TGCACTATGG AACACAAATG AAATTCTCTT AATTTATAAG
                                                                         1800
       AAGATAGTAG GAGTTAAATT TTGAAAATGG TTGTGATGAG CCACGAAATT CAATCTTTAT
                                                                         1860
       AATATAGGTA CTGCTCTTTC AGACAAACAG TCCATTTTTA ATGACTTCTT ATTTTGTTGA
                                                                         1920
       AATTACTTTA ACTGCTAATC ACTGTGGTTG CCAAATATTT ACTTCAGAAG CAAAGATTTT
                                                                         1980
50
       CAAACAAGCA TACACGATGC AAAATACCAG TCTGGCTTCT AGTCTATTTA CTGTTTTGTT
                                                                         2040
       TCACTCAGAT TAGCTCAGTT TTCTCATCAA AGCAGAATGC TATCTTGCGT GTGTGTGTGT
                                                                         2100
       2160
       TTTTTTTTT TTTTTTTAA ATTACAAAAG CCATGAGCTG CTTTTATGCT GAAAATGGTC
                                                                         2220
       ATTTCCCTGT TCACTTACTG ACATGTGAAG AAGGGTTTCT TGCTTTCTTA AACATTTCCG
                                                                         2280
55
       TAAGGCAGGC TAGAAATGTA ATACTTCAAA TGTTTGATGA TTATGGTCTT TTGATAGGAA
                                                                         2340
       TAGATTCTGC TTGGGATATA TATCCAGGCA CTCTCTAAGG TCTAGGGTTG ATATTAACAA
                                                                         2400
       AGGAATGTAC TTAGAATAGC AGTACATTTT ATGCAAATAT GGAAATTATT TTAAGAAACA
                                                                         2460
       ATGACATATC AAAACTGCTT TTTACATGAT TTTGAAATAG ACTAGAAAGC TTTCCCTATA
                                                                         2520
       GACATATTAA TATTCCAATC ATAACTTTAA TTCAAGAATG CAGTTTTACC AAAAGAAAAA
                                                                         2580
60
       TTTGAAAATT TCTATTCAGG CTACTGGAAT TGGTTATTAA AAGAAAAAGG AAAAAGAAGA
                                                                         2640
       ATCTTGCTGC TTTCAGTATT TCCTGATTTT TTTGTAAATA TAAAGAGGAA CTTCAATTAT
                                                                         2700
       GAAAAATTTT TAAAAGATAT ATATATCTAT ATATCTATAT ATATGTACTG TTTTGTTTCC
                                                                         2760
       TGTCTTGAAG ATTTTGAGTT ATGGTTATTG GTTTCAGATT GATTAATTCA CATATGCTGT
                                                                         2820
       GTTTTCTTTA AAAGTCATAT GGGTTCGTGG CCTAATGCCT TGGATTTTAC ATATTTTTCT
                                                                         2880
65
       TTTTAAATGC AAAACCTTTT CAACAAAATA GTGTTTGTCA TCAGGTTGGT ACTAAACATT
                                                                         2940
       TATAATTACT GTGTAATTAT AAACAAAAAT ACATAAAGCT TTGAATATAA TTATGTAGCA
                                                                         3000
       TAAAAGTTAA GGTTGTTCAC TATGATGGCA TCTTAGAATT AAACAAAACT TTTACTAGGG
                                                                         3060
       CTGAAAAGAG AAGACTGATT TAATGTGGTG TGATTATTCT GAAGATAAAT GTCTGGCTAC
       AGGGAATATT TTGTACTAAA AAATGATTAC ACATATGGCT GTGTGTGTT GAGTCTGTGT
                                                                         3180
70
       CTGTGAGAGA GCCAGAGAGA GTGAGAGAGA TTGACAGAGA AAGGGAGAGA CACACACAC
                                                                         3240
       CCCCTTGAAT TGCTTTAACT CCTAAGTGTT TCAGTCCTCA TTCCGGTAAA CTCCCCATGC
                                                                         3300
       TGATTCTTTG TTTTAAACTG AACCATAGGT ACAGTTTCCT TTTTGCCAAA TGTCAAAACA
                                                                         3360
       GGTACAAATT TTAAAATGTA ATGCTTTTTA AATAGAAAAA TGTATAAAAT TAGAAGTGCC
                                                                         3420
       CACATATAAA AAATACTTGA GATGAAGATT ATCTTTAGTG AATATCATCT GCATATCTCT
75
       GTAAGTTCAA TTGTGTTTCT TACAGTCCCT GTCATATTAC CAACAGAGGC AATAAAAGCT
                                                                         3540
       GCAGTGAAAT TG
       Seg ID NO: 164 Protein seguence:
       Protein Accession #: AAG00606
80
                                                   41
                                                             51
       MNKLKSSQKD KVRQFMIFTQ SSEKTAVSCL SQNDWKLDVA TDNFFQNPEL YIRESVKGSL
                                                                           60
       DRKKLEQLYN RYKDPQDENK IGIDGIQQFC DDLALDPASI SVLIIAWKFR AATQCEFSKQ
                                                                          120
85
       EFMDGMTELG CDSIEOLKAQ IPKMEQELKE PGRFKDFYQF TFNFAKNPGQ KGLDLEMAIA
                                                                          180
       YWNLVLNGRF KFLDLWNKFL LEHHKRSIPK DTWNLLLDFS TMIADDMSNY DEEGAWPVLI
       DDFVEFARPQ IAGTKSTTV
```

Seq ID NO: 165 DNA sequence Nucleic Acid Accession #: AF256215 Coding sequence: 220-2028

		ience: 220-2		.5			
5	courses cour						
	1	11	21	31	41	51	
						 	60
	CTCCAGTCCG	CATGCTCAGT TGCGGTGGCG	GCCGCCGCGG	CACCCGGCAG	GGCCCGCCAG	TCCCCCGCTTC	120
10		AGCCGCCGCC					180
	CAGCCGCCGG	GCTGCGGAGC	CGACCAAGTG	GCTCCTGCGA	$\mathtt{TGGCGGCGGA}$	AGAGGAGGCT	240
		GTAAAGTGTT					300
		CAGGGACAAG					360
15		AACGCAAAGG TGAAGGCCTT					420 480
10	AAAATGAATA	ACCTGATTGA	AGAACTGTCT	GCAATGATCC	CTCAGTGCAA	CCCCATGGCG	540
	CGTAAACTGG	ACAAACTTAC	AGTTTTAAGA	ATGGCTGTTC	AACACTTGAG	ATCTTTAAAA	600
		ATTCTTATGT					660
20	CTCAGACATT	TAATCCTTAA	GACTGCAGAA	GGCTTCTTAT	TTGTGGTTGG	ATGTGAAAGA	720 780
20		TCTTCGTTTC AAAGCTTATT					840
		CTTTTGATAT					900
	CAAGTTCACA	GTAATCTCCA	CGCTGGAAGG	ACACGTGTGT	ATTCTGGCTC	AAGACGATCT	960
25	TTTTTCTGTC	GGATAAAGAG	TTGTAAAATC	TCTGTCAAAG	AAGAGCATGG	ATGCTTACCC	1020
25		AGAAAGAGCA					1080 1140
	AGCTGGCCTC	CAAATATTGT GCCTTGTGGC	CATTGGAAGA	TTACAGCCAT	ACAGIAAGAA	ACAGAACAGT	1200
	GGAGAGATTA	ATGTGAAACC	AACTGAATTT	ATAACCCGGT	TTGCAGTGAA	TGGAAAATTT	1260
••	GTCTATGTAG	ATCAAAGGGC	AACAGCGATT	TTAGGATATC	TGCCTCAGGA	ACTTTTGGGA	1320
30		ATGAATATTT					1380
		AGAGTAAGGA					1440
	GGCTCTTTTG	TAACTTTAAA TTGTATCTGT	CAACACTTTA	CTTTTTTCCCAC	ATACTGAGCC	TGGAGAAGCA	1500 1560
		CTTGTAGCTC					1620
35	GTACCTGGAA	TGTCTACTGG	AACAGTACTT	GGTGCTGGTA	GTATTGGAAC	AGATATTGCA	1680
		$\mathtt{TGGATTTACA}$					1740
		TGAAAGATAC					1800 1860
		GTCCTTCTGA ACAGCCATGA					1920
40		ATGATGACAC					1980
	GGCCTGGGAG	ACCCTGGGGA	CTTCAGTGAC	ATCCAGTGGA	CCCTCTAGCC	TTTGATTTTT	2040
		ATGAGAAACA					2100
		TATTGATATT					2160 2220
45	TTGCATCTTC	CTGTCACAGG TCCTTTATTC	AGTGAAATGG	CTTATAATCC	ACTAGTTGCC	ATATTTTTGC	2280
-1-5	TAAAATATTT	CTAACCAAGA	ATACTACTTA	CATATTGTTT	TGGCTTTGTT	TTATTTTTGA	2340
	TGCAGTTTTT	TTTAGTTGAG	GTAATGTAAT	ATATTGATGT	TTTCCTTTGT	GTCTAAGATT	2400
		AGTAGGTTTG					2460
50		GGGCTTACAC ATAGTCATAA					2520 2580
50	AGCACAGAGC	TGGGATATTT	ATGCTCAGTT	GAGCACTTTA	AGATGAATTT	TAAGTGAGAT	2640
		TTAAAACTCA					2700
	GGATCTTGGG	CCCTAGATCT	$\mathtt{TGGGGATTAA}$	CCTCTGCATA	TAAGATTTAC	TCTTAATAGG	2760
55		TGCTCACGCC					2820 2880
55		GGAGTTCAAG AAATTACCCA					2940
		TTCATGAGCG					3000
		AGGCTGAGGC					3060
C O		CACCACTGCA					3120
60		AAGATTTAAT					3180 3240
		AACATACTTA CTTGTGTAAA					3300
	TTTAAATGTT	TAATGTATAT	AAACCAGTTT	CTTTATACAC	ATTTGGGAAA	ACATTGGTCT	3360
c =	CACAGATTAA	ATGATTAACT	AACTGACCCA	GGAACTAGTT	GTAGCTTTCT	AAGTAATTAG	
65						TACATGTTTA	
						TTTAAAATTT AAGAATTAAG	
						ACTTTCTGCT	
						TGCCTCGCAA	
70						GTGGGCTTCA	
						TCAGAGCCCC	
						AGGTGATAGA CCAAAGCAAA	
						GGCACACTGT	
<i>7</i> 5	CCTCTTGAAC	TGATAGTGTC	CCAGCAATGT	TGGAGGTTGG	CACCATTCCT	GGTCCGACAC	4080
	TTGAGGACCT	GAGAGACATC	AGGTTTAGAA	TGAGCCAAAG	AAATCCTACA	AGATGGGGAG	4140
	AATTGGTGTG	CAGCAGCCTA	AGTGTTATAG	TTAAGTCTAA	AGAAGTATGA	AAGATCCCCT	4200
	GTGTTCTCTA	AATTGAGCAG	AGGGGCCTGC	TCTGCCTAAG	CACTITITAG	GGGACTGAAC CAGGGTAGGC	4260
80	CATCATAGCT	GGATGGCCTC	AAAAGCAGAT	GGGGGCAGAC	TTGCCCTCGT	GATGCCAGGA	4380
	TTTGAGAGGC	AGAGTTTCTA	GAGGGAGACC	AGTGCTGCCT	CTCACAGTGG	CAGTTTTTTC	4440
	TCTTTGCAAG	AGGAGGGGCT	GTTCAATTCC	ATAGACCAGT	GGGCAGATAG	CCAGTTGAAT	4500
	ACTCTGTGCA	TGGTTTGATC	CTTTATTAGT	TCGCTCTAAT	ATTTTTCTGT	AGATCCTTTT	4560
85						TAAGGTTTGT TTAGAAGTGA	
50	CATATTTTTA	TGGTATACAC	TATGTTCCTT	TTTTCTACTG	CGAGTCAATT	TTTTGAATTT	4740
	TCGTGAGAAA	GAATATATCT	ACAAATTGCA	CGAAAGTATC	ATAAAAACAG	TACTCTAGAG	4800

```
CAGCGCTGTC CAATAGAAAT ATAATCTGAG CCACATGTAT AATTTTATTT TCTTCTAGCC
                                                                            4860
                                                                            4920
       ACATTAAAGA AGTAAAAAGA TACAAGTAGA ACTAATTTTA ATGTTTTAAT TCAGTATATC
       CAAAATATCA TTTGAACATG TAATTAATAT AAAATTATTA ATGTGATATT TTACATTCTT
                                                                            4980
       TTGGTAATAC TAGTCTTCAA AATCTGGTAT GTATCTTACA TTGATAGCAC ATCTCACTTT
                                                                            5040
 5
       GTACTAGCCA CATTGCAAGT GCTCAGTAGC CACATGTGGC TAGTGGCTAC TGCACTGGAC
                                                                            5100
       AGCACAGTTC TAGGTTCCAC CCTAACACCC AAGTCCTGTG GATTAGAATC CCAGAATCAG
                                                                            5160
       AGCTGGAAGT AAACATAGAG ATCAAACCTC CTTTTAAAAA TGAGGACGCT GAGGCACAGA
       GTTTAAATGG CTTGCATGAG GTCATACAGC TAAATTCAGC CTCAACAGGG TCTTCTGATT
                                                                            5280
       CCAGGCACTC TTCCCACTCC ACTACATTAC TGTAGTGGTA ATTCTTAGGG TTAAAAAAAG
                                                                            5340
10
       TGTAGAGTAG GCCGGGCGCA GTGGCTCATG CCTGTAATCC CAGCACTTTG GGAGGCCGAA
                                                                            5400
       GTGGGCGGAT CACGAGGTCA GGAGATCGAG ACCATCCTGG CCAACATGGT GAAACCCCGT
                                                                            5460
       CTCTACTGAA AATACAAAGC AAAATTAGCC AGGTGTGGTG GCGGGCGCCT GTGGTCCCAG
                                                                            5520
       CTGCTCTGGA GGCTGAGGCA GAATGGCGTG AACCCAGGAG GCAGAGATGG CAGTGAGCCA
       AGATCGCGCC ACTGCACCCC AGCCTGGGCG ACAGAGCGAG ACTCCATCTC AAAAAAAAA
                                                                            5640
15
       AAAAAAAAA AAGAAAAGAA AAGAAAAGTC TAGAGAACAT TATATTAAGT GGTTATTATT
                                                                            5700
       GAAGTAGACC AAAGTTTATA CCATAAGGAT ATTTTTCCTT AAATACCATG TTTGAAGAAC
                                                                            5760
       AATTATTTAT TGATCCTTGA ATCTGTAAGA TCAAATAACA AGTCTCTATC CATGTTACCA
                                                                            5820
       AATTTAACCT TTTGAAAATA ATAAACTTTA AAATATCAGA TGTGTTATTA CAGGATGATA
                                                                            5880
       CTTGGAATCA AGTGAAATGA GTTATATGGT CATCACTAAA TTTAGAAATC TATTGTGAAA
20
       CAAAGACAAA CAGGAAAGTA CAGAATAGAG ACTTTTAGTA AATAAATGGA ATTTAAAAGA
                                                                            6000
       AAGTGTTTAT TTACAGTGTC ACGACAGAAA AGGATGTCTT TGTTGTCATA GTCTTTGAGG
                                                                            6060
       GATCTCCGTA AAATCTGGGG CACAGGTACA AGAAATAGCC AATATTTAGT TCCCAGACCA
                                                                            6120
       TGTTTAGTAG TGTCCAGTTT CAGATCATGC TGCCAAGAGG TATCTCCCCC TCAGGTGGGT
                                                                            6180
       CATCACTGAG CCCTGGAATT GGAGACTCAT ACTTGCCCAG CACAATGTTA CGGGCAGACA
                                                                            6240
25
       GGCCGACATC TATGATTAGC TAGAAGCCAT AAAGAAAAGC TGCTAAGTGG CCACTAGGTG
                                                                            6300
       CCACTTTTCT GTTTTTGTAA TGCTTTCATT AGCAGATCTT TTTTTTCCAA GCTCCATGGG
                                                                            6360
       GCCTATGAGA GGCATTTATG ATTTTTGTGC CTACAATAAG TCAGCCTGTC TGGTGTGAGT
                                                                            6420
       TGTTTTATGA GAAATGCTTT CCAAGGGAGG TCTAGGAAGA TCCTGACACA TAAGAACTTT
                                                                            6480
       GGCTTAGAGA GCTTTCCAGG TGTAGTGCCA ATAAAAACTG ACCTGGAAAG AAAACCTGCC
                                                                            6540
30
       CAGCACGGAA CATGCTTTCT GAACTCACTT GAGAGTGTAT GGTGTATGTC ACTTCTCATA
                                                                            6600
       TATTCTTGAG TTTAGATTTG TCTTTTATAC AATTTTTAGC TCTTTTCCAG TTCACTTGTG
                                                                            6720
       CTCGTCTGTA TATTGGTATT TTTAAATTTT TGTGGTAAAT AATGAAAAGA GTGAAATTAT
                                                                            6780
       ATTTTATAAT TACTCATTTG TAGTTTTTTT TTTTAATTTA ATAAACTTCC TCCAAAAAGT
       GCTCCCTTAA AA
35
       Sea ID NO: 166 Protein sequence:
       Protein Accession #: AAG34652
40
                                         31
                                                     41
                                                                51
       MAAEEEAAAG GKVLREENOC JAPVVSSRVS PGTRPTAMGS FSSHMTEFPR KRKGSDSDPS
       OVEDGEHOVK MKAFREAHSO TEKRRRDKMN NLIEELSAMI PQCNPMARKL DKLTVLRMAV
                                                                              120
       QHLRSLKGLT NSYVGSNYRP SFLQDNELRH LILKTAEGFL FVVGCERGKI LFVSKSVSKI
                                                                              180
45
       LNYDQASLTG QSLFDFLHPK DVAKVKEQLS SFDISPREKL IDAKTGLQVH SNLHAGRTRV
                                                                              240
       YSGSRRSFFC RIKSCKISVK EEHGCLPNSK KKEHRKFYTI HCTGYLRSWP PNIVGMEEER
                                                                              300
       NSKKDNSNFT CLVAIGRLQP YIVPQNSGEI NVKPTEFITR FAVNGKFVYV DQRATAILGY
                                                                              360
       LPQELLGTSC YEYFHQDDHN NLTDKHKAVL QSKEKILTDS YKFRAKDGSF VTLKSQWFSF
                                                                              420
       TNPWTKELEY IVSVNTLVLG HSEPGEASFL PCSSQSSEES SRQSCMSVPG MSTGTVLGAG
50
       SIGTDIANEI LDLORLOSSS YLDDSSPTGL MKDTHTVNCR SMSNKELFPP SPSEMGELEA
                                                                              540
       TRQNQSTVAV HSHEPLLSDG AQLDFDALCD NDDTAMAAFM NYLEAEGGLG DPGDFSDIQW
                                                                              600
       Seg ID NO: 167 DNA seguence
55
       Nucleic Acid Accession #: NM_014400
       Coding sequence: 86-1126
                                         31
                                                     41
                                                                51
                              21
60
       GGTTACTCAT CCTGGGCTCA GGTAAGAGGG CCCGAGCTCG GAGGCGGCAC ACCCAGGGGG
       GACGCCAAGG GAGCAGGACG GAGCCATGGA CCCCGCCAGG AAAGCAGGTG CCCAGGCCAT
       GATCTGGACT GCAGGCTGGC TGCTGCTGCT GCTGCTTCGC GGAGGAGCGC AGGCCCTGGA
                                                                              180
       GTGCTACAGC TGCGTGCAGA AAGCAGATGA CGGATGCTCC CCGAACAAGA TGAAGACAGT
                                                                              240
       GAAGTGCGCG CCGGGCGTGG ACGTCTGCAC CGAGGCCGTG GGGGCGGTGG AGACCATCCA
                                                                              300
65
       CGGACAATTC TCGCTGGCAG TGCSGGGTTG CGGTTCGGGA CTCCCCGGCA AGAATGACCG
                                                                              360
       CGGCCTGGAT CTTCACGGGC TTCTGGCGTT CATCCAGCTG CAGCAATGCG CTCAGGATCG
CTGCAACGCC AAGCTCAACC TCACCTCGCG GGCGCTCGAC CCGGCAGGTA ATGAGAGTGC
                                                                              420
       ATACCCGCCC AACGGCGTGG AGTGCTACAG CTGTGTGGGC CTGAGCCGGG AGGCGTGCCA
                                                                              540
       GGGTACATCG CCGCCGGTCG TGAGCTGCTA CAACGCCAGC GATCATGTCT ACAAGGGCTG
                                                                              600
70
       CTTCGACGGC AACGTCACCT TGACGGCAGC TAATGTGACT GTGTCCTTGC CTGTCCGGGG
                                                                              660
       CTGTGTCCAG GATGAATTCT GCACTCGGGA TGGAGTAACA GGCCCAGGGT TCACGCTCAG
                                                                              720
       TEGETTETT TECCAGGEST CCCCCTGTAA CTCTGACCTC CGCAACAAGA CCTACTTCTC
                                                                              780
       CCCTCGAATC CCACCCTTG TCCGGCTGCC CCCTCCAGAG CCCACGACTG TGGCCTCAAC
       CACATCTGTC ACCACTTCTA CCTCGGCCCC AGTGAGACCC ACATCCACCA CCAAACCCAT
                                                                              900
75
       GCCAGCGCCA ACCAGTCAGA CTCCGAGACA GGGAGTAGAA CACGAGGCCT CCCGGGATGA
                                                                              960
       GGAGCCCAGG TTGACTGGAG GCGCCGCTGG CCACCAGGAC CGCAGCAATT CAGGGCAGTA
                                                                            1020
       TCCTGCAAAA GGGGGGCCCC AGCAGCCCCA TAATAAAGGC TGTGTGGCTC CCACAGCTGG
                                                                            1080
       ATTGGCAGCC CTTCTGTTGG CCGTGGCTGC TGGTGTCCTA CTGTGAGCTT CTCCACCTGG
                                                                             1140
       AAATTTCCCT CTCACCTACT TCTCTGGCCC TGGGTACCCC TCTTCTCATC ACTTCCTGTT
                                                                             1200
80
       CCCACCACTG GACTGGGCTG GCCCAGCCCC TGTTTTTCCA ACATTCCCCA GTATCCCCAG
                                                                            1260
       CTTCTGCTGC GCTGGTTTGC GGCTTTGGGA AATAAAATAC CGTTGTATAT ATTCTGGCAG
                                                                            1320
       GGGTGTTCTA GCTTTTTGAG GACAGCTCCT GTATCCTTCT CATCCTTGTC TCTCCGCTTG
                                                                            1380
       TCCTCTTGTG ATGTTAGGAC AGAGTGAGAG AAGTCAGCTG TCACGGGGAA GGTGAGAGAG
AGGATGCTAA GCTTCCTACT CACTTTCTCC TAGCCAGCCT GGACTTTGGA GCGTGGGGTG
                                                                            1440
                                                                            1500
85
       GGTGGGACAA TGGCTCCCCA CTCTAAGCAC TGCCTCCCCT ACTCCCCGCA TCTTTGGGGA
                                                                             1560
       ATCGGTTCCC CATATGTCTT CCTTACTAGA CTGTGAGCTC CTCGAGGGCA GGGACCGTGC
                                                                             1620
       CTTATGTCTG TGTGTGATCA GTTTCTGGCA CATAAATGCC TCAATAAAGA TTTAATTACT
                                                                             1680
```

Seq ID NO: 168 Protein sequence: Protein Accession #: NP_055215 5 21 11 31. 41 51 MDPARKAGAQ AMIWTAGWLL LLLLRGGAQA LECYSCVQKA DDGCSPNKMK TVKCAPGVDV 60 CTEAVGAVET IHGQFSLAVX GCGSGLPGKN DRGLDLHGLL AFIQLQQCAQ DRCNAKLNLT 120 10 SRALDPAGNE SAYPPNGVEC YSCVGLSREA CQGTSPPVVS CYNASDHVYK GCFDGNVTLT 180 AANVTVSLPV RGCVQDEFCT RDGVTGPGFT LSGSCCQGSR CNSDLRNKTY FSPRIPPLVR 240 LPPPEPTTVA STTSVTTSTS APVRPTSTTK PMPAPTSQTP RQGVEHEASR DEEPRLTGGA 300 AGHODRSNSG OYPAKGGPOO PHNKGCVAPT AGLAALLLAV AAGVLL 15 Seq ID NO: 169 DNA sequence Nucleic Acid Accession #: NM_006875 Coding sequence: 186~1190 41 31 20 GAATTCGGCA CGAGCGCGCG GCGAATCTCA ACGCTGCGCC GTCTGCGGGC GCTTCCGGGC 60 120 CCCGGGCGTC CACGCCCTGC GGGCTTAGCG GGTTCAGTGG GCTCAATCTG CGCAGCGCCA 180 CCTCCATGTT GACCAAGCCT CTACAGGGGC CTCCCGCGCC CCCCGGGACC CCCACGCCGC 240 25 CGCCAGGAGG CAAGGATCGG GAAGCGTTCG AGGCCGAGTA TCGACTCGGC CCCCTCCTGG 300 GTAAGGGGGG CTTTGGCACC GTCTTCGCAG GACACCGCCT CACAGATCGA CTCCAGGTGG CCATCAAAGT GATTCCCCGG AATCGTGTGC TGGGCTGGTC CCCCTTGTCA GACTCAGTCA 420 CATGCCCACT CGAAGTCGCA CTGCTATGGA AAGTGGGTGC AGGTGGTGGG CACCCTGGCG 480 TGATCCGCCT GCTTGACTGG TTTGAGACAC AGGAAGGCTT CATGCTGGTC CTCGAGCGGC 540 CTTTGCCCGC CCAGGATCTC TTTGACTATA TCACAGAGAA GGGCCCACTG GGTGAAGGCC CAAGCCGCTG CTTCTTTGGC CAAGTAGTGG CAGCCATCCA GCACTGCCAT TCCCGTGGAG 30 600 660 TTGTCCATCG TGACATCAAG GATGAGAACA TCCTGATAGA CCTACGCCGT GGCTGTGCCA 720 AACTCATTGA TTTTGGTTCT GGTGCCCTGC TTCATGATGA ACCCTACACT GACTTTGATG 780 GGACAAGGGT GTACAGCCCC CCAGAGTGGA TCTCTCGACA CCAGTACCAT GCACTCCCGG 840 35 CCACTGTCTG GTCACTGGGC ATCCTCCTCT ATGACATGGT GTGTGGGGAC ATTCCCTTTG 900 AGAGGGACCA GGAGATTCTG GAAGCTGAGC TCCACTTCCC AGCCCATGTC TCCCCAGACT 960 GCTGTGCCCT AATCCGCCGG TGCCTGGCCC CCAAACCTTC TTCCCGACCC TCACTGGAAG 1020 AGATCCTGCT GGACCCCTGG ATGCAAACAC CAGCCGAGGA TGTTACCCCT CAACCCCTCC 1080 1140 40 TGGCCCCCAA TGGTCAGAAG AGCCATCCCA TGGCCATGTC ACAGGGATAG ATGGACATTT 1200 GTTGACTTGG TTTTACAGGT CATTACCAGT CATTAAAGTC CAGTATTACT AAGGTAAGGG 1260 ATTGAGGATC AGGGGTTAGA AGACATAAAC CAAGTTTGCC CAGTTCCCTT CCCAATCCTA 1320 CAAAGGAGCC TTCCTCCCAG AACCTGTGGT CCCTGATTTT GGAGGGGGAA CTTCTTGCTT 1380 CTCATTTTGC TAAGGAAGTT TATTTTGGTG AAGTTGTTCC CATTTTGAGC CCCGGGACTC 1440 45 TTATTTTGAT GATGTGTCAC CCCACATTGG CACCTCCTAC TACCACCACA CAAACTTAGT 1500 TCATATGCTT TTACTTGGGC AAGGGTGCTT TCCTTCCAAT ACCCCAGTAG CTTTTATTTT 1560 AGTAAAGGGA CCCTTTCCCC TAGCCTAGGG TCCCATATTG GGTCAAGCTG CTTACCTGCC 1620 TCAGCCCAGG ATTTTTATT TTGGGGGAGG TAATGCCCTG TTGTTACCCC AAGGCTTCTT 1680 TTTTTTTTT TTTTTTTG GGTGAGGGGA CCCTACTTTG TTATCCCAAG TGCTCTTATT 1740 50 CTGGTGAGAA GAACCTTAAT TCCATAATTT GGGAAGGAAT GGAAGATGGA CACCACCGGA 1800 CACCACCAGA CAATAGGATG GGATGGATGG TTTTTTGGGG GATGGGCTAG GGGAAATAAG 1860 GCTTGCTGTT TGTTTTCCTG GGGCGCTCCC TCCAATTTTG CAGATTTTTG CAACCTCCTC 1920 CTGAGCCGGG ATTGTCCAAT TACTAAAATG TAAATAATCA CGTATTGTGG GGAGGGGAGT 1980 TCCAAGTGTG CCCTCCTTTT TTTTCCTGCC TGGATTATTT AAAAAGCCAT GTGTGGAAAC 2040 55 CCACTATTTA ATAAAAGTAA TAGAATCAGA AAAAAAAAA AAAAAAAA Seq ID NO: 170 Protein sequence: Protein Accession #: NP_006866 60 41 31 51 21 MLTKPLQGPP APPGTPTPPP GGKDREAFEA EYRLGPLLGK GGFGTVFAGH RLTDRLQVAI 60 KVIPRNRVLG WSPLSDSVTC PLEVALLWKV GAGGGHPGVI RLLDWFETQE GFMLVLERPL 120 65 PAQDLFDYIT EKGPLGEGPS RCFFGQVVAA IQHCHSRGVV HRDIKDENIL IDLRRGCAKL 180 IDFGSGALLH DEPYTDFDGT RVYSPPEWIS RHQYHALPAT VWSLGILLYD MVCGDIPFER 240 DOEILEAELH FPAHVSPDCC ALIRRCLAPK PSSRPSLEEI LLDPWMQTPA EDVTPQPLQR RPCPFGLVLA TLSLAWPGLA PNGQKSHPMA MSQG 70 Seq ID NO: 171 DNA sequence Nucleic Acid Accession #: NM_003646 Coding sequence: 89..2875 41 31 75 GCGGCGCGGA GCGGGCGTGC TGAGCCCCGG CCGCCGGCCC GGCATGGGCG TCTCCCGCGG 60 GCCCTCCGCC GGCCGGGGCT AGGGCCGGAT GGAGCCGCGG GACGGTAGCC CCGAGGCCCG 120 GAGCAGCGAC TCCGAGTCGG CTTCCGCCTC GTCCAGCGGC TCCGAGCGCG ACGCCGGTCC 180 CGAGCCGGAC AAGGCGCCGC GGCGACTCAA CAAGCGGCGC TTCCCGGGGC TGCGGCTCTT 80 CGGGCACAGG AAAGCCATCA CCAAGTCGGG CCTCCAGCAC CTGGCCCCCC CTCCGCCCAC 300 CCCTGGGGCC CCGTGCAGCG AGTCAGAGCG GCAGATCCGG AGTACAGTGG ACTGGAGCGA 360 GTCAGCGACA TATGGGGAGC ACATCTGGTT CGAGACCAAC GTGTCCGGGG ACTTCTGCTA 420 CGTTGGGGAG CAGTACTGTG TAGCCAGGAT GCTGAAGTCA GTGTCTCGAA GAAAGTGCGC 480 AGCCTGCAAG ATTGTGGTGC ACACGCCCTG CATCGAGCAG CTGGAGAAGA TAAATTTCCG 540 85 CTGTAAGCCG TCCTTCCGTG AATCAGGCTC CAGGAATGTC CGCGAGCCAA CCTTTGTACG 600 GCACCACTGG GTACACAGAC GACGCCAGGA CGGCAAGTGT CGGCACTGTG GGAAGGGATT CCAGCAGAAG TTCACCTTCC ACAGCAAGGA GATTGTGGCC ATCAGCTGCT CGTGGTGCAA 720

		CACAGCAAGG	TGTCCTGCTT	CATGCTGCAG	CAGATCGAGG	AGCCGTGCTC	780
		CACGCAGCCG					840
		CTGAAAGCAA					900
5		CCTGAGGAGG CCCCTGCTGG					. 960 1020
5		TCTTTCCTCT					1080
		GAGGCGCTGG					1140
		GGCACGGTGG					1200
1.0		GTTGCCATCC					1260
10		GGCTACACAG					1320
		CAGCTGGACC					1380
		GATGAAGGCG TTTGACGCCC					1440 1500
		AACAGCCGCT					1560
15		GGCAGCTCCA					1620
		CCCAAGATCC					1680
		GCGGGCACCA					1740
		GACGACGGCT					1800
20		GGCGGACACG					1860 1920
20		ATCCCGGTGC CTGCGCAACC					1920
		AGCGACCAGC					2040
		GACTATGAGG					2100
		ACTGTGGTGG					2160
25		CAGCAGGAGC					2220
		TGGTGCTTCC					2280
		CACCTCAACT					2340 2400
		CTGGGGGCAT TGCTCACCCA					2400
30		ATTGAGGCTG					2520
50		GACCTCATGC					2580
		AGCAAGGATG					2640
	TGATGCGGTG	GAGGAAAACG	GGGAGACCTG	TTTGCACCAA	GCAGCGGCCC	TGGGCCAGCG	2700
25		CACTACATCG					2760
35		CGGCAGCGGG					2820
	GAACCGGCAG	CACTACCAGA	TGATCCAGCG	GGAGGACCAG	GAGACGGCTG	TGTAGCGGGC	2880
	Sec ID NO.	172 Protein	semience:				
	-	cession #: 1	-				
40							
	1.	11	21	31	41	51	
	1	1	1	1	1	1	
	MEPRDGSPEA	RSSDSESASA	SSSGSERDAG	PEPDKAPERL	NKRRFPGLRL	FGHRKAITKS	60
45	GLQHLAPPPP	TPGAPCSESE	RQIRSTVDWS	ESATYGEHIW	FETNVSGDFC	YVGEQYCVAR	120
45	GLQHLAPPPP MLKSVSRRKC	TPGAPCSESE AACKIVVHTP	RQIRSTVDWS CIEQLEKINF	ESATYGEHIW RCKPSFRESG	FETNVSGDFC SRNVREPTFV	YVGEQYCVAR RHHWVHRRRQ	120 180
45	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG	TPGAPCSESE	RQIRSTVDWS CIEQLEKINF EIVAISCSWC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC	FETNVSGDFC SRNVREPTFV FMLQQIEEPC	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI	120
45	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR	TPGAPCSESE AACKIVVHTP FQQKFTFHSK	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV	120 180 240 300 360
	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW GGPKEALEMY NWGGGYTDEP	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD	120 180 240 300 360 420
45 50	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN	120 180 240 300 360 420 480
	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW	120 180 240 300 360 420 480 540
	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW GGPKEALERW NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD	120 180 240 300 360 420 480 540 600
50	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR	TPGAPCSESE AACKIVVHTP FQQKFTFHSK FQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR	YVGEQYCVAR RHHWYHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIFVQVD VSMHDYEALH	120 180 240 300 360 420 480 540
	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA	120 180 240 300 360 420 480 540 600 660
50	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRSSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RFFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR	120 180 240 300 360 420 480 540 660 720 780 840
50	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI	TPGAPCSESE AACKIVVHTP FQQKFTFHSK FQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATID FLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RFFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR	120 180 240 300 360 420 480 540 600 660 720 780
50	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RFFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR	120 180 240 300 360 420 480 540 660 720 780 840
50 55	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TDASKFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RFFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR	120 180 240 300 360 420 480 540 660 720 780 840
50	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL SEQ ID NO:	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA MSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RFFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR	120 180 240 300 360 420 480 540 660 720 780 840
50 55	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac:	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RFFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR	120 180 240 300 360 420 480 540 660 720 780 840
50 55	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac:	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession lence: 1-166	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 52	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPP LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVS AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK	120 180 240 300 360 420 480 540 660 720 780 840
50 55 60	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac:	TPGAPCSESE AACKIVVHTP FQQKFTFHSK FQQKFTFHSK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA secid Accession	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RFFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR	120 180 240 300 360 420 480 540 660 720 780 840
50 55	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLL LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ	TPGAPCSESE AACKIVVHTP FQQKFTFHSK FQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession lence: 1-166	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK	120 180 240 300 360 420 480 540 600 720 780 840 900
50 55 60	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession ience: 1-166	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 552 21 AGCCCTGCGT	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVCWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK	120 180 240 300 360 420 600 660 720 780 840 900
50 55 60	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequence ATGCCGGTGC GTGCTGGGTGC GTGCTGGGTGC	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT TVPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA secid Accession ence: 1-166	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA MVQKAKRRSA EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 52 21 AGCCCTGCGT AGCCTATGTG	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ACGGGCTACC	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYBALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK	120 180 240 300 360 420 480 660 720 840 900
50556065	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequence 1 ATGCCGGTGC GTGCTGGGTGC CACTACCTGT	TPGAPCSESE AACKIVVHTP FQQKFTFHSK FQNTLKASKK KILQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession lence: 1-166	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 52 21 AGCCCTGCGT AGCCCTATGTG GTACGGCGCC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ACGGGCTACC ATCCTGGGCC	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLI DEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCACCTGCT	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK	120 180 240 300 360 420 600 660 720 780 840 900
50 55 60	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTG CACTACCTGT TCTCTTTTGCCT TCCCCGGGGC	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession ience: 1-166 11 AGCTGACGAC CCATCCTGGC CCTTCGGCCT TCCTGGAGCA GGGGCTCGGT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 52 21 AGCCCTGCGT AGCCTATGTG GTACGGCCCC CCGGCGCATG GGCACTGTGC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ACGGGCTACC CGACGTGCCG ATTGCCGCAT	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCACCTGCT GCCAGGCCCT ACCAGGAGGA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVCWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC	120 180 240 300 360 420 480 600 720 780 840 900
50556065	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTGC GTGCTGGGTGC CACTACCTGT TTCCCCGCGGC TTGCGCAAGT	TPGAPCSESE AACKIVVHTP FQQKFTFHSK FQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLT REELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA secid Accession ence: 1-166 11 AGCTGACGAC GCATCCTGGCC TCCTGGACGA GGGGTCGGT GCCTGCGCTC	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 52 21 AGCCCTGCGT AGCCCTAGTG GTACGGCCATGG GGCACTGGCGCATG GGCACTGTGG GGCCCAGCGC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ACGGGCTACC ATCCTGGGCC ATCCTGGCCAT ATCTCCTTCC	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLI PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCACCTGCT GCCAGGCCCT TCACCAGGCCCT TCACCAGGCCCT TCACCAGGCCCT ACCAGGCAGA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC GGTGGTCATG	120 180 240 300 360 420 480 660 720 840 900
50556065	GLQHLAPPPP MLKSVSRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTG CACTACCTGT CTCTTTTGCCT TCCCCGCGGC TTGCCGCAGT GTGGTGGATG GTGGTGGATG GTGGTGGATG GTGGTGGATG	TPGAPCSESE AACKIVVHTP FQQKFTFHSK FQNTLKASKK KILQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAK LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession ence: 1-166 11 AGCTGACGAC GCATCCTGGC TCCTGGGCT TCCTGGAGCA GGGGTCGGTT GCCACCCCA	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 52 21 AGCCCTGCGT AGCCCTATGTG GTACGGCCC CCGGCGCATG GGCACTGTGC GGCCCAGCGC GGACGCC GGAGGACGCC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ACGGGGCTACC ATCCTGGGCC CGACGTGCCG ATTGCCGCAT ATCTCCTTCC TACATGCTGG	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCACCTGCT GCCAGGCCCT ACCAGGAGGA ACTGACCTCAA ACATCTTCCA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATCLAGAGC GAAGCTGCCC CCCTGACTAC CGGGGTGCTG CGAGGTGCTG	120 180 240 300 360 420 420 780 720 780 840 900
50556065	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TDKSQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTG CACTACCTGT CACTACCTGT TCCCCGCGGC TTCCCCGCGGC TTCCCCGCGGC GTGTGGATG GGCGGCACCG	TPGAPCSESE AACKIVVHTP FQQKFTFHSK FQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession ence: 1-166 21 AGCTGACGAC CCTTCGGCCT TCCTTCGGCCT TCCTGGAGCA GGGGCTCGGT GCCAACCGCCA AGCAGGCCGG	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NFRQVFDLSQ GTGNDLARTI RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV 1 #: AF23277 52 21 AGCCCTGCGT AGCCCTAGGT GGACGCC CCGGCGCATG GGCACTGTGC GGCACTGTGC GGCACTGTGC GGCACTGCGC CTTCTTTGTG	ESATYGEHIW RCKPSFRESS KQAYHSKVSC SKKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 31 GTGGTGGGCA ACGGGCTACC CACCTGCCC CACGTGCCG ATTGCCGCAT ATCTCCTTCC TACATGCTGG TGGCGCACGACACCA	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVST AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCAGGCCCT ACCAGGAGGA CTGACCTCAA ACATCTCCA	YVGEQYCVAR RHHWVHRRAV SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC GGTGGTCATG GGCAGGTGCTG GGCAGGCAGG	120 180 240 300 360 420 600 600 780 840 900 60 120 120 120 120 360 420 420
5055606570	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTG CACTACCTGT TCCCCGCGGC TTCCCGCGGC TTGCGCAAGT GTGGTGATG GGGGGACCG GGTGAGACCG GGTGAGACGG	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession ience: 1-166 11 AGCTGACGAC GCATCCTGGC TCCTGGGCT TCCTGGAGCA GCGCTGCGCT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 62 21 AGCCCTGCGT AGCCTATGTG GTACGGCCC CCGGCGCATG GGCACTGTGC GGCACTGTGC GGCACTGTGC GGCACATGTGC GCACAGGCC CCTTCTTTGTG GCAGGAGGGC CTTCTTTTGTG GCAGGAGGGCC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 31 GTGGTGGGCC ACCGGCTACC ATCCTGGGCC CGACGTCCC CGACGTCCC TACATGCTGC TACATGCTGC ATGGCCGCA ATGGACCTG	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVS PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCAGGCCCT GCCAGGCCCT ACCAGGAGGA CTGACCTCAA ACATCTTCCA TGCGGGATGT	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVCWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC GGTGGTCATG GGCAGGCAGG GGTGCGGGCCC GGCAGCCAG	120 180 240 300 360 420 600 600 720 840 900 60 120 180 240 360 420 420 480 540
50556065	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTG CTGTTTTGCCT TCCCGCGGGT CTTCTCCCGCGGGT GTGGGAAGT GTGGTGGATG GGTGGGAAGT GTGGTGGAACGG AGCACCTTCT	TPGAPCSESE AACKIVNHTP FQQKFTFHSK FQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession ence: 1-166 11 AGCTGACGAC GCATCCTGGC CCTTCGGCCT TCCTGGACCA GGGGCTCGGT GCCACCGCCA AGCAGCCCCA AGCAGCCCCA AGCAGCCCCC CGTGCATCAT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 52 21 AGCCCTGCGT AGCCCTATGTG GGCACTGTGG GGCCAGGGC CGAGGAGGGC CCTCTTTGTG GCCAGGAGGGG GCAGGAGGGG GCAGGAGGGG GCAGGAGGGG GCAGGAGGGG GCAGGAGGGG GCAGGAGGGG GCAGGAGGGG GCAGGAAGTGG	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ATCCTGGGCC CGACGTGCCG ATTGCCGCAT ATCTCCTTCC TACATGCTGG TGGGCCAGCA ATGGCCGTG GGAGGCAAGC GGAGGCAAGC GGAGGCAAGC GGAGGCAAGC GGAGGCAAGC	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLI DEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCACCTGCT GCCAGGCCTG ACCAGGAGGA ACTTCCATGA ACTTCCATGA ACTTCCATGA ACTTCCATGA ACTGCGGGATGT GCGAGGTCAT	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIFVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC CGTGGTCATG CGAGGTCATG CGAGGTCATG CGAGGCCAG GGTGCCCC CTTACACGCC GTACACCGCC CTTACACCGCC	120 180 240 300 360 420 600 600 780 840 900 60 120 120 120 120 360 420 420
5055606570	GLQHLAPPPP MLKSVSRKKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTGC TTCTGCCTGGTGC TTCTCGCAAGT TCCCGCGGGC TTGCGCAAGT GTGGTGGATG GGCGGACCG GGTGAGACGG GGTGAGACGT TTCAAGGCCC	TPGAPCSESE AACKIVVHTP FQQKFTFHSK PQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession ience: 1-166 11 AGCTGACGAC GCATCCTGGC TCCTGGGCT TCCTGGAGCA GCGCTGCGCT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 52 21 AGCCCTGCGT AGCCTACGTG GTACGGCGC CTGGCGCATG GGCACTGTGC GGCACTGTGC GGCACTGTGC GGCACTGTGC CGGGGACGC CTTCTTTGTG GCAGGAGGGC CTTCTTTTGTG GCAGGAGGGG GGTGGACTACC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC KKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ACGGGCTACC CGACGTGCCG ATCCTGGGCC CGACGTGCCG ATCTCCTTC TACATGCTGG TGGCGCAGCA ATGCCGACA ATGCCGACA ATGCCGACA ATGCCGACA ATGCAGGCAACC GGAGGCAACC ATGCAGGCAACC ATCCAGGTGTG ATCCAGGTGTG ATCCAGGTGTG ATCCAGGTGTG ATCCAGGTGTG	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCAGCTGA CCAGGCCCA ACTGCCTCA ACTTCCATGA TGCGGGATGT TGCGGGGTCT TGCGCTCTGA	YVGEQYCVAR RHHWVHRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAGC CATTCAGAGC GAAGCTGCCC CCCTGACTAC GGTGGTCATC GGAGGTGCTG GGCAGGCGAG GGTACACGGCC CACTGTGCTG CACTGTGCTG	120 180 240 300 540 600 600 720 780 840 900 60 120 180 240 300 420 480 540
5055606570	GLQHLAPPPP MLKSVSRRKC DEKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTGC TTCCGGCAAGT TCCCGCGGG TTCCGCAAGT GTGGTGAACCG GGTGAGACCG AGCACCTTCT TTCAAGGCCC GATCCAGCCT GTCGGGGAG GTCGGCCCC GTCCGGGGAG	TPGAPCSESE AACKIVNHTP FQQKFTFHSK FQQKFTFHSK FQQKFTFHSK FQQKFTFHSK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLT GELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA secid Accession ence: 1-166 11 AGCTGACGAC GCGTTCGGCCT TCCTGGACCA GCGGCTCGGCT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV 1 #: AF23277 52 21 21 3 AGCCCTGCGT AGCCCTAGTGG GGCACTGTGG GGCACTGTGG GGCACTGTGG GGCACTGTGG GGCACTGTGG GGCACGGC CTTCTTTGTG GCAGGAGGGC CCTGGAGAGTGG GCAGAAGTGG GCAGGAGGTG CCAGCAGC CGTGGACTAGC GCAGGAGGGC CCTCTCTTTGTG CCAGGAGGGC CCTCAACAAG	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ATCCTGGGCC CGACGTGCCG ATCTCCTTCC TACATGCTGG TGGCGCAT ATCTCCTTCC TACATGCTGG GGAGGCAAGC ATCCAGGTGT GGAGGCAAGC ATCCAGGTGT GGAGGCAAGC ATCCAGGTGT GTCCTGGAGG TACCAGGTGT GTCCTGGAGG TACGAGGTGT TCCTCGAGG	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLI PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCACCTGCT GCCAGGACTCTA ACATCTTCCA ACTTCCATGA TGCAGGAGGA TGACCTCAA ACATCTTCCA ACTTCCATGA TGCGGGATGT GCGAGGTCAT GCGAGCTCTT GCGAGCTCTT GCAGCTCTT GCGAGCTCTT GCGAGCTCTGA ACTTCCATGA TGCGGGATTCCTT GCGAGTTCCATGA TGCGGGATCTCCA GGATTCCCTT	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC GGTGGTCATG CGAGGGTCATG CGCAGGCAGC GGTGCCG CTCACTGCCC CCTGACTAC GGTGGTCATG CGAGGGGAC CCTGACTAG CGTGGTCATG CGAGGGGAC CCTGACTAG CGTGGTCATG CGAGGGGAC CCTGACTAG CGTGGTCATG CGAGGGGAC CCTGACTAG CGTGGTCATG CGAGGGGAC CTGACTAGCAGCAC CCCTGACTAG CGTGGTCATG CGTGGTGAGCAGC CCCTGACTAG CCCCACTGTGCTG AGTAGGGGGAC CCTGAGCAGC	120 180 240 300 360 420 600 660 780 840 900 60 120 180 240 360 420 480 600 600 720 780
505560657075	GLQHLAPPPP MLKSVSRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTGC TTCCCGCGGG CTTTTTGCCT TCCCGCGGG GTGGCAGAGT GGCGGACCG GGTGGGAGAGG GGCGGCACCG GGTGGAGACG GGTGAGACG AGCACCTTCT TTCAAGGCCC GATCCAGGCG GTTCCAGGCAG GTGCGGGGGG GTGCGGGGGG GTGCGGGGGG GTGCGGGGGG GTGCGGGGGG GTGCGGGGGG GTGCGGGGAC GTGCGGGGGG GTGCGGGGGG GTGCGGGGGG GTGCGGGGAC GTGCGGGGGGG GTGCGGGGAC GTGCGGGGGG GTGCGGGGAC GTGCGGGGGGG GTGCGGGGGGG GTGCGGGTACT	TPGAPCSESE AACKIVNHTP FQQKFTFHSK FQNTLKASKK KILQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAK LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession Lence: 1-166 11 AGCTGACGAC GCATCCTGGC TCCTGGGCT TCCTGGAGCA GGGGTCGGT GCCACCGCA AGCAGGCCGG AGGCCAGCT TCGGCCT TCGGCCT TCCTGCGCT TCCTGCATCA AGCAGCCAC AGCAGCCCA AGCAGCCAC AGCACATCCA ATGTCCAGAT GGATCCAGT GGATCCAGT GGATCCAGCT TCGGCGATTC GCACCATCA ATGTCCAGAT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 52 21 AGCCCTGCGT AGCCCTATGTG GTACGGCCC CCGGCGCATG GCCACTGTGC CGGCCCAGCGC CGGCCCAGCGC CGGCGCGC CTTCTTTGTG GCAGGAGGGC CCTGCTTCTTTGTG CCAGGAGGGGC CCAGGAGGGGC CCTCCTTGTG CCAGGAGGGGC CCAGGAGGGGC CCTCCTTCTTGTG CCAGGAGGGGC CCAGGAGGGGC CCAGAGGTGGA CCTCAACAAG CCACACG CAACGTGGAG CCACAGGAGGGC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHID RTICHYIVEA 2 31 GTGGTGGGCA ATGGTGGCC CGACGTGCCG ATTGCCGAT TGCCGCAT TGCCGCAT TGCGCATC TACATGCTGG TGGACGCAGCA ATGCTGGACG ATCCAGGTGT GGAGGCAAGC ATCCAGGTGT GGAGGCAAGC ATCCAGGTGT GGAGGCAAGC ATCCAGGTGT GGAGCCACCA CGGGCCTCCC	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA ACTGCCAGAGGA ACATCTTCCA ACTTCCATGA ACTCCATGA TGCAGCGGATTT GCGAGGTCAT GCGGGATGT GCGAGGTCAT GCGGGATGT GCGAGTCTGA AGTCTCCTA AGTCTCTA AGGATTCCTT GCGAGTTTCCTT GCGAGTTTCCTT GCGAGTTTCCTT GCGAGTTTCCTT GCGAGTTTCCTT GGAGTTTCCTT	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC GGCAGGCGAG GGTGGTGCGGCC CACTGTGCTG AGTAGGGGGA CCTGAGCAG CCTAGCCAG CCTAGCCAG CCTAGCCAG CCTGAGCAG CCTGAGCAG CTGGCTGTTG TGGCTGTTG	120 180 240 300 540 600 600 720 780 840 900 60 120 300 340 420 480 540 660 720 720 780 840
5055606570	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TDKSQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTG CACTACCTGT CTTTTTGCCT TCCCCGCGGC TTCCCGCGGC GTGAGACG GGTGAGACG GGTGAGACG GGTGAGCCC GATCCAGCCT GTCGGGGGG GTCCAGCCT TTCAAGGCCC GATCCAGCCT CACTGGTATTA	TPGAPCSESE AACKIVVHTP FQQKFTFHSK FQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession ence: 1-166 21 AGCTGACGAC CCTTCGGCCT TCCTGGAGCA GGGGCTCGGT GCCACCGCA AGCAGCCCA AGCAGCCCA AGCAGCCCG AGGCCAGCCT CGTGCATCAT TCGGCGATC CGCACCATCGA TCGGCATTC GCACCATCGA TCGCACTCGAT TCGGCGATTC TCGGCATTC TCGCACTCGAT TCGGCATTC TCGCACTCGAT TCGGCATTC TGGGGCATTC TGGGGCTT TGGGGCCTT TGTGGGCCTT TGTGGGCCTT TGTGGGCCTT TGTGGGCCTT TGTGGCCCTT TGTGGGCCCTT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTI RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV 1 #: AF23277 52 21 AGCCCTGCGT AGCCTATGTG GTACGGCGC CCGGCGCATG GGCACTGTGC GGCCCAGCGC CCGGCGCATG GGCACTGTGC GGCACTGTGC GGCACTGTGC GGCACTGTGC GGCACTGTGC GCACGACGCC CCTTCTTTGTG GCAGGAGGCC CCTCCTTTGTG GCAGGAGTGC CCTCAACACAC GATGCTTCGA CCTCAACACAC GGGCATGTAC	ESATYGEHIW RCKPSFRESS KQAYHSKVSC KKKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 31 GTGGTGGGCA ACGGGCTACC CGACGTGCCG ATTCCCTGCC TACATGCTGG TGGCGCAGCA ATGCCGCAT ATCTCCTTCC TACATGCTGG GGAGGCAAGC ATCAGGTGCT GGAGGCAGCA ATGGACCGT GGAGGCAGCA ATCAGGTGCT GGAGGCAGCA CGCGCAGGCT CCCGGAGGCAGC CGCAACAGCC	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCACCTGCT GCCAGGCCCT ACCAGGAGGA CTGACCTCAA ACATCTCCA ACTTCCATGA TGCGAGTCAT TGCGAGCTCTA AGGATCCTCA AGGATCCTCA GGATTTCCTT AGTCCTACTT TCCTCCAGCA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC GGTGGTCATG GGCAGGTGCTG GGCAGGCGAG GGTGCGGCC CCACTGTGCTG AGTAGCGGAG CTTACACGGCC CTACACGGCAG GTTCCTGGAG GGTGCTGTG TGGCTGTGTG TGTTCCTGGAG	120 180 240 300 360 420 600 660 780 840 900 60 120 120 120 120 120 300 360 420 600 720 780 840 900
505560657075	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGTGGGTGC GTGTGGGTGT TTCTAGGCAAGT TTCTAGGCAGT TTGGCAAGT TTCAGGCAGG GTGAGAGGG AGCACTTCT TTCAAGGCCC GATCCAGCCT GTCGGGGGA GTCAGCTT TTCAAGGCCC GTCGGGGAG GTCGGGTACT GTCGGGGGAG GTCGGGTACT GACTGGTATTA GACTGGTACC	TPGAPCSESE AACKIVVHTP FQQKFTFHSK FQNTLKASKK KIIQSFLWYL PPPPVAILPI DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA secid Accession ence: 1-166 21 AGCTGACGAC CCTTCGGCCT TCCTGGAGCA GCATCCTGGC TCCTGGAGCA GGGCTGCGT GCCTGCGCT GCAACCGCCA AGCAGCCCG AGGCCAGCCT CGTGCATCT CGGCGATT CGGCGATTC GCACCATCGA TCGGCCTT GTGGCCCTT ATCAGAAGTT ATCAGAAGTT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTI RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 552 21 AGCCCTGCGT AGCCTATGTG GTACGGCGC CCGGCGCATG GGCACTGTGC GCAGGAGGCC CCTTCTTTGTG GCAGGAGGCC CCTTCTTTGTG GCAGGAGGGC CCTTCTTTGTG GCAGGAGGGC CCTTCTTGTG GCAGGAGGGC CCTTCTTGTG GCAGGAGGGC CCTTCTTGTG GCAGGAGGGC CCTTCTTGTG GCAGGAGGGC CCTTCTTGTG GCAGGAGGCC CCTTCTTGTG GCAGGAGGCC CCTTCTTGTG GCAGGAGGCC CCTTCTTGTG GCAGGAGGCC CCTTCTTGTG CCTAGGAGAGC CCTAGGCAGC CCTAGGCAGC CCTAGGCAGC CCTAGGCAGC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC KKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAPT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 31 GTGGTGGGGCA ACGGGCTACC ATCCTGGGCC CGACGTGCCG ATTGCCGCAT ATCTCCTTCC TACATGCTGG TGGCGCAGCA ATGGCCAGCA ATGGCCAGCA ATGGCCAGCA ATGGCCAGCA ATGGCCAGCA ATGGCCAGCC ATCCAGGTGT GGAGGCAACAC CGGCAACAGCC CAACAGCC AAGTGCAGCC AAGTGCAGCC AAGTGCAGCC CAACAGCC AAGTGCAGCC	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCACCTGCT GCCAGGCCCT ACCAGGAGGA CTGACCTCAA ACATCTCCA ACATCTCCA ACATCTCCA AGGATCTTGA AGGATCCTTGA AGGATCCCTA AGGATCCCTA AGGATCCCTA AGGATCCCA GGATTTCCTT AGTCCTTCAAGCA TCCAGGAGTCAT TCCTCCAGGA TCCGAGGATGT TCCTCCAGCA TCCGGGATGA TCCGGGGATGA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVCWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAG CATTCAGAG CATTCAGAG GGAGGTGCTG GGAGGTGCTG GGAGGTGCTG GGCAGGCCA CTGACTAC GTGGCTGTG AGTAGCGGC CACTGTCTG AGTAGCGGC CACTGTCTG TGGCTGTTGTG GGTGCGGAG CTGGCTGTTGTG GTTCCTGGAG CCGGCACCTC	120 180 240 300 360 420 600 660 780 840 900 60 120 180 360 420 480 600 600 600 720 780 840 900
505560657075	GLQHLAPPPP MLKSVSRRKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR YDKEQLKEAS TTASRFYRID SLQGDAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTG CTGTTTTGCCT TCCCGCGGG TTCCGCAAGT TTCAAGGCCC GGTGAGACGG GGTGAGACGG GGTGAGACGG GTGCGGTACT TTCAAGGCCC GATCCAGCCT TTCAAGGCCC GATCCAGCCT CACTGTTATTA GACTGGTACC ACCAACCGAG	TPGAPCSESE AACKIVNHTP FQQKFTFHSK FQNTLKASKK KILQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession ence: 1-166 11 AGCTGACGAC GCATCCTGGC CCTTCGGCCT TCCTGGAGCA GGGGCTCGGT GCCACCGCGC GCAACCGCCA AGCAGCCCG AGCAGCCCG AGCAGCCCC AGCAGCCT CGTGCATCT TCGGCATTC GCACCATCAGA TCGGCATTC GCACCATCAGA TCGGCCTT TCGGCCTT TCGGCCTT TCGGCGTT TCGGCGCTT TCGGCGTT TCGGCGATTC TCGGCATCAGAAGGTT TCGGCGCTT TCGGCCTT TCGGCCTT TCGGCCTT TCGGCCTT TCGGCATTC TCGGCATTC TCGGCGATTC TCGGCGATTC TCGGCCATCT TCGGCCATCT TCGGCCTT TCGGCCCTT TCCTGAGCCTT TCCTGAGCCCTT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV 1 #: AF23277 52 21 21 AGCCTGCGT AGCCCTATGTG GGCACTGTGG GGCACTGTGG GGCACTGTGG GGCACTGTGG GGCACTGTGG GGCACTGTGG CGAGGAGGC CTTCTTTGTG GCAGGAGGC CGTGGACTC CATGCTTCGA CATGCTTCGA CATGCTTCGA CATGCTTCGA CATGCTTCGA CCTCACACAG CAACGTGGAG CGAGCACGC CGCAGCAC CATGCTTCGA CCTCAGCACC CATGCTCGA CCTAGGCAGC CAACGTGGAG CGAGCAGC CAACGTGGAG CCTCAGCAGC CCTAGGCAGC CCTAGGCAGC CTTGGAGC CTTGGAGC CCTAGGCAGC CTTGGAGC CCTAGGCAGC CCTAGGCAGC CCTAGGCAGC TGGCTACCGA	ESATYGEHIW RCKPSFRESG KQAYHSKVSC SKKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ATCCTGGGCC CGACGTGCCG ATTGCCGCAT ATCTCCTTCT TACATGCTGG TGCGCAGCA ATCCAGGTGT GGAGGCAACAGCC ATCCTGGAGC ATCCAGGTGT CGCGACTACC CGCAACAGCC AAGTGCAGC CAAGTGCAGC ATCCTGGAGGCAACAGCC AAGTGCAGT CCGCAACAGCC CAAGTGCAGC CAAGTGCAGCT ACTAAGTATA	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLI DEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGGCTGTT AGTTCATCAA ACATCTTCCAAGAA CTGACCTGCT GCCAGGGCCTT ACCAGGAGTCAA ACATCTTCCATGA ACTTCCATGA ACGGGATCTCAAC AGGATCTCTA AGGACTCTGA AGGACTCTGA AGGACTCTTA CCGAGGGATGA CCGAGGGCGTC CCGGGGATGA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIFVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC GGTGGTCATG CGAGGTGCTG GGTAGACGGC CTACACGGCC CACTGTGCTG AGTAGGGCGA CCTGAGCAG CCTGAGCAG CCTGAGCAG CCTGAGCAC CCTGACTAC CCTGACAC CCTGACTAC CCAAGTGCCTC CAAGTGCCTC CAAGTGCCTC CAAGTGCCTC	120 180 240 300 540 600 600 720 780 840 900 120 180 240 300 420 480 540 660 720 780 840 900 900 900
50556065707580	GLQHLAPPPP MLKSVSRKKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TJKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGGTG CTTTTTGCCT TCCCGCGGC TTGCCAAGT TTCTACTGT TCCCGGGGGC GGTGGAAGT GGCGGACCG GGTGAGAGG GGCGCACCT TTCAAGGCCC GATCCAGCCT TTCCAGGGGA GGCGGCACCG GTTGGGGAG GTGCGGGAC GTTCGGGGAG GTCCGGGTAC CACTACTAT GACTGGTACT CACTGTTATTA GACTGGTACC ACCAACCGAG ACAGAGACCC	TPGAPCSESE AACKIVHTPF PONTLKASKK KILQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKE LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession lence: 1-166 11 AGCTGACGAC CCTTCGGCCT TCCTGGGCCT TCCTGGGCCT TCCTGGGCCT GCAACCGCCA AGCAGGCCGG AGGCCGCA AGCAGCCCA AGCAGCCCT CTGGCCTC CTGGCCTC CTGGCCTC CTGGCCTC CTGCGCCT CTCGCCCTC CTCGCCCT CTCCACTCACT CCCCTCAACTAA	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRSA BSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV Quence 1 #: AF23277 52 21 AGCCCTGCGT GGCCCAGCGC GTAGGCGC CCGGCGCATG GGCACTGTGG GCACAGGGGC CTTCTTTGTG GCAGGAGGGC CTTCTTTGTG GCAGGAGGGC GCTGGATTCGA CCTCAACAAG CAACGTGGAC CCTAAGCAAG GGCATGTGC CTAGGCAGC CTTCTAGGCAGC CTTCTAGGCAGC CCTCACCAG GGCATGTGC CCTCACCAG GGCATGTGC CCTCACCAG CCTCCGGTGG CCTCCGGTGG	ESATYGEHIW RCKPSFRESG KQAYHSKVSC KKGPEEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCC CGACGTGCCG ATTGCCGCC TACATGCTGC TACATGCTGG TGGCGCAGCA ATCCTGGGCC CGACGAGC ATCCAGGTGT GGCGCAGCA ATCCAGGTGT GCGCAGCAGC ATCCAGGTGT GCGCAGCAGC ATCCAGGTGC CGCAACAGCC AAGTGCAGC CGCAACAGCC CAAGTGCAGC CCCAACAGCC CAACAGCC CCCAACAGCC CCCAACACACC CCCAACACACC CCCAACACACC CCCAACACCAC	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA ACTTCCATGA ACTTCCATGA ACGTCTCTA GCGAGGTCT GCGAGGTCT GCGAGTCT GCGAGTCT TCCATGA AGGATCCCA AGATTCCTT AGTCTCATCT TCCTCAGCA TCGGGGATGT TCCTCCAGCA CCGGCGCCCT CCGGCGCCCT CCGCGCGCCCT CCAGCCCTG	YVGEQYCVAR RHHWVHRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATCAGAGC GAAGCTGCCC CCCTGACTAC GGGGGCCC GTACACGGCC CACTGTCTG AGTAGGGGA CCTGAGCAG CTGAGCAGC CTGAGCAGC CTGAGCAGC CTGAGCAGC CACTGTGTTG GTTCCTGGAG CCGGCACCTC CAAGTGCCTC CAAGTACTCT	120 180 240 300 360 420 600 660 780 840 900 60 120 180 360 420 480 600 600 600 720 780 840 900
505560657075	GLQHLAPPPP MLKSVSRKKC DGKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLE LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TDKEQLKEAS TTASRFYRID SLQGDAAPPQ YLLDHAPPEI AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequ 1 ATGCCGGTGC GTGCTGGTG CACTACCTGT TCCCCGCGGC TTGCGCAAGT TTCCAGCAGCT TTCCAGCAGCT GTGGGGAG GGGGACCC GGTGAGACCG GTGGGGGAC GTGGGGGAC GTGGGGGAC GTGCGGTAC TTCCAGCCT TTCCAGCCT GTCGGGGAC GTGGGGAC GTGCGGTAC TTCCAGCCT TTCAGCAGCT TTCAGCAGCT TTCAGGCAC GATCCGGG AGCACCTCT TTCAGGCCC GATCCAGCCT GTGGGGGAC CGATCCAGCCT GTGGGGGAC CGATCCAGCCT TTCAGGCCC TTCCAGCCT TTCAGGCCC TTCAGCCT TTCAGGCCC TTCAGCCGTACT TTCAGGCCC TTCAGCCT TTCAGGCCC TTCAGCCCT TTCAGGCCC TTCAGCCCT TTCAGGCCC TTCAGCCCT TTCAGGCCC TTCAGCCCT TTCAGGCCC TTCAGCCCT TTCAGGCCC TTCAGCCCT TCATTCCGGG ACAGAGACCC TACTTCCCGGG	TPGAPCSESE AACKIVNHTP FQQKFTFHSK FQQKTFHSK FQNTLKASKK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec icid Accession icid Accession icid Accession controlled 11 AGCTGACGAC GCATCCTGGC CCTTCGGCCT TCCTGGAGCA GGGGCTCGGT GCCACCGCA AGCAGCCGC AGGCCAGCCT GCAACCGCCA AGGGCCGG AGGCCAGCCT TCGGCGTT TCGGCGTT GTGGGCCTT ATCAGAAGTT TCCTGAGCCT ATCAGAAGTT ACCACTAAGTA AGTGGCTTA	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTI RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRSA DSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV 1 #: AF23277 52 21 AGCCCTGCGT AGCCTATGTG GTACGGCGC CGGCGCATG GGCACTGCGC CGGCGCATG GGCACTGTGC GGCACAGGC CCTTCTTTGTG GCAGGAGGCC CCTTCTTTGTG GCAGGAGGCC CCAGCGC CAGCGC CAGCGC CAGCGC CAGCGC CAGCGC CAGCGC CAGCGC CAGCGC CAGCGC CAGCGCC CAGCGCC CAGCGCC CAGCGCC CAGCGCC CAGCGCC CAGCGCC CAGCGC CAGCGCC CAGCGCC CCTTCTTTGTG CCAGGAGGTG CCAGCACGTC CCTCAACAAG CGTCAACACA CGTCAACACA CGTCAACACA CCTCAACACG CACCTCCGGTGC CCTCCGGTGG CAACTTCCGC CTCCGGTGG CAACTCTCTG	ESATYGEHIW RCKPSFRESG KQAYHSKVSC KKGPEEGRW GGPKEALEMY NWGGGYTDEF FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV LERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 31 GTGGTGGGCA ACGGGCTACC CGACGTGCCG ATTCCCTCGCC TACATGCTGG TGGCCAGT TGGCCAGT TGGCCAGT TCCTGGAG TTCCTGGAG TCCTGGAG TCCAGGTGT CGCAACAGCC AAGTGCAGCT ACTAACTAC TCAACCAGC TGGTTCCATA	FETNVSGDFC SRNVREPTFC FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLT PEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGCCTGTT AGTTCATCCA TGCAGGCCT TCCAGGAGGTCAT ACATCTCCA ACTTCCATGA TGCAGGTCTA AGGATCTCATGA TGCAGGTCTA AGGATCTCCA GGATTCCTT AGTTCATCA TGCGGGATGT TCCTCCAGCA TCCCCCAGGAGTCA TCCGCGCTGACCTCA ACATCCCCA GGATTCCTCA AGGATCCCCA GGATTCCTT AGTCTACTT TCCTCCAGCA TCCGGGGATGA CCGCGCCTC ACACCCCCTC AGCACCCCTC AGCACCACCT	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD VSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC GGTGGTCATG GGAGGTGTCATG GGAGGTGCTG GGCAGGCGAG GTTACACGGCC CTACTGCTG GTACACGCC CTACTGCTG GGTAGCAGC CTCTGACTAC GGTGCTGTG GGTAGCGGC CTCTGACTAC GGTGCTGTG GGTAGCGGC CTACTGCTG AGTAGGGGA CCTGGCTGTGTG GGTGCTGTG GGTGCTGTG GGTGCTGTG GGTAGCAGC CCGGCACCTC CAAGTGCCTC CAAGTGCCTC CAAGTGCCTC CAGGCAAGTCT CTGGATGACC CTGACTAC CTGGATGACC CTGGATGACC CTGGATGACC CTGGATGACC CTGGATGACC CTGACTAC CTGGATGACC CTGGATGACC CTGGATGACC CTGGATGAC CTGACT CTGGATGAC CTGCATGAC	120 180 240 300 360 420 780 840 900 120 180 240 300 3420 480 540 660 720 780 660 720 720 720 720 720 720 720 720 720 72
50556065707580	GLQHLAPPPP MLKSVSRKC DEKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TTASRFYRID SLQGDAAPPQ YLLDHAPPEIA AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequal control of the control o	TPGAPCSESE AACKIVNHTP FQQKFTFHSK FQQKFTFHSK FQQKTFHSK FQQKTFHSK FQQKTFHSK FQQKTFHSK KILQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA sec id Accession Dence: 1-166 11 AGCTGACGAC GCATCCTGGC CCTTCGGCCT TCCTGGACCA GCAGCTCGGT GCCACCGCA AGCAGCCCA AGCAGGCCGC AGCAGCCCA AGCAGCCCA AGCAGCCCA AGCAGCCCA AGCAGCCTC CCACACACTCA AGTGGCCTT TCCTGAGCCT TCCTGAGCCT TCCTGAGCCT CCACTAAGTA AGTGGCTCT CCACTAAGTA AGTGGCTCTC GCCCGCCTCCCCCACTCCG GCCCCACTCCG GCCCCCTCCCCCCCCCC	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA BSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV 1 ** AF23277 52 21 AGCCTGCGT AGCCCTAGTGG GGAGACTGTG GGCCCAGGCC CTTCTTTGTG GCAGGAGGGC CTTCTTTGTG GCAGGAGGGC CTTCTTTGTG GCAGGAGGGC CTTCTTTGTG GCAGGAGGGC CTTCTTTGTG CAGGAGGGC CTTCTTGGC CAGGAGGGC CTTCTTTGTC CTTGGCAGC CTTCGGTGG CAACATCTCC CAACATCTCC GAACATCTCC GAACATCTC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC KKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ATCCTGGGCC CGACGTGCCG TACATGCTGCT TACATGCTGCT TACATGCTGCT TGCGCAT TGCGCAT TGCGCACA ATCCTGAGG GTCCTGAGG GTCCTGAGG TACGACTCAT CGGCCTGCC CGCAACAGCC AAGTGCAGCA ATGGACGTG TACGACTCAT CGGCCTGCC CGCAACAGCC TACGTCCAACAGCC TACATCCATC TACATCCATC TACATCCTCCTCC TACATCCTCC TACATCCTCC TCCTCCTCC CCCTAACACCAC TCTCCTCCC CTCTTCCTCC CTCTTCCTCG	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLI DEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGGCTGTT AGTTCATCCA ACTTCCAGGA CTGACCTGCA ACTCCAGGAGGT TGCACCTGCA ACTCCATGA ACATCTTCCA ACTCCATGA ACATCTTCCA ACTCCATGA ACGGGGATGT GCGAGGTCAT AGGACTCTA CCGGGGATGT CCGAGGCCTC AGCACCCCCA CCGGGGATGA CCGCGCGCTC AAACCCGCTG AGCACCACCT TGCCCACGGT TGACGGTGCA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD YSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC CGTGGTCAT CGAGGTGCTG GGTGCGGCC CACTGTCTG GGTACACGGCC CACTGTCTG TTCCTGGAG CCGGCACCT CCAAGTGCTC CAAGTGCTC CAGGTACAC CCTAGCTC CTGGTGCTC CTGGTGCTC CTGGTGCTC CTGGTGCTC CTGGTGCCC CTGGTGCTC CTGGTGCTC CTGGTGCTC CTGGTGCCC CTGGTGCTC CTGGTGCTC CTGGTTGCTC CTGGTTGTTC CTGTTGTTGCT	120 180 240 300 360 420 780 840 900 120 120 120 360 420 360 720 780 840 900 960 1020 1020 1020 1140
50556065707580	GLQHLAPPPP MLKSVSRKC DEKCRHCGKG PPTWILRARR NPKSGGNQGA LSTLDQLRLK LHAEPNPEAG KMFYAGTAFS GHPGEHHDFE GEPCKLAASR TTASRFYRID SLQGDAAPPQ YLLDHAPPEIA AQDTELAAYL Seq ID NO: Nucleic Ac: Coding sequal control of the control o	TPGAPCSESE AACKIVNHTP FQQKFTFHSK FQQKFTFHSK FQQKFTFHSK FQQKFTFHSK KIIQSFLWYL PPPPVAILPL PEDRDEGATD DFLMGSSKDL PQRHDDGYLE IRIALRNQAT VPLGTVVVPG RAQEHLNYVT GEELIEAAKR LDAVEENGET ENRQHYQMIQ 173 DNA secid Accession ence: 1-166 11 AGCTGACGAC CCTTCGGCCT TCCTGGACCA GCGGCTCGGCT	RQIRSTVDWS CIEQLEKINF EIVAISCSWC KKRASFKRKS NPRQVFDLSQ GTGNDLARTL RLPLDVFNNY AKHIRVVCDG VIGFTMTSLA MVQKAKRRSA BSDLELCRAH EIAQDEIYIL NDFCKLQELH CLHQAAALGQ REDQETAV 1 ** AF23277 52 21 AGCCTGCGT AGCCCTAGTGG GGAGACTGTG GGCCCAGGCC CTTCTTTGTG GCAGGAGGGC CTTCTTTGTG GCAGGAGGGC CTTCTTTGTG GCAGGAGGGC CTTCTTTGTG GCAGGAGGGC CTTCTTTGTG CAGGAGGGC CTTCTTGGC CAGGAGGGC CTTCTTTGTC CTTGGCAGC CTTCGGTGG CAACATCTCC CAACATCTCC GAACATCTCC GAACATCTC	ESATYGEHIW RCKPSFRESG KQAYHSKVSC KKGPEGRW GGPKEALEMY NWGGGYTDEP FSLGFDAHVT MDLTPKIQDL ALQVGGHGER APLHSDQQPV IERLQQEPDG DPELLGASAR RAGGDLMHRD RTICHYIVEA 2 31 GTGGTGGGCA ATCCTGGGCC CGACGTGCCG TACATGCTGCT TACATGCTGCT TACATGCTGCT TGCGCAT TGCGCAT TGCGCACA ATCCTGAGG GTCCTGAGG GTCCTGAGG TACGACTCAT CGGCCTGCC CGCAACAGCC AAGTGCAGCA ATGGACGTG TACGACTCAT CGGCCTGCC CGCAACAGCC TACGTCCAACAGCC TACATCCATC TACATCCATC TACATCCTCCTCC TACATCCTCC TACATCCTCC TCCTCCTCC CCCTAACACCAC TCTCCTCCC CTCTTCCTCC CTCTTCCTCG	FETNVSGDFC SRNVREPTFV FMLQQIEEPC RPFIIRPTPS RKVHNLRILA VSKILSHVEE LEFHESREAN KPQCVVFLNI LTQCREVVLI DEQLRIQVSR AGAKSPTCQK PDLPTPTSPL EQSRTLLHHA GASLMKTDQQ 41 CCAGGCTGTT AGTTCATCCA ACTTCCAGGA CTGACCTGCA ACTCCAGGAGGT TGCACCTGCA ACTCCATGA ACATCTTCCA ACTCCATGA ACATCTTCCA ACTCCATGA ACGGGGATGT GCGAGGTCAT AGGACTCTA CCGGGGATGT CCGAGGCCTC AGCACCCCCA CCGGGGATGA CCGCGCGCTC AAACCCGCTG AGCACCACCT TGCCCACGGT TGACGGTGCA	YVGEQYCVAR RHHWVHRRRQ SLGVHAAVVI PLMKPLLVFV CGGDGTVGWI GNVVQLDRWD PEKFNSRFRN PRYCAGTMPW TSKAIPVQVD YSMHDYEALH LSPKWCFLDA PTSPCSPTPR VSTGSKDVVR GDTPRQRAEK 51 TGCCCTGGCA CACGGAAAAG CATTCAGAGC GAAGCTGCCC CCCTGACTAC CGTGGTCAT CGAGGTGCTG GGTGCGGCC CACTGTCTG GGTACACGGCC CACTGTCTG TTCCTGGAG CCGGCACCT CCAAGTGCTC CAAGTGCTC CAGGTACAC CCTAGCTC CTGGTGCTC CTGGTGCTC CTGGTGCTC CTGGTGCTC CTGGTGCCC CTGGTGCTC CTGGTGCTC CTGGTGCTC CTGGTGCCC CTGGTGCTC CTGGTGCTC CTGGTTGCTC CTGGTTGTTC CTGTTGTTGCT	120 180 240 300 360 420 480 600 780 840 900 120 180 360 420 480 540 600 600 600 720 780 840 900

```
CTCTACTCCC TCCTCTATAT GTCCAGCCTT CTGCCGGCCA AGATCTTTGC CATTGCTACC
       ATCAACAAAT CTGGCTGGGG CACCTCTGGC CGAAAAACCA TTGTGGTGAA CTTCATTGGC
                                                                              1440
       CTCATTCCTG TGTCCATCTG GGTGGCAGTT CTCCTGGAGG GGCTGGCCTA CACAGCTTAT
                                                                              1500
       TGCCAGGACC TGTTCAGTGA GACAGAGCTA GCCTTCCTTG TCTCTGGGGC TATACTGTAT
                                                                              1560
 5
       GGCTGCTACT GGGTGGCCCT CCTCATGCTA TATCTGGCCA TCATCGCCCG GCGATGTGGG
                                                                              1620
       AAGAAGCCGG AGCAGTACAG CTTGGCTTTT GCTGAGGTGT GACATGGCCC CCAAGCAGAG
                                                                              1680
       CGGGTAAAGT GCAATGGGTA AGGGAGGGAA GGGGAATGGA AGAGAAAAGA CAGGGTGGGA
       GGGAGGAGGG AGTGCTGTGT TTTAGTCTCT TAATGGTCCA AAGGACAAAT CTAAAATGCA
                                                                               1800
       AAGAACGGTG ATGTAGTATG GCCTGACAGC TCTGTTTAGA GGAGGCAACA CTGATCCCCC
                                                                              1860
10
       AGATGCAGGG CTGCAGGGGA TTCTGTGTTT TCAGACTGCC TGTCTGCTTG CATCTGCACA
                                                                              1920
       TAGGCAGTAG CCTCCTCCTG GGCTCCAGAG GGCACTCAGA AGTTGTGCTA AACCAAGTTA
                                                                              1980
       AGTCCCATTC AGTGGCAACT TGTGATAGGT ACCTGAGTGA CGGCAACCTG CGGAAGGAGG
                                                                              2040
       TTCTCCCAGC CCATCTGAAC ACAACCAGAG GTGGCAGGAG AATTTCTACT GAGCGAGGTG
                                                                               2100
       GGCCGGTTAG TGTATGTCAC CCCCACCCA CCCATAAGTA GTCATCAATG CAATAAGATT
                                                                               2160
15
       GCGCGTGAGA TACAAGGCCC AGAAGCCTGA TCTTTGGGCA TCAGAAAACA GGGTCCAGGA
                                                                              2220
       ATGGTGCTTT ATGTGAGATA CCCCACTCCA CATCAACATT CCAGGGATGA GCCAAACCAG
                                                                              2280
                                                                              2340
       CAGGGAGTTA GCACTGAACT GCTTTTAAAA GTGCACATTA AAAAGGAAAG TTTGCCAGGA
       GGAACAAAGA GATTGTGGTG GTGCTAAAGG AGGCCATAAG CTACACAGAG GCCTTGGGTG
                                                                              2400
       TTCCACCTGG AAACTGCTCA GACGTCTAGA TGGGTTCTTA GCTTGTCTGT GATCTCTGCT
                                                                               2460
       GGGGAGATAA AAAGATTAAG CCCCAACATG TTCAGAAAAG AAGTGAAGTC TTGGGTATTT
20
                                                                               2520
       TAACCTGTAT ACTCTTGAAT TCCTCTCAAA TTCAGCTCTG ATCTGAGGCT AAGACACACT
                                                                               2580
       CCCCACTTCA CTTTCTTCAA AGCCACATTT TTTGAGGTAT CACTGCAGTC ACCTCTTCTA
                                                                              2640
       CCCTCATCAT CATAGGTAAG GTTTTCAAGG TGGCAATTGG GGCGGAGCCC CGGCTTCTTA
                                                                              2700
       TAGAAGCTTC AGCAGGAGGC AAGCGTGTTC TCAGCACATA TGGGAACTAT GAGGAGCCTC
                                                                              2760
25
       TGATCAAATT GGCTACAATC TTGGAGCTGC TTGGACGGAT TCCTTGGCAG CCGGGTTAGC ATGTGTGACT TTCAGGCTAC TGTTCTTGAC AATCATCTCC AATGGAAAGC TTTTCAGTGT
                                                                               2820
                                                                              2880
       TCCCAAAGTG AACTCTCAAA TCCAAAATGG TTATCTTTGA GACCATCCAT TCTCCTCAGT
                                                                               2940
       GGCTTCTCCA GGGAATTCTT ACAGCCAAGT TGTGACAGTC ACTGCATTTG CCTGCTTCTT
                                                                               3000
       TCCAGAAACC AAACTAGGAG ATGAAACTGG TTCCTACATC CTAAGGTTCT TGCTTTCTCT
                                                                               3060
30
       CTCATGCCTC CTGAGGCTGT TTTTGGCTGT TTTCCCTCTG CTGCTTTTGG GGAATGAGGG
GAAGCCATTT TCCAAGTGAC TTGCAATCCA GGCTGTTCTC AGCGTTTTGA GTTTAAAACC
                                                                               3120
                                                                               3180
       TGGGATCCTG ACTAAGCCTT TGACTTAAGG GTTGCTTGCT TGCCCTCCAA ATGTCCTTTC
       TCAAAGGGGC CAACTAACCC GTGCAGAACC AGCACTAAGG TGGACAGCAG ACAAGAGGGC
                                                                               3300
       AAGCCTCTAA TGTACCAAGT GCTTCCTACA AAGACGCAAG GTGTGCTCCG AACCACAGAT
                                                                              3360
35
       GGGCAAACCC TGGTGCTTTC CTTCATCTCC CACGAACTCA AGGGTTTTCC AAGTGTAGCT
                                                                               3420
       AACAGTTGCC ACATCACACA GACCTCCAGT TTCTGGTAAG ACTGCTGGTT GACATCAGAC
                                                                               3480
       CCAACCCATT GAAGGCTGGA AGGCAGCAGG CATTTGCTAA GGCAGCTGAT CCAGGCAATC
                                                                               3540
       GTTCTGCTGG CCAAGAAGTT AAACTATTTT GAGCATTAGA ATGGAGGAAA TCCGGTCAGC
                                                                               3600
       CAAGTGCAGA GTTCAGACTT CGCTAAGGGC TTGTTTTTCT TCAGCATTTA CTTGAAGATT
                                                                               3660
40
       AATGTAGGAT GACAGGCTCT CCTGGCTGTC CTACCATCAG CTCTGCCTTG CACTGTGGTC
                                                                               3720
       GTCAACTTTC CTCAAATCAA AAACAGGCAG GTACAGGTAG TGGGCTCACA ACGTTTGACC
                                                                               3780
       TCGACTGGTT TTTCTAAGTT ATTTTGTACA TTTTTCAGCA GCAAAACCAA ACTGGGTCTT
                                                                               3840
       CAGCTTTATC CCCGTTTCTT GCAAGGGAAG AGCCTTTATA CAATTGGACG CATTTTGGTT
                                                                               3900
       TTTCCTCATT GAGAATTCAA ATCCTCTTTT GTATTGTTTC TACAATAATT TGTAAACATA
45
       TTTATTTTTA CCTGCTTTTT TTTTTTTTTT TAATTTTCAG GTCAAGTTTT TTATACTGCA
        CTTATTTGTC AAAATAAAGA TTCTCACAT
       Seq ID NO: 174 Protein sequence:
       Protein Accession #: AAF36984
50
                                                                  51
                               21
                                           31
                                                       41
       MPVQLTTALR VVGTSLFALA VLGGILAAYV TGYQFIHTEK HYLSFGLYGA ILGLHLLIQS
                                                                                 60
       LFAFLEHRRM RRAGQALKLP SPRRGSVALC IAAYQEDPDY LRKCLRSAQR ISFPDLKVVM
VVDGNRQEDA YMLDIFHEVL GGTEQAGFFV WRSNFHEAGE GETEASLQEG MDRVRDVVRA
                                                                                120
55
       STFSCIMOKW GGKREVMYTA FKALGDSVDY IQVCDSDTVL DPACTIEMLR VLEEDPQVGG
                                                                                240
       VGGDVQILNK YDSWISFLSS VRYWMAFNVE RACQSYFGCV QCISGPLGMY RNSLLQQFLE
                                                                                300
       DWYHOKFLGS KCSFGDDRHL TNRVLSLGYR TKYTARSKCL TETPTKYLRW LNQQTRWSKS
                                                                                360
       YFREWLYNSL WFHKHHLWMT YESVVTGFFP FFLIATVIQL FYRGRIWNIL LFLLTVQLVG
                                                                                420
60
        IIKATYACFL RGNAEMIFMS LYSLLYMSSL LPAKIFAIAT INKSGWGTSG RKTIVVNFIG
                                                                                480
       LIPVSIWVAV LLEGLAYTAY CQDLFSETEL AFLVSGAILY GCYWVALLML YLAIIARRCG
       KKPEOVSTAF AEV
        Seg ID NO: 175 DNA seguence
65
       Nucleic Acid Accession #: NM_000691
       Coding sequence: 43..1404
                                           31
                                                       41
                                                                  51
                               21
                   11
70
        CCAGGAGCCC CAGTTACCGG GAGAGGCTGT GTCAAAGGCG CCATGAGCAA GATCAGCGAG
                                                                                 60
        GCCGTGAAGC GCGCCCGCGC CGCCTTCAGC TCGGGCAGGA CCCGTCCGCT GCAGTTCCGA
                                                                                120
        TTCCAGCAGC TGGAGGCGCT GCAGCGCCTG ATCCAGGAGC AGGAGCAGGA GCTGGTGGGC
                                                                                180
        GCGCTGGCCG CAGACCTGCA CAAGAATGAA TGGAACGCCT ACTATGAGGA GGTGGTGTAC
75
        GTCCTAGAGG AGATCGAGTA CATGATCCAG AAGCTCCCTG AGTGGGCCGC GGATGAGCCC
                                                                                300
        GTGGAGAAGA CGCCCCAGAC TCAGCAGGAC GAGCTCTACA TCCACTCGGA GCCACTGGGC
                                                                                360
        GTGGTCCTCG TCATTGGCAC CTGGAACTAC CCCTTCAACC TCACCATCCA GCCCATGGTG
                                                                                420
        GGCGCCATCG CTGCAGGGAA CGCAGTGGTC CTCAAGCCCT CGGAGCTGAG TGAGAACATG
                                                                                480
        GCGAGCCTGC TGGCTACCAT CATCCCCCAG TACCTGGACA AGGATCTGTA CCCAGTAATC
80
        AATGGGGGTG TCCCTGAGAC CACGGAGCTG CTCAAGGAGA GGTTCGACCA TATCCTGTAC
                                                                                600
        ACGGGCAGCA CGGGGGTGGG GAAGATCATC ATGACGGCTG CTGCCAAGCA CCTGACCCCT
                                                                                660
        GTCACGCTGG AGCTGGGAGG GAAGAGTCCC TGCTACGTGG ACAAGAACTG TGACCTGGAC
                                                                                720
        GTGGCCTGCC GACGCATCGC CTGGGGGAAA TTCATGAACA GTGGCCAGAC CTGCGTGGCC
                                                                                780
        CCAGACTACA TCCTCTGTGA CCCCTCGATC CAGAACCAAA TTGTGGAGAA GCTCAAGAAG TCACTGAAAG AGTTCTACGG GGAAGATGCT AAGAAATCCC GGGACTATGG AAGAATCATT
                                                                                840
85
                                                                                900
        AGTGCCCGGC ACTTCCAGAG GGTGATGGGC CTGATTGAGG GCCAGAAGGT GGCTTATGGG
        GGCACCGGGG ATGCCGCCAC TCGCTACATA GCCCCCACCA TCCTCACGGA CGTGGACCCC
                                                                               1020
```

```
CAGTCCCCGG TGATGCAAGA GGAGATCTTC GGGCCTGTGC TGCCCATCGT GTGCGTGCGC
                                                                             1080
       AGCCTGGAGG AGGCCATCCA GTTCATCAAC CAGCGTGAGA AGCCCCTGGC CCTCTACATG
                                                                             1140
       TTCTCCAGCA ACGACAAGGT GATTAAGAAG ATGATTGCAG AGACATCCAG TGGTGGGGTG
                                                                             1200
       GCGGCCAACG ATGTCATCGT CCACATCACC TTGCACTCTC TGCCCTTCGG GGGCGTGGGG
                                                                             1260
 5
       AACAGCGGCA TGGGATCCTA CCATGGCAAG AAGAGCTTCG AGACTTTCTC TCACCGCCGC
                                                                             1320
       TCTTGCCTGG TGAGGCCTCT GATGAATGAT GAAGGCCTGA AGGTCAGATA CCCCCCGAGC
                                                                             1380
       1440
       CCCATCGGAG TGCGGACCAC CCTCACTGGC TCTCCTGGCC CTGGAGAATC GCTCCTGCAG
                                                                             1500
       CCCCAGCCCA GCCCCACTCC TCTGCTGACC TGCTGACCTG TGCACACCCC ACTCCCACAT
                                                                             1560
10
       GGGCCCAGGC CTCACCATTC CAAGTCTCCA CCCCTTTCTA GACCAATAAA GAGACAAATA
                                                                             1620
       CAATTTTCTA ACTCGG
       Seq ID NO: 176 Protein sequence:
       Protein Accession #: NP 000682
15
                                                     41
                                                                 51
       MSKISEAVKR ARAAFSSGRT RPLQFRFQQL EALQRLIQEQ EQELVGALAA DLHKNEWNAY
                                                                                60
       YEEVVYVLEE IEYMIQKLPE WAADEPVEKT PQTQQDELYI HSEPLGVVLV IGTWNYPFNL
                                                                               120
       TIQPMVGAIA AGNAVVLKPS ELSENMASLL ATIIPQYLDK DLYPVINGGV PETTELLKER
20
       FDHILYTGST GVGKIIMTAA AKHLTPVTLE LGGKSPCYVD KNCDLDVACR RIAWGKFMNS
                                                                               240
       GQTCVAPDYI LCDPSIQNQI VEKLKKSLKE FYGEDAKKSR DYGRIISARH FQRVMGLIEG
                                                                               300
       QKVAYGGTGD AATRYIAPTI LTDVDPQSPV MQEEIFGPVL PIVCVRSLEE AIQFINQREK
                                                                               360
       PLALYMFSSN DKVIKKMIAE TSSGGVAAND VIVHITLHSL PFGGVGNSGM GSYHGKKSFE
                                                                               420
25
       TESHERSCLV RPLMNDEGLK VRYPPSPAKM TOH
       Seg ID NO: 177 DNA seguence
       Nucleic Acid Accession #: NM 001067.1
       Coding sequence: 108-4703
30
                                                                 51
                              21
                                          31
                                                     41
                   11
       CTAACCGACG CGCGTCTGTG GAGAAGCGGC TTGGTCGGGG GTGGTCTCGT GGGGTCCTGC
       CTGTTTAGTC GCTTTCAGGG TTCTTGAGCC CCTTCACGAC CGTCACCATG GAAGTGTCAC
                                                                               120
35
       CATTGCAGCC TGTAAATGAA AATATGCAAG TCAACAAAAT AAAGAAAAAT GAAGATGCTA
                                                                               180
       AGAAAAGACT GTCTGTTGAA AGAATCTATC AAAAGAAAAC ACAATTGGAA CATATTTTGC
                                                                               240
       TCCGCCCAGA CACCTACATT GGTTCTGTGG AATTAGTGAC CCAGCAAATG TGGGTTTACG ATGAAGATGT TGGCATTAAC TATAGGGAAG TCACTTTTGT TCCTGGTTTG TACAAAATCT
                                                                               300
       TTGATGAGAT TCTAGTTAAT GCTGCGGACA ACAAACAAAG GGACCCAAAA ATGTCTTGTA
                                                                               420
40
       TTAGAGTCAC AATTGATCCG GAAAACAATT TAATTAGTAT ATGGAATAAT GGAAAAGGTA
                                                                               480
       TTCCTGTTGT TGAACACAAA GTTGAAAAGA TGTATGTCCC AGCTCTCATA TTTGGACAGC
                                                                               540
       TCCTAACTTC TAGTAACTAT GATGATGATG AAAAGAAAGT GACAGGTGGT CGAAATGGCT
                                                                               600
       ATGGAGCCAA ATTGTGTAAC ATATTCAGTA CCAAATTTAC TGTGGAAACA GCCAGTAGAG
                                                                               660
       AATACAAGAA AATGTTCAAA CAGACATGGA TGGATAATAT GGGAAGAGCT GGTGAGATGG
                                                                               720
       AACTCAAGCC CTTCAATGGA GAAGATTATA CATGTATCAC CTTTCAGCCT GATTTGTCTA
45
                                                                               780
       AGTTTAAAAT GCAAAGCCTG GACAAAGATA TTGTTGCACT AATGGTCAGA AGAGCATATG
                                                                               840
       ATATTGCTGG ATCCACCAAA GATGTCAAAG TCTTTCTTAA TGGAAATAAA CTGCCAGTAA
                                                                               900
       AAGGATTTCG TAGTTATGTG GACATGTATT TGAAGGACAA GTTGGATGAA ACTGGTAACT
                                                                               960
                                                                              1020
       CCTTGAAAGT AATACATGAA CAAGTAAACC ACAGGTGGGA AGTGTGTTTA ACTATGAGTG
50
       AAAAAGGCTT TCAGCAAATT AGCTTTGTCA ACAGCATTGC TACATCCAAG GGTGGCAGAC
                                                                              1080
       ATGTTGATTA TGTAGCTGAT CAGATTGTGA CTAAACTTGT TGATGTTGTG AAGAAGAAGA
                                                                              1140
       ACAAGGGTGG TGTTGCAGTA AAAGCACATC AGGTGAAAAA TCACATGTGG ATTTTTGTAA
                                                                              1200
       ATGCCTTAAT TGAAAACCCA ACCTTTGACT CTCAGACAAA AGAAAACATG ACTTTACAAC
                                                                              1260
       CCAAGAGCTT TGGATCAACA TGCCAATTGA GTGAAAAATT TATCAAAGCT GCCATTGGCT
                                                                              1320
55
       GTGGTATTGT AGAAAGCATA CTAAACTGGG TGAAGTTTAA GGCCCAAGTC CAGTTAAACA
                                                                              1380
       AGAAGTGTTC AGCTGTAAAA CATAATAGAA TCAAGGGAAT TCCCAAACTC GATGATGCCA
ATGATGCAGG GGGCCGAAAC TCCACTGAGT GTACGCTTAT CCTGACTGAG GGAGATTCAG
                                                                              1440
                                                                              1500
       CCAAAACTTT GGCTGTTTCA GGCCTTGGTG TGGTTGGGAG AGACAAATAT GGGGTTTTCC
                                                                              1560
       CTCTTAGAGG AAAAATACTC AATGTTCGAG AAGCTTCTCA TAAGCAGATC ATGGAAAATG
                                                                              1620
60
       CTGAGATTAA CAATATCATC AAGATTGTGG GTCTTCAGTA CAAGAAAAAC TATGAAGATG
                                                                              1680
       AAGATTCATT GAAGACGCTT CGTTATGGGA AGATAATGAT TATGACAGAT CAGGACCAAG
ATGGTTCCCA CATCAAAGGC TTGCTGATTA ATTTTATCCA TCACAACTGG CCCTCTCTC
                                                                              1740
                                                                              1800
       TGCGACATCG TTTTCTGGAG GAATTTATCA CTCCCATTGT AAAGGTATCT AAAAACAAGC
                                                                              1860
       AAGAAATGGC ATTTTACAGC CTTCCTGAAT TTGAAGAGTG GAAGAGTTCT ACTCCAAATC
                                                                              1920
65
       ATAAAAATG GAAAGTCAAA TATTACAAAG GTTTGGGCAC CAGCACATCA AAGGAAGCTA
                                                                              1980
       AAGAATACTT TGCAGATATG AAAAGACATC GTATCCAGTT CAAATATTCT GGTCCTGAAG
                                                                              2040
       ATGATGCTGC TATCAGCCTG GCCTTTAGCA AAAAACAGAT AGATGATCGA AAGGAATGGT
                                                                              2100
       TAACTAATTT CATGGAGGAT AGAAGACAAC GAAAGTTACT TGGGCTTCCT GAGGATTACT
                                                                              2160
       TGTATGGACA AACTACCACA TATCTGACAT ATAATGACTT CATCAACAAG GAACTTATCT
                                                                              2220
70
       TGTTCTCAAA TTCTGATAAC GAGAGATCTA TCCCTTCTAT GGTGGATGGT TTGAAACCAG
                                                                              2280
       GTCAGAGAAA GGTTTTGTTT ACTTGCTTCA AACGGAATGA CAAGCGAGAA GTAAAGGTTG
                                                                              2340
       CCCAATTAGC TGGATCAGTG GCTGAAATGT CTTCTTATCA TCATGGTGAG ATGTCACTAA
                                                                              2400
       TGATGACCAT TATCAATTTG GCTCAGAATT TTGTGGGTAG CAATAATCTA AACCTCTTGC AGCCCATTGG TCAGTTTGGT ACCAGGCTAC ATGGTGGCAA GGATTCTGCT AGTCCACGAT
                                                                              2460
                                                                              2520
75
       ACATCTTTAC AATGCTCAGC TCTTTGGCTC GATTGTTATT TCCACCAAAA GATGATCACA
                                                                              2580
       CGTTGAAGTT TTTATATGAT GACAACCAGC GTGTTGAGCC TGAATGGTAC ATTCCTATTA
                                                                              2640
       TTCCCATGGT GCTGATAAAT GGTGCTGAAG GAATCGGTAC TGGGTGGTCC TGCAAAATCC
                                                                              2700
       CCAACTTTGA TGTGCGTGAA ATTGTAAATA ACATCAGGCG TTTGATGGAT GGAGAAGAAC
                                                                              2760
        CTTTGCCAAT GCTTCCAAGT TACAAGAACT TCAAGGGTAC TATTGAAGAA CTGGCTCCAA
                                                                              2820
80
       ATCAATATGT GATTAGTGGT GAAGTAGCTA TTCTTAATTC TACAACCATT GAAATCTCAG
                                                                              2880
       AGCTTCCCGT CAGAACATGG ACCCAGACAT ACAAAGAACA AGTTCTAGAA CCCATGTTGA
                                                                              2940
       ATGGCACCGA GAAGACACCT CCTCTCATAA CAGACTATAG GGAATACCAT ACAGATACCA
                                                                              3000
       CTGTGAAATT TGTTGTGAAG ATGACTGAAG AAAAACTGGC AGAGGCAGAG AGAGTTGGAC
                                                                              3060
       TACACAAAGT CTTCAAACTC CAAACTAGTC TCACATGCAA CTCTATGGTG CTTTTTGACC
                                                                              3120
85
        ACGTAGGCTG TTTAAAGAAA TATGACACGG TGTTGGATAT TCTAAGAGAC TTTTTTGAAC
                                                                              3180
        TCAGACTTAA ATATTATGGA TTAAGAAAAG AATGGCTCCT AGGAATGCTT GGTGCTGAAT
                                                                              3240
        CTGCTAAACT GAATAATCAG GCTCGCTTTA TCTTAGAGAA AATAGATGGC AAAATAATCA
                                                                              3300
```

```
TTGAAAATAA GCCTAAGAAA GAATTAATTA AAGTTCTGAT TCAGAGGGGA TATGATTCGG
                                                                           3360
       ATCCTGTGAA GGCCTGGAAA GAAGCCCAGC AAAAGGTTCC AGATGAAGAA GAAAATGAAG
                                                                           3420
       AGAGTGACAA CGAAAAGGAA ACTGAAAAGA GTGACTCCGT AACAGATTCT GGACCAACCT
                                                                           3480
       TCAACTATCT TCTTGATATG CCCCTTTGGT ATTTAACCAA GGAAAAGAAA GATGAACTCT
                                                                           3540
 5
       GCAGGCTAAG AAATGAAAAA GAACAAGAGC TGGACACATT AAAAAGAAAG AGTCCATCAG
                                                                           3600
       ATTTGTGGAA AGAAGACTTG GCTACATTTA TTGAAGAATT GGAGGCTGTT GAAGCCAAGG
                                                                           3660
       AAAAACAAGA TGAACAAGTC GGACTTCCTG GGAAAGGGGG GAAGGCCAAG GGGAAAAAA
       CACAAATGGC TGAAGTTTTG CCTTCTCCGC GTGGTCAAAG AGTCATTCCA CGAATAACCA
                                                                           3780
       TAGAAATGAA AGCAGAGGCA GAAAAGAAAA ATAAAAAGAA AATTAAGAAT GAAAATACTG
                                                                           3840
10
       AAGGAAGCCC TCAAGAAGAT GGTGTGGAAC TAGAAGGCCT AAAACAAAGA TTAGAAAAGA
                                                                           3900
       AACAGAAAAG AGAACCAGGT ACAAAGACAA AGAAACAAAC TACATTGGCA TTTAAGCCAA
                                                                           3960
       TCAAAAAAGG AAAGAAGAG AATCCCTGGC CTGATTCAGA ATCAGATAGG AGCAGTGACG
                                                                           4020
       AAAGTAATTT TGATGTCCCT CCACGAGAAA CAGAGCCACG GAGAGCAGCA ACAAAAACAA
                                                                           4080
       AATTCACAAT GGATTTGGAT TCAGATGAAG ATTTCTCAGA TTTTGATGAA AAAACTGATG
                                                                           4140
15
       ATGAAGATTT TGTCCCATCA GATGCTAGTC CACCTAAGAC CAAAACTTCC CCAAAACTTA
                                                                           4200
       GTAACAAGA ACTGAAACCA CAGAAAGTG TCGTGTCAGA CCTTGAAGCT GATGATGTTA
                                                                           4260
       AGGGCAGTGT ACCACTGTCT TCAAGCCCTC CTGCTACACA TTTCCCAGAT GAAACTGAAA
                                                                           4320
       TTACAAACCC AGTTCCTAAA AAGAATGTGA CAGTGAAGAA GACAGCAGCA AAAAGTCAGT
                                                                           4380
       CTTCCACCTC CACTACCGGT GCCAAAAAA GGGCTGCCCC AAAAGGAACT AAAAGGGATC
                                                                           4440
20
       CAGCTTTGAA TTCTGGTGTC TCTCAAAAGC CTGATCCTGC CAAAACCAAG AATCGCCGCA
                                                                           4500
       AAAGGAAGCC ATCCACTTCT GATGATTCTG ACTCTAATTT TGAGAAAATT GTTTCGAAAG
                                                                           4560
       CAGTCACAAG CAAGAAATCC AAGGGGGAGA GTGATGACTT CCATATGGAC TTTGACTCAG
                                                                           4620
       CTGTGGCTCC TCGGGCAAAA TCTGTACGGG CAAAGAAACC TATAAAGTAC CTGGAAGAGT
                                                                           4680
       CAGATGAAGA TGATCTGTTT TAAAATGTGA GGCGATTATT TTAAGTAATT ATCTTACCAA
                                                                           4740
25
       GCCCAAGACT GGTTTTAAAG TTACCTGAAG CTCTTAACTT CCTCCCCTCT GAATTTAGTT
                                                                           4800
       TGGGGAAGGT GTTTTTAGTA CAAGACATCA AAGTGAAGTA AAGCCCAAGT GTTCTTTAGC
                                                                           4860
       TTTTTATAAT ACTGTCTAAA TAGTGACCAT CTCATGGGCA TTGTTTTCTT CTCTGCTTTG
                                                                           4920
       TCTGTGTTTT GAGTCTGCTT TCTTTTGTCT TTAAAACCTG ATTTTTAAGT TCTTCTGAAC
                                                                           4980
       TGTAGAAATA GCTATCTGAT CACTTCAGCG TAAAGCAGTG TGTTTATTAA CCATCCACTA
                                                                           5040
30
       AGCTAAAACT AGAGCAGTTT GATTTAAAAG TGTCACTCTT CCTCCTTTTC TACTTTCAGT
                                                                           5100
       AGATATGAGA TAGAGCATAA TTATCTGTTT TATCTTAGTT TTATACATAA TTTACCATCA
                                                                           5160
       GATAGAACTT TATGGTTCTA GTACAGATAC TCTACTACAC TCAGCCTCTT ATGTGCCAAG
                                                                           5220
       TTTTTCTTTA AGCAATGAGA AATTGCTCAT GTTCTTCATC TTCTCAAATC ATCAGAGGCC
                                                                           5280
       AAAGAAAAC ACTTTGGCTG TGTCTATAAC TTGACACAGT CAATAGAATG AAGAAAATTA
                                                                           5340
35
       GAGTAGTTAT GTGATTATTT CAGCTCTTGA CCTGTCCCCT CTGGCTGCCT CTGAGTCTGA
                                                                           5400
       ATCTCCCAAA GAGAGAAACC AATTTCTAAG AGGACTGGAT TGCAGAAGAC TCGGGGACAA
                                                                           5460
       CATTTGATCC AAGATCTTAA ATGTTATATT GATAACCATG CTCAGCAATG AGCTATTAGA
                                                                           5520
       TTCATTTTGG GAAATCTCCA TAATTTCAAT TTGTAAACTT TGTTAAGACC TGTCTACATT
                                                                           5580
       GTTATATGTG TGTGACTTGA GTAATGTTAT CAACGTTTTT GTAAATATTT ACTATGTTTT
                                                                           5640
40
       TCTATTAGCT AAATTCCAAC AATTTTGTAC TTTAATAAAA TGTTCTAAAC ATTGC
       Seg ID NO: 178 Protein seguence:
       Protein Accession #: NP_001058.1
45
                             21
                                                    41
                                                              51
                  11
                                        31
       MEVSPLOPVN ENMOVNKIKK NEDAKKRLSV ERIYOKKTOL EHILLRPDTY IGSVELVTQQ
                                                                             60
       MWVYDEDVGI NYREVTFVPG LYKIFDEILV NAADNKORDP KMSCIRVTID PENNLISIWN
                                                                            120
       NGKGIPVVEH KVEKMYVPAL IFGQLLTSSN YDDDEKKVTG GRNGYGAKLC NIFSTKFTVE
50
       TASREYKKMF KQTWMDNMGR AGEMELKPFN GEDYTCITFQ PDLSKFKMQS LDKDIVALMV
                                                                            240
       RRAYDIAGST KDVKVFLNGN KLPVKGFRSY VDMYLKDKLD ETGNSLKVIH EQVNHRWEVC
                                                                            300
       LTMSEKGFQQ ISFVNSIATS KGGRHVDYVA DQIVTKLVDV VKKKNKGGVA VKAHQVKNHM
                                                                            360
       WIFVNALIEN PTFDSOTKEN MTLOPKSFGS TCOLSEKFIK AAIGCGIVES ILNWVKFKAQ
                                                                            420
       VOLNKKCSAV KHNRIKGIPK LDDANDAGGR NSTECTLILT EGDSAKTLAV SGLGVVGRDK
                                                                            480
55
       YGVFPLRGKI LNVREASHKQ IMENAEINNI IKIVGLQYKK NYEDEDSLKT LRYGKIMIMT
       DODODGSHIK GLLINFIHHN WPSLLRHRFL EEFITPIVKV SKNKQEMAFY SLPEFEEWKS
                                                                            600
       STPNHKKWKV KYYKGLGTST SKEAKEYFAD MKRHRIQFKY SGPEDDAAIS LAFSKKQIDD
                                                                            660
       RKEWLTNFME DRRORKLLGL PEDYLYGOTT TYLTYNDFIN KELILFSNSD NERSIPSMVD
                                                                            720
       GLKPGQRKVL FTCFKRNDKR EVKVAQLAGS VAEMSSYHHG EMSLMMTIIN LAQNFVGSNN
                                                                            780
60
      LNLLOPIGOF GTRLHGGKDS ASPRYIFTML SSLARLLFPP KDDHTLKFLY DDNQRVEPEW
                                                                            840
       YIPIIPMVLI NGAEGIGTGW SCKIPNFDVR EIVNNIRRLM DGEEPLPMLP SYKNFKGTIE
                                                                            900
       ELAPNOYVIS GEVAILNSTT IEISELPVRT WTQTYKEQVL EPMLNGTEKT PPLITDYREY
                                                                            960
      HTDTTVKFVV KMTEEKLAEA ERVGLHKVFK LQTSLTCNSM VLFDHVGCLK KYDTVLDILR
                                                                           1020
      DFFELRLKYY GLRKEWLLGM LGAESAKLNN OARFILEKID GKIIIENKPK KELIKVLIQR
                                                                           1080
65
      GYDSDPVKAW KEAQQKVPDE EENEESDNEK ETEKSDSVTD SGPTFNYLLD MPLWYLTKEK
                                                                           1140
       KDELCRLRNE KEQELDTLKR KSPSDLWKED LATFIEELEA VEAKEKQDEQ VGLPGKGGKA
                                                                           1200
       KGKKTOMAEV LPSPRGQRVI PRITIEMKAE AEKKNKKKIK NENTEGSPQE DGVELEGLKQ
                                                                           1260
       RLEKKOKREP GTKTKKOTTL AFKPIKKGKK RNPWPDSESD RSSDESNFDV PPRETEPRRA
                                                                           1320
      ATKTKFTMDL DSDEDFSDFD EKTDDEDFVP SDASPPKTKT SPKLSNKELK PQKSVVSDLE
                                                                          1380
70
       ADDVKGSVPL SSSPPATHFP DETEITNPVP KKNVTVKKTA AKSOSSTSTT GAKKRAAPKG
                                                                          1440
       TKRDPALNSG VSQKPDPAKT KNRRKRKPST SDDSDSNFEK IVSKAVTSKK SKGESDDFHM
                                                                          1500
      DFDSAVAPRA KSVRAKKPIK YLEESDEDDL F
75
      Seq ID NO: 179 DNA sequence
      Nucleic Acid Accession #: Eos sequence
      Coding sequence: 148-7095
                  דב
                             21
                                        31
                                                   41
80
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
                                                                             60
       CAAAAAAAC ATTTCCTTCG CTCCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
                                                                            120
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
                                                                            180
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
                                                                            240
85
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAA TTGGGGAAAG
                                                                            300
       AAATATCCAA CATGTAATAG CCCAAAACAA TCTCCTATCA ATATTGATGA AGATCTTACA
                                                                            360
       CAAGTAAATG TGAATCTTAA GAAACTTAAA TTTCAGGGTT GGGATAAAAC ATCATTGGAA
                                                                            420
```

		TTCATAACAC					480
		GAGTTTCAGA					540
		TGTCATCTGA					600
5		TCTACTGCTT					660
5		AGTTAAGAGC CGATTATTGA					720 780
		TCATACTGTT					840
		TGACATCTCC					900
		TCTCTGAAAG					960
10		TCATGCTGAT					1020
	TTCTCTAGAC	AGGTGTTTTC	CTCATACACT	GGAAAGGAAG	AGATTCATGA	AGCAGTTTGT	1080
	AGTTCAGAAC	CAGAAAATGT	TCAGGCTGAC	CCAGAGAATT	ATACCAGCCT	TCTTGTTACA	1140
		CTCGAGTCGT					1200
15		GAGAGGACCA					1260
15		TCAATAATTT					1320
		GCTTATATGG TTGATCTTTT					1380 1440
		AAGACATTGA					1500
		GGAAAAAGGA					1560
20		ATGAAGCCAA					1620
		TTCCCAATAC					1680
	ACAGAAAAAG	ATATTTCCTT	GACTTCTCAG	ACTGTGACTG	AACTGCCACC	TCACACTGTG	1740
		CAGCCTCTTT					1800
25		GGACTGCAGA					1860
25		CCAGTTTCAA					1920
		CTATCCCATT					1980 2040
		AGACAATAAC CTTCATCAGG					2100
		CTAGCTCTAC					2160
30		AGACTAATTA					2220
50	TCCTTTTCTG	CAGGCCCAGT	GATGTCACAG	GGTCCCTCAG	TTACAGATCT	GGAAATGCCA	2280
	CATTATTCTA	CCTTTGCCTA	CTTCCCAACT	GAGGTAACAC	CTCATGCTTT	TACCCCATCC	2340
	TCCAGACAAC	AGGATTTGGT	CTCCACGGTC	AACGTGGTAT	ACTCGCAGAC	AACCCAACCG	2400
2.5	GTATACAATG	GTGAGACACC	TCTTCAACCT	TCCTACAGTA	GTGAAGTCTT	TCCTCTAGTC	2460
35		TGCTTGACAA					2520
		ATGCTACGCC					2580 2640
		ATGGTGCACC TGCATACAGT					2700
		CCTTGCATGC					2760
40	AGCCTTGCTC	AGTATTCTGA	TGTGCTGTCC	ACTACTCATG	CTGCTTCAGA	GACGCTGGAA	2820
	TTTGGTAGTG	AATCTGGTGT	TCTTTATAAA	ACGCTTATGT	TTTCTCAAGT	TGAACCACCC	2880
	AGCAGTGATG	CCATGATGCA	TGCACGTTCT	TCAGGGCCTG	AACCTTCTTA	TGCCTTGTCT	2940
	GATAATGAGG	GCTCCCAACA	CATCTTCACT	GTTTCTTACA	GTTCTGCAAT	ACCTGTGCAT	3000
45	GATTCTGTGG	GTGTAACTTA	TCAGGGTTCC	TTATTTAGCG	GCCCTAGCCA	TATACCAATA	3060 3120
45		CGTTAATAAC AATGGTCTGG					3180
		CCCTTAACAT					3240
		GTGATGATAA					3300
		AAATTCCTTC					3360
50	CCCAACATGT	ATGATAATGT	AAATAAGTTG	AATGCGTCTT	TACAAGAAAC	CTCTGTTTCC	3420
		CCAAGGGCAT					3480
		TTAGTCAAGT					3540
		CTGGTGACAC					3600 3660
55		CTGCTTCTAG CTTTTAGTAC					3720
33		TTAAAACTGT					3780
		ATAAAATTAG					3840
		TGCTGCACTC					3900
	ATGCACTCTG	CTTCACTTCA	AGGTTTGACC	ATTTCCTATG	CAAGTGAGAA	ATATGAACCA	3960
60		AAAGTGAAAG					4020
		CGGCCAATTT					4080
		CTGTTTTATC					4140
	CATTCCGATG	AAATTTTAAC	CTCCACCAAA	AGTTCTGTTA	CTGGTAAGGT	ATTTGCTGGT	4200
65	ATTCCAACAG	CCATTACAC	TACATTTGTA	CACACACACATC	GTTCTGTTCC	TATAGGAAAT CTCAACAAAG	4260 4320
05						TGATGCCGGT	4380
	TTAGTGGGTG	GTGGTGAAGA	TGGTGACACT	GATGATGATG	GTGATGATGA	TGATGATGAC	4440
	AGAGGTAGTG	ATGGCTTATC	CATTCATAAG	TGTATGTCAT	GCTCATCCTA	TAGAGAATCA	4500
	CAGGAAAAGG	TAATGAATGA	TTCAGACACC	CACGAAAACA	GTCTTATGGA	TCAGAATAAT	4560
70	CCAATCTCAT	ACTCACTATC	TGAGAATTCT	GAAGAAGATA	ATAGAGTCAC	AAGTGTATCC	4620
	TCAGACAGTC	AAACTGGTAT	GGACAGAAGT	CCTGGTAAAT	CACCATCAGC	AAATGGGCTA	4680
	TCCCAAAAGC	ACAATGATGG	AAAAGAGGAA	AATGACATTC	AGACTGGTAG	TGCTCTGCTT	4740
	CCTCTCAGCC	CTGAATCTAA	AGCATGGGCA	GTTCTGACAA	GTGATGAAGA CCA CA CATTTT	AAGTGGATCA	4800 4860
75	CACACGTA	CCTCAGATAG	TCI TAATGAG	CTCCCACCAC	CTCACAGATIT	AATAACTCCT	4920
15						GTTCCACGTT	4980
	TCAGAGGCAG	AGGCCAGTAA	TAGTAGCCAT	GAGTCTCGTA	TTGGTCTAGC	TGAGGGGTTG	5040
	GAATCCGAGA	AGAAGGCAGT	TATACCCCTT	GTGATCGTGT	CAGCCCTGAC	TTTTATCTGT	5100
0.0	CTAGTGGTTC	TTGTGGGTAT	TCTCATCTAC	TGGAGGAAAT	GCTTCCAGAC	TGCACACTTT	5160
80	TACTTAGAGG	ACAGTACATC	CCCTAGAGTT	ATATCCACAC	CTCCAACACC	TATCTTTCCA	5220
	ATTTCAGATG	ATGTCGGAGC	AATTCCAATA	AAGCACTTTC	CAAAGCATGT	TGCAGATTTA	5280
	CATGCAAGTA	GTGGGTTTAC	TGAAGAATTT	GAGACACTGA	AAGAGTTTTA	CCAGGAAGTG	5340
						AGACAACAAG GCTAGCACAG	5400 5460
85	CTTGCTGAAA	AGGATGGCAA	ACTGACTGAT	TATATCAATC	CCAATTATGT	TGATGGCTAC	5520
	AACAGACCAA	AAGCTTATAT	TGCTGCCCAA	GGCCCACTGA	AATCCACAGC	TGAAGATTTC	5580
	TGGAGAATGA	TATGGGAACA	TAATGTGGAA	GTTATTGTCA	TGATAACAAA	CCTCGTGGAG	5640

	W/O 02	1007.1.12					
	WO 02	GAAAATGTGA	maramramaa	acmacaca ma	aan aman aan	CONTROL OF THE STATE OF THE STA	5700
		CTCAGAAGAG					5760
		CAAAAATAAA					5820
							5880
5		ACTACACGCA					5940
)		TGAGAAAGGC					6000
		CTGGAGTTGG					
		ACGAAGGAAC					6060
	AGAAATTATT	TGGTACAAAC	TGAGGAGCAA	TATGTCTTCA	TTCATGATAC	ACTGGTTGAG	6120
1Λ		GTAAAGAAAC					6180
10		CTGGACCAGC					6240
		TACAGCAGAG					6300
		${\tt CTTCTATCAT}$					6360
	GGAGAAGGCA	CAGACTACAT	CAATGCCTCC	TATATCATGG	GCTATTACCA	GAGCAATGAA	6420
1.0	TTCATCATTA	CCCAGCACCC	TCTCCTTCAT	ACCATCAAGG	ATTTCTGGAG	GATGATATGG	6480
15		CCCAACTGGT					6540
		$\tt GGCCAAATAA$					6600
	ATGGCTGAAG	AACACAAATG	TCTATCTAAT	GAGGAAAAAC	TTATAATTCA	GGACTTTATC	6660
		CACAGGATGA					6720
20		ATAGCCCCAT					6780
20	GCTGCCAATA	GGGATGGGCC	TATGATTGTT	CATGATGAGC	ATGGAGGAGT	GACGGCAGGA	6840
	ACTTTCTGTG	CTCTGACAAC	CCTTATGCAC	CAACTAGAAA	AAGAAAATTC	CGTGGATGTT	6900
	TACCAGGTAG	CCAAGATGAT	CAATCTGATG	AGGCCAGGAG	TCTTTGCTGA	CATTGAGCAG	6960
		TCTACAAAGT					7020
~ ~		TGGACAGTAA					7080
25		TTTAACACAG					7140
		TAGGCAGGAA					7200
	GACAGTAACT	TTCATGACAT	AGGATTCTGC	CGCCAAATTT	ATATCATTAA	CAATGTGTGC	7260
	CTTTTTGCAA	GACTTGTAAT	TTACTTATTA	TGTTTGAACT	AAAATGATTG	AATTTTACAG	7320
• •	TATTTCTAAG	AATGGAATTG	TGGTATTTTT	TTCTGTATTG	ATTTTAACAG	AAAATTTCAA	7380
30	TTTATAGAGG	TTAGGAATTC	CAAACTACAG	AAAATGTTTG	TTTTTAGTGT	CAAATTTTTA	7440
		TAGCAATTAT					7500
		CTCTTCCATA					7560
	AGAAATAATC	TGTTACTTAT	TGTAAATACT	GCCCTAGTGT	CTCCATGGAC	CAAATTTATA	7620
		TAGATTTTTA					7680
35		ATGACGTAGT					7740
	TTGTGTTACC	TAAGTCATTA	ACTTTGTTTC	AGCATGTAAT	TTTAACTTTT	GTGGAAAATA	7800
		CATTTTGAAA					7860
	AATGGTTTTT	ATCCAAGGAA	TTGCAAAAAT	AAATATAAAT	ATTGCCATTA	AAAAAAAAA	7920
	AAAAAAAAA	AAAAAAAAA	AAAA				
40							
	Seq ID NO:	180 Protein	n sequence:				
		cession #: 1		e			
	1	11	21	31	41	51	
45	ī	ī	ī	1	1	1	
. •	MRILKRELAC	IQLLCVCRLD	WANGYYROOR	KLVEEIGWSY	TGALNOKNWG	KKYPTCNSPK	60
		TOVNVNLKKL					120
	FKASKITEHW	GKCNMSSDGS	EHSLEGOKEP	LEMOIYCFDA	DRESSFEEAV	KGKGKLRALS	180
	ILFEVGTEEN	LDFKAIIDGV	ESVSRFGKQA	ALDPFILLNL	LPNSTDKYYI	YNGSLTSPPC	240

	1	11	21	31	41	51	
45	ī	1	î -	1	ī	1	
	MRILKRELAC	IQLLCVCRLD	WANGYYROOR	KLVEEIGWSY	TGALNOKNWG	KKYPTCNSPK	60
		TQVNVNLKKL					120
	FKASKITFHW	GKCNMSSDGS	EHSLEGOKEP	LEMOIYCFDA	DRFSSFEEAV	KGKGKLRALS	180
		LDFKAIIDGV					240
50		DTVSISESQL					300
	TGKEEIHEAV	CSSEPENVQA	DPENYTSLLV	TWERPRVVYD	TMIEKFAVLY	QQLDGEDQTK	360
	HEFLTDGYOD	LGAILNNLLP	NMSYVLQIVA	ICTNGLYGKY	SDQLIVDMPT	DNPELDLFPE	420
	LIGTEELIKE	EEEGKDIEEG	AIVNPGRDSA	TNQIRKKEPQ	ISTTTHYNRI	GTKYNEAKTN	480
		GKGDVPNTSL					540
55	GSKTVLRSPH	MNLSGTAESL	NTVSITEYEE	ESLLTSFKLD	TGAEDSSGSS	PATSAIPFIS	600
	ENISQGYIFS	SENPETITYD	VLIPESARNA	SEDSTSSGSE	ESLKDPSMEG	NVWFPSSTDI	660
		ESFLQTNYTE					720
	TEVTPHAFTP	SSRQQDLVST	VNVVYSQTTQ	PVYNGETPLQ	PSYSSEVFPL	VTPLLLDNQI	780
	LNTTPAASSS	DSALHATPVF	PSVDVSFESI	LSSYDGAPLL	PFSSASFSSE	LFRHLHTVSQ	840
60	ILPQVTSATE	SDKVPLHASL	PVAGGDLLLE	PSLAQYSDVL	STTHAASETL	EFGSESGVLY	900
	KTLMFSQVEP	PSSDAMMHAR	SSGPEPSYAL	SDNEGSQHIF	TVSYSSAIPV	HDSVGVTYQG	960
	SLFSGPSHIP	IPKSSLITPT	ASLLQPTHAL	SGDGEWSGAS	SDSEFLLPDT	DGLTALNISS	1020
		TSVFGDDNKA					1080
~ =		SISSTKGMFP					1140
65		ASSDPASSEM					1200
		TPKVDKISST					1260
		PVLLKSESSH					1320
		IHSDEILTST					1380
70		KLLFPSKATS					1440
70		SQEKVMNDSD					1500 1560
	SPGKSPSANG	LSQKHNDGKE	ENDIQTGSAL	LPLSPESKAW	AVLTSDEESG	SGQGTSDSLN	1620
	ENETSTOFSF	ADTNEKDADG	ILAAGDSEIT	PGFPQSPTSS	VISENSEVER	VSEAEASNSS	1620
		LESEKKAVIP PISDDVGAIP					1740
75		KHKNRYINIV					1800
13		FWRMIWEHNV					1860
		TLRNTKIKKG					1920
	VLAYYTVRNE	VHCSAGVGRT	CTVIVIDENI	VIQIATIQME	TEGET.KUTDS	OBMALMOLEE	1980
	OWNER	EAILSKETEV	GIIIVUDSMI	DOTOREGIAN	TRUEROROLL	VOSULINGUS	2040
80	OIALINDIDA	KNRTSSIIPV	EDEDICTECT.	CCECTOVINA	SATMGAAOSM	EFITTOHPLL	2100
30	SAALKQCNKE	WDHNAQLVVM	FESEAGTSST	POEGIDIINA	DINCESERVE	LMAREHKCLS	2160
	MILTADEMENT	ILEATQDDYV	TENGAMMED	PLATUENTOR	TEELISVIKE	EAANRDGPMT	2220
	MEDUTICATION	GTFCALTTLM	PRAKTIFACTA	WYOVAKMINI.	MRPGVEADIE	OYOFLYKVII	2280
	SINGADULA	PSTSLDSNGA	ALPOGNIARS	LESLV		x-x	
25	PPADITORDIA	* - I DIDDINGH	***** *********************************	,			

Seq ID NO: 181 DNA sequence Nucleic Acid Accession #: Eos sequence

85

WO 02/086443 Coding sequence: 148-4518

	1	11	21	31	41	51	
5	()	Charach agam	CHICA CHILICGA	TOTATACACT	CCACCATTAA	1 1 7 C 1 7 7 C 1 7 7 7 7 7 7 7 7 7 7 7 7	60
5		CACGCACGAT ATTTCCTTCG					120
		CCGCAGACCG					180
		GTGTTTGCCG					240
10		AGATTGGCTG					300
10		CATGTAATAG					360
		TGAATCTTAA TTCATAACAC					420 480
		GAGTTTCAGA					540
		TGTCATCTGA					600
15		TCTACTGCTT					660
		AGTTAAGAGC					720
		CGATTATTGA TCATACTGTT					780 840
		TGACATCTCC					900
20		TCTCTGAAAG					960
		TCATGCTGAT					1020
		AGGTGTTTTC					1080
		CAGAAAATGT CTCGAGTCGT					1140 1200
25		GAGAGGACCA					1260
		TCAATAATTT					1320
		GCTTATATGG					1380
		TTGATCTTTT					1440
30		AAGACATTGA GGAAAAAGGA					1500 1560
50		ATGAAGCCAA					1620
		TTCCCAATAC					1680
		ATATTTCCTT					1740
25		CAGCCTCTTT					1800
35		GGACTGCAGA CCAGTTTCAA					1860 1920
		CTATCCCATT					1980
		AGACAATAAC					2040
40		CTTCATCAGG					2100
40		CTAGCTCTAC					2160
		AGACTAATTA CAGGCCCAGT					2220 2280
		CCTTTGCCTA					2340
		AGGATTTGGT					2400
45		CAGAGGCCAG					2460
		AGAAGAAGGC					2520
		TTCTTGTGGG AGGACAGTAC					2580 2640
		ATGATGTCGG					2700
50	TTACATGCAA	GTAGTGGGTT	TACTGAAGAA	TTTGAGACAC	TGAAAGAGTT	TTACCAGGAA	2760
		GTACTGTTGA					2820
		ATCGATACAT AAAAGGATGG					2880 2940
		CAAAAGCTTA					3000
55		TGATATGGGA					3060
	GAGAAAGGAA	GGAGAAAATG	TGATCAGTAC	TGGCCTGCCG	ATGGGAGTGA	GGAGTACGGG	3120
		TCACTCAGAA					3180
		ACACAAAAAT ATCACTACAC					3240 3300
60		TTGTGAGAAA					3360
••		GTGCTGGAGT					3420
		AACACGAAGG					3480
		ATTTGGTACA					3540
65		TTAGTAAAGA				CCAGCTCCTG	3600 3660
0.5						CAACAGGGAA	3720
						TTCATCCCTG	3780
						CCAGAGCAAT	3840
70		TTACCCAGCA					3900
70		ATGCCCAACT ACTGGCCAAA					3960 4020
		AAGAACACAA					4080
		CTACACAGGA					4140
75						TATAAAAGAA	4200
75						AGTGACGGCA	4260
		GTGCTCTGAC TAGCCAAGAT					4320 4380
		TTCTCTACAA					4440
						AGCTGAGAGC	4500
80	TTAGAGTCTT	TAGTTTAACA	CAGAAAGGGG	TGGGGGGACT	CACATCTGAG	CATTGTTTTC	4560
		AATTAGGCAG					4620
						TAACAATGTG	4680
		CAAGACTTGT AAGAATGGAA					4740 4800
85		AGGTTAGGAA					4860
	TTAGCTGTAT	TTGTAGCAAT	TATCAGGTTT	GCTAGAAATA	TAACTTTTAA	TACAGTAGCC	4920
	TGTAAATAAA	ACACTCTTCC	ATATGATATT	CAACATTTTA	CAACTGCAGT	ATTCACCTAA	4980

		086443				~~~~~	
			TATTGTAAAT				5040
			TTATATTTTA AGTTCATTAG				5100 5160
			TTAACTTTGT				5220
5			AAAGAAGTTT				5280
-			GAATTGCAAA				5340
	AAAAAAAAA	AAAAAAAAA	AAAAAA				
10	0 TD 170	100 D					
10		182 Protein					
	Procein Acc	cession #: 1	Eos sequence	=			
	1	11	21	31.	41	51	
	1	1	1]	1		
15			WANGYYRQQR				60
			KFQGWDKTSL				120
			EHSLEGQKFP				180
			ESVSRFGKQA AVFCEVLTMQ				240 300
20			DPENYTSLLV				360
20			NMSYVLQIVA				420
			AIVNPGRDSA				480
			NSTSQPVTKL				540
			NTVSITEYEE				600
25			VLIPESARNA				660
			IRVDESEKTT				720
			VNVVYSQTTQ				780
			IYWRKCFQTA				840
30			EFETLKEFYQ				900
50			TDYINANYVD YWPADGSEEY				960 1020
			PDMGVPEYSL				1080
			NIFGFLKHIR				1140
			KTKLEKQFQL				1200
35			ASYIMGYYQS				1260
	MIPDGQNMAE	DEFVYWPNKD	EPINCESFKV	TLMAEEHKCL	SNEEKLIIQD	FILEATQDDY	1320
			KTFELISVIK				1380
			LMRPGVFADI	EQYQFLYKVI	LSLVSTRQEE	NPSTSLDSNG	1440
40	AALPDGNIAE	SLESLV					
-1 0	Sea ID NO.	183 DNA sec	mience				
			n #: EOS sec	nuence			
		ence: 148-4		1			
45	ļ	11	21	31	41	51	
45		1	1		1	1	
45	 CACACATACG	CACGCACGAT	 CTCACTTCGA	 TCTATACACT	 GGAGGATTAA	AACAAACAAA	60
45	CACACATACG CAAAAAAAAC	CACGCACGAT ATTTCCTTCG	CTCACTTCGA CTCCCCCTCC	 TCTATACACT CTCTCCACTC	 GGAGGATTAA TGAGAAGCAG	AACAAACAAA AGGAGCCGCA	120
	CACACATACG CAAAAAAAAC CGGCGAGGGG	CACGCACGAT ATTTCCTTCG CCGCAGACCG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG	TCTATACACT CTCTCCACTC CGAATCCTAA	 GGAGGATTAA TGAGAAGCAG AGCGTTTCCT	AACAAACAAA AGGAGCCGCA CGCTTGCATT	120 180
4550	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT	 GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA	120 180 240
	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG	120 180
	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA	120 180 240 300
50	CACACATACG CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT	120 180 240 300 360
	CACACATACG CAAAAAAAA CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCAGAG GTCAGCGGAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAAATAG TGAATCTTAA TTCATAAACAC GAGTTTCAGA	CTCACTTCGA CTCCCCCTCC TCTGGAATGG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA	GAGGATTAA TGAGAAGCAG ACGATTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA	120 180 240 300 360 420 480 540
50	CACACATACG CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG	GGAGGATTAA TGAGAAGCAG ACTACAGACA ATCAAAAAAA ATATTGATGA GGATAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAT TGACTACCGT TCACTGGGGA ATTTCCACTT	120 180 240 300 360 420 480 540 600
50	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAAATA GAGATGCAAAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGGTT	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCAGAG TGATCAGAG	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTCAA	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA	ACCAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGCAA TGACTACCGT TCACTGCGGT AGTTCCACTT AGCAGTCAAA	120 180 240 300 360 420 480 540 600 660
50	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCCAATA GAGATGCAATA GAGATGCAAAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCATGA TGTCATCTGA TCTACTGCTT AGTTAAGAGC	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAC TGATGCAGAC TTTATCCATT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG TGGTTTTCAAGTTTAA TTGTTTGAGG	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA TTTGAGGA TTTGGGACAGA	ACCAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGAA ATTTCCACTT ACCAGTCAAA AGAAAATTTG	120 180 240 300 360 420 480 540 600 660 720
50 55	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAAA GGAAAAGGGA GATTTCAAAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAA TTCATAAACAC GAGTTTCAGA TCTACTCCTT AGTTAAGAGC CGATTATTGA	CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATGCAGAC TTTATCCATT TGGAGTCGAA	TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTCAA TGTTTCAA TTTTCAA TTTTTCAA ATTTTTCAA ATTTTTTAAA AGTTTTGAG AGTTTTTGAG AGTTTTAGTC	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGA GTTTTGGGAA	ACAAACAAA AGGAGCCCCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT	120 180 240 300 360 420 480 540 600 660 720 780
50	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATACCAA CAAGTAAATG AACACATTCA ACCACATTCA GTCAGCGGGG AAATGCAATA GAGATGCAATA GAGATGCAAA GGAAAAGGGA TTAGATCCAT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCATGAT TCTACTCTTA AGTTAAGAGC CGATTATGA TCTACTGCTT AGTTAAGAGC CGATTATGA	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA ATGGTGTTT TGGATCAGAG TGATGCAGAC TTTATCCATT TGGAGTCCAGA GAACCTTCTG	TCTATACACT TCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTCAA TTGTTTAGAG AGTGTTAGTC CCAAACTCAA	GAGGATTAA TGAGAAGAA AGCGTTTCCT ACTACAGACA ATCATGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA CTTGGGACAGA CTTGACAAGTA CTTGACAAGTA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACGGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC	120 180 240 300 360 420 480 540 600 660 720
50 55	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAGGGA GATTTCAAAG GTTAGATCCAT AATGGCTCAT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATCATAA TTCATAACAC GAGTTTCAGA TCTACTGAT TCTACTGAT TCTACTGT TCTACTGTT AGTTAAGAC CGATTATGA TCATACTGTT TGACATCTCT	CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATGCAGAC TTTATCCATT TGGAGTCGAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TCTCCTATCA CATAGCAACTCA CATAGTTTAC CGATTTTCAA TTGTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA CTGACAAGTA ACTGATTGT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTACA TTACATTTAC	120 180 240 300 360 420 480 540 660 720 780 840
50 55	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA GGAAAAGGGA GGATTCAAAG TTAGATCCAT AATGGCTCAT ACAGTTAGC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGTCATCTGA TGTCATCTGA TGTACTGCTT AGTTAACTGCTT AGTTAACAGC CGATTATTGA TCATCTGT TCACTGTT TCACATCTCT TCACATCTCT TCTCTGAAAG TCATGCTGAT TCATGCTGAT	CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA TGGGATCAGAC TTTATCCATT TGGATCGGAC GAACCTTCTG TCCCTGCACA GAACCTTCTG TCCCTGCACA GAACTTAG	TCTATACACT TCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG GATTTTCAG AGTTTCAG GATTTTCAG GATTTTCAG GATTTTCAG GATTTTCAG GATTTTCAG GACACAGTTG GACACAGTTG CCAAACACATT CAAACAATT	GAGGATTAA TGAGAAGCA ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACC ATCTCACTAA AGATAACTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGGGAA CTGACAAGTA ACTGATTGT AAGTCTATT ACTGATTGT ATCGAGAGCA	ACCAAACAAA AGGAGCCCCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTACATTTAA	120 180 240 300 360 420 480 540 600 720 780 840 900 960 1020
505560	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAAT GAGATGCAAA GGAAAAGGGA GTTTCCAAAG GTTAGCAC ACAGTTAGCA TCTGGTTATG TCTCTAGAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATACACC GAGTTTCAGA TGTCATCAGA TCTACTCGAT AGTTAAGAGC CGATTATGA TCTACTGCT AGTTAAGAGC CGATTATGA TCATACTGT TGACATCTCC TCATGAAAG TCATGCTGAT AGGTGTTTC	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA AGAACTTAAA TGGGAAACCA AATGGTGTTT TGGATCAGAG TGATGCAGAC TTTATCCATT TGGAGTCCAGA AACCTCTCG TCCCTGCACA CCAGTTGGCT GGACTACACCT CTCATACACCT	TCTATACACT TCTATACACT CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGITTAGA TGTTTTGAG TGTTTTGAG TGTTTTTGAG GACACAGT GCAAACTCAA GACACAGTT GTTTTTTGTG GTAAACAATT GGAAACAATT GGAAAGAAA	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGGGACAGA ACTGACAAGTA ACTGGATTGT AAGTCTTACTACAAGTA ACTGGATTGT AAGTTCTTAC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA ATCATTGGAA TGACTACCAT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA GATTCAAAG GTTAGATCCAT AATGGCTCAT AATGGCTCAT ACAGTTAGCA TCTGGTTATG TCTCTAGAG AGTTCAGAAC AGTTCAGAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATAACAC GAGTTTCAGA TCTACTGAT TCTACTGAT AGTTAAGAC CGATTATGA TCTACTGTT AGTTAAGAC CCATTATGA TCAACCTGT TCACATCTCT TCACATCTCT TCACATCTCC TCTCTGAAAG TCATGCTGAT CAGGATTTTC CAGAAAATGT	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCAAAACAA GAAACTTAAA TGGGAAAACA TGGGATCGAG TCATGCAGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT GCACTACTACACT TCAGCCTCAC TCAGCCTGCACA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAGA CGATTTTCAA TTGTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTGTG CAAACACAGTTG GTTTTTTTTTGTG CAAAACAATT GGAAAGAAAG CCAGAGAATT	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACTT AAGGACAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA CTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA AAGTTCTTAC TCGAGAGCA ATACCAGCCT	ACCAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAA ACAGTACCAAC TCTTGTTACA	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1080
505560	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA ACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA GATTTCAAAG GTTAGATCCAT TAGATCCAT ACAGTTAGAT ACTGGTTATG TCTGGTTATG TCTCTAGAA TTTCTCTAGAAC TGGGAAAAGC TGGGAAAAGC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATAACAC GAGTTTCAGA TCTAATGA TCTAATGAGCTT AGTTAAGAGC CGATTATGA TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTCAGGTCGT	CTCACTTCGA CTCACTTCGA CTCACTTCG TTTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA AATGGTGTTT TGGAATCAA TGGGAAACA TGATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT GCACTACTACT TCAGGCTGAC TTATCATACT TCAGGCTGAC TTATGATACC TTATGATACC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG TGTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTGTG CAAAACAATT GGAAAGAAAT ATGATTGAGA ATGATTTTGAG ACCAGGAATT ATGATTGAGA	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACTT AAGGACAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA CTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA AAGTTCTTAC AGATTCATAA AGATCATGA AGATTCATGA AGATTCATGA AGATTCATGA AGATTCATGA AGATTCATGA ATACCAGCCT AGTTTGCAGT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGGGA ATTTCCACTT TACAGTGCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAA AGAGATCTAT AATGCAACAA ACAGTACAA TCTTGTACCAG TTTTGTACCAG	120 180 240 300 360 420 600 660 780 840 900 1020 1080 1140 1200
505560	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA ACACATTCA GAGAAAAGGGA AATGCAAAA GATTCAAAG TTAGATCCAT AATGGCTCAT ACAGTTAGCA TCTGGTATGG TCTCTAGAC CAGTTCAGAAC CTGGGAAAAGAC CAGTTAGATC CAGTTAGGAT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGTA AGTTAAGAGC CCGATTATGAT TCATACTGT TGACATCTCT TGACATCTCT TCTCTGAAA TCATACTGTT TGACATCTCC TCTCTGAAAA TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTCGAGTCGT CTCGGAGTCGT GAGAGGACCA	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA TGGAAACAA TGGAATCAGAG TGATGCAGT TTATCCATT TGGATCGAA GAACCTCTG TCCCTGCACA CCAGTTGGCT GGACTACTTA CTCATACACT TCAGGCTGAC TTATACACT TCAGGCTGAC CAAGCATACACT CAAGCATACACT TCAGGCTGAC CAACAAGCAT	TCTATACACT TCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAGG GATTTTCAG GATTTTCAG GATTTTAGTC CCAAACTCAA GACACGTTG GTTTTTTTGTG CTAAACAATT GGAAACAATT GGAAACAATT GGAAACGAAT TGGAAACAATT TGAGAAGAAT ATGATTGAGA CCAGAGAATT	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACT ACGACATAA GTTTTGAGGA GTTTTGAGGA CTTTTGAGGA CTTGACAAGTA ACTGACAAGTA ACTGACTATA ACTGACTTT AAGGACAGTA ACTGACTTTTAC TTGAGGACAGA ACTCTTAC TTGAGGACAGA ACTCTTAC ACTGATTCTTAC ACTGATTCTTAC ACTCACAGCCT AGATTCATGA ATACCAGCCT AGTTTGCAGT CAGATGGCTA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TCTTGTTACA TCTTGTTACAT TCTTGTTACAT TCTTGTTACAT TCTTGTTACAG TCTAGACAG TCAAGACTTG	120 180 240 300 360 420 540 600 660 720 780 840 900 1020 1080 1140 1200 1260
505560	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GAGATGCAAA GGAAAAGGGA GATTTCAAAG TTTGAATCA AATGGCTCAT ACAGTTAGCA TCTGGTTATG TCTCTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC GGGAAAAGAC GGGAAAAGAC GGGGAAAGAC GGGGAAAGAC GGTGGATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGAT AGTTAAGAGC CGATTATAGAGC TCTACTGT TGACATCTC TCTCTGAAAG TCATACTGAT AGGTGTTTC TCTCTGAAAG TCATACTGAT CAGGATGTT CAGAAAATGT CTCGAGTCGAT CAGAAAATGT CTCGAGTCGA GAGAGGACCG ACAAAAATTT	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCAAAACAA GAACTTAAA TGGGAAACA AATGGTGTTT TGGATCAGAG TGATGCAGAC TTATCCATT TGGATCAGAC CCAGTTGCT TCCCTGCACA CCAGTTGGCT TCAGTACACT TCAGTACACT TCAGGCTGAC TCAGTACACT TCAGGCTGAC CAACCAACCAT GCTACCAACAT GCTACCAAC	TCTATACACT TCTATACACT CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGC CGATTTTCAA TGTTTGAG AGTGTTAGT CCAAACTCAA GACACAGTT GTAAACAATT GGAAAGCAATT GGAAAGCAAT CAAAACAATT GGAAAGAAT ATGATTAGAG CCAGAGAATT ATGATTAGAG AATTTTGAA AACATT	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA AGATAACTTT AGGACAAAACTTT AGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA GTTTTGAGAAT ACTGAATGT ACTGAATGT ACTGAATGT ACTGAATGT ACTGAATGT ACTGAAGCT AGATTCATGA AGATTCATGA ATACCAGCCT AGTTTGAGAT ATACCAGCT AGTTTTCAGAT TCAGAAGCT AGATTCATGA ATACCAGCT AGTTTTCAGAT TCAGAATGCT TCAGATGCTA TTCTTCAGAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA TGACTTACA ATCATTGGAA TGACTACGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG CAGGCTGCT TTACATTTAC TTTACATTTAC TTTTAAAGAT AATGCAACAA AGCAGTTCTT TCTTGTTACA TTTGTACCAG TCAGAGACTTG AGTAGCATA AGCAGTTCTT CCTTGTTACA TCTTGTACCAG AGCAGTTTGT ACAGACTTG AGTAGCCATA	120 180 240 300 360 420 480 660 720 840 900 900 91020 1140 1200 1260 1320
50556065	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGA AATGCAATA GGAAAAGGA TTAGATCCAT AATGCATTAAAG TTAGATCCAT ACAGTTAGCA TCTCGTTATG TCTCTAGAC TCTCTAGAC TCTCTAGAC TGGGAAAAC CAGTTGGATC TCGCACTATC TCGCACTATC TCGCACTATC TCGCACTATC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATAACAC GAGTTTCAGA TCTACTGAT TCTACTGAT AGTTAAGAC CGATTATGA TCTACTGTT AGTTAAGAC TCATCTGT TCACATCTCT TCACATCTCT TCACATCTCT TCACATCTCC TCTCTGAAAG TCATCTGAT TCAGATTTTC CAGAAAATGT CTCAGAGTCGT GAGAGGACCA TCAATAATTT GCTTATATGG	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA GAAACTTAAA TGGGAAAACA TGGGATCGAG TCATGCAGAC TTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT GGACTACTA CTCATACACT TCAGGCTGAC TTATGATACC TTATGATACC TATGATACC AACAAGCAT AAAATACAGC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAGA CGATTTTCAA TTGTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTGTG CAAACACAGTTG GCAGAAACACAA CCAGAACTCAA CCAGAACTCAA CCAGAACTTG GAAACAATT ATGATTGAGA GAATTTTTGAG CAGAGAAT ATGATTTGAG AATTTTTGAG AATTTTTGA ATGATTATG GACCAACTGA	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACT ATGATGA GGGATAAACT AGGACAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA CTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA TTCTCACAT ATACCAGCCT AGTTTGCAGAT TTGCAGAT TTGTCAGAT TTGTCGACAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAC TTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAG TCTTGTTTACA TTGTTACA TTGTTACA TCAGAGCTTA ACAGTACAAG ACAGACATA ACAGACATACAG AGAAGACTTA AGTACCATA GCCTACTGAT	120 180 240 300 360 420 600 780 900 960 1020 1140 1200 1320 1380
505560	CACACATACG CACACATACG CACACAGGGG CAGCTCCTCT CTTGTTGAAG ANATATCCAA CAAGTAAATG AACACATTCA GACATGCAA GGAAAAGGA GAAAAGGA TTAGATCCAT AATGCTCAT ACAGTTCAAG TTAGATCCAT ACAGTTAGAC TTCTCAGAC TTCTCTAGAC AGTTCAGAC CAGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAAC AGTTGAATAC AATCCTGAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGTCATCTGA TGTCATCTGA TGTACTGTT AGTTAACTGCT TCTACTGCTT TGACATCTCC TCTCTGAAG TCATCTGAT TCACATCTCC TCTCTGAAG TCATGCTGAT AGGTGTTTTC CAGAAAATTG CTGAGAGCCG TCAATAATTG GCTTATATTG GCTTATATTG TTGATCTTTT	CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTT TGGATCAGAG TTATACAGT TTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA GAACCTTCTG TCCTGCACA CTCATACACT TCAGGCTGAC TCATACACT TCAGGCTGAC TTATGATACC AACCAAGCAT GCTACCCAT CACCAAGCAT GCTACCCAATTA	TCTATACACT TCTATACACT CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAGCAAGCA CATAGTTTAG GATTTCAGG GATTTCAGG GATTTTCAGG GATTTTCAG GATTTTCAG GACACAGTTG CCAAACTCAA GACACAGTTG CCAAACAATT GCAAACAATT GCAAACAATT GCAAACAATT ATGATTGAG AATGAGAAT ATGATTTTTGA ATGATTTGAG AATGAGAAT ATGATTTTTGA AATGAGAAT ATGATTAGAA AATGAGAACT AATGAGACTGA ATTGGAACTGA	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGACAGA CTGACAGTA ACTGGATTGT AAGTTCATCA ACTGGATTGCAGA ACTGGATTGCAGA ACTGGATTGCAGAC AGATTCATGA ATACCAGCCT AGGTTGCAGT CAGATGGCTA TTCTTCAGAT TTCTTCAGAT TTGTTGACATA AAGAAATAAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGCTGCT TTACATTAC TTACATTAC TTACATTAC TTACATTAC TTACATTAC TTATAAGAT AATGCAACAA ACAGTACAA ACAGTACAAG TCTTGTTACCA TCTTGTACCAG TCAAGACTTG AGTAGCATT AGTAGCATT AGTAGCATT AGTAGCATT AGTAGCATT CAAGGAGGAG	120 180 240 300 360 420 600 660 780 840 900 1020 1140 1200 1260 1380 1440
50556065	CACACATACG CAAAAAAAAC CAGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA ACACATTCA GAGATGCAAA GGAAAAGGGA TTAGATCCAT AATGCTATA AATGCTATA AATGCTAT AATGCTCAT AATGGCTCAT ACAGTTAGAC TCTGGTATAG TCTCTAGAC CAGTTGGATC GGTGCTATTC GGGAAAGGC AGTTGGATG GGTGCTATTC TGCACTAATG GAATCCTGAAC AATCCTGAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCT AGTTAAGAGC CGATTATGA TCTACTGCT AGTTAACAGT TCTACTGT AGTTAACAGT TCATACTGTT TGACATCTC TCTCTGAAA TCATACTGTT CAGAAAATGT CTCAGATCGT TCAGAGTCGT GAGAGAACCT TCAATAATTT GCTTATATGG TTGACTTTTT AGACATTTTT AGACATTTTT AGACATTTTT AGACATTTTT AGACATTTTT AGACATTTTT AGACATTTTAA	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA ATGGTGTTT TGGATCAGAG TGATGCAGAC TGATGCAGT TGCAGTCAGT TCCCTGCACA CCAGTTGGCT CGACTACTT CTCATACACT TCAGGCTGAC TTATACACT TCAGGCTGAC TTATACACT TCAGGCTGAC AACCAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATTA AAAATACAGC CCCTGAATTA AGAAGGCGCT	TCTATACACT TCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGITTAGA GATTTTCAG GATTTTCAG GATTTTCAG GATTTTTAGT GCAAACTCAA GACACAGTTG GTAAACAATT GGAAAGGAAT TGTATTTTTTTTGAG ACACAGTTG GAAACAAT ATGAAATTATGAA ATGAGAATTATGA ATGAGATTATG ACCAACTGA ATTGAGATTATG ATTGAACTG ATTGGAACTG ATTGGAACTG ATTGGAACTG	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACA ATCACTAA AGGACATAA GTTTTGAGGA GTTTTGAGGA GTTTTGGGAA GTTTTGGGAAT ACTGGATTGT AAGTCTTA ACTGGATTGT AAGTTCTTAC AGTTCTTCACAT ACTGGATTGT AGTTCTTCACAT TTGAGGAC ATACCAGCCT AGATTCATGA ATTCATGA TTGTCAGT TTGTCAGAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TTTGTACCAG TCAAGAACTTG AGTAGCCATA GCCTACTTG AGTAGCCATA GCTACTACAC AGCAGCTTG AGTAGCACAA ACAGTACAAG AGCAGTTTGT TCAGGAGCTTG AGTAGCCATA ACAGGAGCTGC AGTAGCACAA	120 180 240 300 360 420 600 780 900 960 1020 1140 1200 1320 1380
50556065	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GACATGCAAT GAAATGCAATA GAAATGCAATA GAAATGCAATA AATGGCTCAT AATGGCTCAT AATGGCTCAT TCTCTAGAC AGTTCAGAC AGTTCAGAC CAGTTCAGAC CAGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC CAGTTGGATG AATCCTGAATG AATCCTGAAC AACCCAAATCA AACCAAATCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCTG AGATTGATAACAC TCATAACAC TCATACTCTAA TCTACTGAT TCATAAGAGC CGATTATTGA TCATACTGTT AGTTAAGAGC TCATACTGTT TGACATCTCC TCATACTGTT TGACATCTCC TCACTGATAGAGC TCATACTGAT AGGTGTTTTC CAGAAAATGT CTCAGATCGT GAGAGAAATGT TCATACTGTT TAAGACATTTT AAGACATTTT AAGACATTTT AAGACATTGA GGAAAAAGGA AATGAAGGA AATGAAGGA AATGAAGGA AATGAAGGA AATGAAGGA	CTCACTTCGA CTCACTTCGA CTCACTTCGA CTCCCCTCC TTTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA GAAACTTAAA TGGGAAAACA TGGGATCGAG TCATGCAGAC TTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT GCACTACTAC TCAGCCTAC TTATGATACC TTATGATACC AACCAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATTA AGAAGGCGCT GACTAACCGA TCCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGAT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCAGATT ACCCCAGAT ACCCCAGAT ACCCCAGAT ACCCCACAT ACCCCAGAT ACCCCACAT ACCCACAT ACCCCACAT ACCCACAT ACCCCACAT	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAAGCACTGA TCTCCTATCA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG GGATTTTCAA TTGTTTGAG AGTGTTAGTC CCAAACTCAA GCACAGTTG GCAAACTCAA ATGATTTGAG AATTTTGAG AATTTTGAG AATTTTGAG AAACAATT ATGATTAGAA AATGAGAAT ATGATTAGG AAATTTTGA ATTGATATG GACAACTGA ATTGGAACTC ATTGGAACT CTCTACCACAA TCCCCAACAA	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACTT AAGGACAAACTT AAGGACAAA GTTTTGAGGAA GTTTTGAGGAA CTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ATACCAGCCT AGTTTCAGTA ATTCTCAGAT TTGTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT AAGAAATAAT CTGGTAGAA CTGGTAGAAA	ACCAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAC TTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAG TCTTGTACAC TCTGTTACA TTGTACCAG TCAAGACTTG AGTAGCATA ACAGTACAG ACTACTGTACA TCTGTACAG TCAAGACTTG AGTAGCATA CAGGAGCATA CCCTACTGAT CCAGTACTACA CAGGAGGAG CAGTGCTACA TCGCATACGG ATTCTCTGGA	120 180 240 300 360 420 600 660 780 960 1020 1140 1200 1140 1320 1380 1440 1560 1620
5055606570	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA ACACATTCA GAGAAAGGGA AATGCAAAA GATTCAAAG TTAGATCCAT ACAGTTAGCA TTAGATCCAT ACAGTTAGCA TCTGGTATG TCTCTAGAC CAGTTGGATG GGGAAAAGGC AGTCCAGAAC AGGGAAAACC GAAGAGGAAAACC AAATCA ACGAAATCA ACGAAATCA ACGAAATCA ACGAAATCA ACGAAATCA AAGGGGGAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GTGTTTGCCG AGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGTA AGTTAACTGC TCTACTGTT AGATACTGT TGACATCTCC TCTCTGAAA TCATACTGTT CAGAAAATGT CTCGAGTCGT CTCGAGTCGT CTCGAGTCGT TCAGAGTCGT TAATAGT TTCCAGATCTTC CAGAAAATGT CTCAGATCTTT CAGAAAATGT TCTCAGATCGT TCAGATCTTT AGACATCTC TCAGATACTTT AAGACCAT TCAGATCTTAATGG TTGATCTTT AAGACCAATAC TCACAATAATTT AAGACCAATAC	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACA TGGATCATTATCCATT TGGATCGAG TGATGCGAA GAACCTCTG TCCCTGCACA CCAGTTGGCT TCAGTCTACCT TCAGGCTACCT TAGATCACAT CTATACACT TCAGGCTGAC AACCAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATTA AGAAGCGCT ACCCAGATT AGAAGCGCT ACCCAGATT AGAAGCCGCA ATCATAACAC	TCTATACACT TCTATACACT CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTAGAG GATTTTCAG GATTTTCAG GATTTTAGT GCAAACTCAA GACACGTG GTTTTTTTGTG GCAAACAATT GGAAAGGAATT ATGATTGAG GATTTTTTGT GCAAACATT GGAAAGGAAT ATGAGAATTAGAG ATGATTGAG ATGAGTATTGA ATGAGTATTGA ATGAGTATTGA ATGAGTATTGA ATGAGTATTGA ATGAGTTATG CCCAACTAC ATTGTGAACT TCCCCAACAA TCCCCCAACAA	GAGGATTAA TGAGAAGAA ACATTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACA ATCACATAA AGATAACTTT AAGGACAAAA GTTTTGAGGA CTTTGAGGA ATTGATGA ATTTGAGGA ATTTTGAGGA ATTTTGAGGA ATTTTGAGGA ATTTTACAGAT ACTGGATTTT AGGACAAGT AAGTTCTTAC TTGAGAGCA AGATTCATGA ATTTGAGGA ATACCAGCT AGTTTGCAGCA TTGTCAGAT AAGAAATAAT CTGGTAGAG CACATACAA GAGGAAGTGA AACCAGTCAC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGT TCACTGGGGA AGATCAAA AGAAAATTTG GCAGTCAAA AGAAAATTTAC TTTACATTTAC TTTACATTTAC TTTACATTTAC TTTACATTTAC TTTTAACAT AATGCAACAA ACAGTACAAG AGCAGTTTAC TCTTGTTACA TCTTGTTACA TCTGTTACA TCTAGTACAG CCATACTGAT ACAGGAGCAG CAGGAGCAG CAGTGCTACAA CCATACTGAT CAAGGAGAG CAGTGCTACA TCAGCATACGG ATTCTCTCGGA TCAAATTACC TCAAATTACC	120 180 240 300 360 420 600 660 720 780 840 900 1020 1140 1260 1320 1380 1440 1500 1560 1620 1680
50556065	CACACATACG CAAAAAAAAC CAGCAGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGGG GAAATGCAAA GGAAAAGGGA TTAGAATTCCAAA TCTGGTTATG TCTGGTATG ACTCTAGAC GGTCAGAC TCTGGTATG ATTCTAGAC AGTTCAGAAC CAGTTGGAAC CAGTTGGATC GGTCATTC GAGAAAAAC AACGAAATCA AAGGGTAATC AAGGGTAATC AAGGGTAATC AAGGGTAATCA AAGGGTAATCA AAGGGTAATACA AAGGGTAATACA AAGGGTAATACA AAGGGTAATACA AAGGGTAATACA AAGGGTAAAAAAAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTAATCG TGTAATGGTT AGTTAAGAGC CGATTATGA TCATACTGTT AGTACTCC TCTCTGAAAG TCATGCTGAT TCAGATGTTTC CAGAAAATGT CTCGAGTCGT TCAGAGAGCCA TCAATATTT GCTTATATGG TTGATCTTTT AGACATTTT AGACATTTT AGACATTTT AGACATTTATGA TCAATACTGT TGACATACT TCAATACTGT TCAATACTGT TCAATACTGAT TCCAATACT TCCAATACT AGACATTCA ATGAACCATAC ATATTTCCTT	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA GAAACTTAAA TGGGAAACA AATGGTGTTT TGGATCAGAG TGATGCAGAC TGATGCAGAC TGATGCAGAC TCCTGCACA CCAGTTGGCT TCAGGCTGAC TTAGATACACT TCAGGCTGAC CTATACACT TCAGGCTGAC CTACCCAAT AAAATACAGC CCCTGAATTA AGAAGGCGT ACCACAGTT ACCAGATT AGAAGCAT AGAAGCAT AGAAGCAT AGAAGCAT ACCAGATT ACCAGATT ACCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCTAACCGA ATCTTAAAT GACTTCTCAG	TCTATACACT TCTATACACT CGAATCCTAA GCTAATGGAT TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GGTTTTGAG GGTTTTGAG GGATTTTGAG GACACAGA GCAAACTCAA GACACAGTT GGAAACTAT GGAAAGAAT ATGAATTAGA CCAGAGAATT ATGATTAGAG AATTTTGAG AATGATTAGAG AATTTTGAA TTGGAACTGA ATGAGTTATG ATGAACTCA ATGACACACA ATCCACACAA TCCACACAA TCCACACTCCC ACTGTGACTC	GAGGATTAA TGAGAAGCA AGCATTCCT ACTACAGACA ATCAAAAAAA ATCTCACTAA AGATAACTTT AAGGACAAAAA GATTATGAGA GTTTTGAGGA TTGGGACAAA ACTGCACAAAAA CTTACAGAAAA CTTACAGAA CTTTTGAGGA CTGACAAGTA ACTGGATGT AAGTTCTTC AGATTCTTC AGATTCTTCA AGATTCATGA ATACCAGCCT AGTTTGCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT CAGATGGCTA AGAAATAAT CTGGTAGAGA ACACTACAA AGAGAAGTGA AACCAGTCAC AACTGCCACC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGGT TCACTGGGG ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTTACATTTAC TTTTAAGAT AATGCAACAA AGCAGTTTGT TCTTGTACCA TCTGTACCACT AGTAGCCATA GCCATCAGA CCACTACTGA ACAGTACAAC AGCAGTTTGT TCAGGAGCTAC AGCAGTTTGT CCAGGAGCAC ACGCTACTGAA ACAGTACAAC ACGCATAGGG ATTCTCTGGA ATTACCT TCACACTGTG TCACACTGTG TCACACTGTG TCACACTGTG TCACACTGTG	120 180 240 300 360 420 660 660 720 780 840 900 1020 1080 11200 1260 1320 1380 1560 1560 1680 1740
5055606570	CACACATACG CAAAAAAAAC CAGCAGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAATACCAAA GAAATGCAAAA GGAAAAGGGA TTAGATCCAT AATGCCATA AATGCTCAT ACAGTTAGCA TCTGGTTATG TTCTCTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC CAGTTGATC TGCACTAATG AATCCTAATC AATCCTGAAC AGGAAAAGAC AACGAAATCA AACGAAATCA AAGGGTACTA AAGGGTACTT CAAAAAAG ACGAAAAAAG ACAGAAAAAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCATAACAC GAGTTTCAGA TCTACTGAT TCTACTGAT TCTACTGAT TCTACTGAT TCATACTGCT TCTACTGTT TGACATCTCC TCTCTGAAGG TCATGCTGAT TCATACTGCT TCAGAGTCTT CAGAGAAATGT CTGAGTCTT GAGATATTT GCTTATATGG TCATACTGT TCAGAGTCTT TGACATCTT TCAGACTTT AGACATTT CTCAGACTCT TCAGACACT TCATATAGG TCATACTTT CAGACATTC TCAGACATAC TCACATAC TCAATACT TCAATACT TCAGACCAATAC TCCCAATAC TCAGCCTCTT CAGCCTCTTT	CTCACTTCGA CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TTATCCATT TGGAGTCGAA ACACTCTGG TCCCTGCACA CCAGTTGGCT TCAGGCTGAC TTATACATT TCAGGCTGAC TTATGATACC TTATGATACC AACCAAGCAT AAAATACAGC CCCTGAATTA AAATACAGC CCCTGAATTA AAATACAGC CCCTGAATTA AAATACAGC CCCTGAATTA AAATACAGC CCCTGAATTA AACCCAAGCT GACTACCCAAT AAATACAGC CCCTGAATTA AACCCAAGCT GACTACCCAAT AACCCAAGTT GACTTACACAACCAACAACCAACCAACCAACT AACCCAAGATT GACTTCTCAGAATTAAAT GACTTCTCAGAAAATGACTTCTCAGAAATGACGC	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAACTCAA GCTAATGGAT GCAACTCAACA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCT CCCAAACTCAA GATTTTCAA GACACTCAA GACACTCAA GACACTCAA GACACTCAA GACACTTG GAAACTCAA CCAGAGAATT ATGATTAGA GAAACTATT AGAAACAATT AGAAACAATT AGAAACAAT TCAACACTCAA ATGAGTTAG ATTGGAACT ATGATTAGA ATTGGAACT ATGATTAGA ATTGGAACT ATCCACAAC TCCACACTAC ACTGTGACTG TCTAAAACTG	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACTTT AAGGACAAAA GTTTTGAGGAC ATCTACAGAAA AGATTACTTGAGGAC ATGGATGTA ACTGGATGT AAGTTCTTAC AGATTCATAA ACTGCAAGTA ACTGCAAGTA ACTGCAAGTA ACTGCAAGTA ATACCAGCCT AGTTTCAGAGAC TTCTCAGAGTC CAGATGCCT AGTTTCCAGAT TTGTCAGAT TTGTCAGAT CAGATGCTA CAGATGCTA CAGATACAT AAGAAATAAT CTGGTAGAGA CACACTACAA GAGGAAGTGA AACCAGTCAC AACTGCCAC TTCTTAGATC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTACA TTTACATTTAC TTTTAAAGAT AATGCAACAA AGAGTACAAG AGCAGTTTGT TCTTGTTACA TCTGTACCAG TCAAGACTTG AGTAGCCATA GCCATACAG CCTACTGAT CAAGGAGGAG CAGTGCTACA TCGCATACAG ATTCTCTGGA TCACACTGGA TCACACTGTG TCACACTGTG TCACACTGTG TCCACACTATG	120 180 240 300 360 420 660 780 900 960 1020 1140 1200 1320 1380 1440 1560 1620 1680 1680 1800
5055606570	CACACATACG CACACATACG CACACAGGGG CAGCTCCTCT CTTGTTGAG CAAGTAAATG AACACATTCA ACACACTTCA GAGATGCAAT GAGATGCAAT GAGATGCAAT AATGCAAT AATGCAAT AATGCATCAT ACAGTTAGGC TTTGATCAT ACAGTTAGAC CAGTTAGAC TCTGGAAAGAC CAGTTGGATG TCTCTAGAC CAGTTGGATG TCTCTAGAC CAGTTGGATG TCTCTAGAC CAGTTGGATG GGTGCTATTC TGCACTAATG GATGCTATC TGCACTAATC AATCCTGAAC CAGAGAGAC CAGGGTGATG ACCAAATCA AAGGGTGATG ACCAGAAAAG CAAGGTACTT ACAGGAAAAAG GAAGGTACTT AACTTGTCGG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTCAGA TCTACTGTA TCTACTGTT AGTTAAGAGC CGATTATTGA TCATACTGTT TGACATCTCC TCTCTGAAAG TCATGCTGT TCAGAGATTTC CAGAAAATTT GCTTATATGG GGAAAATTT GCTTATATGG GGAAAATGA TTGATCTTT AAGACATTTA AGGTGTTT AAGACATTC TGATTTT AAGACATTC AGAAAAATTT CTTGATCTTT AAGACCAATAC ATATTTCCTT CAGCCCTCTTT CAGCCCCTTT CAGCCCCTTT CGACTGCAGA	CTCACTTCGA CTCACTTCGA CTCACCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA TGGGATCAGAG TGATGCAGAC TTATACCATT TGGATCAGAC CAGTTGGCT GGACTACTAC CAGTTGGCT TCAGGCTGAC AACCAAGCAT GCTACCAAT AAAATACACT TCAGGCTGAC AACCAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATTA AGAAGGCGCT ACCCCAGATT AGCAGCTGA ATCTTTAACT ACCCAGATTGACCCAAT CCCCTGAATTA AGAAGGCGCT ACCCCAGATTA AGAAGCGCT ACCCCAGATTA AGAATACACGA ATCTTTAAAT GACTTCTCAG ATCTTTCAGA	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTAG GATTTCAG GATTTCAG GATTTCAG GATTTCAG GATTTTCAG GACACAGTTG GTTTTTTGTG CCAAACTCAA GACACAGTTG GATTTTTTGTG CAAAACAATT GGAAAGGAAG ATGAGATTTGA ATGATTAGA ATGAGTATTTGA ATGATTAGA ATGAGTATT CACACCAA ATTGCACACAA TCCCCAACAA TCCACTCCC ACTGTGACTC ACTGTAAAACT ACAGTTTCTA	GAGGATTAA TGAGAAGAA ACATTCATAA AAAA ATATTGATGA GGGATAAACA ATCACATAA AGGACATTAACTTAA AGGACAAAA GTTTTGAGGA CTGACAGAA ACTGGATTGAGAA ACTGGATTAC ATGGACAGA ACTGCAGA AGATTCATGA ACTGGATTAC TTCGAGAGCA AGATTCATGA AGTTTTGCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT CAGATGCAA CACACACAA AGAAATAAAC CTGCACAC AACTACAA AACCAGCCC TCTTTAGATC TTAACAGACT TAACAGACT TAACAGACT TAACAGACT TAACAGAATA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTAC TTTAAAGAT TAATGCAACAA ACAGTACAA ACAGTACAAG AGCAGTTTT TCTTTAACAT TCTTGTTACA TTTGTTACA TCTACTGTTAC AGTAGCACAA ACAGTACCAAC TCGCATAGGA CAGTCTTAC TTTGTTACCAC TCAAGACTTG AGTAGCCATA CCACTCTG TCACTGAT CCACACTTG TCACACTTTT TCACACACTTG TCACACATATT TCACACATATT TCACACATATT TGAGGAGGAG	120 180 240 300 360 420 600 660 780 840 900 1020 1140 1200 1140 1320 1440 1560 1680 1740 1860
5055606570	CACACATACG CACACATACG CACACAGGGG CAGCTCCTCT CTTGTTGAGA AAATATCCAA CAAGTAAATG AACACATTCA ACACATTCA GAGATGCAAA GAAAAGGGA TTAGATCCAT AATGCCTCAT AATGCTCAT AATGCTCAT ACAGTTAGCA TCTGGTATG TCTCTAGAC CAGTTAGGAC CAGTTAGGAT CAGTTAGGAC AGTCAGAAC AGGAAAAAC GAAATACA AACCAAATCA AAGGGGAA AACCAAATCA AAGGGTGATG ACAGAAAAAC AAGGGTGATG ACAGAAAAAC AAGGGTACTT AACTTGTCAAC AAGGGTGAT ACAGAAAAAC AAGGGTACTT AACTTGTCAAC ACGAAAAAAC AAGGGTACTT AACTTGTCAAC ACGAAAAAAC AAGGAAAAAAC AAGGGTACTT AACTTGTCAG ACTTTGTCAAC ACTTTATTGAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GGATTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGTA AGTTAAGAGC CGATTATAGAGC CTCTCTGAAA TCATACTGTT TGACATCTCC TCTCTGAAAA TCATGCTGAT AGGTGTTTC CAGAAAATGT CTGAGTCGT TCAGAGTCGT GAGAGGACCA TCAATAATTT GCTTATATGG GTTGATCTTTT AAGACCTTTT AAGACCATTCA ATATTTCCTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTA	CTCACTTCGA CTCACTTCGA CTCACTTCGA CTCGCATTCG CTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA CGAAACTAAA TGGGAAACA AATGGTGTTT TGGATCAGT TGGAGTCAGA GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCAGGCTGAC TTATACACT TCAGGCTGAC TTAGATACA CTATACACT CAGGCTGAC TATGATAC CCAGATTAC CTCATACACT CAGGCTGAC TATGATAC GCTCAATA AAAATACAGC CCCTGAATTA AGAAGGCGCT ACCCAGATT GACTAACCAT ACCAGACT ACCAGATT GACTAACCAT ACCAGATT ACCCAGATT ACCAGATT ACCAGATT ACCAGATT ACCAGATT ACCAGATT ACCAGATT ACCAGATT ACCAGATT ACCTCAGAT ATCTTTAAAT GACTTCTCAG AAATGATGC ATCCTTAAACT GCTTGATACCT	TCTATACACT TCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTAGAG AGTTTTCAG GATTTTCAG GATTTCAA TTGTTTAGAG GACACAGTTG GAAACAATT GGAAACAATT GGAAACAATT GGAAACAATT GGAAACAAT ATGAGAACAATT GACCAACTGA ATGAGAACT ATGAGAACT ATGAGAACT ATGAGAACT CCCAACAA TCCCCAACAA TCCACACAA TCCACACAA TCCACTTCCC ACTGTGACTG CTAAAACTG CTAAAACTG CTAAAACTG CTAAAACTG CTAAAACTG CTAAAACTG CTAAAACTG CTAAAACTG CTAAAACTG CCAACTG CTAAAACTG CCAACTG	GAGGATTAA TGAGAAGAA ACAGATAA ACAGACA ATCAAAAAA ATATTGATGA GGGATAAACA ATCTCACTAA AGAACATTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA ATCTTACAAAAA ATTTTAAGGACAAAA ATTTTAAGGACAAGTA ACTGGATTGT AAGTTCTTAC AGATTCATGA ATACCAGCT AGATTGCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCAGAT TTGTCAGAT AAGAAATAAT CTGGTAGAGA AGAGCTACAA AGAGAAGTGA AACCAGTCAC AACTGCCAC TTCTTAGATT TAACAGAATT AACCAGATTA AACCAGATTA AACCAGTCAC AACTGCCAC TTCTTAGATC TAACAGAATTA ATTCTTCAGGT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGGGGA AGATCTACA ATCATTGGAA TGACTGGGGA AGATCAAT AGAAAATTTG CCAGTT AGCAGTCAAA AGAAAATTTG TTACACTTT AATGAACT TTTTAAAGAT AATGCAACAA ACAGTACAAG ACAGTACAAG ACAGTACAAG AGCAGTTTGT TCTTGTTACA TTTGTACCAG TCAAGAGCTTG AGTAGCATA GCCTACTGAT AGTAGCATACA CCGCATACGGA ATTCTCTCGGA ATTCTCTCTGGA ATTCTCTCTGGA ATTCTCTCTGGA ATTACTCTCTGGA ATTACTCTCTCGACACTACC TCCACACTGCC TCCACACTGCC	120 180 240 300 360 420 600 660 720 780 840 900 1020 1140 1260 1320 1380 1500 1560 1560 1620 1680 1740 1860 1920
505560657075	CACACATACG CAAAAAAAAC CAGCAGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAATACCAA GAAAAGGGA AATTCCAAA CAGTTAGCA TCTGGTTATG ACCAGTTAGC ACTCTAGAC ACTCTAGAC ACTCAGAC AGTCAGAAAAC CAGTTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAAAAC AAGGGAAAAC AAGGGGAA AACCAAATCA AAGGGTGAT AACTGATCA AAGGGTACT AACTTGTCG GAGAAAAAG GAAGAAAAAG GAAGGTACTT AACTTGTCG AGTTTATGAC ACGAAAAAAG GAAGGTACTT AACTTGTCG AGTTTATTGA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG GAGATCTTAA TCATAACAC GAGTTTCAG TGAATCGTT AGTTAAGAGC CGATTATAGAGC CGATTAAGAGC CGATTATGA TCTACTGTT AGTTAAGAGC CGATTATGA TCATACTGTT TGACATCTCC TCTCTGAAAG TCTCTGAAAG TCTCGAGTGGT CAGGAAAATGT CTGAGTCGT TGAGAGACCA TCAATAATTT GCTTATATGG TTGATCTTTT AGACATTTT AGACATTTT CAGAAAAAGGA ATGAAGCCAA ATGAAGCCAA ATGAAGCCAT TCAGCTCTTT CAGCTCTTT CAGCTCTTT GGACTGCAGA CCAGTTTCAA CTATCCCATT	CTCACTTCGA CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACAA ATGGTGTTT TGGATCAGAG TGATCAGAG TGATCAGAG TCCTGCACA CAGTTGGCT GGACTACTA CTCATACACT TCAGGCTGAC TTATGATACC TTATGATACC TCAGCCAAT AAAATACAGC CCCTGAATT AGAAGGCGT ACCAGGCT ACCAGGCT ACCAGCTT AGACTACTAC ACTACTCCAAT AAATACAGC CCTTGAATT AGAAGGCGT ACCCCAGATT GACTTACACC ATCTTAAAT GACTTCTCAG AAATGATGCC ATCCTTAAAT CCTTGATACT CATCTCTGAG	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAGCACTCAC GCAATCCTACA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CCTATTTCAG CGATTTTCAA TGTTTTGAG GCAACTCAA GACACACTA GACACACTA GACACACTA ATGATTTGTA GACAACTCA ATGATTTAGA CCAACACT ATGATTTAGA CCACACACA ATTGGAACT CCCACACAC TCTACCACAA TCCACACAC TCTACACACA TCCACATTCCC ACTGTGACTG TCTAAAACTG ACAGTTTCTA GACACTTG CCACTTCCC ACTGTGACTG TCTAAAACTG ACAGTTTCTA GAGACTTAAA	GAGGATTAA TGAGAAGCA AGCATTCCT ACTACAGACA ATCAAAAAAA AGATAACTTA AGGACAATAACTT AAGGACAAAA GATTATGAGA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA CTGACAAGTA ACTGACAGAT ACTGACAGCA AGATTCATTA ACTGACAGCA ATCACAGAC AGATTCATGA ATCACAGC TTCTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT TTGTGAGAC TTCTTCAGAT TTGTGAGAC TTCTTCAGAT TTGTCAGAT AGAAATAAT CTGGTAGAGA AACCAGTCAC AACTGCCAC TTCTTAGATC TAACAGAATA ATCTTCAGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTTT TCTTGTTACA TTTGTACCAG TCAAGACATA GCAGTACTAA GCAGTACTAA CAGTACAAG ACAGTACAAG ACAGTACAAG ACAGTACAAG TCAAGGACTTG TCAAGGACTTG TCAAGGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCACACTTTG TCACACTTTG TCACACTTTG TCACACTTTG TCACACTTCC ATTTTCCTCC	120 180 240 300 360 420 660 660 720 840 900 1020 1080 11200 1260 1320 1560 1560 1680 1740 1880 1740 1800 1920 1980
5055606570	CACACATACG CACACATACG CACACAGGGG CAGCTCCTCT CTTGTTGAG AAATATCCAA AAATATCCAA CAAGTAAATG AACACATTCA GAGATGCAATA GGAAAAGGGA GAATGCAAT AATGCCAT AATGCTCAT AATGCTCAT AATGCTCAT AATGCTCAT AATGCTCAT CAGTTAGCA TCTGTATAGC AGTTCAGAC CAGTTCAGAC CAGTTCAGAC CAGTTCAGAC CAGTTCAGAC CAGTTCAGAC AACCAAATAC AAGGGGGAA AACCAAATCA AAGGGTGATG ACCAAATACA AAGGGTGATG ACCAAATACA AAGGGTGATG ACCAAATACA AAGGGTGATG ACCAAATACA AAGGGTGATG ACTTGTCGG CAAACTCTCTG CAAAACTCTCTG CAAACTCTCTCTCAACCTCAACTCTCTCAACTCAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGACTCTGA TGTCATCTGA TGTCATCTGA TCTACTGCTT AGTTAAGAGC CGATTATTGA TCATACTGTT TGACATCTCC TCTCTGAAAG TCATCTGAT TCAGATCTCC AGAAAATGT CCAGAAAATGT TCATATTGA TCATATTGA TCATATGG TCAGATAATGT TGATCTTTT AAGACATTTT AAGACATTGA TTGATCTTTT AAGACATTGA TTGATCTTTT AGACATTCCATT CAGCCTCTTT AGACAATAAC	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA GAATGCAGAC TTTATCCATT TGGATCGAC GAACCTTCG GCACTACTAC GAACCTTCTG TCATACACT TCATACACT TCATACACT TCATACACT TCATACACT TCATACACT TCATACACT TCATACCACT ACCAAGCAT GACTACCAAT AGAAGGCGCT ACCCAGATT AGAAGGCGCT ACCCAGATT AGATACCGA ATCTTAAAT GACTTCTCAG AATCTCTCAG AATCTTAAAT GCTTGATACT CATCTTGAG ATTCTCTAGA ATATGATACT CATCTCTAGA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG GAATTTAGAG AGTGTTAGTCAAACTCAA GCAAACTCAA GCAAACAATT GCAAACAATT GCAAACAATT GCAAACAATT GCAAACAATT GCAAACAATT GCAAACAATT GCAAACAATT GCAAACAATT CCCAACATAT ATGATTAGA ATTGGAATC ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT CCCAACAA TCCCCAACAA TCCCCAACAA TCCACACA ATCCCC ACTGTGACTG ACAGTTTCTA GCAGCTGACG ACAGTTTCTA GCAGCTGACG CTTATACCAC CTTATACCAC	GAGGATTAA TGAGAAGCA AGCATTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACTTT AAGGACAAAA GTTTTGAGGAA TTGAGACAAAAAA AGATTATTGAGGA ATGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA AGATTCATGA ATACCAGCCT AGTTTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT CAGATGCTA AGAATAAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT AGAAATAAT TTGTTAGAGA CACACTACAA GAGGAAGTGA ACTGCCACC TTCTTAGATC TTAACAGAATA ATTCTTCAGG AACTGCCACC TTCTTAGATC TAACAGAATA ATTCTTCAGG	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG ACAGTCAAA AGAAATTTG ACAGTCAAA AGAAATTTG TTACATTTACA TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TCTTGTACA TCAGAGATGT CAAGGAGGAG CAGTACAGA CAGTACAGA CAGTACAGA TCAAGACTTG TCAAGACTTG TCACAGATACAA CAAGATTG CAAGACTTG TCACACTGTG TCACACTGTG TCCACACTATG TCACACTGTG TCCACATATG TGAGGAGGAG CTCCAGTTCC AAATGCTTCC AAATGCTTCC	120 180 240 300 360 420 600 660 780 900 960 1080 1140 1200 11440 1500 1560 1620 1680 1740 1860 1980 2040
505560657075	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA ACACATTCA GAGAAAGGGA TTAGATCCAT AATGCTCAT AATGCTCAT ACAGTTAGAC TTAGATCCAT ACAGTTAGAC TCTCTAGAC TCTCTAGAC AGTTCAGAC CAGTTCAGAC CAGTTGGATG GGGAAAAGAC CAGTTGGATG GGGAAATCA ACGAATACA ACGAAATCA ACTACTGTCGG AGTTTATTGA GCAACTTCTG GAAACCCAG GAAACTCAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGTT AGTTAACAGC CCGATTATAGAGC CCATTATAGAGC TCTCTGAAA TCATACTGTT TGACATCTCC TCTCGAAAA TCATACTGTT CAGAAAATGT CTGAGTCGT GAGAGACCA TCAATAATTT GCTTATATG GGAAAAATGT TTGACTCTT AAGACATCC TCAATAATT AGACATCTC CAGATATT AGACATCTC CAGATACTTC CAGATACTT CAGATCTTT AAGACCAA TTAATTG CTAATATCC ATATTCCTT CAGCTCTTT CAGCTCTTT CAGCTCATAA CCAGTTTCAA CTATCCCATT CAGCACATAC CTATCCCATT CAGCACATAC CTATCCCATT CAGACAATAAC CTTCATCAGG	CTCACTTCGA CTCGCATTCGA CTCGCATTCGA CTCGCATTCG CTGGAAATG CCTGGATTGG GTCCTATACA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCGAGA TGATGCAGAC TTTATCCATT TGGATCGAC CCAGTTGGCT GGACTACTTA CTCATACACT TCAGGCTGAC AACAAGCAT GCTACCAAT AAAATACAGC CCTGAATTA AGAAGCGCT ACCCAGATT GACTACCCAAT AAAATACAGC CCCTGAATTA AGAAGCGCT ACCCAGATT GACTACCCAA AATGATGC AACTACCGA AATGATGC AACTACCGA AATGATGC CCTGAATTA GACTTCCCAG CATCTCTCAG CATCTCTCAG CATCTCTCAGA CATCTCTCAGA CATCTCTCAGAAGAAA	TCTATACACT TCTATACACT CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTAG AAAGCAAGCA CATAGTTAGAG AGTTTCAGG GATTTCAG GATTTCAG GATTTCAG GATTTTGAG GACACTCAA GACACAGTTG GTAAAACAATT GGAAAGGAATTTTGAG AAATTTTTGAG AAATTTTTGAG AAATTTTTGA ATGATTAGAC AATGTTAGAC AATGTTAGAC AATGTTAGAC CCAACAAC ATCCACAACAA TCCCCAACAA TCCACACTAC ACTGTGACTC ACTGTGACTC ACTGTGACTC ACTGTGACTC ACTGTGACTC ACTGTGACTG CTAAAACT GAGGCTGAAG AACATATCCC CTTAAAACG CCTTAAAACG	GAGGATTAA TGAGAAGAA ACATTCACAAAAAA ATATTGATGA GGGATAAACA ATCACACAAA ACATCACATAA AGATAACTTT AAGGACAAAA GTTTTGAGGA CTGACAAGAA ACTTTGAGGA ACTGGATTAC ACTGGATTAC ACTGGATTAC ACTGGATTAC ACTGGATCACAA ACTCACAA ACTCACAA ACTCACAA ACACTACAA ACACTACAA ACACTACAA ACAGCACA ACTCCCCC TCCTTACACAC AACTCCCAC AACTCCACA AACAGAATA ATTCTTCAGAT ATTCTTCAGAT ATTCTCAGAT ATTCTCAGAT ATTCTCAGAT ATTCTCAGAT ATTCTCAGAT ATTCTTCAGAT ATTCTTCAGAT ATTCTTCAGAT AATCTCTAG	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGGT TCACTGGGGA AGATCATA AGAAAATTTG GCAGTCAAA AGAAAATTTG GCAGTCTT AATGCACTA AATGCAACAA ACAGTACAAG AGCAGTTTAC TTTGTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTAGGAGAGCTT CCACACTTTG AGTAGCCATA CCCACACTTG TCACACTTG TCACACTTCC CGAGGAGAAT	120 180 240 300 360 420 660 660 720 840 900 1020 1080 11200 1260 1320 1560 1560 1680 1740 1880 1740 1800 1920 1980
505560657075	CACACATACG CAAAAAAAAC CAGCAGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAATACCAA GAAAAGGGA GAATTCAAA GGAAAAGGGA TTTGAATCCAT AATGCTCAT AATGCTCAT ACAGTTAGCA TCTGGTTATG TCTCTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC CGAAAAGAC CAAATCA AAGGGGAA AACCAAATCA ACGAAATCA ACGATTCTCTC GAAAACCCAG GAAGATTCAA GTGTGGTTTC ACTTCTCC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCG AGATTGCTG TGAATATAG TGAATCTTAA TTCATAACAC GAGTTTCAGT TGTAATTGA TCTACTGCTT AGTTAAGAGC CGATTATGA TCATACTGCT TGACATCTCC TCTCGAAAG TCATGCTGAT AGGTGTTTTC CAGAAATGT CTCGAGTCGT TGAGAGACCA TCAATAATTT GCTTATATGG TTGATCTTTT GCTATATGG TCGAGTCGT TAGACGTTTT CCTATATGG TCGAGTCGT TAGACCTTTT CCTATATTGACTTTT CTTATATTGC TTGATCTTTT CAGACATTGA AGACATTCA AGACTTTTAAGCCTTTT GACTGCAGT CCTTCTTCAACGC CTTCATCAGC CTTCATCAGC CTTCATCAGC CTTCATCAGC CTAGCTAATTA AGACATTAAC CTTCATCAGC CTAGCTTTACAC CTTCATCAGC CTAGCTTTAC AGACATTAA	CTCACTTCGA CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA GAAACTAAA TGGGAAACA AATGGTGTTT TGGATCAGAG TGATGCAGAC TTATCCATT TGGATCAGAC TCCTGCACA CCAGTTGGCT TCCAGACAC CAACTACAC CAACTACAC TTATGATAC TCAGACAT TCAGACAT AAATACAC CCCTGAATTA ACAAGCAT GCTACCCAGATT GACTACACC ACCAGATT GACTACACC ACCAGATT GACTACAC TTATATACAC TCTGATACAC AACTACAC ATCTTAAAT GCTTCTCAG AATGATGC ATCTTAAAT CCTTGATACC TTCAGAAGAA AGACATACC CACTGAGTT CTCCAGAAGAA AGACATACAC CACTGAGATA	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAGCACTAC GCAACCATAC GCAGCACTAC TTTCAGGGTT GTGGAAATTA AAAGCAAGC CCGATTTCAG GCTTTTCAG GCTTTTCAG GCATTTTCAG GCATTTTCAG GCATTTTCAG GCACACAA GCACACACAA ACACACTCA ATGATTAG CCAAACTCAA ACACTTT GCAACACT ATGATTGAG ATTGGAACT TCTACCACAA TCCACACAA TCCACACAC TCTACACAC ACAGTTCC CTAAAACT CCACTTCC ACAGTTCC CTAAAACC CTTAAACC CTTATACCAC TCACACAA CCACTTCC CTTATACCAC CCTCACACAC TCACACAC TCACACAC TCACACAC TCACACAC TCACACAC TCACACAC TCTACACAC TCTACACAC TCTACACAC TCTAAAACT CCCCACAC TCTAAACT CCCCACAC TCTAAACT CCCCACAC TCTAAACC CTTATACCAC CCTTATACCAC CCTCTTGACC CCTGTTGATG CCGCCCC CCTGTTGATG CCGCTTTGATG CCGCTTTGATG CCGTGTTGATG CCGTGTTGATG CCGTGTTGATG CCGTGTTGATG CCGTGTTGATG CCGTGTTGATG	GAGGATTAA TGAGAAGCA AGCATTCCT ACTACAGACA ATCAAAAAAA AGATAACTTT AGGACAATACTT AGGACAAAACTT AGGACAAAA GTTTTGAGGA CTGACAAAAA CTGACAAAA CTGACAAAA CTGACAAAA CTGACAAAA CTGACAAGCA CTGACAAGTA ACTGCACAC AGATTCATGA AGATTCATGA AGATTCATGA ATCCAGCCT AGTTTGCAGAT CAGATGCAA TTGTCAGAT TTGTCAGAT CAGATGCAA CAGATACAA AGAATAAT TTGTCAGAT CTGAGAAGCA AACAGTCAC AACTGCACC TTCTTAGATC TAACAGAATA ATTCTTCAGA AACTGCCAC CTCTTAGATC AACTGCACC ACTGCACC ACTGCACA AACTGCACA AACTGCACA CTCTTAGATC AACTGCACA AACTGCACC ACTTCTAGAT AATCTTCAGG AACCTTCAGA AACTGCACC ATCTTAGATC TAACAGAATA ATTCTTCAGG AACTGCTACA AACTGCTACA AACTGCTACA AACTGCTACA AACTGCTACA AACTGTAGAT AATCTGCTAGA AACTGTAGAT AATCTGCTAGA AACTGTAGAT AATCTGCTAGA AACTGTAGAT AATCTGCAGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTACA ATCATTGGAA TGACTACGGT TCACTGGGA AGATCTACA AGCAGTCAAA AGAAATTTG AGCAGTCAAA AGAAATTTG TTACATTTAC TTTTAAAGAT AATGCAACAA AGCAGTTGTT TCTTGTTACA TTGTACCAG TCAGAGCTGT TCAGAGCTGT TCTTGTACA TCTGTACAG AGCAGTTTGT TCTTGTACCAG TCAGAGCTTGT TCAGAGCTTGA TCAGAGCTTGA TCAGACTTG AGTAGCCATA GCCTACTGAT CAAGAGTGGA ATTCTCTGGA TCACACTGTG TCACACTGTG TCCACATTG TGAGGAGGAG CTCCAGTCCC AAATGCTTCC GGAGGGAAAT AGGCAGAG GACAACCAAG	120 180 240 300 360 420 600 660 780 840 900 1020 1140 1260 1380 1440 1560 1560 1620 1680 1740 1860 1920 1980 2040 2100
50556065707580	CACACATACG CACACATACG CACACATACG CACACAGGGG CAGCTCCTCT CTTGTTGAG AAATATCCAA CAAGTAAATG AACACATTCA ACACACTATA GAGATGCAATA GAGATGCAAT GAGATCCAT AATGCATCAT AATGCTATA ACAGTTAGC TTTGATCAT ACAGTTAGAC TTCTCTAGAC AGTTCAGAC GAGTCATAT ACAGTATAC GAGTATAC GAGTATAC CAGTTAGGAT TCCTGAAC CAGTTAGGAT AACCAAATAC AACCAAATAC AAGGGTGATG ACAGAAAAAC AAGGGTACTT ACAGAAAAAC GAAGGTACT AACTTGTCGG AGTTTATTGA GCAACTTCTG GCAACTTCTG GAAAACCAA GTTGTTCTCA GAAGATCAA GTTTGTTCAGAC GAAGATTCAA GTTTGTTCAAC CAACTTCTCAAC CAACTTCTCAAC CAACTTCTCAAC CAACTTCTCAAC CAACTTCTCAAC CAACTTCTCAAC CAACTTCTCAAC CAACTTCTCAAC CAACTTCTCC CAACTTCTCC CACACTTCTCC CACCTTCTCC CTCCTTTTCTCT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTCAGA TGTCATCTGA TCTACTGTT AGTTAAGAGC CGATTATTGA TCATACTGTT TGACATCTCC TCTCTGAAAG TCATACTGTT TGACATCTCC TCTTGAAAG TCATGCTGAT AGGTGTTTT GCAGAAAATTT GCTTATATGG GGAAAAATTT GCTTATATGG TTGATCTTT AAGACATCTT AGGTCGTT AGGTCGTT CAGACCATT CAGCCCTTT CAGCCCCTTT CAGCCCCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCTCTTT CAGCTCTT CAGCTCT CAGCTCT CAGCT CAGC	CTCACTTCGA CTCACTTCGA CTCACCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGATACA GAACTTAGGTGTT TGGATCAGAG TGATGCAGAC TTATCCATT TGGATCAGAC CAGTTGGCT GGACTACTAC CAGTTGGCT TCAGGCTGAC AACCAAGCAT GACCAAGCAT GCTACCCAGT GCTACCCAGT GCTACCCAGT GCTGACTA AAAATACAGC CCCTGAATTA AGAAGGCGCT ACCCAGGTT AGCAATACAC ACCAAGCAT GCTACCCAGT GCTACCCAGT ACCCAGGTT CAGAAGAA AGACTTCTCAG ATCTTTAAAT GACTAACCGA ATCTTTAAAT GACTACTCAGA ATCTTCTAGA ATCTTCTAGA ATCTCTCAGA ATCTCTCAGA ATATCTCTAGA AGACATAACA CATCTGAAGAA AGACATAACA CATCTGAAGT CATCTGAGAGAA AGACATAACA CATCTGAAGT CATCTGAGAGAA AGACATAACA CATCTGAGATA CATCTGAGAT CATCTGAGAT CATCTCTCAGA CATCTCTCAGA CATCTCATAC CATCTCTCAGA CAT	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTAG GATTTCAG GATTTCAG GATTTCAG GATTTCAG GATTTCAG GATTTTCAG GATTTTGAG GACACAGTTG GTTTTTTGTG CCAAACTCAA GACACAGTTG GATTTTTGG GAAACGATT GGAAAGGAAG TCCAAACTGA ATGGTTAGAG AATTTTGA ATGATTAGAC AATGGAACTG ATTGTGAACC ACTGTGAACT CCAACACA TCCCAACACA TCCCAACACA TCCACTCCC CTTAAAACT CCACTCCC CTTATACCAC TCACACACA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACTTA AGGACAAAA GTTTTGAGGA CTGACAGACA ACTGGATTGGGACAGA GTTTTGGGACAGA ACTGGATTGCAGACA AGATTCATGA ACTGGATTGCAGACA AGATTCATGA ATTTGCAGAT TTGTGAGACA AGATTCATGA ATTCTTCAGAT TTGTCGACAT AGATTGCACCT CAGATGGATGA ACACTACAA ACACTACAA ACACTACAA ACACTACAA ACACTACCAA ACACTACCAA ACACTACCAA ACACTACCAA ACTGCCACC TTCATAGATT ATTTTCAGAT ATCTTCAGAT ATCTTCATA ATCTTCATA ATCTTCAGAA ATCCTTCTAT ATGTTGGATC TTACTAGAAA ATCTTGAGAA ATCTTGAGAA ATCTTCAGAA ATCTTCAGAA ATCTTCAGAA ATCTTCAGAA ATCTTCAGAA ATCTTCAGAA ATCTTCAGAA ATCTTCAGAA ATCTTCAGAA ATCTGAGAA ATCTGAGAAA ATTCTGAGAA ATTCTGAGAA ATTCTGAGAA ATTCTGAGAA ATTCTGAGAA ATTACAGATCT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTC TTACATTAC TTTAAAGAT TAATGCAACAA ACAGTACAA ACAGTACAAG AGCAGTTTT TCTTTAACAT TCTTGTTAC TTTGTTACA TCAGTACCAG TCAGAGCTGC TCAGAGACTTG AGTAGCATACA ACAGTACCAAC TCGCATACGG TCAGAGACTAC TCGCATAGGC TCACTGTT TCTCTGGA TCAGACTTGT TCTCTGGA TCAGACTTG TCAGACTTGT TCAGAGAGGAG CAGTGCTACCAATTG TCAGACTTGT TCAGACTTGT TCAGCATAGGC ATTTTCTTCC CAAATTGCC ATTTTCCTCC AATGCTCC CAAATGCTCC CAAATGCTCC CAAATGCTCC CAAATGCTCC GGAGGGAAAT AGGCAGAGG GACAACCAAG GGAAATGCCA	120 180 240 300 360 420 660 660 720 780 840 900 1020 1260 1260 1320 1320 1440 1500 1620 1620 1740 1860 1740 1860 1980 2040 2160
505560657075	CACACATACG CACACATACG CACACAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GACAGGGAG AAATGCAATA GAGATGCAAA GAAAAGGGA TTAGATCCAT AATGCCTCAT AATGCTCAT ACAGTTAGCA TCTGGTATG TCTCTAGAC CAGTTCAGAC CAGTTCAGAC CAGTTAGGA TCTGGAAAGC CAGTTGGATG GAACCCAATACA AACCAAATCA AAGGGGAAAACCAACGAAATCA AAGGGTACTG ACGAAATCA ACGAAATCA ACGAAATCA CGAAATCA CGAAATCCT CGCACACTCTG CACACCCC CCCTTTCTCT CGCATTCCTCC CCTCTTTCTCTC CATTATTCTA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGTT AGTTAACAGC CCGATATTGAT AGTTAACAGC TCTACTGTT TGACATCTCT TGACATCTCT TCTCTGAAA TCTATCTGT TCAGAGTCTT CAGAAAATGT CTCGAGTCGT GAGAGGACCA TCAATAATTT GCTTATATG GTTGATTTTAATGG GTAAAAGGCA TCAGATCTTC AGACACTCT AGACACTTC AGACACTT AGACACTAC ATATTCCTT CAGCTCTTT AGACCATT AGACCATT AGACCATT AGACAATAAC CTTCATCAGC CTTACATCAGC CTTACATC	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGAATGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAATCA TGGGATCAGAG TGATGCGAA TGATGCGAA GAACTTCAG TCCATGCGACA CAGTTGGCT TCAGTACACT TCAGGCTGAC TTATACATT CTCATACACT TCAGGCTGAC TATGATAC CTATACACT TCAGGCTGAC AACCAAGCAT AAAATACAGC CCCTGAATA AAAATACAGC CCCTGAATA AGAAGCGCT ACCCAGATT GACTAACCA ATCTTAAAT GACTTCTCAG AAATGATGG TTCCTGAG ATATGATGC TTCAGAAGAA AGACATAACA CACTGAGATA AGACATAACA CACTGAGATA CACTGAGATA CACTGAGACA CACTGAGACA CACTGAGACA CACTGAGACA CTTCCCAACT	TCTATACACT TCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAATTTAG CATATTTAGG CATATTTAGG GATTTTCAG GATTTTCAG GATTTTCAG GATTTTCAG GATTTTCAG GATTTTTGAG GACACAGTG GACACAGTG GAAACAAT GGAAAGAAT TGGAAACAAT GGAAAGAAT TGGAACGAG GATTTTGA ATGATTGAG AATTTTGA ATGATTTGA ATGATTTGA ATGATTTGA ATGATTTGA ATGATTTGA CCACACTA ATCCCAACAA TCCACACAA TCCACACAA TCCACACAA TCCACTTCC ACTGTGACTG CTTAAAACTG CAGAGTTCTA GAGCTGAAG AACATTCCA CTTAAAACTG CACAGCCG CTTAAAACG GCACAGCCCG CTTTTAACCAG GCACAGCCCG GTGTTGATG GGTCCCTCAG GGAGCTCAAC GGAGCTCACG GGTCCCTCAG GAGGTAACAC	GAGGATTAA TGAGAAGAA ACATTAAAAAA ATATTGATGA GGGATAAACA ATCATCACTAA AGGACATTTCACTAA AGGACATAACTTT AAGGACAAAA GTTTTGAGGA CTGACAAGTA ACTGGATTAC ACTGGATTAC ACTGGATTAC ACTGCATAA ACTGCATAA ACTGCATAA ACTGCATA ACTGCATA ACTGCAGA ATACCAGCT AGATTCATCA ATACCAGCT AGATTGCAGCA TTGTCGACAT TTGTCGACAT TTGTCGACAT CAGATGCTA ACACTACAA AGGAAGTA AACCAGTCAC AACTGCAC CTCATACAAA ATCTGCAAC ATCCTCATA ATCTGCAAC CTCATGCTTT CTCATGCTTT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGT TCACTGGGGA AGATCATA AGAAAATTTG GCAGTCAAA AGAAAATTTG TTACACTT AGCAGTCAAA AGAAAATTTG TTACACTTT AATGAACAA ACAGTACAAG ACAGTACACATAGGCATACAC CCACATTAGG ATTCTCTCGGA ATATCTCTCGGA TCACACTATGT TCACACTATGT TCACACTATGT TCACACTATGT CCACACTATGT ACACCCATCC TACCCCATCC	120 180 240 300 360 420 660 660 720 780 840 900 1020 1180 1260 1320 1440 1500 1560 1740 1620 1680 1740 1860 1920 1920 1980 2010 2010 2010 2010 2010 2010 2010 20
50556065707580	CACACATACG CAACATACG CACACATACG CAAAAAAAAC CAGCGAGGGG CACCTCTTTTTTGAGA CAAGTAAATG AACACATTCA GTCAGCGGGG GAAATGCAAA GGAAAAGGGA TTAGCAA TCTGGTTATG TCTGGTATG ATCTCTAGAC AGTCAGAC TCTGGTATG TCTCTAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AACGAAATCA AAGGGTAAT AACGAAATCA AAGGGTACT AACTTGCGG GAAGATCT AACTTGCGG GAAGATCCA AGGAAAAC AGGTACTT ACTTGTCG GAAAACCCAG GAAGATTCA AGCTTTCTC GAAAACCCAG GAAGATTCA ACTTGTTCT CACTTTCTC TCCTTTTCTC TCCTTTTCTC TCCTTTTCTC TCCAGACAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GTGTTTGCCG AGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCT AGTTAAGAGC CGATTATGA TCATACTGCT TGACATCTC TCATCTGAT TGACATCTC TCTCTGAAAG TCTCTGAAAG TCTCTGAGTGT TGAGATGTTTC CAGAAAATGT TGAGATGTTTT GAGATCTTT GAGATACTGT TGACATCTT GAGAAAATTT GCTTATATGG TTGATCTTTT AAGACATTAA ATCCCAATC CAGATCATC CAGCTCTTT CAGCTCTTT AGACAATAA CTTCATCAG CTAGCTCAT AGACAATAA CTTCATCAG CTAGCTCAT AGACAATAA CTTCATCAG CTAGCTCTAC AGACTAATTA CAGGCCCAT AGACTAATTA CAGGCCCATT CAGCCCTTA AGACTAATTA CAGGCCCATT AGACCACTAA AGACTAATTA CAGGCCCATT AGACCACTA AGACTAATTA CAGGCCCATT AGACTCTTAC AGACTAATTA CAGGCCCATT AGACTCTTAC AGACTAATTA CAGGCCCATT AGACTCTTAC AGACTTTGCCT AGGCTCTTT AGACTCTTAC AGACTTTGCT AGGCTCTTT	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA AATGGTGTTT TGGATCAGAG TGATCAGAG GAACCTCTG TCCTGCACA GAACCTCTG TCCCTGCACA CCAGTTGGCT TCAGACACA TTAGATACCT TCAGGCTGAC CCAGTTACC TATGATACC TATGATACC TATGATACC TATGATACC TACCCAAT AAAATACAGC CCCTGAATTA AGAAGGCGT ACCCAGATT AGAAGGCGT ACCCAGATT CACTACACC ATCTTAAAT GACTTCTCAG AATGATACC ATCTTAAAT GACTTCTCAG AATGATAC CATCTCTGAG TTCAGAAGAA CACTGAGATA CACTGACC CTCCCACGTC	TCTATACACT TCTATACACT CGAATCCTAA GCTAATGGAT TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGITTAGA GATTTTCAG GATTTCAG GATTTTCAA TTGTTTGAG GACACACA GACACACA GACACACA GACACACA TCTCACACAA TCCACACAA TCCACACACA TCTACACACA TCTACACACA TCTACACACA TCTACACACA TCACACACA	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATCTCACTAA AGATAACTTT AAGGACAAAAA GATTTGAGGA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA TTGGGACAAGTA ACTGCACAGATA ACTGCACAGTA ACTGCACAG TTCTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT AGAAATAAT CTGGTAGAGA ACACTACAA AGAGAATAAT ACTGCACC TTCTTAGATC TAACAGACTA AACTCCTCCAC TTCTTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT AACTCCTCCAC TTCTTAGATC TAACAGAATTA AATCTGCAAC TTCTTCAGAT TTCTTCATAT AATCTGCAGA TTCATGCATCT CTCATGCAGAC TTACAGGATCT CTCATGCAGAC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGGT TCACTGGGG ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTTACATTTAC TTTTAAGAT AATGCAACAA AGAGTTTGT TCTTGTTACA TTTGTACCAG TCAAGACTTG AGTAGCCATA GCAGTCTGT AGTAGCCATA GCAGTCTGT TCACACTTGT CCACATAGG ATTCTCTGGA ATTCTCTGGA ATTACCTTCGCA ATTCTCTGGA TCAAGAGAGGAG CACTCCCAAATGCTCCC AAATGCTTCC CGAGGGGAAT AGGCAGAGG GACAACCAAG GGAAATGCCA ACCCCACCC AACCCAACCG	120 180 240 300 360 420 660 660 720 780 840 900 1020 11260 1260 1260 12740 1560 1620 1740 1860 1740 1860 1920 2160 2220 2280 22400 2340
50556065707580	CACACATACG CAACATACG CACACATACG CAAAAAAAAC CAGCGAGGGG CACCTCTTTTTTGAGA CAAGTAAATG AACACATTCA GTCAGCGGGG GAAATGCAAA GGAAAAGGGA TTAGCAA TCTGGTTATG TCTGGTATG ATCTCTAGAC AGTCAGAC TCTGGTATG TCTCTAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AGTCAGAC AACGAAATCA AAGGGTAAT AACGAAATCA AAGGGTACT AACTTGCGG GAAGATCT AACTTGCGG GAAGATCCA AGGAAAAC AGGTACTT ACTTGTCG GAAAACCCAG GAAGATTCA AGCTTTCTC GAAAACCCAG GAAGATTCA ACTTGTTCT CACTTTCTC TCCTTTTCTC TCCTTTTCTC TCCTTTTCTC TCCAGACAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GTGTTTGCCG AGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCT AGTTAAGAGC CGATTATGA TCATACTGCT TGACATCTC TCATCTGAT TGACATCTC TCTCTGAAAG TCTCTGAAAG TCTCTGAGTGT TGAGATGTTTC CAGAAAATGT TGAGATGTTTT GAGATCTTT GAGATACTGT TGACATCTT GAGAAAATTT GCTTATATGG TTGATCTTTT AAGACATTAA ATCCCAATC CAGATCATC CAGCTCTTT CAGCTCTTT AGACAATAA CTTCATCAG CTAGCTCAT AGACAATAA CTTCATCAG CTAGCTCAT AGACAATAA CTTCATCAG CTAGCTCTAC AGACTAATTA CAGGCCCAT AGACTAATTA CAGGCCCATT CAGCCCTTA AGACTAATTA CAGGCCCATT AGACCACTAA AGACTAATTA CAGGCCCATT AGACCACTA AGACTAATTA CAGGCCCATT AGACTCTTAC AGACTAATTA CAGGCCCATT AGACTCTTAC AGACTAATTA CAGGCCCATT AGACTCTTAC AGACTTTGCCT AGGCTCTTT AGACTCTTAC AGACTTTGCT AGGCTCTTT	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGAATGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAATCA TGGGATCAGAG TGATGCGAA TGATGCGAA GAACTTCAG TCCATGCGACA CAGTTGGCT TCAGTACACT TCAGGCTGAC TTATACATT CTCATACACT TCAGGCTGAC TATGATAC CTATACACT TCAGGCTGAC AACCAAGCAT AAAATACAGC CCCTGAATA AAAATACAGC CCCTGAATA AGAAGCGCT ACCCAGATT GACTAACCA ATCTTAAAT GACTTCTCAG AAATGATGG TTCCTGAG ATATGATGC TTCAGAAGAA AGACATAACA CACTGAGATA AGACATAACA CACTGAGATA CACTGAGATA CACTGAGACA CACTGAGACA CACTGAGACA CACTGAGACA CTTCCCAACT	TCTATACACT TCTATACACT CGAATCCTAA GCTAATGGAT TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGITTAGA GATTTTCAG GATTTCAG GATTTTCAA TTGTTTGAG GACACACA GACACACA GACACACA GACACACA TCTCACACAA TCCACACAA TCCACACACA TCTACACACA TCTACACACA TCTACACACA TCTACACACA TCACACACA	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATCTCACTAA AGATAACTTT AAGGACAAAAA GATTTGAGGA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA TTGGGACAAGTA ACTGCACAGATA ACTGCACAGTA ACTGCACAG TTCTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT AGAAATAAT CTGGTAGAGA ACACTACAA AGAGAATAAT ACTGCACC TTCTTAGATC TAACAGACTA AACTCCTCCAC TTCTTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT AACTCCTCCAC TTCTTAGATC TAACAGAATTA AATCTGCAAC TTCTTCAGAT TTCTTCATAT AATCTGCAGA TTCATGCATCT CTCATGCAGAC TTACAGGATCT CTCATGCAGAC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGGT TCACTGGGG ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTTACATTTAC TTTTAAGAT AATGCAACAA AGAGTTTGT TCTTGTTACA TTTGTACCAG TCAAGACTTG AGTAGCCATA GCAGTCTGT AGTAGCCATA GCAGTCTGT TCACACTTGT CCACATAGG ATTCTCTGGA ATTCTCTGGA ATTACCTTCGCA ATTCTCTGGA TCAAGAGAGGAG CACTCCCAAATGCTCCC AAATGCTTCC CGAGGGGAAT AGGCAGAGG GACAACCAAG GGAAATGCCA ACCCCACCC AACCCAACCG	120 180 240 300 360 420 660 660 720 780 840 900 1020 1180 1260 1320 1440 1500 1560 1740 1620 1680 1740 1860 1920 1920 1980 2010 2010 2010 2010 2010 2010 2010 20

		000443					
	GAATCCGAGA	AGAAGGCAGT	TATACCCCTT	GTGATCGTGT	CAGCCCTGAC	TTTTATCTGT	2520
	CTAGTGGTTC	TTGTGGGTAT	TCTCATCTAC	TGGAGGAAAT	GCTTCCAGAC	TGCACACTTT	2580
		ACAGTACATC					2640
_		ATGTCGGAGC					2700
5		GTGGGTTTAC					2760
	GGTATTACAG	CAGACAGCTC	CAACCACCCA	GACAACAAGC	ACAAGAATCG	ATACATAAAT	2820
		ATGATCATAG					2880
		ATATCAATGC					2940
10		GCCCACTGAA					3000
10	AATGTGGAAG	TTATTGTCAT	GATAACAAAC	CTCGTGGAGA	AAGGAAGGAG	AAAATGTGAT	3060
		CTGCCGATGG					3120
		TTGCCTATTA					3180
	AAGGGCTCCC	AGAAAGGAAG	ACCCAGTGGA	CGTGTGGTCA	CACAGTATCA	CTACACGCAG	3240
	TGGCCTGACA	TGGGAGTACC	AGAGTACTCC	CTGCCAGTGC	TGACCTTTGT	GAGAAAGGCA	3300
15		AGCGCCATGC					3360
10							
		CATATATTGT					3420
	GTCAACATAT	TTGGCTTCTT	AAAACACATC	CGTTCACAAA	GAAATTATTT	GGTACAAACT	3480
		ATGTCTTCAT					3540
		ACAGTCATAT					3600
20							
20		AGCTAGAGAA					3660
	GACTATTCTG	CAGCCCTAAA	GCAATGCAAC	AGGGAAAAGA	ATCGAACTTC	TTCTATCATC	3720
		GATCAAGGGT					3780
							3840
		ATATCATGGG					
~ -		CCATCAAGGA					3900
25	GTTATGATTC	CTGATGGCCA	AAACATGGCA	GAAGATGAAT	TTGTTTACTG	GCCAAATAAA	3960
		TAAATTGTGA					4020
		AGGAAAAACT					4080
	TATGTACTTG	AAGTGAGGCA	CTTTCAGTGT	CCTAAATGGC	CAAATCCAGA	TAGCCCCATT	4140
	Δατάδαδαττ	TTGAACTTAT	AAGTGTTATA	AAAGAAGAAG	CTGCCAATAG	GGATGGGCCT	4200
30		ATGATGAGCA					4260
50	ATGATIGITE	AIGAIGAGCA	IGGAGGAGIG	ACGGCAGGAA	CITICIGIGC	CLIGACANCC	
		AACTAGAAAA					4320
	AATCTGATGA	GGCCAGGAGT	CTTTGCTGAC	ATTGAGCAGT	ATCAGTTTCT	CTACAAAGTG	4380
		TTGTGAGCAC					4440
		TGCCTGATGG					4500
25							
35		GGGACTCACA					4560
	ATCAGTCTAG	TTCTGTTATC	TGTTGATTTC	CCATCACCTG	ACAGTAACTT	TCATGACATA	4620
		GCCAAATTTA					4680
		GTTTGAACTA					4740
40		TCTGTATTGA					4800
40	AAACTACAGA	AAATGTTTGT	TTTTAGTGTC	AAATTTTTAG	CTGTATTTGT	AGCAATTATC	4860
	A CCTTTCCTA	GAAATATAAC	ΤΤΤΤΑ ΔΤΑΓΑ	GTAGCCTGTA	AATAAAACAC	TCTTCCATAT	4920
	AGGIIIGCIA	OMMINIMO	maca cma mma	2000222011	CANAMANMOM	CHIMA CHIMA THE	4980
		ATTTTACAAC					
	CTAAATACTG	CCCTTACTCTC	TCCATGGACC	ΔΔΔΥΥΥΔΥΔΔ	TTATAATTGT	AGATTTTTAT	5040
		CCCIAGIGIC	TCCTTCCT	*****			
45	ATTTTACTAC	TGAGTCAAGT	TTTCTAGTTC	TGTGTAATTG	${\tt TTTAGTTTAA}$	TGACGTAGTT	5100
45	ATTTTACTAC CATTAGCTGG	TGAGTCAAGT TCTTACTCTA	TTTCTAGTTC CCAGTTTTCT	TGTGTAATTG GACATTGTAT	TTTAGTTTAA TGTGTTACCT	TGACGTAGTT AAGTCATTAA	5100 5160
45	ATTTTACTAC CATTAGCTGG CTTTGTTTCA	TGAGTCAAGT TCTTACTCTA GCATGTAATT	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG	TGTGTAATTG GACATTGTAT TGGAAAATAG	TTTAGTTTAA TGTGTTACCT AAATACCTTC	TGACGTAGTT AAGTCATTAA ATTTTGAAAG	5100 5160 5220
45	ATTTTACTAC CATTAGCTGG CTTTGTTTCA	TGAGTCAAGT TCTTACTCTA GCATGTAATT	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG	TGTGTAATTG GACATTGTAT TGGAAAATAG	TTTAGTTTAA TGTGTTACCT AAATACCTTC	TGACGTAGTT AAGTCATTAA ATTTTGAAAG	5100 5160
45	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT	5100 5160 5220 5280
45	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA	TGAGTCAAGT TCTTACTCTA GCATGTAATT	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT	5100 5160 5220
	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT	5100 5160 5220 5280
45 50	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT	5100 5160 5220 5280
	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT	5100 5160 5220 5280
	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO:	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT	5100 5160 5220 5280
	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO:	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT	5100 5160 5220 5280
	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO:	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAA	TGACGTAGTT AAGTCATTAA ATTTTGAAAA TTCAAGGAAT AAAAAAAAAA	5100 5160 5220 5280
50	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO:	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT	5100 5160 5220 5280
50	ATTTTACTAC CATTAGCTGG CTTTGTTTGA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAA	TGACGTAGTT AAGTCATTAA ATTTTGAAAA TTCAAGGAAT AAAAAAAAAA	5100 5160 5220 5280
	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAA 41	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA	5100 5160 5220 5280 5340
50	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK	5100 5160 5220 5280 5340
50	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA sequence: EOS sequence 21 wANGYYRQQR KFQGWDKTSL	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 kLVEEIGWSY ENTFIHNTGK	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV	5100 5160 5220 5280 5340
50	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA sequence: EOS sequence 21 wANGYYRQQR KFQGWDKTSL	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 kLVEEIGWSY ENTFIHNTGK	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV	5100 5160 5220 5280 5340
50 55	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKOA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK ALDPFILLNL	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY TVESSFEAV LPNSTDKYYI	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC	5100 5160 5220 5280 5340
50 55	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKOA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK ALDPFILLNL	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY TVESSFEAV LPNSTDKYYI	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC	5100 5160 5220 5280 5340 60 120 180 240
50	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIJDGV DTVSISESQL	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYWLMDY	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEAV LPNSTDKYYI LQNNFREQQY	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS VNGSLTSPPC KFSRQVFSSY	5100 5160 5220 5280 5340 60 120 180 240 300
50 55	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILINL QSGYVMLMDY TWERPRVVYD	TTTAGTTTAA TGTGTTACCT ATGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPE KPSRQVFSSY QQLDGEDQTK	5100 5160 5220 5280 5340 60 120 180 240 300 360
50 55	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL LOFVAIESCAL LGAILNNLLP	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DRYTSLLV DNSYVLQIVA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY	TTTAGTTTAA TGTGTTACCT ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK KVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE	5100 5160 5220 5280 5340 60 120 180 240 300 360 420
50 55	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL LOFVAIESSQL LOGAILNNLLP	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DRYTSLLV DNSYVLQIVA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY	TTTAGTTTAA TGTGTTACCT ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK KVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE	5100 5160 5220 5280 5340 60 120 180 240 300 360
50 55	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAILDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV MMSYVLQIVA AIVNPGRDSA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYJ TUGLYGKY TNQIRKKEPQ	TTTAGTTTAA TGTGTTACCT ATAGTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLINDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN	5100 5160 5220 5280 5340 60 120 240 300 360 420 480
505560	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence: WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKEPQ ATEKDISLTS	TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEAV LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLND	5100 5160 5220 5280 5340 60 120 180 360 420 480 540
50 55	ATTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NUSTSQPVTKL NTVSITEYEE	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLINL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD	TTTAGTTTAA TGTGTTACCT ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI CTVTELPPHT TGAEDSSGSS	TGACGTAGTT AAGTCATTAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN PATSAIPFIS	5100 5160 5220 5280 5340 60 120 180 240 300 420 480 540 600
505560	ATTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NUSTSQPVTKL NTVSITEYEE	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLINL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD	TTTAGTTTAA TGTGTTACCT ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI CTVTELPPHT TGAEDSSGSS	TGACGTAGTT AAGTCATTAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN PATSAIPFIS	5100 5160 5220 5280 5340 60 120 180 360 420 480 540
505560	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL SENPETITYD	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DENYTSLLV DMSYVLQIVA AIVNFGRDSA NSTSQPVTKL VLIPESARNA	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	TTTAGTTTAA TGTGTTACCT ATAGTTTTA AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK KVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLIND PATSAIPFIS NVWFPSSTDI	5100 5160 5220 5280 5340 60 120 180 240 300 360 420 480 540 660
505560	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAILDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEGKDIEEG GKGDVPNTSL MNLSGTAESL MNLSGTAESL ESPLETITYD ESPLQTNYTE	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV MMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYWMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS	TTTAGTTTAA TGTGTTACCT ATAGTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLINDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 600 720
505560	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIJKE RSPTRGSEFS GSKTVLRSPH ENISGGYIFS TAQPDVGSGR TEVYPHAFTP	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYTE SSRQQDLVST	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TGCCATTAA 1 sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNFGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 SELTSIHNTGK LEMQIYCFDA ALDPFILINL LEMQIYCFDA ALDPFILINL TWERPRVVYD ICTNGLYGKY TNQIRKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE EVYNEASNSS	TTTAGTTTAA TGTGTTACCT ATGTTTTA AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYY1 LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI GTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPE CFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP LESEKKAVIP	5100 5160 5220 5280 5340 60 120 180 360 420 360 420 600 660 720 780
50556065	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST CLVVLVGILI	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ VWRKCFQTAH	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVYD ICTNGLYGKY TNQIRKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR	TTTAGTTTAA TGTGTTACCT ATGTTTTA AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK KVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLND PATSALND PATSALPFIS NVWFPSSTDI PHYSTFAYFP LESEKKAVIP PISDDVGAIP	5100 5160 5220 5280 5340 5340 60 120 180 240 300 420 480 540 660 720 780 840
505560	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST CLVVLVGILI	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ VWRKCFQTAH	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVYD ICTNGLYGKY TNQIRKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR	TTTAGTTTAA TGTGTTACCT ATGTTTTA AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK KVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLND PATSALND PATSALPFIS NVWFPSSTDI PHYSTFAYFP LESEKKAVIP PISDDVGAIP	5100 5160 5220 5280 5340 60 120 180 360 420 360 420 600 660 720 780
50556065	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV TGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI IKHPFKHVAD	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST CLVVLVGILI LHASSGFTEE	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV MNSYVLQIVA AIVNPGRDSA NSTSQPVTKL VLIPESARNA IRVDESEKTT VNVVYSQTTQ YWRKCFQTAV YWRKCFQTAV	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	TTTAGTTTAA TGTGTTACCT ATAGTTTTA AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK KVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLMD PATSAIPFIS NVWFPSSTDI PHYSTFAYFP LESEKKAVIP PISDDVGAIP NIVAYDHSRV	5100 5160 5220 5280 5340 600 120 180 240 300 360 420 480 540 660 720 780 840 900
50556065	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI IKHFPKHVAD KLAQLAEKDG	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 1QLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST CLVVLVGILI LHASSGFTEE KLTDYINANY	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV MMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYER VLIPESARNA IRVDESEKTT VNVVYSQTTQ YMKCFQTAH FEEVQSCTVD VDGYNRPKAY	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMGIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST	TTTAGTTTAA TGTGTTACCT ATAGTTTTA AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 600 720 780 840 900 960
50556065	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEELIKE ESPTRESEFS GSKTVLRSPH ENISGGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI IKHPEKHVAD KLAQLAEKDG NLVEKGRRKC	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST CLVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS sequence: EOS sequence: WANGYYRQQR WROGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA AIVNPGRDSA AIVTSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ YWRKCFQTAH FEEVQSCTVD DDGYNRPKAY EYGNFLVTQK	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLINL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEP ATEKDISLTS ESLLTSFKLD SEDSTSSGSE EYLEDSTSSGSE FYLEDSTSPR LGITADSSNH LAAQGPLKST SVQVLAYYTV	TTTAGTTTAA TGTGTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYY1 LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI CTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYL RDFTRNTKI	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK KKYPTCNSPK KKYPTCNSPK KKYPTCNSPK KKYPTCNSPK CMGKGKLRALS YNGSLTSPE GTKYNEAKTN DATSAIPFIS NVWFPSSTDI PHYSTFAYFP LESEKKAVIP PISDDVGAIP NIVAYDHSV KKGSQKGRPS	5100 5160 5220 5280 5340 5340 60 120 180 240 300 420 480 540 660 720 840 900 900 900 1020
50556065	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFITDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI IKHFPKHVAD KLAQLAEKDG NLVEKGRRKC	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST CLVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE QWPDMGVPEY	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA A sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ VMRKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK SLPVLIFVRK	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYWLMDY TWERPRVYD ICTNGLYGKY TNQIRKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST SVQVLAYYTV AAYAKRHAVG	TTTAGTTTAA TGTGTTACCT ATGTTTTA AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE ENFTLRNTKI PVVVHCSAGV	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK KVSGGVSEMV KGKGKLRALS YNGSLTSPPC QLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLND PATSALPFIS NVWFPSSTDI PHYSTFAYFP LESEKKAVIP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD	5100 5160 5220 5280 5340 60 120 180 240 300 420 480 540 660 720 780 900 900 900 1020 1080
5055606570	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFITDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI IKHFPKHVAD KLAQLAEKDG NLVEKGRRKC	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST CLVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE QWPDMGVPEY	TTTCTAGTTC CCAGTTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA A sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ VNRKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK SLPVLTFVRK	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYWLMDY TWERPRVYD ICTNGLYGKY TNQIRKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST SVQVLAYYTV AAYAKRHAVG	TTTAGTTTAA TGTGTTACCT ATGTTTTA AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE ENFTLRNTKI PVVVHCSAGV	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK KVSGGVSEMV KGKGKLRALS YNGSLTSPPC QLDGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLND PATSALPFIS NVWFPSSTDI PHYSTFAYFP LESEKKAVIP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD	5100 5160 5220 5280 5340 5340 60 120 180 240 300 420 480 540 660 720 840 900 900 900 1020
5055606570	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI LKHFPKHVAD KLAQLAEKDG NLVEKGRRKC GRVVTQYHYT SMLQQIQHEG	TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA AATATAAATA 184 Protein cession #: 1 10 LLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST CLVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE QWPDMGVPEY TVNIFGFLKH	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence: EOS sequence: WANGYYRQQR KFQGWDKTS: EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV AIVNPGRDSA NSTSQPVTKL VLIPESARNA IRVDESEKTT VNVVYSQTTQ YWRKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK KRSQRNYLVQ	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31	TTTAGTTTAA TGTGTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY LQNIFKEQQY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI TVVVHCSAGV TLVEALLSKE	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLMD PATSAIPFIS NVWFPSSTDI PHYSTFAYFP LESEKKAVIP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS ERTGTYIVLD TEVLDSHIHA	5100 5160 5220 5280 5340 60 120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140
50556065	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEILKE GSKTVLRSPH ENISGGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI IKHPKHAEAD NLAGLAEADG NLVEKGRRKC GRVTQYHYT SMLQQIQHT	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCAGAATAACA AATATAAATA 184 Protein cession #: 1	TTTCTAGTTC CCAGTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NTTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTQ YMRKCFQTAH FEEVQSCTVD VDGYNRFKAY EYGNFLVTQK SLPVLTFVRK SLPVLTFVRK SLPVLTFVRK SLPVLTFVLVQ QLLSQSNIQQ	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 STATEMATAG ENTFIHNTGK LEMQIYCFDA ALDPFILLNL LEMQIYCFDA ALDPFILLNL TWERPRVVYD ICTNGLYGKY TNQIRKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE EXSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH LGITADSSNH LAQGPLKST SVQVLAYYTV AAYAKRHAVG SDYSAALKQC	TTTAGTTTAA TGTGTTACT TGTGTTACT ATGTTTTA AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI PDNKHKNRYI PDNKHKNRYI PDNKHKNTSI	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC GPLOGEDQTK DNPELDLFPE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTYI LESEKKAVIP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD GRTGTYIVLD TEVLDSHIHA IPVERSRVGI	5100 5160 5280 5280 5340 600 120 180 240 300 360 420 480 660 720 780 840 900 1020 1080 1140 1200
5055606570	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIIKE RSPTRGSEFS GSKTVLRSPH ENISQCYIFS TAQPDVGSGF TAQPDVGSGF TEVTPHAFTP LVIVSALTFI IKHFPKHVAD KLAQLAEKDG GRVVTQYHYT SMLQQIQHEG YVNALLIPGG YVNALLIPGG SSLSEGGTDY	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SFRQDLVST CLVVLVGILI LHASSGFTEY LHASSGFTEY LHASSGFTEY QYWPADGSE QWPDMGVPEY TVNIFGFLKH AGKTKLEKQF INASYIMGYY	TTTCTAGTTC CCAGTTTCT TTAACTTTG CCTTACCAAA TGCCATTAA 1 sequence: EOS sequence: EOS sequence: WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL NTVSITEYEE VLIPESARNA IRVDESEKTT YNVVYSQTTQ YWRKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK SLPVLTFVRK IRSQRNYLVQ QLLSQSNLVQQ QLLSQSNLVQQ QSNEFIITQH	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLINL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS FYLEDSTSPR LGITADSSNH LGITA	TTTAGTTTAA TGTGTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI PDNKHKNRYI ENFTLRNTKI PVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL	TGACGTAGTT AAGTCATTAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK KKYPTCNSPK KKYPTCNSPK KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFPE GTKYNEAKIN PATSAIPFIS NVWFPSSTDI PHYSTFAYFP LESEKKAVIP PISDDVGAIP NIVAYDHSRV INVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIM IPVERSRVGI VVMIPDGQMM	5100 5160 5220 5280 5340 60 120 180 240 300 420 480 540 900 900 900 900 900 1080 1140 1200 1260
5055606570	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI LVHPKHVAD KLAQLAEKDG NLVEKGRRKC GRVVTQYHYT SMLQQIQHEG YVNALLIPGP SSLSGGGTDY AEDEFVYWPN	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 1QLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSEPENVQA LGAILNNLLP EEGKDIEEG GKGDVPNTSL MALSGTEEG KLTDYINATY LCVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE QWPDMGVPEY TVNIFGFLKH AGKTKLEKQF TINASYIMGYY KDEPINCESF	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ NMSYVLQIVA AIVNPGRDSA NSTSQPVTKL VTUSITSYEE VLIPESARNA IRVDESEKTT VNVVYSQTTV YDGYNRPKAY EYGNFLVTQK SLPVLITFVRK IRSQRNYLVQ QLLSQSNIQQ QSNEFIITQH KVTLMAEEHK	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYWNLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST SVQVLAYYTV AAYAKRHAVG TEEQYVFIHD SDYSAALKQC PLLHTIKDF	TTTAGTTTAA TGTGTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI PVVVHCSAGV TLVEAILSKE NREKNRTSAI RMIWDHNAQL QDFILEATQD	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51	5100 5160 5220 5280 5340 600 120 1180 240 300 480 540 600 720 780 960 1020 1020 1140 1200 1200 1320
5055606570	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI LVHPKHVAD KLAQLAEKDG NLVEKGRRKC GRVVTQYHYT SMLQQIQHEG YVNALLIPGP SSLSGGGTDY AEDEFVYWPN	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 1QLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSEPENVQA LGAILNNLLP EEGKDIEEG GKGDVPNTSL MALSGTEEG KLTDYINATY LCVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE QWPDMGVPEY TVNIFGFLKH AGKTKLEKQF TINASYIMGYY KDEPINCESF	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA A sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ NMSYVLQIVA AIVNFGRDSA NSTSQPVTKL VTVSITEYEE VLIPESARNA IRVDESEKTT VNVVYSQTTC YNEKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK SLPVLITFVRK IRSQRNYLVQ QLLSQSNIQQ QSNEFIITQH KVTLMAEEHK	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYWNLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST SVQVLAYYTV AAYAKRHAVG TEEQYVFIHD SDYSAALKQC PLLHTIKDF	TTTAGTTTAA TGTGTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI PVVVHCSAGV TLVEAILSKE NREKNRTSAI RMIWDHNAQL QDFILEATQD	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51	5100 5160 5220 5280 5340 600 120 1180 240 300 480 540 600 720 780 960 1020 1020 1140 1200 1200 1320
5055606570	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEN TDTVDWIVFK TGKEEIHEN TDTVDWIVFK TGKEEIHEN TCHTUBYQD LIGTEEIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI IKHFPKHVAD KLAQLAEKDG NLVEKGRKC GRVVTQYHYT SMLQQIQHEG YVNALLIPGP SSLEGEGTDYWPN CPKWPNPDSP	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 1QLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEGKDIEEG GKGDVPNTSL MNLSGTAESL MNLSGTAESL TCLVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE QWPDMGVPEY TVDNFGFLKH AGKTKLEKQF INASYIMGY LOSSTILLING LESSTILLING LHASSGFTEE KLTDYINANY LOSSTILLING LHASSIMGY LHASSIMGY LHASSIMGY LHASSIMGY LING LING LING LING LING LING LING LING	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence: EOS sequence: WANGYYRQQR KFQGWDKTS: EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV AIVNPGRDSA NSTSQPVTKL VLIPESARNA IRVDESEKTT VNVVYSQTTQ YWRKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK KFSQRNIQQ QSNEFIITQH KVTLMAEEHK KVTLMAEEHK IKEEAANRDG	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST SVQVLAYYTV AAYAKRHAVG TEQYVFIHD SDYSAALKQC PLLHTIKDF EMIVHDEHGG	TTTAGTTTAA TGTGTTACCT ATGTTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI RNFTLRNTKI TVVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL UPTAGTFCALT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIHA IPVERSRVGI UVMIPDGQNM DYVLEVRHFQ TLMHQLEKEN	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1260 1260 1320 1380
505560657075	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 1QLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSEPENVQA LGAILNNLLP EEGKDIEEG GKGDVPNTSL MALSGTEEG KLTDYINATY LCVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE QWPDMGVPEY TVNIFGFLKH AGKTKLEKQF TINASYIMGYY KDEPINCESF	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence: EOS sequence: WANGYYRQQR KFQGWDKTS: EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV AIVNPGRDSA NSTSQPVTKL VLIPESARNA IRVDESEKTT VNVVYSQTTQ YWRKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK KFSQRNIQQ QSNEFIITQH KVTLMAEEHK KVTLMAEEHK IKEEAANRDG	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST SVQVLAYYTV AAYAKRHAVG TEQYVFIHD SDYSAALKQC PLLHTIKDF EMIVHDEHGG	TTTAGTTTAA TGTGTTACCT ATGTTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI RNFTLRNTKI TVVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL UPTAGTFCALT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIHA IPVERSRVGI UVMIPDGQNM DYVLEVRHFQ TLMHQLEKEN	5100 5160 5220 5280 5340 600 120 1180 240 300 480 540 600 720 780 960 1020 1020 1140 1200 1200 1320
5055606570	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEN TDTVDWIVFK TGKEEIHEN TDTVDWIVFK TGKEEIHEN TCHTUBYQD LIGTEEIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI IKHFPKHVAD KLAQLAEKDG NLVEKGRKC GRVVTQYHYT SMLQQIQHEG YVNALLIPGP SSLEGEGTDYWPN CPKWPNPDSP	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 1QLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEGKDIEEG GKGDVPNTSL MNLSGTAESL MNLSGTAESL TCLVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE QWPDMGVPEY TVDNFGFLKH AGKTKLEKQF INASYIMGY LOSSTILLING LESSTILLING LHASSGFTEE KLTDYINANY LOSSTILLING LHASSIMGY LHASSIMGY LHASSIMGY LHASSIMGY LING LING LING LING LING LING LING LING	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence: EOS sequence: WANGYYRQQR KFQGWDKTS: EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV AIVNPGRDSA NSTSQPVTKL VLIPESARNA IRVDESEKTT VNVVYSQTTQ YWRKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK KFSQRNIQQ QSNEFIITQH KVTLMAEEHK KVTLMAEEHK IKEEAANRDG	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST SVQVLAYYTV AAYAKRHAVG TEQYVFIHD SDYSAALKQC PLLHTIKDF EMIVHDEHGG	TTTAGTTTAA TGTGTTACCT ATGTTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI RNFTLRNTKI TVVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL UPTAGTFCALT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIHA IPVERSRVGI UVMIPDGQNM DYVLEVRHFQ TLMHQLEKEN	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1260 1260 1320 1380
505560657075	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 1QLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEGKDIEEG GKGDVPNTSL MNLSGTAESL MNLSGTAESL TCLVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE QWPDMGVPEY TVDNFGFLKH AGKTKLEKQF INASYIMGY LOSSTILLING LESSTILLING LHASSGFTEE KLTDYINANY LOSSTILLING LHASSIMGY LHASSIMGY LHASSIMGY LHASSIMGY LING LING LING LING LING LING LING LING	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence: EOS sequence: WANGYYRQQR KFQGWDKTS: EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV AIVNPGRDSA NSTSQPVTKL VLIPESARNA IRVDESEKTT VNVVYSQTTQ YWRKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK KFSQRNIQQ QSNEFIITQH KVTLMAEEHK KVTLMAEEHK IKEEAANRDG	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST SVQVLAYYTV AAYAKRHAVG TEQYVFIHD SDYSAALKQC PLLHTIKDF EMIVHDEHGG	TTTAGTTTAA TGTGTTACCT ATGTTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI RNFTLRNTKI TVVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL UPTAGTFCALT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIHA IPVERSRVGI UVMIPDGQNM DYVLEVRHFQ TLMHQLEKEN	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1260 1260 1320 1380
505560657075	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAAATA 184 Protein cession #: 1 11 1QLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEGKDIEEG GKGDVPNTSL MNLSGTAESL MNLSGTAESL TCLVVLVGILI LHASSGFTEE KLTDYINANY DQYWPADGSE QWPDMGVPEY TVDNFGFLKH AGKTKLEKQF INASYIMGY LOSSTILLING LESSTILLING LHASSGFTEE KLTDYINANY LOSSTILLING LHASSIMGY LHASSIMGY LHASSIMGY LHASSIMGY LING LING LING LING LING LING LING LING	TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA n sequence: EOS sequence: EOS sequence: WANGYYRQQR KFQGWDKTS: EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV AIVNPGRDSA NSTSQPVTKL VLIPESARNA IRVDESEKTT VNVVYSQTTQ YWRKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK KFSQRNIQQ QSNEFIITQH KVTLMAEEHK KVTLMAEEHK IKEEAANRDG	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST SVQVLAYYTV AAYAKRHAVG TEQYVFIHD SDYSAALKQC PLLHTIKDF EMIVHDEHGG	TTTAGTTTAA TGTGTTACCT ATGTTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI RNFTLRNTKI TVVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL UPTAGTFCALT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIHA IPVERSRVGI UVMIPDGQNM DYVLEVRHFQ TLMHQLEKEN	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1260 1260 1320 1380
505560657075	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCAGAATAACA AATATAAATA 184 Protein CESSION #: 1	TTTCTAGTTC CCAGTTTCT TTAACTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS sequence 21 WANGYYRQQR KFQGWDKTSL EHSLEGQKFP ESVSRFGKQA AVFCEVLTMQ DPENYTSLLV NMSYVLQIVA AIVNPGRDSA NTSQPVTKL NTVSITEYEE VLIPESARNT VNVVSQTTQ YMRKCFQTAH FEEVQSCTVD VDGYNRPKAY EYGNFLVTQK SLPVLTFVRK KIRSQRNIQQ QSNEFIITQH KVTLMAEEHK IKEEAANRDG DIEQYQFLYK	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLNL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ ATEKDISLTS ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS PVYNEASNSS FYLEDSTSPR LGITADSSNH IAAQGPLKST SVQVLAYYTV AAYAKRHAVG TEQYVFIHD SDYSAALKQC PLLHTIKDF EMIVHDEHGG	TTTAGTTTAA TGTGTTACCT ATGTTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI RNFTLRNTKI TVVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL UPTAGTFCALT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIHA IPVERSRVGI UVMIPDGQNM DYVLEVRHFQ TLMHQLEKEN	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1260 1260 1320 1380
505560657075	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQDPVGSGE TEVTPHAFTP LVIVSALTFI IKHFPKHVADA KLAQLAEKDG NLVEKGRRKC GRVVTQYHYT SMLQQIQHEG YVNALIPEG SSLSGEGTDY AEDEFVYWPN CPKWPNPDSP SVDVYQVAKM AESLESLV Seq ID NO:	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST CLVVLVGILI LHASSGFTES QWPDMGVPEY TVNIFGFLKH AGKTKLEKQF INASYIMGYY KDEPINCESF ISKTFELISV INLMRPGVFA	TTTCTAGTTC CCAGTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS s	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLINL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ TNGIRKKEPQ ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS KSFSAGPVMS FYLEDSTSPR LGITADSSNH LGITADSSNH LGITADSSNH LGITADSSNH GITADSSNH GITADSS	TTTAGTTTAA TGTGTTACCT ATGTTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI RNFTLRNTKI TVVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL UPTAGTFCALT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIHA IPVERSRVGI UVMIPDGQNM DYVLEVRHFQ TLMHQLEKEN	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1260 1260 1320 1380
50556065707580	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEIIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQDPVGSGE TEVTPHAFTP LVIVSALTFI IKHFPKHVADA KLAQLAEKDG NLVEKGRRKC GRVVTQYHYT SMLQQIQHEG YVNALIPEG SSLSGEGTDY AEDEFVYWPN CPKWPNPDSP SVDVYQVAKM AESLESLV Seq ID NO:	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCAGAATAACA AATATAAATA 184 Protein CESSION #: 1	TTTCTAGTTC CCAGTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS s	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLINL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ TNGIRKKEPQ ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS KSFSAGPVMS FYLEDSTSPR LGITADSSNH LGITADSSNH LGITADSSNH LGITADSSNH GITADSSNH GITADSS	TTTAGTTTAA TGTGTTACCT ATGTTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI RNFTLRNTKI TVVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL UPTAGTFCALT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIHA IPVERSRVGI UVMIPDGQNM DYVLEVRHFQ TLMHQLEKEN	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1260 1260 1320 1380
50556065707580	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI IKHFPKHVAD KLAQLAEKDG GNLVEKGRRKC GRVVTQYHYT SMLQILHEG YVNALLIPG YSLSGEGTDY AEDEFVYWPN CPKWPNPDSP SVDVYQVAKM AESLESLV Seq ID NO: Nucleic Acc	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SFLQTNYTE CLVVLVGILI LHASSGFTEE KLTDYINATE CLVVLVGILI LHASSGFTEE KLTDYINATE QWPDMGVPEY TVNIFGFLKH AGKTKLEKQF INASYIMGYY KDEPINCESF ISKTFELISV INLMRPGVFA 185 DNA secid Accession	TTTCTAGTTC CCAGTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS s	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLINL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ TNGIRKKEPQ ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS KSFSAGPVMS FYLEDSTSPR LGITADSSNH LGITADSSNH LGITADSSNH LGITADSSNH GITADSSNH GITADSS	TTTAGTTTAA TGTGTTACCT ATGTTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI RNFTLRNTKI TVVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL UPTAGTFCALT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIHA IPVERSRVGI UVMIPDGQNM DYVLEVRHFQ TLMHQLEKEN	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1260 1260 1320 1380
505560657075	ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA Seq ID NO: Protein Acc 1 MRILKRFLAC QSPINIDEDL FKASKITFHW ILFEVGTEEN TDTVDWIVFK TGKEEIHEAV HEFLTDGYQD LIGTEEIKE RSPTRGSEFS GSKTVLRSPH ENISQGYIFS TAQPDVGSGR TEVTPHAFTP LVIVSALTFI IKHFPKHVAD KLAQLAEKDG GNLVEKGRRKC GRVVTQYHYT SMLQILHEG YVNALLIPG YSLSGEGTDY AEDEFVYWPN CPKWPNPDSP SVDVYQVAKM AESLESLV Seq ID NO: Nucleic Acc	TGAGTCAAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAACA AATATAAATA 184 Protein cession #: 1 11 IQLLCVCRLD TQVNVNLKKL GKCNMSSDGS LDFKAIIDGV DTVSISESQL CSSEPENVQA LGAILNNLLP EEEGKDIEEG GKGDVPNTSL MNLSGTAESL SENPETITYD ESFLQTNYTE SSRQQDLVST CLVVLVGILI LHASSGFTES QWPDMGVPEY TVNIFGFLKH AGKTKLEKQF INASYIMGYY KDEPINCESF ISKTFELISV INLMRPGVFA	TTTCTAGTTC CCAGTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 1 sequence: EOS s	TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAA 31 KLVEEIGWSY ENTFIHNTGK LEMQIYCFDA ALDPFILLINL QSGYVMLMDY TWERPRVVYD ICTNGLYGKY TNQIRKKEPQ TNGIRKKEPQ ESLLTSFKLD SEDSTSSGSE KSFSAGPVMS KSFSAGPVMS FYLEDSTSPR LGITADSSNH LGITADSSNH LGITADSSNH LGITADSSNH GITADSSNH GITADSS	TTTAGTTTAA TGTGTTACCT ATGTTTACTT AAATACCTTC ATGGTTTTTA AAAAAAAA 41 TGALNQKNWG TVEINLTNDY DRFSSFEEAV LPNSTDKYYI LQNNFREQQY TMIEKFAVLY SDQLIVDMPT ISTTTHYNRI QTVTELPPHT TGAEDSSGSS ESLKDPSMEG QGPSVTDLEM HESRIGLAEG VISTPPTPIF PDNKHKNRYI AEDFWRMIWE RNFTLRNTKI RNFTLRNTKI TVVVHCSAGV TLVEAILSKE NREKNRTSSI RMIWDHNAQL UPTAGTFCALT	TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 51 KKYPTCNSPK RVSGGVSEMV KGKGKLRALS YNGSLTSPPC KFSRQVFSSY QQLDGEDQTK DNPELDLFFE GTKYNEAKTN VEGTSASLND PATSAIPFIS NVWFPSSTDI PHYSTFAYFP PISDDVGAIP NIVAYDHSRV HNVEVIVMIT KKGSQKGRPS GRTGTYIVLD TEVLDSHIHA IPVERSRVGI UVMIPDGQNM DYVLEVRHFQ TLMHQLEKEN	5100 5160 5220 5280 5340 60 120 240 300 360 420 480 540 660 720 780 840 900 960 1020 1080 1140 1260 1260 1320 1380

1 11 21 31 41 51

	WO 02	/086443	1	1	1	1	
	CA CA CATTA CC	CACGCACGAT	 CTCACTTCGA	 TCTATACACT	 GGAGGATTAA	AACAAACAAA	60
	~~~~~~~~~~~	$\Delta$ TTTCCTTCG	CTCCCCCTCC	CTCTCCACTC	TGAGAAGCAG	AGGAGCCGCA	120
_	CCCCCACCCC	CCCCAGACCC	TCTGGAAATG	CGAATCCTAA	AGCGTTTCCT	CGCTTGCATT	180 240
5	CAGCTCCTCT	GTGTTTGCCG	CCTGGATTGG GTCCTATACA	GCTAATGGAT	ATCAAAAAAT	TGGGGAAAGA	300
	እ አመአጥሮሮ <u>አ</u> እር	ATCTA ATACC	CCAAAACAAT	CTCCTATCAA	TATTGATGAA	GATCTTACAC	360
	N N COUN N NOTCO	CAATCTTAAC	TAAATTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TTCAGGGTTG	GGATAAAACA	TCATTGGAAA	420
10	7 C7 C7 TTC7 T	ጥር እጥል እር እርጥ	CCCAAAACAG	TGGAAATTAA	TCTCACTAAT	GACTACCGTG	480 540
10	TATE AND DEAK	COUCATCTGAT	ATGGTGTTTA GGATCAGAGC	ATAGTTTAGA	AGGACAAAAA	TTTCCACTTG	600
	<b>カグカザググカカカザ</b>	CTACTCCTTT	CATGCGGACC	GATTTTCAAG	TTTTGAGGAA	GCAGTCAAAG	660
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CTTAACACCT	TTATCCATTT	TGTTTGAGGT	TGGGACAGAA	GAAAATTTGG	720 780
15	ATTTCAAAGC	GATTATTGAT	GGAGTCGAAA AACCTTCTGC	GTGTTAGTCG	TCACAAGTAT	TACATTTACA	840
13	* magaara ***	CACATCTCCT	CCCTGCACAG	ACACAGTTGA	CTGGATTGTT	TTTAAAGATA	900
	CA CHIMA CCAT	CTCTCAAACC	CACTTCCCTC	TTTTTTGTGA	AGTTCTTACA	ATGCAACAAT	960
	COCCOUNTATICA	CATCCTCATC	GACTACTTAC TCATACACTG	AAAACAATTT	TCGAGAGCAA	CAGTACAAGT	1020 1080
20	CHECK CAN A CC	አር አአአአጥር ጥጥ	CAGGCTGACC	CAGAGAATTA	TACCAGCCTT	CTTGTTACAT	1140
20	CCCAAACACC	TOCACTOCTT	TATGATACCA	TGATTGAGAA	GTTTGCAGTT	TTGTACCAGC	1200
	A CHITCCA TCC	プログロログログ ひんりょう	ACCA AGCATG	AATTTTTGAC	AGATGGCTAT	CAAGACTTGG	1260 1320
	GTGCTATTCT	CAATAATTTG	CTACCCAATA AAATACAGCG	TGAGTTATGT	TCTTCAGATA	CCTACTGATA	1380
25	A MOOMOA A CW	マクカヤクサウサウマ	AATTAADTOO	TTGGAACTGA	AGAAATAATC	AAGGAGGAGG	1440
	*********	ACACATTCAA	GAAGGCGCTA	TTGTGAATCC	TGGTAGAGAC	AGTGCTACAA	1500
	3 CC3 3 3 TC3 C	CAAAAACCAA	CCCCAGATTT	CTACCACAAC	ACACTACAAT	CGCATAGGGA	1560 1620
	CGAAATACAA	TGAAGCCAAG	ACTAACCGAT TCTTTAAATT	CCACTTCCCA	ACCAGTCACT	AAATTAGCCA	1680
30	GRGRRRRRGR	サス サササ () () サイン	A CTTCTCAGA	CTGTGACTGA	ACTGCCACCT	CACACTGTGG	1740
	A A COMA COMO	$\lambda C C C T C T T T \Delta$	AATGATGGCT	CTAAAACTGT	TCTTAGATCT	CCACATATGA	1800 1860
	ACTTGTCGGG	GACTGCAGAA	TCCTTAAATA CTTGATACTG	CAGTTTCTAT	TTCTTCAGGC	TCCAGTCCCG	1920
	CA A COMPORCIO	ጥአጥሮሮሮልጥጥሮ	ATCTCTGAGA	ACATATCCCA	AGGGTATATA	TTTTCCTCCG	1980
35	*********	ሮአሮአአሞአልሮል	TATGATGTCC	TTATACCAGA	ATCTGCTAGA	AATGCTTCCG	2040
	AAGATTCAAC	TTCATCAGGT	TCAGAAGAAT GACATAACAG	CACTAAAGGA	TCCTTCTATG	GGCAGAGAGA	2100 2160
	aammmamaca	CACTAATTAC	ACTGAGATAC	GTGTTGATGA	ATCTGAGAAG	ACAACCAAGT	2220
	COMPRESSOR	ACCCCCACTG	ATGTCACAGG	GTCCCTCAGT	TACAGATCIG	GAAATGCCAC	2280
40	א משא ששכשא כ	つかがからいつかる	TTCCCAACTG	AGGTAACACC	TCATGCTTT	ACCCCATCCT	2340 2400
	ロカロカベカカロベカ	CCCCACTAAT	AGTAGCCATG	AGTCTCGTAT	TGGTCTAGCT	ACCCAACCGG	2460
	3 3 mcccc3 C3 3	CAACCCACTT	ATACCCCTTG	TGATCGTGTC	AGCCCTGACT	TTTATCTGTC	2520
4 ~	መአ ረጥረረጥጥርጥ	TOTOGOTATT	CTCATCTACT	GGAGGAAATG	CTTCCAGACT	GCACACTTTT	2580 2640
45	ACTTAGAGGA	CAGTACATCC	CCTAGAGTTA	AGCACTTTCC	AAAGCATGTT	ATCTTTCCAA	2700
	አመሮሮን አሮሞአር	TCCCTTTTACT	CAAGAATTTG	AGACACTGAA	AGAGITITAC	CAGGAAGTGC	2760
	A CA COTOTA C	ተረጥተር እርጥተ እ	CCTATTACAG	CAGACAGCTC	CAACCACCCA	GACAACAAGC	2820 2880
50	ACAAGAATCG	ATACATAAAT	ATCGTTGCCT	ATGATCATAG	CAGGGTTAAG	CTAGCACAGC GATGGCTACA	2940
50	7 7 7 7 7 7 7 7 7 7	አ ር ር ጥጥ አ ጥ ል ጥባ	CCTCCCCAAC	GCCCACTGAA	ATCCACAGC1	GAAGATTTCT	3000
	CCACAATCAT	ATCCCAACAT	· AATGTGGAAG	TTATTGTCAT	GATAACAAAC	CTCGTGGAGA	3060
	N N CCN N CCN C	! አአልጥሮጥሮልባ	CAGTACTGGC	CTGCCGATGC	GAGTGAGGAG	TACGGGAACT AATTTTACTC	3120 3180
55	ロスカペスカカペカ ()	מ ממדת ממממ מי	AAGGGCTCCC	AGAAAGGAAG	ACCCAGTGG#	CGTGTGGTCA	3240
33	CA CA CHAMCA	CTACACCCAC	TCCCCTGACA	TGGGAGTACC	: AGAGTACTCC	CTGCCAGTGC	3300
	መረ እ // ረጥጥጥር ካ	CACAAACCC	CCCTATGCCA	AGCGCCATGC	: AGTGGGGCC'l	GTTGTCGTCC	3360 3420
	ACTGCAGTGC	TGGAGTTGGA	AGAACAGGCA	CATATATIGI TTCCCTTCT	AAAACACAT	ATGTTGCAGC CGTTCACAAA	3480
60	רייייית מיייית מייית מייית	CCTACAAACT	GAGGAGCAAT	' ATGTCTTCAT	TCATGATAC	CTGGTTGAGG	3540
	CONTROCTOR	· ጥአልአርልልልርግ	GAGGTGCTGG	ACAGTCATA	TCATGCCTAT	GTTAATGCAC	3600 3660
	TCCTCATTCC	TGGACCAGC	GGCAAAACAA	AGCTAGAGAA	A GCAATTCCAC	CTCCTGAGCC AGGGAAAAGA	
	አመሮሮን አሮሞሞር	፣ ጥጥርጥልጥርልጥር	CCTGTGGAAA	GATCAAGGG	r TGGCATTTC#	1 TCCCTGAGTG	3/80
65	CACAACCCAC	፣ አርአርጥአርኒጥ	· AATGCCTCCT	' ATATCATGG	3 CTATTACCAC	3 AGCAATGAAT	3840 3900
	TCATCATTAC	CCAGCACCC	CTCCTTCATA	CCATCAAGG	A TTTCTGGAGG	A GAAGATGAAT	3960
	መመረመውጥ አርሞር	CCCAAATAA	GATGAGCCTA	TAAATTGTG	\ GAGCTTTAAG	3 GTCACTCTTA	
	MCCCCCV VCV	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	r ሮፕልጥሮፕልልፕር	: AGGAAAAAC'	CATRATTCA 1	3 GACTTTATCT	4080
70	ma aa aaama	" አርአርርአጥርሽ"	r ጥልጥርጥልርጥጥ <i>(</i>	: AAGTGAGGC	A CTTTCAGTG	I CCTAAATGGC	4140 4200
	CAAATCCAGA	A TAGCCCCAT	r AGTAAAACTI	TIGAACIIA	A TGGAGGAGT	A AAAGAAGAAG B ACGGCAGGAA	4260
	COMPROPORTOR CO	ግ ምርምርክርክ ስ	¬ ሮሞሞልሞሮሮልሮር	" AACTAGAAA	A AGAAAATTC	C GIGGATGITI	4320
	A CONCOUNCE	ግ መእስመለጥመልጥ(ግ አልጥሮፕሮልፕርን	A GGCCAGGAG'	I CTTTGCTGA	C ATTGAGCAGT	4300
75	ATCAGTTTC'	r ctacaaagt	3 ATCCTCAGC	TTGTGAGCA	C AAGGCAGGA C AAATATAGC	A GAGAATCCAT T GAGAGCTTAG	4500
	A CONCOMPA CO	ኮ ጥጥአአሮአሮልር	A ACCCCCTCC	GGGACTCAC	A TCTGAGCAT	T GITTICCICI	4500
	maamaaaan	P ACCCACGAA	A ATCAGTCTA	TTCTGTTAT	C TGTTGATTT	C CCATCACCIG	4020
90	3 C3 CED 3 CE	P ምርአምርአርአም	A CCATTCTCC	~ CCCAAATTT.	A TATCATTAA	C AATGTGTGCC A ATTTTACAGT	4000
80	A DESCRIPTION A CO	አ አምሮሮአአጥፕሮ	ጥ ሬሬጥልጥጥጥጥጥ	r TCTGTATTG	A TTTTAACAG	A AAATTTCAAT	4000
	mm = m = c = c = c = c	ም ጥአሮሮአአጥሞሮ	~ አδδሮΤδሮδ Ω	A AAATGTTTG	T TTTTAGTGT	C AAATTTTTAG	4000
	COCO DA COCO DE COCO D	ጥ አርርአአመጥአጥ	C አርርጥጥፕርርጥ	AATATAAAN A	C TTTTAATAC	A GTAGCCIGIA	4920
85	CINE A CONTRACTO	ጥ ለመመአረመመእጥ	ጥ ሬጥልልልጥልርጥ	G CCCTAGTGT	C TCCATGGAC	C ACCTAAAGTA C AAATTTATAT	5040
0.5	መጠ አ መ አ አ ጥጥር ነ	ጥ አርአጥጥጥጥጥ	T ATTTTACTA	C TGAGTCAAG	T TTTCTAGTT	C TGTGTAATTG	2700
	TTTAGTTTA	A TGACGTAGT	T CATTAGCTG	G TCTTACTCT	A CCAGTTTTC	T GACATTGTAT	5160

		/086443					
	AAATACCTTC	AAGTCATTAA ATTTTGAAAG TCCAAGGAAT	AAGTTTTTAT	GAGAATAACA	CCTTACCAAA	CATTGTTCAA	5220 5280 5340
5	AAAAAAAAA	AAAAAAAAA	AAA				
	-	186 Proteir cession #: F	_	e			
10	1	11	21	31.	41	51	
	MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE	HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSSEPENV	GVESVSRFGK QLAVFCEVLT QADPENYTSL	QAALDPFILL MQQSGYVMLM LVTWERPRVV	NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV	YIYNGSLTSP QYKFSRQVFS LYQQLDGEDQ	60 120 180 240
15	PELIGTEEII TNRSPTRGSE NDGSKTVLRS	QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT	EGAIVNPGRD SLNSTSQPVT SLNTVSITEY	SATNQIRKKE KLATEKDISL EEESLLTSFK	PQISTTTHYN TSQTVTELPP LDTGAEDSSG	RIGTKYNEAK HTVEGTSASL SSPATSAIPF	300 360 420 480 540
20	DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPIKHFPKHV	GRESFLQTNY TPSSRQQDLV FICLVVLVGI ADLHASSGFT LAQLAEKDGK	TEIRVDESEK STVNVVYSQT LIYWRKCFQT EEFETLKEFY	TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL	MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP	EMPHYSTFAY EGLESEKKAV IFPISDDVGA DNKHKNRYIN	600 660 720 780 840
25	NVEVIVMITN KGSQKGRPSG RTGTYIVLDS EVLDSHIHAY	LVEKGRRKCD RVVTQYHYTQ MLQQIQHEGT VNALLIPGPA SLSGEGTDYI	QYWPADGSEE WPDMGVPEYS VNIFGFLKHI GKTKLEKQFQ	YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQSNIQQS	VQVLAYYTVR AYAKRHAVGP EEQYVFIHDT DYSAALKQCN	NFTLRNTKIK VVVHCSAGVG LVEAILSKET REKNRTSSII	900 960 1020 1080 1140
30	VMIPDGQNMA YVLEVRHFQC	EDEFVYWPNK PKWPNPDSPI VDVYQVAKMI	DEPINCESFK SKTFELISVI	VTLMAEEHKC KEEAANRDGP	LSNEEKLIIQ MIVHDEHGGV	DFILEATQDD TAGTFCALTT	1200 1260 1320
35	Nucleic Ac	187 DNA sec id Accession lence: 148-4	1 #: EOS sec 1632				
40	1	11	21 }	31	41	51	
	CAAAAAAAAC CGGCGAGGGG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG	CTCCCCCTCC TCTGGAAATG	CTCTCCACTC CGAATCCTAA	TGAGAAGCAG AACGTTTCCT	AGGAGCCGCA CGCTTGCATT	60 120 180 240
45	CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA	AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA	GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA	GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA	ATCAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA	TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT	300 360 420 480 540
50	AAATGCAATA GAGATGCAAA GGAAAAGGGA GATTTCAAAG	TGTCATCTGA TCTACTGCTT AGTTAAGAGC CGATTATTGA TCATACTGTT	TGGATCAGAG TGATGCGGAC TTTATCCATT TGGAGTCGAA	CATAGTTTAG CGATTTTCAA TTGTTTGAGG AGTGTTAGTC	AAGGACAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA	ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT	600 660 720 780 840
55	AATGGCTCAT ACAGTTAGCA TCTGGTTATG TTCTCTAGAC	TGACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT	TCCCTGCACA CCAGTTGGCT GGACTACTTA CTCATACACT	GACACAGTTG GTTTTTTGTG CAAAACAATT GGAAAGGAAG	ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCATGA	TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT	900 960 1020 1080 1140
60	TGGGAAAGAC CAGTTGGATG GGTGCTATTC TGCACTAATG	CTCGAGTCGT GAGAGGACCA TCAATAATTT GCTTATATGG TTGATCTTTT	TTATGATACC AACCAAGCAT GCTACCCAAT AAAATACAGC	ATGATTGAGA GAATTTTTGA ATGAGTTATG GACCAACTGA	AGTTTGCAGT CAGATGGCTA TTCTTCAGAT TTGTCGACAT	TTTGTACCAG TCAAGACTTG AGTAGCCATA GCCTACTGAT	1200 1260 1320 1380 1440
65	GAAGAGGGAA AACCAAATCA ACGAAATACA AAGGGTGATG	AAGACATTGA GGAAAAAGGA ATGAAGCCAA TTCCCAATAC ATATTTCCTT	AGAAGGCGCT ACCCCAGATT GACTAACCGA ATCTTTAAAT	ATTGTGAATC TCTACCACAA TCCCCAACAA TCCACTTCCC	CTGGTAGAGA CACACTACAA GAGGAAGTGA AACCAGTCAC	CAGTGCTACA TCGCATAGGG ATTCTCTGGA TAAATTAGCC	1500 1560 1620 1680 1740
70	.GAAGGTACTT AACTTGTCGG AGTTTATTGA GCAACTTCTG	CAGCCTCTTT GGACTGCAGA CCAGTTTCAA CTATCCCATT	AAATGATGGC ATCCTTAAAT GCTTGATACT CATCTCTGAG	TCTAAAACTG ACAGTTTCTA GGAGCTGAAG AACATATCCC	TTCTTAGATC TAACAGAATA ATTCTTCAGG AAGGGTATAT	TCCACATATG TGAGGAGGAG CTCCAGTCCC ATTTTCCTCC	1800 1860 1920 1980
75	GAAGATTCAA GTGTGGTTTC AGCTTTCTCC TCCTTTTCTG	AGACAATAAC CTTCATCAGG CTAGCTCTAC AGACTAATTA CAGGCCCAGT	TTCAGAAGAA AGACATAACA CACTGAGATA GATGTCACAG	TCACTAAAGG GCACAGCCCG CGTGTTGATG GGTCCCTCAG	ATCCTTCTAT ATGTTGGATC AATCTGAGAA TTACAGATCT	GGAGGGAAAT AGGCAGAGAG GACAACCAAG GGAAATGCCA	2040 2100 2160 2220 2280
80	TCCAGACAAC GTATACAATG GAATCCGAGA CTAGTGGTTC	CCTTTGCCTA AGGATTTGGT AGGCCAGTAA AGAAGGCAGT TTGTGGGTAT	CTCCACGGTC TAGTAGCCAT TATACCCCTT TCTCATCTAC	AACGTGGTAT GAGTCTCGTA GTGATCGTGT TGGAGGAAAT	ACTCGCAGAC TTGGTCTAGC CAGCCCTGAC GCTTCCAGAC	AACCCAACCG TGAGGGGTTG TTTTATCTGT TGCACACTTT	2340 2400 2460 2520 2580
85	ATTTCAGATG CATGCAAGTA	GTGGGTTTAC	AATTCCAATA TGAAGAATTT	AAGCACTTTC GAGACACTGA	CAAAGCATGT AAGAGTTTTA	TATCTTTCA TGCAGATTTA CCAGGAAGTG AGACAACAAG	2640 2700 2760 2820

```
2880
       CACAAGAATC GATACATAAA TATCGTTGCC TATGATCATA GCAGGGTTAA GCTAGCACAG
       CTTGCTGAAA AGGATGGCAA ACTGACTGAT TATATCAATG CCAATTATGT TGATGGCTAC
                                                                              2940
       AACAGACCAA AAGCTTATAT TGCTGCCCAA GGCCCACTGA AATCCACAGC TGAAGATTTC
                                                                              3000
       TGGAGAATGA TATGGGAACA TAATGTGGAA GTTATTGTCA TGATAACAAA CCTCGTGGAG
                                                                               3060
 5
       AAAGGAAGGA GAAAATGTGA TCAGTACTGG CCTGCCGATG GGAGTGAGGA GTACGGGAAC
                                                                               3120
       TTTCTGGTCA CTCAGAAGAG TGTGCAAGTG CTTGCCTATT ATACTGTGAG GAATTTTACT
                                                                               3180
       CTAAGAAACA CAAAAATAAA AAAGGGCTCC CAGAAAGGAA GACCCAGTGG ACGTGTGGTC
       ACACAGTATC ACTACACGCA GTGGCCTGAC ATGGGAGTAC CAGAGTACTC CCTGCCAGTG
                                                                               3300
       CTGACCTTTG TGAGAAAGGC AGCCTATGCC AAGCGCCATG CAGTGGGGCC TGTTGTCGTC
                                                                              3360
10
       CACTGCAGTG CTGGAGTTGG AAGAACAGGC ACATATATTG TGCTAGACAG TATGTTGCAG
                                                                               3420
       CAGATTCAAC ACGAAGGAAC TGTCAACATA TTTGGCTTCT TAAAACACAT CCGTTCACAA
                                                                               3480
       AGAAATTATT TGGTACAAAC TGAGGAGCAA TATGTCTTCA TTCATGATAC ACTGGTTGAG
                                                                               3540
       GCCATACTTA GTAAAGAAAC TGAGGTGCTG GACAGTCATA TTCATGCCTA TGTTAATGCA
                                                                               3600
       CTCCTCATTC CTGGACCAGC AGGCAAAACA AAGCTAGAGA AACAATTCCA GGGTCTCACT
                                                                               3660
15
       CTGTCACCCA GGCTGGAGTG CAGAGGCACA ATCTCGGCTC ACTGCAACCT TCCTCTCCCT
                                                                               3720
       GGCTTAACTG ATCCTCCTAC CTCAGCCTCC CGAGTGGCTG GGACTATACT CCTGAGCCAG
                                                                               3780
       TCAAATATAC AGCAGAGTGA CTATTCTGCA GCCCTAAAGC AATGCAACAG GGAAAAGAAT
                                                                               3840
       CGAACTTCTT CTATCATCCC TGTGGAAAGA TCAAGGGTTG GCATTTCATC CCTGAGTGGA
GAAGGCACAG ACTACATCAA TGCCTCCTAT ATCATGGGCT ATTACCAGAG CAATGAATTC
                                                                               3900
20
       ATCATTACCC AGCACCCTCT CCTTCATACC ATCAAGGATT TCTGGAGGAT GATATGGGAC
                                                                               4020
       CATAATGCCC AACTGGTGGT TATGATTCCT GATGGCCAAA ACATGGCAGA AGATGAATTT
                                                                               4080
       GTTTACTGGC CAAATAAAGA TGAGCCTATA AATTGTGAGA GCTTTAAGGT CACTCTTATG
                                                                               4140
       GCTGAAGAAC ACAAATGTCT ATCTAATGAG GAAAAACTTA TAATTCAGGA CTTTATCTTA
                                                                               4200
       GAAGCTACAC AGGATGATTA TGTACTTGAA GTGAGGCACT TTCAGTGTCC TAAATGGCCA
                                                                               4260
25
       AATCCAGATA GCCCCATTAG TAAAACTTTT GAACTTATAA GTGTTATAAA AGAAGAAGCT
                                                                               4320
       GCCAATAGGG ATGGGCCTAT GATTGTTCAT GATGAGCATG GAGGAGTGAC GGCAGGAACT
                                                                               4380
       TTCTGTGCTC TGACAACCCT TATGCACCAA CTAGAAAAAG AAAATTCCGT GGATGTTTAC
                                                                               4440
       CAGGTAGCCA AGATGATCAA TCTGATGAGG CCAGGAGTCT TTGCTGACAT TGAGCAGTAT
                                                                               4500
       CAGTTTCTCT ACAAAGTGAT CCTCAGCCTT GTGGGCACAA GGCAGGAAGA GAATCCATCC
                                                                               4560
30
       ACCTCTCTGG ACAGTAATGG TGCAGCATTG CCTGATGGAA ATATAGCTGA GAGCTTAGAG
                                                                               4620
       TCTTTAGTTT AACACAGAAA GGGGTGGGGG GACTCACATC TGAGCATTGT TTTCCTCTTC
                                                                               4680
                                                                               4740
       CTAAAATTAG GCAGGAAAAT CAGTCTAGTT CTGTTATCTG TTGATTTCCC ATCACCTGAC
       AGTAACTTTC ATGACATAGG ATTCTGCCGC CAAATTTATA TCATTAACAA TGTGTGCCTT
                                                                               4800
       TTTGCAAGAC TTGTAATTTA CTTATTATGT TTGAACTAAA ATGATTGAAT TTTACAGTAT
                                                                               4860
35
                                                                               4920
       TTCTAAGAAT GGAATTGTGG TATTTTTTC TGTATTGATT TTAACAGAAA ATTTCAATTT
       ATAGAGGTTA GGAATTCCAA ACTACAGAAA ATGTTTGTTT TTAGTGTCAA ATTTTTAGCT
                                                                               4980
       GTATTGTAG CAATTATCAG GTTTGCTAGA AATATAACTT TTAATACAGT AGCCTGTAAA
TAAAACACTC TTCCATATGA TATTCAACAT TTTACAACTG CAGTATTCAC CTAAAGTAGA
                                                                               5040
                                                                               5100
       AATAATCTGT TACTTATTGT AAATACTGCC CTAGTGTCTC CATGGACCAA ATTTATATTT
                                                                               5160
40
       ATAATTGTAG ATTTTTATAT TTTACTACTG AGTCAAGTTT TCTAGTTCTG TGTAATTGTT
                                                                               5220
                                                                               5280
        TAGTTTAATG ACGTAGTTCA TTAGCTGGTC TTACTCTACC AGTTTTCTGA CATTGTATTG
       TGTTACCTAA GTCATTAACT TTGTTTCAGC ATGTAATTTT AACTTTTGTG GAAAATAGAA
                                                                               5340
       ATACCTTCAT TTTGAAAGAA GTTTTTATGA GAATAACACC TTACCAAACA TTGTTCAAAT
                                                                               5400
       GGTTTTTATC CAAGGAATTG CAAAAATAAA TATAAATATT GCCATTAAAA AAAAAAAAA
                                                                               5460
45
       Α ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ
       Seq ID NO: 188 Protein sequence:
       Protein Accession #: EOS sequence
50
       MRILKRFLAC IQLLCVCRLD WANGYYRQQR KLVEEIGWSY TGALNQKNWG KKYPTCNSPK
                                                                                 60
       QSPINIDEDL TOVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                                120
        FKASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                                180
55
       ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
       TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
                                                                                300
                                                                                360
       HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                                420
       LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN
                                                                                480
60
        RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
                                                                                540
        GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
       ENISOGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                                660
        TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
                                                                                720
        TEVTPHAFTP SSROODLVST VNVVYSQTTQ PVYNEASNSS HESRIGLAEG LESEKKAVIP
                                                                                780
65
        LVIVSALTFI CLVVLVGILI YWRKCFQTAH FYLEDSTSPR VISTPPTPIF PISDDVGAIP
                                                                                840
       IKHFPKHVAD LHASSGFTEE FETLKEFYQE VQSCTVDLGI TADSSMHPDN KHKNRYINIV
AYDHSRVKLA QLAEKDGKLT DYINANYVDG YNRPKAYIAA QGPLKSTAED FWRMIWEHNV
                                                                                900
       EVIVMITALV EKGRRKCDQY WPADGSEEYG NFLVTQKSVQ VLAYYTVRNF TLRNTKIKKG
                                                                               1020
       SQKGRPSGRV VTQYHYTQWP DMGVPEYSLP VLTFVRKAAY AKRHAVGPVV VHCSAGVGRT
                                                                               1080
70
        GTYIVLDSML QQIQHEGTVN IFGFLKHIRS QRNYLVQTEE QYVFIHDTLV EAILSKETEV
                                                                               1140
        LDSHIHAYVN ALLIPGPAGK TKLEKQFQGL TLSPRLECRG TISAHCNLPL PGLTDPPTSA
                                                                               1200
        SRVAGTILLS QSNIQQSDYS AALKQCNREK NRTSSIIPVE RSRVGISSLS GEGTDYINAS
                                                                               1260
        YIMGYYQSNE FIITQHPLLH TIKDFWRMIW DHNAQLVVMI PDGQNMAEDE FVYWPNKDEP
                                                                               1320
        INCESFKUTL MAEEHKCLSN EEKLIIQDFI LEATQDDYVL EVRHFQCPKW PNPDSPISKT
                                                                               1380
75
        FELISVIKEE AANRDGPMIV HDEHGGVTAG TFCALTTLMH QLEKENSVDV YQVAKMINLM
                                                                               1440
        RPGVFADIEO YOFLYKVILS LVGTRQEENP STSLDSNGAA LPDGNIAESL ESLV
        Seq ID NO: 189 DNA sequence
80
        Nucleic Acid Accession #: NM 002820
        Coding sequence: 304..831
                                                       41
                                                                  51
                               21
                                           31
85
        CCGGTTCGCA AAGAAGCTGA CTTCAGAGGG GGAAACTTTC TTCTTTTAGG AGGCGGTTAG
        CCCTGTTCCA CGAACCCAGG AGAACTGCTG GCCAGATTAA TTAGACATTG CTATGGGAGA
                                                                                120
        CGTGTAAACA CACTACTTAT CATTGATGCA TATATAAAAC CATTTTATTT TCGCTATTAT
                                                                                180
```

```
TTCAGAGGAA GCGCCTCTGA TTTGTTTCTT TTTTCCCTTT TTGCTCTTTC TGGCTGTGTG
                                                                            240
       GTTTGGAGAA AGCACAGTTG GAGTAGCCGG TTGCTAAATA AGTCCCGAGC GCGAGCGGAG
                                                                            300
       ACGATGCAGC GGAGACTGGT TCAGCAGTGG AGCGTCGCGG TGTTCCTGCT GAGCTACGCG
                                                                            360
       GTGCCCTCCT GCGGGCGCTC GGTGGAGGGT CTCAGCCGCC GCCTCAAAAG AGCTGTGTCT
                                                                            420
 5
       GAACATCAGC TCCTCCATGA CAAGGGGAAG TCCATCCAAG ATTTACGGCG ACGATTCTTC
                                                                            480
       CTTCACCATC TGATCGCAGA AATCCACACA GCTGAAATCA GAGCTACCTC GGAGGTGTCC
                                                                            540
       CCTAACTCCA AGCCCTCTCC CAACACAAAG AACCACCCCG TCCGATTTGG GTCTGATGAT
                                                                            600
       GAGGGCAGAT ACCTAACTCA GGAAACTAAC AAGGTGGAGA CGTACAAAGA GCAGCCGCTC
                                                                            660
       AAGACACCTG GGAAGAAAA GAAAGGCAAG CCCGGGAAAC GCAAGGAGCA GGAAAAGAAA
                                                                            720
10
       AAACGGCGAA CTCGCTCTGC CTGGTTAGAC TCTGGAGTGA CTGGGAGTGG GCTAGAAGGG
                                                                            780
       GACCACCTGT CTGACACCTC CACAACGTCG CTGGAGCTCG ATTCACGGTA ACAGGCTTCT
                                                                            840
       CTGGCCCGTA GCCTCAGCGG GGTGCTCTCA GCTGGGTTTT GGAGCCTCCC TTCTGCCTTG
                                                                            900
       GCTTGGACAA ACCTAGAATT TTCTCCCTTT ATGTATCTCT ATCGATTGTG TAGCAATTGA
                                                                            960
       CAGAGAATAA CTCAGAATAT TGTCTGCCTT AAAGCAGTAC CCCCCTACCA CACACCCC
                                                                           1020
15
       TGTCCTCCAG CACCATAGAG AGGCGCTAGA GCCCATTCCT CTTTCTCCAC CGTCACCCAA
                                                                           1080
       CATCAATCCT TTACCACTCT ACCAAATAAT TTCATATTCA AGCTTCAGAA GCTAGTGACC
                                                                          1140
       ATCTTCATAA TTTGCTGGAG AAGTGTATTT CTTCCCCTTA CTCTCACACC TGGGCAAACT
                                                                          1200
       TTCTTCAGTG TTTTTCATTT CTTACGTTCT TTCACTTCAA GGGAGAATAT AGAAGCATTT
                                                                          1260
       GATATTATCT ACAAACACTG CAGAACAGCA TCATGTCATA AACGATTCTG AGCCATTCAC
                                                                          1320
20
       ACTITITATI TAATTAAATG TATTTAATTA AATCTCAAAT TTATTTTAAT GTAAAGAACT
                                                                           1380
       TAAATTATGT TTTAAACACA TGCCTTAAAT TTGTTTAATT AAATTTAACT CTGGTTTCTA
       CCAGCTCATA CAAAATAAAT GGTTTCTGAA AATGTTTAAG TATTAACTTA CAAGGATATA
                                                                           1500
       GGTTTTTCTC ATGTATCTTT TTGTTCATTG GCAAGATGAA ATAATTTTTC TAGGGTAATG
                                                                          1560
       CCGTAGGAAA AATAAAACTT CACATTTAAA AAAAA
25
       Seq ID NO: 190 Protein sequence:
       Protein Accession #: NP_002811
30
                                                              51
                  11
                             21
                                        31
                                                   41
       MQRRLVQQWS VAVFLLSYAV PSCGRSVEGL SRRLKRAVSE HQLLHDKGKS IQDLRRRFFL
       HHLIAEIHTA EIRATSEVSP NSKPSPNTKN HPVRFGSDDE GRYLTQETNK VETYKEQPLK
                                                                           120
35
       TPGKKKKGKP GKRKEQEKKK RRTRSAWLDS GVTGSGLEGD HLSDTSTTSL ELDSR
       Seg ID NO: 191 DNA seguence
       Nucleic Acid Accession #: XM_059328
       Coding sequence: 52..1023
40
                                        31
                                                    41
                                                              51
                  11
       GGGCTGTCCG GCCCACTCCC CTGGGAGCGC GAGCGGTGGA CCCAGGCGGC CATGTCCCGC
                                                                             60
       CCTCGCATGC GCCTGGTGGT CACCGCGGAC GACTTTGGTT ACTGCCCGCG ACGCGATGAG
                                                                            120
45
       GGTATCGTGG AGGCCTTTCT GGCCGGGGCT GTGACCAGCG TGTCCCTGCT GGTCAACGGT
       GCGGCCACGG AGAGCGCGGC GGAGCTGGCC CGCAGGCACA GCATCCCCAC GGGCCTCCAC
                                                                            240
       GCCAACCTGT CCGAGGGCCG CCCCGTGGGT CCGGCCCGCC GTGGCGCCTC ATCGCTGCTC
                                                                            300
       GGCCCGGAAG GCTTCTTCCT TGGCAAGATG GGATTCCGGG AGGCGGTGGC GGCCGGAGAC
                                                                            360
       GTGGATTTGC CTCAGGTGCG GGAGGAGCTC GAGGCCCAAC TAAGCTGCTT CCGGGAGCTG
                                                                            420
50
       CTGGGCAGGG CCCCCACGCA CGCGGACGGG CACCAGCACG TGCACGTGCT CCCAGGCGTG
                                                                            480
       TGCCAGGTGT TCGCCGAGGC GCTGCAGGCC TATGGGGTGC GCTTTACGCG ACTGCCGCTG
                                                                            540
       GAGCGCGGTG TGGGTGGCTG CACTTGGCTG GAGGCCCCCG CGCGTGCCTT CGCCTGCGCC
                                                                            600
       GTGGAGCGCG ACGCCCGGGC CGCCGTGGGC CCCTTCTCCC GCCACGGCCT GCGGTGGACA
                                                                            660
       GACGCCTTCG TGGGCCTGAG CACTTGCGGC CGGCACATGT CCGCTCACCG CGTGTCCGGG
                                                                            720
55
       GCCCTGGCGC GGGTCCTGGA AGGTACCCTA GCGGGCCACA CCCTGACAGC CGAGCTGATG
                                                                            780
       GCGCACCCG GCTACCCCAG TGTGCCTCCC ACCGGCGGCT GCGGTGAAGG CCCCGACGCT
                                                                            840
       TTCTCTTGCT CTTGGGAGCG GCTGCATGAG CTGCGCGTCC TCACCGCGCC CACGCTGCGG
       GCCCAGCTTG CCCAGGATGG CGTGCAGCTT TGCGCCCTCG ACGACCTGGA CTCCAAGAGG
                                                                            960
       CCAGGGGAGG AGGTCCCCTG TGAGCCCACT CTGGAACCCT TCCTGGAACC CTCCCTACTC
                                                                          1020
60
       TGACCCCCTA CAGACAACCA AGCACTAATC CCCTTAGTAC CAAGAAAGGG GAGCCAGGAT
                                                                          1080
       TTAGTCCTGG CCCAGCCCAG AGCTGGGACC TGGAGCACGA TCTGTTGACT TCCCTGGGTA
                                                                          1140
       GGACACTGCC ACCTCTGGGC TCAGGTCCTC ATGCCTCCAA ATGGCATCTA GAGTTTGAGC
                                                                          1200
       AGCCTTCTTG GCTGCAGGCA GGCCTAGCCT GTGGCAGCGG GCTAGGGCCC GCAGAGCATT
       TGGTGCCCCT CCATGTTGCA ATGCAAACAC CTTCACCACT GGGGCAGTGG GGAGAGATGG
65
       CTATATTAAT AAAATAACGT GTGTCTTTC
       Seg ID NO: 192 Protein sequence:
       Protein Accession #: XP_059328
70
                  11
                             21
                                        3.1
                                                   41
                                                              51
       MSRPRMRLVV TADDFGYCPR RDEGIVEAFL AGAVTSVSLL VNGAATESAA ELARRHSIPT
                                                                             60
       GLHANLSEGR PVGPARRGAS SLLGPEGFFL GKMGFREAVA AGDVDLPQVR EELEAQLSCF
                                                                            120
75
       RELLGRAPTH ADGHOHVHVL PGVCQVFAEA LQAYGVRFTR LPLERGVGGC TWLEAPARAF
                                                                            180
       ACAVERDARA AVGPFSRHGL RWTDAFVGLS TCGRHMSAHR VSGALARVLE GTLAGHTLTA
                                                                            240
       ELMAHPGYPS VPPTGGCGEG PDAFSCSWER LHELRVLTAP TLRAQLAQDG VQLCALDDLD
                                                                            300
       SKRPGEEVPC EPTLEPFLEP SLL
80
       Seq ID NO: 193 DNA sequence
       Nucleic Acid Accession #: NM 005688.1
       Coding sequence: 126..4439
                                                    41
                                                              51
                                        31
85
       CCGGGCAGGT GGCTCATGCT CGGGAGCGTG GTTGAGCGGC TGGCGCGGTT GTCCTGGAGC
       AGGGGCGCAG GAATTCTGAT GTGAAACTAA CAGTCTGTGA GCCCTGGAAC CTCCGCTCAG
                                                                            120
```

		GGATATCGAC	ATAGGAAAAG	AGTATATCAT	CCCCAGTCCT	GGGTATAGAA	180
		GAGAACCAGC					240
	GGAGAACTCG	ACCGTTGGAA	TGCCAAGATG	CCTTGGAAAC	AGCAGCCCGA	GCCGAGGGCC	300
_		TGCCTCCATG					360
5		TCATGGCTTG					420
		CAATGCTGGG					480
		CCACAAGAAG TGACGTGAAC					540 600
		AGACGCTGCT					660
10		CATCGTGTGC					720
- 0		ACACCTCTTG					780
		GCTGGGCCTC					840
	CTTGGGCATT	GAATTACCGA	ACCGGTGTCC	GCTTGCGGGG	GGCCATCCTA	ACCATGGCAT	900
1 -		CCTTAAGTTA					960
15		CGATGGGCAG					1020
		TGTTGCCATC					1080
		ATCAGCTGTT					1140 1200
		TTTCAGGAGA TACTTACATT					1260
20		AAAAATCCGC					1320
20		TGTGGGTGTG					1380
		GACCCTGGGC					1440
		CATGACTTTT					1500
~ -	AAGCCTCAGT	GGCTGTTGAC	AGATTTAAGA	GTTTGTTTCT	AATGGAAGAG	GTTCACATGA	1560
25		ACCAGCCAGT					1620
		CCACTCCAGT					1680
		TTCCAGGGGC					1740
		GGCAGAGCAG					1800 1860
30		AGAAGGCAAG TCTGGAGATC					1920
50		CTCTCTCATT					1980
		TGGAACCTTC					2040
		CATCCTGTTT					2100
		CCTGAGGCCT					2160
35	GAGAGCGAGG	AGCCAACCTG	AGCGGTGGGC	AGCGCCAGAG	GATCAGCCTT	GCCCGGGCCT	2220
		CAGGAGCATC					2280
		CATCTTCAAT					2340
		CCAGTTACAG					2400
40		GGAAAGAGGC TAACCTGTTG					2460 2520
+0		TTCACAGAAG					2520
		AGTAAAGCCA					2640
		CTGGTCAGTA					2700
		TATGGCCCTT					2760
45		CTGGATCAAG					2820
		TGACAGCATG					2880
		GGCAGTCATG					2940
		AGCTTCCTCC					3000
50		TTTTGACACG TGACGTGCGG					3060 3120
50		CTGTGTGGGA					3180
		CATCCTCTTT					3240
		GGACAATATC					3300
		CACCATCCAC					3360
55		TGACAACCAA					3420
		GGACCTCATC					3480
		GCAGATTCCC					3540 3600
		GTTCCAGTTT GATCAATCAC					3660
60	AGA A CA A GGC	TCCCTCCCCT	CACTGGCCCC	AGGAGGGAGA	GGTGACCTTT	GAGAACGCAG	3720
00	AGATGAGGTA	CCGAGAAAAC	CTCCCTCTTG	TCCTAAAGAA	AGTATCCTTC	ACGATCAAAC"	
	CTAAAGAGAA	GATTGGCATT	GTGGGGCGGA	CAGGATCAGG	GAAGTCCTCG	CTGGGGATGG	3840
	CCCTCTTCCG	TCTGGTGGAG	TTATCTGGAG	GCTGCATCAA	GATTGATGGA	GTGAGAATCA	,3900
c =	GTGATATTGG	CCTTGCCGAC	CTCCGAAGCA	AACTCTCTAT	CATTCCTCAA	GAGCCGGTGC	3960
65	TGTTCAGTGG	CACTGTCAGA	TCAAATTTGG	ACCCCTTCAA	CCAGTACACT	GAAGACCAGA	4020
	TTTGGGATGC	CCTGGAGAGG	ACACACATGA	AAGAATGTAT	TGCTCAGCTA	CCTCTGAAAC	4080
	TTGAATCTGA	AGTGATGGAG AGCCCTGCTC	AATGGGGATA	ACTICICAGI	TTTT A TTC A A	CAGCICIIGI	4140 4200
		AGAGACAGAC					4260
70	GTACCATGCT	GACCATTGCC	CATCGCCTGC	ACACGGTTCT	AGGCTCCGAT	AGGATTATGG	4320
	TGCTGGCCCA	GGGACAGGTG	GTGGAGTTTG	ACACCCCATC	GGTCCTTCTG	TCCAACGACA	4380
	GTTCCCGATT	CTATGCCATG	TTTGCTGCTG	CAGAGAACAA	GGTCGCTGTC	AAGGGCTGAC	4440
		TGACGAAGTC					4500
75	CCCCTCATCG	CGTCCTCCTA	CCGAAACCTT	GCCTTTCTCG	ATTTTATCTT	TCGCACAGCA	4560
75	GTTCCGGATT	GGCTTGTGTG	TTTCACTTTT	AGGGAGAGTC	ATATTTTGAT	TATTGTATTT	4620
		CATGTAAACA					4680
		ATTATAATTG ATTCTGTACA					4740 4800
	TOTATATATA	AGCACTGTGC	TABCCIAIAT	CCATATTCCT	TTCTATCATT	TTTGTACAGT	4860
80	TTCCTCTACA	AGAGATCTGG	TTTTGCTATT	AGACTGTAGG	AAGAGTAGCA	TTTCATTCTT	4920
	CTCTAGCTGG	TGGTTTCACG	GTGCCAGGTT	TTCTGGGTGT	CCAAAGGAAG	ACGTGTGGCA	4980
	ATAGTGGGCC	CTCCGACAGC	CCCCTCTGCC	GCCTCCCCAC	AGCCGCTCCA	GGGGTGGCTG	5040
	GAGACGGGTG	GGCGGCTGGA	GACCATGCAG	AGCGCCGTGA	GTTCTCAGGG	CTCCTGCCTT	5100
0.5	CTGTCCTGGT	GTCACTTACT	GTTTCTGTCA	GGAGAGCAGC	GGGGCGAAGC	CCAGGCCCCT	5160
85	TTTCACTCCC	TCCATCAAGA	ATGGGGATCA	CAGAGACATT	CCTCCGAGCC	GGGGAGTTTC	5220
	TTTCCTGCCT	TCTTCTTTTT	GCTGTTGTTT	CTAAACAAGA	ATCAGTCTAT	CCACAGAGAG	5280
	TCCCACTGCC	TCAGGTTCCT	ATGGCTGGCC	ACTGCACAGA	GCTCTCCAGC	TCCAAGACCT	5340

5		CTCCACAGTT TCGTCGCACA TAATCAGTGT GCTGGTTGCT GCTCAGGTGG CAACTAGACA AAAATGTGAA	CAGTGGCAGG GTCTCTCTCT CTC CTCACACTGG GTGTGGTTTG GCGTGGTCAC TTCTGTCGCC TAAAATTATT	GCTCAGGATT CTCTCTCCC CGTAGAAGTT GTGTGTTCCC TGCTGTCATC TTAGCATGTT	TCGTGGGTCT TCAAAGTCTG TTTGTACTGT GCAAACCCCC AGTTGAATGG TGCTGAACAC	GTTTTCCTTT CAACTTTAAG AAAGAGACCT TTTGTGCTGT TCAGCGTTGC CTTGTGGAAG	5400 5460 5520 5580 5640 5700 5760 5820
15	-	11	21	31	41	51	
13	LDASMHSQLR	 IIPSPGYRSV ILDEEHPKGK	RERTSTSGTH YHHGLSALKP	 RDREDSKFRR IRTTSKHQHP RLWOEELNEV	 TRPLECQDAL VDNAGLFSCM GPDAASLRRV	ETAARAEGLS TFSWLSSLAR VWIFCRTRLI	60 120 180
20	LSIVCLMITQ ALNYRTGVRL PVVAILGMIY	LAGFSGPAFM RGAILTMAFK NVIILGPTGF VAWVKAFSOS	VKHLLEYTQA KILKLKNIKE LGSAVFILFY VOKIREEERR	TESNLQYSLL KSLGELINIC PAMMFASRLT ILEKAGYFOG	LVLGLLLTEI SNDGQRMFEA AYFRRKCVAA ITVGVAPIVV	AAVGSLLAGG TDERVQKMNE VIASVVTFSV	240 300 360 420 480
25	NKPASPHIKI VLAEQKGHLL KTSLISAILG	AQAFTVVTVF EMKNATLAWD LDSDERPSPE QMTLLEGSIA PSSDLTEIGE	SSHSSIQNSP EEEGKHIHLG ISGTFAYVAQ RGANLSGGOR	KLTPKMKKDK HLRLQRTLHS QAWILNATLR ORISLARALY	RASRGKKEKV IDLEIQEGKL DNILFGKEYD SDRSIYILDD	RQLQRTEHQA VGICGSVGSG EERYNSVLNS PLSALDAHVG	540 600 660 720 780
30	FNNLLLGETP VPWSVYGVYI VSDSMKDNPH	HLKSKTVLFV PVEINSKKET QAAGGPLAFL MQYYASIYAL ILNRFSKDMD VSRVLIRELK	SGSQKKSQDK VIMALFMLNV SMAVMLILKA EVDVRLPFOA	GPKTGSVKKE GSTAFSTWWL IRGVVFVKGT EMFIONVILV	KAVKPEEGQL SYWIKQGSGN LRASSRLHDE FFCVGMIAGV	TTVTRGNETS LFRRILRSPM FPWFLVAVGP	840 900 960 1020 1080
35	LDDNQAPFFL GLFQFTVRLA RYRENLPLVL	$\nabla \Delta M \nabla M \Delta M \Delta M$	RLDLISIALI ERINHYIKTL EKIGIVGRTG SGTVRSNLDP	TTTGLMIVLM SLEAPARIKN SGKSSLGMAL FNOYTEDOIW	HGQIPPAYAG KAPSPDWPQE FRLVELSGGC DALERTHMKE	GEVTFENAEM IKIDGVRISD CIAQLPLKLE	1140 1200 1260 1320 1380
40	MLTIAHRLHT Seq ID NO:	VLGSDRIMVL	AQGQVVEFDT quence	PSVLLSNDSS	RFYAMFAAAE	NKVAVKG	
45	Nucleic Ac Coding seq	id Accession uence: 228.	n #: NM_0064 .1922	170			
	1 	11	21 	31 	41	51 }	
						TCCCATCCAG	60
50	CGCCAGCACA TTGCAGCAGC TGGGCCAAGG	CAGTAATGAG TGCAATCATC GACAGAAGAA TCCAGGGCCA	TAGGCGTGGT AGACAGCCTA CTGCCCAGGG	TCCTCTGGGA TCTCTTGTCT GGAGCAGAGC CCACTGCTCA	GGGAGGAAAC GACTTGGGCT CTCCCAGATG GCCCCCAGCC	GCACAGATCC GCTGAGTTGG CCTCTCAGCC	120 180 240 300
55	CGCCAGCACA TTGCAGCAGC TTGGGCCAAGG ATCTAATGGC CAGACTCTGG TGGGCTCCTC AGGGGGATCC GAAGAGTGA	CAGTAATGAG TGCAATCATC GACAGAAGAA TCCAGGGCCA GTCACCCAGC GGAGAAGCTT TGCTGGTGAG GGCAGTGAAG	TGGCCGAGCT TAGGCGTGGT AGACAGCCTA CTGCCCAGGG CCAGATTCTG GGCAGGGAGA GGGAAAGAGG TCCTGTCTAA	TCCTCTGGA TCTCTTGTCT GGAGCAGAGC CCACTGCTCA GGTCAGCCAG CGGAGGACA TCCTGTGTGA CCTGCATGGT AAAGCCACCT	GGGAGGAAAC GCCCAGATG CCCCAGATG CCCAGTGGAA GGACAGCGAC CTTCTGCCTT GGATACTGAC GCTGACTGAC GCTGACCGAC GCTGACCGAC GCTGACCGAC	AGTTAAAATC GCACAGATCC GCTGAGTTGG CCTCTCAGCC GAAGAGGACG TCTGCAGAGC GATGACACCA GAAGAGCACT CCAGTGAAGG	120 180 240 300 360 420 480 540
	CGCCAGCACA TTGCAGCAGCA TTGCAGCAGGA ATCTAATGGC CAGACTCTGG TGGGCTCCTG GAAGAGTGAA TGCAGCAGCA ACCACAACTG ATCAGCAGTG TGGATGCAGGGAACTCAGCAGACTGAGAGACTCAGCAGCAGACTGAGACTGAGACTCCACTG	CAGTAATGAG TGCAATCATC GACAGAGAA TCCAGGGCCA GTCACCCAGC GGCAGAAGCT TGCTGGTGAG GGCAGTGAAG TCAGGTGAAG CGCAGTGAAG CGCAGTGAAG CGTGAATGAA GTGAAGGGC	TGGCGAGCT TAGGCTGGT AGACAGCCTA CTGCCCAGGG CCAGATTCTG GGCAGGAGA GGGAAACAGG TCCTGTCTAA ATCAAACTGC CCTGCCCAC GACTGTTGCC AAGGAGGCTG AATGCCATCT AAACGCGTGC	TCCTCTGGAA TCTCTTGTCT GGAGCACAG CCACTGCTCA GGTCAGCCAG TCCTGTGTGA CCTGCATGGT AAAGCCACCT ACAGCCCACT ACAGCCCACT ACAGCCCACT CCAGGTCCAG ACTCCAGTCCCCCCCCCC	GGGAGGAAAC GACTTGGGCT CTCCCAGTGAA GCCCCCAGTGAA GGACAGCAA CTTCTGCCTT GAATTACTGI GTGACCGAG GTCTGCCTTTCGCTTTCGCTTTCGCTTTCGCTTTCGCTTTCGCTTTCGCTTTCGCTTTCGCTTTCGCTTTCGCTTTCGCTTTCGGCAACCAGTTA	AGTTAAAATC GCTGAGTTGG CCTCTCAGCC GAAGAGGACG TCTGCAGAGC GATGACACCA GAAGAGGACT CCAGTGAAGG TGCTGCCTG ATAGTCTCCC GACTTGGAGC AAGTCTTGCTC	120 180 240 300 360 420 480 540 600 720 780 840 900
55	CGCCAGCACA TTGCAGCAGCA TTGCAGCAGCA TTGGAGCCAAGG ATCTAATGGC CAGACTCTGG TGGGCTCCTC AGGGGGATCC GAAGAGTGAA TGCAGCAGCA ACCACAACTGG ATCAGCAGTG TTGGATGCAGC GGAAACTCAA TGGTGTCGGT TTGGTGCGGA ACTGCAGCAGCA ACTGCAAGCAGCA ACTGCAAGCA	CAGTAATCAGE TGCAATCATC GACAGAGAA TCCAGGGCCA GTCACCCAGC GGAGAAGCTT TGCTGGTGAAG GCATTCAAG CCATCTCACAG CCTCAGGCAAC CTCAGGTGAAC CTTGAAGAGTC CGCCAAGGAC CTCAGGAAC CTCAGGAAC CTCAGAGAGTC CGCCCAGGAAC CTCAGAGAGTC CGCCCAGGAAC CTAAGAACACT AGCCTACCAG	TGGCGAGCT TAGGCTGAG TAGGCAGGGGC CCAGATTCTG GGCAGGAGGAG ATCCTGTCTAA ATCAAACTGC GACTGTTGC AAGGAGCTG AATGCCATCI AAAGCGTGG AATGCGATCG AATGCGATCG AATGCGATCG AATGCGATCG AATGCGATCG AATGCGATCG AATGCGACCA AATGCGATCG AATGCGATCG AATGAGAGCATCA AAGGAGCCACC AATGAGAGCACCACCACCACCACCACCACCACCACCACCACCA	TCCTCTGGAA TCTCTTGTCT GGAGCACAG CCACTGCTCA GGTCAGCCAG TCCTGTGTGA CCTGCATGGT ACAGCCACCT ACAGCCACCT ACAGCCACCT ACAGCCACCT ACAGCTCCAGT ACAGCTCCAGT TCTGAAATGCA TCTGAATGCA TCTGAACTACACCT CCTGCAACCCCTACACCCTACACCCTACACCCTACACCCTACACCCTACACCCTACACCCTACACCCCTACACCCCTACACCCCTACACCCCTACACCCCTACACCCCTACACCCCTACACCCCTACACCCCTACACCCCTACACCCCTACACCCCTACACCCCCTACACCCCCTACACCCCCTACACCCCCTACACCCCCTACACCCCCTACACCCCCTACACCCCCC	GGGAGGAAAC GACTTGGGCT CCCAGTGGAA GCCCCCAGTGGAA GGACAGCGAC CTTCTGCCTT GAATTACTGT GCTGACTGAC GTCGACTGAC GCCCAGTGAA GGACACCAG GCCACACC CACCCAGTTA GCTACCCAG GCTAACCAA GGAAAGGAC GAGTACCGAC GGAGAAGGAC GAGTCCAGTT TGTCCAGTTC TGTCCAGTTC	AGTTAAAATC GCTGAGTTGG CCTCTCAGCC GAAGAGGACC GATGACACAC GAAGAGCACT GAAGAGCACT GAAGAGCACT CCACTGAAGC ATGATCTCCC GACTTGGAGC AAGTCTCCC CTCCTTGCTG CAAGCTGCCG ATGAGAGAGACAC ATGAGAGAGAAGA TTGGAGGAGA	120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1040 1140 1200
55 60	CGCCAGCACA TTGCAGCAGCA TTGCAGCAGC TTGGGCTCATG TGGGCTCATG TGGGCTCATG TGGAGAGTGAA TGCAGCAGCA ACCACAACTG TGGATGCAGCA TGGATGCAGCAGCA TGGATGCAGCAGCA TGGAGACTCAA TGGTGTGCAGCAGCA TGAGCAGGAACTCAA TGGAGAACTCAA TGGAGAACTCAA TGGAGAACTCAA TGAGCAGGACAGCAGCAGCAGCAGCAGCAGCAGCAGCAGCA	CAGTAATGAG TGCAACATCATC GACAGAGAA TCCAGGGCCA GTCACCCAGC GTCACCCAGC GGCAGTGAAG TCCAGGTGAAG TCAGGTGAAG CATCTGCCAG CATCTGCCAG GCATGAAGAC GGTAGAAGCT GGCCAGGCAC CAACGGTATC GGCCAGGCAC TAAGAACACT TGCCGTAGGAGCC TAAGAACACT TGCCGTTGT TGCCGTTGT TGCCGTTGT TGCCGTTGT TGCCGTTGTT TCCTCCAATAT	TGGCGAGCT TAGGCGTGGT AGACAGCCTA CTGCCCAGGG CCAGATTCTG GGCAGGAGAA ATCAAACTGA CCTGCCACC GACTGTCTAA ATCAAACTGC AAGGAGGTGC AATGCCATCT AAAGCGCTGC AATGCATCT AAAGCTGCC CAGGCCC CAGGCCC CAGGCCCC CAGGCCCCC CAGGCCCCCCCC	TCCTCTGGAA TCTCTTTGTCT GGAGCACAG CCACTGCTCA GGTCAGCCAG TCCTGTGTGA TCCTGTGTGA AAAGCCACT AAAGCCACT AAGCCCACT AGGAGCACA CCTGAAATGCA CCTGAAATGCA TCTTCTTAGA TCTTCCCTAG TCAGCACACT ATGAGCACT ATGACTACCACT CCAGGATCCAA TCACCACT T	GGGAGGAAAC GCCCCAGCC CCCAGTGGAA GCCCCCAGCC CCCAGTGGAA GGACAGCCAC CTTCTGCCTT GAATTACTGT GCTGACCGAC GTCTGCCTTC GCTACCCAGTAC GCTTCTGCCTTC GCTGCTTTC GCTGCTTTC GCTGCTTTC GCTGCTTTC GCTGCTTTC GCTGCTTTC GCTGCTTTC GCTGCTTTC GCTGCTTTC GCTGCTCCAGTTACCGAC CCCGGACAC CCCGGACACC CCACGCCCTGC GCTGTCCCAGTC GCTGTCCCCTCC	AGTTAAAATC GCTGAGTTGG CCTCTCAGCC GTAGAGGAGC TCTGCAGAG GATGACACCA GAAGAGCACT CCAGTGAAGG TGCTGCCCTG ATAGTCTCCC GACTTGAGC AGACTGAGC AGACTGAGC ATGCAGAG TTGCAGAGC ATGCAGAGAGAC TTGCAGAGAGAC TTGCAGAGAGAC TTGCAGAGAGAC ATCCAGTTGC GACATCAGAGA CCCAGCACCA AGCACCACAGT GGACACCACG	120 180 240 300 360 420 660 720 780 840 900 900 1020 1080 1140 1260 1320 1380 1440 1500
556065	CGCCAGCACA TTGCAGCAGCA TTGCAGCAGCA TTGGAGCAGCA ATCTAATGGC CAGACTCTGG GAAGACTCTAG ACCACAACTG ACCACAACTG ATCAGCAGTG TGGATCCTG GAAACTGAACTG	CAGTAATGAG TGCAATCATC GACAGAGAA TCCAGGGCCA GTCACCCAGG GTCACCCAGG GGCAGTGAAG TCCAGGTGAAG CCAGCAGGAACCT CGCAGAGACCT CGCAGGGAC CGCAGGGAC CGCAGGGAC CGCAGGGAC CGCAGGGAC CGCAGGGAC CGAGGGAC CGAGGGAC CGAGGGAC CGAGGGAC CGAGGGAC CGAGGGAC CGCAGGGAC CGCAGGGAC CGCAGGAGAC CGCCAGGCGC CGCAGGAGAC CGCCAGCAGG CCCCAGCAGG CCCCAGCAGG CGCCCAGCAGG CGCCCAGCAGG CGCCCAGCAGG CGCCCAGCAGG CGCCCAGCAGG CGCCCAGCAGG CGCCCAGCAGG CGCCCAGCAGG CGCCCAGCAGG CGCCCCAGCAGG CGCCCCAGCAGG CGCCCCAGCAGG CGCCCCAGCAGG CCCCAGCAGG CCCCAGCAGG CGCCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCAATGC CACGGCCCC CCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCAGCAGG CCCCCACAGC CCCCCAGCAGG CCCCCCACAGC CCCCCCCC	TGGCCGAGCT TAGGCGTGGT AGACAGCCTA CTGCCCAGGG CCAGATTCTG GGCAGAAACTGC CCTGCCCACC GACTGTTGCC AAGGAGCTA AATGCAATC AATGCATC AAGGCCACC GACGGAAAT CGAGAGC AATGCAAAT CGAGAGGAGG AACCGAAGC AACCGAAAG CAGGGAAGC AACCGCAAGC AACCGCAACC AACCCAACC AACCCAACCC AACCCAACCC AACCCAACCC AACCCAACCC AACCCAACCC AACCCAACCCACCC AACCCAACCCAACCC AACCCAACCCACCC AACCCAACCCACCC AACCCAACCCACCCC	TCCTCTGGGA TCTCTTGTCT GGAGCACAG CCACTGCTCA GGTCAGCCAG CCGGAGGAACA TCCTGTTGA CCTGCATGGT AAAGCCACCT AGGAGCACAG ACTCCAGCTCCA CCGAGCTCCA CTGCATGGT AGGAGCACAG ACTCCAGTCCAG	GGGAGGAAAC GACTTGGGCT CTCCCAGTGBA GCCCCCAGTGBA GGACAGCGA CTTCTGCCTT GAATTACTGT TGGCCACCAGTGA GGCCACCAGTGA GGCCACCAGTTA GGCTAACCAAC GTTTGGGGAA GGTAACCAA AGGACAACCAA TGTTCACGTT CAAACCTAA ACCTGACTAACCAA ACCCAGTTA CAAACCTAA ACCCGACCCTGC CACGCCCTGC CACGCCCTGC CACGCCCTGC CACGCCCTGC CTGTCCACTTCACTTCA	AGTTAAAATC GCTGAGTTGG CCTCTCAGCC GCTGAGTGG CCTCTCAGCC GAAGAGGACG TCTGCAGAGC GATGAACACA GAAGAGCACT ATAGTCTCCC GACTTGGAGC AAGTCTGCCG AAGTCTGTGCCTG CAAGCTGAAGG ATCCAGTGAAGA ATCCAGTGAAGA GCCCAGAACACACACACACACACACCACAC	120 180 240 300 360 420 480 540 660 660 720 780 840 960 1020 1140 1260 1320 1380 1440 1560 1560 1620 1680 1740
55606570	CGCCAGCACA TTGCAGCACA TTGCAGCAGCA TTGGAGCAGCA ATCTAATGGC CAGACTCTGG GAAGACTCAGA ATCAGCAGCA ATCAGCAGCA ATCAGCAGCA ATCAGCAGCA ATCAGCAGCA ATCAGCAGCA ATCAGCAGCA CGGAACTCAA TGGTGTGCAGCA ACTGCAAGCAGCA ACTGCAAGCAGCA ACTGCAAGCAGCA ACTGCAAGCAGCA ACTGCAAGCAGCA ACTGCACAGCACC CCTGCAAGCACC TCCTGCACAGCACC TCCTGCACAGCACC TCCTTCCTTCCTC AATTTTCAGG ATTGTAGATCA AGACTCCAGCAGCACC AGACTCAACAGCACC ACTGCACACACC TCCTTCCTTCCTC AATTTTCAGG AGACTCCAGCACCC AGACTCAACACCCCCACTCAACCCCCACTCAACCCCCACTCACACCCCCACTCACACCCCCACTCACACCCCCACTCACACCCCCC	CAGTANTGAG TGCAGCAGA TCCAGGGCCA GTCACCAGG GTCACCAGG GGAGAGAGT TGCTGGTGAG GGCAGTCAGC GCATACTGC CATCTGCCAG CCACCAGGCC TAAGAACACT TGCTGAGAGCC TAAGAACACT CCACCAGCAGC CACCAGCAGC CACCAGCAGCACACC CACCAGCACCACCACCACCACCACCACCACCACCACCACC	TGGCGAGCT TAGGCGTGGT AGACAGCCTA CTGCCCAGGG CCAGATTCTG GGCAGGAGAGAGG GGCAGGAGAGAGG CCTGCCCACC AAGGAGGCTG AAAGCAGCTG AAAGCAGTG AAAGCACCACC AAGGCCACC AAGGCGAAG CCACCACC ACCGGAAGG TTCCGGAGGG AACGGGAGG AACGGAAGC AACGGAAGC AACGCAAGC AACGCAAGC CCAGAGACCTTTC ACCCGAGAAGC CCAGACCTTTTC ACCCGAGAAGC CAGACCTTTTC ACCCGAGAAGC CAGACCTTTTC ACCCGAGAAGC CAGACCTTTTC ACCCGAGAAGC CAGACCTTTTC ACCGCAGAACC CAGACCTTTTC ACCGCAGAACC AACTGCTGCTTC ACCGCAGAACC AACTGCTGCTTC ACCGCAGAACC AACTGCCTGCT	TCCTCTGGGA TCTCTTGTCT GGAGCACAG GGTCAGCCAG GGTCAGCCAG GGTCAGCCAG TCCTGTGTGA TCCTGTGTGA AAAGCCACT ACAGCCACT ACAGCCACT CCAGAGCACAC CCAGAGCACAC TCTGCATGT TGGAGTACAC TCTGCAGATCCAC TCTGCAAATCCACAC TCTCCTAAATCCAC TCTCCTAAACCACACACA	GGGAGGAAAC GACTTCCCAGTTC CTCCCAGTGAC GCCCCAGCC CCCAGCCAGCC CCTCTGCCTT GAATTACTGT GCTGACCGAC GTCTGCTTTC GTGACCGAC GTCTGCTTTC GTGACCGAC GTCTGCTTTC GTGACCGAC GTTTTGGGGAT GGTTACCGTT AGGCACACC GTTTTGGGGAT AGGAGAGGAC CTGACCCAGTTA AGAGGAGTAT AGAGGAGTAT CCAGCCCTGC CCAGCCCTGC CCAGCCCTGC CCAGCCCTGC CCAGCCCTGC CCAGCCCTGC CCAGCACCT CCAGCCCTGC CCAGCCCTGC CCAGCACCT CCAGCCCTGC CCAGCACCT CCAGCACC CCACCACC CCACCACC CCACCACC CCACCACC	AGTTAAAATC GCTGAGTTGG CCTCTCAGCC GAAGAGGACG TCTGCAGGAC GATGACACCA GAAGAGGACAC TAGCCCTG ATAGTCTCCC GACTTGAGG AGTCTGAGG ATGCTGAGG ATGCTGAGG ATGCTGAGG ATGCTGAGG ATGCTGAGG ATGCTGAGG ATGCAGAGAGAC ATGCAGTGAGG ATCCATTGCC GACATCAGAA GCCAGCACCA GCACACAGT GGCACCACCA GCACACCAGT GGGAGTCTGT GTTGGCCTGA GGGATCCT GACATGCAGA CCCAGCACCA AGCACCACACT GGAGATCTGT GGAGATCTGT GGAGACACACT GGGAGCACCAC AGCACCAGAC CCGGAGGGAGGAC CCGGGAGGGA	120 180 240 300 360 420 480 660 720 780 840 900 960 1020 1140 1260 1380 1500 1500 1680 1740 1860 1920 1980 2040 2100

		086443					
5	CGCCCTGCCT CTCCTCTCTG	GCACCCACCT GTTTGTAGTA TTCAGGTAAA AAAGATTGCA	$\begin{array}{c} \mathtt{ATTTTTAGGC} \\ \mathtt{TGTCACACTG} \end{array}$	ACCAAATCTC TGCCCAGAAT	CCTCATCTTC GGATGACCAG	TAGTGCCATT	2400 2460 2520
3		196 Protein cession #: N					
10	1	11	21	31	41	51	
10	i	ì	1	ĭ]	Ĭ	
15	DSAEQGDPAG EPVKDHNWRY	PLPRATAQPP EGKEVLCDFC CPAHHSPLSA ENAISRLQAN	LDDTRRVKAV FCCPDQQCIC	KSCLTCMVNY QDCCQEHSGH	CEEHLQPHQV TIVSLDAARR	NIKLQSHLLT DKEAELQCTQ	60 120 180 240
13	EQAALSQANG VGLKDKLSGI EPSTREQFLQ	IKAHLEYRSA RKVITESTVH YAYDITFDPD	EMEKSKQELE LIQLLENYKK TAHKYLRLQE	RMAAISNTVQ KLQEFSKEEE ENRKVTNTTP	FLEEYCKFKN YDIRTQVSAV WEHPYPDLPS	TEDITFPSVY VQRKYWTSKP RFLHWRQVLS	300 360 420
20	SDMETPLKAG	FEVEIFGAGT PFRRLGVYID EPEKPAPSLG	FPGGILSFYG	RKGEERNSCI VEYDTMTLVH	SGNNFSWSLQ KFACKFSEPV	WNGKEFTAWY YAAFWLSKKE	480 540
25	Nucleic Act	197 DNA sec id Accession Lence: 433-1	1 #: NM_0043	316			
	1	11	21	31	41	51	
		 GGCGCAAGAG	 NGGGGAGGGT	 	CCVVCGCGVG	 NCGCGGCAGA	60
30	GCGCGTTCAG	CACTGACTTT	TGCTGCTGCT	TCTGCTTTTT	TTTTTCTTAG	AAACAAGAAG	120
	GCGCCAGCGG	CAGCCTCACA	CGCGAGCGCC	ACGCGAGGCT	CCCGAAGCCA	ACCCGCGAAG	180
		AGGGAGGAGG					240 300
		TCTAAGAAGT CATATTTCCT					360
35	GTCCCCCTCG	CGGGCCCCGC	ACCTCGCGTC	CCGGATCGCT	CTGATTCCGC	GACTCCTTGG	420
		GCATGGAAAG CCCAGCAGCC					480 540
		CCGCAGCAGCC					600
40	CAGCAGCAGC	AGCAGCAGCA	GCAGGCGCCG	CAGCTGAGAC	CGGCGGCCGA	CGGCCAGCCC	660
40		GTCACAAGTC GCTGCAAACG					720 780
		CCGCCGTGGC					840
		TTGCCACCCT					900
45	AGTAAGGTGG	AGACACTGCG ACGCGGTGAG	CTCGGCGGTC	CAGGCAGGCG	TCCTGTCGCC	CACCATCTCC	960 1020
.5		CCAACGACTT					1080
		CTTACGACCC					1140
		GGGCTCGGCC CTGCATCTTT					1200 1260
50		AAAAGAAGAA					1320
		CGCCAACTAA					1380
		ACAGTATCTT ATGCGCAAAA					1440 1500
		CGCGTTATAG					1560
55	GCTCGGGTCC GAGTTGGTGT	CTTCACCTCC CTTTC	CCGCCCTTTC	TTAGAGTGCA	GTTCTTAGCC	CTCTAGAAAC	1620
60		198 Protein cession #: 1					
	1	11	21	31 1	41 1	51 l	
	 MESSAKMESG	I GAGQQPQPQP	QQPFLPPAAC	FFATAAAAAA	AAAAAAAQSA	00000000000	60
65	AVARRNERER	AADGQPSGGG NRVKLVNLGF LSPTISPNYS	ATLREHVPNG	AANKKMSKVE	TLRSAVEYIR	ALQQLLDEHD	120 180
70	Nucleic Ac	199 DNA sed id Accession Jence: 1-100	n #: NM_0070	015			
	1	11	21	31	41	51	
75							
13	ATGACAGAGA TGCAGCCCCC	ACTCCGACAA CGGCGTACGC	TACGCTGACG	GCCCTGGTGG	CCAGCCCCGC	GCGGCTGCTC	60 120
	AAGGTGGGAG	CCGTGGTCCT	CATTTCGGGA	GCTGTGCTGC	TGCTCTTTGG	GGCCATCGGG	180
	GCCTTCTACT	TCTGGAAGGG	GAGCGACAGT	CACATTTACA	ATGTCCATTA	CACCATGAGT	240
80	ATCAATGGGA	AACTACAAGA GAAGTGGAGC	TGGGTCAATG	GAAAT'AGACG	CTGGGAACAA ATGATTTCCA	GAATGGCATC	300 360
00	ACAGGAATTC	GTTTTGCTGG	AGGAGAGAAG	TGCTACATTA	AAGCGCAAGT	GAAGGCTCGT	420
	ATTCCTGAGG	TGGGCGCCGT	GACCAAACAG	AGCATCTCCT	CCAAACTGGA	AGGCAAGATC	480
	ATGCCAGTCA	AATATGAAGA	AAATTCTCTT	ATCTGGGTGG	CTGTAGATCA	GCCTGTGAAG	540
85	GACAACAGCT	TCTTGAGTTC CCTATCCAAA	AGAAATCCAG	AGGGAAAGAA	GAGAAGTGGT	AAGAAAAATT	600 660
	GTTCCAACTA	CCACAAAAAG	ACCACACAGT	GGACCACGGA	GCAACCCAGG	CGCTGGAAGA	720
	CTGAATAATG	AAACCAGACC	CAGTGTTCAA	GAGGACTCAC	AAGCCTTCAA	TCCTGATAAT	780

```
CCTTATCATC AGCAGGAAGG GGAAAGCATG ACATTCGACC CTAGACTGGA TCACGAAGGA
                                                                           840
       ATCTGTTGTA TAGAATGTAG GCGGAGCTAC ACCCACTGCC AGAAGATCTG TGAACCCCTG
                                                                           900
       GGGGGCTATT ACCCATGGCC TTATAATTAT CAAGGCTGCC GTTCGGCCTG CAGAGTCATC
                                                                           960
       ATGCCATGTA GCTGGTGGGT GGCCCGTATC TTGGGCATGG TGTGAAATCA CTTCATATAT
                                                                          1020
                                                                          1080
 5
       CACGTGCTGT AAAATAAGAA CTAGCTGAAG AGACAACCAA AGAAGCATTA AGGCAGGTTG
       ATGCTGATGG GACCATAAAA TATTTTTACA CGCAGCCTGA GCGGTTATTC TTGACACTCT
                                                                          1140
       TAACAGAATT TTTTTAATCG TTTTCCAGAA CTTTAGTATA TGCAAATGCA CTGAAAGGGT
                                                                          1200
       AGTTCAAGTC TAAAATGCCA TAACCCCGTT ATTTGTTATT TTTTATTTGC ATTGATTTGC
                                                                          1260
       CATAAGTCTT CCCTTGCTTG CATCTTCCAA AGCTATTTCG AAATAAACAC GAAAATTTAC
                                                                          1320
10
       AGTTTGCC
       Seq ID NO: 200 Protein sequence:
       Protein Accession #: NP 008946
15
                                                    41
                                                               51
       MTENSDKVPI ALVGPDDVEF CSPPAYATLT VKPSSPARLL KVGAVVLISG AVLLLFGAIG
                                                                             60
       AFYFWKGSDS HIYNVHYTMS INGKLQDGSM EIDAGNNLET FKMGSGAEEA IAVNDFQNGI
                                                                            120
       TGIRFAGGEK CYIKAQVKAR IPEVGAVTKQ SISSKLEGKI MPVKYEENSL IWVAVDQPVK
                                                                            180
20
       DNSFLSSKVL ELCGDLPIFW LKPTYPKEIQ RERREVVRKI VPTTTKRPHS GPRSNPGAGR
                                                                            240
       LNNETRPSVQ EDSQAFNPDN PYHQQEGESM TFDPRLDHEG ICCIECRSY THCQKICEPL
                                                                            300
       GGYYPWPYNY QGCRSACRVI MPCSWWVARI LGMV
25
       Seq ID NO: 201 DNA sequence
       Nucleic Acid Accession #: NM_000728.2
       Coding sequence: 112..495
                                                               51
                                                    41
                                         31
30
       GTAATAAGAG CGGGGTCTCC GCGGGGAAGG CGCCCACAGC AGGTGTGGTG TTCATCCCGG
       GTCGACCGGC CGCTCGCGCT GCCCTGAAAC TCTAGTCGCC AGAGAGGCGG CATGGGTTTC
                                                                            120
       CGGAAGTTCT CCCCCTTCCT GGCTCTCAGT ATCTTGGTCC TGTACCAGGC GGGCAGCCTC
                                                                            180
       CAGGCGGCGC CATTCAGGTC TGCCCTGGAG AGCAGCCCAG ACCCGGCCAC ACTCAGTAAA
                                                                            240
       GAGGACGCGC GCCTCCTGCT GGCTGCACTG GTGCAGGACT ATGTGCAGAT GAAGGCCAGT
                                                                            300
35
       GAGCTGAAGC AGGAGCAGGA GACACAGGGC TCCAGCTCCG CTGCCCAGAA GAGAGCCTGC
       AACACTGCCA CCTGTGTGAC TCATCGGCTG GCAGGCTTGC TGAGCAGATC AGGGGGCATG
                                                                            420
       GTGAAGAGCA ACTTCGTGCC CACCAATGTG GGTTCCAAAG CCTTTGGCAG GCGCCGCAGG
                                                                            480
       GACCTTCAAG CCTGAGCAGA TGAATGACTC CAGGAAGAAG GTGTGTCCTA AATCCAATGA
                                                                            540
       CATATCCTTA TAAGAGATTC ACTCAGAAGA CACATGTGGA GAAGGTGACA TGACAGAGGC
                                                                            600
40
       AAGGAGGCAC AAGCCAAGGA AGTCTGTGTC TACCAGAAGC CAGAATCACA GAACAGTCTC
                                                                            660
       TGGAAGAAGA GCAGCCCTGC TGACACCTAG AGTTTGGACT TCCAGCTTCC AGAACTGTGA
                                                                            720
       GAGAATAATT TCTGTTGTTT TAAGCCACAA AGTTTGTGGT AATTTGTTAT GACAGCCCTA
                                                                            780
       GGAAACTAAT ACAATACATT TTCATTTATT TTGGGTAAAT GCCTTGGAGT GGGATTGCTG
                                                                            840
       GGTTATTTGG AAAGTGTGTA TTTAACTCTG TAAGAAACTG CCAAACTATT TTCTGAAGTG
                                                                            900
45
       ACTGTACCAC TTCGCCTTCT TGCCAGCCAC ATATGAGAGC TCTAGTATTT CCACAAATAG
                                                                            960
                                                                           1020
       GTATGTAGCA GTATCTCATT GCTGTTTTAA TTTGTATTTC CCCAATGACT AATGACGTTG
       AGCATCTATT TTACCATATG TTTATCACCT TTATTGAAGG GTCTGTTTAA ATCTTCTGCT
                                                                           1080
       AAATTTTTGT TGGCTTGCTT GCTTTATTAG TGTTGAGTTT TTAGAGCTCT TTATATGTTG
                                                                           1140
        TGGATGCAAG ATTGTTTTCA GATATATAGT TTGGAAACTT CCTTCCCCTG AATCTGCGGA
                                                                           1200
50
        TTGCTTTTC ATTTTCTTAG CAGTGTCTCT CACAGAGAAA AAGTTGTAAT TTGAATAAGA
                                                                           1260
        TCCAATTCAT CTTTTTTTT CTTTTATGTA TTGTGCTTTT AGTTCATGTC TAAGAACTCT
                                                                           1320
        TTGCCTAACT AAGGTCCCAA GGTCACAATA ACCTTATTCT ATACTTTCTT GTAAAAGTTT
                                                                           1380
        TATAGTTTTA TATTTTATAT GTAGATTAGT GATCTATTTT GAGTTAATTT TTGTATAAGG
                                                                           1440
        TGAGAGGTGT AGGTTGAAAT TCATACCTGT GAATATAGAT ACCCAATTGT TTCAGTGCCA
                                                                           1500
55
        TTTGTTAAAA AGACTGTTAT TTCACCATTT AATTGCCCCT GCACCTTTGT CAAAAAGCAA
                                                                           1560
        CTGATCATAT TTGTGTGGGT ATATTTCTGG GTTCTCAATT CTGTCTCATT GATTGATTTG
                                                                           1620
        ACCATTCTTT TGCCAATGTC ATACTGCCTT GATTAGTGTA GTGTTAAAGT GAATCTCAAA
                                                                           1680
        ACCAGATAAT GTGGGTCTAC CAACATTGTT CATTCTTGTT CAAAAAGATT TTAGCTACAT
                                                                           1740
        CTAAAATATT TTCTACATCT TTTATACATT TTAGAATCAG TGTGTTACTA TCTACAAAAT
60
        TTCTGATGAG ATTTTTAATG GGATTGTGTT AAATCAGTGG GTTAATTTTG GGAGAATTAG
                                                                            1860
        CATATTAATA ATATTAAGTC GTTCAATTCA TGAACACAAT ACATGTTTTC ACTTATTTAG
                                                                           1920
        GTTTTCTCTG TTTTTTTTT TTTAACAGTG TTCTCAGTTT TCAACAGAAA TATTCTACAC
                                                                           1980
        ATATCTTGTT AGATTTTAAA CTATTTTATT TTTTGGTGCT AATGTAAATG GTACTTAAAC
                                                                           2040
        ATTTTTGTTT TTAATTGTTC ATTGCTAGTA GATAGAAATA CAATATTTAA AATATTAGGA
                                                                           2100
 65
        ААААААААА ААААААААА АААААААА
        Seq ID NO: 202 Protein sequence:
        Protein Accession #: NP_000719.1
 70
                                                      41
                                                                 51
         MGFRKFSPFL ALSILVLYQA GSLQAAPFRS ALESSPDPAT LSKEDARLLL AALVQDYVQM
         KASELKQEQE TQGSSSAAQK RACNTATCVT HRLAGLLSRS GGMVKSNFVP TNVGSKAFGR
 75
        Seg ID NO: 203 DNA sequence
        Nucleic Acid Accession #: NM_001741
        Coding sequence: 71..496
 80
                                                                51
                                          31
                              21
        CTCTGGCTGG ACGCCGCCGC CGCCGCTGCC ACCGCCTCTG ATCCAAGCCA CCTCCCGCCA
                                                                              60
        GAGAGGTGTC ATGGGCTTCC AAAAGTTCTC CCCCTTCCTG GCTCTCAGCA TCTTGGTCCT
                                                                             120
        GTTGCAGGCA GGCAGCCTCC ATGCAGCACC ATTCAGGTCT GCCCTGGAGA GCAGCCCAGC
                                                                             180
 85
        AGACCCGGCC ACGCTCAGTG AGGACGAAGC GCGCCTCCTG CTGGCTGCAC TGGTGCAGGA
                                                                             240
        CTATGTGCAG ATGAAGGCCA GTGAGCTGGA GCAGGAGCAA GAGAGAGAG GCTCCAGCCT
                                                                             300
```

WO 02/086443 PCT/US02/12476 GGACAGCCCC AGATCTAAGC GGTGCGGTAA TCTGAGTACT TGCATGCTGG GCACATACAC 360 GCAGGACTTC AACAAGTTTC ACACGTTCCC CCAAACTGCA ATTGGGGTTG GAGCACCTGG AAAGAAAAGG GATATGTCCA GCGACTTGGA GAGAGACCAT CGCCCTCATG TTAGCATGCC 480 CCAGAATGCC AACTAAACTC CTCCCTTTCC TTCCTAATTT CCCTTCTTGC ATCCTTCCTA
TAACTTGATG CATGTGTTT GGTTCCTCT TGGTGGCTC TTGGGCTGGT ATTGGTGGCT 540 5 600 TTCCTTGTGG CAGAGGATGT CTCAAACTTC AGATGGGAGG AAAGAGAGCA GGACTCACAG 660 GTTGGAAGAG AATCACCTGG GAAAATACCA GAAAATGAGG GCCGCTTTGA GTCCCCCAGA 720 GATGTCATCA GAGCTCCTCT GTCCTGCTTC TGAATGTGCT GATCATTTGA GGAATAAAAT 10 Seq ID NO: 204 Protein sequence: Protein Accession #: NP_001732

15
1 11 21 31 41 51
| MGFQKFSPFL ALSILVLLQA GSLHAAPFRS ALESSPADPA TLSEDEARLL LAALVQDYVQ 60
MKASELEQEQ EREGSSLDSP RSKRCGNLST CMLGTYTQDF NKFHTFPQTA IGVGAPGKKR 120
DMSSDLERDH RPHYSMPONA N

Seq ID NO: 205 DNA sequence Nucleic Acid Accession #: NM_005361 Coding sequence: 1-945

20

25 21 31 41 51 ATGCCTCTTG AGCAGAGGAG TCAGCACTGC AAGCCTGAAG AAGGCCTTGA GGCCCGAGGA 60 GAGGCCCTGG GCCTGGTGGG TGCGCAGGCT CCTGCTACTG AGGAGCAGCA GACCGCTTCT 120 TCCTCTTCTA CTCTAGTGGA AGTTACCCTG GGGGAGGTGC CTGCTGCCGA CTCACCGAGT 180 30 CCTCCCCACA GTCCTCAGGG AGCCTCCAGC TTCTCGACTA CCATCAACTA CACTCTTTGG 240 AGACAATCCG ATGAGGGCTC CAGCAACCAA GAAGAGGAGG GGCCAAGAAT GTTTCCCGAC 300 CTGGAGTCCG AGTTCCAAGC AGCAATCAGT AGGAAGATGG TTGAGTTGGT TCATTTTCTG CTCCTCAAGT ATCGAGCCAG GGAGCCGGTC ACAAAGGCAG AAATGCTGGA GAGTGTCCTC 420

35 AGAAATTGCC AGGACTTCTT TCCCGTGATC TTCAGCAAAG CCTCCGAGTA CTTGCAGCTG 480
GTCTTTGGCA TCGAGGTGGT GGAAGTGGTC CCCATCAGCC ACTTGTACAC CTTGCAGCC TCTCCTAGCA TGGCCTGCTG GGCGACAATC AGGTCATGCC CAAGACAGGC 600
CTCCTGATAA TCGTCCTGGC CATAATCGCA ATAGAGGGCG ACTGTGCCCC TGAGGAGAAA 660
ATCTGGGAGG AGCTGAGTAT GTTGGAGGTG TTTGAGGGGA GGGAGACAG TGTCTTCGCA 720
CATCCCAGGA AGCTGCTCAT GCAAGATCTG GTGCAGGAAA ACTACCTGGA GTACCGCAGG 780
GTGCCCGGCA GTGATCCTGC AGCCATACA CTCAAGGGC GTCCAAGGGC CCTCATTTGCA 840
ACCCACTATG TGAAAGTCTG GCACCATACA CTAAAGATCG GTGCAGGAACC TCACATTTCC 900

ACCAGCTATG TGAAAGTCCT GCACCATACA CTAAAGATCG GTGGAGAACC TCACATTTCC TACCCACCCC TGCATGAACG GGCTTTGAGA GAGGGAGAAG AGTGA

Seq ID NO: 206 Protein sequence: Protein Accession #: NP_005352

1 11 21 31 41 51 | MPLEQRSQHC KPEEGLEARG EALGLVGAQA PATEEQQTAS SSSTLVEVTL GEVPAADSPS 60 PPHSPQGASS FSTTINYTLW RQSDEGSSNQ EEEGPRMFPD LESEFQAAIS RKMVELVHFL 120 LLKYRAREPV TKAEMLESVL RNCQDFFPVI FSKASEYLQL VFGIEVVEVV PISHLYILVT 180 CLGLSYDGLL GDNQVMPKTG LLIIVLATIA IEGDCAPEEK IWEELSMLEV FEGREDSVFA 240 HPRKLLMQDL VQENYLEYRQ VPGSDPACYE FLWGPRALIE TSYVKVLHHT LKIGGEPHIS 300

55 YPPLHERALR EGEE

Seq ID NO: 207 DNA sequence Nucleic Acid Accession #: NM_021115 Coding sequence: 743-2893

	couring sequ	ience: /43~	2093				
60	1	11 	21 	31 	41 	51 	
	AAAGGAAGGG	AGGGAGGGAG	AAAGGAGAAG	TTGGTTTAGA	GGCCAGCCGG	ACGAGCTTTG	60
	GGCACCGCCC	TTAGGAGGGC	CACCCTCAGA	GTCTGACAGC	AGGTGAAGGT	CCTAAATCTC	120
	CCCAAACTAA	CTGGTGTCTT	TTCTCCTCTT	CCAAGATGCT	CTTCCCGAGG	GAGATGCTAG	180
65	CCCTTTGGGT	CCTTACCTCC	TGCCCTCAGG	AGCCCCGGAG	AGAGGCAGTC	CTGGCAAAGA	240
	GCACCCTGAA	GAGAGAGTGG	TAACAGCGCC	CCCCAGTTCC	TCACAGTCGG	CGGAAGTGCT	300
	GGGCGAGCTG	GTGCTGGATG	GGACCGCACC	CTCTGCACAT	CACGACATCC	CAGCCCTGTC	360
	ACCGCTGCTT	CCAGAGGAGG	CCCGCCCCAA	GCACGCCTTG	CCCCCAAGA	AGAAACTGCC	420
	TTCGCTCAAG	CAGGTGAACT	CTGCCAGGAA	GCAGCTGAGG	CCCAAGGCCA	CCTCCGCAGC	480
70	CACTGTCCAA	AGGGCAGGGT	CCCAGCCAGC	GTCCCAGGGC	CTAGATCTCC	TCTCCTCCTC	540
	CACGGAGAAG	CCTGGCCCAC	CGGGGGACCC	GGACCCCATC	GTGGCCTCCG	AGGAGGCATC	600
	AGAAGTGCCC	CTTTGGCTGG	ACCGAAAGGA	GAGTGCGGTC	CCTACAACAC	CCGCACCCCT	660
	GCAAATCTCC	CCCTTCACTT	CGCAGCCCTA	TGTGGCCCAC	ACACTCCCCC	AGAGGCCAGA	720
	ACCCGGGGAG	CCTGGGCCTG	ACATGGCCCA	GGAGGCCCCC	CAGGAGGACA	CCAGCCCCAT	780
75	GGCCCTGATG	GACAAAGGTG	AGAATGAGCT	GACTGGGTCA	GCCTCAGAGG	AGAGCCAGGA	840
	GACCACTACC	TCCACCATTA	TCACCACCAC	GGTCATCACC	ACCGAGCAGG	CACCAGCTCT	900
	CTGCAGTGTG	AGCTTCTCCA	ATCCTGAGGG	GTACATTGAC	TCCAGCGACT	ACCCACTGCT	960
	GCCCCTCAAC	AACTTTCTGG	AGTGCACATA	CAACGTGACA	GTCTACACTG	GCTATGGGGT	1020
00		GTGAAGAGTG		CGATGGGGAA			1080
80	GGACGGCCCT	ACCCTGACCG	TCCTGGCCAA				1140
		ACCAACACCA			TTCCAGGACG		1200
	GACCTTCCAG	CTTCACTACC	AGGCCTTCAT				1260
	CTCTGGGGAT		TGGACCTGCA		GTGGCCCACT		1320
0.5	CCTGGGCTAT	GAGCTCCAGG					1380
85	CTGGAGCAGC		TCTGCTCAGC				1440
		GTCCTCTCCC					1500
	CTGGACGATT	GAAGCTCCAG	AGGGCCAGAA	GCTGCACCTG	CACTTTGAGA	GGCTGTTGCT	1560

```
WO 02/086443
       GCATGACAAG GACAGGATGA CGGTTCACAG CGGGCAGACC AACAAGTCAG CTCTTCTCTA
                                                                          1620
       CGACTCCCTT CAAACCGAGA GTGTCCCTTT TGAGGGCCTG CTGAGCGAAG GCAACACCAT
                                                                           1680
       CCGCATCGAG TTCACGTCCG ACCAGGCCCG GGCGGCCTCC ACCTTCAACA TCCGATTTGA
                                                                          1740
       AGCGTTTGAG AAAGGCCACT GCTATGAGCC CTACATCCAG AATGGGAACT TCACTACATC
                                                                          1800
 5
       CGACCCGACC TATAACATTG GGACTATAGT GGAGTTCACC TGCGACCCCG GCCACTCCCT
                                                                          1860
       GGAGCAGGGC CCGGCCATCA TCGAATGCAT CAATGTGCGG GACCCATACT GGAATGACAC
                                                                           1920
       AGAGCCCCTG TGCAGAGCCA TGTGTGGTGG GGAGCTCTCT GCTGTGGCTG GGGTGGTATT
                                                                           1980
       GTCCCCAAAC TGGCCCGAGC CCTACGTGGA AGGTGAAGAT TGTATCTGGA AGATCCACGT
                                                                           2040
       GGGAGAAGAG AAACGGATCT TCTTAGATAT CCAGTTCCTG AATCTGAGCA ACAGTGACAT
                                                                          2100
10
       CTTGACCATC TACGATGGCG ACGAGGTCAT GCCCCACATC TTGGGGCAGT ACCTTGGGAA
                                                                          2160
       CAGTGGCCC CAGAAACTGT ACTCCTCCAC GCCAGACTTA ACCATCCAGT TCCATTCGGA
                                                                          2220
       CCCTGCTGGC CTCATCTTTG GAAAGGGCCA GGGATTTATC ATGAACTACA TAGAGGTATC
                                                                           2280
       AAGGAATGAC TCCTGCTCGG ATTTACCCGA GATCCAGAAT GGCTGGAAAA CCACTTCTCA
       CACGGAGTTG GTGCGGGGAG CCAGAATCAC CTACCAGTGT GACCCCGGCT ATGACATCGT
                                                                          2400
15
       GGGGAGTGAC ACCCTCACCT GCCAGTGGGA CCTCAGCTGG AGCAGCGACC CCCCATTTTG
                                                                          2460
       TGAGAAAATT ATGTACTGCA CCGACCCCGG AGAGGTGGAT CACTCGACCC GCTTAATTTC
                                                                          2520
       GGATCCTGTG CTGCTGGTGG GGACCACCAT CCAATACACC TGCAACCCCG GTTTTGTGCT
                                                                           2580
       TGAAGGGAGT TCTCTTCTGA CCTGCTACAG CCGTGAAACA GGGACTCCCA TCTGGACGTC
                                                                           2640
       TCGCCTGCCC CACTGCGTTT CAGAAGCGGC AGCAGAGACG TCGCTGGAAG GGGGGAACAT
20
       GGCCCTGGCT ATCTTCATCC CGGTCCTCAT CATCTCCTTA CTGCTGGGAG GAGCCTACAT
                                                                           2760
       TTACATCACA AGATGTCGCT ACTATTCCAA CCTCCGCCTG CCTCTGATGT ACTCCCACCC
                                                                          2820
       CTACAGCCAG ATCACCGTGG AAACCGAGTT TGACAACCCC ATTTACGAGA CAGGGGGAAC
                                                                          2880
       CCAAAAGGTT TAGGGTTTCA TTTAAAAAGA GGTACCCTTT AAAAAGGGGC TTGTGAACTC
                                                                          2940
       AACCCCAATT TCCCCGAGAC ATTTATCCAA AGGCCCTGGG GGCCTTGATT TAAACCCCCA
                                                                           3000
25
       AAAGGCGGCT GTTTTTTGGT TAAACTTTTT AACAAAGGGT TACGGGTTTT TTCCCCGGAT
       TTTATAAATT TTAAAAGTG
       Seq ID NO: 208 Protein sequence:
30
       Protein Accession #: NP_066938
                                        31
                                                   41
                                                              51
       MAQEAPQEDT SPMALMDKGE NELTGSASEE SQETTTSTII TTTVITTEQA PALCSVSFSN
                                                                             60
35
       PEGYIDSSDY PLLPLNNFLE CTYNVTVYTG YGVELQVKSV NLSDGELLSI RGVDGPTLTV
                                                                            120
       LANQTLLVEG QVIRSPINTI SVYFRTFQDD GLGTFQLHYQ AFMLSCNFPR RPDSGDVTVM
                                                                            180
       DLHSGGVAHF HCHLGYELQG AKMLTCINAS KPHWSSQEPI CSAPCGGAVH NATIGRVLSP
       SYPENTNGSO FCIWTIEAPE GOKLHLHFER LLLHDKDRMT VHSGQTNKSA LLYDSLQTES
                                                                            300
       VPFEGLLSEG NTIRIEFTSD QARAASTFNI RFEAFEKGHC YEPYIQNGNF TTSDPTYNIG
                                                                            360
40
       TIVEFTCDPG HSLEQGPAII ECINVRDPYW NDTEPLCRAM CGGELSAVAG VVLSPNWPEP
                                                                            420
       YVEGEDCIWK IHVGEEKRIF LDIQFLNLSN SDILTIYDGD EVMPHILGQY LGNSGPQKLY
                                                                            480
       SSTPDLTIQF HSDPAGLIFG KGQGFIMNYI EVSRNDSCSD LPEIQNGWKT TSHTELVRGA
                                                                            540
       RITYOCOPGY DIVGSDTLTC QWDLSWSSDP PFCEKIMYCT DPGEVDHSTR LISDPVLLVG
                                                                            600
       TTIQYTCNPG FVLEGSSLLT CYSRETGTPI WTSRLPHCVS EAAAETSLEG GNMALAIFIP
                                                                            660
45
       VLIISLLLGG AYIYITRCRY YSNLRLPLMY SHPYSQITVE TEFDNPIYET GGTQKV
       Seq ID NO: 209 DNA sequence
       Nucleic Acid Accession #: NM_001327.1
       Coding sequence: 89-631
50
                                                              51
                  11
                                        31
                                                   41
       AGCAGGGGGC GCTGTGTGTA CCGAGAATAC GAGAATACCT CGTGGGCCCT GACCTTCTCT
                                                                             60
       CTGAGAGCCG GGCAGAGGCT CCGGAGCCAT GCAGGCCGAA GGCCGGGGCA CAGGGGGTTC
55
       GACGGGCGAT GCTGATGGCC CAGGAGGCCC TGGCATTCCT GATGGCCCAG GGGGCAATGC
                                                                            180
       TGGCGGCCCA GGAGAGGCGG GTGCCACGGG CGGCAGAGGT CCCCGGGGCG CAGGGGCAGC
                                                                            240
       AAGGGCCTCG GGGCCGGGAG GAGGCGCCCC GCGGGGTCCG CATGGCGGCG CGGCTTCAGG
                                                                            300
       GCTGAATGGA TGCTGCAGAT GCGGGGCCAG GGGGCCGGAG AGCCGCCTGC TTGAGTTCTA
                                                                            360
       CCTCGCCATG CCTTTCGCGA CACCCATGGA AGCAGAGCTG GCCCGCAGGA GCCTGGCCCA
                                                                            420
60
       GGATGCCCCA CCGCTTCCCG TGCCAGGGGT GCTTCTGAAG GAGTTCACTG TGTCCGGCAA
                                                                            480
       CATACTGACT ATCCGACTGA CTGCTGCAGA CCACCGCCAA CTGCAGCTCT CCATCAGCTC
       CTGTCTCCAG CAGCTTTCCC TGTTGATGTG GATCACGCAG TGCTTTCTGC CCGTGTTTTT
                                                                            600
       GGCTCAGCCT CCCTCAGGGC AGAGGCGCTA AGCCCAGCCT GGCGCCCCTT CCTAGGTCAT
                                                                            660
       GCCTCCTCCC CTAGGGAATG GTCCCAGCAC GAGTGGCCAG TTCATTGTGG GGGCCTGATT
                                                                            720
65
       GTTTGTCGCT GGAGGAGGAC GGCTTACATG TTTGTTTCTG TAGAAAATAA AACTGAGCTA
       Seg ID NO: 210 Protein seguence:
       Protein Accession #: NP 001318.1
70
                                        31
                                                   41
                                                              51
       MOAEGRGTGG STGDADGPGG PGIPDGPGGN AGGPGEAGAT GGRGPRGAGA ARASGPGGGA
                                                                             60
       PRGPHGGAAS GLNGCCRCGA RGPESRLLEF YLAMPFATPM EAELARRSLA QDAPPLPVPG
       VLLKEFTVSG NILTIRLTAA DHRQLQLSIS SCLQQLSLLM WITQCFLPVF LAQPPSGQRR
75
       Seq ID NO: 211 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 52-459
80
                                                   41
                                                              51
                                        31
       CCTCGTGGGC CCTGACCTTC TCTCTGAGAG CCGGGCAGAG GCTCCGGAGC CATGCAGGCC
                                                                             60
       GAAGGCCAGG GCACAGGGGG TTCGACGGGC GATGCTGATG GCCCAGGAGG CCCTGGCATT
                                                                            120
85
       CCTGATGGCC CAGGGGGCAA TGCTGGCGGC CCAGGAGAGG CGGGTGCCAC GGGCGGCAGA
       GGTCCCCGGG GCGCAGGGGC AGCAAGGGCC TCGGGGCCGA GAGGAGGCGC CCCGCGGGGT
                                                                            240
       CCGCATGGCG GTGCCGCTTC TGCGCAGGAT GGAAGGTGCC CCTGCGGGGC CAGGAGGCCG
                                                                            300
```

```
GACAGCCGCC TGCTTCAGTT CCGACTGACT GCTGCAGACC ACCGCCAACT GCAGCTCTCC
                                                                               360
       ATCAGCTCCT GTCTCCAGCA GCTTTCCCTG TTGATGTGGA TCACGCAGTG CTTTCTGCCC GTGTTTTTGG CTCAGGCTCC CTCAGGCCAG AGGCGCTAAG CCCAGCCTGG CGCCCTTCC
                                                                               420
                                                                               480
       TAGGTCATGC CTCCTCCCT AGGGAATGGT CCCAGCACGA GTGGCCAGTT CATTGTGGGG
                                                                               540
  5
       GCCTGATTGT TTGTCGCTGG AGGAGGACGG CTTACATGTT TGTTTCTGTA GAAAATAAAG
        Seg ID NO: 212 Protein seguence:
       Protein Accession #: Eos sequence
10
                                                                 51
                                          31
                                                      41
       MQAEGQGTGG STGDADGPGG PGIPDGPGGN AGGPGEAGAT GGRGPRGAGA ARASGPRGGA
                                                                                60
       PRGPHGGAAS AODGRCPCGA RRPDSRLLQF RLTAADHRQL QLSISSCLQQ LSLLMWITQC
                                                                               120
15
       FLPVFLAOAP SGORR
       Seq ID NO: 213 DNA sequence
       Nucleic Acid Accession #: NM_000555
       Coding sequence: 416..1498
20
                                                                 51
                                          31
                                                      41
       CTTATTTTT ATGAATGTCG GATAGCTGCA CCAGCTTGGT GGGGAAAGGG TTTGATGAAT
                                                                                60
       AGCACAAAGA CACTGGCTGT TCCCTGGAGG CTGTCCCTTT AAAGGAGAAT CTTAGTTTAT
25
       TCTGGGGGGA GGGGATGCAC ACATTAGAGT AGGAAAGAGG GCTTGGAATA AAATGAAAAC
                                                                               180
       ACTCCCCCTT CATAGTCATT GTACTGAAAT GCAAAGACTG CTTCCTAAGC TGGAGATGCT
                                                                               240
       AACCTTGGGT AGCTCCTTCT GTTCTCTTCA AGGGGAATTT TGTCAGGCTA TGGATTCATT
                                                                               300
       TACAACTGTT AGTCATGTGG GCATGTGTGA GGAAACAGAT GCCAGTTTTA ATGTATTTAG
                                                                               360
       CCCGAAGTTC CAATTTGATA GGAGCCACTG TCAGTCTCTG AGGTTCCACC AAAATATGGA
                                                                               420
30
       ACTTGATTTT GGACACTTTG ACGAAAGAGA TAAGACATCC AGGAACATGC GAGGCTCCCG
                                                                               480
       GATGAATGGG TTGCCTAGCC CCACTCACAG CGCCCACTGT AGCTTCTACC GAACCAGAAC
                                                                               540
       CTTGCAGGCA CTGAGTAATG AGAAGAAGC CAAGAAGGTA CGTTTCTACC GCAATGGGGA
                                                                               600
       CCGCTACTTC AAGGGGATTG TGTACGCTGT GTCCTCTGAC CGTTTTCGCA GCTTTGACGC CTTGCTGGCT GACCTGACGC GATCTCTGTC TGACAACATC AACCTGCCTC AGGGAGTGCG
                                                                               660
                                                                               720
35
       TTACATTTAC ACCATTGATG GATCCAGGAA GATCGGAAGC ATGGATGAAC TGGAGGAAGG
       GGAAAGCTAT GTCTGTTCCT CAGACAACTT CTTTAAAAAG GTGGAGTACA CCAAGAATGT
        CAATCCCAAC TGGTCTGTCA ACGTAAAAAC ATCTGCCAAT ATGAAAGCCC CCCAGTCCTT
                                                                               900
       GGCTAGCAGC AACAGTGCAC AGGCCAGGGA GAACAAGGAC TTTGTGCGCC CCAAGCTGGT
                                                                               960
       TACCATCATC CGCAGTGGGG TGAAGCCTCG GAAGGCTGTG CGTGTGCTTC TGAACAAGAA
                                                                              1020
40
       GACAGCCCAC TCTTTTGAGC AAGTCCTCAC TGATATCACA GAAGCCATCA AACTGGAGAC
                                                                              1080
       CGGGGTTGTC AAAAAACTCT ACACTCTGGA TGGAAAACAG GTAACTTGTC
                                                                              1140
       CTTTGGTGAT GATGATGTGT TTATTGCCTG TGGTCCTGAA AAATTTCGCT ATGCTCAGGA
                                                                              1200
       TGATTTTTCT CTGGATGAAA ATGAATGCCG AGTCATGAAG GGAAACCCAT CAGCCACAGC
                                                                              1260
       TGGCCCAAAG GCATCCCCAA CACCTCAGAA GACTTCAGCC AAGAGCCCTG GTCCTATGCG
                                                                              1320
45
       CCGAAGCAAG TCTCCAGCTG ACTCAGCAAA CGGAACCTCC AGCAGCCAGC TCTCTACCCC CAAGTCTAAG CAGTCTCCA TCTCTACGCC CACCAGTCCT GGCAGCCTCC GGAAGCACAA
                                                                              1380
                                                                              1440
       GGACCTGTAC CTGCCTCTGT CCTTGGATGA CTCGGACTCG CTTGGTGATT CCATGTAAAG
                                                                              1500
       GAGGGGAGAG TGCTCAGAGT CCAGAGTACA AATCCAAGCC TATCATTGTA GTAGGGTACT
       TCTGCTCAAG TGTCCAACAG GGCTATTGGT GCTTTCAAGT TTTTATTTTG TTGTTGTTGT
                                                                              1620
50
       TATTTTGAAA AACACATTGT AATATGTTGG GTTTATTTTC CTGTGATTTC TCCTCTGGGC
                                                                              1680
       CACTGATCCA CAGTTACCAA TTATGAGAGA TAGATTGATA ACCATCCTTT GGGGCAGCAT
                                                                              1740
       TCCAGGGATG CAAAATGTGC TAGTCCATGA CCTTTCAATG GAAAGCTTAG GGGCCTGGGG
                                                                              1800
       TAAATTTGCC CCGTTTAAAT TTGCCCAAAC AGTTTTCCTT TTGTAGAGGG GTGTTTAAAT
                                                                              1860
       ATACAGCAAT TAAAAAGTTT GTGTGGGGAA AAAAAAAACT CATTGGCAGA TCCAAGAATG
                                                                              1920
55
       ACAAACACAA GTGCCCCTTT TCTCTGGATC TCAAGAATGG TGGAGGACCC TGGAAGGACA
                                                                              1980
       GCAAGGCAGC TCCCCAGCCT CACTCTTCAC TCCTGATTGA GGCCCGGGTT TGTTGTCCAG
                                                                              2040
       CACCAATTCT GGCTGTCAAT GGGGAGAAAT AAACCAACAA CTTATAATTG TGACACCAGA
                                                                              2100
       TGCTTAGGAT CCTGGTGCTG GGTTAGCTAA GAGAATAGAC AGAATTGGAA AATACTGCAG
                                                                              2160
       ACATTTCCGA AGAGTTTATA AAGCACAGTG AATTCCTGGT CAATCTCTCC ACTGAGGCAA
                                                                              2220
60
       TTTGGAATCA ATAAGCAATT GATAATAGTT TGGAGTAAGG GACTTCATAT ACCTGATTCC
       TCTAGAAGGC TGTCTAACAT ACCACATGAT TACATGAACT GTATGGTATC CATCTATCTC
                                                                              2340
       TGTTCTATTG AATGCCTTGT TAACAGCCAA CACTGAAAAC ACTGTGAGAA TTTGTTTTCA
                                                                              2400
       GGTCTGACAC CTTTCAGTCT CTTTTTATAG CAAGAAATCA ATATCCTTTT TATAAAAATT
                                                                              2460
       CATGTCTGTA TTTCAGGAGC AAACTCTTCA GGCTCCTTTT TTATAAACTG GTGATTTTTC
                                                                              2520
65
       TTTTGTCTAA AAAACACATG AAGAAAATTT ACCAGAAAAA AAAAAAAAAG CCGAAGAATA
                                                                              2580
       ATGTTATTTA GAAATTATGC TGTCACTGCC AAACAGTAAC CTCCAGGAGA AAACAAGATG
                                                                              2640
       AATAGCAGAG GCCAATTCAA TAGAATCAGT TTTTTGATAG CTTTTTAACA GTTATGCTTG
                                                                              2700
       CATTAATAAT TTCAATGTGG ACCAGACATT CTAATTATAT TTTAAATGAA ATGTTACAGC
                                                                              2760
       ATATTTTAAG CAACTCTTTT TATCTATAAT CCTAATATTT CATACTGAAG ACACAGAAAT
                                                                              2820
70
       CTTTCACTTG TCTTTAACAT TAGAAAGGAT TTCTCTTTAC TAAGGACTGA TCATTTGAAA
                                                                              2880
       TAGTTTTCAG TCTTTTGAGA TACAGGTTTA TAACACTGCT TTTTTTTCC
                                                                 TGTAAACATA
                                                                              2940
       GCCCATAATG GCAAAAACAA CTAATTTTAA TTGAAGGTCT TGCTTGCCAN TCCTGTGTTG
                                                                              3000
       GCTTTNACCA AATATAAAAA TTCCCTTATT CCTTGGTAAT GGTGCAAATN TTTGGAAAGG
                                                                              3060
       CACAGCATCC AAACCAAGCT GCTGTTTGGC TACTGAATGG CTTGCAGTTG TTCCTCCACT
                                                                              3120
75
       CTAAATGGAA TGAGCTTGCT GTGTGTGTT GTGGTGGTGG TGGGAGGGGG TGGTGCATGT
                                                                              3180
       GTGTGTGTGT GTGTGCATCT GCAGCTGCTT CAAAATTAAG AAATACTACA AGACACCCCT
                                                                              3240
       GTAATGGATT GGTGGCAACT GGGTGGCACT GCTGATGTGC ACTGTGTAGG GGGGAACCCA
                                                                              3300
       GTGGTGGTGG GGTATCTCAA ATGCCCCTAG ACAAGCTTCA GATGTCTGTA GCTACCAAAA
                                                                              3360
       ACATTTTCGG TTCAAGAAAA GTGAGATGAT GGTAGTACTG GTTTCTGGTG AAATTGAAAA
                                                                              3420
80
       ACCCCAAATG ATGAGGATCT CTTTTTGCCC CCTCTCCTTT TTTTGTAAAC CCATTCAAAA
                                                                              3480
       CCATTAATAA GCCCATTTTA CTAANCCCCT ATTTCTTTCT AGAAGCTCAG GGTTTNCTTA
                                                                              3540
       GTGCCTCCCA NAACATTTTG TAGTTAATTG GGAAAAAGTG ATACTTGGAT TAGGGGGTGT
                                                                              3600
       GGGCATAAAG AATGGTGGGA GGCCTGATTT TAAAATTCAG GCCAGAACCC CCAATGACTC
                                                                              3660
       CACCCATAGT NTCACTTTAG GTCTCATTTA GTCCATCACC TTTATTTTAA GTTGAGGAAG
85
       TGGAGGCTGG TAAAGAGCAG GACCAGAGGA AGAATCCAGA TTTCCTTATG CTTGGGCCTC
                                                                              3780
       ACACTAGCTC TNTGAGTATT TCCTTGATTG CGGTATATGT ACTACTAGAA AATACCAAAT
                                                                              3840
       GGATATATTT TCTTTAGGAT AACCTTTGAA CCAACAATNT TCAATAACAA TAGTACATCT
                                                                              3900
```

	TCCATCTTAC	TTTTAATCGA	GTATAAGGAA	ATGTTTCTTT	ATGGCCATTT	TGGAGGGAGC	3960
		GCTTGGCATA					4020
		TTGGCCCACT					4080
5		CATTCACTTC					4140 4200
9		TGCACGGTCT CTTTTTTACA					4260
		CCTGATTTTT					4320
	ATGTATATAT	TGGGGCTGGG	CTGAACAACT	AACTTCATAA	GTAGTATTAA	CTAGGGGTAA	4380
10		AAGCTCCTTT					4440
10		CTTATGGACT					4500
		TAAGATCACA					4560
		GACACAGAGG					4620
		ACAACCCACA CATTAGGCTC					4680 4740
15		GCCCTGATCT					4800
15		ACCTGGTTCC					4860
		AATAGGAGCA					4920
		TGAGGAGCCC					4980
•		AGATTGATTT					5040
20		TGAGGGAAAT					5100
		TCATCCTAAC					5160
		ACTGGCANGA					5220
		CACTGTGGTT TCCAGGTATA					5280 5340
25		CTCCTGTGTT					5400
23		TGTACACTGC					5460
		GTTTTCCTTG					5520
		AGAGACCTCC					5580
•		CTCCACAGTC					5640
30		AAGGAACCCT					5700
		CTTACCTTGA					5760
		TCCCAATCAC					5820
		TAGGACAAGA GATCCCAANG					5880 5940
35		NCACTGGGAC					6000
55		AAGGCATTGA					6060
		GGATCCATTT					6120
	GCTTTAAGTC	CCAGACTGGT	CTCCCAAGTG	AACCATAAGT	GTTTTGGAGC	TCATCTGGGG	6180
40		GAATGTTGCC					6240
40		TGGTCCCCAA					6300
		CTTAGTGTTG					6360
		CTTAGCTAGC					6420 6480
		ACTGAGTCTC CCTTCACCCT					6540
45		GGATTACAGG					6600
		GATGGGGTTT					6660
		CACCTCGGCC					6720
		${\tt CTAATTTTT}$					6780
50		TCTTACCTTG					6840
50		TTTCTGCTCC					6900
		CACCTTGTAA					6960
		AACCTTGAGG TTCTTTCTCT					7020 7080
		TCCACAGTAC					7140
55		TTATTTGTAC					7200
		GTGATTTTGC					7260
	CTGGTCCTAC	CCCAGTCCAA	TCAGAAGTAT	GTTGGTGGG	AATCAACCTG	ATCCTGGCCC	7320
		TCCATTTTCA					7380
60		GTATCTTTAG					7440
60		CTGACATTTT					7500
		CCACCCATGG					7560
		TTTTTAAAGC TTGGCTGGAT					7620 7680
		CTATAATAAT					7740
65		AATCGGAGTT					7800
•		TTGCTTAATT					7860
		ACTGTTCATG					7920
		AGATTGTAGG					7980
70		GCAATACCAT					8040
70		GATTTGAACA					8100
		GCAGCTTGAA					8160
		TTTGCATTTC AAACTTGTAC					8220 8280
		CAGCCCACCC					8340
75		GTAATTGGTG					8400
		ATGCATGGTA					8460
	GAATATATTC	TTCTTTGTAG	TCCTTCTTCC	CACCCCTTG	CCCTCTCCCT	CTCCCTGCTC	8520
	CCAGTTGTCT	TACAGTTGTA	AATATCTGAT	TTGAGGCCCA	ATAACTCTTG	CCAAGTAAAG	8580
90		ACAAACAAAC					8640
80		CATTTCTTAA					8700
		ATTGGGGTTG					8760
		AATCCAAAGA					8820
	GATAGAGACC	TCAGAAGACT GAAATAAAAC	CIGCTIGACC	GATGACCAAT	CACCTATTTGA	саатастта Саатастта	8880 8940
85	AGCCAGAAAA	AAAAACAAGG	GCATGAGTTC	AAATGCATTA	CTATCAGTGT	CCTAGGCAAT	9000
		CTCTGAAATT					9060
		ACCCCACTTG					9120

```
CAGACCCTTT TCATCCTCT TGCCTGTAAC ACCCCTCTTC CCCCACCCCC TCCGCAATTC AATGAGGGCT TTCTTGGGTC AGAGGACTTC AAGGTTGTCT AGAGAAGTTT GCCATGTGTG
                                                                             9240
       TAAGGTGCTG TGAACTGTGA GTGCTGAAGA TTCGCAGCAT TCAATACCAG GCAGCCAAAG
       AGCTGCTCTT GCAATTATTT TGGCTCTCAA GCTCTGTTCT TCATCGCATT CTCATTTCTG
                                                                             9360
 5
       TGTACATTTG CAAGATGTGT GTAATGTCAT TTTCCAAAAA TAAAATTTGA TTTCAAT
       Seq ID NO: 214 Protein sequence:
       Protein Accession #: NP_000546
10
                  11
                              21
                                         31
                                                     41
                                                                51
       MELDFGHFDE RDKTSRNMRG SRMNGLPSPT HSAHCSFYRT RTLQALSNEK KAKKVRFYRN
                                                                               60
15
       GDRYFKGIVY AVSSDRFRSF DALLADLTRS LSDNINLPQG VRYIYTIDGS RKIGSMDELE
                                                                              120
       EGESYVCSSD NFFKKVEYTK NVNPNWSVNV KTSANMKAPQ SLASSNSAQA RENKDFVRPK
                                                                              180
       LVTIIRSGVK PRKAVRVLLN KKTAHSFEQV LTDITEAIKL ETGVVKKLYT LDGKQVTCLH
                                                                              240
       DFFGDDVFI ACGPEKFRYA QDDFSLDENE CRVMKGNPSA TAGPKASPTP QKTSAKSPGP
MRRSKSPADS ANGTSSSOLS TPKSKOSPIS TPTSPGSLRK HKDLYLPLSL DDSDSLGDSM
                                                                              300
20
       Seq ID NO: 215 DNA sequence
       Nucleic Acid Accession #: NM_130467
       Coding sequence: 312..644
25
                              21
                                         31
                                                     41
                                                                51
                  11
       GGCACGAGGC AGAGCTCTGC AAGGAGAGGT TGTGTCTTCG TTCTTTCCGC CATCTTCGTT
       CTTTCCAACA TCTTCGTTCT TTCTCACTGA CCGAGACTCA GCCGGTAGGT CTGCAGAGTG
                                                                              120
30
       GTCTTCCTGG TAATTTAGTT GTGAGTGAAT GTGTGGAGGA GCCAGCGGGC TTAGGACAGG
                                                                              180
       TCCTGTGGCA CAGTCCGTGG CTTTGAGGGA AAAGGGCCTC GCGGTGGTCC TCCGCCTTCC
                                                                              240
       CCCAGGTCGT GATGCAGGCG CCATGGGCCG GTAATCGTGG CTGGGCTGGA ACGAGGGAGG
                                                                              300
       AAGTGAGAGA TATGAGTGAG CATGTAACAA GATCCCAATC CTCAGAAAGA GGAAATGACC
                                                                              360
       AAGAGTCTTC CCAGCCAGTT GGACCTGTGA TTGTCCAGCA GCCCACTGAG GAAAAACGTC
                                                                              420
35
       AAGAAGAGGA ACCACCAACT GATAATCAGG GTATTGCACC TAGTGGGGAG ATCAAAAATG
                                                                              480
       AAGGAGCACC TGCTGTTCAA GGGACTGATG TGGAAGCTTT TCAACAGGAA CTGGCTCTGC
                                                                              540
       TTAAGATAGA GGATGCACCT GGAGATGGTC CTGATGTCAG GGAGGGGACT CTGCCCACTT
                                                                              600
       TTGATCCCAC TAAAGTGCTG GAAGCAGGTG AAGGGCAACT ATAGGTTTAA ACCAAGACAA
                                                                              660
       ATGAAGACTG AAACCAAGAA TATTGTTCTT ATGCTGGAAA TTTGACTGCT AACATTCTCT
40
       Seg ID NO: 216 Protein sequence:
45
       Protein Accession #: NP_569734
                                                     41
                                         31
       MSEHVTRSOS SERGNDOESS OPVGPVIVOO PTEEKROEEE PPTDNOGIAP SGEIKNEGAP
                                                                               60
50
       AVQGTDVEAF QQELALLKIE DAPGDGPDVR EGTLPTFDPT KVLEAGEGQL
       Seq ID NO: 217 DNA sequence
       Nucleic Acid Accession #: NM_001476.1
       Coding sequence: 82..435
55
                                         31
                                                     41
       GCCAGGGAGC TGTGAGGCAG TGCTGTGGG TTCCTGCCGT CCGGACTCTT TTTCCTCTAC
                                                                               60
       TGAGATTCAT CTGTGTGAAA TATGAGTTGG CGAGGAAGAT CGACCTATTA TTGGCCTAGA
                                                                              120
60
       CCAAGGGGCT ATGTACAGCC TCCTGAAGTG ATTGGGCCCTA TGCGGCCCGA GCAGTTCAGT
                                                                              180
       GATGAAGTGG AACCAGCAAC ACCTGAAGAA GGGGAACCAG CAACTCAACG TCAGGATCCT
                                                                              240
       GCAGCTGCTC AGGAGGGAGA GGATGAGGGA GCATCTGCAG GTCAAGGGCC GAAGCCTGAA
                                                                              300
       GCTGATAGCC AGGAACAGGG TCACCCACAG ACTGGGTGTG AGTGTGAAGA TGGTCCTGAT
       GGGCAGGAGG TGGACCCGCC AAATCCAGAG GAGGTGAAAA CGCCTGAAGA AGGTGAAAAG
                                                                              420
65
       CAATCACAGT GTTAAAAGAA GACACGTTGA AATGATGCAG GCTGCTCCTA TGTTGGAAAT
                                                                              480
       TTGTTCATTA AAATTCTCCC AATAAAGCTT TACAGCCTTC TGCAAAA
       Sea ID NO: 218 Protein sequence:
       Protein Accession #: NP 001467.1
70
                  11
                              21
                                         31
                                                     41
                                                                51
       MSWRGRSTYY WPRPRRYVOP PEVIGPMRPE OFSDEVEPAT PEEGEPATOR ODPAAAQEGE
       DEGASAGQGP KPEADSQEQG HPQTGCECED GPDGQEVDPP NPEEVKTPEE GEKQSQC
75
       Seq ID NO: 219 DNA sequence
       Nucleic Acid Accession #: NM_001476
       Coding sequence: 90-3671
80
                                                     41
                                         31
       ACAGCGGAGC GCAGAGTGAG AACCACCAAC CGAGGCGCCG GGCAGCGACC CCTGCAGCGG
       AGACAGAGAC TGAGCGGCCC GGCACCGCCA TGCCTGCGCT CTGGCTGGGC TGCTGCCTCT
                                                                              120
       GCTTCTCGCT CCTCCTGCCC GCAGCCCGGG CCACCTCCAG GAGGGAAGTC TGTGATTGCA
                                                                              180
85
       ATGGGAAGTC CAGGCAGTGT ATCTTTGATC GGGAACTTCA CAGACAAACT GGTAATGGAT
                                                                              240
       TCCGCTGCCT CAACTGCAAT GACAACACTG ATGGCATTCA CTGCGAGAAG TGCAAGAATG
                                                                              300
       GCTTTTACCG GCACAGAGAA AGGGACCGCT GTTTGCCCTG CAATTGTAAC TCCAAAGGTT
```

	WO 02.	/086443					
	CTCTTAGTGC	TCGATGTGAC	AACTCTGGAC	GGTGCAGCTG	TAAACCAGGT	GTGACAGGAG	420
	CCAGATGCGA	CCGATGTCTG	CCAGGCTTCC	ACATGCTCAC	GGATGCGGGG	TGCACCCAAG	480
	ACCAGAGACT	GCTAGACTCC	AAGTGTGACT	GTGACCCAGC	TGGCATCGCA	GGGCCCTGTG	540
_	ACGCGGGCCG	CTGTGTCTGC	AAGCCAGCTG	TTACTGGAGA	ACGCTGTGAT	AGGTGTCGAT	600
5	CAGGTTACTA	TAATCTGGAT	GGGGGGAACC	CTGAGGGCTG	TACCCAGTGT	TTCTGCTATG	660
	GGCATTCAGC	CAGCTGCCGC	AGCTCTGCAG	AATACAGTGT	CCATAAGATC	ACCTCTACCT	720
		TGTTGATGGC					780
	AATGGTCACA	GCGCCATCAA	GATGTGTTTA	GCTCAGCCCA	ACGACTAGAC	CCTGTCTATT	840
	TTGTGGCTCC	TGCCAAATTT	CTTGGGAATC	AACAGGTGAG	CTATGGGCAA	AGCCTGTCCT	900
10	TTGACTACCG	TGTGGACAGA	GGAGGCAGAC	ACCCATCTGC	CCATGATGTG	ATTCTGGAAG	960
		ACGGATCACA					1020
	TCACCAAGAC	TTACACATTC	AGGTTAAATG	AGCATCCAAG	CAATAATTGG	AGCCCCCAGC	1080
	TGAGTTACTT	TGAGTATCGA	AGGTTACTGC	GGAATCTCAC	AGCCCTCCGC	ATCCGAGCTA	1140
	CATATGGAGA	ATACAGTACT	GGGTACATTG	ACAATGTGAC	CCTGATTTCA	GCCCGCCCTG	1200
15	TCTCTGGAGC	CCCAGCACCC	TGGGTTGAAC	AGTGTATATG	TCCTGTTGGG	TACAAGGGGC	1260
	AATTCTGCCA	GGATTGTGCT	TCTGGCTACA	AGAGAGATTC	AGCGAGACTG	GGGCCTTTTG	1320
	GCACCTGTAT	TCCTTGTAAC	TGTCAAGGGG	GAGGGGCCTG	TGATCCAGAC	ACAGGAGATT	1380
	GTTATTCAGG	GGATGAGAAT	CCTGACATTG	AGTGTGCTGA	CTGCCCAATT	GGTTTCTACA	1440
	ACGATCCGCA	CGACCCCCGC	AGCTGCAAGC	CATGTCCCTG	TCATAACGGG	TTCAGCTGCT	1500
20	CAGTGATGCC	GGAGACGGAG	GAGGTGGTGT	GCAATAACTG	CCCTCCCGGG	GTCACCGGTG	1560
	CCCGCTGTGA	GCTCTGTGCT	GATGGCTACT	TTGGGGACCC	CTTTGGTGAA	CATGGCCCAG	1620
	TGAGGCCTTG	TCAGCCCTGT	CAATGCAACA	ACAATGTGGA	CCCCAGTGCC	TCTGGGAATT	1680
	GTGACCGGCT	GACAGGCAGG	TGTTTGAAGT	GTATCCACAA	CACAGCCGGC	ATCTACTGCG	1740
	ACCAGTGCAA	AGCAGGCTAC	TTCGGGGACC	CATTGGCTCC	CAACCCAGCA	GACAAGTGTC	1800
25	GAGCTTGCAA	CTGTAACCCC	ATGGGCTCAG	AGCCTGTAGG	ATGTCGAAGT	GATGGCACCT	1860
		GCCAGGATTT					1920
	CTTGCTATAA	TCAAGTGAAG	ATTCAGATGG	ATCAGTTTAT	GCAGCAGCTT	CAGAGAATGG	1980
	AGGCCCTGAT	TTCAAAGGCT	CAGGGTGGTG	ATGGAGTAGT	ACCTGATACA	GAGCTGGAAG	2040
	GCAGGATGCA	GCAGGCTGAG	CAGGCCCTTC	AGGACATTCT	GAGAGATGCC	CAGATTTCAG	2100
30		CAGATCCCTT					2160
	ACCAGAGCCG	CCTGGATGAC	CTCAAGATGA	CTGTGGAAAG	AGTTCGGGCT	CTGGGAAGTC	2220
	AGTACCAGAA	CCGAGTTCGG	GATACTCACA	GGCTCATCAC	TCAGATGCAG	CTGAGCCTGG	2280
	CAGAAAGTGA	AGCTTCCTTG	GGAAACACTA	ACATTCCTGC	CTCAGACCAC	TACGTGGGGC	2340
	CAAATGGCTT	TAAAAGTCTG	GCTCAGGAGG	CCACAAGATT	AGCAGAAAGC	CACGTTGAGT	2400
35	CAGCCAGTAA	CATGGAGCAA	CTGACAAGGG	AAACTGAGGA	CTATTCCAAA	CAAGCCCTCT	2460
	CACTGGTGCG	CAAGGCCCTG	CATGAAGGAG	TCGGAAGCGG	AAGCGGTAGC	CCGGACGGTG	2520
	CTGTGGTGCA	AGGGCTTGTG	GAAAAATTGG	AGAAAACCAA	GTCCCTGGCC	CAGCAGTTGA	2580
	CAAGGGAGGC	CACTCAAGCG	GAAATTGAAG	CAGATAGGTC	TTATCAGCAC	AGTCTCCGCC	2640
4.0	TCCTGGATTC	AGTGTCTCGG	CTTCAGGGAG	TCAGTGATCA	GTCCTTTCAG	GTGGAAGAAG	2700
40	CAAAGAGGAT	CAAACAAAAA	GCGGATTCAC	TCTCAACGCT	GGTAACCAGG	CATATGGATG	2760
		TACACAAAAG					2820
		AAGTGGGAGA					2880
	AAAGCAGAGC	ACAAGAAGCA	CTGAGTATGG	GCAATGCCAC	TTTTTATGAA	GTTGAGAGCA	2940
4.5	TCCTTAAAAA	CCTCAGAGAG	TTTGACCTGC	AGGTGGACAA	CAGAAAAGCA	GAAGCTGAAG	3000
45	AAGCCATGAA	GAGACTCTCC	TACATCAGCC	AGAAGGTTTC	AGATGCCAGT	GACAAGACCC	3060
		AAGAGCCCTG					3120
		CCTGGAAATC					3180
	AAGCCAATGT	GACAGCAGAT	GGAGCCTTGG	CCATGGAAAA	GGGACTGGCC	TCTCTGAAGA	3240
5 0		GGAAGTGGAA					3300
50	TGGATGCAGT	ACAGATGGTG	ATTACAGAAG	CCCAGAAGGT	TGATACCAGA	GCCAAGAACG	3360
	CTGGGGTTAC	AATCCAAGAC	ACACTCAACA	CATTAGACGG	CCTCCTGCAT	CTGATGGACC	3420
	AGCCTCTCAG	TGTAGATGAA	GAGGGGCTGG	TCTTACTGGA	GCAGAAGCTT	TCCCGAGCCA	3480
	AGACCCAGAT	CAACAGCCAA	CTGCGGCCCA	TGATGTCAGA	GCTGGAAGAG	AGGGCACGTC	3540
~ ~	AGCAGAGGGG	CCACCTCCAT	TTGCTGGAGA	CAAGCATAGA	TGGGATTCTG	GCTGATGTGA	3600
55	AGAACTTGGA	GAACATTAGG	GACAACCTGC	CCCCAGGCTG	CTACAATACC	CAGGCTCTTG	3660
	AGCAACAGTG	AAGCTGCCAT	AAATATTTCT	CAACTGAGGT	TCTTGGGATA	CAGATCTCAG	3720
	GGCTCGGGAG	CCATGTCATG	TGAGTGGGTG	GGATGGGGAC	ATTTGAACAT	GTTTAATGGG	3780
	TATGCTCAGG	TCAACTGACC	TGACCCCATT	CCTGATCCCA	TGGCCAGGTG	GTTGTCTTAT	3840
	TGCACCATAC	TCCTTGCTTC	CTGATGCTGG	GCAATGAGGC	AGATAGCACT	GGGTGTGAGA	3900
60	ATGATCAAGG	ATCTGGACCC	CAAAGAATAG	ACTGGATGGA	AAGACAAACT	GCACAGGCAG	3960
	ATGTTTGCCT	CATAATAGTC	GTAAGTGGAG	TCCTGGAATT	TGGACAAGTG	CTGTTGGGAT	4020
	ATAGTCAACT	TATTCTTTGA	GTAATGTGAC	TAAAGGAAAA	AACTTTGACT	TTGCCCAGGC	4080
	ATGAAATTCT	TCCTAATGTC	AGAACAGAGT	GCAACCCAGT	CACACTGTGG	CCAGTAAAAT	4140
CF	ACTATTGCCT	CATATTGTCC	TCTGCAAGCT	TCTTGCTGAT	CAGAGTTCCT	CCTACTTACA	4200
65	ACCCAGGGTG	TGAACATGTT	CTCCATTTTC	AAGCTGGAAG	AAGTGAGCAG	TGTTGGAGTG	4260
	AGGACCTGTA	AGGCAGGCCC	ATTCAGAGCT	ATGGTGCTTG	CTGGTGCCTG	CCACCTTCAA	4320
	GTTCTGGACC	TGGGCATGAC	ATCCTTTCTT	TTAATGATGC	CATGGCAACT	TAGAGATTGC	4380
	ATTTTTATTA	AAGCATTTCC	TACCAGCAAA	GCAAATGTTG	GGAAAGTATT	TACTTTTTCG	4440
70	GTTTCAAAGT	GATAGAAAAG	TGTGGCTTGG	GCATTGAAAG	AGGTAAAATT	CTCTAGATTT	4500
70	ATTAGTCCTA	ATTCAATCCT	ACTTTTCGAA	CACCAAAAAT	GATGCGCATC	AATGTATTTT	4560
	ATCTTATTTT	CTCAATCTCC	TCTCTCTTTC	CTCCACCCAT	AATAAGAGAA	TGTTCCTACT	4620
	CACACTTCAG	CTGGGTCACA	TCCATCCCTC	CATTCATCCT	TCCATCCATC	TTTCCATCCA	4680
	TTACCTCCAT	CCATCCTTCC	AACATATATT	TATTGAGTAC	CTACTGTGTG	CCAGGGGCTG	4740
75	GTGGGACAGT	GGTGACATAG	TCTCTGCCCT	CATAGAGTTG	ATTGTCTAGT	GAGGAAGACA	4800
75	AGCATTTTTA	TAAAATAAAT	TTAAACTTAC	AAACTTTGTT	TGTCACAAGT	GGTGTTTATT	4860
	GCAATAACCG	CTTGGTTTGC	AACCTCTTTG	CTCAACAGAA	CATATGTTGC	AAGACCCTCC	4920
	CATGGGGGCA	CTTGAGTTTT	GGCAAGGCTG	ACAGAGCTCT	GGGTTGTGCA	CATTTCTTTG	4980
	CATTCCAGCT	GTCACTCTGT	GCCTTTCTAC	AACTGATTGC	AACAGACTGT	TGAGTTATGA	5040
00	TAACACCAGT	GGGAATTGCT	GGAGGAACCA	GAGGCACTTC	CACCTTGGCT	GGGAAGACTA	5100
80			ATTTCCTTGG	ATTTTCCTGA	AAGTGTTTTT	AAATAAAGAA	5160
	CAATTGTTAG	ATGCC	•				
	_						
		220 Protei					
85	Protein Ac	cession #:N	P_005553				
ωJ			21	21	41	E1	
	1	11	21	31	41	51 I	
		Ĭ	I	1	ı	I	

```
MPALWLGCCL CFSLLLPAAR ATSRREVCDC NGKSRQCIFD RELHRQTGNG FRCLNCNDNT
       DGIHCEKCKN GFYRHRERDR CLPCNCNSKG SLSARCDNSG RCSCKPGVTG ARCDRCLPGF
                                                                                    120
        HMLTDAGCTQ DQRLLDSKCD CDPAGIAGPC DAGRCVCKPA VTGERCDRCR SGYYNLDGGN
                                                                                    180
        PEGCTQCFCY GHSASCRSSA EYSVHKITST FHQDVDGWKA VQRNGSPAKL QWSQRHQDVF
                                                                                    240
 5
       SSAQRIDPVY FVAPAKFLGN QQVSYGQSLS FDYRVDRGGR HPSAHDVILE GAGLRITAPL MPLGKTLPCG LTKTYTFRLN EHPSNNWSPQ LSYFEYRRLL RNLTALRIRA TYGEYSTGYI
                                                                                    300
                                                                                    360
       DNVTLISARP VSGAPAPWVE QCICPVGYKG QFCQDCASGY KRDSARLGPF GTCIPCNCQG
                                                                                    420
       GGACDPDTGD CYSGDENPDI ECADCPIGFY NDPHDPRSCK PCPCHNGFSC SVMPETEEVV
        CNNCPPGVTG ARCELCADGY FGDPFGEHGP VRPCQPCQCN NNVDPSASGN CDRLTGRCLK
                                                                                    540
10
        CIHNTAGIYC DQCKAGYFGD PLAPNPADKC RACNCNPMGS EPVGCRSDGT CVCKPGFGGP
                                                                                    600
       NCEHGAFSCP ACYNQVKIQM DQFMQQLQRM EALISKAQGG DGVVPDTELE GRMQQAEQAL
                                                                                    660
        QDILRDAQIS EGASRSLGLQ LAKVRSQENS YQSRLDDLKM TVERVRALGS QYQNRVRDTH
                                                                                    720
       RLITOMOLSL AESEASLGNT NIPASDHYVG PNGFKSLAQE ATRLAESHVE SASNMEQLTR
        ETEDYSKQAL SLVRKALHEG VGSGSGSPDG AVVQGLVEKL EKTKSLAQQL TREATQAEIE
                                                                                    840
15
        ADRSYQHSLR LLDSVSRLQG VSDQSFQVEE AKRIKQKADS LSTLVTRHMD EFKRTQKNLG
                                                                                    900
        NWKEEAQQLL QNGKSGREKS DQLLSRANLA KSRAQEALSM GNATFYEVES ILKNLREFDL
                                                                                    960
        QVDNRKAEAE EAMKRLSYIS QKVSDASDKT QQAERALGSA AADAQRAKNG AGEALEISSE
                                                                                  1020
        IEQEIGSLNL EANVTADGAL AMEKGLASLK SEMREVEGEL ERKELEFDTN MDAVQMVITE
                                                                                  1080
       AQKVDTRAKN AGVTIQDTLN TLDGLLHLMD QPLSVDEGGL VLLEQKLSRA KTQINSQLRP MMSELEERAR QQRGHLHLLE TSIDGILADV KNLENIRDNL PPGCYNTQAL EQQ
                                                                                  1140
20
        Seq ID NO: 221 DNA sequence
       Nucleic Acid Accession #: NM_016529
        Coding sequence: 13-1854
25
                                21
                                             31
                                                         41
                                                                     51
                    11
        GTCAAGAAAA GAATGTCTGT AATTGTTCGA ACTCCTTCAG GACGACTTCG GCTTTACTGT
                                                                                     60
       AAAGGGGCTG ATAATGTGAT TTTTGAGAGA CTTTCAAAAG ACTCAAAATA TATGGAGGAA ACATTATGCC ATCTGGAATA CTTTGCCACG GAAGGCTTGC GGACTCTCTG TGTGGCTTAT
                                                                                    120
30
                                                                                    180
        GCTGATCTCT CTGAGAATGA GTATGAGGAG TGGCTGAAAG TCTATCAGGA AGCCAGCACC
                                                                                    240
        ATATTGAAGG ACAGAGCTCA ACGGTTGGAA GAGTGTTACG AGATCATTGA GAAGAATTTG
        CTGCTACTTG GAGCCACAGC CATAGAAGAT CGCCTTCAAG CAGGAGTTCC AGAAACCATC
                                                                                    360
        GCAACACTGT TGAAGGCAGA AATTAAAATA TGGGTGTTGA CAGGAGACAA ACAAGAAACT
                                                                                    420
35
        GCGATTAATA TAGGGTATTC CTGCCGATTG GTATCGCAGA ATATGGCCCT TATCCTATTG
                                                                                    480
       AAGGAGGACT CTTTGGATGC CACAAGGGCA GCCATTACTC AGCACTGCAC TGACCTTGGG
AATTTGCTGG GCAAGGAAAA TGACGTGGCC CTCATCATCG ATGGCCACAC CCTGAAGTAC
                                                                                    540
                                                                                    600
        GCGCTCTCCT TCGAAGTCCG GAGGAGTTTC CTGGATTTGG CACTCTCGTG CAAAGCGGTC
        ATATGCTGCA GAGTGTCTCC TCTGCAGAAG TCTGAGATAG TGGATGTGGT GAAGAAGCGG
                                                                                    720
40
        GTGAAGGCCA TCACCCTCGC CATCGGAGAC GGCGCCAACG ATGTCGGGAT GATCCAGACA
                                                                                    780
       GCCCACGTGG GTGTGGGAAT CAGTGGGAAT GAAGGCATGC AGGCCACCAA CAACTCGGAT TACGCCATCG CACAGTTTTC CTACTTAGAG AAGCTTCTGT TGGTTCATGG AGCCTGGAGC
                                                                                    840
                                                                                    900
        TACAACCGGG TGACCAAGTG CATCTTGTAC TGCTTCTATA AGAACGTGGT CCTGTATATT
                                                                                    960
        ATTGAGCTTT GGTTCGCCTT TGTTAATGGA TTTTCTGGGC AGATTTTATT TGAACGTTGG
                                                                                  1020
45
        TGCATCGGCC TGTACAATGT GATTTTCACC GCTTTGCCGC CCTTCACTCT GGGAATCTTT
                                                                                  1080
        GAGAGGTCTT GCACTCAGGA GAGCATGCTC AGGTTTCCCC AGCTCTACAA AATCACCCAG
                                                                                  1140
        AATGGCGAAG GCTTCAACAC AAAGGTTTTC TGGGGTCACT GCATCAACGC CTTGGTCCAC
                                                                                  1200
       TCCCTCATCC TCTTCTGGTT TCCCATGAAA GCTCTGGAGC ATGATACTGT GTTTGACAGT GGTCATGCTA CCGACTATTT ATTTGTTGGA AATATTGTTT ACACATATGT TGTTGTTACT
                                                                                  1260
                                                                                   1320
50
        GTTTGTCTGA AAGCTGGTTT GGAGACCACA GCTTGGACTA AATTCAGTCA TCTGGCTGTC
                                                                                  1380
        TGGGGAAGCA TGCTGACCTG GCTGGTGTTT TTTGGCATCT ACTCGACCAT CTGGCCCACC
                                                                                  1440
        ATTCCCATTG CTCCAGATAT GAGAGGACAG GCAACTATGG TCCTGAGCTC CGCACACTTC
                                                                                  1500
        TGGTTGGGAT TATTTCTGGT TCCTACTGCC TGTTTGATTG AAGATGTGGC ATGGAGAGCA
                                                                                  1560
        GCCAAGCACA CCTGCAAAAA GACATTGCTG GAGGAGGTGC AGGAGCTGGA AACCAAGTCT
                                                                                  1620
55
        CGAGTCCTGG GAAAAGCGGT GCTGCGGGAT AGCAATGGAA AGAGGCTGAA CGAGCGCGAC
                                                                                  1680
        CGCCTGATCA AGAGGCTGGG CCGGAAGACG CCCCCGACGC TGTTCCGGGG CAGCTCCCTG
                                                                                  1740
        CAGCAGGGCG TCCCGCATGG GTATGCTTTT TCTCAAGAAG AACACGGAGC TGTTAGTCAG
                                                                                  1800
        GAAGAAGTCA TCCGTGCTTA TGACACCACC AAAAAGAAAT CCAGGAAGAA ATAAGACATG
                                                                                  1860
        AATTTCCTG ACTGATCTTA GGAAAGAGAT TCAGTTTGTT GCACCCAGTG TTAACACATC
                                                                                  1920
60
       TTTGTCAGAG AAGACTGGCG TCCAAGGCCA AAACACCAGG AAACACATTT CTGTGGCCTT AGTTAAGCAG TTTGTTAGTT ACATATTCCC TCGCAAACCT GGAGTGCAGA CCACAGGGGA
                                                                                  1980
                                                                                  2040
        AGCTATCTTT GCCCTCCCAA CTCGTCTGCA GTGCTTAGCC TAACTTTTGT TTATGTCGTT
                                                                                   2100
        ATGAAGCATT CAACTGTGCT CTGTGAGGTC TCAAATTAAA AACATTATGT TTCACCAATA
                                                                                  2160
        AGAAAAAAA AAAAAAA
65
        Seg ID NO: 222 Protein seguence:
        Protein Accession #: NP 057613
                                                         41
                                                                     51
                                             31
70
        MSVIVRTPSG RLRLYCKGAD NVIFERLSKD SKYMEETLCH LEYFATEGLR TLCVAYADLS
                                                                                     60
        ENEYEEWLKV YQEASTILKD RAQRLEECYE IIEKNLLLLG ATAIEDRLQA GVPETIATLL
                                                                                    120
        KAEIKIWULT GDKOETAINI GYSCRLVSQN MALILLKEDS LDATRAAITQ HCTDLGNLLG
                                                                                    180
        KENDVALIID GHTLKYALSF EVRRSFLDLA LSCKAVICCR VSPLQKSEIV DVVKKRVKAI
                                                                                    240
75
        TLAIGDGAND VGMIQTAHVG VGISGNEGMQ ATNNSDYAIA QFSYLEKLLL VHGAWSYNRV
                                                                                    300
        TKCILYCFYK NVVLY11ELW FAFVNGFSGQ ILFERWCIGL YNVIFTALPP FTLGIFERSC
                                                                                    360
        TQESMLRFPQ LYKITQNGEG FNTKVFWGHC INALVHSLIL FWFPMKALEH DTVFDSGHAT
                                                                                    420
        DYLFVGNIVY TYVVVTVCLK AGLETTAWTK FSHLAVWGSM LTWLVFFGIY STIWPTIPIA
                                                                                    480
        PDMRGOATMV LSSAHFWLGL FLVPTACLIE DVAWRAAKHT CKKTLLEEVQ ELETKSRVLG
                                                                                    540
80
        KAVLRDSNGK RLNERDRLIK RLGRKTPPTL FRGSSLQQGV PHGYAFSQEE HGAVSQEEVI
                                                                                    600
        RAYDTTKKKS RKK
        Seq ID NO: 223 DNA sequence
        Nucleic Acid Accession #: BC017001
85
        Coding sequence: 1-394
                                                         41
                                                                     51
                                21
                                             31
                    11
```

WO 02/086443

WO 02/086443 AACGCTGGGC AGGGCCGGCG CGGGTCGGGG GGCGCCCGAG GGGCCCGGGC CGAGCGGCGG CGCGCAGGGC GGCAGCATCC ACTCGAGGCCG CATCGCCGCG GTGCACAACG TGCCGCTGAG
CGTGCTCATC CGGCCGTGC CGTCCGTGTT GGACCCCGCC AAGGTGCAGA GCCTCGTGGA 120 180 5 CACGATCCGG GAGGACCCAG ACAGCGTGCC CCCCATCGAT GTCCTCTGGA TCAAAGGGGC 240 CCAGGGAGGT GACTACTTCT ACTCCTTTGG GGGCTGCCAC CGCTACGCGG CCTACCAGCA 300 ACTGCAGCGA GAGACCATCC CCGCCAAGCT TGTCCAGTCC ACTCTCTCAG ACCTAAGGGT 360 GTACCTGGGA GCATCCACAC CAGACTTGCA GTAGCAGCCT CCTTGGCACC TGCTGCCACC 420 TTCAAGAGCC CAGAAGACAC ACCTGGCCTC CAGCAGGCTG GGCCATGCAG AAGGGATAGC AGGGGTGCAT TCTCTTTGCA CCTGGCGAGA GGGTCTGACT CTGGGCACCC CTCTCACCGG 10 540 CTACAAGGCC TTGGACTCAC TGTACAGTGT GGGAGCCCCA GTTCCCACCT CTGTGACAAT 600 AGGATCATGG CCTTACCCTT GAAGCATTAC CGAGAAGGAG AACAGAGATG GGCTTGAAGA 660 GCCACGTGCT GCCGGCTCCA AATTCCCCAAG GACAAGGATC CCTCTGCATT TTTGTCTATG 720 780 TAAACAAACA GAAGATTGTT TTTCCACATA GCATGGATTC TGGAGATGGG TGGCTAATGG 840 15 TATTGGTTCA ACAACTCCAC GGAGGTAGGG GTCACGTCTT GGATCCTTTT GCCTTAATCT 900 CAGTGCTCGT TACTTCATGG TCCCAAGATG GCTGCTGTAT CCCCAAGAAT CATGTCTGCG 960 TTCAAGGAAG GAGGGGTGGA GGAAGAGGAA GGGCCAAACT AGCTGGACCC GTCACCTTCT 1020 ATCAGAAAGT AAAACCTCGT CAGAAGTCTG TTTCCTGCTC TCTCCCTCTG CATATCTTCA 1080 CTTAGATGCC CTTGGCCCGA GCCAGCTACC ATTGCACCTC TAGCTGCAAA CAAAGCTAAG ACAGCAGGGA ACAGAATTGT CATGGCTGAA TAGACCAATC GTGTTCCATC TACTGAGACT 20 1140 GGCACACTGC CTCCTGCAAT AAAACTGGGA TCCCATTACC AAGAGAGAAA TGCAGAATTG 1260 1320 TGTACCAGTT AGCTTTTGCT GTGTAACAAA CCATCCCCAA ACTTGGCAGC TAGAAACAAA CCCTGTATTT TCCCACAATC CTATGGGTTG GCAATTTGGG CTGGGCTCAA CAGGGCAGTT 1380 CTGCTGCTCA CACCTGGGAT CCCTCATGGA GCTAAGGTCA GCTGTTACCT CAGCTGGGCC 25 1440 TGGATGGTCT AGGATAGCCT TACTCACTTG CCTGGCAGGT GACAGGCTGT TGGCTGGAAT 1500 TGCTTGGTTC TCCTCCATGT GGCCTCTCCA GCAGGCTAGC TCAGGCTTAT TCACATGATG 1560 GCTTCAGGAT TCCAAAGAGA GTGAGAGTAG AAGCTGAAAG ACTTCTTGAG TTCTTGGCCT 1620 GGAACTGGGA CTAGGACAGT GTCACTTCTG CTAAGTTCTT TTGGTCAGAG CAAATCACAA 1680 GGCTTTACCC AGATTCAAGG GATGAGAAAC AGACTACATG TCTTGATGAG GGGAACCACA 30 1740 AAGAGCTTGT GGCCATTTTT CACCTATCAC AAATAATTTT GGATGGGTAT TTATTTGGAT 1800 AAAGGTATTT CCCTCTTCCC CCTTTCTCTC TGTCTCATGG GGCCTCACTC TGCCAAGTTG 1860 GAAGGCACTA AGACATTGTC CTGGCCCTCA GGGTCTAGGG GAAGAGGTGT TGGGGCAGGA AGTGAGTCTC TCCATGGGCT GGACCCACTG TAGTAGGAGT GCCTCCTTGT CTGCACTGCT 1980 GGTATGGGGT TAGGCCAGGT AGGACATTCC AGAGGGGCTT CTGAAAACCA AGAGTCCCTG 2040 35 GGGAAAGGGA ACAGAGTAAG GCAGGCCTTG TTCTCACTGC CCTCTAAGGG AACTTGGTCA 2100 CTCGGCACTT TTAAGCCTCA GTTTCTCCAG TTCAATAATA AGGACAAGAG CTTTTCCCAT 2160 2220 GCATTCTCTT TCCCCGGGAA AGTTGACTGA GGTGACCAGT AATAGAATTG AAAAGGGAGA GTGTCTTCAG TGCAATGTGG CATCCTGGAT TGGGTCTTGG AACAAAAACA GGACATTAGT 2280 GGGAAAATTG GAAATCTGAA AAAAGTCTGA ATTTTAGTTA ATATACCAAT TTCAGTCTCT. 40 2340 TGGTTTTGAC AGATGTACCA TGGTGATGTA AGATGTTGAC CTTGGGGTAG GCTGGGTGAA 2400 GGGTATACAG GAACTCTTTG TACTATCTCT GCAACTTCTC TGTAAATCTA GTATCATTCC 45 Seq ID NO: 224 Protein sequence: Protein Accession #: AAH17001.1 51 41 50 TLGRAGAGRG APEGPGPSGG AQGGSIHSGR IAAVHNVPLS VLIRPLPSVL DPAKVQSLVD TIREDPDSVP PIDVLWIKGA QGGDYFYSFG GCHRYAAYQQ LQRETIPAKL VQSTLSDLRV 120 YLGASTPDLO 55 Seg ID NO: 225 DNA sequence Nucleic Acid Accession #: NM_021048 Coding sequence: 1..1110 60 51 21 31 11 ATGCCTCGAG CTCCAAAGCG TCAGCGCTGC ATGCCTGAAG AAGATCTTCA ATCCCAAAGT 60 GAGACACAGG GCCTCGAGGG TGCACAGGCT CCCCTGGCTG TGGAGGAGGA TGCTTCATCA TCCACTTCCA CCAGCTCCTC TTTTCCATCC TCTTTTCCCT CCTCCTCCT TTCCTCCTCC 180 TCCTCCTGCT ATCCTCTAAT ACCAAGCACC CCAGAGGAGG TTTCTGCTGA TGATGAGACA 240 65 CCAAATCCTC CCCAGAGTGC TCAGATAGCC TGCTCCTCCC CCTCGGTCGT TGCTTCCCTT 300 CCATTAGATC AATCTGATGA GGGCTCCAGC AGCCAAAAGG AGGAGAGTCC AAGCACCCTA 360 CAGGTCCTGC CAGACAGTGA GTCTTTACCC AGAAGTGAGA TAGATGAAAA GGTGACTGAT 420 TTGGTGCAGT TTCTGCTCTT CAAGTATCAA ATGAAGGAGC CGATCACAAA GGCAGAAATA CTGGAGAGTG TCATAAAAAA TTATGAAGAC CACTTCCCTT TGTTGTTTAG TGAAGCCTCC
GAGTGCATGC TGCTGGTCTT TGGCATTGAT GTAAAGGAAG TGGATCCCAC TGGCCACTCC 70 540 600 TTTGTCCTTG TCACCTCCCT GGGCCTCACC TATGATGGGA TGCTGAGTGA TGTCCAGAGC 660 ATGCCCAAGA CTGGCATTCT CATACTTATC CTAAGCATAA TCTTCATAGA GGGCTACTGC 720 ACCCCTGAGG AGGTCATCTG GGAAGCACTG AATATGATGG GGCTGTATGA TGGGATGGAG 780 CACCTCATTT ATGGGGAGCC CAGGAAGCTG CTCACCCAAG ATTGGGTGCA GGAAAACTAC 75 CTGGAGTACC GGCAGGTGCC TGGCAGTGAT CCTGCACGGT ATGAGTTTCT GTGGGGTCCA 900 AGGGCTCATG CTGAAATTAG GAAGATGAGT CTCCTGAAAT TTTTGGCCAA GGTAAATGGG 960 AGTGATCCAA GATCCTTCCC ACTGTGGTAT GAGGAGGCTT TGAAAGATGA GGAAGAGAGA 1020 GCCCAGGACA GAATTGCCAC CACAGATGAT ACTACTGCCA TGGCCAGTGC AAGTTCTAGC 1080 80 GCTACAGGTA GCTTCTCCTA CCCTGAATAA Seg ID NO: 226 Protein sequence: Protein Accession #: NP_066386

MPRAPKRORC MPEEDLOSOS ETOGLEGAQA PLAVEEDASS STSTSSSFPS SFPSSSSSS

85

51

PCT/US02/12476

```
SSCYPLIPST PEEVSADDET PNPPQSAQIA CSSPSVVASL PLDQSDEGSS SQKEESPSTL
                                                                                120
       QVLPDSESLP RSEIDEKVTD LVQFLLFKYQ MKEPITKAEI LESVIKNYED HFPLLFSEAS
                                                                                180
       ECMLLVFGID VKEVDPTGHS FVLVTSLGLT YDGMLSDVQS MPKTGILILI LSIIFIEGYC
                                                                                240
       TPEEVIWEAL NMMGLYDGME HLIYGEPRKL LTODWVOENY LEYROVPGSD PARYEFLWGP
                                                                                300
 5
       RAHAEIRKMS LLKFLAKVNG SDPRSFPLWY EEALKDEEER AQDRIATTDD TTAMASASSS
                                                                                360
       Seq ID NO: 227 DNA sequence
       Nucleic Acid Accession #: NM_005025.1
10
       Coding sequence: 82-1314
                                                      41
                                                                  51
                                          31
       GCGGAGCACA GTCCGCCGAG CACAAGCTCC AGCATCCCGT CAGGGGTTGC AGGTGTGTGG
15
       GAGGCTTGAA ACTGTTACAA TATGGCTTTC CTTGGACTCT TCTCTTTGCT GGTTCTGCAA
                                                                                120
       AGTATGGCTA CAGGGGCCAC TTTCCCTGAG GAAGCCATTG CTGACTTGTC AGTGAATATG TATAATCGTC TTAGAGCCAC TGGTGAAGAT GAAAATATTC TCTTCTCTCC ATTGAGTATT
                                                                                180
                                                                                240
       GCTCTTGCAA TGGGAATGAT GGAACTTGGG GCCCAAGGAT CTACCCAGAA AGAAATCCGC
       CACTCAATGG GATATGACAG CCTAAAAAAT GGTGAAGAAT TTTCTTTCTT GAAGGAGTTT
20
       TCAAACATGG TAACTGCTAA AGAGAGCCAA TATGTGATGA AAATTGCCAA TTCCTTGTTT
                                                                                420
       GTGCAAAATG GATTTCATGT CAATGAGGAG TTTTTGCAAA TGATGAAAAA ATATTTTAAT
                                                                                480
       GCAGCAGTAA ATCATGTGGA CTTCAGTCAA AATGTAGCCG TGGCCAACTA CATCAATAAG
                                                                                540
       TGGGTGGAGA ATAACACAAA CAATCTGGTG AAAGATTTGG TATCCCCAAG GGATTTTGAT
                                                                                600
       GCTGCCACTT ATCTGGCCCT CATTAATGCT GTCTATTTCA AGGGGAACTG GAAGTCGCAG
                                                                                660
25
       TTTAGGCCTG AAAATACTAG AACCTTTTCT TTCACTAAAG ATGATGAAAG TGAAGTCCAA
       ATTCCAATGA TGTATCAGCA AGGAGAATTT TATTATGGGG AATTTAGTGA TGGCTCCAAT
                                                                                780
       GAAGCTGGTG GTATCTACCA AGTCCTAGAA ATACCATATG AAGGAGATGA AATAAGCATG
                                                                                840
       ATGCTGGTGC TGTCCAGACA GGAAGTTCCT CTTGCTACTC TGGAGCCATT AGTCAAAGCA
CAGCTGGTTG AAGAATGGGC AAACTCTGTG AAGAAGCAAA AAGTAGAAGT ATACCTGCCC
                                                                                900
                                                                                960
30
       AGGTTCACAG TGGAACAGGA AATTGATTTA AAAGATGTTT TGAAGGCTCT TGGAATAACT
                                                                              1020
       GAAATTTTCA TCAAAGATGC AAATTTGACA GGCCTCTCTG ATAATAAGGA GATTTTTCTT
       TCCAAAGCAA TTCACAAGTC CTTCCTAGAG GTTAATGAAG AAGGCTCAGA AGCTGCTGCT
                                                                              1140
       1200
       CATCCATTT TCTTTCTTAT CAGAAACAGG AGAACTGGTA CAATTCTATT CATGGGACGA
                                                                              1260
35
       GTCATGCATC CTGAAACAAT GAACACAAGT GGACATGATT TCGAAGAACT TTAAGTTACT
                                                                              1320
       TTATTTGAAT AACAAGGAAA ACAGTAACTA AGCACATTAT GTTTGCAACT GGTATATATT
                                                                              1380
       TAGGATTTGT GTTTTACAGT ATATCTTAAG ATAATATTTA AAATAGTTCC AGATAAAAAC
                                                                               1440
       AATATATGTA AATTATAAGT AACTTGTCAA GGAATGTTAT CAGTATTAAG CTAATGGTCC
       TGTTATGTCA TTGTGTTTGT GTGCTGTTGT TTAAAATAAA AGTACCTATT GAACATGTG
40
       Seq ID NO: 228 Protein sequence:
       Protein Accession #: NP 005016.1
                                          31
                                                      41
45
       MAFLGLFSLL VLOSMATGAT FPEEAIADLS VNMYNRLRAT GEDENILFSP LSIALAMGMM
                                                                                 60
       ELGAQGSTQK EIRHSMGYDS LKNGEEFSFL KEFSNMVTAK ESQYVMKIAN SLFVQNGFHV
                                                                                120
       NEEFLOMMKK YFNAAVNHVD FSONVAVANY INKWVENNTN NLVKDLVSPR DFDAATYLAL
                                                                                180
       INAVYFKGNW KSQFRPENTR TFSFTKDDES EVQIPMMYQQ GEFYYGEFSD GSNEAGGIYQ
                                                                                240
50
       VLEIPYEGDE ISMMLVLSRQ EVPLATLEPL VKAQLVEEWA NSVKKQKVEV YLPRFTVEQE
                                                                                300
       IDLKDVLKAL GITEIFIKDA NLTGLSDNKE IFLSKAIHKS FLEVNEEGSE AAAVSGMIAI
                                                                               360
       SRMAVLYPOV IVOHPEFELT RNRRTGTILF MGRVMHPETM NTSGHDFEEL
       Seg ID NO: 229 DNA seguence
55
       Nucleic Acid Accession #: NM_003695
       Coding sequence: 12-398
                   11
                              21
                                          31
                                                      41
                                                                  53
60
       CGACATCAGA GATGAGGACA GCATTGCTGC TCCTTGCAGC CCTGGCTGTG GCTACAGGGC
       CAGCCCTTAC CCTGCGCTGC CACGTGTGCA CCAGCTCCAG CAACTGCAAG CATTCTGTGG
       TCTGCCCGGC CAGCTCTCGC TTCTGCAAGA CCACGAACAC AGTGGAGCCT CTGAGGGGGA
                                                                                180
       ATCTGGTGAA GAAGGACTGT GCGGAGTCGT GCACACCCAG CTACACCCTG CAAGGCCAGG
                                                                                240
       TCAGCAGCGG CACCAGCTCC ACCCAGTGCT GCCAGGAGGA CCTGTGCAAT GAGAAGCTGC ACAACGCTGC ACCACCCGC ACCGCCCTCG CCCACAGTGC CCTCAGCCTG GGGCTGGCCC
                                                                                300
65
                                                                               360
       TGAGCCTCCT GGCCGTCATC TTAGCCCCCA GCCTGTGACC TTCCCCCCAG GGAAGGCCCC
                                                                                420
       TCATGCCTTT CCTTCCCTTT CTCTGGGGAT TCCACACCTC TCTTCCCCAG CCGGCAACGG
       GGGTGCCAGG AGCCCCAGGC TGAGGGCTTC CCCGAAAGTC TGGGACCAGG TCCAGGTGGG
                                                                                540
       CATGGAATGC TGATGACTTG GAGCAGGCCC CACAGACCCC ACAGAGGATG AAGCCACCCC
                                                                                600
70
       ACAGAGGATG CAGCCCCCAG CTGCATGGAA GGTGGAGGAC AGAAGCCCTG TGGATCCCCG GATTTCACAC TCCTTCTGTT TTGTTGCCGT TTATTTTGTA CTCAAATCTC TACATGGAGA
                                                                                660
                                                                                720
       TAAATGATTT AAACC
       Seq ID NO: 230 Protein sequence:
75
       Protein Accession #: NP_003686
                                                                  51
                                          31
                                                      41
       MRTALLLLAA LAVATGPALT LRCHVCTSSS NCKHSVVCPA SSRFCKTTNT VEPLRGNLVK
80
       KDCAESCTPS YTLQGQVSSG TSSTQCCQED LCNEKLHNAA PTRTALAHSA LSLGLALSLL
                                                                               120
       AVILAPSL
       Seg ID NO: 231 DNA seguence
85
       Nucleic Acid Accession #: Eos sequence
```

Coding sequence: 126-752

```
WO 02/086443
                             21
                                         3.1
                                                    41
                                                               51
       CCGGGCAGGT GGCTCATGCT CGGGAGCGTG GTTGAGCGGC TGGCGCGGTT GTCCTGGAGC
       AGGGGCGCAG GAATTCTGAT GTGAAACTAA CAGTCTGTGA GCCCTGGAAC CTCCACTCAG
                                                                             120
 5
                                                                            180
       AGAAGATGAA GGATATCGAC ATAGGAAAAG AGTATATCAT CCCCAGTCCT GGGTATAGAA
       GTGTGAGGGA GAGAACCAGC ACTTCTGGGA CGCACAGAGA CCGTGAAGAT TCCAAGTTCA
                                                                             240
       GGAGAACTCG ACCGTTGGAA TGCCAAGATG CCTTGGAAAC AGCAGCCCGA GCCGAGGGCC
                                                                             300
       TCTCTCTTGA TGCCTCCATG CATTCTCAGC TCAGAATCCT GGATGAGGAG CATCCCAAGG
                                                                             360
       GAAAGTACCA TCATGGCTTG AGTGCTCTGA AGCCCATCCG GACTACTTCC AAACACCAGC
10
       ACCCAGTGGA CAATGCTGGG CTTTTTTCCT GTATGACTTT TTCGTGGCTT TCTTCTCTGG
       CCCGTGTGGC CCACAAGAAG GGGGAGCTCT CAATGGAAGA CGTGTGGTCT CTGTCCAAGC
                                                                             540
       ACGAGTCTTC TGACGTGAAC TGCAGAAGAC TAGAGAGACT GTGGCAAGAA GAGCTGAATG
                                                                             600
       AAGTTGGGCC AGACGCTGCT TCCCTGCGAA GGGTTGTGTG GATCTTCTGC CGCACCAGGC
                                                                             660
       TCATCCTGTC CATCGTGTGC CTGATGATCA CGCAGCTGGC TGGCTTCAGT GGACCAAATT
                                                                             720
15
       TTCAGGATGG CTGTATTCTG CGGTCAGAAT GAGAGAGTCA AGCTGGGCAG AATCTCTCGC
       CAAGAGTTCA GCCTTCCTTT GGAGACTGCT CCATCAGTGC CGAGGTGTGT GGGAACAGGC
                                                                             840
                                                                            900
       TTCACTGCAC CGCCATCTTA CTGAGTTGCT TCACGTGAGG AAAAGGGGGC TTTGGCCCTG
       TGACTCAGTT CCACATTTTG GATTGCATAC TGGAAAAGAA GCCAATCTTC TTGCTAGTAA
                                                                             960
       ACCAGCAACC CGGCTGTATA CAGTGGTGAC CCAAGCAATG GATATAAACC TAAAAATCTG
                                                                            1020
20
       AGGGAGGGGA GAGGTGGAAT ACAGTAGTTC TTGGAATCTG AAGTCTCCTA TTTGATCAGG
                                                                            1080
       TTATTTCCTG GGACTTGGCA AAAATCTGAT TGGTGGGGAT CTCCTAGGAC CTAGTGGACA
                                                                            1140
       TCTGGTATTA ATTTAATCTC AGGAAAAACA AGAAATTAAC CCAGAGAGAG TCTGGGTTTT
                                                                            1200
       GGAATTCAGC GTAGCTACCT CCAGACCGTG GTGTCTGGCC TCCATTTTTG TCTGTCATTC
                                                                            1260
       AGCTCTGACT TACAGCTGCA GTCACCTTTG CTATAAGGCA CCTGGGTAGA AGGGTGGATG
                                                                            1320
25
       GGCTTCACAT CAATTTTTT CTTCCTTTAG GGTGGGGGAT TGGTTTGGCT TTCTTTTGTT
                                                                            1380
       GTGGTTTTTT GTTTTATTTT TGTCAAGATT GATTTTTAGA TGCAAGGACT TGAAAAGACC CAGAAGGATG CCACCAGTTT TTCCTTGAGG CCTAGGATTT TTTATTCTGT CCCGAGCAGA
                                                                           1440
                                                                            1500
       GGTAATTCCT CACAACTTAG TGCACCAGTA GCACCAGCCA TTTTGAGCAG AGTACCTCTT
                                                                            1560
       TGGGGAGCTT TTCGTTTTGT TTTGTTTTTA ATTCTCTTTC CTTAGCAGCA AGGTCTTTTT
                                                                           1620
30
       TCCTAGAGAA TCTACTCCGT TGCAGAATCA TTGCAACCTC AGGAGCCCTC ACTGATTGAG
                                                                           1680
       TGCTGTCAGC CTGATATACT ACTTTGGACT CTGGAAACAG ATATGGGTTC TATTCTCTAT
                                                                           1740
       TTCTACTGTG TGTCGTTAAA CAACCGTCGG AGACCAGATG ACCTGTTAGA TGGCTAGTCC
                                                                           1800
       TGTATAACTC GACTCTGTAT GTTTCAATGT ATGTTACTGC AATGCTTCAC CTGCTGTACA
                                                                           1860
       GTGTTTGTGA GATGCTCTTT GAAGATGGTA CTTTTATATT T
35
       Seg ID NO: 232 Protein sequence:
       Protein Accession #: Eos sequence
                                                    41
                                                               51
40
       MKDIDIGKEY IIPSPGYRSV RERTSTSGTH RDREDSKFRR TRPLECQDAL ETAARAEGLS
                                                                              60
       LDASMHSQLR ILDEEHPKGK YHHGLSALKP IRTTSKHQHP VDNAGLFSCM TFSWLSSLAR
                                                                             120
       VAHKKGELSM EDVWSLSKHE SSDVNCRRLE RLWQEELNEV GPDAASLRRV VWIFCRTRLI
                                                                             180
       LSIVCLMITO LAGFSGPNFQ DGCILRSE
45
       Seg ID NO: 233 DNA seguence
       Nucleic Acid Accession #: CAT cluster
                                         31
                                                    41
                                                               51
50
       TTTTAATGGT GCTCATATAT ACTGTATTTT TTGTTGTTTA GTTTTACTTA TTGAGAGTGT
       CACAACATGA ATCACATAAT CATGATTTTT TTTTTTTACT TTTACTCCCC AAATTATTCA
                                                                             120
       TGTTTCTTAG ATCGTAGTCA TTGAGAAGTC CCAATAACTC TAAACTTTTG AGTTATAACG
                                                                             180
       TAGTAAACTT CTCTTTCATC TTTGTGTTAG CTCTGTAGTC TTAACCTGGA TTTTAATTTT
                                                                             240
55
       TTTGTTTCCA AAGTCACAAT TGAATTATTC TTAGATACCT TAAGCCACTG AATTCAGTTC
                                                                             300
       TGTTTGACTG AAAGCAAAAC AACGTGACAG TTTATTTTCA AACACTAACT TCTTGATATT
                                                                             360
       TTGTTATGGT ATATCTTTTT ATTAAATATT TATTTTGACT AAGCTTTCAT AAAATATTTG
       AAGCTATTTT AATCATCAAG TATGGAAAAC AAATTACTAT TGCATTTTCC TATATATGCA
       TATATTATGG ATTAACCAGA ATTGTATCAT TTTTGGCCTA ATGTCTGGAT ATAAAAGATA
                                                                             540
60
       ATTAGCCTAC TATAGTATTA ATAAATTTTT CAGTTGGTTT GGGCAAATTT AAACCTGAAA
                                                                             600
       AATAGGTTAA AAAGTAGTTA CAAATTAAAC TTACTAATTT ATACCTGATT TTTTTTCTTG
                                                                             660
       AATTAAAGTA CATTTTAAAT GAGCTTTATA ATACCTTAAA AAGTTGGTTC TAATTTAAAA
                                                                             720
       TATGAAAGCT CTGGCTATCA TCCTGGGATA GTAATTTCTA ATTATATAGT ATTTCAAAAC
       TATATATTT TTAGTTCCTT TGAGATAACT AATTTCTAAT TATATATGTT TCAAAAACCA
                                                                             840
65
       TATCCTGTAT TTTTTTTAAG AATTGTTTTA TAAATAGGTC ATAAGATACA AGGTCTGCAT
                                                                             900
       TAGAAGACCC ACTCTTACTA GGTTCCCTAA GGATCTGCCA TAGATTTTTT TTTTTTTTT
                                                                             960
       TTTTTTTAG GTAGTTTAAA GCAAGCACTG ATACCAGTGG GAGTTGGTCT TGATCTAGGA
                                                                            1020
       GATTCTGTTA AGCATCCAAA AACAATGCCT AATTTCAGTT CTTAGGTTAT GGCTTGTGAC
                                                                            1080
       TCCAGATAAA AGATGGAGAA TACCTCATGT ACTGTGACTT GAAAATGAAT TCTTAAAATT
                                                                            1140
70
       CTTAGGCTCT CTCCATGTAT CTTTCTTAAG GAAAAGTTTC TGAGTGTGAT CTCTCTTTTG
                                                                            1200
       CCATAGTATC AAGTGGAGGG TAGTTCAGAA AAGTTAATAG GAAATCTTTT GTGACAGCAG
                                                                            1260
       ACTATAATAG AAGTTTGAGT AATATTTTAA TAAATTTATA TAATTCAAAT GATAAAAATG
                                                                            1320
       TATCAATGTT ATCCAATGAT TTTTATTAAA AAATTACCTT ATTATTAGAA CTGTGCCTAT
                                                                            1380
       TACATAAAAA GTGCTCATGT ATTTGAATTT TAAATAATTT ATTTAAATCA AGACCACCAT
                                                                            1440
75
       AAGTCATTAA TAATTTAATA ATTGTTTTAA ATCAGTGGTT TTCAACCCTC ACTTCATATT
                                                                            1500
       AGAATCATCT GAGGACTTTT AATATGGAAT CCACCTCATA ACAATTAAGT CTAAATTTCT
                                                                            1560
       GGAAGATGGA GCCATGCTTG TTTTTCCAAA AGCTCTTTGA GTGATTCTAA TTTGTAGTCA
                                                                            1620
       GAGTTGAAGA CCACTGCTCT AAATTAGTGC AGGAAAATGC TTTTATTTCT CCCATGTTAA
                                                                            1680
       CTTTTAAAAC TAGTAATGTA CCCAGTTAAG TTTTGATGGT TTAAATTCCA CTAAAGAACA
                                                                            1740
80
       TATTCTTCTA ATAACTAGCA TTTATTACAT GAAATTTAAG AGTTTAAGTT CCATCAAACT
                                                                            1800
       AGCCCTTGTG TAAGATTATT ATTTCTTCTC TATAACTTCA AAATAGATAT TTCATTCAAA
                                                                            1860
       CTGTTCAGGT GAGAAAACAT AATGGATTTT TTTTTTTTTC CTCTGGAGCT GCCTGTTCAG
                                                                            1920
       TGAGATGGAG GAGGTGGGCA CATTTAAGGT CAGTTCACTA ACCTATGGTT CAGAGTTCTG
                                                                            1980
       ATCATATGGA AGTTTGGAAA AGAGAGCTTA TCACAGGTTT GTATGCTGGT GAATGGATAG
                                                                            2040
85
       TTTTAATTCT CACTGTCTCA AAAGAGAATC AGCTCTCCAG CAGTTCTAGA AAAGCTTTGA
                                                                            2100
       CAATCCCCAA GGGGCAGTGT TACCTTACTC CTTCACTGCT TCTTAGAAGG TAGAATTAAG
                                                                            2160
       TTTCTGGAAT TGCACCTACA TGTTTTCTTA TTAACATTCA GAATTGGGAA TATTAATTTT
```

```
TCCAGTGAGT AGTTTTCTGA AATTGGTAAC TTGGAGAGTA AAATAACGTA TTTTGCTTTT
       CAATTTTGTG TTTGTTTACT TTTATGTAAA AATTTGATAT GTGAATTACA CAGTTCTAAT
                                                                           2340
       AAAACCTCAT GCCTTTTCAT TACATCTAAT TTGAACTCTC AACTTCAGTG CCAGAAGTGC
                                                                           2400
       TTTAAAGATG CTTTAATGAA AAGTATTAAG AAAATATATA GATTTGTATG TCAGTTTATA
                                                                           2460
 5
                                                                           2520
       CTTCAGAAAT CCATATATTT GTCATATTTA TTTTTTTAGA AACCTCCTAA TTGGATAACT
       AGATGGTATT TAAAATGAAT GCCCAAAAAT ATCTTGTACC TTTGTCCAAA AGTTTATCTG
                                                                           2580
       TTGGAAGCCG CCAGCCATTC ATGTAGAGAG TTTATAAGAA AATAATTTAA AATTGTATGC
                                                                            2640
       ATTTTATATT ACTATGGTAT CTGTGTACCA TATTTCTAAG TATTCATTAT TAAATTGGTA
                                                                            2700
                                                                           2760
       CTTCTTAAAA CCATAACCTG GCTTGCCTTT TAGTGTTAAA CACAAAATCC AACATTGTAT
10
       ATAGAGATTC TTCTTTTATG AAGAAGAGCT GACGTAATTT ATTACCAGTG CATCTGCACA
                                                                           2820
       AAGACATTAA CATAAGTCTC TGAGCAGTGA TACATTTTCA AACATGAAGA GTGACAACCA
                                                                           2880
       CCACATTAAA CAACCACGGC AACACTCAGA CTTGGCACTT TCCTACGAAT CCATCCTATA
                                                                           2940
       TGTGCCTGGT ATCGCCTCTG GCATAACTTA CACGAATCGT CCTCCCTACT TGTCTACGCT
                                                                            3000
       CCTTCATCAA GCACTTGCCA ACACATTCAC CTCTAACTTG TACAACCTTA CCAACTCACC
15
       3120
       CCCCAAACAC AAAACCACTA AATCATAACC ACCACACACG CCACACACCA CACACCCACC
                                                                            3180
       CACACAACCA ACACACCACG ACCAAACACC CCACCACAAA CAAGCTAACA ACCACAAACA .
                                                                           3240
       GACAACACAT CACATACACT CACTACCCCC CCATACTCCC ACCCACCA
20
       Seg ID NO: 234 DNA seguence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 27-281
                                                    41
                                                               51
25
       AGCAGGAGGA GAGCTGGCGG GAAGACATGC ACCCCTTGAA GACCCAGAGA GAGGCCGTCT
       GTCTACCGCG TAGCAGTTAC ATCAGACTGA GACACTTCCT GTTTACAGGA GACTATAAAA
                                                                             120
       TTCCTGCCCC GTGCTCATTT GGGGCTGACG CCATTTTAGG CCTCAGCCCA TCTGCACCCA
                                                                             180
       GGCGCTCACT GAAACAGTGT GTTGCTCCAC ACCGCCTTGT TTTGCTTGTT GGCGCGCTCT
                                                                             240
30
       CAGGGTTCCG ACCAATCCAA GAGCCTTGCA GAAAGCATTA ACGTGCTTTT CTCTTTGGCA
                                                                             300
       GAGTTTTTCT TTGCTCTGAT CTTGGAGACA TCCCTCTGCC TAGTGGAAAC ATAAGGAATA
                                                                             360
       CAGAAAGAAT GCAAGGAGAT AGACCAACGT GAGATTCTCC TTCATGCACT CAAGAGAAAG
                                                                             420
       ATGTTGCAGG AAGAGCTAGT CTTTCAGGCT GGGCTGGTGA CCTGAGAAAG AATGTCCAGC
                                                                             480
       TTTTCTTCTC CACTTGGCAT ATCAAGAGCC AGGCGTGGAA GACTAAAACA GGAAATGTTT
                                                                             540
35
       ATAAAAACTG TTCAGCGGTT CGCCAACAAG AAGTGGTAAA GTAGCAAAAA TGGGGATGGA
                                                                             600
       GATGCCAGGA GGAAAGATGC CAGGGGTAAA GTGGGAAAAT GGGAACCTGA AGCCAGGAGG
                                                                             660
       TCAAGCCAAG CCAACAGGTG TTCTGTTTTT CATCACAGAA CTAATAAGTG GTGCTGAGGA
       CTCAAACCCG GGGAAGCCCA CTCTAGAACC CATGCTGGTC ATCCATATCC CCAAGGCCCT
       GGTCAGAACA CAGCTAAGCA GATGGCTTGG GTCATCAGGA CGTCCATTAC ATCCAAAGGA
                                                                             840
40
       AGACAGCCTG TGACGTTTCA AAAGCAAAAG TCCCCTACCA GCCAGTGAAG CTACCTGATT
                                                                             900
       TCTCAGTATC TTACGCCCAG TGACACGATC TACCCTCAAA ACTTAAAAAA AAAAGGGAAA
                                                                             960
       CATAAACACA TAACAGCAGC AGCAATAATT AAAGATGAGA TGAGAACAAT TAAGAAAAAA
                                                                            1020
       GGAAAGGTCT CCTGTGACTG TTTTATTTTT AGGGAAACAG AGAGGAAGAA GAATGATTTT
       TCTTTTGATG ACTCTATATC CAACTCTGAG GTTTGATTAA AGAAATGACC TTGAACCACA
45
       GCAAAGAAA ATAAAAGACA ATTTCCAGTA AGTATGCCAG TTCGAATTAA TGATTTACTT
                                                                            1200
       TTTATTTTTA AACTGAATTC AGCAGAGATT TACATGCATT ACGATGATTA ACATCTGAAA
                                                                            1260
       TTTGACCTTG AAATAATCTT TACATTGTAA ATTCTTAATG ATCAAAACAA GGTTCTCAGT
                                                                            1320
       GATTAAAACA TATTAGTAAT TAATTATTAA AGGAGAATAA TTGCAAATAC AACATTCCTA
                                                                            1380
       AAATCTCAAG GCTTTTAAAG CATTTGTACA AATGACTGGA CATTTTTTAA ATTTGAAAAA
AAAAAAAGC CCTCCATCTG ATTCTCATTT TCATTGTCAG TGCAACAACA AAAAAAGGTAT
                                                                            1440
50
       GCACTTCTCT TCTCATTTTC CACTGTCTCG CAAGCTAGAA ATTCTCACGA CTACCTTTGA
                                                                            1560
       TCCCATCAAA GCCAAAGAAA GAAAAGAAAA TTGTTCTGTA CAGATATATG ACATTAAAAA
                                                                            1620
       ATAATCCC
55
       Sed ID NO: 235 Protein sequence:
       Protein Accession #: Eos sequence
                                                                51
60
       MHPLKTQREA VCLPRSSYIR LRHFLFTGDY KIPAPCSFGA DAILGLSPSA PRRSLKQCVA
                                                                              60
       PHRLVLLVGA LSGFRPIQEP CRKH
       Seg ID NO: 236 DNA sequence
65
       Nucleic Acid Accession #: NM_002075
       Coding sequence: 406..1428
                                                                51
                                                    41
                                         31
                  11
                              21
70
       CCACAATAGG GGCAGACCTG TCCATCCTTC TCTGTGGGTC CCCTGTACCT TTCTCCCCCA
                                                                              60
       ACAGGATCAG ACCCAGAGGC AGCTGGTTGG GGTTTGTCGA GAAGAAGGAT TATCCAGATC
                                                                             120
       AGTCCTTTCT AATCTCAGCT CCTGCCTGTA CCCTCCCATA CTCACCAAAC CCTCTTCCCC
                                                                             180
       ACCACCCTGA GCTGAGGAGC ACAGTTTGAG GCCCCCCCAA CCCCCGGCG GTCGGGGCCA
                                                                             240
       GGCCAGGCCA GGCCAGCTCC TCTGGCAGCA GAGCCTGGGC AGGTGACGGG CGGGCGCGG
75
       CGTCGCAGCT GAGGGAGTAA GGAGGCTCCC AGGAACCGGA GCTGGAAACC CGGCCGAGGT
                                                                             360
       CCAGCCAGAG CCCAAGAGCC AGAGTGACCC CTCGACCTGT CAGCCATGGG GGAGATGGAG
                                                                             420
       CAACTGCGTC AGGAAGCGGA GCAGCTCAAG AAGCAGATTG CAGATGCCAG GAAAGCCTGT
                                                                             480
       GCTGACGTTA CTCTGGCAGA GCTGGTGTCT GGCCTAGAGG TGGTGGGACG AGTCCAGATG
                                                                             540
       CGGACGCGGC GGACGTTAAG GGGACACCTG GCCAAGATTT ACGCCATGCA CTGGGCCACT
                                                                             600
80
       GATTCTAAGC TGCTGGTAAG TGCCTCGCAA GATGGGAAGC TGATCGTGTG GGACAGCTAC
                                                                             660
       ACCACCAACA AGGTGCACGC CATCCCACTG CGCTCCTCCT GGGTCATGAC CTGTGCCTAT
                                                                             720
       GCCCCATCAG GGAACTTTGT GGCATGTGGG GGGCTGGACA ACATGTGTTC CATCTACAAC
                                                                             780
       CTCAAATCCC GTGAGGGCAA TGTCAAGGTC AGCCGGGAGC TTTCTGCTCA CACAGGTTAT
                                                                             840
       CTCTCCTGCT GCCGCTTCCT GGATGACAAC AATATTGTGA CCAGCTCGGG GGACACCACG
                                                                             900
       TGTGCCTTGT GGGACATTGA GACTGGCAG CAGAAGACTG TATTTGTGG ACACACGGGT
GACTGCATGA GCCTGGCTGT GTCTCCTGAC TTCAATCTCT TCATTTCGGG GGCCTGTGAT
85
                                                                             960
       GCCAGTGCCA AGCTCTGGGA TGTGCGAGAG GGGACCTGCC GTCAGACTTT CACTGGCCAC
                                                                            1080
```

```
GAGTCGGACA TCAACGCCAT CTGTTTCTTC CCCAATGGAG AGGCCATCTG CACGGGCTCG
                                                                           1140
       GATGACGCTT CCTGCCGCTT GTTTGACCTG CGGGCAGACC AGGAGCTGAT CTGCTTCTCC
                                                                           1200
       CACGAGAGCA TCATCTGCGG CATCACGTCC GTGGCCTTCT CCCTCAGTGG CCGCCTACTA
TTCGCTGGCT ACGACGACTT CAACTGCAAT GTCTGGGACT CCATGAAGTC TGAGCGTGTG
                                                                            1320
       GGCATCCTCT CTGGCCACGA TAACAGGGTG AGCTGCCTGG GAGTCACAGC TGACGGGATG
 5
                                                                           1380
       GCTGTGGCCA CAGGTTCCTG GGACAGCTTC CTCAAAATCT GGAACTGAGG AGGCTGGAGA
                                                                           1440
       AAGGGAAGTG GAAGGCAGTG AACACACTCA GCAGCCCCCT GCCCGACCCC ATCTCATTCA
                                                                            1500
       GGTGTTCTCT TCTATATTCC GGGTGCCATT CCCACTAAGC TTTCTCCTTT GAGGGCAGTG
                                                                            1560
       GGGAGCATGG GACTGTGCCT TTGGGAGGCA GCATCAGGGA CACAGGGGCA AAGAACTGCC
       CCATCTCCTC CCATGGCCTT CCCTCCCCAC AGTCCTCACA GCCTCTCCCT TAATGAGCAA
                                                                            1680
10
       GGACAACCTG CCCCTCCCCA GCCCTTTGCA GGCCCAGCAG ACTTGAGTCT GAGGCCCCAG
                                                                            1740
       GCCCTAGGAT TCCTCCCCCA GAGCCACTAC CTTTGTCCAG GCCTGGGTGG TATAGGGCGT
                                                                            1800
       TTGGCCCTGT GACTATGGCT CTGGCACCAC TAGGGTCCTG GCCCTCTTCT TATTCATGCT
                                                                            1860
       TTCTCCTTTT TCTACCTTTT TTTCTCTCCT AAGACACCTG CAATAAAGTG TAGCACCCTG
15
       Seg ID NO: 237 Protein sequence:
       Protein Accession #: NP_002066
20
                                                               51
                                         31
                                                    41
       MGEMEOLRQE AEQLKKQIAD ARKACADVIL AELVSGLEVV GRVQMRTRRT LRGHLAKIYA
                                                                              60
       MHWATDSKLL VSASODGKLI VWDSYTTNKV HAIPLRSSWV MTCAYAPSGN FVACGGLDNM
                                                                             120
       CSIYNLKSRE GNVKVSRELS AHTGYLSCCR FLDDNNIVTS SGDTTCALWD IETGQQKTVF
                                                                             180
25
       VGHTGDCMSL AVSPDFNLFI SGACDASAKL WDVREGTCRQ TFTGHESDIN AICFFPNGEA
                                                                             240
       ICTGSDDASC RLFDLRADQE LICFSHESII CGITSVAFSL SGRLLFAGYD DFNCNVWDSM
       KSERVGILSG HDNRVSCLGV TADGMAVATG SWDSFLKIWN
       Seq ID NO: 238 DNA sequence
30
       Nucleic Acid Accession #: CAT cluster
                                                     41
                                                                51
       TCCCAATGTG TNGAACCTAC CATAAATTCT TTTCTTACNG GACAATCTTA TNCTAANCAA
       TACCATTTGC TTTTAAGGCA GATAATCCTC CAAGTTTTCT AATGATATCT GAAACTATTA
                                                                             120
35
       ACTGATTCTG TGAATTATGA AATCTGAAAA GGAATTGGAA GTTGCTAAAA ATCTATCATT
                                                                             180
       TGCATTGACC AGTGTGAAGC ACAGTGGAAT GAGAATGCGT GCCCTGACAC CAAAGAAAAA
                                                                             240
       TAAGTGACTG GAAAGCTGAA GAATCACCGG CTTCAGTGAC ATGGAACCCA GTGATTTGAT
                                                                             300
       TTTTGACGAG TATCGGGTGA CTTTGAGGTG GTCAAGAAAC CACACTTTAA GAACAATGTC
       40
                                                                             420
       AAGAAAGAAA AATAAAATAC ACAATATGGA CGATGGAGAA AAACAGTTAC ATTTCTTTAT
                                                                             480
       GGATCAAGAA GTTTGTGTAC ACATAATCTC ATTTTGAGAT ATATAACTAT TTTTGTCTTT
                                                                             540
                                                                             600
       CAGAAGTGAA TCAAAATATT TCAAAATGCT GTCTTATGAA ACTACAATAT TCTCACAGAT
       TAGAAAAGTT TTTCTGTAAA AGTCAGATAG TAAATATTTT AGGTTTTGCA GTGTCTTTTG
                                                                             660
       CAACTACTCA ACTITCCTAC TGTAGCACAA GAGTAGCTGT GGTACTGTGC AAATAAATTG
45
                                                                             720
       CTTGTGTTCC AATAAAGCTT CATTTACAAA AACATGCCAT GGGCCATATT TGGCCTGTAC
                                                                             780
       ACTGTTGTTT GCCAAGTCCT AATATAGTTG CTTAGCAAGT ATTGTGAGCT ATTTGAGGAA
                                                                             840
       GACATGAAAG TTCATTGGGT TGCTAAAAAG TATGTAGAAA TTCAAAGGAA AATTAAAATT
                                                                             900
       TAGGCTAAGT TATAATACAC TGTTTTAACA ATTGTAAAAT GTAAGAGAAA TTTACAAATA
                                                                             960
50
        AAAATCCCAA ATAAAA
        Seq ID NO: 239 DNA sequence
       Nucleic Acid Accession #: NM_001786.1
       Coding sequence: 130-1023
55
                                         31
                                                     41 .
                                                                51
                              21
        GGGGGGGGG GGCACTTGGC TTCAAAGCTG GCTCTTGGAA ATTGAGCGGA GAGCGACGCG
        GTTGTTGTAG CTGCCGCTGC GGCCGCCGCG GAATAATAAG CCGGGATCTA CCATACCCAT
                                                                              120
        TGACTAACTA TGGAAGATTA TACCAAAATA GAGAAAATTG GAGAAGGTAC CTATGGAGTT
60
                                                                              180
        GTGTATAAGG GTAGACACAA AACTACAGGT CAAGTGGTAG CCATGAAAAA AATCAGACTA
                                                                              240
        GAAAGTGAAG AGGAAGGGGT TCCTAGTACT GCAATTCGGG AAATTTCTCT ATTAAAGGAA
                                                                              300
        CTTCGTCATC CAAATATAGT CAGTCTTCAG GATGTGCTTA TGCAGGATTC CAGGTTATAT
        CTCATCTTTG AGTTTCTTTC CATGGATCTG AAGAAATACT TGGATTCTAT CCCTCCTGGT
                                                                              420
        CAGTACATGG ATTCTTCACT TGTTAAGAGT TATTTATACC AAATCCTACA GGGGATTGTG
                                                                              480
65
        TTTTGTCACT CTAGAAGAGT TCTTCACAGA GACTTAAAAC CTCAAAATCT CTTGATTGAT
                                                                              540
        GACAAAGGAA CAATTAAACT GGCTGATTTT GGCCTTGCCA GAGCTTTTGG AATACCTATC
                                                                              600
        AGAGTATATA CACATGAGGT AGTAACACTC TGGTACAGAT CTCCAGAAGT ATTGCTGGGG
                                                                              660
        TCAGCTCGTT ACTCAACTCC AGTTGACATT TGGAGTATAG GCACCATATT TGCTGAACTA
        GCAACTAAGA AACCACTTT CCATGGGAT TCAGAAATG ATCAACTCT CAGGATTTTC
AGAGCTTTGG GCACTCCAA TAATGAAGTG TGGCCAGAAG TGGAATCTT ACAGGACTAT
70
                                                                              780
                                                                              840
        AAGAATACAT TTCCCAAATG GAAACCAGGA AGCCTAGCAT CCCATGTCAA AAACTTGGAT
                                                                              900
                                                                              960
        GAAAATGGCT TGGATTTGCT CTCGAAAATG TTAATCTATG ATCCAGCCAA ACGAATTTCT
                                                                             1020
        GGCAAAATGG CACTGAATCA TCCATATTTT AATGATTTGG ACAATCAGAT TAAGAAGATG
        TAGCTTTCTG ACAAAAAGTT TCCATATGTT ATGTCAACAG ATAGTTGTGT TTTTATTGTT
                                                                             1080
75
        AACTCTTGTC TATTTTTGTC TTATATATAT TTCTTTGTTA TCAAACTTCA GCTGTACTTC
                                                                             1140
        GTCTTCTAAT TTCAAAAATA TAACTTAAAA ATGTAAATAT TCTATATGAA TTTAAATATA
                                                                            1200
        ATTCTGTAAA TGTGAAAAAA AAAAAAAAAA AAAAA
80
        Seq ID NO: 240 Protein sequence:
        Protein Accession #: NP_001777.1
                                                                 51
                                                     41
                               21
                   11
 85
        MEDYTKIEKI GEGTYGVVYK GRHKTTGQVV AMKKIRLESE EEGVPSTAIR EISLLKELRH
        PNIVSLQDVL MQDSRLYLIF EFLSMDLKKY LDSIPPGQYM DSSLVKSYLY QILQGIVFCH
```

	WO 02	2/086443					
	YSTPVDIWSI	GTIFAELATK	KPLFHGDSEI	RAFGIPIRVY DQLFRIFRAL DPAKRISGKM	GTPNNEVWPE	VESLQDYKNT	180 240
5							
	Nucleic Aci	241 DNA sec id Accession lence: 132-8	1 #: NM_033	379.1			
10	1	11	21	31	41	51	
			.	GAGGGGCCAA	CTTGGCAGAG	CCCCCCCCC	60
				GCGTGCGGGG			120
1.5	ATTGACTAAC	TATGGAAGAT	TATACCAAAA	TAGAGAAAAT	TGGAGAAGGT	ACCTATGGAG	180
15				GTCAAGTGGT CTGCAATTCG			240 300
				AGGATGTGCT			360
	ATCTCATCTT	TGAGTTTCTT	TCCATGGATC	TGAAGAAATA	CTTGGATTCT	ATCCCTCCTG	420
20				TAGTAACACT CAGTTGACAT			480 540
20				TCCATGGGGA			600
				ATAATGAAGT			660
				GGAAACCAGG TCTCGAAAAT			720 780
25	AACGAATTTC	TGGCAAAATG	GCACTGAATC	ATCCATATTT	TAATGATTTG	GACAATCAGA	840
				TTCCATATGT			900
				CTTATATATA ATAACTTAAA			960 1020
20				AAAAAAAA			
30	Cog ID NO.	242 Protein	semience.				
	-	cession #: 1	-				
35	1	11	21	31 1	41	51 1	
55	MEDYTKIEKI	 GEGTYGVVYK	GRHKTTGQVV	AMKKIRLESE	EEGVPSTAIR	EISLLKELRH	60
				LDSIPPGQYM			120
				SEIDQLFRIF LIYDPAKRIS			180
40		02					
	Nucleic Act	243 DNA sed id Accession Lence: 221-8	1 #: AF1010	51.1			
45	1	11	21	31	41.	51	
45		1	1	1	ĺ	Ī	60
45	 GAGCAACCTC	 AGCTTCTAGT	 ATCCAGACTC	31 CAGCGCCGCC CGAGCAGGGC	 CCGGGCGCGG	ACCCCAACCC	60 120
	GAGCAACCTC CGACCCAGAG GCGGGGCCCA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC	ACCCCAACCC AACTTCCTCC CGCCTTCTGC	120 180
4550	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CGCGGGCGCC	CAGCGCCGCC CGAGCAGGC TTGCCCACCT CGAGCGAGTC	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGGGGCTGCA	120 180 240
	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CGCGGGCGCC CCTTCCTGGG CCTATGCCGG	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC	CCGGGCGCGG TCCCCGCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGGGGCTGCA GCACTGCCCT AGGCCATGTA	120 180 240 300 360
	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG CGAGGGGCTG	AGCTTCTAGT CTTCTCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCCT	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CGCGGGCGCC CCTTCCTGGG CCTATGCCGG GCGTGTCGCA	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC GAGCACCGGG	CCGGGCGCGG TCCCCGCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGGGGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT	120 180 240 300 360 420
50	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGG GCCCAGTGG CGAGGGGCTG TGACTCCTTG	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCCT CTGAATCTGA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CGCGGGCCC CCTTCCTGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC GAGCACCGGG GCAAGCAACC	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT CGTGCCTTGA	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG	120 180 240 300 360
	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTC TGACTCCTCG CTTGGAAGAC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCC AGGATTTACT TGGATGTCCT CTGAATCTGA GGAGTGATAG GATGAGGTGCT	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CGCGGGGCGCC CCTTCCTGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC GAGCACCGGG GCAAGCAACCT GACCACCGTT GATGGCTGTC	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT CGTGCCTTGA GGCATGAAGT ATTGGGGGTG	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGCTCCAA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTG CGATATTTCT	120 180 240 300 360 420 480 540 600
50	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCCTG CATCGTGGAAGAC TCTTGCAAGAC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTACT TGGATGTCCT CTGAATCTGA GAGTGATAG GATGAGTGC CTGGCTATTT	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCGTGTCCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC GAGCACCGGG GCAAGCAACC GGCCACCGTT ATGGCTGTC AGCATGGTTAT	CGGGGGGGG TCCCCGCCTT GCAAACTCTC ATGGCCACG GCCATCGTCA GTGACCGCC CAGATCCAGT CGTGCCTTGA GGCATGAAGT ATTGGGGGT GGCAATAGAA	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGTTCTGC CGGGGCTGCA AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGT TCGTTCAAGA	120 180 240 300 360 420 480 540 600
50 55	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG CGAGGGGCTC TGACTCCTTG CATCCTCTG CTTGGAAGAC TCTTGCAGGT TTTTCTATGAC TGGCTGGGCT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG AGGATTTACT TGGATGTCCT CTGAATCTGA GAGAGTATAG GATGAGTGC CTGGCTATTT CCTATGACCC GCTGCTTCTCT	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC TCTGCCATCT	CAGCGCCGCC CGAGCAGGG TTGCCCACCT CGAGCGAGTC ATGGATCGGC GGACAACATC GAGCACCGGG GCAAGCAACC GGCCACCGTT GATGGCTGCT AGCATGGTACGAA GGGAGGTACGAA GGGAGGTGCC	CCGGGCGCGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT CGTGCCTTGA GGCATGAAGT ATTGGGGGTG GGCAATAGAG TTTGGTCAGG CTACTTTGCT	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGGGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTG CGATATTTCT TCGTTCATCAC CTTCCACA GTTCCTTCAC	120 180 240 300 360 420 480 540 600
50	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC CGCCCAGTGG CGAGGGCTG TGACTCCTCTG CATCCTCTG CATCCTCTG ATTCTAGAGAC TCTTGCAGGT ATTCTATGAC TGGCTGGGCT CGGAAAAACA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCC TGGATGTCCT TGGATGTCCT CTGAATCTGA GGATGATAG GATGAGGTGC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCGGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAACACCAAG	CAGCGCCGCC CGAGCAGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACACACCTC GAGCACCGG GCAAGCAACC GGCCACCGTT AGCATGGTT AGCATGGTAC AGCATGGTAC AGCATGGTAC AGCAGGTACCACGCC GCCCTATCCC	CGGGGGGGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT CGTGCCTTGA GGCATGAAGT ATTGGGGGTG GGCATAGAA TTTGGTCAGA CTACTTTGCT	ACCCCAACCC ACTTCTCC CGCCTTCTGC CGCGTTCTGC CGCGCTGCCA GCACTGCCCT TGGTGGTTGG GTATGAAGT CGATATATTCT TCGTTCAAGA CTCTCTTCACG CTTCCTGTCC CTTCCAGCGG	120 180 240 300 360 420 480 540 660 720 780 840
50 55	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTG CGAGGGGCTG TGACTCCTTG CATCCTCCTT CATCCTCCTTG ATCCTCCTTG ATCCTCTTGAAGAC TCTTGCAGGT ATTCTATGAC TGGCTGGGCT GAAAAACC GAAAAACC GAAAAGACTAC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG CTGAGCCAG TTCATTCTCG AGGATTACT TGGATGTCCT CTGAATCTGA GAAGGATGACAG GATGAGTGC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC GAGCACAAAG GAGCAAAAG	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCAGTC ATGGATCGGC CGACAACATC GAGCACCGGG GCAAGCAACC GCCACCGTT CAGCATGGTTC AGCATGGTTC AGCATGGTTAT CAGGTACGA GGCAAGTACCA AGCATGGTACCA AGCATGGTACCA AGCATGGTACCA AGCATACCA AGCATACCA AGCATACCA AGCATACCC AGCATACCC AGCATACCC AGAAAAATCA	CGGGGGGGGGGGGGGGAAACTCTC ATGGCCAACGGCCATCGTCA GTGACCGCCC CAGATCCAGT CGTGCCTTGA GGCATGAAGT ATTGGGGGTG GGCAATAGAA TTTGGTCAGG CTACTTGCT TAAACCTGCAC TGTTGAAACA	ACCCCAACCC ACTTCTCC CGCCTTCTGC CGCGTTCTGC CGGGGCTGCA GCACTGCCT TGGTGGTTG GTATGAAGTCTT TGGTGGTTTG GTATATTTCT TCGTTCAAGA CTCTCTTCAC GTTCCTGTCC CTTCCAGCGG AACCGAAAAT	120 180 240 300 360 420 480 540 600 720 780
50 55	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTCTG CTTGGAAGAC TCTTGCAGGT ATTCTATGAC TGGGTGGGCT CCGAAAAACA GAAAGACTAC GGACATTGAG GTATGGTATT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCC AGGATTTACT TGGATGTCCT CTGAATCTGA GGAGTGATAG GATGAGGTGC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATTG TCTGCTTCT CAACACCAAG GAGGCAAAAG TAACATAGG CAAACAAAACA	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC GGACAACATC GAGCACCGGG GCACCGTT GATGGCTGTC AGCATGGTAT CAGGTACGAA GGGAGGTGCC GCCCTATCCA GAGAAAATCA AACCTAGAAT AAAACCCAT	CCGGGCGCGG TCCCCGCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CGTGCCTTGA GGCATGAAGT ATTGGGGTG GGCAATAGAA TTTGGTCAGG CTACTTTGCT AAACCTGCAC TGTTGAAACA TTTGGATAT TTTGGGTATT GTGTTAAAAT	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGCTCTGC GCACTGCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTC TCGTTCAAGA CTCTCTCAC GTTCCAGGA ACCGAAAAT GTAATCTGAA ACTCAGTGCT	120 180 240 360 420 480 540 660 720 780 840 900 960 1020
50 55 60	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCTG CATCCTCTG ATTCTATGAC TCTTGCAGGT ATTCTATGAC TGGCTGGGCT GGAAAACCA GAAAGACTAC GGACATTGAG GTATTGATTT AAACATGGCT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATGTACT TGGATGTCCT CTGAATCTGA GAGTGATAC CTGCTATTT CCTATGACCC GCTGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC ACTGCTACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATCCTGGG CCTATCCCGG GCGTGTCGCA CAACATCTTTG AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CACACAAG CAACAAAAAAAAAA	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCAGGTC ATGGATCGGC CGACACACCT GAGCACCCGG GCAAGCAACC GGCCACCGTT AGCATGGTAT CAGGTACGA GGAGGGGCGC GCCCTATCCA ACCTTAGAAT AAAAACCCAT	CGGGGCGGG CCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT CGTGCCTTGA GCCATCAGT ATTGGGCTC GGCATCAGT TTTGGTCAGA TTTGGTCAGA TTTGGTCAGC TGTTGAAACA TTTGGTAAACA TTTGGTAAACA TTTGGTAAACA TTTGGTATTAAACA TGTGTAAAAT AGGAGGAAA	ACCCCAACCC ACTTCTCC CGCCTTCTGC CGCCTTCTGC CGGGGCTGCA GCACTGCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGTCT TCGTTCAAGA CTCTCTTCAC GTTCCTGTCC GTTCCTGCC CTTCCAGCGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTTACCAT	120 180 240 300 360 420 480 540 660 720 780 840 900 1020 1080
50 55	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTCG CTTGGAAGAC TCTTGCAGGT ATTCTATGAC TGGGTGGGCT CCGAAAAACA GAAAGACTAC GGACATTGAG GTATGGTATT AAACATGGCT TTGTATTACT TATATTATAGA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG CCTGAGCCAG TCATTCTCG AGGATTTACT TGGATCTCT TGGATCTCT GCATCATCTC CTGAATCTGA GATGAGCTG CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATACAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTATGCCGG GCGTGTCGCA CCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC TCTGCCTTCT CAACACCAAG GAGGCAAAAG GAGGCAAAAG TAACATTAGG CAACACAACA	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCAGTC ATGGATCGGC GCAACACATC GAGCACCGTT GATGCATCC GACTACGAC GCCACCGTT CAGGTACGAC GGCACCGTT CAGGTACGA GGAGGTGCC GCCCTATCCA ACCTTAGAATCA ACCTTAGAATCA ACCTTAGAAT AAAAACCCAT TCCTCAAATAG TCTCAAATAG TCTATAAAA	CCGGGCGCGG CCCCGCCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT GGCATGAAGT ATTGGGGGTA TTTGGTCAGG CTACTTTGCT AAACCTGCAC TTTGAAACA TTTGGTAACA TTTTGGAATT TTTTGAAACA TTTTGGTAACA TTTTGGAATT GTGTTAAAAT AGGAGGAAG GGGAAGGGGT ATAGACAGTA	ACCCCAACCC AACTTCCTCC CGCCTTCTGC CGCGCTCTGC CGGGGCTGCA GCACTGCCT AGGCCATGTT TGGTGGTTTG GTATGAAGTCT TCGTTCAAGA CTCTCTTCAC GTTCCTGTCC CTTCCAGCGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTTACCAT ATTTTACCAT ACCTTAAA AAATACTATT	120 180 240 360 420 480 540 660 720 780 840 900 960 1020
50 55 60	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTTGGGC CGAGGGGCTG TGACTCCTCTG CATCCTCCTG CATCCTCTG ATTCTATGAC TCTTGCAGGT ATTCTATGAC GCACATTGAC GAAAAACA GAAAGACTAC GTATGGTATT AAACATGGCT TTTATTATACA CTCATTATGAC TATATATAGA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG CTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCT TGGATCTGA GATGAGGTGATAG GATGAGGTGC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGATCAC ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTCACAC GAGCACATATGCCAC CAGTCAATGC CAGTCAATGC CAACACAAG GAGCAAAACA TAACATTAGG CAAACAAACA TTATCTTCTT GAGTAATCAT TACATGTTTT ATACTTAAAA	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCGAGTC ATGGATCGGC CGACAACATC CGACAACATC GAGCACCGGG GCAAGCAACCT AGGATGGTAT CAGGTAGGAA ACCTTAGAAT ACCCTAACAA TCCTCAATAT ACTCAAATAG TCATATAAA	CGGGGGGGG TCCCCGCCTT GCAAACTCTC ATGGCCAACG GCATCGTC GTGACCGCC CAGATCCAGT GGCATGAGT ATTGGCTGA GCAATAGAA TTTGGTCAGA CTACTTTGCT AAACCTGCAC TGTTGAACA TTTGGTTAT TGTGTAATAT AGGAGGGAAG GGGAAGGGGT ATAGGTAAAT	ACCCCAACCC ACTTCCTCC CGCCTTCTGC CGCGTTCTGC CGGGGCTGCA GCACTGCCT TGGTGGTTGG GTATGAAGT CTCTTCTCAGA CTCTCTCTCACG CTTCCTGTCC CTTCCAGCGG AACCGAAAAT GTAACTGAA ACTCAGTGCT ATTTTACCAT GCTCCTTAAA AATACTATT GTATTTAATT	120 180 240 300 360 420 600 660 720 780 840 900 1020 1080 1140 1200 1260
50 55 60	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCTG CATCCTCTG ATTCTATGAC TCTGCAGGT ATTCTATGAC TGGAAGAC GGACATTGAG GGACATTGAG GGTATGTATT AAACATGGCT TTGTATTACT TATATATACT TATATATAGA CTCATTATGT CCATATTGT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATGTACT TGGATGTCCT CTGAATCTGA GAAGGTGATAC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC ACTCTTACC ATACAAACAAA AAAACTAAT TATGATATT TATGTATATT ATGATACTAG GAAGATGTT	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCCTTCCTGGG CCTATGCCGG CCGTGTCCCAG CCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAACACAAG GAGCAAAAG TAACATTAGG CAAACAAACA TAACATCTTCT GAGTAATCAT TACATGTTTA ATACTTAAA ATTGGTATAT	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCAGGTC ATGGATCGGC CGACACACTC GAGCACACCG GCAAGCAACC GGCCACCGTT AGGATGGTAT CAGGTACGA GGAGGGGC GCCCTATCCA ACCTTAGAAT AAAAACCCAT ACTCAATAT ACTCAAATG TCTTATAAAA TTTCTTTTTC	CGGGGGGGGG CCAACCTT CAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT CGTGCCTTGA GGCATCAGT ATTGGGGGTG GCAATAGAA TTTGGTCAGG CTACTTTGCT AAACCTGCAC TGTTGAAACA TTTGGGTATT AGGAGGGAAG GGGAAGGGGT ATAGACAGTA ATAGACAGTA ATAGGTAAAT GTCCTTATAT	ACCCCAACCC ACTTCCTCC CGCCTTCTGC CGCCTTCTGC CGGGGCTGCA GCACTGCCT AGGCCATGTT TGGTGGTTGG GTATGAACTT TCGTTCAAGA CTCTCTTCAC GTTCCTGTCC GTTCCTGTCC GTTCCAGCGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTACCAT GCTCCTTAAA AAATACTAT GTATTTAATT ACATATGTAA	120 180 240 300 360 420 660 720 840 900 900 1020 1140 1220 1260 1320
50 55 60	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTCTG CTTGGAAGAC TCTTGCAGGT ATTCTATTGAC CGAAAAACA GAAAGACTAC GGACATTGAG GTATGGTATT AAACATGGCT TTGTATTACT TATTATACA CTCATTATGAC CTCATTATGAC CTCATTATGAT CCATATTGAT CTAATTTACC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG CCTGAGCCAG TTCATTCTCC AGGATTTACT TGGATGTCCT TGGATCTGA GGAGTGATAG GATGAGGTGC CTGGCTATTT CCTATGACC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTATGCCGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTCATTC CAACACCAAG GAGCACAAT CTACCCTTC CAACACCAAG GAGCAAAAG TAACATTAGC CAACACAAAC TAACATTAGT TACATGTTTT ATACTTAAAA ATTGGTATAT TCTTTCAATT	CAGCGCCGCC CCAGCAGGGC TTGCCCACCT CCAGCGAGTCC ATGGATCGGC CGACAACATC GAGCACCGGG GCAACCATC AGCATCGGTAC AGCATGGTAC AGCATGGTAC AGCATGGAA ACCTTAGAA ACCTTAGAAT ACTCAAATAT ACTCAAATAT ACTCTAAAA TATCTCTTAAA TTTCTTTTTCC CTTAGGGTGCC CTTTCGGTGCC CTTTTCGGTGCC CTTTTTTTT	CGGGGGGGGGGGGGGGAACCTCTCATGGCCAACGCCCCCAGATCCAGTCAGACTCAGACTCAGACACAGACACAGACACAGACACAGACACAGACAG	ACCCCAACCC ACTTCTTC CGCCTTCTGC CGCGTTCTGC CGCGTGCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGT CTCTTCTC CTTCTCAGCG ACCCGAAAAT TGAATCTGAA ACTCAGTGCT ATTTTACCAT GCTCCTTACACT ACTCTTACACT ACTCTACACT ACTCATACT ACTCATACT ACTCTTACACT ACTCATACT ACTATACTAT ACATATTTACTAT ACATATGTAA AAGACCTAAC TATACTTATT	120 180 240 300 360 420 600 660 720 780 840 900 1020 1080 1140 1200 1260
50556065	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTTGGGC CGAGGGGCTG CAACTCCTCTG CATCCTCTG CATCCTCTG ATTCTATGAC TCGAAAAACA GAAAGACTACGGACATTGAG GTATGGTATTACCT TTGTATTACC TTGTATTACC TATATATACA CCATATTGAT CAGTCAAATA CAGTCAAATA CTAATTTACC	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG CCTGAGCCAG TTCATTCTCC TGGATGTCCT TGGATGTCCT CTGAATCTGA GCAGTGATAG GCAGTGATAG CCTGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT TACTATCAT TATGTATATAT TGGTTCCCATT TATGTATATAT TGATACTATCAT TAGATACTATCAT TAGATACTATCAT TAGATACTATATA TGATACTATCAT CAAGAATGTTT CAATTACTC CAAGGATGATT CCATTACTT CAAGGATGAAT CCATAATCTT	ATCCAGACTC GGCGGCGCAC GGAGTCCGGG CCTTTCCTGGG CCTATGCCGG GCGGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAACAACA TAACATTAGG CAAACAACA TTATCTTCTT GAGTAATCAT TACATGATAT ATTTTAAAA ATTGGTATAT TCTTCATTA TTTTCAATT TATACTTTCATTA TTTTCAATT TATACTTTCATTA ATTGGTATTT TATACTTTCATTA TTTTTCAATT TTTTTCAATT TATACTTTCATTA TTTTTCAATT TATACTTTCATTA TTTTTCAATT TATACTTTCATTA TTTTTCAATT TATACTTTCATTA TTTTCAATT TATACTTTCAATT	CAGCGCCGC CGAGCAGGGC TTGCCCACCT CGAGCAGGTC ATGGATCGGC CGACACACTC GAGCACACCT GAGCACACCT GACACCGG GCAAGCAACC GCCACCGTT AGCATGGTAT AGCATGGTAT AGCATGGTAC AGCATGTAC AGCATGTAC ACCTTAGAAT TCCTCAATAT ACTCAAATAT ACTCAAATAT ACTCATAGAT TTCTTTTTC GCTTTGGGTG CTTCATGCGT CATCGTTATT	CCGGGCGCGG CCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT CGTGCCTTGA GCCATCGTC GTGCCTTGA GCCATCAGT CTTGCTAAACT TTTGGTCAG TTTGGTCAC TGTTGAACA TTTGGTATT TGTGTAAAT AGGAGGGAAC GGGAAGGGGTA ATAGACAGT ATAGACAGT ATAGACAGT ATAGACAGT ATAGCACT CCTTTTCCA AGCCTTTTCA AAGCCCTTTTCA AAGCCCTTTTCA AAGCCCTTTTCA AAGCCCTTATA	ACCCCAACCC ACTTCTCC CGCCTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGCTTCTGC CGCGCTTCTGC CGCGCTTCTGC CGCAAGTCTT TGGTGGTTGG GTATGAAGT CTCTTCAAGA CTCTCTTCAAGA CTCTCTTCAC CTTCCTGTCC CTTCCAGCGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTTACCAT GCTCCTTAAA AAATACTATT TGTTTTAATT ACATATGTAA AAGACCTAGC TATACTTAGT TTGTTTTTTTTTT	120 180 240 300 360 420 600 660 720 780 840 900 1020 1080 1140 1260 1320 1320 1340 1500
50556065	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTCTG CATCCTCTG CATCCTCTG ATTCTATGAG TCTGCAGGT ATTCTATGAC TGGAAGAC GGACATTGAG GTATGATATTATATACT TATATATACT TATATATATGT CCATATTTAC CTAATTTAC TTAATTTTTT TTTCATTGGT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATGTTCCT CTGAATCTGA GGAGTGATAG GATGAGGTGATAC CCTGCTTCTC GCTGCTTCTC ACCTCTTACC GTTGACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAC GGCGGCGCC CCTTCCTGGG CCTATCCCGG GCGGCCCC CCTTCCTGCA CCAGCACATT CAATCTTTGA TAGAGATGAC TAGTCACAC GAGCAAAAA TAACATTAC GAGCAAAAAA TAACATTACT GAAACAAACA TAACATTACT TACATGTTT TACATGTATA ATTGGTATAT TCTTCATTA ATTGCTATA TCTTCAATT TCTTCAATT TCTTCAATT TCTTCAATT TCTTCAATT TCTTCAATT TCTTCAATT TCTTCAATT TAACACTTAC TGAATCTAAC	CAGCGCCGCC CGAGCAGGCC TTGCCCACCT CGAGCAGGCC TTGCCCACCT CGAGCACGTC CGACACACCC GGCACACCTC GAGCACCCGG GCAAGCAACC GGCCACCGTT AGCATGGTAT CAGGTACCA GCATGCTAT AAAAACCCAT ACCTAGAAT ACTCAATAT ACTCAATAG TTTCTTTTC GCTTTGGGTG CTTCATGTAT ACTCATGTT ACTCATGTT ACTCATGTT CTCATCGTT ACTCATGTT ACTCATGTT ACTCATGTT ACTCATGTT ACTCATGTT ACTCATTAT ACTCATGTT ACTCATTCATAT ACTCATGTT ACTCATTCATAT ACTCATGTT ACATTTCATA	CGGGGGGGGGGGGGGAACCCTCTCAGACCGCCCCAGATCAGACGGGGGGGG	ACCCCAACCC ACTTCCTCC CGCCTTCTGC CGCCTTCTGC CGCGGCTGCA GCACTGCCT AGGCCATGTT TGGTGGTTGG GTATGAAGTCT TCGTTCAAGA CTTCTTCAAGA CTTCTTCAC GTTCCTGTC CTTCCAGCGG AACCGAAAAT GTAATCTGA ACTCAGTGCT ATTTACCAT GCTCCTTAAA AAATACTTAT TGATTTAATT ACATATGTAA AAGACCTAGC TATACTTATT TTGTTTTTGTG TAGTTTTTTGTG TAGTTTTTATT TTGTTTTTTTGTG TAGTTTTTATT TTGTTTTTTTT	120 180 240 300 360 420 600 600 780 780 840 900 1020 1140 1200 1260 1320 1380 1440
5055606570	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTTGGGC CGAGGGGCTG TGACTCCTCTG CATCCTCCTG CATCCTCCTG ATCTATGAC TCTTGCAGGT ATTGAGAGAC TCGAAAAACA GGACATTGAC GGACATTGAC GTATTGATTGAC TTATATATAC TTATATATAC CTATTTTTTA TTTCATTGAT TTTCATTGAT TTTCATTGAT TTTCATTGAT TTTTTTTTA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG GCCACCTTCG CTGAGCCAG TTCATTCTCG AGGATTTACT TGGATGTCCT TGGATCTGA GATGATCTGA GATGATCTGA GCTGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC TACACCAAG GAGCAAAAG TAACATTAGG CAAACAAACA TTACTTCTT GAGTAATCAT TACATGTTTA ATACGTATAT ATACTTCAATT ATACTTCAATT ATAGCACTTG TGAAATCAGAA AAATCAGAAC AAATCAGAAC ATTCCACACA TTCCCACACA	CAGCGCCGCC CGAGCAGGCC TTGCCCACCT CGAGCGAGTC CGAGCACATC CGAGCACCTC CGACCACCGC CGACCACCGC GGCCACCGTT GATGGCTGTC AGCATGGTAT CAGGTACGAC ACCTTAGAAT ACCCTATCCA ACCTTAGAAT ACTCAAATGT TCCTCAATAT ACTCAAATGT TCTTTTTC CCTTTTGGTC CATCGTTTTTTTC CCTTTTTGGTC CATCGTTATT ACATTCATAT ACTCATTCATAT TTCTTTTTTC CTTTTTGGGGCC ATCCTTATCAAA ATTTCGTATC ACATTTCATA ACTTGGAGGCA ATCCCTGTAC	CCGGGCGCGG CCAACCTT ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT GGTGACTTGA GGCATGAGT GGCATGAGT GTGACTAGA TTTGGTCAGA TTTGGTCAGC TTTGATAACA TTTGGTTAAT AGGAGGAAG ATAGGAAGT ATAGGTAAT ATAGACAGTA ATAGGTAAAT ATAGCTTATAT CCTTTATAT CCTTTTTCCT AAGCCCTTAT GCCTACATTT GCCTACATTT CCTTACATT TCCTACATTT TCTGACCCAT	ACCCCAACCC ACCTCTCTC CGCCTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCACTGCCCT TGGTGGTTGG GTATGAAGT CTCTTCTCAGG CTTCTCTCCA CTTCTCTCCC CTTCCAGCG AACCGAAAAT ACCACAGAAAT ACTACTGAA ACTCAGTGCT ATTTACCAT GCTCCTTAAA ACTCCTTTAA TTTTACCAT TTTTTACCAT TTTTTTACTAT TTATTTAATT ACATATGTAA AAGACCTAGC TATTTTTTTTTT	120 180 240 300 360 420 600 720 780 840 900 1020 1020 1140 1260 1320 1440 1500 1560 1680
50556065	GAGCAACCTC CGACCAGAG GCGGGGCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTCTG CATCCTCTG CATCTCTGAGGT ATTCTATGAC TCGCAGGGTAATCAGAC GGACATTGAG GGACATTGAG GTATATATACT TTGATATATACT TATATATAGAT CCATATTGAT CCATATTTACT TTTCATTGAT TTTCATTGGT AGCCAAGAAG GGTGAAAAAT TTTCATTGGT AGCCAAGAAG GTGATAATTT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG GCTGAGCCAG TTCATTCTCC TGGATGTCCT TGGATGTCCT CTGAATCTGA GCAGTGATAG GATGAGGTGC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT TATGATATAT TGATACTATAT TGATACTATAT TGATACTATAT TCATTTACTC AAGGATGATT CCATATCACC AAGATGATT CCATATCACC AAGATCATT CCTTATCCC AATTATTACT CCATTTACTC AAGGATGATT CCATATCTC CAATTATTAC CCTGTTGACC AAATATTTTC CCTGTTGACC AAATATTTTTG	ATCCAGACTC GGCGGCGCAC GGCGGCGCC CCTTCCTGGC CCTATCCCGG GCGGCCCC CCTTCCTGCAC GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC TAACACAAAG AAACAAACA TTACTTCTT GAGTAATCTTT ATACTAAAA ATTGGTATAT TCTTCATTA TCTTCCACACA CCAATTGAGT	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCAGGTC ATGGATCGGC CGACACATC GAGCACACCT GAGCACACCT GAGCACACCT GAGCACACCT GATGGTAT AGCATGGTAT CAGGTACGAC GCCCTATCCA ACCTTAGAAT ACACCAT TCCTCAATAT ACTCAATAT ATTCTTTTC GCTTTGGGTG CTTCATGAT TTTCATGAT TTTGAGGTA TTTCATGAT TTTGAGGTA CTTCATGAT TTTCATGAT TTTGGAGGT CATCGTTATT ACATTCATA TTTCATAT ACTTCATAT ACTTCATAT ACTTCATAT ACTTCATAT ACTTCATAT ACTTCATAT ACATTTCATA TTTGGAGGCA ACCTGCATGA AGCTGCATGC	CCGGGCGCGG CCAACCTTC ATGGCCAACG GCCATCGTCA GTGACCACGC CAGATCCAGT CGTGCCTTGA GCCATCGTCA GCCATCGTCA GCCATCGTCA GTGACTCAGT CGTGCCTTGA GCCATGAGT ATTGGTCAGA TTTGGTCAGA TTTGGTCACA TGTTGAAACA TTTGGGTATT TGTGTAAACA AGGAGGAAG GGGAAGGGGT ATAGACAGTA ATAGGTAAAT GTCTTATAT CCTTTTCCCCC GCCCTTTTCA AAGCCCTTAT AATCTTTCTG TCTGACCCAT TCTGACCCAT TCTGACCCAC TCTCGCCCCCA	ACCCCAACCC ACTTCCTCC CGCCTTCTGC CGCGTTCTGC CGCGTCTCTGC CGCGCTCTGC CGCATGCCCT CGCAACTCCT TGGTGGTTGG GTATGAAGTCTT TCGTTCAAGA CTCTCTTCACA GTTCCTGTCC GTTCCTGTCC GTTCCTGTCC AACCGAAAAT GTAATCTGAACCCATAACCTCAT GTTCCTTAAC ACTCAGTGCT ATTTTACAT TGTATTAATT ACATATGTAA AAATACTATT TGTATTTAATT ACATATGTAA TGTATTTATT TTGTTTTTTTTTT	120 180 240 300 360 420 660 720 840 900 1020 1080 1140 1260 1320 1380 1560 1560 1680 1740
5055606570	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCTCCTG CTTGGAAGAC TCTTCTATGAC TGGCTGGGCT CGAAAAACA GAAAGACTAC TTGTATTAC TTGTATTAC TATGATTATAC TATGATTATAC TATATATAC TATATATAC TTATATAC TTATATAC TTATATTAC TTATATTAC TTATATTAC TTATTTTTT TTCATTGGT TTCATTGGT TTCATTGGT TTGCTTTGGT TTGCTTTGA ACCAACTTTA ACCAACTTTA ACCAACTTTA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATCTCT TGGATCTCT GCAGTGATCTGA GCAGTGATCGA GCAGTGATCTCA CCTGTATCACC GCTGCTTCTC ACCTCTTACC GTGTGACCAC ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTATGCCGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAACACAAG GAGCAAAAG TAACATTAGC CAACACAAAG TAACATTAGT TACATAGT TACATGTTT ATACTTAAAA ATTGGTAATAT TTCTTCAATT ATACTTCAATT ATACTTCAATT ATACTTCAATT ATACACACAC	CAGCGCCGCC CCAGCGAGGCC TTGCCCACCT CCAGCGAGGCC TTGCCCACCT CCAGCGAGTCC CGACCACCGC CGACCACCGC GCCACCGTT CAGCACCGTT CAGCTACGCACCGT CAGCACCGTT CAGCTACCAC ACCTTAGAAT ACCTCAATAT ACTCCAATAT TCTTTTTC CCTTAGGGT CATCGTTT CAGCTTTTTTCC CTTTGGGTC CATCGTTATAAA TATCTCTAAA TTTCTTTTTT CCTTTTTGCCT CATCGTT CATCGTTATT ACATTCCTATAT ACTCTATGCGT CATCGTTATT ACATTTCATT TTTTGAGGCA ACCTGATACT ACTTTTCCCA	CGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ACCCCAACCC ACTTCTCC CGCTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTGCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGT CTCTTCTCA CTCTCTCAC CTTCCTGTCC CTTCCAGCGG AACCGAAAAT TGAATCTGAA ACTCAGTGCT ATTTTACCAT GCTCCTTAAT ACATATGTAA ACATATGTAA ACATATGTAA TCCTTAAT TGATTTTAATT ACATATGTAA TTGTTTTGTT	120 180 240 300 360 420 600 720 780 840 900 1020 1020 1140 1260 1320 1440 1500 1560 1680
5055606570	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTTGGGC CGCCCAGTG CGACGCCCTG CATCCTCTG CATCCTCTG CATCCTCTG ATCCTCTG ATCTATAGAC TCGAAAAACA GAAAATACATGAC TTATATACAC TCATTATATACA CTATTATATACA TTATATACA TTATATACA TTATATACA TTATATACA TTATATACA TTATATACA TTATATATA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG GCCACCTTCG CTGAGCCAG TTCATTCTCC AGGATGATCCT TGGATCTCT TGGATCTCT GGATGATCG GCTGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT TACTACTAT TATGTATAT TGATTACTT TATGTATAT TCATTACTC CAAGAGATGATT CCATATACTC CAAGAGATGATT CTCATTACTC CAAGATGATT CTCATTCC AATTATTCT CTCATTCC AATTATTCT CTCATTCC AATTATTCT CTCATTCC AATTATTCT CTCATTCC AATTATTCT TTGATTGACT CAAATATTTGT TTGATTGACT TTGATTGACT TTGATTGACT TTGATTGATT TCCCCATTCC TAATAAGGTG	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCAATGC CAACACAAG GAGCAAAACA TAACATTAGG CAAACAAACA TAACATTATT AGATAATCAT ATCTTCATTA ATTGGTATAT TTCTTCAATT ATACTTAAAT ATTGGTATAT TTCTTCAATT ATAGCACTTG TGAATCAAC AAATCAGAC CCAATTGAGT TTTCACACA CCAATTGAGT TTTTAAGCTA TTCTCACACA CCAATTGAGT TTTTAAGCTA TTTTAAGCTAT TTGGTATT TTTAAGCTA TTTTAAGTAT TTGGTATTT TTGGTATT TTGGTATT TTGGTATT	CAGCGCCGCC CGAGCAGGCC TTGCCCACCT CGAGCAGGCC TTGCCCACCT CGAGCACACTC CGACACACCC CGACAACACCC GGCCACCGTT GATGGCTGTC AGGATCGGC GGCACGGTT AGGATCGAC GCCTATCCA ACCTTAGAAT ACTCAAATAT ACTCAAATAT ACTCATAGAT TTCTTTTCC GCTTTGGTGC CATCGTTTTTCATAA TTTCTTTTATCATA TTTCATGCGT CATCGTTAT ACATTCATAT TTGAGGCA ACCTGTACC AGCTGCACC CTTATCATAC TTCATGCGT CATCGTTAT ACATTCATA TTTCATGAGCC CATCGTTAC ACCTGTAC AGCTGCATCC AGCTGCACACA AGCTGCATAC AGCTGCATAC AGCTGCATAC AGCTGCATAC AGCTGCATAC AGCTGCATAC AGCTGCACACA AGCTGCATAC AGCTGCACACA AGCTGCACACA AGCTGCATACA AGTTTCCCCA AGCTGCACACA AGCTGCATACA AGCTGC	CCGGGCGCGG CCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT CGTGCCTTGA GCCATCGTCA GCCATCGTCA GCCATCAGT CGTGCCTTGA GCCATCAGT GTGACTAGA GTACTTAGA TTTGGTCAC TGTTGAAACA TTTGGTATAT ATGGTAAT ATAGACAGTA ATAGGTAAAT ATAGACAGTA ATAGGTAAAT ATAGCTACTTTCACAC CCCTTTTCA AACCCTTATA TCCTACATTT GCTACATTT AATCTTTCCCCC GTTTATATT TCTGACCCAT TGTCCCCCA GTTTATATT AGTGCTAATTA AGTGCTAATTA AGTGCTAATTA AGTGCTAGAC	ACCCCAACCC ACTTCTTC CGCCTTCTGC CGCCTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGGTTGTG GCAACTGCCTT TGGTGGTTGG GTATGAAGT CTCTTCAAGA CTCTCTTCAAGA CTCTCTTCAC GTTCCTGTCC CTTCCAGCGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTTACCAT GCTCCTTAAA AAATACTATT TGTTTTAAT AAATACTAAT TAATATTAAT TAATATTAAT TAATATTAAT TAGTTTTTTTT	120 180 240 300 360 420 600 660 720 780 840 900 1020 1080 11200 1260 1380 1500 1560 1620 1680 1740 1860 1920
505560657075	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG GCAGGGGCTG TGACTCCTCTG CATCCTCCTG CATCCTCCTG ATCTATGAGAT ATTCTATGAC TGGAGAGAC TGGAGAGACATTGAG GAAAACAA GAAAGACTAC TGATTATATATACT TATATATAGAT CCATAATTACT TATATTTTTA TTTCATTGGT AGCCAAGAAG GTGATAAAT TTTGCTTTGA CACAACTTTA ACCTTTTTTA ACCTTTTTTA ACCTTTTTTA ACCTTTTTTA ACCTTTTTTTA ACCTTTTTTTA ACCTTTTTTTA ACCTTTTTTTA ACCTTTTTTTA ACCTTTTTTTT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATGTCCT CTGAATCTGA GAGGTGATAG GAGGTGATAG GATGAGGTGATAC CCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAC GGCGGCGCC CCTTCCTGGG CCCATCCTGGG GCGGTCCCAC GCAGCACATT CAATCTTTGT AGAAGATGAC TAGTTCACAC GAGCACAAAG CAACATTCAAC GAGCACAAAG TAACATTAGC TAACATTAGC TAACATTAGC TAACATTAGA TAACTTAAAA ATTGGTATAT TCTTCATTA TCTTCATTA TCTTCATTA TAAGCACTTG TGAATCTAC TAAGCACTTG TGAATCTAC TCCACAC CCAATTGAGA TTAACTTAAC	CAGCGCCGCC CGAGCAGGCC TTGCCCACCT CGAGCAGGCC TTGCCCACCT CGAGCACGTC CGACACACCC GGCCACCGTC GAGCACCCG GCCACCGTT AGGATCGGC GCCATGTAT AGGATACGA ACCTTAGAAT AAAAACCCAT TCCTCAATAT ACTCAATAT ACTCAATAT TTTCTTTTC GCTTTGGGTG CTTCATGGAT TTTCATGGTT ACATTCATAT TTTGGGTGC CTTCATGAT TTTGTGGTGC CTTCATGAT TTTCATGCT CATCGTTAT ACTCATAT ACATTCATAT TTTGGGTGC CTTATTCATA TTTCTTTTCATC CTTCATGCGT CTTCATGCGT CATCGTTAT ACTTCATAT TTTTGGAGGCA ACCTGTACC ACCTGACACA ACCTGACACA ACCTGTACACA ACCTGCATGC CTTATTCATA TTTTTCCCA ACCTGCACAC GCTGAACAA GCTGTAACACA GCTGTAACACA	CGGGGCGCG CCAACCTT CCAACCTCA ATGGCCAACG GCCATCGTCA GCCATCGCCC CAGATCCAGT CGTGCCTTG GCCATGAGT CGTGCCTTGA GCCATCAGT CGTGCCTTGA GTGACTCAGT TTTGGTCAGG CTACTTTGCT AAACTGCAC TGTTGAAACA TTTGGGTATT TGTTAAACA ATGAGAGAT ATAGACAGTA CCTTATAT CCTTTGCCAC GCCTTTTTCA AACCCTTAT TCTGCCAC TCTTGACCCAT TGTGACCCAT TGTGACCCAT TGTTCCCCCA GTTTTATATC AGTGTAATT AGTGTAATT AGTGTAATT AGTGTAATT AGTGTAATTA	ACCCCAACCC ACTTCTCC CGCCTTCTGC CGCCTTCTGC CGCGTTCTGC CGGGGCTGCA GCACTGCCCT AGGCCATGTA GCAAAGTCTT TGGTGGTTGG GTATGAAGT CTCTCTCAGCA ACTCCTTCAGCA ACCCAAAAT GTAATCTCA GTTCCTGTCC ATTTACCAT GCTCCTTAAA AAATACTATT ACATATGTAA AGACCTAGC TATGTTCTGC TAGTTTCTGC TAGTTCTTCTGC TAGTTTCTAAC CTCCTTAAC CTCATGCCTT CAGTGCCTAACT CTCTGGAGTT TCTCTGGAGT TTTCTGGAGT TTTCTGGAGT TCTTCTCTCC	120 180 240 300 360 420 540 600 780 900 960 1020 1140 1200 1320 1380 1440 1560 1620 1620 1680 1740 1800 1900 1900
5055606570	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCCAGTGG CGAGGGGCTG TGACTCTCCTG CTTGGAGGAC TCTTGCAGGT ATTCTATGAC TCGCTGGCTGGCTGGAAAACA GAAAGACTAC GGACATTGAG GTATGGTATTACT TATATATAGA CTCATTATGAT CCATATTGAT CCATATTGAT CTATTTTTA TTCATTGAT TTTCATTGAT TTTCATTTGAT TTTCATTTGAT TTTCATTTGAT TTTCATTTGAT TTTCATTTGAT TTTTCATTTGAT TTTTCATTTGAT TTTTCATTTGAT TTTTCATTTGAT TTTTCATTTGAT TTTTCTTTTAAACCTTTTAAACCTTTTTTTTTAAACTTTCC GATAAATCTGG TCTTTTTTTC TATATCTTCC GATAATCTGC TATTTTTTCT TATATCTTCC TATATTTATTT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATCTCT TGGATCTCT GGATGATCTG GCTGCTATTT CCTATGACCC GCTGCTATTT CCTATGACCC ACCTCTTACC GTTGATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTCACTC CAACACCAAG GAGCACATT TAACATTAGC CAACACAACA	CAGCGCCGCC CGAGCAGGCC TTGCCCACCT CGAGCAGGGC TTGCCCACCT CGAGCACGTC CGACAACATC CGACCACCGT GATGGCTATC GACCACCGTT GATGGCTATC AGCATGGTATA ACATCCACACACACACACACACACACACACACACA	CGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	ACCCCAACCC ACCTCTCTC CGCCTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCATGCCTT TGGTGGTTGG GTATGAAGT CTCTTCTACAGA CTCTCTTCTC CTTCCAGCGG AACCGAAAAT GTATCTGAA ACTCAGTGCT ATTTACCAT GCTCCTTAAC ACTCCTTAAC TTTTTACCAT GCTCCTTAAC TTTTTACCAT GCTCTTTAAT ACTATTTAATT ACATATGTAA AAGACCTAGC TATATTTTTTTTTT	120 180 240 300 360 420 600 780 840 900 1020 1140 1200 1140 1560 1560 1740 1860 1740 1860 1920 1980 2100
505560657075	GAGCAACCTC CGACCCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC CGCCCAGTG CGACCCTGTGGCC CTGGAGGGCTG TGACTCCTCTG CATCCTCTG CATCCTCTG CATCTATGAC TCGTGAGAGAC TCTTGCAGGT ATTCTATGAC GGACATTGAG GTAATGATATTACAT TTTATATATAC TTTATATATAC TTTATATATA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG GCCACCTTCG GCTGAGCCAG TTCATTCTCC TGGATGTCCT TGGATGTCCT TGGATGTCCT CTGAATCTGA GCAGTGATAT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT TACTATCAT TAGTATATAT TGGTTCCCATT TCATTACTC AAGGATGATT CCATATTACTC AAGGATGATT CCATATTACTC CAAGTAATCTT CTCTATCCC AATTATTACTC AAGGATGATT CCTTATCCC AATTATTACTC CAAGTTTATTC CCTGTTGACC AAATATTTT CTCTCCATTC TTGATTGACT TATAAAGGTG TGACAAATAT ACTGCCAATA ACTTTATATT CAGCTGGCTG	ATCCAGACTC GGCGGCGCAC GGAGTCCGGG CCCTTCCTGGG CCCTTCCTGGC CCTATGCCGG GCGGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC GAGCACATT CAATCTTCT CAACACCAAG GAGCACATATAGC GAGCACATATAGC GAGCACATATAGC CAACAACAACA TTATCTTCTT ATACTTATAT ATCTTCATTA TCTTCATTA TCTTCAATA TTCAACACAGAC CAATCAGAC CAATCAGAC TACCACAC CCAATTGAGT TTTAAGCACTTG TTCACTTA TTTAAGCACTTG TTTAAGTTA TTTTAAGTTA TTTTAAGTTA TTTTAATTGTATT TCTCCTCTGTA TGGGATAAT TCTCTCTGTA TGGAGTAAT TCTCTCTGTA TGGAGATAAT TCTCTCTGTA TGGAGATAAT CAGACTGAA	CAGCGCCGCC CGAGCAGGCC TTGCCCACCT CGAGCAGGCC TTGCCCACCT CGAGCACACTC CGACACACCC CGACACACCC GGCCACCGT AGGACACCC GGCCACCGT AGCATCCAC AGCATCCAC AGCATCCAC AGCATCCA ACCTTAGAAT TCCTCAATAT ACTCAATAT ACTCAATAT ACTCATACC CTTCAGCC CTTTGGGTG CTTCATCAT TCTTTTTC GCTTTGGGTG CATCGTAT TCATCATAT TCATCATAT TCATCATAT TTTCATCATA TTTCTTTTC ACATTTCATA TTTCATCATA ACCTGTAC AGCTGCATCA AG	CCGGGCGCGG CCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCGCC CAGATCCAGT CGTGCCTTGA GCCATCGTCA GCCATCGTCA GGCATCAGT GTGACTCAGT CGTGCCTTGA GCCATAGAA TTTGGTCAGA CTACTTTGCT AAACCTGCAC TGTTGAAACA TTTGGGTATT TGTGTAAAAT AGGAGGGAAG GGAAGGGGT ATAGACAGTA ATAGGTAAAT CCTTTTCCCCCA GCCTTTTCA AATCTTTCCT AATCTTTCCCCA GTTTATAT CCTTATAT CCTACCATT TGTCCCCCA GTTTTATAT AGTCTTATAT AGTCTTATAT AGTGTAATT AGTGTTAATT AGTGTTAATT AGTGTTAATT AGTGTTAATT AGTGTTAATT AGTGTTAATT AGTGTAATT AGTGTTAATT AGTGTTAATT AGTGTTAATC AGTCTAGACC AGTTAAAACCT AACAAAACCT	ACCCCAACCC ACTTCCTCC CGCCTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGGTTGTG GCAACTCCT TGGTGGTTGG GTATGAGTG GTATAGAGTG GTTCCTTCAAGA CTCTCTTCAC GTTCCTGTCC CTTCCAGCGG AACCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTTACCAT GCTCCTTAAA AAATACTATT TGTATTAATT ACATATGTAA AAGACCTAGC TATGCTCTTC TGTTTTTTTTG TGTTTTTTTTTT	120 180 240 300 360 420 660 720 780 840 900 1020 1020 1260 1320 1380 1500 1560 1620 1620 1740 1860 1740 1860 1980 2040 2160
50 55 60 65 70 75	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG CGAGGGGCTG TGACTCCTTG CATCCTCTG CATCCTCTG ATTCTATGAC TGGCTGGACACACACACACACACACACACACACACACACA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG GCCACCTTCG CCTGAGCCAG TTCATTCTCG AGGATGTTCCT CTGAATCTGA GGAGTGATAC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACC GTGTGACACA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAC GGCGGCGCC CCTTCCTGGG CCCATTCCTGGG CCCATTCCTGGG CCAGTCCACA CCAGCACATT CAATCTTGT AGAAGATGAC TAGTTGCAC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAGTCAATGC CAACACAAG GAGCAAAAG TAACATTAGC CAAACAAACA TATCTTCTT GAGTAATCAT TACATGTTT TATACTATAA ATTGGTATAT TCTTCAATT TCTTCAATT TCTTCAATT TCTTCAATT TCTTCAATT TCTTCAATT TCTTCAATT TCTTCAATT TCTCCACACA CAACAACAACA CCAATTGAGT TTTAATGAT TTAATTGAT TTAATTGAT TTAATTGAT TTGTTCTTT TGGTTTT TCTCTCTGTA TTGAGATAAT ACTCTCATTC AGACACTCCATCA ACACACCACAC	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCAGGCC CGACACTC CGACACACC CGACACACCC GGCCACCGT GAGCACCGG GCAAGCAACC GGCCACCGTT AGGATACGAC AGGTACGAC AGCATGTAT AAAAACCCAT ACATACAAT ACATACAAT ACTCAAATG TTTCTAAAAT TTTCTTAAC ATTCATACA ATTCCTAAAT TTTCATCAGAT TTTGAGGTG CTTATTCATC ATTCATCAT TTTGGAGGCA ATCCCTGTAC ATCCTGACAT TTTCATCAT TTTTGAACAT TTTTTCCCA ATCCTGACAC ATCCTGACAC ATCCTGACAC ATCCTGACAC ATCCTGACAC ATCCTGACAC ATCCTGACAC ATCCTGACAC ATCTTAACA TTTTTTCCCA ACTTTAACA TTTTTAACAT TTTTAACACT GAAGTCACTG GAAGTCACTG ACCAGTCTAT ACCTGACT GAAGTCACTG ACCAGTCTAT ACCAGTCT	CCGGGCGCGG CCCACCTT GCAAACTCTC ATGGCCACG GCCATCGTCA GCGATCCAGT CAGATCCAGT CAGATCCAGT GGCATCAGA GCCATCAGA GCCATCAGA TTTGGTCAGA TTTGGTCAGA TTTGGTCAGA TTTGGGTATT GTGTAAACA TTTGGGTATT GTGTAAACA TTTGGGAAGGGAA	ACCCCAACCC ACTTCCTCC CGCCTTCTGC CGCGTTCTGC CGCGTTCTGC CGGGGCTGCA GCACTGCCT AGGCCATGTT TGGTGGTTGG GTATGAAGTCT TCGTTCAAGA CTCTCTTCAC GTTCCTGTCC CTTCCAGCGG AACCGAAAAT GTAATCTCAA ACTCAGTGCT ATTTACCAT GCTCCTTAAA AAATACTTAT TGATTTAATT ACATATGTAA AAGACCTAC TAGTCTCTAAC CATGCCAAAACC TAGTTCTGAC CCTAAACT CCTAAGCTTTCAAC CCTAAACT CATGCGTTT CATGCGTTT CATGCGTT TCTTCTGAGT TCTTCTGAGT TCTTCTGAGT TCTTCTGAGT TCTTCTGAGT ATGTAGTTTC ATGTAGTTT CATGCGTT TCTTCTGAGT CACACCGTAC CACACCGTAC CACACCGTAC CACACCGTAC CAAAACCTAC	120 180 240 300 360 420 600 780 840 900 1020 1140 1200 1140 1560 1560 1740 1860 1740 1860 1920 1980 2100
505560657075	GAGCAACCTC CGACCCAGGG GCGGGGCCCA ACCTGCCACC GCTGTTGGGG CGAGGGGCTG TGACTCCTCTG CATCCTCTG CATCCTCTG CATCCTCTG CATCTATGAC TCTGCAGGT ATTCTATGAC GCACATTAGAC GAAATACAC GAAATTACAC TATATATACAC TATATATACAC TTATATTTTTA TTTCATTGGT TATATATAC TTATATTTTTA ACCATTTTTTA ACCATTTTTTA ACCATTTTTTA ACCATTTTTTA TTTCATTGGT CACAACTTTA ACCATTTTTTTA TTTCATTGGT TATATATTTCC GATAATCTCC GATAATCTCC GATAATCTCC TATTTTTTTTTT	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG GCCACCTTCG GCCACCTTCG GCTGAGCCAG TTCATTCTCG AGGATTTACT TGGATCTCT TGGATCTCT GCTGATCTG GCTGCTTTCC GCTGCTTCTC ACCTCTTACC GTGTGACCA ATACTATCAT ACAAAACAAA	ATCCAGACTC GGCGGCGCAG GGAGTCCGGG CCTTCCTGGG CCTATGCCGG GCGTGTCGCA GCAGCACATT CAATCTTTGT AGAAGATGAG TAGTTGCCAC CAGTCAATGC CAGTCATAG GAGCAAAACA TAACATTAGG CAACAAACA TAACATTAGT TACATGTTT ATACTTATAAA ATTGGTATAT TTCTTCATAT ATACTTAAAT ATTGTATT TAAATCATT TTCTCATTA ATAGCACTTG TGAATCACCACA CCAATGAGT TTTAAGCACTTG TGAATCTTAAT TTCTCATTA TTCTCATTA TTCTCATTA TTCTCATTA TTCTCATTA TTCTCATTA TTCTCATTA TTCTCATTA TTCTCTCTTT TTCTCTTTT TTGTCTGTTT TCTCTCTTT ATGGAATAAT TCTCTCTTTT CTCTCTTTC AGACACTGAA TCCTCTCTTC ATGGGCTTC ATTGGCTTC ATTGGGCTTC	CAGCGCCGCC CGAGCAGGCC TTGCCCACCT CGAGCAGGGC TTGCCCACCT CGAGCACACTC CGAGCAACACC CGACAACACCC GGCCACCGTT GATGGCTGTC AGGATGGTAT CAGGTACCAC GCCTTATCCA ACCTTAGAAT ACTCAAATAT ACTCAAATAT ACTCAATAT TTCTTTTC GCTTTGGTGC CATCGTATCAT TTCTTTATC TTGAGGC CATCGTATC AGCTGTAT TTCATGAGT CATCTTATAT TTGAGGC CATCGTTAT TTCATGAGC ACCTTATCATA TTTCTTTCAT TTTGAGGC CATCGTTAT TTTTCATA TTTTCATA TTTTCATA TTTTCATA TTTTCATA TTTTCATA TTTTATCATA TTTTATCATA TTTTTATCATA TTTTTATCATA TTTTATCATA TTTTATCATA TTTTATCATA TTTTATCATA TTTTATCATA TTTTATCATA TTTTATCATA TTTTATCATA TTTTATCATA GCTGTAACAC GATACTTAA GCTGTAACAC GAAGTCACT GAAGTCACT CTCTCTAC GTGCCTTCCT TTTCACC GTGCCTTCCT CGAGCCTTCCT CGAGCAGCCT CAGCCTTCCT CGAGCAGCCT CAGCCTTCCT CGAGCAACAC CGAGCAGCT CTCTCTCAC CGAGCCTTCCT CGAGCCTTCCT CGAGCCTTCCT CGAGCAACAC CGAGCCTTCCT CGAGCCTTCCT CGAGCCTTCCT CGAGCCTTCCT CGAGCAACAC CGAGCCTTCCT CGAGCCTTCCT CGAGCCTTCCT CGAGCCTTCCT CGAGCCTCCT CGAGCCTCCT CGAGCCTCCT CGAGCCAGCCT CGAGCCAGCCT CGAGCCT CGAGCCT CGAGCCT CGAGCCAGCC CGAGCCAGC CGAGCCAGC CGAGCC CGAGC CGAGCC CGAGCC CGAGCC CGAGCC CGAGCC CGAGCC CGAGCC CGAGC CGAGC CGACC CGAGCC CGAGC CG	CCGGGCGCGG CCCAACCTC ATGGCCAACG GCCATCGTCA GTGACCGCCC CAGATCCAGT GTGACTTGA GCCATCGTCA GCCATCGTCA GCCATCGTCA GCCATCGTCA GCCATCATCA GCCATCATCA GCCATCATCA GCCATCATCA TTTGGTCAGA TTTGGTCAC TGTTGAACCA TTTGGTATT TGTTTAAAAT AGGAGGGAAG GGGAAGGGGT ATAGGTAAAT ATAGACAGTA ATAGGTAAAT CCTTTTCCACTA AGTCACTTA AGTCACTA AGTCACTTA AGTCACTA AGTCACTA AGTCACTA AGTCACTA AGTCACTA AGTCACTA AGTCACTA AGTCACTA ACAAAACCT TCCCACTGAA AACATTACC TCCACTGAA ACTCACTTAT CCTTCACCA TTCCACTGAA ACAAAACCT TCCCACTGAA TCCCACTGAA TCCCTCACCA	ACCCCAACCC ACTCCTCC CGCCTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCAAGTCTT TGGTGGTTGG GTATGAAGT CTCTTCTCAAGA CTCTCTTCACG ACCCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTACCAT GCTCCTTAAA ACTCAGTGCT ATTTAATT ACATATGTAA ACATATGTAA ACGACTATT TTGTTTTGTG TAGTTCTAA CATGCCAAA ACCCTAACT TCATGCCTT CATGCCTTT CATGCCTTCAC CGTGTTCTCACC CTCTTCACC CTCTTCACC CTCTTCTCC CTCTTCTCC CTCTTCTCC CTCTTCT	120 180 240 300 360 420 600 780 840 900 1020 1020 1180 1260 1380 1560 1560 1740 1860 1920 1980 2220 22100 2220 2340
50 55 60 65 70 75	GAGCAACCTC CGACCAGAG GCGGGGCCCA ACCTGCCACC GCTGTTGGGC GCCCAGTGG GCAGGGGCTG TGACTCCTCTG CATCCTCTG CATCTCTGAGGT ATTCTATGAC TGGCTGGGCT CGAAAAACA GAAAGACTACG GTATTGAGGCT TTGTATTACT TTATATATACT TTATATATACT TTTATATATA	AGCTTCTAGT CTTCTCCAGC GCCACCTTCG GCCACCTTCG GCCACCTTCG GCCACCTTCG CTGAGCCAG TTCATTCTCG AGGATGTCCT CTGAATCTGA GAGGTGATAG GATGAGGTGATAC CTGGCTATTT CCTATGACCC GCTGCTTCTC ACCTCTTACAC ATACTATAC GTGTGACACA ATACTATAT TAGTATATT TCATTACTC CAAGATGATT CCATATCATC CATGTTCC AAGTGATCT CCATTTCC AAGTGATT TCATTTACTC CAAGATGAT CCTTATCC AATTATTACTC CATTTACTC CAATTATTC CCTGTTGAC AAATATTT CCTTATCTC AATTATTAC CCTGTTGAC AAATATTTT TCATTTACTC TCATTTACTC CAATATCTT CCAATATCTT CCCATTCC TAAAAGGTG TTGACTAAATTT TCGCCAAT ATCTGCCAAA AGTTTATATT CAGCTGGCTT CAATACCTTC TCATTGGCTT CCTGTTGGCT TCATTGGCTT CCTGTTGAC TCATTGCCTT CCATTCC TCATTGCCTT CAGCTGCTT CAGTTGGCTT CCTGTTGACC TCTGTTGACC TCTGTTGACC TCATTCCC TCATTCCC TCATTCCC TCATTCCC TCATTGCCTT CAGTTGGCTT CCTGTTGTCTGAC TTGTCTTGAC TTGTCTTGAC TCTGTCTGTCTTGAC TCTGTCTTGAC TCTGTCTTGAC TCTGTCTTGAC TCTGTCTTGAC TCTGTCTGAC TCTGTCTTGAC TCTGTCTGAC TCTGTCTTGAC TCTGTCTTGAC TCTGTCTTGAC TCTGTCTTGAC TCTGTCTTGAC TCTGTCTTGAC TCTGTCTTGAC TCTGTCTTGAC TCTGTCTTCAC TCTGTCTTCAC TCTGTCTTGAC TCTGTCTTCAC TCTGTCTTCAC TCTGTCTTCAC TCTGTCTTCAC TCTGTCTTCAC TCTGTCTCTCAC TCTTCTCTCTCAC TCTTCTCTCTCAC TCTTCTCTCTC	ATCCAGACTC GGCGGCGCAC GGCGGCGCC CCTTCCTGGG CCCATCCTGGG GCGGTGTCGCA GCAGCACATT CAATCTTTT AGAAGATGAG TAGTTGCCAC GAGCACAATA CAACACAAG CAACATATAG CAACACAAC AAACAACATATTT TACATTAAAA ATTGGTATAT TCTTCATTA TATACTAAT TCTTCATAA ATTGGATTTT TGAATCACTAAT TCCACACA CAATTGAAT TTAACTTAAT TTAACTTAAT TTAACTTAAT TTAACTTAAT TTAACTTAAT TAATTAAAT TTCTCACACA CCAATTGAGT TTTAACTAAT TGGTCTTT TCTCTCTGTA TGAATCAAT TCGTCTCTCTCT CAGCACAC CAACACCACA CCACTCCACAC CACTCCCCCACA CACTCCCCCCACAC CAGTGCCTCC CATGTGCCTCC CATGTGCCTCC CATGTGCCTCC CATGTGCCTCC	CAGCGCCGCC CGAGCAGGGC TTGCCCACCT CGAGCAGGTC ATGGATCGGC CGACACATC GAGCACACCT GAGCACACCT GAGCACACCT GAGCACACCT GAGCACCGC GCCACCGTT AGCATGGTAT AGCATGGTAT ACACCAT ACACCAT ACACCAT ACACCAT ACTCAATAT ACTCAATAT ACTCAATAT ACTCAATAT ACTCAATAT TTTCTTTTC GCTTTGGGTG CTTCATGCAT ATTCATATA ATTCCTTATA ATTCTTATA ATTCTTTATA ATTCTTTATA ATTCTTATA ATTTCATA ATTTTCCCA ACCTGTACC GAAGTCACT ACCAGTCTAT CTTCTCTCC CTCTGTTCC CTCTGTTCC	CCGGGCGCGG CCACCTT GCAAACTCTC ATGGCCAACG GCCATCGTCA GTGACCACGC CAGATCCAGT CAGTCCAGT GGCATGAAGT ATTGGGGGTG GCAATAGAA TTTGGTCAGA TTTGGTCAGA TTTTGGTAAACA TTTTGAAACA TTTTGAAACA TTTAAAAT AGGAGGAAG GGAAGGGGT ATAGAAAT TTTGCTAAAT ATAGGAATTT ATCTTTTCA CCCTTTTTCA AGCCTTATT TCTGCCAC GCCTTTTTCA AGCCTTAT TCTGACCCAT TGTTCACCAT TGTTCACCAC GTTTTAATT AGTCTAATT AGTCTAATT AGTCTAATT AGTCTAATT AGTCTAATT AGTCTAATT AGTCTAATT AGTCTAATC AGTTAATAC AGTTAACAC TTCCACTGAA ACAAACCT TTCCACTGAA CAGTCTATTT CTTTCACCAC TTTCACCAC TTCCACTGAA CAGTCTATTT TCTCTCACCT TTCCACTGAA CAGTCTATTT TTTTAACAAC	ACCCCAACCC ACTCCTCC CGCCTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCGTTCTGC CGCAAGTCTT TGGTGGTTGG GTATGAAGT CTCTTCTCAAGA CTCTCTTCACG ACCCGAAAAT GTAATCTGAA ACTCAGTGCT ATTTACCAT GCTCCTTAAA ACTCAGTGCT ATTTAATT ACATATGTAA ACATATGTAA ACGACTATT TTGTTTTGTG TAGTTCTAA CATGCCAAA ACCCTAACT TCATGCCTT CATGCCTTT CATGCCTTCAC CGTGTTCTCACC CTCTTCACC CTCTTCACC CTCTTCTCC CTCTTCTCC CTCTTCTCC CTCTTCT	120 180 240 300 360 420 600 780 960 1020 11200 11200 11320 11380 1440 1560 1620 1680 1680 1980 2040 2160 2220 2280 22400

```
GCACTGGTGT CTGGAGACCT GGATTTGAGT CTTGGTGCTA TCAATCACCG TCTGTGTTTG
      AGCAAGGCAT TTGGCTGCTG TAAGCTTATT GCTTCATCTG TAAGCGGTGG TTTGTAATTC
                                                                          2580
       CTGATCTTCC CACCTCACAG TGATGTTGTG GGGATCCAGT GAGATAGAAT ACATGTAAGT
                                                                          2640
       GTGGTTTTGT AATTGAAAA GTGCTATACT AAGGGAAAGA ATTGAGGAAT TAACTGCATA
                                                                          2700
 5
                                                                          2760
       CGTTTTGGTG TTGCTTTCA AATGTTTGAA AATAAAAAA TGTTAAGAAA TGGGTTTCTT
       GCCTTAACCA GTCTCTCAAG TGATGAGACA GTGAAGTAAA ATTGAGTGCA CTAAACGAAT
                                                                          2820
      AAGATTCTGA GGAAGTCTTA TCTTCTGCAG TGAGTATGGC CCAATGCTTT CTGTGGCTAA
       ACAGATGTAA TGGGAAGAAA TAAAAGCCTA CGTGTTGGTA AATCCAACAG CAAGGGAGAT
                                                                          2940
       TTTTGAATCA TAATAACTCA TAAGGTGCTA TCTGTTCAGT GATGCCCTCA GAGCTCTTGC
                                                                          3000
10
       TGTTAGCTGG CAGCTGACGC TGCTAGGATA GTTAGTTTGG AAATGGTACT TCATAATAAA
                                                                          3060
       CTACACAGG AAAGTCAGCC ACCGTGTCTT ATGAGGAATT GGACCTAATA AATTTTAGTG
                                                                          3120
       TGCCTTCCAA ACCTGAGAAT ATATGCTTTT GGAAGTTAAA ATTTAAATGG CTTTTGCCAC
                                                                          3180
      ATACATAGAT CTTCATGATG TGTGAGTGTA ATTCCATGTG GATATCAGTT ACCAAACATT
                                                                          3240
      ACAAAAAAT TTTATGGCCC AAAATGACCA ACGAAATTGT TACAATAGAA TTTATCCAAT
                                                                          3300
15
       TTTGATCTTT TTATATTCTT CTACCACACC TGGAAACAGA CCAATAGACA TTTTGGGGTT
                                                                          3360
       TTATAATGGG AATTTGTATA AAGCATTACT CTTTTTCAAT AAATTGTTTT TTAATTTAAA
                                                                          3420
      AAAAGGAAAA AAAAAAAAAA AAA
20
       Seq ID NO: 244 Protein sequence:
       Protein Accession #: AAD16433.1
                             21
                                        31
                                                   41
                                                              51
25
      MANAGLQLLG FILAFLGWIG AIVSTALPQW RIYSYAGDNI VTAQAMYEGL WMSCVSQSTG
                                                                             60
       QIQCKVFDSL LNLSSTLQAT RALMVVGILL GVIAIFVATV GMKCMKCLED DEVQKMRMAV
                                                                           120
       IGGAIFLLAG LAILVATAWY GNRIVQEFYD PMTPVNARYE FGQALFTGWA AASLCLLGGA
                                                                           180
      LLCCSCPRKT TSYPTPRPYP KPAPSSGKDY V
30
       Sea ID NO: 245 DNA sequence
      Nucleic Acid Accession #: CAT cluster
                                                   41
35
       TTTTTTTTT TTTTTTTT TTTTTCAAGG AGAGCACAAG GAACTTTATT AATGACTTTC
                                                                            60
                                                                           120
       TTAATGGTTA AATGCTGTTT ACCAAGTGAC CCAGAGGCAG CGTGGTTTAG TGGTTTCAAC
       AGCATGGTCC CGAGAGTCTG ACAAACCTCA GTTCAAATCC TTCTTTTGTC TTCACTTAGT
                                                                           180
       TTTTCTTCCT GAGATTTAGT TTCTTCATCG TTAACAATGA GGATATTAAT ATGTTTCACA
                                                                           240
       CAGTTGTTAT GAAGAATGCA TATATTAGAA TGCCTGTAGT CTCAGCTACT CAGGAGGCTA
                                                                           300
40
       AGGTGGGGAG GTCGCTCAAG CCCAGGAATT CAAAGCTGCA ATGCATTATG ATTACAGCTG
                                                                            360
      TTAATAGCCA CTGCACTTCA GCCTGGGCAA TGTAGTAAGA TCCCATCTCT GGCTCGGAGG
GTCCTACGCC CACGGAGTCT CGCTGATTGC TAGCACAGCA GTCTGAGATC AAACTGCA
                                                                            420
       Seq ID NO: 246 DNA sequence
45
       Nucleic Acid Accession #: XM_058553.2
       Coding sequence: 897-1400
                             21
                                                   41
                                                              51
                  11
                                        31
50
       AATTTCAGA AGTTCGTAT GGGGATGGTT TTATATAAAT TCAGGTTTTT CCCACAATAA
       TAAATGTATT TAGTCTCAGT GCTCAATAGA AGAGATTTCT AATAGAAAAG GATTCAAACT
                                                                            120
       GTGAAACCAT TTCTCTTTTA ATGTTTCACA TTCCTGTTAC AGATTTGTTC TCTTGTGACT
                                                                           180
       CTGTTATCCA TAATATGGAC AGTTCTTGAG TCCTAACATT GAGAGGTTTT CCCTTAGTGC
                                                                            240
       ATAGAGGAA TGAGTATTAA TTGGAGAAGC TTAAAGTATT GCCACTTTAG CACTGAAGAT
                                                                            300
55
       TGGGATGAGA GGAGGTGAAA CCTCACTAGA AAAAGGGACA ATGTTAGTGT GGCCCTTCCT
       GATCATGTTT AAGAAAAGTC ATGAAAATGG TGAACTAGTG TTTCCAAGCA TATTGGAAGG
                                                                            420
       GTTGAGTGTA TACTGTCTGT CAAAGACTTC CAGCATTTCC AGGTCCTAGA GAGGAACAAG
                                                                            480
       ACTGGTAACC TGCCTATCTG TATTTTTAAG AACCCAGGAG GAAAGCTTTA TAATAGAACA
                                                                           540
       TTATTTCTGT GTTTATGTAT AAGGGGTTTT TTGTTTTTTT AAAGACAGGA TCTCACTCCA
                                                                           600
60
       TTGTCCAGGC CAAGTGCAAT GGCACGAACC TCATAGCTCC TGGACTTAAG TGATCTGCCT
                                                                            660
       GCCTTTGCCT CCTGAGTAGC TGGGACTACA GGCATGAGCC CCCATGCCTG GCTAAGTTTG
                                                                            720
       780
       TAGTCTTGCT TTGTTGCCAG GCTAGTCTCA AACTCCTGGC TTCAAGTGAT CCTCCTGCCT
                                                                            840
       CAGCCTCCCA GAGTGCTAGG ATTACAGCAC TTGGATTCAG CTTCTTCATT TCCAACATGG
                                                                           900
65
       AAGAAACTTA CACCGACTCC CTGGACCCTG AGAAGCTATT GCAATGCCCC TATGACAAAA
                                                                           960
       ACCATCAAAT CAGGGCTTGC AGGTTTCCTT ATCATCTTAT CAAGTGCAGA AAGAATCATC
                                                                          1020
       CTGATGTTGC AAGCAAATTG GCTACTTGTC CCTTCAATGC TCGCCACCAG GTTCCTCGAG
       CTGAAATTAG TCATCATATC TCAAGCTGTG ATGACAGAAG TTGTATTGAG CAAGATGTTG
                                                                          1140
       TCAACCAAAC CAGGAGCCTT AGACAAGAGA CTCTGGCTGA GAGCACTTGG CAGTGCCCTC
                                                                          1200
70
       CTTGCGATGA AGACTGGGAT AAAGATTTGT GGGAGCAGAC CAGCACCCCA TTTGTCTGGG
                                                                          1260
       GCACAACTCA CTACTCTGAC AACAACAGCC CTGCGAGCAA CATAGTTACA GAACATAAGA
                                                                          1320
       ATAACCTGGC TTCAGGCATG CGAGTTCCCA AATCTCTGCC GTATGTTCTG CCATGGAAAA
                                                                          1380
       ACAATGGAAA TGCACAGTAA CTGAATACCT ATCTCATCAA ATGCCAGACC CTAGAAGACT
                                                                          1440
       GTTGCTTCTT CTTCTACCAG TGGGTTCTCA TTTTCCTCCT AATCTAATTA TAGAATGGTA
                                                                          1500
75
       AACTCCCTGT GACTTTCCAA ACTGACAAGC ACACTTTTTT CCTCCCCCCT TGAATCCTCA
                                                                          1560
       TTTAATGCAA GAACCCTCAT ACTCAGAAGC TTCCAAATAA ACCTTTGATA CAGATTG
       Seg ID NO: 247 Protein seguence:
80
       Protein Accession #: XP_058553.1
                             21
                                        31
                                                   41
                                                              51
                  11
       MEETYTDSLD PEKLLQCPYD KNHQIRACRF PYHLIKCRKN HPDVASKLAT CPFNARHQVP
85
       RAEISHHISS CDDRSCIEQD VVNQTRSLRQ ETLAESTWQC PPCDEDWDKD LWEQTSTPFV
       WGTTHYSDNN SPASNIVTEH KNNLASGMRV PKSLPYVLPW KNNGNAQ
```

WO 02/086443
Seq ID NO: 248 DNA sequence
Nucleic Acid Accession #: NM_003392
Coding sequence: 758..1855

	couring sequ	ence: /50	1000				
5							
-	1	11	21	31	41	51	
		1		1	l		
	TTAAGGAAAT	CCGGGCTGCT	CTTCCCCATC	TGGAAGTGGC	TTTCCCCACA	TCGGCTCGTA	60
1.0	AACTGATTAT	GAAACATACG	ATGTTAATTC	GGAGCTGCAT	TTCCCAGCTG	GGCACTCTCG	120 180
10	CGCGCTGGTC	CCCGGGGCCT	CGCCCCCCAC	CCCCTGCCCT	ACCOTOCOGC	GCAGCGCGC	240
	CATCCTCCAC	CCCCCGCGCT TCCCGTGCTC	GGCCACCCCG	TOTAL TETAL	TCTGGCTCCA	CTTGTTGCTC	300
	TCCACTCGCC	GGGGAGAGGA	CCCACCCCA	CCCCACCGG	TTCCTGAGTG	AATTACCCAG	360
	GGCCCAGGIT	GCACAGCACC	AACTAGAGAG	GGGTCAGGGG	GTGCGGGACT	CGAGCGAGCA	420
15	CCARCCACCC	AGCGCCTGGC	ACCAGGGCTT	TGACTCAACA	GAATTGAGAC	ACGTTTGTAA	480
13	TCCCTCCCCT	GCCCCGCGCA	CAGGATCCCA	GCGAAAATCA	GATTTCCTGG	TGAGGTTGCG	540
	TOCOTOCATT	ΔΑΤΤΤΟΘΆΔΑ	AAGAAACTGC	CTATATCTTG	CCATCAAAAA	ACTCACGGAG	600
	CACAACCCCA	CTCAATCAAC	AGTAAACTTA	AGAGACCCCC	GATGCTCCCC	TGGTTTAACT	660
	ጥርጥልጥርርጥጥር	AAAATTATCT	GAGAGGGAAT	AAACATCTTT	TCCTTCTTCC	CTCTCCAGAA	720
20	CTCCATTCCA	Δ ΨΔΨΨΔ ΔGCC	CAGGAGTTGC	TTTGGGGATG	GCTGGAAGTG	CAATGTCTTC	780
	CAACTTCTTC	CTAGTGGCTT	TGGCCATATT	TTTCTCCTTC	GCCCAGGTTG	TAATTGAAGC	840
	CAATTCTTGG	TGGTCGCTAG	GTATGAATAA	CCCTGTTCAG	ATGTCAGAAG	TATATATTAT	900
	AGGAGCACAG	CCTCTCTGCA	GCCAACTGGC	AGGACTTTCT	CAAGGACAGA	AGAAACTGTG	960 1020
25	CCACTTGTAT	CAGGACCACA	TGCAGTACAT	CGGAGAAGGC	A CECHAGACAG	A CA CCTCTCTCT	1080
25	ATGCCAGTAT	CAATTCCGAC GTGATGCAGA	ATCGACGGTG	GAACTGCAGC	TTCACATACG	CCCTCACCCC	1140
	TTTTGGCAGG	GTGATGCAGA GTGAACGCCA	TAGGCAGCCG	CTCCCCCCAC	GGCGAGCTGT	CCACCTGCGG	1200
	AGCAGGGGTG	GCGCGCGCCC	CCAACCACCT	GCCGCGGAC	TGGCTCTGGG	GCGGCTGCGG	1260
	CIGCAGCCGC	GACTATGGCT	ACCGCTTTGC	CAAGGAGTTC	GTGGACGCCC	GCGAGCGGGA	1320
30	CCCCATCCAC	GCCAAGGGCT	CCTACGAGAG	TGCTCGCATC	CTCATGAACC	TGCACAACAA	1380
50	CCACCCCCCC	CCCACGACGG	TGTACAACCT	GGCTGATGTG	GCCTGCAAGT	GCCATGGGGT	1440
	CTCCGGCTCA	TCTACCCTGA	AGACATGCTG	GCTGCAGCTG	GCAGACTTCC	GCAAGGTGGG	1500
	TONTOCCCCTO	AAGGAGAAGT	ACGACAGCGC	GGCGGCCATG	CGGCTCAACA	GCCGGGGCAA	1560
	CTTCCTACAC	GTCAACAGCC	CCTTCAACTC	GCCCACCACA	CAAGACCTGG	TCTACATCGA	1620
35	CCCCAGCCCT	GACTACTGCG	TGCGCAATGA	GAGCACCGGC	TCGCTGGGCA	CGCAGGGCCG	1680
	CCTGTGCAAC	AAGACGTCGG	AGGGCATGGA	TGGCTGCGAG	CTCATGTGCT	GCGGCCGTGG	1740 1800
	GTACGACCAG	TTCAAGACCG	TGCAGACGGA	GCGCTGCCAC	TGCAAGTTCC	ACTGGTGCTG	1860
	CTACGTCAAG	TGCAAGAAGT ACTCAGCCCC	GCACGGAGAT	CGTGGACCAG	TITGIGIGCA	ACACTCATTC	1920
40	GCCACCCAGC	TTTTTAGAAA	GCTCCCAGGA	TTTTCCCCAA	GAATTGCAAC	CGGAACCATT	1980
40	TOTAL TOTAL	ጥጥልሮሮልጥሮጥል	AGAACTCTGT	GGTTTATTAT	TAATATTATA	ATTATTATTT	2040
	CCCAATAATC	GGGGTGGGAA	CCACGAAAAA	TATTTATTTT	GTGGATCTTT	GAAAAGGTAA	2100
	TACAACACTT	CTTTTGGATA	GTATAGAATG	AAGGGGGAAA	TAACACATAC	CCTAACTTAG	2160
	CTCTCTCCCA	CATGGTACAC	ATCCAGAAGG	TAAAGAAATA	CATTTTCTTT	TTCTCAAATA	2220
45	TOCOMTONTA	TCCCATCCCT	AGGTTCCAGT	TGAAAGAGGG	TGGTAGAAAT	CTATTCACAA	2280
	TTCAGCTTCT	ATGACCAAAA	TGAGTTGTAA	ATTCTCTGGT	GCAAGATAAA	AGGTCTTGGG	2340 2400
	AAAACAAAAC	AAAACAAAAC	AAACCTCCCT	TCCCCAGCAG	GGCTGCTAGC	TTGCTTTCTG	2460
	CATTTTCAAA	ATGATAATTT ATGTCTCATT	ACAATGGAAG	ATTCCATTTC	CAGACAGACC	GTCATATTCT	2520
50	GGTATATCAC	CANAUTTCCC	CACCACCAG	GAAAGTCCCC	AGAAATTAAA	AAATTTAAAA	2580
50	CTCTTATCTC	AAGATGTTGA	TTTGAAGCTG	TTATAAGAAT	TGGGATTCCA	GATTTGTAAA	2640
	AAGACCCCCA	ATGATTCTGG	ACACTAGATT	TTTTGTTTGG	GGAGGTTGGC	TTGAACATAA	2700
	ΔΤαΔΔΔΤΑΤΟ	CTGTATTTC	TTAGGGATAC	TTGGTTAGTA	AATTATAATA	GTAGAAATAA	2760
	TACATGAATC	CCATTCACAG	GTTTCTCAGC	CCAAGCAACA	AGGTAATTGC	GTGCCATTCA	2820
55	GCACTGCACC	AGAGCAGACA	ACCTATTTGA	GGAAAAACAG	TGAAATCCAC	CTTCCTCTTC	2880
	ACACTGAGCC	CTCTCTGATT	CCTCCGTGTT	GTGATGTGAT	GCTGGCCACG	TTTCCAAACG	2940
	GCAGCTCCAC	TGGGTCCCCT	TTGGTTGTAG	GACAGGAAAT	GAAACATTAG	GAGCTCTGCT	3000
	TGGAAAACAG	TTCACTACTT	AGGGATTTT	GTTTCCTAAA	ACTITIATI	TGAGGAGCAG	3060 3120
60	TAGTTTTCTA	TGTTTTAATG	ACAGAACTIG	TCCACTCATG	CTTCACAGAGG	TGTTGCAGCG TGTACTGCAG	3180
60	TATCACTGTT	ATGATCCTGT	GITTAGATTA	CARCICALG	TOTATABAGG	GGGGAAATGT	3240
	GTGTACCTTA	MAACIGIICC	CAGIGIACII	TTTTTACATA	ACATATATAT	ATATATACAT	3300
	አ ጥ አ ጥ አ ጥ አ እ አ ጥ	ΔΥΔΑΤΑΥΔΔ	ATATATCTCA	TTGCAGCCAG	TGATTTAGAT	TTACAGCTTA	3360
	CTCTCCCCCTT	ATCTCTCTGT	CTAGAGCATI	GTTGTCCTTC	ACTGCAGTCC	AGTTGGGATT	3420
65	አጥጥሮሮልልልል ር	: ጥጥጥጥጥናAGT	CTTGAGCTTG	GGCTGTGGCC	CCGCTGTGA1	CATACCCTGA	3480
	CCACGACGAA	GCAACCTCGT	TTCTGAGGAA	GAAGCTTGAG	TTCTGACTC	CTGAAATGCG	3540
	ጥሬጥጥሬሬሬሞጥሬ	AAGATATCTT	TTTTTCTTT	CTGCCTCACC	CCTTTGTCTC	CAACCTCCAT	3600
	TTCTGTTCAC	TTTGTGGAGA	. GGGCATTACT	TGTTCGTTAT	' AGACATGGAC	GTTAAGAGAT	3660
70	ATTCAAAACT	CAGAAGCATC	AGCAATGTTI	CTCTTTTCTI	AGTTCATTC	GCAGAATGGA	3720 3780
70	AACCCATGCC	TATTAGAAAT	GACAGTACTI	ATTAATTGAG	TCCCTAAGGA	ATATTCAGCC	
	CACTACATAG	ATAGCTTTTT	TTTTTTTT	TTTTTTTTAP	TAAGGACAC	TCTTTCCAAA GGAAAGATAC	3900
	CAGGCCATCA	AATATGTTCT	TATCTCAGAC	COCOTTO	TIMMANGII:	CCAACTGTGG	3960
	ACATCTTTTC	ATACCCCCCC	TIAGGAGGII	TCACCCAACT	CTGGCTCTT	AATTTATTGC	4020
75	CICITAATII	TONONTOCO	TCACTTCCAC	TGAATTGTGA	GCAAAAGATO	TTGAAAGCAA	
, 5	AIAAIGAIAI	TTACTTTAAA	ATGTCACTT	TTTGGTTTT	ATTATACAA	AACCATGAAG	4140
	ጥል ውጥጥጥጥጥጥ	י איייימרייאאא	TCAGATTGT	CCTTTTTAGT	GACTCATGT:	TATGAAGAGA	4200
	CTTCACTTT	A CA ATCCTAG	CTTTTAAAAC	AAACTATTI	ATGTAAAAT	A TTCTACATGT	4260
	CATTCAGATA	TTATGTATAT	CTTCTAGCCT	TTATTCTGT	CTTTTAATG	r ACATATTTCT	4320
80	GTCTTGCGTC	ATTTGTATAT	TTCACTGGT	TAAAAAAACA	A ACATCGAAA	GCTTATTCCA	4380
	AATGGAAGAT	AGAATATAAA	ATAAAACGT	ACTTGTAAA	AAAAAAA		
		249 Protei		•			
85	rrotein Ac	cession #:	WE_003383				
05	1	11	21	31	41	51	
	Ť	Ī	1	1	1		
	•	•	•				

```
MAGSAMSSKF FLVALAIFFS FAQVVIEANS WWSLGMNNPV QMSEVYIIGA QPLCSQLAGL
                                                                             60
       SQGQKKLCHL YQDHMQYIGE GAKTGIKECQ YQFRHRRWNC STVDNTSVFG RVMQIGSRET
                                                                           120
       AFTYAVSAAG VVNAMSRACR EGELSTCGCS RAARPKDLPR DWLWGGCGDN IDYGYRFAKE
                                                                           180
       FVDARERERI HAKGSYESAR ILMNLHNNEA GRRTVYNLAD VACKCHGVSG SCSLKTCWLQ
                                                                           240
 5
       LADFRKVGDA LKEKYDSAAA MRLNSRGKLV QVNSRFNSPT TQDLVYIDPS PDYCVRNEST
                                                                           300
       GSLGTOGRLC NKTSEGMDGC ELMCCGRGYD OFKTVQTERC HCKFHWCCYV KCKKCTEIVD
       Seg ID NO: 250 DNA sequence
10
       Nucleic Acid Accession #: NM_014058
       Coding sequence: 56..1324
                                                   41
                                                              51
                             21
15
       TGACTTGGAT GTAGACCTCG ACCTTCACAG GACTCTTCAT TGCTGGTTGG CAATGATGTA
                                                                             60
       TCGGCCAGAT GTGGTGAGGG CTAGGAAAAG AGTTTGTTGG GAACCCTGGG TTATCGGCCT
                                                                           120
       CGTCATCTTC ATATCCCTGA TTGTCCTGGC AGTGTGCATT GGACTCACTG TTCATTATGT
                                                                           180
       GAGATATAAT CAAAAGAAGA CCTACAATTA CTATAGCACA TTGTCATTTA CAACTGACAA
       ACTATATGCT GAGTTTGGCA GAGAGGCTTC TAACAATTTT ACAGAAATGA GCCAGAGACT
                                                                            300
20
       TGAATCAATG GTGAAAAATG CATTTTATAA ATCTCCATTA AGGGAAGAAT TTGTCAAGTC
                                                                           360
       TCAGGTTATC AAGTTCAGTC AACAGAAGCA TGGAGTGTTG GCTCATATGC TGTTGATTTG
                                                                           420
       TAGATTTCAC TCTACTGAGG ATCCTGAAAC TGTAGATAAA ATTGTTCAAC TTGTTTTACA
                                                                           480
       TGAAAAGCTG CAAGATGCTG TAGGACCCCC TAAAGTAGAT CCTCACTCAG TTAAAATTAA
                                                                           540
       AAAAATCAAC AAGACAGAAA CAGACAGCTA TCTAAACCAT TGCTGCGGAA CACGAAGAAG
                                                                           600
25
       TAAAACTCTA GGTCAGAGTC TCAGGATCGT TGGTGGGACA GAAGTAGAAG AGGGTGAATG
                                                                            660
       GCCCTGGCAG GCTAGCCTGC AGTGGGATGG GAGTCATCGC TGTGGAGCAA CCTTAATTAA
                                                                           720
       TGCCACATGG CTTGTGAGTG CTGCTCACTG TTTTACAACA TATAAGAACC CTGCCAGATG
                                                                           780
       GACTGCTTCC TTTGGAGTAA CAATAAAACC TTCGAAAATG AAACGGGGTC TCCGGAGAAT
                                                                           840
       AATTGTCCAT GAAAAATACA AACACCCATC ACATGACTAT GATATTTCTC TTGCAGAGCT
                                                                           900
30
       TTCTAGCCCT GTTCCCTACA CAAATGCAGT ACATAGAGTT TGTCTCCCTG ATGCATCCTA
       TGAGTTTCAA CCAGGTGATG TGATGTTTGT GACAGGATTT GGAGCACTGA AAAATGATGG
                                                                          1020
       TTACAGTCAA AATCATCTTC GACAAGCACA GGTGACTCTC ATAGACGCTA CAACTTGCAA
                                                                          1080
       TGAACCTCAA GCTTACAATG ACGCCATAAC TCCTAGAATG TTATGTGCTG GCTCCTTAGA
                                                                          1140
       AGGAAAAACA GATGCATGCC AGGGTGACTC TGGAGGACCA CTGGTTAGTT CAGATGCTAG
                                                                          1200
35
       AGATATCTGG TACCTTGCTG GAATAGTGAG CTGGGGAGAT GAATGTGCGA AACCCAACAA
                                                                          1260
       GCCTGGTGTT TATACTAGAG TTACGGCCTT GCGGGACTGG ATTACTTCAA AAACTGGTAT
       CTAAGAGAA AAAGCCTCAT GGAACAGATA ACATTTTTTT TTGTTTTTTTG GGTGTGGAGG
                                                                           1380
       CCATTTTAG AGATACAGAA TTGGAGAAGA CTTGCAAAAC AGCTAGATTT GACTGATCTC
                                                                          1440
       AATAAACTGT TTGCTTGATG CAAAAAAAA A
40
       Seg TD NO: 251 Protein seguence:
       Protein Accession #: NP_054777
45
                                                               51
                  11
                                                   41
       MYRPDVVRAR KRVCWEPWVI GLVIFISLIV LAVCIGLTVH YVRYNQKKTY NYYSTLSFTT
                                                                             60
       DKLYAEFGRE ASNNFTEMSQ RLESMVKNAF YKSPLREEFV KSQVIKFSQQ KHGVLAHMLL
       ICRFHSTEDP ETVDKIVQLV LHEKLQDAVG PPKVDPHSVK IKKINKTETD
                                                                            180
50
       RSKTLGQSLR IVGGTEVEEG EWPWQASLQW DGSHRCGATL INATWLVSAA HCFTTYKNPA
                                                                            240
       RWTASFGVTI KPSKMKRGLR RIIVHEKYKH PSHDYDISLA ELSSPVPYTN AVHRVCLPDA
                                                                           300
       SYEFQPGDVM FVTGFGALKN DGYSQNHLRQ AQVTLIDATT CNEPQAYNDA ITPRMLCAGS
                                                                            360
       LEGKTDACQG DSGGPLVSSD ARDIWYLAGI VSWGDECAKP NKPGVYTRVT ALRDWITSKT
                                                                            420
55
       Seq ID NO: 252 DNA sequence
       Nucleic Acid Accession #: NM_003504.2
       Coding sequence: 71-1771
60
                                                               51
                                                   41
                                        31
       GGCACGAGGC CTCGTGCCGC CGGGCTCTTG GTACCTCAGC GCGAGCGCCA GGCGTCCGGC
       CGCCGTGGCT ATGTTCGTGT CCGATTTCCG CAAAGAGTTC TACGAGGTGG TCCAGAGCCA
                                                                            120
       GAGGGTCCTT CTCTTCGTGG CCTCGGACGT GGATGCTCTG TGTGCGTGCA AGATCCTTCA
                                                                            180
       GGCCTTGTTC CAGTGTGACC ACGTGCAATA TACGCTGGTT CCAGTTTCTG GGTGGCAAGA
65
                                                                            240
       ACTTGAAACT GCATTTCTTG AGCATAAAGA ACAGTTTCAT TATTTTATTC TCATAAACTG
       TGGAGCTAAT GTAGACCTAT TGGATATTCT TCAACCTGAT GAAGACACTA TATTCTTTGT
                                                                            360
       GTGTGACACC CATAGGCCAG TCAATGTCGT CAATGTATAC AACGATACCC AGATCAAATT
                                                                            420
       ACTCATTAAA CAAGATGATG ACCTTGAAGT TCCCGCCTAT GAAGACATCT TCAGGGATGA
                                                                            480
70
       AGAGGAGGAT GAAGAGCATT CAGGAAATGA CAGTGATGGG TCAGAGCCTT CTGAGAAGCG
                                                                            540
       CACACGGTTA GAAGAGGAGA TAGTGGAGCA AACCATGCGG AGGAGGCAGC GGCGAGAGTG
                                                                            600
       GGAGGCCCGG AGAAGAGACA TCCTCTTTGA CTACGAGCAG TATGAATATC ATGGGACATC
       GTCAGCCATG GTGATGTTTG AGCTGGCTTG GATGCTGTCC AAGGACCTGA ATGACATGCT
                                                                            720
       GTGGTGGGCC ATCGTTGGAC TAACAGACCA GTGGGTGCAA GACAAGATCA CTCAAATGAA
                                                                            780
75
       ATACGTGACT GATGTTGGTG TCCTGCAGCG CCACGTTTCC CGCCACAACC ACCGGAACGA
                                                                            840
       GGATGAGGAG AACACACTCT CCGTGGACTG CACACGGATC TCCTTTGAGT ATGACCTCCG
                                                                            900
       CCTGGTGCTC TACCAGCACT GGTCCCTCCA TGACAGCCTG TGCAACACCA GCTATACCGC
                                                                            960
       AGCCAGGTTC AAGCTGTGGT CTGTGCATGG ACAGAAGCGG CTCCAGGAGT TCCTTGCAGA
                                                                           1020
       CATGGGTCTT CCCCTGAAGC AGGTGAAGCA GAAGTTCCAG GCCATGGACA TCTCCTTGAA
                                                                           1080
80
       GGAGAATTTG CGGGAAATGA TTGAAGAGTC TGCAAATAAA TTTGGGATGA AGGACATGCG
                                                                           1140
       CGTGCAGACT TTCAGCATTC ATTTTGGGTT CAAGCACAAG TTTCTGGCCA GCGACGTGGT
                                                                           1200
       CTTTGCCACC ATGTCTTTGA TGGAGAGCCC CGAGAAGGAT GGCTCAGGGA CAGATCACTT
                                                                           1260
       CATCCAGGCT CTGGACAGCC TCTCCAGGAG TAACCTGGAC AAGCTGTACC ATGGCCTGGA
                                                                           1320
       ACTCGCCAAG AAGCAGCTGC GAGCCACCCA GCAGACCATT GCCAGCTGCC TTTGCACCAA
                                                                           1380
85
       CCTCGTCATC TCCCAGGGGC CTTTCCTGTA CTGCTCTCTC ATGGAGGGCA CTCCAGATGT
                                                                           1440
       CATGCTGTTC TCTAGGCCGG CATCCCTAAG CCTGCTCAGC AAACACCTGC TCAAGTCCTT
                                                                           1500
       TGTGTGTTCG ACAAAGAACC GGCGCTGCAA ACTGCTGCCC CTGGTGATGG CTGCCCCCCT
                                                                           1560
```

```
GAGCATGGAG CATGGCACAG TGACCGTGGT GGGCATCCCC CCAGAGACCG ACAGCTCGGA
      CAGGAAGAAC TTTTTTGGGA GGGCGTTTGA GAAGGCAGCG GAAAGCACCA GCTCCCGGAT
                                                                            1680
       GCTGCACAAC CATTTTGACC TCTCAGTAAT TGAGCTGAAA GCTGAGGATC GGAGCAAGTT
                                                                            1740
       TCTGGACGCA CTTATTTCCC TCCTGTCCTA GGAATTTGAT TCTTCCAGAA TGACCTTCTT
                                                                            1800
 5
                                                                            1860
      ATTTATGTAA CTGGCTTTCA TTTAGATTGT AAGTTATGGA CATGATTTGA GATGTAGAAG
       1920
      AAAAAAAAA AA
       Seq ID NO: 253 Protein sequence:
10
       Protein Accession #: NP_003495.1
                                                    41
                                                               51
                                         31
      MFVSDFRKEF YEVVOSORVL LFVASDVDAL CACKILQALF QCDHVQYTLV PVSGWQELET
15
       AFLEHKEQFH YFILINCGAN VDLLDILQPD EDTIFFVCDT HRPVNVVNVY NDTQIKLLIK
                                                                             1.20
       QDDDLEVPAY EDIFRDEEED EEHSGNDSDG SEPSEKRTRL EEEIVEQTMR RRQRREWEAR
                                                                             1.80
       RRDILFDYEQ YEYHGTSSAM VMFELAWMLS KDLNDMLWWA IVGLTDQWVQ DKITQMKYVT
                                                                             240
       DVGVLQRHVS RHNHRNEDEE NTLSVDCTRI SFEYDLRLVL YQHWSLHDSL CNTSYTAARF
                                                                             300
       KLWSVHGQKR LQEFLADMGL PLKQVKQKFQ AMDISLKENL REMIEESANK FGMKDMRVQT
                                                                             360
20
       FSIHFGFKHK FLASDVVFAT MSLMESPEKD GSGTDHFIQA LDSLSRSNLD KLYHGLELAK
                                                                             420
       KQLRATQQTI ASCLCTNLVI SQGPFLYCSL MEGTPDVMLF SRPASLSLLS KHLLKSFVCS
                                                                             480
       TKNRRCKLLP LVMAAPLSME HGTVTVVGIP PETDSSDRKN FFGRAFEKAA ESTSSRMLHN
                                                                             540
       HFDLSVIELK AEDRSKFLDA LISLLS
25
       Seg ID NO: 254 DNA seguence
       Nucleic Acid Accession #: NM_022337
       Coding sequence: 48..683
30
                                                               51
                  1.1
                             21
                                         31
                                                    41
       GGCTGCGCTT CCCTGGTCAG GCACGGCACG TCTGGCCGGC CGCCAGGATG CAGGCCCCGC
                                                                              60
       ACAAGGAGCA CCTGTACAAG TTGCTGGTGA TTGGCGACCT GGGCGTGGGG AAGACCAGTA
                                                                             120
       TCATCAAGCG CTACGTGCAC CAGAACTTCT CCTCGCACTA CCGGGCCACA ATCGGCGTGG
                                                                             180
35
                                                                             240
       ACTTCGCGCT CAAGGTGCTC CACTGGGACC CGGAGACTGT GGTGCGCCTG CAGCTCTGGG
       ATATCGCAGG TCAAGAAAGA TTTGGAAACA TGACGAGGGT CTATTACCGA GAAGCTATGG
                                                                             300
       GTGCATTTAT TGTCTTCGAT GTCACCAGGC CAGCCACATT TGAAGCAGTG GCAAAGTGGA
                                                                             360
       ANANTGATTT GGACTCCAAG TTAAGTCTCC CTAATGGCAA ACCGGTTTCA GTGGTTTTGT
                                                                             420
       TGGCCAACAA ATGTGACCAG GGGAAGGATG TGCTCATGAA CAATGGCCTC AAGATGGACC
                                                                             480
40
       AGTTCTGCAA GGAGCACGGT TTCGTAGGAT GGTTTGAAAC ATCAGCAAAG GAAAATATAA
                                                                             540
       ACATTGATGA AGCCTCCAGA TGCCTGGTGA AACACATACT TGCAAATGAG TGTGACCTAA
                                                                             600
       TGGAGTCTAT TGAGCCGGAC GTCGTGAAGC CCCATCTCAC ATCAACCAAG GTTGCCAGCT
                                                                             660
       GCTCTGGCTG TGCCAAATCC TAGTAGGCAC CTTTGCTGGT GTCTGGTAGG AATGACCTCA
                                                                             720
       TTGTTCCACA AATTGTGCCT CTATTTTAC CATTTTGGGT AAACGTCAGG ATAGATATAC
                                                                             780
45
       CACATGTGGC AAGCCAAAGA TCTATGCCTC TGTTTTTCA ATGAGAGAGA AATAGCAAAT
                                                                             840
       GTTCTTTCTA TGCTTTCCTC ACCATCATCA CAGTGTTTAC AAACTTTTGA AAATATTTAG
                                                                             900
       TCTGTTACAA ACTTCTGTCA TGTAGCTGAC CAAAATCCTG CAGGGCCACA GTCGGCACTG
                                                                             960
       TTATTTGCTT CTTTTAATCA GCAAAGGCCT CAAGTCTTAA AATAAAAGGG GAGAAGAACA
                                                                            1020
       AACTAGCTGT CAAGTCAAGG ACTGGCTTTC ACCTTGCCCT GGTGTCTTTT TCCAGATTTC
                                                                            1080
50
       AATATATTCT CTGATGGCCT GACAGGCCTA TTAAGTAGAT GTGATATTTT CTTCCAAGAT
                                                                            1140
       GACCTCCATT CTCGGCAGAC CTAAGAGTTG CCTCTGAGTT AGCTCTTTGG AATCGTGAAC
                                                                            1200
       ACAGGTGTGC TATATTGTCC TTGTCCTAAC TGTCACTTGC CATGGCCTGA ATGTTGGCTT
                                                                            1260
       AACTGAATAT TGTATGAAAA GACATGCCTC CATATGTGCC TTTCTGTTAG CTCTCTTTGA
                                                                            1320
       CTCAAGCTGT GGGGCTCCTC TATACATGCT ATACATGTAA TATATATTAT ATATATTTT
55
       GCAAGTGAAC AATAAAACAT TAAAAGATAA AA
       Seq ID NO: 255 Protein sequence:
       Protein Accession #: NP_071732
60
                                                    41
                                                               51
                  1.1
                              21
                                         31
       MOAPHKEHLY KLLVIGDLGV GKTSIIKRYV HONFSSHYRA TIGVDFALKV LHWDPETVVR
                                                                              60
       LQLWDIAGQE RFGNMTRVYY REAMGAFIVF DVTRPATFEA VAKWKNDLDS KLSLPNGKPV
                                                                             120
65
       SVVLLANKCD QGKDVLMNNG LKMDQFCKEH GFVGWFETSA KENINIDEAS RCLVKHILAN
                                                                             180
       ECDLMESIEP DVVKPHLTST KVASCSGCAK S
       Sea ID NO: 256 DNA sequence
       Nucleic Acid Accession #: NM_016321
70
       Coding sequence: 25..1464
                                                                51
                              21
                                         31
                                                    41
       GGAACCGCCC GCTGCCAGCC CGGCCAGGCA CCCCTGCAGC ATGGCCTGGA ACACCAACCT
                                                                              60
75
       CCGCTGGCGG CTGCCGCTCA CCTGCCTGCT CCTGCAGGTG ATTATGGTGA TTCTCTTCGG
                                                                             120
       GGTGTTCGTG CGCTACGACT TCGAGGCCGA CGCCCACTGG TGGTCAGAGA GGACGCACAA
                                                                             180
       GAACTTGAGC GACATGGAGA ACGAATTCTA CTATCGCTAC CCAAGCTTCC AGGACGTGCA
                                                                             240
       CGTGATGGTC TTCGTGGGTT TCGGCTTCCT CATGACTTTC CTGCAGCGCT ACGGCTTCAG
CGCCGTGGGC TTCAACTTCC TGTTGGCAGC CTTCGGCATC CAGTGGGCGC TGCTCATGCA
                                                                             300
                                                                             360
80
       GGGCTGGTTC CACTTCTTAC AAGACCGCTA CATCGTCGTG GGCGTGGAGA ACCTCATCAA
                                                                             420
       CGCTGACTTC TGCGTGGCCT CTGTCTGCGT GGCCTTTGGG GCAGTTCTGG GTAAAGTCAG
                                                                             480
       CCCCATTCAG CTGCTCATCA TGACTTTCTT CCAAGTGACC CTCTTCGCTG TGAATGAGTT
                                                                             540
       CATTCTCCTT AACCTGCTAA AGGTGAAGGA TGCAGGAGGC TCCATGACCA TCCACACATT
TGGCGCCTAC TTTGGGCTCA CAGTGACCG GATCCTCTAC CGACGCAACC TAGAGCAGAG
                                                                             600
                                                                             660
85
       CAAGGAGAGA CAGAATTCTG TGTACCAGTC GGACCTCTTT GCCATGATTG GCACCCTCTT
                                                                             720
       CCTGTGGATG TACTGGCCCA GCTTCAACTC AGCCATATCC TACCATGGGG ACAGCCAGCA
                                                                             780
       CCGAGCCGCC ATCAACACCT ACTGCTCCTT GGCAGCCTGC GTGCTTACCT CGGTGGCAAT
                                                                             840
```

```
ATCCAGTGCC CTGCACAAGA AGGGCAAGCT GGACATGGTG CACATCCAGA ATGCCACGCT
                                                                             900
       CGCAGGAGGG GTGGCCGTGG GTACCGCTGC TGAGATGATG CTCATGCCTT ACGGTGCCCT
                                                                             960
       CATCATCGGC TTCGTCTGCG GCATCATCTC CACCCTGGGT TTTGTATACC TGACCCCATT
                                                                            1020
       CCTGGAGTCC CGGCTGCACA TCCAGGACAC ATGTGGCATT AACAATCTGC ATGGCATTCC
                                                                            1080
 5
       TGGCATCATA GGCGGCATCG TGGGTGCTGT GACAGCGGCC TCCGCCAGCC TTGAAGTCTA
                                                                            1140
       TGGAAAAGAA GGGCTTGTCC ATTCCTTTGA CTTTCAAGGT TTCAACGGGG ACTGGACCGC
       AAGAACACAG GGAAAGTTCC AGATTTATGG TCTCTTGGTG ACCCTGGCCA TGGCCCTGAT
       GGGTGGCATC ATTGTGGGGC TCATTTTGAG ATTACCATTC TGGGGACAAC CTTCAGATGA
                                                                            1320
       GAACTGCTTT GAGGATGCGG TCTACTGGGA GATGCCTGAA GGGAACAGCA CTGTCTACAT
                                                                            1380
10
       CCCTGAGGAC CCCACCTTCA AGCCCTCAGG ACCCTCAGTA CCCTCAGTAC CCATGGTGTC
                                                                            1440
       CCCACTACCC ATGGCTTCCT CGGTACCCTT GGTACCCTAG GCTCCCAGGG CAGGTGAGGA
                                                                            1500
       GCAGGCTCCA CAGACTSTCC TGGGGCCCAG AGGAGCTGGT GCTGACCTAG CTAGGGATGC
                                                                            1560
       AAGAGTGAGC AAGCAGCACC CCCACCTGCT GGCTTGGCCT CAAGGTGCCT CCACCCCTGC
                                                                            1620
       CCTCCCCTTC ATCCCAGGGG GTCTGMCTGA GAATGGAGAA GGAGAAGCTA CAAAGTGGGC
                                                                            1680
15
       ATCCAAGCCG GGTTCTGGCT GCAGAAGTTC TGCCTCTGCC TGGGGTCTTG GCCACATTGG
                                                                            1740
       AGAAAAACAG GCTCAAAGTG GGGCTGGGAC CTGGTGGGTG AACCTGAGCT CTCCCAGGAG
                                                                            1800
       ACAACTTAGC TGCCAGTCAC CACCTATGAG GCTCTTCTAC CCCGTGCCTG CACCTCGGCC
                                                                            1860
       AGCATCTCCT ATGCTCCCTG GGTCCCCCAG ACCTCTCTGT GTTGTGTGCG TGGCAGCCTC
                                                                            1920
       CAGGAATAAA CATTCTTGTT GTCCTTTGTA AAAAAAAAA AAAAAAAA
20
       Seq ID NO: 257 Protein sequence:
       Protein Accession #: NP_057405
                                                    41
                                                                51
                  11
                                         31
25
       MAWNTNLRWR LPLTCLLLQV IMVILFGVFV RYDFEADAHW WSERTHKNLS DMENEFYYRY
                                                                              60
       PSFQDVHVMV FVGFGFLMTF LQRYGFSAVG FNFLLAAFGI QWALLMQGWF HFLQDRYIVV
                                                                             120
       GVENLINADF CVASVCVAFG AVLGKVSPIQ LLIMTFFQVT LFAVNEFILL NLLKVKDAGG
                                                                             180
       SMTIHTFGAY FGLTVTRILY RRNLEQSKER QNSVYQSDLF AMIGTLFLWM YWPSFNSAIS
                                                                             240
30
       YHGDSQHRAA INTYCSLAAC VLTSVAISSA LHKKGKLDMV HIQNATLAGG VAVGTAAEMM
                                                                             300
       LMPYGALIIG FVCGIISTLG FVYLTPFLES RLHIQDTCGI NNLHGIPGII GGIVGAVTAA
                                                                             360
       SASLEVYGKE GLVHSFDFQG FNGDWTARTQ GKFQIYGLLV TLAMALMGGI IVGLILRLPF
                                                                             420
       WGOPSDENCF EDAVYWEMPE GNSTVYIPED PTFKPSGPSV PSVPMVSPLP MASSVPLVP
35
       Seq ID NO: 258 DNA sequence
       Nucleic Acid Accession #: NM_002358.2
       Coding sequence: 75..692
40
                                                     41
                                                                51
                  11
                              21
                                         31
       GGGAAGTGCT GTTGGAGCCG CTGTGGTTGC TGTCCGCGGA GTGGAAGCGC GTGCTTTTGT
       TTGTGTCCCT GGCCATGGCG CTGCAGCTCT CCCGGGAGCA GGGAATCACC CTGCGCGGGA
                                                                             120
       GCGCCGAAAT CGTGGCCGAG TTCTTCTCAT TCGGCATCAA CAGCATTTA TATCAGCGTG
                                                                             180
45
       GCATATATCC ATCTGAAACC TTTACTCGAG TGCAGAAATA CGGACTCACC TTGCTTGTAA
                                                                             240
       CTACTGATCT TGAGCTCATA AAATACCTAA ATAATGTGGT GGAACAACTG AAAGATTGGT
                                                                             300
       TATACAAGTG TTCAGTTCAG AAACTGGTTG TAGTTATCTC AAATATTGAA AGTGGTGAGG
TCCTGGAAAG ATGGCAGTTT GATATTGAGT GTGACAAGAC TGCAAAAGAT GACAGTGCAC
                                                                             360
                                                                             420
       CCAGAGAAAA GTCTCAGAAA GCTATCCAGG ATGAAATCCG TTCAGTGATC AGACAGATCA
                                                                             480
50
       CAGCTACGGT GACATTTCTG CCACTGTTGG AAGTTTCTTG TTCATTTGAT CTGCTGATTT
                                                                             540
       ATACAGACAA AGATTTGGTT GTACCTGAAA AATGGGAAGA GTCGGGACCA CAGTTTATTA
                                                                             600
       CCAATTCTGA GGAAGTCCGC CTTCGTTCAT TTACTACTAC AATCCACAAA GTAAATAGCA
                                                                             660
       TGGTGGCCTA CAAAATTCCT GTCAATGACT GAGGATGACA TGAGGAAAAT AATGTAATTG
                                                                             720
       TAATTTTGAA ATGTGGTTTT CCTGAAATCA GGTCATCTAT AGTTGATATG TTTTATTTCA
                                                                             780
55
       TTGGTTAATT TTTACATGGA GAAAACCAAA ATGATACTTA CTGAACTGTG TGTAATTGTT
                                                                             840
       CCTTTATTT TTTGGTACCT ATTTGACTTA CCATGGAGTT AACATCATGA ATTTATTGCA
                                                                             900
       CATTGTTCAA AAGGAACCAG GAGGTTTTTT TGTCAACATT GTGATGTATA TTCCTTTGAA
                                                                             960
       GATAGTAACT GTAGATGGAA AAACTTGTGC TATAAAGCTA GATGCTTTCC TAAATCAGAT
                                                                            1020
       GTTTTGGTCA AGTAGTTTGA CTCAGTATAG GTAGGGAGAT ATTTAAGTAT AAAATACAAC AAAGGAAGTC TAAATATTCA GAATCTTTGT TAAGGTCCTG AAAGTAACTC ATAATCTATA
                                                                            1080
60
                                                                            1140
       AACAATGAAA TATTGCTGTA TAGCTCCTTT TGACCTTCAT TTCATGTATA GTTTTCCCTA
                                                                            1200
       TTGAATCAGT TTCCAATTAT TTGACTTTAA TTTATGTAAC TTGAACCTAT GAAGCAATGG
                                                                            1260
       ATATTTGTAC TGTTTAATGT TCTGTGATAC AGAACTCTTA AAAATGTTTT TTCATGTGTT
                                                                            1320
       65
       ААААААААА
       Seq ID NO: 259 Protein sequence:
       Protein Accession #: NP_002349.1
70
                              21
                                          31
                                                     41
                                                                51
       MALOLSREOG ITLRGSAEIV AEFFSFGINS ILYQRGIYPS ETFTRVQKYG LTLLVTTDLE
                                                                              60
       LIKYLNNVVE OLKDWLYKCS VQKLVVVISN IESGEVLERW QFDIECDKTA KDDSAPREKS
                                                                             120
75
       QKAIQDEIRS VIRQITATVT FLPLLEVSCS FDLLIYTDKD LVVPEKWEES GPQFITNSEE
                                                                             180
        VRLRSFTTTI HKVNSMVAYK IPVND
       Seg ID NO: 260 DNA seguence
       Nucleic Acid Accession #: NM_001211
80
       Coding sequence: 43..3195
                              21
                                          31
                                                     41
                                                                51
       AAAGGCCTGC AGCAGGACGA GGACCTGAGC CAGGAATGCA GGATGGCGGC GGTGAAGAAG
       GAAGGGGGTG CTCTGAGTGA AGCCATGTCC CTGGAGGGAG ATGAATGGGA ACTGAGTAAA
85
                                                                              120
        GAAAATGTAC AACCTTTAAG GCAAGGGCGG ATCATGTCCA CGCTTCAGGG AGCACTGGCA
                                                                              180
        CAAGAATCTG CCTGTAACAA TACTCTTCAG CAGCAGAAAC GGGCATTTGA ATATGAAATT
                                                                              240
```

		/000443					
	CGATTTTACA	CTGGAAATGA	CCCTCTGGAT	GTTTGGGATA	GGTATATCAG	CTGGACAGAG	300
	CAGAACTATC	CTCAAGGTGG	GAAAGAGAGT	AATATGTCAA	CGTTATTAGA	AAGAGCTGTA	360
	GAAGCACTAC	AAGGAGAAAA	ACGATATTAT	AGTGATCCTC	GATTTCTCAA	TCTCTGGCTT	420
	AAATTAGGGC	CTTTATCCAA	TGAGCCTTTG	GATATGTACA	GTTACTTGCA	CAACCAAGGG	480
5	AMATIAGGGC	GITIAIGCAA	COMCONTAC	TCATCCCCAC	AAGAATATGA	ACCTACACAA	540
5							
	AACTTTAGGA	AAGCAGATGC	GATATTTCAG	GAAGGGATTC	AACAGAAGGC	IGAACCACIA	600
	GAAAGACTAC	AGTCCCAGCA	CCGACAATTC	CAAGCTCGAG	${\tt TGTCTCGGCA}$	AACTCTGTTG	660
	GCACTTGAGA	AAGAAGAAGA	GGAGGAAGTT	TTTGAGTCTT	CTGTACCACA	ACGAAGCACA	720
	CTAGCTGAAC	TAAAGAGCAA	AGGGAAAAAG	ACAGCAAGAG	CTCCAATCAT	CCGTGTAGGA	780
10	GGTGCTCTCA	AGGCTCCAAG	CCAGAACAGA	GGACTCCAAA	ATCCATTTCC	TCAACAGATG	840
	CANADENATA	CTACAATTAC	መርያምም የተመሰው የ	CAAAATCCTC	ATGAGGCTTC	TACAGCAGAG	900
	CAAAATAATA	GIAGAAIIAC	GGGAMGGAMA	GAAAATGCTG	MOGGGGGGG	CNNACACNA	960
	TTGTCTAAGC	CTACAGTCCA	GCCATGGATA	GCACCCCCA	TGCCCAGGGC	CAAAGAGAAI	
	GAGCTGCAAG	CAGGCCCTTG	GAACACAGGC	AGGTCCTTGG	AACACAGGCC	TCGTGGCAAT	1020
. -	ACAGCTTCAC	TGATAGCTGT	ACCCGCTGTG	CTTCCCAGTT	TCACTCCATA	TGTGGAAGAG	1080
15	ACTGCACAAC	AGCCAGTTAT	GACACCATGT	AAAATTGAAC	CTAGTATAAA	CCACATCCTA	1140
	AGCACCAGAA	ACCCTCCAAA	GGAAGAAGGA	GATCCTCTAC	AAAGGGTTCA	GAGCCATCAG	1200
	CAACCCTCTC	ACCACAAGAA	ACACAACATC	ΔΤΩΤΔΤΤΩΤΔ	AGGAGAAGAT	TTATGCAGGA	1260
	CAAGCGICIG	MOUAGAAGAA	AGAGAAGAIG	ATOTALIOTA	TCCGGAAGAA	ATTANANCAC	1320
	GTAGGGGAAT	TCTCCTTTGA	AGAAATTCGG	GCIGAAGIII	ICCGGAAGAA	ATTAMAMONG	
20	CAAAGGGAAG	CCGAGCTATT	GACCAGTGCA	GAGAAGAGAG	CAGAAATGCA	GAAACAGATT	1380
20	GAAGAGATGG	AGAAGAAGCT	AAAAGAAATC	CAAACTACTC	AGCAAGAAAG	AACAGGTGAT	1440
	CAGCAAGAAG	AGACGATGCC	TACAAAGGAG	ACAACTAAAC	TGCAAATTGC	TTCCGAGTCT	1500
	CAGAAAATAC	CAGGAATGAC	TCTATCCAGT	TCTGTTTGTC	AAGTAAACTG	TTGTGCCAGA	1560
	CAAACTTCAC	TTCCCCAAAA	CATTTCCCCAC	GAACAACCTC	ATTCTAAAGG	TCCCAGTGTA	1620
	GAAACIICAC	TIGCGGAGAA	CHILIOOCHO	TOTAL DATE OF THE STREET	AGAATAAAAG	TOCOTOTO	1680
25	CCTTTCTCCA	TTTTTGATGA	GITICITCII	TCAGAAAAGA	MUMATANA	CTCTCCTGCA	
23	GATCCCCCAC	GAGTTTTAGC	TCAACGAAGA	CCCCTTGCAG	TTCTCAAAAC	CTCAGAAAGC	1740
	ATCACCTCAA	ATGAAGATGT	GTCTCCAGAT	GTTTGTGATG	AATTTACAGG	AATTGAACCC	1800
	TTGAGCGAGG	ATGCCATTAT	CACAGGCTTC	AGAAATGTAA	CAATTTGTCC	TAACCCAGAA	1860
	GACACTTGTG	ACTTTGCCAG	AGCAGCTCGT	TTTGTATCCA	CTCCTTTTCA	TGAGATAATG	1920
	TCCTTCAACC	ATCTCCCTTC	TGATCCTGAG	AGACTGTTAC	CGGAAGAAGA	TCTAGATGTA	1980
30	2 A C A COMOMO	ACCICCCITC	CACACCTTCT	CCCACTATCT	ACAGTCAGAC	TCTCAGCATC	2040
50	AAGACCTCTG	AGGACCAGCA	GACAGCIIGI	GGCACIAICI	ACAGICAGAC	TCTCAGCATC	
	AAGAAGCTGA	GCCCAATTAT	TGAAGACAGT	CGTGAAGCCA	CACACTCCTC	TGGCTTCTCT	2100
	GGTTCTTCTG	CCTCGGTTGC	AAGCACCTCC	TCCATCAAAT	GTCTTCAAAT	TCCTGAGAAA	2160
					CACCATGGTG		2220
	CGCAGACAGC	TACTGAAGTC	CCTACCAGAG	TTAAGTGCCT	CTGCAGAGTT	GTGTATAGAA	2280
35	GACAGACCAA	TGCCTAAGTT	GGAAATTGAG	AAGGAAATTG	AATTAGGTAA	TGAGGATTAC	2340
-	TOCATTA A A C	CACAATACCT	AATATCTCAA	CATTACAACT	TATTCTGGGT	GGCGCCAAGA	2400
	1 GCATTAAAC	NAMES ACTOR	AAMAAAAAMA	TOTTOTAL	CTGTCCCATG	CCACTTTTAT	2460
	AACTCTGCAG	AATTAACAGI	AAIAAAGGIA	TCTTCTCAAC	CIGICCCAIG	CACCITIAL	
	ATCAACCTCA	AGTTAAAGGA	ACGTTTAAAT	GAAGATTTTG	ATCATTTTTG	CAGCIGITAT	2520
40					ACTGCTTCAC		2580
40	CTTCTCCAAC	ACAGTGAATA	TATTACCCAT	GAAATAACAG	TGTTGATTAT	TTATAACCTT	2640
	TTGACAATAG	TGGAGATGCT	ACACAAAGCA	GAAATAGTCC	ATGGTGACTT	GAGTCCAAGG	2700
					GTAACAAGAA		2760
	TOTOTOMINO	TOTAL CTTTTTC	CTACACTCTT	CACCTTAGGG	TGCAGCTGGA	TGTTTTTACC	2820
	IIGAAGAIAG	TEGACITIC	A CA CA MCCOMO	CHCCIIACO	AGATCCTGGC	TO TOTAL THEORY	2880
15	CTCAGCGGCT	TTCGGACTGT	ACAGATCCTG	GAAGGACAAA	AGAICCIGGC	IMMCIGITCI	
45					CACATTTACT		2940
					TTAGCCAAAA		3000
	CTAAAAGATG	GTGAATTGTG	GAATAAATTC	TTTGTGCGGA	TTCTGAATGC	CAATGATGAG	3060
	CCCACACTCT	CTGTTCTTGG	GGAGCTTGCA	GCAGAAATGA	ATGGGGTTTT	TGACACTACA	3120
	TTTCCA A A CTC	ACCTCAACAA	ACCCTTATCC	AAGGTAGGGA	AGTTAACTAG	TCCTGGGGCT	3180
50					GCTGCCTCAG		3240
50							
					TTAGGACACA		3300
					ACGTCACTGA		3360
	ACAGTGATAT	ACTTACTCAT	GGCCTTGTCT	AACTTTTGTG	AAGAACTATT	TTATTCTAAA	3420
	CAGACTCATT	ACAAATGGTT	ACCTTGTTAT	TTAACCCATT	TGTCTCTACT	TTTCCCTGTA	3480
55	CTTTTTCCCAT	ጥጥርምስ አጥጥጥር	ΨΑΑΑΑΤΩΤΤΟ	TCTTATGATC	ACCATGTATT	TTGTAAATAA	3540
55			AAAAAAAA				
	TAAAATAGTA	TCIGIIMAMA	AMAMAMAM	nnnnnnnn	AAA		
		261 Protein					
	Protein Acc	cession #: 1	NP_001202				
60					1		
	1	11	21	31	41	51	
	ī	ī	1	Ī	1	Ī	
	 	I CEANOT FOR	DMDI OVERNO	DI.DOCDTMOM	l LQGALAQESA	CMMTT.	60
65					LLERAVEALQ		120
65	FLNLWLKLGR	LCNEPLDMYS	YLHNQGIGVS	LAQFYISWAE	EYEARENFRK	ADAIFQEGIQ	180
	OKAEPLERLO	SOHROFOARV	SROTLLALEK	EEEEEVFESS	VPQRSTLAEL	KSKGKKTARA	240
	PITRUGGALK	APSONRGLON	PEPOOMONNS	RITVFDENAD	EASTAELSKP	TVOPWIAPPM	300
					TPYVEETAQQ		360
							420
70	SINHILSTRK	PGKEEGDPLQ	KVQSHQQASE	EKKEKMMICK	EKIYAGVGEF	SPEEIRMEVE	
70					QERTGDQQEE		480
	QIASESQKIP	GMTLSSSVCQ	VNCCARETSL	AENIWQEQPH	SKGPSVPFSI	FDEFLLSEKK	540
	NKSPPADPPR	VLAORRPLAV	LKTSESITSN	EDVSPDVCDE	FTGIEPLSED	AIITGFRNVT	600
					EEDLDVKTSE		660
					LQIPEKLELT		720
75							
13					LGNEDYCIKR		780
					HFCSCYQYQD		840
	CETLODIJOH				GDLSPRCLIL		900
							960
		DFSYSVDLRV		~		TOT OUT A PENAT	
	NKNNQALKIV	DFSYSVDLRV	SONTSELKDG	ELWNKFFVRT	LNANDEATOR	A P G E P W E W IN	7020
80	NKNNQALKIV HLLLFKEHLQ	VFWDGSFWKL	SQNISELKDG		LNANDEATVS	VLGEDAAEMIN	1020
80	NKNNQALKIV HLLLFKEHLQ	VFWDGSFWKL	SQNISELKDG LTSPGALLFQ		LNANDEATVS	VLGEDAAEMIN	1020
80	NKNNQALKIV HLLLFKEHLQ GVFDTTFQSH	VFWDGSFWKL LNKALWKVGK	SQNISELKDG LTSPGALLFQ		LNANDEATVS	VLGEDAAEMN	1020
80	NKNNQALKIV HLLLFKEHLQ GVFDTTFQSH Seq ID NO:	VFWDGSFWKL LNKALWKVGK 262 DNA sec	SQNISELKDG LTSPGALLFQ quence		LNANDEATVS	VLGELIAAEMIN	1020
80	NKNNQALKIV HLLLFKEHLQ GVFDTTFQSH Seq ID NO:	VFWDGSFWKL LNKALWKVGK 262 DNA sec	SQNISELKDG LTSPGALLFQ		LNANDEATVS	VLGELIAAEMIN	1020
	NKNNQALKIV HLLLFKEHLQ GVFDTTFQSH Seq ID NO: Nucleic Ac	VFWDGSFWKL LNKALWKVGK 262 DNA sec	SQNISELKDG LTSPGALLFQ quence n #: NM_0033		LNANDEATVS	VLGEDAAEMIN	1020
	NKNNQALKIV HLLLFKEHLQ GVFDTTFQSH Seq ID NO: Nucleic Ac	VFWDGSFWKL LNKALWKVGK 262 DNA sec id Accession	SQNISELKDG LTSPGALLFQ quence n #: NM_0033		LNANDEATVS	VLGEBAAEMIN	1020
80 85	NKNNQALKIV HLLLFKEHLQ GVFDTTFQSH Seq ID NO: Nucleic Ac	VFWDGSFWKL LNKALWKVGK 262 DNA sec id Accession	SQNISELKDG LTSPGALLFQ quence n #: NM_0033		LNANDEATVS	VLGELAAEMN	1020
	NKNNQALKIV HLLLFKEHLQ GVFDTTFQSH Seq ID NO: Nucleic Ac	VFWDGSFWKL LNKALWKVGK 262 DNA sec id Accession	SQNISELKDG LTSPGALLFQ quence n #: NM_0033		LNANDEATVS	VLGEBAAEMIN 51	1020

		l .	1	1	I	1	
	CTCTACTTAT	CAATAAGCAG	CTGCCTGTGC	AGAGTGCAGG	CTGCACCTTT	GGACAGCCTT	60
							120
	TAAAACTGAA	TTCTCAGAAT	TTTAGAACAA	ATTTTTGTCT	AGAMAIGCIG	ACTITIGATIO	
_	ATTAGGTAGT	GGTAAAACAG	GCTCCCTTCG	AAGCTCTCCT	TCATCACCTT	CCTAAGTGCA	180
5	TGTACAGGGA	AGCTCTCCTT	CATCACCTTC	CTAAGTGCAT	GGGGGAAAAT	ACCTAGGGCT	240
-	ር አ አ ር አር ጥር ጥጥ	GAGAAGTGTG	CAAACATTTT	CTTTGTGAGT	GAGAACAGAT	CACCTAGAGA	300
	CAACAGICII	GATTCCCATC	NOT COMMOTTED	CITICICIO	COMMOCOCOMO	CACTCCATTT	360
	AAGGAAACCA	GATICCCAIC	ACIGCIICIG	GGIAICAGAI	TTGCGCIG	TOTAL CALLE	
	TGCAATGGCC	TCCCTTGCTG	CAGCAAATGC	AGAGTTTTGC	TTCAACCTGT	TCAGAGAGAT	420
4.0	GGATGACAAT	CAAGGAAATG	GAAATGTGTT	CTTTTCCTCT	CTGAGCCTCT	TCGCTGCCCT	480
10	GGCCCTGGTC	CGCTTGGGCG	CTCAAGATGA	CTCCCTCTCT	CAGATTGATA	AGTTGCTTCA	540
10	mamma a ca cm	GCCTCAGGAT	ATCCAAACTC	ササイサス カサス (2寸)	CAGTCAGGGC	TCCAGTCTCA	600
	TGTTAACACI	GCCTCAGGAI	AIGGAAACIC	ITCIANIAGI	CAGTCAGGG	manage mman	
		${\tt GTTTTTTCTG}$					660
	GAATGGGCTT	TTTGCTGAAA	AAGTGTATGG	CTTTCATAAG	GACTACATTG	AGTGTGCCGA	720
	ΔΔΔΦΨΦΔΨΔΟ	GATGCCAAAG	TGGAGCGAGT	TGACTTTACG	AATCATTTAG	AAGACACTAG	780
15	A COMPANDE	AATAAGTGGG	TOCATATOA	AACACATGGG	AAAATCAAGA	ACCTCATTCC	840
1.5	ACGTAATATT	AAIAAGIGGG	11GAMAA1GA	AACACAIGGC	ATTACATAC	ACGIGATICO	
	TGAAGGTGGC	ATAAGCTCAT	CTGCTGTAAT	GGTGCTGGTG	AATGCTGTGT	ACTTCAAAGG	900
	CAAGTGGCAA	TCAGCCTTCA	CCAAGAGCGA	AACCATAAAT	TGCCATTTCA	AATCTCCCAA	960
	CTCCTCTCCC	AAGGCAGTCG	CCATGATGCA	TCAGGAACGG	AAGTTCAATT	TGTCTGTTAT	1020
		TCAATGAAGA					1080
20	TGAGGACCCA	TCAATGAAGA	TTCTTGAGCT	CAGATACAAT	GGIGGCAIAA	ACAIGIACGI	
20	TCTGCTGCCT	GAGAATGACC	TCTCTGAAAT	TGAAAACAAA	CTGACCTTTC	AGAATCTAAT	1140
	GGAATGGACC	AATCCAAGGC	GAATGACCTC	TAAGTATGTT	GAGGTATTTT	TTCCTCAGTT	1200
	CAACAMACAC	AAGAATTATG	AAATGAAACA	<u>አምአምምምርአር</u> አ	GCCCTAGGGC	TGAAAGATAT	1260
	CAAGATAGAG	AAGAATTATG	AAATGAAACA	ATATTTOACA	accommenda	moma mamamo	
	CTTTGATGAA	TCCAAAGCAG	ATCTCTCTGG	GATTGCTTCG	GGGGGTCGTC	TGTATATATC	1320
	AAGGATGATG	CACAAATCTT	ACATAGAGGT	CACTGAGGAG	GGCACCGAGG	CTACTGCTGC	1380
25	CACAGGAAGT	AATATTGTAG	AAAAGCAACT	CCCTCAGTCC	ACGCTGTTTA	GAGCTGACCA	1440
		TTTGTTATCA					1500
	CCCTTGAAAA	TCCAATTGGT	TTCTGTTATA	GCAGTCCCCA	CAACATCAAA	GRACCACCAC	1560
	AAGTCAATAG	ATYTGRGTTT	AATTGGAAAA	ATGTGGTGTT	TCCTTTGAGT	TTATTTCTTC	1620
	CTIN N C N TITCC	TCAGCAGATG	ACACTGGTGA	CTTGACCCTT	CCTAGACACC	TGGTTGATTG	1680
30	CIARCATIGO	TGCTCTTAGC	TOTTOTOTOTOT	OT TOTOGOTA	A CCCA TITTOT	א א תיתיתי כיא תיתיכי	1740
30							
	TCTTTCTTCC	CACGCTCATT	TCTATCATTC	TCCCCCATGA	CCCGTCTGGA	AATTATGGAG	1800
	RGTGCTCAAC	TGGTAAGGAG	AACGTAGAAG	TAGCCCTAGG	GATCCTTTTT	GAAACTCTAC	1860
	ACTTATCCCA	GATATTCTAG	СттСАТТСТА	AGCAATCTAG	GAAATAAGCC	CTGCTGCTTT	1920
	AGITATOGCA	CHIMITOING	CIICMITOIN	mmammax aam	AMCAACAMOT	TACACTTTAC	1980
25	CTAGAAATAA	GTGTGAAGGA	TAAATTTTCT	TIGITGACCI	AIGAAGAIII	IAGAGIIIAC	
35	CTTCATATGT	TTGATTTTAA	ATCAGTGTAT	AATCTAGATG	GTAAAAAATG	TGAAATTGGG	2040
	ATTAGGGACC	TACCAAAATA	TTTCATTAAT	GCTTTCAATT	GACAAATTTT	GGCCTTTCTT	2100
	TONTANCACA	ATATGTACAT	$CTTTTTTTTC\Delta\Delta$	ΔΤΑΤΤΑΔΑΩΑ	TCTTTTAACT	GTTGGCAGTT	2160
	IGMINAGACA	GAATCATATT	max mx macama	mama ammma m	3 3 CTTTTTTTCC	TOTA TITTA TO	2220
				IGIAGITIAI	AMGILITICC	ICINITIALC	2220
4.0	AGAATAAAGA	AATACAACAT	ACCTGTAAA				
40							
	Coc ID NO.	263 Protein	aemience:				
	Protein Acc	cession #: 1	NP_003//5				
45	1	11	21	31	Δ 1	51	
45	1.	11	21	31	41	51	
45	1	1]	1	1	1	
45	1	11 FCFNLFREMD]	1	1	1	60
45	 MASLAAANAE	 FCFNLFREMD	 DNQGNGNVFF	 SSLSLFAALA	 LVRLGAQDDS	redidkrpha	60 120
45	 Maslaaanae Ntasgygnss	 FCFNLFREMD NSQSGLQSQL	 DNQGNGNVFF KRVFSDINAS	 SSLSLFAALA HKDYDLSIVN	 LVRLGAQDDS GLFAEKVYGF	 LSQIDKLLHV HKDYIECAEK	120
	 MASLAAANAE NTASGYGNSS LYDAKVERVD	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR	 DNQGNGNVFF KRVFSDINAS NINKWVENET	 SSLSLFAALA HKDYDLSIVN HGKIKNVIGE	 LVRLGAQDDS GLFAEKVYGF GGISSSAVMV	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK	120 180
45 50	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ	 SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL	120 180 240
	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ	 SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL	120 180 240 300
	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF	120 180 240
	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF	120 180 240 300
	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF	120 180 240 300
50	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMU WTNPRRMTSK MMHKSYIEVT	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF	120 180 240 300
	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO:	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA See	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT	SSLSLFAALA KKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF	120 180 240 300
50	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO:	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA See	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT	SSLSLFAALA KKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF	120 180 240 300
50	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA seid Accession	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB0529	SSLSLFAALA KKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF	120 180 240 300
50	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA See	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB0529	SSLSLFAALA KKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF	120 180 240 300
50	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA seid Accession	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT	UVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP	 LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP	120 180 240 300
50 55	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA seid Accession	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB0529	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF	120 180 240 300
50	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA sei id Accession uence: 74-8	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP	120 180 240 300 360
50 55	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA sei id Accession uence: 74-8	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP	120 180 240 300 360
50 55	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA seid Accession uence: 74-8	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB0529014	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP	 LSQIDKLLHV HKDY1ECAEK LVNAVYFKOK YNGGINMYVL LRALGLKDIF QSTLFRADHP	120 180 240 300 360
50 55	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA secid Accession uence: 74-8	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CITTCCAGGCT CAGCCGCCGC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC	 LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP	120 180 240 300 360
50 55	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG	FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA see id Accession Lence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC	LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA	120 180 240 300 360
505560	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA sei id Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGGCTGGT ATCCCTAAGT	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCCGGGCTGG TCAGACCTGG	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACGGTGG	UVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT	120 180 240 300 360
505560	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA sei id Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGGCTGGT ATCCCTAAGT	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCCGGGCTGG TCAGACCTGG	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACGGTGG	UVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT	120 180 240 300 360
50 55	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCTGCTG CATCACCGTC GGATGAAAAA	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA seid Accession dence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ACTCCTAAGT ACTTTCTTC	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCCC CCGGGCTGG TCAGACCTGG ACTATGACTG	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACGGTGG TGGCAACAAG	UVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKOK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC	120 180 240 300 360
505560	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAC CCTGGGGAAG	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA sedid Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ACTCTTC AAACTAAATG	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTMPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCCC CCCGGCTGG TCAGACCTGG ACTATGACTG TCACAACGGC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACGGTGG TGGCAACAAG CTGGAACAGG CTGGAACAGG	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACCC CAGAACCCAG	 LSQIDKLLHV LKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA	120 180 240 300 360 120 120 180 240 300 360
505560	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GGTCCTGCTGC GATCAACAG CCTGGGGAAG GGTGGTGGAA	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA see id Accession Lence: 74-8 11 GGGGATTCAT TTAATGGCAG TCCGGCTGGT ACCTTACTC AAACTAAATG ATACTTACAG	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCGGGCTGG TCAGACCTGG ACTATGACTG TCACAACGGC AGCAACTGCG	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKPNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCCAGCGAC ACCACGGTGG TGGCAACAAG CTGGAAAGCA TGACATTCAG	UVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCCAG CTGAGAGAATT	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG CTCCCTAGCG TCCCGCTTCT TTTGCTATCA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCCAA	120 180 240 300 360 120 180 240 300 420
505560	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAG CCTGGGGAAC GGTGGTGGAC GGAACCCCTC	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA seid Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCCTAAGT ACCTTAATGAATG AAACTAAATG ATCTTGCAG ACCTGCAGG	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCGGGCTGG TCAGACCTGG ACTATGACTG AGCAACTGC AGCAACTGCC CCAGGATGTC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACGGTGG TGGCAACAAG TGGCAATCAG TTGTGAAGCAG TTGTGAAGCAG	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TCTGCGGTTC ACAGTCACAC CAGAACCAC CTGGAGAATT AAAGCTGAAA	LSQIDKLLHV LSQIDKLLHV LSQIDKLLHV LYNAVYFKOK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCCAA GACACACCGAG	120 180 240 300 360 120 120 180 240 300 360
505560	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAG CCTGGGGAAC GGTGGTGGAC GGAACCCCTC	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA seid Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCCTAAGT ACCTTAATGAATG AAACTAAATG ATCTTGCAG ACCTGCAGG	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCGGGCTGG TCAGACCTGG ACTATGACTG AGCAACTGC AGCAACTGCC CCAGGATGTC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACGGTGG TGGCAACAAG TGGCAATCAG TTGTGAAGCAG TTGTGAAGCAG	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TCTGCGGTTC ACAGTCACAC CAGAACCAC CTGGAGAATT AAAGCTGAAA	LSQIDKLLHV LSQIDKLLHV LSQIDKLLHV LYNAVYFKOK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCCAA GACACACCGAG	120 180 240 300 360 120 180 240 300 420
50556065	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAG CCTGGGGAAG GGTGGTGGAC GGAACCCCTC TGGATCTTGG	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA seid Accession tence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCCCTAAGT ACTTTCTTC AAACTAAATG ATCCTGAGG ACCCTGCAGG ACCCTGCAGG ACCCTGCAGG ACCCTGCAGG ACCCTGCAGG	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCCC CCGGGCTGG TCAGACCTGG ACTATGACTG TCACAACGGC ACCACTGCC CCGGGATGTC TCACAACGCC TCCAGGATGTC TCCATGGGCCA	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACGGTGG TGGCAACAAG CTGGAAAGCA TGACATTCAG GTGGAACCAG GATCTTGTGAGCAG GATCTTCCTC	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CTTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCCAG CTGAGAATT AAAGCTGAAG CTCTTGACAC	LSQIDKLLHV LSQIDKLLHV LSQIDKLLHV LSQIDKLLHV LSQIDKLLHV LSQIDKDIF CTALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCAA GACACCCAA CACACCAAC CAGAGAAGAG CAGAGAAGAG CAGAGAAGAG	120 180 240 300 360 120 180 240 360 420 480 540
505560	MASLAAANAE MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTC CATCACCGTC GGATGAAAAG CCTGGGGAAG GGTGGTGGAC GGACCCCTC TGGATCTTGA	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA secid Accession Lence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCCTTAAGT ACCTTAAGT ATACTAAATG ATACTAAATG ACCCTGCAGG CAGTTCAGT ACGGTTCAGT ACGGTTCAGT ACGGTTCAGT ACGGTTCAGT ACGGTTCAGT ACGGTTCAGT	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB0529 14 21 CTTCCAGGCT CAGCCGCCGC CCCGGGCTGG TCAGACCTGG ACTATGACTG ACTATGACTG AGCAACTGCC CCAGGATGTC TCGATGGCA CCAGGATGTC TCGATGGCCA	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCCAGCGAC ACCACGGTGG TGGCAACAAG CTGGAAAGCA TGACATCAG TTGTGAGCAG ATGTTCTCCTC AAGATCTTCCTC AAAGATGAAAA	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DFSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACCA CCAGAACCCAG CTGGAGAATT AAAGCTGAAC CTCTGTGACT GAAAAGTGGG	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCCTATCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCCAA GACACACCCAA GACACAGCAG ACACAGCAG AGAATGACAA	120 180 240 360 120 180 240 300 420 480 540 600
50556065	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAG CCTGGGGAAC GGTGGTGGAC GGAACCCCTC TGGATCTTGG AATGTGGACA GGTGGTCACACGTC GGATCTTGG AATGTGGACA GGTGGTGGAC GGATCTTGG AATGTGGACA GGTTGTGGCC	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR 1LFSGKVSCP 264 DNA sei id Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG ACCTTAAGT ACTTTTCTTC AAACTAAATG ATCCTGCAGG CAGTTCAGT ACGGTTCATC ACGGTTCATC ACGGTTCATC ACGGTTCATC ACGTTCATC ACGGTTCATC ACGGTTCATC ATCTCCTTCC	DNQGNGNVFF KRVFSDINAS NINKWENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCGGGCTGG TCAGACCTGG ACTATGACTG TCACAACGGC AGCAACTGCG CCAGGATGTC TCGATGGGCAG ATTACTTCTC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCCAGCGAC ACCACGGTGG TGGCAACAAG CTGGAAAGCA TGACATCAG TTGTGAGCAG GATCTTCCTC AAAGATCACAAAAGAGAATCACAAAAAAAAGAGAAAAAAAA	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCCAG CTGAGAGATT AAAGCTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCCAA GACACGCAG GACACGCAG GACACGCAG GACACGCAG GACATGACAA GGCTTGAGGA AGAATGACAA GGCTTGAGGA	120 180 240 300 360 120 180 240 300 360 420 480 540 660
50556065	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCTTGCTG GGATGAAAAG CCTGGGGAAG GGTGGTGGA GGAACCCCTC TGGATCTTGG AATGTGGACA GGTTGTGGCC CTTCTTGATG	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA sei id Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ACCTTAATG ATACTTACAG ATACTTACAG ACCTGCAGG CAGTTCAGT ACGGTTCATC ATGTCATC ATGTCATC ATGTCATC ATGTCCTTCC AGGTTCATC ATGTCCTTCC AGGTTCATC ATGTCCTTCC AGGTTCATC ATGTCCTTCC AGGTTCATC AGGTTCATC AGGTTCATC AGGTTCATC AGGTTCATC AGGTTCATC AGGCATGGACA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCCC CCGGGCTGG TCAGACCTGG ACTATGACTG TCACAACGGC ACCAGGATGTC TCGATGGGCA CTGGAGCCAG ATTACTTCTC GCACCCTGGA	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACGGTGG TGGCAACAAG TTGTGAACAG TTGTGAGCAG GATCTTCCTC AAAGATGAA AATGGGAGAGC	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCAG CTGAGAGAATT AAAGCTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT GGAGCACCAC	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKCK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACCCAA GACACCCAA GACACCCAA GACACCCAA GACACGGT CAGGGAGAGAGA GAAATGACA TCGCCATGTC	120 180 240 300 360 120 180 240 360 420 480 540 600 600 720
50556065	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCTTGCTG GGATGAAAAG CCTGGGGAAG GGTGGTGGA GGAACCCCTC TGGATCTTGG AATGTGGACA GGTTGTGGCC CTTCTTGATG	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA sei id Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ACCTTAATG ATACTTACAG ATACTTACAG ACCTGCAGG CAGTTCAGT ACGGTTCATC ATGTCATC ATGTCATC ATGTCATC ATGTCCTTCC AGGTTCATC ATGTCCTTCC AGGTTCATC ATGTCCTTCC AGGTTCATC ATGTCCTTCC AGGTTCATC AGGTTCATC AGGTTCATC AGGTTCATC AGGTTCATC AGGTTCATC AGGCATGGACA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCCC CCGGGCTGG TCAGACCTGG ACTATGACTG TCACAACGGC ACCAGGATGTC TCGATGGGCA CTGGAGCCAG ATTACTTCTC GCACCCTGGA	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACGGTGG TGGCAACAAG TTGTGAACAG TTGTGAGCAG GATCTTCCTC AAAGATGAA AATGGGAGAGC	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCAG CTGAGAGAATT AAAGCTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT GGAGCACCAC	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKCK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACCCAA GACACCCAA GACACCCAA GACACCCAA GACACGGT CAGGGAGAGAGA GAAATGACA TCGCCATGTC	120 180 240 300 360 120 180 240 300 360 420 480 540 660
50556065	MASLAAANAE MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCTGCTG CATCACCGTC GGATGAAAG GGTGGTGGAC GGACCCCTC TGGATCTTGA GATTGTGGCC CTTCTTGATG CTCTGTGATG CTCTGTGATG	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA secid Accession nence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCCTTAGT AAACTAAATG ATACTTACAG ACCCTGCAGT ATGCTTCAT AGGGTTCATC ATGTCCTTCC GGCATGGACA ACCCAACTCA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCGGGCTGG TCAGACCTGG ACTATGACTGG TCACAACGGC AGCAACTGCG CCAGGATGTC TCGATGGCA ATTACTTCTC GCACCGGG GCACCCTGGA GGGCCACAGC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACGTGG TGGCAACAGG TGGCAACAGG TGGCAACAGG GATCTTCCTC AAAGATGAAA AATGGGAGAC CCCACGCTC AACACCCTC	LVRLGAQDDS GLFAEKVYGF GGLSSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CTCACTCTC CTGCGGTTC ACAGTCACAC CAGAACCCAG CTGGAGAATT AAAGCTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT TGTATAGGAT TGGAGCACCAC ATCCTTTGCT	LSQIDKLLHV LSQIDKLLHV LSQIDKLLHV LSQIDKLLHV LSQIDKLLHV LSQIDKITCK LVNAVYFKCK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACCCAA ACACCCAA GACACCCAA GCAGAGAGAG	120 180 240 300 360 120 180 240 300 420 480 660 720 780
5055606570	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAG CCTGGGGAAG GGTGGTGGAC GGACCCTC TGGATCTTGG AATGTGGAC GGATCTTGG CTTCTTGGTC CTTCTTGTGCC CTTCTTGATG CTTCAGGCACA	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR 1LFSGKVSCP 264 DNA sei id Accession cence: 74-8 11 GGTGATTCAT TTAATGGCAG ATCCCTAAGT ATCCTTAATG AACTAAATG ATACTTACAG ACCCTGCAGG CAGTTCATC ACGATTCATC AGGTTCATC AGGTTCATC AGCATGCACAACCCAA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCGGGCTGG TCAGACCTGG ACTATGACTG TCACAACGGC ACTATGACTG CCAGGAGCTG CCAGGAGCCAG ATTACTTCTC GCACCCTGGA GGGCCACAG TCCCTGGACCTGG TCCCTGGACT	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCGAC ACCACGTGG TGGCAACAAG TTGTGAAGCA TTGTGAAGCA TTGTGAAGCA CTGAAATCAC AAATCTCCT AAAGATCACA AATGGGAGAC GCCAACTCC CCCCCCCCC CCCCACCCCCCCCCC	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CCAGAACCCAG CTGAGAATT AAAGCTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT GGAGACCAC ACCCTTTCCTTT	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCA CTACTGAGAGA ACACACCAA GACACGCAG GACACAGCAG GCATGAGAA GGCTTGAGGA TCGCCATGTC GCCTTCATCT TGCCTAGGAGA TCGCCATGTC TGCCTCCTCAT TGACAGGTTA	120 180 240 360 120 180 240 300 480 540 660 720 780 840
50556065	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAG GGTGGTGGAC GGAACCCCT TGGATCTTGG AATGTGGAC CTTCTTGGTC CTTCTTGGTC CTTCTTGTGC CATCAGCCAC CATCACCCCC CAGCTCATCC	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA sei id Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCCTTACAG ACCTGCAGG CAGTTCATT ACGGTTCAT ACGGTTCAT CGGCATGCACA ACCCAACTCA ACCCAACTCA TGCTTCATCC CAAAAGGCTC CAAAAGGCTC	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCGC CCCGGGCTGG TCAGACTGG ACTATGACTG TCACAACTGG ACTATGACTG CAGGACTGG ACTATGACTG CAGGACTGG CCAGGATGTC TCAGAGCCAG ATTACTTCTC GCACCCTGGA GGGCCACAGC TCCCTGGAT CCCTGGACCAG TCCCTGGACCAG TCCCTGGACCAG TCCCTGGACCACACT TCCCTGGACCACT TCCCTGGACCACT TCCCTGGACCACT TCCCTGGACCACT TCCCTGGACCACT TCCCTGGACCACT TCCCTGGACCACT TCCCTGGACCAC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT O6 S1 CTCCTTCCAT TACCAAGATC CGGAGCCGAC ACACGGTGG TGGCAACAAG TTGTGAAAGCA TTGTGAAAGCA AATGGAGATCA AAATGGAGAC GCAAGTGCA CACCACCTC CTGAGGAGGA CACCACCTTC CTGAGGAGGA GATCTTCTAAAGATGAA CACCACCTTC CTGAGGAGAG CACCACCTTC CTGAGGAGAG GGTCTTGATC	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TCTGCGGTTC ACAGTCACAC CAGAACCCAG CTGAGAATT AAAGCTGAAG CTCTTTGACT GAAAAGTGGG TGTAAAGGGG TGTATAGGAT GGAGCACCAC ATCCTTTGCT TCCTTTAGAG AAACTCGCCC	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATCA AAGGCCAGGT CTGTCAGTCA GACACCCAA GACACCCAA GACACCCAA GACACCCAA GCCTGTCGGCATGTC GCCTTGTGGGA TCGCCATGTC GCCTCCTCATT TGACAGGTTA TTCTGTCTGG	120 180 240 300 360 120 180 240 300 360 420 480 540 660 720 780 840 900
5055606570	MASLAAANAE MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCTGCTG CATCACCGTC GGATGAAAG GGTGGTGGAC GGAACCCCTC TGGATCTTGG CTTGGGTCC GGTTGTGGCC CTTCTTGTATG CTCTAGGCACA CATCCTCCCC AAGCTGATAC CCAGCTCCCC CAGCTCCCC CAGCTCCCC CAGCTCCCC CAGCTCCCCC CCCCCCC CCCCCCCC CCCCCCCCCC	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLIFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA seid Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCTTCATAATG ATACTTACAG ATACTTACAG ACCTCAGGT ACGGTTCATC ATGCTCAGC ACGCAGCTCA TGCTTCATC CAAAAGGCTAC CAAAAGGCTACG ACGCACCACC ACGCACCACCACC ACGCACCACCACCACCACCACCACCACCACCACCACCCACCA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCCC CCCGGCTGG TCAGACCTGG ACTATGACTG TCACAACGGC TCGAGCCTGC CCGGAGCCTG CCAGGATGC CTGGAGCCAG ATTACTTCTC GCACCCTGGA GCCACACTGC GCACCCTGGA TCCCTGGACCAGC TCCCTGGACCAC GCGCCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCACGC TCTCTGAGCAC GTGTATGTCC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACCGTGG TGGCAACAAG TTGGAAAGCA TGACATTCAG GATCTTCCTC AAAGATGAAA AATGGGAGAC GCCAAGTGCA CACCACCTC CTGAGGAGAG GGTCTTGATC AGTGGCTCC	LVRLGAQDDS GLFAEKVYGF GGLSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC CTGTGCGGTTC ACAGTCACAC CAGAACCAG CTGAGAATT AAAGCTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT GGAGCACCAC ATCCTTTGCT TCCTTTTAGAG AAACTCGCCC AGCAGATCAT	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKOK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACCCAA GCATGAGAGA GCATGAGAGA GCATGAGGA TCGCCATGTC GCCTCCTCAT TCACAGGTTA TCACAGGTTA TCACAGGTTA TCTCTTCTGT	120 180 240 300 360 120 180 240 300 420 420 480 600 660 720 780 840 990
5055606570	MASLAAANAE MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCTGCTG CATCACCGTC GGATGAAAG GGTGGTGGAC GGAACCCCTC TGGATCTTGG CTTGGGTCC GGTTGTGGCC CTTCTTGTATG CTCTAGGCACA CATCCTCCCC AAGCTGATAC CCAGCTCCCC CAGCTCCCC CAGCTCCCC CAGCTCCCC CAGCTCCCCC CCCCCCC CCCCCCCC CCCCCCCCCC	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLIFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA seid Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCTTCATAATG ATACTTACAG ATACTTACAG ACCTCAGGT ACGGTTCATC ATGCTCAGC ACGCAGCTCA TGCTTCATC CAAAAGGCTAC CAAAAGGCTACG ACGCACCACC ACGCACCACCACC ACGCACCACCACCACCACCACCACCACCACCACCACCCACCA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCCC CCCGGCTGG TCAGACCTGG ACTATGACTG TCACAACGGC TCGAGCCTGC CCGGAGCCTG CCAGGATGC CTGGAGCCAG ATTACTTCTC GCACCCTGGA GCCACACTGC GCACCCTGGA TCCCTGGACCAGC TCCCTGGACCAC GCGCCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCAGC TCCCTGGACCACGC TCTCTGAGCAC GTGTATGTCC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCCGAC ACCACCGTGG TGGCAACAAG TTGGAAAGCA TGACATTCAG GATCTTCCTC AAAGATGAAA AATGGGAGAC GCCAAGTGCA CACCACCTC CTGAGGAGAG GGTCTTGATC AGTGGCTCC	LVRLGAQDDS GLFAEKVYGF GGLSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC CTGTGCGGTTC ACAGTCACAC CAGAACCAG CTGAGAATT AAAGCTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT GGAGCACCAC ATCCTTTGCT TCCTTTTAGAG AAACTCGCCC AGCAGATCAT	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKOK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACCCAA GCATGAGAGA GCATGAGAGA GCATGAGGA TCGCCATGTC GCCTCCTCAT TCACAGGTTA TCACAGGTTA TCACAGGTTA TCTCTTCTGT	120 180 240 300 360 120 180 240 300 420 420 480 600 660 720 780 840 990
5055606570	MASLAAANAE MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GGTCCTGCTG CATCACCGTC GGATCATGA GGTGGTGGAC GGATCTTGATG CTCAGGCACA CTCAGCACA CATCCTCCC AAGCTGCCC TGGACCACT CCAGCTGCC CTGGACCACT	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA see id Accession Lence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCCTTAAGT AAACTAAATG AAACTAAATG ACCCTGCAGG CAGTTCAGT ACGTTCATC ATGTCCTTCC CGCATGGACA TGCTTCATCC ACGACTACG AGGTCATCA ACCCAACTCA ACCTACACG AGGTCATCA ACCCAACTCA ACGTCATCA ACGTCATCA ACGTCATCA ACGTCATCA ACGTCATCA ACGTCATTCA AGGTCATTCA AGGTCATTCA AGGTCATTCA AGGTCATTCA AGGTCATTCA AGGTCATTCA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB0529/ 14 21 CTTCCAGGCT CAGCCGCCC CCGGGCTGG TCAGACCTGG ACTATGACTG AGCAACTGC CCAGGATGTC TCGATGGCAC TCGATGGCAC ATTACTTCTC GCACCTTGGA ATTACTTCTC GCACCAGGACTGC TCCTTGGCAT CTGTGAGCAC CTGTGAGCAC CTGTGAGCAC CTGTGAGCAC CTGTGAGCAC CTGTGTATGTCC CTGCCTTGAT	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCGAC ACCACGGTGG TGGCAACAAG CTGGAAAGCA TGACATTCAG TTGTGAGCAG GATCTTCCTC CAAGATGCA AATGGAGAC ACCACCCTC CTGAGGAGAG GGTCTTGATC AGTGGCTCC ATGGCCTC ATGGCCTC	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CTTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCAG CTGGAGAATT AAAGCTGAAC GTGAGACACG TGTATAGGAT GCAGACACCA TCCTTTGCC TCCTTTGCC TCTTTGACT AAAACTCGCC ACCAGATCAT AAACTCACAC ACCAGTATTA	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCCTATGCG TCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCCAA GACACACCCAA GACACACCCAA GCATTGAGGA TCGCCATGTC GCCTCCTCAT TGACAGGTTA TTCTGTCTCG GATGACATCA CCAGCAGTTA CCCAGCAGTTA	120 180 240 300 360 120 180 240 300 420 480 540 660 720 840 900 900 1020
5055606570	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAG CCTGGGGAAA GGTGGTGGAC CATCTGGGACCAC CATCCTCCCC AAGCTGATC CTCAGGCACA CATCCTCCCC AGCTGCCCC TGGACCAAT CCAGCTGCCC TGGACCAAT CCAGCTGCCC TGGACCCAAT TGCCTCAACAT TACCTAACAT	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR 1LFSGKVSCP 264 DNA sei id Accession Lence: 74-8 11 GGTGATTCAT TTAATGGCAG ACCTAAGT ACTTTTCTTC AAACTAAATG ACCTGCAGG CAGTTCATT ACGGTTCATC ATCTTCCTTCC GGCATGGACA ACCCAACTCA ACCCAACTCA TGCTTCATC CAAAAGGCTC CAAAAGGCTC ACGACCTACG AGCTCATCA ACTTATCACA ACCTACCAACTCA ACCAACTACA ACTATTACAAT	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCGC CCCGGCCTGG TCAGACCTGG ACTATGACTG TCACAACGGC AGCAACTGCG CCAGGATGTC TCGATGGGCA CTGGAGCCAG ATTACTTCTC GCACCCTGGA TCTCTGAGCCAG TCCCTTGGATTTTTCTCTGGCATTTCTCT TCCCTTGATTTCTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTC	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFQFK EEGTEATAAT O6 S1 CTCCTTCCAT TACCAAGATC CGCAGCGAC ACCACGTGG TGGCAACAAG ATTCTCAT AAAGATCAA AATGGAGAC CACCACCTC CTGAGAGG GGTCTTGAT AGTGTGAT AGTGGAAGC TGGAAGTCA AATGGAGAG CTGGAAGTCA AATGGAGAG CCTAGAGAGA CCTCTAGAGAGA GGTCTTGATC AGTGGCCTC TGCTACTGAT AGTGGCCTC TGCTACTGAT AGTGGCCTC TCCTTTTGCT TGCTACTGA	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCCAG CTGAGAGATT AAAGCTGAAG CTCTTTGACT GAAAAGTGGG TGTAAGGAT GGAGCACCAC ATCCTTTGCT TCCTTTAGAT ACACTCTTGCT TCCTTTAGAT AAACTCGCCC AGCAGATCTA ACAATTTTA TGGAATTCCT	LSQIDKLLHV LSQIDKLLHV HKDYIECAEK LVNAVYFKGK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGT CTGCAGAGA ACACACCCAA GACACACCAA GACACACCAA GCCTTGAGGA TCGCCATGTC GCCTTCTCT TGCTGAGGA TCGCCATGTC GCCTCCTCAT TTAGACAGTT TCGCCATGTC GCCTCCTCAT TTCTGTCTGG GATGACATA CCAGCAGTTA GCACTTAAAG	120 180 240 300 360 120 180 240 300 360 720 780 900 960 1020 1080
505560657075	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCTGCTG GGATCAACGTC GGATGAAAAG GGTGGTGGAC CTTCTGGTG AATGTGGACA GGTTGTGGCC CTTCTTGATG CTCAGGCACA CATCCTCCCC AGCTGATCAC CAGCTGCCC TGGACCAAT TACCTAACAT TACCTAACAT TTCTGGCTGAT	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA sei id Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ACCTTAATG AAACTAAATG AAACTAAATG ATACTTACAG ACCTGCAGG CAGTTCATC GGCATGGACA ACCAACTCA ACCAACTCA ACGACTCATCA CCAAAAGGCTC ACGACTACG AGCTCATCC ACGTCATCC ACGTCATCC ACGACTACG ACGTCATCC ACGTCATCC ACGTCATCC ACGTCATCC ACGTCATCC ACGACTACG ACTTATCCAT CC ACGTCATCC ACGTCATCC ACGTCATCC ACGTCATCC ACGACTACT ACTTAAACAGA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCC CCCGGCTGG TCAGACCTGG ACTATGACTG ACTATGACTG CTGAGGCCAGC CTGGAGCCAGC CTGGAGCCAGC CTCCTGGCA ATTACTTCTC TCGATGGCCACGC CTCCTGGCA CTCCTGGAGCCAGC TCCCTGGAGCCAGC TCCCTGGAGCCAGC TCCCTGGAGCCAGC TCCCTGGAGCCAGC TCCTGCTTGAT TTTCTCTTGG TATATCATTT	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT O6 SI CTCCTTCCAT TACCAAGATC CACACGGTGG TGGCAACAAG TTGTGAGCAG GATCTTCCTC AAAGATGAA AATGGGAGC CACACCCTC CTGAAGAGC AGTCTTGTGAGCAG CTGCTAGCAGT CTCCTTTGCC TTGTAGCAGT TTGTAGGAGAC TCCTTTTGCC TGCTACCTGATCTCTCTCTCTCTTCTCT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC ACAGACCAG GAAAACCAG GAAAAGTGGG TGTATAGGAT GGAGAACT TCCTTTGAG AAACTGGCC AGCAGACCAC ATCCTTTGAT TCCTTTTAGAT AAACTGACC AGCAGATCAT TCCTTTTAGAT ACAATTTTA TGGAATTCCT CTTTTTTTTTT	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKCK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACCCAA GACACCCAA GACACCCAA GCCTTGTGGGT TGGCATGTC GCCTCCTCAT TGACAGGTT TGACAGGTTA TTCTGTCTGG GATGACATCA CCAGCAGTTA CCAGCAGTTA CCAGCAGTTA CCAGCAGTTA GCACTTAAAG GGAAAATCAA	120 180 240 300 360 120 180 240 480 600 660 720 780 840 900 960 1020 1080
5055606570	MASLAAANAE MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAA GGTGGGAAG GGTGGTGGCC CTTCTTGATG CTCTGGGCACA CATCCTCCC AAGCTCATACA CCAGCTGCC TGGACCAAT TACCTAACAT TTCTGGCTG GTACTTGTT	FCFNLFREMD MSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA secid Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCCTTAGT AAACTAAATG ACCTTAAGT ACGTTCAGT ACGTTCAGT ACGTTACT ATGTCATC GGCATGGACA ACCCAACTCA TGCTTCATC CAAAAGGCTC ACGACTACG AGCTCATCA ATTATGCAAT ATTATGCAAT CTAAACAAGA GAATGATGAT	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCGGGCTGG TCAGACCTGG ACTATGACTGG TCACAACGGC TCAGACTGGC CCAGGATGTC CTGGAGCCAG ATTACTTCTC GCACCTGGA TCCTGGAGCAG TCCTGGAGAC TCCTGGAGT TCCTGGAT TCTCTTGGT TTTTCTTTGG TATACTTT	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCGAC ACCACGGTGG TGGCAACAAG TGGAAAAGCA TGACATCCCT AAAGATGAAA AATGGGAGAG GATCTTCCTC CTGAGGAGAG GGTCTTGATC CTGAGGAGAG TGCTACCTC TCCTTTTGCC TCGTTCTCTC TCGTTCTCTC TCAAATGATAT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCAG CTGGAGAATT AAAGCTGAAG CTGTAGAGT GGAGCACCAC ATCCTTTGCT TCCTTTAGAG AAACTCGCCC AGCAGATCAT ACAATTTTA AGAGTCACT TCTTTTGTT TGTCAGTAAA	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKOK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACCCAA GCATGAGAGA GACACGCAA GCCTTGAGGG TCGCCATGTC GCCTCCTCAT TGACAGGTTA TCACAGGTTA TCACAGGTTA GCACTTCAGC CAGCAGTTA GCACTTAAGA CACACCCAA CACACCCAA TCACAGCAGTA CACACCCAA TCACAGGTTA CACAGGTTA GCACTTAAGA CAGCAGTTA GCACTTAAGA ATAATCACGT	120 180 240 300 360 120 180 240 300 660 720 960 1020 1080 1140 1200
505560657075	MASLAAANAE MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAA GGTGGGAAG GGTGGTGGCC CTTCTTGATG CTCTGGGCACA CATCCTCCC AAGCTCATACA CCAGCTGCC TGGACCAAT TACCTAACAT TTCTGGCTG GTACTTGTT	FCFNLFREMD MSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA secid Accession uence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGGCTGGT ATCCTTAGT AAACTAAATG ACCTTAAGT ACGTTCAGT ACGTTCAGT ACGTTCATC ATTTCTTC GGCATGGACA ACCCAACTCA TGCTTCATC ACGACTCA TGCTTCATC ACGACTACG AGCTCATCA ATTTTTCATC ACGACTACG AGCTCATCA ATTTTTCATC ACGACTACG AGCTCATCA ATTTTTCATCA ATTTTTCATCA ATTTTTTCATC ATTTTTTCATC ATTTTTTCATC ATTTTTTCATC ATTTTTTCATC ATTTTTTCATAT ATTTTTTCATAT ATTTTTTTCATAT ATTTTTTTCATAT ATTTTTTTCATAT ATTTTTTTCATAT ATTTTTTTT	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCGGGCTGG TCAGACCTGG ACTATGACTGG TCACAACGGC TCAGACTGGC CCAGGATGTC CTGGAGCCAG ATTACTTCTC GCACCTGGA TCCTGGAGCAG TCCTGGAGAC TCCTGGAGT TCCTGGAT TCTCTTGGT TTTTCTTTGG TATACTTT	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCGAC ACCACGGTGG TGGCAACAAG TGGAAAAGCA TGACATCCCT AAAGATGAAA AATGGGAGAG GATCTTCCTC CTGAGGAGAG GGTCTTGATC CTGAGGAGAG TGCTACCTC TCCTTTTGCC TCGTTCTCTC TCGTTCTCTC TCAAATGATAT	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCAG CTGGAGAATT AAAGCTGAAG CTGTAGAGT GGAGCACCAC ATCCTTTGCT TCCTTTAGAG AAACTCGCCC AGCAGATCAT ACAATTTTA AGAGTCACT TCTTTTGTT TGTCAGTAAA	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKOK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACCCAA GCATGAGAGA GACACGCAA GCCTTGAGGG TCGCCATGTC GCCTCCTCAT TGACAGGTTA TCACAGGTTA TCACAGGTTA GCACTTCAGC CAGCAGTTA GCACTTAAGA CACACCCAA CACACCCAA TCACAGCAGTA CACACCCAA TCACAGGTTA CACAGGTTA GCACTTAAGA CAGCAGTTA GCACTTAAGA ATAATCACGT	120 180 240 300 360 120 180 240 300 660 720 960 1020 1080 1140 1200
505560657075	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GGTCCTGCTC GGATCAAAAG CCTGGGGAAG GGTGGTGGGA AATGTGGAC AATGTGGAC CTTCTTGGTC CTCAGGCACA CATCCTCCC TGGACCAAT TACCTAACAT TTCTGGCTGA GTACTTCTG CTGGACCAAT TTCTGGCTGA TTCTTGGCTGACTACACT TTCTGGTTCACT TTCTTGCTGACAAT TTCTGGCTGA	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA see id Accession Lence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGTGCAGG ATCCTTACTTC AAACTAAATG ACCCTGCAGG CAGTTCATTC ATGCTTCC GGCATGGACA ACCCAACTCA TGCTTCATCC CAAAAGGCTC ACGACCTACG AGCTTCATCC CAAAAGGCTC ATGCTCATCA ACCACTACG ACCAACTACA ACCACTACG AGCTCATTCA ATGTCCTTCC CAAAAGGCTC ACGACTACG AGCTTCATCC AATGACAAGA GAATGATGAT ACCTCTGGGG GAATGATGAT ACCTCTGGGG ACAATGATGAT ACCTCTGGGG	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCGGGCTGG TCAGACCTGGA ATTATGACTG GCAGCACGCAG ATTACTTCT GCACCTGGA GGGCCAGG TCCCTGGCAT CTGTGAGCAG CTGTGAGCAG TCCCTGGCAT CTGTGAGCAG TCCCTTGGTATGTCC CTGCCTTGAT TTTCTCTTGG TATATCATTT CTCTTTCTTG TATATCATTT CTCTTTTCCCG	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKPNLSVIE YVEVFFPQFK EEGTEATAAT 31	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CCAGAACCCAG CTGAGAGATT AAAGCTGAAG CTCTTTGAGT GAAAAGTGGG TGTATAGGAT CATCTTTGCT TCCTTTAGAG AACTCTCCC AGCAGATCAT TCCTTTAGAG AACTCTTTCCT TCCTTTTAGAG TCCTTTTAGAG AACACTCCC CTCTTTGTTT TCTCTTTTTTTTTT	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKCK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG CTCCCTAGCG TCCGCTTCT TTTGCTATCA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCCAA GACACACCAA GACACGCAG GCTTGAGGA TCGCCATGTC GCCTCCTCAT TTCGTCTGG GATGACATCA CCAGCAGTTA TCTCGTCTGG GATGACATCA CCAGCAGTTA GCACTTAAAG GCAAAATCAA ATAATCACGT AAATTATTTA	120 180 240 300 360 120 180 240 300 660 720 780 840 900 900 1080 1140 1260
505560657075	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAG GCTGGGGAGA GGAGCCCAT TGGATCTTGG AATGTGGAC CTTCTTGATG CTCAGGCACA CATCCTCCCC AAGCTGATAC CAGCTGCTAC CTCTCTCCCC TGGACCACAT TACCTAACAT TTCTGGCTGA TTCTTGGTG GTACTTCTTT TAGACTTCTT TAGACTTCTT TAGACTTCTT TAGACTAAAAAA	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR 1LFSGKVSCP 264 DNA sei id Accession Lence: 74-8 11 GGTGATTCAT TTAATGGCAG ACCCTAAGT ACTTTTCTTC AAACTAAATG ACCCTGCAGG CAGTTCATT ACGGTTCATC AGCATCCAT ACCCAACTCA ACCTACGG AGCTCATTCA ACACTACG AGCTCATTCA ACTAAACAAGA CAAAGAATGATGAT CTAAACAAGA ATTATGCAAT CTAAACAAGA ATTATATATA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCGGGCTGG TCAGACCTGG ACTATGACTG ACTATGACTG GCACCAGGAGCCAG ATTACTTCTC GCACCCTGGA TCCCTGGAT CTCCTGGCAT TTCCTTCTTGG TATATCATTT CTCTTTCTTGG TATATCATTT CTCTTTCTTGG ATTATCATTT CTCTTTCTTGG ATTATCATTT CTCTTTCTGG ATTATCATTT CTCTTTCTGG ATTATCATTT CTCTTTCTGG ATTATCATTT	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCGAC ACCACGGTGG TGGCAACAAG TTGTGAACAG ATGACATTCAG AAAGATCAC AAAGATCAC ACCACCTC CCTAGGGAG GGTCTTGATC AGTGGCTC TCCTTTGCC TCCTTTTGCC TCCTTTCCT CAAATGATAT TGTCCTGAA	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCCAG CTGAAGAGTT AAAGTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT TCCTTTGACT TCCTTTTAGAT TACACTCTTCCTTCCTTTAGAT TCCTTTTGTT TCCTTTTAGAT TCCTTTGTT TCTCAGTAAA AAATTTTT TGTAGTAAATTTTT TTTATTGTTC	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKOK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG TCCCGCTTCT TTTGCTATGA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACCCAA GCATGAGAGA GACACGCAA GCCTTGAGGG TCGCCATGTC GCCTCCTCAT TGACAGGTTA TCACAGGTTA TCACAGGTTA GCACTTCAGC CAGCAGTTA GCACTTAAGA CACACCCAA CACACCCAA TCACAGCAGTA CACACCCAA TCACAGGTTA CACAGGTTA GCACTTAAGA CAGCAGTTA GCACTTAAGA ATAATCACGT	120 180 240 300 360 120 180 240 300 660 720 780 840 900 900 1080 1140 1260
505560657075	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAG GCTGGGGAGA GGAGCCCAT TGGATCTTGG AATGTGGAC CTTCTTGATG CTCAGGCACA CATCCTCCCC AAGCTGATAC CAGCTGCTAC CTCTCTCCCC TGGACCACAT TACCTAACAT TTCTGGCTGA TTCTTGGTG GTACTTCTTT TAGACTTCTT TAGACTTCTT TAGACTTCTT TAGACTAAAAAA	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR ILFSGKVSCP 264 DNA see id Accession Lence: 74-8 11 GGTGATTCAT TTAATGGCAG TCCGTGCAGG ATCCTTACTTC AAACTAAATG ACCCTGCAGG CAGTTCATTC ATGCTTCC GGCATGGACA ACCCAACTCA TGCTTCATCC CAAAAGGCTC ACGACCTACG AGCTTCATCC CAAAAGGCTC ATGCTCATCA ACCACTACG ACCAACTACA ACCACTACG AGCTCATTCA ATGTCCTTCC CAAAAGGCTC ACGACTACG AGCTTCATCC AATGACAAGA GAATGATGAT ACCTCTGGGG GAATGATGAT ACCTCTGGGG	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCGGGCTGG TCAGACCTGG ACTATGACTG ACTATGACTG GCACCAGGAGCCAG ATTACTTCTC GCACCCTGGA TCCCTGGAT CTCCTGGCAT TTCCTTCTTGG TATATCATTT CTCTTTCTTGG TATATCATTT CTCTTTCTTGG ATTATCATTT CTCTTTCTTGG ATTATCATTT CTCTTTCTGG ATTATCATTT CTCTTTCTGG ATTATCATTT CTCTTTCTGG ATTATCATTT	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCGAC ACCACGGTGG TGGCAACAAG TTGTGAACAG ATGACATTCAG AAAGATCAC AAAGATCAC ACCACCTC CCTAGGGAG GGTCTTGATC AGTGGCTC TCCTTTGCC TCCTTTTGCC TCCTTTCCT CAAATGATAT TGTCCTGAA	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCCAG CTGAAGAGTT AAAGTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT TCCTTTGACT TCCTTTTAGAT TACACTCTTCCTTCCTTTAGAT TCCTTTTGTT TCCTTTTAGAT TCCTTTGTT TCTCAGTAAA AAATTTTT TGTAGTAAATTTTT TTTATTGTTC	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKCK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG CTCCCTAGCG TCCGCTTCT TTTGCTATCA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCCAA GACACACCAA GACACGCAG GCTTGAGGA TCGCCATGTC GCCTCCTCAT TTCGTCTGG GATGACATCA CCAGCAGTTA TCTCGTCTGG GATGACATCA CCAGCAGTTA GCACTTAAAG GCAAAATCAA ATAATCACGT AAATTATTTA	120 180 240 300 360 120 180 240 300 660 720 780 840 900 900 1080 1140 1260
50556065707580	MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCCTGCTG CATCACCGTC GGATGAAAAG GCTGGGGAGA GGAGCCCAT TGGATCTTGG AATGTGGAC CTTCTTGATG CTCAGGCACA CATCCTCCCC AAGCTGATAC CAGCTGCTAC CTCTCTCCCC TGGACCACAT TACCTAACAT TTCTGGCTGA TTCTTGGTG GTACTTCTTT TAGACTTCTT TAGACTTCTT TAGACTTCTT TAGACTAAAAAA	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR 1LFSGKVSCP 264 DNA sei id Accession Lence: 74-8 11 GGTGATTCAT TTAATGGCAG ACCCTAAGT ACTTTTCTTC AAACTAAATG ACCCTGCAGG CAGTTCATT ACGGTTCATC AGCATCCAT ACCCAACTCA ACCTACGG AGCTCATTCA ACACTACG AGCTCATTCA ACTAAACAAGA CAAAGAATGATGAT CTAAACAAGA ATTATGCAAT CTAAACAAGA ATTATATATA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WINPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCCGGGCTGG TCAGACCTGG ACTATGACTG ACTATGACTG GCACCAGGAGCCAG ATTACTTCTC GCACCCTGGA TCCCTGGAT CTCCTGGCAT TTCCTTCTTGG TATATCATTT CTCTTTCTTGG TATATCATTT CTCTTTCTTGG ATTATCATTT CTCTTTCTTGG ATTATCATTT CTCTTTCTGG ATTATCATTT CTCTTTCTGG ATTATCATTT CTCTTTCTGG ATTATCATTT	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCGAC ACCACGGTGG TGGCAACAAG TTGTGAACAG ATGACATTCAG AAAGATCAC AAAGATCAC ACCACCTC CTGAGAGAG GGTCTTGATC AGTGGCTC TCCTTTGCC TCCTTTTGCC TCCTTTCCT CAAATGATAT TGTCCTGAA	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCCAG CTGAAGAGTT AAAGTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT TCCTTTGACT TCCTTTTAGAT TACACTCTTCCTTCCTTTAGAT TCCTTTTGTT TCCTTTTAGAT TCCTTTGTT TCTCAGTAAA AAATTTTT TGTAGTAAATTTTT TTTATTGTTC	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKCK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG CTCCCTAGCG TCCGCTTCT TTTGCTATCA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCCAA GACACACCAA GACACGCAG GCTTGAGGA TCGCCATGTC GCCTCCTCAT TTCGTCTGG GATGACATCA CCAGCAGTTA TCTCGTCTGG GATGACATCA CCAGCAGTTA GCACTTAAAG GCAAAATCAA ATAATCACGT AAATTATTTA	120 180 240 360 120 180 240 300 480 540 660 720 780 840 900 900 1080 1140 1260
505560657075	MASLAAANAE MASLAAANAE NTASGYGNSS LYDAKVERVD WQSAFTKSET LPENDLSEIE DESKADLSGI FLFVIRKDDI Seq ID NO: Nucleic Ac Coding seq 1 AAAACCTTGA CTCTGGGTCC GCTCTGCTG CATCACCGTC GGATGAAGA GGTGGTGGCC CTTGTTGGTAC CTTGTTGGCC CTTCTTGATG CTCTAGGCACA CATCCTCCC AAGCTGAAC CCAGCTCACAT TACCTAACAT TTCTGGCTGA ATACATACA TTCTGGCTGA ATAGAAAAA TTTAAATAAA	FCFNLFREMD FCFNLFREMD NSQSGLQSQL FTNHLEDTRR INCHFKSPKC NKLTFQNLME ASGGRLYISR 1LFSGKVSCP 264 DNA sei id Accession Lence: 74-8 11 GGTGATTCAT TTAATGGCAG ACCCTAAGT ACTTTTCTTC AAACTAAATG ACCCTGCAGG CAGTTCATT ACGGTTCATC AGCATCCAT ACCCAACTCA ACCTACGG AGCTCATTCA ACACTACG AGCTCATTCA ACTAAACAAGA CAAAGAATGATGAT CTAAACAAGA ATTATGCAAT CTAAACAAGA ATTATATATA	DNQGNGNVFF KRVFSDINAS NINKWVENET SGKAVAMMHQ WTNPRRMTSK MMHKSYIEVT Quence n #: AB05290 14 21 CTTCCAGGCT CAGCCGCCGC CCGGGCTGG TCAGACCTGG ACTATGACTGG ACTATGACTGG CCAGGATTTCCTCGAGGCAC GCACCTGGA ATTACTTCTC GCACCTGGA TCCCTGGAGCAC TCCCTGGAT TCCTTGAGCAC CTGTGATGTCC CTGCTTGAT TTTCTCTTGG TATACTTT TCTCTTGG ATTCTTTCCG ATGATTGTTT TCCCAAAAAAA	SSLSLFAALA HKDYDLSIVN HGKIKNVIGE ERKFNLSVIE YVEVFFPQFK EEGTEATAAT 06 31 CTCCTTCCAT TACCAAGATC GCGAGCGAC ACCACGGTGG TGGCAACAAG TTGTGAACAG ATGACATTCAG AAAGATCAC AAAGATCAC ACCACCTC CTGAGAGAG GGTCTTGATC AGTGGCTC TCCTTTGCC TCCTTTTGCC TCCTTTCCT CAAATGATAT TGTCCTGAA	LVRLGAQDDS GLFAEKVYGF GGISSSAVMV DPSMKILELR IEKNYEMKQY GSNIVEKQLP 41 CAAGTCTCTC CTTCTGTGCC CCTCACTCTC TGTGCGGTTC ACAGTCACAC CAGAACCCAG CTGAAGAGTT AAAGTGAAG CTCTTTGACT GAAAAGTGGG TGTATAGGAT TCCTTTGACT TCCTTTTAGAT TACACTCTTCCTTCCTTTAGAT TCCTTTTGTT TCCTTTTAGAT TCCTTTGTT TCTCAGTAAA AAATTTTT TGTAGTAAATTTTT TTTATTGTTC	LSQIDKLLHV LSQIDKLLHV LKDYIECAEK LVNAVYFKCK YNGGINMYVL LRALGLKDIF QSTLFRADHP 51 CTCCCTAGCG CTCCCTAGCG TCCGCTTCT TTTGCTATCA AAGGCCAGGT CTGTCAGTCC TACTGAGAGA ACACACCCAA GACACACCAA GACACGCAG GCTTGAGGA TCGCCATGTC GCCTCCTCAT TTCGTCTGG GATGACATCA CCAGCAGTTA TCTCGTCTGG GATGACATCA CCAGCAGTTA GCACTTAAAG GCAAAATCAA ATAATCACGT AAATTATTTA	120 180 240 300 360 120 180 240 300 660 720 780 840 900 900 1080 1140 1260

Seq ID NO: 265 Protein sequence: Protein Accession #: BAB61048.1

	WO 02/086443										
5	FLHYDCGNKT LQARMSCEQK	VTPVSPLGKK AEGHSSGSWQ	LNVTTAWKAQ FSFDGQIFLL	31 HSLCYDITVI NPVLREVVDI FDSEKRMWTT APLAMSSGTT	LTEQLRDIQL VHPGARKMKE	ENYTPKEPLT KWENDKVVAM	60 120 180 240				
10	Seq ID NO: 266 DNA sequence Nucleic Acid Accession #: XM_084853.1 Coding sequence: 127-444										
	1	11	21	31	41	51					
15	GACAAGATCA AACACCATGA AAAAAGGCCA	ACTTACCAGA GTGGCATCCA TTCGAAGAGA	TTTCCTAAAA CAAGAGCTTT GGACTTCCTG	GGTGAATATG GTGTACCTTA GAGGTGCTCG AGACTGCTCG	ACCACAAGCC GTTATACCAA TTACTAAAGG	ACCTTTTGGT CTCCAAAGGG TGAGCATATG	60 120 180 240 300				
20	AAATCCGAGC CCAGACGAAA GATTCCGGCC GTGTGTGTGC	CTGCAACCTG TCACTGCAGA AGGATGGTCA ATGCACATGT	CTCCGTCAAA AATATTCGCG GTGAAGTTAC GTGTGTTTTC	TCACTGTTTG GGTTCAGAAA ACTGAAATTC CAGGAATGTT CATGAGGCAC TTAAAGCAAG	TTTGCCTTGA TTGGCTTAAC TAAAGCACAA TGCTTTTTAT	AGAAGAACTT CATTTCAGAA AGGACTTTGG GCATTTCCCT	360 420 480 540				
25											
20	Seq ID NO: 267 Protein sequence: Protein Accession #: XP_084853.1										
30				31 LVTKGEHMTE ILGLTISEDS		51 FGLNPEGWKS	60				
35	Nucleic Ac	268 DNA sec id Accession Lence: 57-48	1 #: NM_001	398							
40	1	<u>1</u> 1	21	31	41	51					
40	CCCAGTATCT GCCCCAAGGA	GAGTACCCTG GGAGGATAGG	CTGCTCCTGC ATAATCCCGG	CTTTGTGCTC TGGCCACCCT GTGGCATCTA TCAGCGAGTA	AGCTGTGGCC TAACGCAGAC	CTGGCCTGGA CTCAATGATG	60 120 180 240				
45	ACTACTACAG ATTACTTCTT ACACCTGTGC TCTACGAAGT	ACGTCCGCTG CGACGTAGAG CTTCCATGAA TCCCTGGGAG	CGGGTACTAA GTGGGCCGCA CAGCCAGAAC AACAGAAGGT	GAGCCAGGCA CCATATGTAC TGCAGAAGAA CCCTGGTGAA CACCACCCAC	ACAGACCGTT CAAGTCCCAG ACAGTTGTGC ATCCAGGTGT	GGGGGGGTGA CCCAACTTGG TCTTTCGAGA CAAGAATCCT	300 360 420 480 540				
50	CCACCCCTGG GACAGACAGA	ACTGGTGGCC GAAGGCTGCA GCTTCTAATA	CCCACCCTGC GGAGTCCTTT	GGGAGGCCTC GTTGCTCAGC ATGGTACACA	CCCATGTGCC AGGGCGCTCT	TGCGCCAAGA GCCCTCCCTC	600 660 720				
55		269 Protein cession #:N									
	1	11	21	31	41	51 \					
60	DDYYRRPLRV	LLATLAVALA	WSPKEEDRII VNYFFDVEVG	PGGIYNADLN RTICTKSQPN	DEWVQRALHF LDTCAFHEQP	AISEYNKATK ELQKKQLCSF	60 120				
65	Nucleic Ac	270 DNA sec id Accession uence: 13-1	n #: XM_0932								
70	AAACGAGCAC GGCAGAGGGA	ACAAGCAGCA ATGGGGAGGG	CCAGGAGCTG GGCATCCTAC	CAGAAGAAGG CCCATATCTG	AGGCGGCAGC AGGTGCGACT	51 GGTCCGCACC GATGGACCAG GCGGGACGTA	60 120 180				
75	GCCTTCAAAA GGCGGCGGA ACGAGTAACA GGAACGCCCC	CGGTAAGAGC GAGATGCCCA CCGCCCCCAC GGCGCGCGGC	TGCAACTGAA TGAACTCAAG GGGACCGCTC CAGCAGCGGC	CGTGTGAGAC TACCCGGACA TCGAGGTCCC GGGCACCGGC	ATGGTGCAGA CGCCCTCCAC CCAAGCCAAG CCAATGGCCA	GCCCACGTGC TAGGCTGAGA TTCTACCACC GACGCAAGGA CGGAACTCAG AGCCTCCCGG	300 360 420 480				
80	GCCGAGGACC CTGCCCAAGG	CAGCTAGGCC CCCCGAGCCC CCAGGCTCCC	GTCACCCCGG AGGCTCCCTG	TTGCTCCCAC GCGGAGGCCT	GGGAAGGGGC CCGCTGGTCC	ACCAGGCAAA CGCCCAGATC GGCGTCCTGG	600 660 720				
85	Seq ID NO: 271 Protein sequence: Protein Accession #: XP_093210										
	1	11	21	31	41	51					

```
MLRHGEOKRK RARKKWDFLP TCAFKTVRAA TERVRHGADR LRGGGRDAHE LKYPDTPSTS
                                                                              60
       TTTSNTAPTG PLSRSPKPRT OGGTPRRRPA AAGTRANGHG TOHWOSALLT POACSVADGA
                                                                             120
       SRAEDPARPS PRLLPREGAP GKLPKAPSPG SLAEASAGLL AHVRLONADA QRVSISQALP
                                                                             180
 5
       PNSSVGRKEE RPGAGQQRRA PAPMATELST GSRPSSHRRR AVWPTEPPGP RTQLEPSPRL
       LPREGAPGKL PKAPSPGSLA EASAGPAQIM AATRLPSRGF LSGNGPASWL SS
       Seq ID NO: 272 DNA sequence
       Nucleic Acid Accession #: Eos sequence
10
       Coding sequence: 1..732
                                         31
                                                                51
       GGATACTGTG TCACTCAAAG TAATGGGAGG GAGAGAGAAC AGGGAGGGTA GGGATGCTTT
                                                                              60
15
       TGAAAAAGCT TTTTTTCCCA CTTTTAACTT GCTTTAGCGT TAAGAGTACT TACCAGCTAA
                                                                             120
       TAATGTGGAG GAAATTATTC TTTCTCATTG GAGATTACAG AATATATCTA TTCATCTTGA
                                                                             180
       ATACCCACTT GAAGCCTCTG TAGAAATGTC TCGTCCTCCG GTTGTATTTC TAAAACCTAC
       ATGATTTTGT CTTGTTTCTG CAGTGAGAAA TTACATCCAT AGCAAAGACA AAAGTCTTTT
                                                                             300
       TAAATTATTT TTATTTATCT TTCATATAGT TCTTACAATT TCTAAAAAAT TAACACTCAT
                                                                             360
20
       TTAGTATCAC AATTTATGGG AGAGGGTTTT TTGTATTTTT AAGCATATGT GGCTTATATA
                                                                             420
       AAAATTGCAG AAGTCATAGG ACTGTCATGT ATTGCAGCTC TGAGAACCAA TGCCTGAAAC
                                                                             480
       TTAAGCC
25
       Seq ID NO: 273 Protein sequence:
       Protein Accession #: Eos sequence
                                         31
                                                                51
                  11
                             21
                                                    41
30
       MGGRENREGR DAFEKAFFPT FNLL
       Seq ID NO: 274 DNA sequence
       Nucleic Acid Accession #: NM_003976.2
       Coding sequence: 299-961
35
       CTCTGAGCTT CTCTGAGCCT TGTTTGCTCA TCTGGAAAAA GGGGATTAAA CCATTTACCT
                                                                              60
       CATGGAGTTG TGAAAGAATA GCTGCAAAGC ACCTAACACA TAGTAAGGTT CCCAGTGCAG
                                                                             120
40
       CTACTTCTGC TGGGTTGAGT CTAGCTGTGT AGGCCCCTTG TTCCTCACCT GGAGAAACTG
                                                                             180
       GGGTGGCAGG CCGGTCCCCC ACAAAAGATA ACTCATCTCT TAATTTGCAA GCTGCCTCAA
       CAGGAGGGTG GGGGAACAGC TCAACAATGG CTGATGGGCG CTCCTGGTGT TGATAGAGAT
                                                                             300
       GGAACTTGGA CTTGGAGGCC TCTCCACGCT GTCCCACTGC CCCTGGCCTA GGCGGCAGCC
                                                                             360
       TGCCCTGTGG CCCACCCTGG CCGCTCTGGC TCTGCTGAGC AGCGTCGCAG AGGCCTCCCT
                                                                             420
45
       GGGCTCCGCG CCCCGCAGCC CTGCCCCCCG CGAAGGCCCC CCGCCTGTCC TGGCGTCCCC
                                                                             480
       CGCCGGCCAC CTGCCGGGGG GACGCACGGC CCGCTGGTGC AGTGGAAGAG CCCGGCGGCC
                                                                             540
       GCCGCCGCAG CCTTCTCGGC CCGCGCCCCC GCCGCCTGCA CCCCCATCTG CTCTTCCCCG
                                                                             600
       CGGGGGCCGC GCGCGCGGG CTGGGGGCCC GGGCAGCCGC GCTCGGGCAG CGGGGGCGCG
                                                                             660
       GGGCTGCCGC CTGCGCTCGC AGCTGGTGCC GGTGCGCGCG CTCGGCCTGG GCCACCGCTC
                                                                             720
50
       CGACGAGCTG GTGCGTTTCC GCTTCTGCAG CGGCTCCTGC CGCCGCGCGC GCTCTCCACA
                                                                             780
       CGACCTCAGC CTGGCCAGCC TACTGGGCGC CGGGGCCCTG CGACCGCCCC CGGGCTCCCG
                                                                             840
       GCCCGTCAGC CAGCCCTGCT GCCGACCCAC GCGCTACGAA GCGGTCTCCT TCATGGACGT
                                                                             900
       CAACAGCACC TGGAGAACCG TGGACCGCCT CTCCGCCACC GCCTGCGGCT GCCTGGGCTG
                                                                             960
       AGGGCTCGCT CCAGGGCTTT GCAGACTGGA CCCTTACCGG TGGCTCTTCC TGCCTGGGAC
                                                                            1020
55
       CCTCCCGCAG AGTCCCACTA GCCAGCGGCC TCAGCCAGGG ACGAAGGCCT CAAAGCTGAG
                                                                            1080
       AGGCCCCTAC CGGTGGGTGA TGGATATCAT CCCCGAACAG GTGAAGGGAC AACTGACTAG
                                                                            1140
       CAGCCCCAGA GCCCTCACCC TGCGGATCCC AGCCTAAAAG ACACCAGAGA CCTCAGCTAT
                                                                            1200
       GGAGCCCTTC GGACCCACTT CTCACAGACT CTGGCACTGG CCAGGCCTCG AACCTGGGAC
                                                                            1260
       CCCTCCTCTG ATGAACACTA CAGTGGCTGA GGCATCAGCC CCCGCCCAGG CCCTGTAGGG
60
       ACAGCATTTG AAGGACACAT ATTGCAGTTG CTTGGTTGAA AGTGCCTGTG CTGGAACTGG
       CCTGTACTCA CTCATGGGAG CTGGCCCC
       Seg ID NO: 275 Protein sequence:
       Protein Accession #: NP_003967.1
65
       MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS
                                                                              60
      PAGHLEGGRT ARWCSGRARR PPPQPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA RGCRLRSQLV PVRALGLGHR SDELVRFRFC SGSCRRARSP HDLSLASLLG AGALRPPPGS
                                                                             120
70
                                                                             180
       RPVSQPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG
       Seq ID NO: 276 DNA sequence
       Nucleic Acid Accession #: NM_057091.1
75
       Coding sequence: 783-1445
                                         31
       ACTGGCCGCT GAGAGAAGAA TCGGGTGGAG CAGAGAGCAG CTGCTGCAGG GCAGACAGCC
80
       GGACCCCCAA ATCTGCACGT ACCAGCAGTC AGCCGCCCCA CGCAGGGACC GGCTTACCCC
                                                                             120
       TCGCTCCCCG CCCTCACTCA CTTTCTCCCG CCCTCGGCCC GGCCTCCCAG CTCTCTACTT
                                                                             180
       CGCGTGTCTA CAAACTCAAC TCCCGGTTTC CGTGCCTCTC CACCGCTCGA GTTCTCTACT
                                                                             240
       CTCCATATCC GAGGGGCCCC TCCCAGCATC TACCCCCCTC CCAACCTCGG GGGACCTAGC
                                                                             300
       CAAGCTAGGG GGGACTGGAT CCGACGGGTG GAGCAGCCAG GTGAGCCCCG AAAGGTGGGG
                                                                             360
85
       CGGGGCAGGG GCGCTCCCAG CCCCACCCCG GGATCTGGTG ACGCTGGGGC TGGAATTTGA
                                                                             420
       CACCGGACGG CTGCGGCGGC GGGCAGGAGG CTGCTGAGGG ATGGAGTTGG GCCCGGCCCC
                                                                             480
       CAGACAAGGC CCGGGGGCTC CGCCAGCAGC AGGTCCCTCG GGCCCCAGCC CTCGCTGCCA
                                                                             540
```

```
CCCGGGCCTG GAGCCCCACA CCCGAGGGTG CAGACTGGCT GCCAAGGCCA CACTTTTGGC
                                                                            600
       TAAAAGAGGC ACTGCCAGGT GTACAGTCCT GGGCATGCGC TGTTTGAGCT TCGGGGGAGA
                                                                            660
       GCCCAGCACT GGTCCCCGGA AAGGTGCCTA GAAGAACAAG GTGCAGGACC CCGTGCTGCC
                                                                            720
       TCAACAGGAG GGTGGGGGAA CAGCTCAACA ATGGCTGATG GGCGCTCCTG GTGTTGATAG
                                                                            780
 5
       AGATGGAACT TGGACTTGGA GGCCTCTCCA CGCTGTCCCA CTGCCCCTGG CCTAGGCGGC
                                                                            840
       AGCCTGCCCT GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT
                                                                            900
       CCCTGGGCTC CGCGCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCCGCCT GTCCTGGCGT
       CCCCCGCCGG CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC
                                                                          1020
       GGCCGCCGCC GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC
                                                                          1080
10
       CCCGCGGGGG CCGCGCGGC CGGGCTGGGG GCCCGGGCAG CCGCGCTCGG GCAGCGGGGG
                                                                          1140
       CGCGGGGCTG CCGCCTGCGC TCGCAGCTGG TGCCGGTGCG CGCGCTCGGC CTGGGCCACC
                                                                          1200
       GCTCCGACGA GCTGGTGCGT TTCCGCTTCT GCAGCGGCTC CTGCCGCCGC GCGCGCTCTC
                                                                          1260
       CACACGACCT CAGCCTGGCC AGCCTACTGG GCGCCGGGGC CCTGCGACCG CCCCCGGGCT
       CCCGGCCCGT CAGCCAGCCC TGCTGCCGAC CCACGCGCTA CGAAGCGGTC TCCTTCATGG
                                                                          1380
15
       ACGTCAACAG CACCTGGAGA ACCGTGGACC GCCTCTCCGC CACCGCCTGC GGCTGCCTGG
                                                                          1440
       GCTGAGGGCT CGCTCCAGGG CTTTGCAGAC TGGACCCTTA CCGGTGGCTC TTCCTGCCTG
                                                                          1500
       GGACCCTCCC GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC
                                                                          1560
       TGAGAGGCCC CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA
                                                                          1620
       CTAGCAGCCC CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG
       CTATGGAGCC CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG
20
                                                                           1740
       GGACCCCTCC TCTGATGAAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT
                                                                          1800
       AGGGACAGCA TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA
                                                                          1860
       CTGGCCTGTA CTCACTCATG GGAGCTGGCC CC
25
       Seg ID NO: 277 Protein sequence:
       Protein Accession #: NP_003967.1
                                                    41
                                                               51
                  11
       MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS
                                                                             60
30
       PAGHLPGGRT ARWCSGRARR PPPQPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA
                                                                            120
       RGCRLRSOLV PVRALGLIGHR SDELVRFRFC SGSCRRARSP HDLSLASLLG AGALRPPPGS
       RPVSOPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG
       Seq ID NO: 278 DNA sequence
35
       Nucleic Acid Accession #: NM_057160.1
       Coding sequence: 1-714
                                        31
                             21
40
       ATGCCCGGCC TGATCTCAGC CCGAGGACAG CCCCTCCTTG AGGTCCTTCC TCCCCAAGCC
                                                                             60
       CACCTGGGTG CCCTCTTTCT CCCTGAGGCT CCACTTGGTC TCTCCGCGCA GCCTGCCCTG
                                                                            120
       TGGCCCACCC TGGCCGCTCT GGCTCTGCTG AGCAGCGTCG CAGAGGCCTC CCTGGGCTCC
                                                                            180
       GCGCCCGCA GCCCTGCCCC CCGCGAAGGC CCCCCGCCTG TCCTGGCGTC CCCCGCCGGC
       CACCTGCCGG GGGGACGCAC GGCCCGCTGG TGCAGTGGAA GAGCCCGGCG GCCGCCGCCG
                                                                            300
45
       CAGCCTTCTC GGCCCGCGCC CCCGCCGCCT GCACCCCCAT CTGCTCTTCC CCGCGGGGGC
                                                                            360
       CGCGCGGCGC GGGCTGGGGG CCCGGGCAGC CGCGCTCGGG CAGCGGGGCC GCGGGGCTGC
                                                                            420
       CGCCTGCGCT CGCAGCTGGT GCCGGTGCGC GCGCTCGGCC TGGGCCACCG CTCCGACGAG
                                                                            480
       CTGGTGCGTT TCCGCTTCTG CAGCGGCTCC TGCCGCCGCG CGCGCTCTCC ACACGACCTC
                                                                            540
       AGCCTGGCCA GCCTACTGGG CGCCGGGGCC CTGCGACCGC CCCCGGGCTC CCGGCCCGTC
                                                                            600
50
       AGCCAGCCT GCTGCCGACC CACGCGCTAC GAAGCGGTCT CCTTCATGGA CGTCAACAGC
                                                                            660
       ACCTGGAGAA CCGTGGACCG CCTCTCCGCC ACCGCCTGCG GCTGCCTGGG CTGAGGGCTC
                                                                            720
       GCTCCAGGGC TTTGCAGACT GGACCCTTAC CGGTGGCTCT TCCTGCCTGG GACCCTCCCG
                                                                            780
       CAGAGTCCCA CTAGCCAGCG GCCTCAGCCA GGGACGAAGG CCTCAAAGCT GAGAGGCCCC
                                                                            840
       TACCGGTGGG TGATGGATAT CATCCCCGAA CAGGTGAAGG GACAACTGAC TAGCAGCCCC
                                                                            900
55
       AGAGCCCTCA CCCTGCGGAT CCCAGCCTAA AAGACACCAG AGACCTCAGC TATGGAGCCC
                                                                            960
                                                                           1020
       TTCGGACCCA CTTCTCACAG ACTCTGGCAC TGGCCAGGCC TCGAACCTGG GACCCCTCCT
       CTGATGAACA CTACAGTGGC TGAGGCATCA GCCCCCGCCC AGGCCCTGTA GGGACAGCAT
                                                                           1080
       TTGAAGGACA CATATTGCAG TTGCTTGGTT GAAAGTGCCT GTGCTGGAAC TGGCCTGTAC
                                                                           1140
       TCACTCATGG GAGCTGGCCC C
60
       Seg ID NO: 279 Protein seguence:
       Protein Accession #: NP_476501.1
                                                    41
                                                               51
                                        31
65
       MPGLISARGQ PLLEVLPPQA HLGALFLPEA PLGLSAQPAL WPTLAALALL SSVAEASLGS
                                                                             60
       APRSPAPREG PPPVLASPAG HLPGGRTARW CSGRARRPPP QPSRPAPPPP APPSALPRGG
       RAARAGGPGS RARAAGARGC RLRSQLVPVR ALGLGHRSDE LVRFRFCSGS CRRARSPHDL
                                                                            180
       SLASLLGAGA LRPPPGSRPV SQPCCRPTRY EAVSFMDVNS TWRTVDRLSA TACGCLG
70
       Seq ID NO: 280 DNA sequence
       Nucleic Acid Accession #: NM_057090.1
       Coding sequence: 29-715
75
                                                    41
                                                               51
       CTGATGGGCG CTCCTGGTGT TGATAGAGAT GGAACTTGGA CTTGGAGGCC TCTCCACGCT
                                                                             60
       GTCCCACTGC CCCTGGCCTA GGCGGCAGGC TCCACTTGGT CTCTCCGCGC AGCCTGCCCT
                                                                            120
       GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT CCCTGGGCTC
                                                                            180
80
       CGCGCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCCGCCT GTCCTGGCGT CCCCCGCCGG
                                                                            240
       CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC GGCCGCCGCC
                                                                            300
       GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC CCCGCGGGGG
                                                                            360
       CCGCGCGGCG CGGGCTGGGG GCCCGGGCAG CCGCGCTCGG GCAGCGGGGG CGCGGGGCTG
                                                                            420
       CCGCCTGCGC TCGCAGCTGG TGCCGGTGCG CGCGCTCGGC CTGGGCCACC GCTCCGACGA
                                                                            480
85
       GCTGGTGCGT TTCCGCTTCT GCAGCGGCTC CTGCCGCCGC GCGCGCTCTC CACACGACCT
                                                                            540
       CAGCCTGGCC AGCCTACTGG GCGCCGGGGC CCTGCGACCG CCCCCGGGCT CCCGGCCCGT
                                                                            600
       CAGCCAGCCC TGCTGCCGAC CCACGCGCTA CGAAGCGGTC TCCTTCATGG ACGTCAACAG
                                                                            660
```

```
WO 02/086443
       CACCTGGAGA ACCGTGGACC GCCTCTCCGC CACCGCCTGC GGCTGCCTGG GCTGAGGGCT
       CGCTCCAGGG CTTTGCAGAC TGGACCCTTA CCGGTGGCTC TTCCTGCCTG GGACCCTCCC
                                                                           780
       GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC TGAGAGGCCC
                                                                           840
       CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA CTAGCAGCCC
                                                                           900
 5
       CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG CTATGGAGCC
                                                                           960
       CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG GGACCCCTCC
                                                                          1020
       TCTGATGAAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT AGGGACAGCA
                                                                          1080
       TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA CTGGCCTGTA
       CTCACTCATG GGAGCTGGCC CC
10
       Seq ID NO: 281 Protein sequence:
       Protein Accession #: NP 476431.1
                                        31
                  11
15
       MELGLGGLST LSHCPWPRRQ APLGLSAQPA LWPTLAALAL LSSVAEASLG SAPRSPAPRE
                                                                            60
       GPPPVLASPA GHLPGGRTAR WCSGRARRPP PQPSRPAPPP PAPPSALPRG GRAARAGGPG
                                                                           120
       SRARAAGARG CRLRSOLVPV RALGLGHRSD ELVRFRFCSG SCRRARSPHD LSLASLLGAG
                                                                           180
       ALRPPPGSRP VSOPCCRPTR YEAVSFMDVN STWRTVDRLS ATACGCLG
20
       Seq ID NO: 282 DNA sequence
       Nucleic Acid Accession #: Eos sequence
                  11
                             21
                                                   41
                                                              51
25
       CTACTGCACC TGCCCTCTGT TTCCTTTGGA AATCTCTTAC CTTTCATTAG GGTTTCTTTC
       ATAGCAATTT CCTTTGGTTT TTAAGACTTC TACATTGCTT TTTCTTTTAT TATCTGTGCT
                                                                           120
       CCGTGAACCT TATGAATGCT GCTTAAAAAT AATGTCAAAA TATGTTTTAG CTGCCTACTC
                                                                           180
       AGGTAACGTT TTCTTTTGCT CTCATCTTGG TTTCCATATA CTATTTTTGG TTTTTTGTGA GATCTAATCA ATGATCTAGT CAGAAGCTAC TTCACTGGCT AACAGTGATC ATGTTCATGT
                                                                           240
30
                                                                           300
       GCTAAAAATG AACTTGAAAC ACGGAAGTAG TGGTTGGTCC AGTTTGAAAG CTCTTATTAG
                                                                           360
       TATTCTTCAT CCTGGCTGTA ATAATAGCCA TTATTTGTTA TGCCTTTGTT ATGTAGCAGA
                                                                           420
       CACTCTTAAG GATTTTATGT GTATTATTCA AATTGCTATT ACTGTTCTTT TTATAGTTGA
                                                                           480
       GAATCTCAGG ATACCTACAT TTATCACTTT TTCAATATAT ATGTATTTCT TATT
35
       Seg ID NO: 283 DNA seguence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 564-1481
40
                             21
                                                   41
                                                              51
                                        31
       GAGACTITTA ATCATCTATC CCTTGTGCTT TACGCAGACC CTACAATACA CTAGAGGCTT
                                                                             60
       CAAAGAGGTC AAAAATTCAC ATGTGTAGAC AAATTAGGTC CCTTAAGATG CCAGGCAAAC
                                                                           120
       GAAGTGCTAC CAAAACACGC AATGACTGTC CTAAAAGTGC GTTCTGGGAT ACACCTGTAA
45
       ACTTGGATCA AGTTCCCTCC CCTCTCCTCA AAATATATCG ACTTGTGCTG AAAGAAATCA
                                                                           240
       CGACCGATGC TCACAATTCT GACCTCGTAA TTATATAGGG GGTGGTTTTG GTTTCTGCGT
                                                                           300
       CTTTCCCTGA TTCAGTGGCA GGTAACATAT TTCATGTACA AAATGAACTG CAACACCACG
                                                                           360
       GCAAACAAGG GACAGGCCCT CAAAGTTGTC GGTAGGGAGC CAGGACCCCG CCAGTGGCGT
                                                                           420
       GGGGAGACAC CGTACTAAAC AAGCTTGCAA ACAGCAGGCA CCTTCCTGCC ACTGAGGAGG
50
       AAGGGCTGGC TAAGGGAGGC CGGGGCGGAG GAAGCCAAGC TCTGCAGGCC CTGACAAAGT
                                                                           540
       CCTCCCGGCC TCCACGCGTC GCCATGGCAA CGCGGGGTCT GTGCTGGCCG GGATTGGCCG
                                                                           600
       GCCTGGCGCG CGCAGGGCCC GCTGGGAAAG CGCGTCCCCG CCGCGGCTCC GCCAGTTTGA
                                                                           660
                                                                           720
       ACTTGGCGGG CCAGATGTGG GCGGCGGGGC GCTGGGGGCC TACTTTTCCC TCTTCCTACG
       CCGGTTTCTC TGCTGACTGC AGACCCAGGT CTCGGCCCTC CTCGGACTCC TGCTCAGTCC
                                                                           780
55
       CTATGACGGG CGCACGTGGG CAGGGGCTGG AGGTGGTGCG CTCGCCGTCG CCGCCGCTGC
                                                                           840
       CGCTGAGCTG CAGCAATTCC ACCAGGTCGC TGTTGTCTCC CCTTGGCCAC CAGAGCTTCC
                                                                           900
       AGTTTGACGA GGACGACGGT GACGGGGAGG ATGAGGAAGA CGTGGATGAT GAGGAAGACG
                                                                           960
       TGGATGAAGA TGCCCATGAT TCAGAGGCCA AAGTGGCGAG CCTGAGAGGA ATGGAGTTAC
                                                                          1020
       AGGGGTGCGC CAGCACTCAG GTTGAATCAG AAAATAACCA AGAAGAACAG AAACAGGTGC
                                                                          1080
60
       GCTTACCAGA AAGCCGCCTG ACACCATGGG AGGTGTGGTT TATTGGCAAA GAAAAAGAAG
                                                                          1140
       AACGTGACCG GCTGCAACTG AAAGCTCTAG AGGAATTAAA TCAACAACTA GAAAAAAGAA
       AAGAAATGGA AGAACGTGAA AAAAGAAAGA TAATTGCTGA AGAAAAGCAC AAGGAATGGG
                                                                          1260
                                                                          1320
       TTCAGAAAAA GAATGAGCAA AAAAGAAAAG AAAGAGAACA AAAAATTAAT AAAGAAATGG
       AGGAAAAAGC AGCAAAGGAA CTGGAGAAAG AATACTTGCA AGAAAAAGCA AAAGAAAAAT
                                                                          1380
65
       1440
       AAAACAACAG CAAGCTGAAA TACAGGAGAA AAAGGAAATA GCAGAAAAAA AGTTTCAAGA
                                                                          1500
       ATGGTTGGAA AATGCGAAAC ATAAACCTCG TCCAGCTGCA AAGAGCTATG GTTATGCCAA
       TGGAAAACTT ACAGGTTTTT ACAGTGGAAA TTCCTATCCA GAACCAGCCT TTTATAATCC
                                                                          1620
       AATTCCGTGG AAACCAATTC ATATGCCACC TCCCAAAGAA GCTAAGGATC TATCAGGAAG
                                                                          1680
70
       GAAGAGTAAA AGACCTGTGA TAAGTCAGCC ACACAAGTCA TCATCTCTGG TAATTCATAA
                                                                          1740
       AGCCAGGAGC AATCTTTGCC TTGGAACTCT GTGCAGAATA CAAAGATAGC GTATGTGGAA
                                                                          1800
       AATAACATGC TTTTATCTGG AGCTATTTAA TTTAAAAATC AGAAATTGTT TTTTACTGCT
                                                                          1860
       CAGTCAATAA CTCAACACTT AATGTGATTA TTGACAAATA GCAATTTTTG CATTTGTATA
                                                                          1920
       TGGAGTCCTT AGAGTTGAGG AAGATATTTT CTGGATTTTG GTTTTTATAA ACTTTTTAAG
                                                                          1,980
75
       GTTGATCTTG GCATGTTGTT TTGCAGAATA AGTGGCTGAA TATGTAAGAA TTGTGTTTGT
                                                                          2040
       ATTTAGCTTG TATTAAAAGT ACACTGTAAT ACCAATAAAA CTAACAATTT TTCTTG
       Seq ID NO: 284 Protein sequence:
       Protein Accession #: Eos sequence
80
                                        31
                                                              51
       MATRGLCWPG LAGLARAGPA GKARPRRGSA SLNLAGQMWA AGRWGPTFPS SYAGFSADCR
                                                                             60
       PRSRPSSDSC SVPMTGARGQ GLEVVRSPSP PLPLSCSNST RSLLSPLGHQ SFQFDEDDGD
                                                                           120
85
       GEDEEDVDDE EDVDEDAHDS EAKVASLRGM ELQGCASTQV ESENNQEEQK QVRLPESRLT
                                                                           180
       PWEVWFIGKE KEERDRLQLK ALEELNQQLE KRKEMEEREK RKIIAEEKHK EWVQKKNEQK
                                                                           240
       RKEREQKINK EMEEKAAKEL EKEYLQEKAK EKYQEWLKKK NAEECERKKK EKKNNSKLKY
                                                                           300
```

RRKRK

Seq ID NO: 285 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 1-1746 5

	1	11 1	21 	31 	41 	51]	
	ATGCCACTGA	AGCATTATCT	CCTTTTGCTG	GTGGGCTGCC	AAGCCTGGGG	TGCAGGGTTG	60
10		GCTGCCCTAG					120
	GGGGCACGCA	TTGTGGCGGT	GCCCACCCCT	CTGCCCTGGA	ACGCCATGAG	CCTGCAGATC	180
	CTCAACACGC	ACATCACTGA	ACTCAATGAG	TCCCCGTTCC	TCAATATCTC	AGCCCTCATC	240
	GCCCTGAGGA	TTGAGAAGAA	TGAGCTGTCG	CGCATCACGC	CTGGGGCCTT	CCGAAACCTG	300
1.5	GGCTCGCTGC	GCTATCTCAG	CCTCGCCAAC	AACAAGCTGC	AGGTTCTGCC	CATCGGCCTC	360
15		TGGACAGCCT					420 480
	CAGCCGGCCC	ACTTCTCCCA TCCCTGACGG	GIGCAGCAAC	CTCAAGGAGC	TGCAGTTGCA	CCCCAACCAC	540
	CTGGAATACA	GCCTCACCCA	CARCTICGAC	ACCOTOTICC	ACCACCACGAA	CNATCTCCAG	600
	GGCAAGAATA	TGTATGAGAA	CATCTCACCC	CATATCCCCA	TGGGCACTTT	TGATGGGCTT	660
20	GTCTAACCTGC	AGGAACTGGC	TCTACAGCAG	AACCAGATTG	GACTGCTCTC	CCCTGGTCTC	720
		ACCACAACCT					780
	CCACCCAGCA	TCTTCATGCA	GCTGCCCCAG	CTCAACCGTC	TTACTCTCTT	TGGGAATTCC	840
	CTGAAGGAGC	TCTCTCTGGG	GATCTTCGGG	CCCATGCCCA	ACCTGCGGGA	GCTTTGGCTC	900
~~	TATGACAACC	ACATCTCTTC	TCTACCCGAC	AATGTCTTCA	GCAACCTCCG	CCAGTTGCAG	960
25		${\tt TTAGCCGCAA}$					1020
		GGGAGCTGTC					1080
		TGGCCAACCT					1140 1200
		TCTTCGCCAA					1260
30	CTGGAGAACT	TGCCCCTCGG CCTGGAGGTG	TCATCTTCGAT	ATCCTTCCCC	TCCCCCAACTC	GCTGCGGCTG	1320
50	AACCACCCTA	GGTTAGGGAC	CGACACTGTA	CCTGTGTGTTT	TCAGCCCAGC	CAATGTCCGA	1380
	GGCCAGTCCC	TCATTATCAT	CAATGTCAAC	GTTGCTGTTC	CAAGCGTCCA	TGTCCCTGAG	1440
	GTGCCTAGTT	ACCCAGAAAC	ACCATGGTAC	CCAGACACAC	CCAGTTACCC	TGACACCACA	1500
		CTACCACTGA					1560
35	ATTCAGGTCA	CTGATGACCG	CAGCGTTTGG	GGCATGACCC	AGGCCCAGAG	CGGGCTGGCC	1620
	ATTGCCGCCA	TTGTAATTGG	CATTGTCGCC	CTGGCCTGCT	CCCTGGCTGC	CTGCGTCGGC	1680
	TGTTGCTGCT	GCAAGAAGAG	GAGCCAAGCT	GTCCTGATGC	AGATGAAGGC	ACCCAATGAG	1740
	TGTTAAAGAG	GCAGGCTGGA	GCAGGGCTGG	GGAATGATGG	GACTGGAGGA	CCTGGGAATT	1800
40	TCATCTTTCT	GCCTCCACCC	CTGGGTCCAT	GGAGCTTTCC	CGTGATTGCT	CTTTCTGGCC	1860 1920
40		GTGTGCCTAC CTTCCTACAA					1980
	CGTGCCGGAC	TTCATACCCC	TCAGGAAGAI	TCGAGAGGGC	TCTTCCTCCA	AATCCTCCCC	2040
	ACCTGTCCTC	CAAGAACAGC	CTTCCCTGCG	CCCAGGCCCC	CTCCGGGCCT	CTGTAGACTC	2100
	AGTTAGTCCA	CAGCCTGCTC	ACTTCGTGGG	AATAGTTCTC	CGCTGAGATA	GCCCCTCTCG	2160
45	CCTAAGTATT	ATGTAAGTTG	ATTTCCCTTC	TTTTGTTTCT	CTTGTTTGTG	CTATGGCTTG	2220
	ACCCAGCATG	TCCCCTCAAA	TGAAAGTTCT	CCCCTTGATT	TTCTGCTCCT	GAAGGCAGGG	2280
	TGAGTTCTCT	CCTCAAAGAA	GACTTCAAAC	CATTTAACTG	GTTTCTTAAG	AGCCGTCAAT	2340
	CAGCCTGGTT	TTGGGGATGC	TATGAAAGAG	AGAAGGAAAA	TCATGCCGCT	CAGTTCCTGG	2400
50	AGACAGAAGA	GCCGTCATCA	GTGTCTCACT	TGTGATTTT	ATCTGGAAAA	GGAAGAAACA	2460
50	CCCCAGCACA	GCAAGCTCAG	CCTTTTAGAG	AAGGATATTT	CCAAACTGCA	AACTTTGCTT	2520 2580
	TGAAAAGTTT	AGCCCTTTAA TATTAATACG	GGAATGAAAT	CATGTAGAAT	TTTGGACTTC	TAAAAACAII	2640
	AAAATCAGCT	GTTTGTTTTA	A A A TOTTTTA A	TTCAACCATC	TGAAGTGTAC	STGCAGAAAA	2700
	CACCCCIAGA	GATAGTGTAT	GGCTTGGTGG	ATTTTCACAA	ACTGAACATA	CCTGTGTAAT	2760
55		ACCCAGACCC					2820
	GGAGATGGGG	GCTTCTGAAG	ATGGACTTAC	CTGGGACCTG	CCCCCATGA	GCCAGGACGG	2880
	TCCCCCCACA	GTCAGCCTGT	GCAAAGGCCC	CGTGGCCAGG	GGTGGAGGAG	AATATGTGGG	2940
		ATGGGAGACT					3000
C O		AGACCTGGGG					3060
60		CCACACCCTC					3120
		GCCTTCTATG					3180 3240
	ACTTAGGGGA	AGTGAAATCG TCTTTCTAAT	CTCAGAGATG	TCTCCATCAA	CATCACACTC	AGCTGGCAGC	3300
		AATCTCACTT					3360
65		TCCCTGGAGC					3420
••	TCCAGGGTTA	TTCTCCTCCT	CGAGTCACAG	TCACACGAAT	ACCTGCCTTC	TCTGGCTTTC	3480
	CTGCTATACA	CATATTCACA	TGGCGCTCAA	GAAGTTAGGC	TCATGGCAAC	GTGTGTCTTT	3540
	CTCTGGACAA	CTGGCCCAGT	TTACAGTGAA	ATGGAGAATT	TCAGGTCTCC	ACGTCTGCCC	3600
~ 0	AGGAAAGAAC	TTCAGCTGAC	TCCACGGGGA	TCTGGAAATC	CACGACCAAT	CCCGATCGGC	
70						CCAATCCCGA	3720
	TCGGCTCTTA	TTAGCTCCCC	GCTCCACAAG	ACACCTGTGA	TCTGGAAATC	TACCACCAAT	3780 3840
	CCCGATCGGC	TCTTATTAGC	TCCCCGCTCC	ACAAGACACC	TGTGACATCC	TCCAGGGCCA TCCAGAGGGC	3900
	CAGGAGCACG	TGCTGACCAG	COURTOCCTIC	TTTTCACCCTC	TOTOCOAGG	AATCTAGGAG	3960
75	AGATGAGGCC	CACTAGIGCA	AAGAGATGTC	ATCCCCCCAG	GGTCTCCAAG	GCATTTCCAC	4020
, ,	ACTATTGGTG	GCACCTGGAG	GACATGCACC	AAGGCTTGCC	AGAGCCAACA	GGAAGTGAGC	4080
	CCAGAGCATG	GCACATGAGC	ATCACCCGCT	GATGGTGGCC	TGCTGTGCCT	GGTGCCAACA	4140
	GGGGCATCCC	GGCCCGTACC	CCTCCAGACA	GGAAGCATGG	GTTTGCCCAC	AGACCTGTCG	4200
0.0	GGTGCTCCTG	TGAGTGGCCT	CCAGATGTCT	TTGTGCATAG	GCACAAGTGG	GCCAGGGCTG	4260
80	GAGGGAGGTG	GGAAACCTCA	TCATCCGGTG	GGCCCTGCCA	ATCTTAACCC	AGAACCCTTA	4320
	GGTATTCCTG	GCAGTAGCCA	TGACATTGGA	GCACCTTCCT	CTCCAGCCAG	AGGCTGACCT	4380
	GAGGGCCACT	GTCCTCAGAT	GACACCACCC	AGGAGCACCC	TAGGTGAGGG	GTGAGGGCCC	4440
	CCTTATGTGA	ACCTCTTGCC	TCTTCCTTTC	TOCCATCAGA	ATCTTCTCTC	GGAGCCATTG GCTGAGGAGC	4500 4560
85	GCCTCCTTTT	CTTCAGCGGG	CCCTTCAACC	CAACAGGATG	ATGCATTTCC	TCAATTCTCA	4620
55	TACTAGAAAA	GPGCCGCGGG	GTCCCCCTIC	AAGCTGGAGT	GGGGTACAGA	GTTCAGTTTT	
	CCTCTCTGTT	TACAGCTCCT	TGACAGTCCC	ACGCCCATCT	GGAGTGGGAG	CTGGGAGTTA	4740

```
GTGTTGGAGA AGAACAACA AAAGCCAATT AGAACCACTA TTTTTAAAAA GTGCTTACTG
                                                                         4800
      TGCACAGATA CTCTTCAAGC ACTGGACGTG GATTCTCTCT CTAGCCCTCA GCACCCCTGC
                                                                         4860
       GGTAGGAGTG CCGCCTCTAC CCACTTGTGA TGGGGTACAG AGGCACTTGC TCTTCTGCAT
                                                                         4920
      GGTGTTCAAT AGGCTGGGAG TTTTATTTAT CTCTTCAAAC TTTGTACAAG AGCTCATGGC
                                                                         4980
 5
      TTGTCTTGGG CTTTCGTCAT TAAACCAAAG GAAATGGAAG CCATTCCCCT GTTGCTCTCC
                                                                         5040
      TTAGTCTTGG TCATCAGAAC CTCACTTGGT ACCATATAGA TCAAAAGCTT TGTAACCACA
                                                                         5100
      5160
       TGGGCTGTAT GTATATTGTT CTTCCTCCTT AGAATTTAGA GATACAAGAG TTCTACTTAG
      AACTTTTCAT GGACACAATT TCCACAACCT TTCAGATGCT GATGTAGAGC TATTGGGAAA
                                                                         5280
10
       GAACTTCCAA ACTCAGGAAG TTTGCAGAGA GCAGACAGCT AGAGATAACT CGGGACCCAG
                                                                         5340
      AGTTGGTCGA CAGATGTTAG ATGTATCCTA GCTTTTAGCC ATAAACCACT CAAAGATTCA
                                                                         5400
      GCCCCAGAT CCCACAGTCA GAACTGAATC TGCGTTGTTG GGAAGCCAGC AGTGGCCTTG
                                                                         5460
      GGAAGGAAGC CATGGCTGTG GTTCAGAGAG GGTGGGCTGG CAAGCCACTT CCGGGGAAAA
                                                                         5520
      CTCCTTCCGC CCCAGGTTTC TTCTTCTCTT AAGGAGAGAT TGTTCTCACC AACCCGCTGC
15
      CTTCATGCTG CCTTCAAAGC TAGATCATGT TTGCCTTGCT TAGAGAATTA CTGCAAATCA
                                                                         5640
       GCCCCAGTGC TTGGCGATGC ATTTACAGAT TTCTAGGCCC TCAGGGTTTT GTAGAGTGTG
                                                                         5700
      AGCCCTGGTG GGCAGGGTTG GGGGGTCTGT CTTCTGCTGG ATGCTGCTTG TAATCCATTT
                                                                         5760
      GGTGTACAGA ATCAACAATA AATAATATAC ATGTAT
20
      Sec ID NO: 286 Protein sequence:
      Protein Accession #: NP_570843.1
                             21
                                        31
                                                   41
                                                              51
25
      MPLKHYLLLL VGCQAWGAGL AYHGCPSECT CSRASQVECT GARIVAVPTP LPWNAMSLQI
                                                                           60
      LNTHITELNE SPFLNISALI ALRIEKNELS RITPGAFRNL GSLRYLSLAN NKLQVLPIGL
                                                                           120
       FQGLDSLESL LLSSNQLLQI QPAHFSQCSN LKELQLHGNH LEYIPDGAFD HLVGLTKLNL
                                                                           180
      GKNSLTHISP RVFOHLGNLQ VLRLYENRLT DIPMGTFDGL VNLQELALQQ NQIGLLSPGL
                                                                          240
       FHNNHNLQRL YLSNNHISQL PPSIFMQLPQ LNRLTLFGNS LKELSLGIFG PMPNLRELWL
                                                                           300
30
       YDNHISSLPD NVFSNLRQLQ VLILSRNQIS FISPGAFNGL TELRELSLHT NALQDLDGNV
                                                                           360
       FRMLANLONI SLONNRLROL PGNIFANVNG LMAIOLONNO LENLPLGIFD HLGKLCELRL
                                                                           420
       YDNPWRCDSD ILPLRNWLLL NQPRLGTDTV PVCFSPANVR GQSLIIINVN VAVPSVHVPE
       VPSYPETPWY PDTPSYPDTT SVSSTTELTS PVEDYTDLTT IQVTDDRSVW GMTQAQSGLA
                                                                          540
       IAAIVIGIVA LACSLAACVG CCCCKKRSQA VLMQMKAPNE C
35
       Seq ID NO: 287 DNA sequence
      Nucleic Acid Accession #: NM_002362
      Coding sequence: 1..954
40
                                        31
                                                   41
                                                              51
      ATGTCTTCTG AGCAGAAGAG TCAGCACTGC AAGCCTGAGG AAGGCGTTGA GGCCCAAGAA
                                                                           60
      GAGGCCCTGG GCCTGGTGGG TGCACAGGCT CCTACTACTG AGGAGCAGGA GGCTGCTGTC
                                                                           120
       TCCTCCTCCT CTCCTCTGGT CCCTGGCACC CTGGAGGAAG TGCCTGCTGC TGAGTCAGCA
                                                                           180
45
      GGTCCTCCCC AGAGTCCTCA GGGAGCCTCT GCCTTACCCA CTACCATCAG CTTCACTTGC
                                                                           240
       TGGAGGCAAC CCAATGAGGG TTCCAGCAGC CAAGAAGAGG AGGGGCCAAG CACCTCGCCT
                                                                          300
       GACGCAGAGT CCTTGTTCCG AGAAGCACTC AGTAACAAGG TGGATGAGTT GGCTCATTTT
                                                                          360
       CTGCTCCGCA AGTATCGAGC CAAGGAGCTG GTCACAAAGG CAGAAATGCT GGAGAGAGTC
                                                                          420
      ATCAAAAATT ACAAGCGCTG CTTTCCTGTG ATCTTCGGCA AAGCCTCCGA GTCCCTGAAG
                                                                           480
50
      ATGATCTTTG GCATTGACGT GAAGGAAGTG GACCCCGCCA GCAACACCTA CACCCTTGTC
       ACCTGCCTGG GCCTTTCCTA TGATGGCCTG CTGGGTAATA ATCAGATCTT TCCCAAGACA
                                                                           600
      GGCCTTCTGA TAATCGTCCT GGGCACAATT GCAATGGAGG GCGACAGCGC CTCTGAGGAG
                                                                           660
       GAAATCTGGG AGGAGCTGGG TGTGATGGGG GTGTATGATG GGAGGGAGCA CACTGTCTAT
                                                                           720
       GGGGAGCCCA GGAAACTGCT CACCCAAGAT TGGGTGCAGG AAAACTACCT GGAGTACCGG
                                                                           780
55
       CAGGTACCCG GCAGTAATCC TGCGCGCTAT GAGTTCCTGT GGGGTCCAAG GGCTCTGGCT
                                                                           840
       GAAACCAGCT ATGTGAAAGT CCTGGAGCAT GTGGTCAGGG TCAATGCAAG AGTTCGCATT
       GCCTACCCAT CCCTGCGTGA AGCAGCTTTG TTAGAGGAGG AAGAGGGAGT CTGA
60
       Seq ID NO: 288 Protein sequence:
       Protein Accession #: NP 002353.1
                                        31
65
       MSSEQKSQHC KPEEGVEAQE EALGLVGAQA PTTEEQEAAV SSSSPLVPGT LEEVPAAESA
                                                                            60
       GPPQSPQGAS ALPTTISFTC WRQPNEGSSS QEEEGPSTSP DAESLFREAL SNKVDELAHF
                                                                           120
      LLRKYRAKEL VTKAEMLERV IKNYKRCFPV IFGKASESLK MIFGIDVKEV DPASNTYTLV
                                                                           180
       TCLGLSYDGL LGNNQIFPKT GLLIIVLGTI AMEGDSASEE EIWEELGVMG VYDGREHTVY
                                                                           240
      GEPRKLLTQD WVQENYLEYR QVPGSNPARY EFLWGPRALA ETSYVKVLEH VVRVNARVRI
                                                                           300
70
       AYPSLREAAL LEEEEGV
       Seq ID NO: 289 DNA sequence
      Nucleic Acid Accession #: NM_002362
      Coding sequence: 46..1344
75
                             21
                                        31
                                                   41
       CGGCGGCCGC GCCCTGGTTG GGTCCCCACT GCTCTCGGGG GCGCCATGGA CGAGGCCGTG
                                                                            60
80
       GGCGACCTGA AGCAGGCGCT TCCCTGTGTG GCCGAGTCGC CAACGGTCCA CGTGGAGGTG
                                                                           120
       CATCAGCGCG GCAGCAGCAC TGCAAAGAAA GAAGACATAA ACCTGAGTGT TAGAAAGCTA
                                                                           180
       CTCAACAGAC ATAATATTGT GTTTGGTGAT TACACATGGA CTGAGTTTGA TGAACCTTTT
                                                                           240
       TTGACCAGAA ATGTGCAGTC TGTGTCTATT ATTGACACAG AATTAAAGGT TAAAGACTCA
                                                                           300
       CAGCCCATCG ATTTGAGTGC ATGCACTGTT GCACTTCACA TTTTCCAGCT GAATGAAGAT
                                                                           360
85
       GGCCCCAGCA GTGAAAATCT GGAGGAAGAG ACAGAAAACA TAATTGCAGC AAATCACTGG
                                                                           420
       GTTCTACCTG CAGCTGAATT CCATGGGCTT TGGGACAGCT TGGTATACGA TGTGGAAGTC
       AAATCCCATC TCCTCGATTA TGTGATGACA ACTTTACTGT TTTCAGACAA GAACGTCAAC
                                                                           540
```

```
AGCAACCTCA TCACCTGGAA CCGGGTGGTG CTGCTCCACG GTCCTCCTGG CACTGGAAAA
                                                                           600
      ACATCCCTGT GTAAAGCGTT AGCCCAGAAA TTGACAATTA GACTTTCAAG CAGGTACCGA
                                                                           660
      TATGGCCAAT TAATTGAAAT AAACAGCCAC AGCCTCTTTT CTAAGTGGTT TTCGGAAAGT
                                                                           720
      GGCAAGCTGG TAACCAAGAT GTTTCAGAAG ATTCAGGATT TGATTGATGA TAAAGACGCC
                                                                            780
 5
      CTGGTGTTCG TGCTGATTGA TGAGGTGGAG AGTCTCACAG CCGCCCGAAA TGCCTGCAGG
                                                                           840
      GCGGGCACCG AGCCATCAGA TGCCATCCGC GTGGTCAATG CTGTCTTGAC CCAAATTGAT
                                                                            900
      CAGATTAAAA GGCATTCCAA TGTTGTGATT CTGACCACTT CTAACATCAC CGAGAAGATC
      GACGTGGCCT TCGTGGACAG GGCTGACATC AAGCAGTACA TTGGGCCACC CTCTGCAGCA
                                                                          1020
      GCCATCTTCA AAATCTACCT CTCTTGTTTG GAAGAACTGA TGAAGTGTCA GATCATATAC
                                                                          1080
10
       CCTCGCCAGC AGCTGCTGAC CCTCCGAGAG CTAGAGATGA TTGGCTTCAT TGAAAACAAC
                                                                          1140
      GTGTCAAAAT TGAGCCTTCT TTTGAATGAC ATTTCAAGGA AGAGCGAGGG CCTCAGCGGC
                                                                          1200
      CGGGTCCTGA GAAAACTCCC CTTTCTGGCT CATGCGCTGT ATGTCCAGGC CCCCACCGTC
                                                                          1260
      ACCATAGAGG GGTTCCTCCA GGCCCTGTCT CTGGCAGTGG ACAAGCAGTT TGAAGAGAGA
      AAGAAGCTTG CAGCTTACAT CTGATCCTGG GCTTCCCCAT CTGGTGCTTT TCCCATGGAG
                                                                          1380
15
       AACACACAAC CAGTAAGTGA GGTTGCCCCA CACAGCCGTC TCCCAGGGAA TCCCTTCTGC
                                                                          1440
       AAACCAAACG TTACTTAGAC TGCAAGCTAG AAAGCCACCA AGGCCAGGCT TTGTTAAAAG
                                                                          1500
       AAGTGTATTC TATTTATGTT GTTTTAAAAT GCATACTGAG AGACAAACAT CTTGTCATTT
                                                                          1560
       TCACTGTTTG TAAAAGATAA TTCAGATTGT TTGTCTCCTT GTGAAGAACC ATCGAAACCT
                                                                          1620
      GTTTGTTCCC AGCCCACCCC CAGTGGATGG GATGCATAAT GCCAGCAAGT TTTGTTTAAC
                                                                          1680
20
      AGCAAAAAG GAAGATTAAT GCAGGTGTTA TAGAAGCCAG AAGAGAAACT GTGTCACCCT
                                                                          1740
      AAAGAAGCAT ATAATCATAG CATTAAAAAT GCACACATTA CTCCAGGTGG AAGGTGGCAA
                                                                          1800
       TTGCTTTCTG ATATCAGCTC GTTTGATTTA GTGCAAAAAT GTTTTCAAGA CTATTTAATG
                                                                          1860
       GATGTAAAAA AGCCTATTTC TACATTATAC CAACTGAGAA AAAAATGGTC GGTAAAGTGT
                                                                          1920
       TCTTTCATAA TAAATAATCA AGACATGGTC CCATTTGCAG GAAAAGTGCA GACTCTGAGT
                                                                          1980
25
       GTTCCAGGGA AACACATGCT GGACATCCCT TGTAACCCGG TATGGGCGCC CCTGCATTGC
                                                                          2040
       TGGGATGTTT CTGCCCACGG TTTTGTTTGT GCAATAACGT TATCACATTT CTAATGAGGA
                                                                          2100
       TTCACATTAA TATAATATAA AATAAATAGG TCAGTTACTG GTCTCTTTCT GCCGAATGTT
                                                                          2160
      ATGTTTTGCT TTTATCTCAC AGTAAAATAA ATATAATTAA AAA
30
       Seg ID NO: 290 Protein sequence:
      Protein Accession #: NP 004228
                                                   41
                                                              51
                                        31
35
       MDEAVGDLKQ ALPCVAESPT VHVEVHQRGS STAKKEDINL SVRKLLNRHN IVFGDYTWTE
                                                                             60
       FDEPFLTRNV QSVSIIDTEL KVKDSQPIDL SACTVALHIF QLNEDGPSSE NLEEETENII
                                                                            120
       AANHWVLPAA EFHGLWDSLV YDVEVKSHLL DYVMTTLLFS DKNVNSNLIT WNRVVLLHGP
                                                                            180
       PGTGKTSLCK ALAQKLTIRL SSRYRYGQLI EINSHSLFSK WFSESGKLVT KMFQKIQDLI
                                                                            240
       DDKDALVFVL IDEVESLTAA RNACRAGTEP SDAIRVVNAV LTQIDQIKRH SNVVILTTSN
                                                                            300
40
       ITEKIDVAFV DRADIKQYIG PPSAAAIFKI YLSCLEELMK CQIIYPRQQL LTLRELEMIG
                                                                            360
       FIENNVSKLS LLLNDISRKS EGLSGRVLRK LPFLAHALYV QAPTVTIEGF LQALSLAVDK
                                                                            420
       OFEERKKLAA YI
       Seg ID NO: 291 DNA sequence
45
       Nucleic Acid Accession #: NM 002658.1
       Coding sequence: 77-1372
                                                   41
                                                              51
                  11
                             21
                                        31
50
       GTCCCCGCAG CGCCGTCGCG CCCTCCTGCC GCAGGCCACC GAGGCCGCCG CCGTCTAGCG
                                                                             60
       CCCCGACCTC GCCACCATGA GAGCCCTGCT GGCGCGCCTG CTTCTCTGCG TCCTGGTCGT
                                                                           120
       GAGCGACTCC AAAGGCAGCA ATGAACTTCA TCAAGTTCCA TCGAACTGTG ACTGTCTAAA
                                                                            180
       TGGAGGAACA TGTGTGTCCA ACAAGTACTT CTCCAACATT CACTGGTGCA ACTGCCCAAA
                                                                            240
       GAAATTCGGA GGGCAGCACT GTGAAATAGA TAAGTCAAAA ACCTGCTATG AGGGGAATGG
                                                                            300
55
       TCACTTTTAC CGAGGAAAGG CCAGCACTGA CACCATGGGC CGGCCCTGCC TGCCCTGGAA
       CTCTGCCACT GTCCTTCAGC AAACGTACCA TGCCCACAGA TCTGATGCTC TTCAGCTGGG
                                                                            420
       CCTGGGGAAA CATAATTACT GCAGGAACCC AGACAACCGG AGGCGACCCT GGTGCTATGT
                                                                            480
       GCAGGTGGGC CTAAAGCCGC TTGTCCAAGA GTGCATGGTG CATGACTGCG CAGATGGAAA
                                                                            540
       AAAGCCCTCC TCTCCTCCAG AAGAATTAAA ATTTCAGTGT GGCCAAAAGA CTCTGAGGCC
                                                                            600
60
       CCGCTTTAAG ATTATTGGGG GAGAATTCAC CACCATCGAG AACCAGCCCT GGTTTGCGGC
                                                                            660
       CATCTACAGG AGGCACCGGG GGGGCTCTGT CACCTACGTG TGTGGAGGCA GCCTCATCAG
       CCCTTGCTGG GTGATCAGCG CCACACACTG CTTCATTGAT TACCCAAAGA AGGAGGACTA
                                                                            780
       CATCGTCTAC CTGGGTCGCT CAAGGCTTAA CTCCAACACG CAAGGGGAGA TGAAGTTTGA
                                                                            840
       GGTGGAAAAC CTCATCCTAC ACAAGGACTA CAGCGCTGAC ACGCTTGCTC ACCACAACGA
                                                                            900
65
                                                                            960
       CATTGCCTTG CTGAAGATCC GTTCCAAGGA GGGCAGGTGT GCGCAGCCAT CCCGGACTAT
       ACAGACCATC TGCCTGCCCT CGATGTATAA CGATCCCCAG TTTGGCACAA GCTGTGAGAT
                                                                           1020
       CACTGGCTTT GGAAAAGAGA ATTCTACCGA CTATCTCTAT CCGGAGCAGC TGAAAATGAC
       TGTTGTGAAG CTGATTTCCC ACCGGGAGTG TCAGCAGCCC CACTACTACG GCTCTGAAGT
                                                                           1140
       CACCACCAAA ATGCTATGTG CTGCTGACCC CCAATGGAAA ACAGATTCCT GCCAGGGAGA
                                                                           1200
70
       CTCAGGGGGA CCCCTCGTCT GTTCCCTCCA AGGCCGCATG ACTTTGACTG GAATTGTGAG
                                                                          1260
       CTGGGGCCGT GGATGTGCCC TGAAGGACAA GCCAGGCGTC TACACGAGAG TCTCACACTT
                                                                           1320
       CTTACCCTGG ATCCGCAGTC ACACCAAGGA AGAGAATGGC CTGGCCCTCT GAGGGTCCCC
                                                                           1380
       AGGGAGGAAA CGGGCACCAC CCGCTTTCTT GCTGGTTGTC ATTTTTGCAG TAGAGTCATC
                                                                           1440
       TCCATCAGCT GTAAGAAGAG ACTGGGAAGA TAGGCTCTGC ACAGATGGAT TTGCCTGTGG
                                                                           1500
75
       CACCACCAGG GTGAACGACA ATAGCTTTAC CCTCACGGAT AGGCCTGGGT GCTGGCTGCC
                                                                           1560
       CAGACCCTCT GGCCAGGATG GAGGGGTGGT CCTGACTCAA CATGTTACTG ACCAGCAACT
                                                                           1620
       TGTCTTTTC TGGACTGAAG CCTGCAGGAG TTAAAAAGGG CAGGGCATCT CCTGTGCATG
                                                                           1680
       GGCTCGAAGG GAGAGCCAGC TCCCCCGACC GGTGGGCATT TGTGAGGCCC ATGGTTGAGA
                                                                           1740
       AATGAATAAT TTCCCAATTA GGAAGTGTAA GCAGCTGAGG TCTCTTGAGG GAGCTTAGCC
80
       AATGTGGGAG CAGCGGTTTG GGGAGCAGAG ACACTAACGA CTTCAGGGCA GGGCTCTGAT
                                                                           1860
       ATTCCATGAA TGTATCAGGA AATATATATG TGTGTGTATG TTTGCACACT TGTTGTGTGG
                                                                           1920
       GCTGTGAGTG TAAGTGTGAG TAAGAGCTGG TGTCTGATTG TTAAGTCTAA ATATTTCCTT
                                                                           1980
       AAACTGTGTG GACTGTGATG CCACACAGAG TGGTCTTTCT GGAGAGGTTA TAGGTCACTC
                                                                           2040
       CTGGGGCCTC TTGGGTCCCC CACGTGACAG TGCCTGGGAA TGTACTTATT CTGCAGCATG
                                                                           2100
85
       ACCTGTGACC AGCACTGTCT CAGTTTCACT TTCACATAGA TGTCCCTTTC TTGGCCAGTT
                                                                           2160
       ATCCCTTCCT TTTAGCCTAG TTCATCCAAT CCTCACTGGG TGGGGTGAGG ACCACTCCTT
                                                                           2220
       ACACTGAATA TTTATATTTC ACTATTTTTA TTTATATTTT TGTAATTTTA AATAAAAGTG
                                                                           2280
```

ATCAATAAAA TGTGATTTTT CTGA

```
Seq ID NO: 292 Protein sequence:
      Protein Accession #:NP_002649.1
 5
                                                              51
                             21
                                        31
                                                  41
      MRALLARLLL CVLVVSDSKG SNELHQVPSN CDCLNGGTCV SNKYFSNIHW CNCPKKFGGQ
      HCEIDKSKTC YEGNGHFYRG KASTDTMGRP CLPWNSATVL QQTYHAHRSD ALQLGLGKHN
                                                                          120
10
       YCRNPDNRRR PWCYVQVGLK PLVQECMVHD CADGKKPSSP PEELKFQCGQ KTLRPRFKII
                                                                          180
                                                                          240
      GGEFTTIENQ PWFAAIYRRH RGGSVTYVCG GSLISPCWVI SATHCFIDYP KKEDYIVYLG
      RSRLNSNTQG EMKFEVENLI LHKDYSADTL AHHNDIALLK IRSKEGRCAQ PSRTIQTICL
                                                                          300
      PSMYNDPOFG TSCEITGFGK ENSTDYLYPE QLKMTVVKLI SHRECQQPHY YGSEVTTKML
                                                                           360
      CAADPOWKTD SCOGDSGGPL VCSLQGRMTL TGIVSWGRGC ALKDKPGVYT RVSHFLPWIR
15
       SHTKEENGLA L
      Seq ID NO: 293 DNA sequence
      Nucleic Acid Accession #: NM_001498
      Coding sequence: 93..2006
20
                  11
      GGCACGAGGC TGAGTGTCCG TCTCGCGCCC GGAAGCGGGC GACCGCCGTC AGCCCGGAGG
                                                                            60
25
      AGGAGGAGGA GGAGGAGGAG GAGGGGGCGG CCATGGGGCT GCTGTCCCAG GGCTCGCCGC
       TGAGCTGGGA GGAAACCAAG CGCCATGCCG ACCACGTGCG GCGGCACGGG ATCCTCCAGT
                                                                           180
       TCCTGCACAT CTACCACGCC GTCAAGGACC GGCACAAGGA CGTTCTCAAG TGGGGCGATG
                                                                           240
      AGGTGGAATA CATGTTGGTA TCTTTTGATC ATGAAAATAA AAAAGTCCGG TTGGTCCTGT
                                                                           300
       CTGGGGAGAA AGTTCTTGAA ACTCTGCAAG AGAAGGGGGA AAGGACAAAC CCAAACCATC
                                                                           360
30
       CTACCCTTTG GAGACCAGAG TATGGGAGTT ACATGATTGA AGGGACACCA GGACAGCCCT
                                                                           420
      ACGGAGGAAC AATGTCCGAG TTCAATACAG TTGAGGCCAA CATGCGAAAA CGCCGGAAGG
                                                                           480
       AGGCTACTTC TATATTAGAA GAAAATCAGG CTCTTTGCAC AATAACTTCA TTTCCCAGAT
                                                                           540
       TAGGCTGTCC TGGGTTCACA CTGCCCGAGG TCAAACCCAA CCCAGTGGAA GGAGGAGCTT
                                                                           600
       CCAAGTCCCT CTTCTTTCCA GATGAAGCAA TAAACAAGCA CCCTCGCTTC AGTACCTTAA
                                                                           660
35
       CAAGAAATAT CCGACATAGG AGAGGAGAAA AGGTTGTCAT CAATGTACCA ATATTTAAGG
                                                                           720
                                                                           780
       ACAAGAATAC ACCATCTCCA TTTATAGAAA CATTTACTGA GGATGATGAA GCTTCAAGGG
       CTTCTAAGCC GGATCATATT TACATGGATG CCATGGGATT TGGAATGGGC AATTGCTGTC
                                                                           840
       TCCAGGTGAC ATTCCAAGCC TGCAGTATAT CTGAGGCCAG ATACCTTTAT GATCAGTTGG
                                                                           900
                                                  TCCCTTTTAC CGAGGCTATG
                                                                           960
       CTACTATCTG TCCAATTGTT ATGGCTTTGA GTGCTGCATC
40
       TGTCAGACAT TGATTGTCGC TGGGGAGTGA TTTCTGCATC TGTAGATGAT AGAACTCGGG
                                                                          1020
       AGGAGCGAGG ACTGGAGCCA TTGAAGAACA ATAACTATAG GATCAGTAAA TCCCGATATG
                                                                          1080
       ACTCAATAGA CAGCTATTTA TCTAAGTGTG GTGAGAAATA TAATGACATC GACTTGACGA
                                                                          1140
       TAGATAAAGA GATCTACGAA CAGCTGTTGC AGGAAGGCAT TGATCATCTC CTGGCCCAGC
       ATGTTGCTCA TCTCTTTATT AGAGACCCAC TGACACTGTT TGAAGAGAAA ATACACCTGG
                                                                          1260
45
       ATGATGCTAA TGAGTCTGAC CATTTTGAGA ATATTCAGTC CACAAATTGG CAGACAATGA
                                                                          1320
       GATTTAAGCC CCCTCCTCCA AACTCAGACA TTGGATGGAG AGTAGAATTT CGACCCATGG
                                                                          1380
       AGGTGCAATT AACAGACTTT GAGAACTCTG CCTATGTGGT GTTTGTGGTA CTGCTCACCA
                                                                          1440
       GAGTGATCCT TTCCTACAAA TTGGATTTTC TCATTCCACT GTCAAAGGTT GATGAGAACA
                                                                          1500
       TGAAGGTAGC ACAGAAAAGA GATGCTGTCT TGCAGGGAAT GTTTTATTTC AGGAAAGATA
                                                                          1560
50
       TTTGCAAAGG TGGCAATGCA GTGGTGGATG GTTGTGGCAA GGCCCAGAAC AGCACGGAGC
                                                                          1620
       TCGCTGCAGA GGAGTACACC CTCATGAGCA TAGACACCAT CATCAATGGG AAGGAAGGTG
                                                                         1680
       TGTTTCCTGG ACTGATCCCA ATTCTGAACT CTTACCTTGA AAACATGGAA GTGGATGTGG
                                                                          1740
                                                                          1800
       ACACCAGATG TAGTATTCTG AACTACCTAA AGCTAATTAA GAAGAGACA TCTGGAGAAC
       TAATGACAGT TGCCAGATGG ATGAGGGAGT TTATCGCAAA CCATCCTGAC TACAAGCAAG
                                                                          1860
55
       ACAGTGTCAT AACTGATGAA ATGAATTATA GCCTTATTTT GAAGTGTAAC CAAATTGCAA
       ATGAATTATG TGAATGCCCA GAGTTACTTG GATCAGCATT TAGGAAAGTA AAATATAGTG
                                                                          1980
       GAAGTAAAAC TGACTCATCC AACTAGACAT TCTACAGAAA GAAAAATGCA TTATTGACGA
                                                                          2040
       ACTGGCTACA GTACCATGCC TCTCAGCCCG TGTGTATAAT ATGAAGACCA AATGATAGAA
                                                                          2100
       CTGTACTGTT TTCTGGGCCA GTGAGCCAGA AATTGATTAA GGCTTTCTTT GGTAGGTAAA
                                                                          2160
60
                                                                          2220
       TCTAGAGTTT ATACAGTGTA CATGTACATA GTAAAGTATT TTTGATTAAC AATGTATTTT
       AATAACATAT CTAAAGTCAT CATGAACTGG CTTGTACATT TTTAAATTCT TACTCTGGAG
                                                                          2280
       CAACCTACTG TCTAAGCAGT TTTGTAAATG TACTGGTAAT TGTACAATAC TTGCATTCCA
                                                                          2340
       GAGTTAAAAT GTTTACTGTA AATTTTGTT CTTTTAAAGA CTACCTGGGA CCTGATTTAT
                                                                          2400
       TGAAATTTT CTCTTTAAAA ACATTTTCTC TCGTTAATTT TCCTTTGTCA TTTCCTTTGT
                                                                          2460
65
       TGTCTACATT AAATCACTTG AATCCATTGA AAGTGCTTCA AGGGTAATCT TGGGTTTCTA
                                                                          2520
       GCACCTTATC TATGATGTTT CTTTTGCAAT TGGAATAATC ACTTGGTCAC CTTGCCCCAA
                                                                          2580
       70
       Seq ID NO: 294 Protein sequence:
       Protein Accession #: NP_001489
                                        31
                                                   41
                             21
                  11
75
       MGLLSQGSPL SWEETKRHAD HVRRHGILQF LHIYHAVKDR HKDVLKWGDE VEYMLVSFDH
                                                                            60
       ENKKVRLVLS GEKVLETLQE KGERTNPNHP TLWRPEYGSY MIEGTPGQPY GGTMSEFNTV
                                                                           120
       EANMRKRRKE ATSILEENQA LCTITSFPRL GCPGFTLPEV KPNPVEGGAS KSLFFPDEAI
                                                                           180
       NKHPRFSTLT RNIRHRRGEK VVINVPIFKD KNTPSPFIET FTEDDEASRA SKPDHIYMDA
80
       MGFGMGNCCL QVTFQACSIS EARYLYDQLA TICPIVMALS AASPFYRGYV SDIDCRWGVI
                                                                           300
       SASVDDRTRE ERGLEPLKNN NYRISKSRYD SIDSYLSKCG EKYNDIDLTI DKEIYEQLLQ
                                                                           360
       EGIDHLLAQH VAHLFIRDPL TLFEEKIHLD DANESDHFEN IQSTNWQTMR FKPPPPPNSDI
                                                                           420
       GWRVEFRPME VQLTDFENSA YVVFVVLLTR VILSYKLDFL IPLSKVDENM KVAQKRDAVL
                                                                           480
       QGMFYFRKDI CKGGNAVVDG CGKAQNSTEL AAEEYTLMSI DTIINGKEGV FPGLIPILNS
                                                                           540
85
       YLENMEYDVD TRCSILNYLK LIKKRASGEL MTVARWMREF IANHPDYKQD SVITDEMNYS
```

LILKCNOIAN ELCECPELLG SAFRKVKYSG SKTDSSN

WO 02/086443
Seq ID NO: 295 DNA sequence
Nucleic Acid Accession #: Eos sequence
Coding sequence: 247-816

	coaing sequ	ience: 247-c	2.7.0				
5	1	11	21 	31 !	41	51 	
	GGCCAAACGG	TGGGGCAGGC GATCGGTGCT ACATTTCCCA	TCTGGTGAGA	CGCCTCCCCA	TGCACATCAC	TCCCAGGTGC	60 120 180
10	GGGAGGCGCC GAAACAATGA CCCAGGGAAT	ACAACTTCAC CCGATAAAAC GTGACAGTCC CAGGAGACAG	TGCCATTTTG AGAGAAGGTG TTCGTATCAG	TGAGGTGCCG GCTGTAGATC AAAAGGCAGA	CCGTCTCTCC CTGAAACTGT GGATGGCCCT	TCCAGCAAGG GTTTAAACGT GTTGGCAAGG	240 300 360 420
15	ATGACAGGAC TTCAGCAAAG ACCAGCAGTT	ATGCTATTCC ATAGGATGAT TCTCTGGAGA TTAATGCTGA	ACCCAGCCAA GCAGAAACCT TGACCTAGAA	TTGGATTCTC GGTAGCAATG TGCAGAGAAA	AGATTGATGA CACCTGTGGG CAGCCTCCTC	CTTCACTGGT AGGAAACGTT TCCCAAAAGC	480 540 600 660
20	CAAAAATATG AAGCGATTTT	AAAAAATCTT TTGAATCCAT AGAAGAAACT	CGAAATGCTT CATCAAGGAA	GAAGGAGTGC GCAGCAAGAT	AAGGACCTAC GTATGAGACG	TGCAGTCAGG AGACTTTGTT	720 780 840
	CACACCCCAA TTCTACAATG CTTCCAGAGG	ATGCATAATC GAGCAGGATA CTAAGAAATT	TCGTTAATGA TTGCTGAAGT TCTGTTAGTA	TTGAGGAGAG CTCCTGGCAT AAAGATGTTC	AAAAGGATCA ATGTTACCGA TTTTTCCCAA	GATTGCTGTT ATCAAATAGC AGCATTTTAT	900 960 1020
25		AACTTGTGTT GGTAAATACT				TAGATATTAT	1080
		296 Proteir cession #: F		•			
30	1	11	21	31	41	51	
35	GHAIPPSQLD	DPETVFKRPR SQIDDFTGFS VKELRCVGQK	KDRMMQKPGS	NAPVGGNVTS	SFSGDDLECR	ETASSPKSQR	60 120 180
	Seq ID NO: Nucleic Ac:	297 DNA sec id Accession	ı#: Eos se	equence			
40	Coding sequ	lence: 247-8	315				
45		11 TGGGGCAGGC GATCGGTGCT					60 120
	GGGAGGCGCC GAAACAATGA	ACATTTCCA ACAACTTCAC CCGATAAAAC GTGACAGTCC	TGCCATTTTG AGAGAAGGTG	TGAGGTGCCG GCTGTAGATC	CCGTCTCTCC CTGAAACTGT	TCCAGCAAGG GTTTAAACGT	180 240 300 360
50	AAACAAGGAG ATGACAGGAC TTCAGCAAAG	CAGGAGACAG ATGCTATTCC ATAGGATGAT TCTCTGGAGA	CCTTATTGCA ACCCAGCCAA GCAGAAACCT	GGCTCTGCCA TTGGATTCTC GGTAGCAATG	TGTCCAAAGA AGATTGATGA CACCTGTGGG	AAAGAAGCTT CTTCACTGGT AGGAAACGTT	420 480 540 600
55	CAACAAGAAA CAAAAATATG AAACGATTTT	TTAATGCTGA AAAAAATCTT TTGAATCCAT AGAAGAAACT	TATAAAACGT CGAAATGCTT CATCAAGGAA	AAATTAGTGA GAAGGAGTGC GCAGCAAGAT	AGGAACTCCG AAGGACCTAC GTATGAGACG	ATGCGTTGGA TGCAGTCAGG AGACTTTGTT	660 720 780 840
60	CACACCCCAA TTCTACAATG CTTCCAGAGG TTGAAAGGAT	ATGCATAATC GAGCAGGATA CTAAGAAATT AACTTGTGTT GGTAAATACT	TCATTAATGA TTGCTGAAGT TCTGTTAGTA TTGGTTATTT	TTGAGGAGAG CTCCTGGCAT AAAGATGTTC TGTATTCCCA	AAAAGGATCA ATGTTACCGA TTTTTCCCAA CCTGTGCTGG	GATTGCTGTT ATCAACTGGC AGCGTTTTAT	900 960 1020 1080
65		298 Protes cession #: I					
	1	11 	21 	31 	41 	51 	
70	GHAIPPSQLD	DPETVFKRPR SQIDDFTGFS VKELRCVGQK	KDRMMQKPGS	NAPVGGNVTS	SFSGDDLECR	ETASSPKSQQ	60 120 180
75	Nucleic Ac:	299 DNA sed id Accession lence: 247-8	ı#: Eos se	equence			
00	1	11 	21 	31 	41 	51 	
80	GGCCAAACGG CCTAGGGGGC	TGGGGCAGGC GATCGGTGCT ACATTTCCCA ACAACTTCAC	TCTGGTGAGA CAACTCCCAG	TGGCTACTTC CGCCTCCCA AGGGCAGGTT	TGCACATCAC TCTAGAAAGT	TCCCAGGTGC GCCACCAGTG	60 120 180 240
85	GAAACAATGA CCCAGGGAAT AAACAAGGAG	CCGATAAAAC GTGACAGTCC CAGGAGACAG TGCTATTCCA	AGAGAAGGTG TTCGTATCAG CCTTATTGCA	GCTGTAGATC AAAAGGCAGA GGCTCTGCCA	CTGAAACTGT GGATGGCCCT TGTCCAAAGC	GTTTAAACGT GTTGGCAAGG AAAGAGCTTA	300 360 420 480

```
WO 02/086443
       TCAGCAAAGA TAGGATGATG CAGAAACCTG GTAGCAATGC ACCTGTGGGA GGAAACGTTA
       CCAGCAGTTT CTCTGGAGAT GACCTAGAAT GCAGAGAAAC AGCCTCCTCT CCCAAAAGCC
                                                                             600
       AACAAGAAAT TAATGCTGAT ATAAAACGTA AATTAGTGAA GGAACTCCGA TGCGTTGGAC
                                                                             660
       AAAAATATGA AAAAATCTTC GAAATGCTTG AAGGAGTGCA AGGACCTACT GCAGTCAGGA
                                                                             720
 5
       AACGATTTTT TGAATCCATC ATCAAGGAAG CAGCAAGATG TATGAGACGA GACTTTGTTA
                                                                             780
       AGCACCTTAA GAAGAAACTG AAACGTATGA TTTGAGAATA CTTGTCCCTG GAGGATTATC
                                                                             840
       ACACCCCAAA TGCATAATCT CATTAATGAT TGAGGAGAGA AAAGGATCAG ATTGCTGTTT
                                                                             900
       TCTACAATGG AGCAGGATAT TGCTGAAGTC TCCTGGCATA TGTTACCGAA TCAACTGGCC
                                                                             960
       TTCCAGAGGC TAAGAAATTT CTGTTAGTAA AAGATGTTCT TTTTCCCAAA GCGTTTTATT
                                                                            1020
10
       TGAAAGGATA ACTTGTGTTT TGGTTATTTT GTATTCCCAC CTGTGCTGGT AGATATTATT
                                                                            1080
       AACCCATTAG GTAAATACTA TTACAGTCGT GGTTTCTGCA
       Sed ID NO: 300 Protein sequence:
       Protein Accession #: Eos sequence
15
                                         31
                                                     41
                                                                51
                              21
       MTDKTEKVAV DPETVFKRPR ECDSPSYQKR QRMALLARKQ GAGDSLIAGS AMSKAKKLMT
                                                                              60
       GHAIPPSOLD SOIDDFTGFS KDRMMOKPGS NAPVGGNVTS SFSGDDLECR ETASSPKSQQ
                                                                             120
20
       EINADIKRKL VKELRCVGQK YEKIFEMLEG VQGPTAVRKR FFESIIKEAA RCMRRDFVKH
       Seq ID NO: 301 DNA sequence
       Nucleic Acid Accession #: Eos sequence
25
       Coding sequence: 247-812
                                                                51
       AGTGTTCGGC TGGGGCAGGC ACGCTGTGGC TGGCTACTTC CCTTCCTCCC ATCCCCCTTG
                                                                              60
30
       GGCCAAACGG GATCGGTGCT TCTGGTGAGA CGCCTCCCCA TGCACATCAC TCCCAGGTGC
                                                                             120
       CCTAGGGGGC ACATTCCCA CAACTCCCAG AGGGCAGGTT TCTAGAAAGT GCCACCAGTG
                                                                             180
       GGGAGGCGCC ACAACTTCAC TGCCATTTTG TGAGGTGCCG CCGTCTCTCC TCCAGCAAGG
       GAAACAATGA CCGATAAAAC AGAGAAGGTG GCTGTAGATC CTGAAACTGT GTTTAAACGT
                                                                             300
       CCCAGGGAAT GTGACAGTCC TTCGTATCAG AAAAGGCAGA GGATGGCCCT GTTGGCAAGG
                                                                             360
35
       AAACAAGGAG CAGGAGACAG CCTTATTGCA GGCTCTGCCA TGTCCAAAGA AAAGAGCTTA
                                                                             420
       TGACAGGACA TGCTATTCCA CCCAGCCAAT TGGATTCTCA GATTGATGAC TTCACTGGTT
                                                                             480
       TCAGCAAAGA TGGGATGATG CAGAAACCTG GTAGCAATGC ACCTGTGGGA GGAAATGTTA
                                                                             540
       CCAGCAATTT CTCTGGAGAT GACCTAGAAT GCAGAGGAAT AGCCTCCTCT CCCAAAAGCC
       AACAAGAAAT TAATGCTGAT ATAAAATGTC AAGTAGTGAA GGAAATCCGA TGCCTTGGAC
                                                                             660
40
       AATATGAAAA AATCTTCGAA ATGCTTGAAG GAGTGCAAGG ACCTACTGCA GTCAGGAAAC
                                                                             720
       780
       ACCTTAAGAA GAAACTGAAA CGTATGATTT GAGAATACTT GTCCCTGGAG GATTATCACA
                                                                             840
       CCCCAAATGC ATAATCTCAT TAATGATTGA GGAGAGAAAA GGATCAGATT GCTGTTTTCT ACAATGGAGC AGGATATTGC TGAAGTCTCC TGGCATATGT TACCGAATCA ACTGGCCTTC
                                                                             900
                                                                             960
45
       CAGAGGCTAA GAAATTTCTG TTAGTAAAAG ATGTTCTTTT TCCCAAAGCG TTTTATTTGA
                                                                            1020
       AAGGATAACT TGTGTTTTGG TTATTTTGTA TTCCCACCTG TGCTGGTAGA TATTATTAAC
                                                                            1080
       CCATTAGGTA AATACTATTA CAGTCGTGGT TTCTGCA
       Sed ID NO: 302 Protein sequence:
50
       Protein Accession #: Eos sequence
                                                     41
                                                                51
       MTDKTEKVAV DPETVFKRPR ECDSPSYQKR QRMALLARKQ GAGDSLIAGS AMSKEKKLMT
                                                                              60
55
       GHAIPPSOLD SOIDDFTGFS KDGMMOKPGS NAPVGGNVTS NFSGDDLECR GIASSPKSQQ
                                                                             120
       EINADIKCQV VKEIRCLGQY EKIFEMLEGV QGPTAVRKRF FESIIKEAAR CMRRDFVKHL
       Seq ID NO: 303 DNA sequence
60
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 247-815
                                         31
                                                                51
65
       AGTGTTCGGC TGGGACAGGC ACGCTGTGGC TGGCTACTTC CCTTCCTTCC ATCCCCCTTG
                                                                              60
       GGCCAAACAG GATCGGTGCT TCTGGTGAGA CGTCTCCCCA TGCACATCAC TCCCAGATGC
                                                                             120
       CCTAGGGGGC ACATTTCCCA CAACTCCCAG AGGGCAGGTT TCTAGAAAGT GCCACCAGTG
                                                                             180
       GGGAGGCGCC ACAACTTCAC TGCCATTTTG TGAGGTGCCG CCGTCTCTCC TCCAGCAAGG
       GAAACAATGA CCGATAAAAC AGAGAAGGTG GCTGTAGATC CTGAAACTGT GTTTAAACGT
                                                                             300
70
       CCCAGGGAAT GTGACAGTCC TTCGTATCAG AAAAGGCAGA GGATGGCCCT GTTGGCAAGG
                                                                             360
       AAACAAGGAG CAGGAGACAG CCTTATTGCA GGCTCTGCCA TGTCCAAAGC AAAGAGCTTA
                                                                             420
       TGACAGGACA TGCTATTCCA CCCAGCCAAT TGGATTCTCA GATTGATGAC TTCACTGGTT
                                                                             480
       TCAGCAAAGA TAGGATGATG CAGAAACCTG GTAGCAATGC ACCTGTGGGA GGAAACGTTA
                                                                             540
       CCAGCAGTTT CTCTGGAGAT GACCTAGAAT GCAGAGAAAC AGCCTCCTCT CCCAAAAGCC
75
       AACAAGAAAT TAATGCTGAT ATAAAACGTA AATTAGTGAA GGAACTCCGA TGCGTTGGAC
                                                                             660
       AAAAATATGA AAAAATCTTC GAAATGCTTG AAGGAGTGCA AGGACCTACT GCAGTCAGGA
                                                                             720
       AACGATTTTT TGAATCCATC ATCAAGGAAG CAGCAAGATG TATGAGACGA GACTTTGTTA
                                                                             780
       AGCACCTTAA GAAGAAACTG AAACGTATGA TTTGAGAATA CTTGTCCCTG GAGGATTATC ACACCCCAAA TGCATAATCT CGTTAATGAT TGAGGAGAGA AAAGGATCAG ATTGCTGTTT
                                                                             840
                                                                             900
80
       TCTACAATGG AGCAGGATAT TGCTGAAGTC TCCTGGCATA TGTTACCGAA TCAACTGGCC
                                                                             960
       TTCCAGAGGC TAAGAAATTT CTGTTAGTAA AAGATGTTCT TTTTCCCAAA GCGTTTTATT
                                                                            1020
       TGANAGGATA ACTTGTGTTT TGGTTATTTT GTATTCCCAC CTGTGCTGGT AGATATTATT
                                                                            1080
       AACCCATTAG GTAAATACTA TTACAGTCGT GGTTTCTGCA
85
       Seg ID NO: 304 Protein seguence:
       Protein Accession #: Eos sequence
```

	WO 02	/086443					
	1	11	21	31.	41	51	
		1	1]	1]	
		DPETVFKRPR					60
_		SQIDDFTGFS					120
5		VKELRCVGQK	YEKIFEMLEG	VQGPTAVRKR	FFESIIKEAA	RCMRRDFVKH	180
	LKKKLKRMI						
		305 DNA sec					
10		id Accession		luence			
10	Coaing sequ	ience: 87-68	39				
	1	11	21	31	41	51	
	ī	ī	ī	Ī	î -	ī	
	CGTGGAGGCA	GCTAGCGCGA	GGCTGGGGAG	CGCTGAGCCG	CGCGTCGTGC	CCTGCGCTGC	60
15		GAACAATACA					120
		TTATGCCTTC					180
		TGTCAATTTT					240
		AGAGAAATCT					300
20	ATCGGGAAAT	GAAGGATTAT	GGACCAGCTA	AGGGAGGCAA	GAAGAAGAAG	GATCCTAATG	360
20		GCCACCGTCT					420 480
		CCCCGGCATC TGACAGTGAA					540
		GGATGTTGCT					600
		TGCCCGGAAA					660
25		GGAGGAGGAG					720
	TTAGAGTAGG	GGAGCGCCGT	AATTGACACA	TCTCTTATTT	GAGAAGTGTC	TGTTGCCCTC	780
		ATTACAAAAT					840
		GGTTTACATG					900
•		TATTTCCAAA					960
30		TGCTGTTGGT					1020
	ATTTGTAAGG	TGGTGGTAAC	TATGGTTATT	GGCTAGAAAT	CCTGAGTTTT	CAACTGTATA	1080
		TTGTAAAAAG					1140
		TGTGGGGAAG CTGTTGACTC					1200 1260
35		ACATAGCATT					1320
55		TTTTTTTTT					1380
		TTCATTGTCA					1440
	CTCCTGTACT	TAAACACGAT	TCGCAACGTT	CTGTTATTTT	TTTTGTATGT	TTAGAATGCT	1500
		TGAAGTTAAA					1560
40	AGTCAATTTC	TGACTCACAG	CAGTGAACAA	ACCCCCACTC	CATTGTATTT	GGAGACTGGC	1620
	CTCCCTATAA	ATGTGGTAGC	TTCTTTTATT	ACTCAGTGGC	CAGCTCACTT	AGGGCTGAGA	1680
		GGCTACTTGA					1740
		GAGGAGTTAG					1800
45		GTGATTAGGA					1860
43		GGGGCCAAAT					1920 1980
		CTTATTGTTT TGGTGCCCAA					2040
		TGTGGGATGG					2100
	TTGGAAACAC	CAAACACCCC	AAGGAAGATG	ATAGGCTCCA	TCTTGGGCCA	CCTGAGCTAT	2160
50	AGGGCAGGCT	AATGGAATCA	ACCATTTCTG	AGCACTAAAT	GTATCATGAA	AAGTTGAATG	2220
	GCCTGCTCAT	AAGTTTAGCT	CATTCACTGG	AAATGTAGAT	TGATGTTCAA	TGTTAAACTG	2280
	GAAGGAGCTT	GGTTTGTGTG	TCAGTGGTTA	TATTAGTGGG	TAGTGTAACA	TTTTATCCAG	2340
	GTTGGGGTGA	GGGGAGATGG	CCACAGTAGC	AAGTGGTGAC	ACTAAATACC	ATTTTGAAGG	2400
	CTGATGTGTA	TATACATCAT	TACTGTCCGT	AGCAATGAAG	GATACAGTAC	TGTGTTGTGG	2460
55		CTATTGCCCA					2520
	CGCAGGAGTG	TTTTTGTGCT	ATTAATTTTA	AGAGAAAGCA	GCTTTTTCTT	AAAATTCACT	2580 2640
	GTTGAGAAAC	TTGCATGTCT GGTCACGGTC	GGAGGCGGTG	CTCTCTCCGC	TTCATAGGGT	TTCCCTCTCC	2700
	TACGAGTTAT	GTTTGTCCTG	ACAGCCIGAI	TCTAGTGTG	GAAAATGACCA	ΔΟΤΔΔΤΤΤΑΔ	2760
60		TGTGAGGTTT					2820
00		TGTCACTTGG					2880
	CTAGGCCAAG	ATTCGGGAGC	TGTTGCCAGC	CTCGTCAAAT	ATGGAAGAGA	AACAACCTGC	2940
	GGTCAAAAGG	GAGTGATTTG	TTAAGTGGTG	CGCGTCTATC	TCATAACTAG	ATGTACCAAC	3000
<i>C</i> =	CAGGGAAGGG	CCAAGGATGG	AAAGGGGTAA	CTTTTGTGCT	TCCAAAGTAG	CTAAGCAGAA	3060
65						TTAAAGAGGC	3120
	TGTCAAGTTG	AGGCCACTTG	GTCCATTAGC	TGGGGCAGCA	AGATCACTAC	TCAACGTTTT	3180
	CACACTGTGG	CAAGATTGCT	CTTCTAGTGG	AATAATGCCC	TAGTTTCTCT	GAGATGATGT	3240
	AAGTGGCATG	ATGTTACCTA	AGGCTTAGGC	TTAGCTTGAT	TTCTGGGCCC	ACTGTCTGTG	3300
70	TTCTTAAGAT	GCCAACCTGT	* CCCCA PECT	TTTTTTTTCC	TTTTAAA	AGGATAGTAC GGAAAGAACA	3/20
70	AGGCTCCCTC	CTACTCACCTC	MECHCECATICI	CTCCTCTCTC	TCTCTCTTCT	TGTCACAAAT	3480
	GTATTTGGGG	ACGTTGGATG	CATTCATTT	CTCTAATAAA	G	10101011111	3400
	CIMILIGIG	DIADDLLOGLIG			_		
	Seg ID NO:	306 Protein	n sequence:				
75		cession #: 1					
			_				
	1	11	21	31	41	51	
	1			<u> </u>	1		
80		GKMSAYAFFV					120
80	DEMAKADKVR	YDREMKDYGP	AKGGKKKKDP	NAPKKPPSGF	FULCSELKLK	TUDINEGIST	120 180
			PITIKAAKUK	"VI "VT VANI	MADUTADOAK	GPAKVARKKV	100
	SESTEREE	EEEEEEEDE					
	Sea ID NO.	307 DNA sec	guence				
85		id Accession		342			
		uence: 12					

Coding sequence: 1..2178

```
60
       ATGGGTACTA GGAAAAAGT TCATGCATTT GTCCGTGTCA AACCCACCGA TGACTTTGCT
 5
       CATGAAATGA TCAGATACGG AGATGACAAA AGAAGCATTG ATATTCACTT AAAAAAAGAC
                                                                              120
       ATTCGGAGAG GAGTTGTCAA TAACCAACAG ACAGACTGGT CGTTTAAGTT GGATGGAGTT
       TTCACGATG CCTCCCAGGA CTTGGTTTAT GAGACAGTTG CAAAGGATGT GGTTTCTCAG
       CCCTCGATG GCTATAATGG CACCATCATG TGTTATGGGC AGACGGGAGC TGGCAAGACA
                                                                             300
       ACACCATGA TGGGGGCAAC TGAGAATTAC AAGCACCGGG GGATCCTCCC TCGTGCCCTG
                                                                             360
10
       AGCAGGTTT TTAGGATGAT CGAAGAACGC CCCACACATG CCATCACTGT GCGTGTTTCC
                                                                             420
       ACTTGGAAA TCTATAATGA GAGCCTGTTT GATCTCCTGT CCACTCTGCC CTATGTTGGA
                                                                             480
       CCTCAGTCA CACCAATGAC CATCGTGGAA AACCCTCAAG GAGTCTTCAT TAAGGGCTTG
                                                                             540
       CAGTTCACC TCACAAGTCA GGAGGAGGAT GCATTCAGCC TCCTTTTTGA GGGTGAGACC
       ACAGGATTA TAGCCTCCCA CACTATGAAC AAAAACTCTT CCAGATCACA CTGCATTTTC
                                                                             660
15
       CCATCTACT TAGAGGCCCA TTCCCGGACC TTATCAGAGG AAAAGTACAT CACTTCCAAA
                                                                             720
       TTAACTTGG TGGATCTGGC AGGCTCAGAG AGGCTGGGGA AGTCTGGGTC TGAGGGCCAA
                                                                             780
       TCCTGAAGG AAGCCACCTA CATCAACAAA TCGCTCTCAT TCCTGGAGCA GGCCATCATT
                                                                             840
       CCCTTGGGG ACCAGAAGCG GGACCACATC CCCTTTCGGC AGTGCAAGCT CACCCACGCT
                                                                             900
       TGAAGGACT CGTTAGGGGG AAACTGCAAT ATGGTCCTCG TGACAAACAT CTATGGAGAA
                                                                             960
20
       CTGCCCAGT TAGAAGAAAC GCTATCTTCA CTGAGATTTG CCAGCAGGAT GAAGCTAGTC
                                                                            1020
       CCACTGAGC CTGCCATCAA TGAAAAGTAT GATGCTGAGA GAATGGTCAA GAACCTGGAG
                                                                            1080
       AGGAACTAG CACTACTCAA GCAGGAGCTG GCTATCCATG ACAGCCTGAC CAACCGCACC
                                                                            1140
       TTGTGACCT ATGACCCCAT GGATGAAATC CAGATTGCTG AGATCAACTC CCAGGTGCGG
GGTACCTGG AGGGGACACT GGACGAGATC GACATAATCA GCCTTAGACA GATCAAGGAG
                                                                            1200
                                                                            1260
25
       TGTTCAACC AGTTCCGGGT GGTTCTGAGC CAACAGGAAC AGGAAGTGGA GTCCACTTTG
                                                                            1320
       GCAGGAAGT ACACCCTCAT TGACAGGAAT GACTTTGCAG CCATTTCTGC TATCCAGAAG
                                                                            1380
       CGGGGCTTG TGGATGTTGA TGGCCACCTA GTGGGTGAGC CTGAAGGACA AAACTTTGGA
                                                                            1440
       TCGGAGTCG CCCCTTTCTC TACCAAACCT GGGAAGAAAG CCAAGTCCAA GAAGACATTC
                                                                            1.500
                                                                            1560
       AAGAGCCAC TCAGGCCCGA CACCCCACCC TCCAAACCAG TGGCCTTTGA GGAGTTTAAG
30
       ATGAGCAAG GTAGTGAGAT CAACCGAATT TTCAAAGAAA ACAAATCCAT CTTGAATGAA
                                                                            1620
       GGAGGAAAA GGGCCAGCGA GACCACACAG CACATCAATG CCATCAAGCG GGAGATTGAT
                                                                            1680
       TGACCAAGG AGGCCCTGAA TTTCCAGAAG TCACTACGGG AGAAGCAAGG CAAGTACGAA
                                                                            1740
       ACAAGGGC TGATGATCAT CGATGAGGAA GAATTCCTGC TGATCCTCAA GCTCAAAGAC
                                                                            1800
       TCAAGAAGC AGTACCGCAG CGAGTACCAG GACCTGCGTG ACCTCAGGGC TGAGATCCAG
                                                                            1860
35
       ATTGCCAGC ACCTAGTGGA TCAGTGTCGC CACCGCCTGC TCATGGAATT TGACATCTGG ACAATGAGT CCTTTGTCAT CCCTGAGGAC ATGCAGATGG CACTGAAGCC AGGCGGCAGC
                                                                            1920
                                                                            1980
       TCCGGCCAG GCATGGTCCC TGTGAACAGG ATTGTGTCTC TGGGAGAAGA TGACCAGGAC
                                                                            2040
       AATTCAGCC AGCTGCAGCA GAGGGTGCTT CCTGAGGGCC CTGATTCCAT CTCCTTCTAC
                                                                            2100
       ATGCCAAAG TCAAGATAGA GCAGAAGCAT AATTACTTGA AAACCATGAT GGGCCTCCAG
                                                                            2160
40
       AGGCACATA GAAAATAG
       Seq ID NO: 308 Protein sequence:
       Protein Accession #: NP_071737
45
                  11
                              21
                                          31
                                                                 51
       MGTRKKVHAF VRVKPTDDFA HEMIRYGDDK RSIDIHLKKD IRRGVVNNQQ TDWSFKLDGV
                                                                               60
       LHDASQDLVY ETVAKDVVSQ ALDGYNGTIM CYGQTGAGKT YTMMGATENY KHRGILPRAL
                                                                              120
       QQVFRMIEER PTHAITVRVS YLEIYNESLF DLLSTLPYVG PSVTPMTIVE NPQGVFIKGL
50
       SYHLTSOEED AFSLLFEGET NRIIASHTMN KNSSRSHCIF TIYLEAHSRT LSEEKYITSK
                                                                              240
       INLVDLAGSE RLGKSGSEGQ VLKEATYINK SLSFLEQAII ALGDQKRDHI PFRQCKLTHA
                                                                              300
       LKDSLGGNCN MVLVTNIYGE AAQLEETLSS LRFASRMKLV TTEPAINEKY DAERMVKNLE
                                                                              360
                                                                              420
       KELALLKQEL AIHDSLTNRT FVTYDPMDEI QIAEINSQVR RYLEGTLDEI DIISLRQIKE
       VFNOFRVVLS QOEOEVESTL RRKYTLIDRN DFAAISAIQK AGLVDVDGHL VGEPEGQNFG
                                                                              480
55
       LGVAPFSTKP GKKAKSKKTF KEPLRPDTPP SKPVAFEEFK NEQGSEINRI FKENKSILNE
       RRKRASETTO HINAIKREID VTKEALNFQK SLREKQGKYE NKGLMIIDEE EFLLILKLKD
                                                                              600
       LKKQYRSEYQ DLRDLRAEIQ YCQHLVDQCR HRLLMEFDIW YNESFVIPED MQMALKPGGS
                                                                              660
       IRPGMVPVNR IVSLGEDDQD KFSQLQQRVL PEGPDSISFY NAKVKIEQKH NYLKTMMGLQ
                                                                              720
60
       Seg ID NO: 309 DNA sequence
       Nucleic Acid Accession #: CAT cluster
                                          31
                                                     41
65
       TTTTTTTTT TTTTTTTAA TGCCTGCTGT CATGCTCTGT CTACCAGGGT GAATTTCCAA
                                                                               60
       AAATTTCTGC ATAGCAATTT TAGCCAAAAC TATATATGTT CTGGGGAGGA TAGGCATAGG
                                                                              120
       CACATTGAAG ACCAAAGGAA AGAGTGAAGA AGTGTAGTTG GGTCATTGTG AATGGATGTT
                                                                              180
       TAGATTGTCA AGAAAAGTGG GCCAGAGGCC CCACCTCACA CTAGGACGGC AATTGCCTCT
                                                                              240
70
       CATTAGTATC TCAGGCACCA TGGGTCTTAT TTGGTGTCAT AAGAAACACC CTCAACAAAG
                                                                              300
       TAATGAACCC TCAGCCTCCA GCTTCTCTTC TTCGGGATTC TTCTTAGGGC CTCCTTTTTC
                                                                              360
       CTTTTATGTT TCCAGTACCC TGAATTTCTT ATTCCCATCC CCCATTAAAA TCTGCTTCAA
                                                                              420
       AGAAAAAACA AGAAGGACAC ATTCACTTTA AGATCCAAAT GAATGATAAG AGCTTAAAAC
       ATTATACTTA TCAGTATTAT TTGCATTTTT ATAGAAACCA AAACCATATT TCAACAAC
75
       Seq ID NO: 310 DNA sequence
       Nucleic Acid Accession #: NM_018622.2
       Coding sequence: 1-1140
80
                                                     41
                                          31
                              21
       ATGGCGTGGC GAGGCTGGGC GCAGAGAGGC TGGGGCTGCG GCCAGGCGTG GGGTGCGTCG
                                                                               60
       GTGGGCGGCC GCAGCTGCGA GGAGCTCACT GCGGTCCTAA CCCCGCCGCA GCTCCTCGGA
                                                                              120
       CGCAGGTTTA ACTTCTTTAT TCAACAAAAA TGCGGATTCA GAAAAGCACC CAGGAAGGTT
                                                                              180
85
       GAACCTCGAA GATCAGACCC AGGGACAAGT GGTGAAGCAT ACAAGAGAAG TGCTTTGATT
                                                                              240
       CCTCCTGTGG AAGAACAGT CTTTTATCCT TCTCCCTATC CTATAAGGAG TCTCATAAAA
       CCTTTATTT TTACTGTTGG GTTTACAGGC TGTGCATTTG GATCAGCTGC TATTTGGCAA
                                                                              360
```

		086443					
		TGAAATCCAG					420
		GACCACAAAA					480
		ATGGCCAGCG GAGTACCTTC					540 600
5		TCCTTTGTTC					660
9		CAAATATGTA					720
		AGTTCATGGC					780
		AAGTTGCCAC					840
		TCGCAGCTGT					900
10		TCACGTTCAC					960
		TCCTGGGATG					1020
		GGTATGTTAC					1080
	GTGAAAATCT	GGCATGAAAT	AAGGACTAAT	GGCCCCAAAA	AAGGAGGTGG	CTCTAAGTAA	
. ~							
15							
	Seq ID NO:	311 Protein	n sequence:				
	Protein Acc	cession #: 1	NP_061092.2				
20	1	11	21	31	41	51	
20						COUNTY PRIME	
		WGCGQAWGAS					60
		GEAYKRSALI					120
		YFDGIKADWL TMIRYFTSNP					180 240
25		SAGVISNEVS					300
23		ALKAIIAMDT					360
	VKIWHEIRTN		AGMILIGHT	DIMMINGONI	rainiviian	DET MIGHTER 2	300
	V1(1///11/11/11/11/11/11/11/11/11/11/11/1	GI MIGGODI					
	Sea ID NO:	312 DNA sec	nuence				
30	-	id Accession		25			
		lence: 195.	****				
25	1	11	21 .	31	41	51	
35				1		1	
		CCTTTGATGA					60
		TTCCTGGTTT					120
		GAAGAACATC					180
40		AGAGATGGCC					240
40		TGGGGAAAAA					300
		GACACAGGAT					360 420
		CCTCGTGGAG GTCCTCCCCA					480
		ACTTCACCAT					540
45		TATGACTCCC					600
		TCTACCTCAA					660
		AGAGGAACAT					720
		CCAACTGACG					780
		CTGCATTGGG					840
50		TGCCCGGGAA					900
		CATCAGGTCG					960
		GTGGAATGCT					1020
		GGACCCTGCC					1080
		CGGCCGCTTC					1140
55		CGAAATCCCA					1200
		TCGGGAACTG					1260
		GGGCGGCCTG					1320
		AGTCCGGGAC GGGCCTGGAA					1380 1440
60		CATTGCTGTG					1500
00		TGCAGAATCC					1560
		AGACTGGATT					1620
		GATGCTGAAC					1680
		TGTCTGGCAG					1740
65		CAAAGCTGTG					1800
	GAGTCAGAGT	CACCATCCTC	TTTGCGACAG	AGACAGGAAA	ATCAGAGGCG	CTGGCCTGGG	1860
	ACCTGGGGGC	CTTATTCAGC	TGTGCCTTCA	ACCCCAAGGT	TGTCTGCATG	GATAAGTACA	1920
	GGCTGAGCTG	CCTGGAGGAG	GAACGGCTGC	TGTTGGTGGT	GACCAGTACG	TTTGGCAATG	1980
70		TGGCAATGGA					2040
70		CAGGTACGCT					2100
		TGACATTGAT					2160
		GGATGAGCTC					2220
		AGCCTGTGAG					2280
75		CTCCAATGTG					2340
15		CCTCAGCAAA					2400 2460
	AACTCTCAAATC	TCGGCAGAAT TGAGGATGGC	CIACAAAGIC	A CTT A CCTT CCAG	GGGGGACCACC	WICCIGGIGG	2520
		CCAGCCGGCC					2520
	CACCCAGGCAA	GGCAGTGCGC	CTGGICCAAG	TEGATEAGAG	TGGCAGCTAC	TGGGTCAGTG	2640
80	ACAAGAGGCT	GCCCCCTGC	TCACTCAGCC	AGGCCCTCAC	CTACTTCCTC	GACATCACCA	2700
J U	CACCCCCAAC	CCAGCTGCTG	CTCCAAAAGC	TGGCCCAGGT	GGCCACAGAA	GAGCCTGAGA	2760
		GGAGGCCCTG					2820
		CCTGGAGGTG					2880
~ =	TGCTTTCCCA	GCTCCCCATT	CTGAAGCCCA	GGTTCTACTC	CATCAGCTCC	CCCCGGGATC	2940
85	ACACGCCCAC	GGAGATCCAC	CTGACTGTGG	CCGTGGTCAC	CTACCACACC	CGAGATGGCC	3000
	AGGGTCCCCT	GCACCACGGC	GTCTGCAGCA	CATGGCTCAA	CAGCCTGAAG	CCCCAAGACC	3060
	CAGTGCCCTG	CTTTGTGCGG	AATGCCAGCG	GCTTCCACCT	CCCCGAGGAT	CCCTCCCATC	3120

	WO 02	/086443					
	CTTGCATCCT	CATCGGGCCT	GGCACAGGCA	TCGCGCCCTT	CCGCAGTTTC	TGGCAGCAAC	3180
	GGCTCCATGA	CTCCCAGCAC	AAGGGAGTGC	GGGGAGGCCG	CATGACCTTG	GTGTTTGGGT	3240
	GCCGCCGCCC	AGATGAGGAC	CACATCTACC	AGGAGGAGAT	GCTGGAGATG	GCCCAGAAGG	3300
_	GGGTGCTGCA	TGCGGTGCAC	ACAGCCTATT	CCCGCCTGCC	TGGCAAGCCC	AAGGTCTATG	3360
5	TTCAGGACAT	CCTGCGGCAG	CAGCTGGCCA	GCGAGGTGCT	CCGTGTGCTC	CACAAGGAGC	3420
	CAGGCCACCT	CTATGTTTGC	GGGGATGTGC	GCATGGCCCG	GGACGTGGCC	CACACCCTGA	3480
			CTGAAATTGA				3540
	AGCTCAAGAG	CCAGAAGCGC	TATCACGAAG	ATATCTTTGG	TGCTGTATTT	CCTTACGAGG	3600
1.0			GTGCAGCCCA				3660
10	CTACAGGAGG	GGTTAAAGCT	GCCGGCACAG	AACTTAAGGA	TGGAGCCAGC	TCTGCATTAT	3720
	CTGAGGTCAC	AGGGCCTGGG	GAGATGGAGG	AAAGTGATAT	CCCCCAGCCT	CAAGTCTTAT	3780
	TTCCTCAACG	TTGCTCCCCA	TCAAGCCCTT	TACTTGACCT	CCTAACAAGT	AGCACCCTGG	3840
	ATTGATCGGA	GCCTC					
15	Seq ID NO:	313 Proteir	n sequence:				
	Protein Acc	cession #: 1	VP_000616				
20	1	11	21	31	41	51	
20	1]	1			
			EKGINNNVEK				60
	VETGKKSPES	LVKLDATPLS	SPRHVRIKNW	GSGMTFQDTL	HHKAKGILTC	RSKSCLGSIM	120
	TPKSLTRGPR	DKPTPPDELL	PQAIEFVNQY	YGSLKEAKIE	EHLARVEAVT	KEIETTVTYQ	180
25	LTGDELIFAT	KQAWRNAPRC	IGRIQWSNLQ	VFDARSCSTA	REMFEHICRH	VRYSTNNGNI	240
25			NAQLIRYAGY				300
			IPPDLVLEVA				360
			RDFCDVQRYN				420
			ESFMKYMQNE				480
20			WQDEKRRPKR				540
30			FSCAFNPKVV				600
			YAVFGLGSSM				660
			CETFDVRGKQ				720
			QNLQSPTSSR				780
25			VRLEALDESG				840
35	LLLQKLAQVA	TEEPERQRLE	ALCQPSEYSK	WKFTNSPTFL	EVLEEFPSLR	VSAGFLLSQL	900
			IHLTVAVVTY				960
			GPGTGIAPFR				1020
			VHTAYSRLPG				1080
40			AKLKLNEEQV	EDYFFQLKSQ	KRYHEDIFGA	VFPYEAKKDR	1140
40	VAVQPSSLEM	SAL					
		314 DNA sec					
			1 #: XM_0872	154			
15		id Accession uence: 472	_	154			
45			_	!54			
45	Coding sequ	uence: 472	2332		47	E1	
45			_	31	41	51 1	
45	Coding sequents	11	2332 — 21 	31	1]	60
	Coding sequents of the control of th	lence: 472	2332 21 AAACTGGTAC	31 ACTGACAGAA	 AATGAGATGC	 AGTTTCGGGA	60
45 50	Coding sequents AGAGTACGTG ATGTTCAATT	11 TTTACAGATA	21 AAACTGGTAC AATACCAAGA	31 ACTGACAGAA AATTAATGGT	 AATGAGATGC AGACTTGTAC	 AGTTTCGGGA CCGAAGGACC	120
	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG	21 21 AAACTGGTAC AATACCAAGA GAAACTTATC	31 ACTGACAGAA AATTAATGGT TTATCTTAGT	AATGAGATGC AGACTTGTAC AGTTTATCCC	AGTTTCGGGA CCGAAGGACC ATCTTAACAA	120 180
	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA	21 - AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT	AATGAGATGC AGACTTGTAC AGTTTATCCC CCTGAAAATG	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT	120 180 240
	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CCTTACAACCA CATGATCTCT	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT AGTCAGTCTC	AATGAGATGC AGACTTGTAC AGTTTATCCC CCTGAAAATG TGTCACACTG	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG	120 180 240 300
50	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCA	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGG	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT AGTCAGTCTC TCCCTGGCAA	AATGAGATGC AGACTTGTAC AGTTTATCCC CCTGAAAATG TGTCACACTG TCCAACCTGG	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA	120 180 240 300 360
	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCA TATGCATCTT	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTTAAAGC CTGGTGATGG CACCAGATGA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGTCT TCCCTGGCAA AAAGGCTCTA	AATGAGATGC AGACTTGTAC AGTTTATCCC CCTGAAAATG TGTCACACTG TCCAACCTGG GTAGAAGCTG	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT	120 180 240 300 360 420
50	1 AGAGTACGTG ATGTTCAATT AACACCAGAC CTTATCCCAT AATTAAAGAA CAATGTTCAA GTTGGAGTAC TGGTATTGTG	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CCTTACAACCA CATGACTCCT ACTGACTGCT TTTACTTGCATCTT TTTATTGGCA	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGG CACCAGATGA ATTCTGAAGA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT AGTCAGTCTC TCCCTGGCAA AAAGGCTCTA AACTATGGAG	AATGAGATGC AGACTTGTAC AGTTTATCCC CCTGAAAATG TGTCACACTG TCCAACCTGG GTAGAAGCTG GTTAAAACTC	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT	120 180 240 300 360 420 480
50	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCA ACTGACTGCA TATGCATCTT TTTATTGGCA AAACTGCTTC	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTT TCTTAAAGC CTGGTGATGA CACCAGATGA ATATCTGGAA ATATCTGGAA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT AGTCAGCTCT TCCCTGGCAA AAAGGCTCTA AAACTATGGAG ATTIGATTCA	AATGAGATGC AGACTTGTAC AGATTATCCC CCTGAAAATG TGTCACACTG TCCAACCTGG GTAGAAGCTG GTTAAAACTC GATCGTAGGA	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAGAAT TTGGAAGATT GAATGAGTT	120 180 240 300 360 420 480 540
50	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCA TATGCATCTT TTTATTGGCA AAACTGCTTC GCACCTTCAG	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGA ATATCTGAAGA ATATTCTGAAGA GTGAGAAGTT	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTATTGATTCA ATTATTGCT	AATGAGATGC AGACTTGTAC AGATTATACC CCTGAAAATG TGTCACACTG TCCAACCTGG GTAGAAGCTC GATCGTAGGA AAAGGAGCTG	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT TAGGAAAACT GAATGAGTTA AGTCATCAAT	120 180 240 300 360 420 480 540
50 55	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCA TATGCATCTT TTTATTGGCA AAACTGCTTC GCACCTTCAG TGTATAGGTG	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGG CACCAGATGA ATTCTGAAGA ATATTCTGGA ATATTCTGGA ATATTCTGGAGAATTG	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT AGTCAGTCTC ACTATGGCAA AACGGCTCTA AACTATGAG ATTTGATTCA AATTATTTGCT AAAAACCAGA	AATGAGATGC AGACTTGTAC AGACTTGTACCC CCTGAAAATG TGTCACACTG GTCAACCTGG GTAGAAGCTG GATCGTAGGA ATTCATGTAG ATTCATGTAG	AGTTTCGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTGT AGTCATCAAT ATGAATTTGC	120 180 240 300 360 420 480 540 600
50	1 AGAGTACGTG ATGTTCAATT AACACCAGAC CTTATCCCAT AATTTAAAGAA CAATGTTCAA GTTGGAGTAC TGGTATTGTG GGAACGGTAC AATTGTTCAG TCTCCCTAAA TTTCAAAAGGG	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCT TTTATTGGCA AAACTGCTTC GCACCTTCAG GCACCTTCAG TGTATAGGTG CTAAGAACTC	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATTCTGAAGA ATATTCTGGA GTGAGAAGTT TGAGAAATTAGC	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT AGTCAGTCTC TCCCTGGCAA AAAGGGCTCTA AACTATGGAG ATTTGATTCA ATTATTTGCT AAAAACCAGA ATATAGAAAA	AATGAGATGC AGATTGTAC AGTTTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GATCGTAGGA AAAGGAGCTG ATTCATGTAG TTTACATCAC	AGTTTCGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTAT AGTCATCAT ATGAATTTGC AAGAGTATGA	120 180 240 300 360 420 480 540 600 720
50 55	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CCTACAACCA ACTGACTCTC ACTGACTGCA TATTACTGCA TATTACTGCA AAACTGCTTC GCACCTTCAG TCTATAGGTG CTAAAGAACTC AAACGCATAT	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATATCTGGAA ATATCTGGAA GTGAGAAATAGA GTGAGAAATAGA TGTGTATAGC TTGAAGCCAG	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA AATTAGATCA ATTATTTCT AAAAACCAGA ATTAGAAAA GACTGCCTTG	AATGAGATGC AGACTTGTAC AGACTTGTACCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GTTAAAACTC GATCGTAGGA AAAGGAGCTG ATTCATGTACACACACACACACACACACACACACACACAC	AGTTTCGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTT AGTCATCAAT ATGAATTAG AAGAGTATTA AAGAGTATTA	120 180 240 300 360 420 480 540 600 720 780
50 55	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCA TATGCATCTT TTTATTGGCA AAACTGCTTC GCACCTTCAG TGTATAGGTG CTAAGAACTC CTAAGAACTC TATAGGTG TTTCCAGTTCA	21 AAACTGGTAC ATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATTCTGAAGA ATTCTGGAAGA GTAGAAGATTATCTGAAGA TTGAAGACTT GAGAAATAGA TCTGTATAGG TTGAAGCCAG TTGAAGCAAGAAGAAGAAGAAGAAGAA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGTCA ATTATTGATTCA ATTATTGATTCA ATTATTGATCA ATTATAGAAAA AGACTGCCTTG CCTGATATTA	AATGAGATGC AGATTTATCCC CCTGAAAATG TCCACACTGG GTAGAAGCTG GTTAAAACTC GATCGTAGGA AAAGGAGCTG ATTCATGTAG TTTACATCAC TTTACATCAC CAGCAGCGGG CTTGGAGCCCA	AGTTTCGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTGT AGTCATCAAT ATGAATTTGC AAGAGATATTA ATGAATTTCC AAGAGAAATT CAGCAGTAGA	120 180 240 300 360 420 480 540 600 720 780 840
50 55	1 AGACTACGTG ATGTTCAATT AACACCAGAC CTTATCCCAT AATTAAAGAA GTTGAGTTAC GGAACGGTAC AATTGTTCAG TCTCCCTAAA TTTGAAAGGG GGAAATAGAT AGGCGGTAC GGCAGCTGTT AGACAGACTA	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGCATCTT TTTATTGGCA AAACTGCTTC GCACTTCAG TGTATAAGGTG CTAAGAACTC CAAGAACTC AAACTGCTAC CAAGAACTC CAAGAACTC CAAGAACTC CAAGAACTC CAAGAATAAAG CAAGATAAAAG	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGA ATTCTGAAGA ATTCTGAAGA ATTCTGAAGATT GAGAAATTAGA TGTGTATAGC TTGAAGCAAG TTGAAGCAAG TTCGAGAAAAA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT AGTCAGTCTC TCCCTGGCAA AAAGGCTCTA AACTATTGAT ATTATTGCT AAAAACCAGA ATTATTGCT AAAAACCAGA ATATAGAAAA GACTGCCTTG CCTGATATTA TATTGAAGCA	AATGAGATGC AGATTGTAC AGATTGTACCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GATAGAAGCTG AATCGTAGGA AATGGAGCTG ATTCATGTAG TTTACATCAA CAGCAGCGGC CTTGAGAATGG	AGTTTCGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTGT AGTCATCAAT AGTCATCAAT AAGAGATATGA AAGAGAAATC CAGCAGTAGAC CTGGTATCAA	120 180 240 300 360 420 480 540 600 720 780 840 900
505560	1 AGAGTACGTG ATGTTCAATT AACACCAGAC CTTATCCCAT AATTTAAGAA CAATGTTCAA GGTAGTGTG GGAACGGTAC TTGCAAAATGTTCAG TTTCAAAGGG GGAAATAGAT GGCAGCTGTT AGACAGACTA AGCAGACTA AGTATGGGTA	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCA TATGCATCTT TTTATTGGCA AAACTGCTTC GCACCTTCAG CTAAGAACT CTAAGAACT CTAAGAACT AAACGCATAT TTCCAGTTCA CAAGATAAAG CTTACTGGGG	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACGAGATGA ATATCTGAAGA ATATTCTGAAGA ATATTCTGAAGATTTCTGAAGAAATAGA TGTGTATAGC TTGAAGCCAG TTGAAGAAACATGA ATAAACATGA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT AGTCAGTCTA AACTATGGAG ATTTGATTGCT AAAAACCAGA ATTATTTGCT AAAAACCAGA ATATAGAAAA GACTGCCTTG CCTGATATTA TATTGAAGCA AACAGCTGTT	AATGAGATGC AGATTGTAC AGTTTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GATCGTAGGA AAAGGAGCTG ATTCACATCAC TTTACATCAA CAGCAGCGG CTTGGAGCCA TTGGAGCTG AGGAATGG AGTGTGAGTT	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTGT AGTCATCAAT ATGAATTTGC AAGAGTATGA AAGAGAAATT CAGCAGTAGA CTGGCAGTACAA TATCATCTGG	120 180 240 300 360 420 480 540 600 720 780 840 900
50 55	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCA TATGCATCTT TTATTGGCG GCACCTTCAG TCTATAGGTG CTAAGAACTC AAACGCATAT TTCCAGTTCA CAAGATAAAC CTAACGCATAT TTCCAGTTCA CAAGATAAAG CTTACTGGGG AGAACCATGA	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATATCTGGAA ATATCTGGAG GTGAGAATTAGC TTGAAGACT TTGAGAAACA TTGAGAAACA TTCAGAGAACA ATATCAGAAACA ACATCCTTGA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTATTTGCT AAAAACCAGA ATTATATAGCT AATATAGAAAA GACTGCCTTG CCTGATATTA AACAGCTGTT ACTTATAAACC	AATGAGATGC AGATTTATCCC CCTGAAAATG TCCAACCTGG GTAGAACTG GTTAAAACTC GATCGTAGGA AAAGGAGCTG ATTCATGAGA TTTACATCAA CAGCAGCGGG CTTGGAGCCA TTGAGAAATGG AGTGAGAATGG AGTGAGAATGG	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTT AGTCATCAAT ATGAATTTGC AAGAGTATTAG CAGGAGAAT CAGCAGTAGA TTGGAAAACT TGGAATAGA TTTGCATCAAT ATGAATTTGC AAGAGTATGA TATCATCGTACAGAGTAGA CTGGTATCAA TATCATGTGG ACAGCGAGTG	120 180 240 300 360 420 480 540 6600 720 780 840 900 960
505560	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT TATGCATCTT TTTATTGGCA AAACTGCTT GCACCTTCAG TGTATAGGTG CTAAGAACCA TATGCATCTA TCTAGTAGTC CAAACCATTA CAAGATAAAG CTTACTGGGG AGAACCATGA TTGAGGCAGC	21 AAACTGGTAC ATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATATCTGGAGA ATATCTGGAGA ATATCTGAAGCA TGGAAACTTATAGC TTGAAGCAAGA TTGGAGCAAGA TTCGAGAAAC ATAAACATGA ACATCCTTGA TTGCCAGAAG	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGTCA ATTATTGATCC AAAAACCAGA ATTATAGAAAA GACTGCCTTG CCTGATATTA TATTGAGCA AACAGCTGTT AACAGCTGTT AACAGCTGTT AACAGCTGTT AACAGCTGTT AACAGCTGTT AACAGCTGTT	AATGAGATGC AGATTGTAC AGATTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GATCGTAGGA AAAGGAGCTG ATTCATGTAG TTTACATCAA CAGCAGCGGG CTTGAGAATCG ATTGAGAATCG AGGAAATCG AGTAGAATTGA GATCATGTAG GATCAGTGAGCTG AGGAAATCGA	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTAT AGTCATCAAT AGTCATCAAT ATGAATTTGC AAGAGTATAA AAGAGAAAT CAGCAGTAGA CTGGTATCAA TATCATGTGG ACAGCGAGTG TTCAGCAGTGG	120 180 240 300 360 420 480 540 600 720 780 840 900
505560	1 AGAGTACGTG ATGTTCAATT AACACCAGAC CTTATCCCAT AATTAAAGAA GTTGAGTTCAA GTTGGAGTAC TGGTATTGTG GGAACGGTAC AATTGTTCAG TCTCCCTAAA TTTGAAAGGG GGAAATAGAT AGCAGACTTA AGTATGGGTA CCATTTCAT TGCTGACAA TTGCTGACAA GTTGGGTA GCTGGTAGTG	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCA TATGCATCTT TTTATTGGCA AAACTGCTTC GCACCTTCAG TGTATAAGGTG CTAAGAACTC CAAGAACTACT CAAGAACACT CAAGAACACT CAAGACATAT TCCAGGTCC CAAGACATAC TCAGGTCG GAAGACATGA TCAGGAGC GATGGGGCCG GATGGGACCA	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATATCTGAAGA ATATCTGAAGA ATATCTGAAGATT GAGAAATTAGC TTGAAGCAG TTGAAGCAG TTGAAGCAGA TAGAGAAAGA ATACATGA ATAACATGA ACTACCTGAA CTGCCAGAAG GCCTATCTCT	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT AGTCAGTCTC TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTTATTTGCT AAAAACCAGA ATATAGAAAA GACTGCCTTG CCTGATATTA TATTGAAGCA AACAGCTGTT ACTATACAGAG ATATACAGAG TGCACTCAGG	AATGAGATGC AGATTGTAC AGTTTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG AATGGTAGGA ATTCATGAGCA ATTCATGAGCA TTTACATCAA CAGCAGCGG CTTGAGCAC TTTGAGCAC TTTGAGCAC TTGAGATGA AGTGTGAGTT AGTGAGTGA AGTGTGAGTT AGTGAGTT AGTGAGTAGAAAT AGTGAGAATAAA	AGTTTCGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTGT AGTCATCAAT ATGAATATGA AAGAGATATGA CAGCAGTGA CTGGTATCAA TATCATGTGG ACAGCGAGTG TTCAGCATGG AACTATTTAT	120 180 240 300 360 420 480 540 600 720 780 840 900 900 1020 1080 1140
505560	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CCTACACCA ACTGACTGCA TATGCATCTC ACTGACTGCA TATACAGCT TATATTGGCA AAACTGCTTC GCACCTTCAG TCTATAGGTTG CTAAGAACTC AAACGCATAT TTCCAGTTCA CAAGATAAAG CTTACTGGGG AGAACCATGA TTGAGGCAGC AGAAGCCA AGGAGCACA AGGAGCACA AGGAATTGTT	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTAAAGC CAGATGA ATATCTGGAGAA ATATCTGGA GTGAAAATAGA ATATCTGGA TTGAAGAC TTGAGAAAAA TTCGAGAAA ATATCTGAGAAA TTCGAGAAAC TAGAGAAAGA ATATCTGAGAAAC TAGAGAAAGA ACATCCTTGA TCGAGAAC TCGAGAAC ACATCCTTGA TCGAGAAC CAGATGATCC	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AATTATTGATCA ATTATTTGCT AAAAACCAGA ATTAGAAAA GACTGCTTG CCTGATATTA TATTGAAGCA AACAGCTGTT ACTTATAAAC AACAGCTGTT ACTTATAAAC AATTACAAGA AACAGCTGTT ACTTATAAAC AATTACAAGAG ATGCTCAGG ATGCTGTCGT	AATGAGATGC AGATTGTAC AGTTTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTTAAAACTC GATCGTAGGA AAAGGAGCTG ATTCACATGAGCAC TTTACATCAA CAGCAGCGG CTTGGAGCCA TTGAGAATGG AGTGTGAGTT CAGAAATCAG AGTGTGAGTT CAGAAATCAG GATCATGTGA ATGCACAGCAGAAATCAG ATGCACAGAAAACAG ATGCACAGAAAACAG AATGATCACACAGAAAAAAAAAA	AGTTTCGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTGT AGTCATCAAT ATGAATATGA AAGAGTATGA AAGAGAATTGC AAGAGTATGA CTGGCAGTAGA TATCATCTACAT TATCATCTACAT TATCATCTGG ACAGCGATTGT TCAGCATTGG ACAGCGATTGT TTCAGCATTGG ACAGCGATTGT TTCAGCATTGG ACAGCGATTGT TTCAGCATTGG ACAGCGAAAGC	120 180 240 300 420 480 540 600 720 780 840 900 960 1020 1140 1200
50556065	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCA TATGCATCTT TTATTGGCA AAACTGCTTCAG GCACCTTCAG TCTAAGAGT CTAAGAACT CAAGAACTC AAAGCATAT TTCCAGTTCA CAAGATAAAG CTTACTGGGG AGAACCATGA TTGAGGCAGC AGAACTATA	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATATCTGAAGA ATATCTGAGA TTGAGAAATAGA TTGAGAAACA TAGAGAAACAT TAGAGAAACA TAGAGAAACA TAGAGAAACA TAGAGAAACA TAGAGAAACA TAGAGAAACA TAGAGAAACA TCGAGAAAC ACATCCTTGA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTATTTGCT AAAAACCAGA ATTATATTGCT AAAAACCAGA ATTATGAAAA AACAGCTGTT ACTATGAAGCA ATATGAAAC ATTATGAAGCA ATATGAAAC CCTGATATTA ACTATATAAAC AATTACAGAG TGCACTCAGG TGCACTCAGG TGAGAAACCT	AATGAGATGC AGATTTATCCC CCTGAAAATG TCCACACTGG GTAGAAGCTG GTTAAAACTC GATCGTAGGA AAAGGAGCTG ATTCATACAC ATTCACACTAG CTTGAGAATGA CTTGAGAATGA CAGCAGCGG CTTGAGACTG AGTTGAGATTA CAGCAGCGG CTTGAGAATGA AGGAGTT CAGAAATCAG AGTCATGTAGAATCAG AATGAGATTACATCATGTAGATTACATCAGAATTGG AGTCATGTAGAATCAG AATACATTGAAAATCAG AATACATTGAAAATCAG AATACATTGAAAATCAG	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTGT AGTCATCAAT ATGAATTTG AAGGATATGA AAGAGAAATT CAGCAGTAGA TATCATGTAG TATCATGTAG ACAGCAGTAGA TATCATGTAG ACAGCAGTAGA TATCATGTAG ACAGCAGTAG TCAGCATTAG TATCATGTAG ACAGCAGTAG TCAGCATTAG ACATATTTAT TGCAGAAAACC CTGTTGGTACA	120 180 240 360 420 480 540 660 720 780 840 960 1020 1080 1140 1200 1260
505560	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTCT TTTATTGGCA AAACTGCTTC GCACCTTCAG TGTATAGGTG CTAAGAACT CTAAGAACT CTAAGAACT CTAAGAACT AAACGCATAT TTCCAGTTCA CAAGATAAAG CTTACTGGGG AGAACCATGA TTACTGGGG AGAACCATGA ATGAGGCAGC AGAAATTGTT AGACTAAATAA GACGTAAGCA	21 AAACTGGTAC ATACCAAGA GAAACTTATC GTCCTCTTT TCTTTAAAGC CACCAGATGA ATTCTGGAGA ATTCTGGAGAA ATTGTATAGG TTGAAGCCAG TTGAAGCAGA TAGAAGCAG TTGAAGCAG TTGAAGCAG TTGAAGCAG TTGAAGCAG ATAACATGA ACATCCTTGA ACATCCTTGA GCCTATCTC CAGCTGTATT AAATACACG TGATACACG TGATACACG	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTATTGATTCA ATTATTGATTCA AATATAGAGA ATTATAGAGA CATGCCTTG CCTGATATTA TATTGAATCA AACAGCTGTT ACTTATAAAC AATTACAGAG TGCACTCAGG ATGCTTCGT TGAGAAACCT AGCCCATGTT	AATGAGATGC AGATTTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GTTAAAACTG AATGATGAGAGCTG ATTCATGTAG ATTCATGTAG ATTCATGTAG TTTACATCAA CAGCAGCGGG CTTGGAGCCA TTGAGAATCG AGTAGAATCG GATCATGTGA ATGGAGCTG AATGAGATCAG AATGAGATCAG GATCATGAAATCAG GATCATGAAA ATGGCTCCAA ATGACTTGAA ATGGCTCCAA	AGTTTCGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT TAGAATTAG AGTCATCAAT ATGAATTTGC AAGAGTATGA AAGAGAATT CAGCAGTAGA CTGGTATCAA TATCATCTGG ACAGCAGAGT TTCAGCATG ACAGCAGTG ACTATTTAT TGCAGAAAGC CTGTTGGTAA TCTCGGAAAAC CTGTATTTAT TGCAGAAAGC CTGTTGGTGA ACTATTTAT TGCAGAAAAC CTGTTGGTAA TCATCGGTAA	120 180 240 360 420 480 540 600 720 780 840 900 1020 1080 1140 1260 1320
50556065	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGCATCTT TTTATTGGCA AAACTGCTTC GCACTTCAG TGTATAAGGTG CTAAGAACT CTAAGAACT CTAAGAACT CAAGAATAAG CTTACTGGG AAAACACTATA TTCCAGTTCA CAAGAACATG CAAGAACATG CAAGAACATG CAAGAACATG AGAACTATT AGACTAATA AGACTAATA AGACTAATA AGACTAATA CAGGCTGCAA CAGGCTGCAA	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGA ATTCTGAAGA ATTCTGAAGA ATTCTGAAGATTATC GTGAAGAAGT TGTGAAGAATAACATGA ACATCCTGAA ACATCCTGAA GCCTGTATT CAGCTGTATT AAATATCACC CTGATACAAGA GAAACAGTGA GAAACAGTGA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT AGTCAGTCTC TCCCTGGCAA AAAGGCTCTA AACTATGGAG ATTATTGAT AATTATTGCT AAAAACCAGA ATATAGAAAA GACTGCCTTG CCTGATATTA TATTGAAGCA AACAGCTGTT ACTTATAAAG ATTATACAGAG ATGCCTCAGG ATGCCTCAGG ATGCCTCAGG ATGCTCAGG ATGCTCAGG ATGCTCAGG TGAGAAACCT CGAGAAACCT CTATGCAATA	AATGAGATGC AGATTGTAC AGATTGTACCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GATCGTAGGA ATTCATGTAG ATTCATGTAG ATTCATGTAG ATTCATGTAG CTTACATGAGCTG CTTGAGATGG CTTGAGATGG AGTGTGAGTT CAGAAATCA AGAAATCA GATCATGTAG ATGATGTAGAATGG GATCATGTAA ATGCTCAC ATAACATTGA GGCATAGGAA GCCAGATTTA	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTT AGTCATCAAT AGTCATCAAT AGTGATTAG CAGCAGTAGA CTGGTATCAA TATCATGTGG ACAGCAGTG TTCAGCAGTGG ACAGCAGTG ACAGCAGTG ACAGCAGTG ACAGCAGTG ACTTTTAT TGCAGAAAGC CTGTTGTGTA AGTTTGTGGAAAGC CTGTTGTGTA AGTTGTGGGTAA AGTTCCTCTC	120 180 240 300 360 420 660 720 780 840 900 902 1080 1140 1200 1320 1380
50556065	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CCTACACCA ACTGACTCTCA AATGCATCTT TTATTGGCA AAACTGCTTC GCACCTTCAG TCTATAGGTG CTAAGAACTC AAACGCATAT TTCCAGTTCA CTAAGAACTC CAAGATAAAC CTTACTGGG AGAACCATGA TTGAGGCAG ATGAGCACC ATGAGTAATA AGAGTAAAC AGAAATTGTT AGACTAATAA GACGTACAA TTTGTCATG	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGG ATTCTGGAAGA ATATCTGGAG GTGAAAATAGC TTGAGAAACAG TTGAGAAACAGA ACATCCTTGA ACATCCTTGA ACATCCTTGA TTGAGAAACAGA ACATCCTTGA TTGAGAAACAGC TAGAGAACATGA ACATCCTTGA TTGAGAAACAGGA ACATCCTTGA TTGAGAAACAGGA ACATCCTTGA TTGAGAAACAGGA ACATCCTTGA TTGAGAAACAGGA ACATCCTTGA TTGAGAAACAGGA ACATCCTTGA TTGAGAAACAGGA TCATTTTTA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTC ATTATTTGATCA ATTATTGAGAG ATTATATGAACAGA ATTAGAAAA ACAGGTGTT ACTTATAAAC AATTACAAGA TGCACTCAGG ATGCTGTCAGCACTCAGG TGCACTCAGG ATGCTGTCGT TGAGAAACCT TGAGAAACCT TGAGAAACCT TGAGAAACCT TGAGAAACCT TTATACAATA TTATATAGAAT	AATGAGATGC AGACTTGTAC AGACTTGTACCC CCTGAAAATG TCCAACCTG GTAGAACTG GTAGAACTG GTAGAACTG GATCGTAGGA AAAGGAGCTG ATTCATGAGA TTTACATCAA CAGCAGCGG CTTGGAGCCA TTGAGAATGG AGTGTGAGTT CAGAAATCAG AGTAGTAGT AATGAGAATCAG GATCATGTAGA AATGGCATGAA ATGGCATGAA ATGGCTCCAC ATAACATTGG GGCATAGGAA ACCAGGATTTA ATAGCTACCC	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT AATGAATTTGC AAATGAGTAT AGGAATATTAG CAGGATAGA AAGAGTATGA AAGAGAAATT CAGCAGTAGA CTGGTATCAA TATCAATGGG ACAGCGAGTG TCCAGCATGG ACATGTTTAG CTGGTATTAT TGCAGGAAAGC CTGTTGGTACA TCATGGTAA AGTTCCTCTC TTGTACAGTA	120 180 240 300 360 420 480 600 720 780 840 900 1020 1020 1140 1260 1320 1340
5055606570	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTGCA TATGCATCTT TTATTGGCA AAACTGCTTC GCACCTTCAG GCACCTTCAG TGTATAGGTG CTAAGAACTC CAAGATAAC CATACTACTCAGTTCA CAAGATAAAG CTTACTGGGG AGAACCATGA TTGAGGCAGC TTGAGGCAGC AGAATTGTT AGACTAATAA GACGTAAGCA CAGGCTGCAA TTGTTCATG AAGAATGTT AGACTAATAA AGACTAATAA AAACTGCTAATAA	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATTCTGAAGA ATTCTGAAGA GTAATATCTGAAGA TTGTATAGC TTGAAGACAT TAGAGAAATAGA ATAAACATGA ACATCCTTGA TTGCAGAAAC TAGACATGA ACATCCTTGA TGCCAGAAG GCCTATCTCT CAGCTGTATT AAATATCACC TGATACAAGA GAAACAGTGA GAAACAGTGA GATATTTA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTATTGATTCA ATTATTGATTC CATATAGAAA AACAGCAGT TATTATAAAC AATTACAAAA AACAGCTGTT ACTTATAAAC AATTACAGAG TGCACTCAGG TGAGATCCT TGAGAAACCT TGAGAAACCT TGAGAAACCT AGCCCATGTT AGCCCATGTT ATTATGAATAAC AATTACAAAA ATTACAATAA	AATGAGATGC AGATTTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GTAGAAGCTG GTTAAAACTC GATCGTAGGA AAAGGAGCTG ATTCATGTAG ATTCATGTAG CAGCAGCGG CTTGGAGCCA TTGAGAATGG AGTGTAGAATGG AGTGTAGAAATCAG GATCATGTAG AATGGTCACAC GATCATGTAG AATGGTCACAC TATACATTGG GCATAGGAA ATGGCTCCAC ATAACATTGG GCCAGATTTA ATAGCTACCC TTATATCAGT	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTGT AGTCATCAAT ATGATTTGC AAGAGATAT CAGCAGTAGA CTGGTATCAA TATCATGTGG ACAGCGAGTG TCAGCAGTGG ACAGCAGTGG ACAGCAGTGG TCAGCAGTAGA CTGGTATCAA TATCATGTGG ACAGCAGTGG ACATTTTAT TGCAGAAAGC CTGTTGGTAA AGTTCCTCTT TTGTACAGTTA TCTACTGTTT TCTACTGTTT	120 180 240 300 360 420 660 720 960 1020 1080 1140 1260 1320 1380 1440 1500
5055606570	1 AGAGTACGTG ATGTTCAATT AACACCAGAC CTTATCCCAT AATTAAAGAA CATTGTCAA GTTGGAGTAC TGGTATTGG GGAACGGTAC TCTCCCTAAA TTTGAAAGGA GGAAATAGAT AGACAGACTA AGTATGGGTA AGTATGGGTA TGGCAGACTA AGTATGGGTA TGCTGAACAA GCTGGTAGTC GGAAGTTTCAT TGCTGAACAA GCTGGTAGTG GGAAGTTTGC AAAAGTAATA TGGTGCTAAT AGAAGGAAGA CAAATTGCTT TTTTTTTTTT	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGACTCT TATTACTGCA AAACTGCTT TTTATTGGCA AAACTGCTTC GCACCTTCAG TGTATAGGTG CTAAGAACCA TTACAGGTG CTAAGAACCA CAAGATAAAG CTTACTGGG AGAACCATGA TGAGGCAGC GATGGGACCA AGAAATTGTT AGACTAATAA GACGTAAAGCA CAGGCTGCAA TTTGTTCATG CAAACTGTT CAAGATGATGT CAAACATTGT CAAACATTGT	21 AAACTGGTAC ATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGA ATTCTGGAGA ATTCTGGAGA ATTCTGGAGATTATC GTGAAGAACTTATC GAGAAATAGA TGTGTATAGC TTGAAGCAGA TTGAAGCAGA TTCGAGAAAC ATAAACATGA ACATCCTTGA GCCTATCTCT CAGCTGTATT AAATATCACC TGATACAAGA GAAACAGTGA GAAACAGTGA GAAACAGTGA GTCATTTTTA AATTCAC ATGACAGCGT	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGTCA ATTATTGATCC AAAAACCAGA ATTATTGCT AAAAACCAGA ATTATAGAAAA GACTGCCTTG CCTGATATTA TATTGAGCA AACAGCTGTT ACTTATAACAGA TGCACTCAGG ATGCTCTGGT TGAGAAACCT TGAGAAACCT TTATATATGAGCA ACCCAGGTT CTATGCAATA TTATATTAGA	AATGAGATGC AGATTGTAC AGATTGTAC AGATTGTACCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GATCGTAGGA AAAGGAGCTG ATTCATGTAG ATTCATGTAG TTTACATCAA CAGCAGCGGG CTTGAGAATCG AGTGAGATTGA GATCATGTAG AATGAGATTGA GAGCATGAAA ATGGCTACAG GATCATGGA GATCATGGA GATCATGGA GACATGAAA ATGGCTACCA TTAACATTGG GCCATAGGAA CCCAGATTTA ATAGCTACCC TTTATACAATA	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTT AGTCATCAAT AGTCATCAAT ATGAATTTGC AAGAGTATGA CTGGTATCAA TATCATGTGG ACAGCAGTG TTCAGCAGTGG TTCAGCAGTG TCAGCATGG ACTATTTAT TGCAGAAAGC TTCATGGTAA AGTTCTTTTAT TTCATTTCTTTTAC TTTTTACTTTTAC	120 180 240 300 360 420 600 660 780 960 1020 1140 1200 1320 1380 1440 1560
50556065	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA ACTGACTGCA TATGCATCTC ACTGACTGCA TATTGCATTC TATATTGGCA AAACTGCTTC GCACCTTCAG TCTATAGAGTC GCACCTTCAG TCTATAGAGTC TTCAGTTCA AAACGCATAT TTCCAGTTCA CATGAGTACAG CATGATAAAG CATGATAAAG CATGATAAAG CATGATAAAG CATGATCATA AGACTAATAA GACGTAAGCA CAGGCTGCAA TTTGTTCATG AAGAATGTGT CAAACATTGT CAAACATTGT CAAACATTGT	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGG CACCAGATGA ATATCTGGAA ATATCTGGA GTGAGAAGTA TGGAGAACT TAGAGAAACA TTGAAGAC TTGAAGAC TTGAAGAC TTGAGAAAC TTGCAGAAAC TTGCAGAAAC ACATCCTTGA TTGCAGAAAC TTGCAGAAAC ATAACATGA ACATCCTTGA TTGCAGAAGA GCCTATCT CAGCTGTATT AAATATCACC TGATACAAGA GAAACAGTGA GTCATTTTA GCTTTTTTA GCTTTTTTA ATATCACC TGATACAAGC TTATCAACAGCGT ATAGCACGCT ATAGCACGCT ATAGCACGCT ATAGCACTTTTT	31 ACTGACAGAA AATTAATGGT TTATCTTAGT TAGAACCAGT AGTCAGTCTC TCCCTGGCAA AAAGGCTCTA ATATTGATTCA ATTATTTGATTCA ATTATTTGCT AAAAACCAGA ATTATAAAAA GACTGCCTTG CCTGATATTA TATTGAAGCA AACAGCTGTT ACTTATAAAC AATTACAAGG ATGCCTGGT TGAGAAACCT TGAGAAACCT TGAGAAACT TGAGAACT TGAGAAACT TGAGAAACT TGAGAAACT TGAGAAACT TGAGAAACT TGAGAAACT TGAGCAGTTT TATATTAGA ACCCCAGTTT TTATATTAGA ACCCCAGTTT TGTACCTGACT GGAACAGCAT	AATGAGATGC AGATTGTAC AGATTGTAC AGATTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GATCGTAGGA ATTCATGAGCA CAGCAGCGGG CTTGAGAATCA ATGAGAATCAG AGAAATCAG AGACATGAAA ATGGCTCAC ATAACATTGA ATGGTCAC ATAACATTGA GCCAGAGTTA ATACATTA ATAGCTACCC TTATATCAGT TTATACATTA GTAGACCCT	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGATGT AGTCATCAAT AGTCATCAAT AAGAGTATGA AAGAGATATGA CAGCAGTAGA CTGGTATCAA TATCATGTGG ACAGCAGTG TTCAGCAGTGG AACTATTAT TGCAGAAAGC CTGTTGGTGA AGTTGTTGTTAC TCATCGGTTA AGTCCTCTC TTGTACAGTTA TCTACTGTTT TTTGTTTTAC ATGTGTTTACA	120 180 240 300 360 420 600 600 720 780 960 1020 1140 1200 1360 1440 1560 1620
5055606570	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTCT ACTGCATCTT TTATTGGCA TATGCATCT GCACCTTCAG GCACCTTCAG TCTATAGGTG CTAATAGGTG CTAATAGATC CAAGATATA TTCCAGTTCA CAAGATAATA TTCAGTTCA GAGACCATGA TTGAGGCAGC GATAGGACCA TGAGGCAGC AGAACCATGA TTGAGGCAGC ATGAGTCAA AGAATTGTT AGACTAATAA GACGTAAGA ATTGTTCATG AAGAATGTT AAGAATGTT AATCTGATGT AACATTTT	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATATCTGAAGA ATATCTGAAGA TGTGATAAGC TTGAAGAAATAGA TTGAAGAAATAGA TAGAGAAATAGA ACATCCTTGA ACATCCTTGA ACATCCTTGA TAGACATGA ACATCCTTGA TAGACATGA ACATCCTTGA TGCCAGAAG GCCTATCTCT TAAACATTGA AAACATTGA ACATCATTTTA AATATCACC TGATACAAGA GAAACAGTGA GTCATTTTTA GCTTTATCAC ATGACAGCGT ATAGACATTTT GAGACATTAG	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTATTTGCT AAAAACCAGA ATTATATTGCT AAAAACCAGA ATTATATAGAAA ACAGCTGTT ACTATAAACCAGA ATATGAAAC CCTGATATTA ATTACAGAG TGCACTCAGG TGAGAAACCT AGCCCATGTT CTATGCAATA TTATATATAGA ACCCCAGTTT GTACCTGACT GGAAACAGCAT TGAGAACACCAT TGAGAACACCAT TTATATTAGA	AATGAGATGC AGATTTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GTTAGAACTG GATCGTAGGA AAAGGAGCTG ATTCATGATAC ATTCATGAGA TTTACATCAA ACACCAGGGG CTTGGAGCCA TTGAGAATGG AGTGTGAGTT CAGAAATCAG GATCATGTAG AATGGTCACAC ATACATTAG GACATGAA ATGGCTCCAC ATACATTG GCCATAGGAA GCCAGATTTA ATAGCTACCC TTATATCAGT TTATACAATA GTAGACCCTC CTCTTAAGTA	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGAGTGT AGTCATCAAT ATGAATTTG AAGGATATGA AAGAGATATG AAGAGATATG AAGAGATATG ACAGGAGTAGA CTGGTATCAA TATCATGTGG ACAGCAGTAGA CTGGTATCAA TATCATGTGG ACAGTATTAT TCCAGGAAAGC CTGTTGGTA CTGTTGGTA CTTGTTGTTT TTTGTTTTTAC ATGATTTAC ATGATTTAC TTTAAAACATT	120 180 240 300 360 420 660 720 780 840 900 1020 1080 1140 1260 1320 1340 1500 1500 1620 1680
5055606570	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CCTTACAACCA CATGATCTCT ACTGCATCT TATTACTGCA AAACTGCTT TTATTGGCA AAACTGCTTC GCACCTTCAG TGTATAGGTG CTAAGAACT CTAAGAACT CTAAGAACT TTCCAGTTCA CAAGATAAAG CTTACTGGGG AGAACCATGA TTGAGGCAGC AGAAATGTT AGACTAATAA GACGTAAGCA CAGGCTGCAA TTGTTCATG AAGAATGT AAGACTGT ATTCTGATG ATTCTGATAT ACCCTTATC ACCATCTTGC ACCATCCTGG	21 AAACTGGTAC ATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATTCTGAAGA ATTCTGGAGAA GTAATATCGGAAAC TTGAAGACATAAGCCAG TTGAAGCCAG TTGAAGCCAG TTGAAGCAAG ATACCTTGA TTGCCAGAAG GCCTATCTT CAGCTGTATT AAATATCCC TGATACAGC GAAACAGGG GCTATCTT AATATCACAC TGATACAGC GAAACAGGG ATACAGAG GCTATCTTT AATATCACC TGATACAAGA GCATTTTTA ACTTTATCAC ATGACACTTAG ATGACATTAG GCTTCAGTCA GCTTCAGTCA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTATTGATTCA ATTATTGATTC AATATAGAAA AACAGCTGTT AACAGCTGTT AACAGCTGTT ACTTATAAAC AATTACAGAG TGCACTCAGG TGAGATACTATATATAAC AATTACAGAG TGCACTCAGG TGAGATACTATATATATAAC AATTACAGAG TGCACTCAGG TGAGATACTATATATATAAC AATTACAGAG TGCACTCAGG TGAGAAACCT TGAGAAACCT TGAGAAAACCT TGAGAACAGCTT TTAATATAGA TTAATTAGA TTAAAACCGC TGCCTTTATT	AATGAGATGC AGATTTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GTTAAAACTC GATCGTAGGA AAAGGAGCTG ATTCATGTAG ATTCATGTAG ATTCATGTAG CTTGAGAATGA CACAGCGGG CTTGGAGCCA TTGAGAATGG AGTCATGTGAGTT CAGAAATCAG GATCATGTAGA ATGGCTCCAC ATAACATTGG GCCAGATTTA ATAGCTACCAC TTATACAATA GTAGACCCT CTCTTAAGTA TTCTTTTTTG	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT TTGGAAAACT ATGATTTGC AAGATTAGA AAGAGATATCA AAGAGATATCA AAGAGATATCA CTGGTATCAA TATCATGTGG ACAGCGAGTG TTCAGCATGG ACATCATTTAT TGCAGAAAGC CTGTTGGTAA AGTTCCTCT TTGTACAGTA TCTACTGTTT TTTGTTTTAC ATGTGTTTTAC ATGTGTTTTT	120 180 240 300 360 420 660 720 1080 1020 1080 1140 1260 1320 1380 1560 1560 1680 1740
505560657075	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA ACTGACTGCA TATGCATCTC ACTGACTGCA TATTGCATCT TTTATTGGCA AAACTGCTTC GCACCTTCAG GCACCTTCAG CTAAGAACTC AAACGCATAT TTCAGTTCA CATGACTACA CATGATAAAG CATACTGGGG AGAACTCTAACAGCATCAT AGACTAATAA GACGTAAGCA CAGGCTGCAA TTTGTTCATG AAGAATTGTT CAAACAATTGT CAAACATTGT AAACATTGT AAACATTGT CAAACATTGT AATTATAA CCCTTATC AAACATTGT AACCATTGT AATCTGATAT ACCCTTTATC ACCATCCTGG AAAGATACAT	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGG CACCAGATGA ATATCTGGAG ATATCTGGAG ATATCTGGA TGGAGAACT TAGAGAAACA TTCGAGAAC TTGAAGCCAG TTGAAGCCAG TTGAAGCCAG TTGAAGCCAG TTGAAGCCAG TTGAAGAAC TTGCAGAAAC ATAACATGA ACATCCTTGA TTGCAGAAAC ATACAAGA GCCTATCTT AAATATCACC TGATACAAGA GAAACAGTGA GTCATTTTTA GATATCACC TGATACAAGA GAACAGTGA ATACACGCT ATACAAGC TTATCACC CTCTTTTTTA GCTTTTTTTA GCTTTTTTTTA GCTTTTTTTTTA CCTTTTTTTTTT	31 ACTGACAGAA AATTAATGGT TTATCTTAGT TAGAACCAGT AGTCAGTCTC TCCCTGGCAA AAAGGCTCTA ATATTGATTCA ATTATTTGCT AAAAACCAGA ATTGAATAA GACTGCCTTG CCTGATATTA TATTGAAGA AACAGCTGTT ACTTATAAAC AATTACAGAG ATGCCTGGT TGAGAAACCTG TGAGAAACTG TGAGAAACTG TGAGAAACTG TGAGAAACTG TGAGAAACTG TTATATAGA ACCCCAGTTT GTACCTGACT GGAACAGCAT TAAAAACCGC TGCCTTATT AAATGCCAG	AATGAGATGC AGATTGTAC AGATTGTAC AGATTGTAC AGATTGTACCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GATCGTAGGA ATGCAGCGG CTTGAGAATGA TTTACATGA CAGCAGCGGG CTTGAGAATGG AGTGAGATGGA ATGGAGTGG GATCATGTAG GACATGAA ATGGCTCCAC TTAAACATTGG GGCATAGGAA GCCAGATTTA ATAGCTACCC TTATATCAGT TTATACAGT TTATACATT GTAGACCCTC CTCTTAAGTA TTCTTTTTTG ATGTTTGGAA	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGATGT AGTCATCAAT AGTCATCAAT ATGAATTTGC AAGAGTATGA CAGCAGTAGA CTGGTATCAA TATCATGTGG ACAGCAGTG ACAGCAGTG ACAGCAGTG ACAGCAGTG TCCAGCAGTG ACTTTTAT TGCAGAAAGC CTGTTGTTGGTACAT TCTACGGTAA AGTTCCTCTC TTGTACAGTA TCTACTGTTT TTTGTTTTTAC ATGTGTTACA TTAAAACATT CACTGACTT TAAAACATT CACTGACTTT ACTGGACATT	120 180 240 300 360 420 600 600 720 780 900 960 1020 1140 1200 1380 1440 1500 1620 1680 1740 1800
5055606570	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA ACTACACCA ACTGATCTCT ACTGACTGCA TATACACCA ATAGACTCT TTATTGGCA AAACGCATCT GCACCTTCAG TCTATAGGTG CTAAGAACT AACGCATAT TTCCAGTTCA CTAAGAACT AACACCATCAG AGAACATGAA TTGAGGAG AGAACATGA TTGAGGAGC ATGAGGACCA AGAATTGATT AGACTAATAA GACGTAACA ATTGTTCATG AAGAATGTT AACACTTTTCACAG ATTCTGATAT ACCCTTTATC ACCATCCTGG AAAGATACAT ACCCTTTATC ACCATCCTGG AAAGATCAT GTCTTCACAG	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGG ATCTGGAAGA ATATCTGGAA ATATCTGGA GTGATAGC TTGAGAAACA TTCGAGAACA TTCGAGAACA TACACAGAAC TACACAGAAC TACACAGAAC TACACAGAAC TACACAGA CCTTACTCT AAATATCACC TGATACAAGA GATACATCA GCTTATTTA GCTTATCAC ATGACAGCGT ATAGCAGTGA TTCACAGCGT ATAGCAGTGA GTCATTTTA GCTTCATTTA CTTCACAGCGT TATGACAGCGT TATGACATCT CAGCTGTATT CAGCTCTTTTA CTTCACTCT CAGCTCTGCTTCG TCATGCTTCG TCATGCTTAG TCATGCTTTG	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTC ATATTTGAGA ATTATTGAGA ATTATTGAGA ATTATTGAGA ATTATAGAGA ATATGAAAA ACAGGTGTT ACTTATAAC AATTACAGAG TGCACTCAGG ATGCCTGTGTTATTATAACCAGA TGCACTCAGG ATGCCTGTTGTAGACATA TTATATTAGA ACCCCAGTTT CTATGCAATA TTATATTAGA ACCCCAGTTT GTACCTGACT TGAGAAACCT TAAAAACCGC TGCCTTTATT AAAAACCGC TGCCTTTATT AAAAACCGC TACAGTCACA	AATGAGATGC AGATTTATCCC CCTGAAAATG TCCACACTGG GTAGAAGCTG GTTAAAACTC GATCGTAGGA AAAGGAGCTG ATTCATGAGA ATTCATGAG ATTCATGAG CTTGAGAATGG CTTGAGAATGG AGTGAGATGG AGTGAGATGA ACTGAGAATGG AGTCATGTGAG AGTCATGTGAG AGCATGAA ATGGCTCAC ATAACATTG GGCATAGGAA CCAGATTTA ATACAATT CTTATATCAGT TTATACAGT TTATTTTTTA ATGTTTTTTGA ATGTTATGG ATGTTAGTA GTAAAGATGG	AGTTTCGGA AGTTTCGGA AGTTTCGGAACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT AGTATTAG CAATGAGTT AGTAATTGC AAGAGTATGA AAGAGATATGA ATGAATTTGC CTGGTATCAA TATCATGTGG AACTATTAT TCAGCATGG TCAGCATGG TCAGCATGG TCAGCATGG TCATGGTATCAT TCAGCATGG TCATGGTACATT TCAGCATGG TCATGGTACATT TCTACTGTTT TTTGTTTTAC TTTGTTTTAC ATGTGTTACATT CATGCTTACATT CATGCTTACATT CATGCTTACATT CATGCTTACATT CATGCTTACATT CATGCTACT TTAAAACATT GATCCTATTT CACTGGAAAC	120 180 240 300 360 420 660 720 780 840 900 1020 1020 1140 1260 1320 1500 1560 1620 1680 1740 1860
505560657075	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CCTACAGCCA ACTAGACCTA AATGCATCT ACTGCATCT ACTGCATCT TTTATTGGCA AAACTGCTTC GCACCTTCAG GCACCTTCAG TCTATAGGTG TCTATAGGTG CTAAGACTC TATACAGTCA AAGATAAA TCCAGTTCA CAAGATAAA AGAAATGTT AGACTAATAA GACGTAAAA AGAAATGTT AGACTAATAA GACGTAAGA ATTGTTCATG AAGAATGT ATTCTGATG AAGAATGT ATTCTGATG AAGAATGT ATTCTGATG ACCTTTATC ACCATCCTGG AAAGATACAT GCCTTTATC ACCATCCTGG AAAGATACAT GTCTTCACAG ACTTTGATCA ACCATCCTGG AAAGATACAT GTCTTCACAG ACTTTGATCA	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CCTGGTGATGA ATATCTGAAGA ATATCTGAAGA ATATCTGGA GAAAATAGA TGTGATATAGC TTGAAGAAATAGA ATAACATGA ACATCCTTGA TTGCAGAAAG ATACCTTGA TTGCAGAAG CCTATCTT AAACATGA GCCTATCTT AAACATGA GAAACAGTGA GCTATCTT AATATCAC TGATACAGG GAAACAGTGA GTCATTTTA GCTTTATCAC ATGACAGCGT ATAGCTGTATT AGGTGTATTTA GCTTTATCAC ATGACAGCGT ATAGCTGTAT GCTTCAGTCA TCAGTCAGTCA CTCTGCTTGG TCATGGTTAT ACCATCTCGT	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTATTGATT CATTAGTT AATTAGTT AATTAGTAGAG ATTATTGCT AAAAACCAGA ATAATAGAAA ACAGCTGTT ACTAATAAAC AATTACAGAG TGCACTCAGG TGAGAAACCT AGCCCATGTT TATATATAGA ACCCCAGTTT GTACCATG GGAACAGCAT TTATATATAGA ACCCCAGTTT TTATATATAGA ACCCCAGTTT TTATATATAGA ACCCCAGTTT TAAAAACCGC TGCCTTTATT AAATGGCAG TACAGGCAGA TACAGGCAG TACAGGCAGA TACCTGGGGA	AATGAGATGC AGATTTATCCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GTAGAAGCTG GTAGAAGCTG ATTCATGAGA ATTCATGAGA ATTCATGAGA TTTACATCAA CAGCAGCGG CTTGGAGCCA TTGAGAATGG AGTCATGTGAG AGTCATGTGAG ATTCATGTAG AGTCATGTGAG TTAGAAATCAG GATCATGTGA GACCATCAC TTATACACAC TTATACACTA GTAGACCTC TTATACACTA GTAGACCTC TTATATCAGT TTATACAATA GTAGACCTTT TTTTTTG ATGTTTTTG ATGTTTTTG ATGTTTTTTG ATGTTTTTTTAATTAT	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT TTGGAAAACT ATGATTTGC AAGATTTGC AAGAGTATGA ATGATTTGC AAGAGTATGA CTGGTATCAA TATCATGTGG ACAGCAGTGG ACACTACTTT TTGAGCATGG ACACTATTTAT TGCAGAAAGC CTGTTGGTAA AGTTCCTCTC TTGTACAGTTA TCTACTGTTT TTTGTTTTTAC ATGGTATAC ATGTGTACACTT TTGTGTTTAC ATGTGTTACA TTAAAACATT GATCCTATTT ACTGGACATT CTTGGACATT CTTGGACATT CTTGGACATT TTAAAACATT GATCCTATTT CTCTGGAAAC TTTATTTTTT	120 180 240 300 360 420 660 720 780 840 900 1020 1020 1140 1260 1320 1500 1560 1620 1680 1740 1860
505560657075	1 AGAGTACGTG ATGTTCAATT AACACCAGAC CTTATCCCAT AATTAAAGAA CAATGTTCAA GTTGGAGTAC TGGTATTGTG GGAACGGTAC AATTGTTCAG TCTCCCTAAA TTTGAAAGGA GGAAATAGAT AGCAGACTA AGTATGGGTA TGGTACTAT AGAAGAGACA ACTATTTCAT TGCTGAACAA GCTGGTAGTG GGAAGTTTGC AAAAGAGAGA CAAATTGCT TTTTTTTTTT	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTT TATACTGCA TATGCATCT TTTATTGGCA AAACTGCTTC GCACCTTCAG TGTATAGGTG TGTATAGGTG CTAAGAACTC AAACGCATAT TTCCAGTTCA CAAGATAAAG CTTACTGGGG AGAACCATGA TTGATGGGACA AGAATTGTT AGACTAATAA GACGTAAGCA CAGGCTGCAA AAAATTGTT AGACTAATATA CACGTAAGCA CAGGCTGCAA TTGTTCATG AAGAATTGT ATCCTGTATA ACCCTTTATC ACCATCCTGG AAAGATACAT GTCTTCACAG TTTTATCGAGAT TTTTATCGAGAT TTTTATGGAG TTTTATGGAG TTTTATGGAG TTTTATGGAG TTTTATGGAG TTTTATGGAG TTTTATGGAG	21 AAACTGGTAC ATACCAAGA GAAACTTATC GTCCTCTTT TCTTTAAAGC CTGGTGATGA ATTCTGGAGA ATTCTGGAGA ATTCTGGAGAATTATC GGAAATTAGC TTGAAGCAG TTGAAGCAG TTGAAGCAG TTGAAGCAG TTGAAGCAG TTGAAGCAG TTGAAGCAG TTGAAGCAG ATACATGA ACATCCTTGA TGCCAGAAG GCCTATCTCT TGATACACG GATACTTTA AGTATACAC TGATACAGA GAAACAGGG ATACTCTT TAGACACGGT ATAGCTTTT GAGACATTTT GAGACATTGA TCGTTCAGTCA CTCTGCTTGG TCATCTCTG GCTTCAGTCA CTCTGCTTGG GCATCCTCTG GGATTCTCTG GGATTCTCTG	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT CAGAACCAGT AACTATGAGA AATTATTGATC AACTATGAGA ATTATTGATTC AAAAACCAGA ATTATAGAGA ATATAGAAA AACTGCCTTG CCTGATATTA TATTGATCA AATTACAGAG TGCACTCAGG ATGCTGTCGT TGAGAAACCT AGCCCATGTT CTATGCATA TTATATAGA ACCCCAGTTT CTATGCATA TTATATTAGA TTAATAGCA TGACCCAGTTT AAAAACCGC TGCCTTTATT AAATGGCCAG TCACTGGGGA GCCATTTTG AACTCCAGGGA TCACTGCAG TCACTGGGGA GCCATTTTTG AATTGGGA GCCATTTTTG	AATGAGATGC AGATTGTAC AGATTGTAC AGATTGTACCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GTAGAAGCTG GTAGAAGCTG AATGCTAGGA ATTCATGTAG ATTCATGTAG ATTCATGAGA CAGCAGCGGG CTTGGAGACCA TGAGAATCG AGACATGAG GACATGAA ATGGCTCCA ATACATGC GCCAGATTTA ATAGCTACC TTATATCAGT TTATACAATA GTAGACCCTC CTCTTAAGTA TTCTTTTTG ATGTTTGGAA GTAAAGATG GTAAAGATGG GTAAAGATG CTCTTAAGTA TTCTTTTTTG ATGTTTTTTG ATGTTTTGGAA GTAAAGATGG GTCATATATA GGCTCCCAGA	AGTTTCGGAA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT TAGAATTAG AGTCATCAAT ATGAATTTGC AAGAGTATA AAGAGATAT ACGAAGTATA AAGAGATAT ACGAGTAGA CTGGTATCAA TATCATCTGG AACTATTTAT TGCAGAAAGC CTGTTGGTGAA AGTCCTCTC TTGTACAGT TCTACAGTAT TCTACAGTTA TCTACAGTTA TCTACAGTT TTTGTTTTAC ATGTGTTACAT TTAAACATT GATCCTATTT ACTGGACATT CTCTGGAACAT TTAAAACATT CATCTGGACATT TTTGTTTTAC ATGTGTTACATT TTTGTTTTAC ATGTGTTACATT TTTGTTTTAC ATGTGTTTTAC ATGTGTTACATT TTTGTTTACATTT ACTGGACATT CTCTGGAACAT TTTAATTTTGTTTTATTTTTTTTTT	120 180 240 300 360 420 600 660 780 960 1020 1140 1200 1320 1440 1560 1620 1680 1740 1860 1860 1980
505560657075	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CCTACAGCA ACTGACTCCA ACTGACTCCA ACTGACTCCA ACTGACTCCA ACTGACTCCA CCACCTTCAG CCACCTTCAG CCTAAGAACTC AAACCCATAT TTCCAGTTCA CAAGACTAA CTTACAGGTG AGAACCATGA TTCCAGTTCA AGAGATAAA CATCTACAGCA AGAAATTGTT AGACTAAGCA CAGCTAACCA ACTACTCACA AGAACTTCATC AAGAATTGT CAAACATTGT AACACTTCGATAT ACCCTTTATC ACCATCCTGG AAGAATACA CTTCGATAT ACCCTTTATC ACCATCCTGG ATTGTTCACAG ACTTGGATCA CTTTCACAG ACTTTGATCACAC ACTTTGATCACAC ACTTTGATCACAC ACTTTCACAG ACTTTCACAG ACTTTCACAG ACTTTCACAG ACTTTCACAG ACTTTCACAG ACTTCCTGT	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGG CACCAGATGA ATATCTGGAA ATATCTGGAA ATATCTGGA GTGAAACATTAGC TTGAAGAAATAGA ACATCATGAAAAC TTGAGAAAC TTGAGAAAC TTGAGAAAC TTCAGAGAAC ATAACATGA ACATCCTTGA GCTATCTTA AATATCACC TGATACAAGA GAAACAGTGA GTCATTTTTA GCTTTATCAC ATGACAGCGT ATAGCATTTT GAGACATTAC GCTTCAGTCA CTCTCAGTTAC TCTCAGTTAC TCTCAGTTAC TCTCAGTTAC CTCTCTTCG TCATGTTAT ACCATCTCT CAAGTGGTTAT ACCATCTCT CAAGTGGTTCT CAAGTGGTTCT CGAATTCCTC CAAGTGGTTCC CAAGTGGTTCC CAAGTGGTTCC CAAGTGGTTCC CAAGTGGTTCC CAAGTGGTTCC CAAGTGGTTCC CAAGTGGTTCC CAAGTGGTTCC CAAGTGGTTC	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT ACTATGAGAA AAAGGCTCTA AACTATGGAG ATTAGATCA ATTATTTGCT AAAAACCAGA ATTAGAAAA GACTGCTTG CCTGATATTA TATTGAAGA AACAGCTGTT ACTTATAAAC AATACAGAG ATGCCTGGT TGAGAAACCT TGAGAAACCT TGAGAAACCT TTATATTAGA ACCCCAGTTT GTACCTGACT GCACCTTTT GTACCTGACT TAAAAACCGC TGCCTTTATTATAAAC ACCCAGTTT AATTGCAATA TATATTAGA ACCCCAGTTT TAAAAACCGC TGCCTTTATT AAATGGCAG TACAGCAC TACAGCACA TACAGCACA TACAGCACA TACAGCACA TACAGCACA TACTTGGTTT TGCTTGGTTT TGCTTGGTTT	AATGAGATGC AGATTGTAC AGATTGTAC AGATTGTACCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GATCGTAGGA ATTCATGTAG ATTCATGTAG ATTCATGTAG TTTACATCAA CAGCAGCGGG CTTGAGAATGG AGTGAGATGG AGTGAGATTGA ATGGTTCAC GATCATGTAG GATCATGTAG GATCATGTAG GATCATGTAG TTATACATT ATAGCTTCC TTATATCAGT TTATACAGT TTATACAGT TTATACAGT TTATACAGT TTATACAGT TTATACAGT TTATACAGT TTATTAGAT TCTTTTTTG ATGAGCCTC CTCTTAAGTA ATGGTCCCAGA GTAAAGCTG GTAAAGCTG GTAAAGCTG GTAAAGCTG GTCCCAGA GCCATAATCC	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGATGT AGTCATCAAT ATGAATTTGC AAGGATATGA AAGAGATATTAG CAGCAGTAGA CTGGTATCAA TATCATGTGG ACAGCAGTG ACAGCAGTG ACAGCAGTG ACAGCAGTG ACAGCAGTG ACAGCAGTG ACTTTTAT TGCAGAAAGC CTGTTGGTGA TCTACGGTTA TCTACTGTT TTTGTTTTTC ATGTTTTTTC ATGGTTTTTC ATGGTTTTTTC ATGGTTTTTTT CATGGACATT CTCTGGAAAC TTTAATTTTTT CTTGGAAAC TTTATTTTTT CTTGGAAAC TTTATTTTTTTTTT	120 180 240 300 360 420 600 660 720 1020 1020 11200 1260 1320 1560 1560 1740 1560 1740 1860 1920 1920 1920 1920
50 55 60 65 70 75	Coding sequence of the control of th	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTT TTATTGGCA TATGCATCT TTATTGGCA AAACTGCTTCAG GCACCTTCAG TCTATAGGTG CTAAGACT AACGCATAT TTCAGTTCA CAAGATATA TCCAGTTCA CAAGATAATA TCAGTTCA CAAGATAAAA CATGAGACCA TGAGACCATGA TTGAGGCAGC AAACATGA TTGAGGCAGC AAACATGT AGACTAATAA GACTAATAA GACTAATAA GACTAATAA GACTAATAT AGACTATGT AACATTGT AACATTGT ATTCTGATG AACATTGT ATTCTGATG ACCTTTATC ACCATCCTGG AAAGATACA TTTTATGGAC ACTTGGATCA TTTTATGGATC TTTTCTGATA	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CACCAGATGA ATTATCTGAGA ATTATCTGAG GTGAGAACT TGAGAAATAGA TTGAGAAACATGA ACATCCTTGA TAGACATGA ACATCCTTGA TAGACATGA ACATCCTTGA TAGACATGA ACATCCTTGA TAGACATGA ACATCCTTGA TAGACATGA ACATCCTTGA TAGACATGA CACTTATCTCT TAGACAGTGA GCTTATCTCT TAGACAGTGA GTCATTTTA GCTTTATCAC ATGACAGTGT GTAGACATTAG GCTTCAGTCT TAGACAGTGT TAGACATTAG GCTTCAGTCA TCAGTGTTT AAGACATTAG GCTTCAGTCA TCAGTGTTT TAGACATTCCT GAGACATTCCT GAGACATTCCT TAGACAGTGT TCAGTGTT TCAGTGTTT TCAGTGTTT TCAGTGTTT TCAGTGTTT TCAGTGTTT TCAGTGTTT TCATAAAGAA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTATTTGCT AAAAACCAGA ATTATTTGCT AAAAACCAGA ATTATATTGCT AAAAACCAGA ATTATGAACA ATTATATATATAAC AATTACAGAG TGCACTCAGG TGACACTCAGG TGAGAAACCT AGCCCATGTT CTATGCAATA ATTACAGAG TGCACTAGT TGAGAAACCT AGCCCATGTT TTATATTAGA ACCCCAGTTT TTATATTAGA ACCCCAGTTT TAAAAACCGC TGCCTTTATT AAATGGCCAG TACAGGCAC TACCTGGGGA GCCATTTTTG TTCTTGGTTT GGTCTTTGGTTT GGTCTTTGGTTT GGTCTTTGAC	AATGAGATGC AGACTTGTAC AGACTTGTACCC CCTGAAAATG TCTCACACTG GTAGAAGCTG GTAGAAGCTG GTTAGAGCTG ATTCATGTAG ATTCATGTAG ATTCATGTAG ATTCATGTAG ATTCATGTAG ATTCATGTAG ATTCATGTAG ATTCATGTAG AGACATGA ACACAGCAGC CTAGAGAATCAG GATCATGTAG AATGCTCCAC ATAACATTAG GCATAGAA ACCAGATTTA ATAGCTACCC TTATATCAGT TTATACAATA GTAGACCTC CTCTTAAGTA TTCTTTTTG ATGTTTTGA ATGTTTTGAGAGAGC TTATTTTGAGAGCCTC CTCTTAAGTA TTCTTTTTTG ATGTTTTTGA ATGTTTTTGAGTA TTCTTTTTTG ATGTTATATAT GGGTCCCAGA GCCATAATCC CGACACCTCC	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT TTGGAAAACT TTGGAAATT ATGAATTTG AATGATTTG AATGATTTG AAGGATATG AAGGATATG AAGGATACA TACATCAGT TCAGCATGG ACATCATCAGT TCAGCATGG ACATCATTTAT TCAGCATGG ACTATTTAT TCAGCATGG ACTATTTAT TCAGCATGA TCATGGTAA AGTTCCTCTC TTGTACAGTTA TCTACTGTTT TTTGTTTTTAC ATGATTACA TTAAAACATT GATCCTATT ACTGGACAT CTCTGGACAT CTCTGGACAT TCATGGATAT TCTTGGAAAC TTTATTTTTT TCTTGGAAAC TTTATTTTTT TCTTGGAAAC TTTATTTTTT TCATGGATTA TCATGGATTT TCATGGATTA TCATGGATTT TCATGGATTT TCATGGATTT TCATGGTTTT TCATGGATTT ACCCTACAAG	120 180 240 300 360 420 660 720 960 1020 1080 11400 1260 1320 1500 1500 1680 1740 1860 1920 1980 2040 2010
50 55 60 65 70 75	1 AGAGTACGTG ATGTTCAATT AACACCAGAC CTTATCCCAT AATTAAAGAA GATGTTCAA GTTGGAGTAC GGTACTGTG TCTCCCTAAA TTTCAAAGGA GGAAATAGGT AGGACGGTT AGACAGACTA AGTATGGGA TCTCCCTAAA TCTCAAAAGAC GGAAATAGGT TCGTGAACAA GCTGGTAGTG GGAAGTTTCAT TGCTGAACAA TGTGTGTAGTG TCCTTATTG AAATAGGT TTTTTTTTTT	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA CATGATCTT TTATTGGCA AAACTGCTT TTATTGGCA AAACTGCTTC GCACCTTCAG TGTATAGGTG TGTATAGGTG CTAAGAACT CTAAGAACT CTAAGAACT TTCAGTTCA CAAGATAAG CTTACTGGGG AGAACCATGA TTGAGGCAGC TTGAGGCAGC AGAAATTGTT AGACTAATAA GACGTAAGA TTGTTCATG AAGATTGT ATTCTGATA ACCATTCTGT ATTCTGATA ACCATCTTG AAGATACAT TCTCTGATAT ACCCTTTATC ACCATCTTGC AAGATACAT TTTCTGATCA TCCTTTCTCAGA ACTTGGATCA TTTTTCAGAG CACTCCTGG AAGATACAT TTTTTCTGATAT ACCCTTTTCTCAGAT ACTTTCACAG TTTTTCTGATAT ACCTTTCACAG TTTTTCTGATAT ACCTTTCACAG ACTTTCACAG TTTTTTTGATA CACGCCCTGT TTTCTTGATA CCACGCTTTA	21 AAACTGGTAC ATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGA ATATCTGAAGA ATATCTGAAGA ATATCTGGA GTGAGAAGT GAGAAATAGA TGTGATAAGC TTGAAGCCAG TTGAAGCCAG TTGAAGCAAG ATACCTTGA TTGCAGAAAC TAGACATGA ACATCCTTGA TGCCAGAAG GCCTATCTCT CAGCTGTATT AAAACATGA AAACAGTGA ATACATGA ATACATGA GCTTTATCAC TGATACAGC TTGAGAGTGAT TGAGACATTTA GCTTCAGTCA CTCTGCTTGG TCATGGTTAT ACCATCTCGT GGATTCTCT CAGTGGTTAT ACCATCTCGT GGATTCTCT CAAGTGGTTC CAAGTGGTTC CAAGTGGTTC CAATAAACAAA	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTA AACTATGAGA ATTATTGATTCA ATTATTGATTC AATAACCAGA ATTATAGAAA ACACGCTGT TACTATAAAC AATTACAGAG TACTACAGTCT ACTATACAAAC AATTACAGAG TGCACTCAGG TCAGATATTA TATTATAAAC AATTACAGAG TGCACTCAGG TCAGTGTT TAATACACAT TTATATAGA ACCCCAGTTT TATATATAGA TACATGACT TGAAAAACCC TGCATTTTT AAATGCCAG TACAGTCAC TACAGTCAC TACAGTCAC TCCTTTTTT AATTGCAGA TACCTGGGGA GCCATTTTTG TTCTTTGGTTT CGTTCTTTTT CGTTCTTTT CGTTCTTTTT CTTCAGGTTAT TGCAGGTATC	AATGAGATGC AGATTATACCC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GTAGAAGCTG GTTAAAACTC GATCGTAGGA AAAGGAGCTG ATTCATGTAG ATTCATGTAG CTTGAGACTG GTTGAGATCAC ATGAGAATGG AGAGCAGCAG TGAGAATCAG GATCATGTAGA ATGCTCCAC ATACATGAGA ATGCTCCAC TTATACATA ATAGCTACCC TTATATCAGT TTATACAATA ATAGCTACCC TTATATCAGT TTATACAATA GTAGACCTC TCTCTTAGTA TTCTTTTTT ATGTTTTGGAA GTAAAGATGG TTCTTTTTTT ATGTTTTGAA GTAAAGATGG TCTATTATAT GGCTCCCAGA GCCATAATCC CGACACCTCC AAGTGCTCC AAGTGCTTGG	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT TTGGAAAACT ATGAATTTGC AAGATTAGC AAGAGATTGA ATGAATTTGC AAGAGTATAA CTGGTATCAA TATCATGTGA ACAGTAGA TCTAGCATGG ACATCATTTAT TGCAGAAAGC CTGTTGGTAA AGTTCCTCTC TTGTACAGTA TCTACTGTTT TTTGTTTTAC ATGTGTTACA TTAAAACATT CATCGGACATT CATCGGACAT CATCGGACAT TTAACACTT TTTGTTTTAC TTTGGTACAGTA TCTACGGTAT TCTACGGACAT TTTAACACTT TCTTGGACATT TCATGGTTGT ACCCTACAAG ACTCCACAGA	120 180 240 300 360 420 660 720 960 1020 1080 1140 1250 1320 1560 1560 1560 1740 1800 1800 1980 2040 20160
505560657075	1 AGAGTACGTG ATGTTCAATT AACACCAGAC CTTATCCCAT AATTATAAGAA CAATGTTCAA GTTGGAGTAC TGGTATTGTG GGAACGGTAC AATTGTTCAG TTTCCCTAAA GTTGAAAGGA GGCAGCTGTT AGACAGACTA AGTATGGTG GGAACTGTT AGACAGACTA TGCTGAACAA TGCTGAACAA TGCTGAACAA TGCTGAACAA TGCTGAACAA TGCTGAACAA TGCTGAACAA TGCTGATATT TTTTTTTTTT	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CTTACAACCA ACTGACTGCA TATGCATCTC ACTGACTGCA TATGCATCT ACTGACTGCA TATACAGCAT TTTATTGGCA AAACTGCTTC GCACCTTCAG GCACCTTCAG TCTAAGAACT TTCAGATAA CCTAACAGCATAT TTCAGGTTCA AGAGATAAAG CTTACTGGGG AGAACTCTAACAGCACTATA AGACTAATAA GACGTAAGCA CAGGCTGCAA TTTGTTCATG AAACATGT AAACATTGT CAAACATTGT CAAACATTGT ATTCTGATAT ACCCTTTATC ACCATCCTGG AAGAATACAT GTCTTCACAG ACTTGGATCA TTTTATGGAG CAGCCTCTGT TTTCTTGATA GACGACGCTTTA GAACAGCTTTA CAACACGCTTAG CAGCCTCTGT TTCTTGATA GACAGCCTTTA GAACGCCTTTA CAACACGCTTTA CAACACCTTTA CAACACCTTA CAACACCTA CAACACCTTA CAACACCTTA CAACACCTA CAACACC	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGG CACCAGATGA ATATCTGGAA ATATCTGGA GTGAGAAGTA ATATCTGGA GTGAGAACA TTGGAGAAC TTGAAGCCAG TTGAAGCCAG TTGAAGCAGA ATATCTTGAA CATCCTTGA TTGCAGAAAC ATAACATGA ACATCCTTGA GCTATATT AAATATCACC TGATACAAGA GAAACAGTGA GTCATTTTT GAGACATTAG GCTTATTTT GAGACATTAG CTTCAGTCG TCATGCTTCTT GAGACTTCTT CAGACTTCTT CAAGTGGTTC CCAAGTGGTTC CTATAAAGAA CTGAAACAAA CAGCGTGTGC	31 ACTGACAGAA AATTAATGGT TTATCTTAGT TAGAGTCTC TCCCTGGCAA AAAGGCTCTA AAAGGCTCTA ATTATTGATTCA ATTATTTGCT AAAAACCAGA ATTGAAGAA GACTGCCTTG CCTGATATTA TATTGAAGAA AACAGCTGTT ACTTATAAAC AATTACAAGA ATGCCTGGT TGAGAAACCTG TGAGAAACCTG TGAGAAACCTG TGAGAAACCTG TGAGAACCTTATAAACCAGC ATGCTGTTGTTATATATAGA ACCCAGTTT GTACCTGACT GGAACAGCAT TAAAAACCGC TGCCTTTATT AAATGGCCAG TACCTGGGT TACAGTCACA TACCTGGGGA TACCTGGGGT TGCTTTGTTGGCACTTTGGTCTTTGGCACTTTGGTTTTGACCTTTGACTTTGGCACTTTGGTTTTGACTTTGGACTTTGGTCTTTGACTTTTTGACTTTTTGACTTTTTGACTTTTTGACTTTTTGACTTTTTGACTTTTTGACTTTTTGACTTTTTGACTTTTTGACTTTTTGACTTTTTGACTTTTTTTT	AATGAGATGC AGATTGTAC AGATTGTAC AGATTGTAC AGATTGTAC CCTGAAAATG TGTCACACTG GTAGAAGCTG GTAGAAGCTG GTTAAAACTC GATCGTAGGA AATGGAGCTG ATTCATGTAG ATTCATGTAG TTTACATCAA CAGCAGCGGG CTTGGAGAATCG AGTAGAATCGA GAGAAATCGA GAGAATTCAG GATCATGGA GCCATAGGAA ATGGCTCCAC TTATACATTA ATAGCTACC CTCTTAAGT ATTATACATT GTAGACCTC CTCTTAAGT ATTATTACAT ATGGTTCGAG GTATATATT ATGTTTTTG ATGTTTTTTG ATGTTTTTTTG ATGTTTTTTTG ATGTTTTTTTG ATGTTTTTTTG ATGTTTTTTTG ATGTTTTTTTG ATGTTTTTTTT	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT GAATGATGT ATGAATTTGC AAGAGTAGA AAGAGATAT ATGAATTTGC AAGAGTATAA AAGAGAAAT CAGCAGTAGA CTGGTATCAA TATCATGTGG ACACGAGTAG ACTATTTAT TCCAGAAAGC CTGTTGGTAA AGTTCCTCTC TTGTACAGTA TCTACTGTTT TCTTTACATTTAC TTACACTTT TCTTTACATTT CTCTGGAAAC TTAAAACATT CATCGGATT TTTGTTTTAC TTTATTTTTC ATTGGAAAC TTAATTTTT CTTGGAAAC TTAATTTTT CTCTGGAAAC TTAATTTTT CTCTGGAAAC TTAATTTTT CTCTGGAAAC TTAATTTTT CATGGTTGT ACCCTACAAG ACTCCAACT ACCTACTTT ACCCTACAAG ACTCCAACT ACCCTACAAG ACTCCAACTT ACCCAACTTA	120 180 240 300 360 420 6600 6600 780 960 1020 1140 1200 1320 1440 1500 1680 1740 1860 1980 2040 2140 2160 2220
50 55 60 65 70 75	1	11 TTTACAGATA AATGGCATGA TCTTCAGAAG CCTACAGCCA ACTGACTCCA ACTGACTCCA ACTGACTCCA ACTGACTCCA ACTGACTCCA ACTGACTCCA CCTACAGACC CCACCTTCAG CTAAGACCT GCACCTTCAG CTAAGACTC CCAAGATCAAC CTTACTGGGG AGACCATGA TTGAGGCAGC ATGGGCAC ACTGAGACCA ACAGCTCACA ACAGCTCACA ACAGCTCCACA ACTCGATCA ACAGCTCCAC ACTCGATCA ACTCTCGATCA ACTCTCGATAT ACCCTTTATC ACCATCCTGG AAACATTGT ACCCTTCACAG ACTTGATCA ACAGCCTCAACCC ACTCCAACCC ACTCCAAC	21 AAACTGGTAC AATACCAAGA GAAACTTATC GTTCCTCTTT TCTTTAAAGC CTGGTGATGG ATTCTGGAAGA ATATCTGGAA ATATCTGGAAACA TTCGAGAACA TTCGAGAACA TTCAGAGAAC TAGAGAACTG ACATCCTTGA TAGACTGTATAGC TAGAGAACATGA ACATCCTTGA TAGACATGA ACATCCTTGA TACACAGGA TCCAGATGA TCCAGAGAG TCCAGATGA ACATCTTTA AATATCACC TGATACAAGA GTCATTTTA GCTTTATCAC ATGACAGCGT ATAGACGTTAC TCAGTTGATTACAC TCAGTTACACGC TCAGTTGGTTCAGTCA CTCTGCTTGG TCATGGTTAT ACCATCTCGT GGATTCTCGT CAAGTGGTTC TCATAAACAA ACACGTGTTC TCATAAACAAA ACACGTGTGC ACATCAGCAC ACACCACACACACACACACACACACACACACAC	31 ACTGACAGAA AATTAATGGT TTATCTTAGT CAGAACCAGT TCCCTGGCAA AAAGGCTCTC ATATTTGATC ATTATTTGATC ATTATTTGCT AAAAACCAGA ATTAGAAAA AATTAGAAAA AACAGCTGTT ACTTATAAAC AATTACAGAG TGCACTCAGG ATGCACTCAGG ATGCACTCAGG ATGCATTGATTATATTAAAC AATACAGAG TCACCCAGTTT CTATGCAATA TTATATTAGA ACCCCAGTTT GTACCTGACT GGAACAGCAT TAAAAACCGC TGCTTTATT AATGCACGA TCACTGGGGA GCCATTTTT GTACCTGGCT TCACTGGGTT CGCACTTTGGTT CGCACTCTTTTTG TCCTTGGTTT GGTCTTTGGTT GGTCTTTGAC TGCAGGTATC ACTGGTGTT CGCAGGTATC ACTGGTGTT CGCAGGTATC ACTGGTGTT CGCAGGTATC ATCTGGTGTT ATTATTGAC TGCAGGTATC ATCTGGTTT ATTATTGAC TGCAGGTATC ATCTGTTGGA ATCATGGAGT	AATGAGATGC AGATTTATCCC CCTGAAAATG TCCACACTGG GTAGAAGCTG GTAGAACTG GTTAAAACTC GATCGTAGGA AAAGGAGCTG ATTCATGAG TTTACATCAA CAGCAGGGG CTTGGAGCCA TTGAGAATGG AGTCATGAGA AATGAGTA ACACTAGGA ACACTGAAATCAG GATCATGTAAA ACACAGCAGGG TTAAAATCAG GATCATGTGAA ATGACTACAC TTATATCAAT TTATACAATA TTATACAATA TTATACAATA TTATACAATA TTATATCAGT TTATATCAGT TTATATCAGT TTATATCAGT TTATTTTTA ATGTTTTTTA ATGTTTTTTTA ATGTTTTTTAA TGCTCCCCAACTCC AAGTGCTCC AAGTGCTCC AAGTGCTCC AAGTGCTCC AAGTGCTCC AAGTGCTCC AAGTGCTCC AAGTGCTCC AGAATCCC CGACACCTCC AAGTGCTCG AGAATCCTG AGAATCCTGC AGAATCCTGC AGAATCCTGC AGAATCCTGC AGAATCCTGC AGAATCCTGC AGAATCCTGC AGAATCCTGC AGAATCCTGC AGAATCCTGGATCC CGCACCTCC AAGTGCTTGG AGAATCCTGC AGATCCTGGATC	AGTTTCGGGA CCGAAGGACC ATCTTAACAA AAACTGAACT TACAGATTAG CACCATCGCA CTGCAAGGAT TTGGAAAACT TTGGAAAACT ATGAATTTGC AAGATTAGC AAGAGATTGA ATGAATTTGC AAGAGTATAA CTGGTATCAA TATCATGTGA ACAGTAGA TCTAGCATGG ACATCATTTAT TGCAGAAAGC CTGTTGGTAA AGTTCCTCTC TTGTACAGTA TCTACTGTTT TTTGTTTTAC ATGTGTTACA TTAAAACATT CATCGGACATT CATCGGACAT CATCGGACAT TTAACACTT TTTGTTTTAC TTTGGTACAGTA TCTACGGTAT TCTACGGACAT TTTAACACTT TCTTGGACATT TCATGGTTGT ACCCTACAAG ACTCCACAGA	120 180 240 300 360 420 660 720 960 1020 1020 11200 1260 1320 1500 1680 1740 1590 1860 1920 1980 2160 22100 22280

```
WO 02/086443
       TAGTACTITG TGGGAGCCAG TTCACCTCCT TTCCTAAAAT TCAGTGTGAT CACCCTGTTA
       ATGGCCACAC TAGCTCTGAA ATTAATTTCC AAAATCTTTG TAGTAGTTCA TACCCACTCA
                                                                          2460
       GAGTTATAAT GGCAAACAAA CAGAAAGCAT TAGTACAAGC CCCTCCCAAC ACCCTTAATT
                                                                          2520
       TGAATCTGAA CATGTTAAAA TTTGAGAATA AAGAGACATT TTTCATCTCT TTGTCTGGTT
                                                                          2580
 5
       TGTCCCTTGT GCTTATGGGA CTCCTAATGG CATTTCAGTC TGTTGCTGAG GCCATTATAT
                                                                          2640
       TTTAATATAA ATGTAGAAAA AAGAGAGAAA TCTTAGTAAA GAGTATTTTT TAGTATTAGC
                                                                          2700
       TTGATTATTG ACTCTTCTAT TTAAATCTGC TTCTGTAAAT TATGCTGAAA GTTTGCCTTG
                                                                           2760
       AGAACTCTAT TTTTTTATTA GAGTTATATT TAAAGCTTTT CATGGGAAAA GTTAATGTGA
       ATACTGAGGA ATTTTGGTCC CTCAGTGACC TGTGTTGTTA ATTCATTAAT GCATTCTGAG
                                                                          2880
10
       TTCACAGAGC AAATTAGGAG AATCATTTCC AACCATTATT TACTGCAGTA TGGGGAGTAA
                                                                          2940
       ATTTATACCA ATTCCTCTAA CTGTACTGTA ACACAGCCTG TAAAGTTAGC CATATAAATG
                                                                           3000
       CAAGGGTATA TCATATATAC AAATCAGGAA TCAGGTCCGT TCACCGAACT TCAAATTGAT
                                                                           3060
       GTTTACTAAT ATTTTTGTGA CAGAGTATAA AGACCCTATA GTGGGTAAAT TAGATACTAT
                                                                           3120
       TAGCATATTA TTAATTTAAT GTCTTTATCA TTGGATCTTT TGCATGCTTT AATCTGGTTA
15
       ACATATTTAA ATTTGCTTTT TTTCTCTTTA CCTGAAGGCT CTGTGTATAG TATTTCATGA
                                                                           3240
       CATCGTTGTA CAGTTTAACT ATATCAATAA AAAGTTTGGA CAGTATTTAA ATATTGCAAA
                                                                          3300
       TATGTTTAAT TATACAAATC AGAATAGTAT GGGTAATTAA ATGAATACAA AAAGAAGAGC
                                                                           3360
       CTCTTTCTGC AGCCGACTTA GACATGCTCT TCCCTTTCTA TAAGCTAGAT TTTAGAATAA
                                                                           3420
       AGGGTTTCAG TTAATAATCT TATTTTCAGG TTATGTCATC TAACTTATAG CAAACTACCA
                                                                           3480
20
       CAATACAGTG AGTTCTGCCA GTGTCCCAGT ACAAGGCATA TTTCAGGTGT GGCTGTGGAA
       TGTAAAAATG CTCAACTTGT ATCAGGTAAT GTTAGCAATA AATTAAATGC TAAGAATGAT
                                                                           3600
       TAATCGGGTA CATGTTACTG TAATTAACTC ATTGCACTTC AAAACCTAAC TTCCATCCTG
                                                                           3660
       AATTTATCAA GTAGTTCAGT ATTGTCATTT GTTTTTGTTT TATTGAAAAG TAATGTTGTC
                                                                           3720
       TTAAGATTTA GAAGTGATTA TTAGCTTGAG AACTATTACC CAGCTCTAAG CAAATAATGA
                                                                           3780
25
       TTGTATACAT ATTAAGATAA TGGTTAAATG CGGTTTTACC AAGTTTTCCC TTGAAAATGT
                                                                           3840
       AATTCCTTTA TGGAGATTTA TTGTGCAGCC CTAAGCTTCC TTCCCATTTC ATGAATATAA
       GGCTTCTAGA ATTGGACTGG CAGGGGAAAG AATGGTAGAG ACAGAAATTA AGACTTTATC
                                                                           3960
       CTTGTTTGCT TGTAAACTAT TATTTTCTTG CTAATGTAAC ATTTGTCTGT TCCAGTGATG
                                                                           4020
       TAAGGATATT AAGTTATTAA GCTAAATATT AATTTTCAAA AATAGTCCTT CTTTAACTTA
                                                                           4080
30
       GATATTTCAT AGCTGGATTT AGGAAGATCT GTTATTCTGG AAGTACTAAA AAGAATAATA
                                                                           4140
       CAACGTACAA TGTCTGCATT CACTAATTCA TGTTCCAGAA GAGGAAATAA TGAAGATATA
                                                                           4200
       CTCAGTAGAG TACTAGGTGG GAGGATATGG AAATTTGCTC ATAAAATCTC TTATAAAACG
                                                                           4260
       TGCATATAAC AAAATGACAC CCAGTAGGCC TGCATTACAT TTACATGACC GTGTTTATTT
                                                                           4320
       GCCATCAAAT AAACTGAGTA CTGACACCAG ACAAAGACTC CAAAGTCATA AAATAGCCTA
                                                                           4380
35
       TGACCAACTG CAGCAAGACA GGAGGTCAGC TCGCCTATAA TGGTGCTTAA AGTGTGATTG
                                                                           4440
       ATGTAATTTT CTGTACTCAC CATTTGAAGT TAGTTAAGGA GAACTTTATT TTTTTAAAAA
                                                                           4500
       AAGTAAATGG CAACCACTAG TGTGCTCATC CTGAACTGTT ACTCCAAATC CACTCCGTTT
                                                                           4560
       TTAAAGCAAA ATTATCTTGT GATTTTAAGA AAAGAGTTTT CTATTTATTT AAGAAAGTAA
                                                                           4620
       CAATGCAGTC TGCAAGCTTT CAGTAGTTTT CTAGTGCTAT ATTCATCCTG TAAAACTCTT
                                                                           4680
40
       ACTACGTAAC CAGTAATCAC AAGGAAAGTG TCCCCTTTGC ATATTTCTTT AAAATTCTTT
                                                                           4740
       CTTTGGAAAG TATGATGTTG ATAATTAACT TACCCTTATC TGCCAAAACC AGAGCAAAAT
                                                                           4800
       GCTAAATACG TTATTGCTAA TCAGTGGTCT CAAATCGATT TGCCTCCCTT TGCCTCGTCT
                                                                           4860
       GAGGGCTGTA AGCCTGAAGA TAGTGGCAAG CACCAAGTCA GTTTCCAAAA TTGCCCCTCA
                                                                           4920
       GCTGCTTTAA GTGACTCAGC ACCCTGCCTC AGCTTCAGCA GGCGTAGGCT CACCCTGGGC
45
       GGAGCAAAGT ATGGGCCAGG GAGAACTACA GCTACGAAGA CCTGCTGTCG AGTTGAGAAA
                                                                           5040
       AGGGGAGAAT TTATGGTCTG AATTTTCTAA CTGTCCTCTT TCTTGGGTCT AAAGCTCATA
                                                                           5100
       ATACACAAAG GCTTCCAGAC CTGAGCCACA CCCAGGCCCT ATCCTGAACA GGAGACTAAA
                                                                           5160
       CAGAGGCAAA TCAACCCTAG GAAATACTTG CATTCTGCCC TACGGTTAGT ACCAGGACTG
                                                                           5220
       AGGTCATTTC TACTGGAAAA GATTGTGAGA TTGAACTTAT CTGATCGCTT GAGACTCCTA
                                                                           5280
50
       ATAGGCAGGA GTCAAGGCCA CTAGAAAATT GACAGTTAAG AGCCAAAAGT TTTTAAAATA
       TGCTACTCTG AAAAATCTCG TGAAGGCTGT AGGAAAAGGG AGAATCTTCC ATGTTGGTGT
                                                                           5400
       TTTTCCTGTA AAGATCAGTT TGGGGTATGA TATAAGCAGG TATTAATAAA AATAACACAC
                                                                           5460
       CAAAGAGTTA CGTAAAACAT GTTTTATTAA TTTTGGTCCC CACGTACAGA CATTTTATTT
                                                                           5520
       CTATTTTGAA ATGAGTTATC TATTTTCATA AAAGTAAAAC ACTATTAAAG TGCTGTTTTA
                                                                           5580
55
       TGTGAAATAA CTTGAATGTT GTTCCTATAA AAAATAGATC ATAACTCATG ATATGTTTGT
                                                                           5640
       AATCATGGTA ATTTAGATTT TTATGAGGAA TGAGTATCTG GAAATATTGT AGCAATACTT
       GGTTTAAAAT TTTGGACCTG AGACACTGTG GCTGTCTAAT GTAATCCTTT AAAAATTCTC
                                                                           5760
       TGCATTGTCA GTAAATGTAG TATATTATTG TACAGCTACT CATAATTTTT TAAAGTTTAT
                                                                           5820
       GAAGTTATAT TTATCAAATA AAAACTTTCC TATAT
60
       Seq ID NO: 315 Protein sequence:
       Protein Accession #: XP_087254
65
                             21
                                         31
                                                    41
                                                               51
                  11
       MOFRECSING MKYOEINGRL VPEGPTPDSS EGNLSYLSSL SHLNNLSHLT TSSSFRTSPE
                                                                             60
       NETELIKEHD LFFKAVSLCH TVQISNVQTD CTGDGPWQSN LAPSQLEYYA SSPDEKALVE
                                                                            120
       AAARIGIVFI GNSEETMEVK TLGKLERYKL LHILEFDSDR RRMSVIVQAP SGEKLLFAKG
                                                                            180
70
       AESSILPKCI GGEIEKTRIH VDEFALKGLR TLCIAYRKFT SKEYEEIDKR IFEARTALQQ
                                                                            240
       REEKLAAVFQ FIEKDLILLG ATAVEDRLQD KVRETIEALR MAGIKVWVLT GDKHETAVSV
                                                                            300
       SLSCGHFHRT MNILELINQK SDSECAEQLR QLARRITEDH VIQHGLVVDG TSLSLALREH
                                                                            360
       EKLFMEVCRN CSAVLCCRMA PLQKAKVIRL IKISPEKPIT LAVGDGANDV SMIQEAHVGI
                                                                            420
       GIMGKEGROA ARNSDYAIAR FKFLSKLLFV HGHFYYIRIA TLVQYFFYKN VCFITPQFLY
75
       QFYCLFSQQT LYDSVYLTLY NICFTSLPIL IYSLLEQHVD PHVLQNKPTL YRDISKNRLL
                                                                            540
       SIKTFLYWTI LGFSHAFIFF FGSYLLIGKD TSLLGNGQMF GNWTFGTLVF TVMVITVTVK
                                                                            600
       MALETHFWTW INHLVTWGSI IFYFVFSLFY GGILWPFLGS QNMYFVFIQL LSSGSAWFAI
                                                                            660
       ILMVVTCLFL DIIKKVFDRH LHPTSTEKAQ LTETNAGIKC LDSMCCFPEG EAACASVGRM
                                                                            720
       LERVIGROSP THISRSWSAS DPFYTNDRSI LTLSTMDSST C
80
       Seq ID NO: 316 DNA sequence
       Nucleic Acid Accession #: NM_004473
       Coding sequence: 661..1791
85
                  11
                             21
                                         31
                                                    41
                                                               51
       CTCGCCAGCG GTCCGCGGGG CTGGAGACCC ACGCCGTGGA GAGGACCAGC CTCAGGTCGC
```

120

```
CCCGCCTGGG CCCGCGCCC GACCTCGCTG CCCCGCCTC GCCTCTCTGC CCGTGGCGCT
      TACCGCCACC TTGGCCTCGG GGGCAGGGCA TGGGCGGCCC CCGCCAGATC GCCCAGCGCC
      AGTACTAACT GCCCTCGCTC TGGCCTTCGA GCCCGAAGCC TCTTCTGCGC GCACAACCTA
                                                                           240
      GGCAGTAATC CTAAACTAGC GGGCACCACA GACCAGCTGC AGCCACCCCA ACCCAGGGAT
                                                                           300
 5
       CACTTCCGGA CCCCTCGACC GCCCGGCACC AGCGCGCAAG GGACCCTTCA GCCGGAGACC
                                                                           360
      AGAGTCCAGT CCCGGTCGCG AGGCCACCGC CGCTGCCCGC CTCGAGAAGC ACAACGCGGG
                                                                           420
      CTGAGCCGTC GGCTAGCGGG TCACTCCCGA GCCTCTGTCT GCACCGCGCC AGCCCCAGAC
                                                                           480
      CACGGACGCT GAGCCTCCAG CGCGCGCCAG CCTGGGCCGC TGGGCTCTCC GGGCCAGCCC
                                                                           540
      GCGACGATCC CCTGAGCTCT CCGCAGAAGG GCCGAGCGTC CGTTCCGGGG ACGCCAGGCC
                                                                           600
10
       CGCCCCGCC CCCGACAGC CGCGGGGATC CAGAGCCCGG GGGTGCGGGA CGCCCGCGCC
                                                                           660
      ATGACTGCCG AGAGCGGGCC GCCGCCGCCG CAGCCGGAGG TGCTGGCTAC CGTGAAGGAA
                                                                           720
      GAGCGCGGC AGACGGCAGC AGGGGCCGGG GTCCCAGGGG AGGCCACGGG CCGCGGGGCG
                                                                           780
      GGCGGGCGGC GCCGCAAGCG CCCCCTGCAG CGCGGGAAGC CGCCCTACAG CTACATCGCG
      CTCATCGCCA TGGCCATCGC GCACGCGCCC GAGCGCCGCC TCACGCTGGG CGGCATCTAC
                                                                           900
15
      AAGTTCATCA CCGAGCGCTT CCCCTTCTAC CGCGACAACC CCAAAAAGTG GCAGAACAGC
                                                                           960
       ATCCGCCACA ACCTCACACT CAACGACTGC TTCCTCAAGA TCCCGCGCGA GGCCGGCCGC
                                                                          1020
                                                                          1080
       CCGGGTAAGG GCAACTACTG GGCGCTCGAC CCCAACGCGG AGGACATGTT CGAGAGCGGC
      AGCTTCCTGC GCCGCCGCAA GCGCTTCAAG CGCTCGGACC TCTCCACCTA CCCGGCTTAC
                                                                          1140
      ATGCACGACG CGGCGGCTGC CGCAGCCGCC GCTGCCGCAG CCGCCGCCGC CGCCGCCGCC
                                                                          1200
20
       GCCGCCATCT TCCCAGGCGC GGTGCCCGCC GCGCGCCCCC CCTACCCGGG
                                                              CGCCGTCTAT
                                                                          1260
      GCAGGCTACG CGCCGCCGTC GCTGGCCGCG CCGCCTCCAG TCTACTACCC CGCGGCGTCG
                                                                          1320
       CCCGGCCCTT GCCGCGTCTT CGGCCTGGTT CCTGAGCGGC CGCTCAGCCC AGAGCTGGGG
                                                                          1380
       CCCGCACCGT CGGGGCCCGG CGGCTCTTGC GCCTTTGCCT CCGCCGGCGC CCCCGCTACC
                                                                          1440
       ACCACCGGCT ACCAGCCCGC AGGCTGCACC GGGGCCCGGC CGGCCAACCC CTCTGCCTAT
                                                                          1500
25
      GCGGCTGCCT ACGCGGGCCC CGACGGCGCG TACCCGCAGG GCGCCGGCAG TGCGATCTTT
                                                                          1560
       GCCGCTGCTG GCCGCCTGGC GGGACCCGCT TCGCCCCCAG CGGGCGGCAG CAGTGGCGGC
                                                                          1620
                                                                          1680
       GTGGAGACCA CGGTGGACTT CTACGGGCGC ACGTCGCCCG GCCAGTTCGG AGCGCTGGGA
       GCCTGCTACA ACCCTGGCGG GCAĞCTCGGA GĞGGCCAGTG CAGGCGCCTA CCATGCTCGC
                                                                          1740
                                                                          1800
       CATGCTGCCG CTTATCCCGG TGGGATAGAT CGGTTCGTGT CCGCCATGTG AGCCAGCGTA
30
      GGGACGAAAA CTCATAGACA CATCGGCTGT TCACACGTTC CCCGCAACCT GAGAACGAAC
                                                                          1860
      AGGAATGGAG AGAGGACTCA ACTGGGACCC ACGTGGAAAA GACCGAGCAG GCCACAGAGG
                                                                          1920
       CTCGGTCTCC CCGCGCACAG CGTAGGCACC CTGTGTACTC TGTAAACGGG AGGAGGTGGG
                                                                          1980
      GCGAGGCAGC CAGAGCCCTT GGACTGGCAC AGGGACCCTC GATGGAGCGA AGCCCTCAAA
                                                                          2040
       CGGGATGCTT TCTGGCATTC TATCGGGGAG GGTCCTTGGC GGTAACCAGA GGGCAGCGTA
                                                                          2100
35
       GTGTCAACAC CAGAGACCAG GATCCAAATT GTGGGGAATC AGTTTCAGCC TTCCATGTGC
                                                                          2160
                                                                          2220
       TGCCGGAACT CGGGCCTTTT TACGCGGTTC GTCCTCTAGT GCCTTTAACT GCGTTACTAC
      AATAAAAGGC TGCGGCAGCG CCTTTCTTCT TAAAGTGAGG AGGACAAATT TGCAAAAGAA
                                                                          2280
       ATAGGCTTTT CTTCTTTTTT AAATTGGAGA AATCTCTGCT CTGGTTGACC TGGGCTGGTT
                                                                          2340
       TTCCCTGTCT CTGAGAACTT GAGACCTAGC TCCGAGTTGA ACTGTGCGTC AGCACTCCAG
                                                                          2400
40
      TCCCATCACC TGAACCTTCA GTCTCCCCCA TCTGTTACAC TAGAGGGCTG CAGGACTCTA
                                                                          2460
       TCCACCGCCC CCGGGTTATC ATTCAGGGCC CCATCATCTT GGATGCTGCC CTGCGTATTT
                                                                          2520
       GGCAGCAATG GTGGGCCACC CAGGGCCTCT GAGTAGCCAC CCAAAGCCTA GCCGCTGTTC
                                                                          2580
       TAGGGAACGG AAAAGAGTTC ATGGCCAAGC GTCTAACCTA AAGTCCCAGG ATTGGCTCCA
                                                                          2640
       GGCAGCAATT ATATCATAAC TTATTGAACT TTTGAGCAGG ACGTGCTGGT AATTTCATGG
                                                                          2700
45
                                                                          2760
       CTGTTACTGC CCAGTCATAA ATCTGCTTTT CCATTATAAG GCAGAGAAA GTACATTCGT
       TCATTTGTCC ACTGTTTCTT GTCATCACGC AGCCCTGGAC CCAAAGGGTG AACTAAAGTT
                                                                          2820
       TAAGGAGATG AGAGGATTCA AGGAGCCCGT TGGTGACGCC TTTCAGTAGC TGGGGAGGGC
                                                                          2880
       TCTTCCATCC CCAGCACCCC CTGCTACACC TCAGCAGCCT CCCCCATGCA AAAAGGAAAG
                                                                          2940
       AGAAAAATTA AGTTAGGGCA GTCAGTAAAG TGAGCTTTAG AAAGAAACTG GAATTTTAAC
                                                                          3000
50
       TTCATTTTGT ATCTTGCTTA AGTAGCAGGC TCACTAAAAT TAGAGAAAGT CCAATAACTC
                                                                          3060
       TCCCCCTTTC CCTTGAGAAA TCTTTAAGTT TCGATTCTGG AGCAAAAACT TTCAGCATTA
                                                                          3120
       AATATTTCAG AGGCTCCATT CACAGCTTTC AGATAAACTG GAGTGTTCAG ATGGACTGTT
                                                                          3180
                                                                          3240
       TTAATAAAA TCTTTGAGCA AGTGAGTTAT GGCAAGAGAA ACTCAGCCTC TTTCTGTATA
       AACTTAACAG GGAAGGGCTG GGGTGTGAAA AAGAAGATTG TATGAAAACC ATTGGTAATT
                                                                          3300
55
       TTTATTTTT ATTTTTGGGA CTGCACTATC CTGTTCACGA AGACATGTGA ACTTGGTTCA
                                                                          3360
       GTCCAAATGG GGATTTGTAT AAACCAGTGC TCTCCATTAG AAATATGGTG CAAGCCACAT
                                                                          3420
       ATGTAATTTT AAATATTCTA GTAGCCACAT TAATAAAGTN AAAAGAAACA AAAAAAAAAA
60
       Seq ID NO: 317 Protein sequence:
       Protein Accession #: NP 004464
                                        31
65
       FKHLTHYROI DTRANSCRIP TIONFACTOR TTFMTAESGP PPPQPEVLAT VKEERGETAA
                                                                            60
       GAGVPGEATG RGAGGRRRKR PLQRGKPPYS YIALIAMAIA HAPERRLTLG GIYKFITERF
                                                                           120
       PFYRDNPKKW QNSIRHNLTL NDCFLKIPRE AGRPGKGNYW ALDPNAEDMF ESGSFLRRRK
                                                                           180
       RFKRSDLSTY PAYMHDAAAA AAAAAAAAA AAAAAIFPGA VPAARPPYPG AVYAGYAPPS
                                                                           240
       LAAPPPVYYP AASPGPCRVF GLVPERPLSP ELGPAPSGPG GSCAFASAGA PATTTGYQPA
                                                                           300
70
                                                                           360
       GCTGARPANP SAYAAAYAGP DGAYPQGAGS AIFAAAGRLA GPASPPAGGS SGGVETTVDF
       YGRTSPGQFG ALGACYNPGG QLGGASAGAY HARHAAAYPG GIDRFVSAM
       Seg ID NO: 318 DNA seguence
       Nucleic Acid Accession #: NM_005688
75
       Coding sequence: 126..4439
                  11
                             21
                                        31
                                                   41
                                                              51
80
       CCGGGCAGGT GGCTCATGCT CGGGAGCGTG GTTGAGCGGC TGGCGCGGTT GTCCTGGAGC
                                                                             60
       AGGGGCGCAG GAATTCTGAT GTGAAACTAA CAGTCTGTGA GCCCTGGAAC CTCCGCTCAG
                                                                            120
       AGAAGATGAA GGATATCGAC ATAGGAAAAG AGTATATCAT CCCCAGTCCT GGGTATAGAA
                                                                           180
       GTGTGAGGGA GAGAACCAGC ACTTCTGGGA CGCACAGAGA CCGTGAAGAT TCCAAGTTCA
                                                                            240
       GGAGAACTCG ACCGTTGGAA TGCCAAGATG CCTTGGAAAC AGCAGCCCGA GCCGAGGGCC
                                                                            300
85
       TCTCTCTTGA TGCCTCCATG CATTCTCAGC TCAGAATCCT GGATGAGGAG CATCCCAAGG
                                                                            360
       GAAAGTACCA TCATGGCTTG AGTGCTCTGA AGCCCATCCG GACTACTTCC AAACACCAGC
                                                                            420
       ACCCAGTGGA CAATGCTGGG CTTTTTCCT GTATGACTTT TTCGTGGCTT TCTTCTCTGG
                                                                            480
```

		CCACAAGAAG	GGGGAGCTCT	CAATGGAAGA	CGTGTGGTCT	CTGTCCAAGC	540
		TGACGTGAAC					600
		AGACGCTGCT					660
_		CATCGTGTGC					720
5		ACACCTCTTG					780
	TGTTGTTAGT	GCTGGGCCTC	CTCCTGACGG	AAATCGTGCG	GTCTTGGTCG	CTTGCACTGA	840
	CTTGGGCATT	GAATTACCGA	ACCGGTGTCC	GCTTGCGGGG	GGCCATCCTA	ACCATGGCAT	900
	TTAAGAAGAT	CCTTAAGTTA	AAGAACATTA	AAGAGAAATC	CCTGGGTGAG	CTCATCAACA	960
10	TTTGCTCCAA	CGATGGGCAG	AGAATGTTTG	AGGCAGCAGC	CGTTGGCAGC	CTGCTGGCTG	1020
10	GAGGACCCGT	TGTTGCCATC	TTAGGCATGA	TTTATAATGT	AATTATTCTG	GGACCAACAG	1080
	GCTTCCTGGG	ATCAGCTGTT	TTTATCCTCT	TTTACCCAGC	AATGATGTTT	GCATCACGGC	1140
		TTTCAGGAGA					1200
	ATGAAGTTCT	TACTTACATT	AAATTTATCA	AAATGTATGC	CTGGGTCAAA	GCATTTTCTC	1260
1 -	AGAGTGTTCA	AAAAATCCGC	GAGGAGGAGC	GTCGGATATT	GGAAAAAGCC	GGGTACTTCC	1320
15		TGTGGGTGTG					1380
	CTGTTCATAT	GACCCTGGGC	TTCGATCTGA	CAGCAGCACA	GGCTTTCACA	GTGGTGACAG	1440
	TCTTCAATTC	CATGACTTTT	GCTTTGAAAG	TAACACCGTT	TTCAGTAAAG	TCCCTCTCAG	1500
	AAGCCTCAGT	GGCTGTTGAC	AGATTTAAGA	GTTTGTTTCT	AATGGAAGAG	GTTCACATGA	1560
20	TAAAGAACAA	ACCAGCCAGT	CCTCACATCA	AGATAGAGAT	GAAAAATGCC	ACCTTGGCAT	1620
20	GGGACTCCTC	CCACTCCAGT	ATCCAGAACT	CGCCCAAGCT	GACCCCCAAA	ATGAAAAAAG	1680
		TTCCAGGGGC					1740
	AGGCGGTGCT	GGCAGAGCAG	AAAGGCCACC	TCCTCCTGGA	CAGTGACGAG	CGGCCCAGTC	1800
	CCGAAGAGGA	AGAAGGCAAG	CACATCCACC	TGGGCCACCT	GCGCTTACAG	AGGACACTGC	1860
0.5	ACAGCATCGA	TCTGGAGATC	CAAGAGGGTA	AACTGGTTGG	AATCTGCGGC	AGTGTGGGAA	1920
25		CTCTCTCATT					1980
	TTGCAATCAG	TGGAACCTTC	GCTTATGTGG	CCCAGCAGGC	CTGGATCCTC	AATGCTACTC	2040
		CATCCTGTTT					2100
		CCTGAGGCCT					2160
20		AGCCAACCTG					2220
30		CAGGAGCATC					2280
		CATCTTCAAT					2340
		CCAGTTACAG					2400
		GGAAAGAGGC					2460
25		TAACCTGTTG					2520
35		TTCACAGAAG					2580
		AGTAAAGCCA					2640
		CTGGTCAGTA					2700
		TATGGCCCTT					2760
40		CTGGATCAAG					2820
40		TGACAGCATG					2880
		GGCAGTCATG					2940
		AGCTTCCTCC					3000
		TTTTGACACG					3060
45		TGACGTGCGG					3120
43		CTGTGTGGGA					3180
		CATCCTCTTT					3240
		GGACAATATC					3300
		CACCATCCAC					3360
50		TGACAACCAA					3420
50		GGACCTCATC					3480
		GCAGATTCCC GTTCCAGTTT					3540 3600
		GATCAATCAC					3660
		TCCCTCCCCT					3720
55		CCGAGAAAAC					3780
55		GATTGGCATT					3840
		TCTGGTGGAG					3900
		CCTTGCCGAC					3960
		CACTGTCAGA					4020
60		CCTGGAGAGG					4080
-						CAGCTCTTGT	
						GCCACAGCTG	
						TTTGCAGACT	4260
						AGGATTATGG	
65						TCCAACGACA	4380
						AAGGGCTGAC	4440
						CTGGGGCGGG	4500
						TCGCACAGCA	
	GTTCCGGATT	GGCTTGTGTG	TTTCACTTTT	AGGGAGAGTC	ATATTTTGAT	TATTGTATTT	4620
70						AAAAGGTTCA	
	GGGAACCGTT	ATTATAATTG	TATCAGAGGC	CTATAATGAA	GCTTTATACG	TGTAGCTATA	4740
	TCTATATATA	ATTCTGTACA	TAGCCTATAT	TTACAGTGAA	AATGTAAGCT	GTTTATTTTA	4800
	TATTAAAATA	AGCACTGTGC	TAATAACAGT	GCATATTCCT	TTCTATCATT	TTTGTACAGT	4860
75						TTTCATTCTT	4920
75	CTCTAGCTGG	TGGTTTCACG	GTGCCAGGTT	TTCTGGGTGT	CCAAAGGAAG	ACGTGTGGCA	4980
	ATAGTGGGCC	CTCCGACAGC	CCCCTCTGCC	GCCTCCCCAC	AGCCGCTCCA	GGGGTGGCTG	5040
		GGCGGCTGGA					5100
		GTCACTTACT					5160
00		TCCATCAAGA					5220
80						CCACAGAGAG	5280
		TCAGGTTCCT					5340
		AGCCCTGGAG					5400
		CTCCACAGTT					5460
05		TCGTCGCACA					5520
85		TAATCAGTGT					5580
		GCTGGTTGCT					5640
	GGGGCTGGTA	GCTCAGGTGG	GCGTGGTCAC	TGCTGTCATC	AGTTGAATGG	TCAGCGTTGC	5700

PCT/US02/12476 WO 02/086443

5

```
Seq ID NO: 319 Protein sequence: Protein Accession #: NP_005679
```

10	į.	11	21	31	41	51	
10		1	1	1	1		
	MKDIDIGKEY		RERTSTSGTH				60
		ILDEEHPKGK			VDNAGLFSCM	TFSWLSSLAR	120
		EDVWSLSKHE				VWIFCRTRLI	180
		LAGFSGPAFM					240
15	ALNYRTGVRL	RGAILTMAFK	KILKLKNIKE	KSLGELINIC	SNDGQRMFEA		300
	PVVAILGMIY	NVIILGPTGF	LGSAVFILFY	PAMMFASRLT	AYFRRKCVAA	TDERVQKMNE	360
	VLTYIKFIKM	YAWVKAFSQS	VQKIREEERR	ILEKAGYFQG	ITVGVAPIVV	VIASVVTFSV	420
	HMTLGFDLTA	AQAFTVVTVF	NSMTFALKVT	PFSVKSLSEA	SVAVDRFKSL	FLMEEVHMIK	480
	NKPASPHIKI	EMKNATLAWD	SSHSSIQNSP	KLTPKMKKDK	RASRGKKEKV	RQLQRTEHQA	540
20	VLAEOKGHLL			HLRLQRTLHS		VGICGSVGSG	600
	KTSLISAILG	QMTLLEGSIA	ISGTFAYVAQ	QAWILNATLR	DNILFGKEYD	EERYNSVLNS	660
	CCLRPDLAIL	PSSDLTEIGE	RGANLSGGQR	QRISLARALY	SDRSIYILDD	PLSALDAHVG	720
	NHIFNSAIRK	HLKSKTVLFV	THQLQYLVDC	DEVIFMKEGC	ITERGTHEEL	MNLNGDYATI	780
	FNNLLLGETP	PVEINŚKKET	SGSQKKSQDK	GPKTGSVKKE	KAVKPEEGQL	VQLEEKGQGS	840
25	VPWSVYGVYI	QAAGGPLAFL	VIMALFMLNV	GSTAFSTWWL	SYWIKQGSGN	TTVTRGNETS	900
		MOYYASIYAL			LRASSRLHDE		960
	KFFDTTPTGR	ILNRFSKDMD	EVDVRLPFQA	EMFIQNVILV	FFCVGMIAGV	FPWFLVAVGP	1020
	LVILFSVLHI	VSRVLIRELK		LSHITSSIQG	LATIHAYNKG	QEFLHRYQEL	1080
	LDDNOAPFFL	FTCAMRWLAV			HGQIPPAYAG		1140
30	GLFOFTVRLA	SETEARFTSV			KAPSPDWPQE		1200
	RYRENIPLVL		EKIGIVGRTG				1260
		SIIPOEPVLF			DALERTHMKE		1320
	SEVMENGDNF		ARALLRHCKI				1380
	MLTIAHRLHT	VLGSDRIMVL					
35							

Seq ID NO: 320 DNA sequence Nucleic Acid Accession #: AK022089.1 Coding sequence: 181-1488

40

	1	11	21	31	41	51	
		1	1		l		
	AGCAGTTGCA	CAACTTCCAG	CAACTTTCTC	AGCCGGCTAC			60
		AGAAGAGAAA					120
45		ACCCTCAGAT					180
		TTGGAAGAAA					240
		CAGAAGAGAA					300
		CTAAACGCAC					360
		TTGGAGAGAA					420
50		GAGGCTCCGA					480
	AAAGCGTGGG	GAGATGAGCA					540
	CTTCCAGTTC		GACAGCTGAA				600
		GCCCAGCAAA					660
		CTTTCCGGAA					720
55°		AGACATTAGT					780
		TGAAAGAGCT					840
		AAAATGATGG					900
		AGCAAAATCT					960
		ATGGAATTGA					1020
60		CTGCTGAAAT					1080
		GGGAAGCTGC					1140
		AAAGCATGAA			0 - 0	TGGCATCCAG	1200
	AAAGAGATTA	AATACAGTGA	CTCATTGCTT	CAGATGAAAG	CAAAAGAATA		1260
	GCCAAGGAAT	TCAATTCACT	TCACATTAGC	AACAAAGATG	GGTGCCAGTT	AAAGGAAAAC	1320
65	AGAGCGAAGG	AATCTGAGGT	TCCCAGTAGC	AATGGGGAGA	TTCCTCCCTT	TACTCAAAGA	1380
		ATTACACAAA				TAACCACAGT	1440
		AAACAACAGT					1500
		TGCTTTCATG					1560
	ATATAACACT	CAAAAAAATG	TAAATCATAT	TGTAGTATTC	AATAGTTAAT	AAAAACTCGA	1620
70	GAAATGTGTT	GTTTCTG					

Seq ID NO: 321 Protein sequence: Protein Accession #: NP_005438.1

75	1	11	21	31	41	51	
	1	1	1	1	1		
	MAPFGRNLLK						60
	EATFGEKRFL	LGKPSDYCII	EKWRGSERVL	PPLTRILKLW	KAWGDEQPNM	QFVLVKADAF	120
		AKLVQNTEKL					180
80		ISQDHTIHQQ					240
		YEENOTLEDL					300
		ESSNLESVKC					360
		NKDGCQLKEN					420
0.5	QDSETTVGDV			~			

85

Seq ID NO: 322 DNA sequence Nucleic Acid Accession #: NM_030920.1

Coding sequence: 317-1123

	į	11	21	31	41	51	
5	<u> </u>				amamamamam	N mamamamaa	60
5			TGCGGGTGTG TGCGCGCGCT				120
			GACTCCATTT				180
	CTGGTGGTGG	TAGTGGGCGT	TTATATTTGC	GTTCCTTTTC	ATTCATTTCT	AAATCTCTTA	240
	AAAATTTTGG	GTTGGGGGTA	TTGGGGAAGG	CAGGAAAGGG	AAAAGGAGAG	TAGTAGCTGA	300
10	AGAGCAAGAG	GAGGACATGG	AGATGAAGAA	GAAGATTAAC	CTGGAGTTAA	GGAACAGATC	360
	CCCGGAGGAG	GTGACAGAGT	${\tt TAGTCCTTGA}$	TAATTGCCTG	TGTGTCAATG	GGGAAATTGA	420
	AGGCCTGAAT	GATACTTTCA	AAGAACTAGA	ATTTCTGAGT	ATGGCTAATG	TGGAACTAAG	480
			GCTTAAATAA TCCTGGCAGA				540 600
15			ATCTCAGTAC				660
13			ACTGTGAGAT				720
	TTTTGAACTA	CTGCAGCAAA	TCACATACTT	AGATGGATTT	GATCAGGAGG	ATAATGAAGC	780
	GCCGGACTCT	GAAGAGGAGG	ATGATGAGGA	TGGAGATGAA	GATGATGAAG	AGGAAGAGGA	840
00	AAATGAAGCT	GGTCCACCGG	AAGGATATGA	GGAAGAGGAG	GAGGAAGAGG	AAGAGGAGGA	900
20	TGAGGATGAG	GATGAAGATG	AAGATGAAGC	AGGTTCAGAG	TTGGGAGAGG	GAGAAGAGGA	960
			TGAAAGAAGA				1020 1080
	TGTTGAAGAA	GGGGAAGAAG	AGGAAGAAGA ATGGAGAGGA	GGAAGAAGGA	TACATCATTC	TAACACCAGA	1140
	GAAACGAGAT	TTTCTCCCCTC	TGCAATAGAG	TCATCACATC	TAGATCATIC	CATGTACGAT	1200
25	AGCTATCCCT	ACAGAAGATA	ATGTGTAACT	TTTTATAGGA	AAAGTGTGGT	TTTACTATTT	1260
	TTGCCTTATC	ATTCCAAATA	AGAACTAGTC	TGTTAATGAT	CATATTGTAT	GTAGAGAAAA	1320
	ATTTTCATTG	ACTCCCATTG	TGGAATTCCC	TAGCAATTTA	TTTAGACTTA	ATTTTTTAAA	1380
	TTCAAGCTTA	CTGTATTAGT	CATTTTTAGC	CCATAATTAA	AACATGATCA	CTTTTAAACA	1440
20	GGTGTAGTAT	GGTGCATTTC	ATTCCTTATT	TATAGATTAA	CTGAAATTAC	AGTTTGCTAT	1500
30			TCTTGAGTGG				1560
			AGTTACCTTT				1620 1680
	TTTGGTTGCT	TTTTTGTCAC	AAGTAACTTG ATTTTGTGGA	COTTCT TTC	ACTAATATCC	TTCATGGATT	1740
			TTATTTTTGA				1800
35	CATGCAGGTG	AGCCCTTTTG	TCAGGCTGCA	AATCATGACA	TGCCGATGGT	TGTTTATTTT	1860
	GTTTTTAGGT	GTGCATTCTT	TTTCTTCTTA	GCAATTCCTT	TATGATCACC	TTCCCTTCTT	1920
	GTTTCACTCC	CTCCCGCTCT	CTCAAAAGGA	ACTTGGGAAA	CTTGTGAAAC	CCAGGAAAAC	1980
	CTTTAGTCTT	ATACCTCAAC	TACGTTTCAG	TCCTGTCTGG	GTTTTAAATA	AGTGAAGTAG	2040
40	AAGAAATTGA	GTATTTTCTG	ACATAAGAAT	ATATTATCAA	TACAGTTTTA	TGCAGTAAGC	2100 2160
40			CTTGGTTGAC TTGGAAGCAG				2220
			GACATTAAAG				2280
	TTGGATACCA	CTCTGCAAAG	TATTTCTAAC	CTTTAATTCC	CAGTTTTAAA	ACAGATATAA	2340
			ATACTAGGCA				2400
45	TTAAAATTAA	GATTTGTTTT	CAAGTGGATG	TCCATTAAAA	GTAGAAAAAT	ATTTGGGATA	2460
	AGTGAGTGTG	TGTTTCCTTA	CATGGCTACT	AAATAAAATA	TAATGAGTAT	ACAAGTATAT	2520
			CTCCATGTTC				2580
			TTGAATATTT				2640 2700
50	TTAATTGAAG	TTATGCTTCT	ATACTGGGAC ATGTATGACT	TCCTCTTTT	ACTGAGTATA	TATCATCTTA	2760
50	CTTGTGGAGA	ACAAIGIAAA	GTTGTACAAC	TGACCGAAAG	AAAACCCTTG	GGGATAAGTT	2820
			CCAAAAAGAT				2880
	ATTCCCTGTT	CTAGTTCCTA	ACAATTCTCA	TTACATACTA	TGCCAGATTA	CAAAATACTT	2940
			ATATTGACTT				3000
55			AAACAACACT				3060
			TTCATGCAAA				3120
			TGCTCTTTGT				3180 3240
		GTGTTAAAAA	CTTTGAAGTT	AATACTTTTG	IGCAACIGIG	IIIIGAAIAA	3240
60	AGCCATGACA	GIGIIAAAAA	CAAAC				
00	Sea ID NO:	323 Protein	n sequence:				
		cession #: 1					
			_				
CE	1	11	21	31	41	51	
65					PWDT DDT OWN		
			ELVLDNCLCV				60 120
	PSENKERKEE	TSDNIISGGT	EVLAEKCPNL QITYLDGFDQ	EDNEADDSEE	EDDEDGDEDD	EEEEENEAGP	180
			DEDEAGSELG				240
70		RGEKRKRDAE			· -		
				Y			
		324 DNA sec	- .				
			n_#:_NM0038	312			
75	Coding seq	uence: 224.	.2722				
13	1	11	21	31	41	51	
	ī	ī	ī	ī	ī	1	
	TCCTCTGCGT	cccccccc	GAGTGGCTGC	GAGGCTAGGC	GAGCCGGGAA	AGGGGGCGCC	60
00	GCCCAGCCCC	GAGCCCCGCG	CCCCGTGCCC	CGAGCCCGGA	GCCCCCTGCC	CGCGGCGGCA	120
80	CCATGCGCGC	CGAGCCGGCG	TGACCGGCTC	CGCCCGCGGC	CGCCCCGCAG	CTAGCCCGGC	180
	GCTCTCGCCG	GCCACACGGA	GCGGCGCCCG	GGAGCTATGA	GCCATGAAGC	CGCCCGGCAG	240
	CAGCTCGCGG	CAGCCGCCCC	TGGCGGGCTG	CAGCCTTGCC	CGCACGCCCC	CCTCCCCCCA	300 360
	ACGUGGCCCC	CTTCTCCTCC	TGCCTGCCAG TGCCTCCGCT	CGCCGCCTCG	TCCCGGCCCC	GCGCCTGGGG	420
85			CGCATTGGAA				480
	GGCAGATGAA	GACAATACAT	TGCAACAGAA	TAGCAGCAGT	AATATCAGTT	ACAGCAATGC	540
	AATGCAGAAA	GAAATCACAC	TGCCTTCAAG	ACTCATATAT	TACATCAACC	AAGACTCGGA	600

```
AAGCCCTTAT CACGTTCTTG ACACAAAGGC AAGACACCAG CAAAAACATA ATAAGGCTGT
                                                                            660
       CCATCTGGCC CAGGCAAGCT TCCAGATTGA AGCCTTCGGC TCCAAATTCA TTCTTGACCT
                                                                            720
       CATACTGAAC AATGGTTTGT TGTCTTCTGA TTATGTGGAG ATTCACTACG AAAATGGGAA
                                                                            780
       ACCACAGTAC TCTAAGGGTG GAGAGCACTG TTACTACCAT GGAAGCATCA GAGGCGTCAA
                                                                            840
 5
       AGACTCCAAG GTGGCTCTGT CAACCTGCAA TGGACTTCAT GGCATGTTTG AAGATGATAC
                                                                            900
       CTTCGTGTAT ATGATAGAGC CACTAGAGCT GGTTCATGAT GAGAAAAGCA CAGGTCGACC
                                                                            960
       ACATATAATC CAGAAAACCT TGGCAGGACA GTATTCTAAG CAAATGAAGA ATCTCACTAT
                                                                          1020
       GGAAAGAGT GACCAGTGGC CCTTTCTCTC TGAATTACAG TGGTTGAAAA GAAGGAAGAG
       AGCAGTGAAT CCATCACGTG GTATATTTGA AGAAATGAAA TATTTGGAAC TTATGATTGT
                                                                          1140
10
       TAATGATCAC AAAACGTATA AGAAGCATCG CTCTTCTCAT GCACATACCA ACAACTTTGC
                                                                          1200
       AAAGTCCGTG GTCAACCTTG TGGATTCTAT TTACAAGGAG CAGCTCAACA CCAGGGTTGT
                                                                          1260
       CCTGGTGGCT GTAGAGACCT GGACTGAGAA GGATCAGATT GACATCACCA CCAACCCTGT
                                                                          1320
       CCAGATGCTC CATGAGTTCT CAAAATACCG GCAGCGCATT AAGCAGCATG CTGATGCTGT
                                                                          1380
       GCACCTCATC TCGCGGGTGA CATTTCACTA TAAGAGAAGC AGTCTGAGTT ACTTTGGAGG
                                                                          1440
15
       TGTCTGTTCT CGCACAAGAG GAGTTGGTGT GAATGAGTAT GGTCTTCCAA TGGCAGTGGC
                                                                          1500
       ACAAGTATTA TCGCAGAGCC TGGCTCAAAA CCTTGGAATC CAATGGGAAC CTTCTAGCAG
                                                                          1560
       AAAGCCAAAA TGTGACTGCA CAGAATCCTG GGGTGGCTGC ATCATGGAGG AAACAGGGGT
                                                                          1620
       GTCCCATTCT CGAAAATTTT CAAAGTGCAG CATTTTGGAG TATAGAGACT TTTTACAGAG
                                                                          1680
       AGGAGGTGGA GCCTGCCTTT TCAACAGGCC AACAAAGCTA TTTGAGCCCA CGGAATGTGG
                                                                          1740
20
       AAATGGATAC GTGGAAGCTG GGGAGGAGTG TGATTGTGGT TTTCATGTGG AATGCTATGG
                                                                          1800
       ATTATGCTGT AAGAAATGTT CCCTCTCCAA CGGGGCTCAC TGCAGCGACG GGCCCTGCTG
                                                                          1860
       TAACAATACC TCATGTCTTT TTCAGCCACG AGGGTATGAA TGCCGGGATG CTGTGAACGA
                                                                          1920
       GTGTGATATT ACTGAATATT GTACTGGAGA CTCTGGTCAG TGCCCACCAA ATCTTCATAA
                                                                          1980
       GCAAGACGGA TATGCATGCA ATCAAAATCA GGGCCGCTGC TACAATGGCG AGTGCAAGAC
                                                                          2040
25
       CAGAGACAAC CAGTGTCAGT ACATCTGGGG AACAAAGGCT GCAGGGTCTG ACAAGTTCTG
                                                                          2100
       CTATGAAAAG CTGAATACAG AAGGCACTGA GAAGGGAAAC TGCGGGAAGG ATGGAGACCG
                                                                          2160
       GTGGATTCAG TGCAGCAAAC ATGATGTGTT CTGTGGATTC TTACTCTGTA CCAATCTTAC
                                                                          2220
       TCGAGCTCCA CGTATTGGTC AACTTCAGGG TGAGATCATT CCAACTTCCT TCTACCATCA
                                                                          2280
       AGGCCGGGTG ATTGACTGCA GTGGTGCCCA TGTAGTTTTA GATGATGATA CGGATGTGGG
                                                                          2340
30
       CTATGTAGAA GATGGAACGC CATGTGGCCC GTCTATGATG TGTTTAGATC GGAAGTGCCT
                                                                          2400
       ACAAATTCAA GCCCTAAATA TGAGCAGCTG TCCACTCGAT TCCAAGGGTA AAGTCTGTTC
                                                                          2460
       GGGCCATGGG GTGTGTAGTA ATGAAGCCAC CTGCATTTGT GATTTCACCT GGGCAGGGAC
                                                                          2520
       AGATTGCAGT ATCCGGGATC CAGTTAGGAA CCTTCACCCC CCCAAGGATG AAGGACCCAA
       GGGTCCTAGT GCCACCAATC TCATAATAGG CTCCATCGCT GGTGCCATCC TGGTAGCAGC
                                                                          2640
35
       TATTGTCCTT GGGGGCACAG GCTGGGGATT TAAAAATGTC AAGAAGAGA GGTTCGATCC
                                                                          2700
       TACTCAGCAA GGCCCCATCT GAATCAGCTG CGCTGGATGG ACACCGCCTT GCACTGTTGG
                                                                          2760
       ATTCTGGGTA TGACATACTC GCAGCAGTGT TACTGGAACT ATTAAGTTTG TAAACAAAAC
                                                                          2820
       CTTTGGGTGG TAATGACTAC GGAGCTAAAG TTGGGGTGAC AAGGATGGGG TAAAAGAAAA
                                                                          2880
       CTGTCTCTTT TGGAAATAAT GTCAAAGAAC ACCTTTCACC ACCTGTCAGT AAACGGGGGA
40
       GGGGGCAAAA GACCATGCTA TAAAAAGAAC TGTTCCAGAA TCTTTTTTT TCCCTAATGG
                                                                          3000
       ACGAAGGAAC AACACACAC CAAAAATTAA ATGCAATAAA GGAATCATTA AAAA
       Seq ID NO: 325 Protein sequence:
       Protein Accession #: NP_003803
45
                                        31
                                                              51
       MKPPGSSSRQ PPLAGCSLAG ASCGPQRGPA GSVPASAPAR TPPCRLLLVL LLLPPLAASS
                                                                             60
       RPRAWGAAAP SAPHWNETAE KNLGVLADED NTLQQNSSSN ISYSNAMQKE ITLPSRLIYY
                                                                            120
50
       INODSESPYH VLDTKARHOO KHNKAVHLAQ ASFQIEAFGS KFILDLILNN GLLSSDYVEI
                                                                            180
       HYENGKPOYS KGGEHCYYHG SIRGVKDSKV ALSTCNGLHG MFEDDTFVYM IEPLELVHDE
       KSTGRPHIIQ KTLAGQYSKQ MKNLTMERGD QWPFLSELQW LKRRKRAVNP SRGIFEEMKY
                                                                            300
       LELMIVNDHK TYKKHRSSHA HTNNFAKSVV NLVDSIYKEQ LNTRVVLVAV ETWTEKDQID
                                                                            360
       ITTNPVOMLH EFSKYRORIK QHADAVHLIS RVTFHYKRSS LSYFGGVCSR TRGVGVNEYG
                                                                            420
55
       LPMAVAQVLS QSLAQNLGIQ WEPSSRKPKC DCTESWGGCI MEETGVSHSR KFSKCSILEY
                                                                            480
       RDFLORGGGA CLFNRPTKLF EPTECGNGYV EAGEECDCGF HVECYGLCCK KCSLSNGAHC
                                                                            540
       SDGPCCNNTS CLFOPRGYEC RDAVNECDIT EYCTGDSGQC PPNLHKQDGY ACNQNQGRCY
       NGECKTRDNQ CQYIWGTKAA GSDKFCYEKL NTEGTEKGNC GKDGDRWIQC SKHDVFCGFL
                                                                            660
       LCTNLTRAPR IGQLQGEIIP TSFYHQGRVI DCSGAHVVLD DDTDVGYVED GTPCGPSMMC
                                                                            720
60
       LDRKCLQIQA LNMSSCPLDS KGKVCSGHGV CSNEATCICD FTWAGTDCSI RDPVRNLHPP
                                                                            780
       KDEGPKGPSA TNLIIGSIAG AILVAAIVLG GTGWGFKNVK KRRFDPTQQG PI
       Seg ID NO: 326 DNA seguence
       Nucleic Acid Accession #: AK074418.1
65
       Coding sequence: 244-1515
                             21
                                        31
                                                    41
                                                              51
       CTTTCTCCAA GACGGCCGGC CATGCTCTCC TCCTCTGCCA GTCTCCTCCA CCACTCTCTA
                                                                             60
70
       ACCTGAGAGC CTGTGGAACC TGCCCGTCTC CCCTCCTCCA TCAGACACAC CTGCCTAGGA
                                                                            120
       AACAGATGGA AAAAGTGAGG GACCGGTGAG TGACTTGCTG CTAAAGTTTA TACCAGATGC
                                                                            180
       AAATGACAGA GCTGGAGTTC TGCTGTGCCT GGAAAGGACC TCGGAAGTCT TCTAAGGAGA
                                                                            240
       GTCATGGCGT ATTACCAGGA GCCTTCAGTG GAGACCTCCA TCATCAAGTT CAAAGACCAG
                                                                            300
       GACTITACCA CCTTGCGGGA TCACTGCCTG AGCATGGGCC GGACGTTTAA GGATGAGACA
                                                                            360
75
       TTCCCCGCAG CAGATTCTTC CATAGGCCAG AAGCTGCTCC AGGAAAAACG CCTCTCCAAT
       GTGATATGGA AGCGGCCACA GGATCTACCA GGGGGTCCTC CTCACTTCAT CCTGGATGAT
                                                                            480
       ATAAGCAGAT TTGACATCCA ACAAGGAGGC GCAGCTGACT GCTGGTTCCT GGCAGCACTG
                                                                            540
       GGATCCTTGA CTCAGAACCC ACAGTACAGG CAGAAGATCC TGATGGTCCA AAGCTTTTCA
                                                                            600
       CACCAGTATG CTGGCATTTT CCGTTTCCGG TTCTGGCAAT GTGGCCAGTG GGTGGAAGTG
                                                                            660
80
       GTGATTGATG ACCGCCTACC TGTCCAGGGA GATAAATGCC TCTTTGTGCG TCCTCGCCAC
                                                                            720
       CAAAACCAAG AGTTCTGGCC CTGCCTGCTG GAGAAGGCCT ATGCCAAGCT GCTCGGATCC
       TATTCCGATC TGCACTATGG CTTCCTCGAG GATGCCCTGG TGGACCTCAC AGGAGGCGTG
                                                                            840
       ATCACCAACA TCCATCTGCA CTCTTCCCCT GTGGACCTGG TGAAGGCAGT GAAGACAGCG
                                                                            900
       ACCAAGGCAG GCTCCCTGAT AACCTGTGCC ACTCCAAGTG GGCCAACAGA TACAGCACAG
                                                                            960
85
       GCGATGGAGA ATGGGCTGGT GAGTCTCCAT GCCTACACTG TGACTGGGGC TGAGCAGATT
                                                                          1020
       CAATACCGAA GGGGCTGGGA AGAAATTATC TCCCTGTGGA ACCCCTGGGG CTGGGGCGAG
                                                                          1080
       ACCGAATGGA GAGGGCGCTG GAGTGATGGG TCTCAGGAGT GGGAGGAAAC CTGTGATCCG
```

WO 02/086443

```
WO 02/086443
       CGGAAAAGCC AGCTACATAA GAAACGGGAA GATGGCGAGT TTTGGATGTC GTGTCAAGAT
                                                                         1200
       TTCCAACAGA AATTCATCGC CATGTTTATA TGTAGCGAAA TTCCAATTAC CCTGGACCAT
       GGAAACACAC TCCACGAAGG ATGGTCCCAA ATAATGTTTA GGAAGCAAGT GATTCTAGGA
                                                                          1320
       AACACTGCAG GAGGACCTCG GAATGATGCT CAATTCAACT TCTCTGTGCA AGAGCCAATG
                                                                         1380
 5
       GAAGGCACCA ATGTTGTCGT GTGCGTCACA GTTGCTGTCA CACCATCAAA TTTGAAAGCA
                                                                          1440
                                                                          1500
       GAAGATGCAA AATTTCCACT CGATTTCCAA GTGATTCTGG CTGGCTCACA GAAACACTGT
       CCAAAGCTCA AATAATAAAT TCCGCCGCAA CTTCACCATG ACTTACCATC TGAGCCCTGG
                                                                          1560
       GAACTATGTT GTGGTTGCAC AGACACGGAG AAAATCAGCG GAGTTCTTGC
                                                             TCCGAATCTT
                                                                          1620
       CCTGAAAATG CCAGACAGTG ACAGGCACCT GAGCAGCCAT TTCAACCTCA GAATGAAGGG
                                                                          1680
10
       AAGCCCTTCA GAACATGGCT CCCAACAAAG CATTTTCAAC AGATATGCTC AGCAGGTATG
                                                                         1740
       GTACCTAGCA CCCAGGGGCC TTACGTGGGA TTGGAGAAAG GGGACCTGAG GGAGGGACAG
                                                                          1800
       CCCTCACAGG CCCTTACTGG GATGCAGAGA GGAGAAGTGA CTTGATGGAC TATTTTACCT
                                                                          1860
       GCCTCTCTTC CTGGATCGTC TCCAGAACTG CTGTGGCTGC CAAGCTCGGT AGAGACGTGG
                                                                          1920
       CGCCCCACCC AGTCTCATCC GGGGGACTTC AAGCTGGAAT GCAGAGCTTA GAAAGGGAGG
                                                                          1980
15
       GGATAATTAT GGGGTGTGAG GTGCATTGCC CTCTAAATCT TTAAACAAGC AATTGGCAGT
                                                                          2040
       ACCCCGTGAA ACCTTTCCTT CTCCTACTCG GCCACCTCCC ACCAACCTGG CATCGTTCCT
                                                                          2100
       CCCGGGAGCT AGCCAGCTTC AGAAAGCACA TACAGCATCC TTGCTGCCAA ACCACCTATG
                                                                          2160
       TGCACACAGG ATTTCCTTAA TGGCTTAATA AACTGTTATA AAGAACTCCT TGACTTGTCA
                                                                          2220
       2280
20
       ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑ
       Seq ID NO: 327 Protein sequence:
       Protein Accession #: BAB85075.1
25
                                        31
                                                   41
                                                              51
       MAYYQEPSVE TSIIKFKDQD FTTLRDHCLS MGRTFKDETF PAADSSIGQK LLQEKRLSNV
                                                                            60
       IWKRPQDLPG GPPHFILDDI SRFDIQQGGA ADCWFLAALG SLTQNPQYRQ KILMVQSFSH
                                                                           120
       QYAGIFRFRF WQCGQWVEVV IDDRLPVQGD KCLFVRPRHQ NQEFWPCLLE KAYAKLLGSY
                                                                           180
30
       SDLHYGFLED ALVDLTGGVI TNIHLHSSPV DLVKAVKTAT KAGSLITCAT PSGPTDTAQA
                                                                           240
       MENGLVSLHA YTVTGAEQIQ YRRGWEEIIS LWNPWGWGET EWRGRWSDGS QEWEETCDPR
                                                                           300
       KSOLHKKRED GEFWMSCODF OOKFIAMFIC SEIPITLDHG NTLHEGWSQI MFRKQVILGN
                                                                           360
       TAGGPRNDAQ FNFSVQEPME GTNVVVCVTV AVTPSNLKAE DAKFPLDFQV ILAGSQKHCP
                                                                           420
35
       Seg ID NO: 328 DNA sequence
      Nucleic Acid Accession #: BC017490.1
       Coding sequence: 74-2788
40
                                                   41
                                                              51
                                        31
       GTGGGTCACG TGAACCACTT TTCGCGCGAA ACCTGGTTGT TGCTGTAGTG GCGGAGAGGA
                                                                            60
       TCGTGGTACT GCTATGGCGG AATCATCGGA ATCCTTCACC ATGGCATCCA GCCCGGCCCA
45
       GCGTCGGCGA GGCAATGATC CTCTCACCTC CAGCCCTGGC CGAAGCTCCC GGCGTACTGA
                                                                           180
       TGCCCTCACC TCCAGCCTG GCCGTGACCT TCCACCATTT GAGGATGAGT CCGAGGGGCT
                                                                           240
       CCTAGGCACA GAGGGGCCCC TGGAGGAAGA AGAGGATGGA GAGGAGCTCA TTGGAGATGG
                                                                           300
       CATGGAAAGG GACTACCGCG CCATCCCAGA GCTGGACGCC TATGAGGCCG AGGGACTGGC
                                                                           360
       TCTGGATGAT GAGGACGTAG AGGAGCTGAC GGCCAGTCAG AGGGAGGCAG CAGAGCGGGC
                                                                           420
50
       CATGCGGCAG CGTGACCGGG AGGCTGGCCG GGGCCTGGGC CGCATGCGCC GTGGGCTCCT
       GTATGACAGC GATGAGGAGG ACGAGGAGCG CCCTGCCCGC AAGCGCCGCC AGGTGGAGCG
                                                                           540
       GGCCACGGAG GACGGCGAGG AGGACGAGGA GATGATCGAG AGCATCGAGA ACCTGGAGGA
                                                                           600
       TCTCAAAGGC CACTCTGTGC GCGAGTGGGT GAGCATGGCG GGCCCCCGGC TGGAGATCCA
                                                                           660
                                                                           720
       CCACCGCTTC AAGAACTTCC TGCGCACTCA CGTCGACAGC CACGGCCACA ACGTCTTCAA
55
       GGAGCGCATC AGCGACATGT GCAAAGAGAA CCGTGAGAGC CTGGTGGTGA ACTATGAGGA
                                                                           780
       CTTGGCAGCC AGGGAGCACG TGCTGGCCTA CTTCCTGCCT GAGGCACCGG CGGAGCTGCT
                                                                           840
       GCAGATCTTT GATGAGGCTG CCCTGGAGGT GGTACTGGCC ATGTACCCCA AGTACGACCG
                                                                           900
       CATCACCAAC CACATCCATG TCCGCATCTC CCACCTGCCT CTGGTGGAGG AGCTGCGCTC
                                                                           960
       GCTGAGGCAG CTGCATCTGA ACCAGCTGAT CCGCACCAGT GGGGTGGTGA CCAGCTGCAC
                                                                          1020
60
       TGGCGTCCTG CCCCAGCTCA GCATGGTCAA GTACAACTGC AACAAGTGCA ATTTCGTCCT
                                                                          1080
       GGGTCCTTTC TGCCAGTCCC AGAACCAGGA GGTGAAACCA GGCTCCTGTC CTGAGTGCCA
                                                                          1140
       GTCGGCCGGC CCCTTTGAGG TCAACATGGA GGAGACCATC TATCAGAACT ACCAGCGTAT
                                                                          1200
       CCGAATCCAG GAGAGTCCAG GCAAAGTGGC GGCTGGCCGG CTGCCCCGCT CCAAGGACGC
                                                                          1260
       CATTCTCCTC GCAGATCTGG TGGACAGCTG CAAGCCAGGA GACGAGATAG AGCTGACTGG
                                                                          1320
65
       CATCTATCAC AACAACTATG ATGGCTCCCT CAACACTGCC AATGGCTTCC CTGTCTTTGC
                                                                          1380
       CACTGTCATC CTAGCCAACC ACGTGGCCAA GAAGGACAAC AAGGTTGCTG TAGGGGAACT
                                                                          1440
       GACCGATGAA GATGTGAAGA TGATCACTAG CCTCTCCAAG GATCAGCAGA TCGGAGAGAA
                                                                          1500
       GATCTTTGCC AGCATTGCTC CTTCCATCTA TGGTCATGAA GACATCAAGA GAGGCCTGGC
                                                                          1560
       TCTGGCCCTG TTCGGAGGGG AGCCCAAAAA CCCAGGTGGC AAGCACAAGG TACGTGGTGA
                                                                          1620
70
       TATCAACGTG CTCTTGTGCG GAGACCCTGG CACAGCGAAG TCGCAGTTTC TCAAGTATAT
                                                                          1680
       TGAGAAAGTG TCCAGCCGAG CCATCTTCAC CACTGGCCAG GGGGCGTCGG CTGTGGGCCT
                                                                          1740
       CACGGCGTAT GTCCAGCGGC ACCCTGTCAG CAGGGAGTGG ACCTTGGAGG CTGGGGCCCT
                                                                          1800
       GGTTCTGGCT GACCGAGGAG TGTGTCTCAT TGATGAATTT GACAAGATGA ATGACCAGGA
                                                                          1860
       CAGAACCAGC ATCCATGAGG CCATGGAGCA ACAGAGCATC TCCATCTCGA AGGCTGGCAT
                                                                          1920
75
       CGTCACCTCC CTGCAGGCTC GCTGCACGGT CATTGCTGCC GCCAACCCCA TAGGAGGGCG
       CTACGACCCC TCGCTGACTT TCTCTGAGAA CGTGGACCTC ACAGAGCCCA TCATCTCACG
                                                                          2040
       CTTTGACATC CTGTGTGGG TGAGGGACAC CGTGGACCCA GTCCAGGACG AGATGCTGGC
                                                                          2100
       CCGCTTCGTG GTGGGCAGCC ACGTCAGACA CCACCCCAGC AACAAGGAGG AGGAGGGGCT
                                                                          2160
       GGCCAATGGC AGCGCTGCTG AGCCCGCCAT GCCCAACACG TATGGCGTGG AGCCCCTGCC
                                                                          2220
80
       CCAGGAGGTC CTGAAGAAGT ACATCATCTA CGCCAAGGAG AGGGTCCACC CGAAGCTCAA
                                                                          2280
       CCAGATGGAC CAGGACAAGG TGGCCAAGAT GTACAGTGAC CTGAGGAAAG AATCTATGGC
                                                                          2340
       GACAGGCAGC ATCCCCATTA CGGTGCGGCA CATCGAGTCC ATGATCCGCA TGGCGGAGGC
                                                                          2400
       CCACGCGCGC ATCCATCTGC GGGACTATGT GATCGAAGAC GACGTCAACA TGGCCATCCG
                                                                          2460
       CGTGATGCTG GAGAGCTTCA TAGACACACA GAAGTTCAGC GTCATGCGCA GCATGCGCAA
                                                                          2520
85
       GACTTTTGCC CGCTACCTTT CATTCCGGCG TGACAACAAT GAGCTGTTGC TCTTCATACT
                                                                          2580
       GAAGCAGTTA GTGGCAGAGC AGGTGACATA TCAGCGCAAC CGCTTTGGGG CCCAGCAGGA
                                                                          2640
       CACTATTGAG GTCCCTGAGA AGGACTTGGT GGATAAGGCT CGTCAGATCA ACATCCACAA
```

```
WO 02/086443
       CYTCTGGA TITTATGACA GTGAGCTCTT CAGGATGAAC AAGTTCAGCC ACGACCTGAA
AAGGAAAATG ATCCTGCAGC AGTTCTGAGG CCCTATGCCA TCCATAAGGA TTCCTTGGGA
                                                                           2760
       TTCTGGTTTG GGGTGGTCAG TGCCCTCTGT GCTTTATGGA CACAAAACCA GAGCACTTGA
                                                                           2880
       TGAACTCGGG GTACTAGGGT CAGGGCTTAT AGCAGGATGT CTGGCTGCAC CTGGCATGAC
                                                                           2940
 5
       TGTTTGTTTC TCCAAGCCTG CTTTGTGCTT CTCACCTTTG GGTGGGATGC CTTGCCAGTG
                                                                           3000
       TGTCTTACTT GGTTGCTGAA CATCTTGCCA CCTCCGAGTG CTTTGTCTCC ACTCAGTACC
                                                                           3060
       TTGGATCAGA GCTGCTGAGT TCAGGATGCC TGCGTGTGGT TTAGGTGTTA GCCTTCTTAC
                                                                           3120
       ATGGATGTCA GGAGAGCTGC TGCCCTCTTG GCGTGAGTTG CGTATTCAGG CTGCTTTTGC
                                                                           3180
       TGCCTTTGGC CAGAGAGCTG GTTGAAGATG TTTGTAATCG TTTTCAGTCT CCTGCAGGTT
                                                                            3240
10
       TCTGTGCCCC TGTGGTGGAA GAGGGCACGA CAGTGCCAGC GCAGCGTTCT GGGCTCCTCA
                                                                           3300
       GTCGCAGGGG TGGGATGTGA GTCATGCGGA TTATCCACTC GCCACAGTTA TCAGCTGCCA
                                                                           3360
       TTGCTCCCTG TCTGTTTCCC CACTCTCTTA TTTGTGCATT CGGTTTGGTT TCTGTAGTTT
                                                                           3420
       15
       Seq ID NO: 329 Protein sequence:
       Protein Accession #: AAH17490.1
                                         31
                                                    41
                                                               51
20
       MAESSESFTM ASSPAQRRRG NDPLTSSPGR SSRRTDALTS SPGRDLPPFE DESEGLLGTE
       GPLEEEEDGE ELIGDGMERD YRAIPELDAY EAEGLALDDE DVEELTASQR EAAERAMRQR
                                                                            120
       DREAGRGLGR MRRGLLYDSD EEDEERPARK RRQVERATED GEEDEEMIES IENLEDLKGH
                                                                            180
       SVREWVSMAG PRLEIHHRFK NFLRTHVDSH GHNVFKERIS DMCKENRESL VVNYEDLAAR
                                                                            240
       EHVLAYFLPE APAELLQIFD EAALEVVLAM YPKYDRITNH IHVRISHLPL VEELRSLRQL
                                                                             300
25
       HLNQLIRTSG VVTSCTGVLP QLSMVKYNCN KCNFVLGPFC QSQNQEVKPG SCPECQSAGP
                                                                             360
       FEVNMEETIY ONYORIRIQE SPGKVAAGRL PRSKDAILLA DLVDSCKPGD EIELTGIYHN
                                                                             420
       NYDGSLNTAN GFPVFATVIL ANHVAKKDNK VAVGELTDED VKMITSLSKD QQIGEKIFAS
       IAPSIYGHED IKRGLALALF GGEPKNPGGK HKVRGDINVL LCGDPGTAKS QFLKYIEKVS
                                                                             540
       SRAIFTTGQG ASAVGLTAYV QRHPVSREWT LEAGALVLAD RGVCLIDEFD KMNDQDRTSI
                                                                             600
30
       HEAMEQQSIS ISKAGIVTSL QARCTVIAAA NPIGGRYDPS LTFSENVDLT EPIISRFDIL
                                                                             660
       CVVRDTVDPV QDEMLARFVV GSHVRHHPSN KEEEGLANGS AAEPAMPNTY GVEPLPQEVL
                                                                             720
       KKYIIYAKER VHPKLNOMDO DKVAKMYSDL RKESMATGSI PITVRHIESM IRMAEAHARI
                                                                             780
       HLRDYVIEDD VNMAIRVMLE SFIDTQKFSV MRSMRKTFAR YLSFRRDNNE LLLFILKQLV
                                                                             840
       AEQVTYQRNR FGAQQDTIEV PEKDLVDKAR QINIHNLSAF YDSELFRMNK FSHDLKRKMI
                                                                             900
35
       Seg ID NO: 330 DNA seguence
       Nucleic Acid Accession #: M17254
       Coding sequence: 257-1645
40
                                                    41
                                                               51
                                         31
       GTCCGCGCGT GTCCGCGCCC GCGTGTGCCA GCGCGCGTGC CTTGGCCGTG CGCGCCGAGC
                                                                              60
       CGGGTCGCAC TAACTCCCTC GGCGCCGACG GCGGCGCTAA CCTCTCGGTT ATTCCAGGAT
                                                                             120
45
       CTTTGGAGAC CCGAGGAAAG CCGTGTTGAC CAAAAGCAAG ACAAATGACT CACAGAGAAA
       AAAGATGGCA GAACCAAGGG CAACTAAAGC CGTCAGGTTC TGAACAGCTG GTAGATGGGC
                                                                             240
       TGGCTTACTG AAGGACATGA TTCAGACTGT CCCGGACCCA GCAGCTCATA TCAAGGAAGC
                                                                             300
       CTTATCAGTT GTGAGTGAGG ACCAGTCGTT GTTTGAGTGT GCCTACGGAA CGCCACACCT
                                                                             360
       GGCTAAGACA GAGATGACCG CGTCCTCCTC CAGCGACTAT GGACAGACTT CCAAGATGAG
                                                                             420
50
       CCCACGCGTC CCTCAGCAGG ATTGGCTGTC TCAACCCCCA GCCAGGGTCA CCATCAAAAT
                                                                             480
       GGAATGTAAC CCTAGCCAGG TGAATGGCTC AAGGAACTCT CCTGATGAAT GCAGTGTGGC
       CAAAGGCGG AAGATGGTGG GCAGCCCAGA CACCGTTGGG ATGAACTACG GCAGCTACAT
                                                                             600
       GGAGGAGAAG CACATGCCAC CCCCAAACAT GACCACGAAC GAGCGCAGAG TTATCGTGCC
                                                                             660
                                                                             720
       AGCAGATCCT ACGCTATGGA GTACAGACCA TGTGCGGCAG TGGCTGGAGT GGGCGGTGAA
55
       AGAATATGGC CTTCCAGACG TCAACATCTT GTTATTCCAG AACATCGATG GGAAGGAACT
                                                                             780
       GTGCAAGATG ACCAAGGACG ACTTCCAGAG GCTCACCCCC AGCTACAACG CCGACATCCT
       TCTCTCACAT CTCCACTACC TCAGAGAGAC TCCTCTTCCA CATTTGACTT CAGATGATGT
                                                                             900
       TGATAAAGCC TTACAAAACT CTCCACGGTT AATGCATGCT AGAAACACAG ATTTACCATA
                                                                             960
       TGAGCCCCC AGGAGATCAG CCTGGACCGG TCACGGCCAC CCCACGCCCC AGTCGAAAGC
                                                                           1020
60
       TGCTCAACCA TCTCCTTCCA CAGTGCCCAA AACTGAAGAC CAGCGTCCTC AGTTAGATCC
                                                                           1080
       TTATCAGATT CTTGGACCAA CAAGTAGCCG CCTTGCAAAT CCAGGCAGTG GCCAGATCCA
                                                                           1140
       GCTTTGGCAG TTCCTCCTGG AGCTCCTGTC GGACAGCTCC AACTCCAGCT GCATCACCTG
                                                                            1200
       GGAAGGCACC AACGGGGAGT TCAAGATGAC GGATCCCGAC GAGGTGGCCC GGCGCTGGGG
                                                                           1260
       AGAGCGGAAG AGCAAACCCA ACATGAACTA CGATAAGCTC AGCCGCGCCC TCCGTTACTA
                                                                           1320
65
       CTATGACAAG AACATCATGA CCAAGGTCCA TGGGAAGCGC TACGCCTACA AGTTCGACTT
                                                                           1380
       CTACGGGATC GCCCAGGCCC TCCAGCCCCA CCCCCGGAG TCATCTCTGT ACAAGTACCC
                                                                           1440
       CTCAGACCTC CCGTACATGG GCTCCTATCA CGCCCACCCA CAGAAGATGA ACTTTGTGGC
                                                                           1500
       GCCCCACCT CCAGCCTCC CCGTGACATC TTCCAGTTTT TTTGCTGCCC CAAACCCATA
                                                                           1560
       CTGGAATTCA CCAACTGGGG GTATATACCC CAACACTAGG CTCCCCACCA GCCATATGCC
                                                                           1620
70
       TTCTCATCTG GGCACTTACT ACTAAAGACC TGGCGGAGGC TTTTCCCATC AGCGTGCATT
                                                                           1680
       CACCAGCCCA TCGCCACAAA CTCTATCGGA GAACATGAAT CAAAAGTGCC TCAAGAGGAA
                                                                           1740
       TGAAAAAAGC TTTACTGGGG CTGGGGAAGG AAGCCGGGGA AGAGATCCAA AGACTCTTGG
                                                                           1800
       GAGGGAGTTA CTGAAGTCTT ACTACAGAAA TGAGGAGGAT GCTAAAAATG TCACGAATAT
                                                                           1860
       GGACATATCA TCTGTGGACT GACCTTGTAA AAGACAGTGT ATGTAGAAGC ATGAAGTCTT
                                                                           1920
75
       AAGGACAAAG TGCCAAAGAA AGTGGTCTTA AGAAATGTAT AAACTTTAGA GTAGAGTTTG
       AATCCCACTA ATGCAAACTG GGATGAAACT AAAGCAATAG AAACAACACA GTTTTGACCT
                                                                           2040
       AACATACCGT TTATAATGCC ATTTTAAGGA AAACTACCTG TATTTAAAAA TAGTTTCATA
                                                                           2100
       TCAAAAACAA GAGAAAAGAC ACGAGAGAGA CTGTGGCCCA TCAACAGACG TTGATATGCA
                                                                           2160
       ACTGCATGGC ATGTGCTGTT TTGGTTGAAA TCAAATACAT TCCGTTTGAT GGACAGCTGT
                                                                           2220
80
       CAGCTTTCTC AAACTGTGAA GATGACCCAA AGTTTCCAAC TCCTTTACAG TATTACCGGG
                                                                           2280
       ACTATGAACT AAAAGGTGGG ACTGAGGATG TGTATAGAGT GAGCGTGTGA TTGTAGACAG
                                                                            2340
       AGGGGTGAAG AAGGAGGAGG AAGAGGCAGA GAAGGAGGAG ACCAGGCTGG GAAAGAAACT
                                                                           2400
       TCTCAAGCAA TGAAGACTGG ACTCAGGACA TTTGGGGACT GTGTACAATG AGTTATGGAG
                                                                           2460
       ACTCGAGGGT TCATGCAGTC AGTGTTATAC CAAACCCAGT GTTAGGAGAA AGGACACAGC
                                                                           2520
85
       GTAATGGAGA AAGGGAAGTA GTAGAATTCA GAAACAAAAA TGCGCATCTC TTTCTTTGTT
                                                                           2580
       TGTCADATGA ARATTITAC TGGAATTGTC TGATATTAA GAGAACATT CAGGACCTCA
TCATTATGTG GGGGCTTTGT TCTCCACAGG GTCAGGTAAG AGATGGCCTT CTTGGCTGCC
                                                                            2640
```

	WO 02	/086443					
5	AACGCTGTGC ATAATTATAT CGACAAAAGA TACAATATGA TAGCATGGCA TTGCTTAATG	ATCACGCAGG GTTTGTCAGA AACTTATGCA GACAATCGAT AGTTATTAGT AATCAGATTT AAAACATGTG CAAGGGAGAG	ATGAAGTATA TTTATACACT ATAATGTGGC TCTTAGAATG ATACAGGAGT CTGAATGTTG	CAAGTCAATG ACGAGTTGAT CTTGAATTTT CAGAATGTAT CTGCATTTGC TGGATTTTGT	TTTTTCCCC CTCGGCCAGC AACTCTGTAT GTAATAAAAT ACTTTTTTTA GTTATAATTT	TTTTTATATA CAAAGACACA GCTTAATGTT AAGCTTGGCC GTGACTAAAG	2760 2820 2880 2940 3000 3060 3120
10	Seq ID NO: Protein Acc	331 Protein cession #:	n sequence AAA5239	98	•		
	1	11	21	31	41	51	
1520	QDWLSQPPAR PPPNMTTNER DDFQRLTPSY SAWTGHGHPT LELLSDSSNS	HIKEALSVVS VTIKMECNPS RVIVPADPTL NADILLSHLH PQSKAAQPSP SCITWEGTNG YKFDFHGIAQ	QVNGSRNSPD WSTDHVRQWL YLRETPLPHL STVPKTEDQR EFKMTDPDEV	ECSVAKGGKM EWAVKEYGLP TSDDVDKALQ PQLDPYQILG ARRWGERKSK	VGSPDTVGMN DVNILLFQNI NSPRLMHARN PTSSRLANPG PNMNYDKLSR	YGSYMEEKHM DGKELCKMTK TDLPYEPPRR SGQIQLWQFL ALRYYYDKNI	60 120 180 240 300 360 420
	LPVTSSSFFA	APNPYWNSPT	GGIYPNTRLP				462
25	Nucleic Act	332 DNA sec id Accession lence: 283-	1 #: NM_0000	20			
	1	11	21	31	41	51	
30	AGAAACATTT GAGCGAGCCC	TTATTAGGAG TTGCTCCAGC CTCCCCGGCT	CCCCATCCCA CCAGCCCGGT	GTCCCGGGAG CCGGGGCCGC	GCTGCCGCGC GCCGGACCCC	CAGCTGCGCC AGCCCGCCGT	60 120 180
	CCAGCGCTGG	CGGTGCAACT CCCGCCACCC	GCGGCCGCGC	GGTGGAGGGG CCCAGAGGGA	AGGTGGCCCC	GGTCCGCCGA	240 300
35	AGGAAAGGCC	TTCTGATGCT	GCTGATGGCC	TTGGTGACCC	AGGGAGACCC	TGTGAAGCCG	360
	TCTCGGGGCC	CGCTGGTGAC GGTGCACAGT	CTGCACGTGT	GAGAGCCCAC CGGGAGGAGG	ATTGCAAGGG GGAGGCACCC	CCAGGAACAT	420 480
	CGGGGCTGCG	GGAACTTGCA	CAGGGAGCTC	TGCAGGGGGC	GCCCCACCGA	GTTCGTCAAC	540
40	CACTACTGCT	GCGACAGCCA CGGAGCAGCC	CCTCTGCAAC	GGCCAGCTGT	CCCTGGTGCT	GGGCCCCGTG	600 660
	CTGGCCTTGC	TGGCCCTGGT	GGCCCTGGGT	GTCCTGGGCC	TGTGGCATGT	CCGACGGAGG	720
		AGCGTGGCCT GCGACACGAT					780 840
		TCCCCTTCCT					900
45	TGTGTGGGAA	AAGGCCGCTA	TGGCGAAGTG	TGGCGGGGCT	TGTGGCACGG	TGAGAGTGTG	960
	GCCGTCAAGA	TCTTCTCCTC TGCTCAGACA	GAGGGATGAA	CAGTCCTGGT	TCCGGGAGAC	CATGACCTCC	1020 1080
	CGCAACTCGA	GCACGCAGCT	GTGGCTCATC	ACGCACTACC	ACGAGCACGG	CTCCCTCTAC	1140
50	GACTTTCTGC	AGAGACAGAC TGGCGCACCT	GCTGGAGCCC	CATCTGGCTC	TGAGGCTAGC	TGTGTCCGCG	1200 1260
50		ACTTCAAGAG					1320
	GCCGACCTGG	GCCTGGCTGT	GATGCACTCA	CAGGGCAGCG	ATTACCTGGA	CATCGGCAAC	1380
		TGGGCACCAA TTGAGTCCTA					1440 1500
55	GAGATTGCCC	GCCGGACCAT	CGTGAATGGC	ATCGTGGAGG	ACTATAGACC	ACCCTTCTAT	1560
		CCAATGACCC CCATCCCTAA					1620 1680
	ATGATGCGGG	AGTGCTGGTA	CCCAAACCCC	TCTGCCCGAC	TCACCGCGCT	GCGGATCAAG	1740
60	AAGACACTAC	AAAAAATTAG	CAACAGTCCA	GAGAAGCCTA	AAGTGATTCA	ATAGCCCAGG	1800
60	AGCACCTGAT	TCCTTTCTGC AGAGGTAGTG	CTGCAGGGGG	CTGGGGGGGT	GGGGGGCAGC	TGCGCCTGCC	1860 1920
	TGCTCGGCCC	CCAGCCCACC	CAGCCAAAAA	TACAGCTGGG	CTGAAACCTG	ATCCCCTGCT	1980
	GTCTGGCCTG	CTCAAAGCGG	CAGGCTCCCT	GACGCCTGGC	TCTCTCCCCA	CCCCTATGGC	2040 2100
65	CAGCATGGTG	CACCCCCTAC AGGGAATCCC	AGTCCCAGAC	TCAGAGCCCG	GGCCTGCACT	TTGCCCCCTG	2160
•	CCCTTGATCA	ACCCCACTGC	CCCACCAGAG	CTGCCAGGGT	GGCACAGGGC	CCTGTCCAGC	2220
	CCCTGGCACA	CACTTCCCTG TCTCTCTGTG	CCAGGCCTCA	GCCTCTAGCA	TAAGCTCCAG	AGAGCCAGGG	2280 2340
	TCCTCAACAA	GAGTGCAGCT	TGCTGAATGT	CAGCTGCCTG	AGAGAGCTGG	GGCCTGACTT	2400
70	ACTAGGGCAT	TAAATCCTAA	GAGGTCCTAC	TGAGGTGTGG	CAGGATCACA	GGCCAGTGGA	2460
	AAAAGGGCAG	GTCAGATGGG GCAGGGGGAA	GGTCAGTGGG	TGTCAAGAGA	CCCAGGTCTG	ACCCCGGATG	2520 2580
	TTTGCTCCAT	GTGACAAAAG	CAGGCCTGTC	TCAGGACCTT	TTCTTTTCTT	TTTTCCTTCT	2640
75		GACACGGAGT GCAACGTCTA					2700 2760
15	GTAGCTGGGA	TTACAGGCAC	ATGCCACCAT	GCCTGGCTAA	TTTTGTATAT	TTAGTAGAAA	2820
	CAGGGTTTCA	CCATGCTGGC	CATGCTGGTT	CTCGAACTCC	TGACCTCAGG	TGTTCCACCT	2880
	ACCTCAGCCT	CCCAAAGTGC TCTACATATT	TGGGGTTACA	GTGTGAGCC	ATCGCGCCTG	GCCAGGACCT TTCTTTAGCT	2940 3000
80	CTAGTTCTCT	GACACTTCAG	CCTATATCAC	AGCTAACTTC	YTCAGTCTCA	TCTATTCCTT	3060
	ATGCTCCAGC	CCCTGGCAAT	TTGCCTCAAG	ATGGGGGTTT	GAAAATAACT	TTACCTGACT	3120
	CAAGGAGTGT	CTGGAGCACC GCCACCCTTG	TCCTAGTCTA	AGTCTGCAAG GCTCTGGGCC	TTTTGACCAC	TGCCTAAAAC	3180 3240
0.5	CTCGCCCTCT	CTGTGGCATA	GTCTTCTCTG	CCCCAGGACT	GCAGGGCGGC	TTCCTCCAAG	3300
85	GCTTCCAAGG	CTCAAAAGAA	ATTTGGCTCC	ATCCAAGAAG	GCTCCAGCTC	CCCTACTGGC	3360
	ATGGGCTCTA	GAGAGACACA	CAGAAAGTTT	GGGCATTTGG	GAAATTTTCA	GGAGAATTCA AGGRTGTATG	3420 3480

```
TATGGYTCAC GTATGGWGCA GGTTGTCCTG GTCCYKGGGT GCAGGGAAGT GGGCTGCAGG
GAAGTGGATT GGAGGGAGC TTGAGGAATA TAAGGAGCGG GGGTGGAGAC TCAGGCTATG
                                                                                  3600
       GACAAGGACA GCCCCAAGGT TGGGAAGACC TGGCCTTAGT CGTCCTCAGC CTAGGGCAGG
                                                                                  3660
       GCAGTGAAGA AAGCTCTCCC CGCTCCTGCT GTAATGACCC AGAGTAGCCT CCCCAGGCCG
                                                                                  3720
 5
       GCATCTTATG TGTGTCTTCC ACCATCCTCA TGGTGGCACT TTTCTAGGCC TGTCTCCCAG
                                                                                  3780
       CATTGTGCAA GGCTCGGAAG AGAACCAGGA AGTGAAACTG GGTGAAAACA GAAAGCTCAA
                                                                                  3840
       TGGATGGGCT AGGTTCCCAG ATCATTAGGG CAGAGTTTGC ACGTCCTCTG GTTCACTGGG
                                                                                  3900
       AATCCACCCA GCCCACGAAT CATCTCCCTC TTTGAAGGAT TTTWATTTCT ACTGGGTTTT
       GGAACAAACT CCTGCTGAGA CCCCACAGCC AGAAACTGAA AGCAGCAGCT CCCCAAAGCC
                                                                                  4020
10
       TGGAAAATCC CTAAGAGAAG GCCTGGGGGA MAGGAAKTGG AGTGACAGGG GACAGGTAGA
                                                                                  4080
       GAGAAGGGGG CCCAATGGCC AGGGAGTGAA GGAGGTGGCG TTGCTGAGAG CAGTCTGCAC
                                                                                  4140
       ATGCTTCTGT CTGAGTGCAG GAAGGTGTTC CAGGGTCGAA ATTACACTTC TCGTACCTGG
                                                                                  4200
       AGACGCTGTT TGTGGGAGCA CTGGGCTCAT GCCTGGCACA CAATAGGTCT GCAATAAACC
       ATGGTTAAAT CCTGAAAAAA AAAAAAAA
15
       Seq ID NO: 333 Protein sequence
       Protein Accession #:
                                    NP 000011
20
                                                        41
                                                                     51
                                21
                                            31
       1
                    11
       MTLGSPRKGL LMLLMALVTQ GDPVKPSRGP LVTCTCESPH CKGPTCRGAW CTVVLVREEG
                                                                                    60
       RHPQEHRGCG NLHRELCRGR PTEFVNHYCC DSHLCNHNVS LVLEATQPPS EQPGTDGQLA
                                                                                   120
       LILGPVLALL ALVALGVLGL WHVRRRQEKQ RGLHSELGES SLILKASEQG DTMLGDLLDS
                                                                                   180
       DCTTGSGSGL PFLVQRTVAR QVALVECVGK GRYGEVWRGL WHGESVAVKI FSSRDEQSWF RETEIYNTVL LRHDNILGFI ASDMTSRNSS TQLWLITHYH EHGSLYDFLQ RQTLEPHLAL
25
                                                                                   240
                                                                                   300
                                                                                   360
       RLAVSAACGL AHLHVEIFGT QGKPAIAHRD FKSRNVLVKS NLQCCIADLG LAVMHSQGSD
       YLDIGNNPRV GTKRYMAPEV LDEQIRTDCF ESYKWTDIWA FGLVLWEIAR RTIVNGIVED
                                                                                   420
        YRPPFYDVVP NDPSFEDMKK VVCVDQQTPT IPNRLAADPV LSGLAQMMRE CWYPNPSARL
                                                                                   480
30
        TALRIKKTLO KISNSPEKPK VIQ
        Seg ID NO: 334 DNA sequence
       Nucleic Acid Accession #: NM 004126.1
        Coding sequence: 108-329
35
                                                         41
                                            31
        GGCACGAGCT CGTGCCGGCC TTCAGTTGTT TCGGGACGCG CCGAGCTTCG CCGCTCTTCC
        AGCGGCTCCG CTGCCAGAGC TAGCCCGAGC CCGGTTCTGG GGCGAAAATG CCTGCCCTTC
                                                                                   120
40
        ACATCGAAGA TTTGCCAGAG AAGGAAAAAC TGAAAATGGA AGTTGAGCAG CTTCGCAAAG
                                                                                   180
        AAGTGAAGTT GCAGAGACAA CAAGTGTCTA AATGTTCTGA AGAAATAAAG AACTATATTG
                                                                                   240
                                                                                   300
        AAGAACGTTC TGGAGAGGAT CCTCTAGTAA AGGGAATTCC AGAAGACAAG AACCCCTTTA
        AAGAAAAGG CAGCTGTGTT ATTTCATAAA TAACTTGGGA GAAACTGCAT CCTAAGTGGA
                                                                                   360
        AGAACTAGTT TGTTTTAGTT TTCCCAGATA AAACCAACAT GCTTTTTAAG GAAGGAAGAA
                                                                                    420
        TGARATTAAA AGGAGACTTT CTTAAGCACC ATATAGATAG GGTTATGTAT AAAAGCATAT
                                                                                    480
45
        GTGCTACTCA TCTTTGCTCA CTATGCAGTC TTTTTTAAGA GAGCAGAGAG TATCAGATGT
                                                                                    540
        ACAATTATGG AAATAAGAAC ATTACTTGAG CATGACACTT CTTTCAGTAT ATTGCTTGAT
                                                                                    600
        GCTTCAAATA AAGTTTTGTC TT
50
        Seg ID NO: 335 Protein sequence
                                    NP 004117.1
        Protein Accession #:
                                                         41
                                                                     51
        MPALHIEDLP EKEKLKMEVE QLRKEVKLQR QQVSKCSEEI KNYIEERSGE DPLVKGIPED
55
        KNDEKEKGSC VIS
        Seg ID NO: 336 DNA sequence
60
        Nucleic Acid Accession #: NM_005795
        Coding sequence: 555-1940
                                                         41
                                21
                                             31
65
        GCACGAGGGA ACAACCTCTC TCTCTSCAGC AGAGAGTGTC ACCTCCTGCT TTAGGACCAT
                                                                                     60
        CAAGCTCTGC TAACTGAATC TCATCCTAAT TGCAGGATCA CATTGCAAAG CTTTCACTCT TTCCCACCTT GCTTGTGGGT AAATCTCTTC TGCGGAATCT CAGAAAGTAA AGTTCCATCC
                                                                                    120
        TGAGAATATT TCACAAAGAA TTTCCTTAAG AGCTGGACTG GGTCTTGACC CCTGGAATTT AAGAAATTCT TAAAGACAAT GTCAAATATG ATCCAAGAGA AAATGTGATT TGAGTCTGGA
                                                                                    240
                                                                                    300
70
        GACAATTGTG CATATCGTCT AATAATAAAA ACCCATACTA GCCTATAGAA AACAATATTT
                                                                                    360
        GAATAATAAA AACCCATACT AGCCTATAGA AAACAATATT TGAAAGATTG CTACCACTAA
                                                                                    420
        AAAGAAACT ACTACAACTT GACAAGACTG CTGCAAACTT CAATTGGTCA CCACAACTTG
                                                                                    480
        ACAAGGTTGC TATAAAACAA GATTGCTACA ACTTCTAGTT TATGTTATAC AGCATATTTC
                                                                                    540
        ATTTGGGCTT AATGATGGAG AAAAAGTGTA CCCTGTATTT TCTGGTTCTC TTGCCTTTTT
75
        TTATGATTCT TGTTACAGCA GAATTAGAAG AGAGTCCTGA GGACTCAATT CAGTTGGGAG
                                                                                    660
        TTACTAGAAA TAAAATCATG ACAGCTCAAT ATGAATGTTA CCAAAAGATT ATGCAAGACC
                                                                                    720
        CCATTCAACA AGCAGAAGGC GTTTACTGCA ACAGAACCTG GGATGGATGG CTCTGCTGGA
                                                                                    780
        ACGATGTTGC AGCAGGAACT GAATCAATGC AGCTCTGCCC TGATTACTTT CAGGACTTTG
                                                                                    840
        ATCCATCAGA AAAAGTTACA AAGATCTGTG ACCAAGATGG AAACTGGTTT AGACATCCAG
                                                                                    900
        ACAGCAACAG AACATGGACA AATTATACCC AGTGTAATGT TAACACCCAC GAGAAAGTGA
AGACTGCACT AAATTTGTTT TACCTGACCA TAATTGGACA CGGATTGTCT ATTGCATCAC
80
                                                                                    960
                                                                                   1020
        TGCTTATCTC GCTTGGCATA TTCTTTTATT TCAAGAGCCT AAGTTGCCAA AGGATTACCT
                                                                                   1080
        TACACAAAAA TCTGTTCTTC TCATTTGTTT GTAACTCTGT TGTAACAATC ATTCACCTCA
                                                                                   1140
        CTGCAGTGGC CAACAACCAG GCCTTAGTAG CCACAAATCC TGTTAGTTGC AAAGTGTCCC
                                                                                   1200
        AGTICATICA TCTTACCTG ATGGCCGTA ATTACTTTG GATGCTCTG GAAGGCATTT ACCTACACAC ACTCATTGTG GTGGCCGTGT TTGCAGAGAA GCAACATTTA ATGTGGTATT
85
                                                                                   1260
                                                                                   1320
        ATTTTCTTGG CTGGGGATTT CCACTGATTC CTGCTTGTAT ACATGCCATT GCTAGAAGCT
                                                                                   1380
```

```
TATATTACAA TGACAATTGC TGGATCAGTT CTGATACCCA TCTCCTCTAC ATTATCCATG
       GCCCAATTTG TGCTGCTTTA CTGGTGAATC TTTTTTCTT GTTAAATATT GTACGCGTTC
                                                                                1500
       TCATCACCAA GTTAAAAGTT ACACACCAAG CGGAATCCAA TCTGTACATG AAAGCTGTGA
                                                                                1560
       GAGCTACTCT TATCTTGGTG CCATTGCTTG GCATTGAATT TGTGCTGATT CCATGGCGAC
                                                                                1620
 5
       CTGAAGGAAA GATTGCAGAG GAGGTATATG ACTACATCAT GCACATCCTT ATGCACTTCC
                                                                                 1680
       AGGGTCTTTT GGTCTCTACC ATTTTCTGCT TCTTTAATGG AGAGGTTCAA GCAATTCTGA
                                                                                 1740
       GAAGAAACTG GAATCAATAC AAAATCCAAT TTGGAAACAG CTTTTCCAAC TCAGAAGCTC
       TTCGTAGTGC GTCTTACACA GTGTCAACAA TCAGTGATGG TCCAGGTTAT AGTCATGACT
                                                                                 1860
       GTCCTAGTGA ACACTTAAAT GGAAAAAGCA TCCATGATAT TGAAAATGTT CTCTTAAAAC
                                                                                1920
10
       CAGAAAATTT ATATAATTGA AAATAGAAGG ATGGTTGTCT CACTGTTTGG TGCTTCTCCT
                                                                                1980
       AACTCAAGGA CTTGGACCCA TGACTCTGTA GCCAGAAGAC TTCAATATTA AATGACTTTG
                                                                                2040
       GGGAATGTCA TAAAGAAGAG CCTTCACATG AAATTAGTAG TGTGTTGATA AGAGTGTAAC
                                                                                 2100
       ATCCAGCTCT ATGTGGGAAA AAAGAAATCC TGGTTTGTAA TGTTTGTCAG TAAATACTCC
                                                                                 2160
       CACTATGCCT GATGTGACGC TACTAACCTG ACATCACCAA GTGTGGAATT GGAGAAAAGC
                                                                                 2220
15
       ACAATCAACT TTTCTGAGCT GGTGTAAGCC AGTTCCAGCA CACCATTGAT GAATTCAAAC
                                                                                2280
       AAATGGCTGT AAAACTAAAC ATACATGTTG GGCATGATTC TACCCTTATT CSCCCCAAGA
                                                                                2340
       GACCTAGCTA AGGTCTATAA ACATGAAGGG AAAATTAGCT TTTAGTTTTA AAACTCTTTA
                                                                                 2400
       TCCCATCTTG ATTGGGGCAG TTGACTTTTT TTTTTTCCCA GAGTGCCGTA GTCCTTTTTG
                                                                                 2460
       TAACTACCCT CTCAAATGGA CAATACCAGA AGTGAATTAT CCCTGCTGGC TTTCTTTCT
20
       CTATGAAAAG CAACTGAGTA CAATTGTTAT GATCTACTCA TTTGCTGACA CATCAGTTAT
                                                                                 2580
       ATCTTGTGGC ATATCCATTG TGGAAACTGG ATGAACAGGA TGTATAATAT GCAATCTTAC
                                                                                 2640
       TTCTATATCA TTAGGAAAAC ATCTTAGTTG ATGCTACAAA ACACCTTGTC AACCTCTTCC
                                                                                 2700
       TGTCTTACCA AACAGTGGGA GGGAATTCCT AGCTGTAAAT ATAAATTTTG CCCTTCCATT
                                                                                 2760
       TCTACTGTAT AAACAATTA GCAATCATTT TATATAAAGA AAATCAATGA AGGATTTCTT
                                                                                 2820
25
       ATTTTCTTGG AATTTTGTAA AAAGAAATTG TGAAAAATGA GCTTGTAAAT ACTCCATTAT
                                                                                 2880
       TTTATTTAT AGTCTCAAAT CAAATACATA CAACCTATGT AATTTTTAAA GCAAATATAT
                                                                                 2940
       AATGCAACAA TGTGTGTATG TTAATATCTG ATACTGTATC TGGGCTGATT TTTTAAATAA
                                                                                3000
       AATAGAGTCT GGAATGCT
30
       Seg ID NO: 337 protein sequence
                                   NP_005786.1
       Protein Accession #:
                                                                    51
                                                        41
35
        MEKKCTLYFL VLLPFFMILV TAELEESPED SIQLGVTRNK IMTAQYECYQ KIMQDPIQQA
                                                                                   60
        EGVYCNRTWD GWLCWNDVAA GTESMQLCPD YFQDFDPSEK VTKICDQDGN WFRHPASNRT
                                                                                  120
       WINYTOCNVN THEKVKTALN LFYLTIIGHG LSIASLLISL GIFFYFKSLS CQRITLHKNL
                                                                                  180
       FFSFVCNSVV TIIHLTAVAN NQALVATNPV SCKVSQFIHL YLMGCNYFWM LCEGIYLHTL
                                                                                  240
        IVVAVFAEKQ HLMWYYFLGW GFPLIPACIH AIARSLYYND NCWISSDTHL LYIIHGPICA
                                                                                  300
40
        ALLVNLFFLL NIVRVLITKL KVTHQAESNL YMKAVRATLI LVPLLGIEFV LIPWRPEGKI
                                                                                  360
        AEEVYDYIMH ILMHFQGLLV STIFCFFNGE VQAILRRNWN QYKIQFGNSF SNSEALRSAS
                                                                                  420
        YTVSTISDGP GYSHDCPSEH LNGKSIHDIE NVLLKPENLY N
        Seq ID NO: 338 DNA sequence
45
       Nucleic Acid Accession #: NM 001795
        Coding sequence: 25-2379
                                                        41
                                                                    51
                    11
                                21
                                            31
50
        GCACGATCTG TTCCTCCTGG GAAGATGCAG AGGCTCATGA TGCTCCTCGC CACATCGGGC
        GCCTGCCTGG GCCTGCTGGC AGTGGCAGCA GTGGCAGCAG CAGGTGCTAA CCCTGCCCAA
                                                                                  120
        CGGGACACCC ACAGCCTGCT GCCCACCCAC CGGCGCCAAA AGAGAGATTG GATTTGGAAC
                                                                                  180
        CAGATGCACA TTGATGAAGA GAAAAACACC TCACTTCCCC ATCATGTAGG CAAGATCAAG
                                                                                  240
        TCAAGCGTGA GTCGCAAGAA TGCCAAGTAC CTGCTCAAAG GAGAATATGT GGGCAAGGTC
TTCCGGGTCG ATGCAGAGAC AGGAGACGTG TTCGCCATTG AGAGGCTGGA CCGGGAGAAT
                                                                                  300
55
       ATCTCAGAGT ACCACCTCAC TGCTGTCATT GTGGACAAGG ACACTGGTGA AAACCTGGAG ACTCCTTCCA GCTTCACCAT CAAAGTTCAT GACGTGAACG ACAACTGGCC TGTGTTCACG
                                                                                  420
                                                                                  480
        CATCGGTTGT TCAATGCGTC CGTGCCTGAG TCGTCGGCTG TGGGGACCTC AGTCATCTCT
                                                                                  540
       GTGACAGCAG TGGATGCAGA CGACCCCACT GTGGGAGACC ACGCCTCTGT CATGTTACCAA
ATCCTGAAGG GGAAAGAGTA TTTTGCCATC GATAATTCTG GACGTATTAT CACAATAACG
                                                                                  600
60
                                                                                  660
       AAAAGCTTGG ACCGAGAGAA GCAGGCCAGG TATGAGATG TGGTGGAAGC GCGAGATGCC
CAGGGCCTCC GGGGGGACTC GGGCACGGC ACCGTGCTG TCACTCTGCA AGACATCAAT
                                                                                  720
                                                                                  780
        GACAACTTCC CCTTCTTCAC CCAGACCAAG TACACATTTG TCGTGCCTGA AGACACCCGT
                                                                                  840
        GTGGGCACCT CTGTGGGCTC TCTGTTTGTT GAGGACCCAG ATGAGCCCCA GAACCGGATG
                                                                                  900
65
        ACCAAGTACA GCATCTTGCG GGGCGACTAC CAGGACGCTT TCACCATTGA GACAAACCCC
                                                                                  960
        GCCCACAACG AGGCATCAT CAAGCCCATG AAGCCTCTG ATTATGAATA CATCCAGCAA
TACAGCTTCA TCGTCGAGGC CACAGACCCC ACCATCGACC TCCGATACAT GAGCCCTCCC
                                                                                 1020
                                                                                 1080
        GCGGGAAACA GAGCCCAGGT CATTATCAAC ATCACAGATG TGGACGAGCC CCCCATTTTC
                                                                                 1140
        CAGCAGCCTT TCTACCACTT CCAGCTGAAG GAAAACCAGA AGAAGCCTCT GATTGGCACA
                                                                                 1200
70
        GTGCTGGCCA TGGACCCTGA TGCGGCTAGG CATAGCATTG GATACTCCAT CCGCAGGACC
                                                                                 1260
        AGTGACAAGG GCCAGTTCTT CCGAGTCACA AAAAAGGGGG ACATTTACAA TGAGAAAGAA
                                                                                 1320
        CTGGACAGAG AAGTCTACCC CTGGTATAAC CTGACTGTGG AGGCCAAAGA ACTGGATTCC
                                                                                 1380
        ACTGGAACCC CCACAGGAAA AGAATCCATT GTGCAAGTCC ACATTGAAGT TTTGGATGAG
AATGACAATG CCCCGGAGTT TGCCAAGCCC TACCAGCCCA AAGTGTGTGA GAACGCTGTC
                                                                                 1440
                                                                                 1500
75
        CATGGCCAGC TGGTCCTGCA GATCTCCGCA ATAGACAAGG ACATAACACC ACGAAACGTG
                                                                                 1560
        AAGTTCAAAT TCACCTTGAA TACTGAGAAC AACTTTACCC TCACGGATAA TCACGATAAC
                                                                                 1620
        ACGGCCAACA TCACAGTCAA GTATGGGCAG TTTGACCGGG AGCATACCAA GGTCCACTTC
                                                                                 1680
        CTACCCGTGG TCATCTCAGA CAATGGGATG CCAAGTCGCA CGGGCACCAG CACGCTGACC
                                                                                 1740
        GTGGCCGTGT GCAAGTGCAA CGAGCAGGGC GAGTTCACCT TCTGCGAGGA TATGGCCGCC
80
        CAGGTGGGCG TGAGCATCCA GGCAGTGGTA GCCATCTTAC TCTGCATCCT CACCATCACA
                                                                                 1860
        GTGATCACCC TGCTCATCTT CCTGCGGCGG CGGCTCCGGA AGCAGGCCCG CGCGCACGGC
                                                                                 1920
        AAGAGCGTGC CGGAGATCCA CGAGCAGCTG GTCACCTACG ACGAGGAGGG CGGCGGCGAG
                                                                                 1980
        ATGGACACCA CCAGCTACGA TGTGTCGGTG CTCAACTCGG TGCGCCGCGG CGGGGCCAAG
                                                                                 2040
        CCCCCGCGC CCGCGCTGGA CGCCCGGCCT TCCCTCTATG CGCAGGTGCA GAAGCCACCG
                                                                                 2100
85
        AGGCACGCGC CTGGGGCACA CGGAGGGCCC GGGGAGATGG CAGCCATGAT CGAGGTGAAG
        AAGGACGAGG CGGACCACGA CGGCGACGGC CCCCCCTACG ACACGCTGCA CATCTACGGC
                                                                                 2220
        TACGAGGGCT CCGAGTCCAT AGCCGAGTCC CTCAGCTCCC TGGGCACCGA CTCATCCGAC
                                                                                 2280
```

```
TCTGACGTGG ATTACGACTT CCTTAACGAC TGGGGACCCA GGTTTAAGAT GCTGGCTGAG
      CTGTACGGCT CGGACCCCCG GGAGGAGCTG CTGTATTAGG CGGCCGAGGT CACTCTGGGC
                                                                          2400
       CTGGGGACCC AAACCCCCTG CAGCCCAGGC CAGTCAGACT CCAGGCACCA CAGCCTCCAA
                                                                          2460
      AAATGGCAGT GACTCCCCAG CCCAGCACCC CTTCCTCGTG GGTCCCAGAG ACCTCATCAG
                                                                          2520
 5
      CCTTGGGATA GCAAACTCCA GGTTCCTGAA ATATCCAGGA ATATATGTCA GTGATGACTA
                                                                          2580
      TTCTCAAATC CTGGCAAATC CAGGCTGGTG TTCTGTCTGG GCTCAGACAT CCACATAACC
                                                                          2640
      CTGTCACCCA CAGACCGCCG TCTAACTCAA AGACTTCCTC TGGCTCCCCA AGGCTGCAAA
      GCAAAACAGA CTGTGTTTAA CTGCTGCAGG GTCTTTTTCT AGGGTCCCTG AACGCCCTGG
                                                                           2760
       TAAGGCTGGT GAGGTCCTGG TGCCTATCTG CCTGGAGGCA AAGGCCTGGA CAGCTTGACT
                                                                           2820
10
       TGTGGGGCAG GATTCTCTGC AGCCCATTCC CAAGGGAGAC TGACCATCAT GCCCTCTCTC
                                                                          2880
       GGGAGCCCTA GCCCTGCTCC AACTCCATAC TCCACTCCAA GTGCCCCACC ACTCCCCAAC
                                                                          2940
       CCCTCTCCAG GCCTGTCAAG AGGGAGGAAG GGGCCCCATG GCAGCTCCTG ACCTTGGGTC
                                                                           3000
       CTGAAGTGAC CTCACTGGCC TGCCATGCCA GTAACTGTGC TGTACTGAGC ACTGAACCAC
                                                                           3060
      ATTCAGGGAA ATGCTTATTA AACCTTGAAG CAACTGTGAA TTCATTCTGG AGGGGCAGTG
                                                                           3120
15
       GAGATCAGGA GTGACAGATC ACAGGGTGAG GGCCACCTCC ACACCCACCC CCTCTGGAGA
                                                                           3180
       AGGCCTGGAA GAGCTGAGAC CTTGCTTTGA GACTCCTCAG CACCCCTCCA GTTTTGCCTG
                                                                          3240
       AGAAGGGGCA GATGTTCCCG GAGATCAGAA GACGTCTCCC CTTCTCTGCC TCACCTGGTC
                                                                           3300
      GCCAATCCAT GCTCTCTTC TTTTCTCTGT CTACTCCTTA TCCCTTGGTT TAGAGGAACC
                                                                           3360
       CAAGATGTGG CCTTTAGCAA AACTGACAAT GTCCAAACCC ACTCATGACT GCATGACGGA
                                                                           3420
20
       GCCGAGCATG TGTCTTTACA CCTCGCTGTT GTCACATCTC AGGGAACTGA CCCTCAGGCA
                                                                           3480
       CACCTTGCAG AAGGAAGGCC CTGCCCTGCC CAACCTCTGT GGTCACCCAT GCATCATTCC
                                                                           3540
       ACTGGAACGT TTCACTGCAA ACACACCTTG GAGAAGTGGC ATCAGTCAAC AGAGAGGGGC
                                                                           3600
       AGGGAAGGAG ACACCAAGCT CACCCTTCGT CATGGACCGA GGTTCCCACT CTGGCAAAGC
                                                                          3660
                                                                           3720
       CCCTCACACT GCAAGGGATT GTAGATAACA CTGACTTGTT TGTTTTAACC AATAACTAGC
25
       TTCTTATAAT GATTTTTTTA CTAATGATAC TTACAAGTTT CTAGCTCTCA CAGACATATA
                                                                           3780
      GAATAAGGGT TTTTGCATAA TAAGCAGGTT GTTATTTAGG TTAACAATAT TAATTCAGGT
       TTTTTAGTTG GAAAAACAAT TCCTGTAACC TTCTATTTC TATAATTGTA GTAATTGCTC
                                                                           3900
                                                                          3960
       TACAGATAAT GTCTATATAT TGGCCAAACT GGTGCATGAC AAGTACTGTA TTTTTTTATA
       CCTAAATAAA GAAAAATCTT TAGCCTGGGC AACAAAAAAA
30
      Seg ID NO: 339 Protein sequence
                                 NP_001786
       Protein Accession #:
                             21
                                        31
                                                   41
                                                               51
                  11
35
       MORLMMLLAT SGACLGLLAV AAVAAAGANP AQRDTHSLLP THRRQKRDWI WNQMHIDEEK
                                                                            60
      NTSLPHHVGK IKSSVSRKNA KYLLKGEYVG KVFRVDAETG DVFAIERLDR ENISEYHLTA
                                                                            120
       VIVDKDTGEN LETPSSFTIK VHDVNDNWPV FTHRLFNASV PESSAVGTSV ISVTAVDADD
       PTVGDHASVM YQILKGKEYF AIDNSGRIIT ITKSLDREKQ ARYEIVVEAR DAQGLRGDSG
                                                                            240
40
       TATVLVTLQD INDNFPFFTQ TKYTFVVPED TRVGTSVGSL FVEDPDEPQN RMTKYSILRG
                                                                            300
       DYQDAFTIET NPAHNEGIIK PMKPLDYEYI QQYSFIVEAT DPTIDLRYMS PPAGNRAQVI
                                                                            360
       INITOVDEPP IFQQPFYHFQ LKENQKKPLI GTVLAMDPDA ARHSIGYSIR RTSDKGQFFR
                                                                            420
       VTKKGDIYNE KELDREVYPW YNLTVEAKEL DSTGTPTGKE SIVQVHIEVL DENDNAPEFA
                                                                            480
       KPYQPKVCEN AVHGQLVLQI SAIDKDITPR NVKFKFTLNT ENNFTLTDNH DNTANITVKY
                                                                            540
45
       GOFDREHTKV HFLPVVISDN GMPSRTGTST LTVAVCKCNE QGEFTFCEDM AAQVGVSIQA
                                                                            600
       VVAILLCILT ITVITLLIFL RRRLRKQARA HGKSVPEIHE QLVTYDEEGG GEMDTTSYDV
                                                                            660
       SVLNSVRRGG AKPPRPALDA RPSLYAQVQK PPRHAPGAHG GPGEMAAMIE VKKDEADHDG
                                                                            720
                                                                            780
      DGPPYDTLHI YGYEGSESIA ESLSSLGTDS SDSDVDYDFL NDWGPRFKML AELYGSDPRE
50
       Seq ID NO: 340 DNA sequence
       Nucleic Acid Accession #: NM 003088
       Coding sequence: 112-1593
55
                                                    41
                                                               51
                  11
                             21
                                        31
       GCGGAGGGTG CGTGCGGGCC GCGGCAGCCG AACAAAGGAG CAGGGGCGCC GCCGCAGGGA
                                                                             60
       CCCGCCACCC ACCTCCCGGG GCCGCGCAGC GGCCTCTCGT CTACTGCCAC CATGACCGCC
                                                                            120
60
       AACGGCACAG CCGAGGCGGT GCAGATCCAG TTCGGCCTCA TCAACTGCGG CAACAAGTAC
                                                                            180
       CTGACGGCCG AGGCGTTCGG GTTCAAGGTG AACGCGTCCG CCAGCAGCCT GAAGAAGAAG
                                                                            240
       CAGATCTGGA CGCTGGAGCA GCCCCCTGAC GAGGCGGGCA GCGCGGCCGT GTGCCTGCGC
       AGCCACCTGG GCCGCTACCT GGCGGCGGAC AAGGACGGCA ACGTGACCTG CGAGCGCGAG
                                                                            360
       GTGCCCGGTC CCGACTGCCG TTTCCTCATC GTGGCGCACG ACGACGGTCG CTGGTCGCTG
                                                                            420
65
       CAGTCCGAGG CGCACCGGCG CTACTTCGGC GGCACCGAGG ACCGCCTGTC CTGCTTCGCG
                                                                            480
       CAGACGGTGT CCCCCGCCGA GAAGTGGAGC GTGCACATCG CCATGCACCC TCAGGTCAAC
                                                                           540
      ATCTACAGTG TCACCCGTAA GCGCTACGCG CACCTGAGCG CGCGGCCGGC CGACGAGATC
                                                                            600
       GCCGTGGACC GCGACGTGCC CTGGGGCGTC GACTCGCTCA TCACCCTCGC CTTCCAGGAC
       CAGCGCTACA GCGTGCAGAC CGCCGACCAC CGCTTCCTGC GCCACGACGG GCGCCTGGTG
                                                                            720
70
       GCGCGCCCG AGCCGGCCAC TGGCTACACG CTGGAGTTCC GCTCCGGCAA GGTGGCCTTC
                                                                            780
       CGCGACTGCG AGGGCCGTTA CCTGGCGCCG TCGGGGCCCA GCGGCACGCT CAAGGCGGGC
                                                                            840
       AAGGCCACCA AGGTGGGCAA GGACGAGCTC TTTGCTCTGG AGCAGAGCTG CGCCCAGGTC
                                                                            900
       GTGCTGCAGG CGGCCAACGA GAGGAACGTG TCCACGCGCC AGGGTATGGA CCTGTCTGCC
                                                                            960
       AATCAGGACG AGGAGACCGA CCAGGAGACC TTCCAGCTGG AGATCGACCG CGACACCAAA
                                                                           1020
75
       AAGTGTGCCT TCCGTACCCA CACGGGCAAG TACTGGACGC TGACGGCCAC CGGGGGCGTG
                                                                           1080
       CAGTCCACCG CCTCCAGCAA GAATGCCAGC TGCTACTTTG ACATCGAGTG GCGTGACCGG
                                                                           1140
       CGCATCACAC TGAGGGCGTC CAATGGCAAG TTTGTGACCT CCAAGAAGAA TGGGCAGCTG
                                                                           1200
       GCCGCCTCGG TGGAGACAGC AGGGGACTCA GAGCTCTTCC TCATGAAGCT CATCAACCGC
                                                                           1260
       CCCATCATCG TGTTCCGCGG GGAGCATGGC TTCATCGGCT GCCGCAAGGT CACGGGCACC
                                                                           1320
80
       CTGGACGCCA ACCGCTCCAG CTATGACGTC TTCCAGCTGG AGTTCAACGA TGGCGCCTAC
                                                                           1380
       AACATCAAAG ACTCCACAGG CAAATACTGG ACGGTGGGCA GTGACTCCGC GGTCACCAGC
                                                                           1440
       AGCGGCGACA CTCCTGTGGA CTTCTTCTTC GAGTTCTGCG ACTATAACAA GGTGGCCATC
                                                                           1500
       AAGGTGGGCG GGCGCTACCT GAAGGGCGAC CACGCAGGCG TCCTGAAGGC CTCGGCGGAA
                                                                           1560
       ACCGTGGACC CCGCCTCGCT CTGGGAGTAC TAGGGCCGGC CCGTCCTTCC CCGCCCCTGC
                                                                           1620
85
       CCACATGGCG GCTCCTGCCA ACCCTCCCTG CTAACCCCTT CTCCGCCAGG TGGGCTCCAG
                                                                           1680
       GGCGGGAGGC AAGCCCCCTT GCCTTTCAAA CTGGAAACCC CAGAGAAAAC GGTGCCCCCA
       CCTGTCGCCC CTATGGACTC CCCACTCTCC CCTCCGCCCG GGTTCCCTAC TCCCCTCGGG
```

```
TCAGCGGCTG CGGCCTGGCC CTGGGAGGGA TTTCAGATGC CCCTGCCCTC TTGTCTGCCA
                                                                             1860
       CGGGGCGAGT CTGGCACCTC TTTCTTCTGA CCTCAGACGG CTCTGAGCCT TATTTCTCTG
                                                                             1920
       1.980
       TTTGCCTCTC CCAGCCACCT CCTCCCAGCC CCCCAGGAGA GCTGGGCACA TGTCCCAAGC
                                                                             2040
 5
       CTGTCAGTGG CCCTCCCTGG TGCACTGTCC CCGAAACCCC TGCTTGGGAA GGGAAGCTGT
                                                                             2100
       CGGGAGGGCT AGGACTGACC CTTGTGGTGT TTTTTTGGGT GGTGGCTGGA AACAGCCCCT
                                                                             2160
       CTCCCACGTG GGAGAGGCTC AGCCTGGCTC CCTTCCCTGG AGCGGCAGGG CGTGACGGCC
                                                                             2220
       ACAGGGTCTG CCCGCTGCAC GTTCTGCCAA GGTGGTGGTG GCGGGCGGGT AGGGGTGTGG
                                                                             2280
       GGGCCGTCTT CCTCCTGTCT CTTTCCTTTC ACCCTAGCCT GACTGGAAGC AGAAAATGAC
                                                                             2340
10
       CAAATCAGTA TTTTTTTTAA TGAAATATTA TTGCTGGAGG CGTCCCAGGC AAGCCTGGCT
                                                                             2400
       GTAGTAGCGA GTGATCTGGC GGGGGGCGTC TCAGCACCCT CCCCAGGGGG TGCATCTCAG
                                                                             2460
       CCCCTCTTT CCGTCCTTCC CGTCCAGCCC CAGCCCTGGG CCTGGGCTGC CGACACCTGG
                                                                             2520
       GCCAGAGCCC CTGCTGTGAT TGGTGCTCCC TGGGCCTCCC GGGTGGATGA AGCCAGGCGT
                                                                             2580
       CGCCCCTCC GGGAGCCCTG GGGTGAGCCG CCGGGGCCCC CCTGCTGCCA GCCTCCCCCG
                                                                             2640
15
       TCCCCAACAT GCATCTCACT CTGGGTGTCT TGGTCTTTTA TTTTTTGTAA GTGTCATTTG
                                                                             2700
                                                                             2760
       TATAACTCTA AACGCCCATG ATAGTAGCTT CAAACTGGAA ATAGCGAAAT AAAATAACTC
       AGTCTGC
       Seg ID NO: 341 Protein seguence
20
       Protein Accession #:
                                  NP 003079
                                                     41.
                                                                51
       MTANGTAEAV QIQFGLINCG NKYLTAEAFG FKVNASASSL KKKQIWTLEQ PPDEAGSAAV
25
       CLRSHLGRYL AADKDGNVTC EREVPGPDCR FLIVAHDDGR WSLQSEAHRR YFGGTEDRLS
                                                                              120
       CFAQTVSPAE KWSVHIAMHP QVNIYSVTRK RYAHLSARPA DEIAVDRDVP WGVDSLITLA
                                                                              180
       FODORYSVOT ADHRFLRHDG RLVARPEPAT GYTLEFRSGK VAFRDCEGRY LAPSGPSGTL
                                                                              240
       KAGKATKVGK DELFALEQSC AQVVLQAANE RNVSTRQGMD LSANQDEETD QETFQLEIDR
                                                                              300
       DTKKCAFRTH TGKYWTLTAT GGVQSTASSK NASCYFDIEW RDRRITLRAS NGKFVTSKKN
                                                                              360
       GQLAASVETA GDSELFLMKL INRPIIVFRG EHGFIGCRKV TGTLDANRSS YDVFGLEFND
GAYNIKDSTG KYWTVGSDSA VTSSGDTPVD FFFEFCDYNK VAIKVGGRYL KGDHAGVLKA
30
       SAETVDPASL WEY
35
       Seq ID NO: 342 DNA sequence
       Nucleic Acid Accession #: FGENESH predicted
       Coding sequence:660..1705
                                                     41
                   11
40
       CGCTCCGCAC ACATTTCCTG TCGCGGCCTA AGGGAAACTG TTGGCCGCTG GGCCCGCGGG
       GGGATTCTTG GCAGTTGGGG GGTCCGTCGG GAGCGAGGGC GGAGGGGAAG GGAGGGGGAA
                                                                              120
       CCGGGTTGGG GAAGCCAGCT GTAGAGGGCG GTGACCGCGC TCCAGACACA GCTCTGCGTC
       CTCGAGCGGG ACAGATCCAA GTTGGGAGCA GCTCTGCGTG CGGGGCCTCA GAGAATGAGG
                                                                              240
45
       300
       CACCCACTG CCGACCGTGC TGGCTGCTCG GCCTCGGGGG CCTGCTACAG CCTGCACCAC
                                                                              360
       GCTACCATGA AGCGGCAGGC GGCCGAGGAG GCCTGCATCC TGCGAGGTGG GGCGCTCAGC
                                                                              420
       ACCGTGCGTG CGGGCGCCGA GCTGCGCGCT GTGCTCGCGC TCCTGCGGGC AGGCCCAGGG
       CCCGGAGGGG GCTCCAAAGA CCTGCTGTTC TGGGTCGCAC TGGAGCGCAG GCGTTCCCAC TGCACCCTGG AGAACGAGCC TTTGCGGGGT TTCTCCTGGC TGTCCTCCGA CCCCGGCGGT
                                                                              540
50
                                                                              600
       CTCGAAAGCG ACACGCTGCA GTGGGTGGAG GAGCCCCAAC GCTCCTGCAC CGCGCGGAGA
                                                                              660
       TGCGCGGTAC TCCAGGCCAC CGGTGGGGTC GAGCCCGCAG CTGGAAGGAG ATGCGATGCC
                                                                              720
       ACCTGCGCGC CAACGGCTAC CTGTGCAAGT ACCAGTTTGA GGTCTTGTGT CCTGCGCCGC
       GCCCCGGGGC CGCCTCTAAC TTGAGCTATC GCGCGCCCTT CCAGCTGCAC AGCGCCGCTC
55
       TGGACTTCAG TCCACCTGGG ACCGAGGTGA GTGCGCTCTG CCGGGGACAG CTCCCGATCT
                                                                              900
       CAGTTACTTG CATCGCGGAC GAAATCGGCG CTCGCTGGGA CAAACTCTCG GGCGATGTGT
                                                                              960
       TGTGTCCCTG CCCCGGGAGG TACCTCCGTG CTGGCAAATG CGCAGAGCTC CCTAACTGCC
                                                                             1020
       TAGACGACTT GGGAGGCTTT GCCTGCGAAT GTGCTACGGG CTTCGAGCTG GGGAAGGACG
                                                                             1080
       GCCGCTCTTG TGTGACCACT GGGGAAGGAC AGCCGACCCT TGGGGGGACC GGGGTGCCCA
CCAGGCGCCC GCCGGCCACT GCAACCAGCC CCGTGCCGCA GAGAACATGG CCAATCAGGG
                                                                             1140
60
                                                                             1200
       TCGACGAGAA GCTGGGAGAG ACACCACTTG TCCCTGAACA AGACAATTCA GTAACATCTA
                                                                             1260
       TTCCTGAGAT TCCTCGATGG GGATCACAGA GCACGATGTC TACCCTTCAA ATGTCCCTTC
                                                                             1320
       AAGCCGAGTC AAAGGCCACT ATCACCCCAT CAGGGAGCGT GATTTCCAAG TTTAATTCTA
                                                                             1380
       CGACTTCCTC TGCCACTCCT CAGGCTTTCG ACTCCTCCTC TGCCGTGGTC TTCATATTTG
                                                                             1440
65
        TGAGCACAGC AGTAGTAGTG TTGGTGATCT TGACCATGAC AGTACTGGGG CTTGTCAAGC
                                                                             1500
       TCTGCTTTCA CGAAAGCCCC TCTTCCCAGC CAAGGAAGGA GTCTATGGGC CCGCCGGGCC
                                                                             1560
       TGGAGAGTGA TCCTGAGCCC GCTGCTTTGG GCTCCAGTTC TGCACATTGC ACAAACAATG
       GGGTGAAAGT CGGGGACTGT GATCTGCGGG ACAGAGCAGA GGGTGCCTTG CTGGCGGAGT
                                                                             1680
       CCCCTCTTGG CTCTAGTGAT GCATAG
70
        Seq ID NO: 343 Protein sequence
       Protein Accession #: FGENESH predicted
                                                                 51
75
       MGKDFMTKTP KAFATKAKID KWDLIKLKSF CTAKETIIRV NSQPTDWQKT FAIYPSDKGV
                                                                               60
        IARIYKELEQ IYKKKKPTKT LRTHFLSRPK GNCWPLGPRG DSWQLGGPSG ARAEGKGGGT
                                                                              120
       GLGKPAVEGG DRAPDTALRP RAGQIQVGSS SACGASENEA GVRPVPPLAG ALARAGRRRT
                                                                              180
       PHCRPCWLLG LGGLLOPAPR YHEAAGGRGG LHPARWGAQH RACGRRAARC ARAPAGRPRA
                                                                               240
80
       RRGLQRPAVL GRTGAQAFPL HPGERAFAGF LLAVLRPRRS RKRHAAVGGG APTLLHRAEM
                                                                               300
       RGTPGHRWGR ARSWKEMRCH LRANGYLCKY QFEVLCPAPR PGAASNLSYR APFQLHSAAL
                                                                               360
        DFSPPGTEVS ALCRGQLPIS VTCIADEIGA RWDKLSGDVL CPCPGRYLRA GKCAELPNCL
                                                                               420
       DDLGGFACEC ATGFELGKDG RSCVTSGEGQ PTLGGTGUPT RRPPATATSP VPQRTMPIRV
DEKLGETPLV PEQDNSVTSI PEIPRWGSQS TMSTLQMSLQ AESKATITPS GSVISKFNST
                                                                               480
85
        TSSATPOAFD SSSAVVFIFV STAVVVLVIL TMTVLGLVKL CFHESPSSQP RKESMGPPGL
                                                                               600
        ESDPEPAALG SSSAHCTNNG VKVGDCDLRD RAEGALLAES PLGSSDA
```

Seq ID NO: 344 DNA sequence Nucleic Acid Accession #: NM_012072 Coding sequence: 149-2107

5	couring bega						
	1	11	21	31	41 \	51 l	
	 AAAGCCCTCA		 	 CCCGGAGTGG	! CTGCAGCTCA	CCCCTCAGCT	60
	CCCCMTCCCC	CCCACCTGGG	AGCCGAGATA	GAAGCTCCTG	TCGCCGCTGG	GCTTCTCGCC	120
.0	MOOOCOCACAC	CCCCACACAC	AGACCGGGAT	GGCCACCTCC	ATGGGCCTGC	TGCTGCTGCT	180
. •	ACTEC CITE COTTO	CTCACCCACC	CCGGGGGGGG	GACGGGAGCT	GACACGGAGG	CGGTGGTCTG	240
	COMCOCCACO	CCCTCCTACA	CCCCCCACTC	GGGCAAGCTG	AGCGCTGCCG	AGGCCCAGAA	300 360
	CCACTGCAAC	CAGAACGGGG	GCAACCTGGC	CACTGTGAAG	AGCAAGGAGG	CGAGGATGAG	420
.5	CGTCCAGCGA CAAGTTCTGG	TACTGGCCC	AGCTCCTGAG	CCCCAACTCC	CTGGACCCTA	GTCTGCCGCT	480
. 3	ON NO COCOMPO	ACCTCCCTCC	GCGGGGGGA	GGACACGCCT	TACTCTAACT	GGCACAAGGA	540
	COMCOCCA A C	サクスサスク アクサ	CCAAGCGCTG	TGTGTCTCTG	CTGCTGGACC	TGTCCCAGCC	600
	COMCOMMCCC	AACCCCCCCCCC	CCAAGTGGTC	TGAGGGCCCC	TGTGGGAGCC	CAGGCTCCCC	660
	CCCD DCTD DC	A TTCACCCCT	TCGTGTGCAA	GTTCAGCTTC	AAAGGCATGT	GCCGGCCTCT	720 780
30	GGCCCTGGGG	GGCCCAGGTC	AGGTGACCTA CCTCTGCGGC	CACCACCCCC	TTCCAGACCA	GTGACAAGGA	840
	CTTGGAGGCT	GTGCCCTTTG	TCCTGTGCAA	CAATGTAGCC	CCCGATGTGT	TCGACTGGGG	900
	an comerce	CCCCTCTCTC	TCAGCCCCAA	GTATGGCTGC	AACTTCAACA	ATGGGGGCTG	960
	CCD CCD CCD C	TCCTTTCAAC	GGGGGGATGG	CTCCTTCCTC	TGCGGCTGCC	GACCAGGATT	1020
25	accererence	CATCACCTCC	TGACCTGTGC	CTCTCGAAAC	CCTTGCAGCT	CCAGCCCATG	1080
	maamaaaaaa	CCCACCTCCC	TCCTGGGACC	CCATGGGAAA	AACTACACGT	GCCGCTGCCC	1140
	CCAAGGGTAC	CAGCTGGACT	CGAGTCAGCT	GGACTGTGTG	GACGTGGATG	AATGCCAGGA	1200 1260
	CTCCCCCTGT	GCCCAGGAGT	GTGTCAACAC CTGGAGAGGG	CCCTGGGGGC	CATCTCCATC	AGTGTGCTCT	1320
30	TGGCTATGAG	CCGGGCGGTC	AGGGCTGCAC	CAACACAGAT	GGCTCATTTC	ACTGCTCCTG	1380
J U	max aax caaa	THE COTTO CTCC	CCCCCCCACCA	CGGGACTCAG	TGCCAGGACG	TGGATGAGTG	1440
	mamaaaaaaaa	cccccccc	TCTGCGACAG	CTTGTGCTTC	AACACACAAG	GGTCCTTCCA	1500
	OTTOTO COTTO	CTCCCACCCT	GGGTGCTGGC	CCCAAATGGG	GTCTCTTGCA	CCATGGGGCC	1560
	maranaranana.	CCACCACCAT	CTGGGCCCCC	CGATGAGGAG	GACAAAGGAG	AGAAAGAAGG	1620 1680
35	GAGCACCGTG	CCCCGCGCTG	CAACAGCCAG	TCCCACAAGG	GGCCCCGAGG	CATCTGCCCC	1740
	GGCTACACCC	ACCACAAGTA	GACCTTCGCT GTGGGTCCTC	ACCCUTCTGG	AGGGAGCCCA	GCATCCATCA	1800
	COCCON CACCO	CCCTCTCCCCC	CCCAGGAGCC	TGCAGGTGGG	GACTCCTCCG	TOGCCACACA	1860
	************************	CCCACTCACC	CCCAAAACCT	GCTTTTATTC	TACATCCTAG	GCACCGIGGI	1920
40	ACCUS WOUNTS	CTCCTCCTCC	CCCTCCTCT	GGGGCTACTG	GTCTATCGCA	AGCGGAGAGC	1980
	CARCACCARC	CACAACAACC	AGAAGAAGCC	CCAGAATGCG	GCAGACAGTT	ACTCCTGGGT	2040
	maan an acan	CCTCACACCA	GGGCCATGGA	GAACCAGTAC	AGTCCGACAC	CIGGGACAGA	2100 2160
	CTGCTGAAAG	TGAGGTGGCC	CTAGAGACAC	TAGAGTCACC	AGCCACCATC	GGAATCTTAG	2220
45	TGAACTCCCC	ATTCCAAAGG	CCTTANAGCC	CCCTTGGAAC	ATGCAGGTAT	TTTCTACGGG	2280
43	mammaa aran	TOOTONACTO	CAACCTGTGT	GTTGGCGTGC	CACGGTGGGG	ATTTCGTGAC	2340
	mama ma a ma a	中中で中中区ですると中でで	CCCTCCCTTT	TCAAATTCCA	ATGTGACCAA	TTCCGGATCA	2400
	CCCMCMCACC	ACCCTCCCCC	TAAGGGGCTC	CCCTGAATAT	CTTCTCTGCT	CACTTCCACC	2460
~~	****************	A A A A CCTCAC	TTGCTCATGC	TGATTAGGAT	TGAAATGATI	TGTTTCTCTT	2520 2580
50	CCTAGGATGA	AAACTAAATC	AATTAATTAT	TCAATTAGGT	AAGAAGATCI TTGCATTCCT	GGTTTTTTGG	2640
	TCAAAGGGAA	CATGTTCGGA	TGGGAAACAI	GACATCCTCC	AGAATGGCCA	GAAGTGCAAT	2700
	מיז ז כיכיייכייייז	CCTCCCAACC	AGGCAGGAAG	TGCCTCTTTA	GTTCTTACAT	TTCTAATAGC	2760
	CTTCCCTTTA	ጥጥጥርሮልልልርር	AAGCTTGAAA	AATATGAGAA	AAGTTGCTTC	AAGTGCATTA	2820
55	CA COMOTOTO	ጥር እ አርጥሮ እር እ	$T\Delta\Delta TCT\Delta CGG$	GGCTAGGGCG	AGAGAGGCCA	GGGATTTGTT	2880
	OR OR OR TRACT	ጥር እአጥጥ አልጥጥ	CATCCAAATG	TACTGAGGTT	ACCACACACI	TGACTACGGA	2940 3000
	TGTGATCAAC	ACTAACAAGG	AAACAAATTC	AAGGACAACC	TGTCTTTGAG	CCAGGGCAGG GCCAGTGCTC	3060
	CCTCAGACAC	CCTGCCTGTG	CCTCCAGAAA	CHUTTCCATCAC	GCTGTTTCCI	AAAGGATGTG	3120
60	man naccana	カサごカサごごみご す	' ርጥርጥጥጥር Δ Δ	AGTTGTCATI	TTAAAGCATI	TIAGCACAGI	3180
00	መሮ አጥ አርሞሮር እ	CACTTGATGC	AGCATCCTGA	GATTTTAAAT	' CCTGAAGTGT	ADDDDDTDDD	3240
	CA CA CCA A CT	ACCCACCTAC	TCAGGCAGTT	' TGCTTAAGG	ACTITITGIT	: TCTGTCTCTT	3300
	mmoomma a a a	TTCCCCCCTAA	GCACGGAAGG	AAGAGGGAAA	GAGATGACTA	ACTAAAATCA	3360 3420
~=	TTTTTACAGC	AAAAACTGCT	CAAAGCCATT	TAAATTATA1	CCTCATTTT	AAAGTTACAT	3480
65	TTGCAAATAT	TTCTCCCTAT	GATAATGCAG	TCGATAGIG	' AGAGACACGO	TCTCTCTCTC CACCATTCTG	3540
	aamaaaaaa a	TO CONTON CONTON	·	' CACCGATGG'	CAGAGTCAC	AGAAGITACC	3600
	manage na mara	TRECENCECCT	' CATGTCTCCI	' GTGGGCTTT]	TACCACCAC	GIGCAGGAGA	3660
	* ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	• CANATCTCTC	፣ ጥርርርጥርርልልር	: GCCCCAAAG(: CTCAGAGAA	A GGGTGTTTCT	3720
70	COMMUNICACAT	* TACCAATCC		: AGGTGACAC'	CTGGAGTGG.	TGAAGGGCCA	3780
	CAN A COMOCALO	• CCTTT AT A CT	· CTTCCCAGT1	' TTGAAATAT	A GATGCTATG	3 TTCAGATIGI	3840 3900
	TTTTAATAGA	AAACTAAAGO	GGCAGGGGA	A GTGAAAGGA	P CCTCTCCAC	TTTGTGCGGC TTTCAGTTGG	
	TCGATGGGGC	ATTTGGAACT	TOTTTTAA	A DEGETERS	CCATTTGGC	AAACTTCCTT	4020
75	COCCATCATA	. CTCTNCCTC1	L TOTOTON L	TGGGCAGTC	r GTGGTGTGG	A GAGCAGCCAT	4080
15	ORGEROPOCO CO	* አምምሮአሮአርር?) ፈርር ፈርተር ተሞ	" ATGGCTGGA	r GCGCTGCTG	A CCAACATCAG	4140
	ርክ ርመመስ አጥነ	እ አጥሮሮል አልጥር	2 ሮልልሮልጥ ቸቸርባ	r cccrcrggg	CTTGAAAAT	CITGCCCTTA	4200
	max mmmaaaa	* TONKOOKOK	→ አጥጥጥሮጥር ጥ ርር	TTGGCTTCC	. ACAGCCCCA	A CGCAGTCTGT	4200
0.0	CONTROL TO A TO TO CO	T TCCCNTCCN	A CCAGCCCTC	TATTTTCAC	A GTGTTCTGA	T TGCTCTCACA	4320 4380
80	GCCCAGGCC	ATCGTCTGT	r CTCTGAATG	AGCCCTGTT	T AAACAACA	G GGAGGTCATG	4440
	* ~~~~~~~~	* CCNCCCCCCC	~ ΨСССФСФСС	r GCTGGGTGG	r GCTTTCTCT	A GTTCCTCAAA T GCACACCACT	4500
	COOK COLOR	T CCCCNCNCNCC	~ ACCAACCCA	A CCAGACAGC	r caggiigi	C ATCIGATEGA	4500
	* * GG* CTCCC	י כידיכי א א כי א כי	~ ጥር/ርጥጥጥ Δነጥነ	с тсстстта	T TTTTGCTGT	T ACTITICAAGC	4020
85	* maa* * * mm	a mmammmaaa	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ሚ ሮሞልሮልሮሞልር!	T CCGTAAACA	A ATGUCCACUG	4000
	COOK NORCO	י מאיייי אויי אויי	አ ጥርርጥርርጥጥር	T CCTGAGGGG	C CCCAGCTIG	C TUBBBCCTGG	4/40
	CACAGTGGG	3 AATCCAAGG	G TCACAGTAT	G GGGAGAGGT	G CACCCTGCC	A CCTGCTAACT	4800

```
TCTCGCTAGA CACAGTGTTT CTGCCCAGGT GACCTGTTCA GCAGCAGAAC AAGCCAGGGC
                                                                               4860
       CATGGGGACG GGGGAAGTTT TCACTTGGAG ATGGACACCA AGACAATGAA GATTTGTTGT
                                                                               4920
       CCAAATAGGT CAATAATTCT GGGAGACTCT TGGAAAAAAC TGAATATATT CAGGACCAAC
                                                                               4980
       TCTCTCCCTC CCCTCATCCC ACATCTCAAA GCAGACAATG TAAAGAGAGA ACATCTCACA
                                                                               5040
 5
       CACCCAGCTC GCCATGCCTA CTCATTCCTG AATTTCAGGT GCCATCACTG CTCTTTCTTT
                                                                               5100
       CTTCTTTGTC ATTTGAGAAA GGATGCAGGA GGACAATTCC CACAGATAAT CTGAGGAATG
CAGAAAAACC AGGGCAGGAC AGTTATCGAC AATGCATTAG AACTTGGTGA GCATCCTCTG
                                                                               5160
       TAGAGGGACT CCACCCCTGC TCAACAGCTT GGCTTCCAGG CAAGACCAAC CACATCTGGT
                                                                               5280
       CTCTGCCTTC GGTGGCCCAC ACACCTAAGC GTCATCGTCA TTGCCATAGC ATCATGATGC
                                                                               5340
10
       AACACATCTA CGTGTAGCAC TACGACGTTA TGTTTGGGTA ATGTGGGGAT GAACTGCATG
                                                                               5400
       AGGCTCTGAT TAAGGATGTG GGGAAGTGGG CTGCGGTCAC TGTCGGCCTT GCAAGGCCAC CTGGAGGCCT GTCTGTTAGC CAGTGGTGGA GGAGCAAGGC TTCAGGAAGG GCCAGCCACA
                                                                               5460
                                                                               5520
       TGCCATCTTC CCTGCGATCA GGCAAAAAG TGGAATTAAA AAGTCAAACC TTTATATGCA
       TGTGTTATGT CCATTTTGCA GGATGAACTG AGTTTAAAAG AATTTTTTT TCTCTTCAAG
                                                                               5640
15
       TTGCTTTGTC TTTTCCATCC TCATCACAAG CCCTTGTTTG AGTGTCTTAT CCCTGAGCAA
                                                                               5700
       TCTTTCGATG GATGGAGATG ATCATTAGGT ACTTTTGTTT CAACCTTTAT TCCTGTAAAT
                                                                               5760
       ATTTCTGTGA AAACTAGGAG AACAGAGATG AGATTTGACA AAAAAAAATT GAATTAAAAA
                                                                               5820
       TAACACAGTC TTTTTAAAAC TAACATAGGA AAGCCTTTCC TATTATTTCT CTTCTTAGCT
                                                                               5880
       TCTCCATTGT CTAAATCAGG AAAACAGGAA AACACAGCTT TCTAGCAGCT GCAAAATGGT
                                                                               5940
20
       TTAATGCCCC CTACATATTT CCATCACCTT GAACAATAGC TTTAGCTTGG GAATCTGAGA
                                                                               6000
       TATGATCCCA GAAAACATCT GTCTCTACTT CGGCTGCAAA ACCCATGGTT TAAATCTATA
                                                                               6060
       TGGTTTGTGC ATTTTCTCAA CTAAAAATAG AGATGATAAT CCGAATTCTC CATATATTCA
                                                                               6120
       CTAATCAAAG ACACTATTTT CATACTAGAT TCCTGAGACA AATACTCACT GAAGGGCTTG
TTTAAAAATA AATTGTGTTT TGGTCTGTTC TTGTAGATAA TGCCCTTCTA TTTTAGGTAG
                                                                               6180
                                                                               6240
25
       AAGCTCTGGA ATCCCTTAT TGTGCTGTTG CTCTTATCTG CAAGGTGGCA AGCAGTTCTT
TTCAGCAGAT TTTGCCCACT ATTCCTCTGA GCTGAAGTTC TTTGCATAGA TTTGGCTTAA
                                                                               6300
       GCTTGAATTA GATCCCTGCA AAGGCTTGCT CTGTGATGTC AGATGTAATT GTAAATGTCA
                                                                               6420
       GTAATCACTT CATGAATGCT AAATGAGAAT GTAAGTATTT TTAAATGTGT GTATTTCAAA
                                                                               6480
        TTTGTTTGAC TAATTCTGGA ATTACAAGAT TTCTATGCAG GATTTACCTT CATCCTGTGC
                                                                               6540
30
       ATGTTTCCCA AACTGTGAGG AGGGAAGGCT CAGAGATCGA GCTTCTCCTC TGAGTTCTAA
                                                                               6600
       CAAAATGGTG CTTTGAGGGT CAGCCTTTAG GAAGGTGCAG CTTTGTTGTC CTTTGAGCTT
       TCTGTTATGT GCCTATCCTA ATAAACTCTT AAACACATT
        Seq ID NO: 345 Protein sequence
35
       Protein Accession #:
                                   NP_036204
                                                                  51
                                                       41
                               21
                                           31
       MATSMGLLL LLLLTQPGA GTGADTEAVV CVGTACYTAH SGKLSAAEAQ NHCNQNGGNL
40
       ATVKSKEEAQ HVQRVLAQLL RREAALTARM SKFWIGLQRE KGKCLDPSLP LKGFSWVGGG
                                                                                120
        EDTPYSNWHK ELRNSCISKR CVSLLLDLSQ PLLPNRLPKW SEGPCGSPGS PGSNIEGFVC
                                                                                180
       KFSFKGMCRP LALGGPGQVT YTTPFQTTSS SLEAVPFASA ANVACGEGDK DETQSHYFLC
KEKAPDVFDW GSSGPLCVSP KYGCNFNNGG CHQDCFEGGD GSFLCGCRPG FRLLDDLVTC
                                                                                240
                                                                                 300
       ASRNPCSSSP CRGGATCVLG PHGKNYTCRC PQGYQLDSSQ LDCVDVDECQ DSPCAQECVN
                                                                                 360
45
       TPGGFRCECW VGYEPGGPGE GACQDVDECA LGRSPCAQGC TNTDGSFHCS CEEGYVLAGE
                                                                                 420
       DGTQCQDVDE CVGPGGPLCD SLCFNTQGSF HCGCLPGWVL APNGVSCTMG PVSLGPPSGP
                                                                                 480
        PDEEDKGEKE GSTVPRAATA SPTRGPEGTP KATPTTSRPS LSSDAPITSA PLKMLAPSGS
                                                                                540
                                                                  VAILLLALA
       SGVWREPSIH HATAASGPOE PAGGDSSVAT ONNDGTDGOK LLLFYILGTV
                                                                                 600
       LGLLVYRKRR AKREEKKEKK PQNAADSYSW VPERAESRAM ENQYSPTPGT DC
50
        Seq ID NO: 346 DNA sequence
       Nucleic Acid Accession #: Z31560
       Coding sequence: <1-966
55
                                                                  51
                                           31
                                                       41
                               21
        CACAGCGCCC GCATGTACAA CATGATGGAG ACGGAGCTGA AGCCGCCGGG CCCGCAGCAA
       ACTTCGGGGG GCGGCGGCGG CAACTCCACC GCGGCGGCGG CCGGCGGCAA CCAGAAAAAC
                                                                                 120
        AGCCCGGACC GCGTCAAGCG GCCCATGAAT GCCTTCATGG TGTGGTCCCG CGGGCAGCGG
                                                                                180
60
        CGCAAGATGG CCCAGGAGAA CCCCAAGATG CACAACTCGG AGATCAGCAA GCGCCTGGGC
                                                                                 240
        GCCGAGTGGA AACTTTTGTC GGAGACGGAG AAGCGGCCGT TCATCGACGA GGCTAAGCGG
                                                                                 300
        CTGCGAGCGC TGCACATGAA GGAGCACCCG GATTATAAAT ACCGGCCCCG GCGGAAAACC
        AAGACGCTCA TGAAGAAGGA TAAGTACACG CTGCCCGGCG GGCTGCTGGC CCCCGGCGGC
                                                                                 420
       AATAGCATGG CGAGCGGGGT CGGGGTGGGC GCCGGCCTGG GCGCGGGCGT GAACCAGCGC
                                                                                 480
65
        ATGGACAGTT ACGCGCACAT GAACGGCTGG AGCAACGGCA GCTACAGCAT GATGCAGGAC
                                                                                 540
       600
                                                                                 660
       ATGAACGGCT CGCCCACCTA CAGCATGTCC TACTCGCAGC AGGGCACCCC TGGCATGGCT
                                                                                 720
       CTTGGCTCCA TGGGTTCGGT GGTCAAGTCC GAGGCCAGCT CCAGCCCCCC TGTGGTTACC
                                                                                 780
70
        TCTTCCTCCC ACTCCAGGGC GCCCTGCCAG GCCGGGGACC TCCGGGACAT GATCAGCATG
                                                                                 840
        TATCTCCCCG GCGCCGAGGT GCCGGAACCC GCCGCCCCA GCAGACTTCA CATGTCCCAG
                                                                                 900
        CACTACCAGA GCGGCCCGGT GCCCGGCACG GCCATTAACG GCACACTGCC CCTCTCACAC
                                                                                960
       ATGTGAGGGC CGGACAGCGA ACTGGAGGGG GGAGAAATTT TCAAAGAAAA ACGAGGGAAA
                                                                               1020
        TGGGAGGGGT GCAAAAGAGG AGAGTAAGAA ACAGCATGGA GAAAACCCGG TACGCTCAAA
75
        Seq ID NO: 347 Protein sequence
       Protein Accession #:
                                   CAA83435
80
                                                       41
                                           31
                               21
        HSARMYNMME TELKPPGPQQ TSGGGGGNST AAAAGGNQKN SPDRVKRPMN AFMVWSRGQR
                                                                                  60
        RKMAQENPKM HNSEISKRLG AEWKLLSETE KRPFIDEAKR LRALHMKEHP DYKYRPRRKT
                                                                                 120
        KTLMKKDKYT LPGGLLAPGG NSMASGVGVG AGLGAGVNQR MDSYAHMNGW SNGSYSMMQD
                                                                                 180
85
        QLGYPQHPGL NAHGAAQMQP MHRYDVSALQ YNSMTSSQTY MNGSPTYSMS YSQQGTPGMA
                                                                                 240
        LGSMGSVVKS EASSSPPVVT SSSHSRAPCQ AGDLRDMISM YLPGAEVPEP AAPSRLHMSQ
        HYQSGPVPGT AINGTLPLSH M
```

		348 DNA sec					
5	coarng sequ	ience:	120-473				
_	1	11	21	31	41	51	
		120022000000000000000000000000000000000	CCCCCCCCC A A A	EN CONCROR	 	 	60
	GCTGGACTGC	AAGGAATTAT ATAAAGATTG	GTATGGCCTT	AGCTCTTAGC	CAAACACCTT	CCTGACACCA	120
10	TGAGGGCCAG	CAGCTTCTTG	ATCGTGGTGG	TGTTCCTCAT	CGCTGGGACG	CTGGTTCTAG	180
		CACGGGAGTT					240 300
		AGATCCCGTT AGTCAAAGGT					360
1 ~	TCCGGTGCGC	CATGTTGAAT	CCCCCTAACC	GCTGCTTGAA	AGATACTGAC	TGCCCAGGAA	420
15		CTGTGAAGGC					480 540
		TGCACCTGTG CCCCTTCCCA					600
		TCTCATCCAC					
20	Soc ID NO.	349 Protein	geomence:				
20	Protein Acc		NP_0026	29			
	1 1	11 1	21	31 	41 	51 	
25		VFLIAGTLVL					60
	AQEPVKGPVS	TKPGSCPIIL	IRCAMLNPPN	RCLKDTDCPG	IKKCCEGSCG	MACFVPQ	
						•	
20		350 DNA sec					
30		id Accession uence: 75-2	_	.83			
	couring sequ	delice. 75-2-	200				
	1	11	21	31	41	51	
35	GAATTCCGGA	 CAGGACGTGA	 AGATAGTTGG	 GTTTGGAGGC	GGCCGCCAGG	CCCAGGCCCG	60
	GTGGACCTGC	CGCCATGCAG	GACGGTAACT	TCCTGCTGTC	GGCCCTGCAG	CCTGAGGCCG	120
		CCTGGCGCTG					180 240
		GCGGCTGCGG GCAGCCGCGG					300
40	CCAGAGGCAC	ATCCAGGGGG	CAGTACCACA	CCCTGCAGGC	TGGCTTCAGC	TCTCGCTCTC	360
		TGGGGACAAG					420 480
		GTCCTCCCGC GGGCAGCGCC					540
4	CCATGCCCAC	CAGGCCCGTG	TCCTTCCATG	AGCGCGGTGG	GGTTGGGAGC	CGGGCCGACT	600
45		CTCCCTGCGC TGAGCAGCTG					660 720
		CAGCTCCAGC					780
	AGGTTTCCCC	GAGCCGGACC	ATCCGTGCCC	CTGCCGTGCG	GACCCTGCAG	CGATTCCAGA	840
50		GAGCCGCGGG ATCTGTGCGC					900 960
50	ACGTGCATGG	GTTCAACAGC	TACGGTAGCC	ACCGAACCCT	GCAGAGACTC	AGCAGCGGTT	1020
		TGACCTGCCC					1080 1140
		AGCGGCCTAC CCTTCAGGCC					1200
55	AAGTGCAGCG	CCATGCCACA	GGTGCCATGC	GCAACCTCAT	CTACGACAAC	GCTGACAACA	1260
		GGTGGAGGAG TCGCAAAAAT					1320 1380
		CCTGGCCAGA					1440
60	TGTCGGGGGC	TGGGGGTCCC	CCCCTCATCC	AGCAGAACGC	CTCGGAGGCG	GAGATCTTCT	1500
60	ACAACGCCAC	CGGCTTCCTC CCACGGGCTG	AGGAACCTCA	TGGTCACCTC	TATCAACCAC	GCCCAGAAGA	1560 1620
	CGGGCAAATG	CGAGGACAAG	AGCGTGGAGA	ACGCGGTGTG	CGTCCTGCGG	AACCTGTCCT	1680
	ACCGCCTCTA	CGACGAGATG	CCGCCGTCCG	CGCTGCAGCG	GCTGGAGGGT	CGCGGCCGCA	1740
65		GGGGGCGCCG GCTGCCCCTC					1800 1860
•	CCAAGGGCCT	CGAGTGGCTG	TGGAGCCCCC	AGATCGTGGG	GCTGTACAAC	CGGCTGCTGC	1920
	AGCGCTGCGA	GCTCAACCGG CCGCAGGTGG	CACACGACGG	AGGCGGCCGC	CGGGGCGCTG	CAGAACATCA	1980 2040
	TTCTGAACCC	CCTGCTAGAC	CGTGTCAGGA	CCGCCGACCA	CCACCAGCTG	CGCTCACTGA	2100
70	CTGGCCTCAT	CCGAAACCTG	TCTCGGAACG	CTAGGAACAA	GGACGAGATG	TCCACGAAGG	2160
	TGGTGAGCCA	CCTGATCGAG CAACATCATA	AAGCTGCCAG	GCAGCGTGGG ACAACCTGGT	TGAGAAGTCG	CCCCCAGCCG	2220 2280
	CCCGAGACCT	GCTGTATTTT	GACGGACTCC	GAAAGCTCAT	CTTCATCAAG	AAGAAGCGGG	2340
75	ACAGCCCCGA	CAGTGAGAAG	TCCTCCCGGG	CAGCATCCAG	CCTCCTGGCC	AACCTGTGGC	2400
15	GCCCATAGGT	GCTCCACCGT GAAGCCTTCT	GGAGGAGAAG	GTGACGTGGC	CCAGCGTCCA	AGGGACAGAC	2460 2520
	TCAGCTCCAG	GCTGCTTGGC	AGCCCAGCCT	GGAGGAGAAG	GCTAATGACG	GAGGGGCCCC	2580
	TCGCTGGGGC	CCCTGTGTGC ACTTGGCTTC	ATCTTTGAGG	GTCCTGGGCC	ACCAGGAGGG AGGGCTCAAC	GCAGGGTCTT	2640 2700
80	TGTATGGGGT	GGTGACCCAG	TCACATTGGC	AGAGGTGGGG	GTTGGCTGTG	GCCTGGCAGT	2760
_	ATCTTGGGAT	AGCCAGCACT	GGGAATAAAG	ATGGCCATGA	ACAGTCACAA	ААААААААА	2820
	AAAAGGAATT	С					
0.5	Seq ID NO:	351 Protein	n sequence				
85	Protein Ac	cession #:	NP_0091	114.1			
	1	11	21	31	41	51	

```
MQDGNFLLSA LQPEAGVCSL ALPSDLQLDR RGAEGPEAER LRAARVQEQV RARLLQLGQQ
       PRHNGAAEPE PEAETARGTS RGQYHTLQAG FSSRSQGLSG DKTSGFRPIA KPAYSPASWS
                                                                          120
       SRSAVDLSCS RRLSSAHNGG SAFGAAGYGG AQPTPPMPTR PVSFHERGGV GSRADYDTLS
                                                                          180
 5
       LRSLRLGPGG LDDRYSLVSE QLEPAATSTY RAFAYERQAS SSSSRAGGLD WPEATEVSPS
                                                                          240
       RTIRAPAVRT LQRFQSSHRS RGVGGAVPGA VLEPVARAPS VRSLSLSLAD SGHLPDVHGF
                                                                          300
       NSYGSHRTLO RLSSGFDDID LPSAVKYLMA SDPNLQVLGA AYIQHKCYSD AAAKKQARSL
       QAVPRLVKLF NHANQEVQRH ATGAMRNLIY DNADNKLALV EENGIFELLR TLREQDDELR
                                                                          420
       KNYTGILWNL SSSDHLKDRL ARDTLEQLTD LVLSPLSGAG GPPLIQQNAS EAEIFYNATG
                                                                          480
10
       FLRNLSSASQ ATROKMRECH GLVDALVTSI NHALDAGKCE DKSVENAVCV LRNLSYRLYD
                                                                          540
       EMPPSALQRL EGRGRRDLAG APPGEVVGCF TPQSRRLREL PLAADALTFA EVSKDPKGLE
                                                                          600
       WLWSPQIVGL YNRLLQRCEL NRHTTEAAAG ALQNITAGDR RWAGVLSRLA LEQERILNPL
                                                                          660
       LDRVRTADHH QLRSLTGLIR NLSRNARNKD EMSTKVVSHL IEKLPGSVGE KSPPAEVLVN
       IIAVLNNLVV ASPIAARDLL YFDGLRKLIF IKKKRDSPDS EKSSRAASSL LANLWQYNKL
15
       HRDFRAKGYR KEDFLGP
       Seg ID NO: 352 DNA seguence
       Nucleic Acid Accession #: M31469
20
       Coding sequence: 1-651
       ATGGCTGCGC AGGGAGAGCC CCAGGTCCAG TTCAAACTTG TATTGGTTGG TGATGGTGGT
25
       ACTGGAAAAA CGACCTTCGT GAAACGTCAT TTGACTGGTG AATTTGAGAA GAAGTATGTA
       GCCACCTTGG GTGTTGAGGT TCATCCCCTA GTGTTCCACA CCAACAGAGG ACCTATTAAG
                                                                          180
       TTCAATGTAT GGGACACAGC CGGCCAGGAG AAATTCGGTG GACTGAGAGA TGGCTATTAT
                                                                          240
       ATCCAAGCCC AGTGTGCCAT CATAATGTTT GATGTAACAT CGAGAGTTAC TTACAAGAAT
                                                                          300
       360
30
       GGCAACAAAG TGGATATTAA GGACAGGAAA GTGAAGGCGA AATCCATTGT CTTCCACCGA
                                                                          420
       AAGAAGAATC TTCAGTACTA CGACATTTCT GCCAAAAGTA ACTACAACTT TGAAAAGCCC
                                                                          480
       TTCCTCTGGC TTGCTAGGAA GCTCATTGGA GACCCTAACT TGGAATTTGT TGCCATGCCT
                                                                          540
       GCTCTCGCCC CACCAGAAGT TGTCATGGAC CCAGCTTTGG CAGCACAGTA TGAGCACGAC
                                                                          600
       TTAGAGGTTG CTCAGACAAC TGCTCTCCCG GATGAGGATG ATGACCTGTG A
35
       Seq ID NO: 353 Protein sequence
                                AAA36546
       Protein Accession #:
40
       MAAQGEPQVQ FKLVLVGDGG TGKTTFVKRH LTGEFEKKYV ATLGVEVHPL VFHTNRGPIK
                                                                           60
       FNVWDTAGQE KFGGLRDGYY IQAQCAIIMF DVTSRVTYKN VPNWHRDLVR VCENIPIVLC
                                                                          120
       GNKVDIKORK VKAKSIVFHR KKNLQYYDIS AKSNYNFEKP FLWLARKLIG DPNLEFVAMP
       ALAPPEVVMD PALAAQYEHD LEVAQTTALP DEDDDL
45
       Seq ID NO: 354 DNA sequence
       Nucleic Acid Accession #: NM_002820
       Coding sequence: 304-831
50
                                                             51
                             21
                  11
       CCGGTTCGCA AAGAAGCTGA CTTCAGAGGG GGAAACTTTC TTCTTTTAGG AGGCGGTTAG
                                                                           60
       CCCTGTTCCA CGAACCCAGG AGAACTGCTG GCCAGATTAA TTAGACATTG CTATGGGAGA
                                                                          120
55
       CGTGTAAACA CACTACTTAT CATTGATGCA TATATAAAAC CATTTTATTT TCGCTATTAT
       TTCAGAGGAA GCGCCTCTGA TTTGTTTCTT TTTTCCCTTT TTGCTCTTTC TGGCTGTGTG
                                                                          240
       GTTTGGAGAA AGCACAGTTG GAGTAGCCGG TTGCTAAATA AGTCCCGAGC GCGAGCGGAG
                                                                          300
       ACGATGCAGC GGAGACTGGT TCAGCAGTGG AGCGTCGCGG TGTTCCTGCT GAGCTACGCG
                                                                          360
       GTGCCCTCCT GCGGGCGCTC GGTGGAGGGT CTCAGCCGCC GCCTCAAAAG AGCTGTGTCT
                                                                          420
60
       GAACATCAGC TCCTCCATGA CAAGGGGAAG TCCATCCAAG ATTTACGGCG ACGATTCTTC
                                                                          480
       CTTCACCATC TGATCGCAGA AATCCACACA GCTGAAATCA GAGCTACCTC GGAGGTGTCC
                                                                          540
       CCTAACTCCA AGCCCTCTCC CAACACAAAG AACCACCCCG TCCGATTTGG GTCTGATGAT
                                                                           600
       GAGGGCAGAT ACCTAACTCA GGAAACTAAC AAGGTGGAGA CGTACAAAGA GCAGCCGCTC
                                                                          660
       AAGACACCTG GGAAGAAAA GAAAGGCAAG CCCGGGAAAC GCAAGGAGCA GGAAAAGAAA
                                                                          720
65
                                                                          780
       AAACGGCGAA CTCGCTCTGC CTGGTTAGAC TCTGGAGTGA CTGGGAGTGG GCTAGAAGGG
       GACCACCTGT CTGACACCTC CACAACGTCG CTGGAGCTCG ATTCACGGTA ACAGGCTTCT
                                                                           840
       CTGGCCCGTA GCCTCAGCGG GGTGCTCTCA GCTGGGTTTT GGAGCCTCCC TTCTGCCTTG
       GCTTGGACAA ACCTAGAATT TTCTCCCTTT ATGTATCTCT ATCGATTGTG TAGCAATTGA
                                                                           960
       CAGAGAATAA CTCAGAATAT TGTCTGCCTT AAAGCAGTAC CCCCCTACCA CACACACCCC
                                                                          1020
70
       TGTCCTCCAG CACCATAGAG AGGCGCTAGA GCCCATTCCT CTTTCTCCAC CGTCACCCAA
                                                                          1080
       CATCAATCCT TTACCACTCT ACCAAATAAT TTCATATTCA AGCTTCAGAA GCTAGTGACC
                                                                          1140
       ATCTTCATAA TTTGCTGGAG AAGTGTATTT CTTCCCCTTA CTCTCACACC TGGGCAAACT
                                                                          1200
       TTCTTCAGTG TTTTTCATTT CTTACGTTCT TTCACTTCAA GGGAGAATAT AGAAGCATTT
                                                                          1260
       GATATTATCT ACAAACACTG CAGAACAGCA TCATGTCATA AACGATTCTG AGCCATTCAC
                                                                          1320
75
       ACTITITATI TAATTAAATG TATTTAATTA AATCTCAAAT TTATTTTAAT GTAAAGAACT
                                                                          1380
       TAAATTATGT TTTAAACACA TGCCTTAAAT TTGTTTAATT AAATTTAACT CTGGTTTCTA
                                                                          1440
       CCAGCTCATA CAAAATAAAT GGTTTCTGAA AATGTTTAAG TATTAACTTA CAAGGATATA
                                                                          1500
       GGTTTTTCTC ATGTATCTTT TTGTTCATTG GCAAGATGAA ATAATTTTC TAGGGTAATG
                                                                         1560
       CCGTAGGAAA AATAAAACTT CACATTTAAA AAAAA
80
       Seq ID NO: 355 Protein sequence
                                NM_002820
       Protein Accession #:
                             21
85
       MORRLVOOWS VAVFLLSYAV PSCGRSVEGL SRRLKRAVSE HQLLHDKGKS IQDLRRRFFL
       HHLIAEIHTA EIRATSEVSP NSKPSPNTKN HPVRFGSDDE GRYLTQETNK VETYKEQPLK
                                                                          120
```

Seq ID NO: 356 DNA sequence Nucleic Acid Accession #: NM_017522 5 Coding sequence: 1-2100 51 21 41 ATGGGCCTCC CCGAGCCGGG CCCTCTCCGG CTTCTGGCGC TGCTGCTGCT GCTGCTGCTG 10 CTGCTGCTGC TGCGGCTCCA GCATCTTGCG GCGGCAGCGG CTGATCCGCT GCTCGGCGGC 120 CAAGGCCGG CCAAGGAGTG CGAAAAGGAC CAATTCCAGT GCCGGAACGA GCGCTGCATC 180 CCCTCTGTGT GGAGATGCGA CGAGGACGAT GACTGCTTAG ACCACAGCGA CGAGGACGAC 240 TGCCCCAAGA AGACCTGTGC AGACAGTGAC TTCACCTGTG ACAACGGCCA CTGCATCCAC 300 GAACGGTGGA AGTGTGACGG CGAGGAGGAG TGTCCTGATG GCTCCGATGA GTCCGAGGCC 15 ACTTGCACCA AGCAGGTGTG TCCTGCAGAG AAGCTGAGCT GTGGACCCAC CAGCCACAAG 420 TGTGTACCTG CCTCGTGGCG CTGCGACGGG GAGAAGGACT GCGAGGGTGG AGCGGATGAG 480 GCCGGCTGTG CTACCTCACT GGGCACCTGC CGTGGGGACG AGTTCCAGTG TGGGGATGGG 540 ACATGTGTCC TTGCAATCAA GCACTGCAAC CAGGAGCAGG ACTGTCCAGA TGGGAGTGAT 600 GAAGCTGGCT GCCTACAGGG GCTGAACGAG TGTCTGCACA ACAATGGCGG CTGCTCACAC 660 20 ATCTGCACTG ACCTCAAGAT TGGCTTTGAA TGCACGTGCC CAGCAGGCTT CCAGCTCCTG 720 GACCAGAAGA CTTGTGGCGA CATTGATGAG TGCAAGGACC CAGATGCCTG CAGCCAGATC 780 TGTGTCAATT ACAAGGGCTA TTTTAAGTGT GAGTGCTACC CTGGCTGCGA GATGGACCTA 840 CTGACCAAGA ACTGCAAGGC TGCTGCTGGC AAGAGCCCAT CCCTAATCTT CACCAACCGC 900 960 ACGAGTGCGG AGGATCGACC TGTGAAGCGG AACTATTCAC GCCTCATCCC CATGCTCAAG 25 AATGTCGTGG CACTAGATGT GGAAGTTGCC ACCAATCGCA TCTACTGGTG TGACCTCTCC 1020 TACCGTAAGA TCTATAGCGC CTACATGGAC AAGGCCAGTG ACCCGAAAGA GCGGGAGGTC CTCATTGACG AGCAGTTGCA CTCTCCAGAG GGCCTGGCAG TGGACTGGGT CCACAAGCAC 1140 ATCTACTGGA CTGACTCGGG CAATAAGACC ATCTCAGTGG CCACAGTTGA TGGTGGCCGC 1200 CGACGCACTC TCTTCAGCCG TAACCTCAGT GAACCCCGGG CCATCGCTGT TGACCCCCTG 1260 30 CGAGGGTTCA TGTATTGGTC TGACTGGGGG GACCAGGCCA AGATTGAGAA ATCTGGGCTC 1320 AACGGTGTGG ACCGGCAAAC ACTGGTGTCA GACAATATTG AATGGCCCAA CGGAATCACC 1380 CTGGATCTGC TGAGCCAGCG CTTGTACTGG GTAGACTCCA AGCTACACCA ACTGTCCAGC 1440 ATTGACTTCA GTGGAGGCAA CAGAAAGACG CTGATCTCCT CCACTGACTT CCTGAGCCAC CCTTTTGGGA TAGCTGTGTT TGAGGACAAG GTGTTCTGGA CAGACCTGGA GAACGAGGCC 1560 35 ATTTTCAGTG CAAATCGGCT CAATGGCCTG GAAATCTCCA TCCTGGCTGA GAACCTCAAC 1620 AACCCACATG ACATTGTCAT CTTCCATGAG CTGAAGCAGC CAAGAGCTCC AGATGCCTGT 1680 GAGCTGAGTG TCCAGCCTAA TGGAGGCTGT GAATACCTGT GCCTTCCTGC TCCTCAGATC 1740 TCCAGCCACT CTCCCAAGTA CACATGTGCC TGTCCTGACA CAATGTGGCT GGGTCCAGAC ATGAAGAGT GCTACCGAGA TGCAAATGAA GACAGTAAGA TGGGCTCAAC AGTCACTGCC 1860 40 GCTGTTATCG GGATCATCGT GCCCATAGTG GTGATAGCCC TCCTGTGCAT GAGTGGATAC 1920 CTGATCTGGA GAAACTGGAA GCGGAAGAAC ACCAAAAGCA TGAATTTTGA CAACCCAGTC 1980 TACAGGAAAA CAACAGAAGA AGAAGATGAA GATGAGCTCC ATATAGGGAG AACTGCTCAG 2040 ATTGGCCATG TCTATCCTGC ACGAGTGGCA TTAAGCCTTG AAGATGATGG ACTACCCTGA 2100 GGATGGGATC ACCCCCTTCG TGCCTCATGG AATTCAGTCC CATGCACTAC ACTCCGGATG 2160 45 GTGTATGACT GGATGAATGG GTTTCTATAT ATGGGTCTGT GTGAGTGTAT GTGTGTGTGT 2220 GATTTTTTT TTTAAATTTA TGTTGCGGAA AGGTAACCAC AAAGTTATGA TGAACTGCAA 2280 ACATCCAAAG GATGTGAGAG TTTTTCTATG TATAATGTTT TATACACTTT TTAACTGGTT 2340 GCACTACCCA TGAGGAATTC GTGGAATGGC TACTGCTGAC TAACATGATG CACATAACCA 2400 GCACTACUCA TGAGGAATTC GTGGAATGGC TACTGCTGAC TAAAAGATCA CACTAACAA AATGGGGGCC AATGGCACAG TACCTTACTC ATCATTTAAA AACTATATTT ACAGAAGATG TTTGGTTGCT GGGGGGCTTT TTTAGGTTTT GGGCATTTGT TTTTTGTAAA TAAGATGATT 2460 50 ATGCTTTGTG GCTATCCATC AACATAAGT Sea ID NO: 357 Protein sequence Protein Accession #: NP_059992 55 41 51 11 21 31 MGLPEPGPLR LLALLLLLL LLLLRLQHLA AAAADPLLGG QGPAKECEKD QFQCRNERCI PSVWRCDEDD DCLDHSDEDD CPKKTCADSD FTCDNGHCIH ERWKCDGEEE CPDGSDESEA 120 60 TCTKOVCPAE KLSCGPTSHK CVPASWRCDG EKDCEGGADE AGCATSLGTC RGDEFQCGDG 180 TCVLAIKHCN QEQDCPDGSD EAGCLQGLNE CLHNNGGCSH ICTDLKIGFE CTCPAGFQLL 240 DOKTCGDIDE CKDPDACSOI CVNYKGYFKC ECYPGCEMDL LTKNCKAAAG KSPSLIFTNR TSAEDRPVKR NYSRLIPMLK NVVALDVEVA TNRIYWCDLS YRKIYSAYMD KASDPKEREV 360 LIDEOLHSPE GLAVDWVHKH IYWTDSGNKT ISVATVDGGR RRTLFSRNLS EPRAIAVDPL® 420 65 RGFMYWSDWG DQAKIEKSGL NGVDRQTLVS DNIEWPNGIT LDLLSQRLYW VDSKLHQLSS 480 IDFSGGNRKT LISSTDFLSH PFGIAVFEDK VFWTDLENEA IFSANRLNGL EISILAENLN 540 NPHDIVIFHE LKQPRAPDAC ELSVQPNGGC EYLCLPAPQI SSHSPKYTCA CPDTMWLGPD 600 MKRCYRDANE DSKMGSTVTA AVIGIIVPIV VIALLCMSGY LIWRNWKRKN TKSMNFDNPV YRKTTEEEDE DELHIGRTAQ IGHVYPARVA LSLEDDGLP 70 Seg ID NO: 358 DNA sequence Nucleic Acid Accession #: M27826 Coding sequence: <1-503 75 51 31 41 11 21 AGCCCAAGAA ACATCTCACC AATTTCAAAT CTGATCTATT CGGCTTAGCG ACTGAAGATT 60 GACGCTGCCC GATCGCCTCG GAAGTCCCCT GGACCATCAC AGAAGCCGAG CTTCGGGTAA 120 CTCTCACAGT GGAGGGTAAG TCCATCCCCT GTTTAATCGA TACGGGGGCT ACCCACTCCA 180 80 CGTTGCCTTC TTTTCAAGGG CCTGTTTCCC TTGCCCCCAT AACTGTTGTG GGTATTGACG 240 GCCAAGCTTC AAAACCCCTG AAAACTCCCC CACTCTGGTG CCAACTTGGA CAACACTCTT 300 TTATGCACTC TTTTTTAGTT ATCCCCACCT GCCCACTTCC CTTATTAGGC CGAAATATTT 360 TAACCAAATT ATCTGCTTCC CTGACTATTC CTGGAGTACA GCTACATCTC ATTGCTGCCC TTCTTCCCAA TCCAAAGCCT CCTTTGTGTC CTCTAACATC CCCACAATAT CAGCCCTTAC 420 480 85 CACAAGACCT CCCTTCAGCT TAATCTCTCC CACTCTAGGT TCCCACGCCG CCCCTAATCC 540 CACTTGAAGC AGCCCTGAGA AACATCGCCC ATTCTCTCTC CATACCACCC CCCAAAAATT TTCGCCGCTC CAACACTTCA ACACTATTTT GTTTTATTTG TCTTATTAAT ATCAGAAGGC 660

5	AGGAATGTCA ACATCCAGAT ATGACATTCC ATCTCCCCCA TGAGATCCAC CCCAAATCCT	GGCCTCTGAG GGCCTGAAGT ACCATTGTGA CCCTTAAGAA CCCTGCCCAC ATAAAACAGC ACCCAGGTGA	AACTGAAGAT TTTGTTCCTG GGTTCTTTGT CAGAGAACAA CCCACCCCTA	CCACAAAAGA CCCCACCCTA AATTCTCCCC CCCCCTTTGA TCTTCCTTCA	AGTAAAACA ACTGATCAAT ACCCTTGAGA TTGTAATTTT CTGACTCTCT	GCCTTAACTG GTACTTTGTA ATGTACTTTG TTATTACCTT	720 780 840 900 960 1020		
10	Seq ID NO: Protein Acc	359 Protein cession #:	n sequence AAA6599	9					
15	LPSFQGPVSL	11 DLFGLATEDW APITVVGIDG GVQLHLIAAL	${\tt QASKPLKTPP}$	LWCQLGQHSF	${\tt MHSFLVIPTC}$		60 120		
20	Seq ID NO: 360 DNA sequence Nucleic Acid Accession #: NM_001854 Coding sequence: 162-5582								
	1	11 	21	31 	41 	51			
25	TGTGTAGCAA TTCGTGGGTT GGTGGAAAAC	TTTAGAAGAA ACATCCCTGG GAGTTCACAG GAAACGGTGG TAGAGAGGTC	CGATACCTTG TTGTGAGTGC CTCTGGGATT	GAAAGGACGA GGGGCTCGGA TCACCGTAAC	AGTTGGTCTG GATGGAGCCG AACCCTCGCA	CAGTCGCAAT TGGTCCTCTA TTGACCTTCC	60 120 180 240 300		
30	TTCACAATTC CTAAAGGCTC	TCCAGAGGGA AGATACTGCT	ATATCAAAAA TACAGAGTTT	CAACGGGATT CAAAGCAAGC	TTGCACAAAC ACAACTCAGT	AGAAAGAATT GCCCCAACAA	360 420		
	CAAAAAAAGG TTGGTGTTGA	TCCAGGTGGA AATTCAGTCT GGTTGGGAGA CTATCCCCTC	$\begin{array}{c} \mathtt{TTCCTTTTAT} \\ \mathtt{TCACCTGTTT} \end{array}$	CTATATATAA TTCTGTTTGA	TGAGCATGGT AGACCACACT	ATTCAGCAAA GGAAAACCTG	480 540 600 660		
35	TAGCAATCAG CGAAACCACT GAACAAGGAT	CGTGGAGAAG TGATAGAAGT TTTGGATGAA GGCAGCATAT	AAAACTGTGA GAGAGAGCAA GAAGTTTTTG	CAATGATTGT TTGTTGATAC AGGGGGACAT	TGATTGTAAG CAATGGAATC TCAGCAGTTT	AAGAAAACCA ACGGTTTTTG TTGATCACAG	720 780 840 900		
40	TCGAATATGA GACCCACTGT AAGAATACAA	TGCTCAAGCT CTATGAGTAT AACTGAGGAG CTATGGAACA GCCAAATCCA	GGGGAAGCAG ACAATAGCAC ATGGAAAGTT	AGTATAAAGA AGACGGAGGC ACCAGACAGA	GGCTGAAAGT AAACATCGTT AGCTCCTAGG	GTAACAGAGG GATGATTTTC CATGTTTCTG	960 1020 1080 1140 1200		
45	ATTATGATTC GCAGGGATTC AAGAATATGA	CCAGAGGAAA TGATCTTCTG AGATAAACCA TATTACAGAA	AATTCTGAGG GTAGATGGAG ACAAGCCCCC	ATACACTATA ATTTAGGCGA CTAATGAAGA	TGAAAACAAA ATATGATTTT ATTTGGTCCA	GAAATAGACG TATGAATATA GGTGTACCAG	1260 1320 1380 1440		
50	AGAAAGGAGA CAGGACCTGC ACCCTGGCGA GTCCTCCTGG	ACCAGCAGTG AGGTATTATG TAGGGGCCCC TACTATGTTG	GTTGAGCCTG GGTCCTCCAG CCAGGACGTC ATGTTACCGT	GTATGCTTGT GTCTACAAGG CTGGCTTACC TCCGTTATGG	CGAAGGACCA CCCCACTGGA AGGGGCTGAT TGGTGATGGT	CCAGGACCAG CCCCCTGGTG GGTCTACCTG TCCAAAGGAC	1500 1560 1620 1680 1740		
55	TGAGAGGCCC GTTCATCTGG AGGGTCCCCC	TGCTCAGGAA ACCTGGCCCA GGCCAAAGGT TGGTCCAACG	ATGGGTCTAA GAGAGTGGTG GGAAAACCTG	CTGGAAGACC ATCCAGGTCC GAAAAAGGGG	AGGTCCTGTG TCAGGGCCCT TCGTCCAGGT	GGGGGGCCTG CGAGGCGTCC GCAGATGGAG	1800 1860 1920		
	GTCTGCCAGG CTGGTGATGA	GCCAGGAGAA TGACAAAGGT TGGAATGAGG ACGAGGTTTG	CACAGGGGTG GGAGAAGATG	AACGAGGTCC GAGAAATTGG	TCAAGGTCCT ACCAAGAGGT	CCAGGTCCTC CTTCCAGGTG	1980 2040 2100 2160		
60	GTATGGCAGG CTGGGCCTCC CAATTGGTCC GTGCTGATGG	TGTAGATGGC AGGTCAACAA TCCTGGTGAA GCCTCCTGGT	CCCCCAGGAC GGGAATCCAG AAAGGACCAC CATCCTGGGA	CAAAAGGGAA GACCTCAGGG AAGGAAAACC AAGAAGGCCA	CATGGGTCCC TCTTCCTGGT AGGACTTGCT GTCTGGAGAA	CAAGGGGAGC CCACAAGGTC GGACTTCCTG AAGGGGGCTC	2220 2280 2340 2400		
65	CAGATGGTGT GATTCAAAGG GAGGGNAAGA	TGACATGGGT TGGCCCTGAA	AAGGGATCTA CTAAAAGGTG GGACCCAAAG	AAGGTGAAAA ACAGAGGAGA GTCGAGCAGG	GGGTGAAGAT AGTTGGTCAA CCCAACTGGA	GGTTTTCCAG ATTGGCCCAA	2460 2520 2580 2640 2700		
70	GAAGACAAGG AAGGTGCACG CTCGAGGTTC GTGGCGATGG	TCCAAAGGGT GGGAGTAGCT AAGAGGTGCA CCCTCCTGGC	TCCACTGGAT GGCAAACCAG AGAGGTCCCA CCTCCAGGTG	TCCCTGGGTT GCCCTCGGGG CTGGGAAACC AAAGAGGTCC	TCCAGGTGCC TCAGCGTGGT TGGGCCAAAG TCAAGGACCT	AATGGAGAGA CCAACGGGTC GGCACTTCAG CAGGGTCCAG	2760 2820 2880 2940		
75	ACCCTGGGCA GAGTGGTTGG CTGGTCCTCC	ACGTGGGGAG ACCACAGGGA TGGCCCTCCT	ACTGGATTTC CCAACCGGTG GGTGAGCAAG	AAGGCAAGAC AGACTGGTCC GTCTTCCTGG	CGGCCCTCCT AATAGGGGAA TGCTGCAGGA	TGCCCAGGAC GGGCCAGGGG CGTGGGTATC AAAGAAGGTG GGATTACGTG	3000 3060 3120 3180 3240		
80	GTTTCCCAGG AAGGTCCCCA CAGCTGGCCC GAGAGAAAGG	GGAAAGAGGT GGGCCCACCA AATTGGTTTA TGCTCCTGGA	CTTCCTGGAG GGTCCAGTTG CGAGGGCGCC GAAAAAGGTC	CTCAGGGTGC GCTCACCAGG CGGGACCTCA CCCAAGGGCC	ACCTGGACTG AGAACGTGGG GGGTCCTCCT TGCAGGGAGA	AAAGGAGGG TCAGCAGGTA GGTCCAGCTG GATGGAGTTC	3300 3360 3420 3480		
85	ACAAGGGTGA GCCCTCCCGG ATGGTGAACC CCAGAGGCTT	AATTGGTGAG TCCCCCAGGT AGGTCCTAGA CCCTGGACCT	CCGGGACAAA CTTCAAGGAC GGACAGCAGG CCTGGTCCAA	AAGGCAGCAA CAGTTGGTGC GGATGTTTGG TAGGTCTTCA	GGGTGGCAAG CCCTGGAATT GCAAAAAGGT GGGTCTGCCA	GAAGACGGAG GGAGAAAATG GCTGGAGGTG GATGAGGGTG GGCCCACCTG CCAGGCCCAA			
	GIGMMAMAGG	TOWAMAIGG	GWIGIIGGIC	-21666666		CLAGGELEMA	2040		

```
GAGGCCCTCA AGGTCCCAAT GGAGCTGATG GACCACAAGG ACCCCCAGGT TCTGTTGGTT
       CAGTTGGTGG TGTTGGAGAA AAGGGTGAAC CTGGAGAAGC AGGAAACCCA GGGCCTCCTG
                                                                           3960
       GGGAAGCAGG TGTAGGCGGT CCCAAAGGAG AAAGAGGAGA GAAAGGGGAA GCTGGTCCAC
                                                                           4020
       CTGGAGCTGC TGGACCTCCA GGTGCCAAGG GGCCGCCAGG TGATGATGGC CCTAAGGGTA
                                                                           4080
 5
                                                                           4140
      ACCCGGGTCC TGTTGGTTTT CCTGGAGATC CTGGTCCTCC TGGGGAACTT GGCCCTGCAG
       GTCAAGATGG TGTTGGTGGT GACAAGGGTG AAGATGGAGA TCCTGGTCAA CCGGGTCCTC
                                                                           4200
       CTGGCCCATC TGGTGAGGCT GGCCCACCAG GTCCTCCTGG AAAACGAGGT CCTCCTGGAG
       CTGCAGGTGC AGAGGGAAGA CAAGGTGAAA AAGGTGCTAA GGGGGAAGCA GGTGCAGAAG
                                                                           4320
       GTCCTCCTGG AAAAACCGGC CCAGTCGGTC CTCAGGGACC TGCAGGAAAG CCTGGTCCAG
                                                                           4380
10
       AAGGTCTTCG GGGCATCCCT GGTCCTGTGG GAGAACAAGG TCTCCCTGGA GCTGCAGGCC
                                                                           4440
      AAGATGGACC ACCTGGTCCT ATGGGACCTC CTGGCTTACC TGGTCTCAAA GGTGACCCTGGCTCCAAGGG TGAAAAGGGA CATCCTGGTT TAATTGGCCT GATTGGTCCT CCAGGAGAAC
                                                                           4500
                                                                           4560
       AAGGGGAAAA AGGTGACCGA GGGCTCCCTG GAACTCAAGG ATCTCCAGGA GCAAAAGGGG
       ATGGGGGAAT TCCTGGTCCT GCTGGTCCCT TAGGTCCACC TGGTCCTCCA GGCTTACCAG
                                                                           4680
15
       GTCCTCAAGG CCCAAAGGGT AACAAAGGCT CTACTGGACC CGCTGGCCAG AAAGGTGACA
                                                                           4740
       GTGGTCTTCC AGGGCCTCCT GGGCCTCCAG GTCCACCTGG TGAAGTCATT CAGCCTTTAC
                                                                           4800
       CAATCTTGTC CTCCAAAAAA ACGAGAAGAC ATACTGAAGG CATGCAAGCA GATGCAGATG
                                                                           4860
       ATAATATTCT TGATTACTCG GATGGAATGG AAGAAATATT TGGTTCCCTC AATTCCCTGA
                                                                           4920
       AACAAGACAT CGAGCATATG AAATTTCCAA TGGGTACTCA GACCAATCCA GCCCGAACTT
20
       GTAAGACCT GCAACTCAGC CATCCTGACT TCCCAGATGG TGAATATTGG ATTGATCCTA
                                                                           5040
       ACCAAGGTTG CTCAGGAGAT TCCTTCAAAG TTTACTGTAA TTTCACATCT GGTGGTGAGA
                                                                           5100
       CTTGCATTTA TCCAGACAAA AAATCTGAGG GAGTAAGAAT TTCATCATGG CCAAAGGAGA
                                                                           5160
       AACCAGGAAG TTGGTTTAGT GAATTTAAGA GGGGAAAACT GCTTTCATAC TTAGATGTTG
                                                                           5220
       AAGGAAATTC CATCAATATG GTGCAAATGA CATTCCTGAA ACTTCTGACT GCCTCTGCTC
                                                                           5280
       GGCAAAATTT CACCTACCAC TGTCATCAGT CAGCAGCCTG GTATGATGTG TCATCAGGAA
25
                                                                           5340
       GTTATGACAA AGCACTTCGC TTCCTGGGAT CAAATGATGA GGAGATGTCC TATGACAATA
                                                                           5400
       ATCCTTTTAT CAAAACACTG TATGATGGTT GTACGTCCAG AAAAGGCTAT GAAAAAACTG
                                                                           5460
       TCATTGAAAT CAATACACCA AAAATTGATC AAGTACCTAT TGTTGATGTC ATGATCAGTG
                                                                           5520
                                                                           5580
       ACTTTGGTGA TCAGAATCAG AAGTTCGGAT TTGAAGTTGG TCCTGTTTGT TTTCTTGGCT
30
       AAGATTAAGA CAAAGAACAT ATCAAATCAA CAGAAAATGT ACCTTGGTGC CACCAACCCA
                                                                           5640
       TTTTGTGCCA CATGCAAGTT TTGAATAAGG ATGTATGGAA AACAACGCTG CATATACAGG
       TACCATTTAG GAAATACCGA TGCCTTTGTG GGGGCAGAAT CACAGACAAA AGCTTTGAAA
                                                                            5760
       ATCATAAAGA TATAAGTTGG TGTGGCTAAG ATGGAAACAG GGCTGATTCT TGATTCCCAA
                                                                           5820
       TTCTCAACTC TCCTTTTCCT ATTTGAATTT CTTTGGTGCT GTAGAAAACA AAAAAAGAAA
                                                                           5880
35
       AATATATAT CATAAAAAAT ATGGTGCTCA TTCTCATCCA TCCAGGATGT ACTAAAACAG
                                                                           5940
       TGTGTTTAAT AAATTGTAAT TATTTTGTGT ACAGTTCTAT ACTGTTATCT GTGTCCATTT
                                                                            6000
       CCAAAACTTG CACGTGTCCC TGAATTCCGC TGACTCTAAT TTATGAGGAT GCCGAACTCT
                                                                            6060
       GATGGCAATA ATATATGTAT TATGAAAATG AAGTTATGAT TTCCGATGAC CCTAAGTCCC
       TTTCTTTGGT TAATGATGAA ATTCCTTTGT GTGTGTTT
40
       Seg ID NO: 361 Protein sequence
                                 NP_001845
       Protein Accession #:
                                                    41
                                         31
                  11
                              21
45
       MEPWSSRWKT KRWLWDFTVT TLALTFLFQA REVRGAAPVD VLKALDFHNS PEGISKTTGF
                                                                              60
       CTNRKNSKGS DTAYRVSKQA QLSAPTKQLF PGGTFPEDFS ILFTVKPKKG IQSFLLSIYN
                                                                             120
       EHGIQQIGVE VGRSPVFLFE DHTGKPAPED YPLFRTVNIA DGKWHRVAIS
                                                               VEKKTVTMIV
                                                                             180
       DCKKKTTKPL DRSERAIVDT NGITVFGTRI LDEEVFEGDI QQFLITGDPK AAYDYCEHYS
50
       PDCDSSAPKA AQAQEPQIDE YAPEDIIEYD YEYGEAEYKE AESVTEGPTV TEETIAQTEA
                                                                             300
       NIVDDFQEYN YGTMESYQTE APRHVSGTNE PNPVEEIFTE EYLTGEDYDS QRKNSEDTLY
                                                                             360
       ENKEIDGRDS DLLVDGDLGE YDFYEYKEYE DKPTSPPNEE FGPGVPAETD ITETSINGHG
                                                                             420
       AYGEKGQKGE PAVVEPGMLV EGPPGPAGPA GIMGPPGLQG PTGPPGDPGD RGPPGRPGLP
                                                                             480
       GADGLPGPPG TMLMLPFRYG GDGSKGPTIS AQEAQAQAIL QQARIALRGP PGPMGLTGRP
                                                                             540
55
       GPVGGPGSSG AKGESGDPGP QGPRGVQGPP GPTGKPGKRG RPGADGGRGM PGEPGAKGDR
       GFDGLPGLPG DKGHRGERGP QGPPGPPGDD GMRGEDGEIG PRGLPGEAGP RGLLGPRGTP
                                                                             660
                                                                             720
       GAPGOPGMAG VDGPPGPKGN MGPQGEPGPP GQQGNPGPQG LPGPQGPIGP PGEKGPQGKP
       GLAGLPGADG PPGHPGKEGQ SGEKGALGPP GPQGPIGXPG PRGVKGADGV RGLKGSKGEK
                                                                             780
       GEDGFPGFKG DMGLKGDRGE VGQIGPRGXD GPEGPKGRAG PTGDPGPSGQ AGEKGKLGVP
                                                                             840
60
       GLPGYPGRQG PKGSTGFPGF PGANGEKGAR GVAGKPGPRG QRGPTGPRGS RGARGPTGKP
                                                                             900
       GPKGTSGGDG PPGPPGERGP QGPQGPVGFP GPKGPPGPPG RMGCPGHPGQ RGETGFQGKT
                                                                             960
       GPPGPGGVVG POGPTGETGP IGERGYPGPP GPPGEQGLPG AAGKEGAKGD PGPQGISGKD
                                                                            1020
                                                                            1080
       GPAGLRGFPG ERGLPGAQGA PGLKGGEGPQ GPPGPVGSPG ERGSAGTAGP IGLRGRPGPQ
       GPPGPAGEKG APGEKGPQGP AGRDGVQGPV GLPGPAGPAG SPGEDGDKGE IGEPGQKGSK
                                                                            1140
65
       GGKGENGPPG PPGLQGPVGA PGIAGGDGEP GPRGQQGMFG QKGDEGARGF PGPPGPIGLQ
                                                                            1200
       GLPGPPGEKG ENGDVGPWGP PGPPGPRGPQ GPNGADGPQG PPGSVGSVGG VGEKGEPGEA
                                                                            1260
       GNPGPPGEAG VGGPKGERGE KGEAGPPGAA GPPGAKGPPG DDGPKGNPGP VGFPGDPGPP
                                                                            1320
       GELGPAGQDG VGGDKGEDGD PGQPGPPGPS GEAGPPGPPG KRGPPGAAGA EGRQGEKGAK
                                                                            1380
       GEAGAEGPPG KTGPVGPQGP AGKPGPEGLR GIPGPVGEQG LPGAAGQDGP PGPMGPPGLP
                                                                            1440
70
       GLKGDPGSKG EKGHPGLIGL IGPPGEQGEK GDRGLPGTQG SPGAKGDGGI PGPAGPLGPP
                                                                            1500
       GPPGLPGPQG PKGNKGSTGP AGQKGDSGLP GPPGPPGPPG EVIQPLPILS SKKTRRHTEG
                                                                            1560
       MQADADDNIL DYSDGMEEIF GSLNSLKQDI EHMKFPMGTQ TNPARTCKDL QLSHPDFPDG
                                                                            1620
       EYWIDPNQGC SGDSFKVYCN FTSGGETCIY PDKKSEGVRI SSWPKEKPGS WFSEFKRGKL
                                                                            1680
       LSYLDVEGNS INMVQMTFLK LLTASARQNF TYHCHQSAAW YDVSSGSYDK ALRFLGSNDE
                                                                            1740
75
       EMSYDNNPFI KTLYDGCTSR KGYEKTVIEI NTPKIDQVPI VDVMISDFGD QNQKFGFEVG
                                                                            1800
       Seg ID NO: 362 DNA sequence
80
       Nucleic Acid Accession #: NM 003107
                                  351-1775
       Coding sequence:
                                                     41
                                                                51
                              21
85
       TTCCCCAGCA TTCGAGAAAC TCCTCTCTAC TTTAGCACGG TCTCCAGACT CAGCCGAGAG
                                                                              60
       ACAGCAAACT GCAGCGCGGT GAGAGAGCGA GAGAGAGGGA GAGAGAGACT CTCCAGCCTG
                                                                             120
       GGAACTATAA CTCCTCTGCG AGAGGCGGAG AACTCCTTCC CCAAATCTTT TGGGGACTTT
                                                                             180
```

```
TCTCTCTTTA CCCACCTCCG CCCCTGCGAG GAGTTGAGGG GCCAGTTCGG CCGCCGCGCG
                                                                           240
       CGTCTTCCCG TTCGGCGTGT GCTTGGCCCG GGGAACCGGG AGGGCCCGGC GATCGCGCGG
                                                                           300
       CGGCCGCCG GAGGGTGTGA GCGCGCGTGG GCGCCCGCCG AGCCGAGGCC ATGGTGCAGC
                                                                           360
       AAACCAACAA TGCCGAGAAC ACGGAAGCGC TGCTGGCCGG CGAGAGCTCG GACTCGGGCG
                                                                            420
 5
       CCGGCCTCGA GCTGGGAATC GCCTCCTCCC CCACGCCCGG CTCCACCGCC TCCACGGGCG
                                                                            480
       GCAAGGCCGA CGACCCGAGC TGGTGCAAGA CCCCGAGTGG GCACATCAAG CGACCCATGA
                                                                            540
       ACGCCTTCAT GGTGTGGTCG CAGATCGAGC GGCGCAAGAT CATGGAGCAG TCGCCCGACA
       TGCACAACGC CGAGATCTCC AAGCGGCTGG GCAAACGCTG GAAGCTGCTC AAAGACAGCG
                                                                            660
       ACAAGATCCC TTTCATTCGA GAGGCGGAGC GGCTGCGCCT CAAGCACATG GCTGACTACC
                                                                            720
10
       CCGACTACAA GTACCGGCCC AGGAAGAAGG TGAAGTCCGG CAACGCCAAC TCCAGCTCCT
                                                                            780
       CGGCCGCCGC CTCCTCCAAG CCGGGGGAGA AGGGAGACAA GGTCGGTGGC AGTGGCGGGG
                                                                            840
       GCGGCCATGG GGGCGGCGGC GGCGGCGGGA GCAGCAACGC GGGGGGAGGA GGCGGCGGTG
                                                                           900
       CGAGTGGCGG CGGCGCCAAC TCCAAACCGG CGCAGAAAAA GAGCTGCGGC TCCAAAGTGG
                                                                           960
       CGGGCGGCGC GGGCGGTGGG GTTAGCAAAC CGCACGCCAA GCTCATCCTG GCAGGCGGCG
                                                                           1020
15
       GCGGCGGCGG GAAAGCAGCG GCTGCCGCCG CCGCCTCCTT CGCCGCCGAA CAGGCGGGGG
                                                                           1080
       CCGCCGCCCT GCTGCCCCTG GGCGCCGCCG CCGACCACCA CTCGCTGTAC AAGGCGCGGA
                                                                          1140
       CTCCCAGCGC CTCGGCCTCC GCCTCCTCGG CAGCCTCGGC CTCCGCAGCG CTCGCGGCCC
                                                                          1200
       CGGGCAAGCA CCTGGCGGAG AAGAAGGTGA AGCGCGTCTA CCTGTTCGGC GGCCTGGGCA
                                                                          1260
       CGTCGTCGTC GCCCGTGGGC GGCGTGGGCG CGGGAGCCGA CCCCAGCGAC CCCCTGGGCC
20
       TGTACGAGGA GGAGGGCGCG GGCTGCTCGC CCGACGCGCC CAGCCTGAGC GGCCGCAGCA
                                                                           1380
       1440
       TGCGCGCCGC CTCGCCCGCC CCGTCCAGCG CGCCCTCGCA CGCGTCCTCC TCGGCCTCGT
                                                                          1500
       CCCACTCCTC CTCTTCCTCC TCCTCGGGCT CCTCGTCCTC CGACGACGAG TTCGAAGACG
                                                                          1560
       ACCTGCTCGA CCTGAACCCC AGCTCAAACT TTGAGAGCAT GTCCCTGGGC AGCTTCAGTT
                                                                          1620
25
       CGTCGTCGGC GCTCGACCGG GACCTGGATT TTAACTTCGA GCCCGGCTCC GGCTCGCACT
                                                                           1680
       TCGAGTTCCC GGACTACTGC ACGCCCGAGG TGAGCGAGAT GATCTCGGGA GACTGGCTCG
       AGTCCAGCAT CTCCAACCTG GTTTTCACCT ACTGAAGGGC GCGCAGGCAG GGAGAAGGGC
                                                                          1800
       CGGGGGGGT AGGAGAGGA AAAAAAAAG TGAAAAAAG AAACGAAAAG ĞACAGACGAA
                                                                          1860
       GAGTTTAAAG AGAAAAGGA AAAAAGAAAG AAAAAGTAAG CAGGGCTCGT TCGCCCGCGT
                                                                          1920
30
       TCTCGTCGTC GGATCAAGGA GCGCGGCGGC GTTTTGGACC CGCGCTCCCA TCCCCCACCT
                                                                          1980
       TCCCGGCCG GGGACCCACT CTGCCCAGCC GGAGGGACGC GGAGGAGGAA GAGGGTAGAC
                                                                          2040
       AGGGGCGACC TGTGATTGTT GTTATTGATG TTGTTGTTGA TGGCAAAAAA AAAAAGCGAC
       TTCGAGTTTG CTCCCCTTTG CTTGAAGAGA CCCCCTCCCC CTTCCAACGA GCTTCCGGAC
                                                                          2160
       TTGTCTGCAC CCCCAGCAAG AAGGCGAGTT AGTTTTCTAG AGACTTGAAG GAGTCTCCCC
                                                                          2220
35
       CTTCCTGCAT CACCACCTTG GTTTTGTTTT ATTTTGCTTC TTGGTCAAGA AAGGAGGGGA
                                                                          2280
       GAACCCAGCG CACCCCTCCC CCCCTTTTT TAAACGCGTG ATGAAGACAG AAGGCTCCGG
                                                                          2340
       GGTGACGAAT TTGGCCGATG GCAGATGTTT TGGGGGAACG CCGGGACTGA GAGACTCCAC
                                                                          2400
       GCAGGCGAAT TCCCGTTTGG GGCCTTTTTT TCCTCCCTCT TTTCCCCTTG CCCCCTCTGC
       AGCCGGAGGA GGAGATGTTG AGGGGAGGAG GCCAGCCAGT GTGACCGGCG CTAGGAAATG
                                                                          2520
40
       ACCCGAGAAC CCCGTTGGAA GCGCAGCAGC GGGAGCTAGG GGCGGGGGCG GAGGAGGACA
                                                                          2580
       CGAACTGGAA GGGGGTTCAC GGTCAAACTG AAATGGATTT GCACGTTGGG GAGCTGGCGG
                                                                          2640
       CGGCGGCTGC TGGGCCTCCG CCTTCTTTC TACGTGAAAT CAGTGAGGTG AGACTTCCCA
                                                                          2700
       GACCCCGGAG GCGTGGAGGA GAGGAGACTG TTTGATGTGG TACAGGGGCA GTCAGTGGAG
                                                                          2760
       GGCGAGTGGT TTCGGAAAAA AAAAAAGAAA AAAAGGG
45
       Seq ID NO: 363 Protein sequence
                                 NP_003098
       Protein Accession #:
                                                              51
                                        31
                                                   41
50
       MVOOTNNAEN TEALLAGESS DSGAGLELGI ASSPTPGSTA STGGKADDPS WCKTPSGHIK
       RPMNAFMVWS QIERRKIMEQ SPDMHNAEIS KRLGKRWKLL KDSDKIPFIR EAERLRLKHM
                                                                           120
       ADYPDYKYRP RKKVKSGNAN SSSSAAASSK PGEKGDKVGG SGGGGHGGGG GGGSSNAGGG
                                                                           180
       GGGASGGGAN SKPAOKKSCG SKVAGGAGGG VSKPHAKLIL AGGGGGGKAA AAAAASFAAE
                                                                            240
55
       QAGAAALLPL GAAADHHSLY KARTPSASAS ASSAASASAA LAAPGKHLAE KKVKRVYLFG
       GLGTSSSPVG GVGAGADPSD PLGLYEEEGA GCSPDAPSLS GRSSAASSPA AGRSPADHRG
                                                                            360
       YASLRAASPA PSSAPSHASS SASSHSSSS SSGSSSSDDE FEDDLLDLNP SSNFESMSLG
                                                                           420
       SFSSSSALDR DLDFNFEPGS GSHFEFPDYC TPEVSEMISG DWLESSISNL VFTY
60
       Seg ID NO: 364 DNA seguence
       Nucleic Acid Accession #: U10860
       Coding sequence:
                                 123-2204
65
                                                              51
                  11
                             21
                                        31
                                                   41
       TGCCGGCTGC TCCTCGACCA GGCCTCCTTC TCAACCTCAG CCCGCGGCGC CGACCCTTCC
       GGCACCCTCC CGCCCCGTCT CGTACTGTCG CCGTCACCGC CGCGGCTCCG GCCCTGGCCC
       CGATGGCTCT GTGCAACGGA GACTCCAAGC TGGAGAATGC TGGAGGAGAC CTTAAGGATG
                                                                           180
70
       GCCACCACCA CTATGAAGGA GCTGTTGTCA TTCTGGATGC TGGTGCTCAG TACGGGAAAG
                                                                            240
       TCATAGACCG AAGAGTGAGG GAACTGTTCG TGCAGTCTGA AATTTTCCCC TTGGAAACAC
                                                                            300
       CAGCATTTGC TATAAAGGAA CAAGGATTCC GTGCTATTAT CATCTCTGGA GGACCTAATT
                                                                            360
       CTGTGTATGC TGAAGATGCT CCCTGGTTTG ATCCAGCAAT ATTCACTATT GGCAAGCCTG
                                                                            420
       TTCTTGGAAT TTGCTATGGT ATGCAGATGA TGAATAAGGT ATTTGGAGGT ACTGTGCACA
75
       AAAAAAGTGT CAGAGAAGAT GGAGTTTTCA ACATTAGTGT GGATAATACA TGTTCATTAT
                                                                            540
       TCAGGGGCCT TCAGAAGGAA GAAGTTGTTT TGCTTACACA TGGAGATAGT GTAGACAAAG
                                                                            600
       TAGCTGATGG ATTCAAGGTT GTGGCACGTT CTGGAAACAT AGTAGCAGGC ATAGCAAATG
                                                                            660
       AATCTAAAAA GTTATATGGA GCACAGTTCC ACCCTGAAGT TGGCCTTACA GAAAATGGAA
                                                                            720
       AAGTAATACT GAAGAATTTC CTTTATGATA TAGCTGGATG CAGTGGAACC TTCACCGTGC
                                                                            780
80
       AGAACAGAGA ACTTGAGTGT ATTCGAGAGA TCAAAGAGAG AGTAGGCACG TCAAAAGTTT
                                                                            840
       TGGTTTTACT CAGTGGTGGA GTAGACTCAA CAGTTTGTAC AGCTTTGCTA AATCGTGCTT
                                                                            900
       TGAACCAAGA ACAAGTCATT GCTGTGCACA TTGATAATGG CTTTATGAGA AAACGAGAAA
                                                                            960
       GCCAGTCTGT TGAAGAGGCC CTCAAAAAGC TTGGAATTCA GGTCAAAGTG ATAAATGCTG CTCATTCTTT CTACAATGGA ACAACAACCC TACCAATATC AGATGAAGAT AGAACCCCAC
                                                                           1020
                                                                           1080
85
       GGAAAAGAAT TAGCAAAACG TTAAATATGA CCACAAGTCC TGAAGAGAAA AGAAAAATCA
                                                                           1140
       TTGGGGATAC TTTTGTTAAG ATTGCCAATG AAGTAATTGG AGAAATGAAC TTGAAACCAG
       AGGAGGTTTT CCTTGCCCAA GGTACTTTAC GGCCTGATCT AATTGAAAGT GCATCCCTTG
                                                                          1260
```

		086443								
5	AGTTGAGAGA GAATTTTGGG GTCCTGGCCT CTGAAACCAA ATACCCTATT AAATTACCAG AGGGTGACTG	CAAAGCTGAA GGAGGGAAAA CAGAGAACTT GGCAATCAGA CAATATTTTG ACAGAGAGTC TCTGCATTCA TCGTTCCTAC	GTAATAGAAC GGACTTCCAG GTAATATGTG AAAATAGTAG AAAGCCTGCA CTGAATGCCT AGTTACGTGT	CTCTGAAAGA AAGAGTTAGT CTGAAGAACC CTGATTTTTC CAACAGAAGA TCTTGCTGCC GTGGAATCTC	TTTTCATAAA TTCCAGGCAT TTATATTTGT TGCAAGTGTT GGATCAGGAG AATTAAAACT CAGTAAAGAT	GATGAAGTGA CCATTTCCAG AAGGACTTTC AAAAAGCCAC AAGCTGATGC GTAGGTGTGC GAACCTGACT	1320 1380 1440 1500 1560 1620 1680 1740			
10 15	TTGTTTATAT TGACAACAGG GGGAGTCTGG TTGATCGGGA TTATTACTAG AGGTGGTATT	TATTTTCTG ATTTGGCCCA GGTGCTCAGT GTATGCTGGG CCCACTTCAA TGACTTCATG AAAGATGGTC	CCAGTTAAAG ACTTTACGCC AAAATCAGCC AAGCAGCCTT ACTGGTATAC ACTGAGATTA	AACCTCCTAC AAGCTGATTT AGATGCCGGT CATGCCAGAG CTGCAACACC AGAAGATTCC	AGATGTTACT TGAGGCCCAT GATTTTGACA ATCTGTGGTT TGGCAATGAG TGGTATTTCT	CCCACTTTCT AACATTCTCA CCATTACATT ATTCGAACCT ATCCCTGTAG CGAATTATGT	1800 1860 1920 1980 2040 2100 2160			
	ATGACTTAAC ATCAAAGCCC CCAGGAACTA CTGAGTGGGA GTAATAAACT TC Seq ID NO: 365 Protein sequence									
20	Protein Acc	ession #:	AAAGUSS	-1						
	1 MALCNGDSKL	11 ENAGGDLKDG AIIISGGPNS	21 ' HHHYEGAVVI	31 LDAGAQYGKV	41 IDRRVRELFV	51 QSEIFPLETP	60 120			
25	KSVREDGVFN SKKLYGAQFH VLLSGGVDST HSFYNGTTTL	ISVDNTCSLF PEVGLTENGK VCTALLNRAL PISDEDRTPR PDLIESASLV	RGLQKEEVVL VILKNFLYDI NQEQVIAVHI KRISKTLNMT	LTHGDSVDKV AGCSGTFTVQ DNGFMRKRES TSPEEKRKII	ADGFKVVARS NRELECIREI QSVEEALKKL GDTFVKIANE	GNIVAGIANE KERVGTSKVL GIQVKVINAA VIGEMNLKPE	180 240 300 360 420			
30	TLLQRVKACT ESLIFLARLI ESGYAGKISQ	ELVSRHPFPG TEEDQEKLMQ PRMCHNVNRV MPVILTPLHF	ITSLHSLNAF VYIFGPPVKE DRDPLQKQPS	LLPIKTVGVQ PPTDVTPTFL CQRSVVIRTF	GDCRSYSYVC TTGVLSTLRQ	GISSKDEPDW ADFEAHNILR	480 540 600 660			
35	VAPKWALETK	KIPGISRIMY	DLISKPPGII	EWE						
40	Seq ID NO: 366 DNA sequence Nucleic Acid Accession #: NM_004219 Coding sequence: 46-654									
	1	11	21	31	41	51				
45	TATGTTGATA CTGGGGTCTG TTTGGCAAAA ACTGTCAACA CCAAGCTTTT GCCTCAGATG	ATGAATGCG AGGAAAATGG GACCTTCAAT CGTTCGATGC GAGCTACAGA CTGCCAAAAA ATGCCTATCC	AGAACCAGGC CAAAGCCTTA CCCACCAGCC AAAGTCTGTA GATGACTGAG AGAAATAGAA	ACCCGTGTGG GATGGGAGAT TTACCTAAAG AAGACCAAGG AAGACTGTTA AAATTCTTTC	TTGCTAAGGA CTCAAGTTTC CTACTAGAAA GACCCCTCAA AAGCAAAAAG CCTTCAATCC	TGGGCTGAAG AACACCACGT GGCTTTGGGA ACAAAAACAG CTCTGTTCCT TCTAGACTTT	60 120 180 240 300 360 420			
50	CTCATGATCC CCTGTGAAGA CTGTCGACCC TAGTGCTTCA	ACCTGCCTGA TTGACGAGGA TGCCCTCTCC TGGATGTTGA GAGTTTGTGT	GAGAGAGCTT ACCATGGGAA ATTGCCACCT	GAAAAGCTGT TCCAATCTGT GTTTGCTGTG	TTCAGCTGGG TGCAGTCTCC ACATAGATAT	CCCCCCTTCA TTCAAGCATT TTAAATTTCT	480 540 600 660 720			
55	AAAAAAAA Seq ID NO: 367 Protein sequence Protein Accession #: NP_004210									
60	I I C C C I I A C		_							
60	1 MATLIYVDKE	11 NGEPGTRVVA TEKSVKTKGP	KDGLKLGSGP	31 SIKALDGRSQ KKMTEKTVKA	41 VSTPRFGKTF KSSVPASDDA	51 DAPPALPKAT YPETEKFFPF	60 120			
65	NPLDFESFDL	PEEHQIAHLP VELPPVCCDI	LSGVPLMILD	EERELEKLFQ	LGPPSPVKMP	SPPWESNLLQ	180			
70	Seq ID NO: 368 DNA sequence Nucleic Acid Accession #: NM_000597 Coding sequence: 118-1104									
	1	11	21	31	41	51 1				
75	CCTGCCGGC CTGCCGAGAG CCGCTGCTGC CTGTTCCGCT	GCCCGCCCTG	CTCGCTCGCC CGCGCTGCCG GGGCGCGAGT CACACCCGAG	CGCCGCGCCG CTGCCGCCGC GGCGGCGGCG CGCCTGGCCG	CGCTGCCGAC CGCCGCTGCT GCGGGGCGCG CCTGCGGGCC	CGCCAGCATG GCCGCTGCTG CGCGGAGGTG CCCGCCGGTT	60 120 180 240 300 360			
80	GCGCCGCCCG GTCCGGGAGC	CCGCGGTGGC CGGGCTGCGG	CTGCTGCTCG	GTGTGCGCCC	GCTGGAGGG	CGAGGCGTGC	420			
85	GGCGTCTACA CTGCCCCTGC TATGGCGCCA GTGGAGAACC AAGCCCCTCA	CCCCGCGCTG AGGCGCTGGT GCCCGGAGCA ACGTGGACAG AGTCGGGTAT	CGGCCAGGGG CATGGGCGAG GGTTGCAGAC CACCATGAAC GAAGGAGCTG	CTGCGCTGCT GGCACTTGTG AATGGCGATG ATGTTGGGCG GCCGTGTTCC	ATCCCCACCC AGAAGCGCCG ACCACTCAGA GGGGAGGCAG GGGAGAAGGT	GGGCTCCGAG GGACGCCGAG AGGAGGCCTG TGCTGGCCGG CACTGAGCAG	480 540 600 660 720			
	CACCGGCAGA	TGGGCAAGGG CTGCCAGGAC	TGGCAAGCAT	CACCTTGGCC	TGGAGGAGCC	CAAGAAGCTG	780 840			

```
TCCACCATGC GCCTTCCGGA TGAGCGGGGC CCTCTGGAGC ACCTCTACTC CCTGCACATC
                                                                            900
       CCCAACTGTG ACAAGCATGG CCTGTACAAC CTCAAACAGT GCAAGATGTC TCTGAACGGG
                                                                            960
       CAGCGTGGGG AGTGCTGGTG TGTGAACCCC AACACCGGGA AGCTGATCCA GGGAGCCCCC
       ACCATCCGGG GGGACCCCGA GTGTCATCTC TTCTACAATG AGCAGCAGGA GGCTTGCGGG
                                                                           1080
 5
       GTGCACACCC AGCGGATGCA GTAGACCGCA GCCAGCCGGT GCCTGGCGCC CCTGCCCCCC
                                                                           1140
       GCCCCTCTCC AAACACCGGC AGAAAACGGA GAGTGCTTGG GTGGTGGGTG CTGGAGGATT
                                                                           1200
       TTCCAGTTCT GACACACGTA TTTATATTTG GAAAGAGACC AGCACCGAGC TCGGCACCTC
                                                                           1260
       CCCGGCCTCT CTCTTCCCAG CTGCAGATGC CACACCTGCT CCTTCTTGCT TTCCCCGGGG
                                                                           1320
       GAGGAAGGGG GTTGTGGTCG GGGAGCTGGG GTACAGGTTT GGGGAGGGGG AAGAGAAATT
10
       TTTATTTTTG AACCCCTGTG TCCCTTTTGC ATAGATTAA AGGAAGGAAA AGT
       Seq ID NO: 369 Protein sequence
       Protein Accession #:
                                 NP_000588
15
                                                               51
       MLPRVGCPAL PLPPPPLLPL LPLLLLLGA SGGGGGARAE VLFRCPPCTP ERLAACGPPP
                                                                              60
       VAPPAAVAAV AGGARMPCAE LVREPGCGCC SVCARLEGEA CGVYTPRCGQ GLRCYPHPGS
                                                                            120
       ELPLQALVMG EGTCEKRRDA EYGASPEQVA DNGDDHSEGG LVENHVDSTM NMLGGGGSAG
                                                                            180
20
       RKPLKSGMKE LAVFREKVTE QHRQMGKGGK HHLGLEEPKK LRPPPARTPC QQELDQVLER
       ISTMRLPDER GPLEHLYSLH IPNCDKHGLY NLKQCKMSLN GQRGECWCVN PNTGKLIQGA
                                                                             300
       PTIRGDPECH LFYNEQQEAC GVHTQRMQ
       Seq ID NO: 370 DNA sequence
25
       Nucleic Acid Accession #: NM_004264
       Coding sequence: 6-440
                             21
30
       GGAACATGGC GGATCGGCTC ACGCAGCTTC AGGACGCTGT GAATTCGCTT GCAGATCAGT
                                                                             60
       TTTGTAATGC CATTGGAGTA TTGCAGCAAT GTGGTCCTCC TGCCTCTTTC AATAATATTC
                                                                            120
       AGACAGCAAT TAACAAAGAC CAGCCAGCTA ACCCTACAGA AGAGTATGCC CAGCTTTTTG
       CAGCACTGAT TGCACGAACA GCAAAAGACA TTGATGTTTT GATAGATTCC TTACCCAGTG
       AAGAATCTAC AGCTGCTTTA CAGGCTGCTA GCTTGTATAA GCTAGAAGAA GAAAACCATG
35
       AAGCTGCTAC ATGTGTGGAG GATGTTGTTT ATCGAGGAGA CATGCTTCTG GAGAAGATAC
                                                                             360
       AAAGCGCACT TGCTGATATT GCACAGTCAC AGCTGAAGAC AAGAAGTGGT ACCCATAGCC
                                                                             420
       AGTCTCTTCC AGACTCATAG CATCAGTGGA TACCATGTGG CTGAGAAAAG AACTGTTTGA
                                                                             480
       GTGCCATTAA GAATTCTGCA TCAGACTTAG ATACAAGCCT TACCAACAAT TACAGAAACA
                                                                             540
       TTAAACACTA TGACACATTA CCTTTTTAGC TATTTTTAAT AGTCTTCTAT TTTCACTCTT
40
       GATAAGCTTA TAAATCATGA TTGAATCAGC TTTAAAGCAT CATACCATCA TTTTTTAACT
                                                                             660
       GAGTGAAATT ATTAAGGCAT GTAATACATT AATGAACATA ATATAAGGAA ACATATGTAA
                                                                             720
       AATTCTGTTA TGACATAATT TATGTCTCCA TTTTGTTGTA TTGGCCAGTA CTTTTACAAT
                                                                             780
45
       Seg ID NO: 371 Protein seguence
                                 NP_004255
       Protein Accession #:
                             21
                                                    41
                                                               51
50
       MADRITOLOD AVNSLADOFC NAIGVLOOCG PPASFNNIQT AINKDQPANP TEEYAQLFAA
       LIARTAKDID VLIDSLPSEE STAALQAASL YKLEEENHEA ATCVEDVVYR GDMLLEKIQS
       ALADIAQSQL KTRSGTHSQS LPDS
       Seq ID NO: 372 DNA sequence
55
       Nucleic Acid Accession #: AJ271091
       Coding sequence: 1-1113
60
       ATGGAGAATC AGGTGTTGAC GCCGCATGTC TACTGGGCTC AGCGACACCG CGAGCTATAT
                                                                             60
       CTGCGCGTGG AGCTGAGTGA CGTACAGAAC CCTGCCATCA GCATCACTGA AAACGTGCTG
                                                                             120
       CATTTCAAAG CTCAAGGACA TGGTGCCAAA GGAGACAATG TCTATGAATT TCACCTGGAG
                                                                             180
       TTCTTAGACC TTGTGAAACC AGAGCCTGTT TACAAACTGA CCCAGAGGCA GGTAAACATT
       ACAGTACAGA AGAAAGTGAG TCAGTGGTGG GAGAGACTCA CAAAGCAGGA AAAGCGACCA
                                                                             300
65
       CTGTTTTTGG CTCCTGACTT TGATCGTTGG CTGGATGAAT CTGATGCGGA AATGGAGCTC
                                                                             360
       AGAGCTAAGG AAGAAGAGCG CCTAAATAAA CTCCGACTGG AAAGCGAAGG CTCTCCTGAA
                                                                             420
       ACTCTTACAA ACTTAAGGAA AGGATACCTG TTTATGTATA ATCTTGTGCA ATTCTTGGGA
                                                                             480
       TTCTCCTGGA TCTTTGTCAA CCTGACTGTG CGATTCTGTA TCTTGGGAAA AGAGTCCTTT
                                                                             540
       TATGACACAT TCCATACTGT GGCTGACATG ATGTATTTCT GCCAGATGCT GGCAGTTGTG
70
       GAAACTATCA ATGCAGCAAT TGGAGTCACT ACGTCACCGG TGCTGCCTTC TCTGATCCAG
                                                                             660
       CTTCTTGGAA GAAATTTTAT TTTGTTTATC ATCTTTGGCA CCATGGAAGA AATGCAGAAC
                                                                             720
       AAAGCTGTGG TTTTCTTTGT GTTTTATTTG TGGAGTGCAA TTGAAATTTT CAGGTACTCT
                                                                             780
       TTCTACATGC TGACGTGCAT TGACATGGAT TGGAAGGTGC TCACATGGCT TCGTTACACT
                                                                             840
       CTGTGGATTC CCTTATATCC ACTGGGATGT TTGGCGGAAG CTGTCTCAGT GATTCAGTCC
                                                                             900
75
       ATTCCAATAT TCAATGAGAC CGGACGATTC AGTTTCACAT TGCCATATCC AGTGAAAATC
       AAAGTTAGAT TTTCCTTTTT TCTTCAGATT TATCTTATAA TGATATTTTT AGGTTTATAC
                                                                            1020
       ATAAATTTTC GTCACCTTTA TAAACAGCGC AGACTGAAAA TGAGGGCAGG CGCAGTGGCT
                                                                           1080
       CATGCCTGTG ATCCCAGCGC TTTGGGAGGC TGA
80
       Sea ID NO: 373 Protein sequence
       Protein Accession #: CAB69070
                                                               51
                                                    41
85
       MENQVLTPHV YWAQRHRELY LRVELSDVQN PAISITENVL HFKAQGHGAK GDNVYEFHLE
                                                                              60
       FIDLVKPEPV YKLTORQVNI TVQKKVSQWW ERLTKQEKRP LFLAPDFDRW LDESDAEMEL
RAKEEERLNK LRLESEGSPE TLTNLRKGYL FMYNLVQFLG FSWIFVNLTV RFCILGKESF
                                                                             120
```

5	KAVVFFVFYL	WSAIEIFRYS	ETINAAIGVT FYMLTCIDMD KVRFSFFLQI	WKVLTWLRYT	LWIPLYPLGC	LAEAVSVIQS	240 300 360	
	Seq ID NO: 374 DNA sequence Nucleic Acid Accession #: NM_016395 Coding sequence: 1-1113							
10	Coaing sequ	ience: I-II.	1.3					
	1	11	21	31. I	41	51 		
15	CTGCGCGTGG CATTTCAAAG	AGCTGAGTGA CTCAAGGACA	GCCGCATGTC CGTACAGAAC TGGTGCCAAA AGAGCCTGTT	CCTGCCATCA GGAGACAATG	GCATCACTGA TCTATGAATT	AAACGTGCTG TCACCTGGAG	60 120 180 240	
	ACAGTACAGA CTGTTTTTGG	AGAAAGTGAG CTCCTGACTT	TCAGTGGTGG TGATCGTTGG CCTAAATAAA	GAGAGACTCA CTGGATGAAT	CAAAGCAGGA CTGATGCGGA	AAAGCGACCA AATGGAGCTC	300 360 420	
20	ACTCTTACAA TTCTCCTGGA TATGACACAT	ACTTAAGGAA TCTTTGTCAA TCCATACTGT	AGGATACCTG CCTGACTGTG GGCTGACATG TGGAGTCACT	TTTATGTATA CGATTCTGTA ATGTATTTCT	ATCTTGTGCA TCTTGGGAAA GCCAGATGCT	ATTCTTGGGA AGAGTCCTTT GGCAGTTGTG	480 540 600 660	
25	CTTCTTGGAA AAAGCTGTGG TTCTACATGC CTGTGGATTC	GAAATTTAT TTTTCTTTGT TGACGTGCAT CCTTATATCC	TTTGTTTATC GTTTTATTTG TGACATGGAT ACTGGGATGT	ATCTTTGGCA TGGAGTGCAA TGGAAGGTGC TTGGCGGAAG	CCATGGAAGA TTGAAATTTT TCACATGGCT CTGTCTCAGT	AATGCAGAAC CAGGTACTCT TCGTTACACT GATTCAGTCC	720 780 840 900	
30	ATTCCAATAT AAAGTTAGAT ATAAATTTTC	TCAATGAGAC TTTCCTTTTT GTCACCTTTA	CGGACGATTC TCTTCAGATT TAAACAGCGC TTTGGGAGGC	AGTTTCACAT TATCTTATAA AGACTGAAAA	TGCCATATCC TGATATTTTT	AGTGAAAATC AGGTTTATAC	960 1020 1080	
35	Seq ID NO: 375 Protein sequence Protein Accession #: NP_057479							
	1	11	21	31	41	51 1		
40	FLDLVKPEPV RAKEEERLNK YDTFHTVADM KAVVFFVFYL	YKLTQRQVNI LRLESEGSPE MYFCQMLAVV WSAIEIFRYS	LRVELSDVQN TVQKKVSQWW TLTNLRKGYL ETINAAIGVT FYMLTCIDMD	ERLTKQEKRP FMYNLVQFLG TSPVLPSLIQ WKVLTWLRYT	LFLAPDFDRW FSWIFVNLTV LLGRNFILFI LWIPLYPLGC	LDESDAEMEL RFCILGKESF IFGTMEEMQN LVEAVSVIQS	60 120 180 240 300	
45	IPIFNETGRF STKKKDLDGF	SFTLPYPVKI	KVRFSFFLQI	YLIMIFLGLY	INFRHLYKQR	RRRYGKKRKR	360	
50			n #: NM_0059 1-270					
	1	11 	21 	31 	41	51		
55	GTGAAACAAC TGCCAACCCA ATTCCAGAGC	CTTGCCAGCC AGGTGCCTGA CCTGCCAGCC	GCAGCCTTGC TCCACCCCAG GCCCTGCCAC CAAGGTGCCT GCAGAAGTAA	GAACCATGCA CCCAAAGTGC GAGCCCTGCC	TCCCCAAAAC CTGAGCCCTG	CAAGGAGCCC CCAGCCCAAG	60 120 180 240	
60	Seq ID NO: 377 Protein sequence Protein Accession #: NP_005978							
	1	11	21	31	41 	51 		
65	MNSQQQKQPC IPEPCQPKVP	TPPPQPQQQQ EPCPSTVTPA	VKQPCQPPPQ PAQQKTKQK	EPCIPKTKEP	COPKABEBCH	PKVPEPCQPK	60	
70	Seq ID NO: 378 DNA sequence Nucleic Acid Accession #: NM_002105 Coding sequence: 74-505							
	1	11	21 1	31 1	41	51 		
75	CTACCTCGCT GTCGCGCTCG GAAGGGCCAC	AGCATGTCGG TCGCGCGCCG TACGCCGAGC	GCCGCGGCAA GCCTCCAGTT GCGTTGGCGC TCCTGGAGCT	GACTGGCGGC CCCAGTGGGC CGGCGCGCCA GGCGGGCAAT	AAGGCCCGCG CGTGTACACC GTGTACCTGG GCGGCCCGCG	CTTCACCGGT CCAAGGCCAA GGCTGCTGCG CGGCAGTGCT ACAACAAGAA	60 120 180 240 300	
80	GACGCGAATC GCTGCTGGGC GCTGCCCAAG CACCCAGGCC	: ATCCCCGCC : GGCGTGACGA : AAGACCAGCG : TCCCAGGAGT	ACCTGCAGCT TCGCCCAGGG CCACCGTGGG ACTAAGAGGG	GGCCATCCGC AGGCGTCCTG GCCGAAGGCG CCCGCGCCCCGC	AACGACGAGG CCCAACATCC CCCTCGGGCG GGCCGGCCGC	AGCTCAACAA AGGCCGTGCT GCAAGAAGGC CCCAGCTCCC	360 420 480 540	
85	CATGCCACCA CTTCAGACTG TCGCCGCCCG CGGCCTCGGG	CAAAGGCCCT CGGGGCAAGC GCCTCGAGTC	TTTAAGGGCC GGGCCGCGCC CCGCCGCCGCC	ACCACCGCCC TCCCTTCCCC CCCGCTCCCG CCCTCCGGTA	TCATGGAAAG TCCCCTCCCC TCCCGCACCG GGGTTCGGGC	AGCTGAGCCG TCGCCCGCCT CCTGCCGCGT CTTCCGGATG CCGGGGGGAG	600 660 720 780 840	

WO 02/086443
GCCGGCGGGC CCGCCTCGGC GTTCGTGACT CAGCCGCCCC ATCCCGAGTC

900

```
GCTAAGGGGC TGCGGGGAGG CCGCAGCACC TTCTGGAAGA CTTGGCCTTC CGCTCTGACG
                                                                              960
       CAGGGCCGAG GTGGGCAGTC CAGGCCGAGA GCCGGCGCC CTGAAGGTGA GTGAGGCCCT
                                                                             1020
       CGGCAGCTGC AGCCGGGGTG TCTGGTACCC CCCCGGCGTG GTGCTTAGCC CAGGACTTTC
                                                                             1080
 5
       AGACGGCCGC TGGCCGGGAG GCTTTGGTGG GAGAGACGCG ATCGCCGATT TCGGTCTGGC
                                                                             1140
       GCCCCTTCTG CGGCCGGGAC CCAGGCCTTT CACATCAGCT CTCCCTCCAT CTTCATTCAT
                                                                             1200
       AGGTCTGCGC TGGGGCCGGG ACGAAGCACT TGGTAACAGG CACATCTTCC TCCCGAGTGA
       CTGCCTCCTA GGAGGACATT TAGGGGAGGG CAGAGGCCTG CAGTTTGGCT TCACGGCTGG
                                                                             1320
       CTATGTGGAC AGCAAGAGTC GTTTTGCGGA ACGCGACTGG CAGCCAGGCC TGTCGGGCCC
                                                                             1380
10
       CCGACGCCGC CCCATTTCCC TTCCAGCAAA CTCAACTCGG CAATCCAAGC ACCTAGATAC
                                                                             1440
       CAGCACAAGT CGGTTAATCC CTGTCTGGAC TGAGCCTCCG TTGGCTTCTG AACTGGAATT
                                                                             1500
       CTGCAGCTAA CCCTTCCACG ACTAGAACCT TAGGCATTGG GGAGTTTTAG ATGGACTAAT
                                                                             1560
       TTTATTAAAG GATTGTTTTT TTTTT
15
       Seq ID NO: 379 Protein sequence
                                  NP_002096
       Protein Accession #:
                                                                 51
                                                      41
                              21
                                          31
20
       MSGRGKTGGK ARAKAKSRSS RAGLQFPVGR VHRLLRKGHY AERVGAGAPV YLAAVLEYLT
                                                                                60
       AEILELAGNA ARDNKKTRII PRHLQLAIRN DEELNKLLGG VTIAQGGVLP NIQAVLLPKK
                                                                              120
       TSATVGPKAP SGGKKATQAS QEY
25
       Seg ID NO: 380 DNA seguence
       Nucleic Acid Accession #: AL136942
                                  184-864
       Coding sequence:
                                                                 51
                                                      41
30
       ACGCGTCCGG CAGAAGCTCG GAGCTCTCGG GGTATCGAGG AGGCAGGCCC GCGGGCGCAC
       GGGCGAGCGG GCCGGGAGCC GGAGCGGCGG AGGAGCCGGC AGCAGCGGCG CGGCGGGCTC
                                                                              120
       CAGGCGAGGC GGTCGACGCT CCTGAAAACT TGCGCGCGCG CTCGCGCCAC TGCGCCCGGA
                                                                               180
       GCGATGAAGA TGGTCGCGCC CTGGACGCGG TTCTACTCCA ACAGCTGCTG CTTGTGCTGC
                                                                               240
35
       CATGTCCGCA CCGGCACCAT CCTGCTCGGC GTCTGGTATC TGATCATCAA TGCTGTGGTA
                                                                               300
       CTGTTGATTT TATTGAGTGC CCTGGCTGAT CCGGATCAGT ATAACTTTTC AAGTTCTGAA
                                                                               360
       CTGGGAGGTG ACTTTGAGTT CATGGATGAT GCCAACATGT GCATTGCCAT TGCGATTTCT
       CTTCTCATGA TCCTGATATG TGCTATGGCT ACTTACGGAG CGTACAAGCA ACGCGCAGCC
                                                                               480
       TGGATCATCC CATTCTTCTG TTACCAGATC TTTGACTTTG CCCTGAACAT GTTGGTTGCA
                                                                               540
40
       ATCACTGTGC TTATTTATCC AAACTCCATT CAGGAATACA TACGGCAACT GCCTCCTAAT
                                                                               600
       TTTCCCTACA GAGATGATGT CATGTCAGTG AATCCTACCT GTTTGGTCCT TATTATTCTT
                                                                               660
       CTGTTTATTA GCATTATCTT GACTTTTAAG GGTTACTTGA TTAGCTGTGT TTGGAACTGC
                                                                               720
       TACCGATACA TCAATGGTAG GAACTCCTCT GATGTCCTGG TTTATGTTAC CAGCAATGAC
       ACTACGGTGC TGCTACCCCC GTATGATGAT GCCACTGTGA ATGGTGCTGC CAAGGAGCCA
                                                                               840
45
       CCGCCACCTT ACGTGTCTGC CTAAGCCTTC AAGTGGGCGG AGCTGAGGGC AGCAGCTTGA
                                                                               900
       CTTTGCAGAC ATCTGAGCAA TAGTTCTGTT ATTTCACTTT TGCCATGAGC CTCTCTGAGC
                                                                               960
       TTGTTTGTTG CTGAAATGCT ACTTTTAAA ATTTAGATGT TAGATTGAAA ACTGTAGTTT
                                                                              1020
       TCAACATATG CTTTGCTAGA ACACTGTGAT AGATTAACTG TAGAATTCTT CCTGTACGAT
                                                                              1080
       TGGGGATATA ACGGGCTTCA CTAACCTTCC CTAGGCATTG AAACTTCCCC CAAATCTGAT
50
       GGACCTAGAA GTCTGCTTTT GTACCTGCTG GGCCCCAAAG TTGGGCATTT TTCTCTCTGT
                                                                              1200
       TCCCTCTCTT TTGAAAATGT AAAATAAAAC CAAAAATAGA CAACTTTTTC TTCAGCCATT
                                                                              1260
       CCAGCATAGA GAACAAAACC TTATGGAAAC AGGAATGTCA ATTGTGTAAT CATTGTTCTA
                                                                              1320
       ATTAGGTAAA TAGAAGTCCT TATGTATGTG TTACAAGAAT TTCCCCCACA ACATCCTTTA
                                                                              1380
       TGACTGAAGT TCAATGACAG TTTGTGTTTG GTGGTAAAGG ATTTTCTCCA TGGCCTGAAT
                                                                              1440
55
       TAAGACCATT AGAAAGCACC AGGCCGTGGG AGCAGTGACC ATCTACTGAC TGTTCTTGTG
       GATCTTGTGT CCAGGGACAT GGGGTGACAT GCCTCGTATG TGTTAGAGGG TGGAATGGAT
                                                                              1560
       GTGTTTGGCG CTGCATGGGA TCTGGTGCCC CTCTTCTCCT GGATTCACAT CCCCACCCAG
                                                                              1620
       GGCCCGCTTT TACTAAGTGT TCTGCCCTAG ATTGGTTCAA GGAGGTCATC CAACTGACTT
                                                                              1680
       TATCAAGTGG AATTGGGATA TATTTGATAT ACTTCTGCCT AACAACATGG AAAAGGGTTT
TCTTTTCCCT GCAAGCTACA TCCTACTGCT TTGAACTTCC AAGTATGTCT AGTCACCTTT
                                                                              1740
60
                                                                              1800
       TAAAATGTAA ACATTTCAG AAAAATGAGG ATTGCCTTCC TTGTATGCGC TTTTTACCTT
                                                                              1860
       GACTACCTGA ATTGCAAGGG ATTTTTATAT ATTCATATGT TACAAAGTCA GCAACTCTCC
                                                                              1920
       TGTTGGTTCA TTATTGAATG TGCTGTAAAT TAAGTCGTTT GCAATTAAAA CAAGGTTTGC
                                                                             1980
       CCACATCCAA AAAAAAAAAA AAAAA
65
       Seg ID NO: 381 Protein sequence
       Protein Accession #:
                                  CAB66876
                                                      41
70
       MKMVAPWTRF YSNSCCLCCH VRTGTILLGV WYLIINAVVL LILLSALADP DQYNFSSSEL
                                                                                60
       GGDFEFMDDA NMCIAIATSL LMILICAMAT YGAYKORAAW ITPFFCYQIF DFALMMLVAI
TVLIYPNSIQ EYIRQLPPNF PYRDDVMSVN PTCLVLIILL FISILITFKG YLISCVWNCY
RYINGRNSSD VLVYVTSNDT TVLLPPYDDA TVNGAAKEPP PPYVSA
                                                                               120
75
       Seq ID NO: 382 DNA sequence
       Nucleic Acid Accession #: NM_002510
       Coding sequence:
                                  92-1774
80
                              21
        CAGATGCCAG AAGAACACTG TTGCTCTTGG TGGACGGGCC CAGAGGAATT CAGAGTTAAA
       CCTTGAGTGC CTGCGTCCGT GAGAATTCAG CATGGAATGT CTCTACTATT TCCTGGGATT
                                                                               120
       TCTGCTCCTG GCTGCAAGAT TGCCACTTGA TGCCGCCAAA CGATTCATG ATGTGCTGGG
85
       CAATGAAAGA CCTTCTGCTT ACATGAGGGA GCACAATCAA TTAAATGGCT GGTCTTCTGA
                                                                               240
       TGAAAATGAC TGGAATGAAA AACTCTACCC AGTGTGGAAG CGGGGAGACA TGAGGTGGAA
                                                                               300
        AAACTCCTGG AAGGGAGGCC GTGTGCAGGC GGTCCTGACC AGTGACTCAC CAGCCCTCGT
                                                                               360
```

```
GGGCTCAAAT ATAACATTTG CGGTGAACCT GATATTCCCT AGATGCCAAA AGGAAGATGC
       CAATGCCAAC ATAGTCTATG AGAAGAACTG CAGAAATGAG GCTGGTTTAT CTGCTGATCC
                                                                            480
       ATATGTTTAC AACTGGACAG CATGGTCAGA GGACAGTGAC GGGGAAAATG GCACCGGCCA
                                                                            540
       AAGCCATCAT AACGTCTTCC CTGATGGGAA ACCTTTTCCT CACCACCCCG GATGGAGAAG
                                                                            600
 5
       ATGGAATTTC ATCTACGTCT TCCACACACT TGGTCAGTAT TTCCAGAAAT TGGGACGATG
                                                                            660
       TTCAGTGAGA GTTTCTGTGA ACACAGCCAA TGTGACACTT GGGCCTCAAC TCATGGAAGT
                                                                            720
       GACTGTCTAC AGAAGACATG GACGGGCATA TGTTCCCATC GCACAAGTGA AAGATGTGTA
       CGTGGTAACA GATCAGATTC CTGTGTTTGT GACTATGTTC CAGAAGAACG ATCGAAATTC
       ATCCGACGAA ACCTTCCTCA AAGATCTCCC CATTATGTTT GATGTCCTGA TTCATGATCC
                                                                            900
10
       TAGCCACTTC CTCAATTATT CTACCATTAA CTACAAGTGG AGCTTCGGGG ATAATACTGG
                                                                            960
                                                                           1020
       CCTGTTTGTT TCCACCAATC ATACTGTGAA TCACACGTAT GTGCTCAATG GAACCTTCAG
       CCTTAACCTC ACTGTGAAAG CTGCAGCACC AGGACCTTGT CCGCCACCGC CACCACCACC
                                                                           1080
       CAGACCTTCA AAACCCACCC CTTCTTTAGG ACCTGCTGGT GACAACCCCC TGGAGCTGAG
       TAGGATTCCT GATGAAAACT GCCAGATTAA CAGATATGGC CACTTTCAAG CCACCATCAC
                                                                           1200
15
       AATTGTAGAG GGAATCTTAG AGGTTAACAT CATCCAGATG ACAGACGTCC TGATGCCGGT
                                                                           1260
       GCCATGGCCT GAAAGCTCCC TAATAGACTT TGTCGTGACC TGCCAAGGGA GCATTCCCAC
                                                                           1320
       GGAGGTCTGT ACCATCATTT CTGACCCCAC CTGCGAGATC ACCCAGAACA CAGTCTGCAG
                                                                           1380
       CCCTGTGGAT GTGGATGAGA TGTGTCTGCT GACTGTGAGA CGAACCTTCA ATGGGTCTGG
                                                                           1440
       GACGTACTGT GTGAACCTCA CCCTGGGGGA TGACACAAGC CTGGCTCTCA CGAGCACCCT
                                                                           1500
20
       GATTTCTGTT CCTGACAGAG ACCCAGCCTC GCCTTTAAGG ATGGCAAACA GTGCCCTGAT
                                                                           1560
       CTCCGTTGGC TGCTTGGCCA TATTTGTCAC TGTGATCTCC CTCTTGGTGT ACAAAAAACA
                                                                           1620
       CAAGGAATAC AACCCAATAG AAAATAGTCC TGGGAATGTG GTCAGAAGCA AAGGCCTGAG
                                                                           1680
       TGTCTTTCTC AACCGTGCAA AAGCCGTGTT CTTCCCGGGA AACCAGGAAA AGGATCCGCT ACTCAAAAAC CAAGAATTTA AAGGAGTTTC TTAAATTTCG ACCTTGTTTC TGAAGCTCAC
                                                                           1740
                                                                           1800
25
       TTTTCAGTGC CATTGATGTG AGATGTGCTG GAGTGGCTAT TAACCTTTTT TTCCTAAAGA
                                                                           1860
       TTATTGTTAA ATAGATATTG TGGTTTGGGG AAGTTGAATT TTTTATAGGT TAAATGTCAT
                                                                           1920
       TTTAGAGATG GGGAGAGGGA TTATACTGCA GGCAGCTTCA GCCATGTTGT GAAACTGATA
                                                                           1980
       2040
       TAACTAGTAG GATAGAAACA CTGTGTCCCG AGAGTAAGGA GAGAAGCTAC TATTGATTAG
                                                                           2100
30
       AGCCTAACCC AGGTTAACTG CAAGAAGAGG CGGGATACTT TCAGCTTTCC ATGTAACTGT
                                                                           2160
       ATGCATAAAG CCAATGTAGT CCAGTTTCTA AGATCATGTT CCAAGCTAAC TGAATCCCAC
                                                                           2220
       TTCAATACAC ACTCATGAAC TCCTGATGGA ACAATAACAG GCCCAAGCCT GTGGTATGAT
                                                                           2280
       GTGCACACTT GCTAGACTCA GAAAAAATAC TACTCTCATA AATGGGTGGG AGTATTTTGG
                                                                           2340
       TGACAACCTA CTTTGCTTGG CTGAGTGAAG GAATGATATT CATATATTCA TTTATTCCAT
                                                                           2400
35
                                                                           2460
       GGACATTTAG TTAGTGCTTT TTATATACCA GGCATGATGC TGAGTGACAC TCTTGTGTAT
       ATTTCCAAAT TTTTGTATAG TCGCTGCACA TATTTGAAAT CATATATAA GACTTTCCAA
                                                                           2520
       AGATGAGGTC CCTGGTTTTT CATGGCAACT TGATCAGTAA GGATTTCACC TCTGTTTGTA
                                                                           2580
       ACTAAAACCA TCTACTATAT GTTAGACATG ACATTCTTTT TCTCTCCTTC CTGAAAAATA
       AAGTGTGGGA AGAGACAAAA AAAAAAAA
40
       Seq ID NO: 383 Protein sequence
       Protein Accession #:
                                 NP 002501
                                                    41
                             21
45
       MECLYYFLGF LLLAARLPLD AAKRFHDVLG NERPSAYMRE HNQLNGWSSD ENDWNEKLYP
                                                                             60
       VWKRGDMRWK NSWKGGRVQA VLTSDSPALV GSNITFAVNL IFPRCQKEDA NGNIVYEKNC
                                                                            120
       RNEAGLSADP YVYNWTAWSE DSDGENGTGQ SHHNVFPDGK PFPHHPGWRR WNFIYVFHTL
                                                                            180
       GQYFQKLGRC SVRVSVNTAN VTLGPQLMEV TVYRRHGRAY VPIAQVKDVY VVTDQIPVFV
50
       TMFOKNDRNS SDETFLKDLP IMFDVLIHDP SHFLNYSTIN YKWSFGDNTG LFVSTNHTVN
                                                                             300
       HTYVLNGTFS LNLTVKAAAP GPCPPPPPPP RPSKPTPSLG PAGDNPLELS RIPDENCQIN
                                                                            360
       RYGHFQATIT IVEGILEVNI IQMTDVLMPV PWPESSLIDF VVTCQGSIPT EVCTIISDPT
                                                                             420
       CEITQNTVCS PVDVDEMCLL TVRRTFNGSG TYCVNLTLGD DTSLALTSTL ISVPDRDPAS
                                                                             480
       PLRMANSALI SVGCLAIFVT VISLLVYKKH KEYNPIENSP GNVVRSKGLS VFLNRAKAVF
                                                                            540
55
       FPGNOEKDPL LKNOEFKGVS
       Seq ID NO: 384 DNA sequence
       Nucleic Acid Accession #: NM_001134
                                 48-1877
       Coding sequence:
60
                             21
                                         31
                                                    41
       TCCATATTGT GCTTCCACCA CTGCCAATAA CAAAATAACT AGCAACCATG AAGTGGGTGG
                                                                              60
       AATCAATTTT TTTAATTTTC CTACTAAATT TTACTGAATC CAGAACACTG CATAGAAATG
                                                                            120
65
       AATATGGAAT AGCTTCCATA TTGGATTCTT ACCAATGTAC TGCAGAGATA AGTTTAGCTG
                                                                            180
       ACCTGGCTAC CATATTTTT GCCCAGTTTG TTCAAGAAGC CACTTACAAG GAAGTAAGCA
                                                                             240
       AAATGGTGAA AGATGCATTG ACTGCAATTG AGAAACCCAC TGGAGATGAA CAGTCTTCAG
       GGTGTTTAGA AAACCAGCTA CCTGCCTTTC TGGAAGAACT TTGCCATGAG AAAGAAATTT
                                                                             360
       TGGAGAAGTA CGGACATTCA GACTGCTGCA GCCAAAGTGA AGAGGGAAGA CATAACTGTT
                                                                             420
70
       TTCTTGCACA CAAAAAGCCC ACTCCAGCAT CGATCCCACT TTTCCAAGTT CCAGAACCTG
                                                                             480
       TCACAAGCTG TGAAGCATAT GAAGAAGACA GGGAGACATT CATGAACAAA TTCATTTATG
AGATAGCAAG AAGGCATCCC TTCCTGTATG CACCTACAAT TCTTCTTTGG GCTGCTCGCT
                                                                             540
                                                                             600
       ATGACAAAAT AATTCCATCT TGCTGCAAAG CTGAAAATGC AGTTGAATGC TTCCAAACAA
                                                                             660
       AGGCAGCAAC AGTTACAAAA GAATTAAGAG AAAGCAGCTT GTTAAATCAA CATGCATGTG
                                                                             720
75
       CAGTAATGAA AAATTTTGGG ACCCGAACTT TCCAAGCCAT AACTGTTACT AAACTGAGTC
                                                                             780
       AGAAGTTTAC CAAAGTTAAT TTTACTGAAA TCCAGAAACT AGTCCTGGAT GTGGCCCATG
                                                                             840
       TACATGAGCA CTGTTGCAGA GGAGATGTGC TGGATTGTCT GCAGGATGGG GAAAAAATCA
                                                                             900
       TGTCCTACAT ATGTTCTCAA CAAGACACTC TGTCAAACAA AATAACAGAA TGCTGCAAAC
                                                                             960
       TGACCACGCT GGAACGTGGT CAATGTATAA TTCATGCAGA AAATGATGAA AAACCTGAAG
                                                                           1020
80
       GTCTATCTCC AAATCTAAAC AGGTTTTTAG GAGATAGAGA TTTTAACCAA TTTTCTTCAG
                                                                           1080
       GGGAAAAAA TATCTTCTTG GCAAGTTTTG TTCATGAATA TTCAAGAAGA CATCCTCAGC
                                                                           1140
       TTGCTGTCTC AGTAATTCTA AGAGTTGCTA AAGGATACCA GGAGTTATTG GAGAAGTGTT
                                                                           1200
       TCCAGACTGA AAACCCTCTT GAATGCCAAG ATAAAGGAGA AGAAGAATTA CAGAAATACA
                                                                           1260
       TCCAGGAGAG CCAAGCATTG GCAAAGCGAA GCTGCGGCCT CTTCCAGAAA CTAGGAGAAT
                                                                           1320
85
       ATTACTTACA AAATGCGTTT CTCGTTGCTT ACACAAAGAA AGCCCCCCAG CTGACCTCGT
       CGGAGCTGAT GGCCATCACC AGAAAAATGG CAGCCACAGC AGCCACTTGT TGCCAACTCA
       GTGAGGACAA ACTATTGGCC TGTGGCGAGG GAGCGGCTGA CATTATTATC GGACACTTAT
                                                                           1500
```

```
GTATCAGACA TGAAATGACT CCAGTAAACC CTGGTGTTGG CCAGTGCTGC ACTTCTTCAT
                                                                           1560
       ATGCCAACAG GAGGCCATGC TTCAGCAGCT TGGTGGTGGA TGAAACATAT GTCCCTCCTG
                                                                           1620
       CATTCTCTGA TGACAAGTTC ATTTTCCATA AGGATCTGTG CCAAGCTCAG GGTGTAGCGC
                                                                           1680
       TGCAAACGAT GAAGCAAGAG TTTCTCATTA ACCTTGTGAA GCAAAAGCCA CAAATAACAG
                                                                           1740
 5
       AGGAACAACT TGAGGCTGTC ATTGCAGATT TCTCAGGCCT GTTGGAGAAA TGCTGCCAAG
                                                                           1800
       GCCAGGAACA GGAAGTCTGC TTTGCTGAAG AGGGACAAAA ACTGATTTCA AAAACTCGTG
                                                                           1860
       CTGCTTTGGG AGTTTAAATT ACTTCAGGGG AAGAGAAGAC AAAACGAGTC TTTCATTCGG
       TGTGAACTTT TCTCTTTAAT TTTAACTGAT TTAACACTTT TTGTGAATTA ATGAAATGAT
                                                                           1980
       AAAGACTTTT ATGTGAGATT TCCTTATCAC AGAAATAAAA TATCTCCAAA TG
10
       Seg ID NO: 385 Protein sequence
                                 NP_001125
       Protein Accession #:
                                                               51
                             21
                                                    41
                  11
15
       MKWVESIFLI FLLNFTESRT LHRNEYGIAS ILDSYQCTAE ISLADLATIF FAQFVQEATY
                                                                             60
       KEVSKMVKDA LTAIEKPTGD EQSSGCLENQ LPAFLEELCH EKEILEKYGH SDCCSQSEEG
                                                                            120
       RHNCFLAHKK PTPASIPLFQ VPEPVTSCEA YEEDRETFMN KFIYEIARRH PFLYAPTILL
                                                                            180
       WAARYDKIIP SCCKAENAVE CFQTKAATVT KELRESSLLN QHACAVMKNF GTRTFQAITV
20
       TKLSOKFTKV NFTEIOKLVL DVAHVHEHCC RGDVLDCLQD GEKIMSYICS QQDTLSNKIT
                                                                            300
       ECCKLTTLER GQCIIHAEND EKPEGLSPNL NRFLGDRDFN QFSSGEKNIF LASFVHEYSR
                                                                            360
       RHPQLAVSVI LRVAKGYQEL LEKCFQTENP LECQDKGEEE LQKYIQESQA LAKRSCGLFQ
                                                                            420
       KLGEYYLQNA FLVAYTKKAP QLTSSELMAI TRKMAATAAT CCQLSEDKLL ACGEGAADII
IGHLCIRHEM TPVNPGVGQC CTSSYANRRP CFSSLVVDET YVPPAFSDDK FIFHKDLCQA
                                                                            480
                                                                            540
25
       QGVALQTMKQ EFLINLVKQK PQITEEQLEA VIADFSGLLE KCCQGQEQEV CFAEEGQKLI
       SKTRAALGV
       Seq ID NO: 386 DNA sequence
       Nucleic Acid Accession #: NM_002205.1
30
       Coding sequence: 1..3149
                                         31
                                                               51
       ATGGGGAGCC GGACGCCAGA GTCCCCTCTC CACGCCGTGC AGCTGCGCTG GGGCCCCCGG
                                                                              60
35
       CGCCGACCCC CGCTSSTGCC GCTGCTGTTG CTGCTSSTGC CGCCGCCACC CAGGGTCGGG
                                                                            120
       GGCTTCAACT TAGACGCGGA GGCCCCAGCA GTACTCTCGG GGCCCCCGGG CTCCTTCTTC
       GGATTCTCAG TGGAGTTTTA CCGGCCGGGA ACAGACGGGG TCAGTGTGCT GGTGGGAGCA
                                                                             240
       CCCAAGGCTA ATACCAGCCA GCCAGGAGTG CTGCAGGGTG GTGCTGTCTA CCTCTGTCCT
                                                                             300
       TGGGGTGCCA GCCCCACACA GTGCACCCCC ATTGAATTTG ACAGCAAAGG CTCTCGGCTC
                                                                            360
40
       CTGGAGTCCT CACTGTCCAG CTCAGAGGGA GAGGAGCCTG TGGAGTACAA GTCCTTGCAG
                                                                             420
       TGGTTCGGGG CAACAGTTCG AGCCCATGGC TCCTCCATCT TGGCATGCGC TCCACTGTAC
                                                                             480
       AGCTGGCGCA CAGAGAAGGA GCCACTGAGC GACCCCGTGG GCACCTGCTA CCTCTCCACA
                                                                             540
       GATAACTTCA CCCGAATTCT GGAGTATGCA CCCTGCCGCT CAGATTTCAG CTGGGCAGCA
       GGACAGGGTT ACTGCCAAGG AGGCTTCAGT GCCGAGTTCA CCAAGACTGG CCGTGTGGTT
                                                                             660
45
       TTAGGTGGAC CAGGAAGCTA TTTCTGGCAA GGCCAGATCC TGTCTGCCAC TCAGGAGCAG
                                                                            720
       ATTGCAGAAT CTTATTACCC CGAGTACCTG ATCAACCTGG TTCAGGGGCA GCTGCAGACT
                                                                             780
       CGCCAGGCCA GTTCCATCTA TGATGACAGC TACCTAGGAT ACTCTGTGGC TGTTGGTGAA
                                                                             840
       TTCAGTGGTG ATGACACAGA AGACTTTGTT GCTGGTGTGC CCAAAGGGAA CCTCACTTAC
                                                                             900
       GGCTATGTCA CCATCCTTAA TGGCTCAGAC ATTCGATCCC TCTACAACTT CTCAGGGGAA
                                                                             960
50
       CAGATGGCCT CCTACTTTGG CTATGCAGTG GCCGCCACAG ACGTCAATGG GGACGGGCTG
                                                                           1020
       GATGACTTGC TGGTGGGGGC ACCCCTGCTC ATGGATCGGA CCCCTGACGG GCGGCCTCAG
                                                                           1080
       GAGGTGGGCA GGGTCTACGT CTACCTGCAG CACCCAGCCG GCATAGAGCC CACGCCCACC
                                                                           1140
       CTTACCCTCA CTGGCCATGA TGAGTTTGGC CGATTTGGCA GCTCCTTGAC CCCCCTGGGG
                                                                           1200
       GACCTGGACC AGGATGGCTA CAATGATGTG GCCATCGGGG CTCCCTTTGG TGGGGAGACC
                                                                           1260
55
       CAGCAGGGAG TAGTGTTTGT ATTTCCTGGG GGCCCAGGAG GGCTGGGCTC TAAGCCTTCC
       CAGGTTCTGC AGCCCCTGTG GGCAGCCAGC CACACCCCAG ACTTCTTTGG CTCTGCCCTT
                                                                           1380
       CGAGGAGGCC GAGACCTGGA TGGCAATGGA TATCCTGATC TGATTGTGGG GTCCTTTGGT
                                                                           1440
       GTGGACAAGG CTGTGGTATA CAGGGGCCGC CCCATCGTGT CCGCTAGTGC CTCCCTCACC
                                                                           1500
       ATCTTCCCCG CCATGTTCAA CCCAGAGGAG CGGAGCTGCA GCTTAGAGGG GAACCCTGTG
                                                                           1560
60
       GCCTGCATCA ACCTTAGCTT CTGCCTCAAT GCTTCTGGAA AACACGTTGC TGACTCCATT
                                                                           1620
       GGTTTCACAG TGGAACTTCA GCTGGACTGG CAGAAGCAGA AGGGAGGGGT ACGGCGGGCA
       CTGTTCCTGG CCTCCAGGCA GGCAACCCTG ACCCAGACCC TGCTCATCCA GAATGGGGCT
                                                                           1740
       CGAGAGGATT GCAGAGAGAT GAAGATCTAC CTCAGGAACG AGTCAGAATT TCGAGACAAA
                                                                           1800
       CTCTCGCCGA TTCACATCGC TCTCAACTTC TCCTTGGACC CCCAAGCCCC AGTGGACAGC
                                                                           1860
       CACGGCCTCA GGCCAGCCCT ACATTATCAG AGCAAGAGCC GGATAGAGGA CAAGGCTCAG
65
                                                                           1920
       ATCTTGCTGG ACTGTGGAGA AGACAACATC TGTGTGCCTG ACCTGCAGCT GGAAGTGTTT
                                                                           1980
       GGGGAGCAGA ACCATGTGTA CCTGGGTGAC AAGAATGCCC TGAACCTCAC TTTCCATGCC
                                                                           2040
       CAGAATGTGG GTGAGGGTGG CGCCTATGAG GCTGAGCTTC GGGTCACCGC CCCTCCAGAG
                                                                           2100
       GCTGAGTACT CAGGACTCGT CAGACACCCA GGGAACTTCT CCAGCCTGAG CTGTGACTAC
                                                                           2160
70
       TTTGCCGTGA ACCAGAGCCG CCTGCTGGTG TGTGACCTGG GCAACCCCAT GAAGGCAGGA
                                                                           2220
       GCCAGTCTGT GGGGTGGCCT TCGGTTTACA GTCCCTCATC TCCGGGACAC TAAGAAAACC
                                                                           2280
       ATCCAGTTTG ACTTCCAGAT CCTCAGCAAG AATCTCAACA ACTCGCAAAG CGACGTGGTT
                                                                           2340
       TCCTTTCGGC TCTCCGTGGA GGCTCAGGCC CAGGTCACCC TGAACGGTGT CTCCAAGCCT
       GAGGCAGTGC TATTCCCAGT AAGCGACTGG CATCCCCGAG ACCAGCCTCA GAAGGAGGAG
                                                                           2460
75
       GACCTGGGAC CTGCTGTCCA CCATGTCTAT GAGCTCATCA ACCAAGGCCC CAGCTCCATT
                                                                           2520
       AGCCAGGGTG TGCTGGAACT CAGCTGTCCC CAGGCTCTGG AAGGTCAGCA GCTCCTATAT
                                                                           2580
                                                                           2640
       GTGACCAGAG TTACGGGACT CAACTGCACC ACCAATCACC CCATTAACCC AAAGGGCCTG
       GAGTTGGATC CCGAGGGTTC CCTGCACCAC CAGCAAAAAC GGGAAGCTCC AAGCCGCAGC
                                                                           2700
       TCTGCTTCCT CGGGACCTCA GATCCTGAAA TGCCCGGAGG CTGAGTGTTT CAGGCTGCGC
                                                                           2760
80
       TGTGAGCTCG GGCCCCTGCA CCAACAAGAG AGCCAAAGTC TGCAGTTGCA TTTCCGAGTC
                                                                           2820
       TGGGCCAAGA CTTTCTTGCA GCGGGAGCAC CAGCCATTTA GCCTGCAGTG TGAGGCTGTG
                                                                           2880
       TACAAAGCCC TGAAGATGCC CTACCGAATC CTGCCTCGGC AGCTGCCCCA AAAAGAGCGT
                                                                           2940
                                                                           3000
       CAGGTGGCCA CAGCTGTGCA ATGGACCAAG GCAGAAGGCA GCTATGGCGT CCCACTGTGG
       ATCATCATCC TAGCCATCCT GTTTGGCCTC CTGCTCCTAG GTCTACTCAT CTACATCCTC
                                                                           3060
85
       TACAAGCTTG GATTCTTCAA ACGCTCCCTC CCATATGGCA CCGCCATGGA AAAAGCTCAG
       CTCAAGCCTC CAGCCACCTC TGATGCCTGA
```

Seq ID NO: 387 Protein sequence
Protein Accession #: NP_002196.1

```
5
       MGSRTPESPL HAVOLRWGPR RRPPLLPLLL LLLPPPPRVG GFNLDAEAPA VLSGPPGSFF
       GFSVEFYRPG TDGVSVLVGA PKANTSQPGV LQGGAVYLCP WGASPTQCTP IEFDSKGSRL
       LESSLSSEG EEPVEYKSLQ WFGATVRAHG SSILACAPLY SWRTEKEPLS DPVGTCYLST
                                                                             180
10
       DNFTRILEYA PCRSDFSWAA GQGYCQGGFS AEFTKTGRVV LGGPGSYFWQ GQILSATQEQ
                                                                             240
       IAESYYPEYL INLVQGQLQT RQASSIYDDS YLGYSVAVGE FSGDDTEDFV AGVPKGNLTY
                                                                             300
       CYVIIINGSD IRSLYNESGE OMASYEGYAV AATDVNGDGL DDLLVGAPLL MDRTPDGRPO
                                                                             360
       EVGRVYVYLO HPAGIEPTPT LTLTGHDEFG RFGSSLTPLG DLDQDGYNDV AIGAPFGGET
       OOGVVFVFPG GPGGLGSKPS OVLOPLWAAS HTPDFFGSAL RGGRDLDGNG YPDLIVGSFG
15
       VDKAVVYRGR PIVSASASLT IFPAMFNPEE RSCSLEGNPV ACINLSFCLN ASGKHVADSI
                                                                             540
       GFTVELQLDW QKQKGGVRRA LFLASRQATL TQTLLIQNGA REDCREMKIY LRNESEFRDK
                                                                             600
       LSPIHIALNF SLDPQAPVDS HGLRPALHYQ SKSRIEDKAQ ILLDCGEDNI CVPDLQLEVF
                                                                             660
       GEQNHVYLGD KNALNLTFHA QNVGEGGAYE AELRVTAPPE AEYSGLVRHP GNFSSLSCDY
                                                                             720
       FAVNOSRLLV CDLGNPMKAG ASLWGGLRFT VPHLRDTKKT IQFDFQILSK NLNNSQSDVV
20
       SFRLSVEAQA QVTLNGVSKP EAVLFPVSDW HPRDQPQKEE DLGPAVHHVY ELINQGPSSI
                                                                             840
       SOGVLELSCP QALEGOOLLY VTRVTGLNCT TNHPINPKGL ELDPEGSLHH QQKREAPSRS
                                                                             900
       SASSGPQILK CPEAECFRLR CELGPLHQQE SQSLQLHFRV WAKTFLQREH QPFSLQCEAV
                                                                             960
       YKALKMPYRI LPROLPOKER OVATAVOWTK AEGSYGVPLW IIILAILFGL LLLGLLIYIL
                                                                            1020
       YKLGFFKRSL PYGTAMEKAQ LKPPATSDA
25
       Sea ID NO: 388 DNA sequence
       Nucleic Acid Accession #: NM_002425
       Coding sequence: 26..1453
30
                                                               51
                             21
                                         31
                                                    41
       AAAGAAGGTA AGGGCAGTGA GAATGATGCA TCTTGCATTC CTTGTGCTGT TGTGTCTGCC
                                                                              60
       AGTCTGCTCT GCCTATCCTC TGAGTGGGGC AGCAAAAGAG GAGGACTCCA ACAAGGATCT
                                                                             120
       TGCCCAGCAA TACCTAGAAA AGTACTACAA CCTCGAAAAG GATGTGAAAC AGTTTAGAAG
                                                                             180
35
       AAAGGACAGT AATCTCATTG TTAAAAAAAT CCAAGGAATG CAGAAGTTCC TTGGGTTGGA
                                                                             240
       GGTGACAGGG AAGCTAGACA CTGACACTCT GGAGGTGATG CGCAAGCCCA GGTGTGGAGT
                                                                             300
       TCCTGACGTT GGTCACTTCA GCTCCTTTCC TGGCATGCCG AAGTGGAGGA AAACCCACCT
                                                                             360
       TACATACAGG ATTGTGAATT ATACACCAGA TTTGCCAAGA GATGCTGTTG ATTCTGCCAT
       TGAGAAAGCT CTGAAAGTCT GGGAAGAGGT GACTCCACTC ACATTCTCCA GGCTGTATGA
                                                                             480
40
       AGGAGAGGCT GATATAATGA TCTCTTTCGC AGTTAAAGAA CATGGAGACT TTTACTCTTT
                                                                             540
       TGATGGCCCA GGACACAGTT TGGCTCATGC CTACCCACCT GGACCTGGGC TTTATGGAGA
                                                                             600
       TATTCACTTT GATGATGATG AAAAATGGAC AGAAGATGCA TCAGGCACCA ATTTATTCCT
                                                                             660
       CGTTGCTGCT CATGAACTTG GCCACTCCCT GGGGCTCTTT CACTCAGCCA ACACTGAAGC
       TTTGATGTAC CCACTCTACA ACTCATTCAC AGAGCTCGCC CAGTTCCGCC TTTCGCAAGA
                                                                             780
45
       TGATGTGAAT GGCATTCAGT CTCTCTACGG ACCTCCCCCT GCCTCTACTG AGGAACCCCT
                                                                             840
       GGTGCCCACA AAATCTGTTC CTTCGGGATC TGAGATGCCA GCCAAGTGTG ATCCTGCTTT
                                                                             900
       GTCCTTCGAT GCCATCAGCA CTCTGAGGGG AGAATATCTG TTCTTTAAAG ACAGATATTT
                                                                             960
       TTGGCGAAGA TCCCACTGGA ACCCTGAACC TGAATTTCAT TTGATTTCTG CATTTTGGCC
                                                                            1020
       CTCTCTTCCA TCATATTTGG ATGCTGCATA TGAAGTTAAC AGCAGGGACA CCGTTTTAT
                                                                            1080
50
       TTTTAAAGGA AATGAGTTCT GGGCCATCAG AGGAAATGAG GTACAAGCAG GTTATCCAAG
       AGGCATCCAT ACCCTGGGTT TTCCTCCAAC CATAAGGAAA ATTGATGCAG CTGTTTCTGA
                                                                            1200
       CAAGGAAAAG AAGAAAACAT ACTTCTTTGC AGCGGACAAA TACTGGAGAT TTGATGAAAA
                                                                            1260
       TAGCCAGTCC ATGGAGCAAG GCTTCCCTAG ACTAATAGCT GATGACTTTC CAGGAGTTGA
                                                                            1320
       GCCTAAGGTT GATGCTGTAT TACAGGCATT TGGATTTTTC TACTTCTTCA GTGGATCATC
                                                                            1380
55
       ACAGTTTGAG TTTGACCCCA ATGCCAGGAT GGTGACACAC ATATTAAAGA GTAACAGCTG
       GTTACATTGC TAGGCGAGAT AGGGGGAAGA CAGATATGGG TGTTTTTAAT AAATCTAATA
                                                                            1500
       ATTATTCATC TAATGTATTA TGAGCCAAAA TGGTTAATTT TTCCTGCATG TTCTGTGACT
                                                                            1560
       GAAGAAGATG AGCCTTGCAG ATATCTGCAT GTGTCATGAA GAATGTTTCT GGAATTCTTC
                                                                            1620
       ACTTGCTTTT GAATTGCACT GAACAGAATT AAGAAATACT CATGTGCAAT AGGTGAGAGA
                                                                            1680
60
                                                                            1740
       ATGTATTTC ATAGATGTGT TATTACTTCC TCAATAAAAA GTTTTATTTT GGGCCTGTTC
       Seq ID NO: 389 Protein sequence
       Protein Accession #: NP_002416
65
                                         31
                                                    41
                                                                51
       MHLAFLVLLC LPVCSAYPLS GAAKEEDSNK DLAQQYLEKY YNLEKDVKQF RRKDSNLIVK
       KIQGMQKFLG LEVTGKLDTD TLEVMRKPRC GVPDVGHFSS FPGMPKWRKT HLTYRIVNYT
                                                                             120
70
       PDLPRDAVDS AIEKALKVWE EVTPLTFSRL YEGEADIMIS FAVKEHGDFY SFDGPGHSLA
                                                                             180
       HAYPPGPGLY GDIHFDDDEK WTEDASGTNL FLVAAHELGH SLGLFHSANT EALMYPLYNS
                                                                             240
       FTELAOFRLS ODDVNGIOSL YGPPPASTEE PLVPTKSVPS GSEMPAKCDP ALSFDAISTL
                                                                             300
       RGEYLFFKDR YFWRRSHWNP EPEFHLISAF WPSLPSYLDA AYEVNSRDTV FIFKGNEFWA
                                                                             360
       IRGNEVQAGY PRGIHTLGFP PTIRKIDAAV SDKEKKKTYF FAADKYWRFD ENSQSMEQGF
75
       PRLIADDFPG VEPKVDAVLQ AFGFFYFFSG SSQFEFDPNA RMVTHILKSN SWLHC
       Seq ID NO: 390 DNA sequence
       Nucleic Acid Accession #: NM_002421.2
       Coding sequence: 1..1409
80
       ATGCACAGCT TTCCTCCACT GCTGCTGCTG CTGTTCTGGG GTGTGGTGTC ACACAGCTTC
                                                                              60
       CCAGCGACTC TAGAAACACA AGAGCAAGAT GTGGACTTAG TCCAGAAATA CCTGGAAAAA
                                                                             120
       TACTACAACC TGAAGAATGA TGGGAGGCAA GTTGAAAAAG GGAGAAATAG TGGCCCAGTG
GTTGAAAAAAT TGAAGCAAAT GCAGGAATTC TTTGGGCTGA AAGTGACTGG GAAACCAGAT
85
                                                                             180
                                                                             240
       GCTGAAACCC TGAAGGTGAT GAAGCAGCCC AGATGTGGAG TGCCTGATGT GGCTCAGTTT
                                                                             300
```

```
GTCCTCACTG AGGGGAACCC TCGCTGGGAG CAAACACATC TGACCTACAG GATTGAAAAT
       TACACGCCAG ATTTGCCAAG AGCAGATGTG GACCATGCCA TTGAGAAAGC CTTCCAACTC
                                                                               420
       TGGAGTAATG TCACACCTCT GACATTCACC AAGGTCTCTG AGGGTCAAGC AGACATCATG
                                                                               480
       ATATCTTTTG TCAGGGGAGA TCATCGGGAC AACTCTCCTT TTGATGGACC TGGAGGAAAT
                                                                               540
 5
       CTTGCTCATG CTTTTCAACC AGGCCCAGGT ATTGGAGGGG ATGCTCATTT TGATGAAGAT
                                                                               600
       GAAAGGTGGA CCAACAATTT CAGAGAGTAC AACTTACATC GTGTTGCGGC TCATGAACTC
                                                                               660
       GGCCATTCTC TTGGACTCTC CCATTCTACT GATATCGGGG CTTTGATGTA CCCTAGCTAC
       ACCTTCAGTG GTGATGTTCA GCTAGCTCAG GATGACATTG ATGGCATCCA AGCCATATAT
                                                                               780
       GGACGTTCCC AAAATCCTGT CCAGCCCATC GGCCCACAAA CCCCAAAAGC ATGTGACAGT
                                                                               840
10
       AAGCTAACCT TTGATGCTAT AACTACGATT CGGGGAGAAG TGATGTTCTT TAAAGACAGA
                                                                               900
       TTCTACATGC GCACAAATCC CTTCTACCCG GAAGTTGAGC TCAATTTCAT TTCTGTTTTC
TGGCCACAAC TGCCAAATGG GCTTGAAGCT GCTTACGAAT TTGCCGACAG AGATGAAGTC
                                                                               960
                                                                              1020
       CGGTTTTTCA AAGGGAATAA GTACTGGGCT GTTCAGGGAC AGAATGTGCT ACACGGATAC
       CCCAAGGACA TCTACAGCTC CTTTGGCTTC CCTAGAACTG TGAAGCATAT CGATGCTGCT
                                                                              1140
15
                                                                              1200
       CTTTCTGAGG AAAACACTGG AAAAACCTAC TTCTTTGTTG CTAACAAATA CTGGAGGTAT
       GATGAATATA AACGATCTAT GGATCCAGGT TATCCCAAAA TGATAGCACA TGACTTTCCT
                                                                              1260
       GGAATTGGCC ACAAGTTGA TGCAGTTTTC ATGAAAGATG GATTTTCTA TTTCTTTCAT
                                                                              1320
       GGAACAAGAC AATACAAATT TGATCCTAAA ACGAAGAGAA TTTTGACTCT CCAGAAAGCT
                                                                              1380
       AATAGCTGGT TCAACTGCAG GAAAAATTAG
20
       Seq ID NO: 391 Protein sequence
                                  NP_002412.1
       Protein Accession #:
                                                                 51
                                                      41
                   11
                              21
                                          31
25
       MHSFPPLLLL LFWGVVSHSF PATLETQEQD VDLVQKYLEK YYNLKNDGRQ VEKRRNSGPV
       VEKLKQMQEF FGLKVTGKPD AETLKVMKQP RCGVPDVAQF VLTEGNPRWE QTHLTYRIEN
                                                                               120
       YTPDLPRADV DHAIEKAFQL WSNVTPLTFT KVSEGQADIM ISFVRGDHRD NSPFDGPGGN
                                                                               180
       LAHAFQPGPG IGGDAHFDED ERWTNNFREY NLHRVAAHEL GHSLGLSHST DIGALMYPSY
                                                                               240
30
       TFSGDVQLAQ DDIDGIQAIY GRSQNPVQPI GPQTPKACDS KLTFDAITTI RGEVMFFKDR
                                                                               300
       FYMRTNPFYP EVELNFISVF WPOLPNGLEA AYEFADRDEV RFFKGNKYWA VQGQNVLHGY
       PKDIYSSFGF PRTVKHIDAA LSEENTGKTY FFVANKYWRY DEYKRSMDPG YPKMIAHDFP
                                                                               420
       GIGHKVDAVF MKDGFFYFFH GTRQYKFDPK TKRILTLQKA NSWFNCRKN
35
       Seq ID NO: 392 DNA sequence
       Nucleic Acid Accession #: NM 002421.2
       Coding sequence: 1..1409
                               21
                   11
40
       ATGCACAGCT TTCCTCCACT GCTGCTGCTG CTGTTCTGGG GTGTGGTGTC ACACAGCTTC
                                                                                60
       CCAGCGACTC TAGAAACACA AGAGCAAGAT GTGGACTTAG TCCAGAAATA CCTGGAAAAA
                                                                               120
       TACTACAACC TGAAGAATGA TGGGAGGCAA GTTGAAAAGC GGAGAAATAG TGGCCCAGTG
       GTTGAAAAAT TGAAGCAAAT GCAGGAATTC TTTGGGCTGA AAGTGACTGG GAAACCAGAT
                                                                               240
45
       GCTGAAACCC TGAAGGTGAT GAAGCAGCCC AGATGTGGAG TGCCTGATGT GGCTCAGTTT
                                                                               300
       GTCCTCACTG AGGGGAACCC TCGCTGGGAG CAAACACATC TGACCTACAG GATTGAAAAT
                                                                               360
       TACACGCCAG ATTTGCCAAG AGCAGATGTG GACCATGCCA TTGAGAAAGC CTTCCAACTC
                                                                               420
       TGGAGTAATG TCACACCTCT GACATTCACC AAGGTCTCTG AGGGTCAAGC AGACATCATG
                                                                               480
       ATATCTTTTG TCAGGGGAGA TCATCGGGAC AACTCTCCTT TTGATGGACC TGGAGGAAAT
                                                                               540
50
       CTTGCTCATG CTTTTCAACC AGGCCCAGGT ATTGGAGGGG ATGCTCATTT TGATGAAGAT
                                                                               600
       GAAAGGTGGA CCAACAATTT CAGAGAGTAC AACTTACATC GTGTTGCGGC TCATGCCCTC
                                                                               660
       GGCCATTCTC TTGGACTCTC CCATTCTACT GATATCGGGG CTTTGATGTA CCCTAGCTAC
                                                                               720
                                                                               780
       ACCTTCAGTG GTGATGTTCA GCTAGCTCAG GATGACATTG ATGGCATCCA AGCCATATAT
       GGACGTTCCC AAAATCCTGT CCAGCCCATC GGCCCACAAA CCCCAAAAGC ATGTGACAGT
                                                                               840
55
       AAGCTAACCT TTGATGCTAT AACTACGATT CGGGGAGAAG TGATGTTCTT TAAAGACAGA
       TTCTACATGC GCACAAATCC CTTCTACCCG GAAGTTGAGC TCAATTTCAT TTCTGTTTTC
                                                                               960
       TGGCCACAAC TGCCAAATGG GCTTGAAGCT GCTTACGAAT TTGCCGACAG AGATGAAGTC
                                                                              1020
       CGGTTTTTCA AAGGGAATAA GTACTGGGCT GTTCAGGGAC AGAATGTGCT ACACGGATAC
                                                                              1080
       CCCAAGGACA TCTACAGCTC CTTTGGCTTC CCTAGAACTG TGAAGCATAT CGATGCTGCT
CTTTCTGAGG AAAACACTGG AAAAACCTAC TTCTTTGTTG CTAACAAATA CTGGAGGTAT
                                                                              1140
60
                                                                              1200
       GATGAATATA AACGATCTAT GGATCCAGGT TATCCCAAAA TGATAGCACA TGACTTTCCT
       GGAATTGGCC ACAAAGTTGA TGCAGTTTTC ATGAAAGATG GATTTTTCTA TTTCTTTCAT
                                                                              1320
       GGAACAAGAC AATACAAATT TGATCCTAAA ACGAAGAGAA TTTTGACTCT CCAGAAAGCT
                                                                              1380
       AATAGCTGGT TCAACTGCAG GAAAAATTAG
65
       Seg ID NO: 393 Protein seguence
       Protein Accession #:
                                  NP_002412.1
70
                               21
       MHSFPPLLLL LFWGVVSHSF PATLETQEQD VDLVQKYLEK YYNLKNDGRQ VEKRRNSGPV
       VEKLKOMOEF FGLKVTGKPD AETLKVMKQP RCGVPDVAQF VLTEGNPRWE QTHLTYRIEN
       YTPDLPRADV DHAIEKAFQL WSNVTPLTFT KVSEGQADIM ISFVRGDHRD NSPFDGPGGN
                                                                               180
75
       LAHAFQPGPG IGGDAHFDED ERWTNNFREY NLHRVAAHAL GHSLGLSHST DIGALMYPSY
                                                                               240
       TFSGDVQLAQ DDIDGIQAIY GRSQNPVQPI GPQTPKACDS KLTFDAITTI RGEVMFFKDR
                                                                               300
       FYMRTNEFYP EVELNFISVF WPQLENGLEA AYEFADRDEV RFFKGNKYWA VQGQNVLHGY
PKDIYSSFGF PRTVKHIDAA LSEENTGKTY FFVANKYWRY DEYKRSMDPG YPKMIAHDFP
                                                                               360
       GIGHKVDAVF MKDGFFYFFH GTRQYKFDPK TKRILTLQKA NSWFNCRKN
80
       Seq ID NO: 394 DNA sequence
       Nucleic Acid Accession #: NM_014331.2
       Coding sequence: 1..1506
85
                               21
```

	VV O UZ.	7000443					
	ATGGTCAGAA	AGCCTGTTGT	GTCCACCATC	TCCAAAGGAG	GTTACCTGCA	GGGAAATGTT	60
			GGGCAACAAG				120
			GAGGGGAGTC				180
			GGGCGTGCTC				240
5							300
5			GGTCCTGTCA				
			TGGAGGTCAT				360
			CTGGGTGGAA				420
			ACGCTACATT				480
10	CCTGAACTTG	CGATCAAGCT	CATTACAGCT	GTGGGCATAA	CTGTAGTGAT	GGTCCTAAAT	540
10			CGCCCGGATC				600
	GCAATTCTGA	TAATTATAGT	CCCTGGAGTT	ATGCAGCTAA	TTAAAGGTCA	AACGCAGAAC	660
	TTTAAAGACG	CGTTTTCAGG	AAGAGATTCA	AGTATTACGC	GGTTGCCACT	GGCTTTTTAT	720
	TATGGAATGT	ATGCATATGC	TGGCTGGTTT	TACCTCAACT	TTGTTACTGA	AGAAGTAGAA	780
			CCTTGCAATA				840
15	TATCTCCTCA	CAAATGTGGC	CTACTTTACG	ΔΟΟΔΤΤΔΑΤΟ	CTGAGGAGCT	GCTGCTTTCA	900
10			TTCTGAGCGG				960
			CTTTGGCTCC				1020
			AGAGGGTCAC				1080
20	CGCAAGCACA	CTCCTCTACC	AGCTGTTATT	GTTTTGCACC	CTTTGACAAT	GATAATGCTC	1140
20	TTCTCTGGAG	ACCTCGACAG	TCTTTTGAAT	TTCCTCAGTT	TTGCCAGGTG	GCTTTTTATT	1200
	GGGCTGGCAG	TTGCTGGGCT	GATTTATCTT	CGATACAAAT	GCCCAGATAT	GCATCGTCCT	1260
	TTCAAGGTGC	CACTGTTCAT	CCCAGCTTTG	TTTTCCTTCA	CATGCCTCTT	CATGGTTGCC	1320
	CTTTCCCTCT	ATTCGGACCC	ATTTAGTACA	GGGATTGGCT	TCGTCATCAC	TCTGACTGGA	1380
	GTCCCTGCGT	ATTATCTCTT	TATTATATGG	GACAAGAAAC	CCAGGTGGTT	TAGAATAATG	1440
25			ATTACAAATA				1500
			GATCTTGGCA				1560
			AGTCTAGAGA				1620
			TTTTAGCATA				1680
			AGTGAATATG				1740
30							1800
50			GGGGTTAGGA				
			ACGGCAAAGA				1860
			ATGGTTTTAC				1920
			CATACATCAT				1980
25	ATTTTACATT	GACATTGCAT	TGCTTCCCCT	TAGATACCAA	TTTAGATAAC	AAACACTCAT	2040
35			GAGCACTTTG				2100
			GCTACTGTTT				2160
	AAAAATCCTT	GAGAATTTAT	TATGTCAGAT	GTTTTTTCAT	TCATTATCAG	GAAGTTTTAG	2220
			TCACATCAGT				2280
			TAAATCCTCA				2340
40			AAACATATGC				2400
	TGAGAGAAAT	AACCAACAAA	GAAGATGTTC	AAAATAATAG	TCCCATATCT	GTAATCATAT	2460
	CTACATGCAA	TOTTACTAAT	TCTGAAGTTT	η τη τα α α τη τη α	TGGCTATTTT	TACACGATGA	2520
			ATTTTCTTTA				2580
			ATTAATTAGG				2640
45							2700
45	AAGAAATGTC	GCTGTAAATA	AGATTTACAA	CIGATGITIC	TAGAAAATIT	CCACTICIAT	
			TTCCACACCT				2760
			ATGAGAATCT				2820
			TACTGTGAGC				2880
~^			GGTGGATCAC				2940
50	CAACATGGAG	AAACCCCATC	TCTACTAAAA	ATACAAAATT	AGCTGGGCAT	GGTGGCACAT	3000
	GCTGGTAATC	TCAGCTATTG	AGGAGGCTGA	GGCAGGAGAA	TTGCTTGAAC	CCGGGAGGCG	3060
	GAGGTTGCAG	TGAGCCAAGA	TTGCACCACT	GTACTCCAGC	CTGGGTGACA	AAGTCAGACT	3120
		AAAAAAAAA					
		•					
55	Sea ID NO:	395 Protein	seguence				
		cession #: 1					
			_				
	1	11	21	31	41	51	
	ī	ī	ī	ĭ	ì	ī	
60	MUDEDURGET	PROCEST OCNES	NCDLDGLGNK	EDDGOEKUOI.	KDKALI'DGA	SIIIGTIIGA	60
00	MVKKPVVSII	SKGGILQGNV	TIWTVCGVLS	TECATOVAEL	COMPTENSOR	VEVIL EVECD	120
			VISLAFGRYI				180 240
			AILIIIVPGV				
65			NPEKTIPLAI				300
65			IFVALSCFGS				360
			FSGDLDSLLN				420
	FKVPLFIPAL	FSFTCLFMVA	LSLYSDPFST	GIGFVITLTG	VPAYYLFIIW	DKKPRWFRIM	480
	SEKITRTLQI	ILEVVPEEDK	ь				
70							
	Sea ID NO:	396 DNA sec	ruence				
			1#: NM_006	528	,		
		ence: 57		-			
			-				
75	1	11	21	31	41	51	
, -	ī	ī	ĩ	ī	ī	ī	
	GCCCCCA CCC	CONTRACTO	ACGCCTTGCC	CVGCGGGGGG	CCCGVCCCCG	TGCACCATGC	60
			CTGTCGATTC				120
							180
80			ACAGGAAATA				
00	ACGGACCCTG	CCGGGCCCTA	CTTCTCCGTT	ACTACTACGA	CAGGTACACG	EGGGT CCCE	240
			TGCGAGGGCA				300
			ATAGAAAAAG				360
	TGGACGACCA	GTGTGAGGGG	TCCACAGAAA	AGTATTTCTT	TAATCTAAGT	TCCATGACAT	420
0.5	GTGAAAAATT	CTTTTCCGGT	GGGTGTCACC	GGAACCGGAT	TGAGAACAGG	TTTCCAGATG	480
85	AAGCTACTTG	TATGGGCTTC	TGCGCACCAA	AGAAAATTCC	ATCATTTTGC	TACAGTCCAA	540
			GCCAATGTGA				600
			ACTGGCTGTG				660
						-	

```
AGGATTGCAA ACGTGCATGT GCAAAAGCTT TGAAAAAGAA AAAGAAGATG CCAAAGCTTC
                                                                                  720
       AGGATTGCCAG TAGAATCCGG AAAATTCGGA AGAAGCAATT TTAAACATTC TTAATATGTC
ATCTTGTTTG TCTTTATGGC TTATTGCCT TTATGGTTGT ATCTGAAGAA TAATATGACA
                                                                                  780
                                                                                  840
       GCATGAGGAA ACAAATCATT GGTGATTTAT TCACCAGTTT TTATTAATAC AAGTCACTTT
                                                                                  900
 5
       TTCAAAAATT TGGATTTTTT TATATATAAC TAGCTGCTAT TCAAATGTGA GTCTACCATT
                                                                                  960
                                                                                1020
        TTTAATTTAT GGTTCAACTG TTTGTGAGAC GAATTCTTGC AATGCATAAG ATATAAAAGC
       AAATATGACT CACTCATTTC TTGGGGTCGT ATTCCTGATT TCAGAAGAGG ATCATAACTG AAACAACATA AGACAATATA ATCATGTGCT TTTAACATAT TTGAGAATAA AAAGGACTAG
                                                                                1080
10
       Seq ID NO: 397 Protein sequence
       Protein Accession #: NP 006519
                                                        41
                                21
                                            31
15
       MDPARPLGLS ILLLFLTEAA LGDAAQEPTG NNAEICLLPL DYGPCRALLL RYYYDRYTQS
                                                                                   60
        CROFLYGGCE GNANNFYTWE ACDDACWRIE KVPKVCRLQV SVDDQCEGST EKYFFNLSSM
                                                                                  120
        TCEKFFSGGC HRNRIENRFP DEATCMGFCA PKKIPSFCYS PKDEGLCSAN VTRYYFNPRY
                                                                                  180
        RTCDAFTYTG CGGNDNNFVS REDCKRACAK ALKKKKMPK LRFASRIRKI RKKQF
20
        Sea ID NO:
                    398 DNA sequence
       Nucleic Acid Accession #: NM_001508.1
        Coding sequence: 1..1361
25
                                            31
                                                        41
                                                                    51
        ATGGCTTCAC CCAGCCTCCC GGGCAGTGAC TGCTCCCAAA TCATTGATCA CAGTCATGTC
        CCCGAGTTTG AGGTGGCCAC CTGGATCAAA ATCACCCTTA TTCTGGTGTA CCTGATCATC
                                                                                  120
        TTCGTGATGG GCCTTCTGGG GAACAGCGTC ACCATTCGGG TCACCCAGGT GCTGCAGAAG
                                                                                  180
30
        AAAGGATACT TGCAGAAGGA GGTGACAGAC CACATGGTGA GTTTGGCTTG CTCGGACATC
                                                                                  240
       TTGGTGTTCC TCATCGGCAT GCCCATGGAG TTCTACAGCA TCATCTGGAA TCCCCTGACC ACGTCCAGCT ACACCTGTC CTGCAAGCTG CACACTTTCC TCTTCGAGGC CTGCAGCTAC
                                                                                  300
                                                                                  360
        GCTACGCTGC TGCACGTGCT GACGCTCAGC TTTGAGCGCT ACATCGCCAT CTGTCACCCC
        TTCAGGTACA AGGCTGTGTC GGGACCTTGC CAGGTGAAGC TGCTGATTGG CTTCGTCTGG
                                                                                  480
35
        GTCACCTCCG CCCTGGTGGC ACTGCCCTTG CTGTTTGCCA TGGGTACTGA GTACCCCCTG
                                                                                  540
        GTGAACGTGC CCAGCCACCG GGGTCTCACT TGCAACCGCT CCAGCACCCG CCACCACGAG
                                                                                  600
        CAGCCCGAGA CCTCCAATAT GTCCATCTGT ACCAACCTCT CCAGCCGCTG GACCGTGTTC
                                                                                  660
        CAGTCCAGCA TCTTCGGCGC CTTCGTGGTC TACCTCGTGG TCCTGCTCTC CGTAGCCTTC
        ATGTGCTGGA ACATGATGCA GGTGCTCATG AAAAGCCAGA AGGGCTCGCT GGCCGGGGGC
40
        ACGCGGCCTC CGCAGCTGAG GAAGTCCGAG AGCGAAGAGA GCAGGACCGC CAGGAGGCAG
                                                                                  840
        ACCATCATCT TCCTGAGGCT GATTGTTGTG ACATTGGCCG TATGCTGGAT GCCCAACCAG
                                                                                  900
        ATTCGGAGGA TCATGGCTGC GGCCAAACCC AAGCACGACT GGACGAGGTC CTACTTCCGG
                                                                                  960
        GCGTACATGA TCCTCCTCCC CTTCTCGGAG ACGTTTTTCT ACCTCAGCTC GGTCATCAAC
                                                                                 1020
        CCGCTCCTGT ACACGGTGTC CTCGCAGCAG TTTCGGCGGG TGTTCGTGCA GGTGCTGTGC
                                                                                 1080
        TGCCGCCTGT CGCTGCAGCA CGCCAACCAC GAGAAGGGCC TGCGCGTACA TGCGCACTCC ACCACCGACA GCGCCCGCTT TGTGCAGCGC CCGTTGCTCT TCGCGTCCCG GCGCCAGTCC
45
                                                                                 1140
                                                                                 1200
        TCTGCAAGGA GAACTGAGAA GATTTTCTTA AGCACTTTTC AGAGCGAGGC CGAGCCCCAG
                                                                                 1260
        TCTAAGTCCC AGTCATTGAG TCTCGAGTCA CTAGAGCCCA ACTCAGGCGC GAAACCAGCC
                                                                                 1320
        AATTCTGCTG CAGAGAATGG TTTTCAGGAG CATGAAGTTT GA
50
        Seg ID NO: 399 Protein sequence
        Protein Accession #: NP 001499.1
                                21
                                            31
                                                        41
                                                                    51
55
        MASPSLPGSD CSQIIDHSHV PEFEVATWIK ITLILVYLII FVMGLLGNSV TIRVTQVLQK
        KGYLOKEVTD HMVSLACSDI LVFLIGMPME FYSIIWNPLT TSSYTLSCKL HTFLFEACSY
                                                                                  120
        ATLLHVLTLS FERYIAICHP FRYKAVSGPC QVKLLIGFVW VTSALVALPL LFAMGTEYPL
                                                                                  180
        VNVPSHRGLT CNRSSTRHHE QPETSNMSIC TNLSSRWTVF QSSIFGAFVV YLVVLLSVAF
                                                                                  240
60
        MCWNMMQVLM KSQKGSLAGG TRPPQLRKSE SEESRTARRQ TIIFLRLIVV TLAVCWMPNQ
                                                                                  300
        IRRIMAAAKP KHDWTRSYFR AYMILLPFSE TFFYLSSVIN PLLYTVSSQQ FRRVFVQVLC
                                                                                  360
        CRLSLQHANH EKRLRVHAHS TTDSARFVQR PLLFASRRQS SARRTEKIFL STFQSEAEPQ
        SKSOSLSLES LEPNSGAKPA NSAAENGFQE HEV
65
                     400 DNA sequence
        Nucleic Acid Accession #: NM_006475.1
        Coding sequence: 28..2538
                                                                    51
                                            31
                                                        41
70
        AACAGAACTG CAACGGAGAG ACTCAAGATG ATTCCCTTTT TACCCATGTT TTCTCTACTA
                                                                                   60
        TTGCTGCTTA TTGTTAACCC TATAAACGCC AACAATCATT ATGACAAGAT CTTGGCTCAT
                                                                                  120
        AGTCGTATCA GGGGTCGGGA CCAAGGCCCA AATGTCTGTG CCCTTCAACA GATTTTGGGC
                                                                                  180
        ACCAAAAAGA AATACTTCAG CACTTGTAAG AACTGGTATA AAAAGTCCAT CTGTGGACAG
                                                                                  240
        AAAACGACTG TTTTATATGA ATGTTGCCCT GGTTATATGA GAATGGAAGG AATGAAAGGC
75
        TGCCCAGCAG TTTTGCCCAT TGACCATGTT TATGGCACTC TGGGCATCGT GGGAGCCACC
                                                                                  360
        ACAACGCAGC GCTATTCTGA CGCCTCAAAA CTGAGGGAGG AGATCGAGGG AAAGGGATCC
                                                                                  420
        TTCACTTACT TTGCACCGAG TAATGAGGCT TGGGACAACT TGGATTCTGA TATCCGTAGA
                                                                                  480
        GGTTTGGAGA GCAACGTGAA TGTTGAATTA CTGAATGGTT TACATAGTCA CATGATTAAT AAGAGAATGT TGACCAAGGA CTTAAAAAAT GGCATGATTA TTCCTTCAAT GTATAACAAT
                                                                                  540
80
        TTGGGGCTTT TCATTAACCA TTATCCTAAT GGGGTTGTCA CTGTTAATTG TGCTCGAATC
                                                                                  660
        ATCCATGGGA ACCAGATTGC AACAAATGGT GTTGTCCATG TCATTGACCG TGTGCTTACA
                                                                                  720
        CAAATTGGTA CCTCAATTCA AGACTTCATT GAAGCAGAAG ATGACCTTTC ATCTTTTAGA
                                                                                  780
        GCAGCTGCCA TCACATCGGA CATATTGGAG GCCCTTGGAA GAGACGGTCA CTTCACACTC
                                                                                  840
        TTTGCTCCCA CCAATGAGGC TTTTGAGAAA CTTCCACGAG GTGTCCTAGA AAGGTTCATG
85
                                                                                  900
        GGAGACAAAG TGGCTTCCGA AGCTCTTATG AAGTACCACA TCTTAAATAC TCTCCAGTGT
                                                                                  960
        TCTGAGTCTA TTATGGGAGG AGCAGTCTTT GAGACGCTGG AAGGAAATAC AATTGAGATA
```

```
GGATGTGACG GTGACAGTAT AACAGTAAAT GGAATCAAAA TGGTGAACAA AAAGGATATT
       GTGACAAATA ATGGTGTGAT CCATTTGATT GATCAGGTCC TAATTCCTGA TTCTGCCAAA
                                                                           1140
       CAAGTTATTG AGCTGGCTGG AAAACAGCAA ACCACCTTCA CGGATCTTGT GGCCCAATTA
                                                                          1200
       GGCTTGGCAT CTGCTCTGAG GCCAGATGGA GAATACACTT TGCTGGCACC TGTGAATAAT
                                                                          1260
 5
       GCATTTTCTG ATGATACTCT CAGCATGGTT CAGCGCCTCC TTAAATTAAT TCTGCAGAAT
                                                                          1320
       CACATATTGA AAGTAAAAGT TGGCCTTAAT GAGCTTTACA ACGGGCAAAT ACTGGAAACC
                                                                          1380
       ATCGGAGGCA AACAGCTCAG AGTCTTCGTA TATCGTACAG CTGTCTGCAT TGAAAATTCA
                                                                           1440
       TGCATGGAGA AAGGGAGTAA GCAAGGGAGA AACGGTGCGA TTCACATATT CCGCGAGATC
                                                                           1500
       ATCAAGCCAG CAGAGAAATC CCTCCATGAA AAGTTAAAAC AAGATAAGCG CTTTAGCACC
                                                                           1560
10
       TTCCTCAGCC TACTTGAAGC TGCAGACTTG AAAGAGCTCC TGACACAACC TGGAGACTGG
                                                                          1620
       ACATTATTIG TGCCAACCAA TGATGCTTTT AAGGGAATGA CTAGTGAAGA AAAAGAAATT
                                                                          1680
       CTGATACGGG ACAAAAATGC TCTTCAAAAC ATCATTCTTT ATCACCTGAC ACCAGGAGTT
                                                                           1740
       TTCATTGGAA AAGGATTTGA ACCTGGTGTT ACTAACATTT TAAAGACCAC ACAAGGAAGC
       AAAATCTTTC TGAAAGAAGT AAATGATACA CTTCTGGTGA ATGAATTGAA ATCAAAAGAA
                                                                           1860
15
       TCTGACATCA TGACAACAAA TGGTGTAATT CATGTTGTAG ATAAACTCCT CTATCCAGCA
                                                                           1920
       GACACACCTG TTGGAAATGA TCAACTGCTG GAAATACTTA ATAAATTAAT CAAATACATC
                                                                          1980
       CAAATTAAGT TTGTTCGTGG TAGCACCTTC AAAGAAATCC CCGTGACTGT CTATACAACT
                                                                          2040
       AAAATTATAA CCAAAGTTGT GGAACCAAAA ATTAAAGTGA TTGAAGGCAG TCTTCAGCCT
                                                                           2100
       ATTATCAAAA CTGAAGGACC CACACTAACA AAAGTCAAAA TTGAAGGTGA ACCTGAATTC
                                                                           2160
20
       AGACTGATTA AAGAAGGTGA AACAATAACT GAAGTGATCC ATGGAGAGCC AATTATTAAA
                                                                           2220
       AAATACACCA AAATCATTGA TGGAGTGCCT GTGGAAATAA CTGAAAAAGA GACACGAGAA
                                                                           2280
       GAACGAATCA TTACAGGTCC TGAAATAAAA TACACTAGGA TTTCTACTGG AGGTGGAGAA
                                                                          2340
       ACAGAAGAAA CTCTGAAGAA ATTGTTACAA GAAGAGGTCA CCAAGGTCAC CAAATTCATT
                                                                          2400
       GAAGGTGGTG ATGGTCATTT ATTTGAAGAT GAAGAAATTA AAAGACTGCT TCAGGGAGAC
                                                                           2460
25
       ACACCCGTGA GGAAGTTGCA AGCCAACAAA AAAGTTCAAG GTTCTAGAAG ACGATTAAGG
                                                                           2520
       GAAGGTCGTT CTCAGTGAAA ATCCAAAAAC CAGAAAAAA TGTTTATACA ACCCTAAGTC
                                                                           2580
       AATAACCTGA CCTTAGAAAA TTGTGAGAGC CAAGTTGACT TCAGGAACTG AAACATCAGC
                                                                           2640
       ACAAAGAAGC AATCATCAAA TAATTCTGAA CACAAATTTA ATATTTTTT TTCTGAATGA
                                                                          2700
       GAAACATGAG GGAAATTGTG GAGTTAGCCT CCTGTGGTAA AGGAATTGAA GAAAATATAA
                                                                           2760
30
       CACCTTACAC CCTTTTCAT CTTGACATTA AAAGTTCTGG CTAACTTTGG AATCCATTAG
                                                                           2820
       AGAAAAATCC TTGTCACCAG ATTCATTACA ATTCAAATCG AAGAGTTGTG AACTGTTATC
       CCATTGAAAA GACCGAGCCT TGTATGTATG TTATGGATAC ATAAAATGCA CGCAAGCCAT
                                                                           2940
       TATCTCTCCA TGGGAAGCTA AGTTATAAAA ATAGGTGCTT GGTGTACAAA ACTTTTTATA
                                                                           3000
       TCAAAAGGCT TTGCACATTT CTATATGAGT GGGTTTACTG GTAAATTATG TTATTTTTTA
                                                                           3060
35
       CAACTAATTT TGTACTCTCA GAATGTTTGT CATATGCTTC TTGCAATGCA TATTTTTTAA
                                                                           3120
       TCTCAAACGT TTCAATAAAA CCATTTTTCA GATATAAAGA GAATTACTTC AAATTGAGTA
       ATTCAGAAAA ACTCAAGATT TAAGTTAAAA AGTGGTTTGG ACTTGGGAA
       Seg ID NO: 401 Protein seguence
40
       Protein Accession #: NP_006466.1
                             21
                                        31
                                                    41
                                                               51
                  11
       MIPFLPMFSL LLLLIVNPIN ANNHYDKILA HSRIRGRDQG PNVCALQQIL GTKKKYFSTC
45
       KNWYKKSICG QKTTVLYECC PGYMRMEGMK GCPAVLPIDH VYGTLGIVGA TTTQRYSDAS
                                                                            120
       KLREEIEGKG SFTYFAPSNE AWDNLDSDIR RGLESNVNVE LLNALHSHMI NKRMLTKDLK
                                                                            180
       NGMIIPSMYN NLGLFINHYP NGVVTVNCAR IIHGNQIATN GVVHVIDRVL TQIGTSIQDF
                                                                            240
       IEAEDDLSSF RAAAITSDIL EALGRDGHFT LFAPTNEAFE KLPRGVLERF MGDKVASEAL
                                                                            300
       MKYHILNTLO CSESIMGGAV FETLEGNTIE IGCDGDSITV NGIKMVNKKD IVTNNGVIHL
                                                                            360
50
       IDOVLIPDSA KOVIELAGKO OTTFTDLVAQ LGLASALRPD GEYTLLAPVN NAFSDDTLSM
       VORLLKLILO NHILKVKVGL NELYNGQILE TIGGKQLRVF VYRTAVCIEN SCMEKGSKQG
                                                                            480
       RNGAIHIFRE IIKPAEKSLH EKLKQDKRFS TFLSLLEAAD LKELLTQPGD WTLFVPTNDA
                                                                            540
       FKGMTSEEKE ILIRDKNALQ NIILYHLTPG VFIGKGFEPG VTNILKTTQG SKIFLKEVND
                                                                            600
       TLLVNELKSK ESDIMTTNGV IHVVDKLLYP ADTPVGNDQL LEILNKLIKY IQIKFVRGST
                                                                            660
55
       FKEIPVTVYT TKIITKVVEP KIKVIEGSLQ PIIKTEGPTL TKVKIEGEPE FRLIKEGETI
       TEVIHGEPII KKYTKIIDGV PVEITEKETR EERIITGPEI KYTRISTGGG ETEETLKKLL
                                                                            780
       QEEVTKVTKF IEGGDGHLFE DEEIKRLLQG DTPVRKLQAN KKVQGSRRRL REGRSQ
       Seq ID NO: 402 DNA sequence
60
       Nucleic Acid Accession #: NM_002416
       Coding sequence: 40..417
                                                               51
                                                    41
65
       ATCCAATACA GGAGTGACTT GGAACTCCAT TCTATCACTA TGAAGAAAAG TGGTGTTCTT
                                                                             60
       TTCCTCTTGG GCATCATCTT GCTGGTTCTG ATTGGAGTGC AAGGAACCCC AGTAGTGAGA
                                                                            120
       AAGGGTCGCT GTTCCTGCAT CAGCACCAAC CAAGGGACTA TCCACCTACA ATCCTTGAAA
       GACCTTAAAC AATTTGCCCC AAGCCCTTCC TGCGAGAAAA TTGAAATCAT TGCTACACTG
                                                                            240
       AAGAATGGAG TTCAAACATG TCTAAACCCA GATTCAGCAG ATGTGAAGGA ACTGATTAAA
                                                                            300
70
       AAGTGGGAGA AACAGGTCAG CCAAAAGAAA AAGCAAAAGA ATGGGAAAAA ACATCAAAAA
                                                                            360
       AAGAAAGTTC TGAAAGTTCG AAAATCTCAA CGTTCTCGTC AAAAGAAGAC TACATAAGAG
                                                                            420
       ACCACTTCAC CAATAAGTAT TCTGTGTTAA AAATGTTCTA TTTTAATTAT ACCGCTATCA
                                                                            480
       TTCCAAAGGA GGATGGCATA TAATACAAAG GCTTATTAAT TTGACTAGAA AATTTAAAAC
                                                                            540
       ATTACTCTGA AATTGTAACT AAAGTTAGAA AGTTGATTTT AAGAATCCAA ACGTTAAGAA
75
       TTGTTAAAGG CTATGATTGT CTTTGTTCTT CTACCACCCA CCAGTTGAAT TTCATCATGC
                                                                            660
       TTAAGGCCAT GATTTTAGCA ATACCCATGT CTACACAGAT GTTCACCCAA CCACATCCCA
                                                                            720
                                                                            780
       CTCACAACAG CTGCCTGGAA GAGCAGCCCT AGGCTTCCAC GTACTGCAGC CTCCAGAGAG
       TATCTGAGGC ACATGTCAGC AAGTCCTAAG CCTGTTAGCA TGCTGGTGAG CCAAGCAGTT
                                                                            840
       TGAAATTGAG CTGGACCTCA CCAAGCTGCT GTGGCCATCA ACCTCTGTAT TTGAATCAGC
80
       CTACAGGCCT CACACAAAT GTGTCTGAGA GATTCATGCT GATTGTTATT GGGTATCACC
                                                                            960
       ACTGGAGATC ACCAGTGTGT GGCTTTCAGA GCCTCCTTTC TGGCTTTGGA AGCCATGTGA
                                                                           1020
       TTCCATCTTG CCCGCTCAGG CTGACCACTT TATTTCTTTT TGTTCCCCTT TGCTTCATTC
                                                                           1080
       AAGTCAGCTC TTCTCCATCC TACCACATG CAGTGCCTTT CTTCTCCCA GTGCACCTGT
                                                                           1140
       CATATGCTCT GATTTATCTG AGTCAACTCC TTTCTCATCT TGTCCCCAAC ACCCCACAGA
                                                                           1200
85
       AGTGCTTTCT TCTCCCAATT CATCCTCACT CAGTCCAGCT TAGTTCAAGT CCTGCCTCTT
                                                                           1260
       AAATAAACCT TTTTGGACAC ACAAATTATC TTAAAACTCC TGTTTCACTT GGTTCAGTAC
       CACATGGGTG AACACTCAAT GGTTAACTAA TTCTTGGGTG TTTATCCTAT CTCTCCAACC
                                                                           1380
```

```
AGATTGTCAG CTCCTTGAGG GCAAGAGCCA CAGTATATTT CCCTGTTTCT TCCACAGTGC
       CTAATAATAC TGTGGAACTA GGTTTTAATA ATTTTTTAAT TGATGTTGTT ATGGGCAGGA
                                                                         1500
       TGGCAACCAG ACCATTGTCT CAGAGCAGGT GCTGGCTCTT TCCTGGCTAC TCCATGTTGG
                                                                         1560
       CTAGCCTCTG GTAACCTCTT ACTTATTATC TTCAGGACAC TCACTACAGG GACCAGGGAT
                                                                         1620
 5
       GATGCAACAT CCTTGTCTTT TTATGACAGG ATGTTTGCTC AGCTTCTCCA ACAATAAGAA
                                                                         1680
       GCACGTGGTA AAACACTTGC GGATATTCTG GACTGTTTTT AAAAAATATA CAGTTTACCG
                                                                         1740
       AAAATCATAT AATCTTACAA TGAAAAGGAC TTTATAGATC AGCCAGTGAC CAACCTTTTC
       CCAACCATAC AAAAATTCCT TTTCCCGAAG GAAAAGGGCT TTCTCAATAA GCCTCAGCTT
                                                                         1860
       TCTAAGATCT AACAAGATAG CCACCGAGAT CCTTATCGAA ACTCATTTTA GGCAAATATG
                                                                         1920
10
       AGTTTTATTG TCCGTTTACT TGTTTCAGAG TTTGTATTGT GATTATCAAT TACCACACCA
                                                                         1980
       TCTCCCATGA AGAAAGGGAA CGGTGAAGTA CTAAGCGCTA GAGGAAGCAG CCAAGTCGGT
                                                                         2040
       TAGTGGAAGC ATGATTGGTG CCCAGTTAGC CTCTGCAGGA TGTGGAAACC TCCTTCCAGG
                                                                         2100
       GGAGGTTCAG TGAATTGTGT AGGAGAGGTT GTCTGTGGCC AGAATTTAAA CCTATACTCA
                                                                         2160
       CTTTCCCAAA TTGAATCACT GCTCACACTG CTGATGATTT AGAGTGCTGT CCGGTGGAGA
                                                                         2220
15
       TCCCACCCGA ACGTCTTATC TAATCATGAA ACTCCCTAGT TCCTTCATGT AACTTCCCTG
                                                                         2280
       AAAAATCTAA GTGTTTCATA AATTTGAGAG TCTGTGACCC ACTTACCTTG CATCTCACAG
                                                                         2340
       GTAGACAGTA TATAACTAAC AACCAAAGAC TACATATTGT CACTGACACA CACGTTATAA
                                                                         2400
       TCATTTATCA TATATACA TACATGCATA CACTCTCAAA GCAAATAATT TTTCACTTCA
                                                                         2460
       AAACAGTATT GACTTGTATA CCTTGTAATT TGAAATATTT TCTTTGTTAA AATAGAATGG
20
       TATCAATAAA TAGACCATTA ATCAG
       Seq ID NO: 403 Protein sequence
       Protein Accession #: NP_002407
25
                                                   41
                  11
                             21
                                        31
       MKKSGVLFLL GIILLVLIGV QGTPVVRKGR CSCISTNQGT IHLQSLKDLK QFAPSPSCEK
                                                                            60
       IEIIATLKNG VQTCLNPDSA DVKELIKKWE KQVSQKKKQK NGKKHQKKKV LKVRKSQRSR
                                                                          120
30
       Seg ID NO: 404 DNA sequence
       Nucleic Acid Accession #: NM_006670
       Coding sequence: 85..1347
35
                                        31
                                                   41
                                                              51
       CCGGCTCGCG CCCTCCGGGC CCAGCCTCCC GAGCCTTCGG AGCGGGCGCC GTCCCAGCCC
                                                                            60
       AGCTCCGGGG AAACGCGAGC CGCGATGCCT GGGGGGTGCT CCCGGGGCCC CGCCGCCGGG
                                                                           120
       GACGGGCGTC TGCGGCTGGC GCGACTAGCG CTGGTACTCC TGGGCTGGGT CTCCTCGTCT
                                                                           180
40
       TCTCCCACCT CCTCGGCATC CTCCTTCTCC TCCTCGGCGC CGTTCCTGGC TTCCGCCGTG
                                                                          240
       TCCGCCCAGC CCCCGCTGCC GGACCAGTGC CCCGCGCTGT GCGAGTGCTC CGAGGCAGCG
                                                                           300
       CGCACAGTCA AGTGCGTTAA CCGCAATCTG ACCGAGGTGC CCACGGACCT GCCCGCCTAC
                                                                           360
       GTGCGCAACC TCTTCCTTAC CGGCAACCAG CTGGCCGTGC TCCCTGCCGG CGCCTTCGCC
       CGCCGGCCGC CGCTGGCGGA GCTGGCCGCG CTCAACCTCA GCGGCAGCCG CCTGGACGAG
                                                                           480
45
       GTGCGCGCG GCGCCTTCGA GCATCTGCCC AGCCTGCGCC AGCTCGACCT CAGCCACAAC
                                                                           540
       CCACTGGCCG ACCTCAGTCC CTTCGCTTTC TCGGGCAGCA ATGCCAGCGT CTCGGCCCCC
                                                                           600
       AGTCCCCTTG TGGAACTGAT CCTGAACCAC ATCGTGCCCC CTGAAGATGA GCGGCAGAAC
                                                                           660
       CGGAGCTTCG AGGCCATGGT GGTGGCGGCC CTGCTGGCGG GCCGTGCACT GCAGGGGCTC
                                                                           720
       CGCCGCTTGG AGCTGGCCAG CAACCACTTC CTTTACCTGC CGCGGGATGT GCTGGCCCAA
50
       CTGCCCAGCC TCAGGCACCT GGACTTAAGT AATAATTCGC TGGTGAGCCT GACCTACGTG
                                                                           840
       TCCTTCCGCA ACCTGACACA TCTAGAAAGC CTCCACCTGG AGGACAATGC CCTCAAGGTC
                                                                          900
       CTTCACAATG GCACCCTGGC TGAGTTGCAA GGTCTACCCC ACATTAGGGT TTTCCTGGAC
                                                                          960
       AACAATCCCT GGGTCTGCGA CTGCCACATG GCAGACATGG TGACCTGGCT CAAGGAAACA
                                                                         1020
       GAGGTAGTGC AGGGCAAAGA CCGGCTCACC TGTGCATATC CGGAAAAAAT GAGGAATCGG
                                                                         1080
55
       GTCCTCTTGG AACTCAACAG TGCTGACCTG GACTGTGACC CGATTCTTCC CCCATCCCTG
       CAAACCTCTT ATGTCTTCCT GGGTATTGTT TTAGCCCTGA TAGGCGCTAT TTTCCTCCTG
                                                                         1200
       GTTTTGTATT TGAACCGCAA GGGGATAAAA AAGTGGATGC ATAACATCAG AGATGCCTGC
                                                                         1260
       AGGGATCACA TGGAAGGGTA TCATTACAGA TATGAAATCA ATGCGGACCC CAGATTAACA
                                                                         1320
       AACCTCAGTT CTAACTCGGA TGTCTGAGAA ATATTAGAGG ACAGACCAAG GACAACTCTG
                                                                         1380
60
       CATGAGATGT AGACTTAAGC TTTATCCCTA CTAGGCTTGC TCCACTTTCA TCCTCCACTA
                                                                         1440
       TAGATACAAC GGACTTTGAC TAAAAGCAGT GAAGGGGATT TGCTTCCTTG TTATGTAAAG
                                                                         1500
       TTTCTCGGTG TGTTCTGTTA ATGTAAGACG ATGAACAGTT GTGTATAGTG TTTTACCCTC
                                                                         1560
       TTCTTTTTCT TGGAACTCCT CAACACGTAT GGAGGGATTT TTCAGGTTTC AGCATGAACA
                                                                         1620
       TGGGCTTCTT GCTGTCTGTC TCTCTCTCAG TACAGTTCAA GGTGTAGCAA GTGTACCCAC
                                                                         1680
65
       ACAGATAGCA TTCAACAAAA GCTGCCTCAA CTTTTTCGAG AAAAATACTT TATTCATAAA
                                                                         1740
       TATCAGTTTT ATTCTCATGT ACCTAAGTTG TGGAGAAAAT AATTGCATCC TATAAACTGC
                                                                         1800
       CTGCAGACGT TAGCAGGCTC TTCAAAATAA CTCCATGGTG CACAGGAGCA CCTGCATCCA
                                                                         1860
       AGAGCATGCT TACATTTTAC TGTTCTGCAT ATTACAAAAA ATAACTTGCA ACTTCATAAC
                                                                         1920
       TTCTTTGACA AAGTAAATTA CTTTTTTGAT TGCAGTTTAT ATGAAAATGT ACTGATTTTT
                                                                         1980
70
       2040
       ATTCTTAAAA GAA
       Sea ID NO: 405 Protein sequence
       Protein Accession #: NP_006661
75
                                        31
                                                   41
                                                              51
                             21
       MPGGCSRGPA AGDGRLRLAR LALVLLGWVS SSSPTSSASS FSSSAPFLAS AVSAQPPLPD
                                                                            60
       QCPALCECSE AARTVKCVNR NLTEVPTDLP AYVRNLFLTG NQLAVLPAGA FARRPPLAEL
80
       AALNLSGSRL DEVRAGAFEH LPSLRQLDLS HNPLADLSPF AFSGSNASVS APSPLVELIL
                                                                           180
       NHIVPPEDER ONRSFEGMVV AALLAGRALQ GLRRLELASN HFLYLPRDVL AQLPSLRHLD
                                                                           240
       LSNNSLVSLT YVSFRNLTHL ESLHLEDNAL KVLHNGTLAE LQGLPHIRVF LDNNPWVCDC
                                                                           300
       HMADMVTWLK ETEVVQGKDR LTCAYPEKMR NRVLLELNSA DLDCDPILPP SLQTSYVFLG
                                                                           360
       IVLALIGAIF LLVLYLNRKG IKKWMHNIRD ACRDHMEGYH YRYEINADPR LTNLSSNSDV
85
       Seq ID NO: 406 DNA sequence
       Nucleic Acid Accession #: Eos sequence
```

Coding sequence: 1..927

```
31
                                                    41
                                                               51.
                  11
                              21
 5
       ATGCCTGGGG GGTGCTCCCG GGGCCCCGCC GCCGGGGACG GGCGTCTGCG GCTGGCGCGA
                                                                              60
       CTAGCGCTGG TACTCCTGGG CTGGGTCTCC TCGTCTTCTC CCACCTCCTC GGCATCCTCC
                                                                             120
       TTCTCCTCCT CGGCGCCGTT CCTGGCTTCC GCCGTGTCCG CCCAGCCCCC GCTGCCGGAC
       CAGTGCCCCG CGCTGTGCGA GTGCTCCGAG GCAGCGCGCA CAGTCAAGTG CGTTAACCGC
                                                                             240
       AATCTGACCG AGGTGCCCAC GGACCTGCCC GCCTACGTGC GCAACCTCTT CCTTACCGGC
                                                                             300
10
       AACCAGCTGG CCAGCAACCA CTTCCTTTAC CTGCCGCGGG ATGTGCTGGC CCAACTGCCC
                                                                             360
       AGCCTCAGGC ACCTGGACTT AAGTAATAAT TCGCTGGTGA GCCTGACCTA CGTGTCCTTC
                                                                             420
       CGCAACCTGA CACATCTAGA AAGCCTCCAC CTGGAGGACA ATGCCCTCAA GGTCCTTCAC
                                                                             480
       AATGGCACCC TGGCTGAGTT GCAAGGTCTA CCCCACATTA GGGTTTTCCT GGACAACAAT
                                                                             540
       CCCTGGGTCT GCGACTGCCA CATGGCAGAC ATGGTGACCT GGCTCAAGGA AACAGAGGTA
                                                                             600
15
       GTGCAGGGCA AAGACCGGCT CACCTGTGCA TATCCGGAAA AAATGAGGAA TCGGGTCCTC
                                                                             660
       TTGGAACTCA ACAGTGCTGA CCTGGACTGT GACCCGATTC TTCCCCCATC CCTGCAAACC
                                                                             720
       TCTTATGTCT TCCTGGGTAT TGTTTTAGCC CTGATAGGCG CTATTTTCCT CCTGGTTTTG
                                                                             780
       TATTTGAACC GCAAGGGGAT AAAAAAGTGG ATGCATAACA TCAGAGATGC CTGCAGGGAT
                                                                             840
       CACATGGAAG GGTATCATTA CAGATATGAA ATCAATGCGG ACCCCAGATT AACAAACCTC
                                                                             900
20
       AGTTCTAACT CGGATGTCCT CGAGTGA
       Seq ID NO: 407 Protein sequence
       Protein Accession #: Eos sequence
25
                                                    41
                                                               51
       MPGGCSRGPA AGDGRLRLAR LALVLLGWVS SSSPTSSASS FSSSAPFLAS AVSAQPPLPD
                                                                              60
       QCPALCECSE AARTVKCVNR NLTEVPTDLP AYVRNLFLTG NQLASNHFLY LPRDVLAQLP
                                                                             120
       SLRHLDLSNN SLVSLTYVSF RNLTHLESLH LEDNALKVLH NGTLAELOGL PHIRVFLDNN
                                                                             180
30
       PWVCDCHMAD MVTWLKETEV VQGKDRLTCA YPEKMRNRVL LELNSADLDC DPILPPSLQT
                                                                             240
       SYVFLGIVLA LIGAIFLLVL YLNRKGIKKW MHNIRDACRD HMEGYHYRYE INADPRLTNL
       Seq ID NO: 408 DNA sequence
35
       Nucleic Acid Accession #: NM_000095.1
       Coding sequence: 26..2299
                                                               51
40
       CAGCACCCAG CTCCCCGCCA CCGCCATGGT CCCCGACACC GCCTGCGTTC TTCTGCTCAC
                                                                              60
       CCTGGCTGCC CTCGGCGCGT CCGGACAGGG CCAGAGCCCG TTGGGCTCAG ACCTGGGCCC
                                                                             120
       GCAGATGCTT CGGGAACTGC AGGAAACCAA CGCGGCGCTG CAGGACGTGC GGGACTGGCT
                                                                             180
       GCGGCAGCAG GTCAGGGAGA TCACGTTCCT GAAAAACACG GTGATGGAGT GTGACGCGTG
       CGGGATGCAG CAGTCAGTAC GCACCGGCCT ACCCAGCGTG CGGCCCCTGC TCCACTGCGC
                                                                             300
45
       GCCCGGCTTC TGCTTCCCCG GCGTGGCCTG CATCCAGACG GAGAGCGGCG GCCGCTGCGG
                                                                             360
       CCCCTGCCCC GCGGGCTTCA CGGGCAACGG CTCGCACTGC ACCGACGTCA ACGAGTGCAA
                                                                             420
       CGCCCACCC TGCTTCCCCC GAGTCCGCTG TATCAACACC AGCCCGGGGT TCCGCTGCGA
                                                                             480
       GGCTTGCCG CCGGGGTACA GCGGCCCCAC CCACCAGGGC GTGGGGCTGG CTTTCGCCAA
                                                                             540
       GGCCAACAAG CAGGTTTGCA CGGACATCAA CGAGTGTGAG ACCGGGCAAC ATAACTGCGT
                                                                             600
50
       CCCCAACTCC GTGTGCATCA ACACCCGGGG CTCCTTCCAG TGCGGCCCGT GCCAGCCCGG
                                                                             660
       CTTCGTGGGC GACCAGGCGT CCGGCTGCCA GCGCGCGCA CAGCGCTTCT GCCCCGACGG
                                                                             720
       CTCGCCCAGC GAGTGCCACG AGCATGCAGA CTGCGTCCTA GAGCGCGATG GCTCGCGGTC
                                                                             780
       GTGCGTGTGT CGCGTTGGCT GGGCCGGCAA CGGGATCCTC TGTGGTCGCG ACACTGACCT
                                                                             840
       AGACGGCTTC CCGGACGAGA AGCTGCGCTG CCCGGAGCCG CAGTGCCGTA AGGACAACTG
55
       CGTGACTGTG CCCAACTCAG GGCAGGAGGA TGTGGACCGC GATGGCATCG GAGACGCCTG
                                                                             960
       CGATCCGGAT GCCGACGGGG ACGGGGTCCC CAATGAAAAG GACAACTGCC CGCTGGTGCG
                                                                            1020
       GAACCCAGAC CAGCGCAACA CGGACGAGGA CAAGTGGGGC GATGCGTGCG ACAACTGCCG
GTCCCAGAAG AACGACGACC AAAAGGACAC AGACCAGGAC GGCCGGGGCG ATGCGTGCGA
                                                                            1080
                                                                            1140
       CGACGACATC GACGGCGACC GGATCCGCAA CCAGGCCGAC AACTGCCCTA GGGTACCCAA
                                                                            1200
60
       CTCAGACCAG AAGGACAGTG ATGGCGATGG TATAGGGGAT GCCTGTGACA ACTGTCCCCA
                                                                            1260
       GAAGAGCAAC CCGGATCAGG CGGATGTGGA CCACGACTTT GTGGGAGATG CTTGTGACAG
                                                                            1320
       CGATCAAGAC CAGGATGGAG ACGGACATCA GGACTCTCGG GACAACTGTC CCACGGTGCC
                                                                            1380
       TAACAGTGCC CAGGAGGACT CAGACCACGA TGGCCAGGGT GATGCCTGCG ACGACGACGA
                                                                            1440
       CGACAATGAC GGAGTCCCTG ACAGTCGGGA CAACTGCCGC CTGGTGCCTA ACCCCGGCCA
                                                                            1500
65
       GGAGGACGCG GACAGGGACG GCGTGGGCGA CGTGTGCCAG GACGACTTG ATGCAGACAA
                                                                            1560
       GGTGGTAGAC AAGATCGACG TGTGTCCGGA GAACGCTGAA GTCACGCTCA CCGACTTCAG
                                                                            1620
       GGCCTTCCAG ACAGTCGTGC TGGACCCGGA GGGTGACGCG CAGATTGACC CCAACTGGGT
       GGTGCTCAAC CAGGGAAGGG AGATCGTGCA GACAATGAAC AGCGACCCAG GCCTGGCTGT
                                                                            1740
                                                                            1800
       GGGTTACACT GCCTTCAATG GCGTGGACTT CGAGGGCACG TTCCATGTGA ACACGGTCAC
70
       GGATGACGAC TATGCGGGCT TCATCTTTGG CTACCAGGAC AGCTCCAGCT
                                                               TCTACGTGGT
                                                                            1860
       CATGTGGAAG CAGATGGAGC AAACGTATTG GCAGGCGAAC CCCTTCCGTG CTGTGGCCGA
                                                                            1920
       GCCTGGCATC CAACTCAAGG CTGTGAAGTC TTCCACAGGC CCCGGGGAAC AGCTGCGGAA
                                                                            1980
       CGCTCTGTGG CATACAGGAG ACACAGAGTC CCAGGTGCGG CTGCTGTGGA AGGACCCGCG
                                                                            2040
       AAACGTGGGT TGGAAGGACA AGAAGTCCTA TCGTTGGTTC CTGCAGCACC GGCCCCAAGT
                                                                            2100
75
       GGGCTACATC AGGGTGCGAT TCTATGAGGG CCCTGAGCTG GTGGCCGACA GCAACGTGGT
                                                                            2160
       CTTGGACACA ACCATGCGGG GTGGCCGCCT GGGGGTCTTC TGCTTCTCCC AGGAGAACAT
                                                                            2220
       CATCTGGGCC AACCTGCGTT ACCGCTGCAA TGACACCATC CCAGAGGACT ATGAGACCCA
                                                                            2280
       TCAGCTGCGG CAAGCCTAGG GACCAGGGTG AGGACCCGCC GGATGACAGC CACCCTCACC
                                                                            2340
       GCGGCTGGAT GGGGGCTCTG CACCCAGCCC AAGGGGTGGC CGTCCTGAGG GGGAAGTGAG
80
       AAGGGCTCAG AGAGGACAAA ATAAAGTGTG TGTGCAGGG
       Seq ID NO: 409 Protein sequence
       Protein Accession #: NP_000086.1
85
                                         31
                                                    41
       MVPDTACVLL LTLAALGASG QGQSPLGSDL GPQMLRELQE TNAALQDVRD WLRQQVREIT
```

```
WO 02/086443
       FLKNTVMECD ACGMQQSVRT GLPSVRPLLH CAPGFCFPGV ACIQTESGGR CGPCPAGFTG
       NGSHCTDVNE CNAHPCFPRV RCINTSPGFR CEACPPGYSG PTHQGVGLAF AKANKQVCTD
                                                                              180
       INECETGOHN CVPNSVCINT RGSFQCGPCQ PGFVGDQASG CQRGAQRFCP DGSPSECHEH
                                                                              240
       ADCVLERDGS RSCVCRVGWA GNGILCGRDT DLDGFPDEKL RCPEPQCRKD NCVTVPNSGQ
                                                                              300
 5
       EDVDRDGIGD ACDPDADGDG VPNEKDNCPL VRNPDQRNTD EDKWGDACDN CRSQKNDDQK
DTDQDGRGDA CDDDIDGDRI RNQADNCPRV PNSDQKDSDG DGIGDACDNC PQKSNPDQAD
                                                                              360
                                                                              420
       VDHDFVGDAC DSDQDQDGDG HQDSRDNCPT VPNSAQEDSD HDGQGDACDD DDDNDGVPDS
                                                                              480
       RDNCRLVPNP GQEDADRDGV GDVCQDDFDA DKVVDKIDVC PENAEVTLTD FRAFQTVVLD
       PEGDAQIDPN WVVLNQGREI VQTMNSDPGL AVGYTAFNGV DFEGTFHVNT VTDDDYAGFI
                                                                              600
10
       FGYQDSSSFY VVMWKQMEQT YWQANPFRAV AEPGIQLKAV KSSTGPGEQL RNALWHTGDT
                                                                              660
       ESOVRLLWKD PRNVGWKDKK SYRWFLOHRP OVGYIRVRFY EGPELVADSN VVLDTTMRGG
                                                                              720
       RLGVFCFSQE NIIWANLRYR CNDTIPEDYE THOLROA
       Seq ID NO: 410 DNA sequence
15
       Nucleic Acid Accession #: NM 001565.1
       Coding sequence: 67..363
                  11
                              21
                                          31
                                                     41
                                                                 51
20
       GAGACATTCC TCAATTGCTT AGACATATTC TGAGCCTACA GCAGAGGAAC CTCCAGTCTC
       AGCACCATGA ATCAAACTGC GATTCTGATT TGCTGCCTTA TCTTTCTGAC TCTAAGTGGC
                                                                              120
       ATTCAAGGAG TACCTCTCT TAGAACCGTA CGCTGTACCT GCATCAGCAT TAGTAATCAA
                                                                              1.80
       CCTGTTAATC CAAGGTCTTT AGAAAAACTT GAAATTATTC CTGCAAGCCA ATTTTGTCCA
                                                                              240
       CGTGTTGAGA TCATTGCTAC AATGAAAAAG AAGGGTGAGA AGAGATGTCT GAATCCAGAA
                                                                              300
25
       TCGAAGGCCA TCAAGAATTT ACTGAAAGCA GTTAGCAAGG AAATGTCTAA AAGATCTCCT
                                                                              360
       TAAAACCAGA GGGGAGCAAA ATCGATGCAG TGCTTCCAAG GATGGACCAC ACAGAGGCTG
                                                                              420
       CCTCTCCCAT CACTTCCCTA CATGGAGTAT ATGTCAAGCC ATAATTGTTC TTAGTTTGCA
                                                                              480
       GTTACACTAA AAGGTGACCA ATGATGGTCA CCAAATCAGC TGCTACTACT CCTGTAGGAA
                                                                              540
       GGTTAATGTT CATCATCCTA AGCTATTCAG TAATAACTCT ACCCTGGCAC TATAATGTAA
                                                                              600
30
       GCTCTACTGA GGTGCTATGT TCTTAGTGGA TGTTCTGACC CTGCTTCAAA TATTTCCCTC
                                                                              660
       ACCTTTCCCA TCTTCCAAGG GTACTAAGGA ATCTTTCTGC TTTGGGGTTT ATCAGAATTC
                                                                              720
       TCAGAATCTC AAATAACTAA AAGGTATGCA ATCAAATCTG CTTTTTAAAG AATGCTCTTT
       ACTTCATGGA CTTCCACTGC CATCCTCCCA AGGGGCCCAA ATTCTTTCAG TGGCTACCTA
                                                                              840
       CATACAATTC CAAACACATA CAGGAAGGTA GAAATATCTG AAAATGTATG TGTAAGTATT
                                                                              900
35
       CTTATTTAAT GAAAGACTGT ACAAAGTATA AGTCTTAGAT GTATATATTT CCTATATTGT
                                                                              960
                                                                             1020
       TTTCAGTGTA CATGGAATAA CATGTAATTA AGTACTATGT ATCAATGAGT AACAGGAAAA
       TTTTAAAAAT ACAGATAGAT ATATGCTCTG CATGTTACAT AAGATAAATG TGCTGAATGG
                                                                             1080
       TTTTCAAATA AAAATGAGGT ACTCTCCTGG AAATATTAAG
40
       Seq ID NO: 411 Protein sequence
       Protein Accession #: NP_001556.1
                                          31
                  11
                              21
                                                     41
                                                                 51
45
       MNQTAILICC LIFLTLSGIQ GVPLSRTVRC TCISISNQPV NPRSLEKLEI IPASQFCPRV
                                                                               60
       EIIATMKKKG EKRCLNPESK AIKNLLKAVS KEMSKRSP
       Seg ID NO: 412 DNA sequence
       Nucleic Acid Accession #: XM 057014
50
       Coding sequence: 143..874
                                          31
                                                     41
                                                                 51
       GGGAGGGAGA GAGGCGCGC GGTGAAAGGC GCATTGATGC AGCCTGCGGC GGCCTCGGAG
                                                                               60
55
       CGCGGCGGAG CCAGACGCTG ACCACGTTCC TCTCCTCGGT CTCCTCCGCC TCCAGCTCCG
                                                                              120
       CGCTGCCCGG CAGCCGGGAG CCATGCGACC CCAGGGCCCC GCCGCCTCCC CGCAGCGGCT
       CCGCGGCCTC CTGCTGCTCC TGCTGCTGCA GCTGCCCGCG CCGTCGAGCG CCTCTGAGAT
                                                                              240
       CCCCAAGGGG AAGCAAAAGG CGCAGCTCCG GCAGAGGGAG GTGGTGGACC TGTATAATGG
                                                                              300
       AATGTGCTTA CAAGGGCCAG CAGGAGTGCC TGGTCGAGAC GGGAGCCCTG GGGCCAATGG
                                                                              360
60
       CATTCCGGGT ACACCTGGGA TCCCAGGTCG GGATGGATTC AAAGGAGAAA AGGGGGAATG
                                                                              420
       TCTGAGGGAA AGCTTTGAGG AGTCCTGGAC ACCCAACTAC AAGCAGTGTT CATGGAGTTC
                                                                              480
       ATTGAATTAT GGCATAGATC TTGGGAAAAT TGCGGAGTGT ACATTTACAA AGATGCGTTC
                                                                              540
       AAATAGTGCT CTAAGAGTTT TGTTCAGTGG CTCACTTCGG CTAAAATGCA GAAATGCATG
                                                                              600
       CTGTCAGCGT TGGTATTTCA CATTCAATGG AGCTGAATGT TCAGGACCTC TTCCCATTGA
                                                                              660
65
       AGCTATAATT TATTTGGACC AAGGAAGCCC TGAAATGAAT TCAACAATTA ATATTCATCG
                                                                              720
       CACTTCTTCT GTGGAAGGAC TTTGTGAAGG AATTGGTGCT GGATTAGTGG ATGTTGCTAT
                                                                              780
       CTGGGTTGGC ACTTGTTCAG ATTACCCAAA AGGAGATGCT TCTACTGGAT GGAATTCAGT
TTCTCGCATC ATTATTGAAG AACTACCAAA ATAAATGCTT TAATTTTCAT TTGCTACCTC
                                                                              840
                                                                              900
       TTTTTTATT ATGCCTTGGA ATGGTTCACT TAAATGACAT TTTAAATAAG TTTATGTATA
                                                                              960
70
       CATCTGAATG AAAAGCAAAG CTAAATATGT TTACAGACCA AAGTGTGATT TCACACTGTT
                                                                             1020
       TTTAAATCTA GCATTATTCA TTTTGCTTCA ATCAAAAGTG GTTTCAATAT TTTTTTTAGT
                                                                             1080
       TGGTTAGAAT ACTTTCTTCA TAGTCACATT CTCTCAACCT ATAATTTGGA ATATTGTTGT
                                                                             1140
       GGTCTTTTGT TTTTTCTCTT AGTATAGCAT TTTTAAAAAA ATATAAAAGC TACCAATCTT
                                                                             1200
       TGTACAATTT GTAAATGTTA AGAATTTTTT TTATATCTGT TAAATAAAAA TTATTTCCAA
75
       СААССТТААА ААААААААА АААА
       Seq ID NO: 413 Protein sequence
       Protein Accession #: XP_057014
80
                                          31
                                                                 51
                                                     41
       MRPOGPAASP ORLRGLILLL LLQLPAPSSA SEIPKGKQKA QLROREVVDL YNGMCLQGPA
                                                                               60
       GVPGRDGSPG ANGIPGTPGI PGRDGFKGEK GECLRESFEE SWTPNYKQCS WSSLNYGIDL
                                                                              120
       GKIAECTFTK MRSNSALRVL FSGSLRLKCR NACCQRWYFT FNGAECSGPL PIEAIIYLDQ
                                                                              180
85
       GSPEMNSTIN IHRTSSVEGL CEGIGAGLVD VAIWVGTCSD YPKGDASTGW NSVSRIIIEE
```

WO 02/086443
Seq ID NO: 414 DNA sequence
Nucleic Acid Accession #: XM_084007
Coding sequence: 138..2405

5	1	11	21	31	41	51	
	}	1	}	1			
		ATTCGGCACG					60
		CGTGTGGAAC AGGCGCAATG					120 180
10		AAATCCCCTT					240
10		GAATTGGGAA					300
		ACAGCTTTTC					360
		ACTTCAAAAT					420
		TCACTCAGAC					480
15	AGCATCACTC	AGACCACGAG	CATCACTCTG	ACCATGATCA	TCACTCCCAC	CATAATCATG	540
		TAAAAATAAG					600
		TAGAAACAGC					660
		CAAGGACAGT					720
20		AACTCACTTT					780
20		AAGCAGCTCC GAAAACAAAT					840 900
						ACATCTCATG	
		CCAGGTTCCG					1020
		TGATGCTAGA					1080
25		CTATTCATTA					1140
		GTCTCTGCTG					1200
		GAGTTTCCTT					1260
	TACACCTTCT-	TCCACATTCT	CATGCAAGTC	ACCACCATAG	TCATAGCCAT	GAAGAACCAG	1320
• •	CAATGGAAAT	GAAAAGAGGA	CCACTTTTCA	GTCATCTGTC	TTCTCAAAAC	ATAGAAGAAA	1380
30		TGATTCCACG					1440
		ACATGTCCTC					1500
		TGAAAATGAT					1560
		AACAAATGAG					1620
25		ACAAGAGCCC					1680
35		GATAGCTCAT					1740
		TAAATGCCAT					1800
		TCATGACTAC					1860
		CAGCCAGCGC					1920 1980
40		GGTGATAATG TACTGAAGGC					2040
40	GTGCTGCTTT	TCATGAAGGC	COMONOMERO	CTCTTCTTAGIAC	ANACGCTCCC	ATCACCCTTA	2100
		CCTTTATAAT					2160
		TGGTCATTAT					2220
		GTATGTTGCT					2280
45	GTGACCATGG	ATGTAGCCGC	TCCCCCTATT	TCTTTTTACA	GAATGCTGGG	ATGCTTTTGG	2340
15		TATGTTACTT					2400
		GTTTAAATGC					2460
		GTTTGTATGC					2520
		TATTGCTGTC					2580
50		TGGAGATAAA					2640
	TAAACAAGAG	ATTTGGCATG	ACATGTTCTG	TATGTTTCAG	GGAAAAATGT	CTTTAATGCT	2700
		CTAACACAGT					2760
		TAAGAATGTG					2820
<i></i>		TAAAGGAGAA					2880
55		AAATTTGTTG					2940
		ATAGAGTACA					3000
		CTCTCATATA					3060
		AATGAATTCA					3120
60		TTATATACCA TTATATATCA					3180 3240
00							3300
		AGAGTAGTAA CGATTCAGAA					3360
		CTTTATATAC					3420
		TTTTACACAA					5120
65	Onioiiicii	11111101101101			•		
00	Sea ID NO:	415 Protein	1 sequence				
	-	cession #: 2	_				
	1	1.1	21	31	41	51	
70	1	1	1	1	1	1	
	MARKLSVILI	LTFALSVTNP	LHELKAAAFP	QTTEKISPNW	ESGINVDLAI	STRQYHLQQL	60
		SVEGFRKLLQ					120
	EHHSDHDHHS	HHNHAASGKN	KRKALCPDHD	SDSSGKDPRN	SQGKGAHRPE	HASGRRNVKD	180
75		VYNTVSEGTH					240
75		FMYSRNTNEN					300
		KAEIPPKTYS					360
		GDAFLHLLPH					420
		LYFMFLVEHV					480 540
80		EGYLRADSQE SDDLIHHHHD					600
O.V		GLAIGAAFTE					660
						HNDASDHGCS	720
		GMLLGFGIML					, 20
	MUGIFFIQNA	CHILD SECTION	22021 Bille	- 10-111			
85	Seq ID NO:	416 DNA sec	quence				
		id Accession		419.1			
		uence: 18					

	1	11	21	31	41	51 1	
	 ATTCCCCAACC	 GCGCGCACTG	 GCCCCCCTC	TCCCTCCTCC	TGATCCTGCT	TTGGGGGCCAT	60
5	CCCCCAGC	CGCTGGCCTG	CCCGCATCCT	TGTGCCTGCT	ACGTCCCCAG	CGAGGTCCAC	120
•	TGCACGTTCC	GATCCCTGGC	TTCCGTGCCC	GCTGGCATTG	CTAGACACGT	GGAAAGAATC	180
		TTAATAGCAT					240
	TTGGAGCTAC	TTATGATTCA	CGGCAATGAG	ATCCCAAGCA	TCCCCGATGG	AGCTTTAAGA	300
1.0		CTCTTCAGGT					360
10	CAGACCCTCC	AGGGTCTCTC	TAACTTAATG	AGGCTGCACA	TTGACCACAA	CAAGATCGAG	420
		CTCAAGCTTT					480 540
	AATCTCCTCC	ACCAGCTGCA CCATAAGGCA	CCCCAGCACC	CCACACAT	TCACATITIT	TCTTCCTGCC	600
		GGAACATGCC					660
15	TGCGATTGTG	AGATGAGATG	GTTTTTGGAA	TGGGATGCAA	AATCCAGAGG	AATTCTGAAG	720
	TGTAAAAAGG	ACAAAGCTTA	TGAAGGCGGT	CAGTTGTGTG	CAATGTGCTT	CAGTCCAAAG	780
	AAGTTGTACA	AACATGAGAT	ACACAAGCTG	AAGGACATGA	CTTGTCTGAA	GCCTTCAATA	840
	GAGTCCCCTC	TGAGACAGAA	CAGGAGCAGG	AGTATTGAGG	AGGAGCAAGA	ACAGGAAGAG	900
20	GATGGTGGCA	GCCAGCTCAT	CCTGGAGAAA	TTCCAACTGC	CCCAGTGGAG	CATCTCTTTG	960 1020
20	CATTCTTCTACA	ACGAGCACGG AGATTCACTT	GAACAIGGIG	GATCCTCCAG	ATATTGACAT	AAATGCAACA	1080
	GATGIGIACA	ACTTTGAGTG	TCCAATGACC	CGAGAAAACT	ATGAAAAGCT	ATGGAAATTG	1140
	ATAGCATACT	ACAGTGAAGT	TCCCGTGAAG	CTACACAGAG	AGCTCATGCT	CAGCAAAGAC	1200
~ ~	CCCAGAGTCA	GCTACCAGTA	CAGGCAGGAT	GCTGATGAGG	AAGCTCTTTA	CTACACAGGT	1260
25	GTGAGAGCCC	AGATTCTTGC	AGAACCAGAA	TGGGTCATGC	AGCCATCCAT	AGATATCCAG	1320
	CTGAACCGAC	GTCAGAGTAC	GGCCAAGAAG	GTGCTACTTT	CCTACTACAC	CCAGTATTCT	1380 1440
	CAAACAATAT	CCACCAAAGA CTGTGCAAAG	TACAAGGCAG	CTCCTCCAAG	GAAGCIGGGI	CCACTTGAGC	1500
	TCCAACCTCA	AAGCTTCTGA	GAGTCCATCT	ATCTTCTGGG	TGCTTCCAGA	TGGCTCCATC	1560
30	CTGAAAGCGC	CCATGGATGA	CCCAGACAGC	AAGTTCTCCA	TTCTCAGCAG	TGGCTGGCTG	1620
-	AGGATCAAGT	CCATGGAGCC	ATCTGACTCA	GGCTTGTACC	AGTGCATTGC	TCAAGTGAGG	1680
	GATGAAATGG	ACCGCATGGT	ATATAGGGTA	CTTGTGCAGT	CTCCCTCCAC	TCAGCCAGCC	1740
	GAGAAAGACA	CAGTGACAAT	TGGCAAGAAC	CCAGGGGAGT	CGGTGACATT	GCCTTGCAAT	1800
25	GCTTTAGCAA	TACCCGAAGC	CCACCTTAGC	TGGATTCTTC	CAAACAGAAG	GATAATTAAT	1860
35	GATTTGGCTA	ACACATCACA GTGATAGTGG	TGTATACATG	TIGCCAAAIG	TCAACCAGCA	AGGGGCAGAC	1920 1980
	CATTTTACCC	TGGGAATCAC	AGTGACCAGG	AAAGGGTCTG	GCTTGCCATC	CAAAAGAGGC	2040
	AGACGCCCAG	GTGCAAAGGC	TCTTTCCAGA	GTCAGAGAAG	ACATCGTGGA	GGATGAAGGG	2100
4.0	GGCTCGGGCA	TGGGAGATGA	AGAGAACACT	TCAAGGAGAC	TTCTGCATCC	AAAGGACCAA	2160
40	GAGGTGTTCC	TCAAAACAAA	GGATGATGCC	ATCAATGGAG	ACAAGAAAGC	CAAGAAAGGG	2220
		TGAAACTCTG					2280
	GGTCGCAGAG	TGTTTGAATC	TAGACGAAGG	ATAAACATGG	CAAACAAACA	CCCCACAGAA	2340 2400
	GAGCGCTGGG	CTGATATTTT TGATTAAAAC	CACAAGTC	CCATCCTTCA	GCCTAGAAGT	CACACCACCT	2460
45	TTTCCTGCTG	TTTCTCCCCC	CTCAGCATCT	CCTGTGCAGA	CAGTAACCAG	TGCTGAAGAA	2520
	TCCTCAGCAG	ATGTACCTCT	ACTTGGTGAA	GAAGAGCACG	TTTTGGGTAC	CATTTCCTCA	2580
	GCCAGCATGG	GGCTAGAACA	CAACCACAAT	GGAGTTATTC	TTGTTGAACC	TGAAGTAACA	2640
	AGCACACCTC	TGGAGGAAGT	TGTTGATGAC	CTTTCTGAGA	AGACTGAGGA	GATAACTTCC	2700
50	ACTGAAGGAG	ACCTGAAGGG	GACAGCAGCC	CCTACACTTA	TATCTGAGCC	TTATGAACCA	2760 2820
50	TCTCCTACTC	TGCACACATT GGTCTGCAGC	AGACACAGTC	TATGAAAAGC	AGCCCACATC	CACTGAGTAT	2880
	GAGCCTCCAT	TGGATGCTGT	CTCCTTGGCT	GAGTCTGAGC	CCATGCAATA	CTTTGACCCA	2940
	GATTTGGAGA	CTAAGTCACA	ACCAGATGAG	GATAAGATGA	AAGAAGACAC	CTTTGCACAC	3000
	CTTACTCCAA	CCCCCACCAT	CTGGGTTAAT	GACTCCAGTA	CATCACAGTT	ATTTGAGGAT	3060
55	TCTACTATAG	GGGAACCAGG	TGTCCCAGGC	CAATCACATC	TACAAGGACT	GACAGACAAC	3120
	ATCCACCTTG	TGAAAAGTAG	TCTAAGCACT	CAAGACACCT	TACTGATTAA	AAAGGGTATG	3180
	AAAGAGATGT	CTCAGACACT AGAGTGAGGG	ACAGGGAGGA	AATATGCTAG	CURRICCCTCA	CTCCACACTCC	3240 3300
	COTATATATO	GCAGTATGTC	TCCAGTTAAG	AAATCCATCA	AAACCACAGT	TGGTACCCTC	3360
60		ACACCACAAC					3420
	ACCATGAGCA	CTCACCCTTC	TCGAAGGAGA	CCCAACGGGA	GAAGGAGATT	ACGCCCCAAC	3480
	AAATTCCGCC	ACCGGCACAA	GCAAACCCCA	CCCACAACTT	TTGCCCCATC	AGAGACTTTT	3540
						GAGTTCTCTG	3600
65	GTTCCTACAG	CTTGGGTGGA	TAACACAGTT	CCCACAAAAC	AACAGTTGGA	AATGGAGAAG GCCAAACAAA	3660 3720
05	CATCCATATA	CCCCTTCTAC	AGTGAGCTCA	AGAGCGTCCG	GATCCAAGCC	CAGCCCTTCT	3780
	CCAGAAAATA	AACATAGAAA	CATTGTTACT	CCCAGTTCAG	AAACTATACT	TTTGCCTAGA	3840
	ACTGTTTCTC	TGAAAACTGA	GGGCCCTTAT	GATTCCTTAG	ATTACATGAC	AACCACCAGA	3900
5 0	AAAATATATT	CATCTTACCC	TAAAGTCCAA	GAGACACTTC	CAGTCACATA	TAAACCCACA	3960
70	TCAGATGGAA	AAGAAATTAA	GGATGATGTT	GCCACAAATG	TTGACAAACA	TAAAAGTGAC	4020
	ATTTTAGTCA	CTGGTGAATC	AATTACTAAT	GCCATACCAA	CTTCTCGCTC	CTTGGTCTCC	4080 4140
	ACTATGGGAG	AATTTAAGGA	AGAATCCTCT	CCTGTAGGCT	ACATACCTCT	TCCAACCTGG TACCACTTCT	4200
	GGGGAAAATC	TTACAGACCC	TCCCCTTCTT	AAAGAGCTTG	AGGATGTGGA	TTTCACTTCC	4260
75	GAGTTTTTGT	CCTCTTTGAC	AGTCTCCACA	CCATTTCACC	AGGAAGAAGC	TGGTTCTTCC	4320
	ACAACTCTCT	CAAGCATAAA	AGTGGAGGTG	GCTTCAAGTC	AGGCAGAAAC	CACCACCCTT	4380
	GATCAAGATC	ATCTTGAAAC	CACTGTGGCT	ATTCTCCTTT	CTGAAACTAG	ACCACAGAAT	4440
	CACACCCCTA	CTGCTGCCCG	GATGAAGGAG	CCAGCATCCT	CGTCCCCATC	CACAATTCTC	4500 4560
80	ATGTCTTTGG	GACAAACCAC	CACCACTAAG	TTCA ATTATC	TCCCCA ATCC	AATATCTCAA AGAAACAGAA	4560 4620
30	GCATCTAGAG	TCAACAAGGA	WWWIGITIE	CATATGTCAG	GGCCAAATGA	ATTATCAACA	4680
	CCCTCTTCCC	ACCGGGATGC	ATTTAACTTG	TCTACAAAGC	TGGAATTGGA	AAAGCAAGTA	4740
	TTTGGTAGTA	GGAGTCTACC	ACGTGGCCCA	GATAGCCAAC	GCCAGGATGG	AAGAGTTCAT	4800
0.5	GCTTCTCATC	AACTAACCAG	AGTCCCTGCC	AAACCCATCC	TACCAACAGC	AACAGTGAGG	4860
85	CTACCTGAAA	TGTCCACACA	AAGCGCTTCC	AGATACTTTG	TAACTTCCCA	GTCACCTCGT	4920
	CACTGGACCA	ACAAACCGGA	AATAACTACA	TATCCTTCTG	TCCCATTCCC	AGAGAACAAA CATGTCCAAA	4980 5040
	CAGTTTACAA	CICCAAGATT	ATCAAGTACA	ACABITECTE	*CCCWIIGCW		2040

WO 02/086443

CCCAGCATTC CTAGTAAGTT TACTGACCGA AGAACTGACC AATTCAATGG TTACTCCAAA 5100
GTGTTTGGAA ATAACAACAT CCCTGAGGCA AGAACCCAG TTGGAAAGCC TCCCAGTCCA 5160

		ATTATTCCAA			CCAACAAGCC		5220
		GAGTCACCCG					5280
5							5340
5		TTATTCCAGG					5400
		CTCCGGCACC					
		AGAATATCCC					5460
		AGTCCTCAGG					5520
10		CCAAATTCTG					5580
10		CCGTCACCGC					5640
	CCAAAGCCTT	TCGTTACTTG	GACAAAGGTT	TCCACAGGAG	CTCTTATGAC	TCCGAATACC	5700
	AGGATACAAC	GGTTTGAGGT	TCTCAAGAAC	GGTACCTTAG	TGATACGGAA	GGTTCAAGTA	5760
	CAAGATCGAG	GCCAGTATAT	GTGCACCGCC	AGCAACCTGC	ACGGCCTGGA	CAGGATGGTG	5820
	GTCTTGCTTT	CGGTCACCGT	GCAGCAACCT	CAAATCCTAG	CCTCCCACTA	CCAGGACGTC	5880
15		TGGGAGACAC					5940
		GGATCTTCCC					6000
		TGCACGAAAA					6060
		AGTGCGTGGC					6120
							6180
20		CACTGCCCCC					
20		GCATTCACAT					6240
		GGGACGGTAC					6300
		ACGGGACGCT					6360
	GAGTGCGTGG	CCGCCAACCT	GGTAGGCTCC	GCGCGCAGGA	CGGTGCAGCT	GAACGTGCAG	6420
	CGTGCAGCAG	CCAACGCGCG	CATCACGGGC	ACCTCCCCGC	GGAGGACGGA	CGTCAGGTAC	6480
25	GGAGGAACCC	TCAAGCTGGA	CTGCAGCGCC	TCGGGGGACC	CCTGGCCGCG	CATCCTCTGG	6540
		CCAAGAGGAT					6600
		GGACCCTGGT					6660
		GAAATAAGGT					6720
		AGATTGAACA					6780
30		ACTGTGTGGC					6840
50							
		TGGTGAACTC					6900
		TCAACAATGG					6960
	GACTACACCT	GCTTTGCTGA	AAATCAGGTC	GGGAAGGACG	AGATGAGAGT	CAGAGTCAAG	7020
2.5	GTGGTGACAG	CGCCCGCCAC	CATCCGGAAC	AAGACTTACT	TGGCGGTTCA	GGTGCCCTAT	7080
35		TCACTGTAGC					7140
	TTGTCCCCAA	CCAACAAGGT	GATCCCCACC	TCCTCTGAGA	AGTATCAGAT	ATACCAAGAT	7200
	GGCACTCTCC	TTATTCAGAA	AGCCCAGCGT	TCTGACAGCG	GCAACTACAC	CTGCCTGGTC	7260
		CGGGAGAGGA					7320
	AAGATCAACG	GTAACCCCAA	CCCCATCACC	ACCGTGCGGG	AGATAGCAGC	CGGGGGCAGT	7380
40	CGGAAACTGA	TTGACTGCAA	AGCTGAAGGC	ATCCCCACCC	CGAGGGTGTT	ATGGGCTTTT	7440
	CCCGAGGGTG	TGGTTCTGCC	AGCTCCATAC	TATGGAAACC	GGATCACTGT	CCATGGCAAC	7500
	CCCGAGGGTG	ACATCAGGAG	TTTCACCAAC	ACCGACTCCG	TCCAGCTGGT	ATGCATGGCA	7560
	CCCTACCTCC	GAGGGGAGGC	CACCEMCANC	CTCCACCTCA	CTCTCCTCCA	GCCCATGGAG	7620
		TCCACGACCC					7680
45							
45		GCTCTGCCGC					7740
		TGCAGAGTGG					7800
		GCGGTCTCTC					7860
		ACACGGAGAG					7920
5 0	AAGCAGTATC	ATAACCTGGT	CAGCATCATC	AATGGTGAGA	CCCTGAAGCT	CCCCTGCACC	7980
50	CCTCCCGGGG	CTGGGCAGGG	ACGTTTCTCC	TGGACGCTCC	CCAATGGCAT	GCATCTGGAG	8040
			CGTTTCTCTT	CTGGACAATG	GCACCCTCAC	GGTTCGTGAG	8100
		CCCTGGGACG					
	GGCCCCCAAA			TGCAGGATGG	AGACGGAGTA	CGGCCCTTCG	8160
	GGCCCCCAAA GCCTCGGTGT	TTGACAGGGG	TACCTATGTA				
	GGCCCCCAAA GCCTCGGTGT GTCACCAGCA	TTGACAGGGG TCCCCGTGAT	TACCTATGTA TGTGATCGCC	TATCCTCCCC	GGATCACCAG	CGAGCCCACC	8220
	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT	TTGACAGGGG TCCCCGTGAT ACACCCGGCC	TACCTATGTA TGTGATCGCC CGGGAACACC	TATCCTCCCC GTGAAACTGA	GGATCACCAG ACTGCATGGC	CGAGCCCACC TATGGGGATT	8220 8280
55	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG	TTGACAGGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG	TATCCTCCCC GTGAAACTGA GATAAGTCGC	GGATCACCAG ACTGCATGGC ATCTGAAGGC	CGAGCCCACC TATGGGGATT AGGGGTTCAG	8220 8280 8340
	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT	TTGACAGGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT	CGAGCCCACC TATGGGGATT AGGGGTTCAG CCAGCATGCC	8220 8280 8340 8400
	GGCCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG	TTGACAGGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG	CGAGCCCACC TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC	8220 8280 8340 8400 8460
	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAGA AAAACAACTT	TTGACAGGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC	CGAGCCCACC TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG	8220 8280 8340 8400 8460 8520
55	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTA ACAACAAAGC	TTGACAGGGG TCCCGTGAT ACACCGGCC ACATCACGTG ATGGAAACAG ATGCAGGCTT ACATCCACGT GGGGTTTGTA	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT	CGAGCCCACC TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT	8220 8280 8340 8400 8460 8520 8580
	GGCCCCAAA GCCTCGGTGT GTCACCAGC CCCGAAGCTG CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACT ACAACAAAGC GTCACAGTGC	TTGACAGGGG TCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA TCAAGTTGAG	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT GTTGATCTTG	CGAGCCCACC TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT	8220 8280 8340 8400 8460 8520 8580 8640
55	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTCACAGTGC GTCACAGTGC	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT ACGGTTTGTA ATGGTGGCCT GGAGTGGCCT GGAAGCAATG	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAA GTGGATTCAA GTTGGGGAA TCAAGTTGAG AAGGAGGCCT	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT GTTGATCTTG CAGCCTTGCT	CGAGCCCACC TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT	8220 8280 8340 8400 8460 8520 8580 8640 8700
55	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAGG GTCACAGTGC GTTGGGAAAA CTTTTGTGTT	TTGACAGGG TCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ACATCCACGTT ACATCCACGT AGGGTTTGTA ATGGTGGCCT GGAAGCAATG TACATCATGC	TACCTATGTA TGTGATCGCC CGGGAACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGAA TCAAGTTGAG AAGGAGGCCT ATTCAGGGTG	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT GTGATCTTG CAGCCTTGCT TCTGTGCTCT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATAT ATCTACAATT GAGACACTTT GAGACACTTT GACTGCAATT	8220 8280 8340 8400 8460 8520 8580 8640 8700 8760
55	GGCCCCAAA GCCTCGGTGT GTCACCAGGA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACT ACAACAAAGC GTCACAGTGC GTTGGGAAAA CTTTTGTGTT TTTCTTCTTT	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGCAGCGCT ACATCCACGT GGGGTTTGTA ATGGTGGCCT GGAAGCAATG TACATCATGC	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA TCAAGTTGAG AAGAGGGCT ATCAGGGTG CTTCATAAGC	GGATCACCAG ACTGCATGGC ACTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT GTTGATCTTG CAGCCTTGCT TCTGTGCTCT GTCCATAGGA	CGAGCCCACC TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTC TTAAATAATGT ATCTACAATT GAGACACTTT GACTGCAATT TATCTGAGGA	8220 8280 8340 8400 8460 8520 8580 8640 8700 8760 8820
55 60	GGCCCCAAA GCCTCGGTGT GTCACCAGG CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAACAACTT ACACAAAGC GTCACAGTGC GTTGGGAAAA CTTTTGTGTT TTTTCTTCTTT ACATTCATCA	TTGACAGGG TCCCCGTGAT ACACCCGGCT ACACACAGG ATGGAAACAG ATGCCGGCTT ACATCCACGT ACATCACAGT ACAGCACAT ACAGCACAT ACAGCACAT ACAGCACAT ACAACAT TCGAAATGCC AAAATAAGCC	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAA AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC ATTAGACATGA	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA TCAAGTTGAG AAGGAGGGCT ATTCAGGGTG ATTCATAAGC CACAACACCTC	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT GTTGATCTTG CAGCCTTGCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT GACTGCAATT TATCTGAGGA TGAAGACGCA	8220 8280 8340 8400 8460 8520 8580 8640 8700 8760
55	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTCACAGTGG GTTGGGAAAA CTTTTGTGTT TTTCTTCTTT TACATTCATCA TCACCTAGTT	TTGACAGGG TCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ACATCACGTT ACATCCACGTT ACGTGCTTA ATGGTGGCTT ATGGTAGAATGC TGCAAATGCC AAAATAAGCC AACTGCTGC	TACCTATGTA TGTGATCGCC CGGGAACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC ATTGACATGA AGTTTTACA	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA AAGGAGGGCT ATTCAGGGTG CTTCATAAGC TGATAGACACTC TGATAGACTT	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTTTG CAGCCTTGCT TCTGTGCTCT GTCCATAGGA ACTACCCCAT TGTTCCAGAT TGTTCCAGAT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT AACTACAATT GAGACACTTT GACTGCAATT TATCTCAAGA TGAAGACGCA TGACAAGTCA	8220 8280 8340 8400 8460 8520 8580 8640 8700 8760 8820
55 60	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTCACAGTGG GTTGGGAAAA CTTTTGTGTT TTTCTTCTTT TACATTCATCA TCACCTAGTT	TTGACAGGG TCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ACATCACGTT ACATCCACGTT ACGTGCTTA ATGGTGGCTT ATGGTAGAATGC TGCAAATGCC AAAATAAGCC AACTGCTGC	TACCTATGTA TGTGATCGCC CGGGAACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC ATTGACATGA AGTTTTACA	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA AAGGAGGGCT ATTCAGGGTG CTTCATAAGC TGATAGACACTC TGATAGACTT	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTTTG CAGCCTTGCT TCTGTGCTCT GTCCATAGGA ACTACCCCAT TGTTCCAGAT TGTTCCAGAT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT AACTACAATT GAGACACTTT GACTGCAATT TATCTCAAGA TGAAGACGCA TGACAAGTCA	8220 8280 8340 8400 8460 8520 8580 8640 8700 8760 8820 8880
55 60	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTCACAGTGC GTTGGGAAAA CTTTTGTGTT TTTCTTCTTT ACATTCATCA TCACCTAGTT	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT GGAAGCAATG TACATCATGC TGCAAATGCC AAAATAAGCC AACCTGCTGC ATTCCTCTG	TACCTATGTA TGTGATCGCC CGGGACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC ATAGACATGA AGTTTTTACA TCACTTCAAA	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAA GTGGATTCCA GGTTGGGAA TCAAGTTGAG AAGGAGGCT ATTCAGGGTG CTTCATAAGC CTGATAGACTT ACTCCAGCTT ACTCCAGCTT	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT CTGATCTTG CAGCCTTGCT TCTGTGCTCT TCTGTGCTCT GTCATAGGA ACTACCCCAT TGTTCCAGAT GCCCAATAAG	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT GACTGCAATT TATCTGAGGA TGACAAGACGCA TGACAAGTCA GATTTAGAAC GATTTAGAAC	8220 8280 8340 8400 8460 8520 8580 8640 8700 8760 8820 8880 8940
55 60	GGCCCCAAA GCCTCGGTGT GTCACCAGGA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGG AAAACAACT ACAACAAGG GTCACAGTGC GTTGGGAAAA CTTTTGGTT TTTCTTCTTT ACATTCATCA TCACCTAGTT TCACGTT	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGCAGCGCT ACATCCACGT GGGGTTTGTA ATGGTGGCCT GGAAGCAATG TACATCATGC TACATCATGC TACATCATGC TACATCATGC AAATAAGCC AAATAAGCC AACTGCTGC GATATATATA	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC ATAGACATGA AGTTTTACAA TATATATTTT	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GCTTGGGGAA TCAAGTTGAG AAGGAGGCT ATTCAGGGTG CTTCATAAGC ACACACTC TGATAGACTT AATTCAGGTT AATTCAGGTT AATTCAGGTT	GGATCACCAG ACTGCATGGC ATCTGAACGAT ACATTCTCGG GAATGATTGC GTTGATCTTG CAGCCTTGCT TCTGTGCTCT GTCCATAGGA ACTACCCCAT TGTTCCAGAT GCCCAATAGG TACACATAAG TACATACATA	CGAGCCCACC TATGGGAATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT GACTGCAATT TATCTGAGGA TGACACTAC TGACAACTCA GACACTACACCAT CAGCACACCAT CAGCACACCAT	8220 8280 8340 8460 8520 8580 8640 8760 8760 8820 8880 8940 9000 9060
55 60	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTCACAGTGC GTCAGGAAAA CTTTTGTGTT TCTTCTTTT TCACATCATCA TCACCTAGTT TCTTTCAGTT TCTTTCAGTT TCAGGAGTGACT TTTATATGAA	TTGACAGGG TCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT GCAAGCAATG TCCAAATGCC AAATAAGCC AAATAAGCC AACTCCTCG ATTCCTCTC GATTTCCTCTC GATTATATA	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGCCTT ACTCGACTGC ATAGACATGA AGTTTTTACA TCACTTCAAA TATATTTT CATTTCTTCC	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA TCAAGTTGAG AAGGAGGGCT ATTCAGAGGT CTCATAAGC CTCATAAGC TGATAGACTT ACTCCAGCTT ACTCCAGCTT TATTCCAGAGT TGGAACTCAC	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT GTTGATCTTG TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT TGTTCCAGAT TGTTCCAGAT TGTCCATATACT TCTCATATACAT TTTTTATATAT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT GACTGCAATT TATCTGAGGA TGACACGCA TGACAAGTCA GATTTAGAAC CAGCTACCAT ATGTTTTATA	8220 8280 8340 84400 8460 8520 8580 8760 8760 8820 8880 89400 9060 9120
556065	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACACAAGAGC GTTGGGAAAA CTTTTGTGTT TTTTTCTTCTT TCACTTCATCA TCACCTAGTT TCATCAGTT TCATCAGTT TCATCAGTT TCATCAGTT TCATCAGTT TCATTATATGAA TATATATTTT	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ACATCACGTT ACATCCACGTT ACGCGGCTT ACGGGGTTTGTA ATGGTGGCCT GGAAGCAATG TACATCATGC TACAAATAGCC AAAATAAGCC AAACTGCTGC ATTCCTCTG GATATATATA AAAAGAAAAA TTCCTTTCAA	TACCTATGTA TGTGATCGCC CGGGAACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC ATAGACATGA AGTTTTTACA TCACTTCAAA TATATATTTT CATTCTTCC ATCAGACGAT CATCAGACGAT CATCAGACGAT	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGA AAGGAGGGCT ATTCAGGGTG CTTCATAAGC ACAACACCTC TGATAGACTT ACTCCAGCTT AATTCAGAGT TGATAGACT TGATAGACT AATTCAGAGT TGGAACTCAC GAGACTAGAA	GGATCACCAG ACTGCATGGC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT GTTGATCTTG TCGTGCTCT TCTGTGCTCT TCTGTGCTCT TCTGTGCCATAGGA ACTACCCCAT TGTTCCAGAT GCCCAATAAG TACATACATA TTTTTATATA GGAGAAATAC	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT AACTACAATT GAGACACTTT GACTGCAATT TATCTGAGGA TGAAGACGCA TGACAAGTCA GATTTAGAAC CAGCTACCAT ATGTTTTTATA TTTCTGTCTT	8220 8280 8340 8460 8520 8580 8640 8700 8820 8880 8940 9000 9120 9180
55 60	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAGC GTCACAGTGC GTTGGGAAA CTTTTGTGTT TTTCTTCTTT ACATCATCA TCACCTAGTT CAGAGTGACT TTTTATATGAT ATTATATTT ATTAAAATTA	TTGACAGGG TCCCGTGAT ACACCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT TACATCATGC TGCAAATGCC AAACTATGC AACCTGCTGC AAATAAGCC ATTCCTCTG GATATATATA AAAAGAAAAA ATTCCTTCAA ATAAATTATT	TACCTATGTA TGTGATCGCC GGGACACCC GGAGTTACCG ATTTCTTCAC CTACAAATTGC CTACTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC ATAGACATGC ATAGACATGA TCACTTCAAA TATATATTT CATTTCTTCC ATCAGACGAT GGTCTTTACA GGTCTTTACA	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA TCAAGTTGAG AAGAGAGGCT CTTCATAAGC ACAACACCTC TGATAGACTT AATTCAGAGT TGGAACTACACTT AATTCAGAGT TGGAACTACACACT CAGACACTCAGACT CAGACACTCAGCTT AATTCAGAGT	GGATCACCAG ACTGCATGGC ACTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTCT GTGATCTTG CAGCCTTGCT TCTGTGCTCT GTCCATAGGA ACTACCCAT TGTTCCAGAT TGTTCCAGAT TGCCATACAGAT TGTTCCAGAT GCCCAATAAG TACATACATA TTTTTATATA ACATACAGA ACATTACAGC	CGAGCCCACC TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT TATCTGAGGA TGAAGACGCA TGACAAGTCA TGACAAGTCA TGACTACCAT ATGTTTTACAAC CAGCTACCAT ATGTTTTATA ATGTTTTATA ATGACATGAA	8220 8280 8340 8460 8520 8580 8700 8760 8820 8880 8940 9000 9060 9120 9180 9240
556065	GGCCCCAAA GCCTCGGTGT GTCACCAGGA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTTAGGAAAA CTTTTGTGTT TTTCTTCTTT ACATCATCA TCACCTAGTT TCATCAGTT TCATCAGTT TCATCAGTT TCATCAGTT TCAGGTAAA TATATATTTT TATATATATTTT ATTATAAATTTA ATATAAATTTT	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT GGAAGCAATG TCCATCATGC TACATCATGC AAATAAGCC AAATAAGCC AACTGCTGG GATATATATA AAAAGAAAA TTCTTCATCAT AAAAAATTTC	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC ATAGACATGA AGTTTTACAA TCATTCAAA TATATTTT CATTCCTAC ATCAGACGAT GGTCTTACA TCTCCAACCT TCTCCAACCCT	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA ATCAGGTTGAG AAGGAGGGCT ATTCAGGGTC CTTCATAAGC ACAACACCTC TGATAGACTT ACTCCAGCTT ACTCCAGCTT ACTCCAGCTT TGGAACTCAC GAGACTAGAA AGACTTGAA AGACTTGAAT CCTCAAATT	GGATCACCAG ACTGCATGAC ATCTGAAGGC CACTGACCAT ACATTCTCGG GAATGATTGC GTTGATCTTG CAGCCTTGCT TCTGTGCTCT GTCCATAGGA ACTACCCCAT TGTTCCAGAT TGCCAATAAG TACATACATA TTTTATATA GGAGAAATAC CAGTCACCAC CAGTCACCAC CAGTCACCAC CAGTCACCAC CAGTCACCAC	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTT GACTGCAATT TATCTGAGGA TGACAGCA GATTTAGAAC CAGCTACCAT ATGTTTATAT TTCTGTCTT AGACATGAA TGACAGAA TGTTATATA TGTTATATA	8220 8280 8340 8460 8520 8580 8640 8760 8880 8900 9060 9120 9120 9180 9300
556065	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAACAACTT ACACAAGAGG GTTAGGAAAA CTTTTGTGTT TTTCTTCTTT TCACTCATCA TCACCTAGTT CAGAGTGAC TTTTACATCA TTTTACATCA TTTTTAGAT TTTTTAGAT TTTTTAGAT TTTTAAATTA ATATATTTT ATTAAATTTA ATATATTTT CCTTCTCCAG	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ACATCACGTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT TACATCATGC TGCAAATGCC AAAATAAGCC AAAATAAGCC AAATAATATATA ATAAATTATT AAAAATTATTC GAACCCTCCA	TACCTATGTA TGTGATCGCC CGGGAACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCGAAAT AGGGAAGCCA CTGGTGGGTT ACTCGACGAG CAGGGGCTTC ACTCGACTGC ATGACATGA AGTTTTACA TCACTTCAAA TATATATTT CATTCTTCC ATCAGACGT GGTCTTTACA GCTCTTACA GCTCTTACA	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA ATGAGAGGGCT ATCAGAGGTC ACTCATAAGC CACAACACCTC TGATAGACTTCAGAGTT ACTCCAGCTT ACTCCAGCTT TGGAACTCAC GAGACTAGAA AGACTTGAA AGACTTGAAT CCTTCCAATTC	GGATCACCAG ACTGCATGGC ACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT GTTGATCTTG TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT TGTTCCATAGGA ACTACCCCAT TGTTCCAGAT TGTTCAGAT TCTTATATATA GGAGAAATAC ACATTACAGC AGATTACCCC AGGATCACCAC	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT GACTGCAATT TATCTGAGGA TGACAGCACA TGACAAGTCA GATTTAGAAC CAGCTACCAT ATGTTTTATA TTTCTGTGTT AGACATGCAA TGTATATATA GTTATATATA GTATGCAAAG	8220 8280 8340 8460 8520 8580 8700 8760 8820 8880 8940 9060 9120 9180 9240 93300 9360
556065	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGG AAAACAACTT ACAACAAGTG GTTGGGAAAA CTTTTGTGTT TTTCTTCTTT TCACTACATCA TCACCTAGTT CCAGAGTGACT TTTATATCATT ATTATATATTT ATTAAAATTT ATTATATATTT CCTTCTCTGG TTTTTCTTCTT TTTTTTTTTT	TTGACAGGG TCCCCGTGAT ACACCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT TACATCATGC TACATCATGC AACATGCT AAAATAAGCC AACATGCTGCG ATTTCCTCTG GATATATATA AAAAGAAAA ATTCCTTTCAA ATAAATTATT AAAAAATTTC GAACCCTCCA AAGCCTCCCA	TACCTATGTA TGTGATCGCC CGGGACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG ATTGCACAC ACTGACTTC ACTCGACTGC ATAGACATGC ATAGACATGA TCACTTCAAA TATATATTTT CATTTCTT CATTTCTACA TCTCCAACCT TCTCCAACCT TCTCCAACGT CTGGGGAAGG CAGAGGAGGT	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGA ATCAGGTGA ATCAGGTGA ATCAGGTGA ATCAGACTC TGATAAGC TGATAGACTT ACTCCAGCTT ACTCCAGCTT TGGAACTCAC GAGACTAGAA AGACTTGAT AGACTTGAT TGGAACTCAC CTGATAGACT CTTCAAAT CCTTCAAAT CCTTCAAAT CCTTCAAAT CCTTCAAAT CCTTCAAAT CCTTCAAAT CCTTCAAAT CTTCCAGATAT CTGCGATATT CAGAGGAGAAA	GGATCACCAG ACTGCATGGC ACTGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT GTTGATCTTG TCGTGTCTT TCTGTGCTCT TCTGTGCTCT TCTGTGCTCT TCTATAGGA ACTACCCCAT TGTTCCATAGGA TACATACATA TTTTTATATA GGAGAAATAC ACATTACAGC CAGTCACCAT AGATTACAGC AGATTACCACT TGAGGAAATAC ACATTACAGC CAGTCACCAT GAAGGAGAAAA	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT AATCACAATT GAGACACTTT GACTGCAATT TATCTGAGGA TGAAGACGCA TGACAAGTCA GATTTAGAAC CAGCTACCAT ATGTTTTTATA TTTCTGTCTT AGACATGCAA TGTATGATAA TGTTATATTA GACATGCAAA ACTGCAAAAG ACTGCATCAT	8220 8280 8340 8440 8520 8580 8760 88760 8880 99000 99000 9120 9180 9340 9340 9340 9340
55606570	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTCACAGTGC GTTGGGAAAA CTTTTGTGTT TTTCTTCTTT ACATCATCA TCACCTAGTT CAGAGTGACT TTTATATGAA TATATATTT ATTAAAATTA ATATAATTTT CCTTCTCAG TTTTCTCAG TTTTTCTCAG TTTTTTTTTT	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCAGGTT GGATTCTA ATGGTGGCTT TACATCACTG TACATCATGC TACATCATGC AAAATAAGCC AACTGCTGG AATTCATGA ATTCCTCTG GATATATAT AAAAAATATT AAAAAATTTT AAAAAATTTC GAACCTCCA AACCTCCCA AACCTCCCA AAACCTCCAA AAACCTCCTCA AAAACCTCCAA AAACCTCCAA AAACCTCCAA AAACCTCCAA AAACCTCCCA AAACCTCCAA AAGCTGCTCA AATGAATCT	TACCTATGTA TGTGATCGCC CGGGACACCC GGAGTTACCG ATTTCTTCAC CTACAAATGC CTACTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAC ATTTCTTACA CTGGTGGTT ACTCGACTGC ATTGACATGC ATTTTTACA AGTTTTTACA TCACTTCAAA TATATTTT CATTTCTTCC ATCAGACGAT GGTCTTTACA TCTCCAACCT GTGGGGAAGG CAGAGGAGGT AGAGTCTTCC	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA TCAAGTTGAG AAGAGGGCT CTTCATAAGC ACACACTC TGATAGACTTCAGGGT ACTCAGCTT AATTCAGAGT TGGAACTCAC CAGACTCAAATT CAGACTCAAATT CTGCAATT CTGCAATT CTGCAATT CTGCAATT CTGCAATT CTGCAATT CTGCAATT CTGCAATAT CCTCCAAATT CTGCAATAT CCGCAAAAAGCC	GGATCACCAG ACTGCATGAC ACTGACCAT ACATTCTCGG GAATGATTGC GTTGATCTTG CAGCCTTGCT TCTGTGCTCT TCTGTGCTCT TCTGTCCAATACAT TGTTCCAGAT TGTTCCAGAT TGTTCCAGAT TGTTCCAGAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTATCAGA ACATACATA CATACATA CAGAAAATAC ACATTACAGC CAGATTACATC AGATTACATC AGATTACATC AGATTCCTT GAAGGAGAAA CAGAAAACTTC	CGAGCCCACC TATGGGGATTA AGGGGTTCA CCAGCATGCC CAGTGACTCC TTAGGAACTC TTAGGAACTG ACTGCAATT GAGACACTTT GACTGCAATT TATCTGAGAA TGACAGCAC TGACAATCA TGACAACTCA TGACTACCAT ATGTTTTATA TTTCTGTCTT AGACATGGAA TGTTATATTA GTATGCAAAG ACTGCATCAT TCTGCACTAT	8220 8280 83400 84400 8520 8640 8700 8760 8880 8940 9000 9120 9180 9360 9360 9480
556065	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTTCGGAAAA CTTTTGTGTT TCTTCTTCTT TCTTCTTCTT TCATTTCAGTT TCACAGAGAC TTTATATGAA TATATATTT ATTAAAATTT CCTTCCAG TTTTTGTGTA ATTTTCACAG TTTTTTCACAGT ATTTTTTCACAGT TTTTTAAAATTT ATTTAAAATTT CCTTCTCCAG TTTTTTTTTCAG TTTTTTTTTT	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT GGAAGCAATG TCCACTCCAC	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC ATAGACATGA TATATTTTCAAA TATATATTT CATTCCTAAC GTCTTAACA GTCTTACAA TCTCCAACCG GTGGGAAGG CAGGGAGG CAGGGAGG CAGAGGAGGT CAGAGGAGTCT AAGGTGCTC AAGGTGCTC AAGGTGGCTG AAGGTGGCTG	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GCTTGGGGGAA TCAAGTTGAG AAGGAGGGCT ATTCAGGGTC CTTCATAAGC ACAACACCTC TGATAGACTT ACTCCAGCTT ACTCCAGCTT ACTCCAGCTT ACTCCAGCAT TGGAACTCAC GAGACTAGAA AGACTTGGAT CCTTCAAATT CTGCGATATT CTGCGATATT CAGAGGGAGAAAGCC CCTTCTTCCCC	GGATCACCAG ACTGCATGAC ACTGCATGACCAT ACATTCTCGG GAATGATTGC TAGGAGCTCT TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCAT TGTCCATAGGA ACTACCCAT TGTCATACGA TACATACATA TTTTTATATA GGAGAAATAC AGATTCCCT GAGTTACCAC ACATTACAGC ACATTACAGC AGATTCCCTT GAAGGAGAAA ACATTCCTT CAAGGAGAAACTTC AGACACTTC AGACACTCACAGC AGACACTCACAGC AGACACTC AGACACTCACAGC AGCATGAGT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACCTTT GACTGCATT TATCTGAGGA TGACAGCA TGACAGCAC TGACAGCAC TGACAGCAC TTTTAGAAC CAGCTACCAT ATGTTTATA TTTCTGTCTT AGACATGCAA TGATATATA TGTTATATA TGTTATATA TGTTGCAAGA ACTGCATCAT CAGCTTCAT CAGC	8220 8280 8340 8460 8520 8520 8640 8760 8860 9940 99120 9120 9360 9420 9480 9540
55606570	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAACAACTT ACACAGAGG GTTGGGAAAA CTTTTGTGTT TTTCTTCTTT TCACTACTACATCACATC	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ACATCCACGTT ACATCCACGTT ACATCCACGTT ATGGTGGCCT ACATCATGC TGCAAATGCC AAATAAGCC AAATAATATATA AAAAAATTATT AAAAAATTATT AAAAAA	TACCTATGTA TGTGATCGCC CGGGAACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGA CAGGGGCTTC ACTCGACTGC ATAGACATGA AGTTTTACA TCACTTCAAA TATATATTTT CATTTCTTC ATCAGACGAT GGTCTTTACA TCTCCAACGT GTGTGGAGGT CTCCAACGT CTCCAACGT CTCCAACGT CTGGGGAAGG CAGAGGAAGGT CAGAGGAAGGT AGAGTCTTCC GTGTGGGAAGGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACCT CTCCAACCT CTGGGGAAGG CAGAGGACGT CAGAGGACCT CTCCAACCT CTGGGGAAGGT CAGAGGACCT CTCATTCCCA CTTATTCCCA	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GTTGGGGA ATCAGGTTGAG AAGGAGGGCT ATTCAGAGCT CACACCACCTC TGATAGCC TGATAGACTCAGCTT TGGAACTCAC GAGACTAGAA AGACTTGAA AGACTTGAAT CCTTCAGATT CTGCGATAT CTGCGATAT CTGCGATATT GAGAGGAGAG	GGATCACCAG ACTGCATGGC ACTGACCAT ACATTCTCGG GAATGATCTC TAGGAGCTCT TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT TGTTCATAGGA ACTACCCAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTACATA TACATACATA TTTTTATATA GAGAAAATAC CAGTACCCCA AGATTCCTT GAAGGAGAA CAGAAACTTC ACCATGAGT ACCTGTATTT ACCATGTATTT ACCATGTATTT ACCATGTATTT ACCATGAGAAACTT ACCATGAGTATTT ACCATGTATTTT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACCTTT GACTGCATT TATCTGAGGA TGACAGCA TGACAGCAC TGACAGCAC TGACAGCAC TTTTAGAAC CAGCTACCAT ATGTTTATA TTTCTGTCTT AGACATGCAA TGATATATA TGTTATATA TGTTATATA TGTTGCAAGA ACTGCATCAT CAGCTTCAT CAGC	8220 8280 83400 84400 8520 8640 8700 8760 8880 8940 9000 9120 9180 9360 9360 9420 9480
55606570	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAACAACTT ACACAGAGG GTTGGGAAAA CTTTTGTGTT TTTCTTCTTT TCACTACTACATCACATC	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT GGAAGCAATG TCCACTCCAC	TACCTATGTA TGTGATCGCC CGGGAACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGA CAGGGGCTTC ACTCGACTGC ATAGACATGA AGTTTTACA TCACTTCAAA TATATATTTT CATTTCTTC ATCAGACGAT GGTCTTTACA TCTCCAACGT GTGTGGAGGT CTCCAACGT CTCCAACGT CTCCAACGT CTGGGGAAGG CAGAGGAAGGT CAGAGGAAGGT AGAGTCTTCC GTGTGGGAAGGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACCT CTCCAACCT CTGGGGAAGG CAGAGGACGT CAGAGGACCT CTCCAACCT CTGGGGAAGGT CAGAGGACCT CTCATTCCCA CTTATTCCCA	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GTTGGGGA ATCAGGTTGAG AAGGAGGGCT ATTCAGAGCT CACACCACCTC TGATAGCC TGATAGACTCAGCTT TGGAACTCAC GAGACTAGAA AGACTTGAA AGACTTGAAT CCTTCAGATT CTGCGATAT CTGCGATAT CTGCGATATT GAGAGGAGAG	GGATCACCAG ACTGCATGGC ACTGACCAT ACATTCTCGG GAATGATCTC TAGGAGCTCT TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT TGTTCATAGGA ACTACCCAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTACATA TACATACATA TTTTTATATA GAGAAAATAC CAGTACCCCA AGATTCCTT GAAGGAGAA CAGAAACTTC ACCATGAGT ACCTGTATTT ACCATGTATTT ACCATGTATTT ACCATGTATTT ACCATGAGAAACTT ACCATGAGTATTT ACCATGTATTTT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACCTTT GACTGCATT TATCTGAGGA TGACAGCA TGACAGCAC TGACAGCAC TGACAGCAC TTTTAGAAC CAGCTACCAT ATGTTTATA TTTCTGTCTT AGACATGCAA TGATATATA TGTTATATA TGTTATATA TGTTGCAAGA ACTGCATCAT CAGCTTCAT CAGC	8220 8280 8340 8460 8520 8520 8640 8760 8860 9940 99120 9120 9360 9420 9480 9540
55606570	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAACAACTT ACACAGAGG GTTGGGAAAA CTTTTGTGTT TTTCTTCTTT TCACTACTACATCACATC	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ACATCCACGTT ACATCCACGTT ACATCCACGTT ATGGTGGCCT ACATCATGC TGCAAATGCC AAATAAGCC AAATAATATATA AAAAAATTATT AAAAAATTATT AAAAAA	TACCTATGTA TGTGATCGCC CGGGAACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGA CAGGGGCTTC ACTCGACTGC ATAGACATGA AGTTTTACA TCACTTCAAA TATATATTTT CATTTCTTC ATCAGACGAT GGTCTTTACA TCTCCAACGT GTGTGGAGGT CTCCAACGT CTCCAACGT CTCCAACGT CTGGGGAAGG CAGAGGAAGGT CAGAGGAAGGT AGAGTCTTCC GTGTGGGAAGGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACGT CAGAGGACCT CTCCAACCT CTGGGGAAGG CAGAGGACGT CAGAGGACCT CTCCAACCT CTGGGGAAGGT CAGAGGACCT CTCATTCCCA CTTATTCCCA	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GTTGGGGA ATCAGGTTGAG AAGGAGGGCT ATTCAGAGCT CACACCACCTC TGATAGCC TGATAGACTCAGCTT TGGAACTCAC GAGACTAGAA AGACTTGAA AGACTTGAAT CCTTCAGATT CTGCGATAT CTGCGATAT CTGCGATATT GAGAGGAGAG	GGATCACCAG ACTGCATGGC ACTGACCAT ACATTCTCGG GAATGATCTC TAGGAGCTCT TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT TGTTCATAGGA ACTACCCAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTACATA TACATACATA TTTTTATATA GAGAAAATAC CAGTACCCCA AGATTCCTT GAAGGAGAA CAGAAACTTC ACCATGAGT ACCTGTATTT ACCATGTATTT ACCATGTATTT ACCATGTATTT ACCATGAGAAACTT ACCATGAGTATTT ACCATGTATTTT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACCTTT GACTGCATT TATCTGAGGA TGACAGCA TGACAGCAC TGACAGCAC TGACAGCAC TTTTAGAAC CAGCTACCAT ATGTTTATA TTTCTGTCTT AGACATGCAA TGATATATA TGTTATATA TGTTATATA TGTTGCAAGA ACTGCATCAT CAGCTTCAT CAGC	8220 8280 8340 8460 8520 8520 8640 8760 8860 9940 99120 9120 9360 9420 9480 9540
5560657075	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTTCT ACACAGAGAG AAAACAACTT ACACAGAGAG ACTTTGTGTT TTTCTTCTTT ACATCATCA TCACCTAGTT CAGAGTGACT TTTATATGAT ATTATATTT ATTATATTT ATTATATTT ATTATATTT ATTATATTT CCTTCTCCAG TTTTTCTTCAGT CAGAGTGACT CAGAGTGACT TTTTCTCTCCAG TTTTTCTTCTCCCAG ACTTTTCTCAG ACTTTTCAGT CCTGGCTTGTC CCATGAATAA ATACTGTACA	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ACATCCACGTT ACATCCACGTT ACATCCACGTT ATGGTGGCCT ACATCATGC TGCAAATGCC AAATAAGCC AAATAATATATA AAAAAATTATT AAAAAATTATT AAAAAA	TACCTATGTA TGTGATCGCC CGGGACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTACTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAC ATTTCTTCAC ATTGTTGACT ACTCGACTGC ATAGACATGA TATATTTTACA TCACTTCAAA TATATATTT CATTTCTTCC ATCGACGAT GGTCTTACA TCTCCAACCT GTGGGGAAGG CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGT CAGAGGAGT CAGAGGAGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGTGCT CAAATATTT	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GTTGGGGA ATCAGGTTGAG AAGGAGGGCT ATTCAGAGCT CACACCACCTC TGATAGCC TGATAGACTCAGCTT TGGAACTCAC GAGACTAGAA AGACTTGAA AGACTTGAAT CCTTCAGATT CTGCGATAT CTGCGATAT CTGCGATATT GAGAGGAGAG	GGATCACCAG ACTGCATGGC ACTGACCAT ACATTCTCGG GAATGATCTC TAGGAGCTCT TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT TGTTCATAGGA ACTACCCAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTACATA TACATACATA TTTTTATATA GAGAAAATAC CAGTACCCCA AGATTCCTT GAAGGAGAA CAGAAACTTC ACCATGAGT ACCTGTATTT ACCATGTATTT ACCATGTATTT ACCATGTATTT ACCATGAGAAACTT ACCATGAGTATTT ACCATGTATTTT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACCTTT GACTGCATT TATCTGAGGA TGACAGCA TGACAGCAC TGACAGCAC TGACAGCAC TTTTAGAAC CAGCTACCAT ATGTTTATA TTTCTGTCTT AGACATGCAA TGATATATA TGTTATATA TGTTATATA TGTTGCAAGA ACTGCATCAT CAGCTTCAT CAGC	8220 8280 8340 8460 8520 8520 8640 8760 8860 9940 99120 9120 9360 9420 9480 9540
55606570	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTTCGGTATGT TTTTCTTCTTT TCACTTCAGTT TCATCATCAGTT TCATCATCAGTT TCATCATCAGTT TCATCATTT TATAAAATTA ATATAATTT ATTAAAATTT CCTTCCCAG TTTTTGTGTA AACTTTACAG CCTGGCTTGTC CCATGAATAA ATACTGTACA Seq ID NO:	TTGACAGGG TCCCGTGAT ACACCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT TACATCATGC TACATCATGC AACTCATGC AACTGCTG AATTCCTCTG GATATATAT AAAAGAAAAA TTCCTTTCAA ATAAATTATT CAACCCTCCA AAGCTGCTC AACTGCTCC CATGTGCTCCTC CATGTGCTCTC TCACACCTCCA TTGATAATAT TCTTTCAA	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGCTTC ATAGACATGA ATTTTTCAC ATAGACATGA TCACTTCAAA TATATATTT CATTTCTCA ATCAGACGAC TGGTGGACGC TCAGACACCT TGTGGACTGC ATCAGACGAC TCACTCAAACT TCTCCAACCT TGTGGGAAGG CAGAGGAGG CAGAGG CAGAGG CAGAGGAGG CAGAGG CAGAGGAGG CAGAGG CA	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GTTGGGGA ATCAGGTTGAG AAGGAGGGCT ATTCAGAGCT CACACCACCTC TGATAGCC TGATAGACTCAGCTT TGGAACTCAC GAGACTAGAA AGACTTGAA AGACTTGAAT CCTTCAGATT CTGCGATAT CTGCGATAT CTGCGATATT GAGAGGAGAG	GGATCACCAG ACTGCATGGC ACTGACCAT ACATTCTCGG GAATGATCTC TAGGAGCTCT TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT TGTTCATAGGA ACTACCCAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTACATA TACATACATA TTTTTATATA GAGAAAATAC CAGTACCCCA AGATTCCTT GAAGGAGAA CAGAAACTTC ACCATGAGT ACCTGTATTT ACCATGTATTT ACCATGTATTT ACCATGTATTT ACCATGAGAAACTT ACCATGAGTATTT ACCATGTATTTT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACCTTT GACTGCATT TATCTGAGGA TGACAGCA TGACAGCAC TGACAGCAC TGACAGCAC TTTTAGAAC CAGCTACCAT ATGTTTATA TTTCTGTCTT AGACATGCAA TGATATATA TGTTATATA TGTTATATA TGTTGCAAGA ACTGCATCAT CAGCTTCAT CAGC	8220 8280 8340 8460 8520 8520 8640 8760 8860 9940 99120 9120 9360 9420 9480 9540
5560657075	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTTCGGTATGT TTTTCTTCTTT TCACTTCAGTT TCATCATCAGTT TCATCATCAGTT TCATCATCAGTT TCATCATTT TATAAAATTA ATATAATTT ATTAAAATTT CCTTCCCAG TTTTTGTGTA AACTTTACAG CCTGGCTTGTC CCATGAATAA ATACTGTACA Seq ID NO:	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCAGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT TACATCATGC TACATCATGC TACATCATGC TACATCATGC TACATCATGC TACATCATGC TACATCATGC TACATCATGC TATCATGC GATATATATA AAAGAAAAA TTCCTTTCAA AATAAATTAT AAAAATTATT CAACCTCCCA AAGCTGTGCT CATCTGGTCT CATCTGGTCT TACACGACCT TTTGATAATA 417 Protein	TACCTATGTA TGTGATCGCC CGGGAACACC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGCTTC ATAGACATGA ATTTTTCAC ATAGACATGA TCACTTCAAA TATATATTT CATTTCTCA ATCAGACGAC TGGTGGACGC TCAGACACCT TGTGGACTGC ATCAGACGAC TCACTCAAACT TCTCCAACCT TGTGGGAAGG CAGAGGAGG CAGAGG CAGAGG CAGAGGAGG CAGAGG CAGAGGAGG CAGAGG CA	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GTTGGGGA ATCAGGTTGAG AAGGAGGGCT ATTCAGAGCT CACACCACCTC TGATAGCC TGATAGACTCAGCTT TGGAACTCAC GAGACTAGAA AGACTTGAA AGACTTGAAT CCTTCAGATT CTGCGATAT CTGCGATAT CTGCGATATT GAGAGGAGAG	GGATCACCAG ACTGCATGGC ACTGACCAT ACATTCTCGG GAATGATCTC TAGGAGCTCT TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT TGTTCATAGGA ACTACCCAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTACATA TACATACATA TTTTTATATA GAGAAAATAC CAGTACCCCA AGATTCCTT GAAGGAGAA CAGAAACTTC ACCATGAGT ACCTGTATTT ACCATGTATTT ACCATGTATTT ACCATGTATTT ACCATGAGAAACTT ACCATGAGTATTT ACCATGTATTTT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTT GACTGCATT TATCTGAGGA TGACAGCA TGACAGCAC GATTTAGAAC CAGCTACCAT ATGTTTATA TTTCTGTCTT AGACACTGCA TGACATGAA TGTTATATA TGTTATATA TGTTATATA TGTTGCAAGA ACTGCATCAT CAGCTTCAT CAGCTTCAT CAGCTTCAT CAGCTTCAT CAGCTTCAT CAGCTTCAT CAGTTTTTCTC CAGCTTCAT CAGCTCAT C	8220 8280 8340 8460 8520 8520 8640 8760 8860 9940 99120 9120 9360 9420 9480 9540
5560657075	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTTCGGTATGT TTTTCTTCTTT TCACTTCAGTT TCATCATCAGTT TCATCATCAGTT TCATCATCAGTT TCATCATTT TATAAAATTA ATATAATTT ATTAAAATTT CCTTCCCAG TTTTTGTGTA AACTTTACAG CCTGGCTTGTC CCATGAATAA ATACTGTACA Seq ID NO:	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCAGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT TACATCATGC TACATCATGC TACATCATGC TACATCATGC TACATCATGC TACATCATGC TACATCATGC TACATCATGC TATCATGC GATATATATA AAAGAAAAA TTCCTTTCAA AATAAATTAT AAAAATTATT CAACCTCCCA AAGCTGTGCT CATCTGGTCT CATCTGGTCT TACACGACCT TTTGATAATA 417 Protein	TACCTATGTA TGTGATCGCC CGGGACACC CGGGACTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACGAG CAGGGCTTC ATAGACATGA ACTCTGACTGC ATAGACATGA TATATTTTT CATTTCTAA TATATATTT CGTCTTACA TCTCCAACCT GTGGGAAGG CAGAGGAGG CAGAGG CAGAG CAGAGG CAGAGG CAGAGG CAGAGG CAGAGG CAGAGG CAGAGG CAGAGG CAGAG	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA GTTGGGGA ATCAGGTTGAG AAGGAGGGCT ATTCAGAGCT CACACCACCTC TGATAGCC TGATAGACTCAGCTT TGGAACTCAC GAGACTAGAA AGACTTGAA AGACTTGAAT CCTTCAGATT CTGCGATAT CTGCGATAT CTGCGATATT GAGAGGAGAG	GGATCACCAG ACTGCATGGC ACTGACCAT ACATTCTCGG GAATGATCTC TAGGAGCTCT TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT TGTTCATAGGA ACTACCCAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTCAGAT TGTTACATA TACATACATA TTTTTATATA GAGAAAATAC CAGTACCCCA AGATTCCTT GAAGGAGAA CAGAAACTTC ACCATGAGT ACCTGTATTT ACCATGTATTT ACCATGTATTT ACCATGTATTT ACCATGAGAAACTT ACCATGAGTATTT ACCATGTATTTT	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTT GACTGCATT TATCTGAGGA TGACAGCA TGACAGCAC GATTTAGAAC CAGCTACCAT ATGTTTATA TTTCTGTCTT AGACACTGCA TGACATGAA TGTTATATA TGTTATATA TGTTATATA TGTTGCAAGA ACTGCATCAT CAGCTTCAT CAGCTTCAT CAGCTTCAT CAGCTTCAT CAGCTTCAT CAGCTTCAT CAGTTTTTCTC CAGCTTCAT CAGCTCAT C	8220 8280 8340 8460 8520 8520 8640 8760 8860 9940 99120 9120 9360 9420 9480 9540
5560657075	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGG AAAACAACTT ACAACAAGC GTTCGGAAAA CTTTTGTGTT TTTCTTCTTT TCTTCTTTT TCACTACATCA TCACCTAGTT CAGAGTGAC TTTATATGAT ATATATATTT ATTATATATTT ATTATATATTT ATTATATATTT CCTTCTCTCG TTTTTTTTTT	TTGACAGGG TCCCGTGAT ACACCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCT ACATCCACGT GGGGTTTGTA ATGGTGGCT TACATCATGC TGCAAATGCC AACATGCTGCAAATGCC AACATGCTGCGAAATAATATA AAAAATAATC ATAAATTATT AAAAAATTATT AAAAAATTATT AAAAAA	TACCTATGTA TGTGATCGCC CGGGACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGAG CAGGGGCTTC ACTCGACTGC ATAGACATGA TATATATTTT CATTTCTC ATCAGACGAT TCACAACTT CTCCAACCT GTGGGAAGG CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT AGAGTCTTCC AAGTGATT CATTTCCAACTT CTCCAACCT GTGGGAAGG CAGAGGAGGT AGAGTCTTCC AAGTGATT CATTTCCAACTT CATCAACTT CATCAACT CATCAACTT CATCAACT CATCAAC	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCAGGGAT ATGCAAAAA GTGGATTCCA GGTTGGGAA AAGACTTGA AAGAGAGGCT CTCATAAGC ACAACACCTC TGATAGACTT AATTCAGGTG TGGAACACT ACTCAGCTT AATTCAGAGT TGGAACTCAC GAGACTAGAA AGACTTGGAT CCTCAAATT CTGCGATATT CTCCCAAAAAA	GGATCACCAG ACTGCATGGC ACTGCATGCC CACTGACCAT ACATTCTCGG GAATGATTCT GTGATCTTG CAGCCTTGCT TCTGTGCTCT GTCATAGGA ACTACCCAT TGTTCCAGAT GCCAATAAG TACATACATA TTTTTATATA GGAGAATAC ACATTACAGC AGATTACACC AGATTACAGC AGATTACATC AGAGAAATTC AGCAGAGA CAGAAACTTC AGCATGAGT ACTGTATTTT AAAAA	CGAGCCCACC TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTC TTAGGAACTC TAAATAATGT ATCTACAATT GACTGCAATT TATCTGAGGA TGACAAGTCA TGACAAGTCA TGACTACCAT ATGTTTTATA ATGTTTTATA TTTCTGTCTT AGACATCGAA TGTTATATA TGTATGCAAAG TGACAAGTCA TGTTATATTA TGTATGCAAAG TGTTATATTA TAGACATGGAA TGTTATATTA TAGACATGGAA TGTTATATTA TAGACATGCAAAG TCTGCAGTAT TCTGCAGTAT TCTGCAGTAT CAGGTTCAAT	8220 8280 8340 8460 8520 8520 8640 8760 8860 9940 99120 9120 9360 9420 9480 9540
556065707580	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAACAACTT ACACAGAGG GTTGGGTATT TTTCTTCTT TTTCTTCTTT TCACTCAGTT TCACCTAGTT TCATCAGTT TTTATATGAA TATATATTT ATTAAATTA ATATATTTT ATTAAATTA ATATATTTC	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ACATCCACGTT ATGCCGGCTT ATGCCGGCTT ATGCAGATG ATGGTGGCT GGAAGCAATG TACATCATGC TACATCATGC AAATAAGCC AAATAAGCC AAATAATATAT AAAAATATT AAAAAATTATT CAACCCTCCA AAGCTGTGCT AATTGATAATA ATTGATCATC TCATCGGTTC TTTGATAATATA ATTGATCAT AT	TACCTATGTA TGTGATCGCC CGGGAACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGA CAGGGGCTTC ACTCGACTGC ATAGACATGA AGTTTTTACA TCACTTCAAA TATATATTTT CATTTCTTC ATCAGACGAT GGTCTTTACA TCTCCAACGT GTGGGGAAGG CAGAGGAGGT CTCCAACGT TCTCCAACT TCTGGGGAAGG CAGAGGAGGT AGAGTCTTCC AAATATTT A SEQUENCE UP_056234.1	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCAAAAA GTGGATTCCA ATGCAGGTG ATCAGGTGA ATCAGGTGA ACACACCTC TGATAGC ACACACCTC TGATAGCT TGGAACTCAC GAGACTCAC GAGACTCAC GAGACTCAC GAGACTCAC CTCCAGCTT CTCCAGCTT CTCCAGCTT CTCAGATT CGGAACTCAC GAGACTAGAA CCTTCAAATT CTGCGATATT CTGCGATATT CTGCGATATT CTGCGAAAAAC CCTTCTTCCCC TGACTGCTTT CTCCCAAAAAA	GGATCACCAG ACTGCATGGC ACTGCATGACCAT ACATTCTCGG GAATGATCTC TAGGAGCTCT TCTGTGCTCT TCTGTGCTCT TCTCATAGGA ACTACCCCAT TGTTCCAGAT TGTTCCAGAT TGTTCAGAT TACTACAGA ACTACCCCAT TGTTCCAGAT TACTACAGA ACTACCAATACAGA CAGATACATA TTTTATATA GGAGAAATAC CAGTCACCAC AGATTCCTT GAAGGAGAAA CAGAAACTTC AGCCATGAGT ACTGTATTT AAAAA 41	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTT GACTGCAATT TATCTGAGGA TGAAGACGCA TGACAAGTCA GATTTAGAAC GATTTAGAAC TTTCTGTTT AGCACTGCATT TGTCTGTTT AGCATGCAAT TGTTATATAT TTCTGGTTA AGATTCAAAG ACTGCATCAT TCTGCAGTAT CAGTTTTGTGC TAAGGTCAAT	8220 8280 8340 8460 8520 8520 8640 8700 8760 8880 8940 9060 9120 9180 9240 9360 9420 9480 9540 9600
556065707580	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGA AAACAACTT ACACAGAGA CTTTTGTGTT TTTCTTCTTT TCTTCAGTT TCATTCAGTT TCATTCAGTT TCATTCAGTT TCATTAATAAATTT ATTAAAATTT ATTAAAATTT ATTATAATTT ATTATATACT TCTTCCCAG TTTTTGTTG AACTTTACAG TCCTTCCTCAG TTTTTGTTGA AACTTTACAG TCCTTCTCAG TTTTTGTTGA AACTTTACAG TCCTTCTCAG TTTTTGTTGA AACTTTACAG TCCTTGTCCAG CTGGCTTGTC CCATGAATAA ATACTGTACA Seq ID NO: Protein Acc 1	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCT TGCAAATGCC AACATCATCGT GAAATAATCA ATGATATATA AAAAAAATAATC CAACCCTCCA AAGCTGTGCT AATGATCATGC TTTGATAATT AAAAAATTATT AAAAAATTTC CAACCCTCCA AATGACTCCAC AATTGATCT TTGATAATA 417 Protein cession #: 1 1 SVVLILLWGH	TACCTATGTA TGTGATCGCC CGGGACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTTCTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGA CAGGGGCTTC ACTCGACTGC ATATATATTTC ATATATATTT CATTTCTACA TCTGCAACGT GTCGTTCCAACCT GTGGGAAGG CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT CAGAGGAGGT AGAGTCTTCC AAGTGTTCC AAGTGTTCC AAGTGTTCC AAGTGCTTC CAGAGGAGGT CTCCAACCT TGGGGAAGG TGTGGGGAAGG TGTGGGGAAGG TAGAGTGCTC AAGTGCTTC AAGTTATTCCA AAATAATATT 1 sequence UP_056234.1 21 PRVALACPHP	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCAGGGAT ATGGCAAAAA GTGGATTCCA GGTTGGGGAA TCAAGTTGAG AAGGAGGGCT CTCATAAGC ACACCTC TGATAGACTT AATTCAGGTT AATTCAGAGT AGGACTCAAATCACT AATTCAGAGT CCTCAAATT CTGCAAATT CTGCATATAT CTGCATATT CTGCATATT CTGCATATT CTGCATATT CTCCCAAAAA 31 1 CACYVPSEVH	GGATCACCAG ACTGCATGGC CACTGAAGGC CACTGACCAT ACATCATCGG GAATGATTCTCGG GTAGACCTT GTTGATCTTG CAGCCTTGCT TCTGTGCCTC GTCCATAGGA ACTACCCAT TGTTCCAGAT TGTTCCAGAT TGCCATACACAT ACATACACAT ACATACACAT ACATACACAT ACATTACACC AGATTACCAC AGATTACCAC AGATTACCAC AGATTACACT ACAGTACCACT ACAGGAGAAAC CAGAAACTTC AGCCATGAGT ACTGTATTT AAAAA 41 CTFRSLASVP	CGAGCCCACC TATGGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTTT TATCTGAGGA TGAAGACGCA TGACAAGTCA GATTTAGAAC CAGCTACCAT ATGTTTTATA TTTCTGTTT AGACATGCAT AGATTTTATA TTTCTGAGAA TGTTTTATA TTTCTGTAT AGACATGCAA TGTTTTATA TTTCTGCATAT TCTGCAGTAT CCAGTTTTTGC TAAGGTCAAT	8220 8280 8340 8460 8520 8520 8580 8760 8880 8940 9000 9120 9180 9240 9360 9420 9480 9540 9600
5560657075	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTT ACACAGAGA AAAACAACTT ACAACAAGC GTCGTCGTT TTTCTTCTT TTTCTTCTT TCACTACATT TCTTCAGTT CACAGAGTGACA TCATCATCA TCATTCATCAT TCTTTAATATAA ATATAATTT ATTAAAATTA ATATAATTT CCTTTCTCTGA ACTTTCTCCAG ACTTTCTCTCAG TTTTTGTTT ACTATAATAAATTA ATATAATTT CCTTTCTCCAG ACTTTTCTCTCAG ACTTTTCTTTT	TTGACAGGG TCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT TACATCATGC TGCAAATGCC AACATCATGC AACATCATGC AACATGCTGC AATTCCTCTG GATATATATA AAAAGAAAAA TTCCTTTCAA ATAAATTTC CAACCCTCCT TACACGACCT TTTGATAATC TACACGACCT TTTGATAATA 417 Protein cession #: 1	TACCTATGTA TGTGATCGCC CGGGACACCC CGGGACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTACTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGA ATTTCTTCAC ACTCGACTGC ATAGACATGA TCACTTCAAA TATATATTT CATTTCTTCC ATCGACGA GGTCTTACA TCTCCAACCT GTGGGAAGG AGAGTCTTC AAGATGCA CAGAGGAGG CAGAGGAGGT CAGAGGAGGT AAGATATATT 1 sequence NP_056234.1 21	TATCCTCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCATACA GTGGATTCCA GGTTGGGGAA ACACTTCAGGGTG CTTCATAAGC ACACACTC TGATAGACTT AATCAGGAT ACTCAGCTT AATTCAGGAT TCGAGACT TGAAACACTC TGAATAGACT TGAACTCAGACT TGAACTCAGACT CAGACTAGAA AGACTTGGAT CCTTCAAATT CTGCGATATT CTGCGATATT CTGCGATATT CTGCAAAAA 31 CACYVPSEVH LPSIPDGALR	GGATCACCAG ACTGCATGGAC ACTGCATGACCAT ACATTCTCGG GAATGATTGC GTTGATCTTG CAGCCTTGCT TCTGTGCTCT TCTGTGCTCT TCTGTCCAATAGGA ACTACCCAT TGTTCCAGAT TGTTCCAGAT TGTTCAGAT TTTTTATATA GCAGAAAATAC ACATTACACCAC AGATTCCTC AGAGAAATTC AGCCATGGT ACTGTATTT AAAAA 41 CTFRSLASVP DLSSLQVFKF	CGAGCCCACC TATGGGGATT AGGGGATT AGGGGATT CCAGCATGCC CAGTGACTCC TTAGGAACTC TTAGGAACT GACTACAATT GAGACACTT GACTGCAATT TATCTGAGAA TGACAGCA TGACAGCAT TATCTGTCTT AGACATCAT TAGTTTTATA TTTCTGTCTT AGACACTACAT TGTTATATTA GTATGCAAAG ACTGCACAT TCTGCACTAT TCTGCACTAT TCTGCACTAT TCTGCACTAT TCTGCACTAT TCTGCACTAT TCTGCACTAT TCTGCACTAT CAGTTTGTGC TAAGGTCAAT 51 AGIARHVERI SYNKLRVITG	8220 8280 8340 8440 8520 8640 8700 8760 8880 99060 9120 9300 9360 9340 9540 9540 9600
556065707580	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTTCGTCTGT TTTTCTTCTTT TCTTCTTT TCTTCTTCTT TCATATATAATAT ATATAATTT ATTAAAATTT ATTAAAATTT CCTTCTCCAG TTTTGTGTA AAATTAACAG CCTGGCTTGTC CCATGAATAA ATACTGTACA Seq ID NO: Protein Acc 1 MPKRAHWGAL NLGFNSIQAL QTLQGLSNLM	TTGACAGGG TCCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCAGGCT ACATCCACGT GGAGTTTGTA ATGGTGGCCT TGCAAATGCC AACTCATGC AACTCATGC AACTGCTGG AATTCACTGT GAAATAAGCC ACTGCTTG GATATATATA AAAAATATTC GAACCTCCTA ATGACTCTCA ATGATCATC CATCTGCTC TACACGACCT TTGATAATA ATTCTTTCAA ATTCTTTCAA ATTCTTTCAA ATTCTTTCAA ATTCTTTCAA TTCTTTCATCTTCAA TTCTTTGATAATA 417 Protein cession #: 1 SVVLILLWGH SETSFAGLTK RLHIDHNKIE	TACCTATGTA TGTGATCGCC CGGGACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTACTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGA AGTTTTTACA ACTCGACTGC ATAGACATGA AGTTTTTACA TCACTTCAAA TATATTTT CATTCTTCA TCACACCT GTGGGAAG GGTCTTACA TCTCCAACCT GTGGGAAGG CAGAGGAAGC CAGAGGAAGC AGAGTCTTACA ATATATTCC AAGTGCTC AAGTGCTC AAGTGCTC AAGTGCTC AAGTGCTC AAGTGCTC AAATAATAT SEQUENCE LP_056234.1 PRVALACPHP LELLMIHGNE FIHPQAFNGL	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCATACA GTGGATTCCA GTTGGGGAT TCAAGTTGAG AAGGAGGGCT ATTCAGGGTG ACACACCTC TGATAGAC TGATAGACT TGATAGACT TGATAGACT AATTCAGGAT ACTCCAGCTT AATTCAGAT ACTCCAGCTT ACTCCAGCTT ACTCAGAT CCTCAAAT CCTCAAAT CCTCAAAT CCGAAAAAC CCTTCTCCCC TGACTGCTT CTCCCAAAAA 31	GGATCACCAG ACTGCATGGC ACTGCATGACCAT ACATTCTCGG GAATGATTCT GTAGCACTTCTTGATCTTG CAGCCTTGCT TCTGTGCTCT GTCCATAGGA ACTACCCCAT TGTTCCAGAT TGTTCCAGAT TGATCAGAT ACATACATA TTTTATATA GGAGAAAATAC CAGTCACCAC AGATTCCTT GAAGGAGAAATAC AGATACATC AGATTACAGC AGATTTCTT AAAAA 41 CTFRSLASVP DLSSLQVFKF NLLHQLHPST	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTT GACTGCAATT TATCTGAGGA TGACAGACACT TATCTGAGGA TGACACACT ATGTTTATAT ATGTTATATA TTTCTGTCTT AGGACTGCACAT AGGTATCAT TGTTATATT CAGTCATCAT TCTGCACTAT TCTGCACTAT CAGTTTGTGC TAAGGTCAAT CAGTTTGTGC TAAGGTCAAT CAGTTTGTGC TAAGGTCAAT 51 AGIARHVERI SYNKLRVITG FSTFTFLDYF	8220 8280 8340 8460 8520 8520 8640 8760 8880 8940 9000 9120 9360 9360 9480 9540 9600
556065707580	GGCCCCAAA GCCTCGGTGT GTCACCAGCA CCGGTCATCT CCCAAAGCTG GCTCGTCTGT ACACAGAGAG AAAACAACTT ACAACAAAGC GTTCGTCTGT TTTTCTTCTTT TCTTCTTT TCTTCTTCTT TCATATATAATAT ATATAATTT ATTAAAATTT ATTAAAATTT CCTTCTCCAG TTTTGTGTA AAATTAACAG CCTGGCTTGTC CCATGAATAA ATACTGTACA Seq ID NO: Protein Acc 1 MPKRAHWGAL NLGFNSIQAL QTLQGLSNLM	TTGACAGGG TCCCGTGAT ACACCCGGCC ACATCACGTG ATGGAAACAG ATGCCGGCTT ACATCCACGT GGGGTTTGTA ATGGTGGCCT TACATCATGC TGCAAATGCC AACATCATGC AACATCATGC AACATGCTGC AATTCCTCTG GATATATATA AAAAGAAAAA TTCCTTTCAA ATAAATTTC CAACCCTCCT TACACGACCT TTTGATAATC TACACGACCT TTTGATAATA 417 Protein cession #: 1	TACCTATGTA TGTGATCGCC CGGGACACCC GGAGTTACCG ATTTCTTCAC CTACAAGTGC CTACTGAAAT AGGGAAGCCA CTGGTGGGTT CAGACACGA AGTTTTTACA ACTCGACTGC ATAGACATGA AGTTTTTACA TCACTTCAAA TATATTTT CATTCTTCA TCACACCT GTGGGAAG GGTCTTACA TCTCCAACCT GTGGGAAGG CAGAGGAAGC CAGAGGAAGC AGAGTCTTACA ATATATTCC AAGTGCTC AAGTGCTC AAGTGCTC AAGTGCTC AAGTGCTC AAGTGCTC AAATAATAT SEQUENCE LP_056234.1 PRVALACPHP LELLMIHGNE FIHPQAFNGL	TATCCTCCCC GTGAAACTGA GATAAGTCGC CCCCAGGGAT ATGGCATACA GTGGATTCCA GTTGGGGAT TCAAGTTGAG AAGGAGGGCT ATTCAGGGTG ACACACCTC TGATAGAC TGATAGACT TGATAGACT TGATAGACT AATTCAGGAT ACTCCAGCTT AATTCAGAT ACTCCAGCTT ACTCCAGCTT ACTCAGAT CCTCAAAT CCTCAAAT CCTCAAAT CCGAAAAAC CCTTCTCCCC TGACTGCTT CTCCCAAAAA 31	GGATCACCAG ACTGCATGGC ACTGCATGACCAT ACATTCTCGG GAATGATTCT GTAGCACTTCTTGATCTTG CAGCCTTGCT TCTGTGCTCT GTCCATAGGA ACTACCCCAT TGTTCCAGAT TGTTCCAGAT TGATCAGAT ACATACATA TTTTATATA GGAGAAAATAC CAGTCACCAC AGATTCCTT GAAGGAGAAATAC AGATACATC AGATTACAGC AGATTTCTT AAAAA 41 CTFRSLASVP DLSSLQVFKF NLLHQLHPST	CGAGCCCACC TATGGGATT AGGGGTTCAG CCAGCATGCC CAGTGACTCC TTAGGAACTG TAAATAATGT ATCTACAATT GAGACACTT GACTGCAATT TATCTGAGGA TGACAGACACT TATCTGAGGA TGACACACT ATGTTTATAT ATGTTATATA TTTCTGTCTT AGGACTGCACAT AGGTATCAT TGTTATATT CAGTCATCAT TCTGCACTAT TCTGCACTAT CAGTTTGTGC TAAGGTCAAT CAGTTTGTGC TAAGGTCAAT CAGTTTGTGC TAAGGTCAAT 51 AGIARHVERI SYNKLRVITG FSTFTFLDYF	8220 8280 8340 8440 8520 8640 8700 8760 8880 99060 9120 9300 9360 9340 9540 9540 9600

	WO 02	/086443					
	CKKDKAYEGG	QLCAMCFSPK	KLYKHEIHKL	KDMTCLKPSI	ESPLRQNRSR	SIEEEQEQEE	300
	DGGSQLILEK	FQLPQWSISL	NMTDEHGNMV	NLVCDIKKPM	DVYKIHLNQT	DPPDIDINAT	360
		RENYEKLWKL					420
_	VRAQILAEPE	WVMQPSIDIQ	LNRRQSTAKK	VLLSYYTQYS	QTISTKDTRQ	ARGRSWVMIE	480
5	PSGAVORDOT	VLEGGPCQLS	CNVKASESPS	IFWVLPDGSI	LKAPMDDPDS	KFSILSSGWL	540
	RIKSMEPSDS	GLYQCIAQVR	DEMDRMVYRV	LVQSPSTQPA	EKDTVTIGKN	PGESVTLPCN	600
	ALAIPEAHLS	WILPNRRIIN	DLANTSHVYM	LPNGTLSIPK	VQVSDSGYYR	CVAVNQQGAD	660
	HFTVGITVTK	KGSGLPSKRG	RRPGAKALSR	VREDIVEDEG	GSGMGDEENT	SRRLLHPKDQ	720
	EVFLKTKDDA	INGDKKAKKG	RRKLKLWKHS	EKEPETNVAE	GRRVFESRRR	INMANKQINP	780
10		RGKNLPKGTE					840
	SSADVPLLGE	EEHVLGTISS	ASMGLEHNHN	GVILVEPEVT	STPLEEVVDD	LSEKTEEITS	900
	TEGDLKGTAA	PTLISEPYEP	SPTLHTLDTV	YEKPTHEETA	TEGWSAADVG	SSPEPTSSEY	960
	EPPLDAVSLA	ESEPMQYFDP	DLETKSQPDE	DKMKEDTFAH	LTPTPTIWVN	DSSTSQLFED	1020
	STIGEPGVPG	QSHLQGLTDN	IHLVKSSLST	QDTLLIKKGM	KEMSQTLQGG	NMLEGDPTHS	1080
15	RSSESEGQES	KSITLPDSTL	GIMSSMSPVK	KPAETTVGTL	LDKDTTTVTT	TPRQKVAPSS	1140
	TMSTHPSRRR	PNGRRRLRPN	KFRHRHKQTP	PTTFAPSETF	STQPTQAPDI	KISSQVESSL	1200
	VPTAWVDNTV	NTPKQLEMEK	NAEPTSKGTP	RRKHGKRPNK	HRYTPSTVSS	RASGSKPSPS	1260
	PENKHRNIVT	PSSETILLPR	TVSLKTEGPY	DSLDYMTTTR	KIYSSYPKVQ	ETLPVTYKPT	1320
•	SDGKEIKDDV	ATNVDKHKSD	ILVTGESITN	AIPTSRSLVS	TMGEFKEESS	PVGFPGTPTW	1380
20	NPSRTAQPGR	LQTDIPVTTS	GENLTDPPLL	KELEDVDFTS	EFLSSLTVST	PFHQEEAGSS	1440
	TTLSSIKVEV	ASSQAETTTL	DQDHLETTVA	ILLSETRPQN	HTPTAARMKE	PASSSPSTIL	1500
	MSLGQTTTTK	PALPSPRISQ	ASRDSKENVF	LNYVGNPETE	ATPVNNEGTQ	HMSGPNELST	1560
	PSSDRDAFNL	STKLELEKQV	FGSRSLPRGP	DSQRQDGRVH	ASHQLTRVPA	KPILPTATVR	1620
05	LPEMSTQSAS	RYFVTSQSPR	HWTNKPEITT	YPSGALPENK	QFTTPRLSST	TIPLPLHMSK	1680
25	PSIPSKFTDR	RTDQFNGYSK	VFGNNNIPEA	RNPVGKPPSP	RIPHYSNGRL	PFFTNKTLSF	1740
	PQLGVTRRPQ	IPTSPAPVMR	ERKVIPGSYN	RIHSHSTFHL	DFGPPAPPLL	HTPQTTGSPS	1800
	TNLQNIPMVS	STQSSISFIT	SSVQSSGSFH	QSSSKFFAGG	PPASKFWSLG	EKPQILTKSP	1860
	QTVSVTAETD	TVFPCEATGK	PKPFVTWTKV	STGALMTPNT	RIQRFEVLKN	GTLVIRKVQV	1920
20	QDRGQYMCTA	SNLHGLDRMV	VLLSVTVQQP	QILASHYQDV	TVYLGDTIAM	ECLAKGTPAP	1980
30	QISWIFPDRR	VWQTVSPVES	RITLHENRTL	SIKEASFSDR	GVYKCVASNA	AGADSLAIRL	2040
	HVAALPPVIH	QEKLENISLP	PGLSIHIHCT	AKAAPLPSVR	WVLGDGTQIR	PSQFLHGNLF	2100
	VFPNGTLYIR	NLAPKDSGRY	ECVAANLVGS	ARRTVQLNVQ	RAAANARITG	TSPRRTDVRY	2160
	GGTLKLDCSA	SGDPWPRILW	RLPSKRMIDA	LFSFDSRIKV	FANGTLVVKS	VTDKDAGDYL	2220
25		AAAPKADAAW					2280
35	DGSLVNSFMQ	SDDSGGRTKR	YVVFNNGTLY	FNEVGMREEG	DYTCFAENQV	GKDEMRVRVK	2340
	VVTAPATIRN	KTYLAVQVPY	GDVVTVACEA	KGEPMPKVTW	LSPINKVIPT	SSEKYQIYQD	2400
	GTLLIQKAQR	SDSGNYTCLV	RNSAGEDRKT	VWIHVNVQPP	KINGNPNPIT	TVRETAAGGS	2460
		IPTPRVLWAF					2520
40	RNEGGEARLI	VQLTVLEPME	KPIFHDPISE	KITAMAGHTI	SLNCSAAGTP	TPSLVWVLPN	2580 2640
40	GTDLQSGQQL	QRFYHKADGM	LHISGLSSVD	AGAYRCVARN	AAGHTERLVS	L DYGDKPEAN	2700
	KQYHNLVSII	NGETLKLPCT	PPGAGQGRFS	WILPNGMALE	GPQTLGRVSL	LUNGILIVRE	2760
	ASVFDRGTYV	CRMETEYGPS	VTSIPVIVIA	YPPRITSEPT	PVIYTRPGNT	VKLNCMAMGI	2820
		DKSHLKAGVQ	ARLYGNRFLH	PQGSLTIQHA	TORDAGEYRC	MAKNILGSDS	2820
45	KTTYIHVF						
40		410 DVD					
		418 DNA sed id Accession					
				dasnes			
	coaina sea	uence: 150	JU1				

Coding sequence: 1..5001

50	1	11	21	31	41	51	
	1	1	1	1	1		
		CAAAACTAAC					60
		AGGACGAATT					120
		TTGTGTCCTG					180
55		ACACCGTGCG					240
		ACAGGCGTGT					300
	GCAGTCCGTA	TTTCACAGGG					360
	ACACCAGAAT			GAAAACTTGA			420
		TTGTCGCTGC					480
60		TGGACACAGG					540
		CATTCTTTCA					600
		AGACACTACT					660
		CCGGGCCACA					720
~-		AACAAGAATG					780
65		AAACCAAACA					840
	CCATGTTTTC	TTTTCTACTT					900
		AAGACCCANN		TTGACAGGCA			960
		CGGATGTTCA					1020
70		CTTCTCCCAG					1080
70		GAAATGCCAA					1140
		CCCGAAAACC					1200
		TCACTGGGGA					1260
		AAGACCAGAA					1320
7.5		GCAGGACTGC					1380
75		CTGGCTTTTC					1440
		CTGCCCACCA					1500
		ATGACAACGA					1560
		AGGGCGCCTT					1620
0.0		TTCTCCGCGA					1680
80		CCCCCATTC					1740
		CTCCACCCCA					1800
		TTTCCAAGGG					1860
		GGTCCACCAT					1920
0.5		GAGCGGAGGC					1980
85	GGCGGAAGGC	AGGCGGAGGC	CACGGCCCAG	ACGCTGCGGG	CCCGGCCTGC	CTCTGGACAC	2040
	TTCCATTTGC	TCAGACACAA	ACCCTTTGCT	GCCAACGGGA	GGTCTCCAAG	CAGGTTCAGC	2100
	ATTGGGCGGG	GACCTCGGCT	GCAGCCCTCC	AGCTCCCCAC	AGTCGACTGT	GCCCTCCCGA	2160

		GGGTTCCCTC	TCACTCTGAT	TCCCACCCTA	AGCTTAGCTC	AGGTATCCAT	2220
		AGGATGAGAA					2280
		AGCCCATCTC					2340
5		ATCGGAAGGA					2400
3		GCAAGTACTC					2460 2520
		CGGAGGGTCA GTCCTCCCGC					2520
		GGGCCCCAGA					2640
		AGAGCAGAGA					2700
10		GGCCCCGCCC					2760
	ACGGCGAGCT	CCAGAGGGAT	GCTCCCCACG	GCCCTCCAGA	ACCAGGACGA	GGATGCCCAG	2820
		ACGACGACAG					2880
		CCAAGGAGGC					2940
15		GGGCAGGTGG					3000
15		GACCCGGCGG					3060
		AGCCTCCTTC					3120 3180
		AGGAGGAGGA TGCCAAAGTG					3240
		CCAAGGAAGA					3300
20		TGAAGCGACC					3360
20		GACCGCCGCC					3420
	CCCTGGCCGC	GGTACACCAC	GCGCGCCCCV	CCTGGCCACT	TCTCCACCAC	CCCGATGCTG	3480
		AGAGGATGAT					3540
		ACAGACAAGG					3600
25		GAAAACCGAA					3660
		TTGATCGTGG					3720
		CTCTTCGGAT					3780
		TGGTGAGTCC					3840
20		ATGCCCAAGA					3900
30		TCAAAAAAAC					3960
		TGCCTACCAC					4020 4080
		CGACGCCCCT					4140
		AACCCACCAC					4200
35		GCAACCTGAT					4260
		CAGGCTTGGA					4320
		ATTATGAATT					4380
	ACTGCTACCA	CACCGAGGGT	GATCCCAGAG	GAAGGCGCCA	TCAGTTCCTT	TCCTGAAGAA	4440
40	GAATTTGATC	TGGCTGGAAG	GAAACGATTT	GTTGCTCCTT	ACGTGACGTA	CCTAAATAAA	4500
40		CCCCGTGCTC					4560
		TCCCCAATGA					4620
		TGGTGGCCGT					4680
		GAGATTTGGT					4740
45		AGTTTTCCAC					4800 4860
43		CGAGGTATTA CGGTCTCATT					4920
		AGCTATCTGG					4980
		GCAATATGTG					5040
		GAGGTATAAA					5100
50		CTGGGGAAGA					5160
		GCCTCAGTCC					5220
	AGTATCGTCA	GGAGCCTGTC	AGGTTTGGGA	ACATCGGCTT	CGGAACCCCC	TACTACTATG	5280
		CGAGTGTGGG					5340
<i>5 </i>		GCCCTGCCCA					5400
55		GCTCAGCCCC					5460
	CATTCTGGTC	ATCTCAGTCT	GGAACTCAGT	CCCACTTCTT	GGCCTGGACA	ATGAACAGGA	5520
	TTCAGTTTTG	CTGTTAACTT	TGCTTCTCTA	CTTTTTTTTG	CCCACACOURT	MINGCACATC	5580 5640
	CCAGAGACAT	CAGAAACCAG CTTCAGTATT	TOCACCAATIC	CCATATCCAC	CCCAGACITI	CTTCATGGAA	5700
60	TGCTACATGC	TTTTTTTTTTT	TCCAGGAATA	CATATOCAC	AAACTAACTG	AATTTAAGCT	5760
00		TTGTATGCAG					5820
	ATATCCTACT	TGAAATTTAC	TCTATGGACT	TACCCACTGC	TAGAATAAAT	GTATCAAATC	5880
	TTATTTGTAA	ATTCTCAATT	TTGATATATA	TATGTATATA	TGCATATACA	TATCCACACT	5940
<i>-</i> -	TGTCTGCAAG	AATATTGATT	AAAATTGCTA	AATTTGTACT	TGTTCACCAA	AAAAAAAAA	6000
65	AAAAAA						
		419 Protein					
	Protein Acc	cession #: P	gos sedneuce	9			
70	_			2.1	41	51	
70	1	11	21	31	1	1	
	MDGTKI.TDTG	APADYRVILK	TSOEDELDVD	DDTSVRVMSS	OSVIVSWVDP	VLEKOKKVVA	60
	SROYTVRYRE	KGELARWDYK	OIANRRVLIE	NLIPDTVYEF	AVRISOGERD	GKWSTSVFOR	120
	TPESAPTTAP	ENLNVWPVNG	KPTVVAASWD	ALPETEGKVK	VCLLDTGLFS	VSSFQPSAKS	180
75	FQNTFFHTPR	LSNHLEQSPS	PILETLLLPW	WMVCSLGNAI	FSKSGPQTGE	AWDLTPKPSL	240
	SLCQQECSCT	QKDFSCLAYL	IDIQTKQVNK	DPQLEGSVFG	PCFLFYFLTF	MLDIGGFSFI	300
	MCYEDPVSSL	TGNSLKSVAA	SKADVQQNTE	DNGKPEKPEP	SSPSPRAPAS	SQHPSVPASP	360
	QGRNAKDLLL	DLKNKILANG	GAPRKPQLRA	KKAEELDLQS	TEITGEEELG	SREDSPMSPS	420
0Λ		PPSRHGHSVV					480
80		GTSHRPSLPA					540
	SSVLRDRSSV	HPGAKPASPA EDAPATNSNA	RRIPHSGAAE	EDSSASAPPS	KUSPPHGGSS	KUPE I OF HER	600 660
	SPUSKGGKDG	LRARPASCHF	AVOLUDORA	MCDGDGDGGT	CEGUERADUGE CEGUERADUGE	SPOSTUDGDA	720
	HDBADGRODG	HPKLSSGIHG	DEEDEKDI'DA	TOTOTOTOTO	SROPISPOWE	DLRRSPORGA	780
85	STHEKEDIDE	NPKSTGADTH	POGKYSSTAG	KAODVOOSTD	ADTEGHSPKA	QPGSTDRHAS	840
		OCCUPATION	- ZOTTOODIO	PPVATSQHHP	GPOSPDAGRS	PSOPRISTTO	900
	PARPPAARSO	OnPSVPRRMI	PGKMPEOUPP				
	AGRPRPTSOG	RSHSSSDPYT	ASSRGMLPTA	LQNQDEDAQG	SYDDDSTEVE	AQDVRAPAHA	960

```
ARAKEAAASL PKHOOVESPT GAGAGGDHRS QRGHAASPAR PSRPGGPQSR ARVPSRAAPG
       KSEPPSKRPL SSKSOOSVSA EDEEEEDAGF FKGGKEDLLS SSVPKWPSSS TPRGGKDADG
       SLAKEEREPA IALAPRGGSL APVKRPLPPP PGSSPRASHV PSRPPPRSAA TVSPVAGTHP
                                                                                 1140
       WPRYTTRAPP GHFSTTPMLS LRQRMMHARF RNPLSRQPAR PSYRQGYNGR PNVEGKVLPG
                                                                                 1200
 5
                                                                                 1260
       SNGKPNGQRI INGPQGTKWV VDLDRGLVLN AEGRYLQDSH GNPLRIKLGG DGRTIVDLEG
       TPVVSPDGLP LFGQGRHGTP LANAQDKPIL SLGGKPLVGL EVIKKTTHPP TTTMQPTTTT TPLPTTTTPR PTTATTMQPT TTTTPLPTTT PRPTTATTRR TTTRRPTTTV RTTTRTTTTT
                                                                                 1320
       TPKPTTPIPT CPPGTLERHD DDGNLIMSSN GIPECYAEED EFSGLETDTA VPTEEAYVIY
                                                                                 1440
       DEDYEFETSR PPTTTEPSTT ATTPRVIPEE GAISSFPEEE FDLAGRKRFV APYVTYLNKD
                                                                                 1500
10
       PSAPCSLTDA LDHFQVDSLD EIIPNDLKKS DLPPQHAPRN ITVVAVEGCH SFVIVDWDKA
                                                                                 1560
        TPGDLVTGYL VYSASYEDFI RNKFSTQASS VTHLPIENLK PNTRYYFKVQ AQNPHGYGPI
        SPSVSFVTES DNPLLVVRPP GGELSGSHSL SNMIPATRTA MDGNM
       Seq ID NO: 420 DNA sequence
       Nucleic Acid Accession #: NM_022743
Coding sequence: 128..1237
15
                                                                    51
                                21
                                            31
                                                        47
        GTGGATTTTA GAGATACCTC CCCTCCTTCT GCTCAGCTGC CTTGCAGTAA TTAAACTCTT
20
                                                                                    60
        TCTCTGCTGC AACACCCCTA CTGTTCTCCG TGTATTGGCT TTTCTGGGCA GCAGGAAGGA
                                                                                   120
        AAAGCTGATG CGATGCTCTC AGTGCCGCGT CGCCAAATAC TGTAGTGCTA AGTGTCAGAA
                                                                                   180
        AAAAGCTTGG CCAGACCACA AGCGGGAATG CAAATGCCTT AAAAGCTGCA AACCCAGATA
                                                                                   240
        TCCTCCAGAC TCCGTTCGAC TTCTTGGCAG AGTTGTCTTC AAACTTATGG ATGGAGCACC
                                                                                   300
       TCCAGAATCA GAGAAGCTTT ACTCATTTTA TGATCTGAG TCAAATATTA ACAAACTGAC
TGAAGATAAG AAAGAGGGCC TCAGGCAACT CGTAATGACA TTTCAACATT TCATGAGAGA
25
                                                                                   360
        AGAAATACAG GATGCCTCTC AGCTGCCACC TGCCTTTGAC CTTTTTGAAG CCTTTGCAAA
                                                                                   480
        AGTGATCTGC AACTCTTTCA CCATCTGTAA TGCGGAGATG CAGGAAGTTG GTGTTGGCCT
                                                                                   540
        ATATCCCAGT ATCTCTTTGC TCAATCACAG CTGTGACCCC AACTGTTCGA TTGTGTTCAA
                                                                                   600
30
                                                                                   660
        TGGGCCCAC CTCTTACTGC GAGCAGTCCG AGACATCGAG GTGGGAGAGG AGCTCACCAT
        CTGCTACCTG GATATGCTGA TGACCAGTGA GGAGCGCCGG AAGCAGCTGA GGGACCAGTA
                                                                                   720
        CTGCTTTGAA TGTGACTGTT TCCGTTGCCA AACCCAGGAC AAGGATGCTG ATATGCTAAC
        TGGTGATGAG CAAGTATGGA AGGAAGTTCA AGAATCCCTG AAAAAAATTG AAGAACTGAA
                                                                                   840
        GGCACACTGG AAGTGGGAGC AGGTTCTGGC CATGTGCCAG GCGATCATAA GCAGCAATTC
                                                                                   900
35
        TGAACGGCTT CCCGATATCA ACATCTACCA GCTGAAGGTG CTCGACTGCG CCATGGATGC
                                                                                   960
        CTGCATCAAC CTCGGCCTGT TGGAGGAAGC CTTGTTCTAT GGTACTCGGA CCATGGAGCC
                                                                                  1020
        ATACAGGATT TTTTTCCCAG GAAGCCATCC CGTCAGAGGG GTTCAAGTGA TGAAAGTTGG
                                                                                  1080
        CAAACTGCAG CTACATCAAG GCATGTTTCC CCAAGCAATG AAGAATCTGA GACTGGCTTT
        TGATATTATG AGAGTGACAC ATGGCAGAGA ACACAGCCTG ATTGAAGATT TGATTCTACT
                                                                                  1200
40
        TTTAGAAGAA TGCGACGCCA ACATCAGAGC ATCCTAAGGG AACGCAGTCA GAGGGAAATA
                                                                                 1260
        CGGCGTGTGT CTTTGTTGAA TGCCTTATTG AGGTCACACA CTCTATGCTT TGTTAGCTGT
                                                                                  1320
        GTGAACCTCT CTTATTGGAA ATTCTGTTCC GTGTTTGTGT AGGTAAATAA AGGCAGACAT
                                                                                  1380
        GGTTTGCAAA CCACAAGAAT CATTAGTTGT AGAGAAGCAC GATTATAATA AATTCAAAAC
        ATTTGGTTGA GGATGCCAAA AAAAAAAAA AAAAAAA
45
        Seq ID NO: 421 Protein sequence
        Protein Accession #: NP_073580
                                                                    51
                                            31
                                                         41
50
        MRCSOCRVAK YCSAKCOKKA WPDHKRECKC LKSCKPRYPP DSVRLLGRVV FKLMDGAPSE
        SEKLYSFYDL ESNINKLTED KKEGLRQLVM TFQHFMREEI QDASQLPPAF DLFEAFAKVI
                                                                                   120
        CNSFTICNAE MOEVGVGLYP SISLLNHSCD PNCSIVFNGP HLLLRAVRDI EVGEELTICY
                                                                                   180
        LDMLMTSEER RKQLRDQYCF ECDCFRCQTQ DKDADMLTGD EQVWKEVQES LKKIEELKAH
                                                                                   240
55
        WKWEQVLAMC QAIISSNSER LPDINIYQLK VLDCAMDACI NLGLLEEALF YGTRTMEPYR
        TEFPGSHPVR GVOVMKVGKL OLHOGMFPOA MKNLRLAFDI MRVTHGREHS LIEDLILLLE
        Seg ID NO: 422 DNA sequence
60
        Nucleic Acid Accession #: NM_003014.2
        Coding sequence: 238..648
                                                         41
                                            31
                                21
65
        GGCGGGTTCG CGCCCCGAAG GCTGAGAGCT GGCGCTGCTC GTGCCCTGTG TGCCAGACGG
                                                                                    60
        CGGAGCTCCG CGCCCGACC CCGCGGCCCC GCTTTGCTGC CGACTGGAGT TTGGGGGAAG
AAACTCTCCT GCGCCCCAGA AGATTTCTTC CTCGGCGAAG GGACAGCGAA AGATGAGGGT
                                                                                   120
        AAACTICICO GCGCCAGA AAATTICO GGGGTCGCAG CGCAAGAGG CAGTGCCATG
GGCAGGAAGA GAAGGCGCTT TCTGTCTGCC GGGGTCGCAG CGCAAGAGGG CAGTGCCATG
TTCCTCTCCA TCCTAGTGGC GCTGTGCCTG TGGCTGCACC TGGCGCTGGG CGTGCGCGGC
                                                                                   240
                                                                                   300
70
        GCGCCCTGCG AGGCGGTGCG CATCCCTATG TGCCGGCACA TGCCCTGGAA CATCACGCGG
                                                                                   360
        ATGCCCAACC ACCTGCACCA CAGCACGCAG GAGAACGCCA TCCTGGCCAT CGAGCAGTAC
                                                                                   420
        GAGGAGCTGG TGGACGTGAA CTGCAGCGCC GTGCTGCGCT TCTTCTTCTG TGCCATGTAC
                                                                                   480
        GCGCCCATTT GCACCCTGGA GTTCCTGCAC GACCCTATCA AGCCGTGCAA GTCGGTGTGC
                                                                                   540
        CAACGCGCGC GCGACGACTG CGAGCCCCTC ATGAAGATGT ACAACCACAG CTGGCCCGAA
75
        AGCCTGGCCT GCGACGAGCT GCCTGTCTAT GACCGTGGCG TGTGCATTTC GCCTGAAGCC
                                                                                   660
        ATCGTCACGG ACCTCCCGGA GGATGTTAAG TGGATAGACA TCACACCAGA CATGATGGTA
                                                                                   720
        CAGGAAAGGC CTCTTGATGT TGACTGTAAA CGCCTAAGCC CCGATCGGTG CAAGTGTAAA
                                                                                   780
        AAGGTGAAGC CAACTTTGGC AACGTATCTC AGCAAAAACT ACAGCTATGT TATTCATGCC
                                                                                   840
        AAAATAAAAG CTGTGCAGAG GAGTGGCTGC AATGAGGTCA CAACGGTGGT GGATGTAAAA
                                                                                   900
80
        GAGATOTICA AGTOCICATO ACCOATOCOT CGAACTOAAG TOCOGOTOAT TACAAATTOT
        TCTTGCCAGT GTCCACACAT CCTGCCCCAT CAAGATGTTC TCATCATGTG TTACGAGTGG
                                                                                  1020
        CGTTCAAGGA TGATGCTTCT TGAAAATTGC TTAGTTGAAA AATGGAGAGA TCAGCTTAGT
                                                                                  1080
        AAAAGATCCA TACAGTGGGA AGAGAGGCTG CAGGAACAGC GGAGAACAGT TCAGGACAAG
                                                                                  1140
        AAGAAAACAG CCGGGCGCAC CAGTCGTAGT AATCCCCCCA AACCAAAGGG AAAGCCTCCT
                                                                                  1200
        GCTCCCAAAC CAGCCAGTCC CAAGAAGAAC ATTAAAACTA GGAGTGCCCA GAAGAGAACA
AACCCGAAAA GAGTGTGAGC TAACTAGTTT CCAAAGCGGA GACTTCCGAC TTCCTTACAG
85
                                                                                  1260
        GATGAGGCTG GGCATTGCCT GGGACAGCCT ATGTAAGGCC ATGTGCCCCT TGCCCTAACA
```

TTTTATTTTT ATTTTTTTTT AGAGTTTGAG TCCAGCCTGG ACGATATAGC CAGACCCTGT

PCT/US02/12476

Seq ID NO: 425 Protein sequence Protein Accession #: AAH10423 5 51 11 21 31 41 MPLSLGAEMW GPEAWLLLLL LLASFTGRCP AGELETSDVV TVVLGQDAKL PCFYRGDSGE 60 OVGOVAWARV DAGEGAQELA LLHSKYGLHV SPAYEGRVEQ PPPPRNPLDG SVLLRNAVQA 120 10 DEGEYECRVS TFPAGSFQAR LRLRVLVPPL PSLNPGPALE EGQGLTLAAS CTAEGSPAPS 180 VTWDTEVKGT TSSRSFKHSR SAAVTSEFHL VPSRSMNGQP LTCVVSHPGL LQDQRITHIL HVSFLAEASV RGLEDQNLWH IGREGAMLKC LSEGQPPPSY NWTRLDGPLP SGVRVDGDTL 240 300 GFPPLTTEHS GIYVCHVSNE FSSRDSQVTV DVLDPQEDSG KQVDLVSASV VVVGVIAALL 360 FCLLVVVVVL MSRYHRRKAQ QMTQKYEEEL TLTRENSIRR LHSHHTDPRS QPEESVGLRA 420 15 EGHPDSLKDN SSCSVMSEEP EGRSYSTLTT VREIETQTEL LSPGSGRAEE EEDQDEGIKQ 480 AMNHFVQENG TLRAKPTGNG IYINGRGHLV Sed ID NO: 426 DNA sequence Nucleic Acid Accession #: NM_003474.2 20 Coding sequence: 37..3036 51 CACTAACGCT CTTCCTAGTC CCCGGGCCAA CTCGGACAGT TTGCTCATTT ATTGCAACGG 60 25 TCAAGGCTGG CTTGTGCCAG AACGGCGCGC GCGCGACGCA CGCACACACA CGGGGGGAAA CTTTTTTAAA AATGAAAGGC TAGAAGAGCT CAGCGGCGGC GCGGGCCGTG CGCGAGGGCT 1.80 CCGGAGCTGA CTCGCCGAGG CAGGAAATCC CTCCGGTCGC GACGCCCGGC CCCGCTCGGC 240 GCCCGCGTGG GATGGTGCAG CGCTCGCCGC CGGGCCCGAG AGCTGCTGCA CTGAAGGCCG 300 GCGACGATGG CAGCGCGCC GCTGCCCGTG TCCCCCGCCC GCGCCCTCCT GCTCGCCCTG 360 30 GCCGGTGCTC TGCTCGCGCC CTGCGAGGCC CGAGGGGTGA GCTTATGGAA CGAAGGAAGA 420 GCTGATGAAG TTGTCAGTGC CTCTGTTCGG AGTGGGGACC TCTGGATCCC AGTGAAGAGC 480 TTCGACTCCA AGAATCATCC AGAAGTGCTG AATATTCGAC TACAACGGGA AAGCAAAGAA 540 CTGATCATAA ATCTGGAAAG AAATGAAGGT CTCATTGCCA GCAGTTTCAC GGAAACCCAC 600 TATCTGCAAG ACGGTACTGA TGTCTCCCTC GCTCGAAATT ACACGGTAAT TCTGGGTCAC 660 35 TGTTACTACC ATGGACATGT ACGGGGATAT TCTGATTCAG CAGTCAGTCT CAGCACGTGT 720 TCTGGTCTCA GGGGACTTAT TGTGTTTGAA AATGAAAGCT ATGTCTTAGA ACCAATGAAA 780 AGTGCAACCA ACAGATACAA ACTCTTCCCA GCGAAGAAGC TGAAAAGCGT CCGGGGATCA TGTGGATCAC ATCACAACAC ACCAAACCTC GCTGCAAAGA ATGTGTTTCC ACCACCCTCT 900 CAGACATGGG CAAGAAGGCA TAAAAGAGAG ACCCTCAAGG CAACTAAGTA TGTGGAGCTG 960 40 GTGATCGTGG CAGACAACCG AGAGTTTCAG AGGCAAGGAA AAGATCTGGA AAAAGTTAAG 1020 CAGCGATTAA TAGAGATTGC TAATCACGTT GACAAGTTTT ACAGACCACT GAACATTCGG 1080 ATCGTGTTGG TAGGCGTGGA AGTGTGGAAT GACATGGACA AATGCTCTGT AAGTCAGGAC 1140 CCATTCACCA GCCTCCATGA ATTTCTGGAC TGGAGGAAGA TGAAGCTTCT ACCTCGCAAA TCCCATGACA ATGCGCAGCT TGTCAGTGGG GTTTATTTCC AAGGGACCAC CATCGGCATG 1260 45 GCCCCAATCA TGAGCATGTG CACGGCAGAC CAGTCTGGGG GAATTGTCAT GGACCATTCA 1320 GACAATCCCC TTGGTGCAGC CGTGACCCTG GCACATGAGC TGGGCCACAA TTTCGGGATG 1380 AATCATGACA CACTGGACAG GGGCTGTAGC TGTCAAATGG CGGTTGAGAA AGGAGGCTGC 1440 ATCATGAACG CTTCCACCGG GTACCCATTT CCCATGGTGT TCAGCAGTTG CAGCAGGAAG 1500 GACTTGGAGA CCAGCCTGGA GAAAGGAATG GGGGTGTGCC TGTTTAACCT GCCGGAAGTC 1560 50 AGGGAGTCTT TCGGGGGCCA GAAGTGTGGG AACAGATTTG TGGAAGAAGG AGAGGAGTGT 1620 GACTGTGGGG AGCCAGAGGA ATGTATGAAT CGCTGCTGCA ATGCCACCAC CTGTACCCTG 1680 AAGCCGGACG CTGTGTGCGC ACATGGGCTG TGCTGTGAAG ACTGCCAGCT GAAGCCTGCA 1740 GGAACAGCGT GCAGGGACTC CAGCAACTCC TGTGACCTCC CAGAGTTCTG CACAGGGGCC 1800 AGCCCTCACT GCCCAGCCAA CGTGTACCTG CACGATGGGC ACTCATGTCA GGATGTGGAC 1860 55 GGCTACTGCT ACAATGGCAT CTGCCAGACT CACGAGCAGC AGTGTGTCAC ACTCTGGGGA CCAGGTGCTA AACCTGCCCC TGGGATCTGC TTTGAGAGAG TCAATTCTGC AGGTGATCCT 1980 TATGGCAACT GTGGCAAAGT CTCGAAGAGT TCCTTTGCCA AATGCGAGAT GAGAGATGCT 2040 AAATGTGGAA AAATCCAGTG TCAAGGAGGT GCCAGCCGGC CAGTCATTGG TACCAATGCC 2100 GTTTCCATAG AAACAAACAT CCCCCTGCAG CAAGGAGGCC GGATTCTGTG CCGGGGGACC 2160 60 CACGTGTACT TGGGCGATGA CATGCCGGAC CCAGGGCTTG TGCTTGCAGG CACAAAGTGT 2220 GCAGATGGAA AAATCTGCCT GAATCGTCAA TGTCAAAATA TTAGTGTCTT TGGGGTTCAC 2280 GAGTGTGCAA TGCAGTGCCA CGGCAGAGGG GTGTGCAACA ACAGGAAGAA CTGCCACTGC 2340 GAGGCCCACT GGGCACCTCC CTTCTGTGAC AAGTTTGGCT TTGGAGGAAG CACAGACAGC 2400 GGCCCCATCC GGCAAGCAGA TAACCAAGGT TTAACCATAG GAATTCTGGT GACCATCCTG 2460 65 TGTCTTCTTG CTGCCGGATT TGTGGTTTAT CTCAAAAGGA AGACCTTGAT ACGACTGCTG 2520 TTTACAAATA AGAAGACCAC CATTGAAAAA CTAAGGTGTG TGCGCCCTTC CCGGCCACCC 2580 CGTGGCTTCC AACCCTGTCA GGCTCACCTC GGCCACCTTG GAAAAGGCCT GATGAGGAAG CCGCCAGATT CCTACCCACC GAAGGACAAT CCCAGGAGAT TGCTGCAGTG TCAGAATGTT 2700 GACATCAGCA GACCCCTCAA CGGCCTGAAT GTCCCTCAGC CCCAGTCAAC TCAGCGAGTG 2760 70 CTTCCTCCC TCCACCGGGC CCCACGTGCA CCTAGCGTCC CTGCCAGACC CCTGCCAGCC 2820 AAGCCTGCAC TTAGGCAGGC CCAGGGGACC TGTAAGCCAA ACCCCCCTCA GAAGCCTCTG 2880 CCTGCAGATC CTCTGGCCAG AACAACTCGG CTCACTCATG CCTTGGCCAG GACCCCAGGA 2940 CAATGGGAGA CTGGGCTCCG CCTGGCACCC CTCAGACCTG CTCCACAATA TCCACACCAA 3000 GTGCCCAGAT CCACCCACAC CGCCTATATT AAGTGAGAAG CCGACACCTT TTTTCAACAG 3060 75 TGAAGACAGA AGTTTGCACT ATCTTTCAGC TCCAGTTGGA GTTTTTTGTA CCAACTTTTA 3120 GGATTTTTTT TAATGTTTAA AACATCATTA CTATAAGAAC TTTGAGCTAC TGCCGTCAGT 3180 3240 GCTGTGCTGT GCTATGGTGC TCTGTCTACT TGCACAGGTA CTTGTAAATT ATTAATTTAT GCAGAATGTT GATTACAGTG CAGTGCGCTG TAGTAGGCAT TTTTACCATC ACTGAGTTTT 3300 CCATGGCAGG AAGGCTTGTT GTGCTTTTAG TATTTTAGTG AACTTGAAAT ATCCTGCTTG 80 ATGGGATTCT GGACAGGATG TGTTTGCTTT CTGATCAAGG CCTTATTGGA AAGCAGTCCC 3420 CCAACTACCC CCAGCTGTGC TTATGGTACC AGATGCAGCT CAAGAGATCC CAAGTAGAAT 3480 CTCAGTTGAT TTTCTGGATT CCCCATCTCA GGCCAGAGCC AAGGGGCTTC AGGTCCAGGC 3540 TGTGTTTGGC TTTCAGGGAG GCCCTGTGCC CCTTGACAAC TGGCAGGCAG GCTCCCAGGG 3600 ACACCTGGGA GAAATCTGGC TTCTGGCCAG GAAGCTTTGG TGAGAACCTG GGTTGCAGAC 3660 AGGAATCTTA AGGTGTAGCC ACACCAGGAT AGAGACTGGA ACACTAGACA AGCCAGAACT TGACCCTGAG CTGACCAGCC GTGAGCATGT TTGGAAGGGG TCTGTAGTGT CACTCAAGGC 85 3720 3780

GGTGCTTGAT AGAAATGCCA AGCACTTCTT TTTCTCGCTG TCCTTTCTAG AGCACTGCCA

```
CCAGTAGGTT ATTTAGCTTG GGAAAGGTGG TGTTTCTGTA AGAAACCTAC TGCCCAGGCA
       CTGCAAACCG CCACCTCCCT ATACTGCTTG GAGCTGAGCA AATCACCACA AACTGTAATA
                                                                           3960
       CAATGATCCT GTATTCAGAC AGATGAGGAC TTTCCATGGG ACCACAACTA TTTTCAGATG
                                                                           4020
       TGAACCATTA ACCAGATCTA GTCAATCAAG TCTGTTTACT GCAAGGTTCA ACTTATTAAC
                                                                           4080
 5
       AATTAGGCAG ACTCTTTATG CTTGCAAAAA CTACAACCAA TGGAATGTGA TGTTCATGGG
                                                                           4140
       TATAGTTCAT GTCTGCTATC ATTATTCGTA GATATTGGAC AAAGAACCTT CTCTATGGGG
                                                                           4200
       CATCCTCTTT TTCCAACTTG GCTGCAGGAA TCTTTAAAAG ATGCTTTTAA CAGAGTCTGA
                                                                           4260
       ACCTATTTCT TAAACACTTG CAACCTACCT GTTGAGCATC ACAGAATGTG ATAAGGAAAT
       CAACTTGCTT ATCAACTTCC TAAATATTAT GAGATGTGGC TTGGGCAGCA TCCCCTTGAA
       CTCTTCACTC TTCAAATGCC TGACTAGGGA GCCATGTTTC ACAAGGTCTT TAAAGTGACT
10
                                                                           4440
       AATGGCATGA GAAATACAAA AATACTCAGA TAAGGTAAAA TGCCATGATG CCTCTGTCTT
                                                                           4500
       CTGGACTGGT TTTCACATTA GAAGACAATT GACAACAGTT ACATAATTCA CTCTGAGTGT
                                                                           4560
       TTTATGAGAA AGCCTTCTTT TGGGGTCAAC AGTTTTCCTA TGCTTTGAAA CAGAAAAATA
                                                                           4620
       TGTACCAAGA ATCTTGGTTT GCCTTCCAGA AAACAAAACT GCATTTCACT TTCCCGGTGT
                                                                           4680
       TCCCCACTGT ATCTAGGCAA CATAGTATTC ATGACTATGG ATAAACTAAA CACGTGACAC
15
                                                                           4740
       AAACACACAC AAAAGGGAAC CCAGCTCTAA TACATTCCAA CTCGTATAGC ATGCATCTGT
                                                                           4800
       TTATTCTATA GTTATTAAGT TCTTTAAAAT GTAAAGCCAT GCTGGAAAAT AATACTGCTG
                                                                           4860
                                                                           4920
       AGATACATAC AGAATTACTG TAACTGATTA CACTTGGTAA TTGTACTAAA GCCAAACATA
       TATATACTAT TAAAAAGGTT TACAGAATTT TATGGTGCAT TACGTGGGCA TTGTCTTTTT
                                                                           4980
       AGATGCCCAA ATCCTTAGAT CTGGCATGTT AGCCCTTCCT CCAATTATAA GAGGATATGA
20
       ACCAAAAAA AAAAAAAAAA AA
       Seq ID NO: 427 Protein sequence
       Protein Accession #: NP_003465
25
                                                               51
                                                    41
                                         31
       MAARPLPVSP ARALLLALAG ALLAPCEARG VSLWNEGRAD EVVSASVRSG DLWIPVKSFD
                                                                             60
       SKNHPEVLNI RLQRESKELI INLERNEGLI ASSFTETHYL QDGTDVSLAR NYTVILGHCY
                                                                            120
30
       YHGHVRGYSD SAVSLSTCSG LRGLIVFENE SYVLEPMKSA TNRYKLFPAK KLKSVRGSCG
                                                                            180
       SHHNTPNLAA KNVFPPPSQT WARRHKRETL KATKYVELVI VADNREFQRQ GKDLEKVKQR
                                                                            240
       LIEIANHVDK FYRPLNIRIV LVGVEVWNDM DKCSVSQDPF TSLHEFLDWR KMKLLPRKSH
                                                                            300
       DNAQLVSGVY FQGTTIGMAP IMSMCTADQS GGIVMDHSDN PLGAAVTLAH ELGHNFGMNH
                                                                            360
       DTLDRGCSCQ MAVEKGGCIM NASTGYPFPM VFSSCSRKDL ETSLEKGMGV CLFNLPEVRE
                                                                             420
35
       SFGGQKCGNR FVEEGEECDC GEPEECMNRC CNATTCTLKP DAVCAHGLCC EDCQLKPAGT
                                                                            480
       ACRDSSNSCD LPEFCTGASP HCPANVYLHD GHSCQDVDGY CYNGICQTHE QQCVTLWGPG
                                                                            540
       AKPAPGICFE RVNSAGDPYG NCGKVSKSSF AKCEMRDAKC GKIQCQGGAS RPVIGTNAVS
                                                                            600
       IETNIPLQQG GRILCRGTHV YLGDDMPDPG LVLAGTKCAD GKICLNRQCQ NISVFGVHEC
                                                                            660
       AMOCHGRGVC NNRKNCHCEA HWAPPFCDKF GFGGSTDSGP IRQADNQGLT IGILVTILCL
40
       LAAGFVVYLK RKTLIRLIFT NKKTTIEKLR CVRPSRPPRG FQPCQAHLGH LGKGLMRKPP
                                                                            780
       DSYPPKDNPR RLLOCONVDI SRPLNGLNVP QPQSTQRVLP PLHRAPRAPS VPARPLPAKP
                                                                             840
       ALRÇAÇGICK PNPPQKPLPA DPLARITRLI HALARIPGQW EIGLRLAPLR PAPQYPHQVP
                                                                            900
45
       Seg ID NO: 428 DNA sequence
       Nucleic Acid Accession #: NM_003714
Coding sequence: 135..1043
                                         31
                                                    41
                                                               51
50
       GAGGAGGAGG GAAAAAGGCA GCAAAAAGGA AGAGTGGGAG GAGGAGGGGA AGCGGCGAAG
                                                                              60
       GAGGAAGAGG AGGAGGAGGA AGAGGGGAGC ACAAAGGATC CAGGTCTCCC GACGGGAGGT
                                                                             120
       TAATACCAAG AACCATGTGT GCCGAGCGGC TGGGCCAGTT CATGACCCTG GCTTTGGTGT
                                                                            180
       TGGCCACCTT TGACCCGGCG CGGGGGACCG ACGCCACCAA CCCACCCGAG GGTCCCCAAG
                                                                             240
55
       ACAGGAGCTC CCAGCAGAAA GGCCGCCTGT CCCTGCAGAA TACAGCGGAG ATCCAGCACT
                                                                             300
       GTTTGGTCAA CGCTGGCGAT GTGGGGTGTG GCGTGTTTGA ATGTTTCGAG AACAACTCTT
                                                                             360
       GTGAGATTCG GGGCTTACAT GGGATTTGCA TGACTTTTCT GCACAACGCT GGAAAATTTG
       ATGCCCAGGG CAAGTCATTC ATCAAAGACG CCTTGAAATG TAAGGCCCAC GCTCTGCGGC
                                                                             480
       ACAGGTTCGG CTGCATAAGC CGGAAGTGCC CGGCCATCAG GGAAATGGTG TCCCAGTTGC
                                                                             540
60
       AGCGGGAATG CTACCTCAAG CACGACCTGT GCGCGGCTGC CCAGGAGAAC ACCCGGGTGA
                                                                             600
       TAGTGGAGAT GATCCATTTC AAGGACTTGC TGCTGCACGA ACCCTACGTG GACCTCGTGA
                                                                             660
       ACTTGCTGCT GACCTGTGGG GAGGAGGTGA AGGAGGCCAT CACCCACAGC GTGCAGGTTC
                                                                             720
       AGTGTGAGCA GAACTGGGGA AGCCTGTGCT CCATCTTGAG CTTCTGCACC TCGGCCATCC
       AGAAGCCTCC CACGGCGCCC CCCGAGCGCC AGCCCCAGGT GGACAGAACC AAGCTCTCCA
                                                                             840
65
       GGGCCCACCA CGGGGAAGCA GGACATCACC TCCCAGAGCC CAGCAGTAGG GAGACTGGCC
                                                                             900
       GAGGTGCCAA GGGTGAGCGA GGTAGCAAGA GCCACCCAAA CGCCCATGCC CGAGGCAGAG
                                                                             960
       TCGGGGGCCT TGGGGCTCAG GGACCTTCCG GAAGCAGCGA GTGGGAAGAC GAACAGTCTG
                                                                            1020
       AGTATTCTGA TATCCGGAGG TGAAATGAAA GGCCTGGCCA CGAAATCTTT CCTCCACGCC
                                                                            1080
       GTCCATTTC TTATCTATGG ACATTCCAAA ACATTTACCA TTAGAGAGGG GGGATGTCAC
70
       ACGCAGGATT CTGTGGGGAC TGTGGACTTC ATCGAGGTGT GTGTTCGCGG AACGGACAGG
                                                                            1200
       TGAGATGGAG ACCCCTGGGG CCGTGGGGTC TCAGGGGTGC CTGGTGAATT CTGCACTTAC
                                                                            1260
       ACGTACTCAA GGGAGCGCGC CCGCGTTATC CTCGTACCTT TGTCTTCTTT CCATCTGTGG
                                                                            1320
       AGTCAGTGGG TGTCGGCCGC TCTGTTGTGG GGGAGGTGAA CCAGGGAGGG GCAGGGCAAG
                                                                            1380
       GCAGGGCCCC CAGAGCTGGG CCACACAGTG GGTGCTGGGC CTCGCCCCGA AGCTTCTGGT
                                                                            1440
75
       GCAGCAGCCT CTGGTGCTGT CTCCGCGGAA GTCAGGGCGG CTGGATTCCA GGACAGGAGT
                                                                            1500
       GAATGTAAAA ATAAATATCG CTTAGAATGC AGGAGAAGGG TGGAGAGGAG GCAGGGGCCG
                                                                            1560
       AGGGGGTGCT TGGTGCCAAA CTGAAATTCA GTTTCTTGTG TGGGGCCTTG CGGTTCAGAG
                                                                            1620
       CTCTTGGCGA GGGTGGAGGG AGGAGTGTCA TTTCTATGTG TAATTTCTGA GCCATTGTAC
                                                                            1680
        TGTCTGGGCT GGGGGGGACA CTGTCCAAGG GAGTGGCCCC TATGAGTTTA TATTTTAACC
                                                                            1740
80
       ACTGCTTCAA ATCTCGATTT CACTTTTTT ATTTATCCAG TTATATCTAC ATATCTGTCA
                                                                            1800
       TCTAAATAAA TGGCTTTCAA ACAAAGCAAC TGGGTCATTA AAACCAGCTC AAAGGGGGTT
                                                                            1860
        TAAAAAAAA AAAACCAGCC CATCCTTTGA GGCTGATTTT TCTTTTTTTT AAGTTCTATT
                                                                            1920
       TTAAAAGCTA TCAAACAGCG ACATAGCCAT ACATCTGACT GCCTGACATG GACTCCTGCC
                                                                            1980
        CACTTGGGGG AAACCTTATA CCCAGAGGAA AATACACACC TGGGGAGTAC ATTTGACAAA
                                                                            2040
85
        TTTCCCTTAG GATTTCGTTA TCTCACCTTG ACCCTCAGCC AAGATTGGTA AAGCTGCGTC
                                                                            2100
        CTGGCGATTC CAGGAGACCC AGCTGGAAAC CTGGCTTCTC CATGTGAGGG GATGGGAAAG
        GAAAGAAGAG AATGAAGACT ACTTAGTAAT TCCCATCAGG AAATGCTGAC CTTTTACATA
```

	WO 02	086443					
	TTTAGCAATA		TCCAAGGGGA	GGACAGGATT CAAATAAAGG GCCTCGTGCC			2280 2340
5	•	429 Proteir cession #: N	_				
	1	11	21	31	41	51	
10	GDVGCGVFEC ISRKCPAIRE CGEEVKEAIT EAGHHLPEPS	FENNSCEIRG MVSQLQRECY HSVQVQCEQN	LHGICMTFLH LKHDLCAAAQ WGSLCSILSF	 PEGPQDRSSQ NAGKFDAQGK ENTRVIVEMI CTSAIQKPPT HARGRVGGLG	SFIKDALKCK HFKDLLLHEP APPERQPQVD	AHALRHRFGC YVDLVNLLLT RTKLSRAHHG	60 120 180 240 300
15	RR	430 DNA sec	mence				
20	Nucleic Aci	ld Accession	1 #: NM_005	940	•		
20	1	11	21	31	41	51	
	1	11	1	1]		
				GGCCGCCTGG			60
25				GCTCCAGCCG			120
25				CGAGAGGAGG			180 240
				TGCCACGCAG CGACCCATCT			300
				GCGCTGGGAG			360
				GGAGCAGGTG			420
30				CACCTTTACT			480
				GCATGGGGAC			540
				CAAGACTCAC			600
				TGACCAGGGC			660 720
35				GCAGCACACA GAGTCTCAGC			780
55				TGTCACCTCC			840
				ACCGCTGGAG			900
				CATCCGAGGC			960
40				GCTGCAGCCC			1020
40				GGACGCTGCC			1080 1140
				GGTGTACGAC GAGGTTCCCG			1200
				CCGAGGCAGG			1260
				CCGCAGGGCC			1320
45	CTCTGAGATC	GACGCTGCCT	TCCAGGATGC	TGATGGCTAT	GCCTACTTCC	TGCGCGGCCG	1380
				GAAGGCTCTG			1440
				TGCCAACACT			1500
				CCACGAATAT ACTGAGCCCA			1560 1620
50				GGAGGGCCAC			1680
-				TTGGCATGAC			1740
				GGCTGCCCTG			1800
				AGTGTCCTTG			1860
<i></i>				TGCTGGGGCC			1920
55				TCCTGAGGTC			1980
				AAATCTGTTC CATGCAGGAG			2040 2100
				TCCTCCTGAA			2160
60	ATCCTCCAAA	GCCATTGTAA	ATGTGTGTAC	AGTGTGTATA	AACCTTCTTC	TTCTTTTTT	2220
60		GAGGATTGTC		GTTGTTTTCT			
~ =		431 Protein cession #: N		•			
65	1	11	21	31	41	51 1	
	PAPATQEAPR	PASSLRPPRC	GVPDPSDGLS	ARALPPDVHH ARNRQKRFVL	SGGRWEKTDL	TYRILRFPWQ	60 120 180
70				GRADIMIDFA QVAAHEFGHV			240
70				LGPQAGIDTN			300
				LASRHWQGLP			360
				LVWGPEKNKI			420
75	PVPRRATDWR AEPANTFL	GVPSEIDAAF	QDADGYAYFL	RGRLYWKFDP	VKVKALEGFP	RLVGPDFFGC	480
	ena TD NO	422 DATE =-	710755				
80	Nucleic Ac:	432 DNA sec id Accession nence: 202.	n #: NM_024	1022			
50	1	11	21	31	41	51	
	ī	ī	ĩ	ĩ	ī	ī	
	ACCGGGCACC	GGACGGCTCG	GGTACTTTCG	TTCTTAATTA	GGTCATGCCC	GTGTGAGCCA	60
0.5	GGAAAGGGCT	GTGTTTATGG	GAAGCCAGTA	ACACTGTGGC	CTACTATCTC	TTCCGTGGTG	120
85	CCATCTACAT	TTTTGGGACT	CGGGAATTAT	GAGGTAGAGG	TGGAGGCGGA	GCCGGATGTC	180
	AGAGGTCCTG	AAATAGTCAC	CATGGGGGAA	AATGATCCGC TTGAAAATAA	CTGCTGTTGA	ACCAGATGGA	240 300
	-CALICCGAT	-G-1111GG	CCITGMIGMI	TOURINA	J10010110C		200

```
GATGCTGTTG CTGCACAGAT CCTGTCACTG CTGCCATTGA AGTTTTTTCC AATCATCGTC
                                                                            360
      ATTGGGATCA TTGCATTGAT ATTAGCACTG GCCATTGGTC TGGGCATCCA CTTCGACTGC
                                                                            420
       TCAGGGAAGT ACAGATGTCG CTCATCCTTT AAGTGTATCG AGCTGATAGC TCGATGTGAC
                                                                            480
       GGAGTCTCGG ATTGCAAAGA CGGGGAGGAC GAGTACCGCT GTGTCCGGGT GGGTGGTCAG
                                                                            540
 5
       AATGCCGTGC TCCAGGTGTT CACAGCTGCT TCGTGGAAGA CCATGTGCTC CGATGACTGG
                                                                            600
       AAGGGTCACT ACGCAAATGT TGCCTGTGCC CAACTGGGTT TCCCAAGCTA TGTGAGTTCA
                                                                            660
       GATAACCTCA GAGTGAGCTC GCTGGAGGGG CAGTTCCGGG AGGAGTTTGT GTCCATCGAT
                                                                            720
       CACCTCTTGC CAGATGACAA GGTGACTGCA TTACACCACT CAGTATATGT GAGGGAGGGA
                                                                            780
       TGTGCCTCTG GCCACGTGGT TACCTTGCAG TGCACAGCCT GTGGTCATAG AAGGGGCTAC
                                                                            840
10
       AGCTCACGCA TCGTGGGTGG AAACATGTCC TTGCTCTCGC AGTGGCCCTG GCAGGCCAGC
                                                                            900
       CTTCAGTTCC AGGGCTACCA CCTGTGCGGG GGCTCTGTCA TCACGCCCCT GTGGATCATC
                                                                            960
       ACTGCTGCAC ACTGTGTTTA TGACTTGTAC CTCCCCAAGT CATGGACCAT CCAGGTGGGT
                                                                          1020
       CTAGTTTCCC TGTTGGACAA TCCAGCCCCA TCCCACTTGG TGGAGAAGAT TGTCTACCAC
                                                                          1080
       AGCAAGTACA AGCCAAAGAG GCTGGGCAAT GACATCGCCC TTATGAAGCT GGCCGGGCCA
                                                                           1140
15
       CTCACGTTCA ATGAAATGAT CCAGCCTGTG TGCCTGCCCA ACTCTGAAGA GAACTTCCCC
                                                                           1200
       GATGGAAAAG TGTGCTGGAC GTCAGGATGG GGGGCCACAG AGGATGGAGG TGACGCCTCC
                                                                           1260
       CCTGTCCTGA ACCACGCGGC CGTCCCTTTG ATTTCCAACA AGATCTGCAA CCACAGGGAC
                                                                          1320
       GTGTACGGTG GCATCATCTC CCCCTCCATG CTCTGCGCGG GCTACCTGAC GGGTGGCGTG
                                                                          1380
       GACAGCTGCC AGGGGGACAG CGGGGGGCCC CTGGTGTGTC AAGAGAGGAG GCTGTGGAAG
                                                                           1440
20
       TTAGTGGGAG CGACCAGCTT TGGCATCGGC TGCGCAGAGG TGAACAAGCC TGGGGTGTAC
                                                                           1500
       ACCCGTGTCA CCTCCTTCCT GGACTGGATC CACGAGCAGA TGGAGAGAGA CCTAAAAACC
                                                                           1560
       TGAAGAGGAA GGGGACAAGT AGCCACCTGA GTTCCTGAGG TGATGAAGAC AGCCCGATCC
                                                                          1620
       TCCCCTGGAC TCCCGTGTAG GAACCTGCAC ACGAGCAGAC ACCCTTGGAG CTCTGAGTTC
                                                                          1680
       CGGCACCAGT AGCAGGCCCG AAAGAGGCAC CCTTCCATCT GATTCCAGCA CAACCTTCAA
                                                                           1740
       GCTGCTTTTT GTTTTTGTT TTTTTGAGGT GGAGTCTCGC TCTGTTGCCC AGGCTGGAGT
25
                                                                           1800
       GCAGTGGCGA AATCCCTGCT CACTGCAGCC TCCGCTTCCC TGGTTCAAGC GATTCTCTTG
                                                                           1860
       CCTCAGCTTC CCCAGTAGCT GGGACCACAG GTGCCCGCCA CCACACCCAA CTAATTTTTG
                                                                           1920
                                                                           1980
       TATTTTTAGT AGAGACAGGG TTTCACCATG TTGGCCAGGC TGCTCTCAAA CCCCTGACCT
       CAAATGATGT GCCTGCTTCA GCCTCCCACA GTGCTGGGAT TACAGGCATG GGCCACCACG
                                                                          2040
30
       CCTAGCCTCA CGCTCCTTTC TGATCTTCAC TAAGAACAAA AGAAGCAGCA ACTTGCAAGG
                                                                          2100
       GCGGCCTTTC CCACTGGTCC ATCTGGTTTT CTCTCCAGGG GTCTTGCAAA ATTCCTGACG
                                                                          2160
       AGATAAGCAG TTATGTGACC TCACGTGCAA AGCCACCAAC AGCCACTCAG AAAAGACGCA
                                                                           2220
       CCAGCCCAGA AGTGCAGAAC TGCAGTCACT GCACGTTTTC ATCTCTAGGG ACCAGAACCA
                                                                           2280
      AACCCACCCT TTCTACTTCC AAGACTTATT TTCACATGTG GGGAGGTTAA TCTAGGAATG
                                                                           2340
35
       ACTCGTTTAA GGCCTATTTT CATGATTTCT TTGTAGCATT TGGTGCTTGA CGTATTATTG
                                                                          2400
       2460
       AAAAA
       Seg ID NO: 433 Protein seguence
40
       Protein Accession #: NP 076927
                                        31
                                                    41
                                                              51
       MGENDPPAVE APFSFRSLFG LDDLKISPVA PDADAVAAQI LSLLPLKFFP IIVIGIIALI
45
       LALAIGLGIH FDCSGKYRCR SSFKCIELIA RCDGVSDCKD GEDEYRCVRV GGQNAVLQVF
                                                                            120
       TAASWKTMCS DDWKGHYANV ACAQLGFPSY VSSDNLRVSS LEGQFREEFV SIDHLLPDDK
                                                                            180
       VTALHHSVYV REGCASGHVV TLQCTACGHR RGYSSRIVGG NMSLLSQWPW QASLQFQGYH
                                                                            240
       LCGGSVITPL WIITAAHCVY DLYLPKSWTI QVGLVSLLDN PAPSHLVEKI VYHSKYKPKR
                                                                            300
       LGNDIALMKL AGPLTFNEMI QPVCLPNSEE NFPDGKVCWT SGWGATEDGG DASPVLNHAA
                                                                            360
50
       VPLISNKICN HRDVYGGIIS PSMLCAGYLT GGVDSCQGDS GGPLVCQERR LWKLVGATSF
                                                                            420
       GIGCAEVNKP GVYTRVTSFL DWIHEQMERD LKT
       Seg ID NO: 434 DNA seguence
       Nucleic Acid Accession #: NM_000493.2
55
       Coding sequence: 97..2139
                                                    41
                                                              51
                  11
                             21
                                        31
       CACCTTCTGC ACTGCTCATC TGGGCAGAGG AAGCTTCAGA AAGCTGCCAA GGCACCATCT
                                                                             60
60
       CCAGGAACTC CCAGCACGCA GAATCCATCT GAGAATATGC TGCCACAAAT ACCCTTTTTG
                                                                            120
       CTGCTAGTAT CCTTGAACTT GGTTCATGGA GTGTTTTACG CTGAACGATA CCAAATGCCC
                                                                            180
       ACAGGCATAA AAGGCCCACT ACCCAACACC AAGACACAGT TCTTCATTCC CTACACCATA
                                                                            240
       AAGAGTAAAG GTATAGCAGT AAGAGGAGAG CAAGGTACTC CTGGTCCACC AGGCCCTGCT
       GGACCTCGAG GGCACCCAGG TCCTTCTGGA CCACCAGGAA AACCAGGCTA CGGAAGTCCT
                                                                            360
65
                                                                            420
       GGACTCCAAG GAGAGCCAGG GTTGCCAGGA CCACCGGGAC CATCAGCTGT AGGGAAACCA
       GGTGTGCCAG GACTCCCAGG AAAACCAGGA GAGAGAGGAC CATATGGACC AAAAGGAGAT
                                                                            480
       GTTGGACCAG CTGGCCTACC AGGACCCCGG GGCCCACCAG GACCACCTGG AATCCCTGGA
                                                                            540
       CCGGCTGGAA TTTCTGTGCC AGGAAAACCT GGACAACAGG GACCCACAGG AGCCCCAGGA
       CCCAGGGGCT TTCCTGGAGA AAAGGGTGCA CCAGGAGTCC CTGGTATGAA TGGACAGAAA
70
       GGGGAAATGG GATATGGTGC TCCTGGTCGT CCAGGTGAGA GGGGTCTTCC AGGCCCTCAG
                                                                            720
       GGTCCCACAG GACCATCTGG CCCTCCTGGA GTGGGAAAAA GAGGTGAAAA TGGGGTTCCA
                                                                            780
       GGACAGCCAG GCATCAAAGG TGATAGAGGT TTTCCGGGAG AAATGGGACC AATTGGCCCA
                                                                            840
       CCAGGTCCCC AAGGCCCTCC TGGGGAACGA GGGCCAGAAG GCATTGGAAA GCCAGGAGCT
                                                                            900
       GCTGGAGCCC CAGGCCAGCC AGGGATTCCA GGAACAAAAG GTCTCCCTGG GGCTCCAGGA
                                                                            960
75
       ATAGCTGGGC CCCCAGGGCC TCCTGGCTTT GGGAAACCAG GCTTGCCAGG CCTGAAGGGA
       GAAAGAGGAC CTGCTGGCCT TCCTGGGGGT CCAGGTGCCA AAGGGGAACA AGGGCCAGCA
                                                                           1080
       GGTCTTCCTG GGAAGCCAGG TCTGACTGGA CCCCCTGGGA ATATGGGACC CCAAGGACCA
                                                                           1140
       AAAGGCATCC CGGGTAGCCA TGGTCTCCCA GGCCCTAAAG GTGAGACAGG GCCAGCTGGG
                                                                           1200
       CCTGCAGGAT ACCCTGGGGC TAAGGGTGAA AGGGGTTCCC CTGGGTCAGA TGGAAAACCA
                                                                           1260
80
       GGGTACCCAG GAAAACCAGG TCTCGATGGT CCTAAGGGTA ACCCAGGGTT ACCAGGTCCA
                                                                           1320
       AAAGGTGATC CTGGAGTTGG AGGACCTCCT GGTCTCCCAG GCCCTGTGGG CCCAGCAGGA
                                                                           1380
       GCAAAGGGAA TGCCCGGACA CAATGGAGAG GCTGGCCCAA GAGGTGCCCC TGGAATACCA
                                                                           1440
       GGTACTAGAG GCCCTATTGG GCCACCAGGC ATTCCAGGAT TCCCTGGGTC TAAAGGGGAT
                                                                           1500
       CCAGGAAGTC CCGGTCCTCC TGGCCCAGCT GGCATAGCAA CTAAGGGCCT CAATGGACCC
                                                                           1560
85
       ACCGGGCCAC CAGGGCCTCC AGGTCCAAGA GGCCACTCTG GAGAGCCTGG TCTTCCAGGG
                                                                           1620
       CCCCCTGGGC CTCCAGGCCC ACCAGGTCAA GCAGTCATGC CTGAGGGTTT TATAAAGGCA GGCCAAAGGC CCAGTCTTTC TGGGACCCCT CTTGTTAGTG CCAACCAGGG GGTAACAGGA
                                                                           1680
```

WO 02/086443

```
WO 02/086443
          ATGCCTGTGT CTGCTTTTAC TGTTATTCTC TCCAAAGCTT ACCCAGCAAT AGGAACTCCC
          ATACCATTTG ATAAAATTTT GTATAACAGG CAACAGCATT ATGACCCAAG GACTGGAATC
          TTTACTTGTC AGATACCAGG AATATACTAT TTTTCATACC ACGTGCATGT GAAAGGGACT
                                                                                                            1920
          CATGTTTGGG TAGGCCTGTA TAAGAATGGC ACCCCTGTAA TGTACACCTA TGATGAATAC
                                                                                                            1980
  5
          ACCAAAGGCT ACCTGGATCA GGCTTCAGGG AGTGCCATCA TCGATCTCAC AGAAAATGAC
                                                                                                            2040
          CAGGTGTGGC TCCAGCTTCC CAATGCCGAG TCAAATGGCC TATACTCCTC TGAGTATGTC
                                                                                                            2100
          CACTCCTCTT TCTCAGGATT CCTAGTGGCT CCAATGTGAG TACACCCCAC AGAGCTAATC
                                                                                                            2160
          TAAATCTTGT GCTAGAAAAA GCATTCTCTA ACTCTACCCC ACCCTACAAA ATGCATATGG
          AGGTAGGCTG AAAAGAATGT AATTTTTATT TTCTGAAATA CAGATTTGAG CTATCAGACC
                                                                                                            2280
10
          AACAAACCTT CCCCCTGAAA AGTGAGCAGC AACGTAAAAA CGTATGTGAA GCCTCTCTTG
                                                                                                            2340
          AATTTCTAGT TAGCAATCTT AAGGCTCTTT AAGGTTTTCT CCAATATTAA AAAATATCAC
                                                                                                            2400
          2460
          2520
          ATTTCCTTTT TAAAAAAAGCC TGTTTCTAAC TATGAATATG AGAACTTCTA GGAAACATCC AGGAGGTATC ATATAACTTT GTAGAACTTA AATACTTGAA TATTCAAATT TAAAAGACAC
15
                                                                                                            2640
          TGTATCCCCT AAAATATTTC TGATGGTGCA CTACTCTGAG GCCTGTATGG CCCCTTTCAT
                                                                                                            2700
          CAATATCTAT TCAAATATAC AGGTGCATAT ATACTTGTTA AAGCTCTTAT ATAAAAAAGC
                                                                                                            2760
                                                                                                            2820
          CCCAAAATAT TGAAGTTCAT CTGAAATGCA AGGTGCTTTC ATCAATGAAC CTTTTCAAAA
          CTTTTCTATG ATTGCAGAGA AGCTTTTTAT ATACCCAGCA TAACTTGGAA ACAGGTATCT
                                                                                                             2880
20
          GACCTATTCT TATTTAGTTA ACACAAGTGT GATTAATTTG ATTTCTTTAA TTCCTTATTG
          AATCTTATGT GATATGATTT TCTGGATTTA CAGAACATTA GCACATGTAC CTTGTGCCTC
                                                                                                            3000
          CCATTCAAGT GAAGTTATAA TTTACACTGA GGGTTTCAAA ATTCGACTAG AAGTGGAGAT
                                                                                                            3060
          ATATTATTA TTTATGCACT GTACTGTATT TTTATATTGC TGTTTAAAAC TTTTAAGCTG
                                                                                                            3120
          TGCCTCACTT ATTAAAGCAC AAAATGTTTT ACCTACTCCT TATTTACGAC ACAATAAAAT
                                                                                                             3180
25
          AACATCAATA GATTTTTAGG CTGAATTAAT TTGAAAGCAG CAATTTGCTG TTCTCAACCA
          TTCTTTCAAG GCTTTTCATT CGACACAATA AAATAACATC AATAG
          Sed ID NO: 435 Protein sequence
          Protein Accession #: NP 000484.2
30
                                           21
                                                           31
                                                                            41
                                                                                           51
          MLPOIPFLLL VSLNLVHGVF YAERYQMPTG IKGPLPNTKT QFFIPYTIKS KGIAVRGEQG
          TPGPPGPAGP RGHPGPSGPP GKPGYGSPGL QGEPGLPGPP GPSAVGKPGV PGLPGKPGER
                                                                                                               120
          GPYGPKGDVG PAGLPGPRGP PGPPGIPGPA GISVPGKPGQ QGPTGAPGPR GFPGEKGAPG
35
                                                                                                               180
          VPGMNGOKGE MGYGAPGRPG ERGLPGPQGP TGPSGPPGVG KRGENGVPGQ PGIKGDRGFP
                                                                                                               240
           GEMGPIGPPG PQGPPGERGP EGIGKPGAAG APGQPGIPGT KGLPGAPGIA GPPGPPGFGK
                                                                                                               300
           PGLPGLKGER GPAGLPGGPG AKGEQGPAGL PGKPGLTGPP GNMGPQGPKG IPGSHGLPGP
                                                                                                               360
           KGETGPAGPA GYPGAKGERG SPGSDGKPGY PGKPGLDGPK GNPGLPGPKG DPGVGGPPGL
40
           PGPVGPAGAK GMPGHNGEAG PRGAPGIPGT RGPIGPPGIP GFPGSKGDPG SPGPPGPAGI
                                                                                                               480
          ATKGLNGPTG PPGPPGPRGH SGEPGLPGPP GPPGPPGQAV MPEGFIKAGQ RPSLSGTPLV
                                                                                                               540
           SANQGVTGMP VSAFTVILSK AYPAIGTPIP FDKILYNRQQ HYDPRTGIFT CQIPGIYYFS
                                                                                                               600
           YHVHVKGTHV WVGLYKNGTP VMYTYDEYTK GYLDQASGSA IIDLTENDQV WLQLPNAESN
                                                                                                               660
           GLYSSEYVHS SFSGFLVAPM
45
           Sea ID NO: 436 DNA sequence
          Nucleic Acid Accession #: XM_062811
          Coding sequence: 1..888
50
                                                                                            51
                                           21
                                                           31
                                                                            41
           ATGTGGGGCG CTCGCCGCTC GTCCGTCTCC TCATCCTGGA ACGCCGCTTC GCTCCTGCAG
                                                                                                                60
           CTGCTGCTGG CTGCGCTGCT GGCGGCGGGG GCGAGGGCCA GCGGCGAGTA CTGCCACGGC
                                                                                                               120
           TGGCTGGACG CGCAGGGCGT CTGGCGCATC GGCTTCCAGT GTCCCGAGCG CTTCGACGGC
                                                                                                               180
           GGCGACGCCA CCATCTGCTG CGGCAGCTGC GCGTTGCGCT ACTGCTGCTC CAGCGCCGAG
55
                                                                                                               240
           GCGCGCCTGG ACCAGGGCGG CTGCGACAAT GACCGCCAGC AGGGCGCTGG CGAGCCTGGC
           CGGGCGGACA AAGACGGCCC CGACGGCTCG GCAGTGCCCA TCTACGTGCC GTTCCTCATT
                                                                                                               360
           GTTGGCTCCG TGTTTGTCGC CTTTATCATC TTGGGGTCCC TGGTGGCAGC CTGTTGCTGC
                                                                                                               420
           AGATGTCTCC GGCCTAAGCA GGATCCCCAG CAGAGCCGAG CCCCAGGGGG TAACCGCTTG
                                                                                                               480
           ATGGAGACCA TCCCCATGAT CCCCAGTGCC AGCACCTCCC GGGGGTCGTC CTCACGCCAG
60
                                                                                                               540
           TCCAGCACAG CTGCCAGTTC CAGCTCCAGC GCCAACTCAG GGGCCCGGGC GCCCCCAACA
                                                                                                               600
           AGGTCACAGA CCAACTGTTG CTTGCCGGAA GGGACCATGA ACAACGTGTA TGTCAACATG
                                                                                                               660
           CCCACGAATT TCTCTGTGCT GAACTGTCAG CAGGCCACCC AGATTGTGCC ACATCAAGGG
                                                                                                               720
           CAGTATCTGC ATCCCCCATA CGTGGGGTAC ACGGTGCAGC ACGACTCTGT GCCCATGACA
                                                                                                               780
           GCTGTGCCAC CTTTCATGGA CGGCCTGCAG CCTGGCTACA GGCAGATTCA GTCCCCCTTC
65
                                                                                                               840
           CCTCACACCA ACAGTGAACA GAAGATGTAC CCAGCGGTGA CTGTATAA
           Seq ID NO: 437 Protein sequence
           Protein Accession #: XP 062811
70
                                                            31
                                                                            41
                                                                                            51
                           71
           MWGARRSSVS SSWNAASLLQ LLLAALLAAG ARASGEYCHG WLDAQGVWRI GFQCPERFDG
                                                                                                                 60
           MWGARRSSON SSWIMABILD BIBLIARIBLEAU ACCOUNTS AND ACCOUNTS
                                                                                                               120
75
                                                                                                               180
           SSTAASSSS ANSGARAPPT RSQTNCCLPE GTMNNVYVNM PTNFSVLNCQ QATQIVPHQG
                                                                                                               240
           QYLHPPYVGY TVQHDSVPMT AVPPFMDGLQ PGYRQIQSPF PHTNSEQKMY PAVTV
           Seq ID NO: 438 DNA sequence
80
           Nucleic Acid Accession #: NM_004004.1
           Coding sequence: 1..681
                                                                            41
                                                                                            51
                                                            31
           ATGGATTGGG GCACGCTGCA GACGATCCTG GGGGGTGTGA ACAAACACTC CACCAGCATT
 85
                                                                                                                 60
           GGAAGATCT GGCTCACCGT CCTCTTCATT TTTCGCATTA TGATCCTCGT TGTGGCTGCA AAGGAGGTGT GGGAAGATGA GCAGGCCGAC TTTGTCTGCA ACACCCTGCA GCCAGGCTGC
                                                                                                               120
```

WO 02/086443 PCT/US02/12476 AAGAACGTGT GCTACGATCA CTACTTCCCC ATCTCCCACA TCCGGCTATG GGCCCTGCAG CTGATCTTCG TGTCCAGCCC AGCGCTCCTA GTGGCCATGC ACGTGGCCTA CCGGAGACAT 300 GAGAAGAAGA GGAAGTTCAT CAAGGGGGAG ATAAAGAGTG AATTTAAGGA CATCGAGGAG 360 ATCAAAACCC AGAAGGTCCG CATCGAAGGC TCCCTGTGGT GGACCTACAC AAGCAGCATC 420 5 TTCTTCCGGG TCATCTTCGA AGCCGCCTTC ATGTACGTCT TCTATGTCAT GTACGACGGC 480 TTCTCCATGC AGCGGCTGGT GAAGTGCAAC GCCTGGCCTT GTCCCAACAC TGTGGACTGC TTTGTGTCCC GGCCCACGGA GAAGACTGTC TTCACAGTGT TCATGATTGC AGTGTCTGGA 540 600 ATTTGCATCC TGCTGAATGT CACTGAATTG TGTTATTTGC TAATTAGATA TTGTTCTGGG AAGTCAAAAA AGCCAGTTTA A 10

51

41

Seq ID NO: 439 Protein sequence Protein Accession #: NP_003995.1

31

Seq ID NO: 440 DNA sequence
Nucleic Acid Accession #: XM_061091.1
Coding sequence: 1...2481

20

35

40

45

50

55

60

65

70

ATGCCAAATA CTTCAGGAAC AACCAGGATT GAAATTTGGC TTCTCCAAGA GCCGCCCGGG 60 CACCGAGCGC TGGTCGCCGC TCTCCTTCCG GTGAGTCCCA GCCCCGAGTT GGCTCTGGCG 120 CCCGGGTACC CGCCAGTGCC GGCTGCCGAT GACCGATTCA CGCTCCCGAT GATTGGAGGT 180 CAGATGCATG GTGAGAAGGT AGATCTCTGG AGCCTTGGTG TTCTTTGCTA TGAATTTTTA GTTGGGAAGC CTCCTTTTGA GGCAAACGAA GTCCATGTAA GCAAAGAAAC CATCGGGAAG 300 ATTTCAGCTG CCAGCAAAAT GATGTGGTGC TCGGCTGCAG TGGACATCAT GTTTCTGTTA 360 GATGGGTCTA ACAGCGTCGG GAAAGGGAGC TTTGAAAGGT CCAAGCACTT TGCCATCACA 420 GTCTGTGACG GTCTGGACAT CAGCCCCGAG AGGGTCAGAG TGGGAGCATT CCAGTTCAGT 480 TCCACTCCTC ATCTGGAATT CCCCTTGGAT TCATTTTCAA CCCAACAGGA AGTGAAGGCA 540 AGAATCAAGA GGATGGTTTT CAAAGGAGGG CGCACGGAGA CGGAACTTGC TCTGAAATAC CTTCTGCACA GAGGGTTGCC TGGAGGCAGA AATGCTTCTG TGCCCCAGAT CCTCATCATC 600 GTCACTGATG GGAAGTCCCA GGGGGATGTG GCACTGCCAT CCAAGCAGCT GAAGGAAAGG 720 GGTGTCACTG TGTTTGCTGT GGGGGTCAGG TTTCCCAGGT GGGAGGAGCT GCATGCACTG 780 GCCAGCGAGC CTAGAGGGCA GCACGTGCTG TTGGCTGAGC AGGTGGAGGA TGCCACCAAC 840 GGCCTCTTCA GCACCCTCAG CAGCTCGGCC ATCTGCTCCA GCGCCACGCC AGCTGGGAGC 900 CCCGAGCTTG TCTTCATGGA GCGGTTAATG GGCATCTCTC TGATAGGCCC CTGTGACTCG 960 CAGCCCTGCC AGAATGGAGG CACATGTGTT CCAGAAGGAC TGGACGGCTA CCAGTGCCTC 1020 TGCCCGCTGG CCTTTGGAGG GGAGGCTAAC TGTGCCCTGA AGCTGAGCCT GGAATGCAGG 1080 GTCGACCTCC TCTTCCTGCT GGACAGCTCT GCGGGCACCA CTCTGGACGG CTTCCTGCGG 1140 GCCAAAGTCT TCGTGAAGCG GTTTGTGCGG GCCGTGCTGA GCGAGGACTC TCGGGCCCGA 1200 GTGGGTGTGG CCACATACAG CAGGGAGCTG CTGGTGGCGG TGCCTGTGGG GGAGTACCAG 1260 GATGTGCCTG ACCTGGTCTG GAGCCTCGAT GGCATTCCCT TCCGTGGTGG CCCCACCCTG 1320 ACGGGCAGTG CCTTGCGGCA GGCGGCAGAG CGTGGCTTCG GGAGCGCCAC CAGGACAGGC CAGGACCGGC CACGTAGAGT GGTGGTTTTG CTCACTGAGT CACACTCCGA GGATGAGGTT 1440 GCGGGCCCAG CGCGTCACGC AAGGGCGCGA GAGCTGCTCC TGCTGGGTGT AGGCAGTGAG 1500 GCCGTGCGGG CAGAGCTGGA GGAGATCACA GGCAGCCCAA AGCATGTGAT GGTCTACTCG 1560 GATCCTCAGG ATCTGTTCAA CCAAATCCCT GAGCTGCAGG GGAAGCTGTG CAGCCGGCAG CGGCCAGGGT GCCGGACACA AGCCCTGGAC CTCGTCTTCA TGTTGGACAC CTCTGCCTCA 1620 1680 GTAGGGCCCG AGAATTTTGC TCAGATGCAG AGCTTTGTGA GAAGCTGTGC CCTCCAGTTT 1740 GAGGTGAACC CTGACGTGAC ACAGGTCGGC CTGGTGGTGT ATGGCAGCCA GGTGCAGACT 1800 GCCTTCGGGC TGGACACCAA ACCCACCCGG GCTGCGATGC TGCGGGCCAT TAGCCAGGCC 1860 CCCTACCTAG GTGGGGTGGG CTCAGCCGGC ACCGCCCTGC TGCACATCTA TGACAAAGTG 1920 ATGACCGTCC AGAGGGGTGC CCGGCCTGGT GTCCCCAAAG CTGTGGTGGT GCTCACAGGC 1980 GGGAGAGGCG CAGAGGATGC AGCCGTTCCT GCCCAGAAGC TGAGGAACAA TGGCATCTCT 2040 GTCTTGGTCG TGGGCGTGGG GCCTGTCCTA AGTGAGGGTC TGCGGAGGCT TGCAGGTCCC 2100 CGGGATTCCC TGATCCACGT GGCAGCTTAC GCCGACCTGC GGTACCACCA GGACGTGCTC 2160 ATTGAGTGGC TGTGTGGAGA AGCCAAGCAG CCAGTCAACC TCTGCAAACC CAGCCCGTGC 2220

Seq ID NO: 441 Protein sequence Protein Accession #: XP_061091.1

GTCTGTGCCC CAGGTCCTTA G

41 31 75 MPNTSGTTRI EIWLLQEPPG HRALVAALLP VSPSPELALA PGYPPVPAAD DRFTLPMIGG 60 QMHGEKVDLW SLGVLCYEFL VGKPPFEANE VHVSKETIGK ISAASKMMWC SAAVDIMFLL 120 DGSNSVGKGS FERSKHFAIT VCDGLDISPE RVRVGAFQFS STPHLEFPLD SFSTQQEVKA 180 RIKRMVFKGG RTETELALKY LLHRGLPGGR NASVPQILII VTDGKSQGDV ALPSKQLKER 240 GVTVFAVGVR FPRWEELHAL ASEPRGQHVL LAEQVEDATN GLFSTLSSSA ICSSATPAGS 80 300 PELVFMERLM GISLIGPCDS QPCQNGGTCV PEGLDGYQCL CPLAFGGEAN CALKLSLECR 360 VDLLFLLDSS AGTTLDGFLR AKVFVKRFVR AVLSEDSRAR VGVATYSREL LVAVPVGEYQ 420 DVPDLVWSLD GIPFRGGPTL TGSALRQAAE RGFGSATRTG QDRPRRVVVL LTESHSEDEV 480 AGPARHARAR ELLLLGVGSE AVRAELEEIT GSPKHVMVYS DPQDLFNQIP ELQGKLCSRQ 540 RPGCRTQALD LVFMLDTSAS VGPENFAQMQ SFVRSCALQF EVNPDVTQVG LVVYGSQVQT 85 600 AFGLDTKPTR AAMLRAISQA PYLGGVGSAG TALLHIYDKV MTVQRGARPG VPKAVVVLTG

GRGAEDAAVP AOKLRNNGIS VLVVGVGPVL SEGLRRLAGP RDSLIHVAAY ADLRYHQDVL

ATGAATGAGG GCAGCTGCGT CCTGCAGAAT GGGAGCTACC GCTGCAAGTG TCGGGATGGC

TGGGAGGGCC CCCACTGCGA GAACCGTGAG TGGAGCTCTT GCTCTGTATG TGTGAGCCAG

GGATGGATTC TTGAGACGCC CCTGAGGCAC ATGGCTCCCG TGCAGGAGGG CAGCAGCCGT ACCCCTCCCA GCAACTACAG AGAAGGCCTG GGCACTGAAA TGGTGCCTAC CTTCTGGAAT 2280

2340

IEWLCGEAKQ PVNLCKPSPC MNEGSCVLQN GSYRCKCRDG WEGPHCENRE WSSCSVCVSQ GWILETPLRH MAPVQEGSSR TPPSNYREGL GTEMVPTFWN VCAPGP

Seq ID NO: 442 DNA sequence 5 Nucleic Acid Accession #: Eos sequence Coding sequence: 1..2424 11

41 10 ATGCCCCCTT TCCTGTTGCT GGAGGCCGTC TGTGTTTTCC TGTTTTCCAG AGTGCCCCCA 60 TCTCTCCCTC TCCAGGAAGT CCATGTAAGC AAAGAAACCA TCGGGAAGAT TTCAGCTGCC 120 AGCAAAATGA TGTGGTGCTC GGCTGCAGTG GACATCATGT TTCTGTTAGA TGGGTCTAAC 180 AGCGTCGGGA AAGGGAGCTT TGAAAGGTCC AAGCACTTTG CCATCACAGT CTGTGACGGT 240 15 CTGGAATTCC CCTTGGATTC ATTTTCAACC CAACAGGAAG TGAAGGCAAG AATCAAGAGG 360 ATGGTTTTCA AAGGAGGGCG CACGGAGACG GAACTTGCTC TGAAATACCT TCTGCACAGA 420 GGGTTGCCTG GAGGCAGAAA TGCTTCTGTG CCCCAGATCC TCATCATCGT CACTGATGGG 480 AAGTCCCAGG GGGATGTGGC ACTGCCATCC AAGCAGCTGA AGGAAAGGGG TGTCACTGTG 540 TTTGCTGTGG GGGTCAGGTT TCCCAGGTGG GAGGAGCTGC ATGCACTGGC CAGCGAGCCT 600 20 AGAGGGCAGC ACGTGCTGTT GGCTGAGCAG GTGGAGGATG CCACCAACGG CCTCTTCAGC 660 ACCCTCAGCA GCTCGGCCAT CTGCTCCAGC GCCACGCCAG ACTGCAGGGT CGAGGCTCAC 720 CCCTGTGAGC ACAGGACGCT GGAGATGGTC CGGGAGTTCG CTGGCAATGC CCCATGCTGG 780 AGAGGATCGC GGCGGACCCT TGCGGTGCTG GCTGCACACT GTCCCTTCTA CAGCTGGAAG 840 AGAGTGTTCC TAACCCACCC TGCCACCTGC TACAGGACCA CCTGCCCAGG CCCCTGTGAC 900 25 TCGCAGCCCT GCCAGAATGG AGGCACATGT GTTCCAGAAG GACTGGACGG CTACCAGTGC 960 CTCTGCCCGC TGGCCTTTGG AGGGGAGGCT AACTGTGCCC TGAAGCTGAG CCTGGAATGC 1020 AGGGTCGACC TCCTCTTCCT GCTGGACAGC TCTGCGGGCA CCACTCTGGA CGGCTTCCTG 1080 CGGGCCAAAG TCTTCGTGAA GCGGTTTGTG CGGGCCGTGC TGAGCGAGGA CTCTCGGGCC 1140 CGAGTGGGTG TGGCCACATA CAGCAGGGAG CTGCTGGTGG CGGTGCCTGT GGGGGAGTAC 1200 30 CAGGATGTGC CTGACCTGGT CTGGAGCCTC GATGGCATTC CCTTCCGTGG TGGCCCCACC 1260 CTGACGGGCA GTGCCTTGCG GCAGGCGGCA GAGCGTGGCT TCGGGAGCGC CACCAGGACA 1320 GGCCAGGACC GGCCACGTAG AGTGGTGGTT TTGCTCACTG AGTCACACTC CGAGGATGAG 1380 GTTGCGGGCC CAGCGCGTCA CGCAAGGGCG CGAGAGCTGC TCCTGCTGGG TGTAGGCAGT 1440 GAGGCCGTGC GGGCAGAGCT GGAGGAGATC ACAGGCAGCC CAAAGCATGT GATGGTCTAC 1500 35 TCGGATCCTC AGGATCTGTT CAACCAAATC CCTGAGCTGC AGGGGAAGCT GTGCAGCCGG 1560 CAGCGGCCAG GGTGCCGGAC ACAAGCCCTG GACCTCGTCT TCATGTTGGA CACCTCTGCC 1620 TCAGTAGGGC CCGAGAATTT TGCTCAGATG CAGAGCTTTG TGAGAAGCTG TGCCCTCCAG 1680 TTTGAGGTGA ACCCTGACGT GACACAGGTC GGCCTGGTGG TGTATGGCAG CCAGGTGCAG 1740 ACTGCCTTCG GGCTGGACAC CAAACCCACC CGGGCTGCGA TGCTGCGGGC CATTAGCCAG 1800 40 GCCCCCTACC TAGGTGGGGT GGGCTCAGCC GGCACCGCCC TGCTGCACAT CTATGACAAA 1860 GTGATGACCG TCCAGAGGGG TGCCCGGCCT GGTGTCCCCA AAGCTGTGGT GGTGCTCACA 1.920 GGCGGGAGAG GCGCAGAGGA TGCAGCCGTT CCTGCCCAGA AGCTGAGGAA CAATGGCATC 1980 TCTGTCTTGG TCGTGGGCGT GGGGCCTGTC CTAAGTGAGG GTCTGCGGAG GCTTGCAGGT 2040 CCCCGGGATT CCCTGATCCA CGTGGCAGCT TACGCCGACC TGCGGTACCA CCAGGACGTG 2100 45 CTCATTGAGT GGCTGTGTGG AGAAGCCAAG CAGCCAGTCA ACCTCTGCAA ACCCAGCCCG 2160 TGCATGAATG AGGGCAGCTG CGTCCTGCAG AATGGGAGCT ACCGCTGCAA GTGTCGGGAT 2220 GGCTGGGAGG GCCCCCACTG CGAGAACCGT GAGTGGAGCT CTTGCTCTGT ATGTGTGAGC 2280 CAGGGATGGA TTCTTGAGAC GCCCCTGAGG CACATGGCTC CCGTGCAGGA GGGCAGCAGC 2340 CGTACCCCTC CCAGCAACTA CAGAGAAGGC CTGGGCACTG AAATGGTGCC TACCTTCTGG AATGTCTGTG CCCCAGGTCC TTAG 2400 50

Seq ID NO: 443 Protein sequence Protein Accession #: Eos sequence

55 31 41 51 21 MPPFLLLEAV CVFLFSRVPP SLPLQEVHVS KETIGKISAA SKMMWCSAAV DIMFLLDGSN SVGKGSFERS KHFAITVCDG LDISPERVRV GAFQFSSTPH LEFPLDSFST QQEVKARIKR 120 MVFKGGRTET ELALKYLLHR GLPGGRNASV PQILIIVTDG KSQGDVALPS KQLKERGVTV 180 60 FAVGVRFPRW EELHALASEP RGQHVLLAEQ VEDATNGLFS TLSSSAICSS ATPDCRVEAH 240 PCEHRTLEMV REFAGNAPCW RGSRRTLAVL AAHCPFYSWK RVFLTHPATC YRTTCPGPCD 300 SOPCONGGTC VPEGLDGYOC LCPLAFGGEA NCALKLSLEC RVDLLFLLDS SAGTTLDGFL 360 RAKVFVKRFV RAVLSEDSRA RVGVATYSRE LLVAVPVGEY QDVPDLVWSL DGIPFRGGPT LTGSALROAA ERGFGSATRT GODRPRRVVV LLTESHSEDE VAGPARHARA RELLLLGVGS 480 65 EAVRAELEEI TGSPKHVMVY SDPQDLFNQI PELQGKLCSR QRPGCRTQAL DLVFMLDTSA 540 SVGPENFAQM QSFVRSCALQ FEVNPDVTQV GLVVYGSQVQ TAFGLDTKPT RAAMLRAISQ 600 APYLGGVGSA GTALLHIYDK VMTVQRGARP GVPKAVVVLT GGRGAEDAAV PAQKLRNNGI 660 SVLVVGVGPV LSEGLRRLAG PRDSLIHVAA YADLRYHQDV LIEWLCGEAK QPVNLCKPSP 720 CMNEGSCVLQ NGSYRCKCRD GWEGPHCENR EWSSCSVCVS QGWILETPLR HMAPVQEGSS 70

Seq ID NO: 444 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 89..2356

RTPPSNYREG LGTEMVPTFW NVCAPGP

75 11 21 31 41 GCCCCCTGGC CCGAGCCGCG CCCGGGTCTG TGAGTAGAGC CGCCCGGGCA CCGAGCGCTG 60 GTCGCCGCTC TCCTTCCGTT ATATCAACAT GCCCCCTTTC CTGTTGCTGG AAGCCGTCTG 120 80 TGTTTTCCTG TTTTCCAGAG TGCCCCCATC TCTCCCTCTC CAGGAAGTCC ATGTAAGCAA AGAAACCATC GGGAAGATTT CAGCTGCCAG CAAAATGATG TGGTGCTCGG CTGCAGTGGA 240 CATCATGTTT CTGTTAGATG GGTCTAACAG CGTCGGGAAA GGGAGCTTTG AAAGGTCCAA 300 GCACTTTGCC ATCACAGTCT GTGACGGTCT GGACATCAGC CCCGAGAGGG TCAGAGTGGG AGCATTCCAG TTCAGTTCCA CTCCTCATCT GGAATTCCCC TTGGATTCAT TTTCAACCCA 360 420 ACAGGAAGTG AAGCAACAA TCAACAGGAT GGTTTTCAAA GGAGGCGCA CGGACACGA ACTTGCTCTG AAATACCTTC TGCACAGAGG GTTGCCTGGA GGCAGAAATG CTTCTGTGCC 85 480 CCAGATCCTC ATCATCGTCA CTGATGGGAA GTCCCAGGGG GATGTGGCAC TGCCATCCAA 600

```
GCAGCTGAAG GAAAGGGGTG TCACTGTGTT TGCTGTGGGG GTCAGGTTTC CCAGGTGGGA
                                                                            660
       GGAGCTGCAT GCACTGGCCA GCGAGCCTAG AGGGCAGCAC GTGCTGTTGG CTGAGCAGGT
                                                                            720
       GGAGGATGCC ACCAACGGCC TCTTCAGCAC CCTCAGCAGC TCGGCCATCT GCTCCAGCGC
                                                                            780
       CACGCCAGAC TGCAGGGTCG AGGCTCACCC CTGTGAGCAC AGGACGCTGG AGATGGTCCG
                                                                            840
 5
       GGAGTTCGCT GGCAATGCCC CATGCTGGAG AGGATCGCGG CGGACCCTTG CGGTGCTGGC
                                                                            900
       TGCACACTGT CCCTTCTACA GCTGGAAGAG AGTGTTCCTA ACCCACCCTG CCACCTGCTA
                                                                            960
       CAGGACCACC TGCCCAGGCC CCTGTGACTC GCAGCCCTGC CAGAATGGAG GCACATGTGT
                                                                           1020
       TCCAGAAGGA CTGGACGGCT ACCAGTGCCT CTGCCCGCTG GCCTTTGGAG GGGAGGCTAA
                                                                           1080
       CTGTGCCTG AAGCTGAGCC TGGAATGCAG GGTCGACCTC CTCTTCCTGC TGGACAGCTC
                                                                          1140
10
       TGCGGGCACC ACTCTGGACG GCTTCCTGCG GGCCAAAGTC TTCGTGAAGC GGTTTGTGCG
                                                                          1200
       GGCCGTGCTG AGCGAGGACT CTCGGGCCCG AGTGGGTGTG GCCACATACA GCAGGGAGCT
                                                                          1260
       GCTGGTGGCG GTGCCTGTGG GGGAGTACCA GGATGTGCCT GACCTGGTCT GGAGCCTCGA
                                                                          1320
       TGGCATTCCC TTCCGTGGTG GCCCCACCCT GACGGGCAGT GCCTTGCGGC AGGCGGCAGA
                                                                          1380
       GCGTGGCTTC GGGAGCGCCA CCAGGACAGG CCAGGACCGG CCACGTAGAG TGGTGGTTTT
                                                                           1440
15
       GCTCACTGAG TCACACTCCG AGGATGAGGT TGCGGGCCCA GCGCGTCACG CAAGGGCGCG
                                                                          1500
       AGAGCTGCTC CTGCTGGGTG TAGGCAGTGA GGCCGTGCGG GCAGAGCTGG AGGAGATCAC
                                                                          1560
       AGGCAGCCCA AAGCATGTGA TGGTCTACTC GGATCCTCAG GATCTGTTCA ACCAAATCCC
                                                                          1620
       TGAGCTGCAG GGGAAGCTGT GCAGCCGGCA GCGGCCAGGG TGCCGGACAC AAGCCCTGGA
                                                                          1680
       CCTCGTCTTC ATGTTGGACA CCTCTGCCTC AGTAGGGCCC GAGAATTTTG CTCAGATGCA
                                                                          1740
20
       GAGCTTTGTG AGAAGCTGTG CCCTCCAGTT TGAGGTGAAC CCTGACGTGA CACAGGTCGG
                                                                          1800
       CCTGGTGGTG TATGGCAGCC AGGTGCAGAC TGCCTTCGGG CTGGACACCA AACCCACCCG
                                                                          1860
       1920
       CACCGCCCTG CTGCACATCT ATGACAAAGT GATGACCGTC CAGAGGGGTG CCCGGCCTGG
                                                                          1980
       TGTCCCCAAA GCTGTGGTGG TGCTCACAGG CGGGAGAGGC GCAGAGGATG CAGCCGTTCC
                                                                          2040
25
       TGCCCAGAAG CTGAGGAACA ATGGCATCTC TGTCTTGGTC GTGGGCGTGG GGCCTGTCCT
                                                                           2100
       AAGTGAGGGT CTGCGGAGGC TTGCAGGTCC CCGGGATTCC CTGATCCACG TGGCAGCTTA
                                                                          2160
       CGCCGACCTG CGGTACCACC AGGACGTGCT CATTGAGTGG CTGTGTGGAG AAGCCAAGCA
                                                                          2220
       GCCAGTCAAC CTCTGCAAAC CCAGCCCGTG CATGAATGAG GGCAGCTGCG TCCTGCAGAA
                                                                          2280
       TEGGAGCTAC CECTECAACT STCEGGATEG CTEGGAGGEC CCCCACTECG AGAACCGATT
                                                                          2340
30
       CTTGAGACGC CCCTGAGGCA CATGGCTCCC GTGCAGGAGG GCAGCAGCCG TACCCCTCCC
                                                                          2400
       AGCAACTACA GAGAAGGCCT GGGCACTGAA ATGGTGCCTA CCTTCTGGAA TGTCTGTGCC
                                                                          2460
       CCAGGTCCTT AGAATGTCTG CTTCCCGCCG TGGCCAGGAC CACTATTCTC ACTGAGGGAG
                                                                          2520
       GAGGATGTCC CAACTGCAGC CATGCTGCTT AGAGACAAGA AAGCAGCTGA TGTCACCCAC
                                                                          2580
       AAACGATGTT GTTGAAAAGT TTTGATGTGT AAGTAAATAC CCACTTTCTG TACCTGCTGT
                                                                          2640
35
       GCCTTGTTGA GGCTATGTCA TCTGCCACCT TTCCCTTGAG GATAAACAAG GGGTCCTGAA
                                                                          2700
       GACTTAAATT TAGCGGCCTG ACGTTCCTTT GCACACAATC AATGCTCGCC AGAATGTTGT
                                                                          2760
       TGACACAGTA ATGCCCAGCA GAGGCCTTTA CTAGAGCATC CTTTGGACGG
       Seg ID NO: 445 Protein sequence
40
       Protein Accession #: Eos sequence
                  11
                             21
                                        31
                                                   41
                                                              51
       MPPFLLLEAV CVFLFSRVPP SLPLQEVHVS KETIGKISAA SKMMWCSAAV DIMFLLDGSN
45
       SVGKGSFERS KHFAITVCDG LDISPERVRV GAFQFSSTPH LEFPLDSFST QQEVKARIKR
                                                                           120
       MVFKGGRTET ELALKYLLHR GLPGGRNASV PQILIIVTDG KSQGDVALPS KQLKERGVTV
                                                                           180
       FAVGVRFPRW EELHALASEP RGOHVLLAEO VEDATNGLFS TLSSSAICSS ATPDCRVEAH
                                                                           240
       PCEHRTLEMV REFAGNAPCW RGSRRTLAVL AAHCPFYSWK RVFLTHPATC YRTTCPGPCD
                                                                           300
       SQPCQNGGTC VPEGLDGYQC LCPLAFGGEA NCALKLSLEC RVDLLFLLDS SAGTTLDGFL
                                                                            360
50
       RAKVFVKRFV RAVLSEDSRA RVGVATYSRE LLVAVPVGEY QDVPDLVWSL DGIPFRGGPT
                                                                            420
       LTGSALRQAA ERGFGSATRT GQDRPRRVVV LLTESHSEDE VAGPARHARA RELLLLGVGS
                                                                           480
       EAVRAELEEI TGSPKHVMVY SDPQDLFNQI PELQGKLCSR QRPGCRTQAL DLVFMLDTSA
SVGPENFAQM QSFVRSCALQ FEVNPDVTQV GLVVYGSQVQ TAFGLDTKPT RAAMLRAISQ
                                                                           540
                                                                           600
       APYLGGVGSA GTALLHIYDK VMTVQRGARP GVPKAVVVLT GGRGAEDAAV PAQKLRNNGI
                                                                           660
55
       SVLVVGVGPV LSEGLRRLAG PRDSLIHVAA YADLRYHQDV LIEWLCGEAK QPVNLCKPSP
       CMNEGSCVLO NGSYRCKCRD GWEGPHCENR FLRRP
       Seq ID NO: 446 DNA sequence
      Nucleic Acid Accession #: NM_031942.1
Coding sequence: 145..1260
60
                  11
                             21
                                        31
                                                   41
                                                              51
       60
65
       TGCTCCTCCT GCTGTGGGAC CGCTGACCGC GCGGCTGCTC CGCTCTCCCC GCTCCAAGCG
                                                                           120
       CCGATCTGGG CACCCGCCAC CAGCATGGAC GCTCGCCGCG TGCCGCAGAA AGATCTCAGA
                                                                           180
       GTAAAGAAGA ACTTAAAGAA ATTCAGATAT GTGAAGTTGA TTTCCATGGA AACCTCGTCA
       TCCTCTGATG ACAGTTGTGA CAGCTTTGCT TCTGATAATT TTGCAAACAC GAGGCTGCAG
                                                                           300
       TCAGTTCGGG AAGGCTGTAG GACCCGCAGC CAGTGCAGGC ACTCTGGACC TCTCAGGGTG
                                                                           360
70
       GCGATGAAGT TTCCAGCGCG GAGTACCAGG GGAGCAACCA ACAAAAAAGC AGAGTCCCGC
                                                                           420
       CAGCCCTCAG AGAATTCTGT GACTGATTCC AACTCCGATT CAGAAGATGA AAGTGGAATG
                                                                           480
       AATTTTTTGG AGAAAAGGGC TTTAAATATA AAGCAAAACA AAGCAATGCT TGCAAAACTC
                                                                           540
       ATGTCTGAAT TAGAAAGCTT CCCTGGCTCG TTCCGTGGAA GACATCCCCT CCCAGGCTCC
                                                                           600
       GACTCACAAT CAAGGAGACC GCGAAGGCGT ACATTCCCGG GTGTTGCTTC CAGGAGAAAC
75
       CCTGAACGGA GAGCTCGTCC TCTTACCAGG TCAAGGTCCC GGATCCTCGG GTCCCTTGAC
                                                                           720
       GCTCTACCCA TGGAGGAGGA GGAGGAAGAG GATAAGTACA TGTTGGTGAG AAAGAGGAAG
                                                                           780
       ACCGTGGATG GCTACATGAA TGAAGATGAC CTGCCCAGAA GCCGTCGCTC CAGATCATCC
                                                                           840
       GTGACCCTTC CGCATATAAT TCGCCCAGTG GAAGAAATTA CAGAGGAGGA GTTGGAGAAC
                                                                           900
       GTCTGCAGCA ATTCTCGAGA GAAGATATAT AACCGTTCAC TGGGCTCTAC TTGTCATCAA
                                                                           960
80
       TGCCGTCAGA AGACTATTGA TACCAAAACA AACTGCAGAA ACCCAGACTG CTGGGGCGTT
                                                                          1020
       CGAGGCCAGT TCTGTGGCCC CTGCCTTCGA AACCGTTATG GTGAAGAGGT CAGGGATGCT
                                                                          1080
       CTGCTGGATC CGAACTGGCA TTGCCCGCCT TGTCGAGGAA TCTGCAACTG CAGTTTCTGC
                                                                          1140
       CGGCAGCGAG ATGGACGGTG TGCGACTGGG GTCCTTGTGT ATTTAGCCAA ATATCATGGC
                                                                          1200
       TTTGGGAATG TGCATGCCTA CTTGAAAAGC CTGAAACAGG AATTTGAAAT GCAAGCATAA
                                                                          1260
85
       TATCTGGAAA ATTTGCTGCC TGCCTTCTAC TTCTCAAATC TTTCTTGTAA AAGTTTCCAA
                                                                          1320
       TTTTTTCACT GAAACCTGAG TTAAAAATCT TGATGATCAG CCTGTTTCAT AAGAAACTCC
       AATCAAGTTA ATCTTAGCAG ACATGTGTTT CTGGAGCATC ACAGAAGGTA TATTGCTAGT
                                                                          1440
```

```
1500
       TACACTTTGC CCTCCTGCAG TTTCTTCTCT GCTCCCAACC CCCATCTCAT AGCATCCCCC
        TCTATTTCCA ATGCTCCTCT CCAACCGCTT AGTTTCTGAA TTTCTTTTAA ATTACAGTTT
                                                                                   1560
        TATGAAAGCA TATTTTATTT ACTTGGTGTT GAAATAGCCC TCATAAAACC TAAGCACTTG
                                                                                   1620
                                                                                   1680
        GAAACACAAT AATAGTATTA ACTAACTAGA TCTATTGAAT TTCAGAGAAG AGCCTTCTAA
 5
       CTTGTTTACA CAAAAACGAG TATGATTTAG CACTCATACT AGTTGAAATT TTTAATAGAA
                                                                                   1740
        TCAAGGCACA AAAGTCTTAA AACCATGTGG AAAAATTAGG TAATTATTGC AGATTGATGT
                                                                                    1800
        CTCTCAATCC CATGTATTGC GCTTATGTTA CAAGTTGTTG TCACAGTTGA GACTTAATTT
                                                                                    1860
        CTCCTAATTT CTTCTGCCCG AAGGGTAAGT GGTGCGTCCA GCTTACACGA TCATAATTCA
                                                                                   1920
        AAGGTTGGTG GGCAATGTAA TACTTAATTA AAATAATGAT GGAAGAGCTA TCTGGAGATT
                                                                                   1980
10
        ATGAGTAAGC TGATTTGAAT TTTCAGTATA AAACTTTAGT ATAATTGTAG TTTGCAAAGT
                                                                                   2040
       TTATTTCAGT TCACATGTAA GGTATTGCAA ATAAATTCTT GGACAATTTT GTATGGAAAC TTGATATTAA AAACTAGTCT GTGGTTCTTT GCAGTTTCTT GTAAATTTAT AAACCAGGCA
                                                                                   2100
                                                                                   2160
        CAAGGTTCAA GTTTAGATTT TAAGCACTTT TATAACAATG ATAAGTGCCT TTTTGGAGAT
        GTAACTTTTA GCAGTTTGTT AACCTGACAT CTCTGCCAGT CTAGTTTCTG GGCAGGTTTC
                                                                                   2280
15
        CTGTGTCAGT ATTCCCCCTC CTCTTTGCAT TAATCAAGGT ATTTGGTAGA GGTGGAATCT
                                                                                   2340
        AAGTGTTTGT ATGTCCAATT TACTTGCATA TGTAAACCAT TGCTGTGCCA TTCAATGTTT
                                                                                    2400
        GATGCATAAT TGGACCTTGA ATCGATAAGT GTAAATACAG CTTTTGATCT GTAATGCTTT
                                                                                   2460
        20
        Seq ID NO: 447 Protein sequence
        Protein Accession #: NP_114148.1
                                 21
                                             31
                                                          41
                                                                      51
25
        MDARRVPQKD LRVKKNLKKF RYVKLISMET SSSSDDSCDS FASDNFANTR LQSVREGCRT
        RSQCRHSGPL RVAMKFPARS TRGATNKKAE SRQPSENSVT DSNSDSEDES GMNFLEKRAL
                                                                                     120
        NIKONKAMLA KLMSELESFP GSFRGRHPLP GSDSQSRRPR RRTFPGVASR RNPERRARPL
                                                                                     180
        TRSRSRILGS LDALPMEEEE EEDKYMLVRK RKTVDGYMNE DDLPRSRRSR SSVTLPHIIR
                                                                                     240
       PVEEITEEEL ENVCSNSREK IYNRSLGSTC HQCRQKTIDT KTNCRNPDCW GVRGGFCGPC LRNRYGEEVR DALLDPNWHC PPCRGICNCS FCRQRDGRCA TGVLVYLAKY HGFGNVHAYL
                                                                                     300
30
                                                                                     360
        KSI-KOEFEMO A
        Seq ID NO: 448 DNA sequence
        Nucleic Acid Accession #: NM_019894
35
        Coding sequence: 1..1314
                                             31
                                                          41
                                                                      51
                                 21
                    1.1
        ATGTTACAGG ATCCTGACAG TGATCAACCT CTGAACAGCC TCGATGTCAA ACCCCTGCGC
                                                                                      60
40
        AAACCCCGTA TCCCCATGGA GACCTTCAGA AAGGTGGGGA TCCCCATCAT CATAGCACTA
                                                                                     120
        CTGAGCCTGG CGAGTATCAT CATTGTGGTT GTCCTCATCA AGGTGATTCT GGATAAATAC
                                                                                     180
        TACTTCCTCT GCGGGCAGCC TCTCCACTTC ATCCCGAGGA AGCAGCTGTG TGACGGAGAG CTGGACTGTC CCTTGGGGGA GGACGAGGAG CACTGTGTCA AGAGCTTCCC CGAAGGGCCT
                                                                                     300
        GCAGTGGCAG TCCGCCTCTC CAAGGACCGA TCCACACTGC AGGTGCTGGA CTCGGCCACA
                                                                                     360
45
        GGGAACTGGT TCTCTGCCTG TTTCGACAAC TTCACAGAAG CTCTCGCTGA GACAGCCTGT
                                                                                     420
        AGGCAGATGG GCTACAGCAG CAAACCCACT TTCAGAGCTG TGGAGATTGG CCCAGACCAG
                                                                                     480
        GATCTGGATG TTGTTGAAAT CACAGAAAAC AGCCAGGAGC TTCGCATGCG GAACTCAAGT GGGCCCTGTC TCTCAGGCTC CCTGGTCTCC CTGCACTGTC TTGCCTGTGG GAAGAGCCTG
                                                                                     540
                                                                                     600
        AAGACCCCCC GTGTGGTGGG TGGGGAGGAG GCCTCTGTGG ATTCTTGGCC TTGGCAGGTC
                                                                                     660
50
        AGCATCCAGT ACGACAAACA GCACGTCTGT GGAGGGAGCA TCCTGGACCC CCACTGGGTC
                                                                                     720
        CTCACGGCAG CCCACTGCTT CAGGAAACAT ACCGATGTGT TCAACTGGAA GGTGCGGGCA
                                                                                     780
        GGCTCAGACA AACTGGGCAG CTTCCCATCC CTGGCTGTGG CCAAGATCAT CATCATTGAA
                                                                                     840
        TTCAACCCCA TGTACCCCAA AGACAATGAC ATCGCCCTCA TGAAGCTGCA GTTCCCACTC
                                                                                     900
        ACTITCTCAG GCACAGTCAG GCCCATCTGT CTGCCCTTCT TTGATGAGGA GCTCACTCCA
GCCACCCCAC TCTGGATCAT TGGATGGGGC TTTACGAAGC AGAATGGAGG GAAGATGTCT
                                                                                     960
55
                                                                                    1020
        GACATACTGC TGCAGGCGTC AGTCCAGGTC ATTGACAGCA CACGGTGCAA TGCAGACGAT
                                                                                    1080
        GCGTACCAGG GGGAAGTCAC CGAGAAGATG ATGTGTGCAG GCATCCCGGA AGGGGGTGTG
                                                                                    1140
        GACACCTGCC AGGGTGACAG TGGTGGGCCC CTGATGTACC AATCTGACCA GTGGCATGTG
                                                                                    1200
        GTGGGCATCG TTAGCTGGGG CTATGGCTGC GGGGGCCCCA GCACCCCAGG AGTATACACC AAGGTCTCAG CCTATCTCAA CTGGATCTAC AATGTCTGGA AGGCTGAGCT GTAA
                                                                                    1260
60
        Seq ID NO: 449 Protein sequence
                                     NP_063947.1
        Protein Accession #:
65
                                                          41
                                                                      51
                                 21
                                             31
                    11
        MLODPDSDOP LNSLDVKPLR KPRIPMETFR KVGIPIIIAL LSLASIIIVV VLIKVILDKY
        YFLCGOPLHF IPRKQLCDGE LDCPLGEDEE HCVKSFPEGP AVAVRLSKDR STLQVLDSAT
                                                                                     120
        GNWFSACFDN FTEALAETAC RQMGYSSKPT FRAVEIGPDQ DLDVVEITEN SQELRMRNSS
                                                                                     180
70
        GPCLSGSLVS LHCLACGKSL KTPRVVGGEE ASVDSWPWQV SIQYDKQHVC GGSILDPHWV
                                                                                     240
        LTAAHCFRKH TDVFNWKVRA GSDKLGSFPS LAVAKIIIIE FNPMYPKDND IALMKLQFPL
                                                                                     300
        TFSGTVRPIC LPFFDEELTP ATPLWIIGWG FTKQNGGKMS DILLQASVQV IDSTRCNADD
        AYQGEVTEKM MCAGIPEGGV DTCQGDSGGP LMYQSDQWHV VGIVSWGYGC GGPSTPGVYT
75
        Seq ID NO: 450 DNA sequence
        Nucleic Acid Accession #: XM_051860.2
        Coding sequence: 52..3042
80
                                              31
                                                          41
        GCTCACCCAG GAAAAATATG CAATCGTCCC ATTGATATAC AGGCCACTAC AATGGATGGA
                                                                                      60
        GTTAACCTCA GCACCGAGGT TGTCTACAAA AAAGGCCAGG ATTATAGGTT TGCTTGCTAC
GACCGGGGCA GAGCCTGCCG GAGCTACCGT GTACGGTTCC TCTGTGGGAA GCCTGTGAGG
                                                                                     120
                                                                                     180
        CCCAAACTCA CAGTCACCAT TGACACCAAT GTGAACAGCA CCATTCTGAA CTTGGAGGAT
AATGTACAGT CATGGAAACC TGGAGATACC CTGGTCATTG CCAGTACTGA TTACTCCATG
85
                                                                                     240
                                                                                     300
        TACCAGGCAG AAGAGTTCCA GGTGCTTCCC TGCAGATCCT GCGCCCCCAA CCAGGTCAAA
                                                                                     360
```

		AACCAATGTA	CCTGCACATC	GGGGAGGAGA	TAGACGGCGT	GGACATGCGG	420
				ATAGTGATGG			480
	TACCCCTACA	GAAACCACAT	CTGCAATTTC	TTTGACTTCG	ATACCTTTGG	GGGCCACATC	540
5				TTGGAGGGCA			600
3				TTCCACCTGG			660
				GACCTCTCCA TTGATCAAGG			720 780
				CCGGAGGAAC			840
				CTCCCCTCGG			900
10	AAGATGATCA	CAGGAGACTC	CTACCCAGGG	TACATCCCCA	AGCCCAGGCA	AGACTGCAAT	960
				AACAACAACC			1020
				TTTCACCACG			1080
				ATTCCACTGG ATAGACAACG			1140 1200
15				ATCATCTCTG			1260
				GCCATCATCA			1320
				GGGGATGTGT			1380
				AGTGGTGGAA			1440
20				GTTGGCGAGA			1500
20				GGCTTGGACC			1560
				CAGTTATATG GAGGGCCGGC			1620 1680
				CATAACAACG			1740
~ ~				GGAGAGCCTG			1800
25				CATGACGTCG			1860
				TGGCTGGTCC			1920
•				GGGTGCTATG ATCAAGAATG			1980
				CATTACCAGC			2040 2100
30				CAGACGGCCC			2160
				CGAGTGGGGC			2220
				CGCCTGCTGA			2280
				GTGGAGCAGA			2340
35				TTCCTGAAGC			2400
55				TGTGAGAGGA GCCACAGCTT			2460 2520
				CTCTTTGGTT			2580
				AAGCAGCACT			2640
40				TACCCCAGTT			2700
40				GTGAGCCACA			2760
				TATGTGGCGA			2820
				TCCAGAGGCC AAAGAGCAAA			2880 2940
				GACACTGAGG			3000
45				AAGAAGTTGT			3060
	GCCACCTCGT	GGTAGACTAT	GACGGTGACT	CTTGGCAGCA	GACCAGTGGG	GGATGGCTGG	3120
				GAAGGCCGTG			3180
				ACCTGCCCCT			3240
50				ACATTCACTT GTTTGGGGAC			3300 3360
				AGCCCTGACC			3420
				TCAGCAGACA			3480
				TACTCCTGTA			3540
55				TTGGGGAAGA			3600
55				AGGTTTGGAC CTGCTGCATT			3660
				GATGCTGGGT			3720 3780
				GGTCTGCAGT			3840
CO	GTCCATGTGC	ACTGCAATGC	CAGGTGGAGA	AATCACAGAG	AGGTAAAATG	GAGGCCAGTG	3900
60				CTTGCTTACA			3960
				AATGGCTCAG			4020
						TGGCCCACTC GCACAGAGGA	4080 4140
				TCCAAGAGGG			4200
65						GGCCTCCAGG	
	AGACCCTAGA	TGTGCTCGTA	CTCCCTCGGC	CTGGGATTTC	AGAGCTGGAA	ATATAGAAAA	4320
						GATGGGAAAG	4380
	AACCACACAG						4440
70	GACAAGTCCC			GGCACTCCTG			4500 4560
, 0	CCCTCCTGCT						4620
				CCTGGGTGCA			4680
				CTCTACAGGT			4740
75	GGGCTCGCCA						4800
75	GGTCCACCCC						4860
	ATAGAGAGCC ACGAGGCACC						4920 4980
	CAACCACAAA						5040
00	ATGAGACTCG						5100
80	CCACCAAACA	TCTTTCAGCT	GCTGGGAGGT	GACCATAGGG	CTCTGCTTTT	AAAGATATGG	5160
	CTGCTTCAAA						5220
	AGGAGAGTTA						5280
	CTAATGCAAG						5340 5400
85	AATGTTGAAT GTTGTACATA						5460
						GCTTAGAAAA	
	TTGTCCTCCT						5580

	WO 02/						
		GAAATGCTTG TAGAGTGTTT					5640 5700
		ATTTATTTAT					5760
_		AATGTCAAAA					
5							
	Seq ID NO:	451 Proteir	n sequence				
		cession #: >					
10	1	11	21	31	41	51	
10	ī]	1	Ĩ]	Ĭ	
	MDGVNLSTEV	VYKKGQDYRF					60
	LEDNVQSWKP	GDTLVIASTD RNIIVMGEME	YSMYQAEEFQ	VLPCRSCAPN	QVKVAGKPMY	LHIGEEIDGV	120 180
15		PIHFHLAGDV					240
	YNSLGHCFFT	EDGPEERNTF	DHCLGLLVKS	GTLLPSDRDS	KMCKMITGDS	YPGYIPKPRQ	300
		ANPNNNLINC					360
		GMIIDNGVKT LRGGDVWLDS					420 480
20	GTEMMDNRIW	GPGGLDHSGR	TLPIGONFPI	RGIOLYDGPI	NIONCTFRKF	VALEGRHTSA	540
	LAFRLNNAWQ	SCPHNNVTGI	AFEDVPITSR	VFFGEPGPWF	NQLDMDGDKT	SVFHDVDGSV	600
		NDNWLVRHPD					660
		RSTHYQQYQP					720 780
25		VHNRLLKQTS MKGCERIKIK					840
		ESSKQHFFHL					900
	NSILQGIPWQ	LFNYVATIPD	NSIVLMASKG	RYVSRGPWTR			960
	GFKGSFRPIW	VTLDTEDHKA	KIFQVVPIPV	VKKKKL	-		
30	Sea ID NO:	452 DNA sec	mence				
•	-	id Accession		quence			
	Coding sequ	uence: 261.	.2861				
	1	11	21	31	41	51	
35	}	}	1	1	}	}	
		TCAAGCAGAG					60
		AGCCAGCGGG CCGCTTGCCC					120 180
		CCGCTGCGCT					240
40		CACTGCCAGG					300
	TGCTGACCAT	CAGCTGGCTC	ACTCTGACCT	GCTTCCCTGG	GGCCACATCC	ACAGTGGCTG	360
		TGACCAGAGC					420 480
		TATCGGCCAG CTCAGAGGGA					540
45		GCACATCCTG					600
	GCCCTTTCCA	GGGCAATTTC	ACCATCATTT	TGTATGGAAG	GGCTGATGAA	GGTATTCAGC	660
		CTATGGTCTG					720
		AAAGCTCTCC CTATTTTTTT					780 840
50		ATCAGGCACA					900
		ACGTCTGGTC					960
		TGATGAAGGT					1020
		CAAACACTTC TCCATCATCT					1080 1140
55		CCGGGTATTC					1200
		TGAGTGGGTT					1260
		TAAAGGTĞGG					1320
		TCCCATTGAT CAAAAAAGGC					1380 1440
60		CCGTGTACGG					1500
• •	CCATTGACAC	CAATGTGAAC	AGCACCATTC	TGAACTTGGA	GGATAATGTA	CAGTCATGGA	1560
						GCAGAAGAGT	
		TCCCTGCAGA CATCGGGGAG					1680 1740
65		CATCATAGTG					1800
	ACATCTGCAA	TTTCTTTGAC	TTCGATACCT	TTGGGGGCCA	CATCAAGTTT	GCTCTGGGAT	1860
	TTAAGGCAGC	ACACTTGGAG	GGCACGGAGC	TGAAGCATAT	GGGACAGCAG	CTGGTGGGTC	1920
		TCACTTCCAC CAGGGACCTC					1980 2040
70		CTTGTTGATC					2100
	TCACGGAAGA	TGGGCCGGAG	GAACGCAACA	CTTTTGACCA	CTGTCTTGGC	CTCCTTGTCA	2160
						ATCACAGAGG	
		AGGGTACATC				TCCACCTTCT GAGGAAACTG	2280
75						TACTCCCCAG	
. •	GTTATTCAGA	GCACATTCCA	CTGGGAAAAT	TCTATAACAA	CCGAGCACAT	TCCAACTACC	2460
	GGGCTGGCAT	GATCATAGAC	AACGGAGTCA	AAACCACCGA	GGCCTCTGCC	AAGGACAAGC	2520
	GGCCGTTCCT	CTCAATCATC	TCTGCCAGAT	ACAGCCCTCA	CCAGGACGCC	GACCCGCTGA	2580
80	AGCCCCGGGA	CGGCGGGGAM	GTGTGGGTGG	ACAGCTGCCTA	TTTCAGAGGG	GACCACGGGG GAGGCTCAGG	2640 2700
	AAGGCTTCTT	GCTTACAGGA	ATGAAGGCTG	GGGGCATTTT	GCTGGGGGGA	GATGAGGCAG	2760
	CCTCTGGAAT	GGCTCAGGGA	TTCAGCCCTC	CCTGCCGCTG	CCTGCTGAAG	CTGGTGACTA	2820
	CGGGGTCGCC	CTTTGCTCAC	GTCTCTCTGG	CCCACTCATG	ATGGAGAAGT	GTGGTCAGAG	
85	GGGAGCAATG	GGCTTTGCTG AAGAGGGTGA	CTTATGAGCA	CAGAGGAATT	TGCCTTAGG	CCTCATTTCC	2940 3000
0.5	TCTTCATCCA	GGGAACTGAG	CACAGGGGGC	CTCCAGGAGA	CCCTAGATGT	GCTCGTACTC	
	CCTCGGCCTG	GGATTTCAGA	GCTGGAAATA	TAGAAAATAT	CTAGCCCAAA	GCCTTCATTT	3120

```
WO 02/086443
       TAACAGATGG GGAAAGTGAG CCCCCAAGAT GGGAAAGAAC CACACAGCTA AGGGAGGGCC
       TGGGGAGCCC CACCCTAGCC CTTGCTGCCA CACCACATTG CCTCAACAAC CGGCCCCAGA
                                                                          3240
       GTGCCCAGGC ACTCCTGAGG TAGCTTCTGG AAATGGGGAC AAGTCCCCTC GAAGGAAAGG
                                                                          3300
       AAATGACTAG AGTAGAATGA CAGCTAGCAG ATCTCTTCCC TCCTGCTCCC AGCGCACACA
                                                                          3360
 5
       AACCCGCCCT CCCCTTGGTG TTGGCGGTCC CTGTGGCCTT CACTTTGTTC ACTACCTGTC
                                                                          3420
       AGCCCAGCCT GGGTGCACAG TAGCTGCAAC TCCCCATTGG TGCTACCTGG CTCTCCTGTC
                                                                          3480
       TCTGCAGCTC TACAGGTGAG GCCCAGCAGA GGGAGTAGGG CTCGCCATGT TTCTGGTGAG
                                                                           3540
       CCAATTTGGC TGATCTTGGG TGTCTGAACA GCTATTGGGT CCACCCCAGT CCCTTTCAGC
                                                                          3600
       TGCTGCTTAA TGCCCTGCTC TCTCCCTGGC CCACCTTATA GAGAGCCCAA AGAGCTCCTG
                                                                          3660
10
       TAAGAGGGAG AACTCTATCT GTGGTTTATA ATCTTGCACG AGGCACCAGA GTCTCCCTGG
                                                                          3720
                                                                          3780
       GTCTTGTGAT GAACTACATT TATCCCCTTT CCTGCCCCAA CCACAAACTC TTTCCTTCAA
       AGAGGGCCTG CCTGGCTCCC TCCACCCAAC TGCACCCATG AGACTCGGTC CAAGAGTCCA
                                                                          3840
       TTCCCCAGGT GGGAGCCAAC TGTCAGGGAG GTCTTTCCCA CCAAACATCT TTCAGCTGCT
       GGGAGGTGAC CATAGGGCTC TGCTTTTAAA GATATGGCTG CTTCAAAGGC CAGAGTCACA
                                                                          3960
15
       GGAAGGACTT CTTCCAGGGA GATTAGTGGT GATGGAGAGG AGAGTTAAAA TGACCTCATG
                                                                           4020
       TCCTTCTTGT CCACGGTTTT GTTGAGTTTT CACTCTTCTA ATGCAAGGGT CTCACACTGT
                                                                          4080
       GAACCACTTA GGATGTGATC ACTTTCAGGT GGCCAGGAAT GTTGAATGTC TTTGGCTCAG
                                                                           4140
       TTCATTTAAA AAAGATATCT ATTTGAAAGT TCTCAGAGTT GTACATATGT TTCACAGTAC
                                                                          4200
       AGGATCTGTA CATAAAAGTT TCTTTCCTAA ACCATTCACC AAGAGCCAAT ATCTAGGCAT
                                                                           4260
20
       TTTCTTGGTA GCACAAATTT TCTTATTGCT TAGAAAATTG TCCTCCTTGT TATTTCTGTT
                                                                           4320
       TGTAAGACTT AAGTGAGTTA GGTCTTTAAG GAAAGCAACG CTCCTCTGAA ATGCTTGTCT
                                                                           4380
       TTTTTCTGTT GCCGAAATAG CTGGTCCTTT TTCGGGAGTT AGATGTATAG AGTGTTTGTA
                                                                          4440
       TGTAAACATT TCTTGTAGGC ATCACCATGA ACAAAGATAT ATTTTCTATT TATTTATTAT
                                                                           4500
       ATGTGCACTT CAAGAAGTCA CTGTCAGAGA AATAAAGAAT TGTCTTAAAT GTCATGATTG
                                                                           4560
25
       GAGATGTCCT TTGCATTGCT TGGAAGGGGT GTACCTAGAG CCAAGGAAAT TGGCTCTGGT
       ΑΑ ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ
       Seq ID NO: 453 Protein sequence
30
       Protein Accession #: Eos sequence
                                                    41
                                        31
       MGAAGRQDFL FKAMLTISWL TLTCFPGATS TVAAGCPDQS PELQPWNPGH DQDHHVHIGQ
                                                                             60
35
       GKTLLLTSSA TVYSIHISEG GKLVIKDHDE PIVLRTRHIL IDNGGELHAG SALCPFQGNF
                                                                            120
       TIILYGRADE GIQPDPYYGL KYIGVGKGGA LELHGQKKLS WTFLNKTLHP GGMAEGGYFF
                                                                            180
       ERSWGHRGVI VHVIDPKSGT VIHSDRFDTY RSKKESERLV QYLNAVPDGR ILSVAVNDEG
       SRNLDDMARK AMTKLGSKHF LHLGFRHPWS FLTVKGNPSS SVEDHIEYHG HRGSAAARVF
                                                                            300
       KLFQTEHGEY FNVSLSSEWV QDVEWTEWFD HDKVSQTKGG EKISDLWKAH PGKICNRPID
                                                                            360
40
       IQATTMDGVN LSTEVVYKKG QDYRFACYDR GRACRSYRVR FLCGKPVRPK LTVTIDTNVN
                                                                            420
       STILNLEDNY QSWKPGDTLY IASTDYSMYQ AEEFQYLPCR SCAPNQVKVA GKPMYLHIGE
EIDGYDMRAE VGLLSRNIIV MGEMEDKCYP YRNHICNFFD FDTFGGHIKF ALGFKAAHLE
                                                                            480
                                                                            540
       GTELKHMGQQ LVGQYPIHFH LAGDVDERGG YDPPTYIRDL SIHHTFSRCV TVHGSNGLLI
                                                                            600
       KDVVGYNSLG HCFFTEDGPE ERNTFDHCLG LLVKSGTLLP SDRDSKMCKM ITEDSYPGYI
                                                                            660
45
       PKPRQDCNAV STFWMANPNN NLINCAAAGS EETGFWFIFH HVPTGPSVGM YSPGYSEHIP
                                                                            720
       LGKFYNNRAH SNYRAGMIID NGVKTTEASA KDKRPFLSII SARYSPHQDA DPLKPREPAI
                                                                            780
       IRHFIAYKNQ DHGAWLRGGD VWLDSCHFRG EAQEGFLLTG MKAGGILLGG DEAASGMAQG
                                                                            840
       FSPPCRCLLK LVTTGSPFAH VSLAHS
50
       Seq ID NO: 454 DNA sequence
       Nucleic Acid Accession #: NM_013282.2
       Coding sequence: 85..2466
                                                               51
                                                    41
                  1.1
                             21
                                        31
55
       CGACTCCTTA GAGCATGGCA TGGCTCAGAG GTGCTGGTAA AACTGATGGG GGTTTTTGCT
       GTCCCTCCCC TCAGCGCCGA CACCATGTGG ATCCAGGTTC GGACCATGGA CGGGAGGCAG
                                                                            120
       ACCCACACGG TGGACTCGCT GTCCAGGCTG ACCAAGGTGG AGGAGCTGAG GCGGAAGATC
                                                                            180
       CAGGAGCTGT TCCACGTGGA GCCAGGCCTG CAGAGGCTGT TCTACAGGGG CAAACAGATG
                                                                            240
60
       GAGGACGGCC ATACCCTCTT CGACTACGAG GTCCGCCTGA ATGACACCAT CCAGCTCCTG
                                                                            300
       GTCCGCCAGA GCCTCGTGCT CCCCCACAGC ACCAAGGAGC GGGACTCCGA GCTCTCCGAC
                                                                            360
       ACCGACTCCG GCTGCTGCCT GGGCCAGAGT GAGTCAGACA AGTCCTCCAC CCACGGCGAG
                                                                            420
       GCGGCCGCCG AGACTGACAG CAGGCCAGCC GATGAGGACA TGTGGGATGA GACGGAATTG
                                                                            480
       GGGCTGTACA AGGTCAATGA GTACGTCGAT GCTCGGGACA CGAACATGGG GGCGTGGTTT
                                                                            540
65
       GAGGCGCAGG TGGTCAGGGT GACGCGGAAG GCCCCCTCCC GGGACGAGCC CTGCAGCTCC
                                                                            600
       ACGTCCAGGC CGGCGCTGGA GGAGGACGTC ATTTACCACG TGAAATACGA CGACTACCCG
                                                                            660
       GAGAACGGCG TGGTCCAGAT GAACTCCAGG GACGTCCGAG CGCGCGCCCG CACCATCATC
                                                                            720
       AAGTGGCAGG ACCTGGAGGT GGGCCAGGTG GTCATGCTCA ACTACAACCC CGACAACCCC
                                                                            780
       AAGGAGCGGG GCTTCTGGTA CGACGCGGAG ATCTCCAGGA AGCGCGAGAC CAGGACGGCG
                                                                            840
70
       CGGGAACTCT ACGCCAACGT GGTGCTGGGG GATGATTCTC TGAACGACTG TCGGATCATC
                                                                            900
                                                                            960
       TTCGTGGACG AAGTCTTCAA GATTGAGCGG CCGGGTGAAG GGAGCCCCAT GGTTGACAAC
       CCCATGAGAC GGAAGAGCGG GCCGTCCTGC AAGCACTGCA AGGACGACGT GAACAGACTC
                                                                          1020
       TGCCGGGTCT GCGCCTGCCA CCTGTGCGGG GGCCGGCAGG ACCCCGACAA GCAGCTCATG
                                                                           1080
       TGCGATGAGT GCGACATGGC CTTCCACATC TACTGCCTGG ACCCGCCCCT CAGCAGTGTT
                                                                           1140
75
       CCCAGCGAGG ACGAGTGGTA CTGCCCTGAG TGCCGGAATG ATGCCAGCGA GGTGGTACTG
                                                                          1200
       GCGGGAGAGC GGCTGAGAGA GAGCAAGAAG AAGGCGAAGA TGGCCTCGGC CACATCGTCC
                                                                          1260
       TCACAGCGGG ACTGGGGCAA GGGCATGGCC TGTGTGGGCC GCACCAAGGA ATGTACCATC
                                                                           1320
       GTCCCGTCCA ACCACTACGG ACCCATCCCG GGGATCCCCG TGGGCACCAT GTGGCGGTTC
                                                                           1380
       CGAGTCCAGG TCAGCGAGTC GGGTGTCCAT CGGCCCCACG TGGCTGGCAT ACACGGCCGG
                                                                           1440
80
       AGCAACGACG GAGCGTACTC CCTAGTCCTG GCGGGGGGCT ATGAGGATGA CGTGGACCAT
                                                                           1500
       GGGAATTTTT TCACATACAC GGGTAGTGGT GGTCGAGATC TTTCCGGCAA CAAGAGGACC
                                                                           1560
       GCGGAACAGT CTTGTGATCA GAAACTCACC AACACCAACA GGGCGCTGGC TCTCAACTGC
                                                                          1620
       TTTGCTCCCA TCAATGACCA AGAAGGGGCC GAGGCCAAGG ACTGGCGGTC GGGGAAGCCG
                                                                           1680
       GTCAGGGTGG TGCGCAATGT CAAGGGTGGC AAGAATAGCA AGTACGCCCC CGCTGAGGGC
                                                                           1740
85
       AACCGCTACG ATGGCATCTA CAAGGTTGTG AAATACTGGC CCGAGAAGGG GAAGTCCGGG
                                                                           1800
       TTTCTCGTGT GGCGCTACCT TCTGCGGAGG GACGATGATG AGCCTGGCCC TTGGACGAAG
                                                                           1860
       GAGGGGAAGG ACCGGATCAA GAAGCTGGGG CTGACCATGC AGTATCCAGA AGGCTACCTG
                                                                           1920
```

```
WO 02/086443
       1980
       CAGGAGGGG GCTTCGCGTC CCCCAGGACG GGCAAGGGCA AGTGGAAGCG GAAGTCGGCA
                                                                         2040
       GGAGGTGGCC CGAGCAGGGC CGGGTCCCCG CGCCGGACAT CCAAGAAAAC CAAGGTGGAG
                                                                         2100
       CCCTACAGTC TCACGGCCCA GCAGAGCAGC CTCATCAGAG AGGACAAGAG CAACGCCAAG
                                                                         2160
 5
       CTGTGGAATG AGGTCCTGGC GTCACTCAAG GACCGGCCGG CGAGCGGCAG CCCGTTCCAG
                                                                         2220
       TTGTTCCTGA GTAAAGTGGA GGAGACGTTC CAGTGTATCT GCTGTCAGGA GCTGGTGTTC
                                                                         2280
       CGGCCCATCA CGACCGTGTG CCAGCACAAC GTGTGCAAGG ACTGCCTGGA CAGATCCTTT
                                                                         2340
       CGGGCACAGG TGTTCAGCTG CCCTGCCTGC CGCTACGACC TGGGCCGCAG CTATGCCATG
                                                                         2400
       CAGGTGAACC AGCCTCTGCA GACCGTCCTC AACCAGCTCT TCCCCGGCTA CGGCAATGGC
                                                                         2460
10
       CGGTGATCTC CAAGCACTTC TCGACAGGCG TTTTGCTGAA AACGTGTCGG AGGGCTCGTT
                                                                         2520
       CATCGGCACT GATTTGTTC TTAGTGGGCT TAACTTAAAC AGGTAGTGTT TCCTCCGTTC
                                                                         2580
       CCTAAAAAGG TTTGTCTTCC TTTTTTTTTA TTTTTATTTT TCAAATCTAT ACATTTTCAG
                                                                         2640
       GAATTTATGT ATTCTGGCTA AAAGTTGGAC TTCTCAGTAT TGTGTTTAGT TCTTTGAAAA
                                                                         2700
       CATAAAAGCC TGCAATTTCT CGACAAAACA ACACAAGATT TTTTAAAGAT GGAATCAGAA
                                                                         2760
15
      ACTACGTGGT GTGGAGGCTG TTGATGTTTC TGGTGTCAAG TTCTCAGAAG TTGCTGCCAC
                                                                         2820
       CAACTCTTTA AGAAGGCGAC AGGATCAGTC CTTCTCTAGG GTTCTGGCCC CCAAGGTCAG
                                                                         2880
       AGCAAGCATC TTCCTGACAG CATTTTGTCA TCTAAAGTCC AGTGACATGG TTCCCCGTGG
                                                                         2940
       TGGCCCGTGG CAGCCCGTGG CATGGCGTGG CTCAGCTGTC TGTTGAAGTT GTTGCAAGGA
                                                                         3000
       AAAGAGGAAA CATCTCGGGC CTAGTTCAAA CCTTTGCCTC AAAGCCATCC CCCACCAGAC
                                                                         3060
20
       TGCTTAGCGT CTGAGATCCG CGTGAAAAGT CCTCTGCCCA CGAGAGCAGG GAGTTGGGGC
                                                                         3120
       CACGCAGAAA TGGCCTCAAG GGGACTCTGC TCCACGTGGG GCCAGGCGTG TGACTGACGC
                                                                         3180
       TGTCCGACGA AGGCGGCCAC GGACGGACGC CAGCACACGA AGTCACGTGC AAGTGCCTTT
                                                                         3240
       GATTCGTTCC TTCTTCTAA AGACGACAGT CTTTGTTGTT AGCACTGAAT TATTGAAAAT
                                                                         3300
       GTCAACCAGA TTCTAGAAAC TGCGGTCATC CAGTTCTTCC TGACACCGGA TGGGTGCTTG
                                                                         3360
25
       GGAACCGTTT GAGCCTTATA GATCATTTAC ATTCAATTTT TTTAACTCAG CAAGTGAGAA
                                                                         3420
       CTTACAAGAG GGTTTTTTT TAATTTTTTT TTCTCTTAAT GAACACATTT TCTAAATGAA
                                                                         3480
       TTTTTTTGT AGTTACTGTA TATGTACCAA GAAAGATATA ACGTTAGGGT TTGGTTGTTT
                                                                         3540
       TTGTTTTTGT ATTTTTTTC TTTTGAAAGG GTTTGTTAAT TTTTCTAATT TTACCAAAGT
                                                                         3600
       TTGCAGCCTA TACCTCAATA AAACAGGGAT ATTTTAAATC ACATACCTGC AGACAAACTG
                                                                         3660
30
       GAGCAATGTT ATTTTTAAAG GGTTTTTTTC ACCTCCTTAT TCTTAGATTA TTAATGTATT
                                                                         3720
       AGGGAAGAAT GAGACAATTT TGTGTAGGCT TTTTCTAAAG TCCAGTACTT TGTCCAGATT
                                                                         3780
       TTAGATTCTC AGAATAAATG TTTTTCACAG ATTGAAAAAA AAAAAAAA
       Seq ID NO: 455 Protein sequence
35
       Protein Accession #: NP 037414.2
                 11
                             21
                                        31
                                                   41
                                                              51
       MWIQVRTMDG ROTHTVDSLS RLTKVEELRR KIQELFHVEP GLQRLFYRGK QMEDGHTLFD
40
       YEVRLNDTIQ LLVRQSLVLP HSTKERDSEL SDTDSGCCLG QSESDKSSTH GEAAAETDSR
                                                                          120
       PADEDMWDET ELGLYKVNEY VDARDTNMGA WFEAQVVRVT RKAPSRDEPC SSTSRPALEE
                                                                          1.80
       DVIYHVKYDD YPENGVVOMN SRDVRARART IIKWQDLEVG QVVMLNYNPD NPKERGFWYD
                                                                           240
       AEISRKRETR TARELYANVV LGDDSLNDCR IIFVDEVFKI ERPGEGSPMV DNPMRRKSGP
                                                                           300
       SCKHCKDDVN RLCRVCACHL CGGRQDPDKQ LMCDECDMAF HIYCLDPPLS SVPSEDEWYC
                                                                           360
45
       PECRNDASEV VLAGERLRES KKKAKMASAT SSSQRDWGKG MACVGRTKEC TIVPSNHYGP
       IPGIPVGTMW RFRVOVSESG VHRPHVAGIH GRSNDGAYSL VLAGGYEDDV DHGNFFTYTG
                                                                           480
       SGGRDLSGNK RTAEQSCDQK LTNTNRALAL NCFAPINDQE GAEAKDWRSG KPVRVVRNVK
                                                                           540
       GGKNSKYAPA EGNRYDGIYK VVKYWPEKGK SGFLVWRYLL RRDDDEPGPW TKEGKDRIKK
                                                                           600
       LGLTMQYPEG YLEALANRER EKENSKREEE EQQEGGFASP RTGKGKWKRK SAGGGPSRAG
                                                                          660
50
       SPRRTSKKTK VEPYSLTAGO SSLIREDKSN AKLWNEVLAS LKDRPASGSP FQLFLSKVEE
                                                                           720
       TFQCICCQEL VFRPITTVCQ HNVCKDCLDR SFRAQVFSCP ACRYDLGRSY AMQVNQPLQT
       Seg ID NO: 456 DNA seguence
       Nucleic Acid Accession #: NM_001200.1
55
       Coding sequence: 325..1514
                                        31
                                                   41
                                                              51
                 11
                             21
       GGGGACTTCT TGAACTTGCA GGGAGAATAA CTTGCGCACC CCACTTTGCG CCGGTGCCTT
                                                                           60
60
       TGCCCCAGCG GAGCCTGCTT CGCCATCTCC GAGCCCCACC GCCCCTCCAC TCCTCGGCCT
                                                                          120
       TGCCCGACAC TGAGACGCTG TTCCCAGCGT GAAAAGAGAG ACTGCGCGGC CGGCACCCGG
                                                                           180
       GAGAAGGAGG AGGCAAAGAA AAGGAACGGA CATTCGGTCC TTGCGCCAGG TCCTTTGACC
                                                                           240
       AGAGTTTTC CATGTGGACG CTCTTTCAAT GGACGTGTCC CCGCGTGCTT CTTAGACGGA
                                                                           300
       CTGCGGTCTC CTAAAGGTCG ACCATGGTGG CCGGGACCCG CTGTCTTCTA GCGTTGCTGC
                                                                           360
65
       TTCCCCAGGT CCTCCTGGGC GGCGCGGCTG GCCTCGTTCC GGAGCTGGGC CGCAGGAAGT
                                                                           420
       TCGCGGCGGC GTCGTCGGGC CGCCCCTCAT CCCAGCCCTC TGACGAGGTC CTGAGCGAGT
                                                                           480
       TCGAGTTGCG GCTGCTCAGC ATGTTCGGCC TGAAACAGAG ACCCACCCCC AGCAGGGACG
                                                                           540
       CCGTGGTGCC CCCCTACATG CTAGACCTGT ATCGCAGGCA CTCAGGTCAG CCGGGCTCAC
                                                                           600
       CCGCCCCAGA CCACCGGTTG GAGAGGGCAG CCAGCCGAGC CAACACTGTG CGCAGCTTCC
70
       ACCATGAAGA ATCTTTGGAA GAACTACCAG AAACGAGTGG GAAAACAACC CGGAGATTCT
                                                                           720
       TCTTTAATTT AAGTTCTATC CCCACGGAGG AGTTTATCAC CTCAGCAGAG CTTCAGGTTT
                                                                           780
       TCCGAGAACA GATGCAAGAT GCTTTAGGAA ACAATAGCAG TTTCCATCAC CGAATTAATA
                                                                           840
       TTTATGAAAT CATAAAACCT GCAACAGCCA ACTCGAAATT CCCCGTGACC AGACTTTTGG
                                                                           900
       ACACCAGGTT GGTGAATCAG AATGCAAGCA GGTGGGAAAG TTTTGATGTC ACCCCCGCTG
                                                                           960
75
       TGATGCGGTG GACTGCACAG GGACACGCCA ACCATGGATT CGTGGTGGAA GTGGCCCACT
       TGGAGGAGAA ACAAGGTGTC TCCAAGAGAC ATGTTAGGAT AAGCAGGTCT TTGCACCAAG
                                                                         1080
       ATGAACACAG CTGGTCACAG ATAAGGCCAT TGCTAGTAAC TTTTGGCCAT GATGGAAAAG
                                                                         1140
       GGCATCCTCT CCACAAAGA GAAAAACGTC AAGCCAAACA CAAACAGCGG AAACGCCTTA
                                                                         1200
       AGTCCAGCTG TAAGAGACAC CCTTTGTACG TGGACTTCAG TGACGTGGGG TGGAATGACT
                                                                         1260
80
       GGATTGTGGC TCCCCCGGGG TATCACGCCT TTTACTGCCA CGGAGAATGC CCTTTTCCTC
                                                                         1320
       TGGCTGATCA TCTGAACTCC ACTAATCATG CCATTGTTCA GACGTTGGTC AACTCTGTTA
                                                                         1380
       ACTCTAAGAT TCCTAAGGCA TGCTGTGTCC CGACAGAACT CAGTGCTATC TCGATGCTGT
                                                                         1440
       ACCTTGACGA GAATGAAAAG GTTGTATTAA AGAACTATCA GGACATGGTT GTGGAGGGTT
                                                                         1500
       GTGGGTGTCG CTAGTACAGC AAAATTAAAT ACATAAATAT ATATATA
85
       Seg ID NO: 457 Protein seguence
```

Protein Accession #: NP_001191.1

	WO 02/	/086443					
	1	11	21	31	41	51	
	Ī	1	Ī	Ī	Ī	Ī	
5	FGLKQRPTPS	RDAVVPPYML	AAGLVPELGR DLYRRHSGQP	GSPAPDHRLE	RAASRANTVR	SFHHEESLEE	60 120
	LPETSGKTTR TANSKFPVTR		TEEFITSAEL	QVFREQMQDA	LGNNSSFHHR	INIYETIKPA	180
10	Nucleic Aci	458 DNA sec id Accession	1 #: NM_001	.999.2			
	Coding sequ	uence: 18	736				
	1	11	21	31	41	51	
	Ī	Ī	Ī	Ī	Ī	Ī .	
15	ATGGGGAGAA	GACGGAGGCT	GTGTCTCCAG	CTCTACTTCC	TGTGGCTGGG	CTGTGTGGTG	60
			CGGCCAGCCT				120
			TCGGTCCGCT				180
			TGCCGCAGTG				240 300
20			CGTGTGCGGC AAACCAGTGC				360
20			TAACATGTGT				420
			GCAGTGCAGT				480
	GATGACCACT	GCCAGTGCCA	GAAAGGATAT	ATTGGAACTT	ATTGTGGACA	ACCTGTCTGT	540
25			TGGACGTTGC				600
25			AAGAGATTAC				660
			GCTGACAGGC CCATCCCTGT				720 780
	CGACGGGGTT	TCATCCCCAA	CATCCGCACT	GGAGCTTGCC	AAGATGTTGA	TGAATGCCAG	840
	GCTATCCCAG	GGATATGCCA	AGGAGGAAAC	TGTATCAATA	CAGTGGGCTC	TTTTGAATGC	900
30	AGATGCCCTG	CTGGTCACAA	ACAGAGTGAA	ACTACTCAGA	AATGTGAAGA	CATTGATGAG	960
	TGCAGCATCA	TTCCTGGGAT	ATGTGAAACT	GGTGAATGTT	CCAACACCGT	GGGAAGCTAT	1020
			ATATGTAACC				1080
			GGGCCTGGTG CTGCTGTGAG				1140 1200
35			AGGTTCTGAG				1260
50	CCAATGGGAG	GAATTCCAGG	GAGTGCTGGT	TCCAGACCTG	GAGGCACTGG	GGGAAATGGC	1320
	TTTGCCCCAA	GTGGCAATGG	CAATGGCTAT	GGCCCAGGAG	GGACAGGCTT	CATCCCCATC	1380
			TCCTGGCGTT				1440
40			AACAATTCTG				1500
40			ACGCTGTATA TGCAAATGGA				1560 1620
			TTGTGTTAAC				1680
			TACCAAGCAA				1740
	AATGGGGTTC	TTTGTAAAAA	CGGTCGATGC	GTGAACTCAG	ATGGAAGTTT	CCAGTGCATT	1800
45			AACTACAGAT				1860
			GAATGGAATG				1920
			CTTGGCTCCA				1980 2040
			CATGAATGGG GGCTGTGGGC				2100
50			AGGAATCAAG				2160
			CTGCTGTGCC				2220
			TTCAGCTGAA				2280
			TATCAATGAA				2340
55			TGGTAGTTAC				2400 2460
55			TATTGACATT CACGCCAGGA				2520
			GACCTGTGAA				2580
			CAACCTTGGA				2640
	AAACTCAGCT	CCACAGGATT	GATCTGTATT	GACAGCCTGA	AGGGGACCTG	TTGGCTCAAC	2700
60	ATCCAGGACA	GCCGCTGTGA	GGTGAATATT	AATGGAGCCA	CTCTGAAATC	TGAATGCTGT	2760
	GCCACCCTCG	GAGCCGCCTG	GGGGAGCCCC	TGTGAGCGGT	GTGAACTAGA	TACAGCTTGC	2820 2880
	TTTCCCTCCCC	TTGCCAGGAT	TGGACGCTGT	CTCDACAG	ACCCATCTT	GTGTGAGGTG	2940
	TGCCCTGAAG	GCCTTACGTT	GGATGGGACT	GGCCGTGTAT	GTTTGGATAT	TCGCATGGAG	3000
65	CAGTGTTACT	TGAAGTGGGA	TGAAGATGAA	TGCATCCACC	CCGTTCCTGG	AAAGTTCCGC	3060
	ATGGATGCCT	GCTGCTGTGC	TGTCGGGGCG	GCTTGGGGCA	CCGAGTGTGA	GGAGTGCCCC	3120
	AAACCTGGCA	CCAAGGAATA	CGAGACACTG	TGCCCCCGCG	GGGCTGGCTT	TGCTAACCGA	3180
						AGCATTTCCT	3240
70	GGGATGTGCA	CTTATGGGAA	GTGCAGAAAT GGAGGAAAGA	ACAATCGGAA	GCTTCAAATG	CTCCACCATT	3300 3360
70	TCTCCTCACC	TCTCTCCCCAC	TGGAATCTGC	GTCDATACAC	CGGGCAGCTT	TGAGTGCGAG	3420
						CATTGACGGA	3480
						GGGCAGCTTT	3540
	CAGTGTGACT	GCCCACTGGG	ACACGAGCTG	TCACCATCCC	GTGAGGACTG	TGTGGATATT	3600
75						CATGATTGGA	3660
						GGGCTGTACA	3720
			AATGAACGGA CAGTGAGGGT			AAATTCAGAG	3780 3840
			AAACAATCCT				3900
80						GGACATGAAA	3960
	ACATGCATTG	ATGTCAATGA	ATGTGACCTA	AATTCAAATA	TCTGCATGTT	TGGGGAATGT	4020
	GAGAACACAA	AGGGATCCTT	CATTTGCCAC	TGTCAGCTGG	GTTACTCAGT	GAAGAAGGGG	4080
	ACCACAGGAT	GTACAGATGT	GGATGAGTGT	GAAATTGGTG	CTCATAACTG	CGACATGCAT	4140
85						CTGGATTGGA	4200
OJ.			TCTGGACGAA			GTGTAGCATC	4260 4320
	GGTGATGGCT	TTACCTCCTC	AGATGTTGAT	GAGTGTGCAG	AAAACATAAA	CCTCTGTGAG	4320
	_010.110001				~ 		

	AACGGACAGT	GCCTTAATGT	CCCGGGTGCA	TATCGCTGCG	AGTGTGAGAT	GGGCTTCACT	4440
	CCAGCCTCAG	ACAGCAGATC	CTGCCAAGAT	ATTGATGAAT	GCTCCTTCCA	AAACATTTGT	4500
	GTCTCTGGAA	CATGTAATAA	CCTGCCTGGA	ATGTTTCATT	GCATCTGCGA	TGATGGTTAT	4560
	GAATTGGACA	GAACAGGAGG	GAACTGTACA	GATATTGATG	AGTGTGCAGA	TCCTATAAAC	4620
5	TOTOTOATO	GCCTATGTGT	CAACACGCCT	GGTCGCTATG	AGTGTAACTG	CCCACCCGAT	4680
-	TOTOTOMOTO	ACCCAACTGG	TGTGGGTTGT	GTTGACAACC	GTGTGGGCAA	CTGCTACCTG	4740
	AACTITUTE	CTCGAGGAGA	TGGGAGTCTG	TCTTGCAACA	CCGAGATCGG	GGTGGGCGTC	4800
		CATGCTGCTG					4860
	AGICGCICII	ATAGCACTGA	ATATTACACC	CTCTCTCCCC	CAGGTGAAGG	CTTCAGACCT	4920
10	A D CCCCCTGTCA	CAATCATTTT	ALMITACACC	CACCAATCCC	ACCACTTACC	ACCTUTUTE	4980
10	AACCCCATCA	ACTGCATCAA	AGAAGACAII	ACCUMCCACO	CTCACTCCCC	ACAACCCTAC	5040
	CAGGGTGGAA	ACTGCATCAA	CACTITIGGG	AGCIICCAGI	ACTIONGIGCCC	ACARGGCIAC	5100
		AGGATACCCG					5160
		CTGGGACCTG					
15	GAGTACATGC	AGGTCAATGG	AGGCCACAAC	TGCATGGACA	TGAGAAAAAG	CITITIGCIAC	5220
15	CGAAGCTATA	ATGGAACCAC	TTGTGAGAAT	GAGTTGCCTT	TCAATGTGAC	AAAAAGGATG	5280
	TGCTGCTGCA	CATATAATGT	GGGCAAAGCT	GGGAACAAAC	CTTGTGAACC	ATGCCCAACT	5340
	CCAGGAACAG	CTGACTTTAA	AACCATATGT	GGAAATATTC	CTGGATTCAC	CTTTGACATT	5400
	CACACAGGAA	AAGCTGTTGA	CATTGATGAA	TGTAAAGAGA	TTCCAGGCAT	TTGTGCAAAT	5460
20	GGTGTGTGCA	TTAACCAGAT	TGGCAGTTTC	CGCTGTGAAT	GCCCTACAGG	ATTCAGTTAC	5520
20	AATGACCTGC	TGTTGGTTTG	TGAAGATATA	GATGAGTGCA	GCAATGGTGA	TAATCTCTGC	5580
	CAGCGGAATG	CAGACTGCAT	CAATAGTCCT	GGTAGTTACC	GCTGTGAATG	TGCCGCGGGT	5640
	TTCAAACTTT	CACCCAATGG	GGCCTGTGTA	GATCGCAATG	AATGTTTAGA	AATTCCTAAC	5700
	GTTTGCAGTC	ATGGCTTGTG	TGTTGATCTG	CAAGGAAGTT	ACCAGTGCAT	CTGCCACAAT	5760
	GGCTTTAAGG	CTTCTCAGGA	CCAGACCATG	TGCATGGATG	TTGATGAGTG	CGAGCGGCAC	5820
25	CCATGTGGAA	ATGGAACTTG	TAAAAACACC	GTTGGATCCT	ATAACTGTCT	GTGCTACCCA	5880
	GGGTTTGAAC	TCACTCATAA	TAATGATTGC	CTGGACATAG	ATGAGTGCAG	TTCCTTTTTT	5940
	GGTCAGGTGT	GCAGAAATGG	ACGTTGTTTT	AATGAAATTG	GTTCTTTCAA	GTGTCTATGT	6000
	AACGAAGGTT	ATGAACTTAC	CCCAGATGGC	AAAAACTGTA	TAGACACTAA	TGAGTGTGTC	6060
	GCCCTTCCCG	GCTCTTGCTC	TCCTGGTACC	TGTCAGAATT	TGGAGGGATC	CTTCAGATGC	6120
30	ATCTGTCCCC	CAGGGTATGA	AGTAAAAAGC	GAGAACTGCA	TTGATATAAA	TGAATGTGAT	6180
50	CANCATCCCA	ACATTTGTCT	TTTTGGTTCC	TGTACTAATA	CTCCAGGGGG	CTTCCAGTGC	6240
		CTGGCTTTGT					6300
	* COURTECTE COUR	TCACAAATTT	TCAAAATCCA	AATGGACGGA	TACCCAAAGC	TTTCAACACC	6360
	AGCIICIGCI	AATGCTGCTG	TACTAACATC	CCAGGAGAGG	CCTCCCCCCCA	CCCCTGTGAG	6420
35	ACAAAAGCAA	AAGACGATGA	ACTICATION	CACCATTTCT	CTCCATATCC	CCATGGAACT	6480
55	CTGTGCCCCA	TTCATGATAC	AGTIGCATII	CHOGAIIIGI	CTCTTCACAC	CCCAGGCATT	6540
	GTCCCTAGTC	GTCAATGTAT	ACGIGAAGAI	COMPONENT	CCTCTCAATC	TCCAATGGGC	6600
	TGTTCAAATG	GTCAATGTAT	AACACCGAC	GGAICIIIIC	AMCACMCMMC	AATCCCCAAT	6660
	TACAACCTTG	ACTACACTGG ATGGTACATG	AGTACGCTGT	ADDCCCACOD	TTCAATCCAA	TTCCA ATCA A	6720
40	CCGTGTGGAA	CAGGGCCCAT	CACCAATGIT	ATTGGGAGII	1 I GAA I GCAA	TIGCARIGAR	6780
40	GGCTTTGAGC	CAGGGCCCAT	GATGAATIGI	GAAGATATCA	ACGMAIGIGC	CUAGAACCCA	6840
	CTGCTGTGTG	CTTTACGCTG	CATGAACACT	TITGGGTCCT	MIGAMIGCAC	magman agg	6900
	GGCTATGCCC	TCAGGGAAGA	TCAAAAGATG	TGCAAAGATC	TGGATGAATG	CHIRCHES	
	TTACACGACT	GTGAATCTAG	GGGCATGATG	TGTAAGAATC	TAATCGGCAC	CITCAIGIGC	6960 7020
45	ATCTGCCCTC	CTGGAATGGC	CCGAAGGCCC	GATGGAGAAG	GCIGIGIAGA	TGAAAAIGAA	7020
43	TGCAGGACCA	AGCCAGGAAT	CTGTGAAAAT	GGACGTTGTG	TTAACATTAT	COMMON	
	AGATGTGAGT	GTAATGAAGG	ATTCCAGTCA	AGTTCTTCAG	GCACTGAATG	CCTTGACAAT	7140
		TCTGCTTTGC					7200
		TCACTAAGTC					7260
50		GCCCACTTCC					7320
50	GGATATACAA	CTGATGGAAG	AGATATTGAT	GAATGTAAGG	TAATGCCAAA	CCTCTGCACC	7380
	AATGGTCAGT	GCATCAATAC	CATGGGCTCA	TTCCGATGCT	TCTGCAAGGT	TGGCTACACC	7440
	ACAGACATCA	GTGGAACCTC	TTGTATAGAC	CTTGATGAAT	GCTCCCAGTC	CCCGAAACCA	7500
	TGCAACTACA	TCTGCAAGAA	CACTGAGGGG	AGTTATCAGT	GTTCATGTCC	GAGGGGGTAT	7560
	GTCCTGCAAG	AGGATGGAAA	GACATGCAAA	GACCTTGATG	AATGTCAAAC	AAAGCAGCAT	7620
55	AACTGCCAGT	TCCTCTGTGT	CAACACCCTG	GGGGGGTTTA	CCTGTAAATG	TCCACCTGGT	7680
	TTCACACAGC	ATCACACTGC	TTGTATCGAC	AACAACGAAT	GTGGGTCTCA	ACCTTTGCTT	7740
	TGTGGAGGAA	AGGGAATCTG	TCAAAACACT	CCAGGCAGTT	TCAGCTGTGA	ATGCCAAAGA	7800
,	GGGTTCTCTC	TTGATGCCAC	CGGACTGAAC	TGTGAAGATG	TTGATGAATG	TGATGGGAAC	7860
		AACACGGCTG					7920
60		AGCACTACCA					7980
	AATGCCTGTG	GCTCTGCTTC	CTGCTACAAC	ACCCTGGGGA	GTTACAAGTG	CGCCTGCCCC	8040
	TCGGGGTTCT	CCTTCGACCA	GTTCTCCAGT	GCCTGCCACG	ACGTGAATGA	GTGCTCGTCC	8100
	TCCAAGAACC	CCTGCAATTA	CGGCTGCTCT	AACACGGAGG	GGGGCTACCT	CTGTGGCTGC	8160
	CCCCCTGGGT	ATTACAGAGT	GGGACAAGGC	CACTGTGTCT	CAGGAATGGG	ATTTAACAAG	8220
65	GGGCAGTACC	TGTCACTGGA	TACAGAGGTC	GATGAGGAAA	ATGCTCTGTC	CCCAGAAGCA	8280
	TGCTACGAGT	GCAAAATCAA	CGGCTATCCT	AAGAAAGACA	GCAGGCAGAA	GAGAAGTATT	8340
	CATGAACCTG	ATCCCACTGC	TGTTGAACAG	ATCAGCCTAG	AGAGTGTCGA	CATGGACAGC	8400
	CCCGTCAACA	TGAAGTTCAA	CCTCTCCCAC	CTCGGCTCTA	AGGAGCACAT	CCTGGAACTA	8460
	AGGCCCGCCA	TCCAGCCCCT	CAACAACCAC	ATCCGTTATG	TCATCTCTCA	AGGGAACGAT	8520
70	GACAGCGTCT	TCCGCATCCA	CCAAAGGAAT	GGGCTCAGCT	ACTTGCACAC	GGCCAAGAAG	8580
. •	AAGCTCATGC	CCCCCACATA	CACACTGGAA	ATCACTAGCA	TCCCTCTCTA	CAAGAAGAAG	
	CACCTUAACA	AACTCCAACA	CACCAATGAG	GATGACTACC	TCCTAGGGGA	GCTTGGGGAG	8700
	COMOTOROR	TONCOCTOON	CATTCACCTC	TATTAACCGT	TCACAGACTT	GGGCCCAGGC	8760
		GCACAGCCAG					8820
75	TCHMATCUIA	ATA ATA A CTC	TOTOCHOUSE	CCACCAGAC	TTAGACTTTG	AATGTTGACC	
15	AUGAAAAATA	CCCAMAAMCTC	TIGITICITI	TAGGGGG V V V G	VALALCY COLO	AAAGGCAACC	8940
	CTCACAGGGA	GGGATAATTT TATTTTTAT	AGACTCIGGI	TIGGCCAMAG	TITIOMOCIC	ACCAN V AGG	9000
	GIGGITACIG	AGCATATGGC	MIMMUTICAT	TITUMMMINI	CITICA COMMUM	the contraction of the contracti	9060
	CAAGATATC	AGCATATGGC GTCTGTAACA	ACTAMATICA	CUCCUMINAT	THE CHANGE	***********	9120
80	CCTGTTAGCA	GICIGIAACA	CITIGGGTAT	TITGCINIAG	TIGCIMATIA	TOTAL SALES AND	9120
OU	GATGTTTATT	TATTTTTAAT	GCAGTAATAT	TAMAMAMAT	ACCUMATION	TTTAGAGGTG	
	AAGGGAAACT	CACTTGTTTT	TCTTTAGATT	CERTICOPPEC	COUNTITIE	TITAGAGGIG	9240
	CTTTTTAAAA	ATCCAATAGA	TACAAGAGAT	GITTCCTTTG	GITITCTGCC	AGTCATCCAG	2300
	CTGATACACA	CCTGATCGAT	TTTAAAGAAA	GCCACACAGA	A A COURS CREE	GCAGTGCTAA	2200
05	TCAATAATTT	AAAAGACATG	AATGTCATTA	GATCCTTTAT	AACGTAGATC	GAAGCCAAAG	9420
85	CAGCTCATTT	GTGACAACAT	TTCATATCAC	CAGACACACC	AGGCAACAGA	AGTTGAAGCA	9480
	CAACCACTGT	AGCAAAATAC	CTTGACTGCT	TGTGAGACCA	TTAGCATTGC	AGGCCAAACC	9540
	GTACTGTATT	TCCTTCTCAT	AACCTCAAGG	AACCATATGT	GCTACCCACA	ACACCTCATT	9600

```
CTTACCCAGG GTGCGCTGCG TCCTCATGGT ACTGTAGGCA GCTGAAGAAC CGCCGTTCCC
       TTGAAAGGGA ACACCTGGCA TTCTGTGGTG TTTCGTGCTG TCTTAAATAA TGGTGCATTT
                                                                           9720
       ATTATGTTCA AGTTATTTCA GGATTGCCAT ATGTGCAAAC AAATCATGCA ATGCAGCCAA
                                                                           9780
       GGAATATATG TTGTTGTTGT TGTTTTAAAC CCATTTTTTT TTTAGAATTT TCATTAATAC
                                                                           9840
 5
       TGTAGTTATA CACCATATGC CTCATTTTAT CATAGCCTAT TGTGTATGAA AGATGTTTGT
                                                                           9900
       ACAATGAATT GATGTTTAGT TTGCTTTAGT CATTTAAAAA GATATTGTAC CAGGATGTGC
                                                                           9960
       TATTAGAGC ACGTATCCAT TATTCTTCTC AACCCAAGAA CCTGTTTCCT GGACCAGTGA 10020
       CCAAACCTCA TATGTGAAAT GGCCAAAGCA CATGCAGGCT CCTGGTTGTT CCTCTCAAAC 10080
       CTGTGCTGAC CAAAGATTAG TAACCAGTTA TACCCAGTAT TTTGAGGTTT TATTGTTTTT 10140
10
       TTAATAACTA AAAAAAAACT CGTGCC
       Seg ID NO: 459 Protein seguence
       Protein Accession #: NP_001990.1
15
                                                    41
                                                               51
                                         31
       MGRRRLCLQ LYFLWLGCVV LWAQGTAGQP QPPPPKPPRP QPPPQQVRSA TAGSEGGFLA
                                                                              60
       PEYREEGAAV ASRVRRRGQQ DVLRGPNVCG SRFHSYCCPG WKTLPGGNQC IVPICRNSCG
                                                                             120
       DGFCSRPNMC TCSSGOISST CGSKSIQQCS VRCMNGGTCA DDHCQCQKGY IGTYCGQPVC
                                                                             180
20
       ENGCQNGGRC IAQPCACVYG FTGPQCERDY RTGPCFTQVN NQMCQGQLTG IVCTKTLCCA
                                                                             240
       TTGRAWGHPC EMCPAOPOPC RRGFIPNIRT GACQDVDECQ AIPGICQGGN CINTVGSFEC
                                                                             300
       RCPAGHKQSE TTQKCEDIDE CSIIPGICET GECSNTVGSY FCVCPRGYVT STDGSRCIDQ
                                                                             360
       RTGMCFSGLV NGRCAQELPG RMTKMQCCCE PGRCWGIGTI PEACPVRGSE EYRRLCMDGL
                                                                             420
       PMGGIPGSAG SRPGGTGGNG FAPSGNGNGY GPGGTGFIPI PGGNGFSPGV GGAGVGAGGQ
                                                                             480
25
       GPIITGLTIL NOTIDICKHH ANLCLNGRCI PTVSSYRCEC NMGYKQDANG DCIDVDECTS
       NPCTNGDCVN TPGSYYCKCH AGFQRTPTKQ ACIDIDECIQ NGVLCKNGRC VNSDGSFQCI
                                                                             600
       CNAGFELTTD GKNCVDHDEC TTTNMCLNGM CINEDGSFKC ICKPGFVLAP NGRYCTDVDE
                                                                             660
       CQTPGICMNG HCINSEGSFR CDCPPGLAVG MDGRVCVDTH MRSTCYGGIK KGVCVRPFPG
                                                                             720
       AVTKSECCCA NPDYGFGEPC QPCPAKNSAE FHGLCSSGVG ITVDGRDINE CALDPDICAN
                                                                             780
30
       GICENLRGSY RCNCNSGYEP DASGRNCIDI DECLYNRLLC DNGLCRNTPG SYSCTCPPGY
                                                                             840
       VFRTETETCE DINECESNPC VNGACRNNLG SFNCECSPGS KLSSTGLICI DSLKGTCWLN
                                                                             900
       IQDSRCEVNI NGATLKSECC ATLGAAWGSP CERCELDTAC PRGLARIKGV TCEDVNECEV
                                                                             960
       FPGVCPNGRC VNSKGSFHCE CPEGLTLDGT GRVCLDIRME QCYLKWDEDE CIHPVPGKFR
                                                                           1020
       MDACCCAVGA AWGTECEECP KPGTKEYETL CPRGAGFANR GDVLTGRPFY KDINECKAFP
                                                                            1080
35
       GMCTYGKCRN TIGSFKCRCN SGFALDMEER NCTDIDECRI SPDLCGSGIC VNTPGSFECE
                                                                           1140
       CFEGYESGFM MMKNCMDIDG CERNPLLCRG GTCVNTEGSF QCDCPLGHEL SPSREDCVDI
                                                                            1200
       NECSLSDNLC RNGKCVNMIG TYQCSCNPGY QATPDRQGCT DIDECMIMNG GCDTQCTNSE
                                                                            1260
       GSYECSCSEG YALMPDGRSC ADIDECENNP DICDGGQCTN IPGEYRCLCY DGFMASMDMK
                                                                            1320
       TCIDVNECDL NSNICMFGEC ENTKGSFICH CQLGYSVKKG TTGCTDVDEC EIGAHNCDMH
                                                                           1380
40
       ASCLNIPGSF KCSCREGWIG NGIKCIDLDE CSNGTHQCSI NAQCVNTPGS YRCACSEGFT
                                                                            1440
       GDGFTCSDVD ECAENINLCE NGQCLNVPGA YRCECEMGFT PASDSRSCQD IDECSFQNIC
                                                                           1500
       VSGTCNNLPG MFHCICDDGY ELDRTGGNCT DIDECADPIN CVNGLCVNTP GRYECNCPPD
                                                                            1560
       FQLNPTGVGC VDNRVGNCYL KFGPRGDGSL SCNTEIGVGV SRSSCCCSLG KAWGNPCETC
                                                                            1620
       PPVNSTEYYT LCPGGEGFRP NPITIILEDI DECQELPGLC QGGNCINTFG SFQCECPQGY
                                                                            1680
45
       YLSEDTRICE DIDECFAHPG VCGPGTCYNT LGNYTCICPP EYMQVNGGHN CMDMRKSFCY
                                                                            1740
       RSYNGTICEN ELPFNVIKRM CCCTYNVGKA GNKPCEPCPI PGTADFKTIC GNIPGFTFDI
                                                                           1800
       HTGKAVDIDE CKEIPGICAN GVCINQIGSF RCECPTGFSY NDLLLVCEDI DECSNGDNLC
                                                                           1860
       QRNADCINSP GSYRCECAAG FKLSPNGACV DRNECLEIPN VCSHGLCVDL QGSYQCICHN
                                                                            1920
       GFKASODOTM CMDVDECERH PCGNGTCKNT VGSYNCLCYP GFELTHNNDC LDIDECSSFF
                                                                            1980
50
       GOVCRNGRCF NEIGSFKCLC NEGYELTPDG KNCIDTNECV ALPGSCSPGT CONLEGSFRC
                                                                            2040
       ICPPGYEVKS ENCIDINECD EDPNICLFGS CTNTPGGFQC LCPPGFVLSD NGRRCFDTRQ
                                                                            2100
       SFCFTNFENG KCSVPKAFNT TKAKCCCSKM PGEGWGDPCE LCPKDDEVAF QDLCPYGHGT
                                                                            2160
       VPSLHDTRED VNECLESPGI CSNGQCINTD GSFRCECPMG YNLDYTGVRC VDTDECSIGN
                                                                            2220
       PCGNGTCTNV IGSFECNCNE GFEPGPMMNC EDINECAQNP LLCALRCMNT FGSYECTCPI
                                                                            2280
55
       GYALREDOKM CKDLDECAEG LHDCESRGMM CKNLIGTFMC ICPPGMARRP DGEGCVDENE
                                                                            2340
       CRTKPGICEN GRCVNIIGSY RCECNEGFQS SSSGTECLDN RQGLCFAEVL QTICQMASSS
                                                                            2400
       RNLVTKSECC CDGGRGWGHQ CELCPLPGTA QYKKICPHGP GYTTDGRDID ECKVMPNLCT
                                                                            2460
       NGQCINTMGS FRCFCKVGYT TDISGTSCID LDECSQSPKP CNYICKNTEG SYQCSCPRGY
                                                                            2520
                                                                            2580
       VLOEDGKTCK DLDECOTKOH NCOFLCVNTL GGFTCKCPPG FTQHHTACID NNECGSQPLL
60
       CGGKGICQNT PGSFSCECQR GFSLDATGLN CEDVDECDGN HRCQHGCQNI LGGYRCGCPQ
                                                                            2640
       GYIOHYOWNO CVDENECSNP NACGSASCYN TLGSYKCACP SGFSFDQFSS ACHDVNECSS
                                                                            2700
       SKNPCNYGCS NTEGGYLCGC PPGYYRVGQG HCVSGMGFNK GQYLSLDTEV DEENALSPEA
                                                                            2760
       CYECKINGYP KKDSROKRSI HEPDPTAVEQ ISLESVDMDS PVNMKFNLSH LGSKEHILEL
                                                                            2820
       RPAIQPLNNH IRYVISQGND DSVFRIHQRN GLSYLHTAKK KLMPGTYTLE ITSIPLYKKK
                                                                           2880
65
       ELKKLEESNE DDYLLGELGE ALRMRLOIOL Y
       Seg ID NO: 460 DNA seguence
       Nucleic Acid Accession #: NM 013372.1
       Coding sequence: 63..617
70
                  11
                              21
                                         31
                                                    41
                                                               51
       GCGGCCGCAC TCAGCGCCAC GCGTCGAAAG CGCAGGCCCC GAGGACCCGC CGCACTGACA
       GTATGAGCCG CACAGCCTAC ACGGTGGGAG CCCTGCTTCT CCTCTTGGGG ACCCTGCTGC
                                                                             120
75
       CGGCTGCTGA AGGGAAAAAG AAAGGGTCCC AAGGTGCCAT CCCCCCGCCA GACAAGGCCC
                                                                             180
       AGCACAATGA CTCAGAGCAG ACTCAGTCGC CCCAGCAGCC TGGCTCCAGG AACCGGGGGC
                                                                             240
       GGGGCCAAGG GCGGGGCACT GCCATGCCCG GGGAGGAGGT GCTGGAGTCC AGCCAAGAGG
CCCTGCATGT GACGGAGCGC AAATACCTGA AGCGAGACTG GTGCAAAACC CAGCCGCTTA
                                                                             300
                                                                             360
       AGCAGACCAT CCACGAGGAA GGCTGCAACA GTCGCACCAT CATCAACCGC TTCTGTTACG
80
       GCCAGTGCAA CTCTTTCTAC ATCCCCAGGC ACATCCGGAA GGAGGAAGGT TCCTTTCAGT
                                                                             480
       CCTGCTCCTT CTGCAAGCCC AAGAAATTCA CTACCATGAT GGTCACACTC AACTGCCCTG
                                                                             540
       AACTACAGCC ACCTACCAAG AAGAAGAGAG TCACACGTGT GAAGCAGTGT CGTTGCATAT
                                                                             600
       CCATCGATTT GGATTAAGCC AAATCCAGGT GCACCCAGCA TGTCCTAGGA ATGCAGCCCC
                                                                             660
       AGGAAGTCCC AGACCTAAAA CAACCAGATT CTTACTTGGC TTAAACCTAG AGGCCAGAAG
                                                                             720
85
       AACCCCCAGC TGCCTCCTGG CAGGAGCCTG CTTGTGCGTA GTTCGTGTGC ATGAGTGTGG
                                                                             780
       ATGGGTGCCT GTGGGTGTTT TTAGACACCA GAGAAAACAC AGTCTCTGCT AGAGAGCACT
                                                                             840
       CCCTATTTG TAAACATATC TGCTTTAATG GGGATGTACC AGAAACCCAC CTCACCCCGG
                                                                             900
```

WO 02/086443

		000443					
	CTCACATCTA	AAGGGGCGGG	GCCGTGGTCT	GGTTCTGACT	TTGTGTTTTT	GTGCCCTCCT	960
	GGGGACCAGA	ATCTCCTTTC	GGAATGAATG	TTCATGGAAG	AGGCTCCTCT	GAGGGCAAGA	1020
	GACCTGTTTT	AGTGCTGCAT	TCGACATGGA	AAAGTCCTTT	TAACCTGTGC	TTGCATCCTC	1080
		CCTCCTCACA					1140
5		TGCCAAGGTT					1200
5							
		ACCCTCCAGA					1260
	TGGAGTGAGA	AAGGGAGGGT	GGAGGGTGAG	GCCAAATCAG	GTCCAGCAAA	AGTCAGTAGG	1320
	GACATTGCAG	AAGCTTGAAA	GGCCAATACC	AGAACACAGG	CTGATGCTTC	TGAGAAAGTC	1380
		ATTTAACAGA					1440
10	TITICCIAGI	GCCGTTGCAA	MODGOMOTON	CCMONGOCCO	AACTCAAAAC	ATTANTACTC	1500
10							
		TGTTCGGACC					1560
	CCCTCAGGTG	GAAAAGAGAG	GTAGTTTAGA	ACTCTCTGCA	TAGGGGTGGG	AATTAATCAA	1620
	AAACCKCAGA	GGCTGAAATT	CCTAATACCT	TTCCTTTATC	GTGGTTATAG	TCAGCTCATT	1680
	maca mmaca a	TATTTCCCAT	AATCCTTCTC	ACACCCACTA	ΔΟΤΤΟΔΤΤΟΔ	TAAAGATCCT	1740
15	ICCATICCAC	TATTICCCAT	AAIGCIICIG	MANAGEMENT	ACTIONITION	CACHACTCCC	1800
13	GCCTCTGCTG	AGTGTACCTG	ACAGTAAGTC	TAAAGATGAR	AGAGTTTAGG	GACIACICIG	
	TTTTAGCAAG	ARATATTKTG	GGGGTCTTTT	TGTTTTAACT	ATTGTCAGGA	GATTGGGCTA	1860
	RAGAGAAGAC	GACGAGAGTA	AGGAAATAAA	GGGRATTGCC	TCTGGCTAGA	GAGTAAGTTA	1920
	GGTGTTAATA	CCTGGTAGAA	ATGTAAGGGA	TATGACCTCC	CTTTCTTTAT	GTGCTCACTG	1980
		GGGACCCTGT					2040
20							
20		GATGGACATA					2100
	TCTGATTAAA	CTTGGCCTAC	TGGCAATGGC	TACTTAGGAT	TGATCTAAGG	GCCAAAGTGC	2160
		AACTTTATTG					2220
	mmmma ma ma C	AAACTCCCTG	A A TRA CTC TTTT	ጥጥር ር ር ጥጥር ጥ ል	ͲϹͲͲϹͲϹΔϾϹ	CTCCTAGCCA	2280
	IIIIAIAIAC	AAACICCCIG	AMIACICIII	TIGCCTTOIA	TCTTCTCTCC	COMMONACCO	2340
25	AGTCCTATGT	AATATGGAAA	ACAAACACTG	CAGACTTGAG	ATTCAGTTGC	CGATCAAGGC	
25	TCTGGCATTC	AGAGAACCCT	TGCAACTCGA	GAAGCTGTTT	TTATTTCGTT	TTTGTTTTGA	2400
	TCCAGTGCTC	TCCCATCTAA	CAACTAAACA	GGAGCCATTT	CAAGGCGGGA	GATATTTTAA	2460
	ACACCCAAAA	TGTTGGGTCT	CATTTTCAAA	CTTTTAAACT	CACTACTGAT	GATTCTCACG	2520
	CONCOCCANA	TTGTCCAAAC	A CAMP COCOO	manammman	ATA CA CTCTA	TCACCCCACC	2580
	CTAGGCGAAT	TIGICCAAAC	ACATAGIGIG	IGIGITITGI	AIACACIGIA	TORCCCCACC	
20	CCAAATCTTT	GTATTGTCCA	CATTCTCCAA	CAATAAAGCA	CAGAGTGGAT	TTAATTAAGC	2640
30	ACACAAATGC	TAAGGCAGAA	TTTTGAGGGT	GGGAGAGAAG	AAAAGGGAAA	GAAGCTGAAA	2700
	ATGTAAAACC	ACACCAGGGA	GGAAAAATGA	CATTCAGAAC	CAGCAAACAC	TGAATTTCTC	2760
	THE THE THE THE	AACTCTGCCA	CAAGAATGCA	ΑΤΤΤΟΩΤΤΆ Α	TGGAGATGAC	TTAAGTTGGC	2820
	1101101111	MACICIGCCA	CAAGAATGCA	ATTICOTIAN	A CAMA A CECC	NON TOTAL COM	2880
	AGCAGTAATC	${\tt TTCTTTAGG}$	AGCTTGTACC	ACAGTCTTGC	ACATAAGIGC	AGAIIIGGCI	
~ ~	CAAGTAAAGA	GAATTTCCTC	AACACTAACT	TCACTGGGAT	AATCAGCAGC	GTAACTACCC	2940
35	TAAAAGCATA	TCACTAGCCA	AAGAGGGAAA	TATCTGTTCT	TCTTACTGTG	CCTATATTAA	3000
	CACTACTACA	AATGTGGTGT	CTCTTCCAAC	TTTCATTGAA	AATGCCATAT	CTATACCATA	3060
	MMMMM MMCCA	GTCACTGATG	AMOUNTANCAM	A TO A TOTAL TOTAL	አጥጥአጥጥአጥልC	ጥልሮል አጥልጥጥ	3120
	TTTTATTCGA	GTCACTGATG	AIGIAAIGAI	AIAIIIIIC	DATATIATIA	INCANTALLI	-
	TTATGGCAAG	ATATTTGTGG	TCTTGATCAT	ACCTATTAAA	ATAATGCCAA	ACACCAAATA	3180
	TGAATTTTAT	GATGTACACT	TTGTGCTTGG	CATTAAAAGA	AAAAAACACA	CATCCTGGAA	3240
40	GTCTGTAAGT	${\tt TGTTTTTGT}$	TACTGTAGGT	CTTCAAAGTT	AAGAGTGTAA	GTGAAAAATC	3300
	magaccacac	GATAATTTCC	A CTICTICTICCA	ATCTCA ATAC	σταδασσαδά	AGTTATGGTT	3360
			WCIGIGIOU	VIGIGURIUG			
	1001100110110	CHIMITICO		aamas amama	3 mmm	manamananan	2420
	ATTTAATGTA	ATTATTACTT	CAAATCCTTT	GGTCACTGTG	ATTTCAAGCA	TGTTTTCTTT	3420
	ATTTAATGTA TTCTCCTTTA	ATTATTACTT TATGACTTTC	CAAATCCTTT TCTGAGTTGG	GGTCACTGTG GCAAAGAAGA	ATTTCAAGCA AGCTGACACA	TGTTTTCTTT CCGTATGTTG	3480
	ATTTAATGTA TTCTCCTTTA	ATTATTACTT TATGACTTTC	CAAATCCTTT TCTGAGTTGG	GGTCACTGTG GCAAAGAAGA	ATTTCAAGCA AGCTGACACA	TGTTTTCTTT CCGTATGTTG	
45	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT	ATTATTACTT TATGACTTTC TTATCTGGTC	CAAATCCTTT TCTGAGTTGG AGGGGAAACA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC	ATTTCAAGCA AGCTGACACA CCAGCTGAAC	TGTTTTCTTT CCGTATGTTG ATGTCTTCCT	3480 3540
45	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT	TGTTTTCTTT CCGTATGTTG ATGTCTTCCT AACATTTCTA	3480 3540 3600
45	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC	TGTTTTCTTT CCGTATGTTG ATGTCTTCCT AACATTTCTA ATGTATACAA	3480 3540 3600 3660
45	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA	TGTTTTCTTT CCGTATGTTG ATGTCTTCCT AACATTTCTA ATGTATACAA GAAAATCTAA	3480 3540 3600 3660 3720
45	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA	TGTTTTCTTT CCGTATGTTG ATGTCTTCCT AACATTTCTA ATGTATACAA GAAAATCTAA	3480 3540 3600 3660
45	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA	TGTTTTCTTT CCGTATGTTG ATGTCTTCCT AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT	3480 3540 3600 3660 3720 3780
	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT	TGTTTTCTTT CCGTATGTTG ATGTCTTCCT AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT	3480 3540 3600 3660 3720 3780 3840
45 50	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGAATTATAT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT	TGTTTTCTTT CCGTATGTTG ATGTCTTCCT AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG	3480 3540 3600 3660 3720 3780 3840 3900
	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GCATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTTATA AGAATTATAT CTCATAAAAC	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA	TGTTTCTTT CCGTATGTTT ATGTTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA	3480 3540 3600 3660 3720 3780 3840 3900 3960
	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTTATA AGAATTATAT CTCATAAAAC	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA	TGTTTCTTT CCGTATGTTT ATGTTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA	3480 3540 3600 3660 3720 3780 3840 3900
	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA AATCAATTTA ATGAAAGGGG ACTAGAATTT	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATCATG GCATAAACAGCAA ACATTCCTCA AAAACGGCAA AGTTGATAGT AGTTGATAGT AATTTTCACC	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATA AGAATTATA TCTATAAAAC CCAATAATGT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA	TGTTTCTTT CCGTATGTTT ATGTTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA	3480 3540 3600 3660 3720 3780 3840 3900 3960
	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA AATCAATTTA ATGAAAGGGG ACTAGAATTT	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GCATAAACAG ACATCCTCA AAAACGGCAA AGTTGATAGT	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATA AGAATTATA TCTATAAAAC CCAATAATGT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA	TGTTTCTTT CCGTATGTTT ATGTTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA	3480 3540 3600 3660 3720 3780 3840 3900 3960
50	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTA ATGAAAGGGG ACTAGAATTT TAAATTAAAC	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTCACC CTATTCTTC	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGATATTTAA AGAATTATAT CTCATAAAAC CCAATAATGT AAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA	TGTTTCTTT CCGTATGTTT ATGTTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA	3480 3540 3600 3660 3720 3780 3840 3900 3960
	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGGT AGTTCTATTG AAATCATTTA ATGAAAGGGG ACTAGAATTT TAAATTAAAC Seq ID NO:	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GCATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTCACC CTATTCTTTC 461 Protein	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATA AGAATTATA CTCATAAAAC CCAATAATGT AAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA	TGTTTCTTT CCGTATGTTT ATGTTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA	3480 3540 3600 3660 3720 3780 3840 3900 3960
50	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGGT AGTTCTATTG AAATCATTTA ATGAAAGGGG ACTAGAATTT TAAATTAAAC Seq ID NO:	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTCACC CTATTCTTC	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATA AGAATTATA CTCATAAAAC CCAATAATGT AAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA	TGTTTCTTT CCGTATGTTT ATGTTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA	3480 3540 3600 3660 3720 3780 3840 3900 3960
50	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGGT AGTTCTATTG AAATCATTTA ATGAAAGGGG ACTAGAATTT TAAATTAAAC Seq ID NO:	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GCATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTCACC CTATTCTTTC 461 Protein	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATA AGAATTATA CTCATAAAAC CCAATAATGT AAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA	TGTTTCTTT CCGTATGTTT ATGTTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA	3480 3540 3600 3660 3720 3780 3840 3900 3960
50	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AATTCAATTG AAATCATTTA ATGAAAGGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATA AGAATTATA CTCATAAAAC CCCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC TATCAACTGC AGACTATGAC TATCAACTGC TATCTATTTGACT TCTATTTGGCT TCTATATAGC	ATTTCAAGCA AGCTGACACA AGCTGACACACACACACACACACACACACACACACACACA	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3600 3660 3720 3780 3840 3900 3960
50	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AAGTCTATTG AAATCATTTA ATGAAAGGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGC CTATTCTTC 461 Protein cession #: 1	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGATATTTAA CCCAATAATAT CAATAAAAC CCAATAATAT AAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC	ATTTCAAGCA AGCTGACACA CCAGCTGAAC CCTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3600 3660 3720 3780 3840 3900 3960
50	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGTA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAAATGATG GCATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTTTAA AGAATTATAT CTCATAAAAC CCCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC	ATTTCAAGCA AGCTGACACA CCAGCTGACAC CTTAAAGGTT CTTACGATGC CTTTTAAGGATGC CTTTTAAGGATAT ATTATGTATT GTACCTTAC TCAAGTTTCA CTTTGCTAAA 41	TGTTTCTTT CCGTATGTTG ATGTCTTCCT AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3600 3660 3720 3780 3840 3900 3960 4020
50	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAGACT GATAATGATC GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11 1 LLLLLGTLLP	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATA AGAATTATA CTCATAAAAC CCCAATAATGT AAAAAAAAA n sequence NP_037504.1 21 AAEGKKKGSQ	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC	ATTTCAAGCA AGCTGACACA AGCTGACACA CCTGAACG CTTAAAGGTT CTTACGATGC CTTTTAAGGATG TAATGCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP	TGTTTCTTT CCGTATGTTG ATGTCTTCCT AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3600 3660 3720 3780 3840 3900 4020
50	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAGT AATCATTA ATGAAAGGGG ACTAGAATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 1 1 LLLLLGTLLP EEVLESSQEA	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGATATTATA CTCATAAAAC CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK	ATTTCAAGCA AGCTGAACA AGCTGAAC CTTAAAGGTT CTTACGATGC CTTTAAAGGA ATTATGCTTA GTACCTTAC TCAAGTTTCA CTTTCAAGTTCA CTTTGCTAAA 41 hndseqtqsp qtiheegcns	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3660 3720 3780 3840 3900 4020
50	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAGT AATCATTA ATGAAAGGGG ACTAGAATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 1 1 LLLLLGTLLP EEVLESSQEA	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGATATTATA CTCATAAAAC CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK	ATTTCAAGCA AGCTGAACA AGCTGAAC CTTAAAGGTT CTTACGATGC CTTTAAAGGA ATTATGCTTA GTACCTTAC TCAAGTTTCA CTTTCAAGTTCA CTTTGCTAAA 41 hndseqtqsp qtiheegcns	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3660 3720 3780 3840 3900 4020
50	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAGT AATCATTTA ATGAAAGGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 1 1 LLLLLGTLLP EEVLESSQEA	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGATATTATA CTCATAAAAC CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK	ATTTCAAGCA AGCTGAACA AGCTGAAC CTTAAAGGTT CTTACGATGC CTTTAAAGGA ATTATGCTTA GTACCTTAC TCAAGTTTCA CTTTCAAGTTCA CTTTGCTAAA 41 hndseqtqsp qtiheegcns	TGTTTCTTT CCGTATGTTG ATGTCTTCCT AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3660 3720 3780 3840 3900 4020
50	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAGT AATCATTA ATGAAAGGGG ACTAGAATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 1 1 LLLLLGTLLP EEVLESSQEA	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGATATTATA CTCATAAAAC CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK	ATTTCAAGCA AGCTGAACA AGCTGAAC CTTAAAGGTT CTTACGATGC CTTTAAAGGA ATTATGCTTA GTACCTTAC TCAAGTTTCA CTTTCAAGTTCA CTTTGCTAAA 41 hndseqtqsp qtiheegcns	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3660 3720 3780 3840 3900 4020
50 55 60	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG ACTAGAATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAGACT GATAATGATC GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11 1 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGAATTATAT CTCATAAAAC CCCAATAATGT AAAAAAAAA 1 sequence NP_037504.1 21 AAEGKKKGSQ LHVTERKYLK CSFCKPKKFT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK	ATTTCAAGCA AGCTGAACA AGCTGAAC CTTAAAGGTT CTTACGATGC CTTTAAAGGA ATTATGCTTA GTACCTTAC TCAAGTTTCA CTTTCAAGTTCA CTTTGCTAAA 41 hndseqtqsp qtiheegcns	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3660 3720 3780 3840 3900 4020
50	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG ACTAGAATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 1 1 LLLLLGTLLP EEVLESSQEA	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGAATTATAT CTCATAAAAC CCCAATAATGT AAAAAAAAA 1 sequence NP_037504.1 21 AAEGKKKGSQ LHVTERKYLK CSFCKPKKFT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK	ATTTCAAGCA AGCTGAACA AGCTGAAC CTTAAAGGTT CTTACGATGC CTTTAAAGGA ATTATGCTTA TCAAGTTTCA CTTTCAAGTT CTACCTAAA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3660 3720 3780 3840 3900 4020
50 55 60	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAGGG ACTAGAATTT AATCAATTA ATGAAAGGGG ACTAGAATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO:	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAGACT GATAATGATC GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11 1 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATATTAA AGAATATATA CTCATAAAAC CCCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE	ATTTCAAGCA AGCTGAACA AGCTGAAC CTTAAAGGTT CTTACGATGC CTTTAAAGGA ATTATGCTTA TCAAGTTTCA CTTTCAAGTT CTACCTAAA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3660 3720 3780 3840 3900 4020
50 55 60	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA ACGAATAGCA AATGAAAAGTA AGTTCTATTG AAATCATTTA AATCAATTTA ACGAATATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac:	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATCATC GATAATCATC GATAATCATC AAAACGGCAA AAACGGCAA AAATCGTCA AATTTCACC CTATTCTTC 461 Protein cession #: 1 11	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTTATA AGAATTTATA CCCAATAATGT AAAAAAC CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE	ATTTCAAGCA AGCTGAACA AGCTGAAC CTTAAAGGTT CTTACGATGC CTTTAAAGGA ATTATGCTTA TCAAGTTTCA CTTTCAAGTT CTACCTAAA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3660 3720 3780 3840 3900 4020
50 55 60	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA ACGAATAGCA AATGAAAAGTA AGTTCTATTG AAATCATTTA AATCAATTTA ACGAATATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac:	ATTATTACTT TATGACTTT TATGACTTT TATGACTTT AGAAAGACT GATAATGATG GGATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT ATTTTCACC CTATTCTTC 461 Protein cession #: 1 1 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTTATA AGAATTTATA CCCAATAATGT AAAAAAC CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE	ATTTCAAGCA AGCTGAACA AGCTGAAC CTTAAAGGTT CTTACGATGC CTTTAAAGGA ATTATGCTTA TCAAGTTTCA CTTTCAAGTT CTACCTAAA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3660 3720 3780 3840 3900 4020
50 55 60	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Acc Coding seq	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAGACT GATAATGATTA ACATTCCTCA AAAACGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA secid Accession lence: 12	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTATA AGATATTATA AGATATTATA CTCATAAAAC CCCAATAATGT AAAAAAAAA 1 sequence NP_037504.1 21 AAAEGKKKGSQ LHVTERKYLK CSFCKPKKFT Quence n #: Eos se 733	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE	ATTTCAAGCA AGCTGACCA AGCTGACCA CCTGACC CTTAAAGGTT CTTACGATGC CTTTTAAGGAT ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV	TGTTTCTTT CCGTATGTTG ATGTCTCCT AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS	3480 3540 3660 3720 3780 3840 3900 4020
50556065	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA ACGAATAGCA AATGAAAAGTA AGTTCTATTG AAATCATTTA AATCAATTTA ACGAATATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac:	ATTATTACTT TATGACTTTC TTATCTGGTC CTGAATCTTT AAGAAAGACT GATAATCATC GATAATCATC GATAATCATC AAAACGGCAA AAACGGCAA AAATCGTCA AATTTCACC CTATTCTTC 461 Protein cession #: 1 11	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTTATA AGAATTTATA CCCAATAATGT AAAAAAC CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE	ATTTCAAGCA AGCTGAACA AGCTGAAC CTTAAAGGTT CTTACGATGC CTTTAAAGGA ATTATGCTTA TCAAGTTTCA CTTTCAAGTT CTACCTAAA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS	TGTTTCTTT CCGTATGTTG ATGTCTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA	3480 3540 3660 3720 3780 3840 3900 4020
50 55 60	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGTA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGGG ACTAGAATAT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequence	ATTATTACTT TATGACTTTC TATGACTTTC CTGAATCTTT AAGAAAGACT GATAATCATC GATAAATCATC AAAACGGCAA ACATTCCTCA AAAACGGCAA ACTTCATCC CTATTCTTC 461 Protein cession #: 1 1 1 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA see id Accession lence: 12	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCA AGAATTTATA AGAATTTATA AGAATTATAT CTCATAAAAC CCCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence	ATTTCAAGCA AGCTGAACA CCAGCTGAAC CCTTAAAGGTT CTTACGATGC CTTTTAAGGA TAATGCCTAA ATTATGTATT GTACCTTGCT TCAAGTTTCACTTCAC	TGTTTCTTT CCGTATGTTG AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS	3480 3540 3660 3720 3780 3900 3900 4020
50556065	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG ACTAGAATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Acc Coding sequ 1 ATGAAAGTTG	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAGACT GATAATGATT AAGAACAG ACATTCCTCA AAAACGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA sec id Accession ence: 12*	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTATA AGATATTTAA AGAATTATAT CTCATAAAAC CCCAATAATGT AAAAAAAAA 1 Sequence NP_037504.1 21 AAEGKKKGSQ LHVTERKYLK CSFCKPKKFT Quence n #: Eos se 733 21 GCTCATTTCT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT	ATTTCAAGCA AGCTGACCA AGCTGACCA CCTGACC CTTAAAGGTT CTTACGATGC CTTTTAAGGATGC TTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG	TGTTTCTTT CCGTATGTTG AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC	3480 3540 3600 3720 3780 3840 3900 3960 4020
50556065	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG ACTAGAATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Acc Coding sequ 1 ATGAAAGTTG	ATTATTACTT TATGACTTTCTGGTC CTGAATCTTT AAGAAGACT GATAATGATT AAGAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA sec id Accession ence: 12*	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTATA AGATATTTAA AGAATTATAT CTCATAAAAC CCCAATAATGT AAAAAAAAA 1 Sequence NP_037504.1 21 AAEGKKKGSQ LHVTERKYLK CSFCKPKKFT Quence n #: Eos se 733 21 GCTCATTTCT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT	ATTTCAAGCA AGCTGACCA AGCTGACCA CCTGACC CTTAAAGGTT CTTACGATGC CTTTTAAGGATGC TTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG	TGTTTCTTT CCGTATGTTG AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC	3480 3540 3600 3720 3780 3840 3900 3960 4020
50556065	ATTTAATGTA TTCCCTTTA TTAGAGTCTT TAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAGGGG ACTAGAATTT AATCAATTA TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ	ATTATTACTT TATGACTTT TATGACTTT TATGACTTT TATGACTT CTGATATCTGGTC CTGAATCTTT AAGAAGACT GATAATGATG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTCACC CTATTCTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA see id Accession cence: 12 11 GAGTGCTGTG AAAATGATGG AAAATGATGG	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTATA AGAATTATA AGAATATAT CTCATAAAAC CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTTC TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAGAAC	ATTTCAAGCA AGCTGACCA AGCTGACCA CCTGACC CTTAAAGGTT CTTACGATGC CTTTAAGGTT CTTACGATGC TTAATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA	TGTTTCTTT CCGTATGTTG AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TCAAGAAAAAA	3480 3540 3660 3720 3780 3840 3900 3960 4020
50556065	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA ACGAATAGTA AATGAAAAGT AATGAAAGGG AATCATTTA ATGAAAGGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQCRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTTG TTCCTGGGGA CATCTAGGCC	ATTATTACTT TATGACTTTC TATGACTTTC CTGAATCTTT AAGAAAGACT GATAATCATG ACATTCCTCA AAAACGGCAA ACATTCCTCA AAAACGGCAA ACTTCATCTTC 461 Protein cession #: 1 1 1 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA see id Accession hence: 12 11 GAGTGCTGTG GAAAATGATGG CAGTCGAAGA	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATAT TCTCATAAAAC CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGACTATGAC TATCAACTGC AGACTATGAC TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAGAAC CTGCTTCAGG	ATTTCAAGCA AGCTGAACA CCTGACACA CCTTAAAGGTT CTTACGATGC CTTTTAAGGAT TAATGCTTAA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGA TCACTGACGG TCATTGTGAA	TGTTTCTTT CCGTATGTTC AACATTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG GAATCTGTA GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAA AGATTCCAAG	3480 3540 3660 3720 3780 3900 3900 4020 60 120 180
5055606570	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA AGGAATAGTA AATGAAAAGT AATGAAAAGT AATGAAAAGT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTTG TTCTGGGGA 1 ATGAAAGTTG TCCTGGGGC GAGAAAAGAG	ATTATTACTT TATGACTTTCT TATGACTTCT TTATCTGGTC CTGAATCTTT AAGAAGACT GATAATGATC ACATTCCTCA AAAACGGCAA ACATTCCTCA AAAACGGCAA ACTTCTTTC 461 Protein Cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA see id Accession Dence: 12' 11 GAGTGCTGTG AAAATGATGA AATTTGAGAAA ATTTGAGAAAA	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTTATA AGAATTTATA AGAATATATA CTCATAAAAC CCAATAAATG AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAAGAAC CTGCTTCAAGC CTGCTTCAGAGC	ATTTCAAGCA AGCTGAACA CCAGCTGAAC CCTTAAAGGTT CTTACGATGC CTTTTAAGGAT ATTATGTATT GTACCTTGCT TCAAGTTTCACTTGCT TCAAGTTTCACTTGCT TCAAGTTTCAC CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA GACCTATAT	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG GAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAAA AGATTCCAAG ATGGTCACAT	3480 3540 3600 3600 3720 3780 3840 3900 3960 4020 60 120 180
50556065	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAGT AATTAAAAGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTT TTCTGGGGA CATTCTAGGCC GAGAAAAGAG GGGGTAATTA	ATTATTACTT TATGACTTT TATGACTTT TATGACTTT TATGACTTT TATGATCT CTGATATCTGGTC CTGAATCTTT AGAAAGACT GATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTCACC CTATTCTTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA sec id Accession lence: 12' 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAAA AGATTATCAG	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC ACATTTATA AGAATTATA AGAATTATA CTCATAAAAC CCCAATAATGT AAAAAAAAA D SEQUENCE NP_037504.1 21 AAAEGKKKGSQ LHVTERKYLK CSFCKPKKFT QUENCE D #: EOS SE 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC ACCACAGACT	ATTTCAAGCA AGCTGACCA AGCTGACCA CCTGACC CTTAAAGGTT CTTACGATGC CTTTAAGGATGC TTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA TGACCTATAG GCACCATATAT GCAACAGCCT	TGTTTCTTT CCGTATGTTG AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAAA AGATTCCAAG GATTCCAAG GATGCCACAT GAATGGGTCC	3480 3540 3660 3720 3780 3840 3900 3960 4020 60 120 180 240 240
5055606570	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAGT AATTAAAAGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTT TTCTGGGGA CATTCTAGGCC GAGAAAAGAG GGGGTAATTA	ATTATTACTT TATGACTTT TATGACTTT TATGACTTT TATGACTTT TATGATCT CTGATATCTGGTC CTGAATCTTT AGAAAGACT GATAAACAG ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTCACC CTATTCTTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA sec id Accession lence: 12' 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAAAA AGATTATCAG	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC ACATTTATA AGAATTATA AGAATTATA CTCATAAAAC CCCAATAATGT AAAAAAAAA D SEQUENCE NP_037504.1 21 AAAEGKKKGSQ LHVTERKYLK CSFCKPKKFT QUENCE D #: EOS SE 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC ACCACAGACT	ATTTCAAGCA AGCTGACCA AGCTGACCA CCTGACC CTTAAAGGTT CTTACGATGC CTTTAAGGATGC TTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA TGACCTATAG GCACCATATAT GCAACAGCCT	TGTTTCTTT CCGTATGTTG AACATTTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG TGAATCTGTA GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAAA AGATTCCAAG GATTCCAAG GATGCCACAT GAATGGGTCC	3480 3540 3600 3600 3720 3780 3840 3900 3960 4020 60 120 180
5055606570	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA ACGAATAGCA AATGAAAAGTA AGTTCTATTG AAATCATTTA ACGAATATT TAAATTAAAC Seq ID NO: Protein Acc 1	ATTATTACTT TATGACTTTC TATGACTTTC CTGAATCTTT AAGAAAGACT GATAATCATC AAAACAGCAA AAACAGCAA AATTTCACC CTATTCTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESQEA IRKEEGSFQS 462 DNA secid Accession cence: 12' 11 GAGTGCTGTG AAAATGATGA AATTTGAGAAA AATTGAGAAA AATTGAGAAA AATTGAGAAA CAATTACAG CCTGTGAAGA AATTATCAG CCTGTGAAGA	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTTATA AGAATTTATA AGAATATATA CCCAATAATGT AAAAAACA ATAGGKKKGSQ LHVTERKYLK CSFCKPKKFT Quence n #: Eos se 733 21 GCTCATTTCT GATCAAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT CAGCAAACC CAGCTACACC	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAC TATCAACTGC AGACTATAAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE dquence 31 TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC TCGACGACT TGGTTTCCTC	ATTTCAAGCA AGCTGAACA CAGCTGAACA CCTGAACA CTTAAAGGT CTTACGATGC CTTTTAAGGA TAATGCTTAA ATTATGTATT GTACCTTGCT CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA TGACTGACGG TCATTGTGAA TGACCTATGC CTCATTATT CCAACACCCT CCTCATGCCT	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAGTAGAAG TGTAGGAGG TGAATCTGTA GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTCCCACG TGAATCCCCAC	3480 3540 3660 3720 3780 3840 3900 3960 4020 60 120 180 240 300 360
5055606570	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGTA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQCRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTTG TTCCTGGGGC GAGAAAAGTG GGGCTAATTA ACTGCAGTGTA AACTGCTACC	ATTATTACTT TATGACTTTC TATGACTTTC CTGAATCTTT AAGAAAGACT GATAATCATC GATAATCATC AAAACGGCAA ACATTCCTCA AAAACGGCAA ACTTCCTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA see id Accession lence: 12' 11 GAGTGCTGTG AAAATGATGC CAGTCGAAGA ATTTGAGAAA GAATTATCAG CTGTGAAGA CTGTGAAGA CTGTGAAGA CTGTGAAGA CTTGCACGGC	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATAT AGAATTATAT CTCATAAAAC CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGACTATGAC TATCAACTGC AGACTATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAAGAAC CTGCTTCAGG CTCTTGAAGC ACCACAGACT TGGTTTCCTC CCAAGCTGTG	ATTTCAAGCA AGCTGAACA CCTGACACA CCTGAACC CTTAAAGGT CTTACGATGC CTTTTACGATGC CTTTACGTATC CTTTGCTAAA ATTATGTATT GTACCTTGCT CTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA TGACTATAG CTCATTATT GCAACAGCCT AATGTCATCT CCTCATGCCT AATGTCATCT	TGTTTCTTT CCGTATGTTC AACATTCTA ATGTATACAA GAAAATCTAA GAGTGAAACT ATGTCTGCTT GTGTAGGAGG GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGCACT GAATGCACT CGATCCCCAG CGACAACCTC	3480 3540 3600 3720 3780 3900 3960 4020 60 120 180 240 300 360 420
5055606570	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA AGGAATAGTA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGGG ACTAGAATATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Acc Coding sequ 1 ATGAAAGTTG TTCCTGGGGA CATCTAGGCC GGGAAAAGGG GGGCTAATTA ACTGCTACC AGCCAGAGTG	ATTATTACTT TATGACTTTT TATGACTTTT TATGACTTTT TATGATCT CTGAATCTTT AAGAAAGACT GATAATGATT ACATTCCTCA AAAACGGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA see icd Accession ience: 12' 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA AATTATCAG CCTGTGAAGA GAATTATCAG CTCAACGGC TCAATTCTTG	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATATTAA AGAATATATA CTCATAAAC CCAATAATGT AAAAAAAAA B SEQUENCE NP_037504.1 21 AAEGKKKGSQ LHVTERKYLK CSFCKPKKFT QUENCE M #: EOS SE 733 21 GCTCATTTCT CATCAAACA ATATCAGCTG ATATCAGCTG TTTTCTGAAG AGCAAAGGCT TGGAGGACACC TGGAGGACACC TGGAGGAACC	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGACTATGAC TATCAACTGC AGACTATAGC 31 GAIPPPDKAQ RDWCKTOPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTCAGG CTCTTGAAGC TGGTTTCCTC AAGATTTCCTC AAGATTTGCT AAGATTCCTC AAAACTAC ACCAAGACTT TGGTTTCCTC AAAATTTGGG	ATTTCAAGCA AGCTGAACA CCTGACACA CCTTAAAGGTT CTTACGATGC CTTTTAAGGATGC CTTTTAAGGATGC TTACGTTT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA TGACCTATATG CTCCATGACT CTCATGCCT GCACTTTCAA	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG GAACACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAAA AGATTCCAAG ATGGTCACAT GAATGGGTCACAT GAATGGAGTC CAACAACCTC AATTAATGAA	60 120 180 300 3060 3720 3780 3940 4020
505560657075	ATTTAATGTA TTCCCTTTA TTAGAGTCTT TAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAGT AATGAAAGT TAAATCATTA ATGAAAGGT TAAATTAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTG TTCCTGGGGA CATTCTAGGCC GAGAAAAGAG GGGGTAATTA ACTGCAGGTTA AACTGCTACC AGCCAGAGTG AGGTTTACAA	ATTATTACTT TATGACTTTT TATGACTTTCTGGTC CTGAATCTTTT AAGAAAGACT GATAATGATGA ACATTCCTCA AAAACGGCAA AGTTGATAGT CESSION #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA secid Accession lence: 12' 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAGA ATTTGAGAGA ATTTGACACGGC TCAATTCTTC ATGACCTTTT	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC ACATTATA AGAATATTAA AGAATATATA CTCATAAAAC CCCAATAATGT AAAAAAAAA 1 SEQUENCE NP_037504.1 21 AAAEGKKKGSQ LHVTERKYLK CSFCKPKKFT QUENCE 1 #: EOS SE 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT CAGCTACACC TGAGGAACA TGAGGGAACA TGAGAGGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGACACT TGAGAGAACA TGAGACACT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC TCTTTGAAGC TCTTTGAGC TTGGTTCCTC CCAAGCTGTG AGATTTGGG TCTGCTATAT	ATTTCAAGCA AGCTGACACA AGCTGACACA CCTGACAC CTTAAAGGTT CTTACGATGC CTTTAAGGATGC TTACGATGC TTACGTTGCT ATTACGTATA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA TGACCTATAGC CTCATTATT GCAACAGCCT CCTCATGCCT AATGTCAACA ACTCCAAATA	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG GGAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAAA AGATTCCAAG GATGGCACAT GAATGCACAT GAATGGAGTC TGATCCCCAG CAACAACCT TGATCACAATGGA TGCAAATGGA	3480 3540 3660 3720 3780 3940 3900 3960 4020 60 120 180 240 360 420 420 420 420 430 540
5055606570	ATTTAATGTA TTCCCTTTA TTAGAGTCTT TAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGCA AATGAAAGT AATGAAAGT TAAATCATTA ATGAAAGGT TAAATTAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTG TTCCTGGGGA CATTCTAGGCC GAGAAAAGAG GGGGTAATTA ACTGCAGGTTA AACTGCTACC AGCCAGAGTG AGGTTTACAA	ATTATTACTT TATGACTTTT TATGACTTTCTGGTC CTGAATCTTTT AAGAAAGACT GATAATGATGA ACATTCCTCA AAAACGGCAA AGTTGATAGT CESSION #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA secid Accession lence: 12' 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA ATTTGAGAGA ATTTGAGAGA ATTTGACACGGC TCAATTCTTC ATGACCTTTT	CAAATCCTTT TCTGAGTTGG AGGGGAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC ACATTATA AGAATATTAA AGAATATATA CTCATAAAAC CCCAATAATGT AAAAAAAAA 1 SEQUENCE NP_037504.1 21 AAAEGKKKGSQ LHVTERKYLK CSFCKPKKFT QUENCE 1 #: EOS SE 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT CAGCTACACC TGAGGAACA TGAGGGAACA TGAGAGGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGAACA TGAGAGACACT TGAGAGAACA TGAGACACT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAGAAC CTGCTTCAGG CTCTTGAAGC TCTTTGAAGC TCTTTGAGC TTGGTTCCTC CCAAGCTGTG AGATTTGGG TCTGCTATAT	ATTTCAAGCA AGCTGACACA AGCTGACACA CCTGACAC CTTAAAGGTT CTTACGATGC CTTTAAGGATGC TTACGATGC TTACGTTGCT ATTACGTATA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA TGACCTATAG CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCAACA ACTCCAAATA	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG GGAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAAA AGATTCCAAG GATGGCACAT GAATGCACAT GAATGGAGTC TGATCCCCAG CAACAACCT TGATCACAATGGA TGCAAATGGA	60 120 180 300 3060 3720 3780 3940 4020
505560657075	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA ACGAATAGCA AATGAAAAGTA AGTTCTATTG AAATCATTTA ACGAATATTT AAATCAATTTA ACGAATATTT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GGGRGTAMPG IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTTG TTCCTGGGGA CATTCTAGGCC GAGAAAAGAG GGGCTAATTA ACTGCTACC AGCCAGAGTG AGGTTTACAA ACTGCTAACA AGTTTACAAATTC	ATTATTACTT TATGACTTTT TATGACTTTC TATGACTTTC CTGAATCTTT AAGAAAGACT GATAATGATG ACATTCCTCA AAAACAGCAA AAATGATAA AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESQEA 1RKEEGSFQS 462 DNA see id Accession hence: 12' 11 GAGTGCTGTG GAAAATGATGA CAGTCGAAGA ATTTGAGAAA GAATTATCAG CTGTGAAGA TTCACACGGC TCAATTTCTT AACTTAAAAA	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATA AGAATTATA AGAATATATA CCAATAAAC CCAATAAAGA A sequence NP_037504.1 21 AAEGKKKGSQ LHVTERKYLK CSFCKPKKFT Quence n #: Eos se 733 21 GCTCATTTCT CATCAAACA ATATCAGCTG TTTCTGAAG AGCAAAGGCT TCAGCACACC TGGAGCACTC TGGAGCACTC TGGAGCACTC TGAGGAACAC GAATTCATCT AGCATATGAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TATTTAGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE Quence 31 TTCTTCACCT AAAAAGAC CTGCTTCAGG CTCTTGAAGC TCGATTCCTC CCAAGCTGTG AAGATTTGGT TCGTATAT AGAATTCAAG	ATTTCAAGCA AGCTGAACA CCTGACACA CCTTAAAGGTT CTTACGATGC CTTTTAAGGAT TAATGCTTAA ATTATGTATT GTACCTTGCT CTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 CCACTGACGG TCAATGATGACGC TCAATGATGACT CTCATTATG GCAACAGCCT CCTCATGCCT AATGTCATCT GCACTTCAA GTTTTCAATGT GTTTCAATGT GTTTCAATGT GCACTTTCAA ACTCCAATATG GTTTTGAGTC	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAGTAGAAG TGTAGGAG TGAATCTGT GTGTAGGAG GAGCAACTAA 51 QOPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGT CAACACCTC AATTAATGAA TGCAAATGGA GGTTCAGGTC	3480 3540 3600 3720 3780 3900 3900 3960 4020 60 120 180 240 300 420 480 540 600
505560657075	ATTTAATGTA TTCCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGTA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG ACTAGAATATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTTG TTCTGGGGA ACTTCTGGGGCA GGGTTATACAA ATGCAGTGTA ACTGCAGTGTA ACTGCAGTGTA ACTGCAGTGTA ACTGCAGTTTC ACCCAATTTC	ATTATTACTT TATGACTTT TATGACTTTCT TATGACTTTCT CTGAATCTTTT AAGAAGACT GATAATGATC ACATTCCTCA AAAACGGCAA ACATTCCTCA AAAACGGCAA ACATTCTTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA see id Accession eence: 12' GAGTGCTGTG AAAATGATG CAGTCGAAGA AATTATCAG CCTGTGAAGA GAATTATCTG ATGACTTTTA ACTTAAAT AACTTAAAA GAAATGAAGA GAATTGCAAGA GAATTTCTG ATGACCTTTT AACTTAAAAA GAAATGAAGA GAATTGCAAGAA GAATTGCAAGAA GAATTTCTG ATGACCTTTT AACTTAAAAA GAAATGGAAGA GAATTGCAAGAA GAATTGCAAGAAA GAAATGGAAAA GAAATGGAAAA	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCA ACATTTATA AGATATTTAA AGAATTATAT CTCATAAAC CCAATAATGT AAAAAAAAA A SEQUENCE NP_037504.1 21 AAEGKKKGSQ LHVTERKYLK CSFCKPKKFT QUENCE n #: EOS SE 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT TCGAGGAACA GAATTCATCA GAATTCATCA GAATTCATCA CAGCAACCA GAATTCATCA AGCATATGA ACATGTTGCT AGCATATGA ACATGTTGCT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGACTATGAC TATCAACTGC AGACTATAGAC TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAAGAAC CTGCTTCAGG CTCTTGAAGC CTGCTTCAGG TCTTGAGCT CCAAGACT TGGTTTCAGG TCTGCTATATA AGAATTCAAG GGGTATGAAG GGGTATGAAG	ATTTCAAGCA AGCTGACACA CCTGACACA CCTGACACC CTTAAAGGTT CTTACGATGC CTTTTAAGGAT ATTATGTATT GTACCTTGCT TCAAGTTTCACATTT CTACCTTGCT TCAAGTTTCAC CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGA TGAACAGCCT CCTCATGCCT AATGTCATACT GCAACAGCCT TCATTGCTAAA ACTCCAAATAA ACTCCAAATAC GTTTTGAGTC TTGTTGGCTC TTGTTGGCTC	TGTTTCTTT CCGTATGTTG AACATTCCTA ATGTATACAA GAAAATCTAA GAGTGAACTT ATGTCTGCTT GTGTAGGAGG GAACTCGTA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAAA AGATTCCAAG ATGGTCACAT GAATGGAA AGATCCCAG CAACAACCTC AATTAATGAA TGCAAATGGA TCCACAGTTCCACGTC CAGCAGTTCCACGTC CAGCAACTCC CAGCAACTCC CAGCAACTCC CAGCAGTTCCACGTC CAGCAACTCC CAGCAGTTCCACGTC CAGCAGTCCACGTC CAGCAGTCCACGTC CAGCAGTCCACGTC CAGCAGTTCCACGTC CAGCAGTCCACGTC CAGCAGTCACGTC CAGCAGTCACACTC CAGCAGTCACACGTC CAGCAGTCACACTC CAGCAGTCACACACTC CAGCAGTCACACACTC CAGCAGTCACA	\$480 \$540 \$600 \$600 \$720 \$840 \$900 \$960 \$4020 \$60 \$120 \$180 \$60 \$120 \$180 \$60 \$120 \$180 \$60 \$60 \$60 \$60 \$60 \$60 \$60 \$6
505560657075	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA AGGAATAGTA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG ACTAGAATAT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Acc Coding sequ 1 ATGAAAGTTG TTCTGGGGA CATCTAGGCC CAGCAAAAGAG GGGCTAATTA ACTGCAGTGTA ACTGCAGGTG AGGTTTACAA ATTGAAAGTTG AGGCTAATTC ACCCAATTTC ACCCAACTGC TCTCGAACTGC	ATTATTACTT TATGACTTTCT TATGACTTTCT CTGATATCTGGTC CTGAATCTTT AAGAAGACT GATAATGATG ACATTCCTCA AAAACGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11 1 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA seein id Accession ience: 12' 11 GAGTGCTGTG AAAATGATG CAGTCGAAGA ATTTAGAGAAA GAATTATCAG CTGTGAAGAA GAATTATCAG CTCAATCTTT AACTTAAAAA GAAATGAAAG GAATGAACA GAATTACAGC TTCACCCAT TGTCACCCAT	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGAATATATA CTCATAAAAC CCAATAATGT AAAAAAAAA 1 SEQUENCE NP_037504.1 21 AAEGKKKGSQ LHVTERKYLK CSFCKPKKFT QUENCE 1 #: EOS SE 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG TGTAGAGAACA GCAAAGGCT TCAGCAACC TGGAGCACT TGAGAGAACA GAATTCATCT AGCATATGAT ACCATGTTGCT TGAACATGTT TGAACATGTT TGAACATGTT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE ACQUENCE CTGCTTCAGG CTCTTCAGG CTCTTCAGG CTCTTCAGG CTCTTCAGG CTCTTCAGG CTCTTCAGG TCTTCAGG TCTTCAGG TCTTCAGG TCTTCAGG TCTGTTCAGG TCTGTTGAGG TCTGTTGAGG TCTGTTGAGG TCTGTTGAGG TCTGCTTATATAGAATTCAGG GCGAGAATGGG GCCAAGAGGG GCCAAGAAGG	ATTTCAAGCA AGCTGAACA CCTGACACA CCTTAAAGGTT CTTACGATGC CTTTAAGGATGC CTTTAAGGATGC CTTTTAGGATGC TCAAGTTTCA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA TGACCTATATG CTCCATGATT GCAACAGCCT CCTCATGCCT AGCACTTTCAA ACTCCAAATA GTTTTGAGTC CTTAAGGTC TTTTTGAGTC CTTAAGGTC CTTAAGACAGCC CTTAAGACAGCC CTTAAGACAGCC CTTAAGACAGCC CTTAAGACAGCC CTTAAGACAGCC	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG GAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAAAA AGATTCCAAG AGATTCCAAG GAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGTG CCACGGTGC CACCAGGTGC CAACAACCTC CAATTAATGAA TGCAAATGGA CCACAGGTGC CCACAGGTGC CCACAGGTCA CCACAGGTCA CCACAGGTCA CCACAACCTC CAGCAGTGCA CCTCCACAAG CCTTCACAAG	480 3540 3660 3720 3780 3900 3900 4020 60 120 180 60 120 180 240 360 420 420 540 660 660 6720
505560657075	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA ACGAATAGCA AATGAAAAGTA AGTTCTATTG AAATCATTTA ACGAATATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTTG ATGAAAGTTG ATTCTAGGGC GAGAAAAGAG GGGCTAATTA CTGCAGTGTA AACTGCTACC AGCCAGAGTG AGGTTTACAA ATTGAAATTC ACCCAATTTC CTGAACTGC CTGTTCCAT	ATTATTACTT TATGACTTTCT TATGACTTTC CTGATCTTT AAGAAAGACT GATAATCATC GATAATCATC GATAATCATC AAAACAGCAA AAATCATCA AAATCATCA CTATCTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESQEA IRKEEGSFQS 462 DNA sec id Accession hence: 12' 11 GAGTGCTGTG AAAATGATAA GAATTATCAG CCTGTGAAGA ATTTGAGAAA GAATTATCAG CCTGTGAAGA TTCACACGC TCAATTTCTT AACTTAAAAA GAAATGACAC GTCAGCCAT TTAGAAGCAC TTAGAAGCAG	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA ATTAATGTTA ACTAGTTCAC AACATTTATA AGAATTTATA AGAATTATA AGAATATATA CCAATAATGT AAAAACA CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TATTATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE cquence 31 TTCTTCACCT AAAAAGAC CTGCTTCAGG CTCTTGAAGC CTCCTTCAGG CTCTTGAAGC CTCACAGACT TGGTTTCCTC CCAAGCTGTG AGGATTTCGG TCTGCTATAT AGAATTCAGG GCTGAGAAGG GCCGAGAAGG GCTGTCGGAAG GCCGAGAAGG GCCGAGAAGG	ATTTCAAGCA AGCTGACACA CCTGACACA CCTGACACC CTTTAAGGTT CTTACGATGC CTTTTAAGGAT ATTATGTATT GTACCTTGCT CTTAGGATGC CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGA TCACTGACGG TCATTGTGAA TGACCTATAG CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCATCA GTTTTGAGTC TTGTTGGGTC CTAAGACAGC TTGTTGAGCC AACGCCCAAATA GTTTTGAGTC TTGTTGGGTC CTAAGACAGC AAGCCCAGTG	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAGTAGAAG TGAAGGG TGAATCTGT GTGTAGGAG GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC CAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGT CAGCAGTGCA TGCAAATGGA TGCAAATGGA TGCAAATGAA TAATGAAGT TAATGACATT	3480 3540 3660 3720 3780 3840 3900 3960 4020 60 120 180 240 300 420 480 540 660 720 720 720
50 55 60 65 70 75	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA ACGAATAGCA AATGAAAAGTA AGTTCTATTG AAATCATTTA ACGAATATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTTG ATGAAAGTTG ATTCTAGGGC GAGAAAAGAG GGGCTAATTA CTGCAGTGTA AACTGCTACC AGCCAGAGTG AGGTTTACAA ATTGAAATTC ACCCAATTTC CTGAACTGC CTGTTCCAT	ATTATTACTT TATGACTTTCT TATGACTTTC CTGATCTTT AAGAAAGACT GATAATCATC GATAATCATC GATAATCATC AAAACAGCAA AAATCATCA AAATCATCA CTATCTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESQEA IRKEEGSFQS 462 DNA sec id Accession hence: 12' 11 GAGTGCTGTG AAAATGATAA GAATTATCAG CCTGTGAAGA ATTTGAGAAA GAATTATCAG CCTGTGAAGA TTCACACGC TCAATTTCTT AACTTAAAAA GAAATGACAC GTCAGCCAT TTAGAAGCAC TTAGAAGCAG	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA ATTAATGTTA ACTAGTTCAC AACATTTATA AGAATTTATA AGAATTATA AGAATATATA CCAATAATGT AAAAACA CCAATAATGT AAAAAAAAAA	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TATTATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE cquence 31 TTCTTCACCT AAAAAGAC CTGCTTCAGG CTCTTGAAGC CTCCTTCAGG CTCTTGAAGC CTCACAGACT TGGTTTCCTC CCAAGCTGTG AGGATTTCGG TCTGCTATAT AGAATTCAGG GCTGAGAAGG GCCGAGAAGG GCTGTCGGAAG GCCGAGAAGG GCCGAGAAGG	ATTTCAAGCA AGCTGACACA CCTGACACA CCTGACACC CTTTAAGGTT CTTACGATGC CTTTTAAGGAT ATTATGTATT GTACCTTGCT CTTAGGATGC CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGA TCACTGACGG TCATTGTGAA TGACCTATAG CTCCATTATT GCAACAGCCT CCTCATGCCT AATGTCATCA GTTTTGAGTC TTGTTGGGTC CTAAGACAGC TTGTTGAGCC AACGCCCAAATA GTTTTGAGTC TTGTTGGGTC CTAAGACAGC AAGCCCAGTG	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAGTAGAAG TGAAGGG TGAATCTGT GTGTAGGAG GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGTC CAACAACCTC AATTAATGAA TGCAAATGGA GGTTCAGGT CAGCAGTGCA TGCAAATGGA TGCAAATGGA TGCAAATGAA TAATGAAGT TAATGACATT	3480 3540 3660 3720 3780 3840 3900 3960 4020 60 120 180 240 300 420 480 540 660 720 720 720
50 55 60 65 70 75	ATTTAATGTA TTCTCCTTTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATATT ACGAATAGTA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG ACTAGAATTT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQCRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTTG TTCCTGGGGA CATCTAGGCC GAGAAAAGAG GGGTAATTA CACCAGTGTA AACTGCTACC AGCCAGAGTG AGTTTACAA ATTGAAATTC ACCCAATTTC TCTGAACTGC CTGTTTCCAT GTCTTTCGAT	ATTATTACTT TATGACTTTC TATGACTTTC CTGAATCTTT AAGAAAGACT GATAATCATC GATAATCATC GATAATCATC AAAACGGCAA ACATTCCTCA AAAACGGCAA ACTTCTTTC 461 Protein cession #: 1 1 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA see id Accession cence: 12 11 J GAGTGCTGTG AAAATGATGC CAGTCGAAGA ATTTGAGAAA GAATTATCAG CTGTGAAGA TTTCACACGGC TCAATTCTT AACTTAAAAA GAAATGGAAG TGTCAGCAT TAGAAGACGC TTGGACCAA TTAGAAGACGC TTGGACCAA TTAGAAGACGC TTGGACCAA TTAGAAGACGC TTGGACCAA TTAGAAGACCG TTGGACCCAA TTAGAAGACCG TTGGGTCCAA	CAAATCCTTT TCTGAGTTGG AGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGAATTATA AGAATTATA AGAATATATA TCTCATAAAAC CCAATAAACA CCAATAATGT AAAAAAAAA A sequence NP_037504.1 21 AAEGKKKGSQ LHVTERKYLK CSFCKPKKFT Quence n #: Eos se 733 21 GCTCATTCT CATCAAAACA ATATCAGCTG TTTTCTGAAG AGCAAAGGCT TCAGCACACC TGGAGCACTC TGGAGCACT TGGAGCACTC TGGAGCACTC TGGAGCACTC TGGAGCACTC TGGAGCACTC TGGAGCACT TGACT TGGAGCACT TGGAGCAC TGGAGCACT TGGAGCAC TGGAGCACT TGGAGCAC TGGAGCACT TGGAGCACC TGGAGCAC TGG	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE Quence 31 TTCTTCACCT AAAAAGAC CTGCTTCAGG CTCTTGAGC TCTGTATGT AGAATTCGT TCGTTTCCTC CCAAGCTGT AGAATTCGT TCGTATAT AGAATTCGAG GCTATGAAG GCCAGAAGG TCTGCTATAT AGAATTCAAG GGCTATGAAG TCTTCTCACCT AAGATTTCGT TCGTTTCCTC CCAAGCTGT AGAATTCAAG GCTGTTCGAAG TATACCCTGC	ATTTCAAGCA AGCTGACACA CCTGACACAC CCTTAAAGGTT CTTACGATGC CTTTAAGGAT ATATGCTAA ATTATGTATT GTACCTTGCT CTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGA TCATGTGAA TCACTGACGA TCATGTGAA TCACTGACGA TCATGTGAA CTCCATATT GCAACAGCCT AATGTCATC TCTCATGCT AATGTCATC TCTCATGCT AACTCCAAATA GTTTTGAGTC TTGTTGGGTC CTAAGACAGC TGAGCCCAGTC CCTGCACCAGC CCTGCAGCAG	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGT CAACAACTC AATTAATGAA TGCAAATGGA TCCACAGGTGC CAACAACTC AATTAATGAA TGCAAATGGA TCCACAGGTGC CATCACAGG CATCACAGGTC CATCACAGG CATCACAGGTC CAGCAGTGCA CTTCACAAG TGCACATC CAGCAGTGCA CTTCACAAG TAATGACATT TGGCTACAGG	3480 3540 3660 3720 3780 3900 3900 3960 4020 60 120 180 240 300 420 480 540 660 720 780 840
505560657075	ATTTAATGTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGTA AGGAATAGTA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGGG ACTAGAATATT TAAATTAAAC Seq ID NO: Protein Acc 1 MSRTAYTVGA GQGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Ac: Coding sequ 1 ATGAAAGTTG TTCTGGGGA CATCTAGGCC GGGAAAAGAGG GGGTTATTA AACTGCTACC AGCCAGAGTG AGGTTTACAA ATTGAAATTC ACCAATTC CTCTGAACTGC CTGTTTCGAT GGGAACTGA GTGTTTCGAT GGGAACTGA	ATTATTACTT TATGACTTTCT TATGACTTTCTGGTC CTGAATCTTTT AAGAAAGACT GATAATGATTC GATAATGATC AAAACGGCAA AATTCTCTCA AAAACGGCAA AATTTCTTCC CTATTCTTTC 461 Protein CESSION #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA see ich Accession ience: 12' 11 GAGTGCTGTG AAAATGATG CAGTCGAAGA GAATTATCAG CTGTGAAGA GAATTATCAG CTGTGAAGA TTCACACGGC TCAATTCTTG ATGACTTTT AACTTAAAAA GAATGAAG GTTCAAGCCAT TAGAAGACGG TTGGGTCCAA CTGCCAAGTG CTCAAGTG CTCAACTCAA	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGATATTTAA AGATATTTAA AGATATTAA CTCATAAAC CCAATAATGT AAAAAAAAA 1 SEQUENCE NP_037504.1 21 21 21 21 21 21 21 21 21 22 21 21 22 21 23 22 21 24 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTOPLK TMMVTLNCPE equence 31 TTCTTCACCT AAAAAAGAAC CTGCTTCAGG ACCACAGACTT TGGTTTCCTC CAAGCTGTG AAGATTCAGG TCTGCTATAT AGAATTCAGG TCTGCTATAT AGAATTCAGG GCGTATGAAG GCGAGAAGG GGTTTGGGAA TATACCCTGG GGGTTGCGAG	ATTTCAAGCA AGCTGAACA CCTGACACA CCTGAACC CTTAAAGGTT CTTACGATGC CTTTTAAGGATGC CTTTTAAGGATGT TCAAGTTT GTACCTTGCT TCAAGTTTAC CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAT GCAACTATG GCACTATAT GCAACAGCCT CCTCATGCCT GCACTTTCAA ACTCCAAATA GTTTTTGAGTC TTGTTGAGTC TTGTTGGCTC CTAAGACAGC TCATCAGGG AAGCCCAGTG CCTCAGGGGA TCATCAAGGGA TCATCAAGGGA TCATCAGGGA TCATCAGGGA	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG GAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAAA ATGGTCAAA ATGGTCAAA ATGGTCAAATCCAA GATTCAAGA GGTTCAGGTC CAGCAATGGA GGTTCAGGTC CAGCAGTGCA CAGCAACTT AATGAAATGA	480 3540 3600 3720 3780 3900 3900 3960 4020 600 120 180 240 300 360 420 480 540 660 660 660 720 780 840 900
50 55 60 65 70 75	ATTTAATGTA TTCTCCTTTA TTCTCCTTTA TTAGAGTCTT GAGTCAGTGC AAGCAATAGCA AATGAAAAGT AGTTCTATTG AAATCATTTA ATGAAAGGG ACTAGAATAT TAAATTAAAC Seq ID NO: Protein Acc Protein Acc QGRGTAMPG QCNSFYIPRH IDLD Seq ID NO: Nucleic Acc Coding sequ 1 ATGAAAGTT TCCTGGGGA CATCTAGGCC GAGAAAAGG GGGCTAATTA ACTGCAGTGTA AACTGCTACC AGCCAGAGTG AGGTTTACAA ATTGAAATTC ACCCAATTTC ACCCAATTTC CTCTGACTGC CTGTTTCCAT GGAAACACAC CTCTCTTGGCC CTGTTTCCAT	ATTATTACTT TATGACTTT TATGACTTTT TATGACTTTT AGAATCATTT AGAAAGACT GATAATGATT AGAAAGACG ACATTCCTCA AAAACGCAA AGTTGATAGT AATTTTCACC CTATTCTTTC 461 Protein cession #: 1 11 LLLLLGTLLP EEVLESSQEA IRKEEGSFQS 462 DNA sec id Accession cence: 12' 11 GAGTGCTGTG AAAATGATGG CAGTCGAAGA GATTTACAC CCTGTGAAGA GAATTATCAG CCTGTGAAGA GAATTATCAG CTGTGAAGA GAATTATCAG CTGTGAAGA GAATTATCAG CTGTGAAGA GAATTATCAG CTGTGAAGA GAATTATCAG TTCAACAGGC TTCAACGGC TTGAAGAACT TAGAAGACGG TTGAGCAAT TAGAAGACGG TTGAAGAACT TTGAAGAACT TTGAAGAACT TTGAAGAACT TTGAAGAACT TTGAAGAACT TTGAAGAACT	CAAATCCTTT TCTGAGTTGG AGGGGAAACA ATTTTTTAAA TTAAATGTTA ACTAGTTCAC AACATTTATA AGATATTTAA AGATATTTAA AGATATTTAA CTCATAAAAC CCAATAATGT AAAAAAAAA 1 SEQUENCE NP_037504.1 21 AAEGKKKGSQ LHVTERKYLK CSFCKPKKFT QUENCE 1 #: EOS SE 733 21 GCTCATTTCT CATCAAAACA ATATCAGCTG CAGCTACTC CAGCAACAC GAATTCATCT TGAAGACAC TGGAGCACTC TGGAGCACTC TGGAGCACTC TGGAGCACTC TGGAGCACTC TGGAGCACTC TGGAGCACT TGGACATGTT CTCTTTCAGA GGATGATGAT ATGAGTCCTCT GAACAAGAT	GGTCACTGTG GCAAAGAAGA AAATCTTGAC TTGAATGTTC TTTGGAAGA ACATAAAGTC AGTGATCAGT TATCAACTGC AGACTATAGAG TAATTTGGCT TCTATATAGC 31 GAIPPPDKAQ RDWCKTQPLK TMMVTLNCPE EQUENCE 31 TTCTTCACCT AAAAAGAAC CTGCTTCAGG ACCACAGACTT TGGTTTCCTC CCAAGCTGTG AAGATTCAGG TCTGCTATAT AGAATTCAGG GCCAAGAGG TCTGCTAAGG GGGTATGAAG GGCCAGAAGG GTGTTCGGAA TATACCCTGG GGGTGGCAGG TTCAGTATGA	ATTTCAAGCA AGCTGAACA CCTGACACA CCTGAACC CTTAAAGGTT CTTACGATGC CTTTAAGGATGC CTTTAAGGATGA ATTATGTATT GTACCTTGCT TCAAGTTTCA CTTTGCTAAA 41 HNDSEQTQSP QTIHEEGCNS LQPPTKKKRV 41 TCACTGACGG TCATTGTGAA TGACCTATAT GCAACAGCCT CCTCATGCCT AGTGTCATAA ACTCCAAATA GTTTTGAGTC CTTAAGGCAACAGCC TCTAAGGCAACAGCC AAGCCCAGTG CCTCAGGGA TCATCAGGGA	TGTTTCTTT CCGTATGTTG AACATTCTA ATGTATACAA GAAAATCTAA GAAAATCTAA GAGTGAAAGT ATGTCTGCTT GTGTAGGAGG GAGCAACTAA 51 QQPGSRNRGR RTIINRFCYG TRVKQCRCIS 51 CCACGGTGGC TAAGAAAAA AGATTCCAAG ATGGTCACAT GAATGGAGT CAACAACTC AATTAATGAA TGCAAATGGA TCCACAGGTGC CAACAACTC AATTAATGAA TGCAAATGGA TCCACAGGTGC CATCACAGG CATCACAGGTC CATCACAGG CATCACAGGTC CAGCAGTGCA CTTCACAAG TGCACATC CAGCAGTGCA CTTCACAAG TAATGACATT TGGCTACAGG	\$480 \$540 \$600 \$720 \$780 \$900 \$900 \$900 \$120 \$180 \$180 \$200 \$180 \$200

```
WO 02/086443
       ACAGTGGGGA ATCTGGCTTC GGTGGTGTCG ATTCTGAGCA ATATTTCATC TCTGTCACTG
GCCAGCCATT TCAGGGTGTC CAATTCAACA ATGGAGGATG TCATCAGTAT AGCTGACAAT
                                                                             1080
                                                                             1140
       ATCCTTAATT CAGCCTCAGT AACCAACTGG ACAGTCTTAC TGCGGGAAGA AAAGTATGCC
                                                                              1200
       AGCTCACGGT TACTAGAGAC ATTAGAAAAC ATCAGCACTC TGGTGCCTCC GACAGCTCTT
                                                                             1260
 5
       CCTCTGAATT TTTCTCGGAA ATTCATTGAC TGGAAAGGGA TTCCAGTGAA CAAAAGCCAA
                                                                             1320
       CTCAAAAGGG GTTACAGCTA TCAGATTAAA ATGTGTCCCC AAAATACATC TATTCCCATC
                                                                             1380
       AGAGGCCGTG TGTTAATTGG GTCAGACCAA TTCCAGAGAT CCCTTCCAGA AACTATTATC
                                                                              1440
       AGCATGGCCT CGTTGACTCT GGGGAACATT CTACCCGTTT CCAAAAATGG AAATGCTCAG
                                                                              1500
       GTCAATGGAC CTGTGATATC CACGGTTATT CAAAACTATT CCATAAATGA AGTTTTCCTA
                                                                              1560
10
       TTTTTTTCCA AGATAGAGTC AAACCTGAGC CAGCCTCATT GTGTGTTTTG GGATTTCAGT
                                                                             1620
       CATTTGCAGT GGAACGATGC AGGCTGCCAC CTAGTGAATG AAACTCAAGA CATCGTGACG
                                                                             1680
       TGCCAATGTA CTCACTTGAC CTCCTTCTCC ATATTGATGT CACCTTTTGT CCCCTCTACA
                                                                             1740
       ATCTTCCCC TTGTAAAATG GATCACCTAT GTGGGACTGG GTATCTCCAT TGGAAGTCTC
                                                                              1800
       ATTTTATGCC TGATCATCGA GGCTTTGTTT TGGAAGCAGA TTAAAAAAAG CCAAACCTCT
                                                                              1860
15
       CACACACGTC GTATTTGCAT GGTGAACATA GCCCTGTCCC TCTTGATTGC TGATGTCTGG
                                                                             1920
       TTTATTGTTG GTGCCACAGT GGACACCACG GTGAACCCTT CTGGAGTCTG CACAGCTGCT
                                                                             1980
       GTGTTCTTTA CACACTTCTT CTACCTCTCT TTGTTCTTCT GGATGCTCAT GCTTGGCATC
                                                                             2040
       CTGCTGGCTT ACCGGATCAT CCTCGTGTTC CATCACATGG CCCAGCATTT GATGATGGCT
                                                                             2100
       GTTGGATTTT GCCTGGGTTA TGGGTGCCCT CTCATTATAT CTGTCATTAC CATTGCTGTC
                                                                              2160
20
       ACGCAACCTA GCAATACCTA CAAAAGGAAA GATGTGTGTT GGCTTAACTG GTCCAATGGA
       AGCAAACCAC TCCTGGCTTT TGTTGTCCCT GCACTGGCTA TTGTGGCTGT GAACTTCGTT
                                                                             2280
       GTGGTGCTGC TAGTTCTCAC AAAGCTCTGG AGGCCGACTG TTGGGGAAAG ACTGAGTCGG
                                                                             2340
       GATGACAAGG CCACCATCAT CCGCGTGGGG AAGAGCCTCC TCATTCTGAC CCCTCTGCTA
                                                                             2400
       GGGCTCACCT GGGGCTTTGG AATAGGAACA ATAGTGGACA GCCAGAATCT GGCTTGGCAT
                                                                             2460
25
       GTTATTTTTG CTTTACTCAA TGCATTCCAG GGATTTTTTA TCTTATGCTT TGGAATACTC
                                                                              2520
       TTGGACAGTA AGCTGCGACA ACTTCTGTTC AACAAGTTGT CTGCCTTAAG TTCTTGGAAG
                                                                              2580
       CAAACAGAAA AGCAAAACTC ATCAGATTTA TCTGCCAAAC CCAAATTCTC AAAGCCTTTC
                                                                              2640
       AACCCACTGC AAAACAAAGG CCATTATGCA TTTTCTCATA CTGGAGATTC CTCCGACAAC
                                                                             2700
       ATCATGCTAA CTCAGTTTGT CTCAAATGAA TAA
30
       Sea ID NO: 463 Protein sequence
       Protein Accession #: Eos sequence
                                                                 51
                                                     41
35
       MKVGVLWLIS FFTFTDGHGG FLGKNDGIKT KKELIVNKKK HLGPVEEYQL LLQVTYRDSK
                                                                                60
       EKRDLRNFLK LLKPPLLWSH GLIRIIRAKA TTDCNSLNGV LQCTCEDSYT WFPPSCLDPQ
                                                                               120
       NCYLHTAGAL PSCECHLNNL SQSVNFCERT KIWGTFKINE RFTNDLLNSS SAIYSKYANG
       IEIQLKKAYE RIQGFESVQV TQFRNGSIVA GYEVVGSSSA SELLSAIEHV AEKAKTALHK
                                                                               240
40
       LFPLEDGSFR VFGKAQCNDI VFGFGSKDDE YTLPCSSGYR GNITAKCESS GWQVIRETCV
                                                                               300
       LSLLEELNKN FSMIVGNATE AAVSSFVQNL SVIIRQNPST TVGNLASVVS ILSNISSLSL
                                                                               360
       ASHFRVSNST MEDVISIADN ILNSASVTNW TVLLREEKYA SSRLLETLEN ISTLVPPTAL
                                                                               420
       PLNFSRKFID WKGIPVNKSQ LKRGYSYQIK MCPQNTSIPI RGRVLIGSDQ FQRSLPETII
                                                                               480
       SMASLTLGNI LPVSKNGNAQ VNGPVISTVI QNYSINEVFL FFSKIESNLS QPHCVFWDFS
45
       HLQWNDAGCH LVNETQDIVT CQCTHLTSFS ILMSPFVPST IFPVVKWITY VGLGISIGSL
                                                                               600
       ILCLIIEALF WKOIKKSOTS HTRRICMVNI ALSLLIADVW FIVGATVDTT VNPSGVCTAA
                                                                               660
       VFFTHFFYLS LFFWMLMLGI LLAYRIILVF HHMAQHLMMA VGFCLGYGCP LIISVITIAV
                                                                               720
       TQPSNTYKRK DVCWLNWSNG SKPLLAFVVP ALAIVAVNFV VVLLVLTKLW RPTVGERLSR
                                                                               780
       DDKATIIRVG KSLLILTPLL GLTWGFGIGT IVDSONLAWH VIFALLNAFQ GFFILCFGIL
                                                                               840
50
       LDSKLROLLF NKLSALSSWK QTEKONSSDL SAKPKFSKPF NPLQNKGHYA FSHTGDSSDN
                                                                               900
       IMLTQFVSNE
       Seq ID NO: 464 DNA sequence
       Nucleic Acid Accession #: AB035089.1
55
       Coding sequence: 9845..10219
                                          31
                                                      41
                                                                 51
                   11
       GGGCATGCAG CCATCGGGGA AAATCCATAG TGCAGATAAA GCAAGGAGGA AGAAGAAGGA
                                                                                60
60
       CAGTTCTAGT AAAAGGGAGA ACATCAATAT AGGATGTTTC TTAGCAATAG AAAAAGAAGG
CCAAGAGGAA TTAGGGAGAG AGTTATAAGA GATCAGCAAG GGGACAGGGT TAGATTTGGT
                                                                               120
                                                                               180
       TTGGTTTGAA AGCATACAGT AAATATGATG TCTGTCCCTG GCAGTGTTGG CAGAGTAGGA
       AGGAGGAAGG GAGGCAAGAG ATAATATCAT TTTCTCTGTG CTCCAACTGT ACTTACATAT
                                                                               300
       GAGACTATTT CCCTCTCTGC TTTTCAAACC TTACTGGAGT TGTTTTCCCT CATGAAAACC
                                                                               360
65
       AAGAAAGGAA AGCTAGTTAG TCTTGTTCTG AGGTTGTTCA ATGTATACAT ATCTATATCT
                                                                               420
       GTAGACAGAA TCCTTGGGAA TACAGTAATT GACATATATT CTGTTATTTG ATGCTTGAAA
                                                                               480
       AATCTCCTCC ACTAACCAGT TTCCCTATAG ATTGCCACAA GCACATAATA AGAAACAATA AATAAAATGT TCTCTTGACT TTGTTACTTA ACAATGCTGA GAAAACTTTA CAGCCTTCAT
                                                                               540
                                                                               600
       AAGGAAGTGA GGTCCAGGAA AATCTAGGAG ATATTTCTTA ACCAATCTAT AAAGGCATTA
                                                                               660
70
       GTAATGACAG GATATTTCCT GAAAGTGTAA TTTCCCATTG AGGATTTGTT TTTAATTTCT
                                                                               720
       GGATTCCTGG AGCCAATGAA GTTGGTGTAT GTTTATGAAA TATCAAGAGA CATAAGTTGG
                                                                               780
       CAAGTGTTCA TATGCAAAAA CTTCTTGGAA TTTCTGAGTT CTCTGTGGCA ATATATGACA
                                                                               840
       TCAGGATATG TCCAGTCTCA CACACCAGGA TATGTCCTTT CTAGCCTGTC TATCACATGC
                                                                               900
       TAGGAGAACT ATTTAGGAAC AGAAAAAAAT GCCTGAAATG ATTTCTCATT TGAACTCATC
                                                                               960
75
       CAAGCTTTCT CTAAATTTAA GCAAACTCCT GGTCATTTTC AGTTAGTACC TTTCCTTAAG
                                                                             1020
       TTCAACCTTC AGGGCAAACC TCCGTGCCTC AGACGTTTAG CCATAGTCTG AAATTCTCTT
                                                                              1080
       CCATAGATTG GTCCCCTGTA ACCCCGGTTT GTCTCAGCTT GTTATCCTGT TTTTTTCTTC
                                                                             1140
       CCTCCATTCC CAGGATGAGC TTGTTGCTTC TGTCCTATGA GACATTAGAT TCCTTTTCTT
                                                                              1200
       TGGTACCCGA GTAAATCCAT CCTACTCCAA TAGAGGAAGG TCCATTTTG TCTTATAGCG
                                                                              1260
80
       CTGGATGCAG ACTCAGCTGA GAAGACCATT ATTCATTTTT GGAATTCTTT ATCTCAGATA
                                                                             1320
       TTTCCTCTTC TTTCTTTTTC TTCTATCTTT GGATTTTTAG TCCATCAACG CCCCATTAGT
                                                                             1380
       CTATTCCCCG ACTTCAATCA GGGAACTTAT ACCTCTTAAA CTCATTCAGA GACTCAAAAC
                                                                             1440
       ATATATATTG ATACAGGAGA CCTAAGAAGA GCATGTCTTG GGGGTTGAGG AAACAGGCAG
                                                                             1500
       GTGAGAAATT TCCAGATTGG AAACACAGCT TCCTTTCTCC CATCCAGCCC CTACTTTCAG
                                                                              1560
85
       CCTATGTGTT TCTGGCACCT TGTTGTAGAT AAATCTCCCT TGACTTTGTG ATGTGCTGAG
                                                                              1620
       AAAACAAACT CACGGCTGGT GTTAAAAAGG GCCCATGACA ATACCAAGTG TTGGGGAGAA
                                                                              1680
       TGTGGAGAAA TCAGAACTCT ATTCACGGTC GGTTGGAATG CACACTTGTG CAGAATTCTA
                                                                             1740
```

	W O 02/0						
	TGGAGAAGAG	TCTGGCATTT	CCTCAAAATG	TTAACCTGGA	TTTACCATAT	GACCCAGCGA	1800
	TTTCATTCAT	AGGTTTATAC	TCAAAAGAAA	TGAAGAAATA	TGCCATGCAA	AAAAATGTAC	1860
	ATGARAGGTC	ACAACATCAT	TATTCATAAT	AGTAAAAGGA	TGGAAACAAC	ACAAATGTCC	1920
	ATCAACTTAT	GATTAAAGAA	ΔΑΨΟΨΟΘΟΨΟΨ	ΔΤΤΓΔΤΔΓΔΔ	TGGAATATTA	TTCGACCACA	1980
5	AICAACIIAI	ATGTACTGAT	AMICIOGICI	AMOROGANOAA	ACCAMCAAAA	TANCACTACA	2040
5							
		CAGTCACAAA					2100
	ATAGGCAAAT	CCATAGAAAC	AGGAGGTAGA	TTCCTGGTTT	CCAGGGTCTC	CAGGAAGGGA	2160
	AGAATGAAGT	ACAAGATTTC	TTTTGGAGGT	AGTGAAATTG	TTGTGGAATG	AGATCATGAT	2220
		CAACTTTGTG					2280
10	CAIGAIAGCA	ATATGTTAAT	777777777777	TOCACAAAAC	NANCAGCCCC	CCACTCTGGT	2340
10							
		ATATTGGATT					2400
		TTACAAGATA					2460
	AAACAGAAGG	ACCATTGAGA	AATGTTGTGA	TCCTGACAGG	TCAAGCAATT	TATTTTTCGG	2520
	CTTCATTTTT	AAATGTAAAA	TTAGAAAGCT	GCCATTTAAA	ATGGCCCGTC	TGTTTCAATT	2580
15	CCTCTTCTCA	GTGTCAGCCT	GTTAACTCAA	TGTGTTAGTC	TGTTTTCATG	CTGCTGATAA	2640
10	AAACATACCT	GAGACTGGCA	ACAAAAAGAG	CTTTAATTCC	CCTTAGAGTT	CCACGTGATT	2700
	AAACATACCT	GAGACIGGCA	AGAAAAAGAG	333CEENTIEC	MEN CARCCIC	CCTCCTOATT	2760
	GGGGAGGCCT	CAGAATCACA	GTAGGAGGCA	AAAGTTATTC	TTACATGGTG	GCIGCAAGAG	
	AAGATGAGGA	AGAAGCAAAA	GAAGAAACCC	CTGATAAACC	CATCGGATCT	CCTGAGGCTT	2820
	ATTAACTATC	ATGAGAATAG	CACAAGAAAG	ACCGGCCCCC	ATGATTCAAT	TACCTCTACC	2880
20	TGGGTCCCTC	CAATAACATG	TGGAAATTCT	GGTAGATACA	ATTCAAGTTG	AGATTTGGGT	2940
	CCCAACACAC	CCAAACCATA	TCACTCAGCA	AGGCAGATAA	CTTTCTCACT	GAGCCTATGC	3000
	DAGARCACAG	CATCTGGGAT	CCEECENACC	CCCACACGAA	CTCACTCCTA	CCATCACTCC	3060
	AACAGAAAAC	CATCIGGGAI	GGIIGIAAGG	ARGORAGOAA	mccama cmam	COMPANYAGE	
	CAAAGCTGAG	CACTCAGGAG	AAGGCAATAG	AATCCTATTC	TCCATAGTAT	GCTATAAGAT	3120
0.5	ACTGAAGTAC	ACTTCTTCAC	TATCTCTTTG	GACTTAGAAT	TAGCACTACA	TTCCTTGTTA	3180
25	TACAGAAAAA	TTACTAAGGA	AATTCATAGG	ATGACAAAAA	CTTTCAGAAC	TGAAAAACAG	3240
	GAAATGTAAG	CTTTTTAGTT	CTTTGGTATT	CGAAGTATGC	CTAAAAGACA	ATGCAAAATC	3300
	CAAGAAAAGA	ATGGTGGGGT	TTTTGTTTGT	TTGGTTTTGT	TTTTGTTTTA	CAGCTGGAGT	3360
	ACAACACAAA	GGGATGGAGT	TCAAACAAAT	GAGAGGAAAT	TOGAATTOTA	AACTTATTCT	3420
	AGAMIACAAA	TORDOTADO	CONTROL OF THE CONTROL	OHOHOOHITI	OCCUTOR CTC	CTCACTTCCA	3480
20	CATTGGCATT	AGAAAGGCAC	CIACATGIAT	TICACATGAG	CCGGIGACIG	CIGSCIIGCY	
30	TTCTTATTTT	TTCCCTATAG	ATTAAAAAGG	AGGTACAATG	GTAGAACTGT	AATCCTGTCC	3540
	TTTGTCATAA	ATTTTCATAT	TCATAAAGGT	GAGTGTTAGC	CCGCTTGTGA	AATCTGAAGT	3600
	TGAGTAACTT	CAAATACTAA	CCACAGAGGG	AAAGGCAGCA	AGAGGAGAGG	CATAAATTTA	3660
	CCATCTCACC	CTTCATTCCA	CAGACACACA	CAGCCTCTCT	GCCCACCTCT	GCTTCCTCTA	3720
	GGATCTCACC	TAAGAGCTTC	AACCCTCTCC	ACCTTAATAA	CATGAATTAT	ттттсасаат	3780
35	GGAACACAGG	TAAGAGCTIC	MAGCCICICC	AGCTTAATAA	CHICHTITI	את אתיתיתיא ביתי	3840
33	AATAATGATA	CTGTGTTCTA	TATCATGCAT	CTCCTGCATT	CIGICIGATI	ATATTTTACT	
	TATTCTGCCA	GAGCAAAATT	AAAATACCTA	TTTCATCTGA	TTTGTCCTTT	ATCTAAATTG	3900
	CTTAGTTCCA	AGTAAACCAA	GGCACTTTTA	GGAACACAGA	GGGAGAGTGC	CTTGCAGCCA	3960
	GAGAGTCTTG	AAGGAGATGT	CAGGGACGCA	TCTTAACAGC	TGGTTGGATG	TGATCCACAG	4020
	ACCTOTOCTO	TTAGCATTCA	TTCTAAACCC	ATCCTACCTA	GCTCTAGTGT	AACCAGCAAT	4080
40	AGGICICCIG	TAAAGAGGGT	COMMINATION	TTTTACAATAC	TOTTTAAAAA	CCT ACTTTTC	4140
70	GAAAGAAAGA	IAAAGAGGGI	CGATIACITA	TITACAATAG	TCTTTTTTTT	ANCAUTCAAC	4200
	TAAGCCTTCT	AATTAGGACA	TTAATATATT	TAATATATGC	ACATIGIAGA	AAGAIIGAAG	
	CGTTAAAAAT	AAGAGAAAAA	CTTTAAATGT	CAAAATCTCA	CAACCCAGAT	ATATCATTTC	4260
	TTTAAGAAAA	TTGTACTACA	AAATACCATT	CCATTTATTA	AAGTCATTCT	GACAGGAATC	4320
	TGATGCTTTT	CCAGGAGTTC	CAGATCACAT	CGAGTTCACC	ATGAATTCAC	TCAGTGAAGC	4380
45	CAACACCAAG	TTCATGTTCG	ATCTGTTCCA	ACAGTTCAGA	AAATCAAAAG	AGAACAACAT	4440
	CONTOURNETCO	CCTATCAGCA	TCACATCACC	ΔΤΤΔΕΘΕΔΤΘ	CTCCTCTTAG	GAGCCAAAGA	4500
	CIICIMIICC	CAACAAATTA	CACATCAGC	MAMCACCAMC	A TOTA COTTO	CCTCTTCCAG	4560
	CAACACTGCA	CAACAAATTA	GCAAGGTAGC	TATCAGCATC	ATTACGITGI	mcmcamcccm	
	TTTTTCTCTG	GTTCCGTCGG	CTAGCACGCA	GATGGTAATA	GATGTGGTGG	TCTGATGGGT	4620
~~	AGCACAGGGG	GCTGTGCAGG	AATTCCCATA	ACTGTGAGAC	CACTGACTTA	AACAGATCTT	4680
50	TTGAGTAAAG	TTTTCTTGTC	CCGCTTCATG	TCTCTTCCAG	GTTCTTCACT	TTGATCAAGT	4740
	CACAGAGAAC	ACCACAGAAA	AAGCTGCAAC	ATATCATGTG	AGTCACAGAG	CACTCTGATT	4800
	CACCTTTACA	TCCCTGAACA	CCTCATAGTT	TAAACCTGGA	ACTTCACAAA	AACTAAGAAA	4860
	A GGGGA GEORGE	TAGGGAAAAT	CTTCCACACA	AAGATTGAGA	CATACAGAGT	CCCTTCCCCAT	4920
	AGGCCAGIII	IAGGGAMMI	CTIGGACACA	GEGGGEER GE	* A A A CA CACI	CA CCA CTCTA	4980
<i>5 </i>	TTCATGGCAC	ATAATTATTA	TTCCTCATTI	CIGCGITACI	AAAAGACAGI	TAGCACTOIA	
55	CCTCAGAGCA	TAGGTCTGGA	TCAGGATAGG	CTGGGTTCAG	ACTCCAGCTT	TGCTCTTCAC	5040
	AAATGATGAA	TAAGAGCAGG	ACACAACTGC	TCGGAGTCCC	AGTGACCTCA	TCCCAGAAAA	5100
	CTAAGGGTAA	GAAAAAATCT	GACTCAATAC	ATGCAAATAC	ATGCAAATGT	TTACAACAGT	5160
	CCCTTCCCCA	TAAAAGTCAT	AATAAATGTT	ATTATTATTA	TAAAGTAGCT	ATAATTATAC	5220
	TAATCATAAT	AATGTGAAAA	ጥ ከ አጥጥጥ አ አጥጥ	TTCATTGAGT	CATTAATGAG	ATTCAGAGGA	5280
60	IMMICAIAMI	GTCCAAGTAT	A CONTRACTOR A A A	ATCATTCOTA	TCCNATATAT	тсстттасас	5340
00	ATAAGCACAA	GICCAAGIAI	ATTITIGGAAA	AIGAIIGCIA	CONTRACT	A CA CCCETTA C	5400
	CCTTAATAGT	GCAAAATGCT	TTGCTGGAAG	GTAGAAAGTT	CTAGATTTAA	ACAGGCTIAG	
	GTTCAAAACT	TGGCACTTCT	AATTTATGTC	TCTATAAACA	GGGTTTTTT	CCCCATTCTC	5460
	TGAGCTTTCT	TGTGTTCATC	TGAATTGAAC	TAAAGACTTA	GAGTTACCCA	TGTAAAGTCC	5520
	TTAGCCATGG	ACCTGGCATA	CACTCTTCTT	ACGTGCAGAG	AATGACCATC	ATGAGGAAAG	5580
65		CAGTCAATGT					5640
05		TCTATTTAAA					5700
	CCIGGCAIAA	ICIAIIIAAA	ATATCCAACC	1 CAACATAC	TCOTUTCCTT	ACCUMANCOU	5760
	AGAAGTGAAA	TATGGTCCTT	GCCCATAAGG	AGCTGAGAGT	TIAACIGGGA	AGCIMAACCI	
	AACCCTTTAA	ACCAACAAGG	AGAAAATCTA	CTGGTAGACA	GCGCTGCATC	TTTAGTTCAG	5820
	AAGAGAAAAG	ATTGCAGTAC	GTTAGAGCAA	GAAGAATTTT	CTGGAAGAAG	TCAAATATAA	5880
70	GGTGGATTTT	GAAGGGTATT	TGAGGTGAAA	TACACCAATT	ATCAGGGAAT	AACATCAAAG	5940
	GTCCTCAATG	AGACTACCAG	CATTTAGGGA	CTGATCTAAC	AGACTTAGCA	TGGGTTTAGT	6000
	AMMUNCATURE	ATACAGCAAT	TONATONTOT	CCTTTTTTTCA	TGTTTGAAGG	TTGATAGGTC	6060
	AIIIACAIIG	AIACAGCAAI	TOTALIGATOR	CCITITION	MUCA ACA AAT	CCACTGATGC	6120
		CATCACCAGT					
75		AAGATCGCCA					6180
75	AATTTCACCT	GGCCTACCCA	CATTTCATTT	GCATCCTGAT	GTCTGTGTCT	CTGAGTGGCC	6240
	AAATGGAAGA	AAGCAAGGCA	GATGAGCCTG	GCCGACCCAG	GTGGAGAGCA	TTTACTCAGA	6300
	GTGCATTAGC	TCCATTTCCA	CAACTCTCCC	CCACTGGAGT	GTCCCAGACC	CCAACGATAC	6360
	PACPCACAVO	TGTGGATTTA	GGGATAATCT	TGTGATAAAA	GAGGAGGTTG	TGTAATAGAG	6420
	TICUCIONAG	TAATAAGTAA	TOOLSTANTOI	TCGATAAACT	GGCACTGACT	CAGTCACATA	6480
80	LGAGTAAGAG	TAATAAGTAA	IMMUMIACCA	AMOCCAMACI	AUTOCA AUCA	CONCCOMMO	
ου	CGATACATCT	TGGTGGGAAA	TGTATGACTA	AIGGGATATT	ALIGGAATGG	GCAGGCITGG	6540
	GTGAGTTCCT	GAGAATAGTT	GAGGAAGTAC	CAGGAAATAT	TGAATGCACA	GGATGAAAGA	6600
	CAAAAACAAA	GATCAGAAAC	ATCATGGTTA	AAATTACTGG	AGAGAAGTCT	GAGAAGCAAT	6660
	GAATCTCCTT	CAGGGAAGCC	TGCTCTGCAG	TTTGCAAACC	ACAGCCTCTT	CTGCTTCTGC	6720
	CTTTTGCCAA	GATGATATTG	ACCTTCAGTG	ACCTCTTTCT	TGTGCCAGCC	CACATTCCCC	6780
85	TITIOCOM.	CCTACATGAC	ACCTCTATA	ΔΑΔΤΑΤΟΟΟ	GGACAGGAGA	TACTGCATCT	6840
05	TITIOCHILG	TGGATTCAGC	"ICCTGIVIUM	עדעטעעעעעעעע	TAACTTTCCT	ΑΑΤΑΤΑΤΑΩ	6900
	ATTUAGGGTC	IGGATTCAGC	TACTUTTGT	TUCHUNITAR	TUUGIIIGGI	Yuhun Vu muu	
	TACATAAATT	ACTCCTAATT	CCTACTTCTT	CCTTCATATC	1 CAAAGGAAT	ATTTAGATGC	6960

	CATCAAGAAA	TTTTACCAGA	CCAGTGTGGA	ATCTACTGAT	TTTGCAAATG	CTCCAGAAGA	7020
		AAGATTAACT					7080
	TTATAGAAAC	ACCTTTGAGA	AACCTATGCC	AGTGAGCCTT	GTGCTTGACA	CTGCATGGGG	7140
_	GAACAGGTGT	GGGGATTGAG	ATGGGTTTGC	AGGGAGGGCT	GAAGAGGGCA	CTCCAGATGA	7200
5	AGGATTTGTC	CAAATGAATA	TGAAGAGAGC	CTAGGGGAGC	CAAGGAGGAA	ATCACAGGAA	7260
		TGGAAACACA					7320
	TTTGTGGATC	CCCTGTCTCC	GCTCAGACCT	ATTTTGAGAT	CATATCCTTT	ACTTTAAATC	7380
	AGACTCAAAT	TTTTATGATG	AATATTTAAT	AGAAAACATT	AGAAAGCGTC	TCTCGTCTCC	7440
10	TTTACTAATT	GGGAAACAAG	CAGCTCTCTG	GTAAATCACC	CTTTTGTCTC	TGAGCTGGAG	7500
10		CACATCTGTA					7560
	ATCAAGGGCA	AAGAGCTTGA	CAAAGTCTCC	ATTCTACAGA	CATCTTTCTT	ACCTCCCACC	7620
		GGCCAAACTT					7680
		CTGACAGCAC					7740
1.5	CTAAAATGCA	ATCAGGGCCT	CCTTCCTCTG	AATGGGGACC	CCGTAGTTAA	AAAAAATAA	7800
15		AGGAGGGAGG					7860
		ATTCCAAATC					7920
		CAAGAAGTGA					7980
		ATCTGGTGAA					8040
20	GTGAGTCTCA	AGCAGGGATT	TGGGTCAATA	ATTAACGATC	AGTCACGAAC	ATTTGCAAAG	8100
20		ACAAGCCATT					8160
	GAAAAAATTA	AAAACCTATT	TCCTGATGGG	ACTATTGGCA	ATGATACGAC	ACTGGTTCTT	8220
		TCTATTTCAA					8280
		TTTGGCCAAA					8340
25		AATGTTAAAC					8400
25	TTGTTCATGT	CTGTTATTTT	GTTGTTTTAC	TCTTATAACT	TTATTTAGTT	AGGAATACCT	8460
	GAAAAACTAT	TGTTTCTAAC	TCATGGAATT	CCTGGGTTAT	TTCTTAGAAG	AAGAAGGATG	8520
	TGTTGCTATC	TCAATAATAT	TATCTTTTT	GTCTTGTGTT	TCACGTGTTA	TTTGTTGGAC	8580
	ACATTGATTT	ATTGCAGAAT	ACATACAAAT	CTGTACAGAT	GATGAGGCAA	TACAATTCCT	8640
20	TTAATTTTGC	CTTGCTGGAG	GATGTACAGG	CCAAGGTCCT	GGAAATACCA	TACAAAGGCA	8700
30	AAGATCTAAG	CATGATTGTG	CTGCTGCCAA	ATGAAATCGA	TGGTCTGCAG	AAGGTAAGAA	8760
	CTTGCATCTA	CAACTCTTCC	TTCTACTGCC	GGACATTTTT	CCAAAGATAC	CAAGTTTAAA	8820
	CAAGGTAAAA	GCTTATGACC	GAGTTGCCTC	AAAATGATGA	AAAATTCTAA	ATGAGGAATG	8880
	ATGACTCACC	TTCATATTAC	AAATATTTGA	GCATAGGGCC	TGACACAAAC	TGAAAGCTTA	8940
25		GTTTGTTTGT					9000
35		TGTGCAGGTT					9060
		ATCATTTAGC					9120
		CAGTCCTCAG					9180
		TCTATGATTT					9240 9300
40		TGGATATCAA					9360
40	AGAAATATAT	ACCAATGTGA	GGAAAGTTTA	CAAATAGGCC	GAGTAGAAAA	GGGAATACAA	9420
	ATTTAGGAAT	TTAGGGAATT ATGAGCCTAT	ACAATTTAAT	AATTGCAATG	ACCOMMENCE	CACAACAAAT	9480
	GAAAAATATG	ATGAGCCTAT	TAAAAA11GA	CACAIGIAGI	AGGCIGIIGG	TOTOTATORA	9540
	AGTGATACAT	ACAGTTCATT	GTGTACAAAA	TAATGIAATC	AIAIIIIACA	TOTOTATOR	9600
45	ACAGTTGTAT	ACATACATAT	GTACACATAT	ACATATACGT	MANAMACAIGA	ACCACTCATA	9660
45	ACATACATGT	ATATACATAT TAGAATAATA	ACACATATAA	CCCAAIGIAI	TIMIMIMITO	AGGACTCATA	9720
							9780
	CCAAAATAAC	GAATCTCCAC AGTTTCTTTT	ATAGTCAATT	ATTACATA	CACAAACTCA	CTCCTCACAA	9840
	TAGTCATATC	AGTITUTIT	TICCATITGI	ATAGCITGAA	TOTOTOTO ATT	TACACTTACC	9900
50	ATTGATGGAA	TGGACAAGTT ATGGAAGAGA	TGCAGAATAT	GAGAGAGACA	TGTGTCGATT	TACACT TACC	9960
50	TCGGTTCAAA	ATGGAAGAGA	GCTATGACCT	ACCONTO CC	TCCACCCACC	CTCTCTCAGT	
	GAATATCTTC	AATGGGGATG	CAGACCTCTC	AGGCAIGACC	CACCCACTCC	ANGCTGCAGC	10020
	ATCTAAAGTC	CTACACAAGG GTAGTAGTAG	CCTTTGTGGA	BOTCACTGAG	ACCOMO IGG	AAGCIGCAGC	10140
55	TAATCACCCT	TTCCTATTCT TCCCCATAGA	TCATAAGGCA	AAATAAGACC	AMCAGCAICC	TCTTCTATGG	10200
55		GGTAAACTGA					
	GAGGIGITCI	TTGATGATGA	TIGCIGGCAA	CAACAGATIC	ATCATTA AAA	TATTICITY	10320
		CTCTTAATAA					
	CORROLAGGAAA	AATGTCCAAG	ATTACATORA	TOTTOTACT	CCGTGTCTTC	TABATTTCAA	10500
60	AMAMAAMMAM	GTTTCTGACC	MINAGAIGAA	CARCCANACC	AAATCATACT	TTCTCTTCAA	10560
00	ATATAATICI	CTAGAAACAC	1GIIIIMMI	CAACCAAACC	CATACCTAAA	TCCTTCTTAT	10620
	ATTTAGCAAC	TTTGTGATTC	MCMIIICIII	ATCATCAATA	ANAMANTONO	אלאאאאיראי	10680
	THE THE COURT OF THE PARTY OF T	CCTGTTTTCT	CTCTCCAAACAC	CCCAACTCTC	CACTTACACA	TAGGAAAGAT	10740
	AATTTACIIIA	TATATTAATC	ATATATAAAAG	CAAAATTAAA	AACAGAGTAG	TTCATGATGA	10800
65	CCCTCCACTA	GAAGGCATAT	CCCAGAACAG	GAGGAGCCTT	GTAAACCACA	TAGGAACTTC	10860
05	CTATTTTATC	CTAAAGGGAT	AAGAAACTCA	TTACAGGCTT	TGATGGTTGT	TTGTCAAAGA	10920
	CCCCCATAAA	ATTATCATAT	CCACATCTAC	ANADTACATC	TCTGGCTACG	CTGATATCAA	10980
	TGGATGCGAG	GAAAGAACAG	TCTCCTTACC	ΤΑΑΤΑΤΑΑΑΤ	TAGGAAATCA	TTAGAGTATT	11040
	CCCACTCCAA	ATGGAGAGAA	AGAAAGAGCC	TEGEGGGAATT	ATTTAGGAAA	TAATAGTTAC	11100
70	AGAAAGACAT	CTAAGTTGCT	GACCTATCTG	ACTGGATGGA	TGGAAGAATA	TCTTGTTTCT	11160
., 0	CACACAAAAA	AAGACTTTGG	CTTTAAATTT	GTACTTGATG	AATTAAGGTA	CTTTTAATAT	11220
	TCAAATGGAT	TTGCCTGGCA	GGCACTTGAA	GATATTAGTC	TAAATCTCAG	AAACAGAATA	11280
	TGATCTGAAG	CTCTAAATTT	GTGATATTCA	ATATAAATAC	TTTAGAGTCA	TTGGGATAAA	11340
	TATGGTAGTT	GTAGCTAAAA	GCAAAAATAA	GATACTAGGG	AGAAAGGATA	AAGTTAGAAG	11400
75	AAAGAAGAAT	CTAGAATTGA	CCTTGAAGTA	TATCAGCATG	TGTAAAGATC	AGGAATTGAT	11460
	CATALATANT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	TTCCAGAAAG	TAGCTTTTCT	TAGGGTTCCA	TATTTACTCC	CATAGATTCT	11520
	TCCC	TICCHOIDE	11100111101				
	-000						
	Sea ID NO:	465 Protei	n semience				
80		cession #: 1					
		# * *					
	1.	11	21	31	41	51	
	ī	ī -	1	1	1	1	
	MNSLSEANTK	FMFDLFQQFR	KSKENNIFYS	PISITSALGM	VLLGAKDNTA	QQISKVLHFD	60
85	QVTENTTEKA	ATYHVDRSGN	VHHQFQKLLT	EFNKSTDAYE	LKIANKLFGE	KTYQFLQEYL	120
			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		MAN TIND OF TOTAL		
	DAIKKFYOTS	VESTDFANAP	EESRKKINSW	VESQTNEKIK	MPLEDGLIGN	DILITATIONAL	180
	DAIKKFYQTS	VESTDFANAP KKENTKEEKF	EESRKKINSW WPNKNTYKSV	VESQTNEKIK QMMRQYNSFN	FALLEDVQAK	VLEIPYKGKD	240

LSMIVLLPNE IDGLQKLEEK LTAEKLMEWT SLQNMRETCV DLHLPRFKME ESYDLKDTLR 300 TMGMVNIFNG DADLSGMTWS HGLSVSKVLH KAFVEVTEEG VEAAAATAVV VVELSSPSTN 360 EEFCCNHPFL FFIRQNKTNS ILFYGRFSSP 5 Seg ID NO: 466 DNA seguence Nucleic Acid Accession #: NM 001910.1 Coding sequence: 50..1240 21 31 41 51 10 GGAGAGAAGA AAGGAGGGG CAAGGGAGAA GCTGCTGGTC GGACTCACAA TGAAAACGCT 60 CCTTCTTTTG CTGCTGGTGC TCCTGGAGCT GGGAGAGGCC CAAGGATCCC TTCACAGGGT 120 GCCCCTCAGG AGGCATCCGT CCCTCAAGAA GAAGCTGCGG GCACGGAGCC AGCTCTCTGA 180 GTTCTGGAAA TCCCATAATT TGGACATGAT CCAGTTCACC GAGTCCTGCT CAATGGACCA 240 15 GAGTGCCAAG GAACCCCTCA TCAACTACTT GGATATGGAA TACTTCGGCA CTATCTCCAT 300 TGGCTCCCCA CCACAGAACT TCACTGTCAT CTTCGACACT GGCTCCTCCA ACCTCTGGGT 360 CCCCTCTGTG TACTGCACTA GCCCAGCCTG CAAGACGCAC AGCAGGTTCC AGCCTTCCCA 420 GTCCAGCACA TACAGCCAGC CAGGTCAATC TTTCTCCATT CAGTATGGAA CCGGGAGCTT 480 GTCCGGGATC ATTGGAGCCG ACCAAGTCTC TGTGGAAGGA CTAACCGTGG TTGGCCAGCA 20 GTTTGGAGAA AGTGTCACAG AGCCAGGCCA GACCTTTGTG GATGCAGAGT TTGATGGAAT 600 TCTGGGCCTG GGATACCCCT CCTTGGCTGT GGGAGGAGTG ACTCCAGTAT TTGACAACAT 660 GATGGCTCAG AACCTGGTGG ACTTGCCGAT GTTTTCTGTC TACATGAGCA GTAACCCAGA 720 AGGTGGTGCG GGGAGCGAGC TGATTTTTGG AGGCTACGAC CACTCCCATT TCTCTGGGAG 780 CCTGAATTGG GTCCCAGTCA CCAAGCAAGC TTACTGGCAG ATTGCACTGG ATAACATCCA 840 25 GGTGGGAGGC ACTGTTATGT TCTGCTCCGA GGGCTGCCAG GCCATTGTGG ACACAGGGAC 900 TTCCCTCATC ACTGGCCCTT CCGACAAGAT TAAGCAGCTG CAAAACGCCA TTGGGGCAGC 960 CCCCGTGGAT GGAGAATATG CTGTGGAGTG TGCCAACCTT AACGTCATGC CGGATGTCAC 1020 CTTCACCATT AACGGAGTCC CCTATACCCT CAGCCCAACT GCCTACACCC TACTGGACTT 1080 CGTGGATGGA ATGCAGTTCT GCAGCAGTGG CTTTCAAGGA CTTGACATCC ACCCTCCAGC 1140 30 TGGGCCCCTC TGGATCCTGG GGGATGTCTT CATTCGACAG TTTTACTCAG TCTTTGACCG 1200 TGGGAATAAC CGTGTGGGAC TGGCCCCAGC AGTCCCCTAA GGAGGGGCCT TGTGTCTGTG 1260 CCTGCCTGTC TGACAGACCT TGAATATGTT AGGCTGGGGC ATTCTTTACA CCTACAAAAA 1320 GTTATTTTCC AGAGAATGTA GCTGTTTCCA GGGTTGCAAC TTGAATTAAG ACCAAACAGA 1380 ACATGAGAAT ACACACACA ACACACATAT ACACACACA ACACTTCACA CATACACACC 1440 35 ACTCCCACCA CCGTCATGAT GGAGGAATTA CGTTATACAT TCATATTTTG TATTGATTTT 1500 TGATTATGAA AATCAAAAAT TTTCACATTT GATTATGAAA ATCTCCAAAC ATATGCACAA 1560 GCAGAGATCA TGGTATAATA AATCCCTTTG CAACTCCACT CAGCCCTGAC AACCCATCCA 1620 CACACGGCCA GGCCTGTTTA TCTACACTGC TGCCCACTCC TCTCTCCAGC TCCACATGCT 1680 GTACCTGGAT CATTCTGAAG CAAATTCCGA GCATTACATC ATTTTGTCCA TAAATATTTC 1740 40 TAACATCCTT AAATATACAA TCGGAATTCA AGCATCTCCC ATTGTCCCAC AAATGTTTGG 1800 CTGTTTTTGT AGTTGGATTG TTTGTATTAG GATTCAAGCA AGGCCCATAT ATTGCATTTA 1860 TTTGAAATGT CTGTAAGTCT CTTTCCATCT ACAGAGTTTA GCACATTTGA ACGTTGCTGG
TTGAAATCCC GAGGTGTCAT TTGACATGGT TCTCTGAACT TATCTTTCCT ATAAAATGGT 1920 AGTTAGATCT GGAGGTCTGA TTTTGTGGCA AAAATACTTC CTAGGTGGTG CTGGGTACTT 2040 45 CTTGTTGCAT CCTGTCAGGA GGCAGATAAT GCTGGTGCCT CTCTATTGGT AATGTTAAGA 2100 CTGCTGGGTG GGTTTGGAGT TCTTGGCTTT AATCATTCAT TACAAAGTTC AGCATTTT Seq ID NO: 467 Protein sequence Protein Accession #: NP_001901.1 50 31 41 51 21 11 MKTLLLLLV LLELGEAQGS LHRVPLRRHP SLKKKLRARS QLSEFWKSHN LDMIQFTESC 60 SMDQSAKEPL INYLDMEYFG TISIGSPPQN FTVIFDTGSS NLWVPSVYCT SPACKTHSRF 120 55 QPSQSSTYSQ PGQSFSIQYG TGSLSGIIGA DQVSVEGLTV VGQQFGESVT EPGQTFVDAE 180 FDGILGLGYP SLAVGGVTPV FDNMMAQNLV DLPMFSVYMS SNPEGGAGSE LIFGGYDHSH 240 FSGSLNWVPV TKQAYWQIAL DNIQVGGTVM FCSEGCQAIV DTGTSLITGP SDKIKQLQNA 300 IGAAPVDGEY AVECANLNVM PDVTFTINGV PYTLSPTAYT LLDFVDGMQF CSSGFQGLDI 360 HPPAGPIWIL GOVETROFYS VFDRGNNRVG LAPAVP 60 Seg ID NO: 468 DNA seguence Nucleic Acid Accession #: NM 018058.1 Coding sequence: 319..1575 65 41 51 11 21 31 TACGCGCTGC GGGACCGGCA GGGGAACGCC ATCGGGGTCA CAGCCTGCGA CATCGACGGG GACGGCCGGG AGGAGATCTA CTTCCTCAAC ACCAATAATG CCTTCTCGGG GGTGGCCACG 120 TACACCGACA AGTTGTTCAA GTTCCGCAAT AACCGGTGGG AAGACATCCT GAGCGATGAG 180 70 GTCAACGTGG CCCGTGGTGT GGCCAGCCTC TTTGCCGGAC GCTCTGTGGC CTGTGTGGAC 240 AGAAAGGGCT CTGGACGCTA CTCTATCTAC ATTGCCAATT ACGCCTACGG TAATGTGGGC 300 CCTGATGCCC TCATTGAAAT GGACCCTGAG GCCAGTGACC TCTCCCGGGG CATTCTGGCG 360 CTCAGAGATG TGGCTGCTGA GGCTGGGGTC AGCAAATATA CAGGGGGCCG AGGCGTCAGC 420 GTGGGCCCCA TCCTCAGCAG CAGTGCCTCG GATATCTTCT GCGACAATGA GAATGGGCCT 75 AACTTCCTTT TCCACAACCG GGGCGATGGC ACCTTTGTGG ACGCTGCGGC CAGTGCTGGT 540 GTGGACGACC CCCACCAGCA TGGGCGAGGT GTCGCCCTGG CTGACTTCAA CCGTGATGGC 600 AAAGTGGACA TCGTCTATGG CAACTGGAAT GGCCCCCACC GCCTCTATCT GCAAATGAGC 660 ACCCATGGGA AGGTCCGCTT CCGGGACATC GCCTCACCCA AGTTCTCCAT GCCCTCCCCT 720 GTCCGCACGG TCATCACCGC CGACTTTGAC AATGACCAGG AGCTGGAGAT CTTCTTCAAC 80 AACATTGCCT ACCGCAGCTC CTCAGCCAAC CGCCTCTTCC GCGTCATCCG TAGAGAGCAC 840 GGAGACCCCC TCATCGAGGA GCTCAATCCC GGCGACGCCT TGGAGCCTGA GGGCCGGGGC 900 ACAGGGGGTG TGGTGACCGA CTTCGACGGA GACGGGATGC TGGACCTCAT CTTGTCCCAT 960 GGAGAGTCCA TGGCTCAGCC GCTGTCCGTC TTCCGGGGCA ATCAGGGCTT CAACAACAAC 1020 TGGCTGCGAG TGGTGCCACG CACCCGGGTT GGGGCCTTTG CCAGGGGAGC TAAGGTCGTG 1080 85 CTCTACACCA AGAAGAGTGG GGCCCACCTG AGGATCATCG ACGGGGGCTC AGGCTACCTG TGTGAGATGG AGCCCGTGGC ACACTTTGGC CTGGGGAAGG ATGAAGCCAG CAGTGTGGAG GTGACGTGGC CAGATGGCAA GATGGTGAGC CGGAACGTGG CCAGCGGGGA GATGAACTCA 1260

```
GTGCTGGAGA TCCTCTACCC CCGGGATGAG GACACACTTC AGGACCCAGC CCCACTGGAG
       ACACCAATGA ATGCATCCAG TTCCCATTCG TGTGCCCTCG AGACAAGCCC GTATGTGTCA
                                                                           1380
       ACACCTATGG AAGCTACAGG TGCCGGACCA ACAAGAAGTG CAGTCGGGGC TACGAGCCCA
                                                                           1440
       ACGAGGATGG CACAGCCTGC GTGGGGACTC TCGGCCAGTC ACCGGGCCCC CGCCCCACCA
                                                                           1500
 5
       CCCCACGC TGCTGCTGCC ACTGCCGCTG CTGCTGCCGC TGCTGGAGCT GCCACTGCTG
                                                                           1560
       CACCGGTCCT CGTAGATGGA GATCTCAATC TGGGGTCGGT GGTTAAGGAG AGCTGCGAGC
                                                                           1620
       CCAGCTGCTG AGCAGGGGTG GGACATGAAC CAGCGGATGG AGTCCAGCAG GGGAGTGGGA
                                                                           1680
       AAGTGGGCTT GTGCTGCTGC CTAGACAGTA GGGATGTAAA GGCCTGGGAG CTAGACCCTC
                                                                           1740
       1800
10
       CTGTGCTGGG CACATAGCTG TGATCACAGC AGACAGGGTC GCTGCCCTGA TGGCGCTTAC
                                                                           1860
       ATTCCAGTGG GTCTAATGAC CATATCTTAG GACACAGATG TGCCCAGGGA GGTGGTGTCA
CTGCACAGGA AGTATGAGGA CTTTAGTGTC CTGAGTTCAA ATCCTGATTC AGGAACTCAC
                                                                           1920
                                                                           1980
       AAAGCTATGT GACCTTACAC CAGTCACTTA ACTTGTTAGC CATCCATTAT CGCATCTGCA
                                                                           2040
       AAATGGGGAT TAAGAATAGA ATCTTGGGGT TAGTGTGGAG ATTAGATTAA ATGTATGTAA
15
       GACACTTGGC ACAAAACCTG GCACATAGTA AAGGCTCAAT AAAAACAAGT GCCTCTCACT
                                                                           2160
       GGGCTTTGTC AACACGTG
       Sea ID NO: 469 Protein sequence
       Protein Accession #: NP_060528.1
20
                                                               51
       MDPEASDLSR GILALRDVAA EAGVSKYTGG RGVSVGPILS SSASDIFCDN ENGPNFLFHN
                                                                             60
       RGDGTFVDAA ASAGVDDPHQ HGRGVALADF NRDGKVDIVY GNWNGPHRLY LQMSTHGKVR
                                                                            120
25
       FRDIASPKFS MPSPVRTVIT ADFDNDQELE IFFNNIAYRS SSANRLFRVI RREHGDPLIE
                                                                            180
       ELNPGDALEP EGRGTGGVVT DFDGDGMLDL ILSHGESMAQ PLSVFRGNQG FNNNWLRVVP
       RTRVGAFARG AKVVLYTKKS GAHLRIIDGG SGYLCEMEPV AHFGLGKDEA SSVEVTWPDG
                                                                             300
       KMVSRNVASG EMNSVLEILY PRDEDTLQDP APLETPMNAS SSHSCALETS PYVSTPMEAT
                                                                            360
       GAGPTRSAVG ATSPTRMAOP AWGLSASHRA PAPPPPPLLL PLPLLLPLLE LPLLHRSS
30
       Seg ID NO: 470 DNA seguence
       Nucleic Acid Accession #: AJ279016
       Coding sequence: 1..1962
35
                                         31
                                                    41
                                                               51
       ATGTCCAGGA TGTTACCGTT CCTGCTGCTG CTCTGGTTTC TGCCCATCAC TGAGGGGTCC
       CAGCGGGCTG AACCCATGTT CACTGCAGTC ACCAACTCAG TTCTGCCTCC TGACTATGAC
                                                                             120
       AGTAATCCCA CCCAGCTCAA CTATGGTGTG GCAGTTACTG ATGTGGACCA TGATGGGGAC
                                                                            180
40
       TTTGAGATCG TCGTGGCGGG GTACAATGGA CCCAACCTGG TTCTGAAGTA TGACCGGGCC
                                                                            240
       CAGAAGCGGC TGGTGAACAT CGCGGTCGAT GAGCGCAGCT CACCCTACTA CGCGCTGCGG
                                                                             300
       GACCGGCAGG GGAACGCCAT CGGGGTCACA GCCTGCGACA TCGACGGGA CGGCCGGGAG
GAGATCTACT TCCTCAACAC CAATAATGCC TTCTCGGGGG TGGCCACGTA CACCGACAAG
                                                                             360
       TTGTTCAAGT TCCGCAATAA CCGGTGGGAA GACATCCTGA GCGATGAGGT CAACGTGGCC
45
       CGTGGTGTGG CCAGCCTCTT TGCCGGACGC TCTGTGGCCT GTGTGGACAG AAAGGGCTCT
                                                                             540
       GGACGCTACT CTATCTACAT TGCCAATTAC GCCTACGGTA ATGTGGGCCC TGATGCCCTC
                                                                             600
       ATTGAAATGG ACCCTGAGGC CAGTGACCTC TCCCGGGGCA TTCTGGCGCT CAGAGATGTG
                                                                             660
       GCTGCTGAGG CTGGGGTCAG CAAATATACA GGGGGCCGAG GCGTCAGCGT GGGCCCCATC
                                                                             720
       CTCAGCAGCA GTGCCTCGGA TATCTTCTGC GACAATGAGA ATGGGCCTAA CTTCCTTTTC
                                                                             780
50
       CACAACCGGG GCGATGGCAC CTTTGTGGAC GCTGCGGCCA GTGCTGGTGT GGACGACCCC
       CACCAGCATG GGCGAGGTGT CGCCCTGGCT GACTTCAACC GTGATGGCAA AGTGGACATC
                                                                             900
       GTCTATGGCA ACTGGAATGG CCCCCACCGC CTCTATCTGC AAATGAGCAC CCATGGGAAG
                                                                             960
       GTCCGCTTCC GGGACATCGC CTCACCCAAG TTCTCCATGC CCTCCCTGT CCGCACGGTC
                                                                           1020
       ATCACCGCCG ACTTTGACAA TGACCAGGAG CTGGAGATCT TCTTCAACAA CATTGCCTAC
                                                                           1080
55
       CGCAGCTCCT CAGCCAACCG CCTCTTCCGC GTCATCCGTA GAGAGCACGG AGACCCCCTC
                                                                           1140
       ATCGAGGAGC TCAATCCCGG CGACGCCTTG GAGCCTGAGG GCCGGGGCAC AGGGGGTGTG
                                                                           1200
       GTGACCGACT TCGACGGAGA CGGGATGCTG GACCTCATCT TGTCCCATGG AGAGTCCATG
                                                                           1260
       GCTCAGCCGC TGTCCGTCTT CCGGGGCAAT CAGGGCTTCA ACAACAACTG GCTGCGAGTG
                                                                           1320
       GTGCCACGCA CCCGGTTTGG GGCCTTTGCC AGGGGAGCTA AGGTCGTGCT CTACACCAAG
                                                                           1380
60
       AAGAGTGGGG CCCACCTGAG GATCATCGAC GGGGGCTCAG GCTACCTGTG TGAGATGGAG
                                                                           1440
       CCCGTGGCAC ACTTTGGCCT GGGGAAGGAT GAAGCCAGCA GTGTGGAGGT GACGTGGCCA
                                                                           1500
       GATGGCAAGA TGGTGAGCCG GAACGTGGCC AGCGGGGAGA TGAACTCAGT GCTGGAGATC
                                                                           1560
       CTCTACCCCC GGGATGAGGA CACACTTCAG GACCCAGCCC CACTGGAGTG TGGCCAAGGA
                                                                           1620
       TTCTCCCAGC AGGAAAATGG CCATTGCATG GACACCAATG AATGCATCCA GTTCCCATTC
                                                                           1680
65
       GTGTGCCCTC GAGACAAGCC CGTATGTGTC AACACCTATG GAAGCTACAG GTGCCGGACC
                                                                           1740
       AACAAGAAGT GCAGTCGGGG CTACGAGCCC AACGAGGATG GCACAGCCTG CGTGGGGACT
                                                                           1800
       CTCGGCCAGT CACCGGGCCC CCGCCCCACC ACCCCCACCG CTGCTGCTGC CACTGCCGCT
                                                                           1860
       GCTGCTGCCG CTGCTGGAGC TGCCACTGCT GCACCGGTCC TCGTAGATGG AGATCTCAAT
                                                                           1920
       CTGGGGTCGG TGGTTAAGGA GAGCTGCGAG CCCAGCTGCT GAGCAGGGGT GGGACATGAA
                                                                           1980
70
       CCAGCGGATG GAGTCCAGCA GGGGAGTGGG AAAGTGGGCT TGTGCTGCTG CCTAGACAGT
                                                                           2040
       AGGGATGTAA AGGCCTGGGA GCTAGACCCT CCCCAAGCCC ATCCATGCAC ATTACTTAGC
                                                                           2100
       TAACAATTAG GGAGACTCGT AAGGCCAGGC CCTGTGCTGG GCACATAGCT GTGATCACAG
                                                                           2160
       CAGACAGGGT CGCTGCCCTG ATGGCGCTTA CATTCCAGTG GGTCTAATGA CCATATCTTA
                                                                           2220
       GGACACAGAT GTGCCCAGGG AGGTGGTGTC ACTGCACAGG AAGTATGAGG ACTTTAGTGT
                                                                           2280
75
       CCTGAGTTCA AATCCTGATT CAGGAACTCA CAAAGCTATG TGACCTTACA CCAGTCACTT
                                                                           2340
       AACTTGTTAG CCATCCATTA TCGCATCTGC AAAATGGGGA TTAAGAATAG AATCTTGGGG
                                                                           2400
       TTAGTGTGGA GATTAGATTA AATGTATGTA AGACACTTGG CACAAAACCT GGCACATAGT
                                                                           2460
       AAAGGCTCAA TAAAAACAAG TGCCTCTCAC TGGGCTTTGT CAACACG
80
       Seq ID NO: 471 Protein sequence
       Protein Accession #: CAC08451
                                         31
                                                    41
                                                               51
85
       MSRMLPFLLL LWFLPITEGS ORAEPMFTAV TNSVLPPDYD SNPTQLNYGV AVTDVDHDGD
                                                                              60
       FEIVVAGYNG PNLVLKYDRA QKRLVNIAVD ERSSPYYALR DRQGNAIGVT ACDIDGDGRE
       EIYFLNTNNA FSGVATYTDK LFKFRNNRWE DILSDEVNVA RGVASLFAGR SVACVDRKGS
                                                                             180
```

5	LSSSASDIFC VYGNWNGPHR RSSSANRLFR AQPLSVFRGN PVAHFGLGKD FSQQENGHCM	AYGNVGPDAL DNENGPNFLF LYLQMSTHGK VIRREHGDPL QGFNNNWLRV EASSVEVTWP DTNECIQFPF TPTAAAATAA	HNRGDGTFVD VRFRDIASPK IEELNPGDAL VPRTRFGAFA DGKMVSRNVA VCPRDKPVCV	AAASAGVDDP FSMPSPVRTV EPEGRGTGGV RGAKVVLYTK SGEMNSVLEI NTYGSYRCRT	HQHGRGVALA ITADFDNDQE VTDFDGDGML KSGAHLRIID LYPRDEDTLQ NKKCSRGYEP	DFNRDGKVDI LEIFFNNIAY DLILSHGESM GGSGYLCEME DPAPLECGQG NEDGTACVGT	240 300 360 420 480 540 600		
10	Seq ID NO: 472 DNA sequence Nucleic Acid Accession #: FGENESHH Coding sequence: 14794								
15	1	11	21	31	41	51 1			
13	ATGGCGTGTC	 CGGGAGGACT	CCCAGCCCGT	TGCTCTGGTT	 GGATGGGACT	 GGGTGGGCCC	60		
		CCCCAGCATC					120		
		ATGACCGGGC					180		
20		ACGCGCTGCG ACGGCCGGGA					240 300		
20		CAGCGCAGGT					360		
	CCACCTACAA	CCCCTGCAGG	CCTCCTGGGT	CTGCCTCCAC	TCAGCGGAAG	GGACTTTTCC	420		
		GTCAGGCTTC GACTGAGACC					480 540		
25		CGTACACCGA					600		
		AGGTCAACGT					660		
		ACAGAAAGGG					720		
		GCCCTGATGC CGCTCAGAGA					780 840		
30		CTGCCTCTCC					900		
		CAGAGGAGGC					960		
		GCTGGAAGGA CTGGGGCAGC					1020 1080		
		ATTTGGCTGA					1140		
35	GCGCCTTCTC	CAGCCCACCC	TTTCCCTGCC	CGCCAAGCCC	CCCAACACTA	CCCTGTAGCC	1200		
		CTCAGCTAAT					1260		
		GAGCCCCAGG AGGCTTTGGG					1320 1380		
		GGGAGGAAAG					1440		
40		GTCCCTGGAG					1500		
		CTCCCATTTT CACAGGAGTG					1560 1620		
	GGCCCCGGGA	GGGTGGCCAA	GCGAGAGATT	GGGAGAGAGA	CTGGGGCAGT	AGGAAGACCA	1680		
4.5	CTCTCCCATC	CCCTGGTCCC	CAACTTCCCC	AGCTGCTTGA	GGCCTCTTGA	AGCCGGGACA	1740		
45		CTGCCCTGCC					1800		
		ACCAGATGGA GGAAAGCACG					1860 1920		
		CCTCAGGCCT					1980		
50		ACTGTGGGTC					2040		
30		GCAGTGCCTC GGGGCGATGG					2100 2160		
	GCCTTCATCG	TTCACCTCAA	ATATCACCTC	TGCAGAGATT	TTCCTCACTC	CCTGTGCCAC	2220		
		CTGGTCCTTC					2280		
55		ATCATGGTTT AAGGCTTGGC					2340 2400		
25		CACCCTGCCT					2460		
	ACTGCCTATT	ACATTGTCCT	GTGGTCTGCC	ATCCCAGAGA	GCCTGATGAC	CCACAGCTAT	2520		
	TTGTCCTCTG	AAAGAGTCAA ACTTCAACCG	CGTGGGTGTG	GACGACCCCC	ACCAGCATGG	GCGAGGTGTC	2580 2640		
60		TCTATCTGCA					2700		
• •	TCACCCAAGT	TCTCCATGCC	CTCCCCTGTC	CGCACGGTCA	TCACCGCCGA	CTTTGACAAT	2760		
		TGGAGATCTT					2820		
		GCTCCATCCT AAGGTTTAAG					2880 2940		
65		CAGGTCCCCT					3000		
		GGAATGCAGG					3060		
	AAAGGGAAGG	GAAATGTGGC ACAAAAAGGG	CCAAAGTGTG	CCCAGAACCC	AAGCGCCACA	AGATACAAAG	3120 3180		
		TACCAGGAAA					3240		
70	CGGGGTCCAA	TCACTACCAG	GAAAAGGGGC	TACGGGGTCC	AATCACTACC	AGGAAAAGGG	3300		
	GCTACGGGCT	CCAATCACTA	CCAGGAAAAG	GGGCTACAGG	GTCCAATCAC	TACCAGGAAA	3360 3420		
		GGCTCCAATC TACGGGCTCC					3480		
<i></i>	CCAGGAAAAG	GGGCTACAGG	GTCCAATCAC	TACCAGGAAA	AGGGGCTACG	GGGTCCAATC	3540		
75		AAAGGGGCTA					3600		
		AGGAAAAGGG TACCACAGAA					3660 3720		
	CGGGGTCCAA	TCACTACCAG	GAAAAGGGGC	TACGGGCTCC	AATCACTACC	AGGAAAAGAG	3780		
0.0	GCTATGGGGT	CCAATCACTA	CCAGGAAAAG	GGGCTACGGG	CTCCAATCAC	TACCAGGAAA	3840		
80	AGGGGCTATG	GGGTCCAATC	ACTACCACAG	AAAGGGGCTA	CGGGGTCCAA	CGTCATCCGT	3900		
		GAGACCCCCT CAGGGGGTGT					3960 4020		
	TTGTCCCATG	GAGAGTCCAT	GGCTCAGCCG	CTGTCCGTCT	TCCGGGGCAA	TCAGGGCTTC	4080		
0.5	AACAACAACT	GGCTGCGAGT	GGTGCCACGC	ACCCGGTTTG	GGGCCTTTGC	CAGGGGAGCT	4140		
85	AAGGTCGTGC	TCTACACCAA GTGAGATGGA	GAAGAGTGGG	GCCCACCTGA	GGATCATCGA	CGGGGGCTCA	4200 4260		
		GTGAGATGGA TGACGTGGCC					4320		

```
WO 02/086443
       ATGAACTCAG TGCTGGAGAT CCTCTACCCC CGGGATGAGG ACACACTTCA GGACCCAGCC
                                                                            4380
       CCACTGGAGT GTGGCCAAGG ATTCTCCCAG CAGGAAAATG GCCATTGCAT GGACACCAAT
                                                                            4440
       GAATGCATCC AGTTCCCATT CGTGTGCCCT CGAGACAAGC CCGTATGTGT CAACACCTAT
                                                                            4500
       GGAAGCTACA GGTGCCGGAC CAACAAGAAG TGCAGTCGGG GCTACGAGCC CAACGAGGAT
                                                                            4560
 5
       GGCACAGCCT GCGTGGGTAC TGAGCTAGGC TCTAGGCATA CAATGACGTG GAAACCAAGG
                                                                            4620
       CCCAAAAAGG AGCTGCAACT TTCCCAAGGC ATCTGCACCC CCGTCTGGTC CTTTTTCCTG
                                                                            4680
       CCGGGTTGCC GGCTGCTCCT CAAAAGAGCT CAGCTCCAGG CTGCTCCCAG CACCCTTCTC
                                                                            4740
       CAGAAAGCTC CAGGTATTCC AGAAGCCCAA GTGTATGAAC AAGATCAGGA ATAA
10
       Seq ID NO: 473 Protein sequence
       Protein Accession #: FGENESH predicted
                  11
                              21
                                                    41
                                                               51
15
       MACPGGLPAR CSGWMGLGGP SGSSPASPPH SSSRYNGPNL VLKYDRAQKR LVNIAVDERS
       SPYYALRDRO GNAIGVTACD IDGDGREEIY FLNTNNAFSG HSSSAQVPSG LHRNRPVLKP
                                                                             120
       PPTTPAGLLG LPPLSGRDFS SSLGQASPDS RQGERVPVPC CRGGLRPTHE PEPFLLRPKS
                                                                             180
       GVATYTDKLF KFRNNRWEDI LSDEVNVARG VASLFAGRSV ACVDRKGSGR YSIYIANYAY
                                                                             240
       GNVGPDALIE MDPEASDLSR GILALRDVAA EAGVSKYTEG FSHTASPSIG EISGRTEERE
                                                                             300
20
       GGDPEEADEE HSGDGSTSQL CRLGWKDGQF KEEAAALVEE QREAGAAGVP RGRVRTALQT
                                                                             360
       SKSHLADKNL FGPPCYYSVC APSPAHPFPA RQAPQHYPVA PLVTQLMTHG RLAGKLARSV
       PHPRAPGMDP KCKGRHAEPG LMAEALGAWP ALSTTVVPGG LRSWEESRQK GQAMSRCALR
                                                                             480
                                                                             540
       ELGGPWSQAT QHLPARELYD LGEPPILQRT DGDPGRRRDS PKVTQECHLV ATMPALGGLE
       GPGRVAKREI GRETGAVGRP LSHPLVPNFP SCLRPLEAGT VPGAALPGNP GNWVLDMAKA
                                                                             600
25
       LAWNOMEKEE GKIHGDHEPR FRLRKAREAE FPPGSSEEPL LQFPSGLRGS PVLQVGLGLA
                                                                             660
       SATHCGSMSF LGGRGVSVGP ILSSSASDIF CDNENGPNFL FHNRGDGTFV DAAASAERRL
                                                                             720
       AFIVHLKYHL CRDFPHSLCH LAETGPSSSC CPWHARLLQA PHCHHGLSMS FTRTGSRFYS
       FLTQGLASSA HRRTLSLQGS QGAPPCLLAR APCVLGSLIP TAYYIVLWSA IPESLMTHSY
                                                                             840
       LSSERVNVGV DDPHQHGRGV ALADFNRDGK VDIVYGNWNG PHRLYLQMST HGKVRFRDIA
                                                                             900
30
       SPKFSMPSPV RTVITADFDN DOELEIFFNN IAYRSSSANR LFRCSILARG SSSLTAGGRN
                                                                             960
       GQGEGLRIRR GGFPGPGGQA KVNTGPLMKK QKGRKDEDWA RGCGNAGQSL AKEPASAIAG KGKGNVAQSV PRTQAPQDTK PHYHKKGLQG PITTRKRGYG VQSLPGKGAT GSNHYQEKGL
                                                                            1020
                                                                            1080
       RGPITTRKRG YGVQSLPGKG ATGSNHYQEK GLQGPITTRK RGYGLQSLPG KGATGSNHYH
                                                                            1140
       RKGLRAPITT RKRGYGVQSL PGKGATGSNH YQEKGLRGPI TTRKRGYGLQ SLPGKGATGS
                                                                            1200
35
       NHYQEKGLQG PITTRKRGYR VQSLPQKGAT GSNHYQEKGL RGPITTRKRG YGLQSLPGKE
                                                                            1260
       AMGSNHYQEK GLRAPITTRK RGYGVQSLPQ KGATGSNVIR REHGDPLIEE LNPGDALEPE
                                                                            1320
       GRGTGGVVTD FDGDGMLDLI LSHGESMAOP LSVFRGNOGF NNNWLRVVPR TRFGAFARGA
                                                                            1380
       KVVLYTKKSG AHLRIIDGGS GYLCEMEPVA HFGLGKDEAS SVEVTWPDGK MVSRNVASGE
                                                                            1440
       MNSVLEILYP RDEDTLQDPA PLECGQGFSQ QENGHCMDTN ECIQFPFVCP RDKPVCVNTY
                                                                            1500
40
       GSYRCRINKK CSRGYEPNED GTACVGTELG SRHIMIWKPR PKKELQLSQG ICTPVWSFFL
       PGCRLLLKRA QLQAAPSTLL QKAPGIPEAQ VYEQDQE
       Seg ID NO: 474 DNA seguence
       Nucleic Acid Accession #: NM_003661.1
45
       Coding sequence: 1..1152
                                                               51
                                                    41
       ATGAGTGCAC TTTTCCTTGG TGTGGGAGTG AGGGCAGAGG AAGCTGGAGC GAGGGTGCAA
                                                                              60
50
       CAAAACGTTC CAAGTGGGAC AGATACTGGA GATCCTCAAA GTAAGCCCCT CGGTGACTGG
                                                                             120
       GCTGCTGGCA CCATGGACCC AGAGAGCAGT ATCTTTATTG AGGATGCCAT TAAGTATTTC
       AAGGAAAAAG TGAGCACACA GAATCTGCTA CTCCTGCTGA CTGATAATGA GGCCTGGAAC
                                                                             240
       GGATTCGTGG CTGCTGCTGA ACTGCCCAGG AATGAGGCAG ATGAGCTCCG TAAAGCTCTG
                                                                             300
       GACAACCTTG CAAGACAAAT GATCATGAAA GACAAAAACT GGCACGATAA AGGCCAGCAG
                                                                             360
55
       TACAGAAACT GGTTTCTGAA AGAGTTTCCT CGGTTGAAAA GTGAGCTTGA GGATAACATA
                                                                             420
       AGAAGGCTCC GTGCCCTTGC AGATGGGGTT CAGAAGGTCC ACAAAGGCAC CACCATCGCC
                                                                             480
       AATGTGGTGT CTGGCTCTCT CAGCATTTCC TCTGGCATCC TGACCCTCGT CGGCATGGGT
                                                                             540
       CTGGCACCCT TCACAGAGGG AGGCAGCCTT GTACTCTTGG AACCTGGGAT GGAGTTGGGA
                                                                             600
       ATCACAGCCG CTTTGACCGG GATTACCAGC AGTACCATGG ACTACGGAAA GAAGTGGTGG
                                                                             660
60
       ACACAAGCCC AAGCCCACGA CCTGGTCATC AAAAGCCTTG ACAAATTGAA GGAGGTGAGG
                                                                             720
       GAGTTTTTGG GTGAGAACAT ATCCAACTTT CTTTCCTTAG CTGGCAATAC TTACCAACTC
                                                                             780
       ACACGAGGCA TTGGGAAGGA CATCCGTGCC CTCAGACGAG CCAGAGCCAA TCTTCAGTCA
                                                                             840
       GTACCGCATG CCTCAGCCTC ACGCCCCCGG GTCACTGAGC CAATCTCAGC TGAAAGCGGT
                                                                             900
       GAACAGGTGG AGAGGGTTAA TGAACCCAGC ATCCTGGAAA TGAGCAGAGG AGTCAAGCTC
                                                                             960
65
       ACGGATGTGG CCCCTGTAAG CTTCTTTCTT GTGCTGGATG TAGTCTACCT CGTGTACGAA
                                                                            1020
       TCAAAGCACT TACATGAGGG GGCAAAGTCA GAGACAGCTG AGGAGCTGAA GAAGGTGGCT
                                                                            1080
       CAGGAGCTGG AGGAGAAGCT AAACATTCTC AACAATAATT ATAAGATTCT GCAGGCGGAC
                                                                            1140
       CAAGAACTGT GA
70
       Seq ID NO: 475 Protein sequence
       Protein Accession #: NP 003652.1
                              21
                                         3.1
                                                    41
                                                               51
75
       MSALFLGVGV RAEEAGARVQ QNVPSGTDTG DPQSKPLGDW AAGTMDPESS IFIEDAIKYF
       KEKVSTONLL LLLTDNEAWN GFVAAAELPR NEADELRKAL DNLAROMIMK DKNWHDKGOO
                                                                             120
       YRNWFLKEFP RLKSELEDNI RRLRALADGV QKVHKGTTIA NVVSGSLSIS SGILTLVGMG
                                                                             180
       LAPFTEGGSL VLLEPGMELG ITAALTGITS STMDYGKKWW TQAQAHDLVI KSLDKLKEVR
                                                                             240
       EFLGENISNF LSLAGNTYQL TRGIGKDIRA LRRARANLQS VPHASASRPR VTEPISAESG
                                                                             300
80
       EOVERVNEPS ILEMSRGVKL TDVAPVSFFL VLDVVYLVYE SKHLHEGAKS ETAEELKKVA
                                                                             360
       QELEEKLNIL NNNYKILQAD QEL
       Seq ID NO: 476 DNA sequence
       Nucleic Acid Accession #: NM_014452.1
85
       Coding sequence: 1..1968
                  11
                              21
                                         31
                                                    41
                                                               51
       1
```

```
WO 02/086443
       ATGGGGACCT CTCCGAGCAG CAGCACCGCC CTCGCCTCCT GCAGCCGCAT CGCCCGCGA
                                                                               60
       GCCACAGCCA CGATGATCGC GGGCTCCCTT CTCCTGCTTG GATTCCTTAG CACCACCACA
       GCTCAGCCAG AACAGAAGGC CTCGAATCTC ATTGGCACAT ACCGCCATGT
                                                                              180
 5
       ACCGGCCAGG TGCTAACCTG TGACAAGTGT CCAGCAGGAA CCTATGTCTC TGAGCATTGT
                                                                              240
       ACCAACAA GCCTGCGCGT CTGCAGCAGT TGCCCTGTGG GGACCTTTAC CAGGCATGAG
                                                                              300
       AATGGCATAG AGAAATGCCA TGACTGTAGT CAGCCATGCC CATGGCCAAT GATTGAGAAA TTACCTTGTG CTGCCTTGAC TGACCGAGAA TGCACTTGCC CACCTGGCAT GTTCCAGTCT
                                                                            制 360
                                                                              420
       AACGCTACCT GTGCCCCCCA TACGGTGTGT CCTGTGGGTT GGGGTGTGCG GAAGAAAGGG
                                                                              480
10
       ACAGAGACTG AGGATGTGCG GTGTAAGCAG TGTGCTCGGG GTACCTTCTC AGATGTGCCT
       TCTAGTGTGA TGAAATGCAA AGCATACACA GACTGTCTGA GTCAGAACCT GGTGGTGATC
                                                                              600
       AAGCCGGGGA CCAAGGAGAC AGACAACGTC TGTGGCACAC TCCCGTCCTT CTCCAGCTCC
                                                                              660
       ACCTCACCTT CCCCTGGCAC AGCCATCTTT CCACGCCCTG AGCACATGGA AACCCATGAA
                                                                              720
       GTCCCTTCCT CCACTTATGT TCCCAAAGGC ATGAACTCAA CAGAATCCAA CTCTTCTGCC
                                                                              780
15
       TCTGTTAGAC CAAAGGTACT GAGTAGCATC CAGGAAGGGA CAGTCCCTGA CAACACAAGC
                                                                              840
       TCAGCAAGGG GGAAGGAAGA CGTGAACAAG ACCCTCCCAA ACCTTCAGGT AGTCAACCAC
                                                                              900
       CAGCAAGGCC CCCACCACAG ACACATCCTG AAGCTGCTGC CGTCCATGGA GGCCACTGGG
                                                                              960
       GGCGAGAAGT CCAGCACGCC CATCAAGGGC CCCAAGAGGG GACATCCTAG ACAGAACCTA
                                                                            1020
       CACAAGCATT TTGACATCAA TGAGCATTTG CCCTGGATGA TTGTGCTTTT CCTGCTGCTG
                                                                            1080
20
       GTGCTTGTGG TGATTGTGGT GTGCAGTATC CGGAAAAGCT CGAGGACTCT GAAAAAGGGG
                                                                             1140
       CCCCGGCAGG ATCCCAGTGC CATTGTGGAA AAGGCAGGGC TGAAGAAATC CATGACTCCA
                                                                             1200
       ACCCAGAACC GGGAGAAATG GATCTACTAC TGCAATGGCC ATGGTATCGA TATCCTGAAG
       CTTGTAGCAG CCCAAGTGGG AAGCCAGTGG AAAGATATCT ATCAGTTTCT TTGCAATGCC
                                                                            1320
       AGTGAGAGGG AGGTTGCTGC TTTCTCCAAT GGGTACACAG CCGACCACGA GCGGGCCTAC
                                                                            1380
25
       GCAGCTCTGC AGCACTGGAC CATCCGGGGC CCCGAGGCCA GCCTCGCCCA GCTAATTAGC
                                                                            1440
       GCCCTGCGCC AGCACCGGAG AAACGATGTT GTGGAGAAGA TTCGTGGGCT GATGGAAGAC
                                                                            1500
       ACCACCCAGC TGGAAACTGA CAAACTAGCT CTCCCGATGA GCCCCAGCCC GCTTAGCCCG
                                                                             1560
       AGCCCCATCC CCAGCCCCAA CGCGAAACTT GAGAATTCCG CTCTCCTGAC GGTGGAGCCT
                                                                             1620
       TCCCCACAGG ACAAGAACAA GGGCTTCTTC GTGGATGAGT CGGAGCCCCT TCTCCGCTGT
                                                                            1680
30
       GACTCTACAT CCAGCGGCTC CTCCGCGCTG AGCAGGAACG GTTCCTTTAT TACCAAAGAA
                                                                            1740
       AAGAAGGACA CAGTGTTGCG GCAGGTACGC CTGGACCCCT GTGACTTGCA GCCTATCTTT
                                                                            1800
       GATGACATGC TCCACTTTCT AAATCCTGAG GAGCTGCGGG TGATTGAAGA GATTCCCCAG
                                                                            1860
       GCTGAGGACA AACTAGACCG GCTATTCGAA ATTATTGGAG TCAAGAGCCA GGAAGCCAGC
                                                                            1920
       CAGACCCTCC TGGACTCTGT TTATAGCCAT CTTCCTGACC TGCTGTAG
35
       Seq ID NO: 477 Protein sequence
       Protein Accession #: NP_055267.1
                                         31
                                                     41
                                                                51
40
       MGTSPSSSTA LASCSRIARR ATATMIAGSL LLLGFLSTTT AQPEQKASNL IGTYRHVDRA
                                                                               60
       TGQVLTCDKC PAGTYVSEHC TNTSLRVCSS CPVGTFTRHE NGIEKCHDCS QPCPWPMIEK
                                                                              120
       LPCAALTDRE CTCPPGMFOS NATCAPHTVC PVGWGVRKKG TETEDVRCKQ CARGTFSDVP
                                                                              180
       SSYMKCKAYT DCLSONLYVI KPGTKETDNY CGTLPSESS TSPSPGTAIF PRPEHMETHE
                                                                              240
45
       VPSSTYVPKG MNSTESNSSA SVRPKVLSSI QEGTVPDNTS SARGKEDVNK TLPNLQVVNH
                                                                              300
       QQGPHHRHIL KLLPSMEATG GEKSSTPIKG PKRGHPRQNL HKHFDINEHL PWMIVLFLLL
       VLVVIVVCSI RKSSRTLKKG PRODPSAIVE KAGLKKSMTP TONREKWIYY CNGHGIDILK
                                                                              420
       LVAAQVGSQW KDIYQFLCNA SEREVAAFSN GYTADHERAY AALQHWTIRG PEASLAQLIS
                                                                              480
       ALROHRRNDV VEKIRGLMED TTQLETDKLA LPMSPSPLSP SPIPSPNAKL ENSALLTVEP
                                                                              540
50
       SPODKNKGFF VDESEPLLRC DSTSSGSSAL SRNGSFITKE KKDTVLRQVR LDPCDLQPIF
                                                                              600
       DDMLHFLNPE ELRVIEEIPQ AEDKLDRLFE IIGVKSQEAS QTLLDSVYSH LPDLL
       Seg ID NO: 478 DNA seguence
       Nucleic Acid Accession #: XM_044533
55
       Coding sequence: 238..2751
                  11
                              21
                                         31
                                                     41
                                                                51
       GCTCTGCCCA AGCCGAGGCT GCGGGGCCGG CGCCGGCGG AGGACTGCGG TGCCCCGCGG
                                                                               60
60
       AGGGGCTGAG TTTGCCAGGG CCCACTTGAC CCTGTTTCCC ACCTCCCGCC CCCCAGGTCC
                                                                              120
       GGAGCCGGG GCCCCGGGG CGACTCGGGG GCGGACCGCG GGGCGGAGCT GCCGCCCGTG
                                                                              180
       AGTCCGGCCG AGCCACCTGA GCCCGAGCCG CGGGACACCG TCGCTCCTGC TCTCCGAATG
                                                                              240
       CTGCGCACCG CGATGGGCCT GAGGAGCTGG CTCGCCGCCC CATGGGGCGC GCTGCCGCCT
                                                                              300
       CGGCCACCGC TGCTGCTGCT CCTGCTGCTG CTGCTCCTGC TGCAGCCGCC GCCTCCGACC
                                                                              360
65
       TGGGCGCTCA GCCCCGGAT CAGCCTGCCT CTGGGCTCTG AAGAGCGGCC ATTCCTCAGA
                                                                              420
       TTCGAAGCTG AACACATCTC CAACTACACA GCCCTTCTGC TGAGCAGGGA TGGCAGGACC
                                                                              480
       CTGTACGTGG GTGCTCGAGA GGCCCTCTTT GCACTCAGTA GCAACCTCAG CTTCCTGCCA
                                                                              540
       GGCGGGGAGT ACCAGGAGCT GCTTTGGGGT GCAGACGCAG AGAAGAAACA GCAGTGCAGC
                                                                              600
       TTCAAGGGCA AGGACCCACA GCGCGACTGT CAAAACTACA TCAAGATCCT CCTGCCGCTC
                                                                              660
70
       AGCGGCAGTC ACCTGTTCAC CTGTGGCACA GCAGCCTTCA GCCCCATGTG TACCTACATC
       AACATGGAGA ACTTCACCCT GGCAAGGGAC GAGAAGGGGA ATGTCCTCCT GGAAGATGGC
                                                                              780
       AAGGGCCGTT GTCCCTTCGA CCCGAATTTC AAGTCCACTG CCCTGGTGGT TGATGGCGAG
                                                                              840
       CTCTACACTG GAACAGTCAG CAGCTTCCAA GGGAATGACC CGGCCATCTC GCGGAGCCAA
                                                                              900
       AGCCTTCGCC CCACCAAGAC CGAGAGCTCC CTCAACTGGC TGCAAGACCC AGCTTTTGTG
                                                                              960
75
       GCCTCAGCCT ACATTCCTGA GAGCCTGGGC AGCTTGCAAG GCGATGATGA CAAGATCTAC
                                                                            1020
       TTTTTCTTCA GCGAGACTGG CCAGGAATTT GAGTTCTTTG AGAACACCAT TGTGTCCCGC
                                                                            1080
       ATTGCCCGCA TCTGCAAGGG CGATGAGGGT GGAGAGCGGG TGCTACAGCA GCGCTGGACC
                                                                            1140
       TCCTTCCTCA AGGCCCAGCT GCTGTGCTCA CGGCCCGACG ATGGCTTCCC CTTCAACGTG
                                                                            1200
       CTGCAGGATG TCTTCACGCT GAGCCCCAGC CCCCAGGACT GGCGTGACAC CCTTTTCTAT
                                                                            1260
80
       GGGGTCTTCA CTTCCCAGTG GCACAGGGGA ACTACAGAAG GCTCTGCCGT CTGTGTCTTC
                                                                            1320
       ACAATGAAGG ATGTGCAGAG AGTCTTCAGC GGCCTCTACA AGGAGGTGAA CCGTGAGACA
                                                                            1380
       CAGCAGTGGT ACACCGTGAC CCACCCGGTG CCCACACCCC GGCCTGGAGC GTGCATCACC
                                                                            1440
       AACAGTGCCC GGGAAAGGAA GATCAACTCA TCCCTGCAGC TCCCAGACCG CGTGCTGAAC
                                                                            1500
       TTCCTCAAGG ACCACTTCCT GATGGACGGG CAGGTCCGAA GCCGCATGCT GCTGCTGCAG
                                                                            1560
85
       CCCCAGGCTC GCTACCAGCG CGTGGCTGTA CACCGCGTCC CTGGCCTGCA CCACACCTAC
                                                                            1620
       GATGTCCTCT TCCTGGGCAC TGGTGACGGC CGGCTCCACA AGGCAGTGAG CGTGGGCCCC CGGGTGCACA TCATTGAGGA GCTGCAGATC TTCTCATCGG GACAGCCCGT GCAGAATCTG
                                                                            1680
```

```
CTCCTGGACA CCCACAGGGG GCTGCTGTAT GCGGCCTCAC ACTCGGGCGT AGTCCAGGTG CCCATGGCCA ACTGCAGCCT GTACAGGAGC TGTGGGGACT GCCTCTCGC CCGGGACCCC
                                                                            1860
                                                                            1920
       TACTGTGCTT GGAGCGGCTC CAGCTGCAAG CACGTCAGCC TCTACCAGCC TCAGCTGGCC
       ACCAGGCCGT GGATCCAGGA CATCGAGGGA GCCAGCGCCA AGGACCTTTG CAGCGCGTCT
                                                                            1980
 5
       TCGGTTGTGT CCCCGTCTTT TGTACCAACA GGGGAGAAGC CATGTGAGCA AGTCCAGTTC
                                                                            2040
       CAGCCCAACA CAGTGAACAC TTTGGCCTGC CCGCTCCTCT CCAACCTGGC GACCCGACTC
                                                                            2100
       TGGCTACGCA ACGGGGCCCC CGTCAATGCC TCGGCCTCCT GCCACGTGCT ACCCACTGGG
                                                                            2160
       GACCTGCTGC TGGTGGGCAC CCAACAGCTG GGGGAGTTCC AGTGCTGGTC ACTAGAGGAG
       GGCTTCCAGC AGCTGGTAGC CAGCTACTGC CCAGAGGTGG TGGAGGACGG GGTGGCAGAC
                                                                            2280
10
       CAAACAGATG AGGGTGGCAG TGTACCCGTC ATTATCAGCA CATCGCGTGT GAGTGCACCA
                                                                            2340
       GCTGGTGGCA AGGCCAGCTG GGGTGCAGAC AGGTCCTACT GGAAGGAGTT CCTGGTGATG
                                                                            2400
                                                                            2460
       TGCACGCTCT TTGTGCTGGC CGTGCTGCTC CCAGTTTTAT TCTTGCTCTA CCGGCACCGG
       AACAGCATGA AAGTCTTCCT GAAGCAGGGG GAATGTGCCA GCGTGCACCC CAAGACCTGC
                                                                             2520
       CCTGTGGTGC TGCCCCCTGA GACCCGCCCA CTCAACGGCC TAGGGCCCCC TAGCACCCCG
                                                                             2580
15
       CTCGATCACC GAGGGTACCA GTCCCTGTCA GACAGCCCCC CGGGGTCCCG AGTCTTCACT
                                                                             2640
       GAGTCAGAGA AGAGGCCACT CAGCATCCAA GACAGCTTCG TGGAGGTATC CCCAGTGTGC
                                                                             2700
       CCCCGGCCCC GGGTCCGCCT TGGCTCGGAG ATCCGTGACT CTGTGGTGTG AGAGCTGACT
                                                                             2760
       TCCAGAGGAC GCTGCCCTGG CTTCAGGGGC TGTGAATGCT CGGAGAGGGT CAACTGGACC
                                                                             2820
       TCCCCTCCGC TCTGCTCTTC GTGGAACACG ACCGTGGTGC CCGGCCCTTG GGAGCCTTGG
                                                                             2880
       GGCCAGCTGG CCTGCTGCTC TCCAGTCAAG TAGCGAAGCT CCTACCACCC AGACACCCAA
20
                                                                             2940
       ACAGCCGTGG CCCCAGAGGT CCTGGCCAAA TATGGGGGCC TGCCTAGGTT GGTGGAACAG
                                                                             3000
       TGCTCCTTAT GTAAACTGAG CCCTTTGTTT AAAAAACAAT TCCAAATGTG AAACTAGAAT
                                                                             3060
       GAGAGGGAAG AGATAGCATG GCATGCAGCA CACACGGCTG CTCCAGTTCA TGGCCTCCCA
                                                                             3120
                                                                             3180
       GGGGTGCTGG GGATGCATCC AAAGTGGTTG TCTGAGACAG AGTTGGAAAC CCTCACCAAC
       TGGCCTCTTC ACCTTCCACA TTATCCCGCT GCCACCGGCT GCCCTGTCTC ACTGCAGATT
                                                                             3240
25
       CAGGACCAGC TTGGGCTGCG TGCGTTCTGC CTTGCCAGTC AGCCGAGGAT GTAGTTGTTG
                                                                             3300
                                                                             3360
       CTGCCGTCGT CCCACCACCT CAGGGACCAG AGGGCTAGGT TGGCACTGCG GCCCTCACCA
       GGTCCTGGGC TCGGACCCAA CTCCTGGACC TTTCCAGCCT GTATCAGGCT GTGGCCACAC
                                                                             3420
       GAGAGGACAG CGCGAGCTCA GGAGAGATTT CGTGACAATG TACGCCTTTC CCTCAGAATT
                                                                             3480
30
       CAGGGAAGAG ACTGTCGCCT GCCTTCCTCC GTTGTTGCGT GAGAACCCGT GTGCCCCTTC
                                                                             3540
       CCACCATATC CACCCTCGCT CCATCTTTGA ACTCAAACAC GAGGAACTAA CTGCACCCTG
                                                                             3600
       GTCCTCTCCC CAGTCCCAG TTCACCCTCC ATCCCTCACC TTCCTCCACT CTAAGGGATA TCAACACTGC CCAGCACAGG GGCCCTGAAT TTATGTGGTT TTTATACATT TTTTAATAAG
                                                                             3660
       ATGCACTTTA TGTCATTTTT TAATAAAGTC TGAAGAATTA CTGTTT
35
       Seq ID NO: 479 Protein sequence
       Protein Accession #: XP_044533.3
                                                                 51
                                          31
                                                     41
                   11
                              21
40
       MLRTAMGLRS WLAAPWGALP PRPPLLLLL LLLLLQPPPP TWALSPRISL PLGSEERPFL
                                                                               60
       RFEAEHISNY TALLLSRDGR TLYVGAREAL FALSSNLSFL PGGEYQELLW GADAEKKQQC
                                                                              120
       SFKGKDPQRD CQNYIKILLP LSGSHLFTCG TAAFSPMCTY INMENFTLAR DEKGNVLLED
       GKGRCPFDPN FKSTALVVDG ELYTGTVSSF QGNDPAISRS QSLRPTKTES SLNWLQDPAF
       VASAYIPESL GSLQGDDDKI YFFFSETGQE FEFFENTIVS RIARICKGDE GGERVLQQRW
45
                                                                              300
       TSFLKAQLLC SRPDDGFPFN VLQDVFTLSP SPQDWRDTLF YGVFTSQWHR GTTEGSAVCV
                                                                              360
       FTMKDVORVF SGLYKEVNRE TQQWYTVTHP VPTPRPGACI TNSARERKIN SSLQLPDRVL
                                                                              420
       NFLKDHFLMD GQVRSRMLLL QPQARYQRVA VHRVPGLHHT YDVLFLGTGD GRLHKAVSVG
                                                                              480
       PRVHIIEELQ IFSSGQPVQN LLLDTHRGLL YAASHSGVVQ VPMANCSLYR SCGDCLLARD
                                                                              540
       PYCAWSGSSC KHVSLYQPQL ATRPWIQDIE GASAKDLCSA SSVVSPSFVP TGEKPCEQVQ
50
       FOPNTVNTLA CPLLSNLATR LWLRNGAPVN ASASCHVLPT GDLLLVGTQQ LGEFQCWSLE
                                                                              660
       EGFQQLVASY CPEVVEDGVA DQTDEGGSVP VIISTSRVSA PAGGKASWGA DRSYWKEFLV
                                                                              720
       MCTLFVLAVL LPVLFLLYRH RNSMKVFLKQ GECASVHPKT CPVVLPPETR PLNGLGPPST
                                                                              780
       PLDHRGYQSL SDSPPGSRVF TESEKRPLSI QDSFVEVSPV CPRPRVRLGS EIRDSVV
55
       Sec ID NO: 480 DNA sequence
       Nucleic Acid Accession #: NM_004217.1
       Coding sequence: 58..1092
60
                                                                 51
                                                     41
                                          31
       GGCCGGGAGA GTAGCAGTGC CTTGGACCCC AGCTCTCCTC CCCCTTTCTC TCTAAGGATG
       GCCCAGAAGG AGAACTCCTA CCCCTGGCCC TACGGCCGAC AGACGGCTCC ATCTGGCCTG
                                                                              120
       AGCACCCTGC CCCAGCGAGT CCTCCGGAAA GAGCCTGTCA CCCCATCTGC ACTTGTCCTC
                                                                              180
65
       ATGAGCCGCT CCAATGTCCA GCCCACAGCT GCCCCTGGCC AGAAGGTGAT GGAGAATAGC
                                                                              240
       AGTGGGACAC CCGACATCTT AACGCGGCAC TTCACAATTG ATGACTTTGA GATTGGGCGT
                                                                              300
        CCTCTGGGCA AAGGCAAGTT TGGAAACGTG TACTTGGCTC GGGAGAAGAA AAGCCATTTC
                                                                              360
       ATCGTGGCGC TCAAGGTCCT CTTCAAGTCC CAGATAGAGA AGGAGGGCGT GGAGCATCAG
                                                                              420
        CTGCGCAGAG AGATCGAAAT CCAGGCCCAC CTGCACCATC CCAACATCCT GCGTCTCTAC
                                                                              480
       AACTATTTT ATGACCGGAG GAGGATCTAC TTGATTCTAG AGTATGCCCC CCGCGGGGAG
70
                                                                              540
        CTCTACAAGG AGCTGCAGAA GAGCTGCACA TTTGACGAGC AGCGAACAGC CACGATCATG
                                                                              600
        GAGGAGTTGG CAGATGCTCT AATGTACTGC CATGGGAAGA AGGTGATTCA CAGAGACATA
                                                                              660
        AAGCCAGAAA ATCTGCTCTT AGGGCTCAAG GGAGAGCTGA AGATTGCTGA CTTCGGCTGG
                                                                              720
        TCTGTGCATG CGCCCTCCCT GAGGAGGAAG ACAATGTGTG GCACCCTGGA CTACCTGCCC
75
        CCAGAGATGA TTGAGGGGCG CATGCACAAT GAGAAGGTGG ATCTGTGGTG CATTGGAGTG
                                                                              840
        CTTTGCTATG AGCTGCTGGT GGGGAACCCA CCCTTTGAGA GTGCATCACA CAACGAGACC
                                                                              900
        TATCGCCGCA TCGTCAAGGT GGACCTAAAG TTCCCCGCTT CTGTGCCCAC GGGAGCCCAG
                                                                              960
        GACCTCATCT CCAAACTGCT CAGGCATAAC CCCTCGGAAC GGCTGCCCCT GGCCCAGGTC
                                                                             1020
        TCAGCCCACC CTTGGGTCCG GGCCAACTCT CGGAGGGTGC TGCCTCCCTC TGCCCTTCAA
                                                                             1080
80
        TCTGTCGCCT GATGGTCCCT GTCATTCACT CGGGTGCGTG TGTTTGTATG TCTGTGTATG
        TATAGGGGAA AGAAGGGATC CCTAACTGTT CCCTTATCTG TTTTCTACCT CCTCCTTTGT
        TTAATAAAGG CTGAAGCTTT TTGT
        Seq ID NO: 481 Protein sequence
85
        Protein Accession #: NP_004208
                                                      41
                                                                 51
                               21
                   11
        1
```

```
MAQKENSYPW PYGRQTAPSG LSTLPQRVLR KEPVTPSALV LMSRSNVQPT AAPGQKVMEN
      SSGTPDILTR HFTIDDFEIG RPLGKGKFGN VYLAREKKSH FIVALKVLFK SQIEKEGVEH
                                                                           120
      QLRREIEIQA HLHHPNILRL YNYFYDRRRI YLILEYAPRG ELYKELQKSC TFDEQRTATI
                                                                          180
 5
      MEELADALMY CHGKKVIHRD IKPENLLLGL KGELKIADFG WSVHAPSLRR KTMCGTLDYL
                                                                           240
      PPEMIEGRMH NEKVOLWCIG VLCYELLVGN PPFESASHNE TYRRIVKVDL KFPASVPTGA
                                                                           300
      ODLISKLIRH NPSERLPLAQ VSAHPWVRAN SRRVLPPSAL QSVA
      Seg ID NO: 482 DNA sequence
10
      Nucleic Acid Accession #: AK055663
      Coding sequence: 38..1423
                                                              51
                                                   41
                                        31
15
      AGAACGGCTT CCGGCGGGAG CTGTGCAGCT CCTTATCATG GGGACAATTC ATCTCTTTCG
                                                                           60
      AAAACCACAA AGATCCTTTT TTGGCAAGTT GTTACGGGAA TTTAGACTTG TAGCAGCTGA
                                                                           120
       CCGAAGGTCC TGGAAGATAC TGCTCTTTGG TGTAATAAAC TTGATATGTA CTGGCTTCCT
                                                                           180
      GCTTATGTGG TGCAGTTCTA CTAATAGTAT AGCTTTAACT GCCTATACTT ACCTGACCAT
                                                                           240
      TTTTGATCTT TTTAGTTTAA TGACATGTTT AATAAGTTAC TGGGTAACAT TGAGGAAACC
20
       TAGCCCTGTC TATTCATTTG GGTTTGAAAG ATTAGAAGTC CTGGCTGTAT TTGCCTCCAC
                                                                           360
      AGTCTTGGCA CAGTTGGGAG CTCTCTTTAT ATTAAAAGAA AGTGCAGAAC GCTTTTTGGA
                                                                           420
      ACAGCCCGAG ATACACACGG GAAGATTATT AGTTGGTACT TTTGTGGCTC TTTGTTTCAA
                                                                           480
      CCTGTTCACG ATGCTTTCTA TTCGGAATAA ACCTTTTGCT TATGTCTCAG AAGCTGCTAG
                                                                           540
       TACGAGCTGG CTTCAAGAGC ATGTTGCAGA TCTTAGTCGA AGCTTGTGTG GAATTATTCC
                                                                           600
25
      GGGACTTAGC AGTATCTTCC TTCCCCGAAT GAATCCATTT GTTTTGATTG ATCTTGCTGG
                                                                           660
      AGCATTTGCT CTTTGTATTA CATATATGCT CATTGAAATT AATAATTATT TTGCCGTAGA
                                                                           720
       CACTGCCTCT GCTATAGCTA TTGCCTTGAT GACATTTGGC ACTATGTATC CCATGAGTGT
                                                                           780
      GTACAGTGGG AAAGTCTTAC TCCAGACAAC ACCACCCCAT GTTATTGGTC AGTTGGACAA
                                                                           840
      ACTCATCAGA GAGGTATCTA CCTTAGATGG AGTTTTAGAA GTCCGAAATG AACATTTTTG
                                                                           900
30
       GACCCTAGGT TTTGGCTCAT TGGCTGGATC AGTGCATGTA AGAATTCGAC GAGATGCCAA
                                                                           960
       TGAACAAATG GTTCTTGCTC ATGTGACCAA CAGGCTGTAC ACTCTAGTGT CTACTCTAAC
                                                                          1020
       TGTTCAAATT TTCAAGGATG ACTGGATTAG GCCTGCCTTA TTGTCTGGGC CTGTTGCAGC
                                                                          1080
       CAATGTCCTA AACTTTTCAG ATCATCACGT AATCCCAATG CCTCTTTTAA AGGGTACTGA
                                                                          1140
       TGATTTGAAC CCAGTTACAT CAACTCCAGC TAAACCTAGT AGTCCACCTC CAGAATTTTC
                                                                          1200
35
       ATTTAACACT CCTGGGAAAA ATGTGAACCC AGTTATTCTT CTAAACACAC AAACAAGGCC
                                                                          1260
       TTATGGTTTT GGTCTCAATC ATGGACACAC ACCTTACAGC AGCATGCTTA ATCAAGGACT
                                                                          1320
       TGGAGTTCCA GGAATTGGAG CAACTCAAGG ATTGAGGACT GGTTTTACAA ATATACCAAG
                                                                          1380
       TAGATATGGA ACTAATAATA GAATTGGACA ACCAAGACCA TGATAGACTC TAACTTATTT
       TTATAAGGAA TATTGACTCC TTGGCTTCCA ATTTATTTAG TAATCCAACT TTGCATTGAC
                                                                          1500
40
       TGTTTAATCA TTTACTCTAA ATGTTAGATA ATAGTAGTCT TGTTCACATT TCATGAAACC
                                                                          1560
       TATGAAACTA TATTTTTGTA AAATGTATTT GTGACAGTGA AATCCTCGTA AATGTTAAAG
                                                                          1620
       GCTTTAAATA GGCTTCCTTT AGAAAATGTG TTTCTTTAAA TTTGGATTTT GGTATCTTTG
                                                                          1680
      GTTTTGTAGT TGACTGCAGT GTGATGTGAC CTTACCTTTA TAAGAGCCAC TTGATGGAGT
                                                                          1740
       AGATCTGTCA CATTACTAAG ATACGATATT TCTTTTTTTT TCCGAGACGG AGTCTTGCTC
                                                                          1800
45
       TGCCACTGTG CCCGGCCAAT ACATTATTAT TAACTTAAGG CTGTACTTTA TTAAGGCTTC
                                                                          1860
       1920
       ATGCAGTGGC ATGATCTCAG CTCACTGCAA CCTCTGCCTC CTGAGTTCAA ATGATTCTCC
                                                                          1980
       TGCCTCAGCC TCCCGAGTAG CTGGGATTAC AGGCACCTGC CACCACGCCC AGCTAATTTT
                                                                          2040
       TGTATTTTTA GTAAAGACGG GGGATTTCAC CATGTTGGCC AGGCTGGTCT TGAACTCCTG
                                                                          2100
50
       ACCTCATGAT CCACCCACCT TAGCCTCCCA AAGTGCTGGG ATTAGGTGTG AGCCACCGCA
                                                                          2160
       CCTGGCCGAT ATTTTCTTTA ATGAAATTTA TAAATATGCT TCTTGAATAA TACACATTTT
                                                                          2220
       GGGAAAGGGA AAAATGTCTG TTCAAAAAGT AAAGGTCTCT TTTATAGCTT TTCCAAACTT
                                                                          2280
       AATTGCTAAA TTTTTCTTTG AGGTTCTCCT GAATTATGTC TTACAAACTA AAAGCAAAAA
                                                                          2340
       TTTTTAGCAG AAATTTTGGA ATACATTCTA TCTAGCACAA TTTGAATTTT TAATTATCAA
                                                                          2400
55
       GATTTTTGTT AAAGTTTCTC TCCTTTAAAA ATTTTAGTAC ATTTGTAAAT
       Sea ID NO: 483 Protein sequence
       Protein Accession #: BAB70980.1
60
                                                              51
                                        31
                                                   41
       MGTIHLFRKP ORSFFGKLLR EFRLVAADRR SWKILLFGVI NLICTGFLLM WCSSTNSIAL
                                                                            60
       TAYTYLTIFD LFSLMTCLIS YWVTLRKPSP VYSFGFERLE VLAVFASTVL AQLGALFILK
                                                                           120
       ESAERFLEOP EIHTGRLLVG TFVALCFNLF TMLSIRNKPF AYVSEAASTS WLQEHVADLS
                                                                           180
65
       RSLCGIIPGL SSIFLPRMNP FVLIDLAGAF ALCITYMLIE INNYFAVDTA SAIAIALMTF
                                                                           240
       GTMYPMSVYS GKVLLQTTPP HVIGQLDKLI REVSTLDGVL EVRNEHFWTL GFGSLAGSVH
                                                                           300
       VRIRRDANEO MVLAHVINRL YILVSTLIVO IFKDDWIRPA LLSGPVAANV LNFSDHHVIP
                                                                           360
       MPLLKGTDDL NPVTSTPAKP SSPPPEFSFN TPGKNVNPVI LLNTQTRPYG FGLNHGHTPY
                                                                           420
       SSMLNQGLGV PGIGATQGLR TGFTNIPSRY GTNNRIGQPR P
70
       Seq ID NO: 484 DNA sequence
       Nucleic Acid Accession #: FGENESH predicted
       Coding sequence: 1..900
75
                                        31
                                                   41
                                                              51
                             21
       ATGCCGCCGC GGGAGCTGAG CGAGGCCGAG CCGCCCCCGC TCCGGGCCCC GACCCCTCCC
                                                                            60
       CCGCGGCGC GTAGCGCGCC CCCAGAGCTG GGCATCAAGT GCGTGCTGGT GGGCGACGGC
                                                                           120
       GCCGTGGGCA AGAGCAGCCT CATCGTCAGC TACACCTGCA ATGGGTACCC CGCGCGCTAC
                                                                           180
80
       CGGCCCACTG CGCTGGACAC CTTCTCTGGT ACGTACGTTC AATCGCCCGT GCGGCCGCGT
                                                                           240
       GGCTGCGGCG GGGCTGTGCA CCGGGGAGCT GGGGCGGGCG TCTCGGCGGG AGGGCGCAGA
                                                                           300
       GGACCCCGGG GAGGAGACTG GAGCAGGCCC CGAGGTGGCG CTGGTGCGGC CCAGGACGCT
                                                                           360
       CTTCCTAACT CAGGCTCTCC CCGCCCCGCC CCTGCAGTGC AAGTCCTGGT GGATGGAGCT
                                                                           420
       CCGGTGCGCA TTGAGCTCTG GGACACAGCG GGACAGGAGG ATTTTGACCG ACTTCGTTCC
                                                                           480
85
       CTTTGCTACC CGGATACCGA TGTCTTCCTG GCGTGCTTCA GCGTGGTGCA GCCCAGCTCC
                                                                           540
       TTTCAAAACA TCACAGAGAA ATGGCTGCCC GAGATCCGCA CGCACAACCC CCAGGCGCCT
                                                                           600
       GTGCTGCTGG TGGGCACCCA GGCCGACCTG AGGGACGATG TCAACGTACT AATTCAGCTG
                                                                           660
```

	WO 02.	/086443					
5	ATCCGAGCCT TTTGACTCGG	GCCGGGAGGG GCTGCTACCT CTATTCTCAG TGCGCACCCT	TGAGTGCTCA TGCCATTGAG	GCCTTGACGC CACAAAGCCC	AGAAGAACTT GGCTGGAGAA	GAAGGAAGTA GAAACTGAAT	720 780 840
J		485 Proteir cession #: I		licted			
10	ļ	11	21	31	41	51	
10 15	RPTALDTFSG LPNSGSPRPA FQNITEKWLP	 PPPLRAPTPP TYVQSPVRPR PAVQVLVDGA EIRTHNPQAP ALTQKNLKEV	GCGGAVHRGA PVRIELWDTA VLLVGTQADL	GAGVSAGGRR GQEDFDRLRS RDDVNVLIQL	GPRGGDWSRP LCYPDTDVFL DQGGREGPVP	RGGAGAAQDA ACFSVVQPSS QPQAQGLAEK	60 120 180 240
	Nucleic Act	486 DNA sec id Accession mence: 173	1 #: XM_063	832.2			
20	-						
	1	11	21	31	41	51.	
) NECCCCCCCC	 GGGAGCTGAG	CGAGGCCGAG		TCCGGGCCCC	 GACCCCTCCC	60
25	CCGCGGCGCC GCCGTGGGCA CGGCCCACTG ATTGAGCTCT CCGGATACCG	GTAGCGCGCC AGAGCAGCCT CGCTGGACAC GGGACACAGC ATGTCTTCCT	CCCAGAGCTG CATCGTCAGC CTTCTCTGTG GGGACAGGAG GGCGTGCTTC	GGCATCAAGT TACACCTGCA CAAGTCCTGG GATTTTGACC AGCGTGGTGC	GCGTGCTGGT ATGGGTACCC TGGATGGAGC GACTTCGTTC AGCCCAGCTC	GGGCGACGGC CGCGCGCTAC TCCGGTGCGC CCTTTGCTAC CTTTCAAAAC	120 180 240 300 360
20	ATCACAGAGA	AATGGCTGCC	CGAGATCCGC	ACGCACAACC	CCCAGGCGCC	TGTGCTGCTG	420
30	GGCCGGGAGG TGCTGCTACC GCTATTCTCA	AGGCCGACCT GCCCCGTGCC TTGAGTGCTC GTGCCATTGA TCTCCCGCTG	CCAACCCCAG AGCCTTGACG GCACAAAGCC	GCTCAGGGTC CAGAAGAACT CGGCTGGAGA	TGGCCGAGAA TGAAGGAAGT AGAAACTGAA	GATCCGAGCC ATTTGACTCG TGCCAAAGGT	480 540 600 660
35	GIGCGCACCC	101000010	CCGCTGOAAG	Anoriciici	0011001110	••	
		487 Protein	KP_063832.1	31	41	51	
40	1	11	21 	1	1]	
	RPTALDTFSV ITEKWLPEIR	PPPLRAPTPP QVLVDGAPVR THNPQAPVLL QKNLKEVFDS	IELWDTAGQE VGTQADLRDD	DFDRLRSLCY VNVLIQLDQG	PDTDVFLACF GREGPVPQPQ	SVVQPSSFQN AQGLAEKIRA	60 120 180
45	Nucleic Ac:	488 DNA sec id Accession uence: 64	n #: NM_014	1398.1			
50	1	11	21	31	41	51	
	1]]				
		CGGGGCCTGC GGCAGCTCAG					60 120
	CACGATGCCA	GTCAAATGAG	AGCAAAAGCA	TTTCCAGAAA	CCAGAGATTA	TTCTCAACCT	180
55	ACTGCAGCAG	CAACAGTACA	GGACATAAAA	AAACCTGTCC	AGCAACCAGC	TAAGCAAGCA	240
		CTTTAGCAGC					300
		TTCCAACAAC CCCTGGTCAC					360 420
	GTTACTGAAG	TTACAGTCGG	CCCTAGCTTA	GCCCCTTATT	CACTGCCACC	CACCATCACC	480
60	CCACCAGCTC	ATACAGCTGG	AACCAGTTCA	TCAACCGTCA	GCCACACAAC	TGGGAACACC	540
	ACTCAACCCA	GTAACCAGAC	CACCCTTCCA	GCAACTTTAT	CGATAGCACT	GCACAAAAGC AGCTGCCCAC	600 660
	ACAACCGGIC	GCACAGCTGC	ACCTGCCTCC	ACGGTTCCTG	GGCCCACCCT	TGCACCTCAG	720
	CCATCGTCAG	TCAAGACTGG	AATTTATCAG	GTTCTAAACG	GAAGCAGACT	CTGTATAAAA	780
65	GCAGAGATGG	GGATACAGCT	GATTGTTCAA	GACAAGGAGT	CGGTTTTTTC	ACCTCGGAGA	840
	TACTTCAACA	TCGACCCCAA	CGCAACGCAA	GCCTCTGGGA	ACTGTGGCAC	CCGAAAATCC GGATGAAGAA	960
	TCATATTATA	TCAGTGAAGT	GGGAGCCTAT	TTGACCGTCT	CAGATCCAGA	GACAGTTTAC	
	CAAGGAATCA	AACATGCGGT	GGTGATGTTC	CAGACAGCAG	TCGGGCATTC	CTTCAAGTGC	1080
70	GTGAGTGAAC	AGAGCCTCCA	GTTGTCAGCC	CACCTGCAGG	TGAAAACAAC	CGATGTCCAA	1140
	CTTCAAGCCT	TTGATTTTGA	AGATGACCAC	ATCCTCCTTC	CTCTCTCCCT	CTCGTCTGAC TATGGGTATG	1260
	GGTGTCTATA	AAATCCGCCT	AAGGTGTCAA	TCATCTGGAT	ACCAGAGAAT	CTAATTGTTG	1320
	CCCGGGGGGA	ATGAAAATAA	TGGAATTTAG	AGAACTCTTT	CATCCCTTCC	AGGATGGATG	1380
75	TTGGGAAATT	CCCTCAGAGT	GTGGGTCCTT	CAAACAATGT	AAACCACCAT	CTTCTATTCA	1440
	AATGAAGTGA	GTCATGTGTG	ATTTAAGTTC	AGGCAGCACA	CTTTCTA CTTTCTA	AATACTTTTT GAATATTTTA	1560
	GCCACTCAAA	GTCAACATTT	GAGATATGTT	GAATTAACAT	AATATATGTA	AAGTAGAATA	1620
00	AGCCTTCAAA	TTATAAACCA	AGGGTCAATT	GTAACTAATA	CTACTGTGTG	TGCATTGAAG	1680
80	ATTTTATTT	ACCCTTGATC	TTAACAAAGC	CTTTGCTTTG	TTATCAAATG	GACTTTCAGT	1740
	GCTTTTACTA	TCTGTGTTTT	ATGGTTTCAT	GTAACATACA	TATTCCTGGT	GTAGCACTTA	1800
	ACTCCTTTTC	CACTTTAAAT	TTGTTTTTGT	TTTTTGAGAC	GGAGTTTCAC	TCTTGTCACC CGGGTTCAAG	1920
				JAMJOULALL			
	TGATTCTCCT	GCTTCAGCTT	CCCGAGTAGC	TGGGATTACA	GGCACACACT	ACCACGCCTG	1980
85	TGATTCTCCT	GCTTCAGCTT	CCCGAGTAGC	TGGGATTACA TTTCACCATG	GGCACACACT TTGGCCAGAC	ACCACGCCTG TGGTCTTGAA	1980 2040
85	TGATTCTCCT GCTAATTTTT CTCTTGACCT	GCTTCAGCTT GTATTTTAT CAGGTGATCC	CCCGAGTAGC TATAGACGGG ACCCACCTCA	TGGGATTACA TTTCACCATG GCCTCCCAAA	GGCACACACT TTGGCCAGAC GTGCTGGGAT	ACCACGCCTG	1980 2040 2100

```
GTTGTCTAAG TGTTTTTATG TAAAACCAAC AAAAAGAACA AATCAGCTTA TATTTTTTAT
                                                                         2220
       CTTGATGACT CCTGCTCCAG AATTGCTAGA CTAAGAATTA GGTGGCTACA GATGGTAGAA
                                                                          2280
       CTAAACAATA AGCAAGAGAC AATAATAATG GCCCTTAATT ATTAACAAAG TGCCAGAGTC
       TAGGCTAAGC ACTTTATCTA TATCTCATTT CATTCTCACA ACTTATAAGT GAATGAGTAA
                                                                          2400
 5
       ACTGAGACTT AAGGGAACTG AATCACTTAA ATGTCACCTG GCTAACTGAT GGCAGAGCCA
                                                                          2460
       GAGCTTGAAT TCATGTTGGT CTGACATCAA GGTCTTTGGT CTTCTCCCTA CACCAAGTTA
                                                                         2520
       CCTACAAGAA CAATGACACC ACACTCTGCC TGAAGGCTCA CACCTCATAC CAGCATACGC
                                                                          2580
       TCACCTTACA GGGAAATGGG TTTATCCAGG ATCATGAGAC ATTAGGGTAG ATGAAAGGAG
                                                                          2640
       AGCTTTGCAG ATAACAAAAT AGCCTATCCT TAATAAATCC TCCACTCTCT GGAAGGAGAC
10
       TGAGGGGCTT TGTAAAACAT TAGTCAGTTG CTCATTTTTA TGGGATTGCT TAGCTGGGCT
                                                                          2760
       GTAAAGATGA AGGCATCAAA TAAACTCAAA GTATTTTTAA ATTTTTTTGA TAATAGAGAA
                                                                          2820
       ACTTCGCTAA CCAACTGTTC TTTCTTGAGT GTATAGCCCC ATCTTGTGGT AACTTGCTGC
                                                                          2880
       TTCTGCACTT CATATCCATA TTTCCTATTG TTCACTTTAT TCTGTAGAGC AGCCTGCCAA
                                                                          2940
       GAATTTTATT TCTGCTGTTT TTTTTGCTGC TAAAGAAAGG AACTAAGTCA GGATGTTAAC
                                                                          3000
15
       AGAAAAGTCC ACATAACCCT AGAATTCTTA GTCAAGGAAT AATTCAAGTC AGCCTAGAGA
                                                                          3060
       CCATGTTGAC TTTCCTCATG TGTTTCCTTA TGACTCAGTA AGTTGGCAAG GTCCTGACTT
                                                                          3120
       TAGTCTTAAT AAAACATTGA ATTGTAGTAA AGGTTTTTGC AATAAAAACT TACTTTGG
       Seq ID NO: 489 Protein sequence
20
       Protein Accession #:
                                NP 055213.1
                             21
       MPRQLSAAAA LFASLAVILH DGSQMRAKAF PETRDYSQPT AAATVQDIKK PVQQPAKQAP
                                                                           60
25
       HQTLAARFMD GHITFQTAAT VKIPTTTPAT TKNTATTSPI TYTLVTTQAT PNNSHTAPPV
                                                                          120
       TEVTVGPSLA PYSLPPTITP PAHTAGTSSS TVSHTTGNTT QPSNQTTLPA TLSIALHKST
                                                                           180
       TGOKPDOPTH APGTTAAAHN TTRTAAPAST VPGPTLAPQP SSVKTGIYQV LNGSRLCIKA
                                                                           300
       EMGIQLIVQD KESVFSPRRY FNIDPNATQA SGNCGTRKSN LLLNFQGGFV NLTFTKDEES
       YYISEVGAYL TVSDPETVYQ GIKHAVVMFQ TAVGHSFKCV SEQSLQLSAH LQVKTTDVQL
                                                                           360
30
       QAFDFEDDHF GNVDECSSDY TIVLPVIGAI VVGLCLMGMG VYKIRLRCQS SGYQRI
       Seg ID NO: 490 DNA seguence
       Nucleic Acid Accession #: NM_005409.3
       Coding sequence: 94..378
35
                                                             51
       TTCCTTTCAT GTTCAGCATT TCTACTCCTT CCAAGAAGAG CAGCAAAGCT GAAGTAGCAG
                                                                            60
       CAACAGCACC AGCAGCAACA GCAAAAAACA AACATGAGTG TGAAGGGCAT GGCTATAGCC
40
       TTGGCTGTGA TATTGTGTGC TACAGTTGTT CAAGGCTTCC CCATGTTCAA AAGAGGACGC
                                                                           180
       TGTCTTTGCA TAGGCCCTGG GGTAAAAGCA GTGAAAGTGG CAGATATTGA GAAAGCCTCC
                                                                           240
       ATAATGTACC CAAGTAACAA CTGTGACAAA ATAGAAGTGA TTATTACCCT GAAAGAAAAT
                                                                           300
       AAAGGACAAC GATGCCTAAA TCCCAAATCG AAGCAAGCAA GGCTTATAAT CAAAAAAGTT
                                                                           360
       GAAAGAAAGA ATTTTTAAAA ATATCAAAAC ATATGAAGTC CTGGAAAAGG GCATCTGAAA
                                                                           420
45
       AACCTAGAAC AAGTTTAACT GTGACTACTG AAATGACAAG AATTCTACAG TAGGAAACTG
       AGACTTTTCT ATGGTTTTGT GACTTTCAAC TTTTGTACAG TTATGTGAAG GATGAAAGGT
                                                                           540
       GGGTGAAAGG ACCAAAAACA GAAATACAGT CTTCCTGAAT GAATGACAAT CAGAATTCCA
                                                                           600
       CTGCCCAAAG GAGTCCAGCA ATTAAATGGA TTTCTAGGAA AAGCTACCTT AAGAAAGGCT
                                                                           660
                                                                           720
       GGTTACCATC GGAGTTTACA AAGTGCTTTC ACGTTCTTAC TTGTTGTATT ATACATTCAT
50
       GCATTTCTAG GCTAGAGAAC CTTCTAGATT TGATGCTTAC AACTATTCTG TTGTGACTAT
                                                                           780
       GAGAACATTT CTGTCTCTAG AAGTTATCTG TCTGTATTGA TCTTTATGCT ATATTACTAT
       CTGTGGTTAC AGTGGAGACA TTGACATTAT TACTGGAGTC AAGCCCTTAT AAGTCAAAAG
                                                                           900
       CATCTATGTG TCGTAAAGCA TTCCTCAAAC ATTTTTTCAT GCAAATACAC ACTTCTTTCC
                                                                           960
       CCAAATATCA TGTAGCACAT CAATATGTAG GGAAACATTC TTATGCATCA TTTGGTTTGT
                                                                          1020
55
                                                                          1080
       TTTATAACCA ATTCATTAAA TGTAATTCAT AAAATGTACT ATGAAAAAAA TTATACGCTA
       TGGGATACTG GCAACAGTGC ACATATTTCA TAACCAAATT AGCAGCACCG GTCTTAATTT
                                                                          1140
       GATGTTTTTC AACTTTTATT CATTGAGATG TTTTGAAGCA ATTAGGATAT GTGTGTTTAC
                                                                          1200
       TGTACTTTTT GTTTTGATCC GTTTGTATAA ATGATAGCAA TATCTTGGAC ACATTTGAAA
       TACAAAATGT TTTTGTCTAC CAAAGAAAAA TGTTGAAAAA TAAGCAAATG TATACCTAGC
                                                                          1320
60
       AATCACTTTT ACTTTTTGTA ATTCTGTCTC TTAGAAAAAT ACATAATCTA ATCAATTTCT
                                                                          1380
       TTGTTCATGC CTATATACTG TAAAATTTAG GTATACTCAA GACTAGTTTA AAGAATCAAA
                                                                          1440
       Seq ID NO: 491 Protein sequence
65
       Protein Accession #: NP 005400.1
                                                   41
                                                             51
       MSVKGMAIAL AVILCATVVQ GFPMFKRGRC LCIGPGVKAV KVADIEKASI MYPSNNCDKI
                                                                            60
70
       EVIITLKENK GQRCLNPKSK QARLIIKKVE RKNF
       Seq ID NO: 492 DNA sequence
       Nucleic Acid Accession #: NM 000577.1
       Coding sequence: 41..520
75
                                                   41
                  11
                             21
                                        31
       GGCACGAGGG GAAGACCTCC TGTCCTATCA GGCCCTCCCC ATGGCTTTAG AGACGATCTG
                                                                            60
       CCGACCCTCT GGGAGAAAAT CCAGCAAGAT GCAAGCCTTC AGAATCTGGG ATGTTAACCA
                                                                           120
80
       GAAGACCTTC TATCTGAGGA ACAACCAACT AGTTGCCGGA TACTTGCAAG GACCAAATGT
                                                                           180
       CAATTTAGAA GAAAAGATAG ATGTGGTACC CATTGAGCCT CATGCTCTGT TCTTGGGAAT
                                                                          240
       CCATGGAGGG AAGATGTGCC TGTCCTGTGT CAAGTCTGGT GATGAGACCA GACTCCAGCT
       GGAGGCAGTT AACATCACTG ACCTGAGCGA GAACAGAAAG CAGGACAAGC GCTTCGCCTT
                                                                           360
       CATCCGCTCA GACAGTGGCC CCACCACCAG TTTTGAGTCT GCCGCCTGCC CCGGTTGGTT
                                                                           420
       CCTCTGCACA GCGATGGAAG CTGACCAGCC CGTCAGCCTC ACCAATATGC CTGACGAAGG
85
                                                                           480
       CGTCATGGTC ACCAAATTCT ACTTCCAGGA GGACGAGTAG TACTGCCCAG GCCTGCCTGT
                                                                           540
       TCCCATTCTT GCATGGCAAG GACTGCAGGG ACTGCCAGTC CCCCTGCCCC AGGGCTCCCG
```

```
GCTATGGGGG CACTGAGGAC CAGCCATTGA GGGGTGGACC CTCAGAAGGC GTCACAACAA
                                                                             660
       CCTGGTCACA GGACTCTGCC TCCTCTTCAA CTGACCAGCC TCCATGCTGC CTCCAGAATG
       GTCTTTCTAA TGTGTGAATC AGAGCACAGC AGCCCCTGCA CAAAGCCCTT CCATGTCGCC
                                                                             780
       TCTGCATTCA GGATCAAACC CCGACCACCT GCCCAACCTG CTCTCCTCTT GCCACTGCCT
                                                                             840
 5
       CTTCCTCCCT CATTCCACCT TCCCATGCCC TGGATCCATC AGGCCACTTG ATGACCCCCA
                                                                             900
       960
       TTTAAGGGTT TGTGGAAAAT GAAAATTAGG ATTTCATGAT TTTTTTTTT CAGTCCCCGT
                                                                            1020
       GAAGGAGAGC CCTTCATTTG GAGATTATGT TCTTTCGGGG AGAGGCTGAG GACTTAAAAT
                                                                            1080
       ATTCCTGCAT TTGTGAAATG ATGGTGAAAG TAAGTGGTAG CTTTTCCCTT CTTTTTCTTC
10
       TTTTTTTGTG ATGTCCCAAC TTGTAAAAAT TAAAAGTTAT GGTACTATGT TAGCCCCATA
                                                                            1200
       ATTTTTTTT TCCTTTTAAA ACACTTCCAT AATCTGGACT CCTCTGTCCA GGCACTGCTG
                                                                            1260
       CCCAGCCTCC AAGCTCCATC TCCACTCCAG ATTTTTTACA GCTGCCTGCA GTACTTTACC
                                                                            1320
       TCCTATCAGA AGTTTCTCAG CTCCCAAGGC TCTGAGCAAA TGTGGCTCCT GGGGGTTCTT
                                                                            1380
       TCTTCCTCTG CTGAAGGAAT AAATTGCTCC TTGACATTGT AGAGCTTCTG GCACTTGGAG
                                                                            1440
15
       ACTIGIATGA AAGATGGCIG IGCCICTGCC IGTCICCCCC ACCAGGCIGG GAGCICIGCA
                                                                            1500
       GAGCAGGAAA CATGACTCGT ATATGTCTCA GGTCCCTGCA GGGCCAAGCA CCTAGCCTCG
                                                                            1560
       CTCTTGGCAG GTACTCAGCG AATGAATGCT GTATATGTTG GGTGCAAAGT TCCCTACTTC
                                                                            1620
       1680
       ΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ
20
       Seq ID NO: 493 Protein sequence
       Protein Accession #: NP_000568.1
                                                                51
                              21
                                                     41
                                         31
25
       MALETICRPS GRKSSKMQAF RIWDVNQKTF YLRNNQLVAG YLQGPNVNLE EKIDVVPIEP
       HALFLGIHGG KMCLSCVKSG DETRLQLEAV NITDLSENRK QDKRFAFIRS DSGPTTSFES
                                                                             120
       AACPGWFLCT AMEADQPVSL TNMPDEGVMV TKFYFQEDE
30
       Seg ID NO: 494 DNA seguence
       Nucleic Acid Accession #: NM 002081.1
       Coding sequence: 222..1898
                              21
                                         31
                                                     41
                                                                51
35
       GGCTGCCCGA GCGAGCGTTC GGACCTCGCA CCCCGCGCCGC CCCCGCCGCC
                                                                              60
       GGCTTTTGTT GTCTCCGCCT CCTCGGCCGC CGCCGCCTCT GGACCGCGAG CCGCGCGCGC
CGGGACCTTG GCTCTGCCCT TCGCGGCGG GAACTGCGCA GGACCCGGCC AGGATCCGAG
                                                                             120
       AGAGGCGCGG GCGGGTGGCC GGGGGCGCCG CCGGCCCCGC CATGGAGCTC CGGGCCCGAG
                                                                             240
40
       GCTGGTGGCT GCTATGTGCG GCCGCAGCGC TGGTCGCCTG CGCCCGCGGG GACCCGGCCA
                                                                             300
       GCAAGAGCCG GAGCTGCGGC GAGGTCCGCC AGATCTACGG AGCCAAGGGC TTCAGCCTGA
                                                                             360
       GCGACGTGCC CCAGGCGGAG ATCTCGGGTG AGCACCTGCG GATCTGTCCC CAGGGCTACA
                                                                             420
       CCTGCTGCAC CAGCGAGATG GAGGAGAACC TGGCCAACCG CAGCCATGCC GAGCTGGAGA
                                                                             480
       CCGCGCTCCG GGACAGCAGC CGCGTCCTGC AGGCCATGCT TGCCACCCAG CTGCGCAGCT
                                                                             540
45
       TCGATGACCA CTTCCAGCAC CTGCTGAACG ACTCGGAGCG GACGCTGCAG GCCACCTTCC
       CCGGCGCCTT CGGAGAGCTG TACACGCAGA ACGCGAGGGC CTTCCGGGAC CTGTACTCAG
                                                                             660
       AGCTGCGCCT GTACTACCGC GGTGCCAACC TGCACCTGGA GGAGACGCTG GCCGAGTTCT
                                                                             720
       GGGCCGCCT GCTCGAGCGC CTCTTCAAGC AGCTGCACCC CCAGCTGCTG CTGCCTGATG
                                                                             780
       ACTACCTGGA CTGCCTGGGC AAGCAGGCCG AGGCGCTGCG GCCCTTCGGG GAGGCCCCGA
                                                                             840
50
       GAGAGCTGCG CCTGCGGGCC ACCCGTGCCT TCGTGGCTGC TCGCTCCTTT GTGCAGGGCC
       TGGGCGTGGC CAGCGACGTG GTCCGGAAAG TGGCTCAGGT CCCCCTGGGC CCGGAGTGCT
                                                                             960
       CGAGAGCTGT CATGAAGCTG GTCTACTGTG CTCACTGCCT GGGAGTCCCC GGCGCCAGGC
                                                                            1020
       CCTGCCCTGA CTATTGCCGA AATGTGCTCA AGGGCTGCCT TGCCAACCAG GCCGACCTGG
                                                                            1080
       ACGCCGAGTG GAGGAACCTC CTGGACTCCA TGGTGCTCAT CACCGACAAG TTCTGGGGTA CATCGGGTGT GGAGAGTGTC ATCGGCAGCG TGCACACCGTG GCTGGCGGAG GCCATCAACG
                                                                            1140
55
       CCCTCCAGGA CAACAGGGAC ACGCTCACGG CCAAGGTCAT CCAGGGCTGC GGGAACCCCA
                                                                            1260
       AGGTCAACCC CCAGGGCCCT GGGCCTGAGG AGAAGCGGCG CCGGGGCAAG CTGGCCCCGC
                                                                            1320
       GGGAGAGGCC ACCTTCAGGC ACGCTGGAGA AGCTGGTCTC TGAAGCCAAG GCCCAGCTCC
                                                                            1380
       GCGACGTCCA GGACTTCTGG ATCAGCCTCC CAGGGACACT GTGCAGTGAG AAGATGGCCC
                                                                            1440
60
       TGAGCACTGC CAGTGATGAC CGCTGCTGGA ACGGGATGGC CAGAGGCCGG TACCTCCCCG
                                                                            1500
       AGGTCATGGG TGACGGCCTG GCCAACCAGA TCAACAACCC CGAGGTGGAG GTGGACATCA
                                                                            1560
       CCAAGCCGGA CATGACCATC CGGCAGCAGA TCATGCAGCT GAAGATCATG ACCAACCGGC
                                                                            1620
       TGCGCAGCGC CTACAACGGC AACGACGTGG ACTTCCAGGA CGCCAGTGAC GACGGCAGCG
                                                                            1680
       GCTCGGGCAG CGGTGATGGC TGTCTGGATG ACCTCTGCGG CCGGAAGGTC AGCAGGAAGA
                                                                            1740
65
       GCTCCAGCTC CCGGACGCCC TTGACCCATG CCCTCCCAGG CCTGTCAGAG CAGGAAGGAC
                                                                            1800
       AGAAGACCTC GGCTGCCAGC TGCCCCCAGC CCCCGACCTT CCTCCTGCCC CTCCTCCTCT
TCCTGGCCCT TACAGTAGCC AGGCCCCGGT GGCGGTAACT GCCCCAAGGC CCCAGGGACA
                                                                            1860
                                                                            1920
       GAGGCCAAGG ACTGACTTTG CCAAAAATAC AACACAGACG ATATTTAATT CACCTCAGCC
       TGGAGAGGCC TGGGGTGGGA CAGGGAGGGC CGGCGGCTCT GAGCAGGGGC AGGCGCAGAG
                                                                            2040
70
       GTCCCAGCCC CAGGCCTGGC CTCGCCTGCC TTTCTGCCTT TTAATTTTGT ATGAGGTCCT
                                                                            2100
       CAGGTCAGCT GGGAGCCAGT GTGCCCAAAA GCCATGTATT TCAGGGACCT CAGGGGCACC
                                                                            2160
       TCCGGCTGCC TAGCCCTCCC CCCAGCTCCC TGCACCGCCG CAGAAGCAGC CCCTCGAGGC
                                                                            2220
       CTACAGAGGA GGCCTCAAAG CAACCCGCTG GAGCCCACAG CGAGCCTGTG CCTTCCTCCC
                                                                            2280
       CGCCTCCTCC CACTGGGACT CCCAGCAGAG CCCACCAGCC AGCCCTGGCC CACCCCCCAG
75
       CCTCCAGAGA AGCCCCGCAC GGGCTGTCTG GGTGTCCGCC ATCCAGGGTC TGGCAGAGCC
                                                                            2400
       TCTGAGATGA TGCATGATGC CCTCCCCTCA GCGCAGGCTG CAGAGCCCGG CCCCACCTCC
                                                                            2460
       CTGCGCCCTT GAGGGGCCCC AGCGTCTGCA GGGTGACGCC TGAGACAGCA CCACTGCTGA
                                                                            2520
       GGAGTCTGAG GACTGTCCTC CCACAGACCC TGCAGTGAGG GGCCCTCCAT GCGCAGATGA
GGGGCCACTG ACCCACCTGC GCTTCTGCTG GAGGAGGGGA AGCTGGGCCC AAAGGCCCAG
                                                                            2580
                                                                            2640
80
       GGAGGCAGCG TGGGCTCTGC CAATGTGGGC TGCCCCTCGC ACACAGGGCT CACAGGGCAG
       GCCTTGCTGG GGTCCAGGGC TGTTGGAGGA CCCCGAGGGC TGAGGAGCAG CCAGGACCCG
                                                                            2760
       CCTGCTCCCA TCCTCACCCA GATCAGGAAC CAGGGCCTCC CTGTTCACGG TGACACAGGT
                                                                            2820
       CAGGGCTCAG AGTGACCCTC GGCTGTCACC TGCTCACAGG GATGCTGGTG GCTGGTGAGA
                                                                            2880
       CCCCGCACTG CACACGGGAA TGCCTAGGTC CCTTCCCGAC CCAGCCAGCT GCACTGCAGG
                                                                            2940
85
       GCACGGGGAC CTGGATAGTT AAGGGCTTTT CCAAACATGC ATCCATTTAC TGACACTTCC
                                                                            3000
       TGTCCTTGTT CATGGAGAGC TGTTCGCTCC TCCCAGATGG CTTCGGAGGC CCGCAGGGCC
       CACCTTGGAC CCTGGTGACC TCCTGTCACT CACTGAGGCC ATCAGGGCCC TGCCCCAGGC
                                                                            3120
```

. . .

```
WO 02/086443
       CTGGACGGC CCTCCTTCCC TCCTGTGCCC CAGCTGCCAG GTGGCCCTGG GGAGGGGTGG 3180
       TGTGGTGTTG GGAAGGGGTC CTGCAGGGGG AGGAGGACTT GGAGGGTCTG GGGGCAGCTG
                                                                                  3240
       TCCTGAACCG ACTGACCCTG AGGAGGCCGC TTAGTGCTGC TTTGCTTTTC ATCACCGTCC
                                                                                  3300
        CGCACAGTGG ACGGAGGTCC CCGGTTGCTG GTCAGGTCCC CATGGCTTGT TCTCTGGAAC
                                                                                  3360
 5
       CTGACTTTAG ATGTTTTGGG ATCAGGAGCC CCCAACACAG GCAAGTCCAC CCCATAATAA
CCCTGCCAGT GCCAGGGTGG GCTGGGGACT CTGGCACAGT GATGCCGGGC GCCAGGACAG
                                                                                  3420
                                                                                  3480
       CAGCACTCCC GCTGCACACA GACGGCCTAG GGGTGGCGCT CAGACCCCAC CCTACGCTCA
                                                                                  3540
       TCTCTGGAAG GGGCAGCCCT GAGTGGTCAC TGGTCAGGGC AGTGGCCAAG CCTGCTGTGT
       CCTTCCTCCA CAAGGTCCCC CCACCGCTCA GTGTCAGCGG GTGACGTGTG TTCTTTTGAG
                                                                                  3660
10
       TCCTTGTATG AATAAAAGGC TGGAAACCTA AA
       Seg ID NO: 495 Protein seguence
       Protein Accession #: NP_002072.1
15
       MELRARGWWL LCAAAALVAC ARGDPASKSR SCGEVRQIYG AKGFSLSDVP QAEISGEHLR
                                                                                    60
       ICPQGYTCCT SEMEENLANR SHAELETALR DSSRVLQAML ATQLRSFDDH FQHLLNDSER
                                                                                   120
       TLQATFPGAF GELYTQNARA FRDLYSELRL YYRGANLHLE ETLAEFWARL LERLFKQLHP
QLLLPDDYLD CLGKQAEALR PFGEAPRELR LRATRAFVAA RSFVQGLGVA SDVVRKVAQV
                                                                                   180
20
       PLGPECSRAV MKLVYCAHCL GVPGARPCPD YCRNVLKGCL ANQADLDAEW RNLLDSMVLI
                                                                                   300
        TDKFWGTSGV ESVIGSVHTW LAEAINALQD NRDTLTAKVI QGCGNPKVNP QGPGPEEKRR
                                                                                   360
        RGKLAPRERP PSGTLEKLVS EAKAQLRDVQ DFWISLPGTL CSEKMALSTA SDDRCWNGMA
                                                                                   420
       RGRYLPEVMG DGLANQINNP EVEVDITKPD MTIRQQIMQL KIMTNRLRSA YNGNDVDFQD
                                                                                   480
25
       ASDDGSGSGS
       Seq ID NO: 496 DNA sequence
       Nucleic Acid Accession #: NM_001650.2
       Coding sequence: 40.1011
30
                                21
                                            31
                                                         41
       GGGGCAGGCA ATGAGAGCTG CACTCTGGCT GGGGAAGGCA TGAGTGACAG ACCCACAGCA
                                                                                    60
       AGGCGGTGGG GTAAGTGTGG ACCTTTGTGT ACCAGAGAGA ACATCATGGT GGCTTTCAAA
                                                                                   120
35
        GGGGTCTGGA CTCAAGCTTT CTGGAAAGCA GTCACAGCGG AATTTCTGGC CATGCTTATT
                                                                                   180
       TTTGTTCC TCAGCCTGGG ATCCACCATC AACTGGGGTG GAACAGAAAA GCCTTTACCG
GTCGACATGG TTCTCATCTC CCTTTGCTTT GGACTCAGCA TTGCAACCAT GGTGCAGTGC
                                                                                   240
        TTTGGCCATA TCAGCGGTGG CCACATCAAC CCTGCAGTGA CTGTGGCCAT GGTGTGCACC
                                                                                   360
       AGGAAGATCA GCATCGCCAA GTCTGTCTTC TACATCGCAG CCCAGTGCCT GGGGGCCATC
                                                                                   420
40
        ATTGGAGCAG GAATCCTCTA TCTGGTCACA CCTCCCAGTG TGGTGGGAGG CCTGGGAGTC
                                                                                   480
       ACCATGGTTC ATGGAAATCT TACCGCTGGT CATGGTCTCC TGGTTGAGTT GATAATCACA
TTTCAATTGG TGTTTACTAT CTTTGCCAGC TGTGATTCCA AACGGACTGA TGTCACTGGC
                                                                                   540
                                                                                   600
        TCAATAGCTT TAGCAATTGG ATTTTCTGTT GCAATTGGAC ATTTATTTGC AATCAATTAT
                                                                                   660
       ACTGGTGCCA GCATGAATCC CGCCCGATCC TTTGGACCTG CAGTTATCAT GGGAAATTGG
45
        GAAAACCATT GGATATATTG GGTTGGGCCC ATCATAGGAG CTGTCCTCGC TGGTGGCCTT
                                                                                   780
        TATGAGTATG TCTTCTGTCC AGATGTTGAA TTCAAACGTC GTTTTAAAGA AGCCTTCAGC
                                                                                   840
        AAAGCTGCCC AGCAAACAAA AGGAAGCTAC ATGGAGGTGG AGGACAACAG GAGTCAGGTA
                                                                                   900
       GAGACGGATG ACCTGATTCT AAAACCTGGA GTGGTGCATG TGATTGACGT TGACCGGGGA
GAGGACAAGA AGGGGAAAGA CCAATCTGGA GAGGTATTGT CTTCAGTATG ACTAGAAGAT
                                                                                   960
50
        CGCACTGAAA GCAGACAAGA CTCCTTAGAA CTGTCCTCAG ATTTCCTTCC ACCCATTAAG
       GAAACAGATT TGTTATAAAT TAGAAATGTG CAGGTTTGTT GTTTCATGTC ATATTACTCA
                                                                                  1140
        GTCTAAACAA TAAATATTTC ATAATTTACA AAGGAGGAAC GGAAGAAACC TATTGTGAAT
                                                                                  1200
        TCCAAATCTA AAAAAAGAAA TATTTTTAAG ATGTTCTTAA GCAAATATAT ACCTATTTTA
                                                                                  1260
        TCTAGTTACC TTTCATTAAC AACCAATTT AACCGTGTGT CAAGATTTGG TTAAGTCTTG
                                                                                  1320
       CCTGACAGAA CTCAAAGACA CGTCTATCAG CTTATTCCTT CTCTACTGGA ATATTGGTAT AGTCAATTCT TATTTGAATA TTTATTCTAT TAAACTGAGT TTAACAATGG C
55
                                                                                  1380
        Seq ID NO: 497 Protein sequence
        Protein Accession #: NP_001641.1
60
                                            31
                                                         41
                                                                     51
       MSDRPTARRW GKCGPLCTRE NIMVAFKGVW TQAFWKAVTA EFLAMLIFVL LSLGSTINWG
        GTEKPLPVDM VLISLCFGLS IATMVQCFGH ISGGHINPAV TVAMVCTRKI SIAKSVFYIA
                                                                                   120
65
                                                                                   180
        AQCLGAIIGA GILYLVTPPS VVGGLGVTMV HGNLTAGHGL LVELIITFQL VFTIFASCDS
        KRTDVTGSIA LAIGFSVAIG HLFAINYTGA SMNPARSFGP AVIMGNWENH WIYWVGPIIG
                                                                                   240
       AVLAGGLYEY VFCPDVEFKR RFKEAFSKAA QQTKGSYMEV EDNRSQVETD DLILKPGVVH
        VIDVDRGEEK KGKDQSGEVL SSV
70
        Seq ID NO: 498 DNA sequence
       Nucleic Acid Accession #: AB020684.1
        Coding sequence: 1..1744
                                21
                                            31
                                                         41
                    11
75
        CCCCCTTGTC ATTAATACAT TAAAAAGATT CAATCTTTAC CCTGAGGTAA TTTTGGCCAG
       TTGGTACCGG ATTTATACCA AAATAATGGA CTTGATTGGT ATTCAAACCA AGATATGTTG GACGGTTACC AGAGGAGAAG GACTCAGTCC TATTGAAAGC TGTGAAGGAT TGGGAGATCC
                                                                                   120
        TGCTTGCTTT TATGTTGCTG TAATTTTTAT TTTAAATGGA CTAATGATGG CATTATTCTT
80
        CATATATGGC ACATATTTAA GTGGCAGCCG ATTAGGAGGC CTGGTTACAG TGTTGTGCTT
        CTTTTTCAAT CATGGAGAGT GTACCCGTGT AATGTGGACA CCACCTCTCC GTGAAAGCTT
                                                                                   360
        CTCATATCCA TTTCTTGTTC TTCAGATGTT GCTAGTGACT CATATTCTCA GGGCTACAAA
                                                                                   420
        ACTITATAGA GGAAGCITGA TIGCACICIG CATITCCAAI GIATITITCA IGCITCCITG
                                                                                   480
        GCAGTTTGCT CAGTTTGTAC TTCTTACTCA GATTGCATCA TTATTTGCAG TATATGTTGT
                                                                                   540
85
        CGGGTACATT GATATATGTA AATTACGGAA GATCATTTAT ATACACATGA TTTCTCTTGC
                                                                                   600
        ACTITGITIT GITTIGATGI TIGGGAACIC AAIGITATIA ACTICITATI AIGCITCITC
        TTTGGTAATT ATTTGGGGTA TTCTGGCAAT GAAACCACAT TTCCTGAAAA TAAATGTATC
```

		TTATGGGTTA	TTCAAGGATG	TTTTTGGTTA	TTTGGAACTG	TCATACTTAA	780
		TCTAAAATTT					840
		TTTAGTTATA GAAAAAGAGA					900 960
5		TTTGTTGCTA					1020
_		ACACATGTAA					1080
		TTAGCATATA					1140
		ATGTGTGTTA					1200
10		GTACATCCTG					1260
10		AATCTGCAAA ATAGAATGGA					1320 1380
		ATGGCAAGTG					1440
		GCAGGCTTGA					1500
1 ~		GAAGTGAAGC					1560
15		TGTGTAAGAA					1620
		GCCAATGCTG					1680
		ACCACTGTAT CATGACCTGC					1740 1800
		GTGTTGTTCA					1860
20		TTGGTCAATT					1920
		CTATTTCAAT					1980
		TAATATTTGT					2040
		AAGGATGACA					2100
25		GAACTATTAA					2160
23		AGTGATTGTA GGGCAGACAT					2220 2280
		TTTTGTTCTC					2340
		GGACCTTGTG					2400
20		CTCTCTCTCT					2460
30		GTTTACTCAT					2520
		ACTGTATTTT					2580
		CTTTAAAGTT ATATAGTGCA					2640 2700
		GACTGTAGTA					2760
35		TGCTGTCAAA					2820
		TGCCTGTCTT					2880
		ATCATTTCAG					2940
		TTATTTTTAT					3000 3060
40		CTTAGAAGTT GAAAAGGTTT					3120
		TTTAATTATA					3180
		TTCAGACCTT					3240
		TTCTACCTTC					3300
15		ACATAAGTCA					3360
45		TGTGCCAGCG					3420 3480
		GAGGGACTCT GTTTTTATTT					3540
		GATTAAAAGC					3600
		TTGAGGCTGA					3660
50		TGATTGTTGC					3720
		ATTATACTTT					3780
		TTCACATGTA					3840 3900
		TGCTTCATTT TTTGTAGCAG					3960
55		AGTTTGGAGC					4020
		AGCACTGTGG					4080
	TTCCATAGGC	GTACAAAACA	GTATTAAAGC	TCAGTGTTTT	GCATATTGTT	AGCATTTACA	4140
		CTTTAGTATG					4200
60		ATTTTCGAAA					4260 4320
00		GGCAAAAAA ATCAGGAATA					4320
		TTTACATGTA					4500
~=		499 Proteir					
65	Protein Aco	ession #: F	BAA74900.1				
		1.1	21	21	41	51	
	1	11 1	1	31 }	1]	
	PLVINTLKRF	NLYPEVILAS	WYRIYTKIMD	LIGIOTKICW	TVTRGEGLSP	IESCEGLGDP	60
70		LNGLMMALFF					120
	SYPFLVLQML	LVTHILRATK	LYRGSLIALC	ISNVFFMLPW	QFAQFVLLTQ	IASLFAVYVV	180
		IIYIHMISLA					240
		FWLFGTVILK					300
75		YTKTLLLPVV ILIMRLKLFL					360 420
, ,		IVGEFSNLPQ					480
	YEDAGLRART	KIVYSMYSRK	AAEEVKRELI	KLKVNYYILE	ESWCVRRSKP	GCSMPEIWDV	540
		LCNLLVKDSK					
90							
80		500 DNA sec		275 1			
		ld Accession lence: 127					
	cours acqu						
0.5	1	11	21	31	41	51	
85	1	<u></u>			999335555	 	
		GACAGGTATA					60 120
	TAGCTGGCAC	CAGGAGCCGT	ADDDAADDDD	ACAGGCCACA	CCCTGCCCTG	CICIGCIGCA	120

```
GCCAGAATGG GTGTGAAGGC GTCTCAAACA GGCTTTGTGG TCCTGGTGCT GCTCCAGTGC
                                                                            180
       TGCTCTGCAT ACAAACTGGT CTGCTACTAC ACCAGCTGGT CCCAGTACCG GGAAGGCGAT
                                                                            240
       GGGAGCTGCT TCCCAGATGC CCTTGACCGC TTCCTCTGTA CCCACATCAT CTACAGCTTT
                                                                            300
       GCCAATATAA GCAACGATCA CATCGACACC TGGGAGTGGA ATGATGTGAC GCTCTACGGC
                                                                            360
 5
       ATGCTCAACA CACTCAAGAA CAGGAACCCC AACCTGAAGA CTCTCTTGTC TGTCGGAGGA
                                                                            420
       TGGAACTTTG GGTCTCAAAG ATTTTCCAAG ATAGCCTCCA ACACCCAGAG TCGCCGGACT
                                                                            480
       TTCATCAAGT CAGTACCGCC ATTCCTGCGC ACCCATGGCT TTGATGGGCT GGACCTTGCC
                                                                            540
       TGGCTCTACC CTGGACGGAG AGACAAACAG CATTTTACCA CCCTAATCAA GGAAATGAAG
                                                                            600
       GCCGAATTTA TAAAGGAAGC CCAGCCAGGG AAAAAGCAGC TCCTGCTCAG CGCAGCACTG
10
       TCTGCGGGGA AGGTCACCAT TGACAGCAGC TATGACATTG CCAAGATATC CCAACACCTG
                                                                            720
       GATTTCATTA GCATCATGAC CTACGATTTT CATGGAGCCT GGCGTGGGAC CACAGGCCAT
                                                                            780
       CACAGTCCCC TGTTCCGAGG TCAGGAGGAT GCAAGTCCTG ACAGATTCAG CAACACTGAC
                                                                            840
       TATGCTGTGG GGTACATGTT GAGGCTGGGG GCTCCTGCCA GTAAGCTGGT GATGGGCATC
                                                                            900
       CCCACCTTCG GGAGGAGCTT CACTCTGGCT TCTTCTGAGA CTGGTGTTGG AGCCCCAATC
                                                                            960
15
       TCAGGACCGG GAATTCCAGG CCGGTTCACC AAGGAGGCAG GGACCCTTGC CTACTATGAG
                                                                           1020
       ATCTGTGACT TCCTCCGCGG AGCCACAGTC CATAGAACCC TCGGCCAGCA GGTCCCCTAT
                                                                           1080
       GCCACCAAGG GCAACCAGTG GGTAGGATAC GACGACCAGG AAAGCGTCAA AAGCAAGGTG
                                                                           1140
       CAGTACCTGA AGGATAGGCA GCTGGCAGGC GCCATGGTAT GGGCCCTGGA CCTGGATGAC
                                                                           1200
       TTCCAGGGCT CCTTCTGCGG CCAGGATCTG CGCTTCCCTC TCACCAATGC CATCAAGGAT
                                                                           1260
20
       GCACTCGCTG CAACGTAGCC CTCTGTTCTG CACACAGCAC GGGGGCCAAG GATGCCCCGT
                                                                           1320
       CCCCCTCTGG CTCCAGCTGG CCGGGAGCCT GATCACCTGC CCTGCTGAGT CCCAGGCTGA
       GCCTCAGTCT CCCTCCCTTG GGGCCTATGC AGAGGTCCAC AACACACAGA TTTGAGCTCA
                                                                           1440
       GCCCTGGTGG GCAGAGAGGT AGGGATGGGG CTGTGGGGAT AGTGAGGCAT CGCAATGTAA
                                                                          1500
       GACTCGGGAT TAGTACACAC TTGTTGATGA TTAATGGAAA TGTTTACAGA TCCCCAAGCC
                                                                           1560
25
       TGGCAAGGGA ATTTCTTCAA CTCCCTGCCC CCTAGCCCTC CTTATCAAAG GACACCATTT
                                                                           1620
       TGGCAAGCTC TATCACCAAG GAGCCAAACA TCCTACAAGA CACAGTGACC ATACTAATTA
                                                                           1680
       TACCCCCTGC AAAGCCAGCT TGAAACCTTC ACTTAGGAAC GTAATCGTGT CCCCTATCCT
                                                                           1740
       ACTTCCCCTT CCTAATTCCA CAGCTGCTCA ATAAAGTACA AGAGTTTAAC AGTGTGTTGG
                                                                           1800
       CGCTTTGCTT TGGTCTATCT TTGAGCGCCC ACTAGACCCA CTGGACTCAC CTCCCCCATC
                                                                           1860
30
       TCTTCTGGGT TCCTTCCTCT GAGCCTTGGG ACCCCTGAGC TTGCAGAGAT GAAGGCCGCC
                                                                          1920
       ATGTT
       Seq ID NO: 501 Protein sequence
       Protein Accession #: NP_001267.1
35
                                        31
                                                   41
                                                              51
       MGVKASQTGF VVLVLLQCCS AYKLVCYYTS WSQYREGDGS CFPDALDRFL CTHIIYSFAN
                                                                             60
       ISNDHIDTWE WNDVTLYGML NTLKNRNPNL KTLLSVGGWN FGSQRFSKIA SNTQSRRTFI
                                                                            120
40
       KSVPPFLRTH GFDGLDLAWL YPGRRDKQHF TTLIKEMKAE FIKEAQPGKK QLLLSAALSA
                                                                            180
       GKVTIDSSYD IAKISQHLDF ISIMTYDFHG AWRGTTGHHS PLFRGQEDAS PDRFSNTDYA
                                                                            240
       VGYMLRLGAP ASKLVMGIPT FGRSFTLASS ETGVGAPISG PGIPGRFTKE AGTLAYYEIC
                                                                            300
       DFLRGATVHR TLGOOVPYAT KGNOWVGYDD OESVKSKVOY LKDROLAGAM VWALDLDDFQ
                                                                            360
       GSFCGODLRF PLTNAIKDAL AAT
45
       Seq ID NO: 502 DNA sequence
       Nucleic Acid Accession #: NM_006474.1
       Coding sequence: 181..669
50
                             21
                                        31
                                                   41
                                                                             60
       GCTGCCTAGG GTCTGGAAAG CTCGGGCACC CTCCCTCTCC GGGGCTCCTG CTCCCACCCC
       TCCGGCCCC CCACCGTCGC GCTCCTCCAG GCTGGGCCTG TGGCCGCGGT GCTTTTAATT
                                                                            120
       TTCCCCCAGC TCAGAATCTT GCTGCTCGGC CCCCAGGAGA GCAACAACTC AACGGGAACG
                                                                            180
55
       ATGTGGAAGG TGTCAGCTCT GCTCTTCGTT TTGGGAAGCG CGTCGCTCTG GGTCCTGGCA
                                                                            240
       GAAGGAGCCA GCACAGGCCA GCCAGAAGAT GACACTGAGA CTACAGGTTT GGAAGGCGGC
                                                                            300
       GTTGCCATGC CAGGTGCCGA AGATGATGTG GTGACTCCAG GAACCAGCGA AGACCGCTAT
       AAGTCTGGCT TGACAACTCT GGTGGCAACA AGTGTCAACA GTGTAACAGG CATTCGCATC
                                                                            420
       GAGGATCTGC CAACTTCAGA AAGCACAGTC CACGCGCAAG AACAAAGTCC AAGCGCCACA
                                                                            480
60
       GCCTCAAACG TGGCCACCAG TCACTCCACG GAGAAAGTGG ATGGAGACAC ACAGACAACA
                                                                            540
       GTTGAGAAAG ATGGTTTGTC AACAGTGACC CTGGTTGGAA TCATAGTTGG GGTCTTACTA
                                                                            600
       GCCATCGGTT TCATTGGTGG AATCATCGTT GTGGTTATGC GAAAAATGTC GGGAAGGTAC
                                                                            660
       TCGCCCTAAA GAGCTGAAGG GTTACGCCCT GCTTGCCAAC GTGCTTTAAA AAAAGACCGT
                                                                            720
       TTCTGACTCT GTGGCCCTGT CCCTGAGCTC GTGGGGAGAA GATGACCCTG GGAACATTTG
                                                                            780
65
       CGGGCCCATT CAGATTCCAC GGTGACTTTC CGTTTGCCAA ATTAACCGAG GAAAGACCTT
                                                                            840
       TCACCAGATT TGGTTCTTAA ACTTT
       Sea ID NO: 503 Protein sequence
       Protein Accession #: NP_006465.1
70
                             21
                                        31
                                                   41
                                                              51
       MWKVSALLFV LGSASLWVLA EGASTGOPED DTETTGLEGG VAMPGAEDDV VTPGTSEDRY
                                                                             60
       KSGLTTLVAT SVNSVTGIRI EDLPTSESTV HAQEQSPSAT ASNVATSHST EKVDGDTQTT
                                                                            120
75
       VEKDGLSTVT LVGIIVGVLL AIGFIGGIIV VVMRKMSGRY SP
       Seq ID NO: 504 DNA sequence
      Nucleic Acid Accession #: Eos sequence
       Coding sequence: 62..895
80
                                        31
                                                   41
       CACTGCTCTG AGAATTTGTG AGCAGCCCCT AACAGGCTGT TACTTCACTA CAACTGACGA
                                                                             60
       TATGATCATC TTAATTTACT TATTTCTCTT GCTATGGGAA GACACTCAAG GATGGGGATT
                                                                            120
85
       CAAGGATGGA ATTTTCATA ACTCCATATG GCTTGAACGA GCAGCCGGTG TGTACCACAG
                                                                            180
       AGAAGCACGG TCTGGCAAAT ACAAGCTCAC CTACGCAGAA GCTAAGGCGG TGTGTGAATT
       TGAAGGCGGC CATCTCGCAA CTTACAAGCA GCTAGAGGCA GCCAGAAAAA TTGGATTTCA
```

```
TGTCTGTGCT GCTGGATGGA TGGCTAAGGG CAGAGTTGGA TACCCCATTG TGAAGCCAGG
                                                                                360
       GCCCAACTGT GGATTTGGAA AAACTGGCAT TATTGATTAT GGAATCCGTC TCAATAGGAG
                                                                                420
       TGAAAGATGG GATGCCTATT GCTACAACCC ACACGCAAAG GAGTGTGGTG GCGTCTTTAC
                                                                                480
       AGATCCAAAG CAAATTTTTA AATCTCCAGG CTTCCCAAAT GAGTACGAAG ATAACCAAAT
                                                                                540
 5
       CTGCTACTGG CACATTAGAC TCAAGTATGG TCAGCGTATT CACCTGAGTT TTTTAGATTT
                                                                                600
       TGACCTTGAA GATGACCCAG GTTGCTTGGC TGATTATGTT GAAATATATG ACAGTTACGA
                                                                                660
       TGATGTCCAT GGCTTTGTGG GAAGATACTG TGGAGATGAG CTTCCAGATG ACATCATCAG
                                                                                720
       TACAGGAAAT GTCATGACCT TGAAGTTTCT AAGTGATGCT TCAGTGACAG CTGGAGGTTT
       CCAAATCAAA TATGTTGCAA TGGATCCTGT ATCCAAATCC AGTCAAGGAA AAAATACAAG
10
       TACTACTTCT ACTGGAAATA AAAACTTTTT AGCTGGAAGA TTTAGCCACT TATAAAAAAA
                                                                                900
       AAAAAAGGA TGATCAAAAC ACACAGTGTT TATGTTGGAA TCTTTTGGAA CTCCTTTGAT
                                                                                960
                                                                              1020
       CTCACTGTTA TTATTAACAT TTATTTATTA TTTTTCTAAA TGTGAAAGCA ATACATAATT
       TAGGGAAAAT TGGAAAATAT AGGAAACTTT AAACGAGAAA ATGAAACCTC TCATAATCCC
                                                                              1080
       ACTGCATAGA AATAACAAGC GTTAACATTT TCATATTTTT TTCTTTCAGT CATTTTTCTA
                                                                               1140
15
       TTTGTGGTAT ATGTATATAT GTACCTATAT GTATTTGCAT TTGAAATTTT GGAATCCTGC
                                                                               1200
       TCTATGTACA GTTTTGTATT ATACTTTTTA AATCTTGAAC TTTATAAACA TTTTCTGAAA
                                                                               1260
       TCATTGATTA TTCTACAAAA ACATGATTTT AAACAGCTGT AAAATATTCT ATGATATGAA
                                                                              1320
       TGTTTTATGC ATTATTTAAG CCTGTCTCTA TTGTTGGAAT TTCAGGTCAT TTTCATAAAT
                                                                              1380
       20
       Seq ID NO: 505 Protein sequence
       Protein Accession #: Eos sequence
                                          31
                                                      41
                                                                  51
25
       MIILIYLFLL LWEDTQGWGF KDGIFHNSIW LERAAGVYHR EARSGKYKLT YAEAKAVCEF
                                                                                 60
       EGGHLATYKQ LEAARKIGFH VCAAGWMAKG RVGYPIVKPG PNCGFGKTGI IDYGIRLNRS
                                                                                120
       ERWDAYCYNP HAKECGGVFT DPKQIFKSPG FPNEYEDNQI CYWHIRLKYG QRIHLSFLDF
                                                                                180
       DLEDDPGCLA DYVEIYDSYD DVHGFVGRYC GDELPDDIIS TGNVMTLKFL SDASVTAGGF
                                                                                240
30
       OIKYVAMDPV SKSSOGKNTS TTSTGNKNFL AGRFSHL
       Seg ID NO: 506 DNA seguence
       Nucleic Acid Accession #: NM_007115.1
       Coding sequence: 69..902
35
                                          31
                                                      41
                                                                  51
       GAATTCGCAC TGCTCTGAGA ATTTGTGAGC AGCCCCTAAC AGGCTGTTAC TTCACTACAA
                                                                                 60
       CTGACGATAT GATCATCTTA ATTTACTTAT TTCTCTTGCT ATGGGAAGAC ACTCAAGGAT
40
       GGGGATTCAA GGATGGAATT TTTCATAACT CCATATGGCT TGAACGAGCA GCCGGTGTGT
                                                                                180
       ACCACAGAGA AGCACGGTCT GGCAAATACA AGCTCACCTA CGCAGAAGCT AAGGCGGTGT
                                                                                240
       GTGAATTTGA AGGCGGCCAT CTCGCAACTT ACAAGCAGCT AGAGGCAGCC AGAAAAATTG
GATTTCATGT CTGTGCTGCT GGATGGATGG CTAAGGGCAG AGTTGGATAC CCCATTGTGA
                                                                                300
                                                                                360
       AGCCAGGGCC CAACTGATGA TTTGGAAAAA CTGGCATTAT TGATTATGGA ATCCGTCTCA
                                                                                420
45
       ATAGGAGTGA AAGATGGGAT GCCTATTGCT ACAACCCACA CGCAAAGGAG TGTGGTGGCG
       TCTTTACAGA TCCAAAGCGA ATTTTTAAAT CTCCAGGCTT CCCAAATGAG TACGAAGATA
                                                                                540
       ACCAAATCTG CTACTGGCAC ATTAGACTCA AGTATGGTCA GCGTATTCAC CTGAGTTTTT
                                                                                600
       TAGATTTTGA CCTTGAAGAT GACCCAGGTT GCTTGGCTGA TTATGTTGAA ATATATGACA
                                                                                660
       GTTACGATGA TGTCCATGGC TTTGTGGGAA GATACTGTGG AGATGAGCTT CCAGATGACA
TCATCAGTAC AGGAAATGTC ATGACCTTGA AGTTTCTAAG TGATGCTTCA GTGACAGCTG
                                                                                720
50
                                                                                780
       GAGGTTTCCA AATCAAATAT GTTGCAATGG ATCCTGTATC CAAATCCAGT CAAGGAAAAA
       ATACAAGTAC TACTTCTACT GGAAATAAAA ACTTTTTAGC TGGAAGATTT AGCCACTTAT
       AAAAAAAAA AAGGATGATC AAAACACACA GTGTTTATGT TGGAATCTTT TGGAACTCCT
                                                                                960
       TTGATCTCAC TGTTATTATT AACATTTATT TATTATTTTT CTAAATGTGA AAGAAATACA
                                                                              1020
55
       TAATTTAGGG AAAATTGGAA AATATAGGAA ACTTTAAACG AGAAAATGAA ACCTCTCATA
                                                                              1080
       ATCCCACTGC ATAGAAATAA CAAGCGTTAA CATTTCATA TTTTTTCTT TCAGTCATTT TTGTATTTGT GGTATATGTA TATATGTACC TATATGTATT TGCATTTGAA ATTTTGGAAT
                                                                              1140
                                                                              1200
       CCTGCTCTAT GTACAGTTTT GTATTATACT TTTTAAATCT TGAACTTTAT GAACATTTTC
                                                                              1260
       TGAAATCATT GATTATTCTA CAAAAACATG ATTTTAAACA GCTGTAAAAT ATTCTATGAT
                                                                              1320
60
       ATGAATGTTT TATGCATTAT TTAAGCCTGT CTCTATTGTT GGAATTTCAG GTCATTTTCA
                                                                              1380
       TAAATATTGT TGCAATAAAT ATCCTTCGGA ATTC
       Seq ID NO: 507 Protein sequence
       Protein Accession #: NP_009046.1
65
                                          31
                                                      41
                                                                  51
       MIILIYLFLL LWEDTQGWGF KDGIFHNSIW LERAAGVYHR EARSGKYKLT YAEAKAVCEF
                                                                                 60
       EGGHLATYKQ LEAARKIGFH VCAAGWMAKG RVGYPIVKPG PNXXFGKTGI IDYGIRLNRS
                                                                                120
70
       ERWDAYCYNP HAKECGGVFT DPKRIFKSPG FPNEYEDNQI CYWHIRLKYG QRIHLSFLDF
                                                                                180
       DLEDDPGCLA DYVEIYDSYD DVHGFVGRYC GDELPDDIIS TGNVMTLKFL SDASVTAGGF
                                                                               240
       QIKYVAMDPV SKSSQGKNTS TTSTGNKNFL AGRFSHL
75
       Seq ID NO: 508 DNA sequence
       Nucleic Acid Accession #: NM_001044.1
       Coding sequence: 129..1991
                   11
                               21
                                                                  51
                                          31
                                                      41.
80
       ACCECTCCEG AGCEGGAGGE GAGGCTTCGC GGAACECTCT CEGCGCCAGE ACTCGCGTGC
       AAAGCCCAGG CCCGGGCGGC CAGACCAAGA GGGAAGAAGC ACAGAATTCC TCAACTCCCA
                                                                                120
       GTGTGCCCAT GAGTAAGAGC AAATGCTCCG TGGGACTCAT GTCTTCCGTG GTGGCCCCGG
                                                                                180
       CTAAGGAGCC CAATGCCGTG GGCCCGAAGG AGGTGGAGCT CATCCTTGTC AAGGAGCAGA
                                                                                240
85
       ACGGAGTGCA GCTCACCAGC TCCACCCTCA CCAACCCGCG GCAGAGCCCC GTGGAGGCCC AGGATCGGGA GACCTGGGGC AAGAAGATCG ACTTTCTCCT GTCCGTCATT GGCTTTGCTG
                                                                                300
                                                                                360
       TGGACCTGGC CAACGTCTGG CGGTTCCCCT ACCTGTGCTA CAAAAATGGT GGCGGTGCCT
```

```
TCCTGGTCCC CTACCTGCTC TTCATGGTCA TTGCTGGGAT GCCACTTTTC TACATGGAGC
                                                                            480
       TGGCCCTCGG CCAGTTCAAC AGGGAAGGGG CCGCTGGTGT CTGGAAGATC TGCCCCATAC
                                                                            540
       TGAAAGGTGT GGGCTTCACG GTCATCCTCA TCTCACTGTA TGTCGGCTTC TTCTACAACG
                                                                            600
       TCATCATCGC CTGGGCGCTG CACTATCTCT TCTCCTCCTT CACCACGGAG CTCCCCTGGA
                                                                            660
 5
       TCCACTGCAA CAACTCCTGG AACAGCCCCA ACTGCTCGGA TGCCCATCCT GGTGACTCCA
                                                                            720
       GTGGAGACAG CTCGGGCCTC AACGACACTT TTGGGACCAC ACCTGCTGCC GAGTACTTTG
                                                                            780
       AACGTGGCGT GCTGCACCTC CACCAGAGCC ATGGCATCGA CGACCTGGGG CCTCCGCGGT
       GGCAGCTCAC AGCCTGCCTG GTGCTGGTCA TCGTGCTGCT CTACTTCAGC CTCTGGAAGG
                                                                            900
       GCGTGAAGAC CTCAGGGAAG GTGGTATGGA TCACAGCCAC CATGCCATAC GTGGTCCTCA
                                                                            960
10
       CTGCCCTGCT CCTGCGTGGG GTCACCCTCC CTGGAGCCAT AGACGGCATC AGAGCATACC
                                                                           1020
       TGAGCGTTGA CTTCTACCGG CTCTGCGAGG CGTCTGTTTG GATTGACGCG GCCACCCAGG
                                                                           1080
       TGTGCTTCTC CCTGGGCGTG GGGTTCGGGG TGCTGATCGC CTTCTCCAGC TACAACAAGT
                                                                           1140
       TCACCAACAA CTGCTACAGG GACGCGATTG TCACCACCTC CATCAACTCC CTGACGAGCT
                                                                           1200
       TCTCCTCCGG CTTCGTCGTC TTCTCCTTCC TGGGGTACAT GGCACAGAAG CACAGTGTGC
                                                                           1260
15
       CCATCGGGGA CGTGGCCAAG GACGGGCCAG GGCTGATCTT CATCATCTAC CCGGAAGCCA
                                                                           1320
       TCGCCACGCT CCCTCTGTCC TCAGCCTGGG CCGTGGTCTT CTTCATCATG CTGCTCACCC
                                                                           1380
       TGGGTATCGA CAGCGCCATG GGTGGTATGG AGTCAGTGAT CACCGGGCTC ATCGATGAGT
                                                                           1440
       TCCAGCTGCT GCACAGACAC CGTGAGCTCT TCACGCTCTT CATCGTCCTG GCGACCTTCC
                                                                           1500
       TCCTGTCCCT GTTCTGCGTC ACCAACGGTG GCATCTACGT CTTCACGCTC CTGGACCATT
                                                                           1560
20
       TTGCAGCCGG CACGTCCATC CTCTTTGGAG TGCTCATCGA AGCCATCGGA GTGGCCTGGT
                                                                           1620
       TCTATGGTGT TGGGCAGTTC AGCGACGACA TCCAGCAGAT GACCGGGCAG CGGCCCAGCC
                                                                           1680
       TGTACTGGCG GCTGTGCTGG AAGCTGGTCA GCCCCTGCTT TCTCCTGTTC GTGGTCGTGG
                                                                           1740
       TCAGCATTGT GACCTTCAGA CCCCCCCACT ACGGAGCCTA CATCTTCCCC GACTGGGCCA
                                                                           1800
       ACGCGCTGGG CTGGGTCATC GCCACATCCT CCATGGCCAT GGTGCCCATC TATGCGGCCT
                                                                           1860
25
       ACAAGTTCTG CAGCCTGCCT GGGTCCTTTC GAGAGAAACT GGCCTACGCC ATTGCACCCG
                                                                           1920
       AGAAGGACCG TGAGCTGGTG GACAGAGGGG AGGTGCGCCA GTTCACGCTC CGCCACTGGC
                                                                           1980
       TCAAGGTGTA GAGGGAGCAG AGACGAAGAC CCCAGGAAGT CATCCTGCAA TGGGAGAGAC
                                                                           2040
       ACGAACAAAC CAAGGAAATC TAAGTTTCGA GAGAAAGGAG GGCAACTTCT ACTCTTCAAC
                                                                           2100
       CTCTACTGAA AACACAAACA ACAAAGCAGA AGACTCCTCT CTTCTGACTG TTTACACCTT
                                                                           2160
30
       TCCGTGCCGG GAGCGCACCT CGCCGTGTCT TGTGTTGCTG TAATAACGAC GTAGATCTGT
                                                                           2220
       GCAGCGAGGT CCACCCCGTT GTTGTCCCTG CAGGGCAGAA AAACGTCTAA CTTCATGCTG
                                                                           2280
       TCTGTGTGAG GCTCCCTCCC TCCCTGCTCC CTGCTCCCGG CTCTGAGGCT GCCCCAGGGG
                                                                           2340
       CACTGTGTTC TCAGGCGGGG ATCACGATCC TTGTAGACGC ACCTGCTGAG AATCCCCGTG
                                                                           2400
       CTCACAGTAG CTTCCTAGAC CATTTACTTT GCCCATATTA AAAAGCCAAG TGTCCTGCTT
                                                                           2460
35
       GGTTTAGCTG TGCAGAAGGT GAAATGGAGG AAACCACAAA TTCATGCAAA GTCCTTTCCC
                                                                           2520
       GATGCGTGGC TCCCAGCAGA GGCCGTAAAT TGAGCGTTCA GTTGACACAT TGCACACACA
                                                                           2580
       GTCTGTTCAG AGGCATTGGA GGATGGGGGT CCTGGTATGT CTCACCAGGA AATTCTGTTT
                                                                           2640
       ATGTTCTTGC AGCAGAGAG AATAAAACTC CTTGAAACCA GCTCAGGCTA CTGCCACTCA
                                                                           2700
       GGCAGCCTGT GGGTCCTTGT GGTGTAGGGA ACGGCCTGAG AGGAGCGTGT CCTATCCCCG
                                                                           2760
40
       GACGCATGCA GGGCCCCCAC AGGAGCGTGT CCTATCCCCG GACGCATGCA GGGCCCCCAC
                                                                           2820
       AGGAGCATGT CCTATCCCTG GACGCATGCA GGGCCCCCAC AGGAGCGTGT ACTACCCCAG
                                                                           2880
       AACGCATGCA GGGCCCCCAC AGGAGCGTGT ACTACCCCAG GACGCATGCA GGGCCCCCAC
                                                                           2940
       TGGAGCGTGT ACTACCCCAG GACGCATGCA GGGCCCCCAC AGGAGCGTGT CCTATCCCCG
                                                                           3000
       GACCGGACGC ATGCAGGGCC CCCACAGGAG CGTGTACTAC CCCAGGACGC ATGCAGGGCC
                                                                           3060
45
       CCCACAGGAG CGTGTACTAC CCCAGGATGC ATGCAGGGCC CCCACAGGAG CGTGTACTAC
                                                                           3120
       CCCAGGACGC ATGCAGGGCC CCCATGCAGG CAGCCTGCAG ACCAACACTC TGCCTGGCCT
                                                                           3180
       TGAGCCGTGA CCTCCAGGAA GGGACCCCAC TGGAATTTTA TTTCTCTCAG GTGCGTGCCA
                                                                           3240
       CATCAATAAC AACAGTTTTT ATGTTTGCGA ATGGCTTTTT AAAATCATAT TTACCTGTGA
                                                                           3300
       ATCAAAACAA ATTCAAGAAT GCAGTATCCG CGAGCCTGCT TGCTGATATT GCAGTTTTTG
                                                                           3360
50
       TTTACAAGAA TAATTAGCAA TACTGAGTGA AGGATGTTGG CCAAAAGCTG CTTTCCATGG
                                                                           3420
       CACACTGCCC TCTGCCACTG ACAGGAAAGT GGATGCCATA GTTTGAATTC ATGCCTCAAG
                                                                           3480
       TCGGTGGGCC TGCCTACGTG CTGCCCGAGG GCAGGGGCCG TGCAGGGCCA GTCATGGCTG
                                                                           3540
       TCCCCTGCAA GTGGACGTGG GCTCCAGGGA CTGGAGTGTA ATGCTCGGTG GGAGCCGTCA
                                                                           3600
       GCCTGTGAAC TGCCAGGCAG CTGCAGTTAG CACAGAGGAT GGCTTCCCCA TTGCCTTCTG
                                                                           3660
55
       GGGAGGGACA CAGAGGACGG CTTCCCCATC GCCTTCTGGC CGCTGCAGTC AGCACAGAGA
                                                                           3720
       GCGGCTTCCC CATTGCCTTC TGGGGAGGGA CACAGAGGAC AGTTTCCCCA TCGCCTTCTG
                                                                           3780
       GTTGTTGAAG ACAGCACAGA GAGCGGCTTC CCCATCGCCT TCTGGGGAGG GGCTCCGTGT
                                                                           3840
       AGCAACCCAG GTGTTGTCCG TGTCTGTTGA CCAATCTCTA TTCAGCATCG TGTGGGTCCC
                                                                           3900
       TAAGCACAAT AAAAGACATC CACAATGGAA AAAAAAAAAG GAATTC
60
       Seg ID NO: 509 Protein seguence
       Protein Accession #: NP 001035.1
                                        31
                                                    41
                                                               51
65
       MSKSKCSVGL MSSVVAPAKE PNAVGPKEVE LILVKEQNGV QLTSSTLTNP RQSPVEAQDR
                                                                             60
       ETWGKKIDFL LSVIGFAVDL ANVWRFPYLC YKNGGGAFLV PYLLFMVIAG MPLFYMELAL
                                                                            120
       GQFNREGAAG VWKICPILKG VGFTVILISL YVGFFYNVII AWALHYLFSS FTTELPWIHC
                                                                            180
       NNSWNSPNCS DAHPGDSSGD SSGLNDTFGT TPAAEYFERG VLHLHQSHGI DDLGPPRWQL
                                                                            240
70
       TACLVLVIVL LYFSLWKGVK TSGKVVWITA TMPYVVLTAL LLRGVTLPGA IDGIRAYLSV
                                                                            300
       DFYRLCEASV WIDAATQVCF SLGVGFGVLI AFSSYNKFTN NCYRDAIVTT SINSLTSFSS
                                                                            360
       GFVVFSFLGY MAOKHSVPIG DVAKDGPGLI FIIYPEAIAT LPLSSAWAVV FFIMLLTLGI
                                                                            420
       DSAMGGMESV ITGLIDEFOL LHRHRELFTL FIVLATFLLS LFCVTNGGIY VFTLLDHFAA
                                                                            480
       GTSILFGVLI EAIGVAWFYG VGQFSDDIQQ MTGQRPSLYW RLCWKLVSPC FLLFVVVVSI
                                                                            540
75
       VTFRPPHYGA YIFPDWANAL GWVIATSSMA MVPIYAAYKF CSLPGSFREK LAYAIAPEKD
                                                                            600
       RELVDRGEVR QFTLRHWLKV
       Seg ID NO: 510 DNA seguence
       Nucleic Acid Accession #: NM_001216.1
80
       Coding sequence: 43.,1422
                             21
                                        31
                                                    41
                                                               51
                  11
       GCCCGTACAC ACCGTGTGCT GGGACACCCC ACAGTCAGCC GCATGGCTCC CCTGTGCCCC
85
       AGCCCCTGGC TCCCTCTGTT GATCCCGGCC CCTGCTCCAG GCCTCACTGT GCAACTGCTG
                                                                            120
       CTGTCACTGC TGCTTCTGAT GCCTGTCCAT CCCCAGAGGT TGCCCCGGAT GCAGGAGGAT
                                                                            1.80
       TCCCCCTTGG GAGGAGGCTC TTCTGGGGAA GATGACCCAC TGGGCGAGGA GGATCTGCCC
                                                                            240
```

```
AGTGAAGAGG ATTCACCCAG AGAGGAGGAT CCACCCGGAG AGGAGGATCT ACCTGGAGAG
                                                                                                         300
         GAGGATCTAC CTGGAGAGGA GGATCTACCT GAAGTTAAGC CTAAATCAGA AGAAGAGGGC
                                                                                                         360
          TCCCTGAAGT TAGAGGATCT ACCTACTGTT GAGGCTCCTG GAGATCCTCA AGAACCCCAG
                                                                                                         420
         AATAATGCCC ACAGGGACAA AGAAGGGGAT GACCAGAGTC ATTGGCGCTA TGGAGGCGAC
                                                                                                         480
 .5
          CCGCCCTGGC CCCGGGTGTC CCCAGCCTGC GCGGGCCGCT TCCAGTCCCC GGTGGATATC
          CGCCCCAGC TCGCCGCCTT CTGCCCGGCC CTGCGCCCCC TGGAACTCCT GGGCTTCCAG
         CTCCCGCCGC TCCCAGAACT GCGCCTGCGC AACAATGGCC ACAGTGTGCA ACTGACCCTG
                                                                                                         660
         CCTCCTGGGC TAGAGATGGC TCTGGGTCCC GGGCGGGAGT ACCGGGCTCT GCAGCTGCAT
                                                                                                         720
          CTGCACTGGG GGGCTGCAGG TCGTCCGGGC TCGGAGCACA CTGTGGAAGG CCACCGTTTC
                                                                                                         780
10
          CCTGCCGAGA TCCACGTGGT TCACCTCAGC ACCGCCTTTG CCAGAGTTGA CGAGGCCTTG
                                                                                                         840
         GGGCGCCGG GAGGCCTGGC CGTGTTGGCC GCCTTTCTGG AGGAGGGCCC GGAACAAAAC AGTGCCTATG AGCAGTTGCT GTCTCGCTTG GAAGAAAACC CTGAGGAAGG CTCAGAGACT
                                                                                                         900
                                                                                                       1020
          CAGGTCCCAG GACTGGACAT ATCTGCACTC CTGCCCTCTG ACTTCAGCCG CTACTTCCAA
         TATGAGGGGT CTCTGACTAC ACCGCCCTGT GCCCAGGGTG TCATCTGGAC TGTGTTTAAC
                                                                                                       1080
15
          CAGACAGTGA TGCTGAGTGC TAAGCAGCTC CACACCCTCT CTGACACCCT GTGGGGACCT
                                                                                                       1140
          GGTGACTCTC GGCTACAGCT GAACTTCCGA GCGACGCAGC CTTTGAATGG GCGAGTGATT
                                                                                                       1200
          GAGGCCTCCT TCCCTGCTGG AGTGGACAGC AGTCCTCGGG CTGCTGAGCC AGTCCAGCTG
                                                                                                        1260
         AATTCCTGCC TGGCTGCTGG TGACATCCTA GCCCTGGTTT TTGGCCTCCT TTTTGCTGTC
                                                                                                       1320
         ACCAGCGTCG CGTTCCTTGT GCAGATGAGA AGGCAGCACA GAAGGGGAAC CAAAGGGGGT
                                                                                                       1380
20
          GTGAGCTACC GCCCAGCAGA GGTAGCCGAG ACTGGAGCCT AGAGGCTGGA TCTTGGAGAA
                                                                                                        1440
          TGTGAGAAGC CAGCCAGAGG CATCTGAGGG GGAGCCGGTA ACTGTCCTGT CCTGCTCATT
                                                                                                       1500
          ATGCCACTTC CTTTTAACTG CCAAGAAATT TTTTAAAATA AATATTTATA AT
          Seg ID NO: 511 Protein sequence
25
          Protein Accession #: NP_001207.1
                                                        31
                                                                        41
                                                                                       51
          MAPLCPSPWL PLLIPAPAPG LTVQLLLSLL LLMPVHPQRL PRMQEDSPLG GGSSGEDDPL
          GEEDLPSEED SPREEDPPGE EDLPGEEDLP GEEDLPEVKP KSEEEGSLKL EDLPTVEAPG
30
          DPOEPONNAH RDKEGDDOSH WRYGGDPPWP RVSPACAGRF QSPVDIRPQL AAFCPALRPL
                                                                                                         180
          ELLGFQLPPL PELRLRNNGH SVQLTLPPGL EMALGPGREY RALQLHLHWG AAGRPGSEHT
                                                                                                         240
          VEGHRFPAEI HVVHLSTAFA RVDEALGRPG GLAVLAAFLE EGPEENSAYE QLLSRLEEIA
                                                                                                          300
          EEGSETQVPG LDISALLPSD FSRYFQYEGS LTTPPCAQGV IWTVFNQTVM LSAKQLHTLS
                                                                                                          360
35
          DTLWGPGDSR LQLNFRATQP LNGRVIEASF PAGVDSSPRA AEPVQLNSCL AAGDILALVF
                                                                                                          420
          GLLFAVTSVA FLVQMRRQHR RGTKGGVSYR PAEVAETGA
          Seq ID NO: 512 DNA sequence
          Nucleic Acid Accession #: Eos sequence
40
          Coding sequence: 1..3978
                                                                                       51
                         11
                                         21
                                                        31
                                                                        41
          ATGGTGGGTG AAGGACCCTA CCTTATCTCA GATCTGGACC AGCGAGGCCG GCGGAGATCC
                                                                                                           60
45
          TTTGCAGAAA GATATGACCC CAGCCTGAAG ACCATGATCC CAGTGCGACC CTGTGCAAGG
                                                                                                          120
                                                                                                          180
          TTAGCACCCA ACCCGGTGGA TGATGCCGGG CTACTCTCCT TCGCCACATT TTCCTGGCTC
          ACGCCGGTGA TGGTGAAAGG CTACCGGCAA AGGCTGACCG TAGACACCCT GCCCCCATTG
                                                                                                          240
          TCGACATATG ACTCATCTGA CACCAATGCC AAAAGATTC GAGTCCTTTG GGATGAAGAG
          TCGACATATO ACTORITION CONTROL TO TOTAL TOT
                                                                                                          360
50
                                                                                                          420
          CCGACAGTTC TCATTCACCA AATCCTCCAG CAGACTGAGA GGACCTCTGG GAAAGTCTGG
                                                                                                          480
          GTTGGCATTG GACTGTGCAT AGCCCTTTTT GCCACCGAGT TTACCAAAGT CTTCTTTTGG
                                                                                                          540
          GCCCTTGCCT GGGCCATCAA CTACCGCACG GCCATCCGGT TGAAGGTGGC GCTCTCCACC
          TTGGTTTTTG AAAACCTAGT GTCCTTCAAG ACATTGACCC ACATCTCTGT TGGCGAGGTG
55
          CTCAATATAC TGTCAAGTGA TAGCTATTCT TTGTTTGAAG CTGCCTTGTT TTGTCCTTTG
                                                                                                          720
          CCAGCCACCA TCCCGATCCT AATGGTCTTT TGTGCGGCGT ACGCCTTTTT CATTCTGGGG
                                                                                                          780
          CCCACAGCTC TCATCGGGAT ATCAGTGTAT GTCATATTCA TACCCGTCCA GATGTTTATG
                                                                                                          840
          GCCAAGCTCA ATTCAGCTTT CCGAAGGTCA GCAATTTTGG TGACAGACAA GCGAGTTCAG
                                                                                                          900
          ACAATGAATG AGTTTCTGAC CTGCATCAGG CTGATCAAAA TGTATGCCTG GGAGAAATCT
                                                                                                          960
          TTTACCAACA CTATCCAAGA TATAAGAAGG AGGGAAAGAA AATTACTGGA AAAAGCTGGA
60
                                                                                                        1020
          TTTGTCCAAA GTGGAAACTC TGCCCTGGCC CCCATCGTGT CCACCATAGC CATCGTGCTG
                                                                                                        1080
          ACATTATCCT GCCACATCCT CCTGAGACGC AAACTCACCG CACCCGTGGC ATTTAGTGTG
                                                                                                        1140
          ATTGCCATGT TTAATGTAAT GAAGTTTTCC ATTGCAATCT TGCCCTTCTC CATCAAAGCA
                                                                                                        1200
          ATGCCTGAAG CGAATGTCTC TCTAAGGAGA ATGAAGAAAA TTCTCATAGA TAAAAGCCCC
                                                                                                        1260
          CCATCTTACA TCACCCAACC AGAAGACCCA GATACTGTCT TGCTTTTAGC AAATGCCACC
65
                                                                                                        1320
          TTGACATGGG AGCATGAAGC CAGCAGGAAA AGTACCCCAA AGAAATTGCA GAACCAGAAA
                                                                                                        1380
          AGGCATTTAT GCAAGAACA GAGGTCAGAG GCATACAGTG AGAGGAGTCC ACCAGCCAAG
                                                                                                        1440
          GGAGCCACTG GCCCAGAGGA GCAAAGTGAC AGCCTCAAAT CGGTTCTGCA CAGCATAAGC
                                                                                                        1500
          TTTGTGGTGA GAAAGTTATG TCGTTATCCC GAAGCCCAGC TCCTGGCTTG GAGGTGGCCA
                                                                                                        1560
7.0
          GCAGTGTTTG TTGGGAGAAT CATCAGAGGA TACAGGCCTC ATGGATTTTC TGCTAAAGAC
                                                                                                        1620
          AAGGATGAAT CTAGAAGGCT TCTTACTTGG CCCCAAGAAG TGGATAGGAC TCAAAGGGCA
                                                                                                        1680
          GCCAAATACC TGGGGAAGAT CTTGGGAATA TGTGGGAATG TGGGAAGTGG AAAGAGCTCC
          CTCCTTGCAG CTCTCCTAGG ACAGATGCAG CTGCAGAAAG GGGTGGTGGC AGTCAATGGA
                                                                                                        1800
          ACTITGGCCT ACGITTCACA GCAGGCATGG ATCITTCATG GAAATGTGAG AGAAAACATA
                                                                                                        1860
75
          CTCTTTGGAG AAAAGTATGA TCACCAAAGG TATCAGCACA CAGTCCGCGT CTGTGGCCTC
                                                                                                        1920
          CAGAAGGACC TGAGCAACCT CCCCTATGGA GACCTGACTG AGATTGGGGA GCGGGGCCTC
                                                                                                        1980
          AACCTCTCTG GGGGGCAGAG GCAGAGGATT AGCCTGGCCC GCGCTGTCTA CTCCGACCGT
                                                                                                        2040
          CAGCTCTACC TGCTGGACGA CCCCCTGTCG GCCGTGGACG CCCACGTGGG GAAGCACGTC
                                                                                                         2100
          TTTGAGGAGT GCATTAAGAA GACGCTCAGG GGAAAGACAG TCGTCCTGGT GACCCACCAG
                                                                                                        2160
80
          CTACAGTTCT TAGAGTCTTG TGATGAAGTT ATTTTATTAG AAGATGGAGA GATTTGTGAA
                                                                                                        2220
          AAGGGAACCC ACAAGGAGTT AATGGAGGAG AGAGGGCGCT ATGCAAAACT GATTCACAAC
                                                                                                        2280
          CTGCGAGGAT TGCAGTTCAA GGATCCTGAA CACCTTTACA ATGCAGCAAT GGTGGAAGCC
                                                                                                        2340
          TTCAAGGAGA GCCCTGCTGA GAGAGAGGAA GATGCTGGTA TAATCGGGTA CCTCCTTTCT
                                                                                                        2400
          CTCTTCACTG TGTTCCTCTT CCTCCTGATG ATTGGCAGCG CTGCCTTCAG CAACTGGTGG
                                                                                                         2460
          CTGGGTCTCT GGTTGGACAA GGGCTCACGG ATGACCTGTG GGCCCCAGGG CAACAGGACC
85
                                                                                                         2520
          ATGTGTGAGG TCGGCGCGGT GCTGGCAGAC ATCGGTCAGC ATGTGTACCA GTGGGTGTAC
                                                                                                         2580
          ACTGCAAGCA TGGTGTTCAT GCTGGTGTTT GGCGTCACCA AAGGCTTCGT CTTCACCAAG
                                                                                                        2640
```

```
ACCACACTGA TGGCATCCTC CTCTCTGCAT GACACGGTGT TTGATAAGAT CTTAAAGAGC
                                                                          2700
       CCAATGAGTT TCTTTGACAC GACTCCCACT GGCAGGCTAA TGAACCGTTT TTCCAAGGAT
                                                                          2760
       ATGGACGAGC TGGATGTGAG GCTGCCGTTT CACGCAGAGA ACTTTCTGCA GCAGTTTTTT
                                                                          2820
                                                                          2880
       ATGGTGGTGT TTATTCTCGT GATCTTGGCT GCTGTGTTTC CTGCTGTCCT TTTAGTCGTG
 5
       GCCAGCCTTG CTGTAGGCTT CTTCATTCTG TTACGCATTT TCCACAGAGG AGTCCAGGAG
                                                                          2940
       CTCAAGAAGG TGGAGAATGT CAGCCGGTCA CCCTGGTTCA CCCACATCAC CTCCTCCATG
                                                                          3000
       CAGGGCCTGG GCATCATTCA CGCCTATGGC AAGAAGGAGA GCTGCATCAC CTATACTTCA
       TCCAAAGGCC TGTCATTGTC ATACATCATC CAGCTGAGCG GACTGCTCCA AGTGTGTGT
                                                                          3120
       CGAACGGGAA CAGAGACGCA AGCCAAATTC ACCTCCGTGG AGCTGCTCAG GGAATACATT
                                                                          3180
10
       TCGACCTGTG TTCCTGAATG CACTCATCCC CTCAAAGTGG GGACCTGTCC CAAGGACTGG
                                                                          3240
       CCCAGCTGTG GGGAGATCAC CTTCAGAGAC TATCAGATGA GATACAGAGA CAACACCCCC
                                                                          3300
       CTTGTTCTCG ACAGCCTGAA CTTGAACATA CAAAGTGGGC AGACAGTCGG GATTGTTGGA
                                                                          3360
       AGAACAGGTT CCGGAAAGTC ATCGTTAGGA ATGGCTTTGT TTCGTCTGGT GGAGCCAGCC
                                                                          3420
       AGTGGCACAA TCTTTATTGA TGAGGTGGAT ATCTGCATTC TCAGCTTGGA AGACCTCAGA
                                                                          3480
15
       ACCAAGCTGA CTGTGATCCC ACAGGATCCT GTCCTGTTTG TAGGTACAGT AAGGTACAAC
                                                                          3540
       TTGGATCCCT TTGAGAGTCA CACCGATGAG ATGCTCTGGC AGGTTCTGGA GAGAACATTC
                                                                          3600
       ATGAGAGACA CAATAATGAA ACTCCCAGAA AAATTACAGG CAGAAGTCAC AGAAAATGGA
                                                                          3660
       GAAAACTTCT CAGTAGGGGA ACGTCAGCTG CTTTGTGTGG CCCGAGCTCT TCTCCGTAAT
                                                                          3720
       TCAAAGATCA TTCTCCTTGA TGAAGCCACC GCCTCTATGG ACTCCAAGAC TGACACCCTG
20
       GTTCAGAACA CCATCAAAGA TGCCTTCAAG GGCTGCACTG TGCTGACCAT CGCCCACCGC
                                                                          3840
       CTCAACACAG TTCTCAACTG CGATCACGTC CTGGTTATGG AAAATGGGAA GGTGATTGAG
                                                                          3900
       TTTGACAAGC CTGAAGTCCT TGCAGAGAAG CCAGATTCTG CATTTGCGAT GTTACTAGCA
                                                                          3960
       GCAGAAGTCA GATTGTAG
25
       Sea ID NO: 513 Protein sequence
       Protein Accession #: Eos sequence
                                        31
                                                   41
                                                              51
                             21
30
       MVGEGPYLIS DLDORGRRRS FAERYDPSLK TMIPVRPCAR LAPNPVDDAG LLSFATFSWL
                                                                            60
       TPVMVKGYRO RLTVDTLPPL STYDSSDTNA KRFRVLWDEE VARVGPEKAS LSHVVWKFQR
                                                                           120
       TRVLMDIVAN ILCIIMAAIG PTVLIHQILQ QTERTSGKVW VGIGLCIALF ATEFTKVFFW
                                                                           180
       ALAWAINYRT AIRLKVALST LVFENLVSFK TLTHISVGEV LNILSSDSYS LFEAALFCPL
                                                                           240
       PATIPILMVF CAAYAFFILG PTALIGISVY VIFIPVQMFM AKLNSAFRRS AILVTDKRVQ
                                                                           300
35
       TMNEFLTCIR LIKMYAWEKS FTNTIQDIRR RERKLLEKAG FVQSGNSALA PIVSTIAIVL
                                                                           360
       TLSCHILLRR KLTAPVAFSV IAMFNVMKFS IAILPFSIKA MAEANVSLRR MKKILIDKSP
                                                                           420
       PSYITOPEDP DTVLLLANAT LTWEHEASRK STPKKLQNQK RHLCKKQRSE AYSERSPPAK
       GATGPEEQSD SLKSVLHSIS FVVRKLCRYP EAQLLAWRWP AVFVGRIIRG YRPHGFSAKD
                                                                           540
       KDESRRLLTW PQEVDRTQRA AKYLGKILGI CGNVGSGKSS LLAALLGQMQ LQKGVVAVNG
                                                                           600
40
       TLAYVSQQAW IFHGNVRENI LFGEKYDHQR YQHTVRVCGL QKDLSNLPYG DLTEIGERGL
                                                                           660
       NLSGGQRQRI SLARAVYSDR QLYLLDDPLS AVDAHVGKHV FEECIKKTLR GKTVVLVTHQ
                                                                           720
       LQFLESCDEV ILLEDGEICE KGTHKELMEE RGRYAKLIHN LRGLQFKDPE HLYNAAMVEA
                                                                           780
       FKESPAEREE DAGIIGYLLS LFTVFLFLLM IGSAAFSNWW LGLWLDKGSR MTCGPQGNRT
       MCEVGAVLAD IGQHVYQWVY TASMVFMLVF GVTKGFVFTK TTLMASSSLH DTVFDKILKS
                                                                           900
45
       PMSFFDTTPT GRLMNRFSKD MDELDVRLPF HAENFLQQFF MVVFILVILA AVFPAVLLVV
                                                                           960
       ASLAVGFFIL LRIFHRGVQE LKKVENVSRS PWFTHITSSM QGLGIIHAYG KKESCITYTS
                                                                          1020
       SKGLSLSYII QLSGLLQVCV RTGTETQAKF TSVELLREYI STCVPECTHP LKVGTCPKDW
                                                                          1080
       PSCGEITFRD YOMRYRDNTP LVLDSLNLNI OSGOTVGIVG RTGSGKSSLG MALFRLVEPA
                                                                          1140
       SGTIFIDEVD ICILSLEDLR TKLTVIPQDP VLFVGTVRYN LDPFESHTDE MLWQVLERTF
                                                                          1200
50
       MRDTIMKLPE KLQAEVTENG ENFSVGERQL LCVARALLRN SKIILLDEAT ASMDSKTDTL
       VONTIKDAFK GCTVLTIAHR LNTVLNCDHV LVMENGKVIE FDKPEVLAEK PDSAFAMLLA
                                                                          1320
       Sea ID NO: 514 DNA sequence
55
       Nucleic Acid Accession #: Z31560
       Coding sequence: 1-966
                                        31
                                                   41
                                                              51
                             21
60
       CACAGCGCCC GCATGTACAA CATGATGGAG ACGGAGCTGA AGCCGCCGGG CCCGCAGCAA
                                                                            60
       ACTTCGGGGG GCGGCGGCGG CAACTCCACC GCGGCGGCGG CCGGCGGCAA CCAGAAAAAC
       AGCCCGGACC GCGTCAAGCG GCCCATGAAT GCCTTCATGG TGTGGTCCCG CGGGCAGCGG
                                                                           180
       CGCAAGATGG CCCAGGAGAA CCCCAAGATG CACAACTCGG AGATCAGCAA GCGCCTGGGC
                                                                           240
       GCCGAGTGGA AACTTTTGTC GGAGACGGAG AAGCGGCCGT TCATCGACGA GGCTAAGCGG
                                                                           300
65
       CTGCGAGCGC TGCACATGAA GGAGCACCCG GATTATAAAT ACCGGCCCCG GCGGAAAACC
                                                                           360
       AAGACGCTCA TGAAGAAGGA TAAGTACACG CTGCCCGGCG GGCTGCTGGC CCCCGGCGGC
                                                                           420
       AATAGCATGG CGAGCGGGT CGGGGTGGGC GCCGGCCTGG GCGCGGCGT GAACCAGCGC
       ATGGACAGTT ACGCGCACAT GAACGGCTGG AGCAACGGCA GCTACAGCAT GATGCAGGAC
                                                                           540
       600
70
       ATGCACCGCT ACGACGTGAG CGCCCTGCAG TACAACTCCA TGACCAGCTC GCAGACCTAC
                                                                           660
       ATGAACGGCT CGCCCACCTA CAGCATGTCC TACTCGCAGC AGGGCACCCC TGGCATGGCT
                                                                           720
       CTTGGCTCCA TGGGTTCGGT GGTCAAGTCC GAGGCCAGCT CCAGCCCCCC TGTGGTTACC
                                                                           780
       TCTTCCTCCC ACTCCAGGGC GCCCTGCCAG GCCGGGGACC TCCGGGACAT GATCAGCATG
                                                                           840
       TATCTCCCCG GCGCCGAGGT GCCGGAACCC GCCGCCCCCA GCAGACTTCA CATGTCCCAG
                                                                           900
75
       CACTACCAGA GCGGCCCGGT GCCCGGCACG GCCATTAACG GCACACTGCC CCTCTCACAC
                                                                           960
       ATGTGAGGGC CGGACAGCGA ACTGGAGGGG GGAGAAATTT TCAAAGAAAA ACGAGGGAAA
                                                                          1020
       TGGGAGGGT GCAAAAGAG AGAGTAAGAA ACAGCATGGA GAAAACCCGG TACGCTCAAA
                                                                          1080
80
       Seq ID NO: 515 Protein sequence
       Protein Accession #: CAA83435
                                        31
                                                   41
                                                              51
85
       HSARMYNMME TELKPPGPQQ TSGGGGGNST AAAAGGNQKN SPDRVKRPMN AFMVWSRGQR
                                                                            60
       RKMAQENPKM HNSEISKRLG AEWKLLSETE KRPFIDEAKR LRALHMKEHP DYKYRPRRKT
                                                                           120
       KTLMKKDKYT LPGGLLAPGG NSMASGVGVG AGLGAGVNQR MDSYAHMNGW SNGSYSMMQD
                                                                           180
```

	LGSMGSVVKS	NAHGAAQMQP EASSSPPVVT AINGTLPLSH	SSSHSRAPCQ				240 300
5	Nucleic Act	516 DNA sec id Accession Lence: 295	1 #: U91618				
10		11 TTGTTAGAAG CTGGCTTTCA					60 120
15	AGCATTAGAA TCCCTCTTGG AGCTGAGGAA	GCAGATTTCT AAGATGACTC ACAGGAGAAG	TGACCAATAT TGCTAAATGT TTCATGAAGA	GCATACATCA TTGCAGTCTT GGAGCTTGTT	AAGATTAGTA GTAAATAATT GCAAGAAGGA	AAGCACATGT TGAACAGCCC AACTTCCTAC	180 240 300
20	TCACAGCAGG TGACAAAAAT	GGCTTTAGCT GCTTTTCAAC GGAAAGGAAG AATAAACCCA	ACTGGGAGTT AAGTCATAAA	AATCCAGGAA GAGAAAAATT	GATATTCTTG CCTTATATTC	ATACTGGAAA TGAAACGGCA	360 420 480 540
20	ATTATATTTG ATTGAATGTG	TCATTTATTT TGTGAAAATG TTTTTCTGCA AAAAAAAAAA	TGACAAACAC CTAATAGAAA	ACTTATCTGT TTAGACTAAG	CTCTTCTACA	ATTGTGGTTT	600 660 720
25		517 Protein cession #: <i>l</i>					
	1	11	21	31	41	51	
30		(MITT PROOF	CI CODGETEM	 	MUTCHICKAN	UDCHVMTI.I.M	60
30	VCSLVNNLNS	CMLLLAFSSW PAEETGEVHE NDKNGKEEVI	EELVARRKLP	TALDGFSLEA	$\mathtt{MLTIYQLHKI}$		120
35	Nucleic Act	518 DNA sec id Accession Lence: 109.	1 #: NM_006	536.2			
	1	11	21	31	41	51	
40	ACCTABAACC	 TTGCAAGTTC	AGGAAGAAAC	CATCTGCATC	CATATTGAAA	ACCTGACACA	60
.0		CAGGCTCAGT					120
		GTCCTATTTG					180
		TCCTGGGAGC ATCCTCAGGT					240 300
45	ATAACTGAAG	CTTCATTTTA	CCTATTTAAT	GCTACCAAGA	${\tt GAAGAGTATT}$	TTTCAGAAAT	360
		TAATACCTGC					420 480
		AGGCAAATGT AATACAGAGG					540
~ 0	TTCCTACTGA	ATGATAACTT	AACAGCTGGC	TACGGATCAC	GAGGCCGAGT	GTTTGTCCAT	600
50		ACCTCCGTTG					660 720
		AAAATCAAAT AAGGTCCTTG					780
	GGATGCACCT	TTATCTACAA	TAGCACCCAA	AATGCAACTG	CATCAATAAT	GTTCATGCAA	840
55		CTGTGGTTGA AGATGTGCAG					900 960
33		GCTTTCCCAT					1020
	GTACAGGCTG	GTGACAAAGT	GGTCTGTTTA	GTGCTGGATG	TGTCCAGCAA	GATGGCAGAG	1080
		TCCTTCAACT TCGTGGGCAT					1140 1200
60	CACCAAATTA	ACAGCAATGA	TGATCGAAAG	TTGCTGGTTT	CATATCTGCC	CACCACTGTA	1260
						GGTGGTTGAA	1320
	AAACTGAATG	GAAAAGCTTA	CACTGTGCTC	ATGATATTAG	CAACAATTCA	AGATGATAAG CTCCATTGCC	1380 1440
- -	CTGGGTTCAT	CTGCAGCCCC	AAATCTGGAG	GAATTATCAC	GTCTTACAGG	AGGTTTAAAG	1500
65						TAGAATTTCC	1560 1620
						TGAAAATGTC CAACGACACT	1680
	ATGTTTCTAG	TTACGTGGCA	GGCCAGTGGT	CCTCCTGAGA	TTATATTATT	TGATCCTGAT	1740
70	GGACGAAAAT	ACTACACAAA	TAATTTTATC	ACCAATCTAA	CCTGAACAA	AGCTAGTCTT TACCCATCAT	1800 1860
70						TGTGCCCCCA	1920
						TGTGATGATT	1980
						TGCCACAGTT AGGTGCTGAT	2040 2100
75	GTTATAAAAA	ATGATGGAAT	TTACTCGAGG	TATTTTTCT	CCTTTGCTGC	AAATGGTAGA	2160
	TATAGCTTGA	AAGTGCATGT	CAATCACTCT	CCCAGCATAA	GCACCCCAGC	CCACTCTATT	2220 2280
	GCTCCAAGGA	ATGCTATGTA AATCAGTAGG	CAGAAATGAG	GAGGAGCGAA	AGTGGGGCTT	TCAGATGAAT TAGCCGAGTC	2340
00	AGCTCAGGAG	GCTCCTTTTC	AGTGCTGGGA	GTTCCAGCTG	GCCCCCACCC	TGATGTGTTT	2400
80	CCACCATGCA	AAATTATTGA	CCTGGAAGCT	GTAAAAGTAG	AAGAGGAATT	GACCCTATCT	2460
	TGGACAGCAC AGTAAAAGTC	TACAGAATAT	CCAAGATGAC	TTTAACAATG	CTATTTTAGT	AATAAGAATG AAATACATCA	2520 2580
	AAGCGAAATC	CTCAGCAAGC	TGGCATCAGG	GAGATATTTA	CGTTCTCACC	CCAGATTTCC	2640
85	ACGAATGGAC	CTGAACATCA	GCCAAATGGA	GAAACACATG	AAAGCCACAG	AATTTATGTT	2700
92	GCAATACGAG CCTCTGTTTA	CAATGGATAG	TTCTGATCCT	GTACCTGCCA	GAGATTATCT	TGCCCAGGCG TATATTGAAA	2760 2820
	GGAGTTTTAA	CAGCAATGGG	TTTGATAGGA	ATCATTTGCC	TTATTATAGT	TGTGACACAT	2880

```
CATACTITAA GCAGGAAAAA GAGAGCAGAC AAGAAAGAGA ATGGAACAAA ATTATTATAA
       ATAAATATCC AAAGTGTCTT CCTTCTTAGA TATAAGACCC ATGGCCTTCG ACTACAAAAA
                                                                           3000
       CATACTAACA AAGTCAAATT AACATCAAAA CTGTATTAAA ATGCATTGAG TTTTTGTACA
                                                                           3060
       ATACAGATAA GATTTTTACA TGGTAGATCA ACAATTCTTT TTGGGGGTAG ATTAGAAAAC
                                                                           3120
 5
       CCTTACACTT TGGCTATGAA CAAATAATAA AAATTATTCT TTAAAGTAAT GTCTTTAAAG
                                                                           3180
       GCAAAGGGAA GGGTAAAGTC GGACCAGTGT CAAGGAAAGT TTGTTTTATT GAGGTGGAAA
                                                                           3240
       AATAGCCCCA AGCAGAGAAA AGGAGGGTAG GTCTGCATTA TAACTGTCTG TGTGAAGCAA
                                                                           3300
       TCATTTAGTT ACTTTGATTA ATTTTTCTTT TCTCCTTATC TGTGCAGTAC AGGTTGCTTG
                                                                           3360
       TTTACATGAA GATCATGCTA TATTTTATAT ATGTAGCCCC TAATGCAAAG CTCTTTACCT
                                                                           3420
10
       CTTGCTATTT TGTTATATAT ATTTCAGATG ACATCTCCCT GCTAATGCTC AGAGATCTTT
                                                                           3480
       TTTCACTGTA AGAGGTAACC TTTAACAATA TGGGTATTAC CTTTGTCTCT TCATACCGGT
                                                                           3540
       TTTATGACAA AGGTCTATTG AATTTATTTG TNTGTAAGTT TCTACTCCCA TCAAAGCAGC
                                                                           3600
       TTTCTAAGTT TATTGCCTTG GGTTATTATG GAATGATAGT TATAGCCCCN TATAATGCCT
       TACCTAGGAA A
15
       Seg ID NO: 519 Protein sequence
       Protein Accession #: NP_006527.1
                                         31
                                                    41
20
       MTQRSIAGPI CNLKFVTLLV ALSSELPFLG AGVQLQDNGY NGLLIAINPQ VPENQNLISN
                                                                             60
       IKEMITEASF YLFNATKRRV FFRNIKILIP ATWKANNNSK IKQESYEKAN VIVTDWYGAH
                                                                            120
       GDDPYTLQYR GCGKEGKYIH FTPNFLLNDN LTAGYGSRGR VFVHEWAHLR WGVFDEYNND
                                                                            180
       KPFYINGQNQ IKVTRCSSDI TGIFVCEKGP CPQENCIISK LFKEGCTFIY NSTQNATASI
                                                                            240
25
       MFMOSLSSVV EFCNASTHNQ EAPNLQNQMC SLRSAWDVIT DSADFHHSFP MNGTELPPPP
                                                                             300
       TFSLVOAGDK VVCLVLDVSS KMAEADRLLQ LQQAAEFYLM QIVEIHTFVG IASFDSKGEI
       RAQLHQINSN DDRKLLVSYL PTTVSAKTDI SICSGLKKGF EVVEKLNGKA YGSVMILVTS
                                                                            420
       GDDKLLGNCL PTVLSSGSTI HSIALGSSAA PNLEELSRLT GGLKFFVPDI SNSNSMIDAF
                                                                            480
       SRISSGTGDI FOOHIOLEST GENVKPHHOL KNTVTVDNTV GNDTMFLVTW QASGPPEIIL
                                                                            540
30
       FDPDGRKYYT NNFITNLTFR TASLWIPGTA KPGHWTYTLN NTHHSLQALK VTVTSRASNS
                                                                            600
       AVPPATVEAF VERDSLHFPH PVMIYANVKO GFYPILNATV TATVEPETGD PVTLRLLDDG
                                                                            660
       AGADVIKNDG IYSRYFFSFA ANGRYSLKVH VNHSPSISTP AHSIPGSHAM YVPGYTANGN
                                                                             720
       IQMNAPRKSV GRNEEERKWG FSRVSSGGSF SVLGVPAGPH PDVFPPCKII DLEAVKVEEE
                                                                            780
       LTLSWTAPGE DFDOGQATSY EIRMSKSLQN IQDDFNNAIL VNTSKRNPQQ AGIREIFTFS
                                                                            840
35
       PQISTNGPEH QPNGETHESH RIYVAIRAMD RNSLQSAVSN IAQAPLFIPP NSDPVPARDY
                                                                            900
       LILKGVLTAM GLIGIICLII VVTHHTLSRK KRADKKENGT KLL
       Seq ID NO: 520 DNA sequence
       Nucleic Acid Accession #: NM_000228.1
40
       Coding sequence: 82..3600
                              21
                                         31
                                                    41
                                                               51
                  11
       GCTTTCAGGC GATCTGGAGA AAGAACGGCA GAACACACAG CAAGGAAAGG TCCTTTCTGG
45
       GGATCACCCC ATTGGCTGAA GATGAGACCA TTCTTCCTCT TGTGTTTTGC CCTGCCTGGC
                                                                            120
       CTCCTGCATG CCCAACAAGC CTGCTCCCGT GGGGCCTGCT ATCCACCTGT TGGGGACCTG
                                                                            180
       CTTGTTGGGA GGACCCGGTT TCTCCGAGCT TCATCTACCT GTGGACTGAC CAAGCCTGAG
                                                                            240
       ACCTACTGCA CCCAGTATGG CGAGTGGCAG ATGAAATGCT GCAAGTGTGA CTCCAGGCAG
                                                                            300
       CCTCACAACT ACTACAGTCA CCGAGTAGAG AATGTGGCTT CATCCTCCGG CCCCATGCGC
                                                                             360
50
       TGGTGGCAGT CCCAGAATGA TGTGAACCCT GTCTCTCTGC AGCTGGACCT GGACAGGAGA
       TTCCAGCTTC AAGAAGTCAT GATGGAGTTC CAGGGGCCCA TGCCCGCCGG CATGCTGATT
                                                                             480
       GAGCGCTCCT CAGACTTCGG TAAGACCTGG CGAGTGTACC AGTACCTGGC TGCCGACTGC
                                                                            540
       ACCTCCACCT TCCCTCGGGT CCGCCAGGGT CGGCCTCAGA GCTGGCAGGA TGTTCGGTGC
                                                                            600
       CAGTCCCTGC CTCAGAGGCC TAATGCACGC CTAAATGGGG GGAAGGTCCA ACTTAACCTT
                                                                            660
55
       ATGGATTTAG TGTCTGGGAT TCCAGCAACT CAAAGTCAAA AAATTCAAGA GGTGGGGGAG
                                                                             720
       ATCACAAACT TGAGAGTCAA TTTCACCAGG CTGGCCCCTG TGCCCCAAAG GGGCTACCAC CCTCCCAGCG CCTACTATGC TGTGTCCCAG CTCCGTCTGC AGGGGAGCTG CTTCTGTCAC
                                                                             840
       GGCCATGCTG ATCGCTGCGC ACCCAAGCCT GGGGCCTCTG CAGGCCCCTC CACCGCTGTG
                                                                            900
       CAGGTCCACG ATGTCTGTGT CTGCCAGCAC AACACTGCCG GCCCAAATTG TGAGCGCTGT
                                                                            960
60
                                                                           1020
       GCACCCTTCT ACAACAACCG GCCCTGGAGA CCGGCGGAGG GCCAGGACGC CCATGAATGC
       CAAAGGTGCG ACTGCAATGG GCACTCAGAG ACATGTCACT TTGACCCCGC TGTGTTTGCC
                                                                           1080
       GCCAGCCAGG GGGCATATGG AGGTGTGTGT GACAATTGCC GGGACCACAC CGAAGGCAAG
                                                                           1140
                                                                           1200
       AACTGTGAGC GGTGTCAGCT GCACTATTTC CGGAACCGGC GCCCGGGAGC TTCCATTCAG
       GAGACCTGCA TCTCCTGCGA GTGTGATCCG GATGGGGCAG TGCCAGGGGC TCCCTGTGAC
                                                                           1260
65
       CCAGTGACCG GGCAGTGTGT GTGCAAGGAG CATGTGCAGG GAGAGCGCTG TGACCTATGC
                                                                           1320
       AAGCCGGGCT TCACTGGACT CACCTACGCC AACCCGCAGG GCTGCCACCG CTGTGACTGC
                                                                           1380
       AACATCCTGG GGTCCCGGAG GGACATGCCG TGTGACGAGG AGAGTGGGCG CTGCCTTTGT
                                                                           1440
       CTGCCCAACG TGGTGGGTCC CAAATGTGAC CAGTGTGCTC CCTACCACTG GAAGCTGGCC
                                                                           1500
       AGTGGCCAGG GCTGTGAACC GTGTGCCTGC GACCCGCACA ACTCCCCTCA GCCCACAGTG
                                                                           1560
70
       CAACCAGTTC ACAGGGCAGT GCCCTGTCGG GAAGGCTTTG GTGGCCTGAT GTGCAGCGCT
                                                                           1620
       GCAGCCATCC GCCAGTGTCC AGACCGGACC TATGGAGACG TGGCCACAGG ATGCCGAGCC
                                                                           1680
       TGTGACTGTG ATTTCCGGGG AACAGAGGGC CCGGGCTGCG ACAAGGCATC AGGCCGCTGC
                                                                           1740
       CTCTGCCGCC CTGGCTTGAC CGGGCCCCGC TGTGACCAGT GCCAGCGAGG CTACTGCAAT
                                                                           1800
       CGCTACCCGG TGTGCGTGGC CTGCCACCCT TGCTTCCAGA CCTATGATGC GGACCTCCGG
75
       GAGCAGGCCC TGCGCTTTGG TAGACTCCGC AATGCCACCG CCAGCCTGTG GTCAGGGCCT
                                                                           1920
       GGGCTGGAGG ACCGTGGCCT GGCCTCCCGG ATCCTAGATG CAAAGAGTAA GATTGAGCAG
                                                                           1980
       ATCCGAGCAG TTCTCAGCAG CCCCGCAGTC ACAGAGCAGG AGGTGGCTCA GGTGGCCAGT
                                                                           2040
       GCCATCCTCT CCCTCAGGCG AACTCTCCAG GGCCTGCAGC TGGATCTGCC CCTGGAGGAG
                                                                           2100
       GAGACGTTGT CCCTTCCGAG AGACCTGGAG AGTCTTGACA GAAGCTTCAA TGGTCTCCTT
                                                                           2160
80
       ACTATGTATC AGAGGAAGAG GGAGCAGTTT GAAAAAATAA GCAGTGCTGA TCCTTCAGGA
       GCCTTCCGGA TGCTGAGCAC AGCCTACGAG CAGTCAGCCC AGGCTGCTCA GCAGGTCTCC
                                                                           2280
       GACAGCTCGC GCCTTTTGGA CCAGCTCAGG GACAGCCGGA GAGAGGCAGA GAGGCTGGTG
                                                                           2340
       CGGCAGGCGG GAGGAGGAGG AGGCACCGGC AGCCCCAAGC TTGTGGCCCT GAGGCTGGAG
                                                                           2400
       ATGTCTTCGT TGCCTGACCT GACACCCACC TTCAACAAGC TCTGTGGCAA CTCCAGGCAG
                                                                           2460
85
       ATGGCTTGCA CCCCAATATC ATGCCCTGGT GAGCTATGTC CCCAAGACAA TGGCACAGCC
                                                                           2520
       TGTGGCTCCC GCTGCAGGGG TGTCCTTCCC AGGGCCGGTG GGGCCTTCTT GATGGCGGGG
       CAGGTGGCTG AGCAGCTGCG GGGCTTCAAT GCCCAGCTCC AGCGGACCAG GCAGATGATT
```

```
AGGGCAGCCG AGGAATCTGC CTCACAGATT CAATCCAGTG CCCAGCGCTT GGAGACCCAG
       GTGAGCGCCA GCCGCTCCCA GATGGAGGAA GATGTCAGAC GCACACGGCT CCTAATCCAG
                                                                          2760
       CAGGTCCGGG ACTTCCTAAC AGACCCCGAC ACTGATGCAG CCACTATCCA GGAGGTCAGC
                                                                          2820
       GAGGCCGTGC TGGCCCTGTG GCTGCCCACA GACTCAGCTA CTGTTCTGCA GAAGATGAAT
                                                                          2880
 5
       GAGATCCAGG CCATTGCAGC CAGGCTCCCC AACGTGGACT TGGTGCTGTC CCAGACCAAG
                                                                          2940
       3000
       CATGCAGTGG AGGGCCAGGT GGAAGATGTG GTTGGGAACC TGCGGCAGGG GACAGTGGCA
                                                                          3060
       CTGCAGGAAG CTCAGGACAC CATGCAAGGC ACCAGCCGCT CCCTTCGGCT TATCCAGGAC
       AGGGTTGCTG AGGTTCAGCA GGTACTGCGG CCAGCAGAAA AGCTGGTGAC AAGCATGACC
                                                                          3180
10
       AAGCAGCTGG GTGACTTCTG GACACGGATG GAGGAGCTCC GCCACCAAGC CCGGCAGCAG
                                                                          3240
       GGGGCAGAGG CAGTCCAGGC CCAGCAGCTT GCGGAAGGTG CCAGCGAGCA GGCATTGAGT
                                                                          3300
       GCCCAAGAGG GATTTGAGAG AATAAAACAA AAGTATGCTG AGTTGAAGGA CCGGTTGGGT
                                                                          3360
       CAGAGTTCCA TGCTGGGTGA GCAGGGTGCC CGGATCCAGA GTGTGAAGAC AGAGGCAGAG
                                                                          3420
       GAGCTGTTTG GGGAGACCAT GGAGATGATG GACAGGATGA AAGACATGGA GTTGGAGCTG
                                                                          3480
15
       CTGCGGGGCA GCCAGGCCAT CATGCTGCGC TCGGCGGACC TGACAGGACT GGAGAAGCGT
                                                                          3540
       GTGGAGCAGA TCCGTGACCA CATCAATGGG CGCGTGCTCT ACTATGCCAC CTGCAAGTGA
                                                                          3600
       TGCTACAGCT TCCAGCCCGT TGCCCCACTC ATCTGCCGCC TTTGCTTTTG GTTGGGGGCA
                                                                          3660
       GATTGGGTTG GAATGCTTTC CATCTCCAGG AGACTTTCAT GCAGCCTAAA GTACAGCCTG
                                                                          3720
       GACCACCCCT GGTGTGTAGC TAGTAAGATT ACCCTGAGCT GCAGCTGAGC CTGAGCCAAT
                                                                          3780
20
       GGGACAGTTA CACTTGACAG ACAAAGATGG TGGAGATTGG CATGCCATTG AAACTAAGAG
                                                                          3840
       CTCTCAAGTC AAGGAAGCTG GGCTGGGCAG TATCCCCCGC CTTTAGTTCT CCACTGGGGA
                                                                          3900
       GGAATCCTGG ACCAAGCACA AAAACTTAAC AAAAGTGATG TAAAAATGAA AAGCCAAATA
                                                                          3960
       AAAATCTTTG G
25
       Seq ID NO: 521 Protein sequence
       Protein Accession #: NP 000219.1
                                        31
                                                   41
                                                              51
                  11
                             21
30
       MRPFFLLCFA LPGLLHAQQA CSRGACYPPV GDLLVGRTRF LRASSTCGLT KPETYCTQYG
                                                                            60
       EWOMKCCKCD SROPHNYYSH RVENVASSSG PMRWWOSOND VNPVSLQLDL DRRFQLQEVM
                                                                           120
       MEFQGPMPAG MLIERSSDFG KTWRVYQYLA ADCTSTFPRV RQGRPQSWQD VRCQSLPQRP
                                                                           180
       NARLNGGKVQ LNLMDLVSGI PATQSQKIQE VGEITNLRVN FTRLAPVPQR GYHPPSAYYA
                                                                           240
       VSQLRLQGSC FCHGHADRCA PKPGASAGPS TAVQVHDVCV CQHNTAGPNC ERCAPFYNNR
                                                                           300
35
       PWRPAEGODA HECORCDCNG HSETCHFDPA VFAASQGAYG GVCDNCRDHT EGKNCERCQL
                                                                           360
       HYFRNRRPGA SIQETCISCE CDPDGAVPGA PCDPVTGQCV CKEHVQGERC DLCKPGFTGL
                                                                           420
       TYANPOGCHR CDCNILGSRR DMPCDEESGR CLCLPNVVGP KCDQCAPYHW KLASGQGCEP
                                                                           480
       CACDPHNSPQ PTVQPVHRAV PCREGFGGLM CSAAAIRQCP DRTYGDVATG CRACDCDFRG
       TEGPGCDKAS GRCLCRPGLT GPRCDQCQRG YCNRYPVCVA CHPCFQTYDA DLREQALRFG
                                                                           600
40
       RLRNATASLW SGPGLEDRGL ASRILDAKSK IEQIRAVLSS PAVTEQEVAQ VASAILSLRR
                                                                           660
       TLOGLOLDLP LEETLSLPR DLESLDRSFN GLLTMYORKR EOFEKISSAD PSGAFRMLST
                                                                           720
       AYEOSAOAAO OVSDSSRLLD OLRDSRREAE RLVROAGGGG GTGSPKLVAL RLEMSSLPDL
                                                                           780
       TPTFNKLCGN SRQMACTPIS CPGELCPQDN GTACGSRCRG VLPRAGGAFL MAGQVAEQLR
                                                                           840
       GFNAQLQRTR QMIRAAEESA SQIQSSAQRL ETQVSASRSQ MEEDVRRTRL LIQQVRDFLT
45
                                                                           960
       DPDTDAATIQ EVSEAVLALW LPTDSATVLQ KMNEIQAIAA RLPNVDLVLS QTKQDIARAR
       RLQAEAEEAR SRAHAVEGQV EDVVGNLRQG TVALQEAQDT MQGTSRSLRL IQDRVAEVQQ
                                                                          1020
       VLRPAEKLVT SMTKQLGDFW TRMEELRHQA RQQGAEAVQA QQLAEGASEQ ALSAQEGFER
                                                                          1080
       TKOKYAELKO RIGOSSMIGE OGARTOSVKT EAEELFGETM EMMDRMKDME LELLRGSOAI
                                                                          1140
       MLRSADLTGL EKRVEQIRDH INGRVLYYAT CK
50
       Seq ID NO: 522 DNA sequence
       Nucleic Acid Accession #: NM_001944.1
      Coding sequence: 84..3083
55
                                        31
                                                   41
                                                              51
       TTTTCTTAGA CATTAACTGC AGACGGCTGG CAGGATAGAA GCAGCGGCTC ACTTGGACTT
                                                                            60
       TTTCACCAGG GAAATCAGAG ACAATGATGG GGCTCTTCCC CAGAACTACA GGGGCTCTGG
                                                                          120
       CCATCTTCGT GGTGGTCATA TTGGTTCATG GAGAATTGCG AATAGAGACT AAAGGTCAAT
                                                                           180
60
       ATGATGAAGA AGAGATGACT ATGCAACAAG CTAAAAGAAG GCAAAAACGT GAATGGGTGA
                                                                           240
       AATTTGCCAA ACCCTGCAGA GAAGGAGAAG ATAACTCAAA AAGAAACCCA ATTGCCAAGA
                                                                           300
       TTACTTCAGA TTACCAAGCA ACCCAGAAAA TCACCTACCG AATCTCTGGA GTGGGAATCG
                                                                           360
       ATCAGCCGCC TTTTGGAATC TTTGTTGTTG ACAAAAACAC TGGAGATATT AACATAACAG
                                                                           420
       CTATAGTCGA CCGGGAGGAA ACTCCAAGCT TCCTGATCAC ATGTCGGGCT CTAAATGCCC
                                                                           480
65
       AAGGACTAGA TGTAGAGAAA CCACTTATAC TAACGGTTAA AATTTTGGAT ATTAATGATA
                                                                           540
       ATCCTCCAGT ATTTTCACAA CAAATTTTCA TGGGTGAAAT TGAAGAAAAT AGTGCCTCAA
                                                                           600
       ACTCACTGGT GATGATACTA AATGCCACAG ATGCAGATGA ACCAAACCAC TTGAATTCTA
                                                                           660
       AAATTGCCTT CAAAATTGTC TCTCAGGAAC CAGCAGGCAC ACCCATGTTC CTCCTAAGCA
                                                                           720
       GAAACACTGG GGAAGTCCGT ACTTTGACCA ATTCTCTTGA CCGAGAGCAA GCTAGCAGCT
                                                                           780
70
      ATCGTCTGGT TGTGAGTGGT GCAGACAAAG ATGGAGAAGG ACTATCAACT CAATGTGAAT
                                                                           840
       GTAATATTAA AGTGAAAGAT GTCAACGATA ACTTCCCAAT GTTTAGAGAC TCTCAGTATT
                                                                           900
      CAGCACGTAT TGAAGAAAAT ATTTTAAGTT CTGAATTACT TCGATTTCAA GTAACAGATT
                                                                           960
       TGGATGAAGA GTACACAGAT AATTGGCTTG CAGTATATTT CTTTACCTCT GGGAATGAAG
                                                                          1020
       GAAATTGGTT TGAAATACAA ACTGATCCTA GAACTAATGA AGGCATCCTG AAAGTGGTGA
75
      AGGCTCTAGA TTATGAACAA CTACAAAGCG TGAAACTTAG TATTGCTGTC AAAAACAAAG
                                                                          1140
       CTGAATTTCA CCAATCAGTT ATCTCTCGAT ACCGAGTTCA GTCAACCCCA GTCACAATTC
                                                                          1200
      AGGTAATAAA TGTAAGAGAA GGAATTGCAT TCCGTCCTGC TTCCAAGACA TTTACTGTGC
                                                                          1260
      AAAAAGGCAT AAGTAGCAAA AAATTGGTGG ATTATATCCT GGGAACATAT CAAGCCATCG
                                                                          1320
      ATGAGGACAC TAACAAAGCT GCCTCAAATG TCAAATATGT CATGGGACGT AACGATGGTG
                                                                          1380
80
       GATACCTAAT GATTGATTCA AAAACTGCTG AAATCAAATT TGTCAAAAAT ATGAACCGAG
                                                                          1440
       ATTCTACTTT CATAGTTAAC AAAACAATCA CAGCTGAGGT TCTGGCCATA GATGAATACA
                                                                          1500
       CGGGTAAAAC TTCTACAGGC ACGGTATATG TTAGAGTACC CGATTTCAAT GACAATTGTC
                                                                          1560
      CAACAGCTGT CCTCGAAAAA GATGCAGTTT GCAGTTCTTC ACCTTCCGTG GTTGTCTCCG
                                                                          1620
       CTAGAACACT GAATAATAGA TACACTGGCC CCTATACATT TGCACTGGAA GATCAACCTG
                                                                          1680
85
       TAAAGTTGCC TGCCGTATGG AGTATCACAA CCCTCAATGC TACCTCGGCC CTCCTCAGAG
                                                                          1740
       CCCAGGAACA GATACCTCCT GGAGTATACC ACATCTCCCT GGTACTTACA GACAGTCAGA
                                                                          1800
       ACAATCGGTG TGAGATGCCA CGCAGCTTGA CACTGGAAGT CTGTCAGTGT GACAACAGGG
                                                                          1860
```

```
GCATCTGTGG AACTTCTTAC CCAACCACAA GCCCTGGGAC CAGGTATGGC AGGCCGCACT
                                                                             1920
       CAGGGAGGCT GGGGCCTGCC GCCATCGGCC TGCTGCTCCT TGGTCTCCTG CTGCTGCTGT
                                                                             1980
       TGGCCCCCT TCTGCTGTTG ACCTGTGACT GTGGGGCAGG TTCTACTGGG GGAGTGACAG
                                                                             2040
       GTGGTTTTAT CCCAGTTCCT GATGGCTCAG AAGGAACAAT TCATCAGTGG GGAATTGAAG
                                                                             2100
 5
       GAGCCCATCC TGAAGACAAG GAAATCACAA ATATTTGTGT GCCTCCTGTA ACAGCCAATG
                                                                             2160
       GAGCCGATTT CATGGAAAGT TCTGAAGTTT GTACAAATAC GTATGCCAGA GGCACAGCGG
                                                                             2220
       TGGAAGGCAC TTCAGGAATG GAAATGACCA CTAAGCTTGG AGCAGCCACT GAATCTGGAG
       GTGCTGCAGG CTTTGCAACA GGGACAGTGT CAGGAGCTGC TTCAGGATTC GGAGCAGCCA
                                                                             2340
       CTGGAGTTGG CATCTGTTCC TCAGGGCAGT CTGGAACCAT GAGAACAAGG CATTCCACTG
                                                                             2400
10
       GAGGAACCAA TAAGGACTAC GCTGATGGGG CGATAAGCAT GAATTTTCTG GACTCCTACT
                                                                             2460
       TTTCTCAGAA AGCATTTGCC TGTGCGGAGG AAGACGATGG CCAGGAAGCA AATGACTGCT
                                                                             2520
       TGTTGATCTA TGATAATGAA GGCGCAGATG CCACTGGTTC TCCTGTGGGC TCCGTGGGTT
                                                                             2580
       GTTGCAGTTT TATTGCTGAT GACCTGGATG ACAGCTTCTT GGACTCACTT GGACCCAAAT
       TTAAAAAACT TGCAGAGATA AGCCTTGGTG TTGATGGTGA AGGCAAAGAA GTTCAGCCAC
                                                                             2700
       CCTCTAAAGA CAGCGGTTAT GGGATTGAAT CCTGTGGCCA TCCCATAGAA GTCCAGCAGA
15
                                                                             2760
       CAGGATTTGT TAAGTGCCAG ACTTTGTCAG GAAGTCAAGG AGCTTCTGCT TTGTCCGCCT
                                                                             2820
       CTGGGTCTGT CCAGCCAGCT GTTTCCATCC CTGACCCTCT GCAGCATGGT AACTATTTAG
                                                                             2880
       TAACGGAGAC TTACTCGGCT TCTGGTTCCC TCGTGCAACC TTCCACTGCA GGCTTTGATC
                                                                             2940
       CACTTCTCAC ACAAAATGTG ATAGTGACAG AAAGGGTGAT CTGTCCCATT TCCAGTGTTC
20
       CTGGCAACCT AGCTGGCCCA ACGCAGCTAC GAGGGTCACA TACTATGCTC TGTACAGAGG
                                                                             3060
       ATCCTTGCTC CCGTCTAATA TGACCAGAAT GAGCTGGAAT ACCACACTGA CCAAATCTGG
                                                                             3120
       ATCTTTGGAC TAAAGTATTC AAAATAGCAT AGCAAAGCTC ACTGTATTGG GCTAATAATT
                                                                             3180
       TGGCACTTAT TAGCTTCTCT CATAAACTGA TCACGATTAT AAATTAAATG TTTGGGTTCA
                                                                             3240
       TACCCCAAAA GCAATATGTT GTCACTCCTA ATTCTCAAGT ACTATTCAAA TTGTAGTAAA
                                                                             3300
25
       TCTTAAAGTT TTTCAAAACC CTAAAATCAT ATTCGC
       Seq ID NO: 523 Protein sequence
       Protein Accession #: NP 001935.1
30
                                                                51
                                                     41
                              21
                                         31
       MMGLFPRTTG ALAIFVVVIL VHGELRIETK GQYDEEEMTM QQAKRRQKRE WVKFAKPCRE
                                                                               60
       GEDNSKRNPI AKITSDYQAT QKITYRISGV GIDQPPFGIF VVDKNTGDIN ITAIVDREET
                                                                              120
       PSFLITCRAL NAOGLDVEKP LILTVKILDI NDNPPVFSQQ IFMGEIEENS ASNSLVMILN
                                                                              180
35
       ATDADEPNHL NSKIAFKIVS QEPAGTPMFL LSRNTGEVRT LTNSLDREQA SSYRLVVSGA
                                                                              240
       DKDGEGLSTQ CECNIKVKDV NDNFPMFRDS QYSARIEENI LSSELLRFQV TDLDEEYTDN
                                                                              300
       WLAVYFFTSG NEGNWFEIQT DPRTNEGILK VVKALDYEQL QSVKLSIAVK NKAEFHQSVI
                                                                              360
       SRYRVOSTPV TIQVINVREG IAFRPASKTF TVQKGISSKK LVDYILGTYQ AIDEDTNKAA
                                                                              420
       SNVKYVMGRN DGGYLMIDSK TAEIKFVKNM NRDSTFIVNK TITAEVLAID EYTGKTSTGT
                                                                              480
40
       VYVRVPDFND NCPTAVLEKD AVCSSSPSVV VSARTLNNRY TGPYTFALED QPVKLPAVWS
                                                                              540
       ITTLNATSAL LRAQEQIPPG VYHISLVLTD SQNNRCEMPR SLTLEVCQCD NRGICGTSYP
                                                                              600
       TTSPGTRYGR PHSGRLGPAA IGLLLIGLLL LLLAPLLLIT CDCGAGSTGG VTGGFIPVPD GSEGTIHQWG IEGAHPEDKE ITNICVPPVT ANGADFMESS EVCTNTYARG TAVEGTSGME
                                                                              660
       MTTKLGAATE SGGAAGFATG TVSGAASGFG AATGVGICSS GQSGTMRTRH STGGTNKDYA
                                                                              780
45
       DGAISMNFLD SYFSQKAFAC AEEDDGQEAN DCLLIYDNEG ADATGSPVGS VGCCSFIADD
                                                                              840
       LDDSFLDSLG PKFKKLAEIS LGVDGEGKEV QPPSKDSGYG IESCGHPIEV QQTGFVKCQT
                                                                              900
       LSGSQGASAL SASGSVQPAV SIPDPLQHGN YLVTETYSAS GSLVQPSTAG FDPLLTQNVI
                                                                              960
       VTERVICPIS SVPGNLAGPT OLRGSHTMLC TEDPCSRLI
50
       Seg ID NO: 524 DNA seguence
       Nucleic Acid Accession #: XM 058069.2
       Coding sequence: 1..1413
                                                                 51
                              21
                                         3.1
                                                     41
55
       ATGAAGTTTC TTCTAATACT GCTCCTGCAG GCCACTGCTT CTGGAGCTCT TCCCCTGAAC
       AGCTCTACAA GCCTGGAAAA AAATAATGTG CTATTTGGTG AAAGATACTT AGAAAAATTT
                                                                              120
       TATGGCCTTG AGATAAACAA ACTTCCAGTG ACAAAAATGA AATATAGTGG AAACTTAATG
                                                                              180
       AAGGAAAAAA TCCAAGAAAT GCAGCACTTC TTGGGTCTGA AAGTGACCGG GCAACTGGAC
                                                                              240
60
       ACATCTACCC TGGAGATGAT GCACGCACCT CGATGTGGAG TCCCCGATGT CCATCATTTC
                                                                              300
       AGGGAAATGC CAGGGGGGCC CGTATGGAGG AAACATTATA TCACCTACAG AATCAATAAT
                                                                              360
       TACACACCTG ACATGAACCG TGAGGATGTT GACTACGCAA TCCGGAAAGC TTTCCAAGTA
                                                                              420
       TGGAGTAATG TTACCCCCTT GAAATTCAGC AAGATTAACA CAGGCATGGC TGACATTTTG
                                                                              480
       GTGGTTTTTG CCCGTGGAGC TCATGGAGAC TTCCATGCTT TTGATGGCAA AGGTGGAATC
                                                                              540
65
       CTAGCCCATG CTTTTGGACC TGGATCTGGC ATTGGAGGGG ATGCACATTT CGATGAGGAC
                                                                              600
       GAATTCTGGA CTACACATTC AGGAGGCACA AACTTGTTCC TCACTGCTGT TCACGAGATT
GGCCATTCCT TAGGTCTTGG CCATTCTAGT GATCCAAAGG CCGTAATGTT CCCCACCTAC
                                                                              660
       AAATATGTTG ACATCAACAC ATTTCGCCTC TCTGCTGATG ACATACGTGG CATTCAGTCC
                                                                              780
       CTGTATGGAG ACCCAAAAGA GAACCAACGC TTGCCAAATC CTGACAATTC AGAACCAGCT
                                                                              840
70
       CTCTGTGACC CCAATTTGAG TTTTGATGCT GTCACTACCG TGGGAAATAA GATCTTTTTC
                                                                              900
       TTCAAAGACA GGTTCTTCTG GCTGAAGGTT TCTGAGAGAC CAAAGACCAG TGTTAATTTA
                                                                              960
       ATTTCTTCCT TATGGCCAAC CTTGCCATCT GGCATTGAAG CTGCTTATGA AATTGAAGCC
                                                                             1020
       AGAAATCAAG TTTTTCTTTT TAAAGATGAC AAATACTGGT TAATTAGCAA TTTAAGACCA
                                                                             1080
       GAGCCAAATT ATCCCAAGAG CATACATTCT TTTGGTTTTC CTAACTTTGT GAAAAAAATT
                                                                             1140
75
       GATGCAGCTG TTTTTAACCC ACGTTTTTAT AGGACCTACT TCTTTGTAGA TAACCAGTAT
                                                                             1200
       TGGAGGTATG ATGAAAGGAG ACAGATGATG GACCCTGGTT ATCCCAAACT GATTACCAAG
                                                                             1260
       AACTTCCAAG GAATCGGGCC TAAAATTGAT GCAGTCTTCT ACTCTAAAAA CAAATACTAC
                                                                             1320
       TATTTCTTCC AAGGATCTAA CCAATTTGAA TATGACTTCC TACTCCAACG TATCACCAAA
                                                                             1380
       ACACTGAAAA GCAATAGCTG GTTTGGTTGT TGA
80
       Seg ID NO: 525 Protein sequence
       Protein Accession #: P39900
                                                                 51
                                                     41
85
       MKFLLILLLQ ATASGALPLN SSTSLEKNNV LFGERYLEKF YGLEINKLPV TKMKYSGNLM
       KEKIQEMQHF LGLKVTGQLD TSTLEMMHAP RCGVPDVHHF REMPGGPVWR KHYITYRINN
```

YTPDMNREDV DYAIRKAFQV WSNVTPLKFS KINTGMADIL VVFARGAHGD FHAFDGKGGI 180
LAHAFGPGSG IGGDAHFDED EFWTTHSGGT NLFLTAVHEI GHSLGLGHSS DPKAVMFPTY 240
KYVDINTFRL SADDIRGIQS LYGDPKENQR LPNPDNSEPA LCDPNLSFDA VTTVGNKIFF 300
FKDRFFWLKV SERPKTSVNL ISSLWPTLPS GIEAAYEIEA RNQVFLFKDD KYWLISNLRP 360
EPNYPKSIHS FGFPNFVKKI DAAVFNPRFY RTYFFVDNQY WRYDERRQMM DPGYPKLITK 420
NFQGIGPKID AVFYSKNKYY YFFQGSNQFE YDFLLQRITK TLKSNSWFGC

Seq ID NO: 526 DNA sequence
Nucleic Acid Accession #: NM_024423.1
Coding sequence: 64..2590

10		id Accession lence: 642		423.1			
	1	11	21	31	41	51	
	1	1]	1	1		
15			CCCTCCCGGC				60 120
13			TCGTGATGGT				180
	CCTTCTAAAC	TAGAGGCAGA	CAAAATAATT	GGCAGAGTTA	${\tt ATTTGGAAGA}$	GTGCTTCAGG	240
			AAGTGATCCT GCTGTCTGAT				300 360
20	GACAAAAGGA	AACAGACACA	GAAAGAGGTT	ACTGTGCTGC	TAGAACATCA	GAAGAAGGTA	420
	TCGAAGACAA	GACACACTAG	AGAAACTGTT	CTCAGGCGTG	CCAAGAGGAG	ATGGGCACCT	480
			GAATTCCTTG				540
			CTATACTGTC TTATATAGAA				600 660
25			TGATGTTTTT				720
	GGATATTCAG	CAGATCTGCC	CCTCCCACTA	CCCATCAGGG	TAGAGGATGA	AAATGACAAC	780
			AATTTATAAT TGCCACAGAC				840 900
	CTGAAATACA	GCATTTTGCA	GCAGACACCA	AGGTCACCTG	GGCTCTTTTC	TGTGCATCCC	960
30	AGCACAGGCG	TAATCACCAC	AGTCTCTCAT	TATTTGGACA	GAGAGGTTGT	AGACAAGTAC	1020
			AGACATGGAT				1080
			AGATTCAAAT AAATGCATTC				1140 1200
			TGCCAATTGG				1260
35	GAAAATGGAC	ATTTCAAAAT	CAGCACAGAC	AAAGAAACTA	ATGAAGGTGT	TCTTTCTGTT	1320
			AGAAAACCGT				1380 1440
	GAAGCGCCAT	GGGATCTGGA	TATTCCCAGA TGAGGGGCCT	GAATGCACTC	CTGCAGCCCA	ATATGTGCGG	1500
4.0	ATTAAAGAAA	ACTTAGCAGT	GGGGTCAAAG	ATCAACGGCT	ATAAGGCATA	TGACCCCGAA	1560
40			AAGGTACAAA				1620
	ATTGATGAAA	TTTCAGGGTC	AATCATAACT TATTACAGTC	TCCAAAATCC	TGGATAGGGA	GGTTGAAACT TAGATCATGT	1680 1740
			CATTGAAGAT				1800
4.5	GAATATGTAG	TCATTTGCAA	ACCAAAAATG	GGGTATACCG	ACATTTTAGC	TGTTGATCCT	1860
45	GATGAACCTG	TCCATGGAGC	TCCATTTTAT CAAAGTTAAT	TTCAGTTTGC	CCAATACTTC	TCCAGAAATC	1920 1980
			TACCATTCCT				2040
	GCAACAAAAT	TATTGAGAGT	TAATCTGTGT	GAATGTACTC	ATCCAACTCA	GTGTCGTGCG	2100
50			AATACTTGGA				2160
50			ATTGCTAACT TTTAGCACAG				2220 2280
			CTCTGCCAAT				2340
	AGCCAAGGTT	TTTGTGGTAC	TATGGGATCA	GGAATGAAAA	ATGGAGGGCA	GGAAACCATT	2400
55			CCAGACCTTG				2460 2520
55			AGGACACACG ACCCCGTCTC				2520
	TAAAAATTAA	ACATAAAAGA	AATTGCATCG	ATGTAATCAG	AATGAAGACC	GCATGCCATC	2640
	CCAAGATTAT	GTCCTCACTT	ATAACTATGA	GGGAAGAGGA	TCTCCAGCTG	GTTCTGTGGG	2700
60			AAGAAGATGG CATGCACAAA				2760 2820
00			TTTCCAAAAA				2880
			TCAATTTTGA				2940
			TTCCAAAAAG ATTAAGGTCT				3000 3060
65			GCTGGATAAA				3120
	ATATCACATT	ATTATGTATT	CACTTTAAGT	GATAGTTTAA	AAAATAAACA	AGAAATATTG	3180
	AGTATCACTA	TGTGAAGAAA	GTTTTGGAAA	AGAAACAATG	AAGACTGAAT	TAAATTAAAA	3240 3300
	TTGGAGGCAA	AATGTGTTGA	TTGGGACTCA AGTGCCCTAT	GAAGTAGCAA	TTTTCTATAG	GAATATAGTT	3360
70	GGAAATAAAT	GTGTGTGTGT	ATATTATTAT	TAATCAATGC	AATATTTAAA	ATGAAATGAG	3420
						TCCTACAATA	3480
						CTGAGTCTAT AATTAAACTT	3540 3600
	TTCTGGTTTC	TGTGGGAAGG	AAATAGGGAA	TCCAATGGAA	CAGTAGCTTT	GCTTTGCAGT	3660
75	CTGTTTCAAG	ATTTCTGCAT	CCACAAGTTA	GTAGCAAACT	GGGGAATACT	CGCTGCAGCT	3720
	GGGGTTCCCT	GCTTTTTGGT	AGCAAGGGTC	CAGAGATGAG	GTGTTTTTT	CGGGGAGCTA	3780
	TTCTCTCTTTA	TAGTGACCAA	CATCTTTTTA	ATTTAGATCC	AAATAACCAT	GCTGTTTCTA	3840 3900
0.0	AGTTTAGAGG	CTAGAGGGAG	CTGAGGGGAG	GATCTTACTG	AAAGCACCCT	GGGGAGATTG	3960
80	ATTGTCCTTA	AACCTAAGCC	CCACAAACTT	GACACCTGAT	CAGGTCTGGG	AGCTAÇAAAA	4020
	TTTCATTTTT	CTCCTCACTG	CCCTTCTTCT	GAGTGGCATT	GGCCTGAATC	AAGGAAAGCC GCAGAGATTC	4080 4140
	CCTTAAGTGA	CTCCAGGTTT	TCCACCATCC	TTCAGCGTGA	ATTAATTTTT	AATCAGTTTG	4200
0.5	CTTTCTCCAG	AGAAATTTTA	AAATAATAGA	AGAAATAGAA	ATTTTGAATG	TATAAAAGAA	4260
85	AAAGATCAAG	TTGTCATTTT	AGAACAGAGG	GAACTTTGGG	AGAAAGCAGC	CCAAGTAGGT	4320
	TATTTGTACA	GTCAGAGGGC GGTGGGAGTA	AACAGGAAGA	CGTCTGCTTC	ATACTTTTTC	GAGAGGCCAC CTAGGCTTGG	4440
	DIMINDUM.	OCTOGRACIA	.m.scmont				

```
CACTGCCTTT TCCTTTCTCA GGCCAATGGC AACTGCCATT TGAGTCCGGT GAGGGATCAG
       CCAACCTCTT CTCTATGGCT CACCTTATTT GGAGTGAGAA ATCAAGGAGA CAGAGCTGAC
                                                                          4560
       TGCATGATGA GTCTGAAGGC ATTTGCAGGA TGAGCCTGAA CTGGTTGTGC AGAACAAACA
                                                                          4620
       AGGCATTCAT GGGAATTGTT GTATTCCTTC TGCAGCCCTC CTTCTGGGCA CTAAGAAGGT
                                                                          4680
 5
                                                                          4740
       CTATGAATTA AATGCCTATC TAAAATTCTG ATTTATTCCT ACATTTTCTG TTTTCTAATT
       TGACCCTAAA ATCTATGTGT TTTAGACTTA GACTTTTTAT TGCCCCCCCC CCCTTTTTTT
                                                                          4800
       TTGAGACGGA GTCTCGCTCT GACGCACAGG CTGGAGTGCA GTGGCTCCGA TCTCTGCTCA
       CTGAAAGCTC CGCCTCCCGG GTTCATGCCA TTCTCCTGCC TCAGCCTCCT GAGTAGCTGG
                                                                          4920
       GACTACAGGC GCCCACCACC ACGCCCGGCT AATTTTTTGT ATTTTTAATA GAGACGGGGT
                                                                          4980
10
       TTCACTGTGT TAGCCAGGAT GGTCTCGATC TCCTGACCTC GTGATCCGCC TGCCTCGGCC
                                                                          5040
       TCCCAAAGTG CTGGGATTAC AGGCATGACC CACCGCTCCC GGCCTTGTTT TCCGTTTAAA
                                                                          5100
       GTCGTCTTCT TTTAATGTAA TCATTTTGAA CATGTGTGAA AGTTGATCAT ACGAATTGGA
                                                                          5160
       TCAATCTTGA AATACTCAAC CAAAAGACAG TCGAGAAGCC AGGGGGAGAA AGAACTCAGG
       GCACAAAATA TTGGTCTGAG AATGGAATTC TCTGTAAGCC TAGTTGCTGA AATTTCCTGC
                                                                          5280
15
       TGTAACCAGA AGCCAGTTTT ATCTAACGGC TACTGAAACA CCCACTGTGT TTTGCTCACT
                                                                          5340
       CCCACTCACC GATCAAAACC TGCTACCTCC CCAAGACTTT ACTAGTGCCG ATAAACTTTC
                                                                          5400
       TCAAAGAGCA ACCAGTATCA CTTCCCTGTT TATAAAACCT CTAACCATCT CTTTGTTCTT
                                                                          5460
       TGAACATGCT GAAAACCACC TGGTCTGCAT GTATGCCCGA ATTTGTAATT CTTTTCTCTC
                                                                          5520
       AAATGAAAAT TTAATTTTAG GGATTCATTT CTATATTTTC ACATATGTAG TATTATTATT
20
       TCCTTATATG TGTAAGGTGA AATTTATGGT ATTTGAGTGT GCAAGAAAAT ATATTTTAA
                                                                          5640
       AGCTTTCATT TTTCCCCCAG TGAATGATTT AGAATTTTTT ATGTAAATAT ACAGAATGTT
                                                                          5700
                                                                          5760
       TTTTCTTACT TTTATAAGGA AGCAGCTGTC TAAAATGCAG TGGGGTTTGT TTTGCAATGT
       TTTAAACAGA GTTTTAGTAT TGCTATTAAA AGAAGTTACT TTGCTTTTAA AGAAACTTGG
                                                                          5820
       CTGCTTAAAA TAAGCAAAAA TTGGATGCAT AAAGTAATAT TTACAGATGT GGGGAGATGT
                                                                          5880
25
       AATAAAACAA TATTAACTTG GCTGCTTAAA ATAAGCAAAA ATTGGATGCA TAAAGTAATA
                                                                           5940
       TTTACAGATG TGGGGAGATG TAATAAAACA ATATTAACTT GGTTTCTTGT TTTTGCTGTA
                                                                          6000
       TTTAGAGATT AAATAATTCT AAGATGATCA CTTTGCAAAA TTATGCTTAT GGCTGGCATG
                                                                          6060
       GAAATAGAAA TACTCAATTA TGTCTTTGTT GTATTAATGG GGAATATTTT GGACAATGTT
                                                                          6120
       TCATTATCAA ATTGTCGACA TCATTAATAT ATATTGTAAT GTTGGGAAGA GATCACTATT
                                                                          6180
30
       TTGAAGCACA GCTTTACAGA TGAGTATCTA TGATACATAT GTATAATAAA TTTTGATCGG
                                                                           6240
       GTATTAAAAG TATTAGAAGG TGGTTATAAT TGCAGAGTAT TCCATGAATA GTACACTGAC
                                                                          6300
       6360
                                                                           6420
       GACAAGATGA TCCAACCATA AAGGTGCTCT GTGCTTCACA GTGAATCTTT TCCCCATGCA
                                                                          6480
35
       GGAGTGTGCT CCCCTACAAA CGTTAAGACT GATCATTTCA AAAATCTATT AGCTATATCA
                                                                           6540
       AAAGCCTTAC ATTTTAATAT AGGTTGAACC AAAATTTCAA TTCCAGTAAC TTCTATTGTA
                                                                           6600
       ACCATTATTT TTGTGTATGT CTTCAAGAAT GTTCATTGGA TTTTTGTTTG TAATAGTAAA
                                                                           6660
       ATACCGGATA CATTTCACGT GTCCTTCAGT ATTGATTTGG TTGAATATTG GGTCATAATG
                                                                           6720
       GTTGAGAAGC ATGGACACTA GAGCCAGAAT GCTTGGATAT GAATCCTGGA TCTGTCACTT
                                                                           6780
40
       ACTTCTGTGT GACCTTTGAA AGGCTACTTA TTTCCTCTCT TAGCTTTCTC ATTAAAATCA
                                                                          6840
       ATGAACAATG CCAGCCTCAT GGGGTTGTTG AATGATTAAA TTAGTTAATA TACCTAAAGT
                                                                          6900
       ACATAGAACA CTGCCTGCAC ATAGTAAAAG AATTATAAGT GTGAGGTAGT TGGTAAAATT
                                                                           6960
       ATGTAGTTGG ATATACTACC GAACAATATC TAATCTCTTT TTAGGGAAAT AAAGTTTGTG
       CATATATATA ATCCCGAAAC ATG
45
       Seq ID NO: 527 Protein sequence
       Protein Accession #: NP 077741.1
                                                               51
                                        31
                                                   41
50
       MAAAGPRRSV RGAVCLHLLL TLVIFSRDGE ACKKVILNVP SKLEADKIIG RVNLEECFRS
                                                                             60
       ADLIRSSDPD FRVLNDGSVY TARAVALSDK KRSFTIWLSD KRKQTQKEVT VLLEHQKKVS
                                                                            120
       KTRHTRETVL RRAKRRWAPI PCSMQENSLG PFPLFLQQVE SDAAQNYTVF YSISGRGVDK
                                                                            180
       EPINIFYIER DIGNIFCTEP VDREEYDVFD LIAYASTADG YSADLPLPIP IRVEDENDNH
PVFTEAIYNF EVLESSRPGT TVGVVCATDR DEPDIMHTRL KYSILQQTPR SPGLFSVHPS
                                                                            240
55
       TGVITTVSHY LDREVVDKYS LIMKVQDMDG QFFGLIGTST CIITVTDSND NAPTFRQNAY
                                                                            360
       EAFVEENAFN VEILRIPIED KOLINTANWR VNFTILKGNE NGHFKISTOK ETNEGVLSVV
                                                                            420
       KPLNYEENRQ VNLEIGVNNE APFARDIPRV TALNRALVTV HVRDLDEGPE CTPAAQYVRI
                                                                            480
       KENLAVGSKI NGYKAYDPEN RNGNGLRYKK LHDPKGWITI DEISGSIITS KILDREVETP
                                                                            540
60
       KNELYNITVL AIDKDDRSCT GTLAVNIEDV NDNPPEILQE YVVICKPKMG YTDILAVDPD
                                                                            600
       EPVHGAPFYF SLPNTSPEIS RLWSLTKVND TAARLSYQKN AGFQEYTIPI TVKDRAGQAA
                                                                            660
       TKLLRVNLCE CTHPTOCRAT SRSTGVILGK WAILAILLGI ALLFSVLLTL VCGVFGATKG
                                                                            720
       KRFPEDLAQQ NLIISNTEAP GDDRVCSANG FMTQTTNNSS QGFCGTMGSG MKNGGQETIE
                                                                            780
       MMKGGNOTLE SCRGAGHHHT LDSCRGGHTE VDNCRYTYSE WHSFTQPRLG EESIRGHTG
65
       Seg ID NO: 528 DNA sequence
       Nucleic Acid Accession #: NM 001941.2
       Coding sequence: 64..2754
70
                                         31
                                                    41
                                                               51
       GGCAGGTCTC GCTCTCGGCA CCCTCCCGGC GCCCGCGTTC TCCTGGCCCT GCCCGGCATC
       CCGATGGCCG CCGCTGGGCC CCGGCGCTCC GTGCGCGGAG CCGTCTGCCT GCATCTGCTG
       CTGACCCTCG TGATCTTCAG TCGTGATGGT GAAGCCTGCA AAAAGGTGAT ACTTAATGTA
75
       CCTTCTAAAC TAGAGGCAGA CAAAATAATT GGCAGAGTTA ATTTGGAAGA GTGCTTCAGG
                                                                            240
       TCTGCAGACC TCATCCGGTC AAGTGATCCT GATTTCAGAG TTCTAAATGA TGGGTCAGTG
                                                                            300
       TACACAGCCA GGGCTGTTGC GCTGTCTGAT AAGAAAAGAT CATTTACCAT ATGGCTTTCT
                                                                            360
       GACAAAAGGA AACAGACACA GAAAGAGGTT ACTGTGCTGC TAGAACATCA GAAGAAGGTA
                                                                            420
       TCGAAGACAA GACACACTAG AGAAACTGTT CTCAGGCGTG CCAAGAGGAG ATGGGCACCT
80
       ATTCCTTGCT CTATGCAAGA GAATTCCTTG GGCCCTTTCC CATTGTTTCT TCAACAAGTT
                                                                            540
       GAATCTGATG CAGCACAGAA CTATACTGTC TTCTACTCAA TAAGTGGACG TGGAGTTGAT
                                                                            600
       AAAGAACCTT TAAATTTGTT TTATATAGAA AGAGACACTG GAAATCTATT TTGCACTCGG
                                                                            660
       CCTGTGGATC GTGAAGAATA TGATGTTTTT GATTTGATTG CTTATGCGTC AACTGCAGAT
                                                                            720
       GGATATTCAG CAGATCTGCC CCTCCCACTA CCCATCAGGG TAGAGGATGA AAATGACAAC
                                                                            780
85
       CACCCTGTTT TCACAGAAGC AATTTATAAT TTTGAAGTTT TGGAAAGTAG TAGACCTGGT
                                                                            840
       ACTACAGTGG GGGTGGTTTG TGCCACAGAC AGAGATGAAC CGGACACAAT GCATACGCGC
                                                                            900
       CTGAAATACA GCATTTTGCA GCAGACACCA AGGTCACCTG GGCTCTTTC TGTGCATCCC
                                                                            960
```

			AGTCTCTCAT				1020
			AGACATGGAT				1080
			AGATTCAAAT				1140
_			AAATGCATTC				1200
5			TGCCAATTGG				1260
			CAGCACAGAC				1320
			AGAAAACCGT				1380
			TATTCCCAGA TGAGGGGCCT				1440 1500
10			GGGGTCAAAG				1560
10			AAGGTACAAA				1620
			AATCATAACT				1680
			TATTACAGTC				1740
			CATTGAAGAT				1800
15			ACCAAAAATG				1860
			TCCATTTTAT				1920
	AGTAGACTGT	GGAGCCTCAC	CAAAGTTAAT	GATACAGCTG	CCCGTCTTTC	ATATCAGAAA	1980
			TACCATTCCT				2040
•			TAATCTGTGT				2100
20			AATACTTGGA				2160
			ATTGCTAACT				2220
			TTTAGCACAG				2280
			CTCTGCCAAT				2340
25			TATGGGATCA				2400
23			CCAGACCTTG AGGACACACG				2460 2520
			ACCCCGTCTC				2580
			AGATTATGTC				2640
			CTGCAGTGAA				2700
30			TATTACATTA				2760
50			GTCAGACATT				2820
			ATATGATGAT				2880
			CAGTTGTTGC				2940
			CAAACTCCAG				3000
35	TCTTTTTTT	TTTTACGGAT	ATTTTAGTAA	TAAATATGCT	GGATAAATAT	TAGTCCAACA	3060
	ATAGCTAAGT	TATGCTAATA	TCACATTATT	ATGTATTCAC	TTTAAGTGAT	AGTTTAAAAA	3120
	ATAAACAAGA	AATATTGAGT	ATCACTATGT	GAAGAAAGTT	TTGGAAAAGA	AACAATGAAG	3180
			TTGCAGCTCA				3240
40			GAGGCAAAAT				3300
40			AATAAATGTG				3360
			AAAGAGGAAA				3420
			AAAAGAGAGA				3480 3540
			GAAATAGTTC TGGTTTCTGT				3600
45			TTTCAAGATT				3660
13			GTTCCCTGCT				3720
			ACAAAAACAT				3780
			TCTCTTATAG	TGACCAACAT	CTTTTTAATT	TAGATCCAAA	3840
	CTCTATTGCT	GTTTCTATTC	TCTCTTATAG TTAGAGGCTA				3840 3900
50	CTCTATTGCT TAACCATGTC	GTTTCTATTC CTCCTAGAGT	TCTCTTATAG TTAGAGGCTA GTCCTTAAAC	GAGGGAGCTG	AGGGGAGGAT	CTTACTGAAA	
50	CTCTATTGCT TAACCATGTC GCACCCTGGG	GTTTCTATTC CTCCTAGAGT GAGATTGATT	TTAGAGGCTA	GAGGGAGCTG CTAAGCCCCA	AGGGGAGGAT CAAACTTGAC	CTTACTGAAA ACCTGATCAG	3900
50	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT	AGGGGAGGAT CAAACTTGAC TTCTTCTGAG CGGCTTTCTG	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC	3900 3960 4020 4080
50	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC	AGGGGAGGAT CAAACTTGAC TTCTTCTGAG CGGCTTTCTG ACCATCCTTC	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT	3900 3960 4020 4080 4140
	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTTAAT	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT	TTAGAGGCTA GTCCTTAAAC CATTTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAAA	AGGGGAGGAT CAAACTTGAC TTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT	3900 3960 4020 4080 4140 4200
50 55	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTTAAT TTGAATGTAT	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAAGAAAAA	TTAGAGGCTA GTCCTTAAAC CATTTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAAA TCATTTTAGA	AGGGGAGAT CAAACTTGAC TTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA	3900 3960 4020 4080 4140 4200 4260
	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTTAAT TTGAATGTAT AAGCAGCCCA	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT	TTAGAGGCTA GTCCTTAAAC CATTTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTT CAGGTTTTCC AATTTTAAAA TCATTTTAGA AGAGGGCAAC	AGGGGAGAT CAAACTTGAC TTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA AGGAAGATGC	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA	3900 3960 4020 4080 4140 4200 4260 4320
	CTCTATTGCT TAACCATGTC GCACCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTTAAT TTGAATGTAAT TAGAATGCAA GGGCAAGGAG	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG	TTAGAGGCTA GTCCTTAAAC CATTTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTC AATTTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA	AGGGGAGGAT CAAACTTGAC TTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA	3900 3960 4020 4080 4140 4200 4260 4320 4380
	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC	TTAGAGGCTA GTCCTTAAAC CATTTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTC TTGTACAGTC GAATATGGGT TGCCTTTTCC	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAAA TCATTTTAGA AGAGGGCAAA GGGAGGTAAAA TTTCTCAGGC	AGGGGAGGAT CAAACTTGAC TTCTTCTGAG GGGCTTTCTG ACCATCCTTC TAATAGAAGA ACGAAGATGC GCAACATCGT CAATGGCAAC	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCAAA CTGCTTCATA	3900 3960 4020 4080 4140 4200 4260 4320 4380 4440
55	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG GTCCTTTTCCTA GTCCGGTGAG	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC	GAGGGAGCTG CTAAGCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAGA TCATTTTAGA AGAGGGCAAC GGAGTAAAA TTTCTCAGGC TATGGCTCAC	AGGGGACGAT CAAACTTGAC CTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA ACGAACATCGT CAATGGCAAC CTTAATTGGAA CTTATTTGGA	CTTACTGAAA ACCTGATCGA TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCCATTTGA GTGAGAAATC	3900 3960 4020 4080 4140 4260 4320 4380 4440 4500
	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGACACA	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGCCAC AGGTTGCCCA AGCTGACTGC	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ATGATGAGTC ATGATGAGTC	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT	AGGGGACGAT CAAACTTGAC TTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACGAAGGGAA AGGAAGATGC CAATGCAAC TTAATTGGA TGCAGGATGA	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG	3900 3960 4020 4080 4140 4260 4320 4380 4440 4500 4560
55	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TAGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTCCTA GTCGGTGAG GTGGAGAGACAG GTTGTGCAGA	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCA AGCTGACTGACAG ACCAAACAAGG ACCAAACAAGG ACCAAACAAGG	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCTC ACCTCTTCTC ATGATGAGTC CATTCATGGG CATTCATGGG	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA	AGGGGAGGAT CAAACTTGAC TTCTTCTGAG GGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC TTATTTGGA TGCAGGATGA TTCCTTCTGC	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCATA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT	3900 3960 4020 4080 4140 4260 4320 4380 4440 4500
55	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGCAAGGAG CTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA CTTGGCAGA	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTAGCCA AGCAAGAAGAAGAAGAAGAAGAAGAAGAAGGTCTA	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ATGATGAGTC ATGATGAGTC	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAAA TCATTTTAGA AGAGGGCAAC GGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA GCCTATCTAA	AGGGGAGGAT CAAACTTGAC CTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TTCCTTCTGC AATTCTGATT	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGCAG AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA	3900 3960 4020 4080 4140 4260 4320 4380 4440 4500 4560 4620
55 60	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG GTCTGGTGAG AAGGAGACAG GTTGTGCAGA CTGGGCACTA TTTCTGTTTT	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC AGCTGACTGC ACAAACAAGG ACAAACAAGG TCTAATTTGA	TTAGAGGCTA GTCCTTAAAC CATTTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG GAATATAGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC ATGATGAGTC TGATGAGGT TGATGAGGT TGATGAGGT TGATGAGGT TGATGAGTC	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTTGTA ACCTATCTAA TATGTTTTT TATGGTTTTT TATGTTTTT TATGTTTTT TATGTTTTT TATGTTTTT TATGTGTTTTT TATGTGTTTTT TATGTGTTTTT	AGGGGAGGAT CAAACTTGAC CTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACGAAGATAGA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TTCTTCTGC ACTTATTCTGAT AGACTTAGAC	CTTACTGAAA ACCTGATCAG TGGCATTTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC	3900 3960 4020 4080 4140 4260 4320 4320 4440 4500 4620 4680
55	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGAG CTTTTCCTA GTCCGGTGAG AAGGAGACAG CTTGGCCACA CTGGCCACTA TTTCTGTTT CCCCCCCCCC	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACACTT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TGTACAGTC GAATATGGGT TGCCTTTTCC ACCTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAAT AGAGGAGTC AAAGCTCCGC	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAG TGAAGGCATT AATTGTTTTA GCCTATCTAA TATGTGTTTT TGGCTCTGAC CTCCCGGGTT	AGGGGAGGAT CAAACTTGAC TTCTTCTGAG GGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA AGGAAGATGC CCAATGCTAC CTAATTGGA TGCAGGATGA TTCCTTCTGC AATTCTGATT AGACTTAGA GCACAGGCTG CAAGGCTG CAAGGCTG CAAGGCTG CAAGGCTG CAAGGCTG CAAGGCTG CAAGGCTTC CATGCCATTC	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCATA TGCCATTTGA GTGAGAAATT GCCATTTGA GCCTGCATT TATTCCTACA TTTTTATTGC AGCCTCCTT TATTCTACA TTTTTTATTGC AGGTGCAGTG TCCTGCCTCA	3900 3960 4020 4080 4140 4260 4320 4380 4440 4500 4560 4680 4740
55 60	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGAG CTTTTCCTA GTCCGGTGAG AAGGAGACAG CTTGGCCACA CTGGCCACTA TTTCTGTTT CCCCCCCCCC	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACAAGG ACAACACTT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC	GAGGGAGCTG CTAAGCCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TATGGCTCAG TGAAGGCATT AATTGTTTTA GCCTATCTAA TATGTGTTTT TGGCTCTGAC CTCCCGGGTT	AGGGGAGGAT CAAACTTGAC TTCTTCTGAG GGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA AGGAAGATGC CCAATGCTAC CTAATTGGA TGCAGGATGA TTCCTTCTGC AATTCTGATT AGACTTAGA GCACAGGCTG CAAGGCTG CAAGGCTG CAAGGCTG CAAGGCTG CAAGGCTG CAAGGCTG CAAGGCTTC CATGCCATTC	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCATA TGCCATTTGA GTGAGAAATT GCCATTTGA GCCTGCATT TATTCCTACA TTTTTATTGC AGCCTCCTT TATTCTACA TTTTTTATTGC AGGTGCAGTG TCCTGCCTCA	3900 3960 4020 4080 4140 4200 4320 4320 4340 4560 4620 4620 4620 4740 4800
55 60	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGAGA GTTCTTTCCTA GTCCGGTGAG AAGGAGACAG TTTTTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTAGAG TTTAATAGAG TTTAATAGAG	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAG TCTAATTTGA TCTAATTTTGT TCTGCTCACTG TAGCTGGGAC ACGGGGTTTC ACGGGGTTTC	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ACGCTTTTCC ACGTCTTCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC ACTGTGTTA	GAGGGAGCTG CTAAGCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA AGAGGGCAAC GGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTTGTA ACCTATCTAA TCTCTAGC TCACCACCCC CCAGGATGGT CACCACCACCC CCAGGATGGT	AGGGGACGAT CAAACTTGAC CGGCTTTCTG ACCATCCTTC ACCATCCTTC ACCATCCTTC ACCATCCTC ACCATCCTC ACCATCCTC CAATGGCAAC AGGAACATCGT CAATGGCAC CTTATTTGGA TGCAGGATGA TTCCTTCTGC ACACTCATC AGACTTAGAC CCACGGCTAAT CCCGGCTAAT CTCGATCTC	CTTACTGAAA ACCTGATCAG TGGCATTTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGGCTTCA TTTTTGTATT TGACCTCGTT	3900 3960 4020 4080 4140 4200 4320 4320 4440 4500 4560 4680 4740 4800 4800 4920 4980
55 60	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGGAG CTTTTTCCTA AAGGAGACAG GTTGTGCAGA ATTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG ATCCGCTGGC ATCAGAGAGAAAAAAAAAA	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCA AGCTGACTGC ACAAACAAGG AGAACAACGC ATTTTTTTTTG CTGCTCACTG TAGCTGGCTC CTCGGCTCC CTCGGCCTCC	TTAGAGGCTA GTCCTTAAAC CATTTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TGTACAGTT GCATTTTCC ACCTTTTCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCT ACAGGCCTC CATGGTCTC CATGGTCTC CATGGTCTC CATGGTCTC CAAAGCTCCCC CAAAGTCCTC CAAAGCTCCTC CAAAGTCCTC CAAAGTCCTC	GAGGGAGCTG CTAAGCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAAA TCATTTTAGA AGAGGCAAC GGAGTAAAA TTCTCAGGC TAGAGGCATT AATTGTTGTA GCCTATCTA ACTGTTTTT ACTCTAGC CCTACCACCAC CCCACCACCAC CCAGGATGG GCATTACAGG GGATTACAGG	AGGGGACGAT CAAACTTGAC CTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA AGGAAGATGC CCAACATCGT CAATGCAAC TTCTTTGGA TCCAGGATGA TCCTTCTGC AATTCTGAT AGACTTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGGCTACT CTCGGCTACC CATGACCCAC	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAAT CTTTGGGAG AGGCCTTCATA TGCCATTTCA GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTCC GAGTGCAGTG TCTTGCTCAT TTTTTATTCC TCCTGCCTCA TTTTTTTTTT	3900 3960 4020 4140 4200 4320 4380 4440 4560 4620 4680 4860 4860 4920 5040
556065	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG ATGGGACACA CTTGGCACTA TTTTCTGTTT CCCCCCCC CCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCCGCCTGC CTTGGTTTTCC GTTCTGGCTTCT GCTTCTTGGCTTTTTCT GCTTCTTTT GCTTCTTTT	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTT CTGCTCACTG TAGCTGGAC ACGGGGTTTC CTGGCCTCC GTTTAAAGTC	TTAGAGGCTA GTCCTTAAAC CATTTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ACTCTTCTC ACTCTCTCTC ACTCTTCTC ACATCAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCC ACTGTGTTAC CCAAAGTGCTC GCAAGGGCTC ACAGGTCCT CCAAGGCGCC CCAAGGTCCT CCAAGGCGCC CCAAGGTCCT CCAAGGCGCCC CCAGGTCTCTTTTT	GAGGGAGCTG CTAAGCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCTCAGGC TATAGCTCAC TGAAGGCATT AATTGTTGTA GCCTATCTAA TCGTTCTCA CCCAGGTT CACCACCAC CCAGGATGG CAGGATGGT GAATTACAGG AATGTAATCA	AGGGGAGGAT CAAACTTGAC CTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA AGGAAGATGC CCATATTTGGA TCCATCTCTGC AATTCTGATT AGACTTAGAT AGCATCTAGAT AGCATCTAGAT CCCGGCTAAT CTCGGCTAAT CTCGGCTCAC CATGACCCAC TTTTGAACAT	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA GTGAGAAATC GCCTGAACTG AGCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTTTTTT	3900 3960 4020 4140 4200 4320 4380 4440 4500 4680 4680 4740 4860 4920 4980 5040 5100
55 60	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCA GGCAAGGAC CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGGCAGA TTTTCTGTTT CCCCCCCCC GCCCCCCC GCCCCCCCC	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTCAGCCA AGCTGACCA AGCTGACTGC AGATCAGCCA AGCTGACTGC AGAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTG CTGCCCCCC TAGCTGGGAC ACGGGGTTTC CTCGGCCTCC CTCTGGCCTCC CTCTGACTCG AATTGGATCA	TTAGAGGCTA GTCCTTAAAC CCATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ATGATGAGTC CATTCATGAGTC CATTCATGAG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGTGCTC ACAGGCGCC ACTGTGTTAG CAAAGTGCTT ATCTTGAAAT ATCTTGAAAT	GAGGGAGCTG CTAAGCCCA CTCATTTCAGCCC CCCTTCTTT CAGGTTTTCCAGGTTTTCAGA ATTTTAAAA AGAGGGCAAC GGAGTAAAA TTTCTCAGGC TAAGGCATC TAAGGCATT AATTGTTGTA AGCTATCTAA TATGTGTTT CGCTCTGAC CTCCCGGGTT CACCACCAC CCAGGATGGT GAATTACAGA AATTACAGA AATCAAACAA	AGGGGAGGAT CAAACTTGAC CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TTCCTTCTG CAATCTTTG ACATCGTTT AGACTTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGATCTC CATGACCAC TTTTGAACAT AAGACAGTCG	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCACTG TCCTGCCTCA TTTTTGTATT TGACCTCCTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG	3900 3960 4020 4080 4140 4260 4320 4380 4440 4560 4560 4740 4880 4740 4880 4980 5040 5040 5160
556065	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGAGA GTTGTGCGAG AAGGAGACAG TTTTTCCTA TTTCTGTTT CCCCCCCCC GCTCCGATCT TTTAATAGAG ATCGCCTGG TTTAATAGAG ATCGCCTGC CTGATCTTTTCC CTGATCT CTGATTTTCC CTGATCATACG GGGAGAAAGA	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG TCTAATTTGA TTTTTTTTTG CTGCTCACTG CTGCTCACTG CTGGGCTC CTGGGCTC CTGGGCTC CTTGGCCTC CTTTAAAGT AATTGGATCA ACTCAGGGCA ACTCAGGCCA ACTCAGGCCA	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGC TACAGGCGC TACAGGCGCC TACAGGCGCC TACAGGCGCC TACAGGCTTC TACAGGCTTC TACAGGCTC TACAGGCTC TACAGGCTC TACAGGCTC TACAGGCTC TACAGGCTC TACAGATTAAAT CAAAATATTG	GAGGGAGCTG CTAAGCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA AGAGGGCAAC GGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA ACCTATCTAA CCTATCTAA CCTCCGGGTT TCCCGGGTT CACCACCAC CCAGGATGCACACACACACACACACACACACACACACACA	AGGGGAGGAT CAAACTTGAC CGGCTTTCTG ACCATCCTTC ACCATCCTTC TAATAGAAGA AGGAAGATGC CAATGCCATC CTTATTTGGA TGCAGGATGA TGCAGGATGA TTCTTCTGTC GATCTTCTGC CATGCCATTC CATGCCATTC CCTGGCTAT CCTGGATCTC CATGACCATC CTGATCTC CATGACCAC TTTTGAACA TTTGAACA TTTGAACAC TTTTGAACAC TTTTGAACAC GGAATTCTC GGACACTCC GGAATTCTC GGACACTCC GGAATTCTCT GGACACC GGAATTCTCT	CTTACTGAAA ACCTGATCAG TGGCATTTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCTTGCTACT TTTTTATTGC GAGTGCAGTG TCTTGCTCATA TGCTCCTCGCTCA TTTTTGATTT TGACCTCGTG CGCTCCCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG	3900 3960 4020 4140 4206 4320 4380 44400 4560 4620 4680 4860 4860 4920 5040 5160 5160 5220
556065	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGAG CTTTTCCTA GTCGGTGAG CTGGGCACTA TTTTCTGTTT CCCCCCCC GCTCCGATCT GCCTCCTGAC TTTAATAGAG ATCGGCTGC CTTGTTTCC CTTTTTCC GCTCCTGAC TTTAATAGAG ATCGGCTGC CTTGTTTTCC CTATCTTCC CTATCTTCC CTATCATACAG ATCGGCTGC CTTGTTTTCC GGGAGAAAGA TTGCTGAAAT	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCA AGCTAACTAGCA ACTAACTAGC ACAAACAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CATTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCTCTTCTC ATGATGAGTC CATTCTC ATGATGAGTC CATTCATGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGCGCT ACAGGCGCT CAAAGTCTG CAAAGTGCTG GTCTTCTTTT ATCTTGAAAT AACAGAAGC	GAGGGAGCTG CTAAGCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TGAAGGCATT AATTGTTGTA GCCTATCTA ACTCTACCA CCACCACC CCAGGGTT CACCACCAC GCAGTACACA ACTCAACCA ACTCAACCAA CTCAACCAA CTCTAACCAA CTCAACCAA CTCAACCAA CTCTAACCAA CAGTTTTATC	AGGGGAGGAT CAAACTTGAC CGGCTTTCTGA CGGCTTTCTG ACCATCCTTC TAATAGAAGA AGGAAGATGC CCAACATCGT CAATGCAAC TTCTTTGGA TGCAGGATGA TCCTTCTGC AATTCTGAT AGACTTAGAC GCACAGGCTG CATGCCATTC CCCGGCTAAT CTCGGCTAAT CTGGATCTC CATGACCAC TTTTGAACAT AGACAGTCC GGAATTCTC TAACGGCTAC TAACGGCTAC TAACGGCTAC TAACGGCTAC TAACGGCTAC	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAAT CTTTTGGGAGA CTGCTTCATA CTGCTTCATA CTGCTTCATA CTGCTTCATA TGCCATTTGA AGCCTCCTT TATTCCTACA CTGGTGCAGTG TCTTCTTATTGC CGCTCCTT TTTTTATTGC CGCTCCTCA TTTTTTGTATT CGCCTCCAGC CGCTCCCGCC CGCTCCCTCA TTTTTGTATTGACCTCCGC CGCTCCCGCC CGCTCCCGCC CGCTCCCGCC CGCTCCCAGC CGCTCCCAGC CGCTCCCAGC CTGAAACCACCC TGAAACCACCC	3900 3960 4020 4140 4200 4320 4320 4380 4440 4560 4620 4680 4740 4860 4980 5040 5100 5120 5280
556065	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTTAAT TTGAATGTAT AAGCAGCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGACT GCTCCTGAG TTTAATAGAG ATCCGCTTGC TTTAATAGAG ATCCGCTTGC TTGATCATACG GGAGAAAGA TTGCTGAAAT ACTGTGTTTT	GTTTCTATTC CTCCTAGAGT GAGATTCATT GAAAGCCAGG GAGATTCCCT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTCACAAG GGCTGACCA AGCAAGAACAAG AGAAGAACAAG AGAAGACAAG AGAAGACTCT CTCAATTTG TTTTTTTTT CTGCTCACTG ACTGGCCC AGCTGACTC CTCGGCCTC CTCGGCCTC ATTGAATCAA ACTCGGCTC ACTCAGGGCA ACTCAGGGCA ACTCAGGGCA ACTCAGGGCA ACTCAGGGCA ACTCAGGCGG	TTAGAGGCTA GTCCTTAAC CCATTTTCC CCATGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ACTCTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC TACAGGCGCC ACTGTGTTAC CAAAGTGCTC TACAGGCTCT TCTCTTTT TCTCTTTTT TCTTGAAAT CAAAATATTT ACACAGAAT CAAAATATTG TAACAGAATGC TCACTCACCG TCACTCACCG TCACTCACCG	GAGGGAGCTG CTAAGCCCA ATTATCAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCAAGC TATGCTCAC TATGCTCAC TATGCTCAC TATGCTCAC TATGTGTT AATTGTTGT AATTGTTGTA TATGTGTTT CGCTCTAAC CTCACCACC CCAGGATGGT CACCACCAC CCAGGATGGT CACACCAC ACTCAACCAA GTCTAACCAA GTCTAACCAA TCTGAGAAT TATGTGTATCA	AGGGGAGGAT CAAACTTGAC CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA AGGAAGATCGT CAATGCAAC CTTATTTGGA TCCTTCTGC ACTATTTGGA TCCTTCTGC AATTCTGATT AGACTTAGAC CCAGCATC CCGGCTAAT CTGGATCTC CCGGCTAAT CTGGATCTC CATGACCCC CATGACCCC CATGACCTCC GGAATTCTC GGAATTCTC CAGCCTAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTCC CCTACCTCC CCATCCTCC CCTACCTCC CCTACCTCC CCACTCC CCTACCTCC CCACTCC CCTACCTCC CCACTCC CCTACCTCC CCACTCC CCACTC CCACTCC CCACTCC CCACTCC CCACTCC CCACTCC CCACTC CCACT CCACTC CCACTC CCACTC CCACTC CCACTC CCACTC CCACTC CCACTC CCACTC	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT ATTAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GCGTGAACT AGCGTTCAAA TTCCTACAA TTCCTACAA TTTTTATTGC GAGTGCACTG TCCTGCCTCA TTTTTGTATT TGACCTCCTGC CGCTCCCGGC CGTGTGAAAGT AGAAGCCAGG GTAAAGCCTAG GTAAAGCCTAG TGAAAGCTTA	3900 3960 4020 4140 4200 4320 4380 4440 4500 4680 4740 4860 4920 4980 5040 5160 5220 5340
55606570	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGAGA GTTGTCCGA AAGGAGACA ATTCTCTA TTCTGTTTC CCCCCCCC TCCCCCCCC TCCGATCT GCCTCCGATCT GCCTCCGATCT GCCTCCTGAG ATCGGTGAG ATCGCTTCC TTAATAGAG ATCGCCTGC TGATCATACG GGGAGAAAGA TTGCTGAAAT TTCTGTTTT CTGAAAT TTAGTGTTTT CTGAAAT TCTGATGTCGA	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTCAGCCA AGCTGACCA AGCTGACTGC AGAACAAGG AGAAGCAAGG AGAAGGTCTA TCTAATTTGA TTTTTTTTTG CTGCTCACTG CTGGCCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGCA TTCCTGCTGT TCCTGCTGT TCCTCCCT TAAACTTCT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGT GCATTATACAGTC ATGATCATCAC ATGATCAAGTC CATAAATC AGACGGAGTC AAGGCTCCGC TACAGGCCC ACTGTGTTAG GTCTTCTTT ATCTTGAAAT CAAAAGTCCTG GTCTTCTTTT ATCTTGAAAT CAAAATTCTG AACCAGAAGC TCACCACCG CAAAGAGCAA	GAGGGAGCTG CTAAGCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA AGAGGGCAAC GGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTTTT AATTGTTTT TCGCTCTGAC CTCCCGGGTT CACCACCAC CCAGGATGGT GAATTACAG GCAATACAA ACTCAAACCAA GTCTGAGAAT CAGTTTTATC CACCACAC CCAGGATTACAC ACTCAACCAA CTCTGAGAAT CAGTTTTATC CAGTTTTATC CAGGTTTTATC CAGTATCAC CCAGTATCAC CCAGTATCAC CCAGTATCAC CCAGTATCAC CCAGTATCAC CCAGTATCAC CCAGTATCAC CCAGTATCAC CCCAGTATCAC CCCAGTATCAC CCCAGTATCAC CCCAGTATCAC CCCAGTATCAC CCCAGTATCAC CCCAGTATCAC CCCAGTATCAC CCAGTATCAC CCCAGTATCAC CCC	AGGGGAGGAT CAAACTTGAC CGGCTTTCTG ACCATCCTTC TAATAGAAGA AGGAAGATGC GCAACATCGT CAATGGCAAC TTCTTCTGG TCTTTTTGGA TGCAGGATGA TCCTTCTGC CATGACTCTCTCTGC CATGCCATT CCCGGCTAAT CTCGATCCC TTTTGAACAC TTTTGAACAC TTTTGAACAC TTTTGAACAC TTTTGAACAC TAAGACAGTCG GGAATTCTC TAACGGCTAC TTAACGGCTAC TTAACGGCTAC TTACCGCTTCC TTACCCTCC TTCCCTGTTT	CTTACTGAAA ACCTGATCAG TGGCATTTGG CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA TGCATTCAA TGCATTCAA GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGTATT TGACCTCGTG CGCTCCCGGC TGTGAAAGT AGAAGCCTAG TGAAACACCC CAGAACCTTA ATAAAACCCTC	3900 3960 4020 4140 4260 4320 4380 44500 4560 4680 4740 4800 4920 4980 5040 5160 5220 5280 5240 5400
556065	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGAGA GTTGTGCAGA CTGGGCACTA TTTTCTGTTT CCCCCCCCC GCTCCGATCT TTTAATATATAT TTTAATATTTTTCTGTTT CCCCCCCCC GCTCCGATCT TTTAATAGAG ATCCGCTGC CTGATCATACG GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCCA TTGTTTTCC TGATCATACG TAGAGAAACA TTGCTGAAAT ACTGTGTTTT CTAGTGCCCC TAACCATCTC TAACCATCTC	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGC ACAAACAAGG TCTAATTTGA TTTTTTTTTG CTGCTCACTC GTTTAAAGT CTGGGCCT CTTTGAGTCA ACTCAGGCCA ACTCAGGCCA TCCTACTCCT TTTGTTCTTT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGTC CATTCATGGG TGAATAAAT CCCTAAAATC AGACGGAGTC AAAGCTCGC TACAGGCGC TCACTCACC TCACC TCACC TCACCACC TCACCACCAC CAAAGAGCAA GAACATGCTG	GAGGGAGCTG CTAAGCCCA CTCACTGCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA AGAGGGCAAC GGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA GCCTATCTA CCTATCTAC CCACCACCAC CCAGGATGCAC GGATTACAGC AATTGTACACCAC GCTCAGCAC GCAGGATGCAC CCAGGATGCAC CCAGGATGCAC CCAGGATGCAC CAGGATGCAC CACTACCACAC CCAGGATGCAC CAGGATGCAC CAGGATGCAC CAGGATTACACCA ACTCAAAACCA CCCAAAACCAC AAAACCACCT	AGGGGACGAT CAAACTTGAC CGGCTTTCTG ACCATCCTTC TAATAGAAGA AGGAAGATGC CAACATCGT CAATGCCATC CTTATTTGGA TGCAGCATGAT TGCAGCATC TAATGCAAC TTCTTCTGC CATGCCATC CATGCCATC CCCGGCTAAT CTCGATCTC CATGACCCAC TTTTGAACAC GGAATTCTC GGAATTCTC CTTGACTCC CATGACCTCC TTAACGGCTAC TTAACGGCTAC CTTCCTCTTC CTTCCTCTC TTAACGCTACT CTCCCTGTTT GGTCTCCTTTCACTCC CTTCCCTGTTT GGTCTCCCTTTT	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGATTTTTGACCTCCTGC TGTGAAACT GCTCCGGC GTGTGAAAGT GTAGAGCCTAG GTAGACCTAG GTAAGCCTAG TGAAACACCC CAAGACTTCA ATAAAACCTC TATGCCCGAA	3900 3960 4020 4140 4200 4320 4380 4440 4560 4620 4680 4860 4920 5040 5160 5220 5280 5340 5460
55606570	CTCTATTGCT TRACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGGC AATTTTAAT TTGAATGTAT AAGCAGCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG CTGGGCACTA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCCGCTTGC TTGATATACG GGAGAAAGA ACTGTGTTTT CTGATCTTT CTGATCTTTT CTGATCATACG GGAGAAAGA ACTGTGTTTT CTGTGTTTT CTGTGTTTT CTGTTTTT CTGATCATACG TTGTGTGTTTT CTAGTGCCGA TAGCCGCTC TTGTTTTT CTAGTGCCGA TAGCCGCTC TTTGTTAATTC	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCCA AGCTGACTGA ACTAAATTT CTAATTTG TAGATCAGC TTTTTTTTT CTGCCTC CTTTAAAGT ACTCAGGCC TCTGGCCTC CTTTAAAGTC ACTCAGGCCT CTTTAATTGA ACTCAGGCT TTCTGCTGT GCTCACTC TTTGTCTTT TTTTCTCTCA	TTAGAGGCTA GTCCTTAACC CCATTTTCC CCATTTTCC CCATTTTCC CCTTGTGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTTCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC TACAGGCGC ACAGGTCCGC TACAGGCGCC ACAGGTCTCTTTT ATCTTGAAAT CAAAATATTG AACATCCTG TACAGGCGC CCAAAATATC CAAAATATTG AACAGAGGC TCACTCACCG CAAAGAGAGCAA GAACATCCTG AATGAAAATT	GAGGGAGCTG CTAAGCCCA ATTATTCAAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTTAAAA TTTTATGA AGAGGCACC TAAGGCTCAC TAAGGCTCAC TAAGGCTCAC TATGGCTCAC TAAGGCATT TCGCTCTAA TATGTGTTT CGCTCTGAC CCAGGATGGT CACCACCAC CCAGGATGGT GGATTACACA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ACTCAACCAA TCTGAGAAT CAGTTTTATC ATCAAAACCT CCAGTATCAC TAAATTTAGG	AGGGGAGAT CAAACTTGAC CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA AGGAAGATCGT CAATGCAAC CTTATTTGA TCATGCAGCATC CTTATTTGA TCATGCATC CATGCCATC CATGCCATC CTGATCTC CCGGCTAAT CTCGATCTC CATGCCAC CATGACCCC CATGACCCC CATGACCCC CATGACCCC CATGACCCC CTTATGAACAT AAGACAGTCG GGAATTCTC CCTGCTTTT CGCTCTC TCCCTGTTT GGTCTCCTTT GGTCTCATG	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GTGAGAAATC GCCTGCATT TATTCCTACA TTTTTATTGC GAGTGCATCA TTTTTATTGC GAGTGCATCA TTTTTGTATT TGACCTCCTGC CGCTCCCGGC CTGTGAAAGC TAAACCTC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTTCA	3900 3960 4020 4140 4200 4320 4380 4440 4560 4620 4680 4740 4860 4920 5100 5100 5120 5280 5340 5460 5520
55606570	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTTAAT TTGAATGTAT AAGCAGCCA GGCAAGGAG CTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGATCT GCTCCTGAG ATCCGCTGAG ATCCGCTGC CTTGTTTTCC TGATCATACG GGAGAAAGA ATCCGCTTG TTGTTTTC TGATCTGAAT CTAGTGCCGA TTAGTGCTGAAT TTGCTGAAT CTAGTGCCGA TAACCATCTC CTTTGTAATTC CATATGTAGTG CATATGTAGTG TTTGTAATTC CATATGTAGTT	GTTTCTATTC CTCCTAGAGT GAGATTCATT GAAAGCCAGG GAGATTCCCT AAAAGAAAA AGTAGGTTAT AGGCCACAA AGGCACAA AGGCACAA AGGCACAA AGGCACAA AGAAGCACA AGAACAAG AGAAGACAAG AGAAGACAAG AGAAGGTCTA TCTAATTTTAT CTGACTCACTG TAGCTGGAC ACTCGGCCTC CTCGGCCTC CATTAAAGTC AATTCAGTCG TTTGTTCTT TTTTCTTCTT TTTTCTCTCA ATTATTTTT TTTTCTCTCA ATTATTTTTTTT	TTAGAGGCTA GTCCTTAAAC CCATTTTCC CCATGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGTC CATTCATGAGTC CATTCATGG TGAATATGGGT CATCATGGG TGAATTAAAT CCCTAAAATC AAAGCGCCC ACTGTGTTAG CAAAGTGCTC TCTTCTTT ATCTTGAAAT CAAAATATTG AACCAGAAG CCAAAGAGCA CAAAGAGCAA GAACATGCTC CAAAGAATT CCAAAGAATT CCAAAGAATT CAAAAAATT CAAAAAATT CAAAAAATT CAAAAAATT CAAAAAATT CAAAAAATT CAAAAAATT CCTTATATGT	GAGGGAGCTG CTAAGCCCA CTCATTTCAGCC CCCTTCTTT CAGGTTTTCCAGGTTTTCAGA ATTTTAAAA ATTATAAAA TTTCAGGC TAAGGCAAC TAAGGCATC TAAGGCTCAC TGAAGGCATT AATTGTTGTA ATTGTTGTA TATGTGTTA TCCCGGGTT CACCACCAC CCAGGATGGAT GAATTAACA ACTCAACCAA GTCTGACAA CTCTAACCAA GTCTGAGAAT CAGTTTTATC ACTCAACACA CCAGTATCAC ACAAAACCAC CCAGTATCAC AAAAACCAC TAATTTTACG GTAAGGTGAA	AGGGGAGGAT CAAACTTGAC CGGCTTTCTGA CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACGAGGGAA AGGAAGATGC GCAACATCGT CAATGCCAC TCTTTTGGA TGCAGGATGA TTCTTTGGA TTCTTCTGC CATGCCATTC CATGACCAC CATGACCCC TTTTTGAACAT AAGACAGTCG GAATCTC TTTTGAACAT AAGACCAC GGAATCTC TAACGGCTAC TTTTGAACAT TAACGGCTAC TTACCTCC TTCCCTGTTT GGTCTCCC TTCCCTGTTT GGTCTCCCTTTT CGTTCTCATTC ATTTATGGTA	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCATA TGCCATTTGA GCTGAACTG GCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCATCT TCTTGCCTCAT TTTTGTATT TGACCTCGTG CGCTCCCGGG GTGAAAGCTTC AGAGCCTCGT CGCTCCCGGG CTGAACACCC CAGAGCTTTA ATAAACCTC TATGCCCGAG TTATGCCCGAG TTATGCCCGAG TTATATTTCA TTATATTTCA TTTGAGTGTG	3900 3960 4020 4140 4260 4320 4380 4440 4560 4560 4740 4880 4740 4880 4740 5100 5160 5160 5220 5340 5400 5400 5520 5580
5560657075	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGAGA GTTGTGCAGA ACTGTGCAGA ATTTTCTTTCCTA TTCCTCTA TTCTGTTTT CCCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCGGCTGAG TTTAATAGAG ATCGGCTGC CTTGTTTTC TGATCATACG GGGAGAAAGA TTCTTGTTTT CTAGTGTTTT CTAGTGTTTT CTAGTGAATT CTGTGTTTTT CTAGTGCCGA TTAATGTCGCTGC TTTATATTCT TTTTTAATTCC TTTTTAATTCC TTTTTAATTCC TTTTTAATTCC TTTTTAATTCC TTTTTAATTCC TTAATTGTAATT	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCC GGATCAGCCA AGCTGACTG TCTAATTTTGA TTTTTTTTTG CTGCTCACTG TAGCTGGGAC ACAGGGGTTC CTCGGCCTCC GTTTAAAGT AATTGGATCA ACTCAGGCA TTCCTGCTGTT TCTCACTCCT TTAATTTTT TTTTTTTTTT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGT GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC AAAGCTCCGC TACAGGGCC ACTGTGTTAC TACAGGGCC ACTGTGTTAC TACTTCTTTC TACTTCTTTC TACTTCTTTC TACTTCTTTT CAAAATTTG AACCAGAAGC TCACTCACCG CAAAGAGCAA GAACATGCTG AATGAAAATT CCTTATATTC CATTATATTT CCTTATATTT CCTTATATTT CCTTATATTT	GAGGGAGCTG CTAAGCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA AGAGGGCAAC GGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA ACTATCTAA ACTATCTAA CCTCCCGGGTT GAATTACAA GTTACAACCA GTCAACAAA CTCTAACCAA CTCAAAACCT CCAGTATCTAA CAGTTTTATC CTCAAAACCT CAGTATCAAACCT CCAGTATCAA CAGTTTTATC CTCAAAACCT CAGTATCAA CAGTTTTATC CTCAAAACCT CAGTATCAA CAGTTTTATC CTCAAAACCT CAAAACCCT TAATTTTAGG GTAAGGTGAA TTCCCCAGT	AGGGGAGGAT CAAACTTGAC CGGCTTTCTG ACCATCCTTC ACCATCCTTC ACCATCCTTC ACCATCCTTC ACCATCCTTC ACCATCCTTC ACCACATCCT CAATGCAAC AGGAACATCGT CAATGCCATC CTTATTTGGA TCCTTCTGC CATGCCATTC CCCGGCTAAT CTCGATCTC CATGACCCATC CTTATTGAACA TTCTGATTT AGACTTCC CATGACCCAC CTTATTGAACA TTCAGATCTC CATGACCCAC TTTTGAACAC GCAACTCCC TTACCGCTAC TTACCGCTAC GCTACCTCC TTCCCTGTTT GGTCTGCATG GATTCATTTA	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCTTGGAAGT TCTCGCTCA TTTTTGTATT TGACCTCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTTCA TATGCCCGAA TATATTTTTA TTTTGCCCGAA TATATTTTTA	3900 3960 4020 4140 4200 4320 4380 4440 4560 4620 4680 4740 4860 4920 5100 5100 5120 5280 5340 5460 5520
55606570	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGAG CTTTTCCTA GTCCGGTGAG CTGGGCACTA TTTTCTGTTT CCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAA ATTGTTTTC TGTTTTC TGTTTTC TGTTTTC TGTTTTC TGTGCTGAG ATCGGCTGC CTTGTTTTCC TGATCATACA GGGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGC TTTGTAATTCC TATTGTGCCTG TTTGTAATTC TATTGTGCCTG TTTGTAATTC CATATGTAGTC CATATGTAGTA TCAGAAAATA CAGAAAATA TGTAAATATA	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCA AGCTGACTG ACAAACAAGG AGAAGACATGC ACAACAAGG AGAAGGTCTA TCTAATTTGA TCTCACTGCTC CTGCTCC GTTTAAAGTC AATTGGATCA ACTCAGGGC TTCCTGGCTCC GTTTAAAGTC AATTGGATCA TCTCAGTGT GCTCACTCC TTACTTGTTTTT TTTCTCTCA ATTATTTTT TATTTTTTT TATTTTTAAA CAGAATGTTT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGTC CATTCATGGG TGAATATGGGT TGAATCAGGC CATCATGAG AAGCTCGC AAGGCGCC AAAGCTCGC CAAAGTCAG CCTTTCTTTCAAGG TCTTCTTTTAAAAATATTG AACAGAAGC CAAAGAGCA CAAAGACCA CAAAGACCA CAAAGACCA AAAGACCA CAAAGACCA AAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAATGCTTC CTTTATATGT TCTTTCATTT	GAGGGAGCTG CTAAGCCCA CTCACTGCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA AGAGGCAAC GGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTTA ACCTATCTAC CCCACCACC CCAGGATT CACCACCAC GGATTACAAC ATTCACCAC ATTCAACCAC ACTCAACCAA CTCAACCAC CCAGGATGTATTAC ATCAACAAA CTCAACCAC CAGGTATTATC ATCAAAACCT CCAGTATCAC CAAAACCAC TCAACCAC CAGGATGTCACCAAACCCT TAATTTTAGG CTAACTCAC CAAAACCAC TAATTTTAGG CTAACGTGAAACCCT TAATTTTAGG TAAAGGTGAA TTCCCCCAGT TTATAAGGAA	AGGGGAGGAT CAAACTTGAC CTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA AGGAAGATGC GCAACATCGT CAATGCCAAC CTTATTTGGA TGCAGGATGA TTCCTTCTGC CATCTTCTGC CATCTTCTGC CATGCCATT CCCGGCTAAT CTCGATCTCC CATGACCAC TTTGAACAT TAGACATCC GGAATTCTCTTC CATGACCAC TTTTGAACAT TAGACAGTCC GGAATTCTCT TAACGGCTAC TTCCTTCTTC GGTACTTCC GTTACCTCCT TTCCTTTT GGTCTGCATT GATTCATTT GATTCATTT GATTCATTTC GATTCATTT CATTTATTGTT ATATTTCTCT TATTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTTCTCT TATTTTTTCTCT TATTTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTCTCT TATTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTCTCT TATTTTTCTCT TATTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCTCT TATTTTTCT TATTTTTCT TATTTTTCT TATTTTTCT TATTTTTCT TATTTTTCT TATTTTTT TATTTTT TATTTTT TATTTTT TATTTT TATTT TATT TATTT TATT TATTT TATT TATTT TATTT TATT TAT	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCATTTGA GTGAGAAATC GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCTTGGAAGT TCTCGCTCA TTTTTGTATT TGACCTCGGC GTGTGAAAGT AGAAGCCAGG GTAAGCCTAG TGAAACACCC CAAGACTTTA ATAAAACCTC TATGCCCGAA TATATTTTCA TATGCCCGAA TATATTTTTA TTTTGCCCGAA TATATTTTTA	3900 3960 4020 4140 4200 4320 4380 44500 4560 4620 4680 4800 4980 5040 5160 5220 5280 5340 5460 5520 5460 5520 5520 5540
5560657075	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGGC AATTTTAAT TTGAATGTAT AAGCAGCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGGCAGA CTGGCACTA TTTCTGTTT CCCCCCCCC GCTCCGATCT GCTCCGATCT GCTCCTGAG TTAATAGAG ATCCGCTTGC TGATCATACG GGAGAAAGA ACTGTGTTTT CTAGTGCCAA TTGTTGTTT CTAGTGCCAA TTGTTGTTT CTAGTGCCAAT TTGTTGTTT CTAGTGCCGA TTAGTGAATT CTAGTGCCTAC CATATGTAGT CAGGAAAATTA GGGGTTTGTT	GTTTCTATTC CTCCTAGAGT GAGATTGATT GAAAGCCAGG GAGATTCCT CAGTTTGCTT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTGACCA AGCTGACCA AGCTGACCA AGCAAGG AGAAGGTCTA TCTAATTTG TCTAATTTG TAGCTCACTC CTCGGCCTC CTCGGCCTC CTCAGCTCC TATATTGAACTC ACTCAGGCG GCTCACTCC TAGCTGGCTC TTTAATTGATC ACTCAGGCG TCTCACTCC TAGCTGGCT TTTGTCTTT TTTTTTTTTT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGTC CATTCATGGG TGAATATGGGT TGAATCAGGC CATCATGAG AAGCTCGC AAGGCGCC AAAGCTCGC CAAAGTCAG CCTTTCTTTCAAGG TCTTCTTTTAAAAATATTG AACAGAAGC CAAAGAGCA CAAAGACCA CAAAGACCA CAAAGACCA AAAGACCA CAAAGACCA AAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAAAGACCA CAATGCTTC CTTTATATGT TCTTTCATTT	GAGGGAGCTG CTAAGCCCA ATTATCAGCC CCCTTCTTT CAGGTTTTCCA ATTTTAAA TCATTTTAGA AGAGGGCAAC GGGAGTAAAA TTTCCAGGC TATGGCTCAC TATGTCTAC TATGTGTTA TATGTTGTA TATGTGTTA TATGTGTTT CACCACACC CCAGGATGGT CACACACAC CCAGGATGAT CACTCAACACA TCTGAGAAT TCTGAGAAT TCAGTTTATC ACTCAACCAA GTCTGACAC CCAGGATGTT CAGTATATC ACTCAACCAA TCTGAGAAT TCAGTTTTATC TAGTATTATC TAGTATTATC TAGTATTATC TAATTTTAGG TAAGTGAA TTTAAGGA TTCCCCCAGT TTCCCCCAGT TTTTAGTATT	AGGGGAGGAT CAAACTTGAC CGGCTTTCTG ACCATCCTTC TAATAGAAGA ACAGAGGGAA AGGAAGATGC CTAATTTGGA TCATTTGGA TCATTTTGGA TCCTTCTGC ACTATTTGGA TCCTTCTGC CATGCCATC CTGGATCTC CTGGATCTC CTGGATCTC CTGGATCTC CTGATCTCC CATGACCCAT CTGATCTCC CATGACCTCC TTTTGAACAT AAGACAGTCG GAATTCTCT TAACGGCTAC CCTACTCC TTCCCTGTTT GGTCTCCC TTCCCTGTTT GGTTCGCTT GATTTATGTA GAATGATTTC ATTTATGGTA GAATGATTTC CATGATCTC CTGTTT CATTTATGGTA GAATGATTTC CATGTCTC CATGCTCT CATTTATGGTA CCAGCTGTCT CATTTATGGTA CCAGCTGTCT CCTATTTATAGAAA	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GCGTGAATT GCCTTCATA GCCTGAACT AGCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCACTG TCCTGCCTCA TTTTTGATT TGACCTCCGGC CGCTCCCGGC CGTGGAAAGC GTAAGCCTAG TTATAGCCTCGGC CGCTCCCGGC CGTGTGAAAGC TAAAACCTC TATGCCCGAA TTATATTTCA TAAAACCTC TATGCCCGAC TATTGCCCGAC TTTTGAGTGTG GAAATTTTTA TATATTTCA TTTGAGTGTG GAAATTTTTTA AAAATCTT CAAGCTTTA ATAAATCTC TATGCCCGAA TATATTTTCA TTTTGAGTGTG GAAATTTTTTA	3900 3960 4020 4140 4200 4320 4380 4440 4560 4620 4680 4860 4920 5040 5100 5100 5100 5280 5340 5460 5520 5520 5540 5700
5560657075	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTTAAT TTGAATGTAT AAGCAGCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTTCTGTTT CCCCCCCCC GCTCCGACTCT GCCTCCGACT TTTAATAGAG ATCCGCTGAG TTAATAGAG ATCCGCTGAG TTGATCTTCC TGATCATACC GGGAGAAAGA ATCCTCGATTT CTAGTGCCGA TTGTGTAATT CTAGTGCCGA TAACCATCTC TTTGTAATTC CATATGTAGT CATAAATATA GGGGTTTGTT TCATAAATAT TGTAAATTT TCAAGAAAATA TGTAAATATA TGTAAATATT TGCTTTTTTAAA	GTTTCTATTC CTCCTAGAGT GAGATTCATT TACAAAATTT GAAAGCCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAA GGCTCACA GGATCACCA GGATCACCA GGATCACCA GGATCACCA GGATCACCA AGCAAGCAAGG AGAAGGTCAT TCTAATTTTA TCTCACTC TAGCTGGACC AATTGGATCA ACTCAGGGCA ACTCAGGCTC TTTGTTCTTC TATTTTTTTTTT	TTAGAGGCTA GTCCTTAAAC CCTTTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGT CCTTATAAAT CCTAAAATC AAAGTGCTC AAAGTGCTC AAAGTGCT AAAGTGCT AAAGTCCGC ACTGTTTTT ATCTTGAAAT CAAAATATG AACCAGAAG CTCACTTTTT ATCTTGAAAT CAAAATATG AACCAGAAG CAAAGAGCAC CAAAGAGCAC CAAAGAGCAC CAAAGAGCAC CAAAGATGTT CCTTATATGT CCTTATATGT GCTTTCATTT TTTAAACAGAG TGCTTAAAAT	GAGGGAGCTG CTAAGCCCA CTCATGCCC CCCTTCTTT CAGGTTTTCA ATTTTAAA AGAGGGCAAC GGAGTAAAA TTTCCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA ATTGTTGTT CAGCTCTAA TATGTGTTT CACCACCACG CCAGGATGGT CACCACCACG CCAGGATGAAA GTCTGACCAA GTCTGACCAA CTCTGACCAA CTCTGACCAA CTCTGACCAA CTCTGACCAA CTCTGACCAA CTCTGACCAA CTCTGACCAA CTCTGACCAA CTCTGACCAA CTCTGAGAAT CAGTTTTAT CACCACACCA	AGGGGAGGAT CAAACTTGAC CGGCTTTCTGA CGGCTTTCTG ACCATCCTTC TAATAGAAGA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TTCTTCTGC CATGCATCCTTCC CATGCACATCCT CATGACACCCAC CATGACACCCAC GGAATTCTC CATGACCATC CTTATTGAACAT CTCGATCTC CATGACCATC GGAATTCTC TTTGAACAT TAAGACAGTCG GGAATTCTC TAACGGCTAC TTCCCTGTTT GGTCTCCC TTCCCTGTTT GGTCTCCC TTCCCTGTTT GATTCATTC GATTCATTC CATGATCACCAC CATGACCAC TTCCCTGTTT GGTCTCCCTGTTT GGTCTCCCTGTTT GATTCATTTC CATGATCACAC CATGACCACAC CATGACCACAC CATGACCACAC CGTACTCCC TTCCCTGTTT GGTCTGCATG GATTCATTTC CATTTATGGTA GCAGCTGTCT CGTATTAAAA TGGATGCATA	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT CTTTGGGAGA AGGCCTTCAAA CTGCTTCATA TGCCATTTGA GCGTGAATT GCCTTCATA GCCTGAACT AGCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCACTG TCCTGCCTCA TTTTTGATT TGACCTCCGGC CGCTCCCGGC CGTGGAAAGC GTAAGCCTAG TTATAGCCTCGGC CGCTCCCGGC CGTGTGAAAGC TAAAACCTC TATGCCCGAA TTATATTTCA TAAAACCTC TATGCCCGAC TATTGCCCGAC TTTTGAGTGTG GAAATTTTTA TATATTTCA TTTGAGTGTG GAAATTTTTTA AAAATCTT CAAGCTTTA ATAAATCTC TATGCCCGAA TATATTTTCA TTTTGAGTGTG GAAATTTTTTA	3900 3960 4080 4140 4260 4320 4380 4440 4560 4560 4740 4560 4740 4560 4740 5160 5160 5160 5160 5160 5160 5160 516
5560657075	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG CTGGGCACTA TTTCTGTTT CCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATCCGCCTGC CTGGTTTTCC TGATCATACA GGGAGAAAGA TTGCTGAATT CTAGTGCTT CTAGTGCTT CTAGTGTTTT CTAGTGCCGA TAACCATCT CATATGTAGT CAAGAAATATA GGGGTTTGTT TGTTAATTAG CAAGAAATATA GGGGTTTGTT TGCTTTTTAATATT TGTAATTT TGTAATT TG	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAA GGCTGACTG GATCAGCA AGCTGACTG ACAACAAGG AGAAGACAGG AGAAGACATCCT TAGATTGGTT TTTTTTTT CTGCTCACTG GATCAGCCA ACTCAGGGAT ACTCAGGGAC TTCTGGCTC TTAAATTGA ACTCAGGGCT TCTGGCCTC TTTAATTGATCT AATTGGATCA ACTCAGGGCA TTCTTGTCTT TTTTCTCTCA ATTATTTTT TTTTTTTTTT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGTC CATTCATGGG TGAATATGGGT TGATCATGGG TGAATTAAACAAT AGACGAGAGTC AAAGCTCGC CAAAGTCCGC CAAAGTCTTCT ATCATGGG TCTTCTTTT ATCATGAGT AACAGCAGC CAAAGTCTG AACAGCAGC CAAAGACCAG AACATCATT TTAAACAGAG TGCTTAAATT TTAAACAAT GATGATACAT GATGATCACT TTAAAACAT GATGATCACT	GAGGGAGCTG CTAAGCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA TCATTTTAGA AGAGGCAAC GGGAGTAAAA TTTCTCAGGC TAGGCCTACTA AATTGTGTA ACTGTTTT ACTCTGAG CCACCACCAC CCAGGATATT TCGCTCTGAC CTCACCACAC CCAGGATGTA ATTGTACACAC ACTCAACCAA CTCAACCAA CTCAACCAA CTCAACCAA CTCAACCAA TTTAGGGTTTT CACCACCCC TAATTTAGG TTAAAACCT TAATTTAGG TAAGGTGAA TTCCCAGGT TTATAAGTATT AAGCAAAAT TTTAGCAAAATT TTGCAAAATT TTGCAAAATT	AGGGGAGGAT CAAACTTGAC CTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA AGGAAGATGC CCACACATCGT CCATCCTTC CCAGGCTAT TCCTTCTGG CATCTTCTGG TCCATCTTCTGC CATGCCATC CATGCCATC CCAGGCTAT TCCGTTTGAC CCAGGCTAC TTTGACAT TAAGACAGTCC GGAATTCTCTTC GGAATTCTCTTC CCTGCTTT TAACGGCTAC TTTCGATC TTCCTGCTTT GGTCTGCAT GATTCATTC GATTCATTC GATTCATT GGTCTGCAT CTTCCTGTTT GGTCTGCATC CATGCCTCTC CTTCCTGTTT GGTCTGCATC CATGCTTCT CATTATAGGTA TGGACTTCT CATTTATTGGTA TGGAGCTGTCT TCAGCTGTTT TGGACTGTTT TGGACTGTTT TGGACTGTTT TGGACTGTTT TGGACTGTTT TGGTTTTTATTGTTT ATGCTTATTGTTT ATGCTTATTG	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA GCCATTTGA GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCTTGCTCTC TATTCCTACA TTTTTATTGC GAGTGCAGTG TCCTGCCTCA TTTTTGATTT TGACCTCGGC GTGTGAAAGT TGAAACCCC CAAGACTTTA AGAAGCCTAG TTAGACTGT TATGACTTCA TATGACTTCA TATGAGTGTA TATATTTCA TATGAGTGTG AAAATCTC TAGAGCTTA AAAATGCAGT GAATTTTTA AAAATGCAGT GAAGTTACTT AAGATAATATT TGAGTTATT TGAGTTATT TAGAGTTACT TTGCTGTATT TGAGTTATT TTGAGTTATT TTGAGTTATT TAGATTATTT TAGATTATTT TAGATTATTT TAGATTATTT TAGATTATTT TGAGTTATT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGCTGTATT CTGGCATGGA	3900 3960 4020 4140 4220 4320 4320 4380 4440 4560 4620 4680 4920 5100 5100 5100 5120 5280 5340 5520 5520 5520 5540 5520 5540 5560 5760 5880 5940
556065707580	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT TAGATGTAT AAGCAGCCA GGCAAGGAG CTTTTTCCTA GTCCGGTGAG AAGGAGACAG GTTGTGCAGA TTTCTGTTT CCCCCCCCC GCTCCGATCT GCTCCGATCT GCTCCTGAG TTTAATAGAG ATCCGCTTGC TGATCATACG GGAGAAAGA TTGCTGAAAT ACTGTGTTTT CTAGTGCCGA TTAGTGCTGA TTAGTGCTGA TTGCTGAAT CTAGTGTTTT CTAGTGCTGA TAGTGAATTA TAGTAATATA TGGGGTTTGTT TGCTTTAAA TAGAAATTA TACAGATGTT TGCTTTTAAA TACAGATTGT TAGAGAATTA AATAGAAATTA	GTTTCTATTC CTCCTAGAGT GAGATTCATT GAAAGCCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTCACAAG GGCTGACCA AGCTGACCA AGCTGACCA AGCTGACCA AGCTGACCA AGCTGACCA AGCTGACCA ACTAGCTCA TCTAATTTT CTCACTCC CTCGGCCTC CATCAGCTCC TAACTCCC TAACTTCT TTTTCTCTCT TTTTCTCTCT AATTTTTTT TTTTTTTT	TTAGAGGCTA GTCCTTAAAC CCATTTTCC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGTC CATTCATGAGTC CATTCATGG TGAATATGGGT CATCATCATGG TGAATAAAT CCCTAAAAT CACAGAGGCC ACTGTGTTA ACAGGCGCC ACTGTGTTA ACAGGAGTC TACAGGCGCC ACTGTGTTA ACACAGAAG CCAAAATATTG AACAGAAG CCAAAATATTG AACAGAAG CAAAATATTG AACAGAAG CAAAATATTG TCATCATTT TTTCTTACTT TTTTTAATTT TTTTTAATTT TTTTAAAAT ATAAAACAGAG TGCTTAAAAT ATAAAACAGT GTCTTGTTGT TCTTTGTTGT	GAGGGAGCTG CTAAGCCCA ATTTTAAA TCATTTTAAA ATTTTAAA ATTTTAAA ATTTTAAA ATTTTAAA TTTTCAGGC GGAGTAAAA TTTCCAGGC TGAAGGCAT TAGGCTCAC TGAAGGCAT TAGTGTTT ATTGTTGTA TATGTGTTA TATGTGTTT CGCTCTGAC CCAGGATGGT CACCACCAC CCAGGATGGT GGATTAACA ACTCAACCAA GTCTGAGAAT CAGTTTTATC ACTCAACACA GTCTGAGAAT CAGTTTTATC ATCAAAACCAC TTAATTTAGG GTAAGGTGAA TTTAACGG TTAAGGAAAAT TTTAAGTGTT ATTAACTGGG TTGCAAAATT ATTAACTGGG TTGCAAAATT ATTAATGGG	AGGGGAGGAT CAAACTTGAC CGGCTTTCTGA CGGCTTTCTG ACCATCCTTC TAATAGAAGA AGGAGGGAA AGGAAGATGG CAATGGCAC CTTATTTGGA TGCAGGGTAT AGACTTAGAC GCACACGGCTG CATGCCATTC CCGGCTAAT CTGATCCC CATGACCCAC GCAACATCCT TTTTGAACAT AAGACAGTCG GCTACTCC TTACCTCCT TTACGATCTC TAACGGCTAC TAACGGCTAC GCTACTCC TTCCCTGTTT GGTCTCCC TTCCCTGTTT GGTCTGCATT CGTTCTGCTT AGACTTCC TTCCCTGTTT GGTCTGCTT ATTTATGGTA GAATGATTTA GCAGCTGTCT CTTTTTTTTTT	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCATA TGCCATTTGA GCTGAACTG GCCTGAACTG AGCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCATCT TCCTGCCTCA TTTTTGTATT TGACCTCGTG GTGTGAAAGC TGTGTGAAAGC TGTGTGAAAGC TTATTGCCTAAA ATAAACCTC CAAGACTTTA ATAAACCTC TATTGCCCGAA TTTTGCCTGAA TTTTGCCTGTAT TTTGACTTT AATAAACCTC TATGCCCGAA TATATTTTCA TTTTGACTGTT AAAATGCATT AAAATGCATT AAAATGCATT CAAGTTTCT TTTGCTGTATT TTGCTGTATT TTGCTGTATT CTGCGCTGAA ACAATGTTTC	3900 3960 4020 4140 4260 4320 4380 4440 4560 4740 4860 4740 4880 4740 5100 5160 5220 5340 5460 5460 5520 55340 5520 55340 5520 5520 55340 5520 5640 5760 5760 5820 5820 5820 5820 5820 5820 5820 582
5560657075	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCCA GGGCAAGAG GTTGTGCCAG AAGGAGACG GTTGTGCCAG ATTTCTTT CCCCCCCCC TCCCTCCGATCT GCCTCCGATCT GCCTCCATCT GCCTCCTGAG ATCGGTGAAAT ACTGTGTAATC ACTGTGTTTC CTAATCATACG GGGAGAAAGA TTGCTGAAAT CTTGTAATT CTGTAATT CTAATGTAGT CATATGTAGT CATATGTAGT TAAAATAT TGTAAATTA GGGGTTTGTT TGCTTTAAA TGGAGATTAA AATAGAAATA AATAGAAATA AATAGAAATA ATTACAAAT	GTTTCTATTC CTCCTAGAGT GAGATTCATT GAAAGCCAGG GAGATTCCT CAGTTTGCTT AAAAGAAAAA AGTAGGTTAT AGGCCACAA GGCTGACCA AGCTGACCA AGCTGACTG CTCAATTTTTTT CTCACTC ATTTTTTTTT TTTTCTCTCA ATTATTTT TTTTTTTT	TTAGAGGCTA GTCCTTAAAC CATTTTCTC CCTTGTGGGC TAAGTGACTC TCTCCAGAGG GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCTC ATGATGAGTC CATTCATGGG TGAATTAAAT CCCTAAAATC AGACGGAGTC ACAGGGGCC ACTGTGTTAA CCAAAGTGCTC GTCTTCTTT ATCTTGAAAT CAAAATTATT AACAGAAGC CCAAGAGC CCAAGAGCA CCAAGAGCAC CCAAGAGCAC CCAAGAGCAC TCCTTCTTT TTAAACAGA GAACATGCTG GTCTTTCTTT TTTAAACAGA TCCTTAAATT TTAAACAGA TGCTTAAAAT ATAAACAAT TTTGTTAATT TTTTTTTTTT	GAGGGAGCTG CTAAGCCCA CTCATGCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA AGAGGGCAAC GGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA ACCTATCTAA TATGTGTTT CACCACCAC CCAGGATGGT CACCACCAC CCAGGATGAT GATTACAACCA GTCTGACCA GTCTGACCAC CCAGGATGT TATGTATTATC CACTACCAACCA GTCTGACCAC CCAGGATGT TATATATCA ATTCAAACCT CCAGTATCAA TTTAGTAT TTAGTAT TTAGTAT TTAGTAT ATTAACTGG TTAAACTTGG TTATACTGG TTATACTGG TTATACTGG TTATACTGG ATTGAAAATT ATTAACTTGG ATTGAAAATT ATTAACTTGG ATTGAAAATT TTAAATGGGG ATTGTAATGT	AGGGGAGGAT CAAACTTGAC CTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA AGGAAGATGC GCAACATCGT CAATGGCAAC CTTATTTGGA TGCAGGATGA TCCTTCTGC CATGCATC CATGCATC CATGCATC CATGCATC CATGCATC CTTATTGAC GCACAGGCTG CATGCATTC CCGGGCTAAT CTCGATCTCC CATGACCCAC TTTTGAACAT AAGACAGTCG GGAATTCTCT TAACGGCTAC GCTACCTCC TTTCCCTGTTT GGTCTGCATT GATTCATTC GATTCATTC CATGCATCT CATGCATCT TAACGGCTAC TTCCTTTT GATTCATTC GATTCATTT GATTCATTT GAATGATTA TTCTTGTT ATGCATAAT TTTCTTGTT ATGCATAAT TTTCTTGTTT ATGCATATAAT TTTCTTGTTT ATGCATAGAGAGAGAAGAAGA	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA CTGCTTCATA TGCATTTGA GTGAGAATT GACCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTC TTTTTGTATT TGACCTCGTC GTGTAAAGCCTC GTGAAAGT AGAAGCCAG GTAAGCCTAG TTATTGAATT TGACCTCGTC CAGACCTTA ATATATTTC TATGCCCGAG GTAAGCCTAG TGAAAACCTC TATGCCCGAG TGAAACTTA ATATTTTC TATGCTGTT GAATTTTTA AAAATGCAGT GAATTTTT AAGTAATTT TGACTTGATT TGAGTTACT TAGGTATTT TGAGTTACT TAGGTATTT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGCTGTATT TTGCTGTATTT TTGCTGTATT TTGCTGTATTT TTGCTGTATTT TTGCTGTATTT TTGCTGTATTT TTGCTGTATTT TTCACTATTTTT TTCACTATTTTT TTCACTATTTTT TTCACTATTTTT TTCACTATTTT TTCACTATTTTT TTCACTATTTT TTCACTATTTTT TTCACTATTTTT TTCACTATTTT TTCACTATTTTT TTCACTATTTTT TTCACTATTTTT TTCACTATTTTT TTCACTATTTTT TTCACTATTTTT	3900 3960 4020 4140 4260 4320 4380 44500 4560 4560 4680 4740 4800 4980 5040 5160 5220 5220 5340 5460 5520 5520 5520 5520 5520 5640 5700 5700 5700 5700 5700 5700 5700 57
556065707580	CTCTATTGCT TAACCATGTC GCACCCTGGG GTCTGGGAGC CTGAATCAAG ACCTCCAGCA AATTTTAAT TTGAATGTAT AAGCAGCCA GGGCAAGGA CTTTTCCTA GTCCGGTGAG CTGGGCACTA TTTCTGTTT CCCCCCCC GCTCCGATCT GCCTCCTGAG TTTAATAGAG ATTGTTTTC GTGTTTTC GTGTGTTT CTAATAGAG ATTGCTGAAAT ACTGTGTTTT CTAGTGCCGC TTTGTATTT CTAGTGCCGC TTTGTATTT CTAGTGCCGC TTTGTAATTAC TTTGTAATTAC TAGTGCCGT TTTGTAATTC TAGTGCCGT TTTGTAATTC TAGTGCTGT TTTGTAATTC CATATGTAGT TAGAGAAATT CAGAGATTTA TAGAGAATTA ATACAGATTAA AATAGAAATTA AATAGAAATTA AATAGAAATTA AATAGAAATAA AATAGAAATG	GTTTCTATTC CTCCTAGAGT GAGATTGATT TACAAAATTT GAAAGCCAGG GAGATTCCT AAAAGAAAA AGTAGGTTAT AGGCCACAAG GGCTTGGCAC GGATCAGCA AGCTGACTG ACAACAAGG AGAAGACATCC TACACTCAC TTTTTTTTT CTGCTCACTG ACTCAGCCA ACTCAGCCA ACTCAGCCA ACTCAGCTC TACTCACTG TAGCTGGCTC GTTTAAAGTC AATTGGATCA ACTCAGCGC TTCCTGCTGT GCTCACTCC TAAACTTCT TTTCTCTCA ATTATTTTT TTTTTTTT	TTAGAGGCTA GTCCTTAAAC CCATTTTCC CCTTGTGGGC TAAGTGACTC TCTCCAGAGA GATCAAGTTG TTGTACAGTC GAATATGGGT TGCCTTTCC ATGATGAGTC CATTCATGAGTC CATTCATGG TGAATATGGGT CATCATCATGG TGAATAAAT CCCTAAAAT CACAGAGGCC ACTGTGTTA ACAGGCGCC ACTGTGTTA ACAGGAGTC TACAGGCGCC ACTGTGTTA ACACAGAAG CCAAAATATTG AACAGAAG CCAAAATATTG AACAGAAG CAAAATATTG AACAGAAG CAAAATATTG TCATCATTT TTTCTTACTT TTTTTAATTT TTTTTAATTT TTTTAAAAT ATAAAACAGAG TGCTTAAAAT ATAAAACAGT GTCTTGTTGT TCTTTGTTGT	GAGGGAGCTG CTAAGCCCA CTCACTGCCC CCCCTTCTTT CAGGTTTTCC AATTTTAAA AGAGGGCAAC GGAGTAAAA TTTCTCAGGC TATGGCTCAC TGAAGGCATT AATTGTTGTA GCCTATCTA CCTATCTAA CCTACCACAC CCAGGGTT TCACACCAC GCAGGATGAAAA GTCTAAAACCT AATTTATAC ACCACACCAC	AGGGGAGGAT CAAACTTGAC CTCTTCTGAG CGGCTTTCTG ACCATCCTTC TAATAGAAGA AGGAAGATGC GCAACATCGT CAATGCCAAC CTTATTTGGA TGCAGGATGA TTCCTTCTGC CATGCTTCTGC CATGCCATC CCCGGCTAAT CTCGATCTC CCAGGCTAC CTTATTGAACT CCAGGCTAC CTTATTGAACT CCCGGCTAAT CTCGATCTCC CATGACCCCC CTTCCTCTC GGAATTCTT GACTCTC GCATCTCC TTACGGCTAC CTTCCTCCTCC TTCCCTGTTT GGTCTGCAT GGTCTGCAT GTTTATGGTA GAATGATTTA CCAGCTGCT TTTTTTATGGTA TGGATGCTT TTTCTTTTT TTTTTTTTT TTTTTTTTT TTTTTT	CTTACTGAAA ACCTGATCAG TGGCATTGGC CTAAAGCAAC AGCGTGAATT AATAGAAATT CTTTGGGAGA AGGCCTTCAA TGCCATTTGA GTGAGAATT GCCTGAACTG AGCCCTCCTT TATTCCTACA TTTTTATTGC GAGTGCAGTG TCTTCGTACT TTTTTATTGC GAGTGCAGTG TCTCCTCCTC TTTGTATT TGACCTCTG TGAACTG GTAAGCCTAG GTAAGCCTAG TGAAACACCC CAAGACTTTC TATGCCCGAA TATATTTTCA TTTGGTGTG GAATTTTTA AAATGCAGT GAAGTTACT TAGGTGTG GAAGTTACT TTGGCTGTAT TTGGTGTG GAATTATTT TTGCTGTAT TTGGTTGT AAAATGTTC TATGCCGAA TTTGATTTT TTGCTGTATT TTGCTTGTT TTGCTTGTT TTGCTCGTTTT TTGCTTGTT TTGCTCGTTTT TTGCTCGTTTT TTGCTCGTTTT TTGCTCGTTTT TTGCTCGTGTT TTGCTCGTTTT TTGCTCGGTT TTGCTCGTTTT TTGCTCGGTT TTGCTCGGT TTCCTCCCTC	3900 3960 4020 4140 4260 4320 4380 4440 4560 4740 4860 4740 4880 4740 5100 5160 5220 5340 5460 5460 5520 55340 5520 55340 5520 5520 55340 5520 5640 5760 5760 5820 5820 5820 5820 5820 5820 5820 582

```
WO 02/086443
      AGGGTTTTA CTTTGAGGAC CAGTGTAGTC AAGGGAAAAC ATGAGTTAAA AAGAAAAGCA
GGCAATATTG CAGTCTTGAT TCTGCCACTT ACAGGATAGA TAATGCCTGA ACTTTAATGA
                                                                              6300
       CAAGATGATC CAACCATAAA GGTGCTCTGT GCTTCACAGT GAATCTTTTC CCCATGCAGG
                                                                              6360
       AGTGTGCTCC CCTACAAACG TTAAGACTGA TCATTTCAAA AATCTATTAG CTATATCAAA
                                                                              6420
 5
       AGCCTTACAT TTTAATATAG GTTGAACCAA AATTTCAATT CCAGTAACTT CTATTGTAAC
                                                                              6480
       CATTATTTTT GTGTATGTCT TCAAGAATGT TCATTGGATT TTTGTTTGTA ATAGTAAAAT
                                                                              6540
       ACCGGATACA TTCACGTGT CCTTCAGTAT TGATTTGGT GAATATTGGG TCATAATGGT
TGAGAAGCAT GGACACTAGA GCCAGAATGC TTGGATATGA ATCCTGGATC TGTCACTTAC
                                                                              6600
       TTCTGTGTGA CCTTTGAAAG GCTACTTATT TCCTCTCTTA GCTTTCTCAT TAAAATCAAT
                                                                              6720
10
       GAACAATGCC AGCCTCATGG GGTTGTTGAA TGATTAAATT AGTTAATATA CCTAAAGTAC
                                                                              6780
       ATAGAACACT GCCTGCACAT AGTAAAAGAA TTATAAGTGT GAGGTAGTTG GTAAAATTAT
                                                                              6840
       GTAGTTGGAT ATACTACCGA ACAATATCTA ATCTCTTTTT AGGGAAATAA AGTTTGTGCA
                                                                              6900
       TATATATAAT CCCGAAACAT G
15
       Seg ID NO: 529 Protein sequence
       Protein Accession #: NP 001932.1
                                          31
                                                      41
                                                                 51
20
       MAAAGPRRSV RGAVCLHLLL TLVIFSRDGE ACKKVILNVP SKLEADKIIG RVNLEECFRS
       ADLIRSSDPD FRVLNDGSVY TARAVALSDK KRSFTIWLSD KRKQTQKEVT VLLEHQKKVS
                                                                               120
       KTRHTRETVL RRAKRRWAPI PCSMQENSLG PFPLFLQQVE SDAAQNYTVF YSISGRGVDK
                                                                               180
       EPLNLFYIER DTGNLFCTRP VDREEYDVFD LIAYASTADG YSADLPLPLP IRVEDENDNH
                                                                               240
       PVFTEAIYNF EVLESSRPGT TVGVVCATDR DEPDTMHTRL KYSILQQTPR SPGLFSVHPS
                                                                               300
25
       TGVITTVSHY LDREVVDKYS LIMKVQDMDG QFFGLIGTST CIITVTDSND NAPTFRQNAY
                                                                               360
       EAFVEENAFN VEILRIPIED KDLINTANWR VNFTILKGNE NGHFKISTDK ETNEGVLSVV
       KPLNYEENRQ VNLEIGVNNE APFARDIPRV TALNRALVTV HVRDLDEGPE CTPAAQYVRI
                                                                               480
       KENLAVGSKI NGYKAYDPEN RNGNGLRYKK LHDPKGWITI DEISGSIITS KILDREVETP
                                                                               540
       KNELYNITVL AIDKDDRSCT GTLAVNIEDV NDNPPEILQE YVVICKPKMG YTDILAVDPD
                                                                               600
30
       EPVHGAPFYF SLPNTSPEIS RLWSLTKVND TAARLSYQKN AGFQEYTIPI TVKDRAGQAA
                                                                               660
       TKLLRVNLCE CTHPTQCRAT SRSTGVILGK WAILAILLGI ALLFSVLLTL VCGVFGATKG
                                                                               720
       KRFPEDLAGO NLIISNTEAP GDDRVCSANG FMTOTTNNSS OGFCGTMGSG MKNGGQETIE
                                                                               780
       MMKGGNQTLE SCRGAGHHHT LDSCRGGHTE VDNCRYTYSE WHSFTQPRLG EKLHRCNQNE
                                                                               840
       DRMPSQDYVL TYNYEGRGSP AGSVGCCSEK QEEDGLDFLN NLEPKFITLA EACTKR
35
       Seg ID NO: 530 DNA sequence
       Nucleic Acid Accession #: NM 016583.2
       Coding sequence: 72..842
40
                                          31
                                                      41
                                                                 51
       GGAGTGGGGG AGAGAGAGA GACCAGGACA GCTGCTGAGA CCTCTAAGAA GTCCAGATAC
                                                                                60
       TAAGAGCAAA GATGTTTCAA ACTGGGGGCC TCATTGTCTT CTACGGGCTG TTAGCCCAGA
45
       CCATGGCCCA GTTTGGAGGC CTGCCCGTGC CCCTGGACCA GACCCTGCCC TTGAATGTGA
                                                                               180
       ATCCAGCCT GCCTTGAGT CCCACAGGTC TTGCAGGAAG CTTGACAAAT GCCCTCAGCA
                                                                               240
       ATGGCCTGCT GTCTGGGGGC CTGTTGGGCA TTCTGGAAAA CCTTCCGCTC CTGGACATCC
                                                                               300
       TGAAGCCTGG AGGAGGTACT TCTGGTGGCC TCCTTGGGGG ACTGCTTGGA AAAGTGACGT
                                                                               360
       CAGTGATTCC TGGCCTGAAC AACATCATTG ACATAAAGGT CACTGACCCC CAGCTGCTGG
50
       AACTTGGCCT TGTGCAGAGC CCTGATGGCC ACCGTCTCTA TGTCACCATC CCTCTCGGCA
       TAAAGCTCCA AGTGAATACG CCCCTGGTCG GTGCAAGTCT GTTGAGGCTG GCTGTGAAGC
                                                                               540
       TGGACATCAC TGCAGAAATC TTAGCTGTGA GAGATAAGCA GGAGAGGATC CACCTGGTCC
                                                                               600
       TTGGTGACTG CACCCATTCC CCTGGAAGCC TGCAAATTTC TCTGCTTGAT GGACTTGGCC
                                                                               660
       CCCTCCCCAT TCAAGGTCTT CTGGACAGCC TCACAGGGAT CTTGAATAAA GTCCTGCCTG
                                                                               720
55
       AGTTGGTTCA GGGCAACGTG TGCCCTCTGG TCAATGAGGT TCTCAGAGGC TTGGACATCA
                                                                               780
       CCCTGGTGCA TGACATTGTT AACATGCTGA TCCACGGACT ACAGTTTGTC ATCAAGGTCT
       AAGCCTTCCA GGAAGGGGCT GGCCTCTGCT GAGCTGCTTC CCAGTGCTCA CAGATGGCTG
                                                                               900
       GCCCATGTGC TGGAAGATGA CACAGTTGCC TTCTCTCCGA GGAACCTGCC CCCTCTCCTT
                                                                               960
       TCCCACCAGG CGTGTGTAAC ATCCCATGTG CCTCACCTAA TAAAATGGCT CTTCTTCTGC
                                                                              1020
60
       ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑΑ
       Seg ID NO: 531 Protein seguence
       Protein Accession #: NP_057667.1
65
                              21
                                          31
                                                      41
                                                                 51
       MFQTGGLIVF YGLLAQTMAQ FGGLPVPLDQ TLPLNVNPAL PLSPTGLAGS LTNALSNGLL
                                                                                60
       SGGLLGILEN LPLLDILKPG GGTSGGLLGG LLGKVTSVIP GLNNIIDIKV TDPQLLELGL
                                                                               120
       VQSPDGHRLY VTIPLGIKLQ VNTPLVGASL LRLAVKLDIT AEILAVRDKQ ERIHLVLGDC
                                                                               180
70
       THSPGSLQIS LLDGLGPLPI QGLLDSLTGI LNKVLPELVQ GNVCPLVNEV LRGLDITLVH
       DIVNMLIHGL QFVIKV
       Seq ID NO: 532 DNA sequence
75
       Nucleic Acid Accession #: NM_004363.1
       Coding sequence: 115..2223
                              21
                                          31
                                                      41
                                                                 51
80
       CTCAGGGCAG AGGGAGGAAG GACAGCAGAC CAGACAGTCA CAGCAGCCTT GACAAAACGT
       TCCTGGAACT CAAGCTCTTC TCCACAGAGG AGGACAGAGC AGACAGCAGA GACCATGGAG
                                                                               120
       TCTCCCTCGG CCCCTCCCA CAGATGGTGC ATCCCCTGGC AGAGGCTCCT GCTCACAGCC
                                                                               180
       TCACTTCTAA CCTTCTGGAA CCCGCCCACC ACTGCCAAGC TCACTATTGA ATCCACGCCG
                                                                               240
       TTCAATGTCG CAGAGGGGAA GGAGGTGCTT CTACTTGTCC ACAATCTGCC CCAGCATCTT
                                                                               300
85
       TTTGGCTACA GCTGGTACAA AGGTGAAAGA GTGGATGGCA ACCGTCAAAT TATAGGATAT
                                                                               360
       GTAATAGGAA CTCAACAAGC TACCCCAGGG CCCGCATACA GTGGTCGAGA GATAATATAC
CCCAATGCAT CCCTGCTGAT CCAGAACATC ATCCAGAATG ACACAGGATT CTACACCCTA
                                                                               420
                                                                               480
```

```
CACGTCATAA AGTCAGATCT TGTGAATGAA GAAGCAACTG GCCAGTTCCG GGTATACCCG
      GAGCTGCCCA AGCCCTCCAT CTCCAGCAAC AACTCCAAAC CCGTGGAGGA CAAGGATGCT
                                                                           600
      GTGGCCTTCA CCTGTGAACC TGAGACTCAG GACGCAACCT ACCTGTGGTG GGTAAACAAT
                                                                           660
       CAGAGCCTCC CGGTCAGTCC CAGGCTGCAG CTGTCCAATG GCAACAGGAC CCTCACTCTA
                                                                           720
 5
                                                                           780
       TTCAATGTCA CAAGAAATGA CACAGCAAGC TACAAATGTG AAACCCAGAA CCCAGTGAGT
      GCCAGGCGCA GTGATTCAGT CATCCTGAAT GTCCTCTATG GCCCGGATGC CCCCACCATT
                                                                           840
      TCCCCTCTAA ACACATCTTA CAGATCAGGG GAAAATCTGA ACCTCTCCTG CCACGCAGCC
       TCTAACCCAC CTGCACAGTA CTCTTGGTTT GTCAATGGGA CTTTCCAGCA ATCCACCCAA
                                                                           960
      GAGCTCTTTA TCCCCAACAT CACTGTGAAT AATAGTGGAT CCTATACGTG CCAAGCCCAT
                                                                         1020
10
       AACTCAGACA CTGGCCTCAA TAGGACCACA GTCACGACGA TCACAGTCTA TGCAGAGCCA
                                                                         1080
       CCCAAACCCT TCATCACCAG CAACAACTCC AACCCCGTGG AGGATGAGGA TGCTGTAGCC
                                                                         1140
       TTAACCTGTG AACCTGAGAT TCAGAACACA ACCTACCTGT GGTGGGTAAA TAATCAGAGC
                                                                         1200
       CTCCCGGTCA GTCCCAGGCT GCAGCTGTCC AATGACAACA GGACCCTCAC TCTACTCAGT
                                                                          1260
      GTCACAAGGA ATGATGTAGG ACCCTATGAG TGTGGAATCC AGAACGAATT AAGTGTTGAC
                                                                         1320
15
       CACAGCGACC CAGTCATCCT GAATGTCCTC TATGGCCCAG ACGACCCCAC CATTTCCCCC
                                                                         1380
       TCATACACCT ATTACCGTCC AGGGGTGAAC CTCAGCCTCT CCTGCCATGC AGCCTCTAAC
                                                                         1440
       CCACCTGCAC AGTATTCTTG GCTGATTGAT GGGAACATCC AGCAACACAC ACAAGAGCTC
                                                                         1500
       TTTATCTCCA ACATCACTGA GAAGAACAGC GGACTCTATA CCTGCCAGGC CAATAACTCA
                                                                         1560
       GCCAGTGGCC ACAGCAGGAC TACAGTCAAG ACAATCACAG TCTCTGCGGA GCTGCCCAAG
20
       CCCTCCATCT CCAGCAACAA CTCCAAACCC GTGGAGGACA AGGATGCTGT GGCCTTCACC
                                                                         1680
       TGTGAACCTG AGGCTCAGAA CACAACCTAC CTGTGGTGGG TAAATGGTCA GAGCCTCCCA
                                                                         1740
       GTCAGTCCCA GGCTGCAGCT GTCCAATGGC AACAGGACCC TCACTCTATT CAATGTCACA
                                                                         1800
       AGAAATGACG CAAGAGCCTA TGTATGTGGA ATCCAGAACT CAGTGAGTGC AAACCGCAGT
                                                                         1860
       GACCCAGTCA CCCTGGATGT CCTCTATGGG CCGGACACCC CCATCATTTC CCCCCCAGAC
                                                                         1920
25
       TCGTCTTACC TTTCGGGAGC GAACCTCAAC CTCTCCTGCC ACTCGGCCTC TAACCCATCC
                                                                          1980
       CCGCAGTATT CTTGGCGTAT CAATGGGATA CCGCAGCAAC ACACACAAGT TCTCTTTATC
                                                                         2040
       GCCAAAATCA CGCCAAATAA TAACGGGACC TATGCCTGTT TTGTCTCTAA CTTGGCTACT
                                                                         2100
       GGCCGCAATA ATTCCATAGT CAAGAGCATC ACAGTCTCTG CATCTGGAAC TTCTCCTGGT
                                                                         2160
       CTCTCAGCTG GGGCCACTGT CGGCATCATG ATTGGAGTGC TGGTTGGGGT TGCTCTGATA
                                                                         2220
30
       TAGCAGCCCT GGTGTAGTTT CTTCATTTCA GGAAGACTGA CAGTTGTTTT GCTTCTTCCT
                                                                         2280
       TAAAGCATTT GCAACAGCTA CAGTCTAAAA TTGCTTCTTT ACCAAGGATA TTTACAGAAA
                                                                          2340
       AGACTCTGAC CAGAGATCGA GACCATCCTA GCCAACATCG TGAAACCCCA TCTCTACTAA
                                                                          2400
       AAATACAAAA ATGAGCTGGG CTTGGTGGCG CGCACCTGTA GTCCCAGTTA CTCGGGAGGC
                                                                         2460
       TGAGGCAGGA GAATCGCTTG AACCCGGGAG GTGGAGATTG CAGTGAGCCC AGATCGCACC
                                                                         2520
35
       2580
       TCTGACCTGT ACTCTTGAAT ACAAGTTTCT GATACCACTG CACTGTCTGA GAATTTCCAA
                                                                         2640
       AACTTTAATG AACTAACTGA CAGCTTCATG AAACTGTCCA CCAAGATCAA GCAGAGAAAA
                                                                          2700
       TAATTAATTT CATGGGACTA AATGAACTAA TGAGGATTGC TGATTCTTTA AATGTCTTGT
                                                                          2760
                                                                         2820
       TTCCCAGATT TCAGGAAACT TTTTTTCTTT TAAGCTATCC ACTCTTACAG CAATTTGATA
40
       AAATATACTT TTGTGAACAA AAATTGAGAC ATTTACATTT TCTCCCTATG TGGTCGCTCC
                                                                         2880
       AGACTTGGGA AACTATTCAT GAATATTTAT ATTGTATGGT AATATAGTTA TTGCACAAGT
                                                                         2940
       TCAATAAAAA TCTGCTCTTT GTATAACAGA AAAA
       Seg ID NO: 533 Protein seguence
45
       Protein Accession #: NP 004354.1
                                        31
                                                   41
                                                              51
       MESPSAPPHR WCIPWORLLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE VLLLVHNLPQ
50
       HLFGYSWYKG ERVDGNROII GYVIGTQQAT PGPAYSGREI IYPNASLLIQ NIIQNDTGFY
                                                                          120
       TLHVIKSDLV NEEATGOFRV YPELPKPSIS SNNSKPVEDK DAVAFTCEPE TQDATYLWWV
                                                                           180
       NNQSLPVSPR LQLSNGNRTL TLFNVTRNDT ASYKCETQNP VSARRSDSVI LNVLYGPDAP
                                                                           240
       TISPLNTSYR SGENLNLSCH AASNPPAQYS WFVNGTFQQS TQELFIPNIT VNNSGSYTCQ
                                                                           300
       AHNSDTGLNR TTVTTITVYA EPPKPFITSN NSNPVEDEDA VALTCEPEIQ NTTYLWWVNN
                                                                           360
55
       OSLPVSPRLQ LSNDNRTLTL LSVTRNDVGP YECGIQNELS VDHSDPVILN VLYGPDDPTI
                                                                           420
       SPSYTYYRPG VNLSLSCHAA SNPPAQYSWL IDGNIQQHTQ ELFISNITEK NSGLYTCQAN
                                                                           480
       NSASGHSRTT VKTITVSAEL PKPSISSNNS KPVEDKDAVA FTCEPEAQNT TYLWWVNGQS
                                                                           540
       LPVSPRLQLS NGNRTLTLFN VTRNDARAYV CGIQNSVSAN RSDPVTLDVL YGPDTPIISP
                                                                           600
       PDSSYLSGAN LNLSCHSASN PSPQYSWRIN GIPQQHTQVL FIAKITPNNN GTYACFVSNL
                                                                           660
60
       ATGRNNSIVK SITVSASGTS PGLSAGATVG IMIGVLVGVA LI
       Seg ID NO: 534 DNA seguence
       Nucleic Acid Accession #: NM_006952.1
       Coding sequence: 11..793
65
                                                              51
                             21
                                        31
                                                   41
       AATCCCGACA ATGGCGAAAG ACAACTCAAC TGTTCGTTGC TTCCAGGGCC TGCTGATTTT
                                                                            60
       TGGAAATGTG ATTATTGGTT GTTGCGGCAT TGCCCTGACT GCGGAGTGCA TCTTCTTTGT
                                                                           120
70
       ATCTGACCAA CACAGCCTCT ACCCACTGCT TGAAGCCACC GACAACGATG ACATCTATGG
                                                                           180
       GGCTGCCTGG ATCGGCATAT TTGTGGGCAT CTGCCTCTTC TGCCTGTCTG TTCTAGGCAT
                                                                           240
       TGTAGGCATC ATGAAGTCCA GCAGGAAAAT TCTTCTGGCG TATTTCATTC TGATGTTTAT
                                                                           300
       AGTATATGCC TTTGAAGTGG CATCTTGTAT CACAGCAGCA ACACAACGAG ACTTTTTCAC
                                                                           360
       ACCCAACCTC TTCCTGAAGC AGATGCTAGA GAGGTACCAA AACAACAGCC CTCCAAACAA
75
       TGATGACCAG TGGAAAAACA ATGGAGTCAC CAAAACCTGG GACAGGCTCA TGCTCCAGGA
                                                                           480
       CAATTGCTGT GGCGTAAATG GTCCATCAGA CTGGCAAAAA TACACATCTG CCTTCCGGAC
                                                                           540
                                                                           600
       TGAGAATAAT GATGCTGACT ATCCCTGGCC TCGTCAATGC TGTGTTATGA ACAATCTTAA
       AGAACCTCTC AACCTGGAGG CTTGTAAACT AGGCGTGCCT GGTTTTTATC ACAATCAGGG
                                                                           660
       CTGCTATGAA CTGATCTCTG GTCCAATGAA CCGACACGCC TGGGGGGTTG CCTGGTTTGG
80
       ATTTGCCATT CTCTGCTGGA CTTTTTGGGT TCTCCTGGGT ACCATGTTCT ACTGGAGCAG
                                                                           780
       AATTGAATAT TAAGAA
       Seq ID NO: 535 Protein sequence
       Protein Accession #: NP_008883.1
85
```

5	MAKDNSTVRC IGIFVGICLF FLKQMLERYQ DADYPWPRQC	FQGLLIFGNV CLSVLGIVGI NNSPPNNDDQ CVMNNLKEPL TMFYWSRIEY	MKSSRKILLA WKNNGVTKTW	YFILMFIVYA DRLMLQDNCC	FEVASCITAA GVNGPSDWQK	TQRDFFTPNL YTSAFRTENN	60 120 180 240
10	Nucleic Aci	536 DNA sec id Accession lence: 120	1 #: NM_0026	38.1			
10	1	11	21	31	41	51	
	1	AAGGAATTAT	1	1	1	1	60
15	TGAGGGCCAG AGGCAGCTGT TCAATGGACA	ATAAAGATTG CAGCTTCTTG CACGGGAGTT AGATCCCGTT AGTCAAAGGT	ATCGTGGTGG CCTGTTAAAG AAAGGACAAG	TGTTCCTCAT GTCAAGACAC TTTCAGTTAA	CGCTGGGACG TGTCAAAGGC AGGTCAAGAT	CTGGTTCTAG CGTGTTCCAT AAAGTCAAAG	120 180 240 300 360
20	TCAAGAAGTG CGGTCCTTGC TGCTGCCCTT	CATGTTGAAT CTGTGAAGGC TGCACCTGTG CCCCTTCCCA TCTCATCCAC	TCTTGCGGGA CCGTCCCCAG CACTGTCCAT	TGGCCTGTTT AGCTACAGGC TCTTCCTCCC	CGTTCCCCAG CCCATCTGGT	TGAAGGGAGC CCTAAGTCCC	420 480 540 600
25		537 Proteir cession #: N					·
• •	1	11	21	31	41	51	
30	MDA CCET, TIM	 VFLIAGTLVL	FAAUTGURUK	CODTUKCRVD	. FNGODPVKGO	NSAKGODKAK 	60
50		TKPGSCPIIL					
35	Nucleic Act	538 DNA sec id Accession Lence: 712	1 #: NM_001	.793.2			
	1	11	21	31	41	51	
40	CTCTGCAGCC	GAGCTGAGCG ATGGGGCTCC TGCGCGGCCT	CTCGTGGACC	TCTCGCGTCT	CTCCTCCTTC	TCCAGGTTTG	60 120 180
45	CTTGGAGGCG CTGCCCTGGG TGGCGAGACA	GGAGGCGCGG CAAGAGCCAG GTCCAGGAAA	AGCAGGAGCC CTCTGTTTAG GAAGGTCACT	CGGCCAGGCG CACTGATAAT GAAGGAAAGG	CTGGGGAAAG GATGACTTCA AATCCATTGA	TATTCATGGG CTGTGCGGAA AGATCTTCCC	240 300 360
45	TGAAAATGGC AGACACCAAG CTTCGCTGTA	ATCTTACGAA AAGGGTCCCT ATTTTCTACA GAGAAGGAGA	TCCCCCAGAG GCATCACGGG CAGGCTGGTT	ACTGAATCAG GCCGGGGGCA GTTGTTGAAT	CTCAAGTCTA GACAGCCCCC AAGCCACTGG	ATAAAGATAG CTGAGGGTGT ACCGGGAGGA	420 480 540 600
50	CCCCATGAAC GGACACCTTC	TATGAGCTCT ATCTCCATCA CGAGGGAGTG GATGAGGATG	TCGTGACCGA TCTTAGAGGG	CCAGAATGAC AGTCCTACCA	CACAAGCCCA GGTACTTCTG	AGTTTACCCA TGATGCAGGT	660 720 780 840
	CCATAGCCAA	GAACCAAAGG GTCATCTCCA	ACCCACACGA	CCTCATGTTC	ACCATTCACC	GGAGCACAGG	900 960
55	CATCCAGGCC	ACAGACATGG	ATGGGGACGG	CTCCACCACC	ACGGCAGTGG	CAGTAGTGGA	1020
		GCCAATGACA GCAGTGGGCC					1080 1140
	CAACTCACCA	GCGTGGCGTG	CCACCTACCT	TATCATGGGC	GGTGACGACG	GGGACCATTT	1200
60	TACCATCACC	ACCCACCCTG AAAAACCAGC	AGAGCAACCA	GGGCATCCTG	ACAACCAGGA ACCAACGAGG	AGGGTTTGGA	1260 1320
00	GCTGAAGCTC	CCAACCTCCA	CAGCCACCAT	AGTGGTCCAC	GTGGAGGATG	TGAATGAGGC	1380
		GTCCCACCCT GTCTACACTG				CCACTGGGGA	1440 1500
~=	CATCCTGAGA	GACCCAGCAG	GGTGGCTAGC	CATGGACCCA	GACAGTGGGC	AGGTCACAGC	1560
65		CTCGACCGTG ATGGACAATG					1620 1680
	ACTGATTGAT	GTCAATGACC	ATGGCCCAGT	CCCTGAGCCC	CGTCAGATCA	CCATCTGCAA	1740
	CCAAAGCCCT	GTGCGCCAGG	TGCTGAACAT	CACGGACAAG	GACCTGTCTC	CCCACACCTC	1800
70		GCCCAGCTCA ACAGTGGTCT					1860 1920
	GCACCTTTCT	CTGTCTGACC	ATGGCAACAA	AGAGCAGCTG	ACGGTGATCA	GGGCCACTGT	1980
	GTGCGACTGC	CATGGCCATG GGGGCTGTCC	TCGAAACCTG	CCCTGGACCC	TGGAAGGGAG	TTTTGTTGGT	2040 2100
76	GAGAAAGAAG	CGGAAGATCA	AGGAGCCCCT	CCTACTCCCA	GAAGATGACA	CCCGTGACAA	2160
<i>75</i> .	CGTCTTCTAC	TATGGCGAAG GGTCTGGAGG	AGGGGGGTGG	CGAAGAGGAC	CAGGACTATG	ACATCACCCA	2220 2280
	CATCATCCCG	ACACCCATGT	ACCGTCCTCG	GCCAGCCAAC	CCAGATGAAA	TCGGCAACTT	2340
	TATAATTGAG	AACCTGAAGG	CGGCTAACAC	AGACCCCACA	GCCCCGCCCT	ACGACACCCT	2400
80	CTCCGCCTCC	GACTATGAGG GACCAAGACC	AAGATTACGA	TTATCTGAAC	GAGTGGGGCA	GCCGCTTCAA	2460 2520
	GAAGCTGGCA	GACATGTACG	GTGGCGGGGA	GGACGACTAG	GCGGCCTGCC	TGCAGGGCTG	2580
	GGGACCAAAC	GTCAGGCCAC CTTGTCAGGA	AGAGCATCTC	CAAGGGGTCT	CAGTTCCCCC	TTCAGCTGAG	2640 2700
	ACGTTAGAGT	GGTTGCTTCC	TTAGCCTTTC	AGGATGGAGG	AATGTGGGCA	GTTTGACTTC	2760
85	AGCACTGAAA	ACCTCTCCAC	CTGGGCCAGG	GTTGCCTCAG	AGGCCAAGTT	TCCAGAAGCC	2820
	TCTTACCTGC TACAGTGGAC	CGTAAAATGC TTTCTCTCTG	TCAACCCTGT GAATGGAACC	GTCCTGGGCC TTCTTAGGCC	TGGGCCTGCT TCCTGGTGCA	GTGACTGACC ACTTAATTTT	2880 2940

```
TTTTTTTAAT GCTATCTTCA AAACGTTAGA GAAAGTTCTT CAAAAGTGCA GCCCAGAGCT
                                                                             3000
       GCTGGGCCCA CTGGCCGTCC TGCATTTCTG GTTTCCAGAC CCCAATGCCT CCCATTCGGA
                                                                             3060
       TGGATCTCTG CGTTTTTATA CTGAGTGTGC CTAGGTTGCC CCTTATTTTT TATTTTCCCT
                                                                             3120
       GTTGCGTTGC TATAGATGAA GGGTGAGGAC AATCGTGTAT ATGTACTAGA ACTTTTTTAT
                                                                            3180
 5
       TAAAGAAACT TTTCCCAGAA AAAAA
       Seg ID NO: 539 Protein seguence
       Protein Accession #: NP_001784.2
10
                                                                51
                                         31
                                                     41
       MGLPRGPLAS LLLLOVCWLO CAASEPCRAV FREAEVILEA GGAEQEPGQA LGKVFMGCPG
       QEPALFSTDN DDFTVRNGET VQERRSLKER NPLKIFPSKR ILRRHKRDWV VAPISVPENG
                                                                              120
       KGPFPQRLNQ LKSNKDRDTK IFYSITGPGA DSPPEGVFAV EKETGWLLLN KPLDREEIAK
                                                                              180
15
       YELFGHAVSE NGASVEDPMN ISIIVTDQND HKPKFTQDTF RGSVLEGVLP GTSVMQVTAT
                                                                              240
       DEDDAIYTYN GVVAYSIHSQ EPKDPHDLMF TIHRSTGTIS VISSGLDREK VPEYTLTIQA
                                                                              300
       TDMDGDGSTT TAVAVVEILD ANDNAPMFDP QKYEAHVPEN AVGHEVQRLT VTDLDAPNSP
                                                                              360
       AWRATYLIMG GDDGDHFTIT THPESNQGIL TTRKGLDFEA KNQHTLYVEV TNEAPFVLKL
       PTSTATIVVH VEDVNEAPVF VPPSKVVEVQ EGIPTGEPVC VYTAEDPDKE NQKISYRILR
                                                                              480
20
       DPAGWLAMDP DSGQVTAVGT LDREDEQFVR NNIYEVMVLA MDNGSPPTTG TGTLLLTLID
                                                                              540
       VNDHGPVPEP RQITICNQSP VRQVLNITDK DLSPHTSPFQ AQLTDDSDIY WTAEVNEEGD
                                                                              600
       TVVLSLKKFL KQDTYDVHLS LSDHGNKEQL TVIRATVCDC HGHVETCPGP WKGGFILPVL
                                                                              660
       GAVLALLFLL LVLLLLVRKK RKIKEPLLLP EDDTRDNVFY YGEEGGEED QDYDITQLHR
GLEARPEVVL RNDVAPTIIP TPMYRPRPAN PDEIGNFIIE NLKAANTDPT APPYDTLLVF
                                                                              720
                                                                              780
25
       DYEGSGSDAA SLSSLTSSAS DQDQDYDYLN EWGSRFKKLA DMYGGGEDD
       Seq ID NO: 540 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 1..672
30
                                                     41
                                                                51
                  11
                              21
                                          31
       ATGAGGCTCC AAAGACCCCG ACAGGCCCCG GCGGGTGGGA GGCGCGCGCC CCGGGGCGGG
                                                                               60
       CGGGGCTCCC CCTACCGGCC AGACCCGGGG AGAGGCGCGC GGAGGCTGCG AAGGTTCCAG
                                                                              120
35
       AAGGGCGGGG AGGGGGCGCC GCGCGCTGAC CCTCCCTGGG CACCGCTGGG GACGATGGCG
                                                                              180
       CTGCTCGCCT TGCTGCTGGT CGTGGCCCTA CCGCGGGTGT GGACAGACGC CAACCTGACT
                                                                              240
       GCGAGACAAC GAGATCCAGA GGACTCCCAG CGAACGGACG AGGGTGACAA TAGAGTGTGG
       TGTCATGTTT GTGAGAGAGA AAACACTTTC GAGTGCCAGA ACCCAAGGAG GTGCAAATGG
                                                                              360
       ACAGAGCCAT ACTGCGTTAT AGCGGCCGTG AAAATATTTC CACGTTTTTT CATGGTTGCG
                                                                              420
40
       AAGCAGTGCT CCGCTGGTTG TGCAGCGATG GAGAGACCCA AGCCAGAGGA GAAGCGGTTT
                                                                              480
       CTCCTGGAAG AGCCCATGCC CTTCTTTTAC CTCAAGTGTT GTAAAATTCG CTACTGCAAT
                                                                              540
       TTAGAGGGC CACCTATCAA CTCATCAGTG TTCAAAGAAT ATGCTGGGAG CATGGGTGAG
                                                                              600
       AGCTGTGGTG GGCTGTGGCT GGCCATCCTC CTGCTGCTGG CCTCCATTGC AGCCGGCCTC
       AGCCTGTCTT GA
45
       Seq ID NO: 541 Protein sequence
       Protein Accession #: Eos sequence
                                                     41
                                          31
50
       MRLQRPRQAP AGGRRAPRGG RGSPYRPDPG RGARRLRRFQ KGGEGAPRAD PPWAPLGTMA
                                                                               60
       LLALLLVVAL PRVWTDANLT ARQRDPEDSQ RTDEGDNRVW CHVCERENTF ECQNPRRCKW
                                                                              120
       TEPYCVIAAV KIFPRFFMVA KQCSAGCAAM ERPKPEEKRF LLEEPMPFFY LKCCKIRYCN
                                                                              180
       LEGPPINSSV FKEYAGSMGE SCGGLWLAIL LLLASIAAGL SLS
55
       Seg ID NO: 542 DNA sequence
       Nucleic Acid Accession #: XM_035292.2
       Coding sequence: 53..1576
60
                                                                 51
                                                     41
                                          31
       GCTCGCTGGG CCGCGGCTCC CGGGTGTCCC AGGCCCGGCC GGTGCGCAGA GCATGGCGGG
                                                                               60
       TGCGGGCCCG AAGCGGCGCG CGCTAGCGGC GCCGGCGGCC GAGGAGAAGG AAGAGGCGCG
                                                                              120
       GGAGAAGATG CTGGCCGCCA AGAGCGCGGA CGGCTCGGCG CCGGCAGGCG AGGGCGAGGG
                                                                              180
65
       CGTGACCCTG CAGCGGAACA TCACGCTGCT CAACGGCGTG GCCATCATCG TGGGGACCAT
                                                                              240
       TATCGGCTCG GGCATCTTCG TGACGCCCAC GGGCGTGCTC AAGGAGGCAG GCTCGCCGGG
                                                                              300
       GCTGGCGCTG GTGGTGTGGG CCGCGTGCGG CGTCTTCTCC ATCGTGGGCG CGCTCTGCTA
       CGCGGAGCTC GGCACCACCA TCTCCAAATC GGGCGGCGAC TACGCCTACA TGCTGGAGGT
                                                                              420
       CTACGGCTCG CTGCCCGCCT TCCTCAAGCT CTGGATCGAG CTGCTCATCA TCCGGCCTTC
                                                                              480
70
       ATCGCAGTAC ATCGTGGCCC TGGTCTTCGC CACCTACCTG CTCAAGCCGC TCTTCCCCAC
                                                                              540
       ATCCGGTG CCCGAGGAGG CAGCCAAGCT CGTGGCCTGC CTCTGCGTGC TGCTGCTCAC
GGCCGTGAAC TGCTACAGCG TGAAGGCCGC CACCCGGGTC CAGGATGCCT TTGCCGCCGC
                                                                              600
                                                                              660
       CAAGCTCCTG GCCCTGGCCC TGATCATCCT GCTGGGCTTC GTCCAGATCG GAAAGGGTGA
                                                                              720
       TGTGTCCAAT CTAGATCCCA ACTTCTCATT TGAAGGCACC AAACTGGATG TGGGGAACAT
                                                                              780
75
       TGTGCTGGCA TTATACAGCG GCCTCTTTGC CTATGGAGGA TGGAATTACT TGAATTTCGT
                                                                              840
       CACAGAGGAA ATGATCAACC CCTACAGAAA CCTGCCCCTG GCCATCATCA TCTCCCTGCC
                                                                              900
       CATCGTGACG CTGGTGTACG TGCTGACCAA CCTGGCCTAC TTCACCACCC TGTCCACCGA
                                                                              960
       GCAGATGCTG TCGTCCGAGG CCGTGGCCGT GGACTTCGGG AACTATCACC TGGGCGTCAT
                                                                             1020
       GTCCTGGATC ATCCCCGTCT TCGTGGGCCT GTCCTGCTTC GGCTCCGTCA ATGGGTCCCT
                                                                             1080
80
       GTTCACATCC TCCAGGCTCT TCTTCGTGGG GTCCCGGGAA GGCCACCTGC CCTCCATCCT
                                                                             1140
       CTCCATGATC CACCCACAGC TCCTCACCCC CGTGCCGTCC CTCGTGTTCA CGTGTGTGAT
                                                                             1200
       GACGCTGCTC TACGCCTTCT CCAAGGACAT CTTCTCCGTC ATCAACTTCT TCAGCTTCTT
                                                                             1260
       CAACTGGCTC TGCGTGGCCC TGGCCATCAT CGGCATGATC TGGCTGCGCC ACAGAAAGCC
                                                                             1320
       TGAGCTTGAG CGGCCCATCA AGGTGAACCT GGCCCTGCCT GTGTTCTTCA TCCTGGCCTG
                                                                             1380
85
       CCTCTTCCTG ATCGCCGTCT CCTTCTGGAA GACACCCGTG GAGTGTGGCA TCGGCTTCAC
                                                                             1440
                                                                             1500
       CATCATCCTC AGCGGGCTGC CCGTCTACTT CTTCGGGGTC TGGTGGAAAA ACAAGCCCAA
       GTGGCTCCTC CAGGGCATCT TCTCCACGAC CGTCCTGTGT CAGAAGCTCA TGCAGGTGGT
                                                                             1560
```

CCCCCAGGAG ACATAGCCAG GAGGCCGAGT GGCTGCCGGA GGAGCATGC

```
Seq ID NO: 543 Protein sequence
       Protein Accession #: XP_035292.2
 5
                   11
                               21
                                           31
                                                       41
                                                                   51
       MAGAGPKRRA LAAPAAEEKE EAREKMLAAK SADGSAPAGE GEGVTLQRNI TLLNGVAIIV
       GTIIGSGIFV TPTGVLKEAG SPGLALVVWA ACGVFSIVGA LCYAELGTTI SKSGGDYAYM
                                                                                 120
10
       LEVYGSLPAF LKLWIELLII RPSSQYIVAL VFATYLLKPL FPTCPVPEEA AKLVACLCVL
                                                                                 180
       LLTAVNCYSV KAATRVQDAF AAAKLLALAL IILLGFVQIG KGDVSNLDPN FSFEGTKLDV
                                                                                 240
       GNIVLALYSG LFAYGGWNYL NFVTEEMINP YRNLPLAIII SLPIVTLVYV LTNLAYFTTL
                                                                                 300
       STEQMLSSEA VAVDFGNYHL GVMSWIIPVF VGLSCFGSVN GSLFTSSRLF FVGSREGHLP
                                                                                 360
       SILSMIHPOL LTPVPSLVFT CVMTLLYAFS KDIFSVINFF SFFNWLCVAL AIIGMIWLRH
15
       RKPELERPIK VNLALPVFFI LACLFLIAVS FWKTPVECGI GFTIILSGLP VYFFGVWWKN
                                                                                 480
       KPKWLLQGIF STTVLCQKLM QVVPQET
       Seg ID NO: 544 DNA sequence
       Nucleic Acid Accession #: NM_005268.1
20
       Coding sequence: 168..989
                                                       41
       TAAAAAGCAA AAGAATTCGC GGCCGCGTCG ACACGGGCTT CCCCGAAAAC CTTCCCCGCT
                                                                                  60
25
       TCTGGATATG AAATTCAAGC TGCTTGCTGA GTCCTATTGC CGGCTGCTGG GAGCCAGGAG
                                                                                 120
       AGCCCTGAGG AGTAGTCACT CAGTAGCAGC TGACGCGTGG GTCCACCATG AACTGGAGTA
                                                                                 180
       TCTTTGAGGG ACTCCTGAGT GGGGTCAACA AGTACTCCAC AGCCTTTGGG CGCATCTGGC
                                                                                 240
       TGTCTCTGGT CTTCATCTTC CGCGTGCTGG TGTACCTGGT GACGGCCGAG CGTGTGTGGA
                                                                                 300
       GTGATGACCA CAAGGACTTC GACTGCAATA CTCGCCAGCC CGGCTGCTCC AACGTCTGCT
                                                                                 360
       TTGATGAGTT CTTCCCTGTG TCCCATGTGC GCCTCTGGGC CCTGCAGCTT ATCCTGGTGA CATGCCCCTC ACTGCTCGTG GTCATGCACG TGGCCTACCG GGAGGTTCAG GAGAAGAGGC
30
                                                                                 420
                                                                                 480
       ACCGAGAAGC CCATGGGGAG AACAGTGGGC GCCTCTACCT GAACCCCGGC AAGAAGCGGG
                                                                                 540
       GTGGGCTCTG GTGGACATAT GTCTGCAGCC TAGTGTTCAA GGCGAGCGTG GACATCGCCT
                                                                                 600
       TTCTCTATGT GTTCCACTCA TTCTACCCCA AATATATCCT CCCTCCTGTG GTCAAGTGCC
                                                                                 660
35
       ACGCAGATCC ATGTCCCAAT ATAGTGGACT GCTTCATCTC CAAGCCCTCA GAGAAGAACA
                                                                                 720
       TTTTCACCCT CTTCATGGTG GCCACAGCTG CCATCTGCAT CCTGCTCAAC CTCGTGGAGC
                                                                                 780
       TCATCTACCT GGTGAGCAAG AGATGCCACG AGTGCCTGGC AGCAAGGAAA GCTCAAGCCA
                                                                                 840
       TGTGCACAGG TCATCACCCC CACGGTACCA CCTCTTCCTG CAAACAAGAC GACCTCCTTT
       CGGGTGACCT CATCTTTCTG GGCTCAGACA GTCATCCTCC TCTCTTACCA GACCGCCCCC
                                                                                 960
40
       GAGACCATGT GAAGAAAACC ATCTTGTGAG GGGCTGCCTG GACTGGTCTG GCAGGTTGGG
                                                                                1020
       CCTGGATGGG GAGGCTCTAG CATCTCTCAT AGGTGCAACC TGAGAGTGGG GGAGCTAAGC
                                                                                1080
       CATGAGGTAG GGGCAGGCAA GAGAGAGGAT TCAGACGCTC TGGGAGCCAG TTCCTAGTCC TCAACTCCAG CCACCTGCCC CAGCTCGACG GCACTGGGCC AGTTCCCCCT CTGCTCTGCA
                                                                                1140
                                                                                1200
       GCTCGGTTTC CTTTTCTAGA ATGGAAATAG TGAGGGCCAA TGC
45
       Seq ID NO: 545 Protein sequence
       Protein Accession #: NP 005259.1
                                                                   51
                                                       41
                                            31
50
       MNWSIFEGLL SGVNKYSTAF GRIWLSLVFI FRVLVYLVTA ERVWSDDHKD FDCNTRQPGC
                                                                                  60
       SNVCFDEFFP VSHVRLWALQ LILVTCPSLL VVMHVAYREV QEKRHREAHG ENSGRLYLNP
                                                                                 120
       GKKRGGLWWT YVCSLVFKAS VDIAFLYVFH SFYPKYILPP VVKCHADPCP NIVDCFISKP
                                                                                 180
       SEKNIFTLFM VATAAICILL NLVELIYLVS KRCHECLAAR KAQAMCTGHH PHGTTSSCKQ
                                                                                 240
55
       DDILLSGDLIF LGSDSHPPLL PDRPRDHVKK TIL
       Seq ID NO: 546 DNA sequence
       Nucleic Acid Accession #: NM_002391.1
       Coding sequence: 26..457
60
                                                                   51
                                                       41
                               21
                                            31
       CGGGCGAAGC AGCGCGGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT
                                                                                  60
       CGCCTGCTG GCGCTCACCT CCGCGGTCGC CAAAAAGAAA GATAAGGTGA AGAAGGGCGG
                                                                                 120
       CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCAGCA GCAAGGATTG
CGGCGTGGGT TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT
65
                                                                                 180
                                                                                 240
       GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG
       TGCGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA
                                                                                 360
       CAATGCTCAG TGCCAGGAGA CCATCCGCGT CACCAAGCCC TGCACCCCCA AGACCAAAGC
                                                                                 420
70
       AAAGGCCAAA GCCAAGAAAG GGAAGGGAAA GGACTAGACG CCAAGCCTGG ATGCCAAGGA
                                                                                 480
       GCCCCTGGTG TCACATGGGG CCTGGCCACG CCCTCCCTCT CCCAGGCCCG AGATGTGACC CACCAGTGCC TTCTGTCTGC TCGTTAGCTT TAATCAATCA TGCCCTGCCT TGTCCCTCTC
                                                                                 540
                                                                                 600
       ACTCCCCAGC CCCACCCCTA AGTGCCCAAA GTGGGGAGGG ACAAGGGATT
                                                                   CTGGGAAGCT
                                                                                 660
       TGAGCCTCCC CCAAAGCAAT GTGAGTCCCA GAGCCCGCTT TTGTTCTTCC CCACAATTCC
75
       ATTACTAAGA AACACATCAA ATAAACTGAC TTTTTCCCCC CAATAAAAGC TCTTCTTTTT
                                                                                 780
       TAATAT
       Seg ID NO: 547 Protein seguence
       Protein Accession #: NP_002382.1
80
                                                        41
       MOHRGFLLLT LLALLALTSA VAKKKDKVKK GGPGSECAEW AWGPCTPSSK DCGVGFREGT
                                                                                  60
       CGAQTQRIRC RVPCNWKKEF GADCKYKFEN WGACDGGTGT KVRQGTLKKA RYNAQCQETI
                                                                                 120
85
       RVTKPCTPKT KAKAKAKKGK GKD
```

Seq ID NO: 548 DNA sequence

Nucleic Acid Accession #: NM_006783.1 Coding sequence: 1..786

```
Coding sequence: 1..786
                                        31
                                                              51
 5
       ATGGATTGGG GGACGCTGCA CACTTTCATC GGGGGTGTCA ACAAACACTC CACCAGCATC
       GGGAAGGTGT GGATCACAGT CATCTTTATT TTCCGAGTCA TGATCCTAGT GGTGGCTGCC
       CAGGAAGTGT GGGGTGACGA GCAAGAGGAC TTCGTCTGCA ACACACTGCA ACCGGGATGC
                                                                            180
       AAAAATGTGT GCTATGACCA CTTTTTCCCG GTGTCCCACA TCCGGCTGTG GGCCCTCCAG
                                                                            240
10
       CTGATCTTCG TCTCCACCCC AGCGCTGCTG GTGGCCATGC ATGTGGCCTA CTACAGGCAC
                                                                            300
       GAAACCACTC GCAAGTTCAG GCGAGGAGAG AAGAGGAATG ATTTCAAAGA CATAGAGGAC
                                                                            360
       ATTAAAAAGC ACAAGGTTCG GATAGAGGGG TCGCTGTGGT GGACGTACAC CAGCAGCATC
       TTTTTCCGAA TCATCTTTGA AGCAGCCTTT ATGTATGTGT TTTACTTCCT TTACAATGGG
                                                                            480
       TACCACCTGC CCTGGGTGTT GAAATGTGGG ATTGACCCCT GCCCCAACCT TGTTGACTGC
                                                                            540
15
       TTTATTTCTA GGCCAACAGA GAAGACCGTG TTTACCATTT TTATGATTTC TGCGTCTGTG
                                                                            600
       ATTTGCATGC TGCTTAACGT GGCAGAGTTG TGCTACCTGC TGCTGAAAGT GTGTTTTAGG
                                                                            660
       AGATCAAAGA GAGCACAGAC GCAAAAAAAT CACCCCAATC ATGCCCTAAA GGAGAGTAAG
                                                                            720
       CAGAATGAAA TGAATGAGCT GATTTCAGAT AGTGGTCAAA ATGCAATCAC AGGTTTCCCA
                                                                            780
20
       Seq ID NO: 549 Protein sequence
       Protein Accession #: NP_006774.1
                                                              51
                                                   41
                                        31
25
       MDWGTLHTFI GGVNKHSTSI GKVWITVIFI FRVMILVVAA QEVWGDEQED FVCNTLQPGC
                                                                             60
       KNVCYDHFFP VSHIRLWALQ LIFVSTPALL VAMHVAYYRH ETTRKFRRGE KRNDFKDIED
                                                                            120
       IKKHKVRIEG SLWWTYTSSI FFRIIFEAAF MYVFYFLYNG YHLPWVLKCG IDPCPNLVDC
                                                                           180
       FISRPTEKTV FTIFMISASV ICMLLNVAEL CYLLLKVCFR RSKRAQTQKN HPNHALKESK
                                                                           240
30
       QNEMNELISD SGQNAITGFP S
       Seq ID NO: 550 DNA sequence
       Nucleic Acid Accession #: NM_002571.1
       Coding sequence: 99..587
35
                                                   41
                                        31
       CATCCCTCTG GCTCCAGAGC TCAGAGCCAC CCACAGCCGC AGCCATGCTG TGCCTCCTGC
                                                                             60
       TCACCCTGGG CGTGGCCCTG GTCTGTGGTG TCCCGGCCAT GGACATCCCC CAGACCAAGC
                                                                            120
40
       AGGACCTGGA GCTCCCAAAG TTGGCAGGGA CCTGGCACTC CATGGCCATG GCGACCAACA
                                                                            180
       ACATCTCCCT CATGGCGACA CTGAAGGCCC CTCTGAGGGT CCACATCACC TCACTGTTGC
                                                                            240
       CCACCCCGA GGACAACCTG GAGATCGTTC TGCACAGATG GGAGAACAAC AGCTGTGTTG
                                                                            300
       AGAAGAAGGT CCTTGGAGAG AAGACTGGGA ATCCAAAGAA GTTCAAGATC AACTATACGG
       TGGCGAACGA GGCCACGCTG CTCGATACTG ACTACGACAA TTTCCTGTTT CTCTGCCTAC
                                                                            420
45
       AGGACACCAC CACCCCATC CAGAGCATGA TGTGCCAGTA CCTGGCCAGA GTCCTGGTGG
                                                                            480
       AGGACGATGA GATCATGCAG GGATTCATCA GGGCTTTCAG GCCCCTGCCC AGGCACCTAT
                                                                            540
       GGTACTTGCT GGACTTGAAA CAGATGGAAG AGCCGTGCCG TTTCTAGCTC ACCTCCGCCT
                                                                            600
       CCAGGAAGAC CAGACTCCCA CCCTTCCACA CCTCCAGAGC AGTGGGACTT CCTCCTGCCC
                                                                            660
       TTTCAAAGAA TAACCACAGC TCAGAAGACG ATGACGTGGT CATCTGTGTC GCCATCCCCT
                                                                            720
50
       TCCTGCTGCA CACCTGCACC ATTGCCATGG GGAGGCTGCT CCCTGGGGGC AGAGTCTCTG
                                                                            780
       GCAGAGGTTA TTAATAAACC CTTGGAGCAT G
       Seq ID NO: 551 Protein sequence
       Protein Accession #: NP_002562.1
55
                                        31
       MDIPOTKODL ELPKLAGTWH SMAMATNNIS LMATLKAPLR VHITSLLPTP EDNLEIVLHR
                                                                             60
       WENNSCVEKK VLGEKTGNPK KFKINYTVAN EATLLDTDYD NFLFLCLQDT TTPIQSMMCQ
60
       YLARVLVEDD EIMQGFIRAF RPLPRHLWYL LDLKQMEEPC RF
       Seq ID NO: 552 DNA sequence
       Nucleic Acid Accession #: NM_006500.1
       Coding sequence: 27..1967
65
                                                   41
                                                               51
                                        31
       ACTTGCGTCT CGCCCTCCGG CCAAGCATGG GGCTTCCCAG GCTGGTCTGC GCCTTCTTGC
                                                                             60
       TCGCCGCCTG CTGCTGCTGT CCTCGCGTCG CGGGTGTGCC CGGAGAGGCT GAGCAGCCTG
                                                                            120
70
       CGCCTGAGCT GGTGGAGGTG GAAGTGGGCA GCACAGCCCT TCTGAAGTGC GGCCTCTCCC
                                                                            180
       AGTCCCAAGG CAACCTCAGC CATGTCGACT GGTTTTCTGT CCACAAGGAG AAGCGGACGC
                                                                            240
       TCATCTTCCG TGTGCGCCAG GGCCAGGGCC AGAGCGAACC TGGGGAGTAC GAGCAGCGGC
       TCAGCCTCCA GGACAGAGGG GCTACTCTGG CCCTGACTCA AGTCACCCCC CAAGACGAGC
                                                                            360
       GCATCTTCTT GTGCCAGGGC AAGCGCCCTC GGTCCCAGGA GTACCGCATC CAGCTCCGCG
                                                                            420
75
       TCTACAAAGC TCCGGAGGAG CCAAACATCC AGGTCAACCC CCTGGGCATC CCTGTGAACA
                                                                            480
       GTAAGGAGCC TGAGGAGGTC GCTACCTGTG TAGGGAGGAA CGGGTACCCC ATTCCTCAAG
                                                                            540
       TCATCTGGTA CAAGAATGGC CGGCCTCTGA AGGAGGAGAA GAACCGGGTC CACATTCAGT
                                                                            600
       CGTCCCAGAC TGTGGAGTCG AGTGGTTTGT ACACCTTGCA GAGTATTCTG AAGGCACAGC
                                                                            660
       TGGTTAAAGA AGACAAAGAT GCCCAGTTTT ACTGTGAGCT CAACTACCGG CTGCCCAGTG
                                                                            720
80
       GGAACCACAT GAAGGAGTCC AGGGAAGTCA CCGTCCCTGT TTTCTACCCG ACAGAAAAAG
                                                                            780
       TGTGGCTGGA AGTGGAGCCC GTGGGAATGC TGAAGGAAGG GGACCGCGTG GAAATCAGGT
                                                                            840
       GTTTGGCTGA TGGCAACCCT CCACCACACT TCAGCATCAG CAAGCAGAAC CCCAGCACCA
                                                                            900
       GGGAGGCAGA GGAAGAGACA ACCAACGACA ACGGGGTCCT GGTGCTGGAG CCTGCCCGGA
                                                                            960
       AGGAACACAG TGGGCGCTAT GAATGTCAGG CCTGGAACTT GGACACCATG ATATCGCTGC
                                                                           1020
85
       TGAGTGAACC ACAGGAACTA CTGGTGAACT ATGTGTCTGA CGTCCGAGTG AGTCCCGCAG
                                                                           1080
```

CCCCTGAGAG ACAGGAAGGC AGCAGCCTCA CCCTGACCTG TGAGGCAGAG AGTAGCCAGG

ACCTCGAGTT CCAGTGGCTG AGAGAAGAGA CAGACCAGGT GCTGGAAAGG GGGCCTGTGC

1140

1200

```
TTCAGTTGCA TGACCTGAAA CGGGAGGCAG GAGGCGGCTA TCGCTGCGTG GCGTCTGTGC CCAGCATACC CGGCCTGAAC CGCACACAGC TGGTCAAGCT GGCCATTTTT GGCCCCCCTT
                                                                          1380
       GGATGGCATT CAAGGAGAG AAGGTGTGGG TGAAAGAGAA TATGGTGTTG AATCTGTCTT
       GTGAAGCGTC AGGGCACCCC CGGCCCACCA TCTCCTGGAA CGTCAACGGC ACGGCAAGTG
                                                                          1440
 5
       AACAAGACCA AGATCCACAG CGAGTCCTGA GCACCCTGAA TGTCCTCGTG ACCCCGGAGC
                                                                          1500
       TGTTGGAGAC AGGTGTTGAA TGCACGGCCT CCAACGACCT GGGCAAAAAC ACCAGCATCC
                                                                          1560
       TCTTCCTGGA GCTGGTCAAT TTAACCACCC TCACACCAGA CTCCAACACA ACCACTGGCC
                                                                          1620
       TCAGCACTTC CACTGCCAGT CCTCATACCA GAGCCAACAG CACCTCCACA GAGAGAAAGC
       TGCCGGAGCC GGAGAGCCGG GGCGTGGTCA TCGTGGCTGT GATTGTGTGC ATCCTGGTCC
                                                                          1740
10
       TGGCGGTGCT GGGCGCTGTC CTCTATTTCC TCTATAAGAA GGGCAAGCTG CCGTGCAGGC
                                                                          1800
       GCTCAGGGAA GCAGGAGATC ACGCTGCCCC CGTCTCGTAA GACCGAACTT GTAGTTGAAG
                                                                          1860
       TTAAGTCAGA TAAGCTCCCA GAAGAGATGG GCCTCCTGCA GGGCAGCAGC GGTGACAAGA
                                                                          1920
       GGGCTCCGGG AGACCAGGGA GAGAAATACA TCGATCTGAG GCATTAGCCC CGAATCACTT
                                                                           1980
       CAGCTCCCTT CCCTGCCTGG ACCATTCCCA GCTCCCTGCT CACTCTTCTC TCAGCCAAAG
                                                                           2040
15
       CCTCCAAAGG GACTAGAGAG AAGCCTCCTG CTCCCCTCAC CTGCACACCC CCTTTCAGAG
                                                                          2100
       GGCCACTGGG TTAGGACCTG AGGACCTCAC TTGGCCCTGC AAGCCGCTTT TCAGGGACCA
                                                                          2160
       GTCCACCACC ATCTCCTCCA CGTTGAGTGA AGCTCATCCC AAGCAAGGAG CCCCAGTCTC
                                                                          2220
       CCGAGCGGGT AGGAGAGTTT CTTGCAGAAC GTGTTTTTTC TTTACACACA TTATGGCTGT
                                                                          2280
       AAATACCTGG CTCCTGCCAG CAGCTGAGCT GGGTAGCCTC TCTGAGCTGG TTTCCTGCCC
                                                                           2340
20
       CAAAGGCTGG CTTCCACCAT CCAGGTGCAC CACTGAAGTG AGGACACACC GGAGCCAGGC
                                                                           2400
       GCCTGCTCAT GTTGAAGTGC GCTGTTCACA CCCGCTCCGG AGAGCACCCC AGCGGCATCC
                                                                          2460
       AGAAGCAGCT GCAGTGTTGC TGCCACCACC CTCCTGCTCG CCTCTTCAAA GTCTCCTGTG
                                                                          2520
       ACATTTTTC TTTGGTCAGA AGCCAGGAAC TGGTGTCATT CCTTAAAAGA TACGTGCCGG
                                                                          2580
       GGCCAGGTGT GGTGGCTCAC GCCTGTAATC CCAGCACTTT GGGAGGCCGA GGCGGGCGGA
                                                                          2640
25
       TCACAAAGTC AGGACGAGAC CATCCTGGCT AACACGGTGA AACCCTGTCT CTACTAAAAA
                                                                           2700
       TACAAAAAA AATTAGCTAG GCGTAGTGGT TGGCACCTAT AGTCCCAGCT ACTCGGAAGG
                                                                           2760
       CTGAAGCAGG AGAATGGTAT GAATCCAGGA GGTGGAGCTT GCAGTGAGCC GAGACCGTGC
                                                                          2820
       2880
       ACGCGTACCT GCGGTGAGGA AGCTGGGCGC TGTTTTCGAG TTCAGGTGAA TTAGCCTCAA
                                                                          2940
30
       TCCCCGTGTT CACTTGCTCC CATAGCCCTC TTGATGGATC ACGTAAAACT GAAAGGCAGC
                                                                           3000
       GGGGAGCAGA CAAAGATGAG GTCTACACTG TCCTTCATGG GGATTAAAGC TATGGTTATA
                                                                           3060
       TTAGCACCAA ACTTCTACAA ACCAAGCTCA GGGCCCCAAC CCTAGAAGGG CCCAAATGAG
                                                                           3120
       AGAATGGTAC TTAGGGATGG AAAACGGGGC CTGGCTAGAG CTTCGGGTGT GTGTGTCTGT
                                                                           3180
       CTGTGTGTAT GCATACATAT GTGTGTATAT ATGGTTTTGT CAGGTGTGTA AATTTGCAAA
                                                                           3240
35
       3300
       AAAGCTTAAT TGTCCCAGAA AATCATACAT TGCTTTTTTA TTCTACATGG GTACCACAGG
                                                                           3360
       AACCTGGGGG CCTGTGAAAC TACAACCAAA AGGCACACAA AACCGTTTCC AGTTGGCAGC
                                                                           3420
       AGAGATCAGG GGTTACCTCT GCTTCTGAGC AAATGGCTCA AGCTCTACCA GAGCAGACAG
                                                                           3480
       CTACCCTACT TTTCAGCAGC AAAACGTCCC GTATGACGCA GCACGAAGGG CCTGGCAGGC
40
       TGTTAGCAGG AGCTATGTCC CTTCCTATCG TTTCCGTCCA CTT
       Seq ID NO: 553 Protein sequence
       Protein Accession #: NP 006491.1
45
                                                    41
                                                               51
                                         31.
                  11
                             21
       GLPRLVCAFL LAACCCCPRV AGVPGEAEQP APELVEVEVG STALLKCGLS QSQGNLSHVD
                                                                             60
       WFSVHKEKRT LIFRVRQGQG QSEPGEYEQR LSLQDRGATL ALTQVTPQDE RIFLCQGKRP
                                                                            120
       RSQEYRIQLR VYKAPEEPNI QVNPLGIPVN SKEPEEVATC VGRNGYPIPQ VIWYKNGRPL
                                                                            180
50
       KEEKNRVHIO SSOTVESSGL YTLQSILKAQ LVKEDKDAQF YCELNYRLPS GNHMKESREV
       TVPVFYPTEK VWLEVEPVGM LKEGDRVEIR CLADGNPPPH FSISKQNPST REAEEETTND
                                                                            300
       NGVLVLEPAR KEHSGRYECQ AWNLDTMISL LSEPQELLVN YVSDVRVSPA APERQEGSSL
                                                                            360
       TLTCEAESSQ DLEFQWLREE TDQVLERGPV LQLHDLKREA GGGYRCVASV PSIPGLNRTQ
                                                                            420
       LVKLAIFGPP WMAFKERKVW VKENMVLNLS CEASGHPRPT ISWNVNGTAS EQDQDPQRVL
                                                                            480
       STLNVLVTPE LEETGVECTA SNDLGKNTSI LFLELVNLITT LTPDSNTTTG LSTSTASPHT RANSTSTERK LPEPESRGVV IVAVIVCILV LAVLGAVLYF LYKKGKLPCR RSGKQEITLP
55
                                                                            540
       PSRKTELVVE VKSDKLPEEM GLLQGSSGDK RAPGDQGEKY IDLRH
       Seg ID NO: 554 DNA seguence
60
       Nucleic Acid Accession #: NM_003183.3
       Coding sequence: 165..2639
                                        31
                                                    41
                                                               51
65
       TCGAGCCTGG CGGTAGAATC TTCCCAGTAG GCGGCGCGGG AGGGAAAAGA GGATTGAGGG
                                                                             60
       GCTAGGCCGG GCGGATCCCG TCCTCCCCCG ATGTGAGCAG TTTTCCGAAA CCCCGTCAGG
                                                                            120
       CGAAGGCTGC CCAGAGAGGT GGAGTCGGTA GCGGGGCCGG GAACATGAGG CAGTCTCTCC
                                                                            180
       TATTCCTGAC CAGCGTGGTT CCTTTCGTGC TGGCGCCGCG ACCTCCGGAT GACCCGGGCT
       TCGGCCCCCA CCAGAGACTC GAGAAGCTTG ATTCTTTGCT CTCAGACTAC GATATTCTCT
                                                                            300
70
       CTTTATCTAA TATCCAGCAG CATTCGGTAA GAAAAAGAGA TCTACAGACT TCAACACATG
                                                                            360
       TAGAAACACT ACTAACTTTT TCAGCTTTGA AAAGGCATTT TAAATTATAC CTGACATCAA
                                                                            420
       GTACTGAACG TTTTTCACAA AATTTCAAGG TCGTGGTGGT GGATGGTAAA AACGAAAGCG
                                                                            480
       AGTACACTGC AAAATGGCAG GACTTCTTCA CTGGACACGT GGTTGGTGAG CCTGACTCTA
                                                                            540
       GGGTTCTAGC CCACATAAGA GATGATGATG TTATAATCAG AATCAACACA GATGGGGCCG
                                                                            600
75
       AATATAACAT AGAGCCACTT TGGAGATTTG TTAATGATAC CAAAGACAAA AGAATGTTAG
                                                                            660
       TTTATAAATC TGAAGATATC AAGAATGTTT CACGTTTGCA GTCTCCAAAA GTGTGTGGTT
                                                                            720
       ATTTAAAAGT GGATAATGAA GAGTTGCTCC CAAAAGGGTT AGTAGACAGA GAACCACCTG
                                                                            780
       AAGAGCTTGT TCATCGAGTG AAAAGAAGAG CTGACCCAGA TCCCATGAAG AACACGTGTA
                                                                            840
       AATTATTGGT GGTAGCAGAT CATCGCTTCT ACAGATACAT GGGCAGAGGG GAAGAGAGTA
                                                                            900
80
       CAACTACAAA TTACTTAATA GAGCTAATTG ACAGAGTTGA TGACATCTAT CGGAACACTT
                                                                            960
       CATGGGATAA TGCAGGTTTT AAAGGCTATG GAATACAGAT AGAGCAGATT CGCATTCTCA
                                                                           1020
       AGTCTCCACA AGAGGTAAAA CCTGGTGAAA AGCACTACAA CATGGCAAAA AGTTACCCAA
                                                                           1080
       ATGAAGAAAA GGATGCTTGG GATGTGAAGA TGTTGCTAGA GCAATTTAGC TTTGATATAG
                                                                           1140
       CTGAGGAAGC ATCTAAAGTT TGCTTGGCAC ACCTTTTCAC ATACCAAGAT TTTGATATGG
                                                                           1200
85
       GAACTCTTGG ATTAGCTTAT GTTGGCTCTC CCAGAGCAAA CAGCCATGGA GGTGTTTGTC
                                                                           1260
       CAAAGGCTTA TTATAGCCCA GTTGGGAAGA AAAATATCTA TTTGAATAGT GGTTTGACGA
                                                                           1320
       GCACAAAGAA TTATGGTAAA ACCATCCTTA CAAAGGAAGC TGACCTGGTT ACAACTCATG
                                                                           1380
```

WO 02/086443

```
AATTGGGACA TAATTTTGGA GCAGAACATG ATCCGGATGG TCTAGCAGAA TGTGCCCCGA
       ATGAGGACCA GGGAGGGAAA TATGTCATGT ATCCCATAGC TGTGAGTGGC GATCACGAGA
                                                                           1500
       ACAATAAGAT GTTTTCAAAC TGCAGTAAAC AATCAATCTA TAAGACCATT GAAAGTAAGG
                                                                           1560
       CCCAGGAGTG TTTTCAAGAA CGCAGCAATA AAGTTTGTGG GAACTCGAGG GTGGATGAAG
                                                                           1620
 5
       GAGAAGAGTG TGATCCTGGC ATCATGTATC TGAACAACGA CACCTGCTGC AACAGCGACT
                                                                           1680
       GCACGTTGAA GGAAGGTGTC CAGTGCAGTG ACAGGAACAG TCCTTGCTGT AAAAACTGTC
                                                                           1740
       AGTTTGAGAC TGCCCAGAAG AAGTGCCAGG AGGCGATTAA TGCTACTTGC AAAGGCGTGT
                                                                           1800
       CCTACTGCAC AGGTAATAGC AGTGAGTGCC CGCCTCCAGG AAATGCTGAA AATGACACTG
                                                                           1860
                                                                           1920
       TTTGCTTGGA TCTTGGCAAG TGTAAGGATG GGAAATGCAT CCCTTTCTGC GAGAGGGAAC
10
       AGCAGCTGGA GTCCTGTGCA TGTAATGAAA CTGACAACTC CTGCAAGGTG TGCTGCAGGG
                                                                           1980
                                                                           2040
       ACCTTTCTGG CCGCTGTGTG CCCTATGTCG ATGCTGAACA AAAGAACTTA TTTTTGAGGA
       AAGGAAAGCC CTGTACAGTA GGATTTTGTG ACATGAATGG CAAATGTGAG AAACGAGTAC
                                                                           2100
       AGGATGTAAT TGAACGATTT TGGGATTTCA TTGACCAGCT GAGCATCAAT ACTTTTGGAA
                                                                           2160
       AGTTTTTAGC AGACAACATC GTTGGGTCTG TCCTGGTTTT CTCCTTGATA TTTTGGATTC
                                                                           2220
15
       CTTTCAGCAT TCTTGTCCAT TGTGTGGATA AGAAATTGGA TAAACAGTAT GAATCTCTGT
                                                                           2280
       CTCTGTTTCA CCCCAGTAAC GTCGAAATGC TGAGCAGCAT GGATTCTGCA TCGGTTCGCA
                                                                           2340
                                                                           2400
       TTATCAAACC CTTTCCTGCG CCCCAGACTC CAGGCCGCCT GCAGCCTGCC CCTGTGATCC
       CTTCGGCGCC AGCAGCTCCA AAACTGGACC ACCAGAGAAT GGACACCATC CAGGAAGACC
                                                                           2460
       CCAGCACAGA CTCCCATATG GACGAGGATG GGTTTGAGAA GGACCCCTTC CCAAATAGCA
20
       GCACAGCTGC CAAGTCATTT GAGGATCTCA CGGACCATCC GGTCGCCAGA AGTGAAAAAGG
                                                                           2580
       CTGCCTCCTT TAAACTGCAG CGTCAGAATC GTGTTAACAG CAAAGAAACA GAGTGCTAAT
                                                                           2640
       TTAGTTCTCA GCTCTTCTGA CTTAAGTGTG CAAAATATTT TTATAGATTT GACCTACAAA
                                                                           2700
       TCAATCACAG CTTGTATTTT GTGAAGACTG GGAAGTGACT TAGCAGATGC TGGTCATGTG
                                                                           2760
       TTTGAACTTC CTGCAGGTAA ACAGTTCTTG TGTGGTTTGG CCCTTCTCCT TTTGAAAAGG
                                                                           2820
25
       TAAGGTGAAA GTGAATCTAC TTATTTTGAG GCTTTCAGGT TTTAGTTTTT AAAATATCTT
                                                                           2880
       TTGACCTGTG GTGCAAAAGC AGAAAATACA GCTGGATTGG GTTATGAATA TTTACGTTTT
                                                                           2940
       TGTAAATTAA TCTTTTATAT TGATAACAGC ACTGACTAGG GAAATGATCA GTTTTTTTT
                                                                           3000
       ATACACTGTA ATGAACCGCT GAATATGAAG CATTTGGCAT TTATTTGTGA GAAAAGTGGA
                                                                           3060
                                                                           3120
       ATAGTTTTTT TTTTTTTTT TTTTTTTGC CTTCAACTAA AAACAAAGGA GATAAATTTA
30
       GTATACATTG TATCTAAATT GTGGGTCTAT TTCTAGTTAT TACCCAGAGT TTTTATGTAG
                                                                           3180
       CAGGGAAAAT ATATATCTAA ATTTAGAAAT CATTTGGGTT AATATGGCTC TTCATAATTC
                                                                           3240
       TAAGACTAAT GCTCAGAACC TAACCACTAC CTTACAGTGA GGGCTATACA TGGTAGCCAG
                                                                           3300
       TTGAATTTAT GGAATCTACC AACTGTTTAG GGCCCTGATT TGCTGGGCAG TTTTTCTGTA
                                                                           3360
       TTTTATAAGT ATCTTCATGT ATCCCTGTTA CTGATAGGGA TACATGTCTT AGAAAATTCA
                                                                           3420
35
       CTATTGGCTG GGAGTGGTGG CTCATGCCTG TAATCCCAGC ACTTGGAGAG GCTGAGGTTG
                                                                           3480
       CGCCACTACA CTCCAGCCTG GGTGACAGAG TGAGATCTGC CTC
       Seg ID NO: 555 Protein seguence
       Protein Accession #: NP 003174.2
40
                                        31
                                                    41
                                                               51
       MROSLLFLTS VVPFVLAPRP PDDPGFGPHQ RLEKLDSLLS DYDILSLSNI QQHSVRKRDL
       QTSTHVETLL TFSALKRHFK LYLTSSTERF SQNFKVVVVD GKNESEYTAK WQDFFTGHVV
                                                                            120
45
       GEPDSRVLAH IRDDDVIIRI NTDGAEYNIE PLWRFVNDTK DKRMLVYKSE DIKNVSRLQS
                                                                            180
       PKVCGYLKVD NEELLPKGLV DREPPEELVH RVKRRADPDP MKNTCKLLVV ADHRFYRYMG
                                                                            240
       RGEESTTTNY LIELIDRVDD IYRNTSWDNA GFKGYGIQIE QIRILKSPQE VKPGEKHYNM
                                                                            300
       AKSYPNEEKD AWDVKMLLEQ FSFDIAEEAS KVCLAHLFTY QDFDMGTLGL AYVGSPRANS
                                                                            360
       HGGVCPKAYY SPVGKKNIYL NSGLTSTKNY GKTILTKEAD LVTTHELGHN FGAEHDPDGL
                                                                            420
50
       AECAPNEDOG GKYVMYPIAV SGDHENNKMF SNCSKQSIYK TIESKAQECF QERSNKVCGN
       SRVDEGEECD PGIMYLNNDT CCNSDCTLKE GVQCSDRNSP CCKNCQFETA QKKCQEAINA
                                                                            540
       TCKGVSYCTG NSSECPPPGN AENDTVCLDL GKCKDGKCIP FCEREQQLES CACNETDNSC
                                                                            600
       KVCCRDLSGR CVPYVDAEQK NLFLRKGKPC TVGFCDMNGK CEKRVQDVIE RFWDFIDQLS
                                                                            660
       INTFGKFLAD NIVGSVLVFS LIFWIPFSIL VHCVDKKLDK QYESLSLFHP SNVEMLSSMD
                                                                            720
55
       SASVRIIKPF PAPQTPGRLQ PAPVIPSAPA APKLDHQRMD TIQEDPSTDS HMDEDGFEKD
       PFPNSSTAAK SFEDLTDHPV ARSEKAASFK LQRQNRVNSK ETEC
       Seq ID NO: 556 DNA sequence
       Nucleic Acid Accession #: NM_021832.1
60
       Coding sequence: 164..2248
                                        31
                                                    41
                                                               51
                             21
                  11
       TCGAGCCTGG CGGTAGAATC TTCCCAGTAG GCGGCGCGGG AGGAAAAGAG GATTGAGGGG
                                                                             60
65
       CTAGGCCGGG CGGATCCCGT CCTCCCCCGA TGTGAGCAGT TTTCCGAAAC CCCGTCAGGC
                                                                            120
       GAAGGCTGCC CAGAGAGGTG GAGTCGGTAG CGGGGCCGGG AACATGAGGC AGTCTCTCCT
                                                                            180
       ATTCCTGACC AGCGTGGTTC CTTTCGTGCT GGCGCCGCGA CCTCCGGATG ACCCGGGCTT
       CGGCCCCAC CAGAGACTCG AGAAGCTTGA TTCTTTGCTC TCAGACTACG ATATTCTCTC
                                                                            300
       TTTATCTAAT ATCCAGCAGC ATTCGGTAAG AAAAAGAGAT CTACAGACTT CAACACATGT
70
       AGAAACACTA CTAACTTTTT CAGCTTTGAA AAGGCATTTT AAATTATACC TGACATCAAG
                                                                            420
       TACTGAACGT TTTTCACAAA ATTTCAAGGT CGTGGTGGTG GATGGTAAAA ACGAAAGCGA
                                                                            480
       GTACACTGTA AAATGGCAGG ACTTCTTCAC TGGACACGTG GTTGGTGAGC CTGACTCTAG
                                                                            540
       GGTTCTAGCC CACATAAGAG ATGATGATGT TATAATCAGA ATCAACACAG ATGGGGCCGA
                                                                            600
       ATATAACATA GAGCCACTTT GGAGATTTGT TAATGATACC AAAGACAAAA GAATGTTAGT
75
       TTATAAATCT GAAGATATCA AGAATGTTTC ACGTTTGCAG TCTCCAAAAG TGTGTGGTTA
                                                                            720
       TTTAAAAGTG GATAATGAAG AGTTGCTCCC AAAAGGGTTA GTAGACAGAG AACCACCTGA
                                                                            780
       AGAGCTTGTT CATCGAGTGA AAAGAAGAGC TGACCCAGAT CCCATGAAGA ACACGTGTAA
                                                                            840
       ATTATTGGTG GTAGCAGATC ATCGCTTCTA CAGATACATG GGCAGAGGGG AAGAGAGTAC
                                                                            900
       AACTACAAAT TACTTAATAG AGCTAATTGA CAGAGTTGAT GACATCTATC GGAACACTTC
                                                                            960
80
       ATGGGATAAT GCAGGTTTTA AAGGCTATGG AATACAGATA GAGCAGATTC GCATTCTCAA
                                                                           1020
       GTCTCCACAA GAGGTAAAAC CTGGTGAAAA GCACTACAAC ATGGCAAAAA GTTACCCAAA
                                                                           1080
       TGAAGAAAAG GATGCTTGGG ATGTGAAGAT GTTGCTAGAG CAATTTAGCT TTGATATAGC
                                                                           1140
       TGAGGAAGCA TCTAAAGTTT GCTTGGCACA CCTTTTCACA TACCAAGATT TTGATATGGG
                                                                           1200
       AACTCTTGGA TTAGCTTATG TTGGCTCTCC CAGAGCAAAC AGCCATGGAG GTGTTTGTCC
                                                                           1260
85
       AAAGGCTTAT TATAGCCCAG TTGGGAAGAA AAATATCTAT TTGAATAGTG GTTTGACGAG
                                                                           1320
       CACAAAGAAT TATGGTAAAA CCATCCTTAC AAAGGAAGCT GACCTGGTTA CAACTCATGA
       ATTGGGACAT AATTTTGGAG CAGAACATGA TCCGGATGGT CTAGCAGAAT GTGCCCCGAA
                                                                           1440
```

```
TGAGGACCAG GGAGGGAAAT ATGTCATGTA TCCCATAGCT GTGAGTGGCG ATCACGAGAA
                                                                          1500
       CAATAAGATG TTTTCAAACT GCAGTAAACA ATCAATCTAT AAGACCATTG AAAGTAAGGC
                                                                          1560
       CCAGGAGTGT TTTCAAGAAC GCAGCAATAA AGTTTGTGGG AACTCGAGGG TGGATGAAGG
                                                                          1620
       AGAAGAGTGT GATCCTGGCA TCATGTATCT GAACAACGAC ACCTGCTGCA ACAGCGACTG
                                                                          1680
 5
                                                                          1740
       CACGTTGAAG GAAGGTGTCC AGTGCAGTGA CAGGAACAGT CCTTGCTGTA AAAACTGTCA
       GTTTGAGACT GCCCAGAAGA AGTGCCAGGA GGCGATTAAT GCTACTTGCA AAGGCGTGTC
                                                                          1800
       CTACTGCACA GGTAATAGCA GTGAGTGCCC GCCTCCAGGA AATGCTGAAG ATGACACTGT
       TTGCTTGGAT CTTGGCAAGT GTAAGGATGG GAAATGCATC CCTTTCTGCG AGAGGGAACA
                                                                          1920
       GCAGCTGGAG TCCTGTGCAT GTAATGAAAC TGACAACTCC TGCAAGGTGT GCTGCAGGGA
                                                                          1980
10
       CCTTTCCGGC CGCTGTGTGC CCTATGTCGA TGCTGAACAA AAGAACTTAT TTTTGAGGAA
                                                                          2040
       AGGAAAGCCC TGTACAGTAG GATTTTGTGA CATGAATGGC AAATGTGAGA AACGAGTACA
                                                                          2100
       GGATGTAATT GAACGATTTT GGGATTTCAT TGACCAGCTG AGCATCAATA CTTTTGGAAA
                                                                          2160
       GTTTTTAGCA GACAACATCG TTGGGTCTGT CCTGGTTTTC TCCTTGATAT
                                                              TTTGGATTCC
                                                                           2220
       TTTCAGCATT CTTGTCCATT GTGTGTAACG TCGAAATGCT GAGCAGCATG GATTCTGCAT
                                                                          2280
15
       CGGTTCGCAT TATCAAACCC TTTCCTGCGC CCCAGACTCC AGGCCGCCTG CAGCCTGCCC
                                                                          2340
       CTGTGATCCC TTCGGCGCCA GCAGCTCCAA AACTGGACCA CCAGAGAATG GACACCATCC
                                                                          2400
       AGGAAGACCC CAGCACAGAC TCACATATGG ACGAGGATGG GTTTGAGAAG GACCCCTTCC
                                                                          2460
       CAAATAGCAG CACAGCTGCC AAGTCATTTG AGGATCTCAC GGACCATCCG GTCACCAGAA
                                                                          2520
       GTGAAAAGGC TGCCTCCTTT AAACTGCAGC GTCAGAATCG TGTTGACAGC AAAGAAACAG
                                                                           2580
20
       AGTGCTAATT TAGTTCTCAG CTCTTCTGAC TTAAGTGTGC AAAATATTTT TATAGATTTG
                                                                          2640
       ACCTACAATC AATCACAGCT TATATTTTGT GAAGACTGGG AAGTGACTTA GCAGATGCTG
                                                                          2700
       GTCATGTGTT TGAACTTCCT GCAGGTAAAC AGTTCTTGTG TGGTTTGGCC CTTCTCCTTT
                                                                          2760
       TGAAAAGGTA AGGTGAAGGT GAATCTAGCT TATTTTGAGG CTTTCAGGTT TTAGTTTTTA
                                                                          2820
       AAATATCTTT TGACCTGTGG TGCAAAAGCA GAAAATACAG CTGGATTGGG TTATGAGTAT
                                                                          2880
25
       TTACGTTTTT GTAAATTAAT CTTTTATATT GATAACAGGC ACTGACTAGG GAAATGATCA
                                                                           2940
       GTTTTTTTT ATACACTGTA ATGAACCGCT GAATATGAAG CATTTGGCAT TTATTTGTGA
                                                                          3000
       3060
       GATAAATTTA GTATACATTG TATCTAAATT GTGGGTCTAT TTCTAGTTAT TACCCAGAGT
                                                                          3120
       TTTTATGTAG CAGGGAAAAT ATATATCTAA ATTTAGAAAT CATTTGGGTT AATATGGCTC
                                                                          3180
30
       TTCATAATTC TAAGACTAAT GCTCAGAACC TAACCACTAC CTTACAGTGA GGGCTATACA
                                                                          3240
       TGGTAGCCAG TTGAATTTAT GGAATCTACC AACTGTTTAG GGCCCTGATT TGCTGGGCAG
                                                                          3300
       TTTTTCTGTA TTTTATAAGT ATCTTCATGT ATCCCTGTTA CTGATAGGGA TACATGTCTT
                                                                           3360
       AGAAAATTCA CTATTGGCTG GGAGTGGTGG CTCATGCCTG TAATCCCAGC ACTTGGAGAG
                                                                          3420
        3421 GCTGAGGTTG CGCCACTACA CTCCAGCCTG GGTGACAGAG TGAGATCTGC CTC
35
       Seg ID NO: 557 Protein sequence
       Protein Accession #: NP_068604.1
                                                    41
                                                               51
40
       MRQSLLFLTS VVPFVLAPRP PDDPGFGPHQ RLEKLDSLLS DYDILSLSNI QQHSVRKRDL
                                                                             60
       QTSTHVETLL TFSALKRHFK LYLTSSTERF SQNFKVVVVD GKNESEYTVK WQDFFTGHVV
                                                                            120
       GEPDSRVLAH IRDDDVIIRI NTDGAEYNIE PLWRFVNDTK DKRMLVYKSE DIKNVSRLQS
                                                                            240
       PKVCGYLKVD NEELLPKGLV DREPPEELVH RVKRRADPDP MKNTCKLLVV ADHRFYRYMG
45
       RGEESTTTNY LIELIDRVDD IYRNTSWDNA GFKGYGIQIE QIRILKSPQE VKPGEKHYNM
                                                                            300
       AKSYPNEEKD AWDVKMLLEQ FSFDIAEEAS KVCLAHLFTY QDFDMGTLGL AYVGSPRANS
                                                                            360
       HGGVCPKAYY SPVGKKNIYL NSGLTSTKNY GKTILTKEAD LVTTHELGHN FGAEHDPDGL
                                                                            420
       AECAPNEDQG GKYVMYPIAV SGDHENNKMF SNCSKQSIYK TIESKAQECF QERSNKVCGN
                                                                            480
       SRVDEGEECD PGIMYLNNDT CCNSDCTLKE GVQCSDRNSP CCKNCQFETA QKKCQEAINA
50
       TCKGVSYCTG NSSECPPPGN AEDDTVCLDL GKCKDGKCIP FCEREQQLES CACNETDNSC
                                                                            600
       KVCCRDLSGR CVPYVDAEQK NLFLRKGKPC TVGFCDMNGK CEKRVQDVIE RFWDFIDQLS
                                                                            660
       INTEGKELAD NIVGSVLVFS LIFWIPFSIL VHCV
       Seg ID NO: 558 DNA seguence
55
       Nucleic Acid Accession #: NM_004994.1
       Coding sequence: 20..2143
                                                    41
                                                               51
                                        31
60
       AGACACCTCT GCCCTCACCA TGAGCCTCTG GCAGCCCCTG GTCCTGGTGC TCCTGGTGCT
                                                                             60
       GGGCTGCTGC TTTGCTGCCC CCAGACAGCG CCAGTCCACC CTTGTGCTCT TCCCTGGAGA
       CCTGAGAACC AATCTCACCG ACAGGCAGCT GGCAGAGGAA TACCTGTACC GCTATGGTTA
                                                                            180
       CACTCGGGTG GCAGAGATGC GTGGAGAGTC GAAATCTCTG GGGCCTGCGC TGCTGCTTCT
                                                                            240
       CCAGAAGCAA CTGTCCCTGC CCGAGACCGG TGAGCTGGAT AGCGCCACGC TGAAGGCCAT
                                                                            300
65
       GCGAACCCCA CGGTGCGGGG TCCCAGACCT GGGCAGATTC CAAACCTTTG AGGGCGACCT
                                                                            360
       CAAGTGGCAC CACCACAACA TCACCTATTG GATCCAAAAC TACTCGGAAG ACTTGCCGCG
                                                                            420
       GGCGGTGATT GACGACGCCT TTGCCCGCGC CTTCGCACTG TGGAGCGCGG TGACGCCGCT
       CACCTTCACT CGCGTGTACA GCCGGGACGC AGACATCGTC ATCCAGTTTG GTGTCGCGGA
                                                                            540
       GCACGGAGAC GGGTATCCCT TCGACGGGAA GGACGGGCTC CTGGCACACG CCTTTCCTCC
                                                                            600
70
       TGGCCCCGGC ATTCAGGGAG ACGCCCATTT CGACGATGAC GAGTTGTGGT CCCTGGGCAA
                                                                            660
       GGGCGTCGTG GTTCCAACTC GGTTTGGAAA CGCAGATGGC GCGGCCTGCC ACTTCCCCTT CATCTTCGAG GGCCGCTCCT ACTCTGCCTG CACCACCGAC GGTCGCTCCG ACGGCTTGCC
                                                                            720
                                                                            780
       CTGGTGCAGT ACCACGGCCA ACTACGACAC CGACGACCGG TTTGGCTTCT GCCCCAGCGA
                                                                            840
       GAGACTCTAC ACCCGGGACG GCAATGCTGA TGGGAAACCC TGCCAGTTTC CATTCATCTT
                                                                            900
75
       CCAAGGCCAA TCCTACTCCG CCTGCACCAC GGACGGTCGC TCCGACGGCT ACCGCTGGTG
                                                                            960
       CGCCACCACC GCCAACTACG ACCGGGACAA GCTCTTCGGC TTCTGCCCGA CCCGAGCTGA
                                                                          1020
       CTCGACGGTG ATGGGGGGCA ACTCGGCGGG GGAGCTGTGC GTCTTCCCCT TCACTTTCCT
                                                                           1080
       GGGTAAGGAG TACTCGACCT GTACCAGCGA GGGCCGCGGA GATGGGCGCC TCTGGTGCGC
                                                                           1140
       TACCACCTCG AACTTTGACA GCGACAAGAA GTGGGGGCTTC TGCCCGGACC AAGGATACAG
80
       TTTGTTCCTC GTGGCGGCGC ATGAGTTCGG CCACGCGCTG GGCTTAGATC ATTCCTCAGT
                                                                           1260
       GCCGGAGGCG CTCATGTACC CTATGTACCG CTTCACTGAG GGGCCCCCCT TGCATAAGGA
                                                                           1320
       CGACGTGAAT GGCATCCGGC ACCTCTATGG TCCTCGCCCT GAACCTGAGC CACGGCCTCC
                                                                           1380
       AACCACCACC ACACCGCAGC CCACGGCTCC CCCGACGGTC TGCCCCACCG GACCCCCCAC
                                                                           1440
       TGTCCACCC TCAGAGCGCC CCACAGCTGG CCCCACAGGT CCCCCCTCAG CTGGCCCAC
                                                                           1500
85
       AGGTCCCCC ACTGCTGGCC CTTCTACGGC CACTACTGTG CCTTTGAGTC CGGTGGACGA
                                                                           1560
       TGCCTGCAAC GTGAACATCT TCGACGCCAT CGCGGAGATT GGGAACCAGC TGTATTTGTT
                                                                           1620
       CAAGGATGGG AAGTACTGGC GATTCTCTGA GGGCAGGGGG AGCCGGCCGC AGGGCCCCTT
                                                                           1680
```

```
CCTTATCGCC GACAAGTGGC CCGCGCTGCC CCGCAAGCTG GACTCGGTCT TTGAGGAGCC
                                                                           1740
        GCTCTCCAAG AAGCTTTTCT TCTTCTCTGG GCGCCAGGTG TGGGTGTACA CAGGCGCGTC
                                                                           1800
        GGTGCTGGGC CCGAGGCGTC TGGACAAGCT GGGCCTGGGA GCCGACGTGG CCCAGGTGAC
                                                                           1860
        CGGGGCCCTC CGGAGTGGCA GGGGGAAGAT GCTGCTGTTC AGCGGGCGGC GCCTCTGGAG
                                                                           1920
  5
       GTTCGACGTG AAGGCGCAGA TGGTGGATCC CCGGAGCGCC AGCGAGGTGG ACCGGATGTT
                                                                           1980
        CCCCGGGGTG CCTTTGGACA CGCACGACGT CTTCCAGTAC CGAGAGAAAG CCTATTTCTG
                                                                           2040
        CCAGGACCGC TTCTACTGGC GCGTGAGTTC CCGGAGTGAG TTGAACCAGG TGGACCAAGT
                                                                           2100
        GGGCTACGTG ACCTATGACA TCCTGCAGTG CCCTGAGGAC TAGGGCTCCC GTCCTGCTTT
                                                                           2160
       GCAGTGCCAT GTAAATCCCC ACTGGGACCA ACCCTGGGGA AGGAGCCAGT TTGCCGGATA
10
       CAAACTGGTA TTCTGTTCTG GAGGAAAGGG AGGAGTGGAG GTGGGCTGGG CCCTCTCTTC
                                                                           2280
        TCACCTTTGT TTTTTGTTGG AGTGTTTCTA ATAAACTTGG ATTCTCTAAC CTTT
       Seq ID NO: 559 Protein sequence
       Protein Accession #: NP_004985.1
15
                                         31
                                                    41
                                                               51
       MSLWQPLVLV LLVLGCCFAA PRQROSTLVL FPGDLRTNLT DROLAEEYLY RYGYTRVAEM
                                                                             60
       RGESKSLGPA LLLLQKQLSL PETGELDSAT LKAMRTPRCG VPDLGRFQTF EGDLKWHHHN
                                                                            120
20
        ITYWIQNYSE DLPRAVIDDA FARAFALWSA VTPLTFTRVY SRDADIVIOF GVAEHGDGYP
                                                                            180
       FDGKDGLLAH AFPPGPGIQG DAHFDDDELW SLGKGVVVPT RFGNADGAAC HFPFIFEGRS
       YSACTTDGRS DGLPWCSTTA NYDTDDRFGF CPSERLYTRD GNADGKPCOF PFIFOGOSYS
                                                                            300
       ACTTDGRSDG YRWCATTANY DRDKLFGFCP TRADSTVMGG NSAGELCVFP FTFLGKEYST
                                                                            360
       CTSEGRGDGR LWCATTSNFD SDKKWGFCPD QGYSLFLVAA HEFGHALGLD HSSVPEALMY
                                                                            420
25
        PMYRFTEGPP LHKDDVNGIR HLYGPRPEPE PRPPTTTTPQ PTAPPTVCPT GPPTVHPSER
                                                                            480
       PTAGPTGPPS AGPTGPPTAG PSTATTVPLS PVDDACNVNI FDAIAEIGNQ LYLFKDGKYW
                                                                            540
       RFSEGRGSRP QGPFLIADKW PALPRKLDSV FEEPLSKKLF FFSGRQVWVY TGASVLGPRR
                                                                            600
       LDKLGLGADV AQVTGALRSG RGKMLLFSGR RLWRFDVKAQ MVDPRSASEV DRMFPGVPLD
                                                                            660
       THDVFOYREK AYFCODRFYW RVSSRSELNO VDOVGYVTYD ILOCPED
30
       Seg ID NO: 560 DNA sequence
       Nucleic Acid Accession #: NM_000213.1
       Coding sequence: 127..5385
35
                                                    41
                                         31
                                                               51
       CGCCCGCGC CTGCAGCCCC ATCTCCTAGC GGCAGCCCAG GCGCGGAGGG AGCGAGTCCG
                                                                             60
       CCCCGAGGTA GGTCCAGGAC GGGCGCACAG CAGCAGCCGA GGCTGGCCGG GAGAGGGAGG
                                                                            120
       AAGAGGATGG CAGGGCCACG CCCCAGCCCA TGGGCCAGGC TGCTCCTGGC AGCCTTGATC
                                                                            180
40
       AGCGTCAGCC TCTCTGGGAC CTTGGCAAAC CGCTGCAAGA AGGCCCCAGT GAAGAGCTGC
       ACGGAGTGTG TCCGTGTGGA TAAGGACTGC GCCTACTGCA CAGACGAGAT GTTCAGGGAC
                                                                            300
       CGGCGCTGCA ACACCCAGGC GGAGCTGCTG GCCGCGGCT GCCAGCGGGA GAGCATCGTG
                                                                            360
       GTCATGGAGA GCAGCTTCCA AATCACAGAG GAGACCCAGA TTGACACCAC CCTGCGGCGC
                                                                            420
       AGCCAGATGT CCCCCCAAGG CCTGCGGGTC CGTCTGCGGC CCGGTGAGGA GCGGCATTTT
                                                                            480
45
       GAGCTGGAGG TGTTTGAGCC ACTGGAGAGC CCCGTGGACC TGTACATCCT
                                                               CATGGACTTC
                                                                            540
       TCCAACTCCA TGTCCGATGA TCTGGACAAC CTCAAGAAGA TGGGGCAGAA CCTGGCTCGG
                                                                            600
       GTCCTGAGCC AGCTCACCAG CGACTACACT ATTGGATTTG GCAAGTTTGT GGACAAAGTC
                                                                            660
       AGCGTCCCGC AGACGGACAT GAGGCCTGAG AAGCTGAAGG AGCCCTGGCC CAACAGTGAC
                                                                            720
       CCCCCCTTCT CCTTCAAGAA CGTCATCAGC CTGACAGAAG ATGTGGATGA GTTCCGGAAT
                                                                            780
50
       AAACTGCAGG GAGAGCGGAT CTCAGGCAAC CTGGATGCTC CTGAGGGCGG CTTCGATGCC
                                                                            840
       ATCCTGCAGA CAGCTGTGTG CACGAGGGAC ATTGGCTGGC GCCCGGACAG CACCCACCTG
                                                                            900
       CTGGTCTTCT CCACCGAGTC AGCCTTCCAC TATGAGGCTG ATGGCGCCAA CGTGCTGGCT
                                                                            960
       GGCATCATGA GCCGCAACGA TGAACGGTGC CACCTGGACA CCACGGGCAC CTACACCCAG
                                                                           1020
       TACAGGACAC AGGACTACCC GTCGGTGCCC ACCCTGGTGC GCCTGCTCGC CAAGCACAAC
                                                                           1080
55
       ATCATCCCCA TCTTTGCTGT CACCAACTAC TCCTATAGCT ACTACGAGAA GCTTCACACC
                                                                           1140
       TATTTCCCTG TCTCCTCACT GGGGGTGCTG CAGGAGGACT CGTCCAACAT CGTGGAGCTG
                                                                           1200
       CTGGAGGAGG CCTTCAATCG GATCCGCTCC AACCTGGACA TCCGGGCCCT AGACAGCCCC
                                                                           1260
       CGAGGCCTTC GGACAGAGGT CACCTCCAAG ATGTTCCAGA AGACGAGGAC TGGGTCCTTT
                                                                           1320
       CACATCCGGC GGGGGAAGT GGGTATATAC CAGGTGCAGC TGCGGGCCCT TGAGCACGTG
                                                                           1380
60
       GATGGGACGC ACGTGTGCCA GCTGCCGGAG GACCAGAAGG GCAACATCCA TCTGAAACCT
                                                                           1440
       TCCTTCTCCG ACGGCCTCAA GATGGACGCG GGCATCATCT GTGATGTGTG CACCTGCGAG
                                                                           1500
       CTGCAAAAAG AGGTGCGGTC AGCTCGCTGC AGCTTCAACG GAGACTTCGT GTGCGGACAG
                                                                           1560
       TGTGTGTGCA GCGAGGGCTG GAGTGGCCAG ACCTGCAACT GCTCCACCGG CTCTCTGAGT
                                                                           1620
       GACATTCAGC CCTGCCTGCG GGAGGGCGAG GACAAGCCGT GCTCCGGCCG TGGGGAGTGC
                                                                           1680
65
                                                                           1740
       CAGTGCGGC ACTGTGTGT CTACGGCGAA GGCCGCTACG AGGGTCAGTT CTGCGAGTAT
       GACAACTTCC AGTGTCCCCG CACTTCCGGG TTCCTCTGCA ATGACCGAGG ACGCTGCTCC
                                                                           1800
       ATGGGCCAGT GTGTGTGA GCCTGGTTGG ACAGGCCCAA GCTGTGACTG TCCCCTCAGC
                                                                           1860
       AATGCCACCT GCATCGACAG CAATGGGGGC ATCTGTAATG GACGTGGCCA CTGTGAGTGT
                                                                           1920
       GGCCGCTGCC ACTGCCACCA GCAGTCGCTC TACACGGACA CCATCTGCGA GATCAACTAC
                                                                           1980
70
       TCGGCGATCC ACCCGGGCCT CTGCGAGGAC CTACGCTCCT GCGTGCAGTG CCAGGCGTGG
       GGCACCGGCG AGAAGAAGGG GCGCACGTGT GAGGAATGCA ACTTCAAGGT CAAGATGGTG
                                                                           2100
       GACGAGCTTA AGAGAGCCGA GGAGGTGGTG GTGCGCTGCT CCTTCCGGGA CGAGGATGAC
                                                                           2160
       GACTGCACCT ACAGCTACAC CATGGAAGGT GACGGCGCCC CTGGGCCCAA CAGCACTGTC
                                                                           2220
       CTGGTGCACA AGAAGAAGGA CTGCCCTCCG GGCTCCTTCT
                                                   GGTGGCTCAT CCCCCTGCTC
                                                                           2280
75
       CTCCTCCTCC TGCCGCTCCT GGCCCTGCTA CTGCTGCTAT GCTGGAAGTA CTGTGCCTGC
                                                                           2340
       TGCAAGGCCT GCCTGGCACT TCTCCCGTGC TGCAACCGAG GTCACATGGT GGGCTTTAAG
       GAAGACCACT ACATGCTGCG GGAGAACCTG ATGGCCTCTG ACCACTTGGA CACGCCCATG
                                                                           2460
       CTGCGCAGCG GGAACCTCAA GGGCCGTGAC GTGGTCCGCT GGAAGGTCAC CAACAACATG
                                                                          2520
       CAGCGGCCTG GCTTTGCCAC TCATGCCGCC AGCATCAACC CCACAGAGCT GGTGCCCTAC
                                                                           2580
80
       GGGCTGTCCT TGCGCCTGGC CCGCCTTTGC ACCGAGAACC TGCTGAAGCC TGACACTCGG
                                                                           2640
       GAGTGCGCCC AGCTGCGCCA GGAGGTGGAG GAGAACCTGA ACGAGGTCTA CAGGCAGATC
                                                                           2700
       TCCGGTGTAC ACAAGCTCCA GCAGACCAAG TTCCGGCAGC AGCCCAATGC CGGGAAAAAG
       CAAGACCACA CCATTGTGGA CACAGTGCTG ATGGCGCCCC GCTCGGCCAA GCCGGCCCTG
                                                                           2820
       CTGAAGCTTA CAGAGAAGCA GGTGGAACAG AGGGCCTTCC ACGACCTCAA GGTGGCCCC
                                                                           2880
85
       GGCTACTACA CCCTCACTGC AGACCAGGAC GCCCGGGGCA TGGTGGAGTT CCAGGAGGGC
                                                                           2940
       GTGGAGCTGG TGGACGTACG GGTGCCCCTC TTTATCCGGC CTGAGGATGA CGACGAGAAG
                                                                           3000
       CAGCTGCTGG TGGAGGCCAT CGACGTGCCC GCAGGCACTG CCACCCTCGG CCGCCGCCTG
```

```
GTAAACATCA CCATCATCAA GGAGCAAGCC AGAGACGTGG TGTCCTTTGA GCAGCCTGAG
                                                                           3120
       TTCTCGGTCA GCCGCGGGGA CCAGGTGGCC CGCATCCCTG TCATCCGGCG TGTCCTGGAC
                                                                           3180
       GGCGGGAAGT CCCAGGTCTC CTACCGCACA CAGGATGGCA CCGCGCAGGG CAACCGGGAC
                                                                           3240
       TACATCCCCG TGGAGGGTGA GCTGCTGTTC CAGCCTGGGG AGGCCTGGAA AGAGCTGCAG
                                                                           3300
 5
       GTGAAGCTCC TGGAGCTGCA AGAAGTTGAC TCCCTCCTGC GGGGCCGCCA GGTCCGCCGT
                                                                           3360
       TTCCACGTCC AGCTCAGCAA CCCTAAGTTT GGGGCCCACC TGGGCCAGCC CCACTCCACC
                                                                           3420
       ACCATCATCA TCAGGGACCC AGATGAACTG GACCGGAGCT TCACGAGTCA GATGTTGTCA
       TCACAGCCAC CCCCTCACGG CGACCTGGGC GCCCCGCAGA ACCCCAATGC TAAGGCCGCT
                                                                           3540
       GGGTCCAGGA AGATCCATTT CAACTGGCTG CCCCCTTCTG GCAAGCCAAT GGGGTACAGG
                                                                           3600
10
       GTAAAGTACT GGATTCAGGG TGACTCCGAA TCCGAAGCCC ACCTGCTCGA CAGCAAGGTG
                                                                           3660
       CCCTCAGTGG AGCTCACCAA CCTGTACCCG TATTGCCACT ATGAGATGAA GGTGTGCGCC TACGGGGCTC AGGGCGAGGG ACCCTACAGC TCCCTGGTGT CCTGCCGCAC CCACCAGGAA
                                                                           3720
       GTGCCCAGCG AGCCAGGGCG TCTGGCCTTC AATGTCGTCT CCTCCACGGT GACCCAGCTG
                                                                           3840
       AGCTGGGCTG AGCCGGCTGA GACCAACGGT GAGATCACAG CCTACGAGGT CTGCTATGGC
                                                                           3900
15
       CTGGTCAACG ATGACAACCG ACCTATTGGG CCCATGAAGA AAGTGCTGGT TGACAACCCT
                                                                           3960
       AAGAACCGGA TGCTGCTTAT TGAGAACCTT CGGGAGTCCC AGCCCTACCG CTACACGGTG
                                                                           4020
       AAGGCGCGCA ACGGGGCCGG CTGGGGGCCT GAGCGGGAGG CCATCATCAA CCTGGCCACC
                                                                           4080
       CAGCCCAAGA GGCCCATGTC CATCCCCATC ATCCCTGACA TCCCTATCGT GGACGCCCAG
                                                                           4140
       AGCGGGGAGG ACTACGACAG CTTCCTTATG TACAGCGATG ACGTTCTACG CTCTCCATCG
20
       GGCAGCCAGA GGCCCAGCGT CTCCGATGAC ACTGAGCACC TGGTGAATGG CCGGATGGAC
                                                                           4260
       TTTGCCTTCC CGGGCAGCAC CAACTCCCTG CACAGGATGA CCACGACCAG TGCTGCTGCC
                                                                           4320
       TATGGCACCC ACCTGAGCCC ACACGTGCCC CACCGCGTGC TAAGCACATC CTCCACCCTC
                                                                           4380
       ACACGGGACT ACAACTCACT GACCCGCTCA GAACACTCAC ACTCGACCAC ACTGCCGAGG
                                                                           4440
       GACTACTCCA CCCTCACCTC CGTCTCCTCC CACGACTCTC GCCTGACTGC TGGTGTGCCC
                                                                           4500
25
       GACACGCCCA CCCGCCTGGT GTTCTCTGCC CTGGGGCCCA CATCTCTCAG AGTGAGCTGG
                                                                            4560
       CAGGAGCCGC GGTGCGAGCG GCCGCTGCAG GGCTACAGTG TGGAGTACCA GCTGCTGAAC
                                                                           4620
       GGCGGTGAGC TGCATCGGCT CAACATCCCC AACCCTGCCC AGACCTCGGT GGTGGTGGAA
                                                                           4680
       GACCTCCTGC CCAACCACTC CTACGTGTTC CGCGTGCGGG CCCAGAGCCA GGAAGGCTGG
                                                                            4740
       GGCCGAGAGC GTGAGGGTGT CATCACCATT GAATCCCAGG TGCACCCGCA GAGCCCACTG
                                                                            4800
30
       TGTCCCCTGC CAGGCTCCGC CTTCACTTTG AGCACTCCCA GTGCCCCAGG CCCGCTGGTG
                                                                           4860
       TTCACTGCCC TGAGCCCAGA CTCGCTGCAG CTGAGCTGGG AGCGGCCACG GAGGCCCAAT
                                                                            4920
       GGGGATATCG TCGGCTACCT GGTGACCTGT GAGATGGCCC AAGGAGGAGG GCCAGCCACC
                                                                           4980
       GCATTCCGGG TGGATGGAGA CAGCCCCGAG AGCCGGCTGA CCGTGCCGGG CCTCAGCGAG
                                                                           5040
       AACGTGCCCT ACAAGTTCAA GGTGCAGGCC AGGACCACTG AGGGCTTCGG GCCAGAGCGC
                                                                           5100
35
       GAGGGCATCA TCACCATAGA GTCCCAGGAT GGAGGACCCT TCCCGCAGCT GGGCAGCCGT
                                                                           5160
       GCCGGGCTCT TCCAGCACCC GCTGCAAAGC GAGTACAGCA GCATCACCAC CACCCACACC
       AGCGCCACCG AGCCCTTCCT AGTGGATGGG CCGACCCTGG GGGCCCAGCA CCTGGAGGCA
                                                                            5280
       GGCGGCTCCC TCACCCGGCA TGTGACCCAG GAGTTTGTGA GCCGGACACT GACCACCAGC
                                                                           5340
       GGAACCCTTA GCACCCACAT GGACCAACAG TTCTTCCAAA CTTGACCGCA CCCTGCCCCA
                                                                            5400
40
       CCCCCGCCAT GTCCCACTAG GCGTCCTCCC GACTCCTCTC CCGGAGCCTC CTCAGCTACT
                                                                           5460
                                                                           5520
       CCATCCTTGC ACCCCTGGGG GCCCAGCCCA CCCGCATGCA CAGAGCAGGG GCTAGGTGTC
       TCCTGGGAGG CATGAAGGGG GCAAGGTCCG TCCTCTGTGG GCCCAAACCT ATTTGTAACC
                                                                            5580
       AAAGAGCTGG GAGCACACA AGGACCCAGC CTTTGTTCTG CACTTAATAA ATGGTTTTGC
       TACTG
45
       Seq ID NO: 561 Protein sequence
       Protein Accession #: NP_000204.1
                                         31
                                                    41
                              21
50
       MAGPRPSPWA RLLLAALISV SLSGTLANRC KKAPVKSCTE CVRVDKDCAY CTDEMFRDRR
                                                                             60
       CNTQAELLAA GCQRESIVVM ESSFQITEET QIDTTLRRSQ MSPQGLRVRL RPGEERHFEL
                                                                             120
       EVFEPLESPV DLYILMDFSN SMSDDLDNLK KMGQNLARVL SQLTSDYTIG FGKFVDKVSV
                                                                             180
       PQTDMRPEKL KEPWPNSDPP FSFKNVISLT EDVDEFRNKL QGERISGNLD APEGGFDAIL
                                                                             240
55
       OTAVCTRDIG WRPDSTHLLV FSTESAFHYE ADGANVLAGI MSRNDERCHL DTTGTYTQYR
       TODYPSVPTL VRLLAKHNII PIFAVTNYSY SYYEKLHTYF PVSSLGVLQE DSSNIVELLE
                                                                             360
       EAFNRIRSNL DIRALDSPRG LRTEVTSKMF QKTRTGSFHI RRGEVGIYQV QLRALEHVDG
                                                                             420
       THVCQLPEDQ KGNIHLKPSF SDGLKMDAGI ICDVCTCELQ KEVRSARCSF NGDFVCGQCV
                                                                             480
       CSEGWSGQTC NCSTGSLSDI QPCLREGEDK PCSGRGECQC GHCVCYGEGR YEGQFCEYDN
                                                                             540
60
       FQCPRTSGFL CNDRGRCSMG QCVCEPGWTG PSCDCPLSNA TCIDSNGGIC NGRGHCECGR
                                                                             600
       CHCHQQSLYT DTICEINYSA IHPGLCEDLR SCVQCQAWGT GEKKGRTCEE CNFKVKMVDE
       LKRAEEVVVR CSFRDEDDDC TYSYTMEGDG APGPNSTVLV HKKKDCPPGS FWWLIPLLLL
                                                                             720
       LLPLLALLLL LCWKYCACCK ACLALLPCCN RGHMVGFKED HYMLRENLMA SDHLDTPMLR
                                                                             780
       SGNLKGRDVV RWKVTNNMQR PGFATHAASI NPTELVPYGL SLRLARLCTE NLLKPDTREC
                                                                             840
65
       AQLRQEVEEN LNEVYRQISG VHKLQQTKFR QQPNAGKKQD HTIVDTVLMA PRSAKPALLK
                                                                             900
       LTEKQVEQRA FHDLKVAPGY YTLTADQDAR GMVEFQEGVE LVDVRVPLFI RPEDDDEKQL
                                                                             960
       LVEAIDVPAG TATLGRRLVN ITIIKEOARD VVSFEQPEFS VSRGDQVARI PVIRRVLDGG
                                                                            1020
       KSQVSYRTQD GTAQGNRDYI PVEGELLFQP GEAWKELQVK LLELQEVDSL LRGRQVRRFH
                                                                            1080
       VQLSNPKFGA HLGQPHSTTI IIRDPDELDR SFTSQMLSSQ PPPHGDLGAP QNPNAKAAGS
                                                                            1140
70
       RKIHFNWLPP SGKPMGYRVK YWIQGDSESE AHLLDSKVPS VELTNLYPYC DYEMKVCAYG
                                                                            1200
       AQGEGPYSSL VSCRTHQEVP SEPGRLAFNV VSSTVTQLSW AEPAETNGEI TAYEVCYGLV
                                                                            1260
       NDDNRPIGPM KKVLVDNPKN RMLLIENLRE SQPYRYTVKA RNGAGWGPER EAIINLATQP
                                                                            1320
       KRPMSIPIIP DIPIVDAOSG EDYDSFLMYS DDVLRSPSGS QRPSVSDDTE HLVNGRMDFA
                                                                            1380
       FPGSTNSLHR MTTTSAAAYG THLSPHVPHR VLSTSSTLTR DYNSLTRSEH SHSTTLPRDY
                                                                            1440
75
       STLTSVSSHD SRLTAGVPDT PTRLVFSALG PTSLRVSWQE PRCERPLQGY SVEYQLLNGG
                                                                            1500
       ELHRLNIPNP AQTSVVVEDL LPNHSYVFRV RAQSQEGWGR EREGVITIES QVHPQSPLCP
                                                                            1560
       LPGSAFTLST PSAPGPLVFT ALSPDSLQLS WERPRRPNGD IVGYLVTCEM AQGGGPATAF
                                                                            1620
       RVDGDSPESR LTVPGLSENV PYKFKVQART TEGFGPEREG IITIESQDGG PFPQLGSRAG
                                                                            1680
       LFOHPLOSEY SSITTTHTSA TEPFLVDGPT LGAQHLEAGG SLTRHVTQEF VSRTLTTSGT
80
       LSTHMDOOFF OT
       Seq ID NO: 562 DNA sequence
       Nucleic Acid Accession #: NM_013332.1
       Coding sequence: 1..63
85
                                                    41
                  11
```

```
GCACGAGGGC GCTTTTGTCT CCGGTGAGTT TTGTGGCGGG AAGCTTCTGC GCTGGTGCTT
                                                                             60
       AGTAACCGAC TTTCCTCCGG ACTCCTGCAC GACCTGCTCC TACAGCCGGC GATCCACTCC
                                                                            120
       CGGCTGTTCC CCCGGAGGGT CCAGAGGCCT TTCAGAAGGA GAAGGCAGCT CTGTTTCTCT
                                                                            180
       GCAGAGGAGT AGGGTCCTTT CAGCCATGAA GCATGTGTTG AACCTCTACC TGTTAGGTGT
                                                                            240
 5
       GGTACTGACC CTACTCTCCA TCTTCGTTAG AGTGATGGAG TCCCTAGAAG GCTTACTAGA
                                                                            300
       GAGCCCATCG CCTGGGACCT CCTGGACCAC CAGAAGCCAA CTAGCCAACA CAGAGCCCAC
                                                                            360
       CAAGGGCCTT CCAGACCATC CATCCAGAAG CATGTGATAA GACCTCCTTC CATACTGGCC
                                                                            420
       ATATTTTGGA ACACTGACCT AGACATGTCC AGATGGGAGT CCCATTCCTA GCAGACAAGC
                                                                            480
       TGAGCACCGT TGTAACCAGA GAACTATTAC TAGGCCTTGA AGAACCTGTC TAACTGGATG
                                                                            540
10
                                                                            600
       CTCATTGCCT GGGCAAGGCC TGTTTAGGCC GGTTGCGGTG GCTCATGCCT GTAATCCTAG
       CACTTTGGGA GGCTGAGGTG GGTGGATCAC CTGAGGTCAG GAGTTCGAGA CCAGCCTCGC
                                                                            660
       CAACATGGCG AAACCCCATC TCTACTAAAA ATACAAAAGT TAGCTGGGTG TGGTGGCAGA
                                                                            720
       GGCCTGTAAT CCCAGTTCCT TGGGAGGCTG AGGCGGGAGA ATTGCTTGAA CCCGGGGACG
                                                                            780
       GAGGTTGCAG TGAACCGAGA TCGCACTGCT GTACCCAGCC TGGGCCACAG TGCAAGACTC
                                                                            840
15
       CATCTCAAAA AAAAAAGAA AAGAAAAAGC CTGTTTAATG CACAGGTGTG AGTGGATTGC
                                                                            900
       TTATGGCTAT GAGATAGGTT GATCTCGCCC TTACCCCGGG GTCTGGTGTA TGCTGTGCTT
                                                                            960
       TCCTCAGCAG TATGGCTCTG ACATCTCTTA GATGTCCCAA CTTCAGCTGT TGGGAGATGG
                                                                           1020
       TGATATTTTC AACCCTACTT CCTAAACATC TGTCTGGGGT TCCTTTAGTC TTGAATGTCT
                                                                           1080
       TATGCTCAAT TATTTGGTGT TGAGCCTCTC TTCCACAAGA GCTCCTCCAT GTTTGGATAG
                                                                           1140
20
       CAGTTGAAGA GGTTGTGTGG GTGGGCTGTT GGGAGTGAGG ATGGAGTGTT CAGTGCCCAT
                                                                           1200
       TTCTCATTTT ACATTTTAAA GTCGTTCCTC CAACATAGTG TGTATTGGTC TGAAGGGGGT
                                                                           1260
       GGTGGGATGC CAAAGCCTGC TCAAGTTATG GACATTGTGG CCACCATGTG GCTTAAATGA
                                                                           1320
       25
       Seg ID NO: 563 Protein seguence
       Protein Accession #: NP 037464.1
                             21
                                                    41
                                                               51
                                         31
30
       MKHVLNLYLL GVVLTLLSIF VRVMESLEGL LESPSPGTSW TTRSQLANTE PTKGLPDHPS
                                                                             60
       RSM
       Seg ID NO: 564 DNA seguence
       Nucleic Acid Accession #: NM_023915.1
Coding sequence: 250..1326
35
                             21
                                         31
                                                    41
                                                               51
                  11
       GGCACGAGGG TTTCGTTTTC ATGCTTTACC AGAAAATCCA CTTCCCTGCC GACCTTAGTT
                                                                             60
40
       TCAAAGCTTA TTCTTAATTA GAGACAAGAA ACCTGTTTCA ACTTGAAGAC ACCGTATGAG
                                                                            120
       GTGAATGGAC AGCCAGCCAC CACAATGAAA GAAATCAAAC CAGGAATAAC CTATGCTGAA
                                                                            180
       CCCACGCCTC AATCGTCCCC AAGTGTTTCC TGACACGCAT CTTTGCTTAC AGTGCATCAC
                                                                            240
       AACTGAAGAA TGGGGTTCAA CTTGACGCTT GCAAAATTAC CAAATAACGA GCTGCACGGC
                                                                            300
       CAAGAGAGTC ACAATTCAGG CAACAGGAGC GACGGGCCAG GAAAGAACAC CACCCTTCAC
                                                                            360
45
       AATGAATTTG ACACAATTGT CTTGCCGGTG CTTTATCTCA TTATATTTGT GGCAAGCATC
                                                                            420
       TTGCTGAATG GTTTAGCAGT GTGGATCTTC TTCCACATTA GGAATAAAAC CAGCTTCATA
                                                                            480
       TTCTATCTCA AAAACATAGT GGTTGCAGAC CTCATAATGA CGCTGACATT TCCATTTCGA
                                                                            540
       ATAGTCCATG ATGCAGGATT TGGACCTTGG TACTTCAAGT TTATTCTCTG CAGATACACT
                                                                            600
       TCAGTTTTGT TTTATGCAAA CATGTATACT TCCATCGTGT TCCTTGGGCT GATAAGCATT
50
       GATCGCTATC TGAAGGTGGT CAAGCCATTT GGGGACTCTC GGATGTACAG CATAACCTTC
                                                                            720
       ACGAAGGTTT TATCTGTTTG TGTTTGGGTG ATCATGGCTG TTTTGTCTTT GCCAAACATC
                                                                            780
       ATCCTGACAA ATGGTCAGCC AACAGAGGAC AATATCCATG ACTGCTCAAA ACTTAAAAGT
                                                                            840
       CCTTTGGGGG TCAAATGGCA TACGGCAGTC ACCTATGTGA ACAGCTGCTT GTTTGTGGCC
                                                                            900
       GTGCTGGTGA TTCTGATCGG ATGTTACATA GCCATATCCA GGTACATCCA CAAATCCAGC
                                                                            960
55
       AGGCAATTCA TAAGTCAGTC AAGCCGAAAG CGAAAACATA ACCAGAGCAT CAGGGTTGTT
                                                                           1020
       GTGGCTGTGT TTTTTACCTG CTTTCTACCA TATCACTTGT GCAGAATTCC TTTTACTTTT
                                                                           1080
       AGTCACTTAG ACAGGCTTTT AGATGAATCT GCACAAAAAA TCCTATATTA CTGCAAAGAA
                                                                           1140
       ATTACACTTT TCTTGTCTGC GTGTAATGTT TGCCTGGATC CAATAATTTA CTTTTTCATG
                                                                           1200
       TGTAGGTCAT TTTCAAGAAG GCTGTTCAAA AAATCAAATA TCAGAACCAG GAGTGAAAGC
                                                                           1260
60
       ATCAGATCAC TGCAAAGTGT GAGAAGATCG GAAGTTCGCA TATATTATGA TTACACTGAT
                                                                           1320
       GTGTAGGCCT TTTATTGTTT GTTGGAATCG ATATGTACAA AGTGTAAATA AATGTTTCTT
       TTCATTATCC TTAAAAAAAA AA
       Seq ID NO: 565 Protein sequence
65
       Protein Accession #: NP_076404
                                         31
       MGFNLTLAKL PNNELHGQES HNSGNRSDGP GKNTTLHNEF DTIVLPVLYL IIFVASILLN
                                                                             60
70
       GLAVWIFFHI RNKTSFIFYL KNIVVADLIM TLTFPFRIVH DAGFGPWYFK FILCRYTSVL
                                                                            120
       FYANMYTSIV FLGLISIDRY LKVVKPFGDS RMYSITFTKV LSVCVWVIMA VLSLPNIILT
                                                                            180
       NGOPTEDNIH DCSKLKSPLG VKWHTAVTYV NSCLFVAVLV ILIGCYIAIS RYIHKSSRQF
                                                                            240
       ISOSSRKRKH NOSIRVVVAV FFTCFLPYHL CRIPFTFSHL DRLLDESAQK ILYYCKEITL
       FLSACNVCLD PITYFFMCRS FSRRLFKKSN IRTRSESIRS LQSVRRSEVR IYYDYTDV
75
       Seq ID NO: 566 DNA sequence
       Nucleic Acid Accession #: NM_005365.1
       Coding sequence: 1..948
80
                                         31
       ATGTCTCTCG AGCAGAGGAG TCCGCACTGC AAGCCTGATG AAGACCTTGA AGCCCAAGGA
                                                                             60
       GAGGACTTGG GCCTGATGGG TGCACAGGAA CCCACAGGCG AGGAGGAGGA GACTACCTCC TCCTCTGACA GCAAGGAGGA GGAGGTGTCT GCTGCTGGGT CATCAAGTCC TCCCCAGAGT
                                                                            120
                                                                            180
85
       CCTCAGGGAG GCGCTTCCTC CTCCATTTCC GTCTACTACA CTTTATGGAG CCAATTCGAT
                                                                            240
       GAGGGCTCCA GCAGTCAAGA AGAGGAAGAG CCAAGCTCCT CGGTCGACCC AGCTCAGCTG
                                                                            300
       GAGTTCATGT TCCAAGAAGC ACTGAAATTG AAGGTGGCTG AGTTGGTTCA TTTCCTGCTC
                                                                            360
```

```
CACAAATATC GAGTCAAGGA GCCGGTCACA AAGGCAGAAA TGCTGGAGAG CGTCATCAAA
                                                                          420
      AATTACAAGC GCTACTTTCC TGTGATCTTC GGCAAAGCCT CCGAGTTCAT GCAGGTGATC
                                                                          480
       TTTGGCACTG ATGTGAAGGA GGTGGACCCC GCCGGCCACT CCTACATCCT TGTCACTGCT
                                                                          540
       CTTGGCCTCT CGTGCGATAG CATGCTGGGT GATGGTCATA GCATGCCCAA GGCCGCCCTC
                                                                          600
 5
                                                                          660
       CTGATCATTG TCCTGGGTGT GATCCTAACC AAAGACAACT GCGCCCCTGA AGAGGTTATC
       TGGGAAGCGT TGAGTGTGAT GGGGGTGTAT GTTGGGAAGG AGCACATGTT CTACGGGGAG
                                                                          720
      CCCAGGAAGC TGCTCACCCA AGATTGGGTG CAGGAAAACT ACCTGGAGTA CCGGCAGGTG
                                                                          780
      CCCGGCAGTG ATCCTGCGCA CTACGAGTTC CTGTGGGGTT CCAAGGCCCA CGCTGAAACC
      AGCTATGAGA AGGTCATAAA TTATTTGGTC ATGCTCAATG CAAGAGAGCC CATCTGCTAC
                                                                          900
10
       CCATCCCTTT ATGAAGAGGT TTTGGGAGAG GAGCAAGAGG GAGTCTGA
       Seg ID NO: 567 Protein sequence
      Protein Accession #: NP_005356.1
15
                                                   41
                                                              51
      MSLEQRSPHC KPDEDLEAGG EDLGLMGAGE PTGEEEETTS SSDSKEEEVS AAGSSSPPQS
                                                                           60
       POGGASSSIS VYYTLWSQFD EGSSSQEEEE PSSSVDPAQL EFMFQEALKL KVAELVHFLL
                                                                          120
      HKYRVKEPVT KAEMLESVIK NYKRYFPVIF GKASEFMQVI FGTDVKEVDP AGHSYILVTA
20
      LGLSCDSMLG DGHSMPKAAL LIIVLGVILT KDNCAPEEVI WEALSVMGVY VGKEHMFYGE
                                                                          240
       PRKLLTQDWV QENYLEYRQV PGSDPAHYEF LWGSKAHAET SYEKVINYLV MLNAREPICY
                                                                          300
       PSLYEEVLGE EQEGV
       Seq ID NO: 568 DNA sequence
25
      Nucleic Acid Accession #: NM 014400
      Coding sequence: 86..1126
                  11
                             21
                                                   41
                                                              51
                                        31
30
       GGTTACTCAT CCTGGGCTCA GGTAAGAGGG CCCGAGCTCG GAGGCGGCAC ACCCAGGGGG
                                                                           60
      GACGCCAAGG GAGCAGGACG GAGCCATGGA CCCCGCCAGG AAAGCAGGTG CCCAGGCCAT
                                                                          120
                                                                          180
       GATCTGGACT GCAGGCTGGC TGCTGCTGCT GCTGCTTCGC GGAGGAGCGC AGGCCCTGGA
      GTGCTACAGC TGCGTGCAGA AAGCAGATGA CGGATGCTCC CCGAACAAGA TGAAGACAGT
                                                                          240
       GAAGTGCGCG CCGGGCGTGG ACGTCTGCAC CGAGGCCGTG GGGGCGGTGG AGACCATCCA
                                                                          300
35
       CGGACAATTC TCGCTGGCAG TGCSGGGTTG CGGTTCGGGA CTCCCCGGCA AGAATGACCG
                                                                          360
       CGGCCTGGAT CTTCACGGGC TTCTGGCGTT CATCCAGCTG CAGCAATGCG CTCAGGATCG
                                                                          420
       CTGCAACGCC AAGCTCAACC TCACCTCGCG GGCGCTCGAC CCGGCAGGTA ATGAGAGTGC
                                                                           480
       ATACCCGCCC AACGGCGTGG AGTGCTACAG CTGTGTGGGC CTGAGCCGGG AGGCGTGCCA
                                                                          540
       GGGTACATCG CCGCCGGTCG TGAGCTGCTA CAACGCCAGC GATCATGTCT ACAAGGGCTG
                                                                          600
40
       CTTCGACGGC AACGTCACCT TGACGGCAGC TAATGTGACT GTGTCCTTGC CTGTCCGGGG
                                                                          660
       CTGTGTCCAG GATGAATTCT GCACTCGGGA TGGAGTAACA GGCCCAGGGT TCACGCTCAG
                                                                          720
       TGGCTCCTGT TGCCAGGGGT CCCGCTGTAA CTCTGACCTC CGCAACAAGA CCTACTTCTC
                                                                           780
       CCCTCGAATC CCACCCCTTG TCCGGCTGCC CCCTCCAGAG CCCACGACTG TGGCCTCAAC
       CACATCTGTC ACCACTTCTA CCTCGGCCCC AGTGAGACCC ACATCCACCA CCAAACCCAT
                                                                          900
45
       GCCAGCGCCA ACCAGTCAGA CTCCGAGACA GGGAGTAGAA CACGAGGCCT CCCGGGATGA
                                                                          960
       GGAGCCCAGG TTGACTGGAG GCGCCGCTGG CCACCAGGAC CGCAGCAATT CAGGGCAGTA
                                                                         1020
       TCCTGCAAAA GGGGGGCCCC AGCAGCCCCA TAATAAAGGC TGTGTGGCTC CCACAGCTGG
                                                                         1080
       ATTGGCAGCC CTTCTGTTGG CCGTGGCTGC TGGTGTCCTA CTGTGAGCTT CTCCACCTGG
                                                                         1140
       AAATTTCCCT CTCACCTACT TCTCTGGCCC TGGGTACCCC TCTTCTCATC ACTTCCTGTT
                                                                         1200
50
       CCCACCACTG GACTGGGCTG GCCCAGCCCC TGTTTTTCCA ACATTCCCCA GTATCCCCAG
                                                                         1260
       CTTCTGCTGC GCTGGTTTGC GGCTTTGGGA AATAAAATAC CGTTGTATAT ATTCTGGCAG
                                                                         1320
       GGGTGTTCTA GCTTTTTGAG GACAGCTCCT GTATCCTTCT CATCCTTGTC TCTCCGCTTG
                                                                         1380
       TCCTCTTGTG ATGTTAGGAC AGAGTGAGAG AAGTCAGCTG TCACGGGGAA GGTGAGAGAG
                                                                         1440
      1500
55
       ATCGGTTCCC CATATGTCTT CCTTACTAGA CTGTGAGCTC CTCGAGGGCA GGGACCGTGC
                                                                         1620
       CTTATGTCTG TGTGTGATCA GTTTCTGGCA CATAAATGCC TCAATAAAGA TTTAATTACT
                                                                         1680
       TTGTATAGTG AAAAAAAA
60
       Seg ID NO: 569 Protein sequence
       Protein Accession #: NP_055215
                                                   41
                                                              51
65
       MDPARKAGAQ AMIWTAGWLL LLLLRGGAQA LECYSCVQKA DDGCSPNKMK TVKCAPGVDV
                                                                           60
       CTEAVGAVET IHGQFSLAVX GCGSGLPGKN DRGLDLHGLL AFIQLQQCAQ DRCNAKLNLT
                                                                          120
       SRALDPAGNE SAYPPNGVEC YSCVGLSREA COGTSPPVVS CYNASDHVYK GCFDGNVTLT
       AANVTVSLPV RGCVQDEFCT RDGVTGPGFT LSGSCCQGSR CNSDLRNKTY FSPRIPPLVR
                                                                          240
       LPPPEPTTVA STTSVTTSTS APVRPTSTTK PMPAPTSQTP RQGVEHEASR DEEPRLTGGA
                                                                          300
70
       AGHQDRSNSG QYPAKGGPQQ PHNKGCVAPT AGLAALLLAV AAGVLL
       Seg ID NO: 570 DNA sequence
       Nucleic Acid Accession #: NM 005329.1
       Coding sequence: 1..1662
75
                                                   41
                                                              51
                  11
                                        31
       ATGCCGGTGC AGCTGACGAC AGCCCTGCGT GTGGTGGGCA CCAGCCTGTT TGCCCTGGCA
       GTGCTGGGTG GCATCCTGGC AGCCTATGTG ACGGGCTACC AGTTCATCCA CACGGAAAAG
80
       CACTACCTGT CCTTCGGCCT GTACGGCGCC ATCCTGGGCC TGCACCTGCT CATTCAGAGC
                                                                           180
       CTTTTTGCCT TCCTGGAGCA CCGGCGCATG CGACGTGCCG GCCAGGCCCT GAAGCTGCCC
                                                                          240
       TCCCCGCGGC GGGGCTCGGT GGCACTGTGC ATTGCCGCGT ACCAGGAGGA CCCTGACTAC
                                                                           300
       TTGCGCAAGT GCCTGCGCTC GGCCCAGCGC ATCTCCTTCC CTGACCTCAA GGTGGTCATG
                                                                           360
       GTGGTGGATG GCAACCGCCA GGAGGACGCC TACATGCTGG ACATCTTCCA CGAGGTGCTG
                                                                           420
85
       GGCGGCACCG AGCAGGCCGG CTTCTTTGTG TGGCGCAGCA ACTTCCATGA GGCAGGCGAG
                                                                           480
       GGTGAGACGG AGGCCAGCCT GCAGGAGGGC ATGGACCGTG TGCGGGATGT GGTGCGGGCC
                                                                           540
       AGCACCTTCT CGTGCATCAT GCAGAAGTGG GGAGGCAAGC GCGAGGTCAT GTACACGGCC
                                                                           600
```

```
TTCAAGGCCC TCGGCGATTC GGTGGACTAC ATCCAGGTGT GCGACTCTGA CACTGTGCTG
                                                                            660
       GATCCAGCCT GCACCATCGA GATGCTTCGA GTCCTGGAGG AGGATCCCCA AGTAGGGGGA
                                                                            720
       GTCGGGGGAG ATGTCCAGAT CCTCAACAAG TACGACTCAT GGATTTCCTT CCTGAGCAGC
                                                                            780
       GTGCGGTACT GGATGGCCTT CAACGTGGAG CGGGCCTGCC AGTCCTACTT TGGCTGTGTG
                                                                            840
 5
       CAGTGTATTA GTGGGCCCTT GGGCATGTAC CGCAACAGCC TCCTCCAGCA GTTCCTGGAG
                                                                            900
       GACTGGTACC ATCAGAAGTT CCTAGGCAGC AAGTGCAGCT TCGGGGATGA CCGGCACCTC
                                                                            960
       ACCAACCGAG TCCTGAGCCT TGGCTACCGA ACTAAGTATA CCGCGCGCTC CAAGTGCCTC
                                                                           1020
       ACAGAGACCC CCACTAAGTA CCTCCGGTGG CTCAACCAGC AAACCCGCTG GAGCAAGTCT
       TACTTCCGGG AGTGGCTCTA CAACTCTCTG TGGTTCCATA AGCACCACCT CTGGATGACC
                                                                           1140
10
       TACGAGTCAG TGGTCACGGG TTTCTTCCCC TTCTTCCTCA TTGCCACGGT TATACAGCTT
                                                                           1200
       TTCTACCGGG GCCGCATCTG GAACATTCTC CTCTTCCTGC TGACGGTGCA GCTGGTGGGC
                                                                           1260
       ATTATCAAGG CCACCTACGC CTGCTTCCTT CGGGGCAATG CAGAGATGAT CTTCATGTCC
                                                                           1320
       CTCTACTCCC TCCTCTATAT GTCCAGCCTT CTGCCGGCCA AGATCTTTGC CATTGCTACC
                                                                           1380
       ATCAACAAAT CTGGCTGGGG CACCTCTGGC CGAAAAACCA TTGTGGTGAA CTTCATTGGC
                                                                           1440
15
       CTCATTCCTG TGTCCATCTG GGTGGCAGTT CTCCTGGGAG GGCTGGCCTA CACAGCTTAT
                                                                           1500
                                                                           1560
       TGCCAGGACC TGTTCAGTGA GACAGAGCTA GCCTTCCTTG TCTCTGGGGC TATACTGTAT
       GGCTGCTACT GGGTGGCCCT CCTCATGCTA TATCTGGCCA TCATCGCCCG GCGATGTGGG
                                                                           1620
       AAGAAGCCGG AGCAGTACAG CTTGGCTTTT GCTGAGGTGT GA
20
       Seg ID NO: 571 Protein sequence
       Protein Accession #: NP_005320.1
                             21
                                        3.7
                                                    41
                                                               51
                  11
25
       MPVQLTTALR VVGTSLFALA VLGGILAAYV TGYQFIHTEK HYLSFGLYGA ILGLHLLIQS
                                                                             60
       LFAFLEHRRM RRAGQALKLP SPRRGSVALC IAAYQEDPDY LRKCLRSAQR ISFPDLKVVM
                                                                            120
       VVDGNRQEDA YMLDIFHEVL GGTEQAGFFV WRSNFHEAGE GETEASLQEG MDRVRDVVRA
                                                                            180
       STFSCIMQKW GGKREVMYTA FKALGDSVDY IQVCDSDTVL DPACTIEMLR VLEEDPQVGG
                                                                            240
       VGGDVOILNK YDSWISFLSS VRYWMAFNVE RACOSYFGCV QCISGPLGMY RNSLLQQFLE
                                                                            300
30
       DWYHQKFLGS KCSFGDDRHL TNRVLSLGYR TKYTARSKCL TETPTKYLRW LNQQTRWSKS
                                                                            360
       YFREWLYNSL WFHKHHLWMT YESVVTGFFP FFLIATVIOL FYRGRIWNIL LFLLTVOLVG
                                                                            420
       IIKATYACFL RGNAEMIFMS LYSLLYMSSL LPAKIFAIAT INKSGWGTSG RKTIVVNFIG
                                                                            480
       LIPVSIWVAV LLGGLAYTAY CQDLFSETEL AFLVSGAILY GCYWVALLML YLAIIARRCG
       KKPEQYSLAF AEV
35
       Seq ID NO: 572 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 148-7095
40
                                                    41
                                                               51
                             21
                                         31
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
                                                                             60
       CAAAAAAAC ATTTCCTTCG CTCCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
                                                                            120
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
45
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAA TTGGGGAAAG
                                                                            300
       AAATATCCAA CATGTAATAG CCCAAAACAA TCTCCTATCA ATATTGATGA AGATCTTACA
                                                                            360
       CAAGTAAATG TGAATCTTAA GAAACTTAAA TTTCAGGGTT GGGATAAAAC ATCATTGGAA
                                                                            420
       AACACATTCA TTCATAACAC TGGGAAAACA GTGGAAATTA ATCTCACTAA TGACTACCGT
                                                                            480
50
       GTCAGCGGAG GAGTTTCAGA AATGGTGTTT AAAGCAAGCA AGATAACTTT TCACTGGGGA
                                                                            540
       AAATGCAATA TGTCATCTGA TGGATCAGAG CATAGTTTAG AAGGACAAAA ATTTCCACTT
                                                                            600
       GAGATGCAAA TCTACTGCTT TGATGCGGAC CGATTTTCAA GTTTTGAGGA AGCAGTCAAA
                                                                            660
       GGAAAAGGGA AGTTAAGAGC TTTATCCATT TTGTTTGAGG TTGGGACAGA AGAAAATTTG
                                                                            720
       GATTTCAAAG CGATTATTGA TGGAGTCGAA AGTGTTAGTC GTTTTGGGAA GCAGGCTGCT
                                                                            780
55
       TTAGATCCAT TCATACTGTT GAACCTTCTG CCAAACTCAA CTGACAAGTA TTACATTTAC
                                                                            840
       AATGGCTCAT TGACATCTCC TCCCTGCACA GACACAGTTG ACTGGATTGT TTTTAAAGAT
                                                                            900
       ACAGTTAGCA TCTCTGAAAG CCAGTTGGCT GTTTTTTGTG AAGTTCTTAC AATGCAACAA
                                                                            960
       TCTGGTTATG TCATGCTGAT GGACTACTTA CAAAACAATT TTCGAGAGCA ACAGTACAAG
                                                                           1020
       TTCTCTAGAC AGGTGTTTTC CTCATACACT GGAAAGGAAG AGATTCATGA AGCAGTTTGT
                                                                           1080
60
       AGTTCAGAAC CAGAAAATGT TCAGGCTGAC CCAGAGAATT ATACCAGCCT TCTTGTTACA
                                                                           1140
       TGGGAAAGAC CTCGAGTCGT TTATGATACC ATGATTGAGA AGTTTGCAGT TTTGTACCAG
                                                                           1200
       CAGTTGGATG GAGAGGACCA AACCAAGCAT GAATTTTTGA CAGATGGCTA TCAAGACTTG
                                                                           1260
       GGTGCTATTC TCAATAATTT GCTACCCAAT ATGAGTTATG TTCTTCAGAT AGTAGCCATA
                                                                           1320
       TGCACTAATG GCTTATATGG AAAATACAGC GACCAACTGA TTGTCGACAT GCCTACTGAT
                                                                           1380
65
       AATCCTGAAC TTGATCTTTT CCCTGAATTA ATTGGAACTG AAGAAATAAT CAAGGAGGAG
                                                                           1440
       GAAGAGGGAA AAGACATTGA AGAAGGCGCT ATTGTGAATC CTGGTAGAGA CAGTGCTACA
                                                                           1500
       AACCAAATCA GGAAAAAGGA ACCCCAGATT TCTACCACAA CACACTACAA TCGCATAGGG
                                                                           1560
       ACGAAATACA ATGAAGCCAA GACTAACCGA TCCCCAACAA GAGGAAGTGA ATTCTCTGGA
       AAGGGTGATG TTCCCAATAC ATCTTTAAAT TCCACTTCCC AACCAGTCAC TAAATTAGCC
70
       ACAGAAAAG ATATTTCCTT GACTTCTCAG ACTGTGACTG AACTGCCACC TCACACTGTG
                                                                           1740
       GAAGGTACTT CAGCCTCTTT AAATGATGGC TCTAAAACTG TTCTTAGATC TCCACATATG
                                                                           1800
       AACTTGTCGG GGACTGCAGA ATCCTTAAAT ACAGTTTCTA TAACAGAATA TGAGGAGGAG
                                                                           1860
       AGTTTATTGA CCAGTTTCAA GCTTGATACT GGAGCTGAAG ATTCTTCAGG CTCCAGTCCC
                                                                           1920
       GCAACTTCTG CTATCCCATT CATCTCTGAG AACATATCCC AAGGGTATAT ATTTTCCTCC
75
       GAAAACCCAG AGACAATAAC ATATGATGTC CTTATACCAG AATCTGCTAG AAATGCTTCC
                                                                           2040
       GAAGATTCAA CTTCATCAGG TTCAGAAGAA TCACTAAAGG ATCCTTCTAT GGAGGGAAAT
                                                                           2100
       GTGTGGTTTC CTAGCTCTAC AGACATAACA GCACAGCCCG ATGTTGGATC AGGCAGAGAG
                                                                           2160
       AGCTTTCTCC AGACTAATTA CACTGAGATA CGTGTTGATG AATCTGAGAA GACAACCAAG
                                                                           2220
       TCCTTTTCTG CAGGCCCAGT GATGTCACAG GGTCCCTCAG TTACAGATCT GGAAATGCCA
                                                                           2280
80
       CATTATTCTA CCTTTGCCTA CTTCCCAACT GAGGTAACAC CTCATGCTTT TACCCCATCC
                                                                           2340
       TCCAGACAAC AGGATTTGGT CTCCACGGTC AACGTGGTAT ACTCGCAGAC AACCCAACCG
                                                                           2400
       GTATACAATG GTGAGACACC TCTTCAACCT TCCTACAGTA GTGAAGTCTT TCCTCTAGTC
                                                                           2460
       ACCCCTTTGT TGCTTGACAA TCAGATCCTC AACACTACCC CTGCTGCTTC AAGTAGTGAT
                                                                           2520
       TCGGCCTTGC ATGCTACGCC TGTATTTCCC AGTGTCGATG TGTCATTTGA ATCCATCCTG
                                                                           2580
85
       TCTTCCTATG ATGGTGCACC TTTGCTTCCA TTTTCCTCTG CTTCCTTCAG TAGTGAATTG
                                                                           2640
       TTTCGCCATC TGCATACAGT TTCTCAAATC CTTCCACAAG TTACTTCAGC TACCGAGAGT
       GATAAGGTGC CCTTGCATGC TTCTCTGCCA GTGGCTGGGG GTGATTTGCT ATTAGAGCCC
```

		/086443					
		AGTATTCTGA					2820
		AATCTGGTGT					2880
		CCATGATGCA					2940
-	GATAATGAGG	GCTCCCAACA	CATCTTCACT	GTTTCTTACA	GTTCTGCAAT	ACCTGTGCAT	3000
5	GATTCTGTGG	GTGTAACTTA	TCAGGGTTCC	TTATTTAGCG	GCCCTAGCCA	TATACCAATA	3060
	CCTAAGTCTT	CGTTAATAAC	CCCAACTGCA	TCATTACTGC	AGCCTACTCA	TGCCCTCTCT	3120
		AATGGTCTGG					3180
		CCCTTAACAT					3240
		GTGATGATAA					3300
10	ACTGAACTGC	AAATTCCTTC	TTTCAATGAG	ATGGTTTACC	CTTCTGAAAG	CACAGTCATG	3360
10		ATGATAATGT					3420
	A DECKACATOT	CCAAGGGCAT	CERECOLOGO	MUCCOLCII	AMACCACAC	TAACCTTTTTT	3480
		TTAGTCAAGT					3540
15		CTGGTGACAC					3600
15		CTGCTTCTAG					3660
		CTTTTAGTAC					3720
		TTAAAACTGT					3780
	CCCAAAGTTG	ATAAAATTAG	TTCTACAATG	TTGCATCTCA	TTGTATCAAA	TTCTGCTTCA	3840
	AGTGAAAACA	TGCTGCACTC	TACATCTGTA	CCAGTTTTTG	ATGTGTCGCC	TACTTCTCAT	3900
20	ATGCACTCTG	CTTCACTTCA	AGGTTTGACC	ATTTCCTATG	CAAGTGAGAA	ATATGAACCA	3960
		AAAGTGAAAG					4020
		CGGCCAATTT					4080
		CTGTTTTATC					4140
		AAATTTTAAC					4200
25							
23		TTGCTTCTGA					4260
		CCATTACAGC					4320
	TTGCTGTTTC	CTTCTAAGGC	AACTTCTGAG	CTGAGTCATA	GTGCCAAATC	TGATGCCGGT	4380
		GTGGTGAAGA					4440
••		ATGGCTTATC					4500
30	CAGGAAAAGG	TAATGAATGA	TTCAGACACC	CACGAAAACA	GTCTTATGGA	TCAGAATAAT	4560
		ACTCACTATC					4620
		AAACTGGTAT					4680
		ACAATGATGG					4740
		CTGAATCTAA					4800
35		CCTCAGATAG					4860
55		AAAAAGATGC					4920
		AGTCCCCAAC					4980
		AGGCCAGTAA					5040
40		AGAAGGCAGT					5100
40		TTGTGGGTAT					5160
	TACTTAGAGG	ACAGTACATC	CCCTAGAGTT	ATATCCACAC	CTCCAACACC	TATCTTTCCA	5220
	ATTTCAGATG	ATGTCGGAGC	AATTCCAATA	AAGCACTTTC	CAAAGCATGT	TGCAGATTTA	5280
	CATGCAAGTA	GTGGGTTTAC	TGAAGAATTT	GAGACACTGA	AAGAGTTTTA	CCAGGAAGTG	5340
		CTGTTGACTT					5400
45		GATACATAAA					5460
1.5		AGGATGGCAA					5520
		AAGCTTATAT					5580
							5640
		TATGGGAACA					
50		GAAAATGTGA					5700
50		CTCAGAAGAG					5760
		CAAAAATAAA					5820
		ACTACACGCA					5880
		TGAGAAAGGC					5940
	CACTGCAGTG	CTGGAGTTGG	AAGAACAGGC	ACATATATTG	TGCTAGACAG	TATGTTGCAG	6000
55	CAGATTCAAC	ACGAAGGAAC	TGTCAACATA	TTTGGCTTCT	TAAAACACAT	CCGTTCACAA	6060
		TGGTACAAAC					6120
		GTAAAGAAAC					6180
		CTGGACCAGC					6240
		TACAGCAGAG					6300
60							6360
00						ATCCCTGAGT	
						GAGCAATGAA	6420 6480
						GATGATATGG	
	GACCATAATG	CCCAACTGGT	GGTTATGATT	CCTGATGGCC	AAAACATGGC	AGAAGATGAA	6540
<i>(5</i>	TTTGTTTACT	GGCCAAATAA	AGATGAGCCT	ATAAATTGTG	AGAGCTTTAA	GGTCACTCTT	6600
65						GGACTTTATC	
						TCCTAAATGG	6720
	CCAAATCCAG	ATAGCCCCAT	TAGTAAAACT	TTTGAACTTA	TAAGTGTTAT	AAAAGAAGAA	6780
	GCTGCCAATA	GGGATGGGCC	TATGATTGTT	CATGATGAGC	ATGGAGGAGT	GACGGCAGGA	6840
	ACTTTCTGTG	CTCTGACAAC	CCTTATGCAC	CAACTAGAAA	AAGAAAATTC	CGTGGATGTT	6900
70						CATTGAGCAG	6960
, 0						AGAGAATCCA	7020
		TGGACAGTAA					7080
	CLACCICIC	AATDAJADDI	TOGIGCAGCA	TIGCCIGATE	AUTHUR COST	TONGOGGIA	
	GAGTCTTTAG	TTTAACACAG	AAAGGGGTGG	GGGGACTCAC	ATCTGAGCAT	TGTTTTCCTC	7140
75	TTCCTAAAAT	TAGGCAGGAA	AATCAGTCTA	GITCIGTTAT	CIGITGATTT	CCCATCACCT	7200
75						CAATGTGTGC	7260
						AATTTTACAG	7320
						AAAATTTCAA	7380
						CAAATTTTTA	7440
						AGTAGCCTGT	7500
80	AAATAAAACA	CTCTTCCATA	TGATATTCAA	CATTTTACAA	CTGCAGTATT	CACCTAAAGT	7560
- •	AGAAATAATC	TGTTACTTAT	TGTAAATACT	GCCCTAGTGT	CTCCATGGAC	CAAATTTATA	7620
	"COUNTY TOTAL	TOTINGTIME	TOTTE GATUOT	CTGAGTCAAG	ጥጥጥጥርጥልርጥጥ	CTGTGTAATT	7680
	TITWINATIG	AMONGOTTO	TATTITACIA	CIGNGICANG	Y CCY CERTAIN	TGACATTGTA	7740
	GILIAGITTA	AIGACGTAGT	LCATTAGCTG	GICTIMCICI	POCKALITIC	CACCUITATA	
85	TIGIGITACC	TAAGTCATTA	ACTITGTTC	AGCATGTAAT	1 I I MACTITI	GTGGAAAATA	7800
02	GAAATACCTT	CATTTTGAAA	GAAGTTTTTA	TGAGAATAAC	ACCTTACCAA	ACATTGTTCA	7860
				TAAATATAAA	ATTGCCATTA	AAAAAAAAA	7920
	AAAAAAAAA	AAAAAAAAA	AAAA				

Seq ID NO: 573 Protein sequence: Protein Accession #: Eos sequence

5	1	11	21	31	41	51	
	1	1	1]	1		
		IQLLCVCRLD TQVNVNLKKL					60 120
		GKCNMSSDGS					180
10		LDFKAIIDGV					240
	TDTVDWIVFK	DTVSISESQL	${\tt AVFCEVLTMQ}$	QSGYVMLMDY	LQNNFREQQY	KFSRQVFSSY	300
		CSSEPENVQA					360
		LGAILNNLLP EEEGKDIEEG					420 480
15		GKGDVPNTSL					540
10		MNLSGTAESL					600
		SENPETITYD					660
		ESFLQTNYTE					720
20		SSRQQDLVST DSALHATPVF					780 840
20		SDKVPLHASL					900
		PSSDAMMHAR					960
		IPKSSLITPT					1020
25		TSVFGDDNKA					1080
25		SISSTKGMFP					1140 1200
		ASSDPASSEM TPKVDKISST					1260
		PVLLKSESSH					1320
20	EPLNTLINKL	IHSDEILTST	KSSVTGKVFA	GIPTVASDTF	VSTDHSVPIG	NGHVAITAVS	1380
30		KLLFPSKATS					1440
		SQEKVMNDSD					1500 1560
		LSQKHNDGKE ADTNEKDADG					1620
		LESEKKAVIP					1680
35	VISTPPTPIF	PISDDVGAIP	IKHFPKHVAD	LHASSGFTEE	FETLKEFYQE	VQSCTVDLGI	1740
		KHKNRYINIV					1800
		FWRMIWEHNV TLRNTKIKKG					1860 1920
		VHCSAGVGRT					1980
40		EAILSKETEV					2040
	SAALKQCNRE	KNRTSSIIPV	ERSRVGISSL	SGEGTDYINA	SYIMGYYQSN	EFIITQHPLL	2100
		WDHNAQLVVM					2160
		ILEATQDDYV GTFCALTTLM					2220 2280
45		PSTSLDSNGA			PICEGVERDIE	QIQIBIRVID	2200
	Seq ID NO:	574 DNA sec	quence				
50	Nucleic Act	574 DNA sec id Accession Lence: 148-4	1 #: Eos sed	quence			
50	Nucleic Act	id Accession	1 #: Eos sed	quence	41	51	
50	Nucleic Act Coding sequents	id Accession mence: 148-4	1 #: Eos sed 1518 21	31 	1	}	60
50	Nucleic Act Coding sequence 1 CACACATACG	id Accession mence: 148-4 11 CACGCACGAT	1 #: Eos sec 1518 21 CTCACTTCGA	31 TCTATACACT	 GGAGGATTAA	 AACAAACAAA	60 120
50 55	Nucleic Acc Coding sequence 1 CACACATACG CAAAAAAAAC	id Accession nence: 148-4 11 CACGCACGAT ATTTCCTTCG	#: Eos sec 4518 21 CTCACTTCGA CTCCCCCTCC	31 TCTATACACT CTCTCCACTC	 GGAGGATTAA TGAGAAGCAG	AACAAACAAA AGGAGCCGCA	60 120 180
	Nucleic Act Coding sequence CACACATACG CAAAAAAAA CGGCGAGGGG CAGCTCCTCT	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT	 GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA	120 180 240
	Nucleic According sequence of the control of the co	id Accession nence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG	120 180 240 300
	Nucleic Actions sequently	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG	#: Eos sec 1518 21] CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA	120 180 240 300 360
55	Nucleic Actions sequently	id Accession nence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA	#: Eos sec 1518 21 CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAACTTAAA	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAAAC	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA	120 180 240 300 360 420
	Nucleic Actions sequently and the control of the co	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA GAACTTAAA TGGGAAAACA	31 TCTATACACT CTCTTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT	120 180 240 300 360
55	Nucleic Actional Sequence Coding Sequence Caracataca Caracataca Cagaragaga Cagaracata Caracataca Caracata	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCT CATGTAATAG TGAATCATAA TTCATAACAC GAGTTTCAGA TGTCATCTGA	#: Eos sec 1518 21] CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG	31. TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT	120 180 240 300 360 420 480 540 600
55	Nucleic Actions sequently	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCTG AGATTGCTG TGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TGTCATCTGA TCTCATCTGA	#: Eos sec 1518 21] CTCACTTCGA CTCGCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAACTTAAA TGGGAAACA ATGGTGTTT TGGATCAGAG TGATGCGGAC	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGITTAG CGATTTTCAA	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCATAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA AGATCTTACA ATCATTGGAA TGACTACGGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA	120 180 240 300 360 420 480 540 600
55 60	Nucleic According sequence of the control of the co	id Accession ence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCATAACAC GAGTTCAGA TGTCATCAGA TGTCATCAGA TCTACTGCTT AGTTAAGAGC	#: Eos sec 1518 21 	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAG CGATTTTCAG	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA TTTTGAGGA TTGGGGACAGA	ACCAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG ATCATTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG	120 180 240 300 360 420 480 540 600 660 720
55	Nucleic Act Coding sequ Coding sequ CACACATACG CACACATACG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GGAATCCAA GGAAAAGGA GGAAAAGGA GGATTCAAAG	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG CAGTATATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TGTCATCTGA TGTCATCTGA TCTACTGCTT AGTTAAGAGC CGATTATTGA	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA GAAACTTAAA TGGGAAAACA TGGGATCT TTGGATCAGG TTTATCCATT TGGAGTCGAA	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAA TTGTTTGAGG AGTGTTAGTC	GAGGATTAA TGAGAAGCAG ACGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGGGAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT	120 180 240 300 360 420 480 540 660 720 780
55 60	Nucleic Act Coding sequence CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAATG ACACATTCA GTCAGCGGAG AAATGCAATA GGGATGCAAA GGAAAAGGGA GATTTCAAAG TTAGATCCAT AATGGCTCAT	Id Accession ence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTCAGA TCTACTGAT TCTACTGTA TCTACTGTT AGTTAAGAGC CGATTATTGA TCTACTGTT TGACATCTGT TGACATCTCT	#: Eos sec 1518 21 CTCACTTCGA CTCGCCTCC CTCGGAAATG CCTGGATTGG GTCCTATACA CCAAAACAA AGAACTTAAA TGGGAAAACA AATGGTGTTT TGATCCGGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAA TTGTTTGAG AGTGTTAGTC CCAAACTCAA GCACAGTTG	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAA ACTGACAAGTA ACTGATTGT	ACAAACAAA AGAGACCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAC	120 180 240 300 420 480 540 600 660 720 780 840 900
55 60	Nucleic Act Coding sequence Coding sequence Cacacatacg Cacacatacg Cagcaggg Cagcicctct Citgtigaag AAATATCCAA CAAGTAAATG AACAATTCA GACACATTCA GACACATACA GAATGCAATA GAGATCAATA AGGATACCAT AATGGCTCAT AATGGCTCAT ACAGTTAGCA	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG CATGTAATAG TCATACTGCT TGATACAC GAGTTCATACAC TGATACTGCT AGTTAACAC CGATTATTGA TCTAACAC CGATTATTGA TCTACTGCTT TGATACTGCT TCTCTGAAAAG TCTACTGCT TCTCTGAAAAG	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACA TGGGAACAC TGATGCGAC TTTATCCATT TGGATCGGAC TTTATCCATT TGGATCGAA GACCTTCTG GACCTCCTGCAC CCAGTTGGCT	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GGATTTCAG GGATTTCAG CGATTTCAG CGATTTCAG CGATTTCAG AGTGTTAGTC CCAAACTCAA ACACAGTTG GTTTTTTGTG	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACC ATCTCACTAA AGATAACTTT AAGGACAAAC TTTGAGGA TTTGGGACAGA GTTTTGGGACAGTA ACTGACAAGTA ACTGGATTGTAAAGTTATAAGGATTATGACAAGTA ACTGGATTGTAAAGTTA	ACCAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG ATCATTGGAA ATCATTGGAA ATCATTGGAA ATTCACTG TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACACTTTAAAGAT AATGCAACAA	120 180 240 300 360 420 480 540 660 720 780 840 900 960
556065	Nucleic Act Coding sequence Co	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCG CATGTAATAG TCATACACAC TGTATTCATACACA TGTCATCTGA TGTCATCTGA TGTCATCTGA TCTACTGCTT TGACATCTTT TGACATCTCT TGACATCTCT TGACATCTCT TGACATCTCT TCACTGTT TGACATCTCC TCTCTGAAAG TCATGCTGAT	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA GAAACTTAAA GATGGGAAACA TGGATCAGG TTTATCCATT TGGATCGGAC TTTATCCATT TGGACCTCGACA GAACCTTCTG GCCTGCACA CCAGTTGGCT GGACTACTTA	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAGCAAGCA CATAGTTTAG CGATTTTCAG AGTGTTTGAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTGTG CAAAACAATT	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACTTA AAGACAAAAA GTTTTGAGGA TTGGGACAAA GTTTTGGGACAAG GTTTTGGGACAAGTA ACTGGATTGGACAAGTA ACTGGATTGTA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAA	120 180 240 300 360 420 480 540 660 720 780 840 900 960 1020
55 60	Nucleic Act Coding sequ Coding sequ CACACATACG CACACATACG CAGCAGGGG CAGCTCCTCT CTTGTTGAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGGA AAATGCAATA GAGATGCAATA GAGATGCAATA GAGATGCAATA GATTCCAAG GTTAGATCCAT ACAGTTAGCA TCTGGTTATG TCTCTAGAC	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATTGCTTAA TTCATAACAC GAGTTCAGA TGTACTCGA TGTACTCGT AGTTAAGAGC CGATTATGGT TGACATCTTA TCATACTGT TGACATCTGT TGACATCTGT TGACATCTGT TGACATCTCT TGACATCTCT TGACATCTCT TGACATCTCT TGACATCTTCT TGACATCTTT AGGTGTTTTC	#: Eos sec is18 21 CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA GAACTTAAA TGGGAAACA AATGGTGTTT TGGATCAGAG TGATGCGGAC TTTATCCATT TGGAGTCGAC TGCCTGCACA CCAGATTGGC CCAGTTGGCTTA CTCATACACT CTCATACACT CTCATACACT	31 TCTATACACT CTCTCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA TTGTTTAGG AGTGTTAGTC CCAAACTCAA GACACGTTG GTTTTTTTGTG GTAAACAATT GGAAACAATT GGAAACAATT GGAAAGGAAG	GGAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACC ATCTCACTAA AGATACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGGGACAAGTA ACTGGATTGT AAGTCTTAC ACTGGATTGT AAGTCTTAC AGATTCTTAC AGATTCTTAC AGATTCTTAC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA TGACTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAA AGCAGTTTGT	120 180 240 300 360 420 480 540 600 720 780 840 900 1020 1080
556065	Nucleic According sequence of the control of the co	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTCAGA TCTACTGAT TCTACTGT AGTTAAGAGC CGATTATGAT TCTACTGT TCTACTGT TGACATCTGT TGACATCTCC TCTCTGAAAG TCATGCTGTT AGGTGTTTT AGGTGTTTT AGGTGTTTT CAGAAAATGT CAGAAAAATGT	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CAAAACTAAA TGGGAAACA AATGGTGTTT TGGATCAGA TGATCCGGAC TTATCCATT TGGAGTCGAC CCAGTTGGCT GCACTGCACA CCAGTTGGCT TCAGGCTGAC TCAGGCTGAC	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAA TTGTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTTG GTAAACGAAT GCAAAGGAAT CCAAAGGAAT CCAAAGGAAT CCAAGGAAT CCAAGGAAT CCAAGGAAT CCAAGGAAT CCAAGGAAT CCAAGGAAT	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGACAGT ACTGGATTGT AAGTTCTTAC TTCGAGAGCT AAGTTCATGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAA	120 180 240 360 420 480 540 660 720 780 840 900 960 1020 1080
556065	Nucleic According sequence of the control of the co	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCTG CATGTAATAG TCATAACAC GAGTTCAGA TCTACTCGA TCTACTGAT TCTACTGAT TCTACTGTT AGTTAAGAC CCGATTATTGA TCTACTGTT TGACATCTCT TCTACAGAT TCATACTGTT TGACATCTCC TCTCTGAAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTCGAGTCGT CTCGAGTCGT GAGAGGACCA	#: Eos sec 1518 21 CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA GAACTTAAA TGGGTGTT TGGATCAGAG GATCCGAC TTTATCCATT TGGATCGAC GAACCTTCTG TCCCTGCACA CCAGTTGGCT GGACTACTTA CTCATACACT TCAGGCTGAC CTATACACT TCAGGCTGAC CAAGCATACACT TCAGGCTGAC CAAGCATACACT TCAGGCTGAC CAAGCATACACT TCAGGCTGAC CAAGCATACACT TCAGGCTGAC CAACAAGCAT	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGITTAG GGATTTCAG GGATTTTCAA TGGTTAGTC CCAAACTCAA GACACGTTG GTTTTTTTTGT GTAAACAATT GGAAAGGAAG CCAGAGGAATT AGGAAGGAAG CCAGAGAATT AGGAATTTTGA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA CTTGGGACAGA CTGACAAGTA ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCATGA ATACCAGCCT AGTTTTGCAGT AGTTTTCAG	ACAAACAAA AGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA ATCATTGGAA TGACTACCAT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG CCAGTGTT TACATTTAC TTTACATTTAC TTTAAAGAT AATGCAACAA ACAGTACAAA AGCAGTTTGT TCTTGTTACA TCTTGTTACAT TCTTGTTACAT TCTTGTTACAT TCTTGTTACAT TCTTGTTACAT TCTTGTTACAT TCTTGTTACAT TCTTGTTACAT TCTAGACCTG	120 180 240 300 360 420 660 660 720 780 840 900 1020 1080 1140 1200 1260
55606570	Nucleic Act Coding sequ Coding	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TCATAACACC GAGTTTCAGA TCTACTCGAT TCTACTGTT AGTTAAGAGC CGATTATGG TCTACTGTT TGACATCTGT TCATACTGTT TGACATCTCC TCTCTGAAAG TCTATGTTTC CAGAAAATGT CTCGAGTGGT GAGAGACCA TCAATAATTT	#: Eos sec is18 21 CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA GAACTTAAA TGGGATACA AATGGTGTTT TGGATCAGAG TGATGCGGAC TTTATCCATT TGGATCAGA GAACTTAAC TGGATCAGA CAGTTGGCT TCCTGCACA CCAGTTGGCT TCAGGCTGAC TTATACATT TCAGGCTGAC CAGTTACACT TCAGGCTGAC TTATGATACAC TTATGATACAC TTATGATACAC TTATGATACC GACCAAGCAT GCTACCAAC	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA TGTTTGAGG AGTGTTAGTC CCAAACTCAA GACACACTCA GACACACTCA GACACACTT GTAAACAATT GGAAACAATT GGAAACAATT AGAAACAATT AGAATTAGAG CCAGAGAATT ATGATTAGAG AATTTTTGAG CAAACATT ATGATTAGT CAAACTTAGAT ATGATTAGAT ATGATTAGAT AATGATTAGAT AATGAGTTATG	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATACTTT AAGGACAAAA GTTTTGAGGA TTTGGGACAGA TTGGGACAGTA ACTGGATGTA ACTGGATGTA ACTGGATGTA ACTGGATGCA AGATTCATGA AGATTCATGA ATACCAGCCT AGTTTTGAGGT CAGATGGCTA ATTTTGAGAT	ACAAACAAA AGAGGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGG ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TTTGTACCAG TCAAGACTTG	120 180 240 300 360 420 480 660 720 840 900 900 900 1080 1140 1200 1260 1320
556065	Nucleic Acc Coding sequence Coding sequence Cacacacacacacacacacacacacacacacacacacac	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCC CATGTAATAG TCATACTGCT TGAATCTTAA TTCATACAC GAGTTCATCGA TCTATCTGA TCTATCTGT TCATACTGCT TCATACTGT TCACACCTC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC CTGAGTCGT GAGAGGACCA TCAATAATTT GCTTATATTGG	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAACA TGGGACTTT TGGATCGGAC TTTATCCATT TGGATCGGAC GACCTTCTG CCAGTTGGCT CCAGTTGGCT CCAGTTGC TCAGCCTGCAC TCATGCCTGCAC TCATGCCTGCAC TCATGCCTGCAC TCATGCCTGCAC TCATGCCAAT AACCAAGCAT CTACCAAT AACAAGCAT	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG GGATTTTCAA TTGTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGATT GGAAACAATT GGAAAGAAT GGAAAGAAT ATGATTGAG AATTTTGAG AATTTTGAG AAATTTTGA GAAACAATT ATGATTGAGA AATGATTGAGA AATGATATG GAACTTAG GAACTTAG GAACTTAG GAACTTAG GAACTTAGA AATGATATG GAACTTATG GAACTTATG GAACTTATG GAACTTATG GAACTTATG GACCAACTGA	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACTTT AAGGACAAAA GTTTTGAGGAA CTGACAAAAA CTGACAAAA CTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ATACCAGCCT AGTTTGCAGAT CCAGATGCCT AGTTTCCAGAT TTGTCGACAT	ACAAACAAA AGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG CCAGGCTGCT TTACATTTAC TTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAA ACAGTACAAG TCTTGTTACA TTTGTACCAG TCAAGACTTG TCAAGACTTG AGTAGCATAA GCCTACTGAT	120 180 240 300 360 420 600 660 780 900 960 1020 1140 1200 1260 1320 1380
55606570	Nucleic Act Coding sequence Co	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCTG AGATTGCTA TCATACACT TGAATCATA TCATACACT AGTTACTGA TGTCATCTGA TGTCATCTGA TGTCATCTGA TCTACTGTT AGTTAAGGC TCATCTGAAG TCATCTGAT TCATACTGTT TGACATCTCC TCTCTGAAG TCATCTGAT TCATGCTGAT AGGTGTTTTC CAGAAAATTTT CTCAGATCGT GAGAGAAATTT GCTTATATGG TCATATTTG TTGATTTTT TGCTTATATTG TTGATTTTT	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA TGGGATCAGA TTTATCCATT TGGATCAGA GAACCTTCTG TCCTGCACA CCAGTTGGCT CCAGTACTA CTCATACACT TCAGGCTGA CAGCTGACCAA CAGCTACCTA CAGCTGACCAA CAGCTACCAA CAGCTGACCAA CACCAAGCAT CACCAAGCAT CACCAAGCAT CACCAAGCAT CACCAAGCAT CACCAAGCAT CACCAAGCAT CACCAAGCAT CACCAAGCAT CCCTGCCAATTA	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAGG CATATTTCAG GATTTTCAG GATTTTCAG GACACTCAA GACACAGTTG GTAAACAATT GGAAAGCAACT CAAAACAATT GGAAAGGAAC CCAGAGAATT ATGATTAGAG AATTTTTGA ATGAGTTAGA ATGAGTTAGA ATGAGTTAGA ATGAGTTAGA ATGAGTTAGA ATGAGTTAGA ATGAGTTAGA ATGAGTAGA ATGAGTTATG ATTGAGACTGA ATTGAGACTGA	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACT AGGACATAA GTTTTGAGGA TTGGGACAGA GTTTTGGGACAGA CTGACTAGA ACTGGATTAC TTGAGAGAC AGATTCATCA AGTTTTAC AGGACAGT ACTGGATTAC TTGAGAGCCA AGATTCATGA ATACCAGCCT CAGATGGCTA TTGTCAGAT TTGTCAGAT TTGTCAGAT	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA ATCATTGGAA TGACTACCGT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC ATTGAAAAATTTAC ATTTAACAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TTTGTTACCACT AGTAGCACTT AGCAGCATT AGCAGCATT AGCAGCATT AGTAGCACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACAG TCAAGACTTG AGTAGCCATA ACCTACTGAT CCAGGAGGAGACACAACAAGACATTA ACCTACTGAT CCAGGAGGAGAC TCAAGAGCGAT CAAGGAGGAGAC TCAAGGAGGAGAC TCAAGGAGGAGAC TCAAGGAGGAGAC TCAAGGAGGAGAC TCAAGGAGGAGAC TCAAGGAGGAGAC TCAAGGAGGAGAC TCAAGGAGGAGAC TCAAGGAGGAGAC TCAAGAACATA ACAGGAGGAGAC TCAAGAACATA ACAGAACATA ACAGAACATA ACAGAACATA ACAGAACATA ACAGAACATA ACAGAACATA ACAGAACAAA ACAGAAAAATTA ACAGAACATA A	120 180 240 300 360 420 600 660 720 780 840 900 1020 1140 1200 1260 1380 1440
55606570	Nucleic Act Coding sequence Coding sequence Coding sequence Canananac Canananac Canananac Canacanac Canacanac Canacanac Canacanac Canacanac Canacanac Canacanac Gananaga Gananaga Gananaga Tangancan Actgattaa Canattaac Tangancan Canattaac Tangancan Canattaac Canacanacanacanacanacanacanacanacanacana	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG GAGATTGCTA TCATAACAC GAGTTTCAGA TCTACTGTT AGTTAACAC CGATTAACAC CGATTACAGA TCTACTGT TGAACATCTGAT TCAACATCTGAT TCAACACT CCGATTATGA TCATACTGT TGACATCTC TCTCGAAAG TCATGCTGAT CAGGAGGACCA TCAGTATTC CAGAAAATGT CTCGAGTCGT GAGAGGACCA TCAATAATTT GCTTATATGG TTGATCTTTT AGACATTTTAAGACCTTTTAAGACATTTGACACTTTTAAGACATTTAAGACATTGA GGAAAAAGGA	#: Eos sec 1518 21 CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGAATG GTCCTATACA GAACTTAAA TGGGAAACA AATGGTGTTT TGGATCAGT TGGATCAGT TGATCCAT TGGATCAGT TCCTGCACA CCAGTTGGC TCCTGCACA CCAGTTGGCT TCCAGCAC CCAGTTGCT TCAGCTCAC TCAGCACAC CAACAACAA TCAACAACAA AAATACACC AACCAAGCAT AAAATACACC CCTGAATTA AAATACACC ACCAAGTCAT AAAATACACC CCCTGAATTA AAAATACACC ACCAAGGCT ACCACAAGT ACCACAAGT ACCACAAGT ACCACAAGT ACCACAATT ACCACCAATT ACCACCAATT ACCACCAATT ACCACCAATT	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAGT CGATTTTCAA TTGTTTGAG GACACAGTTG GACACAGTTG GAAACTCAA GACACAGTTG CAAAACTCAA GACACAGTTG GATTTTTTTTGT GAAAGGAAG AATTTTGAA ATGAGTTATG GACACTGA ATGATTTGAATT GGACACTGA ATTGTGAACT ATGATTTGACACACACTCA ATTGGAACTCA ATTGGAACTC CTTACCACAA	GAGGATTAA TGAGAAGCA ACCATACAAAAAA AATATTGATGA GGGATAAAAC ATCTCACTAA AGATACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA TTGGGACAGA ACTGCACAGA ACTGCACAGA ACTGCACAGA ACTGCACAGA ACTGCACAGC AGATTCATCA ACTGCACAGC AGATTCATCA ACTGCACAGC AGATTCATCA ATCCAGCCT AGTTTGCAGAC TTCTCAGATC AGATTCCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT CTGGTAGAGA	ACAAACAAA AGAGGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA AGATCTAAA AGAAATTTG GCAGGCTGCT TTTACATTTACA TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG ACAGTACAAG ACAGTACTAC TCTGTTACA TCTGTACA TCTGTACA TCAGAGCTTGT CAGAGACTTG AGTAGCATA ACAGTACTACA CAGAGCTTGT CAGAGACTTG AGTAGCATA CAGAGCTTAC CAGTACTACA CAGTACTACA TCAGAGACTTA CCATACTACA CCAGTACAAG CCATACGGC TCGCATACGG	120 180 240 300 360 420 600 780 900 960 1020 1140 1200 1320 1380 1440 1560
5560657075	Nucleic Accoding sequence of the control of the con	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG CAGTACTACT CATTACTACAC CAGTACTACAC TGATTCCTTA TCATACAC TGATTTCATACAC TGATTTCATACAC TGATATTCATACAC TCATACTGT TCAGAAAATGT TCAAATATTT TCATATTG TCATATTTT AGGAAAATGG ATGAACATTGA ATGAACATTGA ATGAACATACA	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCAAAACAA GAAACTTAAA GAAGCTTAACA TGGGACAC TTTATCCAT TGGATCGGAC TTTATCCAT TGCATTGGATCGGAC CCAGTGGCT GCACTACCAA CCAGTTGGCT TCATACACT TCATACACT TCATACACT TCATACACT CTCATACCACA CCAGTTGGCT GCACTACCAA CCAGTTGGCT GCACTACCAA CCAGCTTAC CCAGCTTGC AACCAAGCAT CCAGCTGCAC CCCTGAATTA AGAAGGCGCT AGAAGGCGCT AGCACCCAGATT AGAAGGCGCT GACTAACCGA	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAG GGATTTTCAG GGATTTTCAG AGTGTTAGTC CCAAACTCAA GCACAGTTG GTTTTTTGTG CAAAACAATT GGAAAGAAT ATGATTTGGA AATTTTGA GCAGAGAAT ATGATTTGA ATGATTATG GAACTCAA ATTGATTATG GACCAACTGA ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACT ATTGGAACA ATTGGAACT CTCTACCACAA	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA CTGACAAGAT ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ATACCAGCCT AGTTTGCAGT TTGCAGAT TTTTCAGAT TTTTCAGAT TTTTCAGAT TTTTCAGAT TTTTCAGAT TTGTTCAGAT TTGTTCGACAT AAGAATAAT CTGGTAGAG ACACACACA CACACTACAA GAGGAAGTGA	ACAAACAAA AGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG CAGGCTGCT TTACATTTAC TTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAA ACAGTACAAA ACAGTACAAG TCTTGTACCA TCTGTACCA TCTGTACCA CCTACCTGT CAAGACTTG AGTAGCCATA CCGCATACACA CAGTGCTACA CAGGCGCATA CCGCATACGG CAGTGCTACA CTGCATACGG ATTCTCTGGA	120 180 240 300 360 420 600 660 780 840 900 1020 1140 1200 1140 1320 1440 1560 1560 1620
55606570	Nucleic Accoding sequence of the control of the con	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGCCTG AGATTGCCTG AGATTGCTTAA TCCATAACAC GAGTTATCAGA TCTACTGAT TCTACTGTT AGTTAACAC CGATTATTGCT CGATATTGCT TCTACTGTT TGACATCTCT TCTCGAAAG TCATACTGTT TGACATCTTC TCTGAAAG TCATACTGTT TCAGATCTTC CAGAAAATGT CTGAGTCGT GAGAGACCA TCAATAATTT GCTTATATTG TGAGTCGTT AGAGACTTCA TGAGATCTTT AGAAAATGT TTGATTTT AGAAAATGT AGAGACCA TTGATTTT AGAACTTGA GATAAACGA ATTCCCAATAA	#: Eos sec 1518 21] CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCAAAACAA GAAACTTAAA TGGGAAAACA TGGGATCAGAG TGATCAGAG TGATCAGAG TGATCAGAG TGATCAGAC TTATCCATT TGGATCATT TGGATCATA TGAGTCGAC CCAGTTGGCT TCAGGCTGAC CAGTTGGCT CAGCTGAC CAGTTGGCT CAGCTACCAA CAATAACACT TCAGCTGAC AACAAGCAT GCTACCAAT AAAATACAG CCCTGAATTA AGAAGCGCT ACCAGACTA ACCAGACT ACCACACC ATCATTAAAT	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCACTC GGAGCACTGA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGITTAGA GATTTTCAA TTGTTTGAGG GATTTTTAGT GCAAACTCAA GACACGTTG GTATTTTTTTTTT	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA CTGACAAGTA ACTGGATTGA ACTGGATTGA ACTGGATTGA AGATTCTTAC AGATTCATCA AGATTCATGA AGATTCATGA ATACCAGCT AGATTCATGA TTCTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT TTGTTCGACAT TTGTTCGACAT TTGTTCGACAT TTGTTCGACAT TTGTTCGACAT TGGATGGCTA CAGATGCAA CAGAACTACAA CAGCACTACAA CAGGAAGTGA CACAGTCACA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA ATCATTGGAA TGACTACCAT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTAC TTTACATTTAC TTTACATTTAC TTTACATTTAC TTTACATTTAC TTTTAAAGAT ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACCAT TCTGTTACA TCTTGTTACA TCTTGTTACA TCTGGAACCTT AGTAGCCATA GCCATACTGA CCAGTGCTACA CCAGATGCTACA TCAGATGACACA ATCCTCTGGA TCAAATTAGCC TCACTACTGAT CCACTACTGAT CAGCATAGGAG CAGTCCTACTAC TCACATAGGAG ATTCTCTGGA TAAATTAGCC	120 180 240 300 360 420 600 660 720 780 840 900 1020 1120 1260 1320 1380 1500 1500 1500 1620 1680
5560657075	Nucleic Accoding sequence of the control of the con	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG GAGATTGCCTG GAGATTGCTG TGAATTGCTTAA TCCATAACAC GAGTTCAGA TCTACTCTA TCTACTCTTA ACTTACTGCT AGTTAAGAGC CGATTATGA TCATACTGTT TGACATCTC TCTCTGAAA TCATGCTGTT CAGAAAATGT TCAGAGTCGT TCAGAGTCGT TCAGAGTCGT TCAGAGTCGT TCAGAGTCGT TCAGATCGT TCAGATCGT TCAGATCGT TCAGATCGT TCAGATCGT TGACATTTT GAGATATTT GCTTATATGG TTGACTTTT AAGACATTGA GGAAAAAGGA ATGACATGAA ATGACAATAC ATATTTCCCTT	1#: Eos sec 1518 21 CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA TGGGATTTT TGGATCAGAG TGATGCGGAC TTTATCCATT TGGATCAGAG TGATCCGTAC CCAGTTGGCT TCCAGCTACAC TTATGATAC TTATGATAC TATGATACC TATAGATAC GCTACCCAAT AAAATACAGC CCCTGAATTA AGAAGGCT ACCAGGTT AGAAGGCT ACCAGGTT CCCTGAATTA AGAAGGCT ACCAGATT AGAAGGCT ACCAGATT AGAAGGCT ACCAGATT AGAAGGCT ACCCAGATT AGAAGGCT ACCCAGATT ACCAGATTAAAT AGATTACCAG	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA TTGTTTGAGG AGTTTTGAG GACACTAA GACACACAA GACACAAT GGAAACTAT GGAAACTAT GGAAACAATT GGAAAGAAT ATGATTAGA CCAGAGAAT ATGATTAGA ATTGATCGA ATTGGAACT ATTGAACT ATTGAACT ATTGAACT TCTACCACAA TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCCCAACTAC ACTGTGACTG CCTGTGACTG CCTGTGACTG	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATCATCACTAA AGATAACTTT AAGGACAAAAA GATTACACTAA GATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGAGAATTA ACTGACAAGTA ACTGACAAGTA ACTGACAGCTA AGATTCATGA ATACCAGCCT AGTTTGCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT CAGATGGCTA AGAAATAAT CTGGTAGAGA CACCACCAA AACCAGTCAC AACTGCCACC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA TGACTTACA ATCATTGGAA TGACTACCGT TCACTGGGA AATCATCACT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCACCAA AGCAGTTTGT TCTTGTACCA TCTGTACCA TCAGGACTTG AGTAGCCATA GCCATCTGACAC AGCAGTTTGT CCAGACTTG AGTAGCCATA ACAGTACAAC AGCAGTTTGT CCAGACTTG AGTAGCCATA ACTACTGAT CAAGGAGGAG CAGTGCTACA TCGCATAGGG ATTCTCTGGA ATAATTAGCC TCACACTGTG	120 180 240 300 360 420 660 660 720 780 840 900 1020 11200 1200 1260 1320 1380 1560 1560 1560 1620
5560657075	Nucleic Accoding sequence of the control of the con	Id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG CAGTACTACGCT CATGTAATAG TGAATCTTAA TCATACACA GAGTTACTGA TGTCATCTGA TGTCATCTGA TGTCATCTGA TCATACTGTT TGACATCTCC TCTCTGAAG TCATGCTGAT TCATGATGCTTT CAGAAAATTT CAGAAAAATTT AAGACATTGA TTGATCTTT AAGACATTGA TTGATCTTT AAGACATTCC ATATTTCCTTT CAGCCTCTTT CAGCCTCTT CAGCCTCTT CAGCCTCTT CAGCCTCTT CAGCCTCTT CAGCCTCTT CAGCCTCT CAGCCTC CAGCCT CAGC	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA GAAACTTAAA GATGGGAC TTTATCCAT TGGATCGGAC TTTATCCAT TGGACTACT GCACTACCA GAACCTTCG GCACTACCA GAACCTCTG GCACTACCA CCAGTTGGC GCACTACCA GCAGTGGC GCACTACCA GCCAGCTGA CCCTGAATTA AGAAGGCGC ACCCAGATTA AGAAGGCGAT GCCCCAGATTA AGAAGGCGAT GCCCCAGATTA AGAAGGCGCT ACCCCAGATTA AGAAGGCGAT GCCCCAGATTA AGAAGGCGAT GCCCCAGATTA AGAAGGCGAT GCCCCAGATTA AGAAGGCGAT ACCCCAGATTA AGAAGGCGAT ACCCCAGATTA AGAAGGCGAT ACCTTTAAAT GACTTCTCAG ACCTTCTCAG	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTGAG GATTTTCAG GATTTTCAG GACACTCAA GACACAGTTG GTTTTTTGGG GATTTTTTGG GACACAGTTG GAAACAATT GGAAAGGAA TCGACAACTGA ATGGTTAGG AATTTTGA ATGATTAGA ATGAGTAGA ATGAGTATAG ACCAACTGA ATTGTGAACTC ATTGTGAACTC ATTGTGAACTC ACTGTGACTC ACTGTGACTC ACTGTGACTC ACTGTGACTC ACTGTGACTC ACTGTGACTC ACTGTGACTC ACTGTGACTC ACTGTTAAAACTT ACACTTC ACACTTCC ACTGTGACTC ACTGTTAAAACTG ACAGTTTCTA	GGAGGATTAA TGAGAAGAA ACATTACATAA ATATTGATGA GGGATAAACA ATCTCACTAA AGACATAACTTA AGGACAAAA GTTTTGAGGA GTTTTGGGACAA ACTGGATTAC ATGACAGAA ACTGGATTAC ATGACAGA ACTGCACAGA ATTTTGAGGA ACTGCACAGA ACTTCACAGA AGATTCATGA AGATTCATGA ATTTGCACAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCACAT AGAAATAAT CTGTAGAGAC ACACTACAA AACCAGTCAC AACTACCA ACTGCCACC TTCTTAGATT TTCTCACAT TTGTTGCACAT TTGTTGACAT AGAGAATTACAA ACACTACAA AACCAGTCAC AACTCCCAC TTCTTAGATT TTACAGATT	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA ATCATTGGAA TGACTACCGT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC ATTGAATTAC ATTGAATTAC ATTGAACAA AGAAAATTTAC TTTTAAAGAT ACAGTACAAG AGCAGTTTGT TCTTGTTACA TCTAGTACCAG TCAAGACTTG AGTAGCCATA ACCTACTGAT CCAGAGAGCAC CCGCATAGGAGAC ATCTCTCTGGA TCAGATTGGATACAGA ATTCTCTGGA TCAGACTGTG TCACACTGTG TCACACTGTG TCACACTGTG TCACACATTGT TCAGGAGGAG	120 180 240 300 360 420 600 660 780 840 900 1020 1140 1260 1320 1440 1560 1560 1620 1680 1740 1860
55 60 65 70 75	Nucleic Accoding sequence of the control of the con	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GTGTTTGCCG CAGTATAGACAC GAGTTCAGAT TCCATACACT GAGTTCAGA TCTACTGAT TCTACTGAT TCTACTGTT AGTTAAGACC CGATTATTGA TCTACTGTT TGACATCTCT TCTGAAAAG TCATACTGT TCAGAGTCTTC CTCTGAAAAG TCATACTGT TCAGAGTCGT TCTGAGATCTT CAGAAAATGT CTCGAGTCGT TAAGAGCAA TCATACTTT AGAAAACGA TCATACTGTT AGAAAACGA TCATACTTT AGACATCTT AGACATCTT CAGACCTCTTT AGACCTCTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTA	#: Eos sec 1518 21] CTCACTTCGA CTCGCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA GAAACTTAAA TGGGTGTTT TGGATCGAG TGATGCGAC TTATCCATT TGGATCGAC GAACCTTCTG TCCCTGCACA GAACCTTCTG TCCTGACAC TCAGTCGAC CTATACACT TCAGGCTGAC CTATACACT TCAGGCTGAC CTATGATAC CTATACACT TCAGGCTGAC TATGATAC GACTAGCT ACAAGCAT GCTACCAAT AAAATACAGC CCCTGAATTA AGAAGGCGCT ACCCAGATT GACTAACCA ATCTTAACAT GACTTCCAG AATCATCAC AATCATCAC CATCCTAAAT GACTTCTCAG AATCATCAC CATCTTAAAT GACTTCTCAG AATCATCAC CATCTTAAAT GCTTGATACCT CATCTTAAAT GCTTGATACT	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA GCTACTACA TTTCCAGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAGA GATTTTCAA TTGTTTGAGG GATTTTTTTGT GCAAACTCAA GACACAGTT GGAAACAATT GGAAACAATT GGAAACAATT GGAAACAATT ATGATTTAGA ATGAACTAAT ATGATTAGA ATGAACAAC ATTGTTATGA ATGAACAAC ATTGTACCACAA ACCCAACAA TCCCCAACAA TCCCCAACAC ACTGTGACTG CTTAAAACTG GACTTCCC ACTGTGACTG GCAGGTTCTCT GGAGGTTCTCT GGAGCTGAAAC GCACTTCCC ACTGTGACTG GCAGGTTCTCT GCAGGTTCTCT GGAGCTGAAA	GGAGGATTAA TGAGAACAA ACATCACAAAAAA AATATTGATGA GGGATAAACA ATCACATAA AGATAACATAA AGATAACATTA AGGACAAAA GTTTTGAGGA CTGACAAGTA ACTGACAAAA ACTGACATAA ACTGACATAA ACTGACATAA ACTGACATAA ACTGACATTAC AGATTCTTAC AGATTCATCA AGATTCATGA ATACCAGCTT AGATTCTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT CAGATGCTA ACACATACAA AGAGAATAA CAGCAGTCAC AACTGCACC TTCTTAGATC TACTGACAT TCTTAGATC TACTGACAT AACAGAATA AACAGAATA AACAGAATA ATTCTTCAGG	ACAAACAAA AGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA TGACTTACA ATCATTGGAA TGACTGCGT TCACTGGGA AATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTGTTACA TTTGTACCAG TCAAGACTTG AGTAGCCATA GCCATACTGGA AGCAGTCTAC AGTAGCACAA CAGTGCTACTAC TCAGGAGAGA CAGTGCTACTAC TCAGGAGAGA TCACACTTGGA TAAATTAGCC TCACACTTGT TCACACTTTGT TCACACTTTGT TCCACACTATTG TCCACACTTCT TCCAGGAGAGA CTCCAGTCCC	120 180 240 300 360 420 540 660 720 780 840 900 1020 11200 1260 1320 1380 1500 1560 1620 1620 1740 1860 1740 1860 1920
5560657075	Nucleic Acc Coding sequence Coding sequence Caracatacg Caracatacg Caracatacg Caracatacg Caracatacg Caracatacg Caracatacatacatacatacatacatacatacatacatac	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCC GAGATCGC GAGATCTGAATAG TCATACACT TGAATCTTAA TCATACTCT AGTTAAGAC CGATTATTGA TCATACTGCT TGACATCTCT TGACATCTCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGT TCATACTGT TCATACTCT TCATACTCT TCATACTCT TCATACTCT TCATACTCT TCATACTCT TCATACTCT TCAGATCTCT TCAGAGAAATTT CAGAAAATTT AGAAAATTT AAGAAATTT AAGAAATTGA TCATACTTTA AGGAAAATGA ATGAAACCAA TCCCAATAC TCAGCTCTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCTCTCT CACCTCT CACCTC CACCTCT CACCTC CACCTC CACCTC CACCT CACCTC CACCTC CACCT CA	#: Eos sec 1518 21 CTCACTTCGA CTCACTTCGA CTCACTCCCCTCC TCTGGAATGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA TGGGAAACA TGGGTGTT TGGATCAGAG TTTATCCATT TGGATCAGAG GACCTTCTG GACTACTA CCCAGATTGC CCAGTTGGCT TCAGGCTGAC TCAGCCAAT AGAAGCAT CTTAATACCC TTATCACAAT CCTCACAAT AGAAGCGCT AACCAAGCAT GCTACCCAAT AGAAGGCGCT ACCCAGATT GACTACCAAT AGAAGGCGCT ACCCAGATT GACTTTAAAT GACTTCTCAG AAATGATGCC ATCTTTAAAT CATCTTCAGA CATCTTTAAAT CCTTGATACC CCTTGATACT CATCTCTGAG CCTTGATACT CATCTCTGAG	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATATTTCAA TTGTTTGAG GATTTTCAA GACACAGTTG GCAAACTCAA GACACAGTTG GCAAACTCAA GACACAGTTG GAAAGCAAT GCAAACTGA ATGATTGGAA GAATTTTGAA GAAACTAT GGAAACTAT TGAATTGAAT	GAGGATTAA TGAGAAGCA ACCATACAAAAAAA AGATTACATTA AGGACAAAAAAA AGATTACATTA AGGACAAAAA GATTTTGAGGA TTGGGACAAA CTGACAAAAAA CTGACAAAAAA CTGACAAAAAA CTGACAAAAAA CTGACAAGCA ACTGCACAC TTCTCAGAA CTTTCAGGA ATCCAGCT AGATTCATGA AGATTCATGA ATACCAGCCT AGATTGCAGT TTGTCAGAT TTGTCAGAT CTGACAACT AAGAATAAA CAGCATCACA AACAGCCC TTCTTAGATC TACAGATCAC AACTGCACC TTCTTAGATC TACAGATTACAA AACAGTCAC TACTCAGAT TTCTCAGA AACTGCACC TTCTTAGATC TACAGAATTAA AACAGATCAC AACTGCCACC TTCTTAGATC TACAGAATTAA ATCTCAGG AAGGGTATAT	ACAAACAAA AGAGACCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGT AGCAGTCAAA AGAAATTTG AGCAGTCAAA AGAAATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAA AGCAGTTTGT TCTTGTTACA TTTGTACCAG TCAGGCTGCT AGTAGCATA AGCAGTTTGT TCTTGTACA TCTGTACAT CAGGAGTGT CAGGAGCTGT CAGGACTTG TCAGACTTG TCAGACTTG TCAGACTTG TCAGACTTG TCAGACTTG TCAGACTGTG TCACACTGTG TCACACTGTG TCACACTGTG TCACACTGTG TCACACTGTG TCACACTGTG TCACACTGTC TCACACTCCC ATTTTCCTCC	120 180 240 300 360 420 660 780 960 1020 1140 1200 1140 1560 1620 1620 1680 1680 1800 1800 1800 1800 1800 180
55 60 65 70 75	Nucleic Accoding sequence of the control of the con	id Accession lence: 148-4 11 CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCC GAGATCGC GAGATCTGAATAG TCATACACT TGAATCTTAA TCATACTCT AGTTAAGAC CGATTATTGA TCATACTGCT TGACATCTCT TGACATCTCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGCT TCATACTGT TCATACTGT TCATACTCT TCATACTCT TCATACTCT TCATACTCT TCATACTCT TCATACTCT TCATACTCT TCAGATCTCT TCAGAGAAATTT CAGAAAATTT AGAAAATTT AAGAAATTT AAGAAATTGA TCATACTTTA AGGAAAATGA ATGAAACCAA TCCCAATAC TCAGCTCTT CAGCCTCTTT CAGCCTCTTT CAGCCTCTTT CAGCTCTCT CACCTCT CACCTC CACCTCT CACCTC CACCTC CACCTC CACCT CACCTC CACCTC CACCT CA	#: Eos sec 1518 21 CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCAAAACAA GAAACTTAAA GAAGTTAAA GAAGTGGAC TTTATCCATT TGGATCGGAC TTTATCCATT TGGATCGGAC CCAGTGGAT GACTACTA GAACCTTCTG GCACTACCAA CCAGTTGGA TCATACACT TCATACACT TCATACACT TCATACACT TCATACACT TCATACACT CTCATACCAA GCTACCCAA GCTACCCAA GCTACCCAA GCTACCCAA TATAGATGC ACCCAGATT AGAAGGCGCT ACCCAGATT AGAAGGCGCT ACCCAGATT AGATGATGCC ATCTTTAAAT GACTTCTCAG ATCTTTAAAT GCTTGATACT CATCTCTGCA CATCTCTCAG ATCTTTAAAT GATTCTCTCAG ATCTTTAAAT GATTCTCTCAG ATCTCTCTCAG ATCTTTAAAT GATTCTCTCAG ATCTTTCAGT CATTCTCTCAG ATCTTTCAGT ATTTTAATT CATTCTCTCAG ATTCTCTCAG ATTCTCTCAG ATTTTAATT CATTCTCAG ATTCTCTCAG ATTCTCAG ATTCTCAG ATTCTCAG ATTCTCAG ATTCTCAG ATTCTCAG ATTCTCAG ATTCTCAG ATTCTCAG ATTC	31 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTAGA CGATTTCAG GATTTCAG GATTTTGAG GACACAGTTG GCAAACCAAT GCAAACAAT GCAAACAAT GCAACTGA ATGGTTAGG CAAACAAT GCAACAGAT TTGTGAG AATGAGTAT ATGATTAGA ATGAGTTAG ACCAACTGA ATTGGAACT ATTGTGAACT ATTGTGAACT ATTGTGAACT ATGTGAACT ACCACAA TCCCCAACAA TCCCCAACAA TCCACTTCCC ACTGTGACTG ACAGTTTCTA GAGCTGAACT CCACATATCCA CTTAAACCG CTTATACCAC CTTATACCAC CTTATACCAC CTTATACCAC CTTATACCAC CTTATACCAC CTTATACCAC CTTATACCAC	GGAGGATTAA TGAGAAGAA ACATTAAAAAA ATATTGATGA GGGATAAACT ATCACATAA ATCATAAAAAA ATCATCACTAA AGGACAAAA GTTTTGAGGA TTGGGACAAA CTGACAGAG ACTGACAGA ACTGACAGA ACTGACAGA ACTGACAGA ATTTGAGGA ATTTGAGGA ACTGACAGA ACTGACAGA ATTTGAGACA AGATTCATGA ATTTGCAGAC AGATTGCAGA TTCTTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT AGAAATAAT CTGTAGAGA AACCACTACAA AGAGAAGTGA AACCAGTCAC TTCTTAGAT TTCTCAGAT TTCTTCAGAT TTGTAGATA AACCAGTCAC AACTGCCACC TTACTAGATA ATTCTTCAGAT ATTCTTCAGA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA TTGGGGAAA TGACTTGCAT TCACTGGGA ATTTCACTGGA ATTTCACTT AGCAGTCAAA GCAGTCAAA ACAGTACAA ACAGTACAA ACAGTACAA TCATTGAAC ATTTTAAAGAT ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACAA TCAAGACTT CAAGACTT CAAGACTT CAAGACTT CAAGACTT CAAGACTT CAAGACTT CCAACTGT TCACACTTT TCACACTTC TCACACTTT TCACACTTC TCACACTCC AATTCCTCC AATGCTTCC AATGCTTCC AATGCTTCC	120 180 240 300 360 420 660 780 960 1020 1140 1200 1140 1560 1620 1620 1680 1680 1800 1800 1800 1800 1800 180

```
GTGTGGTTTC CTAGCTCTAC AGACATAACA GCACAGCCCG ATGTTGGATC AGGCAGAGAG
       AGCTTTCTCC AGACTAATTA CACTGAGATA CGTGTTGATG AATCTGAGAA GACAACCAAG
                                                                            2220
       TCCTTTTCTG CAGGCCCAGT GATGTCACAG GGTCCCTCAG TTACAGATCT GGAAATGCCA
                                                                           2280
       CATTATTCTA CCTTTGCCTA CTTCCCAACT GAGGTAACAC CTCATGCTTT TACCCCATCC
                                                                            2340
 5
       TCCAGACAAC AGGATTTGGT CTCCACGGTC AACGTGGTAT ACTCGCAGAC AACCCAACCG
                                                                            2400
       GTATACAATG CAGAGGCCAG TAATAGTAGC CATGAGTCTC GTATTGGTCT AGCTGAGGGG
                                                                            2460
       TTGGAATCCG AGAAGAAGGC AGTTATACCC CTTGTGATCG TGTCAGCCCT GACTTTTATC
       TGTCTAGTGG TTCTTGTGGG TATTCTCATC TACTGGAGGA AATGCTTCCA GACTGCACAC
                                                                            2580
       TTTTACTTAG AGGACAGTAC ATCCCCTAGA GTTATATCCA CACCTCCAAC ACCTATCTTT
                                                                            2640
10
       CCAATTTCAG ATGATGTCGG AGCAATTCCA ATAAAGCACT TTCCAAAGCA TGTTGCAGAT
                                                                            2700
       TTACATGCAA GTAGTGGGTT TACTGAAGAA TTTGAGACAC TGAAAGAGTT TTACCAGGAA GTGCAGAGCT GTACTGTTGA CTTAGGTATT ACAGCAGACA GCTCCAACCA CCCAGACAAC
                                                                            2760
       AAGCACAAGA ATCGATACAT AAATATCGTT GCCTATGATC ATAGCAGGGT TAAGCTAGCA
       CAGCTTGCTG AAAAGGATGG CAAACTGACT GATTATATCA ATGCCAATTA TGTTGATGGC
                                                                            2940
15
       TACAACAGAC CAAAAGCTTA TATTGCTGCC CAAGGCCCAC TGAAATCCAC AGCTGAAGAT
                                                                            3000
       TTCTGGAGAA TGATATGGGA ACATAATGTG GAAGTTATTG TCATGATAAC AAACCTCGTG
                                                                            3060
       GAGAAAGGAA GGAGAAAATG TGATCAGTAC TGGCCTGCCG ATGGGAGTGA GGAGTACGGG
                                                                            3120
       AACTTTCTGG TCACTCAGAA GAGTGTGCAA GTGCTTGCCT ATTATACTGT GAGGAATTTT
                                                                            3180
       ACTCTAAGAA ACACAAAAAT AAAAAAGGGC TCCCAGAAAG GAAGACCCAG TGGACGTGTG
20
       GTCACACAGT ATCACTACAC GCAGTGGCCT GACATGGGAG TACCAGAGTA CTCCCTGCCA
                                                                            3300
       GTGCTGACCT TTGTGAGAAA GGCAGCCTAT GCCAAGCGCC ATGCAGTGGG GCCTGTTGTC
                                                                            3360
       GTCCACTGCA GTGCTGGAGT TGGAAGAACA GGCACATATA TTGTGCTAGA CAGTATGTTG
                                                                            3420
       CAGCAGATTC AACACGAAGG AACTGTCAAC ATATTTGGCT TCTTAAAACA CATCCGTTCA
                                                                            3480
       CAAAGAAATT ATTTGGTACA AACTGAGGAG CAATATGTCT TCATTCATGA TACACTGGTT
                                                                            3540
25
       GAGGCCATAC TTAGTAAAGA AACTGAGGTG CTGGACAGTC ATATTCATGC CTATGTTAAT
       GCACTCCTCA TTCCTGGACC AGCAGGCAAA ACAAAGCTAG AGAAACAATT CCAGCTCCTG
                                                                            3660
       AGCCAGTCAA ATATACAGCA GAGTGACTAT TCTGCAGCCC TAAAGCAATG CAACAGGGAA
                                                                            3720
       AAGAATCGAA CTTCTTCTAT CATCCTGTG GAAAGATCAA GGGTTGGCAT TTCATCCCTG
                                                                            3780
       AGTGGAGAAG GCACAGACTA CATCAATGCC TCCTATATCA TGGGCTATTA CCAGAGCAAT
                                                                            3840
30
       GAATTCATCA TTACCCAGCA CCCTCTCCTT CATACCATCA AGGATTTCTG GAGGATGATA
                                                                            3900
       TGGGACCATA ATGCCCAACT GGTGGTTATG ATTCCTGATG GCCAAAACAT GGCAGAAGAT
       GAATTTGTTT ACTGGCCAAA TAAAGATGAG CCTATAAATT GTGAGAGCTT TAAGGTCACT
                                                                            4020
       CTTATGGCTG AAGAACACAA ATGTCTATCT AATGAGGAAA AACTTATAAT TCAGGACTTT
                                                                            4080
       ATCTTAGAAG CTACACAGGA TGATTATGTA CTTGAAGTGA GGCACTTTCA GTGTCCTAAA
                                                                            4140
35
       TGGCCAAATC CAGATAGCCC CATTAGTAAA ACTTTTGAAC TTATAAGTGT TATAAAAGAA
                                                                            4200
       GAAGCTGCCA ATAGGGATGG GCCTATGATT GTTCATGATG AGCATGGAGG AGTGACGGCA
                                                                            4260
       GGAACTITCT GTGCTCTGAC AACCCTTATG CACCAACTAG AAAAAGAAAA TTCCGTGGAT
                                                                            4320
       GTTTACCAGG TAGCCAAGAT GATCAATCTG ATGAGGCCAG GAGTCTTTGC TGACATTGAG
       CAGTATCAGT TTCTCTACAA AGTGATCCTC AGCCTTGTGA GCACAAGGCA GGAAGAGAAT
                                                                            4440
40
       CCATCCACCT CTCTGGACAG TAATGGTGCA GCATTGCCTG ATGGAAATAT AGCTGAGAGC
                                                                            4500
       TTAGAGTCTT TAGTTTAACA CAGAAAGGGG TGGGGGGACT CACATCTGAG CATTGTTTTC
                                                                            4560
       CTCTTCCTAA AATTAGGCAG GAAAATCAGT CTAGTTCTGT TATCTGTTGA TTTCCCATCA
                                                                            4620
       CCTGACAGTA ACTITICATGA CATAGGATTC TGCCGCCAAA TITATATCAT TAACAATGTG
       TGCCTTTTTG CAAGACTTGT AATTTACTTA TTATGTTTGA ACTAAAATGA TTGAATTTTA
                                                                            4740
45
       CAGTATTTCT AAGAATGGAA TTGTGGTATT TTTTTCTGTA TTGATTTTAA CAGAAAATTT
                                                                            4800
       CAATTTATAG AGGTTAGGAA TTCCAAACTA CAGAAAATGT TTGTTTTTAG TGTCAAATTT
                                                                            4860
       TTAGCTGTAT TTGTAGCAAT TATCAGGTTT GCTAGAAATA TAACTTTTAA TACAGTAGCC
                                                                            4920
       TGTAAATAAA ACACTCTTCC ATATGATATT CAACATTTTA CAACTGCAGT ATTCACCTAA
                                                                            4980
       AGTAGAAATA ATCTGTTACT TATTGTAAAT ACTGCCCTAG TGTCTCCATG GACCAAATTT
50
       ATATTTATAA TTGTAGATTT TTATATTTTA CTACTGAGTC AAGTTTTCTA GTTCTGTGTA
                                                                            5100
       ATTGTTTAGT TTAATGACGT AGTTCATTAG CTGGTCTTAC TCTACCAGTT TTCTGACATT
                                                                            5160
       GTATTGTGTT ACCTAAGTCA TTAACTTTGT TTCAGCATGT AATTTTAACT TTTGTGGAAA
                                                                            5220
       ATAGAAATAC CTTCATTTTG AAAGAAGTTT TTATGAGAAT AACACCTTAC CAAACATTGT
                                                                            5280
       TCARATGGTT TTTATCCAAG GAATTGCAAA AATAAATATA AATATTGCCA TTAAAAAAAA
55
       ΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑ
       Seq ID NO: 575 Protein sequence:
       Protein Accession #: Eos sequence
60
                                                                51
                                                    41
                              21
                                         31
                  11
       MRILKRFLAC IQLLCVCRLD WANGYYRQQR KLVEEIGWSY TGALNQKNWG KKYPTCNSPK
                                                                              60
       OSPINIDEDL TOVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                            120
65
       FKASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                             180
       ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
                                                                             240
       TDTVDWIVFK DTVSISESOL AVFCEVLTMO OSGYVMLMDY LQNNFREQQY KFSRQVFSSY
       TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
                                                                             360
       HEFLTDGYQD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE
                                                                             420
70
       LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN
                                                                             480
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
                                                                             540
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
                                                                             600
       ENISOGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                             660
       TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
                                                                             720
75
       TEVTPHAFTP SSRQQDLVST VNVVYSQTTQ PVYNAEASNS SHESRIGLAE GLESEKKAVI
                                                                             780
       PLVIVSALTF ICLVVLVGIL IYWRKCFQTA HFYLEDSTSP RVISTPPTPI FPISDDVGAI
                                                                             840
       PIKHFPKHVA DLHASSGFTE EFETLKEFYQ EVQSCTVDLG ITADSSNHPD NKHKNRYINI
                                                                             900
       VAYDHSRVKL AQLAEKDGKL TDYINANYVD GYNRPKAYIA AQGPLKSTAE DFWRMIWEHN
                                                                             960
       VEVIVMITNL VEKGRRKCDO YWPADGSEEY GNFLVTQKSV QVLAYYTVRN FTLRNTKIKK
80
       GSQKGRPSGR VVTQYHYTQW PDMGVPEYSL PVLTFVRKAA YAKRHAVGPV VVHCSAGVGR
                                                                            1080
       TGTYIVLDSM LQQIQHEGTV NIFGFLKHIR SQRNYLVQTE EQYVFIHDTL VEAILSKETE
                                                                            1140
       VLDSHIHAYV NALLIPGPAG KTKLEKQFQL LSQSNIQQSD YSAALKQCNR EKNRTSSIIP
                                                                            1200
       VERSRVGISS LSGEGTDYIN ASYIMGYYQS NEFIITQHPL LHTIKDFWRM IWDHNAQLVV
                                                                            1260
       MIPDGONMAE DEFVYWPNKD EPINCESFKV TLMAEEHKCL SNEEKLIIQD FILEATQDDY
                                                                            1320
```

VLEVRHFQCP KWPNPDSPIS KTFELISVIK EEAANRDGPM IVHDEHGGVT AGTFCALTTL MHOLEKENSV DVYOVAKMIN LMRPGVFADI EQYQFLYKVI LSLVSTRQEE NPSTSLDSNG

85

AALPOGNIAE SLESLV

Seq ID NO: 576 DNA sequence Nucleic Acid Accession #: EOS sequence Coding sequence: 148-4494

		d Accession dence: 148-4		luence			
5	couring sequ	tence. 140 3					
	<u>1</u>	11	21 	31 	41 	51 	
	CACACATACG	CACGCACGAT	CTCACTTCGA	TCTATACACT	GGAGGATTAA	AACAAACAAA	60
		ATTTCCTTCG					120
10	CGGCGAGGGG	CCGCAGACCG	TCTGGAAATG	CGAATCCTAA	AGCGTTTCCT	CGCTTGCATT	180
		GTGTTTGCCG					240
		AGATTGGCTG					300
	AAATATCCAA	CATGTAATAG	CCCAAAACAA	TCTCCTATCA	ATATTGATGA	AGATCTTACA	360
1.5		TGAATCTTAA					420
15		TTCATAACAC					480
		GAGTTTCAGA					540
		TGTCATCTGA					600
		TCTACTGCTT					660
20		AGTTAAGAGC					720
20		CGATTATTGA					780
		TCATACTGTT					840 900
	AATGGCTCAT	TGACATCTCC TCTCTGAAAG	CCCTGCACA	GACACAGTTG	ACIGGATIGI	AATCCAACAA	960
		TCTCTGAAAG					1020
25		AGGTGTTTTC					1080
23		CAGAAAATGT					1140
		CTCGAGTCGT					1200
		GAGAGGACCA					1260
		TCAATAATTT					1320
30		GCTTATATGG					1380
	AATCCTGAAC	TTGATCTTTT	CCCTGAATTA	ATTGGAACTG	AAGAAATAAT	CAAGGAGGAG	1440
	GAAGAGGGAA	AAGACATTGA	AGAAGGCGCT	ATTGTGAATC	CTGGTAGAGA	CAGTGCTACA	1500
		GGAAAAAGGA					1560
25		ATGAAGCCAA					1620
35		TTCCCAATAC					1680
		ATATTTCCTT					1740
		CAGCCTCTTT					1800
		GGACTGCAGA					1860
40		CCAGTTTCAA					1920
40		CTATCCCATT					1980 2040
		AGACAATAAC CTTCATCAGG					2100
		CTAGCTCTAC					2160
		AGACTAATTA					2220
45		CAGGCCCAGT					2280
		CCTTTGCCTA					2340
	TCCAGACAAC	AGGATTTGGT	CTCCACGGTC	AACGTGGTAT	ACTCGCAGAC	AACCCAACCG	2400
	GTATACAATG	AGGCCAGTAA	TAGTAGCCAT	GAGTCTCGTA	TTGGTCTAGC	TGAGGGGTTG	2460
		AGAAGGCAGT					2520
50		TTGTGGGTAT					2580
	TACTTAGAGG	ACAGTACATC	CCCTAGAGTT	ATATCCACAC	CTCCAACACC	TATCTTTCCA	2640
	ATTTCAGATG	ATGTCGGAGC	AATTCCAATA	AAGCACTTTC	CAAAGCATGT	TGCAGATTTA	2700
	CATGCAAGTA	${\tt GTGGGTTTAC}$	TGAAGAATTT	GAGGAAGTGC	AGAGCTGTAC	TGTTGACTTA	2760
<i></i>	GGTATTACAG	CAGACAGCTC	CAACCACCCA	GACAACAAGC	ACAAGAATCG	ATACATAAAT	2820
55	ATCGTTGCCT	ATGATCATAG	CAGGGTTAAG	CTAGCACAGC	TTGCTGAAAA	GGATGGCAAA	2880
		ATATCAATGC					2940
	GCTGCCCAAG	GCCCACTGAA	ATCCACAGCT	GAAGATTTCT	GGAGAATGAT	ATGGGAACAT	3000 3060
	AATGTGGAAG	TTATTGTCAT CTGCCGATGG	GATAACAAAC	CTCGTGGAGA	AAGGAAGGAG	MCACAACTC	3120
60		TTGCCTATTA					3180
00	AACCCCTCCC	AGAAAGGAAG	ACCCAGTGGA	CCTCTCCTCA	CACAGTATCA	CTACACGCAG	3240
	TCCCCTCACA	TGGGAGTACC	AGAGTACTCC	CTGCCAGTGC	TGACCTTTGT	GAGAAAGGCA	3300
	GCCTATGCCA	AGCGCCATGC	AGTGGGGCCT	GTTGTCGTCC	ACTGCAGTGC	TGGAGTTGGA	3360
	AGAACAGGCA	CATATATTGT	GCTAGACAGT	ATGTTGCAGC	AGATTCAACA	CGAAGGAACT	3420
65	GTCAACATAT	TTGGCTTCTT	AAAACACATC	CGTTCACAAA	GAAATTATTT	GGTACAAACT	3480
	GAGGAGCAAT	ATGTCTTCAT	TCATGATACA	CTGGTTGAGG	CCATACTTAG	TAAAGAAACT	3540
						TGGACCAGCA	3600
		AGCTAGAGAA					3660
~ ^		CAGCCCTAAA					3720
70	CCTGTGGAAA	GATCAAGGGT	TGGCATTTCA	TCCCTGAGTG	GAGAAGGCAC	AGACTACATC	
	AATGCCTCCT	ATATCATGGG	CTATTACCAG	AGCAATGAAT	TCATCATTAC	CCAGCACCCT	3840
	CTCCTTCATA	CCATCAAGGA	TTTCTGGAGG	ATGATATGGG	ACCATAATGC	CCAACTGGTG	3900
						GCCAAATAAA	
75	GATGAGCCTA	TAAATTGTGA	GAGCTTTAAG	GTCACTCTTA	TGGCTGAAGA	ACACAAATGT	4020
13	CTATCTAATG	AGGAAAAACT	TATAATTCAG	GACTTTATCT	TAGAAGCTAC	ACAGGATGAT	4080
						TAGCCCCATT	
	AGTAAAACTT	TTGAACTTAT	AAGTGTTATA	AAAGAAGAAG	CTGCCAATAG	GGATGGGCCT	
	CTTATCCACC	ALGATGAGCA	ACANANTECO	GTCCAGGAA	ACCAGGGAGG	TCTGACAACC CAAGATGATC	4320
80						CTACAAAGTG	
55						GGACAGTAAT	
						TTAACACAGA	
						AGGCAGGAAA	
						TCATGACATA	
85	GGATTCTGCC	GCCAAATTTA	TATCATTAAC	AATGTGTGCC	TTTTTGCAAG	ACTTGTAATT	4680
	TACTTATTAT	GTTTGAACTA	AAATGATTGA	ATTTTACAGT	ATTTCTAAGA	ATGGAATTGT	4740
						TAGGAATTCC	

```
AAACTACAGA AAATGTTTGT TTTTAGTGTC AAATTTTTAG CTGTATTTGT AGCAATTATC
                                                                            4860
       AGGTTTGCTA GAAATATAAC TTTTAATACA GTAGCCTGTA AATAAAACAC TCTTCCATAT
                                                                            4920
       GATATTCAAC ATTTTACAAC TGCAGTATTC ACCTAAAGTA GAAATAATCT GTTACTTATT
                                                                            4980
       GTAAATACTG CCCTAGTGTC TCCATGGACC AAATTTATAT TTATAATTGT AGATTTTTAT
                                                                            5040
  5
       ATTTTACTAC TGAGTCAAGT TTTCTAGTTC TGTGTAATTG TTTAGTTTAA TGACGTAGTT
                                                                            5100
        CATTAGCTGG TCTTACTCTA CCAGTTTTCT GACATTGTAT TGTGTTACCT AAGTCATTAA
                                                                            5160
        CTTTGTTTCA GCATGTAATT TTAACTTTTG TGGAAAATAG AAATACCTTC ATTTTGAAAG
                                                                            5220
       AAGTTTTTAT GAGAATAACA CCTTACCAAA CATTGTTCAA ATGGTTTTTA TCCAAGGAAT
        10
       AAA
       Seg ID NO: 577 Protein seguence:
       Protein Accession #: EOS sequence
15
                                                                51
       MRILKRFLAC IOLLCVCRLD WANGYYROOR KLVEEIGWSY TGALNOKNWG KKYPTCNSPK
                                                                              60
       OSPINIDEDL TOVNVNLKKL KFOGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV
                                                                             120
       FKASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS
                                                                             180
20
       ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC
                                                                             240
       TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY
       TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK
                                                                             360
       HEFLITOGYOD LGAILNNLLP NMSYVLOIVA ICTNGLYGKY SDOLIVDMPT DNPELDLFPE
                                                                             420
       LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNOIRKKEPO ISTTTHYNRI GTKYNEAKTN
                                                                             480
25
       RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND
                                                                             540
       GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS
                                                                             600
       ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI
                                                                             660
       TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP
                                                                             720
       TEVTPHAFTP SSROODLVST VNVVYSOTTO PVYNEASNSS HESRIGLAEG LESEKKAVIP
                                                                             780
30
       LVIVSALTFI CLVVLVGILI YWRKCFQTAH FYLEDSTSPR VISTPPTPIF PISDDVGAIP
                                                                             840
       IKHFPKHVAD LHASSGFTEE FEEVOSCTVD LGITADSSNH PDNKHKNRYI NIVAYDHSRV
                                                                             900
       KLAQLAEKDG KLTDYINANY VDGYNRPKAY IAAQGPLKST AEDFWRMIWE HNVEVIVMIT
                                                                             960
       NLVEKGRRKC DQYWPADGSE EYGNFLVTQK SVQVLAYYTV RNFTLRNTKI KKGSQKGRPS
       GRVVTQYHYT QWPDMGVPEY SLPVLTFVRK AAYAKRHAVG PVVVHCSAGV GRTGTYIVLD
                                                                            1080
35
       SMLQQIQHEG TVNIFGFLKH IRSQRNYLVQ TEEQYVFIHD TLVEAILSKE TEVLDSHIHA
                                                                            1140
       YVNALLIPGP AGKTKLEKOF OLLSOSNIOO SDYSAALKOC NREKNRTSSI IPVERSRVGI
                                                                            1200
       SSLSGEGTDY INASYIMGYY QSNEFIITQH PLLHTIKDFW RMIWDHNAQL VVMIPDGQNM
                                                                            1260
       AEDEFVYWPN KDEPINCESF KVTLMAEEHK CLSNEEKLII QDFILEATQD DYVLEVRHFQ
                                                                            1320
       CPKWPNPDSP ISKTFELISV IKEEAANRDG PMIVHDEHGG VTAGTFCALT TLMHOLEKEN
40
       SVDVYOVAKM INLMRPGVFA DIEOYOFLYK VILSLVSTRO EENPSTSLDS NGAALPDGNI
                                                                            1440
       AESLESLV
       Seq ID NO: 578 DNA sequence
45
       Nucleic Acid Accession #: EOS sequence
       Coding sequence: 501-4514
                  1.1
                              21
                                         31
                                                                51
                                                    41
50
       CACACATACG CACGCACGAT CTCACTTCGA TCTATACACT GGAGGATTAA AACAAACAAA
       CAAAAAAAC ATTTCCTTCG CTCCCCCTCC CTCTCCACTC TGAGAAGCAG AGGAGCCGCA
                                                                             120
       CGGCGAGGGG CCGCAGACCG TCTGGAAATG CGAATCCTAA AGCGTTTCCT CGCTTGCATT
                                                                             180
       CAGCTCCTCT GTGTTTGCCG CCTGGATTGG GCTAATGGAT ACTACAGACA ACAGAGAAAA
                                                                             240
       CTTGTTGAAG AGATTGGCTG GTCCTATACA GGAGCACTGA ATCAAAAAAT TGGGGAAAGA
                                                                             300
55
       AATATCCAAC ATGTAATAGC CCAAAACAAT CTCCTATCAA TATTGATGAA GATCTTACAC
                                                                             360
       AAGTAAATGT GAATCTTAAG AAACTTAAAT TTCAGGGTTG GGATAAAACA TCATTGGAAA
                                                                             420
       ACACATTCAT TCATAACACT GGGAAAACAG TGGAAATTAA TCTCACTAAT GACTACCGTG
       TCAGCGGAGG AGTTTCAGAA ATGGTGTTTA AAGCAAGCAA GATAACTTTT CACTGGGGAA
                                                                             540
       AATGCAATAT GTCATCTGAT GGATCAGAGC ATAGTTTAGA AGGACAAAAA TTTCCACTTG
AGATGCAAAT CTACTGCTTT GATGCGGACC GATTTTCAAG TTTTGAGGAA GCAGTCAAAG
                                                                             600
60
                                                                             660
       GAAAAGGGAA GTTAAGAGCT TTATCCATTT TGTTTGAGGT TGGGACAGAA GAAAATTTGG
                                                                             720
       ATTTCAAAGC GATTATTGAT GGAGTCGAAA GTGTTAGTCG TTTTGGGAAG CAGGCTGCTT
       TAGATCCATT CATACTGTTG AACCTTCTGC CAAACTCAAC TGACAAGTAT TACATTTACA
       ATGGCTCATT GACATCTCCT CCCTGCACAG ACACAGTTGA CTGGATTGTT TTTAAAGATA
                                                                             900
65
       CAGTTAGCAT CTCTGAAAGC CAGTTGGCTG TTTTTTGTGA AGTTCTTACA ATGCAACAAT
                                                                             960
       CTGGTTATGT CATGCTGATG GACTACTTAC AAAACAATTT TCGAGAGCAA CAGTACAAGT
                                                                            1020
       TCTCTAGACA GGTGTTTTCC TCATACACTG GAAAGGAAGA GATTCATGAA GCAGTTTGTA
                                                                            1080
       GTTCAGAACC AGAAAATGTT
                             CAGGCTGACC CAGAGAATTA TACCAGCCTT CTTGTTACAT
                                                                            1140
       GGGAAAGACC TCGAGTCGTT TATGATACCA TGATTGAGAA GTTTGCAGTT TTGTACCAGC
70
       AGTTGGATGG AGAGGACCAA ACCAAGCATG AATTTTTGAC AGATGGCTAT CAAGACTTGG
                                                                            1260
       GTGCTATTCT CAATAATTTG CTACCCAATA TGAGTTATGT TCTTCAGATA GTAGCCATAT
                                                                            1320
       GCACTAATGG CTTATATGGA AAATACAGCG ACCAACTGAT TGTCGACATG CCTACTGATA
                                                                            1380
       ATCCTGAACT TGATCTTTTC CCTGAATTAA TTGGAACTGA AGAAATAATC AAGGAGGAGG
                                                                            1440
       AAGAGGGAAA AGACATTGAA GAAGGCGCTA TTGTGAATCC TGGTAGAGAC AGTGCTACAA
75
       ACCAAATCAG GAAAAAGGAA CCCCAGATTT CTACCACAAC ACACTACAAT CGCATAGGGA
                                                                            1560
       CGAAATACAA TGAAGCCAAG ACTAACCGAT CCCCAACAAG AGGAAGTGAA TTCTCTGGAA
                                                                            1620
       AGGGTGATGT TCCCAATACA TCTTTAAATT CCACTTCCCA ACCAGTCACT AAATTAGCCA
                                                                            1680
       CAGAAAAAGA TATTTCCTTG ACTTCTCAGA CTGTGACTGA ACTGCCACCT CACACTGTGG
                                                                            1740
       AAGGTACTTC AGCCTCTTTA AATGATGGCT CTAAAACTGT TCTTAGATCT CCACATATGA
                                                                            1800
80
       ACTTGTCGGG GACTGCAGAA TCCTTAAATA CAGTTTCTAT AACAGAATAT GAGGAGGAGA
       GTTTATTGAC CAGTTTCAAG CTTGATACTG GAGCTGAAGA TTCTTCAGGC TCCAGTCCCG
                                                                            1920
       CAACTTCTGC TATCCCATTC ATCTCTGAGA ACATATCCCA AGGGTATATA TTTTCCTCCG
                                                                            1980
       AAAACCCAGA GACAATAACA TATGATGTCC TTATACCAGA ATCTGCTAGA AATGCTTCCG
AAGATTCAAC TTCATCAGGT TCAGAAGAAT CACTAAAGGA TCCTTCTATG GAGGGAAATG
                                                                            2040
                                                                            2100
85
       TGTGGTTTCC TAGCTCTACA GACATAACAG CACAGCCCGA TGTTGGATCA GGCAGAGAGA
                                                                            2160
       GCTTTCTCCA GACTAATTAC ACTGAGATAC GTGTTGATGA ATCTGAGAAG ACAACCAAGT
```

CCTTTTCTGC AGGCCCAGTG ATGTCACAGG GTCCCTCAGT TACAGATCTG GAAATGCCAC

		/000443					
		CTTTGCCTAC					2340
	CCAGACAACA	GGATTTGGTC	TCCACGGTCA	ACGTGGTATA	CTCGCAGACA	ACCCAACCGG	2400
	TATACAATGA	GGCCAGTAAT	AGTAGCCATG	AGTCTCGTAT	TGGTCTAGCT	GAGGGGTTGG	2460
		GAAGGCAGTT					2520
5	TACTCCCTCCT	TGTGGGTATT	CTCATCTACT	CCACCAAATC	CTTCCAGACT	CCACACTTTT	2580
J							2640
		CAGTACATCC					
		TGTCGGAGCA					2700
	ATGCAAGTAG	TGGGTTTACT	GAAGAATTTG	AGACACTGAA	AGAGTTTTAC	CAGGAAGTGC	2760
	AGAGCTGTAC	TGTTGACTTA	GGTATTACAG	CAGACAGCTC	CAACCACCCA	GACAACAAGC	2820
10		ATACATAAAT					2880
10							
		GGATGGCAAA					2940
		AGCTTATATT					3000
	GGAGAATGAT	ATGGGAACAT	AATGTGGAAG	TTATTGTCAT	GATAACAAAC	CTCGTGGAGA	3060
	AAGGAAGGAG	AAAATGTGAT	CAGTACTGGC	CTGCCGATGG	GAGTGAGGAG	TACGGGAACT	3120
15		TCAGAAGAGT					3180
13							
		AAAAATAAAA					3240
	CACAGTATCA	CTACACGCAG	TGGCCTGACA	TGGGAGTACC	AGAGTACTCC	CTGCCAGTGC	3300
	TGACCTTTGT	GAGAAAGGCA	GCCTATGCCA	AGCGCCATGC	AGTGGGGCCT	GTTGTCGTCC	3360
		TGGAGTTGGA					3420
20		CGAAGGAACT					3480
20							
		GGTACAAACT					3540
	CCATACTTAG	TAAAGAAACT	GAGGTGCTGG	ACAGTCATAT	TCATGCCTAT	GTTAATGCAC	3600
	TCCTCATTCC	TGGACCAGCA	GGCAAAACAA	AGCTAGAGAA	ACAATTCCAG	CTCCTGAGCC	3660
		ACAGCAGAGT					3720
25		TTCTATCATC					3780
23	ATCGAACTTC	TTCTATCATC	CCTGTGGAAA	GATCAAGGGI	IGGCATITCA	1CCC1GMG1G	
	GAGAAGGCAC	AGACTACATC	AATGCCTCCT	ATATCATGGG	CTATTACCAG	AGCAATGAAT	3840
	TCATCATTAC	CCAGCACCCT	CTCCTTCATA	CCATCAAGGA	TTTCTGGAGG	ATGATATGGG	3900
	ACCATAATGC	CCAACTGGTG	GTTATGATTC	CTGATGGCCA	AAACATGGCA	GAAGATGAAT	3960
	ጥተርጥጥተል ርጥር	GCCAAATAAA	GATGAGCCTA	TAAATTGTGA	GAGCTTTAAG	GTCACTCTTA	4020
30		ACACAAATGT					4080
50	TGGCIGAAGA	ACACAAAIGI	CIMICIMAIG	AGGAAAAACI	CERTAGE CECT	COMPARMORA	
	TAGAAGCTAC	ACAGGATGAT	TATGTACTTG	AAGTGAGGCA	CTTTCAGTGT	CCTAAATGGC	4140
	CAAATCCAGA	TAGCCCCATT	AGTAAAACTT	TTGAACTTAT	AAGTGTTATA	AAAGAAGAAG	4200
	CTGCCAATAG	GGATGGGCCT	ATGATTGTTC	ATGATGAGCA	TGGAGGAGTG	ACGGCAGGAA	4260
	CTTTCTCTCC	TCTGACAACC	CTTATCCACC	AACTAGAAAA	AGAAAATTCC	GTGGATGTTT	4320
35		CAAGATGATC					4380
55							
		CTACAAAGTG					4440
		GGACAGTAAT					4500
	AGTCTTTAGT	TTAACACAGA	AAGGGGTGGG	GGGACTCACA	TCTGAGCATT	GTTTTCCTCT	4560
	тССТДДДДТТ	AGGCAGGAAA	ATCAGTCTAG	TTCTGTTATC	TGTTGATTTC	CCATCACCTG	4620
40	1 CCIMMAII	TCATGACATA	COMMECTICA	CCCNAATTTA	TATCATTAAC	אאיימיימיימיימי	4680
1 0							
		ACTTGTAATT					4740
	ATTTCTAAGA	ATGGAATTGT	GGTATTTTT	TCTGTATTGA	TTTTAACAGA	AAATTTCAAT	4800
	TTATAGAGGT	TAGGAATTCC	AAACTACAGA	AAATGTTTGT	TTTTAGTGTC	AAATTTTTAG	4860
							4920
15	CTGTATTTGT	AGCAATTATC	AGGTTTGCTA	GAAATATAAC	${\tt TTTTAATACA}$	GTAGCCTGTA	4920
45	CTGTATTTGT AATAAAACAC	AGCAATTATC TCTTCCATAT	AGGTTTGCTA GATATTCAAC	GAAATATAAC ATTTTACAAC	$\begin{array}{c} \mathtt{TTTTAATACA} \\ \mathtt{TGCAGTATTC} \end{array}$	GTAGCCTGTA ACCTAAAGTA	4980
45	CTGTATTTGT AATAAAACAC GAAATAATCT	AGCAATTATC TCTTCCATAT GTTACTTATT	AGGTTTGCTA GATATTCAAC GTAAATACTG	GAAATATAAC ATTTTACAAC CCCTAGTGTC	TTTTAATACA TGCAGTATTC TCCATGGACC	GTAGCCTGTA ACCTAAAGTA AAATTTATAT	4980 5040
45	CTGTATTTGT AATAAAACAC GAAATAATCT	AGCAATTATC TCTTCCATAT	AGGTTTGCTA GATATTCAAC GTAAATACTG	GAAATATAAC ATTTTACAAC CCCTAGTGTC	TTTTAATACA TGCAGTATTC TCCATGGACC	GTAGCCTGTA ACCTAAAGTA AAATTTATAT	4980
45	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG	4980 5040 5100
45	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT	4980 5040 5100 5160
	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTAA TGTGTTACCT	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG	4980 5040 5100 5160 5220
4550	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	4980 5040 5100 5160 5220 5280
	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	4980 5040 5100 5160 5220
	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	4980 5040 5100 5160 5220 5280
	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	4980 5040 5100 5160 5220 5280
	CTGTATTTGT AATAAACAC GAAATAATCT TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAAA	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	4980 5040 5100 5160 5220 5280
50	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTTAGTTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA 1 sequence:	GAAATATAAC ATTITACAAC CCCTAGIGIC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	4980 5040 5100 5160 5220 5280
	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTTAGTTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAAA	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA 1 sequence:	GAAATATAAC ATTITACAAC CCCTAGIGIC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	4980 5040 5100 5160 5220 5280
50	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC AAGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTAT TGCAAAAAATA AAA sequence:	GAAATATAAC ATTITACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280
50	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTTAGTTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA 1 sequence:	GAAATATAAC ATTITACAAC CCCTAGIGIC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA	4980 5040 5100 5160 5220 5280
50	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACT AATAACCTTC ATGGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTAT TGCAAAAATA AAGTGTTATA AAA sequence: 60S sequence	GAAATATAAC ATTITACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCTTACCAAA TTGCCATTAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATA CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340
50 55	CTGTATTTGT AATAAAACAC GAAATAATCT TTTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC AAGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTAT TGCAAAAATA AAA 1 sequence: 21	GAAATATAAC ATTITACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMOIYCF	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCTTACCAAA TTGCCATTAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340
50 55	CTGTATTTGT AATAAAACAC GAAATAATCT TTTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC AAGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTAT TGCAAAAATA AAA 1 sequence: 21	GAAATATAAC ATTITACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMOIYCF	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCTTACCAAA TTGCCATTAA	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340
50	CTGTATTTGT AATAAAACAC GAAATAATCT TTTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC AAGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTAT TGCAAAAATA AAA sequence: 21 GSEHSLEGQK GVESVSRFGK	GAAATATAAC ATTITACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5120 5280 5340
50 55	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACCT AATACCTTC ATGGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11	AGGTTTGCTA GATAATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA sequence: EOS sequence 21 GSEHSLEGQK GVESVSRFGK QUAVFCEVLT	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF FPLEMQIYCF QAALDPFILL MQQSGYWMLM	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ	GTAGCCTGTA ACCTAAAGTA AAATTTATAT TGTGTAATTG GACATTGTAT TGGAAAATA CATTGTTCAA AAAAAAAAA 51 AVKGKGKLRA YIYNGSLTSP QYKFSRQVFS	4980 5040 5100 5120 5280 5340
50 55	CTGTATTTGT AATAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACT AATAACCTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE LSILFEVGTE SYTGKEEIHE	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGGTTTTAT TGCAAAAATA A sequence: EOS sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDK TYLONNFREQ YDTMIEKFAV	GTAGCCTGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340
50 55	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTA AAAAAAAAA Seq ID NO: Protein Acc	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA TGCAAAAATA AAGTTTTAT AAA 1 sequence: EOS sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPMMSYVLQI	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLW LVTWERPRVV VAICTNGLYG	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ DYLMNEKFAV KYSDQLIVDM	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340 60 120 180 240 300
505560	CTGTATTTGT AATAAAACAC GAAATAATCT TTTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC ATGGTTTTA AAAAAAAAA Seq ID NO: Protein Acc	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA TGCAAAAATA AAGTTTTAT AAA 1 sequence: EOS sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPMMSYVLQI	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLW LVTWERPRVV VAICTNGLYG	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ DYLMNEKFAV KYSDQLIVDM	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340
505560	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTTAGTTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11	AGGTTTGCTA GATAATTCAAC GTTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA sequence: EOS sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPNMSYVLQI EGAIVNPGRD	GAAATATAAC ATTTTACAAC CCCTAGTGTC CGCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NILLPNSTDKY DYLQNNFREQ YDTMIEKFAV TYSDQLIVUM FQISTTTHYN	GTAGCCTGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5120 5280 5340 60 120 180 240 300 360
50 55	CTGTATTTGT AATAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACT AATACCTTC ATGGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA TGCAAAAATA A sequence: EOS sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPMMSYVLQI EGAIVNPGRD SLNSTSQPVT	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTCT TTAACTTTTC CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV KYSDQLIVDM TSGTTTHYN TSGTVTELPP	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA TGTGTAATTG GACATTGTAT TGGAAAATA AAAAAAAAA 51 AVKGKGKLRA YLYNGSLTSP QYKFSRQVFS LYQQLDGEDQ PTDNPELDLF RIGTKYNEAK HTVEGTSASL	4980 5040 5160 5220 5280 5340 60 120 180 240 300 420
505560	CTGTATTTGT AATAAAACAC GAAATAATCT TTTATATTGT TTTAGTTTACT AATACCTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TNRSPTRGSE NDGSKTVLRS	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein ession #: I 11 HWGKCNMSSD ENLDFKAIID FKDTVSISS AVCSSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAAGTTTTTAT TGCAAAAATA A sequence: EOS sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPNMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE ELATEKDISL EEESLLTSFK	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV KYSDQLIVDM PQISTTHYN TSQTVTELPP LDTGAEDSSG	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA TGTGTAATTG GACATTGTAT TGGAAAATA CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340 60 120 240 300 360 420 480
505560	CTGTATTTGT AATAAAACAC GAAATAATTGT TTTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC AAATACCTTC AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTATTAA TGACGTAGTT AAGTCATTAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT	AGGTTTGCTA GATATTCAAC GATAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA TGCAAAAATA AAGTTTTAT AAA sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLI LPNMSYVLQI EGAIVNPGRD SLNTVSITEY YDVLIPESAR	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL KLATEKDISL KLATEKDISL KLATEKDISL KASEDSTSSG	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ VDTMIEKFAV KYSDQLIVDM FQISTTTHYN TSQTVTELPP LDTGAEDSSG SEESLKDPSM	GTAGCCTGTA ACCTAAACTA ACCTAAACTA TGTGTAATTG GACATTGTAT TGGAAAATA CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 60 120 180 240 360 420 480 540
505560	CTGTATTTGT AATAAAACAC GAAATAATTGT TTTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC AAATACCTTC AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein ession #: I 11 HWGKCNMSSD ENLDFKAIID FKDTVSISS AVCSSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE	AGGTTTGCTA GATATTCAAC GATAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA TGCAAAAATA AAGTTTTAT AAA sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLI LPNMSYVLQI EGAIVNPGRD SLNTVSITEY YDVLIPESAR	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL KLATEKDISL KLATEKDISL KLATEKDISL KASEDSTSSG	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ VDTMIEKFAV KYSDQLIVDM FQISTTTHYN TSQTVTELPP LDTGAEDSSG SEESLKDPSM	GTAGCCTGTA ACCTAAACTA ACCTAAACTA TGTGTAATTG GACATTGTAT TGGAAAATA CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5120 5280 5340 60 120 180 240 420 420 480 600
50556065	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTTAGTTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11 HWGKCNMSSD ENLOFKAIID FKDTVSISES AVCSEPENV QDLGAILNNL KEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNY	AGGTTTGCTA GATAATCAAC GATAATACAC ATTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AAA sequence: EOS sequence QLAVECEVLT QADPENYTSL LPNMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK	GAAATATAAC ATTTTACAAC CCCTAGTGC TGAGTCAGT TCTTACTCTA GCATGTAATT GAGAATAAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK KNASEDSTSSG TTKSFSAGPV	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV DYLQNNFREQ YDTMIEKFAV TSQTVTELPP LDTGAEDSS MSQGPSVTDL	GTAGCCTGTA ACCTAAAGTA ACCTTAAAGTA TGGTAAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 60 120 180 240 360 420 480 540
50556065	CTGTATTTGT AATAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACCT AATACCTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MYFKASKITF LSILFEVGTE PCCTDVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TMRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FFTEVTPHAF	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTITTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11	AGGTTTGCTA GATAATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA TGCAAAAATA A sequence: EOS sequence QUAVFCEVLT QADPENYTSL LPMMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVVYSQT	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYWMLM LVTWERPRVV VAICTNGLYG SATNQIRKE KLATEKDISL EEESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG SEESLKDPSM MSQGPSVTDL SSHESRIGLA	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA TGTGTAATTG GACATTGTAT TGGAAAATA CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5120 5280 5340 60 120 180 240 300 420 480 540 600 660
505560	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACT AATACCTTC ATGGTTATTA AATACCTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEII TNRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT AGATTATTAA AGTTATTAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein ession #: I 11 HWGKCNMSSD ENLDFKAIID FKDTVSISS AVCSSEPENV QDLGAILNNL KEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNY TPSSRQQDLV FICLVVLVGI	AGGTTTGCTA GATATTCAAC GATAATACTG ATTTACTAC CATTAGCTGG CTTTGTTTCA AAAGTTTTTAT TGCAAAAATA A sequence: EOS sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPNMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STYNVYYSQT LIYWRKCFQT	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATTA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQVSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKEE ELATEKOISL EEESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS	TTTTAATACA TGCAGTATTC TCCAGTGACC TTTCTAGTTC CCAGTTTCT TTAACTTTC CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV KYSDQLIVDM PQISTTHYN TSQTVTELPP LDTGAEDSSG SEESLKDPSM MSQGPSVTDL SCHESRIGLA PRVISTPPTP	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA TGTGTAATTG GACATTGTAT TGGAAAATA CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340 60 120 180 240 300 360 420 480 540 600 720
50556065	CTGTATTTGT AATAAAACAC GAAATAATCT TTTATAATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC AAATACCTTC AAATACCTTC ATGGTTTTA AAAAAAAAA Seq ID NO: Protein Acc	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTATTAT AGATTATTAA AGATTATTAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNV TPSSRQQDLY TPSSRQQDLY TPSSRQQDLY TPSSRQQDLY TGLVVLVGI ADLHASSGFT	AGGTTTGCTA GATATTCAAC GATAATACTG ATTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTAT TGCAAAAATA ASEQUENCE SS sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLI LPNMSYVLQI EGAIVNPGRD SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVVYSQT LIYWRKCFQT EEFETLKEFY	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ VDTMIEKFAV KYSDQLIVDM PQISTTTHYN TSQTVTELPP LDTGAEDSSG SEESLKDPSM MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP	GTAGCCTGTA ACCTAAACTA ACCTAAACTA TGTGTAATTG GACATTGTAT TGGAAAATA CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 60 120 180 240 360 420 480 540 660 600 720 780
50556065	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTATAGTTTAC TATAGTTTAC AATACCTTC AATGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TNRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPIKHFPKHV IVAYDHSRVK	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11 HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSSEPENV QDLGAILNNL KEEEGKDIE FSGKGDVPNT PHMILSGTAE FMSTAGT TFSRQQDLV FICLVVLVGI ADLHASSGFT LAQLAEKDGK	AGGTTTGCTA GATATTCAAC GATAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA TGCAAAAATA ASEQUENCE: EOS SEQUENCE 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPNMSYVLQI ECAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVVYSQT LIYWRKCFQT	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK KLATEKDISL TTKSFSAGPV TQPVYNEASN AHFYLEDSTS GEVQSCTVDL DGYNRPKAYI	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV YSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PKVISTPPTP GITADSSNHP AAQGPLKSTA	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACAATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5160 5220 5280 5340 60 120 180 240 420 480 660 720 660 720 780 840
50556065	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTATAGTTTAC TATAGTTTAC AATACCTTC AATGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TNRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPIKHFPKHV IVAYDHSRVK	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTATTAT AGATTATTAA AGATTATTAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNV TPSSRQQDLY TPSSRQQDLY TPSSRQQDLY TPSSRQQDLY TGLVVLVGI ADLHASSGFT	AGGTTTGCTA GATATTCAAC GATAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA TGCAAAAATA ASEQUENCE: EOS SEQUENCE 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPNMSYVLQI ECAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVVYSQT LIYWRKCFQT	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK KLATEKDISL TTKSFSAGPV TQPVYNEASN AHFYLEDSTS GEVQSCTVDL DGYNRPKAYI	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCTTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV YSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PKVISTPPTP GITADSSNHP AAQGPLKSTA	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACAATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 60 120 180 240 360 420 480 540 660 600 720 780
5055606570	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACT AATACCTTC ATGGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT AGATTATTAAGTATTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11 HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNY TPSSRQQDLV FICLVVLVGI ADLHASSGT LAQLAEKDGK LVEKGRRKCD	AGGTTTGCTA GATATTCAAC GATAATACTG ATTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA TGCAAAAATA A sequence: EOS sequence QUAVECEVLT QADPENYTSL LPMMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVYSQT LIYWRKCFQT EEFETLKEFY LTDYINANYV QYWPADGSEE	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKE KLATEKDISL EEESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI YGNFLVTQKS	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTCT TTAACTTTTC CCAGTTTCT TTAACTTTTC CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG SEESLKDPSM MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP RAQGPLKSTA VQVLAYYTVR	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATA AAAAAAAAA 51 AVKGKGKLRA YIYNGSLTSP QYKFSRQVFS LYQQLDGEDQ PTDNPELDLF RIGTKYNEAK HTVEGTSASL SSPATSAIPF EGNVWFPSST EMPHYSTFAY EGLESEKKAV IFPISDDVGA DNKKNRYIN EDFWRMIWEH NFTLRNTKIK	4980 5040 5160 5160 5220 5280 5340 60 120 180 240 420 480 660 720 660 720 780 840
5055606570	CTGTATTTGT AATAAAACAC GAAATAATCT TTTATATTGT TTTAGTTTAA TGTGTTACCT AAATACCTTC AAATACCTTC AAATACCTTTA AAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT AGATCATTAA AGATTATAAAG TCCAAGGAAT AAAAAAAAA 579 Protein ession #: I	AGGTTTGCTA GATATTCAAC GATAATACTG ATTTACTAC CATTAGCTGG CTTTGTTTCA AAAGTTTTATTA TGCAAAAATA A sequence: EOS sequence 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPNMSYVLQI EGAIVNPGRD SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVYSQT LIYWRKCFQT EEFETLKEFY LTDYINANYV QYWPADGSEE WPDMGVPEYS	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATTA GCATGTAATTA AATATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKEE ELSTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI TGNFLVTQKK LPVLTFVRKA	TTTTAATACA TGCAGTATTC TCCAGTGCC TTTCTAGTTC CCAGTTTCT TTAACTTTC CCATTACAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV KYSDQLIVDM PQISTTTHYN TSQTVTELPP LDTGAEDSSG SEESLKDPSM MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTH AQQELKSTH AYAKRHAVGP	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA TGTGTAATTG GACATTGTAT TGGAAAATA CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340 60 120 180 360 420 540 660 720 780 840 960
50556065	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTATAGTTTAC TATAGTTTAC AATACCTTC AATGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF ECTDTVDWIV SYTGKEEIHE FCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TNRSPTRGSE NDGSKTVLRS ISENISQGYLVLRS ISENISQGYLVLRS ISENISQGYLVLRS IDITAQPDVGS FPTEVTPHAF IPLVIVSALI IPIKHFPKHV IVAYDHSRVK NVEVIVMITN NKGSQKGRPSG RTGTYIVLDS	AGCAATTATC TCTTCCATAT TGTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMILSGTAE FSSENPETIT GRESFLQTNY TPSSRQQDLV FICLVVLVGI ADLHASGGFT LAQLAEKDGK LVEKGRRKCD RVVYQYHYTQ MLQQIQHEGT	AGGTTTGCTA GATATTCAAC GATAATCAAC GATAATCAAC CATTAGCTGG CTTTGTTTCA AAGTTTTATT TGCAAAAATA AAA Sequence: EOS sequence QLAVFCEVLT QADPENYTSL LPNMSYVLQI ECAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STWNVYSQT LIYWRKCFQT EEFFETLKEFY LTDYINANYV QYWPADGSEE WPDMGVPEYS WNIFGFLKHI	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK KNASEDSTSSG TTKSFSAGPV TQPYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGP EEQYVFIHDT	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 60 120 180 240 360 420 600 600 600 720 780 840 900 1020
5055606570	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTTAGTTTACCT AATACCTTC AATGTTTTTA AAAAAAAAAA	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT AGATTTTTAT TGACGTAGTT AAGTCATTAAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein ession #: I 11 HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNY TPSSRQQDLV FICLVALUGI ADLHASSGFT LAQLAEKDGK LVEKGRRKCD RVVTQYHYTQ MLQQIQHEGT VNALLIPGPA	AGGTTTGCTA GATAATTCAAC GATAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATT TGCAAAAATA AS sequence: EOS sequence 21 GSEHSLEGQK QUAVFCEVLT QADPENYTSL LPMMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAK TEIRVDESEK STVNVYSQT LIYWRKCFQT LTYWRKCFQT LTYNANYV QYWPADGSEE WPDMGVPEYS VNIFGFLKHI GKTKLEKQFQ	GAAATATAAC ATTTTACAAC CCCTAGTGCC TGAGTCAGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQSNIQQS	TTTTAATACA TGCAGTATTC TCCAGTGTCC TTTACTAGTTC CCAGTTTTCT TTAACTTTTC CCAGTTTCT TTAACTTTTC CCAGTTTCT TTAACTTTTA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV KYSDQLIVUM TSQTVTELPP LDTGAEDSSG SEESLKDPSM MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGP EEQYVFIHDT DYSAALKQCN	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5160 5220 5280 5340 60 120 180 240 480 660 720 780 840 900 900 900 1020 1080
5055606570	CTGTATTTGT AATAAAACAC GAAATAATCT TTTATATTGT TTTAGTTTACT AATACTTC ATGGTTTTTA AATACTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TMRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPLKHFPKHV IVAYDHSRVK NVEVIVMITN KGSQKGRPSG RTGTYIVLDS	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTATTAT AGATTATTAA AGATTATTAA AAGTCATTAA AATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11 HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSEPENV QDLGAILNNL KEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNY TPSSRQQDLV FICLVVLVGI ADLHASSGFT LAQLAEKDGK LVVEGRRKCD RVVTQYHYTQ MLQQIQHEGT VNALLIPGPA SLSGGTDYI	AGGTTTGCTA GATATTCAAC GTAAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAA AGGTTTTAT TGCAAAAATA ASEQUENCE SOS SEQUENCE COS SEQU	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAACA AATATAAATA 31 FPLEMQIYCF QAALDPFILL LVTWERPRVV VAICTNGLYG SATNQIRKE ELESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQSNIQQS SNEFIITQHP	TTTTAATACA TGCAGTATTC TCCAGTGACC TTTCTAGTTC CCAGTTTCT TTAACTTTC CCAGTTTCT TTAACTTTTC CCAGTTTCT TTAACTTTTC CCAGTTTCT TTAACTTTTC TTAACTTTTC CCAGTTTCT TTAACTTTTC TTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY DYLQNNFREQ YDTMIEKFAV KYSDQLIVDM PQISTTTHYN TSQTVTELPP LDTGAEDSSG EESLKDPSM MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGP EEQYVFIHDT DYSAALKQCN LLHTIKDFWR	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA TGTGTAATTG GACATTGTAT TGGGAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340 60 120 120 240 300 360 420 480 660 720 780 840 900 960 1020 1080 1140
5055606570	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTATAGTTTAC TTATAGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TNRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPLKHFPKHV IVAYDHSRVK NVEVIVMITN KGSQKGRPSG RTGTYIVLDS EVLDSHIHAY PVERSRVGIS VMIPDGQMMA	AGCAATTATC TCTTCCATAT TGTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSEENPETIT GRESFLQTNY TPSSRQQDLV TPSSRQQDLV LVEKGRRKCD AULAEKDGK LVEKGRRKCD TVVTQYHYTQ MLQQIQHEGT VNALLIPGPA SLSGEGTDYI EDEFVYWPNK	AGGTTTGCTA GATAATTCAAC GATAATACAC GATAATACAC GATTAGCTGG CTTTGTTTCA AAGTTTTATT TGCAAAAATA AAA Sequence: EOS sequence: GOS sequence: GOS SEQUENCE LOS SEQUEN	GAAATATAAC ATTTTACAAC CTTTACTTAC TGAGTCAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQSNIQQS SNEFIITQHP VTLMAEEHKC	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCTACAAA TTGCCATTAA 41 DADRFSSFEE NILLPNSTDKY DYLQNNFREQ YDTMIEKFAV CYSDQLIVUM PQISTTTHYN TSQTVTELPP LDTGAEDSS MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVA AYAKRHAVGP EEQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340 600 120 180 240 300 360 420 720 780 840 960 1020 1080 1020 1080 1020
505560657075	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTATAGTTTAC TTATAGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TNRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPLKHFPKHV IVAYDHSRVK NVEVIVMITN KGSQKGRPSG RTGTYIVLDS EVLDSHIHAY PVERSRVGIS VMIPDGQMMA	AGCAATTATC TCTTCCATAT TGTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSEENPETIT GRESFLQTNY TPSSRQQDLV TPSSRQQDLV LVEKGRRKCD AULAEKDGK LVEKGRRKCD TVVTQYHYTQ MLQQIQHEGT VNALLIPGPA SLSGEGTDYI EDEFVYWPNK	AGGTTTGCTA GATAATTCAAC GATAATACAC GATAATACAC GATTAGCTGG CTTTGTTTCA AAGTTTTATT TGCAAAAATA AAA Sequence: EOS sequence: GOS sequence: GOS SEQUENCE LOS SEQUEN	GAAATATAAC ATTTTACAAC CTTTACTTAC TGAGTCAGT TCTTACTCTA GCATGTAATT GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQSNIQQS SNEFIITQHP VTLMAEEHKC	TTTTAATACA TGCAGTATTC TCCATGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTC CCTACAAA TTGCCATTAA 41 DADRFSSFEE NILLPNSTDKY DYLQNNFREQ YDTMIEKFAV CYSDQLIVUM PQISTTTHYN TSQTVTELPP LDTGAEDSS MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVA AYAKRHAVGP EEQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340 60 120 120 240 300 360 420 480 660 720 780 840 900 960 1020 1080 1140
505560657075	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTTAGTTTACCT AATACCTTC AATGTTTACC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF ECTDTVDWIV SYTGKEEIHE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TNRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPIKHFPKHV IVAYDHSRVK NVEVIVMITN KGSQKGRPSG ETGTYIVLDS EVLDSHIHAY PVERSRVGIS VMIPDGQMMA YVLEVRHFQC	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11 HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSSEPENV QDLGAILNNL KEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNY TPSRQQDLV FICLVVLVGI ADLHASSGFT LAQLAEKDGK LVEKGRRKCD RVVTQYHYGY VNALLIPGPA SLSGEGTDYI EDEFVYWPNK FKWPNPDSPI	AGGTTTGCTA GATAATTCAAC GATAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA AAA SEQUENCE: COS SEQUENCE 21 GSEHSLEGQK GVEVVSRFGK QUAVFCEVLT QADPENYTSL LPNMSYVLQI SLNTTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVYSQT LIYWRKCFQT LTYWRKCFQT LTYWRCFQT LTYWRCFQT LTYWRCFQT LTYWRCFQT LTYWRCFQT LTYWRCT LTYWRCFQT LTYWRCT LTYWRCFQT LTYWRCT LT	GAAATATAAC ATTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQOSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQSNIQQS SNEFIITQHP VTLMAEEHKC KEEAANRDGF	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGE EQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ MIVHDEHGGV	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5120 5280 5340 60 120 180 240 480 660 720 720 780 840 900 1020 1080 1140 1200 1200 1260
5055606570	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACCT AATACCTTC AATGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TMRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPIKHFPKHV NVEVIVMITN KGSCKGRPSG EVLDSHIHAY PVERSRVGIS VMIPDGNHAP VVERSRVGIS VMIPDGNHFQC LMHQLEKENS	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein ession #: I 11	AGGTTTGCTA GATAATTCAAC GATAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA AAA SEQUENCE: COS SEQUENCE 21 GSEHSLEGQK GVEVVSRFGK QUAVFCEVLT QADPENYTSL LPNMSYVLQI SLNTTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVYSQT LIYWRKCFQT LTYWRKCFQT LTYWRCFQT LTYWRCFQT LTYWRCFQT LTYWRCFQT LTYWRCFQT LTYWRCT LTYWRCFQT LTYWRCFQT LTYWRCT LTYWRCFQT	GAAATATAAC ATTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQOSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQSNIQQS SNEFIITQHP VTLMAEEHKC KEEAANRDGF	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGE EQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ MIVHDEHGGV	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5100 5160 5220 5280 5340 600 120 180 240 300 360 420 720 780 840 960 1020 1080 1020 1080 1020
505560657075	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTTAGTTTACCT AATACCTTC AATGTTTACC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF ECTDTVDWIV SYTGKEEIHE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TNRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPIKHFPKHV IVAYDHSRVK NVEVIVMITN KGSQKGRPSG ETGTYIVLDS EVLDSHIHAY PVERSRVGIS VMIPDGQMMA YVLEVRHFQC	AGCAATTATC TCTTCCATAT GTTACTTATT AGATTTTTAT AGATTTTTAT TGACGTAGTT AAGTCATTAA ATTTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein ession #: I 11	AGGTTTGCTA GATAATTCAAC GATAATACTG ATTTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA AAA SEQUENCE: COS SEQUENCE 21 GSEHSLEGQK GVEVVSRFGK QUAVFCEVLT QADPENYTSL LPNMSYVLQI SLNTTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVYSQT LIYWRKCFQT LTYWRKCFQT LTYWRCFQT LTYWRCFQT LTYWRCFQT LTYWRCFQT LTYWRCFQT LTYWRCT LTYWRCFQT LTYWRCFQT LTYWRCT LTYWRCFQT	GAAATATAAC ATTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQOSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQSNIQQS SNEFIITQHP VTLMAEEHKC KEEAANRDGF	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGE EQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ MIVHDEHGGV	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 60 120 180 240 360 420 480 660 720 720 780 840 900 1020 1080 1140 1200 1200 1260
505560657075	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTATAGTTTAC TTATAGTTACCT AAATACCTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc ! MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TNRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPLKHFPKHV IVAYDHSRVK NVEVIVMITIN KGSQKGRPSG RTGTYIVLDS EVLDSHIHAY PVERSRVGIS VMIPDGQNMA YVLEVRHFQC LMHQLEKENS GAALPDGNIA	AGCAATTATC TCTTCCATAT TGTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11 HWGKCNMSSD ENLOFKAIID FKDTVSISES AVCSEPENV QDLGAILNNL KEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNY TPSSRQQDLV FICLVVLVGI ADLHASSGFT LAQLAEKDGK LVEKGRRKCD MLQQIQHEGT VNALLIPGPA SLSGEGTDYI PMNYTQYHYTQ MLQQIQHEGT VNALLIPGPA SLSGEGTDYI EDEFVYWPNK PKWPNPDSPI VDVYQVAKMI ESLESLV	AGGTTTGCTA GATAATTCAC GATAATACAC GATAATACAC GATTAGCTGG CTTTGTTTCA AAGTTTTTAT TGCAAAAATA AGGTGG GOS sequence: EOS sequence: GOS sequence: GOS sequence: GOS sequence: LOS SEQUENCES GUENVERFGK QLAVFCEVLT QADPENYTSL LPNMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVVYSQT LIYWRKCFQT EEPFETLKEFY LTDYINANYV QYWPADGSEE WPDMGVPEYS VNIFGFLKHI GKTKLEKQFQ MASYIMGYYQ DEPINCESFK SKTFELISVI NLMRPGVFAD	GAAATATAAC ATTTACAAC CCCTAGTGTC TGAGTCAAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQOSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TTKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVDL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQSNIQQS SNEFIITQHP VTLMAEEHKC KEEAANRDGF	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGE EQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ MIVHDEHGGV	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 60 120 180 240 360 420 480 660 720 720 780 840 900 1020 1080 1140 1200 1200 1260
505560657075	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTATAGTTTAC TATAGTTTAC AATACCTTC AATGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TMRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPIKHFPKHV IVAYDHSRVK NVEVIVMITN KGSQKGRPSG ETGTYLVGB ETLDSHIHAY PVERSRVGIS SMITGTYLVG ETLDSHIHAY PVERSRVGIS CMALPDGNIA Seq ID NO:	AGCAATTATC TCTTCCATAT TGTTACTATTAT AGATTTTTAT AGATTTTTAT TGACGTAGTT AAGTCATTAAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein ession #: I 11 HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNY TPSSRQQDLV FICLVVLVGI ADLHASSGFT LAQLAEKDGK LVEKGRRKCD RVVTQYHYTQ MLQQIQHEGT VNALLIPGPA SLSGEGTDYI EDEFVYWPNK FKWPNPDSPI VDVYQVAKMI ESLESLV 580 DNA see	AGGTTTGCTA GATAATTCAAC GATAATACTG ATTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA AAA SEQUENCE: COS SEQUENCE 21 GSEHSLEGQK QUEVERFGK QUAVFCEVLT QADPENYTSL LPNMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAK TEIRVDESEK STVNVYSQT LIYWRKCFQT LTDYINANYV QYWPADGSEE WPDMGVPEYS UNIFGFLKET GKTKLEKQFQ NASYIMGYYQ DEPINCESFK SKTFELISVI NLMRPGVFAD	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TKKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVOL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQRNIQQS SNEFIITQHP VTLMAEEHKC KEEAANRDGP IEQYQFLYKV	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGE EQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ MIVHDEHGGV	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5120 5280 5340 60 120 180 240 480 660 720 720 780 840 900 1020 1080 1140 1200 1200 1260
50 55 60 65 70 75	CTGTATTTGT AATAAAACAC GAAATAATTGT TTATAATTGT TTATAGTTTAC TATAGTTTAC AATACCTTC AATGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MVFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TMRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FPTEVTPHAF IPLVIVSALT IPIKHFPKHV IVAYDHSRVK NVEVIVMITN KGSQKGRPSG ETGTYLVGB ETLDSHIHAY PVERSRVGIS SMITGTYLVG ETLDSHIHAY PVERSRVGIS CMALPDGNIA Seq ID NO:	AGCAATTATC TCTTCCATAT TGTTACTTATT AGATTTTTAT TGACGTAGTT AAGTCATTAAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11 HWGKCNMSSD ENLOFKAIID FKDTVSISES AVCSEPENV QDLGAILNNL KEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNY TPSSRQQDLV FICLVVLVGI ADLHASSGFT LAQLAEKDGK LVEKGRRKCD MLQQIQHEGT VNALLIPGPA SLSGEGTDYI PMNYTQYHYTQ MLQQIQHEGT VNALLIPGPA SLSGEGTDYI EDEFVYWPNK PKWPNPDSPI VDVYQVAKMI ESLESLV	AGGTTTGCTA GATAATTCAAC GATAATACTG ATTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA AAA SEQUENCE: COS SEQUENCE 21 GSEHSLEGQK QUEVERFGK QUAVFCEVLT QADPENYTSL LPNMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAK TEIRVDESEK STVNVYSQT LIYWRKCFQT LTDYINANYV QYWPADGSEE WPDMGVPEYS UNIFGFLKET GKTKLEKQFQ NASYIMGYYQ DEPINCESFK SKTFELISVI NLMRPGVFAD	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TKKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVOL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQRNIQQS SNEFIITQHP VTLMAEEHKC KEEAANRDGP IEQYQFLYKV	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGE EQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ MIVHDEHGGV	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 60 120 180 240 360 420 480 660 720 720 780 840 900 1020 1080 1140 1200 1200 1260
505560657075	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACT AATACTTC AATGTTTACT AATACCTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MYFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TMRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FFTEVTPHAF IPLVIVSALT IPIKHFPKHV IVAYDHSRVK NVEVIVMITN KGSCKGRPSG RTGTYIVLDS EVLDSHIHAY PVERSRVGIS VMIPDGQNMA YVLEVRHFQC LMHQLEKENS GAALPDGNIA Seq ID NO: Nucleic Ac:	AGCAATTATC TCTTCCATAT TGTTACTTATT AGATTITTAT AGATTITTAT TGACGTAGTT AAGTCATTAA AATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11	AGGTTTGCTA GATAATTCAAC GATAATACTG ATTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA TGCAAAAATA ASEQUENCE: OS SEQUENCE 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPMMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVVYSQT LIYWRKCFQT EEFETLKEFY LTDYINANYV QYWPADGSEE WPDMGVPEYS VNIFGFLKHI GKTKLEKQFQ NASYIMGYYQ DEPINCESFK SKTFELISVI NLMRPGVFAD	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TKKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVOL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQRNIQQS SNEFIITQHP VTLMAEEHKC KEEAANRDGP IEQYQFLYKV	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGE EQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ MIVHDEHGGV	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 60 120 180 240 360 420 480 660 720 720 780 840 900 1020 1080 1140 1200 1200 1260
50 55 60 65 70 75	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACT AATACTTC AATGTTTACT AATACCTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MYFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TMRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FFTEVTPHAF IPLVIVSALT IPIKHFPKHV IVAYDHSRVK NVEVIVMITN KGSCKGRPSG RTGTYIVLDS EVLDSHIHAY PVERSRVGIS VMIPDGQNMA YVLEVRHFQC LMHQLEKENS GAALPDGNIA Seq ID NO: Nucleic Ac:	AGCAATTATC TCTTCCATAT TGTTACTATTAT AGATTTTTAT AGATTTTTAT TGACGTAGTT AAGTCATTAAA ATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein ession #: I 11 HWGKCNMSSD ENLDFKAIID FKDTVSISES AVCSSEPENV QDLGAILNNL KEEEEGKDIE FSGKGDVPNT PHMNLSGTAE FSSENPETIT GRESFLQTNY TPSSRQQDLV FICLVVLVGI ADLHASSGFT LAQLAEKDGK LVEKGRRKCD RVVTQYHYTQ MLQQIQHEGT VNALLIPGPA SLSGEGTDYI EDEFVYWPNK FKWPNPDSPI VDVYQVAKMI ESLESLV 580 DNA see	AGGTTTGCTA GATAATTCAAC GATAATACTG ATTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA TGCAAAAATA ASEQUENCE: OS SEQUENCE 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPMMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVVYSQT LIYWRKCFQT EEFETLKEFY LTDYINANYV QYWPADGSEE WPDMGVPEYS VNIFGFLKHI GKTKLEKQFQ NASYIMGYYQ DEPINCESFK SKTFELISVI NLMRPGVFAD	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TKKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVOL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQRNIQQS SNEFIITQHP VTLMAEEHKC KEEAANRDGP IEQYQFLYKV	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGE EQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ MIVHDEHGGV	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 600 120 180 240 480 660 720 720 780 840 900 1020 1080 1140 1200 1200 1260
50 55 60 65 70 75	CTGTATTTGT AATAAAACAC GAAATAATCT TTATAATTGT TTTAGTTTACT AATACTTC AATGTTTACT AATACCTTC ATGGTTTTTA AAAAAAAAA Seq ID NO: Protein Acc 1 MYFKASKITF LSILFEVGTE PCTDTVDWIV SYTGKEEIHE TKHEFLTDGY PELIGTEEII TMRSPTRGSE NDGSKTVLRS ISENISQGYI DITAQPDVGS FFTEVTPHAF IPLVIVSALT IPIKHFPKHV IVAYDHSRVK NVEVIVMITN KGSCKGRPSG RTGTYIVLDS EVLDSHIHAY PVERSRVGIS VMIPDGQNMA YVLEVRHFQC LMHQLEKENS GAALPDGNIA Seq ID NO: Nucleic Ac:	AGCAATTATC TCTTCCATAT TGTTACTTATT AGATTITTAT AGATTITTAT TGACGTAGTT AAGTCATTAA AATTTGAAAG TCCAAGGAAT AAAAAAAAA 579 Protein cession #: I 11	AGGTTTGCTA GATAATTCAAC GATAATACTG ATTTACTAC CATTAGCTGG CTTTGTTTCA AAGTTTTATTA TGCAAAAATA ASEQUENCE: OS SEQUENCE 21 GSEHSLEGQK GVESVSRFGK QLAVFCEVLT QADPENYTSL LPMMSYVLQI EGAIVNPGRD SLNSTSQPVT SLNTVSITEY YDVLIPESAR TEIRVDESEK STVNVVYSQT LIYWRKCFQT EEFETLKEFY LTDYINANYV QYWPADGSEE WPDMGVPEYS VNIFGFLKHI GKTKLEKQFQ NASYIMGYYQ DEPINCESFK SKTFELISVI NLMRPGVFAD	GAAATATAAC ATTTTACAAC CCCTAGTGTC TGAGTCAGT TCTTACTCTA GCATGTAATT GAGAATAAATA 31 FPLEMQIYCF QAALDPFILL MQQSGYVMLM LVTWERPRVV VAICTNGLYG SATNQIRKKE KLATEKDISL EEESLLTSFK NASEDSTSSG TKKSFSAGPV TQPVYNEASN AHFYLEDSTS QEVQSCTVOL DGYNRPKAYI YGNFLVTQKS LPVLTFVRKA RSQRNYLVQT LLSQRNIQQS SNEFIITQHP VTLMAEEHKC KEEAANRDGP IEQYQFLYKV	TTTTAATACA TGCAGTATTC TCCAGGACC TTTCTAGTTC CCAGTTTTCT TTAACTTTTG CCATTACCAAA TTGCCATTAA 41 DADRFSSFEE NLLPNSTDKY YDTMIEKFAV KYSDQLIVDM TSQTVTELPP LDTGAEDSSG MSQGPSVTDL SSHESRIGLA PRVISTPPTP GITADSSNHP AAQGPLKSTA VQVLAYYTVR AYAKRHAVGE EQYVFIHDT DYSAALKQCN LLHTIKDFWR LSNEEKLIIQ MIVHDEHGGV	GTAGCCTGTA ACCTAAAGTA ACCTAAAGTA AAATTATAT TGTGTAATTG GACATTGTAT TGGAAAATAG CATTGTTCAA AAAAAAAAAA	4980 5040 5160 5220 5280 5340 600 120 180 240 480 660 720 720 780 840 900 1020 1080 1140 1200 1200 1260

	WO 02	/086443					
		 	CHCA CHHCCA	moment on on	CCA CCA BEEN A	7767776777	60
			CTCACTTCGA CTCCCCCTCC				120
_			TCTGGAAATG				180
5			CCTGGATTGG				240
			GTCCTATACA				300
			CCCAAAACAA GAAACTTAAA				360 420
			TGGGAAAACA				480
10			AATGGTGTTT				540
			TGGATCAGAG				600
	GAGATGCAAA	TCTACTGCTT	TGATGCGGAC TTTATCCATT	CGATTTTCAA	GTTTTGAGGA	AGCAGTCAAA	660 720
			TGGAGTCGAA				780
15			GAACCTTCTG				840
			TCCCTGCACA				900
			CCAGTTGGCT				960 1020
			GGACTACTTA CTCATACACT				1020
20			TCAGGCTGAC				1140
	TGGGAAAGAC	CTCGAGTCGT	TTATGATACC	ATGATTGAGA	AGTTTGCAGT	TTTGTACCAG	1200
	CAGTTGGATG	GAGAGGACCA	AACCAAGCAT	GAATTTTTGA	CAGATGGCTA	TCAAGACTTG	1260
			GCTACCCAAT AAAATACAGC				1320 1380
25			CCCTGAATTA				1440
	GAAGAGGGAA	AAGACATTGA	AGAAGGCGCT	ATTGTGAATC	CTGGTAGAGA	CAGTGCTACA	1500
			ACCCCAGATT				1560
	ACGAAATACA	ATGAAGCCAA	GACTAACCGA ATCTTTAAAT	TCCCCAACAA	GAGGAAGTGA AACCAGTCAC	TADATTAGCC	1620 1680
30			GACTTCTCAG				1740
	GAAGGTACTT	CAGCCTCTTT	AAATGATGGC	TCTAAAACTG	TTCTTAGATC	TCCACATATG	1800
	AACTTGTCGG	GGACTGCAGA	ATCCTTAAAT	ACAGTTTCTA	TAACAGAATA	TGAGGAGGAG	1860 1920
	AGTTTATTGA GCAACTTCTG	CCAGTTTCAA	GCTTGATACT CATCTCTGAG	AACATATCCC	ALICITCAGG	ATTTTCCTCC	1980
35	GAAAACCCAG	AGACAATAAC	ATATGATGTC	CTTATACCAG	AATCTGCTAG	AAATGCTTCC	2040
	GAAGATTCAA	CTTCATCAGG	TTCAGAAGAA	TCACTAAAGG	ATCCTTCTAT	GGAGGGAAAT	2100
	GTGTGGTTTC	CTAGCTCTAC	AGACATAACA CACTGAGATA	GCACAGCCCG	ATGTTGGATC	AGGCAGAGAG	2160 2220
	TCCTTTTCTC	CAGGCCCAGT	GATGTCACAG	GGTCCCTCAG	TTACAGATCT	GGAAATGCCA	2280
40	CATTATTCTA	CCTTTGCCTA	CTTCCCAACT	GAGGTAACAC	CTCATGCTTT	TACCCCATCC	2340
	TCCAGACAAC	AGGATTTGGT	CTCCACGGTC	AACGTGGTAT	ACTCGCAGAC	AACCCAACCG	2400
			TAGTAGCCAT TATACCCCTT				2460 2520
	CTAGTGGTTC	TTGTGGGTAT	TCTCATCTAC	TGGAGGAAAT	GCTTCCAGAC	TGCACACTTT	2580
45	TACTTAGAGG	ACAGTACATC	CCCTAGAGTT	ATATCCACAC	CTCCAACACC	TATCTTTCCA	2640
	ATTTCAGATG	ATGTCGGAGC	AATTCCAATA	AAGCACTTTC	CAAAGCATGT	TGCAGATTTA	2700 2760
	CATGCAAGTA	CTCTTCACTT	TGAAGAATTT AGGTATTACA	GAGACACTGA	CCAACCACCC	AGACAACAAG	2820
	CACAAGAATC	GATACATAAA	TATCGTTGCC	TATGATCATA	GCAGGGTTAA	GCTAGCACAG	2880
50			ACTGACTGAT				2940
			TGCTGCCCAA TAATGTGGAA				3000 3060
			TCAGTACTGG				3120
	TTTCTGGTCA	CTCAGAAGAG	TGTGCAAGTG	CTTGCCTATT	ATACTGTGAG	GAATTTTACT	3180
55			AAAGGGCTCC				3240
			GTGGCCTGAC AGCCTATGCC				3300 3360
	CACTGCAGTG	CTGGAGTTGG	AAGAACAGGC	ACATATATTG	TGCTAGACAG	TATGTTGCAG	3420
60	CAGATTCAAC	ACGAAGGAAC	TGTCAACATA	TTTGGCTTCT	TAAAACACAT	CCGTTCACAA	3480
60	AGAAATTATT	TGGTACAAAC	TGAGGAGCAA	TATGTCTTCA	TTCATGATAC	ACTGGTTGAG	3540
	GCCATACTTA	GTAAAGAAAC	TGAGGTGCTG	GACAGTCATA	TTCATGCCTA	TGTTAATGCA GGGTCTCACT	3 <i>6</i> 00 3660
	CTGTCACCCA	GGCTGGAGTG	CAGAGGCACA	ATCTCGGCTC	ACTGCAACCT	TCCTCTCCCT	3720
	GGCTTAACTG	ATCCTCCTAC	CTCAGCCTCC	CGAGTGGCTG	GGACTATACT	CCTGAGCCAG	3780
65			CTATTCTGCA				3840
			TGTGGAAAGA			CCTGAGTGGA	3900 3960
			CCTTCATACC				4020
70	CATAATGCCC	AACTGGTGGT	TATGATTCCT	GATGGCCAAA	ACATGGCAGA	AGATGAATTT	4080
70						CACTCTTATG	4140 4200
						CTTTATCTTA TAAATGGCCA	4260
			TAAAACTTTT				4320
	GCCAATAGGG	ATGGGCCTAT	GATTGTTCAT	GATGAGCATG	GAGGAGTGAC	GGCAGGAACT	4380
75						GGATGTTTAC	4440
			TCTGATGAGG CCTCAGCCTT				4500 4560
	ACCTCTCTGG	ACAGTAATGG	TGCAGCATTG	CCTGATGGAA	ATATAGCTGA	GAGCTTAGAG	4620
90	TCTTTAGTTT	AACACAGAAA	GGGGTGGGG	GACTCACATC	TGAGCATTGT	TTTCCTCTTC	4680
80			CAGTCTAGTT ATTCTGCCGC				4740 4800
	TTTGCAAGAC	TTGTAATTTA	CTTATTATGT	TTGAACTAAA	ATGATTGAAT	TTTACAGTAT	4860
	TTCTAAGAAT	GGAATTGTGG	TATTTTTTC	TGTATTGATT	TTAACAGAAA	ATTTCAATTT	4920
85	ATAGAGGTTA	GGAATTCCAA	ACTACAGAAA	ATGTTTGTTT	TTAGTGTCAA	ATTTTTAGCT	4980
02						AGCCTGTAAA CTAAAGTAGA	5040 5100
			AAATACTGCC				5160
		1					

	WO 02	/086443					
	ATAATTGTAG	ATTTTTATAT	TTTACTACTG	AGTCAAGTTT	TCTAGTTCTG	TGTAATTGTT	5220
				TTACTCTACC			5280
				ATGTAATTTT			5340
				GAATAACACC			5400
5				TATAAATATT			5460
•		AAAAAAAAA					
	Seg ID NO:	581 Proteir	sequence:				
	-		SOS sequence	•			
10			_				
	1	11	21	31	41	51	
		1		1		1	
	MRILKRFLAC	IQLLCVCRLD	WANGYYRQQR	KLVEEIGWSY	TGALNQKNWG	KKYPTCNSPK	60
1 5	QSPINIDEDL	TQVNVNLKKL	KFQGWDKTSL	ENTFIHNTGK	TVEINLTNDY	RVSGGVSEMV	120
15	FKASKITFHW	GKCNMSSDGS	EHSLEGQKFP	LEMQIYCFDA	DRFSSFEEAV	KGKGKLRALS	180
	ILFEVGTEEN	LDFKAIIDGV	ESVSRFGKQA	ALDPFILLNL	TENSTOKAAT	YNGSLTSPPC	240
	TDTVDWIVFK	DTVSISESQL	AVFCEVLTMQ	QSGYVMLMDY	LQNNFREQQY	KFSRQVFSSY	300
	TGKEEIHEAV	CSSEPENVQA	DPENYTSLLV	TWERPRVVYD	TMIEKFAVLY	QQLDGEDQTK	360
20	HEFLTDGYQD	LGAILNNLLP	NMSYVLQIVA	ICTNGLYGKY	SDOPIADWEL	DNPELDLEPE	420
20	LIGTEEIIKE	EEEGKDIEEG	AIVNPGRDSA	TNQIRKKEPQ	ISTITHYNRI	GTKYNEAKTN	480
	RSPTRGSEFS	GKGDVPNTSL	NSTSQPVTKL	ATEKDISLTS	QTVTELPPHT	VEGISASLIND	540
	GSKTVLRSPH	MNLSGTAESL	NTVSITEYEE	ESLLTSFKLD	TGAEDSSGSS	PATSAIPFIS	600
				SEDSTSSGSE			660 720
25				KSFSAGPVMS			780
23	TEVTPHAFTP	SSRQQDLVST	VNVVISQTIQ	PVYNEASNSS FYLEDSTSPR	TICOTOTOTO	DISDRIGATE	840
	LVIVSALTFI	CDAADAGIDI	TWRKCFQTAH	VQSCTVDLGI	ATSIBLIBIL	PISDDVGAIF	900
				YNRPKAYIAA			960
				NFLVTQKSVQ			1020
30	NATAMITIMEA	ALOARALORD TYCKERCDA1	DMCVDEVCID	VLTFVRKAAY	AKRHAVGPVV	VHCSAGVGRT	1080
50	CTVIVIDENT	OCTORECTAN	TEGET.KAIDE	QRNYLVQTEE	OVVETHDTLV	EATLSKETEV	1140
	GIIIVIDSINI	MILLIDGDACK	TKLEKOFOGL	TLSPRLECRG	TISAHCNLPL	PGLTDPPTSA	1200
	SPVAGTILLS	OSNICOSDYS	AALKOCNREK	NRTSSIIPVE	RSRVGISSLS	GEGTDYINAS	1260
	VIMGYYOSNE	FITTOHPLLH	TIKDFWRMIW	DHNAQLVVMI	PDGONMAEDE	FVYWPNKDEP	1320
35	INCESEKVIL	MAEEHKCLSN	EEKLIIODFI	LEATQDDYVL	EVRHFQCPKW	PNPDSPISKT	1380
	FELISVIKEE	AANRDGPMIV	HDEHGGVTAG	TFCALTTLMH	QLEKENSVDV	YQVAKMINLM	1440
				STSLDSNGAA			
	-	-	_				
4.0							
40	Seq ID NO:	582 DNA s	equence				
	Nucleic Ac:	id Accession	n #: NM_002	851.1			
	Coding sequ	lence: 148.	.7092				
15	į	11	21	31	41	51	
45	1]			1	1	
45	 CACACATACG	 CACGCACGAT	 CTCACTTCGA	 TCTATACACT	 GGAGGATTAA	 AACAAACAAA	60
45	 CACACATACG CAAAAAAAAC	 CACGCACGAT ATTTCCTTCG	 CTCACTTCGA CTCCCCCTCC	 TCTATACACT CTCTCCACTC	 GGAGGATTAA TGAGAAGCAG	AACAAACAAA AGGAGCCGCA	120
45	 CACACATACG CAAAAAAAAC CGGCGAGGGG	CACGCACGAT ATTTCCTTCG CCGCAGACCG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG	TCTATACACT CTCTCCACTC CGAATCCTAA	 GGAGGATTAA TGAGAAGCAG AGCGTTTCCT	AACAAACAAA AGGAGCCGCA CGCTTGCATT	120 180
	CACACATACG CAAAAAAAC CGGCGAGGGG CAGCTCCTCT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG	 TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT	 GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA	120 180 240
45 50	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG	120 180 240 300
	CACACATACG CAAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG	CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA	120 180 240 300 360
	CACACATACG CAAAAAAAC CGGCGAGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA	CTCACTTCGA CTCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAACAA GAAACTTAAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAAAC	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA	120 180 240 300 360 420
	CACACATACG CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA	GGAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT	120 180 240 300 360 420 480
50	CACACATACG CAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATA CAAGTAAATG AACACATTCA GTCAGCGGAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA	CTCACTTCGA CTCCCCCTCC TCTGGAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GGAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA	GAGGATTAA TGAGAAGCAG ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA	120 180 240 300 360 420 480 540
	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAC AAATATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATTTCAGA TGTCATCTGA	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATAGA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA	AACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA ATCATCAGT TCACTGGGGA ATTTCCACTT	120 180 240 300 360 420 480
50	CACACATACG CAAAAAAAAC CGGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGCTT	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGG TGATCCGGAC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAA	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCANANANA ATATTGATGA GGGATANAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA	120 180 240 300 360 420 480 540
50	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATATCCAA GCACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGAA GGAAAAGGGAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TTCATAACAC GAGTTTCAGA TCTCATCTGT ACTTAACAGC ACTTAACAGC	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA AGAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGG TGATCGGGA TTTATCCATT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTCAA TTGTTGAGG	GAGGATTAA TGAGAAGCAG ACGATTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA TTTGAGGA TTTGGGACAGA	ACAAACAAA AGAGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA ATCATTGGAA ATCATTGGAA TGACTACCGT TCACTGGGAA ATTTTCACTT AGCAGTCAAA AGAAAATTTG	120 180 240 300 360 420 480 540 600 660
50 55	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATATCCAA GACACTTCA GTCAGCGGAG AAATGCAATA GAGATGCAATA GGAAAAGGGA GATTCAAAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TTCATAACAC GAGTTTCAGA TCTACTGCTT AGTTAAGAGC CGATTATTGA	CTCACTTCGA CTCCCCCTCC CTCTGGAATGG GTCCTATACA CCCAAAACAA TGGGAAACAC AATGGTGTTT TGGATCAGAG TGATCAGAG TTTATCCATT TGGAGTCGAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAA	GAGGATTAA TGAGAAGCAG ACGATTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGGGAA GTTTTGGGAA	ACCAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT	120 180 240 300 360 420 480 540 600 660 720
50 55	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAC AAATATACCAA CAAGTAAATG AACACATTCA ACACACTTCA AATGCAGAG AAATGCAAA GGAAAAGGGA GAAAAAGGGA TTACAAAG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TGTCATCTGA TCTACTGCTT AGTTAAGAGC TCTACTGCTT AGTTAAGAGC TCTACTGCTT AGTTAACACT TCTACTGCTT AGTTAACACT TCTACTGCTT AGTTAACACT	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCCGGAC TTTATCCATT TGGAGTCAGA GAACCTTCTG	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAGCAAGCA CATAGTTTAG CGATTTTCAA TTTTTAGAGT TGTTTTTAGAGC CCAAACTCAA	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCATAGACA ATCATGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAGA CTGACAAGTA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG CAGGTGCT TCACTGTGAA GGAAAATTTG	120 180 240 300 360 420 480 540 600 660 720 780
50	CACACATACG CAAAAAAAAC CGGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA AAATACCAAT AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAAGGGA GATTCAAAG TTAGATCCAT AATGGCTCAT ACACTTAGCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATACAC GAGTTTCAGA TCTCATCAGA TCTACTGAT AGTTAAGAGC CGATTATGA TCAATCGTT TCATACGTT TCATACTGT TCATACTGT TCATACTGT TCATACTGT TCATACTGT TCATACTGT TCATACTGT TCATACTCC TCTCTGAAAAG	CTCACTTCGA CTCACCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA AGAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGA TGGAGTCGAC TTTATCCATT TGGAGTCGAA GAACCTTCTG GAACCTTCTG CCACTTCGCACA CCACTTGGCT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA TTGTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTGTG	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAACTT AAGGACAAA GTTTTGAGGA TTTGGGACAGA GTTTTGGGAA GTTTTGGGAA ACTGACAAGT ACTGACATGT ACTGACTATA ACTGACTATA ACTGACTATA ACTGACAAGTA ACTGGATTGT AAGTTCTTAC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG ATCATTGGAA ATCATTGGAA TGACTACCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTTGACATTTAC ATTATAAAGAT AATGCAACAA	120 180 240 300 360 420 480 540 660 720 780 840 900 960
50 55	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAA CAAGTAAATG AACACATTCA ACACATTCA GAGATGCAAT GAGATGCAAT GAGATGCAAT GAAAAGGGA GATTTCAAAG TTAGATCCAT AATGGCTCAT ACAGTTATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGAT TCTACTGAT TCTACTGAT TCTACTGTT AGTTAAGAGC CCATTAATTGA TCATACTGT TCACACTCTC TCTCTGAAAAG TCATGCTGAT	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCAGAG TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT GGACTACTTA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTCAGG ATTGTTAGG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTGTG CAAACAATT	GAGGATTAA TGAGAAGCAG AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACT AGGACATAA GTTTTGAGGA TTGGGACAGA GTTTTGGGACAGA CTGACAGTA ACTGGATTGT ACTGGATTAC TTGACTAA ACTGGATTGT ACTGGATTAC TTCGACAGTA ACTGGATTAC TTCGAGAGCA	ACCAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGT TCACTGGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTACATTTAAAGAT AATGCAACAA ACAGTACAAA ACAGTACAAA	120 180 240 300 360 420 540 660 720 780 900 960 1020
50 55	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAAAA GAATGCAAAA GAAAAGGGA TTACAAAG TTACACTCAT AATGCCTCAT ACACTTAGCA TCTGGTTATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATACACC GAGTTTCAGA TCTACTGAT TCTACTGAT ACTTAAGAGC CGATTATAGAGC CGATTATGA TCAACTGTT AGTACTGT TGACATCTCC TCTCTGAAAG TCATGCTGAT TCATGCTGT TGACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCAGAG TGATCAGAG TGATCAGAG TGATCCGTA AAACTTACATT TGGATCAGAC CCAGTTGGCT CCAGTTGGCT CCAGTTACACT CTCATACACT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTTCAA TGTTTGAGG CCAAACTCAA GACACGTT GTTTTTTTTGTG GTTTTTTTTTGT GTAAACTAATT GGAAAGGAAG	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA ATATTGATGA GGGATAAAAC ATCTCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGGGACAAGTA ACTGGATAGT ACTGGATTGT AAGTTCTTAC TTCGAGAGCA AGATTCTTAC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA TACATTGGAA TGACTACCAT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTAAAGAT AATGCAACAA ACAGTACAAA AGCAGTTTGT	120 180 240 300 360 420 480 540 600 720 780 840 900 1020 1080
505560	CACACATACG CAAAAAAAAC CGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAGGGA GATTTCAAAG GTTAGATCCAT AATGGCTCAT AATGGCTCAT ACTGGTTAGCA TCTGGTTATGA TCTCTGGTAGAAAA CGGTTCAGAAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATCATAA TTCATAACAC GAGTTTCAGA TCTACTGCAT AGTTAATGG CCATTATGA TCTACTGCTT AGTTAAGAC CCATTATGA TCAACCTGT TCACACCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTA AGGTGTTTA AGGTGTTTA AGGTGTTTTCAAAAGT CAGAAAATGT	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA GAAACTTAAA TGGGAAAACA TGGGAACACA TGGATCGGA TTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCAGGCTGACT TCAGGCTGAC TCAGGCTGAC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA TTGTTTGAG CGATTTTCAA TTGTTTGAG ACTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTTT	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCANAANAA ATATTGATGA GGGATAAACTTT AAGGACAAA GTTTTGAGGA TTGGGACAGA TTGACAGATA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGAGACCCT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCAT TCACTGGAA ATTTCCACTT AGCAGTCAAA AGAAATTTG CCAGGCTGCT TTACATTTAC TTTACATTTAC ATTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTTACA	120 180 240 300 360 420 480 540 660 720 780 900 960 1020 1080 1140
50 55	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA ACCACATTCA GGGATGCAAA GGAAAAGGGA GGATTCAAAG TTAGATCCAT AATGCTCAT ACACTTAGCA TCTTGGTTAGCA TCTTCTTAGAC TGTCTTCAGAC TGGGAAAAGGC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGTCATCTGA TGTCATCTGA TGTACTGCTT AGTTAACTGCTT TGACATCTTC CCATTATTGA TCATACTGTT TGACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC AGGTGATATGA AGGTGTTTTC CTCAGAAAATGT CTCAGAAAATGT CTCAGAGTCGT	CTCACTTCGA CTCACTTCGA CTCACCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA AATGGTGTTT TGGATCAGA TTGGATCAGA TTTATCCATT TGGAGTCGAA GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCATACACT TCATACACT TCATACACT TCATACACT TCATACACT TCATACACT TCAGGCTGAC TTATGATACC TTATGATACC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA TTGTTTGAG TTGTTTGAG AGTGTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTTTT	GAGGATTAA TGAGAAGCA ACTACAAAAAA ATATTGATGA GGGATAAACTA AGATAACTTA AAGGACAAA TTTGAGGA ATTTGAGGA ATTTGAGGA ATTTGAGGA ATTTGAGGA ATTTGAGGACAGA ATTTGAGGACAGTA ACTGACAAGTA ACTGACAAGTA AAGTTCTTAC AAGTTCTTAC AGATTCATGA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG ATCATTGGAA ATCATTGGAA ATCATTGGAA ATCATTCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTGA ATTACATTTAC ATTACATTTAC AATGAACAA ACAGTACAAA ACAGTACAAA ACAGTACAAG TTTTTACACTTT	120 180 240 300 360 420 480 540 660 720 780 900 960 1020 1080 1140 1200
505560	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAA CAAGTAAATG AAACACATTCA ACACACATTCA GAGAAGGGA AAATGCAAAA GGAAAAGGGA TTAGACCACT AATGCCTCAT ACAGTTACAC TCTGGTTATG TCTCTAGAC AGTTCAGAC CGGAAAAGAC CGGAAAAGAC CGGAAAAGAC CCAGTTGGATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGTACTCTGA TCTACTGTT AGTTACAGA TCTACTGTT AGTTACAGT TCACTGTT TGACATCTCC TCTCTGAAAA TCTATGCTGAT TCAGAGACCAC AGGTGTTTTC CAGAAAATGT TCTCGGAGTCGT GAGAGGACCA	CTCACTTCGA CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA GAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCCGTC TCTATCCTT TCCCTGCACA CCAGTTGGCT GGACTACTTA CTCATACACT TCAGGCTGAC TTATCACT TCAGGCTGAC CAGTTGGCT TCAGGCTGAC CAGTTGGCT TCAGGCTGAC TTATCATAC TTATGATACC TTATGATACC TATGATACC TATGATACC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAGG AGTTTTCAG AGTTTTAGG AGTTTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTGT GTAAACAATT GGAAAGGAACT CAAACGAA CCAGAGAATT ATGATAGAA AAATTTTGAGA	GAGGATTAA TGAGAAGAA AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACA ATGATAACATTA AGGACAAAA GTTTTGAGGA GTTTTGGGACAGA ACTGGATAGTA ACTGGATTTT ACTGGATTTT ACTGGATTTT ACTGGATTTT ACTGGATTTT ACTGGATTGT AGTTCTTAC ACTTCATGA ATACCAGCCT AGTTTGAGT CAGATGGCTA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG ATCATTGGAA TGACTACCAT TCACTGGGA ATTCACTGGGA ATTCACTGGGA ATTCACTGGAA AGAAAATTTG ACAGTCAAA AGAAAATTTC TTTAAAGAT AATGAACAA ACAGTACAAG AGCAGTTTGT TCTTGTTACA TTTGTACCAG TCTTGTTACATT	120 180 240 300 360 420 660 660 720 780 840 900 1020 1080 1140 1200 1260
505560	CACACATACG CAAAAAAAAC CAGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAATACAAA GAAAAGGGA GATTCCAAA GATTCCAAA GTTAGCAAA TTAGCACAT ACAGTTAGCA TCTGGTTATG TCTCTAGAC AGTTCAGAAC TGGTTATG TCTCTAGAC AGTTCAGAAC TGGTATAGG AGTTCAGAAC TGGTATAGG AGTTCAGAAC TGGTATAGGAAC TGGTATAGGAAC TGGTATAGGAAC AGTTCAGAAC AGTTCAGAAC GGTAGTTGGATG GGTGCTATTC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATACTTAA TTCATAACAC AGATTTCAGA TCTACTGCT ACTTAAGAGC CGATTATGA TCATACTGT TGACATCTC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGTCTT CTGAGAGGACCA TCAATAATTT	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA AATGGTGTTT TGGATCAGAG TGATCAGAG TGATCCGAC TCCTGCACA CCAGTTGGCT TCCCTGCACA CCAGTTGGCT TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TCAGGCTAC GACCAAGCAT GCTACCAAGCAT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CCATTTTCAA TTGTTTGAGG CCTATTTCAA TGTTTTGAGG ACTGTTAGT GACACGTTG GTTTTTTTTGAGG CCAAACTCAA GACACGTTG GTTTTTTTTGAGT ATGAAACAATT CGAAAGGAAG CCAGAGAATT ATGATTAGAG ATGATTTTGA	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCAAAAAAA AGATAACTTT AAGGACAAAAA GTTTTGAGGA TTTGGGACAGA TTTGGGACAGA ACTGACAAGTA ACTGATTT AAGTCTTT AAGTCTTT AAGTCTTT AAGTCTTT AAGTCTTT AAGTTCTTCACAA ACTTCTTTCACAA ACTTCTTTCACAC TTCGAGACC AGTTTCACAC TTCTGAGATC TTCTAGAC TTCTTCAGATTC AGTTTTCAGAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCAT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG AGCAGTTTCT TCTTGTTACA TTTGTACCAG TCAAGACCTT AGTAGCCTT AGTAGCCATA	120 180 240 300 360 420 480 660 720 900 900 900 1020 1140 1200 1260 1320
505560	CACACATACG CAAAAAAAAC CGGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAATA GGAAAGGGA GATTTCAAAG TTAGATCCAT AATGCTCAT ACTGGTTAGCA TCTGGTTATG TTCTCTAGAC TGTCAGAAC TGGGAAAAC CAGTTCAGAAC CGGTTAGGATC TGGGAAAGAC TGGGAAAGAC TGGGAAAGAC CAGTTGGATG TGGCATATG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG AGATTGATAATAG TCAATAATAG TCATAACAC GAGTTTCAGA TCTACTGAT AGTTAATGG TCAACTGT TCAACTGT TCAACTGT TCATACTGCT TCATACTGCT TCATACTGCT TCACATCTC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC AGAGGACGA AGAGGACCA ACATATTT GCTTATATGG	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGAATCGGA TTATCCATT TGGAGTCGAC CCAGTTGGCT TCCCTGCACA CCAGTTGGCT TCAGGCTGAC TTATCATT TCAGGCTGAC TTATGATACC TTATGATACC TATGATACCAAT AACCAAGAT AAAATACAGC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CGATTTTCAA TTGTTTGAG ACTGTTTTGAG ACTGTTTAGTC CCAAACTCAA GACACAGTTG GTTTTTTTGTG GTATTTTTTTTTT	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCANAANAA ATATTGATGA GGGATAAACTT AAGGACAAA GTTTTGAGGA TTGGGACAGA TTGACAGATA ACTGACAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA TTCTCAGAGCC AGTTTGCAGAT ATACCAGCCT AGTTTGCAGT TTGTCAGAT TTGTCAGAT TTGTCAGAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG ATCATTGCAA TGACTACCGT TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTAAACAT AATGCAACAA ACAGTACAA ACAGTACAA TCTTGTACA TTGTACAGT TCTTGTTACA TCTGTTACA TCTGTTACA TCAAGACTTG AGTAGCCATA GCCTACTGAT	120 180 240 300 360 420 540 660 720 780 840 960 1020 1140 1200 1260 1320 1380
50556065	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATACCAA CAAGTAAATG AACACATTCA ACACACATTCA GAGATGCAATA GAAAAGGGA GATTCCAAAG TTAGATCCAT ACAGTTAGAT ACAGTTAGAT TCTCTAGAC TTCTCTAGAC AGTTCAGAAC CAGTTCGGAAAGAC CAGTTGGATT TGGATATT TGGATATT TGGATATT TGGATATT TTCTCTAGAC AGTTCAGAAC CAGTTGGATT TGGATATT TGGATATT TGGATATT TGGATATT ACACTATATT ACACTATATC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATTCAGA TCTACTGAT TCTACTGTT AGTTAAGAGC CCATTATTGA TCATACTGTT TCACATCTCC TCTCTGAAAA TCATGCTGAT AGGTGTTTTC CAGAAAATG TCTGAGAGCGT CAGAGAGCCA TCAAAAATTT TCAGATCTGT TCTGAAAATGT TCTGAGAGCCT TCAAAAATTT TCTGAGTCTTT TCTGAGTCTTT TCTGAATATTG TCTGATTTTT TTGATTTTT	CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCAGAG TGATCAGAG CCAGTTGGACA CCAGTTGGCT CCCTGCACA CCAGTTGGCT TCAGGCTGAC TTATCATT TCAGACTACT TCAGGCTGAC TTATCATTACACT TCAGGCTGAC AACCAAGCAT AAAATACAG CCCTGAATTA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CAATGTTAGG TTTCTAGGGTT CCAAACTCAA GACACAGTTG GACACAGTTG CCAAACACATTTGGAAACAATT GCAAACAATT GCAAACAATT GCAAACAATT ATGATTAGG ACAGGAAT ATGATTAGG AATGAGTATG GACAACTGAA ATGAGTATGAG AATGAGTTAGA ATGAGTTATGAG ATGAGTTATGAAATT	GAGGATTAA TGAGAAGAA AGCGTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACT AGGACAAAA GTTTTGAGGA TTGGGACAGA GTTTTGGGAAA CTGACAGAT ACTGGATTAC TTCGAGAGCA ACATCATCA ACATCATCA ACATCATCA ACTGGATTGCACA AGATTCATGA ATATCATGA ATATCATGA ATATCATGCA TTCTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG TGACTTACA ATCATTGGAA TGACTACCGT TCACTGGGAA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTGA ATTACATTTAC ATTACATTTAC ACAGTACAAA ACAGTACAAA ACAGTACAAA ACAGTACAAG TCTTGTTACA TTTTGTACCAG TCAAGACTTG AGTAGCCATA GCCTACTGAT CCAAGGAGGAG	120 180 240 300 360 420 600 660 720 780 840 900 1020 1020 1140 1200 1260 1320 1380 1440
505560	CACACATACG CAAAAAAAAC CAGGAGGGG CAGCTCCTCT CTTGTTGAAC AAATATCCAA CAAGTAAATG AACACATTCA ACACATTCA GAGATGCAAA GGAAAAGGGA TTAGATCCAT AATGCTCAT AATGCTCAT ACAGTTACAT TCTCTAGAC TCTCTTAGAC AGTTCAGAAC CAGTTAGAC CAGTTAGAC GGAAAAGGC AGTTCAGAAC GGAAAAGAC CAGTTGGATG ATCCTTATTC TGCACTAATC GGTCATATTC GACCACTAATC AATCCTGAAC CAGACAGGAAAAC CAGACAGGGAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGAGTTTCAGA TCTACTGCTT AGTTAAGAGC TCACTGCTT TGACATCTCT TGACATCTCT TGACATCTCT TCAGAAAATGT TCAGAGAAATGT TCAGAGACCAT TCAGAGACCAT TCAGAGACCAT TCAGATATTT GACAGACCAT TCAGAGACCAT TCAGATATTT GCTTATATGG TTGACTTTT AGACATTGA	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA GAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCCGAC TGATCCGAC TCACTCGCAC CCAGTTGGC TCATACAC TCAGGCTGAC TTATCATT CTCATACAC TTAGATCAC TTAGATCAC TTAGATCAC TCAGGCTGAC TATAGATAC TCAGGCTGAC TATAGATAC CTCATACACT TCAGGCTGAC TATAGATAC GCTACCCAAT AAAATACAGC CCCTGAATTA AGAAGGCGCT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAGG AGTTTTCAG GACTCTACA TTGTTTAGGG CCAAACTCAA GACACAGTTG GTTTTTTTGT GAAAGGAAT ATGAATTAA ATGATTAGA AAACTATT ATGATTAGAA AATTGAACT AATGAGTTAGA ATTGGAACTGA ATTGGAACTGA ATTGGAACTG	GAGGATTAA TGAGAACA ATCTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACA ATCTCACTAA AGGACATAACTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGAGGA CTGACAAGTA ACTGGATTAT AAGTTCTTA ACTGGATTAT AGGTTTTGAGA ATTCTAGAT ACTGGATTAT ACTGGATTAT AGTTTTACAGCT AGTTTTGAGCA TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT TTGTCAGAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG ATCATTGGAA TGACTTGCATT TCACTGGGAAAG ATCATTGGAA TGACTACCAT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG ACAGTTTGT TCTTGTTACA TTTGTACCAG TCAAGACTTG AGTAGCCATA GCCTACTGAT AGTAGCCATA ACAGTACAAC AGCAGTTTG TCAAGGACTTG AGTAGCCATA ACAGTACAAC AGCAGTTTG ACTAGCCATA ACAGGAGCTTC AGTAGCCATA ACAGGAGGAC CAAGGGAC CAGTGCTACA	120 180 240 300 360 420 660 660 720 780 840 900 1020 1080 1140 1260 1320 1320 1340 1500
50556065	CACACATACG CAAAAAAAAC CAGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG AAATGCAAA GAAATGCAAA GAAAAGGGA TTTCAAAG TTTCAAAG TTTCAAAG TTCTAGTAT ACACTTAGC TCTGGTTATG TCTCTAGAC AGTTCAGAAC TGGCAAAAG AGTTCAGAAC AGTTCAGAAC AGTTCAGAAC AGTTCAGAAC AGTTCAGAAC AGTTCAGAAC AGTTCAGAAC AGTTCAGAAC AGTTCAGAAC AGGAAGAGGAAAAACCAAATCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATACAC GAGTTTCAA TCTACTGCT ACTTAAGAGC CGATTATAGAGC CGATTATAGAGC TCTACTGCT TGACATCTC TCTCTGAAAG TCATGCTGAT TCACTGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGTGTTTC CAGAAAATGT CTGAGTGCTGAT CATGAGTCTTT CAGAAAATGT CTTGAGTCTTT CTGAGTCTTT AGGAGGACCA TCAATAATTT AGCTTATATGG TTGATCTTTT AAGACATTGA GGAAAAAGGA	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA AATGGTGTTT TGGATCAGAG TGATCAGAG TGATCCGAC TCCTGCACA CCAGTTGGCT TCCCTGCACA CCAGTTGGCT TCAGGCTGAC TCAGTACAC TTAGACTCT CAGCTACAC CAACCAAGCAT AAAATACAGC CCTGGAATTA AAAATACAGC CCCTGAATTA AGAAGGGCT ACCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT	TCTATACACT CCTATACACT CCGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGC CGATTTTCAA TTGTTTGAGG AGTGTTAGT CCCAAACTCAA GACACGATT GGAAAGCAAGT GGAAAGCAAGT GAAACAATT CGAAAGCAAT ATGATTTGAG ATATTTTGA ATGATTTGAG ATTGATTG	GAGGATTAA TGAGAACA ACTACAAAAAA AATATTGATGA GGATAAACTTT AAGACAAAAA GATAACTTT AAGACAAAA GTTTTGAGGA TTGGGACAGA TTGGGACAGA ACTGCATAA ACTTTTGAGGA TTGGGACAGA ACTGCAAAAA ACTTTTGAGAA TTGGACAGTA ACTGCATGT AAGTCTTAC ACTCTCACAC ATCCACAC ATCCACAC ATTCCACAC ATTCCACAC ATTCCACAC ATTCCACAC ATTCCACAC ATTCCACAC TTCTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAT TTCTCAGAC AAGAATAAT TTGTCAGAC CACCTACAA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG TGACTTTGCAA TCACTGGAA TGACTACCAT AGCAGTCAAA AGAAATTTG AGCAGTCAAA AGAAATTTG TTACATTTAC TTTACATTTAC TTTACATTTAC TTTACATTTAC TTTTACAGTT TCTTGTACA AGCAGTTCTT TCTTGTTACA TCTTGTACA TCAGAGCTGCT TCAGAGCTGCT CAGGAGCTGCT CAGGAGCTTCT TCTTGTTACA TCTGTTACA TCTGTTACA TCAGACTTG CAAGACTTG CAAGACTTG CAAGACTTA CCATACGG TCGCATAGGG	120 180 240 300 360 420 480 660 720 900 900 900 1080 1140 1200 1320 1380 1440 1500
50556065	CACACATACG CAAAAAAAAC CAGCGAGGGG CAGCTCCTCT CTTGTTGAAC AAATATCCAA CAAGTAAATG AACACATTCA ACCACATTCA GAGATGCAAT GAGATGCAAT AATGCTAT ACACTTAGAC TTAGATCCAT ACTGGTTATG TCTTCTAGAC TCTGGTATTG TCTCTTAGAC CAGTTCGAAAC AGTCATATC AGTTCAGAAC CAGTTCGAAAC AGTCATATC AGTCCTATTC TGCACTATTC AATCCTGAAC AGTCCTAATC AATCCTGAAC AACCAAATCA AACCAAATCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATCTCAGA TGTCATCTGA TGTACTGTT TGACATCTGA TCATACTGT TCATACTGT TCATACTGT TCATACTGT TCACACTCTC TCTCTGAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGAGCCA TCAATAATTT TGATACTGT TTGATCTTT AGAACATCTT TGATCTTT AGAACATTTA	CTCACTTCGA CTCGCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTT TGGATCAGA TTATCCATT TGGATCGAA CCAGTTGGAC GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCATACACT TCAGTACACT TCAGTACACT TCAGTACACT TCAGTACACT ACCAAGCAT ACCAAGCAT ACCAAGCAT ACCAAGCGT ACCCAGATT AGAAGGCGCT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCAGATT ACCCCCCAGATT ACCCCCAGATT ACCACCCAGATT ACCACCCAGATT ACCACCCAGATT ACCACCCAGATT ACCACCCAGATT ACCACCCAGATT ACCACCACAC ACCCCAGATT ACCACCACAC ACCCCAGATT ACCACCACAC ACCCCAGATT ACCACCACAC ACCCCACAC ACCCCACAC ACCCCACAC ACCCCACAC ACCCCACAC ACCCCACAC ACCCACAC ACCCAC	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT GCAGCACTGA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CCAAACTCAA CATATTTGAG GATTTTGAG GATTTTGAG GACACAGTTG GCAAACTCAA GACACAGTTG GCAAACTCAA CCAGAGAATT ATGATTGGA AATTTTGA AATTTTGA AATTTTGA AATTTTGA AATGATTAG GACAACTGA ATTGGAACT CTCTACCACAA ACCCCAACAA	GAGGATTAA TGAGAAGCA AGCGTTTCCT ACTACAGACA ATCANAAAAA ATATTGATGA GGGATAAACTAT AAGGACAAA AGTTTTGAGGA TTGGGACAGA TTGACAGAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA ACTGACAAGTA TTCTCAGAGCCA ACTTTCAGGATTCTTCCACATT TTCTCAGATTCTTCCAGATTCTTCCAGATTCTTCCAGATTCTTCCAGATTCTTCCAGATTCTTCCAGATTCTTCCAGATTCTTCCACATTCTTCCACATTCTTCCACATTCTTCCACATTCTCACATTCTCACATTCTCACATTCTCACATTCTCACATTCTCACATTCTCACATTCTCACATTCTCACATACAAAATAAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCAT TCACTGGAA ATTTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTAAAGAT AATGCAACAA ACAGTACAA AGAAATTTG TCTGTTACA TTTGTACCAG TCTAGTACAG TCAAGACTTG AGTAGGCATA ACAGTACAG ACTACTGTACA TCTGTACAG TCAAGACTTG AGTAGCCATA CAGGAGCATA CAGGAGCATA CAGGAGCAGA CAGTGCTACA CAGGAGCAGA CAGTGCTACA CAGGAGCAGA CAGTGCTACA ACAGACAGAGAC CAGTGCTACA CAGGAGGAG ATTCTCTGGA	120 180 240 300 360 420 600 660 720 780 840 960 1020 1140 1200 1140 1320 1320 1440 1560 1620
50556065	CACACATACG CAAAAAAAC CAGCGAGGGG CAGCTCTCT CTTGTTGAAG AAATTATCCAA CAAGTAAATG AACACATTCA GAGATGCAAA GAAAAGGGA AATTGCAAA GATTCAAAG TTAGATCCAT ACAGTTAGAT ACAGTTAGAC TCTGGTATAG TCTCTAGAC GGAAAAGGA AGTTCAGAAC TGGGAAAGAC AGTTCAGAAC TGGGAAGAC AGTCATAC GAACACAATCA AAACCAAATCA ACGAAATCA ACGAAATCA AAGGGGAAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATTCAGA TCTACTGAT TCTACTGAT TCTACTGAT TCTACTGTT TGACATCTCT TCTACAGAT TCATACTGTT TGACATCTCC TCTCTGAAA AGGTGTTTTC CAGAAAATGT TCTCAGAGCGA TCATACTGT TCAGAGGACCA TCAATAATTT GCTTATATG TTGATTATTT AGACATTGT AGACACTGAT AGACACTGAT TCAAAAATTT AAGACATTGA TCAAAAATGT TTGATTTT AAGACATTGA GGAAAAAGGA ATGAAACCAA TTCCCAATAA	CTCACTTCGA CTCACTTCGA CTCACTTCGA CTCGCACTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGATACAGAG TGATCGGAC TTTATCCATT TCGATTCGAT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTGAG CGATTTCAGG CGATTTCAG GACACTAG GCCAACTCAA GACACAGTTG GTTTTTTGTG GAAACAATT GGAAAGGAATT ATGATTAGAG AATTTTGAG AATTTTGAG AATTTTGAG AATTTTGAG AATTTTGAG AATTTTGA ATTGAGAATTATG ACCAACTGA ATTGAGACTAC ATTGTGAACT ATTGTGAACT ATTGTGAACT ATTGTGAACT ATTGTGAACT TCCACCAACAA TCCCCAACAA	GAGGATTAA TGAGAAGAA AGCTTTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACA ATCACTAA AGATAACTTT AAGGACAAAA GTTTTGAGGA CTGACAAGTA ACTTTTGAGGA CTGACAAGTA ACTGGATTGCA ACTGGATTAC AGGTTCTTAC AGATTCATAG ATACCAGCT AGATTCATGA TTCTCAGAT CAGATGCAA AGAGAATAAA CACACTACAA GAGGAAGTGA AACCAGTCAC	ACAAACAAA AGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCAT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTCCACTT AGCAGTCAAA AGAAAATTTAC TTTAAACAT AATGCAACAA ACAGTACAAG ACAGTTTAC TCTTGTTACA TCTTGTTACA TCTTGTTACA TCTAGTACAA GCAGCTTG TCTAGTACAA ACAGTACAAG ACAGTACAAG ACAGTACAAG ACAGTACAAG ACAGTACAAG CCACTACTGAT ACTCCCGCATAGGG TCACTCTGGATAGGC TCACTTGTACAC TCGCATAGGG TCACTCTGGATAGCC TCGCATAGGC TCACTGTAT	120 180 240 300 360 420 600 600 720 780 840 900 1020 11200 1200 1200 1200 1200 120
5055606570	CACACATACG CAAAAAAAAC CAGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAAATACAAA GAATACAAA GAATACAAA GAATACAAA TTCCAAA TTCAGAGGAA TCTGGTTATG TCTCTAGAC AGTTCAGAAC TGGCAAAAGAC CAGTTGGAT GGTCATTCAGAA AGTTCAGAA AGTTCAGAA AGTTCAGAA CAGTTGAAC CGGTTGGAT GATCCTAATG AATCCTGAAC AACGAAATCA AACGAAATCA AACGAAATCA AAGGGTGAT ACAGAAAAAA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATCTTAA TTCATAACAC AGATTTCAGA TCTACTGCT ACTTAAGAGC CGATTATGA TCATACTGCT ACTACTGCT ACTACTGTT AGATACTGCT TCACTGATAGA TCATACTGTT TGACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CTGAGTCGT TCAGAGGACCA TCAATAATTT GCTTATATGG TTGATCTTTT AGACATTGA TTAATAGG ATAAATGA ATCCCAATAC ATATTTCCTT	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA AGAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCCGAC TGATCCGAC TCCCTGCACA CCAGTTGGCT TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC TCAGGCTGAC ACCAAGCAT AAAATACAGC CCCTGAATTA AGAAGGCGT ACCCAGATT ACCCAGATT ACCCAGCT ACCCAGATT ACAAGCCT ACCAGCT ACCCAGATT ACGAGCC ACCTGAATT ACGAGGCGT ACCCAGATT ACCCAGATT ACCCAGCT ACCCAGATT ACCCAGCT ACCCAGATT ACCCAGCT ACCCAGATT ACCCAGCT ACCCAGCT ACCCAGCT ACCCAGCT ACCCAGCT ACCCCAGCT ACCCCACT ACCCCCACT ACCCCACT ACCCCACT ACCCCACT ACCCCACT ACCCCACT ACCCCACT ACCCCACT ACCCCACT ACCCCAC	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAGCACTAC GCTAATGGAT TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAGA CGATTTTCAG GCAACTCAA GACACGAT GCAAACTCAA GACACGAT GCAAAGCAACT CCAAACTAT ATGATTTGAG CCAGAGAATT ATGAATTAGAA CAATTTTGAGA ATTGAGT ATGAGTTAGA ATTGGAACT ATTGAACT TCTACCACAA TCCCCAACAC ACCACTCCC ACTGTGACTG	GAGGATTAA TGAGAAGCA ACCATACAAAAA ACATACATTA AGATAACTTA AGGACAAAAA GATAACTTT AAGGACAAAA GTTTTGAGGA TTGGGACAAA CTGACAAAAA CTTCACTAA AGATACTTT AAGGACAAAA CTGACAAGTA ACTGCACAC ATCTCACAA ACATCACAA ACATCACAA ACACCAGCC AACTGCACA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTACA ATCATTGGAA TGACTACCAT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA AGCAGTTCTT TCTTGTTACA TTTGTACCAG TCAAGACCTT AGTAGCCATA GCAGTCTT CATGTACCA TCAGGAGCATA CAGGAGCTTC TCTGTTACA TCTGTTACA TCAGGACTTG CAGGGCTACT AGTAGCCATA GCCTACTGAT CAAGGAGGAG TCAGAGCTTGC TCGCATAGGG ATTCTCTGGA TAAATTAGCC TCACACTGTT	120 180 240 300 360 420 480 660 720 900 900 900 1020 1140 1220 1380 1440 1560 1560 1560 1620 1620
50556065	CACACATACG CAAAAAAAAC CAGCGAGGGG CAGCTCCTCT CTTGTTGAAG CAAGTAAATG AACACATTCA GTCAGCGGAG GATTCAAAG GAAATGCAAA GAAATGCAAA GAAATGCAAT AATGCATCAT AATGCATCAT AATGCTCAT ACAGTTAGC TTCTGTTATG TTCTCTAGAC AGTTCAGAAC AGTTCAGAAC AGTTCAGAAC AGGAAAGAC AACGAAATAC AACGAAATAC AACGAAATAC AACGAAAAAG GAAGAGGAA	CACGCACGAT ATTTCTTCG CGCAGACCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TCAATCTTAA TTCATAACAC GAGTTTCAGA TGTAATCTGA TCTACTGCTT AGTAACAC TCATCTGAT TGAATCTCC TCTCTGAAAG TCATCTGT TGACATCTC TCTGAAAGT CAGAGACCT CAGAAAATGT CAGAGACCT TCATATGG TCATCTGT AGAAAATGT TCATATTGA TCATATTGA TCATATTGA TCATATTGA TCATATTGA TCATATTGA TCATATTGA TTGATCTTTT AAGACATTGA AGAAAAAGGA ATGAAAAAGGA ATGAAAAAGGA ATGAAACCAATAC TCCCAATAC TCATTCCTT CAGCCTCTTT	CTCACTTCGA CTCACTTCGA CTCCCCCTCC TCTGGAATGG GTCCTATACA CCCAAAACA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATGCGGAC TTTATCCATT TGGATCAGAG TCCCTGCACA CCAGTTGGCT TCCCTGCACA CCAGTTGGCT TCAGGCTGAC TTATGATACAC TTATGATACAC TATGATACAC AACCAAGCAT AAAATACAGC CCCTGAATTA AGAAGCGGCT ACCCCAGATT GCTACCCAGT GACTACCCA ACTTTTAACT TCAGCCTGAC ACCAGCGT ACCCCAGATT ACACCCAGATT GACTAACCGA ATCTTTTAAAT AACTTCTCAG AAATGATGGC	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAAGCACTGA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCTATCA CCAATTTCAA TCTCTATCA TCTTTGAGG ACTCTATCA GACACACTCA GACACACTCA GACACACTCA GCAAACTCAA CCAGAGAATT ACGAAACACAT ACGACTACA ACACTCA ACACTCAC ACACTCAC ACTGCACTCAC ACTCCACACAC TCCCACACCAC ACTCCACACTCCC ACTGCACTCC TCTAAAACTCT	GAGGATTAA TGAGAACA ACTACAAAAA AATATTGATGA GGATAAACTTT AAGGACAAAA GATATTGAGGA TTGGGACAAA AGATAACTTT AAGGACAAAA ATTTGAGGA TTGGGACAAA ACTGCAAGATA ACTGCAAGTA ACTGCAAGTA ACTGCAAGTA ACTGCAAGTA ACTGCAAGTA ATACCAGCCT AGTTTCAGAGAC TTCTCAGAGTC AGATGCAT TTGTCAGAT CAGATGCAT TTGTCAGAT CAGATGCAT AGATACAT AAGAATAAT TTGTCAGAT CAGATGCACA AACAGTACAA AACAGTCAC AACTGCCACC TTCTTAGATC	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG TGACTACCGT TCACTGGAA ATTACCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAAAGAT AATGCAACAA ACAGTACAA ACAGTACAA ACAGTACAA TCTTGTACA TCTTGTACA TCAGAGCTGCT TCACATTGTACA TCTGTACA TCTGTACA TCTGTACA TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGAT CAAGGAGGAG CAGTGCTACA TCGCATAGGG ATTCTCTGGA TCACACTGTG TCACACTGTG TCACACTGTG TCCACATATG	120 180 240 300 360 420 600 660 780 900 1020 1140 1200 1140 1320 1380 1440 1500 1620 1620 1680 1680 1800
5055606570	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCTTTTTGAAG CAAGTAAATG AAATATCCAA CAAGTAAATG AACACATTCA GAGATGCAATA GAAAAGGGA TTAGATCCAT ACTGGCTCAT ACTGTTCAAGG TTAGATCCAT ACTGTTAGAC TTCTTAGAC TTCTTAGAC TTCTTAGAC AGTTCAGAAC CAGTTCAGAAC CAGTTGGATA CGGTAATG TTCTCTAGAC AGTTCAGAAC CAGTTGGAT GGACTATTC TGCAAAAGAC CAGTTGGAT AATCCTGAAC AACCAAATCA AACGAAATCA AACGAAATCA AACGAAATACA AACGAAATACA AACGAAATACA AAGGTACTT AACTGTCTGGAC TACGAAAAAAG CGAAGTACTT AACTGTCTCGG	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGGCTG AGATTGTAATAG TGAATCTTAA TTCATAACAC TGACTCTGA TCTACTGTT AGTTAACTGCT TCTACTGTT TCACATCTCT TCACATCTCT TCACATCTCT TCACATCTCT TCACATCTCT TCACATCTCT TCACATCTTC TCACATCTTC TCACATCTTC TCACATCTTT AGGTGTTTT CAGAAAATGT TCAGAAAATGT TCATATTTG TTGATCTTTT AAGACATTGA TTGATCTTTT AAGACATTGA ATATTTCCTT AGACCCATTT GACCCCATTT GACCCCCTTT TGACCCCTTT	CTCACTTCGA CTCACTTCGA CTCCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCAGAG GAACCTTCTG TCCCTGCACA CCAGTTGGCT CCAGCTGAC TTATACACT TCAGGCTGAC AACCAAGCAT GCTACCCAAT AAAATACAG CCCTGAATTA AGAAGCGCT ACCCCAGATT ACCCAGATT ACCTTTAAAT GACTTCTCAG AATGATGGC ATCCTTAAAT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CATAGTTTAG CGATTTCAG ATTGTTAGG AGTTTTCAG GACACAGTTG GTTTTTTGTG CAAACAATT GGAAAGGAA TCTTTTTGTG CAAACTAT GAAAGGAAT ATGATTTTGAG AATTTTTGAG AATTTTTGAG AATTTTTGAG AATTTTTGA AATTTTTGAG AATTTTTGA AATTTTTGAG ATTGAGTTTTTTTT	GAGGATTAA TGAGAAGAA ACATTCCT ACTACAGACA ATCAAAAAA ATATTGATGA GGGATAAACT AGGACAAAA GTTTTGAGGA ATGTTGAGAAA GTTTTGAGGA ACTGACAGA ACTGACAGA ACTGACTAA ACTGATTAC AGGTCATAA ACTGACTAG ATTCTCAGAT AGTTCTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT AGAATAACT TTGTCAGAT CAGATGCAA CACTACAA ACACTACAA AACCAGCCC TTCTTAGACT AACTACCAA CTCCTCACAC ACTGCCAC ACTTCCT ACACTACCA ACTGCCAC TCTTTAGACT TACTGACCAC TCTTTAGACT TACAGACT TCTTCAGAT TTGTCGACAT TTGTCGACAT ACACTACCAA CCACTACCAA ACCAGCTCAC TTCTTAGATC TTACAGATT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTACCGT TCACTGGGGA AGATCATT AGCAGTCATA AGAAAATTT GCAGTCATA AGAAAATTTA GCAGTCAAA ACAGTACAA CCACATTG TCACACTGT TCACACATTG TCACACATTG TCACACATTT TCAGGAGAGA	120 180 240 300 360 420 600 600 720 780 840 900 1020 1140 1200 1320 1440 1560 1560 1680 1740 1800
5055606570	CACACATACG CAAAAAAAAC CAGGAGGGGG CAGCTCCTCTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GAGATGCAAA GAAAAGGGAA AATTCCAAA GATAAAGGTAAAGGTAAAGGGAA TTAGATCAT AATGCTCAT AATGCTCAT ACAGTTAGCA TCTGTTAGAC CAGTTAGGAAAGGGAA ACCAAATCA AACGCAAATCA AACGAAATCA AACGAAATCA AAGGGGAAAAGG AACGAAATCA AAGGGTGATGAC GAAAATCA AAGGGTGATGAC GAAAATCA AAGGGTGATGAC AAGGAAAAAAG AAGGTACTT AACTTGTCTAACAC GAAAATCA AACGAAATCA ACGAAATCA AAGGGTGATGAC GAAGGTACTT AACTTGTCTGAAC GAAAATCA AAGGGTGATGAAC GAAAATCA AAGGGTGATGAAC GAAAATCA AAGGGTGATGAAC GAAGGTACTT AACTTGTCTGAAC GAAGGTACTT AACTTGTCTGAAC GAAGTACTT	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATTACAGA TCTACTGTT AGTTACAGA TCTACTGTT AGTTACAGA TCACATCTCC TCTCTGAAAA TCTACTGTT CAGAAAATGT CTCAGATCTT GACATCTCT CAGAAAATGT TCAGAGACCA TCAATAATTT GCTTATATGG TTGACTTTT AGACATTCT AGACATTTT AGACATTCT CAGAAAAGGA ATATTTCCTT CAGATACAT ATATTCCTT CAGCTCTTT CAGCTTTT CAGCTCTTT CAGCTTT CAGCTCTT CAGCTT CAGTT CAGTT CAGTT CAGTT CAGTT CAGTT CAGTT CAGCT CAGTT CAGTT CAGTT CAGTT CAGTT CAGTT CAGTT CAGTT CAGTT CAGT CAG	CTCACTTCGA CTCACTTCGA CTCACTTCGA CTCGCACTTCG TCTGGAAATG CCTGGATTGG GTCCTATACA GAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCCGT TCACTCAC TCACTCGC TCACTCAC TCACTCGC TCATACACT TCAGGCTAC TTATCATT CTCATACACT TCAGGCTGAC TATACACT TCAGGCTGAC TATACACT TCAGGCTGAC TATACACT TCAGGCTGAC TATACACT TCAGGCTGAC TATACACT TCAGGCTGAC TATACACT AACAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATTA AGAAGGCGCT ACCCAGATT GACTACCCA AATCATTAAAT GACTTCTCAG AAATGATGGC ATCCTTAAAT	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTAGAG AGTTTTCAGG GCATTTTCAG GCACACTCAA GACACAGTTG GCAAACTCAA ATGATTATG GCAAACTCAA ATGATTTTGG GATTTTTTTTGG GATTTTTTTTG GAAACGAAT ATGATTTGAA ATGATTAGA ATGAGTTATG ACCAACTGA ATTGGAACTG ATTGGAACT ATGAACTG ATTGGAACT CCCAACAA TCCCCAACAA TCCCCAACAA TCCACTTCCC ACTGTGACTG ACTGTAAACTG ACAGTTTCTA GCAGCTGAAG	GAGGATTAA TGAGAAAAA ATCTCACTAA AGATAACAA ATCTCACTAA AGATAACTT AAGACAAAA ATTTGAGAC ATCTACAGACA ATCTCACTAA AGATAACTT AAGACAAAA GTTTTGAGGA CTTTTGAGGA CTGACAAGTA ACTGATTAT ACTGATTAT ACTGATTAC AGATTCTTAC AGATTCTTAC AGATTCTTAC TTGAGAGCA ATTCTCAGAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCAGAT CAGATAGAA CAGATACAA AGAGAAGTGA AACCACTACAA AGAGAAGTGA AACCAGTCAC AACTGCCAC TTCTTAGATC TTCTTAGATC TACTCAGGT AATTCTTCAGGT	ACAAACAAA AGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG ATCATTGGAA TGACTTGCATT TCACTGGGAAAG ATCATTGGAA TGACTACAT TCACTGGGAAAG ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG ACAGTTTGT TCTGTTACA TCTTGTTCCA TCTTGTTCCA TCTACTACAG ACCATTTG ACTACCAGT CCAGACTTG AGTAGCATA CCGCATAGGG ATTCTCTCGGA TTACATTCCTCGG ATTCTCTCTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTCT TCACACTTCC TCACACTCCC	120 180 240 300 360 420 660 720 780 840 900 1020 1080 1140 1500 1560 1620 1680 1740 1800 1740 1800
5055606570	CACACATACG CAAAAAAAAC CAGGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAATACCAA GAATGCAAA GAATGCAAA GAATGCAAA TTCAAAG TTAGACGAA TTAGCAAA TCTGGTTATG ACGTATAGCA TCTGGTATG AGTTCAGAAC TGGCAAAAG CAGTTGAAC GGTACTATG GGTCTATTC TGCACTAATG AATCCTGAAC AAGGGGAA AACCAAATCA AAGGGGAAAAAAG GAAGGTACTT AACTTGCGG AGTTTATTGAC AAGGTACTT ACTTGTCGG AGTTTATTGAC AAGGTACTT ACTTGTCGG AGTTTATTGAC GAAAAAAAG GAAGGTACTT AACTTGTCGG AGTTTATTGA	CACGCACGAT ATTTCCTTCG CGCAGACCG GTGTTTGCCG GTGTTTGCCG AGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC AGATTTCAGT AGTTAATGA TCTACTGCTT AGTTAAGAGC CGATTATGA TCATACTGTT TGACATCTC TCTCTGAAAG TCATGCTGAT TCAGAGTCTT CAGAAAATGT CTGAGTGTTT GCTTATATGG TCAGAGGACCA TCAATAATTT AGCACTTTT AAGACATTGA ATGAACATTGA ATGATCTTT CAGACTATTT CCAATAC ATATTTCCTT CAGCTCTTT GACTTCTTT GACTTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CATTCCATT	CTCACTTCGA CTCACTTCGA CTCCCCCTCC TCTGGAATGG GTCCTATACA CCCAAACAA GAACTTAAA TGGGAAAACA AATGGTGTT TGGATCGGAC TGATCGGAC TGATCGGAC TGATCCGAC TCCTGCACA CCAGTTGGCT TCAGGCTGAC TCAGCTGAC TCAGCACAC AAATAAACAC AACCAAGCAT AAAATAACAC ACCAAGCAT AAAATAACAC ACCAGGAT AAATAACAC ACCAGGAT AAAATAACAC ACCAGGAT AAAATAACAC ACCAGGAT AAAATACAC ATCTTTAAAT GCTTCTCAG AAATGATGC ATCCTTAAAT CATTCTCAG AAATGATGC CCTTAAATA CATTGATAC CATTGATAC CATTCTCAG	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAAGCACTGA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA CATAGGTT GCGAAATTAA AAGCAAGCC CCAAACTCAA GACACGTTG GTTTTTTGAGG GACACGTTG GTTTTTTTGAGG ACACGTTG GAAACACATT GGAAAGCAAGT ACAGTTTGAA ATCAGTTAGGA ATTGATTAGGA ATTGATTAGG ATTGGAACT TCTACCACAA TCCCCAACAA TCCACTCCC ACTAGACTCC ACTAGACTCC TCTAAAACTG ACAGTTTCTA ACAGTTTCTA ACAGTTTCCACAA ACCAGTTTCTA ACAGTTTCTA ACAGTTTCTA ACAGTTTCTA ACAGTTTCTA ACAGTTTCTA ACAGTTTCTA ACAGTTTCTA ACAGTTTCTCC ACAGTAACA ACCATATCCC	GAGGATTAA TGAGAAGCA ACCAATAAAAA AGATAACTTT AGGACAAAAA AGATAACTTT AGGACAAAA AGATAACTTT AGGACAAAA AGATACTTT AGGACAAAA AGATACTTT AGGACAAAA AGATACTTT AGGACAAAA AGATTCTTCAGGA TTTGGGACAA ACTGCATGA ATCCAGCCT AGTTTCAGAA AGATTCATGA ATACCAGCCT AGTAGCAA AGAATAACT TTGTCAGAT CTGCACAT CTGCACAC AGATGCCA ACTGCCAC CTCTTAGATC AACTGCACC TTCTTAGATC TACCAGTCA AACTGCACC TTCTTAGATC TACCAGTCAC AACTGCACC TTCTTAGATC TACCAGTCAC AACTGCACC TTCTTAGATC TACCAGTACAA AACTGCCACC TTCTTAGATC TACCAGTACAA AACTGCCACC TTCTTAGATA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG TGACTTGCAA TCACTGGAA TCACTGGAA TCACTGGAA AGAAATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACAATTTAC TTTACAATTTAC TTTTAAAGAT AATGCAACAA AGCAGTTCTT TCTTGTTACA TCTTGTACA TCAGGACTGT TCAGAGCTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT CAAGAGCTTGT TCAGAGCTTGT TCAGACTTGT TCAGACTTGT TCAGACTTGT TCACACTGTG TCACACTGTG TCCACATATG TGAGGAGGAG TTCCACACTCCC ATTTTCCTCC	120 180 240 360 420 540 660 780 960 1080 960 1140 1200 1140 1500 1620 1680 1680 1680 1860 1980
505560657075	CACACATACG CAAAAAAAAC CGGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GAGATGCAATA GAAAAGGAAC TTAGATCAAT ACAGTTAAAG TTAGATCCAT ACAGTTAAGA TCTCTGTAGAC AGTTAGATC TCTCTTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAAC CAGTTGGATAT GGAAAAACC GAAGAAAAC AACGAAAAAC AAGGGTACTT AACTGTCGG AGTTTATTG ACTAGTCAGAC AAGGGTACTT ACTTGTCGG AGTTTATTG ACTAGTCAGAC AGGTACTT ACTTGTCGG AGTTTATTGAC GAAAATCCA AGGGTACTT ACTTGTCGG AGTTTATTGA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATTCATCATA TCTACTGAT TCTACTGAT TCTACTGTT AGTTAAGAGC CGATTATTGA TCATACTGTT TCACATCTCC TCTCTGAAAG TCATCTGAT AGGTGTTTTC AGAAAATTG TCAGATCGT GAGAGACCA TCAATAATTT GCTTATATG GGAAAAATTG TTGATCTTT AAGACATTAA AGACATTAA ATTTCCCATT CAGATCCATT CGACTGCAAC ATATTTCCTT CAGACCTCTT CAGACCTCTT CGACTGCAAC CCAGTTCAA CCAGTTCAA CCAGTTCAA CCAGTTCAA CCAGTATCAA CTATCCCATT AGACAATAC CAGACATAAC CAGACATAAC CAGACATAC CAGACACAC CAGACAC CAGACACAC CAGACAC CAGAC CAGACAC CACACAC CACACA	CTCACTTCGA CTCACTTCGA CTCCCCTCC CTCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTT TGGATCAGAG TATACACTTTACCATT TGGATCAGAC GAACCTTCTG CCCTGCACA CCAGTTGGCT CCATACACT TCAGGCTGAC AACCAAGCAT GCTACCCAATA AAAATACAGC CCCTGAATTA AGAAGGCGCT ACCCAGATT ACCCAGATT GACTAACCGA ATCTTTAACT GACTTAACCG ATCTTCAGA AATGATGGC AACTTCTCAG CATCTTAAAT CCTTTAAAT CCTTTTAAAT CTTTTAAAT CCTTTTAAAT CCTTTTTAAAT CCTTTTAAAT CCTTTTTAAAT CCTTTTTAAAT CCTTTTTAAAT CCTTTTTAAAT CCTTTTAAAT CCTTTTTAAAT CCTTTTTAAAT CCTTTTTAAAT CCTTTTTAAAT CCTTTTTAAAT C	TCTATACACT CGAATCCTAA GCTAATGGAT TCTCCTATCA TTTCAGGGTT GTGGAATTTAG AAAGCAAGCA CCAATTTCAG TTTTCAGGGTT GCAAACTCAA TTGTTTGAGG ACTGATTTGAG ACACAGTTG CCAAACTCAA GCAAACAATT GGAAAGAAT ATGTTTTTTGG CCAAACTAT GCAAACAATT GCAAACAAT ATGATTATGAG ATTGAGT ATTGTGAAACAT TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCCCAACAA TCCACTTCCC ACTGTGACTG ACTGTGACTG ACAACTGA ACAATTCCA CACTGTAAACCG ACACTGAACA ACAATTCCAACAAA ACAATTCCAACAAAACAA	GAGGATTAA TGAGAAGAA ACATTCACAAAAA ATATTGATGA GGGATAAACT ATGAGACA ATCACACAA ATCACACAA ATCACACAA ATCACACAA ATCACACAA ATCACACAA ATCACACAA ATTTTGAGGA ATGGGACAGA GTTTTGGGACAG ACTCACACA ACATCACAC ACATCACAC ACATCACAC ACACTACAA ACACTACAA ACACTACAA ACACTACAA ACACTACAA ACACTACAA ACACTACAA ACACTACAA AACCAGCT TACTAGATT ATGTAGAGA ACCACTACAA ACCACTACAA ACCACTACAA ACCACTACAA AACCAGCACA AACTACCACC TTCATAGATC TTCAGATT ATCTTCAGAT ATCTCACACA AACGACTACAA AACCAGTCACA AACGACTACAA AACCAGCTCACAC TTCATAGATC TTACAGAATA ATCTCTCAGAT ATTCTTCAGG	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG TGACTTGCAA TCACTGGAA ATCATTGCAA TCACTGGAA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAC TTTAAAGAT AATGCAACAA ACAGTACAA AGCAGTTTTTACA TTGTACAA TCATTTGACAA ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACAA ACAGTACAA TCAGAGACTTA CTTGTTACA TTGTACCAG TCAAGACTTC AGTAGCATAC CCAGTACTAC TCGCATACGG ATTCTCTGGA TCAACTGTG TCCACACTGTT TCCACTGTT TCCAGTCCC AATGCTTCC AAATGCTTCC	120 180 240 300 360 420 600 600 780 840 900 1020 1140 1200 1320 1440 1500 1680 1740 1860 1860 1920 1920
5055606570	CACACATACG CAAAAAAAAC CAGCGAGGGG CAGCTCTTTTTTGAA CAAGTAAATG AACACATTCA ACACATTCA GAGATGCAAA GAAAAAGGGA TTAGATCCAT ACAGTTAAAG TTAGATCCAT ACAGTTAAAG TTAGATCCAT ACAGTTAGCA TCTGTTAGAC TCTGTTATG TCTCTAGAC CAGTTAGAAC CAGTTAGGAA ACCAAATCA ACAGAATAC AACGGAAAAC AACGAAATCA AACGGTAATG AACCAAATCA AACGGTGATG AACCAAATCA AACGGTGATG ACAGAAAAC AACGAAAAAC AACGAAATCA AACGAAAAAC CAAATTGAAC GAAAATCTGAAC GAAAATCTTGTCGG AACTTTGTCGG AACTTTCTGGAAC GAAATCTTGTCGG AACTTCTTGGAAC GAAATCTTTCTGGAAAACC GAACTTCTTGGAAC GAAAATCTA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATTACAGA TCTACTGTT AGTTACAGA TCTACTGTT TGACATCTCT TCACAGTTTCAGA TCATACTGTT TGACATCTCC TCTCTGAAAG TCATGCTGAT AGGTGTTTC CAGAAAATGT TCTAGAGTCGT GAGAGGACCA TCAATAATTT AGACATTGA GGAAAAAGGA ATGAAGCCAA ATGATGTTT AAGACATTAC ATATTCCTT CAGCTCTTT CAGCTCTTT AGACCTCTTT AGACCTCTTT AGACCTCTTT AGACTGCAT ATATTCCTT CAGCTCCTTT AGACTGCAT CCAGTTCCAATA CCAGTTTCAA CCAGTTCCAAT AGACAATAAC CTTCATCAGC CTTCATCACAC CTTCATCAGC CTTCATCAGC CTTCATCAGC CTTCATCAGC CTTCATCAGC CTTCATCACAC CTTCATCAGC CTTCATCACAC C	CTCACTTCGA CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATAGA GAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCGAG TGATCGGAC TTTATCCATT TCGGATCGAC CAGTTGGCT GGACTACTTA CTCATACACT TCAGGCTGAC TTATCATTA CTCATACACT TCAGGCTGAC TATGATACC TATGATACC TATGATACC TATGATACC AACCAAGCAT AAAATACAGC CCCTGAATA AAAATACAGC CCCTGAATTA AGAAGGCGT ACCCCAGATT GCTACCCAGATT GACTAACCA AATGATGAC AATGATGAC CATCCTAAAT GCTTGATAC CATCCTTAAAT TCAGAAGAAA AATGATGAT CTTCAGAAGAAA TTTCAGAAGAAA TTTCAGAAGAAA TTTCAGAAGAA	TCTATACACT CTCTCCACTC CGAATCCTAA GCTAATGGAT TCTCTACTACA TTTCAGGGTT TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTAG GATTTTCAG GATTTTCAG GATTTTCAG GACACAGTTG GTTTTTTTGTG GAAACAAT GGAAAGGAAT ATGATTTTTGAGA ATGATTAGT CAAAACAAT CCAACAGAATT ATGATTAGA ATGAGTATG AACTATTGAGA ATGAGTATG ATTGAGAA ATTGAGAA TCCACACAA TCCCCAACAA TCCCCAACAA TCCACTTCCC ACTGTGACTG CTTAAAACTG GAGGTTGAAG ACCATTCCC CTTAAACGG TCACTAAAGG	GAGGATTAA TGAGAAAAA ATATTGATGA GGATAAAAA ATATTGATGA GGGATAAACT ATCACATAA AGATAACTTT AAGACAAAA GTTTTGAGGA GTTTTGGGAAA ACTGGATTTA ACTGATTAA ACTGATTATA ACTGATTATA ACTGATTATA ACTGATTGAGA ATTCTTAC TTGAGAGCA AGATTCATGA ATTCTCAGAT TTGTCGACAT TTGTCGACAT CAGATGGCTA CAGATGGCTA CAGATGGCTA CAGATGCTA ACACTACAA AGAGAATA ACCAGTCAC AACTGCCAC AACTCCAC AACTGCCAC AACTCCAC AACTGCCAC AACTCCAC AACTGCCAC AACTGCCAC AACTGCCAC AACTCCAC AACTC	ACAAACAAA AGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG ATCATTGGAA TGACTTGCATT TCACTGGGA ATTCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG ACAGTACAAG ACAGTACAAG AGCAGTTTGT TCTAGTTTAC TTTGTACCAG TCAAGACTTG AGTAGCCATA GCCATACGGA ATTCTCTGGA ATAGCTACA TCAGCATAGG ATTCTCTGGA ATAATTAC CCACATAGG ATTACTCTCGA TCACACTTG TCACACTTGT TCACACTTGT TCACACTTGT TCACACTTGC ACACTTGT TCACACTTGC ACACTTGC ACACTTCC ACACTTCC ATTTTCCTCC AATGCCTCC GAGGGGAAT	120 180 240 300 360 420 660 720 780 840 900 1020 1080 1140 1500 1560 1560 1620 1740 1800 1740 1800 1900 1900 1900 1900 1900 1900 190
505560657075	CACACATACG CAAAAAAAAC CAGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAAAAGGGAA AATGCAAAA GAAAAACACATTCAA TTAGACCAT TAGACCAAT AATGCATAAAG TTAGATCCAT AATGCTCAT ACAGTTAAGA TCTGGTTATG TCTCTAGAC CAGTTGGATG GGTAAAAG GGAAAATCA AACGGTGATA AACCAAATCA AACGGTGATC CAGAAATCA AACGGTGATC GAACATCTTGCAC ACCAAAATCA ACGAAATCA ACGAACTCTGC GAAAACCCAA GGAGTTCTG GAAAACCCAA GGAGTCTCTA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGGCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGTT AGTTAAGAGC CCGATTATGAT TCACACTGT TGACATCTC TCTCGAAAA TCTCTGAAAA AGGTGTTTC CAGAAAATGT TCAGAGTCGT GAGAGGACCA TCAATAATTT GCTTATATGG TTGACTTTT AAGACATTAT GGAAAAAGG ATGAAGCCAA ATCCCAATAC TCCAATACT CAGCTCTT CAGCTCTT CAGCTCTT CAGCTCTT CAGCTCTT CAGCTCTT CAGCTCTT CAGCTCTTT CAGCTCTTAACAC CTATCCCATT AGACAATAAC CTATCCCATT AGACAATAAC CTATCCCATT AGACAATAAC CTATCCCATT CAGCAATAAC CTATCCCATT CAGCACTACAC CTAGCACTACAC CTAGCTCTTAC	CTCACTTCGA CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA GAACTTAAA TGGGAAACAA AATGGTGTTT TGGATCAGAG TGATCCGAC TTTATCCATT TGGACTCAC TCCTGCACA CAGTTGGC TCCATGCACA CTATACACT TCAGGCTGAC TTATCATTA CTATACACT TCAGGCTGAC TATACACT TCAGGCTGAC TATACACT AAAATACAGC CCCTGAATTA AGAAGGCGT ACCCAGATT ACCCAGATT ACCCAGATT ACCCAGATT ACCCAGATT ACCCAGATT ACCCAGATT ACCCAGATT ACCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT CCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT ACCCCAGATT CCCCAGATT ACCCCAGATT CCCCAGATT CCCCAGATT CCCCAGATT CCCCAGATT ACCTTCAAA AATGATGCC CTTCAGAAACA ACACTACACA AAGACATAACA	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAGCACTCA GCTAATGGAT TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CCATTTCAG CGATTTCAG GCATTTCAG GACTTTAGAG GACTGTAGTC CCAAACTCAA GACACAGTTG GTATTTTGTG GCAAAACTATT GGAAAGGAAG ATGATTTGAG AACTATTGAGA ATGATTGAGA AACTATTGACACAC ACTGTGACTC TCTACCACAA TCCCCAACAA TCCCCCAACAA TCCCCAACAC ACTGTGACTG ACTGTGACTG ACAGTTCTC ACAGTTCTC ACAGTTCTC ACAGTTCTCA ACAGTTCTCA ACAGTTCTCA ACAGTTCTCA ACAGTTCTCA ACAGTTCTCA ACAGTTCCC CTTAAACCG CTTAAACGG GCACAGCCCG	GAGGATTAA TGAGAACA ATCAAAAAAA ATATTGATGA GGATAACTTT AGGACAAAAA AGATAACTTT AAGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGGGACAT ACTGAAAAAA GTTTTGAGGA GTTTTGGACAT ACTGACAAGTA ACTGACAGCT AGTTCACAGT AGTTCATCAGA ATCCAGCT AGTTTGCAGT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT ACTGCAGT CAGATAGAT AAGAATAAT AAGAAATAAT CTGGTAGGA AACTACCA AACTGCCAC TTCTTAGATC TACAGGCTA AATCCCACC TTCTTAGATC AACTGCACC AACTCCAC AACTGCCAC AACTGCCAC AACTGCCAC AACTGCCAC AACTGCCAC AACTCCAC AACTGCCAC AATCCTCCAT AATCCTCCTAT AATCTTCCAGG AACTGCTAT ATCTTCTAT	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGT TCACTGGGA ATCATTGGAA TGACTACAT TGACTCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA AGCAGTTTGT TCATGTACAA TCATGTACAA AGCAGTTTGT TCAGAGCTTG AGTAGCCATA GCCATAGGG ATTCTCTCGAT TCAGAGAGGAG ATCACAGTCCAC TCACACTGTG TCACACTGTG TCACACTGTG TCACACTGTG TCACACTGTG TCCACACTGTG TCCACACTCCC AAATGCTTCC CGAGGGAGAA AGGCAGAGAG	120 180 240 300 360 420 660 660 720 780 840 900 1020 1220 1320 1320 1560 1560 1560 1740 1860 1740 1860 1980 2040 2160
505560657075	CACACATACG CAAAAAAAAC CAGCGAGGGG CAGCTCCTCT CTTGTTGAAC AAATATCCAA CAAGTAAATG AAATATCCAA GACACATTCA GAGATGCAAT GAGATGCAAT AATGCAAT AATGCTAT ACACTTAGCA TCTGGTTAGCA TCTGGTTATG TCTTCTAGAC CAGTTCAGAC CAGTTCGAAAC AGTCAATG AATCCTAATG AATCCTAATG AATCCTAATG AATCCTGAAC AACCAAATAC AACCAAATCA AACGAAAAAAC AACGAAAAAAC CAGTTGTGTTTCGGAACTTCTGGACTTTCGGAACTCTGGACTCTGCACTATTGACC GAAGACACAACTCA AACGAAAAACA AACGAAAAACA AACGAAAAACA AACGAAAACAAAC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATTCATGAT TGATACTGAT TGATACTGAT TGATACTGT TGACATCTCA TCATACTGT TCATACTGT TCATACTGTT TGACATCTCC TCTCTGAAG TCATGCTGAT AGGTGTTTTC CAGAAAATGT CAGAAAATGT TGATACTGT TGATATTG TGATACTTT AAGACATTAT AGGAAAATGT TGATCTTT AAGACATTAT TGATCTTT AAGACATTAT TCATCCAATA TTCATCCATT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT AGACAATAAC CTATCCCATT AGACAATAAC CTTCATCAGG CTAGCTCTTA	CTCACTTCGA CTCACTTCGA CTCCCCCTCC TCTGGAATGG GTCCTATACA CCCAAAACA GAAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCCGAC TTATCCATA TGGATCAGAC TCCTGCACA CCAGTTGGCT TCCCTGCACA CCAGTTGGCT TCAGCACAC TTATGATACC AACCAAGCAT AAAATACAC CCCTGAATTA AGAAGCGCT ACCCAGATT GCTACCCAAT AAATACAGC CCCTGAATTA AGAAGCGCT ACCCAGATT GACTTCTCAG AATGATGGC ATCCTTAAAT GCTTACTCAG AATGATGGC ATCCTTAAAT CATTCTCAGA AATGATGTC TTCAGAAGAA AGACATAACA CACTAAGATA AGACATAACA CACTAAGATA AGACATAACA	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAAGCACTGA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA CATAGTTTAG CGATTTTCAA TGTTTGAGG AGTGTTAGT CCCAAACTCAA GACACGTTG GTTTTTTGAG GACAGGAGATT ATGATTAGAG ATTGTTAGAT ATGATTAGA ATTGTGAACT ACTATACCAC TCTAAAACT CCCACTCC CCTTATACCAC TCACTACCAC TCACTACCAC TCACTACCAC CCTTATACCAC TCACTACCAC CCTTATACCAC CCTTATACCAC CCTTATACCAC CCTCTTGATACCC CCTTTTGATG	GAGGATTAA TGAGAACA ATCAAAAAA ATATTGATGA GGATAAACTT ATGAGACA ATCATCATAA AGATAACTT AAGACAAAA GTTTTGAGGA TTGGGACAGA ATCTGAGAAA AGATAACTT AAGACAAAA CTGACAAGAT ACTGGATGT AAGTCTTACAGAA AGATTCATGAGAC ATCTCAGAGCA ATCTCAGAGCA ATCTCAGATG ATTCTCAGAT CTGAGAGCA TTGTGAGAC ATCTCAGAT ATCTCAGAT CTGAGAGCA TTCTTCAGAT CTGTAGAGA ACACCACTACAA AGATTCATCA AACAGCACT AACAGCACT AACAGCACT AACAGCACT AACAGCACT AACTCACCAC TTCTTAGATC AACTCCACC TTCTTAGATC AACTGCACC ACTCTCAGA ATCTCTCAGG AACTGCACC ACTCTTAGATC AACTGCACC AACTGCACC ACTCTTAGATC AACTGCACC ATCTTAGATC AACTGCTACA ATCTCTCAGG AACTGCTACA ATCTCTCAGG AACTGCTACA ATCTTCTAGAT ATCTTCAGGA AACTGCTACA ATCTTCTAGAT ATCTTCAGGA AACTGCTACA ATCTTCTAGAT ATCTTCAGGA AACTGCTACA ATCTTCTAGAT ATCTTCAGGAATA ATCTTCTAGAT ATCTTCAGGAATA ATCTTCTAGAT ATCTTCAGGAATA ATCTTCTAGATA ATCTTCGAGAATA ATCTTCTAGATA ATCTTCGAGAATA ATCTTCTAGAGAATA ATCTTCTAGAGAATA ATCTTCTAGATC AATCTTCGAGAATA ATCTTCTAGAGAATA ATCTTCTAGAGAATAATA ATCTTCTAGAGAATAATA ATCTTCTAGAGAATAATATATATATTCTTCAGAGAATAATATATAT	ACAAACAAA AAGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG TTGGGAAAG TCACTGGAA TCACTGGAA TCACTGGAA ATTCCACTT AGCAGTCAAA AGAAATTTG CCAGGCTGCT TTACATTTACA TTTTAAAGAT AATGCAACAA AGAGTTCTT TCTTGTTACA TTTGTACAA CAGTACAA AGCAGTTCTT CCTGCTAAA AGCAGTTCTT TCTGTTACA TCTGTACAA CAGGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTG TCAGAGCTTGT TCAGAGCTTGT TCAGAGCTTGT TCCACATATG TCACACTGTG TCCACACTGTG TCCACACTGTG TCCACACTCCC AAATGCTTCC GGAGGAAAT AGCAGAGAG GACAACCAAG	120 180 240 300 360 420 600 660 780 900 1020 1140 1200 1140 1500 1680 1740 1680 1740 1860 1920 2040 2160 2220
50556065707580	CACACATACG CAAAAAAAAC CAGGAGGGG CAGCTCCTCTTTGTTGAAC AAATATCCAA CAAGTAAATG AAACACATTCA ACACATTCA GAGAAAGGGA GAAAAGGGA TTAGACCATTCAAC GATAAAG TTAGATCCAT AATGCCTCAT AATGCTCAT ACAGTTAGCA TCTGTTAGCA TCTGTTATG TCTCTAGAC GGAAAAGAC CAGTTAGGAA ACCACATACA AACGCAAATCA AACGCAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA AACGAAATCA ACGAAATCA ACGTTTCTCC CCCTTTCTC CCTTTTCTC CCTTTTCTC CCTTTTCTC	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATTAGAGA TCTACTGTT AGTTAAGAGC CCGATTATGAT TCACACTCT TGACATCTC TCTCTGAAA TCTATGCT TCACAGTTTC CAGAAAATGT TCAGAGACCA TCAATACTGT TGACATCTC CAGAAAATGT TCCGAGTCGT TGACATCTT AGACATTT GGATATTT GGATATTT GGATATTT CAGAAAATGT TCCAATACTTT AGACATTAT AGACATTAT AGACATTAA ATTTCCTT CAGCTCTT CAGCTCTTA AGACAATAA CTATCATCAG CTAGCATAC AGACAATAA CTATCATCAG CTAGCTCTAC AGACTAATTA CAGGCCCAGT CCCTTTACCTT CAGCCCTTAC CAGCCCTTAC CAGCCCTTAC CAGCCCTTAC CAGCCCATAC CCAGCTCTTAC CAGCCCATAC CCAGCCCATAC CCAGCCCAGT CCCTTTCCCCTTAC CCAGCCCAGT CCCTTTCCCCTTAC CCAGCCCAGC	CTCACTTCGA CTCACTTCGA CTCACTTCGA CTCACCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA GAACTTAAA TGGGAAACAA AATGGTGTTT TGGATCAGAG TGATCCGAC TCTATCCAT TCGCTGCACA CCAGTTGGCT GGACTACTTA CTCATACACT TCAGGCTGAC TTATCATAC TCATACACT TCAGGCTGAC TATACACT TCAGGCTGAC AACCAAGCAT GCTACCCAAT AAAATACAGC CCCTGAATA ACAAGGCGT ACCCAGATT GACTACCCAAT AAAATACAGC CCCTGAATA ACAAGGCGC TCCCCAGATT GCTTCAGAATACCA ATCTTAAAT GACTTCTCAG AAATGATGGC TCTCTGAG ATCTTTAAAT CCTTGATAC CATCTTAGAAC ACACTGAATAA AGACATAACA CACTGAGATA AGACATAACA CACTGAGATA GCTTCCCAACT CTTCCCAACT CTTCCCAACT CTTCCCAACT CTTCCCAACT CTTCCCAACT	TCTATACACT CCGAATCCTAA GCTAATGGAT TCTCCTATCA TCTCCTATCA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CATAGTTTAGAG ACATTTCAGG CCAAACTCAA GACACAGTTG GTTTTTTTGTG GAAAGGAAT ATGATTTTGAGA ATGATTTGAGA ATGATTTTGAGA ATGATTGAGA ATGATTGAACT ATGATTTGAA ATTGAACTG ATTGAACTG ATTGAACTG ATTGAACTG ATTGAACTG ATTGAACTG ACTGACACA ACCACTCCC ACTGTGACTG CCTTAAAACT CCCCAACAA TCCACTTCCC ACTGTGACTG ACATTCCC CTTAACCAG ACATTCCC CTTAACCAG ACATTCCC CTTAACCAG ACATTCCC CTTAACCAG ACATTCCC CTTAACCAG CCTTAAAAGG GCACAGCCCC CGTGTTGATG GGAGCTCCCC CGTGTTGATG GGAGTTACAC	GAGGATTAA TGAGAACA ATCAAAAAA ATATTGATGA GGATAACAT AGGACATAACAT AGGACAAAA GTTTTGAGGA GTTTTGAGGA GTTTTGGGAAGTA ACTGAAAAAA ATATTGATGA GTTTTGGGAA GTTTTGAGGA TTGGGACAT ACTGCATTA ACTGCATTA ACTGCATTA ACTGCATTA TTGTCGACAT ACACATACAA AGGCAAGTCAC AACTCCCAC TTCTTAGATC TACACGACTCAC AATTCTTCAGG AAGGCTATA AATTCTCCTAT AATTCTCTAG ATTCTCTAT ATTTTGGACA TTACAGATCT CTCATGCTTT AATTCTGCTAT ATTTTGGACA TTACAGATCT CTCATGCTTT	ACAAACAAA AGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG AGATCTTACA ATCATTGGAA TGACTGCGT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAAATTTG GCAGGCTGCT TTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAAG ACAGTTTAC TTTGTACCAG TCAAGAGCTTG TCAAGACTTG AGTAGCCATA GCCATACGG ATTCCTCGT TCACATTGT CAGGAGGAGA CTCACACTGGT TCAGATCACA CGCATAGGG ATTCTCTCTGT TCACACTTGT TCACACTTGT TCACACTTGT CCACATTGC CCACATTCC CAAATGCTCC CAAATGCTTC CGGAGGGAAAT AGCCAGACCAG GGCAAACCACC TCACACCACC TACCCCATCC	120 180 240 300 360 420 660 720 780 840 900 1020 1080 1140 1500 1560 1620 1740 1860 1740 1860 1980 2040 2160 2210 2220 2234 2340
50556065707580	CACACATACG CAAAAAAAAC CAGGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GTCAGCGGAG GAAATAGCAA GAAAAAGGGA TTAGCAA TCTGGTTATG TCTAGAC ACGTTCTAGCA TCTGGTATG ATCTCTAGAC AGTTCAGAAC TCTGGTATG TCTCTAGAC AGTTCAGAAC TGGCACTAATG GAACACTATC AACGAAATCA AACGAAATCA AACGAAATCA ACGAAATCA ACGAAATCA ACGAAATCA ACGAAATCA AGGGTGATT ACTTGTCGG AGTTCATGCG AGTTTATTCT GAAAACCCAG GAAGATCT ACCTTGTCG GAAACCCAG GAAGATTCT GCACTATTC CCTTTCTCC CCTTTTCTC CATTATTCTC CATTATTCTA TCCAGACAACA	CACGCACGAT ATTTCCTTCG CGCAGACCG GTGTTTGCCG AGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC GAGTTTCAGA TCTACTGCT AGTTAAGAGC CGATTATGAT ACTACTGCT AGTTAAGAGC TCATCTGATT GCATTCCCATTC CAGAAAATGT CTCAGATGTT GCTATATAGA TCAGACTCTT CAGAAAATGT CTCAGATGT TGACATCTT GAAAAATTT GCTTATATGG TTGATCTTTT AGACATTTT AGACATTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT CAGCTCTTT AGACAATAAC CTTCATCAGT CTTACTCAT AGACAATAA CTTCATCAGG CTAGCTCTTA AGACAATAA CTTCATCAGG CTAGCTCTTA AGACAATAA CTTCATCAGG CTAGCTCTTA AGACTAATTA CAGCCCAGT CTAGCTCTTAC AGACTAATTA CAGCCCCAGT CTTGCTTT	CTCACTTCGA CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA GAACTTAAA TGGGAAAACA AATGGTGTTT TGGATCAGAG TGATCCGAC TCCTGCACA CAGTTGGCT TCCCTGCACA CAGTTAGCT TCAGGCTGAC TCAGACTACA CTCATACACT TCAGGCTGAC TCAGACTACACT TCAGGCTGAC TTATGATACC CACTGAATTA AGAAGCAT AAAATACAGC CCCTGAATTA ACCCAGATT GACTTACACT TCAGACTACT CATCTCTCAG AATGATGCC ATCCTTAAAT GCTTCCTAGA TTCAGAAGAA AGACATACAC CACTGAGATA CACTGACT CTCCAACT CTCCCACGGTC	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAGCACTCA GCTAATGGAT TCTCCTATCA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CCATTTCAG GCATTTTCAG GCATTTTGAG GCACACTCA GACACACTCA GACACACTCA ATGATTTGGA CCAAACTCAA CCACACTCA ATGATTAGA ATGAGTTATG GACAACTCA ATGACTTAGACTC TCTACCACAA TCCCCAACACA TCCCCAACACA TCCCCAACACA TCCACACACA	GAGGATTAA TGAGAAGCA ACCATACAAAAAA AGATAACTTT AAGGACAAAAAAA AGATAACTTT AAGGACAAAAAA GTTTTGAGGA TTGGGACAAAAA CTGACAAAAAA CTTTTGAGAA CTGACAAAAA CTGACAAAAA CTGACAAGTA ACTGACAAGTA ACTGCACAC TTCGAGAGCA AGATTCATGA ATACCAGCCT AGTTTGCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAT TTGTCGACAC CACTACAA GAGGAATAA CACAGTCAC AACTGCCACC TTCTTAGATC TAACAGAATA AATTCTTCAGG AATGCTTAT AATTTTGCTAG ATCCTTCTAT ATTTTGGACA TTACAGACT TACAGACT TACAGACT TTACAGATTA ATTCTTCAGG ATCCTTCTTAT ATTTTGGACAC TTACAGACT TTACAGACT TTACAGACT TTACAGACT TTACAGACT TTACAGACT TTACAGACT TTCTCAGGAATT ATTTTGGACA TTACAGACT TTCTCAGGAATT ATTTTGAGAC TTACAGACT TTCTCAGGAATT ATTTTGAGAC TTACAGACT TTCTCAGGAATT ATTTTGAGAC TTACAGACT TTCTCAGGAC TTCTCAGACAC TTCTCAGACAC TTCTCAGACAC TTCTCACAGAC TTACAGACT TTCTCCACAGAC TTACAGACT TTCTCCACAGAC TTACAGACT TTACAGACAC TTACAGACT TTACAGACAC TTACAGACT TTACAGACAC TTACAGACT TTACAGACAC TTACAGACT TTCTCCACAGAC TTACAGACAC TTACAGACT TTCTCCACAGAC TTACAGACT TTCTCCACAGAC TTACAGACT TTCTCCACAGAC TTACAGACT TTCTCCACAGAC TTACAGACT TTCTCCACAGAC TTACAGACAC TTACAGACT TTCTCCACAGAC TTACAGACAC TTACAGACT TTCTCCACAGAC TTACAGACAC TTACAGACT TTCTCCACAGAC TTACAGACAC TTACAGACT TTCTCCACAGAC TTACAGACT TTCTCCACAGAC TTCTCTCT TTCTCCACAGAC TTACAGACT TTCTCCACAGAC TTACAGACT TTCTCCACAGAC TTCTCTCT TACTCCCACAC TTCTCTCT TTCTCCACAGAC TTCTCCACAC TTCTCTCACAC TTCTCTCT TTCTCCACAC TTCTCCA	ACAAACAAA AGGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAA TGACTTACA ATCATTGGAA TGACTACAT TCACTGGGA ATTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTTACATTTAC TTTTAAAGAT AATGCAACAA ACAGTACAA AGAAGTTTGT TCTTGTTACA TTTGTACCAG TCAAGACTTG AGTAGCCATA GCAGTCTTA ATTGTACCAG TCAAGAGCTTG TCAGAGACTTG TCAGAGACTTG TCAGAGACTTG TCAGAGACTTG TCAGACTTCTGACAA TAATTAGC TCACACTGTG TCACACTGCC AATTCCTCC AAATGCTTCC AAATGCTTCC AAACCCAACCGAACCCAACCC	120 180 240 300 360 420 660 720 780 840 900 1020 1080 1140 1500 1560 1620 1740 1860 1740 1860 1980 2040 2160 2210 2220 2234 2340
505560657075	CACACATACG CAAAAAAAAC CAGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GAGATGCAAT GAAATGCAAT AATGCCAT ACAGTTAAAG TTAGATCCAT ACAGTTAGAC TCTCTTAGAC AGTTAGAT ACAGTTAGAC TCTCTTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC CAGTTGGATAT GAACACAATC AACAAAAAC AACGAAATAC AAGGGTACTT ACTGTTATG ACACAAATC AAGGTACT ACTGTTATCG GAAAACC AGGTTTATCG AGTTTATCG AGTTTATCG AGTTTATCG CAGCACAC GAGATTCA ACGAAAAAC CAGTTCTCC CAGCCAC CAGCTTCTCC CATTATCTCA CCCAGCCAC CCCTTTTCTCC CATTATCTA TCCAGACAAT CCAGACAAT CCAGACAAT CAGCTTCTCC CATTATCTA CCAGACAAT CCAGACAAT CCAGACAAT CCAGACAAC CGCTTTCTCC CATTATCTA CCAGACAAT CCAGACAT CCAGCACAT CCAGCACAT CCAGCAAT CCAGACAT CCAGACAT CCAGACAT CCAGACAT CCAGCACAT CCAGCACAT CCAGCACAAT CCAGACAT CCAGCACAT CCACAC CCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATTCATCATA TCTACTGAT TCATACTGT TCATACTGT TCATACTGT TCATACTGT TCATACTGT TCATACTGTT CAGATCTCC TCTCGAAAG TCATGCTGAT AGGTGTTTTC AGAAAATTG CTTAATAGG GAAAAATTG TTGATCTTT AAGACATTAT GCTTATATG GCTAATAATTT GCTTATATG GCAAAAATTT CAGCCTCTT CAGACCACTAT CAGCTCTT CAGACTACAT TCACCATT CAGCTCTT CAGCTCT CTTTCATCAGG CTTTACTCAT AGACTAATTA CAGGCCCAGT CCTTTGCCTA AGAATTACC CTTTTGCTA AGGATTCGCT CTTTTGCCTA AGGATTCGCT CTTTGCCTA AGGATTCACC CTTTTGCCTA	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTT TGGATCAGA GAACCTTCG TCCCTGCACA GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCAGTACACT TCAGTACACT TCAGTACACT TCAGCTACCA AACCAAGCAT GCTACCCAATA AAAATACAG AACCAAGCAT ACCCAGGATT ACCCAGGAT ACCCAGGAT ACCTTCAACAC ATCTTAAAC AATGATGC AACTTCTCAG AATGATGC AACTTCTCAG AATGATGC CTTCAAACAC TTCAGAAGAA GACATAACA CTCCTGAG TTCAGAAGAA AGACATAACA CCCCAGGATA CCTCCTCAGC TCCCACGTC TCCACGGC TTCCCACGC TCCCCACCT TCCCCACCT TCCCCACCT TCCCACGC TCCCCACCT TCCTCCACCT TCCCCACCT TCTCCACCT TCCTCCACCT TCTCCACCCT TCTCCACCT TCTCCACCT TCTCCACCT TCTCTCACCT	TCTATACACT CGAATCCTAA GCTAATGGAT TCTCTATCA GCTAATGGAT TCTCGAGCT TTTCAGGGTT GTGGAAATTAA AAAGCAAGCA CAATGTTAGG TTTCTAGG ATTGTTGAG ACACAGTTG GCAAACTCAA GCAAACAAT GGATTTGTG CCAAACTAA GACAAGTAT GGAAAGAAT ATGTTTTTGG CAAACAAT GCAACAGATT GCAAACAAT TCTAGGAAT ATGTGAGAAT ATGATTATGA ATTGAGTATAC ATTGTGAACT ATTGTGAACT ATTGTGAACT ATTGTGAACT ATTGTGAACT ATTGTGAACT ATCCCCAACAA TCCCCAACAA TCCCCTAAAACT CCACTACACA ACACTTCCC ACTGTGACT ACACTACACA ACACTACCA CCTTATACCAC ACACTACCAC GCGCCCG GCGTCTCAC GGGGTAACAC ACGTGGTAT TCCTACAGTA TCCTAC	GAGGATTAA TGAGAAGAA ACATCACAAA ATATTGATGA GGGATAAACT ATCACAAAA ATATTGATGA GGGATAAACT ATGGGACAGA ATGTTGGGAA ACTTTTGGGAA ACTTTTGGGAA ACTTTACAGAT ACTGGATTAC AGATTCATAA ACTTTTACAGAT ACTGGATGC AGATTCATCA AGATTCATCA AGATTCATCA ATCTCACAC AGATTCACAC AGATTCACAC AGATTCACAC AGATGCACA ACACTACAA ACACTACAA ACACTACAA ACACTACAA ACCACTACAA ACCAGTCAC AACTGCACT TACAGATT ATCTTCAGAT ATCTCATGATC TCATGGATC TCATGGATC TCATGGATC TCATGGATC TCATGGATC CTCATGCTTT ACTCGCAGAC GTGAAGTCT CTCATGCTTT ACTCGCAGAC	ACAAACAAA AAGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG TGACTTTGCAA TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAA ATTTCATTTAAAGAT AATGCAACAA AGAAATTTC TTTTAAAGAT CAGTACAA AGAGTTCTT TCTTGTTACA TTGTACCAG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAGTCCAAA AGAAATACCA CAGTGCTAC TCACATACAG CAGTGCTAC TCACATACAG CAGTGCTAC TCACATACGG ATTCTCTGGA TCACATATGG TCACATATGG TCACATATG TCACATATG TCACATATG TCACACTCC AATGCTCC AATGCTCC AATGCTCC AATGCTCC AATGCTCC AACCAACCA GGAAATGCCA TCCCCATCC AACCCAACCA TCCCTAGTC TCCCTAGTC TCCCTAGTC TCCCATCC AACCCAACCA	120 180 240 300 360 420 660 720 780 840 900 1020 1080 1140 1500 1560 1620 1740 1860 1740 1860 1980 2040 2160 2210 2220 2234 2340
50556065707580	CACACATACG CAAAAAAAAC CAGCGAGGGG CAGCTCCTCT CTTGTTGAAG AAATATCCAA CAAGTAAATG AACACATTCA GAGATGCAAT GAAATGCAAT AATGCCAT ACAGTTAAAG TTAGATCCAT ACAGTTAGAC TCTCTTAGAC AGTTAGAT ACAGTTAGAC TCTCTTAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC AGTTCAGAC CAGTTGGATAT GAACACAATC AACAAAAAC AACGAAATAC AAGGGTACTT ACTGTTATG ACACAAATC AAGGTACT ACTGTTATCG GAAAACC AGGTTTATCG AGTTTATCG AGTTTATCG AGTTTATCG CAGCACAC GAGATTCA ACGAAAAAC CAGTTCTCC CAGCCAC CAGCTTCTCC CATTATCTCA CCCAGCCAC CCCTTTTCTCC CATTATCTA TCCAGACAAT CCAGACAAT CCAGACAAT CAGCTTCTCC CATTATCTA CCAGACAAT CCAGACAAT CCAGACAAT CCAGACAAC CGCTTTCTCC CATTATCTA CCAGACAAT CCAGACAT CCAGCACAT CCAGCACAT CCAGCAAT CCAGACAT CCAGACAT CCAGACAT CCAGACAT CCAGCACAT CCAGCACAT CCAGCACAAT CCAGACAT CCAGCACAT CCACAC CCA	CACGCACGAT ATTTCCTTCG CCGCAGACCG GTGTTTGCCG GAGATTGCCTG CATGTAATAG TGAATCTTAA TTCATAACAC TGATTCATCATA TCTACTGAT TCATACTGT TCATACTGT TCATACTGT TCATACTGT TCATACTGT TCATACTGTT CAGATCTCC TCTCGAAAG TCATGCTGAT AGGTGTTTTC AGAAAATTG CTTAATAGG GAAAAATTG TTGATCTTT AAGACATTAT GCTTATATG GCTAATAATTT GCTTATATG GCAAAAATTT CAGCCTCTT CAGACCACTAT CAGCTCTT CAGACTACAT TCACCATT CAGCTCTT CAGCTCT CTTTCATCAGG CTTTACTCAT AGACTAATTA CAGGCCCAGT CCTTTGCCTA AGAATTACC CTTTTGCTA AGGATTCGCT CTTTTGCCTA AGGATTCGCT CTTTGCCTA AGGATTCACC CTTTTGCCTA	CTCACTTCGA CTCACTTCGA CTCCCCTCC TCTGGAAATG CCTGGATTGG GTCCTATACA CCCAAAACAA GAAACTTAAA TGGGAAAACA AATGGTGTT TGGATCAGA GAACCTTCG TCCCTGCACA GAACCTTCTG TCCCTGCACA CCAGTTGGCT TCAGTACACT TCAGTACACT TCAGTACACT TCAGCTACCA AACCAAGCAT GCTACCCAATA AAAATACAG AACCAAGCAT ACCCAGGATT ACCCAGGAT ACCCAGGAT ACCTTCAACAC ATCTTAAAC AATGATGC AACTTCTCAG AATGATGC AACTTCTCAG AATGATGC CTTCAAACAC TTCAGAAGAA GACATAACA CTCCTGAG TTCAGAAGAA AGACATAACA CCCCAGGATA CCTCCTCAGC TCCCACGTC TCCACGGC TTCCCACGC TCCCCACCT TCCCCACCT TCCCCACCT TCCCACGC TCCCCACCT TCCTCCACCT TCCCCACCT TCTCCACCT TCCTCCACCT TCTCCACCCT TCTCCACCT TCTCCACCT TCTCCACCT TCTCTCACCT	TCTATACACT CCGAATCCTAA GCTAATGGAT GCAGCACTCA GCTAATGGAT TCTCCTATCA TCTCCTATCA TCTCCTATCA TTTCAGGGTT GTGGAAATTA AAAGCAAGCA CCATTTCAG GCATTTTCAG GCATTTTGAG GCACACTCA GACACACTCA GACACACTCA ATGATTTGGA CCAAACTCAA CCACACTCA ATGATTAGA ATGAGTTATG GACAACTCA ATGACTTAGACTC TCTACCACAA TCCCCAACACA TCCCCAACACA TCCCCAACACA TCCACACACA	GAGGATTAA TGAGAAGAA ACATCACAAA ATATTGATGA GGGATAAACT ATCACAAAA ATATTGATGA GGGATAAACT ATGGGACAGA ATGTTGGGAA ACTTTTGGGAA ACTTTTGGGAA ACTTTACAGAT ACTGGATTAC AGATTCATAA ACTTTTACAGAT ACTGGATGC AGATTCATCA AGATTCATCA AGATTCATCA ATCTCACAC AGATTCACAC AGATTCACAC AGATTCACAC AGATGCACA ACACTACAA ACACTACAA ACACTACAA ACACTACAA ACCACTACAA ACCAGTCAC AACTGCACT TACAGATT ATCTTCAGAT ATCTCATGATC TCATGGATC TCATGGATC TCATGGATC TCATGGATC TCATGGATC CTCATGCTTT ACTCGCAGAC GTGAAGTCT CTCATGCTTT ACTCGCAGAC	ACAAACAAA AAGAGCCGCA CGCTTGCATT ACAGAGAAAA TTGGGGAAAG TGACTTTGCAA TCACTGGGA ATTTCCACTT AGCAGTCAAA AGAAATTTG GCAGGCTGCT TTACATTTAA ATTTCATTTAAAGAT AATGCAACAA AGAAATTTC TTTTAAAGAT CAGTACAA AGAGTTCTT TCTTGTTACA TTGTACCAG TCAAGACTTG TCAAGACTTG TCAAGACTTG TCAGTCCAAA AGAAATACCA CAGTGCTAC TCACATACAG CAGTGCTAC TCACATACAG CAGTGCTAC TCACATACGG ATTCTCTGGA TCACATATGG TCACATATGG TCACATATG TCACATATG TCACATATG TCACACTCC AATGCTCC AATGCTCC AATGCTCC AATGCTCC AATGCTCC AACCAACCA GGAAATGCCA TCCCCATCC AACCCAACCA TCCCTAGTC TCCCTAGTC TCCCTAGTC TCCCATCC AACCCAACCA	120 180 240 300 360 420 480 660 720 780 840 900 1020 1080 1120 1260 1320 1320 1320 1440 1500 1440 1500 1440 1860 1740 1860 1980 2040 2160 2210 2220 2234 2440 2400

		ATGCTACGCC	тстатттссс	Δατατασατα	тстсатттса	ATCCATCCTG	2580
		ATGGTGCACC					2640
		TGCATACAGT					2700
		CCTTGCATGC					2760
5		AGTATTCTGA					2820
J		AATCTGGTGT					2880
		CCATGATGCA					2940
	CATAATCACC	GCTCCCAACA	CATCTTCACT	CTTTCTTACA	GTTCTGCAAT	ACCTGTGCAT	3000
		GTGTAACTTA					3060
10	COMMACTOR	CGTTAATAAC	CCCNACTGCA	TCATTACTCC	AGCCTACTCA	TGCCCTCTCT	3120
10	CCTANGICII	AATGGTCTGG	ACCUTUTUT	CATACTCAAT	TTCTTTTACC	TGACACAGAT	3180
		CCCTTAACAT					3240
		GTGATGATAA					3300
		AAATTCCTTC					3360
15		ATGATAATGT					3420
10		CCAAGGGCAT					3480
		TTAGTCAAGT					3540
	TOTONACONT	CTGGTGACAC	TTCGCTTAAA	CCTGTGCTTA	GTGCAAACTC	AGAGCCAGCA	3600
		CTGCTTCTAG					3660
20		CTTTTAGTAC					3720
20		TTAAAACTGT					3780
	CCCAAACTTC	ATAAAATTAG	TTCTACAATG	TTGCATCTCA	TTGTATCAAA	TTCTGCTTCA	3840
		TGCTGCACTC					3900
		CTTCACTTCA					3960
25		AAAGTGAAAG					4020
23	GITTIGITAM	CGGCCAATTT	CCACATTAAC	CAGGCCCATC	CCCCAAAAGG	AAGGCATGTA	4080
		CTGTTTTATC					4140
		AAATTTTAAC					4200
		TTGCTTCTGA					4260
30		CCATTACAGC					4320
50		CTTCTAAGGC					4380
		GTGGTGAAGA					4440
		GCTTATCCAT					4500
		TGAATGATTC					4560
35		CACTATCTGA					4620
55		CTGGTATGGA					4680
		ATGATGGAAA					4740
		AATCTAAAGC					4800
		CAGATAGCCT					4860
40		AAGATGCTGA					4920
		CCCCAACATC					4980
		CCAGTAATAG					5040
		AGGCAGTTAT					5100
		TGGGTATTCT					5160
45		GTACATCCCC					5220
		TCGGAGCAAT					5280
		GGTTTACTGA					5340
		TTGACTTAGG					5400
		ACATAAATAT					5460
50		ATGGCAAACT					5520
•		CTTATATTGC					5580
		GGGAACATAA					5640
		AATGTGATCA					5700
		AGAAGAGTGT					5760
55		AAATAAAAA					5820
		ACACGCAGTG					5880
		GAAAGGCAGC					5940
	TGCAGTGCTG	GAGTTGGAAG	AACAGGCACA	TATATTGTGC	TAGACAGTAT	GTTGCAGCAG	6000
	ATTCAACACG	AAGGAACTGT	CAACATATTT	GGCTTCTTAA	AACACATCCG	TTCACAAAGA	6060
60	AATTATTTGG	TACAAACTGA	GGAGCAATAT	GTCTTCATTC	ATGATACACT	GGTTGAGGCC	6120
	ATACTTAGTA	AAGAAACTGA	GGTGCTGGAC	AGTCATATTC	ATGCCTATGT	TAATGCACTC	6180
	CTCATTCCTG	GACCAGCAGG	CAAAACAAAG	CTAGAGAAAC	AATTCCAGCT	CCTGAGCCAG	6240
	TCAAATATAC	AGCAGAGTGA	CTATTCTGCA	GCCCTAAAGC	AATGCAACAG	GGAAAAGAAT	6300
	CGAACTTCTT	CTATCATCCC	TGTGGAAAGA	TCAAGGGTTG	GCATTTCATC	CCTGAGTGGA	6360
65	GAAGGCACAG	ACTACATCAA	TGCCTCCTAT	ATCATGGGCT	ATTACCAGAG	CAATGAATTC	6420
	ATCATTACCC	AGCACCCTCT	CCTTCATACC	ATCAAGGATT	TCTGGAGGAT	GATATGGGAC	6480
	CATAATGCCC	AACTGGTGGT	TATGATTCCT	GATGGCCAAA	ACATGGCAGA	AGATGAATTT	6540
	GTTTACTGGC	CAAATAAAGA	TGAGCCTATA	AATTGTGAGA	GCTTTAAGGT	CACTCTTATG	6600
70	GCTGAAGAAC	ACAAATGTCT	ATCTAATGAG	GAAAAACTTA	TAATTCAGGA	CTTTATCTTA	6660
70	GAAGCTACAC	AGGATGATTA	TGTACTTGAA	GTGAGGCACT	TTCAGTGTCC	TAAATGGCCA	6720
						AGAAGAAGCT	
	GCCAATAGGG	ATGGGCCTAT	GATTGTTCAT	GATGAGCATG	GAGGAGTGAC	GGCAGGAACT	6840
	TTCTGTGCTC	TGACAACCCT	TATGCACCAA	CTAGAAAAAG	AAAATTCCGT	GGATGTTTAC	
	CAGGTAGCCA	AGATGATCAA	TCTGATGAGG	CCAGGAGTCT	TTGCTGACAT	TGAGCAGTAT	6960
75	CAGTTTCTCT	ACAAAGTGAT	CCTCAGCCTT	GTGAGCACAA	GGCAGGAAGA	GAATCCATCC	7020
	ACCTCTCTGG	ACAGTAATGG	TGCAGCATTG	CCTGATGGAA	ATATAGCTGA	GAGCTTAGAG	7080
	TCTTTAGTTT	AACACAGAAA	GGGGTGGGGG	GACTCACATC	TGAGCATTGT	TTTCCTCTTC	7140
	CTAAAATTAG	GCAGGAAAAT	CAGTCTAGTT	CTGTTATCTG	TTGATTTCCC	ATCACCTGAC	7200
00	AGTAACTTTC	ATGACATAGG	ATTCTGCCGC	CAAATTTATA	TCATTAACAA	TGTGTGCCTT	7260
80	TTTGCAAGAC	TTGTAATTTA	CTTATTATGT	TTGAACTAAA	ATGATTGAAT	TTTACAGTAT	7320
	TTCTAAGAAT	GGAATTGTGG	TATTTTTTC	TGTATTGATT	TTAACAGAAA	ATTTCAATTT	7380
	ATAGAGGTTA	GGAATTCCAA	ACTACAGAAA	ATGTTTGTTT	TTAGTGTCAA	ATTTTTAGCT	7440
	GTATTTGTAG	CAATTATCAG	GTTTGCTAGA	AATATAACTT	TTAATACAGT	AGCCTGTAAA	7500
0.5	TAAAACACTC	TTCCATATGA	TATTCAACAT	TTTACAACTG	CAGTATTCAC	CTAAAGTAGA	7560
85	AATAATCTGT	TACTTATTGT	AAATACTGCC	CTAGTGTCTC	CATGGACCAA	ATTTATATTT	7620
	ATAATTGTAG	ATTTTTATAT	TTTACTACTG	AGTCAAGTTT	TCTAGTTCTG	TGTAATTGTT	7680
	TAGTTTAATG	ACGTAGTTCA	TTAGCTGGTC	TTACTCTACC	AGTTTTCTGA	CATTGTATTG	7740

TGTTACCTAA GTCATTAACT TTGTTTCAGC ATGTAATTTT AACTTTTGTG GAAAATAGAA 7800 ATACCTTCAT TTTGAAAGAA GTTTTTATGA GAATAACACC TTACCAAACA TTGTTCAAAT 7860 7920 5 Seg ID NO: 583 Protein seguence Protein Accession #: NP_002842.1 21 31 41 51 10 MRILKRFLAC IOLLCVCRLD WANGYYROOR KLVEEIGWSY TGALNOKNWG KKYPTCNSPK 60 OSPINIDEDL TOVNVNLKKL KFQGWDKTSL ENTFIHNTGK TVEINLTNDY RVSGGVSEMV 120 180 FKASKITFHW GKCNMSSDGS EHSLEGQKFP LEMQIYCFDA DRFSSFEEAV KGKGKLRALS ILFEVGTEEN LDFKAIIDGV ESVSRFGKQA ALDPFILLNL LPNSTDKYYI YNGSLTSPPC 240 15 TDTVDWIVFK DTVSISESQL AVFCEVLTMQ QSGYVMLMDY LQNNFREQQY KFSRQVFSSY 300 TGKEEIHEAV CSSEPENVQA DPENYTSLLV TWERPRVVYD TMIEKFAVLY QQLDGEDQTK 360 HEFLTDGYOD LGAILNNLLP NMSYVLQIVA ICTNGLYGKY SDQLIVDMPT DNPELDLFPE 420 LIGTEEIIKE EEEGKDIEEG AIVNPGRDSA TNQIRKKEPQ ISTTTHYNRI GTKYNEAKTN RSPTRGSEFS GKGDVPNTSL NSTSQPVTKL ATEKDISLTS QTVTELPPHT VEGTSASLND 20 GSKTVLRSPH MNLSGTAESL NTVSITEYEE ESLLTSFKLD TGAEDSSGSS PATSAIPFIS 600 ENISQGYIFS SENPETITYD VLIPESARNA SEDSTSSGSE ESLKDPSMEG NVWFPSSTDI 660 TAQPDVGSGR ESFLQTNYTE IRVDESEKTT KSFSAGPVMS QGPSVTDLEM PHYSTFAYFP 720 TEVTPHAFTP SSROODLVST VNVVYSQTTQ PVYNGETPLQ PSYSSEVFPL VTPLLLDNQI 780 LNTTPAASSS DSALHATPVF PSVDVSFESI LSSYDGAPLL PFSSASFSSE LFRHLHTVSQ 25 ILPQVTSATE SDKVPLHASL PVAGGDLLLE PSLAQYSDVL STTHAASETL EFGSESGVLY 900 KTLMFSOVEP PSSDAMMHAR SSGPEPSYAL SDNEGSQHIF TVSYSSAIPV HDSVGVTYQG 960 SLFSGPSHIP IPKSSLITPT ASLLQPTHAL SGDGEWSGAS SDSEFLLPDT DGLTALNISS 1020 PVSVAEFTYT TSVFGDDNKA LSKSEIIYGN ETELQIPSFN EMVYPSESTV MPNMYDNVNK 1080 LNASLOETSV SISSTKGMFP GSLAHTTTKV FDHEISQVPE NNFSVQPTHT VSQASGDTSL 1140 30 KPVLSANSEP ASSDPASSEM LSPSTQLLFY ETSASFSTEV LLQPSFQASD VDTLLKTVLP 1200 AVPSDPILVE TPKVDKISST MLHLIVSNSA SSENMLHSTS VPVFDVSPTS HMHSASLQGL 1260 TISYASEKYE PVLLKSESSH QVVPSLYSND ELFQTANLEI NQAHPPKGRH VFATPVLSID 1320 EPLNTLINKL IHSDEILTST KSSVTGKVFA GIPTVASDTF VSTDHSVPIG NGHVAITAVS 1380 PHRDGSVTST KLLFPSKATS ELSHSAKSDA GLVGGGEDGD TDDDGDDDDD RDSDGLSIHK 1440 35 CMSCSSYRES QEKVMNDSDT HENSLMDQNN PISYSLSENS EEDNRVTSVS SDSQTGMDRS 1500 PGKSPSANGL SOKHNDGKEE NDIQTGSALL PLSPESKAWA VLTSDEESGS GQGTSDSLNE 1560 NETSTDFSFA DTNEKDADGI LAAGDSEITP GFPQSPTSSV TSENSEVFHV SEAEASNSSH 1620 ESRIGLAEGL ESEKKAVIPL VIVSALTFIC LVVLVGILIY WRKCFQTAHF YLEDSTSPRV 1680 ISTPPTPIFP ISDDVGAIPI KHFPKHVADL HASSGFTEEF ETLKEFYQEV QSCTVDLGIT 1740 40 ADSSNHPDNK HKNRYINIVA YDHSRVKLAQ LAEKDGKLTD YINANYVDGY NRPKAYIAAQ 1800 GPLKSTAEDF WRMIWEHNVE VIVMITNLVE KGRRKCDQYW PADGSEEYGN FLVTQKSVQV 1860 LAYYTVRNFT LRNTKIKKGS OKGRPSGRVV TOYHYTOWPD MGVPEYSLPV LTFVRKAAYA 1920 KRHAVGPVVV HCSAGVGRTG TYIVLDSMLQ QIQHEGTVNI FGFLKHIRSQ RNYLVQTEEQ 1980 YVFIHDTLVE AILSKETEVL DSHIHAYVNA LLIPGPAGKT KLEKQFQLLS QSNIQQSDYS 2040 45 AALKOCNREK NRTSSIIPVE RSRVGISSLS GEGTDYINAS YIMGYYQSNE FIITQHPLLH 2100 2160 TIKDFWRMIW DHNAOLVVMI PDGONMAEDE FVYWPNKDEP INCESFKVTL MAEEHKCLSN EEKLIIQDFI LEATQDDYVL EVRHFQCPKW PNPDSPISKT FELISVIKEE AANRDGPMIV 2220 HDEHGGVTAG TFCALTTLMH OLEKENSVDV YQVAKMINLM RPGVFADIEQ YQFLYKVILS LVSTRQEENP STSLDSNGAA LPDGNIAESL ESLV 50 Seq ID NO: 584 DNA sequence Nucleic Acid Accession #: NM_005688.1 Coding sequence: 126..4439 55 31 CCGGGCAGGT GGCTCATGCT CGGGAGCGTG GTTGAGCGGC TGGCGCGGTT GTCCTGGAGC ĸ٥ AGGGGCGCAG GAATTCTGAT GTGAAACTAA CAGTCTGTGA GCCCTGGAAC CTCCGCTCAG 120 AGAAGATGAA GGATATCGAC ATAGGAAAAG AGTATATCAT CCCCAGTCCT GGGTATAGAA 180 60 GTGTGAGGGA GAGAACCAGC ACTTCTGGGA CGCACAGAGA CCGTGAAGAT TCCAAGTTCA 240 GGAGAACTCG ACCGTTGGAA TGCCAAGATG CCTTGGAAAC AGCAGCCCGA GCCGAGGGCC 300 TCTCTCTTGA TGCCTCCATG CATTCTCAGC TCAGAATCCT GGATGAGGAG CATCCCAAGG 360 GAAAGTACCA TCATGGCTTG AGTGCTCTGA AGCCCATCCG GACTACTTCC AAACACCAGC 420 ACCCAGTGGA CAATGCTGGG CTTTTTTCCT GTATGACTTT TTCGTGGCTT TCTTCTCTGG 480 65 CCCGTGTGGC CCACAAGAAG GGGGAGCTCT CAATGGAAGA CGTGTGGTCT CTGTCCAAGC 540 ACGAGTCTTC TGACGTGAAC TGCAGAAGAC TAGAGAGACT GTGGCAAGAA GAGCTGAATG 600 AAGTTGGGCC AGACGCTGCT TCCCTGCGAA GGGTTGTGTG GATCTTCTGC CGCACCAGGC TCATCCTGTC CATCGTGTGC CTGATGATCA CGCAGCTGGC TGGCTTCAGT GGACCAGCCT 720 TCATGGTGAA ACACCTCTTG GAGTATACCC AGGCAACAGA GTCTAACCTG CAGTACAGCT 780 70 TGTTGTTAGT GCTGGGCCTC CTCCTGACGG AAATCGTGCG GTCTTGGTCG CTTGCACTGA 840 CTTGGGCATT GAATTACCGA ACCGGTGTCC GCTTGCGGGG GGCCATCCTA ACCATGGCAT 900 TTAAGAAGAT CCTTAAGTTA AAGAACATTA AAGAGAAATC CCTGGGTGAG CTCATCAACA TTTGCTCCAA CGATGGGCAG AGAATGTTTG AGGCAGCAGC CGTTGGCAGC CTGCTGGCTG 1020 GAGGACCCGT TGTTGCCATC TTAGGCATGA TTTATAATGT AATTATTCTG GGACCAACAG 1080 75 GCTTCCTGGG ATCAGCTGTT TTTATCCTCT TTTACCCAGC AATGATGTTT GCATCACGGC 1140 TCACAGCATA TTTCAGGAGA AAATGCGTGG CCGCCACGGA TGAACGTGTC CAGAAGATGA 1200 ATGAAGTTCT TACTTACATT AAATTTATCA AAATGTATGC CTGGGTCAAA GCATTTTCTC 1260 AGAGTGTTCA AAAAATCCGC GAGGAGGAGC GTCGGATATT GGAAAAAGCC GGGTACTTCC 1320 AGGGTATCAC TGTGGGTGTG GCTCCCATTG TGGTGGTGAT TGCCAGCGTG GTGACCTTCT 1380 80 CTGTTCATAT GACCCTGGGC TTCGATCTGA CAGCAGCACA GGCTTTCACA GTGGTGACAG 1440 TCTTCAATTC CATGACTTTT GCTTTGAAAG TAACACCGTT TTCAGTAAAG TCCCTCTCAG 1500 AAGCCTCAGT GGCTGTTGAC AGATTTAAGA GTTTGTTTCT AATGGAAGAG GTTCACATGA 1560 TAAAGAACAA ACCAGCCAGT CCTCACATCA AGATAGAGAT GAAAAATGCC ACCTTGGCAT 1620 GGGACTCCTC CCACTCCAGT ATCCAGAACT CGCCCAAGCT GACCCCCAAA ATGAAAAAAG 1680 85 ACAAGAGGGC TTCCAGGGGC AAGAAGAGA AGGTGAGGCA GCTGCAGCGC ACTGAGCATC 1740 AGGCGGTGCT GGCAGAGCAG AAAGGCCACC TCCTCCTGGA CAGTGACGAG CGGCCCAGTC 1800 CCGAAGAGGA AGAAGGCAAG CACATCCACC TGGGCCACCT GCGCTTACAG AGGACACTGC 1860

			CAAGAGGGTA				1920
			TCAGCCATTT GCTTATGTGG				1980 2040
_			GGGAAGGAAT				2100
5	ACAGCTGCTG	CCTGAGGCCT	GACCTGGCCA	TTCTTCCCAG	CAGCGACCTG	ACGGAGATTG	2160
			AGCGGTGGGC				2220
			TACATCCTGG AGTGCTATCC				2280 2340
			TACCTGGTTG				2400
10	GCTGTATTAC	GGAAAGAGGC	ACCCATGAGG	AACTGATGAA	TTTAAATGGT	GACTATGCTA	2460
			CTGGGAGAGA				2520
			AAGTCACAAG GAGGAAGGGC				2580 2640
			TATGGTGTCT				2700
15	TCCTGGTTAT	TATGGCCCTT	TTCATGCTGA	ATGTAGGCAG	CACCGCCTTC	AGCACCTGGT	2760
			CAAGGAAGCG				2820
			AAGGACAATC CTGATCCTGA				2880 2940
			CGGCTGCATG				3000
20	CTATGAAGTT	TTTTGACACG	ACCCCCACAG	GGAGGATTCT	CAACAGGTTT	TCCAAAGACA	3060
			CTGCCGTTCC				3120
			ATGATCGCAG TCAGTCCTGC				3180 3240
			ACGCAGTCAC				3300
25			GCCTACAATA				3360
			GCTCCTTTTT				3420
			AGCATCGCCC CCAGCCTATG				3480 3540
			ACGGTCAGAC				3600
30	CGGTGGAGAG	GATCAATCAC	TACATTAAGA	CTCTGTCCTT	GGAAGCACCT	GCCAGAATTA	3660
			GACTGGCCCC				3720
			CTCCCTCTTG GTGGGGCGGA				3780 3840
			TTATCTGGAG				3900
35	GTGATATTGG	CCTTGCCGAC	CTCCGAAGCA	AACTCTCTAT	CATTCCTCAA	GAGCCGGTGC	3960
			TCAAATTTGG				4020
			ACACACATGA AATGGGGATA				4080 4140
			CGCCACTGTA				4200
40			TTATTGATTC				4260
			CATCGCCTGC				4320
			GTGGAGTTTG TTTGCTGCTG				4380 4440
			TCTTTTCTTT				4500
45			CCGAAACCTT				4560
			TTTCACTTTT				4620
			AAATTTAGTT TATCAGAGGC				4680 4740
			TAGCCTATAT				4800
50			TAATAACAGT				4860
			TTTTGCTATT				4920
			GTGCCAGGTT CCCCTCTGCC				4980 5040
			GACCATGCAG				5100
55	CTGTCCTGGT	GTCACTTACT	GTTTCTGTCA	GGAGAGCAGC	GGGGCGAAGC	CCAGGCCCCT	5160
			ATGGGGATCA				5220
			GCTGTTGTTT ATGGCTGGCC				5280 5340
			CCAACTGCTG				5400
60	ATTCCCACAC	CTCCACAGTT	CAGTGGCAGG	GCTCAGGATT	TCGTGGGTCT	GTTTTCCTTT	5460
			GTCTCTCTCT				5520
			CTCACACTGG GTGTGGTTTG				5580 5640
	GGGGCTGGTA	GCTCAGGTGG	GCGTGGTCAC	TGCTGTCATC	AGTTGAATGG	TCAGCGTTGC	5700
65	ATGTCGTGAC	CAACTAGACA	TTCTGTCGCC	TTAGCATGTT	TGCTGAACAC	CTTGTGGAAG	
			TAAAATTATT	TTGGATTTTG	AAAAAAAA	AAAAAAAAA	5820
	AAAAAAAA	AAAAAAA					
	Sea ID NO:	585 Prote	in sequence				
70	Protein Acc	cession #: 1	NP_005679.1				
	1	11	21	31	41	51	
	ī	Ī	ĩ	Ĭ	Ī	Ī	
76			RERTSTSGTH				60
75			YHHGLSALKP				120 180
			SSDVNCRRLE VKHLLEYTQA				240
	ALNYRTGVRL	RGAILTMAFK	KILKLKNIKE	KSLGELINIC	SNDGQRMFEA	AAVGSLLAGG	300
90	PVVAILGMIY	NVIILGPTGF	LGSAVFILFY	PAMMFASRLT	AYFRRKCVAA	TDERVQKMNE	360
80	VLTYIKFIKM	YAWVKAFSQS	VQKIREEERR NSMTFALKVT	TLEKAGYFQG	TINGVAPIVV	VIASVVTFSV	420 480
	NKPASPHIKT	EMKNATIAWD	SSHSSIQNSP	KLTPKMKKDK	RASRGKKEKV	RQLQRTEHOA	540
	VLAEQKGHLL	LDSDERPSPE	EEEGKHIHLG	HLRLQRTLHS	IDLEIQEGKL	VGICGSVGSG	600
0.5	KTSLISAILG	QMTLLEGSIA	ISGTFAYVAQ	QAWILNATLR	DNILFGKEYD	EERYNSVLNS	660
85	CCLRPDLAIL	PSSDLTEIGE	RGANLSGGQR THQLQYLVDC	QRISLARALY	SDRSIYILDD	PLISALDAHVG	720 780
	NATENSAIKK	PVEINSKKET	SGSQKKSQDK	GPKTGSVKKE	KAVKPEEGOL	VQLEEKGOGS	840

5	VPWSVYGVYI VSDSMKDNPH KFFDTTPTGR LVILFSVLHI LDDNQAPFFL GLFQFTVRLA RYRENLPLVL IGLADLRSKL SEVMENGDNF	QAAGGPLAFL MQYYASIYAL ILNRFSKDMD VSRVLIRELK FTCAMRWLAV SETEARFTSV KKVSFTIKPK SIIPQEPVLF SVGERQLLCI VLGSDRIMVL	SMAVMLILKA EVDVRLPFQA RLDNITQSPF RLDLISIALI ERINHYIKTL EKIGIVGRTG SGTVRSNLDP ARALLRHCKI	IRGVVFVKGT EMFIQNVILV LSHITSSIQG TTTGLMIVLM SLEAPARIKN SGKSSLGMAL FNQYTEDQIW LILDEATAAM	LRASSRLHDE FFCVGMIAGV LATIHAYNKG HGQIPPAYAG KAPSPDWPQE FRLVELSGGC DALERTHMKE DTETDLLIQE	LFRRILRSPM FPWFLVAVGP QEFLHRYQEL LAISYAVQLT GEVTFENAEM IKIDGVRISD CIAQLPLKLE TIREAFADCT	900 960 1020 1080 1140 1200 1260 1320 1380
1.5	Nucleic Act	586 DNA se id Accession lence: 896	1 #: NM_001	.327.1			
15	1 AGCAGGGGGC	11 GCTGTGTGTA	21 CCGAGAATAC	31 GAGAATACCT	41 CGTGGGCCCT	51 GACCTTCTCT	60
20	CTGAGAGCCG GACGGGCGAT TGGCGGCCCA AAGGGCCTCG GCTGAATGGA	GGCAGAGGCT GCTGATGGCC GGAGAGGCGG GGGCCGGGAG TGCTGCAGAT	CCGGAGCCAT CAGGAGGCCC GTGCCACGGG GAGGCGCCCC GCGGGGCCAG	GCAGGCCGAA TGGCATTCCT CGGCAGAGGT GCGGGGTCCG GGGGCCGGAG	GGCCGGGGCA GATGGCCCAG CCCCGGGGCG CATGGCGGCG AGCCGCCTGC	CAGGGGTTC GGGGCAATGC CAGGGGCAGC CGGCTTCAGG TTGAGTTCTA	120 180 240 300 360 420
25	GGATGCCCA CATACTGACT CTGTCTCCAG GGCTCAGCCT GCCTCCTCCC	CCTTTCGCGA CCGCTTCCCG ATCCGACTGA CAGCTTTCCC CCCTCAGGGC CTAGGGAATG	TGCCAGGGT CTGCTGCAGA TGTTGATGTG AGAGGCGCTA GTCCCAGCAC	GCTTCTGAAG CCACCGCCAA GATCACGCAG AGCCCAGCCT GAGTGGCCAG	GAGTTCACTG CTGCAGCTCT TGCTTTCTGC GGCGCCCCTT TTCATTGTGG	TGTCCGGCAA CCATCAGCTC CCGTGTTTTT CCTAGGTCAT GGGCCTGATT	480 540 600 660 720
30	Seq ID NO:	GGAGGAGGAC 587 Proteicession #: 1	in sequence	TTTGTTTCTG	TAGAAAATAA	AACTGAGCTA	
35	1	11	21	31	41	51	
	 MQAEGRGTGG PRGPHGGAAS	STGDADGPGG GLNGCCRCGA NILTIRLTAA	 PGIPDGPGGN RGPESRLLEF	 AGGPGEAGAT YLAMPFATPM	 GGRGPRGAGA EAELARRSLA	 ARASGPGGGA QDAPPLPVPG	60 120
40		588 DNA se id Accession uence: 524	ı#: Eos s∈	equence			
45	1	11	21	31	41	51	
50	CCTCGTGGGC GAAGGCCAGG CCTGATGGCC GGTCCCCGGG CCGCATGGCG GACAGCCGCC	11 CCTGACCTTC GCACAGGGG CAGGGGCAA GCGCAGGGGC GTGCCGCTTC TGCTTCAGTT GTCTCCAGCA	TCTCTGAGAG TTCGACGGC TGCTGGCGGC AGCAAGGGCC TGCGCAGGAT CCGACTGACT	CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC	GCTCCGGAGC GCCCAGGAGG CGGGTGCCAC GAGGAGGCGC CCTGCGGGGC ACCGCCAACT	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG GCAGCTCTCC	60 120 180 240 300 360 420
	CCTCGTGGGC GAAGGCCAGG CCTGATGGCC GGTCCCCGGG CCGCATGGCG GACAGCCGCC ATCAGCTCCT GTGTTTTTGG TAGGTCATGC	CCTGACCTTC GCACAGGGGG CAGGGGGCAA GCGCAGGGGC GTGCCGCTTC TGCTTCAGTT	TCTCTGAGAG TTCGACGGC TGCTGCGGC AGCAAGGGCC TGCGCAGGAT CCGACTGACT GCTTTCCCTG CTCAGGGCAG AGGGAATGGT	CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC TTGATGTGGA AGGCGCTAAG CCCAGCACGA	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGG GAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGT CCCAGCCTGG GTGGCCAGTT	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGCTCTCC CTTTCTGCCC CGCCCCTTCC CATTGTGGGG	120 180 240 300 360
50	CCTCGTGGGC GAAGGCCAGG CCTGATGGCC GGTCCCCGGG CCGCATGGCG GACAGCCGCC ATCAGCTCCT GTGTTTTTGG TAGGTCATGC GCCTGATTGT CTGAGCTA Seq ID NO:	CCTGACCTTC GCACAGGGGG CAGGGGCAA GCGCAGGGGC TGCTTCAGTT GTCTCCAGCT CTCAGGCTCC CTCCTCCCCC	TCTCTGAGAG TTCGACGGCC TGCGCAGGAT CCGACTGACT GCTTCCCTG CTCAGGGCAG AGGGAATGGT AGGAATGGT AGGAATGGT AGGAATGGT	CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGG GAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGT CCCAGCCTGG GTGGCCAGTT	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCC GCAGCTCTCC CTTTCTGCCC CGCCCTTCC CATTGTGGGG GAAAATAAAG	120 180 240 300 360 420 480 540
50 55	CCTCGTGGGC GAAGGCCAGG CCTGATGGCC GGTCCCCGGG CCGCATGGCG GACAGCCGCC ATCAGCTCCT GTGTTTTTGG TAGGTCATGC GCCTGATTGT CTGAGCTA Seq ID NO:	CCTGACCTTC GCACAGGGGG CAGGGGGCAA GCGCAGGGGC TGCTTCAGTT GTCTCCAGCA CTCAGGCTCC CTCCTCCCCT TTGTCGCTGG	TCTCTGAGAG TTCGACGGCC TGCGCAGGAT CCGACTGACT GCTTCCCTG CTCAGGGCAG AGGGAATGGT AGGAATGGT AGGAATGGT AGGAATGGT	CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GCTGCAGACC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT	GCTCCGGAGC GCCCAGGAGG GCCCAGGAGG GAGGAGGCGC CCTGCGGGGC ACCGCCAACT TCACGCAGT CCCAGCCTGG GTGGCCAGTT	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGCTCTCC CTTTCTGCCC CGCCCCTTCC CATTGTGGGG	120 180 240 300 360 420 480 540
50 55	CCTCGTGGGC GAAGGCCAGG CCTGATGGCC GGTCCCCGGG GCACGGCC ATCAGCTCCT GTGTTTTTGG TAGGTCATTGC GCCTGATTGT CTGAGCTA Seq ID NO: Protein Acc	CCTGACCTTC GCACAGGGGC CAGGGGGCAA GCGCAGGGGC TGCTCCAGCT GTCTCCAGCA CTCAGCTC CTCCTCCCCT TTGTCGCTGG 589 Prote: cession #: 1 1 STGDADGPGG AQDGRCPCGA	TCTCTGAGAG TTCGACGGCC TGCTGCGGCC AGCAAGGGCC TGCGCAGGAT CCGACTGACT CCTACGGCAG AGCATGACT AGGAGATGGT AGGAGGACGG in sequence Eos sequence 21 PGIPDGPGGN	CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GCAGAGGTGC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT	GCTCCGGAGC GCCCAGGAGG CGGGTGCCAC GAGGAGGCGC CCTGCGGGGC TCACGCAGCT TCACGCAGT TCACGCAGT TCACGCAGT TGTTTCTGTA 41 GGRGPRGAGA	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG CCTTCTGCCC CCTTTCTGCCC CATTGTGGGG GAAAATAAAG 51 ARASGPRGGA	120 180 240 300 360 420 480 540
505560	CCTCGTGGGC GAAGGCCAGG GCTCATGGCC GGTCCCCGGG CCGCATGGCG GACAGCCGC ATCAGCTCCT GTGTTTTTGG TAGGTCATGC GCCTGATTGT CTGAGCTA Seq ID NO: Protein Acc 1	CCTGACCTTC GCACAGGGGC CAGGGGGCAA GCGCAGGGGC TGCTCCAGCT GTCTCCAGCA CTCAGCTC CTCCTCCCCT TTGTCGCTGG 589 Prote: cession #: 1 1 STGDADGPGG AQDGRCPCGA	TCTCTGAGAG TTCGACGGC TGCTGGCGGC AGCAAGGGCC TGCGCAGGAT CGGACTGACT CCTCAGGGCAG AGGGAATGGT AGGAGACGG in sequence Eos sequence PGIPDGPGGN RRPDSRLLQF equence #: NM_0055	CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GCAGAGGTGC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT	GCTCCGGAGC GCCCAGGAGG CGGGTGCCAC GAGGAGGCGC CCTGCGGGGC TCACGCAGCT TCACGCAGT TCACGCAGT TCACGCAGT TGTTTCTGTA 41 GGRGPRGAGA	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG CCTTCTGCCC CCTTTCTGCCC CATTGTGGGG GAAAATAAAG 51 ARASGPRGGA	120 180 240 300 420 480 540 600
50556065	CCTCGTGGGC GAAGGCCAGG GCTCATGGCC GGTCCCCGGG CCGCATGGCG GACAGCCGC ATCAGCTCCT GTGTTTTTGG TAGGTCATGC GCCTGATTGT CTGAGCTA Seq ID NO: Protein Acc 1	CCTGACCTTC GCACAGGGGC CAGGGGGCAA GCGCAGGGGC TGCTCCAGCTTC GTCTCCAGCA CTCAGGCTCC CTCCTCCCCT TTGTCGCTGG 589 Prote: cession #: 1 STGDADGPGG AQDGRCPCGA SGQRR 590 DNA seid Accession	TCTCTGAGAG TTCGACGGC TGCTGGCGGC AGCAAGGGCC TGCGCAGGAT CGGACTGACT CCTCAGGGCAG AGGGAATGGT AGGAGACGG in sequence Eos sequence PGIPDGPGGN RRPDSRLLQF equence #: NM_0055	CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GCAGAGGTGC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT	GCTCCGGAGC GCCCAGGAGG CGGGTGCCAC GAGGAGGCGC CCTGCGGGGC TCACGCAGCT TCACGCAGT TCACGCAGT TCACGCAGT TGTTTCTGTA 41 GGRGPRGAGA	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCG CCTTCTGCCC CCTTTCTGCCC CATTGTGGGG GAAAATAAAG 51 ARASGPRGGA	120 180 240 300 420 480 540 600
50556065	CCTCGTGGGC GAAGGCCAGG CCTGATGGCC GGTCCCCGGG GCGATGGCG GACAGCCGCC ATCAGCTCCT GTGTTTTTGG TAGGTCATGT CTGAGCTA Seq ID NO: Protein Acc 1 MQAEGQGTGG PRGPHGGAAS FLPVFLAQAP Seq ID NO: Nucleic Acc Coding sequ 1 ACAGCGGAGC AGACAGAGAC GCTTCTCGCT ATGGGAAGTC	CCTGACCTTC GCACAGGGGC CAGGGGGCA GCGCAGGGGC GTGCCGCTTC GTCTCAGGTTC GTCTCAGGTTC GTCTCAGGTTC TTGTCGCTGG 589 Prote: CCSSION #: 1 11 STGDADGPGG AQDGRCPCGA SGQRR 590 DNA seid Accession uence: 90 11 GCAGAGTGAG TGAGCGGCCC CCTCCTCCCCC CAGGCAGTGT	TCTCTGAGAG TTCGACGGC TGCTGCGGC AGCAAGGGCC TGCGCAGGAT CCGACTGACT CCTCAGGGAT AGGAGACGG in sequence Eos sequence 21 PGIPDGPGGN RRPDSRLLQF equence 1 #: NM_0055 8671 21 AACCACCAAC GGCACGGCAG GCAGCCCGGG ATCTTTGATC	CCGGGCAGAG GATGCTGATG CCAGGAGAGG TCGGGGCCGA GGAAGGTGCC GTTGCAGGACC TTGATGTGGA AGGCGCTAAG CCTACATGAT 31 AGGPGEAGAT RLTAADHRQL 31 CGAGGCGCCG TGCAGGCCCG TGCAGCACGA GGGAACTTCA	GCTCCGGAGC GCCCAGGAGG CGGGTGCCAC GAGGAGGGGC CCTGCGGGGG ACCGCCAGCCTG CCCAGCCTG TTATTCTGTA 41 GGCAGCAGCA 41 GGCAGCGACC CTGGCGGC CTGCCGGGC CTGCCGGGC CTGCCGGGC CTGCCGGC CTGCCGGC CTGCCGGC CTGCCGGC CTGCCGGCC CTGCCGGCC CTGCCTGGCC CAGACAAACT	CATGCAGGCC CCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCC GCAGCTCC CTTTCTGCC CGCCCTTCC CATTGTGGGG GAAAATAAAG 51 ARASGPRGGA LSLLMWITQC 51 CCTGCAGCGG TGCTGCTTCT GTGATTGCA GGTAATGGAT	120 180 240 300 360 420 480 540 600 120
5055606570	CCTCGTGGGC GAAGGCCAGG CCTGATGGCC GGTCCCGGG CCGCATGGCC ATCAGCTCCT GTGTTTTTGG GCCTGATTGT CTGAGCTA Seq ID NO: Protein Acc 1 MQAEGQGTGG PRGPHGGAAS FLPVFLAQAP Seq ID NO: Nucleic Ac: Coding sequence 1 ACAGCGGAGC AGACAGAGAC GCTTCTCGCT ATGGGAAGTC TCCGCTGCCT GCTTTTACCG CCCAGATGCGG ACCAGAGAGCC ACGAATGCGG ACCAGAGAGCC ACGAATGCGG ACCAGAGAGCT	CCTGACCTTC GCACAGGGGC CAGGGGGCAA GCGCAGGGGC TTGCTCCAGCA CTCAGCTC TTGTCGCTG 589 Prote: Cession #: 1	TCTCTGAGAG TTCGACGGC TGCGACGGC AGCAAGGGCC TGCGCAGGAT CCGACTGACT CCTCAGGGCAG AGGAATGGT AGGAGACGG in sequence 21 PGIPDGPGGN RRPDSRLLQF equence 1 #: NM_0055 3671 21 AACCACCAAC GCCACCGCA ACGCACCGCA ACTCTTGGAC AGGGACCGCC AACTCTGGAC CAAGGCTTCC AAGTGTGACCT	CCGGGCAGAG GATGCTGATG CCAGGAGAGG CCAGGAGAGG GCAAGGTGCC TTGATGTGGA AGGCGCTAAG CCCAGCACGA CTTACATGTT 31 AGGPGEAGAC 31 AGGPGEAGAT RLTAADHRQL 31 CCGAGGCGCCG TGCCTGCGCT CCACCTCCAG GGGAACTTCA GTTTGCCCTG GGTGCAGCTG ACATGCTAG ACATGCTAG ACTACCAGG	GCTCCGGAGC GCCCAGGAGC GCCCAGGAGC GAGGAGGCGC CCTGCGGGGC CCTGCAGGCT TCACGCAGTT TCACGCAGTT TCACGCAGTT TGTTTCTGTA 41 GGRGPRGAGA QLSISSCLQQ 41 CGCAGCGACC CTGGCTGGC GAGGAAGT CAGCAGCC CTGGCTGGGC GAGGAAGT CTGCTGGGC GAGGAAAGT CTGCAGAAAG CAATTGTAAC TAAACCAGGT TGGCATCGCA	CATGCAGGCC CCCTGGCATT GGGCGGCAGA CCCGCGGGGT CAGGAGGCCC CTTTCTGCC CGCCCTTCC CATTGTGGG GAAAATAAAG 51 ARASGPRGGA LSLLMWITQC 51 CCTGCAGCGG TGCTGCCTCT TGTGATTGCA GGTAATGAAT GGTAATGAAT GCTGAAGAAT TGCAAGAAT GTGAACGAG GGGCCCTGTG	120 180 240 300 360 420 480 540 600

WO 02/086443 PCT/US02/12476
TTGTGGCTCC TGCCAAATTT CTTGGGAATC AACAGGTGAG CTATGGGCAA AGCCTGTCCT 900

	TTGTGGCTCC	TGCCAAATTT	CTTGGGAATC	AACAGGTGAG	CTATGGGCAA	AGCCTGTCCT	900
	TTGACTACCG						960
	GTGCTGGTCT						1020 1080
5	TCACCAAGAC TGAGTTACTT						1140
,	CATATCCACA	ATACAGTACT	GGGTACATTG	ACAATGTGAC	CCTGATTTCA	GCCCGCCCTG	1200
	TCTCTGGAGC	CCCAGCACCC	TGGGTTGAAC	AGTGTATATG	TCCTGTTGGG	TACAAGGGGC	1260
	AATTCTGCCA	GGATTGTGCT	TCTGGCTACA	AGAGAGATTC	AGCGAGACTG	GGGCCTTTTG	1320
1.0	GCACCTGTAT	TCCTTGTAAC	TGTCAAGGGG	GAGGGGCCTG	TGATCCAGAC	ACAGGAGATT	1380
10	GTTATTCAGG	GGATGAGAAT	CCTGACATTG	AGTGTGCTGA	CTGCCCAATT	GGTTTCTACA	1440
	ACGATCCGCA	CGACCCCCGC	AGCTGCAAGC	CATGTCCCTG	TCATAACGGG	TTCAGCTGCT	1500 1560
	CAGTGATGCC	GGAGACGGAG	GAGGTGGTGT	GCAATAACTG	CTTTCCCGGG	CATCCCCCAC	1620
	TCAGCCCTTG	TCAGCCCTGT	GATGGCTACT CAATGCAACA	A CA ATGTGGA	CCCCAGTGCC	TCTGGGAATT	1680
15	GTGACCGGCT	GACAGGCAGG	TGTTTGAAGT	GTATCCACAA	CACAGCCGGC	ATCTACTGCG	1740
10	ACCAGTGCAA	AGCAGGCTAC	TTCGGGGACC	CATTGGCTCC	CAACCCAGCA	GACAAGTGTC	1800
	GAGCTTGCAA	CTGTAACCCC	ATGGGCTCAG	AGCCTGTAGG	ATGTCGAAGT	GATGGCACCT	1860
	GTGTTTGCAA	GCCAGGATTT	GGTGGCCCCA	ACTGTGAGCA	TGGAGCATTC	AGCTGTCCAG	1920
20	CTTGCTATAA	TCAAGTGAAG	ATTCAGATGG	ATCAGTTTAT	GCAGCAGCTT	CAGAGAATGG	1980
20	AGGCCCTGAT	TTCAAAGGCT	CAGGGTGGTG	ATGGAGTAGT	ACCTGATACA	GAGCTGGAAG	2040
	GCAGGATGCA	GCAGGCTGAG	CAGGCCCTTC	AGGACATTCT	GAGAGATGCC	CAGATTTCAG	2100
	AAGGTGCTAG	CAGATCCCTT	GGTCTCCAGT	TGGCCAAGGT	AGTTCGGGCT	CTCCCAACTC	2160 2220
	ACCAGAGCCG	CCCACTTCCC	CTCAAGATGA GATACTCACA	CIGIGGAAAG	TCAGATGCAG	CTGAGCCTGG	2280
25	CAGAAAGTGA	ACCTTCCTTG	GGAAACACTA	ACATTCCTGC	CTCAGACCAC	TACGTGGGGC	2340
	CAAATGGCTT	TAAAAGTCTG	GCTCAGGAGG	CCACAAGATT	AGCAGAAAGC	CACGTTGAGT	2400
	CAGCCAGTAA	CATGGAGCAA	CTGACAAGGG	AAACTGAGGA	CTATTCCAAA	CAAGCCCTCT	2460
	CACTGGTGCG	CAAGGCCCTG	CATGAAGGAG	TCGGAAGCGG	AAGCGGTAGC	CCGGACGGTG	2520
•	CTGTGGTGCA	AGGGCTTGTG	GAAAAATTGG	AGAAAACCAA	GTCCCTGGCC	CAGCAGTTGA	2580
30	CAAGGGAGGC	CACTCAAGCG	GAAATTGAAG	CAGATAGGTC	TTATCAGCAC	AGTCTCCGCC	2640
	TCCTGGATTC	AGTGTCTCGG	CTTCAGGGAG	TCAGTGATCA	GTCCTTTCAG	GTGGAAGAAG	2700
	CAAAGAGGAT	CAAACAAAAA	GCGGATTCAC	TCTCAACGCT	GGTAACCAGG	CATATGGATG	2760
	AGTTCAAGCG	TACACAAAAG	AATCTGGGAA	ACTGGAAAGA	AGAAGCACAG	AAUCTUTTAC	2820 2880
35	AGAATGGAAA	AAGTGGGAGA	GAGAAATCAG CTGAGTATGG	CCAATCCCAC	TICCCGIGCC	GTTGAGAGCA	2940
33	TCCTTT A A A A	CCTCAGAGGCA	TTTGACCTGC	AGGTGGACAA	CAGAAAAGCA	GAAGCTGAAG	3000
	AAGCCATGAA	GAGACTCTCC	TACATCAGCC	AGAAGGTTTC	AGATGCCAGT	GACAAGACCC	3060
	AGCAAGCAGA	AAGAGCCCTG	GGGAGCGCTG	CTGCTGATGC	ACAGAGGGCA	AAGAATGGGG	3120
	CCGGGGAGGC	CCTGGAAATC	TCCAGTGAGA	TTGAACAGGA	GATTGGGAGT	CTGAACTTGG	3180
40	AAGCCAATGT	GACAGCAGAT	GGAGCCTTGG	CCATGGAAAA	GGGACTGGCC	TCTCTGAAGA	3240
	GTGAGATGAG	GGAAGTGGAA	GGAGAGCTGG	AAAGGAAGGA	GCTGGAGTTT	GACACGAATA	3300
	TGGATGCAGT	ACAGATGGTG	ATTACAGAAG	CCCAGAAGGT	TGATACCAGA	GCCAAGAACG	3360
			ACACTCAACA				3420
15	AGCCTCTCAG	TGTAGATGAA	GAGGGGCTGG	TCTTACTGGA	GCAGAAGCTT	ACCCCACCCC	3480 3540
45	AGACCCAGAT	CAACAGCCAA	CTGCGGCCCA	TGATGTCAGA	TCCCA TTCTC	AGGGCACGIC	3600
			TTGCTGGAGA GACAACCTGC				3660
	AGAACTIGGA	AACCTGCCAT	AAATATTTCT	CAACTGAGGT	TCTTGGGATA	CAGATCTCAG	3720
	GCCTCGGGAG	CCATGTCATG	TGAGTGGGTG	GGATGGGGAC	ATTTGAACAT	GTTTAATGGG	3780
50	TATGCTCAGG	TCAACTGACC	TGACCCCATT	CCTGATCCCA	TGGCCAGGTG	GTTGTCTTAT	3840
•	TGCACCATAC	TCCTTGCTTC	CTGATGCTGG	GCAATGAGGC	AGATAGCACT	GGGTGTGAGA	3900
	ATGATCAAGG	ATCTGGACCC	CAAAGAATAG	ACTGGATGGA	AAGACAAACT	GCACAGGCAG	3960
	ATGTTTGCCT	CATAATAGTC	GTAAGTGGAG	TCCTGGAATT	TGGACAAGTG	CTGTTGGGAT	4020
	ATAGTCAACT	TATTCTTTGA	GTAATGTGAC	TAAAGGAAAA	AACTTTGACT	TTGCCCAGGC	4080
55	ATGAAATTCT	TCCTAATGTC	AGAACAGAGT	GCAACCCAGT	CACACTGTGG	CCAGTAAAAT	4140
	ACTATTGCCT	CATATTGTCC	TCTGCAAGCT	TCTTGCTGAT	CAGAGTTCCT	CCTACTTACA	4200 4260
	ACCCAGGGTG	TGAACATGTT	CTCCATTTTC	AAGCTGGAAG	AAGTGAGCAG	CCACCTTCAA	4320
	AGGACCTGTA	AGGCAGGCCC	ATTCAGAGCT ATCCTTTCTT	TTANTCATCC	CIGGIGCCIG	TAGAGATTGC	4380
60	ATTOTOGACO	AAGCATTTCC	TACCAGCAAA	GCAAATGTTG	GGAAAGTATT	TACTTTTTCG	4440
00	GTTTCADAGT	CATAGAAAAG	TGTGGCTTGG	GCATTGAAAG	AGGTAAAATT	CTCTAGATTT	4500
	ATTAGTCCTA	ATTCAATCCT	ACTTTTCGAA	CACCAAAAAT	GATGCGCATC	AATGTATTTT	4560
	ATCTTATTTT	CTCAATCTCC	TCTCTCTTTC	CTCCACCCAT	AATAAGAGAA	TGTTCCTACT	4620
	CACACTTCAG	CTGGGTCACA	TCCATCCCTC	CATTCATCCT	TCCATCCATC	TTTCCATCCA	4680
65	TTACCTCCAT	CCATCCTTCC	AACATATATT	TATTGAGTAC	CTACTGTGTG	CCAGGGGCTG	4740
	GTGGGACAGT	GGTGACATAG	TCTCTGCCCT	CATAGAGTTG	ATTGTCTAGT	GAGGAAGACA	4800
	AGCATTTTTA	AAAAATAAAT	TTAAACTTAC	AAACTTTGTT	TGTCACAAGT	GGTGTTTATT	4860
	GCAATAACCG	CTTGGTTTGC	AACCTCTTTG	CTCAACAGAA	CATATGTTGC	AAGACCCTCC	4920 4980
70	CATGGGGGCA	CTTGAGTTTT	GGCAAGGCTG	ACAGAGCTCT	AACACACTCT	CATTTCTTTG TGAGTTATGA	5040
70	CATTCCAGCT	GTCACTCTGT	GCCTTTCTAC	GAGGCACTTC	CACCTTGGCT	GGGAAGACTA	
	TEGTECTECE	TTGCTTCTGT	ATTTCCTTCC	ATTTTCCTGA	AAGTGTTTTT	AAATAAAGAA	5160
	CAATTGTTAG		ATTICCTIO			,	
	Carriditho	111000					
75	Sea ID NO:	591 Prote	in sequence				
		cession #: 1					
					4.7	51	
	1	11	21	31	41	51	
80	 		 	MOROBOGIES	 DET.UDOMONO	EDCI.NICKIDNIT	60
00	MPALWLGCCL	CFSLLLPAAR	ATSRREVCDC CLPCNCNSKG	NGV2KACTED	PUCCKDURMO VETIKA LANG	ARCDROLDER I	120
	DGTHCEKCKN	GEIKHKERDR	CDPACTACRO	PUDGECTIONS	MAGEBCUBCD VCGCVEGA1G	SGYYNLDGGN	180
	DECOROGEON	DAKPHDSYCD	CDENGINGEC	PHODADGMKT	VORNGSPAKI.	QWSQRHQDVF	240
	SSAORIDDIV	FVAPAKFICN	OOVSYGOSIA	FDYRVDRGGR	HPSAHDVILE	GAGLRITAPL	300
85	MPLGKTLPCG	LTKTYTFRLN	EHPSNNWSPQ	LSYFEYRRLL	RNLTALRIRA	TYGEYSTGYI	360
	DNVTLISARP	VSGAPAPWVE	QCICPVGYKG	QFCQDCASGY	KRDSARLGPF	GTCIPCNCQG	420
	GGACDEDTGD	CYSGDENPDI	ECADCPIGFY	NDPHDPRSCK	PCPCHNGFSC	SVMPETEEVV	480
	GOLICALDICA						

```
CNNCPPGVTG ARCELCADGY FGDPFGEHGP VRPCQPCQCN NNVDPSASGN CDRLTGRCLK
                                                                            540
       CIHNTAGIYC DQCKAGYFGD PLAPNPADKC RACNCNPMGS EPVGCRSDGT CVCKPGFGGP
                                                                            600
       NCEHGAFSCP ACYNQVKIQM DQFMQQLQRM EALISKAQGG DGVVPDTELE GRMQQAEQAL
                                                                            660
       QDILRDAQIS EGASRSLGLQ LAKVRSQENS YQSRLDDLKM TVERVRALGS QYQNRVRDTH
                                                                            720
 5
       RLITOMOLSL AESEASLGNT NIPASDHYVG PNGFKSLAQE ATRLAESHVE SASNMEQLTR
                                                                            780
       ETEDYSKOAL SLVRKALHEG VGSGSGSPDG AVVOGLVEKL EKTKSLAQQL TREATQAEIE
                                                                            840
       ADRSYQHSLR LLDSVSRLQG VSDQSFQVEE AKRIKQKADS LSTLVTRHMD EFKRTQKNLG
       NWKEEAQQLL QNGKSGREKS DQLLSRANLA KSRAQEALSM GNATFYEVES ILKNLREFDL
                                                                            960
       QVDNRKAEAE EAMKRLSYIS QKVSDASDKT QQAERALGSA AADAQRAKNG AGEALEISSE
                                                                          1020
10
       IEQEIGSLNL EANVTADGAL AMEKGLASLK SEMREVEGEL ERKELEFDTN MDAVQMVITE
                                                                          1080
       AQKVDTRAKN AGVTIQDTLN TLDGLLHLMD QPLSVDEEGL VLLEQKLSRA KTQINSQLRP
                                                                           1140
       MMSELEERAR OORGHLHLLE TSIDGILADV KNLENIRDNL PPGCYNTQAL EQQ
       Seq ID NO: 592 DNA sequence
15
      Nucleic Acid Accession #: AF101051.1
       Coding sequence: 221.856
                                                   41
                                                               51
                                        31
20
       GAGCAACCTC AGCTTCTAGT ATCCAGACTC CAGCGCCGCC CCGGGCGCGG ACCCCAACCC
                                                                             60
       CGACCCAGAG CTTCTCCAGC GGCGGCGCAG CGAGCAGGGC TCCCCGCCTT AACTTCCTCC
                                                                            120
       GCGGGGCCCA GCCACCTTCG GGAGTCCGGG TTGCCCACCT GCAAACTCTC CGCCTTCTGC
                                                                            180
       ACCTGCCACC CCTGAGCCAG CGCGGGCGCC CGAGCGAGTC ATGGCCAACG CGGGGCTGCA
                                                                            240
       GCTGTTGGGC TTCATTCTCG CCTTCCTGGG ATGGATCGGC GCCATCGTCA GCACTGCCCT
25
       GCCCCAGTGG AGGATTTACT CCTATGCCGG CGACAACATC GTGACCGCCC AGGCCATGTA
                                                                            360
       CGAGGGGCTG TGGATGTCCT GCGTGTCGCA GAGCACCGGG CAGATCCAGT GCAAAGTCTT
                                                                            420
       TGACTCCTTG CTGAATCTGA GCAGCACATT GCAAGCAACC CGTGCCTTGA TGGTGGTTGG
                                                                            480
       CATCCTCCTG GGAGTGATAG CAATCTTTGT GGCCACCGTT GGCATGAAGT GTATGAAGTG
                                                                            540
       CTTGGAAGAC GATGAGGTGC AGAAGATGAG GATGGCTGTC ATTGGGGGTG CGATATTTCT
                                                                            600
30
       TCTTGCAGGT CTGGCTATTT TAGTTGCCAC AGCATGGTAT GGCAATAGAA TCGTTCAAGA
                                                                            660
       ATTCTATGAC CCTATGACCC CAGTCAATGC CAGGTACGAA TTTGGTCAGG CTCTCTTCAC
                                                                            720
       TGGCTGGGCT GCTGCTTCTC TCTGCCTTCT GGGAGGTGCC CTACTTTGCT GTTCCTGTCC
                                                                            780
       CCGAAAAACA ACCTCTTACC CAACACCAAG GCCCTATCCA AAACCTGCAC CTTCCAGCGG
                                                                            840
       GAAAGACTAC GTGTGACACA GAGGCAAAAG GAGAAAATCA TGTTGAAACA AACCGAAAAT
                                                                            900
35
       GGACATTGAG ATACTATCAT TAACATTAGG ACCTTAGAAT TTTGGGTATT GTAATCTGAA
                                                                            960
       GTATGGTATT ACAAAACAAA CAAACAAACA AAAAACCCAT GTGTTAAAAT ACTCAGTGCT
                                                                           1020
       AAACATGGCT TAATCTTATT TTATCTTCTT TCCTCAATAT AGGAGGGAAG ATTTTACCAT
                                                                           1080
       TTGTATTACT GCTTCCCATT GAGTAATCAT ACTCAAATGG GGGAAGGGGT GCTCCTTAAA
                                                                          1140
       TATATATAGA TATGTATATA TACATGTTTT TCTATTAAAA ATAGACAGTA AAATACTATT
                                                                          1200
40
       CTCATTATGT TGATACTAGC ATACTTAAAA TATCTCTAAA ATAGGTAAAT GTATTTAATT
                                                                          1260
       CCATATTGAT GAAGATGTTT ATTGGTATAT TTTCTTTTTC GTCCTTATAT ACATATGTAA
                                                                           1320
       CAGTCAAATA TCATTTACTC TTCTTCATTA GCTTTGGGTG CCTTTGCCAC AAGACCTAGC
                                                                           1380
       CTAATTTACC AAGGATGAAT TCTTTCAATT CTTCATGCGT GCCCTTTTCA TATACTTATT
       TTATTTTTTA CCATAATCTT ATAGCACTTG CATCGTTATT AAGCCCTTAT TTGTTTTGTG
                                                                          1500
45
       TTTCATTGGT CTCTATCTCC TGAATCTAAC ACATTTCATA GCCTACATTT TAGTTTCTAA
                                                                          1560
       AGCCAAGAAG AATTTATTAC AAATCAGAAC TTTGGAGGCA AATCTTTCTG CATGACCAAA
                                                                          1620
       GTGATAAATT CCTGTTGACC TTCCCACACA ATCCCTGTAC TCTGACCCAT AGCACTCTTG
                                                                          1680
       TTTGCTTTGA AAATATTTGT CCAATTGAGT AGCTGCATGC TGTTCCCCCA GGTGTTGTAA
                                                                           1740
       CACAACTITA TIGATIGAAT TITTAAGCTA CITATICATA GITTIATATC CCCCTAAACT
                                                                           1800
50
       ACCTTTTTGT TCCCCATTCC TTAATTGTAT TGTTTTCCCA AGTGTAATTA TCATGCGTTT
                                                                          1860
       TATATCTTCC TAATAAGGTG TGGTCTGTTT GTCTGAACAA AGTGCTAGAC TTTCTGGAGT
                                                                          1920
       GATAATCTGG TGACAAATAT TCTCTCTGTA GCTGTAAGCA AGTCACTTAA TCTTTCTACC
                                                                          1980
       TCTTTTTCT ATCTGCCAAA TTGAGATAAT GATACTTAAC CAGTTAGAAG AGGTAGTGTG
                                                                           2040
       AATATTAATT AGTTTATATT ACTCTCATTC TTTGAACATG AACTATGCCT ATGTAGTGTC
                                                                           2100
55
       TTTATTTGCT CAGCTGGCTG AGACACTGAA GAAGTCACTG AACAAAACCT ACACACGTAC
                                                                          2160
       CTTCATGTGA TTCACTGCCT TCCTCTCTC ACCAGTCTAT TTCCACTGAA CAAAACCTAC
                                                                          2220
       ACACATACCT TCATGTGGTT CAGTGCCTTC CTCTCTCTAC CAGTCTATTT CCACTGAACA
                                                                          2280
       AAACCTACGC ACATACCTTC ATGTGGCTCA GTGCCTTCCT CTCTCTACCA GTCTATTTCC
                                                                           2340
       ATTCTTTCAG CTGTGTCTGA CATGTTTGTG CTCTGTTCCA TTTTAACAAC TGCTCTTACT
                                                                           2400
60
       TTTCCAGTCT GTACAGAATG CTATTTCACT TGAGCAAGAT GATGTATGGA AAGGGTGTTG
                                                                           2460
       GCACTGGTGT CTGGAGACCT GGATTTGAGT CTTGGTGCTA TCAATCACCG TCTGTGTTTG
                                                                           2520
       AGCAAGGCAT TTGGCTGCTG TAAGCTTATT GCTTCATCTG TAAGCGGTGG TTTGTAATTC
                                                                          2580
       CTGATCTTCC CACCTCACAG TGATGTTGTG GGGATCCAGT GAGATAGAAT ACATGTAAGT
                                                                           2640
       GTGGTTTTGT AATTTGAAAA GTGCTATACT AAGGGAAAGA ATTGAGGAAT TAACTGCATA
                                                                           2700
65
       CGTTTTGGTG TTGCTTTCA AATGTTTGAA AATAAAAAA TGTTAAGAAA TGGGTTTCTT
                                                                           2760
       GCCTTAACCA GTCTCTCAAG TGATGAGACA GTGAAGTAAA ATTGAGTGCA CTAAACGAAT
                                                                           2820
       AAGATTCTGA GGAAGTCTTA TCTTCTGCAG TGAGTATGGC CCAATGCTTT CTGTGGCTAA
                                                                           2880
       ACAGATGTAA TGGGAAGAAA TAAAAGCCTA CGTGTTGGTA AATCCAACAG CAAGGGAGAT
                                                                          2940
       TTTTGAATCA TAATAACTCA TAAGGTGCTA TCTGTTCAGT GATGCCCTCA GAGCTCTTGC
                                                                          3000
70
       TGTTAGCTGG CAGCTGACGC TGCTAGGATA GTTAGTTTGG AAATGGTACT TCATAATAAA
                                                                          3060
       CTACACAAGG AAAGTCAGCC ACCGTGTCTT ATGAGGAATT-GGACCTAATA AATTTTAGTG
                                                                           3120
       TGCCTTCCAA ACCTGAGAAT ATATGCTTTT GGAAGTTAAA ATTTAAATGG CTTTTGCCAC
                                                                           3180
       ATACATAGAT CTTCATGATG TGTGAGTGTA ATTCCATGTG GATATCAGTT ACCAAACATT
                                                                           3240
       ACAAAAAAT TTTATGGCCC AAAATGACCA ACGAAATTGT TACAATAGAA TTTATCCAAT
                                                                           3300
75
       TTTGATCTTT TTATATTCTT CTACCACACC TGGAAACAGA CCAATAGACA TTTTGGGGTT
                                                                           3360
       TTATAATGGG AATTTGTATA AAGCATTACT CTTTTTCAAT AAATTGTTTT TTAATTTAAA
                                                                          3420
       AAAAGGAAAA AAAAAAAAAA AAA
       Seq ID NO: 593 Protein sequence
80
       Protein Accession #: AAD16433.1
                  11
                             21
                                        31
                                                   41
                                                               51
       MANAGLQLLG FILAFLGWIG AIVSTALPQW RIYSYAGDNI VTAQAMYEGL WMSCVSQSTG
85
       QIQCKVFDSL LNLSSTLQAT RALMVVGILL GVIAIFVATV GMKCMKCLED DEVQKMRMAV
                                                                            120
       IGGAIFLLAG LAILVATAWY GNRIVQEFYD PMTPVNARYE FGQALFTGWA AASLCLLGGA
                                                                            180
       LLCCSCPRKT TSYPTPRPYP KPARSGKDY V
```

Seq ID NO: 594 DNA sequence Nucleic Acid Accession #: NM_006180.1 Coding sequence: 352..2820

		ience: 352		100.1			
5	couring bode						
	1	11	21	31	41	51	
	1	1		1	1		
	CCCCCATTCG	CATCTAACAA	GGAATCTGCG	CCCCAGAGAG	TCCCGGACGC	CGCCGGTCGG	60
10		GCCGGGCCAT					120
10		AGCGGTTCGC					180
		CGGACCAGCT					240
		TAAGAGAGCC					300
		AGCGCGGGGA					360
15		GGCATGGACC					420
15		GGGCCGCTTT					480 540
		ACCCTTCTCC					600
•		ACATCACCGA TTGAAGCTTA					660
		CTCATAAAGC					720
20		TGACGAGTTT					780
20		GCAATCCATT					840
	CACCCTAAAT	CCAGTCCAGA	CACTCAGGAT	TTGTACTGCC	TGAATGAAAG	CAGCAAGAAT	900
	ATTCCCCTGG	CAAACCTGCA	GATACCCAAT	TGTGGTTTGC	CATCTGCAAA	TCTGGCCGCA	960
	CCTAACCTCA	CTGTGGAGGA	AGGAAAGTCT	ATCACATTAT	CCTGTAGTGT	GGCAGGTGAT	1020
25	CCGGTTCCTA	ATATGTATTG	GGATGTTGGT	AACCTGGTTT	CCAAACATAT	GAATGAAACA	1080
	AGCCACACAC	AGGGCTCCTT	AAGGATAACT	AACATTTCAT	CCGATGACAG	TGGGAAGCAG	1140
	ATCTCTTGTG	TGGCGGAAAA	TCTTGTAGGA	GAAGATCAAG	ATTCTGTCAA	CCTCACTGTG	1200
	CATTTTGCAC	CAACTATCAC	ATTTCTCGAA	TCTCCAACCT	CAGACCACCA	CTGGTGCATT	1260
20		TGAAAGGCAA					1320
30		CCAAATACAT					1380
	GGCTGCCTCC	AGCTGGATAA	TCCCACTCAC	ATGAACAATG	GGGACTACAC	TCTAATAGCC	1440
	AAGAATGAGT	ATGGGAAGGA	TGAGAAACAG	ATTTCTGCTC	ACTTCATGGG	CTGGCCTGGA	1500
	ATTGACGATG	${\tt GTGCAAACCC}$	AAATTATCCT	GATGTAATTT	ATGAAGATTA	TGGAACTGCA	1560
25	GCGAATGACA	TCGGGGACAC	CACGAACAGA	AGTAATGAAA	TCCCTTCCAC	AGACGTCACT	1620
35		GTCGGGAACA TTTTGGTAAT					1680 1740
		CAGCCTCCGT					1800
		GGAGTAACAC					1860
		AGATCCCTGT					1920
40		ACACATTTGT					1980
	CTAGGCGAAG	GAGCCTTTGG	AAAAGTGTTC	CTAGCTGAAT	GCTATAACCT	CTGTCCTGAG	2040
		TCTTGGTGGC					2100
		GTGAGGCCGA					2160
		GCGTGGAGGG					2220
45		AGTTCCTCAG					2280
	CCGCCCACGG	AACTGACGCA	GTCGCAGATG	CTGCATATAG	CCCAGCAGAT	CGCCGCGGGC	2340
		TGGCGTCCCA					2400
		ACTTGCTGGT					2460
50		ACAGGGTCGG					2520
50		ACAGGAAATT					2580
		TCACCTATGG					2640
	GAGTGTATCA	CTCAGGGCCG	AGTCCTGCAG	CGACCCCGCA	CGTGCCCCCA	GGAGGTGTAT	2700 2760
	GAGCTGATGC	TGGGGTGCTG TTCAGAACTT	GCAGCGAGAG	TOTOCOCOTOT	A COTTOO A CAT	TCTAGGGCAIC	2820
55	CATACCCTCC	CCCAGACCGA	TCCTTCCCA A	COTACTCCTC	ACCIGGACAI	ACACCATCAA	2880
55	CATCETTAN	CTGCCGCTGG	AGGCCACCAA	GCTGCTCTCC	TTCACTCTCA	CAGTATTAAC	2940
		CCGAGAAGCT					3000
	GTATTGACTT	CTTTTTGGCA	TTATCTCTTT	CTCTCTTTCC	ATCTCCCTTG	GTTGTTCCTT	3060
	TTTCTTTTT	TAAATTTTCT	TTTTCTTCTT	TTTTTTCGTC	TTCCCTGCTT	CACGATTCTT	3120
60		TTGAATCAAT					3180
	CTTAACAAAC	GTAATTTGTT	ATATCAGCAG	ACACTCCAGT	TTGCCCACCA	CAACTAACAA	3240
	TGCCTTGTTG	TATTCCTGCC	TTTGATGTGG	ATGAAAAAA	GGGAAAACAA	ATATTTCACT	3300
	TAAACTTTGT	CACTTCTGCT	GTACAGATAT	CGAGAGTTTC	TATGGATTCA	CTTCTATTTA	3360
<i>-</i> -	TTTATTATTA	TTACTGTTCT	TATTGTTTTT	GGATGGCTTA	AGCCTGTGTA	TAAAAAAGAA	3420
65	AACTTGTGTT	CAATCTGTGA	AGCCTTTATC	TATGGGAGAT	TAAAACCAGA	GAGAAAGAAG	3480
	ATTTATTATG	AACCGCAATA	TGGGAGGAAC	AAAGACAACC	ACTGGGATCA	GCTGGTGTCA	3540
						GGCACCTTCC	
						ATGATTCTTT	3660
70	TCCCATCACC	AGAAATGATA	GCGTGCAGTA	GAGAGCAAAG	ATGGCTT		
70	Sec ID NO.	595 Prote:	in sequence				
		cession #: 1					
75	1	11	21	31	41	51. 1	
13	1	NAME OF COLUMN		A CDECCACOA	CDIMCCDDCD	CTWAPDDI.PD	60
		AMARLWGFCW IFIANQKRLE					120
	MEADWALLE	SRKHFRHLDL	ZELTINGNOE TIMEDOVENI	TCSCDIMWIY	TLOEAKSSPD	TODLYCINES	180
	WEIGHVEID!	IPNCGLPSAN	TANDMITARE	GKSITLSCSV	AGDPVPNMYW	DVGNLVSKHM	240
80		RITNISSDDS					300
-5	MCIDELAKON	PKPALQWFYN	GAILNESKYT	CTKIHVTNHT	EYHGCLOLDN	PTHMNNGDYT	360
	LIAKNEYGKD	EKQISAHFMG	WPGIDDGANP	NYPDVIYEDY	GTAANDIGDT	TNRSNEIPST	420
	DVTDKTGREH	LSVYAVVVIA	SVVGFCLLVM	LFLLKLARHS	KFGMKGPASV	ISNDDDSASP	480
	LHHISNGSNT	PSSSEGGPDA	VIIGMTKIPV	IENPQYFGIT	NSQLKPDTFV	QHIKRHNIVL	540
85	KRELGEGAFG	KVFLAECYNL	CPEQDKILVA	VKTLKDASDN	ARKOFHREAE	LLTNLQHEHI	600
	VKFYGVCVEG	DPLIMVFEYM	KHGDLNKFLR	AHGPDAVLMA	EGNPPTELTQ	SQMLHIAQQI	660
	AAGMVYLASQ	HFVHRDLATR	NCLVGENLLV	KIGDFGMSRD	VYSTDYYRVG	GHTMLPIRWM	720

PPESIMYRKF TTESDVWSLG VVLWEIFTYG KQPWYQLSNN EVIECITQGR VLQRPRTCPQ 780 EVYELMLGCW QREPHMRKNI KGIHTLLQNL AKASPVYLDI LG

Seq ID NO: 596 DNA sequence
Nucleic Acid Accession #: AF410899
Coding sequence: 483..2999

	1	11	21	31	41	51 1	
10	 GGGAGGAGGA	GCCTCGCTGG	 CTGCTTCGCT	CGCGCTCTAC	GCGCTCAGTC	I CCCGGCGGTA	60
10		GGACCCAGGC					120
		ACCCCCATTC					180
		GTGCCCGGCG					240
		CCCCCTGTA					300
15		ACTCTTCGCT					360
		CACCGAGGAG					420
		GCGGCCGGTG					480
		CTGGATAAGG					540
20		GGGCTTCTGG					600
20		CTGGTGCAGC					660
		AGATCCTGAG					720
		CGAAGATGAT					780 840
		AAAATTTGTG CCGAAACAAA					900
25		GATCCTGGTG					960
20		AGAGGCTAAA					1020
		TATTCCCCTG					1080
		ACCTAACCTC					1140
		TCCGGTTCCT					1200
30		AAGCCACACA					1260
		GATCTCTTGT					1320
		GCATTTTGCA					1380
		TCCATTCACT					1440
25		ATTGAATGAG					1500
35		CGGCTGCCTC					1560
		CAAGAATGAG					1620 1680
		AATTGACGAT AGCGAATGAC					1740
		TGATAAAACC					1800
40		GGGATTTTGC					1860
	CCAAGTTTGG	CATGAAAGAT	TTCTCATGGT	TTGGATTTGG	GAAAGTAAAA	TCAAGACAAG	1920
	GTGTTGGCCC	AGCCTCCGTT	ATCAGCAATG	ATGATGACTC	TGCCAGCCCA	CTCCATCACA	1980
	TCTCCAATGG	GAGTAACACT	CCATCTTCTT	CGGAAGGTGG	CCCAGATGCT	GTCATTATTG	2040
. ~		GATCCCTGTC					2100
45		CACATTTGTT					2160
		AGCCTTTGGA					2220
		CTTGGTGGCA					2280
		TGAGGCCGAG					2340 2400
50		CGTGGAGGGC GTTCCTCAGG					2460
30		ACTGACGCAG					2520
		GGCGTCCCAG					2580
		CTTGCTGGTG					2640
		CAGGGTCGGT					2700
55		CAGGAAATTC					2760
	GGGAGATTTT	CACCTATGGC	AAACAGCCCT	GGTACCAGCT	GTCAAACAAT	GAGGTGATAG	2820
	AGTGTATCAC	TCAGGGCCGA	GTCCTGCAGC	GACCCCGCAC	GTGCCCCCAG	GAGGTGTATG	2880
		GGGGTGCTGG					2940
60		TCAGAACTTG					3000
60		CCAGACCGAT					3060
		TGCCGCTGGA					3120 3180
		CGAGAAGCTC TTTTTGGCAT					3240
		AAATTTTCTT					3300
65		TGAATCAATC					3360
00		TAATTTGTTA					3420
		ATTCCTGCCT					3480
	AAACTTTGTC	ACTTCTGCTG	TACAGATATC	GAGAGTTTCT	ATGGATTCAC	TTCTATTTAT	3540
=-		TACTGTTCTT					3600
70	ACTTGTGTTC	AATCTGTGAA	GCCTTTATCT	ATGGGAGATT	AAAACCAGAG	AGAAAGAAGA	3660
		ACCGCAATAT					3720
		GGAAATACTC					3780
		TTCTGAGGAG					3840
75	CCCATCACCA	GAAATGATAG	CGTGCAGTAG	AGAGCAAAGA	CUTCUTCATCA	TAGGACACAAG	3900 3960
13	MTCTTTCA	GTGTGCTCGG AGCGCTATCC	ACACAGIIII	TOTONACTTO	ACTTCANAG	ACCTCCATTC	4020
		CTCATTTCGG			AOI 1 GAMMO	A00100M110	1020
	ATOTCCHORO	CICATITCOO	0010100100	0			
	Seg ID NO:	597 Prote	in sequence				
80		cession #: /					
	1	11	21	31	41	51	
	1	1]	1			
85	MSSWIRWHGP	AMARLWGFCW	LVVGFWRAAF	ACPTSCKCSA	PKTMCSDBSB	GIANLERPER	60 120
05	NEVERTIE	IFIANQKRLE SRKHFRHLDL	TIMEDDAEVA	AGTEMPLT AD	TLOEDKESDD	TODIACINES	180
	METKWATTED	IPNCGLPSAN	PEDITIONEL SEDITORS	GKSITLSCSV	AGDPVPNMYW	DVGNLVSKHM	240
	TIME THE TIME						

```
NETSHTQGSL RITNISSDDS GKQISCVAEN LVGEDQDSVN LTVHFAPTIT FLESPTSDHH
                                                                             300
       WCIPFTVKGN PKPALQWFYN GAILNESKYI CTKIHVTNHT EYHGCLQLDN PTHMNNGDYT
                                                                             360
       LIAKNEYGKD EKQISAHFMG WPGIDDGANP NYPDVIYEDY GTAANDIGDT TNRSNEIPST
                                                                             420
       DVTDKTGREH LSVYAVVVIA SVVGFCLLVM LFLLKLARHS KFGMKDFSWF GFGKVKSRQG
                                                                             480
 5
       VGPASVISND DDSASPLHHI SNGSNTPSSS EGGPDAVIIG MTKIPVIENP QYFGITNSQL
                                                                             540
       KPDTFVOHIK RHNIVLKREL GEGAFGKVFL AECYNLCPEQ DKILVAVKTL KDASDNARKD
                                                                             600
       FHREAELLTN LOHEHIVKFY GVCVEGDPLI MVFEYMKHGD LNKFLRAHGP DAVLMAEGNP
       PTELTOSOML HIAQQIAAGM VYLASQHFVH RDLATRNCLV GENLLVKIGD FGMSRDVYST
                                                                             720
       DYYRVGGHTM LPIRWMPPES IMYRKFTTES DVWSLGVVLW EIFTYGKQPW YQLSNNEVIE
                                                                             780
10
       CITQGRVLQR PRTCPQEVYE LMLGCWQREP HMRKNIKGIH TLLQNLAKAS PVYLDILG
       Sec ID NO: 598 DNA sequence
       Nucleic Acid Accession #: AB052906
       Coding sequence: 74..814
15
                                                     41
                                                                51
                                         31
       AAAACCTTGA GGTGATTCAT CTTCCAGGCT CTCCTTCCAT CAAGTCTCTC CTCCCTAGCG
       CTCTGGGTCC TTAATGGCAG CAGCCGCCGC TACCAAGATC CTTCTGTGCC TCCCGCTTCT
20
       GCTCCTGCTG TCCGGCTGGT CCCGGGCTGG GCGAGCCGAC CCTCACTCTC TTTGCTATGA
                                                                             180
       CATCACCGTC ATCCCTAAGT TCAGACCTGG ACCACGGTGG TGTGCGGTTC AAGGCCAGGT
                                                                             240
       GGATGAAAAG ACTTTTCTTC ACTATGACTG TGGCAACAAG ACAGTCACAC CTGTCAGTCC
                                                                             300
       CCTGGGGAAG AAACTAAATG TCACAACGGC CTGGAAAGCA CAGAACCCAG TACTGAGAGA
                                                                             360
       GGTGGTGGAC ATACTTACAG AGCAACTGCG TGACATTCAG CTGGAGAATT ACACACCCAA
25
       GGAACCCCTC ACCCTGCAGG CCAGGATGTC TTGTGAGCAG AAAGCTGAAG GACACAGCAG
                                                                             480
       TGGATCTTGG CAGTTCAGTT TCGATGGGCA GATCTTCCTC CTCTTTGACT CAGAGAAGAG
                                                                             540
       AATGTGGACA ACGGTTCATC CTGGAGCCAG AAAGATGAAA GAAAAGTGGG AGAATGACAA
                                                                             600
       GGTTGTGGCC ATGTCCTTCC ATTACTTCTC AATGGGAGAC TGTATAGGAT GGCTTGAGGA
                                                                             660
       CTTCTTGATG GGCATGGACA GCACCCTGGA GCCAAGTGCA GGAGCACCAC TCGCCATGTC CTCAGGCACA ACCCAACTCA GGGCCACAGC CACCACCCTC ATCCTTTGCT GCCTCCTCAT
                                                                             720
30
       CATCCTCCCC TGCTTCATCC TCCCTGGCAT CTGAGGAGAG TCCTTTAGAG TGACAGGTTA
       AAGCTGATAC CAAAAGGCTC CTGTGAGCAC GGTCTTGATC AAACTCGCCC TTCTGTCTGG
                                                                             900
       CCAGCTGCCC ACGACCTACG GTGTATGTCC AGTGGCCTCC AGCAGATCAT GATGACATCA
                                                                             960
       TGGACCCAAT AGCTCATTCA CTGCCTTGAT TCCTTTTGCC AACAATTTTA CCAGCAGTTA
                                                                            1020
       TACCTAACAT ATTATGCAAT TTTCTCTTGG TGCTACCTGA TGCAATTCCT GCACTTAAAG
TTCTGGCTGA CTAAACAAGA TATATCATTT TCTTTCTTCT CTTTTTGTTT GGAAAATCAA
35
                                                                            1080
                                                                            1140
       GTACTTCTTT GAATGATGAT CTCTTTCTTG CAAATGATAT TGTCAGTAAA ATAATCACGT
                                                                            1200
       TAGACTTCAG ACCTCTGGGG ATTCTTTCCG TGTCCTGAAA GAGAATTTTT AAATTATTTA
                                                                            1260
       ATAAGAAAA ATTTATATTA ATGATTGTTT CCTTTAGTAA TTTATTGTTC TGTACTGATA
                                                                            1320
40
       Seg ID NO: 599 Protein sequence
       Protein Accession #: BAB61048.1
45
                                                     41
                  11
                                         31
                                                                51
       MAAAAATKIL LCLPLLLLS GWSRAGRADP HSLCYDITVI PKFRPGPRWC AVQGQVDEKT
                                                                              60
       FLHYDCGNKT VTPVSPLGKK LNVTTAWKAO NPVLREVVDI LTEOLRDIQL ENYTPKEPLT
                                                                             120
       LQARMSCEQK AEGHSSGSWQ FSFDGQIFLL FDSEKRMWTT VHPGARKMKE KWENDKVVAM
50
       SFHYFSMGDC IGWLEDFLMG MDSTLEPSAG APLAMSSGTT QLRATATTLI LCCLLIILPC
                                                                             240
       Seg ID NO: 600 DNA seguence
       Nucleic Acid Accession #: NM_001898.1
55
       Coding sequence: 57..482
                                                     41
                                                                51
                                         31
       GGCTCTCACC CTCCTCTCCT GCAGCTCCAG CTTTGTGCTC TGCCTCTGAG GAGACCATGG
                                                                              60
60
       CCCAGTATCT GAGTACCCTG CTGCTCCTGC TGGCCACCCT AGCTGTGGCC CTGGCCTGGA
                                                                             120
       GCCCCAAGGA GGAGGATAGG ATAATCCCGG GTGGCATCTA TAACGCAGAC CTCAATGATG
       AGTGGGTACA GCGTGCCCTT CACTTCGCCA TCAGCGAGTA TAACAAGGCC ACCAAAGATG
                                                                             240
       ACTACTACAG ACGTCCGCTG CGGGTACTAA GAGCCAGGCA ACAGACCGTT GGGGGGGTGA
                                                                             300
       ATTACTTCTT CGACGTAGAG GTGGGCCGCA CCATATGTAC CAAGTCCCAG CCCAACTTGG
                                                                             360
65
       ACACCTGTGC CTTCCATGAA CAGCCAGAAC TGCAGAAGAA ACAGTTGTGC TCTTTCGAGA
                                                                             420
       TCTACGAAGT TCCCTGGGAG AACAGAAGGT CCCTGGTGAA ATCCAGGTGT CAAGAATCCT
                                                                             480
       AGGGATCTGT GCCAGGCCAT TCGCACCAGC CACCACCCAC TCCCACCCCC TGTAGTGCTC
       CCACCCTGG ACTGGTGGCC CCCACCCTGC GGGAGGCCTC CCCATGTGCC TGCGCCAAGA
                                                                             600
       GACAGACAGA GAAGGCTGCA GGAGTCCTTT GTTGCTCAGC AGGGCGCTCT GCCCTCCCTC
                                                                             660
70
       CTTCCTTCTT GCTTCTAATA GCCCTGGTAC ATGGTACACA CCCCCCCACC TCCTGCAATT
                                                                             720
       AAACAGTAGC ATCGCC
       Seg ID NO: 601 Protein seguence
       Protein Accession #: NP 001889.1
75
                                         37
                                                     41
                                                                51
                              21
       MAQYLSTLLL LLATLAVALA WSPKEEDRII PGGIYNADLN DEWVQRALHF AISEYNKATK
       DDYYRRPLRV LRARQOTVGG VNYFFDVEVG RTICTKSQPN LDTCAFHEQP ELQKKQLCSF
80
       EIYEVPWENR RSLVKSRCQE S
       Seq ID NO: 602 DNA sequence
       Nucleic Acid Accession #: NM_003976.2
       Coding sequence: 299.961
85
                                                                51
```

```
CTCTGAGCTT CTCTGAGCCT TGTTTGCTCA TCTGGAAAAA GGGGATTAAA CCATTTACCT
        CATGGAGTTG TGAAAGAATA GCTGCAAAGC ACCTAACACA TAGTAAGGTT CCCAGTGCAG
                                                                                     120
        CTACTTCTGC TGGGTTGAGT CTAGCTGTGT AGGCCCCTTG TTCCTCACCT GGAGAAACTG
                                                                                     180
        GGGTGGCAGG CCGGTCCCCC ACAAAAGATA ACTCATCTCT TAATTTGCAA GCTGCCTCAA
CAGGAGGGTG GGGGAACAGC TCAACAATGG CTGATGGGCG CTCCTGGTGT TGATAGAGAT
                                                                                     240
  5
                                                                                     300
        GGAACTTGGA CTTGGAGGCC TCTCCACGCT GTCCCACTGC CCCTGGCCTA GGCGGCAGCC
                                                                                     360
        TGCCCTGTGG CCCACCCTGG CCGCTCTGGC TCTGCTGAGC AGCGTCGCAG AGGCCTCCCT
        GGGCTCCGCG CCCCGCAGCC CTGCCCCCCG CGAAGGCCCC CCGCCTGTCC TGGCGTCCCC
                                                                                     480
        CGCCGGCCAC CTGCCGGGGG GACGCACGGC CCGCTGGTGC AGTGGAAGAG CCCGGCGGCC
                                                                                     540
10
        GCCGCCGCAG CCTTCTCGGC CCGCGCCCCC GCCGCCTGCA CCCCCATCTG CTCTTCCCCG
                                                                                     600
        CGGGGGCCGC GCGGCGCGG CTGGGGGCCC GGGCAGCCGC GCTCGGGCAG CGGGGGGCGCG
GGGCTGCCG CTGCGCTCGC AGCTGGTGCC GGTGCGCGCG CTCGGCCTGG GCCACCGCTC
                                                                                     660
                                                                                     720
        CGACGAGCTG GTGCGTTTCC GCTTCTGCAG CGGCTCCTGC CGCCGCGCGC GCTCTCCACA
        CGACCTCAGC CTGGCCAGCC TACTGGGCGC CGGGGCCCTG CGACCGCCCC CGGGCTCCCG
15
        GCCCGTCAGC CAGCCCTGCT GCCGACCCAC GCGCTACGAA GCGGTCTCCT TCATGGACGT
                                                                                     900
        CAACAGCACC TGGAGAACCG TGGACCGCCT CTCCGCCACC GCCTGCGGCT GCCTGGGCTG
                                                                                     960
        AGGGCTCGCT CCAGGGCTTT GCAGACTGGA CCCTTACCGG TGGCTCTTCC TGCCTGGGAC CCTCCCGCAG AGTCCCACTA GCCAGCGGCC TCAGCCAGGG ACGAAGGCCT CAAAGCTGAG
                                                                                    1020
                                                                                    1080
        AGGCCCCTAC CGGTGGGTGA TGGATATCAT CCCCGAACAG GTGAAGGGAC AACTGACTAG CAGCCCCAGA GCCCTCACCC TGCGGATCC AGCCTAAAAG ACACCAGAGA CCTCAGCTAT
                                                                                    1140
20
                                                                                    1200
        GGAGCCCTTC GGACCCACTT CTCACAGACT CTGGCACTGG CCAGGCCTCG AACCTGGGAC
                                                                                    1260
                                                                                    1320
        CCCTCCTCTG ATGAACACTA CAGTGGCTGA GGCATCAGCC CCCGCCCAGG CCCTGTAGGG
        ACAGCATTTG AAGGACACAT ATTGCAGTTG CTTGGTTGAA AGTGCCTGTG CTGGAACTGG
                                                                                    1380
        CCTGTACTCA CTCATGGGAG CTGGCCCC
25
        Seq ID NO: 603 Protein sequence
        Protein Accession #: NP_003967.1
                                                                      51
                                                          41
30
        MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS
                                                                                      60
        PAGHLPGGRT ARWCSGRARR PPPQPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA
                                                                                     120
        RGCRLRSQLV PVRALGLGHR SDELVRFRFC SGSCRRARSP HDLSLASLLG AGALRPPPGS
        RPVSQPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG
35
        Seg ID NO: 604 DNA seguence
       Nucleic Acid Accession #: NM_057091.1
Coding sequence: 783..1445
40
                                 21
                                             31
                                                          41
                                                                      51
        ACTGGCCGCT GAGAGAAGAA TCGGGTGGAG CAGAGAGCAG CTGCTGCAGG GCAGACAGCC
                                                                                      60
        GGACCCCCAA ATCTGCACGT ACCAGCAGTC AGCCGCCCCA CGCAGGGACC GGCTTACCCC
                                                                                     120
        TCGCTCCCCG CCCTCACTCA CTTTCTCCCG CCCTCGGCCC GGCCTCCCAG CTCTCTACTT
                                                                                     180
45
        CGCGTGTCTA CAAACTCAAC TCCCGGTTTC CGTGCCTCTC CACCGCTCGA GTTCTCTACT
                                                                                     240
        CTCCATATCC GAGGGGCCCC TCCCAGCATC TACCCCCCTC CCAACCTCGG GGGACCTAGC
                                                                                     300
        CAAGCTAGGG GGGACTGGAT CCGACGGGTG GAGCAGCCAG GTGAGCCCCG AAAGGTGGGG
                                                                                     360
        CGGGGCAGGG GCGCTCCCAG CCCCACCCCG GGATCTGGTG ACGCTGGGGC TGGAATTTGA
                                                                                     420
        CACCGGACGG CTGCGGCGGC GGGCAGGAGG CTGCTGAGGG ATGGAGTTGG GCCCGGCCCC
                                                                                     480
50
        CAGACAAGGC CCGGGGGCTC CGCCAGCAGC AGGTCCCTCG GGCCCCAGCC CTCGCTGCCA
        CCCGGGCCTG GAGCCCCACA CCCGAGGGTG CAGACTGGCT GCCAAGGCCA CACTTTTGGC
                                                                                     600
        TAAAAGAGGC ACTGCCAGGT GTACAGTCCT GGGCATGCGC TGTTTGAGCT TCGGGGGAGA
                                                                                     660
        GCCCAGCACT GGTCCCCGGA AAGGTGCCTA GAAGAACAAG GTGCAGGACC CCGTGCTGCC
                                                                                     720
        TCAACAGGAG GGTGGGGGAA CAGCTCAACA ATGGCTGATG GGCGCTCCTG GTGTTGATAG
                                                                                     780
55
        AGATGGAACT TGGACTTGGA GGCCTCTCCA CGCTGTCCCA CTGCCCCTGG CCTAGGCGGC
                                                                                     840
        AGCCTGCCCT GTGGCCCACC CTGGCCGCTC TGGCTCTGCT GAGCAGCGTC GCAGAGGCCT
        CCCTGGGCTC CGCGCCCGC AGCCCTGCCC CCCGCGAAGG CCCCCGCCT GTCCTGGCGT
                                                                                     960
        CCCCCGCCGG CCACCTGCCG GGGGGACGCA CGGCCCGCTG GTGCAGTGGA AGAGCCCGGC
                                                                                    1020
        GGCCGCCGCC GCAGCCTTCT CGGCCCGCGC CCCCGCCGCC TGCACCCCCA TCTGCTCTTC CCCGCGGGGG CCGCGCGGCG CGGGCTGGG GCCCGGGCAG CCGCGCTCGG GCAGCGGGGG
                                                                                    1080
60
                                                                                    1140
        CGCGGGGCTG CCGCCTGCGC TCGCAGCTGG TGCCGGTCGG CGCGCTCGG CTGGGCCACC
GCTCCGACGA GCTGGTGCGT TTCCGCTTCT GCAGCGGCTC CTGCCGCCGC GCGCGCTCTC
                                                                                    1200
                                                                                    1260
        CACACGACCT CAGCCTGGCC AGCCTACTGG GCGCCGGGGC CCTGCGACCG CCCCCGGGCT
                                                                                    1320
        CCCGGCCGT CAGCCAGCCC TGCTGCCGAC CCACGCGCTA CGAAGCGGTC TCCTTCATGG
                                                                                    1380
65
        ACGTCAACAG CACCTGGAGA ACCGTGGACC GCCTCTCCGC CACCGCCTGC GGCTGCCTGG
                                                                                    1440
        ACCITCAACAG CACCIGAGAA ACCORGACCE GCCICTCCC CACCICCIC GGCTCAGCC GCTCAGCC TTCCCTGCCTG GGTACCCTCC GCAGAGTCCC ACTAGCCAGC GGCCTCAGCC AGGGACGAAG GCCTCAAAGC
                                                                                    1500
                                                                                    1560
        TGAGAGGCCC CTACCGGTGG GTGATGGATA TCATCCCCGA ACAGGTGAAG GGACAACTGA
        CTAGCAGCCC CAGAGCCCTC ACCCTGCGGA TCCCAGCCTA AAAGACACCA GAGACCTCAG
                                                                                    1680
70
        CTATGGAGCC CTTCGGACCC ACTTCTCACA GACTCTGGCA CTGGCCAGGC CTCGAACCTG
                                                                                    1740
        GGACCCCTCC TCTGATGAAC ACTACAGTGG CTGAGGCATC AGCCCCCGCC CAGGCCCTGT
                                                                                    1800
        AGGGACAGCA TTTGAAGGAC ACATATTGCA GTTGCTTGGT TGAAAGTGCC TGTGCTGGAA
                                                                                    1860
        CTGGCCTGTA CTCACTCATG GGAGCTGGCC CC
75
        Seq ID NO: 605 Protein sequence
        Protein Accession #: NP_003967.1
                                                                      51
                                             31
                                                          41
                                 21
80
        MELGLGGLST LSHCPWPRRQ PALWPTLAAL ALLSSVAEAS LGSAPRSPAP REGPPPVLAS
        PAGHLPGGRT ARWCSGRARR PPPQPSRPAP PPPAPPSALP RGGRAARAGG PGSRARAAGA
                                                                                     120
        RGCRLRSQLV PVRALGLGHR SDELVRFRFC SGSCRRARSP HDLSLASLLG AGALRPPPGS
                                                                                     180
        RPVSOPCCRP TRYEAVSFMD VNSTWRTVDR LSATACGCLG
85
```

Seq ID NO: 606 DNA sequence Nucleic Acid Accession #: NM_057160.1 WO 02/086443 Coding sequence: 1..714

	couring sequ	iciice. 1					
5			21 CCGAGGACAG CCCTGAGGCT				60 120
10	GCGCCCCGCA CACCTGCCGG	GCCCTGCCCC GGGGACGCAC	GGCTCTGCTG CCGCGAAGGC GGCCCGCTGG CCCGCCGCCT	CCCCCGCCTG TGCAGTGGAA	TCCTGGCGTC GAGCCCGGCG	CCCGCCGCCG	180 240 300 360
10	CGCGCGGCGC CGCCTGCGCT CTGGTGCGTT	GGGCTGGGGG CGCAGCTGGT TCCGCTTCTG	CCCGGGCAGC GCCGGTGCGC CAGCGGCTCC	CGCGCTCGGG GCGCTCGGCC TGCCGCCGCG	CAGCGGGGGC TGGGCCACCG CGCGCTCTCC	GCGGGGCTGC CTCCGACGAG ACACGACCTC	420 480 540
15	AGCCAGCCCT ACCTGGAGAA GCTCCAGGGC	GCTGCCGACC CCGTGGACCG TTTGCAGACT	CGCCGGGGCC CACGCGCTAC CCTCTCCGCC GGACCCTTAC	GAAGCGGTCT ACCGCCTGCG CGGTGGCTCT	CCTTCATGGA GCTGCCTGGG TCCTGCCTGG	CGTCAACAGC CTGAGGGCTC GACCCTCCCG	600 660 720 780
20	TACCGGTGGG AGAGCCCTCA TTCGGACCCA	TGATGGATAT CCCTGCGGAT CTTCTCACAG	GCCTCAGCCA CATCCCCGAA CCCAGCCTAA ACTCTGGCAC	CAGGTGAAGG AAGACACCAG TGGCCAGGCC	GACAACTGAC AGACCTCAGC TCGAACCTGG	TAGCAGCCCC TATGGAGCCC GACCCCTCCT	940 960 1020
25	TTGAAGGACA		TGAGGCATCA TTGCTTGGTT C				1080 1140
<i></i>	Seq ID NO: Protein Acc	607 Protei cession #: 1	in sequence NP_476501.1				
20	1	11	21	31	41	51	
30	APRSPAPREG RAARAGGPGS	PPPVLASPAG RARAAGARGC	 HLGALFLPEA HLPGGRTARW RLRSQLVPVR	CSGRARRPPP ALGLGHRSDE	QPSRPAPPPP LVRFRFCSGS	APPSALPRGG CRRARSPHDL	60 120 180
35	Seq ID NO: Nucleic Ac:	608 DNA se	n#: NM_057		TWRTVDRLSA	TACGCLG	
40	couring body						
40	1	11	21	31	41	51 I	
45	GTCCCACTGC GTGGCCCACC CGCGCCCCGC	CCCTGGCCTA CTGGCCGCTC AGCCCTGCCC	TGATAGAGAT GGCGGCAGGC TGGCTCTGCT CCCGCGAAGG CGGCCCGCTG	TCCACTTGGT GAGCAGCGTC CCCCCCGCCT	CTCTCCGCGC GCAGAGGCCT GTCCTGGCGT	AGCCTGCCCT CCCTGGGCTC CCCCCGCCGG	60 120 180 240 300
50	GCAGCCTTCT CCGCGCGGCG CCGCCTGCGC GCTGGTGCGT CAGCCTGGCC	CGGCCCGCGC CGGGCTGGG TCGCAGCTGG TTCCGCTTCT AGCCTACTGG	CCCCGCCGC GCCCGGCAG TGCCGGTGCG GCAGCGGCTC GCGCCGGGGC CCACGCGCTA	TGCACCCCA CCGCGCTCGG CGCGCTCGGC CTGCCGCCGC CCTGCGACCG	TCTGCTCTTC GCAGCGGGGG CTGGGCCACC GCGCGCTCTC CCCCCGGGCT	CCCGCGGGGG CGCGGGGCTG GCTCCGACGA CACACGACCT CCCGGCCCGT	360 420 480 540 600 660
55	CACCTGGAGA CGCTCCAGGG GCAGAGTCCC CTACCGGTGG CAGAGCCCTC	ACCGTGGACC CTTTGCAGAC ACTAGCCAGC GTGATGGATA ACCCTGCGGA	GCCTCTCCGC TGGACCCTTA GGCCTCAGCC TCATCCCCGA TCCCAGCCTA	CACCGCCTGC CCGGTGGCTC AGGGACGAAG ACAGGTGAAG AAAGACACCA	GGCTGCCTGG TTCCTGCCTG GCCTCAAAGC GGACAACTGA GAGACCTCAG	GCTGAGGGCT GGACCCTCCC TGAGAGGCCC CTAGCAGCCC CTATGGAGCC	720 780 840 900 960
60	TCTGATGAAC TTTGAAGGAC	ACTACAGTGG	GACTCTGGCA CTGAGGCATC GTTGCTTGGT CC	AGCCCCCGCC	CAGGCCCTGT	AGGGACAGCA	1020 1080 1140
65		609 Protestession #: 1		31	41	51	
70	 MELGLGGLST GPPPVLASPA SRARAAGARG	 LSHCPWPRRQ GHLPGGRTAR CRLRSQLVPV	APLGLSAQPA WCSGRARRPP RALGLGHRSD YEAVSFMDVN	 LWPTLAALAL PQPSRPAPPP ELVRFRFCSG	LSSVAEASLG PAPPSALPRG SCRRARSPHD	 SAPRSPAPRE GRAARAGGPG	60 120 180
75	Nucleic Ac:	610 DNA se id Accession lence: 11	n#: Eos se	equence			
	1	11	21	31	41	51	
80	ATGCCACTGA GCCTACCATG GGGGCACGCA	AGCATTATCT GCTGCCCTAG TTGTGGCGGT	CCTTTTGCTG CGAGTGTACC GCCCACCCCT	 GTGGGCTGCC TGCTCCAGGG CTGCCCTGGA	CCTCCCAGGT ACGCCATGAG	GGAGTGCACC CCTGCAGATC	60 120 180
85	GCCTGAGGA GGCTCGCTGC TTCCAGGGCC CAGCCGGCCC	TTGAGAAGAA GCTATCTCAG TGGACAGCCT ACTTCTCCCA	ACTCAATGAG TGAGCTGTCG CCTCGCCAAC TGAGTCTCTC GTGCAGCAAC AGCCTTCGAC	CGCATCACGC AACAAGCTGC CTTCTGTCCA CTCAAGGAGC	CTGGGGCCTT AGGTTCTGCC GTAACCAGCT TGCAGTTGCA	CCGAAACCTG CATCGGCCTC GTTGCAGATC CGGCAACCAC	240 300 360 420 480 540
	CIGGMAIACA	TCCTGWCGG	AGCC11CGMC	CHICOLOGIAG	cncom		2.0

	WO 02/						
		GCCTCACCCA					600
		TGTATGAGAA					660
		AGGAACTGGC					720
_	TTCCACAACA	ACCACAACCT	CCAGAGACTC	TACCTGTCCA	ACAACCACAT	CTCCCAGCTG	780
5	CCACCCAGCA	TCTTCATGCA	GCTGCCCCAG	CTCAACCGTC	TTACTCTCTT	TGGGAATTCC	840
	CTGAAGGAGC	TCTCTCTGGG	GATCTTCGGG	CCCATGCCCA	ACCTGCGGGA	GCTTTGGCTC	900
	TATGACAACC	ACATCTCTTC	TCTACCCGAC	AATGTCTTCA	GCAACCTCCG	CCAGTTGCAG	960
		TTAGCCGCAA					1020
		GGGAGCTGTC					1080
10		TGGCCAACCT					1140
10		TCTTCGCCAA					1200
		TGCCCCTCGG					1260
		CCTGGAGGTG					1320
1 -		GGTTAGGGAC					1380
15		TCATTATCAT					1440
	GTGCCTAGTT	ACCCAGAAAC	ACCATGGTAC	CCAGACACAC	CCAGTTACCC	TGACACCACA	1500
	TCCGTCTCTT	CTACCACTGA	GCTAACCAGC	CCTGTGGAAG	ACTACACTGA	TCTGACTACC	1560
	ATTCAGGTCA	CTGATGACCG	CAGCGTTTGG	GGCATGACCC	AGGCCCAGAG	CGGGCTGGCC	1620
		TTGTAATTGG					1680
20		GCAAGAAGAG					1740
		GCAGGCTGGA					1800
		GCCTCCACCC					1860
		GTGTGCCTAC					1920
25		CTTCCTACAA					1980
25		TTCATACCCC					2040
		CAAGAACAGC					2100
	AGTTAGTCCA	CAGCCTGCTC	ACTTCGTGGG	AATAGTTCTC	CGCTGAGATA	GCCCCTCTCG	2160
	CCTAAGTATT	ATGTAAGTTG	ATTTCCCTTC	TTTTGTTTCT	CTTGTTTGTG	CTATGGCTTG	2220
		TCCCCTCAAA					2280
30		CCTCAAAGAA					2340
-		TTGGGGATGC					2400
	AGACAGAAGA	GCCGTCATCA	CTCTCTCACT	TCTCATTTT	ATCTGGAAAA	GGAAGAAACA	2460
		GCAAGCTCAG					2520
							2520
35		AGCCCTTTAA					
33		TATTAATACG					2640
		GTTTGTTTTA					2700
		GATAGTGTAT					2760
		ACCCAGACCC					2820
	GGAGATGGGG	GCTTCTGAAG	ATGGACTTAC	CTGGGACCTG	CCCCCCATGA	GCCAGGACGG	2880
40	TCCCCCCACA	GTCAGCCTGT	GCAAAGGCCC	CGTGGCCAGG	GGTGGAGGAG	AATATGTGGG	2940
		ATGGGAGACT					3000
		AGACCTGGGG					3060
		CCACACCCTC					3120
		GCCTTCTATG					3180
45							3240
45		AGTGAAATCG					
		TCTTTCTAAT					3300
		AATCTCACTT					3360
		TCCCTGGAGC					3420
		TTCTCCTCCT					3480
50	CTGCTATACA	CATATTCACA	TGGCGCTCAA	GAAGTTAGGC	TCATGGCAAC	GTGTGTCTTT	3540
	CTCTGGACAA	CTGGCCCAGT	TTACAGTGAA	ATGGAGAATT	TCAGGTCTCC	ACGTCTGCCC	3600
		TTCAGCTGAC					3660
		TCCCCGCTCC					3720
		TTAGCTCCCC					3780
55		TCTTATTAGC					3840
55		TGCTGACCAG					3900
		CACTAGTGCA					3960
		CGTCAGAGTC					4020
C O		GCACCTGGAG					4080
60		GCACATGAGC					4140
		GGCCCGTACC					4200
	GGTGCTCCTG	TGAGTGGCCT	CCAGATGTCT	TTGTGCATAG	GCACAAGTGG	GCCAGGGCTG	4260
	GAGGGAGGTG	GGAAACCTCA	TCATCCGGTG	GGCCCTGCCA	ATCTTAACCC	AGAACCCTTA	4320
		GCAGTAGCCA					4380
65		GTCCTCAGAT					4440
		ACCTCTTGCC					4500
	CCCTCCTTTT	CTTCAGCGGG	CCCTTCAACC	TCTCTGCACC	ATGTTGTCTG	GCTGAGGAGC	4560
		GCTGAGTGGA					4620
		GAGCCGGCTG					4680
70							
70		TACAGCTCCT					4740
	GTGTTGGAGA	AGAAACAACA	AAAGCCAATT	AGAACCACTA	TTTTTAAAAA	GTGCTTACTG	4800
		CTCTTCAAGC					4860
	GGTAGGAGTG	CCGCCTCTAC	CCACTTGTGA	TGGGGTACAG	AGGCACTTGC	TCTTCTGCAT	4920
	GGTGTTCAAT	AGGCTGGGAG	TTTTATTTAT	CTCTTCAAAC	TTTGTACAAG	AGCTCATGGC	4980
75		CTTTCGTCAT					5040
		TCATCAGAAC					5100
	GGAAAAAATA	AACTCTTCCA	TCCCTTAAAC	AATAGAATAG	TTTGTCCCTC	TCATGGGAAT	5160
	ACCCCACADAW.	GTATATTGTT	Cdd Cod Code	Δαληπηναν	GATACANCAC	ттстасттас	5220
							5280
80		GGACACAATT					5340
OU	GAACTICCAA	ACTCAGGAAG	111GCAGAGA	GCAGACAGCT	AGAGATAACT	COGGGACCCAG	
	AGTTGGTCGA	CAGATGTTAG	ATGTATCCTA	GCTTTTAGCC	ATAAACCACT	CAAAGATTCA	5400
	GCCCCCAGAT	CCCACAGTCA	GAACTGAATC	TGCGTTGTTG	GGAAGCCAGC	AGTGGCCTTG	5460
	GGAAGGAAGC	CATGGCTGTG	GTTCAGAGAG	GGTGGGCTGG	CAAGCCACTT	CCGGGGAAAA	
0.4	CTCCTTCCGC	CCCAGGTTTC	TTCTTCTCTT	AAGGAGAGAT	TGTTCTCACC	AACCCGCTGC	5580
85	CTTCATGCTG	CCTTCAAAGC	TAGATCATGT	TTGCCTTGCT	TAGAGAATTA	CTGCAAATCA	
						GTAGAGTGTG	
		GGCAGGGTTG					5760
						-	

Seq ID NO: 611 Protein sequence Protein Accession #: BAB84587.1 5 31 51 11 21 41 MPLKHYLLLL VGCQAWGAGL AYHGCPSECT CSRASQVECT GARIVAVPTP LPWNAMSLQI 60 LNTHITELNE SPFLNISALI ALRIEKNELS RITPGAFRNL GSLRYLSLAN NKLQVLPIGL 120 10 FOGLDSLESL LLSSNOLLOI OPAHFSOCSN LKELOLHGNH LEYIPDGAFD HLVGLTKLNL 180 GKNSLTHISP RVFQHLGNLQ VLRLYENRLT DIPMGTFDGL VNLQELALQQ NQIGLLSPGL 240 FHNNHNLORL YLSNNHISOL PPSIFMOLPO LNRLTLFGNS LKELSLGIFG PMPNLRELWL YDNHISSLPD NVFSNLRQLQ VLILSRNQIS FISPGAFNGL TELRELSLHT NALQDLDGNV 360 FRMLANLONI SLONNRLROL PGNIFANVNG LMAIOLONNO LENLPLGIFD HLGKLCELRL 420 15 YDNPWRCDSD ILPLRNWLLL NQPRLGTDTV PVCFSPANVR GQSLIIINVN VAVPSVHVPE 480 VPSYPETPWY PDTPSYPDTT SVSSTTELTS PVEDYTDLTT IQVTDDRSVW GMTQAQSGLA 540 IAAIVIGIVA LACSLAACVG CCCCKKRSQA VLMOMKAPNE C Seg ID NO: 612 DNA seguence 20 Nucleic Acid Accession #: XM 098151 Coding sequence: 1..447 21 31 41 51 25 ATGATGCATT TGCTCAATTC TCAGGGCTGG AATGAGCCGG CTGGTCCCCC AGAAAGCTGG AGTGGGGTAC AGAGTTCAGT TTTCCTCTCT GTTTACAGCT CCTTGACAGT CCCACGCCCA 120 TCTGGAGTGG GAGCTGGGAG TCAGTGTTGG AGAAGAACA ACAAAAGCCA ATTAGAACCA 180 CTATTTTTAA AAAGTGCTTA CTGTGCACAG ATACTCTTCA AGCACTGGAC GTGGATTCTC 24 Ô TCTCTAGCCC TCAGCACCCC TGCGGTAGGA GTGCCGCCTC TACCCACTTG TGATGGGGTA 300 30 CAGAGGCACT TGCTCTTCTG CATGGTGTTC AATAGGCTGG GAGTTTTATT TATCTCTTCA 360 AACTTTGTAC AAGAGCTCAT GGCTTGTCTT GGGCTTTCGT CATTAAACCA AAGGAAATGG AAGCCATTCC CCTGTTGCTC TCCTTAG Seq ID NO: 613 Protein sequence 35 Protein Accession #: XP_098151 21 31 41 51 11 MMHLLNSOGW NEPAGPPESW SGVQSSVFLS VYSSLTVPRP SGVGAGSQCW RRNNKSQLEP 40 LFLKSAYCAQ ILFKHWTWIL SLALSTPAVG VPPLPTCDGV QRHLLFCMVF NRLGVLFISS 120 NFVOELMACL GLSSLNQRKW KPFPCCSP Seg ID NO: 614 DNA sequence Nucleic Acid Accession #: NM_002658.1 45 Coding sequence: 77..1372 21 31 41 51 GTCCCCGCAG CGCCGTCGCG CCCTCCTGCC GCAGGCCACC GAGGCCGCCG CCGTCTAGCG 50 CCCCGACCTC GCCACCATGA GAGCCCTGCT GGCGCGCCTG CTTCTCTGCG TCCTGGTCGT 120 GAGCGACTCC AAAGGCAGCA ATGAACTTCA TCAAGTTCCA TCGAACTGTG ACTGTCTAAA 180 TGGAGGAACA TGTGTGTCCA ACAAGTACTT CTCCAACATT CACTGGTGCA ACTGCCCAAA 240 GAAATTCGGA GGGCAGCACT GTGAAATAGA TAAGTCAAAA ACCTGCTATG AGGGGAATGG 300 TCACTTTAC CGAGGAAAGG CCAGCACTGA CACCATGGGC CGGCCCTGCC TGCCCTGGAA 360 55 CTCTGCCACT GTCCTTCAGC AAACGTACCA TGCCCACAGA TCTGATGCTC TTCAGCTGGG CCTGGGGAAA CATAATTACT GCAGGAACCC AGACAACCGG AGGCGACCCT GGTGCTATGT 480 GCAGGTGGGC CTAAAGCCGC TTGTCCAAGA GTGCATGGTG CATGACTGCG CAGATGGAAA 540 AAAGCCCTCC TCTCCTCCAG AAGAATTAAA ATTTCAGTGT GGCCAAAAGA CTCTGAGGCC 600 CCGCTTTAAG ATTATTGGGG GAGAATTCAC CACCATCGAG AACCAGCCCT GGTTTGCGGC 660 60 CATCTACAGG AGGCACCGGG GGGGCTCTGT CACCTACGTG TGTGGAGGCA GCCTCATCAG 720 CCCTTGCTGG GTGATCAGCG CCACACACTG CTTCATTGAT TACCCAAAGA AGGAGGACTA CATCGTCTAC CTGGGTCGCT CAAGGCTTAA CTCCAACACG CAAGGGGAGA TGAAGTTTGA GGTGGAAAAC CTCATCCTAC ACAAGGACTA CAGCGCTGAC ACGCTTGCTC ACCACAACGA 900 CATTGCCTTG CTGAAGATCC GTTCCAAGGA GGGCAGGTGT GCGCAGCCAT CCCGGACTAT 960 65 ACAGACCATC TGCCTGCCCT CGATGTATAA CGATCCCCAG TTTGGCACAA GCTGTGAGAT 1020 CACTGGCTTT GGAAAAGAGA ATTCTACCGA CTATCTCTAT CCGGAGCAGC TGAAAATGAC 1080 TGTTGTGAAG CTGATTTCCC ACCGGGAGTG TCAGCAGCCC CACTACTACG GCTCTGAAGT 1140 CACCACAAA ATGCTATGTG CTGCTGACCC CCAATGGAAA ACAGATTCCT GCCAGGGAGA 1200 CTCAGGGGGA CCCCTCGTCT GTTCCCTCCA AGGCCGCATG ACTTTGACTG GAATTGTGAG 1260 70 CTGGGGCCGT GGATGTGCCC TGAAGGACAA GCCAGGCGTC TACACGAGAG TCTCACACTT 1320 CTTACCCTGG ATCCGCAGTC ACACCAAGGA AGAGAATGGC CTGGCCCTCT GAGGGTCCCC 1380 AGGGAGGAAA CGGGCACCAC CCGCTTTCTT GCTGGTTGTC ATTTTTGCAG TAGAGTCATC 1440 TCCATCAGCT GTAAGAAGAG ACTGGGAAGA TAGGCTCTGC ACAGATGGAT TTGCCTGTGG 1500 CACCACCAGG GTGAACGACA ATAGCTTTAC CCTCACGGAT AGGCCTGGGT GCTGGCTGCC 1560 75 CAGACCCTCT GGCCAGGATG GAGGGGTGGT CCTGACTCAA CATGTTACTG ACCAGCAACT 1620 TGTCTTTTC TGGACTGAAG CCTGCAGGAG TTAAAAAGGG CAGGGCATCT CCTGTGCATG 1680 GGCTCGAAGG GAGAGCCAGC TCCCCCGACC GGTGGGCATT TGTGAGGCCC ATGGTTGAGA 1740 AATGAATAAT TTCCCAATTA GGAAGTGTAA GCAGCTGAGG TCTCTTGAGG GAGCTTAGCC 1800 AATGTGGGAG CAGCGGTTTG GGGAGCAGAG ACACTAACGA CTTCAGGGCA GGGCTCTGAT 80 ATTCCATGAA TGTATCAGGA AATATATATG TGTGTGTATG TTTGCACACT TGTTGTGTGG 1920 GCTGTGAGTG TAAGTGTGAG TAAGAGCTGG TGTCTGATTG TTAAGTCTAA ATATTTCCTT 1980 AAACTGTGTG GACTGTGATG CCACACAGAG TGGTCTTTCT GGAGAGGTTA TAGGTCACTC 2040 CTGGGGCCTC TTGGGTCCCC CACGTGACAG TGCCTGGGAA TGTACTTATT CTGCAGCATG ACCTGTGACC AGCACTGTCT CAGTTTCACT TTCACATAGA TGTCCCTTTC TTGGCCAGTT 2100 2160 85 ATCCCTTCCT TTTAGCCTAG TTCATCCAAT CCTCACTGGG TGGGGTGAGG ACCACTCCTT ACACTGAATA TTTATATTTC ACTATTTTTA TTTATATTTT TGTAATTTTA AATAAAAGTG ATCAATAAAA TGTGATTTTT CTGA

Seq ID NO: 615 Protein sequence Protein Accession #: NP_002649.1

-			_				
5	1	11	21	31	41	51	
	1		<u> </u>				
	MRALLARLLL						60 120
	HCEIDKSKTC	PWCYVQVGLK					180
10		PWFAAIYRRH					240
	RSRLNSNTQG	EMKFEVENIT	LHKDYSADTL	AHHNDIALLK	IRSKEGRCAO	PSRTIOTICL	300
	PSMYNDPOFG	TSCEITGFGK	ENSTDYLYPE	QLKMTVVKLI	SHRECQQPHY	YGSEVTTKML	360
	CAADPOWKTD	SCQGDSGGPL	VCSLQGRMTL	TGIVSWGRGC	ALKDKPGVYT	RVSHFLPWIR	420
4.5	SHTKEENGLA						
15							
	Seq ID NO:	616 DNA se					
	Nucleic Aci			422.1			
	Coding sequ	ence: 202	2907				
20	1	11	21	31	41	51	
20	1	1	Ĩ	1	ī	Ī	
	CGCCAAAGGA	AAAGCCCCTT	GGATGAGAGG	CAGGCGCTTC	AGAGAAGCTA	AGAAAAGCAC	60
	CTCTCCGCGC	GCCCCACCTC	CTCCGCCTCG	CGCTCCTCCT	GAGCAGCGGG	CCCAGACTGC	120
	GCTCCGGCCG	CGGCCCTCGC	CCCGCGGAGC	CCTCCTACCC	CGGCCCGACG	CTCGGCCCGC	180
25	GACCTGCCCC	GAGCCCTCTC	CATGGAGGCA	GCCCGCCCCT	CCGGCTCCTG	GAACGGAGCC	240
	CTCTGCCGGC	TGCTCCTGCT	GACCCTCGCG	ATCTTAATAT	TTGCCAGTGA	TGCCTGCAAA	300
	AATGTGACAT	TACATGTTCC	CTCCAAACTA	GATGCCGAGA	AACTTGTTGG	TAGAGTTAAC	360 420
	CTGAAAGAGT	GCTTTACAGC GTTCAGTCTA	TGCAAATCTA	ATTUATTUAA	TOTOCTOGGA	CIICCAAAII	480
30	TTGGAGGATG	TACTTTCCAA	CACTGAGAAC	CARCADAGA	AGAAAATATT	TGTCTTTTTG	540
50	GAGCATCAAA	CAAAGGTCCT	AAAGAAAAGA	CATACTAAAG	AAAAAGTTCT	AAGGCGCGCC	600
	AAGAGAAGAT	GGGCTCCAAT	TCCTTGTTCG	ATGCTAGAAA	ACTCCTTGGG	TCCTTTTCCA	660
	CTTTTCCTTC	AACAGGTTCA	ATCTGACACG	GCCCAAAACT	ATACCATATA	CTATTCCATA	720
~ ~	AGAGGTCCTG	GAGTTGACCA	AGAACCTCGG	AATTTATTTT	ATGTGGAGAG	AGACACTGGA	780
35	AACTTGTATT	GTACTCGTCC	TGTAGATCGT	GAGCAGTATG	AATCTTTTGA	GATAATTGCC	840
	TTTGCAACAA	CTCCAGATGG	GTATACTCCA	GAACTTCCAC	TGCCCCTAAT	AATCAAAATA	900
	GAGGATGAAA	ATGATAACTA	CCCAATTTTT	ACAGAAGAAA	CTTATACTTT	TACAATTTTT	960 1020
	GAAAATTGCA	GAGTGGGCAC ACACACGCCT	CANCEACTCC	ATTCATTCCCC	AGGTGCCACC	ATCACCCACC	1080
40	CTATTTTCTA	TGCATCCAAC	TACAGGCGTG	ATCACCACAA	CATCATCTCA	GCTAGACAGA	1140
1 0	CACTTAATTG	ACAAGTACCA	GTTGAAAATA	AAAGTACAAG	ACATGGATGG	TCAGTATTTT	1200
	GGTCTACAGA	CAACTTCAAC	TTGTATCATT	AACATTGATG	ATGTAAATGA	CCACTTGCCA	1260
	ACATTTACTC	GTACTTCTTA	TGTGACATCA	GTGGAAGAAA	ATACAGTTGA	TGTGGAAATC	1320
	TTACGAGTTA	CTGTTGAGGA	TAAGGACTTA	GTGAATACTG	CTAACTGGAG	AGCTAATTAT	1380
45	ACCATTTTAA	AGGGCAATGA	AAATGGCAAT	TTTAAAATTG	TAACAGATGC	CAAAACCAAT	1440
	GAAGGAGTTC	TTTGTGTAGT	TAAGCCTTTG	AATTATGAAG	AAAAGCAACA	GATGATCTTG	1500
	CAAATTGGTG	TAGTTAATGA	AGCTCCATTT	TCCAGAGAGG	AGGGGGGGGG	CTCTA ACCCT	1560 1620
		CAGTTACTGT CTGTTCGCAT					1680
50	AAAGCATATG	ACCCAGAAAC	AAGAAGTAGC	AGTGGCATAA	GGTATAAGAA	ATTAACTGAT	1740
50	CCAACAGGGT	GGGTCACCAT	TGATGAAAAT	ACAGGATCAA	TCAAAGTTTT	CAGAAGCCTG	1800
	GATAGAGAGG	CAGAGACCAT	CAAAAATGGC	ATATATAATA	TTACAGTCCT	TGCATCAGAC	1860
	CAAGGAGGGA	GAACATGTAC	GGGGACACTG	GGCATTATAC	TTCAAGACGT	GAATGATAAC	1920
~ ~	AGCCCATTCA	TACCTAAAAA	GACAGTGATC	ATCTGCAAAC	CCACCATGTC	ATCTGCGGAG	1980
55		TTGATCCTGA					2040
		CAGAAGTACA ATCAGAATGA					2100 2160
	COTCTTTCCT	GCATGTCTAG	TCCTCCATTT	TTCCATCTTA	CACTGTGTGA	CTGCATTACC	2220
	GALAGACITG	GCACACATCG	TGTAGATCCA	AGGATTGGCG	GTGGAGGAGT	ACAACTTGGA	2280
60	AAGTGGGCCA	TCCTTGCAAT	ATTGTTGGGC	ATAGCATTGC	TCTTTTGCAT	CCTGTTTACG	2340
	CTGGTCTGTG	GGGCTTCTGG	GACGTCTAAA	CAACCAAAAG	TAATTCCTGA	TGATTTAGCC	2400
	CAGCAGAACC	TAATTGTATC	AAACACAGAA	GCTCCTGGAG	ATGACAAAGT	GTATTCTGCG	2460
	AATGGCTTCA	CAACCCAAAC	TGTGGGCGCT	TCTGCTCAGG	GAGTTTGTGG	CACCGTGGGA	2520
65		AAAACGGAGG					2580 2640
03		GCCGGGGGGC ACAACTGCAG					2700
	ACGGAGGTGG	ACAACTGCAG	GTGTAATCAA	GATGAAAATC	ACAAGCATGC	CCAAGACTAT	2760
	GTCCTGACAT	ATAACTATGA	AGGAAGAGGA	TCGGTGGCTG	GGTCTGTAGG	TTGTTGCAGT	2820
	GAACGACAAG	AAGAAGATGG	GCTTGAATTT	TTGGATAATT	TGGAGCCCAA	ATTTAGGACA	2880
70	CTAGCAGAAG	CATGCATGAA	GAGATGAGTG	TGTTCTAATA	AGTCTCTGAA	AGCCAGTGGC	2940
	TTTATGACTT	TTAAAAAAAA	TTACAAACCA	AGAATTTTT	AAAGCAGAAG	ATGCTATTTG	3000
	TGGGGGTTTT	TCTCTCATTA	TTTGGATGGA	ATCTCTTTGG	TCAAATGCAC	ATTTACAGAG	3060
	AGACACTATA	AACAAGTACA	CAAATTTTTC	AATTTTTACA	TATTTTTAAA	TTACTTATCT	3120
75	TCTATCCAAG	GAGGTCTACA	GAGAAATTAA	AGTCTGCCTT	ATTTGTTACA	TTTGGGTATA	3180 3240
15	ATGACAACAG	CCAATTTATA	GTGCAATAAA	AIGIAAITAA	CTTTAAGICCI	ATCTCCAGTT	3300
	AATTIGAAGC	TCATCTCCTC	CTTCCAAACT	GTTGTTTTCC	TGAACATCTA	AAGTGTGTAG	
	ACTGCATTCT	TGCTATTATT	TTATTCTTGT	AATGTGACCT	TTTCACTGTG	CAAAGGGAGA	3420
		GGCATTGACT					
80							
		617 Prote					
	Protein Ac	cession #: 1	NP_077740.1				
	_			2.1	41	51	
85	1 1	11	21	31	41 	1	
U.J	MEAADDSGSW	NGALCRIJ.	TIATITEASD	ACKNVTLHVP	SKLDAEKLVG	RVNLKECFTA	60
	ANLIHSSDPD	FQILEDGSVY	TTNTILLSSE	KRSFTILLSN	TENQEKKKIF	VFLEHQTKVL	120

```
KKRHTKEKVL RRAKRRWAPI PCSMLENSLG PFPLFLQQVQ SDTAQNYTIY YSIRGPGVDQ
                                                                            180
       EPRNLFYVER DTGNLYCTRP VDREQYESFE IIAFATTPDG YTPELPLPLI IKIEDENDNY
                                                                            240
       PIFTEETYTF TIFENCRYGT TVGQVCATDK DEPDTMHTRL KYSIIGQVPP SPTLFSMHPT
                                                                            300
       TGVITTTSSQ LDRELIDKYQ LKIKVQDMDG QYFGLQTTST CIINIDDVND HLPTFTRTSY
                                                                            360
 5
       VISUEENTUD VEILRVIVED KOLVNIANWR ANYTILKGNE NGNFKIVIDA KINEGVLCVV
                                                                            420
       KPLNYEEKOO MILOIGVVNE APFSREASPR SAMSTATVTV NVEDQDEGPE CNPPIQTVRM
                                                                            480
       KENAEVGTTS NGYKAYDPET RSSSGIRYKK LTDPTGWVTI DENTGSIKVF RSLDREAETI
       KNGIYNITVL ASDQGGRTCT GTLGIILQDV NDNSPFIPKK TVIICKPTMS SAEIVAVDPD
                                                                            600
       EPIHGPPFDF SLESSTSEVQ RMWRLKAIND TAARLSYQND PPFGSYVVPI TVRDRLGMSS
                                                                            660
10
       VTSLDVTLCD CITENDCTHR VDPRIGGGGV OLGKWAILAI LLGIALLFCI LFTLVCGASG
                                                                            720
       TSKQPKVIPD DLAQQNLIVS NTEAPGDDKV YSANGFTTQT VGASAQGVCG TVGSGIKNGG
                                                                            780
       OETIEMVKGG HOTSESCRGA GHHHTLDSCR GGHTEVDNCR YTYSEWHSFT QPRLGEKVYL
                                                                            840
       CNQDENHKHA QDYVLTYNYE GRGSVAGSVG CCSERQEEDG LEFLDNLEPK FRTLAEACMK
15
       Seq ID NO: 618 DNA sequence
       Nucleic Acid Accession #: NM_004949.1
Coding sequence: 202..2745
20
                                                               51
                             21
                                         31
                                                   41
       CGCCAAAGGA AAAGCCCCTT GGATGAGAGG CAGGCGCTTC AGAGAAGCTA AGAAAAGCAC
                                                                             60
       CTCTCCGCGC GCCCCACCTC CTCCGCCTCG CGCTCCTCCT GAGCAGCGGG CCCAGACTGC
                                                                            120
       GCTCCGGCCG CGGCCCTCGC CCCGCGGAGC CCTCCTACCC CGGCCCGACG CTCGGCCCGC
                                                                            180
25
       GACCTGCCCC GAGCCCTCTC CATGGAGGCA GCCCGCCCCT CCGGCTCCTG GAACGGAGCC
       CTCTGCCGGC TGCTCCTGCT GACCCTCGCG ATCTTAATAT TTGCCAGTGA TGCCTGCAAA
                                                                            300
       AATGTGACAT TACATGTTCC CTCCAAACTA GATGCCGAGA AACTTGTTGG TAGAGTTAAC
                                                                            360
       CTGAAAGAGT GCTTTACAGC TGCAAATCTA ATTCATTCAA GTGATCCTGA CTTCCAAATT
                                                                            420
       TTGGAGGATG GTTCAGTCTA TACAACAAAT ACTATTCTAT TGTCCTCGGA GAAGAGAAGT
                                                                            480
30
       TTTACCATAT TACTTTCCAA CACTGAGAAC CAAGAAAAGA AGAAAATATT TGTCTTTTTG
                                                                            540
       GAGCATCAAA CAAAGGTCCT AAAGAAAAGA CATACTAAAG AAAAAGTTCT AAGGCGCGCC
                                                                            600
       AAGAGAAGAT GGGCTCCAAT TCCTTGTTCG ATGCTAGAAA ACTCCTTGGG TCCTTTTCCA
                                                                            660
       CTTTTCCTTC AACAGGTTCA ATCTGACACG GCCCAAAACT ATACCATATA CTATTCCATA
                                                                            720
       AGAGGTCCTG GAGTTGACCA AGAACCTCGG AATTTATTTT ATGTGGAGAG AGACACTGGA
                                                                            780
35
       AACTTGTATT GTACTCGTCC TGTAGATCGT GAGCAGTATG AATCTTTTGA GATAATTGCC
                                                                            840
       TTTGCAACAA CTCCAGATGG GTATACTCCA GAACTTCCAC TGCCCCTAAT AATCAAAATA
                                                                            900
       GAGGATGAAA ATGATAACTA CCCAATTTTT ACAGAAGAAA CTTATACTTT TACAATTTTT
       GAAAATTGCA GAGTGGGCAC TACTGTGGGA CAAGTGTGTG CTACTGACAA AGATGAGCCT
                                                                           1020
       GACACGATGC ACACACGCCT GAAGTACTCC ATCATTGGGC AGGTGCCACC ATCACCCACC
                                                                           1080
40
       CTATTTCTA TGCATCCAAC TACAGGCGTG ATCACCACAA CATCATCTCA GCTAGACAGA
                                                                           1140
       GAGTTAATTG ACAAGTACCA GTTGAAAATA AAAGTACAAG ACATGGATGG TCAGTATTTT
                                                                           1200
       GGTCTACAGA CAACTTCAAC TTGTATCATT AACATTGATG ATGTAAATGA CCACTTGCCA
                                                                           1260
       ACATTTACTC GTACTTCTTA TGTGACATCA GTGGAAGAAA ATACAGTTGA TGTGGAAATC
                                                                           1320
       TTACGAGTTA CTGTTGAGGA TAAGGACTTA GTGAATACTG CTAACTGGAG AGCTAATTAT
                                                                           1380
45
       ACCATTTTAA AGGGCAATGA AAATGGCAAT TTTAAAATTG TAACAGATGC CAAAACCAAT
                                                                           1440
       GAAGGAGTTC TTTGTGTAGT TAAGCCTTTG AATTATGAAG AAAAGCAACA GATGATCTTG
                                                                           1500
       CAAATTGGTG TAGTTAATGA AGCTCCATTT TCCAGAGAGG CTAGTCCAAG ATCAGCCATG
                                                                           1560
       AGCACAGCAA CAGTTACTGT TAATGTAGAA GATCAGGATG AGGGCCCTGA GTGTAACCCT
                                                                           1620
       CCAATACAGA CTGTTCGCAT GAAAGAAAAT GCAGAAGTGG GAACAACAAG CAATGGATAT
                                                                           1680
50
       AAAGCATATG ACCCAGAAAC AAGAAGTAGC AGTGGCATAA GGTATAAGAA ATTAACTGAT
                                                                           1740
       CCAACAGGGT GGGTCACCAT TGATGAAAAT ACAGGATCAA TCAAAGTTTT CAGAAGCCTG
                                                                           1800
       GATAGAGAGG CAGAGACCAT CAAAAATGGC ATATATAATA TTACAGTCCT TGCATCAGAC
                                                                           1860
       CAAGGAGGGA GAACATGTAC GGGGACACTG GGCATTATAC TTCAAGACGT GAATGATAAC
                                                                           1920
       AGCCCATTCA TACCTAAAAA GACAGTGATC ATCTGCAAAC CCACCATGTC ATCTGCGGAG
                                                                           1980
55
       ATTGTTGCGG TTGATCCTGA TGAGCCTATC CATGGCCCAC CCTTTGACTT TAGTCTGGAG
       AGTTCTACTT CAGAAGTACA GAGAATGTGG AGACTGAAAG CAATTAATGA TACAGCAGCA
                                                                           2100
       CGTCTTTCCT ATCAGAATGA TCCTCCATTT GGCTCATATG TAGTACCTAT AACAGTGAGA
                                                                           2160
       GATAGACTTG GCATGTCTAG TGTCACTTCA TTGGATGTTA CACTGTGTGA CTGCATTACC
                                                                           2220
       GAAAATGACT GCACACATCG TGTAGATCCA AGGATTGGCG GTGGAGGAGT ACAACTTGGA
                                                                           2280
60
       AAGTGGGCCA TCCTTGCAAT ATTGTTGGGC ATAGCATTGC TCTTTTGCAT CCTGTTTACG
                                                                           2340
       CTGGTCTGTG GGGCTTCTGG GACGTCTAAA CAACCAAAAG TAATTCCTGA TGATTTAGCC
                                                                           2400
       CAGCAGAACC TAATTGTATC AAACACAGAA GCTCCTGGAG ATGACAAAGT GTATTCTGCG
                                                                           2460
       AATGGCTTCA CAACCCAAAC TGTGGGCGCT TCTGCTCAGG GAGTTTGTGG CACCGTGGGA
                                                                           2520
       TCAGGAATCA AAAACGGAGG TCAGGAGACC ATCGAAATGG TGAAAGGAGG ACACCAGACC
                                                                           2580
65
       TCGGAATCCT GCCGGGGGC TGGCCACCAT CACACCCTGG ACTCCTGCAG GGGAGGACAC
                                                                           2640
       ACGGAGGTGG ACAACTGCAG ATACACTTAC TCGGAGTGGC ACAGTTTTAC TCAGCCCCGT
                                                                           2700
       CTTGGTGAAG AATCCATTAG AGGACACACT CTGATTAAAA ATTAAACAAT GAAAGAAAGT
       GTATCTGTGT AATCAAGATG AAAATCACAA GCATGCCCAA GACTATGTCC TGACATATAA
                                                                           2820
       CTATGAAGGA AGAGGATCGG TGGCTGGGTC TGTAGGTTGT TGCAGTGAAC GACAAGAAGA
                                                                           2880
70
       AGATGGGCTT GAATTTTTGG ATAATTTGGA GCCCAAATTT AGGACACTAG CAGAAGCATG
                                                                           2940
       CATGAAGAGA TGAGTGTGTT CTAATAAGTC TCTGAAAGCC AGTGGCTTTA TGACTTTTAA
                                                                           3000
       AAAAATTAC AAACCAAGAA TTTTTTAAAG CAGAAGATGC TATTTGTGGG GGTTTTTCTC
                                                                           3060
       TCATTATTTG GATGGAATCT CTTTGGTCAA ATGCACATTT ACAGAGAGAC ACTATAAACA
       AGTACACAAA TTTTTCAATT TTTACATATT TTTAAATTAC TTATCTTCTA TCCAAGGAGG
                                                                           3180
75
       TCTACAGAGA AATTAAAGTC TGCCTTATTT GTTACATTTG GGTATAATGA CAACAGCCAA
                                                                           3240
       TTTATAGTGC AATAAAATGT AATTAATTCA AGTCCTTATT ATAGACTATT TGAAGCACAA
                                                                           3300
       CCTAATGGAA AATTGTAGAG ACCTTGCTTT AACATTATCT CCAGTTAATT AAGTGTTCAT
                                                                           3360
       GTGGTGCTTG GAAACTGTTG TTTTCCTGAA CATCTAAAGT GTGTAGACTG CATTCTTGCT
                                                                           3420
       ATTATTTAT TCTTGTAATG TGACCTTTTC ACTGTGCAAA GGGAGATTTC TAGCCAGGCA
80
       TTGACTATTA CAATTTCATT
       Seq ID NO: 619 Protein sequence
       Protein Accession #: NP_004940.1
85
                                         31
                                                    41
       MEAARPSGSW NGALCRLLLL TLAILIFASD ACKNVTLHVP SKLDAEKLVG RVNLKECFTA
```

```
ANLIHSSDPD FQILEDGSVY TINTILLSSE KRSFTILLSN TENQEKKKIF VFLEHQTKVL
       KKRHTKEKVL RRAKRRWAPI PCSMLENSLG PFPLFLQQVQ SDTAQNYTIY YSIRGPGVDQ
                                                                            180
       EPRNLFYVER DTGNLYCTRP VDREQYESFE IIAFATTPDG YTPELPLPLI IKIEDENDNY
                                                                            240
       PIFTEETYTF TIFENCRYGT TYGQYCATDK DEPDTMHTRL KYSIIGQVPP SPTLFSMHPT
                                                                            300
 5
       TGVITTTSSQ LDRELIDKYQ LKIKVQDMDG QYFGLQTTST CIINIDDVND HLPTFTRTSY
                                                                            360
       VISVEENTVD VEILRYTVED KDLVNTANWR ANYTILKGNE NGNFKIVTDA KTNEGVLCVV
                                                                            420
       KPLNYEEKQQ MILQIGVVNE APFSREASPR SAMSTATVTV NVEDQDEGPE CNPPIQTVRM
       KENAEVGTTS NGYKAYDPET RSSSGIRYKK LTDPTGWVTI DENTGSIKVF RSLDREAETI
                                                                            540
       KNGIYNITUL ASDQGGRTCT GTLGIILQDV NDNSPFIPKK TVIICKPTMS SAEIVAVDPD
                                                                            600
10
       EPIHGPPFDF SLESSTSEVO RMWRLKAIND TAARLSYOND PPFGSYVVPI TVRDRLGMSS
                                                                            660
       VISIDVIICD CITENDCTHR VDPRIGGGGV OLGKWAILAI LLGIALLFCI LFTLVCGASG
                                                                            720
       TSKOPKVIPD DLAOONLIVS NTEAPGDDKV YSANGFTTQT VGASAQGVCG TVGSGIKNGG
       QETIEMVKGG HQTSESCRGA GHHHTLDSCR GGHTEVDNCR YTYSEWHSFT QPRLGEESIR
                                                                            840
15
       Seq ID NO: 620 DNA sequence
       Nucleic Acid Accession #: NM_032545.1
       Coding sequence: 46..718
20
                                                               51
                  11
                             21
                                                    41
       AAACTGATCT TCAATGCACT AAGAGAAGGA GACTCTCAAA CCAAAAATGA CCTGGAGGCA
                                                                             60
       CCATGTCAGG CTTCTGTTTA CGGTCAGTTT GGCATTACAG ATCATCAATT TGGGAAACAG
                                                                            120
       CTATCAAAGA GAGAAACATA ACGGCGGTAG AGAGGAAGTC ACCAAGGTTG CCACTCAGAA
25
       GCACCGACAG TCACCGCTCA ACTGGACCTC CAGTCATTTC GGAGAGGTGA CTGGGAGCGC
                                                                            240
       CGAGGGCTGG GGGCCGGAGG AGCCGCTCCC CTACTCCCGG GCTTTCGGAG AGGGTGCGTC
                                                                            300
       CGCGCGGCCG CGCTGCTGCA GGAACGGCGG TACCTGCGTG CTGGGCAGCT TCTGCGTGTG
                                                                            360
       CCCGGCCCAC TTCACCGGCC GCTACTGCGA GCATGACCAG AGGCGCAGTG AATGCGGCGC
                                                                            420
       CCTGGAGCAC GGAGCCTGGA CCCTCCGCGC CTGCCACCTC TGCAGGTGCA TCTTCGGGGC
                                                                            480
30
       CCTGCACTGC CTCCCCCTCC AGACGCCTGA CCGCTGTGAC CCGAAAGACT TCCTGGCCTC
                                                                            540
       CCACGCTCAC GGGCCGAGCG CCGGGGGCGC GCCCAGCCTG CTACTCTTGC TGCCCTGCGC
                                                                            600
       ACTCCTGCAC CGCCTCCTGC GCCCGGATGC GCCCGCGCAC CCTCGGTCCC TGGTCCCTTC
                                                                            660
       CGTCCTCCAG CGGGAGCGGC GCCCCTGCGG AAGGCCGGGA CTTGGGCATC GCCTTTAATT
                                                                            720
       TTCTATGTTG TAAATAATAG ATGTGTTTAG TTTACCGTAA GCTGAAGCAC TGGGTGAATA
                                                                            780
35
       TTTTTATTGG GTAATAAATA TTTTCATGAA AGCGCCAAAA AAAAAAAAA AAAAAAAAA
                                                                            840
       AAAAAA
       Seq ID NO: 621 Protein sequence
       Protein Accession #: NP 115934.1
40
                                                               51
                                        31
                                                    41
       MTWRHHVRLL FTVSLALQII NLGNSYQREK HNGGREEVTK VATQKHRQSP LNWTSSHFGE
                                                                             60
       VTGSAEGWGP EEPLPYSRAF GEGASARPRC CRNGGTCVLG SFCVCPAHFT GRYCEHDQRR
                                                                            120
45
       SECGALEHGA WILRACHLCR CIFGALHCLP LQTPDRCDPK DFLASHAHGP SAGGAPSLLL
                                                                            180
       LLPCALLHRL LRPDAPAHPR SLVPSVLORE RRPCGRPGLG HRL
       Seg ID NO: 622 DNA sequence
       Nucleic Acid Accession #: FGENESH predicted
50
       Coding sequence: 1..390
                                                    41
                                                               51
                                        31
       ATGAGGTTCA GTGTCTCAGG CATGAGGACC GACTACCCCA GGAGTGTGCT GGCTCCTGCT
55
       TATGTGTCAG TCTGTCTCCT CCTCTTGTGT CCAAGGGAAG TCATCGCTCC CGCTGGCTCA
                                                                            120
       GAACCATGGC TGTGCCAGCC GGCACCCAGG TGTGGAGACA AGATCTACAA CCCCTTGGAG
                                                                            180
       CAGTGCTGTT ACAATGACGC CATCGTGTCC CTGAGCGAGA CCCGCCAATG TGGTCCCCCC
                                                                            240
       TGCACCTTCT GGCCCTGCTT TGAGCTCTGC TGTCTTGATT CCTTTGGCCT CACAAACGAT
                                                                            300
       TTTGTTGTGA AGCTGAAGGT TCAGGGTGTG AATTCCCAGT GCCACTCATC TCCCATCTCC
                                                                            360
60
       AGTAAATGTG AAAGAGGCCG GATATGTTAG
       Seq ID NO: 623 Protein sequence
       Protein Accession #: FGENESH predicted
65
                                                               51
                  11
                             21
                                        31
                                                    41
       MRFSVSGMRT DYPRSVLAPA YVSVCLLLLC PREVIAPAGS EPWLCQPAPR CGDKIYNPLE
       QCCYNDAIVS LSETRQCGPP CTFWPCFELC CLDSFGLTND FVVKLKVQGV NSQCHSSPIS
                                                                            120
70
       Seq ID NO: 624 DNA sequence
       Nucleic Acid Accession #: M18728.1
       Coding sequence: 51..1085
75
                                                               51
                                        31
                                                    41
       GGAGCTCAAG CTCCTCTACA AAGAGGTGGA CAGAGAAGAC AGCAGAGACC ATGGGACCCC
       CCTCAGCCCC TCCCTGCAGA TTGCATGTCC CCTGGAAGGA GGTCCTGCTC ACAGCCTCAC
       TTCTAACCTT CTGGAACCCA CCCACCACTG CCAAGCTCAC TATTGAATCC ACGCCATTCA
                                                                            180
80
       ATGTCGCAGA GGGGAAGGAG GTTCTTCTAC TCGCCCACAA CCTGCCCCAG AATCGTATTG
                                                                            240
       GTTACAGCTG GTACAAAGGC GAAAGAGTGG ATGGCAACAG TCTAATTGTA GGATATGTAA
                                                                            300
       TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACAGTGG TCGAGAGACA ATATACCCCA
                                                                            360
       ATGCATCCCT GCTGATCCAG AACGTCACCC AGAATGACAC AGGATTCTAT ACCCTACAAG
                                                                            420
       TCATAAAGTC AGATCTTGTG AATGAAGAAG CAACCGGACA GTTCCATGTA TACCCGGAGC
85
       TGCCCAAGCC CTCCATCTCC AGCAACAACT CCAACCCCGT GGAGGACAAG GATGCTGTGG
                                                                            540
                                                                            600
       CCTTCACCTG TGAACCTGAG GTTCAGAACA CAACCTACCT GTGGTGGGTA AATGGTCAGA
       GCCTCCCGGT CAGTCCCAGG CTGCAGCTGT CCAATGGCAA CATGACCCTC ACTCTACTCA
                                                                            660
```

```
GCGTCAAAAG GAACGATGCA GGATCCTATG AATGTGAAAT ACAGAACCCA GCGAGTGCCA
                                                                             720
       ACCGCAGTGA CCCAGTCACC CTGAATGTCC TCTATGGCCC AGATGTCCCC ACCATTTCCC
                                                                             780
       CCTCAAAGGC CAATTACCGT CCAGGGGAAA ATCTGAACCT CTCCTGCCAC GCAGCCTCTA
                                                                             840
       ACCCACCTGC ACAGTACTCT TGGTTTATCA ATGGGACGTT CCAGCAATCC ACACAAGAGC
                                                                             900
 5
       TCTTTATCCC CAACATCACT GTGAATAATA GCGGATCCTA TATGTGCCAA GCCCATAACT
                                                                             960
       CAGCCACTGG CCTCAATAGG ACCACAGTCA CGATGATCAC AGTCTCTGGA AGTGCTCCTG
       TCCTCTCAGC TGTGGCCACC GTCGGCATCA CGATTGGAGT GCTGGCCAGG GTGGCTCTGA
       TATAGCAGCC CTGGTGTATT TTCGATATTT CAGGAAGACT GGCAGATTGG ACCAGACCCT
                                                                            1140
       GAATTCTTCT AGCTCCTCCA ATCCCATTTT ATCCCATGGA ACCACTAAAA ACAAGGTCTG
                                                                            1200
10
       CTCTGCTCCT GAAGCCCTAT ATGCTGGAGA TGGACAACTC AATGAAAATT TAAAGGGAAA
                                                                            1260
       ACCCTCAGGC CTGAGGTGTG TGCCACTCAG AGACTTCACC TAACTAGAGA CAGTCAAACT
                                                                            1320
       GCAAACCATG GTGAGAAATT GACGACTTCA CACTATGGAC AGCTTTTCCC AAGATGTCAA
                                                                            1380
       AACAAGACTC CTCATCATGA TAAGGCTCTT ACCCCCTTTT AATTTGTCCT TGCTTATGCC
                                                                            1440
       TGCCTCTTTC GCTTGGCAGG ATGATGCTGT CATTAGTATT TCACAAGAAG TAGCTTCAGA
                                                                            1500
15
       GGGTAACTTA ACAGAGTGTC AGATCTATCT TGTCAATCCC AACGTTTTAC ATAAAATAAG
                                                                            1560
       AGATCCTTTA GTGCACCCAG TGACTGACAT TAGCAGCATC TTTAACACAG CCGTGTGTTC
                                                                            1620
       AAATGTACAG TGGTCCTTTT CAGAGTTGGA CTTCTAGACT CACCTGTTCT CACTCCCTGT
                                                                            1680
       TTTAATTCAA CCCAGCCATG CAATGCCAAA TAATAGAATT GCTCCCTACC AGCTGAACAG
                                                                            1740
       GGAGGAGTCT GTGCAGTTTC TGACACTTGT TGTTGAACAT GGCTAAATAC AATGGGTATC
20
       GCTGAGACTA AGTTGTAGAA ATTAACAAAT GTGCTGCTTG GTTAAAATGG CTACACTCAT
                                                                            1860
       CTGACTCATT CTTTATTCTA TTTTAGTTGG TTTGTATCTT GCCTAAGGTG CGTAGTCCAA
                                                                            1920
       CTCTTGGTAT TACCCTCCTA ATAGTCATAC TAGTAGTCAT ACTCCCTGGT GTAGTGTATT
                                                                            1980
       CTCTAAAAGC TTTAAATGTC TGCATGCAGC CAGCCATCAA ATAGTGAATG GTCTCTCTTT
                                                                            2040
       GGCTGGAATT ACAAAACTCA GAGAAATGTG TCATCAGGAG AACATCATAA CCCATGAAGG
                                                                            2100
25
       ATAAAAGCCC CAAATGGTGG TAACTGATAA TAGCACTAAT GCTTTAAGAT TTGGTCACAC
                                                                            2160
       TCTCACCTAG GTGAGCGCAT TGAGCCAGTG GTGCTAAATG CTACATACTC CAACTGAAAT
                                                                            2220
       2280
       ACACAGGAGA TTCCAGTCTA CTTGAGTTAG CATAATACAG AAGTCCCCTC TACTTTAACT
                                                                            2340
       TTTACAAAAA AGTAACCTGA ACTAATCTGA TGTTAACCAA TGTATTTATT TCTGTGGTTC
                                                                            2400
30
       TGTTTCCTTG TTCCAATTTG ACAAAACCCA CTGTTCTTGT ATTGTATTGC CCAGGGGGAG
                                                                            2460
       CTATCACTGT ACTTGTAGAG TGGTGCTGCT TTAATTCATA AATCACAAAT AAAAGCCAAT
       TAGCTCTATA ACT
       Seq ID NO: 625 Protein sequence
35
       Protein Accession #: AAA59907.1
                              21
                                         31
                                                    41
                                                                51
                  11
       MGPPSAPPCR LHVPWKEVLL TASLLTFWNP PTTAKLTIES TPFNVAEGKE VLLLAHNLPQ
                                                                              60
40
       NRIGYSWYKG ERVDGNSLIV GYVIGTQQAT PGPAYSGRET IYPNASLLIQ NVTQNDTGFY
TLOVIKSDLV NEEATGOFHV YPELPKPSIS SNNSNPVEDK DAVAFTCEPE VQNTTYLWWV
                                                                             120
                                                                             180
       NGQSLPVSPR LQLSNGNMTL TLLSVKRNDA GSYECEIQŃP ASANRSDPVT LNVLYGPDVP
                                                                             240
       TISPSKANYR PGENLNLSCH AASNPPAQYS WFINGTFQQS TQELFIPNIT VNNSGSYMCQ
       AHNSATGLNR TTVTMITVSG SAPVLSAVAT VGITIGVLAR VALI
45
       Seq ID NO: 626 DNA sequence
       Nucleic Acid Accession #: M18728.1
Coding sequence: 1355..1657
50
                                                                51
       GGAGCTCAAG CTCCTCTACA AAGAGGTGGA CAGAGAAGAC AGCAGAGACC ATGGGACCCC
                                                                              60
       CCTCAGCCCC TCCCTGCAGA TTGCATGTCC CCTGGAAGGA GGTCCTGCTC ACAGCCTCAC
                                                                             120
       TTCTAACCTT CTGGAACCCA CCCACCACTG CCAAGCTCAC TATTGAATCC ACGCCATTCA
                                                                             180
55
       ATGTCGCAGA GGGGAAGGAG GTTCTTCTAC TCGCCCACAA CCTGCCCCAG AATCGTATTG
                                                                             240
       GTTACAGCTG GTACAAAGGC GAAAGAGTGG ATGGCAACAG TCTAATTGTA GGATATGTAA
                                                                             300
       TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACAGTGG TCGAGAGACA ATATACCCCA
                                                                             360
       ATGCATCCCT GCTGATCCAG AACGTCACCC AGAATGACAC AGGATTCTAT ACCCTACAAG
                                                                             420
       TCATAAAGTC AGATCTTGTG AATGAAGAAG CAACCGGACA GTTCCATGTA TACCCGGAGC
                                                                             480
60
       TGCCCAAGCC CTCCATCTCC AGCAACAACT CCAACCCCGT GGAGGACAAG GATGCTGTGG
       CCTTCACCTG TGAACCTGAG GTTCAGAACA CAACCTACCT GTGGTGGGTA AATGGTCAGA
                                                                             600
       GCCTCCCGGT CAGTCCCAGG CTGCAGCTGT CCAATGGCAA CATGACCCTC ACTCTACTCA
                                                                             660
       GCGTCAAAAG GAACGATGCA GGATCCTATG AATGTGAAAT ACAGAACCCA GCGAGTGCCA
                                                                             720
       ACCGCAGTGA CCCAGTCACC CTGAATGTCC TCTATGGCCC AGATGTCCCC ACCATTTCCC
                                                                             780
65
       CCTCAAAGGC CAATTACCGT CCAGGGGAAA ATCTGAACCT CTCCTGCCAC GCAGCCTCTA
                                                                             840
       ACCCACCTGC ACAGTACTCT TGGTTTATCA ATGGGACGTT CCAGCAATCC ACACAAGAGC
       TCTTTATCCC CAACATCACT GTGAATAATA GCGGATCCTA TATGTGCCAA GCCCATAACT
                                                                             960
       CAGCCACTGG CCTCAATAGG ACCACAGTCA CGATGATCAC AGTCTCTGGA AGTGCTCCTG
                                                                            1020
       TCCTCTCAGC TGTGGCCACC GTCGGCATCA CGATTGGAGT GCTGGCCAGG GTGGCTCTGA
                                                                            1080
70
       TATAGCAGCC CTGGTGTATT TTCGATATTT CAGGAAGACT GGCAGATTGG ACCAGACCCT
                                                                            1140
       GAATTCTTCT AGCTCCTCCA ATCCCATTTT ATCCCATGGA ACCACTAAAA ACAAGGTCTG
                                                                            1200
       CTCTGCTCCT GAAGCCCTAT ATGCTGGAGA TGGACAACTC AATGAAAATT TAAAGGGAAA
                                                                            1260
       ACCCTCAGGC CTGAGGTGTG TGCCACTCAG AGACTTCACC TAACTAGAGA CAGTCAAACT
       GCAAACCATG GTGAGAAATT GACGACTTCA CACTATGGAC AGCTTTTCCC AAGATGTCAA
                                                                            1380
75
       AACAAGACTC CTCATCATGA TAAGGCTCTT ACCCCCTTTT AATTTGTCCT TGCTTATGCC
                                                                            1440
       TGCCTCTTC GCTTGGCAGG ATGATGCTGT CATTAGTATT TCACAAGAAG TAGCTTCAGA
GGGTAACTTA ACAGAGTGTC AGATCTATCT TGTCAATCCC AACGTTTTAC ATAAAATAAG
                                                                            1500
                                                                            1560
       AGATCCTTTA GTGCACCCAG TGACTGACAT TAGCAGCATC TTTAACACAG CCGTGTGTTC
                                                                            1620
       AAATGTACAG TGGTCCTTTT CAGAGTTGGA CTTCTAGACT CACCTGTTCT CACTCCCTGT
80
       TTTAATTCAA CCCAGCCATG CAATGCCAAA TAATAGAATT GCTCCCTACC AGCTGAACAG
                                                                            1740
       GGAGGAGTCT GTGCAGTTTC TGACACTTGT TGTTGAACAT GGCTAAATAC AATGGGTATC
                                                                            1800
       GCTGAGACTA AGTTGTAGAA ATTAACAAAT GTGCTGCTTG GTTAAAATGG CTACACTCAT
                                                                            1860
       CTGACTCATT CTTTATTCTA TTTTAGTTGG TTTGTATCTT GCCTAAGGTG CGTAGTCCAA
                                                                            1920
       CTCTTGGTAT TACCCTCCTA ATAGTCATAC TAGTAGTCAT ACTCCCTGGT GTAGTGTATT
                                                                            1980
85
       CTCTAAAAGC TTTAAATGTC TGCATGCAGC CAGCCATCAA ATAGTGAATG GTCTCTCTTT
                                                                            2040
       GGCTGGAATT ACAAAACTCA GAGAAATGTG TCATCAGGAG AACATCATAA CCCATGAAGG
                                                                            2100
       ATAAAAGCCC CAAATGGTGG TAACTGATAA TAGCACTAAT GCTTTAAGAT TTGGTCACAC
                                                                            2160
```

```
TCTCACCTAG GTGAGCGCAT TGAGCCAGTG GTGCTAAATG CTACATACTC CAACTGAAAT
                                                                       2220
      2280
      ACACAGGAGA TTCCAGTCTA CTTGAGTTAG CATAATACAG AAGTCCCCTC TACTTTAACT
                                                                       2340
      TTTACAAAAA AGTAACCTGA ACTAATCTGA TGTTAACCAA TGTATTTATT TCTGTGGTTC
                                                                       2400
 5
      TGTTTCCTTG TTCCAATTTG ACAAAACCCA CTGTTCTTGT ATTGTATTGC CCAGGGGGAG
                                                                       2460
       CTATCACTGT ACTTGTAGAG TGGTGCTGCT TTAATTCATA AATCACAAAT AAAAGCCAAT
      TAGCTCTATA ACT
      Seq ID NO: 627 Protein sequence
10
      Protein Accession #: AAA59908.1
                                       31
      MDSFSQDVKT RLLIMIRLLP PFNLSLLMPA SFAWQDDAVI SISQEVASEG NLTECQIYLV
                                                                         60
15
      NPNVLHKIRD PLVHPVTDIS SIFNTAVCSN VQWSFSELDF
      Seg ID NO: 628 DNA sequence
      Nucleic Acid Accession #: M18728.1
      Coding sequence: 2370..2501
20
                                      31
                                                 41
                                                            51
      GGAGCTCAAG CTCCTCTACA AAGAGGTGGA CAGAGAAGAC AGCAGAGACC ATGGGACCCC
                                                                         60
      CCTCAGCCCC TCCCTGCAGA TTGCATGTCC CCTGGAAGGA GGTCCTGCTC ACAGCCTCAC
                                                                         120
25
      TTCTAACCTT CTGGAACCCA CCCACCACTG CCAAGCTCAC TATTGAATCC ACGCCATTCA
                                                                         180
      ATGTCGCAGA GGGGAAGGAG GTTCTTCTAC TCGCCCACAA CCTGCCCCAG AATCGTATTG
                                                                        240
      GTTACAGCTG GTACAAAGGC GAAAGAGTGG ATGGCAACAG TCTAATTGTA GGATATGTAA
                                                                        300
      TAGGAACTCA ACAAGCTACC CCAGGGCCCG CATACAGTGG TCGAGAGACA ATATACCCCA
                                                                         360
      ATGCATCCCT GCTGATCCAG AACGTCACCC AGAATGACAC AGGATTCTAT ACCCTACAAG
                                                                         420
30
      TCATAAAGTC AGATCTTGTG AATGAAGAAG CAACCGGACA GTTCCATGTA TACCCGGAGC
                                                                         480
      TGCCCAAGCC CTCCATCTCC AGCAACAACT CCAACCCCGT GGAGGACAAG GATGCTGTGG
                                                                         540
      CCTTCACCTG TGAACCTGAG GTTCAGAACA CAACCTACCT GTGGTGGGTA AATGGTCAGA
                                                                         600
      GCCTCCCGGT CAGTCCCAGG CTGCAGCTGT CCAATGGCAA CATGACCCTC ACTCTACTCA
                                                                         660
      GCGTCAAAAG GAACGATGCA GGATCCTATG AATGTGAAAT ACAGAACCCA GCGAGTGCCA
                                                                         720
35
      ACCGCAGTGA CCCAGTCACC CTGAATGTCC TCTATGGCCC AGATGTCCCC ACCATTTCCC
                                                                         780
      CCTCAAAGGC CAATTACCGT CCAGGGGAAA ATCTGAACCT CTCCTGCCAC GCAGCCTCTA
      ACCCACCTGC ACAGTACTCT TGGTTTATCA ATGGGACGTT CCAGCAATCC ACACAAGAGC
                                                                         900
      TCTTTATCCC CAACATCACT GTGAATAATA GCGGATCCTA TATGTGCCAA GCCCATAACT
                                                                         960
      CAGCCACTGG CCTCAATAGG ACCACAGTCA CGATGATCAC AGTCTCTGGA AGTGCTCCTG
                                                                        1020
40
      TCCTCTCAGC TGTGGCCACC GTCGGCATCA CGATTGGAGT GCTGGCCAGG GTGGCTCTGA
                                                                       1080
      TATAGCAGCC CTGGTGTATT TTCGATATTT CAGGAAGACT GGCAGATTGG ACCAGACCCT
                                                                        1140
      GAATTCTTCT AGCTCCTCCA ATCCCATTTT ATCCCATGGA ACCACTAAAA ACAAGGTCTG
                                                                        1200
      CTCTGCTCCT GAAGCCCTAT ATGCTGGAGA TGGACAACTC AATGAAAATT TAAAGGGAAA
      ACCCTCAGGC CTGAGGTGTG TGCCACTCAG AGACTTCACC TAACTAGAGA CAGTCAAACT
                                                                       1320
45
      GCAAACCATG GTGAGAAATT GACGACTTCA CACTATGGAC AGCTTTTCCC AAGATGTCAA
                                                                       1380
      AACAAGACTC CTCATCATGA TAAGGCTCTT ACCCCCTTTT AATTTGTCCT TGCTTATGCC
                                                                       1440
      TGCCTCTTTC GCTTGGCAGG ATGATGCTGT CATTAGTATT TCACAAGAAG TAGCTTCAGA
                                                                        1500
      GGGTAACTTA ACAGAGTGTC AGATCTATCT TGTCAATCCC AACGTTTTAC ATAAAATAAG
                                                                        1560
      AGATCCTTTA GTGCACCCAG TGACTGACAT TAGCAGCATC TTTAACACAG CCGTGTGTTC
50
      AAATGTACAG TGGTCCTTTT CAGAGTTGGA CTTCTAGACT CACCTGTTCT CACTCCCTGT
                                                                        1680
       TTTAATTCAA CCCAGCCATG CAATGCCAAA TAATAGAATT GCTCCCTACC AGCTGAACAG
                                                                        1740
      GGAGGAGTCT GTGCAGTTTC TGACACTTGT TGTTGAACAT GGCTAAATAC AATGGGTATC
                                                                        1800
      GCTGAGACTA AGTTGTAGAA ATTAACAAAT GTGCTGCTTG GTTAAAATGG CTACACTCAT
                                                                       1860
      CTGACTCATT CTTTATTCTA TTTTAGTTGG TTTGTATCTT GCCTAAGGTG CGTAGTCCAA
                                                                        1920
55
      CTCTTGGTAT TACCCTCCTA ATAGTCATAC TAGTAGTCAT ACTCCCTGGT GTAGTGTATT
      CTCTAAAAGC TTTAAATGTC TGCATGCAGC CAGCCATCAA ATAGTGAATG GTCTCTCTTT
                                                                       2040
      GGCTGGAATT ACAAAACTCA GAGAAATGTG TCATCAGGAG AACATCATAA CCCATGAAGG
                                                                       21.00
      ATAAAAGCCC CAAATGGTGG TAACTGATAA TAGCACTAAT GCTTTAAGAT TTGGTCACAC
                                                                       2160
      2220
60
                                                                        2280
      ACACAGGAGA TTCCAGTCTA CTTGAGTTAG CATAATACAG AAGTCCCCTC TACTTTAACT
                                                                        2340
      TTTACAAAAA AGTAACCTGA ACTAATCTGA TGTTAACCAA TGTATTTATT TCTGTGGTTC
                                                                       2400
      TGTTTCCTTG TTCCAATTTG ACAAAACCCA CTGTTCTTGT ATTGTATTGC CCAGGGGGAG
                                                                       2460
      CTATCACTGT ACTTGTAGAG TGGTGCTGCT TTAATTCATA AATCACAAAT AAAAGCCAAT
                                                                       2520
65
      TAGCTCTATA ACT
      Seg ID NO: 629 Protein sequence
      Protein Accession #: AAA59909.1
70
                            21
                                       31
                                                 41
                                                            51
      MLTNVFISVV LFPCSNLTKP TVLVLYCPGG AITVLVEWCC FNS
75
      Seq ID NO: 630 DNA sequence
Nucleic Acid Accession #: NM_016639.1
      Coding sequence: 40..429
                 11
                            21
                                       31
                                                  41
                                                            51
80
       GCGGCGGGCG CAGACAGCGG CGGGCGCAGG ACGTGCACTA TGGCTCGGGG CTCGCTGCGC
                                                                         60
      120
      GAGCAAGCGC CAGGCACCGC CCCCTGCTCC CGCGGCAGCT CCTGGAGCGC GGACCTGGAC
                                                                         180
      AAGTGCATGG ACTGCGCGTC TTGCAGGGCG CGACCGCACA GCGACTTCTG CCTGGGCTGC
                                                                         240
85
      GCTGCAGCAC CTCCTGCCCC CTTCCGGCTG CTTTGGCCCA TCCTTGGGGG CGCTCTGAGC
                                                                         300
       CTGACCTTCG TGCTGGGGCT GCTTTCTGGC TTTTTGGTCT GGAGACGATG CCGCAGGAGA
                                                                         360
       GAGAAGTTCA CCACCCCAT AGAGGAGACC GGCGGAGAGG GCTGCCCAGC TGTGGCGCTG
                                                                         420
```

		/086443					
		AATGTGCCCC AGTCTCTGCC					480 540
		GCGGTGAATC					600
_		TTGCCCTGCC					660
5		TGACACTGAC					720
		GACCTGGGGG					780
		GTCCTGAAAT					840
		GGGCTGGCCC					900 960
10		GGAGGAGATA TCTTTAACTT			GAGGGGAGGG	AGAATITATI	900
10	MAIMMAGMA	ICITIAACIT	Internation	ALUE LA			
	Seq ID NO:	631 Protei	in sequence				
	Protein Acc	ession #: N	NP_057723.1				
1.5	_						
15	1	11	21	31	41	51 	
	MADGGLDDIJ.	 RLLVLGLWLA	LIRSVAGEOA	PGTAPCSRGS	SWSADI-DKCM	DCASCRARPH	60
	SDFCLGCAAA	PPAPFRLLWP	ILGGALSLTF	VLGLLSGFLV	WRRCRRREKF	TTPIEETGGE	120
••	GCPAVALIQ					*	
20							
	-	632 DNA se					
		id Accession Lence: 79		316.1			
	Courne sequ	delice: /9	2556				
25	1	11	21	31	41	51	
	1]		1)	
		GGAAAATGAT					60
		CGGCCGAGAT TGTTGCTTGG					120 180
30		CACATCTTTC					240
		CCCCTAGGCC					300
	AAAGAGCATA	TTATTCACTT	GGAAAGGAAC	AAAGACCTTT	TGCCTGAAGA	TTTTGTGGTT	360
	TATACTTACA	ACAAGGAAGG	GACTTTAATC	ACTGACCATC	CCAATATACA	GAATCATTGT	420
35		GCTATGTGGA					480 540
55		GATTGCTGCA TTGAGCACAT					600
		CCAACAAGGA					660
		CTCAGCTACT					720
40		TTGTCGTAGA					780
40		AGATGATTCT					840
		TGCTAGTTGG GTGATGTGCT					900 960
		ATGACAGTGC					1020
		TGGGAACAGT					1080
45		TGGAGACATT					1140
		ATGATGGGAG					1200
	GGAGCATCGG	GTTCCAGAAA GAGGAAACTG	CTTTAGCAGT	TGCAGTGCAG	AGGACTTTGA	CTATACT	1260 1320
	CCCTCCTGTG	GTAATAAGTT	GGTGGACGCT	GGGGAAGAGT	GTGACTGTGG	TACTCCAAAG	1380
50		TGGACCCTTG					1440
		GTGACTGTTG					1500
		GTGAGTGTGA					1560
		TTATTCAGAA AGTATTATGA					1620 1680
55		ATTGTTTCAT					1740
-		ATGAATACAA					1800
		TACAAGAGAT					1860
		CCAAATGTTG					1920
60		ACGAAGGCAC				TGGACATGGG	1980 2040
00						AAATTGTGAG	2100
	ACTAAAGGAT	ACGGAGGAAG	TGTGGACAGT	GGACCTACAT	ACAATGAAAT	GAATACTGCA	2160
	TTGAGGGACG	GACTTCTGGT	CTTCTTCTTC	CTAATTGTTC	CCCTTATTGT	CTGTGCTATT	2220
65						GAGATCACAA GAGTGTTCCT	2280 2340
05						CAGATTTGCA	2400
						TCCACCACAA	2460
						ACCTCCTTTA	2520
70						GGGAACTGAG	2580
70						AACTATGAAT	2640 2700
	GAAAACAAAA AGTTGTGAAA	TACAAGGAAA	TGCAGTAAAG	CCAGGGAATT	TACAATAACA	TGAGTGTGAG TTTCCGTTTC	2760
	CATCATTGAA	TAAGTCTTAT	TCAGTCATCG	GTGAGGTTAA	TGCACTAATC	ATGGATTTT	2820
	TGAACATGTT	ATTGCAGTGA	TTCTCAAATT	AACTGTATTG	GTGTAAGATT	TTTGTCATTA	2880
75	AGTGTTTAAG	TGTTATTCTG	AATTTTCTAC	CTTAGTTATC	ATTAATGTAG	TTCCTCATTG	2940
						ATATCTAATA	3000 3060
						TCACTCACTA AGATGTCATA	3120
	TTATTTTAAG	AGTACAAAAT	ATACTAAAAG	AGTGTGTGTG	TATTCACGCA	GTTACTCGCT	3180
80						TTTAATATTA	3240
	GAATTTCTAT	TATGAATCAT	GTGAAAGCAT	GACATTCGTT	CACAATAGCA	CTATTTTAAA	3300
	TAAATTATAA	GCTTTAAGGT	ACGAAGTATT	TAATAGATCT	AATCAAATAT	GTTGATTCAT	3360
	GGCTATAATA	AAGCAGGAGC	AATTATAAAA TTTATAAAA	GAACTTCAATCA	ALIGNACITI	TACAAAACCA TAAATCATTT	3420 3480
85	AGAATGTTTA	CATTTACTA	GGTGTGCTGG	GTCATGTAAA	ATATTAGACA	CTAATATTTT	3540
	CATAGAAATT	AGGCTGGAGA	AAGAAGGAAG	AAATGGTTTT	CTTAAATACC	TACAAAAAAG	3600
	TTACTGTGGT	ATCTATGAGT	TATCATCTTA	GCTGTGTTAA	AAATGAATTT	TTACTATGGC	3660

	WO 02.	/086443					
_	AAAGTTTAAT TGTGTATATA	TGGATCGTAA AATAGGTTTA TACATATACA AAAAAAAAA	TTAACTGAAT AATACAACAT	TTCATTAGTT	TTTTAAAAGT	GTTTTTGGTT	3720 3780 3840
5		633 Protei cession #: N					
	1	11	21	31	41	51	
10	PYSKQVSYVI EGVHNSSIAL	 TLRVRWLLLL QAEGKEHIIH SDCFGLRGLL EEEPPSMTQL	LERNKOLLPE HLENASYGIE	DFVVYTYNKE PLQNSSHFEH	GTLITDHPNI IIYRMDDVYK	QNHCHYRGYV EPLKCGVSNK	60 120 180 240
15	LLANYLDSMY AQLVLKKGFG RDCSCGAKSC LVDAGEECDC	IMLNIRIVLV GTAGMAFVGT IMNSGASGSR GTPKECELDP QFCQPDVFIQ	GLEIWTNGNL VCSRSHAGGI NFSSCSAEDF CCEGSTCKLK	INIVGGAGDV NVFGQITVET EKLTLNKGGN SFAECAYGDC	LGNFVQWREK FASIVAHELG CLLNIPKPDE CKDCRFLPGG	FLITRRHDS HNLGMNHDDG AYSAPSCGNK TLCRGKTSEC	300 360 420 480 540
20	IEVNSKGDRF WGVDFQLGSD NCHCENGWAP DQLWRSYFRK	GNCGFSGNEY VPDPGMVNEG PNCETKGYGG KRSQTYESDG PPPQPKVSSQ	KKCATGNALC TKCGAGKICR SVDSGPTYNE KNQANPSRQP	GKLQCENVQE NFQCVDASVL MNTALRDGLL GSVPRHVSPV	IPVFGIVPAI NYDCDVQKKC VFFFLIVPLI	IQTPSRGTKC HGHGVCNSNK VCAIFIFIKR	600 660 720 780
25							
-		634 DNA se id Accession lence: 56!	ı#: NM_002	091.1			
30	1	11	21	31	41	51	
35	CGGCAGTGAG AGCGGTCCCG	CTTCCCAGCC CTCCCGCTGG CTGCCTGCGG GTGGGGCACT	TCCTGCTGGC GCGGAGGGAC	GCTGGTCCTC CGTGCTGACC	TGCCTAGCGC AAGATGTACC	CCCGGGGGCG CGCGCGGCAA	60 120 180 240
40	GAATTTGCTG GGCCTTGGGC AGGTTCAAAA	AGCCTGAAGC GGTCTCATAG AATCAGCAGC GGCAAAGTTG AACCAGCAAT	AAGCAAAGGA CTTCGTGGGA GTAGACTCTC	GAACAGAAAC TTCAGAGGAT TGCTCCAGGT	CACCAGCCAC AGCAGCAACT TCTCAACGTG	CTCAACCCAA TCAAAGATGT AAGGAAGGAA	300 360 420 480 540
	TAAGAGACTG AAATATTTGA CTTCTGGTTT TTTTTATATC	AGTTCTGCAA CTATTCTGTA AAACTTGTTT TAGGCTACCT	GCATCAGTTC TCTTTCATCC GCTGTGAACA	TACGGATCAT TTGACTAAAT ATTGTCGAAA	CAACAAGATT TCGTGATTTT AGAGTCTTCC	TCCTTGTGCA CAAGCAGCAT AATTAATGCT	600 660 720 780
45		AACACAT 635 Protes cession #: 1					
50	1	11	21	31	41	51	
	<u> </u>]	1			dww.cmcmccc	60
55	VSERGSLKQQ	LALVLCLAPR LREYIRWEEA LSAPGSQREG	ARNLLGLIEA				120
		636 DNA se id Accession Lence: 265.	1#: NM_016	522.1			
60	1 GCGGAAGCAG CTGGCAAAAG	11 CGAGGAGGGA CCGAGGCTGG	21 GCCCCCTTTG ATTTGGGGGA	31 GCCGTCCTCC GGAATATTAG	41 GTGGAACCGG ACTCGGAGGA	51 TTTTCCGAGG GTCTGCGCGC	60 120
65	CCGCACCCCA TCGGGGAAGT TGCCTCGTGG	CCCACTTCCT TGTGGCTGTC TCGTGTCTCT	GTGCTCGCCC GAGAATGGGG CAGGCTGCTG	GGGGGGCGTG GTCTGTGGGT TTCCTTGTAC GACAACGTGA	TGCCGTGCGG ACCTGTTCCT CCACAGGAGT CGGTCCGGCA	CGCGCTCGCT CTGCCGGAGT GCCCTGGAAG GCCCGTGCGC GGGGGAGAGC	240 300 360 420
70	ACCATCCTCT AACACCCAAA TACACCTGCT CAAGTATCTC	ATGCTGGGAA CGCAGTACAG CGGTGCAGAC CCAAAATTGT	TGACAACCGG TGACAAGTGG CATCGAGATC AGACAACCAC AGAGATTTCT	TGCCTGGATC CAGAACGTGG CCAAAGACCT TCAGATATCT	CTCGCGTGGT ATGTGTATGA CTAGGGTCCA CCATTAATGA	AAACCGCAGC CCTTCTGAGC CGAGGGCCCT CCTCATTGTG AGGGAACAAT GAGACACATC GGGCATCACC	540 600 660 720
75	CGGGAACAGT CGGAGAGTAA GTCCCCGTGG	CAGGGGACTA AGGTCACCGT GACAAAAGGG	CGAGTGCAGT GAACTATCCA GACACTGCAG	GCCTCCAATG CCATACATTT TGTGAAGCCT	ACGTGGCCGC CAGAAGCCAA CAGCAGTCCC	GCCCGTGGTA GGGTACAGGT CTCAGCAGAA	960 960 1020
80	AACAGACCTT TACACTTGCG CCAGGCGCCG CTGCCTCTTC	TCCTCTCAAA TGGCCTCCAA TCAGCGAGGT TGGTCTTGCA	ACTCATCTTC CAAGCTGGGC GAGCAACGGC CCTGCTTCTC	TTCAATGTCT CACACCAATG ACGTCGAGGA AAATTTTGAT	CTGAACATGA CCAGCATCAT GGGCAGGCTG GTGAGTGCCA	GAAAGTGGAA CTATGGGAAC GCTATTTGGT CGTCTGGCTG CTTCCCCACC	1140 1200 1260 1320
85	CCAATCAGAT GGGAGGGGAA	ATATACAAAT CAAAGAATAC	GAAATTAGAA TTTGGGGGGA	GAAACACAGC AAAGAGTTTT	CTCATGGGAC AAAAAAGAAA	CCGACAGCAA AGAAATTTGA TTGAAAATTG ACACAGCACA	1440 1500

WO 02/086443 CCCGGCTTGG ACCCACTGCA AGCTGCATCG TGCAACCTCT TTGGTGCCAG TGTGGGCAAG GGCTCAGCCT CTCTGCCCAC AGACTGCCCC CACGTGGAAC ATTCTGGAGC TGGCCATCCC 1680 1740 AAATTCAATC AGTCCATAGA GACGAACAGA ATGAGACCTT CCGGCCCAAG CGTGGCGCTT CCGGCCCAAG CGTGGCGCTG CGGGCACTTT GGTAGACTGT GCCACCACGG CGTGTGTTGT 1800 5 GAAACGTGAA ATAAAAAGAG CAAAAAAAAA AAAAAAAA Seg ID NO: 637 Protein seguence Protein Accession #: NP_057606.1 10 21 31 41 51 MGVCGYLFLP WKCLVVVSLR LLFLVPTGVP VRSGDATFPK AMDNVTVROG ESATLRCTID 60 NRVTRVAWLN RSTILYAGND KWCLDPRVVL LSNTQTQYSI EIQNVDVYDE GPYTCSVQTD 120 NHPKTSRVHL IVQVSPKIVE ISSDISINEG NNISLTCIAT GRPEPTVTWR HISPKAVGFV 180 15 SEDEYLEIQG ITREQSGDYE CSASNDVAAP VVRRVKVTVN YPPYISEAKG TGVPVGQKGT 240 LQCEASAVPS AEFQWYKDDK RLIEGKKGVK VENRPFLSKL IFFNVSEHDY GNYTCVASNK 300 LGHTNASIML FGPGAVSEVS NGTSRRAGCV WLLPLLVLHL LLKF Seg ID NO: 638 DNA seguence 20 Nucleic Acid Accession #: NM 012261.1 Coding sequence: 203..1045 21 31 41 51 11 25 GATTTGCTCT GCCAGCAGCT GTCGGTGCCG CGCTCGACAC CGAGTCCTAG CTAGGCGCTC 60 ACAGAATACG CGCTCCCTCC CTCCCCCTTC TCTGTCCCCC GCCTCTCGCT CACCCCGGCC 180 CACTCCAGCG GCGACTTGA GGGATTCCCT CTCTGGCGGC CTCTGCAGCA GCACAGCCGG CCTCATTCGG GGCACTGCGA GTATGGATCT CCAAGGAAGA GGGGTCCCCA GCATCGACAG 240 ACTTCGAGTT CTCCTGATGT TGTTCCATAC AATGGCTCAA ATCATGGCAG AACAAGAAGT 300 30 GGAAAATCTC TCAGGCCTTT CCACTAACCC TGAAAAAGAT ATATTTGTGG TGCGGGAAAA 360 TGGGACGACG TGTCTCATGG CAGAGTTTGC AGCCAAATTT ATTGTACCTT ATGATGTGTG 420 GGCCAGCAAC TACGTAGATC TGATCACAGA ACAGGCCGAT ATCGCATTGA CCCGGGGAGC TGAGGTGAAG GGCCGCTGTG GCCACAGCCA GTCGGAGCTG CAAGTGTTCT GGGTGGATCG 540 CGCATATGCA CTCAAAATGC TCTTTGTAAA GGAAAGCCAC AACATGTCCA AGGGACCTGA 600 35 GGCGACTTGG AGGCTGAGCA AAGTGCAGTT TGTCTACGAC TCCTCGGAGA AAACCCACTT 660 CAAAGACGCA GTCAGTGCTG GGAAGCACAC AGCCAACTCG CACCACCTCT CTGCCTTGGT 720 CACCCCGCT GGGAAGTCCT ATGAGTGTCA AGCTCAACAA ACCATTTCAC TGGCCTCTAG 780 TGATCCGCAG AAGACGGTCA CCATGATCCT GTCTGCGGTC CACATCCAAC CTTTTGACAT TATCTCAGAT TTTGTCTTCA GTGAAGAGCA TAAATGCCCA GTGGATGAGC GGGAGCAACT 900 40 GGAAGAAACC TTGCCCCTGA TTTTGGGGCT CATCTTGGGC CTCGTCATCA TGGTAACACT 960 1020 CGCGATTTAC CACGTCCACC ACAAAATGAC TGCCAACCAG GTGCAGATCC CTCGGGACAG ATCCCAGTAT AAGCACATGG GCTAGAGGCC GTTAGGCAGG CACCCCCTAT TCCTGCTCCC 1080 CCAACTGGAT CAGGTAGAAC AACAAAGCA CTTTTCCATC TTGTACACGA GATACACCAA 1140 CATAGCTACA ATCAAACAGG CCTGGGTATC TGAGGCTTGC TTGGCTTGTG TCCATGCTTA 45 AACCCACGGA AGGGGGAGAC TCTTTCGGAT TTGTAGGGTG AAATGGCAAT TATTCTCTCC 1260 1320 TGACTCTCCA AAGAGCAATA AATGCCACTT GGAGCTGTAT CTGGCCCCAA AGTTTAGGGA 1380 TTGAAAACAT GCTTCTTTGA GGAGGAAACC CCTTTAGGTT CAGAAGAATA TGGGGTGCTT 1440 TGCTCCCTTG GACACAGCTG GCTTATCCTA TACAGTTGTC AATGCACACA GAATACAACC 1500 50 TCATGCTCCC TGCAGCAAGA CCCCTGAAAG TGATTCATGC TTCTGGCTGG CATTCTGCAT 1560 GTTTAGTGAT TGTCTTGGGA ATGTTTCACT GCTACCCGCA TCCAGCGACT GCAGCACCAG 1620 AAAACGACTA ATGTAACTAT GCAGAGTTGT TTGGACTTCT TCCTGTGCCA GGTCCAAGTC 1680 GGGGGACCTG AAGAATCAAT CTGTGTGAGT CTGTTTTTCA AAATGAAATA AAACACACTA TTCTCTGGC 55 Seg ID NO: 639 Protein seguence Protein Accession #: NP_036393.1 41 51 21 31 60 MDLOGRGVPS IDRLRVLLML FHTMAQIMAE QEVENLSGLS TNPEKDIFVV RENGTTCLMA 60 EFAAKFIVPY DVWASNYVDL ITEQADIALT RGAEVKGRCG HSQSELQVFW VDRAYALKML 120 180 FVKESHNMSK GPEATWRLSK VQFVYDSSEK THFKDAVSAG KHTANSHHLS ALVTPAGKSY ECOAOOTISL ASSDPOKTVT MILSAVHIQP FDIISDFVFS EEHKCPVDER EQLEETLPLI 240 65 LGLILGLVIM VTLAIYHVHH KMTANOVOIP RDRSQYKHMG Seg ID NO: 640 DNA seguence Nucleic Acid Accession #: NM_002993.1 Coding sequence: 64..408 70 11 21 31 41 57 GGCACGAGCC AGTCTCCGCG CCTCCACCCA GCTCAGGAAC CCGCGAACCC TCTCTTGACC 60 ACTATGAGCC TCCCGTCCAG CCGCGCGGCC CGTGTCCCGG GTCCTTCGGG CTCCTTGTGC 75 GCGCTGCTCG CGCTGCTGCT CCTGCTGACG CCGCCGGGGC CCCTCGCCAG CGCTGGTCCT 180 GTCTCTGCTG TGCTGACAGA GCTGCGTTGC ACTTGTTTAC GCGTTACGCT GAGAGTAAAC CCCAAAACGA TTGGTAAACT GCAGGTGTTC CCCGCAGGCC CGCAGTGCTC CAAGGTGGAA 240 300 GTGGTAGCCT CCCTGAAGAA CGGGAAGCAA GTTTGTCTGG ACCCGGAAGC CCCTTTTCTA 360 AAGAAAGTCA TCCAGAAAAT TTTGGACAGT GGAAACAAGA AAAACTGAGT AACAAAAAAG 420 80 ACCATGCATC ATAAAATTGC CCAGTCTTCA GCGGAGCAGT TTTCTGGAGA TCCCTGGACC CAGTAAGAAT AAGAAGGAAG GGTTGGTTTT TTTCCATTTT CTACATGGAT TCCCTACTTT 540 GAAGAGTGTG GGGGAAAGCC TACGCTTCTC CCTGAAGTTT ACAGCTCAGC TAATGAAGTA 600

CTAATATAGT ATTTCCACTA TTTACTGTTA TTTTACCTGA TAAGTTATTG AACCCTTTGG

CAATTGACCA TATTGTGAGC AAAGAATCAC TGGTTATTAG TCTTTCAATG AATATTGAAT

TGAAGATAAC TATTGTATTT CTATCATACA TCCTTAAAG TCTTACCGAA AAGGCTGTGG ATTTCGTATG GAAATAATGT TTTATTAGTG TGCTGTTGAG GGAGGTATCC TGTTGTTCTT

ACTCACTCTT CTCATAAAAT AGGAAATATT TTAGTTCTGT TTTCTTGGGG AATATGTTAC

85

431

660

720

780

900

PCT/US02/12476

	W O 02	/086443					
5	TTATCTGTGC CTAATATATT CATGATTTAC ATTCTGGTCA TGATTGCTAA AATGATCTGT	AGAATATATT CTCTTCCTAT TCATTAAACT CTAAATATAC TTTACATAGA GCTCTGCAAA	TTAAGTTGTA TCCTTATTCA GGTTTTAGAT TTGATTTTGT ACTTTAGATA AATGTATTCT GTTTTGAAAA TACAGCATTG	GAATTTCTAA GTTTGATGTC ATGCTATTTT GATGAAGAAG CTTGGTTTTT TATATTTGAA	AAATTTAAGT TTCTTAGTAT TTCACTATAG CCCAAAAACA TAAATAAAAG CAATTTGAAT	TCTGTAAGGG GGCATAATGT GATGACTATA GATAAATTCC CAAAATTAAC ATAAATTCAT	960 1020 1080 1140 1200 1260 1320 1380
10	TTTAAAGGTT AAATTGCACT	$\begin{array}{c} \mathtt{TTGACCATTT} \\ \mathtt{TTTATTTTTT} \end{array}$	TGTTATGAGG CCTGTGTGTC TCTAAACCAA	AATTATACAT ATGTTGGTTT	GTATCACATT TTGGTACTTG	CACTATATTA	1440 1500
15		641 Protei cession #: N		31	41	51	
		 VPGPSGSLCA	LLALLLLLTP VASLKNGKQV	 PGPLASAGPV	 SAVLTELRCT	 CLRVTLRVNP	60
20	Seq ID NO: Nucleic Ac:	642 DNA se	equence n #: NM_013				
25	1	11	21	31	41	51	
30	CCGGGGGCGT TCTGCGCGCG	CGGCCTTTTG GCCGGTAAAG	GGCAGCATGG GTGCTGCTGC GAACCCCGCG TTCCGGCGGT	TGCTCGGCCT GCCTAAGCGC	GTTTCGGCCG AGCGTCTCCG	CCCCCCGCGC	60 120 180 240
	TGCAGGAGCT GGGCCGAGGC TCTGGGGCGC	GGCGCGGGCG GCAGGAGGCT CCCCCGCAAC	CTGGCGCATC GAGGATCAGC TCTGATCCGG GCTCTGCTCC	TGCTGGAGGC AGGCGCGCGT CTCTGGGCCT	CGAACGTCAG CCTGGCGCAG GGACGACGAC	GAGCGGGCGC CTGCTGCGCG CCCGACGCGC	300 360 420 480
35	ACGACGGCCC CCGAGCTGTT TGGCAGCCCC	CGCGGGCCCG GAGGTACTTG GCGCCGCCTC	GTCCCCGCCG GATGCTGAGG CTGGGACGGA CGCCGTGCCG CTGCTGCGTG	AGGCAGGCGA TTCTTGCGGG CCGACCACGA	CGAGACACCC AAGCGCGGAC TGTGGGCTCT	GACGTGGACC TCCGAGGGGG GAGCTGCCCC	540 600 660 720 780
40	TGCCTGCACG CAGAAGTGCC	CCGCCTCTTG CCCGCCATCC	CCACCCTGAG CGCCACCAGG TCTCACCCGA	CACTGCCCGG ACTTCTCCCC	ATCCCGTGCA GCCAGCACGT	CCCTGGGACC CCAGAGCAAC	900 960
45		643 Protei cession #: 1					
45				31 	41	51 	
50	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV	11 - RAGGVGLLVL AVQELARALA APAAQLARAL DPELLRYLLG	P_037403.1 21 LLLGLFRPPP	 ALCARPVKEP ARAEAQEAED AAQLVPAPVP	 RGLSAASPPL QQARVLAQLL AAALRPRPPV	 AETGAPRRFR RVWGAPRNSD YDDGPAGPDA	60 120 180 240
	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP	11 	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE	 ALCARPVKEP ARAEAQEAED AAQLVPAPVP	 RGLSAASPPL QQARVLAQLL AAALRPRPPV	 AETGAPRRFR RVWGAPRNSD YDDGPAGPDA	120 180
50	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac:	11 RAGGVGLLVL AVQELARALA APAAQLARAL DPELLRYLLG QVPARRLLPP	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE equence 1 #: NM_002	ALCARPVKEP ARAEAQEAED AAQLVPAPVP GVAAPRRLRR	 RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL	 AETGAPRRFR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL	120 180
50 55 60	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac: Coding sequence 1 CCCAGAGCCG CTGCCGACTT	11 RAGGVGLLVL AVQELARALA APAAQLARAL DPELLRYLLG QVPARRLLPP 644 DNA se id Accession dence: 681.	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE equence 1 #: NM_002 .2990 21 TTGCTGGCAT GCTGCTCCGC	ALCARPVKEP ARAEAQEAED AAQLVPAPVP GVAAPRRLRR 2214 31 CCCGGAGCTTC AGACGGGCT AGACGGGCT	RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL 41 CTCCCTTGCC GCAAAGCTGC	AETGAPRRFR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL 51 , AGCCAGGACG AACTAATGGT	120 180 240
50	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac: Coding sequ 1 CCCAGAGCCG CTGCCGACTT GTTGGCCTCC TCCCCTCGAC TAGGGTGGTT TGTCCCGGAGT TGTCCCGGAGT TGTCCCGGAGT TGTCCCGGAGT	11 RAGGVGLLVL AVQELARALA APAQLARAL DPELLRYLLG QVPARRLLPP 644 DNA se id Accession dence: 681. 11 CCTCCCCCTG GTCTTTGCCC CTGCCCACCT CTCGCCGGCG TCCCCCCCAC TCCCCCCCAC TCAGCCGCCC CTCCCCCCCAC TCAGCCGCCC CTCCCCCCCAC CTAGCAGCA CAGGCTGCCGC CAGCCTGCCGCCCCCCAC CCAGCCTGCCCCCCCAC CAGGCTGCCGCC	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE equence 1 #: NM_002 .2990 21 TTGCTGGCAT GCTGTCCGC GTGGAAGCAA TACCCTCCCA CTTCGGGCTT GAAGCCCTAC AGCCCTTGCA	ALCARPVKEP ARAEAQEAED AAQLVPAPVP GVAAPRRLRR 2214 31 CCCGAGCTTC AGACGGGGCT CTGCGCTGAT CAGATCCAGC TGTTTGGGTT CGGCTGAGA GAGCCTCTC	RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL 41 CTCCCTTGCC GCAAAGCTGC TGATGCGCCA ATCACCCAGT TGATTGTGTT GAAACAAAAG TCCAGTCGCC	AETGAPRRFR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL 51 AGCCAGGACG AACTAATGGT CAGACTITT GAATGTACAT TGGCTCTTCG GCCGGCCCT	120 180 240 60 120 180 240 300 420
50 55 60	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac: Coding sequ 1 CCCAGAGCCG CTGCCGACTT GTTGGCCTCGC TCCCCTCGAC TAGGGTGGTT CTAAGCTGAT TGTCCCGGAG TGGCCGTCGAG TGGCCGTCGAG CCGAGCCGG GCCCCGAGGCG GGCCCCGAGGCGG GGGCCGGGGG GGGCGGGGGCGGGGGCGGGGCGGGGGCGGGGGCGGGGGCGGGG	11 RAGGVGLLVL AVQELARALA APAAQLARAL DPELLRYLLG QVPARRLLPP 644 DNA se id Accession dence: 681. 11 CCTTCCCCTG GTCTTTGCCC CTGCCGCGCG TTGCCGCGCGC TCCCCCCCAG TTATGCAGCA CAGGAGGTGCG GCCCTGAGAT GGGTCCGCCT TCGCCCGCGT GCCCCCGAG TTGCCCGCGT TCGCCCGCGT GCCCCGCAG TTATGCAGCA CAGGAGGTGCT GCCCCGGAGAT GGGTCCGCCT GCCCCCGAGAT TCGCCCGCGT GTTTTGCAGTT	NP_037403.1 21 LLLGLFRPPP HLLEAERQER LRARLDPAAL RILAGSADSE equence 1 #: NM_002 .2990 21 TTGCTGGCAT GCTGCTCCCA GTGGAAGCAA TACCCTCCCA AGCCCTTGCA AGCCCTTGCA GCCGAGCGGT GCTAGGCCT GCCGAGCCGA	ALCARPVKEP ARAEAQEAED AAQLVPAPVP GVAAPRRLRR 2214 31 CCCGGAGCTTC AGACGGGCT CTGCGCTGAT CAGATCCAGC TGTTTGGGTTC CGGCTGGAG AGCCCTCTC ACCGCGGGAC GCCCCGGGAC GCCTCCCGGAAAACGT GCGTCCCGGA	RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL 41 CTCCCTTGCC GCAAAGCTGC TGATGCGCCA TGATGTGTT GAAACAAAG TCCAGTTGCC CCGCCGTGCC GCTTACCTGC CCTAGCGACA TGTTTTTTTTTT	AETGAPRRFR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL 51 AGCCAGGACG AACTAATGGT CAGACTTTT GAATGTACAT TGGCTCTTTCT GCCGGGCCCT CTCGCCCGCG CGCGCGCG	120 180 240 60 120 180 240 360 420 600 660 720
50556065	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac: Coding sequ 1 CCCAGAGCCG CTGCCGACTT GTTGGCCTCC TCCCCTCGAC TGTGCCGTAGT TGTCCCGGAG TGGCCGTAGGG CCGAGCCGC GGCCCCAGGG GCCCCAGGG CCGAGCCCG GGCCCCAGG TCTGCCTGCA CACTTGTCCAG TTTCAGGTGG TTTCAGGTGG TTTCAGGTGG TTTCAGGTGG	11 RAGGVGLLVL AVQELARALA APAAQLARAL APAAQLARAL DPELLRYLLG QVPARRLLPP 644 DNA se id Accession dence: 681. 11 CCTTCCCCTG GTCTTTGCCC CTGCCGCACCT CTCGCCGCGC TTATGCAGCA CAGGATGCGG AGGAGGTGCT GCCCTGAGAT GGGTCCGCTG AGTTTGCATT AAACGACCG TGGACTGGGC TGGCCTGCGTGAGT AAACGACCG TGGACTGGGC GTGCCTTGCC ATCAAGAAGT	NP_037403.1 21 LLLGLFRPPP	ALCARPVKEP ARAEAQEAED ARAEAQEAED ARAUVAPPVP GVAAPRRLRR 2214 31 CCCGGAGCTTC AGACGGGGCT CTGCGCTGAT CAGATCCAGC TGTTTGGGTTCAGC CGCGGGACAAACGT GCCCCGGGAC CGCAAAACGT CGCCTCCGCAC CCCCGGGCC CGGAAAACGT CGCCCTCGTCCC ACAATAGATG ATATTGCATC ATATTGTTTC	RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL 41 CTCCCTTGCC GCAAAGCTGC TGATGCGCCA ATCACCCAGT TGATTGTGTT GAAACAAAAG TCCAGTCGCC CGTACCTGCC CGTACCTGCC CCTAGCGACA GCCAGCCAGC TTTTTTTTACC CTGGGCAGCC TGGTTCAC TGGTGTTCAA AAATTAATA	AETGAPRRFR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL 51 AGCCAGGACG AACTAATGGT CAGACTTTTT GAATGTACAT TGGCTCTTTCTT GAGCCGGGCCT GAGCCGGGCCC CGGCGCGCCC CGGCGGCGCT CTGCTTTTT TGGTTTTT TGGTTTTT TGGTTTTT TGGTTTTT TGGTTTTT TGGTTTTT TGGTTTTT TGGTTTTT TGGTTTTT TGGGTGTTTT AATGCAGCAT AAGCAAAGGCT	120 180 240 60 120 180 240 300 360 420 600 660 720 780 840 900
5055606570	Protein Acc 1 MAGSPLLWGP RSVPRGEAAG PALGLDDDPD EEAGDETPDV RVKRLETPAP Seq ID NO: Nucleic Ac: Coding sequ 1 CCCAGAGCCG CTGCCGACTT GTTGGCTTC TCCCCTCGAC TAGGCTGGTT TGTCCCGAG GGCCGTAGGG GCCCGAGG GGCCGGGGCT TCTGCCTGCAC CACTGTTCT CCTTGCCAG TTCTCAGGTG TTCTCAGGTG TTCAGGTGGT TTCAGGTGG TTCAGGTGA TTAATACCCA ATTTTATGCT ATGTTCTCAG CTAGAAAAAT	11 RAGGVGLLVL AVQELARALA APAQLARALA APAQLARAL DPELLRYLLG QVPARRLLPP 644 DNA se id Accession ence: 681. 11 CCTCCCCCTG GTCTTGCCGC TCCCCCCTG TCCCCCCTG TCCCCCCCAG TTATGCAGCA CAGGCTGCGG AGGAGGTGCT TCGCCGGGGA GTTTTGCATT TCGCCGGGG ATCAGACT TCGCCTGGC TCGCCTGGCT TCGCCTGGC TTTTGCATT TCACAGAAC TTCAAGAAC TTCAATAGAA GGTGACACCA GAAAGTTCAT ATCAATGCA GGCATTTTC	IP_037403.1 21 LLLGLFRPPP HLLEAERQER ERARLDPAAL RILAGSADSE equence 1 #: NM_002 2990 21 TTGCTGGCAT GCTGCACAC ATCTCCCA ATCTCCCACATCCCA AGCCTTGCA GCCGAGCGCT GCCGAGCGCT GCAGGGGT GCTGGGCCC CAAGGTGAAG CTGGGTCCAC CTGGGTCCAC CTGGGTCCAC CTGCGAGCCC CAAGGTGAAG CTGGGTCCAC CAAGGTGAAG CTGGGTCCAC CAAGGTGAAG CTGGGTCCAC CAAGGTGAAG CTGGGTCCAC CAAGATGAAG ATCTCTGAAGA TCCCGTGACT TCCCGTGACT TCCCGTGACT	ALCARPVKEP ARAEAQEAED AAQLVPAPVP GVAAPRRLRR 2214 31 CCCGAGCTTC AGACGGGCT CTGCGTGAT CAGATCCAGC GCCGGGAC GCCCGGGAC GCCCGGGCC CCGGAAACGT GCCCCGGAC CCTCGTCCT ACAGTCCGGAA CGGCCCTGGC CTGTTCCT ACATAGATG ATATGTTTC TGCATGTTTTC TGCATGTTTTC TGCATGTTTTC TATCCAGCT AATATCCTGT AAAAATTAAA ATTCAGT AATTCTTGG ATTCGTTTGG ATTCGTTTGG TAATATCTTGAT TTCGTCTTTGG TTGCTTTTGG	RGLSAASPPL QQARVLAQLL AAALRPRPPV AADHDVGSEL 41 CTCCCTTGCC GCAAAGCTGC TGATGCCCA ATCACCCAGT TGATTGTGT GAAACAAAAG TCCAGTGCC CCTAGCGACA GCAGCCAGG TTTTTTTAC CTGGTCACCAC TGCATCTCA GTGTTCAA CAATTTAATA AATACCCACT GCGTCAGGA GGATCTTTAT TTCCGTTGGA ATTTGGTAC ATTTGGAT ATTTGGTCA	AETGAPRRFR RVWGAPRNSD YDDGPAGPDA PPEGVLGALL 51 AGCCAGGACG AACTAATGGT CAGACTTTTT GAATGTACAT TGGCTCTTTCT GAGCCGGGCCT GAGCCGGGCCG CGCGCGCGCGCGCGCGGGGAGT ACTGATTTT TGGTTTTT TGGTTTTT TGGTTTT TGGTTTT TGGTTTT TGGTGTTTT TGGGTGTTTT TGGGTGTTTT TGGGTGTTTT TGGGTGTTTT AATGCAGCAT TGAGCATTCA AGCAAAGGCT GAAAATGAAA GCCGAAGCTT TATCTTGTTG AACGATTTAT	120 180 240 60 120 300 360 420 480 540 660 720 780 900 960 1080 1140 1200

```
ACGTCAAATC GACAACCATG GAACACCCCT CACTAGGCCA ACTTTCAGAG AAATTAATAG
                                                                          1680
       ACAACAACAT TAATGTCATC TTTGCAGTTC AAGGAAAACA ATTTCATTGG TATAAGGATC
                                                                          1740
       TTCTACCCCT CTTGCCAGGC ACCATTGCTG GTGAAATAGA ATCAAAGGCT GCAAACCTCA
                                                                          1800
 5
       ATAATTTGGT AGTGGAAGCC TATCAGAAGC TCATTTCAGA AGTGAAAGTT CAGGTGGAAA
                                                                          1860
       ACCAGGTACA AGGCATCTAT TTTAACATTA CCGCCATCTG TCCAGATGGG TCCAGAAAGC
                                                                          1920
       CAGGCATGGA AGGATGCAGA AACGTGACGA GCAATGATGA AGTTCTTTTC AATGTAACAG
       TTACAATGAA AAAATGTGAT GTCACAGGAG GAAAAAACTA TGCAATAATC AAACCTATTG
                                                                          2040
                                                                          2100
       GTTTTAATGA AACCGCTAAA ATTCATATAC ACAGAAACTG CAGCTGTCAG TGTGAGGACA
10
       ACAGAGGACC TAAAGGAAAG TGTGTAGATG AAACTTTTCT AGATTCCAAG TGTTTCCAGT
                                                                          2160
       GTGATGAGAA TAAATGTCAT TTTGATGAAG ATCAGTTTTC TTCTGAGAGT TGCAAGTCAC
                                                                          2220
       ACAAGGATCA GCCTGTTTGC AGTGGTCGAG GAGTTTGTGT TTGTGGGAAA TGTTCATGTC
                                                                          2280
       ACAAAATTAA GCTTGGAAAA GTGTATGGAA AATACTGTGA AAAGGATGAC TTTTCTTGTC
                                                                          2340
       CATATCACCA TGGAAATCTG TGTGCTGGGC ATGGAGAGTG TGAAGCAGGC AGATGCCAAT
15
       GCTTCAGTGG CTGGGAAGGT GATCGATGCC AGTGCCCTTC AGCAGCAGCC CAGCACTGTG
                                                                          2460
       TCAATTCAAA GGGCCAAGTG TGCAGTGGAA GAGGCACGTG TGTGTGTGGA AGGTGTGAGT
                                                                          2520
       GCACCGATCC CAGGAGCATC GGCCGCTTCT GTGAACACTG CCCCACCTGT TATACAGCCT
                                                                          2580
       GCAAGGAAAA CTGGAATTGT ATGCAATGCC TTCACCCTCA CAATTTGTCT CAGGCTATAC
                                                                          2640
       TTGATCAGTG CAAAACCTCA TGTGCTCTCA TGGAACAACA GCATTATGTC GACCAAACTT
20
       CAGAATGTTT CTCCAGCCCA AGCTACTTGA GAATATTTTT CATCATTTTC ATAGTTACAT
                                                                          2760
       TCTTGATTGG GTTGCTTAAA GTCCTGATCA TTAGACAGGT GATACTACAA TGGAATAGTA
                                                                          2820
       ATAAAATTAA GTCCTCATCA GATTACAGAG TGTCAGCCTC AAAAAAGGAT AAGTTGATTC
                                                                          2880
       TGCAAAGTGT TTGCACAAGA GCAGTCACCT ACCGACGTGA GAAGCCTGAA GAAATAAAAA
                                                                          2940
       TGGATATCAG CAAATTAAAT GCTCATGAAA CTTTCAGGTG CAACTTCTAA AAAAAGATTT
                                                                          3000
25
       TTAAACACTT AATGGGAAAC TGGAATTGTT AATAATTGCT CCTAAAGATT ATAATTTAA
                                                                          3060
       AAGTCACAGG AGGAGACAAA TTGCTCACGG TCATGCCAGT TGCTGGTTGT ACACTCGAAC
                                                                          3120
       GAAGACTGAC AAGTATCCTC ATCATGATGT GACTCACATA GCTGCTGACT TTTTCAGAGA
                                                                          3180
       AAAATGTGTC TTACTACTGT TTGAGACTAG TGTCGTTGTA GCACTTTACT GTAATATATA
                                                                          3240
       ACTTATTTAG ATCAGCATAG AATGTAGATC CTCTGAAGAG CACTGATTAC ACTTTACAGG
                                                                          3300
30
       TACCTGTTAT CCCTACGCTT CCCAGAGAGA ACAATGCTGT GAGAGAGTTT AGCATTGTGT
                                                                          3360
       CACTACAAGG GTACAGTAAT CCCTGCACTG GACATGTGAG GAAAAAAATA ATCTGGCAAG
       TATATTCTAA GGTTGCCAAA CACTTCAACA GTTGGTGGTT GAATAGACAA GAACAGCTAG
                                                                          3480
       ATGAATAAAT GATTCGTGTT TCACTCTTTC AAGAGGTGAA CAGATACAAC CTTAATCTTA
                                                                          3540
       AAAGATTATT GCTTTTTAAA GTGTGTAGTT TTATGCATGT GTGTTTATGG TTTGCTTATT
                                                                          3600
35
       TTTGCAAGAT GGATACTAAT TCCAGCATTC TCTCCTCTTT GCCTTTATGT TTTGTTTTCT
                                                                          3660
       TTTTTACAGG ATAAGTTTAT GTATGTCACA GATGACTGGA TTAATTAAGT GCTAAGTTAC
                                                                          3720
       TACTGCCATA AAAAACTAAT AATACAATGT CACTTTATCA GAATACTAGT TTTAAAAGCT
       GAATGTTAA
40
       Seq ID NO: 645 Protein sequence
       Protein Accession #: NP_002205
                                                              51
                                        31
                                                   41
45
       MCGSALAFFT AAFVCLONDR RGPASFLWAA WVFSLVLGLG QGEDNRCASS NAASCARCLA
       LGPECGWCVQ EDFISGGSRS ERCDIVSNLI SKGCSVDSIE YPSVHVIIPT ENEINTQVTP
                                                                            120
       GEVSIQLRPG AEANFMLKVH PLKKYPVDLY YLVDVSASMH NNIEKLNSVG NDLSRKMAFF
                                                                            180
       SRDFRLGFGS YVDKTVSPYI SIHPERIHNQ CSDYNLDCMP PHGYIHVLSL TENITEFEKA
                                                                            240
       VHROKISGNI DTPEGGFDAM LQAAVCESHI GWRKEAKRLL LVMTDQTSHL ALDSKLAGIV
                                                                            300
50
       VPNDGNCHLK NNVYVKSTTM EHPSLGQLSE KLIDNNINVI FAVQGKQFHW YKDLLPLLPG
       TIAGEIESKA ANLNNLVVEA YQKLISEVKV QVENQVQGIY FNITAICPDG SRKPGMEGCR
                                                                            420
       NVTSNDEVLF NVTVTMKKCD VTGGKNYAII KPIGFNETAK IHIHRNCSCQ CEDNRGPKGK
                                                                            480
       CVDETFLDSK CFOCDENKCH FDEDOFSSES CKSHKDOPVC SGRGVCVCGK CSCHKIKLGK
                                                                            540
       VYGKYCEKDD FSCPYHHGNL CAGHGECEAG RCQCFSGWEG DRCQCPSAAA QHCVNSKGQV
                                                                            600
55
       CSGRGTCVCG RCECTDPRSI GRFCEHCPTC YTACKENWNC MQCLHPHNLS QAILDQCKTS
       CALMEOOHYV DOTSECFSSP SYLRIFFIIF IVTFLIGLLK VLIIRQVILQ WNSNKIKSSS
                                                                            720
       DYRVSASKKD KLILQSVCTR AVTYRREKPE EIKMDISKLN AHETFRCNF
       Seq ID NO: 646 DNA sequence
60
       Nucleic Acid Accession #: NM_003318.1
       Coding sequence: 1..2574
                                                              51
                                                   41
65
       ATGGAATCCG AGGATTTAAG TGGCAGAGAA TTGACAATTG ATTCCATAAT GAACAAAGTG
                                                                             60
       AGAGACATTA AAAATAAGTT TAAAAATGAA GACCTTACTG ATGAACTAAG CTTGAATAAA
                                                                            120
       ATTTCTGCTG ATACTACAGA TAACTCGGGA ACTGTTAACC AAATTATGAT GATGGCAAAC
       AACCCAGAGG ACTGGTTGAG TTTGTTGCTC AAACTAGAGA AAAACAGTGT TCCGCTAAGT
                                                                            240
       GATGCTCTTT TAAATAAATT GATTGGTCGT TACAGTCAAG CAATTGAAGC GCTTCCCCCA
                                                                            300
70
       GATAAATATG GCCAAAATGA GAGTTTTGCT AGAATTCAAG TGAGATTTGC TGAATTAAAA
                                                                            360
       GCTATTCAAG AGCCAGATGA TGCACGTGAC TACTTTCAAA TGGCCAGAGC AAACTGCAAG
                                                                            420
       AAATTTGCTT TTGTTCATAT ATCTTTTGCA CAATTTGAAC TGTCACAAGG TAATGTCAAA
                                                                            480
       AAAAGTAAAC AACTTCTTCA AAAAGCTGTA GAACGTGGAG CAGTACCACT AGAAATGCTG
                                                                            540
       GAAATTGCCC TGCGGAATTT AAACCTCCAA AAAAAGCAGC TGCTTTCAGA GGAGGAAAAG
                                                                            600
75
       AAGAATTTAT CAGCATCTAC GGTATTAACT GCCCAAGAAT CATTTTCCGG TTCACTTGGG
                                                                            660
       CATTTACAGA ATAGGAACAA CAGTTGTGAT TCCAGAGGAC AGACTACTAA AGCCAGGTTT
                                                                            720
       TTATATGGAG AGAACATGCC ACCACAAGAT GCAGAAATAG GTTACCGGAA TTCATTGAGA
                                                                            780
       CAAACTAACA AAACTAAACA GTCATGCCCA TTTGGAAGAG TCCCAGTTAA CCTTCTAAAT
                                                                            840
       AGCCCAGATT GTGATGTGAA GACAGATGAT TCAGTTGTAC CTTGTTTTAT GAAAAGACAA
80
       ACCTCTAGAT CAGAATGCCG AGATTTGGTT GTGCCTGGAT CTAAACCAAG TGGAAATGAT
                                                                            960
       TCCTGTGAAT TAAGAAATTT AAAGTCTGTT CAAAATAGTC ATTTCAAGGA ACCTCTGGTG
                                                                           1020
       TCAGATGAAA AGAGTTCTGA ACTTATTATT ACTGATTCAA TAACCCTGAA GAATAAAACG
                                                                          1080
       GAATCAAGTC TTCTAGCTAA ATTAGAAGAA ACTAAAGAGT ATCAAGAACC AGAGGTTCCA
                                                                          1140
       GAGAGTAACC AGAAACAGTG GCAATCTAAG AGAAAGTCAG AGTGTATTAA CCAGAATCCT
                                                                          1200
85
       GCTGCATCTT CAAATCACTG GCAGATTCCG GAGTTAGCCC GAAAAGTTAA TACAGAGCAG
                                                                          1260
       AAACATACCA CTTTTGAGCA ACCTGTCTTT TCAGTTTCAA AACAGTCACC ACCAATATCA
                                                                          1320
       ACATCTAAAT GGTTTGACCC AAAATCTATT TGTAAGACAC CAAGCAGCAA TACCTTGGAT
                                                                          1380
```

5 10 15 20	TTGTCAACAC ACTCCACTTC AAAGGAAGAA CAGGTGTTAA GATAACCAAA GATAATGGAGT CCATGGGAAC CATGGCATTG AAGCTAATTG GATTCTCAGG TCCAGAGAGA GGATGTATTT ATTTCTAAAT GAGAAAGATC TCCATCCTG TCCATCCTG TCCATCCTG TCCATCCTG TCCATCCTAACT TCCATCCTAACT	TTCACAGTGA ATTTTGGGAT TTGGCACAGT ATGGGAAATC TGTACTATAT TACATGCCAT TTCAAGATGT AGCTCCTGGC GAACCACTGA	ACCTGCTGT GGTTTTAGCA TTTAAAGCAG ACAGATATAT TTACCGGAAC TCATTATGAT TCATCTTAAT CTGGAAAAAT TCTTAAACCAA TAATTATATG TAAGTCAAAG GACTTACGG AATTGATCCT GTTAAAGTCA GTTAAAGTAA AGTCCTAAA AGCTGCTAAA	TTCCAGCAGC TCTTCTTCAG TTCTTCAGA ATAGGAATA GAAATAGCTT TATGAAATCA AGTTGGCTTA ATGTTAGAGG GCTAACTTTC ATGCAACCAG ATAAGCCCA AAAACACCAT AAAACACCAT AATCATGAAAA TGTTTAAAAA TGTTTAAAAA TGTTCAAATTC TATGTCTCTGG ACTTTATATC	AACAGCATCA CAAATGAATG GAGGTTCAAG ATGTGAACTT ATTTGAATAA CGGACCAGTA AAAAGAAAAA CAGTTCACAC TGATAGTTGA ATACAACAAG CAATCAAAGA AAAGTGATGT TTCAGCAGAT TTGAACATT TTGAACAT TGAACATC GGGACCCAAA AAACTCATCC GCCAACTTGT AACACTATAG	AATACTTGCC CATTTCGGTT CAAGGTATTT AGAAGAAGCA ACTACAACAA ATCACTTGAT AATCCATCAA TGGAATGCTA TGTTGTTAAA TATGTCTTCC TTGGTCCTTA AATTAATCAG CGATATTCCA ACAGAGGATA AGTTAACCAA TGGTCTGAAT TGGTCGAAT TGGTGGTGAA	
		647 Protes cession #: 1					
25		11 LTIDSIMNKV					60
30	AIQEPDDARD EIALRNLNLQ LYGENMPPQD TSRSECRDLV ESSLLAKLEE	KLEKNSVPLS YFQMARANCK KKQLLSEEEK AEIGYRNSLR VPGSKPSGND TKEYQEPEVP	KFAFVHISFA KNLSASTVLT QTNKTKQSCP SCELRNLKSV ESNQKQWQSK	QFELSQGNVK AQESFSGSLG FGRVPVNLLN QNSHFKEPLV RKSECINQNP	KSKQLLQKAV HLQNRNNSCD SPDCDVKTDD SDEKSSELII AASSNHWQIP	ERGAVPLEML SRGQTTKARF SVVPCFMKRQ TDSITLKNKT ELARKVNTEQ	120 180 240 300 360 420
35	LSTPYGQPAC QVLNEKKQIY VMECGNIDLN KLIDFGIANQ	SVSKQSPPIS FQQQQHQILA AIKYVNLEEA SWLKKKKSID MQPDTTSVVK KTPFQQIINQ	TPLQNLQVLA DNQTLDSYRN PWERKSYWKN DSQVGTVNYM	SSSANECISV EIAYLNKLQQ MLEAVHTIHQ PPEAIKDMSS	KGRIYSILKQ HSDKIIRLYD HGIVHSDLKP SRENGKSKSK	IGSGGSSKVF YEITDQYIYM ANFLIVDGML ISPKSDVWSL	480 540 600 660 720 780
40		VQIQTHPVNQ					840
15	Seq ID NO: Nucleic Ac:	648 DNA se id Accession	-	5507			
45	Coding sequ	uence: 241.					
43	Coding sequ			31	41	51	
50	1 CCGCAGAGGA CGCCCCTGCC CGAGTGGAGC	11 GCCTCGGCCA GCGGTGCCTG GGAGGACCCG	.1902 21 GGCTAGCCAG GCCTCCCCTC AGCGGCTGAG	31 GGCGCCCCCA CCAGACTGCA GAGAGAGGAG	 GCCCCTCCCC GGGACAGCAC GCGGCGGCTT	AGGCCGCGAG CCGGTAACTG AGCTGCTACG	60 120 180
	1 CCGCAGAGGA CGCCCTGCC CGAGTGGAGC GGGTCCGGCC ATGCCTCTGC GGGAACGCGG TGTCACTATG	11 GCCTCGGCCA GCGGTGCCTG GCAGGACCCG GGCGCCCTCC CCTGGAGCCT CCAGTGCAAG GAACTAAACT	21 GGCTAGCCAG GCCTCCCCTC AGCGGCTGAG CGAGGGGGGC TGCGCTCCCG GCATCACGGG GGCCTGCTGC	31 GGCGCCCCCA CCAGACTGCA GAGAGAGGAG TCAGGAGGAG TCAGGAGGAG TTGTTAGCAT TACGGCTGGA	GCCCTCCC GGGACAGCAC GCGGCGGCTT GAAGGAGGAC CCTGGGTGGC CGGCACGTCA GAAGAAACAG	AGGCCGCGAG CCGGTAACTG AGCTGCTACG CCGTGCGAGA AGGTGGTTTC GCCTGGGGTC CAAGGGAGTC	120 180 240 300 360 420
50 55	1 CCGCAGAGGA CGCCCTGCC CGAGTGGAGC GGGTCCGGCC ATGCCTCTGC GGGAACGCGG TGTCACTATG TGTGAAGCTA AGATGCTTTC AAACCCCGGC CTCAGTGGCC	11	21	31 GGCGCCCCCA CCAGACTGCA GAGAGAGGAG TCAGGAGGAG TTGGTGCTCTT TTGCTGCTGTA TTGGTGAGT TTGGTGAGT TGCAGTCAAG AATACACACG ACGTGTGTGA	GCCCTTCCC GGGACAGCAC GCGGCGGCTT GAAGGAGGAC CCTGGGTGGC CGGCACGTCA GAAGAAACAG GCGTGGACC ATGTGAATGA ACTCTAGGAC	AGGCCGCGAG CCGGTAACTG AGCTGCTACG CCGTGCGAGA AGGTGGTTTC GCCTGGGGTC CAAGGGAGTC AAACAAATGC GTGTTGGAATG GTGCTTTTTGC ATGTGCATG	120 180 240 300 360 420 480 540 600 660
50	CCGCAGAGGA CGCCCTGCC CGAGTGGAGC GGGTCCGGCC ATGCCTCTGC GGGAACGCGG TGTCACTATG TGTGAAGCTA AGATGCTTTC AAACCCCGGC CTCAGTGGCC ATAAACTGTC TCAGGACTCC AGGACTCC AAAACTGTC AAATGCACA AAATGTCACA	11	21 GGCTAGCCAG GCCTCCCCTC AGCGGCTGAG CGAGGGGGG TGCGCTCCCG GCATCACGG GGCTGCTGC TGGATGTAAG CGGGAAAACC CAGATGTGT GCCAGATGCT TGAAGACAC AAATGGAAGA CAATCGAAGA AATCGAATAT	31 GGCGCCCCCA CCAGACTGCA GAGAGAGGAG TCAGGAGGAG TTGTTAGCAT TTGTTAGCAT TTGGTGAGT TGCAGTCAAG AATACACACG ACGTGTGTGA GAAGAAGGGC GACTGTCTAG GACTGTCTAG ATCAGTGGACA	GCCCTTCCC GGGACAGCAC GCGCGGCGCTT GAAGGAGGAC CCTGGGTGGC CGGCACGTCA GAAGAAACAG GCGTGGGACC ATGTGAATGA AAGCTACAA AACTCTAGGAC CACAGTGCCT ATATTGATGA CATTTGGAAG GATATGACTG	AGGCCGCGAG CCGGTAACTG AGCTGCTACG CCGTGCGAGA AGGTGGTTTC CAAGGGAGTC CAAGGGAGTC AAACAAATGC GTGTGGAATG GTGTGCCATG ATGTGCCATC CTACTACTCC TATAGATATA	120 180 240 300 360 420 480 540 660 720 780 840 900
50 55	CCGCAGAGGA CGCCCTGCC CGAGTGGAGC GGGTCCGGCC ATGCCTCTGC GGGAACGCGG TGTCACTATG TGTGAAGCTA AGATGCTTTC AAACCCCGGC ATAAACTGTC TCAGGACTC GGTAAAGTCA AAATGTCACA AATGAATGTA AGATGCTTCA AATGAATGTA AATGAATGTA AATGAATGTA AATGAATG	11	21	31 GGCGCCCCCA CCAGACTGCA GAGAGAGGAG TCAGGAGGAG TTGTTAGCAT TTGTTAGCAT TTGGTGAGT TTGCAGTCAAG AATACACAC AAGTAGTGGA GAAGAAGGGC GACTGTCTAG GACACACACA ATCAGTGGAC ACCACCATG TATAAAGGCA AGAGCACCTG AAAAGAAGAGGC	GCCCTTCCC GGGACAGCAC GCGGCGGCTT GAAGGAGGAC CCTGGGTGGC CGGCACGTCA GAGGAAACAG ACGTGGAAC AAATTGAACAA ACTCTAGGAC CACAGTGCCT ATATTGAAGA CATTTGGAAG CATTTGGAAG CATTTGCTT ATGGACTTCT ATGGACTTCA CAAAATTAA CAAAAATTAA	AGGCCGCGAG CCGGTAACTG AGCTGCTACG CCGTGCGAGA AGGTGGTTTC GCCTGGGGTC CAAGGGAGTC AAACAAATGC GTGTGGAATG GTGCTTTTGC ATGTGCATG ATGTCCATC ATGTGCCATC CTACTACTGC	120 180 240 300 360 420 480 540 660 720 780 960 1020 1080 1140
505560	CCGCAGAGGA CGCCCTGCC CGAGTGGAGC GGGTCCGGCC ATGCCTCTGC GGGACCGGC TGTCACTATG AGATGCTT AGATGCTT AGATGCTT AGATGCTT CTCAGTGGC ATAAACTGTC TCAGGACTCA AATGTCACA AATGTCACA AATGTCACA AATGTCACA AATGTCACA AATGTCACA ATGTCTCA ATGCCTCAAA ACGAGGGCTTCA AGAGGTGCC AGAGGGCTTGC AGCCTGCGAAA CCTGCTCAAA	11 GCCTCGGCCA GCGGTGCCTG GCAGGACCCG GCAGGACCCC CCTGGAGCCTCC CCTGGAGCCT CCAGTGCAAG GAACTAAACT CATGCGAACC CATGCCAACA AGTACACTCA AGTACAGCTG GCCTGGCCCC TCTGTCCCTA AGTACAGCTG ACTGTTCGA ACTATGGATAG ATTCTGTAA ATTCGTAAA ACTGCACAA ACGAGCTCC GAGGCGGAA AGGATGCGTA AGGATGGTT GGAAAGCGCT GGAAAGCGCT	21	31 GGCGCCCCA CCAGACTGCA GAGAGAGGAG TCAGGAGGAG TCAGGAGGAG TTGGTGAGT TTGGTGAGT TTGGTGAGT TGCAGTCAG AATACACACC GAGAGAGGG GACTGTCTAG GAAGAAGGGC GACTGTCTAG TATAAAGCAC AGCACCATG TATAAAGGCA AGAGCACCTG AAAAAGAAGG GTGAACTTGC GGTAAAAAAG CTGGAACTTAAAGCCATG CTGAACTTAAAAGC CTGGAACATA	GCCCCTCCCC GGGACAGCAC GCGCGGCTT GAAGGAGGAC CCTGGGTGGC CGGCACGTCA GAAGAAACAG GCGTGGACCA ACTCTAGGAC CACAGTGCCT ATATTGATGA CATTTGATGA CATTTGCTA ACTACTACGAC CCAATTCCT GTACCATTCCA GAAAATTAA AGCCCTTCAA GGAATGAAGA AGAATGAAGA AGAATGAAGA AGAATGAAGA AGAATGAAGA AGAATGAAGA AGAATGAAT	AGGCCGCGAG AGGCCGCGAG AGCTGCTACG CCGTGCGAGA AGGTGGTTTC GCCTGGGGTC CAAGGGAGTC AAACAAATG GTGCTTTTGC ATGTGCCATG GTGTCCATC CTACTACTACTC CTACTACTACTACTACTACTACTACTACTACTACTACTAC	120 180 240 300 360 420 600 660 720 780 840 900 1020 1020 1140 1200 1260 1320 1380 1440
50556065	1 CCGCAGAGGA CGCCCTGCC CGAGTGGAGC GGGTCCGGCC ATGCCTCTGC GGGAACGCGG TGTCACTATG AGATGCTTTC AAACCCCGGC CTCAGTGGCC ATAAACTGTC TCAGGACTCC GGTAAAGTCA AATGTCACA AATGTCACA AATGTCACA AATGTCACA AATGTCCTGAAA AAGAAGTTGC CCAGAACCCA ATAGTTTCCA GAGGGCTTG AGCCTGCGAG CCGCGAGC CTGGTCAAA AGCTGCAGA AGCTGCAAA AGCTGCAAAA AGCATCCTGTT	11 GCCTCGGCCA GCGGTGCCTG GCAGGACCTG GCAGGACCTC CCTGGAGCCT CCTGGAGCCT CATGCGAAC CATGCCAAC ACATGCTCAT AGTACACC TCTGTCCCTA TTGGTTCCCTA TTGGTTAAAT ATTCTGTGAA TCATGGAACC CAGGACTACA AGATGCTCAT AGTACACCT TTGGTTCCCTA TTGGTTAAAT ATTCTGTGAA TCATGGAACA CAGGCGGAA AGGATGACAC CGAGGCGGGAA AGGATGGT TCAATCATGG TGAATCATGG TGAATCATGG TGAATCATGG TGAATCATGG TGAATCATGG TGATCAGACA AGACATTGG TGCTCTTTGA	21 GGCTAGCCAG GCCTCCCCTC AGCGGCTGAG CGAGGGGGGC GCATCACCGG GGCCTGCTGC GGCATCACCGG GGCCTGCTGC TGGATGTAG CCAGATGTAG CCAGATGTAG CCAGATGTT CCAATACGTG GCAGATGCT AAACGCATG CAAGCAGGA CTCCCTAG CTCCTAG AACAGCATG TTCCCTAAG AACAGCATG TTCCCTAAG AACTCCAAA GATCTCCAAA GATCTGTGAC TAATGCTTC TAATGCTATT CCAATGCTATC TAATGCTATT CCAATGCACT TAATGCTATT CCGATTGAAA TTACCGCCTG	31 GGCGCCCCCA CCAGACTGCA GAGAGAGGAG TCAGGAGGAG TCAGGAGGAG TTGCTGCTCT TTGTTAGCAT TACGCTGGA TTGGTAGAG AATACACACG ACGTGTGTGA ACGTGTGTGA ATAGGCTGAAC ATCAGTGAC ACGTGTGAAC ATCAGTGAC ACGTGTGAAC ACGCACCATG TGTAAAAGAC GCCACCATG GTAAAAAAAG AGCCCTGA AAAAGAACGG GTGAACTG GTGAATGAAG CTGGAACATA TGGAACAGG GGCTTCTATA TGGAACAGG GGCTTCTATA CTTCTCCTAC GCCGGAGACA	GCCCTTCCC GGGACAGCAC GCGCGGCTT GAAGGAGGAC CCTGGGTGGC GGCACGTCA GAAGAAACAG GCGTGGACTA ACTCTAGGAC CACAGTGCCT ATATTGATGA CATTTGGAAG GCATTGCT GTACCATCAC CAAAAATTAA AGCCTTCAA AGGCATTCAA AGGCATTCAA AGAATTAAA AGACTACAA AGAATTAAA AGACTTAAA AGACTTAAA AGACTTCAA CGAATTAAA ATAGAGAAGA CAGATTTAAA ATAGAGAAGA AGAATTAAA ATAGAGAAGA AGACTTCCA CTGACCTGCA AAGTCGGAA	AGGCCGCAAG CCGGTAACTG AGCTGCTACG CCGTGCGAGA AGGTGGTTTC CAAGGGAGTC CAAGGGAGTC AAACAAATGC GTGTGGAATG GTGTCCATC ATGTGCCATC TATAGATATA CAATACCCAA GTGTTCTCT TATAGATATA CAATACCCAA GTGTTCTTCT CTACTACTC CTATGAGATC AGACAGAATC AAATGTTACC CTATGAAGAG GAAAATGAAA AGAGGAGCGA CGGCCTGATT	120 180 240 300 360 420 600 660 720 780 840 960 1020 1140 1200 1140 1320 1380 1440 1560 1620
5055606570	CCGCAGAGGA CGCCCTGCC CGGAGAGGA CGCCCTGCC CGGGACCGGC ATGCCTCTGC GGGAACCGG TGTCACTATG TGTGAAGCTA AGATGCTTTC AAACCCCGGC ATAAACTGTC ATAAACTGTC AAATGAATGCA AATGAATGCA AATGAATGCA AATGAATGCA AATGACCCA AATGAACTCA GGGTCCTTCA AGAGCCTCAAA AGAGGTTTC AGCCTGCAAA CTGGTCCAAA GACTGCACAC CTGGAACCCA AATGTTCCTGTT TGGAAACCC GGTAAAACCC CTGGAACCCA ATAGTTTCCA GAGGGCTTG AGCAGACCA ACTTCTGTT TTTTTTGTGAAAA TGGAAGACC CAAGCCAGAAC CCAGACCAAC CCAGACCAAC CCAGACCACA CCCTCCTGTT CTTTTTTTTTT	11 GCCTCGGCCA GCGGTGCCTG GCGGCCTCC CCTGGAGCCT CCTGGAGCCT CAGTGCAAG GAACTAAACT CATGCGAACA ACATGCTCAT AGTACAGCTG GCCTGGCCCC TCTGTCCCTA TTGGTTCCCTA TTGGTTCCAA ACTGCTAAAAT ATTCTGTGAA TTGCTACACA AGGATACAC CAGGACTCC GAGGCGGAA AGGATGATA TTGCTCACAA AGGATGGTTC TCAATCATGA TTGCTCACAA AGGATGTTC TCAATCATGA AGGATGTTT TGAAAGCTT TCAATCATGA AGGATTGT TCAATCATGA AGGATTCT TCAATCATGA CTGATCAGAA AGGACTTTGA ACAGTAACAA GGAAAATTCA GTGGCAAGGG GTCCAGATAG	21 GGCTAGCCAG GCCTCCCCTC AGCGGCTGAG CGAGGGGGGC CGAGCACCACG GCATCACGG GGCCTGCTGC TGGATGTAG CGGGAAAACC CAGATGCT TGAAGACACA AATGGAAGA CAATCGAAGA CAATCGAGG GGAGAGCCT TAACGGGC AACAGCATGCT TACCCTAAG ACTCCATAGG AACTCCTAAG ACTCCATAGG AACTCCTAAG TTCCCTAAG CTCTCATGGA AACTCCTAAG TTCCCTAAG TTCCCTAAG TTCCCTAAG CTCTCATGAC TAATGCTATT CCGATTGAA TTACCGGCTG TGCCCTGGCA GTTGTATCAC CAAAACCGCC CCTTTTATCT	31 GGCGCCCCCA CCAGACTGCA CCAGACTGCA CCAGACTGCA GAGAGAGGAG TCAGGAGGAG TCAGGAGGAG TTTGTTAGCAT TACGCTGGA TTTGGTAGAT TACACACCG ACGTGTGTAG AATACACACG ACGTGTGTAG AATACACACAT ATCAGTGGAC AGCCACCAT ATCAGTGGAC AGAGCACCTG AAAAGAAGG GTGAACTTGC GGTAAATAAA CTGGAACATA CTGGAACACAT CTGGAACACAT CTGGAACACAT CTGGAACACAT CTGGAACACAT CTGGAACACAT CTGCAGACACAT CTGCAGACACAC GGCTCACAC GGCGAGACAC TGGGAGACAC TGGGAGACC GTGGATGACC GTGATGACC GTGGATGACC GTGATGACC GTGGATGACC GTGGATGACC GTGATGACC GTGGATGACC GTGATGACC GT	GCCCCTCCCC GGGACAGCAC GCGGCAGCTC GAAGGAGAC CCTGGGTGGG CGGCACGTCA GAAGAAACAG GCGTGGACTAC AAGCTACAA ACTCTAGGAC CACAGTGCCT ATATTGATGA CATTTGGAAG GATATGATGA CAATTGCT GTACCATCAA AGACTTCAA AGACTTCAA CAAAAATTAA AGACTTCAA AGATTAAA AGACTTCAA CAAAAATTAA AGACTTCAA CAAAAATTAA AGACTTCAA CAGAGTGAAT CAGGTGAAT CAGGTGAAT CAGGTGAAT CAGCACTCC CTGACCTCC AAGTCGGGAA CCACGAGTGA CTACCAAAAG CTACCAAAAG CTACCAAAAG CTACCAAAAAG CTACCAAAAG CTACCAAAAG CACAGATGA CACAGATGA CACAGATGA CACAGATGA CACAGATGACTTACT	AGGCCGCGAG AGGCCGCGAG AGGTGCTACC CCGTGCGAGA AGGTGGTTTC GCCTGGGGTC CAAGGGAGTC AAACAAATGC ATGTGCAATG GTGTTCACTACTACTACTACTACTACTACTACTACTACTACTA	120 180 240 300 360 420 660 720 780 840 900 1020 1080 1140 1500 1500 1680 1740 1860 1740 1860 1920
505560657075	CCGCAGAGGA CGCCCTGCC CGGGAGCGGCC ATGCCTCTGC GGGAACGGG GGGTCCAGCT AGATGCTTTC AAACCCCGGC CTCAGTGGCC ATAAACTGTC AAACTGTC AAATGATTCA AAATGATCAC AATGATTCA AATGATCAC AATGATTCA AATGATCAC AATGATTCCA AATGATTCCA AATGATTCCA AATGATTCCA GGGCTTCA AGGGGCTTCA AGGGGCTTG AGCCTGCAGA CTGGTCCAAA AACTCTGTT TGGAAAC TGGAAGCCT TGGAATCTT TTGTGAAA TGGAAGACCA CAGAGCCAAC CAGAGCCAAC TTTTGTGAAA TGGAAGACCA CAGACCAAC TTTTGTGAAA TTTTGTGAAA TTTTGTGAAT TTTGAATTAC TTTGAATTAC TTTGTAAAT TTTGAATTAC	11 GCCTCGGCCA GCGGTGCCTG GGAGGACCCT GGAGGACCCT CCAGTGCAAG GAGTGCAAG GAACTAAACT CATGCGAACA ACATGCTCAT AGTACAGCTG GCCTGGCCCC TCTGGTCCCTA TTGGTTCCCTA TTGGTTACAGTA ATTCTGTGAA TTGCTCACAA ACAGGACTACA ACATGCTCAT AGTACAGTTC CAGGACCCC TCTGTCCCTA TTGGTTACGATAG ACAGGACTC GAGGCGGGAA AGGATGACA AGGATGCTC GAGGCGGGAA AGGATGCTC GAGCGGGTA AGGATCATGG TCAATCATGG TCAATCATGG TCAATCATGG TGCTCTTTGA ACAGTAACAA GGAAAATTCA GTGGCAAGGG GTCCAGATAG ATGCTGAAGT AGGTGAAGGG TTCAGTCAGTTC TAGCTGAAAT TTCCACATT	21 GGCTAGCCAG GCCTCCCCTC AGCGGCTGAG CGAGGGGGGC CGAGGGGGGG CGATCACGG GCATCACGG GCATCACGG GCATCACGG GCATGATGA CGGGAAAAC CCAGATGCT TGAAGACACA AAATGGAAGA ACTGCAATAT CCATACGTGC CAAGCAGGG AGAGTCCTC AAACAGCATG TACCCCTAAG AATGCAAGA ATTCCATAGA AATGCAAGA TTCCCTAGG AACAGCATG TACCCCTAGG AACAGCATG TACCCCTAGG AACAGCATG TACCCCTAGG CTCTCATGGA CTCTCATGGA CTCTCATGGA CTCTCAGA GATCTCAAA CAACCGCC CCTTTTATTC TGCCTTGCT TTGTTATTC CCTGGTTTTT ATTTGTAATGT TATTTGCTTT ATTTTTATAAA	31 GGCGCCCCCA CCAGACTGCA CCAGACTGCA CCAGACTGCA GAGAGAGGAG TCAGGAGGAG TCAGGAGGAG TTGGTGCTGT TACGCCTGA TTGGTGAAT TACGCTGGA ATACACACA ACGTGTGTGA AATACACACA ATCAGTGACA ATCAGTGACA ATCAGTGACA ATCAGTGACA ATCAGTGACA AGCCACTG AAAAGAAGG GTGAACTTGC GGTAAAAAGAAG CTGGAACTTGC GGTAAAAAGAG CTGGAACATA CTTCTCCTAC TCGCAGACACA TGGGAGACA TGGAACTGAC GCGGAGACA TGGGAGACA TGGGAGACA TGGGAGACA TGGGAGACA TGGGAGACA TGGGAGACA TGGGAGACA TTGATATGC ACCAACAGAA AATATCATA ATATGGAAAT	GCCCCTCCCC GGGACAGCAC GCGGCAGCTT GAAGGAGGAC CCTGGGTGGG CGGCACGTCA GAAGAAACAG GCGTGGACTAC ATGTGAATGA ACTCTAGGAC CACAGTGCCT ATATTGATGA CATTTGATGA CATTTGATGA GCATTCCT GTACCATCA AGACTTCA GAAAAATTAA AGACTTCA GGAATGACAT AGACTTCA AGAATTGATA ACACTACA CAAAAATTAA ATGAGAAGA CCTCCA AGAATTGCT AAGATTAAA ATGAGAAGA CACAGTGACT CAGATTGCT ATGACTTCC CTGACCTGC CTGACCTGC CTGACCTGC CTGACCTGC CAGATGACT CACAAAAG CTACCAAAAG CTACCAAAAA CTACCAAAAAA CTACCAAAAAA CTACCAAAAAA CTACCAAAAAAAA	AGGCCGCGAG AGGCCGCGAG AGGTGCTACG CCGGTACTG AGCTGCTACG CCGTGCGAGA AGGTGGTTT CAAGGGAGTC AAACAAATGC GTGTCCATC ATGTGCCATC ATGTGCCATC CTACTACTACT CTACTACTAC AGATACCAA AGTGTTCTGCT AGACAGAATC AAATGTTACC CTATGAAGAA AGAGGAGCGA CGGCCTGATT TATCTCGGTT TGATTTTGC GGCTTTGCA ACCCCAAAGC ACCCCAAAGC ACTCCAAAGC ACTTCCAGTG GGATGAAAAG CATCATTTTT CTTGCTTTT CTTGCTTTT	120 180 240 300 360 420 660 720 840 900 1020 1080 11200 1260 1320 1500 1680 1740 1860 1740 1860 1920 1980 2040 2100 2160

WO 02/086443 tgtatattta aattettest aataataata tecaaateat caaaaaaaa aaaaaaaa

5	Seq ID NO: Protein Acc	649 Protei cession #: N	in sequence IP_056322				
10	CEATCEPGCK	11 LLLSWVAGGF FGECVGPNKC TCVNSRTCAM	RCFPGYTGKT	CSQDVNECGM	KPRPCQHRCV	NTHGSYKCFC	60 120 180
15	GKVICPYNRR GSFKCKCKQG PEPTRTPTPK SLRGDVFFPK	CVNTFGSYYC YKGNGLRCSA VNLQPFNYEE VNEAGEFGLI	KCHIGFELQY IPENSVKEVL IVSRGGNSHG LVQRKALTSK	ISGRYDCIDI RAPGTIKDRI GKKGNEEKMK LEHKDLNISV	NECTMDSHTC KKLLAHKNSM EGLEDEKREE DCSFNHGICD	SHHANCFNTQ KKKAKIKNVT KALKNDIEER WKQDREDDFD	240 300 360 420
		GFYMAVPALA WEKTTSEDEK VDD					480 540
20		650 DNA se id Accession lence: 259	1 #: NM_003	506.1			
25	1	11	21	31	41	51	
25	 GCAGCTCCAG	TCCCGGACGC	AACCCCGGAG	CCGTCTCAGG	TCCCTGGGGG	 GAACGGTGGG	60
	TTAGACGGGG	ACGGGAAGGG	ACAGCGGCCT	TCGACCGCCC	CCCGAGTAAT	TGACCCAGGA	120
		GGAAAGCCTG GGGGATCTTC					180 240
30	ATCAGGAATT	TGAAGAAAAT	GGAGATGTTT	ACATTTTTGT	TGACGTGTAT	TTTTCTACCC	300
		GGCACAGTCT					360
	GCGGTGGAAA	ACATGACGTT TGGAGCATTT	TCTTCCCTAAT	GCAAATCTGG	ATTATGACCA	AAACATTGAA	420 480
2.5	ACTTTCCTCT	GCAAAGCATT	TGTACCAACC	TGCATAGAAC	AAATTCATGT	GGTTCCACCT	540
35		TTTGTGAGAA CTGAGGAGCT					600 660
		ATCCACACAC					720
	AGAGACATTG	GATTTTGGTG	TCCAAGGCAT	CTTAAGACTT	CTGGGGGACA	AGGATATAAG	780
40		TTGACCAGTG CAAAAAGTTT					840 900
	TTCACATTCC	TTACTTTTTT	AATTGATGTT	AGAAGATTCA	GATACCCAGA	GAGACCAATT	960
		CTGTCTGTTA					1020 1080
	CTAGGCTCTC	CAGCCTGCAA AAAATAAGGC	TTGCACCGTT	TTGTTCATGC	TTTTGTATTT	TTTCACAATG	1140
45	GCTGGCACTG	TGTGGTGGGT	GATTCTTACC	ATTACTTGGT	TCTTAGCTGC	AGGAAGAAAA	1200
	TGGAGTTGTG	AAGCCATCGA TGACTGTTAT	GCAAAAAGCA	GTGTGGTTTC	ATGCTGTTGC	ATGGGGAACA	1260 1320
	GGAGTTTGCT	TTGTTGGCCT	TTATGACCTG	GATGCTTCTC	GCTACTTTGT	ACTCTTGCCA	1380
50	CTGTGCCTTT	GTGTGTTTGT	TGGGCTCTCT	CTTCTTTTAG	CTGGCATTAT	TTCCTTAAAT	1440
30	CATGTTCGAC	AAGTCATACA GAGTCTTCAG	CGGCTTGTAT	CTTGTGCCAT	TAGTGACACT	TCTCGGATGT	1500 1560
	TACGTCTATG	AGCAAGTGAA	CAGGATTACC	TGGGAGATAA	CTTGGGTCTC	TGATCATTGT	1620
	CGTCAGTACC	ATATCCCATG TAAAATACCT	TCCTTATCAG	GCAAAAGCAA	AAGCTCGACC	AGAATTGGCT	1680 1740
55	GGAAGCAAAA	AGACATGCAC	AGAATGGGCT	GGGTTTTTTA	AACGAAATCG	CAAGAGAGAT	1800
	CCAATCAGTG	AAAGTCGAAG	AGTACTACAG	GAATCATGTG	AGTTTTTCTT	AAAGCACAAT	1860 1920
		AACACAAAAA TGGGAACCAG					1980
C O	ATTACTAGCC	ATGATTACCT	AGGACAAGAA	ACTTTGACAG	AAATCCAAAC	CTCACCAGAA	2040
60		GAGAGGTGAA CTGCCTCGCC					2100 2160
	GGGAAGGGCC	AGGCAGGCAG	TGTATCTGAA	AGTGCGCGGA	GTGAAGGAAG	GATTAGTCCA	2220
		TTACTGACAC					2280 2340
65	TCAGAACCAA AGAAAAGAGC	GCAGCCTCAA AGGGAGGTGG	TTGTCATTCA	GATACTTGAA	GAACATTTTC	TCTCGTTACT	2400
	CAGAAGCAAA	TTTGTGTTAC	ACTGGAAGTG	ACCTATGCAC	TGTTTTGTAA	GAATCACTGT	2460
	TACGTTCTTC	TTTTGCACTT TATGACTCAT	AAAGTTGCAT	TGCCTACTGT	TATACTGGAA	AAAATAGAGT	2520 2580
	AAATGTGCAG	GTTAATAATA	TTTTTTTAAT	AGTGTGGGAG	GACAGAGTTA	GAGGAATCTT	2640
70	CCTTTTCTAT	TTATGAAGAT	TCTACTCTTG	GTAAGAGTAT	TTTAAGATGT	ACTATGCTAT	2700
	CTATCTTTT	TGATATAAAA ATACATATTT	TCAAGATATT GAAAATAAGC	TCTTTGCTGA	TTGAACTTT	TTGAAATCCT	2760 2820
	ATTCAAGTAT	TTTTATCATG	CTATTGTGAT	ATTTTAGCAC	TTTGGTAGCT	TTTACACTGA	2880
75	ATTTCTAAGA	AAATTGTAAA AGGAATTTAA	ATAGTCTTCT	TTTATACTGT	AAAAAAAGAT	ATACCAAAAA	2940 3000
, 5	TGTGATTTTT	ATAGTCTCGT	TTTAGGAATT	TCACAGATCT	AAATTATGTA	ACTGAAATAA	3060
	GGTGCTTACT	CAAAGAGTGT	CCACTATTGA	TTGTATTATG	CTGCTCACTG	ATCCTTCTGC	3120
						TTGTATATTA ATTGTATTAT	3180 3240
80	AACCACTTAC	AGTTGCTTAT	ATTTTTTTTTT	TTAACTTTTG	TTTCTTAACA		3300
		ATTATACAGT		GACATTTTGT	AG		
85		651 Protes cession #: 1					
	1	11	21	31	41	51	
	1		1	1	1		

```
MEMFTFLLTC IFLPLLRGHS LFTCEPITVP RCMKMAYNMT FFPNLMGHYD QSIAAVEMEH
                                                                             60
       FLPLANLECS PNIETFLCKA FVPTCIEQIH VVPPCRKLCE KVYSDCKKLI DTFGIRWPEE
       LECDRLOYCD ETVPVTFDPH TEFLGPOKKT EQVQRDIGFW CPRHLKTSGG QGYKFLGIDQ
                                                                            180
       CAPPCPNMYF KSDELEFAKS FIGTVSIFCL CATLFTFLTF LIDVRRFRYP ERPIIYYSVC
                                                                            240
 5
       YSIVSLMYFI GFLLGDSTAC NKADEKLELG DTVVLGSQNK ACTVLFMLLY FFTMAGTVWW
                                                                            300
       VILTITWFLA AGRKWSCEAI EQKAVWFHAV AWGTPGFLTV MLLALNKVEG DNISGVCFVG
                                                                            360
       LYDLDASRYF VLLPLCLCVF VGLSLLLAGI ISLNHVRQVI QHDGRNQEKL KKFMIRIGVF
                                                                            420
       SGLYLVPLVT LLGCYVYEQV NRITWEITWV SDHCRQYHIP CPYQAKAKAR PELALFMIKY
                                                                            480
       LMTLIVGISA VFWVGSKKTC TEWAGFFKRN RKRDPISESR RVLQESCEFF LKHNSKVKHK
                                                                            540
10
       KKHYKPSSHK LKVISKSMGT STGATANHGT SAVAITSHDY LGQETLTEIQ TSPETSMREV
                                                                            600
       KADGASTPRL REODCGEPAS PAASISRLSG EQVDGKGQAG SVSESARSEG RISPKSDITD
                                                                            660
       TGLAOSNNLO VPSSSEPSSL KGSTSLLVHP VSGVRKEOGG GCHSDT
       Seg ID NO: 652 DNA seguence
15
       Nucleic Acid Accession #: NM_014791.1
       Coding sequence: 171..2126
                                        31
                                                    41
                                                               51
20
       TTGGCGGCG GAAGCGGCCA CAACCCGGCG ATCGAAAAGA TTCTTAGGAA CGCCGTACCA
                                                                             60
       GCCGCGTCTC TCAGGACAGC AGGCCCCTGT CCTTCTGTCG GGCGCCGCTC AGCCGTGCCC
       TCCGCCCCTC AGGTTCTTTT TCTAATTCCA AATAAACTTG CAAGAGGACT ATGAAAGATT
                                                                            180
       ATGATGAACT TCTCAAATAT TATGAATTAC ATGAAACTAT TGGGACAGGT GGCTTTGCAA
                                                                            240
       AGGTCAAACT TGCCTGCCAT ATCCTTACTG GAGAGATGGT AGCTATAAAA ATCATGGATA
                                                                            300
25
       AAAACACACT AGGGAGTGAT TTGCCCCGGA TCAAAACGGA GATTGAGGCC TTGAAGAACC
                                                                            360
       TGAGACATCA GCATATATGT CAACTCTACC ATGTGCTAGA GACAGCCAAC AAAATATTCA
                                                                            420
       TGGTTCTTGA GTACTGCCCT GGAGGAGAGC TGTTTGACTA TATAATTTCC CAGGATCGCC
                                                                            480
       TGTCAGAAGA GGAGACCCGG GTTGTCTTCC GTCAGATAGT ATCTGCTGTT GCTTATGTGC
                                                                            540
       ACAGCCAGGG CTATGCTCAC AGGGACCTCA AGCCAGAAAA TTTGCTGTTT GATGAATATC
                                                                            600
30
       ATAAATTAAA GCTGATTGAC TTTGGTCTCT GTGCAAAACC CAAGGGTAAC AAGGATTACC
                                                                            660
       ATCTACAGAC ATGCTGTGGG AGTCTGGCTT ATGCAGCACC TGAGTTAATA CAAGGCAAAT
                                                                            720
       CATATCTTGG ATCAGAGGCA GATGTTTGGA GCATGGGCAT ACTGTTATAT GTTCTTATGT
                                                                            780
       GTGGATTTCT ACCATTTGAT GATGATAATG TAATGGCTTT ATACAAGAAG ATTATGAGAG
       GAAAATATGA TGTTCCCAAG TGGCTCTCTC CCAGTAGCAT TCTGCTTCTT CAACAAATGC
                                                                            900
35
       TGCAGGTGGA CCCAAAGAAA CGGATTTCTA TGAAAAATCT ATTGAACCAT CCCTGGATCA
                                                                            960
                                                                           1020
       TGCAAGATTA CAACTATCCT GTTGAGTGGC AAAGCAAGAA TCCTTTTATT CACCTCGATG
       ATGATTGCGT AACAGAACTT TCTGTACATC ACAGAAACAA CAGGCAAACA ATGGAGGATT
                                                                           1080
       TAATTTCACT GTGGCAGTAT GATCACCTCA CGGCTACCTA TCTTCTGCTT CTAGCCAAGA
                                                                           1140
       AGGCTCGGGG AAAACCAGTT CGTTTAAGGC TTTCTTCTTT CTCCTGTGGA CAAGCCAGTG
                                                                           1200
40
       CTACCCCATT CACAGACATC AAGTCAAATA ATTGGAGTCT GGAAGATGTG ACCGCAAGTG
                                                                           1260
       ATAAAATTA TGTGGCGGGA TTAATAGACT ATGATTGGTG TGAAGATGAT TTATCAACAG
                                                                           1320
       GTGCTGCTAC TCCCCGAACA TCACAGTTTA CCAAGTACTG GACAGAATCA AATGGGGTGG
                                                                           1380
       AATCTAAATC ATTAACTCCA GCCTTATGCA GAACACCTGC AAATAAATTA AAGAACAAAG
                                                                           1440
       AAAATGTATA TACTCCTAAG TCTGCTGTAA AGAATGAAGA GTACTTTATG TTTCCTGAGC
                                                                           1500
45
       CAAAGACTCC AGTTAATAAG AACCAGCATA AGAGAGAAAT ACTCACTACG CCAAATCGTT
       ACACTACACC CTCAAAAGCT AGAAACCAGT GCCTGAAAGA AACTCCAATT AAAATACCAG
                                                                           1620
       TAAATTCAAC AGGAACAGAC AAGTTAATGA CAGGTGTCAT TAGCCCTGAG AGGCGGTGCC
                                                                           1680
       GCTCAGTGGA ATTGGATCTC AACCAAGCAC ATATGGAGGA GACTCCAAAA AGAAAGGGAG
                                                                           1740
       CCAAAGTGTT TGGGAGCCTT GAAAGGGGGT TGGATAAGGT TATCACTGTG CTCACCAGGA
                                                                           1800
50
       GCAAAAGGAA GGGTTCTGCC AGAGACGGGC CCAGAAGACT AAAGCTTCAC TATAATGTGA
                                                                           1860
       CTACAACTAG ATTAGTGAAT CCAGATCAAC TGTTGAATGA AATAATGTCT ATTCTTCCAA
                                                                           1920
       AGAAGCATGT TGACTTTGTA CAAAAGGGTT ATACACTGAA GTGTCAAACA CAGTCAGATT
                                                                           1980
       TTGGGAAAGT GACAATGCAA TTTGAATTAG AAGTGTGCCA GCTTCAAAAA CCCGATGTGG
                                                                           2040
       TGGGTATCAG GAGGCAGCGG CTTAAGGGCG ATGCCTGGGT TTACAAAAGA TTAGTGGAAG
                                                                           2100
55
       ACATCCTATC TAGCTGCAAG GTATAATTGA TGGATTCTTC CATCCTGCCG GATGAGTGTG
                                                                           2160
       GGTGTGATAC AGCCTACATA AAGACTGTTA TGATCGCTTT GATTTTAAAG TTCATTGGAA
                                                                           2220
       CTACCAACTT GTTTCTAAAG AGCTATCTTA AGACCAATAT CTCTTTGTTT TTAAACAAAA
       GATATTATTT TGTGTATGAA TCTAAATCAA GCCCATCTGT CATTATGTTA CTGTCTTTTT
                                                                           2340
       TAATCATGTG GTTTTGTATA TTAATAATTG TTGACTTTCT TAGATTCACT TCCATATGTG
                                                                           2400
60
       AATGTAAGCT CTTAACTATG TCTCTTTGTA ATGTGTAATT TCTTTCTGAA ATAAAACCAT
                                                                           2460
       TTGTGAATAT
       Seq ID NO: 653 Protein sequence
       Protein Accession #: NP_055606.1
65
                             21
                                        31
                                                   41
                                                               51
       MKDYDELLKY YELHETIGTG GFAKVKLACH ILTGEMVAIK IMDKNTLGSD LPRIKTEIEA
       LKNLRHQHIC QLYHVLETAN KIFMVLEYCP GGELFDYIIS QDRLSEEETR VVFRQIVSAV
                                                                            120
70
       AYVHSOGYAH RDLKPENLLF DEYHKLKLID FGLCAKPKGN KDYHLQTCCG SLAYAAPELI
                                                                           180
       QGKSYLGSEA DVWSMGILLY VLMCGFLPFD DDNVMALYKK IMRGKYDVPK WLSPSSILLL
                                                                            240
       QOMLQVDPKK RISMKNLLNH PWIMQDYNYP VEWQSKNPFI HLDDDCVTEL SVHHRNNRQT
                                                                            300
       MEDLISLWQY DHLTATYLLL LAKKARGKPV RLRLSSFSCG QASATPFTDI KSNNWSLEDV
                                                                            360
       TASDKNYVAG LIDYDWCEDD LSTGAATPRT SQFTKYWTES NGVESKSLTP ALCRTPANKL
75
       KNKENVYTPK SAVKNEEYFM FPEPKTPVNK NQHKREILTT PNRYTTPSKA RNQCLKETPI
                                                                            480
       KIPVNSTGTD KLMTGVISPE RRCRSVELDL NQAHMEETPK RKGAKVFGSL ERGLDKVITV
                                                                            540
       LTRSKRKGSA RDGPRRLKLH YNVTTTRLVN PDQLLNEIMS ILPKKHVDFV QKGYTLKCQT
                                                                            600
       OSDFGKVTMO FELEVCOLOK PDVVGIRROR LKGDAWVYKR LVEDILSSCK V
80
       Seg ID NO: 654 DNA seguence
       Nucleic Acid Accession #: NM 000582
       Coding sequence: 88..990
                                                    41
                                                               51
                                        31
85
       GCAGAGCACA GCATCGTCGG GACCAGACTC GTCTCAGGCC AGTTGCAGCC TTCTCAGCCA
       AACGCCGACC AAGGAAAACT CACTACCATG AGAATTGCAG TGATTTGCTT TTGCCTCCTA
```

```
GGCATCACCT GTGCCATACC AGTTAAACAG GCTGATTCTG GAAGTTCTGA GGAAAAGCAG
                                                                           180
      CTTTACAACA AATACCCAGA TGCTGTGGCC ACATGGCTAA ACCCTGACCC ATCTCAGAAG
                                                                           240
      CAGAATCTCC TAGCCCCACA GACCCTTCCA AGTAAGTCCA ACGAAAGCCA TGACCACATG
                                                                           300
      GATGATATGG ATGATGAAGA TGATGATGAC CATGTGGACA GCCAGGACTC CATTGACTCG
                                                                           360
 5
      AACGACTCTG ATGATGTAGA TGACACTGAT GATTCTCACC AGTCTGATGA GTCTCACCAT
                                                                           420
      TCTGATGAAT CTGATGAACT GGTCACTGAT TTTCCCACGG ACCTGCCAGC AACCGAAGTT
                                                                           480
      TTCACTCCAG TTGTCCCCAC AGTAGACACA TATGATGGCC GAGGTGATAG TGTGGTTTAT
      GGACTGAGGT CAAAATCTAA GAAGTTTCGC AGACCTGACA TCCAGTACCC TGATGCTACA
                                                                           600
      GACGAGGACA TCACCTCACA CATGGAAAGC GAGGAGTTGA ATGGTGCATA CAAGGCCATC
                                                                           660
10
       CCCGTTGCCC AGGACCTGAA CGCGCCTTCT GATTGGGACA GCCGTGGGAA GGACAGTTAT
                                                                           720
      GAAACGAGTC AGCTGGATGA CCAGAGTGCT GAAACCCACA GCCACAAGCA GTCCAGATTA
                                                                           780
      TATAAGCGGA AAGCCAATGA TGAGAGCAAT GAGCATTCCG ATGTGATTGA TAGTCAGGAA
      CTTTCCAAAG TCAGCCGTGA ATTCCACAGC CATGAATTTC ACAGCCATGA AGATATGCTG
                                                                           900
      GTTGTAGACC CCAAAAGTAA GGAAGAAGAT AAACACCTGA AATTTCGTAT TTCTCATGAA
                                                                           960
15
      TTAGATAGTG CATCTTCTGA GGTCAATTAA AAGGAGAAAA AATACAATTT CTCACTTTGC
                                                                          1020
      ATTTAGTCAA AAGAAAAAAT GCTTTATAGC AAAATGAAAG AGAACATGAA ATGCTTCTTT
                                                                          1080
      CTCAGTTTAT TGGTTGAATG TGTATCTATT TGAGTCTGGA AATAACTAAT GTGTTTGATA
                                                                          1140
      ATTAGTTTAG TTTGTGGCTT CATGGAAACT CCCTGTAAAC TAAAAGCTTC AGGGTTATGT
                                                                          1200
      CTATGTTCAT TCTATAGAAG AAATGCAAAC TATCACTGTA TTTTAATATT TGTTATTCTC
                                                                          1260
20
      TCATGAATAG AAATTTATGT AGAAGCAAAC AAAATACTTT TACCCACTTA AAAAGAGAAT
                                                                          1320
      ATAACATTTT ATGTCACTAT AATCTTTTGT TTTTTAAGTT AGTGTATATT TTGTTGTGAT
                                                                          1380
       TATCTTTTG TGGTGTGAAT AAATCTTTTA TCTTGAATGT AATAAGAATT TGGTGGTGTC
                                                                          1440
      AATTGCTTAT TTGTTTTCCC ACGGTTGTCC AGCAATTAAT AAAACATAAC CTTTTTTACT
                                                                          1500
      СССТАВАВАВ ВАВАВАВАВА ВВВА
25
      Seq ID NO: 655 Protein sequence
      Protein Accession #: NP_000573
                                                              51
                                                   41
                                        31
30
      MRIAVICECL LGITCAIPVK QADSGSSEEK QLYNKYPDAV ATWLNPDPSQ KQNLLAPQTL
                                                                            60
      PSKSNESHDH MDDMDDEDDD DHVDSQDSID SNDSDDVDDT DDSHQSDESH HSDESDELVT
                                                                           120
      DFPTDLPATE VFTPVVPTVD TYDGRGDSVV YGLRSKSKKF RRPDIQYPDA TDEDITSHME
                                                                           180
       SEELNGAYKA IPVAQDLNAP SDWDSRGKDS YETSQLDDQS AETHSHKQSR LYKRKANDES
                                                                           240
35
      NEHSDVIDSQ ELSKVSREFH SHEFHSHEDM LVVDPKSKEE DKHLKFRISH ELDSASSEVN
      Seq ID NO: 656 DNA sequence
      Nucleic Acid Accession #: NM_003108.1
      Coding sequence: 76..1401
40
                                                              51
                  11
                             21
                                        31
                                                   41
      GGGGTGGGAG GGGGAGGGG ACCTCCGCAC GAGACCCAGC GGCCCGGGTT GGAGCGTCCA
45
      GCCCTGCAAC GGATCATGGT GCAGCAGGCG GAGAGCTTGG AAGCGGAGAG CAACCTGCCC
                                                                           120
       CGGGAGGCGC TGGACACGGA GGAGGGCGAA TTCATGGCTT GCAGCCCGGT GGCCCTGGAC
                                                                           180
      GAGAGCGACC CAGACTGGTG CAAGACGGCG TCGGGCCACA TCAAGCGGCC GATGAACGCG
                                                                           240
      TTCATGGTAT GGTCCAAGAT CGAACGCAGG AAGATCATGG AGCAGTCTCC GGACATGCAC
      AACGCCGAGA TCTCCAAGAG GCTGGGCAAG CGCTGGAAAA TGCTGAAGGA CAGCGAGAAG
                                                                            360
50
      ATCCCGTTCA TCCGGGAGGC GGAGCGGCTG CGGCTCAAGC ACATGGCCGA CTACCCCGAC
                                                                           420
       TACAAGTACC GGCCCCGGAA AAAGCCCAAA ATGGACCCCT CGGCCAAGCC CAGCGCCAGC
                                                                           480
       CAGAGCCCAG AGAAGAGCGC GGCCGGCGGC GGCGGCGGA GCGCGGGCG AGGCGCGGGC
                                                                           540
      GGTGCCAAGA CCTCCAAGGG CTCCAGCAAG AAATGCGGCA AGCTCAAGGC CCCCGCGGCC
                                                                            600
      GCGGGCGCCA AGGCGGGCGC GGGCAAGGCG GCCCAGTCCG GGGACTACGG GGGCGCGGGC
                                                                            660
55
      GACGACTACG TGCTGGGCAG CCTGCGCGTG AGCGGCTCGG GCGGCGGCGG CGCGGGCAAG
                                                                            720
       ACGGTCAAGT GCGTGTTTCT GGATGAGGAC GACGACGACG ACGACGACGA CGACGAGCTG
                                                                            780
       CAGCTGCAGA TCAAACAGGA GCCGGACGAG GAGGACGAGG AACCACCGCA CCAGCAGCTC
                                                                           840
       CTGCAGCCGC CGGGGCAGCA GCCGTCGCAG CTGCTGAGAC GCTACAACGT CGCCAAAGTG
                                                                           900
       CCCGCCAGCC CTACGCTGAG CAGCTCGGCG GAGTCCCCCG AGGGAGCGAG CCTCTACGAC
                                                                           960
60
      GAGGTGCGGG CCGGCGCGAC CTCGGGCGCC GGGGGCGGCA GCCGCCTCTA CTACAGCTTC
      AAGAACATCA CCAAGCAGCA CCCGCCGCCG CTCGCGCAGC CCGCGCTGTC GCCCGCGTCC
                                                                          1080
       TCGCGCTCGG TGTCCACCTC CTCGTCCAGC AGCAGCGGCA GCAGCAGCGG CAGCAGCGGC
                                                                          1140
       GAGGACGCCG ACGACCTGAT GTTCGACCTG AGCTTGAATT TCTCTCAAAG CGCGCACAGC
                                                                          1200
       GCCAGCGAGC AGCAGCTGGG GGGCGGCGCG GCGGCCGGGA ACCTGTCCCT GTCGCTGGTG
                                                                          1260
      GATAAGGATT TGGATTCGTT CAGCGAGGGC AGCCTGGGCT CCCACTTCGA GTTCCCCGAC
65
                                                                          1320
       TACTGCACGC CGGAGCTGAG CGAGATGATC GCGGGGGACT GGCTGGAGGC GAACTTCTCC
      GACCTGGTGT TCACATATTG AAAGGCGCCC GCTGCTCGCT CTTTCTCTCG GAGGGTGCAG
                                                                          1440
      AGCTGGGTTC CTTGGGAGGA AGTTGTAGTG GTGATGATGA TGATGATGAT AATGATGATG
                                                                          1500
      ATGATGGTGG TGTTGATGGT GGCGGTGGTA GGGTGGAGGG GAGAGAAGAA GATGCTGATG
                                                                          1560
70
       ATATTGATAA GATGTCGTGA CGCAAAGAAA TTGGAAAACA TGATGAAAAT TTTGGTGGAG
                                                                          1620
       TTAAAGTGAA ATGAGTAGTT TTTAAACATT TTTCCTGTCC TTTTTTTGTC CCCCCTCCCT
                                                                          1680
      TCCTTTATCG TGTCTCAAGG TAGTTGCATA CCTAGTCTGG AGTTGTGATT ATTTTCCCAA
                                                                          1740
       AAAATGTGTT TTTGTAATTA CTATTTCTTT TTCCTGAAAT TCGTGATTGC AACAAAGGCA
                                                                          1800
       GAGGGGGCGG CGCGGCGGAG GGGAGGTAGG ACCCGCTCCG GAAGGCGCTG TTTGAAGCTT
                                                                          1860
75
       GTCGGTCTTT GAAGTCTGGA AGACGTCTGC AGAGGACCCT TTTGGCAGCA CAACTGTTAC
                                                                          1920
       TCTAGGGAGT TGGTGGAGAT ATTTTTTTT CTTAAGAGAA CTTAAAGAAC TGGTGATTTT
       TTTTTAACAA AAAAAGGG
       Seq ID NO: 657 Protein sequence
80
       Protein Accession #: NP_003099.1
                  1.1
                             21
                                        31
                                                   41
                                                              51
       MVQQAESLEA ESNLPREALD TEEGEFMACS PVALDESDPD WCKTASGHIK RPMNAFMVWS
                                                                            60
85
       KIERRKIMEQ SPDMHNAEIS KRLGKRWKML KDSEKIPFIR EAERLRLKHM ADYPDYKYRP
                                                                            120
       RKKPKMDPSA KPSASQSPEK SAAGGGGGSA GGGAGGAKTS KGSSKKCGKL KAPAAAGAKA
                                                                            180
       GAGKAAQSGD YGGAGDDYVL GSLRVSGSGG GGAGKTVKCV FLDEDDDDDD DDDELQLQIK
                                                                            240
```

OEPDEEDEEP PHOOLLOPPG QOPSOLLRRY NVAKVPASPT LSSSAESPEG ASLYDEVRAG 300 ATSGAGGGSR LYYSFKNITK QHPPPLAQPA LSPASSRSVS TSSSSSSGSS SGSSGEDADD 360 LMFDLSLNFS QSAHSASEQQ LGGGAAAGNL SLSLVDKDLD SFSEGSLGSH FEFPDYCTPE 420 LSEMIAGDWL EANFSDLVFT Y 5 Seg ID NO: 658 DNA seguence Nucleic Acid Accession #: NM_001719 Coding sequence: 123..1418 10 51 41 GGGCGCAGCG GGGCCCGTCT GCAGCAAGTG ACCGACGGCC GGGACGGCCG CCTGCCCCCT 60 CTGCCACCTG GGGCGGTGCG GGCCCGGAGC CCGGAGCCCG GGTAGCGCGT AGAGCCGGCG 120 CGATGCACGT GCGCTCACTG CGAGCTGCGG CGCCGCACAG CTTCGTGGCG CTCTGGGCAC 15 CCCTGTTCCT GCTGCGCTCC GCCCTGGCCG ACTTCAGCCT GGACAACGAG GTGCACTCGA 240 GCTTCATCCA CCGGCGCCTC CGCAGCCAGG AGCGGCGGGA GATGCAGCGC GAGATCCTCT 300 CCATTTTGGG CTTGCCCCAC CGCCCGCGC CGCACCTCCA GGGCAAGCAC AACTCGGCAC 360 CCATGTTCAT GCTGGACCTG TACAACGCCA TGGCGGTGGA GGAGGGCGGC GGGCCCGGCG 420 GCCAGGGCTT CTCCTACCCC TACAAGGCCG TCTTCAGTAC CCAGGGCCCC CCTCTGGCCA 480 20 GCCTGCAAGA TAGCCATTTC CTCACCGACG CCGACATGGT CATGAGCTTC GTCAACCTCG 540 TGGAACATGA CAAGGAATTC TTCCACCCAC GCTACCACCA TCGAGAGTTC CGGTTTGATC 600 TTTCCAAGAT CCCAGAAGGG GAAGCTGTCA CGGCAGCCGA ATTCCGGATC TACAAGGACT 660 ACATCCGGGA ACGCTTCGAC AATGAGACGT TCCGGATCAG CGTTTATCAG GTGCTCCAGG 720 AGCACTTGGG CAGGGAATCG GATCTCTTCC TGCTCGACAG CCGTACCCTC TGGGCCTCGG 780 25 AGGAGGGCTG GCTGGTGTTT GACATCACAG CCACCAGCAA CCACTGGGTG GTCAATCCGC 840 GGCACAACCT GGGCCTGCAG CTCTCGGTGG AGACGCTGGA TGGGCAGAGC ATCAACCCCA 960 AGTTGGCGGG CCTGATTGGG CGGCACGGGC CCCAGAACAA GCAGCCCTTC ATGGTGGCTT TCTTCAAGGC CACGGAGGTC CACTTCCGCA GCATCCGGTC CACGGGGAGC AAACAGCGCA 1020 GCCAGAACCG CTCCAAGACG CCCAAGAACC AGGAAGCCCT GCGGATGGCC AACGTGGCAG 1080 30 AGAACAGCAG CAGCGACCAG AGGCAGGCCT GTAAGAAGCA CGAGCTGTAT GTCAGCTTCC 1140 GAGACCTGGG CTGGCAGGAC TGGATCATCG CGCCTGAAGG CTACGCCGCC TACTACTGTG 1200 AGGGGGAGTG TGCCTTCCCT CTGAACTCCT ACATGAACGC CACCAACCAC GCCATCGTGC 1260 AGACGCTGGT CCACTTCATC AACCCGGAAA CGGTGCCCAA GCCCTGCTGT GCGCCCACGC 1320 AGCTCAATGC CATCTCCGTC CTCTACTTCG ATGACAGCTC CAACGTCATC CTGAAGAAAT 1380 35 ACAGAAACAT GGTGGTCCGG GCCTGTGGCT GCCACTAGCT CCTCCGAGAA TTCAGACCCT 1440 TTGGGGCCAA GTTTTTCTGG ATCCTCCATT GCTCGCCTTG GCCAGGAACC AGCAGACCAA 1500 CTGCCTTTG TGAGACCTTC CCCTCCTAT CCCCAACTTT AAAGGTGTGA GAGTATTAGG 1560 AAACATGAGC AGCATATGGC TTTTGATCAG TTTTTCAGTG GCAGCATCCA ATGAACAAGA TCCTACAAGC TGTGCAGGCA AAACCTAGCA GGAAAAAAA ACAACGCATA AAGAAAAATG 1680 40 GCCGGGCCAG GTCATTGGCT GGGAAGTCTC AGCCATGCAC GGACTCGTTT CCAGAGGTAA 1740 TTATGAGCGC CTACCAGCCA GGCCACCCAG CCGTGGGAGG AAGGGGGCGT GGCAAGGGGT 1800 GGGCACATTG GTGTCTGTGC GAAAGGAAAA TTGACCCGGA AGTTCCTGTA ATAAATGTCA 1860 CAATAAAACG AATGAATG 45 Sea ID NO: 659 Protein sequence Protein Accession #: NP_001710 21 31 41 51 11 50 MHVRSLRAAA PHSFVALWAP LFLLRSALAD FSLDNEVHSS FIHRRLRSQE RREMQREILS ILGLPHRPRP HLQGKHNSAP MFMLDLYNAM AVEEGGGPGG QGFSYPYKAV FSTQGPPLAS 120 LQDSHFLTDA DMVMSFVNLV EHDKEFFHPR YHHREFRFDL SKIPEGEAVT AAEFRIYKDY 180 IRERFDNETF RISVYQVLQE HLGRESDLFL LDSRTLWASE EGWLVFDITA TSNHWVVNPR 240 HNLGLQLSVE TLDGQSINFK LAGLIGRHGP QNKQPFMVAF FKATEVHFRS IRSTGSKQRS QNRSKTPKNQ EALRMANVAE NSSSDQRQAC KKHELYVSFR DLGWQDWIIA PEGYAAYYCE 300 55 360 GECAFPLNSY MNATNHAIVO TLVHFINPET VPKPCCAPTO LNAISVLYFD DSSNVILKKY RNMVVRACGC H Seq ID NO: 660 DNA sequence 60 Nucleic Acid Accession #: Eos sequence Coding sequence: 211..1895 51 31 21 65 GGATCTGAGG GGCGCCCAGT CACTTCCTCC ACGTTCTCGT GCTGGGCGGG AGGAGCGGAT 60 GGGGCTTGGG AGGCAGCCTG CTCTCCAGTC CCTATCCACC CACAGGTTTT TTGGGTCGGA 120 GAGGAATTAT CTGATAAAAT TCCTGGGTTA ATATTTTTAA AAACGGAGAG TTTTTAAAAA 180 TGATTTTTTT CCCTCGAAAA TGACCTTTTT ATGCTTCGAA GCAGTTTGTC AACCAGCATA GTGCTTTTC TTTTCTCTC TTTTTCTACG ATAAATGAAA GCATTTCTTC AAGAAAAAGG 300 70 CACAGGTTCC TTGAACAGCT GGATTCTGAT GGCACCATTA CTATAGAGGA GCAGATTGTC 360 CTTGTGCTGA AAGCGAAAGT ACAATGTGAA CTCAACATCA CAGCTCAACT CCAGGAGGGA 420 GAAGGTAATT GTTTCCCTGA ATGGGATGGA CTCATTTGTT GGCCCAGAGG AACAGTGGGG 480 AAAATATCGG CTGTTCCATG CCCTCCTTAT ATTTATGACT TCAACCATAA AGGAGTTGCT 540 TTCCGACACT GTAACCCCAA TGGAACATGG GATTTTATGC ACAGCTTAAA TAAAACATGG 75 GCCAATTATT CAGACTGCCT TCGCTTTCTG CAGCCAGATA TCAGCATAGG AAAGCAAGAA 660 TTCTTTGAAC GCCTCTATGT AATGTATACC GTTGGCTACT CCATCTCTTT TGGTTCCTTG 720 GCTGTGGCTA TTCTCATCAT TGGTTACTTC AGACGATTGC ATTGCACTAG GAACTATATC 780 CACATGCACT TATTTGTGTC TTTCATGCTG AGAGCTACAA GCATCTTTGT CAAAGACAGA 840 GTAGTCCATG CTCACATAGG AGTAAAGGAG CTGGAGTCCC TAATAATGCA GGATGACCCA 900 80 CAAAATTCCA TTGAGGCAAC TTCTGTGGAC AAATCACAAT ATATCGGGTG CAAGATTGCT GTTGTGATGT TTATTTACTT CCTGGCTACA AATTATTATT GGATCCTGGT GGAAGGTCTC 1020 TACCTGCATA ATCTCATCTT TGTGGCTTTC TTTTCGGACA CCAAATACCT GTGGGGCTTC 1080 ATCTTGATAG GCTGGGGGTT TCCAGCAGCA TTTGTTGCAG CATGGGCTGT GGCACGAGCA 1140 ACTCTGGCTG ATGCGAGGTG CTGGGAACTT AGTGCTGGAG ACATCAAGTG GATTTATCAA 1200 85 GCACCGATCT TAGCAGCTAT TGGGCTGAAT TTTATTCTGT TTCTGAATAC GGTTAGAGTT 1260 CTAGCTACCA AAATCTGGGA GACCAATGCA GTTGGGCATG ACACAAGGAA GCAATACAGG AAACTGGCCA AATCGACACT GGTCCTGGTC CTAGTCTTTG GAGTGCATTA CATCGTGTTC

```
GTATGCCTGC CTCACTCCTT CACTGGGCTC GGGTGGGAGA TCCGCATGCA CTGTGAGCTC
       TTCTTCAACT CCTTTCAGGG TTTCTTTGTG TCTATCATCT ACTGCTACTG CAATGGAGAG
                                                                           1500
       GTTCAGGCAG AGGTGAAGAA GATGTGGAGT CGGTGGAATC TCTCCGTGGA CTGGAAAAGG
                                                                           1560
       ACACCGCCAT GTGGCAGCCG CAGATGCGGC TCAGTGCTCA CCACCGTGAC GCACAGCACC AGCAGCCAGT CACAGGTGGC GGCCAGCACA CGCATGGTGC TTATCTCTGG CAAAGCTGCC
                                                                           1620
 5
                                                                           1680
       AAGATCGCCA GCAGACAGCC TGACAGCCAC ATCACTTTAC CTGGCTATGT CTGGAGTAAC
       TCAGAGCAGG ACTGCCTGCC ACACTCTTTC CACGAGGAGA CCAAGGAAGA TAGTGGGAGG
                                                                           1800
       CAGGGAGATG ATATTCTAAT GGAGAAGCCT TCCAGGCCTA TGGAATCTAA CCCAGACACT
                                                                           1860
       GAAGGATGCC AAGGAGAAAC TGAGGATGTT CTCTGA
10
       Seg ID NO: 661 Protein seguence
       Protein Accession #: Eos sequence
                             21
                                         31
                                                    41
                                                               51
15
       MLRSSLSTSI VLFLFSSFST INESISSRKR HRFLEQLDSD GTITIEEQIV LVLKAKVQCE
                                                                             60
       LNITAOLOEG EGNCFPEWDG LICWPRGTVG KISAVPCPPY IYDFNHKGVA FRHCNPNGTW
                                                                             120
       DFMHSLNKTW ANYSDCLRFL QPDISIGKQE FFERLYVMYT VGYSISFGSL AVAILIIGYF
                                                                             180
       RRLHCTRNYI HMHLFVSFML RATSIFVKDR VVHAHIGVKE LESLIMQDDP QNSIEATSVD
                                                                             240
20
       KSOYIGCKIA VVMFIYFLAT NYYWILVEGL YLHNLIFVAF FSDTKYLWGF ILIGWGFPAA
                                                                             300
       FVAAWAVARA TLADARCWEL SAGDIKWIYQ APILAAIGLN FILFLNTVRV LATKIWETNA
                                                                             360
       VGHDTRKOYR KLAKSTLVLV LVFGVHYIVF VCLPHSFTGL GWEIRMHCEL FFNSFQGFFV
                                                                             420
       SIIYCYCNGE VQAEVKKMWS RWNLSVDWKR TPPCGSRRCG SVLTTVTHST SSQSQVAAST
                                                                             480
       RMVLISGKAA KIASROPDSH ITLPGYVWSN SEQDCLPHSF HEETKEDSGR QGDDILMEKP
                                                                             540
25
       SRPMESNPDT EGCQGETEDV L
       Seq ID NO: 662 DNA sequence
       Nucleic Acid Accession #: NM_005048
       Coding sequence: 143..1795
30
                                                    41
                                                               51
                  11
                             21
                                         31
       GGCCGGTGGC CCGGGCCCGA CCACCCCAGC TGCGCGTCGT TACTGGCCAC AAGTTTGCTC
                                                                             60
       TGGGCCAGCC AAGTTGGCAA CTTGGAAGCT TCTCCCGGGC TCTGGAGGAG GGTCCCTGCT
                                                                             120
35
       TCTTCCTACA GCCGTTCCGG GCATGGCCGG GCTGGGGGCG TCGCTCCACG TCTGGGGTTG
                                                                             180
       GCTAATGCTC GGCAGCTGCC TCCTGGCCAG AGCCCAGCTG GATTCTGATG GCACCATTAC
                                                                             240
       TATAGAGGAG CAGATTGTCC TTGTGCTGAA, AGCGAAAGTA CAATGTGAAC TCAACATCAC
       AGCTCAACTC CAGGAGGGAG AAGGTAATTG TTTCCCTGAA TGGGATGGAC TCATTTGTTG
                                                                             360
       GCCCAGAGGA ACAGTGGGGA AAATATCGGC TGTTCCATGC CCTCCTTATA TTTATGACTT
                                                                             420
40
       CAACCATAAA GGAGTTGCTT TCCGACACTG TAACCCCAAT GGAACATGGG ATTTTATGCA
                                                                             480
       CAGCTTAAAT AAAACATGGG CCAATTATTC AGACTGCCTT CGCTTTCTGC AGCCAGATAT
                                                                             540
       CAGCATAGGA AAGCAAGAAT TCTTTGAACG CCTCTATGTA ATGTATACCG TTGGCTACTC
                                                                             600
       CATCTCTTTT GGTTCCTTGG CTGTGGCTAT TCTCATCATT GGTTACTTCA GACGATTGCA
                                                                             660
       TTGCACTAGG AACTATATCC ACATGCACTT ATTTGTGTCT TTCATGCTGA GAGCTACAAG
                                                                             720
45
       CATCTTTGTC AAAGACAGAG TAGTCCATGC TCACATAGGA GTAAAGGAGC TGGAGTCCCT
                                                                             780
       AATAATGCAG GATGACCCAC AAAATTCCAT TGAGGCAACT TCTGTGGACA AATCACAATA
                                                                             840
       TATCGGGTGC AAGATTGCTG TTGTGATGTT TATTTACTTC CTGGCTACAA ATTATTATTG
                                                                             900
       GATCCTGGTG GAAGGTCTCT ACCTGCATAA TCTCATCTTT GTGGCTTTCT TTTCGGACAC
                                                                             960
       CAAATACCTG TGGGGCTTCA TCTTGATAGG CTGGGGGTTT CCAGCAGCAT TTGTTGCAGC
                                                                           1020
50
       ATGGGCTGTG GCACGAGCAA CTCTGGCTGA TGCGAGGTGC TGGGAACTTA GTGCTGGAGA
                                                                           1080
       CATCAAGTGG ATTTATCAAG CACCGATCTT AGCAGCTATT GGGCTGAATT TTATTCTGTT
                                                                           1140
       TCTGAATACG GTTAGAGTTC TAGCTACCAA AATCTGGGAG ACCAATGCAG TTGGGCATGA
                                                                           1200
       CACAAGGAAG CAATACAGGA AACTGGCCAA ATCGACACTG GTCCTGGTCC TAGTCTTTGG
                                                                           1260
       AGTGCATTAC ATCGTGTTCG TATGCCTGCC TCACTCCTTC ACTGGGCTCG GGTGGGAGAT
                                                                           1320
55
       CCGCATGCAC TGTGAGCTCT TCTTCAACTC CTTTCAGGGT TTCTTTGTGT CTATCATCTA
       CTGCTACTGC AATGGAGAGG TTCAGGCAGA GGTGAAGAAG ATGTGGAGTC GGTGGAATCT
                                                                           1440
       CTCCGTGGAC TGGAAAAGGA CACCGCCATG TGGCAGCCGC AGATGCGGCT CAGTGCTCAC
                                                                           1500
       CACCGTGACG CACAGCACCA GCAGCCAGTC ACAGGTGGCG GCCAGCACAC GCATGGTGCT
                                                                           1560
       TATCTCTGGC AAAGCTGCCA AGATCGCCAG CAGACAGCCT GACAGCCACA TCACTTTACC
                                                                           1620
60
       TGGCTATGTC TGGAGTAACT CAGAGCAGGA CTGCCTGCCA CACTCTTTCC ACGAGGAGAC
                                                                           1680
       CAAGGAAGAT AGTGGGAGGC AGGGAGATGA TATTCTAATG GAGAAGCCTT CCAGGCCTAT
                                                                            1740
       GGAATCTAAC CCAGACACTG AAGGATGCCA AGGAGAAACT GAGGATGTTC TCTGAATGGA
                                                                           1800
       CATTTGTGGC TGACTTTCAT GGGCTGGTCC AATGGCTGGT TGTGTGAGAG GGCTTGGCTG
                                                                           1860
       ATACTCCTAT GCTTGAGTTC AAAGGCTGAA AATTCAGTTA AGGTGTTACT TAATAATAGT
                                                                           1920
65
       TTTTAGGCTC CATGAATTGG CTCCTGTAAA TACTAACGAC ATGAAAATGC AAGTGTCAAT
                                                                           1980
       GGAGTAGTTT ATTACCTTCT ATTGGCATCA AGTTTTCCTC TAAATTAATG TATGGTATTT
                                                                           2040
       GCTCTGTGAT TGTTCATTTT TTTCTGCTAC TTTTGGGTAG AAAAAAGATT CAATTGCTTG
                                                                           2100
       GCTGTAGCTT TCTCTCATAT ATATCACCCT AAATATAATG AAGATCTTTT AGTGTGTATC
                                                                           2160
       ATTTTCCTTT TAGAAACTAG TATTCTCTTA TTTCTTACTT TAATGTACTT CTATCACTGC
                                                                           2220
70
       ATTTATTTG CCTGTGCATA GGAGCAATTA GGATCTAAAA AAATATATGG GAAGATAAAA
                                                                           2280
       GATCTAAGAA CAAGTACTTG CTGGAAAATT AGTTGGCTGG ACATTGATAA AATAATGCAT
                                                                           2340
       TTATAACAAT TACATGTGTT TTTGGGAACA AGGAAAATTT CTCAAAAAAG AATATTTCAC
                                                                           2400
       ACATCCCTTC TTTTGAATGG CCTCTTTGTG ACCAGCCAGA CCTCAGGTCT TCACTCTTTC
                                                                            2460
                                                                           2520
       TTCTTTGTAA ACCATGTCAT GTGGAAAGAT TTCCTCAGTT AGTGAGCTTG TGTCTGCAAA
75
       TTGATTTTGT TTGTAATGTA TTTTGATAGC AAATCATGCT GCATCTATAT CTTTTTCTTG
                                                                           2580
       TTTGAGCTGT TACTACATTG TACATGGCAT GTGGGATCAA TTAAAAATTT GTTTTAAAAA
                                                                           2640
       Seq ID NO: 663 Protein sequence
80
       Protein Accession #: NP_005039
                              21
                                         31
                                                    41
                                                               51
                  11
       MAGLGASLHV WGWLMLGSCL LARAQLDSDG TITIEEQIVL VLKAKVQCEL NITAQLQEGE
85
       GNCFPEWDGL ICWPRGTVGK ISAVPCPPYI YDFNHKGVAF RHCNPNGTWD FMHSLNKTWA
                                                                             120
       NYSDCLRFLQ PDISIGKQEF FERLYVMYTV GYSISFGSLA VAILIIGYFR RLHCTRNYIH
                                                                             180
       MHLFVSFMLR ATSIFVKDRV VHAHIGVKEL ESLIMQDDPQ NSIEATSVDK SQYIGCKIAV
                                                                             240
```

```
VMFIYFLATN YYWILVEGLY LHNLIFVAFF SDTKYLWGFI LIGWGFPAAF VAAWAVARAT
                                                                            300
       LADARCWELS AGDIKWIYQA PILAAIGLNF ILFLNTVRVL ATKIWETNAV GHDTRKQYRK
                                                                            360
       LAKSTLVLVL VFGVHYIVFV CLPHSFTGLG WEIRMHCELF FNSFQGFFVS IIYCYCNGEV
                                                                            420
       QAEVKKMWSR WNLSVDWKRT PPCGSRRCGS VLTTVTHSTS SQSQVAASTR MVLISGKAAK
                                                                            480
 5
       IASROPDSHI TLPGYVWSNS EQDCLPHSFH EETKEDSGRQ GDDILMEKPS RPMESNPDTE
                                                                            540
       GCOGETEDVI
       Seq ID NO: 664 DNA sequence
       Nucleic Acid Accession #: NM_012152
10
       Coding sequence: 43..1104
                                                    41
                                                               51
                             21
                                         31
       CTTCTTTAAA TTTCTTTCTA GGATGTTCAC TTCTTCTCCA CAATGAATGA GTGTCACTAT
15
       GACAAGCACA TGGACTTTTT TTATAATAGG AGCAACACTG ATACTGTCGA TGACTGGACA
                                                                            120
       GGAACAAGC TTGTGATTGT TTTGTGTGTT GGGACGTTTT TCTGCCTGTT TATTTTTTT
                                                                            180
       TCTAATTCTC TGGTCATCGC GGCAGTGATC AAAAACAGAA AATTTCATTT CCCCTTCTAC
TACCTGTTGG CTAATTTAGC TGCTGCCGAT TTCTTCGCTG GAATTGCCTA TGTATTCCTG
                                                                            240
                                                                             300
       ATGTTTAACA CAGGCCCAGT TTCAAAAACT TTGACTGTCA ACCGCTGGTT TCTCCGTCAG
20
       GGGCTTCTGG ACAGTAGCTT GACTGCTTCC CTCACCAACT TGCTGGTTAT CGCCGTGGAG
                                                                             420
       AGGCACATGT CAATCATGAG GATGCGGGTC CATAGCAACC TGACCAAAAA GAGGGTGACA
                                                                            480
       CTGCTCATTT TGCTTGTCTG GGCCATCGCC ATTTTTATGG GGGCGGTCCC CACACTGGGC
                                                                            540
       TGGAATTGCC TCTGCAACAT CTCTGCCTGC TCTTCCCTGG CCCCCATTTA CAGCAGGAGT
                                                                            600
       TACCTTGTTT TCTGGACAGT GTCCAACCTC ATGGCCTTCC TCATCATGGT TGTGGTGTAC
                                                                            660
25
       CTGCGGATCT ACGTGTACGT CAAGAGGAAA ACCAACGTCT TGTCTCCGCA TACAAGTGGG
                                                                             720
       TCCATCAGCC GCCGGAGGAC ACCCATGAAG CTAATGAAGA CGGTGATGAC TGTCTTAGGG
                                                                             780
       GCGTTTGTGG TATGCTGGAC CCCGGGCCTG GTGGTTCTGC TCCTCGACGG CCTGAACTGC
                                                                             840
       AGGCAGTGTG GCGTGCAGCA TGTGAAAAGG TGGTTCCTGC TGCTGGCGCT GCTCAACTCC
                                                                             900
                                                                            960
       GTCGTGAACC CCATCATCTA CTCCTACAAG GACGAGGACA TGTATGGCAC CATGAAGAAG
30
       ATGATCTGCT GCTTCTCTCA GGAGAACCCA GAGAGGCGTC CCTCTCGCAT CCCCTCCACA
                                                                           1020
       GTCCTCAGCA GGAGTGACAC AGGCAGCCAG TACATAGAGG ATAGTATTAG CCAAGGTGCA
       GTCTGCAATA AAAGCACTTC CTAAACTCTG GATGCCTCTC GGCCCACCCA GGTGATGACT
35
       Seq ID NO: 665 Protein sequence
       Protein Accession #: NP_036284
                                         31
                  11
40
       MNECHYDKHM DFFYNRSNTD TVDDWTGTKL VIVLCVGTFF CLFIFFSNSL VIAAVIKNRK
                                                                             60
       FHFPFYYLLA NLAAADFFAG IAYVFLMFNT GPVSKTLTVN RWFLRQGLLD SSLTASLTNL
                                                                             120
       LVIAVERHMS IMRMRVHSNL TKKRVTLLIL LVWAIAIFMG AVPTLGWNCL CNISACSSLA
                                                                             180
       PIYSRSYLVF WTVSNLMAFL IMVVVYLRIY VYVKRKTNVL SPHTSGSISR RRTPMKLMKT
                                                                             240
       VMTVLGAFVV CWTPGLVVLL LDGLNCRQCG VQHVKRWFLL LALLNSVVNP IIYSYKDEDM
                                                                             300
45
       YGTMKKMICC FSQENPERRP SRIPSTVLSR SDTGSQYIED SISQGAVCNK STS
       Seq ID NO: 666 DNA sequence
       Nucleic Acid Accession #: NM_002821
       Coding sequence: 150..3362
50
                                                    41
                                                               51
                             21
                                         31
                  11
       AACTCCCGCC TCGGGACGCC TCGGGGTCGG GCTCCGGCTG CGGCTGCTGC TGCGGCGCCC
                                                                             60
       GCGCTCCGGT GCGTCCGCCT CCTGTGCCCG CCGCGGAGCA GTCTGCGGCC CGCCGTGCGC
                                                                             120
55
       CCTCAGCTCC TTTTCCTGAG CCCGCCGCGA TGGGAGCTGC GCGGGGATCC CCGGCCAGAC
       CCCGCCGGTT GCCTCTGCTC AGCGTCCTGC TGCTGCCGCT GCTGGGCGGT ACCCAGACAG
                                                                             240
       CCATTGTCTT CATCAAGCAG CCGTCCTCCC AGGATGCACT GCAGGGGCGC CGGGCGCTGC
                                                                             300
       TTCGCTGTGA GGTTGAGGCT CCGGGCCCGG TACATGTGTA CTGGCTGCTC GATGGGGCCC
                                                                             360
       CTGTCCAGGA CACGGAGCGG CGTTTCGCCC AGGGCAGCAG CCTGAGCTTT GCAGCTGTGG
                                                                             420
60
       ACCGGCTGCA GGACTCTGGC ACCTTCCAGT GTGTGGCTCG GGATGATGTC ACTGGAGAAG
                                                                             480
       AAGCCCGCAG TGCCAACGCC TCCTTCAACA TCAAATGGAT TGAGGCAGGT CCTGTGGTCC
                                                                             540
       TGAAGCATCC AGCCTCGGAA GCTGAGATCC AGCCACAGAC CCAGGTCACA CTTCGTTGCC
                                                                             600
       ACATTGATGG GCACCCTCGG CCCACCTACC AATGGTTCCG AGATGGGACC CCCCTTTCTG
                                                                             660
       ATGGTCAGAG CAACCACACA GTCAGCAGCA AGGAGCGGAA CCTGACGCTC CGGCCAGCTG
                                                                             720
65
       GTCCTGAGCA TAGTGGGCTG TATTCCTGCT GCGCCCACAG TGCTTTTGGC CAGGCTTGCA
                                                                             780
                                                    TGCCAGGGTG GTGCTGGCAC
                                                                             840
       GCAGCCAGAA CTTCACCTTG AGCATTGCTG ATGAAAGCTT
       CCCAGGACGT GGTAGTAGCG AGGTATGAGG AGGCCATGTT
                                                    CCATTGCCAG TTCTCAGCCC
                                                                             900
       AGCCACCCC GAGCCTGCAG TGGCTCTTTG AGGATGAGAC TCCCATCACT AACCGCAGTC
                                                                             960
       GCCCCCCACA CCTCCGCAGA GCCACAGTGT TTGCCAACGG GTCTCTGCTG CTGACCCAGG
                                                                            1020
70
       TCCGGCCACG CAATGCAGGG ATCTACCGCT GCATTGGCCA GGGGCAGAGG GGCCCACCCA
                                                                            1080
       TCATCCTGGA AGCCACACTT CACCTAGCAG AGATTGAAGA CATGCCGCTA TTTGAGCCAC
                                                                            1140
       GGGTGTTTAC AGCTGGCAGC GAGGAGCGTG TGACCTGCCT TCCCCCCAAG GGTCTGCCAG
                                                                            1200
       AGCCCAGCGT GTGGTGGGAG CACGCGGGAG TCCGGCTGCC CACCCATGGC AGGGTCTACC
                                                                            1260
       AGAAGGCCA CGAGCTGGTG TTGGCCAATA TTGCTGAAAG
                                                    TGATGCTGGT GTCTACACCT
75
       GCCACGCGGC CAACCTGGCT GGTCAGCGGA GACAGGATGT CAACATCACT GTGGCCACTG
                                                                            1380
       TGCCCTCCTG GCTGAAGAAG CCCCAAGACA GCCAGCTGGA GGAGGGCAAA CCCGGCTACT
                                                                            1440
       TGGATTGCCT GACCCAGGCC ACACCAAAAC CTACAGTTGT CTGGTACAGA AACCAGATGC
                                                                            1500
       TCATCTCAGA GGACTCACGG TTCGAGGTCT TCAAGAATGG GACCTTGCGC ATCAACAGCG
                                                                            1560
       TGGAGGTGTA TGATGGGACA TGGTACCGTT GTATGAGCAG CACCCCAGCC GGCAGCATCG
                                                                            1620
80
       AGGCGCAAGC CCGTGTCCAA GTGCTGGAAA AGCTCAAGTT CACACCACCA CCCCAGCCAC
       AGCAGTGCAT GGAGTTTGAC AAGGAGGCCA CGGTGCCCTG TTCAGCCACA GGCCGAGAGA
                                                                            1740
       AGCCCACTAT TAAGTGGGAA CGGGCAGATG GGAGCAGCCT CCCAGAGTGG GTGACAGACA
                                                                            1800
       ACGCTGGGAC CCTGCATTTT GCCCGGGTGA CTCGAGATGA CGCTGGCAAC TACACTTGCA
                                                                            1860
       TTGCCTCCAA CGGGCCGCAG GGCCAGATTC GTGCCCATGT CCAGCTCACT GTGGCAGTTT
                                                                            1920
85
       TTATCACCTT CAAAGTGGAA CCAGAGCGTA CGACTGTGTA CCAGGGCCAC ACAGCCCTAC
       TGCAGTGCGA GGCCCAGGGG GACCCCAAGC CGCTGATTCA GTGGAAAGGC AAGGACCGCA
                                                                            2040
       TCCTGGACCC CACCAAGCTG GGACCCAGGA TGCACATCTT CCAGAATGGC TCCCTGGTGA
                                                                            2100
```

```
TCCATGACGT GGCCCCTGAG GACTCAGGCC GCTACACCTG CATTGCAGGC AACAGCTGCA
       ACATCAAGCA CACGGAGGCC CCCCTCTATG TCGTGGACAA GCCTGTGCCG GAGGAGTCGG
                                                                          2220
                                                                         2280
       AGGGCCCTGG CAGCCCTCCC CCCTACAAGA TGATCCAGAC CATTGGGTTG TCGGTGGGTG
       CCGCTGTGGC CTACATCATT GCCGTGCTGG GCCTCATGTT CTACTGCAAG AAGCGCTGCA
                                                                         2340
 5
       AAGCCAAGCG GCTGCAGAAG CAGCCCGAGG GCGAGGAGCC AGAGATGGAA TGCCTCAACG
                                                                         2400
      GAGGGCCTTT GCAGAACGGG CAGCCCTCAG CAGAGATCCA AGAAGAAGTG GCCTTGACCA
                                                                         2460
       GCTTGGGCTC CGGCCCGCG GCCACCAACA AACGCCACAG CACAAGTGAT AAGATGCACT
                                                                         2520
       TCCCACGGTC TAGCCTGCAG CCCATCACCA CGCTGGGGAA GAGTGAGTTT GGGGAGGTGT
       TCCTGGCAAA GGCTCAGGGC TTGGAGGAGG GAGTGGCAGA GACCCTGGTA CTTGTGAAGA
                                                                         2640
10
       GCCTGCAGAC GAAGGATGAG CAGCAGCAGC TGGACTTCCG GAGGGAGTTG GAGATGTTTG
                                                                         2700
       GGAAGCTGAA CCACGCCAAC GTGGTGCGGC TCCTGGGGCT GTGCCGGGAG GCTGAGCCCC
                                                                         2760
       ACTACATGGT GCTGGAATAT GTGGATCTGG GAGACCTCAA GCAGTTCCTG AGGATTTCCA
                                                                         2820
      AGAGCAAGGA TGAAAAATTG AAGTCACAGC CCCTCAGCAC CAAGCAGAAG GTGGCCCTAT
                                                                         2880
       GCACCCAGGT AGCCCTGGGC ATGGAGCACC TGTCCAACAA CCGCTTTGTG CATAAGGACT
15
       TGGCTGCGCG TAACTGCCTG GTCAGTGCCC AGAGACAAGT GAAGGTGTCT GCCCTGGGCC
                                                                         3000
       TCAGCAAGGA TGTGTACAAC AGTGAGTACT ACCACTTCCG CCAGGCCTGG GTGCCGCTGC
                                                                         3060
      GCTGGATGTC CCCCGAGGCC ATCCTGGAGG GTGACTTCTC TACCAAGTCT GATGTCTGGG
                                                                         3120
       CCTTCGGTGT GCTGATGTGG GAAGTGTTTA CACATGGAGA GATGCCCCAT GGTGGGCAGG
                                                                         3180
       CAGATGATGA AGTACTGGCA GATTTGCAGG CTGGGAAGGC TAGACTTCCT CAGCCCGAGG
                                                                         3240
20
      GCTGCCCTTC CAAACTCTAT CGGCTGATGC AGCGCTGCTG GGCCCTCAGC CCCAAGGACC
       GGCCCTCCTT CAGTGAGATT GCCAGCGCCC TGGGAGACAG CACCGTGGAC AGCAAGCCGT
                                                                         3360
       GAGGAGGGAG CCCGCTCAGG ATGGCCTGGG CAGGGGAGGA CATCTCTAGA GGGAAGCTCA
                                                                         3420
       CAGCATGATG GGCAAGATCC CTGTCCTCCT GGGCCCTGAG GTGCCCTAGT GCAACAGGCA
                                                                         3480
       TTGCTGAGGT CTGAGCAGGG CCTGGCCTTT CCTCCTCTTC CTCACCCTCA TCCTTTGGGA
                                                                         3540
25
      GGCTGACTTG GACCCAAACT GGGCGACTAG GGCTTTGAGC TGGGCAGTTT CCCCTGCCAC
                                                                         3600
       CTCTTCCTCT ATCAGGGACA GTGTGGGTGC CACAGGTAAC CCCAATTTCT GGCCTTCAAC
                                                                         3660
      TTCTCCCCTT GACCGGTCC AACTCTGCCA CTCATCTGCC AACTTTGCCT GGGGAGGGCT
                                                                         3720
       AGGCTTGGGA TGAGCTGGGT TTGTGGGGAG TTCCTTAATA TTCTCAAGTT CTGGGCACAC
                                                                         3780
       AGGGTTAATG AGTCTCTTGC CCACTGGTCC ACTTGGGGGT CTAGACCAGG ATTATAGAGG
                                                                         3840
30
      ACACAGCAAG TGAGTCCTCC CCACTCTGGG CTTGTGCACA CTGACCCAGA CCCACGTCTT
                                                                         3900
       CCCCACCCTT CTCTCCTTTC CTCATCCTAA GTGCCTGGCA GATGAAGGAG TTTTCAGGAG
                                                                         3960
       CTTTTGACAC TATATAAACC GCCCTTTTTG TATGCACCAC GGGCGGCTTT TATATGTAAT
       TGCAGCGTGG GGTGGGTGGG CATGGGAGGT AGGGGTGGGC CCTGGAGATG AGGAGGGTGG
                                                                          4080
       35
       TGTTTTGTT TTTACACTCG CTGCTCTCAA TAAATAAGCC TTTTTTA
      Sea ID NO: 667 Protein sequence
       Protein Accession #: NP 002812
40
                             21
                                        31
                                                   41
                                                              51
       MGAARGSPAR PRRLPLLSVL LLPLLGGTOT AIVFIKOPSS ODALOGRRAL LRCEVEAPGP
                                                                           60
      VHVYWLLDGA PVQDTERRFA QGSSLSFAAV DRLQDSGTFQ CVARDDVTGE EARSANASFN
                                                                          120
       IKWIEAGPVV LKHPASEAEI QPQTQVTLRC HIDGHPRPTY QWFRDGTPLS DGQSNHTVSS
45
       KERNLTLRPA GPEHSGLYSC CAHSAFGOAC SSONFTLSIA DESFARVVLA PODVVVARYE
                                                                           240
                                                                           300
       EAMFHCQFSA QPPPSLQWLF EDETPITNRS RPPHLRRATV FANGSLLLTQ VRPRNAGIYR
       CIGOGORGPP IILEATLHLA EIEDMPLFEP RVFTAGSEER VTCLPPKGLP EPSVWWEHAG
                                                                           360
       VRIETHGRVY OKGHELVLAN IAESDAGVYT CHAANLAGOR RODVNITVAT VPSWLKKPOD
                                                                           420
       SOLEEGKPGY LDCLTOATPK PTVVWYRNOM LISEDSRFEV FKNGTLRINS VEVYDGTWYR
                                                                           480
50
       CMSSTPAGSI EAQARVQVLE KLKFTPPPQP QQCMEFDKEA TVPCSATGRE KPTIKWERAD
                                                                           540
       GSSLPEWVTD NAGTLHFARV TRDDAGNYTC IASNGPQGQI RAHVQLTVAV FITFKVEPER
                                                                           600
       TTVYQGHTAL LQCEAQGDPK PLIQWKGKDR ILDPTKLGPR MHIFQNGSLV IHDVAPEDSG
                                                                           660
       RYTCIAGNSC NIKHTEAPLY VVDKPVPEES EGPGSPPPYK MIQTIGLSVG AAVAYIIAVL
                                                                           720
      GLMFYCKKRC KAKRLOKOPE GEEPEMECLN GGPLONGOPS AEIQEEVALT SLGSGPAATN
                                                                           780
55
       KRHSTSDKMH FPRSSLOPIT TLGKSEFGEV FLAKAQGLEE GVAETLVLVK SLQTKDEQQQ
                                                                           840
       LDFRRELEMF GKLNHANVVR LLGLCREAEP HYMVLEYVDL GDLKQFLRIS KSKDEKLKSQ
                                                                           900
       PLSTKQKVAL CTQVALGMEH LSNNRFVHKD LAARNCLVSA QRQVKVSALG LSKDVYNSEY
                                                                           960
       YHFRQAWVPL RWMSPEAILE GDFSTKSDVW AFGVLMWEVF THGEMPHGGQ ADDEVLADLQ
                                                                         1020
      AGKARLPOPE GCPSKLYRLM ORCWALSPKD RPSFSEIASA LGDSTVDSKP
60
      Seg ID NO: 668 DNA seguence
      Nucleic Acid Accession #: Eos sequence
      Coding sequence: 1..1389
65
                                                   41
                                                              51
                 11
                             21
                                       31
      ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGA GAGATTTAGA TGACAGAGAA
                                                                            60
      ACCCTTGTTT CTGAACATGA GTATAAAGAG AAAACCTGTC AGTCTGCTGC TCTTTTTAAT
      GTTGTCAACT CGATTATAGG ATCTGGTATA ATAGGATTGC CTTATTCAAT GAAGCAAGCT
                                                                          180
70
       GGGTTTCCTT TGGGAATATT GCTTTTATTC TGGGTTTCAT ATGTTACGGA CTTTTCCCTT
                                                                          240
      GTTTTATTGA TAAAAGGAGG GGCCCTCTCT GGAACAGATA CCTACCAGTC TTTGGTCAAT
                                                                          300
       AAAACTTTCG GCTTTCCAGG GTATCTGCTC CTCTCTGTTC TTCAGTTTTT GTATCCTTTT
                                                                           360
      ATAGCAATGA TAAGTTACAA TATAATAGCT GGAGATACTT TGAGCAAAGT TTTTCAAAGA
                                                                           420
      ATCCCAGGAG TTGATCCTGA AAACGTGTTT ATTGGTCGCC ACTTCATTAT TGGACTTTCC
                                                                           480
75
      ACAGTTACCT TTACTCTGCC TTTATCCTTG TACCGAAATA TAGCAAAGCT TGGAAAGGTC
                                                                           540
       TCCCTCATCT CTACAGGTTT AACAACTCTG ATTCTTGGAA TTGTAATGGC AAGGGCAATT
                                                                           600
       TCACTGGGTC CACACATACC AAAAACAGAA GACGCTTGGG TATTTGCAAA GCCCAATGCC
                                                                           660
      ATTCAAGCGG TCGGGGTTAT GTCTTTTGCA TTTATTTGCC ACCATAACTC CTTCTTAGTT
                                                                           720
       TACAGTTCTC TAGAAGAACC CACAGTAGCT AAGTGGTCCC GCCTTATCCA TATGTCCATC
                                                                           780
80
      GTGATTTCTG TATTTATCTG TATATTCTTT GCTACATGTG GATACTTGAC ATTTACTGGC
       TTCACCCAAG GGGACTTATT TGAAAATTAC TGCAGAAATG ATGACCTGGT AACATTTGGA
                                                                           900
      AGATTTTGTT ATGGTGTCAC TGTCATTTTG ACATACCCTA TGGAATGCTT TGTGACAAGA
                                                                          960
      GAGGTAATTG CCAATGTGTT TTTTGGTGGG AATCTTTCAT CGGTTTTCCA CATTGTTGTA
                                                                         1020
      ACAGTGATGG TCATCACTGT AGCCACGCTT GTGTCATTGC TGATTGATTG CCTCGGGATA
                                                                         1080
85
      GTTCTAGAAC TCAATGGTGT GCTCTGTGCA ACTCCCCTCA TTTTTATCAT TCCATCAGCC
                                                                         1140
       TGTTATCTGA AACTGTCTGA AGAACCAAGG ACACACTCCG ATAAGATTAT GTCTTGTGTC
       ATGCTTCCCA TTGGTGCTGT GGTGATGGTT TTTGGATTCG TCATGGCTAT TACAAATACT
```

WO 02/086443

CAAGACTGCA CCCATGGGCA GGAAATGTTC TACTGCTTTC CTGACAATTT CTCTCTCACA 1320 AATACCTCAG AGTCTCATGT TCAGCAGACA ACACAACTTT CTACTTTAAA TATTAGTATC TTTCAATGA 5 Seq ID NO: 669 Protein sequence Protein Accession #: Eos sequence 41 10 MGYOROEPVI PPORDLDDRE TLVSEHEYKE KTCQSAALFN VVNSIIGSGI IGLPYSMKQA 60 GFPLGILLLF WVSYVTDFSL VLLIKGGALS GTDTYQSLVN KTFGFPGYLL LSVLQFLYPF 120 IAMISYNIIA GDTLSKVFQR IPGVDPENVF IGRHFIIGLS TVTFTLPLSL YRNIAKLGKV 180 SLISTGLTTL ILGIVMARAI SLGPHIPKTE DAWVFAKPNA IQAVGVMSFA FICHHNSFLV 240 YSSLEEPTVA KWSRLIHMSI VISVFICIFF ATCGYLTFTG FTQGDLFENY CRNDDLVTFG 15 RFCYGVTVIL TYPMECFVTR EVIANVFFGG NLSSVFHIVV TVMVITVATL VSLLIDCLGI 360 VLELNGVLCA TPLIFIIPSA CYLKLSEEPR THSDKIMSCV MLPIGAVVMV FGFVMAITNT 420 ODCTHGOEMF YCFPDNFSLT NTSESHVOOT TOLSTLNISI FQ Sea ID NO: 670 DNA sequence 20 Nucleic Acid Accession #: Eos sequence Coding sequence: 1..1284 21 31 41 51 25 ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGA GAGGATTGCC TTATTCAATG AAGCAAGCTG GGTTTCCTTT GGGAATATTG CTTTTATTCT GGGTTTCATA TGTTACAGAC TTTTCCCTTG TTTTATTGAT AAAAGGAGGG GCCCTCTCTG GAACAGATAC CTACCAGTCT 180 TTGGTCAATA AAACTTTCGG CTTTCCAGGG TATCTGCTCC TCTCTGTTCT TCAGTTTTTG 240 TATCCTTTTA TAGCAATGAT AAGTTACAAT ATAATAGCTG GAGATACTTT GAGCAAAGTT 300 30 TTTCAAAGAA TCCCAGGAGT TGATCCTGAA AACGTGTTTA TTGGTCGCCA CTTCATTATT 360 GGACTTTCCA CAGTTACCTT TACTCTGCCT TTATCCTTGT ACCGAAATAT AGCAAAGCTT 420 GGAAAGGTCT CCCTCATCTC TACAGGTTTA ACAACTCTGA TTCTTGGAAT TGTAATGGCA AGGGCAATTT CACTGGGTCC ACACATACCA AAAACAGAAG ACGCTTGGGT ATTTGCAAAG 540 CCCAATGCCA TTCAAGCGGT CGGGGTTATG TCTTTTGCAT TTATTTGCCA CCATAACTCC 600 35 TTCTTAGTTT ACAGTTCTCT AGAAGAACCC ACAGTAGCTA AGTGGTCCCG CCTTATCCAT 660 ATGTCCATCG TGATTTCTGT ATTTATCTGT ATATTCTTTG CTACATGTGG ATACTTGACA 720 TTTACTGGCT TCACCCAAGG GGACTTATTT GAAAATTACT GCAGAAATGA TGACCTGGTA 780 ACATTIGGAA GATTITGITA IGGIGICACI GICATITIGA CATACCCIAI GGAATGCITI 840 GTGACAAGAG AGGTAATTGC CAATGTGTTT TTTGGTGGGA ATCTTTCATC GGTTTTCCAC 900 40 ATTGTTGTAA CAGTGATGGT CATCACTGTA GCCACGCTTG TGTCATTGCT GATTGATTGC 960 CTCGGGATAG TTCTAGAACT CAATGGTGTG CTCTGTGCAA CTCCCCTCAT TTTTATCATT 1020 CCATCAGCCT GTTATCTGAA ACTGTCTGAA GAACCAAGGA CACACTCCGA TAAGATTATG 1080 TCTTGTGTCA TGCTTCCCAT TGGTGCTGTG GTGATGGTTT TTGGATTCGT CATGGCTATT 1140 ACAAATACTC AAGACTGCAC CCATGGGCAG GAAATGTTCT ACTGCTTTCC TGACAATTTC 45 TCTCTCACAA ATACCTCAGA GTCTCATGTT CAGCAGACAA CACAACTTTC TACTTTAAAT ATTAGTATCT TTCAACTCGA GTAA Seg ID NO: 671 Protein sequence Protein Accession #: Eos sequence 50 31 51 11 MGYQRQEPVI PPQRGLPYSM KQAGFPLGIL LLFWVSYVTD FSLVLLIKGG ALSGTDTYQS 60 LVNKTFGFPG YLLLSVLQFL YPFIAMISYN IIAGDTLSKV FQRIPGVDPE NVFIGRHFII 120 GLSTVIFTLP LSLYRNIAKL GKVSLISTGL TTLILLGIVMA RAISLGPHIP KTEDAWVFAK PNAIQAVGVM SFAFICHHNS FLVYSSLEEP TVAKWSRLIH MSIVISVFIC IFFATCGYLT 55 180 FTGFTOGDLF ENYCRNDDLV TFGRFCYGVT VILTYPMECF VTREVIANVF FGGNLSSVFH 300 IVVTVMVITV ATLVSLLIDC LGIVLELNGV LCATPLIFII PSACYLKLSE EPRTHSDKIM 360 SCVMLPIGAV VMVFGFVMAI TNTQDCTHGQ EMFYCFPDNF SLTNTSESHV QQTTQLSTLN 420 60 ISIFOLE Seg ID NO: 672 DNA seguence Nucleic Acid Accession #: Eos sequence Coding sequence: 1..1203 65 31 41 51 21 ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGT TTTCCCTTGT TTTATTGATA AAAGGAGGGG CCCTCTCTGG AACAGATACC TACCAGTCTT TGGTCAATAA AACTTTCGGC 120 70 TTTCCAGGGT ATCTGCTCCT CTCTGTTCTT CAGTTTTTGT ATCCTTTTAT AGCAATGATA 180 AGTTACAATA TAATAGCTGG AGATACTTTG AGCAAAGTTT TTCAAAGAAT CCCAGGAGTT 240 GATCCTGAAA ACGTGTTTAT TGGTCGCCAC TTCATTATTG GACTTTCCAC AGTTACCTTT 300 ACTCTGCCTT TATCCTTGTA CCGAAATATA GCAAAGCTTG GAAAGGTCTC CCTCATCTCT 360 ACAGGTTTAA CAACTCTGAT TCTTGGAATT GTAATGGCAA GGGCAATTTC ACTGGGTCCA 420 75 CACATACCAA AAACAGAAGA CGCTTGGGTA TTTGCAAAGC CCAATGCCAT TCAAGCGGTC GGGGTTATGT CTTTTGCATT TATTTGCCAC CATAACTCCT TCTTAGTTTA CAGTTCTCTA 540 GAAGAACCCA CAGTAGCTAA GTGGTCCCGC CTTATCCATA TGTCCATCGT GATTTCTGTA 600 TTTATCTGTA TATTCTTTGC TACATGTGGA TACTTGACAT TTACTGGCTT CACCCAAGGG 660 GACTTATTTG AAAATTACTG CAGAAATGAT GACCTGGTAA CATTTGGAAG ATTTTGTTAT 720 80 GGTGTCACTG TCATTTTGAC ATACCCTATG GAATGCTTTG TGACAAGAGA GGTAATTGCC AATGTGTTTT TTGGTGGGAA TCTTTCATCG GTTTTCCACA TTGTTGTAAC AGTGATGGTC 840 ATCACTGTAG CCACGCTTGT GTCATTGCTG ATTGATTGCC TCGGGATAGT TCTAGAACTC 900 AATGGTGTGC TCTGTGCAAC TCCCCTCATT TTTATCATTC CATCAGCCTG TTATCTGAAA 960 CTGTCTGAAG AACCAAGGAC ACACTCCGAT AAGATTATGT CTTGTGTCAT GCTTCCCATT 1020 85 GGTGCTGTGG TGATGGTTTT TGGATTCGTC ATGGCTATTA CAAATACTCA AGACTGCACC 1080

CATGGGCAGG AAATGTTCTA CTGCTTTCCT GACAATTTCT CTCTCACAAA TACCTCAGAG TCTCATGTTC AGCAGACAAC ACAACTTTCT ACTTTAAATA TTAGTATCTT TCAACTCGAG TAA

```
Seq ID NO: 673 Protein sequence
       Protein Accession #: Eos sequence
 5
                  11
                             21
                                        31
                                                   41.
                                                               51
       MGYOROEPVI PPOFSLVLLI KGGALSGTDT YQSLVNKTFG FPGYLLLSVL QFLYPFIAMI
       SYNIIAGDTL SKVFQRIPGV DPENVFIGRH FIIGLSTVTF TLPLSLYRNI AKLGKVSLIS
10
       TGLTTLILGI VMARAISLGP HIPKTEDAWV FAKPNAIQAV GVMSFAFICH HNSFLVYSSL
                                                                            180
       EEPTVAKWSR LIHMSIVISV FICIFFATCG YLTFTGFTQG DLFENYCRND DLVTFGRFCY
                                                                            240
       GVTVILTYPM ECFVTREVIA NVFFGGNLSS VFHIVVTVMV ITVATLVSLL IDCLGIVLEL
                                                                            300
       NGVLCATPLI FIIPSACYLK LSEEPRTHSD KIMSCVMLPI GAVVMVFGFV MAITNTQDCT
                                                                            360
       HGOEMFYCFP DNFSLTNTSE SHVQQTTQLS TLNISIFQLE
15
       Seq ID NO: 674 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 1..1140
20
                             21
                                        31
                                                   41
                                                               51
                  11
       ATGGGCTACC AGAGGCAGGA GCCTGTCATC CCGCCGCAGG TCAATAAAAC TTTCGGCTTT
       CCAGGGTATC TGCTCCTCTC TGTTCTTCAG TTTTTGTATC CTTTTATAGC AATGATAAGT
                                                                            120
       TACAATATAA TAGCTGGAGA TACTTTGAGC AAAGTTTTTC AAAGAATCCC AGGAGTTGAT
                                                                            180
25
       CCTGAAAACG TGTTTATTGG TCGCCACTTC ATTATTGGAC TTTCCACAGT TACCTTTACT
                                                                            240
       CTGCCTTTAT CCTTGTACCG AAATATAGCA AAGCTTGGAA AGGTCTCCCT CATCTCTACA
                                                                            300
       GGTTTAACAA CTCTGATTCT TGGAATTGTA ATGGCAAGGG CAATTTCACT GGGTCCACAC
       ATACCAAAAA CAGAAGACGC TTGGGTATTT GCAAAGCCCA ATGCCATTCA AGCGGTCGGG
                                                                            420
       GTTATGTCTT TTGCATTTAT TTGCCACCAT AACTCCTTCT TAGTTTACAG TTCTCTAGAA
                                                                            480
30
       GAACCCACAG TAGCTAAGTG GTCCCGCCTT ATCCATATGT CCATCGTGAT TTCTGTATTT
                                                                            540
       ATCTGTATAT TCTTTGCTAC ATGTGGATAC TTGACATTTA CTGGCTTCAC CCAAGGGGAC
                                                                            600
       TTATTTGAAA ATTACTGCAG AAATGATGAC CTGGTAACAT TTGGAAGATT TTGTTATGGT
                                                                            660
       GTCACTGTCA TTTTGACATA CCCTATGGAA TGCTTTGTGA CAAGAGAGGT AATTGCCAAT
                                                                            720
       GTGTTTTTTG GTGGGAATCT TTCATCGGTT TTCCACATTG TTGTAACAGT GATGGTCATC
                                                                            780
35
       ACTGTAGCCA CGCTTGTGTC ATTGCTGATT GATTGCCTCG GGATAGTTCT AGAACTCAAT
                                                                            840
       GGTGTGCTCT GTGCAACTCC CCTCATTTTT ATCATTCCAT CAGCCTGTTA TCTGAAACTG
                                                                            900
       TOTGAAGAAC CAAGGACACA CTCCGATAAG ATTATGTCTT GTGTCATGCT TCCCATTGGT
                                                                            960
       GCTGTGGTGA TGGTTTTTGG ATTCGTCATG GCTATTACAA ATACTCAAGA CTGCACCCAT
                                                                           1020
       GGGCAGGAAA TGTTCTACTG CTTTCCTGAC AATTTCTCTC TCACAAATAC CTCAGAGTCT
40
       CATGTTCAGC AGACAACACA ACTTTCTACT TTAAATATTA GTATCTTTCA ACTCGAGTAA
       Seq ID NO: 675 Protein sequence
       Protein Accession #: Eos sequence
45
                                        31
                                                    41
                                                               51
                  11
                             21
       MGYQRQEPVI PPQVNKTFGF PGYLLLSVLQ FLYPFIAMIS YNIIAGDTLS KVFQRIPGVD
                                                                             60
       PENVFIGRHF IIGLSTVTFT LPLSLYRNIA KLGKVSLIST GLTTLILGIV MARAISLGPH
                                                                            120
       IPKTEDAWVF AKPNAIQAVG VMSFAFICHH NSFLVYSSLE EPTVAKWSRL IHMSIVISVF
                                                                            180
50
       ICIFFATCGY LTFTGFTOGD LFENYCRNDD LVTFGRFCYG VTVILTYPME CFVTREVIAN
                                                                            240
       VFFGGNLSSV FHIVVTVMVI TVATLVSLLI DCLGIVLELN GVLCATPLIF IIPSACYLKL
       SEEPRTHSDK IMSCVMLPIG AVVMVFGFVM AITNTQDCTH GQEMFYCFPD NFSLTNTSES
                                                                            360
       HVQQTTQLST LNISIFQLE
55
       Seq ID NO: 676 DNA sequence
       Nucleic Acid Accession #: NM_006853.1
       Coding sequence: 26..874
60
       AGGAATCTGC GCTCGGGTTC CGCAGATGCA GAGGTTGAGG TGGCTGCGGG ACTGGAAGTC
                                                                             60
       ATCGGGCAGA GGTCTCACAG CAGCCAAGGA ACCTGGGGCC CGCTCCTCCC CCCTCCAGGC
                                                                            120
       CATGAGGATT CTGCAGTTAA TCCTGCTTGC TCTGGCAACA GGGCTTGTAG GGGGAGAGAC
       CAGGATCATC AAGGGGTTCG AGTGCAAGCC TCACTCCCAG CCCTGGCAGG CAGCCCTGTT
                                                                            240
65
       CGAGAAGACG CGGCTACTCT GTGGGGCGAC GCTCATCGCC CCCAGATGGC TCCTGACAGC
                                                                            300
       AGCCCACTGC CTCAAGCCCC GCTACATAGT TCACCTGGGG CAGCACAACC TCCAGAAGGA
                                                                            360
       GGAGGGCTGT GAGCAGACCC GGACAGCCAC TGAGTCCTTC CCCCACCCCG GCTTCAACAA
                                                                            420
       CAGCCTCCC AACAAAGACC ACCGCAATGA CATCATGCTG GTGAAGATGG CATCGCCAGT
                                                                            480
       CTCCATCACC TGGGCTGTGC GACCCCTCAC CCTCTCCTCA CGCTGTGTCA CTGCTGGCAC
                                                                            540
70
       CAGCTGCCTC ATTTCCGGCT GGGGCAGCAC GTCCAGCCCC CAGTTACGCC TGCCTCACAC
                                                                            600
       CTTGCGATGC GCCAACATCA CCATCATTGA GCACCAGAAG TGTGAGAACG CCTACCCCGG
                                                                            660
       CAACATCACA GACACCATGG TGTGTGCCAG CGTGCAGGAA GGGGGCAAGG ACTCCTGCCA
                                                                            720
       GGGTGACTCC GGGGGCCCTC TGGTCTGTAA CCAGTCTCTT CAAGGCATTA TCTCCTGGGG
                                                                            780
       CCAGGATCCG TGTGCGATCA CCCGAAAGCC TGGTGTCTAC ACGAAAGTCT GCAAATATGT
                                                                            840
75
       GGACTGGATC CAGGAGACGA TGAAGAACAA TTAGACTGGA CCCACCCACC ACAGCCCATC
       ACCCTCCATT TCCACTTGGT GTTTGGTTCC TGTTCACTCT GTTAATAAGA AACCCTAAGC
                                                                            960
       CAAGACCCTC TACGAACATT CTTTGGGCCT CCTGGACTAC AGGAGATGCT GTCACTTAAT
                                                                           1020
       AATCAACCTG GGGTTCGAAA TCAGTGAGAC CTGGATTCAA ATTCTGCCTT GAAATATTGT
                                                                           1080
       GACTCTGGGA ATGACAACAC CTGGTTTGTT CTCTGTTGTA TCCCCAGCCC CAAAGACAGC
                                                                           1140
80
       TCCTGGCCAT ATATCAAGGT TTCAATAAAT ATTTGCTAAA TGAGTG
       Seq ID NO: 677 Protein sequence
       Protein Accession #: NP 006844.1
85
                  11
                             21
                                        31
                                                   41
                                                               51
       MRILQLILLA LATGLVGGET RIIKGFECKP HSQPWQAALF EKTRLLCGAT LIAPRWLLTA
```

1.20

```
AHCLKPRYIV HLGQHNLQKE EGCEQTRTAT ESFPHPGFNN SLPNKDHRND IMLVKMASPV
        SITWAVRPLT LSSRCVTAGT SCLISGWGST SSPQLRLPHT LRCANITIIE HQKCENAYPG
                                                                                      180
       NITDTMVCAS VQEGGKDSCQ GDSGGPLVCN QSLQGIISWG QDPCAITRKP GVYTKVCKYV
                                                                                      240
        DWIOETMKNN
 5
        Seq ID NO: 678 DNA sequence
        Nucleic Acid Accession #: Eos sequence
        Coding sequence: 1..933
                                                                       51
10
                                                          41
                                 21
        ATGTGCAGCA ATGGACGGTG CATCCCGGGC GCCTGGCAGT GTGACGGGCT GCCTGACTGC
                                                                                       60
        TTCGACAAGA GTGATGAGAA GGAGTGCCCC AAGGCTAAGT CGAAATGTGG CCCGACCTTC
                                                                                      120
        TTCCCCTGTG CCAGCGGCAT CCATTGCATC ATTGGTCGCT TCCGGTGCAA TGGGTTTGAG
                                                                                      180
        GACTGTCCCG ATGGCAGCGA TGAAGAGAAC TGCACAGCAA ACCCTCTGCT TTGCTCCACC
15
        GCCCGCTACC ACTGCAAGAA CGGCCTCTGT ATTGACAAGA GCTTCATCTG CGATGGACAG
        AATAACTGTC AAGACAACAG TGATGAGGAA AGCTGTGAAA GTTCTCAAGA ACCCGGCAGT
        GGGCAGGTGT TTGTGACTTC AGAGAACCAA CTTGTGTATT ACCCCAGCAT CACCTATGCC ATCATCGGCA GCTCCGTCAT TTTTGTGCTG GTGGTGGCCC TGCTGGCACT GGTCTTGCAC
                                                                                      420
                                                                                      480
        CACCAGCGGA AGCGGAACAA CCTCATGACG CTGCCCGTGC ACCGGCTGCA GCACCCTGTG
CTGCTGTCCC GCCTGGTGGT CCTGGACCAC CCCCACCACT GCAACGTCAC CTACAAACGTC
                                                                                      540
20
                                                                                      600
        AATAATGGCA TCCAGTATGT GGCCAGCCAG GCGGAGCAGA ATGCGTCGGA AGTAGGCTCC
        CCACCCTCCT ACTCCGAGGC CTTGCTGGAC CAGAGGCCTG CGTGGTATGA CCTTCCTCCA
                                                                                      720
        CCGCCCTACT CTTCTGACAC GGAATCTCTG AACCAAGCCG ACCTGCCCCC CTACCGCTCC
                                                                                      780
        CGGTCCGGGA GTGCCAACAG TGCCAGCTCC CAGGCAGCCA GCAGCCTCCT GAGCGTGGAA
                                                                                      840
25
        GACACCAGCC ACAGCCCGGG GCAGCCTGGC CCCCAGGAGG GCACTGCTGA GCCCAGGGAC
                                                                                      900
        TCTGAGCCCA GCCAGGGCAC TGAAGAAGTA TAA
        Seg ID NO: 679 Protein sequence
30
        Protein Accession #: Eos sequence
                                                                       51
                                                           41
                                              31
                                  21
         MCSNGRCIPG AWQCDGLPDC FDKSDEKECP KAKSKCGPTF FPCASGIHCI IGRFRCNGFE
        DCPDGSDEEN CTANPLLCST ARYHCKNGLC IDKSFICDGQ NNCQDNSDEE SCESSQEPGS
GQVFVTSENQ LVYYPSITYA IIGSSVIFVL VVALLALVLH HQRKRNNLMT LPVHRLQHPV
                                                                                      120
35
                                                                                      180
         LLSRLVVLDH PHHCNVTYNV NNGIQYVASQ AEQNASEVGS PPSYSEALLD QRPAWYDLPP
                                                                                      240
         PPYSSDTESL NQADLPPYRS RSGSANSASS QAASSLLSVE DTSHSPGQPG PQEGTAEPRD
                                                                                      300
         SEPSQGTEEV
40
         Seq ID NO: 680 DNA sequence
         Nucleic Acid Accession #: S78203.1
         Coding sequence: 1..2190
                                                                        51
 45
                                               31
                                                           41
         ATGAATCCTT TCCAGAAAAA TGAGTCCAAG GAAACTCTTT TTTCACCTGT CTCCATTGAA
                                                                                        60
         GAGGTACCAC CTCGACCACC TAGCCCTCCA AAGAAGCCAT CTCCGACAAT CTGTGGCTCC
                                                                                       120
         AACTATCCAC TGAGCATTGC CTTCATTGTG GTGAATGAAT TCTGCGAGCG CTTTTCCTAT
                                                                                       180
         TATGGAATGA AAGCTGTGCT GATCCTGTAT TTCCTGTATT TCCTGCACTG GAATGAAGAT
                                                                                       240
 50
         ACCTCCACAT CTATATACCA TGCCTTCAGC AGCCTCTGTT ATTTTACTCC CATCCTGGGA
         GCAGCCATTG CTGACTCGTG GTTGGGAAAA TTCAAGACAA TCATCTATCT CTCCTTGGTG
                                                                                       360
         TATGTGCTTG GCCATGTGAT CAAGTCCTTG GGTGCCTTAC CAATACTGGG AGGACAAGTG
                                                                                       420
         GTACACACAG TCCTATCATT GATCGGCCTG AGTCTAATAG CTTTGGGGAC AGGAGGCATC AAACCCTGTG TGGCAGCTTT TGGTGGAGAC CAGTTTGAAG AAAAACATGC AGAGGAACGG
                                                                                       480
                                                                                       540
 55
         ACTAGATACT TCTCAGTCTT CTACCTGTCC ATCAATGCAG GGAGCTTGAT TTCTACATTT
                                                                                       600
         ATCACACCCA TGCTGAGAGG AGATGTGCAA TGTTTTGGAG AAGACTGCTA TGCATTGGCT
                                                                                       660
         TTTGGAGTTC CAGGACTGCT CATGGTAATT GCACTTGTTG TGTTTGCAAT GGGAAGCAAA
ATATACAATA AACCACCCCC TGAAGGAAAC ATAGTGGCTC AAGTTTTCAA ATGTATCTGG
                                                                                       780
         TTTGCTATTT CCAATCGTTT CAAGAACCGT TCTGGAGACA TTCCAAAGCG ACAGCACTGG
                                                                                       840
 60
         CTAGACTGGG CAGCTGAGAA ATATCCAAAG CAGCTCATTA TGGATGTAAA GGCACTGACC
                                                                                       900
         AGGGTACTAT TCCTTTATAT CCCATTGCCC ATGTTCTGGG CTCTTTTGGA TCAGCAGGGT
                                                                                       960
         TCACGATGGA CTTTGCAAGC CATCAGGATG AATAGGAATT TGGGGTTTTT TGTGCTTCAG
                                                                                      1020
         CCGGACCAGA TGCAGGTTCT AAATCCCTTT CTGGTTCTTA TCTTCATCCC GTTGTTTGAC
TTTGTCATTT ATCGTCTGGT CTCCAAGTGT GGAATTAACT TCTCATCACT TAGGAAAATG
                                                                                      1080
                                                                                      1140
 65
         GCTGTTGGTA TGATCCTAGC GTGCCTGGCA TTTGCAGTTG CGGCAGCTGT AGAGATAAAA
ATAAATGAAA TGGCCCCAGC CCAGTCAGGT CCCCAGGAGG TTTTCCTACA AGTCTTGAAT
                                                                                      1200
                                                                                      1260
         CTGGCAGATG ATGAGGTGAA GGTGACAGTG GTGGGAAATG AAAACAATTC TCTGTTGATA
                                                                                      1320
          GAGTCCATCA AATCCTTTCA GAAAACACCA CACTATTCCA AACTGCACCT GAAAACAAAA
                                                                                      1380
          AGCCAGGATT TTCACTTCCA CCTGAAATAT CACAATTTGT CTCTCTACAC TGAGCATTCT
                                                                                      1440
 70
          GTGCAGGAGA AGAACTGGTA CAGTCTTGTC ATTCGTGAAG ATGGGAACAG TATCTCCAGC
                                                                                      1500
          ATGATGGTAA AGGATACAGA AAGCAAAACA ACCAATGGGA TGACAACCGT GAGGTTTGTT
                                                                                      1560
          AACACTTTGC ATAAAGATGT CAACATCTCC CTGAGTACAG ATACCTCTCT CAATGTTGGT
                                                                                      1620
          GAAGACTATG GTGTGTCTGC TTATAGAACT GTGCAAAGAG GAGAATACCC TGCAGTGCAC
                                                                                      1680
          TGTAGAACAG AAGATAAGAA CTTTTCTCTG AATTTGGGTC TTCTAGACTT TGGTGCAGCA
                                                                                      1740
  75
          TATCTGTTTG TTATTACTAA TAACACCAAT CAGGGTCTTC AGGCCTGGAA GATTGAAGAC ATTCCAGCCA ACAAAATGTC CATTGCGTGG CAGCTACCAC AATATGCCCT GGTTACAGCT
                                                                                       1800
                                                                                      1860
          GGGGAGGTCA TGTTCTCTGT CACAGGTCTT GAGTTTTCTT ATTCTCAGGC TCCCTCTAGC
                                                                                      1920
          ATGAAATCTG TGCTCCAGGC AGCTTGGCTA TTGACAATTG CAGTTGGGAA TATCATCGTG
                                                                                      1980
          CTTGTTGTGG CACAGTTCAG TGGCCTGGTA CAGTGGGCCG AATTCATTTT GTTTTCCTGC
                                                                                       2040
  80
          CTCCTGCTGG TGATCTGCCT GATCTTCTCC ATCATGGGCT ACTACTATGT TCCTGTAAAG
                                                                                       2100
          ACAGAGGATA TGCGGGGTCC AGCAGATAAG CACATTCCTC ACATCCAGGG GAACATGATC
          AAACTAGAGA CCAAGAAGAC AAAACTCTGA
  85
          Seq ID NO: 681 Protein sequence
          Protein Accession #: AAB34388.1
```

```
11
       MNPFQKNESK ETLFSPVSIE EVPPRPPSPP KKPSPTICGS NYPLSIAFIV VNEFCERFSY
       YGMKAVLILY FLYFLHWNED TSTSIYHAFS SLCYFTPILG AAIADSWLGK FKTIIYLSLV
                                                                              120
 5
       YVLGHVIKSL GALPILGGQV VHTVLSLIGL SLIALGTGGI KPCVAAFGGD QFEEKHAEER
                                                                              180
       TRYFSVFYLS INAGSLISTF ITPMLRGDVO CFGEDCYALA FGVPGLLMVI ALVVFAMGSK
       IYNKPPPEGN IVAOVFKCIW FAISNRFKNR SGDIPKRQHW LDWAAEKYPK QLIMDVKALT
                                                                              300
       RVLFLYIPLP MFWALLDQQG SRWTLQAIRM NRNLGFFVLQ PDQMQVLNPF LVLIFIPLFD
                                                                              360
       FVIYRLVSKC GINFSSLRKM AVGMILACLA FAVAAAVEIK INEMAPAQSG PQEVFLQVLN
                                                                              420
10
       LADDEVKVTV VGNENNSLLI ESIKSFQKTP HYSKLHLKTK SQDFHFHLKY HNLSLYTEHS
                                                                              480
       VQEKNWYSLV IREDGNSISS MMVKDTESKT TNGMTTVRFV NTLHKDVNIS LSTDTSLNVG
                                                                              540
       EDYGVSAYRT VORGEYPAVH CRTEDKNFSL NLGLLDFGAA YLFVITNNTN QGLQAWKIED
                                                                              600
       IPANKMSIAW QLPQYALVTA GEVMFSVTGL EFSYSQAPSS MKSVLQAAWL LTIAVGNIIV
       LVVAQFSGLV QWAEFILFSC LLLVICLIFS IMGYYYVPVK TEDMRGPADK HIPHIQGNMI
15
       Seq ID NO: 682 DNA sequence
       Nucleic Acid Accession #: NM_016077.1
       Coding sequence: 128..667
20
                                                                51
       TCGCTTTGTG ATTCTTGATC CGGAACTTTG TCACCCAGGA ACCCCGGAAG AGGTAGCTCA
                                                                               60
       120
25
       ACTGTAGATG CCCTCCAAAT CCTTGGTTAT GGAATATTTG GCTCATCCCA GTACACTCGG
                                                                              180
       CTTGGCTGTT GGAGTTGCTT GTGGCATGTG CCTGGGCTGG AGCCTTCGAG TATGCTTTGG
                                                                              240
       GATGCTCCCC AAAAGCAAGA CGAGCAAGAC ACACACAGAT ACTGAAAGTG AAGCAAGCAT
                                                                              300
       CTTGGGAGAC AGCGGGAGT ACAAGATGAT TCTTGTGGTT CGAAATGACT TAAAGATGGG
AAAAGGGAAA GTGGCTGCCC AGTGCTCTCA TGCTGCTGTT TCAGCCTACA AGCAGATTCA
                                                                              360
                                                                              420
30
       AAGAAGAAAT CCTGAAATGC TCAAACAATG GGAATACTGT GGCCAGCCCA AGGTGGTGGT
       CAAAGCTCCT GATGAAGAAA CCCTGATTGC ATTATTGGCC CATGCAAAAA TGCTGGGACT
                                                                              540
       GACTGTAAGT TTAATTCAAG ATGCTGGACG TACTCAGATT GCACCAGGCT CTCAAACTGT
                                                                              600
       CCTAGGGATT GGGCCAGGAC CAGCAGACCT AATTGACAAA GTCACTGGTC ACCTAAAACT
                                                                              660
                                                                              720
       TTACTAGGTG GACTTTGATA TGACAACAAC CCCTCCATCA CAAGTGTTTG AAGCCTGTCA
35
       GATTCTAACA ACAAAAGCTG AATTTCTTCA CCCAACTTAA ATGTTCTTGA GATGAAAATA
                                                                              780
       AAACCTATTC CCATGTTCTA AAAAAA
       Seq ID NO: 683 Protein sequence
       Protein Accession #: NP_057161.1
40
                                                                 51
       MPSKSLVMEY LAHPSTLGLA VGVACGMCLG WSLRVCFGML PKSKTSKTHT DTESEASILG
                                                                               60
       DSGEYKMILV VRNDLKMGKG KVAAQCSHAA VSAYKQIQRR NPEMLKQWEY CGQPKVVVKA
                                                                              120
45
       PDEETLIALL AHAKMLGLTV SLIQDAGRTQ IAPGSQTVLG IGPGPADLID KVTGHLKLY
       Seg ID NO: 684 DNA sequence
       Nucleic Acid Accession #: NM_004864.1
       Coding sequence: 26..952
50
                                                     41
                                                                 51
                   11
                              21
                                          31
       CGGAACGAGG GCAACCTGCA CAGCCATGCC CGGGCAAGAA CTCAGGACGG TGAATGGCTC
       TCAGATGCTC CTGGTGTTGC TGGTGCTCTC GTGGCTGCCG CATGGGGGCG CCCTGTCTCT
                                                                              120
55
       GGCCGAGGCG AGCCGCGCAA GTTTCCCGGG ACCCTCAGAG TTGCACTCCG AAGACTCCAG
                                                                              180
       ATTCCGAGAG TTGCGGAAAC GCTACGAGGA CCTGCTAACC AGGCTGCGGG CCAACCAGAG
                                                                              240
       CTGGGAAGAT TCGAACACCG ACCTCGTCCC GGCCCCTGCA GTCCGGATAC TCACGCCAGA
                                                                              300
       AGTGCGGCTG GGATCCGGCG GCCACCTGCA CCTGCGTATC TCTCGGGCCG CCCTTCCCGA
                                                                              360
       GGGGCTCCCC GAGGCCTCCC GCCTTCACCG GGCTCTGTTC CGGCTGTCCC CGACGGCGTC
                                                                              420
60
       AAGGTCGTGG GACGTGACAC GACCGCTGCG GCGTCAGCTC AGCCTTGCAA GACCCCAAGC
       GCCCGCGCTG CACCTGCGAC TGTCGCCGCC GCCGTCGCAG TCGGACCAAC TGCTGGCAGA
                                                                              540
       ATCTTCGTCC GCACGGCCCC AGCTGGAGTT GCACTTGCGG CCGCAAGCCG CCAGGGGGCG
                                                                              600
       CCGCAGAGCG CGTGCGCGCA ACGGGGACGA CTGTCCGCTC GGGCCCGGGC GTTGCTGCCG
                                                                              660
       TCTGCACACG GTCCGCGCGT CGCTGGAAGA CCTGGGCTGG GCCGATTGGG TGCTGTCGCC
                                                                              720
       ACGGGAGGTG CAAGTGACCA TGTGCATCGG CGCGTGCCCG AGCCAGTTCC GGGCGGCAAA
65
                                                                              780
       CATGCACGCG CAGATCAAGA CGAGCCTGCA CCGCCTGAAG CCCGACACGG AGCCAGCGCC
       CTGCTGCGTG CCCGCCAGCT ACAATCCCAT GGTGCTCATT CAAAAGACCG ACACCGGGGT
                                                                              900
       GTCGCTCCAG ACCTATGATG ACTTGTTAGC CAAAGACTGC CACTGCATAT GAGCAGTCCT
                                                                              960
       GGTCCTTCCA CTGTGCACCT GCGCGGGGGA GGCGACCTCA GTTGTCCTGC CCTGTGGAAT
                                                                             1020
70
                                                                             1080
       GGGCTCAAGG TTCCTGAGAC ACCCGATTCC TGCCCAAACA GCTGTATTTA TATAAGTCTG
       TTATTTATTA TTAATTTATT GGGGTGACCT TCTTGGGGAC TCGGGGGCTG GTCTGATGGA ACTGTGTATT TATTTAAAAC TCTGGTGATA AAAATAAAGC TGTCTGAACT GTTAAAAAAA
                                                                             1140
75
       Seq ID NO: 685 Protein sequence
       Protein Accession #: NP_004855.1
                                                     41
                                          31
                   11
                              21
80
       MPGQELRTVN GSQMLLVLLV LSWLPHGGAL SLAEASRASF PGPSELHSED SRFRELRKRY
                                                                               60
       EDLLTRLRAN QSWEDSNTDL VPAPAVRILT PEVRLGSGGH LHLRISRAAL PEGLPEASRL
                                                                              120
       HRALFRLSPT ASRSWDVTRP LRRQLSLARP QAPALHLRLS PPPSQSDQLL AESSSARPQL
ELHLRPQAAR GRRRARARNG DDCPLGPGRC CRLHTVRASL EDLGWADWVL SPREVQVTMC
                                                                              180
                                                                              240
       IGACPSQFRA ANMHAQIKTS LHRLKPDTEP APCCVPASYN PMVLIQKTDT GVSLQTYDDL
85
       LAKDCHCI
```

Seq ID NO: 686 DNA sequence

Nucleic Acid Accession #: NM_002423.2 Coding sequence: 48..851

5	1	11	21	31	41	51	
	TGCTGTGTGC GAGGCATGAG	CCATAGGTCC TGTGTGCCTG TGAGCTACAG	CTGCCTGGCA TGGGAACAGG	GCCTGGCCCT CTCAGGACTA	GCCGCTGCCT TCTCAAGAGA	CAGGAGGCGG TTTTATCTCT	60 120 180
10	TCTTTGGCCT	AACAAAAAT ACCTATAACT AGTGCCAGAT	GGAATGTTAA	ACTCCCGCGT	CATAGAAATA	ATGCAGAAGC	240 300 360
	CTTCCAAAGT TGGATCGATT	GGTCACCTAC AGTGTCAAAG	AGGATCGTAT GCTTTAAACA	CATATACTCG TGTGGGGCAA	AGACTTACCG AGAGATCCCC	CATATTACAG CTGCATTTCA	420 480
15	ACTCCTACCC GTCTCGGAGG GGATTAACTT	ATGGGGAACT ATTTGATGGG AGATGCTCAC CCTGTATGCT	CCAGGAAACA TTCGATGAGG GCAACTCATG	CGCTGGCTCA ATGAACGCTG AACTTGGCCA	TGCCTTTGCG GACGGATGGT TTCTTTGGGT	CCTGGGACAG AGCAGTCTAG ATGGGACATT	540 600 660 720
20	AACTTTCCCA	TAATGCAGTG GGATGATATT GAAACTTCAG	AAAGGCATTC	AGAAACTATA	TGGAAAGAGA	AGTAATTCAA	780 840 900
20	TGTTGCACAA CTTTTTTATT	TCAGAATTGA GCAGTTGGTT TGTGTCTTAT	TAAGCACTGT TTTGAATGTC	TCCTCCACTC TTTCACTCCT	CATTTAGCAA TTTATTGGTT	TTATGTCACC AAACTCCTTT	960 1020 1080
25	ATGTTACATA	CACAAATAAA		ATTCCATGGT	AAATTTA		
	Seq ID NO: Protein Acc	cession #: 1	_				
30	1	11	21 	31	41	51	
	EMQKFFGLPI PHITVDRLVS	LLPGSLALPL TGMLNSRVIE KALNMWGKEI HFDEDERWTD	IMQKPRCGVP PLHFRKVVWG	DVAEYSLFPN TADIMIGFAR	SPKWTSKVVT GAHGDSYPFD	YRIVSYTRDL GPGNTLAHAF	60 120 180 240
35		IKGIQKLYGK		UCHELIANIAN	GHGHSSDENA	VMIFIIGNGD	240
	Seq ID NO: 688 DNA sequence Nucleic Acid Accession #: NM_005221.3 Coding sequence: 1870						
	Nucleic Ac:	id Accession	n#: NM_005	5221.3			
40	Nucleic Ac:	id Accession	n#: NM_005	31	41	51	
40	Nucleic According sequents 1 ATGACAGGAG	id Accession mence: 18° 11 } TGTTTGACAG	n#: NM_005 70 21 AAGGGTCCCC	31 AGCATCCGAT	CCGGCGACTT	CCAAGCTCCG	60
40 45	Nucleic Actioning sequence of the sequence of	id Accession nence: 18° 11 } TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA	#: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CCCAGCCAAA	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCCTACC GCTTATGCCG	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC	120 180 240 300
45	Nucleic Ac: Coding sequ 1 ATGACAGGAG TTCAGACTT TCAGCTACCG CCTACCTCGG AACGGCTCCG TACCACCAGT GAAGTGACCG	id Accession nence: 18* 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGCGGGGGCGCAGCCGAGGTA	#: NM_005 70 21 AAGGGTCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CCCAGCCAAA CTACAACCGC GAGAATGGTG	31 AGCATCCGAT TCTCAGGAAT ACGCGGGGGAG AACCCCTACC GCTTATGCCG GTCCCAAGCG AATGGCAAAC	CCGGCGACTT CGCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC	120 180 240 300 360 420
	Nucleic Ac: Coding sequ 1 ATGACAGGAG TTCAGACGT TCAGCTACCG CCTACCTCGG AACGGCTCCG TACCACAGGT GAAGTGACCG GAGGACTATTT TACCTCCGCCT TACCTCGCGT GTGAAAATCT	id Accession nence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGGCGGGAGCTA ACGCCGGAGGT ATTCCAGCTT TGCCGGAACG GGTTTCAGAA	#: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCT CAAAGCTCTC CCCAGCCCAA CTACAACCGC GAGAATGGTG TCAGCTGGCC CAAAGATCCC CAAAGATCC	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGA AACCCCTAC GCTTATGCCG GTCCCAAGCG AATGGCAAAC GCATTACAGA GCCGCCTCGC AAGATCAAGA	CCGGCGACTT CCCCGCACGT CCCCGCACGT ACTATAGCTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAA	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT CTACTGCTCT CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG AACACACAG AAACGGGGAG	120 180 240 300 360 420 480 540
45	Nucleic Ac: Coding sequ 1 ATGACAGGAG TTCAGACGT TCAGCTACCG CCTACCTCGG AACGGCTCCG GAAGTGACCG GAGACTATTT TACCTCCGCT ATGCCCCGG CCAGCGGTGC CCAGCGGTGC CCTCGACCT ACAGGGGTGCT ACAAGTGCAG	id Accession ence: 18° 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGCCGAGGGA ATTCCAGCTT TGCCGGAACG	#: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCTA CTACAGCCTA CTACAACCGC GAGAATGGTG CCAGCTGAC CAAAGATCCCAGC CAAAGATCCCAGC CACAGCTCCAGC CCAGGGTCC CCAGGGTCC CCAAGGTCCCCCAGCTCC	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGG AACCCCTACC GCTTATGCCG GTCCCAAGCG AATGGCAAG GCATTACAGA GCCGCCTCGC AAGATCAAGA GACCCAATGG GCGCTCGC AGGTCACCGCTCGC AGGTACCTGC	CCGGCGACTT CCCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA ACACAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC GGTGTAACTC GCCACCACCC AGAACTCTGC	CCAAGCTCCG GCCCGAGTCT TCACGGCTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGAG TCATGCCCAC ATCCTGGTAC	120 180 240 300 360 420 480 540
45 50	Nucleic Ac: Coding sequ 1 ATGACAGGAG TTCAGACGT TCAGCTACCTCGG AACGGCTCCG TACCACCAGT GAAGTGACCG GTGAAAATCT ATGCCCCGG CCAGCGGTTG CCTCGGACCT ACTGCCCT ACTGCCCT ACTGCCCT ACTGCCCT ACTGCCCT ACAGCGTTG CCTCGGACCT ACAGTGCAG CTGCCGTGG Seq ID NO:	id Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGGCGGCGC AGCCCGAGGT ATTCCAGCTT TGCCGGAACG GGTTTCAGAA AGCACAGTC CCAGCAGTC CCAGCTCAAT	#: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCAAA CTACAACCGC GAGAATGGTG CAGCTGGCC CAGCTGGCC CAGCTCAGC CACCTGCC CAGCTCAGC CAGCTCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAC CCCAGCGTCC CAATTCCCAC ACTCTATTAG in sequence	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGG AACCCCTACC GCTTATGCCG GTCCCAAGCG AATGGCAAG GCATTACAGA GCCGCCTCGC AAGATCAAGA GACCCAATGG GCGCTCGC AGGTCACCGCTCGC AGGTACCTGC	CCGGCGACTT CCCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC GGTGTAACTC GCCACCACCC AGAACTCTGC	CCAAGCTCCG GCCCGAGTCT TCACGGCTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGAG TCATGCCCAC ATCCTGGTAC	120 180 240 300 360 420 480 540 600 660 720 780
45 50 55	Nucleic Ac: Coding sequ 1 ATGACAGGAG TTCAGACGT TCAGCTACCTCGG AACGGCTCCG TACCACCAGT GAAGTGACCG GTGAAAATCT ATGCCCCGG CCAGCGGTTG CCTCGGACCT ACTGCCCT ACTGCCCT ACTGCCCT ACTGCCCT ACTGCCCT ACAGCGTTG CCTCGGACCT ACAGTGCAG CTGCCGTGG Seq ID NO:	id Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA CTTCCTATGG CCGGGAGCTA ACGCGGAGCTA ACGCGGAGCTG ATTCCAGCTT TGCCGGAACG GGTTTCAGAA AGCACAGTC CGGGAGCCCA CCAACCAGTC CCAGCTCAAT CCTCCGGGAC 689 Protes	#: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCAAA CTACAACCGC GAGAATGGTG CAGCTGGCC CAGCTGGCC CAGCTCAGC CACCTGCC CAGCTCAGC CAGCTCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAC CCCAGCGTCC CAATTCCCAC ACTCTATTAG in sequence	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGG AACCCCTACC GCTTATGCCG GTCCCAAGCG AATGGCAAG GCATTACAGA GCCGCCTCGC AAGATCAAGA GACCCAATGG GCGCTCGC AGGTCACCGCTCGC AGGTACCTGC	CCGGCGACTT CCCCAACTTT CCCCGCACGG AGTATCAGTA ACTATAGCTA CCACCAACCA CAAAGAAAGT GAAGGTTTCA TGGGATTGAC AGATCATGAC GGTGTAACTC GCCACCACCC AGAACTCTGC	CCAAGCTCCG GCCCGAGTCT TCACGGCTG CGCTAGCTCC GCCAGAGAAA TCGTAAACCC GAAGACTCAG ACAACACAG AAACGGGAG TCATGCCCAC ATCCTGGTAC	120 180 240 300 360 420 480 540 600 660 720 780
45 50 55	Nucleic Ac: Coding sequence 1 ATGACAGGAG TTCAGACGT TCAGCTACCG CCTACCTCGG AACGGCTCCG GAAGTGACCG GAGACTATTT TACCTCCCCGG CCAGCGGTGT ATGCCCCGG CCAGCGGTGT ACAAGTGCAG Seq ID NO: Protein Acc 1 MTGVFDRRVP PTSASYGKAL EVTEPEVRMV VKIWFQNKRS	id Accession ence: 18' 11 TGTTTGACAG CCGCAGCTAT ATTCTGACTA ATTCTGACTA CTTCCTATGG CCGGAGCTA ACGCCGAGGT ATTCCAGACT AGCCGGACT ATTCCAGACT CGTTTCAGAA AGCACAGTC GGAGCCCCA CCAACCAGT CCAGCTCAAC CCACCTCAC CCAGCTCAAC CCACCTCAC CCACCTCAC CCACCTCAC CCACCTCAC CCACCTCACC CCACCTCACCTCACC CCACCTCACC CCACCTCACCTCACC CCACCTCACCTCACC CCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCTCACCT	#: NM_005 70 21 AAGGGTCCCC GCACCATCCG CTACAGCCCTA CTACAGCCCT CTACAGCCCTA CTACAACCGC GAGAATGGTG CCAGCTGACC CAACTCCAGC CAAAGATCCCAC CACTCCAGC CCAGGCTC CCAGGCTCC CCAGGCTCC CCAGTCCAC ACTCTATTAG in sequence NP_005212.1 21 FQTSAAMHHP NGSAGSYPAK RTIYSSFQLA MPPEHSPSSS	31 AGCATCCGAT TCTCAGGAAT ACGGGGGGAG AACCCCTACC GCTTATGCCG GTCCCAAGCG AATGGCAAAC GCATTACAGA GCCCTCGC AAGATCAAGA GACCCAATGG CGCTCGCC AGATCACTGG CTCCCCGC 31 SQESPTLPES AYADYSYASS ALQRRFQKTQ DPMACNSPQS	CGGCGACTT CCCCACACTT CCCCGCACGG AGTATCAGTA ACTATAGCTA ACTATAGCTA CGACAACCA CAAGGAAGT GAAGGTTTCA CGGATTGAC CGGATTGAC CGGGCTCCTT 41 SATDSDYYSP YHQYGGAYNR YLALPERAEL PAVWEPQGSS	CCAAGCTCCG GCCCGAGTCT CTACTGCTCT TCACGGCGTG CGCTAGCTCA CGCAGAGAAA TCGTAAACCC GAAGACTCAG AAACGCGGAG GCCGCAGTCT TCATGCCAC ATCCTGGTAC ATCCTGGTAC ATCCTGGTAC ATCCTGGTAC ATCCTGGTAC ATCCTGGTAC ATCCTGGTAC ATCCTGGTAC ACAGCACCCG	120 180 240 300 360 420 480 540 600 660 720 780

It is understood that the examples described above in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All publications, sequences of accession numbers, and patent applications cited in this specification are herein neorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

WHAT IS CLAIMED IS:

A method of detecting a lung cancer-associated transcript in a cell 1 1. 2 from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence 3 4 as shown in Tables 1A-16. 2. The method of claim 1, wherein the polynucleotide selectively 1 2 hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1A-16. 3. The method of claim 1, wherein the biological sample is a tissue 1 2 sample. The method of claim 1, wherein the biological sample comprises 1 4. 2 isolated nucleic acids. 1 5. The method of claim 4, wherein the nucleic acids are mRNA. The method of claim 4, further comprising the step of amplifying 6. 1 2 nucleic acids before the step of contacting the biological sample with the polynucleotide. 1 7. The method of claim 1, wherein the polynucleotide comprises a 2 sequence as shown in Tables 1A-16. The method of claim 1, wherein the polynucleotide is labeled. 1 8. 1 9. The method of claim 8, wherein the label is a fluorescent label. 1 10. The method of claim 1, wherein the polynucleotide is immobilized on 2 a solid surface. 1 11. The method of claim 1, wherein the patient is undergoing a therapeutic regimen to treat lung cancer. 2 1 12. The method of claim 1, wherein the patient is suspected of having lung 2 cancer.

1 13. A method of monitoring the efficacy of a therapeutic treatment of lung 2 cancer, the method comprising the steps of:

3	(i) providing a biological sample from a patient undergoing the therapeutic				
4	treatment; and				
5	(ii) determining the level of a lung cancer-associated transcript in the				
6	biological sample by contacting the biological sample with a polynucleotide that selectively				
7	hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16,				
8	thereby monitoring the efficacy of the therapy.				
1	14. The method of claim 13, further comprising the step of: (iii) comparing				
2	the level of the lung cancer-associated transcript to a level of the lung cancer-associated				
3	transcript in a biological sample from the patient prior to, or earlier in, the therapeutic				
4	treatment.				
1	15. The method of claim 13, wherein the patient is a human.				
1	16. A method of monitoring the efficacy of a therapeutic treatment of lung				
2	cancer, the method comprising the steps of:				
3	(i) providing a biological sample from a patient undergoing the therapeutic				
4	treatment; and				
5	(ii) determining the level of a lung cancer-associated antibody in the biological				
6	sample by contacting the biological sample with a polypeptide encoded by a polynucleotide				
7	that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in				
8	Tables 1A-16, wherein the polypeptide specifically binds to the lung cancer-associated				
9	antibody, thereby monitoring the efficacy of the therapy.				
1	17. The method of claim 16, further comprising the step of: (iii) comparing				
2	the level of the lung cancer-associated antibody to a level of the lung cancer-associated				
3	antibody in a biological sample from the patient prior to, or earlier in, the therapeutic				
4	treatment.				
1	18. The method of claim 16, wherein the patient is a human.				
1	19. A method of monitoring the efficacy of a therapeutic treatment of lung				
2	cancer, the method comprising the steps of:				
3	(i) providing a biological sample from a patient undergoing the therapeutic				

PCT/US02/12476

WO 02/086443

treatment; and

5	(ii) d	etermining the level of a lung cancer-associated polypeptide in the			
6	biological sample by contacting the biological sample with an antibody, wherein the antibody				
7	specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to				
8	a sequence at least 80% identical to a sequence as shown in Tables 1A-16, thereby				
9	monitoring the efficacy of the therapy.				
1	20	The method of claim 19, further comprising the step of: (iii) comparing			
1	20.				
2	the level of the lung cancer-associated polypeptide to a level of the lung cancer-associated				
3		logical sample from the patient prior to, or earlier in, the therapeutic			
4	treatment.				
1	21.	The method of claim 19, wherein the patient is a human.			
1	22.	An isolated nucleic acid molecule consisting of a polynucleotide			
2	sequence as shown	in Tables 1A-16.			
1	23.	The nucleic acid molecule of claim 22, which is labeled.			
1	24.	The nucleic acid of claim 23, wherein the label is a fluorescent label			
1	25.	An expression vector comprising the nucleic acid of claim 22.			
1	26.	A host cell comprising the expression vector of claim 25.			
1	27.	An isolated polypeptide which is encoded by a nucleic acid molecule			
2	having polynucleotide sequence as shown in Tables 1A-16.				
1	28.	An antibody that specifically binds a polypeptide of claim 27.			
1	29.	The antibody of claim 28, further conjugated to an effector component.			
1	30.	The antibody of claim 29, wherein the effector component is a			
2	fluorescent label.				
1	31.	The antibody of claim 29, wherein the effector component is a			
2	radioisotope or a cy	•			
4	radioisotope of a cy	totomio onomioun			
1	32.	The antibody of claim 29, which is an antibody fragment.			

1		33.	The antibody of claim 29, which is a humanized antibody
1 2	patient, the m	34. ethod co	A method of detecting a lung cancer cell in a biological sample from a omprising contacting the biological sample with an antibody of claim
3	28.		
1 2	an effector co	35.	The method of claim 34, wherein the antibody is further conjugated to
2	an enector co	mponer	
1	a	36.	The method of claim 35, wherein the effector component is a
2	fluorescent la	bel.	
1		37.	A method of detecting antibodies specific to lung cancer in a patient,
2		_	ng contacting a biological sample from the patient with a polypeptide
3	encoded by a	nucleic	acid comprises a sequence from Tables 1A-16.
1		38.	A method for identifying a compound that modulates a lung cancer-
2	associated po	lypeptid	le, the method comprising the steps of:
3		(i) con	tacting the compound with a lung cancer-associated polypeptide, the
4	polypeptide e	ncoded	by a polynucleotide that selectively hybridizes to a sequence at least
5	80% identical	to a sec	quence as shown in Tables 1A-16; and
6		(ii) de	termining the functional effect of the compound upon the polypeptide.
1		39.	The method of claim 38, wherein the functional effect is a physical
2	effect.		
1		40.	The method of claim 38, wherein the functional effect is a chemical
2	effect.		
1		41.	The method of claim 38, wherein the polypeptide is expressed in a
2	eukaryotic ho	st cell o	r cell membrane.
1		42.	The method of claim 38, wherein the functional effect is determined by
2	measuring lig	and bin	ding to the polypeptide.
1		43.	The method of claim 38, wherein the polypeptide is recombinant.

1	44.	A method of inhibiting proliferation of a lung cancer-associated cell to			
2	treat lung cancer in a patient, the method comprising the step of administering to the subject a				
3	therapeutically effective amount of a compound identified using the method of claim 38.				
1	45.	The method of claim 44, wherein the compound is an antibody.			
1	46.	The method of claim 45, wherein the patient is a human.			
1	47.	A drug screening assay comprising the steps of			
2	(i) adr	ninistering a test compound to a mammal having lung cancer or a cell			
3	isolated therefrom;				
4	(ii) comparing the level of gene expression of a polynucleotide that selectively				
5	hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16 in a				
6	treated cell or mammal with the level of gene expression of the polynucleotide in a control				
7	cell or mammal, wherein a test compound that modulates the level of expression of the				
8	polynucleotide is a ca	andidate for the treatment of lung cancer.			
1	48.	The assay of claim 47, wherein the control is a mammal with lung			
2	cancer or a cell therefrom that has not been treated with the test compound.				
1	49.	The assay of claim 47, wherein the control is a normal cell or mammal.			
1	50.	A method for treating a mammal having lung cancer comprising			
2	administering a compound identified by the assay of claim 47.				
1	51.	A pharmaceutiPcal composition for treating a mammal having lung			
2	cancer, the composition comprising a compound identified by the assay of claim 47 and a				
3	physiologically accep	ptable excipient.			

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 31 October 2002 (31.10.2002)

PCT

(10) International Publication Number WO 02/086443 A2

(51) International Patent Classification⁷: G01N

(21) International Application Number: PCT/US02/12476

(22) International Filing Date: 18 April 2002 (18.04.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/284,770	18 April 2001 (18.04.2001)	US
60/290,492	10 May 2001 (10.05.2001)	US
60/339,245	9 November 2001 (09.11.2001)	US
60/350,666	13 November 2001 (13.11.2001)	US
60/334,370	29 November 2001 (29.11.2001)	US
60/372,246	12 April 2002 (12.04.2002)	US

(71) Applicant (for all designated States except US): EOS BIOTECHNOLOGY, INC. [US/US]; 225A Gateway Boulevard, South San Francisco, CA 94080 (US).

- (72) Inventors; and
- (75) Inventors/Applicants (for US only): AZIZ, Natasha [US/US]; 411 California Avenue, Palo Alto, CA 94306 (US). MURRAY, Richard [US/US]; 22643 Woodbridge Court, Cupertino, CA 95014 (US).
- (74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111-3834 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv)) for US only

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF DIAGNOSIS OF LUNG CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF LUNG CANCER

(57) Abstract: Described herein are methods and compositions that can be used for diagnosis and treatment of lung cancer and similar pathologies. Also described herein are methods that can be used to identify modulators of lung cancer and similar pathologies.

METHODS OF DIAGNOSIS OF LUNG CANCER, COMPOSITIONS AND METHODS OF SCREENING FOR MODULATORS OF LUNG CANCER

5

10

15

CROSS-REFERENCES TO RELATED APPLICATIONS

This application is related to USSN 60/284,770, filed April 18, 2001; USSN 60/290,492, filed May 10, 2001; USSN 60/334,370, filed November 29, 2001; USSN 60/339,245, filed November 9, 2001; USSN 60/350,666, filed November 13, 2001; and USSN 60/xxx,xxx, filed April 12, 2002 (Docket OMNI-002P); each of which is incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The invention relates to the identification of nucleic acid and protein expression profiles and nucleic acids, products, and antibodies thereto that are involved in lung cancer; and to the use of such expression profiles and compositions in diagnosis and therapy of lung cancer. The invention further relates to methods for identifying and using agents and/or targets that inhibit lung cancer or related conditions.

20

25

30

BACKGROUND OF THE INVENTION

Lung cancer is the second most commonly occurring cancer in the United States and is the leading cause of cancer-related death. It is estimated that there are over 160,000 new cases of lung cancer in the United States every year. Of those who are diagnosed with lung cancer, 86 percent will die within five years. Lung cancer is the most common visceral cancer in men and accounts for nearly one third of all cancer deaths in both men and women. In fact, lung cancer accounts for 7% of all deaths, due to any cause, in both men and women.

Smoking is the primary cause of lung cancer, with more than 80% of lung cancers resulting from smoking. About 400 to 500 separate gaseous substances are present in the smoke of a non-filter cigarette. The most noteworthy substances include nitrogen oxides, hydrogen cyanide, formaldehyde, benzene, and toluene. The particles present in cigarette smoke contain at least 3,500 individual compounds such as nicotine, tobacco alkaloids (nornicotine, anatabine, anabasine), polycyclic aromatic hydrocarbons (e.g., benzo(a)pyrene, B(a)P), naphthalenes, aromatic amines, phenols, and tobacco-specific nitrosamines.

Tobacco-specific nitrosamines are formed during tobacco curing and processing, and are suspected of causing lung cancer in humans. In rodent studies, regardless of the where or how it is applied, the tobacco-specific nitrosamine known as NNK produces lung adenomas and lung adenocarcinomas. The tobacco-specific nitrosamine known as NNAL also produces lung adenocarcinomas in rodents.

5

10

15

20

25

30

Many of the chemicals found in cigarette smoke also affect the nonsmoker inhaling "secondhand" or sidestream smoke. Indeed, the smoke inhaled by non-smokers has a chemical composition similar to the smoke inhaled by smokers, but, importantly, the concentrations of the carcinogenic tobacco-specific nitrosamines are present in higher concentrations in second hand smoke. For this and other reasons, "passive smoking" is an important cause of lung cancer, causing as many as 3,000 lung cancer deaths in nonsmokers each year.

In addition to smoking, other factors thought to be causes of lung cancer include onthe-job exposure to carcinogens such as asbestos and uranium, exposure to chemical hazards such as radon, polycyclic aromatic hydrocarbons, chromium, nickel, and inorganic arsenic, genetic factors, and diet.

Histological classification of various lung cancers define the types of cancer that begin in the lung. See, e.g., Travis, et al. (1999) <u>Histological Typing of Lung and Pleural Tumours</u> (International Histological Classification of Tumours, No 1. Four major cell types make up more than 88% of all primary lung neoplasms. These are: squamous or epidermoid carcinoma, small cell (also called oat cell) carcinoma, adenocarcinoma, and large cell (also called large cell anaplastic) carcinoma. The remainder include undifferentiated carcinomas, carcinoids, bronchial gland tumors, and other rarer types. The various cell types have different natural histories and responses to therapy, and, thus, a correct histologic diagnosis is the first step of effective treatment.

Small cell lung cancer (SCLC) accounts for 18-25% of all lung cancers, and occurs less frequently than non-small cell lung cancers, and generally spread to distant organs more rapidly than non-small cell lung cancer. In general, at the time of presentation small cell lung cancers have already spread beyond the beyond the bounds where surgery and curative intent can be undertaken. Hoever, if identified early enough, these cancers are often responsive to chemotherapy and thoracic radiation treatment.

Non-small cell lung cancers (NSCLC) are the more frequently occurring form of lung cancer. They comprise squamous cell carcinoma, adenocarcinoma, and large cell carcinoma

and account for more than 75% of all lung cancers. Non-small cell tumors that are localized at the time of presentation can sometimes be cured with surgery and/or radiotherapy, but usually are not identified until significant metastasis has occurred, which are typically not very responsive to surgical, chemotherapy, or radiation treatment..

The screening of asymptomatic persons at high risk for lung cancer has often proven ineffective. In general, only 5 to 15 percent of lung cancer patients have their disease detected while they are asymptomatic. Of course, early detection and treatment are critical factors in the fight against lung cancer. The average survival rate is 49% for those whose cancer is detected early, before the cancer has spread from the lung. Lung cancer often spreads outside of the lung, and it may have spread to the bones or brain by the time it is diagnosed. While the prognosis may be better for lung cancers that are detected early, because of the lack of effective curative treatments, early detection does not necessarily alter the total death rate from lung cancer.

Thus, methods for diagnosis and prognosis of lung cancer and effective treatment of lung cancer would be desirable. Accordingly, provided herein are methods that can be used in diagnosis and prognosis of lung cancer. Further provided are methods that can be used to screen candidate therapeutic agents for the ability to modulate, e.g., treat, lung cancer. Additionally, provided herein are molecular targets and compositions for therapeutic intervention in lung disease and other metastatic cancers.

20

25

30

5

10

15

SUMMARY OF THE INVENTION

The present invention provides nucleotide sequences of genes that are up- and down-regulated in lung cancer cells. Such genes are useful for diagnostic purposes, and also as targets for screening for therapeutic compounds that modulate lung cancer, such as antibodies. The methods of detecting nucleic acids of the invention or their encoded proteins can be used for a number of purposes. Examples include early detection of lung cancers, monitoring and early detection of relapse following treatment of lung cancers, monitoring response to therapy of lung cancers, determining prognosis of lung cancers, directing therapy of lung cancers, selecting patients for postoperative chemotherapy or radiation therapy, selecting therapy, determining tumor prognosis, treatment, or response to treatment, and early detection of precancerous lesions of the lung. Examples of benign or precancerous lesions include: atelectasis, emphysema, brochitis, chronic obstructive pulmonary disease, fibrosis, hypersensitivity pneumonitis (HP), interstitial pulmonary fibrosis (IPF), asthma, and

WO 02/086443 PCT/US02/12476 bronchiectasis. Other aspects of the invention will become apparent to the skilled artisan by

bronchiectasis. Other aspects of the invention will become apparent to the skilled artisan by the following description of the invention.

In one aspect, the present invention provides a method of detecting a lung cancer-associated transcript in a cell from a patient, the method comprising contacting a biological sample from the patient with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16. Alternatively, the sample may be contacted with a specific binding reagent, e.g., antibody.

5

10

15

20

25

30

In one embodiment, the polynucleotide selectively hybridizes to a sequence at least 95% identical to a sequence as shown in Tables 1A-16. In another embodiment, the polynucleotide comprises a sequence as shown in Tables 1A-16.

In one embodiment, the biological sample is a tissue sample, or a body fluid. In another embodiment, the biological sample comprises isolated nucleic acids, e.g., mRNA.

In one embodiment, the polynucleotide is labeled, e.g., with a fluorescent label. In one embodiment, the polynucleotide is immobilized on a solid surface. In one embodiment, the patient is undergoing a therapeutic regimen to treat lung cancer. In another embodiment, the patient is suspected of having lung cancer. In one embodiment, the patient is a primate, e.g., a human.

In one embodiment, the method further comprises the step of amplifying nucleic acids before the step of contacting the biological sample with the polynucleotide.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated transcript in the biological sample by contacting the biological sample with a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, thereby monitoring the efficacy of the therapy. Or the sample may be evaluated for protein, e.g., contacting the sample with an antibody.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated transcript to a level of the lung cancer-associated transcript in a biological sample from the patient prior to, or earlier in, the therapeutic treatment. Or the sample may be evaluated for comparison of protein.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a

biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated antibody in the biological sample by contacting the biological sample with a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, wherein the polypeptide specifically binds to the lung cancer-associated antibody, thereby monitoring the efficacy of the therapy.

5

10

15

20

25

30

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated antibody to a level of the lung cancer-associated antibody in a biological sample from the patient prior to, or earlier in, the therapeutic treatment.

In another aspect, the present invention provides a method of monitoring the efficacy of a therapeutic treatment of lung cancer, the method comprising the steps of: (i) providing a biological sample from a patient undergoing the therapeutic treatment; and (ii) determining the level of a lung cancer-associated polypeptide in the biological sample by contacting the biological sample with an antibody, wherein the antibody specifically binds to a polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16, thereby monitoring the efficacy of the therapy.

In one embodiment, the method further comprises the step of: (iii) comparing the level of the lung cancer-associated polypeptide to a level of the lung cancer-associated polypeptide in a biological sample from the patient prior to, or earlier in, the therapeutic treatment. In one aspect, the present invention provides an isolated nucleic acid molecule consisting of a polynucleotide sequence as shown in Tables 1A-16. In one embodiment, an expression vector or cell comprises the isolated nucleic acid. In one aspect, the present invention provides an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1A-16.

In another aspect, the present invention provides an antibody that specifically binds to an isolated polypeptide which is encoded by a nucleic acid molecule having polynucleotide sequence as shown in Tables 1A-16. In one embodiment, the antibody is conjugated to an effector component, e.g., a fluorescent label, a radioisotope or a cytotoxic chemical. In one embodiment, the antibody is an antibody fragment. In another embodiment, the antibody is humanized.

In one aspect, the present invention provides a method of detecting lung cancer in a a patient, the method comprising contacting a biological sample from the patient with an antibody or protein as described herein.

In another aspect, the present invention provides a method of detecting antibodies specific to a lung cancer gene in a patient, the method comprising contacting a biological sample from the patient with a polypeptide encoded by a nucleic acid comprises a sequence from Tables 1A-16.

5

10

15

20

25

30

In another aspect, the present invention provides a method for identifying a compound that modulates a lung cancer-associated polypeptide, the method comprising the steps of: (i) contacting the compound with a lung cancer-associated polypeptide, the polypeptide encoded by a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16; and (ii) determining the functional effect of the compound upon the polypeptide.

In one embodiment, the functional effect is a physical effect, an enzymatic effect, or a chemical effect. In one embodiment, the polypeptide is expressed in a eukaryotic host cell or cell membrane. In another embodiment, the polypeptide is recombinant. In one embodiment, the functional effect is determined by measuring ligand binding to the polypeptide.

In another aspect, the present invention provides a method of inhibiting proliferation or another critical process of a lung cancer-associated cell to treat lung cancer in a patient, the method comprising the step of administering to the subject a therapeutically effective amount of a compound identified as described herein. In one embodiment, the compound is an antibody.

In another aspect, the present invention provides a drug screening assay comprising the steps of: (i) administering a test compound to a mammal having lung cancer or a cell isolated therefrom; (ii) comparing the level of gene expression of a polynucleotide that selectively hybridizes to a sequence at least 80% identical to a sequence as shown in Tables 1A-16 in a treated cell or mammal with the level of gene expression of the polynucleotide in a control cell or mammal, wherein a test compound that modulates the level of expression of the polynucleotide is a candidate for the treatment of lung cancer.

In one embodiment, the control is a mammal with lung cancer or a cell therefrom that has not been treated with the test compound. In another embodiment, the control is a normal cell or mammal, or a non-malignant lung disease.

In another aspect, the present invention provides a method for treating a mammal having lung cancer comprising administering a compound identified by the assay described herein.

In another aspect, the present invention provides a pharmaceutical composition for treating a mammal having lung cancer, the composition comprising a compound identified by the assay described herein and a physiologically acceptable excipient.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

In accordance with the objects outlined above, the present invention provides novel methods for diagnosis and treatment of lung disease or cancer, as well as methods for screening for compositions which modulate lung cancer. "Treatment, monitoring, detection or modulation of lung disease or cancer" includes treatment, monitoring, detection, or modulation of lung disease in those patients who have lung disease (whether malignant or non-malignant, e.g., emphysema, bronchitis, or fibrosis) as well as patients with lung cancers in which gene expression from a gene in Tables 1A-16 is increased or decreased, indicating that the subject is more likely to have disease. In particular, while these targets are identified primarily from lung cancer samples, these same targets are likely to be similarly found in analyses of other medical conditions. These other conditions may result from similar pathological processes which affect similar tissues, e.g., lung cancer, small cell lung carcinoma (oat cell carcinoma), non-small cell carcinomas (e.g., squamous cell carcinoma, adenocarcinoma, large cell lung carcinoma, carcinoid, granulomatous), fibrosis (idiopathic pulmonary fibrosis (IPF), hypersensitivity pneumonitis (HP), interstitial pneumonitis, nonspecific idiopathic pneumonitis (NSIP)), chronic obstructive pulmonary disease (COPD, e.g., emphysema, chronic bronchitis), asthma, bronchiectasis, and esophageal cancer. See, e.g., the NCI webpage and USSN 60/347,349 and USSN 60/xxx,xxx (docket LFBR-001-1P, filed March 29, 2002), each of which is incorporated herein by reference. The treatment may be of lung cancer or related condition itself, or treatment of metastasis.

In particular, identification of markers selectively expressed on these cancers allows for use of that expression in diagnostic, prognostic, or therapeutic methods. As such, the invention defines various compositions, e.g., nucleic acids, polypeptides, antibodies, and small molecule agonists/antagonists, which will be useful to selectively identify those markers. For example, therapeutic methods may take the form of protein therapeutics which use the marker expression for selective localization or modulation of function (for those markers which have a causative disease effect), for vaccines, identification of binding partners, or antagonism, e.g., using antisense or RNAi. The markers may be useful for molecular characterization of subsets of lung diseases, which subsets may actually require

very different treatments. Moreover, the markers may also be important in related diseases to the specific cancers, e.g., which affect similar tissues in non-malignant diseases, or have similar mechanisms of induction/maintenance. Metastatic processes or characteristics may also be targeted. Diagnostic and prognostic uses are made available, e.g., to subset related but distinct diseases, or to determine treatment strategy. The detection methods may be based upon nucleic acid, e.g., PCR or hybridization techniques, or protein, e.g., ELISA, imaging, IHC, etc. The diagnosis may be qualitative or quantitative, and may detect increases or decreases in expression levels.

Tables 1A-16 provide unigene cluster identification numbers for the nucleotide sequence of genes that exhibit increased or decreased expression in lung cancer samples. The tables also provide an exemplar accession number that provides a nucleotide sequence that is part of the unigene cluster. In Table 1A, genes marked as "target 1" or "target 2" are particularly useful as therapeutic targets. Genes marked as "target 3" are particularly useful as diagnostic markers. Genes marked as "chron" are upregulated in chronically diseased lung (e.g., emphysema, bronchitis, fibrosis) relative to lung tumors and normal tissue. In certain analyses, the ratio for the "chron" category was determined using the 70th percentile of chronically diseases lung samples divided by the 90th percentile of lung tumor samples divided by the 90th percentile of lung tumor samples divided by the 90th percentile of normal lung samples.

20

25

30

5

10

15

Definitions

The term "lung cancer protein" or "lung cancer polynucleotide" or "lung cancerassociated transcript" refers to nucleic acid and polypeptide polymorphic variants, alleles, mutants, and interspecies homologs that: (1) have a nucleotide sequence that has greater than about 60% nucleotide sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or greater nucleotide sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more nucleotides, to a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16; (2) bind to antibodies, e.g., polyclonal antibodies, raised against an immunogen comprising an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16, and conservatively modified variants thereof; (3) specifically hybridize under stringent hybridization conditions to a nucleic acid sequence, or the complement thereof of Tables 1A-16 and conservatively modified variants thereof; or (4)

have an amino acid sequence that has greater than about 60% amino acid sequence identity, 65%, 70%, 75%, 80%, 85%, 90%, preferably 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or greater amino sequence identity, preferably over a region of over a region of at least about 25, 50, 100, 200, 500, 1000, or more amino acid, to an amino acid sequence encoded by a nucleotide sequence of or associated with a unigene cluster of Tables 1A-16. A polynucleotide or polypeptide sequence is typically from a mammal including, but not limited to, primate, e.g., human; rodent, e.g., rat, mouse, hamster; cow, pig, horse, sheep, or other mammal. A "lung cancer polypeptide" and a "lung cancer polynucleotide," include both naturally occurring or recombinant forms.

5

10

15

20

25

30

A "full length" lung cancer protein or nucleic acid refers to a lung cancer polypeptide or polynucleotide sequence, or a variant thereof, that contains the elements normally contained in one or more naturally occurring, wild type lung cancer polynucleotide or polypeptide sequences. The "full length" may be prior to, or after, various stages of post-translational processing or splicing, including alternative splicing.

"Biological sample" as used herein is a sample of biological tissue or fluid that contains nucleic acids or polypeptides, e.g., of a lung cancer protein, polynucleotide, or transcript. Such samples include, but are not limited to, tissue isolated from primates, e.g., humans, or rodents, e.g., mice, and rats. Biological samples may also include sections of tissues such as biopsy and autopsy samples, frozen sections taken for histologic purposes, archival materials, blood, plasma, serum, sputum, stool, tears, mucus, hair, skin, etc. Biological samples also include explants and primary and/or transformed cell cultures derived from patient tissues. A biological sample is typically obtained from a eukaryotic organism, most preferably a mammal such as a primate, e.g., chimpanzee or human; cow; dog; cat; a rodent, e.g., guinea pig, rat, mouse; rabbit; or other mammal; or a bird; reptile; fish. Livestock and domestic animals are of interest.

"Providing a biological sample" means to obtain a biological sample for use in methods described in this invention. Most often, this will be done by removing a sample of cells from an animal, but can also be accomplished by using previously isolated cells (e.g., isolated by another person, at another time, and/or for another purpose), or by performing the methods of the invention in vivo. Archival tissues or materials, having treatment or outcome history, will be particularly useful.

The terms "identical" or percent "identity," in the context of two or more nucleic acids or polypeptide sequences, refer to two or more sequences or subsequences that are the

same or have a specified percentage of amino acid residues or nucleotides that are the same (e.g., about 60% identity, preferably 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or higher identity over a specified region, when compared and aligned for maximum correspondence over a comparison window or designated region) as measured using, e.g., a BLAST or BLAST 2.0 sequence comparison algorithms with default parameters described below, or by manual alignment and visual inspection (see, e.g., NCBI web site http://www.ncbi.nlm.nih.gov/BLAST/ or the like). Such sequences are then said to be "substantially identical." This definition also refers to, or may be applied to, the complement of a test sequence. The definition also includes sequences that have deletions and/or insertions, substitutions, and naturally occurring, e.g., polymorphic or allelic variants, and man-made variants. As described below, the preferred algorithms can account for gaps and the like. Preferably, identity exists over a region that is at least about 25 amino acids or nucleotides in length, or more preferably over a region that is 50-100 amino acids or nucleotides in length.

For sequence comparison, typically one sequence acts as a reference sequence, to which test sequences are compared. When using a sequence comparison algorithm, test and reference sequences are entered into a computer, subsequence coordinates are designated, if necessary, and sequence algorithm program parameters are designated. Preferably, default program parameters can be used, or alternative parameters can be designated. The sequence comparison algorithm then calculates the percent sequence identities for the test sequences relative to the reference sequence, based on the program parameters.

A "comparison window", as used herein, includes reference to a segment of contiguous positions selected from the group consisting typically of from 20 to 600, usually about 50 to about 200, more usually about 100 to about 150 in which a sequence may be compared to a reference sequence of the same number of contiguous positions after the two sequences are optimally aligned. Methods of alignment of sequences for comparison are well-known in the art. Optimal alignment of sequences for comparison can be conducted, e.g., by the local homology algorithm of Smith and Waterman (1981) Adv. Appl. Math. 2:482, by the homology alignment algorithm of Needleman and Wunsch (1970) J. Mol. Biol. 48:443, by the search for similarity method of Pearson and Lipman (1988) Proc. Nat'l. Acad. Sci. USA 85:2444, by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer

Group, 575 Science Dr., Madison, WI), or by manual alignment and visual inspection (see, e.g., Ausubel, et al. (eds. 1995 and supplements) <u>Current Protocols in Molecular Biology</u>.

5

10

15

20

25

30

Preferred examples of algorithms that are suitable for determining percent sequence identity and sequence similarity include the BLAST and BLAST 2.0 algorithms, which are described in Altschul, et al. (1977) Nuc. Acids Res. 25:3389-3402 and Altschul, et al. (1990) J. Mol. Biol. 215:403-410. BLAST and BLAST 2.0 are used, with the parameters described herein, to determine percent sequence identity for the nucleic acids and proteins of the invention. Software for performing BLAST analyses is publicly available through the National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). This algorithm involves first identifying high scoring sequence pairs (HSPs) by identifying short words of length W in the query sequence, which either match or satisfy some positive-valued threshold score T when aligned with a word of the same length in a database sequence. T is referred to as the neighborhood word score threshold (Altschul, et al., supra). These initial neighborhood word hits act as seeds for initiating searches to find longer HSPs containing them. The word hits are extended in both directions along each sequence for as far as the cumulative alignment score can be increased. Cumulative scores are calculated using, e.g., for nucleotide sequences, the parameters M (reward score for a pair of matching residues; always > 0) and N (penalty score for mismatching residues; always < 0). For amino acid sequences, a scoring matrix is used to calculate the cumulative score. Extension of the word hits in each direction are halted when: the cumulative alignment score falls off by the quantity X from its maximum achieved value; the cumulative score goes to zero or below, due to the accumulation of one or more negative-scoring residue alignments; or the end of either sequence is reached. The BLAST algorithm parameters W, T, and X determine the sensitivity and speed of the alignment. The BLASTN program (for nucleotide sequences) uses as defaults a wordlength (W) of 11, an expectation (E) of 10, M=5, N=-4 and a comparison of both strands. For amino acid sequences, the BLASTP program uses as defaults a wordlength of 3, and expectation (E) of 10, and the BLOSUM62 scoring matrix (see Henikoff and Henikoff (1989) Proc. Natl. Acad. Sci. USA 89:10915) alignments (B) of 50, expectation (E) of 10, M=5, N=-4, and a comparison of both strands.

The BLAST algorithm also performs a statistical analysis of the similarity between two sequences (see, e.g., Karlin and Altschul (1993) <u>Proc. Nat'l. Acad. Sci. USA</u> 90:5873-5787). One measure of similarity provided by the BLAST algorithm is the smallest sum probability (P(N)), which provides an indication of the probability by which a match between

two nucleotide or amino acid sequences would occur by chance. For example, a nucleic acid is considered similar to a reference sequence if the smallest sum probability in a comparison of the test nucleic acid to the reference nucleic acid is less than about 0.2, more preferably less than about 0.01, and most preferably less than about 0.001. Log values may be negative large numbers, e.g., 5, 10, 20, 30, 40, 40, 70, 90, 110, 150, 170, etc.

5

10

15

20

25

30

An indication that two nucleic acid sequences are substantially identical is that the polypeptide encoded by the first nucleic acid is immunologically cross reactive with the antibodies raised against the polypeptide encoded by the second nucleic acid. Thus, a polypeptide is typically substantially identical to a second polypeptide, e.g., where the two peptides differ only by conservative substitutions. Another indication that two nucleic acid sequences are substantially identical is that the two molecules or their complements hybridize to each other under stringent conditions. Yet another indication that two nucleic acid sequences are substantially identical is that the same primers can be used to amplify the sequences.

A "host cell" is a naturally occurring cell or a transformed cell that contains an expression vector and supports the replication or expression of the expression vector. Host cells may be cultured cells, explants, cells *in vivo*, and the like. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells such as CHO, HeLa, and the like (see, e.g., the American Type Culture Collection catalog or web site, www.atcc.org).

The terms "isolated," "purified," or "biologically pure" refer to material that is substantially or essentially free from components that normally accompany it as found in its native state. Purity and homogeneity are typically determined using analytical chemistry techniques such as polyacrylamide gel electrophoresis or high performance liquid chromatography. A protein or nucleic acid that is the predominant species present in a preparation is substantially purified. In particular, an isolated nucleic acid is separated from some open reading frames that naturally flank the gene and encode proteins other than protein encoded by the gene. The term "purified" in some embodiments denotes that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. Preferably, it means that the nucleic acid or protein is at least about 85% pure, more preferably at least 95% pure, and most preferably at least 99% pure. "Purify" or "purification" in other embodiments means removing at least one contaminant or component from the composition to be purified.

WO 02/086443

PCT/US02/12476

this sense purification does not require that the purified compound be homogeneous e.g.

In this sense, purification does not require that the purified compound be homogeneous, e.g., 100% pure.

The terms "polypeptide," "peptide" and "protein" are used interchangeably herein to refer to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residue is an artificial chemical mimetic of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers, those containing modified residues, and non-naturally occurring amino acid polymer.

5

10

15

20

25

30

The term "amino acid" refers to naturally occurring and synthetic amino acids, as well as amino acid analogs and amino acid mimetics that function similarly to the naturally occurring amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later modified, e.g., hydroxyproline, γ -carboxyglutamate, and O-phosphoserine. Amino acid analogs refer to compounds that have the same basic chemical structure as a naturally occurring amino acid, e.g., an α carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs may have modified R groups (e.g., norleucine) or modified peptide backbones, but retain some basic chemical structure as a naturally occurring amino acid. Amino acid mimetics refer to chemical compounds that have a structure that is different from the general chemical structure of an amino acid, but that function similarly to another amino acid.

Amino acids may be referred to herein by either their commonly known three letter symbols or by the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides, likewise, may be referred to by their commonly accepted single-letter codes.

"Conservatively modified variants" applies to both amino acid and nucleic acid sequences. With respect to particular nucleic acid sequences, conservatively modified variants refers to those nucleic acids which encode identical or essentially identical amino acid sequences, or where the nucleic acid does not encode an amino acid sequence, to essentially identical or associated, e.g., naturally contiguous, sequences. Because of the degeneracy of the genetic code, a large number of functionally identical nucleic acids encode most proteins. For instance, the codons GCA, GCC, GCG, and GCU each encode the amino acid alanine. Thus, at each position where an alanine is specified by a codon, the codon can be altered to another of the corresponding codons described without altering the encoded polypeptide. Such nucleic acid variations are "silent variations," which are one species of

conservatively modified variations. Every nucleic acid sequence herein which encodes a polypeptide also describes silent variations of the nucleic acid. In certain contexts each codon in a nucleic acid (except AUG, which is ordinarily the only codon for methionine, and TGG, which is ordinarily the only codon for tryptophan) can be modified to yield a functionally similar molecule. Accordingly, a silent variation of a nucleic acid which encodes a polypeptide is implicit in a described sequence with respect to the expression product, but not necessarily with respect to actual probe sequences.

As to amino acid sequences, one of skill will recognize that individual substitutions, deletions or additions to a nucleic acid, peptide, polypeptide, or protein sequence which alters, adds or deletes a single amino acid or a small percentage of amino acids in the encoded sequence is a "conservatively modified variant" where the alteration results in the substitution of an amino acid with a chemically similar amino acid. Conservative substitution tables providing functionally similar amino acids are well known in the art. Such conservatively modified variants are in addition to and do not exclude polymorphic variants, interspecies homologs, and alleles of the invention. Typically conservative substitutions include for one another: 1) Alanine (A), Glycine (G); 2) Aspartic acid (D), Glutamic acid (E); 3) Asparagine (N), Glutamine (Q); 4) Arginine (R), Lysine (K); 5) Isoleucine (I), Leucine (L), Methionine (M), Valine (V); 6) Phenylalanine (F), Tyrosine (Y), Tryptophan (W); 7) Serine (S), Threonine (T); and 8) Cysteine (C), Methionine (M) (see, e.g., Creighton, Proteins (1984)).

Macromolecular structures such as polypeptide structures can be described in terms of various levels of organization. For a general discussion of this organization, see, e.g., Alberts, et al. (1994) Molecular Biology of the Cell (3^{rd} ed.) and Cantor and Schimmel (1980) Biophysical Chemistry Part I: The Conformation of Biological Macromolecules. "Primary structure" refers to the amino acid sequence of a particular peptide. "Secondary structure" refers to locally ordered, three dimensional structures within a polypeptide. These structures are commonly known as domains. Domains are portions of a polypeptide that often form a compact unit of the polypeptide and are typically 25 to approximately 500 amino acids long. Typical domains are made up of sections of lesser organization such as stretches of β -sheet and α -helices. "Tertiary structure" refers to the complete three dimensional structure of a polypeptide monomer. "Quaternary structure" refers to the three dimensional structure formed, usually by the noncovalent association of independent tertiary units. Anisotropic terms are also known as energy terms.

"Nucleic acid" or "oligonucleotide" or "polynucleotide" or grammatical equivalents used herein means at least two nucleotides covalently linked together. Oligonucleotides are typically from about 5, 6, 7, 8, 9, 10, 12, 15, 25, 30, 40, 50 or more nucleotides in length, up to about 100 nucleotides in length. Nucleic acids and polynucleotides are a polymers of any length, including longer lengths, e.g., 200, 300, 500, 1000, 2000, 3000, 5000, 7000, 10,000, etc. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, nucleic acid analogs are included that may have at least one different linkage, e.g., phosphoramidate, phosphorothioate, phosphorodithioate, or Omethylphophoroamidite linkages (see Eckstein (1992) Oligonucleotides and Analogues: A Practical Approach Oxford University Press); and peptide nucleic acid backbones and linkages. Other analog nucleic acids include those with positive backbones; non-ionic backbones, and non-ribose backbones, including those described in U.S. Patent Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, in Sanghui and Cook, eds. Carbohydrate Modifications in Antisense Research, ASC Symposium Series 580. Nucleic acids containing one or more carbocyclic sugars are also included within one definition of nucleic acids. Modifications of the ribose-phosphate backbone may be done for a variety of reasons, e.g., to increase the stability and half-life of such molecules in physiological environments or as probes on a biochip. Mixtures of naturally occurring nucleic acids and analogs can be made; alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occurring nucleic acids and analogs may be made.

5

10

15

20

25

30

Particularly preferred are peptide nucleic acids (PNA) which includes peptide nucleic acid analogs. These backbones are substantially non-ionic under neutral conditions, in contrast to the highly charged phosphodiester backbone of naturally occurring nucleic acids. This results in two advantages. First, the PNA backbone exhibits improved hybridization kinetics. PNAs have larger changes in the melting temperature (T_m) for mismatched versus perfectly matched basepairs. DNA and RNA typically exhibit a 2-4° C drop in T_m for an internal mismatch. With the non-ionic PNA backbone, the drop is closer to 7-9° C. Similarly, due to their non-ionic nature, hybridization of the bases attached to these backbones is relatively insensitive to salt concentration. In addition, PNAs are not degraded by cellular enzymes, and thus can be more stable.

The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. As will be appreciated by those in the art, the depiction of a single strand also defines the sequence of the complementary

strand; thus the sequences described herein also provide the complement of the sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA, or a hybrid, where the nucleic acid may contain combinations of deoxyribo- and ribo-nucleotides, and combinations of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xanthine hypoxanthine, isocytosine, isoguanine, etc. "Transcript" typically refers to a naturally occurring RNA, e.g., a pre-mRNA, hnRNA, or mRNA. As used herein, the term "nucleoside" includes nucleotides and nucleoside and nucleotide analogs, and modified nucleosides such as amino modified nucleosides. In addition, "nucleoside" includes non-naturally occurring analog structures. Thus, e.g., the individual units of a peptide nucleic acid, each containing a base, are referred to herein as a nucleoside.

5

10

15

20

25

30

A "label" or a "detectable moiety" is a composition detectable by spectroscopic, photochemical, biochemical, immunochemical, physiological, chemical, or other physical means. For example, useful labels include ³²P, fluorescent dyes, electron-dense reagents, enzymes (e.g., as commonly used in an ELISA), biotin, digoxigenin, or haptens and proteins or other entities which can be made detectable, e.g., by incorporating a radiolabel into the peptide or used to detect antibodies specifically reactive with the peptide. The labels may be incorporated into the cancer nucleic acids, proteins, and antibodies. Many methods known in the art for conjugating the antibody to the label may be employed, including those methods described by Hunter, et al. (1962) Nature 144:945; David, et al. (1974) Biochemistry 13:1014-1021; Pain, et al. (1981) J. Immunol. Meth., 40:219-230; and Nygren (1982) J. Histochem. and Cytochem. 30:407-412.

An "effector" or "effector moiety" or "effector component" is a molecule that is bound (or linked, or conjugated), either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds, to an antibody. The "effector" can be a variety of molecules including, e.g., detection moieties including radioactive compounds, fluorescent compounds, an enzyme or substrate, tags such as epitope tags, a toxin; activatable moieties, a chemotherapeutic agent; a lipase; an antibiotic; or a radioisotope emitting "hard" e.g., beta radiation.

A "labeled nucleic acid probe or oligonucleotide" is one that is bound, either covalently, through a linker or a chemical bond, or noncovalently, through ionic, van der Waals, electrostatic, or hydrogen bonds to a label such that the presence of the probe may be detected by detecting the presence of the label bound to the probe. Alternatively, method

using high affinity interactions may achieve the same results where one of a pair of binding partners binds to the other, e.g., biotin, streptavidin.

5

10

15

20

25

30

As used herein a "nucleic acid probe or oligonucleotide" is a nucleic acid capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, usually through complementary base pairing, e.g., through hydrogen bond formation. As used herein, a probe may include natural (i.e., A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, the bases in a probe may be joined by a linkage other than a phosphodiester bond, preferably one that does not functionally interfere with hybridization. Thus, e.g., probes may be peptide nucleic acids in which the constituent bases are joined by peptide bonds rather than phosphodiester linkages. Probes may bind target sequences lacking complete complementarity with the probe sequence depending upon the stringency of the hybridization conditions. The probes are preferably directly labeled, e.g., with isotopes, chromophores, lumiphores, chromogens, or indirectly labeled, e.g., with biotin to which a streptavidin complex may later bind. By assaying for the presence or absence of the probe, one can detect the presence or absence of the select sequence or subsequence. Diagnosis or prognosis may be based at the genomic level, or at the level of RNA or protein expression.

The term "recombinant" when used with reference, e.g., to a cell, or nucleic acid, protein, or vector, indicates that the cell, nucleic acid, protein or vector, has been modified by the introduction of a heterologous nucleic acid or protein or the alteration of a native nucleic acid or protein, or that the cell is derived from a cell so modified. Thus, e.g., recombinant cells express genes that are not found within the native (non-recombinant) form of the cell or express native genes that are otherwise abnormally expressed, under expressed or not expressed at all. By the term "recombinant nucleic acid" herein is meant nucleic acid, originally formed in vitro, in general, by the manipulation of nucleic acid, e.g., using polymerases and endonucleases, in a form not normally found in nature. In this manner, operably linkage of different sequences is achieved. Thus an isolated nucleic acid, in a linear form, or an expression vector formed in vitro by ligating DNA molecules that are not normally joined, are both considered recombinant for the purposes of this invention. It is understood that once a recombinant nucleic acid is made and reintroduced into a host cell or organism, it will replicate non-recombinantly, i.e., using the in vivo cellular machinery of the host cell rather than in vitro manipulations; however, such nucleic acids, once produced recombinantly, although subsequently replicated non-recombinantly, are still considered

recombinant for the purposes of the invention. Similarly, a "recombinant protein" is a protein made using recombinant techniques, i.e., through the expression of a recombinant nucleic acid as depicted above.

The term "heterologous" when used with reference to portions of a nucleic acid indicates that the nucleic acid comprises two or more subsequences that are not normally found in the same relationship to each other in nature. For instance, the nucleic acid is typically recombinantly produced, having two or more sequences, e.g., from unrelated genes arranged to make a new functional nucleic acid, e.g., a promoter from one source and a coding region from another source. Similarly, a heterologous protein will often refer to two or more subsequences that are not found in the same relationship to each other in nature (e.g., a fusion protein).

5

10

15

20

25

30

A "promoter" is typically an array of nucleic acid control sequences that direct transcription of a nucleic acid. As used herein, a promoter includes necessary nucleic acid sequences near the start site of transcription, such as, in the case of a polymerase II type promoter, a TATA element. A promoter also optionally includes distal enhancer or repressor elements, which can be located as much as several thousand base pairs from the start site of transcription. A "constitutive" promoter is a promoter that is active under most environmental and developmental conditions. An "inducible" promoter is a promoter that is active under environmental or developmental regulation. The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter, or array of transcription factor binding sites) and a second nucleic acid sequence, e.g., wherein the expression control sequence directs transcription of the nucleic acid corresponding to the second sequence.

An "expression vector" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements that permit transcription of a particular nucleic acid in a host cell. The expression vector can be part of a plasmid, virus, or nucleic acid fragment. Typically, the expression vector includes a nucleic acid to be transcribed in operable linkage to a promoter.

The phrase "selectively (or specifically) hybridizes to" refers to the binding, duplexing, or hybridizing of a molecule selectively to a particular nucleotide sequence under stringent hybridization conditions when that sequence is present in a complex mixture (e.g., total cellular or library DNA or RNA).

5

10

15

20

25

30

Applications.

The phrase "stringent hybridization conditions" refers to conditions under which a probe will hybridize to its target subsequence, typically in a complex mixture of nucleic acids, but to essentially no other sequences. Stringent conditions are sequence-dependent and will be different in different circumstances. Longer sequences hybridize specifically at higher temperatures. An extensive guide to the hybridization of nucleic acids is found in "Overview of principles of hybridization and the strategy of nucleic acid assays" in Tijssen (1993) Techniques in Biochemistry and Molecular Biology--Hybridization with Nucleic Probes (vol. 24) Elsevier. Generally, stringent conditions are selected to be about 5-10° C lower than the thermal melting point (T_m) for the specific sequence at a defined ionic strength pH. The T_m is the temperature (under defined ionic strength, pH, and nucleic concentration) at which 50% of the probes complementary to the target hybridize to the target sequence at equilibrium (as the target sequences are present in excess, at T_m, 50% of the probes are occupied at equilibrium). Stringent conditions will be those in which the salt concentration is less than about 1.0 M sodium ion, typically about 0.01 to 1.0 M sodium ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30° C for short probes (e.g., 10 to 50 nucleotides) and at least about 60° C for long probes (e.g., greater than 50 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. For selective or specific hybridization, a positive signal is typically at least two times background, preferably 10 times background hybridization. Exemplary stringent hybridization conditions are often: 50% formamide, 5x SSC, and 1% SDS, incubating at 42° C, or, 5x SSC, 1% SDS, incubating at 65° C, with wash in 0.2x SSC, and 0.1% SDS at 65° C. For PCR, a temperature of about 36° C is typical for low stringency amplification, although annealing temperatures may vary between about 32° C and 48° C depending on primer length. For high stringency PCR amplification, a temperature of about 62° C is typical, although high stringency annealing temperatures can range from about 50° C to about 65° C, depending on the primer length and specificity. Typical cycle conditions for both high and low stringency amplifications include a denaturation phase of 90° C - 95° C for 0.5 - 2 min., an annealing phase lasting 0.5 - 2 min., and an extension phase of about 72° C for 1 - 2 min. Protocols and guidelines for low and high stringency amplification reactions are provided, e.g., in Innis, et al.(1990) PCR Protocols, A Guide to Methods and

Nucleic acids that do not hybridize to each other under stringent conditions are still substantially identical if the polypeptides which they encode are substantially identical. This

occurs, e.g., when a copy of a nucleic acid is created using the maximum codon degeneracy permitted by the genetic code. In such cases, the nucleic acids typically hybridize under moderately stringent hybridization conditions. Exemplary "moderately stringent hybridization conditions" include a hybridization in a buffer of 40% formamide, 1 M NaCl, 1% SDS at 37° C, and a wash in 1X SSC at 45° C. A positive hybridization is at least twice background. Alternative hybridization and wash conditions can be utilized to provide conditions of similar stringency. Additional guidelines for determining hybridization parameters are provided in numerous reference, e.g., Ausubel, et al. (ed.) <u>Current Protocols in Molecular Biology</u> Lippincott.

The phrase "functional effects" in the context of assays for testing compounds that modulate activity of a lung cancer protein includes the determination of a parameter that is indirectly or directly under the influence of the lung cancer protein or nucleic acid, e.g., a physiological, enzymatic, functional, physical, or chemical effect, such as the ability to decrease lung cancer. It includes ligand binding activity; cell viability, cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein expression in cells undergoing metastasis, and other characteristics of lung cancer cells. "Functional effects" include *in vitro*, *in vivo*, and *ex vivo* activities.

By "determining the functional effect" is meant assaying for a compound that increases or decreases a parameter that is indirectly or directly under the influence of a lung cancer protein sequence, e.g., physiological, functional, enzymatic, physical, or chemical effects. Such functional effects can be measured by many means known to those skilled in the art, e.g., changes in spectroscopic characteristics (e.g., fluorescence, absorbance, refractive index), hydrodynamic (e.g., shape), chromatographic, or solubility properties for the protein, measuring inducible markers or transcriptional activation of the lung cancer protein; measuring binding activity or binding assays, e.g., binding to antibodies or other ligands, and measuring cellular proliferation. Determination of the functional effect of a compound on lung cancer can also be performed using lung cancer assays known to those of skill in the art such as an *in vitro* assays, e.g., cell growth on soft agar; anchorage dependence; contact inhibition and density limitation of growth; cellular proliferation; cellular transformation; growth factor or serum dependence; tumor specific marker levels; invasiveness into Matrigel; tumor growth and metastasis *in vivo*; mRNA and protein

expression in cells undergoing metastasis, and other characteristics of lung cancer cells. The functional effects can be evaluated by many means known to those skilled in the art, e.g., microscopy for quantitative or qualitative measures of alterations in morphological features, measurement of changes in RNA or protein levels for lung cancer-associated sequences, measurement of RNA stability, identification of downstream or reporter gene expression (CAT, luciferase, β -gal, GFP, and the like), e.g., via chemiluminescence, fluorescence, colorimetric reactions, antibody binding, inducible markers, and ligand binding assays.

5

10

15

20

25

30

"Inhibitors", "activators", and "modulators" of lung cancer polynucleotide and polypeptide sequences are used to refer to activating, inhibitory, or modulating molecules or compounds identified using in vitro and in vivo assays of lung cancer polynucleotide and polypeptide sequences. Inhibitors are compounds that, e.g., bind to, partially or totally block activity, decrease, prevent, delay activation, inactivate, desensitize, or down regulate the activity or expression of lung cancer proteins, e.g., antagonists. Antisense or inhibitory nucleic acids may seem to inhibit expression and subsequent function of the protein. "Activators" are compounds that increase, open, activate, facilitate, enhance activation, sensitize, agonize, or up regulate lung cancer protein activity. Inhibitors, activators, or modulators also include genetically modified versions of lung cancer proteins, e.g., versions with altered activity, as well as naturally occurring and synthetic ligands, antagonists, agonists, antibodies, small chemical molecules and the like. Such assays for inhibitors and activators include, e.g., expressing the lung cancer protein in vitro, in cells, or cell membranes, applying putative modulator compounds, and then determining the functional effects on activity, as described above. Activators and inhibitors of lung cancer can also be identified by incubating lung cancer cells with the test compound and determining increases or decreases in the expression of 1 or more lung cancer proteins, e.g., 1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 40, 50 or more lung cancer proteins, such as lung cancer proteins encoded by the sequences set out in Tables 1A-16.

Samples or assays comprising lung cancer proteins that are treated with a potential activator, inhibitor, or modulator are compared to control samples without the inhibitor, activator, or modulator to examine the extent of inhibition. Control samples (untreated with inhibitors) are assigned a relative protein activity value of 100%. Inhibition of a polypeptide is achieved when the activity value relative to the control is about 80%, preferably 50%, more preferably 25-0%. Activation of a lung cancer polypeptide is achieved when the activity value relative to the control (untreated with activators) is 110%, more preferably 150%, more

WO 02/086443 PCT/US02/12476 preferably 200-500% (i.e., two to five fold higher relative to the control), more preferably

1000-3000% higher.

5

10

15

20

25

30

The phrase "changes in cell growth" refers to any change in cell growth and proliferation characteristics *in vitro* or *in vivo*, such as cell viability, formation of foci, anchorage independence, semi-solid or soft agar growth, changes in contact inhibition and density limitation of growth, loss of growth factor or serum requirements, changes in cell morphology, gaining or losing immortalization, gaining or losing tumor specific markers, ability to form or suppress tumors when injected into suitable animal hosts, and/or immortalization of the cell. See, e.g., Freshney (1994) <u>Culture of Animal Cells a Manual of Basic Technique</u> pp. 231-241 (3rd ed.).

"Tumor cell" refers to precancerous, cancerous, and normal cells in a tumor.

"Cancer cells," "transformed" cells, or "transformation" in tissue culture, refers to spontaneous or induced phenotypic changes that do not necessarily involve the uptake of new genetic material. Although transformation can arise from infection with a transforming virus and incorporation of new genomic DNA, or uptake of exogenous DNA, it can also arise spontaneously or following exposure to a carcinogen, thereby mutating an endogenous gene. Transformation is associated with phenotypic changes, such as immortalization of cells, aberrant growth control, nonmorphological changes, and/or malignancy (see, Freshney (1994) <u>Culture of Animal Cells a Manual of Basic Technique</u> (3rd ed.)).

"Antibody" refers to a polypeptide comprising a framework region from an immunoglobulin gene or fragments thereof that specifically binds and recognizes an antigen. The recognized immunoglobulin genes include the kappa, lambda, alpha, gamma, delta, epsilon, and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Light chains are classified as either kappa or lambda. Heavy chains are classified as gamma, mu, alpha, delta, or epsilon, which in turn define the immunoglobulin classes, IgG, IgM, IgA, IgD, and IgE, respectively. Typically, the antigen-binding region of an antibody or its functional equivalent will be most critical in specificity and affinity of binding. See Paul, Fundamental Immunology.

An exemplary immunoglobulin (antibody) structural unit comprises a tetramer. Each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light" (about 25 kD) and one "heavy" chain (about 50-70 kD). The N-terminus of each chain defines a variable region of about 100 to 110 or more amino acids primarily responsible

for antigen recognition. The terms variable light chain (V_L) and variable heavy chain (V_H) refer to these light and heavy chains respectively.

5

10

15

20

25

30

Antibodies exist, e.g., as intact immunoglobulins or as a number of well-characterized fragments produced by digestion with various peptidases. Thus, e.g., pepsin digests an antibody below the disulfide linkages in the hinge region to produce F(ab)'₂, a dimer of Fab which itself is a light chain joined to V_H-C_H1 by a disulfide bond. The F(ab)'₂ may be reduced under mild conditions to break the disulfide linkage in the hinge region, thereby converting the F(ab)'₂ dimer into an Fab' monomer. The Fab' monomer is essentially Fab with part of the hinge region (see Paul (ed. 1999) Fundamental Immunology (4th ed.). While various antibody fragments are defined in terms of the digestion of an intact antibody, one of skill will appreciate that such fragments may be synthesized *de novo* either chemically or by using recombinant DNA methodology. Thus, the term antibody, as used herein, also includes antibody fragments either produced by the modification of whole antibodies, or those synthesized *de novo* using recombinant DNA methodologies (e.g., single chain Fv) or those identified using phage display libraries (see, e.g., McCafferty, et al. (1990) Nature 348:552-554).

For preparation of antibodies, e.g., recombinant, monoclonal, or polyclonal antibodies, many technique known in the art can be used (see, e.g., Kohler and Milstein (1975) Nature 256:495-497; Kozbor, et al. (1983) Immunology Today 4:72; Cole, et al. (1985), pp. 77-96 in Monoclonal Antibodies and Cancer Therapy; Coligan (1991 and supplements) Current Protocols in Immunology; Harlow and Lane (1988) Antibodies, A Laboratory Manual; and Goding (1986) Monoclonal Antibodies: Principles and Practice (2d ed.)). Techniques for the production of single chain antibodies (U.S. Patent 4,946,778) can be adapted to produce antibodies to polypeptides of this invention. Also, transgenic mice, or other organisms such as other mammals, may be used to express humanized antibodies. Alternatively, phage display technology can be used to identify antibodies and heteromeric Fab fragments that specifically bind to selected antigens (see, e.g., McCafferty, et al. (1990) Nature 348:552-554; Marks, et al. (1992) Biotechnology 10:779-783).

A "chimeric antibody" is an antibody molecule in which, e.g, (a) the constant region, or a portion thereof, is altered, replaced, or exchanged so that the antigen binding site (variable region) is linked to a constant region of a different or altered class, effector function, and/or species, or an entirely different molecule which confers new properties to the chimeric antibody, e.g., an enzyme, toxin, hormone, growth factor, drug, etc.; or (b) the

variable region, or a portion thereof, is altered, replaced, or exchanged with a variable region having a different or altered antigen specificity.

Identification of lung cancer-associated sequences

5

10

15

20

25

30

In one aspect, the expression levels of genes are determined in different patient samples for which diagnosis information is desired, to provide expression profiles. An expression profile of a particular sample is essentially a "fingerprint" of the state of the sample; while two states may have any particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is characteristic of the state of the cell. That is, normal tissue may be distinguished from cancerous or metastatic cancerous tissue, or metastatic cancerous tissue can be compared with tissue from surviving cancer patients. By comparing expression profiles of tissue in known different lung cancer states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Molecular profiling may distinguish subtypes of a currently collective disease designation, e.g., different forms of lung cancer (chronic disease, adenocarcinoma, etc.)

The identification of sequences that are differentially expressed in lung cancer versus non-lung cancer tissue allows the use of this information in a number of ways. For example, a particular treatment regime may be evaluated: does a chemotherapeutic drug act to downregulate lung cancer, and thus tumor growth or recurrence, in a particular patient. Alternatively, a treatment step may induce other markers which may be used as targets to destroy tumor cells. Similarly, diagnosis and treatment outcomes may be done or confirmed by comparing patient samples with the known expression profiles. Malignant diseasemay be compared to non-malignant conditions. Metastatic tissue can also be analyzed to determine the stage of lung cancer in the tissue, or origin of primary tumor, e.g., metastasis from a remote primary site. Furthermore, these gene expression profiles (or individual genes) allow screening of drug candidates with an eye to mimicking or altering a particular expression profile; e.g., screening can be done for drugs that suppress the lung cancer expression profile. This may be done by making biochips comprising sets of the important lung cancer genes, which can then be used in these screens. PCR methods may be applied with selected primer pairs, and analysis may be of RNA or of genomic sequences. These methods can also be done on the protein basis; that is, protein expression levels of the lung cancer proteins can be evaluated for diagnostic purposes or to screen candidate agents. In addition, the lung cancer

nucleic acid sequences can be administered for gene therapy purposes, including the administration of antisense nucleic acids, or the lung cancer proteins (including antibodies and other modulators thereof) administered as therapeutic drugs or as protein or DNA vaccines.

5

10

15

20

25

30

Thus the present invention provides nucleic acid and protein sequences that are differentially expressed in lung cancer relative to normal tissues and/or non-malignant lung disease, or in different types of lung disease, herein termed "lung cancer sequences." As outlined below, lung cancer sequences include those that are up-regulated (i.e., expressed at a higher level) in lung cancer, as well as those that are down-regulated (i.e., expressed at a lower level). In a preferred embodiment, the lung cancer sequences are from humans; however, as will be appreciated by those in the art, lung cancer sequences from other organisms may be useful in animal models of disease and drug evaluation; thus, other lung cancer sequences are provided, from vertebrates, including mammals, including rodents (rats, mice, hamsters, guinea pigs, etc.), primates, farm animals (including sheep, goats, pigs, cows, horses, etc.) and pets (dogs, cats, etc.). Lung cancer sequences from other organisms may be obtained using the techniques outlined below.

Lung cancer sequences can include both nucleic acid and amino acid sequences. As will be appreciated by those in the art and is more fully outlined below, lung cancer nucleic acid sequences are useful in a variety of applications, including diagnostic applications, which will detect naturally occurring nucleic acids, as well as screening applications; e.g., biochips comprising nucleic acid probes or PCR microtiter plates with selected probes to the lung cancer sequences can be generated.

A lung cancer sequence can be initially identified by substantial nucleic acid and/or amino acid sequence homology to the lung cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, e.g., using homology programs or hybridization conditions.

For identifying lung cancer-associated sequences, the lung cancer screen typically includes comparing genes identified in different tissues, e.g., normal and cancerous tissues, cancer and non-malignant conditions, non-malignant conditions and normal tissues, or tumor tissue samples from patients who have metastatic disease vs. non metastatic tissue. Other suitable tissue comparisons include comparing lung cancer samples with metastatic cancer samples from other cancers, such as, breast, other gastrointestinal cancers, prostate, ovarian,

etc. Samples of, non metastatic disease tissue and tissue undergoing metastasis are applied to biochips comprising nucleic acid probes. The samples are first microdissected, if applicable, and treated as is known in the art for the preparation of mRNA. Suitable biochips are commercially available, e.g., from Affymetrix, Santa Clara, CA. Gene expression profiles as described herein are generated and the data analyzed.

5

10

15

20

25

30

In one embodiment, the genes showing changes in expression as between normal and disease states are compared to genes expressed in other normal tissues, preferably normal lung, but also including, and not limited to colon, heart, brain, liver, breast, kidney, muscle, prostate, small intestine, large intestine, spleen, bone, and/or placenta. In a preferred embodiment, those genes identified during the lung cancer screen that are expressed in significant amounts in other tissues (e.g., essential organs) are removed from the profile, although in some embodiments, this is not necessary (e.g., where organs may be dispensible at a later stage of life). That is, when screening for drugs, it is usually preferable that the target expression be disease specific, to minimize possible side effects on other organs.

In a preferred embodiment, lung cancer sequences are those that are up-regulated in lung cancer; that is, the expression of these genes is higher in cancerous tissue than in normal lung or other tissue. "Up-regulation" as used herein means, when the ratio is presented as a number greater than one, that the ratio is greater than one, preferably 1.5 or greater, more preferably 2.0 or greater. Another embodiment is directed to sequences up-regulated in nonmalignant conditions relative to normal. Unigene cluster identification numbers and accession numbers herein are for the GenBank sequence database and the sequences of the accession numbers are hereby expressly incorporated by reference. GenBank is known in the art, see, e.g., Benson, DA, et al (1998) Nucleic Acids Research 26:1-7 and http://www.ncbi.nlm.nih.gov/. Sequences are also available in other databases, e.g., European Molecular Biology Laboratory (EMBL) and DNA Database of Japan (DDBJ). Another embodiment is directed to sequences up-regulated in non-malignant conditions relative to normal. In some situations, the sequences may be derived from assembly of available sequences or be predicted from genomic DNA using exon prediction algorithms, such as FGENESH (Salamov and Solovyev (2000) Genome Res. 10:516-522). In other situations, sequences have been derived from cloning and sequencing of isolated nucleic acids.

In another preferred embodiment, lung cancer sequences are those that are downregulated in the lung cancer; that is, the expression of these genes is lower in cancerous tissue

or normal lung or other tissue. "Down-regulation" as used herein means, when the ratio is presented as a number greater than one, that the ratio is greater than one, preferably 1.5 or greater, more preferably 2.0 or greater, or, when the ratio is presented as a number less than one, that the ratio is less than one, preferably 0.5 or less, more preferably 0.25 or less.

5

10

15

20

25

30

Informatics

The ability to identify genes that are over or under expressed in lung cancer can additionally provide high-resolution, high-sensitivity datasets which can be used in the areas of diagnostics, therapeutics, drug development, pharmacogenetics, protein structure, biosensor development, and other related areas. For example, the expression profiles can be used in diagnostic or prognostic evaluation of patients with lung cancer. Or as another example, subcellular toxicological information can be generated to better direct drug structure and activity correlation (see Anderson (1998) Pharmaceutical Proteomics: Targets,

Mechanism, and Function, paper presented at the IBC Proteomics conference, Coronado, CA (June 11-12, 1998)). Subcellular toxicological information can also be utilized in a biological sensor device to predict the likely toxicological effect of chemical exposures and likely tolerable exposure thresholds (see U.S. Patent No. 5,811,231). Similar advantages accrue from datasets relevant to other biomolecules and bioactive agents (e.g., nucleic acids, saccharides, lipids, drugs, and the like).

Thus, in another embodiment, the present invention provides a database that includes at least one set of assay data. The data contained in the database is acquired, e.g., using array analysis either singly or in a library format. The database can be in a form in which data can be maintained and transmitted, but is preferably an electronic database. The electronic database of the invention can be maintained on any electronic device allowing for the storage of and access to the database, such as a personal computer, but is preferably distributed on a wide area network, such as the World Wide Web.

The focus of the present section on databases that include peptide sequence data is for clarity of illustration only. It will be apparent to those of skill in the art that similar databases can be assembled for assay data acquired using an assay of the invention.

The compositions and methods for identifying and/or quantitating the relative and/or absolute abundance of a variety of molecular and macromolecular species from a biological sample representing lung cancer, i.e., the identification of lung cancer-associated sequences described herein, provide an abundance of information, which can be correlated with

pathological conditions, predisposition to disease, drug testing, therapeutic monitoring, genedisease causal linkages, identification of correlates of immunity and physiological status, among others. Although the data generated from the assays of the invention is suited for manual review and analysis, in a preferred embodiment, data processing using high-speed computers is utilized.

5

10

15

20

25

30

An array of methods for indexing and retrieving biomolecular information is known in the art. For example, U.S. Patents 6,023,659 and 5,966,712 disclose a relational database system for storing biomolecular sequence information in a manner that allows sequences to be catalogued and searched according to one or more protein function hierarchies. U.S. Patent 5,953,727 discloses a relational database having sequence records containing information in a format that allows a collection of partial-length DNA sequences to be catalogued and searched according to association with one or more sequencing projects for obtaining full-length sequences from the collection of partial length sequences. U.S. Patent 5,706,498 discloses a gene database retrieval system for making a retrieval of a gene sequence similar to a sequence data item in a gene database based on the degree of similarity between a key sequence and a target sequence. U.S. Patent 5,538,897 discloses a method using mass spectroscopy fragmentation patterns of peptides to identify amino acid sequences in computer databases by comparison of predicted mass spectra with experimentally-derived mass spectra using a closeness-of-fit measure. U.S. Patent 5,926,818 discloses a multidimensional database comprising a functionality for multi-dimensional data analysis described as on-line analytical processing (OLAP), which entails the consolidation of projected and actual data according to more than one consolidation path or dimension. U.S. Patent 5,295,261 reports a hybrid database structure in which the fields of each database record are divided into two classes, navigational and informational data, with navigational fields stored in a hierarchical topological map which can be viewed as a tree structure or as the merger of two or more such tree structures.

See also Mount, et al. (2001) Bioinformatics; Durbin, et al. (eds., 1999) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids (; Baxevanis and Oeullette (eds., 1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins); Rashidi and Buehler (1999) Bioinformatics: Basic Applications in Biological Science and Medicine; Setubal, et al. (eds 1997) Introduction to Computational Molecular Biology; Misener and Krawetz (eds, 2000) Bioinformatics: Methods and Protocols; Higgins and Taylor (eds., 2000) Bioinformatics: Sequence, Structure, and Databanks: A Practical

Approach; Brown (2001) Bioinformatics: A Biologist's Guide to Biocomputing and the Internet; Han and Kamber (2000) Data Mining: Concepts and Techniques (2000); and Waterman (1995) Introduction to Computational Biology: Maps, Sequences, and Genomes.

The present invention provides a computer database comprising a computer and software for storing in computer-retrievable form assay data records cross-tabulated, e.g., with data specifying the source of the target-containing sample from which each sequence specificity record was obtained.

5

10

15

20

25

30

In an exemplary embodiment, at least one of the sources of target-containing sample is from a control tissue sample known to be free of pathological disorders. In a variation, at least one of the sources is a known pathological tissue specimen, e.g., a neoplastic lesion or another tissue specimen to be analyzed for lung cancer. In another variation, the assay records cross-tabulate one or more of the following parameters for each target species in a sample: (1) a unique identification code, which can include, e.g., a target molecular structure and/or characteristic separation coordinate (e.g., electrophoretic coordinates); (2) sample source; and (3) absolute and/or relative quantity of the target species present in the sample.

The invention also provides for the storage and retrieval of a collection of target data in a computer data storage apparatus, which can include magnetic disks, optical disks, magneto-optical disks, DRAM, SRAM, SGRAM, SDRAM, RDRAM, DDR RAM, magnetic bubble memory devices, and other data storage devices, including CPU registers and on-CPU data storage arrays. Typically, the target data records are stored as a bit pattern in an array of magnetic domains on a magnetizable medium or as an array of charge states or transistor gate states, such as an array of cells in a DRAM device (e.g., each cell comprised of a transistor and a charge storage area, which may be on the transistor). In one embodiment, the invention provides such storage devices, and computer systems built therewith, comprising a bit pattern encoding a protein expression fingerprint record comprising unique identifiers for at least 10 target data records cross-tabulated with target source.

When the target is a peptide or nucleic acid, the invention preferably provides a method for identifying related peptide or nucleic acid sequences, comprising performing a computerized comparison between a peptide or nucleic acid sequence assay record stored in or retrieved from a computer storage device or database and at least one other sequence. The comparison can include a sequence analysis or comparison algorithm or computer program embodiment thereof (e.g., FASTA, TFASTA, GAP, BESTFIT) and/or the comparison may

be of the relative amount of a peptide or nucleic acid sequence in a pool of sequences determined from a polypeptide or nucleic acid sample of a specimen.

5

10

15

20

25

30

The invention also preferably provides a magnetic disk, such as an IBM-compatible (DOS, Windows, Windows95/98/2000, Windows NT, OS/2) or other format (e.g., Linux, SunOS, Solaris, AIX, SCO Unix, VMS, MV, Macintosh, etc.) floppy diskette or hard (fixed, Winchester) disk drive, comprising a bit pattern encoding data from an assay of the invention in a file format suitable for retrieval and processing in a computerized sequence analysis, comparison, or relative quantitation method.

The invention also provides a network, comprising a plurality of computing devices linked via a data link, such as an Ethernet cable (coax or 10BaseT), telephone line, ISDN line, wireless network, optical fiber, or other suitable signal transmission medium, whereby at least one network device (e.g., computer, disk array, etc.) comprises a pattern of magnetic domains (e.g., magnetic disk) and/or charge domains (e.g., an array of DRAM cells) composing a bit pattern encoding data acquired from an assay of the invention.

The invention also provides a method for transmitting assay data that includes generating an electronic signal on an electronic communications device, such as a modem, ISDN terminal adapter, DSL, cable modem, ATM switch, or the like, wherein the signal includes (in native or encrypted format) a bit pattern encoding data from an assay or a database comprising a plurality of assay results obtained by the method of the invention.

In a preferred embodiment, the invention provides a computer system for comparing a query target to a database containing an array of data structures, such as an assay result obtained by the method of the invention, and ranking database targets based on the degree of identity and gap weight to the target data. A central processor is preferably initialized to load and execute the computer program for alignment and/or comparison of the assay results. Data for a query target is entered into the central processor via an I/O device. Execution of the computer program results in the central processor retrieving the assay data from the data

The target data or record and the computer program can be transferred to secondary memory, which is typically random access memory (e.g., DRAM, SRAM, SGRAM, or SDRAM). Targets are ranked according to the degree of correspondence between a selected assay characteristic (e.g., binding to a selected affinity moiety) and the same characteristic of the query target and results are output via an I/O device. For example, a central processor can be a conventional computer (e.g., Intel Pentium, PowerPC, Alpha, PA-8000, SPARC,

file, which comprises a binary description of an assay result.

MIPS 4400, MIPS 10000, VAX, etc.); a program can be a commercial or public domain molecular biology software package (e.g., UWGCG Sequence Analysis Software, Darwin); a data file can be an optical or magnetic disk, a data server, a memory device (e.g., DRAM, SRAM, SDRAM, EPROM, bubble memory, flash memory, etc.); an I/O device can be a terminal comprising a video display and a keyboard, a modem, an ISDN terminal adapter, an Ethernet port, a punched card reader, a magnetic strip reader, or other suitable I/O device.

The invention also preferably provides the use of a computer system, such as that described above, which comprises: (1) a computer; (2) a stored bit pattern encoding a collection of peptide sequence specificity records obtained by the methods of the invention, which may be stored in the computer; (3) a comparison target, such as a query target; and (4) a program for alignment and comparison, typically with rank-ordering of comparison results on the basis of computed similarity values.

15 Characteristics of lung cancer-associated proteins

5

10

20

25

30

Lung cancer proteins of the present invention may be classified as secreted proteins, transmembrane proteins or intracellular proteins. In one embodiment, the lung cancer protein is an intracellular protein. Intracellular proteins may be found in the cytoplasm and/or in the nucleus. Intracellular proteins are involved in all aspects of cellular function and replication (including, e.g., signaling pathways); aberrant expression of such proteins often results in unregulated or disregulated cellular processes (see, e.g., Alberts (ed. 1994) Molecular Biology of the Cell (3d ed.). For example, many intracellular proteins have enzymatic activity such as protein kinase activity, protein phosphatase activity, protease activity, nucleotide cyclase activity, polymerase activity and the like. Intracellular proteins also serve as docking proteins that are involved in organizing complexes of proteins, or targeting proteins to various subcellular localizations, and are involved in maintaining the structural integrity of organelles.

An increasingly appreciated concept in characterizing proteins is the presence in the proteins of one or more structural motifs for which defined functions have been attributed. In addition to the highly conserved sequences found in the enzymatic domain of proteins, highly conserved sequences have been identified in proteins that are involved in protein-protein interaction. For example, Src-homology-2 (SH2) domains bind tyrosine-phosphorylated targets in a sequence dependent manner. PTB domains, which are distinct from SH2

domains, also bind tyrosine phosphorylated targets. SH3 domains bind to proline-rich targets. In addition, PH domains, tetratricopeptide repeats and WD domains to name only a few, have been shown to mediate protein-protein interactions. Some of these may also be involved in binding to phospholipids or other second messengers. As will be appreciated by one of ordinary skill in the art, these motifs can be identified on the basis of amino acid sequence; thus, an analysis of the sequence of proteins may provide insight into both the enzymatic potential of the molecule and/or molecules with which the protein may associate. One useful database is Pfam (protein families), which is a large collection of multiple sequence alignments and hidden Markov models covering many common protein domains. Versions are available via the internet from Washington University in St. Louis, the Sanger Center in England, and the Karolinska Institute in Sweden (see, e.g., Bateman, et al (2000) Nuc. Acids Res. 28:263-266; Sonnhammer, et al. (1997) Proteins 28:405-420; Bateman, et al. (1999) Nuc. Acids Res. 27:260-262; and Sonnhammer, et al. (1998) Nuc. Acids Res. 26:320-322).

In another embodiment, the lung cancer sequences are transmembrane proteins. Transmembrane proteins are molecules that span a phospholipid bilayer of a cell. They may have an intracellular domain, an extracellular domain, or both. The intracellular domains of such proteins may have a number of functions including those already described for intracellular proteins. For example, the intracellular domain may have enzymatic activity and/or may serve as a binding site for additional proteins. Frequently the intracellular domain of transmembrane proteins serves both roles. For example certain receptor tyrosine kinases have both protein kinase activity and SH2 domains. In addition, autophosphorylation of tyrosines on the receptor molecule itself, creates binding sites for additional SH2 domain containing proteins.

Transmembrane proteins may contain from one to many transmembrane domains. For example, receptor tyrosine kinases, certain cytokine receptors, receptor guanylyl cyclases and receptor serine/threonine protein kinases contain a single transmembrane domain. However, various other proteins including channels, pumps, and adenylyl cyclases contain numerous transmembrane domains. Many important cell surface receptors such as G protein coupled receptors (GPCRs) are classified as "seven transmembrane domain" proteins, as they contain 7 membrane spanning regions. Characteristics of transmembrane domains include approximately 17 consecutive hydrophobic amino acids that may be followed by charged amino acids. Therefore, upon analysis of the amino acid sequence of a particular protein, the

localization and number of transmembrane domains within the protein may be predicted (see, e.g., PSORT web site http://psort.nibb.ac.jp/).

5

10

15

20

25

30

The extracellular domains of transmembrane proteins are diverse; however, conserved motifs are found repeatedly among various extracellular domains. Conserved structure and/or functions have been ascribed to different extracellular motifs. Many extracellular domains are involved in binding to other molecules. In one aspect, extracellular domains are found on receptors. Factors that bind the receptor domain include circulating ligands, which may be peptides, proteins, or small molecules such as adenosine and the like. For example, growth factors such as EGF, FGF, and PDGF are circulating growth factors that bind to their cognate receptors to initiate a variety of cellular responses. Other factors include cytokines, mitogenic factors, hormones, neurotrophic factors and the like. Extracellular domains also bind to cell-associated molecules. In this respect, they may mediate cell-cell interactions. Cell-associated ligands can be tethered to the cell, e.g., via a glycosylphosphatidylinositol (GPI) anchor, or may themselves be transmembrane proteins. Extracellular domains may also associate with the extracellular matrix and contribute to the maintenance of the cell structure.

Lung cancer proteins that are transmembrane are particularly preferred in the present invention as they are readily accessible targets for extracellular immunotherapeutics, as are described herein. In addition, as outlined below, transmembrane proteins can be also useful in imaging modalities. Antibodies may be used to label such readily accessible proteins *in situ* or in histological analysis. Alternatively, antibodies can also label intracellular proteins, in which case analytical samples are typically permeablized to provide access to intracellular proteins. In addition, some membrane proteins can be processed to release a soluble protein, or to expose a residual fragment. Released soluble proteins may be useful diagnostic markers, processed residual protein fragments may be useful lung markers of disease.

It will also be appreciated by those in the art that a transmembrane protein can be made soluble by removing transmembrane sequences, e.g., through recombinant methods. Furthermore, transmembrane proteins that have been made soluble can be made to be secreted through recombinant means by adding an appropriate signal sequence.

In another embodiment, the lung cancer proteins are secreted proteins; the secretion of which can be either constitutive or regulated. These proteins may have a signal peptide or signal sequence that targets the molecule to the secretory pathway. Secreted proteins are involved in numerous physiological events; e.g., if circulating, they often serve to transmit

signals to various other cell types. The secreted protein may function in an autocrine manner (acting on the cell that secreted the factor), a paracrine manner (acting on cells in close proximity to the cell that secreted the factor), an endocrine manner (acting on cells at a distance, e.g., secretion into the blood stream), or exocrine (secretion, e.g., through a duct or to adjacent epithelial surface as sweat glands, sebaceous glands, pancreatic ducts, lacrimal glands, mammary glands, sax producing glands of the ear, etc.). Thus secreted molecules often find use in modulating or altering numerous aspects of physiology. Lung cancer proteins that are secreted proteins are particularly preferred in the present invention as they serve as good targets for diagnostic markers, e.g., for blood, plasma, serum, or stool tests. Those which are enzymes may be antibody or small molecule targets. Others may be useful as vaccine targets, e.g., via CTL mechanisms.

Use of lung cancer nucleic acids

5

10

15

20

25

30

As described above, lung cancer sequence is initially identified by substantial nucleic acid and/or amino acid sequence homology or linkage to the lung cancer sequences outlined herein. Such homology can be based upon the overall nucleic acid or amino acid sequence, and is generally determined as outlined below, using either homology programs or hybridization conditions. Typically, linked sequences on a mRNA are found on the same molecule.

The lung cancer nucleic acid sequences of the invention, e.g., the sequences in Tables 1A-16, can be fragments of larger genes, i.e., they are nucleic acid segments. "Genes" in this context includes coding regions, non-coding regions, and mixtures of coding and non-coding regions. Accordingly, as will be appreciated by those in the art, using the sequences provided herein, extended sequences, in either direction, of the lung cancer genes can be obtained, using techniques well known in the art for cloning either longer sequences or the full length sequences; see Ausubel, et al., *supra*. Much can be done by informatics and many sequences can be clustered to include multiple sequences corresponding to a single gene, e.g., systems such as UniGene (see, http://www.ncbi.nlm.nih.gov/UniGene/).

Once a lung cancer nucleic acid is identified, it can be cloned and, if necessary, its constituent parts recombined to form the entire lung cancer nucleic acid coding regions or the entire mRNA sequence. Once isolated from its natural source, e.g., contained within a plasmid or other vector or excised therefrom as a linear nucleic acid segment, the recombinant lung cancer nucleic acid can be further-used as a probe to identify and isolate

other lung cancer nucleic acids, e.g., extended coding regions. It can also be used as a "precursor" nucleic acid to make modified or variant lung cancer nucleic acids and proteins.

The lung cancer nucleic acids of the present invention are used in several ways. In a first embodiment, nucleic acid probes to the lung cancer nucleic acids are made and attached to biochips to be used in screening and diagnostic methods, as outlined below, or for administration, e.g., for gene therapy, RNAi, vaccine, and/or antisense applications. Alternatively, the lung cancer nucleic acids that include coding regions of lung cancer proteins can be put into expression vectors for the expression of lung cancer proteins, again for screening purposes or for administration to a patient.

5

10

15

20

25

30

In a preferred embodiment, nucleic acid probes to lung cancer nucleic acids (both the nucleic acid sequences outlined in the figures and/or the complements thereof) are made. The nucleic acid probes attached to the biochip are designed to be substantially complementary to the lung cancer nucleic acids, i.e., the target sequence (either the target sequence of the sample or to other probe sequences, e.g., in sandwich assays), such that hybridization of the target sequence and the probes of the present invention occurs. As outlined below, this complementarity need not be perfect; there may be any number of base pair mismatches which will interfere with hybridization between the target sequence and the single stranded nucleic acids of the present invention. However, if the number of mutations is so great that no hybridization can occur under even the least stringent of hybridization conditions, the sequence is not a complementary target sequence. Thus, by "substantially complementary" herein is meant that the probes are sufficiently complementary to the target sequences to hybridize under appropriate reaction conditions, particularly high stringency conditions, as outlined herein.

A nucleic acid probe is generally single stranded but can be partially single and partially double stranded. The strandedness of the probe is dictated by the structure, composition, and properties of the target sequence. In general, the nucleic acid probes range from about 8 to about 100 bases long, with from about 10 to about 80 bases being preferred, and from about 30 to about 50 bases being particularly preferred. That is, generally complements of ORFs or whole genes are not used. In some embodiments, nucleic acids of lengths up to hundreds of bases can be used.

In a preferred embodiment, more than one probe per sequence is used, with either overlapping probes or probes to different sections of the target being used. That is, two, three, four or more probes, with three being preferred, are used to build in a redundancy for a

particular target. The probes can be overlapping (i.e., have some sequence in common), or separate. In some cases, PCR primers may be used to amplify signal for higher sensitivity.

5

10

15

20

25

30

As will be appreciated by those in the art, nucleic acids can be attached or immobilized to a solid support in a wide variety of ways. By "immobilized" and grammatical equivalents herein is meant the association or binding between the nucleic acid probe and the solid support is sufficient to be stable under the conditions of binding, washing, analysis, and removal as outlined below. The binding can typically be covalent or non-covalent. By "non-covalent binding" and grammatical equivalents herein is typically meant one or more of electrostatic, hydrophilic, and hydrophobic interactions. Included in non-covalent binding is the covalent attachment of a molecule, such as, streptavidin to the support and the non-covalent binding of the biotinylated probe to the streptavidin. By "covalent binding" and grammatical equivalents herein is meant that the two moieties, the solid support and the probe, are attached by at least one bond, including sigma bonds, pi bonds and coordination bonds. Covalent bonds can be formed directly between the probe and the solid support or can be formed by a cross linker or by inclusion of a specific reactive group on either the solid support or the probe or both molecules. Immobilization may also involve a combination of covalent and non-covalent interactions.

In general, the probes are attached to a biochip in a wide variety of ways, as will be appreciated by those in the art. As described herein, the nucleic acids can either be synthesized first, with subsequent attachment to the biochip, or can be directly synthesized on the biochip.

The biochip comprises a suitable solid substrate. By "substrate" or "solid support" or other grammatical equivalents herein is meant a material that can be modified for the attachment or association of the nucleic acid probes and is amenable to at least one detection method. Often the substrate may contain discrete individual sites appropriate for ndivitual partitioning and identification. As will be appreciated by those in the art, the number of possible substrates are very large, and include, but are not limited to, glass and modified or functionalized glass, plastics (including acrylics, polystyrene and copolymers of styrene and other materials, polypropylene, polyethylene, polybutylene, polyurethanes, Teflon, etc.), polysaccharides, nylon or nitrocellulose, resins, silica or silica-based materials including silicon and modified silicon, carbon, metals, inorganic glasses, plastics, etc. In general, the substrates allow optical detection and do not appreciably fluoresce. A preferred substrate is described in US application entitled Reusable Low Fluorescent Plastic Biochip, U.S.

Application Serial No. 09/270,214, filed March 15, 1999, herein incorporated by reference in its entirety.

Generally the substrate is planar, although as will be appreciated by those in the art, other configurations of substrates may be used as well. For example, the probes may be placed on the inside surface of a tube, for flow-through sample analysis to minimize sample volume. Similarly, the substrate may be flexible, such as a flexible foam, including closed cell foams made of particular plastics.

5

10

15

20

25

30

In a preferred embodiment, the surface of the biochip and the probe may be derivatized with chemical functional groups for subsequent attachment of the two. Thus, e.g., the biochip is derivatized with a chemical functional group including, but not limited to, amino groups, carboxy groups, oxo groups and thiol groups, with amino groups being particularly preferred. Using these functional groups, the probes can be attached using functional groups on the probes. For example, nucleic acids containing amino groups can be attached to surfaces comprising amino groups, e.g., using linkers as are known in the art; e.g., homo-or hetero-bifunctional linkers as are well known (see 1994 Pierce Chemical Company catalog, technical section on cross-linkers, pages 155-200). In addition, in some cases, additional linkers, such as alkyl groups (including substituted and heteroalkyl groups) may be used.

In this embodiment, oligonucleotides are synthesized, and then attached to the surface of the solid support. Either the 5' or 3' terminus may be attached to the solid support, or attachment may be via linkage to an internal nucleoside.

In another embodiment, the immobilization to the solid support may be very strong, yet non-covalent. For example, biotinylated oligonucleotides can be made, which bind to surfaces covalently coated with streptavidin, resulting in attachment.

Alternatively, the oligonucleotides may be synthesized on the surface, as is known in the art. For example, photoactivation techniques utilizing photopolymerization compounds and techniques are used. In a preferred embodiment, the nucleic acids can be synthesized *in situ*, using known photolithographic techniques, such as those described in WO 95/25116; WO 95/35505; U.S. Patent Nos. 5,700,637 and 5,445,934; and references cited within, all of which are expressly incorporated by reference; these methods of attachment form the basis of the Affymetrix GeneChipTM technology.

Often, amplification-based assays are performed to measure the expression level of lung cancer-associated sequences. These assays are typically performed in conjunction with

reverse transcription. In such assays, a lung cancer-associated nucleic acid sequence acts as a template in an amplification reaction (e.g., Polymerase Chain Reaction, or PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls provides a measure of the amount of lung cancer-associated RNA. Methods of quantitative amplification are well known to those of skill in the art. Detailed protocols for quantitative PCR are provided, e.g., in Innis, et al. (1990) PCR Protocols, A Guide to Methods and Applications.

In some embodiments, a TaqMan based assay is used to measure expression. TaqMan based assays use a fluorogenic oligonucleotide probe that contains a 5' fluorescent dye and a 3' quenching agent. The probe hybridizes to a PCR product, but cannot itself be extended due to a blocking agent at the 3' end. When the PCR product is amplified in subsequent cycles, the 5' nuclease activity of the polymerase, e.g., AmpliTaq, results in the cleavage of the TaqMan probe. This cleavage separates the 5' fluorescent dye and the 3' quenching agent, thereby resulting in an increase in fluorescence as a function of amplification (see, e.g., literature provided by Perkin-Elmer, e.g., www2.perkin-elmer.com).

Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu and Wallace (1989) Genomics 4:560, Landegren, et al. (1988) Science 241:1077, and Barringer, et al. (1990) Gene 89:117), transcription amplification (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173), self-sustained sequence replication (Guatelli, et al. (1990) Proc. Nat. Acad. Sci. USA 87:1874), dot PCR, and linker adapter PCR, etc.

Expression of lung cancer proteins from nucleic acids

5

10

15

20

25

30

In a preferred embodiment, lung cancer nucleic acids, e.g., encoding lung cancer proteins, are used to make a variety of expression vectors to express lung cancer proteins which can then be used in screening assays, as described below. Expression vectors and recombinant DNA technology are well known to those of skill in the art (see, e.g., Ausubel, *supra*, and Fernandez and Hoeffler (eds 1999) Gene Expression Systems) and are used to express proteins. The expression vectors may be either self-replicating extrachromosomal vectors or vectors which integrate into a host genome. Generally, these expression vectors include transcriptional and translational regulatory nucleic acid operably linked to the nucleic acid encoding the lung cancer protein. The term "control sequences" refers to DNA

sequences used for the expression of an operably linked coding sequence in a particular host organism. Control sequences that are suitable for prokaryotes, e.g., include a promoter, optionally an operator sequence, and a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation signals, and enhancers.

5

10

15

20

25

30

Nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if it affects the transcription of the sequence; or a ribosome binding site is operably linked to a coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked" means that the DNA sequences being linked are contiguous, and, in the case of a secretory leader, contiguous and in reading phase. However, enhancers do not have to be contiguous. Linking is typically accomplished by ligation at convenient restriction sites. If such sites do not exist, synthetic oligonucleotide adaptors or linkers are used in accordance with conventional practice. Transcriptional and translational regulatory nucleic acid will generally be appropriate to the host cell used to express the lung cancer protein. Numerous types of appropriate expression vectors, and suitable regulatory sequences are known in the art for a variety of host cells.

In general, transcriptional and translational regulatory sequences may include, but are not limited to, promoter sequences, ribosomal binding sites, transcriptional start and stop sequences, translational start and stop sequences, and enhancer or activator sequences. In a preferred embodiment, the regulatory sequences include a promoter and transcriptional start and stop sequences.

Promoter sequences may be either constitutive or inducible promoters. The promoters may be either naturally occurring promoters or hybrid promoters. Hybrid promoters, which combine elements of more than one promoter, are also known in the art, and are useful in the present invention.

In addition, an expression vector may comprise additional elements. For example, the expression vector may have two replication systems, thus allowing it to be maintained in two organisms, e.g., in mammalian or insect cells for expression and in a prokaryotic host for cloning and amplification. Furthermore, for integrating expression vectors, the expression vector often contains at least one sequence homologous to the host cell genome, and preferably two homologous sequences which flank the expression construct. The integrating

vector may be directed to a specific locus in the host cell by selecting the appropriate homologous sequence for inclusion in the vector. Constructs for integrating vectors are well known in the art (e.g., Fernandez and Hoeffler, *supra*).

In addition, in a preferred embodiment, the expression vector contains a selectable marker gene to allow the selection of transformed host cells. Selection genes are well known in the art and will vary with the host cell used.

5

10

15

20

25

30

The lung cancer proteins of the present invention are usually produced by culturing a host cell transformed with an expression vector containing nucleic acid encoding a lung cancer protein, under the appropriate conditions to induce or cause expression of the lung cancer protein. Conditions appropriate for lung cancer protein expression will vary with the choice of the expression vector and the host cell, and will be easily ascertained by one skilled in the art through routine experimentation or optimization. For example, the use of constitutive promoters in the expression vector will require optimizing the growth and proliferation of the host cell, while the use of an inducible promoter requires the appropriate growth conditions for induction. In addition, in some embodiments, the timing of the harvest is important. For example, the baculoviral systems used in insect cell expression are lytic viruses, and thus harvest time selection can be crucial for product yield.

Appropriate host cells include yeast, bacteria, archaebacteria, fungi, and insect and animal cells, including mammalian cells. Of particular interest are *Saccharomyces cerevisiae* and other yeasts, *E. coli*, *Bacillus subtilis*, Sf9 cells, C129 cells, 293 cells, *Neurospora*, BHK, CHO, COS, HeLa cells, HUVEC (human umbilical vein endothelial cells), THP1 cells (a macrophage cell line) and various other human cells and cell lines.

In a preferred embodiment, the lung cancer proteins are expressed in mammalian cells. Mammalian expression systems are also known in the art, and include retroviral and adenoviral systems. Of particular use as mammalian promoters are the promoters from mammalian viral genes, since the viral genes are often highly expressed and have a broad host range. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter, herpes simplex virus promoter, and the CMV promoter (see, e.g., Fernandez and Hoeffler, *supra*). Typically, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. Examples of transcription terminator and polyadenylation signals include those derived form SV40.

The methods of introducing exogenous nucleic acid into mammalian hosts, as well as other hosts, is well known in the art, and will vary with the host cell used. Techniques include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, viral infection, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

5

10

15

20

25

30

In a preferred embodiment, lung cancer proteins are expressed in bacterial systems. Promoters from bacteriophage may also be used and are known in the art. In addition, synthetic promoters and hybrid promoters are also useful; e.g., the tac promoter is a hybrid of the trp and lac promoter sequences. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. In addition to a functioning promoter sequence, an efficient ribosome binding site is desirable. The expression vector may also include a signal peptide sequence that provides for secretion of the lung cancer protein in bacteria. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). The bacterial expression vector may also include a selectable marker gene to allow for the selection of bacterial strains that have been transformed. Suitable selection genes include genes which render the bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin, neomycin and tetracycline. Selectable markers also include biosynthetic genes, such as those in the histidine, tryptophan and leucine biosynthetic pathways. These components are assembled into expression vectors. Expression vectors for bacteria are well known in the art, and include vectors for Bacillus subtilis, E. coli, Streptococcus cremoris, and Streptococcus lividans, among others (e.g., Fernandez and Hoeffler, supra). The bacterial expression vectors are transformed into bacterial host cells using techniques well known in the art, such as calcium chloride treatment, electroporation, and others.

In one embodiment, lung cancer proteins are produced in insect cells. Expression vectors for the transformation of insect cells, and in particular, baculovirus-based expression vectors, are well known in the art.

In a preferred embodiment, lung cancer protein is produced in yeast cells. Yeast expression systems are well known in the art, and include expression vectors for *Saccharomyces cerevisiae*, *Candida albicans* and *C. maltosa*, *Hansenula polymorpha*,

Kluyveromyces fragilis and K. lactis, Pichia guillerimondii, and P. pastoris, Schizosaccharomyces pombe, and Yarrowia lipolytica.

The lung cancer protein may also be made as a fusion protein, using techniques well known in the art. Thus, e.g., for the creation of monoclonal antibodies, if the desired epitope is small, the lung cancer protein may be fused to a carrier protein to form an immunogen. Alternatively, the lung cancer protein may be made as a fusion protein to increase expression for affinity purification purposes, or for other reasons. For example, when the lung cancer protein is a lung cancer peptide, the nucleic acid encoding the peptide may be linked to other nucleic acid for expression purposes.

In a preferred embodiment, the lung cancer protein is purified or isolated after expression. Lung cancer proteins may be isolated or purified in a variety of appropriate ways. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-phase HPLC chromatography, and chromatofocusing. For example, the lung cancer protein may be purified using a standard anti-lung cancer protein antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. For general guidance in suitable purification techniques, see Scopes (1982) Protein Purification. The degree of purification necessary will vary depending on the use of the lung cancer protein. In some instances no purification will be necessary.

Once expressed and purified if necessary, the lung cancer proteins and nucleic acids are useful in a number of applications. They may be used as immunoselection reagents, as vaccine reagents, as screening agents, therapeutic entities, for production of antibodies, as transcription or translation inhibitors, etc.

25 Variants of lung cancer proteins

5

10

15

20

30

In one embodiment, the lung cancer proteins are derivative or variant lung cancer proteins as compared to the wild-type sequence. That is, as outlined more fully below, the derivative lung cancer peptide will often contain at least one amino acid substitution, deletion or insertion, with amino acid substitutions being particularly preferred. The amino acid substitution, insertion or deletion may occur at a particular residue within the lung cancer peptide.

Also included within one embodiment of lung cancer proteins of the present invention are amino acid sequence variants. These variants typically fall into one or more of three

classes: substitutional, insertional or deletional variants. These variants ordinarily are prepared by site specific mutagenesis of nucleotides in the DNA encoding the lung cancer protein, using cassette or PCR mutagenesis or other techniques, to produce DNA encoding the variant, and thereafter expressing the DNA in recombinant cell culture as outlined above. However, variant lung cancer protein fragments having up to about 100-150 residues may be prepared by *in vitro* synthesis. Amino acid sequence variants are characterized by the predetermined nature of the variation, a feature that sets them apart from naturally occurring allelic or interspecies variation of the lung cancer protein amino acid sequence. The variants typically exhibit a similar qualitative biological activity as the naturally occurring analogue, although variants can also be selected which have modified characteristics as will be more fully outlined below.

5

10

15

20

25

30

While the site or region for introducing an amino acid sequence variation is often predetermined, the mutation per se need not be predetermined. For example, in order to optimize the performance of a mutation at a given site, random mutagenesis may be conducted at the target codon or region and the expressed lung cancer variants screened for the optimal combination of desired activity. Techniques exist for making substitution mutations at predetermined sites in DNA having a known sequence, e.g., M13 primer mutagenesis and PCR mutagenesis. Screening of mutants is often done using assays of lung cancer protein activities.

Amino acid substitutions are typically of single residues; insertions usually will be on the order of from about 1 to 20 amino acids, although considerably larger insertions may be occasionally tolerated. Deletions generally range from about 1 to about 20 residues, although in some cases deletions may be much larger.

Substitutions, deletions, insertions or any combination thereof may be used to arrive at a final derivative. Generally these changes are done on a few amino acids to minimize the alteration of the molecule. Larger changes may be tolerated in certain circumstances. When small alterations in the characteristics of a lung cancer protein are desired, substitutions are generally made in accordance with the amino acid substitution chart provided in the definition section.

Variants typically exhibit essentially the same qualitative biological activity and will elicit the same immune response as a naturally-occurring analog, although variants also are selected to modify the characteristics of lung cancer proteins as needed. Alternatively, the

variant may be designed or reorganized such that a biological activity of the lung cancer protein is altered. For example, glycosylation sites may be added, altered, or removed.

5

10

15

20

25

30

Covalent modifications of lung cancer polypeptides are included within the scope of this invention. One type of covalent modification includes reacting targeted amino acid residues of a lung cancer polypeptide with an organic derivatizing agent that is capable of reacting with selected side chains or the N-or C-terminal residues of a lung cancer polypeptide. Derivatization with bifunctional agents is useful, for instance, for crosslinking lung cancer polypeptides to a water-insoluble support matrix or surface for use in a method for purifying anti-lung cancer polypeptide antibodies or screening assays, as is more fully described below. Commonly used crosslinking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, e.g., esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), bifunctional maleimides such as bis-N-maleimido-1,8-octane and agents such as methyl-3-((p-azidophenyl)dithio)propioimidate.

Other modifications include deamidation of glutaminyl and asparaginyl residues to the corresponding glutamyl and aspartyl residues, respectively, hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of serinyl, threonyl or tyrosyl residues, methylation of the γ-amino groups of lysine, arginine, and histidine side chains (Creighton (1983) Proteins: Structure and Molecular Properties, pp. 79-86), acetylation of the N-terminal amine, and amidation of any C-terminal carboxyl group.

Another type of covalent modification of the lung cancer polypeptide encompassed by this invention is an altered native glycosylation pattern of the polypeptide. "Altering the native glycosylation pattern" is intended herein to mean adding to or deleting one or more carbohydrate moieties of a native sequence lung cancer polypeptide. Glycosylation patterns can be altered in many ways. For example the use of different cell types to express lung cancer-associated sequences can result in different glycosylation patterns.

Addition of glycosylation sites to lung cancer polypeptides may also be accomplished by altering the amino acid sequence thereof. The alteration may be made, e.g., by the addition of, or substitution by, one or more serine or threonine residues to the native sequence lung cancer polypeptide (for O-linked glycosylation sites). The lung cancer amino acid sequence may optionally be altered through changes at the DNA level, particularly by mutating the DNA encoding the lung cancer polypeptide at preselected bases such that codons are generated that will translate into the desired amino acids.

Another means of increasing the number of carbohydrate moieties on the lung cancer polypeptide is by chemical or enzymatic coupling of glycosides to the polypeptide. Such methods are described in the art, e.g., in WO 87/05330, and in Aplin and Wriston (1981) CRC Crit. Rev. Biochem., pp. 259-306.

5

10

15

20

25

30

Removal of carbohydrate moieties present on the lung cancer polypeptide may be accomplished chemically or enzymatically or by mutational substitution of codons encoding for amino acid residues that serve as targets for glycosylation. Chemical deglycosylation techniques are known in the art and described, for instance, by Hakimuddin, et al. (1987) <a href="https://dx.ncbi.nlm.nih.good.ncb

Another type of covalent modification of lung cancer comprises linking the lung cancer polypeptide to one of a variety of nonproteinaceous polymers, e.g., polyethylene glycol, polypropylene glycol, or polyoxyalkylenes, in the manner set forth in U.S. Patent Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192, or 4,179,337.

Lung cancer polypeptides of the present invention may also be modified in a way to form chimeric molecules comprising a lung cancer polypeptide fused to another, heterologous polypeptide or amino acid sequence. In one embodiment, such a chimeric molecule comprises a fusion of a lung cancer polypeptide with a tag polypeptide which provides an epitope to which an anti-tag antibody can selectively bind. The epitope tag is generally placed at the amino-or carboxyl-terminus of the lung cancer polypeptide. The presence of such epitope-tagged forms of a lung cancer polypeptide can be detected using an antibody against the tag polypeptide. Also, provision of the epitope tag enables the lung cancer polypeptide to be readily purified by affinity purification using an anti-tag antibody or another type of affinity matrix that binds to the epitope tag. In an alternative embodiment, the chimeric molecule may comprise a fusion of a lung cancer polypeptide with an immunoglobulin or a particular region of an immunoglobulin. For a bivalent form of the chimeric molecule, such a fusion could be to the Fc region of an IgG molecule.

Various tag polypeptides and their respective antibodies are well known and examples include poly-histidine (poly-his) or poly-histidine-glycine (poly-his-gly) tags; HIS6 and metal chelation tags, the flu HA tag polypeptide and its antibody 12CA5 (Field, et al. (1988) Mol. Cell. Biol. 8:2159-2165); the c-myc tag and the 8F9, 3C7, 6E10, G4, B7 and 9E10 antibodies

thereto (Evan, et al. (1985) Molecular and Cellular Biology 5:3610-3616); and the Herpes Simplex virus glycoprotein D (gD) tag and its antibody (Paborsky, et al. (1990) Protein Engineering 3(6):547-553). Other tag polypeptides include the Flag-peptide (Hopp, et al. (1988) BioTechnology 6:1204-1210); the KT3 epitope peptide (Martin, et al. (1992) Science 255:192-194); tubulin epitope peptide (Skinner, et al. (1991) J. Biol. Chem. 266:15163-15166); and the T7 gene 10 protein peptide tag (Lutz-Freyermuth, et al. (1990) Proc. Nat'l Acad. Sci. USA 87:6393-6397).

Also included are other lung cancer proteins of the lung cancer family, and lung cancer proteins from other organisms, which are cloned and expressed as outlined below. Thus, probe or degenerate polymerase chain reaction (PCR) primer sequences may be used to find other related lung cancer proteins from primates or other organisms. As will be appreciated by those in the art, particularly useful probe and/or PCR primer sequences include unique areas of the lung cancer nucleic acid sequence. As is generally known in the art, preferred PCR primers are from about 15 to about 35 nucleotides in length, with from about 20 to about 30 being preferred, and may contain inosine as needed. PCR reaction conditions are well known in the art (e.g., Innis, PCR Protocols, *supra*).

Antibodies to lung cancer proteins

5

10

15

20

25

30

In a preferred embodiment, when a lung cancer protein is to be used to generate antibodies, e.g., for immunotherapy or immunodiagnosis, the lung cancer protein should share at least one epitope or determinant with the full length protein. By "epitope" or "determinant" herein is typically meant a portion of a protein which will generate and/or bind an antibody or T-cell receptor in the context of MHC. Thus, in most instances, antibodies made to a smaller lung cancer protein will be able to bind to the full-length protein, particularly linear epitopes. In a preferred embodiment, the epitope is unique; that is, antibodies generated to a unique epitope show little or no cross-reactivity.

Methods of preparing polyclonal antibodies are well known (e.g., Coligan, *supra*; and Harlow and Lane, *supra*). Polyclonal antibodies can be raised in a mammal, e.g., by one or more injections of an immunizing agent and, if desired, an adjuvant. Typically, the immunizing agent and/or adjuvant will be injected in the mammal by multiple subcutaneous or intraperitoneal injections. The immunizing agent may include a protein encoded by a nucleic acid of Tables 1A-16 or fragment thereof or a fusion protein thereof. It may be useful to conjugate the immunizing agent to a protein known to be immunogenic in the mammal

being immunized. Immunogenic proteins include, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. Adjuvants include, e.g., Freund's complete adjuvant and MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate). The immunization protocol may be selected by one skilled in the art.

5

10

15

20

25

30

The antibodies may, alternatively, be monoclonal antibodies. Monoclonal antibodies may be prepared using hybridoma methods, such as those described by Kohler and Milstein (1975) Nature 256:495. In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes may be immunized in vitro. The immunizing agent will typically include a polypeptide encoded by a nucleic acid of the tables, or fragment thereof, or a fusion protein thereof. Generally, either peripheral blood lymphocytes ("PBLs") are used if cells of human origin are desired, or spleen cells or lymph node cells are used if nonhuman mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding (1986) Monoclonal Antibodies: Principles and Practice, pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovin, or primate origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells may be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

In one embodiment, the antibodies are bispecific antibodies. Bispecific antibodies are typically monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens or that have binding specificities for two epitopes on the same antigen. In one embodiment, one of the binding specificities is for a protein encoded by a nucleic acid of the tables or a fragment thereof, the other one is for any other antigen, and preferably for a cell-surface protein or receptor or receptor subunit, preferably one that is tumor specific. Alternatively, tetramer-type technology may create multivalent reagents.

In a preferred embodiment, the antibodies to lung cancer protein are capable of reducing or eliminating a biological function of a lung cancer protein, in a naked form or conjugated to an effector moiety. That is, the addition of anti-lung cancer protein antibodies (either polyclonal or preferably monoclonal) to lung cancer tissue (or cells containing lung cancer) may reduce or eliminate the lung cancer. Generally, at least a 25% decrease in activity, growth, size or the like is preferred, with at least about 50% being particularly preferred and about a 95-100% decrease being especially preferred.

5

10

15

20

25

30

In a preferred embodiment the antibodies to the lung cancer proteins are humanized antibodies (e.g., Xenerex Biosciences, Medarex, Inc., Abgenix, Inc., Protein Design Labs, Inc.) Humanized forms of non-human (e.g., murine) antibodies are chimeric molecules of immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. Humanized antibodies include human immunoglobulins (recipient antibody) in which residues from a complementary determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity and capacity. In some instances, Fv framework residues of a human immunoglobulin are replaced by corresponding non-human residues. Humanized antibodies may also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, a humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework (FR) regions are those of a human immunoglobulin consensus sequence. A humanized antibody optimally also will typically comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones, et al. (1986) Nature 321:522-525; Riechmann, et al. (1988) Nature 332:323-329; and Presta (1992) Curr. Op. Struct. Biol. 2:593-596). Humanization can be performed following the method of Winter and co-workers (Jones, et al. (1986) Nature 321:522-525; Riechmann, et al. (1988) Nature 332:323-327; Verhoeyen, et al. (1988) Science 239:1534-1536), by substituting rodent CDRs or CDR sequences for corresponding sequences of a human antibody. Accordingly, such humanized antibodies are chimeric antibodies (U.S. Patent No. 4.816.567), wherein substantially less than an intact human variable domain has been substituted by corresponding sequence from a non-human species.

Human-like antibodies can also be produced using various techniques known in the art, including phage display libraries (Hoogenboom and Winter (1991) J. Mol. Biol. 227:381; Marks, et al. (1991) J. Mol. Biol. 222:581). The techniques of Cole, et al. and Boerner, et al. are also available for the preparation of human monoclonal antibodies (Cole, et al. (1985) Monoclonal Antibodies and Cancer Therapy, p. 77 and Boerner, et al. (1991) J. Immunol. 147(1):86-95). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in nearly all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, e.g., in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in the following scientific publications: Marks, et al. (1992) Bio/Technology 10:779-783; Lonberg, et al. (1994) Nature 368:856-859; Morrison (1994) Nature 368:812-13; Fishwild, et al. (1996) Nature Biotechnology 14:845-51; Neuberger (1996) Nature Biotechnology 14:826; and Lonberg and Huszar (1995) Intern. Rev. Immunol. 13:65-93.

5

10

15

20

25

30

By immunotherapy is meant treatment of lung cancer with an antibody raised against a lung cancer proteins. As used herein, immunotherapy can be passive or active. Passive immunotherapy as defined herein is the passive transfer of antibody to a recipient (patient). Active immunization is the induction of antibody and/or T-cell responses in a recipient (patient). Induction of an immune response is the result of providing the recipient with an antigen to which antibodies are raised. The antigen may be provided by injecting a polypeptide against which antibodies are desired to be raised into a recipient, or contacting the recipient with a nucleic acid capable of expressing the antigen and under conditions for expression of the antigen, leading to an immune response.

In a preferred embodiment the lung cancer proteins against which antibodies are raised are secreted proteins as described above. Without being bound by theory, antibodies used for treatment, may bind and prevent the secreted protein from binding to its receptor, thereby inactivating the secreted lung cancer protein.

In another preferred embodiment, the lung cancer protein to which antibodies are raised is a transmembrane protein. Without being bound by theory, antibodies used for treatment may bind the extracellular domain of the lung cancer protein and prevent it from binding to other proteins, such as circulating ligands or cell-associated molecules. The

antibody may cause down-regulation of the transmembrane lung cancer protein. The antibody may be a competitive, non-competitive or uncompetitive inhibitor of protein binding to the extracellular domain of the lung cancer protein. The antibody may be an antagonist of the lung cancer protein or may prevent activation of a transmembrane lung cancer protein, or may induce or suppress a particular cellular pathway. In some embodiments, when the antibody prevents the binding of other molecules to the lung cancer protein, the antibody prevents growth of the cell. The antibody may also be used to target or sensitize the cell to cytotoxic agents, including, but not limited to TNF-α, TNF-β, IL-1, INF-γ, and IL-2, or chemotherapeutic agents including 5FU, vinblastine, actinomycin D, cisplatin, methotrexate, and the like. In some instances the antibody may belong to a sub-type that activates serum complement when complexed with the transmembrane protein thereby mediating cytotoxicity or antigen-dependent cytotoxicity (ADCC). Thus, lung cancer may be treated by administering to a patient antibodies directed against the transmembrane lung cancer protein. Antibody-labeling may activate a co-toxin, localize a toxin payload, or otherwise provide means to locally ablate cells.

In another preferred embodiment, the antibody is conjugated to an effector moiety. The effector moiety can be various molecules, including labeling moieties such as radioactive labels or fluorescent labels, or can be a therapeutic moiety. In one aspect the therapeutic moiety is a small molecule that modulates the activity of a lung cancer protein. In another aspect the therapeutic moiety may modulate an activity of molecules associated with or in close proximity to a lung cancer protein. The therapeutic moiety may inhibit enzymatic or signaling activity such as protease or collagenase activity associated with lung cancer.

In a preferred embodiment, the therapeutic moiety can also be a cytotoxic agent. In this method, targeting the cytotoxic agent to lung cancer tissue or cells results in a reduction in the number of afflicted cells, thereby reducing symptoms associated with lung cancer. Cytotoxic agents are numerous and varied and include, but are not limited to, cytotoxic drugs or toxins or active fragments of such toxins. Suitable toxins and their corresponding fragments include diphtheria A chain, exotoxin A chain, ricin A chain, abrin A chain, curcin, crotin, phenomycin, enomycin, saporin, auristatin, and the like. Cytotoxic agents also include radiochemicals made by conjugating radioisotopes to antibodies raised against lung cancer proteins, or binding of a radionuclide to a chelating agent that has been covalently attached to the antibody. Targeting the therapeutic moiety to transmembrane lung cancer proteins not only serves to increase the local concentration of therapeutic moiety in the lung cancer

afflicted area, but also serves to reduce deleterious side effects that may be associated with the untargeted therapeutic moiety.

In another preferred embodiment, the lung cancer protein against which the antibodies are raised is an intracellular protein. In this case, the antibody may be conjugated to a protein or other entity which facilitates entry into the cell. In one case, the antibody enters the cell by endocytosis. In another embodiment, a nucleic acid encoding the antibody is administered to the individual or cell. Moreover, wherein the lung cancer protein can be targeted within a cell, i.e., the nucleus, an antibody theretomay contain a signal for that target localization, i.e., a nuclear localization signal.

The lung cancer antibodies of the invention specifically bind to lung cancer proteins. By "specifically bind" herein is meant that the antibodies bind to the protein with a K_d of at least about 0.1 mM, more usually at least about 1 μ M, preferably at least about 0.1 μ M or better, and most preferably, 0.01 μ M or better. Selectivity of binding to the specific target and not to related other sequences is also important.

15

20

25

5

10

Detection of lung cancer sequence for diagnostic and therapeutic applications

In one aspect, the RNA expression levels of genes are determined for different cellular states in the lung cancer phenotype. Expression levels of genes in normal tissue (e.g., not undergoing lung cancer), in lung cancer tissue (and in some cases, for varying severities of lung cancer that relate to prognosis, as outlined below), or in non-malignant disease are evaluated to provide expression profiles. A gene expression profile of a particular cell state or point of development is essentially a "fingerprint" of the state of the cell. While two states may have a particular gene similarly expressed, the evaluation of a number of genes simultaneously allows the generation of a gene expression profile that is reflective of the state of the cell. By comparing expression profiles of cells in different states, information regarding which genes are important (including both up- and down-regulation of genes) in each of these states is obtained. Then, diagnosis may be performed or confirmed to determine whether a tissue sample has the gene expression profile of normal or cancerous tissue. This will provide for molecular diagnosis of related conditions.

30

"Differential expression," or grammatical equivalents as used herein, refers to qualitative or quantitative differences in the temporal and/or cellular gene expression patterns within and among cells and tissue. Thus, a differentially expressed gene can qualitatively have its expression altered, including an activation or inactivation, in, e.g.,

WO 02/086443 PCT/US02/12476 normal versus lung cancer tissue. Genes may be turned on or turned off in a particular state, relative to another state thus permitting comparison of two or more states. A qualitatively regulated gene will exhibit an expression pattern within a state or cell type which is detectable by standard techniques. Some genes will be expressed in one state or cell type, but not in both. Alternatively, the difference in expression may be quantitative, e.g., in that expression is increased or decreased; i.e., gene expression is either upregulated, resulting in an increased amount of transcript, or downregulated, resulting in a decreased amount of transcript. The degree to which expression differs need only be large enough to quantify via standard characterization techniques as outlined below, such as by use of Affymetrix GeneChip™ expression arrays, Lockhart (1996) Nature Biotechnology 14:1675-1680, hereby expressly incorporated by reference. Other techniques include, but are not limited to, quantitative reverse transcriptase PCR, northern analysis and RNase protection. As outlined above, preferably the change in expression (i.e., upregulation or downregulation) is typically at least about 50%, more preferably at least about 100%, more preferably at least about 150%, more preferably at least about 200%, with from 300 to at least 1000% being especially preferred.

5

10

15

20

25

30

Evaluation may be at the gene transcript or the protein level. The amount of gene expression may be monitored using nucleic acid probes to the RNA or DNA equivalent of the gene transcript, and the quantification of gene expression levels, or, alternatively, the final gene product itself (protein) can be monitored, e.g., with antibodies to the lung cancer protein and standard immunoassays (ELISAs, etc.) or other techniques, including mass spectroscopy assays, 2D gel electrophoresis assays, etc. Proteins corresponding to lung cancer genes, e.g., those identified as being important in a lung cancer or disease phenotype, can be evaluated in a lung cancer diagnostic test. In a preferred embodiment, gene expression monitoring is performed simultaneously on a number of genes.

The lung cancer nucleic acid probes may be attached to biochips as outlined herein for the detection and quantification of lung cancer sequences in a particular cell. The assays are further described below in the example. PCR techniques can be used to provide greater sensitivity. Multiple protein expression monitoring can be performed as well. Similarly, these assays may be performed on an individual basis as well.

In a preferred embodiment nucleic acids encoding the lung cancer protein are detected. Although DNA or RNA encoding the lung cancer protein may be detected, of particular interest are methods wherein an mRNA encoding a lung cancer protein is detected.

Probes to detect mRNA can be a nucleotide/deoxynucleotide probe that is complementary to and hybridizes with the mRNA and includes, but is not limited to, oligonucleotides, cDNA or RNA. Probes also should contain a detectable label, as defined herein. In one method the mRNA is detected after immobilizing the nucleic acid to be examined on a solid support such as nylon membranes and hybridizing the probe with the sample. Following washing to remove the non-specifically bound probe, the label is detected. In another method detection of the mRNA is performed *in situ*. In this method permeabilized cells or tissue samples are contacted with a detectably labeled nucleic acid probe for sufficient time to allow the probe to hybridize with the target mRNA. Following washing to remove the non-specifically bound probe, the label is detected. For example a digoxygenin labeled riboprobe (RNA probe) that is complementary to the mRNA encoding a lung cancer protein is detected by binding the digoxygenin with an anti-digoxygenin secondary antibody and developed with nitro blue tetrazolium and 5-bromo-4-chloro-3-indoyl phosphate.

5

10

15

20

25

30

In a preferred embodiment, various proteins from the three classes of proteins as described herein (secreted, transmembrane or intracellular proteins) are used in diagnostic assays. The lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in diagnostic assays. This can be performed on an individual gene or corresponding polypeptide level. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes and/or corresponding polypeptides.

As described and defined herein, lung cancer proteins, including intracellular, transmembrane, or secreted proteins, find use as markers of lung cancer, e.g., for prognostic or diagnostic purposes. Detection of these proteins in putative lung cancer tissue allows for detection, prognosis, or diagnosis of lung cancer or similar disease, and perhaps for selection of therapeutic strategy. In one embodiment, antibodies are used to detect lung cancer proteins. A preferred method separates proteins from a sample by electrophoresis on a gel (typically a denaturing and reducing protein gel, but may be another type of gel, including isoelectric focusing gels and the like). Following separation of proteins, the lung cancer protein is detected, e.g., by immunoblotting with antibodies raised against the lung cancer protein. Methods of immunoblotting are well known to those of ordinary skill in the art.

In another preferred method, antibodies to the lung cancer protein find use in *in situ* imaging techniques, e.g., in histology (e.g., Asai (ed. 1993) Methods in Cell Biology:

Antibodies in Cell Biology, volume 37. In this method cells are contacted with from one to many antibodies to the lung cancer protein(s). Following washing to remove non-specific antibody binding, the presence of the antibody or antibodies is detected. In one embodiment the antibody is detected by incubating with a secondary antibody that contains a detectable label, e.g., multicolor fluorescence or confocal imaging. In another method the primary antibody to the lung cancer protein(s) contains a detectable label, e.g., an enzyme marker that can act on a substrate. In another preferred embodiment each one of multiple primary antibodies contains a distinct and detectable label. This method finds particular use in simultaneous screening for a plurality of lung cancer proteins. Many other histological imaging techniques are also provided by the invention.

5

10

15

20

25

30

In a preferred embodiment the label is detected in a fluorometer which has the ability to detect and distinguish emissions of different wavelengths. In addition, a fluorescence activated cell sorter (FACS) can be used in the method.

In another preferred embodiment, antibodies find use in diagnosing lung cancer from blood, serum, plasma, stool, and other samples. Such samples, therefore, are useful as samples to be probed or tested for the presence of lung cancer proteins. Antibodies can be used to detect a lung cancer protein by previously described immunoassay techniques including ELISA, immunoblotting (western blotting), immunoprecipitation, BIACORE technology and the like. Conversely, the presence of antibodies may indicate an immune response against an endogenous lung cancer protein or vaccine.

In a preferred embodiment, *in situ* hybridization of labeled lung cancer nucleic acid probes to tissue arrays is done. For example, arrays of tissue samples, including lung cancer tissue and/or normal tissue, are made. *In situ* hybridization (see, e.g., Ausubel, *supra*) is then performed. When comparing the fingerprints between an individual and a standard, the skilled artisan can make a diagnosis, a prognosis, or a prediction based on the findings. It is further understood that the genes which indicate the diagnosis may differ from those which indicate the prognosis and molecular profiling of the condition of the cells may lead to distinctions between responsive or refractory conditions or may be predictive of outcomes.

In a preferred embodiment, the lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in prognosis assays. As above, gene expression profiles can be generated that correlate to lung cancer, clinical, pathological, or other information, in terms of long term prognosis. Again, this may be done on either a protein or gene level, with the use of genes being preferred. Single or multiple

genes may be useful in various combinations. As above, lung cancer probes may be attached to biochips for the detection and quantification of lung cancer sequences in a tissue or patient. The assays proceed as outlined above for diagnosis. PCR method may provide more sensitive and accurate quantification.

5

10

15

20

25

30

Assays for therapeutic compounds

In a preferred embodiment, the proteins, nucleic acids, and antibodies as described herein are used in drug screening assays. The lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing lung cancer sequences are used in drug screening assays or by evaluating the effect of drug candidates on a "gene expression profile" or expression profile of polypeptides. In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent (e.g., Zlokarnik, et al. (1998) Science 279:84-8; Heid (1996) Genome Res. 6:986-94.

In a preferred embodiment, the lung cancer proteins, antibodies, nucleic acids, modified proteins and cells containing the native or modified lung cancer proteins are used in screening assays. That is, the present invention provides novel methods for screening for compositions which modulate the lung cancer phenotype or an identified physiological function of a lung cancer protein. As above, this can be done on an individual gene level or by evaluating the effect of drug candidates on a "gene expression profile". In a preferred embodiment, the expression profiles are used, preferably in conjunction with high throughput screening techniques to allow monitoring for expression profile genes after treatment with a candidate agent, see Zlokarnik, *supra*.

Having identified differentially expressed genes herein, a variety of assays may be performed. In a preferred embodiment, assays may be run on an individual gene or protein level. That is, having identified a particular gene with altered regulation in lung cancer, test compounds can be screened for the ability to modulate gene expression or for binding to the lung cancer protein. "Modulation" thus includes an increase or a decrease in gene expression. The preferred amount of modulation will depend on the original change of the gene expression in normal versus tissue undergoing lung cancer, with changes of at least 10%, preferably 50%, more preferably 100-300%, and in some embodiments 300-1000% or greater. Thus, if a gene exhibits a 4-fold increase in lung cancer tissue compared to normal tissue, a decrease of about four-fold is often desired; similarly, a 10-fold decrease in lung

cancer tissue compared to normal tissue often provides a target value of a 10-fold increase in expression to be induced by the test compound.

The amount of gene expression may be monitored using nucleic acid probes and the quantification of gene expression levels, or, alternatively, the gene product itself can be monitored, e.g., through the use of antibodies to the lung cancer protein and standard immunoassays. Proteomics and separation techniques may also allow quantification of expression.

5

10

15

20

25

30

In a preferred embodiment, gene or protein expression monitoring of a number of entities, i.e., an expression profile, is monitored simultaneously. Such profiles will typically involve a plurality of those entities described herein.

In this embodiment, the lung cancer nucleic acid probes are attached to biochips as outlined herein for the detection and quantification of lung cancer sequences in a particular cell. Alternatively, PCR may be used. Thus, a series, e.g., of microtiter plate, may be used with dispensed primers in desired wells. A PCR reaction can then be performed and analyzed for each well.

Expression monitoring can be performed to identify compounds that modify the expression of one or more lung cancer-associated sequences, e.g., a polynucleotide sequence set out in the tables. Generally, in a preferred embodiment, a test compound is added to the cells prior to analysis. Moreover, screens are also provided to identify agents that modulate lung cancer, modulate lung cancer proteins, bind to a lung cancer protein, or interfere with the binding of a lung cancer protein and an antibody, substrate, or other binding partner.

The term "test compound" or "drug candidate" or "modulator" or grammatical equivalents as used herein describes a molecule, e.g., protein, oligopeptide, small organic molecule, polysaccharide, polynucleotide, etc., to be tested for the capacity to directly or indirectly alter the lung cancer phenotype or the expression of a lung cancer sequence, e.g., a nucleic acid or protein sequence. In preferred embodiments, modulators alter expression profiles of nucleic acids or proteins provided herein. In one embodiment, the modulator suppresses a lung cancer phenotype, e.g., to a normal or non-malignant tissue fingerprint. In another embodiment, a modulator induces a lung cancer phenotype. Generally, a plurality of assay mixtures are run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection.

In one aspect, a modulator will neutralize the effect of a lung cancer protein. By "neutralize" is meant that activity of a protein and the consequent effect on the cell is inhibited or blocked.

In certain embodiments, combinatorial libraries of potential modulators will be screened for an ability to bind to a lung cancer polypeptide or to modulate activity. Conventionally, new chemical entities with useful properties are generated by identifying a chemical compound (called a "lead compound") with some desirable property or activity, e.g., inhibiting activity, creating variants of the lead compound, and evaluating the property and activity of those variant compounds. Often, high throughput screening (HTS) methods are employed for such an analysis.

5

10

15

20

25

30

In one preferred embodiment, high throughput screening methods involve providing a library containing a large number of potential therapeutic compounds (candidate compounds). Such "combinatorial chemical libraries" are then screened in one or more assays to identify those library members (particular chemical species or subclasses) that display a desired characteristic activity. The compounds thus identified can serve as conventional "lead compounds" or can themselves be used as potential or actual therapeutics.

A combinatorial chemical library is a collection of diverse chemical compounds generated by either chemical synthesis or biological synthesis by combining a number of chemical "building blocks" such as reagents. For example, a linear combinatorial chemical library, such as a polypeptide (e.g., mutein) library, is formed by combining a set of chemical building blocks called amino acids in every possible way for a given compound length (i.e., the number of amino acids in a polypeptide compound). Millions of chemical compounds can be synthesized through such combinatorial mixing of chemical building blocks (Gallop, et al. (1994) J. Med. Chem. 37(9):1233-1251).

Preparation and screening of combinatorial chemical libraries is well known to those of skill in the art. Such combinatorial chemical libraries include, but are not limited to, peptide libraries (see, e.g., U.S. Patent No. 5,010,175, Furka (1991) Pept. Prot. Res. 37:487-493, Houghton, et al. (1991) Nature, 354:84-88), peptoids (PCT Publication No WO 91/19735), encoded peptides (PCT Publication WO 93/20242), random bio-oligomers (PCT Publication WO 92/00091), benzodiazepines (U.S. Pat. No. 5,288,514), diversomers such as hydantoins, benzodiazepines and dipeptides (Hobbs, et al. (1993) Proc. Nat. Acad. Sci. USA 90:6909-6913), vinylogous polypeptides (Hagihara, et al. (1992) J. Amer. Chem. Soc. 114:6568), nonpeptidal peptidomimetics with a Beta-D-Glucose scaffolding (Hirschmann, et

al. (1992) J. Amer. Chem. Soc. 114:9217-9218), analogous organic syntheses of small compound libraries (Chen, et al. (1994) J. Amer. Chem. Soc. 116:2661), oligocarbamates (Cho, et al. (1993) Science 261:1303), and/or peptidyl phosphonates (Campbell, et al. (1994) J. Org. Chem. 59:658). See, generally, Gordon, et al. (1994) J. Med. Chem. 37:1385, nucleic acid libraries (see, e.g., Stratagene, Corp.), peptide nucleic acid libraries (see, e.g., U.S. Patent 5,539,083), antibody libraries (see, e.g., Vaughn, et al. (1996) Nature Biotechnology 14(3):309-314, and PCT/US96/10287), carbohydrate libraries (see, e.g., Liang, et al. (1996) Science 274:1520-1522, and U.S. Patent No. 5,593,853), and small organic molecule libraries (see, e.g., benzodiazepines, Baum (1993) C&EN, Jan 18, page 33; isoprenoids, U.S. Patent No. 5,569,588; thiazolidinones and metathiazanones, U.S. Patent No. 5,549,974; pyrrolidines, U.S. Patent Nos. 5,525,735 and 5,519,134; morpholino compounds, U.S. Patent No. 5,506,337; benzodiazepines, U.S. Patent No. 5,288,514; and the like).

5

10

15

20

25

30

Devices for the preparation of combinatorial libraries are commercially available (see, e.g., 357 MPS, 390 MPS, Advanced Chem Tech, Louisville KY, Symphony, Rainin, Woburn, MA, 433A Applied Biosystems, Foster City, CA, 9050 Plus, Millipore, Bedford, MA).

A number of well known robotic systems have also been developed for solution phase chemistries. These systems include automated workstations like the automated synthesis apparatus developed by Takeda Chemical Industries, LTD. (Osaka, Japan) and many robotic systems utilizing robotic arms (Zymate II, Zymark Corporation, Hopkinton, Mass.; Orca, Hewlett-Packard, Palo Alto, Calif.), which mimic the manual synthetic operations performed by a chemist. The above devices, with appropriate modification, are suitable for use with the present invention. In addition, numerous combinatorial libraries are themselves commercially available (see, e.g., ComGenex, Princeton, N.J., Asinex, Moscow, Ru, Tripos, Inc., St. Louis, MO, ChemStar, Ltd, Moscow, RU, 3D Pharmaceuticals, Exton, PA, Martek Biosciences, Columbia, MD, etc.).

The assays to identify modulators are amenable to high throughput screening. Preferred assays thus detect modulation of lung cancer gene transcription, polypeptide expression, and polypeptide activity.

High throughput assays for evaluating the presence, absence, quantification, or other properties of particular nucleic acids or protein products are well known to those of skill in the art. Similarly, binding assays and reporter gene assays are similarly well known. Thus, e.g., U.S. Patent No. 5,559,410 discloses high throughput screening methods for proteins,

U.S. Patent No. 5,585,639 discloses high throughput screening methods for nucleic acid binding (i.e., in arrays), while U.S. Patent Nos. 5,576,220 and 5,541,061 disclose high throughput methods of screening for ligand/antibody binding.

5

10

15

20

25

30

In addition, high throughput screening systems are commercially available (see, e.g., Zymark Corp., Hopkinton, MA; Air Technical Industries, Mentor, OH; Beckman Instruments, Inc. Fullerton, CA; Precision Systems, Inc., Natick, MA, etc.). These systems typically automate procedures, including sample and reagent pipetting, liquid dispensing, timed incubations, and final readings of the microplate in detector(s) appropriate for the assay. These configurable systems provide high throughput and rapid start up as well as a high degree of flexibility and customization. The manufacturers of such systems provide detailed protocols for various high throughput systems. Thus, e.g., Zymark Corp. provides technical bulletins describing screening systems for detecting the modulation of gene transcription, ligand binding, and the like.

In one embodiment, modulators are proteins, often naturally occurring proteins or fragments of naturally occurring proteins. Thus, e.g., cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of proteins may be made for screening in the methods of the invention. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred. Particularly useful test compound will be directed to the class of proteins to which the target belongs, e.g., substrates for enzymes or ligands and receptors.

In a preferred embodiment, modulators are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occurring proteins, random peptides, or "biased" random peptides. By "randomized" or grammatical equivalents herein is meant that the nucleic acid or peptide consists of essentially random sequences of nucleotides and amino acids, respectively. Since these random peptides (or nucleic acids, discussed below) are often chemically synthesized, they may incorporate a nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.

In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. In a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, e.g., of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of nucleic acid binding domains, the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc.

Modulators of lung cancer can also be nucleic acids, as defined above.

5

10

15

20

25

30

As described above generally for proteins, nucleic acid modulating agents may be naturally occurring nucleic acids, random nucleic acids, or "biased" random nucleic acids. Digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.

In a preferred embodiment, the candidate compounds are organic chemical moieties, a wide variety of which are available in the literature.

After a candidate agent has been added and the cells allowed to incubate for some period of time, the sample containing a target sequence is analyzed. If required, the target sequence is prepared using known techniques. For example, the sample may be treated to lyse the cells, using known lysis buffers, electroporation, etc., with purification and/or amplification such as PCR performed as appropriate. For example, an *in vitro* transcription with labels covalently attached to the nucleotides is performed. Generally, the nucleic acids are labeled with biotin-FITC or PE, or with cy3 or cy5.

In a preferred embodiment, the target sequence is labeled with, e.g., a fluorescent, a chemiluminescent, a chemical, or a radioactive signal, to provide a means of detecting the target sequence's specific binding to a probe. The label also can be an enzyme, such as, alkaline phosphatase or horseradish peroxidase, which when provided with an appropriate substrate produces a product that can be detected. Alternatively, the label can be a labeled compound or small molecule, such as an enzyme inhibitor, that binds but is not catalyzed or altered by the enzyme. The label also can be a moiety or compound, such as, an epitope tag or biotin which specifically binds to streptavidin. For the example of biotin, the streptavidin is labeled as described above, thereby, providing a detectable signal for the bound target sequence. Unbound labeled streptavidin is typically removed prior to analysis.

Nucleic acid assays can be direct hybridization assays or can comprise "sandwich assays", which include the use of multiple probes, as is generally outlined in U.S. Patent Nos.

5,681,702, 5,597,909, 5,545,730, 5,594,117, 5,591,584, 5,571,670, 5,580,731, 5,571,670, 5,591,584, 5,624,802, 5,635,352, 5,594,118, 5,359,100, 5,124,246 and 5,681,697, all of which are hereby incorporated by reference. In this embodiment, in general, the target nucleic acid is prepared as outlined above, and then added to the biochip comprising a plurality of nucleic acid probes, under conditions that allow the formation of a hybridization complex.

5

10

15

20

25

30

A variety of hybridization conditions may be used in the present invention, including high, moderate and low stringency conditions as outlined above. The assays are generally run under stringency conditions which allow formation of the label probe hybridization complex only in the presence of target. Stringency can be controlled by altering a step parameter that is a thermodynamic variable, including, but not limited to, temperature, formamide concentration, salt concentration, chaotropic salt concentration, pH, organic solvent concentration, etc.

These parameters may also be used to control non-specific binding, as is generally outlined in U.S. Patent No. 5,681,697. Thus it may be desirable to perform certain steps at higher stringency conditions to reduce non-specific binding.

The reactions outlined herein may be accomplished in a variety of ways. Components of the reaction may be added simultaneously, or sequentially, in different orders, with preferred embodiments outlined below. In addition, the reaction may include a variety of other reagents. These include salts, buffers, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal hybridization and detection, and/or reduce non-specific or background interactions. Reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may also be used as appropriate, depending on the sample preparation methods and purity of the target.

The assay data are analyzed to determine the expression levels, and changes in expression levels as between states, of individual genes, forming a gene expression profile.

Screens are performed to identify modulators of the lung cancer phenotype. In one embodiment, screening is performed to identify modulators that can induce or suppress a particular expression profile, thus preferably generating the associated phenotype. In another embodiment, e.g., for diagnostic applications, having identified differentially expressed genes important in a particular state, screens can be performed to identify modulators that alter expression of individual genes. In an another embodiment, screening is performed to identify modulators that alter a biological function of the expression product of a differentially expressed gene. Again, having identified the importance of a gene in a particular state,

screens are performed to identify agents that bind and/or modulate the biological activity of the gene product, or evaluate genetic polymorphisms.

5

10

15

20

25

30

Genes can be screened for those that are induced in response to a candidate agent. After identifying a modulator based upon its ability to suppress a lung cancer expression pattern leading to a normal expression pattern, or to modulate a single lung cancer gene expression profile so as to mimic the expression of the gene from normal tissue, a screen as described above can be performed to identify genes that are specifically modulated in response to the agent. Comparing expression profiles between normal tissue and agent treated lung cancer tissue reveals genes that are not expressed in normal tissue or lung cancer tissue, but are expressed in agent treated tissue. These agent-specific sequences can be identified and used by methods described herein for lung cancer genes or proteins. In particular these sequences and the proteins they encode find use in marking or identifying agent treated cells. In addition, antibodies can be raised against the agent induced proteins and used to target novel therapeutics to the treated lung cancer tissue sample.

Thus, in one embodiment, a test compound is administered to a population of lung cancer cells, that have an associated lung cancer expression profile. By "administration" or "contacting" herein is meant that the candidate agent is added to the cells in such a manner as to allow the agent to act upon the cell, whether by uptake and intracellular action, or by action at the cell surface. In some embodiments, nucleic acid encoding a proteinaceous candidate agent (i.e., a peptide) may be put into a viral construct such as an adenoviral or retroviral construct, and added to the cell, such that expression of the peptide agent is accomplished, e.g., PCT US97/01019. Regulatable gene therapy systems can also be used.

Once a test compound has been administered to the cells, the cells can be washed if desired and are allowed to incubate under preferably physiological conditions for some period of time. The cells are then harvested and a new gene expression profile is generated, as outlined herein.

Thus, e.g., lung cancer or non-malignant tissue may be screened for agents that modulate, e.g., induce or suppress a lung cancer phenotype. A change in at least one gene, preferably many, of the expression profile indicates that the agent has an effect on lung cancer activity. By defining such a signature for the lung cancer phenotype, screens for new drugs that alter the phenotype can be devised. With this approach, the drug target need not be known and need not be represented in the original expression screening platform, nor does the level of transcript for the target protein need to change.

Measure of lung cancer polypeptide activity, or of lung cancer or the lung cancer phenotype can be performed using a variety of assays. For example, the effects of the test compounds upon the function of the metastatic polypeptides can be measured by examining parameters described above. A suitable physiological change that affects activity can be used to assess the influence of a test compound on the polypeptides of this invention. When the functional consequences are determined using intact cells or animals, one can also measure a variety of effects such as, in the case of lung cancer associated with tumors, tumor growth, tumor metastasis, neovascularization, hormone release, transcriptional changes to both known and uncharacterized genetic markers (e.g., northern blots), changes in cell metabolism such as cell growth or pH changes, and changes in intracellular second messengers such as cGMP. In the assays of the invention, mammalian lung cancer polypeptide is typically used, e.g., mouse, preferably human.

5

10

15

20

25

30

Assays to identify compounds with modulating activity can be performed *in vitro*. For example, a lung cancer polypeptide is first contacted with a potential modulator and incubated for a suitable amount of time, e.g., from 0.5 to 48 hours. In one embodiment, the lung cancer polypeptide levels are determined *in vitro* by measuring the level of protein or mRNA. The level of protein is typically measured using immunoassays such as western blotting, ELISA and the like with an antibody that selectively binds to the lung cancer polypeptide or a fragment thereof. For measurement of mRNA, amplification, e.g., using PCR, LCR, or hybridization assays, e.g., northern hybridization, RNAse protection, dot blotting, are preferred. The level of protein or mRNA is typically detected using directly or indirectly labeled detection agents, e.g., fluorescently or radioactively labeled nucleic acids, radioactively or enzymatically labeled antibodies, and the like, as described herein.

Alternatively, a reporter gene system can be devised using a lung cancer protein promoter operably linked to a reporter gene such as luciferase, green fluorescent protein, CAT, or β -gal. The reporter construct is typically transfected into a cell. After treatment with a potential modulator, the amount of reporter gene transcription, translation, or activity is measured according to standard techniques known to those of skill in the art.

In a preferred embodiment, as outlined above, screens may be done on individual genes and gene products (proteins). That is, having identified a particular differentially expressed gene as important in a particular state, screening of modulators of the expression of the gene or the gene product itself can be done. The gene products of differentially expressed

genes are sometimes referred to herein as "lung cancer proteins." The lung cancer protein may be a fragment, or alternatively, be the full length protein to a fragment shown herein.

In one embodiment, screening for modulators of expression of specific genes is performed. Typically, the expression of only one or a few genes are evaluated. In another embodiment, screens are designed to first find compounds that bind to differentially expressed proteins. These compounds are then evaluated for the ability to modulate differentially expressed activity. Moreover, once initial candidate compounds are identified, variants can be further screened to better evaluate structure activity relationships.

5

10

15

20

25

30

In a preferred embodiment, binding assays are done. In general, purified or isolated gene product is used; that is, the gene products of one or more differentially expressed nucleic acids are made. For example, antibodies are generated to the protein gene products, and standard immunoassays are run to determine the amount of protein present. Alternatively, cells comprising the lung cancer proteins can be used in the assays.

Thus, in a preferred embodiment, the methods comprise combining a lung cancer protein and a candidate compound, and determining the binding of the compound to the lung cancer protein. Preferred embodiments utilize the human lung cancer protein, although other mammalian proteins may also be used, e.g., for the development of animal models of human disease. In some embodiments, as outlined herein, variant or derivative lung cancer proteins may be used.

Generally, in a preferred embodiment of the methods herein, the lung cancer protein or the candidate agent is non-diffusably bound to an insoluble support, preferably having isolated sample receiving areas (e.g., a microtiter plate, an array, etc.). The insoluble supports may be made of a composition to which the compositions can be bound, is readily separated from soluble material, and is otherwise compatible with the overall method of screening. The surface of such supports may be solid or porous and of a convenient shape. Examples of suitable insoluble supports include microtiter plates, arrays, membranes and beads. These are typically made of glass, plastic (e.g., polystyrene), polysaccharides, nylon or nitrocellulose, teflonTM, etc. Microtiter plates and arrays are especially convenient because a large number of assays can be carried out simultaneously, using small amounts of reagents and samples. The particular manner of binding of the composition is typically not crucial so long as it is compatible with the reagents and overall methods of the invention, maintains the activity of the composition, and is nondiffusable. Preferred methods of binding include the use of antibodies (which do not sterically block either the ligand binding site or activation

sequence when the protein is bound to the support), direct binding to "sticky" or ionic supports, chemical crosslinking, the synthesis of the protein or agent on the surface, etc. Following binding of the protein or agent, excess unbound material is removed by washing. The sample receiving areas may then be blocked through incubation with bovine serum albumin (BSA), casein or other innocuous protein or other moiety.

5

10

15

20

25

30

In a preferred embodiment, the lung cancer protein is bound to the support, and a test compound is added to the assay. Alternatively, the candidate agent is bound to the support and the lung cancer protein is added. Novel binding agents include specific antibodies, non-natural binding agents identified in screens of chemical libraries, peptide analogs, etc. Of particular interest are screening assays for agents that have a low toxicity for human cells. A wide variety of assays may be used for this purpose, including labeled *in vitro* protein-protein binding assays, electrophoretic mobility shift assays, immunoassays for protein binding, functional assays (phosphorylation assays, etc.) and the like.

The determination of the binding of the test modulating compound to the lung cancer protein may be done in a number of ways. In a preferred embodiment, the compound is labeled, and binding determined directly, e.g., by attaching all or a portion of the lung cancer protein to a solid support, adding a labeled candidate agent (e.g., a fluorescent label), washing off excess reagent, and determining whether the label is present on the solid support. Various blocking and washing steps may be utilized as appropriate.

In some embodiments, only one of the components is labeled, e.g., the proteins (or proteinaceous candidate compounds) can be labeled. Alternatively, more than one component can be labeled with different labels, e.g., ¹²⁵I for the proteins and a fluorophor for the compound. Proximity reagents, e.g., quenching or energy transfer reagents are also useful.

In one embodiment, the binding of the test compound is determined by competitive binding assay. The competitor may be a binding moiety known to bind to the target molecule (i.e., a lung cancer protein), such as an antibody, peptide, binding partner, ligand, etc. Under certain circumstances, there may be competitive binding between the compound and the binding moiety, with the binding moiety displacing the compound. In one embodiment, the test compound is labeled. Either the compound, or the competitor, or both, is added first to the protein for a time sufficient to allow binding, if present. Incubations may be performed at a temperature which facilitates optimal activity, typically between 4 and 40° C. Incubation periods are typically optimized, e.g., to facilitate rapid high throughput screening. Typically

between 0.1 and 1 hour will be sufficient. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.

5

10

15

20

25

30

In a preferred embodiment, the competitor is added first, followed by a test compound. Displacement of the competitor is an indication that the test compound is binding to the lung cancer protein and thus is capable of binding to, and potentially modulating, the activity of the lung cancer protein. In this embodiment, either component can be labeled. Thus, e.g., if the competitor is labeled, the presence of label in the wash solution indicates displacement by the agent. Alternatively, if the test compound is labeled, the presence of the label on the support indicates displacement.

In an alternative embodiment, the test compound is added first, with incubation and washing, followed by the competitor. The absence of binding by the competitor may indicate that the test compound is bound to the lung cancer protein with a higher affinity. Thus, if the test compound is labeled, the presence of the label on the support, coupled with a lack of competitor binding, may indicate that the test compound is capable of binding to the lung cancer protein.

In a preferred embodiment, the methods comprise differential screening to identity agents that are capable of modulating the activity of the lung cancer proteins. In one embodiment, the methods comprise combining a lung cancer protein and a competitor in a first sample. A second sample comprises a test compound, a lung cancer protein, and a competitor. The binding of the competitor is determined for both samples, and a change, or difference in binding between the two samples indicates the presence of an agent capable of binding to the lung cancer protein and potentially modulating its activity. That is, if the binding of the competitor is different in the second sample relative to the first sample, the agent is capable of binding to the lung cancer protein.

Alternatively, differential screening is used to identify drug candidates that bind to the native lung cancer protein, but cannot bind to modified lung cancer proteins. The structure of the lung cancer protein may be modeled, and used in rational drug design to synthesize agents that interact with that site. Drug candidates that affect the activity of a lung cancer protein are also identified by screening drugs for the ability to either enhance or reduce the activity of the protein.

Positive controls and negative controls may be used in the assays. Preferably control and test samples are performed in at least triplicate to obtain statistically significant results.

Incubation of all samples is for a time sufficient for the binding of the agent to the protein. Following incubation, samples are washed free of non-specifically bound material and the amount of bound, generally labeled agent determined. For example, where a radiolabel is employed, the samples may be counted in a scintillation counter to determine the amount of bound compound.

5

10

15

20

25

30

A variety of other reagents may be included in the screening assays. These include reagents like salts, neutral proteins, e.g., albumin, detergents, etc. which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. The mixture of components may be added in an order that provides for the requisite binding.

In a preferred embodiment, the invention provides methods for screening for a compound capable of modulating the activity of a lung cancer protein. The methods comprise adding a test compound, as defined above, to a cell comprising lung cancer proteins. Preferred cell types include almost any cell. The cells contain a recombinant nucleic acid that encodes a lung cancer protein. In a preferred embodiment, a library of candidate agents are tested on a plurality of cells.

In one aspect, the assays are evaluated in the presence or absence or previous or subsequent exposure of physiological signals, e.g., hormones, antibodies, peptides, antigens, cytokines, growth factors, action potentials, pharmacological agents including chemotherapeutics, radiation, carcinogenics, or other cells (e.g., cell-cell contacts). In another example, the determinations are determined at different stages of the cell cycle process.

In this way, compounds that modulate lung cancer agents are identified. Compounds with pharmacological activity are able to enhance or interfere with the activity of the lung cancer protein. Once identified, similar structures are evaluated to identify critical structural feature of the compound.

In one embodiment, a method of inhibiting lung cancer cell division is provided. The method comprises administration of a lung cancer inhibitor. In another embodiment, a method of inhibiting lung cancer is provided. The method may comprise administration of a lung cancer inhibitor. In a further embodiment, methods of treating cells or individuals with lung cancer are provided, e.g., comprising administration of a lung cancer inhibitor.

In one embodiment, a lung cancer inhibitor is an antibody as discussed above. In another embodiment, the lung cancer inhibitor is an antisense molecule.

A variety of cell growth, proliferation, viability, and metastasis assays are known to those of skill in the art, as described below.

Soft agar growth or colony formation in suspension

5

10

15

25

30

Normal cells require a solid substrate to attach and grow. When the cells are transformed, they lose this phenotype and grow detached from the substrate. For example, transformed cells can grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft agar. The transformed cells, when transfected with tumor suppressor genes, regenerate normal phenotype and require a solid substrate to attach and grow. Soft agar growth or colony formation in suspension assays can be used to identify modulators of lung cancer sequences, which when expressed in host cells, inhibit abnormal cellular proliferation and transformation. A therapeutic compound would reduce or eliminate the host cells' ability to grow in stirred suspension culture or suspended in semi-solid media, such as semi-solid or soft.

Techniques for soft agar growth or colony formation in suspension assays are described in Freshney (1994) <u>Culture of Animal Cells a Manual of Basic Technique</u> (3rd ed.), herein incorporated by reference. See also, the methods section of Garkavtsev, et al. (1996), *supra*, herein incorporated by reference.

20 Contact inhibition and density limitation of growth

Normal cells typically grow in a flat and organized pattern in a petri dish until they touch other cells. When the cells touch one another, they are contact inhibited and stop growing. When cells are transformed, however, the cells are not contact inhibited and continue to grow to high densities in disorganized foci. Thus, the transformed cells grow to a higher saturation density than normal cells. This can be detected morphologically by the formation of a disoriented monolayer of cells or rounded cells in foci within the regular pattern of normal surrounding cells. Alternatively, labeling index with (³H)-thymidine at saturation density can be used to measure density limitation of growth. See Freshney (1994), *supra*. The transformed cells, when transfected with tumor suppressor genes, regenerate a normal phenotype and become contact inhibited and would grow to a lower density.

In this assay, labeling index with (³H)-thymidine at saturation density is a preferred method of measuring density limitation of growth. Transformed host cells are transfected with a lung cancer-associated sequence and are grown for 24 hours at saturation density in

non-limiting medium conditions. The percentage of cells labeling with (³H)-thymidine is determined autoradiographically. See, Freshney (1994), *supra*.

Growth factor or serum dependence

Transformed cells typically have a lower serum dependence than their normal counterparts (see, e.g., Temin (1966) <u>J. Natl. Cancer Insti.</u> 37:167-175; Eagle, et al. (1970) <u>J. Exp. Med.</u> 131:836-879); Freshney, *supra*. This is in part due to release of various growth factors by the transformed cells. Growth factor or serum dependence of transformed host cells can be compared with that of control.

10

15

20

5

Tumor specific markers levels

Tumor cells release an increased amount of certain factors (hereinafter "tumor specific markers") than their normal counterparts. For example, plasminogen activator (PA) is released from human glioma at a higher level than from normal brain cells (see, e.g., Gullino, "Angiogenesis, tumor vascularization, and potential interference with tumor growth" in Mihich (ed. 1985) <u>Biological Responses in Cancer</u>, pp. 178-184). Similarly, Tumor angiogenesis factor (TAF) is released at a higher level in tumor cells than their normal counterparts. See, e.g., Folkman (1992) "Angiogenesis and Cancer" in <u>Sem Cancer Biol.</u>).

Various techniques which measure the release of these factors are described in Freshney (1994), *supra*. Also, see, Unkeless, et al. (1974) <u>J. Biol. Chem.</u> 249:4295-4305; Strickland and Beers (1976) <u>J. Biol. Chem.</u> 251:5694-5702; Whur, et al. (1980) <u>Br. J. Cancer</u> 42:305-312; Gullino, "Angiogenesis, tumor vascularization, and potential interference with tumor growth" in Mihich (ed. 1985) <u>Biological Responses in Cancer</u>, pp. 178-184; Freshney <u>Anticancer Res.</u> 5:111-130 (1985).

25

30

Invasiveness into Matrigel

The degree of invasiveness into Matrigel or some other extracellular matrix constituent can be used as an assay to identify compounds that modulate lung cancer-associated sequences. Tumor cells exhibit a good correlation between malignancy and invasiveness of cells into Matrigel or some other extracellular matrix constituent. In this assay, tumorigenic cells are typically used as host cells. Expression of a tumor suppressor gene in these host cells would decrease invasiveness of the host cells.

Techniques described in Freshney (1994), *supra*, can be used. Briefly, the level of invasion of host cells can be measured by using filters coated with Matrigel or some other extracellular matrix constituent. Penetration into the gel, or through to the distal side of the filter, is rated as invasiveness, and rated histologically by number of cells and distance moved, or by prelabeling the cells with ¹²⁵I and counting the radioactivity on the distal side of the filter or bottom of the dish. See, e.g., Freshney (1984), *supra*.

Tumor growth in vivo

5

10

15

20

25

30

Effects of lung cancer-associated sequences on cell growth can be tested in transgenic or immune-suppressed mice. Knock-out transgenic mice can be made, in which the lung cancer gene is disrupted or in which a lung cancer gene is inserted. Knock-out transgenic mice can be made by insertion of a marker gene or other heterologous gene into the endogenous lung cancer gene site in the mouse genome via homologous recombination. Such mice can also be made by substituting the endogenous lung cancer gene with a mutated version of the lung cancer gene, or by mutating the endogenous lung cancer gene, e.g., by exposure to carcinogens.

A DNA construct is introduced into the nuclei of embryonic stem cells. Cells containing the newly engineered genetic lesion are injected into a host mouse embryo, which is re-implanted into a recipient female. Some of these embryos develop into chimeric mice that possess germ cells partially derived from the mutant cell line. Therefore, by breeding the chimeric mice it is possible to obtain a new line of mice containing the introduced genetic lesion (see, e.g., Capecchi, et al. (1989) Science 244:1288). Chimeric targeted mice can be derived according to Hogan, et al. (1988) Manipulating the Mouse Embryo: A Laboratory Manual, Cold Spring Harbor Laboratory and Robertson (ed. 1987) Teratocarcinomas and Embryonic Stem Cells: A Practical Approach, , IRL Press, Washington, D.C.

Alternatively, various immune-suppressed or immune-deficient host animals can be used. For example, genetically athymic "nude" mouse (see, e.g., Giovanella, et al. (1974) <u>J. Natl. Cancer Inst.</u> 52:921), a SCID mouse, a thymectomized mouse, or an irradiated mouse (see, e.g., Bradley, et al. (1978) <u>Br. J. Cancer</u> 38:263; Selby, et al. (1980) <u>Br. J. Cancer</u> 41:52) can be used as a host. Transplantable tumor cells (typically about 10⁶ cells) injected into isogenic hosts will produce invasive tumors in a high proportions of cases, while normal cells of similar origin will not. In hosts which developed invasive tumors, cells expressing a lung cancer-associated sequences are injected subcutaneously. After a suitable length of time,

preferably 4-8 weeks, tumor growth is measured (e.g., by volume or by its two largest dimensions) and compared to the control. Tumors that have statistically significant reduction (using, e.g., Student's T test) are said to have inhibited growth.

5 Polynucleotide modulators of lung cancer

Antisense and RNAi Polynucleotides

10

15

20

25

30

In certain embodiments, the activity of a lung cancer-associated protein is downregulated, or entirely inhibited, by the use of antisense or an inhibitory polynucleotide, i.e., a nucleic acid complementary to, and which can preferably hybridize specifically to, a coding mRNA nucleic acid sequence, e.g., a lung cancer protein mRNA, or a subsequence thereof. Binding of the antisense polynucleotide to the mRNA reduces the translation and/or stability of the mRNA.

In the context of this invention, antisense polynucleotides can comprise naturally-occurring nucleotides, or synthetic species formed from naturally-occurring subunits or their close homologs. Antisense polynucleotides may also have altered sugar moieties or intersugar linkages. Exemplary among these are the phosphorothioate and other sulfur containing species which are known for use in the art. Analogs are comprehended by this invention so long as they function effectively to hybridize with the lung cancer protein mRNA. See, e.g., Isis Pharmaceuticals, Carlsbad, CA; Sequitor, Inc., Natick, MA.

Such antisense polynucleotides can readily be synthesized using recombinant means, or can be synthesized *in vitro*. Equipment for such synthesis is sold by several vendors, including Applied Biosystems. The preparation of other oligonucleotides such as phosphorothioates and alkylated derivatives is also well known to those of skill in the art.

Antisense molecules as used herein include antisense or sense oligonucleotides. Sense oligonucleotides can, e.g., be employed to block transcription by binding to the antisense strand. The antisense and sense oligonucleotide comprise a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences for lung cancer molecules. A preferred antisense molecule is for a lung cancer sequence in the tables, or for a ligand or activator thereof. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment generally at least about 14 nucleotides, preferably from about 14 to 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein

WO 02/086443
PCT/US02/12476
is described in, e.g., Stein and Cohen (1988) Cancer Res. 48:2659 and van der Krol, et al.
(1988) BioTechniques 6:958).

RNA interference is a mechanism to suppress gene expression in a sequence specific manner. See, e.g., Brumelkamp, et al. (2002) <u>Sciencexpress</u> (21March2002); Sharp (1999) <u>Genes Dev.</u> 13:139-141; and Cathew (2001) <u>Curr. Op. Cell Biol.</u> 13:244-248. In mammalian cells, short, e.g., 21 nt, double stranded small interfering RNAs (siRNA) have been shown to be effective at inducing an RNAi response. See, e.g., Elbashir, et al. (2001) <u>Nature</u> 411:494-498. The mechanism may be used to downregulate expression levels of identified genes, e.g., treatment of or validation of relevance to disease.

10

15

20

25

30

5

Ribozymes

In addition to antisense polynucleotides, ribozymes can be used to target and inhibit transcription of lung cancer-associated nucleotide sequences. A ribozyme is an RNA molecule that catalytically cleaves other RNA molecules. Different kinds of ribozymes have been described, including group I ribozymes, hammerhead ribozymes, hairpin ribozymes, RNase P, and axhead ribozymes (see, e.g., Castanotto, et al. (1994) <u>Adv. in Pharmacology</u> 25: 289-317 for a general review of the properties of different ribozymes).

The general features of hairpin ribozymes are described, e.g., in Hampel, et al. (1990) Nucl. Acids Res. 18:299-304; European Patent Publication No. 0 360 257; U.S. Patent No. 5,254,678. Methods of preparing are well known to those of skill in the art (see, e.g., WO 94/26877; Ojwang, et al. (1993) Proc. Natl. Acad. Sci. USA 90:6340-6344; Yamada, et al. (1994) Human Gene Therapy 1:39-45; Leavitt, et al. (1995) Proc. Natl. Acad. Sci. USA 92:699-703; Leavitt, et al. (1994) Human Gene Therapy 5:1151-120; and Yamada, et al. (1994) Virology 205: 121-126).

Polynucleotide modulators of lung cancer may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. Preferably, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell. Alternatively, a polynucleotide modulator of lung cancer may be introduced into a cell containing the target nucleic acid sequence, e.g., by

formation of an polynucleotide-lipid complex, as described in WO 90/10448. It is understood that the use of antisense molecules or knock out and knock in models may also be used in screening assays as discussed above, in addition to methods of treatment.

5

10

15

20

25

30

Thus, in one embodiment, methods of modulating lung cancer in cells or organisms are provided. In one embodiment, the methods comprise administering to a cell an anti-lung cancer antibody that reduces or eliminates the biological activity of an endogenous lung cancer protein. Alternatively, the methods comprise administering to a cell or organism a recombinant nucleic acid encoding a lung cancer protein. This may be accomplished in any number of ways. In a preferred embodiment, e.g., when the lung cancer sequence is down-regulated in lung cancer, such state may be reversed by increasing the amount of lung cancer gene product in the cell. This can be accomplished, e.g., by overexpressing the endogenous lung cancer gene or administering a gene encoding the lung cancer sequence, using known gene-therapy techniques. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), e.g., as described in PCT/US93/03868, hereby incorporated by reference in its entirety. Alternatively, e.g., when the lung cancer sequence is up-regulated in lung cancer, the activity of the endogenous lung cancer gene is decreased, e.g., by the administration of a lung cancer antisense or RNAi nucleic acid.

In one embodiment, the lung cancer proteins of the present invention may be used to generate polyclonal and monoclonal antibodies to lung cancer proteins. Similarly, the lung cancer proteins can be coupled, using standard technology, to affinity chromatography columns. These columns may then be used to purify lung cancer antibodies useful for production, diagnostic, or therapeutic purposes. In a preferred embodiment, the antibodies are generated to epitopes unique to a lung cancer protein; that is, the antibodies show little or no cross-reactivity to other proteins. The lung cancer antibodies may be coupled to standard affinity chromatography columns and used to purify lung cancer proteins. The antibodies may also be used as blocking polypeptides, as outlined above, since they will specifically bind to the lung cancer protein.

Methods of identifying variant lung cancer-associated sequences

Without being bound by theory, expression of various lung cancer sequences is correlated with lung cancer. Accordingly, disorders based on mutant or variant lung cancer genes may be determined. In one embodiment, the invention provides methods for

identifying cells containing variant lung cancer genes, e.g., determining all or part of the sequence of at least one endogenous lung cancer genes in a cell. In a preferred embodiment, the invention provides methods of identifying the lung cancer genotype of an individual, e.g., determining all or part of the sequence of at least one lung cancer gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. The method may include comparing the sequence of the sequenced lung cancer gene to a known lung cancer gene, i.e., a wild-type gene.

The sequence of all or part of the lung cancer gene can then be compared to the sequence of a known lung cancer gene to determine if any differences exist. This can be done using known homology programs, such as Bestfit, etc. In a preferred embodiment, the presence of a difference in the sequence between the lung cancer gene of the patient and the known lung cancer gene correlates with a disease state or a propensity for a disease state, as outlined herein.

In a preferred embodiment, the lung cancer genes are used as probes to determine the number of copies of the lung cancer gene in the genome.

In another preferred embodiment, the lung cancer genes are used as probes to determine the chromosomal localization of the lung cancer genes. Information such as chromosomal localization finds use in providing a diagnosis or prognosis in particular when chromosomal abnormalities such as translocations, and the like are identified in the lung cancer gene locus.

Administration of pharmaceutical and vaccine compositions

5

10

15

20

25

30

In one embodiment, a therapeutically effective dose of a lung cancer protein or modulator thereof, is administered to a patient. By "therapeutically effective dose" herein is meant a dose that produces effects for which it is administered. The exact dose will depend on the purpose of the treatment, and will be ascertainable by one skilled in the art using known techniques (e.g., Ansel, et al. (1992) Pharmaceutical Dosage Forms and Drug Delivery; Lieberman, Pharmaceutical Dosage Forms (vols. 1-3), Dekker, ISBN 0824770846, 082476918X, 0824712692, 0824716981; Lloyd (1999) The Art, Science and Technology of Pharmaceutical Compounding; and Pickar (1999) Dosage Calculations). Adjustments for lung cancer degradation, systemic versus localized delivery, and rate of new protease synthesis, as well as the age, body weight, general health, sex, diet, time of administration,

drug interaction and the severity of the condition may be necessary, and will be ascertainable with routine experimentation by those skilled in the art.

A "patient" for the purposes of the present invention includes both humans and other animals, particularly mammals. Thus the methods are applicable to both human therapy and veterinary applications. In the preferred embodiment the patient is a mammal, preferably a primate, and in the most preferred embodiment the patient is human.

5

10

15

20

25

30

The administration of the lung cancer proteins and modulators thereof of the present invention can be done in a variety of ways, including, but not limited to, orally, subcutaneously, intravenously, intranasally, transdermally, intraperitoneally, intramuscularly, intrapulmonary, vaginally, rectally, or intraocularly. In some instances, e.g., in the treatment of wounds and inflammation, the lung cancer proteins and modulators may be directly applied as a solution or spray.

The pharmaceutical compositions of the present invention comprise a lung cancer protein in a form suitable for administration to a patient. In the preferred embodiment, the pharmaceutical compositions are in a water soluble form, such as being present as pharmaceutically acceptable salts, which is meant to include both acid and base addition salts. "Pharmaceutically acceptable acid addition salt" refers to those salts that retain the biological effectiveness of the free bases and that are not biologically or otherwise undesirable, formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and the like, and organic acids such as acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, maleic acid, malonic acid, succinic acid, fumaric acid, tartaric acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluenesulfonic acid, salicylic acid and the like. "Pharmaceutically acceptable base addition salts" include those derived from inorganic bases such as sodium, potassium, lithium, ammonium, calcium, magnesium, iron, zinc, copper, manganese, aluminum salts and the like. Particularly preferred are the ammonium, potassium, sodium, calcium, and magnesium salts. Salts derived from pharmaceutically acceptable organic non-toxic bases include salts of primary, secondary, and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, such as isopropylamine, trimethylamine, diethylamine, triethylamine, tripropylamine, and ethanolamine.

The pharmaceutical compositions may also include one or more of the following: carrier proteins such as serum albumin; buffers; fillers such as microcrystalline cellulose,

lactose, corn and other starches; binding agents; sweeteners and other flavoring agents; coloring agents; and polyethylene glycol.

5

10

15

20

25

30

The pharmaceutical compositions can be administered in a variety of unit dosage forms depending upon the method of administration. For example, unit dosage forms suitable for oral administration include, but are not limited to, powder, tablets, pills, capsules and lozenges. It is recognized that lung cancer protein modulators (e.g., antibodies, antisense constructs, ribozymes, small organic molecules, etc.) when administered orally, should be protected from digestion. This is typically accomplished either by complexing the molecule(s) with a composition to render it resistant to acidic and enzymatic hydrolysis, or by packaging the molecule(s) in an appropriately resistant carrier, such as a liposome or a protection barrier. Means of protecting agents from digestion are well known in the art.

The compositions for administration will commonly comprise a lung cancer protein modulator dissolved in a pharmaceutically acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers can be used, e.g., buffered saline and the like. These solutions are sterile and generally free of undesirable matter. These compositions may be sterilized by conventional, well known sterilization techniques. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions such as pH adjusting and buffering agents, toxicity adjusting agents and the like, e.g., sodium acetate, sodium chloride, potassium chloride, calcium chloride, sodium lactate and the like. The concentration of active agent in these formulations can vary widely, and will be selected primarily based on fluid volumes, viscosities, body weight and the like in accordance with the particular mode of administration selected and the patient's needs (e.g., Remington's Pharmaceutical Science (15th ed., 1980) and Hardman, et al. (eds. 1996) Goodman and Gilman: The Pharmacologial Basis of Therapeutics).

Thus, a typical pharmaceutical composition for intravenous administration would be about 0.1 to 10 mg per patient per day. Dosages from 0.1 up to about 100 mg per patient per day may be used, particularly when the drug is administered to a secluded site and not into the blood stream, such as into a body cavity or into a lumen of an organ. Substantially higher dosages are possible in topical administration. Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art, e.g., Remington's Pharmaceutical Science and Goodman and Gilman, The Pharmacologial Basis of Therapeutics, supra.

5

10

15

20

25

30

The compositions containing modulators of lung cancer proteins can be administered for therapeutic or prophylactic treatments. In therapeutic applications, compositions are administered to a patient suffering from a disease (e.g., a cancer) in an amount sufficient to cure or at least partially arrest the disease and its complications. An amount adequate to accomplish this is defined as a "therapeutically effective dose." Amounts effective for this use will depend upon the severity of the disease and the general state of the patient's health. Single or multiple administrations of the compositions may be administered depending on the dosage and frequency as required and tolerated by the patient. In any event, the composition should provide a sufficient quantity of the agents of this invention to effectively treat the patient. An amount of modulator that is capable of preventing or slowing the development of cancer in a mammal is referred to as a "prophylactically effective dose." The particular dose required for a prophylactic treatment will depend upon the medical condition and history of the mammal, the particular cancer being prevented, as well as other factors such as age, weight, gender, administration route, efficiency, etc. Such prophylactic treatments may be used, e.g., in a mammal who has previously had cancer to prevent a recurrence of the cancer, or in a mammal who is suspected of having a significant likelihood of developing cancer based, at least in part, upon gene expression profiles. Vaccine strategies may be used, in either a DNA vaccine form, or protein vaccine.

It will be appreciated that the present lung cancer protein-modulating compounds can be administered alone or in combination with additional lung cancer modulating compounds or with other therapeutic agent, e.g., other anti-cancer agents or treatments.

In numerous embodiments, one or more nucleic acids, e.g., polynucleotides comprising nucleic acid sequences set forth in the tables, such as antisense or RNAi polynucleotides or ribozymes, will be introduced into cells, *in vitro* or *in vivo*. The present invention provides methods, reagents, vectors, and cells useful for expression of lung cancer-associated polypeptides and nucleic acids using *in vitro* (cell-free), *ex vivo*, or *in vivo* (cell or organism-based) recombinant expression systems.

The particular procedure used to introduce the nucleic acids into a host cell for expression of a protein or nucleic acid is application specific. Many procedures for introducing foreign nucleotide sequences into host cells may be used. These include the use of calcium phosphate transfection, spheroplasts, electroporation, liposomes, microinjection, plasma vectors, viral vectors and other well known methods for introducing cloned genomic DNA, cDNA, synthetic DNA or other foreign genetic material into a host cell (see, e.g.,

Berger and Kimmel, <u>Guide to Molecular Cloning Techniques</u>, <u>Methods in Enzymology</u> volume 152 (Berger), Ausubel, et al. (eds. 1999) <u>Current Protocols</u> (supplemented through 1999), and Sambrook, et al. (1989) <u>Molecular Cloning - A Laboratory Manual</u> (2nd ed., Vol. 1-3).

5

10

15

20

25

30

In a preferred embodiment, lung cancer proteins and modulators are administered as therapeutic agents, and can be formulated as outlined above. Similarly, lung cancer genes (including both the full-length sequence, partial sequences, or regulatory sequences of the lung cancer coding regions) can be administered in a gene therapy application. These lung cancer genes can include antisense or inhibitory applications, e.g., as inhibitory RNA or gene therapy (e.g., for incorporation into the genome) or as antisense compositions.

Lung cancer polypeptides and polynucleotides can also be administered as vaccine compositions to stimulate HTL, CTL, and antibody responses.. Such vaccine compositions can include, e.g., lipidated peptides (see, e.g., Vitiello, et al. (1995) J. Clin. Invest. 95:341), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al. (1991) Molec. Immunol. 28:287-294; Alonso, et al. (1994) Vaccine 12:299-306; Jones, et al. (1995) Vaccine 13:675-681), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi, et al. (1990) Nature 344:873-875; Hu, et al. (1998) Clin Exp Immunol. 113:235-243), multiple antigen peptide systems (MAPs) (see, e.g., Tam (1988) Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413; Tam (1996) J. Immunol. Methods 196:17-32), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, et al., p. 379 In: Kaufmann (ed. 1996) Concepts in vaccine development; Chakrabarti, et al. (1986) Nature 320:535; Hu, et al. (1986) Nature 320:537; Kieny, et al. (1986) AIDS Bio/Technology 4:790; Top, et al. (1971) J. Infect. Dis. 124:148; Chanda, et al. (1990) Virology 175:535), particles of viral or synthetic origin (see, e.g., Kofler, et al. (1996) J. Immunol, Methods 192:25; Eldridge, et al. (1993) Sem. Hematol, 30:16; Falo, et al. (1995) Nature Med. 7:649), adjuvants (Warren, et al. (1986) Annu. Rev. Immunol. 4:369; Gupta, et al. (1993) Vaccine 11:293), liposomes (Reddy, et al. (1992) J. Immunol. 148:1585; Rock (1996) Immunol. Today 17:131), or, naked or particle absorbed cDNA (Ulmer, et al. (1993) Science 259:1745; Robinson, et al. (1993) Vaccine 11:957; Shiver, et al., p. 423 In: Kaufmann (ed. 1996) Concepts in vaccine development; Cease and Berzofsky (1994) Annu. Rev. Immunol. 12:923 and Eldridge, et al. (1993) Sem. Hematol. 30:16). Toxin-targeted

delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

5

10

15

20

25

30

Vaccine compositions often include adjuvants. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bortadella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, e.g., Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

Vaccines can be administered as nucleic acid compositions wherein DNA or RNA encoding one or more of the polypeptides, or a fragment thereof, is administered to a patient. This approach is described, for instance, in Wolff, et. al. (1990) Science 247:1465 as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention can be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. This approach involves the use of vaccinia virus, e.g., as a vector to express nucleotide sequences that encode lung cancer polypeptides or polypeptide fragments. Upon introduction into a host, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits an immune response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover, et al. (1991) Nature 351:456-460. A wide variety of other vectors useful for therapeutic administration or immunization e.g., adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the

like, will be apparent to those skilled in the art from the description herein (see, e.g., Shata, et al. (2000) Mol Med Today 6:66-71; Shedlock, et al. (2000) J. Leukoc. Biol. 68:793-806; Hipp, et al. (2000) In Vivo 14:571-85).

5

10

15

20

25

30

Methods for the use of genes as DNA vaccines are well known, and include placing a lung cancer gene or portion of a lung cancer gene under the control of a regulatable promoter or a tissue-specific promoter for expression in a lung cancer patient. The lung cancer gene used for DNA vaccines can encode full-length lung cancer proteins, but more preferably encodes portions of the lung cancer proteins including peptides derived from the lung cancer protein. In one embodiment, a patient is immunized with a DNA vaccine comprising a plurality of nucleotide sequences derived from a lung cancer gene. For example, lung cancer-associated genes or sequence encoding subfragments of a lung cancer protein are introduced into expression vectors and tested for their immunogenicity in the context of Class I MHC and an ability to generate cytotoxic T cell responses. This procedure provides for production of cytotoxic T cell responses against cells which present antigen, including intracellular epitopes.

In a preferred embodiment, DNA vaccines include a gene encoding an adjuvant molecule with the DNA vaccine. Such adjuvant molecules include cytokines that increase the immunogenic response to the lung cancer polypeptide encoded by the DNA vaccine. Additional or alternative adjuvants are available.

In another preferred embodiment lung cancer genes find use in generating animal models of lung cancer. When the lung cancer gene identified is repressed or diminished in metastatic tissue, gene therapy technology, e.g., wherein antisense or inhibitory RNA directed to the lung cancer gene will also diminish or repress expression of the gene. Animal models of lung cancer find use in screening for modulators of a lung cancer-associated sequence or modulators of lung cancer. Similarly, transgenic animal technology including gene knockout technology, e.g., as a result of homologous recombination with an appropriate gene targeting vector, will result in the absence or increased expression of the lung cancer protein. When desired, tissue-specific expression or knockout of the lung cancer protein may be necessary.

It is also possible that the lung cancer protein is overexpressed in lung cancer. As such, transgenic animals can be generated that overexpress the lung cancer protein.

Depending on the desired expression level, promoters of various strengths can be employed to express the transgene. Also, the number of copies of the integrated transgene can be determined and compared for a determination of the expression level of the transgene.

Animals generated by such methods will find use as animal models of lung cancer and are additionally useful in screening for modulators to treat lung cancer.

Kits for Use in Diagnostic and/or Prognostic Applications

5

10

15

20

25

For use in diagnostic, research, and therapeutic applications suggested above, kits are also provided by the invention. In diagnostic and research applications such kits may include at least one of the following: assay reagents, buffers, lung cancer-specific nucleic acids or antibodies, hybridization probes and/or primers, antisense polynucleotides, ribozymes, RNAi, dominant negative lung cancer polypeptides or polynucleotides, small molecule inhibitors of lung cancer-associated sequences, etc. A therapeutic product may include sterile saline or another pharmaceutically acceptable emulsion and suspension base.

In addition, the kits may include instructional materials containing instructions (e.g., protocols) for the practice of the methods of this invention. While the instructional materials typically comprise written or printed materials they are not limited to such. A medium capable of storing such instructions and communicating them to an end user is contemplated by this invention. Such media include, but are not limited to electronic storage media (e.g., magnetic discs, tapes, cartridges, chips), optical media (e.g., CD ROM), and the like. Such media may include addresses to internet sites that provide such instructional materials.

The present invention also provides for kits for screening for modulators of lung cancer-associated sequences. Such kits can be prepared from readily available materials and reagents. For example, such kits can comprise one or more of the following materials: a lung cancer-associated polypeptide or polynucleotide, reaction tubes, and instructions for testing lung cancer-associated activity. Optionally, the kit contains biologically active lung cancer protein. A wide variety of kits and components can be prepared according to the present invention, depending upon the intended user of the kit and the particular needs of the user. Diagnosis would typically involve evaluation of a plurality of genes or products. The genes typically will be selected based on correlations with important parameters in disease which may be identified in historical or outcome data.

WO 02/086443 PCT/US02/12476 EXAMPLES

Example 1: Gene Chip Analysis

Molecular profiles of various normal and cancerous tissues were determined and analyzed using gene chips. RNA was isolated and gene chip analysis was performed as described (Glynne, et al. (2000) <u>Nature</u> 403:672-676; Zhao, et al. (2000) <u>Genes Dev.</u> 14:981-993).

Tables 1A and 1B were previously filed on April 18, 2001 in USSN 60/284,770 (18501-001500US) and on November 29, 2001 in USSN 60/334,370 (18501-001520US)

5	Table 1A					
•	Pkey	ExAccn	UnigenelD	Unigene Title	70% chron/90% NL	70% SQAD/90% NL
	100134	D13264	Hs.49	macrophage scavenger receptor 1	1.61	0.74
	100780	HG3731-HT4001		"""Immunoglobulin Heavy Chain, Vdjrc Reg	2.68	3.28
10	100971	J02874	Hs.83213	fatty acid binding protein 4; adipocyte	1.96 0.79	0.14 0.07
10	101088 101102	L05568 L07594	Hs.553 Hs.79059	solute carrier family 6 (neurotransmitte transforming growth factor; beta recepto	2.55	1
	101168	L15388	Hs.211569	G protein-coupled receptor kinase 5	0.88	0.27
	101277	L38486	Hs.118223	microfibrillar-associated protein 4	0.89	0.26
1	101330	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do	0.59	0.29
15	101336	L49169	Hs.75678	FBJ murine osteosarcoma viral oncogene h	1.15	0.41
	101345	L76380	Hs.152175	calcitonin receptor-like	0.81	0.31
	101678 101764	M62505 M80563	Hs.2161 Hs.81256	complement component 5 receptor 1 (C5a I S100 calcium-binding protein A4 (calcium	1.31 1.44	0.77 0.82
	101764	M81750	Hs.153837	myeloid cell nuclear differentiation ant	0.96	0.45
20	101842	M93221	Hs.75182	mannose receptor; C type 1	1.27	0.37
	102283	U31384	Hs.83381	guanine nucleotide binding protein 11	1.04	0.3
	102363	U39447	Hs.198241	amine oxidase; copper containing 3 (vasc	0.96	0.26
	102507	U52154	Hs.193044	potassium inwardly-rectifying channel; s	2.81	3.45
25	102698	U75272	Hs.1867	progastricsin (pepsinogen C)	0.95 1.62	0.23 0.21
23	103025 103280	X54131 X79981	Hs.123641 Hs.76206	protein tyrosine phosphatase; receptor t cadherin 5; VE-cadherin (vascular epithe	0.9	0.41
	103496	Y09267	Hs.132821	flavin containing monooxygenase 2	1.27	0.49
	103541		Hs.79197	CD83 antigen (activated B lymphocytes; i	1.86	1
• •	103554	Z18951	Hs.74034	caveolin 1; caveolae protein; 22kD	1.27	0.47
30	104212	AB002298	Hs.173035	KIAA0300 protein	1.17	0.16
	104691	AA011176	Hs.37744	ESTs	1.08	0.35
	104825		Hs.141883	ESTs	0.75 2.6	0.27 3.3
	104857 104865	AA043219 AA045136	Hs.19058 Hs.22575	ESTs ESTs	1.23	0.49
35	104989		Hs.118615	ESTs	0.63	0.32
	105729		Hs.3807	ESTs; Weakly similar to PHOSPHOLEMMAN PR	0.86	0.34
	105847		Hs.32241	ESTs	1.32	0.4
	105894		Hs.25691	calcitonin receptor-like receptor activi	0.78	0.28
40	106490		Hs.115537	ESTs; Weakly similar to dipeptidase prec	1.2	0.47
40	106536		Hs.23804	ESTs Homo sapiens mRNA; cDNA DKFZp564B076 (fr	0.82 0.99	0.15 0.07
	106605 106667	AA457718 AA461086	Hs.21103 Hs.16578	ESTs	1.17	0.4
	106773		Hs.188833	ESTs	1.46	0.43
	106797		Hs.169943	ESTs	1.18	0.32
45	106844	AA485055	Hs.158213	sperm associated antigen 6	0.98	0.51
	106870	AA487576	Hs.26530	serum deprivation response (phosphatidy)	1.05	0.14
	106954	AA496980	Hs.204038	ESTs	1.25	0.33 0.4
	107054 107292	AA600150 T30407	Hs.14366 Hs.4789	ESTs ESTs; Weakly similar to oxidative-stress	1.11 1.07	2.58
50	107292		Hs.165030	ESTs	0.7	0.21
-	107997		Hs.82223	Human DNA sequence from clone 141H5 on c	1.02	0.48
	108041		Hs.61957	ESTs	1.44	0.51
	108087	AA045709	Hs.40545	ESTs	1.98	1
55	108382		Hs.67726	macrophage receptor with collagenous str	1.52	0.72
55	108435		Hs.194101	ESTs .	2.53 1.56	1.53 0.48
	108480 109252		Hs.68055 Hs.85944	ESTs ESTs	2.69	3.18
	109550		Hs.26981	ESTs	1.19	0.65
	109613		Hs.27519	ESTs	1.01	0.29
60	109837	H00656	Hs.29792	ESTs	0.81	0.15
	109893		Hs.30484	ESTs	1.44	0.32
	109984		Hs.10299	ESTs	0.62	0.14
	110099 110837		Hs.23748 Hs.17424	ESTs ESTs; Weakly similar to semaphorin F [H.	1.01 1.1	0.28 0.22
65	111247		Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f	1.26	0.26
00	111341		Hs.22483	ESTs	1.57	0.52
	111510	R07856	Hs.16355	ESTs	3.96	1
	111737		Hs.9218	ESTs	0.97	0.24
70	113195	T57112	11 400040	"""yc20g11.s1 Stratagene lung (#937210)	1.22	0.35
70	113238 113540		Hs.189813 Hs.16757	ESTs ESTs	2.27 1.06	0.45 0.22
	113552		Hs.16026	ESTs	1.16	0.42
	113606		Hs.17125	ESTs	1.48	0.7
	113695		Hs.17948	ESTs	1.54	0.28
75	113946		Hs.37896	ESTs	1.79	0.72
	114251		Hs.21948	ESTs	1.95	0.25
	114359		Hs.153483	ESTs; Moderately similar to H1 chloride ESTs	1.42 2.62	0.13 0.42
	115230 115279		Hs.182980 Hs.63671	ESTS	1.79	0.42
80	115566		Hs.43977	ESTs	0.86	0.2
	115965		Hs.173233	ESTs	0.79	0.04
	116166	AA461556	Hs.202949	KIAA1102 protein	2.29	0.68
	116279	AA486073	Hs.57362	ESTs	2.27	0.78
	117023	H88157	Hs.41105	ESTs	1.36	0.16

	W	O 02/08644	13			
	117209	H99959	Hs.42768	ESTs	1.46	0.48
	118901	N90719	Hs.94445	ESTs	1.51	1
	118981	N93839	Hs.39288	ESTs	1.34	0.48
5	119073	R32894 R98105	Hs.45514	v-ets avian erythroblastosis virus E26 o	1.14 1.32	0.27 0.53
,	119221 119824	W74536	Hs.184	"""yr30g11.s1 Soares fetal liver spleen advanced glycosylation end product-speci	1.02	0.19
	119861	W80715	110.101	ESTs; Moderately similar to !!!! ALU SUB	1.83	0.45
	120041	W92775	Hs.59368	ESTs	1.23	0.55
10	120132	Z38839	Hs.125019	ESTs; Highly similar to KIAA0886 protein	0.91	0.37
10	120467	AA251579	Hs.187628	ESTs	1.87	1.91
	121314 121643	AA402799 AA417078	Hs.182538 Hs.193767	ESTs ESTs	1.3 2.31	0.31 0.68
	121690	AA418074	Hs.110286	ESTs	1.47	0.51
	122633	AA454080	Hs.34853	inhibitor of DNA binding 4; dominant neg	1.31	0.63
15	123978	C20653	Hs.170278	ESTs	1.52	0.32
	124214	H58608	Hs.151323	ESTs	0.93	0.35
	124357	N22401	Un 102550	"""yw37g07.s1 Morton Fetal Cochlea Homo	1.29 1.36	1 0,7
	124438 125167	N40188 W45560	Hs.102550 Hs.102541	ESTs ESTs	1.46	0.69
20	125174	W51835	Hs.231082	EST	3.07	3.76
	125422	AA903229	Hs.153717	ESTs	1.34	0.3
	125561	Al417667	Hs.22978	ESTs	1.89	0.63
	125831	D60988	11. 04070	"""HUM145B09B Clontech human fetal brain	0.94	0.36
25	127002 127307	R35380 AA369367	Hs.24979 Hs.126712	ESTs ESTs; Weakly similar to pIL2 hypothetica	3.02 1.01	4.06 0.69
20	127609	AA622559	Hs.150318	ESTs	1.21	0.32
	127959	Al302471	Hs.124292	ESTs	2.5	1
	128458	D52193	Hs.56340	ESTs	1.13	0.33
20	128624	AA479209	Hs.102647	ESTs	1.45	0.58
30	128789 128798	AA486567	Hs.105695 Hs.105938	ESTs chemokine (C-C motif) receptor-like 2	1.1 1.16	0.34 0.55
	128952	AF014958 R51076	Hs.107361	ESTs; Highly similar to Rap2 interacting	2.04	2.4
	129057	X62466	Hs.214742	CDW52 antigen (CAMPATH-1 antigen)	1.77	0.73
	129210	AA401654	Hs.202949	KIAA1102 protein	1.11	0.36
35	129240	W24360	Hs.237868	interleukin 7 receptor	0.91	0.41
	129402	T63781	11- 400300	"""yc21g01.s1 Stratagene lung (#937210)	1.36	0.43
	129565 129593	X77777 AA487015	Hs.198726 Hs.98314	vasoactive intestinal peptide receptor 1 Homo sapiens mRNA; cDNA DKFZp586L0120 (f	0.67 1.3	0.08 0.42
	129626	AA447410	Hs.11712	ESTs; Weakly similar to !!!! ALU SUBFAM!	1.28	0.46
40	129699	AA458578	Hs.12017	KIAA0439 protein; homolog of yeast ubiqu	1.58	1
	129898	N48595	Hs.13256	ESTs	1.13	0.53
	129958	L20591	Hs.1378	annexin A3	0.81	0.31
	130273	U59914	Hs.153863	MAD (mothers against decapentaplegic; Dr	0.59 1.44	0.22 0.76
45	130655 130657	N92934 T94452	Hs.17409 Hs.201591	cysteine-rich protein 1 (intestinal) ESTs	0.96	0.42
	131061	N64328	Hs.22567	ESTs; Moderately similar to HYPOTHETICAL	1.51	0.45
	131066	F09006	Hs.22588	ESTs	0.97	0.37
	131263	R38334	Hs.24950	regulator of G-protein signalling 5	2.34	. 2.82
50	131589	U52100	Hs.29191	epithelial membrane protein 2 Grb2-associated binder 2	1.2 0.95	0.62 0.38
50	131686 131751	AA157428 H18335	Hs.30687 Hs.31562	ESTs	1.47	0.52
	132430	T23630	Hs.258675	EST	1.86	2.09
	132476	N67192	Hs.49476	Homo sapiens clone TUA8 Cri-du-chat regi	1.73	0.58
<i></i>	132836	F09557	Hs.57929	slit (Drosophila) homolog 3	0.91	0.29
55	133120	X64559	Hs.65424	tetranectin (plasminogen-binding protein	0.82 1.29	0.2 0.48
	133488 133565	D45370 H57056	Hs.74120 Hs.204831	adipose specific 2 FSTs	2.25	0.40
	133651	U97105	Hs.173381	dihydropyrimidinase-like 2	1.65	0.62
	133835	AA059489	Hs.76640	ESTs; Highly similar to RGC-32 [R.norveg	1.16	0.34
60	133978	W73859	Hs.78061	transcription factor 21	0.79	0.27
	133985	L34657	Hs.78146	platelet/endothelial cell adhesion molec	0.99 1.02	0.28 0.46
	134299 134300	AA487558 U81984	Hs.8135 Hs.166082	ESTs endothelial PAS domain protein 1,	0.86	0.42
	134323	AA028976	Hs.8175	Homo sapiens mRNA; cDNA DKFZp564M0763 (f	1.19	0.27
65	134343	D50683	Hs.82028	transforming growth factor; beta recepto	1.21	0.67
	134417	D87969	Hs.82921	solute carrier family 35 (CMP-sialic aci	1.28	1
	134561	U76421	Hs.85302	adenosine deaminase; RNA-specific; B1 (h	2.12	0.55
	134624 134696	W67147 H88354	Hs.8700 Hs.8861	deleted in liver cancer 1 ESTs	2.35 1.35	2.74 0.33
70	134749	L10955	Hs.89485	carbonic anhydrase IV	0.89	0.2
	134786	L06139	Hs.89640	TEK tyrosine kinase; endothelial (venous	0.48	0.21
	134869	T35288	Hs.90421	ESTs; Moderately similar to !!!! ALU SUB	2.14	2.64
	135346	M21056	Hs.992	phospholipase A2; group IB (pancreas)	0.63	0.13
75	100113	D00591	Hs.84746	Chromosome condensation 1	1 0.5	2.15
13	100147 100280	D13666 D42085	Hs.136348 Hs.155314	Homo sapiens mRNA for osteoblast specifi KIAA0095 gene product	0.5 1.02	2 1.39
	100280	D63391	Hs.6793	platelet-activating factor acetylhydrola	1	5.58
	100360	D78335	Hs.75939	Uridine monophosphate kinase	0.91	2.04
00	100372	D79997	Hs.184339	KIAA0175 gene product	0.75	2.03
80	100486	HG1112-HT1112		TIGR: ras-like protein TC4	1.09	1.93
	100559 100576	HG2197-HT2267 HG2290-HT2386		"collagen, type VII, alpha 1" "calcitonin/alpha-CGRP, alt. transcript	0.97 1	3.6 1
	100668	HG2981-HT3938		"TIGR: CD44 (epican, alt. transcript 12	0.85	1.9
0.7	100906	HG4716-HT5158		Guanosine 5'-Monophosphate Synthase	1.18	2.29
85	100930	HG721-HT4827		*TIGR: placental protein 14, endometrial	1	1.45

	W	O 02/0864	143			
	100960	J00124	Hs.117729	keratin 14 (epidermolysis bullosa simple	0.84	2.6
	101031	J05070	Hs.151738	"Matrix metalloproteinase 9 (gelatinase	0.77	1.52
	101111	L08424	Hs.1619	Achaete-scute complex (Drosophila) homol	1	1
	101124	L10343	Hs.112341	"Protease inhibitor 3, skin-derived (SKA	0.62	2.67
5	101175	L18920	Hs.36980	"Melanoma antigen, family A, 2"	1	1
9	101204	L24203	Hs.82237	Ataxia-telangiectasia group D-associated	0.74	4.1
	101431	M19888	Hs.1076	Small proline-rich protein 1B (cornifin)	0.85	2.51
	101431	M21389	Hs.195850	keratin 5 (epidermolysis bullosa simplex	. 0.61	8.83
	101511	M27826	Hs.267319	Endogenous retroviral protease	1.03	1.13
10				Carcinoembryonic antigen-related cell ad	1.07	4.61
10	101526	M29540	Hs.220529		0.97	1.13
	101548	M31328	Hs.71642	"Guanine nucleotide binding protein (G p		1
	101625	M57293		"Human parathyroid hormone-related pepti	1	
	101649	M60047	Hs.1690	Heparin-binding growth factor binding pr	1	2.7
1 -	101724	M69225	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	1	8.98
15	101748	M76482	Hs.1925	Desmoglein 3 (pemphigus vulgaris antigen	1	2.78
	101759	M80244	Hs.184601	"Solute carrier family 7 (cationic amino	1.07	2.45
	101804	M86699	Hs.169840	TTK protein kinase	1	1
	101806	M86757	Hs.112408	S100 calcium-binding protein A7 (psorias	0.74	1.76
	101809	M86849		"Homo sapiens connexin 26 (GJB2) mRNA, c	1	7
20	101845	M93426	Hs.78867	"Protein tyrosine phosphatase, receptor-	1	1
	101851	M94250	Hs.82045	Midkine (neurite growth-promoting factor	1.13	2.6
	102083	U10323	Hs.75117	"Interleukin enhancer binding factor 2,	1.03	1.61
	102154	U17760	Hs.75517	"Laminin, beta 3 (nicein (125kD), kalini	0.94	3.62
	102193	U20758	Hs.313	secreted phosphoprotein 1 (osteopontin;	0.34	4.59
25	102305	U33286	Hs.90073	chromosome segregation 1 (yeast homolog)	1.45	2.97
23	102348	U37519	Hs.87539	Aldehyde dehydrogenase 8	0.52	2.25
	102546	U61145	Hs.77256	Enhancer of zeste (Drosophila) homolog 2	0.91	2.46
	1025610	U65011	Hs.30743	Preferentially expressed antigen in mela	1	3.88
				"Melanoma antigen, family A, 9 (MAGE-9)"	i	1
30	102623	U66083	Hs.37110		1	i
30	102669	U71207	Hs.29279	Eyes absent (Drosophila) homolog 2	•	2.77
	102696	U74612	Hs.239	Forkhead box M1	1.06	
	102829	U91618	Hs.80962	Neurotensin	1 ,	1
	102888	X04741	Hs.76118	Ubiquitin carboxyl-terminal esterase L1	1.13	2.59
26	102913	X07696	Hs.80342	keratin 15	0.7	4.72
35	102915	X07820	Hs.2258	Matrix Metalloproteinase 10 (Stromolysin	1.15	3.35
	102963	X15943	Hs.37058	"Calcitonin/calcitonin-related polypepti	1	1
	103021	X53587	Hs.85266	"Integrin, beta 4"	1.38	2.34
	103036	X54925	Hs.83169	Matrix metalloprotease 1 (interstitial c	1	14.93
	103058	X57348	Hs.184510	Stratifin	1.25	4.17
40	103060	X57766	Hs.155324	matrix metalloproteinase 11 (stromelysin	1	1.72
	103119	X63629	Hs.2877	"Cadherin 3, P-cadherin (placental)"	1.16	7.38
	103206	X72755	Hs.77367	monokine induced by gamma interferon	0.71	1.48
	103242	X76342	Hs.389	"Alcohol dehydrogenase 7 (class IV), mu	1	1
	103312	X82693	Hs.3185	"Lymphocyte antigen 6 complex, locus D;	0.92	1.28
45	103478	Y07755	Hs.38991	S100 calcium-binding protein A2	1.05	5.81
10	103558	Z19574	Hs.2785	keratin 17	0.65	6.68
	103576	Z26317	Hs.2631	Desmoglein 2	0.79	1.73
	103570	Z29083 .	Hs.82128	5T4 Oncofetal antigen	1	3.93
	103594	Z31560	Hs.816	"SRY (sex determining region Y)-box 2, p	0.71	7.23
50			115.010	"ESTs, Highly similar to integral membra	0.99	1.8
50	103768	AA089997	11- 0407		0.96	1.29
	104158	AA454908	Hs.8127	KIAA0144 gene product	1.23	7.23
	104558	R56678	Hs.88959	Human DNA sequence from clone 967N21 on	0.96	2.11
	104689	AA010665	11. 00074	ESTs		
<i>F F</i>	104733	AA019498	Hs.23071	ESTs	1.18	1.88
55	104906	AA055809	Hs.26802	Protein kinase domains containing protei	1.11	3.15
	104978	AA088458	Hs.19322	ESTs; Weakly similar to !!!! ALU SUBFAMI	1.64	2.89
	105012	AA116036	Hs.9329	"Homo sapiens mRNA for fls353, complete	1.19	3.91
	105175	AA186804	Hs.25740	ESTs; Weakly similar to unknown [S.cerev	0.9	4.63
	105263	AA227926	Hs.6682	ESTs	0.95	2.87
60	105298	AA233459	Hs.26369	ESTs	1	1.13
	105312	AA233854	Hs.23348	S-phase kinase-associated protein 2 (p45	1.32	3.01
	105719	AA291644	Hs.36793	Hypothetical protein FLJ23188	1.28	2.31
	105743	AA293300	Hs.9598	ESTs	1	1
	106012	. AA411621	Hs.8895	ESTs; same as BFH6?	0.94	2.04
65	106231	AA429571	Hs.38002	KIAA1355 protein	1.04	1.5
	106540	AA454607	Hs.38114	Hypothetical protein FLJ11100	1.26	2.26
	106575	AA456039	Hs.105421	ESTs	1	2
	106632	AA459897	Hs.11950	GPI-anchored metastasis-associated prote	0.87	1.32
	106727	AA465342	Hs.34045	Hypothetical protein FLJ20764	0.87	1.59
70	106906	AA490237	Hs.222024	Transcription factor BMAL2 (cycle-like f	0.61	1.6
, 0	107059	AA608545	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	0.48	2.67
	107104	AA609786	Hs.15243	Nucleolar protein 1 (120kD)	1.01	1.44
	107151	AA621169	Hs.8687	ESTs; procollagen I-N proteinase	0.97	2.89
	107131	S74039	Hs.291904	Accessory proteins BAP31/BAP29	1.15	3.65
75	107204	AA026418	Hs.91539	ESTs	0.72	3.44
, 5				lg superfamily receptor LNIR precursor	1	2.48
	107922	AA028028	Hs.61460		1	1
	107932	AA029317	Hs.18878	Hypothetical protein FLJ21620	0.91	3.53
	108695	AA121315	Hs.70823	KIAA1077 protein		3.55 1
80	108857	AA133250	Hs.62180	ESTs	1 0.73	7.3
οU	108860	AA133334	Hs.129911	ESTs	0.73	
	108990	AA152296	Hs.72045	ESTs	1	1
	109166	AA179845	Hs.73625	"RAB6 interacting, kinesin-like (rabkine	1	4.55
	109424	AA227919	Hs.85962	Hyaluronan synthase 3	1	1.28
0.~	109665	F05012	Hs.27027	Hypothetical protein DKFZp762H1311	1.42	2
85	109970	H09281	Hs.13234	ESTs	1.13	2.16
					-	

	w	O 02/086	443			
	110015	H10998	Hs.7164	A disintegrin and metalloproteinase doma	0.84	1.95
	110156	H18957	Hs.4213	ESTs	0.94	1.41
	110561	H59617	Hs.5199	HSPC150 protein similar to ubiquitin-con	0.91	3.18
_	111223	N68921	Hs.34806	ESTs; Weakly similar to neogenin [H.sapi	0.91	3.13
5	111345	N89820	Hs.14559	Hypothetical protein FLJ10540	1	1.25
	111876	R38239	Hs.293246	"ESTs, Weakly similar to putative p150 [0.83	1.27
	111902	R39191	Hs.109445	KIAA1020 protein	0.91 0.77	0.91 3.01
	112244 112973	R51309 T17271	Hs.70823	KIAA1077 protein "cDNA FLJ13308 fis, clone OVARC1001436,	1	1
10	112989	T23482	Hs.89981	"Diacylglycerol kinase, zeta (104kD)"	0.55	1.03
~ ~	113047	T25867	Hs.7549	ESTs	0.87	2
	113095	T40920	Hs.126733	ESTs	1	1
	113531	T90345	Hs.16740	Hypothetical protein FLJ11036	0.42	1.44
1 5	113970	W86748	Hs.8109	ESTs	1.17	1.73
15	114346	Z41450	Hs.130489	"ATPase, aminophospholipid transporter-l	0.86 0.8	0.82 1.88
	114407	AA010188	Hs.103305 Hs.104613	ESTs RP42 homolog	1.06	1.34
	114471 114509	AA028074 AA043551	Hs.101799	KIAA1350 protein	1.82	2.32
	115060	AA253214	Hs.198249	"Gap junction protein, beta 5 (connexin	0.79	1.49
20	115091	AA255900	Hs.184523	KIAA0965 protein	0.72	1.92
	115123	AA256642	Hs.236894	"ESTs, High sim to LRP1_hu low density I	0.59	1.97
	115291	AA279943	Hs.122579	ESTs	1	1.25
	115506	AA292537	Hs.45207	Hypothetical protein KIAA1335	1.15	1.48 3.29
25	115522	AA331393	Hs.47378	ESTs	0.5 1	3.29 1
23	115536 115697	AA347193	Hs.62180 Hs.63325	ESTs Homo sapiens type II membrane serine pro	i	6.53
	115997	AA411502 AA436666	Hs.59761	ESTs	i	6.98
	115978	AA447522	Hs.69517	Differentially expressed in Fanconi anem	i	2.31
	116028	AA452112	Hs.42644	thioredoxin-like	0.99	1.68
30	116107	AA456968	Hs.92030	ESTs	1.14	1.8
	116134	AA460246	Hs.50441	CGI-04 protein	1.11	1.86
	116157	AA461063	Hs.44298	Hypothetical protein	0.99	1.9
	116158	AA461187	Hs.61762	Hypoxia-inducible protein 2	0.44 0.62	0.86 3.89
35	116335	AA495830	Hs.87013 Hs.76118	"Homo sapiens cDNA FLJ10238 fis, clone H Ubiquitin carboxyl-terminal esterase L1	1.04	2.36
55	116483 117320	C14092 N23239	Hs.211092	LUNX protein; PLUNC(palate lung & nasal	0.51	0.64
	117557	N33920	Hs.44532	Diubiquitin	1.11	2.63
	117693	N40939	Hs.112110	PTD007 protein	0.98	1.79
	117881	N50073	Hs.260622	Butyrate-induced transcript 1	1	1.43
40	118368	N64339	Hs.48956	ESTs	0.67	2.86
	118566	N68558	Hs.42824	Hypothetical protein FLJ10718	1.21	0.83
	118695	N71781	Hs.50081	KIAA1199 see CVA7.doc	0.88 1	1.63 1
	119780	W72967	Hs.191381	ESTs; Weakly similar to hypothetical pro G protein-coupled receptor 87	1	1
45	119845 120102	W79920 W95428	Hs.58561 Hs.132927	"ESTs, Moderately similar to p53 regulat	i	i
13	120102	W95477	Hs.180479	ESTs	0.69	3.07
	120486	AA253400	Hs.137569	Tumor protein 63 kDa with strong homolog	1.08	12.05
	120859	AA350158	Hs.1619	Achaete-scute complex (Drosophila) homol	1	1
~ ^	120880	AA360240	Hs.97019	EST	1	1
50	120948	AA397822	Hs.104650	Hypothetical protein FLJ10292	1.04	2.15
	120983	AA398209	Hs.97587	EST Chandramedulin I arrayman	1	1 1
	121362	AA405500	Hs.97932 Hs.128791	Chondromodulin I precursor CGI-09 protein	1	1.8
	121369 121791	AA405657 AA423978	Hs.293317	"ESTs, Weakly similar to JM27 [H.sapiens	i	1
55	123005	AA479726	Hs.105577	ESTs	1	1
	123044	AA481549	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro	0.95	1.88
	123160	AA488687	Hs.284235	ESTs	1.59	4.98
	123479	AA599469	Hs.135056	clone RP5-850E9 on chromosome 20	1.19	1.64
C 0	123571	AA608956	Hs.112619	"ESTs, Weakly similar to PQ0109 Purkinje	1.03	1.14
60	123829	AA620697	Hs.112208	XAGE-1 protein	1.39 1	2.2 4.85
	124006	D60302	Hs.108977 Hs.99769	ESTs ESTs	1 1.49	4.65 8.62
	124059 124960	F13673 T15386	Hs.194766	Seizure related gene 6 (mouse)-like	0.76	0.77
	125218	W73561	Hs.110024	NADH:ubiquinone oxidoreductase MLRQ subu	1.33	1.77
65	125453	R06041	Hs.18048	"Melanoma antigen, family A, 10"	0.8	1.42
	125759	AA425587	Hs.82226	Glycoprotein (transmembrane) nmb	1.52	2.26
	125972	AA434562	Hs.35406	"ESTs, Highly similar to unnamed protein	1.05	2.48
	125994	H55782	Hs.270799	EST	1	1.95
70	126395	N70192	Hs.278956	Hypothetical protein FLJ12929	1 1	1.35 2.23
70	126645	Al167942 Al354332	Hs.61635	STEAP1 (Homo sapiens BAC clone RG041D11 ESTs	0.73	3.27
	127221		Hs.72365 Hs.179729	collagen; type X; alpha 1 (Schmid metaph	0.51	1.94
	127479 128192	AA513722 Al204246	118.17.57.25	KIAA1085 protein	1.8	3.16
	128610	L38608	Hs.10247	activated leucocyte cell adhesion molecu	0.89	0.97
75	128777	U46006	Hs.10526	Cysteine and glycine-rich protein 2	1	1
-	128924	AA234962	Hs.26557	Plakophilin 3	1.3	2.97
	129041	H58873	Hs.169902	"Solute carrier family 2 (facilitated gl	0.84	2.04
	129099	H50398	Hs.108660	"ATP-binding cassette, sub-family C (CFT	0.87	1.04
90	129404	AA172056	Hs.111128	ESTs	1 0.72	1 12.67
80	129466	L42583	No 445047	"Genbank Homo sapiens keratin 6 isoform	0.72 0.92	12.67
	129605	S72493	Hs.115947 Hs.1174	Keratin 16 (focal non-epidermolytic palm "Cyclin-dependent kinase inhibitor 2A (m	0.85	1.93
	129628 130023	U26727 X13461	Hs.239600	Calmodulin-like 3	0.84	1.22
	130023	X14850	Hs.147097	"H2A histone family, member X"	0.98	1.96
85	130385	AA126474	Hs.155223	stanniocalcin 2	1	1

	W	O 02/0864	143			
	130410	V01514	Hs.155421	Alpha-fetoprotein	0.63	0.63
	130441	U35835	Hs.301387	"Human DNA-PK mRNA, partial cds"	1.15	3.65
	130482	L32866	Hs.1578	Baculoviral IAP repeat-containing 5 (sur	1	1.88
	130553	AA430032	Hs.252587	Pituitary tumor-transforming 1	0.92	1.96
5	130577	M35410	Hs.162	Insulin-like growth factor binding prote	1,17	4.7
9	130627	L23808	Hs.1695	Matrix metalloproteinase 12 (macrophage	0.69	4.05
	130800	AA223386	Hs.19574	ESTs; Weakly similar to katanin p80 subu	1.13	2.41
	130939	AA598689	Hs.21400	ESTs	0.8	0.89
	131046	X02530	Hs.2248	INTERFERON-GAMMA INDUCED PROTEIN PRECURS		1.15
10	131244	D38076	Hs.24763	RAN binding protein 1	1.13	1.85
10	131877	J04088	Hs.156346	Topoisomerase (DNA) II alpha (170kD)	1	1
	131927	AA461549	Hs.34780	"Doublecortex; lissencephaly, X-linked (0.81	0.62
	131965	W90146	Hs.35962	ESTs	0.74	3.27
	131978	D80008	Hs.36232	KIAA0186 gene product	1	1
15	132354	L05187	Hs.211913	Small proline-rich protein 1A	0.69	1.43
10	132543	AA417152	Hs.5101	ESTs; Highly similar to protein regulati	0.79	4.27
	132632	N59764	Hs.5398	guanine-monophosphate synthetase	1	1.08
	132653	U31201	Hs.54451	"laminin gamma2 chain gene (LAMC2), exon	i	1
	132659	Z75190	Hs.54481	"Low density lipoprotein receptor-relate	0.89	0.89
20	132710	W93726	Hs.55279	"Serine (or cysteine) proteinase inhibit	0.64	4.41
~0	132758	W52432	Hs.56105	"ESTs, Weakly similar to WDNM RAT WDNM1	1,55	2.08
	132767	L05188	Hs.231622	Small proline-rich protein 2B	0.83	1.66
	132816	M74542	Hs.575	Aldehyde dehydrogenase 3	0.55	0.55
	132990	AA458761	Hs.18387	transcription factor AP-2 alpha (activat	1	3.53
25	133070	U69611	Hs.64311	"A disintegrin and metalloproteinase dom	1.16	2
43	133282	U52960	Hs.286145	"SRB7 (suppressor of RNA polymerase B, y	1	2.7
	133317	AA215299	Hs.70830	U6 snRNA-associated Sm-like protein LSm7	0.95	1.42
	133370	AA156897	Hs.72157	Homo sapiens mRNA; cDNA DKFZp564I1922	1.12	2.55
	133370	X57579	Hs.727	H.sapiens activin beta-A subunit (exon 2	1.65	1.76
30	133832	H03387	Hs.241305	estrogen-responsive B box protein (EBBP)	1.02	1.39
50	134032	Z81326	Hs.78589	"Serine (or cysteine) proteinase inhibit	1	1
			Hs.181634		0.95	1.53
	134168	AA398908 AA227480		· · · · · · · · · · · · · · · · · · ·	1.36	2.48
	134218		Hs.80205	Pim-2 oncogene """collagen, type XI, alpha 1"""	0.76	2.86
35	134405	R67275	Hs.82772		1.89	3.78
33	134453	X70683	Hs.83484	SRY (sex determining region Y)-box 4	1.82	4.11
	134470	X54942	Hs.83758	CDC28 protein kinase 2	0.82	0.83
	134645	U87459	Hs.167379	"Cancer/testis antigen (NY-ESO-1, CTAG1,	1	1
	134781	M17183	Hs.89626	Parathyroid hormone-like hormone	1	ί
40	135002	U19147	Hs.272484	G antigen 6 AFFX control: STAT1	0.92	1.25
40	100040	M97935	Hs.2256		2.92	8.5
	101201	L22524		matrix metalloproteinase 7 (matrilysin;	1	1
	101664	M60752	Hs.121017	H2A histone family; member A	0.8	1.61
	102025	U03911	Hs.78934		1	1.01
45	102031	U04898	Hs.2156	RAR-related orphan receptor A	1	i
45	102221	U24576	11- 75000	LIM domain only 4	•	1.43
	102270	U30255	Hs.75888	phosphogluconate dehydrogenase	1.08	1.32
	102339	U37022	Hs.95577		0.88 1.07	1.58
	102391	U41668	Hs.77494		0.91	1.49
50	103000	X51956	Hs.146580		0.89	1.32
50	103395	X94754	Hs.119503			1.25
	105638	AA281599	Hs.20418		0.91 0.94	1.48
	105726	AA292328	Hs.9754		0.78	1.56
	114841	AA234722	Hs.55408	•	1	1
55	115206	AA262491	Hs.186572 Hs.82302	ESTs ESTs	0.74	2.52
55	115906	AA436616	Hs.107911	ATP-binding cassette; sub-family B (MDR/	1.1	1.51
	119132 124163	R49046 H30539	Hs.189838	ESTs	1	1
			,,,,,,,,,,		1.01	1.46
	126487 127141	AA482505	Hs.184601 Hs.75478	solute carrier family 7 (cationic amino KIAA0956 protein	0.85	1.40
60	127141	AA307960 AA905754	Hs.75103	tyrosine 3-monooxygenase/tryptophan 5-mo	1	1.18
00	128609	AA234365	Hs.102456	survival of motor neuron protein interac	i	1.5
	128895	R37753	Hs.102436	ESTs	1.7	2
	130199	Z48579	Hs.172028	a disintegrin and metalloprotease domain	1	ī
	130524	U89995	Hs.159234	forkhead box E1	i	i
65	133000	U24152	Hs.62402	p21/Cdc42/Rac1-activated kinase 1 (yeast	i	i
05	133658	M25756	Hs.75426	secretogranin II (chromogranin C)	i	i
	135047	AA460466	Hs.93597	ESTs	i	i
	100053	M27830	113.50551		0.88	1.53
	100033	D00596	Hs.82962		0.68	1.86
70	100114	D11094	Hs.61153		1.29	2.03
70	100120	D14657	Hs.81892		0.71	4.26
	100161	D14694	Hs.77329		1.02	1.56
	100161	D14874	Hs.394		0.46	1.17
	100187	D17793	Hs.78183	aldo-keto reductase family 1; member C3	1	1
75	100187	D21063	Hs.57101		0.97	1.4
, ,	100217	D26600	Hs.89545		1.13	1.9
	100217	D28364	113.03040		1.11	1.53
	100220	D43950	Hs.1600		1.13	2.09
	100287	D49489	Hs.182429		0.92	1.78
80	100297	D55716	Hs.77152		1.07	1.61
00	100355	D78129	113.77 102		0.96	1.87
	100364	D78586	Hs.154868		1.49	2.46
	100364	D79987	Hs.153479		0.59	1.32
	100398	D84557	Hs.155462		1.08	1.9
85	100398	D87448	Hs.91417	topoisomerase (DNA) Il binding protein	1	2.15
J.J	100700	201-140	110.01717	representation (a.e.) it officially protein	•	

		U UZ/U8644				
	100455	D87953	Hs.75789	N-myc downstream regulated	0.91	1.48
	100491	HG1153-HT1153		Nucleoside Diphosphate Kinase Nm23-H2s	0.99	1.41
	100518	HG174-HT174		Desmoplakin I	1.28	3.17
_	100528	HG1828-HT1857		""Nexin, Glia-Derived""	0.68	1.9
5	100661	HG2874-HT3018		Ribosomal Protein L39 Homolog	1.1	5.44
-	100667	HG2981-HT3127		""Epican, Alt. Splice 11""	8.0	1.97
	100830	HG4074-HT4344		Rad2	1.01	2.12
	101061	K03515	Hs.944	glucose phosphate isomerase	0.91	1.79
	101131	L10838	Hs.167460	splicing factor; arginine/serine-rich 3	1.23	1.87
10	101162	L14595	Hs.174203	solute carrier family 1 (glutamate/neutr	1.35	2.73
10		L19686	Hs.73798	macrophage migration inhibitory factor (1.03	1.78
	101181				0.57	1.3
	101183	L19779	Hs.795	H2A histone family; member O		2.2
	101216	L25876	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	0.7	
15	101228	L27706	Hs.82916	chaperonin containing TCP1; subunit 6A (0.99	1.99
15	101233	L29008	Hs.878	sorbitol dehydrogenase	0.82	2.11
	101247	L33801	Hs.78802	glycogen synthase kinase 3 beta	1.2	1.91
	101332	L47276		"""Homo sapiens (cell line HL-6) alpha t	0.69	2.78
	101342	L76191	Hs.182018	interleukin-1 receptor-associated kinase	1.04	1.84
	101396	M15796	Hs.78996	proliferating cell nuclear antigen	0.95	3.55
20	101423	M18391	Hs.89839	EphA1	1	1.5
	101445	M21259	Hs.1066	small nuclear ribonucleoprotein polypept	1.21	1.96
	101505	M27396	Hs.75692	asparagine synthetase	0.93	1.6
	101525	M29536	Hs.12163	eukaryotic translation initiation factor	1.19	1.93
	101535	M30448	Hs.251669	casein kinase 2; beta polypeptide	0.96	1.42
25					1.11	1.25
23	101607	M38690	Hs.1244	CD9 antigen (p24)	1.17	1.98
	101624	M55998	11 70047	""'Human alpha-1 collagen type I gene, 3		3.45
	101758	M77836	Hs.79217	pyrroline-5-carboxylate reductase 1	1.77	
	101839	M93036	Hs.692	membrane component; chromosomal 4; surfa	0.71	1.45
20	101853	M94362	Hs.76084	lamin B2	0.84	1.19
30	101977	S83364		"""putative Rab5-interacting protein (cl	0.89	1.9
	101992	U01038	Hs.77597	polo (Drosophia)-like kinase	0.66	1.46
	102009	U02680	Hs.82643	protein tyrosine kinase 9	1.23	3.35
	102012	U03057	Hs.118400	singed (Drosophila)-like (sea urchin fas	0.85	1.88
	102039	U05861	Hs.201967	aldo-keto reductase family 1; member C1	0.93	2.32
35	102123	U14518	Hs.1594	centromere protein A (17kD)	1	4.28
	102130	U15009	Hs.1575	small nuclear ribonucleoprotein D3 polyp	0.89	1.42
	102148	U16954	Hs.75823	ALL1-fused gene from chromosome 1g	0.8	2.95
	102140	U23028	Hs.2437	eukaryotic translation initiation factor	1.01	1.34
				lysyl oxidase-like 1	1.15	2.34
40	102220	U24389	Hs.65436		1.14	2.69
40	102260	U28386	Hs.159557	karyopherin alpha 2 (RAG cohort 1; impor		1.7
	102330	U35451	Hs.77254	chromobox homolog 1 (Drosophila HP1 beta	1.05	
	102423	U44754	Hs.179312	small nuclear RNA activating complex; po	1.14	2.99
	102455	U48705	Hs.75562	discoidin domain receptor family; member	1.05	2.01
	102499	U51478	Hs.76941	ATPase; Na+/K+ transporting; beta 3 poly	1.27	1.92
45	102522	U53347	Hs.183556	solute carrier family 1 (neutral amino a	0.84	1.31
	102590	U62136		"""Homo sapiens enterocyte differentiati	1.11	1.6
	102676	U72514	Hs.12045	putative protein	1.04	2.17
	102687	U73379	Hs.93002	ubiquitin carrier protein E2-C	0.86	2.28
	102704	U76638	Hs.54089	BRCA1 associated RING domain 1	1.12	1.63
50	102781	U83843		""Human HIV-1 Nef interacting protein (0.9	1.39
50	102784	U85658	Hs.61796	transcription factor AP-2 gamma (activat	0.98	2.16
	102827	U91327	Hs.6456	chaperonin containing TCP1; subunit 2 (b	0.96	1.62
				small nuclear ribonucleoprotein polypept	1.21	4.2
	102935	X13482	Hs.80506		1.25	2.32
55	102972	X16662	Hs.87268	annexin A8		1.83
33	102983	X17620	Hs.118638	non-metastatic cells 1; protein (NM23A)	1.03	
	103023	X53793	Hs.117950	multifunctional polypeptide similar to S	1.58	5.44
	103038	X54941	Hs.77550	CDC28 protein kinase 1	1.32	3.79
	103075	X59543	Hs.2934	ribonucleotide reductase M1 polypeptide	1.11	2.58
C C	103168	X68314	Hs.2704	glutathione peroxidase 2 (gastrointestin	0.75	3.05
60	103185	X69910	Hs.74368	transmembrane protein (63kD); endoplasmi	1.01	1.97
	103212	X73874	Hs.2393	phosphorylase kinase; alpha 1 (muscle)	0.95	1.72
	103223	X74801	Hs.1708	chaperonin containing TCP1; subunit 3 (g	0.97	1.77
	103260	X78416	Hs.3155	casein; alpha	1	1
	103262	X78565	Hs.204133	hexabrachion (tenascin C; cytotactin)	1.23	3.09
65	103330	X85373	Hs.77496	small nuclear ribonucleoprotein polypept	1.12	2.25
05	103364	X90872	Hs.75854	SULT1C sulfotransferase	2.85	4.62
				sine oculis homeobox (Drosophila) homolo	1	2.48
	103375	X91868	Hs.54416		i	1.53
	103391	X94453	Hs.114366	pyrroline-5-carboxylate synthetase (glut		
70	103404	X95586	Hs.78596	proteasome (prosome; macropain) subunit;	0.92	1.53
70	103437	X98260	Hs.82254	M-phase phosphoprotein 11	0.92	1.54
	103448	X99133	Hs.204238	lipocalin 2 (oncogene 24p3)	0.55	0.96
	103605	Z35402	Hs.194657	cadherin 1; E-cadherin (epithelial)	1.32	2.51
	103646	Z68228	Hs.2340	junction plakoglobin	0.88	1.28
	103658	Z74615	Hs.172928	collagen; type I; alpha 1	1.06	2.98
75	103774	AA092898	Hs.92918	ESTs; Weakly similar to R07G3.8 [C.elega	1.88	4.66
	104261	AF008442	Hs.5409	RNA polymerase I subunit	0.87	2.17
	104276	C02193	Hs.85222	ESTs; Weakly similar to R27090_2 [H.sapi	1.4	2.49
	104276	C16281	Hs.75478	KIAA0956 protein	1.15	1.68
				collagen; type VII; alpha 1 (epidermolys	1.04	1.49
80	104434	L02870	Hs.1640			0.76
OU	104453	M19169	Hs.123114	cystatin SN	0.38	
	104611	R98280	Hs.125845	ribulose-5-phosphate-3-epimerase	1.08	2.25
	104758	AA024661	Hs.7010	ESTs; Weakly similar to ACYL-COA DEHYDRO	1.14	1.65
	105114	AA156532	Hs.11801	adenosine A2b receptor pseudogene	0.91	1.38
o -	105132	AA159501	Hs.247280	HBV associated factor	1.08	1.7
85	105174	AA186613	Hs.34744	ESTs	0.95	2.05

	w	O 02/086				
	105280	AA232215	Hs.14600	ESTs	1	1.4
	105344	AA235303	Hs.8645	ESTs	0.72	2.02
	105516	AA257971	Hs.21214	ESTs	1.35	3.56
_	105621	AA280865	Hs.6375	Homo sapiens mRNA; cDNA DKFZp564K0222 (f	1.23	1.82
5	105698	AA287393	Hs.15202	ESTs; Weakly similar to oligodendrocyte-	0.98	1.28
	105705	AA290767	Hs.101282	Homo sapiens mRNA; cDNA DKFZp434B102 (fr	0.92	1.32
	105724	AA292098	Hs.22934	ESTs; Weakly similar to ZINC FINGER PROT	0.99	1.41
	105782	AA350215	Hs.21580	ESTs	1	1
	105799	AA372018	Hs.24743	ESTs	1.08	1.78
10				ESTs; Moderately similar to COLLAGEN ALP	0.95	1.34
10	105807	AA393803	Hs.16869		0.87	2.25
	105891	AA400768	Hs.26662	ESTs; Weakly similar to tumor necrosis f		
	105936	AA404338		ESTs	1.14	1.46
	106069	AA417741	Hs.29899	ESTs; Weakly similar to ZINC FINGER PROT	1	1
	106103	AA421104	Hs.12094	ESTs	1.04	1.44
15	106140	AA424524	Hs.14912	KIAA0286 protein	1.23	2.11
_	106149	AA424881	Hs.256301	ESTs	0.83	1.48
	106154	AA425304	Hs.6994	ESTs	0.77	2.05
	106182	AA426609	Hs.10862	ESTs	0.74	2.23
				ESTs; Moderately similar to metargidin p	0.97	1.99
20	106220	AA428582	Hs.32196		0.99	1.54
20	106228	AA429290	Hs.17719	ESTs (OFFICE)		
	106318	AA436570	Hs.9605	pre-mRNA cleavage factor Im (25kD)	0.95	2.09
	106341	AA441798	Hs.5243	ESTs; Moderately similar to plL2 hypothe	0.98	2.66
	106432	AA448850	Hs.17138	ESTs	0.95	1.93
	106474	AA450212	Hs.42484	Homo sapiens mRNA; cDNA DKFZp564C053 (fr	1	1
25	106483	AA451676	Hs.30299	IGF-II mRNA-binding protein 2	1.4	2.29
	106599	AA457235	Hs.12842	ESTs; Moderately similar to non-function	1	1.82
	106611	AA458904	Hs.26267	ESTs; Weakly similar to torsinA [H.sapie	1.49	2.78
	106654		Hs.3784	ESTs; Highly similar to phosphoserine am	1	1.4
		AA460449			1.11	1.49
20	107076	AA609145	Hs.21143	ESTs; Weakly similar to fos39554_1 [H.sa		
30	107115	AA610108	Hs.27693	ESTs; Highly similar to CGI-124 protein	1	1.03
	107129	AA620553	Hs.4756	flap structure-specific endonuclease 1	1.13	3.63
	107159	AA621340	Hs.10600	ESTs; Weakly similar to ORF YKR081c [S.c	1.05	2.09
	107444	W28391	Hs.5181	proliferation-associated 2G4; 38kD	1.18	1.9
	107481	W58247	Hs.27437	Homo sapiens kinesin superfamily motor K	0.99	2.74
35	107516	X56597	Hs.99853	fibrillarin	0.94	1.77
	107529	Y12065	Hs.5092	nucleolar protein (KKE/D repeat)	1.05	2.29
	107531	Y13936	Hs.17883	protein phosphatase 1G (formerly 2C); ma	1.06	1.62
					1.03	1.4
	107801	AA019433	Hs.173100	ESTs		1.46
40	107957	AA031948	Hs.57548	ESTs	0.95	
40	108565	AA085342	Hs.1526	ATPase; Ca++ transporting; cardiac muscl	0.59	1.35
	108780	AA128561	Hs.117938	collagen; type XVII; alpha 1	1	7.63
	108828	AA131584	Hs.71435	DKFZP564O0463 protein	1.33	2.56
	109060	AA160879	Hs.241551	chloride channel; calcium activated; fam	0.67	1.42
	109112	AA169379	Hs.72865	ESTs	1.03	2.31
45	109344	AA213696	Hs.86559	poly(A)-binding protein-like 1	0.97	1.55
1.0	109412	AA227145	Hs.209473	ESTs; Weakly similar to REGULATOR OF MIT	0.76	1.87
•			Hs.22891	solute carrier family 7 (cationic amino	0.9	0.95
	110780	N23174			1.17	2.26
	110958	N50550	Hs.24587	signal transduction protein (SH3 contain		1.85
50	111018	N54067	Hs.3628	mitogen-activated protein kinase kinase	1.21	
50	111337	N79612	Hs.16607	ESTs; Highly similar to Myosin heavy cha	1	1.45
	112305	R54822	Hs.26244	ESTs	1	1
	112401	R61279	Hs.237536	ESTs; Weakly similar to F25B5.3 [C.elega	1.24	1.64
	112853	T02843	Hs.4351	EST	1.56	1.96
	112869	T03313	Hs.4747	dyskeratosis congenita 1; dyskerin	1.03	1.57
55	112992	T23513	Hs.7147	ESTs	1	1
	113048	T25895	Hs.184008	ESTs; Weakly similar to RNA-binding prot	1.37	2.26
	113063	T32438	Hs.5027	ESTs	1	1
			Hs.152571	ESTs; Highly similar to IGF-II mRNA-bind	1.33	2.7
	113179	T55182	11 40000	mam .		1.47
60	113573	T91166	Hs.15990	ESIS	0.76	
60	113811	W44928	Hs.4878	ESTs	0.79	1.51
	114086	Z38266	Hs.12770	Homo sapiens PAC clone DJ0777O23 from 7p	0.9	1.34
	114587	AA070827	Hs.180320	ESTs; Weakly similar to GOLGI 4-TRANSMEM	1.02	1.76
	114846	AA234929	Hs.44343	ESTs	1.32	2.36
	114964	AA243873	Hs.82184	ring finger protein 3	1.1	1.84
65	115047	AA252627	Hs.22554	homeo box B5	1.01	2.36
	115166	AA258409	Hs.198907	myelin protein zero-like 1	1.05	2.31
	115167	AA258421	Hs.43728	hypothetical protein	1.52	2.52
		AA278650	Hs.73291	ESTs; Weakly similar to similar to the b	0.7	2.57
	115239				1.14	2.12
70	115278	AA279757	Hs.67466	ESTs; Weakly similar to BACN32G11.d [D.m		4.67
70	115652	AA405098	Hs.38178	ESTs	0.82	
	115875	AA433943	Hs.43946	ESTs; Weakly similar to Weak similarity	1.2	1.98
	116004	AA449122	Hs.76086	ESTs; Highly similar to small zinc finge	0.96	1.31
	116121	AA459254	Hs.48855	ESTs	0.97	1.55
	116129	AA459956	Hs.49163	ESTs; Highly similar to putative ribonuc	1.08	2.73
75	116190	AA464963	Hs.67776	ESTs	0.8	1.57
	116312	AA490494	Hs.65403	ESTs	1.37	2.65
	116732	F13779	Hs.165909	ESTs	0.92	1.8
	117602	N35020	Hs.44685	ESTs; Weakly similar to GOLIATH PROTEIN	1.15	1.84
			Hs.75478	KIAA0956 protein	1.04	2.36
80	117950	N51394			0.62	1.29
OU	117992	N52000	Hs.172089	Homo sapiens mRNA; cDNA DKFZp586B0222 (f		
	118785	N75386	Hs.111867	GLI-Kruppel family member GLI2	1	1
	119717	W69134	Hs.57987	ESTs	1	1.4
	119814	W74069	Hs.58350	ESTs	0.78	1.77
~ 	120128	Z38499	Hs.91448	MKP-1 like protein tyrosine phosphatase	0.86	1.46
85	120242	Z98443	Hs.86366	ESTs	0.83	2.01
	·- ·-					

	W	O 02/086	443			
	120483	AA252994	Hs.1578	apoptosis inhibitor 4 (survivin)	0.74	1.64
	121054	AA398604	Hs.97387	ESTs	1.05	1.93
	121326	AA404246	Hs.97031	ESTs; Weakly similar to Similar to phyto ESTs; Moderately similar to SODIUM- AND	0.98 0.91	1.3 1.83
5	121376 121457	AA405699 AA411448	Hs.166232 Hs.208985	ESTs; Moderately similar to SODIOW- AND	0.91	1.59
5	121780	AA422086	Hs.124660	ESTs	0.46	0.55
	121781	AA422150	Hs.98370	cytochrome P540 family member predicted	1.07	1.54
	121844	AA425732	Hs.98485	gap junction protein; beta 2; 26kD (conn	0.94	1.4
10	122059	AA431737	Hs.98749	EST	1.93	2.33
10	122338	AA443311	Hs.98998	ESTs	1	1
	122354	AA443772	Hs.186692	ESTs ESTs; Weakly similar to MRJ [H.sapiens]	0.88 2.28	1.39 2.93
	122591 122790	AA453265 AA460156	Hs.99311 Hs.99556	ESTs; Weakly similar to MRJ [n.sapiens]	0.88	1.3
	123398	AA521265	Hs.105514	ESTs ·	1	1.93
15	123518	AA608531	Hs.170313	ESTs	1	1
	123673	AA609471	Hs.112712	ESTs	1	1.15
	124000	D57317	Hs.74861	activated RNA polymerase II transcriptio	0.74	1.12
	124367	N24006	Hs.99348	distal-less homeo box 5	0.67	1.1
20	124447	N48000	Hs.140945	Homo sapiens mRNA; cDNA DKFZp586L141 (fr	1.19 0.93	1.7 1.59
20	125756 125769	W25498 Al382972	Hs.81634 Hs.82128	ATP synthase; H+ transporting; mitochond 5T4 oncofetal trophoblast glycoprotein	1.65	6.76
	125769	H09290	Hs.76550	Homo sapiens mRNA; cDNA DKFZp564B1264 (f	0.72	2.26
	125924	AA526849	Hs.82109	syndecan 1	1.22	2.25
	126037	M85772	Hs.6066	KIAA1112 protein	1.36	1.63
25	126214	N29455	Hs.74316	desmoplakin (DPI; DPII)	1.93	3.55
	126414	N78770	Hs.223439	ESTs	1.21	1.66
	126737	AA488132	Hs.62741	ESTs	1 1.3	1 2.16
	126743 126926	AA179253 AA179546	Hs.172182 Hs.832	poly(A)-binding protein; cytoplasmic 1 ESTs; Highly similar to INTEGRIN BETA-8	2,53	2.10
30	127432	AA501734	Hs.170311	heterogeneous nuclear ribonucleoprotein	1.57	2.12
50	128218	H02682	Hs.99189	ESTs; Moderately similar to recombinatio	1.24	2.09
	128527	M31523	Hs.101047	transcription factor 3 (E2A immunoglobul	1.08	1.78
	128568	X60673	Hs.247568	adenylate kinase 3	1.23	3.48
25	128584	M11433	Hs.101850	retinol-binding protein 1; cellular	0.87	2.42
35	128628	C14037	Hs.251978	EST	1.22 1.1	1.9 1.73
	128691 128714	W27939 V00599	Hs.103834 Hs.179661	ESTs Homo sapiens clone 24703 beta-tubulin mR	0.92	1.17
	128733	AA328993	Hs.104558	ESTs	1.34	1.94
	128781	X85372	Hs.105465	small nuclear ribonucleoprotein polypept	0.9	1.34
40	129052	AA496297	Hs.182740	ribosomal protein S11	2.59	3.19
	129095	L12350	Hs.108623	thrombospondin 2	1.04	3.2
	129241	AA435665	Hs.109706	ESTs; Moderately similar to HN1 [M.muscu	0.95	1.61
	129665	M88458	Hs.118778	KDEL (Lys-Asp-Glu-Leu) endoplasmic retic	1.28 0.97	2.63 1.63
45	129703	AA401348	Hs.179999 Hs.12152	ESTs ESTs; Moderately similar to SIGNAL RECOG	1.09	1.79
43	129720 129850	AA476582 N20593	Hs.56845	GDP dissociation inhibitor 2	0.74	1.68
	129896	AA043021	Hs.13225	UDP-Gal:betaGlcNAc beta 1;4- galactosylt	1.43	4.19
	130069	AA055896	Hs.146428	collagen; type V; alpha 1	1.17	1.98
~ 0	130405	H88359	Hs.155396	nuclear factor (erythroid-derived 2)-lik	1.26	1.79
50	130541	X05608	Hs.211584	neurofilament; light polypeptide (68kD)	1	1
	130599	M91670	Hs.174070 Hs.2056	ubiquitin carrier protein UDP glycosyltransferase 1	1.07 1	1.66 4.8
	130867 131009	J04093 AA063596	Hs.22142	ESTs; Weakly similar to NADH-CYTOCHROME	0.93	1.05
	131028	U20240	Hs.2227	CCAAT/enhancer binding protein (C/EBP);	1	1.23
55	131083	U66661	Hs.22785	gamma-aminobutyric acid (GABA) A recepto	1.1	1.8
	131091	T35341	Hs.22880	ESTs; Highly similar to dipeptidyl pepti	1.28	1.98
۵	131144	C14412	Hs.23528	ESTs; Highly similar to HSPC038 protein	1.43	2.06
	131148	C00038	Hs.23579	ESTs	0.88	3.38
60	131164 131185	Y00503	Hs.182265 Hs.23960	keratin 19 cyclin B1	1.19 0.86	2.77 3.84
00	131219	M25753 C00476	Hs.24395	small inducible cytokine subfamily B (Cy	0.66	2.96
	131454	AA455896	Hs.2699	glypican 1	0.99	1.54
	131687	L11066	Hs.3069	heat shock 70kD protein 9B (mortalin-2)	1	1,18
~~	131689	AA599653	Hs.30696	transcription factor-like 5 (basic helix	1	1.95
65	131692	D50914	Hs.30736	KIAA0124 protein	1.55	2.39
	131786	AA135554	Hs.32125	ESTs	1 0.83	1.33 1.63
1	131843 131860	AA195893 U02082	Hs.184062 Hs.334	ESTs; Moderately similar to putative Rab Oncogene TIM	1.08	2.2
	131884	H90124	Hs.3463	ribosomal protein S23	1.23	1.24
70	131903	AA481723	Hs.3436	deleted in oral cancer (mouse; homolog)	0.91	1.18
	131945	M87339	Hs.35120	replication factor C (activator 1) 4 (37	1	2.8
	131958	AA093998	Hs.3566	ESTs; Highly similar to phosphorylation	0.87	1.36
	131964	W42508	Hs.3593	ESTs	1	1.25
75	132001	J00277 AA146843	Hs.37003 Hs.172894	v-Ha-ras Harvey rat sarcoma viral oncoge BH3 interacting domain death agonist	1.12 1	1.43 1.55
15	132040 132065	D82226	Hs.211594	proteasome (prosome; macropain) 26S subu	0.89	1.27
	132109	AA599801	Hs.40098	ESTs	1	1.05
	132112	AA150661	Hs.40154	jumonji (mouse) homolog	0.99	1.44
00	132123	AA447123	Hs.250705	ESTs	1.06	2.46
80	132162	H89551	Hs.41241	ESTs	1.08	2.46
	132180	AA405569	Hs.418	fibroblast activation protein; alpha; se	1.02 1.16	4.56 1.8
	132309 132371	AA460917 AA235448	Hs.2780 Hs.46677	jun D proto-oncogene ESTs	0.8	1.26
	132618	AA253330	Hs.5344	adaptor-related protein complex 1; gamma	0.5	1.49
85	132736	U68019	Hs.211578	MAD (mothers against decapentaplegic; Dr	1.21	1.81

	W	O 02/0864	143				PCT/US02/12476
	132771	AA488432	Hs.56407	phosphoserine phosphatase	1	1.3	
	132833	U78525	Hs.57783	eukaryotic translation initiation factor	0.91	1.43	
	132922		Hs.6066	KIAA1112 protein	1.16	1.53	
	132959	AA028103	Hs.61472	ESTs; Weakly similar to unknown [S.cerev	1.02	1.88	
5	132994	AA505133	Hs.7594	solute carrier family 2 (facilitated glu	0.72	2.97	
9	133005	C21400	Hs.103329	KIAA0970 protein	0.88	1.34	
	133065	X62535	Hs.172690	diacylglycerol kinase; alpha (80kD)	0.93	1.23	
			Hs.6456	chaperonin containing TCP1; subunit 2 (b	1.14	1.76	
	133083	N70633			0.97	1.43	
10	133086	L17131	Hs.139800	high-mobility group (nonhistone chromoso	1.1	1.8	
10	133134	T89703	Hs.65648	RNA binding motif protein 8	2.29	2.69	
	133195	AA350744	Hs.181409	KIAA1007 protein		1.68	
	133313	AA249427	Hs.70704	ESTs	1.07	1.18	
	133331	T62039	Hs.158675	ribosomal protein L14	0.85		•
15	133438	D13370	Hs.73722	APEX nuclease (multifunctional DNA repai	0.91	1.45	
15	133445	T99303	Hs.73797	guanine nucleotide binding protein (G pr	0.94	1.68	
	133483	X52426	Hs.74070	keratin 13	0.85	1.14	
	133492	L40397	Hs.74137	transmembrane trafficking protein	1.1	1.69	
	133504	W95070	Hs.74316	desmoplakin (DPI; DPII)	0.7	6.21	
20	133517	X52947	Hs.74471	gap junction protein; alpha 1; 43kD (con	0.95	1.3	
20	133540	D78151	Hs.74619	proteasome (prosome; macropain) 26S subu	0.91	1.25	
	133594	L07758	Hs.172589	nuclear phosphoprotein similar to S. cer	0.84	1.29	
	133627	U09587	Hs.75280	glycyl-tRNA synthetase	1.09	1.99	
	133671	T25747	Hs.75471	zinc finger protein 146	1.02	1.5	
~~	133859	U86782	Hs.178761	26S proteasome-associated pad1 homolog	1.11	3.33	
25	133865	F09315	Hs.170290	discs; large (Drosophila) homolog 5	1.84	6.7	
	133913	W84712	Hs.7753	calumenin	1.15	1.86	
	133963	L34587	Hs.184693	transcription elongation factor B (SIII)	1.3	1.91	
	133982	U47621	Hs.207251	nucleolar autoantigen (55kD) similar to	1.3	1.99	
•	134100	L07540	Hs.171075	replication factor C (activator 1) 5 (36	0.72	1.65	
30	134110	U41060	Hs.79136	LIV-1 protein; estrogen regulated	1.04	1.62	
	134158	U15174	Hs.79428	BCL2/adenovirus E1B 19kD-interacting pro	1	1.55	
	134161	U97188	Hs.79440	IGF-II mRNA-binding protein 3	0.82	1.95	
	134193	F09570	Hs.7980	ESTs	0.98	1.48	
~ =	134367	X54199	Hs.82285	phosphoribosylglycinamide formyltransfer	1	2.8	
35	134402	U25165	Hs.82712	fragile X mental retardation; autosomal	1.26	2	
	134457	D86963	Hs.174044	dishevelled 3 (homologous to Drosophila	1	1.47	
	134469	X17567	Hs.83753	small nuclear ribonucleoprotein polypept	0.94	1.57	
	134498	M63180	Hs.84131	threonyl-tRNA synthetase	1.2	2.64	
4.0	134501	W84870	Hs.211568	eukaryotic translation initiation factor	0.84	1.36	
40	134507	M63488	Hs.84318	replication protein A1 (70kD)	1.7	2.93	
	134548	U41515	Hs.85215	Deleted in split-hand/split-foot 1 regio	1.46	2.73	
	134599	X99226	Hs.86297	Fanconi anemia; complementation group A	1.36	2.22	
	134692	R73567	Hs.8850	a disintegrin and metalloproteinase doma	0.77	1.64	
	134693	N70361	Hs.8854	ESTs	1.09	1.82	
45	134806	Z49099	Hs.89718	spermine synthase	0.98	1.35	
	134821	Z34974	Hs.198382	plakophilin 1 (ectodermal dysplasia/skin	0.99	1.4	
	134864	Y08999	Hs.90370	actin related protein 2/3 complex; subun	0.95	1.42	
	134914	U29615	Hs.91093	chitinase 1 (chitotriosidase)	1.16	1.29	
~ ^	134953	L10678	Hs.91747	profilin 2	0.95	1.76	
50	134993	AA282343	Hs.9242	purine-rich element binding protein B	0.98	1.73	
	135051	C15324	Hs.93668	ESTs	1.35	2.11	
	135158	U51711		Human desmocollin-2 mRNA; 3' UTR	0.86	1.16	
							1 1

Table 1B shows the accession numbers for those pkeys in Table 1A lacking unigenelD's. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the Accession column.

	Pkey: l	Unique Eos probeset identifier number
60	CAT number: (Gene cluster number
	Accession: (Senbank accession numbers

	Pkey	CAT	Accessions
65	100661 100667	23182_1 26401_3	BE623001 L05096 AA383604 AW966416 N53295 AA460213 AW571519 AA603655 L05424 X56794 S66400 X55150 W60071 AW351820 X55938 M83326 BE005289 BE070059 M83324 BE005248 BE069717 BE181648 BE069700 AW606203 BE069721 AW382138 AW803776 BE463954 BE005334 BE005274 T27386 A92714 AA972695 AW377728 AI632506 T29066
70			A1783934 AW377727 BE163715 AL047291 AA279047 AA523003 BE008048 BE440141 W23614 BE090519 BE092193 N29181 N20358 N44153 BE546944 T69231 AW377441 AA907406 H50799 AW051416 N420712 BE620922 AL279161 AA992549 W47198 BE005241 A1342696 H50700 A1969974 AI863855 AA374490 AW130675 AI950633 AA146687 H99482 X55150 BE005414 BE005339 N28294 AI673068 AI887890 AW804171 AI675961 AW804172 AA778841 AL048050 AI127757 AI095568 AW204965 AW468978 W31898 AI052595 AI278771 BE464018 AI081503 AI824196 AA513211 AA411062 AW084376 N48752 AA703209 N35580 AW059918 AA054563 AI280942 T27619 BE621435 N66010 AW589527 AI160414 AA283090 AA962536 H82726 W52115 W45432 W60433 AA577548 AA146714 BE150994 AA054615 AW796025 AW382768 BE565671 C00444 AA054555
75	100668	26401_3	AA0049393 L05424 X56794 S66400 X55150 W60071 AW351820 X55938 M83326 BE005289 BE070059 M83324 BE005248 BE069717 BE181648 BE069700 AW606203 BE069721 AW382138 AW803776 BE463954 BE005334 BE005274 T27386 AA932714 AA972695 AW377728 Al632506 T29066 AI783934 AW377727 BE163715 AL047291 AA279047 AA523003 BE008048 BE440141 W23614 BE090519 BE092193 N29181 N20358 N44153
80			BE546944 T69231 AW377441 AA907406 H50799 AW051416 Al420712 BE620922 Al279161 AA992549 W47198 BE005241 Al342696 H50700 Al969974 Al863855 AA374490 AW130675 Al950633 AA146687 H99482 X56150 BE005414 BE005339 N28294 Al673068 Al887890 AW804171 Al675961 AW804172 AA778841 AL048050 Al127757 Al095568 AW204965 AW468978 W31898 Al052595 Al278771 BE464018 Al081503 Al824196 AA513211 AA411062 AW084376 N48752 AA703209 N35580 AW059918 AA054563 Al280942 T27619 BE621435 N66010 AW589527 Al160414 AA283090 AA962536 H82726 W52115 W45432 W60433 AA577548 AA146714 BE150994 AA054615 AW796025 AW382768 BE565671 C00444 AA054555
85	101332	25130_1	J04088 NM_001067 AF071747 AJ011741 N85424 AL042407 AA218572 BE296748 BE083981 AL040877 AW499918 AW675045 H17813 BE081283 AA670403 AW504327 BE094229 AA104024 AI471482 AI970337 AA737616 AI827444 AW003286 AI742333 AI344044 AI765634

	• • • •	02,000.	AI948838 AW235336 AW172827 AA095289 BE046383 AI734240 W16699 AI660329 AI289433 AA933778 AW469242 AA468838 AA806983
5			AA625873 W78031 BE206307 AA550803 AI743147 AI990075 AA948274 AA129533 AI635399 AA605313 AI624669 AW594319 AI221834 AI337434 AA307706 BE550282 AI760467 AI630636 AI221521 AW674314 AW078889 AI933732 AI686969 AI186928 AW074595 AI127486 AL079644 AI910815 H17814 AA310903 AW137854 T19279 AA026682 AA306035 AW383390 AW383389 AW383422 AW383427 AW383395 H09977 AA306247 AA352501 AW403639 F05421 AA224473 AA305321 H93904 AA089612 AW391543 AW402915 AW173382 AW402701 AW403113
J			R94438 N73126 H93466 AA090928 AA095051 T29025 AW951071 L47277 L47276 Al375913 BE384156 W24652 AA746288 AA568223 BE090591 H93033 N57027 AA504348 AA327653 AW959913 N53767 AA843715 Al453437 AW263710 Al076594 AA583483 AW873194 AW575166 Al128799 Al803319 AL042776 AW074313 Al887722 Al032284 AA447521 Al123885 N29334 Al354911 AW090687 AA236763 AA435535 AA236910
10			AA047124 AA236734 AW514610 H93467 AA962007 Al446783 AA127259 Al613495 Al686720 Al587374 AA936731 AA702453 Al859757 AA216786 Al251819 Al469227 AA806022 Al092324 N71868 AA968782 AA236919 AA809450 AA227220 AA765284 Al192007 AA768810 AA805794 AA729280 AA806238 AW768817 N71879 Al050686 AA505822 AA668974 Al688160 BE045915 AW466315 AA731314 AA649568 AA834316 AW591901 AW063876 AW294770 Al300266 Al336094 Al560380 AA721755 H09978 D20305 D29155 AW821790 BE150864 F01675
	100780	458_127	Al457474 AW466316 AA550969 AA630788 BE561958 BE561728 BE397612 BE514391 BE269037 BE514207 BE562381 BE514256 BE514403 BE514250 BE397832 BE269598 BE559865
15		100_1-1	BE396881 BE560031 BE514199 BE560037 BE560454
	100830	4002_1	AC004770 W05005 AA356068 AA094281 H29358 T56781 AW875313 L37374 BE312466 BE311755 BE207106 BE293320 BE018115 AW239090 BE548830 AW247547 AA776062 BE397382 AA486713 T10111 T09340 AW498981 BE547280 AA356003 AW581520 AW875331 AA580720 AW875336 BE276873 BE408229 AW188148 BE255166 BE253761 AW793727 AW373141 AW581548 AA471223 AA305950 BE263976 AA626820 BE257409 AW360962 AA090655 C00312 BE312741 BE407213 AA209352 AW297199 AW248553 AW297794 AW731722 BE300586 AW731972
20			AW615446 BE301599 AW615520 AA486714 AW440257 AA196516 AA564630 AA618079 AW192592 AW474985 AA604580 Al627461 AA765440 Al680394 AL135548 Al683224 Al581126 AW245096 AW194154 H29274 N70363 AA629758 AA580602 AA862006 Al863841 Al097667 Al928583 Al358774 BE243487 AA620553 AA653297 AA292690 T10110 Z38906 AA908544 AA340930 Al185438 T03328 T28844 Al687010 Al864965 Al872575 BE388740 T56780 AW373138 BE258717 AA699671
25	100906	4312_1	AU076916 BE298110 AW239395 AW672700 NM_003875 U10860 AW651755 BE297958 C03806 AI795876 AA644165 T36030 AW392852 AA446421 AW881866 AI469428 BE549103 T96204 R94457 N78225 AI564549 AW004984 AW780423 AW675448 AW087890 AA971454 AA305698 AA879433 AA535069 AI394371 AA928053 AI378367 N59764 AI364000 AI431285 T81090 AW674657 AW674987 AA897396 AW673412 BE063175 AW674408 AI202011 R00723 AI753769 AI460161 AW079585 AW275744 AI873729 D25791 BE537646 T81139 R00722
	100930	16865_1	J04129 NM_002571 AA293088 AA477016 AA404631 T28299 AA476904 AA433965 AA430486 AA495907 Al151391 AA291495 AA402723 W25651
30	100300	10005_1	AA706816 Äl826712 AW296294 AA293479 Al276581 AW044154 Al080180 Al417985 Al274168 Al474212 AA495908 AA635664 Al092114 Al804952 AA479874 Al597661 Al420511 AA479738 AA421417 AA421247 AA436220 AL047797 M34046 N42277 AA228076 W02698 Al420297 AA434011 Al369971 AA479731 Al865541 Al418020 AA421246 AA452764 AL048051
	102221	3861_1	NM_006769 U24576 AW161961 AW160473 AW160465 AW160472 AW161069 AI824831 AW162635 AI990356 AW162477 AW162571 AI520836 AW162352 AW162351 AW162752 AI962216 AI537346 AA853902 H17667 BE045346 BE559802 BE255391 AA985217 AA235051 AI129757 AW366451 T34489 D56106 D56351 AI936579 AW023219 AW889335 AW889120 AW889232 AW889175 BE093702 AW889349 AA147546
35			A1952998 AA912579 A1143356 AW902211 R64717 AW157236 AI815242 D45274 AW263991 AA442920 AA129965 AL035713 Al923255 Al949082 A142826 Al684160 Al701987 AI678954 AI827349 BE463635 AW628092 AW302281 AA493203 BE348856 BE536419 AW193969 AW673561 AW592609 Al224044 H43943 AA091912 R49632 R48353 Al568409 R48256 A1980486 H43899 Al678759 Al680310 Al664220 H17052 AA156410 N56062 AI699430 AA664529 T09406 T10459 AA627506 AI379584 N1983831 N88633 AW022651 AA971281 AA248036 Al039197 AI914689 AA973825 AL047305 AA129866 AI798369 AW264348 Al445879 AI658759 N67924 AI933507 AI216121 AI333174 T10972 AI375028
40			A1914009 AA973025 AL047305 AA729906 A1795309 AW204046 A1440019 A1050739 NO7524 A1050507 A1270721 A1050774 1 10572 A1070020 A1186756 A1273778 AA610487 A1797946 AA853903 AA903939 A1338587 A1278494 AW627595 AA904019
10	101809	32963_1	M86849 AA315280 NM_004004 AA315269 BE142653 AA461400 AW802042 BE152893 AW383155 AA490688 AW117930 AW384563 AW384544 AW384566 AW378307 AW378323 AW839085 AA257102 AW378317 AW276060 AW271245 AW378298 AW384497 Al598114 AW264544 Al018136 AW021810 AA961504 AW086214 AW771489 AW192483 Al290266 AW192488 AW384490 AW007451 AW890895 AA554460 AA613715
45			AW020066 AI783695 AI589498 AI917637 AW264471 AW384491 AI816732 AW368530 AW368521 AW368463 AA461087 AI341438 AI970613 AI040737 AI418400 AA947181 AA962716 AI280695 AW769275 AW023591 AI160977 AA055400 N71882 AA490466 AW243772 AW316636 AI076554 AW511702 N69323 H88912 AA257017 AI952506 H88913 AI912481 AA600714 BE465701 N64149 C00523 N64240 AA677120
	102590	15932_1	R61573 BE005029 X98091 AA297307 BE537267 BE566138 BE566139 F11561 BE564795 BE568776 AW064005 BE566479 BE380035 BE567012 BE568634 BE566568 AA298060 BE566043 BE568813 BE568618 AA283070 BE565414 BE566738 BE568585 BE565667 BE566116 BE566433 U62136 AF049140 BE567057 BE567297 BE567403 BE564316 BE567400 BE568854 BE566588 AA448772 AA071363 AW732642 BE564996
50	-		AA297763 AA278550 AA421083 AA298184 AA091007 AA984577 AA205916 N28759 AL031291 C15757 C15761 H02728 BE566410 AA129335 AA419499 N87741 BE379689 BE004824 BE379611 D25874 AA148454 AA323654 AW950311 AA448795 AW749423 AA773886 AA773843 AW020327 BE348580 BE504258 BE549990 BE220200 AI673334 AI202679 AA975515 D61421 AI168688 AA102843 AW246621 AI276203 AI074054 AI633824 AI962927 AI148926 N50969 AI308911 AA410994 AW373025 AA148455 H02620 AA688293 AI246318 N22220 AI917777
55			AI050943 AI097286 AA663794 AW368662 AW627826 AW078734 AI253060 AA749154 AA832236 AI192358 AW024676 AA448676 AA764891 BE439467 AA661534 AA258061 AI090546 AA995157 AI051011 AA584421 AI026032 AW591338 AW589563 AA776914 AW024684 AA421002 F09219 BE464500 AI383595 AA954244 AA601583 AA737304 AA195549 AA805778 AI055876 AA164942 AW013961 AI672608 AW514211 D59441
60	101977	29073_1	AW582574 AA160935 BE566501 BE564612 BE565353 BE568195 BE565447 BE568302 BE566097 BE565470 BE564249 AL036217 AW749424 BE567494 AA102842 AA314761 AV661237 C14211 AA651866 AW798997 AA470605 AF112213 AL050318 T24804 AW248136 BE386341 BE263177 W16677 BE250224 BE563669 BE267405 BE546577 AV651354 AV651292 A1346903 A1539128 A189171 S83364 AW073849 AI816760 AW073309 AI422690 AA296692 A1860301 A1805446 N77735 A1340328 BE092530
			AW028742 BE088442 AA657742 AA742438 AW170086 Al038920 Al432379 N36073 Al936194 AA868655 AA983612 Al077505 BE080433 Al375014 Al126547 Al348244 Al346077 Al748952 N26915 Al753574 Al093341 Al278762 BE092517 N74204 H06158 T58149 Al129303 N58366 AA524456 BE122661 AA542925 Al246120 Al735203 AA706829 AA877544 Al082289 AA926687 N92840 AW249798 AA934763 AW998363
65			Al128632 N25202 Al240209 AW118892 N80744 R35655 Al342321 Al340141 AW878792 Al857321 H09610 W04601 AW006650 AA126006 AA553675 Al052791 AW059835 Al041906 AA814658 AW002059 AA729483 Al609301 AA994633 AA903651 Al459183 T95072 AW088630 AA126112 Al800091 Al561215 H17502 AW475072 Al819003 Al683272 Al262701 AW793140 T81787 R99586 Al275160 Al310420 Al698929 AA159174 Al827968 F30305 F30309 AA806662 Al091923 AW878722 AA583430 AW571913 Al674584 AA292533 Al079471 AA642325 AA719050
70			AW793172 AA305476 AW103745 T23459 N79525 A1784438 AA534551 AW193751 A1074360 BE281214 T32229 W25066 W01205 T63086 AW795348 A1361287 AW795353 AW795349 AA594759 A1400295 D11489 A1370689 AA482356 AA485295 W40151 AA564661 AW300745 A1346938 A1374975 A1423782 AW193899 AA612604 A183409 AA996156 AW366963 AW366977 A1284860 AA846503 A1985064 AA844576 AA737921 AA873274 BE241546 BE241540 AA484058 AW468970 AA127876 AA159120 AW001568 AW795213 AW795258 AW795330 BE250589
	102781	20812_1	BE387572 AA910895 AA161217 BE250380 W31500 T95167 AI719306 AI359224 BE258778 BE281230 BE410044 T33723 AW672694 AW410439 NM_006429 AF026292 T35505 BE542333 T08940 AU076737 AW247471
75	102761	20012_1	BE393215 AW328640 BE542408 T32170 BE302544 T31955 BE206898 BE275738 T32570 BE386426 BE298746 BE389937 BE239991 BE315289 BE389578 R34739 R15312 BE279365 BE277756 AL036019 T33725 BE277779 BE302962 AL047294 BE276505 T09070 T33673 BE312580 AW387774 BE257175 AW674367 BE253331 BE270344 BE29881 BE273576 T32062 Al751831 BE618381 AA304899 BE252268 U46364 BE256790 BE207199 BE256209 BE251941 BE250791 BE313955 BE269806 BE543623 BE279212 BE252289 T31699 BE262220 T31669
80			AA315781 AA192212 N84547 BE292737 BE259631 AA232179 Al133144 T31292 AA315945 BE407301 BE251184 BE409006 Al880158 Al904003 Al904114 AW651768 AW651763 R58247 BE271897 U83843 C05298 BE261609 BE255973 AA351650 N84631 BE263637 AW452910 AA328465 AA324549 AW579525 BE252296 BE257551 AL048332 BE208630 AA359336 AW327897 AA151742 AA305816 BE076862 BE076796 BE263161
			AA323785 AA676588 AA626565 AA078917 W87657 R09002 R94021 AA312032 BE276665 AA295608 AW407162 AA329374 AW877912 N27885 AA369256 AA360968 BE250476 N85427 BE265569 AI278639 AI816576 AI691037 AW328583 AI567949 AI983455 AI927732 AI811297 AI571508 AW073674 BE296039 BE467326 AI828796 AI816578 AW511604 AI921213 AW152427 AI795787 AI801618 AW168866 AI628144 AI890339
85			AW173690 AW511540 BE535620 AA383014 BE301164 Al866596 AW514909 AA658050 AW575243 AA074631 Al093488 AW575408 AW675443 AW615636 AW732207 AW377638 AA321784 AA641629 AA633105 AA527640 AW129146 AW615672 BE394607 AA483902 AW475032 BE378532

	***	<i>J</i> U2/U0U44	AA872808 Al469388 AW105268 BE047301 AW591843 AW410066 AW517153 Al950495 AA746641 Al914878 AA873185 Al696911 AA548625
			AA911505 AA148762 AW674535 AI587329 BE328328 AW270348 AA158225 AW117705 AW47499 AW519193 AA614757 AW664383 Al082647 AW590973 AI476711 AA192213 N88741 BE464552 AW072679 AI453708 AA152166 AA805924 AI581078 AI125768 AW173484 AI961980 BE300766 AI199698 AI636792 AW247333 AW272861 AA078818 AA150012 AA551232 AA678821 AW873869 AW768266 AI660315 AA319210
5			AA814551 AA157994 AA318886 AIS82962 AW089224 AI366098 AI343694 AW072598 N21054 AI301249 AA742924 H17917 AW328584 AW248898 AI751830 AA907816 R08898 AW087989 AI828300 AA148596 AI269577 T33426 AA213571 AI973201 AA666279 R49612 AI573183 AW799762 AW410068 AW769666 AI962097 AI475204 D57490 AW517531 BE245270 AW470008 T33427 AW005731 AI795795 T23753 AW272981 T15747 AA552875 T2364 AW361289 AI758558 BE207435 AA876958 T03361 AA883569 F37533 AA582321 AW082524 R42212 AA973847
10			T18900 AA086202 AI559867 AI302418 AA948667 AA745670 T08939 T33724 T33722 BE621568 D57489 D25906 BE621151 F16510 C05966 T35127 AA630427 AI933481 AA309426 AI918440 BE561854 BE618666 BE394675 BE596173 AW951687 BE3383739 BE616141 BE312730 BE5535351 AW080575 BE313330 BE616664 AI354390 AA847315 BE544509 BE515212 BE297833 BE278808 BE544844 AW090178 AI890664 BE546708 AW189943 BE274412 BE382399 BE266392 BE254949 BE280696 BE38237 BE281756 BE57721 BE312683 BE275476 BE514880 BE545314 BE313587 BE384537 BE386691 BE264813 AW592575 AI336332 AI278641 AI795791 BE222662 AW249316 AA314361 AL036012
15			AW402923 BE266845 AA075945 AA314436 BE384640 AW731769 AW957077 AA552234 AA573560 AW367038 AA313399 AI983873 BE410159 BE263803 BE514339 BE409073 BE281296 BE543396 BE395387 BE088360 BE546946 BE546570 BE390626 AA074638 AA301821 AW845230 AW582379 AI949222 AW029572 AA515843 AW272394 BE250234
20	119221		C14322 W74050 Al074232 AA595624 BE048955 Al148417 Al583145 Al473460 Al801688 AW573593 Al950741 Al628140 AW467921 R98105 Al149258 Al247584 Al078378 Al139850 AA489411 W24744 R98104 Al033826 AA699589 Al033120 N55544 W88984 AW970771 AA703362 AA099138 AA706792 AA046150 H98891 Al916674 AA693018 Al972749 Al921343 AA909044 AA094751 Al203124 AA582143 Al446654
20	405004		AW235418 R70377 AA99236 F20703 AA524436 R69484
	125831		H04043 D60988 D60337
25	128192 113195	178688 1	AI204246 AI204250 AI194050 H83265 T63524 AA304359 AW960551 AI672874 AI749427 AA227777 AW027055 AA971834 T49644 T54122 AI983239 AI808233 T91264 T96544 AI350945 AI709114 R72382 T48788 R48726 AW385418 AI095484 T49645 AA928653 AA570082 AW007545 T57178 AA516413 AA913118 T57112
25			AA564433 AA774503 AA367671 T59757
20	119861 112973	4868_1	W78816 AI720806 AI633854 AI632086 AI668663 N70894 AW571809 AI383592 AI201348 W80715 N91880 AW963101 AA339011 AB33023 BE391906 BE275965 BE277872 BE003882 AA313774 BE019159 BE298024 BE299727 BE300011 BE390277 BE394764 N87550 BE409419 BE408652 BE408197 AL119332 AA622427 AI816265 AA610118 T07318 AA019839 AA634430 BE205794 BE049461 AI042322 AI652711 AI917645 AA630045 AW191969 AI817882 T17271 AI803663 AI095533 H46019 AW592438 AI624836 AI675552 D51119 AW132058
30	400400		AA639614 AI925762 AW088153 T17455 AA018640 AW751475 BE300241 AI816255 BE391981 AW408671 AA353910 AW875446 AW875703 AW875926 AW875645 AW875647 AW938037 AL138042 AW892619 BE243018 AW995454 BE246381 BE009082 BE278921 AW967842 AA262454 H30121 W72062 AF088057 W76255 AI827219 AI631461 AW449295 AI354957 AI913803 T62772 AI222040 T62921 T63781
35	129402 105936	260931_1	Al678765 H12175 R14664 Al914049 AA995383 H08009 H19418 AW953728 Al358021 AA587361 Al269377 AA369905 AW957113 H27693 Al300474 H73776 W74397 AA579604 Al131018 W72331 Al719085 AA568348 Al859045 Al814819 Al888714 BE467470 AW131268 H19419 H27694 Al342165 Al914155 AA534872 BE018176 R60206 H11647 R45641 Al860466 BE301656 Al125453 Al498120 AA593735 AA879110 Al016404 T35018 AA588397 AW449767 AA470365 BE501139 AA588354 Al337500 AW078532 Z41279 Al125449 AA935725 AA404338
	129466	2094_50	L42583 NM_005554 L42601 BE183076 Al541221 BE140567 L42610 V01516 J00269 AW275792 AW383052 AW380143 Al541102 BE612846
4.0			AI541344 AW238368 BE613405 BE615705 BE615530 BE615301 AW379823 AW794706 AA194806 AA194992 AW384024 AW384000 AA641239
40			AI246504 AI540333 AW238681 AA640939 AI540863 AI608860 AW862564 AW366725 AW368983 AW366870 AA596020 AW794721 AW794511
			Al591181 BE182523 AW794644 AW794620 Al935234 Al608903 Al608623 AW797060 AW084935 BE182517 BE182319 Al890082 AW238346
			AW797012 BE182522 AW794838 AI608794 AW304289 AA147193 AA595995 AW381128 AW366720 AA583718 AI828416 BE122864 AW368343 AA431080 AW082039 AW380976 AA587144 AA443636 AW872937 AW794448 AW378382 AW085761 AW794718 AW263895 AA583587
			AA583991 AA583994 AA586886 AA586880 AW368365 AI814460 AA586991 AI82829 AW378406 AA586721 AI609242 AA431973 AA232959
45			AJ831095 AW263854 AW378391 AW378415 AW378381 AA036990 AW238395 AJ285446 BE208219 BE049526 AA583605 AA583918 AW366711
			A)285580 AW082642 A)285712 AA582875 AW591216 AW368719 AW378408 BE122835 AA582976 BE350422 AA418328 A)541454 A)565930
			AA583700 AA150575 AW238427 Al287474 AA912658 AA584223 AW238528 C17918 AW136169 AA159847 Al923797 Al609009 BE182479
			AI915198 AW378114 AA147179 AA584239 AA150532 AW168862 AW085999 AW082480 AA659742 AW079703 AI872793 AA583981 AI824571
5 0			BE182316 BE182507 AA233331 Al824572 Al540586 D29492 BE182931 AA036948 BE551821 D29401 AW378385 C00141 D29181 D29567
50			AW103359 W95238 Al991663 AA587298 BE184608 AA099833 W95121 W95150 D29584 Al934111 D29456 D29533 AW265380 D29290 AW238463 AA121041 D29204 AA595925 D29441 AW081840 AA587018 D29323 AA582891 BE182433 BE182437 BE158295 BE182434
	100220	45374_1	AW230463 AA121041 D29204 AA399923 D29441 AW001640 AA361016 D29323 AA362691 BE102433 BE102437 BE100293 BE102434 AW015534 AA314369 AA290715 BE568683 AW629494 D28364 AW995678
	100225	12538 1	AJ907114 AA580734 AL041945 AA101515 AA121344 D78130 NM 003129 AA341650 T84166 AF098865 AA130976 BE089553
		H05719 F13446	6 T66122 AW175590 F05344 AI114790 R12900 AA194871 AA132298 D78129 AA132213 AW948930 AW948919 AA263053 AW946593 AW948840
55			AA278558 R50895 N26940 N40818 AW021255 AA054851 AA663379 AW948795 AW948893 AA400356 AW948911 N85024 W78844 AI341546
			Al760182 AA286783 BE617763 BE617263 AW263690 BE049454 BE617928 AW515038 AW950584 AA601009 Al079194 AA147204 AW083163 AA130981 Al218369 AA604784 Al806257 Al559556 AA232318 AA258065 Al471982 AA687949 Al143944 N30172 AA400196 Al769049 Al084342
			A1221380 AA948469 A1802469 H05720 AA113270 AA158138 AA076231 A1521024 A1810962 A1133616 AA805106 AA101516 R40052 R50778
			R43280 T65036 AW131924 AA114251 AA152331 F09650 AA580614 AA558927 C75491 Z38352 AA954595 C75606 W80742
60	100491	34803_1	D56165 M36981 X58965 NM_002512 BE379177 AA314836 BE256445 BE252016 AW248343 AI720933 AW085701 BE386050 BE619742
	BE277805	AA147951 AA60)3113 BE253293 Al246588 Al ¹ 83405 Al954174 Al126891 Al829101 Al123832 AW129670 AA471268 AW170242 AW873079 AA148011 Al608620 AA482961 Al003658 H43261 AA657978 Al735072 R83138 AA722002 AA626271 AW273877 BE464626 AA071483 AA429973 AA494342
			A4620436 A4775597 A4775601 AA826847 A192585 AA826359 AA411159 A111159 A11159 A1159 A11159
			Al128227 AA828464 Al148911 Al493446 Al626084 Al189180 Al721196 Al190618 AA284987 Al128543 AA632064 Al333073 Al278470 AA131688
65			Al491768 AA937581 AA630065 AA834257 AW249841 AA583742 Al309756 AA961676 Al760860 AA557818 AA954238 H43655 Al302564
			AA127545 Al609219 H20426 Al042292 Al056466 AA581836 W47002 AA422057 AA937673 F29757 AA829208 AW327462 AA372098 W02144 AA036805 AA487365 AA961037 Al139946 AA487250 AA737118 Al952504 Al242293 AA650552 Al708401 Al633133 AA630848 AA654317 F24128
			Ad30165 A446752 AW043879 A(033763 F37228 AA687809 N49087 AA676981 AA506947 A)914572 Al633284 F22253 AA026222 R50166
			A)219267 N27095 AA496512 A)784222 A)289904 AA513146 AA528547 AA418700 F36721 A)880700 A)601170 A)862851 A)708633 AA524499
70			AA642220 AA496628 AI718709 W80579 AI720547 F20718 AA649943 AA588229 N40503 H46029 BE262669 BE391069 BE537538 AI510751
			A1906968 A1318611 H46099 A1472604 T60667 AA373087 W32479 AA514034 BE619183 AA134672 AA127544 H26942 BE536689 AW327461
			AA422139 AW262357 AW327348 F33510 Al630382 AW827126 F27133 Al335189 AW517599 W80471 AA885814 N89681 BE393173 AA617760 AA584268 AA460537 AA446261 H20425 N64040 AW276801 AA316367 AA071232 BE545409 AA308292 BE274447 AA380861 AA340038
			A334286 A4865579 A[018634 A]766314 Al919302 AA872367 A991404 A]906961 AA888375 BE621012 AA505388 AA935192 AA290828
75			R50220 H50814 H44721 AW951723 AA514796 AA418708 AW673377 AA379622 AA977995 AA708224 AA708216 Al318249 Al318233 AA411160
	1005:3	10105 1	AA026221 AA316774 AA486908 AI500094 AA096362 AW583742 BE536422 BE618653 R70203 AA131732 AA345048 BE562720 T28342
	100518	13165_1	NM_004415 AL031058 M77830 BE149760 AW752599 AW848723 AW376697 AW376817 AW376699 AW848371 AW376782 AW848789 AW361413 AW849074 AW997139 AW799304 AW799309 BE077020 BE077017 BE185187 AW997196 BE156621 BE179915 BE006561 BE143155
			AW890985 BE002107 AW103521 AA857316 AW383133 BE011378 AW170253 BE185750 AW886475 BE160433 J05211 BE082576 BE082584
80			BE004047 AW607238 AW377700 AW377699 BE082526 BE082505 BE082507 BE082514 AW178000 AW177933 Al905935 AW747877 AW748114
			BE148516 AW265328 AW847678 AW847688 AW365151 AW365148 AW365153 AW365156 AW365175 AW365157 AW365154 AW068840
			BE005272 AW365145 BE001925 BE182166 BE144243 BE001923 Al951766 Al434518 BE184920 BE184933 Al284090 BE184941 AW804674 BE184924 C04715 W39488 AW995615 BE184948 BE159646 AW606653 AA099891 AA131128 AA337270 AA340777 AW384371 AA852212
			BE184924 C04/15 W39488 AW995615 BE164948 BE159645 AW606653 AA099891 AA131128 AA337270 AA340777 AW364371 AA652212 R58704 AW366566 AW364859 AA025851 AA025852 AA455100 AA719958 AW352220 AW996245 BE165351 BE073467 AA377127 AW890264
85			AW609750 AW391912 AW84990 T87267 AW853812 AA852213 W74149 BE009090 AA056401 H91011 AW368529 AW390272 C18467

	WC	0 02/086443	PCT/US02/12476
5		Al022862 AW20578 Al392926 AW37082 Al470146	N57176 AA026480 AW576767 H93284 AA026863 AW177787 AA026654 AW177786 BE092134 BE092137 BE092136 AW177784 E091653 AW376811 AW848592 AA040018 BE185331 BE182164 AA368564 AW951576 T29918 AA131077 W95048 W25458 H90899 N29754 W32490 R20904 BE167181 BE167165 N84767 H27408 H30146 Al190590 C03378 Al55403 Al205263 AA128470 F139065 AW370813 AW370827 AW798417 AW798780 AW798888 AW798569 R33557 AA149190 C03029 AW1777783 AA088866 AA247685 BE002273 Al760816 Al439101 AW879451 Al700963 AA451923 Al340326 Al590975 T48793 Al568096 Al142882 AA039975 A946936 BE067737 BE067786 W19287 AA644381 AA702424 Al417612 Al306554 Al686869 Al568892 AW190555 Al571075 Al220573 Al471874 Al304772 AW517828 Al915596 Al627383 Al270345 AW021347 AW166807 AW105614 Al346078 AA552300 W95070
10		AA026047 AI927207	1911702 AA149191 AA026864 A1830049 A1887258 AW780435 A1910434 A1819984 A1858282 A1078449 A1025932 A1860584 A1635878 AA703232 D12062 AW192085 AA658154 AW514597 AW591892 T87181 AA782066 AW243815 AW150038 AW268383 AW004633 A782109 AW473233 A1804485 AW169216 A1572669 AA602182 AW015480 AW771865 A1270027 AA961816 AA283207 A1076962 1348053 A1783914 H44405 AW799118 AA128330 AA515500 AA918281 W02156 A1905927 AA022701 W38382 R20795 T77861
15	100528	45979_1 BE38680* Al638794 H42334 H AA188808	AU077299 AA143755 BE302747 AA853375 U30162 BE274163 BE277479 BE408180 BE274874 C15000 AA047476 N27099 Al359165 1151283 Al863925 AW444977 Al207392 AA931263 AA443112 R40138 AW068538 AA351008 AA676972 R62503 AA916492 AW001865 8280 AA121497 AA114137 Al750938 M17783 AA383786 BE274462 Al753182 C05975 AA347404 AW069298 Al754351 Al754044 AA186879 AA565243 AL040655 AA456177 Al750722 AA045756 AA213580 C16936 AW578747 AW753731 H41632 N44761 R58560 039902 N59721 AW992543 R68380 AA149686 T29017 H03739 BE383822 BE387105 BE408251 BE410425 H41560 AA247591
20	100559	2260_1 NM_0000 AW79700 AW59199	AI752233 AI566195 AA868004 AI424523 AW753720 AA852159 BE386803 LO2870 D13694 S51236 M96984 AW946290 M65158 AI285422 D29523 AL119886 AW630655 L06862 AI884355 AW168737 T29085 AW801340 AI355504 AW079048 AW801337 AI690455 AI972063 AW268565 W68588 AA587326 AA883498 AI033523 AW510356 H98463 AL043852 AI150055 AI566239 AI624803 AA844717 H40670 AA922334 AI864424 AW615094 AW451233 AI302203 F31221 J68589 AA904478 AI917631 AW014208 AW450759 AA847625 AI284033 AA848176 AA598507
25	100576 124357 101624 101625 135158	9986_1 X00356 N genbank_N22401 entrez_M55998 M55998 entrez_M57293 M57293 57963_1 AL037551	_001741 M26095 X03662 M12667 X02330 X02330 AA716058 AW296074 X04861 Al695720 AA719597 N22401 N804716 AW439811 Al569470 AA075299 Al738572 Al270388 Al816783 AW263026 Al633951 Al655285 Al990572 Al950425 AA916883 AA576693 AA160156 AA613783 AW078884 Al888282 Al275241 Al133467 AA164921

Tables 2A-8C were previously filed on November 9, 2001 in USSN 60/339,245 (18501-004100US)

Table 2A shows 504 genes down-regulated in lung tumors relative to normal lung and chronically diseased lung. Chronically diseased lung samples represent chronic non-malignant lung diseases such as fibrosis, emphysema, and bronchitis. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

	Pkey:			identifier number									
	ExAccn: Unigenell		Exemplar Accession number, Genbank accession number Unigene number										
10	Unigene	Title: Unidens	gene title										
	R1: 90th pe			or normal lung samples divided by the 80th percer	itile of Al for a	denocarci	noma and	squamou	s cell carc	inoma lung	j tumor		
	R2:	median	nples. dian of Al for normal lung samples divided by 90th percentile of Al for adenocarcinoma and squamous cell carcinoma lung tumor samples.										
R3: median of Al for normal lung samples minus the 15th percentile of Al for all normal lung, chronically diseas									ind tumor.	samples di	ivided by		
15		lung ch	ronically disea	ased lung and tumor samples.						At IOI all III	Jilla		
	R4· average		ge of Al for normal lung samples divided by average Al for squamous cell carcinoma and adenocarcinoma lung tumors.										
	R5; median R6; median		of AI for normal lung samples divided by the 90th percentile of AI for adenocarcinomas. of AI for normal lung samples minus the 15th percentile of AI for all normal lung, chronically diseased lung and tumor samples divided by the 90th										
20	percent		ile of At for adenocarcinomas minus the 15th percentile of Al for all normal lung, chronically diseased lung and tumor samples.										
	R7: R8:	average median	of AI for normal lung samples divided by the 90th percentile of AI for squamous cell carcinomas. of AI for normal lung samples minus the 15th percentile of AI for all normal lung, chronically diseased lung and tumor samples divided by the 90th									ne 90th	
percentile of Al for squamous cell carcinomas minus the 15th percentile of Al for all normal lung, chronically disease									ed lung an	d tumor sa	mples.		
25	Pkey	ExAcen	UnigeneID	Unigene Title	R1	R2	R3	R4	R5	R6	R7	R8	
23	•		•										
	100095 100115	Z97171 NM_002084	Hs.78454 Hs.336920	myocilin; trabecular meshwork inducible glutathione peroxidase 3 (plasma)	40.20							3.46	
	100113	U83508	Hs.2463	angiopoietin 1			2.30						
30	100299	D49493	Hs.2171 Hs.80598	growth differentiation factor 10 transcription elongation factor A (SII);		11.00				3.06			
	100306 100447	U86749 NM_014767		KIAA0275 gene product						4,55		3.16	
	100458	S74019	Hs.247979	Vpre-B	42.40					4.13			
35	100862 100959	AA005247 AA359129	Hs.285754 Hs.118127	Hepatocyte Growth Factor Receptor actin; alpha; cardiac muscle				125.60		4.10			
	101032	BE206854	Hs.46039	phosphoglycerate mutase 2 (muscle)	36.40			34.60					
	101081 101088	AF047347 X70697	Hs.4880 Hs.553	amyloid beta (A4) precursor protein-bind solute carrier family 6 (neurotransmitte				193.20					
40	101125	AJ250562	Hs.82749	transmembrane 4 superfamily member 2				E4 0C		3.10			
40	101180 101308	U11874 L41390	Hs.846	interleukin 8 receptor; beta "Homo sapiens core 2 beta-1,6-N-acetylgl	33.20			54.86					
	101330	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do				36.40					
	101345 101346	NM_005795 Al738616	Hs.152175 Hs.77348	Calcitonin receptor-like hydroxyprostaglandin dehydrogenase 15-(N			2.29	70.55					
45	101340	M26380	Hs.180878	lipoprotein lipase								3.54	
	101414	NM_000066 NM_001100	Hs.38069	complement component 8; beta polypeptide actin; alpha 1; skeletal muscle				34.60			3.81		
	101435 101507	X16896	Hs.82112	interleukin 1 receptor; type l				37.60					
50	101530	M29874	Hs.1360	cytochrome P450; subfamily IIB (phenobar			2.54					4.25	
30	101537 101542	AI469059 NM_000102	Hs.184915 Hs.1363	zinc finger protein; Y-linked cytochrome P450; subfamily XVII (steroid		5.50	2.04						
	101545	BE246154	Hs.154210	EDG1; endothelial differentiation, sphin	39.40	13.00							
	101554 101560	BE207611 AW958272	Hs.123078 Hs.83733	thyroid stimulating hormone receptor Intercellular adhesion molecule 2, exon		13.00						3.38	
55	101574	M34182	Hs.158029	protein kinase; cAMP-dependent; catalyti						4.37		3.80	
	101605 101621	M37984 BE391804	Hs.118845 Hs.62661	troponin C; slow guanylate binding protein 1; interferon-	30.20							3.00	
	101680	AA299330	Hs.1042	Sjogren syndrome antigen A1 (52kD; ribon						יי מי	2.75		
60	101829 101842	AW452398 M93221	Hs.129763 Hs.75182	solute carrier family 8 (sodium/calcium mannose receptor; C type 1				38.20		3.37			
00	101961	AW004056	Hs.168357	"Hs-TBX2=T-box gene {T-box region} [huma			2.32					C 05	
	101994 102020	T92248 AU077315	Hs.2240 Hs.154970	uteroglobin transcription factor CP2			2.45					6.85	
_ _ _	102091	BE280901	Hs.83155	aldehyde dehydrogenase 7								6.75	
65	102112 102190	AW025430 AA723157	Hs.155591 Hs.73769	forkhead box F1 folate receptor 1 (adult)	54.60							3.98	
	102190	NM_000507		fructose-bisphosphatase 1								3.62	
	102241	NM_007351 U33839	Hs.268107	Multimerin Accession not listed in Genbank		7.00	2.32						
70	102310 102397	U41898		"Human sodium cotransporter RKST1 mRNA,	29.40	7.00							
	102571	U60115	Hs.239069	"Homo sapiens skeletal muscle LIM-protei						3.07		3.75	
	102620 102636	AA976427 U67092	Hs.121513	Human clone W2-6 mRNA from chromosome X "Human ataxia-telangiectasia locus prote			2.40			0.01			
75	102667	U70867	Hs.83974	solute carrier family 21 (prostaglandin			3.15			3.56			
75	102675 102698	U72512 M18667	Hs.7771 Hs.1867	"Human B-cell receptor associated protei progastricsin (pepsinogen C)						3.30		4.51	
	102727	U79251	Hs.99902	opioid-binding protein/cell adhesion mol	07.40				12.00				
	102852 103026	V00571 X54162	Hs.75294 Hs.79386	corticotropin releasing hormone thyroid and eye muscle autoantigen D1 (6	37.40				13.00				
80	103028	X54380	Hs.74094	pregnancy-zone protein	28.80								
	103098 103117	M86361 X63578	Hs.295449	Human mRNA for T cell receptor; clone IG parvalbumin		6.00			10.00				
	103241	X76223		H.sapiens MAL gene exon 4			2.47						
85	103280 103360	U84722 Y16791	Hs.76206 Hs.73082	Cadherin 5, VE-cadherin (vascular epithe keratin; hair; acidic; 5			2.69				2.16		
0.5	100000	1 10101	110.1 0002	nordan, nan, dolato, o							-		

	W	O 02/086	6443							PCT/	US02/1	12476
	103496	Y09267 Y10141	Hs.132821	flavin containing monooxygenase 2 "H.sapiens DAT1 gene, partial, VNTR"						3.27		5.97
	103508 103561	NM_001843	Hs.143434	contactin 1			2.40			0.27		
5	103569 103575	NM_005512 Z26256	Hs.151641	glycoprotein A repetitions predominant "H.sapiens isoform 1 gene for L-type cal			2.99			4.18		
3	103627	Z48513		H.sapiens XG mRNA (clone PEP6)						3.44		
	103767 103850	BE244667 AA187101	Hs.296155 Hs.213194	CGI-100 protein Hypothetical protein MGC10895; sim to SR				46.55			2.25	
10	104078	AA402801	Hs.303276	ESTs						3.05		
10	104326 104352	AW732858 BE219898	Hs.143067 Hs.173135	ESTs dual-specificity tyrosine-(Y)-phosphoryl						3.54 3.16		
	104398	AI423930	Hs.36790	ESTs; Weakly similar to putative p150 [H	64.80							3.38
	104473 104493	Al904823 AW960427	Hs.31297 Hs.79059	ESTs ESTs; Moderately similar to TGF-BETA REC			2.47					0.00
15	104495	AW975687	Hs.292979	ESTs ESTs	28.60					3.42		
	104595 104597	A1799603 A1364504	Hs.271568 Hs.93967	ESTs; Weakly similar to Slit-1 protein [6.00				0.12		
	104659 104686	AW969769 AA010539	Hs.105201 Hs.18912	ESTs ESTs	34.00	11.00						
20	104691	U29690	Hs.37744	ESTs; Beta-1-adrenergic receptor	56.80			00.40				
	104764 104776	AI039243 AA026349	Hs.278585	ESTs ESTs	34.20			60.40				
	104825	AA035613	Hs.141883	ESTs			3.03					
25	104865 104942	T79340 NM_016348	Hs.22575 Hs.10235	Homo sapiens cDNA: FLJ21042 fis, clone C ESTs	41.20							3.27
	104989	R65998	Hs.285243	ESTs				40.00				3.20
	105062 105101	AW954355 H63202	Hs.36529 Hs.38163	ESTs ESTs	34.20							
30	105173	U54617	Hs.8364	ESTs ESTs		16.00						4.17
50	105194 105226	R06780 R58958	Hs.19800 Hs.26608	ESTs		10.00	2.34					
	105256 105394	AA430650 BE245812	Hs.16529 Hs.8941	transmembrane 4 superfamily member (tetr ESTs			2.72 2.61					
25	105647	Y09306	Hs.30148	homeodomain-interacting protein kinase 3	33.60							0.50
35	105789 105817	AF106941 AA397825	Hs.18142	arrestin; beta 2 synaptopodin						4.46		3.59
	105847	AW964490	Hs.32241	ESTs			0.40	35.40				
	105894 105999	Al904740 BE268786	Hs.25691 Hs.21543	calcitonin receptor-like receptor activi ESTs		7.00	3.43					
40	106075	AA045290	Hs.25930	ESTs	34.80			42.60				
	106178 106381	AL049935 AB040916	Hs.301763 Hs.24106	KIAA0554 protein ESTs	34.00				12.00			
	106467	AA450040	Hs.154162	ADP-ribosylation factor-like 2				96.40		3.69		
45	106536 106569	AA329648 R20909	Hs.23804 Hs.300741	ESTs sorcin				47.20		,		
	106605 106842	AW772298 AF124251	Hs.21103 Hs.26054	Homo sapiens mRNA; cDNA DKFZp564B076 (fr novel SH2-containing protein 3			2.55	220.40				
	106844	AA485055	Hs.158213	sperm associated antigen 6	39.20							
50	106870 106943	A1983730 AW888222	Hs.26530 Hs.9973	serum deprivation response (phosphatidyl ESTs			2.28					4.28
50	106954	AF128847	Hs.204038	ESTs					40 AC			4.32
	107106 107163	AA862496 AF233588	Hs.28482 Hs.27018	ESTs ESTs			2.57		10.45			
<i>5 5</i>	107201	D20378	Hs.30731	EST		8.00				3.84		
55	107238 107376	D59362 U90545	Hs.330777 Hs.327179	EST solute carrier family 17 (sodium phospha		10.67						
	107530	Y13622	Hs.85087	latent transforming growth factor beta b			2.32	34.60				
	107688 107706	AW082221 AA015579	Hs.60536 Hs.29276	ESTs ESTs	28.40			34.00				
60	107723 107727	AA015967 AA149707	Hs.173091	EST DKFZP434K151 protein				80.80		3.29		
	107750	AA017291	Hs.60781	ESTs				51.40		244		
	107751 107873	AA017301 AK000520	Hs.235390 Hs.143811	ESTs ESTs		9.00				3.14		
65	107899	BE019261	Hs.83869	ESTs; Weakly similar to !!!! ALU SUBFAMI				44.00		3.65		
	107994 107997	AA036811 AL049176	Hs.48469 Hs.82223	ESTs Human DNA sequence from clone 141H5 on c				44.60 32.00				
	108041	AW204712	Hs.61957	ESTs				30.80			4.75	
70	108048 108338	AI797341 AA070773	Hs.165195	ESTs "zm53g11.s1 Stratagene fibroblast (#9372			2.33					
	108434	AA078899		"zm94b1.s1 Stratagene colon HT29 (#93722 "zm92a11.s1 Stratagene ovarian cancer (#						3.06	2.92	
	108447 108480	AA079126 AL133092	Hs.68055	ESTs				34.00		0.00		
75	108499 108535	AA083103 R13949	Hs.226440	"zn1b12.s1 Stratagene hNT neuron (#93723 Homo sapiens clone 24881 mRNA sequence					19.00			3.36
, 5	108550	AA084867		"zn11f6.s1 Stratagene hNT neuron (#93723			0.00		12.00			
	108604 108625	AA934589 AW972330	Hs.49696 Hs.283022	ESTs ESTs			2.33					5.82
90	108629	AA102425	. 10.200022	"zn24c6.s1 Stratagene neuroepithelium NT		7.00					3.42	
80	108655 108756	AA099960 AA127221	Hs.117037	"zm65c6.s1 Stratagene fibroblast (#93721 Homo sapiens mRNA; cDNA DKFZp564N1164 (f		7.00 6.05						
	108864	Al733852	Hs.199957	ESTs	28.80	• •						
	108895 108921	AL138272 Al568801	Hs.62713 Hs.71721	ESTs ESTs	32.80			57.80				
85	108967	AA142989	Hs.71730	ESTs	28.80							

	\mathbf{W}	O 02/086	5443							PCT/U	U S02/ 1	12476
	109001 109003	Al056548 AA147497	Hs.72116 Hs.71825	ESTs, Moderately similar to hedgehog-int ESTs			2.57				2.11	
	109003	AA156235	Hs.139077	EST		5.60					2	
5	109065	AA161125	Hs.252739	EST					10.00		3.44	
3	109250 109490	H83784 AA233416	Hs.62113 Hs.139202	ESTs; Weakly similar to PHOSPHATIDYLETHA ESTs							2.92	
	109510	A1798863	Hs.87191	ESTs		40.00	2.40					
	109578 109601	F02208 F02695	Hs.27214 Hs.311662	ESTs EST		10.00		40.80				
10	109613	H47315	Hs.27519	ESTs				54.40				
	109650 109682	R31770 H18017	Hs.23540 Hs.22869	ESTs ESTs	31.20	8.40						
	109002	D59899	Hs.127842	ESTs		0.10		29.40				
15	109782	AB020644 R79864	Hs.14945	long fatty acyl-CoA synthetase 2 gene ESTs		10.00			8.00			
13	109833 109837	H00656	Hs.29889 Hs.29792	ESTs		10.00	6.49					
	109977	T64183	Hs.282982	ESTs				107.00			2.75	
	109984 110146	Al796320 H41324	Hs.10299 Hs.31581	ESTs ESTs; Moderately similar to SYNTAXIN 1B				107.00			2.22	
20	110271	H28985	Hs.31330	ESTs	44.00					3.48		
	110280 110420	AW874263 R93141	Hs.32468 Hs.184261	ESTs ESTs	44.20			32.00				
	110578	T62507	Hs.11038	ESTs	28.40							
25	110634 110726	R98905 AW961818	Hs.35992 Hs.24379	ESTs potassium voltage-gated channel; shaker-					20.00			4.15
23	110837	H03109	Hs.108920	ESTs; Weakly similar to semaphorin F [H.				56.80				
	110875	N35070	Hs.26401	tumor necrosis factor (ligand) superfami ESTs; Moderately similar to cytoplasmic		5.33	3.13					
	110894 110971	R92356 Al760098	Hs.66881 Hs.21411	ESTs Moderately similar to cytopiasmic		3.33		44.60				
30	111023	AV655386	Hs.7645	ESTs	32.40				47 4 4			
	111057 111247	T79639 AW058350	Hs.14629 Hs.16762	ESTs Homo sapiens mRNA; cDNA DKFZp564B2062 (f					17.14		4.58	
	111330	BE247767	Hs.18166	KIAA0870 protein								3,42
35	111374 111442	BE250726 AW449573	Hs.283724 Hs.181003	ESTs; Moderately similar to HYA22 [H.sap ESTs				33.20				3.91
33	111737	H04607	Hs.9218	ESTs				53.00				
	111747 111807	Al741471 R33508	Hs.23666 Hs.18827	ESTs ESTs	46.20	16.00						
	111862	R37472	Hs.21559	EST		10.00				3.91		
40	112045	Al372588	Hs.8022	TU3A protein							2.74 4.92	
	112057 112214	R43713 AW148652	Hs.22945 Hs.167398	EST ESTs					13.00		4.32	
	112263	R52393	Hs.25917	ESTs		0.00	2.43					
45	112314 112324	AW206093 R55965	Hs.748 Hs.26479	ESTs limbic system-associated membrane protei		9.00			14.00			
	112362	AW300887	Hs.26638	ESTs; Weakly similar to CD20 receptor [H			2.49					
	112380 112425	H63010 AA324998	Hs.5740 Hs.321677	ESTs ESTs; Weakly similar to !!!! ALU SUBFAMI		8.00	2.34					
70	112473	R65993	Hs.279798	pregnancy specific beta-1-glycoprotein 9				00.00		4.53		
50	112492 112541	N51620 AF038392	Hs.28694 Hs.116674	ESTs ESTs				29.80		3.62		
	112620	R80552	Hs.29040	ESTs			2.37					
	112623 112867	AW373104 T03254	Hs.25094 Hs.167393	ESTs ESTs			2.26		12.00			
55	112894	T08188	Hs.3770	ESTs		6.50			,2,00			
	112954 113029	AA928953 AW081710	Hs.6655 Hs.7369	ESTs ESTs; Weakly similar to !!!! ALU SUBFAMI		7.00						4.39
	113025	AA346839	Hs.209100	DKFZP434C171 protein								4.47
60	113140	T50405	Hs.175967	ESTs		14.00			10.00			
00	113252 113257	NM_004469 AI821378	Hs.11392 Hs.159367	c-fos induced growth factor (vascular en ESTs		14.00				3.72		
	113394	T81473	Hs.177894	ESTs	25.00					3.60		
	113437 113454	T85349 Al022166	Hs.15923 Hs.16188	EST ESTs	35.00	6.00						
65	113502	T89130		ESTs	39.60							2.00
	113552 113645	A1654223 T95358	Hs.16026 Hs.333181	ESTs ESTs							2.58	3.88
	113691	T96935	Hs.17932	EST				38.20				
70	113706 113883	AA004693 U89281	Hs.269192 Hs.11958	ESTs oxidative 3 alpha hydroxysteroid dehydro			2.31			3.09		
70	113924	BE178285	Hs.170056	Homo sapiens mRNA; cDNA DKFZp586B0220 (f	30.40		2.01					
	114035	W92798	Hs.269181 Hs.114727	ESTs ESTs					13.00		•	5.00
	114058 114084	AK002016 AA708035	Hs.12248	ESTs				40.60				0.00
75	114121	H05785	Hs.25425	ESTs		7.00	2.31					
	114124 114275	W57554 AW515443	Hs.125019 Hs.306117	Human lymphoid nuclear protein (LAF-4) interleukin 13 receptor; alpha 1		7.00 6.00						
	114297	AA149707	Hs.173091	DKFZP434K151 protein				48.80		3.45		
80	114427 114449	AA017176 AA020736	Hs.33532	ESTs; Highly similar to Miz-1 protein [H "ze63b11.s1 Soares retina N2b4HR Homo sa					10.00	0.40		•
	114452	Al369275	Hs.243010	ESTs, Moderately similar to RTC0_HUMAN G		14.00				2 42		
	114609 114648	AA079505 AA101056		"zm97a5.s1 Stratagene colon HT29 (#93722 "zn25b3.s1 Stratagene neuroepithelium NT				35.40		3.13		
0.5	114731	BE094291	Hs.155651	Homo sapiens HNF-3beta mRNA for hepatocy						-		3.42
85	114762	AA146979	Hs.288464	ESTs	33.00							

	\mathbf{W}	O 02/086	6443							PCT/	US02/1	2476
	114776	AA151719	Hs.95834	ESTs	34.40							
	115009 115272	AA251561 AW015947	Hs.48689	ESTs ESTs; Weakly similar to hypothetical L1	30.20 32.60							
_	115279	AW964897	Hs.290825	ESTs		6.00			40.00			
5	115302 115365	AL109719 AW976252	Hs.47578 Hs.268391	ESTs ESTs					12.00	3.32		
	115559	AL079707	Hs.207443	ESTs				48.00		0.42		
	115566	AI142336	Hs.43977	ESTs Weekly similar to (defline not sup	31.40			56.20				
10	115683 115744	AF255910 AA418538	Hs.54650 Hs.43945	ESTs, Weakly similar to (defline not ava ESTs; Highly similar to dJ1178H5.3 [H.sa	31.40			33.60				
	115819	AA486620	Hs.41135	Endomucin 2			2.40	74.40		•		
	115949 115965	Al478427 AA001732	Hs.43125 Hs.173233	ESTs ESTs			3.18	388.80				
1.5	116035	AA621405	Hs.184664	ESTs .				33.20				
15	116049 116081	AA454033 Al190071	Hs.41644 Hs.55278	ESTs ESTs				45.80		3.57		
	116082	AB029496	Hs.59729	ESTs	50.00		3.06					
	116213 116228	AA292105 Al767947	Hs.326740 Hs.50841	leucine rich repeat (in FLII) interactin ESTs; Weakly similar to tuftelin [M.musc	50.60		3.85					
20	116250	N76712	Hs.44829	ESTs		6.00						
	116419 116617	Al613480 D80761	Hs.47152 Hs.45220	ESTs; Weakly similar to testicular tekti EST			2.27	30.00				
	116784	AB007979	Hs.301281	tenascin R (restrictin; janusin)	47.20							
25	116835 116970	N39230 AB023179	Hs.38218 Hs.9059	ESTs KIAA0962 protein				41.20	11.00			
23	117023	AW070211	Hs.102415	ESTs				91.00	,			
	117027 117036	AW085208 H88908	Hs.130093 Hs.41192	ESTs EST	49.40			32.60				
	117110	AA160079	Hs.172932	ESTs		8.67						
30	117209	W03011	Hs.306881	ESTs				30.60	9.29			
	117325 117454	N23599 N29569	Hs.43396 Hs.44055	ESTs ESTs					0.20	3.19		
	117475	N30205	Hs.93740	ESTs	44.00	16.00						
35	117543 117567	BE219453 AW444761	Hs.42722 Hs.44565	ESTs ESTs		10.00			12.00			
	117570	N48649	Hs.44583	ESTs					11.00	3.74		
	117600 117730	N34963 N45513	Hs.44676 Hs.46608	EST ESTs		6.00				3.74		
40	117791	N48325	Hs.93956	EST		9.00		00.00				
40	117929 117990	N51075 AA446167	Hs.47191 Hs.47385	ESTs ESTs		8.00		29.20				
	118224	N62275	Hs.48503	EST	31.40							
	118244 118357	N62516 AL109667	Hs.48556 Hs.124154	ESTs Homo sapiens mRNA full length insert cDN	32.80		2.40			,		
45	118446	N66361	Hs.269121	ESTs			2.28					
	118447 118530	N66399 N67900	Hs.49193 Hs.118446	EST ESTs	30.80					3.10		
	118549	N68163	Hs.322954	EST						3.41		
50	118823 118862	W03754 W17065	Hs.50813 Hs.54522	ESTs; Weakly similar to long chain fatty ESTs			3.94			3.58		
20	118935	Al979247	Hs.247043	KIAA0525 protein				33.00	44.40			
	118944 118995	A1734233 N94591	Hs.226142 Hs.323056	ESTs; Weakly similar to !!!! ALU SUBFAMI ESTs		14.00			11.43			
~ ~	119073	BE245360	Hs.279477	ERG-2/ERG-1; V-ets avian erythroblastosi				52.60				
55	119268 119514	T16335 W37937	Hs.65325	EST Accession not listed in Genbank	31.40					3.50		
	119824	W74536	Hs.184	advanced glycosylation end product-speci			2.75			0.00		
	119831	AL117664	Hs.58419 Hs.49943	DKFZP586L2024 protein ESTs; Moderately similar to !!!! ALU SUB				33.80				3.21
60	119861 119889	W78816 W84346	Hs.58671	ESTs				30.03				
	119921	W86192	Hs.58815	ESTs	29.00					3.80		
	120082 120094	H80286 AA811339	Hs.40111 Hs.124049	ESTs ESTs		6.00				0.00		
65	120132	W57554	Hs.125019	Human lymphoid nuclear protein (LAF-4)		12.00		36.60				
65	120378 120404	AA223249 AB023230	Hs.285728 Hs.96427	ESTs KIAA1013 protein	39.40	12.00						
	120504	AA256837		ESTs	22.00				8.00			
	120512 120667	N55761 AA287740	Hs.194718 Hs.78335	ESTs microtubule-associated protein; RP/EB fa	33.00							4.18
70	120777	AA287702	Hs.10031	KIAA0955 protein				46.60 39.00				
	121082 121191	AA398722 AA400205	Hs.104447	ESTs ESTs	41.60			39.00				
	121248	AA400914	Hs.97827	EST					10.00		5.08	
75	121363 121366	Al287280 Al743515	Hs.97933	ESTs ESTs					12.00 20.00			
. •	121483	A1660332	Hs.25274	ESTs; Moderately similar to putative sev				00.00		3.32		
	121518 121545	AA412155 AA412442	Hs.98132	ESTs ESTs			2.29	30.20				
0.0	121622	AA416931	Hs.126065	ESTs		9.00	•					
80	121665 121709	AA416556	Hs.98234	ESTs Homo sapiens mRNA; cDNA DKFZp586L0120 (f	34.80			34.80				
	121709	Al338247 Al140683	Hs.98314 Hs.98328	ESTs	38.80							
	121740	AA421138	Hs.98334	EST Homo sapiens mRNA for alpha integrin bin	36.20	7.00						
85	121772 121821	A1590770 AL040235	Hs.110347 Hs.3346	ESTs	JJ.2U							3.61

	\mathbf{W}	O 02/086	443	0. 507-		2.24			PCT/US02/12476			
	121835	AB033030	Hs.300670	ESTs			2.34					
	121841 121885	AA427794 AA934883	Hs.104864 Hs.98467	ESTs ESTs			2.61				2.25	
_	121888	AA426429	Hs.98463	ESTs							2.92	
5	121938	AA428659	Hs.98610	ESTs				46.80				
	121950 122030	AA429515 AA431310	Hs.98724	EST ESTs	34.40			31.40				
	122054	AA431725	Hs.98746	EST	04.40						3.58	
10	122211	AA300900	Hs.98849	ESTs; Moderately similar to bithoraxoid-	49.40							
10	122233 122247	AA436455 AA436676	Hs.98872 Hs.98890	EST EST	29.80			39.80				
	122253	AA436703	Hs.104936	ESTs; Weakly similar to hypothetical pro		9.00		00.00				*
	122266	AA436840	Hs.98907	EST						3.60		
15	122285 122409	AA436981 AA446830	Hs.121602 Hs.99081	EST ESTs	30.80					3.14		
13	122485	AA524547	Hs.160318	phospholemman	00.00		2.65					
	122697	AA420683	Hs.98321	Homo sapiens cDNA FLJ14103 fis, clone MA		15.00						
	122772 122831	AW117452 AI857570	Hs.99489 Hs.5120	ESTs ESTs		6.67				3.37		
20	122913	Al638774	Hs.105328	ESTs				32.20		0.07		
	123049	BE047680	Hs.211869	ESTs				41.80				
	123076 123136	Al345569 AW451999	Hs.190046 Hs.194024	ESTs ESTs	35.80						2.58	
	123309	N52937	Hs.102679	ESTs					19.00		2.00	
25	123455	AA353113	Hs.112497	ESTs				82.80		0.05		
	123691 123756	AA609579 AA609971	Hs.112724 Hs.112795	ESTs EST	35.40					3.95		
	123756	AA620448	ns.112/30	Homo sapiens clone 24760 mRNA sequence	58.00							
20	123837	Al807243	Hs.112893	ESTs			0.00	32.40				
30	123844 123936	AA938905 NM_004673	Hs.120017	olfactory receptor; family 7; subfamily ESTs	29.00		2.63					
	123987	C21171	Hs.95497	ESTs; Weakly similar to GLUCOSE TRANSPOR	20.00			70.60				
	124013	Al521936	Hs.107149	ESTs; Weakly similar to PTB-ASSOCIATED S	28.40				40.00			
35	124160 124205	R40290	Hs.124685 Hs.108135	ESTs ESTs					13.00	4.74		
55	124205	H77570 AA618527	Hs.190266	ESTs			2.35			4.14		•
	124246	H67680	Hs.270962	ESTs				29.40				
	124348 124358	AI796320 AW070211	Hs.10299 Hs.102415	ESTs "yw35g11.s1 Morton Fetal Cochlea Homo sa		17.00	3.07					
40	124356	ANO70211 Al814166	Hs.107197	ESTs			0.07			3.14		
	124442	AW663632	Hs.285625	TATA box binding protein (TBP)-associate			2.48	00.00				
	124468 124479	N51413 AB011130	Hs.109284 Hs.127436	ESTs calcium channel; voltage-dependent; alph				30.80				6.03
	124479	Al670056	Hs.137274	ESTs; Weakly similar to SPLICEOSOME ASSO			2.50					0.00
45	124711	NM_004657	Hs.26530	serum deprivation response (phosphatidy)	59.20							
	124866	Al768289 BE550182	Hs.304389 Hs.127826	ESTs ESTs		8.00		37.60				
	124874 125097	AW576389	Hs.335774	ESTs				07.00	10.00			
50	125179	AW206468	Hs.103118	ESTs						3.12	0.70	
50	125200 125299	AW836591 T32982	Hs.103156 Hs.102720	ESTs ESTs				34.20			2.79	
	125400	AL110151	Hs.128797	DKFZP586D0824 protein	29.00			01.20				
	125810	H00083		aryl hydrocarbon receptor-interacting pr	32.20	40.00						
55	126176 126303	BE242256 D78841	Hs.2441	KIAA0022 gene product HUM525A05B Human placenta polyA+ (TFuji		12.00		33.60				
55	126403	AW629054	Hs.125976	ESTs; Weakly similar to metalloprotease/	35.80			00.00				
	126507	AL040137	Hs.23964	ESTs; Weakly similar to HC1 ORF [M.muscu	00.00			29.80				
	126773 127307	AA648284 AW962712	Hs.187584 Hs.126712	ESTs ESTs; Weakly similar to pIL2 hypothetica	39.60 28.80							
60	127462	AA760776	Hs.293977	aa59b04.s1 NCI_CGAP_GCB1 Homo sapiens c				34.40				
	127486	AW002846	Hs.105468	ESTs		9.00	200					
	127572 127609	AA594027 X80031	Hs.191788 Hs.530	ESTs ESTs			2.36	29.40				
~ =	127832	AW976035	Hs.292396	ESTs				37.20				
65	127898	AA774725	Hs.128970	ESTs				38.40			4.42	
	128073 128101	AW340720 AA905730	Hs.125983 Hs.128254	ESTs ESTs		7.33		30.40				
	128149	NM_012214	Hs.177576	mannosyl (alpha-1;3-)-glycoprotein beta-							2.58	
70	128212	W27411	Hs.336920	glutathione peroxidase 3 (plasma) ESTs; Weakly similar to LR8 [H.sapiens]			3.09	34.40				
70	128333 128364	W68800 N76462	Hs.12126 Hs.269152	ESTs; Weakly similar to ZINC FINGER PROT		10.00		04.40				
	128426	Al265784	Hs.145197	ESTs							4.31	
	128598 128634	AA305407 AA464918	Hs.102308	potassium inwardly-rectifying channel; s ESTs; Moderately similar to !!!! ALU SUB	31.20			41.60				
75	128687	AW271273	Hs.23767	ESTs: Moderately similar to the ALO 30B				87.00				
	128726	Al311238	Hs.104476	ESTs					0.00			4.02
	128773 128833	NM_004131 W26667	Hs.1051 Hs.184581	granzyme B (granzyme 2; cytotoxic T-lymp ESTs					9.00			3.76
	128870	W20007 H39537	Hs.75309	eukaryotic translation elongation factor			2.66					
80	128878	R25513	Hs.10683	ESTs					14.00	3.10		
	128885 128998	AF134803 W04245	Hs.180141 Hs.107761	cofilin 2 (muscle) ESTs; Weakly similar to PUTATIVE RHO/RAC					11.00		3.21	
	129000	AA744902	Hs.107767	ESTs; Moderately similar to CaM-KII inhi								3.68
85	129038	AW156903	Hs.108124	ribosomal protein L41	24 60					3.17		
رن	129098	AW580945	Hs.330466	ESTs	34.60		•					

	W	O 02/086	5443							PCT/	US02/1	12476
	129210 129240	AL039940 AA361258	Hs.202949 Hs.237868	KIAA1102 protein			2.29					4.09
	129240	BE222198	Hs.109843	interleukin 7 receptor ESTs			2.29			3.30		
5	129301	AF182277	Hs.330780 Hs.279772	Human cytochrome P450-IIB (hIiB3) mRNA; ESTs; Highly similar to CGI-38 protein [4.05 4.09
3	129331 129381	AW167668 AW245805	Hs.110903	claudin 5 (transmembrane protein deleted			2.93					4.00
	129565 129595	X77777 U09550	Hs.198726 Hs.1154	vasoactive intestinal peptide receptor 1				160.80	10.00			
4.0	129613	AW978517	Hs.172847	oviductal glycoprotein 1; 120kD ESTs; Weakly similar to collagen alpha 1					10.00	3.40		
10	129782	AW016932	Hs.104105 Hs.1369	EST		9.00		87.80				
	129950 129958	F07783 R27496	Hs.1378	decay accelerating factor for complement annexin A3				44.60				
	129959 130160	AL036554 AA305688	Hs.274463 Hs.267695	defensin; alpha 1; myeloid-related seque UDP-Gal:betaGlcNAc beta 1;3-galactosyltr			2.72	42.20				
15	130259	NM_000328	Hs.153614	retinitis pigmentosa GTPase regulator			2.54					
	130273 130312	AW972422 AF056195	Hs.153863 Hs.15430	MAD (mothers against decapentaplegic; Dr DKFZP586G1219 protein				51.60		3.16		
	130436	NM_001928	Hs.155597	D component of complement (adipsin)								4.11
20	130523 130799	AA999702 AB028945	Hs.214507 Hs.12696	ESTs ESTs		6.00				4.77		
	130885	NM_005883	Hs.20912	adenomatous polyposis coli like						3.54		2.50
	131002 131012	AL050295 AL039940	Hs.22039 Hs.202949	KIAA0758 protein KIAA1102 protein		20.00						3.50
25	131031	NM_001650	Hs.288650	aquaporin 4	41.20			04.10				
25	131061 131066	N64328 AW169287	Hs.268744 Hs.22588	ESTs; Moderately similar to KIAA0273 [H. ESTs				31.40 29.60				
	131082	Al091121	Hs.246218	ESTs; Weakly similar to zinc finger prot					9.00			2.06
	131087 131161	AF147709 AF033382	Hs.22824 Hs.23735	ESTs; Weakly similar to p160 myb-binding potassium voltage-gated channel; subfami						3.14		3.86
30	131179	AA171388	Hs.184482	DKFZP586D0624 protein						3.80		2.67
	131182 131205	Al824144 NM_003102	Hs.23912 Hs.2420	ESTs superoxide dismutase 3; extracellular			2.98					3.67
	131277	AA131466	Hs.23767	ESTs			3.15	20.00				
35	131281 131282	AA251716 X03350	Hs.25227 Hs.4	ESTs alcohol dehydrogenase 3 (class I); gamma				32.20				3.44
	131285	Al567943	Hs.25274	ESTs; Moderately similar to putative sev		0.00				6.40		
	131355 131391	R52804 AW085781	Hs.25956 Hs.26270	DKFZP564D206 protein ESTs		8.00 10.00						
40	131461	AA992841	Hs.27263	butyrate response factor 2 (EGF-response	28.80						4.03	
40	131487 131517	F13036 AB037789	Hs.27373 Hs.263395	Homo sapiens mRNA; cDNA DKFZp56401763 (f ESTs; Highly similar to semaphorin VIa [39.00						4.03	
	131545	AL137432	Hs.28564	ESTs					11.00 10.00			
	131583 131647	AK000383 AA359615	Hs.323092 Hs.30089	ESTs; Weakly similar to dual specificity ESTs		-	2.47		10.00			
45	131675	H15205	Hs.30509	ESTs	45.80					3.06		
	131676 131708	Al126821 S60415	Hs.30514 Hs.30941	ESTs calcium channel; voltage-dependent; beta	45.60		2.28					
	131717	X94630 AA443966	Hs.3107 Hs.31595	CD97 antigen ESTs				40.60				3.78
50	131756 131762	AA744902	Hs.107767	ESTs; Moderately similar to CaM-KII inhi				40.00				3.67
	131821 131839	AA017247 AB014533	Hs.164577 Hs.33010	ESTs KIAA0633 protein			2.87				3.48	
	131861	AL096858	Hs.184245	KIAA0929 protein Msx2 interacting nuclea	54.00						07.0	
55	132015 132070	Al418006 BE622641	Hs.3731 Hs.38489	ESTs ESTs				49.20 34.80				
	132242	AA332697	Hs.42721	ESTs			2.68					
	132334 132476	AW080704 AL119844	Hs.45033 Hs.49476	lacrimal proline rich protein Homo sapiens clone TUA8 Cri-du-chat regi	34.20		4.66					
C O	132490	NM_001290	Hs.4980	LIM binding domain 2		40.00	2.66					
60	132533 132598	Al922988 X80031	Hs.172510 Hs.530	ESTs collagen; type IV; alpha 3 (Goodpasture		13.00		30.60				
	132619	H28855	Hs.53447	ESTs; Moderately similar to kinesin ligh						4.02		
	132652 132726	N41739 N52298	Hs.61260 Hs.55608	ESTs ESTs; Weakly similar to cDNA EST yk484g1					11.43	3.18		
65	133028	R51604	Hs.300842	ESTs			2.37					
	133071 133120	BE384932 NM_003278	Hs.64313 Hs.65424	ESTs tetranectin (plasminogen-binding protein			2.27 2.63				•	
	133129	AA428580	Hs.65551	ESTs			6.20					5.49
70	133147 133151	AA026533 NM_014051	Hs.66 Hs.94896	interleukin 1 receptor-like 1 ESTs			0.20			3.69		
	133213 133276	AA903424 AW978439	Hs.6786 Hs.69504	ESTs ESTs				31.40	9.00			
	133377	AJ131245	Hs.7239	SEC24 (S. cerevisiae) related gene famil	41.20	-			3.00			
75	133407 133535	AF017987 AL134030	Hs.7306 Hs.284180	secreted frizzled-related protein 1 protocadherin 2 (cadherin-like 2)	50.20					3.72		
, 5	133537	U41518	Hs.74602	aquaporin 1 (channel-forming integral pr						v.,		3.35
	133656 133689	BE149455 NM_001872	Hs.75415 Hs 75572	Accession not listed in Genbank carboxypeptidase B2 (plasma)			2.65	90.80				
0.0	133779	T58486	Hs.222566	ESTs				55.50		3.05		
80	133978 133985	AF035718 L34657	Hs.78061 Hs.78146	transcription factor 21 platelet/endothelial cell adhesion molec			2.92	•				3.45
	134000	AW175787	Hs.334841	selenium binding protein 1			4.10					4.05
	134111 134185	Al372588 AA285136	Hs.8022 Hs.301914	TU3A protein Homo sapiens mRNA; cDNA DKFZp586K1220 (f			4.49				3.27	
85	134204	AI873257	Hs.7994	ESTs; Weakly similar to CGI-69 protein [40.80				

	\mathbf{W}	O 02/086	443						PCT/U	S02/12476
	134641	Al092634	Hs.156114	protein tyrosine phosphatase; non-recept					3.76	
	134677	AA251363	Hs.177711	ESTs				32.20		
	134745	NM_000685	Hs.89472	angiotensin receptor 1B		15.00				
_	134749	T28499	Hs.89485	carbonic anhydrase IV			3.05			
5	134786	T29618	Hs.89640	angiopoletin 1 receptor; TEK tyrosine ki				57.80		
	134825	U33749	Hs.197764	thyroid transcription factor 1						3.73
	134978	A1829008	Hs.333383	ficolin (collagen/fibrinogen domain-cont			2.52	04.00		
	135010	N50465	Hs.92927	ESTs				31.60	0.04	
10	135053	AW796190	Hs.93678	ESTs	00.00				3.21	
10	135081	AF069517	Hs.173993	RNA binding motif protein 6	28.80					4.04
	135091	AA493650	Hs.94367	ESTs		8.00				4.24
	135135 135203	AA775910 C15737	Hs.95011 Hs.269386	syntrophin; beta 1 (dystrophin-associate		0.00			4.31	
	135236	Al636208	Hs.96901	ESTs ESTs	43.00				4.51	
15	135266	R41179	Hs.97393	Human mRNA for KIAA0328 gene; partial cd	43.00					6.42
10	135346	NM_000928	Hs.992	phospholipase A2; group IB (pancreas)			3.82			0.42
	135378	AW961818	Hs.24379	potassium voltage-gated channel; shaker-			4.15			
	135387	NM_001972	Hs.99863	elastase 2; neutrophil	37.20		4.10			
	135388	W27965	Hs.99865	EST	38.80					
20	135402	L12398	Hs.99922	dopamine receptor D4	00.00				4.21	
				askaninia rasakiii a .						

TABLE 2B shows the accession numbers for those primekeys lacking unigenelD's for Table 2A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" cluster.

Unique Eos probeset identifier number Pkey: CAT number: Gene cluster number 30 Accession: Genbank accession numbers CAT number Pkey Accessions AA079126 108447 43452_-7 35 120073_1 108550 AA084867 AA084996 108655 127522_1 AA099960 AA113013 102397 44371_-1 U41898 D78841 D78880 126303 1525933_1 H00083 R81062 Z48513 Z48512 AI743515 AA405617 AW276706 1554054_1 125810 40 103627 121366 2615_2 280401_1 116777_1 AA079505 AA079537 114609 115272 172113_1 AW015947 AA211890 AA279425 108338 112186_1 AA070773 AA070774 45 AA078899 AA078782 AA075788 108434 114012_1 genbank_AA620448 AA620448
NOT_FOUND_entrez_U33839
entrez_U67092 U67092
genbank_AA026349 AA026349 123802 U33839 102310 102636 104776 50 genbank_AA256837 genbank_T89130T89130 120504 AA256837 113502 108499 genbank_AA083103 AA083103 101308 entrez_L41390 L41390 genbank_AA102425 AA102425 108629 55 M86361 Z26593 X02850 D13070 AE000659 M17649 M87869 M87871 X61077 M16286 AF018169 X61079 S59351 X60142 AF043169 221_215 entrez_X76223 entrez_Y10141 103098 X76223 Y10141 103241 103508 entrez_Z26256 Z26256 103575 119514 NOT_FOUND_entrez_W37937 W37937 60 121082 genbank_AA398722 AA398722 128634 AA397825 AA412155 AA020736 105817 121518 114449 genbank_AA020736 genbank_AA101056 genbank_AA429515 65 114648 AA101056 121950 AA429515 107723 genbank_AA015967 AA015967

WO 02/086443 PCT/US02/12476

Table 3A shows 452 genes up-regulated in chronically diseased lung relative to normal lung. Chronically diseased lung samples represent chronic non-malignant lung diseases such as fibrosis, emphysema, and bronchitis. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5 Unique Eos probeset identifier number ExAccn: Exemplar Accession number, Genbank accession number UnigenelD: Unigene Title: R1: Unigene number

10

Unigene title
Unigene gene title
80th percentile of AI for chronically diseased lung samples divided by the 90th percentile of AI for normal lung samples.
80th percentile of AI for chronically diseased lung samples divided by the 90th percentile of normal lung samples, squamous cell carcinomas and R2:

R3:

70th percentile of AI for chronically diseased lung samples minus the 15th percentile of AI for all normal lung, chronically diseased lung and tumor samples divided by the 90th percentile of normal lung samples, squamous cell carcinomas and adenocarcinomas minus the 15th percentile of AI for all normal lung.

1.5				lung and tumor samples	nomas and ac	ienocarcino	itas illinus i
15							
	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2	R3
20	135423	U50531	Hs.138751	Human BRCA2 region, mRNA sequence CG030	12.40		0.40
20	135378 135346	AW961818 NM_000928	Hs.24379 Hs.992	MUM2 protein phospholipase A2, group IB (pancreas)			2.13
	135235	AW298244	Hs.293507	ESTs	12.40		
	135057 134951	U90268 BE305081	Hs.93810 Hs.169358	cerebral cavernous malformations 1 hypothetical protein	11.67	8.00	
25	134799	M36821	Hs.89690	GRO3 oncogene		8.20	
	134786	T29618	Hs.89640	TEK tyrosine kinase, endothelial (venous	20.00		
	134772 134752	NM_000829 BE246762	Hs.163697 Hs.89499	glutamate receptor, ionotrophic, AMPA 4 arachidonate 5-lipoxygenase	29.80		1.93
20	134749	T28499	Hs.89485	carbonic anhydrase IV			2.07
30	134696 134636	BE326276 NM_005582	Hs.8861 Hs.87205	ESTs lymphocyte antigen 64 (mouse) homolog, r	13.60		
	134627	AI018768	Hs.12482	glyceronephosphate O-acyltransferase	10.00		1.92
	134622	AW975159	Hs.293097	ESTs, Weakly similar to A55380 faciogeni	13.20		1.92
35	134570 134561	U66615 U76421	Hs.172280 Hs.85302	SWI/SNF related, matrix associated, acti adenosine deaminase, RNA-specific, B1 (h	10.20		1.78
	134468	NM_001772	Hs.83731	CD33 antigen (gp67)		6.20	
	134417 134343	NM_006416 D50683	Hs.82921 Hs.82028	solute carrier family 35 (CMP-sialic aci transforming growth factor, beta recepto			
4.0	134323	BE170651	Hs.8700	deleted in liver cancer 1			
40	134300	NM_001430	Hs.8136	endothelial PAS domain protein 1 complement component C1q receptor			
	134299 134253	AW580939 X52075	Hs.97199 Hs.80738	sialophorin (gpL115, leukosialin, CD43)	20.60		
	134182	D52059	Hs.7972	KIAA0871 protein	12.20		
45	133985 133978	L34657 AF035718	Hs.78146 Hs.78061	platelet/endothelial cell adhesion molec transcription factor 21			
	133835	A1677897	Hs.76640	RGC32 protein			•
•	133651	A)301740	Hs.173381	dihydropyrimidinase-like 2 nucleolar and coiled-body phosphprotein	15.20		
	133633 133565	D21262 AW955776	Hs.75337 Hs.313500	ESTs, Moderately similar to ALU7_HUMAN A	10.20		
50	133548	AW946384	Hs.178112	DNA segment, single copy probe LNS-CAI/L			1.77
	133488 133478	AA335295 X83703	Hs.74120 Hs.31432	adipose specific 2 cardiac ankyrin repeat protein			2.08
	133337	AF085983	Hs.293676	ESTs		9.60	
55	133200 133153	AB037715 AF070592	Hs.183639 Hs.66170	hypothetical protein FLJ10210 HSKM-B protein	30.60		1.77
55	133130	Al128606	Hs.6557	zinc finger protein 161	22.60		
	133120	NM_003278	Hs.65424 Hs.169449	tetranectin (plasminogen-binding protein protein kinase C, alpha	13.80		
	132928 132836	AW168082 AB023177	Hs.29900	KIAA0960 protein	13.00		
60	132799	W73311	Hs.169407	SAC2 (suppressor of actin mutations 2,	41.60		
	132742 132548	AA025480 X12830	Hs.292812 Hs.193400	ESTs, Weakly similar to T33468 hypotheti interleukin 6 receptor	40.40	7.20	
	132476	AL119844	Hs.49476	Homo sapiens clone TUA8 Cri-du-chat regi		4.76	
65	132439 132240	AK001942 AB018324	Hs.4863 Hs.42676	hypothetical protein DKFZp566A1524 KIAA0781 protein	21.20		1.88
05	132210	NM_007203	Hs.42322	A kinase (PRKA) anchor protein 2			1.99
	132199	AL041299	Hs.165084	ESTs	15.20		1.76
	131751 131745	T96555 Al828559	Hs.31562 Hs.31447	ESTs ESTs, Moderately similar to A46010 X-li	27.80		1.70
70	131694	NM_000246	Hs.3076	MHC class II transactivator		4.00	
	131686 131676	NM_012296 Al126821	Hs.30687 Hs.30514	GRB2-associated binding protein 2 ESTs		6.20	
	131629	Z45794	Hs.238809	ESTs	21.40		
75	131589	C18825 AA019201	Hs.29191 Hs.269210	epithelial membrane protein 2 ESTs		9.40	
13	131536 131517	AB037789	Hs.263395	sema domain, transmembrane domain (TM),		3.59	
	131355	R52804	Hs.25956	DKFZP564D206 protein	45.00	4.48	
	131253 131207	R71802 AF104266	Hs.24853 Hs.24212	ESTs latrophilin	15.00		1.75
80	131156	A1472209	Hs.323117	ESTs			1.84
	131066 131061	AW169287 N64328	Hs.22588 Hs.268744	ESTs KIAA1796 protein		3.54	
	131053	AA348541	Hs.296261	guanine nucleotide binding protein (G pr			1.93
85	130895	AA641767	Hs.21015 Hs.1898	hypothetical protein DKFZp564L0864 simil paraoxonase 1	16.60 12.00		
55	130762	D84371	113.1030	paraozonase i	12.00		

	W	O 02/086	443				
	130657	AW337575	Hs.201591	ESTs			
	130655	Al831962	Hs.17409	cysteine-rich protein 1 (intestinal)			
	130589	AL110226	Hs.16441	DKFZP434H204 protein			2.08
_	130562	D50402	Hs.182611	solute carrier family 11 (proton-coupled			1.91
5	130555	R69743	Hs.116774	integrin, alpha 1		9.60	
	130365	W56119	Hs.155103	eukaryotic translation initiation factor	11.60		
	130273	AW972422	Hs.153863	MAD (mothers against decapentaplegic, Dr		6.60	
	130259	NM_000328	Hs.153614	retinitis pigmentosa GTPase regulator			1.91
10	130090	H97878	Hs.132390	zinc finger protein 36 (KOX 18)	21.20	- 0-	
10	129958	R27496	Hs.1378	annexin A3		5.05	
	129898	Al672731	Hs.13256	ESTs	10.00		
	129875	AA181018	Hs.13056	hypothetical protein FLJ13920	18.60		
	129699	AB007899	Hs.12017	homolog of yeast ubiquitin-protein ligas			
15	129626	F13272	Hs.111334	ferritin, light polypeptide	00.00		
15	129598	N30436	Hs.11556	Homo sapiens cDNA FLJ12566 fis, clone NT	22.63		
	129593	Al338247	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f			0.50
	129565	X77777	Hs.198726	vasoactive intestinal peptide receptor 1	20.00		2.53
	129527	AA769221	Hs.270847	delta-tubulin	39.20		0.11
20	129402	W72062	Hs.11112	ESTs	15 20		2.11
20	129385	AA172106	Hs.110950	Rag C protein	15.20		
	129315	NM_014563	Hs.174038	spondyloepiphyseal dysplasia, late	12.40 20.83		
	129312	T97579	Hs.110334	ESTs, Weakly similar to 178885 serine/th	20.03		1.95
	129240 129210	AA361258	Hs.237868 Hs.202949	interleukin 7 receptor KIAA1102 protein			1.90
25	129122	AL039940 AW958473	Hs.301957	nudix (nucleoside diphosphate linked moi		4.20	
23	129057	N90866	Hs.276770	CDW52 antigen (CAMPATH-1 antigen)		4.20	
	128946	Y13153	Hs.107318	kynurenine 3-monooxygenase (kynurenine 3		5.20	
	128798	AF015525	Hs.302043	chemokine (C-C motif) receptor-like 2		0.20	
	128789	AW368576	Hs.139851	caveolin 2			2.24
30	128778	AA504776	Hs.186709	ESTs, Weakly similar to 138022 hypothet	12.20		2,27
50	128766	AW160432	Hs.296460	craniofacial development protein 1	26.40		
	128631	R44238	Hs.155546	KIAA1080 protein; Golgi-associated, gamm	20.40		1.78
	128624	BE154765	Hs.102647	ESTs, Weakly similar to TRHY_HUMAN TRICH			2.51
	128609	NM_003616	Hs.102456	survival of motor neuron protein interac	16.00		
35	128603	NM_004915	Hs.10237	ATP-binding cassette, sub-family G (WHIT	12.80		
55	128598	AA305407	Hs.102308	potassium inwardly-rectifying channel, s	12.00	4.00	
	128458	H55864	Hs.56340	ESTs			
	128061	AF150882	Hs.186877	sodium channel, voltage-gated, type XII,	17.20		
	127968	AA830201	Hs.124347	ESTs	21.30		
40	127959	Al302471	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L			
• •	127944	Al557081	Hs.262476	S-adenosylmethionine decarboxylase 1	10.60		
	127925	AA805151	Hs.3628	mitogen-activated protein kinase kinase	13.40		
	127896	AI669586	Hs.222194	ESTS		7.00	
	127859	AA761802	Hs.291559	ESTs	14.00		
45	127817	AA836641	Hs.163085	ESTs	14.00		•
	127742	AW293496	Hs.180138	ESTs	11.00		
	127628	Al240102	Hs.322430	NDRG family, member 4	11.10		
	127609	X80031	Hs.530	collagen, type IV, alpha 3 (Goodpasture			
	127582	AA908954	Hs.130844	ESTs	19.60		
50	127543	AK000787	Hs.157392	Homo sapiens cDNA FLJ20780 fis, clone CO	15.40		
	127535	AA568424	Hs.164450	ESTs	17.50		
	127404	AJ379920	Hs.270224	ESTs	14.60		
	127396	L31968	Hs.187991	DKFZP564A122 protein	15.40		
~ ~	127374	AA442797	Hs.312110	ESTs, Weakly similar to 138022 hypothet	14.60		
55	127346	AA203616	Hs.44896	DnaJ (Hsp40) homolog, subfamily B, membe	21.00		
	127340	BE047653	Hs.119183	ESTs, Weakly similar to ZN91_HUMAN ZINC	15.80		
	127307	AW962712	Hs.126712	ESTs, Weakly similar to AF191020 1 E2IG5			
	127242	AW390395	Hs.181301	cathepsin S	22.60		
C O	127167	AA625690	Hs.190272	ESTs	21.40		
60	127046	AA321948	Hs.293968	ESTs	41.20		
	126928	AA480902	Hs.137401	ESTs	11.00		4 ===
	126900	AF137386	Hs.12701	plasmolipin		E 60	1.78
	126852	AA399961		gb:zu68c01.r1 Soares_testis_NHT Homo sap		5.60	
C =	126816	AA248234		gb:csg2228.seq.F Human fetal heart, Lamb	12.20		
65	126812	AB037860	Hs.173933	nuclear factor I/A	17.19		
	126666	AA648886	Hs.151999	ESTs	13.57		
	126645	AA316181	Hs.61635	six transmembrane epithelial antigen of	15.40	4.07	
	126592	AI611153	Hs.6093	Homo sapiens cDNA: FLJ22783 fis, clone K	40.00	4.67	
70	126556	AF255303	Hs.112227	membrane-associated nucleic acid binding	18.00		
70	126433	AA325606	11-0000	gb:EST28707 Cerebellum II Homo sapiens c	16.77		
	126299	AW979155	Hs.298275	amino acid transporter 2	14.60	2.50	
	126218	AL049801	Hs.13649	Novel human gene mapping to chomosome 13	42.40	3.50	
	126182	AA721331	Hs.293771	ESTs	13.40		
75	126177 126142	AW752782	Hs.129750	hypothetical protein FLJ10546	18.20		
13		H86261	Hs.40568	ESTs	14.00		
	126077	M78772	Hs.210836	ESTS	16.59 17.40		
	125994	Al990529	Hs.270799	ESTs	17.40 13.00		
	125934 125847	AA193325 AM161885	Hs.32646	hypothetical protein FLJ21901			
	12004/	AW161885	Hs.249034	ESTs gb:yj45c03.r1 Soares placenta Nb2HP Homo	49.57		
80				OCCUPATION A LA COMPANION DISCOURS INVALIF FORMS			
80	125831	H04043	He 26012		13.20		
80	125831 125731	R61771	Hs.26912 Hs 151073	ESTs	13.20 11.20		
80	125831 125731 125676	R61771 BE612918	Hs.151973	ESTs hypothetical protein FLJ23511	13.20 11.20		
	125831 125731 125676 125561	R61771 BE612918 F18572	Hs.151973 Hs.22978	ESTs hypothetical protein FLJ23511 ESTs, Weakly similar to ALU4_HUMAN ALU S	11.20		
80 85	125831 125731 125676	R61771 BE612918	Hs.151973	ESTs hypothetical protein FLJ23511			

12542 Asp08229 12616 12636 126
125109
125167 AL373540 Hs.102641 Hs.788 Hs.788 Hs.788 Hs.788 Hs.788 Hs.788 Hs.788 Hs.788 Hs.788 Hs.2650 H
1.25193
126042 T78906
124911 MM, 004667 Hs. 285830 Hs. 270594 Hs. 102670 EST 23.40 124678 M8, 132695 Hs. 270594 Hs. 102670 EST 24472 NS2617 Hs. 102670 EST 24474 Hs6608 Hs. 193930 EST 24497 AV282925 Hs. 102670 EST 24494 Hs6608 Hs. 193930 EST 24497 AV282925 Hs. 102670 EST 24494 Hs6608 Hs. 193930 EST 24497 AV282925 Hs. 102670 EST 24494 Hs6608 Hs. 193930 EST 24497 AV282925 Hs. 102670 EST 24497 AV282926 Hs. 102670 EST 24497 AV282926 Hs. 102670 Hs. 24497 Hs. 244
124831 ML, 014053
124678 N88221
124674 AL036596
124438 E1776536 H. s.11090 membrane-spanning 4-domains, subfamily A gbyw37g07.s 1 Morton Fetal Cochlea Homo 14.64
124367 N22401
124306
1242/14 Hisp608
124097 My298235 hs.101689 ESTS ESTS 27.20
123978 T89832
123972 746848 Hs.20337 Inmunoglobulin superfamily, member 4
153398 MM_004673 Hs.241619 applications 15.80 pubac8509.s1 Stratagene lung carcinoma 4.23 4.20 pubac8509.s1 Stratagene lung carcinoma 4.23 4.20 pubac8509.s1 Stratagene lung carcinoma 4.20 pubac85075 pubac850575 pub
123802
123734
123619
123596
23476
123340
123190
123073
123055
122699
122679
122633 NN_001546
12253
122544
122415
122127 AW207175 Hs.106771 ESTs 1.9 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8 1.9 1.8
122011
40 121992 Al860775 Hs.98506 ESTs 3.60 121989 W56487 Hs.193784 Homo sapiens mRNA; cDNA DKFZp586K1922 (f 2.0 121835 AB033030 Hs.300670 KIAA1204 protein 1.8 121726 AF241254 Hs.178098 angiotensin I converting enzyme (peptidy 12.43 121690 AV660305 Hs.110286 ESTs 14.00 121633 AA417011 Hs.98175 EST 14.00 121622 AA416931 Hs.126065 ESTs 14.00 121351 AW206227 Hs.287727 hypothetical protein FLJ23132 12.20 121351 AW206227 Hs.287727 hypothetical protein FLJ23132 12.20 121314 W07343 Hs.182538 phospholipid scramblase 4 121049 AA400857 Hs.97509 ESTs 22.40 121059 AA393283 gb:2774e03:r1 Soares_testis_NHT Homo sapiens 14.80 120934 AA226198 Hs.97509 ESTs 22.40 120755 AA312934 Hs.190745 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 20.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 20.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 30.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 30.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 30.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 30.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 30.00 120484 AA253170 Hs.96473 EST 40.20 120346 Hs.205442 ESTs, Weakly similar to T34036 hypothetic 30.78 119996 W88996 Hs.59134 EST 7.20 119996 W88996 Hs.59388 ESTs 7.20 1199970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C-30.20 1198740 AW021407 Hs.21068 hypothetical protein end product-speci
121989 W56487
121835
121726
121690
121643
121622 AA416931 Hs.126065 ESTs 16.40 121497 AA412031 Hs.97901 EST 11.20 121351 AW206227 Hs.287727 hypothetical protein FLJ23132 12.20 121314 W07343 Hs.182538 phospholipid scramblase 4 1.8 121242 AA400857 Hs.97509 ESTs 22.40 121059 AA393283 gb:rr.26a07.sr1 NCI_CGAP_Pr1 Homo sapiens 21.20 120934 AA226198 gb:rr.26a07.sr1 NCI_CGAP_Pr1 Homo sapiens 21.20 120755 AA312934 Hs.190745 Homo sapiens cDNA: FLJ21326 fis, clone gb:rb.039a05.s1 NCI_CGAP_GCB1 Homo sapiens 20.00 12048 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 6.60 120266 Al807264 Hs.205442 ESTs, Weakly similar to T34036 hypotheti 16.80 120132 W57554 Hs.125019 ESTs 4.73 119996 W88996 Hs.59368 ESTS 4.73 119996 W88996 Hs.59368 ESTS 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein — 20.20
121497 AA412031 Hs.97901 EST 11.20 121351 AW206227 Hs.287727 hypothetical protein FLJ23132 12.20 121314 W07343 Hs.182538 phospholipid scramblase 4 12.80 121242 AA400857 Hs.97509 ESTs 22.40 121059 AA393283 gb:zt74e03.r1 Soares_testis_NHT Homo sap 14.80 120934 AA226198 gb:nc26a07.s1 NCI_CGAP_Pr1 Homo sapiens 21.20 120755 AA312934 Hs.190745 Homo sapiens 20.00 120637 AA811804 gb:nc39a05.s1 NCI_CGAP_GCB1 Homo sapiens 20.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 6.60 120266 Al807264 Hs.205442 ESTs, Weakly similar to T34036 hypotheti 16.80 12031 AA830882 Hs.59368 ESTs 1.7 119996 W88996 Hs.59134 EST 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C-119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein prote
121351 AW206227
50 121314 W07343 Hs.182538 phospholipid scramblase 4 1.8 121242 AA400857 Hs.97509 ESTs 22.40 121059 AA393283 gb:zt74e03.r1 Soares_testis_NHT Homo sap 14.80 120934 AA226198 gb:zt74e03.r1 Soares_testis_NHT Homo sapiens 21.20 55 120657 AA312934 Hs.190745 Homo sapiens cDNA: FLJ21326 fis, clone 20.00 120484 AA253170 Hs.96473 EST 40.20 120336 N85785 Hs.181165 eukaryotic translation elongation factor 6.60 120266 Al807264 Hs.205442 ESTs, Weakly similar to T34036 hypotheti 16.80 120132 W57554 Hs.125019 ESTs 4.73 119990 W88996 Hs.59368 ESTs 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119824 W74536 Hs.184943 ESTs, Weakly similar to S65657 alpha-1C- 3.78 65 119740 AW021407 Hs.21068 hypoth
121242
121059 AA393283 gb:zt74e03.r1 Soares_testis_NHT Homo sap pb:nc26a07.s1 NCI_CGAP_Pr1 Homo sapiens 21.20 120934 AA226198 gb:nc26a07.s1 NCI_CGAP_Pr1 Homo sapiens 21.20 120637 AA811804 gb:nc39a05.s1 NCI_CGAP_GCB1 Homo sapiens 20.00 120484 AA253170 Hs.96473 EST 40.20 120366 N85785 Hs.181165 eukaryotic translation elongation factor 40.20 120132 W57554 Hs.125019 ESTs 4.73 120132 W57554 Hs.125019 ESTs 4.73 119996 W88996 Hs.59134 EST 7.20 119996 W88996 Hs.59134 EST 7.20 1199970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C-119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein pro
120934
55 120755 A312934 120637 AA811804 120484 AA253170 AA811804 120484 AA253170 120336 N85785 Hs.181165 120266 A1807264 Hs.205442 EST W57554 Hs.125019 W85795 Hs.59368 EST S 119996 W88996 Hs.59368 EST S 119997 AA767718 Hs.93581 Hs.93581 19997 AA767718 Hs.93581
120637
120336 N85785 Hs. 181165 eukaryotic translation elongation factor 6.60 120266 Al807264 Hs.205442 ESTs, Weakly similar to T34036 hypotheti 16.80 120132 W57554 Hs.125019 ESTs 4.73 120041 AA830882 Hs.59368 ESTs 7.20 119996 W88996 Hs.59134 EST 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C- 119824 W74536 Hs.184 advanced glycosylation end product-speci 65 119740 AW021407 Hs.21068 hypothetical protein 20.20
120266 Al807264 Hs.205442 ESTs, Weakly similar to T34036 hypotheti 16.80 120132 W57554 Hs.125019 ESTs 4.73 120041 AA830882 Hs.59368 ESTs 5.720 119996 W88996 Hs.59134 EST 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C-3.78 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein 20.20
60 120132 W57554 Hs.125019 ESTs 4.73 120041 AA830882 Hs.59368 ESTs 5.7 119996 W88996 Hs.59134 EST 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C-19824 W74536 Hs.184 advanced glycosylation end product-speci hypothetical protein 20.20
60 120041 AA630882 Hs.59368 ESTs 1.7 119996 W88996 Hs.59134 EST 7.20 119970 AA7677718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C- 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein 20.20
119996 W88996 Hs.59134 EST 7.20 119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C- 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein 20.20
119970 AA767718 Hs.93581 hypothetical protein FLJ10512 11.20 119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C- 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein 20.20
119861 W78816 Hs.49943 ESTs, Weakly similar to S65657 alpha-1C- 3.78 119824 W74536 Hs.184 advanced glycosylation end product-speci 119740 AW021407 Hs.21068 hypothetical protein 20.20
65 119740 AW021407 Hs.21068 hypothetical protein 20.20
119271 AID61118 Hs.65328 Fanconi anemia complementation group E 15.20
119221 C14322 Hs.250700 tryptase beta 1 119126 R45175 Hs.117183 ESTs 12.60
119126 R45175 Hs.117183 ESTs 12.60 - 119073 BE245360 Hs.279477 ESTs
70 118928 AA312799 Hs.283689 activator of CREM in testis 10.00
118901 AW292577 Hs.94445 ESTs 3.96
118661 AL137554 Hs,49927 protein kinase NYD-SP15 9.60
118607 Al377444 Hs.54245 ESTs, Weakly similar to S65824 reverse t 10.40
118449 Al813865 Hs.164478 hypothetical protein FLJ21939 similar to 1.9
75 118416 N66028 Hs.49105 FKBP-associated protein 16.20
118379 N64491 Hs.48990 ESTs 4.00
AADDO NOORDO SANDON SAN
118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60
118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 118320 N63451 Hs.141600 ESTs, Weakly similar to alternatively s 3.80
118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 118320 N63451 Hs.141600 ESTs, Weakly similar to alternatively s 3.60 118253 AA497044 Hs.20887 hypothetical protein FLJ10392 17.60
118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 118320 N63451 Hs.141600 ESTs, Weakly similar to alternatively s 3.80 118253 AA497044 Hs.20887 hypothetical protein FLJ10392 17.60 118124 N56968 Hs.46707 chromosome 21 open reading frame 37 14.00
80 118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60
80 118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 118320 N63451 Hs.141600 ESTs, Weakly similar to alternatively s 3.80 118253 AA497044 Hs.20887 hypothetical protein FLJ10392 17.60 118124 N56968 Hs.46707 chromosome 21 open reading frame 37 14.00 118032 N52802 Hs.47544 EST 5.00 117840 T26379 Hs.48802 Homo sapiens clone 23632 mRNA sequence 4.00
80 118329 N63520 gb:yy62f01.s1 Soares_multiple_sclerosis_ 6.60 start to alternatively s 3.80 sta

	W	O 02/086	443				
	117209	W03011	Hs.306881	MSTP043 protein			
	117023	AW070211	Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f			2.31
	116814	H50834		gb:yp86a10.s1 Soares fetal liver spleen	20.20		
_	116784	AB007979	Hs.301281	Homo sapiens mRNA, chromosome 1 specific		3.51	
5	116766	A1608657	Hs.95097	ESTs	16.20		
	116712	AW901618	Hs.61935	Homo sapiens mRNA; cDNA DKFZp761l071 (fr	40.00	6.80	
	116707	H10344	Hs.49050	ESTs, Weakly similar to A Chain A, Human	18.60		
	116351	AL133623	Hs.82501	similar to mouse Xrn1 / Dhm2 protein	19.40		
10	116279	AW971248	Hs.291289	ESTs, Weakly similar to ALU1_HUMAN ALU S			2.13
10	116166 116152	AL039940 AL040521	Hs.202949 Hs.15220	KIAA1102 protein zinc finger protein 106			1.75
	116117	BE613410	Hs.31575	SEC63, endoplasmic reticulum translocon	13.20		1,10
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	30.11		
	115965	AA001732	Hs.173233	hypothetical protein FLJ10970	00		2.36
15	115955	AF263613	Hs.44198	intracellular membrane-associated calciu	18.20		
	115844	Al373062	Hs.332938	hypothetical protein MGC5370	18.57		
	115683	AF255910	Hs.54650	junctional adhesion molecule 2		23.00	
	115673	AA406341	Hs.269908	Homo sapiens cDNA FLJ11991 fis, clone HE	11.82		
20	115672	Al889110	Hs.73251	ESTs	10.60		
20	115566	Ai142336	Hs.43977	Human DNA sequence from clone RP11-196N1			1.76
	115313	AA808001	Hs.184411	albumin	25.20	0.00	
	115279	AW964897	Hs.290825	ESTs		8.00	4.00
	115230	AA278300	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	14.20		1.80
25	115110 114999	AK001671 BE246481	Hs.11387 Hs.87856	KIAA1453 protein ESTs	19.20		
23	114930	AA237022	Hs.188717	ESTs	13.20	5.60	
	114922	AA235672	Hs.87491	ESTs		3.60	
	114837	BE244930	Hs.166895	ESTs	43.70	0.00	
	114769	AA149060	Hs.296100	ESTs	11.00		
30	114761	AA143781	Hs.126280	hypothetical protein FLJ23393	14.00		
	114736	Al610347	Hs.103812	ESTs, Moderately similar to ALU1_HUMAN A		4.20	
	114596	AA310162	Hs.169248	cytochrome c	10.71		
	114518	AW163267	Hs.106469	suppressor of var1 (S.cerevisiae) 3-like	20.40		
25	114455	H37908	Hs.271616	ESTs, Weakly similar to ALU8_HUMAN ALU S	20.40		
35	114452	Al369275	Hs.243010	Homo sapiens cDNA FLJ14445 fis, clone HE		17.20	
	114359	NM_016929	Hs.283021	chloride intracellular channel 5	40.40		2.09
	114357	R41677	Hs.6107	Homo sapiens cDNA FLJ14839 fis, clone OV	12.40		2.00
	114251 114138	H15261	Hs.21948 Hs.15740	ESTS Home capions mPNA: aDNA DVE7p434E033 /fr		11,40	2.00
40	114136	AW384793 W57554	Hs.125019	Homo sapiens mRNA; cDNA DKFZp434E033 (fr ESTs		6.04	
40	113946	AW083883	Hs.37896	Homo sapiens cDNA FLJ13510 fis, clone PL		0.04	1.82
	113695	T96965	Hs.17948	ESTs, Weakly similar to ALUB_HUMAN !!!!			1.02
	113606	NM_013343	Hs.278951	NAG-7 protein			2.15
	113590	R49642	Hs.142447	ESTs, Weakly similar to ALU1_HUMAN ALU S		3.60	
45	113560	T91015	Hs.268626	ESTs	32.00		
	113552	Al654223	Hs.16026	hypothetical protein FLJ23191			
	113540	AW152618	Hs.16757	ESTs			
	113502	T89130		gb:ye12d01.s1 Stratagene lung (937210) H		8.35	
50	113288	A1076838	Hs.12967	ESTs	12.40	1.07	
50	113252	NM_004469	Hs.11392	c-fos induced growth factor (vascular en		4.27	
	113238	R45467	Hs.189813	ESTs ESTs	21.20		
	113203 113195	AA743563 H83265	Hs.10305 Hs.8881	ESTs, Weakly similar to S41044 chromosom	21.20		1.92
	113089	T40707	Hs.270862	ESTs	14.33		1.02
55	113076	AF033199	Hs.8198	zinc finger protein 204	11.00	6.00	
	113009	T23699	Hs.7246	ESTs		9.40	
	112937	AI694320	Hs.6295	ESTs, Weakly similar to T17248 hypotheti		12.20	
	112891	T03927	Hs.293147	ESTs, Moderately similar to A46010 X-li	10.57		
C O	112794	R97018		gb:yq74b08.s1 Soares fetal liver spleen	26.60		
60	112691	R88708	Hs.220647	ESTs	15.33		
	112602	AW004045	Hs.203365	ESTs	15.60		
	112366	AF035318	Hs.12533	Homo sapiens clone 23705 mRNA sequence	15.40		
	112210	R49645 AL049390	Hs.7004 Hs.22689	ESTs	14.00 13.00		
65	112064 111998	R42379	Hs.138283	Homo sapiens mRNA; cDNA DKFZp586O1318 (f ESTs	11.00		
05	111987	NM_015310	Hs.6763	KIAA0942 protein	22.40		
	111803	AA593731	Hs.325823	ESTs, Moderately similar to ALU5_HUMAN A	22.70		1.77
	111737	H04607	Hs.9218	ESTs			1.86
	111605	T91061	Hs.194178	ESTs, Moderately similar to PC4259 ferri	23.00		
70	111510	R07856	Hs.16355	ESTs	11.02		
	111341	AL157484	Hs.22483	Homo sapiens mRNA; cDNA DKFZp762M127 (fr			1.88
	111280	AA373527	Hs.19385	CGI-58 protein	18.40		
	111247	AW058350	Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f			
75	111232	Al247763	Hs.16928	ESTs	27.60		
15	110942	R63503	Hs.28419	ESTs	14.80		
	110924 110837	AW058463 H03109	Hs.12940 He 108920	zinc-fingers and homeoboxes 1	24.71		2.18
	110837	Al767183	Hs.108920 Hs.26942	HT018 protein ESTs	12.20		۷. ۱۵
	110776	AB032417	Hs.19545	frizzled (Drosophila) homolog 4			1.75
80	110576	H60869	Hs.37889	ESTs	13.00		0
•	110369	AK000768	Hs.107872	hypothetical protein FLJ20761		5.60	
	110099	R44557	Hs.23748	ESTs			2.31
	109984	A1796320	Hs.10299	Homo sapiens cDNA FLJ13545 fis, clone PL			
05	109958	AA001266	Hs.133521	ESTs	11.25		
85	109893	AA884208	Hs.30484	ESTs			2.68

	\mathbf{W}	O 02/086	443				
	109842	AW818436	Hs.23590	solute carrier family 16 (monocarboxylic	23.83		
	109837	H00656	Hs.29792	ESTs, Weakly similar to 138022 hypotheti			3.91
	109796	Al800515	Hs.12024	ESTs		17.20	
	109688	R41900	Hs.22245	ESTs		9.60	
5	109648	H17800	Hs.7154	ESTs	22.80		
_	109613	H47315	Hs.27519	ESTs			
	109550	AW021488	Hs.26981	ESTs			
	109523	AW193342	Hs.24144	ESTs			1.89
	109472	AK001989	Hs.91165	hypothetical protein		6.00	
10	109355	AA524525	Hs.48297	DKFZP586C1620 protein	15.00		
	109260	AW978515	Hs.131915	KIAA0863 protein	25.60		
	108781	AA128654	113.101310	gb:zn98g07.s1 Stratagene fetal retina 93	14.20		
	108663	BE219231	Hs.292653	ESTs, Weakly similar to T26845 hypotheti	11.00		
	108573	AA086005	113.232000	gb:zl84c04.s1 Stratagene colon (937204)	26.00		
15	108480	AL133092	Hs.68055	hypothetical protein DKFZp434I0428	20.00		
15	108382		Hs.67726	macrophage receptor with collagenous str			1.83
		NM_006770	Hs.303070	ESTs	15.20		1.00
	108174	AA055632		Homo sapiens mRNA; cDNA DKFZp564G112 (fr	10.20	3.60	
	108138	AL049990	Hs.51515		15.44	0.00	
20	108087	AA045708	Hs.40545	ESTS	10.44	11.40	
20	108048	Al797341	Hs.165195	Homo sapiens cDNA FLJ14237 fis, clone NT		11.40	
	108041	AW204712	Hs.61957	ESTs		170	
	107997	AL049176	Hs.82223	chordin-like		4.76	
	107994	AA036811	Hs.48469	LIM domains containing 1	14.00		
25	107922	BE153855	Hs.61460	lg superfamily receptor LNIR	14.20		
25	107681	BE379594	Hs.49136	ESTs, Moderately similar to ALU7_HUMAN A	51.80		
	107666	AA010611	Hs.60418	EST	29.20		
	107332	T87750	Hs.183297	DKFZP566F2124 protein	10.73		
	107292	BE166479	Hs.4789	Homo sapiens serologically defined breas	32.00		
20	107230	A1034467	Hs.34650	ESTs	17.40		
30	107168	W57578	Hs.237955	RAB7, member RAS oncogene family	10.43		
	107160	AA314490	Hs.27669	KIAA1563 protein	11.40		
	107054	Al076459	Hs.15978	KIAA1272 protein			
	107029	AF264750	Hs.288971	myeloid/lymphoid or mixed-lineage leukem	21.40		
25	106999	H93281	Hs.10710	hypothetical protein FLJ20417	35.80		
35	106954	AF128847	Hs.204038	indolethylamine N-methyltransferase			1.76
	106870	Al983730	Hs.26530	serum deprivation response (phosphatidy)			
	106865	AW192535	Hs.19479	ESTs	13.40		
	106844	AA485055	Hs.158213	sperm associated antigen 6		7.13	
40	106820	NM_016831	Hs.12592	period (Drosophila) homolog 3		7.00	
40	106818	AK002135	Hs.3542	hypothetical protein FLJ11273	13.00		
	106797	AI768801	Hs.169943	Homo sapiens cDNA FLJ13569 fis, clone PL			2.05
	106773	AA478109	Hs.188833	ESTs			
	106747	NM_007118	Hs.171957	triple functional domain (PTPRF interact	12.60		
	106743	BE613328	Hs.21938	hypothetical protein FLJ12492	10.60		
45	106667	AW360847	Hs.16578	ESTs			
	106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr			2.40
	106567	AW450408	Hs.86412	chromosome 9 open reading frame 5			1.78
	106562	AL031846	Hs.152151	plakophilin 4			1.76
	106536	AA329648	Hs.23804	ESTs, Weakly similar to PN0099 son3 prot			2.19
50	106533	AL134708	Hs.145998	ESTs	23.20		
	106507	AA259068	Hs.267819	protein phosphatase 1, regulatory (inhib	15.20		
	106490	AA404265	Hs.115537	putative dipeptidase			
	106474	BE383668	Hs.42484	hypothetical protein FLJ10618	10.44		
	106211	AA428240	Hs.126083	ESTs		29.80	
55	105986	AB037722	Hs.8707	KiAA1301 protein		3.70	
	105894	A1904740	Hs.25691	receptor (calcitonin) activity modifying			1.94
	105847	AW964490	Hs.32241	ESTs, Weakly similar to S65657 alpha-1C-			1.75
	105803	AW747996	Hs.160999	ESTs, Moderately similar to A56194 throm			2.47
	105731	AA834664	Hs.29131	nuclear receptor coactivator 2	10.71		
60	105729	H46612	Hs.293815	Homo sapiens HSPC285 mRNA, partial cds			
	105688	Al299139	Hs.17517	ESTs	23.40		
	105510	Z42047	Hs.283978	Homo sapiens PRO2751 mRNA, complete cds	37.20		
	105101	H63202	Hs.38163	ESTs		8.30	
	104989	R65998	Hs.285243	hypothetical protein FLJ22029		8.09	
65	104986	AW088826	Hs.117176	poly(A)-binding protein, nuclear 1			1.92
•••	104969	A1670947	Hs.78406	phosphatidylinositol-4-phosphate 5-kinas		5.40	
	104903	Al436323	Hs.31141	Homo saplens mRNA for KIAA1568 protein,		7.60	
	104896	AW015318	Hs.23165	ESTs	13.80		
	104865	T79340	Hs.22575	Homo sapiens cDNA: FLJ21042 fis, clone C			
70	104825	AA035613	Hs.141883	ESTs			1.87
, 0	104781	AA099904	Hs.21610	DKFZP434B203 protein			1.93
	104776	AA026349	113,21010	gb:zj99f01.s1 Soares_pregnant_uterus_NbH		10.20	
	104691	U29690	Hs.37744	Homo sapiens beta-1 adrenergic receptor		5.69	
	104697	Al239923	Hs.30098	ESTs		3.82	
75	104404	H58762	115.500030	ab:EST00057 HE6W Homo sapiens cDNA clone		4.20	
, 5	104392	AA076049	Hs.274415	Homo sapiens cDNA FLJ10229 fis, clone HE	27.20		
	104392	AB002298	Hs.173035	KIAA0300 protein	£1.£U		1.91
				Homo sapiens mRNA; cDNA DKFZp434M229 (fr	11.20		
	104074	AL162039 AL135301	Hs.31422 Hs.8768	hypothetical protein FLJ10849	10.86		
80	103749 103645		Hs.7043	succinate-CoA ligase, GDP-forming, alpha	12.00		
50		AW246253 AI878826		caveolin 1, caveolae protein, 22kD	12.00		. 1.80
	103554		Hs.323469	CD83 antigen (activated B lymphocytes, i			1.00
	103541	AI815601	Hs.79197 Hs.132821	flavin containing monooxygenase 2			
	103496	Y09267		A kinase (PRKA) anchor protein 1	11.20		
85	103428	BE383507	Hs.78921	RAS p21 protein activator (GTPase activa	19.80		
	103353	X89399	Hs.119274	toto ha i hintetti aptivator (OTT ase aptiva	13.00		

	W	O 02/086	443					PCT/US02/12476
	103295	X81479	Hs.2375	egf-like module containing, mucin-like,		3.60		
	103280	U84722	Hs.76206 Hs.184585	cadherin 5, type 2, VE-cadherin (vascula LIM domain only 2 (rhombotin-like 1)			1.76	
	103100 103025	NM_005574 NM_002837	Hs.123641	protein tyrosine phosphatase, receptor t			2.15	
5	102698	M18667	Hs.1867	progastricsin (pepsinogen C)				
•	102659	BE245169	Hs.211610	CUG triplet repeat, RNA-binding protein	11.00			
	102580	U60808	Hs.152981	CDP-diacylglycerol synthase (phosphatida	25.40			
		AA034127	Hs.153487	signal transducing adaptor molecule (SH3	14.00			
10	102363	NM_003734	Hs.198241	amine oxidase, copper containing 3 (vasc	40.00			
10			Hs.69171	protein kinase C-like 2	10.86			
	102283 102188	AW161552 U20350	Hs.83381 Hs.78913	guanine nucleotide binding protein 11 chemokine (C-X3-C) receptor 1		7.40		
	102150	T27013	Hs.3132	steroidogenic acute regulatory protein	16.40	7.40		
	102131	L28824	Hs.74101	spleen tyrosine kinase	15.40			
15	101842	M93221	Hs.75182	mannose receptor, C type 1				
	101771	NM_002432	Hs.153837	myeloid cell nuclear differentiation ant				
		Al198550	Hs.81256	S100 calcium-binding protein A4 (calcium			1.78	
	101716	AF050658	Hs.2563	tachykinin, precursor 1 (substance K, su	18.80		0.00	
20	101678	M62505	Hs.2161	complement component 5 receptor 1 (C5a l	504.80		2.22	
20	101447	M21305	Hs.79345	gb:Human alpha satellite and satellite 3 coagulation factor VIII, procoagulant co	504.60	31.00		
	101383 101346	NM_000132 A1738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N		31.00	1.75	
	101346	NM_005795	Hs.152175	calcitonin receptor-like			0	
	101336		Hs.75678	FBJ murine osteosarcoma viral oncogene h			2.24	
25	101330	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do				
	101277	BE297626	Hs.296049	microfibrillar-associated protein 4				
	101262			gb:Human dystrophin (dp140) mRNA, 5' end	19.00			
	101168	NM_005308	Hs.211569	G protein-coupled receptor kinase 5			2.01	
30	101102	NM_003243	Hs.79059	transforming growth factor, beta recepto		7.52		
30	101088 101066	X70697 AW970254	Hs.553 Hs.889	solute carrier family 6 (neurotransmitte Charot-Leyden crystal protein	19.38	1.02		
	100971	BE379727	Hs.83213	fatty acid binding protein 4, adipocyte	15.00		1.91	
	100893	BE245294	Hs.180789	S164 protein	15.40			
	100770	W25797.comp		amyloid beta (A4) precursor protein (pro	11.20			
35	100716	X89887	Hs.172350	HIR (histone cell cycle regulation defec	14.80			
	100555	M69181		gb:Human nonmuscle myosin heavy chain-B	33.00			
	100425	NM_014747	Hs.78748	KIAA0237 gene product	16.20	4.00		
	100408 100382	D86640	Hs.56045 Hs.156007	src homology three (SH3) and cysteine ri Down syndrome critical region gene 1-lik		4.00		
40	100362	D83407 D64158	HS. 150001	Down syndrome children region gene 1-lik		6.20		
70	100331	D49493	Hs.2171	growth differentiation factor 10		21.20		
	100134	AA305746	Hs.49	macrophage scavenger receptor 1				
	100108	U09577	Hs.76873	hyaluronoglucosaminidase 2			1.79	
4 ~	100095	Z97171	Hs.78454	myocilin, trabecular meshwork inducible		5.40		
45	100066				11.29			

TABLE 3B shows the accession numbers for those primekeys lacking unigenelD's for Table 3A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

CO	Pkey	CAT number	Accessions	
60				
	123619	371681_1	AA602964 A	
	126433			A099517 N89423
	125831	1522905_1	H04043 D60	
~ ~	126816	122973_1	AA248234 A	
65	126852	136135_1	AA399961 A	
	121059	273450_1	AA393283 A	
	120637		AA811804 A	A809404 AA286907 AW977624
	122011	76172	AA431082	
70	120934			A226513 AA383773
70	123802			AA620448
	116814	genbank_H5083	34	H50834
	118329	genbank_N6352	20	N63520
	104404		H58762	
	104776			AA026349
75	113502	genbank_T8913	0T89130	
	101262	entrez_L35854		
	108573	genbank_AA086	5005	AA086005
	101447	entrez_M21305	M21305	
	124357	genbank_N2240)1	N22401
80	108781	genbank_AA128	3654	AA128654
	112794	genbank_R9701	18	R97018
	100351	entrez_D64158	D64158	
	100555	tigr_HT2245	M69181 M8	1105 U51039
85				
05				

WO 02/086443 PCT/US02/12476

Table 4A shows 202 genes up-regulated in samples from patients treated with chemotherapy or radiotherapy. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5

Pkey: Unique Eos probeset identifier number
EXACCRI: Exemplar Accession number, Genbank accession number
UnigenelD: Unigene number
Unigene Title: Unigene gene title
R1: average of AI for samples from patients treated with chemotherapy or radiotherapy divided by the average of AI for normal lung samples.

10	R1:	average of	Al for samples	s from patients treated with chemotherapy or radiother	apy divided
10	Pkey	ExAcon	UnigenelD	Unigene Title	R1
	,	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Jg	- mgene vise	
	100113	NM_001269	Hs.84746	chromosome condensation 1	27.20
15	100187	D17793	Hs.78183	aldo-keto reductase family 1, member C3	20.60
15	100210 100225	D26361 D28539	Hs.3104 Hs.167185	KIAA0042 gene product glutamate receptor, metabotropic 5	20.40
	100225	NM_001949	Hs.1189	E2F transcription factor 3	29.40
	100438	AA013051	Hs.91417	topoisomerase (DNA) II binding protein	23.50
••	100877	X80821	Hs.27973	KIAA0874 protein	35.56
20	100893	BE245294	Hs.180789	S164 protein	43.40
	101273	Z11933	Hs.182505	POU domain, class 3, transcription facto	21.80 193.60
	101447 101649	M21305 AW959908	Hs.1690	gb:Human alpha satellite and satellite 3 heparin-binding growth factor binding pr	38.40
	101724	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	198.80
25	101748	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	78.60
	101809	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	162.20
	101879	AA176374	Hs.243886	nuclear autoantigenic sperm protein (his	50.00
	101915	AF207881	Hs.155185	cytosolic ovarian carcinoma antigen 1	26.00 37.20
30	101973 102025	U41514 U04045	Hs.80120 Hs.78934	UDP-N-acetyl-alpha-D-galactosamine:polyp mutS (E. coli) homolog 2 (colon cancer,	37.20
50	102023	U04898	Hs.2156	RAR-related orphan receptor A	32.00
	102052	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	51.20
	102391	AA296874	Hs.77494	deoxyguanosine kinase	13.90
25	102420	U44060	Hs.14427	Homo sapiens cDNA: FLJ21800 fis, clone H	28.80
35	102610	U65011	Hs.30743	preferentially expressed antigen in mela	110.60
	102829 103000	NM_006183 NM_001975	Hs.80962 Hs.146580	neurotensin enolase 2, (gamma, neuronal)	116.80 2.30
	103036	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	181.40
	103507	AJ000512	Hs.296323	serum/glucocorticoid regulated kinase	49.20
40	103587	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	86.60
	104660	BE298665	Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D016 (fr	42.60
	104896	AW015318	Hs.23165	ESTs	29.40 21.50
	105038 105298	AW503733 BE387790	Hs.9414 Hs.26369	KIAA1488 protein hypothetical protein FLJ20287	32.80
45	105230	Z42047	Hs.283978	Homo sapiens PRO2751 mRNA, complete cds	20.20
	105667	AA767526	Hs.22030	paired box gene 5 (B-cell lineage specif	28.40
	106073	AL157441	Hs.17834	downstream neighbor of SON	25.40
	106205	AW965058	Hs.111583	ESTs, Weakly similar to I38022 hypotheti	32.00
50	106516	AL137311	Hs.234074	Homo sapiens mRNA; cDNA DKFZp761G02121 (40.60 59.80
50	106533 106575	AL134708 AW970602	Hs.145998 Hs.105421	ESTs ESTs	43.40
	106654	AW075485	Hs.286049	phosphoserine aminotransferase	50.80
	106851	Al458623		gb:tk04g09.x1 NCI_CGAP_Lu24 Homo sapiens	53.40
~ ~	106995	AB023139	Hs.37892	KIAA0922 protein	20.88
55	107332	T87750	Hs.183297	DKFZP566F2124 protein	23.60 57.20
	107532 107922	AA443473 BE153855	Hs.173684 Hs.61460	Homo sapiens mRNA; cDNA DKFZp762G207 (fr lg superfamily receptor LNIR	49.00
	108609	BE409857	Hs.69499	hypothetical protein	19.67
	108780	AU076442	Hs.117938	collagen, type XVII, alpha 1	48.17
60	109166	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	59.20
	109260	AW978515	Hs.131915	KIAA0863 protein	28.60
	109280	AK001355	Hs.279610	hypothetical protein FLJ10493	22.80
	109292 109384	AW975746 AA219172	Hs.188662 Hs.86849	KIAA1702 protein ESTs	21.00
65	109415	U80736	Hs.110826	trinucleotide repeat containing 9	31.60
•	109445	AA232103	Hs.189915	ESTs	24.20
	109502	AW967069	Hs.211556	hypothetical protein MGC5487	21.40
	109633	AW003785	Hs.170267	ESTs	20.40
70 -	109786	AI989482	Hs.146286 Hs.133521	kinesin family member 13A ESTs	19.60 24.00
70 .	109958 110920	AA001266 N47224	Hs.20521	HMT1 (hnRNP methyltransferase, S. cerevi	28.40
	110924	AW058463	Hs.12940	zinc-fingers and homeoboxes 1	36.00
	111084	H44186	Hs.15456	PDZ domain containing 1	61.20
76	111132	AB037807	Hs.83293	hypothetical protein	24.60
75	111229	AW389845	Hs.110855	ESTs	27.20
	111337	AA837396	Hs.263925	LIS1-interacting protein NUDE1, rat homo	48.00 37.80
	111987 112046	NM_015310 AA383343	Hs.6763 Hs.22116	KIAA0942 protein CDC14 (cell division cycle 14, S. cerevi	26.80
	112268	W39609	Hs.22003	solute carrier family 6 (neurotransmitte	63.80
80	112685	R87650	Hs.33439	ESTs, Weakly similar to ALU1_HUMAN ALU	26.40
	112871	AL110216	Hs.12285	ESTs, Weakly similar to 155214 salivary	47.64
	112897	AW206453	Hs.3782	ESTs	22.00 65.00
	112973 112992	AB033023 AL157425	Hs.318127 Hs.133315	hypothetical protein FLJ10201 Homo sapiens mRNA; cDNA DKFZp761J1324 (f	42.00
85	113073	N39342	Hs.103042	microtubule-associated protein 1B	55.40
-				·	

	W	O 02/086	443		
	113494	T91451	Hs.86538	ESTs	22.80
	113560	T91015	Hs.268626	ESTs	22.80
	113849	AA457211	Hs.8858	bromodomain adjacent to zinc finger doma	51.80
_	113950	Al267652	Hs.30504	Homo sapiens mRNA; cDNA DKFZp434E082 (fr	28.20
5	114339	AA782845	Hs.22790	ESTs	20.20
	114365	H42169	Hs.18653	hypothetical protein FLJ14627	21.00
	114455	H37908	Hs.271616	ESTs, Weakly similar to ALU8_HUMAN ALU S	25.80
	114518	AW163267	Hs.106469	suppressor of var1 (S.cerevisiae) 3-like	23.60 27.20
10	114824	AA960961	Hs.305953	zinc finger protein 83 (HPF1)	30.20
10	114837	BE244930	Hs.166895	ESTs	20.80
	114974 115075	AW966931 AA814043	Hs.179662 Hs.88045	nucleosome assembly protein 1-like 1 ESTs	30.60
	115075	BE383668	Hs.42484	hypothetical protein FLJ10618	28.86
	115291	BE545072	Hs.122579	hypothetical protein FLJ10461	38.00
15	115313	AA808001	Hs.184411	albumin	22.60
10	115697	D31382	Hs.63325	transmembrane protease, serine 4	173.60
	115909	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	27.77
	116090	Al591147	Hs.61232	ESTs	20.80
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	164.20
20	116399	AA889120	Hs.110637	homeo box A10	38.00
_ •	117099	H93699		gb:yv16a11.s1 Soares fetal liver spleen	21.60
	117881	AF161470	Hs.260622	butyrate-induced transcript 1	49.40
	118091	AW005054	Hs.47883	ESTs, Weakly similar to KCC1_HUMAN CALCI	22.40
~ ~	118138	AA374756	Hs.93560	Homo sapiens mRNA for KIAA1771 protein,	22.00
25	118720	N73515		gb:za49d07.s1 Soares fetal liver spleen	20.00
	118873	A1824009	Hs.44577	ESTs	19.40
	119126	R45175	Hs.117183	ESTs	111.20
	119717	AA918317	Hs.57987	B-cell CLL/lymphoma 11B (zinc finger pro	33.00
20	119940	AL050097	Hs.272531	DKFZP586B0319 protein	31.00
30	120266	Al807264	Hs.205442	ESTs, Weakly similar to T34036 hypotheti	20.20
	120515	AA258356	11- 4040	gb:zr59c10.s1 Soares_NhHMPu_S1 Homo sapi	25.00
	120859	AA826434	Hs.1619	achaete-scute complex (Drosophila) homol	95.40 105.20
	120983	AA398209	Hs.97587	EST ESTs	38.80
35	121054	AW976570 AW450737	Hs.97387 Hs.128791	CGI-09 protein	41.60
55	121369 122335	AA443258	Hs.241551	chloride channel, calcium activated, fam	30.80
	122612	AA974832	Hs.128708	ESTs	19.60
	123130	AA487200	113.120700	gb:ab19f02.s1 Stratagene lung (937210) H	33.20
	123440	Al733692	Hs.112488	ESTs	23.17
40	123596	AA421130	Hs.112640	EST	23.00
	123619	AA602964		gb:no97c02.s1 NCI_CGAP_Pr2 Homo sapiens	28.80
	124006	Al147155	Hs.270016	ESTs	77.60
	124169	BE079334	Hs.271630	ESTs	22.20
	124281	Al333756	Hs.111801	arsenate resistance protein ARS2	42.20
45	124472	N52517	Hs.102670	EST	32.60
	124617	AW628168	Hs.152684	ESTs	21.80
	124631	NM_014053	Hs.270594	FLVCR protein	30.40
	124839	R55784	Hs.140942	ESTs	21.20
50	125186	AA610620	Hs.181244	major histocompatibility complex, class	42.80
50	125321	T86652	Hs.178294	ESTs	27.00
	125535	NM_013243	Hs.22215	secretogranin III	23.80
	125646	AA628962	Hs.75209	protein kinase (cAMP-dependent, catalyti	23.20
	125684	AW589427	Hs.158849	Homo sapiens cDNA: FLJ21663 fis, clone C	21.20 48.80
55	125724	AL360190	Hs.295978	Homo sapiens mRNA full length insert cDN ESTs	31.00
55	125847 125934	AW161885 AA193325	Hs.249034 * Hs.32646	hypothetical protein FLJ21901	21.20
	126077	M78772	Hs.210836	ESTs	49.80
	126299	AW979155	Hs.298275	amino acid transporter 2	21.80
	126395	A1468004	Hs.278956	hypothetical protein FLJ12929	71.00
60	126433	AA325606		gb:EST28707 Cerebellum II Homo sapiens c	23.20
	126509	R47400	Hs.23850	ESTs	23.80
	126538	AB030656	Hs.17377	coronin, actin-binding protein, 1C	23.10
	126666	AA648886	Hs.151999	ESTs	36.00
	126812	AB037860	Hs.173933	nuclear factor I/A	20.80
65	126872	AW450979		gb:UI-H-BI3-ala-a-12-0-UI.s1 NCI_CGAP_Su	46.29
	127046	AA321948	Hs.293968	ESTs	22.80
	127431	AW771958	Hs.175437	ESTs, Moderately similar to PC4259 ferri	30.00
	127489	AA650250	Hs.272076	ESTs	20.80
70	127521	AW297206	Hs.164018	ESTs	25.20
70	127742	AW293496	Hs.180138	ESTs	28.00
	127925	AA805151	Hs.3628	mitogen-activated protein kinase kinase	21.20
	127930	AA809672	Hs.123304	ESTs	20.54
	127968	AA830201	Hs.124347	ESTs	28.20
75	127987	A1022103	Hs.124511	ESTs	19.60
75	128116	H07103	Hs.286014	Homo sapiens, clone IMAGE:3867243, mRNA	20.40
	128609	NM_003616	Hs.102456	survival of motor neuron protein interac	34.40
	128777	Al878918	Hs.10526	cysteine and glycine-rich protein 2	53.80
	128949	AA009647	Hs.8850	a disintegrin and metalloproteinase doma	23.00
80	129168	Al132988	Hs.109052	chromosome 14 open reading frame 2	37.60
ov.	129404	AI267700	Hs.317584	ESTs delta-tubulin	28.60
	129527	AA769221	Hs.270847	UMP-CMP kinase	40.80 31.20
	129574 129598	AA026815 N30436	Hs.11463 Hs.11556	Homo sapiens cDNA FLJ12566 fis, clone NT	29.60
	129596	H19006	Hs.184780	ESTs	72.20
85	129970	AV655806	Hs.296198	chromosome 12 open reading frame 4	22.20

	W	O 02/086	443		
	130149	AW067805	Hs.172665	methylenetetrahydrofolate dehydrogenase	29.60
	130199	Z48579	Hs.172028	a disintegrin and metalloproteinase doma	27.60
	130441	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	28.36
	130466	W19744	Hs.180059	Homo sapiens cDNA FLJ20653 fis, clone KA	20.20
5	130482	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur	22.40
	130617	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	19.60
	130703	R77776	Hs.18103	ĔSTs ·	19.40
	130732	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)	21.40
	130867	NM 001072	Hs.284239	UDP glycosyltransferase 1 family, polype	110.00
10	131028	Al879165	Hs.2227	CCAAT/enhancer binding protein (C/EBP),	25.20
	131086	AL035461	Hs.2281	chromogranin B (secretogranin 1)	40.60
	131284	NM 001429	Hs.25272	E1A binding protein p300	24.60
	131775	AB014548	Hs.31921	KIAA0648 protein	21.00
	131860	BE383676	Hs.334	Rho guanine nucleotide exchange factor (33.40
15	131945	NM 002916	Hs.35120	replication factor C (activator 1) 4 (37	60.80
	132040	NM 001196	Hs.315689	Homo sapiens cDNA: FLJ22373 fis, clone H	. 20.40
	132084	NM_002267	Hs.3886	karyopherin alpha 3 (importin alpha 4)	29.40
	132389	AA310393	Hs.190044	ESTs	32.40
	132437	AA152106	Hs.4859	cyclin L ania-6a	27.40
20	132550	AW969253	Hs.170195	bone morphogenetic protein 7 (osteogenic	75.60
	132617	AF037335	Hs.5338	carbonic anhydrase XII	31.36
	132632	AU076916	Hs.5398	guanine monphosphate synthetase	32.40
	132672	W27721	Hs.54697	Cdc42 guanine exchange factor (GEF) 9	23.40
	132742	AA025480	Hs.292812	ESTs, Weakly similar to T33468 hypotheti	61.20
25	132771	Y10275	Hs.56407	phosphoserine phosphatase	22.33
	133070	U92649	Hs.64311	a disintegrin and metalloproteinase doma	23.50
	133153	AF070592	Hs.66170	HSKM-B protein	30.00
	133181	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	23.80
	133282	AA449015	Hs.286145	SRB7 (suppressor of RNA polymerase B, ye	51.60
30	133350	Al499220	Hs.71573	hypothetical protein FLJ10074	33.00
	133592	AV652066	Hs.75113	general transcription factor IIIA	82.00
	133658	AA319146	Hs.75426	secretogranin II (chromogranin C)	
	133865	AB011155	Hs.170290	discs, large (Drosophila) homolog 5	69.33
	134032	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	33.20
35	134125	NM_014781	Hs.50421	KIAA0203 gene product	31.60
	134158	U15174	Hs.79428	BCL2/adenovirus E1B 19kD-interacting pro	30.60
	134321	BE538082	Hs.8172	ESTs, Moderately similar to A46010 X-lin	23.40
	134367	AA339449	Hs.82285	phosphoribosylglycinamide formyltransfer	49.20
4.0	134570	U66615	Hs.172280	SWI/SNF related, matrix associated, acti	20.20
40	134753	NM_006482	Hs.173135	dual-specificity tyrosine-(Y)-phosphoryl	20.80
	135002	AA448542	Hs.251677	G antigen 7B	37.60
	135029	H58818	Hs.187579	hydroxysteroid (17-beta) dehydrogenase	53.40
	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	31.60
4 ~	135345	X53655	Hs.99171	neurotrophin 3	28.80
45					

TABLE 4B shows the accession numbers for those primekeys lacking unigenelD's for Table 4A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column. 50

PCT/US02/12476

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

55

70

	Pkey	CAT number	Accessions
60	123619 126433 126872	371681_1 127143_1 142696_1	AA602964 AA609200 AA325606 AA099517 N89423 AW450979 AA136653 AA136656 AW419381 AA984358 AA492073 BE168945 AA809054 AW238038 BE011212 BE011359 BE011367 BE011368 BE011362 BE011215 BE011365 BE011363
65	106851 118720 120515 117099 101447 123130	322947_1 genbank_N7351 genbank_AA258 321871_1 entrez_M21305 genbank_AA487	Al458623 AA639708 AA485409 R22065 AA485570 5 N73515 I356 AA258356 H93699 H97976 H80036 M21305

PCT/US02/12476

Table 5A shows 680 genes up-regulated in squamous cell carcinoma or adenocarcinoma lung tumors relative to normal lung and chronically diseased lung. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5	Pkey:	Unique Eos probeset identifier number
	ExAccn:	Exemplar Accession number, Genbank accession number
	UnigenelD:	Unigene number
	Unigene Title:	Unigene gene title
	R1:	70th percentile of Al for squamous cell carcinoma and adenocarcinoma lung tumor samples divided by the 90th percentile of Al for normal and chronically
10		diseased lung samples.
	R2:	80th percentile of Al adenocarcinoma lung tumor samples divided by the 90th percentile of Al for normal and chronically diseased lung samples.
	R3:	80th percentile of Al squamous cell carcinoma lung tumor samples divided by the 90th percentile of Al for normal and chronically diseased lung samples.
	R4:	80th percentile of Al adenocarcinoma lung tumor samples divided by the 80th percentile of Al for squamous cell carcinoma lung tumor samples.
	R5:	70th percentile of Al for squamous cell carcinoma and adenocarcinoma lung tumor samples minus the 15th percentile of Al for all normal lung, chronically
15		diseased lung and tumor samples divided by 90th percentile of AI for normal and chronically diseased lung samples minus the 15th percentile of AI for all
		normal lung, chronically diseased lung and tumor samples

20	Pkey	ExAccn	UnigeneID	Unigene Title	R1	R2	R3	R4	R5
20	100035			AFFX control: GAPDH AFFX control: GAPDH					6.76 5.77
	100036 100037	,		AFFX control: GAPDH					5.75
	100071	A28102		Human GABAa receptor alpha-3 subunit		8.00			
25	100114	X02308	Hs.82962	thymidylate synthetase					5.71
	100154	H60720	Hs.81892	KIAA0101 gene product	3.84 3.33				
	100187 100188	D17793 AW247090	Hs.78183 Hs.57101	aldo-keto reductase family 1, member C3 minichromosome maintenance deficient (S.	3.33				4.52
	100100	BE294407	Hs.99910	phosphofructokinase, platelet					5.49
30	100216	AA489908	Hs.1390	proteasome (prosome, macropain) subunit,					5.67
	100269	NM_001949	Hs.1189	E2F transcription factor 3	2.55				
	100287	AU076657	Hs.1600	chaperonin containing TCP1, subunit 5 (e					5.66
	100297	AU077258	Hs.182429	protein disulfide isomerase-related prot minichromosome maintenance deficient (S.					3.81 4.50
35	100330 100335	AW410976 AW247529	Hs.77152 Hs.6793	platelet-activating factor acetylhydrola	5.07				7.00
55	100360	W70171	Hs.75939	uridine monophosphate kinase	0.0.				4.82
	100372	NM_014791	Hs.184339	KIAA0175 gene product					3.79
	100474	NM_000699	Hs.300280	amylase, alpha 2A; pancreatic				15.65	E 40
40	100486	T19006	Hs.10842	RAN, member RAS oncogene family					5.49
40	100491	D56165	Hs.275163	non-metastatic cells 2, protein (NM23B) carcinoembryonic antigen-related cell ad		7.20			4.17
	100516 100522	D90278 X51501	Hs.11 Hs.99949	prolactin-induced protein		1.20		14.20	
	100559	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys	3.10				
	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid				9.30	
45	100629	AA015693	Hs.21291	mitogen-activated protein kinase kinase				20.60	
	100661	BE623001	Hs.132748	Homo sapiens ribosomal protein L39 mRNA,	3.85	8.60			
	100677 100696	AA353686 D14887	Hs.57813 Hs.121686	zinc ribbon domain containing, 1 general transcription factor IIA, 1 (37k		0.00		10.00	
	100090	N26539	Hs.100469	myeloid/lymphoid or mixed-lineage leukem			24.80		
50	100761	BE208491	Hs.295112	KIAA0618 gene product		7.60			
	100830	AC004770	Hs.4756	flap structure-specific endonuclease 1					7.99
	100867	U14622	11 000000	gb:Human transketolase-like protein gene		10.20			
	100902	M16029	Hs.287270	ret proto-oncogene (multiple endocrine n quanine monphosphate synthetase		8.00			5.16
55	100906 100960	AU076916 J00124	Hs.5398 Hs.117729	keratin 14 (epidermolysis bullosa simple	2.57				0.70
55	101045	J05614	110.111720	gb:Human proliferating cell nuclear anti					4.69
	101061	NM_000175	Hs.180532	glucose phosphate isomerase					4.19
	101071	L02840	Hs.84244	potassium voltage-gated channel, Shab-re	0.40	12.91			
60	101124	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL melanoma antigen, family A, 2	3.12 3.50				
00	101175 101181	U82671 BE262621	Hs.36980 Hs.73798	macrophage migration inhibitory factor (0.00				5.69
	101101	L24203	Hs.82237	ataxia-telangiectasia group D-associated	4.08				
	101210	L29301	Hs.2353	opioid receptor, mu 1			6.40		
<i>(</i>	101216	AA284166	Hs.84113	cyclin-dependent kinase inhibitor 3 (CDK	2.53				7.00
65	101228	AA333387	Hs.82916	chaperonin containing TCP1, subunit 6A (7.90 4.45
	101233 101273	AL135173 Z11933	Hs.878 Hs.182505	sorbitol dehydrogenase POU domain, class 3, transcription facto	8.50				4.40
	101342	U52112	Hs.182018	interleukin-1 receptor-associated kinase	0.00				4.17
	101346	Al738616	Hs.77348	hydroxyprostaglandin dehydrogenase 15-(N				21.89	
70	101369	NM_000892	Hs.1901	kallikrein B, plasma (Fletcher factor) 1	0.04			12.80	
	101396	BE267931	Hs.78996	proliferating cell nuclear antigen	3.24				7.90
	101431 101448	BE185289 NM_000424	Hs.1076 Hs.195850	small proline-rich protein 1B (cornifin) keratin 5 (epidermolysis bullosa simplex	8.31				1.50
	101462	AL035668	Hs.73853	bone morphogenetic protein 2	0.01			38.80	
75	101466	BE262660	Hs.170197	glutamic-oxaloacetic transaminase 2, mit					4.01
	101484	AA053486	Hs.20315	interferon-induced protein with tetratri				12.00	
	101502	M26958		gb:Human parathyroid hormone-related pro	10.50				4.46
	101505	AA307680	Hs.75692	asparagine synthetase aconitase 1, soluble	4.02				4.40
80	101526 101535	NM_002197 X57152	Hs.154721 Hs.99853	fibrillarin	7.04				4.65
	101577	M34353	Hs.1041	v-ros avian UR2 sarcoma virus oncogene h				9.09	
	101649	AW959908	Hs.1690	heparin-binding growth factor binding pr	54.00				
	101663	NM_003528	Hs.2178	H2B histone family, member Q	5.59				
85	101664 101669	AA436989 L24498	Hs.121017 Hs.80409	H2A histone family, member A growth arrest and DNA-damage-inducible,	7.00	7.60			
0.5	101003	LL7770	110,00700	grown arrost and providence					

	w	O 02/086	443						PCT/US02/12476
	101695	M69136	Hs.135626	chymase 1, mast cell	4.79				
	101724	L11690	Hs.620	bullous pemphigoid antigen 1 (230/240kD)	15.21				
	101748	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	55.50				
5	101759	M80244	Hs.184601	solute carrier family 7 (cationic amino				40.57	4.10
5	101771 101804	NM_002432 M86699	Hs.153837 Hs.169840	myeloid cell nuclear differentiation ant TTK protein kinase	4.50			18.57	
	101804	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	140.00				
	101833	AU076442	Hs.117938	collagen, type XVII, alpha 1	2.56				
4.0	101842	M93221	Hs.75182	mannose receptor, C type 1				12.80	
10	101851	BE260964	Hs.82045	midkine (neurite growth-promoting factor					5.88
	102002	NM_002484	Hs.81469	nucleotide binding protein 1 (E.coli Min		7.80			4.05
	102039	AL134223	Hs.306098	aldo-keto reductase family 1, member C1			7.40		4.35
	102072 102083	U09410 T35901	Hs.78743 Hs.75117	zinc finger protein 131 (clone pHZ-10) interleukin enhancer binding factor 2, 4			7.40		5.12
15	102003	L36196	Hs.81884	sulfotransferase family, cytosolic, 2A,				12.00	0.12
	102123	NM_001809	Hs.1594	centromere protein A (17kD)	6.20				
	102154	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin	2.62				
	102193	AL036335	Hs.313	secreted phosphoprotein 1 (osteopontin,	5.85				0.40
20	102217	AA829978	Hs.301613	JTV1 gene					6.18 4.49
40	102224 102234	NM_002810 AW163390	Hs.148495 Hs.278554	proteasome (prosome, macropain) 26S subu heterochromatin-like protein 1	•				5.80
	102251	NM_004398	Hs.41706	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	4.50				0.00
	102305	AL043202	Hs.90073	chromosome segregation 1 (yeast homolog)					5.15
~~	102330	BE298063	Hs.77254	chromobox homolog 1 (Drosophila HP1 beta					4.17
25	102340	U37055	Hs.278657	macrophage stimulating 1 (hepatocyte gro				9.33	
	102348	U37519	Hs.87539	aldehyde dehydrogenase 3 family, member	8.87				
	102368 102394	U39817 NM_00381 6	Hs.36820 Hs.2442	Bloom syndrome a disintegrin and metalloproteinase doma	15.91		19.20		
	102394	NM_005429	Hs.79141	vascular endothelial growth factor C			13.20	14.00	
30	102537	U57094	Hs.50477	RAB27A, member RAS oncogene family				12.00	
	102581	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2					4.57
	102605	AI435128	Hs.181369	ubiquitin fusion degradation 1-like					3.98
	102610	U65011	Hs.30743	preferentially expressed antigen in mela	77.50				
35	102623	AW249285	Hs.37110	melanoma antigen, family A, 9 G protein-coupled receptor	12.50		22.00		
33	102642 102654	AA205847 AV649989	Hs.23016 Hs.24385	Human hbc647 mRNA sequence		12.00	22.00		
	102659	BE245169	Hs.211610	CUG triplet repeat, RNA-binding protein		12.00		12.80	
	102669	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	6.50				
40	102672	U72066	Hs.29287	retinoblastoma-binding protein 8	8.50				
40	102687	NM_007019	Hs.93002	ubiquitin carrier protein E2-C					9.24
	102696	BE540274	Hs.239	forkhead box M1		6.60			5.54
	102768 102781	U82321 BE258778	Hs.108809	gb:Homo sapiens clone 14.98 mRNA sequenc chaperonin containing TCP1, subunit 7 (e		6.60			3.78
	102784	U85658	Hs.61796	transcription factor AP-2 gamma (activat					4.26
45	102824	U90916	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H			14.40		
	102829	NM_006183	Hs.80962	neurotensin	8.00				
	102888	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1					5.50
	102892	BE440042	Hs.83326	matrix metalloproteinase 3 (stromelysin	4.04		6.70		
50	102913 102935	NM_002275	Hs.80342 Hs.80506	keratin 15 small nuclear ribonucleoprotein polypept	4.64 2.93				
50	102955	BE561850 X15218	Hs.2969	v-ski avian sarcoma viral oncogene homol	2.50			11.40	
	102983	BE387202	Hs.118638	non-metastatic cells 1, protein (NM23A)					7.26
	103023	AW500470	Hs.117950	multifunctional polypeptide similar to S	3.01				
- -	103036	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	27.90				4.50
55	103038	AA926960	Hs.334883	CDC28 protein kinase 1					8.79
	103060 103099	NM_005940 Al693251	Hs.155324 Hs.8248	matrix metalloproteinase 11 (stromelysin NADH dehydrogenase (ubiquinone) Fe-S pro		9.80			4.27
	103099	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	4.05	5.00			
	103168	X53463	Hs.2704	glutathione peroxidase 2 (gastrointestin	3.07				
60	103185	NM_006825	Hs.74368	transmembrane protein (63kD), endoplasmi					5.62
	103192	M22440	Hs.170009	transforming growth factor, alpha		7.40	•		
	103223	BE275607	Hs.1708	chaperonin containing TCP1, subunit 3 (g			400.00		4.70
	103242	X76342 X83301	Hs.389 Hs.324728	alcohol dehydrogenase 7 (class IV), mu o SMA5			100.00	9.80	
65	103316 103375	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolo	9.71			3.00	
05	103376	AL036166	Hs.323378	coated vesicle membrane protein	14.00				
	103385	NM_007069	Hs.37189	similar to rat HREV107				11.00	
	103391	X94453	Hs.114366	pyrroline-5-carboxylate synthetase (glut	2.93				
70	103404	BE394784	Hs.78596	proteasome (prosome, macropain) subunit,					5.15
70	103430	BE564090	Hs.20716	translocase of inner mitochondrial membr				24.40	3.98
	103446 103476	X98834 Y07701	Hs.79971 Hs.293007	sal (Drosophila)-like 2 aminopeptidase puromycin sensitive		13.00		21.40	
	103470	AJ011812	Hs.119018	transcription factor NRF		15.00	6.40		
	103478	BE514982	Hs.38991	S100 calcium-binding protein A2	5.02		*****		
75	103515	Y10275	Hs.56407	phosphoserine phosphatase	10.50				
	103558	BE616547	Hs.2785	keratin 17	6.41				
	103580	AA328046	Hs.46405	polymerase (RNA) II (DNA directed) polyp	70.50				3.84
	103587	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein SRY (sex determining region Y)-box 2	78.50 6.51				
80	103594 103636	Al368680 NM_006235	Hs.816 Hs.2407	POU domain, class 2, associating factor	3.50				
55	103768	AF086009	. 10.2-101	gb:Homo sapiens full length insert cDNA	0.50				4.48
	103841	AA314821	Hs.38178	hypothetical protein FLJ23468		8.00			
	103847	AF219946	Hs.102237	tubby super-family protein		10.40		45.00	
85	103913	AW967500	Hs.133543	ESTs			6.60	15.60	
0.5	104094	AA418187	Hs.330515	ESTs			6.60		

	XX.	O 02/086	112						DC	T/US02/12476
	104150		Hs.331633	hypothetical protein DKFZp566N034				26.00	PC	1/0502/124/0
	104257	BE560621	Hs.9222	estrogen receptor binding site associate		6.80				
	104261	AW248364	Hs.5409	RNA polymerase I subunit					3.98	
5	104331 104415	AB040450 BE410992	Hs.279862 Hs.258730	cdk inhibitor p21 binding protein heme-regulated initiation factor 2-alpha		6.80 10.29				
	104558	R56678	Hs.88959	hypothetical protein MGC4816	4.21	10.25				
	104590	AW373062	Hs.83623	nuclear receptor subfamily 1, group I, m				15.79		
	104658	AA360954	Hs.27268	Homo sapiens cDNA: FLJ21933 fis, clone H				17.40		
10	104660	BE298665	Hs.14846	Homo sapiens mRNA; cDNA DKFZp564D016 (fr	6.40				0.55	
10	104689 104754	AA420450 Al206234	Hs.292911 Hs.155924	ESTs, Highly similar to S60712 band-6-pr cAMP responsive element modulator				10.00	6.55	
	104758	BE560269	Hs.7010	NPD002 protein				10.00	4.47	
	104971	BE311926	Hs.15830	hypothetical protein FLJ12691	2.87					
15	105011	BE091926	Hs.16244	mitotic spindle coiled-coil related prot	3.83					
13	105012 105026	AF098158 AA809485	Hs.9329 Hs.124219	chromosome 20 open reading frame 1 hypothetical protein FLJ12934	2.86	11.00				
	105026	A1598252	Hs.37810	hypothetical protein MGC14833		11.00			5.01	
	105132	AA148164	Hs.247280	HBV associated factor					3.99	
20	105143	Al368836	Hs.24808	ESTs, Weakly similar to 138022 hypotheti			11.00			
20	105158 105175	AW976357 AA305384	Hs.234545 Hs.25740	hypothetical protein NUF2R ERO1 (S. cerevisiae)-like	4.32	16.00				
	105173	AA328102	Hs.24641	cytoskeleton associated protein 2	3.00					
	105264	AA227934		gb:zr57e08.s1 Soares_NhHMPu_S1 Homo sapi				10.00		
25	105298	BE387790	Hs.26369	hypothetical protein FLJ20287	3.69					
25	105409	AW505076	Hs.301855	DiGeorge syndrome critical region gene 8 Homo sapiens, clone IMAGE:4179986, mRNA,			7.00	9.20		
	105460 105667	AW296078 AA767526	Hs.271721 Hs.22030	paired box gene 5 (B-cell lineage specif	4.12		7.80			
	105743	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),	3.82					
20	105782	H09748	Hs.57987	B-cell CLL/lymphoma 11B (zinc finger pro			27.00			
30	105848	AW954064	Hs.24951	ESTs			7.60			
	105891 106019	U55984 AF221993	Hs.289088 Hs.46743	heat shock 90kD protein 1, alpha McKusick-Kaufman syndrome			16.80		4.14	
	106069	BE566623	Hs.29899	ESTs, Weakly similar to G02075 transcrip			23.40			
2 =	106073	AL157441	Hs.17834	downstream neighbor of SON	9.50					
35	106126	AA576953	Hs.22972	hypothetical protein FLJ13352	6.00					
	106159 106220	AK001301	Hs.3487 Hs.32196	hypothetical protein FLJ10439					3.95 6.04	
	106260	D61329 Al097144	Hs.5250	mitochondrial ribosomal protein L36 ESTs, Weakly similar to ALU1_HUMAN ALU S			13.20		0.04	
40	106300	Y10043	Hs.19114	high-mobility group (nonhistone chromoso			10.20		5.02	
40	106307	AA436174	Hs.37751	ESTs, Weakly similar to putative p150 [6.60				
	106318 106341	AA025610	Hs.9605	cleavage and polyadenylation specific fa					5.04	
	106341	AF191020 AA449563	Hs.5243 Hs.151393	hypothetical protein, estradiol-induced glutamate-cysteine ligase, catalytic sub			13.80		7.25	
	106481	D61594	Hs.17279	tyrosylprotein sulfotransferase 1	4.75		10.00			
45	106586	AA243837	Hs.57787	ÉSTS				10.84		
	106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr	20.00			45.60		
	106654 106785	AW075485 Y15227	Hs.286049 Hs.20149	phosphoserine aminotransferase deleted in lymphocytic leukemia, 1	28.00 3.00					
	106813	C05766	Hs.181022	CGI-07 protein	0.00		11.40			
50	106895	AK001826	Hs.25245	hypothetical protein FLJ11269			6.00			
	106913	AI219346	Hs.86178	M-phase phosphoprotein 9		6.56			4.07	
	106919 107054	AW043637 Al076459	Hs.21766 Hs.15978	ESTs, Weakly similar to ALU5_HUMAN ALU S KIAA1272 protein				34.80	4.27	
	107059	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	4.71			04.00		
55	107098	Al823593	Hs.27688	ESTs				24.80		
	107104	AU076640	Hs.15243	nucleolar protein 1 (120kD)	0.00				7.05	
	107129 107198	AC004770 AV657225	Hs.4756 Hs 9846	flap structure-specific endonuclease 1	2.60	10 20				
	107203	D20426	Hs.9846 Hs.41639	KIAA1040 protein programmed cell death 2		19.20 7.60				
60	107217	AL080235	Hs.35861	DKFZP586E1621 protein	9.50					
	107284	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte	2.71		0.74			
	107318 107516	T74445 X57152	Hs.5957 Hs.99853	Homo sapiens clone 24416 mRNA sequence fibrillarin			8.71		4.33	
	107529	BE515065	Hs.296585	nucleolar protein (KKE/D repeat)					4.00	
65	107728	AA019551	Hs.294151	Homo sapiens, clone IMAGE:3603836, mRNA,		10.80				
	107851	AA022953	Hs.61172	EST			8.00			
	107901 107922	L42612 BE153855	Hs.335952 Hs.61460	keratin 6B Ig superfamily receptor LNIR	3.40					
	107932	AW392555	Hs.18878	hypothetical protein FLJ21620	2.88 7.50					
70	108015	AW298357	Hs.49927	protein kinase NYD-SP15				23.40		
	108056	AA043675	Hs.62633	ESTs				12.80		
	-108075	Al867370	Hs.139709	hypothetical protein FLJ12572		7.00		12.80		
	108187 108296	BE245374 N31256	Hs.27842 Hs.161623	hypothetical protein FLJ11210 ESTs		6.60				
75	108305	AA071391		gb:zm61e06.r1 Stratagene fibroblast (937		0.00		11.80		
	108393	AA075211		gb:zm86a08.r1 Stratagene ovarian cancer				11.80		
	108480	AL133092	Hs.68055	hypothetical protein DKFZp434I0428		6.40		20.80		
	108554 108573	AA084948 AA086005		gb:zn13b09.s1 Stratagene hNT neuron (937 gb:zl84c04.s1 Stratagene colon (937204)		6.40		25.40		
80	108584	AA088326	Hs.120905	Homo sapiens cDNA FLJ11448 fis, clone HE		9.60		-0.70		
	108597	AK000292	Hs.278732	hypothetical protein FLJ20285				14.60		
	108695	AB029000	Hs.70823	KIAA1077 protein	3.00			10.00		
_	108699 108700	AA121514 AA121518	Hs.70832 Hs.193540	ESTs ESTs, Moderately similar to 2109260A B c			11.00	10.00		
85	108780	AU076442	Hs.117938	collagen, type XVII, alpha 1	11.21					
				• • • •						

	***	0.00/00/	4.42						DCT/US00/40/45/
		O 02/086		hundhatiaal aratain MCC5250	0.50				PCT/US02/12476
	108810 108816	AW295647 AA130884	Hs.71331 Hs.270501	hypothetical protein MGC5350 ESTs, Moderately similar to ALU2_HUMAN	8.50	7.40			
	108857	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act	4.00				
5	108860	AA133334	Hs.129911	ESTs	6.09				
3	108937 109010	AL050107 NM_007240	Hs.24341 Hs.44229	transcriptional co-activator with PDZ-bi dual specificity phosphatase 12	3.00 2.69				
	109121	BE389387	Hs.49767	NADH dehydrogenase (ubiquinone) Fe-S pro	2.00				4.53
	109166	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	10.58				
10	109227 109415	AA766998 U80736	Hs.85874 Hs.110826	Human DNA sequence from clone RP11-16L21 trinucleotide repeat containing 9		9.00 51.40			
10	109418	Al866946	Hs.161707	ESTs		31.40		11.00	
	109454	AA232255	Hs.295232	ESTs, Moderately similar to A46010 X-li			17.60		
	109502	AW967069	Hs.211556	hypothetical protein MGC5487		10.67	9.49		
15	109543 109648	AA564994 H17800	Hs.222851 Hs.7154	ESTs - ESTs		12.67		10.40	
10	109680	AB037734	Hs.4993	KIAA1313 protein			33.20	10.10	
	109700	F09609		gb:HSC33H092 normalized infant brain cDN			44.00	16.00	
	109704 109792	Al743880 R49625	Hs.12876	ESTs gb:yg61f03.s1 Soares infant brain 1NIB H			11.00	12.60	
20	109792	BE546208	Hs.26090	hypothetical protein FLJ20272	4.00			12.00	
	109998	AL042201	Hs.21273	transcription factor NYD-sp10		7.80			
	110039	H11938	Hs.21907	histone acetyltransferase		7.00			101
	110156 110500	AA581322 AA907723	Hs.4213 Hs.36962	hypothetical protein MGC16207 ESTs	4.50				4.24
25	110551	AW450381	Hs.14529	ESTs	4.00	8.60			
	110561	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	3.06				
	110854	BE612992	Hs.27931	hypothetical protein FLJ10607 similar to		6.80	8.80		
	110886 110916	AW274992 BE178102	Hs.72249 Hs.24349	three-PDZ containing protein similar to ESTs		6.80	0.80		
30	111003	N52980	Hs.83765	dihydrofolate reductase		0.00		16.80	
	111337	AA837396	Hs.263925	LIS1-interacting protein NUDE1, rat homo	2.54				
	111434	R01608	Hs.142736	ESTs		•		9.80 10.40	
	111439 111540	A1476429 U82670	Hs.19238 Hs.9786	ESTs zinc finger protein 275			15.40	10.40	
35	111597	R11499	Hs.189716	ESTs				9.20	
	111895	T80581	Hs.12723	Homo sapiens clone 25153 mRNA sequence		6.80		44.07	
	111929 112054	AF027208 R43590	Hs.112360	prominin (mouse)-like 1 gb:yc85g02.s1 Soares infant brain 1NIB H		10.80		14.67	
	112210	R49645	Hs.7004	ESTs		10.00		10.20	
40	112244	AB029000	Hs.70823	KIAA1077 protein	2.99				
	112382	R59904	11. 400074	gb:yh07g12.s1 Soares infant brain 1NIB H		6.60	7.40		
	112392 112442	R60763 AA280174	Hs.193274 Hs.285681	ESTs, Moderately similar to 157588 HSrel Williams-Beuren syndrome chromosome regi	3.00		7.10		
	112539	R70318	Hs.339730	ESTs	0.00			37.20	
45	112772	Al992283	Hs.35437	ESTs, Moderately similar to 138026 MLN 6				14.60	
	112869 112935	BE261750 R71449	Hs.4747 Hs.268760	dyskeratosis congenita 1, dyskerin ESTs	2.73				4.83
	112933	AA694010	Hs.6932	Homo sapiens clone 23809 mRNA sequence	2.10			12.00	
~ 0	112973	AB033023	Hs.318127	hypothetical protein FLJ10201	11.50				
50	112992	AL157425	Hs.133315	Homo sapiens mRNA; cDNA DKFZp761J1324 (f	45.00		10.89		
	113063 113073	W15573 N39342	Hs.5027 Hs.103042	ESTs, Weakly similar to A47582 B-cell gr microtubule-associated protein 1B	15.00		15.31		
	113078	T40444	Hs.118354	CAT56 protein		7.00	10.01		
EE	113238	R45467	Hs.189813	ESTs				41.20	
55	113591 113702	T91881 T97307	Hs.200597	KIAA0563 gene product gb:ye53h05.s1 Soares fetal liver spleen	25.00			9.40	
	113844	Al369275	Hs.243010	Homo sapiens cDNA FLJ14445 fis, clone HE	25.00			13.91	
	113984	R96696	Hs.35598	ESTs		7.80			
60	114073	R44953	Hs.22908	Homo sapiens mRNA; cDNA DKFZp434J1027 (f	2.40	7.20			
00	114162 114208	AF155661 AL049466	Hs.22265 Hs.7859	pyruvate dehydrogenase phosphatase ESTs	3.42		6.74		
	114251	H15261	Hs.21948	ESTs				33.20	
	114285	R44338	Hs.22974	ESTs				13.20	
65	114313 114339	H18456 AA782845	Hs.27946 Hs.22790	ESTs ESTs		7.80		10.00	
05	114407	BE539976	Hs.103305	Homo sapiens mRNA; cDNA DKFZp434B0425 (f		7.00			4.14
	114560	AI452469	Hs.165221	ESTs				9.80	
	114699	AA127386	11- 454440	gb:zn90d09.r1 Stratagene lung carcinoma	2.04	7.60			
70	114767 114793	A1859865 AA158245	Hs.154443	minichromosome maintenance deficient (S qb:zo76c03.s1 Stratagene pancreas (93720	3.21		6.00		
, 0	114833	Al417215	Hs.87159	hypothetical protein FLJ12577			0.00	11.40	
	115047	BE270930	Hs.82916	chaperonin containing TCP1, subunit 6A (4.31
	115060	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3				35.40	4.03
75	115097 115113	AA256213 AA256460	Hs.72010	ESTs qb:zr81a04.s1 Soares_NhHMPu_S1 Homo sapi				15.20	
	115123	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m					4.19
	115134	AW968073	Hs.194331	ESTs, Highly similar to A55713 inositol	05.00			12.40	
	115291 115347	BE545072 AA356792	Hs.122579 Hs.334824	hypothetical protein FLJ10461 hypothetical protein FLJ14825	25.00	7.00			
80	115414	AA662240	Hs.283099	AF15q14 protein	3.25				
	115522	BE614387	Hs.333893	c-Myc target JPO1	3.68				
	115536 115566	AK001468 Al142336	Hs.62180 Hs.43977	anillin (Drosophila Scraps homolog), act Human DNA sequence from clone RP11-196N1	10.50			24.40	
	115645	A1142336 A1207410	Hs.69280	Homo sapiens, clone IMAGE:3636299, mRNA,	4.17			27.70	
85	115648	AW016811	Hs.234478	Homo sapiens cDNA: FLJ22648 fis, clone H			6.00		

	W	O 02/086	443						PCT/US02/12476
	115652	BE093589	Hs.38178	hypothetical protein FLJ23468	3.81	•			
	115697 115793	D31382 AA424883	Hs.63325 Hs.70333	transmembrane protease, serine 4 hypothetical protein MGC10753	62.14			11.80	
~	115816	BE042915	Hs.287588	Homo sapiens cDNA FLJ13675 fis, clone PL				9.71	
5	115892 115906	AA291377 Al767756	Hs.50831 Hs.82302	ESTs Homo sapiens cDNA FLJ14814 fis, clone NT	2.53		27.40		
	115909	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	11.82				
	115965	AA001732	Hs.173233	hypothetical protein FLJ10970				34.29	8.23
10	115978 115985	AL035864 AA447709	Hs.69517 Hs.268115	cDNA for differentially expressed CO16 g ESTs, Weakly similar to T08599 probable	3.00				0.20
	116090	Al591147	Hs.61232	ESTs	5.17		0.00		
	116096 116127	AA682382 AF126743	Hs.59982 Hs.279884	ESTs DNAJ domain-containing		10.60	8.20		
4 -	116157	BE439838	Hs.44298	mitochondrial ribosomal protein S17		70.00			5.82
15	116190 116278	Al949095	Hs.67776 Hs.47504	ESTs, Weakly similar to T22341 hypotheti exonuclease 1	9.50				4.08
	116335	NM_003686 AK001100	Hs.41690	desmocollin 3	3.67				
	116496	AW450694	Hs.21433	hypothetical protein DKFZp547J036		7.00		12.60	
20	116503 116674	Al925316 Al768015	Hs.212617 Hs.92127	ESTs ESTs			32.00	12.00	
	116929	AA586922	Hs.80475	polymerase (RNA) II (DNA directed) polyp		7.60			
	116973 116993	Al702054 Al417023	Hs.166982 Hs.40478	phosphatidylinositol glycan, class F ESTs		9.80		10.20	
0.5	117079	H92325		gb:ys85f05.s1 Soares retina N2b4HR Homo				15.20	
25	117317 117326	Al263517 N23629	Hs.43322 Hs.241420	ESTs Homo sapiens mRNA for KIAA1756 protein,				13.40 20.60	
	117326	W20128	Hs.296039	ESTs				10.60	
	117412	N32536	Hs.42645	ESTs				16.00 9.11	
30	117519 117693	N32528 AW179019	Hs.146286 Hs.112110	kinesin family member 13A mitochondrial ribosomal protein L42				9.11	4.01
•	117721	N46100	Hs.93939	EST	0.74			19.80	
	117881 117903	AF161470 AA768283	Hs.260622 Hs.47111	butyrate-induced transcript 1 ESTs	2.71			17.80	
0.5	117992	Al015709	Hs.172089	Homo sapiens mRNA; cDNA DKFZp586I2022 (f					4.17
35	118013	A1674126 A1813444	Hs.94031 Hs.42197	ESTs ESTs			8.82	10.60	
	118017 118186	N22886	Hs.42380	ESTs		7.00	0.02		
	118325	Al868065	Hs.166184	intersectin 2			6.14	13.80	
40	118367 118368	N64269 N64339	Hs.48946 Hs.48956	EST gap junction protein, beta 6 (connexin 3	3.14		0.14		
	118472	AL157545	Hs.42179	bromodomain and PHD finger containing, 3			12.40	12.20	
	118709 119025	AA232970 BE003760	Hs.293774 Hs.55209	ESTs Homo sapiens mRNA; cDNA DKFZp434K0514 (f	4.50			12.20	•
4.5	119027	AF086161	Hs.114611	hypothetical protein FLJ11808	3.22	0.00			
45	119052 119164	R10889 AF221993	Hs.46743	gb:yf38d02.s1 Soares fetal liver spleen McKusick-Kaufman syndrome		9.60	6.60		
	119186	Al979147	Hs.101265	hypothetical protein FLJ22593				10.80	
	119243	T12603	Hs.263858	gb:CHR90123 Chromosome 9 exon Il Homo sa ESTs, Moderately similar to B34087 hypot				9.44 11.80	
50	119490 119499	AA195276 Al918906	Hs.55080	ESTs, Moderately Similar to 554007 hypot			14.80	11.00	
	119599	W45552	11 404004	gb:zc26d03.s1 Soares_senescent_fibroblas	17.00	12.60			
	119780 119845	NM_016625 W79123	Hs.191381 Hs.58561	hypothetical protein G protein-coupled receptor 87	17.00 13.50				
	119941	AA699485	Hs.58896	ESTs	7 70	8.00			
55	119994 120102	AA642402 W67353	Hs.59142 Hs.170218	ESTs KIAA0251 protein	7.73		39.60		•
	120104	AK000123	Hs.180479	hypothetical protein FLJ20116	2.91				•
	120294 120486	AK000059 AW368377	Hs.153881 Hs.137569	Homo sapiens NY-REN-62 antigen mRNA, par tumor protein 63 kDa with strong homolog	8.73		8.20		
60	120599	AA804448	Hs.104463	ESTs	0.10	7.00			
	120699	A1683243	Hs.97258	ESTs, Moderately similar to S29539 ribos		9.40		10.00	
	120715 120821	AA292700 Y19062	Hs.96870	gb:zs59a06.s1 NCI_CGAP_GCB1 Homo sapiens staufen (Drosophila, RNA-binding protein		5.40		13.80	
65	120859	AA826434	Hs.1619	achaete-scute complex (Drosophila) homol		9.00			
65	120880 120983	AA360240 AA398209	Hs.97019 Hs.97587	EST EST		15.60	27.66		
	121034	AL389951	Hs.271623	nucleoporin 50kD			20.80		
	121121 121313	AA399371 AA402713	Hs.189095 Hs.97872	similar to SALL1 (sal (Drosophila)-like ESTs		22.80		10.00	
70	121369	AW450737	Hs.128791	CGI-09 protein	25.71				m 10
	121376 121476	AA448103 AA412311	Hs.187958 Hs.97903	solute carrier family 6 (neurotransmitte ESTs		8.30			5.42
	121509	AA868939	Hs.97888	ESTs		8.59			
75	121553	AA412488	Hs.48820	TATA box binding protein (TBP)-associat WD repeat domain 5	18.50 7.00				
13	121753 121838	AK000552 AA425680	Hs.323518 Hs.98441 ·	ESTs				10.40	
	121857	BE387162	Hs.280858	ESTs, Highly similar to A35661 DNA excis	6.00			12.20	
	121991 122089	AA430058 AW016543	Hs.98649 Hs.98682	EST hypothetical protein FKSG32			8.60	12.2U	
80	122105	AW241685	Hs.98699	ESTs			6.14	10.40	
	122163 122318	AA435702 AA429743	Hs.98829	EST gb:zv60b05.r1 Soares_testis_NHT Homo sap				10.40 18.20	
	122335	AA443258	Hs.241551	chloride channel, calcium activated, fam	13.50				
85	122338 122414	AA443311 Al313473	Hs.98998 Hs.99087	ESTs ESTs, Weakly similar to S47073 finger pr	4.80	8.00			
05	166414	. 110 10710	. 10.00001	-0.0, 1100mj onimo					

	W	O 02/086	443						PCT/US02/12476
		AF053305	Hs.98658	budding uninhibited by benzimidazoles 1			8.80	0.10	
		AA449352	Hs.99217	ESTs		9.20		9.40	
	122702	Al220089 Al580056	Hs.99439 Hs.98992	ESTs ESTs		5.20		10.40	
5	122925	AW268962	Hs.111335	ESTs		6.80			
	123005	AW369771	Hs.52620	integrin, beta 8			12.60		5.35
	123044 123160	AK001035 AA488687	Hs.130881 Hs.284235	B-cell CLL/lymphoma 11A (zinc finger pro ESTs, Weakly similar to 138022 hypotheti			6.06		0.00
4.0	123315	AA496369	110120 1200	gb:zv37d10.s1 Soares ovary tumor NbHOT H			12.40		
10	123329	Z47542	Hs.179312	small nuclear RNA activating complex, po		12.00	11.80		
	123497 123518	AA765256 AL035414	Hs.135191 Hs.21068	ESTs, Weakly similar to unnamed protein hypothetical protein		12.00	13.00		
	123519	AW015887	Hs.112574	ESTs		12.20			
15	123614	AK000492	Hs.98806	hypothetical protein			7.80	10.60	
13	123616 123673	AA680003 BE550112	Hs.109363 Hs.158549	Homo sapiens cDNA: FLJ23603 fis, clone L ESTs, Weakly similar to T2D3_HUMAN TRANS	23.00			10.00	
	123727	AI083986	Hs.282977	hypothetical protein FLJ13490		7.00			
	123731	AA609839	N- 470700	gb:ae62f01.s1 Stratagene lung carcinoma	3.50		9.80		
20	123752 123900	AA227714 AA621223	Hs.179703 Hs.112953	KIAA0129 gene product EST	3.30			12.80	
 0	124006	Al147155	Hs.270016	ESTs	97.00				
	124059	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti	3.02		27.80		
	124069 124191	AF134160 T96509	Hs.7327 Hs.248549	claudin 1 ESTs, Moderately similar to S65657 alpha			27.00	35.80	
25	124273	AA457211	Hs.8858	bromodomain adjacent to zinc finger doma		7.20			
	124297	AL080215	Hs.102301	Homo sapiens mRNA; cDNA DKFZp586J0323 (f				11.00 16.00	
	124305 124676	AW963221 Al360119.com	nHs 181013	gb:EST375294 MAGE resequences, MAGH Homo phosphoglycerate mutase 1 (brain)				10.00	6.08
• •	124874	BE550182	Hs.127826	RalGEF-like protein 3, mouse homolog				21.00	
30	124904	AK000483	Hs.93872	KIAA1682 protein		9.40		10:80	•
	124969 125000	Al650360 T58615	Hs.100256 Hs.110640	ESTs ESTs				9.80	
	125201	AA693960	Hs.103158	ESTs, Weakly similar to T33296 hypotheti		7.60			
25	125266	W90022	Hs.186809	ESTs, Highly similar to LCT2_HUMAN LEUKO		6.59		9.57	
35	125299 125356	T32982 Al057052	Hs.102720 Hs.133554	ESTs ESTs, Weakly similar to Z195_HUMAN ZINC				14.00	
	125370	AA256743	Hs.134158	Homo sapiens, Similar to KIAA0092 gene p			8.20		
	125418	AA777690	Hs.188501	ESTs		21.40		13.20	•
40	125433 125437	AL162066 Al609449	Hs.54320 Hs.140197	hypothetical protein DKFZp762D096 ESTs		6.96			
	125446	BE219987	Hs.166982	phosphatidylinositol glycan, class F		8.80			
	125711	AA305800	Hs.5672	hypothetical protein AF140225				11.20	4.31
	125756 125757	BE174587 Al274906	Hs.289721 Hs.166835	growth arrest specific transcript 5 ESTs, Highly similar to 1814460A p53-ass				15.60	4.51
45	125769	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	3.20				
	125839	AW836261	Hs.337717	ESTs	2.65	8.20			
	125850 125875	W85858 H14480	Hs.99804	ESTs gb:ym18b09.r1 Soares infant brain 1NIB H	2.00	7.40			·
7 0	125924	BE272506	Hs.82109	syndecan 1					4.23
50	125972	Al927475	Hs.35406	ESTs, Highly similar to unnamed protein gb:yr39b04.r1 Soares fetal liver spleen				10.60	3.98
	126034 126327	H60340 AA432266	Hs.44648	ESTs		11.60		10.00	
	126345	N49713		gb:yv23f06.s1 Soares fetal liver spleen		6.67		40.00	
55	126435	AW614529	Hs.285847	CGI-19 protein solute carrier family 7 (cationic amino				10.60	4.38
55	126487 126521	AA283809 AI475110	Hs.184601 Hs.203933	ESTs		6.60			4.00
	126522	W31912		gb:zc76d03.s1 Pancreatic Islet Homo sapi				14.80	* 404
	126543	AL035864	Hs.69517	cDNA for differentially expressed CO16 g ESTs, Weakly similar to KIAA0758 protein			7.80		4.01
60	126567 126605	AA058394 AA676910	Hs.57887	gb:zi65h07.s1 Soares_fetal_liver_spleen_			7.00	11.60	
	126627	AA497044	Hs.20887	hypothetical protein FLJ10392	0.00			14.60	
	126628 126737	N49776 AW976516	Hs.170994 Hs.283707	hypothetical protein MGC10946 Homo sapiens cDNA: FLJ21354 fis, clone C	8.00 2.92				
	126795	AW975076	Hs.172589	nuclear phosphoprotein similar to S. cer	7.50				
65	126802	AW805510	Hs.97056	hypothetical protein FLJ21634	0.50	11.60			
	126892 126928	AF121856 AA480902	Hs.284291 Hs.137401	sorting nexin 6 ESTs	3.50			22.83	
	126979	AA210954	115.137401	gb:zq89h10.r1 Stratagene hNT neuron (937				11.80	
70	126986	Al279892	Hs.46801	sorting nexin 14				11.60	
70	126992 127066	Al809521 R25066	•	gb:wf30e03.x1 Soares_NFL_T_GBC_S1 Homo s gb:yg42c07.r1 Soares infant brain 1NiB H				20.80 27.60	
	127000	AA347668		gb:EST54026 Fetal heart II Homo sapiens				21.60	
	127139	AA830233	Hs.293585	ESTs	0.40			11.20	
75	127209 127221	AA305023 BE062109	Hs.81964 Hs.241551	SEC24 (S. cerevisiae) related gene famil chloride channel, calcium activated, fam	3.10 2.76				
, 5	127221	AA315933	Hs.120879	ESTs				16.80	
	127313	AK002014	Hs.47546	Homo sapiens cDNA FLJ11458 fis, clone HE	14.00			12.00	
	127444 127500	AW978474 AW971353	Hs.7560 Hs.162115	Homo sapiens mRNA for KIAA1729 protein, ESTs		11.20		13.60	
80	127524	Al243596	Hs.94830	ESTs, Moderately similar to T03094 A-kin			7.80		
	127540	N45572	Hs.105362	Homo sapiens, cione MGC:18257, mRNA, com	3.53			13.80	
	127599 127609	AA613204 X80031	Hs.150399 Hs.530	ESTs collagen, type IV, alpha 3 (Goodpasture				28.00	
0.5	127662	W80755	Hs.8294	KIAA0196 gene product				19.80	
85	127668	A1343257	Hs.139993	ESTs				11.20	

	w	O 02/086	443						PCT/US02/12476
		Al239495	Hs.120189	ESTs				14.18	1 C1/0502/124/0
	127812	AA741368	Hs.291434	ESTs	4.50			`	
	127817 127959		Hs.163085 Hs.124292	ESTs Homo sapiens cDNA: FLJ23123 fis, clone L				24.60 9.20	
5	127960	Al613226	Hs.41569	phosphatidic acid phosphatase type 2A				16.83	
	127969	F06498	Hs.93748	Homo sapiens cDNA FLJ14676 fis, clone NT		13.60			
	128015 128027	Z21169 AI433721	Hs.334659 Hs.164153	hypothetical protein MGC14139 ESTs		7.00		37.40	
4.0	128077		Hs.128720	ESTs				9.60	
10	128166	NM_006147	Hs.11801	interferon regulatory factor 6	40.00			9.24	
	128226 128305	Al284940 Al954968	Hs.289082 Hs.279009	GM2 ganglioside activator protein matrix Gla protein	19.00			10.40	
	128341	AA191420	Hs.185030	ESTs		9.00			•
1.5	128527	AA504583	Hs.101047	transcription factor 3 (E2A immunoglobul		40.00			4.30
15	128539 128568	R46163 H12912	Hs.258618 Hs.274691	ESTs adenylate kinase 3		12.60			4.56
	128572		Hs.256583	interleukin enhancer binding factor 3, 9				10.00	
	128777	Al878918	Hs.10526	cysteine and glycine-rich protein 2			16.80		4.40
20	128781 128796	N71826 AJ000152	Hs.105465 Hs.105924	small nuclear ribonucleoprotein polypept defensin, beta 2		8.12			4.48
20	128920	AA622037	Hs.166468	programmed cell death 5		0			4.62
	128924	BE279383	Hs.26557	plakophilin 3		10.60			4.04
	128971 129008	H05132 AL079648	Hs.107510 Hs.301088	ESTs ESTs		12.60 8.80			
25	129041	BE382756	Hs.169902	solute carrier family 2 (facilitated glu					6.05
	129075	BE250162	Hs.83765	dihydrofolate reductase	2.59		0.07		
	129105 129189	A!769160 AB023179	Hs.108681 Hs.9059	Homo sapiens brain tumor associated prot KIAA0962 protein		8.00	6.67		
	129229	AF013758	Hs.109643	polyadenylate binding protein-interactin	4.00	0.00			
30	129241	A1878857	Hs.109706	hematological and neurological expressed	0.55				4.06
	129300 129404	W94197 Al267700	Hs.110165 Hs.317584	ribosomal protein L26 homolog ESTs	2.55 18.00				
	129457	X61959	Hs.207776	aspartylglucosaminidase	6.50				
25	129466	L42583	Hs.334309	keratin 6A	12.94			44.00	
35	129494 129605	AI148976 AF061812	Hs.112062 Hs.115947	ESTs keratin 16 (focal non-epidermolytic palm				11.00	4.46
	129605	AP001012 Al911527	Hs.11805	ESTs				12.00	-110
	129665	AW163331	Hs.118778	KDEL (Lys-Asp-Glu-Leu) endoplasmic retic					4.70
40	129703	BE388665 AA156214	Hs.179999 Hs.12152	Homo sapiens, clone IMAGE:3457003, mRNA APMCF1 protein					4.02 5.71
40	129720 129748	M16707	Hs.123053	H4 histone, family 2	3.50				0.71
	129890	Al868872	Hs.282804	hypothetical protein FLJ22704					4.21
	129896	BE295568	Hs.13225	UDP-Gal:betaGlcNAc beta 1,4- galactosylt	2.56				4.03
45	129945 130010	BE514376 AA301116	Hs.165998 Hs.142838	PAI-1 mRNA-binding protein nucleolar phosphoprotein Nopp34			7.00		4.00
	130026	T40480	Hs.332112	EST		6.40			4.05
	130080	X14850	Hs.147097 Hs.172665	H2A histone family, member X methylenetetrahydrofolate dehydrogenase	2.74				4.65
	130149 130285	AW067805 AA063546	Hs.75981	ubiquitin specific protease 14 (tRNA-gua	2.14		7.40		
50	130441	U63630	Hs.155637	protein kinase, DNA-activated, catalytic					3.91
	130482 130500	AW409701 AB007913	Hs.1578 Hs.158291	baculoviral IAP repeat-containing 5 (sur KIAA0444 protein	4.87			9.60	
	130524	U89995	Hs.159234	forkhead box E1 (thyroid transcription f			13.40	0.00	
	130541	X05608	Hs.211584	neurofilament, light polypeptide (68kD)			8.20		0.00
55	130553 130567	AF062649 AA383092	Hs.252587 Hs.1608	pituitary tumor-transforming 1 replication protein A3 (14kD)			7.00		6.06
	130577	M69241	Hs.162	insulin-like growth factor binding prote	3.04		1.00		
	130627	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	3.87			40.00	
60	130648 130697	Al458165 L29472	Hs.17296 Hs.1802	hypothetical protein MGC2376 major histocompatibility complex, class				16.20 17.80	
00	130744	H59696	Hs.18747	POP7 (processing of precursor, S. cerevì					5.28
	130800	Al187292	Hs.19574	hypothetical protein MGC5469	40.04				4.43
	130867	NM_001072 J03626	Hs.284239 Hs.2057	UDP glycosyltransferase 1 family, polype uridine monophosphate synthetase (orotat	16.84				4.92
65	130869 130925	ÅF093419	Hs.169378	multiple PDZ domain protein				9.60	
	130994	W17044	Hs.327337	ESTs	40.04	12.40			
	131028 131031	Al879165 NM_001650	Hs.2227 Hs.288650	CCAAT/enhancer binding protein (C/EBP), aquaporin 4	10.21			9.80	
	131041	T15767	Hs.22452	Homo sapiens mRNA for KIAA1737 protein,				9.60	,
70	131058	W28545	Hs.101514	hypothetical protein FLJ10342				17.00	
	131090 131112	AI143139 H15302	Hs.2288 Hs.168950	visinin-like 1 Homo sapiens mRNA; cDNA DKFZp566A1046 (f	2.74		8.80		
	131148	AW953575	Hs.303125	p53-induced protein PIGPC1	3.12		0.00		
7.5	131185	BE280074	Hs.23960	cyclin B1	3.07				
75	131200	BE540516	Hs.293732 Hs.24395	hypothetical protein MGC3195 small inducible cytokine subfamily B (Cy	3.07 2.87				
	131219 131257	W25005 AW339037	Hs.24395 Hs.24908	ESTs	£.U!			14.67	
	131375	AW293165	Hs.143134	ESTs			19.20	*	
80	131460	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	3.50 15.00				
OU	131476 131510	AI521663 BE245374	Hs.334644 Hs.27842	hypothetical protein FLJ14668 hypothetical protein FLJ11210	15.00		7.80		
	131646	BE302464	Hs.30057	MRS2 (S. cerevisiae)-like, magnesium hom	0.55		7.00		
	131786	BE000971	Hs.306083	Novel human gene mapping to chomosome 22 KIAA0633 protein	2.65			35.20	
85	131839 131843	AB014533 AA192315	Hs.33010 Hs.184062	putative Rab5-interacting protein				30.20	4.11

	XX 7	A 02/086	112						DCT/HS02/12476
	131877	O 02/0864 J04088	443 Hs,156346	topoisomerase (DNA) II alpha (170kD)	19.00				PCT/US02/12476
	131885	BE502341	Hs.3402	ESTs	6.48				
	131921	AA456093	Hs.34720	ESTs			8.40		
5	131945	NM_002916	Hs.35120	replication factor C (activator 1) 4 (37	56.00				3.82
5	131958 131965	NM_014062 W79283	Hs.3566 Hs.35962	ART-4 protein ESTs	3.03				3.02
	132000	AW247017	Hs.36978	melanoma antigen, family A, 3		9.80			
	132040	NM_001196	Hs.315689	Homo sapiens cDNA: FLJ22373 fis, clone H	3.30				
10	132109 132114	AW190902 NM_006152	Hs.40098 Hs.40202	cysteine knot superfamily 1, BMP antagon lymphoid-restricted membrane protein	21.00	8.40			
10	132162	AA315805	Hs.94560	desmoglein 2		0			12.25
	132164	Al752235	Hs.41270	procollagen-lysine, 2-oxoglutarate 5-dio	2.70				
	132180 132181	NM_004460 AW961231	Hs.418 Hs.16773	fibroblast activation protein, alpha Homo sapiens clone TCCCIA00427 mRNA sequ	2.71 3.83				
15	132182	NM_014210	Hs.70499	ecotropic viral integration site 2A	0.00			13.20	
	132231	AA662910	Hs.42635	hypothetical protein DKFZp434K2435	9.50				
	132277	AK001745	Hs.184628	hypothetical protein FLJ10883	4.50			9.20	
	132328 132394	NM_014787 AK001680	Hs.44896 Hs.30488	DnaJ (Hsp40) homolog, subfamily B, membe DKFZP434F091 protein				9.20 19.80	
20	132424	AA417878	Hs.48401	ESTs, Moderately similar to ALU8_HUMAN A			8.60	10.00	•
	132528	T78736	Hs.50758	SMC4 (structural maintenance of chromoso			27.40		
	132543	BE568452	Hs.5101	protein regulator of cytokinesis 1	4.38	7.00			
	132544 132550	L19778 AW969253	Hs.51011 Hs.170195	H2A histone family, member P bone morphogenetic protein 7 (osteogenic	2.64	7.00			
25	132552	BE621985	Hs.296922	thiopurine S-methyltransferase			*	15.83	
	132581	AK000631	Hs.52256	hypothetical protein FLJ20624	4.00		6.60		
	132617 132638	AF037335 Al796870	Hs.5338 Hs.54277	carbonic anhydrase XII DNA segment on chromosome X (unique) 992	4.95	8.20			
	132653	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini	4.38	0.20			
30	132669	W38586	Hs.293981	guanine nucleotide binding protein (G pr					4.36
	132710	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	4.60				
	132771 132799	Y10275 W73311	Hs.56407 Hs.169407	phosphoserine phosphatase SAC2 (suppressor of actin mutations 2,	3.71			9.48	
	132833	U78525	Hs.57783	eukaryotic translation initiation factor				0.10	5.83
35	132892	AW834050	Hs.9973	tensin				12.00	
	132906	BE613337	Hs.234896	geminin	3.09				3.87
	132959 132962	AW014195 AA576635	Hs.61472 Hs.6153	ESTs, Weakly similar to YAE6_YEAST HYPOT CGI-48 protein	3.50				5.67
40	132990	X77343	Hs.334334	transcription factor AP-2 alpha (activat	6.18				
40	132994	AA112748	Hs.279905	clone HQ0310 PRO0310p1	3.19				
	133000 133050	AL042444 X73424	Hs.62402 Hs.63788	p21/Cdc42/Rac1-activated kinase 1 (yeast propionyl Coenzyme A carboxylase, beta p	2.96 2.55				
	133083	BE244588	Hs.6456	chaperonin containing TCP1, subunit 2 (b	2.00				4.00
15	133086	L17131	Hs.139800	high-mobility group (nonhistone chromoso					8.96
45	133134 133155	AF198620 M58583	Hs.65648 Hs.662	RNA binding motif protein 8A cerebellin 1 precursor				10.80	4.28
	133181	X91662	Hs.66744	twist (Drosophila) homolog (acrocephalos	3.00			10.00	
	133204	BE267696	Hs.254105	enolase 1, (alpha)					4.63
50	133412	U41493	Hs.73112	guanine nucleotide binding protein (G pr	2.00	12.50			
30	133421 133451	AF134160 AW970026	Hs.7327 Hs.73818	claudin 1 ubiquinol-cytochrome c reductase hìnge p	2.85				4.66
	133453	A1659306	Hs.73826	protein tyrosine phosphatase, non-recept		6.80			
	133504	NM_004415	Hs.74316	desmoplakin (DPI, DPII)	6.14				4.55
55	133506 133615	BE562958 M62843	Hs.74346 Hs.75236	hypothetical protein MGC14353 ELAV (embryonic lethal, abnormal vision,				17.80	4.55
55	133627	NM_002047	Hs.75280	glycyl-tRNA synthetase					4.85
	133649	U25849	Hs.75393	acid phosphatase 1, soluble				44.00	6.34
	133669 133749	NM_006925 L20852	Hs.166975 Hs.10018	splicing factor, arginine/serine-rich 5 solute carrier family 20 (phosphate tran			6.11	14.00	
60	133776	BE268649	Hs.177766	ADP-ribosyltransferase (NAD+; poly (ADP-			0.11		4.91
	133865	AB011155	Hs.170290	discs, large (Drosophila) homolog 5	3.07				
	133946	AJ001258	Hs.173878	NIPSNAP, C. elegans, homolog 1				13.00	4.60
	133973 134047	N55540 BE262529	Hs.78026 Hs.78771	ESTs, Weakly similar to similar to ankyr phosphoglycerate kinase 1				13.00	3.85
65	134098	BE513171	Hs.79086	mitochondrial ribosomal protein L3	2.56				
	134107	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte			8.20		1.00
	134112 134158	AW449809 U15174	Hs.79150 Hs.79428	chaperonin containing TCP1, subunit 4 (d BCL2/adenovirus E1B 19kD-interacting pro	31.00				4.08
	134160	T98152	Hs.79432	fibrillin 2 (congenital contractural ara	01.00		24.60		
70	134168	AA398908	Hs.181634	Homo sapiens cDNA: FLJ23602 fis, clone L					6.71
	134185 134201	AA285136	Hs.301914 Hs.79886	neuronal specific transcription factor D ribose 5-phosphate isomerase A (ribose 5		8.40		14.74	
	134272	L35035 X76040	Hs.278614	protease, serine, 15	4.50	0.40			
75	134276	BE083936	Hs.80976	antigen identified by monoclonal antibod	-	9.00		40.1-	
75	134353	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	2 20			16.40	
	134367 134380	AA339449 AU077143	Hs.82285 Hs.179565	phosphoribosylglycinamide formyltransfer minichromosome maintenance deficient (S.	2.80 4.68				
	134423	H53497	Hs.83006	CGI-139 protein					3.84
80	134469	AA279661	Hs.83753	small nuclear ribonucleoprotein polypept					5.81
80	134470 134498	X54942 AW246273	Hs.83758 Hs.84131	CDC28 protein kinase 2 threonyl-tRNA synthetase					4.21 7.30
	134502	BE148534	Hs.84168	UV-B repressed sequence, HUR 7		13.60			
	134510	NM_002757	Hs.250870	mitogen-activated protein kinase kinase				9.70	4.00
85	134548	N95406 AK001741	Hs.333495	Deleted in split-hand/split-foot 1 regio hypothetical protein FLJ10879	6.00		•		4.63
0.5	134654	7111001741	Hs.8739	ulboriagion biologi, i en 1001 p	0.00				

	\mathbf{W}	O 02/086	443						PCT/US02/12476		
	134724	AF045239	Hs.321576	ring finger protein 22				12.00			
	134743	AA044163	Hs.89463	potassium large conductance calcium-acti	4.00						
	134781	AA374372	Hs.89626	parathyroid hormone-like hormone			25.20				
_	134806	AD001528	Hs.89718	spermine synthase					4.58		
5	134853	BE268326	Hs.90280	5-aminoimidazole-4-carboxamide ribonucle					4.79		
	134859	D26488	Hs.90315	KIAA0007 protein			6.20				
	134891	R51083	Hs.90787	ESTs			7.40				
	134960	BE246400	Hs.285176	acetyl-Coenzyme A transporter	4.00						
10	134993	BE409809	Hs.301005	purine-rich element binding protein B	_				4.48		
10	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	9.50						
	135080	Al761180	Hs.94211	rcd1 (required for cell differentiation,	5.00						
	135103	NM_003428	Hs.9450	zinc finger protein 84 (HPF2)		11.00					
	135145	AW014729	Hs.95262	nuclear factor related to kappa B bindin					4.01		
1 5	135184	U13222	Hs.96028	forkhead box D1			7.00				
15	135242	A1583187	Hs.9700	cyclin E1	13.50						
	135286	AW023482	Hs.97849	ESTs	6.46						
	135289	AW372569	Hs.9788	hypothetical protein MGC10924 similar to	40.00	8.80					
	135355	AK001652	Hs.99423	ATP-dependent RNA helicase	10.00						
20	135371	NM_006025	Hs.997	protease, serine, 22	8.00			44.00			
20	135393	L11244	Hs.99886	complement component 4-binding protein,				14.60			

TABLE 5B shows the accession numbers for those primekeys lacking unigenelD's for Table 5A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the 25 "Accession" column.

Unique Eos probeset identifier number Pkev: CAT number: Gene cluster number 30 Genbank accession numbers Pkev CAT number Accessions 117079 1621717_1 H92325 T97125 35 124305 242183_1 AW963221 AA344870 AA344871 H93331 18202_-6 101502 M26958 109792 754958_1 R49625 F10674 126034 1598157_1 H60340 N91637 44641_1 102768 U82321 H66077 40 N49713 N49819 W03810 126345 1653833 1 R25066 R20144 R20145 Z43845 1703458_1 127066 AA347668 AW956810 Z44271 F07065 F07064 R13506 127099 244301_1 119243 1774795_1 T12603 T12604 H14480 N98295 125875 1566433_1 45 112054 1538292_1 R43590 F10439 126979 171411_1 AA210954 AA211007 Al809521 H12174 Z42556 126992 880655 1 122318 292419 1 AA429743 AA442754 AA127386 R15644 AA127404 114699 135322 1 50 150742_1 AA158245 AA158235 114793 AA071391 AA069892 AA069891 108305 111550_1 AA075211 AA075245 AA075126 AA074946 108393 113411 1 100867 tigr_HT4586 U14622 123731 genbank_AA609839 AA609839 55 genbank_F09609 F09609 109700 120715 genbank_AA292700 genbank_T97307 T AA292700 T97307 113702 genbank_AA256460 115113 AA256460 101045 entrez_J05614 J05614 60 108554 genbank_AA084948 AA084948 108573 genbank_AA086005 AA086005 119052 149538_1 R10889 R10888 W31912 Al167491 126522 416020_1 126605 439280_1 AA676910 AA778853 AA778865 W86800 65 W42667 Al580740 Al690440 Al561350 AW467906 AW151450 Al825927 AL041716 Al885600 Al742213 AW248624 Al955498 AA033947 103768 46922_1 AA845593 AJ623711 N68583 C00064 AA193567 AW083868 AW163216 AA191595 AA522778 AJ628008 AJ915518 AA843508 AJ926195 AA176265 AW167963 AA992115 W93647 AW103572 AI862994 AI342059 AA911719 AA176155 AA024712 AA069988 AA205591 AI591107 Al199673 Al811766 Al275832 Al422233 Al191852 Al096682 Al580124 Al683612 AA582453 AA927559 AA486415 T32414 Al084978 H44849 H48848 H20477 T91695 W47039 AA070055 AA024795 AA328855 AA379248 BA379330 AA36580 W25920 W03688 AA448359 AA093881 AW362477 AA089997 AI350265 W93479 N99688 AA932257 AW351469 H68590 AA663402 AA069771 AW087986 AI858420 AA600214 AI970774 AI857712 AI683081 AI885584 AW131150 AI567981 AW002714 AW189973 AW075495 AW168303 AA953714 AW516881 AI357375 AI566663 AW512676 AI570580 AI023690 AA448216 AI079853 AI422707 AA779516 AW026972 AW130082 AW162307 AW438646 AA709332 AW192394 AI167350 AI217879 AI129152 AA719509 AI350480 AA663418 AI003634 AW118546 AA180261 AA442833 AI268625 AA888881 70 AI038759 AA846723 AI248770 AA993694 AI280335 AI885107 AW518649 AA641563 AA995835 AA582521 AI276744 AA436478 AI017360 75 Al620763 Al859887 N73926 Al076327 Al741615 Al160617 AW172819 Al492005 AA677429 AA996334 Al693771 Al950039 Al245629 Al288515 Al866186 T93293 AA173262 AA599779 Al680092 AW439316 Al084555 Al272672 Al583507 AW473219 AA738132 AW473283 Al367492 AA995410 Al689624 AA206353 Al033095 Al040382 AA873630 Al221074 Al934840 Al418680 AA844306 R94503 AA773520 AA843169 AA219425 AA629658 AI811719 AW411275 AI690981 W37907 AI591178 AI684051 AA983238 AA669347 AA976239 AA704570 AI628339 AI884391 AI241580 AI003539 AW176687 AA009650 N34566 AI333493 AI186070 AA070827 AA411683 AI280884 AA872023 AA207255 AA021576 N71953 AI885888 AW076039 T15777 AI537673 AW248048 H09554 W93480 W47001 AW079114 AA063160 AA757453 R60788

80

85

Al859431 H20478 AA218882 AA757465 AA100995 Al864135 Al934209 AA070503 H47008 AA219646 W61039 W93907 AW385050 W37967 W78028 AA189007 AA479136 R93650 AA442312 T30287 AA847628 AA180262 AA009649 C03892 AW149464 AA310963 AA219693 AA069747 R29207 AA094784 AA293615 AA447848 Al984167 N90393 C05097 N56499 AW292351 AW149681 AW473258 AA629322 Al004409 AW105577 AI954937 AI811070 AA902422 AW514437 AA535460 AA916877 AW517122 AA974657 AA975649 AW517130 AW517129 F31737

W07688 AA193645 AA378994 AA489273 F32267 W39303 AA021181 N86810 AA406524 AA062553 AA436801 H08985 H15979 N40310

WO 02/086443 PCT/US02/12476

AA436789 AA232172 AW360778 W25862 R60282 AA436530 AA378894 AA187461 AI940535 AA604210 AA089514 AA360421 N88243 N84281 AA209340 N56174 N88374 AA191088 AW247691 AA249013 AA093111 AA972536 AW298594 AA375893 T12139 W28186 AW243849 AI288629 AA843996 W15260 AI188286 AW248079 R15836

5 119599 genbank_W45552 W45552 genbank_R59904 R59904 genbank_AA227934 AA227934 100071 entrez_A28102 A28102 714071 1 AA496369 AA49646

10

Table 6A shows 99 genes up-regulated nonsmokers with lung cancer relative to smokers with lung cancer. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

15 Pkey: Unique Eos probeset identifier number

ExAccn: Exemplar Accession number, Genbank accession number

UnigeneID: Unigene number Unigene Title: Unigene gene title

R1: average of AI for samples from non-smokers with adenocarcinoma divided by the 90th percentile of AI for samples from smokers with adenocarcinoma average of AI for samples from non-smokers with squamous cell carcinoma divided by the 90th percentile of AI for samples from smokers with squamous cell carcinoma divided by the 90th percentile of AI for samples from smokers with squamous cell

carcinoma R2 R1 ExAccn UnigenelD Unigene Title Pkey fatty acid binding protein 4, adipocyte pre-T/NK cell associated protein 25 BE379727 Hs.83213 3.64 100971 15.00 1.17330 Hs.280 101174 thyroid hormone receptor interactor 11 2.46 101296 Y12490 Hs.85092 thyroid hormone receptor interactor 8 12.00 101304 AA001021 Hs.6685 Hs.112408 S100 calcium-binding protein A7 (psorias 2.68 101806 AA586894 30 101972 S82472 gb:beta -pol=DNA polymerase beta (exon a 2 11 UDP glycosyltransferase 8 (UDP-galactose a disintegrin and metalloproteinase doma Hs.158540 7.50 102274 U30930 7.50 NM_003816 102394 Hs.2442 gb:Human clone 143789 defective mariner 13.50 U92015 X52509 102832 tyrosine aminotransferase 9.50 Hs.161640 103010 35 gb:H.sapiens mRNA for ligase like protei 2.50 X98266 103439 activin A receptor, type I 9.00 103563 L02911 Hs.150402 3.94 Al076795 Hs.45033 lacrimal proline rich protein 103857 13.50 104239 AB002367 Hs.21355 doublecortin and CaM kinase-like 1 nuclear receptor subfamily 1, group I, m ESTs, Weakly similar to ALU1_HUMAN ALU 12.66 104590 AW373062 Hs.83623 40 16.50 Hs.196701 104907 AA055829 Hs.296244 SNARE protein 2.17 BF514788 106131 7.00 Hs.30643 H47233 **ESTs** 106672 106872 T56887 Hs.18282 KIAA1134 protein 11.50 Hs.32501 2.38 106960 AA156238 45 9.50 Z43846 Hs.194478 Homo sapiens mRNA; cDNA DKFZp434O1572 (f 106971 2.95 107982 AA035375 Hs.57887 ESTs, Weakly similar to KIAA0758 protei 16.50 gb:zm26c06.s1 Stratagene pancreas (93720 108562 AA100796 Hs.69328 MD-2 protein 13.00 108599 AB018549 ESTs, Weakly similar to T26845 hypotheti 2.40 Hs.292653 108663 BF219231 50 Hs.85950 7.00 AA314907 ESTs 109247 109630 R44607 Hs.22672 **ESTs** 5.00 A1004874 Hs.310764 Homo sapiens mRNA; cDNA DKFZp434M082 (fr 12.50 110193 110234 H24458 Hs.32085 16.50 8.00 110644 R94207 Hs.268989 ESTs, Highly similar to type II CALM/AF1 55 17.00 Hs.72249 110886 AW274992 three-PDZ containing protein similar to 16.50 111057 T79639 Hs.14629 Hs.110457 **FSTs** AF071594 Wolf-Hirschhorn syndrome candidate 1 11.00 111950 3.00 112291 R53972 Hs.26026 **ESTs** Hs.75893 ankyrin 3, node of Ranvier (ankyrin G) 2.79 112956 Z43784 60 113009 T23699 Hs.7246 4.50 hypothetical protein FLJ14827 113060 BE564162 Hs.250820 9.79 113073 N39342 Hs.103042 microtubule-associated protein 1B 32.50 3.82 AK001335 protein tyrosine phosphatase, receptor t 113074 Hs.31137 Hs 8764 2.21 113121 T48011 EST 65 AA968672 Hs.8929 hypothetical protein FLJ11362 19.50 113125 AA703095 Hs.18631 2.65 113757 113848 W52854 Hs.27099 hypothetical protein FLJ23293 similar to 6.00 6.00 Al333076 Hs.28529 chromosome 12 open reading frame 2 113884 nuclear receptor subfamily 1, group I, m Homo sapiens mRNA; cDNA DKFZp564N1063 (4.63 113936 W17056 Hs.83623 70 7.00 114875 AA235609 Hs.236443 6.00 AA251016 Hs.87808 114987 EST AW958439 Hs.38613 **FSTs** 115460 W91892 Hs.59609 **ESTs** 9.00 115722 Hs.190150 9.50 AA481788 116261 75 H61037 Hs.70404 ESTs, Weakly similar to ALU2_HUMAN ALU 8.50 116830 AB023179 Hs.9059 KIAA0962 protein 7.50 116970 2.68 117178 H98675 Hs.269034 **EST's** 7.50 AF088019 117757 Hs.46732 **EST** ESTs, Weakly similar to A46010 X-linked 16.50 118283 118384 AA287747 Hs.173012 80 Down syndrome cell adhesion molecule AF217525 Hs.49002 2.50 Al822106 2.39 Hs.49902 118657 **ESTs** ESTs, Weakly similar to protease [H.sapi 3.50 AA923278 Hs.290905 120328 KIAA 1013 protein 7.00 120404 AB023230 Hs.96427 AA261852 Hs.192905 6.00 120524 85 Homo sapiens cDNA: FLJ23004 fis, clone L 120688 AW207555 Hs.97093 17.92

	W	O 02/0864	143			PCT/US02/12476	
	121558	AA412497		gb:zt95g12.s1 Soares_testis_NHT Homo sap		2.95	
	121676	H56037	Hs.108146	ESTs	10.00		
	121936	A1024600	Hs.98612	ESTs	15.00		
	121938	AA428659	Hs.98610	ESTs	14.00		
5	122177	AA435789	Hs.98833	EST	8.93		
-	123442	AA299652	Hs.111496	Homo sapiens cDNA FLJ11643 fis, clone HE	13.04		
	123551	AA608837	113,1111400	gb:af03h12.s1 Soares_testis_NHT Homo sap	11.50		
	123756	AA609971	Hs.112795	EST	11.00		
	123861	AA620840	113.112700	gb:af89g01.s1 Soares_testis_NHT Homo sap	******	2.50	
10	124371	N24924	Hs.188601	ESTs	6.50		
10	127477	BE328720	Hs.280651	ESTs	0.00	4.33	
	127591	Al190540	Hs.131092	ESTs		3.02	
	128252	AA455924	Hs.192228	ESTs	7.00	0.02	
	128426	Al265784	Hs.145197	ESTs	1.00	2.08	
15	128925	R67419	Hs.21851	Homo sapiens cDNA FLJ12900 fis, clone NT		2.11	
13	128945	Al990506	Hs.8077	Homo sapiens mRNA; cDNA DKFZp547E184 (fr	10.00	2	
	129105	Al769160	Hs.108681	Homo sapiens brain tumor associated prot	15.50		
	129105	AW977238	Hs.126084	KIAA1055 protein	10.00	4.25	
	129235	AB020684	Hs.11217	KIAA0877 protein	6.50	-1.20	
20		U09550	Hs.1154	oviductal glycoprotein 1, 120kD (mucin 9	0.00	10.00	
20	129595	AA305688	Hs.267695	UDP-Gal:betaGlcNAc beta 1,3-galactosyltr	20.00	10.00	
	130160	D82326	Hs.239106	solute carrier family 3 (cystine, dibasì	11.50		
	130340	AB023194	Hs.300855	KIAA0977 protein	17.50		
	131220			fatty acid binding protein 7, brain	6.10		
25	131430	AI879148	Hs.26770	lymphoid-restricted membrane protein	0.10	6.15	
23	132114	NM_006152		Homo sapiens cDNA: FLJ21693 fis, clone C		5.58	
	132458	AA935315	Hs.48965	sialyltransferase 4B (beta-galactosidase	7.50	3.30	
	132647	NM_006927			7.50	2.53	
	132655	D49372	Hs.54460	small inducible cytokine subfamily A (Cy		2.50	
30	132682	A1077500	Hs.54900	serologically defined colon cancer antig ESTs, Weakly similar to KIAA1330 protein		2.83	
30	132747	AA345241	Hs.55950			3.82	
	132812	R50333	Hs.92186	Leman coiled-coil protein ESTs		5.00	
	133337	AF085983	Hs.293676			3.00	
	133876	AL134906	Hs.771	phosphorylase, glycogen; liver (Hers dis		2.06	
35	134119	AW157837	Hs.79226	fasciculation and elongation protein zet	•	2.27	
33	134464	AA302983	Hs.239720	CCR4-NOT transcription complex, subunit		11.50	
	134542	M14156	Hs.85112	insulin-like growth factor 1 (somatomedi	07.00	11.50	
	135002	AA448542	Hs.251677	G antigen 7B	87.00	6.50	
	135305	AA203555	Hs.98288	Homo sapiens cDNA FLJ14903 fis, clone PL		0.00	
40							
40	7.0.50		•	See the continuous leaking universal Die for Table 64. Es	probonot wo h	our listed the ac	no alustor number from which the

TABLE 6B show the accession numbers for those primekeys lacking unigenelD's for Table 6A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

45

50

	Pkey	CAT number Accessions .
55	108562 103439 123551 123861 102832 101972	36375_1
60	121558	genbank_AA412497 AA412497

WO 02/086443

Table 7A shows 98 genes down-regulated in non-smokers with lung cancer relative to smokers with lung cancer. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

5

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number ExAccn:

UnigenelD: Unigene number Unigene Title:

Unigene further
Unigene gene title
90th percentile of AI for samples from smokers with adenocarcinoma divided by the average of AI for samples from non-smokers with adenocarcinoma.
90th percentile of AI for samples from smokers with squamous cell carcinoma divided by the average of AI for samples from non-smokers with squamous cell carcinoma. R1: R2: 10

	Pkey	ExAcen	UnigenelD	Unigene Title	R1	R2
15	100187	D17793	Hs.78183	aldo-keto reductase family 1, member C3		164.10
	100380	D82343	Hs.18551	neuroblastoma (nerve tissue) protein		77.40
	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid	102.40	
	100971 101046	BE379727 K01160	Hs.83213	fatty acid binding protein 4, adipocyte (NONE)	463.80 672.00	
20	101046	AW970254	Hs.889	Charot-Leyden crystal protein	66.00	
	101175	U82671	Hs.36980	melanoma antigen, family A, 2	00.00	77.20
	101497	W05150	Hs.37034	homeo box A5	62.80	
	101663	NM_003528	Hs.2178	H2B histone family, member Q	78.00	
25	101677	NM_000715	Hs.1012	complement component 4-binding protein,	186.20 80.08	
23	101745 101941	M88700 S77583	Hs.150403	dopa decarboxylase (aromatic L-amino aci gb:HERVK10/HUMMTV reverse transcriptase	99.20	
	102125	NM_006456	Hs.288215	sialyltransferase	00.20	103.10
	102242	U27185	Hs.82547	retinoic acid receptor responder (tazaro	67.00	
20	102340	U37055	Hs.278657	macrophage stimulating 1 (hepatocyte gro	71.60	
30	102369	U39840	Hs.299867	hepatocyte nuclear factor 3, alpha	452.00	69.70
	102457 102669	NM_001394 U71207	Hs.2359 Hs.29279	dual specificity phosphatase 4 eyes absent (Drosophila) homolog 2	153,00	65.70
	102003	AL079646	Hs.107019	symplekin; Huntingtin interacting protei		58.80
	102829	NM_006183	Hs.80962	neurotensin		268.80
35	103207	X72790		gb:Human endogenous retrovirus mRNA for	70.00	
	103242	X76342	Hs.389	alcohol dehydrogenase 7 (class IV), mu o		212.10
	103260 103351	X78416 X89211	Hs.3155	casein, alpha gb:H.sapiens DNA for endogenous retrovir	64.60	130.70
	103331	AB002298	Hs.173035	KIAA0300 protein	66.80	
40	104252	AF002246	Hs.210863	cell adhesion molecule with homology to	63.80	
	104258	AF007216	Hs.5462	solute carrier family 4, sodium bicarbon	94.40	
	105024	AA126311	Hs.9879	ESTs	68.20	
	106260	Al097144	Hs.5250	ESTs, Weakly similar to ALU1_HUMAN ALU S		74.60
45	106440 106566	AA449563 BE298210	Hs.151393	glutamate-cysteine ligase, catalytic sub gb:601118016F1 NIH_MGC_17 Homo sapiens c	73.20	71.10
	106605	AW772298	Hs.21103	Homo sapiens mRNA; cDNA DKFZp564B076 (fr	83.80	
	106614	AA648459	Hs.335951	hypothetical protein AF301222		62.30
	106654	AW075485	Hs.286049	phosphoserine aminotransferase		202.40
50	106999	H93281	Hs.10710	hypothetical protein FLJ20417		89.60
50	108700 108810	AA121518 AW295647	Hs.193540 Hs.71331	ESTs, Moderately similar to 2109260A B c hypothetical protein MGC5350		66.40 95.50
	108857	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act		63.40
	109597	AA989362	Hs.293780	ESTs	85.00	•••••
<i>5 5</i>	109691	T65568	Hs.12860	ESTs		58.70
55	109704	A1743880	Hs.12876	ESTs	70.40	60.60
	110942 111722	R63503 R23924	Hs.28419 Hs.23596	ESTs EST	76.40 74.60	
	112891	T03927	Hs.293147	ESTs, Moderately similar to A46010 X-li	64.80	
	112992	AL157425	Hs.133315	Homo sapiens mRNA; cDNA DKFZp761J1324 (f		76.70
60	113073	N39342	Hs.103042	microtubule-associated protein 1B		120.20
	114251	H15261	Hs.21948	ESTs	127.20	
	115230 115291	AA278300	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	174.00	91.00
	115251	BE545072 AW905328	Hs.122579 Hs.180842	hypothetical protein FLJ10461 ribosomal protein L13	66.40	31.00
65	115909	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	00.10	226.60
	115965	AA001732	Hs.173233	hypothetical protein FLJ10970	82.80	
	116107	AL133916	Hs.172572	hypothetical protein FLJ20093	20.00	361.60
	116552	D20508	Hs.164649	hypothetical protein DKFZp434H247	69.00 64.20	
70	116571 118466	D45652 N66741		gb:HUMGS02848 Human adult lung 3' direct gb:yz33g08.s1 Morton Fetal Cochlea Homo	04.20	63.50
, ,	120484	AA253170	Hs.96473	EST Constant Control of Control o	81.60	00.00
	120983	AA398209	Hs.97587	EST		81.10
	121034	AL389951	Hs.271623	nucleoporin 50kD		66.20
75	121423	AW973352	Hs.290585	ESTs	64,40	co 40
15	122553 122946	AA451884 A1718702	Hs.190121 Hs.308026	ESTs major histocompatibility complex, class	188.60	60.40
	123130	AA487200	. 10.000020	gb:ab19f02.s1 Stratagene lung (937210) H	.00.00	80.20
	124472	N52517	Hs.102670	EST	71.00	
90	124526	N62096	Hs.293185	ESTs, Weakly similar to JC7328 amino aci		104.90
80	125489	H49193	Hs.124984	ESTs, Moderately similar to ALU7_HUMAN A		72.00
	125731 - 125747	R61771 NM_002884	Hs.26912 Hs.865	ESTs RAP1A, member of RAS oncogene family	69.00	69.90
	126020	H79863	Hs.114243	ESTs	05.00	62.40
0.5	126547	U47732	Hs.84072	transmembrane 4 superfamily member 3		62.80
85	126966	R38438	Hs.182575	solute carrier family 15 (H+/peptide tra		60.10

	W	O 02/086	443			PCT/US02/1	12476
	127472	AA761378	Hs.192013	ESTs	70.20		
	127610	AA960867	Hs.150271	ESTs, Highly similar to unnamed protein	64.00		
	127742	AW293496	Hs.180138	ESTs	85.20		
	127987	Al022103	Hs.124511	ESTs	96.60		
5	128233	AW889132	Hs.11916	ribokinase		78.90	
	128420	AA650274	Hs.41296	fibronectin leucine rich transmembrane p		106.90	
	128766	AW160432	Hs.296460	craniofacial development protein 1	66.80		
	129014	AW935187	Hs.170162	KIAA1357 protein		58.53	
4.0	129215	AB040930	Hs.126085	KIAA1497 protein	64.20		
10	130090	H97878	Hs.132390	zinc finger protein 36 (KOX 18)	63.80		
	130385	AW067800	Hs.155223	stanniocalcin 2		139.60	
	130732	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)		64.60	
	131025	AB040900	Hs.6189	KIAA1467 protein	64.40		
4 =	131241	BE501914	Hs.24654	Homo sapiens cDNA FLJ11640 fis, clone HE	76.20		
15	131775	AB014548	Hs.31921	KIAA0648 protein	97.80		
	132240	AB018324	Hs.42676	KIAA0781 protein		71.00	
	132856	NM_001448	Hs.58367	glypican 4		88.40	
	132977	AA093322	Hs.301404	RNA binding motif protein 3	133.20		
20	133749	L20852	Hs.10018	solute carrier family 20 (phosphate tran		59.30	
20	133818	Al110684	Hs.7645	fibrinogen, B beta polypeptide	341.00	24.00	
	134264	AF149297	Hs.8087	NAG-5 protein		64.30	•
	134265	M83772	Hs.80876	flavin containing monooxygenase 3		232.53	
	134346	X84002	Hs.82037	TATA box binding protein (TBP)-associate	66.00	75.00	
0.5	134395	AA456539	Hs.8262	lysosomal-associated membrane protein 2		75.80	
25	135047	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su		108.30	
	135056	N75765	Hs.93765	lipoma HMGIC fusion partner	71.40		
	135309	Al564123	Hs.42500	ADP-ribosylation factor-like 5	70.40		
30	TABLE 7	B shows the ac	cession numbe	ers for those primekeys lacking unigenelD's for Ta	ble 7A. For each p	robeset we have listed the gene cluster number from w	hìch the
	oligonucl	eotides were de	signed. Gene	clusters were compiled using sequences derived	from Genbank ES1	s and mRNAs. These sequences were clustered base	d on sequence
	similarity	using Clustering	g and Alignme	nt Tools (DoubleTwist, Oakland California). The G	Senbank accession	numbers for sequences comprising each cluster are lis	ted in the
	"Accession	on" column.				•	
35	Diana	Unique Co	s probeset ide	ntifor number			
55	Pkey:	onique Ed ber: Gene clus		HINIEL HAMBE			
		n Conbook		hore			

35	Pkey: CAT num Accession	ber: Gene cluste	probeset identifier number r number cession numbers	
40	Pkey	CAT number	Accessions	
70	103207	306354	X72790	
	106566	120358_1	BE298210 Al672315 AW086489 BE298417 AA455921 AA902537 BE327124 R14963 AA085210 AW274273 Al333584 Al369742 Al039658	
			AI885095 AI476470 AI287650 AI885299 AI985381 AW592624 AW340136 AI266556 AA456390 AI310815 AA484951	
15	116571	genbank_D45		
45	118466	genbank_N66		
	101046	entrez_K0116		
	101941	entrez_S7758		
	103351	entrez_X8921		
~ ^	123130	genbank_AA4	87200 AA487200	
50				

PCT/US02/12476 WO 02/086443

Table 8A shows 1720 genes either up or down-regulated in lung tumors or chronically diseased lung relative to a broad collection of over 40 distinct normal body tissues. Chronically diseased lung samples represent chronic non-malignant lung diseases such as fibrosis, emphysema, and bronchitis. These genes were selected from 39494 probesets on the Eos/Affymetrix Hu02 Genechip array. Gene expression data for each probeset obtained from this analysis was expressed as average intensity (AI), a normalized value reflecting the relative level of mRNA expression.

Pkey: ExAccn: Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number Unigene number

UnigeneID:

5

Unigene Title: Unigene gene title

R1: 70th percentile of Al for lung tumors divided by 90th percentile of Al for normal lung

R2: 70th percentile of Al for chronically diseased lung divided by 90th percentile of Al for normal lung 10

	R2:	70th perc	entile of Al for o	thronically diseased lung divided by 90th percentile c	of Al for norm	al lung
	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2
15	300097	Al916973	Hs.213603	ESTs	5.46	4.69
	300117	AW189787	Hs.147474	ESTs	0.58	0.56
	300197	Al686661	Hs.218286	ESTs	4.26	5.44
	300201	Al308300	11 407505	gb:ta90c06.x1 NCI_CGAP_Brn20 Homo sapien	0.62	0.83
20	300225	Al989963	Hs.197505	ESTs	1.68 1.08	1.75 2.28
20	300247 300256	AW274682 Al469095	Hs.161394 Hs.298241	ESTs Transmembrane protease, serine 3	0.86	1.00
	300236	A1707881	Hs.202090	ESTs	5.80	9.09
	300362	Z42308	113.202030	gb:HSC0FB121 normalized infant brain cDN	4.18	12.78
	300374	Al859947	Hs.314158	ESTs	2.99	4.38
25	300387	AW270150	Hs.254516	ESTs	1.50	2.53
	300440	Al421541	Hs.146164	ESTs	3.98	5.25
	300441	R10367	Hs.307921	EST, Weakly similar to Z232_HUMAN ZINC F	3.18	6.80
	300449	Al362967	Hs.132221	hypothetical protein FLJ12401	0.43	0.62
30	300469	AW135830	Hs.233955	hypothetical protein FLJ20401	0.16 4.10	0.83 9.75
30	300552	X85711	Hs.21838	hypothetical protein FLJ11191 gb:ab37d01.r1 Stratagene HeLa cell s3 93	4.60	12.60
	300627 300630	W27363 AW118822	Hs.128757	ESTs	2.91	5.86
	300716	AI216113	Hs.126280	hypothetical protein FLJ23393	1.00	0.92
	300738	Al623332	Hs.130541	KIAA1542 protein	1.82	1.71
35	300777	AA235361	Hs.96840	KIAA1527 protein	4.48	8.22
	300790	Al492471	Hs.188270	ESTs	1.29	1.18
	300832	AI688147	Hs.220615	ESTs, Weakly similar to T03829 transcrip	5.51	8.56
	300836	Z44942	Hs.22958	calcium channel alpha2-delta3 subunit	4.90	6.34
40	300838	AI582897	Hs.192570	hypothetical protein FLJ22028	1.70	2.81
40	300878	AW449802	Hs.285901	Homo sapiens cDNA FLJ20428 fis, clone KA	4.56	7.91
	300897	A1890356	Hs.127804	ESTs, Weakly similar to T17233 hypotheti	2.23	1.58
	300926	AA504860		gb:ab03a10.s1 Stratagene fetal retina 93	2.13	3.50
	300960	Al041019	Hs.152454	ESTs	2.74 1.00	4.46 1.00
45	300961	AW204069 AA593373	Hs.312716 Hs.293744	ESTs, Weakly similar to unnamed protein ESTs	1.46	1.51
45	300962 300967	AA565209	Hs.269439	ESTs	0.39	1.30
	300987	AW450840	Hs.148590	ESTs, Weakly similar to AF208846 1 BM-00	1.49	1.08
	300988	Al927208	Hs.208952	ESTs	0.16	0.37
	301050	AW136973	Hs.288516	ESTs, Weakly similar to S69890 mitogen i	3.23	1.94
50	301098	AA677570	Hs.185918	ESTs	6.76	14.28
	301157	AA729905	Hs.231916	ESTs	3.16	8.85
	301162	Al142118	Hs.129004	ESTs	1.68	7.18
	301170	AA737594	Hs.247606	ESTs	4.40	6.42
55	301192	Al808751	Hs.121188	ESTs	6.38	11.59 7.78
55	301193	AA758115	Hs.128350	ESTs, Weakly similar to JC5423 2-hydroxy	4.35 1.56	1.61
	301267	AW297762	Hs.255690	ESTs ESTs	2.19	1.78
	301281 301341	AA843986 Al819198	Hs.190586 Hs.208229	ESTS	0.76	0.76
	301382	AA912839	Hs.163369	ESTs	1.00	1.81
60	301407	AW450466	Hs.126830	ESTs	1.48	1.51
-	301452	AA975688	Hs.159955	ESTs	0.51	1.46
	301483	AW272467	Hs.254655	Untitled	2.40	5.02
	301494	A1678034	Hs.131099	ESTs	2.79	3.41
	301521	AI733621	Hs.133011	zinc finger protein 117 (HPF9)	0.67	0.67
65	301531	Al077462	Hs.134084	ESTs	2.52	3.76
	301580	Al878959	Hs.73737	splicing factor, arginine/serine-rich 1	7.41	11.92
	301676	Z43570	Hs.27453	ESTs, Moderately similar to G01251 Rar p	8.31 2.70	10.70 4.22
	301690	F05865	Hs.108323 Hs.7987	ubiquitin-conjugating enzyme E2E 2 (homo	4.20	8.78
70	301718	F07744 AA384252	Hs.286132	DKFZP434F162 protein D15F37 (pseudogene)	5.93	7.04
70	301799 301804	AA581004	Hs.62180	anillin (Drosophila Scraps homolog), act	1.70	0.76
	301822	X17033	Hs.271986	integrin, alpha 2 (CD49B, alpha 2 subuni	1.58	1.36
	301846	R20002	Hs.6823	hypothetical protein FLJ10430	1.00	1.00
	301868	T71508	Hs.13861	ESTs, Weakly similar to pH sensitive max	2.88	5.49
75	301882	T78054		gb:yc97g09.r1 Soares infant brain 1NIB H	2.28	3.80
	301905	Al991127	Hs.117202	ESTs	1.00	1.00
	301948	AA344647	Hs.116724	aldo-keto reductase family 1, member B11	5.28	2.28
	301960	AW070252	Hs.27973	KIAA0874 protein	5.38	6.48
90	302011	T91418	Hs.125156	transcriptional adaptor 2 (ADA2, yeast,	3.03	3.42
80	302016	N40834	Hs.23495	hypothetical protein FLJ11252	1.00	1.25
	302041	NM_001501		gonadotropin-releasing hormone 2	0.71	0.99
	302072	AJ238381	Hs.132576	paired box gene 9	1.60 0.52	1.71 1.20
	302094 302095	Al286176 AW044300	Hs.6786 Hs.137506	ESTs Homo sapiens BAC clone RP11-120J2 from 7	2.75	4.93
85	302093	AW269618	Hs.23244	ESTs	3.04	3.87
	002170	, 500 10				

124

	W	O 02/080	5443				
	302155	AI088485	Hs.144759	ESTs	0.45	1.15	
	302201	AJ006276	Hs.159003	transient receptor potential channel 6	0.33	0.84	
					0.52	0.94	
	302202	AF097159	Hs.159140	UDP-Gal:betaGlcNAc beta 1,4- galactosylt			
_	302206	Al937193	Hs.41143	phosphoinositide-specific phospholipase	2.76	3.65	
5	302209	AF047445	Hs.159297	killer cell lectin-like receptor subfami	1.00	1.00	
	302235	AL049987	Hs.166361	Homo sapiens mRNA; cDNA DKFZp564F112 (fr	1.68	1.50	
	302290	AL117607	Hs.175563	Homo sapiens mRNA; cDNA DKFZp564N0763 (f	1.00	2.11	
	302328	AA354849	Hs.23240	Homo sapiens cDNA FLJ13496 fis, clone PL	9.38	13.08	
	302346	AL039101	Hs.194625	dynein, cytoplasmic, light intermediate	3.27	7.24	
10	302360	AJ010901	Hs.198267	mucin 4, tracheobronchial	2.54	1.88	
10					1.00	0.91	
	302384	Y08982	Hs.202676	synaptonemal complex protein 2			
	302406	U86751	Hs.211956	CD3-epsilon-associated protein; antisens	2.63	2.67	
	302409	AF155156	Hs.218028	adaptor-related protein complex 4, epsil	5.82	9.34	
	302423	AB028977	Hs.225974	KIAA1054 protein	3.66	3.18	
15	302432	AL080068	Hs.272534	Homo sapiens mRNA; cDNA DKFZp564J062 (fr	2.44	6.77	
	302435	AF092047	Hs.227277	sine oculis homeobox (Drosophila) homolo	0.44	0.84	
	302437	AB024730	Hs.227473	UDP-N-acetylglucosamine:a-1,3-D-mannosid	4.18	5.64	
	302455	AA356923		nuclear cap binding protein subunit 2, 2	1.85	0.92	
			Hs.240770		2.04	2.13	
20	302472	AA317451	Hs.6335	SWI/SNF related, matrix associated, acti			
20	302476	AF182294	Hs.241578	U6 snRNA-associated Sm-like protein LSm8	1.44	1.89	
	302489	T80660	Hs.230424	Homo sapiens cDNA FLJ13540 fis, clone PL	0.51	1.10	
	302490	AA885502	Hs.187032	ESTs	2.64	4.87	
	302562	AJ005585	Hs.48956	gap junction protein, beta 6 (connexin 3	5.34	2.68	
	302566	AA085996	Hs.248572	hypothetical protein FLJ22965	1.00	1.21	
25	302630	AB029488	Hs.272100	SMS3 protein	0.52	1,24	
2.0			Hs.173560	odd Oz/ten-m homolog 2 (Drosophila, mous	1.00	1.00	
	302634	AB032953			1.58	1.02	
	302638	AA463798	Hs.102696	MCT-1 protein			
	302647	X57723	Hs.198273	NADH dehydrogenase (ubiquinone) 1 beta s	2.72	6.85	
~ ^	302655	AJ227892	Hs.146274	ESTs	1.00	4.32	
30	302656	AW293005	Hs.70704	Homo sapiens, clone IMAGE:2823731, mRNA,	2.97	0.93	
	302668	AA580691	Hs.180789	S164 protein	0.80	0.95	
	302679	H65022		gb:yu66g11.r1 Weizmann Olfactory Epithel	1.68	5.04	
	302680	AW192334	Hs.38218	ESTs	2.70	7.98	
			115.50210		4.25	8.13	
25	302697	AJ001408		gb:Homo sapiens mRNA for immunoglobulin		8.68	
35	302705	U09060		gb:Human immunoglobulin heavy chain, V-r	3.91		
	302711	L08442		gb:Human autonomously replicating sequen	2.20	2.73	
	302719	W69724	Hs.288959	hypothetical protein FLJ20920	0.54	1.02	
	302742	L12069		gb:Homo sapiens (clone WR4.10VH) anti-th	4.28	11.57	
	302755	AW384815	Hs.149208	KIAA1555 protein	1.57	2.38	
40	302771	H98476	Hs.42522	ESTs	2.94	4.68	
	302789	AJ245067	110112022	gb:Homo sapiens mRNA for immunoglobulin	3.49	6.31	
			Un 272020	hypothetical protein FLJ10494	0.80	2.74	
	302795	AJ245313	Hs.272838			0.77	
	302802	Y08250		gb:H.sapiens mRNA for variable region of	1.13		
4 ~	302803	AA442824	Hs.293961	ESTs, Moderately similar to putative DNA	3.14	10.68	
45	302812	N31301	Hs.152664	hypothetical protein FLJ20051	3.04	8.24	
	302847	X98940		gb:H.sapiens rearranged lg heavy chain (1.80	1.92	
	302885	AL137763	Hs.132127	hypothetical protein LOC57822	1.00	1.00	
	302943	AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti	0.53	0.67	
	302977	AW263124	Hs.315111	hypothetical protein FLJ12894	2.45	2.62	
50	303006	AF078950	Hs.24139	Homo sapiens cDNA: FLJ23137 fis, clone L	4.88	8.61	
50			113.24100		1.41	1.86	
	303011	AF090405	11- 000000	gb:Homo sapiens clone 2A1 scFV anitbody		1.19	
	303013	F07898	Hs.288968	RAB22A, member RAS oncogene family	1.51		
	303061	AF151882	Hs.27693	peptidylprolyl isomerase (cyclophilin)-l	0.72	0.76	
	303077	AF163305		gb:H.sapiens T-cell receptor mRNA	1.17	3.90	
55	303090	AA443259	Hs.146286	kinesin family member 13A	4.08	6.46	
	303091	AF192913	Hs.130683	zinc finger protein 180 (HHZ168)	2.50	4.37	
	303094	AF195513	Hs.278953	Pur-gamma	5.38	8.38	
	303095	AF202051	Hs.134079	NM23-H8	3.26	4.08	
	303131	AW081061	Hs.103180	DC2 protein	2.02	1.83	
60				myosin, light polypeptide, regulatory, n	1.32	3.95	
00	303195	AA082211	Hs.233936		0.77	0.53	
	303196	AA082298	Hs.59710	ESTs			
	303216	AA581439	Hs.152328	ESTs	0.24	0.63	
	303222	AA333538	Hs.204501	hypothetical protein FLJ10534	3.56	6.22	
	303234	AA132255	Hs.143951	ESTs	2.28	3.17	
65	303251	AW340037	Hs.115897	protocadherin 12	0.38	1.02	
	303295	AA205625	Hs.208067	ESTs	2.30	1.00	
	303297	T80072	Hs.13423	Homo sapiens clone 24468 mRNA sequence	1.86	4.48	
	303316	AF033122	Hs.14125	p53 regulated PA26 nuclear protein	0.10	0.80	
		AA398801		ESTs	4.54	9.65	
70	303467		Hs.323397				
70	303506	AA340605	Hs.105887	ESTs, Weakly similar to Homolog of rat Z	0.09	0.04	
	303552	AA359799	Hs.224662	ESTs, Weakly similar to unnamed protein	1.00	1.72	
	303598	AA382814		gb:EST96097 Testis I Homo sapiens cDNA 5	4.96	9.14	
	303637	AF056083	Hs.24879	phosphatidic acid phosphatase type 2C	2.06	2.02	
	303655	AA504702	Hs.258802	ATPase, (Na+)/K+ transporting, beta 4 po	1.00	1.24	
75	303756	A1738488	Hs.115838	ESTs	1.08	1.43	
	303856	AA968589	Hs.180532	glucose phosphate isomerase	1.76	1.31	
			Hs.113503	karyopherin (importin) beta 3	2.30	2.57	
	303893	N88597			3.10	5.79	
	303907	AW467774	Hs.171880	polymerase (RNA) II (DNA directed) polyp			
00	303946	AW474196	Hs.306637	Homo sapiens cDNA FLJ12363 fis, clone MA	5.06	11.86	
80	303978	AW513315		gb:xo43c12.x1 NCI_CGAP_Ut1 Homo sapiens	5.14	7.31	
	303981	AW513804	Hs.278834	ESTs, Weakly similar to ALU1_HUMAN ALU S	2.83	4.06	
	303990	AW515465		gb:xu71a11.x1 NCI_CGAP_Kid8 Homo sapiens	1.15	2.35	
	303998	AW516449		gb:xt68f05.x1 NCI_CGAP_Ut2 Homo sapiens	2.20	9.35	
	303999	AW516611		gb:xp70b11.x1 NCI_CGAP_Ov39 Homo sapiens	4.85	6.28	
85	304006	AW517947		gb:xt66h02.x1 NCI_CGAP_Ut2 Homo sapiens	3.21	4.07	
	004000	7111011041		gamagaant troi_oo. " = troineplone	•		

	W	O 02/08	6443			
	304008	AW518198	Hs.3297	ribosomal protein S27a	6.50	11.08
	304009	AW518206	Hs.181165	eukaryotic translation elongation factor	1.88	3.27
	304024	T03036		gb:FB21B7 Fetal brain, Stratagene Homo s	2.15	3.55
_	304026	T03160		gb:FB26F2 Fetal brain, Stratagene Homo s	5.88	11.80
5	304028	T03266		gb:FB7C1 Fetal brain, Stratagene Homo sa	5.59	13.46
	304036	T16855	Hs.244621	ribosomal protein S14	6.55	14.43
	304046	T54803		gb:yb42d06.s1 Stratagene fetal spleen (9	6.18 2.64	12.19 8.23
	304061 304063	T61521 T62536		gb:yb73g01.s1 Stratagene ovary (937217) gb:yc04c12.s1 Stratagene lung (937210) H	0.53	1.61
10	304003	R25376	Hs.177592	ribosomal protein, large, P1	6.49	11.67
	304114	R78946		gb:yi87g02.s1 Soares placenta Nb2HP Homo	2.90	4.18
	304122	H28966		gb:ym31a06.s1 Soares infant brain 1NIB H	1.00	2.76
	304155	H68696		gb:yr78b06.s1 Soares fetal liver spleeп	0.79	1.18
15	304203	N56929		gb:yy82d08.s1 Soares_multiple_sclerosis_	4.28	11.34
15	304234	W81608	11- 20240	gb:zd88h06.s1 Soares_fetal_heart_NbHH19W ribosomal protein, large, P0	6.47 1.34	11.03 1.16
	304267 304270	AA064862 AA069711	Hs.73742 Hs.297753	vimentin	3.40	5.40
	304270	AA079286	Hs.78466	proteasome (prosome, macropain) 26S sub	2.93	4,42
	304348	AA179868	110.11 0 100	gb:zp38g12.s1 Stratagene muscle 937209 H	3.98	10.96
20	304415	AA290747	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	3.32	5.99
	304430	AA347682		gb:EST54044 Fetal heart II Homo sapiens	1.00	1.00
	304456	AA411240		gb:zv26g05.s1 Soares_NhHMPu_S1 Homo sapi	1.42	3.33
	304521	AA464716		gb:zx82c11.s1 Soares ovary tumor NbHOT H	2.18 5.38	1.15 14.11
25	304526 304542	AA476427 AA482602	Hs.169476	gb:zx02c05.s1 Soares_total_fetus_Nb2HF8_ glyceraldehyde-3-phosphate dehydrogenase	4.16	8.23
23	304546	AA486074	Hs.297681	serine (or cysteine) proteinase inhibito	0.55	1.20
	304607	AA513322	110.201001	gb:nh85e08.s1 NCI_CGAP_Br1.1 Homo sapien	1.95	2.10
	304640	AA524440	Hs.111334	ferritin, light polypeptide	2.10	2.83
•	304650	AA527489	Hs.3463	ribosomal protein S23	3.33	12.62
30	304735	AA576453		gb:nm75h11.s1 NCI_CGAP_Co9 Homo sapiens	1.33	0.88
	304760	AA580401	11- 40004	gb:nn13g09.s1 NCI_CGAP_Co12 Homo sapiens	3.68	8.14 3.70
	304849	AA588157	Hs.13801	KIAA1685 protein PRO2047 protein	2.77 7.16	11.01
	304917 304921	AA602685 AA603092	Hs.284136 Hs.297753	vimentin	2.47	4.24
35	304966	AA613893	Hs.282435	ESTs	6.78	11.66
	304987	AA618044	Hs.300697	immunoglobulin heavy constant gamma 3 (G	0.90	1.23
	305016	AA626876		gb:zu89h06.s1 Soares_testis_NHT Homo sap	6.46	10.17
	305034	AA630128		gb:ab99c04.s1 Stratagene lung (937210) H	1.00	1.00
40	305072	AA641012	11- 000405	gb:nr72a12.s1 NCI_CGAP_Pr24 Homo sapiens	5.68	11.59 1.37
40	305111	AA644187	Hs.303405	ESTs gb:nt01g08.s1 NCI_CGAP_Lym3 Homo sapiens	1.48 1.76	4.61
	305148 305159	AA654070 AA659166	Hs.275668	EST, Weakly similar to EF1D_HUMAN ELONG	1.00	2.15
	305190	AA665955	113.21 0000	gb:ag57d12.s1 Gessler Wilms tumor Homo s	5.31	8.14
	305232	AA670052	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	0.78	1.18
45	305235	AA670480		gb:ag37e01.s1 Jia bone marrow stroma Hom	3.11	8.66
	305245	AA676695	Hs.81328	nuclear factor of kappa light polypeptid	4.38	7.53
	305312	AA700201	11. 400040	gb:zj44f07.s1 Soares_fetal_liver_spleen_	2.13 1.20	2.66 1.40
	305322 305394	AA701597 AA720942	Hs.163019 Hs.300697	EST immunoglobulin heavy constant gamma 3 (G	1.16	0.68
50	305413	AA724659	FIS.300037	gb:ai10f08.s1 Soares_parathyroid_tumor_N	5.86	9.87
-	305447	AA737856		gb:nx10c08.s1 NCI_CGAP_GC3 Homo sapiens	2.21	2.86
	305476	AA745664	Hs.287445	hypothetical protein FLJ11726	3.36	6.54
	305483	AA748030	Hs.303512	EST	1.00	2.02
55	305528	AA769156		gb:nz12e05.s1 NCI_CGAP_GCB1 Homo sapiens	6.44	9.10
55	305612	AA782347	Hs.272572	hemoglobin, alpha 2	0.19 1.00	0.79 1.00
	305614	AA782866 AA782884	Hs.275865	gb:aj09h02.s1 Soares_parathyroid_tumor_N ribosomal protein S18	7.57	10.20
	305616 305637	AA806124	HS.210000	gb:oe29a12.s1 NCI_CGAP_Pr25 Homo sapiens	4.78	12.42
	305639	AA806138		gb:oe29c12.s1 NCI_CGAP_Pr25 Homo sapiens	0.89	0.70
60	305650	AA807709		gb:nw31e04.s1 NCI_CGAP_GCB0 Homo sapiens4	.49	8.71
	305690	AA813477		gb:ai67a05.s1 Soares_testis_NHT Homo sap	4.91	9.40
	305726	AA828156	Hs.73742	ribosomal protein, large, P0	0.19	0.81
	305728	AA828209		gb:of34a02.s1 NCI_CGAP_Kid6 Homo sapiens	5.12 1.66	9.29 4.11
65	305759 305792	AA835353 AA845256		gb:ak72b06.s1 Barstead spleen HPLRB2 Hom gb:ak84a08.s1 Barstead spleen HPLRB2 Hom	2.34	4.25
05	305864	AA864374	Hs.73742	ribosomal protein, large, P0	0.30	1.40
	305901	AA872968	11011 01 12	gb:oh63h08.s1 NCI_CGAP_Kid5 Homo sapiens	2.10	5.21
	305910	AA875981		gb:nx21h02.s1 NCI_CGAP_GC3 Homo sapiens	0.32	1.01
7 0	306015	AA897116		gb:am08b07.s1 Soares_NFL_T_GBC_S1 Homo s1		1.12
70	306017	AA897221	Hs.109058	ribosomal protein S6 kinase, 90kD, polyp	5.21	7.90
	306020	AA897630	Hs.130027	EST	1.96	6.59
	306063	AA906316 AA906725		gb:ok03g03.s1 Soares_NFL_T_GBC_S1 Homo s gb:ok78g02.s1 NCI_CGAP_GC4 Homo sapiens	7.38 7.19	20.69 13.48
	306065 306104	AA910956		gb:ok85h11.s1 NCI_CGAP_Kid3 Homo sapiens	6.50	9.13
75	306109	AA911861		gb:og21a07.s1 NCI_CGAP_PNS1 Homo sapiens	4.21	5.25
	306148	AA917409	Hs.288036	tRNA isopentenylpyrophosphate transferas	2.20	2.70
	306242	AA932805		gb:oo60g04.s1 NCI_CGAP_Lu5 Homo sapiens	2.84	5.35
	306288	AA936900		gb:oi53h05.s1 NCI_CGAP_HN3 Homo sapiens	1.60	1.12
80	306325	AA953072	Hs.210546	interleukin 21 receptor	1.65 3.78	2.26 6.32
00	306353 306375	AA961382 AA968650	Hs.275865 Hs.276018	ribosomal protein S18 EST, Moderately similar to JC4662 ribos	4.30	5.74
	306375	AA970223	113.210010	gb:op09d05.s1 NCI_CGAP_Kid6 Homo sapiens	0.95	2.45
	306428	AA975110	Hs.191228	hypothetical protein FLJ20284	3.19	4.10
0.5	306442	AA976899		gb:oq35e09.s1 NCI_CGAP_GC4 Homo sapiens	4.67	7.44
85	306446	AA977348		gb:oq72e12.s1 NCI_CGAP_Kid6 Homo sapiens	3.92	6.27

	**	0 02/00	0443			
	306458	AA978186		gb:op33c06.s1 Soares_NFL_T_GBC_S1 Homo s	3.35	5.77
	306467	AA983508	Hs.163593	ribosomal protein L18a	3.72	5.37
	306510	AA988546		gb:or84d07.s1 NCI_CGAP_Lu5 Homo sapiens	1.00	1.00
_	306555	AA994304	Hs.276083	EST, Weakly similar to RL23_HUMAN 60S R	6.61	10.91
5	306557	AA994530		gb:ou57e08.s1 NCI_CGAP_Br2 Homo sapiens	16.20	31.83
•	306572	AA995686		gb:os25c12.s1 NCI_CGAP_Kid5 Homo sapiens	2.51	6.52
	306582	AA996248		gb:os18c10.s1 NCI_CGAP_Kid5 Homo sapiens	1.42	3.13
	306598	Al000320	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	4.91	8.68
					1.96	8.60
10	306605	A1000497	Hs.119500	ribosomal protein, large P2	0.11	0.45
10	306656	A1004024	11 001100	gb:ou11b07.x1 Soares_NFL_T_GBC_S1 Homo s		
	306676	AI005603	Hs.284136	PRO2047 protein	9.56	17.28
	306686	AI015615		gb:ov29f10.x1 Soares_testis_NHT Homo sap	1.86	3.60
	306702	AI022565	Hs.307670	EST	1.47	1.19
	306728	AI027359	Hs.272572	hemoglobin, alpha 2	1.28	2.83
15	306751	AI032589		gb:ow70h12.s1 Soares_fetal_liver_spleen_	3.91	5.21
	306767	Al038963	Hs.249118	ESTs	3.33	6.06
	306892	Al092465		gb:qa75h12.x1 Soares_fetal_heart_NbHH19W	3.77	7.46
	306897	Al093967		gb:qa33c06.s1 Soares_NhHMPu_S1 Homo sapi	2.12	2.85
	306956	Al125111		gb:am66f03.s1 Barstead spleen HPLRB2 Hom	6.10	10.52
20	306958	Al125152		gb:am55e09.x1 Johnston frontal cortex Ho	1.72	1.56
20	307035	Al142774	Hs.119122	ribosomal protein L13a	2.00	4.70
			115.115122	qb;qb85b12.x1 Soares_fetal_heart_NbHH19W	9.12	12.56
	307041	Al144243			4.88	8.52
	307091	Al167439		gb:ox70h06.s1 Soares_NhHMPu_S1 Homo sapi		6.44
25	307181	Al189251		gb:qc99g06.x1 Soares_pregnant_uterus_NbH	3.55	
25	307297	AI205798	Hs.111334	ferritin, light polypeptide	2.46	4.65
	307317	Al208303	Hs.147333	EST	5.64	10,13
	307327	Al214142	Hs.246381	CD68 antigen	3.18	5.15
	307382	Al223158	Hs.147885	ESTs	2.02	3.73
	307410	AI241715	Hs.77039	ribosomal protein S3A	0.72	0.48
30	307415	Al242118		gb:qh92b02.x1 Soares_NFL_T_GBC_S1 Homo s	2.38	3.51
	307423	Al243206	Hs.179573	collagen, type I, alpha 2	2.60	5.44
	307426	Al243364		gb:qh30g11.x1 Soares_NFL_T_GBC_S1 Homo s	3.18	7.67
	307517	A1275055		gb:ql72d03.x1 Soares_NhHMPu_S1 Homo sapi	1.00	1.00
	307551	Al281556		gb:qu52f11.x1 NCI_CGAP_Lym6 Homo sapiens	3.40	11.20
35	307561	Al282207		gb:qp65a12.x1 Soares_fetal_lung_NbHL19W	4.74	15.51
	307608	Al290295		gb:gm01f02.x1 Soares_NhHMPu_S1 Homo sapi	3.50	7.19
	307657	AI306428	Hs.298262	ribosomal protein S19	1.76	2.44
	307691	Al318285	7.0.20202	gb:tb17b01.x1 NCI_CGAP_Ov37 Homo sapiens	1.59	1.31
	307701	Al318583	Hs.276672	EST, Weakly similar to RL6_HUMAN 60S RI	1.90	2.13
40	307718	Al333406	Hs.83753	small nuclear ribonucleoprotein polypept	0.45	0.99
10	307730	Al336092	110.00100	gb:qt43b07.x1 Soares_fetal_lung_NbHL19W	1.51	0.99
	307760	Al342387		gb:qt27f07.x1 Soares_pregnant_uterus_NbH	1.00	1.00
	307764	Al342731		gb:qo26a07.x1 NCI_CGAP_Lu5 Homo sapiens	4.52	12.58
		Al347274		gb:tc05d02.x1 NCI_CGAP_Co16 Homo sapiens	1.42	1.00
45	307783				6.57	9.61
43	307796	Al350556		gb:qt18f09.x1 NCI_CGAP_GC4 Homo sapiens gb:qt09d02.x1 NCI_CGAP_GC4 Homo sapiens	3.38	7.68
	307807	AI351799			0.33	0.86
	307808	Al351826		gb:qt09g03.x1 NCI_CGAP_GC4 Homo sapiens	7.94	21.57
	307820	Al355761	11- 070707	gb:qt94a11.x1 NCI_CGAP_Co14 Homo sapiens	2.05	3.32
50	307830	Al358722	Hs.276737	EST, Weakly similar to R5HU22 ribosomal	3.18	5.21
50	307852	Al365541		gb:qz08g05.x1 NCI_CGAP_CLL1 Homo sapiens		
	307902	Al380462		gb:tg02h05.x1 NCI_CGAP_CLL1 Homo sapiens	3.13	4.99
	307997	Al434512	Hs.181165	eukaryotic translation elongation factor	1.00	3.01
	308002	AI435240	Hs.283442	ESTs	5.86	12.64
	308011	Al439473		gb:ti60a08.x1 NCI_CGAP_Lym12 Homo sapien	3.79	5.83
55	308023	A1452732	Hs.251577	hemoglobin, alpha 1	0.38	0.88
	308041	A1458824	Hs.169476	glyceraldehyde-3-phosphate dehydrogenase	4.36	6.06
	308059	A1468938	Hs.276877	EST, Weakly similar to RL10_HUMAN 60S R	1.80	1.98
	308085	AI474135	Hs.181165	eukaryotic translation elongation factor	3.38	4.14
	308101	Al475950	Hs.181165	eukaryotic translation elongation factor	1.30	3.87
60	308106	Al476803		gb:tj77e12.x1 Soares_NSF_F8_9W_OT_PA_P_S2.	38	8.72
	308122	AI480123	Hs.309411	EST	2.70	3.86
	308154	Al500600		gb:tn93d08.x1 NCI_CGAP_Ut2 Homo sapiens	0.66	1.33
	308171	Al523632	Hs.298766	ESTs, Weakly similar to schlafen4 [M.mu	2.48	4.86
	308211	Al557029	Hs.278572	anaplastic lymphoma kinase (Ki-1)	2.43	2.14
65	308213	Al557041	110.21 0012	gb:PT2.1_12_E04.r tumor2 Homo sapiens cD	3.34	3.79
00	308216	Al557135		gb:PT2.1_13_H06.r tumor2 Homo sapiens cD	4.61	4.78
	308219	Al557246		gb:PT2.1_15_D07.r tumor2 Homo sapiens cD	4.87	7.94
		Al567844	Hs.252259	ribosomal protein S3	2.40	6.35
	308271			eukaryotic translation elongation factor	2.45	3.33
70	308319	Al583983	Hs.181165		1.24	1.41
70	308362	Al613519 Al636253	Hs.105749	KIAA0553 protein ESTs	3.16	4.82
	308413		Hs.196511			2.68
	308450	A1660860	Hs.96840	KIAA1527 protein	1.79 4.87	8.27
	308464	Al672425	Hs.277117	EST, Moderately similar to 138055 myosi	4.87	
75	308588	Al718299		gb:as51g12.x1 Barstead aorta HPLRB6 Homo	3.90	5.64
75	308599	AI719893	11- 404=	gb:as47d07.x1 Barstead aorta HPLRB6 Homo	3.32	5.12
	308615	AI738593	Hs.101774	hypothetical protein FLJ23045	3.11	2.36
	308643	Al745040		gb:tr19a12.x1 NCI_CGAP_Ov23 Homo sapiens	3.98	3.69
	308673	Al760864		gb:wi09c10.x1 NCI_CGAP_CLL1 Homo sapiens	0.82	0.99
0.0	308697	Al767143		gb:wi97a07.x1 NCl_CGAP_Kid12 Homo sapien	2.76	5.59
80	308762	Al807405	Hs.259408	ESTs	3.17	6.30
	308778	Al811109		gb:tr04c11.x1 NCI_CGAP_Ov23 Homo sapiens	1.00	1.00
	308782	Al811767	Hs.2186	eukaryotic translation elongation factor	2.94	5.15
	308808	Al818289		gb:wk52c01.x1 NCI_CGAP_Pr22 Homo sapiens	4.41	8.34
0.5	308823	Al824118	Hs.217493	annexin A2	1.85	1.92
85	308875	AI832332		gb:at48g03.x1 Barstead colon HPLRB7 Homo	2.52	3.80

	W	O 02/086	5443			
	308879	Al832763	Hs.75968	thymosin, beta 4, X chromosome	3.38	7.96
	308886	A1833240	115.70000	gb;at76d10.x1 Barstead colon HPLRB7 Homo	3.06	2.65
	308898	Al858845		gb:wl32d10.x1 NCI_CGAP_Ut1 Homo sapiens	2.45	3.44
	308934	A1865023	Hs.177	phosphatidylinositol glycan, class H	4.14	6.76
5	308966	A1870704		gb:wi47h01.x1 NCI_CGAP_Ut1 Homo sapiens	1.00	1.00
_	308979	Al873111		gb:wi52h05.x1 NCI_CGAP_Brn25 Homo sapien	7.15	11.10
	309045	AI910902		gb:tq39f01.x1 NCI_CGAP_Ut1 Homo saplens	0.61	0.59
	309051	Al911975		gb:wd78d01.x1 NCI_CGAP_Lu24 Homo sapiens	1.78	4.42
10	309069	Al917366	Hs.78202	SWI/SNF related, matrix associated, act	3.27	5.88
10	309083	Al922426	Hs.119598	ribosomal protein L3	2.39	3.34
	309105	A1925503	Hs.265884	ESTS	5.54 1.00	17.78 2.92
	309122	Al928178	11- 400049	gb:wo95a11.x1 NCI_CGAP_Kid11 Homo sapien ribosomal protein L13	1.38	5.55
	309128	Al928816	Hs.180842	gb:wp84b09.x1 NCI_CGAP_Brn25 Homo sapien	2.43	3.11
15	309164 309177	Al937761 Al951118		gb:wx63g05.x1 NCI_CGAP_Br18 Homo sapiens	0.81	0.97
13	309288	Al991525	Hs.299426	ESTs	4.86	7.46
	309299	AW003478	113.200420	gb:wq66c06.x1 NCI_CGAP_GC6 Homo sapiens	4.36	9.43
	309303	AW004823		gb:ws93a08.x1 NCI_CGAP_Co3 Homo sapiens	2.88	7.54
	309411	AW085201	Hs.244144	EST	4.30	7.14
20	309437	AW090702	Hs.278242	tubulin, alpha, ubiquitous	2.49	3.11
	309459	AW117645	Hs.65114	keratin 18	2.88	4.55
	309476	AW129368		gb:xe14b05.x1 NCI_CGAP_Ut4 Homo sapiens	2.08	6.60
	309499	AW136325	Hs.279771	Homo sapiens clone PP1596 unknown mRNA	2.82	3.55
25	309529	AW150807	Hs.181357	laminin receptor 1 (67kD, ribosomal pro	4.78	3.95
25	309532	AW151119	11- 007004	gb:xg33e10.x1 NCI_CGAP_Ut1 Homo sapiens	1.18 4.46	4.40 12.06
	309626	AW192004	Hs.297681	serine (or cysteine) proteinase inhibit EST, Moderately similar to GHHU lg gamm	1.47	1.39
	309641	AW194230	Hs.253100 Hs.253506	EST, Moderately similar to GTITO 19 gamm EST, Moderately similar to ATPN_HUMAN A	5.68	15.20
	309675 309693	AW205681 AW237221	Hs.181357	laminin receptor 1 (67kD, ribosomal prot	1.00	1.00
30	309695	AW237221	Hs.295605	mannosidase, alpha, class 2A, member 2	5.45	9.61
20	309700	AW241170	Hs.179661	tubulin, beta polypeptide	1.41	1.25
	309747	AW264889		gb:xg36h02.x1 NCI_CGAP_Lu28 Homo sapiens	5.00	8.35
	309769	AW272346		gb:xs13c10.x1 NCl_CGAP_Kid11 Homo sapien	5.76	11.90
	309782	AW275156	Hs.156110	immunoglobulin kappa constant	0.42	0.69
35	309783	AW275401	Hs.254798	EST	1.00	4.11
	309799	AW276964		gb:xp58h01.x1 NCI_CGAP_Ov39 Homo sapiens	1.68	1.44
	309866	AW299916		gb:xs44c01.x1 NCI_CGAP_Kid11 Homo sapien	3.02	5.04
	309903	AW339071	Hs.300697	immunoglobulin heavy constant gamma 3 (G	1.05	1.18 3.67
40	309923	AW340684		gb:hd05g08.x1 Soares_NFL_T_GBC_S1 Homo s	2.30 7.41	13.71
40	309928	AW341418		gb:hd08c03.x1 Soares_NFL_T_GBC_S1 Homo s qb:hd13d01.x1 Soares_NFL_T_GBC_S1 Homo s	1.20	12.70
	309931 309933	AW341683 AW341936		gb:hb73f10.x1 NCI_CGAP_Ut2 Homo sapiens	4.90	18,29
	309964	AW449111	Hs.257111	hypothetical protein MGC3265	1.99	3.07
	310002	Al439096	Hs.323079	Homo sapiens mRNA; cDNA DKFZp564P116 (fr	0.20	0.47
45	310096	AW136822	Hs.172824	ESTs, Weakly similar to B48013 proline-r	1.51	1.22
	310098	Al685841	Hs.161354	ESTs	0.31	0.76
	310109	Al203094	Hs.148633	ESTs	2.06	5.83
	310112	AW197233	Hs.147253	ESTs	2.92	3.55
50	310115	AI611317	Hs.223796	ESTs	1.25	0.84
50	310121	AW195642	Hs.148901	ESTs	1.00	2.71
	310146	A1206614	Hs.197422	ESTs	9.50 2.85	15.31 4.18
	310193	A1627653	Hs.147562	ESTs ESTs	4.26	10.63
	310255	AW450439 AI240483	Hs.153378 Hs.201217	ESTS	3.28	4.40
55	310261 310264	AI915771	Hs.74170	metallothionein 1E (functional)	0.26	0.86
33	310275	AI242102	Hs.213636	ESTs	5.43	8.19
	310282	AI243332	Hs.156055	ESTs	3,15	8.06
	310290	AW013815	Hs.149103	ESTs	2.19	3.12
	310333	Al253200	Hs.145402	ESTs	1.17	1.91
60	310346	Al261340	Hs.145517	ESTs	4.81	9.95
	310385	Al263392	Hs.156151	ESTs	5.96	7.79
	310443	AW119018	Hs.164231	ESTs	2.90	4.63
	310444	AW196632	Hs.252956	ESTs	0.85 2.18	1.01 3.85
65	310446	AI275715	Hs.145926	ESTs	3.39	5.19
03	310468	AI984074	Hs.196398	ESTs	1.00	1.00
	310477	AI948801	Hs.171073 Hs.200712	ESTs ESTs	3.87	8.12
	310512 310514	AW275603 AI681145	Hs.160724	ESTs	3.30	7.33
	310524	AW082270	Hs.12496	ESTs, Highly similar to AC004836 1 simil	0.72	1.44
70	310547	Al302654	Hs.208024	ESTs	3.26	3.46
	310584	AI653007	Hs.156304	ESTs	2.39	4.08
	310608	Al962234	Hs.196102	ESTs	5.60	6.49
	310624	Al341594		gb:Human endogenous retrovirus H proteas	4.91	9.09
75	310636	AI814373	Hs.164175	ESTs	1.85	1.71
75	310648	Al347863	Hs.156672	ESTs	0.17	0.69
	310694	A1654370	Hs.157752	Homo sapiens mRNA full length insert cDN	5.40	13.22
	310695	A)472124	Hs.157757	ESTs	4.82 1.76	6.27 3.51
	310714	AI418446	Hs.157882	ESTs ESTs	1.14	6.85
80	310722	Al989803 Al916560	Hs.157289 Hs.158707	ESTs ESTs	8.46	13.01
30	310756 310764	Al376769	Hs.167172	ESTS	4.76	7.37
	310848	Al459554	Hs.161286	ESTs	2.84	1.96
	310851	AW291714	Hs.221703	ESTs	1.00	2.32
	310854	AI421677	Hs.161332	ESTs	6.37	7.94
85	310858	AI871000	Hs.161330	ESTs	6.07	9.84

	w	O 02/080	5443			
	310864	A)924558	Hs.161399	ESTs	0.87	0.78
	310875	T47764	Hs.132917	ESTs	1.00	3.63
	310896	AW157731	Hs.270982	ESTs, Moderately similar to ALU7_HUMAN A	7.07	16.68
_	310922	AW195634	Hs.170401	ESTs	1.00	1.00
5	310955	Al560210	Hs.263912	ESTs	10.08	17.66
	310957	AW190974	Hs.196918	ESTs	2.18	3.18
	311000	AI521830	Hs.171050	ESTs	3.06	6.64
	311012	AW298070	Hs.241097	ESTs	1.23	3.77
10	311034	A1564023	Hs.311389	ESTs, Moderately similar to PT0375 natur	2.44	2.09
10	311074	AW290922	Hs.199848	ESTs	6.04	14.19
	311134	A1990849	Hs.196971	ESTs	3.54	6.96
	311174	AW450552	Hs.205457	periaxin	0.65	0.95
	311187	AI638374	Hs.224189	ESTs	2.46	2.78
1.5	311220	A1656040	Hs.196532	ESTs	1.10	2.52
15	311230	A1989808	Hs.197663	ESTs	1.41	1.75
	311236	Al653378	Hs.197674	ESTs	2.18	2.11
	311242	AW016812	Hs.200266	ESTs	0.63	5.11
	311258	AI671221	Hs.199887	ESTS	1.00	1.41 1.94
20	311277	AW072813	Hs.270868	ESTs, Moderately similar to ALU4_HUMAN A	2.56 1.04	2.69
20	311294	AA826425	Hs.291829	ESTs	1.96	6.70
	311308	F12664	Hs.49000	ESTs	4.77	9.38
	311351	A1682303	Hs.201274	ESTs ESTs	2.80	6.06
	311390 311405	AW392997 AW290961	Hs.202280 Hs.201815	ESTS	3.80	11.66
25	311409	A1698839	113.201013	gb:wd31f02.x1 Soares_NFL_T_GBC_S1 Homo s	3.84	6.94
245	311420	Al936291	Hs.209867	ESTs	5.30	12.56
	311443	Al791521	Hs.192206	ESTs	4.39	6.09
	311467	Al934909	Hs.175377	ESTs	1.00	1.04
	311479	Al933672	Hs.211399	ESTs	2.76	5.61
30	311488	R57390	Hs.301064	arfaptin 1	2.50	5.73
-	311495	AW300077	Hs.221358	ESTs	3.63	6.09
	311511	AW444568	Hs.210303	ESTs	2.00	2.87
	311534	AW130351	Hs.243549	ESTs	0.31	1.33
	311537	Al805121	Hs.211828	ESTs	3.69	5.85
35	311543	Al681360	Hs.201259	ESTs	1.73	- 1.34
	311551	AW449774	Hs.296380	POM (POM121 rat homolog) and ZP3 fusion	3.31	6.12
	311557	A1819230	Hs.211238	interleukin-1 homolog 1	1.00	1.00
	311558	Z44432	Hs.63128	KIAA1292 protein	2.25	3.41
4.0	311559	AW008271	Hs.265848	similar to rat myomegalin	2.68	5.90
40	311563	Al922143	Hs.211334	ESTs	2.39	3.32
	311586	Al827834	Hs.211227	ESTs	2.47	3.85
	311616	AW450675	Hs.212709	ESTs	1.00	1.00
	311621	A1924307	Hs.213464	ESTs	4.16	6.74
4.5	311635	Al928456	Hs.213081	ESTs	2.17	3,76
45	311668	AW193674	Hs.240044	ESTs	2.60	3.12
	311672	R11807	Hs.20914	hypothetical protein FLJ23056	2.79	5.18
	311683	AW183738	Hs.232644	ESTs	0.19	0.96 8.83
	311700	R49601	Hs.171495	retinoic acid receptor, beta ESTs, Weakly similar to CIKG_HUMAN VOLTA	6.28 5.00	8.17
50	311714	AW131785	Hs.246831	Homo sapiens cDNA FLJ12981 fis, clone NT	0.96	0.72
50	311735	AW294416	Hs.144687 Hs.191194	ESTs	1.00	1.95
	311743	T99079 Al682478	Hs.13528	hypothetical protein FLJ14054	0.16	0.77
	311783 311785	A1056769	Hs.133512	ESTs	1.34	3.97
	311799	AA780791	Hs.14014	ESTs, Weakly similar to KIAA0973 protein	8.52	13.32
55	311819	AW265275	Hs.254325	ESTs	3.58	3.91
55	311823	Al089422	Hs.131297	ESTs	1.40	1.72
	311877	AA349893	Hs.85339	G protein-coupled receptor 39	0.95	0.91
	311886	AA522738	Hs.132554	ESTs	0.88	0.87
	311896	AW206447		gb:UI-H-BI1-afg-g-02-0-UI.s1 NCI_CGAP_Su	1.66	1.13
60	311910	N28365	Hs.22579	Homo sapiens clone CDABP0036 mRNA sequen	1.66	2.30
	311923	T60843	Hs.189679	ESTs	0.42	2.63
	311933	A1597963	Hs.118726	ESTs	1.88	3.02
	311959	T67262	Hs.124733	ESTs	2.02	2.33
- -	311960	AW440133	Hs.189690	ESTs	3.87	6.62
65	311967	A1382726	Hs.182434	ESTs	5.80	8.14
	311975	AA804374	Hs.272203	Homo sapiens cDNA FLJ20843 fis, clone AD	0.98	3.26
	312005	T78450	Hs.13941	ESTs	0.12	1.39
	312028	T78886	Hs.284450	ESTs	3.78	4.92
70	312046	Al580018	Hs.268591	ESTs	4.11	7.32
70	312056	T83748	Hs.268594	ESTs	2.36	3.08
	312064	AA676713	Hs.191155	ESTs	3.34	5.28
	312088	AW303760	Hs.13685	ESTs	1.60	1.15
	312093	T91809	Hs.121296	ESTs	0.68	0.85 4.48
75	312094	Z78390	Un 440400	gb:HSZ78390 Human fetal brain S. Meier-E	3.05 4.52	4.46 9.70
13	312097	Al352096	Hs.112180	zinc finger protein 148 (pHZ-52)	4.52 2.40	2.60
	312118	T85332	Hs.178294	ESTs Homo sapiens cDNA FLJ20118 fis, clone CO	2.39	3.53
	312128 312147	Al052609 T89855	Hs.17631 Hs.195648	ESTs	0.67	1.03
	312175	AA953383	Hs.127554	ESTS	5.85	10.60
80	312179	Al052572	Hs.269864	ESTs	2.41	3.32
-	312201	A1928365	Hs.91139	solute carrier family 1 (neuronal/epithe	0.24	0.89
	312207	H90213	Hs.191330	ESTs	2.20	4.55
	312220	N74613		gb:za55a07.s1 Soares fetal liver spleen	4.28	11.13
	312252	Al128388	Hs.143655	ESTs	1.64	1.57
85	312304	AA491949	Hs.269392	ESTs	0.12	2.47

	vv	O 02/080	9443			
	312318	AW235092	Hs.143981	ESTs	3.46	5.69
	312319	AA216698	Hs.180780	TERA protein	5.78	4.46
	312321	R66210	Hs.186937	ESTs	0.44	1.74
_	312331	AA825512	Hs.289101	glucose regulated protein, 58kD	3.73	5.96
5	312339	AA524394	Hs.165544	ESTs	3.07	0.95
	312363	AI675558	Hs.181867	ESTs	10.08	16.73
	312375	Al375096	Hs.172405	cell division cycle 27	2.78	3.71
	312376	R52089	Hs.172717	ESTs	1.00	1.00
	312389	Al863140		gb:tz43h12.x1 NCI_CGAP_Brn52 Homo sapien	2.37	3.98
10	312437	AA995028		gb:RC4-BT0629-120200-011-b10 BT0629 Homo	4.06	5.41
	312440	AI051133	Hs.133315	Homo sapiens mRNA; cDNA DKFZp761J1324 (f	1.00	1.00
	312451	R59989	Hs.176539	ESTs	4.96	10.04
	312458	Al167637	Hs.146924	ESTs	1.11	1.00
	312507	AI168177	Hs.143653	ESTs	5.89	8.24
15	312520	Al742591	Hs.205392	ESTs	3.30	8.92
10	312548	AI566228	Hs.159426	hypothetical protein PRO2121	1.38	1.65
	312564	H21520	Hs.35088	ESTs	0.40	0.77
	312583	Al193122	Hs.124141	ESTs	0.13	0.94
	312599	AI865073	Hs.125720	ESTs	3.75	5.29
20	312602	AA046451	Hs.165200	ESTs	6.78	12.93
20	312645	H52121	Hs.193007	ESTs	0.38	1.13
				ESTs	0.98	2.03
	312666	Al240582	Hs.214678		0.21	0.61
	312689	AW450461	Hs.203965	ESTs ESTs	1.51	0.85
25	312817	H75459	Hs.233425		8.93	13.78
23	312846	AW152104	Hs.200879	ESTs	4.20	6.23
	312873	Al690071	Hs.283552	ESTs, Weakly similar to unnamed protein	2.67	3.15
	312893	AI016204	Hs.172922	ESTs		
	312902	AW292797	Hs.130316	ESTs, Weakly similar to T2D3_HUMAN TRANS	1.19	0.71
20	312925	N90868	Hs.271695	ESTs	2.50	4.25
30	312936	Al681581	Hs.121525	ESTs	1.00	1.17
	312975	Al640506	Hs.293119	ESTs, Weakly similar to ALU7_HUMAN ALU S	2.30	4.80
	312978	N24887	Hs.292500	ESTs	0.80	1.05
	312980	AA497043	Hs.115685	ESTs	3.12	3.60
25	312984	N25871	Hs.177337	ESTs	2.03	2.13
35	313000	Al147412	Hs.146657	ESTs	5.52	8.42
	313029	AA731520	Hs.170504	ESTs	0.96	1.39
	313039	A1419290	Hs.149990	ESTs, Weakly similar to unnamed protein	6.48	13.20
	313049	AW293055	Hs.119357	ESTs	6.44	10.73
40	313056	Al651930	Hs.135684	ESTs	1.51	2.04
40	313058	D81015	Hs.125382	ESTs	0.25	1.50
	313070	AI422023	Hs.161338	ESTs	8.56	11.60
	313097	A1676164	Hs.204339	ESTs	3.72	4.56
	313130	AW449171	Hs.168677	ESTs	3.28	5.06
	313136	N59284	Hs.288010	ESTs	0.49	1.36
45	313153	AI240838	Hs.132750	ESTs	5.36	5.52
	313210	N74077	Hs.197043	ESTs	0.30	0.66
	313236	AW238169	Hs.83513	ESTs, Weakly similar to ALU1_HUMAN ALU S	5.16	8.76
	313239	W19632	Hs.124170	ESTs	1.00	3.87
	313265	N93466	Hs.121764	ESTs, Weakly similar to testicular tekti	0.74	2.06
50	313267	A1770008	Hs.129583	ESTs	0.23	1.30
	313275	Al027604	Hs.159650	ESTs	6.68	9.57
	313290	AI753247	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	1.34	1.07
	313292	Al362991	Hs.202121	ESTs, Weakly similar to env protein [H.s	2.00	4.32
	313325	Al420611	Hs.127832	ESTs	1.20	2.27
55	313357	AW074848	Hs.201501	ESTs	4.02	5.33
	313393	Al674685	Hs.200141	ESTs	1.36	2.84
	313399	AW376889	Hs.194097	ESTs	2.58	5.26
	313414	Al241540	Hs.132933	ESTs	6.57	15.07
	313417	AA741151	Hs.137323	ESTs	0.63	3.01
60	313457	AA576052	Hs.193223	Homo sapiens cDNA FLJ11646 fis, clone HE	2.78	4.70
	313499	Al261390	Hs.146085	KIAA1345 protein	0.91	2.37
	313516	AA029058	Hs.135145	ESTs	3.41	7.08
	313556	AA628517	Hs.118502	ESTs	0.23	0.70
	313569	Al273419	Hs.135146	hypothetical protein FLJ13984	1.88	1.00
65	313570	AA041455	Hs.209312	ESTs	0.73	2.27
00	313638	Al753075	Hs.104627	Homo sapiens cDNA FLJ10158 fis, clone HE	1.00	1.72
	313662	AA740151	Hs.130425	ESTs	0.20	1.42
	313671	W49823	Hs.104613	RP42 homolog	1.00	1.00
	313672	AW468891	Hs.122948	ESTs	3.46	5.80
70	313690	Al493591	Hs.78146	platelet/endothelial cell adhesion molec	0.51	0.97
70	313711	AA398070	Hs.133471	ESTs	0.18	1.01
	313723	AA070412	110.100-111	gb:zm68c10.s1 Stratagene neuroepithelium	1.08	1.03
	313726	A1744687	Hs.257806	ESTs	2.13	2.99
		AW136836	Hs.144583	ESTs	1.38	1.19
75	313774	AA910514	Hs.134905	ESTs	3.88	5.78
, 5	313784				0.22	2.06
	313790	AW078569	Hs.177043	ESTs	1.15	0.91
	313832	AW271022	Hs.133294	ESTs ESTo	0.68	3.14
	313834	AW418779	Hs.114889	ESTs ESTs	5.74	8.88
80	313835	Al538438 H18633	Hs.159087	protein tyrosine phosphatase, receptor t	0.16	1.14
50	313852		Hs.123641	ESTs	2.09	4.06
	313854	AW470806	Hs.275002		3.41	4.00
	313865	AA731470	Hs.163839	ESTs	5.28	6.83
	313871	AW471088	Hs.145950	ESTs gb:nu76d01.s1 NCI_CGAP_Alv1 Homo sapiens	2.90	10.91
85	313883	A1949384 A1969390	Hs.163443	Homo sapiens cDNA FLJ11576 fis, clone HE	1.00	1.00
05	313915	11003030	110.100440	nome dapiend obtain a better one, sione til		1.00

	W	O 02/08	6443			
	313926	AW473830	Hs.171442	ESTs	3.40	4.11
	313948	AW452823	Hs.135268	ESTs	5.77	9.15
	313978	AI870175	Hs.13957	ESTs	0.46	0.75
	313983	AI829133	Hs.226780	ESTs	4.10	6.40
5	314035	AA164199	Hs.270152	ESTs	5.88	7.90
_	314037	AW300048	Hs.275272	ESTs	1.00	3.79
	314040	AA166970	Hs.118748	ESTs	7.60	11.33
	314067	AW293538	Hs.51743	KIAA1340 protein	1.86	1.21
	314103	AI028477	Hs.132775	ESTs	2.90	5.29
10	314107	AA806113	Hs.189025	ESTs	2.00	1.66
10	314113	AA218986	Hs.118854	ESTs	0.91	4.17
	314124	AW118745	Hs.9460	Homo sapiens mRNA; cDNA DKFZp547C244 (fr	2.53	3.32
	314126	AA226431	115.5400	gb:nc18b12.s1 NCI_CGAP_Pr1 Homo sapiens	3.13	5.08
			Un 104600	ESTs	2.90	6.35
15	314128	AA935633	Hs.194628	== : -	4.15	6.45
13	314151	AA236163	Hs.202430	ESTs	3,44	4.65
	314184	AW081795	Hs.233465	ESTs		
	314192	AW290975	Hs.118923	ESTs	1.00	1.23
	314244	AL036450	Hs.103238	ESTs	2.88	3.67
20	314253	AA278679	Hs.189510	ESTs	4.98	7.16
20	314262	AW086215	Hs.246096	ESTs	0.38	1.94
	314320	AA811598	Hs.275809	ESTs .	3.34	5.66
	314332	AL037551	Hs.95612	ESTs	2.85	2.09
	314335	AA287443	Hs.142570	Homo sapiens clone 24629 mRNA sequence	4.35	4.78
~ -	314340	AW304350	Hs.130879	ESTs, Moderately similar to putative p15	0.77	0.86
25	314351	AA292275	Hs.193746	ESTs	3.07	3.77
	314376	AI628633	Hs.324679	ESTs	4.10	6.11
	314443	AA827125	Hs.192043	ESTs	6.20	13.67
	314458	Al217440	Hs.143873	ESTs	0.58	2.49
	314466	AA767818	Hs.122707	ESTs	2.53	2.62
30	314478	AI521173	Hs.125507	DEAD-box protein	3.94	5.65
•	314482	AL043807	Hs.134182	ESTs	1.30	1.44
	314506	AA833655	Hs.206868	Homo sapiens cDNA FLJ14056 fis, clone HE	3.28	3.47
	314519	R42554	Hs.210862	T-box, brain, 1	3,12	6.16
	314529	AL046412	Hs.202151	ESTs	3.43	6.87
35	314546	AW007211	Hs.16131	hypothetical protein FLJ12876	1.38	1.00
55		AVV007211			2.29	5.27
	314562		Hs.143493	ESTs	3.87	5.75
	314579	AW197442	Hs.116998	ESTs		0.71
	314580	AW451832	Hs.255938	ESTs, Moderately similar to KIAA1200 pro	0.10	1.40
40	314585	AA918474	Hs.216363	ESTS	1.08	
40	314589	AW384790	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT	1.00	1.00
	314592	AA435761	Hs.192148	ESTs	0.90	2.60
	314603	AA418024	Hs.270670	ESTs	4.56	6.29
	314604	AA946582	Hs.8700	deleted in liver cancer 1	3.42	3.92
1 =	314606	AA418241	Hs.188767	ESTs	2.97	4.55
45	314648	AA878419		gb:EST391378 MAGE resequences, MAGP Homo1		1.36
	314699	Al038719	Hs.132801	ESTs	3.66	4.97
	314701	Al754634	Hs.131987	ESTs	0.03	0.90
	314710	Al669131	Hs.290989	EST	3.40	7.52
	314750	A1095005	Hs.135174	ESTs	2.80	6.54
50	314767	AW135412	Hs.164002	ESTs	3.20	4.26
	314801	AA481027	Hs.109045	hypothetical protein FLJ10498	1.00	1.00
	314817	Al694139	Hs.192855	ESTs	0.91	0.99
	314835	Al281370	Hs.76064	ribosomal protein L27a	5.75	7.44
	314852	Al903735		gb:MR-BT035-200199-031 BT035 Homo sapien	1.68	4.34
55	314853	AA729232	Hs.153279	ESTs	0.60	1.85
-	314940	AW452768	Hs.162045	ESTs	10.10	16.20
	314941	AA515902	Hs.130650	ESTs	0.31	1.02
	314943	Al476797	Hs.184572	cell division cycle 2, G1 to S and G2 to	2.18	0.37
	314955	AA521382	Hs.192534	ESTs	2.59	3.90
60	314973	AW273128	Hs.300268	ESTs	1.05	1.25
00	315004	AA527941	Hs.325351	EST	5.64	13.63
	315004	Al538613	Hs.298241	Transmembrane protease, serine 3	0.52	1.78
			Hs.146133	ESTs	2.46	1.00
	315033	A1493046	Hs.177135	ESTs	0.34	1.33
65	315035	A1569476		ESTS	2.10	2.64
05	315056	A1202703	Hs.152414			1.30
	315069	Al821517	Hs.105866	ESTs	1.00	
	315071	AA552690	Hs.152423	Homo sapiens cDNA: FLJ21274 fis, clone C	1.78	1.00
	315073	AW452948	Hs.257631	ESTs	1.17	1.52
70	315078	AA568548	Hs.190616	ESTs	3.00	3.79
70	315080	AA744550	Hs.136345	ESTs	1.00	1.00
	315120	AA564991	Hs.269477	ESTs	0.64	1.44
	315175	Al025842	Hs.152530	ESTs	0.61	1.91
	315193	Al241331	Hs.131765	ESTs	1.06	0.97
75	315196	AA972756	Hs.44898	Homo sapiens clone TCCCTA00151 mRNA sequ	0.48	1.96
75	315200	A1808235	Hs.307686	EST	3.76	9.40
	315254	Al474433	Hs.179556	ESTs	5.37	9.36
	315353	AW452608	Hs.279610	hypothetical protein FLJ10493	1.00	1.30
	315397	AA218940	Hs.137516	fidgetin-like 1	3.38	2.24
	315403	AW362980	Hs.163924	ESTs	2.04	5.23
80	315431	AA622104	Hs.184838	ESTs	2.36	8.04
	315454	Al239473		gb:qh36f02.x1 Soares_NFL_T_GBC_S1 Homo s	3.46	7.64
	315455	AW393391	Hs.156919	ESTs	3.78	5.76
	315473	Al681671	Hs.312671	ESTs, Moderately similar to OVCA1	0.89	2.15
	315483	AW512763	Hs.222024	transcription factor BMAL2	2.32	1.96
85	315526	Al193048	Hs.128685	ESTs	1.67	1.78
	0.5024		,0000			

	W	O 02/080	6443			
	315530	A1200852	Hs.127780	ESTs	1.05	1.01
	315541	Al168233	Hs.123159	sperm associated antigen 4	0.85	0.56
	315552	AW445034	Hs.256578	ESTs	1.00	2.22
	315562	AA737415	Hs.152826	ESTs	2.66	2.48
5	315577	AW513545	Hs.17283	hypothetical protein FLJ10890	2.20	2.25
	315587	Al268399	Hs.140489	ESTs	1.00	1.04
		AW072387		Homo sapiens mRNA; cDNA DKFZp434B1272 (f	0.14	1.05
	315589		Hs.158258		7.44	12.56
	315623	AA364078	Hs.258189	ESTs		
10	315634	AA837085	Hs.220585	ESTs	0.50	1.40
10	315668	AA912347	Hs.136585	ESTs	0.43	1.22
	315677	Al932662	Hs.164073	ESTs	0.60	1.39
	315706	AW440742	Hs.155556	hypothetical protein FLJ20202	2.18	3.77
	315707	Al418055	Hs.161160	ESTs	2.88	2.63
	315730	H25899	Hs.201591	ESTs	0.11	0.60
15	315745	Al821759	Hs.191856	ESTs	3.50	7.25
	315791	AA678177		gb:zi15a05.s1 Soares_fetal_liver_spleen_	1.78	2.63
	315801	AA827752	Hs.266134	ESTs	4.31	6.23
			Hs.258785	ESTs	2.35	3.01
	315820	A1652022			2.12	2.64
20	315878	AA683336	Hs.189046	ESTs		
20	315905	Al821911	Hs.209452	ESTs	1.03	1.97
	315923	Al052789	Hs.133263	ESTs	2.63	5.06
	315954	AW276810	Hs.254859	ESTs, Moderately similar to ALU5_HUMAN A	1.21	0.85
	315978	AA830893	Hs.119769	ESTs	3.09	3.41
	316001	Al248584	Hs.190745	Homo sapiens cDNA: FLJ21326 fis, clone C	2.20	6.82
25	316011	AW516953	Hs.201372	ESTs	0.35	1.63
	316012	AA764950	Hs.119898	ESTs	6.56	8.13
	316040	Al983409	Hs.189226	ESTs	5.69	10.69
	316048	Al720759	Hs.224971	ESTs	2.84	10.45
	316076	AW297895	Hs.116424	ESTs	0.30	1.05
30					1.00	1.43
50	316124	Al308862	Hs.167028	ESTs		
	316151	Al806016	Hs.156520	ESTs	5.80	9.03
	316187	AW518299	Hs.192253	ESTs	1.20	3.96
	316204	AA731509	Hs.120257	ESTs	4.92	6.94
~ ~	316232	AW297853	Hs.251203	ESTs	1.48	1.60
35	316275	A)671041	Hs.292611	ESTs, Moderately similar to ALU1_HUMAN A	5.86	12.14
	316291	AW375974	Hs.156704	ESTs	2.73	2.69
	316303	AA740994	Hs.209609	ESTs	1.53	1.26
	316344	AA744518	Hs.120610	ESTs	3.66	8.34
	316346	Al028478	Hs.157447	ESTs	3.51	6.69
40	316365	Al627845	Hs.210776	ESTs	2.50	4.33
40		Al393378	Hs.164496	ESTs	1.16	2.16
	316380			ESTs	5.40	10.34
	316470	AA809902	Hs.243813		2.46	2.89
	316509	AA767310	Hs.291766	ESTs		
15	316514	AA768037	Hs.291671	ESTs	4.70	6.04
45	316519	Al929097		gb:od10c11.s1 NCI_CGAP_GCB1 Homo sapiens	4.41	9.70
	316609	AW292520	Hs.122082	ESTs	1.00	2.89
	316633	Al125586	Hs.127955	ESTs	2.61	3.72
	316700	AW172316	Hs.252961	ESTs, Weakly similar to ALU1_HUMAN ALU S	3.46	4.64
	316711	Al743721	Hs.285316	ESTs, Moderately similar to ALU7_HUMAN A	4.45	6.95
50	316713	AI090671	Hs.134807	hypothetical protein FLJ12057	0.30	2.40
	316715	Al440266	Hs.170673	ESTs, Weakly similar to AF126780 1 retin	0.20	1.45
	316787	AW369770	Hs.130351	ESTs	4.05	5.53
	316809	AA825839	Hs.202238	ESTs	2.25	3.82
	316811	AA922060	Hs.132471	ESTs	1.00	1.32
55	316812	AW135045	Hs.232001	ESTs	3.28	4.70
55				ESTs	0.67	1.81
	316818	AA827176	Hs.124316		3.53	6.00
	316824	AA837416	Hs.124299	ESTS		1,56
	316827	Al380429	Hs.172445	ESTs	0.72	
60	316891	AW298119	Hs.202536	ESTs	1.64	2.97
60	316951	AA134365	Hs.57548	ESTs ·	1.45	1.08
	316970	AA860172	Hs.132406	ESTs	1.00	1,53
	316971	AA860212	Hs.170991	ESTs	1.08	1.96
	316990	AA861611	Hs.130643	ESTs	5.44	10.04
	317001	Al627917	Hs.233694	hypothetical protein FLJ11350	3.56	4.37
65	317008	AW051597	Hs.143707	ESTs	0.69	1.37
	317051	AA873253	Hs.126233	ESTs	6.18	12.72
	317128	AA971374	Hs.125674	ESTs	1.87	2.66
	317129	H12523	Hs.78521	Homo sapiens cDNA: FLJ21193 fis, clone C	4.12	6.64
	317137	AW341567	Hs.125710	ESTs	2.82	5.12
70		Al348258	Hs.153412	ESTs	1.98	2.51
70	317196				1.86	2.83
	317212	A1866468	Hs.148294	ESTs		1.57
	317223	AW297920	Hs.130054	ESTs	0.83	
	317224	D56760	Hs.93029	sparc/osteonectin, cwcv and kazal-like d	2.74	0.86
75	317266	AA906289	Hs.203614	ESTs	1.00	1.00
75	317282	Al807444	Hs.176101	ESTs	2.60	4.21
	317285	AW370882	Hs.222080	ESTs	1.96	3.49
	317302	AA908709	Hs.135564	ESTs	7.16	8.32
	317304	AW449899	Hs.130184	ESTs	1.38	2.28
	317320	AA927151	Hs.130452	ESTs	3.58	8.13
80	317413	AW341701	Hs.126622	ESTs	2.08	4.92
	317417	AA918420	Hs.145378	ESTs	3.06	4.79
	317452	AA972965	Hs.135568	ESTs	4.22	9.21
	317519	AI859695	Hs.126860	ESTs	1.88	4.15
	317521	AI824338	Hs.126891	ESTs	3.12	4.55
85		A1024330 A1916517	Hs.126865	ESTs	2.73	3.34
	317529	MIS LUST I	1 13. 1 20000		20	5.61

	W	O 02/086	5443			
	317570	Al733361	Hs.127122	ESTs	1.00	2.43
	317571	AA938663	Hs.199828	ESTs	5.20	11.95
	317598	AW206035	Hs.192123	ESTs	0.33	1.56
	317627	Al346110	Hs.132553	ESTs	1.50	1.39
5	317650	Al733310	Hs.127346	ESTs	0.48	1.46
	317659	AA961216	Hs.127785	ESTs	4.18	7.14
	317674	AW294909	Hs.132208	ESTs	2.92	3.20
	317686	AA969051	Hs.187319	ESTs	1.00 5.33	1.01 9.59
10	317692 317701	Al307659	Hs.174794 Hs.128014	ESTs ESTs	1.00	1.00
10	317711	Al674774 Al733015	Hs.272189	ESTs	5.13	7.81
	317722	Al733373	Hs.128119	ESTs	2.50	6.03
	317756	AA973667	Hs.128320	ESTs	1.59	1.30
	317777	Al143525	Hs.47313	KIAA0258 gene product	1.00	2.48
15	317799	Al498273	Hs.128808	ESTs	1.78	2.11
	317803	AA983251	Hs.128899	ESTs	0.80	1.06
	317821	Al368158	Hs.70983	PTPL1-associated RhoGAP 1	0.17	0.68
	317848	Al820575	Hs.129086	Homo sapiens cDNA FLJ12007 fis, clone HE	5.30	8.16
20	317850	N29974	Hs.152982	hypothetical protein FLJ13117	1.30	2.28 5.93
20	317861	AW341064	Hs.129119	ESTs ESTs	2.18 4.48	8.20
	317865 317869	Al298794 AW295184	Hs.129130 Hs.129142	deoxyribonuclease II beta	0.44	0.99
	317881	Al827248	Hs.224398	Homo sapiens cDNA FLJ11469 fis, clone HE	4.06	2.23
	317890	AI915599	Hs.129225	ESTs	4.68	7.48
25	317899	Al952430	Hs.150614	ESTs, Weakly similar to ALU4_HUMAN ALU S	3.14	3.37
	317986	Al005163	Hs.201378	ESTs, Weakly similar to T12545 hypotheti	0.28	1.66
	318001	AW235697	Hs.130980	ESTs	5.12	9.97
	318016	AI016694	Hs.256921	ESTs	1.86	4.50
20	318023	AW243058	Hs.131155	ESTs	2.92	5.22
30	318054	AW449270	Hs.232140	ESTs ESTs	3.92 1.21	6.37 1.27
	318068	Al024540	Hs.131574 Hs.250114	ESTS	0.86	1.17
	318117 318187	Al208304 Al792585	Hs.133272	ESTs. Weakly similar to ALUC_HUMAN !!!!	5.90	6.98
	318223	A1077540	Hs.134090	ESTs	1.05	0.90
35	318240	Al085377	Hs.143610	ESTs	3.10	2.40
	318255	AI082692	Hs.134662	ESTs	0.02	1.05
	318266	AI554341	Hs.271443	ESTs	6.12	10.55
	318330	Al093840	Hs.143758	ESTs	4.98	7.90
40	318369	Al493501	Hs.170974	ESTs	2.46	5.62
40	318428	Al949409	Hs.194591	ESTs	0.77 3.54	0.45 4.92
	318458 318467	Al149783 Al151395	Hs.158438 Hs.144834	ESTs ESTs	4.56	5.62
	318473	A1939339	Hs.146883	ESTs	2.08	4.05
	318476	Al693927	Hs.265165	ESTs	4.22	8.07
45	318487	Al167877	Hs.143716	ESTs	1.47	1.05
	318488	Al217431	Hs.144709	ESTs	1.40	4.14
	318491	T26477	Hs.22883	ESTs, Weakly similar to ALUS_HUMAN ALU S	1.84	1.90 5.20
	318499	T25451	Un 12254	gb:PTHI188 HTCDL1 Homo sapiens cDNA 5'/3 ESTs	2.58 3.26	5.20 4.18
50	318537 318538	AA377908 N28625	Hs.13254 Hs.74034	Homo sapiens clone 24651 mRNA sequence	0.35	1.07
50	318547	R20578	Hs.90431	ESTs	3.22	4.60
	318552	R18364	Hs.90363	ESTs	4.87	9.06
	318575	R55102	Hs.107761	ESTs, Weakly similar to unnamed protein	1.91	1.98
	318580	T34571	Hs.49007	poly(A) polymerase alpha	2.74	6.22
55	318587	AA779704	Hs.168830	Homo sapiens cDNA FLJ12136 fis, clone MA	0.85	2.46
	318596	Al470235	Hs.172698	EST	4.88	4.93
	318622	T48325	Hs.237658	apolipoprotein A-II	4.80 0.39	12.51 1.04
	318629 318637	N25163 AA243539	Hs.8861 Hs.9196	ESTs hypothetical protein	1.72	3.57
60	318648	T77141	Hs.184411	albumin	6.27	9.91
00	318650	AA393302	Hs.176626	hypothetical protein EDAG-1	3.96	8.84
	318671	AA188823	Hs.299254	Homo sapiens cDNA: FLJ23597 fis, clone L	1.53	0.81
	318679	T58115	Hs.10336	ESTs	1.00	2.19
~ ~	318711	Al936475	Hs.101282	Homo sapiens cDNA: FLJ21238 fis, clone C	3.05	3.18
65	318725	Al962487	Hs.242990	ESTs	1.08	2.46
	318728	Z30201	Hs.291289	ESTs, Weakly similar to ALU1_HUMAN ALU S	0.77	1.33
	318740	NM_002543		oxidised low density lipoprotein (lectin	0.25	1.49 3.01
	318776	R24963	Hs.23766	ESTs proliferation-associated 2G4, 38kD	1.00 2.70	3.86
70	318784 318816	H00148 F07873	Hs.5181 Hs.21273	ESTs	3.90	7.13
70	318865	H10818	113.21270	gb:ym04f10.r1 Soares infant brain 1NIB H	2.25	3.56
	318879	R56332	Hs.18268	adenylate kinase 5	1.78	5.00
	318881	Z43224	Hs.124952	ESTs	4.79	14.13
7.5	318894	F08138	Hs.7387	DKFZP564B116 protein	5.31	7.00
75	318901	AW368520	Hs.301528	L-kynurenine/alpha-aminoadipate aminotra	1.03	0.91
	318925	Z43577	Hs.21470	ESTs	2.23	3.80
	318936	AI219221	Hs.308298	ESTs	1.86	7.16 9.79
	318982	Z44140	Hs.269622	ESTs ESTs, Highly similar to MAON_HUMAN NADP-	5.84 1.00	1.00
80	318986 319041	Z44186 Z44720	Hs.169161 Hs.98365	ESTs, Highly similar to MACN_HOWAN NADP- ESTs, Weakly similar to weak similarity	3.38	6.11
00	319103	H05896	Hs.4993	KIAA1313 protein	1.00	1.07
	319170	R13678	Hs.285306	putative selenocysteine lyase	3.79	5.03
	319196	F07953	Hs.16085	putative G-protein coupled receptor	1.00	2.98
0.7	319199	F07361	Hs.13306	ESTs	3.53	5.66
85	319242	F11472	Hs.12839	ESTs	5.87	7.26

	W	O 02/086	5443			
	319263	T65331	Hs.81360	Homo sapiens cDNA: FLJ21927 fis, clone H	1.81	1.57
	319267	F11802	Hs.6818	ESTs	1.10	4.72
	319270	R13474	Hs.290263	ESTs	4.80	10.40
_	319279	T65094	Hs.12677	CGI-147 protein	1.50	2.11
5	319282	AA461358	Hs.12876	ESTs	1.00	1.00
	319289	W07304	Hs.79059	transforming growth factor, beta recepto	0.18	0.68
	319291	W86578	Hs.285243	hypothetical protein FLJ22029	0.26	0.62
	319293	F12119	Hs.12583	ESTs	3.13	4.50
10	319312	Z45481	11- 225022	gb:HSC2QE041 normalized infant brain cDN	1.10 0.16	1.00 0.73
10	319370 319391	H54254 R06304	Hs.325823 Hs.13911	ESTs, Moderately similar to ALU5_HUMAN A ESTs	1.26	2.43
	319396	H67130	Hs.301743	ESTs	0.70	0.76
	319398	AA359754	Hs.191196	ESTs	2.45	3.59
	319407	R05329		gb;ye91b04.r1 Soares fetal liver spleen	2.00	3.54
15	319425	T82930		gb:yd39f07.r1 Soares fetal liver spleen	4.28	8.81
	319433	R06050	Hs.191198	ESTs	6.15	14.13
	319437	AA282420	Hs.111991	ESTs, Weakly similar to Y48A5A.1 [C.eleg	3.26	5.68
	319466	AI809937	Hs.116417	ESTs	1.76	5.65
20	319471	R06546	Hs.19717	ESTs	4.29 1.00	4.84
20	319480	R06933	Hs.184221	ESTs	2.81	1.00 4.88
	319484 319486	T91772 Al382429	Hs.250799	gb:yd52a10.s1 Soares fetal liver spleen ESTs	2.08	2.82
	319508	T99898	Hs.270104	ESTs, Moderately similar to ALU8_HUMAN A	2.80	4.39
	319523	T69499	Hs.191184	ESTs	1.55	3.25
25	319545	R83716	Hs.14355	Homo sapiens cDNA FLJ13207 fis, clone NT	1.65	1.19
	319546	R09692		gb:yf23b12.r1 Soares fetal liver spleen	5.11	8.54
	319552	AA096106	Hs.20403	ESTs	1.89	3.36
	319582	T82998	Hs.250154	hypothetical protein FLJ12973	3.48	4.82
20	319586	D78808	Hs.283683	chromosome 8 open reading frame 4	0.26	0.82
30	319604	R11679	Hs.297753	vimentin	1.68	3.41
	319609	AW247514	Hs.12293	hypothetical protein FLJ21103 gb:ym19c10.r1 Soares infant brain 1NIB H	3.06 2.76	4.24 4.24
	319611 319653	H14957 AA770183	Hs.173515	uncharacterized hypothalamus protein HTO	2.70	3.55
	319657	R19897	Hs.106604	ESTs	5.32	7.68
35	319658	R13432	Hs.167481	syntrophin, gamma 1	3.35	5.00
	319661	H08035	Hs.21398	ESTs, Moderately similar to A Chain A, H	5.18	12.55
	319662	H06382	Hs.21400	ESTs	1.58	1.56
	319708	R15372	Hs.22664	ESTs	1.00	1.22
40	319742	T77668	Hs.21162	ESTs	2.48	3.13
40	319748	R18178	Hs.295866	Homo sapiens mRNA; cDNA DKFZp434N1923 (f	3.02	4.85
	319772	R76633	Hs.22646	ESTs	4.36	11.61
	319788	AA321932 R92857	Hs.117414 Hs.271350	KIAA1320 protein likely ortholog of mouse polydom	2.56 4.63	3.68 6.56
	319805 319812	N74880	Hs.264330	N-acylsphingosine amidohydrolase (acid c	0.63	1.32
45	319834	AA071267	110.204000	gb:zm61g01.r1 Stratagene fibroblast (937	0.30	0.94
	319878	T78517	Hs.13941	ESTs	3.99	6.44
	319882	AA258981	Hs.291392	ESTs ·	5.09	7.36
	319912	T77559	Hs.94109	Homo sapiens cDNA FLJ13634 fis, clone PL	3.24	3.21
50	319935	H79460	Hs.271722	ESTs, Weakly similar to ALU1_HUMAN ALU S	4.40	9.42
50	319944	T79248	Hs.133510	ESTS	3.31 2.90	5.39 4.95
	319947 319962	AA160967 H06350	Hs.14479 Hs.135056	Homo sapiens cDNA FLJ14199 fis, clone NT Human DNA sequence from clone RP5-850E9	1.81	1.57
	320007	AA336314	FIS. 100000	gb:EST40943 Endometrial tumor Homo saple	3.42	6.29
	320018	T83263		gb:yd40h09.r1 Soares fetal liver spleen	2.77	5.14
55	320030	H63789	Hs.296288	ESTs, Weakly similar to KIAA0638 protein	4.10	6.69
	320032	Al699772	Hs.292664	ESTs, Weakly similar to A46010 X-linked	3.27	3.27
	320040	AA233671	Hs.87164	hypothetical protein FLJ14001	1.81	1.64
	320047	T86564	Hs.302256	EST	3.38	7.36
60	320063	AA074108	Hs.120844	FOXJ2 forkhead factor	5.90	16.73
60	320096	H58138	Hs.117915	ESTs	2.08	4.47
	320099 320112	AW411307 T92107	Hs.114311 Hs.188489	CDC45 (cell division cycle 45, S.cerevis ESTs	1.00 2.27	1.00 2.06
	320112	H94179	Hs.119023	SMC2 (structural maintenance of chromoso	1.00	1.00
	320188	AW419200	Hs.172318	ESTs	1.26	1.00
65	320193	AA831259	Hs.17132	ESTs	2.58	6.23
	320195	R62203	Hs.24321	Homo sapiens cDNA FLJ12028 fis, clone HE	2.85	4.53
	320199	R78659	Hs.29792	ESTs	0.40	0.94
	320203	AL049227	Hs.124776	Homo sapiens mRNA; cDNA DKFZp564N1116 (f	0.84	1.18
70 .	320219	AA327564	Hs.127011	tubulointerstitial nephritis antigen	1.00	1.17
70	320220	AF054910	Hs.127111	tektin 2 (testicular)	0.18	1.09
	320225	AF058989	Hs.128231	G antigen, family B, 1 (prostate associa ESTs	5.26 1.59	13.75 1.93
	320231	H03139	Hs.24683	G protein-coupled receptor 65	1.38	4.56
	320260 320267	NM_003608 AL049337	Hs.131924 Hs.132571	Homo sapiens mRNA; cDNA DKFZp564P016 (fr	1.00	1.92
75	320268	H06019	Hs.151293	Homo sapiens cDNA FLJ10664 fis, clone NT	5.58	5.70
-	320322	AF077374	Hs.139322	small proline-rich protein 3	1.41	1.01
	320325	Al167978	Hs.139851	caveolin 2	0.05	0.67
	320330	AF026004	Hs.141660	chloride channel 2	2.17	1.26
90	320339	H10807	Hs.281434	Homo sapiens cDNA FLJ14028 fis, clone HE	1.81	2.32
80	320388	H16065	Hs.31286	ESTs	1.00	3.22
	320402	R22291	Hs.23368	Homo sapiens clone FLC0578 PRO2852 mRNA,	1.41 2.31	1.36 3.61
	320413 320432	AA203711 R62786	Hs.173269 Hs.124136	ESTs ESTs	11.25	20.78
_	320436	AA253352	Hs.293663	ESTs	2.22	3.49
85	320438	W24548	Hs.5669	ESTs	3.53	8.14

	W	O 02/08	6443			
	320448	Al240233	Hs.80887	v-yes-1 Yamaguchi sarcoma viral related	1.42	3.46
	320451	R26944	Hs.180777	Homo sapiens mRNA; cDNA DKFZp564M0264 (f	0.87	0.81
	320484	AA094436	Hs.296267	follistatin-like 1	0.65	1.18
_	320499	R32555	Hs.24321	Homo sapiens cDNA FLJ12028 fis, clone HE	3.44	7.15
5	320514	AB007978	Hs.158278	KIAA0509 protein	6.44	13.62
	320521	N31464	Hs.24743	hypothetical protein FLJ20171	1.48	1.04
	320526	AW374205	Hs.111314	ESTs	3.66	7.87
	320527	R34672	Hs.324522	ESTs	3.16	5.63
10	320536	AA331732	Hs.137224	ESTs	2.83 1.28	5.83 1.00
10	320556	AF054177 AF056209	Hs.14570 Hs.159396	hypothetical protein FLJ22530 peptidylglycine alpha-amidating monooxyg	1.22	0.81
	320564 320587	Z44524	Hs.167456	Homo sapiens mRNA full length insert cDN	1.84	2.44
	320635	R54159	Hs.80506	small nuclear ribonucleoprotein polypept	1.00	6.25
	320639	AA243258	Hs.7395	hypothetical protein FLJ23182	2.60	2.30
15	320648	N48521	Hs.26549	Homo sapiens mRNA for KIAA1708 protein,	1.00	1.53
	320651	AA489268	Hs.111334	ferritin, light polypeptide	0.14	0.79
	320664	Al904216	Hs.91251	hypothetical protein FLJ11198	5.02	8.84
	320676	AA132650	Hs.300511	ESTs	3.63	5.37
20	320683	R59291	Hs.26638	ESTs, Weakly similar to unnamed protein	0.37	1.31 1.02
20	320689	AA334609	Hs.171929	ESTs, Weakly similar to A54849 collagen	1.27 3.53	4.60
	320696 320714	AW135016 Al445591	Hs.172780	ESTs gb:yq04a10.r1 Soares fetal liver spleen	1.06	0.85
	320727	U96044	Hs.181125	immunoglobulin lambda locus	1.35	1.49
	320771	Al793266	Hs.117176	poly(A)-binding protein, nuclear 1	0.04	0.82
25	320794	AA281993	Hs.91226	ESTs	2.96	4.33
	320822	AF100780	Hs.194679	WNT1 inducible signaling pathway protein	0.10	0.79
	320824	AF120274	Hs.194689	artemin	1.16	1.11
	320830	AJ132445	Hs.266416	claudin 14	1.06	1.75
20	320843	AA317372	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr	1.36	1.47
30	320849	D60031	Hs.34771	ESTs	5.30 1.00	7.49 1.00
	320853	Al473796	Hs.135904 Hs.271580	ESTs uroplakin 1B	5.90	2.55
	320896 320921	AB002155 R94038	Hs.199538	inhibin, beta C	2.20	1.17
	320927	Al205786	Hs.213923	ESTs	0.18	1.46
35	320957	AJ878933	Hs.92023	core histone macroH2A2.2	1.67	2.18
	320997	H22544		gb:yn69f11.r1 Soares adult brain N2b5HB5	3.26	3.62
	321045	W88483	Hs.293650	ESTs	2.25	4.55
	321046	H27794	Hs.269055	ESTs	2.69	4.25
40	321052	AW372884	Hs.240770	nuclear cap binding protein subunit 2, 2	2.14	2.56
40	321059	Al092824	Hs.126465	ESTs	1.69 2.76	0.53 5.20
	321062 321067	R87955 AF131782	Hs.241411 Hs.241438	Homo sapiens mRNA full length insert cDN Homo sapiens clone 24941 mRNA sequence	4.79	7.41
	321102	AA018306	113.241400	gb:ze40d08.r1 Soares retina N2b4HR Homo	1.79	4.27
	321130	H43750	Hs.125494	ESTs	1.00	3.14
45	321142	Al817933	Hs.298351	ASPL protein	8.73	15.36
	321155	AA336635	Hs.99598	hypothetical protein MGC5338	3.04	5.03
	321158	AA700289		gb:yu76f11.r1 Soares fetal liver spleen	4.62	8.39
	321170	N53742	Hs.172982	ESTs	2.21	4.46
50	321199	AW385512	11- 006460	gb:yy56d10.s1 Soares_multiple_sclerosis_	5.69 4.00	8.01 7.32
50	321206 321225	H54178 AL080073	Hs.226469 Hs.251414	Homo sapiens cDNA FLJ12417 fis, clone MA Homo sapiens mRNA; cDNA DKFZp564B1462 (f	4.17	4.63
	321236	AW371941	Hs.18192	Ser/Arg-related nuclear matrix protein (1.00	1.00
	321244	AF068654	710.10702	gb:Homo sapiens isolate AN.1 immunoglobu	2.18	9.13
	321270	R83560		gb:yv76c06.s1 Soares fetal liver spleen	3.80	5.26
55	321317	AI937060	Hs.6298	KIAA1151 protein	1.81	1.65
	321318	AB033041	Hs.137507	KiAA1215 protein	1.00	1.00
	321325	AB033100	Hs.300646	KIAA protein (similar to mouse paladin)	0.44	0.93
	321342	AA127984	Hs.222024	transcription factor BMAL2	4.94 3.10	4.93 4.66
60	321356	R93443	Hs.271770	ESTs ESTs	2.28	2.54
00	321418 321420	Al739161 Al368667	Hs.161075 Hs.132743	ESTS	1.13	0.97
	321430	U05890	1101102110	gb:H.sapiens (DIG3) mRNA for immunoglobu	2.42	3.35
	321453	N50080	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H	1.60	3.11
	321467	X13075		gb:Human 2a12 mRNA for kappa-immunoglobu	0.42	0.72
65	321468	AA514198	Hs.38540	ESTs	2.46	6.50
	321491	H70665	Hs.292549	ESTs	1.00	1.25
	321498	AW295517	Hs.255436	ESTs	3.19	6.24 3.86
	321504	W02356	Hs.268980 Hs.255748	ESTs ESTs	2.28 2.14	3.94
70	321510 321513	AA703650 H84972	Hs.108551	ESTs	2.78	5.37
70	321516	Al382803	Hs.159235	ESTs	3.06	7.19
	321565	Al525773	Hs.266514	hypothetical protein FLJ11342	4.89	7.82
	321577	H84260		gb:ys90g04.r1 Soares retina N2b5HR Homo	1.00	1.73
75	321581	AA019964	Hs.28803	ESTs	4.88	6.73
75	321582	AA143755	Hs.21858	trinucleotide repeat containing 3	1.00	2.08
	321587	H95531	11- 00000	gb:ys76e02.r1 Soares retina N2b4HR Homo	2.26	4.52
	321626	AA295430	Hs.96322	hypothetical protein FLJ23560	1.95	3.83
	321628	H87064 AW085917	Hs.161051 Hs.247084	ESTs, Moderately similar to ALU6_HUMAN A ESTs	0.47 1.52	1.02 1.38
80	321642 321669	H95404	Hs.294110	ESTS	2.17	2.45
00	321687	AA625149	. 10.20-7110	gb:af70c12.r1 Soares_NhHMPu_S1 Homo sapi	4.31	6.95
	321688	H97646	Hs.123158	Homo sapiens cDNA FLJ12830 fis, clone NT	2.82	3.28
	321693	AA700017	Hs.173737	ras-related C3 botulinum toxin substrate	0.51	1.08
0.5	321700	N55160	Hs.167260	ESTs	4.57	7.46
85	321701	AW390923	Hs.42568	ESTs	1.00	1.00

	W	O 02/08	6443			
	321709	N25847	Hs.108923	RAB38, member RAS oncogene family	1.00	1.00
	321710	N35682	Hs.259743	ESTs	2.97	5.26
	321775	Al694875	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca	1.00	1.00
_	321777	A1637993	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca	1.68	0.45
5	321779	N42729	Hs.163835	ESTs tumor endothelial marker 8	0.90 2.69	0.90 3.89
	321829 321846	D81993 AA281594	Hs.8966 Hs.87902	ESTs	5.11	7.64
	321879	AL109670	Hs.302809	ESTs	6.49	9.58
10	321883	AA426494	Hs.46901	KIAA1462 protein	0.28	0.95
10	321899	N55158	Hs.29468	ESTs	0.39	0.95
	321911	AF026944	Hs.293797	ESTs	6.20 4.62	10.76 10.51
	321949 321955	R49202 Al651866	Hs.181694 Hs.195689	EST ESTs	2.89	5.47
	321956	AL110177	Hs.132882	ESTs	0.32	1.25
15	321987	AL133612	Hs.272759	KIAA1457 protein	1.00	1.83
	321991	AL133627	Hs.158923	Homo sapiens mRNA; cDNA DKFZp434K0722 (f	4.00	6.47
	322002	AA328801	Hs.84522	ESTs	2.10	3.48
	322035	AL137517	Hs.306201	hypothetical protein DKFZp564O1278	1.00	1.90
20	322044	AW340926 N92197	Hs.154679	gb:xy51b10.x1 NCI_CGAP_Lu34.1 Homo sapie synaptotagmin 1	3.20 1.55	9.67 1.07
20	322057 322060	Al341937	H5.104075	gb:qt10e03.x1 NCI_CGAP_GC4 Homo sapiens	4.59	7.68
	322070	U80769	Hs.210322	Homo sapiens mRNA for KIAA1766 protein,	2.78	4.52
	322083	AF074982	Hs.226031	ESTs, Highly similar to KIAA0535 protein	3.10	5.52
25	322091	Ai819863	Hs.106243	ESTs	1.59	1.75
25	322125	R93901	11- 447707	gb:yq16c12.r1 Soares fetal liver spleen	2.06 10.12	5.27 16.49
	322130 322147	R98978 AF085919	Hs.117767 Hs.114176	ESTs ESTs	0.94	0.64
	322166	AF085958	110.114110	gb:yr88b03.r1 Soares fetal liver spleen	4.09	6.67
	322173	H52567		gb:yt85d04.r1 Soares_pineal_gland_N3HPG	3.46	4.85
30	322178	H56535		gb:yt88g03.r1 Soares_pineal_gland_N3HPG	0.44	2.54
	322179	H92891		gb:yl94c02.s1 Soares_pineal_gland_N3HPG	4.52	7.50
	322186	H67346	Hs.269187	ESTs ESTs	0.15 2.20	0.98 5.04
	322196 322212	W87895 AF087995	Hs.211516 Hs.134877	ESTS	3.42	4.84
35	322221	Al890619	Hs.179662	nucleosome assembly protein 1-like 1	0.82	2.14
	322277	Al640193	Hs.226389	ESTs	3.62	3.98
	322278	AF086283		gb:zd46f01.r1 Soares_fetal_heart_NbHH19W	1.00	1.00
	322284	Al792140	Hs.49265	ESTs	0.66 0.71	2.76 0.70
40	322288 322320	AL037273 AF086419	Hs.7886	pellino (Drosophila) homolog 1 gb:zd78d03,r1 Soares_fetal_heart_NbHH19W	2.02	2.76
70	322326	AA308526	Hs.76152	decorin	2.92	4.44
	322339	W17348		gb:zb18c07.x5 Soares_fetal_lung_NbHL19W	8.50	11.56
	322366	AW404274	Hs.122492	hypothetical protein	0.61	1.34
15	322372	W25624	Hs.153943	ESTs	7.37	12.07 10.50
45	322374 322378	Al394663 AF064819	Hs.122116 Hs.201877	ESTs, Moderately similar to Osf2 [M.musc DESC1 protein	4.78 1.00	1.00
	322376	Al815730	Hs.247474	hypothetical protein FLJ21032	7.09	8.49
	322416	AA223183	Hs.298442	adaptor-related protein complex 3, mu 1	3.20	5.80
~^	322419	AA248987	Hs.14084	ring finger protein 7	1.64	1.57
50	322425	W37943	Hs.34892	KIAA1323 protein	0.83	1,00
	322431	AA069222	Hs.141892	ESTs ESTs	3.96 5.18	5.22 12.67
	322450 322465	AA040131 AA137152	Hs.25144 Hs.286049	phosphoserine aminotransferase	3.41	2.23
	322467	AF116826	Hs.180340	putative protein-tyrosine kinase	1.00	1.30
55	322473	AA744286	Hs.266935	tRNA selenocysteine associated protein	1.75	2.03
	322509	T52172	Hs.302213	ESTs	1.00	2.27
	322523	W80398	Hs.193197	ESTs	2.75 1.25	5.49 1.27
	322527 322560	AF147359 Al916847	Hs.270947	gb:Homo sapiens full length insert cDNA ESTs	4.57	8.81
60	322566	W87285	Hs.269587	ESTs	1.00	1.42
	322585	AA837622		gb:zh69c01.r1 Soares_fetal_liver_spleen_	4.18	6.94
	322635	AA679084		gb:zh90h08.r1 Soares_fetal_liver_spleen_	2.40	4.85
	322641	AA007352	Hs.256042	ESTs	2.94 0.48	4.64 0.38
65	322653 322664	Al828854 AA011522	Hs.258538	striatin, calmodulin-binding protein gb:zi03g07.r1 Soares_fetal_liver_spleen_	1.92	2.18
05	322687	Al110759		gb:AF074666 Human fetal liver cDNA libra	4.14	6.75
	322692	AA018117	Hs.60843	potassium voltage-gated channel, shaker-	3.50	5.00
	322694	Al110872	Hs.279812	PRO0327 protein	1.80	1.72
70	322708	AF113674	Hs.283773	clone FLB1727	1.00	3.43
70	322712	AA021328	Hs.23607	hypothetical protein FLJ11109 Homo sapiens cDNA FLJ12280 fis, clone MA	3.28 1.63	3.86 1.53
	322766 322770	AW068805 AA045796	Hs.288467 Hs.122682	ESTs	1.53	1.06
	322794	Al608591	Hs.38991	S100 calcium-binding protein A2	12.06	1.94
	322810	Al962276	Hs.127444	ESTs	4.09	6.90
75	322818	AW043782	Hs.293616	ESTs	1.20	1.63
	322820	AI377755	Hs.120695	ESTs	0.21 2.04	1.93 1.63
	322872 322882	AA827228 AW248508	Hs.126943 Hs.279727	ESTs Homo sapiens cDNA FLJ14035 fis, clone HE	5.26	1.03
	322887	A1986306	Hs.86149	phosphoinositol 3-phosphate-binding prot	2.80	2.24
80	322913	AI733737	Hs.68837	ESTs	2.38	6.61
	322926	AI825940	Hs.211192	ESTs	4.02	5.79
	322929	Al365585	Hs.146246	ESTs	0.30	1.14 1.13
	322968 322971	Al905228 C15953	Hs.83484 Hs.212760	SRY (sex determining region Y)-box 4 hypothetical protein FLJ13649	2.06 1.18	2.00
85	322981	AA493252	Hs.159577	ESTs	2.28	2.61

	W	O 02/08	6443			
	322988	C18727	Hs.171941	ESTs	0.39	2.00
	323003	A1733859	Hs.149089	ESTs	3.28	1.00
	323013	AA134042	Hs.191451	ESTs	3.38	5.68
_	323025	AL157565	Hs.315369	Homo sapiens cDNA: FLJ23075 fis, clone L	0.06	1.10
5	323032	AW244073	Hs.145946	ESTs	10.18	21.27
	323052	R21124	Hs.85573 Hs.49359	Homo sapiens DC29 mRNA, complete cds	1.46 3.08	1.90 5.64
	323064 323098	AL119341 Al700025	Hs.49359 Hs.270471	Homo sapiens mRNA; cDNA DKFZp547E052 (fr ESTs	2.31	4.49
	323102	AL119913	Hs.163615	ESTs	5.38	11.64
10	323155	AL135041		gb:DKFZp762K2310_r1 762 (synonym: hmel2)	2.38	5.56
	323176	AW071648	Hs.82101	pleckstrin homology-like domain, family	1.06	1.41
	323191	AA195600	Hs.301570	ESTs	0.73	1.24
	323225	AA205654	Hs.24790	KIAA1573 protein	5.25	11.95
15	323232	AA148722	Hs.224680	ESTs	0.45	1.35 1.83
15	323266 323281	AW003362 Al697556	Hs.243886 Hs.292659	nuclear autoantigenic sperm protein (his ESTs	1.71 1.24	3.21
	323283	AA256014	Hs.86682	Homo sapiens cDNA: FLJ21578 fis, clone C	12.68	15.05
	323314	AA226310	Hs.191501	ESTs	4.42	9.61
	323316	AL134620	Hs.280175	ESTs	2.98	5.93
20	323334	Al336501	Hs.77273	ras homolog gene family, member A	1.98	3.30
	323338	R74219	Hs.23348	S-phase kinase-associated protein 2 (p45	1.62	1.00
	323348	AA233056	Hs.191518	ESTs	1.00 1.43	1.07 1.68
	323351	AA704103 AA234172	Hs.24049 Hs.137418	ESTs ESTs	0.34	1.18
25	323359 323360	AA716061	Hs.161719	ESTs	3.01	3.71
20	323405	AW139550	Hs.115173	ESTs	1.90	8.81
	323420	A1672386	Hs.263780	ESTs	0.29	1.01
	323434	AW081455	Hs.120219	ESTs	2.27	1.92
20	323445	AA253103	Hs.135569	ESTs, Weakly similar to NEUROD [H.sapien	0.43	0.80
30	323449	AA282865	Hs.284153	Fanconi anemia, complementation group A	3.19	3.85
	323492	H00978	Hs.20887	hypothetical protein FLJ10392 ESTs	2.70 2.04	3.20 3.31
	323501 323505	AA182461 Al652287	Hs.84520	gb:EST382593 MAGE resequences, MAGK Homo2		3.08
	323515	AA282274	Hs.256083	ESTs	2.69	3.40
35	323541	Al185116	Hs.104613	RP42 homolog	1.20	1.09
	323545	A!814405	Hs.224569	ESTs	1.25	1.55
	323635	R63117	Hs.9691	Homo sapiens cDNA: FLJ23249 fis, clone C	0.27	0.72
	323675	AA984759	Hs.272168	tumor differentially expressed 1	3.70 3.33	5.80 5.10
40	323678 323691	AL042121 AA317561	Hs.20880 Hs.145599	ESTs ESTs	1.00	1.00
-10	323693	AW297758	Hs.249721	ESTs	2.01	1.54
	323746	AW298611	Hs.12808	MARK	4.11	5.53
	323774	AA329806	Hs.321056	Homo sapiens mRNA; cDNA DKFZp586F1322 (f	2.06	3.70
15	323856	AA355264	Hs.267604	hypothetical protein FLJ10450	3.42	8.13
45	323857	T18988	Hs.293668	ESTs	5.97 3.17	12.51 4.52
	323870 323876	AA341774 AL042492	Hs.129212 Hs.147313	ESTs ESTs	0.36	1.00
	323885	AA344308	Hs.128427	Homo sapiens BAC clone RP11-335J18 from	2.31	3.33
	323911	AL043212	Hs.92550	ESTs	4.38	5.41
50	323919	AA862973	Hs.220704	ESTs	5.80	10.20
	323972	Al869964	Hs.182906	ESTs	3.10	5.14
	324005	AA610011	Hs.208021	ESTs	5.34 1.00	10.07 5.03
	324036 324055	Al472078 AA528794	Hs.303662 Hs.128644	ESTs ESTs	0.86	1.00
55	324063	AW292740	Hs.272813	dual oxidase 1	0.45	0.91
-	324072	AA381829	1,0,2,20,0	gb:EST94855 Activated T-cells I Homo sap	2.82	5.12
	324092	AW269931	Hs.202473	Homo sapiens cDNA: FLJ22278 fis, clone H	2.40	2.52
	324095	AW377983	Hs.298140	Homo sapiens cDNA: FLJ22502 fis, clone H	1.32	4.30
C O	324129	Al381918	Hs.285833	Homo sapiens cDNA: FLJ22135 fis, clone H	1.40	1.77
60	324132	AW504860	Hs.288836	hypothetical protein FLJ12673	4.24 6.96	6.21 10.69
	324214	AA412395	Hs.225740	ESTs Homo sapiens cDNA: FLJ22141 fis, clone H	0.80	0.53
	324227 324266	AA295552 AL047634	Hs.28631 Hs.231913	ESTs	2.42	4.05
	324275	AA429088	Hs.98523	ESTs	3.62	5.38
65	324281	AL048026	Hs.124675	ESTs, Weakly similar to T14742 hypotheti	0.14	0.70
	324290	AA432032	Hs.304420	ESTs	3.71	4.34
	324303	AL118754		gb:DKFZp761P1910_r1 761 (synonym: hamy2)	0.95	0.91
	324312	Al198841	Hs.128173	ESTs	4.06 5.88	5.91 8.25
70	324325 324338	AL138153 AL138357	Hs.300410 Hs.145078	ESTs regulator of differentiation (in S. pomb	0.87	1.25
, 0	324341	AW197734	Hs.99807	ESTs, Weakly similar to unnamed protein	1.28	1.00
	324343	AW452016	Hs.293232	ESTs	2.54	3.46
	324371	AA452305	Hs.270319	ESTs	5.85	8.36
75	324382	AW502749	Hs.24724	MFH-amplified sequences with leucine-ric	0.76	1.64
75	324384	AA453396	Hs.127656	KIAA1349 protein	2.88 1.81	5.69 1.99
	324385 324388	F28212 Al924963	Hs.284247 Hs.306206	KIAA1491 protein hypothetical protein FLJ11215	1.00	1.00
	324432	AA464510	Hs.152812	ESTs	2.73	2.17
00	324497	AW152624	Hs.136340	ESTs, Weakly similar to unnamed protein	0.71	1.90
80	324510	AI148353	Hs.287425	Homo sapiens cDNA FLJ11569 fis, clone HE	1.00	1.00
	324580	AA492588	Un 120020	gb:ng99c08.s1 NCI_CGAP_Thy1 Homo sapiens ESTs, Weakly similar to ALU1_HUMAN ALU S	2.18 5.96	3.50 11.36
	324582 324633	AA506935 AA572994	Hs.132036 Hs.325489	ESTs, Weakly Slimiar to ALO I_HOWAN ALO S	2.92	4.22
6.5	324640	AW295832	Hs.134798	ESTs, Moderately similar to TTL MOUSE TU	5.48	11.74
85	324675	AW014734	Hs.157969	ESTs	0.39	0.73

		0 02/00	0443			
	324699	AW504732	Hs.21275	hypothetical protein FLJ11011	0.93	0.93
	324747	AA603532	Hs.130807	ESTs	1.57	1.81
				ESTs	1.55	1.34
	324748	AA657457	Hs.292385			
-	324801	Al819924	Hs.14553	sterol O-acyltransferase (acyl-Coenzyme	1.00	6.56
5	324804	Al692552		gb:wd73f12.x1 NCI_CGAP_Lu24 Homo sapiens	1.00	7.53
	324828	AA843926	Hs.124434	ESTs	2.00	3.25
	324855	AW152305	Hs.122364	ESTs	2.74	3.43
		Al541214	Hs.46320	Small proline-rich protein SPRK [human,	1.07	0.95
	324866					1.21
10	324871	AW297755	Hs.271923	Homo sapiens cDNA: FLJ22785 fis, clone K	1.68	
10	324886	AA806794	Hs.131511	ESTs	2.56	5.61
	324889	D31010		gb:HUML12147 Human fetal lung Homo sapie	2.20	4.65
	324948	AW383618	Hs.265459	ESTs, Moderately similar to ALU2_HUMAN A	5.28	7.05
	324953	Al264628	Hs.125428	ESTs	3.37	5.51
				==::	5.12	9.81
1 =	324958	AA625076	Hs.132892	protocadherin 20		
15	324988	T06997	Hs.121028	hypothetical protein FLJ10549	2.52	1.08
	325024	F13254	Hs.78672	taminin, alpha 4	5.24	10.22
	325105	H97109	Hs.105421	ESTs	1.00	1.00
	325108	AA401863	Hs.22380	ESTs	1.99	2.14
	325114	D83901	Hs.315562	ESTs	2.73	3.17
20					1.86	3.41
20	325146	Al064690	Hs.171176	ESTs		
	325149	D61117	Hs.187646	ESTs	0.42	0.93
	325187	Al653682	Hs.197812	ESTs	6.50	11.31
	325228				6.18	15.76
	325235				2.64	4.12
25	325328				2.87	4.42
20					0.29	0.33
	325340				16.56	24.29
	325367					
	325373				0.63	1.22
	325389				0.88	1.05
30	325436				5.75	14.14
-	325471				8.46	17.82
					3.32	6.42
	325498				5.51	8.28
	325557					
~ ~	325559				7.48	21.40
35	325560				4.08	6.25
	325569				4.20	5.24
	325585				1.10	1.13
					1.00	1.00
	325587				2.98	13.40
40	325597					
40	325639				0.78	0.78
	325685				0.46	0.66
	325686				0.95	1.55
	325735				4.48	9.20
					0.59	0.88
45	325739				2.42	6.61
43	325740					
	325792				7.88	9.83
	325819				4.74	7.18
	325883				2.02	2.64
	325895		•		7.78	15.98
50	325925				2.04	10.60
50					4.18	7.36
	325932					
	325941				3.66	9.03
	325969				0.61	0.80
	325971				4.88	7.42
55	326025				0.55	1.07
	326046				7.21	14.72
					3.60	5.98
	326099					1.06
	326108				1.27	
	326163			•	3.27	5.70
60	326165				0.45	1.11
	326189				0.13	0.45
	326204				5.60	9.00
	326230				7.00	12.01
					1.00	8.09
65	326274					15.35
65	326360				9.86	
	326393				0.52	0.77
	326505				1.00	1.42
	326515				1.24	5.84
	326589				9.20	13.49
70	326592				2.77	4.01
, 0					2.01	2.53
	326605					1.00
	326692				1.00	
	326693				1.00	1.31
	326720				0.19	0.65
75	326742				2.34	7.20
	326770				0.25	0.83
					3.09	4.56
	326818				2.08	3.45
	326936					J.40 4 70
00	326964	•			0.41	1.70
80	326983				2.02	3.80
	326991				1.09	1.20
	327036				1.00	8.04
					3.05	4.22
	327040					6.31
0.5	327053				3.55	
85	327075				1.59	1.40

	W O 02/080443		
	327085	2.50	12.5
	327130	5.38	8.04
	327 130	5.50	0.04
	327156	3.74	6.58
	327220	1.28	1.54
5			42.0
9	327224	6.56	12.9
	327288	2.61	5.40
	327321	2.42	3.11
		6.60	
	327332	6.62	10.58
	327361	2.69	4.41
10	327377	2.04	6.72
10			0.72
	327396	2.61	4.50
	327414	1.00	8.01
	327442	5.91	9.65
	327467	6.58	18.01
15	327473	3.79	7.48
			0.07
	327483	4.08	8.87
	327562	0,68	2.86
	327568	1.00	2.00
		0.00	2.00
20	327606	2.06	3.61
20	327611	5.90	14.26
	327642	4.06	8.74
		7.00	0.74
	327654	1.05	2.08
	327734	1.00	1.00
	327775	1.46	11.79
25		1,40	11.73
25	327796	3.47	5.65
	327840	3.26	6.64
		504	
	327940	5.84	15.58
	327984	0.36	1.50
	328004	1.87	1.42
30		0.40	0.50
30	328021	0.42	0.59
	328068	2.83	4.68
	328100	3.04	5.39
		0.04	5.55
	328101	3.54	5.20
	328113	0.72	0.91
35		E CO	5.16
55	328157	5.58	0.10
	328196	√5.76	11.13
	328197	5.98	10.58
		2.44	4.00
	328264	3.11	4.88
	328299	2.20	3.06
40	328342	1.49	1.94
-10		1.45	1.04
	328365	1.00	1.00
	328369	4.40	7.36
	328381	1.86	4.93
			7.50
4 ==	328451	5.51	7.56
45	328481	0.13	0.72
		2.71	3.97
	328500	2./ 1	
	328530	5.41	7.62
	328600	3.14	10.68
		4.56	
50	328608		8.17
50	328616	2.24	11.91
	328623	3.04	5.46
	328632	0.70	1.19
	328664	3.48	6.80
	328666	10.42	26.47
55			
33	328698	9.68	14.56
	328700	2.74	10.22
	328708	0.15	0.57
	328735	6.23	8.91
	328743	3.62	6.54
60		0.22	
00	328806		0.78
	328861	3.68	10.54
	328908	5.42	16.36
		2.02	
	328933	2.02	5.29
	328934	1.73	4.45
65	328949	3.34	5.41
		2.88	
	329005	2.00	7.26
	329011	2.52	3.72
	329033	1.00	1.03
		1.00	1.00
70	329037	5.07	8.16
70	329067	1.98	2.41
	329134	2.24	3.25
		2.24	
	329157	2.30	11.04
	329178	2.64	5.02
		6.44	1E 07
75	329192	6.41	15.27
75	329194	0.31	0.79
-	329204	1.60	3.75
		0.00	0.10
	329224	2.99	6.11
	329228	0.83	0.83
	329288	0.63	1.01
90		0.00	1.01
80	329337	1.00	1.00
	329541	0.76	1.68
		4 94	2.00
	329560	1.34	2.02
	329588	1.68	2.22
	329643	4.18	11.77
85		4.00	
Oυ	329703	1.00	1.00

	W	O 02/080	5443				
	329764				5.78	15.50	
	329816			•	2.09	5.44	
	329860				3.13	10.77	
	329993				7.83	14.21	
5	330020				5.58	13.12	
	330036				3.32	5.57	
	330052				4.31	7.97	
	330085				1.34	1.76	
	330088				4.70	12.46	
10	330093				0.44	1.06	
10	330100				3.47	4.83	
	330106				2.14	3.61	
					3.17	6.87	
	330107				5.61	11.89	
15	330120				4.50	12.74	
13	330123				1.55	7.62	
	330208						
	330263				13.10	23.38	
	330300				2.81	4.98	
00	330313				3.00	4.41	
20	330366				0.67	0.76	
	330372				4.76	11.82	
	330385	AA449749	Hs.182971	karyopherin alpha 5 (importin alpha 6)	2.14	2.15	
	330397	D14659	Hs.154387	KIAA0103 gene product	0.40	1.15	
	330468	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	1.11	0.94	
25	330472	L24203	Hs.82237	ataxia-telangiectasia group D-associated	1.67	1.17	
	330478	L38486	Hs.296049	microfibrillar-associated protein 4	0.46	1.07	
	330493	M27826	Hs.267319	endogenous retroviral protease	1.07	0.95	
	330495	M31328	Hs.71642	guanine nucleotide binding protein (G pr	0.97	0.96	
	330506	M61906	Hs.6241	phosphoinositide-3-kinase, regulatory su	0.17	3.66	
30	330512	M80563	Hs.81256	S100 calcium-binding protein A4 (calcium	0.60	1.06	
50	330537	U19765	Hs.2110	zinc finger protein 9 (a cellular retrov	2.81	2.07	
	330547	U32989	Hs.183671	tryptophan 2,3-dioxygenase	3.91	1.49	
			Hs.299867	hepatocyte nuclear factor 3, alpha	1.15	1.03	
	330551	U39840 U56244	NS.233007		2.83	4.79	
35	330568			(NONE)	2.08	1.54	
33	330599	U90437	11- 00045	gb:Human RP1 homolog mRNA, 3'UTR region	0.89	1.35	
	330601	U90916	Hs.82845	Homo sapiens cDNA: FLJ21930 fis, clone H			
	330605	X02419	Hs.77274	plasminogen activator, urokinase	1.87	1.55	
	330609	X04741	Hs.76118	ubiquitin carboxyl-terminal esterase L1	1.83	1.30	
40	330617	X53587	Hs.85266	integrin, beta 4	1.54	1.15	
40	330630	X78669	Hs.79088	reticulocalbin 2, EF-hand calcium bindin	1.39	1.19	
	330644	Y07755	Hs.38991	S100 calcium-binding protein A2	3.83	1.13	
	330650	Z68228	Hs.2340	junction plakoglobin	1.25	0.95	
	330660	AA347868	Hs.139293	ESTs, Weakly similar to ALU7_HUMAN ALU S	15.50	29.07	
	330692	AA017045	Hs.6702	ESTs	1.00	1.00	
45	330707	AA133891	Hs.293690	ESTs	0.20	1.35	
	330715	AA233707	Hs.11571	Homo sapiens cDNA FLJ11570 fis, clone HE	0.12	1.40	
	330717	AA233926	Hs.52620	Integrin, beta 8	6.62	5.42	
	330722	AA243560	Hs.34382	ESTs	1.40	1.65	
	330740	AA297746	Hs.22654	Homo sapiens voltage-gated sodium channe	0.27	2.04	
50	330742	AA400979	Hs.25691	receptor (calcitonin) activity modifying	0.44	0.90	
50	330744	AA406142	Hs.12393	dTDP-D-glucose 4,6-dehydratase	0.71	3.23	
	330751	AA428286	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	1.66	1.52	
	330760	AA448663	Hs.30469	ESTs	0.52	0.90	
		AA450200	Hs.274337	hypothetical protein FLJ20666	0.37	0.97	
55	330763		Hs.49136	ESTs, Moderately similar to ALU7_HUMAN A	0.78	0.84	
55	330786	D60374			0.23	3.17	
	330790	T48536	Hs.105807	ESTs ESTs. Weakly similar to transformation-r	0.23	2.07	
	330814	AA015730	Hs.265398		1.60	1.00	
	330827	AA040332	Hs.12744	ESTs			
60	330844	AA063037	Hs.66803	ESTs	0.93	1.16	
60	330901	AA157818	Hs.267319	endogenous retroviral protease	1.02	1.03	
	330931	F01443	Hs.284256	hypothetical protein FLJ14033 similar to	0.24	0.88	
	330952	H02855	Hs.29567	ESTs	0.08	1.31	
	330961	H10998	Hs.7164	a disintegrin and metalloproteinase doma	1.29	1.26	
c=	330968	H16568	Hs.23748	ESTs	0.48	0.96	
65	331014	H98597	Hs.30340	hypothetical protein KIAA1165	0.29	0.74	
	331046	N66563	Hs.191358	ESTs	0.99	8.56	
	331060	N75081	Hs.157148	Homo sapiens cDNA FLJ11883 fis, clone HE	1.24	1.00	
	331099	R36671	Hs.83937	hypothetical protein	0.75	1.03	
	331108	R41408	Hs.21983	ESTs	1.00	2.75	
70	331131	R54797		gb:yg87b07.s1 Soares infant brain 1NIB H	6.04	10.68	
	331135	R61398	Hs.4197	ESTs	0.80	0.96	
	331170	T23461	Hs.159293	ESTs	2.63	4.29	
	331180	T32446	Hs.6640	Human DNA sequence from PAC 75N13 on chr	1.78	2.71	
	331183	T40769	Hs.8469	ESTs	1.00	3.01	
75	331203	T82310	110.0 100	(NONE)	1.70	3.80	
15			He 82226	glycoprotein (transmembrane) nmb	1.20	3.19	
	331271	AA059347	Hs.82226	dachshund (Drosophila) homolog	0.31	1.30	
	331306	AA252079	Hs.63931		2.09	2.41	
	331327	AA281076	Hs.109221	ESTs	0.72	2.43	
0Λ	331341	AA303125	Hs.23240	Homo sapiens cDNA FLJ13496 fis, clone PL			
80	331359	AA416979	Hs.46901	KIAA1462 protein	0.09	0.91	
	331363	AA421562	Hs.91011	anterior gradient 2 (Xenepus laevis) hom	1.02	0.87	
	331378	AA448881	Hs.49282	hypothetical protein FLJ11088	1.03	1.23	
	331384	AA456001	Hs.93847	NADPH oxidase 4	1.40	1.00	
0.5	331402	AA505135	Hs.44037	ESTs	1.80	3.93	
85	331422	F10802	Hs.163628	ESTs, Moderately similar to ALU7_HUMAN	1.65	1.89	

	W	O 02/080	6443			
	331490	N32912	Hs.26813	CDA14	2.48	1.73
	331531	N51343		gb:yz15g04.s1 Soares_multiple_sclerosis_	0.98	1.68
	331547	N54811		gb:od74f04.s1 NCI_CGAP_Ov2 Homo sapiens	3.80	5.75
	331578	N67960	Hs.249989	ESTs	0.11	0.67
5	331589	N71027	Hs.152618	ESTs	1.09	1.38
9	331608	N89861	Hs.112110	PTD007 protein	0.93	0.76
	331614	N92293	Hs.240272	EST	0.17	1.34
	331668		Hs.58030	EST	2.24	3.82
		W69707		ras homolog gene family, member I	1.00	1.24
10	331671	W72033	Hs.194695			1.07
10	331676	W79834	Hs.58559	ESTs, Weakly similar to rhotekin [M.musc	0.08	
	331681	W85712	Hs.119571	collagen, type III, alpha 1 (Ehlers-Danl	8.72	4.27
	331692	W93592	Hs.152213	wingless-type MMTV integration site fami	0.94	0.54
	331717	AA190888	Hs.153881	Homo sapiens NY-REN-62 antigen mRNA, par	1.57	1.34
	331718	AA191404	Hs.104072	ESTs	6.80	11.77
15	331811	AA404500	Hs.301570	ESTs	1.10	1.00
	331820	AA405970	Hs.97996	transcription termination factor, mitoc	0.73	0.59
	331831	AA412031	Hs.97901	EST	2.77	4.08
	331852	AA418988	Hs.98314	Homo sapiens mRNA; cDNA DKFZp586L0120 (f	0.23	0.93
		AA453418	Hs.21275	hypothetical protein FLJ11011	0.36	1.88
20	331943				1.00	1.00
20	331969	AA460702	Hs.82772	collagen, type XI, alpha 1		3.87
	331990	AA478102	Hs.139631	ESTs	3.04	
	332002	AA482009	Hs.105104	ESTs	1.19	0.78
	332027	AA489671	Hs.65641	hypothetical protein FLJ20073	1.27	1.03
	332029	AA489697	Hs.145053	ESTs	0.30	1.62
25	332033	AA489840	Hs.251014	EST	2.30	3.70
	332048	AA496019	Hs.201591	ESTs	0.17	0.52
	332071	AA598594	Hs.205293	KIAA1211 protein	1.35	1.23
	332074	AA599012		gb:ae41e11.s1 Gessler Wilms tumor Homo s	0.19	2.00
		AA600200	Hs.155546	KIAA1080 protein; Golgi-associated, gamm	0.31	1.18
30	332083			nuclear factor I/A	0.30	1.50
30	332085	AA600353	Hs.173933			
	332125	AA609861	Hs.312447	ESTs	0.22	0.62
	332177	F10812	Hs.101433	ESTs	8.21	18.03
	332180	H03348	Hs.7327	claudin 1	2.27	1.57
	332185	H10356	Hs.101689	ESTs	0.09	1.18
35	332203	H49388	Hs.317769	EST	8.05	5.02
	332232	N48891	Hs.101915	Stargardt disease 3 (autosomal dominant)	0.78	0.85
	332240	N54803	Hs.324267	ESTs, Weakly similar to putative p150 [0.96	1.23
	332261	N70294	Hs.269137	ESTs	2.40	3.74
	332275	R08838	Hs.26530	serum deprivation response (phosphatidyl	0.27	0.75
40	332280		Hs.146381	RNA binding motif protein, X chromosome	0.39	1.88
70		R38100			5.24	12.76
	332299	R69250	Hs.21201	nectin 3; DKFZP566B0846 protein		3.18
	332304	R74041	Hs.101539	ESTs	1.44	
	332314	T25862	Hs.101774	hypothetical protein FLJ23045	0.68	1.32
	332384	M11433	Hs.101850	retinol-binding protein 1, cellular	1.71	0.88
45	332434	N75542	Hs.289068	Homo sapiens cDNA FLJ11918 fis, clone HE	0.43	0.86
	332445	T63781	Hs.11112	ESTs	0.68	1.00
	332453	L00205	Hs.111758	keratin 6A	31.54	1.00
	332458	M33493	Hs.250700	tryptase beta 1	0.51	1.00
	332504	AA053917	Hs.15106	chromosome 14 open reading frame 1	0.79	1.24
50	332525	M17252	Hs.278430	cytochrome P450, subfamily XXIA (steroid	0.98	1.70
50		M31682	Hs.1735	inhibin, beta B (activin AB beta polypep	0.88	0.66
	332530				0.22	1.46
	332535	N20284	Hs.19280	cysteine-rich motor neuron 1	0.22	1.49
	332539	AA412528	Hs.20183	ESTs, Weakly similar to AF164793 1 prote		
	332559	M13955	Hs.166189	cytokeratin 2	0.35	1.13
55	332563	N92924	Hs.274407	protease, serine, 16 (thymus)	1.00	1.00
	332565	AA234896	Hs.25272	E1A binding protein p300	0.36	1.05
	332594	AA279313	Hs.3239	methyl CpG binding protein 2 (Rett syndr	0.53	0.59
	332634	S38953	Hs.283750	tenascin XA	0.38	1.16
	332638	AA283034	Hs.50640	JAK binding protein	1.00	1.70
60	332640	AA417152	Hs.5101	protein regulator of cytokinesis 1	6.15	1.16
	332654	AA001296	Hs.288217	hypothetical protein MGC2941	1.50	2.73
			Hs.63788	propionyl Coenzyme A carboxylase, beta p	1.20	0.91
•	332665	AA223335 AA496035	Hs.247926	gap junction protein, alpha 5, 40kD (con	0.17	1.12
	332692				1.00	1.44
65	332716	L00058	Hs.79070	v-myc avian myelocytomatosis viral oncog		1.81
65	332736	L13773	Hs.114765	myeloid/lymphoid or mixed-lineage leukem	1.00	
	332758	X93921	Hs.296938	dual specificity phosphatase 7	0.53	0.78
	332781	AA233258	Hs.247112	hypothetical protein FLJ10902	1.44	1.56
	332792				1.70	1.19
	332816				1.85	2.47
70	332858				1.04	1.57
	332906				3.48	8.04
	332911				1.00	1.00
	332912				1.06	4.40
					1.00	1.00
75	332922				0.42	0.88
13	332956					6.34
	332959				1.96	
	332982				0.56	0.99
	332984				0.30	0.78
0.0	332998				1.47	2.01
80	333058				0.47	1.38
	333097				2.14	3.19
	333121				2.76	3.70
	333122				1.92	1.21
	333123				1.85	1.39
85	333138				0.47	0.52
	333130				••	

	WO 02/086443		
	333139	1.88	0.84
	333140	0.21	0.64
	333221	1.51	1.11
~	333260	0.75	1.01
5	333380	6.68	15.75
	333387	4.56 5.05	12.61 8.01
	333512	2.03	3.98
	333524	2.28 2.31	1.53
10	333585 333603	2.23	1.17
10	333604	2.51	1.58
	333618	0.52	0.98
	333627	1.44	1.36
	333628	1.90	1.90
15	333650	1.85	2.10
	333678	1.85	2.35
	333750	2.18	5.67
	333763	1.99 1.02	2.60
20	333767	1.78	0.96 1.65
20	333768	2.15	2.13
	333769 333772	1.46	2.53
	333777	1.46 1.00	1.42
	333846	2.99	4.50
25	333884	0.47	0.94
	333887	0.50	1.00
	333891 .	0.43	0.89
	333892	0.51	0.91
20	333904	0.26	1.13
30	333906	0.55	0.98
	333948	1.70 0.37	2.15
	333954	8.10	1.09 14.30
	333966	0.63	1.38
35	333968 334061	4.24	12.30
55	334094	4.24 1.30	12.03
	334113	4.55	8.63
	334161	0.82	1.59
	334183	0.47 1.36	0.76
40	334187	1.36	3.70
	334219	0.69	1.04
	334222	1.88 4.72	1.70
	334223	4.72	3.14 0.62
45	334239	0.79 0.45	1.10
43	334255	1.00	3.56
	334333 334378	3.98	5.76
	334382	1.50	1.31
	334492	3.59	4.75
50	334562	5.94	15.40
- •	334588	8.14	19.53
	334616	1.55	1.56
	334633	5.16	8.07
	334648	0.59	2.13
55	334787	3.70 8.13	7.15 10.60
	334866	0.32	1,14
	334891	1.00	3.84
	334933 334934	4.01	7.43
60	334945	1.04	2.96
00	334967	0.29 1.50	1.14
	334990	1.50	1.39
	335015	5.88	18.65
	335093	0.55	1.75
65	335120	4.31	8.01
	335125	0.38	1.97
	335179	1.24	1.98
	335188	0.46 1.61	1.47 1.42
70	335211	0.73	0.97
70	335288 335289	0.20	0.26
	335361	2.18	1.58
	335379	0.50	0.71
	335414	3.64	14.94
75	335416	2.93	3.98
. •	335496	0.96	0.91
	335497	1.71	1.92
	335548	1.15	2.40
0.0	335551 .	3.22 3.42	10.54
80	335558	3.42 5.50	4.89
	335586	5.50 2.99	12.75 3.07
	335619	2.99 3.80	8.29
	335620 335621	0.28	0.57
85	335682	0.46	1.17
55			

	W U U2/U80443		
	335686	2.55	3.81
	335755	2.24	1.07
	335784	0.20	0.97
		1.13	1.48
~	335814		2.54
5	335815	2.45	3.51
	335823	1.00	4.16
	335835	0.49	1.70
	335851	1.66	1.39
		2.98	6.43
10	335868		0.40
10	335896	0.98	0.99
	335936	12.10	21.93
	335948	1.00	1.64
		1.00	4.21
	335983		4.47
4 ~-	335995	0.37	1.17
15	336021	1.04	0.84
	336034	11.40	23.54
		1.19	1.21
	336038		4.00
	336066	0.54	1.63
	336107	0.95	0.70
20	336205	3.13	6.29
20		3.20	10.10
	336275		
	336292	2.34	3.09
	336331	1.00	1.00
	336419	0.65	0.79
25		2.33	2.16
23	336632		
	336633	2.55	2.23
	336634	2.19	2.03
	336635	2.69	2.48
		2.13	1.83
20	336636		0.00
30	336637	2.43	2.24
	336638	2.31	2.03
	336659	0.60	1.31
		0.31	1.18
	336675	4.50	
	336684	1.50	1.14
35	336694	4.74	7.10
		4.43	6.37
	336716	2.20	0.74
	336721		
	336798	1.64	2.14
	336900	6.14	12.73
40		1.00	1.00
40	336948	4.00	0.00
	337028	1.30	2.09
	337043	4.01	11.53
	337046	1.67	1.84
		2.78	7.35
1 -	337054	2.70	
45	337128	7.20	16.14
	337162	3.45	5.34
	337183	5.72	11.41
		3.72	5.90
	337184	3.12	
	337192	1.27	1.06
50	337194	1.88	1.68
-	337229	0.22	1.03
		1.00	
	337268	1.00	3.31
	337299	3.23	5.14
	337325	2.76	3.72
55		5.80	10.42
55	337389		
	337493	2.06	6.30
	337497	7.88	20.29
	337500	3.80	4.48
		1.66	2.31
60	337549	1.27	8.54
60	337603		0.04
	337605	5.76	7.16
	337671	0.73	0.97
	337755	1.54	0.92
		5.07	9.73
c=	337786		
65	337809	6.18	12.87
	337862	3.78	12.97
		2.66	8.16
	337871		1.34
	337958	0.26	
	338008	1.48	1.12
70	338033	2.38	14.59
		0.65	2.16
	338083		
	338110	1.00	1.61
	338112	5.86	8.25
	338145	1.70	1.97
75		8.07	18.19
75	338148	4.00	
	338158	1.30	4.55
	338161	2.58	3.57
		1.00	1.00
	338179		
0.0	338182	3.32	4.63
80	338189	1.00	3.34
- 0	338197	0.99	1.69
		4.58	7.62
	338199		
	338215	6.01	15.85
_	338279	0.53	0.95
85	338316	20.58	38.66
55	000010		

	WO 02/086443			PCT/US02/12476
	338322	3.23	7.39	
	338357	4.10	11.39	
	338359	10.12	21.59	
	338366	0.69	1.02	
5	338374	0.40	1.18	
	338414	0.47	1.06	
	338418	6.12	13.86	
	338469	3.09	5.11	
	338501	6.28	10.32	
10	338506	6.97	12.41	
	338523	3.10	5.84	
	338549	1.70	2.70	
	338561	0.79	0.81	
	338662	1.72	1.46	
15	338671	0.17	0.91	
	338676	2.10	15.86	
	338726	1,20	1.09	
	338779	0.12	0.57	
	338804	0.99	1.67	
20	338836	1.00	1.00	
	338871 338872 ′	4.30	9.81	
	338872 ´	5.02	12.81	
	338879	0.23	1.12	
	338937	6.55	12.26	
25	338966	1.76	5.42	
	338993	1.00	2.40	
	339047	5.26	10.81	
	339100	5.10	6.88	
	339114	1.00	1.70	
30	339121	1.00	3.75	
	339170	10.36	19.67	
	339229	4.08	13.48	
	339264	2.64	3.83	
0.5	339293	1.73	1.94	
35				

TABLE 8B shows the accession numbers for those Pkeys in Table 8A lacking unigenelD's. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

CAT number: Gene cluster number Accession: Genbank accession numbers Pkey CAT number Accessions 322044 187363_1 AW340926 AA249063 N86075 322060 44320_1 Al341937 AW03063 U34725 AA904742 321430 42705_1 X57414 X57415 321457 43034_1 X13075 X13076 322125 46779_1 R93901 AF075073 R93902 322166 46861_1 H69434 AF08598 H69846 322173 46873_1 H52567 H52657 AF086970 H52164 322179 46885_1 H52651 H52557 AF086970 H52164 322179 46885_1 H92891 AF085982 H92777 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 1615333_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 60 320997 627492_1 H22544 H46842 Al204929 322278 47271_1 W69304 AF085283 W69200 321687 218439_1 AA625149 AA313030 AA313052 H97463 313883 129439_1 AA625149 AA313030 AA313052 H97463 32230 47422_1 W79150 AF086419 32230 47422_1 W79150 AF086419 32230 47422_1 W79150 AF086419 32339 814584_1 Al668646 Al734214 W17348 314648 293660_1 AW979268 AA678419 AA431342 AA431628 300201 682222_1 Al308300 Al308296 300201 682222_1 Al308300 Al308296 32365 82986_1 AA005129 AA69198 AA9399 322635 82296_1 AA005129 AA69198 AA93199 322635 82296_1 AA005129 AA69198 AA931399 322664 85042_1 AA005129 AA691984 AA9011691 AA330797		Pkey:	Р	Unique Eos p	probeset identifier number
70 Pkey CAT number Accessions 322044		CAT number:	С	Gene cluster	number
Pkey	4 =	Accession:	Α	Genbank acc	ession numbers
322044 187363_1 AW340926 AA249063 N86075 322060 44320_1 AI341937 AW003063 U34725 AA904742 321467 43034_1 X13075 X13076 322125 46779_1 R93901 AF075073 R93902 322166 46861_1 H69434 AF085958 H69846 322173 46873_1 H52567 H52567 AF085970 H52164 55 322178 46885_1 H52567 H52567 AF085970 H52164 32179 46885_1 H92891 AF085982 H92777 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 1615333_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 47271_1 W69304 AF086283 W69200 32278 47271_1 W69304 AF086283 W69200 321687 218439_1 AA655089 AA135130 AA484059 AA102419 AW877765 32230 47422_1 W99150 AF086419 65 322304 47422_1 AM665089 AA135130 AA484059 AA102419 AW877765 322305 47422_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 3008697 251962 Al093967 322585 473768_2 W88919 W89125 322664 85042_1 AA051152 AA702841 AA6199 AA330797	45				
50 322060 44320_1 Al341937 AW003063 U34725 AA904742		Pkey	Р	CAT number	Accessions
\$\begin{array}{cccccccccccccccccccccccccccccccccccc		322044	3:	187363_1	AW340926 AA249063 N86075
321467 43034_1 X13075 X13076 322125 46779_1 R93901 AF075073 R93902 322166 46861_1 H69434 AF085958 H69846 322173 46873_1 H52567 H52567 AF085970 H52164 55 322178 46882_1 H56535 AF085980 H56712 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 161533_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 47271_1 W69304 AF086283 W69200 32278 47271_1 W69304 AF086283 W69200 321687 218439_1 AA665089 AA135130 AA484059 AA102419 AW877765 32230 47422_1 W79150 AF086419 47425 AA665089 AA135130 AA484059 AA102419 AW877765 32230 47422_1 AN079268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 300807 25196_2 A1093967 322557 38927_1 AF147359 T58511 T58560 322655 473768_2 W88919 W89125 322664 85042_1 AA005129 AA702841 AA011691 AA330797	~ ^	322060	3	44320_1	Al341937 AW003063 U34725 AA904742
322125 46779_1 R93901 AF075073 R93902 322166 46861_1 H69434 AF085958 H69846 322178 46873_1 H52567 H52557 AF085970 H52164 322179 46885_1 H56535 AF085980 H56712 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 1615333_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 47271_1 W69304 AF086283 W69200 322678 47271_1 W69304 AF086283 W69200 321687 218439_1 AA625149 AA313030 AA313052 H97463 313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 W79150 AF086419 322320 47422_1 W79150 AF086419 322339 814584_1 AI668646 AI734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 68222_1 AI308300 AI308296 323155 979809_1 AL120701 AL135041 AL121524 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	50	321430	3		X57414 X57415
322166 46861_1 H69434 AF085958 H69846 322173 46873_1 H52567 H52567 AF085970 H52164 322179 46885_1 H56535 AF085980 H56712 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 161533_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 60 320997 627492_1 H22544 H46842 AI204929 322278 47271_1 W69304 AF086283 W69200 321687 218439_1 AA652149 AA313030 AA313052 H97463 313883 129439_1 AA6565089 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 3134648 293660_1 AW979268 AA878419 AA431342 AA431628 3108097 25196_2 AI308300 AI308296 308997 25196_2 AI308300 AI308296 322585 473768_2 W88919 W89125 322635 82296_1 AA001529 AA679084 AA69399 322664 85042_1 AA011522 AA702841 AA011691 AA330797		321467	3:	43034_1	X13075 X13076
55 322173 468873_1 H52567 H52557 AF085970 H52164		322125	3:	46779_1	R93901 AF075073 R93902
55 322178 46882_1 H56535 AF085980 H56712		322166	3	46861_1	
32179 46885_1 H92891 AF085982 H92777 321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 161533_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 322978 47271_1 W69304 AF086283 W69200 321687 218439_1 AA625149 AA313030 AA313052 H97463 313883 129439_1 AA625149 AA313030 AA313052 H97463 32320 47422_1 W79150 AF086419 322320 47422_1 A4668646 A1734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 A1308300 A1308296 323155 979809_1 AL120701 AL135041 AL121524 A7147359 T58511 T58560 322527 38927_1 AF147359 T58511 T58560 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA0011522 AA702841 AA011691 AA330797		322173	3	46873_1	
321577 1615102_1 H84849 H84252 H84260 H86664 H85320 321587 1615333_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 320997 627492_1 H22544 H46842 AI204929 321687 218439_1 AA652683 W69200 313883 129439_1 AA652689 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 322339 814584_1 AI668646 AI734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 306897 251962 AI093967 323155 979809_1 AL120701 AL135041 AL121524 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	22				
321587 1615333_1 H95531 H95521 H84529 313723 111953_1 AA070412 AA102346 AA081885 627492_1 H22544 H46842 Al204929 322278 47271_1 W69304 AF086283 W69200 321687 218439_1 AA662149 AA313030 AA313052 H97463 313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 322339 814584_1 Al668646 Al734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 Al308300 Al308296 306897 251962 Al093967 323155 979809_1 AL120701 AL135041 AL121524 322585 473768_2 W88919 W89125 320635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA0011522 AA702841 AA011691 AA330797		322179	3		
60 313723 111953_1 AA070412 AA102346 AA081885 320997 627492_1 H22544 H46842 A1204929 321687 218439_1 AA625149 AA313030 AA313052 H97463 313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 47822_1 A668646 A1734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 A1308300 A1308296 300897 251962 A1093967 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 AA005129 AA679084 AA694399 322664 85042_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
60 320997 627492_1 H22544 H46842 Al204929					
32278 47271_1 W69304 AF086283 W69200 321687 218439_1 AA625149 AA313030 AA313052 H97463 313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 322339 814584_1 Al668646 Al734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 68222_1 Al308300 Al308296 306897 251962 Al093967 323155 979809_1 AL120701 AL135041 AL121524 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	CO		3		
321687 218439_1 AA6525149 AA313030 AA313052 H97463 313883 129439_1 AA656089 AA135130 AA484059 AA102419 AW877765 322330 47422_1 W79150 AF086419 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 306897 251962 AI093967 323155 979809_1 AL120701 AL135041 AL121524 302527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	60				
313883 129439_1 AA665089 AA135130 AA484059 AA102419 AW877765 322320 47422_1 W79150 AF086419 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 AI308300 AI308296 308897 25196_2 AI093967 323155 979809_1 AL120701 AL135041 AL121524 AF147359 T58511 T58560 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W99125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
65 322320 47422_1 W79150 AF086419 322339 814584_1 A1668646 A1734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 A1308300 A1308296 306897 251962 A1093967 323155 979809_1 AL120701 AL135041 AL121524 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
65 322339 81458-1 Al668646 Al734214 W17348 314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 68222_1 Al308300 Al308296 323155 979809_1 AL120701 AL135041 AL121524 322585 473768_2 W88919 W89125 2300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
314648 293660_1 AW979268 AA878419 AA431342 AA431628 300201 682222_1 Al308300 Al308296 306897 251962 Al093967 323155 979809_1 AL120701 AL135041 AL121524 322587 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	65				
70 30201 68222_1 Al308300 Al308296 308897 25196_2 Al093967 323155 979809_1 AL120701 AL135041 AL121524 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	03				
70 323155 979809_1 AL120701 AL135041 AL121524 322527 38927_1 AF147359 T58511 T58560 322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA0015129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
70 323155 97980 0 1 AL120701 AL135041 AL121524 322527 38927 1 AF147359 T58511 T58560 322585 473768 2 W88919 W89125 300362 1574395 1 Z42308 H23514 322635 82296 1 AA005129 AA679084 AA694399 322664 85042 1 AA011522 AA702841 AA011691 AA330797					
70 322527 38927_1 AF147359 T58511 T58560 32585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
322585 473768_2 W88919 W89125 300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	70				
300362 1574395_1 Z42308 H23514 322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797	70				
322635 82296_1 AA005129 AA679084 AA694399 322664 85042_1 AA011522 AA702841 AA011691 AA330797					
322664 85042_1 AA011522 AA702841 AA011691 AA330797					
/5 315454 380580_1 Al239464 Al239473 AA625812 Al208703	75			380580_1	A1239464 A1239473 AA625812 A1208703
322687 37372_1 AF074666 Al110759 AF090902	75				
314852 327472_1 Al903735 AA491283 Al694953 AW976903 AA761362					
307783 697809 1 Al347274 AW844024					
324072 269032 1 AA381722 AA381829 AW963906 AW963902 AA381242					
80 300627 221345 1 AA488472 W27363 AA317053 BE082689 AW967036 BE079872	80				
323505 196389_1 AW970512 AA280251 Al652287 BE466438 Al650725 AA551854 AA281574 AW571481			_		
315791 403558 1 AA678177 AA677034					
324303 233842_1 AL118754 AA333202 H38001					
316519 442885 1 AA847835 AA768376			3		
85 300926 333127_1 AA504860 AA504911	85		3	333127_1	AA504860 AA504911

	wo	02/0864	43 PCT/US02/12476
	324580	328264_1	AA492588 AA492498 AA492571
	301882	275087_1	T78054 T79888 AA398185
	324804 324889	398093_1 1515978_1	Al692552 Al393343 Al800510 Al377711 F24263 AA661876 D31010 D30991 D31168 D31166 D31465
5	302697	43219 1	AJ001409 AJ001410
-	302711	45419_1	L08442 D51348
	302742	458_39	L12061
	318499 310624	364430_1 34624_4	T25451 AA585296 AA585305 U88896 U88898 AA916056 T03285 Al341594 Al359534 Al634031 U88897
10	302847	458_105	X98941 X98942 X98943 X98953 X98949
	304122	772715	H28966
	303598 311409	270283_1 837264_1	AA382814 AA402411 AA412355 Al698839 Al909260 Al909259
	311409	797889_1	Z78390 T97427
15	319312	1540116_1	Z45481 F12393 T74437
	319407	1688823_1	R05329 R01555 R08276 T82930 R02424 T85145
	319425 320007	1689571_1 229683_1	AA336314 T82938 AA327744 AW967388 AA639967 T10753
• •	320018	1815987_1	T83263 T85731 T85730
20	319484	1691553_1	T91772 R07257 R07098
	318865 312220	1535937_1 1671607_1	H10818 F07831 Z43072 N74613 T98756 T98589
	319546	243305_1	R09692 R09414 AA346353
25	312389	902067_1	AI863140 W80703 R43474
25	319611 312437	1566863_1 291472_1	H14957 R56522 R11908 BE080180 AW827313 AW231970 AA995028 AA428584 AW872716 AW892508 AW854593 AA578441 AW975234 AA664937 AA984131
	312437	231472_1	AA528743 AA552874 AA564788 AW063245 Al267534 AW070190 AW893483 AA770330 AA906928 AA906582 AA758746 AA551717
			AW063311 AA429538
30	311896	579192_1	AW206447 Al248530 Al084433 Al400976 R16553
50	319834 321102	112523_1 80531_1	AA071267 T65940 T64515 AA071334 AA018306 H38925 AA001221
	321158	410938_1	H79670 H47798 AA700289
	321199	212379_1	N34524 AA305071 AW954803 AA502335 Al433430 Al203597 AW026670 AW265323 AW850787 AA317554 AW993643 AW835572 AW385512 Al334966 W32951 H62656 H53902 R88904 AW835732
35	305528	288323	AA769156
	321270	1662057_1	N59537 N78278 R83560
	314126	177666_1	AA226431 AA22669 AA488748
	320714 306442	743644_1 AA976899	R91883 Al445591
40	306446	AA977348	
	306458	AA978186	
	306510 306557	AA988546 AA994530	
	306572	AA995686	•
45	306582	AA996248	
	306656 306686	AI004024 AI015615	
	306751	AI032589	
50	308011	Al439473	
50	306892 308106	Al092465 Al476803	
	308154	Al500600	
	306956	Al125111	
55	306958 308213	Al125152 Al557041	
33	308216	A1557135	
	308219	Al557246	
	308588 308599	Al718299 Al719893	
60	308643	A1745040	
	308673	Al760864	
	308697 308778	Al767143 Al811109	
	308808	Al818289	
65	308875	Al832332	
	308886 308898	A1833240 A1858845	
	308966	A1870704	
70	308979	Al873111	
70	303011 303077	41689_1 44060_1	AF090405 AF090407 AF090406 AF163305 AF163307 AF163303
	305016	AA626876	All 10000 All 10000 All 10000
	305034	AA630128	
75	305072 305148	AA641012 AA654070	
75	305140	AA665955	
	303978	AW513315	
	303990	AW515465 AW516449	
80	303998 303999	AW516449 AW516611	
	305235	AA670480	
	305312 305413	AA700201 AA724659	
o =	305447	AA737856	
85	321244	29327_1	AF068654 AF068656 AF068655

	wo	02/08644	3	
	305614	AA782866	.5	
	305637	AA806124		
	305639 305650	AA806138 AA807709		
5	305690	AA813477		
	305728	AA828209		
	305759 305792	AA835353 AA845256		
4.0	307041	Al144243		
10	307091	Al167439		
	307181 305901	AI189251 AA872968		
	305910	AA875981		
1.5	307415	Al242118		
15	307426 307517	A1243364 A1275055		
	307551	Al281556		
	307561	Al282207		
20	307608 307691	Al290295 Al318285		
	307730	Al336092		
	307760	Al342387		
	307764 307796	Al342731 Al350556		
25	309045	AI910902		
	309051	AI911975		
	307807 307808	Aì351799 Aì351826		
20	307820	Al355761		
30	307852 309122	Al365541 Al928178		
	309164	Al937761		
	309177	Al951118		
35	307902 309299	Al380462 AW003478		
33	309303	AW003478		
	309476	AW129368		
	309532 309747	AW151119 AW264889		
40	309769	AW272346		
	309799	AW276964		
	309866 302679	AW299916 311853_1	H65022 AA18	6889
4.5	309923	AW340684	110002270110	0000
45	309928	AW341418		
	309931 309933	AW341683 AW341936		
	302705	31765_1	U09060 U090	
50	302789 304006	34161_1 AW517947	AJ245067 AJ2	45070
50	304008	T03036		
	304026	T03160		
	304028 304046	T03266 T54803		
55	304040	T61521		
	304063	T62536		
	302802 304114	34487_1 B78946	Y08250 Y0824	15
<i>-</i> 0	304155	H68696		
60	304203	N56929		
	304234 304348	W81608 AA179868		
	304430	AA347682		
65	304456	AA411240		
05	304521 304526	AA464716 AA476427		
	304607	AA513322		
	304735 304760	AA576453 AA580401		
70	306015	AA897116		
	306063	AA906316		
	306065 306104	AA906725 AA910956		
	306109	AA911861		
75	306242	AA932805		
	306288 306396	AA936900 AA970223		
	330568	NOT_FOUND		J56244
80	330599	1532312	U90437	DC 4707
30	331131 331203	genbank_R54 NOT_FOUND		R54797 F82310
	331531	genbank_N51	343 1	N51343
	331547 332074	467396_1 genbank_AA8	AA828597 N54	
85	JJEU14	gerinalit_AAC	10001Z /	AA599012

PCT/US02/12476

TABLE 8C shows the genomic position for those Pkeys in Table 8A lacking unigene ID's and accession numbers. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

5	Pkey: Ref:	Sequer		7 digit number	Sos probeset rs in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication Dunham I. et al., Nature (1999) 402:489-495.	entitled "The DNA
10	Strand: Nt_position: Pkey	Indicate		om which exor	ns were predicted.	
	rkey	Kei	Stialiu	M_position		
	332792	Dunham, I		Plus	73381-73768	
15	332816 332906	Dunham, I. Dunham, I.		Plus Plus	359844-360030 1923101-1923205	
1.0	332911	Dunham, I		Plus	1961767-1961858	
	332912	Dunham, I.	. et.al.	Plus	1962120-1962246	
	332922	Dunham, I.		Plus	2009620-2009738	
20	332956 332959	Dunham, I. Dunham, I.		Plus Plus	2510528-2510658 2518145-2518213	
, = 0	333138	Dunham, I.		Plus	3369205-3369323	
	333139	Dunham, I.		Plus	3369495-3369571	
	333221 333380	Dunham, I.		Plus	3978070-3978187 4904775-4904846	
25	333387	Dunham, I. Dunham, I.		Plus Plus	4910935-4910997	
	333512	Dunham, I.		Plus	5560510-5560564	
	333524	Dunham, 1.		Plus	5612620-5612780	
	333585 333618	Dunham, I. Dunham, I.		.Plus Plus	6234778-6234894 6562391-6562566	
30	333627	Dunham, I.		Plus	6620584-6620903	
	333628	Dunham, I.		Plus	6629004-6629233	
	333650 333678	Dunham, I. Dunham, I.		Plus Plus	6796852-6797128 7068223-7068288	
	333750	Dunham, I.		Plus	7608165-7608234	
35	333763	Dunham, I.	et.al.	Plus	7692491-7692630	
	333767	Dunham, I.		Plus	7694407-7694623	
	333768 333769	Dunham, I. Dunham, I.		Plus Plus	7695440-7695697 7696625-7696707	
40	333772	Dunham, I.		Plus	7706773-7706902	
40 -	333777	Dunham, I.		Plus	7746805-7746916	
	333846 333884	Dunham, I. Dunham, I.		Plus Plus	8008623-8008757 8153960-8154161	
	333887	Dunham, I.		Plus	8154882-8155025	
15	333891	Dunham, I.		Plus	8156437-8156709	
45	333892 333948	Dunham, I. Dunham, I.		Plus Plus	8156825-8157001 8583497-8583627	
	333954	Dunham, I.		Plus	6563186-6563335	
	333966	Dunham, I.		Plus	8655643-8655826	
50	333968 334061	Dunham, I. Dunham, I.		Plus Plus	8681004-8681241 9686941-9687077	
-	334094	Dunham, I.		Plus	9889953-9890105	
	334113	Dunham, I.		Plus	10282459-10282597	
	334161 334219	Dunham, I. Dunham, I.		Plus Plus	10599033-10599180 12716160-12716384	
55	334239	Dunham, I.		Plus	13056569-13056693	
	334333	Dunham, I.	et.al.	Plus	13603544-13603657	
	334378 334382	Dunham, I. Dunham, I.		Plus Plus	13907239-13907370 13915866-13916036	
	334562	Dunham, I.		Plus	14987847-14987940	
60	334588	Dunham, I.		Plus	15032740-15032817	
	334616 334633	Dunham, I. Dunham, I.		Plus Plus	15176123-15176470 15333206-15333305	
	334866	Dunham, I.		Plus	18872214-18872317	
<i>(</i>	334891	Dunham, I.	et.al.	Plus	19299770-19299944	
65	334934 335015	Dunham, I. Dunham, I.		Plus Plus	20103970-20104058 20682792-20682945	
	335120	Dunham, I.		Plus	21436286-21436384	
	335125	Dunham, I.	et.al.	Plus	21441390-21441471	
70	335179 335188	Dunham, I. Dunham, I.		Plus Plus	21634405-21634526 21669118-21669328	
70	335211	Dunham, I.		Plus	21774611-21774680	
	335361	Dunham, I.	et.al.	Plus	22807292-22807445	
	335379	Dunham, I.		Plus	22899306-22899420	
75	335414 335416	Dunham, I. Dunham, I.		Plus Plus	23235546-23235684 23237354-23237465	
	335496	Dunham, I.		Plus	24164386-24164545	
	335497	Dunham, I.		Plus	24167666-24167869	
	335558 335586	Dunham, I. Dunham, I.		Plus Plus	24740167-24740347 24990333-24990497	
80	335686	Dunham, I.		Plus	25439839-25439920	
	335784	Dunham, I.	et.al.	Plus	25942710-25942792	
	335823 335983	Dunham, I. Dunham, I.		Plus Plus	26365925-26366004 27938968-27939070	
0.5	335995	Dunham, I.		Plus	28009044-28009184	
85	336021	Dunham, I.	et.al.	Plus	28686482-28686559	

	w) 02/086443		
	336034	Dunham, I. et.al.	Pius	29014404-29014590
	336038	Dunham, l. et.al.	Plus	29022963-29023165
	336107	Dunham, I. et.al.	Plus	29987731-29987869
_	336632	Dunham, I. et.al.	Plus	983890-985529
5	336633	Dunham, I. et.al.	Plus	985591-986221
	336634	Dunham, I. et.al.	Plus	986296-986670
	336635	Dunham, I. et.al.	Plus	987908-988364
	336636	Dunham, I. et.al.	Plus	988418-989185
10	336637	Dunham, I. et.al.	Plus	989276-990813
10	336638	Dunham, I. et.al.	Plus	991906-993240
	336659	Dunham, I. et.al.	Plus	1896402-1896478
	336694	Dunham, I. et.al.	Plus	2420546-2420616
	336721	Dunham, I. et.al.	Plus	3371522-3371586
1.5	336900	Dunham, I. et.al.	Plus	10236423-10236523
15	336948	Dunham, I. et.al.	Plus	12692290-12692381
	337028	Dunham, I. et.al.	Plus	16644817-16644942
	337054	Dunham, I. et.al.	Plus	17821742-17821922
	337162	Dunham, I. et.al.	Plus	23478943-23479145
20	337183	Dunham, I. et.al.	Plus	23943606-23943696
20	337184	Dunham, I. et.al.	Plus	23973949-23974016
	337268	Dunham, I. et.al.	Plus	28011979-28012034
	337299	Dunham, I. et.al.	Plus	29022656-29022775 31401509-31401579
	337389 337493	Dunham, I. et.al.	Plus Plus	33330760-33330981
25	337549	Dunham, I. et.al. Dunham, I. et.al.	Plus	34474472-34474531
23	337755	Dunham, I. et.al.	Plus	3971764-3971900
	337809	Dunham, I. et.al.	Plus	4449069-4449193
	337871	Dunham, I. et.al.	Plus	5443027-5443101
	337958	Dunham, I. et.al.	Plus	6969162-6969270
30	338008	Dunham, I. et.al.	Plus	7697068-7697236
-	338033	Dunham, I. et.al.	Plus	8092128-8092271
	338110	Dunham, I. et.al.	Plus	10384481-10384621
	338112	Dunham, I. et.al.	Plus	10391398-10391600
	338145	Dunham, I. et.al.	Plus	11386629-11386692
35	338148	Dunham, I. et.al.	Plus	11448985-11449085
	338179	Dunham, I. et.al.	Plus	12808775-12808833
	338197	Dunham, I. et.al.	Plus	13638107-13638181
	338279	Dunham, I. et.al.	Plus	16168944-16169091
40	338316	Dunham, I. et.al.	Plus	17089711-17089988
40	338322	Dunham, i. et.al.	Plus	17132477-17132547
	338357	Dunham, I. et.al.	Plus	18062184-18062402
	338359	Dunham, I. et.al.	Plus	18074402-18074501
	338366	Dunham, I. et.al.	Plus	18252026-18252189
15	338374	Dunham, I. et.al.	Plus	18371200-18371282
45	338414	Dunham, I. et.al.	Plus	19345573-19345660
	338418	Dunham, I. et.al.	Plus	19435506-19435596
	338501	Dunham, I. et.al.	Plus	21244713-21244828
	338506	Dunham, I. et.al.	Plus	21221871-21221953 21509763-21509864
50	338523	Dunham, i. et.al. Dunham, l. et.al.	Plus Plus	24404720-24404899
50	338662 338804	Dunham, I. et.al.	Plus	27236005-27236108
	338836	Dunham, I. et.al.	Plus	27792166-27792272
	338879	Dunham, I. et.al.	Plus	28410653-28410734
	338937	Dunham, I. et.al.	Plus	29160655-29160725
55	338993	Dunham, I. et.al.	Plus	30077787-30078184
•	339047	Dunham, I. et.al.	Plus	30760793-30760968
	339100	Dunham, I. et.al.	Plus	31141580-31141765
	339114	Dunham, I. et.al.	Plus	31456454-31456519
	339121	Dunham, I. et.al.	Plus	31583467-31583536
60	339170	Dunham, I. et.al.	Plus	32216399-32216527
	339293	Dunham, I. et.al.	Plus	33223671-33223819
	332858	Dunham, I. et.al.	Minus	1339607-1339397
	332982	Dunham, f. et.al.	Minus	2628296-2628109
~~	332984	Dunham, I. et.al.	Minus	2632606-2632457
65	332998	Dunham, l. et.al.	Minus	2711704-2711565
	333058	Dunham, I. et.al.	Minus	3028925-3028811
	333097	Dunham, I. et.al.	Minus	3204124-3204036
	333121	Dunham, I. et.al.	Minus	3308446-3308358
70	333122	Dunham, I. et.al.	Minus	3309596-3309531
70	333123	Dunham, I. et.al.	Minus	3310817-3310749
	333140	Dunham, I. et.al.	Minus	3377220-3376309
	333260	Dunham, I. et.al.	Minus	4308400-4308304
	333603	Dunham, I. et.al.	Minus	6466335-6465727 6467090-6466768
75	333604 333904	Dunham, I. et.al.	Minus Minus	8217374-8217261
15	333904	Dunham, I. et.al. Dunham, I. et.al.	Minus	8218238-8218063
	334183	Dunham, I. et.al.	Minus	11832582-11832508
	334187	Dunham, I. et.al.	Minus	11921456-11921205
	334222	Dunham, I. et.al.	Minus	12732417-12732289
80	334223	Dunham, I. et.al.	Minus	12734365-12734269
	334255	Dunham, I. et.al.	Minus	13200776-13200692
	334492	Dunham, I. et.al.	Minus	14478333-14478172
	334648	Dunham, I. et.al.	Minus	15363301-15363222
	334787	Dunham, I. et.al.	Minus	16299093-16298937
85	334933	Dunham, I. et.al.	Minus	20078117-20077991

	**7	0.00/00/4	42		
	334945	O 02/08644 Dunham, i. el		Minus	20138885-20138637
	334967	Dunham, I. et	t.al.	Minus	20173311-20173218
	334990 335093	Dunham, I. el Dunham, I. et		Minus Minus	20341159-20341087 21297367-21297214
5	335288	Dunham, I. et		Minus	22304275-22303770
	335289	Dunham, I. et		Minus	22305950-22305708
	335548 335551	Dunham, I. et Dunham, I. et		Minus Minus	24662773-24662673 24679828-24678961
	335619	Dunham, I. et		Minus	25082677-25082498
10	335620	Dunham, I. et	.al.	Minus	25092561-25092434
	335621	Dunham, I. et		Minus	25098878-25098767
	335682 335755	Dunham, I. et Dunham, I. et		Minus Minus	25421215-25421093 25763806-25763747
1 ~	335814	Dunham, I. et		Minus	26320043-26319845
15	335815	Dunham, I. et		Minus	26320518-26320421
	335835 335851	Dunham, I. et Dunham, I. et	_	Minus Minus	26393311-26393245 26604863-26604742
	335868	Dunham, I. et		Minus	26711437-26711300
20	335896	Dunham, I. et	.al.	Minus	26977639-26977558
20	335936	Dunham, I. et		Minus	27360474-27360400
	335948 336066	Dunham, I. et Dunham, I. et		Minus Minus	27555924-27555788 29241080-29240842
	336205	Dunham, I. et		Minus	30477456-30477311
25	336275	Dunham, I. et	.al.	Minus	32086675-32086536
25	336292	Dunham, I. et		Minus	32818035-32817927
	336331 336419	Dunham, I. et Dunham, I. et		Minus Minus	33594527-33594371 34052568-34052445
	336675	Dunham, I. et		Minus	2020758-2020664
20	336684	Dunham, I. et		Minus	2158060-2157993
30	336716 336798	Dunham, I. et. Dunham, I. et.		Minus	3259952-3259862
	337043	Dunham, I. et.		Minus Minus	5888954-5888757 17407330-17407251
	337046	Dunham, I. et.		Minus	17610892-17610821
35	337128	Dunham, I. et.		Minus	22215251-22215034
33	337192 337194	Dunham, I. et. Dunham, I. et.		Minus Minus	24591853-24591771 24610510-24610359
	337229	Dunham, I. et.		Minus	26716579-26716481
	337325	Dunham, I. et.	al.	Minus	30015948-30015800
40	337497	Dunham, I. et.		Minus	33371317-33371258
40	337500 337603	Dunham, I. et. Dunham, I. et.		Minus Minus	33376212-33376158 1299296-1299194
	337605	Dunham, I. et.		Minus	1346555-1346397
	337671	Dunham, I. et.		Minus	3260634-3260547
45	337786 337862	Dunham, I. et. Dunham, I. et.		Minus Minus	4133203-4133081 5347658-5347550
	338083	Dunham, I. et.		Minus	9318438-9318301
	338158	Dunham, I. et.		Minus	11794465-11794343
	338161 338182	Dunham, I. et.		Minus	12124716-12124658 12824919-12824827
50	338189	Dunham, I. et. Dunham, I. et.		Minus Minus	12878594-12878478
	338199	Dunham, l. et.		Minus	13760865-13760780
	338215	Dunham, I. et.		Minus	14055447-14055355
	338469 338549	Dunham, I. et. Dunham, I. et.		Minus Minus	20520387-20520242 22049171-22049081
55	338561	Dunham, I. et.		Minus	22311966-22311856
	338671	Dunham, I. et.	al.	Minus	24508421-24508346
	338676	Dunham, I. et. Dunham, I. et.		Minus	24637427-24637369 25926206-25925618
	338726 338779	Dunham, I. et.		Minus Minus	27030151-27029795
50	338871	Dunham, I. et.		Minus	28301708-28301611
	338872	Dunham, I. et.		Minus	28300921-28300790
	338966 339229	Dunham, I. et.: Dunham, I. et.:		Minus Minus	29614876-29614749 32722330-32722199
	339264	Dunham, I. et.:		Minus	32975145-32975053
55	325228			2630-2694	
	325235 329588			162154-1622 1169-1619	264
	329560			2095-2990	
70	329541	3983503		2765-3059	
70	325328			86780-86854	
	325340 325373			166656-1668 1136686-113	
	325367			922881-9229	
7.5	325389			239672-2397	
75	325436			29778-29907	
	325498 325471			173372-1739 289268-2893	
	325557	*		50921-51050	
30	325559			118590-1191	
υ	325560 325569			133794-1339 79927-80217	
	325587			79927-60217 126724-1269	
	325585	6682462 F	Plus	73476-73574	
35	325597			1065020-106	
<i>ي</i> ر	325639	5867002 I	Plus	253525-2536	מטו

	WO	02/0864	12	
	325739	5867038	Minus	205138-205269
	325740	5867038	Minus	207533-207690
	325792 325735	6469828 6552447	Minus Minus	1018-1176 269122-269190
5	325685	6682468	Plus	117397-117483
	325686	6682468	Plus	118337-118439
	325819 329764	6682490 6048195	Minus Minus	130314-130370 109733-109968
	329703	6065793	Minus	139994-140138
10	329643	6448539	Plus	53403-53537
	329816 329860	6624888 6687260	Minus Minus	70296-70423 163474-163605
	325883	5867087	Plus	22498-22663
15	325895	5867097	Plus	358317-358476
13	325925 325932	5867124 5867127	Plus Plus	115749-115962 7369-7441
	325941	5867133	Minus	64228-64402
	325969	5867153	Plus	101911-102081
20	325971 329993	5867153 4567166	Plus Minus	105841-106035 101307-101434
	330020	6671887	Plus	172397-172491
	326163	5867168	Minus	7831-8035
	326274 326025	5867171 5867176	Minus Plus	410289-410404 70854-70915
25	326046	5867182	Minus	62668-62825
	326099	5867186	Minus	661381-661510
	326108 326165	5867187 5867208	Minus Minus	23784-23903 62787-62929
••	326189	5867212	Plus	69288-69413
30	326204	5867218	Minus	148088-148200
	326230 330052	5867230 4567182	Minus Plus	301868-301972 352560-352963
	330036	6042048	Plus	117120-117216
35	326360	5867293	Plus	13627-13844
33	326589 326393	5867320 5867341	Plus Plus	22760-22919 41702-41841
	326505	5867435	Minus	8818-8949
	326515	5867439	Plus	36683-36809
40	326592 330107	6138928 6015249	Plus Minus	23689-23828 100091-100282
• •	330106	6015249	Minus	99443-99778
	330100	6015253	Plus	21166-21301
	330093 330088	6015278 6015293	Plus Plus	1043-1199 37517-37638
45	330085	6015302	Minus	59613-59770
	330120 330123	6671864 6671869	Minus	127553-127656 35311-35406
	326742	5867611	Minus Minus	95187-95248
50	326605	5867637	Plus	24656-24749
50	326818 326720	6117831 6552456	Minus Plus	15199-15309 84525-84677
	326770	6598307	Minus	513603-513668
	326692	6682502	Plus	117697-117899
55	326693 326983	6682502 5867657	Minus Minus	335002-335095 16023-16581
55	326991	5867660	Plus	18147-18339
	326936	6004446	Minus	10217-10357
	326964 327040	6469836 6531965	Plus Plus	75340-75456 783670-783817
60	327053	6531965	Plus	2247267-2247437
	327075	6531965	Plus	4041318-4041431
	327085 327036	6531965 6531965	Plus Plus	4734947-4735069 319951-320040
	327130	6531976	Plus	20247-22343
65	327156	5866841	Minus	2462-2620
	327288 327332	5867481 5867516	Plus Minus	48583-48773 56361-56532
	327220	5867525	Minus	65701-65781
70	327224	5867534	Plus	188468-188544
70	327321 327361	6249562 6552412	Minus Minus	99745-99836 61013-62130
	327396	5867743	Plus	8702-8820
	327414	5867750	Plus	102461-102586
75	327442 327467	5867759 5867772	Plus Plus	111483-111618 88030-88151
. –	327473	5867775	Plus	75101-75181
	327483	5867783	Plus	181573-181662
	327377 327562	5867793 5867804	Minus Minus	37610-37676 343989-344474
80	327568	5867811	Minus	46152-46287
	327606	6004463	Plus	200262-200495
	327611 327642	5867868 5867891	Minus Minus	175063-175392 2513-2743
0.5	327654	5867910	Minus	97564-97710
85	327734	5867940	Minus	31003-31583

	327775	5867964	Minus	130791-130871
	327796	5867982	Plus	85267-85405
	327840	6249578	Minus	73065-73206
_	330208	6013599	Plus	66517-66931
5	330263	6671884	Minus	101503-101634
	328004	5867993	Minus	157407-157887
	328101	5868020	Plus	289920-290014
	328100 328113	5868020 5868024	Minus Minus	263545-263635 80378-80491
10	328157	5868064	Plus	73326-73615
10	328196	5868080	Minus	16551-16729
	328197	5868081	Minus	42133-42438
	327940	5868197	Minus	95240-95428
	327984	5868216	Plus	66611-66677
15	328021	5902482	Plus	713478-714590
	328068	6117819	Plus	253903-254022
	328264	6381912	Plus	55086-55404
	330300	2905862	Minus	3246-3302
	328608	5868222	Minus	87770-87953
20	328600	5868229	Minus	38889-40010
	328616	5868239	Plus	293920-294224
	328623	5868246	Minus	120020-120126
	328632	5868247	Plus	76734-76853
25	328666	5868254	Minus	778-901
25	328698	5868264	Minus	625555-625633
	328700	5868264	Plus	764089-764203
	328708	5868271	Minus	68114-68854 89389-89455
	328735	5868289 5868289	Plus Plus	274638-274726
30	328743 328806	5868324	Plus	29408-29684
50	328299	5868366	Minus	149708-149889
	328342	5868383	Plus	59955-60094
	328365	5868387	Minus	270724-270798
	328369	5868388	Plus	75371-75583
35	328381	5868392	Plus	662758-662848
	328451	5868425	Minus	217275-217336
	328481	5868449	Minus	8987-9180
	328500	5868464	Plus	59098-59481
40	328530	5868482	Plus	334973-335406
40	328664	6004473	Plus	1193739-1193866
	328861	6381928	Minus	108317-108403
	328908	5868493	Plus	117002-117059
	328933 328934	5868500 5868500	Plus Plus	771755-771889 846342-846448
45	328949	6456765	Minus	43552-43619
73	330313	6042030	Minus	33642-33775
	329005	5868542	Plus	85470-85673
	330366	2944106	Plus	151837-151914
	330372	6580495	Minus	317461-317688
50	329033	5868561	Minus	5390-5479
	329037	5868562	Minus	32466-32562
	329067	5868591	Minus	146417-147652
	329134	5868679	Plus	29959-30018
	329157	5868687	Minus	145940-146155
55	329178	5868704	Plus	179177-179463
	329192	5868716	Plus	166936-167020
	329194	5868716	Minus	304450-304559
	329204	5868720	Minus	3050-3190
60	329224	5868728	Plus	27422-27664
00	329228	5868728	Minus	50118-50287 25554-26299
	329288 329337	5868771 5868806	Plus Minus	467155-467222
	329337 329011	6682532	Plus	48658-48741
	323011	0002002	Flub	1 + 100-000

TABLE 9A: Potential Therapeutic, Diagnostic and Prognostic targets for Therapy of Lung Cancer

Table 9A shows about 1312 genes up-regulated in lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) relative to normal body tissues. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 9B show the accession numbers for those Pkey's lacking UnigenelD's for table 9A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 9C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 9A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Pkey: Unique Eos probeset identifier number ExAcon: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number Unigene Title: Unigene gene title

5

10

20

R1: Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the

average of normal lung samples

R2: Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples

	Pkey	ExAccn	UnigenelD	Unigene Title	R1	R2
	400195		· ·	NM_007057*:Homo sapiens ZW10 interactor	1.00	1.00
25	400205			NM_006265*:Homo sapiens RAD21 (S. pombe)	15.80	396.00
	400220			Eos Control	2.28	2.84
	400277			Eos Control	7.68	9.72
	400285			Eos Control	1.00	1.00
20	400288	X06256	Hs.149609	integrin, alpha 5 (fibronectin receptor,	1.04	2.24
30	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin	132.45	4.00
	400298	AA032279	Hs.61635	six transmembrane epithelial antigen of	43.86	74.00
	400301	X03635	Hs.1657	estrogen receptor 1	1.00	1.00
	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated	1.75	1.65
25	400328	X87344	Hs.180062	transporter 2, ATP-binding cassette, sub	0.87	1.80
35	400419	AF084545		Target	156.55	253.00
	400512			NM_030878*:Homo sapiens cytochrome P450,	1.00	2.00
	400517	AF242388		lengsin	3.67	87.00
	400560			NM_030878*:Homo sapiens cytochrome P450,	1.00	1.00
40	400664			NM_002425:Homo sapiens matrix metallopro	20.26 1.36	45.00 1.07
40	400665			NM_002425:Homo sapiens matrix metallopro	3.26	3.22
	400666			NM_002425:Homo sapiens matrix metallopro	1.00	91.00
	400749			NM_003105*:Homo sapiens sortilin-related	7.63	24.00
	400763			Target Exon	1.00	1.00
45	401027			Target Exon C12000586*:gi 6330167 db BAA86477.1 (A	1.00	155.00
43	401093				1.00	86.00
	401203 401212			Target Exon C12000457*:gi 7512178 pir T30337 polypr	1.00	400.00
	401411			ENSP0000247172*:HYPOTHETICAL 126.2 kDa	1.00	72.00
	401435			C14000397*;gi]7499898[pir][T33295 hypoth	1.00	64.00
50	401464	AF039241		histone deacetylase 5	3.82	49.00
50	401714	AI 000241		ENSP00000241802*:CDNA FLJ11007 FIS, CLON	2.02	40.00
	401747			Homo sapiens keratin 17 (KRT17)	128.43	68.00
	401760			Target Exon	1.74	35.00
	401780			NM_005557*:Homo sapiens keratin 16 (foca	26.47	10.50
55	401781			Target Exon	10.33	4.61
55	401785			NM_002275*:Homo sapiens keratin 15 (KRT1	4.13	2.70
	401797			Target Exon	1.44	2.10
	401961			NM_021626:Homo sapiens serine carboxypep	1.41	1.86
	401985	AF053004		class I cytokine receptor	1.00	177.00
60	401994			Target Exon	61.84	47.00
	402075			ENSP00000251056*:Plasma membrane calcium	1.00	1.00
	402260			NM_001436*:Homo sapiens fibrillarin (FBL	1.58	1.39
	402265			Target Exon	2.09	35.00
	402297			Target Exon	1.00	92.00
65	402408			NM_030920*:Homo sapiens hypothetical pro	28.87	13.00
	402420			C1000823*:gij10432400 emb CAC10290.1 (A	1.00	1.44
	402674			Target Exon	7.44	243.00
	402802			NM_001397:Homo sapiens endothelin conver	1.00	70.00
=-	402994			NM_002463*:Homo sapiens myxovirus (influ	1.37	1.43
70	403137			NM_005381*:Homo sapiens nucleolin (NCL),	1.00	19.00
	403306	NM_006825		transmembrane protein (63kD), endoplasmi	1.00	43.00
	403329			Target Exon	1.00	61.00
	403381			ENSP00000231844*:Ecotropic virus integra	1.00	119.00
75	403478			NM_022342:Homo sapiens kinesin protein 9	28.13	136.00
75	403485			C3001813*:gi 12737279 ref XP_012163.1 k	20.23	76.00
	403627			Target Exon	6.30	29.33
	403715			Target Exon	1.30	35.00 54.00
	404044			ENSP00000237855*:DJ398G3.2 (NOVEL PROTEI	1.00	54.00 91.00
90	404076			NM_016020*:Homo sapiens CGI-75 protein (14.29	
80	404101			C8000950:gi 423560 pir A47318 RNA-bindi	1.00 1.42	1.00 1.44
	404140			NM_006510:Homo sapiens ret finger protei	1.42	54.00
	404165			ENSP00000244562:NRH dehydrogenase [quino	1.00	117.00
	404185			Target Exon	5.93	13.77
85	404210			NM_005936:Homo sapiens myeloid/lymphoid NM_021058*:Homo sapiens H2B histone fami	1.00	1.00
33	404253			HIM_02 1000 II IOIIIO SEPICIO FIAD IIISUII IIIIII	1.00	1.00

	W	O 02/086	443				Pe
	404287		•	C6001909:gi 704441 dbj BAA18909.1 (D298	29.71	42.00	
	404298			C6001238*:gi[121715 sp P26697 GTA3_CHICK	1.30	1.00	
	404347			Target Exon	1.00 1.00	1.00 15.00	
5	404440 404721			NM_021048:Homo sapiens melanoma antigen, NM_005596*:Homo sapiens nuclear factor I	1.00	60.00	
,	404721	NM_000078		cholesteryl ester transfer protein, plas	1.07	1.38	
	404854	71111_000070		Target Exon	1.61	2.01	
	404877			NM_005365:Homo sapiens melanoma antigen,	1.00	1.00	
10	404927			Target Exon	1.00	1.00	
10	404996			Target Exon	1.00	1.00	
	405449			CY000047*:gi 11427234 ref XP_009399.1 z	1.00	1.00	
	405568			NM_031413*:Homo sapiens cat eye syndrome	1.00 0.76	78.00 1.14	
	405572 405646			Target Exon C12000200:gi 4557225 ref NP_000005.1 al	1.01	1.28	
15	405676	BE336714		cytochrome c-1	1.13	2.89	
10	405770	D2000111		NM_002362:Homo sapiens melanoma antigen,	45.52	37.00	
	405932			C15000305:gi[3806122 gb]AAC69198.1] (AF0	1.99	1.99	
	406137			NM_000179*:Homo sapiens mutS (E. coli) h	2.77	2.38	
20	406360			Target Exon	1.00	35.00	
20	406399			NM_003122*:Homo sapiens serine protease	1.00 1.00	39.00	
	406467 406621	X57809	Hs.181125	Target Exon immunoglobulin lambda locus	1.41	1.00 1.74	
	406642	AJ245210	115.101125	gb:Homo sapiens mRNA for immunoglobulin	2.16	3.91	
	406663	U24683	Hs.293441	immunoglobulin heavy constant mu	2.07	2.93	
25	406671	AA129547	Hs.285754	met proto-oncogene (hepatocyte growth fa	15.00	51.00	
	406673	M34996	Hs.198253	major histocompatibility complex, class	0.98	3.09	
	406676	X58399	Hs.81221	Human L2-9 transcript of unrearranged im	1.30	1.53	
	406678	U77534		gb:Human clone 1A11 immunoglobulin varia	1.33	1.45	
30	406685	M18728	11- 070000	gb:Human nonspecific crossreacting antig	1.46	2.85 8.50	
30	406687	M31126 M29540	Hs.272822 Hs.220529	pregnancy specific beta-1-glycoprotein 9 carcinoembryonic antigen-related cell ad	8.61 226,37	350.00	
	406690 406698	X03068	Hs.73931	major histocompatibility complex, class	1.01	2.52	
	406815	AA833930	Hs.288036	tRNA isopentenylpyrophosphate transferas	20.25	32.00	
	406851	AA609784		major histocompatibility complex, class	0.75	1.91	
35	406964	M21305		gb:Human alpha satellite and satellite 3	38.15	1114.00	
	406967	M24349		gb:Human parathyroid hormone-like protei	1.00	1.00	
	406974	M57293	050004	gb:Human parathyroid hormone-related pep	1.00	1.00	
	407103	AA424881	Hs.256301	hypothetical protein MGC13170	1.77 1.00	1.10 1.00	
40	407128 407137	R83312 T97307	Hs.237260	EST gb:ye53h05.s1 Soares fetal liver spleen	142.70	135.00	
70	407168	R45175	Hs.117183	ESTs	2.16	18.00	
	407239	AA076350	Hs.67846	leukocyte immunoglobulin-like receptor,	1.10	1.57	
	407242	M18728		gb:Human nonspecific crossreacting antig	1.12	2.85	
4.5	407244	M10014	Hs.75431	fibrinogen, gamma polypeptide	3.24	15.38	
45	407289	AA135159	Hs.203349	Homo sapiens cDNA FLJ12149 fis, clone MA	3.53	3.68	
	407300	AA102616	Hs.120769	gb:zn43e07.s1 Stratagene HeLa cell s3 93	19.74	73.00	
	407366 407378	AF026942 AA299264	Hs.271530 Hs.57776	gb:Homo sapiens cig33 mRNA, partial sequ ESTs, Moderately similar to l38022 hypot	0.06 1.00	8.25 26.00	
	407430	AF169351	115.57770	gb:Homo sapiens protein tyrosine phospha	1.00	25.00	
50	407453	AJ132087		gb:Homo sapiens mRNA for axonemal dynein	1.00	75.00	
	407577	AW131324	Hs.246759	hypothetical protein MGC12538	1.00	1.00	
	407634	AW016569	Hs.136414	UDP-GlcNAc:betaGal beta-1,3-N-acetylgluc	111.20	228.00	
	407710	AW022727	Hs.23616	ESTs	1.00	28.00	
55	407720	AB037776	Hs.38002	KIAA1355 protein	1.89 1.00	1.31	
55	407746 407756	AK001962 AA116021	Hs.38260	hypothetical protein FLJ11100 ubiquitin specific protease 18	4.51	1.00 5.00	
	407758	D50915	Hs.38365	KIAA0125 gene product	1.00	28.00	
	407782	AA608956	Hs.112619	ESTs, Moderately similar to PURKINJE CEL	0.97	1.14	
	407788	BE514982	Hs.38991	S100 calcium-binding protein A2	7.88	3.83	
60	407790	Al027274	Hs.288941	Homo sapiens cDNA FLJ14866 fis, clone PL	3.63	42.00	
	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	89.96	109.00	
	407839	AA045144	Hs.161566	ESTs	173.91	108.00	
	407944 408000	R34008	Hs.239727	desmocollin 2 bullous pemphigoid antigen 1 (230/240kD)	111.30 151.17	70.00 8.00	
65	408031	L11690 AA081395	Hs.620 Hs.42173	Homo sapiens cDNA FLJ10366 fis, clone NT	9.91	93.00	
05	408063	BE086548	Hs.42346	calcineurin-binding protein calsarcin-1	195.78	231.00	
	408070	AW148852		gb:xf05d05.x1 NCI_CGAP_Brn35 Homo sapien	1.00	1.00	
	408101	AW968504	Hs.123073	CDC2-related protein kinase 7	37.84	61.00	
70	408122	A1432652	Hs.42824	hypothetical protein FLJ10718	0.85	1.71	
70	408212	AA297567	Hs.43728	hypothetical protein	5.88	7.91	
	408243	Y00787	Hs.624	interleukin 8	4.27 3.79	9.98	
	408349	BE546947	Hs.44276	homeo box C10 mitochondrial ribosomal protein S17	1.88	3.46 1.65	
	408353 408354	BE439838 Al382803	Hs.44298 Hs.159235	ESTs	1.00	73.00	
75	408369	R38438	Hs.182575	solute carrier family 15 (H??? transport	1.41	16.50	
	408380	AF123050	Hs.44532	diubiquitin	15.19	37.22	
	408482	NM_000676	Hs.45743	adenosine A2b receptor	1.65	1.19	
	408522	Al541214	Hs.46320	Small proline-rich protein SPRK [human,	1.98	1.24	
QΛ	408536	AW381532	Hs.135188	ESTs	1.55	1.50	
80	408545	AW235405	Hs.253690	ESTs Madaratoly similar to ALLIA HUMAN A	1.00 1.00	1.00 44.00	
	408572 408633	AA055611 AW963372	Hs.226568 Hs.46677	ESTs, Moderately similar to ALU4_HUMAN A PRO2000 protein	107.16	56.00	
	408660	AA525775	. 10.70011	ESTs, Moderately similar to PC4259 ferri	1.00	1.00	
	408761	AA057264	Hs.238936	ESTs, Weakly similar to (defline not ava	52.24	141.00	
85	408771	AW732573	Hs.47584	potassium voltage-gated channel, delayed	3.05	109.00	

	W	O 02/086	443			
	408783	AF192522	Hs.47701	NPC1 (Niemann-Pick disease, type C1, gen	1.02	1.07
	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,	41.19	61.00
	408805	H69912	Hs.48269	vaccinia related kinase 1	24.67	45.00
				ESTs	1.00	58.00
5	408841	AW438865	Hs.256862			
5	408873	AL046017	Hs.182278	calmodulin 2 (phosphorylase kinase, delt	1.00	89.00
	408908	BE296227	Hs.250822	serine/threonine kinase 15	7.76	1.00
	408992	AA059325	Hs.71642	guanine nucleotide binding protein (G pr	1.00	1.00
	408996	Al979168	Hs.344096	glycoprotein (transmembrane) nmb	3.71	5.50
	409015	BE389387	Hs.49767	NM_004553:Homo sapiens NADH dehydrogenas	1.44	1.24
10	409038	T97490	Hs.50002	small inducible cytokine subfamily A (Cy	4.28	5.32
	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119	112.42	195.00
	409077	AA401369	Hs.190721	ESTs	1.00	17.00
	409093		Hs.50441	CGI-04 protein	2.02	1.93
		BE243834			80.44	40.00
15	409103	AF251237	Hs.112208	XAGE-1 protein		
15	409142	AL136877	Hs.50758	SMC4 (structural maintenance of chromoso	14.87	6.00
	409187	AF154830	Hs.50966	carbamoyl-phosphate synthetase 1, mitoch	1.00	1.00
	409228	A1654298	Hs.271695	ESTs, Weakly similar to 2109260A B cell	1.22	1.00
	409234	A1879419	Hs.27206	ESTs	1.00	1.00
	409268	AA625304	Hs.187579	ESTs	11.90	23.00
20	409269	AA576953	Hs.22972	hypothetical protein FLJ13352	1.00	1.00
	409361	NM_005982	Hs.54416	sine oculis homeobox (Drosophila) homolo	168.91	35.00
	409404	BE220053	Hs.129056	ESTs	1.00	1.00
	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini	79.74	96.00
					1.45	2.10
25	409430	R21945	Hs.346735	splicing factor, arginine/serine-rich 5		
25	409446	Al561173	Hs.67688	ESTs	1.00	4.00
	409506	NM_006153	Hs.54589	NCK adaptor protein 1	3.97	28.00
	409522	AA075382		gb:zm87b03.s1 Stratagene ovarian cancer	15.98	141.00
	409582	AA401369	Hs.190721	ESTs	1.00	17.00
•	409632	W74001	Hs.55279	serine (or cysteine) proteinase inhibito	292.12	79.00
30	409705	M37762	Hs.56023	brain-derived neurotrophic factor	1.00	82.00
	409719	Al769160	Hs.108681	Homo sapiens brain tumor associated prot	1.00	1.00
	409731	AA125985	Hs.56145	thymosin, beta, identified in neuroblast	0.12	18.12
	409744	AW675258	Hs.56265	Homo sapiens mRNA; cDNA DKFZp586P2321 (f	20.75	51.00
	409757	NM_001898	Hs.123114	cystatin SN	22.46	15.80
35	409866		113.120114	gb:UI-HF-BR0p-ajr-f-11-0-UI.r1 NIH_MGC_5	1.00	1.00
55		AW502152	11- 57404		1.50	1.09
	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S.		
	409902	Al337658	Hs.156351	ESTs	25.92	50.00
	409935	AW511413	Hs.278025	ESTs	2.63	2.11
40	409956	AW103364	Hs.727	inhibin, beta A (activin A, activin AB a	2.17	4.01
40	409958	NM_001523	Hs.57697	hyaluronan synthase 1	0.91	2.07
	410001	AB041036	Hs.57771	kallikrein 11	1.04	2.28
	410032	BE065985		gb:RC3-BT0319-120200-014-a09 BT0319 Homo	1.00	58.00
	410037	AB020725	Hs.58009	KIAA0918 protein	1.00	34.00
	410044	BE566742	Hs.58169	highly expressed in cancer, rich in leuc	1.00	1.00
45	410048	W76467	Hs.58218	proline oxidase homolog	1.03	1.44
	410076	T05387	Hs.7991	ESTs	1.12	1.50
	410102	AW248508	Hs.279727	Homo sapiens cDNA FLJ14035 fis, clone HE	9.89	1.00
	410153	BE311926	Hs.15830	hypothetical protein FLJ12691	1.00	1.00
	410166	AK001376	Hs.59346	hypothetical protein FLJ10514	1.00	1.00
50	410193	AJ132592	Hs.59757	zinc finger protein 281	42.01	51.00
50					1.72	1.32
	410274	AA381807	Hs.61762	hypoxia-inducible protein 2		2.00
	410309	BE043077	Hs.278153	ESTs	1.00	
	410340	AW182833	Hs.112188	hypothetical protein FLJ13149	32.08	75.00
	410348	AW182663	Hs.95469	ESTs	1.00	1.00
55	410407	X66839	Hs.63287	carbonic anhydrase IX	1.40	1.11
	410418	D31382	Hs.63325	transmembrane protease, serine 4	4.30	2.03
	410438	AB037756	Hs.45207	hypothetical protein KIAA1335	1.00	18.00
	410553	AW016824	Hs.255527	hypothetical protein MGC14128	1.34	1.04
	410555	W27235	Hs.64311	a disintegrin and metalloproteinase doma	23.99	1.41
60	410561	BE540255	Hs.6994	Homo sapiens cDNA: FLJ22044 fis, clone H	10.04	1.00
	410681	AW246890	Hs.65425	calbindin 1, (28kD)	10.88	18.92
	410781	Al375672	Hs.165028	ESTs	1.00	57.00
	411027	AF072099	Hs.67846	leukocyte immunogłobulin-like receptor,	1.62	3.78
				adenvlate cyclase activating polypeptide	1.00	1.15
65	411074	X60435	Hs.68137			1.58
03	411089	AA456454		cell division cycle 2-like 1 (PITSLRE pr	1.56	
	411152	BE069199		gb:QV3-BT0379-010300-105-g03 BT0379 Homo	1.00	84.00
	411248	AA551538	Hs.334605	Homo sapiens cDNA FLJ14408 fis, clone HE	1.82	1.45
	411252	AB018549	Hs.69328	MD-2 protein	7.32	12.74
7 0	411263	BE297802	Hs.69360	kinesin-like 6 (mitotic centromere-assoc	3.44	2.55
70	411365	M76477	Hs.289082	GM2 ganglioside activator protein	1.35	2.02
	411402	BE297855	Hs.69855	NRAS-related gene	1.00	46.00
	411573	AB029000	Hs.70823	KIAA1077 protein	11.40	11.35
	411579	AC005258	Hs.70830	U6 snRNA-associated Sm-like protein LSm7	1.08	1.90
	411617	AA247994	Hs.90063	neurocalcin delta	1.74	2.57
75	411732	AA059325	Hs.71642	quanine nucleotide binding protein (G pr	1.02	1.00
, 5	411773	NM_006799	Hs.72026	protease, serine, 21 (testisin)	1.34	2.19
	411773			Adlican	2.19	2.79
		AF245505	Hs.72157		23.34	34.00
	411800	N39342	Hs.103042	microtubule-associated protein 1B		8.00
90	411945	AL033527	Hs.92137	v-myc avian myelocytomatosis viral oncog	1.00	
80	412115	AK001763	Hs.73239	hypothetical protein FLJ10901	2.07	1.64
	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines	118.48	92.00
	412276	BE262621	Hs.73798	macrophage migration inhibitory factor (1.98	1.49
	412464	T78141	Hs.22826	ESTs, Weakly similar to I55214 salivary	1.16	1.34
0.5	412530	AA766268	Hs.266273	hypothetical protein FLJ13346	41.52	84.00
8 <i>5</i>	412537	AL031778		nuclear transcription factor Y, alpha	17.90	55.00
				·		

		O 02/086	443			
	412659	AW753865	Hs.74376	olfactomedin related ER localized protei	14.65	47.00
	412719	AW016610	Hs.816	ESTs	382.46	128.00
	412723	AA648459	Hs.335951	hypothetical protein AF301222	54.90	1.00
_	412811	H06382		ESTs	1.00	11.00
5	412817	AL037159	Hs.74619	proteasome (prosome, macropain) 26S subu	1.63	1.42
	412863	AA121673	Hs.59757	zinc finger protein 281	17.63	56.00
	412924	BE018422	Hs.75258	H2A histone family, member Y	1.00	22.00
	413004	T35901	Hs.75117	interleukin enhancer binding factor 2, 4	2.19	2.05
	413011	AW068115	Hs.821	biglycan	1.22	1.88
10	413048	M93221	Hs.75182	mannose receptor, C type 1	0.30	6.23
	413063	AL035737	Hs.75184	chitinase 3-like 1 (cartilage glycoprote	3.43	8.71
	413129	AF292100	Hs.104613	RP42 homolog	4.67	4.77
	413142	M81740	Hs.75212	ornithine decarboxylase 1	1.92	2.59
	413223	AI732182	Hs.191866	ESTs	5.73	27.00
15	413248	T64858	Hs.21433	hypothetical protein DKFZp547J036	0.99	1.06
10	413273	U75679	Hs.75257	stem-loop (histone) binding protein	1.00	18.00
	413278	BE563085	Hs.833	interferon-stimulated protein, 15 kDa	1.10	1.09
	413281	AA861271	Hs.222024	transcription factor BMAL2	95.94	69.00
		BE536218	Hs.137516	fidgetin-like 1	1.00	1.00
20	413364				0.95	2.09
20	413385	M34455	Hs.840	indoleamine-pyrrole 2,3 dioxygenase	1.00	1.00
	413409	Al638418	Hs.1440	DEAD/H (Asp-Glu-Ala-Asp/His) box polypep	1.00	31.00
	413453	AA129640	Hs.128065	ESTs		1.46
	413527	BE250788	Hs.179882	hypothetical protein FLJ12443	1.08	
25	413554	AA319146	Hs.75426	secretogranin II (chromogranin C)	79.15	114.00
25	413573	Al733859	Hs.149089	ESTs	1.00	1.00
	413582	AW295647	Hs.71331	hypothetical protein MGC5350	8.80	10.00
	413597	AW302885	Hs.117183	ESTs	1.00	1.00
	413690	BE157489		gb:RC1-HT0375-120200-011-e06 HT0375 Homo	1.00	1.00
20	413691	AB023173	Hs.75478	ATPase, Class VI, type 11B	3.16	2.32
30	413719	BE439580	Hs.75498	small inducible cytokine subfamily A (Cy	2.88	9.52
	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin	144.10	108.00
	413801	M62246	Hs.35406	ESTs, Highly similar to unnamed protein	1.00	17.00
	413833	Z15005	Hs.75573	centromere protein E (312kD)	1.00	1.00
	413882	AA132973	Hs.184492	ESTs	64.24	148.00
35	413926	AA133338	Hs.54310	ESTs	1.00	67.00
	413943	AW294416	Hs.144687	Homo sapiens cDNA FLJ12981 fis, clone NT	43.42	42.00
	413995	BE048146	Hs.75671	syntaxin 1A (brain)	1.23	1.11
	414035	Y00630	Hs.75716	serine (or cysteine) proteinase inhibito	2.02	2.51
	414142	AW368397	Hs.334485	Homo sapiens cDNA FLJ14438 fis, clone HE	1.00	102.00
40	414180	Al863304	Hs.120905	Homo sapiens cDNA FLJ11448 fis, clone HE	6.92	77.00
	414245	BE148072	Hs.75850	WAS protein family, member 1	1.00⋅	1.00
	414275	AW970254	Hs.889	Charot-Leyden crystal protein	1.00	59.00
	414317	BE263280	Hs.75888	phosphogluconate dehydrogenase	1.52	1.73
	414334	AA824298	Hs.21331	hypothetical protein FLJ10036	1.78	1.72
45	414341	D80004	Hs.75909	KIAA0182 protein	33.90	151.00
	414368	W70171	Hs.75939	uridine monophosphate kinase	171.60	97.00
	414416	AW409985	Hs.76084	hypothetical protein MGC2721	2.32	1.85
	414430	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1	226.15	66.00
	414570	Y00285	Hs.76473	insulin-like growth factor 2 receptor	1.64	1.98
50	414618	A1204600	Hs.96978	hypothetical protein MGC10764	1.87	72.00
50	414675	R79015	Hs.296281	interleukin enhancer binding factor 1	1.51	1.39
	414683	S78296	Hs.76888	hypothetical protein MGC12702	43.61	64.00
		AF002020	Hs.76918	Niemann-Pick disease, type C1	28.63	71.00
	414696			Homo sapiens cDNA FLJ13522 fis, clone PL	14.86	42.00
55	414711	Al310440	Hs.288735		1.00	5.00
55	414718	H95348	Hs.107987	ESTs	1.64	1.44
	414732	AW410976	Hs.77152	minichromosome maintenance deficient (S.	65.01	74.00
	414747	U30872	Hs.77204	centromere protein F (350/400kD, mitosin		121.00
	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2	130.35	
60	414774	X02419	Hs.77274	plasminogen activator, urokinase	2.24	2.19
60	414806	D14694	Hs.77329	phosphatidylserine synthase 1	1.63	1.53
	414809	Al434699	Hs.77356	transferrin receptor (p90, CD71)	1.97	2.60
	414812	X72755	Hs.77367	monokine induced by gamma interferon	3.48	10.60
	414825	X06370	Hs.77432	epidermal growth factor receptor (avian	103.22	143.00
C =	414839	X63692	Hs.77462	DNA (cytosine-5-)-methyltransferase 1	1.80	1.69
65	414883	AA926960		CDC28 protein kinase 1	14.29	10.06
	414907	X90725	Hs.77597	polo (Drosophia)-like kinase	1.95	2.20
	414914	U49844	Hs.77613	ataxia telangiectasia and Rad3 related	3.00	2.90
	414945	BE076358	Hs.77667	lymphocyte antigen 6 complex, locus E	1.02	1.21
~~	414972	BE263782	Hs.77695	KIAA0008 gene product	1.00	1.00
70	415014	AW954064	Hs.24951	ESTs	1.42	2.84
	415091	AL044872	Hs.77910	3-hydroxy-3-methylglutaryl-Coenzyme A sy	1.00	30.00
	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2	34.72	107.00
	415227	AW821113	Hs.72402	ESTs	1.87	49.00
	415238	R37780	Hs.21422	ESTs	1.00	1.00
75	415263	AA948033	Hs.130853	ESTs	1.00	1.00
-	415295	R41450	Hs.6546	ESTs	1.00	1.00
	415339	NM_015156	Hs.78398	KIAA0071 protein	51.18	166.00
	415669	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	30.84	63.00
_	415674	BE394784	Hs.78596	proteasome (prosome, macropain) subunit,	1.48	1.39
80	415709	AA649850	Hs.278558	ESTs	1.00	1.00
	415735	AA704162	Hs.120811	ESTs, Weakly similar to I38022 hypotheti	1.00	72.00
	415799	AA653718	Hs.225841	DKFZP434D193 protein	6.23	31.00
	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t	24.30	1.00
	415857	AA866115	Hs.127797	Homo sapiens cDNA FLJ11381 fis, clone HE	32.51	35.00
85	415989	A1267700		ESTs	78.89	1.00

	w	O 02/086	443			
	416018	AW138239	Hs.78977	proprotein convertase subtilisin/kexin t	1.00	1.00
	416065	BE267931	Hs.78996	proliferating cell nuclear antigen	3.35	2.32
	416111	AA033813	Hs.79018	chromatin assembly factor 1, subunit A (39.03	3.00
5	416177	AA174069	Hs.187607	ESTs	1.00	9.00
5	416178 416208	Al808527	Hs.192822 Hs.41295	serologically defined breast cancer anti ESTs, Weakly similar to MUC2_HUMAN MUCIN	3.83 3.67	3.76 1.00
	416209	AW291168 AA236776	Hs.79078	MAD2 (mitotic arrest deficient, yeast, h	9.70	1.00
	416239	AL038450	Hs.48948	ESTs	83.87	129.00
4.0	416250	AA581386	Hs.73452	hypothetical protein MGC10791	1.96	2.12
10	416322	BE019494	Hs.79217	pyrroline-5-carboxylate reductase 1	2.08	1.73
	416423	H54375	Hs.268921	ESTs	1.00	89.00
	416448	L13210	Hs.79339	lectin, galactoside-binding, soluble, 3	1.28	1.54
	416498 416658	U33632 U03272	Hs.79351 Hs.79432	potassium channel, subfamily K, member 1 fibrillin 2 (congenital contractural ara	27.29 53.29	67.00 51.00
15	416661	AA634543	Hs.79440	IGF-II mRNA-binding protein 3	9.96	5.00
10	416722	AA354604	Hs.122546		3.68	33.00
	416819	U77735	Hs.80205	pim-2 oncogene	1.59	1.84
	416936	N21352	Hs.42987	ESTs, Weakly similar to S21348 probable	1.00	1.00
20	417034	NM_006183	Hs.80962	neurotensin	1.00	1.00
20	417061	A1675944	Hs.188691	Homo sapiens cDNA FLJ12033 fis, clone HE	32.95	156.00
	417079 417218	U65590 AA129547	Hs.81134 Hs.285754	interleukin 1 receptor antagonist met proto-oncogene (hepatocyte growth fa	3.91 1.00	4.93 51.00
	417233	W25005	Hs.24395	small inducible cytokine subfamily B (Cy	3.38	2.05
	417308	H60720	Hs.81892	KIAA0101 gene product	82.94	25.36
25	417315	A1080042	Hs.180450	ribosomal protein S24	106.61	121.00
	417324	AW265494		ESTs	1.20	1.28
	417366	BE185289	Hs.1076	small proline-rich protein 1B (cornifin)	8.97	3.27
	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor	2.59	1.82
30	417428	N87579	Hs.278871	gb:LL2030F Human fetal heart, Lambda ZAP	1.00 304.75	52.00 173.00
50	417433 417466	BE270266 Al681547	Hs.82128 Hs.59457	5T4 oncofetal trophoblast glycoprotein hypothetical protein FLJ22127	1.24	1.34
	417512	A1979168	Hs.344096	glycoprotein (transmembrane) nmb	2.14	5.50
	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated	2.66	1.68
2 ~	417542	J04129	Hs.82269	progestagen-associated endometrial prote	1.28	1.35
35	417576	AA339449	Hs.82285	phosphoribosylglycinamide formyltransfer	42.76	51.00
	417715	AW969587	Hs.86366	ESTs	6.35	2.75
	417720 417791	AA205625 AW965339	Hs.208067 Hs.111471	ESTs ESTs	113.31 39.98	56,00 16.00
	417830	AW504786	Hs.122579	hypothetical protein FLJ10461	2.61	31.00
40	417866	AW067903	Hs.82772	collagen, type XI, alpha 1	2.35	2.44
	417900	BE250127	Hs.82906	CDC20 (cell division cycle 20, S. cerevi	1.52	1.11
	417933	X02308	Hs.82962	thymidylate synthetase	4.74	2.55
	417944	AU077196	Hs.82985	collagen, type V, alpha 2	3.61	5.21
45	417975	AA641836	Hs.30085	hypothetical protein FLJ23186	12.49 1.00	38.00 26.00
73	417991 418004	AA731452 U37519	Hs.190008 Hs.87539	ESTs aldehyde dehydrogenase 3 family, member	3.02	2.12
	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial	187.59	1.00
	418054	NM_002318	Hs.83354	lysyl oxidase-like 2	2.85	2.63
~^	418057	NM_012151	Hs.83363	coagulation factor VIII-associated (intr	1.54	1.69
50	418113	Al272141	Hs.83484	SRY (sex determining region Y)-box 4	6.82	5.22
	418140	BE613836 .	Hs.83551	microfibrillar-associated protein 2	1.26 134.19	1.46 144.00
	418203 418207	X54942 C14685	Hs.83758 Hs.34772	CDC28 protein kinase 2 ESTs	1.00	1.00
	418216	AA662240	Hs.283099	AF15q14 protein	64.66	61.00
55	418236	AW994005	Hs.337534	ESTs	18.53	147.00
	418249	H89226	Hs.34892	KIAA1323 protein	30.53	106.00
	418281	U09550	Hs.1154	oviductal glycoprotein 1, 120kD (mucin 9	1.00	3.00
	418283	S79895	Hs.83942	cathepsin K (pycnodysostosis)	3.96	5,16 2.01
60	418300 418322	AI433074 AA284166	Hs.86682 Hs.84113	Homo sapiens cDNA: FLJ21578 fis, clone C cyclin-dependent kinase inhibitor 3 (CDK	3.18 11.96	2.91 6.68
00	418327	U70370	Hs.84136	paired-like homeodomain transcription fa	9.23	2.22
	418345	AJ001696	Hs.241407	serine (or cysteine) proteinase inhibito	1.00	1.00
	418379	AA218940	Hs.137516	fidgetin-like 1	21.68	44.00
CE	418397	NM_001269	Hs.84746	chromosome condensation 1	1.00	8.00
65	418403	D86978	Hs.84790	KIAA0225 protein	16.91	18.98
	418462	BE001596	Hs.85266	integrin, beta 4	1.56 3.22	1.16
	418478 418506	U38945 AA084248	Hs.1174 Hs.85339	cyclin-dependent kinase inhibitor 2A (me G protein-coupled receptor 39	2.66	2.38 2.22
	418526	BE019020	Hs.85838	solute carrier family 16 (monocarboxylic	2.04	2.21
70	418538	BE244323	Hs.85951	exportin, tRNA (nuclear export receptor	1.33	37.00
	418543	NM_005329	Hs.85962	hyaluronan synthase 3	1.04	1.23
	418574	N28754		M-phase phosphoprotein 9	48.60	85.00
	418592	X99226	Hs.284153	Fanconi anemia, complementation group A	18.24	26.00 1.41
75	418641	BE243136	Hs.86947	a disintegrin and metalloproteinase doma	1.19 29.05	
, 5	418661 418663	NM_001949 AK001100	Hs.1189 Hs.41690	E2F transcription factor 3 desmocollin 3	29.05 112.17	43.00 19.00
	418678	NM_001327	Hs.87225	cancer/testis antigen	1.18	1.10
	418686	Z36830	Hs.87268	annexin A8	1.54	1.98
0.0	418689	Al360883	Hs.274448	hypothetical protein FLJ11029	1.19	1.04
80	418712	Z42183		gb:HSC0BF041 normalized infant brain cDN	1.00	12.00
	418727	AA227609	Hs.94834	ESTs	1.00	49.00
	418738	AW388633	Hs.6682	solute carrier family 7, (cationic amino ESTs	49.85 1.00	1.00 140.00
	418819 418830	AA228776 BE513731	Hs.191721 Hs.88959	hypothetical protein MGC4816	20.97	23.00
85	418882	NM_004996	Hs.89433	ATP-binding cassette, sub-family C (CFTR	57.09	35.00
-				• • • •		

	w	O 02/086	443			
	418971	AA360392	Hs.87113	ESTs	1.00	12.00
	418973	AA233056	Hs.191518	ESTs	4.89	28.00
	419078	M93119	Hs.89584	insulinoma-associated 1	1.00	10.00
	419079	AW014836	Hs.18844	ESTs	1.09	1.98
5	419080	AW150835	Hs.18878	hypothetical protein FLJ21620	2.06	1.68
•	419088	AI538323	Hs.52620	integrin, beta 8	15.60	51.00
	419092	J05581	Hs.89603	mucin 1, transmembrane	1.11	1.83
		AA374372	Hs.89626	parathyroid hormone-like hormone	1.00	1.00
	419121				1.10	1.14
10	419171	NM_002846	Hs.89655	protein tyrosine phosphatase, receptor t	1.00	1.00
10	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin		
	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (Cy	3.18	2.43
	419288	AA256106	Hs.87507	ESTs	1.00	34.00
	419335	AW960146	Hs.284137	hypothetical protein FLJ12888	1.00	8.00
	419354	M62839	Hs.1252	apolipoprotein H (beta-2-glycoprotein I)	22.63	54.00
15	419359	AL043202	Hs.90073	chromosome segregation 1 (yeast homolog)	2.50	1.98
	419423	D26488	Hs.90315	KIAA0007 protein	1.00	7.00
	419443	D62703	110.00010	qb:HUM316G10B Clontech human aorta polyA	1.00	12.00
	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	1.64	1.84
					13.63	62.00
20	419474	AW968619	Hs.155849	ESTs		
20	419485	AA489023	Hs.99807	ESTs. Weakly similar to unnamed protein	4.27	2.26
	419488	AA316241	Hs.90691	nucleophosmin/nucleoplasmin 3	3.66	3.63
	419502	AU076704		fibrinogeп, A alpha polypeptide	13.05	115.00
	419539	AF070590	Hs.90869	Homo sapiens clones 24622 and 24623 mRNA	74.60	117.00
	419556	U29615	Hs.91093	chitinase 1 (chitotriosidase)	1.47	4.98
25	419569	AI971651	Hs.91143	jagged 1 (Alagille syndrome)	1.00	4.00
	419594	AA013051	Hs.91417	topoisomerase (DNA) II binding protein	94.30	94.00
,	419703	Al793257	Hs.128151	ESTs	15.26	50.00
	419721	NM_001650	Hs.288650	aquaporin 4	1.00	191.00
			Hs.21411	gb:no53a03.s1 NCI_CGAP_SS1 Homo sapiens	1.00	59.00
30	419729	AA586442			2.02	1.08
20	419741	NM_007019	Hs.93002	ubiquitin carrier protein E2-C		
	419745	AF042001	Hs.93005	slug (chicken homolog), zinc finger prot	1.00	1.00
	419752	AA249573	Hs.152618	ESTs, Moderately similar to ZN91_HUMAN Z	29.87	77.00
	419839	U24577	Hs.93304	phospholipase A2, group VII (platelet-ac	50.99	214.00
	419936	Al792788		gb:ol91d05.y5 NCI_CGAP_Kid5 Homo sapiens	1.00	1.00
35	419937	AB040959	Hs.93836	DKFZP434N014 protein	1.64	2.47
	419983	W55956	Hs.94030	Homo sapiens mRNA; cDNA DKFZp586E1624 (f	15.72	94.00
	420005	AW271106	Hs.133294	ESTs	3.15	1.43
	420047	Al478658	Hs.94631	brefeldin A-inhibited guanine nucleotide	12.45	39.00
	420058	AK001423	Hs.94694	Homo sapiens cDNA FLJ10561 fis, clone NT	1.00	117.00
40				cyclin-dependent kinase 4	1.43	1.21
40	420162	BE378432	Hs.95577		2.35	3.23
	420251	AW374968	Hs.348112	Human DNA sequence from clone RP5-1103G7		
	420259	AF004884	Hs.96253	calcium channel, voltage-dependent, P/Q	0.77	1.15
	420281	Al623693	Hs.323494	ESTs	45.04	54.00
	420309	AW043637	Hs.21766	ESTs, Weakly similar to ALU5_HUMAN ALU S	49.22	31.00
45	420332	NM_001756	Hs.1305	serine (or cysteine) proteinase inhibito	0.05	2.82
	420380	AA640891	Hs.102406	ESTs	0.99	2.74
	420462	AF050147	Hs.97932	chondromodulin I precursor	1.00	1.00
	420520	AK001978	Hs.98510	similar to rab11-binding protein	49.74	133.00
	420552	AK000492	Hs.98806	hypothetical protein	94.65	88.00
50	420560	AW207748	Hs.59115	ESTs	1.00	17.00
50	420610	AI683183	Hs.99348	distal-less homeo box 5	1.00	13.00
			Hs.88678	ESTs	50.09	95.00
	420689	H79979			1.00	31.00
	420721	AA927802	Hs.159471	ZAP3 protein		
55	420759	T11832	Hs.127797	Homo sapiens cDNA FLJ11381 fis, clone HE	1.00	48.00
55	420783	Al659838	Hs.99923	lectin, galactoside-binding, soluble, 7	3.04	1.25
	420900	AL045633	Hs.44269	ESTs	2.24	7.00
	420931	AF044197	Hs.100431	small inducible cytokine B subfamily (Cy	1.00	8.00
	421002	AF116030	Hs.100932	transcription factor 17	1.00	27.00
	421027	AA761198	Hs.55254	ESTs	2.87	38.00
60	421037	AI684808	Hs.197653	ESTs	1.00	46.00
	421041	N36914	Hs.14691	ESTs, Moderately similar to 138022 hypot	1.00	98.00
	421073	NM_004689	Hs.101448	metastasis associated 1	1.34	1.46
	421110	AJ250717	Hs.1355	cathepsin E	119.47	427.00
	421133	AA401369	Hs.190721	ESTs	1.10	17.00
65					1.45	1.63
UJ	421150	Al913562	Hs.189902	ESTs	1.00	15.00
	421155	H87879	Hs.102267	lysyl oxidase		
	421307	BE539976	Hs.103305	Homo sapiens mRNA; cDNA DKFZp434B0425 (f	1.37	1.10
	421316	AA287203	Hs.324728	SMA5	1.00	21.00
	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy	1.92	3.94
70	421451	AA291377	Hs.50831	ESTs	5.89	14.00
	421474	U76362	Hs.104637	solute carrier family 1 (glutamate trans	1.46	1.76
	421506	BE302796	Hs.105097	thymidine kinase 1, soluble	1.56	1.08
	421508	NM_004833	Hs.105115	absent in melanoma 2	5.11	5.23
	421515	Y11339	Hs.105352	GalNAc alpha-2, 6-sialyltransferase I, I	1.00	3.00
75	421513	AA312082	Hs.105332	GDNF family receptor alpha 1	2.63	10.58
, 5				DKFZP564O0823 protein	1.46	1.88
	421526	AL080121	Hs.105460		30.21	50.32
	421552	AF026692	Hs.105700	secreted frizzled-related protein 4		
	421574	AJ000152	Hs.105924	defensin, beta 2	1.67	1.74
00	421582	AI910275		trefoil factor 1 (breast cancer, estroge	1.23	1.00
80	421633	AF121860	Hs.106260	sorting nexin 10	1.00	116.00
	421659	NM_014459	Hs.106511	protocadherin 17	0.05	6.33
	421677	H64092	Hs.38282	ESTs	1.31	1.42
	421753	BE314828	Hs.107911	ATP-binding cassette, sub-family B (MDR/	1.41	1.20
_	421773	W69233	Hs.112457	ESTs	1.12	1.14
85	421777	BE562088	Hs.108196	HSPC037 protein	1.97	1.29
				· · · · · · · · · · · · · · · · · · ·		

	W	O 02/086	443				PC 1/USU2/124 /
	421800	AA298151	Hs.222969	ESTs	1.03	1.30	
	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	1.88	1.59	
	421896	N62293	Hs.45107	ESTs polyadenylate binding protein-interactin	11.84 45.89	22.80 90.00	
5	421928 421931	AF013758 NM_000814	Hs.109643 Hs.1440	gamma-aminobutyric acid (GABA) A recepto	1.13	1.49	
,	421948	L42583	Hs.334309	keratin 6A	51.83	20.25	
	421975	AW961017	Hs.6459	hypothetical protein FLJ11856	1.17	1.15	
	422026	U80736	Hs.110826	trinucleotide repeat containing 9	1.00	52.00	
4.0	422094	AF129535	Hs.272027	F-box only protein 5	67.61	62.00	
10	422095	Al868872	Hs.282804	hypothetical protein FLJ22704	4.37	2.34	
	422109	S73265	Hs.1473	gastrin-releasing peptide	4.18	95.50	
	422128	AW881145	11- 4470	gb:QV0-OT0033-010400-182-a07 OT0033 Homo	40.89	71.00	
	422129	AU076635	Hs.1478	serine (or cysteine) proteinase inhibito	1.13 41.59	1.38 96.00	
15	422134 422158	AW179019 L10343	Hs.112110 Hs.112341	mitochondrial ribosomal protein L42 protease inhibitor 3, skin-derived (SKAL	2.37	1.10	
13	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias	3.29	1.68	
	422278	AF072873	Hs.114218	frizzled (Drosophila) homolog 6	4.93	5.73	
	422282	AF019225	Hs.114309	apolipoprotein L	1.49	1.71	
••	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	25.99	10.91	
20	422310	AA316622	Hs.98370	cytochrome P450, subfamily IIS, polypept	1.54	1.41	
	422311	AF073515	Hs.114948	cytokine receptor-like factor 1	1.15	1.78	
	422330	D30783	Hs.115263	epiregulin	1.00	112.00	
	422364	AF067800	Hs.115515	C-type (calcium dependent, carbohydrate-	9.39	60.00	
25	422406	AF025441	Hs.116206	Opa-interacting protein 5	18.33 1.71	53.00 3.21	
23	422424 422440	AI186431 NM_004812	Hs.296638 Hs.116724	prostate differentiation factor aldo-keto reductase family 1, member B10	47.53	32.00	
	422487		Hs.198267	mucin 4, tracheobronchial	73.68	35.54	
	422511	AU076442	Hs.117938	collagen, type XVII, alpha 1	173.97	26.00	
	422515	AW500470	Hs.117950	multifunctional polypeptide similar to S	4.68	2.92	
30	422656	AI870435	Hs.1569	LIM homeobox protein 2	1.00	1.00	
	422737	M26939	Hs.119571	collagen, type III, alpha 1 (Ehlers-Danl	3.89	4.55	
•	422756	AA441787	Hs.119689	glycoprotein hormones, alpha polypeptide	1.05	1.46	
	422765	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur	3.88	1.53	
35	422809	AK001379	Hs.121028	hypothetical protein FLJ10549	99.56	53.00	
33	422867 422938	L32137	Hs.1584	cartilage oligomeric matrix protein (pse centromere protein A (17kD)	1.69 70.46	3.17 61.00	
	422956	NM_001809 BE545072	Hs.1594 Hs.122579	ECT2 protein (Epithelial cell transformi	77.74	3.00	
	422960	AW890487	Hs.63984	cadherin 13, H-cadherin (heart)	5.88	8.55	
	422963	AA401369	Hs.190721	ESTs	171.41	17.00	
40	422976	AU076657	Hs.1600	chaperonin containing TCP1, subunit 5 (e	2.12	1.62	
	422981	AF026445	Hs.122752	TATA box binding protein (TBP)-associate	10.49	35.00	
	422986	AA319777	Hs.221974	ESTs	12.40	32.47	
	423034	AL119930		gb:DKFZp761A092_r1 761 (synonym: hamy2)	16.41	60.00	
15	423049	X59373	Hs.188023	ESTs, Moderately similar to HXDA_HUMAN H	1.00	1.00	
45	423081	AF262992	Hs.123159	sperm associated antigen 4	1.82 1.14	2.96 1.53	
	423184 423217	NM_004428 NM_000094	Hs.1624 Hs.1640	ephrin-A1 collagen, type VII, alpha 1 (epidermolys	2.14	1.69	
	423248	AA380177	Hs.125845	ribulose-5-phosphate-3-epimerase	7.18	14.00	
	423309	BE006775	Hs.126782	sushi-repeat protein	21.90	64.00	
50	423361	AW170055	Hs.47628	ESTs	1.00	1.00	
	423453	AW450737	Hs.128791	CGI-09 protein	55.52	66.00	
	423511	AF036329	Hs.129715	gonadotropin-releasing hormone 2	0.88	1.17	
	423516	AB007933	Hs.129729	ligand of neuronal nitric oxide synthase	1.76	5.40	
55	423551	AA327598	Hs.233785	ESTs	3.54	4.33	
55	423554	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	1.00	50.00	
	423575	C18863 Al807408	Hs.163443 Hs.166368	Homo sapiens cDNA FLJ11576 fis, clone HE ESTs	38.88 1.00	70.00 67.00	
	423624 423634	AW959908	Hs.1690	heparin-binding growth factor binding pr	76.02	1.00	
	423642	AW452650	Hs.157148	hypothetical protein MGC13204	19.14	58.00	
60	423662	AA642452	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro	3.61	13.57	
	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	240.73	40.00	
	423698	AA329796	Hs.1098	DKFZp434J1813 protein	1.00	59.00	
	423725	AJ403108	Hs.132127	hypothetical protein LOC57822	4.20	1.00	
~~	423761	NM_006194	Hs.132576	paired box gene 9	1.00	1.00	
65	423787	AJ295745	Hs.236204	nuclear pore complex protein	7.18	6.64	
	423816	AF151064	11- 4707	hypothetical protein	1.00 1.00	44.00	
	423826	U20325	Hs.1707	cocaine- and amphetamine-regulated trans Homo sapiens mRNA; cDNA DKFZp761J1324 (f	1.00	1.00 1.00	
	423849 423887	AL157425 AL080207	Hs.133315 Hs.134585	DKFZP434G232 protein	1.00	1.00	
70	423934	U89995	Hs.159234	forkhead box E1 (thyroid transcription f	31.33	31.00	
, ,	423954	AW753164	Hs.288604	KIAA1632 protein	5.81	10.87	
	423961	D13666	Hs.136348	osteoblast specific factor 2 (fasciclin	3.55	3.30	
	424012	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog	233.42	68.00	
	424016	AW163729	Hs.6140	hypothetical protein MGC15730	0.93	1.01	
75	424028	AF055084	Hs.153692	Homo sapiens cDNA FLJ14354 fis, clone Y7	21.30	52.00	
	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito	1.00	1.00	
	424086	Al351010	Hs.102267	lysyl oxidase	21.91	70.00	
	424098	AF077374	Hs.139322	small proline-rich protein 3	137.82	54.00	
80	424120	T80579	Hs.290270	ESTs	1.00 1.00	1.00 34.00	
ou	424165	AW582904	Hs.142255	islet amyloid polypeptide gb:EST41944 Endometrial tumor Homo sapie	13.06	48.00	
	424200 424279	AA337221 L29306	Hs.171814	tryptophan hydroxylase (tryptophan 5-mon	1.00	1.00	
	424308	AW975531	Hs.154443	minichromosome maintenance deficient (S.	164.58	87.00	•
_	424326	NM_014479	Hs.145296	disintegrin protease	53.72	302.00	
85	424340	AA339036	Hs.7033	ESTs	0.88	1.15	
							

	W	O 02/086	443			
	424351	BE622117	Hs.145567	hypothetical protein	0.93	1.03
	424364	AW383226	Hs.201189	ESTs, Weakly similar to G01763 atrophin-	7.02	3.24
	424381	AA285249	Hs.146329	protein kinase Chk2	95.55	92.00
	424411	NM 005209	Hs.146549	crystallin, beta A2	1.63	3.25
5	424420	BE614743	Hs.146688	prostaglandin E synthase	1.63	1.33
-	424441	X14850	Hs.147097	H2A histone family, member X	1.82	1.29
	424502	AF242388	Hs.149585	lengsin	1.00	1.00
	424503	X06256	Hs.149609	integrin, alpha 5 (fibronectin receptor,	1.02	2.24
	424513	BE385864	Hs.149894	mitochondrial translational initiation f	1.00	17.00
10	424539	L02911	Hs.150402	Activin A receptor, type I (ACVR1) (ALK	32.46	108.00
	424568	AF005418	Hs.150595	cytochrome P450, subfamily XXVIA, polype	3.40	2.58
	424602	AK002055	Hs.151046	hypothetical protein FLJ11193	31.87	25.00
	424629	M90656	Hs.151393	glutamate-cysteine ligase, catalytic sub	3.58	2.37
	424645	NM_014682	Hs.151449	KIAA0535 gene product	1.00	1.00
15	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	2.12	2.23
	424717	AW992292	Hs.152213	wingless-type MMTV integration site fami	1.00	1.00
	424834	AK001432	Hs.153408	Homo sapiens cDNA FLJ10570 fis, clone NT	56.19	12.00
	424840	D79987	Hs.153479	extra spindle poles, S. cerevisiae, homo	2.65	1.30
	424867	AI024860	Hs.153591	Not56 (D. melanogaster)-like protein	1.23	1.05
20	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related k	21.35	1.00
	424979	D87989	Hs.154073	UDP-galactose transporter related	1.36	1.35
	424999	AW953120		gb:EST365190 MAGE resequences, MAGB Homo	1.24	1.41
	425048	H05468	Hs.164502	ESTs	1.00	11.00
	425057	AA826434	Hs.1619	achaete-scute complex (Drosophila) homo!	7.46	87.00
25	425081	X74794	Hs.154443	minichromosome maintenance deficient (S.	2.52	3.82
	425118	AU076611	Hs.154672	methylene tetrahydrofolate dehydrogenase	4.84	4.03
	425159	NM_004341	Hs.154868	carbamoyl-phosphate synthetase 2, aspart	3.62	2.73
	425202	AW962282	Hs.152049	ESTs, Weakly similar to 138022 hypotheti	1.00	53.00
•	425234	AW152225	Hs.165909	ESTs, Weakly similar to I38022 hypotheti	100.77	44.00
30	425236	AW067800	Hs.155223	stanniocalcin 2	3.30	2.90
	425245	A1751768	Hs.155314	KIAA0095 gene product	1.91	2.32
	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin	1.41	1.49
	425266	J00077	Hs.155421	alpha-fetoprotein	1.00	68.00
25	425274	BE281191	Hs.155462	minichromosome maintenance deficient (mi	1.97	1.63
35	425322	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	141.49	123.00
	425349	AA425234	Hs.79886	ribose 5-phosphate isomerase A (ribose 5	1.00	84.00
	425371	D49441	Hs.155981	mesothelin	0.87	1.59
	425397	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)	14.90	5.76
40	425420	BE536911	Hs.234545	hypothetical protein NUF2R	1.00	1.00
40	425424	NM_004954	Hs.157199	ELKL motif kinase	10.58	9.74
	425483	AF231022	Hs.158159	FAT tumor suppressor (Drosophila) homolo	1.74	1.40
	425566	AW162943	Hs.250618	UL16 binding protein 2	1.49	1.14
	425580	L11144	Hs.1907	galanin	53.29	233.00
45	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	33.45 1.00	1.00 55.00
73	425692	D90041	Hs.155956	N-acetyltransferase 1 (arylamine N-acety	1.00	10.00
	425695 425734	NM_005401	Hs.159238 Hs.159396	protein tyrosine phosphatase, non-recept peptidylglycine alpha-amidating monooxyg	1.00	41.00
	425776	AF056209 U25128	Hs.159499	parathyroid hormone receptor 2	1.00	48.00
	425810	Al923627	Hs.31903	ESTs	27.39	98.00
50	425811	AL039104	Hs.159557	karyopherin alpha 2 (RAG cohort 1, impor	1.99	1.58
50	425849	A1077288	Hs.296323	serum/glucocorticoid regulated kinase	71.16	3.42
	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member	1.35	1.34
	426067	AA401369	Hs.190721	ESTs	1.01	17.00
	426088	AF038007	Hs.166196	ATPase, Class I, type 8B, member 1	26.26	47.00
55	426215	AW067800	Hs.155223	stanniocalcin 2	1.91	2.90
	426227	U67058	Hs.154299	Human proteinase activated receptor-2 mR	22.40	25.00
	426269	H15302	Hs.168950	Homo sapiens mRNA; cDNA DKFZp566A1046 (f	1.00	1.00
	426283	NM_003937	Hs.169139	kynureninase (L-kynurenine hydrolase)	91.39	229.00
	426329	AL389951	Hs.271623	nucleoporin 50kD	4.34	4.08
60	426427	M86699	Hs.169840	TTK protein kinase	7.02	1.00
	426432	AF001601	Hs.169857	paraoxonase 2	1.16	1.68
	426440	BE382756	Hs.169902	solute carrier family 2 (facilitated glu	2.59	1.71
	426459	AF151812	Hs.169992	hypothetical 43.2 Kd protein	1.56	1.66
	426471	M22440	Hs.170009	transforming growth factor, alpha	20.60	26.00
65	426496	D31765	Hs.170114	KIAA0061 protein	9.81	22.00
	426501	AA401369	Hs.190721	ESTs	19.23	17.00
	426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic	103.74	41.00
	426536	A1949749	Hs.44441	ESTs	4.65	23.00
~~	426572	AB037783	Hs.170623	hypothetical protein FLJ11183	1.00	43.00
70	426682	AV660038	Hs.2056	UDP glycosyltransferase 1 family, polype	160.06	8.00
	426691	NM_006201	Hs.171834	PCTAIRE protein kinase 1	1.51	1.35
	426746	J03626	Hs.2057	uridine monophosphate synthetase (orotat	2.13	1.68
	426752	X69490	Hs.172004	titin	0.02	5.14
~~	426784	U03749	Hs.172216	chromogranin A (parathyroid secretory pr	1.72	1.71
75	426807	AA385315	Hs.156682	ESTs	1.30	1.64
	426812	AF105365	Hs.172613	solute carrier family 12 (potassium/chlo	1.47	1.53
	426814	AF036943	Hs.172619	myelin transcription factor 1-like	1.00	1.00
	426831	BE296216	Hs.172673	S-adenosylhomocysteine hydrolase	1.51	1.25
0.0	426897	AA401369	Hs.190721	ESTs	141.56	17.00
80	426925	NM_001196	Hs.315689	Homo sapiens cDNA: FLJ22373 fis, clone H	32.61	38.00
	426935	NM_000088	Hs.172928	collagen, type I, alpha 1	2.65	3.16
	426964	AA393739	Hs.287416	Homo sapiens cDNA FLJ11439 fis, clone HE	1.97	3.49
	426966	Al493134		sclerostin	1.00	1.00
0.F	426991	AK001536		Homo sapiens cDNA FLJ10674 fis, clone NT	3.39	2.28
85	427099	AB032953	Hs.173560	odd Oz/ten-m homolog 2 (Drosophila, mous	4.24	17.00

	**/	O 02/086	113			
	427239	BE270447	Hs.174070	ubiquitin carrier protein	1.58	1.05
	427260	AA663848		gb:ae70b06.s1 Stratagene schizo brain S1	1.34	1.60
	427281	AA906147	Hs.102869	ESTs	1.00	66.00
5	427335	AA448542 T57896	Hs.251677 Hs.191095	G antigen 7B	51.83 1.17	4.00 1.95
3	427354 427356	AW023482	Hs.97849	ESTs ESTs	7.31	41.00
	427376	AA401533	Hs.19440	ESTs	1.00	57.00
	427383	NM_005411	Hs.177582	surfactant, pulmonary-associated protein	0.42	1.32
10	427427	AF077345	Hs.177936	lectin, superfamily member 1 (cartilage-	1.00	20.00
10	427441 427445	AA412605 X80818	Hs.343879 Hs.178078	SPANX family, member C glutamate receptor, metabotropic 4	1.00 0.97	1.00 1.03
	427505	AA361562	Hs.178761	26S proteasome-associated pad1 homolog	4.60	4.04
	427510	Z47542	Hs.179312	small nuclear RNA activating complex, po	22.00	45.00
1.5	427528	AU077143	Hs.179565	minichromosome maintenance deficient (S.	97.45	92.00
15	427546	AA188763	Hs.36793 Hs.26534	hypothetical protein FLJ23188 ESTs	1.50 6.81	3.24 40.00
	427562 427585	R56424 D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph	69.91	62.00
	427660	Al741320	Hs.114121	Homo sapiens cDNA: FLJ23228 fis, clone C	2.70	49.00
20	427666	Al791495	Hs.180142	calmodulin-like skin protein	1.37	1.88
20	427668	AA298760	Hs.180191	hypothetical protein FLJ14904	29.55	67.00
	427677 427701	NM_007045 AA411101	Hs.180296 Hs.243886	FGFR1 oncogene partner nuclear autoantigenic sperm protein (his	3.52 7.41	2.63 34.00
	427711	M31659	Hs.180408	solute carrier family 25 (mitochondrial	15.84	70.00
	427719	Al393122	Hs.134726	ESTs	7.03	4.52
25	427722	AK000123	Hs.180479	hypothetical protein FLJ20116	2.92	1.74
	427747	AW411425	Hs.180655	serine/threonine kinase 12	1.76 9.63	1.26 59.00
	427912 427961	AL022310 AW293165	Hs.181097 Hs.143134	tumor necrosis factor (ligand) superfami ESTs	41.97	118.00
	428004	AA449563	Hs.151393	glutamate-cysteine ligase, catalytic sub	23.82	1.00
30	428023	AL038843	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Homo sapiens cDNA: FLJ23602 fis, clone L	1.40	1.33
	428046	AW812795	Hs.337534	ESTs, Moderately similar to 138022 hypot	96.28	167.00
	428093	AW594506	Hs.104830	ESTs protein disulfide isomerase-related prot	1.25 1.86	1.29 1.60
	428098 428129	AU077258 Al244311	Hs.182429 Hs.26912	ESTs	1.00	42.00
35	428169	Al928984	Hs.182793	golgi phosphoprotein 2	2.76	2.11
	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT	1.00	1.00
	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy	85.59 9.57	181.00
	428242 428330	H55709 L22524	Hs.2250 Hs.2256	leukemia inhibitory factor (cholinergic matrix metalloproteinase 7 (matrilysin,	8.57 7.77	21.64 15.90
40	428434	Al909935	Hs.65551	Homo sapiens, Similar to DNA segment, Ch	0.58	1.43
	428450	NM_014791	Hs.184339	KIAA0175 gene product	237.53	204.00
	428471	X57348	Hs.184510	stratifin	6.00	4.60
	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to	56.54 3.53	16.00 2.15
45	428484 428505	AF104032 AL035461	Hs.184601 Hs.2281	solute carrier family 7 (cationic amino chromogranin B (secretogranin 1)	1.00	1.00
	428532	AF157326	Hs.184786	TBP-interacting protein	1.00	58.00
	428645	AA431400	Hs.98729	ESTs, Weakly similar to 2017205A dihydro	1.00	16.00
	428664	AK001666	Hs.189095	similar to SALL1 (sal (Drosophila)-like	1.00 187.37	1.00 255.00
50	428698 428728	AA852773 NM_016625	Hs.334838 Hs.191381	KIAA1866 protein hypothetical protein	47.24	80.00
50	428748	AW593206	Hs.98785	Ksp37 protein	1.00	87.00
	428758	AA433988	Hs.98502	hypothetical protein FLJ14303	1.06	1.13
	428771	AB028992	Hs.193143	KIAA1069 protein	1.98	92.00
55	428801	AW277121 AF068236	Hs.254881 Hs.193788	ESTs nitric oxide synthase 2A (inducible, hep	1.67 1.03	6.15 1.27
55	428810 428839	Al767756	Hs.82302	Homo sapiens cDNA FLJ14814 fis, clone NT	124.17	43.00
	428845	AL157579	Hs.153610	KIAA0751 gene product	1.00	1.00
	428959	AF100779	Hs.194680	WNT1 inducible signaling pathway protein	15.16	27.00
60	428969	AF120274	Hs.194689	artemin	1.36 0.97	1.24 3.31
00	429038 429065	AL023513 Al753247	Hs.194766 Hs.29643	seizure related gene 6 (mouse)-like Homo sapiens cDNA FLJ13103 fis, clone NT	6.82	16.47
	429164	AI688663	Hs.116586	ESTs	19.08	67.00
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	16.18	105.00
65	429183	AB014604	Hs.197955	KIAA0704 protein	79.72 1.00	104.00 1.00
03	429201 429211	X03178 AF052693	Hs.198246 Hs.198249	group-specific component (vitamin D bind gap junction protein, beta 5 (connexin 3	1.33	1.09
	429220	AW207206	113.1302-3	ESTs	1.00	7.00
	429228	Al553633	Hs.326447	ESTs	39.47	29.25
70	429259	AA420450	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	2.01	1.18
70	429263	AA019004	Hs.198396	ATP-binding cassette, sub-family A (ABC1	1.07	1.00 142.00
	429276 429359	AF056085 W00482	Hs.198612 Hs.2399	G protein-coupled receptor 51 matrix metalloproteinase 14 (membrane-in	3.70 1.30	1.94
	429412	NM_006235	Hs.2407	POU domain, class 2, associating factor	94.09	86.00
	429413	NM_014058	Hs.201877	DESC1 protein	41.91	10.00
75	429486	AF155827	Hs.203963	hypothetical protein FLJ10339	12.19	1.00
	429504	X99133	Hs.204238	lipocalin 2 (oncogene 24p3)	1.61 4.43	1.08 2.90
	429538 429547	BE182592 AA401369	Hs.11261 Hs.190721	small proline-rich protein 2A ESTs	4.43 1.06	2.90 17.00
	429551	AW450624	Hs.220931	ESTs	2.89	65.00
80	429563	BE619413	Hs.2437	eukaryotic translation initiation factor	1.49	1.37
	429597	NM_003816	Hs.2442	a disintegrin and metalloproteinase doma	61.86	100.00
	429610 429612	AB024937 AF062649	Hs.211092 Hs.252587	LUNX protein; PLUNC (palate lung and nas pituitary tumor-transforming 1	1.59 2.78	1.69 1.74
	429612	AF062649 Al982722	Hs.120845	ESTs	1.00	1.00
85	429656	X05608	Hs.211584	neurofilament, light polypeptide (68kD)	1.00	4.00

	w	O 02/086	443			
	429663	M68874	Hs.211587	phospholipase A2, group IVA (cytosolic,	69.95	104.00
	429736	AF125304	Hs.212680	tumor necrosis factor receptor superfami	1.25	1.21
	429782	NM 005754	Hs.220689	Ras-GTPase-activating protein SH3-domain	1.00	7.00
_	429903	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	11.80	1.00
5	429918	AW873986	Hs.119383	ESTs	1.00	78.00
	429978	AA249027		ribosomal protein S6	1.98	3.09
	429986	AF092047	Hs.227277	sine oculis homeobox (Drosophila) homolo	1.00	48.00
	430044	AA464510	Hs.152812	ESTs	69.27 1.00	59.00 1.00
10	430114	AA847744	Hs.99640	ESTs Milestly similar to T33188 hypotheti	1.00	51.00
10	430134 430147	BE380149 R60704	Hs.105223 Hs.234434	ESTs, Weakly similar to T33188 hypotheti hairy/enhancer-of-split related with YRP	1.10	2.22
	430287	AW182459	Hs.125759	ESTs, Weakly similar to LEU5_HUMAN LEUKE	1.00	127.00
	430294	AI538226	Hs.32976	guanine nucleotide binding protein 4	3.80	1.47
	430300	U60805	Hs.238648	oncostatin M receptor	1.00	35.00
15	430315	NM_004293	Hs.239147	guanine deaminase	92.31	28.00
	430337	M36707	Hs.239600	calmodulin-like 3	1.18	1.08
	430378	Z29572	Hs.2556	tumor necrosis factor receptor superfami	5.28	66.00
	430388	AA356923	Hs.240770	nuclear cap binding protein subunit 2, 2	16.76	38.00
20	430393	BE185030	Hs.241305	estrogen-responsive B box protein	1.63	1.50
20	430439	AL133561	11- 007030	DKFZP434B061 protein	1.00 1.64	1.00 2.12
	430451	AA836472	Hs.297939	cathepsin B	63.35	44.00
	430454	AW469011	Hs.105635 Hs.241517	ESTs polymerase (DNA directed), theta	2.47	1.91
	430466 430481	AF052573 AA479678	Hs.203269	ESTs, Moderately similar to ALU8_HUMAN A	1.00	31.00
25	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	12.28	41.00
	430508	Al015435	Hs.104637	ESTs	4.75	7.27
	430533	AA480895	Hs.57749	ESTs, Weakly similar to T17288 hypotheti	1.00	1.00
	430563	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	1.00	1.59
	430677	Z26317	Hs.94560	desmoglein 2	1.72	1.30
30	430678	AA401369	Hs.190721	ESTs	0.90	17.00
	430686	NM_001942	Hs.2633	desmoglein 1	1.00	1.00
	430788	Al742925	Hs.7179	ESTs, Weakly similar to 2004399A chromos	1.62	1.84 1.40
	430890	X54232	Hs.2699	glypican 1 zinc finger protein 131 (clone pHZ-10)	1.58 90.28	132.00
35	430935 430985	AW072916 AA490232	Hs.27323	ESTs, Weakly similar to 178885 serine/th	0.94	1.28
33	431009	BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3	60.25	28.00
	431089	BE041395	113.40000	ESTs, Weakly similar to unknown protein	23.32	941.00
	431092	Al332764	Hs.125757	ESTs	13.46	63.00
	431124	AF284221	Hs.59506	doublesex and mab-3 related transcriptio	49.43	62.00
40	431164	AA493650	Hs.94367	Homo sapiens cDNA: FLJ23494 fis, clone L	0.44	2.20
	431211	M86849	Hs.323733	gap junction protein, beta 2, 26kD (conn	182.26	101.00
	431221	AW207837	Hs.286145	SRB7 (suppressor of RNA polymerase B, ye	4.15	13.97
	431277	AA501806	Hs.345824	ESTS	1.00	86.00 200.00
45	431322	AW970622	Lie 046E0	gb:EST382704 MAGE resequences, MAGK Homo ESTs	40.55 1.00	53.00
43	431342 431384	AW971018 BE158000	Hs.21659 Hs.285026	gb:MR2-HT0377-150200-202-e03 HT0377 Homo	0.94	1.14
	431462	AW583672	Hs.256311	granin-like neuroendocrine peptide precu	1.30	1.25
	431494	AA991355	Hs.298312	hypothetical protein DKFZp434A1315	3.90	26.00
	431515	NM_012152	Hs.258583	endothelial differentiation, lysophospha	1.41	1.87
50	431548	Al834273	Hs.9711	novel protein	5.66	15.00
	431630	NM_002204	Hs.265829	integrin, alpha 3 (antigen CD49C, alpha	0.99	1.44
	431745	AW972448	Hs.163425	ESTs	0.99	3.51
	431770	BE221880	Hs.268555	5'-3' exoribonuclease 2	67.12 3.36	91.00 4.71
55	431830	Y16645	Hs.271387	small inducible cytokine subfamily A (Cy	4.49	2.51
33	431846 431890	BE019924 X17033	Hs.271580 Hs.271986	uroplakin 1B integrin, alpha 2 (CD49B, alpha 2 subuni	2.20	3.32
	431934	AB031481	Hs.272214	STG protein	1.01	1.04
	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	51.17	46.35
	432006	AL137382	Hs.272320	Homo sapiens mRNA; cDNA DKFZp434L1226 (f	0.94	1.65
60	432023	R43020	Hs.236223	EST	0.94	47.00
	432201	Al538613	Hs.298241	Transmembrane protease, serine 3	1.10	2.24
	432210	Al567421	Hs.273330	Homo sapiens, clone IMAGE:3544662, mRNA,	1.42	1.45
	432226	AW182766	Hs.273558	phosphate cytidylyltransferase 1, cholin	1.00	1.00
65	432239	X81334	Hs.2936	matrix metalloproteinase 13 (collagenase	18.67 1.09	1.00 1.21
65	432265	BE382679	Hs.285753	SCG10-like-protein hypothetical protein FLJ10377	40.98	58.00
	432281 432365	AK001239 AK001106	Hs.274263 Hs.274419	hypothetical protein FLJ10244	1.00	214.00
	432374	W68815	Hs.301885	Homo sapiens cDNA FLJ11346 fis, clone PL	157.34	37.00
	432375	BE536069	Hs.2962	S100 calcium-binding protein P	1.65	1.06
70	432407	AA221036		gb:zr03f12.r1 Stratagene NT2 neuronal pr	73.71	75.00
	432441	AW292425	Hs.163484	ESTs	56.35	72.00
	432489	Al804855	Hs.207530	ESTs	1.00	24.00
	432543	AA552690	Hs.152423	Homo sapiens cDNA: FLJ21274 fis, clone C	137.72	98.00
75	432552	A1537170	Hs.173725	ESTs, Weakly similar to ALU8_HUMAN ALU S	1.00	31.00 35.18
75	432583	AW023624	Hs.162282	potassium channel TASK-4; potassium chan	0.27 2.87	35.18 6.22
	432606	NM_002104	Hs.3066	granzyme K (serine protease, granzyme 3;	2.87	56.00
	432625	A1243596	Hs.94830	ESTs, Moderately similar to T03094 A-kin ESTs, Weakly similar to JC7328 amino aci	1.92	5.29
	432653 432677	N62096 NM_004482	Hs.293185 Hs.278611	UDP-N-acetyl-alpha-D-galactosamine:polyp	1.00	48.00
80	432715	AA247152	Hs.200483	ESTs, Weakly similar to KIAA1074 protein	45.13	31.00
-	432753	NM_014075	Hs.336938	Homo sapiens PRO0593 mRNA, complete cds	1.00	68.00
	432788	AA521091	Hs.178499	Homo sapiens cDNA: FLJ23117 fis, clone L	2.69	3.67
	432842	AW674093	Hs.334822	hypothetical protein MGC4485	1.22	1.34
0 <i>E</i>	432867	AW016936	Hs.233364	ESTs	1.00	1.00
85	432917	NM_014125	Hs.241517	PRO0327 protein	10.25	6.62

	W	O 02/086	143			
	432920	U37689	Hs.3128	polymerase (RNA) II (DNA directed) polyp	1.44	1.30
	433001	AF217513	Hs.279905	clone HQ0310 PRO0310p1	154.79	85.64
	433023	AW864793	Hs.87409	thrombospondin 1	20.96	100.00
_	433042	AW193534	Hs.281895	Homo sapiens cDNA FLJ11660 fis, clone HE	1.00	10.00
5	433091	Y12642	Hs.3185	lymphocyte antigen 6 complex, locus D	1.20	1.09
	433159	AB035898 AF231338	Hs.150587 Hs.222024	kinesin-like protein 2 transcription factor BMAL2	13.82 1.00	39.00 69.00
	433183 433258	AA622788	Hs.203613	ESTs, Weakly similar to ALUB_HUMAN !!!!	1.00	1.25
	433409	Al278802	Hs.25661	ESTs	44.81	117.00
10	433437	U20536	Hs.3280	caspase 6, apoptosis-related cysteine pr	70.39	105.00
	433485	Al493076	Hs.201967	aldo-keto reductase family 1, member C2	11.55	2.00
	433537	Al733692	Hs.112488	ESTs	8.66	55.00
	433547	W04978	Hs.303023	beta tubulin 1, class VI	25.16	83.00 19.00
15	433556 433647	W56321 AA603367	Hs.111460 Hs.222294	calcium/calmodulin-dependent protein kin ESTs	1.00 20.30	49.00
15	433658	L03678	Hs.156110	immunoglobulin kappa constant	5.92	10.03
	433800	AI094221	Hs.135150	lung type-I cell membrane-associated gly	2.29	2.22
	433819	AW511097	Hs.112765	ESTs	3.71	8.00
00	433862	D86960	Hs.3610	KIAA0205 gene product	62.08	104.00
20	433980	AA137152	Hs.286049	phosphoserine aminotransferase	108.91	47.00
	434088	AF116677	Hs.249270	hypothetical protein PRO1966	1.00 121.27	1.00 87.00
	434094 434105	AA305599 AW952124	Hs.238205 Hs.13094	hypothetical protein PRO2013 presenilins associated rhomboid-like pro	1.22	1.23
	434217	AW014795	Hs.23349	ESTs	14.11	57.00
25	434340	Al193043	Hs.128685	ESTs, Weakly similar to T17226 hypotheti	2.10	2.56
	434360	AA401369	Hs.190721	ESTs	40.98	17.00
	434414	Al798376		gb:tr34b07.x1 NCI_CGAP_Ov23 Homo sapiens	1.48	1.56
	434424	AI811202	Hs.325335	Homo sapiens cDNA: FLJ23523 fis, clone L	1.00	64.00
30	434467	BE552368	Hs.231853	Homo sapiens cDNA FLJ13445 fis, clone PL	54.91 2.46	85.00 2.00
50	434551 434627	BE387162 Al221894	Hs.280858 Hs.39311	ESTs, Highly similar to A35661 DNA excis	1.00	1.00
	434699	AA643687	Hs.149425	Homo sapiens cDNA FLJ11980 fis, clone HE	1.00	23.00
	434769	AA648884	Hs.134278	Homo sapiens cDNA FLJ12676 fis, clone NT	7.08	56.00
~ -	434792	AA649253	Hs.132458	ESTs	8.52	44.00
35	434808	AF155108	Hs.256150	Homo sapiens, Similar to RIKEN cDNA 2810	11.33	1.00
	434828	D90070	Hs.96	phorbol-12-myristate-13-acetate-induced	1.00 1.25	1.00 1.29
	434876 434891	AF160477 AA814309	Hs.61460 Hs.123583	lg superfamily receptor LNIR ESTs	1.00	6.00
	434928	AW014509 AW015595	Hs.4267	Homo sapiens clones 24714 and 24715 mRNA	1.00	1.00
40	435013	H91923	Hs.110024	Target CAT	1.26	1.10
	435066	BE261750	Hs.4747	dyskeratosis congenita 1, dyskerin	1.69	1.37
	435087	AW975241	Hs.23567	ESTs	1.00	1.00
	435099	AC004770	Hs.4756	flap structure-specific endonuclease 1	2.90	1.93
45	435159	AA668879	Hs.116649	ESTs	1.00 1.02	1.00 1.46
45	435205 435232	X54136 NM_001262	Hs.181125 Hs.4854	immunoglobulin lambda locus cyclin-dependent kinase inhibitor 2C (p1	2.04	2.70
	435304	H10709	Hs.269524	ESTs	27.58	139.00
	435313	AI769400	Hs.189729	ESTs	1.00	14.00
~ 0	435505	AF200492	Hs.211238	interleukin-1 homolog 1	1.00	38.00
50	435509	Al458679	Hs.181915	ESTs	1.00	1.00
	435525	AI831297	Hs.123310	ESTs	1.00	56.00 2.00
	435532 435550	AW291488 Al224456	Hs.117305 Hs.324507	Homo sapiens, clone IMAGE:3682908, mRNA H.sapiens polyA site DNA	1.00 3.42	3.92
	435602	AF217515	Hs.283532	uncharacterized bone marrow protein BM03	3.95	1.80
55	435766	R11673	Hs.186498	ESTs	1.00	28.00
	435793	AB037734	Hs.4993	KIAA1313 protein	23.68	42.00
	436069	Al056879	Hs.263209	ESTs	1.00	58.00
	436170	AW450381	Hs.14529	ESTs	1.00	18.00
60	436211	AK001581	Hs.334828 Hs.71472	hypothetical protein FLJ10719; KIAA1794 hypothetical protein FLJ10774; KIAA1709	5.84 1.42	22.00 1.27
00	436213 436217	AA325512 T53925	Hs.107	fibrinogen-like 1	57.97	31.00
	436238	AK002163	Hs.301724	hypothetical protein FLJ11301	2.51	1.71
	436251	BE515065	Hs.296585	nucleolar protein (KKE/D repeat)	2.33	1.64
~~	436291	BE568452	Hs.344037	protein regulator of cytokinesis 1	108.99	52.00
65	436302	AL355841	Hs.99330	hypothetical protein FLJ23588	0.75	2.81
	436396	AW992292	Hs.152213	wingless-type MMTV integration site fami	60.01 2.50	1.00 2.19
	436414 436419	BE264633 Al948626	Hs.143638 Hs.171356	WD repeat domain 4 ESTs	0.95	1.33
	436443	AW138211	Hs.128746	ESTs	1.12	9.26
70	436474	AJ270693	Hs.199887	ESTs	1.00	1.00
	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	3.28	1.56
	436486	AA742221	Hs.120633	ESTs	1.00	19.00
	436511	AA721252	Hs.291502	ESTs	16.76	14.00
75	436553	X57809	Hs.181125	immunoglobulin lambda locus ESTs, Weakly similar to A47582 B-cell gr	1.08 19.20	1.74 9.75
13	436557 436608	W15573 AA628980	Hs.5027	down syndrome critical region protein DS	33.92	25.00
	436667	AW025183	Hs.127680	ESTs	0.89	1.19
	436771	AW975687	Hs.292979	ESTs	1.00	10.00
0.0	436839	AA401369	Hs.190721	ESTs	1.00	17.00
80	436887	AW953157	Hs.193235	hypothetical protein DKFZp547D155	1.06	1.15
	436944	AW268614	Hs.5840	ESTs	1.00	1.00
	436961	AW375974	Hs.156704	ESTs	25.13 1.59	25.00 1.46
	436972 437016	AA284679 AU076916	Hs.25640 Hs.5398	claudin 3 guanine monphosphate synthetase	2.35	1.78
85	437044	AL035864	Hs.69517	cDNA for differentially expressed CO16 g	1.34	1.13
				. ,		

	W	O 02/086	443			
	437181	Al306615	Hs.125343	ESTs, Weakly similar to KIAA0758 protein	1.00	17.00
	437204	AL110216	Hs.22826	ESTs, Weakly similar to 155214 salivary	40.55	82.00
	437205	AL110232	Hs.279243	Homo sapiens mRNA; cDNA DKFZp564D2071 (f	1.00	112.00
_	437259	Al377755	Hs.120695	ESTs	1.00	205.00
5	437270	R18087	Hs.323769	cisplatin resistance related protein CRR	1.56 113.25	1.54 125.00
	437271 437370	AL137445 AL359567	Hs.28846 Hs.161962	Homo sapiens mRNA; cDNA DKFZp566O134 (fr Homo sapiens mRNA; cDNA DKFZp547D023 (fr	1.82	4.57
	437390	Al125859	Hs.112607	ESTs	1.35	1.75
	437412	BE069288	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr	3.58	3.20
10	437435	Al306152	Hs.27027	hypothetical protein DKFZp762H1311	3.03	1.08
	437444	H46008	Hs.31518	ESTs	1.00	39.00
	437568	Al954795	Hs.156135	ESTs chromosome condensation-related SMC-asso	1.00 1.95	19.00 1.57
	437623 437789	D63880 Al581344	Hs.5719 Hs.127812	ESTs, Weakly similar to T17330 hypotheti	1.00	3.00
15	437814	Al088192	Hs.135474	ESTs, Weakly similar to DDX9_HUMAN ATP-D	1.00	45.00
	437840	AA884836	Hs.292014	ESTs	1.07	1.78
	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa	1.68	3.26
	437879	BE262082	Hs.5894	hypothetical protein FLJ10305	1.87	2.52
20	437915	AI637993	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca	74.05 23.15	35.00 89.00
20	437916 437937	BE566249 Al917222	Hs.20999 Hs.121655	hypothetical protein FLJ23142 ESTs	1.00	1.00
	437942	Al888256	Hs.307526	ESTs	12,28	31.00
	438091	AW373062		nuclear receptor subfamily 1, group 1, m	1.53	10.85
0.5	438113	AI467908	Hs.8882	ESTs	1.80	2.39
25	438119	AW963217	Hs.203961	ESTs, Moderately similar to AF116721 89	22.67	36.90
	438274	Al918906	Hs.55080	ESTs	1.00 38.92	1.00 38.00
	438378 438403	AW970529 AA806607	Hs.86434 Hs.292206	hypothetical protein FLJ21816 ESTs	1.00	1.00
	438494	AA908678	Hs.130183	ESTs	2.05	80.00
30	438546	AW297204	Hs.125811	ESTs	1.00	131.00
	438552	AJ245820	Hs.6314	type I transmembrane receptor (seizure-r	1.43	1.45
	438702	Al879064	Hs.54618	ESTs	1.00	34.00
	438724	AW612553	Hs.114670	Human DNA sequence from clone RP11-16L21	1.33 2.42	1.10 1.59
35	438746 438779	Al885815 NM_003787	Hs.184727 Hs.6414	Human melanoma-associated antigen p97 (m nucleolar protein 4	1.00	18.00
55	438821	AA826425	Hs.192375	ESTs	2.03	2.57
	438885	A1886558	Hs.184987	ESTs	6.42	88.00
	438898	AA401369	Hs.190721	ESTs	22.41	17.00
40	438915	AA280174	Hs.285681	Williams-Beuren syndrome chromosome regi	1.00	1.00 1.88
40	438956	W00847 AW979121	Hs.135056	Human DNA sequence from clone RP5-850E9 gb:EST391231 MAGE resequences, MAGP Homo	2.20 2.78	4.81
	439000 439023	AA745978	Hs.28273	ESTs	1.17	1.31
	439024	R96696	Hs.35598	ESTs	1.00	28.00
	439128	Al949371	Hs.153089	ESTs	1.00	67.00
45	439146	AW138909	Hs.156110	immunoglobulin kappa constant	1.38	1.41
	439223	AW238299	Hs.250618	UL16 binding protein 2	1.93 46.23	1.64 139.00
	439285 439318	AL133916 AW837046	Hs.6527	hypothetical protein FLJ20093 G protein-coupled receptor 56	2.00	2.20
	439343	AF086161	Hs.114611	hypothetical protein FLJ11808	6.10	7.37
50	439394	AA401369	Hs.190721	ESTs	3.39	17.00
	439410	AA632012	Hs.188746	ESTs	1.83	3.07
	439451	AF086270	Hs.278554	heterochromatin-like protein 1	23.28 18.76	52.00 122.00
	439452 439453	AA918317 BE264974	Hs.57987 Hs.6566	B-cell CLL/lymphoma 11B (zinc finger pro thyroid hormone receptor interactor 13	2.78	1.58
55	439477	W69813	Hs.58042	ESTs, Moderately similar to GFR3_HUMAN G	1.22	1.44
	439492	AF086310	Hs.103159	ESTs	7.46	39.00
	439523	W72348	Hs.185029	ESTs	1.00	1.19
	439592	AF086413	Hs.58399	ESTs	1.00	1.00
60	439606	W79123	Hs.58561	G protein-coupled receptor 87 ESTs, Weakly similar to AC004858 3 U1 sm	33.61 1.00	1.00 1.00
00	439670 439702	AF088076 AW085525	Hs.59507 Hs.134182	ESTs. Veakly similar to Accordage 5 of sim	4.30	10.00
	439706	AW872527	Hs.59761	ESTs, Weakly similar to DAP1_HUMAN DEATH	86.55	11.00
	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),	2.36	1.88
C =	439750	AL359053	Hs.57664	Homo sapiens mRNA full length insert cDN	2.02	6.08
65	439759	AL359055	Hs.67709	Homo sapiens mRNA full length insert cDN	1.00 7.27	21.00 25.00
	439780 439840	AL109688 AW449211	Hs.105445	gb:Homo sapiens mRNA full length insert GDNF family receptor alpha 1	1.00	1.00
	439926	AW014875	Hs.137007	ESTs	32.58	71.00
	439963	AW247529	Hs.6793	platelet-activating factor acetylhydrola	21.28	9.55
70	439979	AW600291	Hs.6823	hypothetical protein FLJ10430	68.83	61.00
	440006	AK000517	Hs.6844	hypothetical protein FLJ20510	1.83	4.02
	440028	AW473675	Hs.125843	ESTs, Weakly similar to T17227 hypotheti	1.42	2.54
	440106 440138	AA864968 AB033023	Hs.127699 Hs.318127	KIAA1603 protein hypothetical protein FLJ10201	1.00 24.18	54.00 52.00
75	440138	AB053025 Al805392	Hs.325335	Homo sapiens cDNA: FLJ23523 fis, clone L	3.21	4.72
	440289	AW450991	Hs.192071	ESTs	38.63	113.00
	440325	NM_003812	Hs.7164	a disintegrin and metalloproteinase doma	62.88	147.00
	440492	R39127	Hs.21433	hypothetical protein DKFZp547J036	2.35	3.62
80	440527	AV657117	Hs.184164	ESTs, Moderately similar to S65657 alpha	10.84	57.00 2.37
ou	440659 440704	AF134160 M69241	Hs.7327 Hs.162	claudin 1 insulin-like growth factor binding prote	3.18 2.89	2.09
	440704	AW082298	Hs.146161	hypothetical protein MGC2408	2.02	1,41
	440994	Al160011	Hs.272068	ESTs	1.29	1.14
0.5	441020	AA401369	Hs.190721	ESTs	142.99	17.00
85	441031	Al110684	Hs.7645	fibrinogen, B beta polypeptide	1.41	99.00

	W	O 02/086	443			
	441128	AA570256		ESTs, Weakly similar to T23273 hypotheti	4.13	3.50
	441290	W27501	Hs.89605	cholinergic receptor, nicotinic, alpha p	1.00	1.00
	441362	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	130.23	43.00
_	441377	BE218239	Hs.202656	ESTs	22.03	1.00
5	441390	A1692560	Hs.131175	ESTs	3.65	7.70
	441497	R51064	Hs.23172	ESTs	1.00 1.53	1.00 1.42
	441525 441553	AW241867 AA281219	Hs.127728 Hs.121296	ESTs ESTs	1.89	1.57
	441607	NM_005010	Hs.7912	neuronal cell adhesion molecule	1.47	2.11
10	441633	AW958544	Hs.112242	normal mucosa of esophagus specific 1	216.22	363.00
	441636	AA081846	Hs.7921	Homo sapiens mRNA; cDNA DKFZp566E183 (fr	2.31	2.05
	441737	X79449	Hs.7957	adenosine deaminase, RNA-specific	1.30	1.49
	441790	AA401369	Hs.190721	ESTs	44.15	17.00
1 5	441801	AW242799	Hs.86366	ESTs	1.00	1.00
15	441919	Al553802	Hs.128121	ESTs	1.00 0.86	122.00 1.37
	441937	R41782	Hs.22279	ESTs Fanconi anemia, complementation group G	1.48	1.39
	441954 442025	A1744935 AW887434	Hs.8047 Hs.11810	CDA11 protein	1.00	46.00
	442029	AW956698	Hs.14456	neural precursor cell expressed, develop	9.92	45.00
20	442072	A1740832	Hs.12311	Homo sapiens clone 23570 mRNA sequence	25.05	77.00
	442108	AW452649	Hs.166314	ESTs	3.61	3.14
	442117	AW664964	Hs.128899	ESTs	3.00	5.49
	442137	AA977235	Hs.128830	ESTs, Weakly similar to Z192_HUMAN ZINC	1.00	1.00
25	442159	AW163390	Hs.278554	heterochromatin-like protein 1	1.92 27.22	1.66 50.00
25	442179	AA983842	Hs.333555	chromosome 2 open reading frame 2 ESTs, Weakly similar to ALU4_HUMAN ALU S	5.00	3.42
	442328 442432	AI952430 BE093589	Hs.150614 Hs.38178	hypothetical protein FLJ23468	181.59	76.00
	442530	Al580830	Hs.176508	Homo sapiens cDNA FLJ14712 fis, clone NT	10.59	144.00
	442547	AA306997	Hs.217484	ESTs, Weakly similar to ALU1_HUMAN ALU S	109.23	98.00
30	442556	AL137761	Hs.8379	Homo sapiens mRNA; cDNA DKFZp586L2424 (f	1.00	53.00
	442619	AA447492	Hs.20183	ESTs, Weakly similar to AF164793 1 prote	29.02	50.00
	442710	Al015631	Hs.23210	ESTs	1.00	19.00
	442717	R88362	Hs.180591	ESTs, Weakly similar to T23976 hypotheti	1.00 22.85	5,00 50,00
35	442875 442914	BE623003	Hs.23625 Hs.99519	Homo sapiens cione TCCCTA00142 mRNA sequ hypothetical protein FLJ14007	25.33	82.00
55	442932	AW188551 AA457211	Hs.8858	bromodomain adjacent to zinc finger doma	3.18	4.41
	442942	AW167087	Hs.131562	ESTs	8.45	64.00
	443068	Al188710		ESTs	1.00	27.00
40	443204	AW205878	Hs.29643	Homo sapiens cDNA FLJ13103 fis, clone NT	1.00	24.00
40	443211	Al128388	Hs.143655	ESTs	12.42 128.84	2.00 96.00
	443247 443324	BE614387 R44013	Hs.333893 Hs.164225	c-Myc target JPO1 ESTs	0.02	4.59
	443383	Al792453	Hs.166507	ESTs	1.00	47.00
	443400	R28424	Hs.250648	ESTs	18.52	61.00
45	443426	AF098158	Hs.9329	chromosome 20 open reading frame 1	4.02	1.75
	443572	AA025610	Hs.9605	cleavage and polyadenylation specific fa	2.98	2.57
	443575	A1078022	Hs.269636	ESTs, Weakly similar to ALU1_HUMAN ALU S	1.00 1.00	29.00 16.00
	443614 443633	AV655386 AL031290	Hs.7645 Hs.9654	fibrinogen, B beta polypeptide similar to pregnancy-associated plasma p	1.00	39.00
50	443648	A1085377	Hs.143610	ESTs	39.81	70.00
	443715	Al583187	Hs.9700	cyclin E1	48.74	7.00
	443723	A1144442	Hs.157144	syntaxin 6	1.29	1.30
	443802	AW504924	Hs.9805	KIAA1291 protein	1.75	1.61
55	443859	NM_013409	Hs.9914	follistatin	1.35 1.00	1.13 17.00
55	443892	AA401369	Hs.190721	ESTs gb:zb47f09.r1 Soares_fetal_lung_NbHL19W	1.33	1.64
	443947 443991	W24187 NM_002250	Hs.10082	potassium intermediate/small conductance	5.71	6.87
	444006	BE395085	Hs.10086	type I transmembrane protein Fn14	1.47	1.92
	444009	Al380792	Hs.135104	ÉSTs	1.00	77.00
60	444017	U04840	Hs.214	neuro-oncological ventral antigen 1	1.00	1.00
	444127	N63620	Hs.13281	ESTs	1.00 1.00	29.00 1.00
	444129	AW294292	Hs.256212 Hs.89605	ESTs cholinergic receptor, nicotinic, alpha p	0.60	7.80
	444279 444371	U62432 BE540274	Hs.239	forkhead box M1	2.91	1.14
65	444378	R41339	Hs.12569	ESTs	1.00	1.00
	444381	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti	469.00	556.00
	444461	R53734	Hs.25978	ESTs, Weakly similar to 2109260A B cell	12.88	105.00
	444471	AB020684	Hs.11217	KIAA0877 protein	24.91	90.00 111.00
70	444489	AI151010	Hs.157774 Hs.8172	ESTs ESTs, Moderately similar to A46010 X-lin	1.00 1.00	70.00
70	444619 444665	BE538082 BE613126	Hs.47783	B aggressive lymphoma gene	30.56	139.00
	444707	Al188613	Hs.41690	desmocollin 3	1.00	1.00
	444735	BE019923	Hs.243122	hypothetical protein FLJ13057 similar to	77.02	90.00
~~	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote	1.57	1.31
75	444783	AK001468	Hs.62180	anillin (Drosophila Scraps homolog), act	77.55	2,00
	445236	AK001676	Hs.12457	hypothetical protein FLJ10814 ESTs	1.00 1.00	27.00 73.00
	445258 445413	Al635931 AA151342	Hs.147613 Hs.12677	CGI-147 protein	28.14	50.00
	445413	AK001058	Hs.12680	Homo sapiens cDNA FLJ10196 fis, clone HE	1.81	2.62
80	445443	AV653838	Hs.322971	ESTs	1.00	1.00
-	445462	AA378776	Hs.288649	hypothetical protein MGC3077	2.09	1.70
	445517	AF208855	Hs.12830	hypothetical protein	1.87	70.00
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	1.71 1.52	2.72 1.34
85	445580 445654	AF167572 X91247	Hs.12912 Hs.13046	skb1 (S. pombe) homolog thioredoxin reductase 1	1.52	1.52
55	-75004	101671	1,5,10040			

	XX/	O 02/086	113			
	445669	AI570830	Hs.174870	ESTs	10.95	11.45
	445818	BE045321	Hs.136017	ESTs	1.00	1.00
	445873	AA250970	Hs.251946	poly(A)-binding protein, cytoplasmic 1-1	49.42	54.00
~	445885	A1734009	Hs.127699	KIAA1603 protein	1.00	132.00
5	445898	AF070623	Hs.13423	Homo sapiens clone 24468 mRNA sequence	1.00	1.00
	445903	Al347487	Hs.132781	class I cytokine receptor	1.00	36.00
	445932	BE046441	Hs.333555	Homo sapiens clone 24859 mRNA sequence pescadillo (zebrafish) homolog 1, contai	2.41 1.60	2.88 1.35
	445982 446078	BE410233 Al339982	Hs.13501 Hs.156061	ESTs	1.00	42.00
10	446102	AW168067	Hs.317694	ESTs	1.00	1.00
	446157	BE270828	Hs.131740	Homo sapiens cDNA: FLJ22562 fis, clone H	1.70	1.53
	446269	AW263155	Hs.14559	hypothetical protein FLJ10540	73.01	48.00
	446292	AF081497	Hs.279682	Rh type C glycoprotein	1.55	1.26
1.5	446293	Al420213	Hs.149722	ESTs	1.00	2.00
15	446423	AW139655	Hs.150120	ESTS	1.10	4.19 3.26
	446428	AW082270	Hs.12496	ESTs, Weakly similar to ALU4_HUMAN ALU S	0.53 1.00	5.00
	446432 446528	Al377320 AU076640	Hs.150058 Hs.15243	ESTs nucleolar protein 1 (120kD)	1.36	1.31
	446574	Al310135	Hs.335933	ESTs	3.89	72.00
20	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	32.03	20.23
	446636	AC002563	Hs.15767	citron (rho-interacting, serine/threonin	4.19	5.07
	446783	AW138343	Hs.141867	ESTs	2.82	9.47
	446839	BE091926	Hs.16244	mitotic spindle coiled-coil related prot	110.28	28.00
25	446849	AU076617	Hs.16251	cleavage and polyadenylation specific fa	3.26	2.94
25	446856	Al814373	Hs.164175	ESTs	6.38	11.30
	446872	X97058	Hs.16362	pyrimidinergic receptor P2Y, G-protein c Homo sapiens cDNA FLJ14934 fis, clone PL	1.98 94.90	2.03 113.00
	446880 446921	AI811807 AB012113	Hs.108646 Hs.16530	small inducible cytokine subfamily A (Cy	1.67	3.90
	446989	AK001898	Hs.16740	hypothetical protein FLJ11036	2.82	3.12
30	447022	AW291223	Hs.157573	ESTs	1.00	170.00
	447033	Al357412	Hs.157601	ESTs	7.15	107.00
	447078	AW885727	Hs.9914	ESTs	47.24	24.00
	447081	Y13896	Hs.17287	potassium inwardly-rectifying channel, s	0.12	17.88
25	447131	NM_004585	Hs.17466	retinoic acid receptor responder (tazaro	0.97	1.48
35	447149	BE299857	Hs.326	TAR (HIV) RNA-binding protein 2	1.24	1.26
	447153	AA805202	Hs.315562	ESTs	1.00 1.00	54.00 67.00
	447164	AF026941	Hs.17518 Hs.192417	Homo sapiens cig5 mRNA, partial sequence ESTs	3.42	50.00
	447178 447250	AW594641 Al878909	Hs.17883	protein phosphatase 1G (formerly 2C), ma	1,60	1.52
40	447289	AW247017	Hs.36978	melanoma antigen, family A, 3	1.00	1.00
	447342	Al199268	Hs.19322	Homo sapiens, Similar to RIKEN cDNA 2010	28.63	1.00
	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m	146,62	51.00
	447350	Al375572	Hs.172634	ESTs	1.00	12.00
4~	447377	N27687	Hs.334334	transcription factor AP-2 alpha (activat	2.55	63.00
45	447415	AW937335	Hs.28149	ESTs, Weakly similar to KF3B_HUMAN KINES	0.91	1.13
	447425	Al963747	Hs.18573	acylphosphatase 1, erythrocyte (common)	1.00 59.89	35.00 49.00
	447519	U46258	Hs.339665 Hs.18791	ESTs hypothetical protein FLJ20607	1.23	1.63
	447532 447534	AK000614 AA401369	Hs.190721	ESTs	1,00	17.00
50	447636	Y10043	110.100121	high-mobility group (nonhistone chromoso	1.41	1.11
•	447688	N87079	Hs.19236	Target CAT	1.00	39.00
	447733	AF157482	Hs.19400	MAD2 (mitotic arrest deficient, yeast, h	1.17	1.12
	447769	AW873704	Hs.320831	Homo sapiens cDNA FLJ14597 fis, clone NT	6.47	5.95
	447802	AW593432	Hs.161455	ESTs	0.73	2.34
55	447850	AB018298	Hs.19822	SEC24 (S. cerevisiae) related gene famil	86.45	116.00
	447924	AI817226	Hs.313413	ESTs, Weakly similar to T23110 hypotheti	1.00	1.00
	447973	AB011169	Hs.20141 Hs.325960	similar to S. cerevisiae SSM4 membrane-spanning 4-domains, subfamily A	3,50 4,13	4.27 142.00
	448030 448105	N30714 Al538613	Hs.298241	Transmembrane protease, serine 3	1.15	2.24
60	448243	AW369771	Hs.52620	integrin, beta 8	15.84	1.00
00	448278	W07369	Hs.11782	ESTs	0.97	1.90
	448290	AK002107	Hs.20843	Homo sapiens cDNA FLJ11245 fis, clone PL	1.00	1.00
	448296	BE622756	Hs.10949	Homo sapiens cDNA FLJ14162 fis, clone NT	2.42	2.17
~~	448357	BE274396	Hs.108923	RAB38, member RAS oncogene family	1.44	1.08
65	448390	AL035414	Hs.21068	hypothetical protein	1.00	43.00
	448469	AW504732	Hs.21275	hypothetical protein FLJ11011	2.63	2.49 2.53
	448569	BE382657	Hs.21486	signal transducer and activator of trans	1,84 3.29	46.00
	448663	BE614599	Hs.106823 Hs.225106	hypothetical protein MGC14797 ESTs	1.00	21.00
70	448672 448733	Al955511 NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte	1.82	1.08
, 0	448741	BE614567	Hs.19574	hypothetical protein MGC5469	2.48	1.92
	448757	Al366784	Hs.48820	TATA box binding protein (TBP)-associate	23.53	20.00
	448775	AB025237	Hs.388	nudix (nucleoside diphosphate linked moi	2.34	1.97
~~	448826	Al580252	Hs.293246	ESTs, Weakly similar to putative p150 [H	74.07	62.67
75	448830	AL031658	Hs.22181	hypothetical protein dJ310O13.3	1.37	1.31
	448844	Al581519	Hs.177164	ESTs	1.00	31.00
	448988	Y09763	Hs.22785	gamma-aminobutyric acid (GABA) A recepto	1.84 1.63	1.95 1.49
	448993	Al471630	H= 300	KIAA0144 gene product alcohol dehydrogenase 7 (class IV), mu o	1,63 1,00	1.00
80	449003 449029	X76342 N28989	Hs.389 Hs.22891	solute carrier family 7 (cationic amino	1.97	2.26
50	449040	N20909 AF040704	Hs.149443	putative tumor suppressor	0.97	1.56
	449048	Z45051	Hs.22920	similar to S68401 (cattle) glucose induc	27.13	90.00
	449053	A1625777	Hs.344766	ESTs	8.33	44.00
~ ~	449054	AF148848	Hs.22934	myoneurin	73.85	104.00
85	449101	AA205847	Hs.23016	G protein-coupled receptor	2.58	27.00

	w	O 02/086	443			
	449167	T05095	Hs.19597	KIAA1694 protein	1.61	2.36
	449207	AL044222	Hs.23255	nucleoporin 155kD	2.36	1.56
	449228	AJ403107	Hs.148590	protein related with psoriasis	1.15	1.15
	449230	BE613348	Hs.211579	melanoma cell adhesion molecule	206.65	151.00
5	449305	Al638293		gb:tt09b07.x1 NCI_CGAP_GC6 Homo sapiens	17.28	45.00
-	449318	AW236021	Hs.78531	Homo sapiens, Similar to RIKEN cDNA 5730	26.39	35.00
	449448	D60730	Hs.57471	ESTs	1.00	1.00
	449467	AW205006	Hs.197042	ESTs	1.00	1.00
1.0	449523	NM_000579	Hs.54443	chemokine (C-C motif) receptor 5	56.80	216.86
10	449722	BE280074	Hs.23960	cyclin B1	150.03	1.00
	449976	H06350	Hs.135056	Human DNA sequence from clone RP5-850E9	2.16	2.85
	450001	NM_001044	Hs.406	solute carrier family 6 (neurotransmitte	1.17	1.45
	450098	W27249	Hs.8109	hypothetical protein FLJ21080	1.79	2.38
15	450101	AV649989	Hs.24385	Human hbc647 mRNA sequence	1.00	69.00
15	450149	AW969781	Hs.132863	Zic family member 2 (odd-paired Drosophi	1.00	1.00
	450193	Al916071	Hs.15607	Homo sapiens Fanconì anemia complementat	29.85	34.00
	450221	AA328102	Hs.24641	cytoskeleton associated protein 2	1.00 1.00	1.00 1.00
	450372	BE218107	Hs.202436	ESTs	51.26	93.00
20	450375	AA009647	Hs.8850 Hs.25010	a disintegrin and metalloproteinase doma hypothetical protein P15-2	123.20	181.00
20	450447 450568	AF212223 AL050078	Hs.25159	Homo sapiens cDNA FLJ10784 fis, clone NT	1.00	19.00
	450589	AL030076 AI701505	Hs.202526	ESTs	1.00	23.00
	450684	AA872605	Hs.25333	interleukin 1 receptor, type II	1.00	100.00
	450701	H39960	Hs.288467	Homo sapiens cDNA FLJ12280 fis, clone MA	1.89	1.55
25	450705	U90304	Hs.25351	iroquois homeobox protein 2A (IRX-2A) (1.00	45.00
20	450832	AA401369	Hs.190721	ESTs	25.17	17.00
	450937	R49131	Hs.26267	ATP-dependant interferon response protei	90.92	90.00
	450983	AA305384	Hs.25740	ERO1 (S. cerevisiae)-like	3.33	1.70
	451105	Al761324	1101201 10	gb:wi60b11.x1 NCI_CGAP_Co16 Homo sapiens	15.02	124.00
30	451110	Al955040	Hs.265398	ESTs, Weakly similar to transformation-r	1.00	143.00
	451253	H48299	Hs.26126	claudin 10	3.02	2.29
	451291	R39288	Hs.6702	ESTs	1.00	1.00
	451320	AW498974		diacylglycerol kinase, zeta (104kD)	2.92	18.00
	451380	H09280	Hs.13234	ESTs	6.90	6.67
35	451386	AB029006	Hs.26334	spastic paraplegia 4 (autosomal dominant	35.75	72.00
	451437	H24143	Hs.31945	hypothetical protein FLJ11071	1.00	69.00
	451462	AK000367	Hs.26434	hypothetical protein FLJ20360	1.83	2,10
	451524	AK001466	Hs.26516	hypothetical protein FLJ10604	1.13	1.07
40	451541	BE279383	Hs.26557	plakophilin 3	1.88	1.33
40	451592	Al805416	Hs.213897	ESTs	1.00	1.00
	451635	AA018899	Hs.127179	cryptic gene	1.52	1.92
	451743	AA401369	Hs.190721	ESTs	4.95	17.00 31.00
	451806	NM_003729	Hs.27076	RNA 3'-terminal phosphate cyclase	13.55 1.55	35.00
45	451807	W52854	N= 440500	hypothetical protein FLJ23293 similar to ESTs	1.81	2.53
40	451871 451952	Al821005 AL120173	Hs.118599 Hs.301663	ESTs	1.00	22.00
	451952	AA307703	Hs.279766	kinesin family member 4A	3.43	2.26
*	452046	AB018345	Hs.27657	KIAA0802 protein	56.59	19.00
	452194	Al694413	Hs.332649	olfactory receptor, family 2, subfamily	1.67	4.09
50	452206	AW340281	Hs.33074	Homo sapiens, clone IMAGE:3606519, mRNA,	9.31	53.00
• •	452240	AA401369	Hs.190721	ESTs	13.42	17.00
	452256	AK000933	Hs.28661	Homo sapiens cDNA FLJ10071 fis, clone HE	39.03	94.00
	452281	T93500	Hs.28792	Homo sapiens cDNA FLJ11041 fis, clone PL	153.01	340.00
	452291	AF015592	Hs.28853	CDC7 (cell division cycle 7, S. cerevisi	1.95	23.00
55	452295	BE379936	Hs.28866	programmed ceil death 10	42.33	61.00
	452304	AA025386	Hs.61311	ESTs, Weakly similar to S10590 cysteine	1.17	2.14
	452340	NM_002202	Hs.505	ISL1 transcription factor, LIM/homeodoma	1.00	13.00
	452349	AB028944	Hs.29189	ATPase, Class VI, type 11A	1.09	1.42
C 0	452367	U71207	Hs.29279	eyes absent (Drosophila) homolog 2	54.49	53.00
60	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro	1.00	32.00
	452410	AL133619		Homo sapiens mRNA; cDNA DKFZp434E2321 (f	1.26	1.99
	452461	N78223	Hs.108106	transcription factor	24.47	35.00
	452571	W31518	Hs.34665	ESTs	54.61	102.00
65	452613	AA461599	Hs.23459	ESTs	1.39	1.32
05	452699	AW295390	Hs.213062	ESTS	1.00 1.00	26,00 1,00
	452705	H49805	Hs.246005	ESTs	112.87	1.29
	452747	AF160477	Hs.61460 Hs.222707	lg superfamily receptor LNIR KIAA1718 protein	1.00	1.00
	452787 452795	AW294022 AW392555	Hs.18878	hypothetical protein FLJ21620	1.00	1.00
70	452823	AB012124	Hs.30696	transcription factor-like 5 (basic helix	7.91	75.00
, 0	452833	BE559681	Hs.30736	KIAA0124 protein	3.16	1.92
	452838	U65011	Hs.30743	preferentially expressed antigen in mela	174.35	1.00
	452862	AA401369	Hs.190721	ESTs	98.26	17.00
	452865	AW173720	Hs.345805	ESTs, Weakly similar to A47582 B-cell gr	1.55	1.00
75	452934	AA581322	Hs.4213	hypothetical protein MGC16207	1.73	1.19
	452946	X95425	Hs.31092	EphA5	1.00	1.00
	452976	R44214	Hs.101189	ESTs	1.58	1.98
	453028	AB006532	Hs.31442	RecQ protein-like 4	1.80	1.60
	453095	AW295660	Hs.252756	ESTs	0.77	1.50
80	453102	NM_007197	Hs.31664	frizzled (Drosophila) homolog 10	1.00	1.00
	453103	A1301052	Hs.153444	ESTs	1.00	1.00
	453120	AA292891	Hs.31773	pregnancy-induced growth inhibitor	1.23	1.20
	453153	N53893	Hs.24360	ESTs	1.00	83.00
0.5	453160	Al263307	Hs.239884	H2B histone family, member L	1.00	30.00
85	453197	Al916269	Hs.109057	ESTs, Weakly similar to ALU5_HUMAN ALU S	1.00	134.00

	W	O 02/0864	143				PCT/US02/12476	
	453210	AL133161	Hs.32360	hypothetical protein FLJ10867	1.69	1.93	1 01, 0202,121.0	
	453240	Al969564	Hs.166254	hypothetical protein DKFZp566l133	1.00	1.00		
	453317 453323	NM_002277 AF034102	Hs.41696 Hs.32951	keratin, hair, acidic,1 solute carrier family 29 (nucleoside tra	1.19 4.90	1.27 4.11		
5	453331	AI240665	Hs.8850	ESTs	199.42	340.00		
_	453392	U23752	Hs.32964	SRY (sex determining region Y)-box 11	1.00	16.00		
	453431	AF094754	Hs.32973	glycine receptor, beta	1.00	1.00		
	453439 453459	Al572438 BE047032	Hs.32976 Hs.257789	guanine nucleotide binding protein 4 ESTs	3.44 2.84	5.17 5.58		
10	453563	AW608906.com		Hs.181163		protein MGC5629	4.58 90.00	
10	453633	AA357001	Hs.34045	hypothetical protein FLJ20764	1.74	1.60		
	453775	NM_002916	Hs.35120	replication factor C (activator 1) 4 (37	19.49	1.00		
	453830	AA534296	Hs.20953	ESTs	24.92 167.59	25.00 66.00		
15	453857 453867	AL080235 Al929383	Hs.35861 Hs.33032	DKFZP586E1621 protein hypothetical protein DKFZp434N185	1.00	39.00		
10	453883	Al638516	Hs.347524	cofactor required for Sp1 transcriptiona	1.97	1.58		
	453884	AA355925	Hs.36232	KIAA0186 gene product	63.89	20.00		
	453900	AW003582	Hs.226414	ESTs, Weakly similar to ALUS_HUMAN ALU S	20.41	16.00		
20	453922 453941	AF053306 U39817	Hs.36708 Hs.36820	budding uninhibited by benzimidazoles 1 Bloom syndrome	7.09 29.75	22.00 19.00		
20	453964	Al961486	Hs.12744	ESTs	1.00	1.00		
	453968	AA847843	Hs.62711	Homo sapiens, clone IMAGE:3351295, mRNA	2.06	1.81		
	453976	BE463830	Hs.163714	ESTs	3.02	131.00		
25	454024 454034	AA993527 NM_000691	Hs.293907 Hs.575	hypothetical protein FLJ23403 aldehyde dehydrogenase 3 family, member	1.00 1.23	131.00 1.02		
23	454042	T19228	Hs.172572	hypothetical protein FLJ20093	30.63	171.00		
	454059	NM_003154	Hs.37048	statherin	1.00	1.00		
	454066	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid	1.01	1.45		
30	454098	W27953	Hs.292911	ESTs, Highly similar to S60712 band-6-pr	1.26 6.33	1.11 5.04		
50	454241 454417	BE144666 Al244459	Hs.110826	gb:CM2-HT0176-041099-017-c02 HT0176 Homo trinucleotide repeat containing 9	4.30	7.82		
	454439	AW819152	Hs.154320	DKFZP56601646 protein	1.00	1.00		
	455175	AW993247		gb:RC2-BN0033-180200-014-h09 BN0033 Homo	13.75	103.00		
25	455601	Al368680	Hs.816	SRY (sex determining region Y)-box 2	206.11	1.00		
35	456237 456321	AA203682 NM_001327	Hs.87225	gb:zx52e07.r1 Soares_fetal_liver_spleen_ cancer/testis antigen	1.00 1.14	1.00 1.10		
	456475	NM_000144	Hs.95998	Friedreich ataxia	1.00	48.00		
	456508	AA502764	Hs.123469	ESTs, Weakly similar to AF208855 1 BM-01	162.25	189.00		
40	456534	X91195	Hs.100623	phospholipase C, beta 3, neighbor pseudo	2.12	1.80		
40	456736	AW248217	Hs.1619 Hs.127792	achaete-scute complex (Drosophila) homol delta (Drosophila)-like 3	1.15 1.00	1.94 1.00		
	456759 456990	BE259150 NM_004504	Hs.171545	HIV-1 Rev binding protein	16.42	84.00		
	457200	U33749	Hs.197764	thyroid transcription factor 1	0.57	1.76		
4 ~	457234	AW968360	Hs.14355	Homo sapiens cDNA FLJ13207 fis, clone NT	2.71	4.15	7	
45	457465	AW301344	Hs.122908	DNA replication factor	46.37 1.12	47.00 1.35		
	457489 457646	Al693815 AA725650	Hs.127179 Hs.112948	cryptic gene ESTs	1.55	2.51		
	457733	AW974812	Hs.291971	ESTs	1.00	55.00		
~^	457819	AA057484	Hs.35406	ESTs, Highly similar to unnamed protein	4.36	3.18		
50	458092	BE545684	Hs.343566	KIAA0251 protein	1.00	1.32		
	458098 458207	BE550224 T28472	Hs.7655	metallothionein 1E (functional) U2 small nuclear ribonucleoprotein auxil	1.00 2.06	22.00 1.88		
	458242	BE299588	Hs.28465	Homo sapiens cDNA: FLJ21869 fis, clone H	1.00	1.00		
سر	458247	R14439	Hs.209194	ESTs	7.00	9.85		
55	458679	AW975460	Hs.142913	ESTs	1.00	3.00		
	458778 458933	AW451034 Al638429	Hs.326525 Hs.24763	arylsulfatase D RAN binding protein 1	1.31 1.98	2.01 1.71		
	459352	AW810383	Hs.206828	ESTs	12.60	63.00		
CO	459670	F01020	Hs.172004	titin	1.00	1.00		
60	459702	Al204995		gb:an03c03.x1 Stratagene schizo brain S1	1.00	237.00		
	TABLE 9	R		•				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_						
65	Pkey:			ntifier number	,			
		ber: Gene cluste		hara				
	Accession	n: Genbank at	ccession num	Ders				
	Pkey	CAT Number	Access					
70	407746	10125_1		962 R69415 BE464605 AA418699 AA053293 AA1490				
				982 AA730033 AA576507 AA991217 AA782067 AI98	5851 AA805864 AA	505598 AW469857 R	69546 AA988279 AW001647 N63320	
	408070	1036688 1		1 T27343 AA306950 AA360989 R58778 1852 BE350895				
	408660	107294_1		775 AA056342 AI538978 AW975281 AA664986				
75	409522	113735_1		382 AA075431				
	409866	1156522_1		2152 H41202 H29772				
	410032	1170435_1		985 BE065944 BE066008 BE066083 BE066093 454 AA713730 AA091294 AA584921 N86077 AW836	791 88604034 885	70976 AAEE1106 AAE	223188 AMONESTY AIDEESIN AISTORGE	
	411089	123172_1	асрад Датор	454 AA/13/30 AA091294 AA584921 N860// AW836 195 AA514764 AA454562 A1082382 AA595822 AA551	351 AA586369 AA6	66384 AA188934 AA6	666398 AA551297 AA565188	
80	411152	1234028_1	BE069	199 AW936012 AW877466 AW819782 AW935798 AV	V835546 AW936042	! BE069121 AW83562	25 AW877536 AW935885 BE069202	
			AW820	0019 AW935937 BE160180 AW935946 BE069101 BE	069125 AW877527 I	BE160316 BE160398	AW935794 AW835701 AW935784	
	412537	1304_1	AL0311	778 X59711 NM_002505 M59079 A1870439 A1494259 3 BE079412 BE079428 N90322 A1631202 A1141758 A	AW664010 AA4050)63 AA436132 BE174(1516 AA412691 AI400314 AA436024 1908445 AM235763 AI 044113 AA32259	56
			1 2940. AW953	3 BEU19412 BEU19428 N9U322 A16312U2 A1141756 A 1918 AA927051 AA889823 BE003094 AW390155 AW	360805 AW360823	AW360810 AA425472	2 Al694282 AL044114 Al684577 Al8098	65

WO 02/086443 PCT/US02/12476
Al478773 Al160445 Al674630 N69088 AW665529 N49278 Al129239 Al457890 Al621264 AW297152 Al268215 AA907787 Al286170 Al0178

	***	02,000110	Al478773 Al160445 Al674630 N69088 AW665529 N49278 Al129239 Al457890 Al621264 AW297152 Al268215 AA907787 Al286170 Al017982
5	412811	132943_1	Al963541 Al469807 Al969353 BE552356 N66509 AA736741 AA382555 AW075811 AW292026 H06382 AW957730 AA352014 R13591 AA121201 D60420 BE263253 BE047862 Z41952 Al424991 Al693507 Al863108 AA599060 Al091148 AA598689 R39887 AA813482 AW016452 H06383 R41807 Al364268 AA620528 Al241940 AW089149 AW090733 AW088875 Z38240
3	413690 414883	1383256_1 15024_1	AA121202 R17734 BE157489 BE157560 AA926960 AA926959 W76521 W24270 W21526 AA037172 BE267636 H83186 AA469909 N86396 AA001348 BE535736 AA081745 BE566245 AA082436 H72525 H77575 N49786 W80565 H78746 BE569085 W04339 R98127 T55938 BE279271 AW960304 T29812 AA476873 BE297387
10			AA292753 AA177048 NM_001826 X54941 BE314366 AA908783 AI719075 BE270172 BE269819 AA889955 AI204630 W25243 AI935150 AA872039 W72395 T99630 AI422691 H98460 N31428 BE255916 H03265 AI857576 AA7776920 AA910644 AA459522 AA293140 AW514667 R75953 AW662396 AA662522 AI865147 AI423153 AW262230 AA584410 AA683187 AW024595 AW069734 AI828996 AA282997 AA876046 AW613002 AA527373 AW972459 AI831360 AA621337 AA100926 AA772418 AA594628 AI033892 W95096 AI034317 AA398727 AI085031
15			N95210 Al459432 Al041437 AA932124 AA627684 AA935829 Al004827 Al423513 Al094597 H42079 R54703 Al630359 AA617681 AA978045 AA643280 W444561 Al991988 Al537692 Al090262 AA740817 Al312104 Al911822 AA416871 Al185409 AA129784 AA701623 Al075239 Al139549 AA633648 Al339996 Al336880 AA399239 Al078708 Al085351 Al362835 Al346618 Al146955 Al989380 Al348243 N92892 AA765850 Al494230 Al278887 AA962596 Al492600 W80435 AA001979 R97424 Al129015 N24127 AA157451 AA235549 AA459292 AA037114 AA129785 Al494231 AW059601 AW886710 R92790 N59755 Al361128 AW589407 H47725 H97534 H48076 H48450 T99631 AW300758 H03431 R76789
20	415989	156454_1	AA954344 H77576 R96823 AI457100 N92845 N49682 H42038 BE220698 BE220715 H99552 AA701624 N74173 R54704 H79520 H72923 H03266 BE261919 AA769633 AA480310 AA507454 AA910586 AI203723 AW104725 W25611 W25071 T88980 H03513 T77589 R99156 W95095 R97470 AA702275 T77551 AA911952 H82956 N83673 AA283672 AI267700 AI720344 AA191424 AI023543 AI469633 AA172056 AW958465 AA172236 AW953397 AA355086
25	417324 418574	166714_1 17690_1	AW265494 AA455904 AA195677 AW265432 AW991605 AA456370 N28754 N28747 Al568146 Al979339 AA322671 AA322672 AW955043 Al990326 AA776406 Al016250 AA843678 AW451882 N23137 N23129 W70051 Al038748 AA831327 Al925845 AW945895
2.3	418712 419443 419502	1784125_1 184788_1 18535_1	Z42183 T31621 T97478 D62703 AA242966 D79798 AU076704 T74854 T74860 T72098 T73265 T73873 T69180 T74658 T58786 T60385 T73410 T68781 T67845 T67593 T73952 T67864 T60630 T68367 T68401 T53959 T72360 T72099 T60377 T58961 T71712 T72821 T64738 T74645 T72037 T68688 T72063 T73258 T72826 T64242
30			T68220 T74673 T71800 T68355 T61227 T62738 T69317 T53850 T64692 T73768 T73962 T73382 T68914 T70975 T73400 T60631 T73277 T73203 T70498 T61409 T68925 NM_000508 M64982 T68301 T73729 T69445 T60424 T67922 T67736 T68716 T67755 T74765 T73419 T58719 T74756 T60477 T74863 T61109 T68329 T58850 T71857 T73425 T53736 T68607 T58898 T64309 T72031 T72079 T64305 T71908 T68107 T71916 T73787 T56035 T64425 T71870 T60476 T61376 T67820 T71895 T41006 T69441 T68170 T74617 T71958 T69440 T61875 R06796 H48353 T71914 T53939 T64121 AA693996 T72525 T67779 T68078 AA011465 AA345378 AV654847 AV654272 AV656001 AI064740 T82897
35			N33594 AA344542 AW805054 Al207457 T61743 AA026737 H94389 AA382695 AA918409 T68044 S82092 T39959 Al017721 AA312395 AA312919 T40156 H66239 AV652989 H38728 R98521 AV655200 R95790 W03250 W00913 AA344136 AV660126 R97923 AA343596 AW470774 AV651256 N54417 AA812862 AW182929 Al111192 H61463 H72060 AA344503 H38639 Al277511 AV661108 Al207625 T47810 AA23525 T27853 T47778 R95746 H70620 AA701463 AW827166 R98475 C20925 AV657287 T71959 T71313 T73920 T73333 T61618 T69293 T69283 T73931 T72178 T72456 AV645639 AV6553476 T72957 T72300 T58906 T71457 T70494 T72956 T70495 T68267 T74407 T85778
40	o		AA344726 T27854 T74485 T74101 T73868 T71518 T72304 AA343853 T73909 T68070 T72065 H72149 T73493 T73495 AV645993 R02293 T70475 T64751 AA344441 AA343657 AA345732 AA344328 Al110639 AA344603 AF063513 T64696 T68516 T72223 T60507 T67633 R29500 T72517 R02292 T60599 T69206 T70452 T74697 R29366 T61277 T74914 T60352 R29675 T74843 AV645792 AA344408 T61917 T72057 T69368 T69358 T68258 AV650429 T73341 T61702 T74598 T40095 K02272 T40106 AA343045 AA341908 AA341907 AA342807 AA341964 T63747 T72042 T62764 Al064899 AA343060 T67832 T72440 T74770 T68091 T69108 T72449 T69167 T71289 T68251 AV654844 T64375
45			AA345234 T67598 AA011414 T68036 H48262 Al207557 T68219 W86031 T69081 T64232 R93196 T62136 AV650539 H67459 T72978 AA344583 T60362 H68121 T95711 T72803 T68055 T71715 R29036 T72793 T69122 T64595 T62888 T69139 T68291 T64652 T67971 T46862 AA693592 Al248502 R29454 T64764 T57001 T73052 T71429 T51176 T58866 AV655414 H90426 AA342489 T73666 T67848 T72512 T53835 T67837 T73317 T74273 T69420 T68245 T74380 T67862 T74474 T56068
50	419936 421582	189181_1 2041_1	Al792788 BE142230 AA252019 Al910275 X00474 X52003 X05030 NM_003225 AA314326 AA308400 AA506787 AA314825 Al571948 AA507595 AA614579 AA587613 R83818 AA568312 AA614409 AA307578 Al925552 AW950155 Al910083 M12075 BE074052 AW004668 AA578674 AA582084 BE074053 BE074126 BE074140 AA514776 AA588034 BE074051 BE074068 AW009769 AW050690 AA858276 R55389 Al001051 AW050700 AW750216 AA614539 BE074045 Al307407 AW602303 BE073575 Al202532 AA524242 Al970839 Al909751 BE076078 Al909749 R55292
55	422128 423034 423816 424200	211994_1 224122_1 23234_1 236595_1	AW881145 AA490718 M85637 AA304575 T06067 AA331991 AL119930 AA320696 AW752565 AL031965 AL137241 Al792386 Al733664 Al857654 Al049911 AA337221 AA336756 AW966196
60	424999 426966 426991 427260	245835_1 273896_1 27415_1 276598_1	AW953120 R56325 AA349562 Al493134 Al498691 AW771508 Al498457 Al768408 Al783624 Al383985 Al580267 D79813 AA393768 AK001536 AA191092 AW510354 Al554256 AL353968 AA134266 AA663848 AA400100 AA401424
	428023	28589_2	AL038843 AA161338 BE268213 AA425597 N87306 AA092969 BE566038 AA247451 N47392 Al928802 AW182584 AW027872 Al819831 Al936994 W56258 Al653448 Al278611 Al283557 Al824306 AW338658 AW150899 AA687514 N47393 N29885 AA973469 Al038904 Al292064 Al034339 AW674593 N72156 Al079733 Al038683 Al291616 AA491599 AA993675 AA837380 BE006554 BE006473 Al087090 T33044 AA652043 Al203503 AA583959 W35283 Al129926 Z41844 AW020925 AW575848 Al684603 AA493297 Al140689 Al277175 AA425444
65	429220 429978	301384_1 31150_1	AI932767 W02632 BE396786 R37261 AW207206 AW341473 AA448195 AI951341 AA249027 AL038984 AK001993 AL080066 AV652725 BE566226 AA345557 AA315222 AA090585 AA375688 AA301092 AA298454 W05762 AW607939 H51658 D83880 N84323 BE296821 AW947007 D61461 AW079261 AA329482 AW901780 AI354442 AA772275 R31663 AI354441
70	430439	31808_1	AI767525 H92431 AI916735 H93575 AI394255 AW014741 AI573090 C06195 AW612857 AW265195 AI339558 AI377532 AI308821 AI919424 AI589705 AW055215 AI336532 AI338051 AA806547 C75509 C00618 AW071172 AW769904 AA630381 AI678018 AI863985 D79662 BE221049 AW265018 AI589700 AW196655 N76573 AI370908 BE042393 N75017 AI698870 AW960115 AL133561 AL041090 AL117481 AL122069 AW439292 AI968826
75	430935 431089 431322 432407	325772_1 327825_1 331543_1 34624_1	AW072916 Al184913 AA489195 AW466994 AW469044 N59350 Al819642 Al280239 Al220572 AA789302 Al473611 AW841126 D60937 BE041395 AA491826 AA621946 AA715980 AA666102 AW970622 AA503009 AA502998 AA502989 AA502805 T92188 AA221036 R87170 BE537068 BE544757 C18935 AW812058 T92565 AA227415 AA233942 AA223237 AA668403 AA601627 AW869639
80	434414	38585_1	BE061833 BE000620 AW961170 AW847519 AA308542 AW821833 AW945688 C04699 AA205504 AA377241 AW821667 AA055720 AW817981 AW856468 AA155719 AA179928 T03007 AW754298 AA227407 AA113928 AA307904 C16859 Al798376 S46400 AW811617 AW811616 W00557 BE142245 AW858232 AW861851 AW858362 AA232351 AA218567 AA055556 AW858231 AW857541 AW814172 H66214 AW814398 AF134164 AA243093 AA173345 AA199942 AA223384 AA227092 AA227080 T12379 AA092174 T61139 AA149776 AA699829 AW879188 AW813657 AW813538 Al267168 AA157718 AA157719 AA100774 AA130756 AA157705 AA157730 AA157715 AA053524 AW849581 AW854566 C05254 AW882836 T92637 AW812621 AA206583 AA209204 BE156909 AA226824
85	436608	42361_3	AI829309 AW991957 N66951 AA527374 H66215 AA045564 AI694265 H60808 AA149726 AW195620 BE081333 BE073424 AW817662 AW817705 AW817703 AW817659 BE081531 H59570 AA628980 AI126603 BE504035

	W	O 02/086	443	PCT/US02/12476
E	438091	44964_1	A\ A\ A\	W373062 T55662 Al299190 BE174210 AW579001 H01811 W40186 R67100 Al923886 AW952164 AA628440 AW898607 AW898616 A709126 AW898628 AW898544 AA947932 AW898625 AW898622 Al276125 Al185720 AW510698 AA987230 T52522 BE467708 AW243400 W043642 Al288245 Al186932 D52654 D55017 D52715 D52477 D53933 D54679 Al298739 Al146984 Al922204 N98343 BE174213 AA845571 B13854 Al214518 Al635262 Al139455 Al707807 Al698085 AW884528 Al024768 Al004723 AW087420 Al565133 N94964 Al268939
5	439000	467716_1	A\ Al	W513280 AI061126 AI435818 AI859106 AI360506 AI024767 AA513019 AA757598 X56196 AA902959 AI334784 AI860794 AA010207 W890091 AW513771 AI951391 AI337671 T52499 AA890205 AI640908 H75966 AA463487 AA358688 AI961767 AI866295 AA780994 985913 BE174196 AA029094 AW592159 T55581 N79072 AI611201 AA910812 AI220713 AW149306 AI758412 AA045713 R79750 N76096 W979121 AA847986 AA829098
10	439285 439780	47065_1 47673_1	Ai A	L133916 N79113 AF086101 N76721 AW950828 AA364013 AW955684 AI346341 AI867454 N54784 AI655270 AI421279 AW014882 A775552 N62351 N59253 AA626243 AI341407 BE175639 AA456968 AI358918 AA457077 L109688 R23665 R26578
	441128 443068	51021_2 558874_1	A. Al	A570256 AW014761 AA573721 AI473237 AI022165 AA554071 AA127551 N90525 AW973623 AA447991 AA243852 BE328850 AI148171 359627 AI005068 AI356567 AA232991 AW016855 AA906902 AA233101 AA127550 BE512923 188710 AI032142 AW078833 N30308 AW675632 AI219028 AI341201 N22181 H95390
15	443947 447636	586160_1 7301_1	W Y A A	'24187 W24194 R17789 10043 NM_005342 L05085 AL034450 BE614226 AW749053 AA379173 AA248230 BE514634 AA334622 R70656 AA367593 AA214649 A369318 AW957081 R05760 AA039903 AI886597 AW630122 AA906264 AA041527 R01145 Al088688 BE463637 AA398795 Al354883 1768938 Al569996 Al452952 A1168582 A1189869 Al086670 AW262560 AW613854 AA862839 AA435840 AA670197 Al024032 Al990659 1990089 N81095 AA847919 AW960150 AA211075 AA044704 AA367594 AW582587 AW858854 AW818630 AW818281 AW818433 AW582595
20	448993	79225_1	Al A' A	A096002 N83992 471630 BE540637 BE265481 AW407710 BE513882 BE546739 AA053597 BE140503 BE218514 AW956702 A1656234 A1636283 A1567265 W340858 BE207794 AA053085 R69173 AA292343 AA454908 AA293504 A1659741 A1927478 AA399460 A1760441 AA346416 BE047245 A730380 AA394063 AA454833 A1982791 A1567270 A1813332 A1767858 AA427705 D20284 A1221458 BE048637 A1263048 AA346417 A911497 BE537702
25	449305 451105 451320	804424_1 859083_1 86576_1	A A A	I638293 AW813561 1761324 AW880941 AW880937 W118072 AI631982 T15734 AA224195 AI701458 W20198 F26326 AA890570 N90552 AW071907 AI671352 AI375892 T03517 R88265 I124088 AA224388 AI084316 AI354686 T33652 AI140719 AI720211 T03490 AI372637 T15415 AW205836 AA630384 T03515 T33230 A017131 AA443303 T33623 AI222556 T33511 T33785 AI419606 D55612
30	451807 452410	8865_1 9163_1	W A'	752854 AL117600 BE208116 BE208432 BE206239 BE082291 AW953423 AA351619 BE180648 BE140560 W60080 AA865478 N90291 W450652 AW449519 AA993634 AI806539 AA351618 AW449522 AI827626 AA904788 AA380381 AA886045 AA774409 BE003229 Z41756 L133619 AA468118 AA383064 AI476447 T09430 AI673758 AA524895 AI581345 AI300820 AW498812 AA256162 AI559724 AI685732 A602400 AA905453 AI204595 AW166541 AA157456 AA156269 AA383652 AA431072 AW592707 AI435410 AW272464 AI215594 AA622747
35	454241	1067807_1	R A B	74039 N35031 AI804128 AWS13821 AA868351 AI026826 AI493388 AA614641 W81604 AI567080 AI214351 AA730140 A125754 AI200813 I269603 AI565082 AI807095 AI476629 AA505909 AI368449 AI686077 AI582930 AW085038 AA757863 AA730154 AI767072 AA468316 I734130 AI734138 AA426284 AA433997 AI741241 AW043563 AI732741 AI732734 AA437369 AA425820 AA664048 R74130 E144666 BE184942 AW238414 BE184946
40	455175 456237 458098	1257335_1 168730_1 47395_1	A B A	W993247 AW861464 A203682 R11958 E550224 AA832519 N45402 AW885857 N29245 BE465409 W07677 AW970089 Al299731 AA482971 BE503548 H18151 W79223 AF086393 A461301 W74510 R34182 Al090689 N46003 BE071550 R28075 AW134982 Al240204 Al138906 AW026179 Al572316 BE466182 Al206395 I276154 Al273269 Al422817 Al371014 Al421274 Al188525 AA939164 BE549810 AW137865 Al694996 BE503841 AA459718 BE327407 E467534 BE218421 BE467767 AA989054 BE467063 Al797130 BE327781
45	TABLE 9C			
50	Pkey: Ref: Strand: Nt_position	Sequence sequence Indicates D	source. of humar DNA strar	responding to an Eos probeset The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication of the publication of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication of the publication of the publication of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication of the publication of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Independent of the publication entitled "The DNA" I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. I chromosome
55	Pkey 400512 400517 400560 400664	9796593 9796686 9843598 8118496	Strand Minus Minus Plus Plus	Nt_position 1439-1615 49996-50346 94182-94323,97056-97243,101095-101236,102824-103005 13558-13721,13942-14090,14554-14679
60	400665 400666 400749 400763 401027	8118496 7331445 8131616	Plus Plus Minus Minus Minus	16879-17023 17982-18115,20297-20456 9162-9293 35537-35784 70407-70554,71060-71160
65	401093 401203 401212 401411 401435	8516137 9743387 9858408 7799787	Minus Minus Plus Minus Minus	22335-23166 172961-173956,173868-173928 87839-88028 144144-144329 54508-55233
70	401464 401714 401747	6682291 6715702	Minus Plus Minus	3-9-03-03-03-03-03-03-03-03-03-03-03-03-03-
75	401760 401780 401781 401785 401797	7249190 7249190 7249190 6730720	Plus Minus Minus Minus Plus	83126-83250,85320-85540,94719-95287 28397-28617,28920-29045,29135-29296,29411-29567,29705-29787,30224-30573 83215-83435,83531-83656,83740-83901,84237-84393,84955-85037,86290-86814 165776-165996,166189-166314,166408-166569,167112-167268,167387-167469,168634-168942 6973-7118
80	401961 401985 401994 402075 402260	2580474 4153858 8117407 3399665	Minus Plus Minus Plus Minus	124054-124209 61542-61750 42904-43124,43211-43336,44607-44763,45199-45281,46337-46732 121907-122035,122804-122921,124019-124161,124455-124610,125672-126076 113765-113910,115653-115765,116808-116940
85	402265 402297 402408	6598824	Plus Plus Minus	21059-21168 35279-35405,35573-35659 110326-110491

	W	O 02/08	6443	
	402420	9796339	Plus	129750-129919
	402674	8077108	Minus	39290-39502
	402802	3287156	Minus	53242-53432
	402994	2996643	Minus	4727-4969
5	403137	9211494	Minus	92349-92572,92958-93084,93579-93712,93949-94072,94591-94748,95214-95337
-	403306	8099945	Plus	127100-127251
	403329	8516120	Plus	96450-96598
	403381	9438267	Minus	26009-26178
	403478	9958258	Plus	116458-116564
10	403485	9966528	Plus	2888-3001,3198-3532,3655-4117
-	403627	8569879	Minus	23868-24342
	403715	7239669	Plus	85128-85292
	404044	9558573	Minus	225757-225939
	404076	9931752	Minus	3848-3967
15	404101	8076925	Minus	125742-125997
	404140	9843520	Plus	37761-38147
	404165	9926489	Minus	69025-69128
	404185	4572584	Minus	129171-129327
	404210	5006246	Plus	169926-170121
20	404253	9367202	Minus	55675-56055
	404287	2326514	Plus	53134-53281
	404298	9944263	Minus	73591-73723
	404347	9838195	Plus	74493-74829
	404440	7528051	Plus	80430-81581
25	404721	9856648	Minus	173763-174294
	404794	4826439	Plus	101619-101898
	404854	7143420	Plus	14260-14537
	404877	1519284	Plus	1095-2107
	404927	7342002	Plus	68690-69563
30	404996	6007890	Plus	37999-38145,38652-38998,39727-39872,40557-40674,42351-42450
	405449	7622497	Plus	42236-42570
	405568	6006906	Plus	35912-36065
	405572	3800891	Plus	85230-85938
	405646	4914350	Plus	741-969
35	405676	4557087	Plus	73195-73917
	405770	2735037	Plus	61057-62075
	405932	7767812	Minus	123525-123713
	406137	9166422	Minus	30487-31058
	406360	9256107	Minus	7513-7673
40	406399	9256288	Minus	63448-63554
	406467	9795551	Plus	182212-182958

TABLE 10A: Potential Therapeutic, Diagnostic and Prognostic targets for Therapy of Lung Cancer and Non-malignant Lung Disease
Table 2A shows about 307 genes up-regulated in non-malignant lung disease relative to lung tumors and normal body tissues and/or down-regulated in lung tumors relative to
normal lung and non-malignant lung disease. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. 45

Table 10B show the accession numbers for those Pkey's lacking UnigenelD's for table 10A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequences similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the 50

PCT/US02/12476

Table 10C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 10A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Unique Eos probeset identifier number Pkey:

ExAccn: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number Unigene Title: Unigene gene title

55

60

Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the R1:

average of normal lung samples

Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples R2:

65	Pkey	ExAcon	UnigenelD	Unigene Title	R1	R2
	404394		-	ENSP00000241075:TRRAP PROTEIN.	0.79	3,10
	404916			Target Exon	1.00	159.00
	405257			Target Exon	1.00	422.00
	407228	M25079	Hs.155376	hemoglobin, beta	0.47	2.33
70	407568	AA740964	Hs.62699	ESTs	1.00	123.00
	408562	A1436323	Hs.31141	Homo sapiens mRNA for KIAA1568 protein,	1.00	230.00
	409031	AA376836	Hs.76728	ESTs	1.00	128.00
	410434	AF051152	Hs.63668	toll-like receptor 2	39.65	149.00
	410467	AF102546	Hs.63931	dachshund (Drosophila) homolog	1.00	109.00
75	410808	T40326	Hs.167793	ESTs	1.14	13.14
	412351	AL135960	Hs.73828	T-cell acute lymphocytic leukemia 1	0.37	2,27
	412372	R65998	Hs.285243	hypothetical protein FLJ22029	1.00	173.00
	413795	AL040178	Hs.142003	ESTs	0.10	11.90
	414154	AW205314	Hs.323060	ESTs	0.62	2.09
80	414214	D49958	Hs.75819	glycoprotein M6A	0.03	4.55
	414998	NM_002543	Hs.77729	oxidised low density lipoprotein (lectin	0.64	2.97
	415122	D60708	Hs.22245	ESTs	0.07	8.97
	415765	NM_005424	Hs.78824	tyrosine kinase with immunoglobulin and	0.67	1.65
~ =	415775	H00747	Hs.29792	ESTs, Weakly similar to 138022 hypotheti	0.29	2.64
85	415910	1120350	Hs 78913	chemokine (C-X3-C) receptor 1	1.00	145.00

	W	O 02/086	443			
	416319	Al815601	Hs.79197	CD83 antigen (activated B lymphocytes, i	15.32	237.00
	416402	NM_000715	Hs.1012	complement component 4-binding protein,	0.64	4.00
	417355	D13168	Hs.82002	endothelin receptor type B	0.01	3.90
5	417421	AL138201	Hs.82120	nuclear receptor subfamily 4, group A, m	36.30	357.00
5	417511	AL049176 U76421	Hs.82223 Hs.85302	chordin-like adenosine deaminase, RNA-specific, B1 (h	1.00 0.02	179.00 6.00
	418489 418726	BE241812	Hs.87860	protein tyrosine phosphatase, non-recept	1.00	113.00
	418741	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom	0.44	1.90
10	418883	BE387036	Hs.1211	acid phosphatase 5, tartrate resistant	0.96	2.04
10	419086	NM_000216	Hs.89591	Kallmann syndrome 1 sequence	0.62	2.74
	419150	T29618	Hs.89640 Hs.288433	TEK tyrosine kinase, endothelial (venous neurotrimin	0.03 1.48	6.90 5.13
	419235 419407	AW470411 AW410377	Hs.41502	hypothetical protein FLJ21276	37.55	336.00
	420556	AA278300	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	0.80	3.65
15	420656	AA279098	Hs.187636	ESTs	1.65	8.07
	420729	AW964897	Hs.290825	ESTs	2.99	25.82
	421177	AW070211	Hs.102415	Homo sapiens mRNA; cDNA DKFZp586N0121 (f	0.46 1.00	1.95 156,00
	422060 422426	R20893 W79117	Hs.325823 Hs.58559	ESTs, Moderately similar to ALU5_HUMAN A ESTs	0.03	7.44
20	422652	AW967969	Hs.118958	syntaxin 11	0.14	3.62
	423099	NM_002837	Hs.123641	protein tyrosine phosphatase, receptor t	0.01	3.16
	424433	H04607	Hs.9218	ESTs	0.75	141.75
	424585	AA464840	Hs.131987	ESTs	1.00	167.00 3.01
25	424711 424973	NM_005795 X92521	Hs.152175 Hs.154057	calcitonin receptor-like matrix metalloproteinase 19	0.43 0.37	19.45
23	425023	AW956889	Hs.154210	endothelial differentiation, sphingolipi	0.14	3.35
	425664	AJ006276	Hs.159003	transient receptor potential channel 6	1.00	94.00
	425998	AU076629	Hs.165950	fibroblast growth factor receptor 4	0.68	1.42
20	426657	NM_015865	Hs.171731	solute carrier family 14 (urea transport	0.03	3,74 141,00
30	426753	T89832	Hs.170278 Hs.2171	ESTs growth differentiation factor 10	1.00 1.00	141.00
	427558 427983	D49493 M17706	Hs.2233	colony stimulating factor 3 (granulocyte	0.75	2.20
	428467	AK002121	Hs.184465	hypothetical protein FLJ11259	0.76	2.25
0.5	428927	AA441837	Hs.90250	ESTs	0.01	3.62
35	429496	AA453800	Hs.192793	ESTs	1.00	138.00
	430468 431385	NM_004673 BE178536	Hs.241519 Hs.11090	angiopoietin-like 1 membrane-spanning 4-domains, subfamily A	1.00 1.00	132.00 157.00
	431728	NM_007351	Hs.268107	multimerin	1.00	157.00
	431848	Al378857	Hs.126758	ESTs, Highly similar to AF175283 1 zinc	0.34	2.24
40	432128	AA127221	Hs.117037	ESTs	0.00	1.15
	432519	Al221311	Hs.130704	ESTs, Weakly similar to BCHUIA S-100 pro	0.01	2.06
	433043 433803	W57554	Hs.125019 Hs.27688	lymphoid nuclear protein (LAF-4) mRNA ESTs	1.00 1.00	267.00 105.00
	434730	AI823593 AA644669	Hs.193042	ESTs	1.05	3.15
45	435472	AW972330	Hs.283022	triggering receptor expressed on myeloid	0.83	1.94
	436532	AA721522		gb:nv54h12.r1 NCI_CGAP_Ew1 Homo sapiens	1.00	218.00
	437119	Al379921	Hs.177043	ESTs	1.00	133.00 122.67
	437140 437211	AA312799 AA382207	Hs.283689 Hs.5509	activator of CREM in testis ecotropic viral integration site 2B	0.67 1.00	142.00
50	437960	A1669586	Hs.222194	ESTs	1.00	147.00
	438202	AW169287	Hs.22588	ESTs	1.00	141.00
	438873	Al302471	Hs.124292	Homo sapiens cDNA: FLJ23123 fis, clone L	0.71	3.66
	438875	AA827640	Hs.189059	ESTs	23.32 0.77	370.00 8.50
55	441048 441188	AA913488 AW292830	Hs.192102 Hs.255609	ESTs ESTs	3.43	16.36
55	441499	AW298235	Hs.101689	ESTs	1.00	167.00
	444513	AL120214	Hs.7117	glutamate receptor, ionotropic, AMPA 1	1.00	151.00
	444527	NM_005408	Hs.11383	small inducible cytokine subfamily A (Cy	46.47	153.00
60	444561	NM_004469	Hs.11392	c-fos induced growth factor (vascular en	0.01	3.08 141.00
UU	445279 446017	R41900 N98238	Hs.22245 Hs.55185	ESTs ESTs	0.60 0.18	2.39
	446984	AB020722	Hs.16714	Rho guanine exchange factor (GEF) 15	0.10	2.16
	446998	N99013	Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f	0.01	2.53
65	447357	Al375922	Hs.159367	ESTs	0.46	2.64
65	448106	A1800470	Hs.171941	ESTs	18.05 1.00	296.00 141.00
	448253 449275	H25899 AW450848	Hs.201591 Hs.205457	ESTs periaxin	0.56	1.38
	450400	AI694722	Hs.279744	ESTs	0.88	4.33
7 0	450696	AI654223	Hs.16026	hypothetical protein FLJ23191	0.52	2.08
70	450726	AW204600	Hs.250505	retinoic acid receptor, alpha	0.79	2.01
	451497	H83294	Hs.284122	Wnt inhibitory factor-1 serum deprivation response (phosphatidy)	0.35 0.13	2.03 2.25
	451533 453636	NM_004657 R67837	Hs.26530 Hs.169872	ESTs	1.00	116.00
	458332	AI000341	Hs.220491	ESTs	1.00	192.00
75	459580	AA022888	Hs.176065	ESTs	0.20	2.98
	400269			Eos Control	0.40	2.40 1.77
	403421 407570	Z19002	Hs.37096	NM_016369*:Homo sapiens claudin 18 (CLDN zinc finger protein 145 (Kruppel-like, e	0.53 0.01	1.77 3.18
	412295	AW088826	Hs.117176	poly(A)-binding protein, nuclear 1	0.56	1.74
80	414517	M24461	Hs.76305	surfactant, pulmonary-associated protein	0.64	1.50
	417204	N81037	Hs.1074	surfactant, pulmonary-associated protein	0.33	1.16
	418307	U70867	Hs.83974	solute carrier family 21 (prostaglandin	0.53 0.20	1.55 1.28
	418935 421502	T28499 AF111856	Hs.89485 Hs.105039	carbonic anhydrase IV solute carrier family 34 (sodium phospha	0.20	1.20
85	421798	N74880	Hs.29877	N-acylsphingosine amidohydrolase (acid c	0.59	1.54

•

	VX.	O 02/086	113			
	423354	AB011130	Hs.127436	calcium channel, voltage-dependent, alph	0.59	1.55
	423738	AB002134	Hs.132195	airway trypsin-like protease	10.14	51.00
	425211	M18667	Hs.1867	progastricsin (pepsinogen C)	0.35	1.62
~	425438	T62216	Hs.270840	ESTs	0.23	9.45
5	426828	NM_000020	Hs.172670	activin A receptor type II-like 1	0.03 0.01	1.71 1.49
	427019 428043	AA001732 T92248	Hs.173233 Hs.2240	hypothetical protein FLJ10970 uteroglobin	0.42	1.26
	430280	AA361258	Hs.237868	interleukin 7 receptor	0.46	2.43
4.0	431433	X65018	Hs.253495	surfactant, pulmonary-associated protein	0.57	1.59
10	431723	AW058350	Hs.16762	Homo sapiens mRNA; cDNA DKFZp564B2062 (f	0.29	1.80
	432985	T92363	Hs.178703	ESTs	0.32	2.27
	441835	AB036432	Hs.184	advanced glycosylation end product-speci	0.31 0.55	1.51 1.78
	442275 443709	AW449467 Al082692	Hs.54795 Hs.134662	ESTs ESTs	0.00	3.02
15	444325	AW152618	Hs.16757	ESTs	0.32	2.49
	450954	A)904740	Hs.25691	receptor (calcitonin) activity modifying	0.46	1.74
	451558	NM_001089	Hs.26630	ATP-binding cassette, sub-family A (ABC1	0.52	1.87
	453310	X70697	Hs.553	solute carrier family 6 (neurotransmitte	0.00	3.30
20	456855	AF035528	Hs.153863	MAD (mothers against decapentaplegic, Dr	0.01	2.31 2.20
20	444342 400754	NM_014398	Hs.10887	similar to lysosome-associated membrane Target Exon	0.66 1.00	297.00
	401045			C11001883*:gi 6753278 ref NP_033938.1\c	1.00	109.00
	401083			NM_016582*:Homo sapiens peptide transpor	0.89	1.39
	402474			NM_004079:Homo sapiens cathepsin S (CTSS	1.45	4.47
25	402808			ENSP00000235229:SEMB.	1.00	1.87
	403021			C21000030:gi 9955960 ref NP_063957.1 AT	1.00	149.00 2.96
	403438			NM_031419*:Homo sapiens molecule possess	1.06 0.04	2.90 4.89
	403687 403764			NM_007037*:Homo sapiens a disintegrin-li NM_005463:Homo sapiens heterogeneous nuc	1.00	225.00
30	404277			NM_019111*:Homo sapiens major histocompa	0.97	1.93
-	404288			NM_002944*:Homo sapiens v-ros avian UR2	1.00	68.00
	404518	Al815601		CD83 antigen (activated B lymphocytes, i	0.02	1.83
	405106			C11001637*:gij5032241[ref[NP_005732.1] z	1.00	235.00
35	405381			Target Exon	1.00	93.00 6.02
33	406387 406646	M33600		Target Exon major histocompatibility complex, class	1.37 0.86	2.46
	406714	Al219304	Hs.266959	hemoglobin, gamma G	0.01	3.19
	406753	AA505665	Hs.217493	annexin A2	1.00	147.00
40	406973	M34996	Hs.198253	major histocompatibility complex, class	1.03	2.04
40	407248	U82275	Hs.94498	teukocyte immunoglobulin-like receptor,	1.00	64.00
	407510	U96191	11- 00000	gb:Human trophoblast hypoxia-regulated f	1.00	90.00
	407731	NM_000066	Hs.38069	complement component 8, beta polypeptide	1.00 1.00	67.00 102.00
	407830 408045	NM_001086 AW138959	Hs.587 Hs.245123	arylacetamide deacetylase (esterase) ESTs	1.00	70.00
45	408074	R20723	113.243120	ESTs	1.00	112.00
	408374	AW025430	Hs.155591	forkhead box F1	0.07	10.17
	409064	AA062954	Hs.141883	ESTs	0.39	2.31
	409083	AF050083	Hs.673	interleukin 12A (natural killer cell sti	1.00	95.00
50	409153	W03754 AA780473	Hs.50813 Hs.687	hypothetical protein FLJ20022 cytochrome P450, subfamily IVB, polypept	0.01 0.01	4.55 3.72
50	409203 409238	AL049990	Hs.51515	Homo sapiens mRNA; cDNA DKFZp564G112 (fr	1.00	79.00
	409389	AB007979	Hs.301281	Homo sapiens mRNA, chromosome 1 specific	0.14	27.35
	409718	D86640	Hs.56045	src homology three (SH3) and cysteine ri	1.00	113.00
c	410798	BE178622	Hs.16291	gb:PM3-HT0605-270200-001-a02 HT0605 Homo	0.64	2.47
55	411020	NM_006770	Hs.67726	macrophage receptor with collagenous str	0.55	2.40
	411667	BE160198	Un 15790	gb:QV1-HT0413-010200-059-h03 HT0413 Homo ATP-binding cassette, sub-family A (ABC1	1.00 1.00	111.00 95.00
	412000 412358	AW576555 BE047490	Hs.15780 Hs.24172	ESTs	1.00	87.00
	412420	AL035668	Hs.73853	bone morphogenetic protein 2	1.43	8.07
60	412564	X83703	Hs.31432	cardiac ankyrin repeat protein	0.02	3.07
	412869	AA290712	Hs.82407	CXC chemokine ligand 16	0.93	1.72
	412870	N22788	Hs.82407	CXC chemokine ligand 16	0.97	1.51
	413529	U11874	Hs.846	interleukin 8 receptor, beta gb:QV4-HT0222-011199-019-e05 HT0222 Homo	0.02 0.65	2.42 1.50
65	413533 413689	BE146973 BE157286	Hs.20631	zinc finger protein, subfamily 1A, 5 (Pe	20.87	232.00
05	413724	AA131466	Hs.23767	hypothetical protein FLJ12666	1.00	80.00
	413800	Al129238	Hs.192235	ESTs	1.00	85.00
	413802	AW964490	Hs.32241	ESTs, Weakly similar to S65657 alpha-1C-	1.00	213.00
70	413829	NM_001872	Hs.75572	carboxypeptidase B2 (plasma)	0.02	3.93
70	414376	BE393856	Hs.66915	ESTs, Weakly similar to 16.7Kd protein [1.00	115.00 1.94
	414577 414700	Al056548 H63202	Hs.72116 Hs.38163	hypothetical protein FLJ20992 similar to ESTs	0.49 0.03	3.75
	415078	AA311223	Hs.283091	found in inflammatory zone 3	0.86	1.95
	415120	N64464	Hs.34950	ESTs	1.00	120.00
75	415323	BE269352	Hs.949	neutrophil cytosolic factor 2 (65kD, chr	0.60	2.48
	415335	AA847758	Hs.111030	ESTs 500 500 500 500 500 500 500 500 500 50	1.00	95.00
	415582	W92445	Hs.165195	Homo sapiens cDNA FLJ14237 fis, clone NT	1.00	136.00
	416030	H15261 BE244050	Hs.21948 He 70307	ESTs Rac/Cdc42 guanine exchange factor (GEF)	0.02 1.00	8.07 73.00
80	416427 416464	NM_000132	Hs.79307 Hs.79345	coagulation factor VIII, procoagulant co	0.70	3.36
	416585	X54162	Hs.79386	leiomodin 1 (smooth muscle)	0.06	6.56
	416847	L43821	Hs.80261	enhancer of filamentation 1 (cas-like do	0.70	3.66
	417148	AA359896	Hs.293885	hypothetical protein FLJ14902	1.00	114.00
95	417370	T28651	Hs.82030	tryptophanyl-tRNA synthetase	0.85 0.15	1.30 15.54
85	417673	T87281	Hs.16355	ESTs	0.10	13.34

	W	O 02/086	443			
	418067	Al127958	Hs.83393	cystatin E/M	0.81	1.74
	418296	C01566	Hs.86671	ESTs	1.00	99.00
	418643	J03798	Hs.86948	small nuclear ribonucleoprotein D1 polyp	1.00	60.00
_	418832	X04011	Hs.88974	cytochrome b-245, beta polypeptide (chro	2.40	14.74
5	418945	BE246762	Hs.89499	arachidonate 5-lipoxygenase wingless-type MMTV integration site fami	0.67 1.00	° 3.16 73.00
	419261 419564	X07876 U08989	Hs.89791 Hs.91139	solute carrier family 1 (neuronal/epithe	1.00	192.00
	419574	AK001989	Hs.91165	hypothetical protein	1.00	94.00
4.0	419968	X04430	Hs.93913	interleukin 6 (interferon, beta 2)	61.16	500.00
10	420256	U84722	Hs.76206	cadherin 5, type 2, VE-cadherin (vascula	0.52	1.70
	420285	AA258124	Hs.293878	ESTs, Moderately similar to ZN91_HUMAN Z	1.00	172.00
	420577	AA278436	Hs.186649	ESTS	1.00 1.00	97.00 64.00
	421262 421445	AA286746 AA913059	Hs.9343 Hs.104433	Homo sapiens cDNA FLJ14265 fis, clone PL Homo sapiens, clone IMAGE:4054868, mRNA	0.88	1.51
15	421470	R27496	Hs.1378	annexin A3	0.05	11.26
	421478	AI683243	Hs.97258	ESTs, Moderately similar to S29539 ribos	1.00	73.00
	421563	NM_006433	Hs.105806	granulysin	0.82	2.42
	421566	NM_000399	Hs.1395	early growth response 2 (Krox-20 (Drosop	5.50	31.57
20	421855	F06504	Hs.27384	ESTs, Moderately similar to ALU4_HUMAN A	1.00 1.00	129.00 101.00
20	421913 421952	Al934365 AA300900	Hs.109439 Hs.98849	osteoglycin (osteoinductive factor, mime ESTs, Moderately similar to AF161511 1 H	0.60	63.60
	422232	D43945	Hs.113274	transcription factor EC	1.00	148.00
	422386	AF105374	Hs.115830	heparan sulfate (glucosamine) 3-O-sulfot	1.40	3.98
~~	423168	R34385	Hs.124940	GTP-binding protein	0.34	3.59
25	423196	AK001866	Hs.125139	hypothetical protein FLJ11004	0.55	2.00
	423387	AJ012074	11- 400422	vasoactive intestinal peptide receptor 1	0.09 1.00	2.13 141.00
	423424 423456	AF150241 AL110151	Hs.128433 Hs.128797	prostaglandin D2 synthase, hematopoietic DKFZP586D0824 protein	1.00	66.00
	423696	Z92546	113.120101	Sushi domain (SCR repeat) containing	0.73	1.27
30	424027	AW337575	Hs.201591	ESTs	0.54	2.58
	424212	NM_005814	Hs.143131	glycoprotein A33 (transmembrane)	0.77	2.47
	425087	R62424	Hs.126059	ESTs	1.00	74.00
	425175	AF020202	Hs.155001 Hs.159494	UNC13 (C. elegans)-like Bruton agammaglobulinemia tyrosine kinas	0.85 1.18	1.96 2.56
35	425771 426486	BE561776 BE178285	Hs.170056	Homo sapiens mRNA; cDNA DKFZp586B0220 (f	1.00	76.00
55	427507	AF240467	Hs.179152	toll-like receptor 7	1.00	63.00
	427618	NM_000760	Hs.2175	colony stimulating factor 3 receptor (gr	0.60	2.19
	427732	NM_002980	Hs.2199	secretin receptor	0.97	1.42
40	427952	AA765368	Hs.293941	ESTs, Moderately similar to A53959 throm	1.00	105.00 80.00
40	428709 428769	BE268717 AW207175	Hs.104916 Hs.106771	hypothetical protein FLJ21940 ESTs	1.00 0.09	2.55
	428780	Al478578	Hs.50636	ESTs	1.00	98.00
	428833	Al928355	Hs.185805	ESTs	1.00	113.00
4 ~	429657	D13626	Hs.2465	KIAA0001 gene product; putative G-protei	1.00	52.00
45	430212	AA469153		gb:nc67f04.s1 NCI_CGAP_Pr1 Homo sapiens	1.00	132.00
	430226	BE245562	Hs.2551	adrenergic, beta-2-, receptor, surface	0.11 1.00	15.60 103.00
	430376 430414	AW292053 AW365665	Hs.12532 Hs.120388	chromosome 1 open reading frame 21 ESTs	0.50	6.96
	430656	AA482900	Hs.162080	ESTs	1.00	70.00
50	430843	Al734149	Hs.119514	ESTs	1.00	90.00
	430998	AF128847	Hs.204038	indolethylamine N-methyltransferase	0.29	1.84
	431217	NM_013427	Hs.250830	Rho GTPase activating protein 6	1.00 0.91	79.00 1.67
	431921 432176	N46466 AW090386	Hs.58879 Hs.112278	ESTs arrestin, beta 1	0.66	2.63
55	432203	AA305746	Hs.49	macrophage scavenger receptor 1	1.00	76.00
	432231	AA339977	Hs.274127	CLST 11240 protein	0.46	1.46
	432485	N90866	Hs.276770	CDW52 antigen (CAMPATH-1 antigen)	0.79	2.25
	432522	D11466	Hs.51	phosphatidylinositol glycan, class A (pa	1.93	4.83
60	432596 432850	AJ224741 X87723	Hs.278461 Hs.3110	matrilin 3 angiotensin receptor 2	0.04 1.00	5.79 167.00
00	433138	AB029496	Hs.59729	semaphorin sem2	0.04	9.16
	433563	A1732637	Hs.277901	ESTs	1.00	91.00
	433588	Al056872	Hs.133386	ESTs	120.16	315.00
65	434445	Al349306	Hs.11782	ESTs	0.60	1.84
65	435496	AW840171	Hs.265398	ESTs, Weakly similar to transformation-r	1.00 1.00	128.00 108.00
	435974 436061	U29690 A1248584	Hs.37744 Hs.190745	Homo sapiens beta-1 adrenergic receptor Homo sapiens cDNA: FLJ21326 fis, clone C	1.00	91.00
	437157	BE048860	Hs.120655	ESTs	1.00	87.00
	437207	T27503	Hs.15929	hypothetical protein FLJ12910	1.00	105.00
70	437311	AA370041	Hs.9456	SWI/SNF related, matrix associated, acti	1.00	71.00
	437439	H29796	Hs.269622	ESTs	1.00	115.00
	438199	AW016531 W72062	Hs.122147 Hs.11112	ESTs ESTs	1.00 0.30	80.00 3.10
	439551 440515	AJ131245	Hs.7239	SEC24 (S. cerevisiae) related gene famil	1.00	77.00
75	440887	A1799488	Hs.135905	ESTs	1.00	85.00
	441025	AA913880	Hs.176379	ESTs	1.00	82.00
	441384	AA447849	Hs.288660	Homo sapiens cDNA: FLJ22182 fis, clone H	0.79	1.89
	441735	A1738675	Hs.127346	ESTS	1.00 0.78	75.00 5.83
80	442200 442832	AW590572 AW206560	Hs.235768 Hs.253569	ESTs ESTs	0.78	10.88
5 0	442957	AVV200500 Al949952	Hs.49397	ESTs	1.00	70.00
	443282	T47764	Hs.132917	ESTs	1.00	197.00
	443547	AW271273	Hs.23767	hypothetical protein FLJ12666	1.00	253.00
85	443951	F13272	Hs.111334	ferritin, light polypeptide	0.55 1.00	2.09 90.00
GD.	444330	Al597655	Hs.49265	ESTs	1.00	30,00

WO 02/086443 PCT/US02/12476 84.00 444515 AW204908 1.00 Hs.169979 **ESTs** 4.38 445769 Al741471 Hs.23666 **ESTs** 0.02 Homo sapiens clone 24425 mRNA sequence 97.00 Hs.13436 1.00 445908 R13580 Hs.14623 0.93 1.69 446291 BE397753 interferon, gamma-inducible protein 30 5 106.00 446917 Al347863 Hs.156672 **ESTs** 1.00 NM_006691 Hs.17917 extracellular link domain-containing 1 0.40 47.20 447261 AW958473 447432 Hs.301957 nudix (nucleoside diphosphate linked moi 1.00 100.00 447482 AB033059 Hs.18705 KiAA1233 protein 0.05 8.21 ESTs, Weakly similar to I38022 hypotheti hypothetical protein FLJ10392 KIAA0758 protein 5.42 447997 H00656 Hs.29792 0.02 10 1.00 79.00 AA497044 Hs.20887 448299 448782 AL050295 Hs.22039 0.42 1.56 NM_005859 purine-rich element binding protein A 11.33 Hs.29117 0.17 450575 AA040403 Hs.60371 1.00 94.00 450584 450693 AW450461 Hs.203965 **ESTs** 1.00 91.00 15 Hs.31570 ESTs, Weakly similar to KIAA1324 protein 1.00 152.00 450715 Al266484 86.00 451103 R52804 Hs.25956 DKFZP564D206 protein 1.00 novel SH2-containing protein 3 0.60 1.30 451220 AF124251 Hs.26054 1.91 Hs.326444 0.54 451668 Z43948 cartilage acidic protein 1 AW023595 Hs.232048 1.00 67.00 **FSTs** 452197 20 Hs.29117 purine-rich element binding protein A 4.53 11.07 AA598509 452331 epithelial membrane protein 2 0.72 2.24 Hs.29191 452353 C18825 BE537217 1.00 68.00 453049 Hs.30343 NM_016113 Hs.279746 vanilloid receptor-like protein 1 0.83 1.70 453107 132.00 453355 AW295374 Hs.31412 Homo sapiens cDNA FLJ11422 fis, clone HE 1.00 25 72.00 1.00 453390 AA862496 Hs.28482 **ESTs** ESTs, Weakly similar to JC5795 CDEP prot 1.00 68.00 453531 454741 AA417940 gb:CM2-HT0342-091299-050-b05 HT0342 Homo 0.57 2.89 BF154396 up-regulated by BCG-CWS 82.00 Hs.284205 1.00 AA287827 456579 Homo sapiens, clone MGC:16327, mRNA, com 0.79 1.96 AK002016 Hs.114727 456672 30 1.03 3.25 457400 AF032906 Hs.252549 cathepsin Z ESTs, Weakly similar to ALU4_HUMAN ALU S 113.00 Hs.22978 1.00 457718 F18572 459696 F03027 gb:HSC1KA072 normalized infant brain cDN 1.00 544.00 TABLE 10B 35 Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Genbank accession numbers Accession: 40 Pkey 408074 CAT Number R20723 AA263003 AA333976 AA334725 AA334151 AW965490 AA310513 AI810530 D31302 AW134897 AA830127 AA046953 AI668930 103684_1 C06094 AW104534 1253334_1 BE160198 AW935898 T11520 AW935930 AW856073 AW861034 411667 BE146973 BE146972 BE147042 BE147018 BE146783 BE147020 BE146781 BE147019 BE146766 BE147021 BE146952 BE146767 BE147044 1375344_1 413533 BE146797 BE146776 BE146985 BE146793 BE146768 BE146771 BE146954 BE146760 BE147048 BE147025 BE147030 AJ012074 U11087 L13288 X75299 L20295 AW630780 H14880 T28037 AI872991 R72136 AW449839 T81622 T79697 T29519 R94105 T83923 45 423387 22779_1 R73300 AJ97007 R7330 AA961010 H74168 Al689932 BE045643 Al808912 Al806573 AW884084 AW872978 AW872985 AA565655 Al022915 R50647 R73210 H45098 R46451 AW166269 T71132 Al264547 R52146 Al304920 R73391 AW884059 AW884085 H73241 T60038 T79612 R73145 R50549 Al094557 Al668793 R72302 Al564366 W01956 AA418962 W32571 R72840 H45409 R72085 R46356 R46758 50 AA508805 AA418798 T83751 R94072 T16182 AA928785 AA903896 Z92546 AA330586 Al570568 AW341487 Al827050 AW298668 Al792189 Al015693 Al733599 Al572251 Al672488 AW193262 Al244716 423696 23112 1 Al864375 Al206100 AA912444 Al269365 Al640254 AW772466 Al867336 AA627604 H16914 AA358477 AA338009 430212 314437_1 AA469153 Al718503 AA469225 436532 421802_1 AA721522 AW975443 T93070 55 453531 97026_1 AA417940 AA036735 T07025 454741 1232559_1 BE154396 AW817959 BE154393 TABLE 10C 60 Unique number corresponding to an Eos probeset Pkev: Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495. Strand: Indicates DNA strand from which exons were predicted. 65 Nt_position: Indicates nucleotide positions of predicted exons. Strand Nt position Pkev Ref 400754 144559-144684 7331445 Plus 401045 8117619 Plus 90044-90184,91111-91345 70 3242744 33192-33360 401083 Plus 53526-53628,55755-55920,57530-57757 402474 7547175 Minus 114964-115136.115461-115585,115931-116047,117666-117771,118004-118102 402808 6456148 Minus 120799-120966 403021 7547270 Plus 126609-126773,139986-140205 9665041 403421 Minus 75 90792-90938 403438 9719679 Plus 9009-9534 403687 7387384 Plus 118692-118853 403764 7717105 Minus 404277 1834458 Minus 91665-91946 404288 2769644 Plus 3512-3691 80 37121-37205.37491-37762.41053-41140.41322-41593,41773-41919 404394 3135305 Minus 84494-84603 404518 8151988 Plus 7341826 91057-91188 404916 Plus 8079395 80877-81418 405106 Minus 7329310 Plus 73121-73273 405257

85

405381

6006920

Minus

7636-8054

TABLE 11A: Genes Distinguishing Adenocarcinoma from Other Lung Diseases and Normal Lung

Table 11A shows about 84 genes upregulated in lung adenocarcinomas relative to other lung tumors, non-malignant lung disease, and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 11B show the accession numbers for those Pkey's lacking UnigenelD's for table 11A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 11C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 11A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Pkey: Unique Eos probeset identifier number 15

Exemplar Accession number, Genbank accession number ExAccn:

UnigenelD: Unigene number Unigene Title:

5

10

Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the average of normal lung samples R1:

20 R2: Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples

	Pkey 403329	ExAccn	UnigenelD	Unigene Title Target Exon	R1 1.00	R2 61.00
~ -	406399			NM_003122*:Homo sapiens serine protease	1.00	39.00
25	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad	226.37	350.00
	407869	A1827976	Hs.24391	hypothetical protein FLJ13612	0.77 1.00	1.18 10.00
	407881 408908	AW072003 BE296227	Hs.40968 Hs.250822	heparan sulfate (glucosamine) 3-0-sulfot serine/threonine kinase 15	7.76	1.00
	400300	AF251237	Hs.112208	XAGE-1 protein	80.44	40.00
30	409187	AF154830	Hs.50966	carbamoyl-phosphate synthetase 1, mitoch	1.00	1.00
	409269	AA576953	Hs.22972	hypothetical protein FLJ13352	1.00	1.00
	410076	T05387	Hs.7991	ESTs	1.12	1.50
	410102	AW248508	Hs.279727	Homo sapiens cDNA FLJ14035 fis, clone HE	9.89	1.00 1.06
35	410399 411908	BE068889 L27943	Hs.72924	synuclein, gamma (breast cancer-specific cytidine deaminase	0.92 1.00	1.00
55	412612	NM_000047	Hs.74131	arylsulfatase E (chondrodysplasia puncta	1.02	1.03
	414075	U11862	Hs.75741	amiloride binding protein 1 (amine oxida	0.84	1.07
	416208	AW291168	Hs.41295	ESTs, Weakly similar to MUC2_HUMAN MUCIN	3.67	1.00
40	417542	J04129	Hs.82269	progestagen-associated endometrial prote	1.28	1.35
40	419183	U60669	Hs.89663	cytochrome P450, subfamily XXIV (vitamin	1.00 13.05	1.00 115.00
	419502 419631	AU076704 AW188117	Hs.303154	fibrinogen, A alpha polypeptide popeye protein 3	1.00	13.00
	420931	AF044197	Hs.100431	small inducible cytokine B subfamily (Cy	1.00	8.00
	421155	H87879	Hs.102267	lysyl oxidase	1.00	15.00
45	421190	U95031	Hs.102482	mucin 5, subtype B, tracheobronchial	1.17	1.55
	421474	U76362	Hs.104637	solute carrier family 1 (glutamate trans	1.46	1.76
	421515	Y11339	Hs.105352	GalNAc alpha-2, 6-sialyltransferase I, I	1.00 1.23	3.00 1.00
	421582 422026	Al910275 U80736	Hs.110826	trefoil factor 1 (breast cancer, estroge trinucleotide repeat containing 9	1.00	52.00
50	422020	Ai868872	Hs.282804	hypothetical protein FLJ22704	4.37	2.34
0	422311	AF073515	Hs.114948	cytokine receptor-like factor 1	1.15	1.78
	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse	1.69	3.17
	423472	AF041260	Hs.129057	breast carcinoma amplified sequence 1	48.13	72.00
55	423554	M90516	Hs.1674	glutamine-fructose-6-phosphate transamin	1.00 1.00	50.00 1.00
55	424502 424544	AF242388 M88700	Hs.149585 Hs.150403	lengsin dopa decarboxylase (aromatic L-amino aci	1.00	59.00
	424905	NM_002497	Hs.153704	NIMA (never in mitosis gene a)-related k	21.35	1.00
	424960	BE245380	Hs.153952	5' nucleotidase (CD73)	1.00	1.00
	425523	AB007948	Hs.158244	KIAA0479 protein	1.00	35.00
60	426230	AA367019	Hs.241395	protease, serine, 1 (trypsin 1)	1.00	83.00
	427701	AA411101	Hs.243886	nuclear autoantigenic sperm protein (his	7.41 1.00	34.00 6.00
	428585 428758	AB007863 AA433988	Hs.185140 Hs.98502	KIAA0403 protein hypothetical protein FLJ14303	1.06	1.13
	429170	NM_001394	Hs.2359	dual specificity phosphatase 4	16.18	105.00
65	429263	AA019004	Hs.198396	ATP-binding cassette, sub-family A (ABC1	1.07	1.00
	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas	1.59	1.69
	430508	AI015435	Hs.104637	ESTs	4.75	7.27
	430985 431548	AA490232 Al834273	Hs.27323 Hs.9711	ESTs, Weakly similar to I78885 serine/th novel protein	0.94 5.66	1.28 15.00
70	431566	AF176012	Hs.260720	J domain containing protein 1	49.76	37.00
, 0	431986	AA536130	Hs.149018	Novel human gene mapping to chomosome 20	1.19	1.47
	432375	BE536069	Hs.2962	S100 calcium-binding protein P	1.65	1.06
	432677	NM_004482	Hs.278611	UDP-N-acetyl-alpha-D-galactosamine:polyp	1.00	48,00
75	433556	W56321	Hs.111460	calcium/calmodulin-dependent protein kin	1.00	19.00
13	433819 434001	AW511097 AW950905	Hs.112765 Hs.3697	ESTs serine (or cysteine) proteinase inhibito	3.71 29.31	8.00 72.00
	434424	A1811202	Hs.325335	Homo sapiens cDNA: FLJ23523 fis, clone L	1.00	64.00
	434792	AA649253	Hs.132458	ESTs	8.52	44.00
00	436217	T53925	Hs.107	fibrinogen-like 1	57.97	31.00
80	436749	AA584890	Hs.5302	lectin, galactoside-binding, soluble, 4	1.10	1.41
	436972	AA284679	Hs.25640	claudin 3	1.59	1.46 101.00
	437866 437935	AA156781 AW939591	Hs.5940	metallothionein 1E (functional) mucin 13, epithelial transmembrane	3.62 1.60	1.39
	437935	AA280174	Hs.285681	Williams-Beuren syndrome chromosome regi	1.00	1.00
85	439451	AF086270	Hs.278554	heterochromatin-like protein 1	23.28	52.00
				•		

	W	O 02/086	443				PCT/US02/12476
5	439759 441031 441377 443614 443813 443991 444670	AL359055 Al110684 BE218239 AV655386 AA876372 NM_002250 H58373	Hs.67709 Hs.7645 Hs.202656 Hs.7645 Hs.93961 Hs.10082 Hs.332938	Homo sapiens mRNA full length insert cDN fibrinogen, B beta polypeptide ESTs fibrinogen, B beta polypeptide Homo sapiens mRNA; cDNA DKFZp667D095 (fr potassium intermediate/small conductance hypothetical protein MGC5370	1.00 1.41 22.03 1.00 1.20 5.71 1.98	21.00 99.00 1.00 16.00 1.99 6.87 38.00	
10	444931 446102 446163 446469 447388 447532	AV652066 AW168067 AA026880 BE094848 AW630534 AK000614	Hs.75113 Hs.317694 Hs.25252 Hs.15113 Hs.76277 Hs.18791	general transcription factor IIIA ESTs Homo sapiens cDNA FLJ13603 fis, clone PL homogentisate 1,2-dioxygenase (homogenti Homo sapiens, clone MGC:9381, mRNA, comp hypothetical protein FLJ20607	1.00 1.00 1.00 1.00 1.00 1.24 1.23	54.00 1.00 36.00 11.00 1.16 1.63	
15	448243 448844 449444 451807 452689	AW369771 AI581519 AW818436 W52854 F33868	Hs.52620 Hs.177164 Hs.23590 Hs.284176	integrin, beta 8 ESTs solute carrier family 16 (monocarboxylic hypothetical protein FLJ23293 similar to transferrin	15.84 1.00 1.00 1.55 1.54	1.00 31.00 83.00 35.00 1.44	
20	453392 453464 453735	U23752 Al884911 Al066629	Hs.32964 Hs.32989 Hs.125073	SRY (sex determining region Y)-box 11 receptor (calcitonin) activity modifying ESTs	1.00 1.55 1.01	16.00 2.45 1.30	
	TABLE 1	1B					
25	Pkey: CAT num Accessio	nber: Gene clus		entifier number nbers			
30	Pkey 410399	CAT Numbe 11995_1	BE068 Al936	sion 1889 BE068882 AF044311 AF017256 NM_003087 AF 527 AA804675 AA394097 Al139933 AA946606 BE17 1737 H49348 AA486472 AA411094 AA235594 AA402	1313 AA72240	7 AA293803 A14684	80 AA056035 AA055968 AW796957 Al637713
35	419502	18535_1	AU076 T6836 T6822 T7320	5704 T74854 T74860 T72098 T73265 T73873 T6918(7 T68401 T53959 T72360 T72099 T60377 T68961 T 0 T74673 T71800 T68355 T61227 T62738 T69317 T 3 T70498 T61409 T68925 NM_000508 M64982 T683 6 T60477 T74863 T61109 T68329 T58850 T71857 T) T74658 T5878 71712 T72821 53850 T64692 01 T73729 T69	86 T60385 T73410 T64738 T74645 T72 T73768 T73962 T73 9445 T60424 T6792	T68781 T67845 T67593 T73952 T67864 T60630 2037 T68688 T72063 T73258 T72826 T64242 3382 T68914 T70975 T73400 T60631 T73277 2 T67736 T68716 T67755 T74765 T73819 T58719
40			H4835 N3359 AA312 AW470	6 T73787 T56035 T64425 T71870 T60476 T61376 Ti 3 T71914 T53939 T64121 AA693996 T72525 T6777; 4 AA344542 AW805054 Al207457 T61743 AA0254 919 T40156 H66239 AV652989 H38728 R98521 AV 9774 AV651256 N64417 AA812862 AW182929 Al111 252 T27853 T47778 R95746 H70620 AA701463 AW	9 T68078 AA01 7 H94389 AA38 555200 R95790 1 192 H61463 H	1465 AA345378 AV 32695 AA918409 T6 3 W03250 W00913 72060 AA344503 H	654847 AV654272 AV656001 Al064740 T82897 8044 S82092 T39959 Al017721 AA312395 AA344136 AV660126 R97923 AA343596 38639 Al277511 AV661108 Al207625 T47810
45	-		T6928 AA344 T7047 T7251 T6936	3 T73931 T72178 T72456 AV645639 AV653476 T729 1726 T27854 T77485 T74101 T73868 T71518 T7230 5 T64751 AA344441 AA343657 AA345732 AA344329 7 R02292 T60599 T69206 T70452 T74677 R29366 T 8 T69358 T68258 AV650429 T73341 T61702 T74598	957 T72300 T5 9 AA343853 T7 3 A1110639 AA 61277 T74914 8 T40095 K022	8906 T71457 T7049 3909 T68070 T7208 344603 AF063513 T T60352 R29675 T7 72 T40106 AA3430	04 T72956 T70495 T68267 T74407 T85778 15 H72149 T73493 T73495 AV645993 R02293 T64696 T68516 T72223 T60507 T67633 R29500 4843 AV645792 AA344408 T69197 T72057 45 AA341908 AA341907 AA342807 AA341964
50			AA345 AA344 AA693	7 T72042 T62764 Al064899 AA343060 T67832 T724 1234 T67598 AA011414 T68036 H48262 Al207557 T6 1583 T60362 H58121 T95711 T72803 T68055 T7171 1592 Al248502 R29454 T64764 T57001 T73052 T714 7 T73317 T74273 T69420 T68245 T74380 T67862 T	88219 W86031 5 R29036 T727 29 T51176 T58	T69081 T64232 R9 93 T69122 T64595	3196 T62136 AV650539 H67459 T72978 T62888 T69139 T68291 T64652 T67971 T46862
55	421582	2041_1	Al9102 AA568 BE074 BE074	275 X00474 X52003 X05030 NM_003225 AA314326 1312 AA614409 AA307578 A1925552 AW950155 A191 140 AA514776 AA588034 BE074051 BE074068 AW 1045 A1307407 AW602303 BE073575 A1202532 AA52	AA308400 AA5 0083 M12075 009769 AW050 4242 AI970839	BE074052 AW0046 690 AA858276 R55 AI909751 BE0760	68 AA578674 AA582084 BE074053 BE074126 389 Al001051 AW050700 AW750216 AA614539 78 Al909749 R55292
<i>c</i> o	437866	44433_2	AA837	.781 AW293839 U52054 AA024963 AA778446 BE073 481 AW468444 BE185091 AW468002 AA687333 AA	3977 AW44490 .811830 AA581	4 AW602574 BE16 806 Al866686 Al57	4040 BE164012 BE163972 BE163974 BE163992 2124 AA043777 AA040926 D20160 AI536733
60	451807	8865_1	W5288	489 AW874142 A1471883 W84421 AA156850 54 AL117600 BE208116 BE208432 BE206239 BE082 0652 AW449519 AA993634 A1806539 AA351618 AW			
65	TABLE 1	1C					
	Pkey: Ref:	Sequence	source. The	onding to an Eos probeset 7 digit numbers in this column are Genbank Identifier		"Dunham I, et al." re	efers to the publication entitled "The DNA
70	Strand: Nt_positi	sequence Indicates I	of human chro DNA strand fro	omosome 22." Dunham I. et al., Nature (1999) 402:48 im which exons were predicted. itions of predicted exons.			
75	Pkey 403329 406399	Ref 8516120 9256288	Strand Plus Minus	Nt_position 96450-96598 63448-63554			

TABLE 12A; Genes Distinguishing Squamous Cell Carcinoma from Other Lung Diseases and Normal Lung

Table 12A shows about 72 genes upregulated in squamous cell carcinomas of the lung relative to other lung tumors, non-malignant lung disease, and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array. 5

Table 12B show the accession numbers for those Pkey's lacking UnigenelD's for table 12A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 12C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 12A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15

10

Unique Eos probeset identifier number

Pkey: ExAccn: Exemplar Accession number, Genbank accession number

UnigeneID: Unigene number

Unigene Title: Unigene gene title

20 Average of lung tumors (including squamous cell carcinomas, adenocarcinomas, small cell carcinomas, granulomatous and carcinoid tumors) divided by the

average of normal lung samples

Average of non-malignant lung disease samples (including bronchitis, emphysema, fibrosis, atelectasis, asthma) divided by the average of normal lung samples R2:

Prest		51	F. A	H-tID	Uniness Title	R1	R2
400666	25						
Main	23		A0/020	HS.2250			
401785							
1978 1978							
1999							
402075	30						
404996 407839 A046144 Hs. 16166 408000 L1 1690 L1 1690 Hs. 620 A08522 A161214 Hs. 620 A106611 BE540255 Hs. 6994 A16961 A16961 BE540255 Hs. 6994 A16961 A16961 A16968 A0001100 Hs. 79432 A17366 BE185289 Hs. 79867 A18668 A0001100 Hs. 41690 A18678 A0001100 Hs. 41690 A18678 A0001100 Hs. 41690 A18678 A18678 A0001100 Hs. 41690 A18678 A18678 A1869393 Hs. 112457 A21948 A121948 A124982 A21948 A124984 A12948 A	50						
A07839							
\$4,000			AA045144	Hs 161566			
A							
416561 BE540255 Hs.6994 Hs.79910 Hs.79910 Hs.798167 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.79816 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.798168 Hs.79816 Hs.798168 Hs.798168 Hs.798168 Hs.79816 Hs.798168 Hs.79816 Hs.7	35						
415031	-					10.04	1.00
418817 U88967 Hs.78867 profein fyrosine pfosphafase, receiptor-1 24.30 1.0							30.00
416688						24.30	
417034						53.29	51.00
417366 BE185289 Hs.1076 small proline-rich protein 1B (cornilin) 8.97 3.27 19.00 418678 NM_001327 Hs.87225 Hs.89626 Hs.1027 Hs.89231 Hs.89231 Hs.89923 Hs.112457 421978 AJ243662 Hs.110196 AJ24364 AW95900 Hs.13217 AJ25725 AJ403100 Hs.132197 AJ267266 Hs.132195 AJ24046 AF027866 Hs.138202 AJ24046 AF027866 Hs.138202 AJ24834 AK001432 Hs.13408 AJ26860	40					1.00	1.00
418663				Hs.1076	small proline-rich protein 1B (cornifin)	8.97	3.27
418678						112.17	19.00
445 419121 AA374372 Hs.89626 parathyroid hormone-like hormone 1.00 1.00 421773 W69233 Hs.112457 ESTs 1.12 1.14 421978 L42583 Hs.334309 keralin 6A 51.83 20.25 50 422158 L10343 Hs.112411 protease inhibitor 3, skin-derived (SKAL 2.37 1.10 423634 AW9589908 Hs.1690 heparin-binding growth factor binding pr 76.02 1.00 423725 AJ403108 Hs.132195 aido-kelo reductase family 1, member B10 47.53 32.00 423725 AJ403108 Hs.132195 aido-kelo reductase family 1, member B10 47.53 32.00 424012 AW368377 Hs.138202 serine (or cysteine) protein LOC57822 4.20 1.00 42408 AF027866 Hs.138202 serine (or cysteine) protein 3 kDa with strong homolog 233.42 68.00 427098 AF07734 Hs.193922 serine (or cysteine) protein 3 137.82 54.00 42812 BE386042 Hs.29181 <						1.18	1.10
420783				Hs.89626	parathyroid hormone-like hormone	1.00	1.00
A	45	420783		Hs.99923	lectin, galactoside-binding, soluble, 7	3.04	1.25
A 1978 A J243662 Hs. 110196 Hs. 110343 Hs. 110343 Hs. 110345 Hs. 110345 Hs. 110345 Hs. 116724 Hs.		421773	W69233	Hs.112457	ESTs	1.12	
1.00		421948	L42583	Hs.334309	keratin 6A		
50 422440 Ag3634 AW959998 Ag43634 AW959998 Hs.1690 Ag3634 AW959998 Hs.1690 Ag3634 AW959998 Ag43636 Ag403108 Ag406 Ag406 Ag406 Ag4032 Ag406 Ag406 Ag4032 Ag406 Ag406 Ag4032 Ag406 Ag406 Ag4032 Ag406 Ag406 Ag4032 Ag406 Ag		421978	AJ243662	Hs.110196			
423634		422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL		
A23725	50	422440	NM_004812				
A		423634	AW959908				
55 424012 AW368377 AF0.27866 424046 AF0.27866 Hs. 138202 serine (or cysteine) proteinase inhibito 1.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
55 424046 AF027866 AF027874 Hs.138202 A24988 AF027374 Hs.138322 Hs.1539322 Hs.153960 A25050 NM_001944 Hs.1925 desmoglein 3 (pemphigus vulgaris antigen 33.45 1.00 desmoglein 3 (pemphigus vulgaris antigen 34.24 17.00 desmoglein 3 (pemphigus vulgaris antigen 33.45 1.00 desmoglein 3 (pemphigus vulgaris antigen 34.24 17.00 desmoglein 7.00 desmoglein 3 (pemphigus vulgaris antigen 34.24 17.00 desmoglein 7.00 desmog							
424098							
A	22						
August A							
60 427099 AB032953 AA448542 Hs.251677 G antigen 7B 51.83 A.00 428182 BE386042 Hs.293317 ESTs, Weakly similar to GGC1_HUMAN G ANT 1.00 1.00 1.00 1.00 428645 AA431400 Hs.98729 ESTs, Weakly similar to 2017205A dihydro 1.00 16.00 1.00 87.00 428748 AW593206 Hs.98785 Ksp37 protein 1.00 87.00 1.00 87.00 429259 AA420450 Hs.292911 429933 AL134197 Hs.93597 cyclin-dependent kinase 5, regulatory su 11.80 1.00 1.18 429903 AL134197 Hs.93597 cyclin-dependent kinase 5, regulatory su 11.80 1.00 1.00 1.00 430880 X54232 Hs.2699 glypican 1 43109 BE149762 Hs.48956 gap junction protein, beta 6 (connexin 3 60.25 28.00 1.58 1.40 2.51 433091 Y12642 Hs.3185 Hs.101 434860 U02388 Hs.101 434860 U02388 Hs.101 cytochrome P450, subfamily IVF, polypept 1.00 1.00 38.00 1.00 38.00 435793 AB037734 Hs.4993 Hs.29150 438403 AA806607 Hs.292206 ESTs hypothetical protein FLJ20093 AB087734 Hs.59507 ESTs Hs.59507 AF088076 Hs.59507 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439265 AV79123 Hs.59501 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439606 W79123 Hs.59501 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439606 W79123 Hs.59501 ESTs, Weakly similar to DAP1_HUMAN DEATH B6.55 11.00 440325 NM_003812 Hs.7164 Hs.127728 ESTS 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00							
60 427335 AA448542 Hs.251677 G antigen 7B 51.83 4.00 428182 BE386042 Hs.293317 ESTs, Weakly similar to GGC1_HUMAN G ANT 1.00 1.00 428645 AA431400 Hs.98729 ESTs, Weakly similar to 2017205A dihydro 1.00 16.00 428748 AW593206 Hs.98785 Ksp37 protein 1.00 87.00 429259 AA420450 Hs.292911 ESTs, Highly similar to S60712 band-6-pr 2.01 1.18 429930 AL134197 Hs.93597 cyclin-dependent kinase 5, regulatory su 11.80 1.00 430486 BE062109 Hs.241551 chloride channel, calcium activated, fam 12.28 41.00 431009 BE149762 Hs.48956 gap junction protein, beta 6 (connexin 3 60.25 28.00 433091 Y12642 Hs.211580 uroplakin 1B 4.49 2.51 434880 U02388 Hs.101 cytochrome P450, subfamily IVF, polypept 1.00 1.00 43505 AF200492 Hs.29123 Hs.2993 KlAA1313							
A28182	60						
A28645	UU						
428748 AW593206 Hs.98785 Ksp37 protein 1.00 87.00 428259 AA420450 Hs.292911 ESTs, Highly similar to S60712 band-6-pr 2.01 1.18 428538 BE182592 Hs.11261 small proline-rich protein 2A 4.43 2.90 429903 AL134197 Hs.93597 cyclin-dependent kinase 5, regulatory su 11.80 1.00 430486 BE062109 Hs.241551 chloride channel, calcium activated, fam 12.28 41.00 430890 X54232 Hs.2699 glypican 1 1.58 1.40 431009 BE149762 Hs.38956 gap junction protein, beta 6 (connexin 3 60.25 28.00 433091 Y12642 Hs.271580 uroplakin 1B 4.49 2.51 433939 Y12642 Hs.3185 lymphocyte antigen 6 complex, locus D 1.20 1.09 434880 U02388 Hs.101 cytochrome P450, subfamily IVF, polypept 1.00 1.00 43505 AF200492 Hs.211238 KIAA13313 protein 23.68 42.00							
65 429259 AA420450 Hs.292911 Hs.11261 small proline-rich protein 2A 4.43 2.90 429538 BE182592 Hs.11261 429903 AL134197 Hs.93597 AL134197 Hs.93597 Hs.93597 yagaba 429603 Hs.241551 Hs.93597 hs.93597 yold-dependent kinase 5, regulatory su 11.80 1.00 430486 BE062109 Hs.241551 Hs.2669 Alta (100) BE149762 Hs.241551 Hs.271580 yold-dependent kinase 5, regulatory su 11.58 1.40 431009 BE149762 Hs.271580 Hs.271580 Alta (100) Alta (10							
65 429538							
1.00	65						
12.28	05						
70 430890 431009 431009 431846 431846 431846 43091 433091 434360 43							
To Fig. 2 To To To To To To To							
70 431846 433091 BE019924 Y12642 Hs.271580 Hs.3185 uroplakin 1B lymphocyte antigen 6 complex, locus D 4.49 1.20 1.20 1.20 1.20 1.20 1.20 1.09 27.00 40.98 27.00 40.98 27.00 40.98 27.00 40.98 27.00 1.00 1.00 38.00 1.00 38.00 1.00 38.00 1.00 38.00 38.00 436511 AF200492 AF201502 AF201502 AF201502 ESTs Hs.4993 KIAA1313 protein 1.00 23.68 42.00 23.68 42.00 23.68 42.00 438403 AA806607 AA806607 AA806607 AF20123 AL133916 AF20123 AF2012							
1.00	70						
75	, ,						
75 434880 435505 436505 436505 436511 AA720422 A8803 A880607 439285 AL133916 AV93123 AR9606 AV9123 AR9706 AV872527 A40325 AV872527 AV8							27.00
75 435505 AF200492 A35793 Hs.211238 Hs.4993 KIAA1313 protein 1.00 38.00 A3600 A3						1.00	1.00
75 435793 AB037734 Hs.4993 KIAA1313 protein 23.68 42.00 436511 AA721252 Hs.291502 ESTs 16.76 14.00 438403 AA806607 Hs.292206 ESTs 1.00 1.00 439285 AL133916 hypothetical protein FLJ20093 46.23 139.00 439606 W79123 Hs.58561 G protein-coupled receptor 87 33.61 1.00 439670 AF088076 Hs.59507 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439706 AV872527 Hs.59761 ESTs, Weakly similar to DAP1_HUMAN DEATH 86.55 11.00 440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00						1.00	38.00
80 436511 AA721252 Hs.291502 ESTs 16.76 14.00 439403 AA806607 Hs.292206 ESTs 1.00 1.00 439285 AL133916 hypothetical protein FLJ20093 46.23 139.00 439606 W79123 Hs.58561 G protein-coupled receptor 87 33.61 1.00 439670 AF088076 Hs.59507 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439706 AW872527 Hs.59761 ESTs, Weakly similar to DAP1_HUMAN DEATH 86.55 11.00 440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00	75				KIAA1313 protein	23.68	42.00
80 439285 AL133916 hypothetical protein FLJ20093 46.23 139.00 439606 W79123 Hs.58561 G protein-coupled receptor 87 33.61 1.00 439706 ASSTORM AF088076 Hs.59507 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 439706 AW872527 Hs.59761 ESTs, Weakly similar to DAP1_HUMAN DEATH 86.55 11.00 440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00		436511		Hs.291502	ESTs	16.76	14.00
80 439285 AL133916 W79123 Hs.58561 G protein FLJ20093 46.23 139.00 G protein FLJ20093 46.23 139.00 Hs.59507 Hs.59507 Hs.59507 Hs.59507 Hs.59761 ESTs, Weakly similar to AC004858 3 U1 sm 1.00 1.00 440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00					ESTs	1.00	1.00
80			AL133916		hypothetical protein FLJ20093	46.23	
439706 AW872527 Hs.59761 ESTs, Weakly similar to DAP1_HUMAN DEATH 86.55 11.00 440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00	00			Hs.58561			
440325 NM_003812 Hs.7164 a disintegrin and metalloproteinase doma 62.88 147.00 441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00	80	439670	AF088076	Hs.59507	ESTs, Weakly similar to AC004858 3 U1 sm		
441525 AW241867 Hs.127728 ESTs 1.53 1.42 443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00		439706	AW872527	Hs.59761			
443162 T49951 Hs.9029 DKFZP434G032 protein 31.11 38.00							
OF HOUSE HOUSE		441525					
63 444378 R41339 Hs.12569 ESTs 1.00 1.00	0.5						
	92	444378	R41339	Hs.12569	ESIS	1.00	1.00

	W	O 02/0864	443				PCT/US02/12476
5	446292 447078 447342 449003 449101 450832 452240 453317 453830 454098 455601	AF081497 AW885727 AI199268 X76342 AA205847 AW970602 AI591147 NM_002277 AA534296 W27953 AI368680	Hs.279682 Hs.9914 Hs.19322 Hs.389 Hs.23016 Hs.105421 Hs.61232 Hs.41696 Hs.20953 Hs.292911 Hs.816	Rh type C glycoprotein ESTs Homo sapiens, Similar to RIKEN cDNA 2010 alcohol dehydrogenase 7 (class IV), mu o G protein-coupled receptor ESTs ESTs keratin, hair, acidic, 1 ESTs ESTs, Highly similar to S60712 band-6-pr SRY (sex determining region Y)-box 2	1.55 47.24 28.63 1.00 2.58 25.17 13.42 1.19 24.92 1.26 206.11	1.26 24.00 1.00 1.00 27.00 36.00 1.00 1.27 25.00 1.11	·
	TABLE 12E	3					
15	Pkey: CAT numbe Accession:	er: Gene cluste	probeset iden er number ocession numb				
20	Pkey 439285	CAT Number 47065_1	AL1339	on 16 N79113 AF086101 N76721 AW950828 AA36401: 52 N62351 N59253 AA626243 Al341407 BE175639	3 AW955684 Al34 AA456968 Al3589	6341 AI867454 N5478 918 AA457077	84 Al655270 Al421279 AW014882
25	TABLE 120	3					
23	Pkey: Ref:	Sequence s	source. The 7	iding to an Eos probeset digit numbers in this column are Genbank Identifier (nosome 22." Dunham I. et al., Nature (1999) 402:48	GI) numbers. "Du 9-495.	nham I. et al." refers t	o the publication entitled "The DNA
30	Strand: Nt_position	Indicates D	NA strand fron	n which exons were predicted. ons of predicted exons.			
35	Pkey 400666 401780 401781 401785 401994 402075 404996	Ref 8118496 7249190 7249190 7249190 4153858 8117407 6007890	Strand Plus Minus Minus Minus Minus Plus Plus	Nt_position 17982-18115,20297-20456 28397-28617,28920-29045,29135-29296,29411-2 83215-83435,83531-83656,83740-83901,84237-6 165776-165996,166189-166314,166408-166569, 42904-43124,43211-43336,44507-44763,45199-4 121907-122035,122804-122921,124019-124161, 37999-38145,38652-38998,39727-39872,40557-4	14393,84955-8503 167112-167268,16 15281,46337-4673 124455-124610,12	7,86290-86814 57387-167469,168634 :2 25672-126076	1 -168942
40	.5.500	2227000			•		

TABLE 13A: Genes Distinguishing Non-Malignant Lung Disease from Lung Tumors and Normal lung

Table 13A shows about 23 genes upregulated in non-malignant lung disease relative to lung tumors and normal lung. These genes were selected from about 59680 probesets on the Eos/Affymetrix Hu03 Genechip array.

Table 13B show the accession numbers for those Pkey's lacking UnigenelD's for table 13A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

10

5

Table 13C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 13A. For each gredicted exon, we have listed the genomic

				ing for those Pkey's lacking Unigene ID's and access Nucleotide locations of each predicted exon are also		ole 13A. For each predicted exon, we have listed the genomic
15	Pkey: ExAccn: UnigenelD: Unigene Title:	Exemp Unige		et identifier number n number, Genbank accession number		•
20	R1:	Averag	ge of lung tur ge of normal l	ing samples		carcinomas, granulomatous and carcinoid tumors) divided by the atlactasis, asthma) divided by the average of normal lung samples
25	412372 R659 415910 U203	6323 76836 198 150	UnigeneID Hs.31141 Hs.76728 Hs.285243 Hs.78913	Unigene Title Homo sapiens mRNA for KIAA1568 protein, ESTs hypothetical protein FLJ22029 chemokine (C-X3-C) receptor 1	R1 1.00 1.00 1.00 1.00	R2 230.00 128.00 173.00 145.00
30	418819 AA23 422060 R208 424585 AA46 426753 T898	34840	Hs.82223 Hs.191721 Hs.325823 Hs.131987 Hs.170278 Hs.192793	chordin-like ESTs ESTs, Moderately similar to ALU5_HUMAN A ESTs ESTs ESTs	1.00 1.00 1.00 1.00 1.00 1.00	179.00 140.00 156.00 167.00 141.00 138.00
35	430719 AA48 431089 BE04 431385 BE17 431728 NM_	38988 11395 78536	Hs.293796 Hs.11090 Hs.268107	ESTs ESTs, Weakly similar to unknown protein membrane-spanning 4-domains, subfamily A multimerin ngb:nv54h12.r1 NCI_CGAP_Ew1 Homo sapiens	1.00 23.32 1.00 1.00 1.00	133.00 941.00 157.00 157.00 218.00
40	437960 Al66 438202 AW1 441499 AW2	9586 69287 98235 9214	Hs.222194 Hs.22588 Hs.101689 Hs.7117 Hs.201591	ESTs ESTs glutamate receptor, ionotropic, AMPA 1 ESTs	1.00 1.00 1.00 1.00 1.00	147.00 141.00 167.00 151.00 141.00
45	453636 R678 458332 Al00	37	Hs.169872 Hs.220491	ESTs ESTs gb:zk15e04.s1 Soares_pregnant_uterus_NbH	1.00 1.00 1.00	116.00 192.00 154.00
	TABLE 13B					
50	CAT number: G	ene clus		enlifier number nbers		
- -	Pkey C	AT Num	ber Accessio	n		

55

327825_1 421802_1 BE041395 AA491826 AA621946 AA715980 AA666102 AA721522 AW975443 T93070 431089

436532

TABLE 13C 60

Pkey:

Unique number corresponding to an Eos probeset
Sequence source. The 7 digit numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA sequence of human chromosome 22." Dunham I. et al., Nature (1999) 402:489-495.
Indicates DNA strand from which exons were predicted. Ref:

Strand: 65 Indicates nucleotide positions of predicted exons.

Nt_position:

Pkey Ref Strand Nt_position

121907-122035,122804-122921,124019-124161,124455-124610,125672-126076 402075 8117407 Plus 70

TABLE 14A: Preferred Utility and Subcellular Localization for Potential Lung Disease Targets

Table 14A shows the subcellular localization and preferred utility for the genes appearing in Tables 9A and 10A. mAb symbolizes monoclonal antibody, diag symbolizes diagnostic, s.m. symbolizes small molecule, and CTL symbolizes cytotoxic lymphocytic ligand. These genes were selected from 59680 probesets on the Eos/Affymetrix Hu03 5

Table 14B show the accession numbers for those Pkey's lacking UnigenelD's for table 14A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.

Table 14C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 14A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

15

20

10

Unique Eos probeset identifier number Exemplar Accession number, Genbank accession number ExAccn:

UnigenelD: Unigene number Unigene Title: Unigene gene title
Pref.Utility: Preferred Utility Pref.Utility:

Predicted subcellular localization Pred.Loc:

	Pkey	ExAccn	UnigeneID	Unigene Title	Pref Utility	Pred. Loc
25	400289 400303	X07820 AA242758	Hs.2258 Hs.79136	matrix metalloproteinase 10 (stromelysin LIV-1 protein, estrogen regulated	mAb & diag & s.m. mAb	extracellular plasma membrane
23	400303	AA242100	ns./9130	ENSP00000251056*:Plasma membrane calcium		secreted
	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon	diag	secreted
	408243	Y00787	Hs.624	interleukin 8	diag	secreted
• •	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,	mAb & s.m.	plasma membrane
30	408908	BE296227	Hs.250822	serine/threonine kinase 15	s.m.	cytoplasm
	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119	CTL & diag	secreted
	409103	AF251237	Hs.112208	XAGE-1 protein	CTL diag	nuclear secreted
	409420 409632	Z15008 W74001	Hs.54451 Hs.55279	laminin, gamma 2 (nicein (100kD), kalini serine (or cysteine) proteinase inhibito	diag	secreted
35	409052	NM_001898	Hs.123114	cystatin SN	diag	extracellular
	409893	AW247090	Hs,57101	minichromosome maintenance deficient (S.	CTL	nuclear
	409956	AW103364	Hs.727	inhibin, beta A (activin A, activin AB a	diag	extracellular
	410001	AB041036	Hs.57771	kallikrein 11	diag	extracellular
40	410407	X66839	Hs.63287	carbonic anhydrase IX	mAb & s.m.	plasma membrane
40	410418	D31382	Hs.63325	transmembrane protease, serine 4	mAb & diag & s.m.	plasma membrane
	412140 412719	AA219691 AW016610	Hs.73625 Hs.816	RAB6 interacting, kinesin-like (rabkines ESTs	s.m. s.m.	nuclear
	414774	X02419	Hs.77274	plasminogen activator, urokinase	diag	extracellular
	414883	AA926960	110.77277	CDC28 protein kinase 1	s.m.	07tti 000ttotat
45	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2	CTL & diag	extracellular
	415669	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito	mAb & diag & s.m.	secreted
	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t	mAb & s.m.	plasma membrane
	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara	diag	extracellular
50	417034	NM_006183	Hs.80962	neurotensin	diag	extracellular extracellular
50	417079 417308	U65590 H60720	Hs.81134 Hs.81892	interleukin 1 receptor antagonist KIAA0101 gene product	diag s.m.	mitochondrial
	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor	mAb & diag	secreted
	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein	mAb	plasma membrane
	417933	X02308	Hs.82962	thymidylate synthetase	s.m.	endoplasmic reticulum
55	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me	s.m.	cytoplasm
	418506	AA084248	Hs.85339	G protein-coupled receptor 39	mAb & s.m.	plasma membrane
	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)	CTL	cytoplasmic
	419121	AA374372	Hs.89626	parathyroid hormone-like hormone	diag mAb & s.m.	secreted plasma membrane
60	419171 419183	NM_002846 U60669	Hs.89655 Hs.89663	protein tyrosine phosphatase, receptor t cytochrome P450, subfamily XXIV (vitamin	CTL & s.m.	mitochondrial
00	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (Cy	diag	secreted
	419235	AW470411	Hs.288433	neurotrimin	mAb & diag	plasma membrane
	419452	U33635	Hs.90572	PTK7 protein tyrosine kinase 7	mAb & s.m.	plasma membrane
	419556	U29615	Hs.91093	chitinase 1 (chitotriosidase)	mAb & diag	extracellular*
65	420610	Al683183	Hs.99348	distal-less homeo box 5	CTL	nuclear
	421110	AJ250717	Hs.1355	cathepsin E	sm & diag	extracellular
	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy solute carrier family 1 (glutamate trans	diag mAb & s.m.	secreted plasma membrane
	421474 421552	U76362 AF026692	Hs.104637 Hs.105700	secreted frizzled-related protein 4	diag	secreted
70	421753	BE314828	Hs.103700	ATP-binding cassette, sub-family B (MDR/	mAb & s.m.	plasma membrane
, 0	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR	mAb & s.m.	plasma membrane
	422109	S73265	Hs.1473	gastrin-releasing peptide	diag	secreted
	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL	diag	secreted
75	422282	AF019225	Hs.114309	apolipoprotein L	diag	secreted
<i>75</i>	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis	s.m.	nuclear
	422424 422765	Al186431 AW409701	Hs.296638	prostate differentiation factor baculoviral IAP repeat-containing 5 (sur	diag s.m.	extracellular cytoplasm
	422765	AK001379	Hs.1578 Hs.121028	hypothetical protein FLJ10549	s.m.	nuclear
	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse	diag	extracellular
80	422956	BE545072	Hs.122579	ECT2 protein (Epithelial cell transformi	CTL & s.m.	
	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr	diag	
	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage	mAb & diag & s.m.	secreted
	423961	D13666	Hs.136348	periostin (OSF-2os)	mAb & diag	extracellular
85	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito	diag	secreted
02	424381	AA285249	Hs.146329	protein kinase Chk2	s.m.	nuclear

		AE040000		1		outoplocmio
	424502	AF242388	Hs.149585	lengsin	s.m.	cytoplasmic
	424503	NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,	mAb & s.m.	plasma membrane
	424687	J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B	diag	extracellular
_	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin	mAb & diag & s.m.	secreted
5	425322	U63630	Hs.155637	protein kinase, DNA-activated, catalytic	s.m.	cytoplasmic
	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen	mAb	plasma membrane
	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg	s.m.	
	425776	U25128	Hs.159499	parathyroid hormone receptor 2	mAb & diag	plasma membrane
	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member	mAb & s.m.	plasma membrane
10	426215	AW963419	Hs.155223	stanniocalcin 2	mAb & diag	secreted
	426427	M86699	Hs.169840	TTK protein kinase	CTL & s.m.	nuclear
	426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic	mAb & diag	secreted
	427335	AA448542	Hs.251677	G antigen 7B	CTL	cytoplasmic
	427747	AW411425	Hs.180655	serine/threonine kinase 12	s.m.	cytoplasmic
15	428242	H55709	Hs.2250	leukemia inhibitory factor (cholinergic	diag	Ojtopiaoiino
13		L22524			mAb & diag & s.m.	extracellular
	428330		Hs.2256	matrix metalloproteinase 7 (matrilysin,		nuclear
	428450	NM_014791	Hs.184339	KIAA0175 gene product	s.m.	nuclear
	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to	s.m.	
20	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino	mAb & s.m.	plasma membrane
20	428664	AK001666	Hs.189095	similar to SALL1 (sal (Drosophila)-like	CTL & s.m.	nuclear
	428698	AA852773	Hs.334838	KIAA1866 protein	mAb	
	428748	AW593206	Hs.98785	Ksp37 protein	diag	extracellular
	428758	AA433988	Hs.98502	CA125 antigen; mucin 16	diag	mitochodria*
	428969	AF120274	Hs.194689	artemin	diag	extracellular
25	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3	mAb & s.m.	plasma membrane
	429263	AA019004	Hs.198396	ATP-binding cassette, sub-family A (ABC1	mAb & s.m.	plasma membrane
	429547	AW009166	Hs.99376	ESTs	diag	secreted
	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas	mAb & diag	secreted
	429903	AL134197	Hs.93597	cyclin-dependent kinase 5, regulatory su	s.m.	000.0.00
30	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam	mAb & s.m.	plasma membrane
50					diag	extracellular
	431462	AW583672	Hs.256311	granin-like neuroendocrine peptide precu		
	431515	NM_012152	Hs.258583	endothelial differentiation, lysophospha	mAb & s.m.	plasma membrane
	431846	BE019924	Hs.271580	uroplakin 1B	mAb & diag	plasma membrane
25	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta	mAb & diag	plasma membrane
35	432201	Al538613	Hs.298241	Transmembrane protease, serine 3	mAb & diag & s.m.	plasma membrane
	433001	AF217513	Hs.279905	clone HQ0310 PRO0310p1	s.m.	nuclear
	435505	AF200492	Hs.211238	interleukin-1 homolog 1	diag	secreted
	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con	s.m.	
	437016	AU076916	Hs.5398	guanine monphosphate synthetase	s.m.	cytoplasm
40	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an	CTL	ER
	437789	AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti	CTL.	nuclear
	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa	mAb & s.m.	plasma membrane
	439223	AW238299	Hs.250618	UL16 binding protein 2	mAb	plasma membrane
	439477	W69813	Hs.58042	ESTs, Moderately similar to GFR3_HUMAN G	mAb & s.m.	.
45	439606	W79123	Hs.58561	G protein-coupled receptor 87	mAb & s.m.	plasma membrane
7.7	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),	mAb & s.m.	plasma membrane
					s.m.	nuclear
	440006	AK000517	Hs.6844	NALP2 protein; PYRIN-Containing APAF1-li		Tiudical
	441362	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re	s.m.	nleeme membrone
50	442117	AW664964	Hs.128899	ESTs; hypothetical protein for IMAGE:447	mAb & s.m.	plasma membrane
50	443247	BE614387	Hs.333893	c-Myc target JPO1	CTL	extracellular*
	443426	AF098158	Hs.9329	chromosome 20 open reading frame 1	CTL	
	443859	NM_013409	Hs.9914	follistatin	diag	extracellular
	444006	BE395085	Hs.10086	type I transmembrane protein Fn14	mAb	plasma membrane
	444371	BE540274	Hs.239	forkhead box M1	s.m.	nuclear
55	444381	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti	diag	secreted
	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote	mAb & diag	plasma membrane
	445537	AJ245671	Hs.12844	EGF-like-domain, multiple 6	mAb & diag	secreted
	446619	AU076643	Hs.313	secreted phosphoprotein 1 (osteopontin,	diag	secreted
	446921	AB012113	Hs.16530	small inducible cytokine subfamily A (Cy	diag	extracellular
60	447033	Al357412	Hs.157601	ESTs	CTL & diag	secreted
00	447342	Al199268	Hs.19322	Homo sapiens, Similar to RIKEN cDNA 2010	CTL	
						niasma memorane
	448243	AW369771	Hs.52620	integrin, beta 8	mAb & s.m. ~	plasma membrane
	448844	Al581519	Hs.177164	ESTs	mAb & s.m.	•
65	448844 449048	Al581519 Z45051	Hs.177164 Hs.22920	ESTs similar to S68401 (cattle) glucose induc	mAb & s.m. mAb	plasma membrane
65	448844 449048 449722	Al581519 Z45051 BE280074	Hs.177164 Hs.22920 Hs.23960	ESTs similar to S68401 (cattle) glucose induc cyclin B1	mAb & s.m. mAb s.m.	plasma membrane cytoplasm
65	448844 449048 449722 450001	Al581519 Z45051 BE280074 NM_001044	Hs.177164 Hs.22920	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte	mAb & s.m. mAb s.m. mAb & s.m.	plasma membrane cytoplasm plasma membrane
65	448844 449048 449722 450001 450375	Al581519 Z45051 BE280074 NM_001044 AA009647	Hs.177164 Hs.22920 Hs.23960 Hs.406	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m.	plasma membrane cytoplasm plasma membrane plasma membrane
65	448844 449048 449722 450001 450375 450701	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag	plasma membrane cytoplasm plasma membrane plasma membrane plasma membrane
	448844 449048 449722 450001 450375 450701 450983	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ER01 (S. cerevisiae)-like	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag	plasma membrane cytoplasm plasma membrane plasma membrane plasma membrane secreted
65 70	448844 449048 449722 450001 450375 450701 450983 451668	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag	plasma membrane cytoplasm plasma membrane plasma membrane plasma membrane
	448844 449048 449722 450001 450375 450701 450983 451668 452281	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444 Hs.28792	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens cDNA FLJ11041 fis, clone PL	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag	plasma membrane oytoplasm plasma membrane plasma membrane plasma membrane secreted plasma membrane
	448844 449048 449722 450001 450375 450701 450983 451668	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag diag	plasma membrane cytoplasm plasma membrane plasma membrane plasma membrane secreted plasma membrane extracellular
	448844 449048 449722 450001 450375 450701 450983 451668 452281	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948 T93500	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444 Hs.28792	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitle a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ER01 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens CDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro Ig superfamily receptor LNIR	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag	plasma membrane oytoplasm plasma membrane plasma membrane plasma membrane secreted plasma membrane
70	448844 449048 449722 450001 450375 450701 450983 451668 452281 452401	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948 T93500 NM_007115	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444 Hs.28792 Hs.29352	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens cDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro 1g superfamily receptor LNIR preferentially expressed antigen in meta	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag diag mAb & diag	plasma membrane cytoplasm plasma membrane plasma membrane secreted plasma membrane extracellular plasma membrane nuclear
70	448844 449048 449722 450001 450375 450701 450983 451668 452281 452401 452747 452838	Al581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948 T93500 NM_007115 BE153855	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444 Hs.28792 Hs.29352 Hs.61460	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitte a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ERO1 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens cDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro 1g superfamily receptor LNIR preferentially expressed antigen in meta	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag diag diag mAb	plasma membrane cytoplasm plasma membrane plasma membrane plasma membrane secreted plasma membrane extracellular plasma membrane
	448844 449048 449722 450001 450375 450701 450983 451668 452281 452401 452747	AI581519 Z45051 BE280074 NM_001044 AA009647 H39960 AA305384 Z43948 T93500 NM_007115 BE153855 U65011	Hs.177164 Hs.22920 Hs.23960 Hs.406 Hs.288467 Hs.25740 Hs.326444 Hs.28792 Hs.29352 Hs.61460 Hs.30743	ESTs similar to S68401 (cattle) glucose induc cyclin B1 solute carrier family 6 (neurotransmitle a disintegrin and metalloproteinase doma hypothetical protein XP_098151 (leucine-ER01 (S. cerevisiae)-like cartilage acidic protein 1 Homo sapiens CDNA FLJ11041 fis, clone PL tumor necrosis factor, alpha-induced pro Ig superfamily receptor LNIR	mAb & s.m. mAb s.m. mAb & s.m. mAb & diag & s.m. mAb & diag diag mAb & diag diag diag mAb & diag	plasma membrane cytoplasm plasma membrane plasma membrane secreted plasma membrane extracellular plasma membrane nuclear

TABLE 14B

80

Pkey: Unique Eos probeset identifier number CAT number: Gene cluster number Accession: Genbank accession numbers

CAT Number Accession Pkey

	wo	02/086443	3	PCT/US02/12476	
	414883	15024_1	AA082436 AA29275) AA926959 W76521 W24270 W21526 AA037172 BE267636 H83186 AA469909 N86396 AA001348 BE535736 AA081745 BE566245 6 H72525 H77575 N49786 W80565 H78746 BE569085 W04339 R98127 T55938 BE279271 AW960304 T29812 AA476873 BE297387 8 AA177048 NM_001826 X54941 BE314366 AA908783 AI719075 BE270172 BE269819 AA889955 AI204630 W25243 AI935150	
5			R75953 A AW61300 N95210 A	3 W72395 T99630 AI422691 H98460 N31428 BE255916 H03265 AI857576 AA776920 AA910644 AA459522 AA293140 AW514667 W662396 AA662522 AI865147 AI423153 AW262230 AA584410 AA683187 AW024595 AW069734 AI828996 AA282997 AA876046 2 AA527373 AW972459 AI831360 AA621337 AA100926 AA772418 AA594628 AI033892 W95096 AI034317 AA398727 AI085031 H459432 AI041437 AA932124 AA627684 AA935829 AI004827 AI423513 AI094597 H42079 R54703 AI630359 AA617681 AA978045 3 W44561 AI991988 AI537692 AI090262 AA740817 AI312104 AI911822 AA416871 AI185409 AA129784 AA701623 AI075239	
10			Al494230 Al494211 AA95434	AA633648 Al339996 Al336880 AA399239 Al078708 Al085351 Al362835 Al346618 Al146955 Al989380 Al348243 N92892 AA765856 Al278887 AA962596 Al492600 W80435 AA001979 R97424 Al129015 N24127 AA157451 AA235549 AA459292 AA037114 AA12978 AW059601 AW886710 R92790 N59755 Al361128 AW589407 H47725 H97534 H48076 H48450 T99631 AW300758 H03431 R76789 H777576 R96823 Al457100 N92845 N49682 H42038 BE220698 BE220715 H99552 AA701624 N74173 R54704 H79520 H72923 E261919 AA769633 AA480310 AA507454 AA910586 Al203723 AW104725 W25611 W25071 T88980 H03513 T77589 R99156	5
15	450375	83327_1	W95095 F AA00964	E201919 AV 08033 AA4603 AA2603	2
20	TABLE 14C				
20	Pkey: Ref:	Sequence soul	rce. The 7 di	ing to an Eos probeset git numbers in this column are Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA some 22." Dunham I. et al., Nature (1999) 402:489-495.	
25	Strand: Nt_position:	Indicates DNA	strand from	which exons were predicted. ns of predicted exons.	
	Pkey	Ref S	Strand	Nt_position	
30	402075	8117407 I	Plus	121907-122035,122804-122921,124019-124161,124455-124610,125672-126076	

TABLE 15A: Information for all sequences in Table 16

Table 15A shows the Seq ID No, Pkey, ExAcon, UnigeneID, and Unigene Title for all of the sequences in Table 16.

- Table 15B show the accession numbers for those Pkey's lacking UnigenelD's for table 15A. For each probeset we have listed the gene cluster number from which the oligonucleotides were designed. Gene clusters were compiled using sequences derived from Genbank ESTs and mRNAs. These sequences were clustered based on sequence similarity using Clustering and Alignment Tools (DoubleTwist, Oakland California). The Genbank accession numbers for sequences comprising each cluster are listed in the "Accession" column.
- Table 15C show the genomic positioning for those Pkey's lacking Unigene ID's and accession numbers in table 15A. For each predicted exon, we have listed the genomic sequence source used for prediction. Nucleotide locations of each predicted exon are also listed.

Seq ID No: Sequence ID number

15

Pkey: Unique Eos probeset identifier number

ExAccn: Exemplar Accession number, Genbank accession number

UnigenelD: Unigene number Unigene Title: Unigene gene title

20	Seq ID No:	Pkey	ExAccn	UnigenelD	Unigene Title
	Seq ID No: 1 & 2	410407	X66839	Hs.63287	carbonic anhydrase IX
	Seq ID No: 3 & 4	412719	AW016610	Hs.816 Hs.80962	ESTs neurotensin
25	Seq ID No: 5 & 6 Seq ID No: 7 & 8	417034 430486	NM_006183 BE062109	Hs.241551	chloride channel, calcium activated, fam
25	Seg ID No: 9 & 10	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Seq ID No: 11 & 12	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Sea ID No: 13 & 14	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
	Seq ID No: 15 & 16	407788	BE514982	Hs.38991	S100 calcium-binding protein A2
30	Seq ID No: 17 & 18	439285	AL133916		hypothetical protein FLJ20093
-	Seq ID No: 19 & 20	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin
	Seq ID No: 21 & 22	120486	AW368377	Hs.137569	tumor protein 63 kDa with strong homolog
	Seq ID No: 23 & 24	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen
25	Seq ID No: 25 & 26	412140	AA219691	Hs.73625	RAB6 interacting, kinesin-like (rabkines
35	Seq ID No: 27 & 28	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage
	Seq ID No: 29 & 30	452838	U65011	Hs.30743	preferentially expressed antigen in mela desmocollin 3
	Seq ID No: 31 & 32	418663	AK001100	Hs.41690 Hs.41690	desmocollin 3
	Seq ID No: 33 & 34 Seq ID No: 35 & 36	418663 409632	AK001100 W74001	Hs.55279	serine (or cysteine) proteinase inhibito
40	Seq ID No: 37 & 38	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas
40	Seq ID No: 39 & 40	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad
	Seg ID No: 41 & 42	431846	BE019924	Hs.271580	uroplakin 1B
	Seg ID No: 43 & 44	418830	BE513731	Hs.88959	hypothetical protein MGC4816
	Seg ID No: 45 & 46	424098	AF077374	Hs.139322	small proline-rich protein 3
45	Seq ID No: 47 & 48	443648	A1085377	Hs.143610	ESTs
	Seq ID No: 49	311034	BE567130	Hs.311389	ESTs, Highly similar to NKGD_HUMAN NKG2-
	Seq ID No: 50 & 51	408522	Al541214	Hs.46320	Small proline-rich protein SPRK [human,
	Seq ID No: 52 & 53	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL interleukin-1 homolog 1
50	Seq ID No: 54 & 55	435505	AF200492	Hs.211238 Hs.1076	small proline-rich protein 1B (cornifin)
30	Seq ID No: 56 & 57 Seq ID No: 58 & 59	417366 431958	BE185289 X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta
	Sea ID No: 60 & 61	441020	W79283	Hs.35962	ESTs
	Seg ID No: 62 & 63	423217	NM_000094	Hs.1640	collagen, type VII, alpha 1 (epidermolys
	Seq ID No: 64 & 65	429538	BE182592	Hs.11261	small proline-rich protein 2A
55	Seq ID No: 66 & 67	448733	NM_005629	Hs.187958	solute carrier family 6 (neurotransmitte
	Seq ID No: 68 & 69	444371	BE540274	Hs.239	forkhead box M1
	Seq ID No: 70 & 71	444371	BE540274	Hs.239	forkhead box M1
	Seq ID No: 72 & 73	444371	BE540274	Hs.239	forkhead box M1
60	Seq ID No: 74 & 75	422168	AA586894	Hs.112408	S100 calcium-binding protein A7 (psorias S100 calcium-binding protein A7 (psorias
60	Seq ID No: 76 & 77	422168	AA586894	Hs.112408 Hs.292911	Plakophilin
	Seq ID No: 78 & 79	429259 426440	AA420450 BE382756	Hs.169902	solute carrier family 2 (facilitated glu
	Seq ID No: 80 & 81 Seq ID No: 82 & 83	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an
	Seq ID No: 84 & 85	423662	AK001035	Hs.130881	B-cell CLL/lymphoma 11A (zinc finger pro
65	Seq ID No: 86 & 87	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino
••	Seq ID No: 88 & 89	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3
	Seq ID No: 90 & 91	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor
	Seq ID No: 92 & 93	423634	AW959908	Hs.1690	heparin-binding growth factor binding pr
70	Seq ID No: 94 & 95	417515	L24203	Hs.82237	ataxia-telangiectasia group D-associated
70	Seq ID No: 96 & 97	441362	BE614410	Hs.23044	RAD51 (S. cerevisiae) homolog (E coli Re
	Seq ID No: 98 & 99	425322	U63630	Hs.155637 Hs.389	protein kinase, DNA-activated, catalytic alcohol dehydrogenase 7 (class IV), mu o
	Seq ID No: 100 & 101	449003 431009	X76342 BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3
	Seq ID No: 102 & 103 Seq ID No: 104 & 105	409103	AF251237	Hs.112208	XAGE-1 protein
75	Seq ID No: 104 & 103	417542	J04129	Hs.82269	progestagen-associated endometrial prote
75	Seg ID No: 108 & 109	428471	X57348	Hs.184510	stratifin
	Seq ID No: 110 & 111	418004	U37519	Hs.87539	aldehyde dehydrogenase 3 family, member
	Seq ID No: 112 & 113	414761	AU077228	Hs.77256	enhancer of zeste (Drosophila) homolog 2
0.0	Seq ID No: 114 & 115	418203	X54942	Hs.83758	CDC28 protein kinase 2
80	Seq ID No: 116	447343	AA256641	Hs.236894	ESTs, Highly similar to S02392 alpha-2-m
	Seq ID No: 117 & 118	437016	AU076916	Hs.5398	guanine monphosphate synthetase
	Seq ID No: 119 & 120	449230	BE613348	Hs.211579	melanoma cell adhesion molecule
	Seq ID No: 121 & 122	446989	AK001898	Hs.16740 Hs.35406	hypothetical protein FLJ11036 ESTs, Highly similar to unnamed protein
85	Seq ID No: 123 & 124 Seq ID No: 125 & 126	457819 424687	AA057484 J05070	Hs.151738	matrix metalloproteinase 9 (gelatinase B
95	Jey ID NO. 120 & 120	424001	000010	5. 10 11 00	

	WO 02/086	443			
	Seq ID No: 127 & 128	414430	Al346201	Hs.76118	ubiquitin carboxyl-terminal esterase L1
	Seq ID No: 129 & 130	418462	BE001596	Hs.85266	integrin, beta 4
	Seq ID No: 131 & 132	100668	L05424	Hs.169610	CD44 antigen (homing function and Indian
	Seq ID No: 133 & 134	458933	AI638429	Hs.24763	RAN binding protein 1
5	Seq ID No: 135 & 136	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
-	Seq ID No: 137 & 138	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
		418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
	Seq ID No: 139 & 140 Seq ID No: 141 & 142	418478	U38945	Hs.1174	cyclin-dependent kinase inhibitor 2A (me
				Hs.14559	hypothetical protein FLJ10540
10	Seq ID No: 143 & 144	446269	AW263155		
10	Seq ID No: 145 & 146	422765	AW409701	Hs.1578	baculoviral IAP repeat-containing 5 (sur
	Seq ID No: 147 & 148	436481	AA379597	Hs.5199	HSPC150 protein similar to ubiquitin-con
	Seq ID No: 149 & 150	440325	NM_003812	Hs.7164	a disintegrin and metalloproteinase doma
	Seq ID No: 151 & 152	439606	W79123	Hs.58561	G protein-coupled receptor 87
	Seq ID No: 153 & 154	453884	AA355925	Hs.36232	KIAA0186 gene product
15	Seq ID No: 155 & 156	453884	AA355925	Hs.36232	KIAA0186 gene product
	Seq ID No: 157 & 158	453884	AA355925	Hs.36232	KIAA0186 gene product
	Sea ID No: 159 & 160	453884	AA355925	Hs.36232	KIAA0186 gene product
	Seq ID No: 161 & 162	404877			NM_005365:Homo sapiens melanoma antigen,
	Seg ID No: 163 & 164	413129	AF292100	Hs.104613	RP42 homolog
20	Seq ID No: 165 & 166	413281	AA861271	Hs.222024	transcription factor BMAL2
20	Seq ID No: 167 & 168	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote
		416819	U77735	Hs.80205	pim-2 oncogene
	Seq ID No: 169 & 170			115.00200	diacylglycerol kinase, zeta (104kD)
	Seq ID No: 171 & 172	451320	AW118072	Un OFOCO	
25	Seq ID No: 173 & 174	418543	NM_005329	Hs.85962	hyaluronan synthase 3
25	Seq ID No: 175 & 176	454034	NM_000691	Hs.575	aldehyde dehydrogenase 3 family, member
	Seq ID No: 177 & 178	425397	J04088	Hs.156346	topoisomerase (DNA) II alpha (170kD)
	Seq ID No: 179 & 180	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 181 & 182	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 183 & 184	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
30	Seg ID No: 185 & 186	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 187 & 188	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
9	Seg ID No: 189 & 190	419121	AA374372	Hs.89626	parathyroid hormone-like hormone
	Seq ID No: 191 & 192	448993	AI471630	Hs.8127	KIAA0144 gene product
	Seg ID No: 193 & 194	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR
35	Seq ID No: 195 & 196	430393	BE185030	Hs.241305	estrogen-responsive B box protein
55		425057	AA826434	Hs.1619	achaete-scute complex (Drosophila) homol
	Seq ID No: 197 & 198				chondromodulin I precursor
	Seq ID No: 199 & 200	420462	AF050147	Hs.97932	
	Seq ID No: 201 & 202	102963	X02404	Hs.274534	calcitonin-related polypeptide, beta
40	Seq ID No: 203 & 204	100576	X00356	Hs.37058	calcitonin/calcitonin-related polypeptid
40	Seq ID No: 205 & 206	101175	U82671	Hs.36980	melanoma antigen, family A, 2
	Seq ID No: 207 & 208	429038	AL023513	Hs.194766	seizure related gene 6 (mouse)-like
	Seq ID No: 209 & 210	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
	Seq ID No: 211 & 212	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
	Seq ID No: 213 & 214	131927	AJ003112	Hs.34780	doublecortex; lissencephaly, X-linked (d
45	Seq ID No: 215 & 216	428182	BE386042	Hs.293317	ESTs, Weakly similar to GGC1_HUMAN G ANT
	Seg ID No: 217 & 218	427335	AA448542	Hs.251677	G antigen 7B
	Seq ID No: 219 & 220	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini
	Seq ID No: 221 & 222	114346	AL137256	Hs.130489	ATPase, aminophospholipid transporter-li
	Seq ID No: 223 & 224	438956	W00847	Hs.135056	Human DNA sequence from clone RP5-850E9
50	Seg ID No: 225 & 226	404440			NM_021048:Homo sapiens melanoma antigen,
50	Seg ID No: 227 & 228	415669	NM_005025	Hs.78589	serine (or cysteine) proteinase inhibito
	Seq ID No: 229 & 230	103312	Y12642	Hs.3185	lysosomal
		320843	BE069288	Hs.34744	Homo sapiens mRNA; cDNA DKFZp547C136 (fr
	Seq ID No: 231 & 232				Homo sapiens cDNA FLJ13103 fis, clone NT
55	Seq ID No: 233	429065	A1753247	Hs.29643	
23	Seq ID No: 234 & 235	446102	AW168067	Hs.317694	ESTs
	Seq ID No: 236 & 237	330495	U47924	Hs.71642	guanine nucleotide binding protein (G pr
	Seq ID No: 238	413573	AI733859	Hs.149089	ESTs
	Seq ID No: 239 & 240	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to
	Seq ID No: 241 & 242	428479	Y00272	Hs.334562	cell division cycle 2, G1 to S and G2 to
60	Seq ID No: 243 & 244	332180	AF134160	Hs.7327	claudin 1
	Seq ID No: 245	437915	A1637993	Hs.202312	Homo sapiens clone N11 NTera2D1 teratoca
	Seq ID No: 246 & 247	441553	AA281219	Hs.121296	ESTs
	Seq ID No: 248 & 249	331692	Al683487	Hs.152213	wingless-type MMTV integration site fami
	Seq ID No: 250 & 251	429413	NM_014058	Hs.201877	DESC1 protein
65	Seq ID No: 252 & 253	422283	AW411307	Hs.114311	CDC45 (cell division cycle 45, S.cerevis
05	Seq ID No: 254 & 255	448357	N20169	Hs.108923	RAB38, member RAS oncogene family
		446292	AF081497	Hs.279682	Rh type C glycoprotein
	Seq ID No: 256 & 257			Hs.79078	MAD2 (mitotic arrest deficient, yeast, h
	Seq ID No: 258 & 259	416209	AA236776		
70	Seq ID No: 260 & 261	453922	AF053306	Hs.36708	budding uninhibited by benzimidazoles 1
70	Seq ID No: 262 & 263	424046	AF027866	Hs.138202	serine (or cysteine) proteinase inhibito
	Seq ID No: 264 & 265	439223	AW238299	Hs.250618	UL16 binding protein 2
	Seq ID No: 266 & 267	429228	A1553633	Hs.326447	ESTs
	Seq ID No: 268 & 269	409757	NM_001898	Hs.123114	cystatin SN
<i></i>	Seq ID No: 270 & 271	411089	AA456454	Hs.214291	cell division cycle 2-like 1 (PITSLRE pr
75	Seq ID No: 272 & 273	436511	AA721252	Hs.291502	ESTs
-	Seq ID No: 274 & 275	428969	AF120274	Hs.194689	artemin
	Seq ID No: 276 & 277	428969	AF120274	Hs.194689	artemin
	Seq ID No: 278 & 279	428969	AF120274	Hs.194689	artemin
		428969	AF120274	Hs.194689	artemin
~ ~		-14-0000	T97307		gb:ye53h05.s1 Soares fetal liver spleen
80	Seq ID No: 280 & 281	407137			
80	Seq ID No: 282	407137		Hs 335951	
80	Seq ID No: 282 Seq ID No: 283 & 284	412723	AA648459	Hs.335951	hypothetical protein AF301222
80	Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 285 & 286	412723 450701		Hs.335951 Hs.288467	hypothetical protein AF301222 hypothetical protein XP_098151 (leucine-
80	Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 285 & 286 Seq ID No: 287 & 288	412723 450701 405770	AA648459 H39960	Hs.288467	nypothetical protein AF301222 hypothetical protein XP_098151 (leucine- NM_002362:Homo sapiens melanoma antigen,
	Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 285 & 286 Seq ID No: 287 & 288 Seq ID No: 289 & 290	412723 450701 405770 439453	AA648459 H39960 BE264974	Hs.288467 Hs.6566	hypothetical protein AF301222 hypothetical protein XP_098151 (leucine- NM_002362:Homo sapiens melanoma antigen, thyroid hormone receptor interactor 13
85	Seq ID No: 282 Seq ID No: 283 & 284 Seq ID No: 285 & 286 Seq ID No: 287 & 288	412723 450701 405770	AA648459 H39960	Hs.288467	nypothetical protein AF301222 hypothetical protein XP_098151 (leucine- NM_002362:Homo sapiens melanoma antigen,

	WO 02/086	443			
	Seq ID No: 293 & 294	424629	M90656	Hs.151393	glutamate-cysteine ligase, catalytic sub
	Seq ID No: 295 & 296	437789	Al581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
	Seq ID No: 297 & 298	437789	Al581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
_	Seq ID No: 299 & 300	437789	AI581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
5	Seq ID No: 301 & 302	437789	A1581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
	Seq ID No: 303 & 304	437789	Al581344	Hs.127812	ESTs, Weakly similar to T17330 hypotheti
	Seq ID No: 305 & 306	453968	AA847843	Hs.62711	High mobility group (nonhistone chromoso
	Seq ID No: 307 & 308	403478			NM_022342:Homo sapiens kinesin protein 9
	Seq ID No: 309	441525	AW241867	Hs.127728	ESTs
10	Seq ID No: 310 & 311	434105	AW952124	Hs.13094	presenilins associated rhomboid-like pro
	Seq ID No: 312 & 313	428810	AF068236	Hs.193788	nitric oxide synthase 2A (inducible, hep
	Seg ID No: 314 & 315	413691	AB023173	Hs.75478	ATPase, Class Vi, type 11B
	Seq ID No: 316 & 317	423934	U89995	Hs.159234	forkhead box E1 (thyroid transcription f
	Seq ID No: 318 & 319	409228	R16811	Hs.22010	ESTs, Weakly similar to 2109260A B cell
15	Seq ID No: 320 & 321	425734	AF056209	Hs.159396	peptidylglycine alpha-amidating monooxyg
13	Seq ID No: 322 & 323	413582	AW295647	Hs.71331	hypothetical protein MGC5350
	Seg ID No: 324 & 325	438403	AA806607	Hs.292206	ESTs
	Seq ID No: 326 & 327	403329	, 0 1000001	I IS.LULLUG	unnamed protein product [Homo sapiens]
	Seq ID No: 328 & 329	409893	AW247090	Hs.57101	minichromosome maintenance deficient (S.
20	Seq ID No: 330 & 331	119073	BE245360	Hs.279477	v-ets erythroblastosis virus E26 oncogen
20		113195	H83265	Hs.8881	ESTs, Weakly similar to S41044 chromosom
	Seq ID No: 332 & 333	102283	AW161552	Hs.83381	guanine nucleotide binding protein 11
	Seq ID No: 334 & 335	102265	NM_005795	Hs.152175	calcitonin receptor-like
	Seq ID No: 336 & 337				cadherin 5, type 2, VE-cadherin (vascula
25	Seq ID No: 338 & 339	103280	U84722	Hs.76206	
23	Seq ID No: 340 & 341	102012	BE259035	Hs.118400 Hs.293815	singed (Drosophila)-like (sea urchin fas
	Seq ID No: 342 & 343	105729	H46612		Homo sapiens HSPC285 mRNA, partial cds
	Seq ID No: 344 & 345	134299	AW580939	Hs.97199	complement component C1q receptor
	Seq ID No: 346 & 347	412719	AW016610	Hs.816	ESTs
30	Seq ID No: 348 & 349	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL
30	Seq ID No: 350 & 351	128924	BE279383	Hs.26557	plakophilin 3
	Seq ID No: 352 & 353	100486	T19006	Hs.10842	RAN, member RAS oncogene family
	Seq ID No: 354 & 355	419121	AA374372	Hs.89626	parathyroid hormone-like hormone
	Seq ID No: 356 & 357	409459	D86407	Hs.54481	low density lipoprotein receptor-related
25	Seq ID No: 358 & 359	330493	M27826	11. 00770	endogenous retroviral protease
35	Seq ID No: 360 & 361	417866	AW067903	Hs.82772	collagen, type XI, alpha 1
	Seq ID No: 362 & 363	418113	Al272141	Hs.83484	SRY (sex determining region Y)-box 4
	Seq ID No: 364 & 365	437016	AU076916	Hs.5398	guanine monphosphate synthetase
	Seq ID No: 366 & 367	429612	AF062649	Hs.252587	pituitary tumor-transforming 1
40	Seq ID No: 368 & 369	440704	M69241	Hs.162	insulin-like growth factor binding prote
40	Seq ID No: 370 & 371	431221	AA449015	Hs.286145	SRB7 (suppressor of RNA polymerase B, ye
	Seq ID No: 372 & 373	431565	AF161470	Hs.260622	butyrate-induced transcript 1
	Seq ID No: 374 & 375	431565	AF161470	Hs.260622	butyrate-induced transcript 1
	Seq ID No: 376 & 377	132354	BE185289	Hs.1076	small proline-rich protein 1B (cornifin)
15	Seq ID No: 378 & 379	424441	X14850	Hs.147097	H2A histone family, member X
45	Seq ID No: 380 & 381	103768	AF086009	Hs.296398	gb:Homo sapiens full length insert cDNA
	Seq ID No: 382 & 383	417512	X76534	Hs.82226	glycoprotein (transmembrane) nmb
	Seq ID No: 384 & 385	425266	J00077	Hs.155421	alpha-fetoprotein
	Seq ID No: 386 & 387	424503	NM_002205	Hs.149609	integrin, alpha 5 (fibronectin receptor,
50	Seq ID No: 388 & 389	400289	X07820	Hs.2258	matrix metalloproteinase 10 (stromelysin
50	Seq ID No: 390 & 391	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial
	Seq ID No: 392 & 393	418007	M13509	Hs.83169	matrix metalloproteinase 1 (interstitial
	Seq ID No: 394 & 395	418738	AW388633	Hs.6682	solute carrier family 7, (cationic amino
	Seq ID No: 396 & 397	415138	C18356	Hs.295944	tissue factor pathway inhibitor 2
~ ~	Seq ID No: 398 & 399	418506	AA084248	Hs.85339	G protein-coupled receptor 39
55	Seq ID No: 400 & 401	423961	D13666	Hs.136348	periostin (OSF-2os)
	Seq ID No: 402 & 403	414812	X72755	Hs.77367	monokine induced by gamma interferon
	Seq ID No: 404 & 405	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein
	Seq ID No: 406 & 407	417433	BE270266	Hs.82128	5T4 oncofetal trophoblast glycoprotein
C O	Seq ID No: 408 & 409	422867	L32137	Hs.1584	cartilage oligomeric matrix protein (pse
60	Seq ID No: 410 & 411	428227	AA321649	Hs.2248	small inducible cytokine subfamily B (Cy
	Seq ID No: 412 & 413	444381	BE387335	Hs.283713	ESTs, Weakly similar to S64054 hypotheti
	Seq ID No: 414 & 415	400303	AA242758	Hs.79136	LIV-1 protein, estrogen regulated
	Seq ID No: 416 & 417	411789	AF245505	Hs.72157	Adlican
C 5	Seq ID No: 418 & 419	428698	AA852773	Hs.334838	KIAA1866 protein
65	Seq ID No: 420 & 421	450098	W27249	Hs.8109	hypothetical protein FLJ21080
	Seq ID No: 422 & 423	421552	AF026692	Hs.105700	secreted frizzled-related protein 4
	Seq ID No: 424 & 425	452747	BE153855	Hs.61460	lg superfamily receptor LNIR
	Seq ID No: 426 & 427	450375	AA009647		a disintegrin and metalloproteinase doma
70	Seq ID No: 428 & 429	426215	AW963419	Hs.155223	stanniocalcin 2
70	Seq ID No: 430 & 431	425247	NM_005940	Hs.155324	matrix metalloproteinase 11 (stromelysin
	Seq ID No: 432 & 433	432201	AI538613	Hs.298241	Transmembrane protease, serine 3
	Seq ID No: 434 & 435	427585	D31152	Hs.179729	collagen, type X, alpha 1 (Schmid metaph
	Seq ID No: 436 & 437	442117	AW664964	Hs.128899	ESTs; hypothetical protein for IMAGE:447
	Seq ID No: 438 & 439	431211	M86849	Hs.323733	gap junction protein, beta 2, 26kD (сопл
75	Seq ID No: 440 & 441	447033	A1357412	Hs.157601	ESTs
	Seq ID No: 442 & 443	447033	Al357412	Hs.157601	ESTs
	Seq ID No: 444 & 445	447033	Al357412	Hs.157601	ESTs
	Seq ID No: 446 & 447	115522	BE614387	Hs.333893	c-Myc target JPO1
0.0	Seq ID No: 448 & 449	410418	D31382	Hs.63325	transmembrane protease, serine 4
80	Seq ID No: 450 & 451	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119
	Seq ID No: 452 & 453	409041	AB033025	Hs.50081	Hypothetical protein, XP_051860 (KIAA119
	Seq ID No: 454 & 455	452461	N78223	Hs.108106	transcription factor
	Seq ID No: 456 & 457	412420	AL035668	Hs.73853	bone morphogenetic protein 2
0.7	Seq ID No: 458 & 459	416658	U03272	Hs.79432	fibrillin 2 (congenital contractural ara
85	Seq ID No: 460 & 461	407811	AW190902	Hs.40098	cysteine knot superfamily 1, BMP antagon

	W O 02/080				EOE 144 14 1 1 1 1005040 4 51
	Seq ID No: 462 & 463	437852	BE001836	Hs.256897	ESTs, Weakly similar to dJ365O12.1 [H.sa
	Seq ID No: 464 & 465	402075		11 4000	ENSP00000251056*:Plasma membrane calcium
	Seq ID No: 466 & 467	421110	AJ250717	Hs.1355	cathepsin E
	Seq ID No: 468 & 469	451668	Z43948	Hs.326444	cartilage acidic protein 1
5	Seq ID No: 470 & 471	451668	Z43948	Hs.326444	cartilage acidic protein 1
	Seq ID No: 472 & 473	451668	Z43948	Hs.326444	cartilage acidic protein 1
	Seq ID No: 474 & 475	422282	AF019225	Hs.114309	apolipoprotein L
	Seq ID No: 476 & 477	425852	AK001504	Hs.159651	death receptor 6, TNF superfamily member
	Seq ID No: 478 & 479	439738	BE246502	Hs.9598	sema domain, immunoglobulin domain (lg),
10	Seq ID No: 480 & 481	427747	AW411425	Hs.180655	serine/threonine kinase 12
	Seq ID No: 482 & 483	420281	Al623693	Hs.323494	Predicted cation efflux pump
	Seq ID No: 484 & 485	405932			C15000305:gi[3806122]gb]AAC69198.1] (AF0
	Seq ID No: 486 & 487	405932			C15000305;gij3806122[gb]AAC69198.1] (AF0
	Seq ID No: 488 & 489	444342	NM_014398	Hs.10887	similar to lysosome-associated membrane
15	Seq ID No: 490 & 491	421379	Y15221	Hs.103982	small inducible cytokine subfamily B (Cy
13	Seq ID No: 492 & 493	417079	U65590	Hs.81134	interleukin 1 receptor antagonist
		430890	X54232	Hs.2699	glypican 1
	Seq ID No: 494 & 495	419721	NM_001650	Hs.288650	aquaporin 4
	Seq ID No: 496 & 497	444471	AB020684	Hs.11217	KIAA0877 protein
20	Seq ID No: 498 & 499		AL035737	Hs.75184	chitinase 3-like 1 (cartilage glycoprote
20	Seq ID No: 500 & 501	413063	AI034361	Hs.135150	lung type-I cell membrane-associated gly
	Seq ID No: 502 & 503	433800			tumor necrosis factor, alpha-induced pro
	Seq ID No: 504 & 505	452401	NM_007115	Hs.29352	tumor necrosis factor, alpha-induced pro
	Seq ID No: 506 & 507	452401	NM_007115	Hs.29352	
25	Seq ID No: 508 & 509	450001	NM_001044	Hs.406	solute carrier family 6 (neurotransmitte
25	Seq ID No: 510 & 511	410407	X66839	Hs.63287	carbonic anhydrase IX
	Seq ID No: 512 & 513	309931	AW341683		gb:hd13d01.x1 Soares_NFL_T_GBC_S1 Homo s
	Seq ID No: 514 & 515	412719	AW016610	Hs.816	ESTs
	Seq ID No: 516 & 517	417034	NM_006183	Hs.80962	neurotensin
	Seq ID No: 518 & 519	430486	BE062109	Hs.241551	chloride channel, calcium activated, fam
30	Seq ID No: 520 & 521	413753	U17760	Hs.75517	laminin, beta 3 (nicein (125kD), kalinin
	Seq ID No: 522 & 523	425650	NM_001944	Hs.1925	desmoglein 3 (pemphigus vulgaris antigen
	Seq ID No: 524 & 525	423673	BE003054	Hs.1695	matrix metalloproteinase 12 (macrophage
	Seg ID No: 526 & 527	418663	AK001100	Hs.41690	desmocollin 3
	Seq ID No: 528 & 529	418663	AK001100	Hs.41690	desmocollin 3
35	Seq ID No: 530 & 531	429610	AB024937	Hs.211092	LUNX protein; PLUNC (palate lung and nas
	Seq ID No: 532 & 533	406690	M29540	Hs.220529	carcinoembryonic antigen-related cell ad
	Seq ID No: 534 & 535	431846	BE019924	Hs.271580	uroplakin 1B
	Seq ID No: 536 & 537	422158	L10343	Hs.112341	protease inhibitor 3, skin-derived (SKAL
	Seq ID No: 538 & 539	431958	X63629	Hs.2877	cadherin 3, type 1, P-cadherin (placenta
40	Seq ID No: 540 & 541	437044	AL035864	Hs.69517	differentially expressed in Fanconi's an
	Seq ID No: 542 & 543	428484	AF104032	Hs.184601	solute carrier family 7 (cationic amino
	Seg ID No: 544 & 545	429211	AF052693	Hs.198249	gap junction protein, beta 5 (connexin 3
	Seq ID No: 546 & 547	417389	BE260964	Hs.82045	midkine (neurite growth-promoting factor
	Seq ID No: 548 & 549	431009	BE149762	Hs.48956	gap junction protein, beta 6 (connexin 3
45	Seq ID No: 550 & 551	417542	J04129	Hs.82269	progestagen-associated endometrial prote
45		449230	BE613348	Hs.211579	melanoma cell adhesion molecule
	Seq ID No: 552 & 553	410555	U92649	Hs.64311	a disintegrin and metalloproteinase doma
	Seq ID No: 554 & 555			Hs.64311	a disintegrin and metalloproteinase doma
	Seq ID No: 556 & 557	410555	U92649	Hs.151738	matrix metalloproteinase 9 (gelatinase B
50	Seq ID No: 558 & 559	424687	J05070	Hs.85266	integrin, beta 4
50	Seq ID No: 560 & 561	418462	BE001596		hypoxia-inducible protein 2 ·
	Seq ID No: 562 & 563	410274	AA381807	Hs.61762	G protein-coupled receptor 87
	Seq ID No: 564 & 565	439606	W79123	Hs.58561	NM_005365:Homo sapiens melanoma antigen,
	Seq ID No: 566 & 567	404877	NN4 044400	11- 44050	CDL anchored metastasis associated prote
<i>E E</i>	Seq ID No: 568 & 569	444781	NM_014400	Hs.11950	GPI-anchored metastasis-associated prote
55	Seq ID No: 570 & 571	418543	NM_005329	Hs.85962	hyaluronan synthase 3
	Seq ID No: 572 & 573	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 574 & 575	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 576 & 577	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
60	Seq ID No: 578 & 579	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
60	Seq ID No: 580 & 581	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 582 & 583	415817	U88967	Hs.78867	protein tyrosine phosphatase, receptor-t
	Seq ID No: 584 & 585	421817	AF146074	Hs.108660	ATP-binding cassette, sub-family C (CFTR
	Seq ID No: 586 & 587	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
	Seq ID No: 588 & 589	418678	NM_001327	Hs.167379	cancer/testis antigen (NY-ESO-1)
65	Seq ID No: 590 & 591	409420	Z15008	Hs.54451	laminin, gamma 2 (nicein (100kD), kalini
	Seq ID No: 592 & 593	332180	AF134160	Hs.7327	claudin 1
	Seq ID No: 594 & 595	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,
	Seq ID No: 596 & 597	408790	AW580227	Hs.47860	neurotrophic tyrosine kinase, receptor,
	Seq ID No: 598 & 599	439223	AW238299	Hs.250618	UL16 binding protein 2
70	Seq ID No: 600 & 601	409757	NM_001898	Hs.123114	cystatin SN
• -	Seq ID No: 602 & 603	428969	AF120274	Hs.194689	artemin
	Seq ID No: 604 & 605	428969	AF120274	Hs.194689	artemin
	Seg ID No: 606 & 607	428969	AF120274	Hs.194689	artemin
	Seq ID No: 608 & 609	428969	AF120274	Hs.194689	artemin
75	Seq ID No: 610 & 611	450701	H39960	Hs.288467	hypothetical protein XP_098151 (leucine-
	Seq ID No: 612 & 613	450701	H39960	Hs.288467	hypothetical protein XP_098151 (leucine-
	Seq ID No: 614 & 615	414774	X02419	Hs.77274	plasminogen activator, urokinase
	Seq ID No: 616 & 617	407944	R34008	Hs.239727	desmocollin 2
	Seq ID No: 618 & 619	407944	R34008	Hs.239727	desmocollin 2
80	Seq ID No: 620 & 621	457489	Al693815	Hs.127179	cryptic gene
50	Seq ID No: 622 & 623	429547	AW009166	Hs.99376	ESTs
				110,00010	gb:Human nonspecific crossreacting antig
	Seq ID No: 624 & 625	407242	M18728		gb:Human nonspecific crossreacting antig
	Seq ID No: 626 & 627	407242	M18728		gb:Human nonspecific crossreacting antig
95	Seq ID No: 628 & 629	407242	M18728	He 10095	type I transmembrane protein Fn14
85	Seq ID No: 630 & 631	444006	BE395085	Hs.10086	type i transmembrane protein FIL14

+ 7

	wo	02/0864	143			PCT/US02/12476
	Seq ID No:		429597 422109	NM_003816 S73265	Hs.2442 Hs.1473	a disintegrin and metalloproteinase doma gastrin-releasing peptide
	Seq ID No:	636 & 637	419235 449048	AW470411 Z45051	Hs.288433 Hs.22920	neurotrimin similar to S68401 (cattle) glucose induc
5	Seq ID No:	640 & 641	419216	AU076718	Hs.164021	small inducible cytokine subfamily B (Cy
	Seq ID No:	644 & 645	431462 448243	AW583672 AW369771	Hs.256311 Hs.52620	granin-like neuroendocrine peptide precu integrin, beta 8
	Seg ID No: (426427 445537	M86699 AJ245671	Hs.169840 Hs.12844	TTK protein kinase EGF-like-domain, multiple 6
10	Seq ID No:		422278 428450	AF072873 NM_014791	Hs.114218 Hs.184339	frizzled (Drosophila) homolog 6 KIAA0175 gene product
	Seg ID No:	654 & 655	446619 453392	AU076643 U23752	Hs.313 Hs.32964	secreted phosphoprotein 1 (osteopontin, SRY (sex determining region Y)-box 11
15	Seq ID No:	658 & 659	426514	BE616633	Hs.170195	bone morphogenetic protein 7 (osteogenic
15	Seq ID No:	662 & 663	425776 425776	U25128 U25128	Hs.159499 Hs.159499	parathyroid hormone receptor 2 parathyroid hormone receptor 2
	Seq ID No:		431515 419452	NM_012152 U33635	Hs.258583 Hs.90572	endothelial differentiation, lysophospha PTK7 protein tyrosine kinase 7
20	Seq ID No:	668 & 669	432653 432653	N62096 N62096	Hs.293185 Hs.293185	ESTs, Weakly similar to JC7328 amino aci ESTs, Weakly similar to JC7328 amino aci
20	Seq ID No:	672 & 673	432653 432653	N62096 N62096	Hs.293185 Hs.293185	ESTs, Weakly similar to JC7328 amino aci ESTs, Weakly similar to JC7328 amino aci
	Seq ID No:	676 & 677	410001	AB041036	Hs.57771	kallikrein 11
25	Seq ID No:	680 & 681	426501 408369	AW043782 R38438	Hs.293616 Hs.182575	ESTs solute carrier family 15 (H??? transport
	Seq ID No:		445413 422424	AA151342 Al186431	Hs.12677 Hs.296638	CGI-147 protein prostate differentiation factor
	Seq ID No: Seq ID No:		428330 420610	L22524 Al683183	Hs.2256 Hs.99348	matrix metalloproteinase 7 (matrilysin, distal-less homeo box 5
30	TABLE 15B		420010	711000.00	1.0.000.0	
35	Pkey: CAT numbe Accession:	r: Gene clust		dentifier number umbers		
	Pkey	CAT Numb		ession		
	309931 330493	AW341683 33264_5	M27			AW957800 AA633529 H03662
40	439285	47065_1	AA7	75552 N62351 N	9253 AA626243 A	W950828 AA364013 AW955684 Al346341 Al867454 N54784 Al655270 Al421279 AW014882 Al341407 BE175639 AA456968 Al358918 AA457077
	450375	83327_1	AA1	90993 H03231 H5	9605 H01642 AA8	4405 H04410 AW606284 AA151166 BE157467 BE157601 H04384 W46291 AW663674 H04021 H01532 852876 AA113758 AA626915 AA746952 A1161014 AA099554 R69067
45.	451320	86576_1	AW1 Al12	18072 Al631982 4088 AA224388 /	T15734 AA224195 Al084316 Al35468	5 AI701458 W20198 F26326 AA890570 N90552 AW071907 AI671352 AI375892 T03517 R88265 6 T33652 AI140719 AI720211 T03490 AI372637 T15415 AW205836 AA630384 T03515 T33230 I T33511 T33785 AI419606 D55612
50	TABLE 15C					
	Pkey: Ref:			ponding to an Eo: e 7 digit numbers		Genbank Identifier (GI) numbers. "Dunham I. et al." refers to the publication entitled "The DNA
<i>-</i> -	Strand:	sequence (of human ch NA strand t	romosome 22." I from which exons	Dunham I. et al., N were predicted.	lature (1999) 402:489-495.
55				ositions of predict		
	Pkey 402075	Ref 8117407	Strand Plus		2035,122804-1229	921,124019-124161,124455-124610,125672-126076
60	403329 403478	8516120 9958258	Plus Plus	96450-9659 116458-116	3564	
	404440 404877	7528051 1519284	Plus Plus	80430-8158 1095-2107		
	405770 405932	2735037 7767812	Plus Minus	61057-6207 123525-123		
65						

Table 16

		1 DNA seque		16			
5		id Accessior lence: 431		16			
	1	11	21 I	31 I	41 	51 (
10		ACCGTGTGCT					60
10	AGCCCCTGGC	TCCCTCTGTT	GATCCCGGCC	CCTGCTCCAG	GCCTCACTGT	GCAACTGCTG	120
	TCCCCCTTGG	TGCTTCTGAT GAGGAGGCTC	TTCTGGGGAA	CCCCAGAGGT	TGCCCCGGAT	GCAGGAGGAT	180 240
		ATTCACCCAG					300
1.5		CTGGAGAGGA					360
15	TCCCTGAAGT	TAGAGGATCT ACAGGGACAA	ACCTACTGTT	GAGGCTCCTG	GAGATCCTCA	AGAACCCCAG	420 480
	CCGCCCTGGC	CCCGGGTGTC	CCCAGCCTGC	GCGGGCCGCT	TCCAGTCCCC	GGTGGATATC	540
	CGCCCCCAGC	TCGCCGCCTT	CTGCCCGGCC	CTGCGCCCCC	TGGAACTCCT	GGGCTTCCAG	600
20	CTCCCGCCGC	TCCCAGAACT TAGAGATGGC	GCGCCTGCGC	AACAATGGCC	ACAGTGTGCA	ACTGACCTGCAT	660 720
20	CTGCACTGGG	GGGCTGCAGG	TCGTCCGGGC	TCGGAGCACA	CTGTGGAAGG	CCACCGTTTC	780
	CCTGCCGAGA	TCCACGTGGT	TCACCTCAGC	ACCGCCTTTG	CCAGAGTTGA	CGAGGCCTTG	840
		GAGGCCTGGC					900 960
25	CAGGTCCCAG	AGCAGTTGCT GACTGGACAT	ATCTGCACTC	CTGCCCTCTG	ACTTCAGCCG	CTACTTCCAA	1020
	TATGAGGGGT	CTCTGACTAC	ACCGCCCTGT	GCCCAGGGTG	TCATCTGGAC	TGTGTTTAAC	1080
	CAGACAGTGA	TGCTGAGTGC	TAAGCAGCTC	CACACCCTCT	CTGACACCCT	GTGGGGACCT	1140 1200
	GAGGCCTCCT	GGCTACAGCT TCCCTGCTGG	AGTGGACAGC	AGTCCTCGGG	CTGCTGAGCC	AGTCCAGCTG	1260
30	AATTCCTGCC	TGGCTGCTGG	TGACATCCTA	GCCCTGGTTT	TTGGCCTCCT	TTTTGCTGTC	1320
	ACCAGCGTCG	CGTTCCTTGT	GCAGATGAGA	AGGCAGCACA	GAAGGGGAAC	CAAAGGGGGT	1380
		GCCCAGCAGA CAGCCAGAGG					1440 1500
0.5		CTTTTAACTG					
35							
	-	2 Protein s cession #: 1	•				
	_		_		43	-1	
40	1 1	11	21 ì	31 1	41 	51 	
10	MAPLCPSPWL	PLLIPAPAPG	LTVQLLLSLL	LLMPVHPQRL	PRMQEDSPLG	GGSSGEDDPL	60
	GEEDLPSEED	SPREEDPPGE	EDLPGEEDLP	GEEDLPEVKP	KSEEEGSLKL	EDLPTVEAPG	120
	DPQEPQNNAH	RDKEGDDQSH PELRLRNNGH	WRYGGDPPWP	RVSPACAGRF	QSPVDIRPQL	AAFCPALRPL	180 240
45	VEGHRFPAEI	HVVHLSTAFA	RVDEALGRPG	GLAVLAAFLE	EGPEENSAYE	QLLSRLEEIA	300
		LDISALLPSD	FSRYFQYEGS	LTTPPCAQGV	IWTVFNQTVM	LSAKQLHTLS	360
	DTLWGPGDSR	LDISALLPSD LQLNFRATQP	FSRYFQYEGS LNGRVIEASF	LTTPPCAQGV PAGVDSSPRA	IWTVFNQTVM	LSAKQLHTLS	360 420
<i>5</i> 0	DTLWGPGDSR GLLFAVTSVA	LDISALLPSD LQLNFRATQP FLVQMRRQHR	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR	LTTPPCAQGV PAGVDSSPRA	IWTVFNQTVM	LSAKQLHTLS	
50	DTLWGPGDSR GLLFAVTSVA Seq ID NO:	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR	LTTPPCAQGV PAGVDSSPRA PAEVAETGA	IWTVFNQTVM	LSAKQLHTLS	
50	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac:	LDISALLPSD LQLNFRATQP FLVQMRRQHR	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC01392	LTTPPCAQGV PAGVDSSPRA PAEVAETGA	IWTVFNQTVM	LSAKQLHTLS	
50	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequ	LDISALLPSD LQINFRATQP FLVQMRRQHR 3 DNA seque id Accession Lence: 438-	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC01392	LTTPPCAQGV PAGVDSSPRA PAEVAETGA	IWTVFNQTVM AEPVQLNSCL	LSAKQLHTLS AAGDILALVF	
	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac:	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC01392	LTTPPCAQGV PAGVDSSPRA PAEVAETGA	IWTVFNQTVM	LSAKQLHTLS	
50 55	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequ 1 AGCGGGGGTTG	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 1 TCTATTAACT	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC0139: 1391 21 1 TGTTCAAAAA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 23 31 GTATCAGGAG	IWTVFNQTVM AEPVQLNSCL 41 TTGTCAAGGC	LSAKQLHTLS AAGDILALVF 51 AGAGAAGAGA	420
	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequents AGCGGGGTTG GTGTTTGCAA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession Lence: 438-1 11 TCTATTAACT AAGGGGGAAA	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 23 31 GTATCAGGAG GCCTCTTTAA	IWTVFNQTVM AEFVQLNSCL 41 TTGTCAAGGC GACTAGGACT	LSAKQLHTLS AAGDILALVF 51 AGAGAAGAGA GAGAAGAAGA	420 60 120
55	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequ 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession Lence: 438-1 11 TCTATTAACT AAGGGGGAAA GAAAGAAAGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence 1 #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCCAG	IWTVFNQTVM AEFVQLNSCL 41 TTGTCAAGGC GACTAGGACT GCTTAAGCCT	LSAKQLHTLS AAGDILALVF 51 AGAGAAGAG GAGAAAGA TTCCAAAAAA	420
	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequ 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession tence: 438-: 11 TCTATTAACT AAGGGGGAAA GAAAGAAAGG AATCATCGGC ATCAGTGGC ATCAGTTTGC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence n #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GGCGGCAGGA GTCTCTCTTT	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGGCCAGAG TTTTCCCCCA	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GAGGAGGGAA AATTATTCTT	LSAKQLHTLS AAGDILALVF 51 AGAGAAGAGA GAGAAAGA TTCCAAAAAA GCGCTTTTTT CGCCTGATTT	420 60 120 180 240 300
55	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAT TCCTCGCGGA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession Lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGGTTGC GCCCTGCGCT	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence n #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GGCGGCAGG CTCTCTCTCTT CCCGACACCC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGGCCAGAC TCTTTCCCCCA CCGCCCGCCT	IWTVFNQTVM AEFVQLNSCL 41 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GAGGAGGGAA AATTATTCTT CCCCTCCTCC	LSAKQLHTLS AAGDILALVF 51 AGAGAAGAA GAGAAGAA TTCCAAAAAA GCGTTTTTT TCGCCTGATTT TCTCCCCCCG	60 120 180 240 300 360
55	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTCGCGGA CCCGGGGGCC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCTGCGCT CCCCAAAGTC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence n #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GGCGGCAGGA CTCTCTCTTTT CCCGACACCC CCGGCCGGGC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCTGCCCAGG TTTTCCCCCA CCGCCCGCCT CGAGGGTCGG	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GAGGAGGGAA AATTATTCTT CCCCTCCCCCCCCCC	S1 SAKQLHTLS AAGDILALVF 51 AGAGAAGAG GAGAGAAGA TTCCAAAAAA GGGTTTTTT TGCCCCCCG CGGGCCGGGC CGGGCCGGGC	420 60 120 180 240 300
55 60	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTCGCGGA CCCGCGGGCC CCGCGCACAG AGCAAACTTC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGATTTGC GCCTGCGCT CCCCAAAGTC GGGGGGCGGC GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence m #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCCGGCAGGA CTCTCTCTTT CCCGACACCC CCGGCCGGGC GCGGCGGGC GCGGCGGGCG	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCTGCCAGAG TCTTCCCCA CCGCCGCCT CGAGGTCGG TGGAGACGGA CCACCGCGGC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT CAGGAGGAA AATTATTCTT CCCTCCTCC CGGCCGCGG GCTGAAGCCG GCGCCGGC	51 AGAGAAGAGA GAGAAAGA TTCCAAAAAA CGCTTTTT TCTCCCCCG GGGCCGGCC CCGGGCCCGC CCGGGCCCGC	60 120 180 240 300 360 420 540
55	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAACAC TCGCGGGCACAG AGCAAACTTC AAAACAGCCC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession Lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCTGCGCT CCCCAAAGTC CGCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence n #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GGCGGCAGGA CTCTCTCTTT CCCGACACCC CCGGCCGGGC TACAACATGA GGCGGCAACT AAGCGGCCCC AAGCGCCCA AAGCGGCCCA AAGCGGCCCCA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCTTCCCCAG CTTTCCCCCAG CTGAGGGTCGG TGGAGACGGA CTGACCGCGGC TGGAGGCCGGC TGGATGCCTT TGAATGCCTT	A1 TTGTCAAGGC GACTAGACCT GCTTAAGCCT GCGCGCCGG GCTGAAGCCG GCTGAAGCCG CGCGCCGG CCTAAGCCT CCCTCCTCC	51 51 AGAGAAGAA GAGATTTT TCTCCCCCG CGGGCCGGC CCGGCCCG GCAACCAGA TCCCGCGGC TCCCCCGCG	60 120 180 240 300 420 480 540
55 60	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTCGCGGA CCCGCGGCCC CCGCGCACAG AGCAAACTTC AAACAGCCC AGCGCGCACAA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCTGCGCT CCCCAAAGTC CGCCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PICE H # BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCCGGCAGGA CTCTCTCTTT CCCGACACCC CCGGCCGGGC TACAACATGA GGGGCAACT GAGGGCCACA GAGAACCCCA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGCCCAGCT CCGCCCGCCT CGAGGGTCGG TGGAGACGA CCACCGCGCT TGAGAGACGA CCACCGCCT TGAGAGACGA CCACACCGCT TGAGAGACGA CCACACCGCT AGATGCACAA	A1 TTGTCAAGGC GACTAGAGCT GCTTAAGCCT GCGCCGCGGGCGCGGCCGGCCGCCGCCGCCGCCGCCGCC	51 AGAGAAGAGA AGAGAAGAGA GCGCTTTTT CCCCCCG CGGGCCCGC CCGGCCCGC CCGGCCCGC CCGGCCCGC CCGGCCCGC CCGGCCCGC CCGCCCCCC	60 120 180 240 300 360 420 540
55 60	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC CCCGCGGGCC CCGCGCACAG AGCAAACTTC AAACAGCCC AGCGCGCACA AGGGGCGCAA AGCGGCGCAA AGCGGCGCAA AGCGGCGCAA AGCGGCGCAA AGCGC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGATTTGC GCCTGCGCT CCCAAAGTC CCCCAAAGTC GGGGGGCGGC GGACCGCGTC GATGGCCCGCATG GGGGGGCGGC GATGGCCCAA	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR Ence m #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCCGGCAGGA CTCTCTCTTT CCCGACACCC CCGGCCGGGC ACACACATGA GAGAACCCCA AAGCGCCCA GAGAACCCCA AAGCAGCACA ATTGTCGAGA ATTGAGAGA ATTGAGAGA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAGA TCTGCCCAGAG TCTTCCCCA CCGCCGCCT CGAGGTCGG CGAGAGAGGA CCACCGCGGC TGAATGCCTA AGATGCCTA ACCGGGATTA	A1 ITTGTCAAGGC GACTAGGACT GCTTAAGCCT CGGCGCCGG GCTGCGCGCGC GCGCCGGC CATGGTGTG CTCAGGAGCCG CTCGGAGTC CTCGGAGTC CTCGGAGTC TAAATACCG	51 AGAGAAGAGA GAGAAAGA TTCCAAAAAA GCGCTTTTT TCTCCCCCG GGGCCGGC CCGGGCCGC GCAACCAGA TCCCGCGGCC GCAAGCCGC GCAAGCCGC AGCAAGCCCG CGCAAGCCCG CGCAAGCCCG CCCCGCGCGC CCCCGCGCGCACCCCCCCC	60 120 180 240 360 420 600 600 6720 780
556065	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTGCAA AGAGGAGAGA TAATAATAAC TGATCCTGAT TCCTGGCGGA CCGCGCACAG AGCAAACTTC AAAACAGCCC AGCGGCGCAA TGGGGGCGCAA AGGGGGCGCAA AGCGGCGCCAA AGCGGCGCCAA AGCGGCGCCAA AGCGGCGCCAA AGCAGACAGA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAGG AATCATCGGC TCCAGTTGC GCCCGCATG CGCCCGCATG CGCCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR ence n #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT CCCGACACCC CCGGCCGGGC TACAACATGA GGCGGCAACT AAGCGGCCCA GAGAACCCCA ATGTTCGGAGAC ATGTTCGGAGAC ATGTAGAGAACACACA ATGAAGAACACACA ATGAAGAACACACA ATGAAGAACACACA ATGAAGAACACACA AAGAACACACA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAGA TCTTCCCCA CCGCCGCCT CGAGGGTCGG TGAAGACCGA CCACCGCGGC TGAATGCCTT AGATGCACA ACACGGGATTA ACACGCTGCC ACACCGGGATTA ACACGCTGCC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GAGGAGGGAA AATTATTCTT CCCTCCTCC GGCGGCCGG CCTGAAGCCG GCTGAAGCCG CATGGTGTG CTCGGAGGAGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGTGC CATGGTGT	51 AGAGAAGAA AGAGAAGAA TCCAAAAAA CGCTTTTT TCTCCCCCG CGGGCCCGC CGGCCCGC GCAACCAGA TCCCGCGGC GCAACCAGA TCCCGCGGC CGACGAGCTAC TCCCCCGCGCCCG CGCAACCAGA TCCCGCGGCC CACGAGCCTA TCCCCCCGCCGC CGCCGCCCC CACGAGCCTA TCCCCCCCC CACGAGCCTA TCCCCCCCCC CACGACCCCC CACGAGCCTA CCCCGCCGGA CTGCCCCCC	60 120 180 240 300 420 480 540 660 720 840
55 60	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TCATCCTGAT TCCTCGCGGA CCCGCGCACAG AGCAAACTTC AAAACAGCC AAGCGCGCAAA TGGGCGCCGA AGCGGCTCAA AGGGCGCTAA GGGGCGCCAA GGCGCTCAAAC GCGCCAATAG GCGCAATAG	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGATTTGC GCCTGCGCT CCCAAAGTC CCCCAAAGTC GGGGGGCGGC GGACCGCGTC GATGGCCCGCATG GGGGGGCGGC GATGGCCCAA	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCCGGCAGGA CTCTCTCTTT CCCGACACCC TACAACATGA GGGGCAACT AAGAGAGT AGGGCCCA TTGTCGGAGA ATGAACGGCCCA TTGTCGGAGA ATGAAGGAGAG ATGAAGGAGAG ATGAAGGAGAG AGGATAAGG GGGGTCGGGG GGGTCGGGG GGGTCGGGG	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAGC TCGCCCGCCT CGACGGGCC GCGCCGCCT TGAATGCATA AGACGCAAAAGCG ACCCGGATTA ACACGCTGCC TGGGCGCCGC TGGGGTCCCCCCCCCC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GCGCCGGG GCTGAAGCCG GCTGAGCCG GCTGAGCCG GCTGAGCCG GCTGAGCCG GCTGAGCCG CTCGGCCGC CTCGGCCCC CTCGGCCCC CTCGGCCCC CTCGGCCCC CCTCGGCCCC CCTCGGCCCC CCTGGCCCC	51 AGAGAAGAGA AGAGAAGAA ATCCAAAAAA ACGCTTTTT CGCCTGATTT TCTCCCCCC GGGCCCGC GGCAACCAGA TCCCGCGGGC AGCAAGCAG ACCAGGGCC GACAAGCGC GACAAGCGC GACAAGCGCC GACGAGGCT ACCAGGGGGG ACCAGGGCGGGC GGCAACCAGA CCCCGGCGGG ACGAGCCCC GACGAGGCT ACCAGGGGGA ACGAGCGCA ACGAGGCGA ACGAGGCGA ACGAGGCGA ACGAGGCGA ACGAGCGCA ACGAGGCGA ACGAGGCGA ACGAGGCGA ACGAGGCGA ACGAGGCGA ACGAGGCGA ACGAGCGCA ACGAGGCGA ACGAGCCCCC GGCGTGAACC	60 120 180 240 360 420 600 600 6720 780
556065	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAT TCCTCGCGGA CCCGCGCACAG AGCAAACTTC AAAACAGCCC AGCGCCCAA TGGGCGCCAA AGCGGCGCAA AGCGGCGCAA AGCGGCGCAA AGCGGCAATAG AGCACAAGAC AGCACCAGCA AGCACCAGCA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG ATCATCGGC TCCAGATTTGC GCCCGCATG GGGGGGCGGC GGACCGCGTC GATGGCCGAACTC AAGGCCTGCATG GATGGCCATG GATGGCAAC CATTACACGC GTCATGAAG CATTGCCAAG CATTGCCGAG CATTACACGC GCTCATGAAG CATTGCCAG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR Ence m #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCCGGCAGGG CTCTCTCTTT CCCGACACCC CCGGCCGGGC ACACACATGAA GAGAACCCCA AAGCAGCACCA AAGAACCCCA AAGAACACATGAAG ATGAAGAAG ATGAAGAAG CACATGAAG CACATGAAG CACATGAAC CAGCACCCG CAGCACCCG CAGCACCCG CAGCACCCC CAGCACCCCC CAGCACCCCC CAGCACCCCC CAGCACCCCCC CAGCACCCCCC CAGCACCCCCCCC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCTTCCCCA CCGCCGCCT CGAGGTCGG TGGAGACGGA CCACCGCGGC TGAATGCCTA AGATGCCTA AGATGCCTA AGATGCCTA ACACGCGGC ACCGGGTTA ACACGCTGCC TGGGGCGCC TGGGGCGCC ACCGCGGCT GGAGAAGCG ACCCGGATTA ACACGCTGCC TGGGGCGCCA ACCCGCGCCC ACCCGCGCCT AGATGCCCAATGC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT CGGCGCGGC GCGCGCGGC CATGGTGTG CTCAAGCCG CTCGGAGTC CTCGGAGTC TAAATACCG CGCGGCGC CTCGGAGCC CCGGCGCCGC CTCGGAGCC CCGCGCCGC CCGCGCCCGC CCTCGGCGCC CCGCGCCCGC CCGCGCCCGC CCGCGCCCGC CCGCGCCCGC CCGCGCCCACCCC CCGCGCCCC CCGCGCCCCC CCGCCGCCCC CCGCCG	51 AGAGAAGAGA GAGAAAGA TTCCAAAAA CGGCTTTTT TCTCCCCGG GGGCCGGC CGGGCCGGC GGCAACCAGA TCCGGGGCC GCCAAGCAGA TCCCGCGGC GGCAAGCAGA TCCCGCGGC AGCAAGCAGA TCCCGGCGGA CTGGCCCCG GACGAGGCTA CCCCGGCGA CTGGCCCCG GCGGAAGCAGA CTGGCCCCG GCGGAAGCAGA CCCGGCGGA CTGGCCCCG GCGGAGACGC GCCGGAGACGC GCCGGAGACGC GCCGAGATGC	60 120 180 240 420 420 480 600 660 720 780 840 900 1020
556065	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTGCAA AGAGGAGAGA TAATAATAAC TCGCGGGCCACAGG AGCAAACTTC AAAACAGCCC AGCGCCCAA TGGGGCCGAA TGGGGCCGA AGCGACAGA AGCAAGAC AGCGCATGGA AGCGCATGGA AGCGCATGGA AGGCCATGCA AGCCCATGCA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE #: BC01392 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGGA CTCTCTCTTT CCCGACACCC CCGGCCGGGC TACAACATGA GGGGCAACT AGAGAACCCA ATGAAGGGCCCA ATGAAGAGAAC ATGAAGGACCA ATGAAGGACCA GAGAACCCA TTCTCGGGG GAGAACCCA TGCGGGC AAGAATGAAGG GCGCCCGG GTGAGCACCCGG GTGAGCGCCCC	LTTPCAGGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGCCCGCCT CGACGGGCC TGAGGGCCGA TGGAGACGAA CCACCGCGT AGATGCACAA CGCAGAGC ACCCGGATT AGATGCACAA CGCAGAGAGCG ACCCGGATT AGATGCACAA CCTGATGCA TGGGCCCGG TGGAGAAGCG TGGAGAAGCG TGCAGTACA	A1 TTGTCAAGGC GACTAGGACT CGGCGGCGG GCTGAAGCCG GCGGCGGG GCTGAGCCG CTGGAGAT CCCTCTCT CGGCGCGG GCTGAGCCG GCGGCGGC CTCGGAGAT CCCTCTCAT CCCTCTCAT CACGCCGC CGCAGCAC CTCAGGCGC CGCAGCAC CTCAGGCGC CGCAGCAC CTCATGACC CTCATGAC CTCCATGAC CTCCATGA	51 AGAGAAGAGA AGAGAAGAGA GAGAAGAAGA GCGCTTTTT TCTCCCCCG CGGGCCCGC CGGGCCCGC GCGAACCAGA ACCAGA ACCAGACCCG ACCAGAGCCC GACAAGCGC GACAACCACA ACCAGCGCC GACAACCACA ACCAGAGCCC GACAACCACA ACCAGAGCCC GACAACCACA CCGGCGGAACCACA ACCAGAGCACACA CCGGCGGAACCACA ACCAGAGCACACACA	60 120 180 240 300 420 480 660 720 840 900 900 900 1020 1080
556065	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TCGTCGCGGA CCGCGGGCC CCGCGGGCCAAA AGCAAACTTC AAAACAGCCC AGCGGCGCAA AGCGCGCAAA AGCGCGCAAA AGCGCGCAAA AGCGCAAAC AGCGCAAAC AGCGCAAAC AGCGCAAAC AGCGCAAAC AGCGCAAAC AGCGCAAAC AGCGCAAAC AGCCAATGA AGCCCAATGA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG ATCATCGGC TCCAGATTTGC GCCCGCATG GGGGGGCGGC GGACCGCGTC GATGGCCGAACTC AAGGCCTGCATG GATGGCCATG GATGGCAAC CATTACACGC GTCATGAAG CATTGCCAAG CATTGCCGAG CATTACACGC GCTCATGAAG CATTGCCAG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE 1 #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GGCGGCAGCC CCGGCCGGC TACAACATGA GGCGCAACT AAGCGCCAA TTGTCGGAGA ATGAAGAGAGA ATGAAGAGACCCA TTGTCGGAGA ATGAAGGACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCCG CAGCACCCG CAGCACCCG CAGCACCCGC ACCTACAGCA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TTTTCCCCA CGGCCGCCT CGAGGGTCGG TGAATGCCT AGATGCACAA CCACCGCGC TGAATGCCT AGATGCACAA ACACGCTGC ACCCGCGCT ACACGCTGAATGC ACCCGCGATTA ACACGCTGCC ACCCGCGATTA ACACGCTGCC TGGAGAACAA TGCCTCAATGC TGCAGTACAA TGTCCTACTC	A1 TTGTCAAGGC GACTAGGACT CCCTCCTC CGCCGCCGG GCTGAAGCCG GCTGAAGCCG GCGGCGGCGG CTGAAGCCG GCGGCGGCGG CTGAAGCCG GCGGCGGCGG CCTGAAGCCG GCGGCGGCGG CCGGCGGCGGCGCG CCGGCGGCG	51 AGAGAAGAGA AGAGAAGAGA GAGAGAAGAGA TTCCAAAAAA GCGCTTTTT TCTCCCCCG GCGGCCCGGGCCCGGGCCGGC CCGGGCCGGC GCAACCAGA TCCCGCGGGC GCAACCAGA CCCGGGGGC GACGAGGCTA CCCCGGGGGC GACGAGGCCA GACGAGGCCA ACCAGAGGCCA ACCAGAGGCAACCCCA AGCATGATGC CCGCAGATGACC AGCAGAGGCAACCCAGCAGATGACCCCGCAGAACCAGAACCCCTGGCAGAACCCCCCGCAGAACCCCCGCAGAACCCCCGCAGAACCCCCC	60 120 180 240 420 420 480 600 660 720 780 840 900 1020
55606570	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTGCAA AGAGAGAGA TAATAATAAC TCGCGGGACAG AGCAAACTTC AAAACAGCCC AGCGGCACAG AGCGGCGCAA TGGGCGCGAA AGGGCGCGAA AGGGCGCGAA AGGGCCATGCA AGCGCATGCA AGCCATGCA AGCCCATGCA AGCCCTTGCTTGC TTACCTTTG	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-: 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGATTGC GCCCGCATG GGGGGGCGC GGACCGCGTC GATGGCCGCATG GGGAACTT AGGGCTGCAC GCTCATGAAG CCTGAAACTT CCGCATGCAC GCTCATGAAC CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAAG CCTCATGAGC CCGCTACCAC CCGCTACCAC CCCCCACTCC CTCCATGGGT CTCCCACTCC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE # #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT CCCGACAGCC CCGGCCGGGC ACCAACACATGA AGCGGCAACCC AAGAACCCCA ATGAAGAAGT AAGCGGCCA ATGAAGAAGG CACATGAAG CACATGAAC CAGACACCCG GTGAGCCCC ACCTACAGCA ACCGCGGC ACCTACAGCA ACGGGGCCCC ACCTACAGCA ACGGGGCCCC ACGGCGCCCC ACGGCGCCCC ACGGCCCCC ACGGCGCCCC ACGGCGCCCC ACGGCGCCCCT	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGGCCAGAG TCTTCCCCA CCGCCGCCT CCAGGGTCGG CGAGAGAGCG ACACCGCGGC TGAATGCCTT AGATGCACA ACACGCGGC TGGAGCAG GCTGAGCAC GCTGAGCAC ACCGCGCCGC TGGAGCAC ACCGCGCCGC TGGAGCAC ACCCGGATTA ACACGCTGCC TGGAGCAC ACCCGGATTA ACACGCTGCC TGCAGCCAG GCTGAGCCAC TGCAGTACAA TGTCCTACTC AGTCCGAGGC	A1 ITTGTCAAGGC GACTAGGACT GGTTAAGCCT GAGGAGGGA AATTATTCTT CCCTCCTCC CGGCGCGGC GCTGAAGCCG GCTGAAGCCG GCGGCCGGC CATGGTCATC TAAATACCGG CGCGGCTGC CCCGCAGCTAC CCCCCCCC CAGCAGCGC CGCAGCTAC CCACAGCAGGC CACACAGGC CAGCAGCAGC CAGCAGCAGC CAGCAGCAGC CAGCAGCAGC CAGCAGCAGC CAGCAGCAGC CAGCACAGC CAGCACAGC CAGCACAGC CAGCACAGC CAGCACCACC CAGCACAGC CAGCTCCAGC CGCACCCCC CAGCACCAGC CAGCTCCCAGC CGCACCTCCCG CGCACCTCCCC CACCTCCCCC CACCTCCCCC CACCTCCCCC CACCTCCCCC CCACCTCCCC CCACCCCCC CCACCCCCC CCACCCCCC CCACCCCCC	51	60 120 180 240 420 480 660 660 720 840 900 1020 1080 1140 1200 1260
55606570	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TCGATCGGGA CCCGCGCACAG AGCAAACTTC AAGCGGCCCAA AGCGCCCAA AGCGCCCAA AGCGCCCAA AGCGCCATGCA AGCGCCATGCA AGCGCCATGCA AGCCCATGCA CCTACATGAA TGGCTCTTCG CGCATGTATCTTCC GCATGTATCT	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GGCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGGC CTCTCTTTT CCCGACACCC TACAACATGA GGGGCAACCT AAGCGGCCCA ATGAGAGAGA ATGAAGAGAG CACTAGAACG CACACCCG CAGCACCC CAGCACCCC ACTGCGGC CACATGAACG CACACCCG CAGCACCCC ACGTACACC ACGACACCCG ACGACCCCC ACGTGCCCC ACGTGCCCC ACGTGCCCCT GAGGTGCCCCT GAGGTGCCCG	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGGCCAGCGC TGAAGACGAA CCACCGCGCT TGAATGCACAA CCACCGCGCT TGAATGCACAA CCTCAATGC TGGGCCGCGC TGAATGCACAA CCTCAATGC TGGGCCCGC TGGAGAAAGCCT ACCCGCAGCCC TGAGCACAA CCCTCAATGC TGCAGGACAA CCCTCAATGC TGCAGGACAA CCCCACGCCGC ACCCGCCGC ACCCGCCGC	A1 TTGTCAAGGC GACTAGGACT CCTTCATCT CCCTCCTCC CGGCGGC GCTGAAGCCG GCTGAAGCCG GCTGAAGCCG GCTGAGTGG CTCAGCGCC CATGGTGTGG CTCGGCGCC CATGGAGTC CACGCGCC CGCAGCAGCC CACGCCCC CCACGCCGC CCACGCCGC CCACGCCCC CCCCCCC CCACGCAGAA	51 AGAGAAGAGA AGAGAAGAGA AGAGAAAGAGA AGAGAAAGAGA CGCTTTTTT CGCCTGATTT TCTCCCCCCG GGGCCCGC GGCAACCAGA CCCCGGGGGC AGCAAGCGCC AGCAAGCGCC AGCAAGCGCC AGCAGAGCT AGCATGATGC AGCATGATGC AGCATGATGC AGCATGATGC AGCATGATGC AGCATGATGC AGCATGATGC AGCATGATGC AGCATGATGC CCCCTTGGC CCCCTTGGC CCCCTTTGG CACATGATCA CTTCACATGTT	60 120 180 240 300 420 480 540 660 720 780 840 900 960 1020 1140 1220 1260 1320
5560657075	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic AC: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TCGTCGCGGA CCGCGCACAG AGCAAACTTC AAAACAGCCC AGCGCCACAG AGCAAACTTC AAACCAAGAC GCGCAATAG AGCGCATGG AGCGCATGG AGCGCATGG AGCGCATGG AGCGCATGG AGCGCATGGA TGGCTCTTCG TTACCTCTTC CCCAGCACTA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCGCATG GGGGGCGCC GATGGCCCA GCTGAAACT AGGGCTACCAC GCTCATCAC GCTCATCAC GCTCATCAC CCCCTCATCAC CCCCTCATCAC CCCCTCATCAC CCCCTCATCAC CCCCTCATCAC CCCCTCATCAC CCCCTCACCC CCCCTACGAC CCCCTCCCCC CCCCCCCCCC	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE # #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGCC TACAACATGA GCGGCAACT AAGCGCCAA TTGTCGGAGA ATGAAGAGAGT GGGGTAGGAC CACTACACCC AGCACCCC CACCACC CACCACC CACCACC CACCACC CACCAC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCCAG TTTTCCCCCA CCGCCGCCT CGAGGGTCGG TGAATGCCT CAGAGACGAA CCACCGCGGC TGAATGCCT ACACGCTGCA ACCCGGATTA ACACGCTGCA ACCCGGAGA GCTCAATGC GCTGAATGC TGGAGACAA GCCTCAATGC ACCCCAGCCGG GCTGAATGC ACCCCAGCCGG GCAGCCCGC GCCAGCCCGC GCCAGCCCGC GCCAGCCCGC GCCAGCCCAT	A1 TTGTCAAGGC GACTAGGACT CCCTCCTC CGCCGCGG GCTGAAGCCG GCGGCCGG CTGAGGAGT CTCATGCT TAAATACCGG CCGCGGCGG CCGCGGCGG CCGGCGGCGC CCGCCG	51 AGAGAAGAGA GAGAAAGAGA GAGAAAGAGA TTCCAAAAAA GCGCTTTTT TCTCCCCG GCGGCCGGGC CCGGGCCCGC GGCAACCAGA TCCCGCGGGC GACAAGCGCC GACAGAGCCCC GACGAGCCCC GACGAGCCCC GACGAGCCCC GCGCGGGC CCCGCGGGC CCCGGGGCCCCG GCGCGGAGTGC CCCCTGTGG ACCCCTGTGG CCCCCTGTGC CCCCCTGTCG CACAATGATC CTTCACATGT CTTGCCCCTCT	60 120 180 240 420 480 660 660 720 840 900 1020 1080 1140 1200 1260
55606570	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTGCAA AGAGGAGAGA TAATAATAAC TCCTGGCGGACAG AGCAAACTTC AAAACAGCCC AGCGCCAAA AGCGGCTAAA AGCGCTGCG AACCAAGA AGCATGCA AGCCATGCA ACCATGCA TGGCTCTTC CCCAGCACTT GCATGTATCT CCCAGCACTT GCATGTATCT CCCAGCACTT GCAACATGGA AGCATGTGGA TGACTCTTC GCATGTATCT CCCAGCACTA CACACTTGG GGAAATGGG	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCGCATG GGGACGCGC GATGGCCCG GATGGCCCG GATGGCCAG GTCATGAAG CATTACGG GCTCATGAAG CATTACGC GCTCATGAAG CATTACGC GCTCATGAAG CATTACGC GCTCATGAAG CAGTTACGC CCCCTACGAC CCGCTACGAC CCGCTACGAC CCGCTACGAC CCGCTACGAC CCGCTACGAC CCGCTACGAC CCGCTACGAC CCGCTACGAC CCCCCACGCCC CCCAGAGCGCC CCAGAGCGGC CAGAGCGGC AGGGCCGGAC AGGGCCGAAA	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR #: BC0139: 1 #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGGA CTCTCTCTTT CCGGACACC CCGGCCGGGC TACAACATGA GGGGCCAACT AAGCGGCCCA ATGAAGAAGT GGGGTCGGG CACATGAACG CAGCACCCG CAGCACCCG CAGCACCCC ACTACAGCA TCGGTGTCC ACGTGCCCC ACGTGCCCC ACGTGCCCC ACGTGCCCC ACGTGCCCC ACGTGCCCG AGGACTCGAACG AGGACTCCGAACGC AGGACTCCGAACGC ACGTGCCCC ACGTGCCCC ACGTGCCCC ACGTGCCCG ACGAACTGC AGAGGACTGC AGAGAGAGACTGC AGAGGACTGC AGAGACTGC AGAGGACTGC AGAGGACTGC AGAGGACTGC AGAGAGACTGC AGAGGACTGC AGAGAGACTGC AGAGGACTGC AGAGGACTGC AGAGAGACTGC AGAGAGACTGC AGAGGACTGC AGAGAGACC AGAGACCC ACCTACAGCA AGAGAGACC AGAGACCC ACCTACAGCA ACCTACAGC AGAGACC ACCTACAGC AGCACC ACCTACAGC AGCACC ACCTACAGC ACCTACAC ACCTACAGC ACCTACAC ACCTAC ACCTACAC ACCTACAC ACCTACAC ACCTACAC ACCTAC ACCTAC ACCTAC AC	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGCCCGCCT CGACGGCCC CGCCGCCT TGAAGGCCCAA CGACGCGCC TGACGCCCC TGACGCCCCC TGACGCCCC TGACGCCCC TGACGCCCC TGACGCCCC TGACTCACTC ACCCGATTC ACCCGATTC ACCCGATTC TGCAGTACAA CCCTCAATGC TGCAGTACAA CCTCAATGC TGCAGTACAA CCCCGCCCG GCTCACCC ACCCGCCCC ACCCGCCCC ACCCGCCCC ACCCGCCCC ACCCGCCCC ACCCGCCCC ACCCGCCCC ACCCGCCCCC ACCCCCCCC	A1 TTGTCAAGGC GACTAGGACT GCGGCGGG GCTGAAGCCG GCGGCGGG GCTGAGCT CATGGTCAT GCCTCTCT CGGCGCGG GCTGAGCCG GCGGCGGC GCTGAGCCG CATGGTCAT CCCTCTCT CAAATACCGG CCGCAGCAGC CCCAGCAGCAC CCCACGGCGC CACGCACAC CCCCAGCAGA AATTTTCAAA ATGAGAAAA	SAKQLHTLS AAGDILALVF 51 AGAGAAGAAGA GAGAAGAAGA GAGAAGAAGA GCCTTTTTT CCCCCCCG GGGCCCGC GGGCCCGC GGGAACCAGA ACCAGAACAGA CCCCGGCGG AGCAAGCA	60 120 180 240 300 420 480 540 660 720 1020 1080 1140 1260 1320 1320 1340 1500
5560657075	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic AC: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TCGTCGCGGA CCGCGGGCC AGCAAACTTC AAAACAGCCA AGCAAACTTC AAACCAAGAC AGCGCGCAA AGGACAGCA AGCGCTGCA AGCGCTGCA AGCGCTGCA AGCGCTTGG TTACCTCTTC CCCAGCACTAC CGATTATCT CCCAGCACTAC CGATTATCT CCCAGCACTAC CGATTATCT CCCAGCACTAC CGATTATCT CCCAGCACTAC CGATTATCT CCCAGCACTAC CGATTATCT CCCACACTGG GGAAATAGAA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GCCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE # #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGCCC TACAACATCA AGCGCCCA ATGTCGGACAC TTGTCGGAGA ATGAAGAGAGT GAGAACCCA ATGACGGCCA ATGACGCCCA ATGACGCCCA ATGACGCCCA AGGACACCCG CACACCCG CACACCCG CACACCCG CACACCCG CACACCCG ACGACCCC ACGACCCC ACGACCCC ACGACCCC ACGACCCC ACGACCCCC ACGACCCC AGGACCCC AGGACCCC AGGACCCC AGGACCCC AGGACCCC AGGACCCCA AGGACCCCA AGGACCCCA AGGACCCCA AGGACCCCA AGGACCCCA AGGAACTGG AGAGGAGAGT AAAATCCCAT	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAGC TTGCAGCAGGAG TTTTCCCCA CGGCCGCCT CGAGGGTCGG TGAATGCCT AGATGCACAA CCACCGCGGC TGAATGCCT AGATGCACAA ACACGCTGCG GCTGAATGC TGGAGGCCAG ACCCGCACA ACCCGCGCG GCTGAATGC ACTCCACAGC GCACCACAGC CGCAGCCCG ACCCGCCGC ACCCGCCGC ACCCGCCGC ACCCGCCGC ACCCGCCGC ACCCGCCGC ACCCGCCGC CACCCCCCACAGC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GCTTAAGCCT GCTGAAGCCG GCGGCCGG GCTGAAGCCG GCGGCCGG CTGAAGCCG GCGGCCGG CTGAAGCCG GCGGCCGG CCTGAGCCG GCGGCCGG CCTGAGCCG GCAGCTAC CCTCCCC CCTCCCC CCTCCCCG CCGCCGCG CCGCAGCAGC CAGCAGCAC TAAATACCGG CAGCAGCAC ATTTTCAAA AATGCACAC AATTTTCAAA	51 AGAGAAGAGA AGAGAAGAGA GAGAGAAGAGA TTCCAAAAAA CGGCTTTTT TCTCCCCCG GGGCCGGC CCGGGCCGG GCAACCAGA TCCCGCGGGC GACAAGCGCC GACAGAGCTA CCCCGGGGCC GACAGAGCCC GACGAGATGA CCCCTGGCA ACCCTGGCA ACCCTGGCA ACCCTTGCA ACCCTTGCA CCCCTGTGG GACAATGATC CCCCTGTGG CCCCTTGGC CCCCTGTGG CCCCTTGTGC CCCCTGTGC CCCCTGTCG CCCCTGTCC CCCCTGTCC CCCCTGCC CCCCTGCC CCCCTGCC CCCCTGCC CCCCTGCC CCCCTCT CAAAAAACGAG CCCGGTACGC TGCAAAAGAG	60 120 180 240 300 480 540 660 720 780 900 900 1020 1140 1220 1320 1320 1320 1340 1500 1500
5560657075	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC CCCGCGGGCC CCGCGGGCC AAACCTAC AGCGAAACTTC AAACAAGCC AGCGCATGA AGGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA CCTACATGAA TGGCTCTTCG GAATGTACTCC CCACACTTC CCACACTTC CCACACTTC CCACACTTC CCACACTTC CACACATTC CACACATC	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession lence: 438-1 11	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT CCCGACACCC CCGGCCGGGC TACAACATGA AGCGCCAG ATGAACATGA AGGAACCCA ATGAAGAGAGT ATGATGGGG CACATGAACA CCACACCCC CAGGCCGGC CACATGAACC ATGACGCCA ATGAACGCCA ATGAACGCCA ATGACGCCCA CCACTACAGCA CCCACTGACCC ACCTACAGCA CCCGCGGCCGC CACATGAACC ACGACCCGC ACGACCCCG ACGACCCCC ACGACCCCT CAGGTGCCCC AGGGACCCCT AAGGACCCCT AAGGCGCCCT AAGGACCCCA TCGCGAACTGAACA TCACGCAAAA	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCCAG TTTTCCCCCA CGCCGCCTCCCAGGCCGCCT CGAGGGTCGG TGAAGACGCA ACACGCGCGC TGAAGACGAA ACACGCTGCC GCCGGATTA ACACGCTGCC GCCGGATTA ACACGCTGCC GCCGGATTA ACACGCTGCC GCCGGATTA ACACGCTGCA ACACGCCGCAGCCAACGC GCCAGGCCGA ACCCGCAGCCGAACACAC ACACCGCCGCAACACACAC	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GCTTAAGCCT GCTGCGCGGG GCGGCCGG GCTGAAGCCG GCGGCCGG CTGAAGCCG GCGGCCGC CTCATGCTCC CCTCCCC CCGCCGGCGC CCTCATCAC CCTCCCC CCGCAGCAGC CCCAGCAGC CCCCAGCAGC CCCAGCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CAGCTCCAGC CAGCAGCAC AATTTTCAAA ATGAGAAAA ATGAGAAAAA	51 AGAGAAGAGA GAGAAAGAGA GAGAGAAGAGA GAGAGAAGA	60 120 180 240 300 420 480 540 660 720 1020 1080 1140 1260 1320 1320 1340 1500
556065707580	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC TCCTGGGGA CCCGCGCACAG AGCAACATTC AAACAGCCC AGCGCCAAAC AGCGCATGGA AGCCATGCA AGCCATGCA AGCCATGCA TGGTTTGG TTACCTCTTC GCATGTATTC CCCAGCATTG TTACCTCTTC GCATGTATC CACACATGGA AGCACATGTG GGAAATGGA AGCCCATGCA TGGCTCTTC GCATGTATCT CCCAGCACTA CACACTTGG TTACCTCTTC GGAAAAAAAA AACACCAATC GGGAGGGCGC GGAGGGCCG GGAGGGCCG TCAAAAAAAA	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GGCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGGC CTCTCTTTT CCCGACACCC TACAACATGA GGGGCAACT AAGAGAGGCCCA ATGAAGGAGCC AAGGATAAGT GGGGTCGGG CACATGAACG GTAGACCCG GTGAGCCCC ACCTACACCA AGGACCCCG ACCACCCG ACGACTCC ACGCACCCCG ACGACCCCG ACGACCCCG ACGACCCCG ACGACCCCG ACGACCCCG CCGACCCCG ACGACCCCG ACGACCCCG ACGAACTGA AGGGGCCCCT ACGCGACTCG ACGCAACTGA ACGGCACCCG CCGGTGCCCG ACGCAACTGA ACGCGACCCG CCGTGCCCG ACGCGACTCG ACGGACTCG ACGGACTCG ACGGACTCG ACGGACTCG CCGTGCCCT CCGCACTCG ACGGACTCC ACGCGACTCC ACGCGACTCC ACGCGACTCC ACGCGACTCC CCTTCTTATAG	LTTPPCAQGY PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAG TCGGCCAGCGC TCGAGGGGCCAG TGGAGAAGCGAAGC	A1 TTGTCAAGGC GACTAGGACT GAGAGGGAA AATTATCTT CCCCTCCTCC GGGCGCGG GCTGAAGCCG GCTGAAGCCG GCTGAGCCGC GCTGAGCCGC CATGGTGTGG CTCGGCGCG CCTGGGCGCG CCTGGGCGCG CCTGGGCGCG CCTGGCCGC CGCCAGCAGA AATTTTCAA AATACGCCAAAATTTTCAAA AATGACACA AATTTTCAAA AATGACACC CAACAAGAAA AAATGACACC CAACAAGAAA AAATGACACC AAGAAAACCC AAGAAAACCC AAGAAAACCC AAGAAAACCC AAGAAAACCC	51 AGAGAAGAGA AGAGAAGAA AGAGAAGAA CCCTGATTT CCCCCCCC GCGGCCCC GCGAACCAA ACCACCCCCGCGGC AGCAAGCA	60 120 180 240 300 420 480 540 660 720 1080 1140 1220 1320 1320 1340 1560 1560 1680 1740
5560657075	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic AC: Coding sequence AGCGGGGTTG GTGTTTGCAA AGAGGAGAGAA AGAGGAGAGAA AGAGCAAAACTTC AAAACAAGCCC AGCGCACAG AGCAAACTTC AAACCAAGAC GCGCACTGA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA TGGCTCTTGC TTACCTCTTC GCATGTATCT CCCAGCACTA CACACATGTA ACACAATCC GGAAATGGGA ACACAATCC GGAAACCAATC GGGAAACCAATC GGGAGGCC GTTAAAAAAT	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession id Accession id Accession itence: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAG GAACGCTTGC GCCCGCATG GGGGGCCCAAGTC CGCCGCATG GGGGGCCCAAGTC AGCGCTACGAC CATGGCCAG CATGGCCAG CATGACCCAG CCCCTACGAC CCCCTACGAC CCCCTACGAC CCCCTACGAC CCCCTACGAC CCCCTACGAC CCCCTACGAC CCCCCAGCGCC CCCCAGGGCC CCCCAGGGCC CCCCAGGGCC CCCCAGGGCC CCCCAGGCGC CCCCAGGCGCC CCCAGAGCGGC CGGCCC CCCAGAGCGGC GGGTCACAA AAAAAAAAAA	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR PROCE # #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTT GCGGCAGGC CTCTCTTT CCCGACACCC CCGGCCGGC TACAACATGA GGCGCAACT AAGCGCCAA ATGAGAGAGT GGGGTCGGG CACTGAGAC CACTACACC AGCACCCG GTGACCCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC CAGCACCC TTGTCGGAGA ATGAAGGAGC CACTACACC CAGCACCCG CGGTGCCCG CGGTGCCCG ACGAACTCG CCGGTGCCCG ACGAACTGA TCGGAGACT TCACGCAAAA TKGGGGGACT TCACGCAAAA TKGGGGGACT TCACGCAAAA TKGGGGGACT CCTTGTATAG GGTAGGACC CCTTGTATAG	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCCAG TTTTCCCCCA CGGCCGCCT CGAGGGTCGG TGAATGCCTA ACACGCTGGC ACCGCGGC TGAATGCATA ACACGCTGCA ACCGCGGC GCTGAATGC TGGGGCCGG GCTGAATGC TGGGGCCGG GCTGAATGC ACCCGGGTTA ACACGCTGCC ACCGCGCCGC ACCGCGCCAGCCAG CCCAGGCCAG ACCGCCGC ACCGCCAGC ACCGCCAGC ACCGCCAGC ACCGCCAGC ACCGCCAGC ACCGCCAGC ATTCTGGAGGA TTCCAGGAA TTCCAGGAA TTCCAGGAA TTCCAGGAAA	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GCTTAAGCCT GCTGAAGCCG GCGCGCGG GCGAGCCGC GCGGCCGGC CTGAGAGCCG CTGGAGATC CCCTCTCC CCTCCCC CCGCCGGC CATGGTGTGG GCGCGCGC CCCGCAGCAGC CCCCACAGC CCCCAGCAGC CCCCAGCAGC AATTTTCAAA ATGGAGAAA ATGGAGAAAA ATGGAGAAAA ATGAGAAAAC AAGAAAACCT AAGAAAAGCTA ATTGCAAAA	51 AGAGAAGAGA GAGAAAAAAAAAAAAAAAAAAAAAA	60 120 180 240 360 420 780 660 660 660 720 780 840 960 1020 1140 1200 1140 1320 1440 1560 1620 1680 1680 1680
556065707580	DTLWGPGDSR GLLFAVTSVA Seq ID NO: Nucleic Ac: Coding sequence 1 AGCGGGGTTG GTGTTTGCAA AGAGGAGAGA TAATAATAAC CCGCGGGGCC CCGCGGGCC AGCACAGA AGCGACACA AGCGCCATGA AGCGCCATGA AGCCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA AGCCATGCA CCTACATGA TGGCTCTTGG TTACCTCTC GCATGTACTTC GCATGTACTTC GCATGTACTTC GCATGTACTTC GCATGTACTTC GCATGTACTTC CCCAGCACTC CCAGCACTC CCAGCACTT CACATCT CCCAGCACT TTAAAAATA ACACCAATC GGGGAGGGCG TTTAAAAGTT TTAAAAGTT TTAATATTTAG	LDISALLPSD LQLNFRATQP FLVQMRRQHR 3 DNA seque id Accession ience: 438-1 11 TCTATTAACT AAGGGGAAA GAAAGAAAGG AATCATCGGC TCCAGTTTGC GGCCGCATG GGGGGGGGGG	FSRYFQYEGS LNGRVIEASF RGTKGGVSYR #: BC0139: 1391 21 TGTTCAAAAA GTAGTTTGCT GAGAGAAGTTT CCCGACACCC CCGGCCGGG TACAACATGA AGCGCCAGA ATGAAGAACTT AAGCGGCCAG ATGAAGACCCA ATGAAGAACT AAGCACCCA CAGAACCCCA CAGAACCCCA ATGAAGGACCCA ATGAAGGACCCA ATGAAGGACCCA ATGAAGCACCCG GTGACCCCG GTGACCCCC ACCTACAGCA TCGGTGGTCA AGGGCGCCT CAGTGCCCC AGCGAACTCC CCTTGTATAG TCACGCAACA TCGTGGACT CCTTGTATAG	LTTPPCAQGV PAGVDSSPRA PAEVAETGA 31 GTATCAGGAG GCCTCTTTAA TGAGCCCAGA TTTTCCCCCA CGCCGCCTCC CGAGGGTCGG TGAAGACCAGA CCACCGCGGC TGAAGACCAA ACACGCTGCC GCCGGCTTA ACACGCTGCC GCCGGCTTA ACACGCTGCC GCCGGCTCAATGCA TGCGGCGCGG GCTGGAGCAA GCCTCAATGCA TGCCAGTACAA CACCCGCGGC GCAGGCCGG GCCGGGCCGC ACCCCACAGC ACCCCACAGC ACCCCACAGC ACCCCACAGC ACCCCACAGC ATTTTTGTAC ATTCTGAGAGA ATTCTGAGAAG AAAAAATGTT	A1 TTGTCAAGGC GACTAGGACT GCTTAAGCCT GCTTAAGCCT GCGCGCCGCG GCGCGCCGC GCGCCGCGC GCGCGCGC CTCGGAGATC TAAATACCG CCGCGCGCC CCGCAGCAGC CCTCCATCAC CCCCCCCCC CCCCCCCC CCCCCCCC	51 AGAGAAGAGA GAGAAAAAA GAGAAAAAAA GCGCTTTTT TCTCCAAAAA GCGCTGATTT TCTCCCCG GGCACCGGGC GGCAACCAGA TCCCGGGGC GGCAACCAGA TCCCGGGGC AGCAAGCGC AGCAAGCGC AGCATGATGC CCCGGGGA CCCCTGTGG ACCATGATGC CCCCTGTGG ACCATGATGC CCCCTGTGG ACCATGATGC CCCCTGTGG ACCATGATGC CCCCTGTGG ACCATGATGA CTTCACATGT CTGCCCCTG GAAAAACTT TGGGGAGGGT CGCAAAAACTT TCTTTACCAAT TCGAAAGC CAAGCACTT	60 120 180 240 300 420 480 540 660 720 1080 1140 1220 1320 1320 1340 1560 1560 1680 1740

		/086443					
5	TTAGGACAGT TAAAAATTGT GTTTAAAAAG	TATTTTCAA TGCAAACGTG ACAAAAGGAA GGCAAAAGTT GCAGGTTGAC	AAAAGAAGAA AAAATTAGAA TTAGACTGTA	AATTATTCAA TAAGTACTGG CTAAATTTTA	ATTTGGACAT CGAACCATCT TAACTTACTG	TTTAATTGTT CTGTGGTCTT TTAAAAGCAA	1980 2040 2100 2160 2220
	TTCCATTTTG GTTTGTAATA GTAGTTGTAT	TTCAGATAAA TTTCTGTAAA TTTAAAAGAT GAACTAATAT	AAAAACCATG TTTATTGTGA TCGGCTCTGT	AAATTACTGT TATTTTAAGG ATTATTTGAA	GTTTGAAATA TTTTCCCCCC TCAGTCTGCC	TTTTCTTATG TTTATTTTCC GAGAATCCAT	2280 2340 2400 2460
10	CCATTATGCA AAAAAAACAA CACAACACAA	CAGTTTGAGA AACAAAAAA AAACAAAAAA AACAACAACA	TAAATAAATT CAAAAAAACAA AAAAAAAAAGA	TTTGAAATAT AAACAGAAAA	GGACACTGAA AACAAAAAAA	AAAAAAAAAA AAAACAAAAC	2520 2580 2640
15	•	4 Protein a	-				
	1	11	21	31	41	51	
20	1	1	1	1	1	1	
20	QENPKMHNSE KKDKYTLPGG PQHPGLNAHG	PPGPQQTSGG ISKRLGAEWK LLAPGGNSMA AAQMQPMHRY	LLSETEKRPF SGVGVGAGLG DVSALQYNSM	IDEAKRLRAL AGVNQRMDSY TSSQTYMNGS	HMKEHPDYKY AHMNGWSNGS PTYSMSYSQQ	RPRRKTKTLM YSMMQDQLGY GTPGMALGSM	60 120 180 240
25	GSVVKSEASS GPVPGTAING	SPPVVTSSSH TLPLSHM	SRAPCQAGDL	RDMISMYLPG	AEVPEPAAPS	RLHMSQHYQS	300
30	Nucleic Ac	5 DNA seque id Accession lence: 29-54	ı #: U91618				
30	1	11	21	31	41	51	
	1	1	[1	1	60
		TTGTTAGAAG CTGGCTTTCA					60 120
35	AGCATTAGAA	GCAGATTTCT	TGACCAATAT	GCATACATCA	AAGATTAGTA	AAGCACATGT	180
		AAGATGACTC ACAGGAGAAG					240 300
		GGCTTTAGCT					360
40		GCTTTTCAAC					420
40		GGAAAGGAAG AATAAACCCA					480 540
	AGAGAATAAA	TCATTTATTT	ACATGTGATT	GTGATTCATC	ATCCCTTAAT	TAAATATCAA	600
*		TGTGAAAATG					660 720
45	ATTGAATGTG	TGTGAAAATG TTTTTCTGCA AAAAAAAAAA	CTAATAGAAA	TTAGACTAAG			720
45	ATTGAATGTG	TTTTTCTGCA	CTAATAGAAA	TTAGACTAAG			
45	ATTGAATGTG TCTTCAAAAA Seq ID NO:	TTTTTCTGCA	CTAATAGAAA AAATGGGGCC sequence:	TTAGACTAAG			
	ATTGAATGTG TCTTCAAAAA Seq ID NO:	TTTTTCTGCA AAAAAAAAA 6 Protein s	CTAATAGAAA AAATGGGGCC sequence:	TTAGACTAAG			
	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc 1 MMAGMKIQLV VCSLVNNLNS	TTTTTCTGCA AAAAAAAAAA 6 Protein s cession #: A	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP	TTAGACTAAG GCAATT 31 KALEADFLIN TALDGFSLEA	TGTTTCAAA 41	TAAATCTAAA 51 VPSWKMTLLN	
50 55	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP	TGTTTCAAA 41	TAAATCTAAA 51 VPSWKMTLLN	720 60
50	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP	TGTTTCAAA 41	TAAATCTAAA 51 VPSWKMTLLN	720 60
50 55	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP	TGTTTCAAA 41	TAAATCTAAA 51 VPSWKMTLLN	720 60
50 55	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession lence: 109-2	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21	TTAGACTAAG GCAATT 31 KALEADFLIN TALDGFSLEA QLYENKPRRP 536.2 31	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY	TAAATCTAAA 51 VPSWKMTLLN CHSRAFQHWE 51	720 60 120
50 55	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequence Acctaaaacc Attatgcag	TTTTCTGCA AAAAAAAAA 6 Protein s cession #: I 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession tence: 109-2 11 TTGCAAGTTC CAGGCTCAGT	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAAC GTGAGTGAAC	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TGGAGGCTTC	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA CATATTGAAA	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG	720 60
50 55 60	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequence ACCTAAAACC ATGTATGCAG AGCATTGCAG	TTTTTCTGCA AAAAAAAAA 6 Protein : cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession tence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC CAACCTGAAG	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TGGAGGCTTC TTGGAGGCTTC	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GGCCCAAAGG CTTAAGTTCA	60 120 60 120
50 55 60	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ ACCTAAAACC ATGTATGCAG AGCATTGCAG GAACTCCCAT	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession lence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC TCCTGGGAGC	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0065 2940 21 AGGAAGAAAC GTGAGTGAAC CAACCTGAAG TGGAGTACAG	TTAGACTAAG GCAATT 31 KALEADFLIN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TGGAGGCTTC TTGTGGACTC CTTCAAGACA	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGGTATAA	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC	60 120 60 120 180 240
50556065	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: I 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession tence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG GTCCTATTTG ATCCTCAGGT CTTCATTTTA	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC CTAACTGAGAT TGGAGTACAG ACCTGAGAAT CCTATTAAT	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGGCTTC TTGGAGGCTTC TTTGTGACTC CTTCAAGACA CAGAACCTCA GGTACCTAAGA	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGGTATAA TCTCAAACAT GAAGAGTATT	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAATG TTTCAGAAAT	60 120 180 240 300 360
50 55 60	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequence ACCTAAAACC ATGTATGCAG AGCATTGCAG AGCATTGCAG AGACTCCCAT ATTGCAATTG ATAAACTGAAA ATAACTGAAA ATAACTGAAA ATAAAGATTT	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession tence: 109-2 11 TTGCAAGTTC CAGGCTCAGTT GTCCTAGTTTG TCCTGGGAGC ATCCTCAGGT CTCATTTTA TAATACCTGC	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRLP KRKIPYILKR ence a #: NM_0065 2940 21 AGGAAGAAAC GTGAGTGAAC CAACCTGAAG TCGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAAA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 336.2 31 CATCTGCATC TGGAGGCTTC TTGGAGGCTTC TTTGTGACTC CTTCAAGACA GCTACCAAGA GCTACCAAGA GCTACCAAGA	41 HTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGGTATAA TCTCAAACAT TCTCAAACAT TCAAGAGTATT ACAGCAAAAT	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCT TAAGGAAAT AAACAGAAA	60 120 60 120 240 300 240 360 420
50556065	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequence ACCTAAAACC ATGTATGCAG AGCATTGCAG GAACTCCCAT ATTGCAATTA ATTACTGAAG ATAAACTGAAG ATAAACCCTAC	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession lence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAG ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT AATACAGAGG	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC GTGAGTGAAC ACCTGAAGA TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACAC GTGTGGAAAA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TGGAGGCTTC TTGGAGCTC TTTCAAGAC CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGAAAAT	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCTGGTTTGA TCTCAAACAT TCTCAAACAT ACAGCAAAAAT GAAGAGTATT ACAGCACATGGACACATGGACACATGGACACATT	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCT TGAGGAAAT AAAACAAGAA TTTCAGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT	60 120 60 120 180 240 360 420 480 540
50556065	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession ence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTCCATTTA TAATACCTGC AGGCAAATGT TAATACCTGC AGGCAAATGT TAATACAGGG ATGATAACTT	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC CCAACTGAAG TGGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAA AACAGCTGGC	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGCT TTGTGACTC CTTCAAGACA CAGAACCTCA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACTAGATATA GACTGGTATG GAGGGAAAAT TACGGATCAC	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGTATAA ATCTCAAACAT GAGGACATG GAGCACATG GAGCACATG GAGTACTT GAGGCCGAGT	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGGATGGTC TTAAGGAAATG TTTCAGAAAT AAACAAGAA AGATGATCAC CACACCTAAT GTTTGTCCAT	60 120 180 240 300 420 480 540 600
5055606570	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession dence: 109-2 11 TTGCAAGTTC CAGGCTCAGTT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTTA TAATACCTGC AGGCAAATGT AATACAGAGG ATGATAACTT ACCTCCGTTG ACCTCCGTTG	CTAATAGAAA AAATGGGGCC GEQUENCE: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR PICE 1 #: NM_0065 2940 21 AGGAAGAAAC GTGAGTGAAC CAACCTGAAG TCGAGTACAG ACCTGAGAAT CCTATTTAAT CACATGGAAAA CATAGTGACAC GTGTGGAAAA CATAGTGACAC GTGTGGAAAA CATAGTGACAC GTGTGGAAAA CATAGTGAAAA CATAGTGACT GTGTGGAAAA CATAGTGACT GTGTGGAAAA CATAGTGACT GTGTGGAAAA CATAGTGACT GTGTGGAAAA CATAGTGACT GTGTGGAAAA CATAGTGACT GTGTGGAAAA CATAGTGGC GGGTGTTTC	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGCTC TTGGAGGCTTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTACCAAGA GATGGGATAC GAGGGAAAAT TACGGGATCAC GATGAGTATA	41	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCT TAAGGAAAT AAAACAGAA AGATGATCA CACACCTAAT GTTTGTCCAT ACCTTTCTAC	60 120 60 120 300 420 480 540 600 660
50556065	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: I 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession dence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGCCAAAT AAAACCAAGG ATGATAACTT ACTCCGTTG ACACCGTTG ACACCGTTG ACACCGTTG ACACCGTTG ACAAACAAAT AAAGGCCATTG	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC GTGAGTGAAC CCAACTGAAG ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGC GTGTGGAAAA AACAGCTGC GTGTGGAAAA AACAGCTGC GTGTGGAAAA CATAGTGACT CTGTTGGAAAA AACAGCTGC GTGTGGAAAA CATAGTACT CTGTTGGAAAA CATAGTACT CTGTTGGAAAA CATAGTACT CTGTTGGAAAA CATAGTACT CTGTTGGAAAA CATAGTACT CTGTTGGAAAA CACACTGCC CGCAAGAA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGGCTTC TTGGAGCCTC CTTCAAGACA GCTACCAAGA GCTAATAATA GACTGGTATT GAGGGAAACT TACGGATCA GAGGACAAT TACGGATCAC AGGATCAC AGGATCAC AGGATCAC AGGATCAC AGGGTGTTCAT AACTGTATTA	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGTATAC ATGGTATAC ATGGCACATG GAGCACATG GACACTT GAGCCCAGT ACAATGACAC TTAGTACAC	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGGTTCA TAAGGATTGTC TAAGGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTTCAT ACGCATTTTT TTTTAAAGAA	60 120 180 240 480 600 600 600 780
5055606570	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc I MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ I ACCTAAAACC ATGTATGCAGT AGCATTGCAGTA ATTACTGAATA ATTACTGAATT TCATATGAAT ATTACTGAATA TCATATGAAT ATTACTGAGT ATTACTACTGA GAATGCCCTAC TCCTACTGA GAATGGCCC ATAAATGGCC GTGTGGAAA GGATGGACA GGATGGACA GGATGGACA	TTTTTCTGCA AAAAAAAAA 6 Protein : Cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession Lence: 109-2 11 TTGCAAGTTC CAGGCTCAGT TCCTGGGAGC ATCCTCAGTT TATCATTTTA TATACTGC AGGCAAATGT AATACAGGA ATGATAACTT ACTCCGTTG AAAACCAAT ACCTCCGTTG AAAACCAAT ACCTCCGTTG AAAACCAAT ACCTCCGTTG AAAACCAAT ACCTCCGTTG AAAACCAAT ACCTCCGTTG AAAACCAAT ATGCTCCGTTG AAAACCAAT ATGCTCCGTTG AAAACCAAT TTATCTACAA	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC CCAACCTGAGA TCGAGTACAG ACCTGAGAAT CATATTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGACA CCCCAAGAC CCCCAAGAC CCCCAAGAC TAAAGTGACA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGACTC TTGGAGCT CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACTACAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGGATCA GATGGATCA GATGAGTATA AGGTGTTCTA AGTGTTCTA AATGCAACTG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTCAACAT TCCTGGTTGC ATGGTATAA TCTCAAACAT ACAGCAATAAT ACAGCAATAAT GGGCACATGG ACATTCATT GAGGCCGAGT ACAATGACAA CTGACATCAC CTAGCAATAAT CTGACAATAAT CTAGCAATAAT	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAACAGAA AGATGATCCA CACCCAAAT GTTTCAGAAAT ACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGCATTTTT ACCTTTCTAC AGGCATTTTT ACCTTTCTAC AGGCATTTTT AGGCATAGCAA	60 120 180 240 300 480 540 660 720 780 840
505560657075	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession Lence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAAACCTGC ATCCTCAGGT AATCAAGAG ATGATAACTT ACTCCGTTG AATCACAAT AAAGTCCTTG TTATCTACAA CTGTGGTTGA TTATCTACAA AAGGTCCTTG TTATCTACAA AGGTGTGTAGAGTGAGAGTGAGAACTGAGAGTGAAACCAGT AAAGGTCCTTG TTATCTACAA AGGTGTGGTTGA AGGTGTGAAAGGTGCAG	CTAATAGAAA AAATGGGGCC Sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR 2940 21 AGGAAGAAAC GTGAGTGAAC GTGAGTGAAC ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGGC GGGTGTGTTC CTGAGAAA ATTTGTAAT CCCCAAGAA ATTTGTAAT CCCCAAGAA TTGGACCCAAA ATTTGTAAT CCCCCAAGAG	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGGCTTC TTGGAGGCTTC TTGTGACTC GCTACCAAGA GCTACCAAGA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGAGTATA AAGTGTTATA AAGTGTTATA AAGTGTATTA AATGCAACTG GCAAGTACCC GCATGGGATG GCAAGTACCC GCATGGGATG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGA ATGGTATAA CATGGAAAAT GAAGAGTATT ACAGCAAAAT GAGCACATGG GCGCACATGG ACAATGACAA CTGACATCA TTAGTAAGCT CATCAATAAT CTAGAACAACA ACAACAAGA ACAACAAGA AAACCAAGA	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTCTTA TGTTCTCTTTTTTAAAGAA GTTCATGCAA CTCTGCTGAC CTCTGCTGAC CTCTGCTGAC CTCTGCTGAC	60 120 180 240 480 600 600 600 780 840 900
5055606570	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc I MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ ACCTAAAACC ATGTATGCAG AGCATTGCAG AGCATTGCAG ATTAATGGAG ATAAAGGATT TCAATTAA TACACCTAC TTCCTACTGA GAATGGCCC ATAAATGGG CC ATAAATGGAG GAATGCACT CTTCTACTGA GAATGGCCC ATAAATGGAA GGATGCACCT TTCTACTGA TACACCACA TTTCACACACA CTTTCACCACA	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession ence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTCCATTTA TAATACCTGC AGGCAAATGT AAAACAAAT AAGAGG ATGATAAACTT ACCTCGTTG AAAATCAAA CTGTGGTTGA AGATGTCACAA CTGTGGTTGA AGATGTCACA CTGTGGTTGA AGATGTCACA GGCTTCCCAT	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC CGTGAGGAAC CCAACTGAAG TGGAGTACAG ACCTGAGAAT CCTATTAAT CACATGGAAA ACATGGGAAA ACAGCTGGC GGGTGTGTC TAAAGTGCC GGGTGTGTC TAAAGTGCAC CCCCCAAGAA TAGCACCCAA ATTTTGTAAT CCTCAGAAGT CCTCAGAAGT TGGAAGT TGGATGGACCCAA ATTTTGTAAT CCTCAGAAGT CCTCAGAAGT TGATGAGT CCTCAGAAGT AGCACCCAA ATTTTGTAAT CCTCAGAAGT CAGAGT CCTCAGAAGT CCTCAGAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAGT CCTCAGAAGT CCTCAGAAGT CCTCAGAGT CCTCAGA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGTC TTGGAGCTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GATGGATCA GATGATTTA AATGCAACTG GCAAGTACTC GCAATGGATC GCAATGGATC GCATGGATC GCATGGATC GAGCTTCCAC	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTCAAACAT TCCTGGTTGC ATGGTATAA TCTCAAACAT GAGCACATGG GACATCATT GAGCCGAGT ACAATCATT GAGCCGAGT ACAATGACA CTGACATCAA CTGACATCAA CTAGACATCAA CTAGACATCAA CTAGACATCAA CTAGACATCAA CTAGACATCAA CTAGACATCAA CTAGACACAAGA ACAACCAAGA CTCCTCCCAC	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAGAA AGATGATCCA CACACCTAAT GTTTCTACACA ACCTTATTT TTTTAAAGAA GTTCATGCAA AGCACAAAC GTTCATGCAA AGCACAAAC ATCCTGCTGAC ATTCTTGCTCAC ATTCTTGCTCAC ATTCTTCTCTCTTCTCT	60 120 180 240 300 420 480 540 660 720 840 900 900 900 1020
505560657075	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc I MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ I ACCTAAAACC ATGTATGCAG AGCATTGCAG AGCATTGCAG ATTACAGAATT TCATATGAAA ATAACTGAG TTCCTACTGA GAATGGGCC ATTAATGGGCC ATTAATGGAC GTTGTGAAA GGATGGGCCC ATTACTGAA GGATGCACCTTC TTCCACACA GGATCACCTTC TTCACACAC AGTTTATCTT CTACAGGACC TTTCACAGGACC TTTCACAGGACC GTACAGGCTG GTACAGGCTG	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession tence: 109-2 11 TTGCAAGTTC CAGGCTCAGT TCTCATTTTA TCTCATTTTA TATACCTGC AGGCAAATGT AAATCAAAGT ACTCCGTTG AAAATCAAAT AAGGTCCTTTG ATTTTATATACAGG ATGCTCATTTTA TTATTACTACAA CTGTGGTTGA AGATGTCAAA CTGTGCATAGTAAAAGT	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence a #: NM_0069 2940 21 AGGAAGAAAC CTGAGAT CCTATTAAT CCTATTAAT CCACTGGAAA ACAGCTGGAC ACCCCAAGAA ATTTGTAAT CCTAGTAAT CCTAGTAGT CCCCAAGAAT TAGCACCCAA ATTTTGTAAT CCTAGTAGT CAATGGAAGA ATTTTGTAAT CCTAGTAGT GAATGGACT GGTCTGTTTA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGCTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTACAAGA GCTACAAGA GCTACAAGA TACGGATAT AACTGGATCA GAGGGAAAAT AACTGTATTA AAGTGTATA AAGTGTATA AAGTGTATA AAGTGTATA GATGACTC GCAAGACCTC GCATGGGATC GCATGGGATC GCATGGGATC GCATGGGATG GGGCTTCCAC GTGCTGGATG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTCAAACAT TCCTAGATTGC ATGGTATAC ATGGCAATAAT ACAGCAAAAT GGGCACATGG ACATCATTT GAGGCCGAGT ACAATCACT TAGTAAGCT TAGTAAGCT TAGTAAGCT CATCAATAAT ACAACAAGA TAATCACAGA TAATCACCAC TTGCCACCAC TGTCCAGCAA	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAGAA AGATGATCCA ACACCTAAT GTTTGTCCAT ACCTTTCTAC AGGATTTTT TTTTAAAGAA GTTCATGCAT ACTTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT	60 120 60 120 120 180 240 300 480 540 600 720 780 960 1020 1080
505560657075	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc I MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequity ACCTAAAACC ATTATGCAG AGCATTGCAG AGCATTGCAG ATTATGCAG ATTATGCAG ATTATGCAG ATTATGCAG ATTATGCAG ATTATGCAG ATTATGCAG ATTATGCAG TCCTACTGA GATATGGGCC CATAAATGGGCC CATATTATGTAA GGATGCACCT TCTACTGAAA GGATGCACC TTTCACCACA GTTTTATCTT CTACCAGAACC TTTCACCACA GTTCACAGACC TTTCACCACA ATTCATACCT ATTCATACCT TTTCACCACA ATTCATACCT	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: / 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession dence: 109-/ 11 TTGCAAGTTC CAGGCTCAGT TCCTGGGAGC CTTCATTTG TCCTAGGTTCA AATCAAGT AATACAGAG ATGATAACTT ACTCCGTTG AAAACTAA AAGGTCCTTG TTATCTACAA CTGTGGTTGA AGATCCTTG TTATCTACAA CTGTGGTTGA AGATCCTTG TTATCTACAA CTGTGGTTGA AGATCCAT TCCTTGGGTCAT TCCTTCAACT TCCTTCAACT TCCTTCAACT TCCTTCAACT TCCTTCAACT TCCTTCAACT TCCTTCAACT TCCTTCAACT	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC GTGAGTGAAC GTGAGTGAAC ACCTGAGAAT CCTATTTAAT CACATGGAAA CATAGTGACT GTGTGGAAAA AACAGCTGGC GGGTGTGTC TGTGGGAAAA AACAGCTGCC GGAGAGTACAC CCCCAAGAA TTTGTAAT CCCCAAGAA TTTGTAAT CCTCAGAAGT GAATGGGCC GAATGGGACT GAATGGGACT GAATGGGACT CCTCAGAAGT GAATGGGACT GAATGGGACT GAATGGACT GAATGGGACT GAATGGGACT GAATGGGACT GGCAGTTTC	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGGCTTC TTGGAGGCTTC CTTCAAGAC GCTACCAAGA GCTACCAAGA GCTAATAATA GACTGGTATT AGACGTATC GAGGGAACAT TACGGATCAC GAGGGAACAC GCATGGGATG GCAAGTACCC GCATGGGATG GCAGGAATTTT GACAGCAAAG GCGGAATTTTT GACAGCAAAAG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCCTGGTTGC ATGGTATAC AAGGAAAAT ACAACAAT GAGCACAATG ACAATCAATAT GAGCCGAGT ACAATCAATAT CAACAATAC CTAACAACA CTAACAACA CTAACAACA CTAACAAGA TAATCACAG CATCCCCCC GTCCCCCC GTCCCCCC GAGAGATCCA GAGAGATCA GAGAGATCA GAGAGATCAC	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TAAGGATTGTC TAAGGATTGTC TAAGGAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTTC TTTTAAAGAA GTCATGCAA AGCACACAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGA GATTGTCAAA AGCCCAACT	60 120 180 240 480 660 720 840 900 1020 1080 1140
50 55 60 65 70 75	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc I MMAGMKIQLV VCSLVNNLNS LIQEDILDTG Seq ID NO: Nucleic Ac: Coding sequ ACCTAAAACC ATGTATGCAG AGCATTGCAG AGCATTGCAG ATTAGCAGATTA ATAACTGAAG ATAAATGGGCC ATAAATGGGCC ATAAATGGGCC ATTACTACTAC GGATGCACCT AGTTTATCT CTACAGAAC GTACAGGCTG GCTGACAGCA GTACAGGCTG GCTGACAGCA ATTCATACCT CTACTGACA ATTCATACCT CTACTGACA AGTACAGCAC CTTCTACTGACAC ATTCATACCT CTACAGAACT CTACAGAACT CTACAGAATTA	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: A CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession ence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG TCCTGGGAGC ATCCTCAGGT CTTCATTTA TAATACCTGC AGGCAAATGT ACACCGTTG AAAACCAAT ACGTCGTTG AAAACCAAT TCTCGGTTG AGAATGTCACA CTGTGGTTGA AGATGTCACA CTGTGGTTGA AGATGTCACA CTGTGGTTGA AGATGTCACA TCGTGGGCAT TCCTCCAT TCGTGGGCAT TCGTGGGCAT TCGTGGGCAT ACGGCGATGA ACAGCAATGA	CTAATAGAAA AAATGGGGCC sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR ence 1 #: NM_0069 2940 21 AGGAAGAAAC CAACCTGAAG ACCTGAGAAT CCTAGTAGTACT GTGTGGAAAA AACAGCTGGC GGGTGTGTTC TAAAGTGACT CCCCAAGAA ATTTGTAAT CCTCAGAAGT TGTAAT CCTCAGAAGT TGACCCCAA ATTTTGTAAT CCTCAGAAGT CCCCCAAGAA TGGTGACT CCCCCAAGAA TTTGTAAT CCTCAGAAGT CCCCCAAGAA TTTTGTAAT CCTCAGAAGT CGTCTGTTTA ACAACAAGCC CTGCCAGTTTC TGATCGAAAG	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TTGGAGTC TTGGAGCTC CTTCAAGACA CAGAACCTCA GCTACCAAGA GCTAATAATA GACTGGTATG GAGGGAAAAT TACGGATCAC GCAAGGACCC GCATGGATC GCAAGTACC GCATGGATC GCAAGTACC GCATGGATC GAGCTTCCAC GTGCTGCT GAGCTTCCAC TTGCTGGTTT GACAGCAAAG TTGCTGGTTT TTGCTGGTTT TTGCAGCAAAG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTGGTTGC ATGGTATAT ACAGCAAAAT GGGCACATGG ACATCATT ACAGCAAAAT GAGCACATGA ACAATGACAT ACAACAAGA ACAATGACAA ATTAATCACAGA ATTAATCACAGA ATTTGATCACACAGA ATTTGATCACACACACACACACACACACACACACACACAC	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TGGATTGCTC TAAGGAAAT AAAACAGAA AGATGATCCA ACCTTATCTA CTTTCTACA AGCATTTCTAC AGGCATTTT TTTAAAGAA AGACCAAAC CTTGCTGAC AGCCCACAC CTTGCTGAC ATTCTTGCTGA ATTCTTGCTGA ATTCTTGCTTGATGAA AGCCCAGAC ATTCTTGCTTGATGAA AGCCCAGAC ATTCTTCGCTTA CATGCCAGAC ATTCTTCGCTTA CACCACTTTA CACCACTTTA	60 120 180 240 300 420 480 540 660 720 900 900 900 1020 1080 1140 1200 1260
505560657075	ATTGAATGTG TCTTCAAAAA Seq ID NO: Protein Acc	TTTTTCTGCA AAAAAAAAA 6 Protein s cession #: # 11 CMLLLAFSSW PAEETGEVHE NDKNGKEEVI 7 DNA seque id Accession lence: 109-2 11 TTGCAAGTTC CAGGCTCAGT GTCCTATTTG GTCCTATTTA TACTACTGC AGCAAATGT AAAACCAGG ATGATAACCTG AGCAAATGT AAAATCAAAA CTGTGGTTGA AAAATCAAAA CTGTGGTTGA TTATCTACAA CTGTGGTTGA AGATGTACAAAG CTTCCATT TTATCTACAA CTGTGGTTGA AGATGTACAAAG CTTCCATT TCCTCCAT TCCTCGGGCAT TCCTCGACT TCCTCGACT TCCTCGACT TCCTCGACT TCCTCGACT TCCTCGACT TCCTGGGCAT ACAGCAATGA CAGACATCAG GAAAAGCTTA	CTAATAGAAA AAATGGGGCC Sequence: AAB50564 21 SLCSDSEEEM EELVARRKLP KRKIPYILKR 2940 21 AGGAAGAAAC GTGAGTGAAC GTGAGTGAAC ACATGAAAA CATAGTGACAT GAGTGTTTA ACCCCAAGAA TAGCACCAA ACTGGAAAA CCCCCAAGAA TAGCACCAA CCTAGAAGT CCTATTTGTAAT CCCCAAGAA TAGCACCAA CCCCCAAGAA TAGCACCAA CTGAGAAT CCTAGAAGT CCTAGAAGT CCTAGAAGT CCTAGAAGT CAATGGAAAA CTTGGTTTA ACTACAAAGCC TGCCAGTTTC TGCAATGCAA	TTAGACTAAG GCAATT 31 KALEADFLTN TALDGFSLEA QLYENKPRRP 536.2 31 CATCTGCATC TGGAGGCTTC TTGGAGCTC TTGTGACTC CTTCAAGAC GCTACCAAGA GCTAATAATA AACTGGTATG GAGGAAAT TACGGATCAC GATGAGTATTA AAGTGTTCAT AATGCAACC GCATGGATC GCAAGGATCAC GCATGGATC GCAGGATC GCATGGATC GCAGGATT AACTGTTCAT AATGCAACT GCAAGTACC GCATGGATC GCAGGATC TGCTGGATC GCAGGATT GACAGCAAAG TTGCTGGTTT GACAGCAAAG ATGATTATAG	41 MHTSKISKAH MLTIYQLHKI YILKRDSYYY 41 CATATTGAAA TCTACAACAT TCTCGGTTGA TCTCAGACAT GAAGAGTATT ACAGCAAAAA TCTCAAACAT GAGCACATG GACATCATT GAGCCGAGT ACAATGACAA TCTGCACACA TCTGCACACA TAGTAAGCT CATCAATAAT TCTCACCAC ATACATCACAC ATACATCACAC TAGTAAGCT CATCAATAAT TCACACCAGA AATACCACCA AAGAGATTGA TCACCACCA ATTTGATGCA CATATCTTGC CATCACCAC AAGAGATTCA TGACCAGCG AGGATTCA TGACCAGCGG	51 VPSWKMTLLN CHSRAFQHWE 51 ACCTGACACA GACCCAAAGG CTTAAGTTCA TAAGGATTGTC TAAGGATTGTC TAAGGAAT AAAACAAGAA AGATGATCCA CACACCTAAT GTTTGTCCAT ACCTTTCTTC TTTTAAAGAA GTCATGCAA AGCACACAAC CTCTGCTGAC ATTCTCGCTT GATGGCAGA GATTGTCAAA AGCCCAACT	60 120 180 240 480 240 600 660 600 720 780 840 960 1020 1140 1200 1260 1320 1380

WO 02/086443 CTGGGTTCAT CTGCAGCCCC AAATCTGGAG GAATTATCAC GTCTTACAGG AGGTTTAAAG 1500 TTCTTTGTTC CAGATATATC AAACTCCAAT AGCATGATTG ATGCTTTCAG TAGAATTTCC 1560 TCTGGAACTG GAGACATTTT CCAGCAACAT ATTCAGCTTG AAAGTACAGG TGAAAATGTC 1620 AAACCTCACC ATCAATTGAA AAACACAGTG ACTGTGGATA ATACTGTGGG CAACGACACT 1680 5 ATGTTTCTAG TTACGTGGCA GGCCAGTGGT CCTCCTGAGA TTATATTATT TGATCCTGAT 1740 GGACGAAAAT ACTACACAAA TAATTTTATC ACCAATCTAA CTTTTCGGAC AGCTAGTCTT 1800 TGGATTCCAG GAACAGCTAA GCCTGGGCAC TGGACTTACA CCCTGAACAA TACCCATCAT 1860 TCTCTGCAAG CCCTGAAAGT GACAGTGACC TCTCGCGCCT CCAACTCAGC TGTGCCCCCA 1920 GCCACTGTGG AAGCCTTTGT GGAAAGAGAC AGCCTCCATT TTCCTCATCC TGTGATGATT 10 TATGCCAATG TGAAACAGGG ATTTTATCCC ATTCTTAATG CCACTGTCAC TGCCACAGTT 2040 GAGCCAGAGA CTGGAGATCC TGTTACGCTG AGACTCCTTG ATGATGGAGC AGGTGCTGAT 2100 GTTATAAAAA ATGATGGAAT TTACTCGAGG TATTTTTCT CCTTTGCTGC AAATGGTAGA 2160 TATAGCTTGA AAGTGCATGT CAATCACTCT CCCAGCATAA GCACCCCAAC CCACTCTATT 2220 CCAGGGAGTC ATGCTATGTA TGTACCAGGT TACACAGCAA ACGGTAATAT TCAGATGAAT 15 GCTCCAAGGA AATCAGTAGG CAGAAATGAG GAGGAGCGAA AGTGGGGCTT TAGCCGAGTC 2340 AGCTCAGGAG GCTCCTTTTC AGTGCTGGGA GTTCCAGCTG GCCCCACCC TGATGTGTTT 2400 CCACCATGCA AAATTATTGA CCTGGAAGCT GTAAAAGTAG AAGAGGAATT GACCCTATCT 2460 TGGACAGCAC CTGGAGAAGA CTTTGATCAG GGCCAGGCTA CAAGCTATGA AATAAGAATG 2520 AGTAAAAGTC TACAGAATAT CCAAGATGAC TTTAACAATG CTATTTTAGT AAATACATCA 2580 20 AAGCGAAATC CTCAGCAAGC TGGCATCAGG GAGATATTTA CGTTCTCACC CCAGATTTCC 2640 ACGAATGGAC CTGAACATCA GCCAAATGGA GAAACACATG AAAGCCACAG AATTTATGTT GCAATACGAG CAATGGATAG GAACTCCTTA CAGTCTGCTG TATCTAACAT TGCCCAGGCG 2760 CCTCTGTTTA TTCCCCCCAA TTCTGATCCT GTACCTGCCA GAGATTATCT TATATTGAAA 2820 GGAGTTTTAA CAGCAATGGG TTTGATAGGA ATCATTTGCC TTATTATAGT TGTGACACAT 2880 25 2940 CATACTITAA GCAGGAAAAA GAGAGCAGAC AAGAAAGAGA ATGGAACAAA ATTATTATAA ATAAATATCC AAAGTGTCTT CCTTCTTAGA TATAAGACCC ATGGCCTTCG ACTACAAAAA 3000 CATACTAACA AAGTCAAATT AACATCAAAA CTGTATTAAA ATGCATTGAG TTTTTGTACA 3060 ATACAGATAA GATTTTTACA TGGTAGATCA ACAATTCTTT TTGGGGGTAG ATTAGAAAAC 3120 CCTTACACTT TGGCTATGAA CAAATAATAA AAATTATTCT TTAAAGTAAT GTCTTTAAAG 3180 30 GCAAAGGAA GGGTAAAGTC GGACCAGTGT CAAGGAAAGT TTGTTTTATT GAGGTGGAAA 3240 AATAGCCCCA AGCAGAGAAA AGGAGGGTAG GTCTGCATTA TAACTGTCTG TGTGAAGCAA
TCATTTAGTT ACTTTGATTA ATTTTTCTTT TCTCCTTATC TGTGCAGTAC AGGTTGCTTG 3300 3360 TTTACATGAA GATCATGCTA TATTTTATAT ATGTAGCCCC TAATGCAAAG CTCTTTACCT CTTGCTATTT TGTTATATAT ATTTCAGATG ACATCTCCCT GCTAATGCTC AGAGATCTTT 3480 35 TTTCACTGTA AGAGGTAACC TTTAACAATA TGGGTATTAC CTTTGTCTCT TCATACCGGT 3540 TTTATGACAA AGGTCTATTG AATTTATTTG TNTGTAAGTT TCTACTCCCA TCAAAGCAGC 3600 TTTCTAAGTT TATTGCCTTG GGTTATTATG GAATGATAGT TATAGCCCCN TATAATGCCT 3660 TACCTAGGAA A 40 Seg ID NO: 8 Protein sequence: Protein Accession #: NP_006527.1 51 31 41 45 MTORSIAGPI CNLKFVTLLV ALSSELPFLG AGVOLODNGY NGLLIAINPO VPENQNLISN IKEMITEASF YLFNATKRRV FFRNIKILIP ATWKANNNSK IKQESYEKAN VIVTDWYGAH 120 GDDPYTLOYR GCGKEGKYIH FTPNFLLNDN LTAGYGSRGR VFVHEWAHLR WGVFDEYNND 180 KPFYINGQNQ IKVTRCSSDI TGIFVCEKGP CPQENCIISK LFKEGCTFIY NSTQNATASI 240 MFMQSLSSVV EFCNASTHNQ EAPNLQNQMC SLRSAWDVIT DSADFHHSFP MNGTELPPPP 300 50 TFSLVOAGDK VVCLVLDVSS KMAEADRLLO LOOAAEFYLM OIVEIHTFVG IASFDSKGEI 360 RAQLHQINSN DDRKLLVSYL PTTVSAKTDI SICSGLKKGF EVVEKLNGKA YGSVMILVTS 420 GDDKLLGNCL PTVLSSGSTI HSIALGSSAA PNLEELSRLT GGLKFFVPDI SNSNSMIDAF 480 SRISSGTGDI FQQHIQLEST GENVKPHHQL KNTVTVDNTV GNDTMFLVTW QASGPPEIIL 540 FDPDGRKYYT NNFITNLTFR TASLWIPGTA KPGHWTYTLN NTHHSLQALK VTVTSRASNS 600 55 AVPPATVEAF VERDSLHFPH PVMIYANVKQ GFYPILNATV TATVEPETGD PVTLRLLDDG 660 AGADVIKNDG IYSRYFFSFA ANGRYSLKVH VNHSPSISTP AHSIPGSHAM YVPGYTANGN 720 IOMNAPRKSV GRNEEERKWG FSRVSSGGSF SVLGVPAGPH PDVFPPCKII DLEAVKVEEE LTLSWTAPGE DFDQGQATSY EIRMSKSLQN IQDDFNNAIL VNTSKRNPQQ AGIREIFTFS 840 POISTNGPEH QPNGETHESH RIYVAIRAMD RNSLQSAVSN IAQAPLFIPP NSDPVPARDY 900 60 LILKGVLTAM GLIGIICLII VVTHHTLSRK KRADKKENGT KLL Seg ID NO: 9 DNA seguence Nucleic Acid Accession #: Eos sequence 65 Coding sequence: 336-632 21 31 41 51 CTCCCCTCAC CCCGGTCCAG GATGCCCAGT CCCCACGACA CCTCCCACTT CCCACTGTGG 70 CCTGGGTGGG CTCAGGGGCT GCCCTTGACC TGGCCTAGAG CCCTCCCCCA GCTGGTGGTG 120 GAGCTGGCAC TCTCTGGGAG GGAGGGGCT GGGAGGGAAT GAGTGGGAAT GGCAAGAGGC 180 CAGGGTTTGG TGGGATCAGG TTGAGGCAGG TTTGGTTTCC TTAAAATGCC AAGTTGGGGG 240 CCAGTGGGGC CCACATATAA ATCCTCACCC TGGGAGCCTG GCTGCCTTGC TCTCCTTCCT 300 GGGTCTGTCT CTGCCACCTG GTCTGCCACA GATCCATGAT GTGCAGTTCT CTGGAGCAGG 360 75 CGCTGGCTGT GCTGGTCACT ACCTTCCACA AGTACTCCTG CCAAGAGGGC GACAAGTTCA 420 AGCTGAGTAA GGGGGAAATG AAGGAACTTC TGCACAAGGA GCTGCCCAGC TTTGTGGGGG 480 AGAAAGTGGA TGAGGAGGGG CTGAAGAAGC TGATGGGCAG CCTGGATGAG AACAGTGACC 540 AGCAGGTGGA CTTCCAGGAG TATGCTGTTT TCCTGGCACT CATCACTGTC ATGTGCAATG 600 ACTICTICCA GGGCTGCCCA GACCGACCCT GAAGCAGAAC TCTTGACTTC CTGCCATGGA 660 80 TCTCTTGGGC CCAGGACTGT TGATGCCTTT GAGTTTTGTA TTCAATAAAC TTTTTTTGTC 720 TGTTGATAAT ATTTTAATTG CTCAGTGATG TTCCATAACC CGGCTGGCTC AGCTGGAGTG CTGGGAGATG AGGGCCTCCT GGATCCTGCT CCCTTCTGGG CTCTGACTCT CCTGGAAATC 840 TCTCCAAGGC CAGAGCTATG CTTTAGGTCT CAATTTTGGA ATTTCAAACA CCAGCAAAAA 900 ATTGGAAATC GAGATAGGTT GCTGACTTTT ATTTTGTCAA ATAAAGATAT TAAAAAAGGC 960

Seg ID NO: 10 Protein sequence:

85

AAATACCA

PCT/US02/12476

Protein Accession #: NP_005969.1

```
51
                                         31
 5
       MMCSSLEQAL AVLVTTFHKY SCQEGDKFKL SKGEMKELLH KELPSFVGEK VDEEGLKKLM
       GSLDENSDQQ VDFQEYAVFL ALITVMCNDF FQGCPDRP
       Seq ID NO: 11 DNA sequence
10
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 336-626
                                                                51
                                                     41
                                         31
15
       CTCCCCTCAC CCCGGTCCAG GATGCCCAGT CCCCACGACA CCTCCCACTT CCCACTGTGG
                                                                              60
       CCTGGGTGGG CTCAGGGGCT GCCCTTGACC TGGCCTAGAG CCCTCCCCCA GCTGGTGGTG
                                                                             120
       GAGCTGGCAC TCTCTGGGAG GGAGGGGCT GGGAGGGAAT GAGTGGGAAT GGCAAGAGGC
                                                                             180
       CAGGGTTTGG TGGGATCAGG TTGAGGCAGG TTTGGTTTCC TTAAAATGCC AAGTTGGGGG
                                                                             240
       CCAGTGGGGC CCACATATAA ATCCTCACCC TGGGAGCCTG GCTGCCTTGC TCTCCTTCCT
20
       GGGTCTGTCT CTGCCACCTG GTCTGCCACA GATCCATGAT GTGCAGTTCT CTGGAGCAGG
                                                                             360
       CGCTGGCTGT GCTGGTCACT ACCTTCCACA AGTACTCCTG CCAAGAGGGC GACAAGTTCA
                                                                             420
       AGCTGAGTAA GGGGGAAATG AAGGAACTTC TGCACAAGGA GCTGCCCAGC TTTGTGGGGC
                                                                             480
       ATTCCAGAGA ACCATGTGCT GTGAGGGCCT TCCGAGTCCA TCTGTTTAAT CCTGTCATTG
                                                                             540
       GAGACTTGAG AAACCAGAGC CCAGAAGGGA AAAGTGATTG TCCCAAGATC ACACAGCACT
                                                                             600
25
       GGAGAAAGTG GATGAGGAGG GGCTGAAGAA GCTGATGGGC AGCCTGGATG AGAACAGTGA
                                                                             660
       CCAGCAGGTG GACTTCCAGG AGTATGCTGT TTTCCTGGCA CTCATCACTG TCATGTGCAA
                                                                             720
       TGACTTCTTC CAGGGCTGCC CAGACCGACC CTGAAGCAGA ACTCTTGACT TCCTGCCATG
                                                                             780
       GATCTCTTGG GCCCAGGACT GTTGATGCCT TTGAGTTTTG TATTCAATAA ACTTTTTTTG
                                                                             840
       TCTGTTGATA ATATTTTAAT TGCTCAGTGA TGTTCCATAA CCCGGCTGGC TCAGCTGGAG
                                                                             900
30
       TGCTGGGAGA TGAGGGCCTC CTGGATCCTG CTCCCTTCTG GGCTCTGACT CTCCTGGAAA
                                                                             960
       TCTCTCCAAG GCCAGAGCTA TGCTTTAGGT CTCAATTTTG GAATTTCAAA CACCAGCAAA
       AAATTGGAAA TCGAGATAGG TTGCTGACTT TTATTTTGTC AAATAAAGAT ATTAAAAAAG
       GCAAATACCA
35
       Seq ID NO: 12 Protein sequence:
       Protein Accession #: Eos sequence
40
       MMCSSLEQAL AVLVTTFHKY SCQEGDKFKL SKGEMKELLH KELPSFVGHS REPCAVRAFR
                                                                              60
       VHLFNPVIGD LRNQSPEGKS DCPKITQHWR KWMRRG
       Seq ID NO: 13 DNA sequence
45
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 58-354
                                                                51
                  11
                              21
                                         31
                                                     41
50
       GTGAGCTCAC CATGTGGGGG TGAGGCTGAG AGAAAACAAG TACACAGCCA CAGATCCATG
       ATGTGCAGTT CTCTGGAGCA GGCGCTGGCT GTGCTGGTCA CTACCTTCCA CAAGTACTCC
                                                                             120
       TGCCAAGAGG GCGACAAGTT CAAGCTGAGT AAGGGGGAAA TGAAGGAACT TCTGCACAAG
                                                                             180
       GAGCTGCCCA GCTTTGTGGG GGAGAAAGTG GATGAGGAGG GGCTGAAGAA GCTGATGGGC
                                                                             240
       AGCCTGGATG AGAACAGTGA CCAGCAGGTG GACTTCCAGG AGTATGCTGT TTTCCTGGCA
                                                                             300
55
       CTCATCACTG TCATGTGCAA TGACTTCTTC CAGGGCTGCC CAGACCGACC CTGAAGCAGA
                                                                             360
       ACTCTTGACT TCCTGCCATG GATCTCTTGG GCCCAGGACT GTTGATGCCT TTGAGTTTTG
                                                                             420
       TATTCAATAA ACTTTTTTTG TCTGTTGATA ATATTTTAAT TGCTCAGTGA TGTTCCATAA
                                                                             480
       CCCGGCTGGC TCAGCTGGAG TGCTGGGAGA TGAGGGCCTC CTGGATCCTG CTCCCTTCTG
                                                                             540
       GGCTCTGACT CTCCTGGAAA TCTCTCCAAG GCCAGAGCTA TGCTTTAGGT CTCAATTTTG
                                                                             600
60
                                                                             660
       GAATTTCAAA CACCAGCAAA AAATTGGAAA TCGAGATAGG TTGCTGACTT TTATTTTGTC
       AAATAAAGAT ATTAAAAAAG GCAAATACCA
       Seq ID NO: 14 Protein sequence:
       Protein Accession #: NP_005969.1
65
                             21
                                         31
                                                     41
                                                                51
                  11
       MMCSSLEOAL AVLVTTFHKY SCOEGDKFKL SKGEMKELLH KELPSFVGEK VDEEGLKKLM
       GSLDENSDQQ VDFQEYAVFL ALITVMCNDF FQGCPDRP
70
       Seq ID NO: 15 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 62-358
75
                                                                51
                              21
                                         31
                                                     41
       GGAGGGTGTG CCGCTGAGTC ACTGCCTGGG CATCTGGGCC TGGAACCTCG GCCACAGATC
       CATGATGTGC AGTTCTCTGG AGCAGGCGCT GGCTGTGCTG GTCACTACCT TCCACAAGTA
                                                                             120
       CTCCTGCCAA GAGGGCGACA AGTTCAAGCT GAGTAAGGGG GAAATGAAGG AACTTCTGCA
80
       CAAGGAGCTG CCCAGCTTTG TGGGGGAGAA AGTGGATGAG GAGGGGCTGA AGAAGCTGAT
                                                                             240
       GGGCAGCCTG GATGAGAACA GTGACCAGCA GGTGGACTTC CAGGAGTATG CTGTTTTCCT
                                                                             300
       GGCACTCATC ACTGTCATGT GCAATGACTT CTTCCAGGGC TGCCCAGACC GACCCTGAAG
                                                                             360
       CAGAACTCTT GACTTCCTGC CATGGATCTC TTGGGCCCAG GACTGTTGAT GCCTTTGAGT TTTGTATTCA ATAAACTTTT TTTGTCTGTT GATAATATTT TAATTGCTCA GTGATGTTCC
                                                                             420
                                                                             480
85
       ATAACCCGGC TGGCTCAGCT GGAGTGCTGG GAGATGAGGG CCTCCTGGAT CCTGCTCCCT
                                                                             540
       TCTGGGCTCT GACTCTCCTG GAAATCTCTC CAAGGCCAGA GCTATGCTTT AGGTCTCAAT
                                                                             600
       TTTGGAATTT CAAACACCAG CAAAAAATTG GAAATCGAGA TAGGTTGCTG ACTTTTATTT
                                                                             660
```

WO 02/086443 TGTCAAATAA AGATATTAAA AAAGGCAAAT ACCA

Seq ID NO: 16 Protein sequence: Protein Accession #: NP 005969.1 5 11 21 31 41 51 MMCSSLEQAL AVLVTTFHKY SCOEGDKFKL SKGEMKELLH KELPSFVGEK VDEEGLKKLM GSLDENSDQQ VDFQEYAVFL ALITVMCNDF FQGCPDRP 10 Sea ID NO: 17 DNA sequence Nucleic Acid Accession #: Eos sequence 15 Coding sequence: 939-2372 21 31 41 51 AAGACGGATT CTCAGACAAG GCTTGCAAAT GCCCCGCAGC CATCATTTAA CTGCACCCGC 60 20 AGAATAGTTA CGGTTTGTCA CCCGACCCTC CCGGATCGCC TAATTTGTCC CTAGTGAGAC 120 CCCGAGGCTC TGCCCGCGCC TGGCTTCTTC GTAGCTGGAT GCATATCGTG CTCCGGGCAG 180 CGCGGGCGCA GGGCACGCGT TCGCGCACAC CCTAGCACAC ATGAACACGC GCAAGAGCTG 240 AACCAAGCAC GGTTTCCATT TCAAAAAGGG AGACAGCCTC TACCGCGATT GTAGAAGAGA 300 CTGTGGTGTG AATTAGGGAC CGGGAGGCGT CGAACGGAGG AACGGTTCAT CTTAGAGACT 360 25 AATTTTCTGG AGTTTCTGCC CCTGCTCTGC GTCAGCCCTC ACGTCACTTC GCCAGCAGTA 420 GCAGAGGCGG CGGCGGCGC TCCCGGAATT GGGTTGGAGC AGGAGCCTCG CTGGCTGCTT 480 CGCTCGCGCT CTACGCGCTC AGTCCCCGGC GGTAGCAGGA GCCTGGACCC AGGCGCCGCC 540 GGCGGGCGTG AGGCGCCGGA GCCCGGCCTC GAGGTGCATA CCGGACCCCC ATTCGCATCT 600 AACAAGGAAT CTGCGCCCCA GAGAGTCCCG GGAGCGCCGC CGGTCGGTGC CCGGCGCGCC 660 30 GGGCCATGCA GCGACGGCCG CCGCGGAGCT CCGAGCAGCG GTAGCGCCCC CCTGTAAAGC 720 GGTTCGCTAT GCCGGGGCCA CTGTGAACCC TGCCGCCTGC CGGAACACTC TTCGCTCCGG 780 ACCAGCTCAG CCTCTGATAA GCTGGACTCG GCACGCCCGC AACAAGCACC GAGGAGTTAA 840 GAGAGCCGCA AGCGCAGGGA AGGCCTCCCC GCACGGGTGG GGGAAAGCGG CCGGTGCAGC 900 GCGGGGACAG GCACTCGGGC TGGCACTGGC TGCTAGGGAT GTCGTCCTGG ATAAGGTGGC 960 35 ATGGACCGC CATGGCGCG CTCTGGGGCT TCTGCTGGCT GGTTGTGGGC TTCTGGAGGG 1020 CCGCTTTCGC CTGTCCCACG TCCTGCAAAT GCAGTGCCTC TCGGATCTGG TGCAGCGACC 1080 CTTCTCCTGG CATCGTGGCA TTTCCGAGAT TGGAGCCTAA CAGTGTAGAT CCTGAGAACA 1140 TCACCGAAAT TTTCATCGCA AACCAGAAAA GGTTAGAAAT CATCAACGAA GATGATGTTG 1200 AAGCTTATGT GGGACTGAGA AATCTGACAA TTGTGGATTC TGGATTAAAA TTTGTGGCTC 1260 40 ATAAAGCATT TCTGAAAAAC AGCAACCTGC AGCACATCAA TTTTACCCGA AACAAACTGA 1320 CGAGTTTGTC TAGGAAACAT TTCCGTCACC TTGACTTGTC TGAACTGATC CTGGTGGGCA 1380 ATCCATTTAC ATGCTCCTGT GACATTATGT GGATCAAGAC TCTCCAAGAG GCTAAATCCA 1440 GTCCAGACAC TCAGGATTTG TACTGCCTGA ATGAAAGCAG CAAGAATATT CCCCTGGCAA 1500 ACCTGCAGAT ACCCAATTGT GGTTTGCCAT CTGCAAATCT GGCCGCACCT AACCTCACTG 1560 45 TGGAGGAAGG AAAGTCTATC ACATTATCCT GTAGTGTGGC AGGTGATCCG GTTCCTAATA 1620 TGTATTGGGA TGTTGGTAAC CTGGTTTCCA AACATATGAA TGAAACAAGC CACACACAGG 1680 GCTCCTTAAG GATAACTAAC ATTTCATCCG ATGACAGTGG GAAGCAGATC TCTTGTGTGG 1740 CGGAAAATCT TGTAGGAGAA GATCAAGATT CTGTCAACCT CACTGTGCAT TTTGCACCAA 1800 CTATCACATT TCTCGAATCT CCAACCTCAG ACCACCACTG GTGCATTCCA TTCACTGTGA 1860 50 AAGGCAACCC CAAACCAGCG CTTCAGTGGT TCTATAACGG GGCAATATTG AATGAGTCCA 1920 AATACATCTG TACTAAAATA CATGTTACCA ATCACACGGA GTACCACGGC TGCCTCCAGC 1980 TGGATAATCC CACTCACATG AACAATGGGG ACTACACTCT AATAGCCAAG AATGAGTATG 2040 GGAAGGATGA GAAACAGATT TCTGCTCACT TCATGGGCTG GCCTGGAATT GACGATGGTG 2100 CAAACCCAAA TTATCCTGAT GTAATTTATG AAGATTATGG AACTGCAGCG AATGACATCG 2160 55 GGGACACCAC GAACAGAAGT AATGAAATCC CTTCCACAGA CGTCACTGAT AAAACCGGTC 2220 GGGAACATCT CTCGGTCTAT GCTGTGGTGG TGATTGCGTC TGTGGTGGGA TTTTGCCTTT TGGTAATGCT GTTTCTGCTT AAGTTGGCAA GACACTCCAA GTTTGGCATG AAAGGTTTTG 2340 TTTTGTTTCA TAAGATCCCA CTGGATGGGT AGCTGAAATA AAGGAAAAGA CAGAGAAAGG 2400 GGCTGTGGTG CTTGTTGGTT GATGCTGCCA TGTAAGCTGG ACTCCTGGGA CTGCTGTTGG 2460 60 CTTATCCCGG GAAGTGCTGC TTATCTGGGG TTTTCTGGTA GATGTGGGCG GTGTTTGGAG 2520 GCTGTACTAT ATGAAGCCTG CATATACTGT GAGCTGTGAT TGGGGAACAC CAATGCAGAG 2580 GTAACTCTCA GGCAGCTAAG CAGCACCTCA AGAAAACATG TTAAATTAAT GCTTCTCTTC TTACAGTAGT TCAAATACAA AACTGAAATG AAATCCCATT GGATTGTACT TCTCTTCTGA 2700 AAAGTGTGCT TTTTGACCCT ACTGGACATT TATTGACTTA ATTGCTTCTG TTTATTAAAA 2760 65 TTGACCTGCA AAGTTAAAAA AAAATTAAAG TTGAGAACAG GTATAAGTGC ACACTGAATA 2820 GTCTAATCTA CATGTAACAC ATATTTTAGT GTGATTTTCT ATACTCTAAT CAGCACTGAA 2880 TTCAGAGGGT TTGACTTTTT CATCTATAAC ACAGTGACTA AAAGAGTTAA GGGTATATAT 2940 ACCATCACTT TGGGACTTGG TAGTATTATT AAAAGGTTAT TTCCTTCACT GTCAATAAAA GTCCAAATGT TTAGCTTAGG TCTGAGAGTC AAACAATGTT AAGGATTGTC TTAAAGTTCC 3060 70 TTAGCCAGCA AAACAAAACA AAACAAAACA AACAAATGAA AAACGTTTAA AAAGAAGAAG 3120 AAGAAAAAA ACAAGAACAA GCAGCAACAG CTGTTTTGTT GGGGCTATAG ATTTAAGTTA 3180 GGCATAGTCA ATTTCAGAAT AACTAAGAGT GGAATATATG CATATGGTGA AATTATAACC 3240 TTGCCCTTTT TTATTTGCCC TCTGCGATCC ACCTGCTTTT TAGAAGTCTG CCGAGTGAGA 3300 AGGCCACAGT ATCTCATGCT GTTTGCATTA CAGAACTGCA GCTTTTCTAC TCTGAAAAGG 3360 75 CCTGGGAGCA GAATGGCTGG CCTGCTGTGA GCAGGAGAGG AGATTCTAAG AAGGATAGTC CCCCCTACAA CATACTGTCA TACTGCTGGG TTTTCATGGG TAGGAAAGCT TGTCCTGACC 3480 CCAGCAGCAA AGAGGTGGCA GGTCGCTAAT GAATATATGC TTTATAATGT CCTTCTTCAT 3540 TGCTGAGAGG GCAGCCTTAG AGCTGTGGAT TTCTGCATCC CCCCTGAGTC TGACCCATGG 3600 ACACCTGTTT CATTCACTTT AGCATCACAG TGACCTTTGT ATGCTCTGTT CAGTCTGTGT 3660 80 TGTTCCTTTT TTATCAGGAG GACTTCAGAG CCAGGCCTGC AGCATTTTGT TTGAAAACAC 3780 AATCAGCTCT GACAGTTAGA CATGCACACA GACGCCATAG CTGGATTGGA AACATTGATG 3840 TTTTAAAAAT TTATTTTTT TGGAAATAGT TGCACAAATG CTGCAATTTA GCTTTAAGGT 3900 TCTATAGATT TTTAACTAGT CCAACACAGT CAGAAACATT GTTTTGAATC CTCTGTAAAC 3960 85 CAAGGCATTA ATCTTAATAA ACCAGGATCC ATTTAGGTAC CACTTGATAT AAAAAGGATA 4020 TCCATAATGA ATATTTTATA CTGCATCCTT TACATTAGCC ACTAAATACG TTATTGCTTG ATGAAGACCT TTCACAGAAT CCTATGGATT GCAGCATTTC ACTTGGCTAC TTCATACCCA

	WO 02	/086443					
5	TCCTAACTCC TCTGAATTCC GATCTTTCCC	AGGGGCAGTT ATTTGAATGT CATTTTCTTG AAAGGTGTTG TGAAATTCAA	AAGGGCAGCT TTCGCGGCTA ATTTACAAAG	GGCCCCCAAT AATGACAGTT AGGCCAGCTA	GTGGGGAGGT TCTGTCATTA ATAGCAGAAA	CCGAACATTT CTTAGATTCC TCATGACCCT	4200 4260 4320 4380 4440
	GAGAATCAGC ATAGAAAGGC AATAAAAAAA	CATTTGGTAC TATGGATTGT AAGGAATATT AGAGAAGTGG	AAAAAAGATT TTAAGAACTA TGTACCCAAC	TTTAAAGCTT TTTTAAAGTG AGCTAGAAGG	TTATGTTATA TTCCAGACCC ATTGCAAGGT	CCATGGAGCC AAAAAGGAAA AGATTTTTGT	4500 4560 4620 4680
10		ATGATGAAAA 18 Protein		T			
	Protein Acc	cession #: (CAA53571				
15	NSVDPENITE		IINEDDVEAY	VGLRNLTIVD	SGLKFVAHKA	FLKNSNLQHI	
20	SKNIPLANLQ NETSHTQGSL WCIPFTVKGN LIAKNEYGKD	SRKHFRHLDL IPNCGLPSAN RITNISSDDS PKPALQWFYN EKQISAHFMG LSVYAVVVIA	LAAPNLTVEE GKQISCVAEN GAILNESKYI WPGIDDGANP	GKSITLSCSV LVGEDQDSVN CTKIHVTNHT NYPDVIYEDY	AGDPVPNMYW LTVHFAPTIT EYHGCLQLDN GTAANDIGDT	DVGNLVSKHM FLESPTSDHH PTHMNNGDYT TNRSNEIPST	180 240 300 360 420
25	DVIDKIGRER	LSVIAVVVIA	SVVGFCHHVII	DF HEIKEMKIIS	REGERGE VIII	111111111111111111111111111111111111111	
20	Nucleic Act	19 DNA sequid Accession	1 #: NM_0002 500				
30	1	11 	21	31	41	51 	
		GATCTGGAGA ATTGGCTGAA					60 120
35	CTCCTGCATG	CCCAACAAGC GGACCCGGTT	CTGCTCCCGT	GGGGCCTGCT	ATCCACCTGT	TGGGGACCTG	180 240
33	ACCTACTGCA	CCCAGTATGG	CGAGTGGCAG	ATGAAATGCT	GCAAGTGTGA	CTCCAGGCAG	300
		ACTACAGTCA CCCAGAATGA					360 420
40	TTCCAGCTTC	AAGAAGTCAT	GATGGAGTTC	CAGGGGCCCA	TGCCCGCCGG	CATGCTGATT	480
40		CAGACTTCGG TCCCTCGGGT					540 600
	CAGTCCCTGC	CTCAGAGGCC	TAATGCACGC	CTAAATGGGG	GGAAGGTCCA	ACTTAACCTT	660
		TGTCTGGGAT TGAGAGTCAA					720 780
45	CCTCCCAGCG	CCTACTATGC	TGTGTCCCAG	CTCCGTCTGC	AGGGGAGCTG	CTTCTGTCAC	840
		ATCGCTGCGC ATGTCTGTGT					900 960
	GCACCCTTCT	ACAACAACCG	GCCCTGGAGA	CCGGCGGAGG	GCCAGGACGC	CCATGAATGC	1020
50		ACTGCAATGG GGGCATATGG					1080 1140
	AACTGTGAGC	GGTGTCAGCT	GCACTATTTC	CGGAACCGGC	GCCCGGGAGC	TTCCATTCAG	1200
		TCTCCTGCGA GGCAGTGTGT					1260 1320
	AAGCCGGGCT	TCACTGGACT	CACCTACGCC	AACCCGCAGG	GCTGCCACCG	CTGTGACTGC	1380
55		GGTCCCGGAG TGGTGGGTCC					1440 1500
	AGTGGCCAGG	GCTGTGAACC	GTGTGCCTGC	GACCCGCACA	ACTCCCCTCA	GCCCACAGTG	1560
	CAACCAGTTC	ACAGGGCAGT GCCAGTGTCC	GCCCTGTCGG	GAAGGCTTTG	TGGCCACAGG	GTGCAGCGCT ATGCCGAGCC	1620 1680
60	TGTGACTGTG	ATTTCCGGGG	AACAGAGGGC	CCGGGCTGCG	ACAAGGCATC	AGGCCGCTGC	1740
	CTCTGCCGCC	CTGGCTTGAC	CGGGCCCCGC	TGTGACCAGT	GCCAGCGAGG CCTATGATGC	CTACTGCAAT GGACCTCCGG	1800 1860
	GAGCAGGCCC	TGCGCTTTGG	TAGACTCCGC	AATGCCACCG	CCAGCCTGTG	GTCAGGGCCT	1920
65	GGGCTGGAGG	ACCGTGGCCT TTCTCAGCAG	GGCCTCCCGG	ATCCTAGATG	CAAAGAGTAA AGGTGGCTCA	GATTGAGCAG GGTGGCCAGT	1980 2040
00	GCCATCCTCT	CCCTCAGGCG	AACTCTCCAG	GGCCTGCAGC	TGGATCTGCC	CCTGGAGGAG	2100
		CCCTTCCGAG AGAGGAAGAG					2160 2220
70	GCCTTCCGGA	TGCTGAGCAC	AGCCTACGAG	CAGTCAGCCC	AGGCTGCTCA	GCAGGTCTCC	2280
70		GCCTTTTGGA GAGGAGGAGG				GAGGCTGGTG GAGGCTGGAG	2340 2400
	ATGTCTTCGT	TGCCTGACCT	GACACCCACC	TTCAACAAGC	TCTGTGGCAA	CTCCAGGCAG	2460
		CCCCAATATC GCTGCAGGGG					2520 2580
75	CAGGTGGCTG	AGCAGCTGCG	GGGCTTCAAT	GCCCAGCTCC	AGCGGACCAG	GCAGATGATT	2640
		AGGAATCTGC GCCGCTCCCA					2700 2760
	CAGGTCCGGG	ACTTCCTAAC	AGACCCCGAC	ACTGATGCAG	CCACTATCCA	GGAGGTCAGC	2820
80	GAGGCCGTGC GAGATCCACC	TGGCCCTGTG CCATTGCAGC	GCTGCCCACA	GACTCAGCTA AACGTGGACT	TGGTGCTGTC	GAAGATGAAT CCAGACCAAG	2880 2940
	CAGGACATTG	CGCGTGCCCG	CCGGTTGCAG	GCTGAGGCTG	AGGAAGCCAG	GAGCCGAGCC	3000
	CATGCAGTGG	AGGGCCAGGT CTCAGGACAC	GGAAGATGTG	GTTGGGAACC ACCAGCCGCT	TGCGGCAGGG CCCTTCGGCT	GACAGTGGCA TATCCAGGAC	3060 3120
0.5	AGGGTTGCTG	AGGTTCAGCA	GGTACTGCGG	CCAGCAGAAA	AGCTGGTGAC	AAGCATGACC	3180
85	AAGCAGCTGG	GTGACTTCTG	GACACGGATG	GAGGAGCTCC	GCCACCAAGC	CCGGCAGCAG GGCATTGAGT	3240 3300
	GCCCAAGAGG	GATTTGAGAG	AATAAAACAA	AAGTATGCTG	AGTTGAAGGA	CCGGTTGGGT	3360

5	GAGCTGTTTG CTGCGGGGCA GTGGAGCAGA TGCTACAGCT GATTGGGTTG GACCACCCT GGGACAGTTA CTCTCAAGTC	GGGAGACCAT GCCAGGCCAT TCCAGCCCGT GAATGCTTTC GGTGTTAGC CACTTGACAG AAGGAAGCTG ACCAAGCACA	GCAGGGTGCC GGAGATGATG CATGCTGCGC CATCAATGGG TGCCCCACTC CATCTCCAGG TAGTAAGATT AGAAAGATGG GGCTGGGCAG AAAACTTAAC	GACAGGATGA TCGGCGGACC CGCGTGCTCT ATCTGCCGCC AGACTTTCAT ACCCTGAGCT TGGAGATTGG TATCCCCCGC	AAGACATGGA TGACAGGACT ACTATGCCAC TTTGCTTTTG GCAGCCTAAA GCAGCTGAGC CATGCCATTG CTTTAGTTCT	GTTGGAGCTG GGAGAAGCGT CTGCAAGTGA GTTGGGGGCA GTACAGCCTG CTGAGCCAAT AAACTAAGAG CCACTGGGGA	3420 3480 3540 3600 3660 3720 3780 3840 3900 3960
15		20 Protein cession #: 1					
	1 	11 	21 	31 	41 	51 	
20	EWQMKCCKCD MEFQGPMPAG NARLNGGKVQ VSQLRLQGSC PWRPAEGQDA	SRQPHNYYSH MLIERSSDFG LNLMDLVSGI FCHGHADRCA HECQRCDCNG	CSRGACYPPV RVENVASSSG KTWRVYQYLA PATQSQKIQE PKPGASAGPS HSETCHFDPA	PMRWWQSQND ADCTSTFPRV VGEITNLRVN TAVQVHDVCV VFAASQGAYG	VNPVSLQLDL RQGRPQSWQD FTRLAPVPQR CQHNTAGPNC GVCDNCRDHT	DRRFQLQEVM VRCQSLPQRP GYHPPSAYYA ERCAPFYNNR EGKNCERCQL	60 120 180 240 300 360
25	TYANPQGCHR CACDPHNSPQ TEGPGCDKAS RLRNATASLW	CDCNILGSRR PTVQPVHRAV GRCLCRPGLT SGPGLEDRGL	CDPDGAVPGA DMPCDEESGR PCREGFGGLM GPRCDQCQRG ASRILDAKSK	CLCLPNVVGP CSAAAIRQCP YCNRYPVCVA IEQIRAVLSS	KCDQCAPYHW DRTYGDVATG CHPCFQTYDA PAVTEQEVAQ	KLASGQGCEP CRACDCDFRG DLREQALRFG VASAILSLRR	420 480 540 600 660
30	AYEQSAQAAQ TPTFNKLCGN GFNAQLQRTR DPDTDAATIQ	QVSDSSRLLD SRQMACTPIS QMIRAAEESA EVSEAVLALW	DLESLDRSFN QLRDSRREAE CPGELCPQDN SQIQSSAQRL LPTDSATVLQ	RLVRQAGGGG GTACGSRCRG ETQVSASRSQ KMNEIQAIAA	GTGSPKLVAL VLPRAGGAFL MEEDVRRTRL RLPNVDLVLS	RLEMSSLPDL MAGQVAEQLR LIQQVRDFLT QTKQDIARAR	720 780 840 900 960
35	RLQAEAEEAR VLRPAEKLVT IKQKYAELKD	SRAHAVEGQV SMTKQLGDFW RLGQSSMLGE	EDVVGNLRQG TRMEELRHQA QGARIQSVKT INGRVLYYAT	TVALQEAQDT RQQGAEAVQA EAEELFGETM	MQGTSRSLRL QQLAEGASEQ	IQDRVAEVQQ ALSAQEGFER	1020 1080 1140
40	Nucleic Ac	21 DNA sequid Accession lence: 145-3	n #: NM_0037	722 ,			
	1	11	21	31	41	51	
45	ACAGTACTGC AAAGAAAGTT CCAGAGGTTT	CCTGACCCTT ATTACCGATC TCCAGCATAT	TGAAGGAAAT ACATCCAGCG CACCATGTCC CTGGGATTTT	TTTCGTAGAA CAGAGCACAC CTGGAACAGC	ACCCAGCTCA AGACAAATGA CTATATGTTC	TTTCTCTTGG ATTCCTCAGT AGTTCAGCCC	60 120 180 240
50	AGCATGGACT ACGAACCTGG AGTCCCTATA CCCAGCTCCA	GTATCCGCAT GGCTCCTGAA ACACAGACCA CCTTCGATGC	TGAACCATCA GCAGGACTCG CAGCATGGAC CGCGCAGAAC TCTCTCTCCA	GACCTGAGTG CAGCAGATTC AGCGTCACGG TCACCCGCCA	ACCCCATGTG AGAACGGCTC CGCCCTCGCC TCCCCTCCAA	GCCACAGTAC CTCGTCCACC CTACGCACAG CACCGACTAC	300 360 420 480 540
55	TGGACGTATT CAGATCAAGG AAAAAAGCTG GAATTCAACG	CCACTGAACT TGATGACCCC AGCACGTCAC AGGGACAGAT	CGTGTCCTTC GAAGAAACTC ACCTCCTCAG GGAGGTGGTG TGCCCCTCCT	TACTGCCAAA GGAGCTGTTA AAGCGGTGCC AGTCATTTGA	TTGCAAAGAC TCCGCGCCAT CCAACCATGA TTCGAGTAGA	ATGCCCCATC GCCTGTCTAC GCTGAGCCGT GGGGAACAGC	600 660 720 780 840
60	CCACCCAGG TGTGTTGGAG GGGCAAGTCC AGGAAGGCGG	TTGGCACTGA GGATGAACCG TGGGCCGACG ATGAAGATAG	CATCAGAAAG	GTCTTGTACA TTAATCATTG GCCCGGATCT CAGCAAGTTT	ATTTCATGTG TTACTCTGGA GTGCTTGCCC CGGACAGTAC	TAACAGCAGT AACCAGAGAT AGGAAGAGAC AAAGAACGGT	900 960 1020 1080 1140 1200
65	AAACGAAGAT GAAATGCTGT ATTGAAACGT CTTTCAGCCT	CCCCAGATGA TGAAGATCAA ACAGGCAACA GCTTCAGGAA	TCGTCAGAAC TGAACTGTTA AGAGTCCCTG GCAACAGCAG TGAGCTTGTG	TACTTACCAG GAACTCATGC CAGCACCAGC GAGCCCCGGA	TGAGGGGCCG AGTACCTTCC ACTTACTTCA GAGAAACTCC	TGAGACTTAT TCAGCACACA GAAACATCTC AAAACAATCT	1260 1320 1380 1440
70	TCTATATTTT TGTGTGTGCG CCCAACTGCT	AAGTGTGTGT TGTGTATCTA CAAAGGCACA	CAAGCCCCA GTTGTATTTC GCCCTCATAA AAGCCACTAG TGCAGATTTT	CATGTGTATA ACAGGACTTG TGAGAGAATC	TGTGAGTGTG AAGACACTTT TTTTGAAGGG	TGTGTGTGTA GGCTCAGAGA ACTCAAACCT	1500 1560 1620 1680 1740
75	GAAAGGGGCA AATTCACAGG AAAAAAGTTG	TTAAGATGTT GAAGCTTTTG TTATTGTCTG	GAGCTTTCTG TATTGGAACC AGCAGGTCTC TGCATAAGTA TAATAATATT	CTTTTCTGTC AAACTTAAGA AGTTGTAGGT	TTCTTCTGTT TGTCTTTTTA GACTGAGAGA	GTTTTTCTAA AGAAAAGGAG CTCAGTCAGA	1800 1860 1920 1980 2040
80	TACTGCTGGG TTTGTGAGAA GCTGTGTACC	CAGCGAGGTG CTTGCATTAT TGCCTCTGCC	ATCATTACCA TTGTGTCCTC ACTGTATGTT ACTACAAAAA	AAAGTAATCA CCCTCATGTG GGCATCTGTT	ACTTTGTGGG TAGGTAGAAC ATGCTAAAGT	TGGAGAGTTC ATTTCTTAAT TTTTCTTGTA	2100 2160 2220 2280
85	CATGAAACCC CTCATTTTGT TGTTTACCAT	GCTTTTAATA	GAAAGACAAA	TCCACCCCAG	TAATATTGCC	CTTACGTAGT	2340

	WO 02	/086443					
-	TTAAGATAAT CACCAGCACT	TACTCAAAAG AGCATAAAGA GTATTTTCTG GTGATTTTAA	CTTTAAAAAT TCACCAAGAC	GTTCCTCCCC AATGATTTCT	$\begin{array}{c} \texttt{TCCATCTTCC} \\ \texttt{TGTTATTGAG} \end{array}$	CACACCCAGT GCTGTTGCTT	2640 2700 2760
5	_	22 Protein cession #: 1	_				
	1	11	21	31	41	51	
10	DSDLSDPMWP SPSPAIPSNT PQGAVIRAMP	 LSPEVFQHIW QYTNLGLLNS DYPGPHSFDV VYKKAEHVTE	MDQQIQNGSS SFQQSSTAKS VVKRCPNHEL	STSPYNTDHA ATWTYSTELK SREFNEGQIA	QNSVTAPSPY KLYCQIAKTC PPSHLIRVEG	AQPSSTFDAL PIQIKVMTPP NSHAQYVEDP	60 120 180 240
15	FEARICACPG LLYLPVRGRE	YEPPQVGTEF RDRKADEDSI TYEMLLKIKE QSDVFFRHSK	RKQQVSDSTK SLELMQYLPQ	NGDGTKRPFR	QNTHGIQMTS	IKKRRSPDDE	300 360 420
20							
	Nucleic Ac	23 DNA sequid Accession lence: 84-30	1 #: NM_001	944.1			
25	1	11	21	31	41	51	
	TTTCACCAGG	CATTAACTGC GAAATCAGAG GGTGGTCATA	ACAATGATGG	GGCTCTTCCC	CAGAACTACA	GGGGCTCTGG	60 120 180
30	ATGATGAAGA AATTTGCCAA TTACTTCAGA ATCAGCCGCC	AGAGATGACT ACCCTGCAGA TTACCAAGCA TTTTGGAATC CCGGGAGGAA	ATGCAACAAG GAAGGAGAAG ACCCAGAAAA TTTGTTGTTG	CTAAAAGAAG ATAACTCAAA TCACCTACCG ACAAAAACAC	GCAAAAACGT AAGAAACCCA AATCTCTGGA TGGAGATATT	GAATGGGTGA ATTGCCAAGA GTGGGAATCG AACATAACAG	240 300 360 420 480
35	AAGGACTAGA ATCCTCCAGT ACTCACTGGT AAATTGCCTT	TGTAGAGAAA ATTTTCACAA GATGATACTA CAAAATTGTC GGAAGTCCGT	CCACTTATAC CAAATTTTCA AATGCCACAG TCTCAGGAAC	TAACGGTTAA TGGGTGAAAT ATGCAGATGA CAGCAGGCAC	AATTTTGGAT TGAAGAAAAT ACCAAACCAC ACCCATGTTC	ATTAATGATA AGTGCCTCAA TTGAATTCTA CTCCTAAGCA	540 600 660 720 780
40	ATCGTCTGGT GTAATATTAA CAGCACGTAT TGGATGAAGA	TGTGAGTGGT AGTGAAAGAT TGAAGAAAAT GTACACAGAT TGAAATACAA	GCAGACAAAG GTCAACGATA ATTTTAAGTT AATTGGCTTG	ATGGAGAAGG ACTTCCCAAT CTGAATTACT CAGTATATTT	ACTATCAACT GTTTAGAGAC TCGATTTCAA CTTTACCTCT	CAATGTGAAT TCTCAGTATT GTAACAGATT GGGAATGAAG	940 900 960 1020 1080
45	AGGCTCTAGA CTGAATTTCA AGGTAATAAA AAAAAGGCAT	TTATGAACAA CCAATCAGTT TGTAAGAGAA AAGTAGCAAA TAACAAAGCT	CTACAAAGCG ATCTCTCGAT GGAATTGCAT AAATTGGTGG	TGAAACTTAG ACCGAGTTCA TCCGTCCTGC ATTATATCCT	TATTGCTGTC GTCAACCCCA TTCCAAGACA GGGAACATAT	AAAAACAAAG GTCACAATTC TTTACTGTGC CAAGCCATCG	1140 1200 1260 1320 1380
50	GATACCTAAT ATTCTACTTT CGGGTAAAAC CAACAGCTGT	GATTGATTCA CATAGTTAAC TTCTACAGGC CCTCGAAAAA GAATAATAGA	AAAACTGCTG AAAACAATCA ACGGTATATG GATGCAGTTT	AAATCAAATT CAGCTGAGGT TTAGAGTACC GCAGTTCTTC	TGTCAAAAAT TCTGGCCATA CGATTTCAAT ACCTTCCGTG	ATGAACCGAG GATGAATACA GACAATTGTC GTTGTCTCCG	1440 1500 1560 1620 1680
55	TAAAGTTGCC CCCAGGAACA ACAATCGGTG GCATCTGTGG	TGCCGTATGG GATACCTCCT TGAGATGCCA AACTTCTTAC GGGGCCTGCC	AGTATCACAA GGAGTATACC CGCAGCTTGA CCAACCACAA	CCCTCAATGC ACATCTCCCT CACTGGAAGT GCCCTGGGAC	TACCTCGGCC GGTACTTACA CTGTCAGTGT CAGGTATGGC	CTCCTCAGAG GACAGTCAGA GACAACAGGG AGGCCGCACT	1740 1800 1860 1920 1980
60	TGGCCCCCT GTGGTTTTAT GAGCCCATCC GAGCCGATTT	TCTGCTGTTG CCCAGTTCCT TGAAGACAAG CATGGAAAGT	ACCTGTGACT GATGGCTCAG GAAATCACAA TCTGAAGTTT	GTGGGGCAGG AAGGAACAAT ATATTTGTGT GTACAAATAC	TTCTACTGGG TCATCAGTGG GCCTCCTGTA GTATGCCAGA	GGAGTGACAG GGAATTGAAG ACAGCCAATG GGCACAGCGG GAATCTGGAG	2160 2220
65	GTGCTGCAGG CTGGAGTTGG GAGGAACCAA TTTCTCAGAA	CTTTGCAACA CATCTGTTCC TAAGGACTAC AGCATTTGCC	GGGACAGTGT TCAGGGCAGT GCTGATGGG TGTGCGGAGG	CAGGAGCTGC CTGGAACCAT CGATAAGCAT AAGACGATGG	TTCAGGATTC GAGAACAAGG GAATTTTCTG CCAGGAAGCA	GGAGCAGCCA CATTCCACTG GACTCCTACT AATGACTGCT TCCGTGGGTT	2340 2400 2460 2520
70	GTTGCAGTTT TTAAAAAACT CCTCTAAAGA CAGGATTTGT	TATTGCTGAT TGCAGAGATA CAGCGGTTAT TAAGTGCCAG	GACCTGGATG AGCCTTGGTG GGGATTGAAT ACTTTGTCAG	ACAGCTTCTT TTGATGGTGA CCTGTGGCCA GAAGTCAAGG	GGACTCACTT AGGCAAAGAA TCCCATAGAA AGCTTCTGCT	GGACCCAAAT GTTCAGCCAC GTCCAGCAGA TTGTCCGCCT	2640 2700 2760 2820
75	TAACGGAGAC CACTTCTCAC CTGGCAACCT ATCCTTGCTC	TTACTCGGCT ACAAAATGTG AGCTGGCCCA CCGTCTAATA	TCTGGTTCCC ATAGTGACAG ACGCAGCTAC TGACCAGAAT	TCGTGCAACC AAAGGGTGAT GAGGGTCACA GAGCTGGAAT	TTCCACTGCA CTGTCCCATT TACTATGCTC ACCACACTGA	AACTATTTAG GGCTTTGATC TCCAGTGTTC TGTACAGAGG CCAAATCTGG	2940 3000 3060 3120
80	TGGCACTTAT TACCCCAAAA TCTTAAAGTT	TAGCTTCTCT GCAATATGTT TTTCAAAACC	CATAAACTGA GTCACTCCTA CTAAAATCAT	TCACGATTAT ATTCTCAAGT	AAATTAAATG	GCTAATAATT TTTGGGTTCA TTGTAGTAAA	3240
85		24 Protein cession #: 1					
	1	11	21	31	41	51	

```
MMGLFPRTTG ALAIFVVVIL VHGELRIETK GQYDEEEMTM QQAKRRQKRE WVKFAKPCRE
       GEDNSKRNPI AKITSDYQAT QKITYRISGV GIDQPPFGIF VVDKNTGDIN ITAIVDREET
                                                                            120
       PSFLITCRAL NAQGLDVEKP LILTVKILDI NDNPPVFSQQ IFMGEIEENS ASNSLVMILN
                                                                            180
 5
       ATDADEPNHL NSKIAFKIVS QEPAGTPMFL LSRNTGEVRT LTNSLDREQA SSYRLVVSGA
                                                                            240
       DKDGEGLSTQ CECNIKVKDV NDNFPMFRDS QYSARIEENI LSSELLRFQV TDLDEEYTDN
                                                                            300
       WLAVYFFTSG NEGNWFEIQT DPRTNEGILK VVKALDYEQL QSVKLSIAVK NKAEFHOSVI
                                                                            360
       SRYRVQSTPV TIQVINVREG IAFRPASKTF TVQKGISSKK LVDYILGTYQ AIDEDTNKAA
                                                                            420
       SNVKYVMGRN DGGYLMIDSK TAEIKFVKNM NRDSTFIVNK TITAEVLAID EYTGKTSTGT
10
       VYVRVPDFND NCPTAVLEKD AVCSSSPSVV VSARTLNNRY TGPYTFALED QPVKLPAVWS
                                                                            540
       ITTLNATSAL LRAQEQIPPG VYHISLVLTD SQNNRCEMPR SLTLEVCQCD NRGICGTSYP
                                                                            600
       TTSPGTRYGR PHSGRLGPAA IGLLLLGLLL LLLAPLLLLT CDCGAGSTGG VTGGFIPVPD
                                                                            660
       GSEGTIHOWG IEGAHPEDKE ITNICVPPVT ANGADFMESS EVCTNTYARG TAVEGTSGME
                                                                            720
       MTTKLGAATE SGGAAGFATG TVSGAASGFG AATGVGICSS GOSGTMRTRH STGGTNKDYA
                                                                            780
15
       DGAISMNFLD SYFSQKAFAC AEEDDGQEAN DCLLIYDNEG ADATGSPVGS VGCCSFIADD
                                                                            840
       LDDSFLDSLG PKFKKLAEIS LGVDGEGKEV OPPSKDSGYG IESCGHPIEV QQTGFVKCQT
                                                                            900
       LSGSQGASAL SASGSVQPAV SIPDPLQHGN YLVTETYSAS GSLVQPSTAG FDPLLTQNVI
                                                                            960
       VTERVICPIS SVPGNLAGPT QLRGSHTMLC TEDPCSRLI
20
       Seg ID NO: 25 DNA seguence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 56-1642
                                                    41
                                                               51
                             21
                                         31
25
       AGTATCCCAG GAGGAGCAAG TGGCACGTCT TCGGACCTAG GCTGCCCCTG CCGTCATGTC
                                                                             60
       GCAAGGGATC CTTTCTCCGC CAGCGGGCTT GCTGTCCGAT GACGATGTCG TAGTTTCTCC
       CATGTTTGAG TCCACAGCTG CAGATTTGGG GTCTGTGGTA CGCAAGAACC TGCTATCAGA
                                                                            180
       CTGCTCTGTC GTCTCTACCT CCCTAGAGGA CAAGCAGCAG GTTCCATCTG AGGACAGTAT
                                                                            240
30
       GGAGAAGGTG AAAGTATACT TGAGGGTTAG GCCCTTGTTA CCTTCAGAGT TGGAACGACA
                                                                            300
       GGAAGATCAG GGTTGTGTCC GTATTGAGAA TGTGGAGACC CTTGTTCTAC AAGCACCCAA
                                                                            360
       GGACTCTTTT GCCCTGAAGA GCAATGAACG GGGAATTGGC CAAGCCACAC ACAGGTTCAC
                                                                            420
       CTTTTCCCAG ATCTTTGGGC CAGAAGTGGG ACAGGCATCC TTCTTCAACC TAACTGTGAA
       GGAGATGGTA AAGGATGTAC TCAAAGGGCA GAACTGGCTC ATCTATACAT ATGGAGTCAC
                                                                            540
35
       TAACTCAGGG AAAACCCACA CGATTCAAGG TACCATCAAG GATGGAGGGA TTCTCCCCCG
                                                                            600
       GTCCCTGGCG CTGATCTTCA ATAGCCTCCA AGGCCAACTT CATCCAACAC CTGATCTGAA
                                                                            660
       GCCCTTGCTC TCCAATGAGG TAATCTGGCT AGACAGCAAG CAGATCCGAC AGGAGGAAAT
                                                                            720
       GAAGAAGCTG TCCCTGCTAA ATGGAGGCCT CCAAGAGGAG GAGCTGTCCA CTTCCTTGAA
                                                                            780
       GAGGAGTGTC TACATCGAAA GTCGGATAGG TACCAGCACC AGCTTCGACA GTGGCATTGC
40
       TGGGCTCTCT TCTATCAGTC AGTGTACCAG CAGTAGCCAG CTGGATGAAA CAAGTCATCG
                                                                            900
       ATGGGCACAG CCAGACACTG CCCCACTACC TGTCCCGGCA AACATTCGCT TCTCCATCTG
                                                                            960
       GATCTCATTC TTTGAGATCT ACAACGAACT GCTTTATGAC CTATTAGAAC CGCCTAGCCA
                                                                           1020
       ACAGCGCAAG AGGCAGACTT TGCGGCTATG CGAGGATCAA AATGGCAATC CCTATGTGAA
                                                                           1080
       AGATCTCAAC TGGATTCATG TGCAAGATGC TGAGGAGGCC TGGAAGCTCC TAAAAGTGGG
                                                                           1140
45
       TCGTAAGAAC CAGAGCTTTG CCAGCACCCA CCTCAACCAG AACTCCAGCC GCAGTCACAG
       CATCTTCTCA ATCAGGATCC TACACCTTCA GGGGGAAGGA GATATAGTCC CCAAGATCAG
                                                                           1260
       CGAGCTGTCA CTCTGTGATC TGGCTGGCTC AGAGCGCTGC AAAGATCAGA AGAGTGGTGA
                                                                           1320
       ACGGTTGAAG GAAGCAGGAA ACATTAACAC CTCTCTACAC ACCCTGGGCC GCTGTATTGC
                                                                           1380
       TGCCCTTCGT CAAAACCAGC AGAACCGGTC AAAGCAGAAC CTGGTTCCCT TCCGTGACAG
                                                                           1440
50
                                                               GCATGATTGT
                                                                           1500
       CAAGTTGACT CGAGTGTTCC AAGGTTTCTT CACAGGCCGA GGCCGTTCCT
       CAATGTGAAT CCCTGTGCAT CTACCTATGA TGAAACTCTT CATGTGGCCA AGTTCTCAGC
                                                                           1560
       CATTGCTAGC CAGGTGACTT GTGCATGCCC CACCTATGCA ACTGGGATTC CCATCCCTGC
                                                                           1620
       ACTCGTTCAT CAAGGAACAT AGTCTTCAGG TATCCCCCAG CTTAGAGAAA GGGGCTAAGG
                                                                           1680
       CAGACACAGG CCTTGATGAT GATATTGAAA ATGAAGCTGA CATCTCCATG TATGGCAAAG
                                                                           1740
55
       AGGAGCTCCT ACAAGTTGTG GAAGCCATGA AGACACTGCT TTTGAAGGAA CGACAGGAAA
                                                                           1800
       AGCTACAGCT GGAGATGCAT CTCCGAGATG AAATTTGCAA TGAGATGGTA GAACAGATGC
                                                                           1860
       AACAGCGGGA ACAGTGGTGC AGTGAACATT TGGACACCCA AAAGGAACTA TTGGAGGAAA
       TGTATGAAGA AAAACTAAAT ATCCTCAAGG AGTCACTGAC AAGTTTTTAC CAAGAAGAGA
                                                                           1980
       TTCAGGAGCG GGATGAAAAG ATTGAAGAGC TAGAAGCTCT CTTGCAGGAA GCCAGACAAC
                                                                           2040
60
       AGTCAGTGGC CCATCAGCAA TCAGGGTCTG AATTGGCCCT ACGGCGGTCA CAAAGGTTGG
                                                                           2100
       CAGCTTCTGC CTCCACCCAG CAGCTTCAGG AGGTTAAAGC TAAATTACAG CAGTGCAAAG
                                                                           2160
       CAGAGCTAAA CTCTACCACT GAAGAGTTGC ATAAGTATCA GAAAATGTTA GAACCACCAC
                                                                           2220
       CCTCAGCCAA GCCCTTCACC ATTGATGTGG ACAAGAAGTT AGAAGAGGGC CAGAAGAATA
                                                                           2280
       TAAGGCTGTT GCGGACAGAG CTTCAGAAAC TTGGTGAGTC TCTCCAATCA GCAGAGAGAG
                                                                           2340
65
       CTTGTTGCCA CAGCACTGGG GCAGGAAAAC TTCGTCAAGC CTTGACCACT TGTGATGACA
                                                                           2400
       TCTTAATCAA ACAGGACCAG ACTCTGGCTG AACTGCAGAA CAACATGGTG CTAGTGAAAC
                                                                           2460
       TGGACCTTCG GAAGAAGGCA GCATGTATTG CTGAGCAGTA TCATACTGTG TTGAAACTCC
                                                                           2520
       AAGGCCAGGT TTCTGCCAAA AAGCGCCTTG GTACCAACCA GGAAAATCAG CAACCAAACC
                                                                           2580
       AACAACCACC AGGGAAGAAA CCATTCCTTC GAAATTTACT TCCCCGAACA CCAACCTGCC
                                                                           2640
70
       AAAGCTCAAC AGACTGCAGC CCTTATGCCC GGATCCTACG CTCACGGCGT TCCCCTTTAC
                                                                           2700
       TCAAATCTGG GCCTTTTGGC AAAAAGTACT AAGGCTGTGG GGAAAGAGAA GAGCAGTCAT
                                                                           2760
       GGCCCTGAGG TGGGTCAGCT ACTCTCCTGA AGAAATAGGT CTCTTTTATG CTTTACCATA
                                                                           2820
       TATCAGGAAT TATATCCAGG ATGCAATACT CAGACACTAG CTTTTTCTC ACTTTTGTAT
                                                                           2880
       TATAACCACC TATGTAATCT CATGTTGTTG TTTTTTTTTA TTTACTTATA TGATTTCTAT
                                                                           2940
75
       GCACACAAAA ACAGTTATAT TAAAGATATT ATTGTTCACA TTTTTTATTG AATTCCAAAT
       GTAGCAAAAT CATTAAAACA AATTATAAAA GGGACAGAAA AA
       Seq ID NO: 26 Protein sequence:
       Protein Accession #: Eos sequence
80
                                                    41
                                         31
                             21
                                                                             60
       MSOGILSPPA GLLSDDDVVV SPMFESTAAD LGSVVRKNLL SDCSVVSTSL EDKQQVPSED
       SMEKVKVYLR VRPLLPSELE RQEDQGCVRI ENVETLVLQA PKDSFALKSN ERGIGQATHR
                                                                            120
85
       FTFSQIFGPE VGQASFFNLT VKEMVKDVLK GQNWLIYTYG VTNSGKTHTI QGTIKDGGIL
                                                                            1.80
       PRSLALIFNS LQGQLHPTPD LKPLLSNEVI WLDSKQIRQE EMKKLSLLNG GLQEEELSTS
                                                                            240
       LKRSVYIESR IGTSTSFDSG IAGLSSISQC TSSSQLDETS HRWAQPDTAP LPVPANIRFS
                                                                            300
```

			SQQRKRQTLR				360
			HSIFSIRILH IAALRONQON				420 480
_			SAIASQVTCA			FFIGRGREEN	400
5			_		_		
		27 DNA sequ					
		id Accession mence: 13-14	1 #: Eos sed	quence			
	couring sequ	Telice: 13-14	124				
10	1	11	21	31	41	51	
	 	(22200222000	 TCTTCTAATA	CINCOMOCING C	ACCCCA CTCC	TTTCTCCA CCT	60
			AAGCCTGGAA				120
4.5	TTAGAAAAAT	TTTATGGCCT	TGAGATAAAC	AAACTTCCAG	TGACAAAAAT	GAAATATAGT	180
15			AATCCAAGAA				240
			CCTGGAGATG GCCAGGGGGG				300 360
			TGACATGAAC				420
20	GCTTTCCAAG	TATGGAGTAA	TGTTACCCCC	TTGAAATTCA	GCAAGATTAA	CACAGGCATG	480
20			TGCCCGTGGA				540
			TGCTTTTGGA GACTACACAT				600 660
			CTTAGGTCTT				720
0.5			TGACATCAAC				780
25	GGCATTCAGT	CCCTGTATGG	AGACCCAAAA	GAGAACCAAC	GCTTGCCAAA	TCCTGACAAT	840 900
			CCCCAATTTG CAGGTTCTTC				960
	AGTGTTAATT	TAATTTCTTC	CTTATGGCCA	ACCTTGCCAT	CTGGCATTGA	AGCTGCTTAT	1020
20			AGTTTTTCTT				1080
30			TTATCCCAAG TGTTTTTAAC				1140 1200
	GIGAAAAAAA	ATTGGAGGTA	TGATGAAAGG	AGACAGATGA	TGGACCCTGG	TTATCCCAAA	1260
			AGGAATCGGG				1320
25			CCAAGGATCT				1380
35			AAGCAATAGC CAGCTTAATA				1440 1500
			ATGTATCATA				1560
	TTATATAAAA	TACATAATAT	TTTTCAATTT	TGAAAACTCT	AATTGTCCAT	TCTTGCTTGA	1620
40			ATAGTTACCT				1680
40			CATCCTTGGA TTGGCTCAAA		ATACTTACTT	CIGGCATAAC	1740
	TABLETT TRUE	1711111111111	11000				
		28 Protein					
	Protein Acc	ression # · F	Zos semience	2			
45	11000111 1100		Job Bedaene	•			
45			_		41	51	
45	1]	11 }	21	31 	41	1	
45	1 MKFLLILLLQ	11 ATASGALPLN	21 SSTSLEKNNV	31 LFGERYLEKF	 YGLEINKLPV	 TKMKYSGNLM	60
	1 MKFLLILLLQ KEKIQEMQHF	11 ATASGALPLN LGLKVTGQLD	21 SSTSLEKNNV TSTLEMMHAP	31 LFGERYLEKF RCGVPDVHHF	 YGLEINKLPV REMPGGPVWR	 TKMKYSGNLM KHYITYRINN	120
4550	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV	21 SSTSLEKNNV	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL	 YGLEINKLPV REMPGGPVWR VVFARGAHGD	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI	
	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF	120 180 240 300
	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI	21 STSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR LYGDPKENQR ISSLWPTLPS DAAVFNPRFY	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300
50	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequ	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE	31 	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50 55	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac:	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE tence 1 #: NM_0061	31 	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac:	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequ	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE tence 1 #: NM_0061	31 	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK	120 180 240 300 360
50 55	1 MKFLLILLLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac:	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE tence 1 #: NM_0061	31 	 YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM	 TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP	120 180 240 300 360
50 55	1 MKFLLILLQ KEKIQEMQHF YTFDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236.	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H#: NM_0061	31 	YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK	120 180 240 300 360 420
50 55 60	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequents Coding sequents Coding sequents	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV IGGDAHFDED SADDIRGIQS SERPKTSVNLI FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1 #: NM_0061 .1765 21 CGCAGCCAGA	31 LFGERYLEKF RCGVPDVHHF KINTGMADIF KINTGMADIF LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK	120 180 240 300 360
50 55	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCGGCTTC GAAAAACCAT	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPFY YFFQGSNQFE HENCE 1 #: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT	31	YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT	120 180 240 300 360 420
50 55 60	1 MKFLLILLQ KEKIQEMQHF YTFDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY VFFQGSNQFE 1 #: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGATGATTATT	31 LFGERYLEKF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC	YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTCCGC GTGCGTGGCA CTAAGTCGCT	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGTGA ACAAGTGACT TCAAAATGGA	120 180 240 300 360 420
50 55 60	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG ACGAACGCTAGA ACGAAGGCGT	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKNL AVFYSKNKYY 29 DNA sequid Accession dence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NIFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CCGATACATC	YGLEINKLPV REMPGGPVWR VVFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA CTAAGTCGCT AGCATGAGTG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGAA TGTGGACAAG	120 180 240 300 360 420
50556065	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCI ACTCTCTGAG GAGACCTAGA ACGAAGGCGT TCCCACGAGAG TGCCGCCTG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGTT CTTGTGGAGCG GAGTTGCTGC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATCAGAG CCAGCAGGCAGC CCAGCAGCCAGC CCAGCAGCCAGC	31 LFGERYLEKF RCGYPDVHHF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA ATYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC ACTCTCAGAC TGAGGCCAGC CGAGACATC GAGCCTGCTC CTTCCCGCCA	YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGCTGGCA CTAAGTCGCT AGCATGAGTG AAGGATGAGTG CTCTTCATGG CTCTTCATGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAAG CCCTGGCCAT CAGCCTTTGA	120 180 240 300 360 420
50 55 60	1 MKFLLILLQ KEKIQEMQHF YTFDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA ACGAAGGCGT CCCACGGAGAA ACGAAGGCGT CCGGCAGAGACAC	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession dence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGTT CTTGTGGGAGC AGCTGCTGC AGCCAGACCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE #: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGGCAGGCAT TGAGGGCAT TGAAGGCAAT	31 LFGERYLEKF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CCGATACATC GAGCCTGCTC GAGCCTGCCC GATCCAGCC GTGCAGGCC GGTGCAGGCC GGTGCAGGCC	YGLEINKLPV YGLEINKLPV YGAGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCTC GCAACTCGC GTGCGTGGCA CTAAGTCGCT AGCATGAGTG AGGATGAGT TGGCCTTCTATGG TGGCCCTTCATGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAAG CCCTGGCCAT CAGCCTTTGA CCTGCCCTCCC	120 180 240 300 360 420 60 120 180 240 300 360 420
50556065	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG ACGACTCTGAG ACGACGCTTCAGGACACC TCCGGGAGACTC TCTGGGGAGACTC TCTGGGGAGACTC TCTGGGGAGACTC	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKL AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT CTTGTGGAGC AGCCAGACCC CTGATGAAGG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGGCAGGAGC TGGCAGGAGCT TGAGGGAGC TGGCAGGAGCT TGAGGGAGC TGGCAGGAGCT TGAAGGCAAT GACAACATCT	31	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA CTAAGTCGCT AGCATGAGTG AAGGATGAGG CTCTTCATGG TGGCCCTCA ACCTTCAAG ACCTTCAAG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGAA ACAAGTGACT TCAAAATGAA TGTGGACAAG CCCTGGCCAT CAGCCTTTGA CCTGCCTCCC CTGTGCCTCGA	120 180 240 300 360 420 60 120 180 240 360 420 480 540
50556065	MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTAGA ACGAAGGCGT CCCACGGAGAA TGCCGCCCTG CGGGAGACAC TCTGGGAGTG TGGACTTGAT	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LIGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGT CTTGTGGAGC GAGTTGCTGC CCTGATGAAGG GTGCTCCTTG GTGTAAGG GTGCTCCTTG GGGTTCCTTG GGGGTTCCTTGTGGAGC GGGTTCCTTGTGGAGC GGGTTCCTTGTGGAGC GTGCTCCTTGTGTAAGG GTGCTCCTTTG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE #: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG TGGCAGGCAT TGAGGGCAT TGAAGGCAAT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TGAGGCCAGC CCGATACATC GAGCTGCTG CTTCCCGCCA GGTGCAGGCC TCACCTGGAG CTACCTGGAG CTCCCGCCA GTGCAGGCC TCACCTGGAG TCGCCCCAGG	YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA CTAAGTCGCT AAGGATGAGG CTCTTCATGG TGGCCCTTCAAGA AGGTGGAAC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA CCTGGCCATC CAGCCTTTGA CCTGGCTTGA CCTGGCTTGA TTCAAGTGCT	120 180 240 300 360 420 60 120 180 240 300 360 420
5055606570	MKFLLILLQ KEKIQEMQHF YTFDMNREDU LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGGA ACGAAGGCGT CCCACGGAGA TGCCGCCCTG CGGAGACACC TCTGGGAGTG TCGGAGTTGAT TGGACTTGAT TGGACTTGAT TGGACTTGAT TGGACTTGAT TGGACTTGAT TGGACTTGAT	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGT CTTGTGGAGC GAGTTGCTCC CACCAGACCC CTGATGAAGC CTGATGAAGG GTGCTCCTTT TTCCAGAGC TTTCCAGAGC TTTCCAGAGC TTTCCAGAGC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1.1765 #: NM_0061 1.765 21 CGCAGCCAGA CCAGGCGTGA TTGATTATT TTGATTATT TTGATATAT TTGAGGGTCC CCATTCAGAG TGGCAGGCAGA CCAGGAGGTGA CCAGGAGGTCT CCCAGGAGGTCT GAAGGACT GACAACATCT CCCAGGAGGT ATCAGGACTT ATCAGGACTT CAGAAGCAGC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TCAGGCCTGCTG CTGCAGCC GAGCCTGCTG CTTCCCGCCA GGTGCAGGC TCACCTGGAG TCGCCCAGG TCGCCCAGG	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTCCGC GTGCGTGGCA CTCAGGTGGCA CTCATCATGG TGGCCCTTCA ACGTTCATAG TGGCCCTTCAAAG AGGTGGAAA ACGTTCAAAG AGGTGGAAA ACGTTCAAAG AGGTGGAAA ACGAAAGAAGA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAAG CCCTGGCCTT CAGCCTTTGA CCTGCCTTGA TTCAAGTGCT TCAAGTGCT TCAAGTGCT ACAGGGCCAG GAAAAGTAGA	120 180 240 300 360 420 60 120 180 240 300 360 420 600 720
50556065	MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV ENYPKSIHS Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGAG GAGACCTGAGA ACGAAGGCGT CCCACGGAGA TCCCGCCCTG CGGGAGACT CTGGGGGT TGGACTTACGG TGGACTTACGG TCTGTACTA GGATTTACGG TCTGTACTC TGGTACTCA TGGTTTTGAGC	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LIGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGT CTTGTGGAGC AGCCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTT CTGAGAGC ACCCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTTC TTCCAGAGC ACAGAGGCAG	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGAGGTCC CCATTCAGAG TGGCAGGCAT TGAAGCAAT TGAAGCAAT TGAAGACATCT CCCAGGAGGT ATCAGAGCTT CAGAAGCAGC AGCAGCACTT CAGAAGCAGC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNFDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC CCGATACATC GAGCCTGCTG CTTCCCGCCA GGTGCAGC CTCCCCCAGC CTCCCCAGG CTCCCCAGG CTCCCCAGG CTCCCCAGG CTCCCCAGG CTCCCCAGG CTCCCCAGG CTCGCCCAGG CTGGACTGTA CAGCCATG CATCCCAGTA	YGLEINKLPV YGLEINKLPV YGLEGOVWR YUFARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA AGGATGAGG CTCTTCATGG AGGTTGAGG TGGCCCTTCA AGGTTGAAG AGGTGGAAAC ACGTTCAAAG AGGTGGAAAC AGGTGGAAAC AGGTGGAAAC AGGTGGAAAC AGGTGGAAAGAC GAGGTGCTCG GAAGGATGCTCG AGGTGCTCG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATTGA CCTGGCCTCC CTGTGCCTCC CTGTGCCTCC CTGTGCTTGA TCAAGTGCT ACAGGGCCAG TCAAGTGCTT ACAGGGCCAG ACAAGTAGA TTCAAGTGCT ACAGGCCCTT ACAGGGCCAG TAGACCTGTT	120 180 240 300 360 420 60 120 180 240 360 420 600 660 620 780
5055606570	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGAG ACCACGAGAG TCCCACGAGAG TCCCACGAGAG TCCCACGTGAG TGGACTTGAT GGATTTACGG TGGACTTGAT GGATTTACGG TCTGTACCA TGGTTTTGAGC CCTCAAGGAA	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequida Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGAGC AGCTGGTGC AGCTGCTGC AGCTGCTGC AGCTGCTGC AGCTGCTGC AGCTGCTGC AGCTGCTGC AGCTGCTGC AGGAGTCCTC TTTCCAGAGC ACAGAGGCAG ACGGGTGCTCCTTC AGGAGGCAG ACGGGGGCAG ACGAGGCCAG ACGGCCCTGTG AGGACCCTGTG AGGACCCTGTG AGGACCCTGTG AGGACCCTGTG ACGAGCCCTGTG ACGACCCCTGTG ACGACCCCTGTG ACGACCCTGTG ACGACCCTGTG ACGACCCCTGTG ACGACCCCTGTG ACGCCCTGTG ACCCCCCTCTC ACCCCCCCTCCCCCCCCCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE HE: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG CCAGGAGGCT TGAAGCAACATCT TCCAGGAGGT ATCAGGAGTT ATCAGAGCATT ATCAGAGCATT ATCAGAGCATT ATCAGAGCATT ATCAGAGCATT ATCAGAGCATT ATCAGAGCATT ATCAGAGCATT ATGAATTGTT ATGAATTGTT	31	YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGCTGGCA CTAAGTCGCT AGCATGAGT GCCCTTCATGG CTCTTCATGG TGGCCCTTCA ACCTTCAAA ACAAGAAGC CAGGTGGAA CAAAGAAGC GAGGTGCTCG ACGTCTGAA ACAAAAAAAAAA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGACAGC CCTGGCCAT CAGCCTTTGA CCTGCTTCC TTCAAGTGCT ACAGGGCCAG GAAAAGTAGA TAGACCTGT TCAAGTGCT ACAGGGCCAG GAAAAGTAGA TAGACCTGTT TGAAGCGAAA	120 180 240 300 360 420 60 120 180 240 300 360 420 600 720
5055606570	1 MKFLLILLQ KEKIQEMQHF YTFDMNREDU LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGGA ACGAAGGCGT CCCACGGAGA ACGAAGGCGT CCGCACGTGAG AGGACTTGAT GGATTTACTG TGGACTTGAT GGATTTACTG TCTGTGACTGAT GGATTTACTG TCTGGAGTG TCTGGAGTG TCGGAGTG TCTGTACTCA TGGTTTGACT TATCAAGATG	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT CTTGTGGAGC CAGTTGCTC CAGAGACCC CTGATGAAGG GTGCTCCTTG TTTCCAGAGC ACAGAGCCAGACCC CTGATGAAGC CTGATGAAGC CTGATGAAGC CTGATGAAGC CTGATGAGC ACAGAGCCAG ACAGAGCCAG CTCCTGAAAAA CTACCTGAAAA	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTGATTATT TTGATTATT TTGATATT TGAGGTCC CCAGGAGGT GACACATCT CCCAGGAGGT GACACATCT CCCAGGAGGT ATCAGGACT ATCAGACT ATCAGACTT CAGAAGCAGT AGCAGCCTT ATGAGATTGTT CAGAAGCAGC AGCAGCCCTT ATGAATTGTT CGTGTAAGAA TGGTGCAGCCT TGCTGAAGAA TGGTGCAGCCT	31 LFGERYLEKF RCGVPDVHHF RCGVPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC ACTCTCAGAC CTGAGCCAGC CCGATACATC GAGCCTGCTG CTTCCCGCCA GGTGCAGGC TCACCTGGAG TCGCCCAGG TCGCCCAGG CTGACCTGAGA CTGCCCAGG CTGACTGTA CATCCAGTA CATCCAGTA CATCCAGTA CATCCAGTA CACCTACTT GGACTCTATT	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGAGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGGTGGCA ATGAGTGGCT AAGGATGAGT AGCATGAGT AGCTTCAAG AGGTGGAAAC TGGTCTGGAA ACAAAGAAGC GAGGTGCTCG ATTGAGAAGC GAGGTGCTCG ATTGAGAAGC GAGGTTTTGCAATGC GAAGATTTGG GAAGATTTGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGCCAT CAGCCTTTGA CCTGCCTCC CTGTCTTGA TCAAGTGCT TCAAAGTAGT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TCAAGTGCT TGAACCGCAG GAAAAGTAGA TAGACCAAGA CCATGCAGGA AAGTGACTT	120 180 240 300 360 420 600 120 180 360 420 540 660 660 720 780 840 960
505560657075	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG ACGACTCAGA ACGAAGGCGT CCCACGGAGAC TCCCGCCTG TGGACTTACGG TCGGGAGACAC CTTGGGAGTG TGGACTTGAT GGATTTACGG TCTGTACTA GGATTTACGG TCTGTACTA TGGTTTGAGC CCTCAAGGAA GAAAAATGTA TATCAAGATG TACCTGGAAG	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LIGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGTT CTTGTGGAGC AGCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTTC CTGAGGC CTACCAGACCC CTGATGAAGG GTGCTCTTG AAGACTCTTC AAGACCCC CTGATGAAGG CTACCCCTGTT AAGCACCC TTTCCAGACC CTACCCCTGTT AAGACCCCCTGTT AAGACCCCCTGTT AAGACCCCCTGTT AAGACCCCCTGTT AACCCCCTGTT ATCCTGAAAA CTACCCACCT	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 21 CGCAGCCAGA CCAGGCCAGA CCAGGCCTGA TTTGAGTGTCC CCATTCAGAG TGCAGGAGT TGAAGGCAT TCAGAGCAT CCCAGGAGT ATCAGAGCTT CAGAACATCT CCCAGGAGCT ATCAGAGCTT ATGAATTGTT GCTGTAAGAA TGGTGCAGCT TGGCGAAATT TGGCGAAATT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNFDNSEPA GIEAAYEIEA RTYFFVDNY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC CCGATACATC GAGCCTGCT CTGCCCAG GTGCAGCC CTGACATC CTACCCCAG CTGCCCAG CTGCCCAGG CTGCCCAGG CTGGACTGTA CTCCAGTA CTCCAGTA CTCCAGTA CTCCAGTA CTGCCATG CTGCCATG CATCCAGTA CTCTAACATT GACTCTACTT TCTCCTTAC	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAGCTCCTC GCAACTTCGC GTGCGTGGCA AGGATGAGG CTCTTCATGG AGGTGCAACT AGCTTCAAG AGGTGCAAC ACTTCAAG AGGTGCAAC AGGTGCAAC ATTGCAATGC ATTGCAATGC CAAGATTGC CAGGCCAGA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATTGA TGTGGCCTCC CTGTGCCTCC CTGTGCTTCA CCTGGCTCT ACAGGCCAT ACAGGCCAT ACAGGCCAT ACAGGCCAT ACAGGCCAT TCAAGTGCT TCAAGTGCT TCAAGTGCT ACAGGCCAG AAAGTAGA TTCAAGTCT TGAAGCCAAA CCATGCAGGA AACTAGCTT TGAAGCCAAA CCATGCAGGA AAGTGACTTG TGATTAATCT	120 180 240 300 360 420 120 180 240 360 420 480 600 660 720 840 900 960 1020
5055606570	MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequence	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERFKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC CACACACCGCTTC CTGAGAAACCAT AATCCAAGCG TTGTGGAGGT CTTGTGGAGG GAGTTGCTGC AGCAGACCC CTGATGAAACCT TTTCCAGAGC ACAGAGCCAG CTGCTCCTCT CTACCCACCT CTACCCACCT CTACCCACCT CTACCCACCT CTCCTCTCCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !#: NM_0061 .1765 21 CGCAGCCAGA CCAGGCCAGA TTTGATATT TTGGAGGTCC CCATTCAGAG TGGCAGCCAT ACAGGAGCT TGAAGGCAT ACAGGACT ACAGGACT TCAGAGCT TCAGAGCT TCAGAGCAT TCAGAGCT TCAGAGCAT TCAGAGCAT TCAGAGCAT TCAGAGCAT TCAGAACT TGTTAAGAA TGGTGCAACT TGGCGAAATT ACATCCATGC	31	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTACGTGGCA CTAAGTCGCT AGCATGAGTG TGGCCCTTCATGG TGGCCCTTCATGG TGGCCCTTCAAA ACAAGAAGA CTCTCAAAG ACGTGGAAA CAAAGAAGC GAGGTGCTCG ATTGGAAAG ACTTCGAAG TTGCAATGC GAAGATTTGG CAAGATTTGC CAAGCCCGG CTGGCCAGA ATTTCCCCGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TGTGGCCATC CCTGTGCTTGA CCTGGCTCCC CTGTGCTTGA TCAAGTGGT ACAGGGCAG GAAAAGTAGA TAGACCTGTT TGAAGCGAAA CCATGCAGAA CCATGCAGAA CCATGCAGAA CCATGCAGAA CCATGCAGAA CCATGCAGAA CCATGCAGAAA CCATGCAGAA CCATGCAGAAA CCATGCAGAAA CCATGCAGAAA CCATGCAGAAA CCATGCAGGAAA	120 180 240 300 360 420 120 180 240 360 420 480 600 660 720 840 900 960 1020
505560657075	MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNLI FGFPNFVKLI AVFYSKNKYY 29 DNA sequid Accession Lence: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT TATTGGGGGTT CTTGTGGAGC TTGTGGAGC AGCCAGACCC CTGATGAAGG GTGCTCCTTG AAGAACTCTTG AAGAACTCTTG ACCAGAGCCC CTGATGAAGG GTGCTCTTG ACGAGCCC CTCCTGTGAAAA CTACCCACTTTTCCCTCTCCC CTCCCTCTCCCC CTCCCCAGTTCA TTATTTTTCC	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAGT TGCAGGAGT ATCAGGACTT CAGAAGCAT CAGAACATCT CCCAGGAGGT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT ATCAGGACT TCAGAATGT CTGTAAGAA TGGTGCAGC TGCCGAAATT ACATCCATGC CCTCTCAGTT TTGAGGCCC TTTAGAGGCCC	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC CTGACGCCAGC CTGACATC CTGCCCCCC CTGCCAGC CTGACATC CTCCAGCT CTGCCCCC CTGACATC TCACCTC CATCCAGAC TCACCTC CATCCAGAC TCACCTC CATCCAGAC TCACCTC CATCCAGAC TCACCTC CATCCAGAC CTCCAGTC CATCCAGTC CTCCTACCT CCTCAGTC CCTCAGTCT CCTCCTACC CCTCAGTCT CCTCCTACC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC CCTCAGTCTC	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA AGGATGAGG CTCTTCATGG AGGATGAGG CTCTTCATGG AGGTTGGAAA ACAAAGAAC AGGTGGAAAC TGGTCTGAAA ACAAGAAGC CAAGTTCCCCGG ATTGCAATGC GAAGATTTGC CTGGGCCAGA ATTTCCCCGG CAGGCCTGC CTGCCTCC CAGGCCTGC CTGCCTGC CTGCCTGC CTGCCTGC CTGCCTGC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATTGA CCTGGCCTCC CTGTGCCTTC CTGGTCTCA ACAGGCCAT ACAGGCCAT ACAGGCCAT ACAGGCCAG TCAAGTGATT TCAAGTGCT ACAGGCCAG AAAGTAGA TAGACCTGTT GAAACTAGA ACATGCAGAA CCATGCAGAA CCATGCAGAA ACATGCAGAA ACATGCAGAA ACATGCAGAA AGGCTCTCTA AGAAGGAAAA AGGCTCTCTA ACGTGATGAAA	120 180 240 300 360 420 600 120 180 240 360 420 780 840 960 1020 1080 1020 1140 1200
505560657075	1 MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT GGGACACCC ACTCTCTGAG ACCACGAGAG TCCCGCCTG CCGGAGACAC TCTGGGAGT TGGACTTGAT GGATTTACGG TGGACTTGAT GGATTTACGG TGGACTTGAT GGATTTACGG TGGACTTGAT GGATTTACGG TGGACTTGAT GGATTTACGG TGGACTGGAGA GAAAAATGTA TATCAAGATG TACCAGGAGA GCGTAGACT GCGTAGACT CCCCTTGGGACT CCCCTTGGGACT CCCCTTGGAAC CCCTTGGAAC CCCTTGGAACT CCCCTTGGAACT CTCTTTT CTCTTTT CTCTTT CTCTTT CTCTTT CTCTTT CTCTTT CTCTTT CTCTTT CTCTTT CTCTT CTCT	11 ATASGALPLN LGLKVTGQLD DYAIRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL EFGPPNFVKKI AVFYSKNKYY 29 DNA sequidance: 236. 11 ACAGCTCCCC CACCCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGTT CTTGTGGAGC CTGATGAAGC GTGCTCCTC CACAGCAGCCCC CTGATGAAGC CTGATGAAGC CTGATGAAGC CTGCTCTCCC CCGCTGTG CTACGCCTGT CTACGCCTGTC CTCCTCTCCC GCCAGTTCA CTCCTCTCCC GCCAGTTCA CTCCTCTCAA	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE !!! NM_0061 .1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG CCAGGAGGTT GAAAGCACAT CCCAGGAGGT ATCAGAGCAT ATCAGAGCT ATCAGAGCT ATGAATTT CTGAGAGCAT TGAGAGCAGC TGAGAGCAGC TGAGAGCAGC TGAGAGCAGC TTGAGAGCAGC TTGAGAGCT TTAGAGGCC TTAACTAACTG	31	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA AGGATGAGG CTCTTCAAGG CTCTTCAAGG CTCTTCAAGG AGGTGGAAAC AGGTGGAAAC AGGTGGAAAC AGGTGGAAAC AGGTGGAAAC AGGTGGAAAG AGTTGCAAGG CAAGGATTTGC CAAGGTTGCAAGG CAAGGATTTGC CAAGGCCTGC CAAGGCCTGGC CAGGTGCCTGG CAGGTGCCTGG CAGGTGCCTGC CAGGGCAGA ATTTCCCCGG CAGGGCAGG CAGGGGATG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT CAGCCTTTGA CCTGGCCTCC CTGTGCTTGA CCTGGCTAG AAAAGTAGA ACAGTGACT ACAGGGCAG GAAAAGTAGA ACAGTGACT TGAAGCGAA CCATGCTTGA CAGGGCCAG GAAAAGTAGA AGGTACTT TGAAGCGAAA CCATGCAGGA AAGTGACTT TGAAGCGAAA CCATGCATGA AAGTGACTT AGAACGAAA AAGTGACTT AGAACGAAA AAGTGACTT AGAACGAAA AAGTGACTCT AGAAGGAAGA AGGTCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGTGATGAA TGATGCATCT	120 180 240 300 360 420 120 180 240 360 420 480 660 660 720 780 840 900 1020 1080 1140 1200 1200 1260
50 55 60 65 70 75	MKFLLILLQ KEKIQEMQHF YTFDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTGAG ACGAAGCGT CCCACGAGAG ACGACGT CCGGAGACCC TCTGGGAGT CGGAGACTC TCTGGGAGT TGGACTTCA TGGATTTACGG TCTTAAGGA TCTTAAGGA GAAAAATGTA TATCAAGATG TACCTGAAG GAAAATGTA TACCAGAAG GCATAGACT CGCAGTAGACT CCCCTTGGAA GCCTTGGAA GCCTTGGAA GCCTTGGAA GCCTTGGAA GCCCTGGAA GTCCCAGAGT	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGAGC AGCTGCCC CTGATGAAGC CTGATGAAGC GTGCTCCTC TTTCCAGAGC GTGCTCTTC TTTCCAGAGC GTGCTCTTC TTTCCAGAGC GTGCTCTTC TTACCAGCCTTC TTACCACCC CTACCTCTCCC CCCCGCTTCA CCCCCCTCTCA CCCCCCTCTCA CCCCCTCTCA CCCCCTCTCA CCCCCTCTCA CCCCTCTCAA CCCAGCGTCA	21 SSTSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISLWPTLPS DAAVFNPRFY YFFQGSNQFE H: NM_0061 .1765 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGGAGGTCC CCATTCAGAG GCAGCCAGA GCAGCCAGT GAAGGCAT GACAACATCT CCAGGAGGT TGAAGGCAT TGAAGGCAT TGAGGACTT CAGAAGCAT TCAGAGCT TCAGAGGCT TCAGAGCT TCAGAGCT TCAGAGCT TCAGAGCT TCAGAATTGT TCTGTAAGAA TGGTGCAGCT TGGCGAAATT TTAGAGGCC TTGAGGGCCT TTAGAGGCC TTGAGGACT TTAGAGGCC TTTAGAGGCC TAACTAACTG CCTCTCAGTT TTAGAGGCC TAACTAACTG TCAGCTAAG	31 LFGERYLEKF RCGYPDVHHF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGCA TGAGGCCAGC CCGATACATC GAGCCTGCTC GCTCCACGC GCTGCACGC TCACCTGGAG TCGCCCCAGG CTGCCCCAGG CTGCCCCAGG CTGCCCAGG CTGCCCAGT TTCCTTAC CTTCCTTAC CCTCAGTCTG CCTGGATCAG CCGCCTTCC CTTCCTGGAT TTCCCTGAGT TTCCTGAGT TTCCCTGAGT TTCCTGAGT TTCCCTGAGT TTCCTGAGT TTCCCTGAGT TTCCTGAGT TTCCCTGAGT TTCCCTGAGT TTCCCTGAGT TTCCCTGAGT TTCCCTGAGT TTC	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTAGCTGCTCATGGC AGCATGAGTG TGGCCCTTCATGG TGGCCCTTCAAAGAAGA CTAAAGAAGC CAAGAGTGCTCGAATTGCAATTGCAATGC GAGGTGCTCGAATTTGCAATGC GAGGTGCTCG ATTGCAATGC GAAGATTTGC CAGGCCAGA ATTTCCCCGG CAGTGCCTGC CAAGGGATG CTGGCCAGG CTGGCCAGG CTGCCTAAGGGGGTGCTCC CAAGGGATGCTCC CAAGGGATGCTCC CAAGGGGATG CTTAAGTGGGG	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51. AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATGGA TCTGGCCAT CAGCCTTTGA CCTGCCAG CCTGCCAG CAGCAGTGACT TCAAGTGAT TCAAGTGAT ACAGGGCAG GAAAAGTAGA CCATGCAGA AGGTGACTT TGAAGCGAAA CCATGCAGGA AGGTGATTAATCT AGAAGGAAGA AGGCTCTCTA ACGTGATTAA ACGTGATTAA ACGTGATTAAATCT TCAAGGAACA TGATGCATCA TCATGCATGA TGATGCATCA TCATGCTGAC	120 180 240 300 360 420 120 180 240 300 360 480 540 660 720 780 960 1020 960 1020 1260 1260 1260 1320
505560657075	MKFLLILLQ KEKIQEMQHF YTFDMNREDU LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ GCTTCAGGGT CGGGACACCC ACTCTCTGAG ACGACGCCTG CGGAGACACC TCTGGGAGT TCGGACTTGAT TGGACTTGAT TGGATTTACG TCTGTACTCA TGGTTTACGA TCTGTACTCA TGGTTTACGA TCTGTACTCA TGGTTTACGA TCTGTACTCA TGGTTACTCA TGGTTACTCA TGGTTACTCA TGGTTACTCA TGGTTACTCA TGGTTACTCA TGGTTACTCA TGGTAGACTC TCTGGAAGT TACCTGGAAG TCCCTGGAAG TCCCTTGGAA TGCCTGGAAGT TCTGGACTCT TCTGGACTCT TCTGGACTCT TCTGGACTCT TCTGGACTCT TCTGGACTCT TCTGGACTCT TCTGGACTCT TCTGGAAGT TCCCCAGAGT CCATGTAAGT CCATGTAAGT	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession lence: 236. 11 ACAGCTCCCC CACCGCTTC GAAAAACCAT AATCCAAGCG TTGTGGGGGT CTTGTGGAGC CAGGTTGCC CAGGACCCC CTGATGAAGC CTGATGAAGC CTGATGAAGC CTGATGAGC ACAGACCCC CTGATGAGC ACAGACCCC CTGATGAGC ACAGACCCC CTGATGAGC ACAGACCCC CTCACCCC CTCACCCCC CTCACCCCC CCCAGCTTCA ACCCCCCCCCC	STSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1.1765 1 #: NM_0061 1.1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGAGAGGTCC CCATTCAGAG TGACAGACATCT CCCAGGAGGTCT ATCAGAGACTT ATCAGAGTTT ATCAGAGTTT ATCAGAGTTT ATGAATGTT TGAAGTGTT TGAAGTGTT TTGAATGTT TTGAATGTT TTGAATGTT TTGAATGTT TTGAATTGTT TTGAATTGTT TTGAATTGTT TTGAATTGTT TTGAAGTCATCT TGCTGAAATTCTT TGCTGTAAGAA TGCTGCAACTT TTAGAGGCCG TAACTAACT TCCAAGCTCT TACAGCTAAG TCCAAGCTCT	31 LFGERYLEKF RCGYPDVHHF KINTGMADIL NLFLTAVHEI LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA TCAGGCCAGGC CCGATACATC GAGCCTGCTC CTTCCCGCA TCACCTGGAG TCGCCCAGGC TCACCTGGAG TCACCTGGAG TCACCTGGAG TCACCTGAGT TCACCTCAGTCT CATTCCAGTA TCAGCCCATG CTGAACATT CATTCCAGTA TCAGCCCATG CTGACTGT CCTCACCTC CCTCAGTCT GCTGAACATT TCTCCTTAC CCTCAGTCT CCTCAGTCT CCTCAGTCT CCTCAGTCT CCTCAGTCT CCTGGATCAG CCGGCTTTCC TGTCCTGAGT GCTGGAGAGA	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGRGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCTC GCAACTTCGC GCAACTTCGC GTGCGTGGCA ACTAGAGTGGC AGGATGAGGG ACTTCAAG AGGTGAAGC TGGCTCGAA ACCTTCAAG AGGTGCTG ACTTCAAG AGGTGCTG ACTTCAAG AGGTGCTCG ATTGGAAAG CTGGCCAATCC GAAGATTTGG CTGGCCAATC CTGGCCAAGC CTGGCCAAGC CTGGCCAGGC CTGCTCAGGC CAAGGGGATC CTGGCCAGGC CTAGTCCGG CAAGGGGGTC CTAAGTGCGG CAAGGGGGT CTTGCTCAGGC GAAGGGGGT CTTAGTCCCAG CCAGTGCCTGC CTAAGTGGGG GCCTCTGCCA	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT CAGCCTTTGA CCTGGCCTCC CTGTGCTTGA CCTGGCTAG AAAAGTAGA ACAGTGACT ACAGGGCAG GAAAAGTAGA ACAGTGACT TGAAGCGAA CCATGCTTGA CAGGGCCAG GAAAAGTAGA AGGTACTT TGAAGCGAAA CCATGCAGGA AAGTGACTT TGAAGCGAAA CCATGCATGA AAGTGACTT AGAACGAAA AAGTGACTT AGAACGAAA AAGTGACTT AGAACGAAA AAGTGACTCT AGAAGGAAGA AGGTCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGGCTCTCTA AGGTGATGAA TGATGCATCT	120 180 240 300 360 420 180 240 360 420 480 660 660 720 780 840 900 1020 1020 1020 1120 1200 1200 1200
50 55 60 65 70 75	MKFLLILLQ KEKIQEMQHF YTPDMNREDV LAHAFGPGSG KYVDINTFRL FKDRFFWLKV EPNYPKSIHS NFQGIGPKID Seq ID NO: Nucleic Ac: Coding sequ 1 GCTTCAGGGT CGGGACACCC ACTCTCTGAG ACGACTAGA ACGAAGGCGT CCCACGGAGAC TCTCGGAGT TGGACTTGAT GGATTTACGG TCTGAGGACAC TCTGGAGTAGAAAATGTA TATCAAGATG TATCAAGATG TACCTGGAAG GCGTAGACT TCTGGAAG CCTTGGAAG CCTTGGAAG CCTTGGAAG CCTTGGAAG CCTTGGAAG CCCTTGGAAG CCCTTGGAAG CCCTTGGAAG CCCTTGGAAG CCCTTGGAAG CCCTTGGAAG CCCTTGGAAG CCCTTGGAAG CCTGGTCTTT	11 ATASGALPLN LGLKVTGQLD DYALRKAFQV LGGDAHFDED SADDIRGIQS SERPKTSVNL FGFPNFVKKI AVFYSKNKYY 29 DNA sequid Accession dence: 236. 11 ACAGCTCCC CACCCGCTTC GAAAAACCAT TTGTGGGGTT CTTGTGGAGC TTGTGGAGC CTGATGAAGG GTGCTCTC AAGACCTCTTC AAGACTCTC TTTCCAGAGC CTAGCCTGTT ATCCTAGAGC CTACCCGCTTT CTTCCAGAGC CTACCCGCTTC CCCCCTCCC CCCCGGTTCA TTATTTTCC ACCCAGCTCA CCCAGCTCA CCCAGCCTCA CCCAGCCTCA CCCAGCCTCA CCCAGCCCC GATGAGTGTG CCCGAGCCCC GATGAGTGTG	STSLEKNNV TSTLEMMHAP WSNVTPLKFS EFWTTHSGGT LYGDPKENQR ISSLWPTLPS DAAVFNPRFY YFFQGSNQFE 1.1765 1 #: NM_0061 1.1765 21 CGCAGCCAGA CCAGGCGTGA TTTGATTATT TTGAGAGGTCC CCATTCAGAG TGACAGACATCT CCCAGGAGGTCT ATCAGAGACTT ATCAGAGTTT ATCAGAGTTT ATCAGAGTTT ATGAATGTT TGAAGTGTT TGAAGTGTT TTGAATGTT TTGAATGTT TTGAATGTT TTGAATGTT TTGAATTGTT TTGAATTGTT TTGAATTGTT TTGAATTGTT TTGAAGTCATCT TGCTGAAATTCTT TGCTGTAAGAA TGCTGCAACTT TTAGAGGCCG TAACTAACT TCCAAGCTCT TACAGCTAAG TCCAAGCTCT	31 LFGERYLEKF RCGVPDVHHF KINTGMADIL LPNPDNSEPA GIEAAYEIEA RTYFFVDNQY YDFLLQRITK 15.1 31 AGCCGGGCCT CCTGTCAACA ACTCTCAGAC TCGAGGCCAGC CTGACATCCAGCT GAGCCTGCT GATCACTCAGAC TCACCTCGAC CTGCCAGGC CTGACTTCACTC CTTCCAGCT CATTCCAGTA CTCCTACTC CCTGAAGATT CACCTCACTC GCTGAAGATT TCTCCTACTC CCTGAAGATT TCTCCTACT CCTCAGTCT CCTCACTC CCTGGATCAT TCTCCTAC CCTCAGTCT CCTCGGTCAG TCTCCTACCT CCTCGATCAC CCTCAGTCT CCTCGGTCAG CCTCGATCAG CCTGGATCAG CCTCGAGTCAG CCTGGATCAG CCTGGATCAG CCTGGAGAGAA TGATCAGCTC	YGLEINKLPV YGLEINKLPV YGLEINKLPV YGARGAHGD GHSLGLGHSS LCDPNLSFDA RNQVFLFKDD WRYDERRQMM TLKSNSWFGC 41 GCAGCCCCTC GCAACTTCGC GTGCGTGGCA AGGATGAGG CTCTTCAAGG CTCTTCAAGG AGGTGCAAAC AGGTGGAAAC AGGTGGAAAC TGGTCTGGA ATTGCAATG CAAGAAGA CTGGCCTTC ATTGCAATG CAAGAATTCCCCGG CAGGTGCCTGC CTAAGTGCCTGC CTGCCTGCCA CTTGCCCTCC CTTGCCCTCC	TKMKYSGNLM KHYITYRINN FHAFDGKGGI DPKAVMFPTY VTTVGNKIFF KYWLISNLRP DPGYPKLITK 51 AGCACCGCTC GGTGTGGTGA ACAAGTGACT TCAAAATTGAA TCTGGCCTCC CTGTGCCTTCC CTGTGCTTGA TCAAGTGCTT ACAGGGCCAG AAAGTAGA TCAAGTGCTT TGAAGCCTTT TGAAGCCTTT TGAAGCCTT TGAAGCCTT TGAAGCCTT TGAAGCCTT TGAAGCCTT TGAAGCCTT TGATCAGAA ACTTGCTTAA CCATGCAGAA CCATCCAGAA TGATCAAA TGATGCATCT TCATGCTTCA ACGTGATCAA TGATGCATCA TCCTCCAGGA TGCCTTCCCT	120 180 240 300 360 420 120 120 240 300 360 420 720 780 840 900 960 1020 1140 1200 1240 1200 1320 1380

	WO 02	2/086443					
	CTTGCAGAGT	CTCCTGCAGC	ACCTCATCGG	GCTGAGCAAT	CTGACCCACG	TGCTGTATCC	1560
	TGTCCCCCTG	${\tt GAGAGTTATG}$	AGGACATCCA	TGGTACCCTC	CACCTGGAGA	GGCTTGCCTA	1620
	TCTGCATGCC	AGGCTCAGGG	AGTTGCTGTG	TGAGTTGGGG	CGGCCCAGCA	TGGTCTGGCT	1680
5	TAGTGCCAAC	CCCTGTCCTC	ACTGTGGGGA	CAGAACCTTC	TATGACCCGG	AGCCCATCCT	1740
)		TTCATGCCTA					1800 1860
		AAGCCAGGAT AGTGTGAGTG					1920
		GAAAAAAAGG					1980
		GGGAGATACA					2040
10		TGGGAAGTAC					2100
10		AAAGAGAAGC					
	Seq ID NO:	30 Protein	sequence:				
1 ~	Protein Acc	cession #: N	TP_006106.1				
15							
	1	11	21	31	41	51	
	ļ)	60
	GCTTCAGGGT	ACAGCTCCCC CACCCGCTTC	CGCAGCCAGA	AGCCGGGCCT	CCAACCGCCTC	COTOTOTOTO	120
20	CGGGACACCC	GAAAAACCAT	CCAGGCGTGA	ACTICTICACACA	GCAACTICGC	ACAAGTGACT	180
20	CACACCTACA	AATCCAAGCG	TTCCACCTCC	TGAGGCCAGC	CTAAGTCGCT	TCAAAATGGA	240
	ACGAACCIAGA	TTGTGGGGTT	CCATTCAGAG	CCGATACATC	AGCATGAGTG	TGTGGACAAG	300
		CTTGTGGAGC					360
		GAGTTGCTGC					420
25	CGGGAGACAC	AGCCAGACCC	TGAAGGCAAT	GGTGCAGGCC	TGGCCCTTCA	CCTGCCTCCC	480
	TCTGGGAGTG	CTGATGAAGG	GACAACATCT	TCACCTGGAG	ACCTTCAAAG	CTGTGCTTGA	540
	TGGACTTGAT	GTGCTCCTTG	CCCAGGAGGT	TCGCCCCAGG	AGGTGGAAAC	TTCAAGTGCT	600
	GGATTTACGG	AAGAACTCTC	ATCAGGACTT	CTGGACTGTA	TGGTCTGGAA	ACAGGGCCAG	660
30	TCTGTACTCA	TTTCCAGAGC	CAGAAGCAGC	TCAGCCCATG	ACAAAGAAGC	GAAAAGTAGA	720 780
30		ACAGAGGCAG GGTGCCTGTG					840
		CTACGCCTGT					900
	TATCALGATG	ATCCTGAAAA	TGGTGCAGCT	GGACTCTATT	GAAGATTTGG	AAGTGACTTG	960
		CTACCCACCT					1020
35	GCGTAGACTC	CTCCTCTCCC	ACATCCATGC	ATCTTCCTAC	ATTTCCCCGG	AGAAGGAAGA	1080
	GCAGTATATC	GCCCAGTTCA	CCTCTCAGTT	CCTCAGTCTG	CAGTGCCTGC	AGGCTCTCTA	1140
	TGTGGACTCT	TTATTTTTCC	TTAGAGGCCG	CCTGGATCAG	TTGCTCAGGC	ACGTGATGAA	1200
		ACCCTCTCAA					1260
40		CCCAGCGTCA					1320
40		CCCGAGCCCC					1380 1440
		GATGAGTGTG TCCCAGCTTA					1500
		CTCCTGCAGC					1560
		GAGAGTTATG					1620
45		AGGCTCAGGG					1680
		CCCTGTCCTC					1740
	GTGCCCCTGT	TTCATGCCTA	ACTAGCTGGG	TGCACATATC	AAATGCTTCA	TTCTGCATAC	1800
	TTGGACACTA	AAGCCAGGAT	GTGCATGCAT	CTTGAAGCAA	CAAAGCAGCC	ACAGTTTCAG	1860
~ 0		AGTGTGAGTG					1920
50		GAAAAAAAGG					1980 2040
		GGGAGATACA TGGGAAGTAC					2100
		AAAGAGAAGC				GIAAAGAAAC	2100
	IGIIGAAAAI	AMAGAGAAGC	MAIGIGAAGC	Mannana	MANAGAM		
55							
	Sea ID NO:	31 DNA sequ	ience				
		id Accession		quence			
	Coding sequ	ience: 64-2	754				
C O							
60	1	11	21	31	41	51	
					maamaaaaaa	GCCCGGCATC	60
	GGCAGGTCTC	GCTCTCGGCA	CCCTCCCGGC	CTCCCCCCTTC	CCCTGGCCCT	GCCCGGCATC	120
	CCGATGGCCG	TCATCTTCAC	TCGTGATGGT	GIGCGCGGAG	AAAAGGTGAT	ACTTAATGTA	180
65	CCTTCTAAAC	TAGAGGCAGA	CAAAATAATT	GGCAGAGTTA	ATTTGGAAGA	GTGCTTCAGG	240
00	TCTGCAGACC	TCATCCGGTC	AAGTGATCCT	GATTTCAGAG	TTCTAAATGA	TGGGTCAGTG	300
	TACACAGCCA	GGGCTGTTGC	GCTGTCTGAT	AAGAAAAGAT	CATTTACCAT	GTGCTTCAGG TGGGTCAGTG ATGGCTTTCT	360
	GACAAAAGGA	AACAGACACA	GAAAGAGGTT	ACTGTGCTGC	TAGAACATCA	GAAGAAGGTA	420
7 0	TCGAAGACAA	GACACACTAG	AGAAACTGTT	CTCAGGCGTG	CCAAGAGGAG	ATGGGCACCT	480
70	ATTCCTTGCT	CTATGCAAGA	GAATTCCTTG	GGCCCTTTCC	CATTGTTTCT	TCAACAAGTT	540
	GAATCTGATG	CAGCACAGAA	CTATACTGTC	TTCTACTCAA	TAAGTGGACG	TGGAGTTGAT	600
	AAAGAACCTT	TAAATTTGTT	TTATATAGAA	AGAGACACTG	GAAATCTATT	TTGCACTCGG	660
	CCTGTGGATC	GTGAAGAATA	TGATGTTTTT	GATTTGATTG	CTTATGCGTC	AACTGCAGAT AAATGACAAC	720
75	GGATATTCAG	CAGATCTGCC	CCTCCCACTA	TTTCNACTTT	TCCAAACTAC	TAGACCTGGT	840
15	ACTACACTCC	CCCTCCTTTC	TGCCACAGAC	AGAGATGAAC	CGGACACAAT	GCATACGCGC	900
	CTGAAATACA	GCATTTTGCA	GCAGACACCA	AGGTCACCTG	GGCTCTTTTC	TGTGCATCCC	960
	AGCACAGGCG	TAATCACCAC	AGTCTCTCAT	TATTTGGACA	GAGAGGTTGT	AGACAAGTAC	1020
0.0	TCATTGATAA	TGAAAGTACA	AGACATGGAT	GGCCAGTTTT	TTGGATTGAT	AGGCACATCA	1080
80	ACTTGTATCA	TAACAGTAAC	AGATTCAAAT	GATAATGCAC	CCACTTTCAG	ACAAAATGCT	1140
	TATGAAGCAT	TTGTAGAGGA	AAATGCATTC	AATGTGGAAA	TCTTACGAAT	ACCTATAGAA	1200
	GATAAGGATT	TAATTAACAC	TGCCAATTGG	AGAGTCAATT	TTACCATTTT	AAAGGGAAAT	1260
	GAAAATGGAC	ATTTCAAAAT	CAGCACAGAC	AAAGAAACTA	ATGAAGGTGT	TCTTTCTGTT AGTAAACAAT	1320
85	GIAAAGCCAC	TGAATTATGA	AGAAAACCGT	CAAGTGAACC	TGAACACACC	CTTGGTTACA	1440
05	GTTCATCTCA	GGGATCTGGA	TGAGGGGGCCT	GAATGCACTC	CTGCAGCCCA	ATATGTGCGG	1500
	ATTAAAGAAA	ACTTAGCAGT	GGGGTCAAAG	ATCAACGGCT	ATAAGGCATA	TGACCCCGAA	1560

	770777000	GCAATGGTTT	* * CCO * C* * *	7 7 7 mmaa 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	****************	TTCCNTCNCC	1620
							1680
		TTTCAGGGTC AGTTGTATAA					1740
		TTGCTGTGAA					1800
5							
3		TCATTTGCAA					1860
		TCCATGGAGC					1920
		GGAGCCTCAC					1980
		TTCAAGAATA					2040
10		TATTGAGAGT					2100
10		GTACAGGAGT					2160
	ATAGCACTGC	TCTTTTCTGT	ATTGCTAACT	TTAGTATGTG	GAGTTTTTGG	TGCAACTAAA	2220
		TTCCTGAAGA					2280
		ATAGAGTGTG					2340
		TTTGTGGTAC					2400
15	GAAATGATGA	AAGGAGGAAA	CCAGACCTTG	GAATCCTGCC	GGGGGGCTGG	GCATCATCAT	2460
		CCTGCAGGGG					2520
	GAGTGGCACA	GTTTTACTCA	ACCCCGTCTC	GGTGAAAAAT	TGCATCGATG	TAATCAGAAT	2580
		TGCCATCCCA					2640
		CTGTGGGCTG					2700
20		AACCCAAATT					2760
20		TTAGGTCTTT					2820
		ACATGTATGT					2880
		TTTTTAAAGC					2940
	CCAATTTATA	TTTTTAAAGC	CAGTIGITGC	TIATCITITE	CAAAAAGIGA	AAAAIGIIAA	
25		TGGTAAATCT					3000
23		TTTTACGGAT					3060
		TATGCTAATA					3120
		AATATTGAGT					3180
		ATTAAAAATG					3240
20		TTTGACTTTG					3300
30		TATAGTTGGA					3360
	ATTTAAAATG	AAATGAGAAC	AAAGAGGAAA	ATGGTAAAAA	CTTGAAATGA	GGCTGGGGTA	3420
	TAGTTTGTCC	TACAATAGAA	AAAAGAGAGA	GCTTCCTAGG	CCTGGGCTCT	TAAATGCTGC	3480
		AGTCTATGAG					3540
		TAAACTTTTC					3600
35		TTGCAGTCTG					3660
		TGCAGCTGGG					3720
		GGAGCTAATA					3780
		GTTTCTATTC					3840
		CTCCTAGAGT					3900
40		GAGATTGATT					3960
70		TACAAAATTT					4020
		GAAAGCCAGG					4080
		GAGATTCCCT					4140
15		CAGTTTGCTT					4200
45		AAAAGAAAAA					4260
		AGTAGGTTAT					4320
		AGGCCACAAG					4380
		GGCTTGGCAC					4440
~ ^	GTCCGGTGAG	GGATCAGCCA	ACCTCTTCTC	TATGGCTCAC	CTTATTTGGA	GTGAGAAATC	4500
50	AAGGAGACAG	AGCTGACTGC	ATGATGAGTC	TGAAGGCATT	TGCAGGATGA	GCCTGAACTG	4560
	GTTGTGCAGA	ACAAACAAGG	CATTCATGGG	AATTGTTGTA	TTCCTTCTGC	AGCCCTCCTT	4620
	CTGGGCACTA	AGAAGGTCTA	TGAATTAAAT	GCCTATCTAA	AATTCTGATT	TATTCCTACA	4680
		TCTAATTTGA					4740
	CCCCCCCCC	TTTTTTTTTG	AGACGGAGTC	TCGCTCTGAC	GCACAGGCTG	GAGTGCAGTG	4800
55		CTGCTCACTG					4860
		TAGCTGGGAC					4920
		ACGGGGTTTC					4980
		CTCGGCCTCC					5040
	COTTCOCCIGC	GTTTAAAGTC	CTCTTCTTTT	ANTOTANTO	TTTTCAACAT	GTGTGAAAGT	5100
60		AATTGGATCA					5160
50						GTAAGCCTAG	5220
	GGGAGAAAGA	ACTCAGGGCA	TAMAMIATIO	CACHUMUTANC	TAACCCCTTAC	TGAAACACCC	
	TIGCIGAAAI	TTCCTGCTGT	MACCAGAAGC	CAGIIIIAIC	COMPAGENCE	CAAAACACCC	5340
						CAAGACTTTA	5400
65						ATAAAACCTC	
03						TATGCCCGAA	5460
	TTTGTAATTC	TTTTCTCTCA	AATGAAAATT	TAATTTTAGG	GATTCATTTC	TATATTTTCA	5520
	CATATGTAGT	ATTATTATTT	CCTTATATGT	GTAAGGTGAA	ATTTATGGTA	TTTGAGTGTG	5580
	CAAGAAAATA	TATTTTTAAA	GCTTTCATTT	TTCCCCCAGT	GAATGATTTA	GAATTTTTTA	5640
						AAAATGCAGT	5700
70	GGGGTTTGTT	TTGCAATGTT	TTAAACAGAG	TTTTAGTATT	GCTATTAAAA	GAAGTTACTT	5760
	TGCTTTTAAA	GAAACTTGGC	TGCTTAAAAT	AAGCAAAAAT	TGGATGCATA	AAGTAATATT	5820
						TTGCTGTATT	5880
						CTGGCATGGA	5940
						ACAATGTTTC	6000
75						TCACTATTTT	6060
						TTGATCGGGT	6120
	ALIMAN Y Y COL	TITUCAGAIG	Chhymynuuc	CACACALAGA	CAGGAAAAGA	ACACTGACAC	6180
							6240
	AGGGGTTTTA	CITTGAGGAC	CAGIGTAGTC	AAGGGAAAAC	TOWGI TWAY	AAGAAAAGCA	6300
80	GGCAATATTG	CAGTCTTGAT	TCTGCCACTT	ACAGGATAGA	CANDCOURS	ACTTTAATGA	
au	CAAGATGATC	CAACCATAAA	GGTGCTCTGT	GCTTCACAGT	GAATCTTTTC	CCCATGCAGG	6360
	AGTGTGCTCC	CCTACAAACG	TTAAGACTGA	TCATTTCAAA	AATCTATTAG	CTATATCAAA	6420
	AGCCTTACAT	TTTAATATAG	GTTGAACCAA	AATTTCAATT	CCAGTAACTT	CTATTGTAAC	6480
	CATTATTTTT	GTGTATGTCT	TCAAGAATGT	TCATTGGATT	TTTGTTTGTA	ATAGTAAAAT	6540
0.5	ACCGGATACA	TTTCACGTGT	CCTTCAGTAT	TGATTTGGTT	GAATATTGGG	TCATAATGGT	6600
85	TGAGAAGCAT	GGACACTAGA	GCCAGAATGC	TTGGATATGA	ATCCTGGATC	TGTCACTTAC	6660
	TTCTGTGTGA	CCTTTGAAAG	GCTACTTATT	TCCTCTCTTA	GCTTTCTCAT	TAAAATCAAT	6720
	GAACAATGCC	AGCCTCATGG	GGTTGTTGAA	TGATTAAATT	AGTTAATATA	CCTAAAGTAC	6780

	WO 02	/086443					
	GTAGTTGGAT	GCCTGCACAT ATACTACCGA CCCGAAACAT	ACAATATCTA				6840 6900
5		32 Protein ession #: N					
	1	11	21 	31	41	51	
10	ADLIRSSDPD KTRHTRETVL EPLNLFYIER	RGAVCLHLLL FRVLNDGSVY RRAKRRWAPI DTGNLFCTRP	TLVIFSRDGE TARAVALSDK PCSMQENSLG VDREEYDVFD	KRSFTIWLSD PFPLFLQQVE LIAYASTADG	KRKQTQKEVT SDAAQNYTVF YSADLPLPLP	VLLEHQKKVS YSISGRGVDK IRVEDENDNH	60 120 180 240
15	TGVITTVSHY EAFVEENAFN KPLNYEENRQ KENLAVGSKI	EVLESSRPGT LDREVVDKYS VEILRIPIED VNLEIGVNNE NGYKAYDPEN	LIMKVQDMDG KDLINTANWR APFARDIPRV RNGNGLRYKK	QFFGLIGTST VNFTILKGNE TALNRALVTV LHDPKGWITI	CIITVTDSND NGHFKISTDK HVRDLDEGPE DEISGSIITS	NAPTFRQNAY ETNEGVLSVV CTPAAQYVRI KILDREVETP	300 360 420 480 540
20	EPVHGAPFYF TKLLRVNLCE KRFPEDLAQQ MMKGGNQTLE	AIDKDDRSCT SLPNTSPEIS CTHPTQCRAT NLIISNTEAP SCRGAGHHHT	RLWSLTKVND SRSTGVILGK GDDRVCSANG LDSCRGGHTE	TAARLSYQKN WAILAILLGI FMTQTTNNSS VDNCRYTYSE	AGFQEYTIPI ALLFSVLLTL QGFCGTMGSG WHSFTQPRLG	TVKDRAGQAA VCGVFGATKG MKNGGQETIE EKLHRCNQNE	600 660 720 780 840
25	DKWPSQDIVL	TYNYEGRGSP	AGSVGCCSEA	QEEDGEDFIN	NDEPRETIDA	EACIAN	
20	Nucleic Act	33 DNA sequid Accession tence: 64-25	ı #: Eos sed	quence		·	
30	1	11	21	31	41	51	
	 GGCAGGTCTC	 GCTCTCGGCA	CCCTCCCGGC	 GCCCGCGTTC	TCCTGGCCCT	GCCCGGCATC	60
35	CCGATGGCCG	CCGCTGGGCC TGATCTTCAG	CCGGCGCTCC	GTGCGCGGAG	CCGTCTGCCT	GCATCTGCTG	120 180
33	CCTTCTAAAC	TAGAGGCAGA	CAAAATAATT	GGCAGAGTTA	ATTTGGAAGA	GTGCTTCAGG	240
		TCATCCGGTC GGGCTGTTGC					300 360
40	GACAAAAGGA	AACAGACACA GACACACTAG	GAAAGAGGTT	ACTGTGCTGC	TAGAACATCA	GAAGAAGGTA	420 480
40	ATTCCTTGCT	CTATGCAAGA	GAATTCCTTG	GGCCCTTTCC	CATTGTTTCT	TCAACAAGTT	540
		CAGCACAGAA TAAATTTGTT					600 660
45	CCTGTGGATC	GTGAAGAATA	TGATGTTTTT	GATTTGATTG	CTTATGCGTC	AACTGCAGAT	720
43	GGATATTCAG CACCCTGTTT	CAGATCTGCC TCACAGAAGC	AATTTATAAT	TTTGAAGTTT	TGGAAAGTAG	TAGACCTGGT	780 840
	ACTACAGTGG	GGGTGGTTTG GCATTTTGCA	TGCCACAGAC	AGAGATGAAC	CGGACACAAT	GCATACGCGC	900 960
50	AGCACAGGCG	TAATCACCAC	AGTCTCTCAT	TATTTGGACA	GAGAGGTTGT	AGACAAGTAC	1020
50		TGAAAGTACA TAACAGTAAC					1080 1140
	TATGAAGCAT	TTGTAGAGGA	AAATGCATTC	AATGTGGAAA	TCTTACGAAT	ACCTATAGAA	1200
		TAATTAACAC ATTTCAAAAT					1260 1320
55	GTAAAGCCAC	TGAATTATGA	AGAAAACCGT	CAAGTGAACC	TGGAAATTGG	AGTAAACAAT	1380
		TTGCTAGAGA GGGATCTGGA					1440 1500
	ATTAAAGAAA	ACTTAGCAGT	GGGGTCAAAG	ATCAACGGCT	ATAAGGCATA	TGACCCCGAA	1560
60		GCAATGGTTT TTTCAGGGTC					1620 1680
	CCCAAAAATG	AGTTGTATAA	TATTACAGTC	CTGGCAATAG	ACAAAGATGA	TAGATCATGT	1740
	ACTGGAACAC GAATATGTAG	TTGCTGTGAA	ACCAAAAATG	GTAAATGATA	ACATTTTAGC	AATACTTCAA TGTTGATCCT	1800 1860
65	GATGAACCTG	TCCATGGAGC	TCCATTTTAT	TTCAGTTTGC	CCAATACTTC	TCCAGAAATC	1920
0.5		TTCAAGAATA				ATATCAGAAA CGGCCAAGCT	1980 2040
	GCAACAAAAT	TATTGAGAGT	TAATCTGTGT	GAATGTACTC	ATCCAACTCA	GTGTCGTGCG	2100 2160
	ATAGCACTGC	GTACAGGAGT TCTTTTCTGT	ATTGCTAACT	TTAGTATGTG	GAGTTTTTGG	TGCAACTAAA	2220
70	GGGAAACGTT	TTCCTGAAGA ATAGAGTGTG	TTTAGCACAG	CAAAACTTAA	TTATATCAAA	CACAGAAGCA	2280 2340
	AGCCAAGGTT	TTTGTGGTAC	TATGGGATCA	GGAATGAAAA	ATGGAGGGCA	GGAAACCATT	2400
	GAAATGATGA	AAGGAGGAAA CCTGCAGGGG	CCAGACCTTG	GAATCCTGCC	GGGGGGCTGG	GCATCATCAT	2460 2520
75	GAGTGGCACA	GTTTTACTCA	ACCCCGTCTC	GGTGAAGAAT	CCATTAGAGG	ACACACTGGT	2580
	TAAAAATTAA	ACATAAAAGA GTCCTCACTT	AATTGCATCG	ATGTAATCAG	AATGAAGACC	GCATGCCATC	2640 2700
	CTGCTGCAGT	GAAAAGCAGG	AAGAAGATGG	CCTTGACTTT	TTAAATAATT	TGGAACCCAA	2760
80	ATTTATTACA	TTAGCAGAAG	CATGCACAAA	GAGATAATGT	CACAGTGCTA	CAATTAGGTC TCAACATGTA	2820 2880
00	TGTATATGAT	GATTTTTTC	TCAATTTTGA	ATTATGCTAC	TCACCAATTT	ATATTTTTAA	2940
	AGCCAGTTGT	TGCTTATCTT	TTCCAAAAAG	TGAAAAATGT	TAAAACAGAC	AACTGGTAAA	3000
	GATATTTTAG	TAATAAATAT	GCTGGATAAA	TATTAGTCCA	ACAATAGCTA	TTTTTTTACG AGTTATGCTA	3120
85	ATATCACATT	ATTATGTATT	CACTTTAAGT	GATAGTTTAA	AAAATAAACA	AGAAATATTG	3180
	AGTATCACTA ATGTTGCAGC	TGTGAAGAAA TCATAAAGAA	GTTTTGGAAA TTGGGACTCA	AGAAACAATG CCCCTACTGC	ACTACCAAAT	TAAATTAAAA TCATTTGACT	3240 3300

		AATGTGTTGA	AGTGCCCTAT	GAAGTAGCAA	TTTTCTATAG	GAATATAGTT	3360
	GGAAATAAAT	GTGTGTGT	ATATTATTAT	TAATCAATGC	AATATTTAAA	ATGAAATGAG	3420
		AAAATGGTAA					3480
5		AGAGCTTCCT					3540
5		TTCCTGTCCA					3600 3660
		TGTGGGAAGG ATTTCTGCAT					3720
		GCTTTTTGGT					3780
		CATTTTAAAA					3840
10		TAGTGACCAA					3900
	AGTTTAGAGG	CTAGAGGGAG	CTGAGGGGAG	GATCTTACTG	AAAGCACCCT	GGGGAGATTG	3960
		AACCTAAGCC					4020
		CTCCTCACTG					4080
15		GGCCCCCTTC					4140
13		CTCCAGGTTT AGAAATTTTA					4200 4260
		TTGTCATTTT					4320
		GTCAGAGGGC					4380
		GGTGGGAGTA					4440
20		TCCTTTCTCA					4500
	CCAACCTCTT	CTCTATGGCT	CACCTTATTT	GGAGTGAGAA	ATCAAGGAGA	CAGAGCTGAC	4560
		GTCTGAAGGC					4620
		GGGAATTGTT					4680
25		AATGCCTATC					4740
25		ATCTATGTGT					4800
		GTCTCGCTCT					4860 4920
		GCCCACCACC					4980
		TAGCCAGGAT					5040
30		CTGGGATTAC					5100
-		TTTAATGTAA					5160
	TCAATCTTGA	AATACTCAAC	CAAAAGACAG	TCGAGAAGCC	AGGGGGAGAA	AGAACTCAGG	5220
		TTGGTCTGAG					5280
25		${\tt AGCCAGTTTT}$					5340
35		GATCAAAACC					5400
		ACCAGTATCA					5460 5520
	TGAACATGCT	GAAAACCACC TTAATTTTAG	CCATTCACAT	CTATGCCCGA	ACATATGTAG	TATTATTATT	5580
		TGTAAGGTGA					5640
40		TTTCCCCCAG					5700
		TTTATAAGGA					5760
	TTTAAACAGA	GTTTTAGTAT	TGCTATTAAA	AGAAGTTACT	TTGCTTTTAA	AGAAACTTGG	5820
		TAAGCAAAAA					5880
15		TATTAACTTG					5940
45		TGGGGAGATG					6000
		AAATAATTCT					6060 6120
		TACTCAATTA ATTGTCGACA					6180
		GCTTTACAGA					6240
50		TATTAGAAGG					6300
•		TACTTTGAGG					6360
		TGCAGTCTTG					6420
		TCCAACCATA					6480
		CCCCTACAAA					6540
55		ATTTTAATAT					6600
		TTGTGTATGT					6660
		CATTTCACGT					6720 6780
		ATGGACACTA GACCTTTGAA					6840
60		CCAGCCTCAT					6900
00		CTGCCTGCAC					6960
						AAAGTTTGTG	7020
		ATCCCGAAAC					
<i>~</i> =							
65		34 Protein					
	Protein Acc	cession #: 1	NP_077741.1				
	_					F-1	
	1	11	21	31	41	51	
70	 MAAACDDDCU	 RGAVCLHLLL	TINTECHNOR	ACKRATIAND	PRIFADRIC	 DVNI.EECEDS	60
70		FRVLNDGSVY					120
		RRAKRRWAPI					180
		DTGNLFCTRP					240
		EVLESSRPGT					300
75	TGVITTVSHY	LDREVVDKYS	LIMKVQDMDG	QFFGLIGTST	CIITVTDSND	NAPTFRQNAY	360
		VEILRIPIED					420
		VNLEIGVNNE					480
		NGYKAYDPEN					540
90		AIDKDDRSCT					600
80		SLPNTSPEIS					660
		CTHPTQCRAT					720
		NLIISNTEAP					780
	MMKGGNQTLE	SCRGAGHHHT	DUSCREGHTE	VDNCKITISE	wust IOPKIG	PESIKGUIG	
85	Sea ID No.	35 DNA seq	uence				
		id Accession		quence			

5 Seq ID NO: 35 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 146-1273

```
21
                                        31
      GGGAGTGGGC GTGGCGGTGC TGCCCAGGTG AGCCACCGCT GCTTCTGCCC AGACACGGTC
 5
      GCCTCCACAT CCAGGTCTTT GTGCTCCTCG CTTGCCTGTT CCTTTTCCAC GCATTTTCCA
                                                                           120
      GGATAACTGT GACTCCAGGC CCGCAATGGA TGCCCTGCAA CTAGCAAATT CGGCTTTTGC
                                                                           180
      CGTTGATCTG TTCAAACAAC TATGTGAAAA GGAGCCACTG GGCAATGTCC TCTTCTCTCC
                                                                           240
      AATCTGTCTC TCCACCTCTC TGTCACTTGC TCAAGTGGGT GCTAAAGGTG ACACTGCAAA
                                                                           300
      TGAAATTGGA CAGGTTCTTC ATTTTGAAAA TGTCAAAGAT ATACCCTTTG GATTTCAAAC
10
      AGTAACATCG GATGTAAACA AACTTAGTTC CTTTTACTCA CTGAAACTAA TCAAGCGGCT
                                                                           420
      CTACGTAGAC AAATCTCTGA ATCTTTCTAC AGAGTTCATC AGCTCTACGA AGAGACCCTA
                                                                           480
      TGCAAAGGAA TTGGAAACTG TTGACTTCAA AGATAAATTG GAAGAAACGA AAGGTCAGAT
                                                                           540
      CAACAACTCA ATTAAGGATC TCACAGATGG CCACTTTGAG AACATTTTAG CTGACAACAG
                                                                           600
      TGTGAACGAC CAGACCAAAA TCCTTGTGGT TAATGCTGCC TACTTTGTTG GCAAGTGGAT
                                                                           660
15
      GAAGAAATTT CCTGAATCAG AAACAAAAGA ATGTCCTTTC AGACTCAACA AGACAGACAC
                                                                            720
      CAAACCAGTG CAGATGATGA ACATGGAGGC CACGTTCTGT ATGGGAAACA TTGACAGTAT
                                                                           780
       CAATTGTAAG ATCATAGAGC TTCCTTTTCA AAATAAGCAT CTCAGCATGT TCATCCTACT
                                                                           840
      900
      AGAGTCACTG TCACAGTGGA CTAATCCCAG CACCATGGCC AATGCCAAGG TCAAACTCTC
                                                                           960
20
      CATTCCAAAA TTTAAGGTGG AAAAGATGAT TGATCCCAAG GCTTGTCTGG AAAATCTAGG
                                                                          1020
      GCTGAAACAT ATCTTCAGTG AAGACACATC TGATTTCTCT GGAATGTCAG AGACCAAGGG
      AGTGGCCCTA TCAAATGTTA TCCACAAAGT GTGCTTAGAA ATAACTGAAG ATGGTGGGGA
                                                                          1140
                                                                          1200
      TTCCATAGAG GTGCCAGGAG CACGGATCCT GCAGCACAAG GATGAATTGA ATGCTGACCA
      TCCCTTTATT TACATCATCA GGCACAACAA AACTCGAAAC ATCATTTCT TTGGCAAATT
                                                                          1260
25
      CTGTTCTCCT TAAGTGGCAT AGCCCATGTT AAGTCCTCCC TGACTTTTCT GTGGATGCCG
                                                                          1320
      ATTTCTGTAA ACTCTGCATC CAGAGATTCA TTTTCTAGAT ACAATAAATT GCTAATGTTG
                                                                          1380
      CTGGATCAGG AAGCCGCCAG TACTTGTCAT ATGTAGCCTT CACACAGATA GACCTTTTTT
                                                                          1440
      TTTTTCCAAT TCTATCTTTT GTTTCCTTTT TTCCCATAAG ACAATGACAT ACGCTTTTAA
                                                                          1500
      TGAAAAGGAA TCACGTTAGA GGAAAAATAT TTATTCATTA TTTGTCAAAT TGTCCGGGGT
                                                                          1560
30
      AGTTGGCAGA AATACAGTCT TCCACAAAGA AAATTCCTAT AAGGAAGATT TGGAAGCTCT
                                                                          1620
      TCTTCCCAGC ACTATGCTTT CCTTCTTTGG GATAGAGAAT GTTCCAGACA TTCTCGCTTC
                                                                          1680
      CCTGAAAGAC TGAAGAAAGT GTAGTGCATG GGACCCACGA AACTGCCCTG GCTCCAGTGA
                                                                          1740
      AACTTGGGCA CATGCTCAGG CTACTATAGG TCCAGAAGTC CTTATGTTAA GCCCTGGCAG
      GCAGGTGTTT ATTAAAATTC TGAATTTTGG GGATTTTCAA AAGATAATAT TTTACATACA
35
      CTGTATGTTA TAGAACTTCA TGGATCAGAT CTGGGGCAGC AACCTATAAA TCAACACCTT
                                                                          1920
      AATATGCTGC AACAAAATGT AGAATATTCA GACAAAATGG ATACATAAAG ACTAAGTAGC
                                                                          1980
      CCATAGGGG TCAAAATTTG CTGCCAAATG CGTATGCCAC CAACTTACAA AAACACTTCG
                                                                          2040
      TTCGCAGAGC TTTTCAGATT GTGGAATGTT GGATAAGGAA TTATAGACCT CTAGTAGCTG
                                                                          2100
      AAATGCAAGA CCCCAAGAGG AAGTTCAGAT CTTAATATAA ATTCACTTTC ATTTTTGATA
                                                                          2160
40
      GCTGTCCCAT CTGGTCATGT GGTTGGCACT AGACTGGTGG CAGGGGCTTC TAGCTGACTC
      GCACAGGGAT TCTCACAATA GCCGATATCA GAATTTGTGT TGAAGGAACT TGTCTCTTCA
                                                                          2280
      TCTAATATGA TAGCGGGAAA AGGAGAGGAA ACTACTGCCT TTAGAAAATA TAAGTAAAGT
                                                                          2340
      GATTAAAGTG CTCACGTTAC CTTGACACAT AGTTTTTCAG TCTATGGGTT TAGTTACTTT
                                                                          2400
      AGATGGCAAG CATGTAACTT ATATTAATAG TAATTTGTAA AGTTGGGTGG ATAAGCTATC
                                                                          2460
45
      CCTGTTGCCG GTTCATGGAT TACTTCTCTA TAAAAAATAT ATATTTACCA AAAAATTTTG
      TGACATTCCT TCTCCCATCT CTTCCTTGAC ATGCATTGTA AATAGGTTCT TCTTGTTCTG
                                                                          2580
      AGATTCAATA TTGAATTTCT CCTATGCTAT TGACAATAAA ATATTATTGA ACTACC
      Seq ID NO: 36 Protein sequence:
50
      Protein Accession #: NP_002630.1
                                                   41
      MDALQLANSA FAVDLFKQLC EKEPLGNVLF SPICLSTSLS LAQVGAKGDT ANEIGQVLHF
                                                                            60
55
      ENVKDIPFGF QTVTSDVNKL SSFYSLKLIK RLYVDKSLNL STEFISSTKR PYAKELETVD
                                                                           120
      FKDKLEETKG QINNSIKDLT DGHFENILAD NSVNDQTKIL VVNAAYFVGK WMKKFPESET
                                                                           180
      KECPFRLNKT DTKPVQMMNM EATFCMGNID SINCKIIELP FQNKHLSMFI LLPKDVEDES
      TGLEKIEKOL NSESLSOWTN PSTMANAKVK LSIPKFKVEK MIDPKACLEN LGLKHIFSED
                                                                            300
      TSDFSGMSET KGVALSNVIH KVCLEITEDG GDSIEVPGAR ILQHKDELNA DHPFIYIIRH
60
      NKTRNIIFFG KFCSP
      Seg ID NO: 37 DNA seguence
      Nucleic Acid Accession #: NM 0168583
65
      Coding sequence: 72-842
                                                              51
                             21
                                        31
                                                   41
      GGAGTGGGGG AGAGAGAGA GACCAGGACA GCTGCTGAGA CCTCTAAGAA GTCCAGATAC
70
      TAAGAGCAAA GATGTTTCAA ACTGGGGGCC TCATTGTCTT CTACGGGCTG TTAGCCCAGA
      CCATGGCCCA GTTTGGAGGC CTGCCCGTGC CCCTGGACCA GACCCTGCCC TTGAATGTGA
                                                                           180
      ATCCAGCCCT GCCCTTGAGT CCCACAGGTC TTGCAGGAAG CTTGACAAAT GCCCTCAGCA
                                                                           240
      ATGGCCTGCT GTCTGGGGGC CTGTTGGGCA TTCTGGAAAA CCTTCCGCTC CTGGACATCC
                                                                           300
      TGAAGCCTGG AGGAGGTACT TCTGGTGGCC TCCTTGGGGG ACTGCTTGGA AAAGTGACGT
                                                                           360
75
      CAGTGATTCC TGGCCTGAAC AACATCATTG ACATAAAGGT CACTGACCCC CAGCTGCTGG
                                                                            420
      AACTTGGCCT TGTGCAGAGC CCTGATGGCC ACCGTCTCTA TGTCACCATC CCTCTCGGCA
       TAAAGCTCCA AGTGAATACG CCCCTGGTCG GTGCAAGTCT GTTGAGGCTG GCTGTGAAGC
                                                                           540
      TGGACATCAC TGCAGAAATC TTAGCTGTGA GAGATAAGCA GGAGAGGATC CACCTGGTCC TTGGTGACTG CACCCATTCC CCTGGAAGCC TGCAAATTTC TCTGCTTGAT GGACTTGGCC
                                                                           600
                                                                           660
80
      CCCTCCCAT TCAAGGTCTT CTGGACAGCC TCACAGGGAT CTTGAATAAA GTCCTGCCTG
                                                                            720
      AGTTGGTTCA GGGCAACGTG TGCCCTCTGG TCAATGAGGT TCTCAGAGGC TTGGACATCA
      CCCTGGTGCA TGACATTGTT AACATGCTGA TCCACGGACT ACAGTTTGTC ATCAAGGTCT
                                                                           840
      AAGCCTTCCA GGAAGGGGCT GGCCTCTGCT GAGCTGCTTC CCAGTGCTCA CAGATGGCTG
                                                                           900
      GCCCATGTGC TGGAAGATGA CACAGTTGCC TTCTCTCCGA GGAACCTGCC CCCTCTCCTT
                                                                           960
85
      TCCCACCAGG CGTGTGTAAC ATCCCATGTG CCTCACCTAA TAAAATGGCT CTTCTTCTGC
                                                                          1020
      ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ
```

WO 02/086443 Seq ID NO: 38 Protein sequence: Protein Accession #: NP_057667

	PIOCEIN ACC	ession #: N	IF_057667				
,	1.	11	21	31	41	51	
5		1	1	1	1		
		YGLLAQTMAQ					60
	SGGLLGILEN	LPLLDILKPG	GGTSGGLLGG	LLGKVTSVIP	GLNNIIDIKV	TOPQULELGL	120 180
	VQSPDGHRLY	VTIPLGIKLQ LLDGLGPLPI	OCTIDELECT	TWEAT DELYO	CMACDIAMEA	LRCLDITIVH	240
10	DIVNMLIHGL		QGDDDGTGT	пиконевно	GNVCFHVNHV	DRODDITION	210
10	DIVINITIGE	Qr v III.v					
		39 DNA sequ					
15		d Accession		63.1			
15	Coding sequ	ence: 115-2	223				
	1	11	21	31	41	51	
	ī	ī	Ī	Ī	1	1	
20	CTCAGGGCAG	AGGGAGGAAG	GACAGCAGAC	CAGACAGTCA	CAGCAGCCTT	GACAAAACGT	60
20	TCCTGGAACT	CAAGCTCTTC	TCCACAGAGG	AGGACAGAGC	AGACAGCAGA	GACCATGGAG	120
	TCTCCCTCGG	CCCCTCCCCA CCTTCTGGAA	CAGATGGTGC	ATCCCCTGGC	AGAGGCTCCT	ATCCACAGCC	180 240
	TCACTTCTAA	CAGAGGGGAA	CCCGCCCACC	CTACTTGTCC	ACAATCTGCC	CCAGCATCTT	300
	TTTGGCTACA	GCTGGTACAA	AGGTGAAAGA	GTGGATGGCA	ACCGTCAAAT	TATAGGATAT	360
25	GTAATAGGAA	CTCAACAAGC	TACCCCAGGG	CCCGCATACA	GTGGTCGAGA	GATAATATAC	420
	CCCAATGCAT	CCCTGCTGAT	CCAGAACATC	ATCCAGAATG	ACACAGGATT	CTACACCCTA	480
	CACGTCATAA	AGTCAGATCT	TGTGAATGAA	GAAGCAACTG	GCCAGTTCCG	GGTATACCCG	540
	GAGCTGCCCA	AGCCCTCCAT	CTCCAGCAAC	AACTCCAAAC	CCGTGGAGGA	CAAGGATGCT	600 660
30	CACACCCTCC	CCTGTGAACC CGGTCAGTCC	CAGGCTGCAG	CTGTCCAATG	GCAACAGGAC	CCTCACTCTA	720
50	TTCAATGTCA	CAAGAAATGA	CACAGCAAGC	TACAAATGTG	AAACCCAGAA	CCCAGTGAGT	780
	GCCAGGCGCA	GTGATTCAGT	CATCCTGAAT	GTCCTCTATG	GCCCGGATGC	CCCCACCATT	840
	TCCCCTCTAA	ACACATCTTA	CAGATCAGGG	GAAAATCTGA	ACCTCTCCTG	CCACGCAGCC	900
25		CTGCACAGTA					960
35		TCCCCAACAT CTGGCCTCAA					1020 1080
		TCATCACCAG					1140
		AACCTGAGAT					1200
	CTCCCGGTCA	GTCCCAGGCT	GCAGCTGTCC	AATGACAACA	GGACCCTCAC	TCTACTCAGT	1260
40	GTCACAAGGA	ATGATGTAGG	ACCCTATGAG	TGTGGAATCC	AGAACGAATT	AAGTGTTGAC	1320
		CAGTCATCCT					1380 1440
		ATTACCGTCC AGTATTCTTG					1500
		ACATCACTGA					1560
45	GCCAGTGGCC	ACAGCAGGAC	TACAGTCAAG	ACAATCACAG	TCTCTGCGGA	GCTGCCCAAG	1620
		CCAGCAACAA					1680
		AGGCTCAGAA GGCTGCAGCT					1740 1800
		CAAGAGCCTA					1860
50	GACCCAGTCA	CCCTGGATGT	CCTCTATGGG	CCGGACACCC	CCATCATTTC	CCCCCCAGAC	1920
	TCGTCTTACC	TTTCGGGAGC	GAACCTCAAC	CTCTCCTGCC	ACTCGGCCTC	TAACCCATCC	1980
	CCGCAGTATT	CTTGGCGTAT	CAATGGGATA	CCGCAGCAAC	ACACACAAGT	TCTCTTTATC	2040 2100
	GCCAAAATCA	CGCCAAATAA ATTCCATAGT	TAACGGGACC	ACACTCTCTC	CATCTCCAAC	TTCTCCTGGT	2160
55	CTCTCAGCTG	GGGCCACTGT	CGGCATCATG	ATTGGAGTGC	TGGTTGGGGT	TGCTCTGATA	2220
	TAGCAGCCCT	GGTGTAGTTT	CTTCATTTCA	GGAAGACTGA	CAGTTGTTTT	GCTTCTTCCT	2280
	TAAAGCATTT	GCAACAGCTA	CAGTCTAAAA	TTGCTTCTTT	ACCAAGGATA	TTTACAGAAA	2340
	AGACTCTGAC	CAGAGATCGA	GACCATCCTA	GCCAACATCG	TGAAACCCCA	TCTCTACTAA	2400
60	AAATACAAAA	ATGAGCTGGG	CTTGGTGGCG	CGCACCTGTA	GTCCCAGTTA	ACATTCCCACC	2460 2520
00	TGAGGCAGGA	GAATCGCTTG AGTCTGGCAA	CACACCAGGAG	CTCCATCTCA	AAAAGAAAAG	AGAICGCACC	2580
	TCTGACCTGT	ACTCTTGAAT	ACAAGTTTCT	GATACCACTG	CACTGTCTGA	GAATTTCCAA	2640
	AACTTTAATG	AACTAACTGA	CAGCTTCATG	AAACTGTCCA	CCAAGATCAA	GCAGAGAAAA	2700
~~	TTTAATTAATTT	CATGGGACTA	AATGAACTAA	TGAGGATTGC	TGATTCTTTA	AATGTCTTGT	2760
65	TTCCCAGATT	TCAGGAAACT	TTTTTTTTTT	TAAGCTATCC	ACTCTTACAG	CAATTTGATA	2820 2880
	AAATATACTT	AACTATTCAT	AAATTGAGAC	ATTTACATTT	AATATAGTTA	TGGTCGCTCC	2940
		TCTGCTCTTT			A		23.10
70		40 Protein					
	Protein Ac	cession #: 1	NP_004354.1				
	1	11	21	31	41	51	
	1	1	1	1	1		
75	MESPSAPPHR	WCIPWQRLLL	TASLLTFWNP	PTTAKLTIES	TPFNVAEGKE	VLLLVHNLPQ	60
	HLFGYSWYKG	ERVDGNROII	GYVIGTOOAT	PGPAYSGREI	IYPNASLLIQ	NIIQNDTGFY	120
	TLHVIKSDLV	NEEATGQFRV	YPELPKPSIS	SNNSKPVEDK	DAVAFTCEPE	TODATYLWWV	180
	NNQSLPVSPR	LQLSNGNRTL SGENLNLSCH	TLENVTRNDT	ASIKCETONP	TOETRIDATE	MNNEGSALCO	240 300
80	TIPEDIGLER	THATTACH	EDDKDELLCH WONELWAIS	NSNPVEDEDA	VALTCEPEIO	NTTYLWWVNN	360
-	OSLPVSPRLO	LSNDNRTLTL	LSVTRNDVGP	YECGIQNELS	VDHSDPVILN	VLYGPDDPTI	420
	SPSYTYYRPG	VNLSLSCHAA	SNPPAQYSWL	IDGNIQQHTQ	ELFISNITEK	NSGLYTCQAN	480
	NSASGHSRTT	VKTITVSAEL	PKPSISSNNS	KPVEDKDAVA	FTCEPEAQNT	TYLWWVNGQS	540
85	LPVSPRLQLS	NGNRTLTLFN	VTRNDARAYV	CGIQNSVSAN	RSDPVTLDVL	YGPDTPIISP	600 660
03	PDSSYLSGAN	LNLSCHSASN SITVSASGTS	PSPQYSWRIN	GTFÖÖHTÖAP	E TWYTT PNNN	GITACEASND	000
	ATGRINI2TAK	OTT VOWORTS	- GTOVOWI AG	1VOVA			

Nucleic Acid Accession #: NM_006952.1 Coding sequence: 11-793 5 1.1 21 31 . 41 51 AATCCCGACA ATGGCGAAAG ACAACTCAAC TGTTCGTTGC TTCCAGGGCC TGCTGATTTT TGGAAATGTG ATTATTGGTT GTTGCGGCAT TGCCCTGACT GCGGAGTGCA TCTTCTTTGT 120 10 ATCTGACCAA CACAGCCTCT ACCCACTGCT TGAAGCCACC GACAACGATG ACATCTATGG 180 GGCTGCCTGG ATCGGCATAT TTGTGGGCAT CTGCCTCTTC TGCCTGTCTG TTCTAGGCAT 240 TGTAGGCATC ATGAAGTCCA GCAGGAAAAT TCTTCTGGCG TATTTCATTC TGATGTTTAT 300 AGTATATGCC TTTGAAGTGG CATCTTGTAT CACAGCAGCA ACACAACGAG ACTTTTTCAC 360 ACCCAACCTC TTCCTGAAGC AGATGCTAGA GAGGTACCAA AACAACAGCC CTCCAAACAA 15 TGATGACCAG TGGAAAACA ATGGAGTCAC CAAAACCTGG GACAGGCTCA TGCTCCAGGA 480 CAATTGCTGT GGCGTAAATG GTCCATCAGA CTGGCAAAAA TACACATCTG CCTTCCGGAC 540 TGAGAATAAT GATGCTGACT ATCCCTGGCC TCGTCAATGC TGTGTTATGA ACAATCTTAA 600 660 AGAACCTCTC AACCTGGAGG CTTGTAAACT AGGCGTGCCT GGTTTTTATC ACAATCAGGG CTGCTATGAA CTGATCTCTG GTCCAATGAA CCGACACGCC TGGGGGGTTG CCTGGTTTGG 720 20 ATTTGCCATT CTCTGCTGGA CTTTTTGGGT TCTCCTGGGT ACCATGTTCT ACTGGAGCAG AATTGAATAT TAAGAA Seg ID NO: 42 Protein sequence: Protein Accession #: NP_008883.1 25 51 31 41 21 MAKDNSTVRC FOGLLIFGNV IIGCCGIALT AECIFFVSDQ HSLYPLLEAT DNDDIYGAAW 60 IGIFVGICLF CLSVLGIVGI MKSSRKILLA YFILMFIVYA FEVASCITAA TQRDFFTPNL 120 30 180 FLKOMLERYO NNSPPNNDDQ WKNNGVTKTW DRLMLQDNCC GVNGPSDWQK YTSAFRTENN DADYPWPRQC CVMNNLKEPL NLEACKLGVP GFYHNQGCYE LISGPMNRHA WGVAWFGFAI 240 LCWTFWVLLG TMFYWSRIEY 35 Seq ID NO: 43 DNA sequence Nucleic Acid Accession #: Eos sequence Coding sequence: 83-2605 21 31 41 40 GCCGGACAGA TCTGCGCGTA TCCTGGAGCC GGCCCAGTTG TGAACTAGGA GAGCTTTGGG 60 ACCTCTGTCC CAAGCAAGAG AGATGAATGG AGAGTATAGA GGCAGAGGAT TTGGACGAGG 120 AAGATTTCAA AGCTGGAAAA GGGGAAGAGG TGGTGGGAAC TTCTCAGGAA AATGGAGAGA 180 AAGAGAACAC AGACCTGATC TGAGTAAAAC CACAGGAAAA CGTACTTCTG AACAAACCCC 240 45 ACAGTTTTTG CTTTCAACAA AGACCCCACA GTCAATGCAG TCAACATTGG ATCGATTCAT 300 ACCATATAAA GGCTGGAAGC TTTATTTCTC TGAAGTTTAC AGCGATAGCT CTCCTTTGAT 360 TGAGAAGATT CAAGCATTTG AAAAATTTTT CACAAGGCAT ATTGATTTGT ATGACAAGGA 420 TGAAATAGAA AGAAAGGGAA GTATTTTGGT AGATTTTAAA GAACTGACAG AAGGTGGTGA 480 AGTAACTAAC TTGATACCAG ATATAGCAAC TGAACTAAGA GATGCACCTG AGAAAACCTT 540 50 GGCTTGCATG GGTTTGGCAA TACATCAGGT GTTAACTAAG GACCTTGAAA GGCATGCAGC 600 TGAGTTACAA GCCCAGGAAG GATTGTCTAA TGATGGAGAA ACAATGGTAA ATGTGCCACA 660 TATTCATGCA AGGGTGTACA ACTATGAGCC TTTGACACAG CTCAAGAATG TCAGAGCAAA 720 TTACTATGGA AAATACATTG CTCTAAGAGG GACAGTGGTT CGTGTCAGTA ATATAAAGCC 780 TCTTTGCACC AAGATGGCTT TTCTTTGTGC TGCATGTGGA GAAATTCAGA GCTTTCCTCT 840 55 TCCAGATGGA AAATACAGTC TTCCCACAAA GTGTCCTGTG CCTGTGTGTC GAGGCAGGTC 900 ATTTACTGCT CTCCGCAGCT CTCCTCTCAC AGTTACGATG GACTGGCAGT CAATCAAAAT 960 CCAGGAATTG ATGTCTGATG ATCAGAGAGA AGCAGGTCGG ATTCCACGAA CAATAGAATG 1020 TGAGCTTGTT CATGATCTTG TGGATAGCTG TGTCCCGGGA GACACAGTGA CTATTACTGG 1080 AATTGTCAAA GTCTCAAATG CGGAAGAAGG TTCTCGAAAT AAGAATGACA AGTGTATGTT 1140 60 CCTTTTGTAT ATTGAAGCAA ATTCTATTAG TAATAGCAAA GGACAGAAAA CAAAGAGTTC 1200 TGAGGATGGG TGTAAGCATG GAATGTTGAT GGAGTTCTCA CTTAAAGACC TTTATGCCAT 1260 CCAAGAGATT CAAGCTGAAG AAAACCTGTT TAAACTCATT GTCAACTCGC TTTGCCCTGT 1320 CATTTTTGGT CATGAACTTG TTAAAGCAGG TTTGGCATTA GCACTCTTTG GAGGAAGCCA 1380 GAAATACGCA GATGACAAAA ACAGAATTCC AATTCGGGGA GACCCCCACA TCCTTGTTGT 1440 65 TGGAGATCCA GGCCTAGGAA AAAGTCAAAT GCTACAGGCA GCGTGCAATG TTGCCCCACG 1500 TGGCGTGTAT GTTTGTGGTA ACACCACGAC CACCTCTGGT CTGACGGTAA CTCTTTCAAA 1560 AGATAGTTCC TCTGGAGATT TTGCTTTGGA AGCTGGTGCC CTGGTACTTG GTGATCAAGG 1620 TATTTGTGGA ATCGATGAAT TTGATAAGAT GGGGAATCAA CATCAAGCCT TGTTGGAAGC 1680 CATGGAGCAG CAAAGTATTA GTCTTGCTAA GGCTGGTGTG GTTTGTAGCC TTCCTGCAAG 1740 70 AACTTCCATT ATTGCTGCTG CAAATCCAGT TGGAGGACAT TACAATAAAG CCAAAACAGT 1800 1860 TTCTGAGAAT TTAAAAATGG GGAGTGCACT ACTATCCAGA TTTGATTTGG TCTTTATCCT GTTAGATACT CCAAATGAGC ATCATGATCA CTTACTCTCT GAACATGTGA TTGCAATAAG 1920 AGCTGGAAAG CAGAGAACCA TTAGCAGTGC CACAGTAGCT CGTATGAATA GTCAAGATTC 1980 AAATACTTCC GTACTTGAAG TAGTTTCTGA GAAGCCATTA TCAGAAAGAC TAAAGGTGGT 2040 75 TCCTGGAGAA ACAATAGATC CCATTCCCCA CCAGCTATTG AGAAAGTACA TTGGCTATGC 2100 TCGGCAGTAT GTGTACCCAA GGCTATCCAC AGAAGCTGCT CGAGTTCTTC AAGATTTTTA 2160 CCTTGAGCTC CGGAAACAGA GCCAGAGGTT AAATAGCTCA CCAATCACTA CCAGGCAGCT 2220 GGAATCTTTG ATTCGTCTGA CAGAGGCACG AGCAAGGTTG GAATTGAGAG AGGAAGCAAC 2280 CAAAGAAGAC GCTGAGGATA TAGTGGAAAT TATGAAATAT AGCATGCTAG GAACTTACTC 2340 80 TGATGAATTT GGGAACCTAG ATTTTGAGCG ATCCCAGCAT GGTTCTGGAA TGAGCAACAG 2400 GTCAACAGCG AAAAGATTTA TTTCTGCTCT CAACAACGTT GCTGAAAGAA CTTATAATAA TATATTTCAA TTTCATCAAC TTCGGCAGAT TGCCAAAGAA CTAAACATTC AGGTTGCTGA 2520 TTTTGAAAAT TTTATTGGAT CACTAAATGA CCAGGGTTAC CTCTTGAAAA AAGGCCCAAA 2580 AGTTTACCAG CTTCAAACTA TGTAAAAGGA CTTCACCAAG TTAGGGCCTC CTGGGTTTAT 2640 85 TGCAGATTAA AGCCATCTCA GTGAAGATAT GCGTGCACGC ACAGACAGAC AGACACACAC 2700 ACACACACA ACACACACA ACACACACA ACACACAGTC AAATACTGTT CTCTGAAAAA 2760

TGATGTCCCA AAAGTATTAT AATAGGAAAA AAGCATTAAA TATAATAAAC TAATTTAAGA

Seq ID NO: 41 DNA sequence

		/086443					
		TCTCCAGATG					2880
	GGTGAGAGGA	TTCCTTGAGG	CCAGGGTTCG	AGACCAACCT	TGGGCAACAT	AGCAAGACCC	2940
		AAAAAAAAA					3000
_		TACTTGTGAG					3060
5	TACAGTGAGC	CACAATCACA	CCAATCACTG	CACTCCAGCC	TGGGCAATAA	AGTAACTCTT	3120
	GACTCAAAAA	AATAAAAAAA	ATTGTAGTGG	TAGCCATGTG	TTAATTGTTA	AATAAATTCT	3180
	CCAAAGGGCT	AAAAGTAAAT	TACTTATAAA	TTTTTTATAG	TTGTATTTTT	GACCTGCCTT	3240
	TTATATGTAT	GAATATTTCA	TAGTTTTGCA	TATCAGATGT	AGGCATACAG	ACAAATACAT	3300
		ATATATTACA					3360
10	ATTTGAATTT	CATAAAATTT	TCCCATGTCA	AGAATACAAA	ATACTTGAGT	TTTGTTTTTA	3420
20		AATAGGTCTC					3480
		GACTGATTAA					3540
		AGGCAGGTGA					3600
		TGGACTAAGG					3660
15		GCTGCCTCCC					3720
13							3780
		ACCCGCACCG					
		TCAAAAAAGA					3840
		TCATAGGCTG					3900
20		GAATTTCTCA					3960
20		TCATGTATAA					4020
	GTGAACCATT	GTTGGAGAAT	CTACTAAAAT	ACGGCTTCCC	GCAAACGAAG	ATGAATGGAA	4080
		AAAAGAACTG					4140
	GATGTGGAGA	CTATTGCCAT	AGACCACAAT	GTAAATTTTT	AAGTGAGGAA	GGAAAAATCA	4200
	GGAATCAAAA	GGGGCCAGGT	GCAGTGGCTC	ACATCTATAA	TCCCAGAGCT	TTGGGAGTTC	4260
25		GATCACTTGA					4320
		AAAAATAGAT					4380
		AAGTAGGAAA					4440
		GCACTCCAGC					
	IINIACCACI	CCACICCAGC	CIGGGGGGGG	0.100.110.100			
30	eog ID NO.	44 Protein	gemience:				
50							
	Protein Acc	cession #: (JAB55276.2				
	_			2.1	4.1	E-1	
	1	ŢI	21	31	41	51	
25		1	I				
35		GRGRFQSWKR					60
		RFIPYKGWKL					120
		GGEVTNLIPD					180
	LSNDGETMVN	VPHIHARVYN	YEPLTQLKNV	RANYYGKYIA	LRGTVVRVSN	IKPLCTKMAF	240
	LCAACGEIOS	FPLPDGKYSL	PTKCPVPVCR	GRSFTALRSS	PLTVTMDWQS	IKIQELMSDD	300
40		IECELVHDLV					360
		KSSEDGCKHG					420
		GSQKYADDKN					480
							540
		LSKDSSSGDF					
4 =		PARTSIIAAA					600
45		AIRAGKQRTI					660
	IPHOLLRKYI	GYARQYVYPR	LSTEAARVLQ	DFYLELRKQS	QRLNSSPITT	RQLESLIRLT	720
		EATKEDAEDI					780
		YNNIFQFHQL					
	OILLIAN TILLIAN I						
50							
-	Sec ID NO:	45 DNA sequ	ience				
		id Accession		116.1			
		lence: 149.					
	couring sedi	dence. 149.	. 050				
55	•	7 7	71	31.	41	51	
55	1	11	21	37	4T	51	
				<u> </u>	<u> </u>		
				TTCTCTGCAC			60
		GAAAAGCCAC	TAAGACTTTC	TGCTTAATTC	AGGAGCTTAG	AGGATTCTTC	120
60			TAAGACTTTC	TGCTTAATTC	AGGAGCTTAG	AGGATTCTTC	
υU	AAAGAGTGTG	GAAAAGCCAC TCCACGATCC	TAAGACTTTC TTTGAAGCAT	TGCTTAATTC GAGTTCTTAC	AGGAGCTTAG CAGCAGAAGC	AGGATTCTTC AGACCTTTAC	120
60	AAAGAGTGTG CCCACCACCT	GAAAAGCCAC TCCACGATCC CAGCTTCAAC	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT	TGCTTAATTC GAGTTCTTAC GAAACAACCC	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC	AGGATTCTTC AGACCTTTAC CACCTCAGGA	120 180
UU	AAAGAGTGTG CCCACCACCT AATATTTGTT	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC	120 180 240 300
υυ	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGCT	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA	120 180 240 300 360
υυ	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGCT ACCAAGGTCC	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGAGCCAGG	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGCTGTAC	120 180 240 300 360 420
	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTT	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGAGCCAGG GTACCAAGGT	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGCTGTAC AGGTCCCTGA	120 180 240 300 360 420 480
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTT ATCAAGGTCC	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGAGCCAGG GTACCAAGGT CTGACCAAGGT	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTTCATCAAG	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGCTGTAC AGGTCCCTGA CAGGTCCCTGA	120 180 240 300 360 420 480 540
	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CAAAGTTCCT	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTT ATCAAGGTCC GAGCAAGGAT	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGAGCCAGG GTACCAAGGT CTGACCAAGGT ACACCAAAGT	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTTCATCAAG TCCTGTGCCA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGCTGTAC AGGTCCCTGA CAGGTGCCAT AGCTACCAGA	120 180 240 300 360 420 480 540 600
	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAGGTTCCT GCCATGTCCT	GAAAAGCCAC TCCACGATCA CAGCTTCAAC CACACACACA GAGCAGGCT ACCAAGGTCC GAGCAAGGTT ATCAAGGTCA TCAACGGTCA	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT ACACCAAAGT ACACCAAAGT CTCCAAGGCC	TGCTTAATTC GAGTTCTTAC GAAACAACC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTCATCAACAG TTCATCAAC TTCATCAACAAG ACCTCAGCAA	AGGAGCTTAG CAGCAGAAGC GCCAGCCTC GTTCCACAAC GCTGTACCA GTCCTGAGC GCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCTGA CAGGTCCCTGA CAGGTCCCTGA CAGGTCCCAT AGCTACCAGA AGAAGTAATT	120 180 240 300 360 420 480 540
	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAGGTTCCT GCCATGTCCT	GAAAAGCCAC TCCACGATCA CAGCTTCAAC CACACACACA GAGCAGGCT ACCAAGGTCC GAGCAAGGTT ATCAAGGTCA TCAACGGTCA	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT ACACCAAAGT ACACCAAAGT CTCCAAGGCC	TGCTTAATTC GAGTTCTTAC GAAACAACC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTCATCAACAG TTCATCAAC TTCATCAACAAG ACCTCAGCAA	AGGAGCTTAG CAGCAGAAGC GCCAGCCTC GTTCCACAAC GCTGTACCA GTCCTGAGC GCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCTGA CAGGTCCCTGA CAGGTCCCTGA CAGGTCCCAT AGCTACCAGA AGAAGTAATT	120 180 240 300 360 420 480 540 600
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CAAAGTTCCT TGCATGTCCT TGGTGCACAG	GAAAAGCCAC TCCACGATCC CCACAACCA CCCACAACCA GAGCCAGGCT ACCAAGGTC ATCAAGGTCC GAGCCAGGAT TCAAGGTCC AACCAACGTCA ACAACGTCA ACAACGCCTT	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGG GTACCAAGGT CTGACCAAGG ACACCAAAGT CTCCAGGCC GAGAAGCCAA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTTCATCAAG TCCTGTGCCA AGCTCAGCAG CCACCAGATG	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACCC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGCATACTACTACTACTACTACTACTACTACTACTACTACTA	120 180 240 300 360 420 480 540 600 660
65	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CAAAGTTCCT GCCATGTCCT TGGTGCACCA TGTTCTGTG	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGTC ACCAAGGTCC GAGCCAGGTT ATCAAGGTCC GAGCAAGGAT TCAACGGTCT TCTAATTGT	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC CAGAAGCCAA CTGTAGACCA CTGTAGACCCA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTCATCAAG TCCTGTGCCA AGCTCAGCAA GCTCAGCAA TCCTGTGCCA TCCTCAGCATG TCTAATCAGC	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AGACCAAGC CTGGACACCC ACATTGTCAC ACATTGTCAC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT	120 180 240 300 360 420 480 540 600 660 720
	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAGGTCCT TGGTGCACAG TGTTTCTGTG AGTCCTCTC	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CCCACAACCA GAGCCAGGTC ACCAAGGTCC GAGCAAGGTCC GAGCAAGGAT TCAACGGTCA ACAAGCCCTT TCTTAATTGT TTATTTGTAT	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT ACACCAAAGT CTCCAGGCCC GAGAAGCCAA CTGTAGACCT CCTAAAAATA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTCATCAAG CTTCATCAAG TCCTGTGCCA AGCTCAGCAG TGCACCAGATC TGTAATCAGC CGTACTATAA	AGGAGCTTAG CAGCAGAAGC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GTTCCTGAGC GGCTACACCA ATTTCCTGAGC GGCTACACAA AAGACCAAGC ATGACACA AAGACTATGTCAC AGCTTTTGTT	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT CACACACACACT	120 180 240 300 360 420 480 540 660 720 780 840
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAAGTCCCT ACCAGGCAGC GCCATGTCCT TGGTGCACAG TGTTTCTTGTG AGTTCTCTCTCTCTCTGTG CTGAAGAATC	GAAAAGCCAC TCCACGATCC CCACCAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTC ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAAGGCCTT TCTTAATTGT TTTATTTGTAT CTGTAAAGCCC	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGG CTGACCAAGG CTCACCAAGG CTCACCAAGG CTCACAAGT CTCAGGCCC GAGAAGCCAA CTGTAGACCA CTGTAGACT CCTAAAATA CTGAATTAAG	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGATTCCT GCCATGTCCT TGGTGCACAG TGTTTCTGTG AGTCTCTCTC CTGAAGAATC GGCTGCTCAG	GAAAAGCCAC TCCACGATCC CCACAACCA GAGCCAGGCT ACCAAGGTC ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAACGTCA ACAACGTTCT TCATTGTAT TTATTTGTAT TCTTAAGCCC GGTTCATCTC GGTTCATCTC	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGG CTGACCAAGG CTCCAGGCC GAGAAGCCAA CTGTAGACCA CTGTAGACCA CTGTAGACCT CCTAAAATTA AAGATTCGAA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT CACACACACACT	120 180 240 300 360 420 480 540 660 720 780 840
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGATTCCT GCCATGTCCT TGGTGCACAG TGTTTCTGTG AGTCTCTCTC CTGAAGAATC GGCTGCTCAG	GAAAAGCCAC TCCACGATCC CCACCAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTC ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAAGGCCTT TCTTAATTGT TTTATTTGTAT CTGTAAAGCCC	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGG CTGACCAAGG CTCCAGGCC GAGAAGCCAA CTGTAGACCA CTGTAGACCA CTGTAGACCT CCTAAAATTA AAGATTCGAA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGATTCCT GCCATGTCCT TGGTGCACAG TGTTTCTGTG AGTCTCTCTC CTGAAGAATC GGCTGCTCAG	GAAAAGCCAC TCCACGATCC CCACAACCA GAGCCAGGCT ACCAAGGTC ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAACGTCA ACAACGTTCT TCATTGTAT TTATTTGTAT TCTTAAGCCC GGTTCATCTC GGTTCATCTC	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGG CTGACCAAGG CTCCAGGCC GAGAAGCCAA CTGTAGACCA CTGTAGACCA CTGTAGACCT CCTAAAATTA AAGATTCGAA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CAAAGTTCCT GCCATGTCCT TGGTGCACAG TGTTTCTGTG AGTCCTCTC CTGAAGAATC GCTGCTCAG CTCATTAAAT	GAAAAGCCAC TCCACGATCC CCACCAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTC ATCAAGGTCC GAGCAAGGTT TCAACGGTCA ACAAGCCCTT TCTTAATTGT TTATTTGTAT CTGTAAGCCC GGTTCATCTG TGCTTTAATTGT	TAAGACTTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGG CTGACCAAGG CTGACCAAGG CTGACCAAG CTGACCAAG CTCTAAAAT CTCAAAATAA CTGAATTCGAA TCCA	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGTTCCT GGCATGTCCT TGGTGCACAG TGTTTCTTGTG AGTCTCTCC CTGAAGAATC CTGAAGAATC GGCTGCTCAG CTCATTAAAT Seq ID NO:	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCAAC GAGCCAGGCT ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAACGGTCT TCATATTGTT TCATTGTAT TCTAAGCCC GGTTCATCTAAT TGTAAGCCC GGTTCATCTAAT TGTAAGCCC GGTTCATCTAAT TGCTTTTAAT 46 Protein	TAAGACTTTC TTTGAAGCAT AGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTGACCAAGGT ACACCAAAGT CTCAAGGCC GAGAAGCCAA CTGTAGACCT CCTAAAAATA CTGAATTAAG AAGATTCGAA TCCA Sequence:	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGTTCCT GGCATGTCCT TGGTGCACAG TGTTTCTTGTG AGTCTCTCC CTGAAGAATC CTGAAGAATC GGCTGCTCAG CTCATTAAAT Seq ID NO:	GAAAAGCCAC TCCACGATCC CCACCAACCA GAGCCAGGCT ACCAAGGTCC GAGCCAGGTC ATCAAGGTCC GAGCAAGGTT TCAACGGTCA ACAAGCCCTT TCTTAATTGT TTATTTGTAT CTGTAAGCCC GGTTCATCTG TGCTTTAATTGT	TAAGACTTTC TTTGAAGCAT AGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTGACCAAGGT ACACCAAAGT CTCAAGGCC GAGAAGCCAA CTGTAGACCT CCTAAAAATA CTGAATTAAG AAGATTCGAA TCCA Sequence:	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT CCAAGGTCCT GCCATGTCCT GCCATGTCCT TGGTGCACAG AGTCCTCTC CTGAAGAATC GCCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CAGCAAGCA GAGCCAGGTC ACCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAACGTCT TCTAACGTCA ACAAGCCCTT TCTTAATTGT TTATTTGTAT CTGTAACCC GGTTCATCTA TCGTTCATCT TCGTTAATTCT TCGTTCATCT TCGTTAATTCT TCGTTCATCT TCGTTTTAAT 46 Protein	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC GAGAAGCCAA CTGTAGACCT CCTAAAAATA CTGAATTCAA AAGATTCGAA TCCA sequence: NP_005407.1	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CTTCATCAAG TCCTGTGCCA AGCTCAGCAG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAC CTGGACACC ACATTGTCAC AGCTTTTGTT TCATGGCTTT TGCATGTTTC	AGGATTCTTC AGACCTTTAC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACAC TCTGGTCTTC CTGCTCTTCC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70 75	AAAGAGTGTG CCCACCACCT AATATTTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CCAAAGTTCCT GGCATGTCCT TGGTGCACAG TGTTTCTTGTG AGTCTCTCC CTGAAGAATC CTGAAGAATC GGCTGCTCAG CTCATTAAAT Seq ID NO:	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCAAC GAGCCAGGCT ATCAAGGTCC GAGCCAGGTT TCAACGGTCA ACAACGGTCT TCATATTGTT TCATTGTAT TCTAAGCCC GGTTCATCTAAT TGTAAGCCC GGTTCATCTAAT TGTAAGCCC GGTTCATCTAAT TGCTTTTAAT 46 Protein	TAAGACTTC TTTGAAGCAT AGCAGCATG AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGG CTGACCAAGG CTGACCAAGGC CTGACCAAGC CTGAAGACCA CTGTAGACCT CCTAAAAATA CTGAATTAAG AAGATTCGAA TCCA sequence: NP_005407.1	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTGTGCCA CTTCATCAAG TCCTGTGCCA GCCACGAGTG CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AAGACCAAGC CTGGACACC ACATTGTCAC ACATTGTTAT TCATGGCTTT	AGGATTCTTC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA CAGGTGCCATGA CAGGTGCCATGA CAGGTGCCATT CAGAGTACTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACACT TCTGGTCTTC	120 180 240 300 360 420 480 540 660 720 780 840 900
65 70	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT ACCAGGCAGC CAAAGTTCCT GCCATGTCCT TGGTGCACAG AGTTCTCTCTC CTGAAGAATC GGCTGCTCAC CTCATTAAAT Seq ID NO: Protein Acc	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCAACCA GAGCCAAGGCT ATCAACGTCC GAGCCAGGTT ATCAACGTCC GAGCAACGATC TCAACGTCT TCTTAATTGT TTATTTGTAT TCGTAAGCCC GGTTCATCTAAT 46 Protein cession #: 1	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCAGGCCC GAGAAGCCAA CTGTAGACCTA CCTAAAAATA CCTAAAATTA CTGAATTCGAA TCCA sequence: NP_005407.1	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTGAGCA CCTTCATCAAG TCCTGTGCCA AGCTCAGCAG CCACCAGATG TGTAATCAGC TGTAATCAGC TGTAATCAGC TGTAATCAGC TGTAATCAGC TGTAATCAGA CAGAAAGTCT TGAAAAGAAA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCA GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA AGACCCAAGC CTGGACACCC ACATTGTCAC AGCTTTTGTT TCATGGCTTT TGCATGTTTC	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA AGCTACCAGA AGAGTACCAGA AGAGTACCAGA TCTTCCCATC CCCAAGCCAT CCCAAGCCAT TCTGGTCTTC CTGCTCTTCC 51	120 180 240 360 420 480 660 780 840 900 960
65 70 75	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CCAAGTTCCT GCCATGTCCT GCCATGTCCT TGTGTGAAGAATC GCCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CAGCAGGCT ACCAAGGTCC GAGCCAGGTT ATCAACGTCC GAGCAAGGTT TCAACGGTCT TCTAATTGT TTATTTGTAT TTATTGTAT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTTAAT 46 Protein cession #: 1 11	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC GAGAAGCCAA CTGTAGACCAC CCTAAAAATA CTGAATTCGAA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CCTCATCAAG TCCTGTGCCA AGCTCAGCAG CCACCAGATG TCTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA 31 EIFVPTTKEP	AGGAGCTTAG CAGCAGAGC GCTGCACAAC GCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AGACCAAGC ACATTGTCAC AGCTTTTGTT TCATGGCTTT TGCATGTTTC 41 CHSKVPQPGN	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACAC TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 300 360 420 480 660 720 840 900 960
65 70 75	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CCAAGTTCCT GCCATGTCCT GCCATGTCCT TGTGTGAAGAATC GCCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF	GAAAAGCCAC TCCACGATCC CAGCTTCAAC CAGCAGGCT ACCAAGGTCC GAGCCAGGTT ATCAACGTCC GAGCAAGGTT TCAACGGTCT TCTAATTGT TTATTTGTAT TTATTGTAT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTAATCT TGTTTAAT 46 Protein cession #: 1 11	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC GAGAAGCCAA CTGTAGACCAC CCTAAAAATA CTGAATTCGAA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCCTGAGCCA CCTCATCAAG TCCTGTGCCA AGCTCAGCAG CCACCAGATG TCTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA 31 EIFVPTTKEP	AGGAGCTTAG CAGCAGAGC GCTGCACAAC GCTGTACCA GTCCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACAA AGACCAAGC ACATTGTCAC AGCTTTTGTT TCATGGCTTT TGCATGTTTC 41 CHSKVPQPGN	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACAC TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 360 420 480 660 780 840 900 960
65 70 75	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CAAAGTTCCT GCCATGTCCT TGGTGCACAG AGTTCCTCT CTGAAGAATC GGCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF VPEPGCTKVP	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTTCAC CCCACAACCA GAGCCAGGCT ATCAAGGTCC GAGCCAGGTT ATCAAGGTCC TCACAGGTCA ACAAGCCTT TCTAATTGT TTATTTGTAT CTGTAAGCCC GGTTCATCTG TGCTTTAAT 46 Protein cession #: 1 11 TPPPPQLQQQ EPGCTKVPEP	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCAAGCCAG CAGAAGCCAA CTGTAGACCAA CTGTAGACCA CTGTAGACT CCTAAAAAT CTGAATTCGAA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ GCTKVPEPGC	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTGTGCCA CTTCATCAAG TCCTGTGCCA CCACCAGATG TGTAATCAGC CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA 31 ELFVPTTKEP TKVPEPGCTK	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCAC GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA ACACCACAC ACATTGTCAC ACATTGTCAT TCATTGTT TCATTGTTT TCATTGTTT TCATTGTTT TCATGTTTT TCATGTTTC 41 CHSKVPQPGN VPEPGYTKVP	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA AGGTCCCTGA AGCTACCAGA AGAGTACCAGA AGAGTACCAGA TCTTCCCATC CCCAAGCCAT CCCAAGCCAT TCTGGTCTTC CTGCTCTTCC 51	120 180 240 300 360 420 480 660 720 840 900 960
65 70 75 80	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT ACCAGGCAGC CAAAGTTCCT GCCATGTCCT TGGTGCACAG AGTTCCTCT CTGAAGAATC GGCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF VPEPGCTKVP	GAAAAGCCAC TCCACGATCC CCACGATCAC CAGCTCACACACAC GAGCCAGGCT ATCAAGGTCC GAGCAAGGAT TCAACGGTCA ACAAGGTCT TCTTAATTGT TTATTGTAT TGTAAGCCC GGTTCATCTG TGCTTTTAAT 46 Protein cession #: 1 TPPPPQLQQQ EPGCTKVPEP IKVPEQGYTK	TAAGACTTTC TTTGAAGCAT AGCAGCAGGT AGGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCAAGCCAG CAGAAGCCAA CTGTAGACCAA CTGTAGACCA CTGTAGACT CCTAAAAAT CTGAATTCGAA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ GCTKVPEPGC	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTGTGCCA CTTCATCAAG TCCTGTGCCA CCACCAGATG TGTAATCAGC CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA 31 ELFVPTTKEP TKVPEPGCTK	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCAC GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA ACACCACAC ACATTGTCAC ACATTGTCAT TCATTGTT TCATTGTTT TCATTGTTT TCATTGTTT TCATGTTTT TCATGTTTC 41 CHSKVPQPGN VPEPGYTKVP	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACAC TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 300 360 420 480 660 720 840 900 960
65 70 75 80	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCCT GCCATGTCCT GCCATGTCCT GGCTGTCATGTCA	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCACACCA GAGCCAGGCT ATCAACGTCC GAGCCAGGTT TCAACGTCC GAGCCAGGTT TCAACGTTC TCTTAATTGT TTATTTGTAT TGTAAGCCC GGTTCATCTATTTAAT 46 Protein cession #: 1 1 TPPPQLQQQ EPGCTKVPEP IKVPEQGYTK	TAAGACTTTC TTTGAAGCAT AGCAGGAGCATG AGAGCCATG GTACCAAGGT CTGACCAAGG CTGACCAAGGT CTCAGGCCC GAGAAGCCAA CTGTAGACCAA CTGTAGACCAA CTGTAGACCA CTGTAGACCA CTGAATTAAG CTGAATTAGA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ GCTKVPEPGC VPVFGYTKLP	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA TTGTACCAAG CCTTGTGCCA CTTCATCAAG TCCTGTGCCA CCACCAGATG TGTAATCAGC CCACCAGATG TGTAATCAGC CGTACTATAA CAGAAAGTCT TGAAAAGAAA 31 ELFVPTTKEP TKVPEPGCTK	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCAC GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA ACACCACAC ACATTGTCAC ACATTGTCAT TCATTGTT TCATTGTTT TCATTGTTT TCATTGTTT TCATGTTTT TCATGTTTC 41 CHSKVPQPGN VPEPGYTKVP	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACAC TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 300 360 420 480 660 720 840 900 960
65 70 75	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT GCATGTCCT GCATGTCCT GCATGTCCT GCATGTCTCT CTGAAGAATC CTGATCTCT GGCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF VPEPGCTKVP GFIKFPEPGA Seq ID NO:	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCACACCA GAGCCAGGTC ACCAAGGTCC GAGCAAGGAT TCAACGGTCC GAGCAAGGAT TCTAATTGT TTATTTGTAT CTGTAAGCCC GGTTCATTAAT 46 Protein cession #: 1 1 1 TPPPPQLQQQ EPGCTKVPEP IKVPEQGTK 47 DNA seques	TAAGACTTTC TTTGAAGCAT AGCAGGAGCATG AGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC CGAGAAGCCAA CTGTAGACCAA CTGTAGACTAA CTGAATTAAG AGATTCGAA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ GCTKVPEPGC VPVPGYTKLP	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA CTTGTACCAAG CCTTGATCAAG TCCTGTGCCA AGCTCAGCAG TGTAATCAGC TGTACTATAA CAGAAAGTCT TGAAAAGAAA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCAC GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA ACACCACAC ACATTGTCAC ACATTGTCAT TCATTGTT TCATTGTTT TCATTGTTT TCATTGTTT TCATGTTTT TCATGTTTC 41 CHSKVPQPGN VPEPGYTKVP	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACAC TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 300 360 420 480 660 720 840 900 960
65 70 75 80	AAAGAGTGTG CCCACCACCT AATATTGTT AAAGATTCCA GCCAGGCTGT CAAGGTCCT GCATGTCCT GCATGTCCT GCATGTCCT GCATGTCTCT CTGAAGAATC CTGATCTCT GGCTGCTCAG CTCATTAAAT Seq ID NO: Protein Acc 1 MSSYQQKQTF VPEPGCTKVP GFIKFPEPGA Seq ID NO:	GAAAAGCCAC TCCACGATCC CCACCACACCA CAGCTCACACCA GAGCCAGGCT ATCAACGTCC GAGCCAGGTT TCAACGTCC GAGCCAGGTT TCAACGTTC TCTTAATTGT TTATTTGTAT TGTAAGCCC GGTTCATCTATTTAAT 46 Protein cession #: 1 1 TPPPQLQQQ EPGCTKVPEP IKVPEQGYTK	TAAGACTTTC TTTGAAGCAT AGCAGGAGCATG AGAGCCATG GTACCAAGGT CTGACCAAGGT CTGACCAAGGT CTCCAGGCCC CGAGAAGCCAA CTGTAGACCAA CTGTAGACTAA CTGAATTAAG AGATTCGAA TCCA sequence: NP_005407.1 21 VKQPSQPPPQ GCTKVPEPGC VPVPGYTKLP	TGCTTAATTC GAGTTCTTAC GAAACAACCC CCACTCAAAG CCCTGAGCCA CTTGTACCAAG CCTTGATCAAG TCCTGTGCCA AGCTCAGCAG TGTAATCAGC TGTACTATAA CAGAAAGTCT TGAAAAGAAA	AGGAGCTTAG CAGCAGAAGC AGCCAGCCTC GTTCCACAAC GGCTGTACCAC GTTCCTGAGC GGCTACACCA TTTCCTGAGC GGCTACACCA ACACCACAC ACATTGTCAC ACATTGTCAT TCATTGTT TCATTGTTT TCATTGTTT TCATTGTTT TCATGTTTT TCATGTTTC 41 CHSKVPQPGN VPEPGYTKVP	AGGATTCTTC AGACCTTTAC CACCTCAGGA CTGGAAACAC AGGTCCCTGA CAGGTCCCTGA CAGGTGCCAT AGCTACCAGA AGAAGTAATT TCTTCCCATC CCCAAGCCAT CACACACAC TCTGGTCTTC CTGCTCTTCC 51 TKIPEPGCTK	120 180 240 300 360 420 480 660 720 840 900 960

```
41
                                                             51
                            21
                                       31
      GCGTCGTGTG CAGGCGTCCC CGGGCTGTGG ATAATTAGAC ACGTTCTTCC CTCATTGCCC
                                                                           60
       AAGGCTCGTT AGAATTCGCC CTAGAGCTGT ATCATGTATT TTCTTTCAAA TTAACTTTGC
                                                                          120
 5
      TTGCAATTAA GCTTAGGGAA CCAGCAACAA AAGCAAACTT GGCCCGAGGT CGTTCACCGC
                                                                          180
       GAAAATGGAT TAGAGAAACT TCTTCCCCGA TTTAAGGGGA AAGATTCCTG CGGCCAGCGC
                                                                          240
      TTTGGGGAAA GTGCCCCGAC CGCAGAGGCG ACGACAGGGG AGCAGGAAGC TGCTCACGGT
                                                                          300
       AGTCGGCGTT GGCGGCAGCG GTGGCCTTCC TCATCTGGGC GATGTGGGCT CCTAGAAGAG
                                                                          360
       TAAGGATAAC ATCCTGGAAA TGACTTCTGT ACGGTTTGAG CCCAACTGCA CACTCATGAC
10
       TTGGAGCTGC CCTGTGGAGT TACAGTTTAC CAAACACATT CATGAACATA ATCTCATTTA
                                                                          480
      CTAAAAACTT TGTGAGAATT TTCTTTTACT AAAATTTTTT CTTATTACAA A
      Seg ID NO: 48 DNA seguence:
      Nucleic Acid Accession #: CAT cluster
15
                 11
                            21
                                       31
                                                  41
                                                             51
      TTCCAAATTT TTTTTTTGT AATAAGAAAA AATTTTAGTA AAAGAAAATT CTCACAAAGT
                                                                          60
20
      TTTTAGTAAA TGAGATTATG TTCATGAATG TGTTTGGTAA ACTGTAACTC CACAGGGCAG
                                                                          120
      CTCCAAGTCA TGAGTGTGCA GTTGGGCTCA AACCGTACAG AAGTCATTTC CAGGATGTTA
      TCCTTACTCT TCTCGGAGCC CACATCGCCC AGATGAGGAA GGCCACCGCT GCCGCCAACG
                                                                          240
       CCGACTACCG TGAGCAGCTT CCTGCTCCCC TGTCGTCGCC TCTGCGGTCG GGGCACTTTC
                                                                          300
      CCCAAAGCGC TGGCCGCAGG AATCTTTCCC CTTAAATCGG GGAAGAAGTT TCTCTAATCC
                                                                         360
25
      ATTTCGCGG TGAACGACCT CGGGCCAAGT TTGCTTTTGT TGCTGGTTCC CTAAGCTTAA
                                                                          420
      TTGCAAGCAA AGTTAATTTG AAAGAAAATA CATGATACAG CTCTAGGGCG AATTCTAACG
                                                                          480
      AGCCTTGGGC AATGAGGGAA GAACGTGTCT AGTTATCCAC AGCCCGGGGA CGCCTGCACA
                                                                          540
30
      Seg ID NO: 49 DNA sequence
      Nucleic Acid Accession #: CAT cluster
                                                  41
35
      60
      CCTGCCGACC TCTGTTGTCT CTTCTCTGAT GGCGGGGGC GGGAGAAGCT GACCGGTGAG
                                                                         120
      ACCGTAGACC CGAAACCATT GGGTGTCACA AGCCGGTCGC CGGCTTTTTT GGGAGAACCC
                                                                          180
      GACACATGCA GACCAGTTTT CCTGGAACNG CATGACCATG TTATTACTAT GGGCCGCCTC
                                                                          240
      CCCAACCAAA GTGTTTAAAA CTTTTTAGGG CACCCCCAAA ATTTTTTTT TTTTTTTTT
40
       TTCATTTAAA AAACTCTAAT ATTTATATTA AATACAAAGA TACCCAAACC CTTTATGCTT
                                                                          360
      CTTTCTCTGA TCTGTGTCTT TTTTCTTTGA CAGCATCTCC ATTTTTTTC TGCTGCTTCA
                                                                          420
      TCGCTGTAGC CATGGGAATC CGTTTCATTA TTATGGTAGC AATATGGAGT GCTGTATTCC
                                                                          480
      TAAAGAAACT GACACAGGAG AATCACTTGA ACTTGGGAGG CAGAGTTTGC AGTGAGCCGA
                                                                         540
      GATTGAACCA GTGCACTCCA GCCTTGGCAG CGGAGCAAGA TTCTGTCACA GTTCCTGAAG
                                                                          600
45
      TGCTGGTATC GTCCTGCAGC CCCATCCTCG GTTCCATTGC GCTGCCAGGC AGGGTGCTGG
                                                                          660
      GACGTGGGGA GAGCTGGTCT ATATATCCGG GTGAAGCTCA GCTGTGGCAC ACCTTGGATG
                                                                          720
      CCGGGTCTCT CCTGGCCCCG GGGACCTAGT ATTTTTGCCA CGAGTGTACA CCAAACAAAG
                                                                          780
      GAGACAGCAT CATTTATGAG CCTGCAGCAT CCACCCTACT GCTGTATCCA GTTTCCATTG
                                                                         840
50
      Seq ID NO: 50 DNA sequence
      Nucleic Acid Accession #: L05187
      Coding sequence: 1991..2260
55
                            21
                                       31
                                                  41
                                                             51
      CTGCAGGGAG GCAGGTAGAA AAGGCTTTTG GGTTTTCAGG TGGGGGGCAG TCTAGCCTGA
      TCAGAAAGGA GGAAAAGGCC AGGGCAGATG TCTGGGTGGA GTGAAGGGAA AAAGTGATCC
                                                                         120
      CAGAAGAAGG ATTAGCCCCT GAAAGTCCCT GAAGTAGGAG AAGGGTAAAG GTGTGGTTGG
                                                                         180
60
      TGAAGGAAAG CAGGTTTTCC CAGATTAGCA ACCAGTCAGG GGGAGGAAGG TGAGAGTGGG
                                                                         240
      AGAGTCATAA GTAAATTATT CTGAATGTGT GTAGTTTAAT GGAATTGGGA AAAAGATGGG
                                                                          300
      GGAAATGGAT GGAAGGTCTT GGACTCTGAG ACAAGGGGTC TATAATCAGT CCATTTCATT
                                                                          360
      ATTTCTAGCT TCCACCTTCA CCAAGGCAGA CAAGGAGGGC CCACCTCAGC TCCTCTGCTC
      CCCCTCCTT TCCCACCTAT TCATGTGTGC AAGAGTGCCC TGTCCCACAG AACACGGGGA
                                                                          480
65
      ACAACCATCT CAATGACAAG GACAGCAGGT GGCAAGGCTC AACAGGACTC AGATGTCCCC
                                                                         540
      CCAGGGTTAA CTCATGAAAC CCTCCATGAA GCCTGCTGCT CACCCCTCCC TCAAGGCAAG
                                                                         600
      CCCTGCACCT GGGTCTGAGG ATGAGGGTGG CAGTGAAAAT TAGGCCAGTG ACATCATTTT
                                                                         660
      CAGCCAGCTA GTGCCAAAAA ATATCAGGTG GTGTTCATCA AATAAGCCGA GCCAACCGGT
                                                                          720
      GATGAGGATG GTAGTGTGAG TCATGTGTGA CAGGTGAGGA ATGAAAACAG AGTGCCCGAG
70
      AGCTTCTATT TCCTTGAGGC AGGGCTCATT CATCTTATAA AAGCCAGCTG GCCATTGCCT
                                                                         840
       TCACACCAAA CCCAAGGGAC CACACAGCCC ATTCTGCTCC GTATACCAGG TAAGTCTCTG
                                                                         900
      ATTGCAACAA ACTGGCAATT CTAGTGTACT TTTTCATTAT TAGAAATTAG CTAAAGGCAA
                                                                         960
      ATATGTGTAA GCAGGTTAAT CCAGGGTTTC AATGGGAGAT AGAGAATAGT GGAATATCTT
                                                                        1020
      TATTTTAAGT TAAATTACAG TCTGGATTTG AAAGGACCTT AGAGATGGTT AGGGCTCCCA
                                                                        1080
75
      CCTCAGTAGA TAGTCATTGA ACTGGGAGTC CTGGAGAAGA TTGTTCAAAT GCCCATGGGA
                                                                        1140
      AGTTCATAGC AGAACTAGAA CTCAGGCCAG AGCACTCTCA GTAACACTGC AATTTCCCCC
                                                                        1200
      TGACAAGATA TTTATAGAAA TTTTAATTTA TTAGATGGAT CTCTACTGAG CATTTATTCC
                                                                        1260
      ATTTAAGGCA GTATGCTAGG CACTTTGGAC AAATCAATGC CCTAACGTAC TTACTTAACA
                                                                        1320
      1380
80
      AGTAATTGGC ATGACGGAGA TGGGCAGAGA AGGGCTGTGC ACTTTTGGGA GACTTGCTCA
                                                                        1440
      AGGAGACCTC TAGGGTGTCA AGTGATGTGA GCTATGATGG AGGGGTATTT GGACAAGCAG
                                                                        1500
      AGATGGGAAG AAAAGCATTT GGAAGGGACT GTGTAAGCAC AGACCAGAAG CAAAACCATA
                                                                        1560
      GAGGCTTAGA TGAATATAAA GCCATCCTAT AAGTCACAGG CTTTCTACAT GGTACTAGGA
                                                                        1620
      GAGGAAAGTG GTCTGATGCC ATTTTCCAAA AGACCTAATA TGCGGACCTC ATGTCCCTCA
                                                                        1680
85
      GAAGCCAGCT TTAGTAGGGC ATTTTTCCAG AACAGATATA AGGTGCCTTG GGTAGGAAGG
                                                                        1740
      GAGCCAAGAA GAGAACTCCA ATAAAATGGA GCAGAAGAAA TTGCCTTTTA GCTCCTCCTC
                                                                        1800
       TTCAAAGGGC CTGAAAATTA TCCAAGCTTA TTTCATTTTT AAATGTAATG GGGGAGCTAA
```

```
GGGAGATGAA AGGCTTTCTC TTCTAAAGGG TCCTGAAATA AAATCTGTTT GGCATTGAAT
                                                                         1920
      TTGTATCCAT CTTTCTTTAA TTGAATCACT GTGTCAGCTT TCTGTCTCTA GAAAAAAACA
                                                                         1980
       2040
       GCAGCAGCAG GTGAAACAAC CTTGCCAGCC TCCACCCCAG GAACCATGCA TCCCCAAAAC
                                                                          2100
 5
       CAAGGAGCCC TGCCAACCCA AGGTGCCTGA GCCCTGCCAC CCCAAAGTGC CTGAGCCCTG
                                                                          2160
       CCAGCCCAAG ATTCCAGAGC CCTGCCAGCC CAAGGTGCCT GAGCCCTGCC CTTCAACGGT
                                                                          2220
       CACTCCAGCA CCAGCCCAGC AGAAGACCAA GCAGAAGTAA TGTGGTCCAC AGCCATGCCC
                                                                          2280
       TTGAGGAGCT GGCCACTGGA TACTGAACAC CCTACTCCAT TCTGCTTATG AATCCCATTT
                                                                          2340
       GCCTATTGAC CCTGCAGTTA GCATGCTGTC ACCCTGAATC ATAATCGCTC CTTTGCACCT
10
                                                                          2460
       CTAAAAAGAT GTCCCTTACC CTCATTCTGG AGGCTCCTGA GCCTCTGCGT AAGGCTGAAC
       GTCTCACTGA CTGAGCTAGT CTTCTTGTTG CTCGGGTGCA TTTGAGGATG GATTTGGGGA
      AGGTCAAGTG ACCATCCCTA G
      Seg ID NO: 51 Protein sequence:
15
       Protein Accession #: AAC26838
                  11
                             21
                                        31
                                                   41
                                                              51
       MNSQQQKQPC TPPPQPQQQQ VKQPCQPPPQ EPCIPKTKEP CQPKVPEPCH PKVPEPCQPK
                                                                            60
20
       IPEPCOPKVP EPCPSTVTPA PAOOKTKOK
       Seq ID NO: 52 DNA sequence
      Nucleic Acid Accession #: NM_002638.1
25
      Coding sequence: 120-473
                                        31
                                                   41
       CAATACAGCT AAGGAATTAT CCCTTGTAAA TACCACAGAC CCGCCCTGGA GCCAGGCCAA
                                                                            60
30
      GCTGGACTGC ATAAAGATTG GTATGGCCTT AGCTCTTAGC CAAACACCTT CCTGACACCA
                                                                           120
      TGAGGGCCAG CAGCTTCTTG ATCGTGGTGG TGTTCCTCAT CGCTGGGACG CTGGTTCTAG
                                                                           180
      AGGCAGCTGT CACGGGAGTT CCTGTTAAAG GTCAAGACAC TGTCAAAGGC CGTGTTCCAT
                                                                           240
      TCAATGGACA AGATCCCGTT AAAGGACAAG TTTCAGTTAA AGGTCAAGAT AAAGTCAAAG
       CGCAAGAGCC AGTCAAAGGT CCAGTCTCCA CTAAGCCTGG CTCCTGCCCC ATTATCTTGA
                                                                           360
35
       TCCGGTGCGC CATGTTGAAT CCCCCTAACC GCTGCTTGAA AGATACTGAC TGCCCAGGAA
                                                                           420
      TCAAGAAGTG CTGTGAAGGC TCTTGCGGGA TGGCCTGTTT CGTTCCCCAG TGAAGGGAGC CGGTCCTTGC TGCACCTGTG CCGTCCCCAG AGCTACAGGC CCCATCTGGT CCTAAGTCCC
                                                                           480
                                                                           540
       TGCTGCCCTT CCCCTTCCCA CACTGTCCAT TCTTCCTCCC ATTCAGGATG CCCACGGCTG
                                                                           600
       GAGCTGCCTC TCTCATCCAC TTTCCAATAA A
40
       Seq ID NO: 53 Protein sequence:
      Protein Accession #: NP_002629.1
                             21
                                        31
                                                   41
45
       MRASSFLIVV VFLIAGTLVL EAAVTGVPVK GQDTVKGRVP FNGQDPVKGQ VSVKGQDKVK
                                                                            60
       AQEPVKGPVS TKPGSCPIIL IRCAMLNPPN RCLKDTDCPG IKKCCEGSCG MACFVPQ
      Sea ID NO: 54 DNA sequence
50
      Nucleic Acid Accession #: NM 019618
       Coding sequence: 75-584
                             21
                                        31
                                                   41
                                                              51
55
      GGCACGAGCC ACGATTCAGT CCCCTGGACT GTAGATAAAG ACCCTTTCTT GCCAGGTGCT
                                                                            60
      GAGACAACCA CACTATGAGA GGCACTCCAG GAGACGCTGA TGGTGGAGGA AGGGCCGTCT
                                                                           120
      ATCAATCAAT GTGTAAACCT ATTACTGGGA CTATTAATGA TTTGAATCAG CAAGTGTGGA
       CCCTTCAGGG TCAGAACCTT GTGGCAGTTC CACGAAGTGA CAGTGTGACC CCAGTCACTG
                                                                           240
       TTGCTGTTAT CACATGCAAG TATCCAGAGG CTCTTGAGCA AGGCAGAGGG GATCCCATTT
                                                                           300
60
      ATTTGGGAAT CCAGAATCCA GAAATGTGTT TGTATTGTGA GAAGGTTGGA GAACAGCCCA
                                                                           360
       CATTGCAGCT AAAAGAGCAG AAGATCATGG ATCTGTATGG CCAACCCGAG CCCGTGAAAC
                                                                           420
      CCTTCCTTTT CTACCGTGCC AAGACTGGTA GGACCTCCAC CCTTGAGTCT GTGGCCTTCC
                                                                           480
      CGGACTGGTT CATTGCCTCC TCCAAGAGAG ACCAGCCCAT CATTCTGACT TCAGAACTTG
                                                                           540
      GGAAGTCATA CAACACTGCC TTTGAATTAA ATATAAATGA CTGAACTCAG CCTAGAGGTG
                                                                           600
65
       GCAGCTTGGT CTTTGTCTTA AAGTTTCTGG TTCCCAATGT GTTTTCGTCT ACATTTTCTT
                                                                           660
      AGTGTCATTT TCACGCTGGT GCTGAGACAG GGGCAAGGCT GCTGTTATCA TCTCATTTTA
                                                                           720
      TAATGAAGAA GAAGCAATTA CTTCATAGCA ACTGAAGAAC AGGATGTGGC CTCAGAAGCA
                                                                           780
      GGAGAGCTGG GTGGTATAAG GCTGTCCTCT CAAGCTGGTG CTGTGTAGGC CACAAGGCAT
                                                                           840
      CTGCATGAGT GACTTTAAGA CTCAAAGACC AAACACTGAG CTTTCTTCTA GGGGTGGGTA
70
       TGAAGATGCT TCAGAGCTCA TGCGCGTTAC CCACGATGGC ATGACTAGCA CAGAGCTGAT
                                                                           960
       CTCTGTTTCT GTTTTGCTTT ATTCCCTCTT GGGATGATAT CATCCAGTCT TTATATGTTG
                                                                          1020
       CCAATATACC TCATTGTGTG TAATAGAACC TTCTTAGCAT TAAGACCTTG TAAACAAAAA
                                                                          1080
       TAATTCTTGT GTTAAGTTAA ATCATTTTTG TCCTAATTGT AATGTGTAAT CTTAAAGTTA
      75
       Seq ID NO: 55 Protein sequence:
       Protein Accession #: NP_062564
                                                              51
                  11
                             21
                                        31.
                                                   41
80
      MRGTPGDADG GGRAVYOSMC KPITGTINDL NQQVWTLQGQ NLVAVPRSDS VTPVTVAVIT
       CKYPEALEQG RGDPIYLGIQ NPEMCLYCEK VGEQPTLQLK EQKIMDLYGQ PEPVKPFLFY
                                                                           120
       RAKTGRTSTL ESVAFPDWFI ASSKRDQPII LTSELGKSYN TAFELNIND
85
       Seq ID NO: 56 DNA sequence
      Nucleic Acid Accession #: NM 003125
       Coding sequence: 65-334
```

	W O 02	/000443					
	1	11	21	31 .	41	51	
5	CAGCATGAGT GCAGGTGAAA GCCCTGCCAC	AGGGACCATA TCCCAGCAGC CAGCCTTGCC CCCAAGGTGC GAGCCATGCC	AGAAGCAGCC AGCCTCCACC CTGAGCCCTG	CTGCATCCCA TCAGGAACCA CCACCCCAAA	CCCCCTCAGC TGCATCCCCA GTGCCTGAGC	TTCAGCAGCA AAACCAAGGA CCTGCCAGCC	60 120 180 240 300
10	AGCCGGCCAC CAATTAGCAT TCTGAGTCTC	CAGCAGAAGA CAGATGCTGA TCTGTCTCCC TGAATGAAGC AGAGAGACTT	ATCCCCTATC CCAAAAAAGA TGAAGGTCTT	CCATTCTGTG ATGTGCTATG AGTACCAGAG	TATGAGTCCC AAGCTTTCTT CTAGTTTTCA	ATTTGCCTTG TCCTACACAC GCTGCTCAGA	360 420 480 540 600
15	AAATTCACTT	TCAATTCCA					
		57 Protein cession #: N					
20	Procern Acc	cession #. I	_				
	1	11	21	31 1	41	51 1	
	MSSQQQKQPC	 IPPPQLQQQQ	VKQPCQPPPQ	EPCIPKTKEP	CHPKVPEPCH	PKVPEPCQPK	60
25		EPCPSIVTPA					
23	Nucleic Act	58 DNA sequid Accession lence: 71-25	1 #: NM_0017	793.2			
30	1	11	21	31	41	51	
	1	1	1	1		mar againsm	60
	AAAGGGGCAA	GAGCTGAGCG ATGGGGCTCC	GAACACCGGC	TCTCGCGTCGC	CTCCTCCTTC	TCACCCCTCT	60 120
25	CTGGCTGCAG	TGCGCGGCCT	CCGAGCCGTG	CCGGGCGGTC	TTCAGGGAGG	CTGAAGTGAC	180
35	CTTGGAGGCG	GGAGGCGCGG CAAGAGCCAG	AGCAGGAGCC	CGGCCAGGCG	CTGGGGAAAG	TATTCATGGG	240 300
	TGGCGAGACA	GTCCAGGAAA	GAAGGTCACT	GAAGGAAAGG	AATCCATTGA	AGATCTTCCC	360
	ATCCAAACGT	ATCTTACGAA	GACACAAGAG	AGATTGGGTG	GTTGCTCCAA	TATCTGTCCC	420
40	TGAAAATGGC	AAGGGTCCCT ATTTTCTACA	TCCCCCAGAG	ACTGAATCAG	GACAGCCCCC	CTGAGGGTGT	480 540
40	CTTCGCTGTA	GAGAAGGAGA	CAGGCTGGTT	GTTGTTGAAT	AAGCCACTGG	ACCGGGAGGA	600
	GATTGCCAAG	TATGAGCTCT	TTGGCCACGC	TGTGTCAGAG	AATGGTGCCT	CAGTGGAGGA	660 720
	GGACACCTTC	ATCTCCATCA CGAGGGAGTG	TCTTAGAGGG	AGTCCTACCA	GGTACTTCTG	TGATGCAGGT	780
45	GACAGCCACG	GATGAGGATG	ATGCCATCTA	CACCTACAAT	GGGGTGGTTG	CTTACTCCAT	840
	CCATAGCCAA	GAACCAAAGG GTCATCTCCA	ACCCACACGA GTGGCCTGGA	CCCCGGAAAA	ACCATTCACC	ACACACTGAC	900 960
	CATCCAGGCC	ACAGACATGG	ATGGGGACGG	CTCCACCACC	ACGGCAGTGG	CAGTAGTGGA	1020
50	GATCCTTGAT	GCCAATGACA	ATGCTCCCAT	GTTTGACCCC	CAGAAGTACG	AGGCCCATGT	1080 1140
50	CAACTCACCA	GCAGTGGGCC GCGTGGCGTG	CCACCTACCT	TATCATGGGC	GGTGACGACG	GGGACCATTT	1200
	TACCATCACC	ACCCACCCTG	AGAGCAACCA	GGGCATCCTG	ACAACCAGGA	AGGGTTTGGA	1260
	TTTTGAGGCC	AAAAACCAGC CCAACCTCCA	ACACCCTGTA	CGTTGAAGTG	ACCAACGAGG	TGAATGAGGC	1320 1380
55	ACCTGTGTTT	GTCCCACCCT	CCAAAGTCGT	TGAGGTCCAG	GAGGGCATCC	CCACTGGGGA	1440
	GCCTGTGTGT	GTCTACACTG	CAGAAGACCC	TGACAAGGAG	AATCAAAAGA	TCAGCTACCG	1500
	CATCCTGAGA	GACCCAGCAG CTCGACCGTG	GGTGGCTAGC	CATGGACCCA	AACAACATCT	ATGAAGTCAT	1560 1620
	GGTCTTGGCC	ATGGACAATG	GAAGCCCTCC	CACCACTGGC	ACGGGAACCC	TTCTGCTAAC	1680
60	ACTGATTGAT	GTCAATGACC	ATGGCCCAGT	CCCTGAGCCC	CGTCAGATCA	CCATCTGCAA CCCACACCTC	1740 1800
	CCCTTTCCAG	GCCCAGCTCA	CAGATGACTC	AGACATCTAC	TGGACGGCAG	AGGTCAACGA	1860
	GGAAGGTGAC	ACAGTGGTCT	TGTCCCTGAA	GAAGTTCCTG	AAGCAGGATA	CATATGACGT	1920
65	GCACCTTTCT	CTGTCTGACC	ATGGCAACAA TCGAAACCTG	AGAGCAGCTG	TGGAAGGGAG	GGGCCACTGT GTTTCATCCT	1980 2040
05	CCCTGTGCTG	GGGGCTGTCC	TGGCTCTGCT	GTTCCTCCTG	CTGGTGCTGC	TTTTGTTGGT	2100
	GAGAAAGAAG	CGGAAGATCA	AGGAGCCCCT	CCTACTCCCA	GAAGATGACA	CCCGTGACAA ACATCACCCA	2160 2220
	GCTCCACCGA	GGTCTGGAGG	CCAGGCCGGA	GGTGGTTCTC	CGCAATGACG	TGGCACCAAC	
70	CATCATCCCG	ACACCCATGT	ACCGTCCTCG	GCCAGCCAAC	CCAGATGAAA	TCGGCAACTT	2340
	TATAATTGAG	AACCTGAAGG	CGGCTAACAC	AGACCCCACA CGACGCCGCG	TCCCTGAGCT	ACGACACCCT CCCTCACCTC	2400 2460
	CTCCGCCTCC	GACCAAGACC	AAGATTACGA	TTATCTGAAC	GAGTGGGGCA	GCCGCTTCAA	2520
75	GAAGCTGGCA	GACATGTACG	GTGGCGGGGA	GGACGACTAG	GCGGCCTGCC	TGCAGGGCTG	2580
75	GGGACCAAAC GACTTCGGAG	GTCAGGCCAC CTTCTCAGGA	AGAGCATCTC AGTGGCCGTA	GCAACTTGGC	GGAGACAGGC	TTCAGCTGAG TATGAGTCTG	2640 2700
	ACGTTAGAGT	GGTTGCTTCC	TTAGCCTTTC	AGGATGGAGG	AATGTGGGCA	GTTTGACTTC	2760
	AGCACTGAAA	ACCTCTCCAC	CTGGGCCAGG	GTTGCCTCAG	AGGCCAAGTT	TCCAGAAGCC	2820
80	TACAGTGGAG	TTTCTCTCTC	GAATGGAACC	TTCTTAGGCC	TCCTGGTGCA	GTGACTGACC ACTTAATTTT	2880 2940
	TTTTTTTAAT	GCTATCTTCA	AAACGTTAGA	GAAAGTTCTT	CAAAAGTGCA	GCCCAGAGCT	3000
	GCTGGGCCCA	CTGGCCGTCC	TGCATTTCTG	GTTTCCAGAC	CCCAATGCCT	CCCATTCGGA	3060 3120
	GTTGCGTTGC	TATAGATGAA	GGGTGAGGAC	AATCGTGTAT	ATGTACTAGA	TATTTTCCCT ACTTTTTAT	3180
85		TTTCCCAGAA					

Seq ID NO: 59 Protein sequence:

Protein Accession #: NP_001784.2

```
51
                             21
                                         31
                                                    41
 5
       MGLPRGPLAS LLLLQVCWLQ CAASEPCRAV FREAEVTLEA GGAEQEPGQA LGKVFMGCPG
                                                                              60
       OEPALFSTDN DDFTVRNGET VOERRSLKER NPLKIFPSKR ILRRHKRDWV VAPISVPENG
                                                                             120
       KGPFPORLNO LKSNKDRDTK IFYSITGPGA DSPPEGVFAV EKETGWLLLN KPLDREEIAK
                                                                             180
       YELFGHAVSE NGASVEDPMN ISIIVTDQND HKPKFTQDTF RGSVLEGVLP GTSVMQVTAT
                                                                             240
       DEDDAIYTYN GVVAYSIHSQ EPKDPHDLMF TIHRSTGTIS VISSGLDREK VPEYTLTIQA
                                                                             300
10
       TDMDGDGSTT TAVAVVEILD ANDNAPMFDP QKYEAHVPEN AVGHEVQRLT VTDLDAPNSP
                                                                             360
       AWRATYLIMG GDDGDHFTIT THPESNQGIL TTRKGLDFEA KNQHTLYVEV TNEAPFVLKL
PTSTATIVVH VEDVNEAPVF VPPSKVVEVO EGIPTGEPVC VYTAEDPDKE NOKISYRILR
                                                                             420
                                                                             480
       DPAGWLAMDP DSGOVTAVGT LDREDEQFVR NNIYEVMVLA MDNGSPPTTG TGTLLLTLID
                                                                             540
       VNDHGPVPEP ROITICNOSP VROVLNITDK DLSPHTSPFQ AQLTDDSDIY WTAEVNEEGD
15
       TVVLSLKKFL KQDTYDVHLS LSDHGNKEQL TVIRATVCDC HGHVETCPGP WKGGFILPVL
                                                                             660
                                                                             720
       GAVLALLFLL LVLLLLVRKK RKIKEPLLLP EDDTRDNVFY YGEEGGGEED QDYDITQLHR
       GLEARPEVVL RNDVAPTIIP TPMYRPRPAN PDEIGNFIIE NLKAANTDPT APPYDTLLVF
                                                                             780
       DYEGSGSDAA SLSSLTSSAS DODQDYDYLN EWGSRFKKLA DMYGGGEDD
20
       Sec ID NO: 60 DNA sequence
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 162-428
                                                    41
                                                               51
                             21
                                         31
25
       GCGTTCCGTT GGCGGCGGAT TCGAACGTTC GGACTGAGGT TTTTCTGCCT GAAGAAGCGT
                                                                              60
                                                                             120
       CATACGGACC GGATTGTTTT CGCTGGCCCA GTGTCCCCGG AGCTTGTGTG CGATACAGAG
       AGCACCTCGG AAGCTGAGGC AGCTGGTACT TGACAGAGAG GATGGCGCTG TCGACCATAG
                                                                             180
       TCTCCCAGAG GAAGCAGATA AAGCGGAAGG CTCCCCGTGG CTTTCTAAAG CGAGTCTTCA
                                                                             240
30
       AGCGAAAGAA GCCTCAACTT CGTCTGGAGA AAAGTGGTGA CTTATTGGTC CATCTGAACT
                                                                             300
       GTTTACTGTT TGTTCATCGA TTAGCAGAAG AGTCCAGGAC AAACGCTTGT GCGAGTAAAT
                                                                             360
       GTAGAGTCAT TAACAAGGAG CATGTACTGG CCGCAGCAAA GGTAATTCTA AAGAAGAGCA
                                                                             420
       GAGGTTAGAA GTCAAAGAAC ATATTCTTGA AAGTTATGAT GCATTCTTTT GGGTGGTAAC
                                                                             480
       AGATCATAAA GACATTTTTT ACACATCAGT TAATATGGGA TTATTAAATA TTGG
35
       Seq ID NO: 61 Protein sequence:
       Protein Accession #: Eos sequence
                                                               51
40
       MALSTIVSQR KQIKRKAPRG FLKRVFKRKK PQLRLEKSGD LLVHLNCLLF VHRLAEESRT
                                                                              60
       NACASKCRVI NKEHVLAAAK VILKKSRG
       Seg ID NO: 62 DNA sequence
45
       Nucleic Acid Accession #: NM 000094.2
       Coding sequence: 99-8933
                                                               51
                  11
                             21
                                         31
                                                    41
50
       GGGCTGGAGG GGCGCTGGGC TCGGACCTGC CAAGGCCACC GCAGGGGGGA GCAAGGGACA
       GAGGCGGGG TCCTAGCTGA CGGCTTTTAC TGCCTAGGAT GACGCTGCGG CTTCTGGTGG
                                                                             120
       CCGCGCTCTG CGCCGGGATC CTGGCAGAGG CGCCCCGAGT GCGAGCCCAG CACAGGGAGA
                                                                             180
       GAGTGACCTG CACGCGCCTT TACGCCGCTG ACATTGTGTT CTTACTGGAT GGCTCCTCAT
                                                                             240
       CCATTGGCCG CAGCAATTTC CGCGAGGTCC GCAGCTTTCT CGAAGGGCTG GTGCTGCCTT
                                                                             300
55
       TCTCTGGAGC AGCCAGTGCA CAGGGTGTGC GCTTTGCCAC AGTGCAGTAC AGCGATGACC
                                                                             360
       CACGGACAGA GTTCGGCCTG GATGCACTTG GCTCTGGGGG TGATGTGATC CGCGCCATCC
                                                                             420
       GTGAGCTTAG CTACAAGGGG GGCAACACTC GCACAGGGGC TGCAATTCTC CATGTGGCTG
                                                                             480
       ACCATGTCTT CCTGCCCCAG CTGGCCCGAC CTGGTGTCCC CAAGGTCTGC ATCCTGATCA
                                                                             540
       CAGACGGGAA GTCCCAGGAC CTGGTGGACA CAGCTGCCCA AAGGCTGAAG GGGCAGGGGG
                                                                             600
60
       TCAAGCTATT TGCTGTGGGG ATCAAGAATG CTGACCCTGA GGAGCTGAAG CGAGTTGCCT
                                                                             660
       CACAGCCAAC CTCCGACTTC TTCTTCTTCG TCAATGACTT CAGCATCTTG AGGACACTAC
                                                                             720
       TGCCCCTCGT TTCCCGGAGA GTGTGCACGA CTGCTGGTGG CGTGCCTGTG ACCCGACCTC
       CGGATGACTC GACCTCTGCT CCACGAGACC TGGTGCTGTC TGAGCCAAGC AGCCAATCCT
                                                                             840
       TGAGAGTACA GTGGACAGCG GCCAGTGGCC CTGTGACTGG CTACAAGGTC CAGTACACTC
                                                                             900
65
       CTCTGACGGG GCTGGGACAG CCACTGCCGA GTGAGCGGCA GGAGGTGAAC GTCCCAGCTG
                                                                             960
       GTGAGACCAG TGTGCGGCTG CGGGGTCTCC GGCCACTGAC CGAGTACCAA GTGACTGTGA
                                                                            1020
       TTGCCCTCTA CGCCAACAGC ATCGGGGAGG CTGTGAGCGG GACAGCTCGG ACCACTGCCC
                                                                            1080
       TAGAAGGGCC GGAACTGACC ATCCAGAATA CCACAGCCCA CAGCCTCCTG GTGGCCTGGC
                                                                            1140
       GGAGTGTGCC AGGTGCCACT GGCTACCGTG TGACATGGCG GGTCCTCAGT GGTGGGCCCA
                                                                            1200
70
       CACAGCAGCA GGAGCTGGGC CCTGGGCAGG GTTCAGTGTT GCTGCGTGAC TTGGAGCCTG
                                                                            1260
       GCACGGACTA TGAGGTGACC GTGAGCACCC TATTTGGCCG CAGTGTGGGG CCCGCCACTT
                                                                            1320
       CCCTGATGGC TCGCACTGAC GCTTCTGTTG AGCAGACCCT GCGCCCGGTC ATCCTGGGCC
                                                                            1380
       CCACATCCAT CCTCCTTTCC TGGAACTTGG TGCCTGAGGC CCGTGGCTAC CGGTTGGAAT
                                                                            1440
       GGCGGCGTGA GACTGGCTTG GAGCCACCGC AGAAGGTGGT ACTGCCCTCT GATGTGACCC
                                                                            1500
75
       GCTACCAGTT GGATGGGCTG CAGCCGGGCA CTGAGTACCG CCTCACACTC TACACTCTGC
                                                                            1560
       TGGAGGGCCA CGAGGTGGCC ACCCCTGCAA CCGTGGTTCC CACTGGACCA GAGCTGCCTG
                                                                            1620
       TGAGCCCTGT AACAGACCTG CAAGCCACCG AGCTGCCCGG GCAGCGGGTG CGAGTGTCCT
                                                                            1680
       GGAGCCCAGT CCCTGGTGCC ACCCAGTACC GCATCATTGT GCGCAGCACC CAGGGGGTTG
                                                                            1740
       AGCGGACCCT GGTGCTTCCT GGGAGTCAGA CAGCATTCGA CTTGGATGAC GTTCAGGCTG
                                                                            1800
80
       GGCTTAGCTA CACTGTGCGG GTGTCTGCTC GAGTGGGTCC CCGTGAGGGC AGTGCCAGTG
                                                                            1860
       TCCTCACTGT CCGCCGGGAG CCGGAAACTC CACTTGCTGT TCCAGGGCTG CGGGTTGTGG
                                                                            1920
       TGTCAGATGC AACGCGAGTG AGGGTGGCCT GGGGACCCGT CCCTGGAGCC AGTGGATTTC
                                                                            1980
       GGATTAGCTG GAGCACAGGC AGTGGTCCGG AGTCCAGCCA GACACTGCCC CCAGACTCTA
                                                                           2040
       CTGCCACAGA CATCACAGGG CTGCAGCCTG GAACCACCTA CCAGGTGGCT GTGTCGGTAC
                                                                            2100
85
       TGCGAGGCAG AGAGGAGGGC CCTGCTGCAG TCATCGTGGC TCGAACGGAC CCACTGGGCC
                                                                            2160
       CAGTGAGGAC GGTCCATGTG ACTCAGGCCA GCAGCTCATC TGTCACCATT ACCTGGACCA
       GGGTTCCTGG CGCCACAGGA TACAGGGTTT CCTGGCACTC AGCCCACGGC CCAGAGAAAT
```

	CCCAGTTGGT	TTCTGGGGAG	GCCACGGTGG	CTGAGCTGGA	TGGACTGGAG	CCAGATACTG	2340
	AGTATACGGT	GCATGTGAGG	GCCCATGTGG	CTGGCGTGGA	TGGGCCCCCT	GCCTCTGTGG	2400
	TTGTGAGGAC	TGCCCCTGAG	CCTGTGGGTC	GTGTGTCGAG	GCTGCAGATC	CTCAATGCTT	2460
_	CCAGCGACGT	TCTACGGATC	ACCTGGGTAG	GGGTCACTGG	AGCCACAGCT	TACAGACTGG	2520
5		GAGTGAAGGC					2580
	CTGCAGAGAT	CCGGGGTCTC	GAAGGTGGAG	TCAGCTACTC	AGTGCGAGTG	ACTGCACTTG	2640
	TCGGGGACCG	CGAGGGCACA	CCTGTCTCCA	TTGTTGTCAC	TACGCCGCCT	GAGGCTCCGC	2700
	CAGCCCTGGG	GACGCTTCAC	GTGGTGCAGC	GCGGGGAGCA	CTCGCTGAGG	CTGCGCTGGG	2760
	AGCCGGTGCC	CAGAGCGCAG	GGCTTCCTTC	TGCACTGGCA	ACCTGAGGGT	GGCCAGGAAC	2820
10	AGTCCCGGGT	CCTGGGGCCC	GAGCTCAGCA	GCTATCACCT	GGACGGGCTG	GAGCCAGCGA	2880
	CACAGTACCG	CGTGAGGCTG	AGTGTCCTAG	GGCCGGCTGG	AGAAGGCCC	TCTGCAGAGG	2940
	TGACTGCGCG	CACTGAGTCA	CCTCGTGTTC	CAAGCATTGA	ACTACGTGTG	GTGGACACCT	3000
		GGTGACTTTG					3060
	CCTGGCGGCC	ACTCAGAGGC	CCTGGCCAGG	AAGTGCCTGG	GTCCCCGCAG	ACACTTCCAG	3120
15		CTCCCAGCGG					3180
		CCTGGATGGT					3240
	GCCCCCGTGG	CCTGGCGGAT	GTGGTGTTCC	TACCACATGC	CACTCAAGAC	AATGCTCACC	3300
		TACGAGGAGG					3360
• •	CACAGGCAGT	TCAGGTTGGC	CTGCTGTCTT	ACAGTCATCG	GCCCTCCCCA	CTGTTCCCAC	3420
20	TGAATGGCTC	CCATGACCTT	GGCATTATCT	TGCAAAGGAT	CCGTGACATG	CCCTACATGG	3480
		GAACAACCTG					3540
	CAGATGCTCC	TGGGCGCCGC	CAGCACGTAC	CAGGGGTGAT	GGTTCTGCTA	GTGGATGAAC	3600
		TGACATATTC					3660
~ -		AATGGCTGGA					3720
25	ACTCTGTCCA	GACCTTCTTC	GCCGTGGATG	ATGGGCCAAG	CCTGGACCAG	GCAGTCAGTG	3780
		AGCCCTGTGT					3840
	CAGTGTATTG	TCCAAAGGGC	CAGAAGGGGG	AACCTGGAGA	GATGGGCCTG	AGAGGACAAG	3900
		TGGCGACCCT					3960
20		TGCCACTGCC					4020
30		CCGCGCCGGG					4080
		TGGCCCTCGT					4140
	AGCCGGGGGC	TCCCGGACAA	GTCATCGGAG	GTGAAGGACC	TGGGCTTCCT	GGGCGGAAAG	4200
		ACCATCGGGC					4260
25		AGGGCTTCCT					4320
35	GGGGTCCCCC	TGGACCAGGT	GAAGGTGGCA	TTGCTCCTGG	GGAGCCTGGG	CTGCCGGGTC	4380
		CCCTGGACCC					4440
		GGATGGAGCT					4500
		ACCTCCTGGA					4560
40		TGGAGAGAAG					4620
40		TGCTGGACGT					4680
		AGAGAAGGGG					4740
		ACCCAAAGGA					4800
		AGGGGAACGG					4860
15		TGGAGACCGG					4920
45	ACTCAGGGCC	TCCTGGAGAG	AAGGGAGACC	CTGGGCGGCC	TGGCCCCCCA	GGACCTGTTG	4980
		ACGAGATGGT					5040 5100
	CGGGTTTGCC	TGGAAAAGCA	GGCGAGCGTG	GCCTTCGGGG	TOTAL CONTRACT	CCCACCCCTC	5160
	CTGTGGGTGA	AAAGGGAGAC ACCCAAGGGT	CAGGGAGATC	ACCCCCCTCC	CCCACGACCC	CCCCCACCCCIG	5220
50		AGGACCTGGA					5280
50		GCCCAAGGGT					5340
		GGGACCCCCA					5400
		CCGGGGTCCC					5460
		GCCCTCTGGG					5520
55		AGGCCTCCGT					5580
		GCCAGGCGAG					5640
		AGAAGACGGG					5700
	AAGGTCGTGA	TGGCCCCAAG	GCTGAGCGTG	GAGCTCCTGG	TATCCTTGGA	CCCCAGGGGC	5760
	CTCCAGGCCT	CCCAGGGCCA	GTGGGCCCTC	CTGGCCAGGG	TTTTCCTGGT	GTCCCAGGAG	5820
60	GCACGGGCCC	CAAGGGTGAC	CGTGGGGAGA	CTGGATCCAA	AGGGGAGCAG	GGCCTCCCTG	5880
	GAGAGCGTGG	CCTGCGAGGA	GAGCCTGGAA	GTGTGCCGAA	TGTGGATCGG	TTGCTGGAAA	5940
		CAAGGCATCT					6000
		GCCTGTGCCC					6060
		CAAGGAGGGC					6120
65	GTGGAGACCC	TGGCCCTCAG	GGGCCACCTG	GTCTGGCCCT	TGGGGAGAGG	GGCCCCCCG	6180
	GGCCTTCCGG	CCTTGCCGGG	GAGCCTGGAA	AGCCTGGTAT	TCCCGGGCTC	CCAGGCAGGG	6240
	CTGGGGGTGT	GGGAGAGGCA	GGAAGGCCAG	GAGAGAGGGG	AGAACGGGGA	GAGAAAGGAG	6300
	AACGTGGAGA	ACAGGGCAGA	GATGGCCCTC	CTGGACTCCC	TGGAACCCCT	GGGCCCCCCG	6360
	GACCCCCTGG	CCCCAAGGTG	TCTGTGGATG	AGCCAGGTCC	TGGACTCTCT	GGAGAACAGG	6420
70	GACCCCCTGG	ACTCAAGGGT	GCTAAGGGGG	AGCCGGGCAG	CAATGGTGAC	CAAGGTCCCA	6480
	AAGGAGACAG	GGGTGTGCCA	GGCATCAAAG	GAGACCGGGG	AGAGCCTGGA	CCGAGGGGTC	6540
	AGGACGGCAA	CCCGGGTCTA	CCAGGAGAGC	GTGGTATGGC	TGGGCCTGAA	GGGAAGCCGG	6600
	GTCTGCAGGG	TCCAAGAGGC	CCCCCTGGCC	CAGTGGGTGG	TCATGGAGAC	CCTGGACCAC	6660
	CTGGTGCCCC	GGGTCTTGCT	GGCCCTGCAG	GACCCCAAGG	ACCTTCTGGC	CTGAAGGGGG	6720
75	AGCCTGGAGA	GACAGGACCT	CCAGGACGGG	GCCTGACTGG	ACCTACTGGA	GCTGTGGGAC	6780
	TTCCTGGACC	CCCCGGCCCT	TCAGGCCTTG	TGGGTCCACA	GGGGTCTCCA	GGTTTGCCTG	6840
	GACAAGTGGG	GGAGACAGGG	AAGCCGGGAG	CCCCAGGTCG	AGATGGTGCC	AGTGGAAAAG	6900
	ATGGAGACAG	AGGGAGCCCT	GGTGTGCCAG	GGTCACCAGG	TCTGCCTGGC	CCTGTCGGAC	6960
00	CTAAAGGAGA	ACCTGGCCCC	ACGGGGGCCC	CTGGACAGGC	TGTGGTCGGG	CTCCCTGGAG	7020
80	CAAAGGGAGA	GAAGGGAGCC	CCTGGAGGCC	TTGCTGGAGA	CCTGGTGGGT	GAGCCGGGAG	7080
	CCAAAGGTGA	CCGAGGACTG	CCAGGGCCGC	GAGGCGAGAA	GGGTGAAGCT	GGCCGTGCAG	7140
	GGGAGCCCGG	AGACCCTGGG	GAAGATGGTC	AGAAAGGGGC	TCCAGGACCC	AAAGGTTTCA	7200
	AGGGTGACCC	AGGAGTCGGG	GTCCCGGGCT	CCCCTGGGCC	TCCTGGCCCT	CCAGGTGTGA	7260
95	AGGGAGATCT	GGGCCTCCCT	GGCCTGCCCG	GTGCTCCTGG	TGTTGTTGGG	TTCCCGGGTC	7320
85	AGACAGGCCC	TCGAGGAGAG	ATGGGTCAGC	CAGGCCCTAG	1 GGAGAGCGG	GGTCTGGCAG	7380
	GCCCCCAGG	GAGAGAAGGA	ATCCCAGGAC	CCCTGGGGCC	ACCTGGACCA	CCGGGGTCAG	7440
	TGGGACCACC	TGGGGCCTCT	GGACTCAAAG	GAGACAAGGG	AGACCCTGGA	GTAGGGCTGC	7500

		/086443					
			GGGGAGCCAG				7560
			ACGGGGCCCC				7620
			CTAAAGGGTG				7680
_			AAGGGGGACA				7740
5			GACAATGGGG				7800
			GGGTTGCCAG				7860
			CCTGGTGACC				7920
			GATGTTGGCT				7980
1.0	GGGGAGTGAA	GGGAGCCTGT	GGCCTTGATG	GAGAGAAGGG	AGACAAGGGA	GAAGCTGGTC	8040
10	CCCCAGGCCG	CCCCGGGCTG	GCAGGACACA	AAGGAGAGAT	GGGGGAGCCT	GGTGTGCCGG	8100
	GCCAGTCGGG	GGCCCCTGGC	AAGGAGGGCC	TGATCGGTCC	CAAGGGTGAC	CGAGGCTTTG	8160
	ACGGGCAGCC	AGGCCCCAAG	GGTGACCAGG	GCGAGAAAGG	GGAGCGGGGA	ACCCCAGGAA	8220
	TTGGGGGCTT	CCCAGGCCCC	AGTGGAAATG	ATGGCTCTGC	TGGTCCCCCA	GGGCCACCTG	8280
	GCAGTGTTGG	TCCCAGAGGC	CCCGAAGGAC	TTCAGGGCCA	GAAGGGTGAG	CGAGGTCCCC	8340
15			GCTCCTGGGG				8400
	AGGGGCGGCC	AGGGCCTGCC	GGTCCTCGAG	GCGAGAAGGG	AGAAGCTGCA	CTGACGGAGG	8460
			CGCCAAGAGA				8520
			CCCCTCCCTA				8580
			CGCGTCTCTC				8640
20			TACTCCGAGT				8700
20			CCCTGTTCCC				8760
			CGGGCTGTGA				8820
			AATGCCAACC				8880
			CAGAGCCAGG				8940
25							
23			ATCCCCTGGA				9000
			GCTTGTGTGC				9060
			GTCTAGCCTT				9120
			CTCACTGTGG				9180
20			TTGACCCAAG		CATGGTGCTG	ATTCTGGGGG	9240
30	GCATTAAAGC	TGCTGTTTTA	AAAGGCAAAA	AA			
	Seq ID NO:	63 Protein	sequence:				
	Protein Acc	cession #: 1	NP_000085.1				
~~							
35	1	11	21	31.	41	51	
	1	1			1	1	
	MTLRLLVAAL	CAGILAEAPR	VRAQHRERVT	CTRLYAADIV	FLLDGSSSIG	RSNFREVRSF	60
	LEGLVLPFSG	AASAQGVRFA	TVQYSDDPRT	EFGLDALGSG	GDVIRAIREL	SYKGGNTRTG	120
			PKVCILITDG				180
40	EELKRVASOP	TSDFFFFVND	FSILRTLLPL	VSRRVCTTAG	GVPVTRPPDD	STSAPRDLVL	240
			GYKVQYTPLT				300
			GTARTTALEG				360
	RVI SCCPTOO	OFLGPGOGSV				ARTDASVEOT	420
			LLRDLEPGTD	YEVTVSTLFG	RSVGPATSLM		420 480
45	LRPVILGPTS	ILLSWNLVPE	LLRDLEPGTD ARGYRLEWRR	YEVTVSTLFG ETGLEPPQKV	RSVGPATSLM VLPSDVTRYQ	LDGLQPGTEY	480
45	LRPVILGPTS RLTLYTLLEG	ILLSWNLVPE HEVATPATVV	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP	YEVTVSTLFG ETGLEPPQKV VTDLQATELP	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP	LDGLQPGTEY VPGATQYRII	480 540
45	LRPVILGPTS RLTLYTLLEG VRSTQGVERT	ILLSWNLVPE HEVATPATVV LVLPGSQTAF	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT	LDGLQPGTEY VPGATQYRII VRREPETPLA	480 540 600
45	LRPVILGPTS RLTLYTLLEG VRSTQGVERT VPGLRVVVSD	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT	480 540 600 660
45	LRPVILGPTS RLTLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH	480 540 600 660 720
	LRPVILGPTS RLTLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS	480 540 600 660 720 780
45 50	LRPVILGPTS RLTLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY	480 540 600 660 720 780 840
	LRPVILGPTS RLTLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW	480 540 600 660 720 780 840 900
	LRPVILGPTS RLTLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSJRLRWEPV GEGPSAEVTA	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI	480 540 600 660 720 780 840 900 960
	LRPVILGPTS RITLYTLLEG VRSTQGVERI VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD QPEGGQEQSR ELRVVDTSID	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT VLGPELSSYH SVTLAWTPVS	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEP GEGPSAEVTA GSPQTLPGIS	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGYSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP	480 540 600 660 720 780 840 900 960 1020
50	LRPVILGPTS RLTLYTLLEG RLTLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYV VLGPELSSYV VLDGVRGPEA	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVTQASSE VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRV DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV	480 540 600 660 720 780 840 900 960 1020 1080
	LRPVILGPTS RLTLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VVLDGVRGPEA VQVGLLSYSH	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSW SVTQTPVCPR RPSPLFPLNG	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLEELU GNNLGTAVVT	480 540 600 660 720 780 840 900 960 1020 1080
50	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR RSSYILSWR RYTQTPVCPR RPSPLFPLNG MVLLVDEPLR	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVF ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL	480 540 600 660 720 780 840 900 960 1020 1080 1140
50	LRPVILGPTS RITLYTLLEG VRSTQGVERI VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFFSPIREA TALCQASFTT	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG	480 540 600 660 720 780 840 900 1020 1080 1140 1200 1260
50	LRPVILGPTS RITLYTLLEG VRSTQGVERI VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR RSSYILSWR RYTQTPVCPR RPSPLFPLNG MVLLVDEPLR	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFFSPIREA TALCQASFTT	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG	480 540 600 660 720 960 1020 1080 1140 1260 1320
50 _. 55	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPCLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRLAPGMDSV EMGLRGQVGP	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPB PLRGPGQEVP GLADVVFLPH SHDLGI ILQR GDIFSPIREA TALCQASFTT SATAKGERGF	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVY ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP	LDGLQPGTEY VPGATQYRIT VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG	480 540 600 660 720 780 840 900 1020 1080 1140 1200 1260
50	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLRGSPGL PLGDPGPRGP	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGBPRGDPGER PGLPGTAMKG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF PGPGEGGIAP	RSVGPATSLM VLPSDVTRYV GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSS GEPGLPGLPG	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP SRRVTGLEP GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP	480 540 600 720 780 840 900 900 1020 1140 1200 1320 1380 1440
50 _. 55	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLRGSPGL PLGDPGPRGP	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGBPRGDPGER PGLPGTAMKG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF PGPGEGGIAP	RSVGPATSLM VLPSDVTRYV GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSS GEPGLPGLPG	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP SRRVTGLEP GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP	480 540 600 660 720 900 960 1020 1080 1140 1260 1320 1380
50 _. 55	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QEGGQEQSR ELRVVDTSI GUSYIFSLTP LALGPLGPQA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAET REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG PGLPGAPGLPGQ VAGRPGAKGP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP EGPPGFPTGRQ	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG FGPGEGGIAP GPPGAIGPKG GEKGEPGRPG	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRGFPGPLPG DRGFPGPLPG DPAVVGPAVA	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLEELV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPPQGPVGP AGEKGERGPP GPKGEKGDVG	480 540 600 720 780 840 900 960 1020 1080 1140 1260 1320 1380 1440 1500
50 _. 55	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QEGGQEQSR ELRVVDTSI GUSYIFSLTP LALGPLGPQA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAET REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG PGLPGAPGLPGQ VAGRPGAKGP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGFKGEPG DKGDRGERGP PGSPGEQGPR	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG FGPGEGGIAP GPPGAIGPKG GEKGEPGRPG	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRGFPGPLPG DRGFPGPLPG DPAVVGPAVA	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLEELV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPPQGPVGP AGEKGERGPP GPKGEKGDVG	480 540 600 780 780 840 900 960 1020 1140 1200 1320 1380 1440 1500
50 55 60	LRPVILGPTS RLTLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ QGERGPPGLV	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP EGPPGFPTGRQ	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA ASPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRGFPGPLG DRGFPGPLG DRGFPGPDSG	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPPG PPGEKGDPGR	480 540 600 720 780 840 900 960 1020 1080 1140 1260 1320 1380 1440 1500
50 _. 55	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGBRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKG GRGRPPGLV GRDGEVGEKG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR GGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP GSPGEQGPR EGPPGPTGRQ LPGDPGPKGD	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG GEKGEPGRPG PGDRGPIGLT PGKAGERGLR	RSVGPATSLM VLPSDVTTYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRGFPGPLGE DPAVVGPAV GRAGPPGDS GAGPGVRGPVG	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP SQRVTGLEP GRAGADPEQL CPKGGKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPVG PPGEKGDPGG EKGDQGDPGE	480 540 600 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500 1620
50 55 60	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPCLRVVVSD YQVAVSVLRG SAHGPEKSQL FLCILNASSD SVRVTALVGD QPEGGQEQSR GUSYIFSLTP LALGPLGPQA ARRYMLAPDA ARRYMLAPDA ARRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV DGRNGSPGSS	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGI PGDPGLPGRT PGPPGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS RTDPLGPV GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGPKGLPG DEGPPGDGL PPGPPGRLVD	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG PGPGGGIAP GPPGAIGPKG GEKGEPGRPG FGKAGERGLR TGPGAREKGE	RSVGPATSLM VLPSDVTTYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGKGDP GEPGLPGLPG DRGFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRIVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPPGPRG SPGPQGPVGP AGEKGERCPP GPKGEKGDPG EKGDQGDPGE GPKGDPGLPG	480 540 600 720 780 840 900 960 1020 1140 1200 1140 1320 1380 1440 1500 1620 1680
50 55 60	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA ARRYMLAPDA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG RGPPGPQGDP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG PGSPGEQGPR EGPPGFTGRQ LPGDPGPKGD DEGPPGRTUD GVRGPAGEKG	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLR TGPGAREKGE DRGPPGLDGR	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG GGPGRGPGPP SGLDGKPGAA	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGR EKGDQGDPGE EKGDQFDFG GPKGDPGLPG GPSGPNGAAG	480 540 660 720 780 960 1020 1080 1140 1220 1380 1440 1500 1560 1680 1740
50 55 60	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGKKGEKGDS GPAGSRGLPG GPAGSRGLPG FAGPRGATGV PGPPGPVGPR DGRNGSPGSR APGERGIEGF KAGDPGRDIL	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGC QGERGPPGLV GRDGEVGEKG GPKGDRGEFG GPKGDRGEFG RGPPGPQGDP PGLRGEQGLP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGPG GPKGPKGPG DKGDRGERGP PGSPGEQGPR LPGDPGPKGD DEGPPGDTGR EVRGPAGEKG GPSGPPGLVG GVRGPAGEKG GPSGPPGLPG	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF GPGEGGIAP GPPGAIGPKG GEKGEPGRPG FGDRGPIGLT PGKAGERGLR TGPGAREKGE RGPGAREKGE	RSVGPATSLM VLPSDVTRYV QGRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRIRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSD GEPGLPGLPG DRGFFGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPB SGLDKGPGA NGKNGEPGDP	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP GRAGNPGTDC GRAGNPGTPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPPG PPGEKGDPGR EKGDQGPEG GPKGDPGLPG GPSGPNGAAG GEDGRKGEKG	480 540 600 720 780 840 900 960 1020 1140 1200 1320 1380 1440 1500 1680 1740 1680 1740 1860
50556065	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPCLRVVVSD YQVAVSVLRG SAHGPEKSQL FLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGP PGDPGLPGRT PGPPGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QEERGPPGLV GRDGEVGEKG GPKGDRGEPG RGPPGPCDP PGLRGEQGLP DGPKGERGAP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS OGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GPRGPKGEPG DKGDRGERGP DKGDRGERGP EGPPGPTGRQ LPGDPGFKGD DEGPPGRLVD GVRGPAGEKG GPSGPPGLPG GVRGPAGEKG GPSGPPGLPG GULGPAGELPG GULGPAGELPG GULGPAGELPG GULGPAGELPG GULGPAGELPG GULGPAGELPG GULGPGPPGLPG GULGPQGPPG	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE GPGPGGIAP GPFGAIGPKG GEKGEPGRPG GDRGPIGLT TGKAGERGLR TGPGAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGQ	RSVGPATSLM VLPSDVTTYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRAFFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR SGLDGKPGAB MGKNGEPGDT GFFPGVPGGTG	LDGLQPGTEY VPGATQYRIY VPGATQYRIY VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPPGPRG SPGPQGPVGP AGEKGERCPP GPKGEKGDPG EKGDQGPPGE GPKGDPGLPG GPSGPNGAAG GPSGPNGEKG PKGDRGETGS	480 540 660 720 780 900 1080 1140 1200 1320 1380 1560 1560 1680 1740 1800 1920
50556065	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL FLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA ARRYMLAPDA ARRYMLAPDA ARRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEV VLRITWVGVT REGTPVSIVV VLGPELSSYH VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QEERGPPGLV GRDGEVGEKG GPKGDRGEPG RGPPGPQGDP PGLRGEQGLP GGPKGRGAP GLRGEQGLP GLRGEGGAP GLRGEGGAP GLRGEGGAP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVY GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GWLLVDEPLR SLDQAVSGLA GAPGPQGPPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGPKGD LPGDPGPKGD DEGPPGDPGL PGPPGDPGL GPSGPFGLPG GULGPQGPPG NVDRLLETAG	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVTQASSE VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG FGDRGPIGLT TGKAGERGLR TGFGAREKGE DRGPPGLDGR KPGEDGKPGI LPGPVGPPGQ IKASALREIV	RSVGPATSLM VLPSDVTTYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVY DGSPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DPAVVGPAVA GRAGPPGDSG CAPGVRGPVG PGDRGQEGPR SGLDGKPGAA NGKNGEPGDP GFPGVPGGTG GFPGVPGGTG ETWDESSGSF	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLEELV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGE GPSGPNGAAG GEDGRKGEKG LPVPERRRGP	480 540 660 720 780 960 1020 1140 1260 1320 1320 1560 1560 1680 1740 1880 1740 1890 1980
50 55 60	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL LLNASSD SVRVTALVGD QEEGQEQSR ELRVVDTSID GUSYIFSLTP LALGPLGPQA ARRYMLAPDA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPS DGRNGSPGSS KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEDGLPGER KGEDGLPGER	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVEL REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GRYGGPGGPG GRYGGPGGPG PGLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEPGSVP GKEGPIGFPG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLS GAPGPQGPPG GPRGPKGEPG GPRGPKGEPG EGPPGPTGRQ LPGDPGRCB LPGDPGRCB LPGDPGRCB GPSGPFGRGV GVRGPAGEKG GPSGPPGLPG GVRGPAGEKG GPSGPPGLPG ULFGDPGRCD TGGPCGPPG TGGPCGILFQCGPPG TGGPCGILFG TGGPCGPPG TGGPCGILFG TGGPCGT TGGT TGGT TGGT TGGT TGGT TGGT	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA ATAKGERGF APGQVIGGEG PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGQ IKASALREIV PGPQGPPGLA	RSVGPATSLM VLPSDVTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVMI QPRPEPCPVY PGADGRPGSP GLPGRKGDP GEPGLPGLPG DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG SGLPGVRGPG SGLPGVRGPG SGLPGVRGPG SGLPGVRGPG GAPGVRGPG SGLPGVRGPG SGLPGVRGPG SGLPGVRGPG SGLPGKPGAA NGKNGEPGDP GFPGVPGGT GETWDESSGSF LGERGPPGPS	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPPQGPVGP AGEKGERGPVG PPGEKGDPGR EKGDQGDPGE EKGDQGDPGE EKGDQGDPGE GPKGPKGPKGPKG PKGDRGETG GPSGPNGAAG GEDGRKGEKG LDVPERRRGP GLAGEPGKPG GLAGEPGKPG	480 540 600 720 780 960 1020 1140 1200 1320 1380 1440 1560 1620 1680 1740 1860 1920 2040
50556065	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGKKGEKGDS GPAGSRGLPG GPAGSRGLPG FAGPRGATGV PGFPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGESGEQGPP IPGLPGRAGG	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ QERGPPGLV GRDGEVGEKG GPKGBRGEPG GPKGBRGEPG PGLRGEQGLP DGPKGERGAP GLRGEPGSV GKEGPIGFPG VGEAGRPEGR VGEAGRPEGR	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR LPGDPGPKGD DEGPPGPTGR QPRGPAGEN GPSGPPGLVG GVRGPAGEKG GPSGPPGLVG GILGPQGPPG GVRGPAGEKG GPSGPPGLPG GLIGPQGPPG GULGPQGPPG GVRGPAGEKG GRGLKGDRGD GERGEKGERG	YEVTVSTLFG ETGLEPPGKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG FGDRGPIGLT PGKAGERGLR TGPGAREKGE DRGPPGLDG LPGPVGPPGQ LKASALREIV PGPQGPPGLA EQGRDGPPGL EQGRDGPPGL	RSVGPATSLM VLPSDVITKY QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRIMEPD GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP GEPGLPGLFG DRGFPGPLGE DRAVGPAV GRAGPPGDSG GAPGVRGPVG GRAGPPGDSG GAPGVRGPVG GRAGPPGDSG GAPGVRGPVG FGDRGQEGPR SGLDGKPGAA NGKNGEPGDP GFFBVPGGTG ETWDESSGST LGERGPPGPS PGTPGPPGPP	LDGLQPGTEY VPGATQYRII VRREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP GRAGNPGTPG GRAGNPGTPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPPG PFGEKGDPGF EKGDQGDFGE GPKGPBGPGR GPSGPNGAAG GEDGRKGEKG PKGPGPLAG GEDGRKGEKG PKGPGPGFG GPKGPHGFAG GEDGRKGEKG PKGPGFGFG GPKGPHGFAG GEDGRKGEKG PKGPGFGFG GFGGPGFGG GFGGPGFGG GFGGPGFGG GFGGPGFGG GFGGPGFGG GFGGFGGG GFGGPGFGG GFKGVSVDEPG	480 540 600 720 780 900 960 1020 1140 1200 1380 1440 1500 1680 1740 1860 1980 1980 2040 2100
50556065	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPCLRVVVSD YQVAVSVLRG SAHGPEKSQL FLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSCASGREGR KGEQGLPGER KGEQGLPGER KGEDGLPGRAGG PGLLPGRAGG PGLLPGRAGG PGLLPGRAGG PGLLPGRAGG	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGI PGDPGLPGRT PGPPGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QEERGPPGLV GRDGEVGEKG GPKGDRGEPG RGPPGPGDP GLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEPGSVP GKEGPIGFPG GKEGPIGFPG GKEGPIGFPG VGEAGRPGER GLRGEPGSVP GKEGPIGFPG GKEGPIGFPG GKEGPIGFPG GKEGPGGPG GLRGEQGLP GKEGPIGFPG GKEGPGGPG GKEGGPGGPG GKEGPGGPG GKEGGPGGPG GKEGGRPGG GKEGGPGGPG GKEGGRPGG GKEGGRPGG GKEGGRPGG GKEGGRPG GKEGRPG GKEGGRPG GKEGGRPG GKEGGRPG GKEGGRPG GKEGGPG GKEGGRPG GKEGGRPG GKEGGRPG GKEGGRPG GKEGGPG GKEGGRPG GKEGGRPG GKEGGRPG GKEGGPG GKEGGRP GKEGGPG GKEGGPG GKEGGRP GKEGGPG GKEGG GKEGGPG GKEGG GKG GKG GKEGGPG GKG GKG GKG GKG GKG GKG GKG GKG GKG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGFKGD DEGPPGGLVD GVRGPAGEKG GPSGPPGLPG GVRGPAGEKG GPSGPPGLPG GULGPQGPPG TLGPQGPPG VVDRLLETAG ERGLKGDRG SNGDQGPKGD	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE GPGAGGEG GPGAIGPKG GEKGEPGRPG GDRGPIGLT TGKAGERGLR TGPGAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGQ IKASALREIV PGPQGPPGL RGVPGIKGDR	RSVGPATSLM VLPSDVTTYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDFS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRAFFPGPLGE DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR GGLDGKPGAB MGKNGEPGDP GFFGVPGGTG ETWDESSGSF LGERGPPGPB GETPGPPGP GEPGPRGQDG	LDGLQPGTEY VPGATQYRIP VPGATQYRIP VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQBPVGP AGEKGERCPP GPKGEKGDVG PPGEKGDPGE GPKGDPGLPG GPSGPNGBAG GEDGRKGEKG LPVPERRGP GLAGEPGKGS DFVPERRGP GLAGEPGKGP GPKGVVEPG GPKUVEPG MPGLPGERGM	480 540 660 720 780 960 1020 1080 1140 1260 1320 1340 1560 1560 1680 1740 1880 1740 1890 1920 1980 2040 2160
5055606570	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILINASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GUSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER KGEQGLPGER KGEQGLPGER KGDSGEQGPP LIPGLAGRAGG PGLSGEQGPP AGPEGKPGLQ	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAET VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VDLGYRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG QERGPPGLV QRDGEVGEKG GPKGDRGEPG RGPPGPQGDP FGLRGEQGLP DGPKGERGAP GLRGEPGSVP GKEGPIGFPG VGEAGRPGERG CLKGAKGEPG GPRGPPGVV GREGPFGVV GKEGPIGFPG GLKGEPGSVP GKEGPIGFPG GLKGERGEPG GLKGAKGEPG GPRGPPGPVG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GMVLLVDEPLR SLDQAVSGLA GAPGPQGPPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGRLVD GVRGPAGEKG GPSGPPGDPGL GPGPPGDPGL GPGPPGRLVD GVRGPAGEKG GPSGPPGDPGL GPGPPGDPGL GPGPPGDPGL GPGGPPGDPGL GRGRGPPGDPGL GRGRGPPGDPGL GRGRGPPGDPGL GRGRGPPGDPGL GRGRGRGPPGDPGL GRGRGRGPPGDPGC GRGRGRGPGG GRGRGRGCG GRGRGRGCG GRGRGRGCG GRGRGRGCG GRGDPGPPGA	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVTQASSE VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGI ILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG PGPGEGGIAP GEPGEGGIAP GERGEPGEGGIAP GERGEPGEGGER GERGEPGEGGIAP GERGEPGEGGIAP GERGEPGEGGIAP GERGEPGEDGRPIGLT GERGEPGEDGRPIGLT GERGEPGEDGRPGL LFGPVGPPGL LFGPVGPPGL LFGRGEPGFGL RGVPGIKGDR PGLAGPAGPQ PGLAGPAGPQ	RSVGPATSLM VLPSDVTTYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVT1TWTRVY ILPGNTDSAE HSLRIWEPVY GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP GELPGLKGDP GEFGLPGLPG DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG GRAGPVGPGPG SGLDGKPGAP GRAGPPGDSG GAPGVRGPUG GPGPRGPGDE GFPGVPGGTG ETWDESSGSF LGERGPPGPS GTPGPPGPS GTPGPPGPS GTPGPPGPG GEPGPRGQDG GPSGLKGEPG	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEDL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPP GPKGEKGDVG PPGEKGDPGE GPKGDPGE GPKGDPG GPKGD	480 540 660 720 780 960 1020 1140 1200 1320 1380 1440 1560 1680 1740 1800 1920 1980 2040 2160 2220
5055606570	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA ARRYMLAPDA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGKKGEKGDS PGAGSRGLPG PAGPRGATGV PGPRGPTGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEDGEQGPP IPGLPGRAGG PGLPGRAGG PGTGAVGLPG	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGPRGPGDP PGLRGEQGLP DGPKGERGAP GLRGEPGSVP GKEGPIGFPG VGEAGRPGER GLKGAKGEPG GPRGPPGPGVG PPGPSGLVGP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGR DEGPPGTTGR GVRGPAGEKG GPSGPFGLPG GULGPQGPPG GULGPQGPPG GULGPQGPPG GULGPQGPPG EGPGPFGTTGR SVRGPAGEKG GPSGPPGLPG GULGPQGPPG GULGPGPG GULGPQGPG GULGPQGPPG GULGPQGPG GULGPGA	YEVTVSTLFG ETGLEPPQKV YTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF GPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLR TGPGAREKGE RGPGAREKGE LRGPGRPG LPGPAGELGR KPGEDGKPGL LPGPVGPPGL LPGPVGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EGGRAGPQ GETGKPGAPG	RSVGPATSLM VLPSDVITKY QCLVPSVERY PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRIRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP GEPGLPGLPG DRGVEGPP GRAGPPGDSG GAPGVRGPVG GAPGVRGPVG GDRGQEGPR SGLDGKPGAN NGKNGEPGDP GFPGVPGGTG ETWDESSGSF LGERGPPGPS GEPGPRGQDG GPSGLKGEPG GPSGLKGEPG GPSGLKGEPG RDGASGKDGD	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP GRAGNPGTPG GRAGNPGTPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP GPKGEKGDVG PPGEKGDPGR GPKGPGPGR GPKGPKGEKG PKGDPGLPG GPKGPKGEKG PKGDPGLPG GPKGPKGEKG FKGDPGR GPKGPKGEKG FKGDPGR GPKGPKGEKG FKGDPGR GPKGPKGEKG FKGDPGR GPKGPKGEKG FKGDPGR GPKGPKGEKG FKGDPGR GPKGPKGEKG FKGDRGETG GPKGPKGPKG GPKGPKGPKGPKG GPKGPKGPKGPKGPKGPKGPKGPKGPKGPKGPKGPKGPKG	480 540 600 720 780 960 1020 1140 1200 1320 1380 1440 1500 1620 1680 1740 1860 1980 2040 2100 2100 2220 2280
50556065	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPCLRVVVSD YQVAVSVLRG ELQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP AFGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS AFGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER KGEQGLPGER GPLGGAGG PGLSGEQGPP AGPEGKPGLQ GPTGAVGLPG GLPGPVGPKG	ILLSWNLVPE HEVATPATVV HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYN SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG GPKGPGAKGP QEERGPPGLV GRDGEVGEKG GPKGDRGEPG GPKGDRGEPG GPKGDRGEPG GLRGEQGLP DGPKGERGAP GLRGEQGLP GKEGPIGFPG VGEAGRAFG GLRGEPGSVP GKEGPIGFPG VGEAGRPGERG GLKGAKGEPG GPRGPPGPC GPRGPPGPC GPRGPPGPC GPRGPPGLVG EPGPTGAPG EPGPTGAPG EPGPTGAPG EPGPTGAPG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MYLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR LPGDPGPKGD DEGPPGDFGL PFGPPGRLVD GVRGPAGEKG GPSGPPGLPG GILGPQGPPG GILGPQGPPG GILGPQGPPG GREKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GHGDPGPPGA QCSPGLPGQV AVVGLPGAKG	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVYQASS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQA GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE APGQVIGGE GPBGGGIAP GPPGAIGPKG GEKGEPGRPG GPBRGPIGLT PGKAGERGLR TGPGAREKGE DRGPPGLDG LPGPVGPPGQ LKASALREIV PGPQGPPGLA RGVPGIKGDR RGUPGIKGDR RGUPGIKGDR RGUPGIKGDR RGUPGIKGDR RGUPGIKGDR RGUPGIKGDR RGUPGIKGDR RGLAGPAGPG GETGKPGAPG EKGAPGGLAG	RSVGPATSLM VLPSDVITYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRAFPGPLGE DPAVVGPAV GRAGPPGDS GAPGVRGPVG PGDRGQEGPR SGLDGKPGA MGKNGEPGDP GFPGVPGGTG ETWDESSGSF LGERGPPGPS GEPGPPGPP GEPGPRGQDG GPSGLKGEPG GPSGLKGEPG GPSGLKGEPG GPSGLKGEPG DDGASGKGPG DDGASGKGPG DLVGEPGAKG	LDGLQPGTEY VPGATQYRIY VPGATQYRIY VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GPAGNPGTPG GPSGPPGFRG SPGPQGPVGP AGEKGPPG PFGEKGDPG EKGDPGE GPKGPGERGPPG GPSGPNGARG EKGPQGPFGE GPKGPRGERG PFGEKGPFG GPKGPRGERG PFGERGPFGE GPKGPKGPGP GLAGEPGKPG GLAGEPGKPG GPKVSVDEPG NPGLPGERGM ETGPPGRGLT RGSPPGVPGSP DRGLPGPRGE	480 540 660 720 780 900 1080 1140 1260 1320 1380 1560 1560 1740 1860 1740 1880 2040 2100 2160 2220 2280 2340
5055606570	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQI ELQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRYMLAPDA ARRYMLAPDA PGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEAGRAGEP	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEV VLRITWVGVT REGTPVSIVV VLGPELSSYH VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QERGPPGLV GRDGEVGEKG GPKGDRGEPG GLKGAGKGP GLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEQGP GLRGEGAP GLRGEAGRPGE GPRGPGPGP GPRGPGPGPG GPRGPGPGPG GPRGPGAPG GPRGPGAPG GPRGPFGAPG GPRGPTGAPG GDPGEDGQKG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GWLLVDEPLR SLDQAVSGLA GAPGPQGPPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGPKGDFG GPSGPFGPGD GPGPGDFDGL PGPPGRLVD GVRGPAGEKG GPSGPPGPG NVDRLLETAG ERGLKGDRGD GERGEKGERG SNGDQGPKGD GHGDPGPPG SNGDQGPKGD GHGDPGPPGAV QGSPGLPGQV AVVGLPGAKG APGPKGFKGD	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASES VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GEKGEPGRPG PGDRGPIGLT TGKAGERGLA TGPGAREKGE DRGPPGLDGR KPGEDGKPGL LPGPVGPPGQ IKASALREIV PGPQGPPGLA EQGRDGPPGL EQGRDGPPGL RGVPGIKGDR PGLAGPAGPQ GETGKPGAPG GEKGAPGCP GETGKPGAPG GETGKPG GETGKPG GETGKPGAPG GETGKPG GETGKP GETGKPC GETGKPC GETGKP GETGKPC GETGKPC GETGKPC GETGKP GETGKPC GETGKPC GETGKP GETGKPC GETGKP GETGKP GET	RSVGPATSLM VLPSDVTTYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRV DGSPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGLPGLPG DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR GGLDGKPGAA NGKNGEPGDB GFPGPVPGGTG ETWDESSGSF LGERGPPGPS LGERGPPGPS GTPGPPGPP GTPGPPGPPGPPPPPPPPPPPPP	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS PRAQGFLLHW RTESPRVBSI SSQRVTGLEP ATRRVLEELV GNNLGTAVVT GMAGADPEDL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG GPSGPPGPRG GPSGPVGPAGEKGDVG PPGEKGDPG GPKGEKGDVG PPGEKGDPG CPKGDVGPAGAC GEDGRKGEKG LPVPERRGP GLAGEPGKPG GPKVSVDEPG GPKVSVDEPG GPKGVSVDEPG MPGLPGERGM ETGPPGRGLT RGSPGVFGSP DRGLPGPRG LGLPGLFGAP LGLPGLFGAP	480 540 660 720 780 960 1020 1020 1140 1260 1320 1320 1440 1560 1740 1860 1740 1880 1740 2040 2160 2280 2280 2240 2400
5055606570	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSI GUSYIFSLTP LALGPLGPQA ARRYMLAPDA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPF DGRNGSPGSS ARGERGIEGF KAGDPGRDGL DSGASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER KGEXGLPGGP JPGLSGEQGPP JPGLSGEQGPP JPGLSGEQGPP GLPGGKPGLQ GPTGAVGLPG GLPGAVGLPG GLFGAVGLPG GLFGAVGLPG GLFGAVGLPG GLFGAVGLPG GLFGAVGLPG GLFGAVGLPG GLFGAVGLPG GLFGAVGLPG GUYGFPGQTG	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG GLKGEPGGP GLRGEQGLP GLRGEQGLP GLRGEPGSVP GKEGPIGFPG VGEAGRPGERG GLKGAKGEPG GPRGPPGPVG GPRGPPGPVG PGPGPGVGE PGPGPPGVG PFGPSGLVGP PGPSGLVGP PGPSGLVGP PGPSGLVGP PGPSGLVGP PGPSGLVGP PGPSGLVGP PGPSGLVGP PGPSGLVGP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RYPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP GSPGEQGPR LPGDPGFKGD DEGPPGDFGR QVRGPAGEKG GPSGPPGLPG GILGPQGPPG GVVDRLLETAG ERGLKGDRGD GERGEKGERG GNGDQGPKGD GHGDPGPPGA QGSPGLPGQV AVVGLPGAKG APGPKGFKGD SGERGLAGPP	YEVTVSTLFG ETGLEPPQKV YTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPIGLT PGKAGERGLR TGPGAREKGE RGPGPEGLGR KPGEDGKPGL LPGPVGPFGL LPGPVGPPGL LPGPVGPPGL RGVPGIKGD RGVPGIKGD RGVPGIKGD RGVPGIKGD RGVPGIKGD RGVGPGGL RGVPGIKGD RGVGPGGL RGVPGIKGD RGLAGPAGP GETGKPGAPG GRGIPGPLG	RSVGPATSLM VLPSDVIRTY QGRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRIRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSF GEPGLPGLPG DRAVVGPAVA GRAGPPGDSG GAPGVRGPVG GFPGVPGGTG ETWDESSGSF LGERGPPGPS PGTPGPRGPE GPSGPRGQDG GPSGLKGEPG RDGASGKDGD DLVGEPGKGD DLVGEPGKG PPGPPGVKGD PGPPGVKGD PGPPGVKGD	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPPGPVGP GPKGEKGDVG PPGEKGDPGR GPKGDEGPG GPKGDEGPG GPKGDEGPG GPKGDEGPG GPKGDFGR GPKGDRGETG LOPPERREGP GPKGPGPGPGPG GPKGPGPGPGPGPGPGPGPGPGPG	480 540 660 720 780 960 1020 1140 1220 1380 1440 1560 1680 1740 1880 1980 2040 2160 2220 2280 2340 2460
5055606570	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPCLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP PAGRSRGLPG PAGRSRGLPG PAGRSRGLPG PAGRRGTGP DGRNGSPGSS APGERGIEGF KAGDPGRDGL DSCASGREGR KGEQGLPGER KGDSGEQGPP 1PGLPGRAGG PGLSGEQGPP AGPEGKPGLQ GPTGAVGLPG GPTGAVGLPG KGEAGRAGEP GUSGPVGPKG KGEAGRAGEP GUSGPVGPKG KGEAGRAGEP GUSGPVGPKG KGEAGRAGEP GVVGFPGQTG GVPGVGLPGP	ILLSWNLVPE HEVATPATVV HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYN SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER GERGPPGLVG QERGPPGLVG GRGEVGEKG GPKGDRGEPG LRGEPGGLP DGPKGERGAP GLRGEPGGLP DGPKGERGAP GLRGEPGSVP GKEGPIGFPG VGEAGRPEGER GLKGAKGEPG GPRGPPGPVGP GPRGPPGPVGP GPRGPPGPVGP GPRGPPGPVGP GPRGPPGPVGP GPRGPFGPVGP GPRGPFGPVGP GPRGPFGPVGP GPRGPFGPVGP GPRGPGGPGPGPGPGPGPGPGPGPGPGPGPGPGPGPG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLNG GAPGPQGPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ UFGDPGFKGD DEGPPGDFGL PGPPGRLVD GVRGPAGEKG GPSGPPGLPG GILGPQGPPG GILGPQGPPG GTLGPQGPPG GERGLKGDRG GERGLKGDRG GERGLKGDRG GGSPGLPG GHGDPGPPGA AVGLPGAKG APGPPGFKGD GSPGLPGQV AVVGLPGAKG APGPKGFRGL GGSPGLAGPP GEDGRPGQEG	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASS TVHVVQASS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE PGPGEGGIAP GPPGAIGPKG EKGEPGRPG FGDRGPIGLT PGKAGERGLR TGPGAREKGE RGPPGLDGR KPGEDGKPGL LPGPVGPPGL LPGPVGPPGL LPGPVGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EQGRDGPPGL EXGAPAGP GETGKPGAPG EKGAPGGLAG PGVVPGSPG GREGIPPGL PRGLTGPPGS	RSVGPATSLM VLPSDVTTRYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRIMEPP GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP GEPGLPGLPG DRAFFED GEPGLPGLPG GRAGPPGDS GAAPGVGPVG GRAGPPGDS GAPGVGPVG FFGVPGGTG ETWDESSGS GAPGVGPD GFFGPPGPPG GEPGPRGQDG GPSGLKGEPG GPSGLKGEPG GPSGLKGEPG DLVGEPGKG PPGPPGVKGD DLVGEPGKG PPGPPGSVGP RGERGEKGDV	LDGLQPGTEY VPGATQYRIY VPGATQYRIY VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPGE GPSGPPGPGE GPKGEVGDPG EKGDVGDPGE GPKGDPGE GPKGDPGLPG GPSGPNGABG ELGGPKGEKG PKGDRGETGS LPVPERRGP GLAGEPGKPG GLAGEPGKPG GPKVSVDEPG NPGLPGERGM ETGPPGRGLI GETGPPGRGLI GETGPFGRGLI GSPGVPGSP DRGLPGPRGE LGLPGLPGAPG LGLPGLPGAPG GSAGLKGDKG	480 540 600 720 780 960 1020 1140 1200 1320 1380 1440 1560 1620 1680 1740 1980 2100 2100 2120 2140 2120 2220 2340 2450 2520
505560657075	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPCLRVVVSD YQVAVSVLRG SAHGPEKSQL FLQILNASSD SVRVTALVGD QPEGGQEQSR GUSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRYMLAPDA ARRLAPGMDSV EMGLRGQVGP APGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG FAGPRGATGV DGRAGSPGSS APGERGIEGF KAGDPGRDGI DSCASGREGR KGEQGLPGER KGEGGGPP AGPEGKYGLQ GPTGAVGLPG CLPGPVGLPG DSAVILGPPG DSAVILGPPG	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGI PGDPGLPGRT PGPFAVDDGP PGDPGLPGRT PGPFAVDGGP PGLPGTAMKG EDGAPGAKGP QGERGPPGLV RRDGEVGEKG GPKGDRGEPG RGPPGPGDP GLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEQGLP GLRGEQGP GLRGEPGP GRGERGEPG GRGERGEPGI RRGEMGQPG RGERGEPGI RRGAKGDMGE	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS OGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR GPPGPTGRQ LPGDPGRLVD GVRGPAGEKG GPSGPPGLPG GULGPQGPPG RUGPRGERGP PGSPGERGP GPROFGERGP GPROFGERGP RGPPGPCR GPROFGERGP AVDRLLETAG GERGEKGERG SNGDQGPKGD GHGDPGPCA AVGLLETAG GERGEKGERG AVGLIGT GERGEKGERG SNGDQGPKGD GHGDPGPCA AVGLIPGAKG APGPKGFKGD SGERGLAGPP GEDGRPGQV AVVGLIPGAKG APGPKGFKGD GGERGEKGERG RGPRGLOGDK RGRGRGLOGDK RGPRGLOGDK RGRGRGLOGDK RGRGRGLOGDK RGPRGLOGDK RGRGRGLOGDK RGRGRGLOGCK RGRGLOGDK RGRGRGLOGDK RGRGRGLOGDK RGRGRGLOGDK RGRGRGLOGDK RGRGCC RGRGLOGDK RGRGRGC	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR TALCQASFTT SATAKGERGF APGQVIGGE GPGAIGPKG GEKGEPGRPG GDFSGIAP GPFGAIGPKG GEKGEPGRPG LPGPGAIGPKG GEKGEPGRPG LPGPGLDGR TGPGAREKGE DRGPPGLDGR TGPGAREKGE DRGPPGLDGR RYPGPGQPPGL LPGPVGPPGQ IKASALREIV PGPQGPPGL RGVPGIKGDR PGLAGPAGPQ GETGKPGAPG GEKGAPGGPG GEKGAPGGPG GEKGAPGGPG GEKGAPGGPG GEKGAPGGPG GFGGIPGPG GREGIPGPG GREGIPGDG GREGIPGPG GREGIPG GREGI	RSVGPATSLM VLPSDVTTYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR SGLDGKPGAA MGKNGEPGDP GFFGVPGGTG ETWDESSGSF LGERGPPGPS GEPGLPGLPG GPGLPGLPG RDGASGKDG PPGPPGVKGD PPGPPGVKGD PPGPPGVKGD PPGPPGVKGD PPGPPGVKGD PPGPPGVKGD PRGERGEKGDV DKGSKGEPGD DKGSKGEPGD	LDGLQPGTEY VPGATQYRIP VPGATQYRIP VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRIVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GPSGPPGPG GPSGPPGPG GPSGPPGPG GPSGPPGPG GPKGDPGLPG GPKGDPGLPG GPKGDPGLPG GPKGDPGLPG GPKGPGPG GPKGPGPG GPKGPGPG GPKGPGPG GPKGPGPG GPKGPGPG CFKGPGPG CFKGPGPG CFKGPGPG CFKGPGPG CFKGPGPG CFKGPGPG CFKGPGPG CFKGPGPG CFGPGPG CFGPGPG CFGPGPG CFGPGPG CFGPGPG CFGPG CFGPG CFGPG CFGPG CFGC CFGC	480 540 660 720 780 900 1020 1020 1140 1260 1320 1340 1560 1740 1800 1740 1800 1920 2160 2220 22340 24400 24520 2580
5055606570	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQI ELQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GUSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRYMLAPDA ARRYMLAPDA PGLKGSPGL PGGKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGROGL DSCASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER KGEQGLPGER KGEGGLPGER GULPGPVGFKG GLPGPVGFKG GDPGVGLPGP GLLGPPGGLPGP GLLGPGQDP	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAET VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG QERGPPGLV QRDGEVGEKG GPKGDRGEPG RGPPGPQGDP FGLRGEQGLP DGPKGERGAP GLKGAGKGPG GKGPGPGPG VGEAGRPGEA GLKGAKGEPG GPRGPPGPV GPRGPPGPV GPRGPGPGP GLRGEQGLP GLRGEQGLP GLRGEQGLP GGRGPGPGPG RGERGPGPGPG RGERGPPGPV RGEAGRPGE GPRGPPGPV RGEAGRPGE GPRGPPGPV RGEAGRPGE RGERGPGPG RGPRGPGPGPG RGERGPGPGPG RGPRGPGPGPG RGERGEPGITG RGERGPG RGERGPG RGERGPG RGERGPG RGERGPG RGERGPG RGERGPG RGERG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GWLLVDEPLR SLDQAVSGLA GAPGPQGPPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGRUVD GVRGPAGEKG GPSGPPGLPG GPGPGPGLPG GPGPGPGPG NVDRLLETAG ERGLKGDRGD GERGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GHGDPGPPG AVGLETAG GRGPGPGPG GHGDPGPGA QGSPGLPGQV AVVGLPGAKG APGPKGFKGD GEGRGLAGPP GEDGRPGQEG GRGPRGLDGDK PGKDGVPGIR	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASSE VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GPGGGIAP GPPGAIGPKG GEKGEPGRPG FGBGGRPGLDGR TGFAGREKGE DRGPPGLDGR LPGPVGPPGQ IKASALREIV PGPQGPPGLA EQGRDGPPGL RGVPGIKGDR PGLAGPAGP GEKGAPGGLAG PGLAGPAGP GEKGAPGGLAG PGLAGPAGP GEKGAPGGLAG PGVGVPGSP GREGIPGPLG RGVPGIKGDR PGLAGPAGP GEKGAPGGLAG PGVGVPGSPG GREGIPGPLG RGLTGPPGS GPRGDNGDPG GEKGDVGFMG	RSVGPATSLM VLPSDVTTYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVY DGSPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP GEPGLPGLPG DPAVVGPAVA GRAGPPGDLG DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG GGPGVRGPGP GGLGGEPG SGLDGKPGAA NGKNGEPGD GFPGVPGGTG ETWDESSGSF LGERGPPGPS GTPGPPGPG GPSGLKGEPG CGPSGLKGEPG RDGASGKDGD DLVGEPGAKG PPGPPGVKGD PPGPPGSVGP RGERGEKGDV PKGSKGEPGD PKGSKGEPGD PKGLKGEPG	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRIVLERLV GNNLGTAVVT GMAGADPEDL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP GPKGEKGDVG PPGEKGDPGR GPKGDPGBG GPKGDPGBG GPKGDPGBG GPKGDPGBG GPKGDFGBG LDPPERRRGP GLAGEPGRGE GPKGDFGBG LSPPGBGBG KGSAGLKGDK KGSAGLKGDK KGSAGLPGLEK KGACGLDGEK	480 540 660 720 780 960 1020 1140 1260 1320 1320 1440 1560 1680 1680 1740 1880 1980 2040 2160 2220 2280 2240 2460 2580 2640
505560657075	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL LLQLINASSD SVRVTALVGD QEGGQEQSR ELRVVDTSID GUSYIFSLTP LALGPLGPQA ARRYMLAPDA ARRYMLAPDA ARRYMLAPDA PGLKGSPGL PGGAGGSRGLPG PGKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR AFGERGIEGF KAGDPGROGL DSCASGREGR KGEQGLPGGP IPGLPGRAGG PGLSGEQGPP IPGLPGRAGG GPLSGEQGPP GPTGAVGLPG GPTGAVGLPG GUFGPVGLPG GUFGPVGLPG GUFGPVGLPG GUFGPVGLPG GDFGVGLPG GDFGVGLPG GDKGEAGPP GDKGEAGPP GDKGEAGPP GDKGEAGPP GDKGEAGPP GDKGEAGPP GDKGEAGPP GDKGEAGPP GDKGEAGPP	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VDLGYRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG GLKGEPGGPG GLKGEPGSVP GKEGPIGFPG VGEAGRPGERG GLKGAKGEPG GPRGPPGPVG PGLKGERGAP GLKGEPGSVP GKEGPIGFPG VGEAGRPGERG PGLKGERGAP GLKGEAGPG GPRGPPGVG PFGPSGLVGP PGPSGLVGP PGPSGLVGP PGPSGLVGP RGERGPPGPVG RGERGPPGPVG RGERGPPGPVG RGERGPPGPVG RGERGPPGPVG RGERGEPGIR RGAKGDMG RGERGEPGIR	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG DKGDRGERGP GPRGPKGEPG DKGDRGERGP GPRGPKGPG QFRGPGPGTFGR LPGDPGRKGD DEGPPGDPGR LPGDPGRKGD DEGPPGDPGR ERGPLFG GULGPQGPG GVRGPAGEKG GPSGPPGLPG VDRLLETAG GERGEKGERG GRGEKGERG GRGEKGERG GRGEKGERG GRGPGLPGQV AVVGLPGAKG APGPKGFKGD SGERGLAGPP GEDGRPGQEG RGPRGLDGDK KGKDCPGPGG RGPRGLDGDK KGKDCPGPGG RGPRGLDGDK RGCPGPGGE RGPRGLDGDK RGCPGPPGQE RGPRGLDGDK RGCPGVPGQS	YEVTVSTLFG ETGLEPPQKV YTDLQATELP YTVRVSARVG WSTGSGPESS TVHVTQASSS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF GPGEGGIAP GPPGAIGPKG GEKGEPGRPG PGDRGPFIGLT PGKAGERGLR TGPGAREKGE LPGPVGPEGLAG KPGEDGKPGL LPGPVGPFGL LPGPVGPFGL EQGRDGPPGL EQGRDGPPGL EQGRDGPGC GRGGIAP GGVGPGSPG GRGGIAPGC GRGGIAPC GRG	RSVGPATSLM VLPSDVITKY QGRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRIRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSF GEPGLPGLPG DRAFFE DRAFVGFDAV GRAGPPGDSG GAPGVRGPVG GRAGPPGDSG GAPGVRGPVG GFPGPVPGGTG ETWDESSGSF LGERGPPGPS GTPGPPGPP GEPGPRGQDG GPSGLKGEPG RDGASGKDGD DLVGEPGKGD PGPPGVKGD PGPPGVKGD PGPPGVKGD PGPPGVKGD PGPPGVKGD PGPFGSVGP RGERGEKGDV DKGSKGEPGG RGERGEKGDV DKGSKGEPGG PRGLKGERGV PKGDRGFDGQ	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRRVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP AGEKGERGPG GPKGEKGDVG PPGEKGDPGR GPKGDRGEKG PKGDRGETGS LPVPERRRGP GPKGDPGRGEKGPG GPKGDPGRGEKGPG GPKGDPGRGEKGPG CPSGPNGAAG GEDGRKGEKG PKGDRGETGS LPVPERRRGP GLAGEPGRGE RTGSPGPGRGLT RGSPGVPGSP DRGLPGREG LGLPGLPGRAP PGASGLKGDK GSAGLKGDK GSAGLKGDK GSAGLKGDK KGSAGLDGEK PGPKGDQGEK	480 540 660 720 780 960 1020 1140 1260 1320 1380 1440 1560 1620 1680 1740 1800 2040 2160 2220 2280 2240 2240 22520 22520 22520 22640 2700
505560657075	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPCLRVVVSD YQVAVSVLRG SAHGPEKSQL ELQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA AHRYMLAPDA RRLAPGMDSV EMGLRGQVGP AFGLKGSFGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DGRNGSPGSS AFGERGIEGF KGEDGELGFE KGEDGELGFE KGEDGELGFE KGEDGELGFE KGEDGELGFE GLFGRAGF GLFGRAGF GLFGRAGF GLFGRAGF GLFGRAGF GUFGRAGF GUFGR GU	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAEL VLRITWVGVT REGTPVSIVV VLGPELSSYN VLGPELSSYN VLGPELSSYN PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGAKGG QGERGPPGLV QGERGPPGLV GRDGEVGEKG GPKGDRGEPG GLRGEQGLP DGPKGERGAP GLRGEQGLP GLRGEQGLP GLRGEQGLP GRAGPGSVP GKEGPIGFP GLRGEQGLP GPGPGSVG GPRGPPGVG GPGPGSVG GPGPGSQ GPGPGPG GPRGPPGPG GPRGPPGPG GPRGPPGPG GPRGPPGPG GPRGPPGPG GPRGPPGPG GPRGPGPG GPRGPGPG GPRGPGPG GPRGPGG GPGGRGQ GPGBGGG GPGBGGG GPGBGGG GPGBGGG GPGBGGG GPGBGGG GPGGBGG GPGGBGGG GPGGBGG GPGGBGG GPGGBGG GPGGBGG GPGGBGG GPGGBGG GRGGGG GPGGBGGG GPGGBGG GPGG GPGGG GPGG GPG GPGG GPG	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG MVLLVDEPLR SLDQAVSGLA GAPGPQGPPG GPRGPKGEPG DKGDRGERGP PGSPGEQGPR LPGDPGRKGD PGSPGEQGPR GPPGPTGRQ UPGDPGGLVGD GVRGPAGEKG GPSGPPGLVG GILGPQGPPG GILGPQGPPG GULGPQGPPG GVRGPAGEKG GPSGPPGLVG GULGPQGPC GULGPC GULGPQGPC GULGPQGPC GULGPQGPC GULGPQC GULGPQC GULGPQC GULGPQC GULGPQC GULGPC GUL	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASS TVHVVQASS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQA GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGE PGPGEGGIAP GPPGAIGPKG GEKGEPGRPG GPBGRGPIGLT PGKAGERGLR TGPGAREKGE LPGPVGPPGL LPGPVGPPGQ LKASALREIV PGPQGPPGL EQGRDGPPGL RGVPGIKGDR GLAGPAGPG GEKGAPGGPG GEKGAPGGPG RGVPGIKGDR GLAGPAGPG GRGIPGPG GEKGAPGGPG GEKGAPGGPG GEKGAPGGPG GEKGAPGGPG GREGIPGPG GREGIPGPG GREGIPGPG GREGIPGPG GREGIPGPG GREGIPGPG GREGIPGPG GREGIPGG GREGIPGPG GREGIPG	RSVGPATSLM VLPSDVTTYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRIMEPP GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPRPEPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRGFPGPLGE DRAFVUGPAVG GRAGPPGDS GAPGVRGPVG GRAGPPGDS GAPGVRGPVG FGRGPGPGP GFPGVPGGTG ETWDESSGSF LGERGPPGPS GEPGLKGEPG GPSGLKGEPG DPAVGPAVG FORDFAGE FORDFAGE FORDFAGE FORDFAGE FORDFAGE FORDFAGE PGPPGVRGD DLVGEPGAKG PPGPPGSVGP RGERGEKGDV DKGSKGEPGD PKGDRGFIGQ QKGERGPPGG QKGERGPPGG	LDGLQPGTEY VPGATQYRIY VPGATQYRIY VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRIVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GPSGPPGFG GPSGPPGFG GPSGPFGFG GPSGPPGFG GPKGDPGP GPKGDPGF GPKGDPGE GPKGDPGE GPKGDPGE GPKGPGF GPKGPKGPG GLAGEPGKP GLAGEPGKP GLAGEPGKP TGSPGCF RGSPGGEG RGLAGEPGKP GLAGEPGKP GKGAGLGE KGACGLDGE KGACG KGACGLDGE KGACG KGACGLDGE KGACG KGACGLDGE KGACG KGACG KGACGLDGE KGACG KGACC KGACG KGACG KGACG KGACG KGACG KGACG KGACG KGACC KGACC KGACC KGACC KGACC KGC KGC KGCACC KGC KGC KGC KGC KGC KGC KGC KGC KGC K	480 540 660 720 780 900 1080 1140 1260 1320 1340 1560 1680 1740 1860 1740 1880 2040 2160 2220 2460 22580 2450 2580 2760
505560657075	LRPVILGPTS RITLYTLLEG VRSTQGVERT VPCLRVVVSD YQVAVSVLRG SAHGPEKSQI FLQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GVSYIFSLTP LALGPLGPQA ARRYMLAPDA ARRYMLAPDA ARRYMLAPDA PGLKGSPGL PLGDPGPRGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPR DSGANGSPGSS APGERGIEGF KGEQGLPGER KGEQGLPGER KGEQGLPGER KGEQGLPGER KGEQGLPGER GEGGGPP AGPEGKPGLQ GPTGAVGLPG GULGPQGPG GLLGPQGPG GLLGPQGPG GLLGPQGPG GLLGPQGPG GLLGPQGPG GLLGPQGPG GLLGPQGPG GLLGPQGPG GLLGPQGPG GRGTPGIGG APGERGEQGR	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAET VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGF PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV GRDGEVGEKG GPKGDRGEPG GPKGDRGEPG GLKGAKGEPG GLKGAKGEPG GPRGPGPGPGPG GPRGPGPGPG GPRGPGPGPG GPRGPGPGPG GPRGPGPGPG GPRGPGPGPG GPRGPGPGPG GPRGPGPGPG RGERGPGPG RGERGPGPG RGERGPGPG RGERGPGPG RGERGPG RGERGP RGERGP RGERGPG RGERGP	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GPRGPKGEPG DKGDRGERGP GPRGPKGEPG EGPPGPTGRQ UPGDPGRKGD EGPPGPLPG GULGPAGEKG GPSGPPGLPG GULGPAGEKG GPSGPPGLPG GULGPQGPPG NVDRLLETAG ERGLKGDRG GRGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GERGERGLAGPP GEDGRPGQE GRGPRGLDGDK PGKDGVPGIR MGEPGVPGQS SGEPGLPGGV GERGLDGDK PGKDGVPGIR MGEPGVPGQS GERALTEDDI	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASS VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF PGPGEGGIAP GPFGAIGPKG GEKGEPGRPG GDRGPIGLT TGFAREKGE DRGPPGLDGR TGPGAEGE LPGPVGPPGQ IKASALREIV PGPQGPPGL RGVPGIKGDR PGLAGPAGPG EKGAPGPG EKGAPGPG GEKGPGPG GRGPFGLG GRGFVG GRGFUGPG GRGFUG	RSVGPATSLM VLPSDVTTYYQ GQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVP DGPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGRKGDP GEPGLPGLPG DRAVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR SGLIDGKPGAP MGKNGEPGDP GFPGVPGGTG ETWDESSGSF LGERGPPGPB GEPGRAGDP GPSGLKGEPG PGPGPGPGPG CPGPGPGPG CPGPGPGPG CPGPGPGPG	LDGLQPGTEY VPGATQYRIT VPGATQYRIT VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRIVLERLV GNNLGTAVVT GMAGADPEQL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SFGPVGPPA AGEKGERCPP GPKGEKGDVG PPGEKGDPGR GPSGPNGAAG GEDGRKGEKG LPVPERRRCP GLAGEPGKPG GPKVSVDEPG MPGLPGERGM ETGPPGRGLT RGSPGVFPB DRGLPGERGM ETGPPGRGLT RGSPGVFPB CAGAGGLT RGSPGVPC CSAGLKCDK CSAGLYCDR CSCRPLPSYA	480 540 660 720 780 960 1020 1140 1260 1320 1320 1440 1560 1680 1740 1880 1980 2040 2160 2220 2220 2240 2400 2520 2520 2520 2640 2750 2750 2820
50556065707580	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQI ELQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GUSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRYMLAPDA ARRYMLAPDA PGLKGSPGL PGGAGSRGLPG PAGSRGLPG PAGSRGLPG PAGSRGLPG PAGSRGLPG PAGSRGLPG FAGPGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGROGL DSCASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER GULGGRAGG GLFGANGLPG GRGANGLPG GRGANGLPG GRGANGLPG GLFGANGLPG GLFGANGLPG GLFGANGLPG GRGANGLPG GRGANGLPG GLFGANGLPG GLFGANGLPG GLFGANGLPG GRGANGLPG GLFGANGLPG GRGANGLPG GLFGANGLPG GLFGANGLPG GRGANGLPG GR	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAET VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV RDGEVGEKG GPKGDRGEPG RGPFGPQGDP FGLRGEQGLP DGPKGERGAP GLKGAKGEPG GPRGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPC GPRGPPGPV FGLRGEQGLP FGLRGEQGLP FGLRGEQGP FGLRGEQGP FGLRGEQGP RGERGPPGPV FGLRGEAGR FFGPGPGAMGE FFGPGBAGDGG FFGPGSGNGG FFGPSGNGG FFGPSGNDGS FFGPSGNGGE	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVY GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GMVLLVDEPLR SLDQAVSGLA GAPGPQGPPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGRCPU GVRGPAGEKG GPSGPPGLPG GPGPGPGLPG GPGPGPGDGL GPGPGPGDGL GPGPGPGDG AVGLETAG ERGLKGDRGD GERGEKGERG GHGDPGPG AVGLETAG GERGLKGDRGD GERGEKGERG GHGDPGPG GERGEKGERG GHGDPGPG GULGPGPG AVVGLPGAKG AVGLPGAKG AVGLPGAKG AVGLPGAKG GEGGLAGPP GEDGRPGQEG GGPRGLDGDK GERGLAGPP GEDGRPGQEG GGPRGLDGDK GGRGPGPGPGG GGPRGLDGDK GGRGVPGIR MGEPGVPGQS AGPPGPPGS GEALTEDDI EEERVPPEDD	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASES VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GEKGEPGRPG PGDRGPIGLT TGKAGERGER KPGEDGKPGL LFGPVGPPGL LFGPVGPPGL IKASALREIV PGPQGPPGLA EQGRDGPPGL RGVPGIKGDR PGLAGPAGP GEKGAPGGLAG FGVGPFGLAG EKGAPGCLAG FGVGPFGL GEKGAPGCLAG FGVGVPGSPG GEKGAPGCLAG FGVGVPGSPG GEKGAPGCLAG FGVGVPGSPG GRGPTGPFGL GRGPFGLAG FRGVFGTAG GRGFVRGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPGCS EYSEYSEYSV	RSVGPATSLM VLPSDVTTYQ CQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVY DGSPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGLPGLPG DPAVVGPAVA GRAGPPGDLG DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR GGLDGKPGAP GFBCPGPC GFBCPGPC GFBCPGPC GFBCPGPC GFBCPGPC GFPGPC GFRGERGE DLVGEPGAKG PFGPPGV GFRGERGE DLVGEPGAKG PFGPPGV GFGRGE CFGC CFGC CFGC CFGC CFGC CFGC CFGC CF	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRIVLERLV GNNLGTAVVT GMAGADPEDL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP GPKGEKGDVG PPGEKGDPGR GPKGEKGDVG PPGEKGDPGR GPKGDPGEKGPG GPKGDPGEKGPKG GFKGDCGEK GPKGDCGEK GPKGDCGEK GSAGLKGDK KGSAGLFGLEK KGACGLDGEK PGPKGDQGEK RVVGAPGVPG SGSRPLPSYA DSDDPCSLPL	480 540 660 720 780 960 1020 1140 1260 1380 1440 1560 1680 1680 1740 1800 1980 2040 2160 2220 2280 2340 2460 2580 2700 2700 2700 2820 2880 2700 2820 2880
505560657075	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQL RLQILNASSD SVRVTALVGD QEGGQEQSR ELRVVDTSI GUSYIFSLTP LALGPLGPQA ARRYMLAPDA RRLAPGMDSV EMGLRGQVGP PGKKGEKGDS GPAGSRGLPG PAGPRGATGV PGPPGPVGPP AFGERGSPGLSGEQGPP TGLBGRGSPGLSGEQGPP IPGLPGRAGG GPLSGEQGPP IPGLPGRAGG GPLSGEQGPP GPFGVGLPG GPTGAVGLPG GUSTGRAGGP GUSTGRAGG APTAGSQLHA DEGSCTAYTL	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAET VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV RDGEVGEKG GPKGDRGEPG RGPFGPQGDP FGLRGEQGLP DGPKGERGAP GLKGAKGEPG GPRGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPC GPRGPPGPV FGLRGEQGLP FGLRGEQGLP FGLRGEQGP FGLRGEQGP FGLRGEQGP RGERGPPGPV FGLRGEAGR FFGPGPGAMGE FFGPGBAGDGG FFGPGSGNGG FFGPSGNGG FFGPSGNDGS FFGPSGNGGE	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVR DGLEPDTEYT GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GPRGPKGEPG DKGDRGERGP GPRGPKGEPG EGPPGPTGRQ UPGDPGRKGD EGPPGPLPG GULGPAGEKG GPSGPPGLPG GULGPAGEKG GPSGPPGLPG GULGPQGPPG NVDRLLETAG ERGLKGDRG GRGEKGERG SNGDQGPKGD GERGEKGERG SNGDQGPKGD GERGERGLAGPP GEDGRPGQE GRGPRGLDGDK PGKDGVPGIR MGEPGVPGQS SGEPGLPGGV GERGLDGDK PGKDGVPGIR MGEPGVPGQS GERALTEDDI	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASES VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GEKGEPGRPG PGDRGPIGLT TGKAGERGER KPGEDGKPGL LFGPVGPPGL LFGPVGPPGL IKASALREIV PGPQGPPGLA EQGRDGPPGL RGVPGIKGDR PGLAGPAGP GEKGAPGGLAG FGVGPFGLAG EKGAPGCLAG FGVGPFGL GEKGAPGCLAG FGVGVPGSPG GEKGAPGCLAG FGVGVPGSPG GEKGAPGCLAG FGVGVPGSPG GRGPTGPFGL GRGPFGLAG FRGVFGTAG GRGFVRGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPGCS EYSEYSEYSV	RSVGPATSLM VLPSDVTTYQ CQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVY DGSPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGLPGLPG DPAVVGPAVA GRAGPPGDLG DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR GGLDGKPGAP GFBCPGPC GFBCPGPC GFBCPGPC GFBCPGPC GFBCPGPC GFPGPC GFRGERGE DLVGEPGAKG PFGPPGV GFRGERGE DLVGEPGAKG PFGPPGV GFGRGE CFGC CFGC CFGC CFGC CFGC CFGC CFGC CF	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRIVLERLV GNNLGTAVVT GMAGADPEDL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP GPKGEKGDVG PPGEKGDPGR GPKGEKGDVG PPGEKGDPGR GPKGDPGEKGPG GPKGDPGEKGPKG GFKGDCGEK GPKGDCGEK GPKGDCGEK GSAGLKGDK KGSAGLFGLEK KGACGLDGEK PGPKGDQGEK RVVGAPGVPG SGSRPLPSYA DSDDPCSLPL	480 540 660 720 780 960 1020 1140 1260 1320 1320 1440 1560 1680 1740 1880 1980 2040 2160 2220 2220 2240 2400 2520 2520 2520 2640 2750 2750 2820
50556065707580	LRPVILGPTS RITLYTLLEG RITLYTLLEG VRSTQGVERT VPGLRVVVSD YQVAVSVLRG SAHGPEKSQI ELQILNASSD SVRVTALVGD QPEGGQEQSR ELRVVDTSID GUSYIFSLTP LALGPLGPQA AHRYMLAPDA ARRYMLAPDA ARRYMLAPDA PGLKGSPGL PGGAGSRGLPG PAGSRGLPG PAGSRGLPG PAGSRGLPG PAGSRGLPG PAGSRGLPG FAGPGATGV PGPPGPVGPR DGRNGSPGSS APGERGIEGF KAGDPGROGL DSCASGREGR KGEQGLPGER KGEQGLPGER KGEQGLPGER GULGGRAGG GLFGANGLPG GRGANGLPG GRGANGLPG GRGANGLPG GLFGANGLPG GLFGANGLPG GLFGANGLPG GRGANGLPG GRGANGLPG GLFGANGLPG GLFGANGLPG GLFGANGLPG GRGANGLPG GLFGANGLPG GRGANGLPG GLFGANGLPG GLFGANGLPG GRGANGLPG GR	ILLSWNLVPE HEVATPATVV LVLPGSQTAF ATRVRVAWGP REEGPAAVIV VSGEATVAET VLRITWVGVT REGTPVSIVV VLGPELSSYH SVTLAWTPVS VLDGVRGPEA VQVGLLSYSH PGRRQHVPGV QTFFAVDDGP PGDPGLPGRT PGPRGDPGER PGLPGTAMKG EDGAPGLPGQ VAGRPGAKGP QGERGPPGLV RDGEVGEKG GPKGDRGEPG RGPFGPQGDP FGLRGEQGLP DGPKGERGAP GLKGAKGEPG GPRGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPV GERGPPGPC GPRGPPGPV FGLRGEQGLP FGLRGEQGLP FGLRGEQGP FGLRGEQGP FGLRGEQGP RGERGPPGPV FGLRGEAGR FFGPGPGAMGE FFGPGBAGDGG FFGPGSGNGG FFGPSGNGG FFGPSGNDGS FFGPSGNGGE	LLRDLEPGTD ARGYRLEWRR PTGPELPVSP DLDDVQAGLS VPGASGFRIS ARTDPLGPVY GATAYRLAWG TTPPEAPPAL LDGLEPATQY RASSYILSWR SVTQTPVCPR RPSPLFPLNG GMVLLVDEPLR SLDQAVSGLA GAPGPQGPPG DKGDRGERGP PGSPGEQGPR EGPPGPTGRQ LPGDPGRCPU GVRGPAGEKG GPSGPPGLPG GPGPGPGLPG GPGPGPGDGL GPGPGPGDGL GPGPGPGDG AVGLETAG ERGLKGDRGD GERGEKGERG GHGDPGPG AVGLETAG GERGLKGDRGD GERGEKGERG GHGDPGPG GERGEKGERG GHGDPGPG GULGPGPG AVVGLPGAKG AVGLPGAKG AVGLPGAKG AVGLPGAKG GEGGLAGPP GEDGRPGQEG GGPRGLDGDK GERGLAGPP GEDGRPGQEG GGPRGLDGDK GGRGPGPGPGG GGPRGLDGDK GGRGVPGIR MGEPGVPGQS AGPPGPPGS GEALTEDDI EEERVPPEDD	YEVTVSTLFG ETGLEPPQKV VTDLQATELP YTVRVSARVG WSTGSGPESS TVHVVQASES VHVRAHVAGV RSEGGPMRHQ GTLHVVQRGE RVRLSVLGPA PLRGPGQEVP GLADVVFLPH SHDLGIILQR GDIFSPIREA TALCQASFTT SATAKGERGF APGQVIGGEG GEKGEPGRPG PGDRGPIGLT TGKAGERGER KPGEDGKPGL LFGPVGPPGL LFGPVGPPGL IKASALREIV PGPQGPPGLA EQGRDGPPGL RGVPGIKGDR PGLAGPAGP GEKGAPGGLAG FGVGPFGLAG EKGAPGCLAG FGVGPFGL GEKGAPGCLAG FGVGVPGSPG GEKGAPGCLAG FGVGVPGSPG GEKGAPGCLAG FGVGVPGSPG GRGPTGPFGL GRGPFGLAG FRGVFGTAG GRGFVRGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPFGC GRGFTGPGCS EYSEYSEYSV	RSVGPATSLM VLPSDVTTYQ CQRVRVSWSP PREGSASVLT QTLPPDSTAT SVTITWTRVY DGSPPASVVVR ILPGNTDSAE HSLRLRWEPV GEGPSAEVTA GSPQTLPGIS ATQDNAHRAE IRDMPYMDPS QASGLNVVML QPREPCPVY PGADGRPGSP PGLPGLPGLPG DPAVVGPAVA GRAGPPGDLG DPAVVGPAVA GRAGPPGDSG GAPGVRGPVG PGDRGQEGPR GGLDGKPGAP GFBCPGPC GFBCPGPC GFBCPGPC GFBCPGPC GFBCPGPC GFPGPC GFRGERGE DLVGEPGAKG PFGPPGV GFRGERGE DLVGEPGAKG PFGPPGV GFGRGE CFGC CFGC CFGC CFGC CFGC CFGC CFGC CF	LDGLQPGTEY VPGATQYRII VREPETPLA DITGLQPGTT GATGYRVSWH TAPEPVGRVS IRGLEGGVSY PRAQGFLLHW RTESPRVPSI SSQRVTGLEP ATRIVLERLV GNNLGTAVVT GMAGADPEDL CPKGQKGEPG GRAGNPGTPG GPSGPPGPRG SPGPQGPVGP GPKGEKGDVG PPGEKGDPGR GPKGEKGDVG PPGEKGDPGR GPKGDPGEKGPG GPKGDPGEKGPKG GFKGDCGEK GPKGDCGEK GPKGDCGEK GSAGLKGDK KGSAGLFGLEK KGACGLDGEK PGPKGDQGEK RVVGAPGVPG SGSRPLPSYA DSDDPCSLPL	480 540 660 720 780 960 1020 1140 1260 1380 1440 1560 1680 1680 1740 1800 1980 2040 2160 2220 2280 2340 2460 2580 2700 2700 2700 2820 2880 2700 2820 2880

WO 02/086443
Seq ID NO: 64 DNA sequence
Nucleic Acid Accession #: NM_006945
Coding sequence: 1-219

*	Coding sequ	ience: 1-215	,				
5	1	11	21	31	41	51	
_	Ī]	1	1	1		
			GTGCAAGCAG				60
			TCCACCCCCG				120
10			TCAGCAGTGC		ATCCTCCTGT	GACACCTTCC	180
10	CCACCCTGCC	AGCCAAAGTA	TCCACCGAAG	AGCAAGTAA			
	Sec ID NO.	65 Protein	semience:				
		cession #: 1					
1 ~			-				
15	1	11	21	31	41	51	
				 	(DODGDDOOG	OOKADDAMDG	60
	PPCOPKYPPK		PKCPEPCPPP	KCPEPCPPPK	CPQPCPPQQC	QQKIPFVIPS	90
	FFCQFKIFFK	DIC.					
20	Seq ID NO:	66 DNA sequ	ience				
			1 #: NM_005	629.1			
	Coding sequ	lence: 639-2	2546				
	1	11	21	31	41	51.	
25	Ī	Ī	Ī		1		
			GTCGCTGAGC				60
			GCGAGGCGCG				120
			GGAGTCGCGG				180 240
30			ACAGGCCCCT TTAGGATGAG				300
50			CAGGAGCCTC				360
			GCGCGCCCC				420
			GGACTGCTTC				480
25			CCCCGGCCCG				540
35			CCGCCGGTGC				600 660
			GTGCGGCCCG GGCGACGAGA				720
			GACGGCCCCG				780
	CCGTGCCGCC	GCGCGAGACC	TGGACGCGCC	AGATGGACTT	CATCATGTCG	TGCGTGGGCT	840
40	TCGCCGTGGG	CTTGGGCAAC	GTGTGGCGCT	TCCCCTACCT	GTGCTACAAG	AACGGCGGAG	900
	GTGTGTTCCT	TATTCCCTAC	GTCCTGATCG	CCCTGGTTGG	AGGAATCCCC	ATTTTCTTCT	960
	TAGAGATCTC	GCTGGGCCAG	TTCATGAAGG	CCGGCAGCAT	CAATGTCTGG	AACATCTGTC	1020 1080
	ACATCATCAA	AGGCCTGGGC	TACGCCTCCA GGCTTCTATT	ACCTGGTCAA	GTCCTTTTACC	ACCACGCTGC	1140
45	CCTGGGCCAC	ATGTGGCCAC	ACCTGGAACA	CTCCCGACTG	CGTGGAGATC	TTCCGCCATG	1200
	AAGACTGTGC	CAATGCCAGC	CTGGCCAACC	TCACCTGTGA	CCAGCTTGCT	GACCGCCGGT	1260
			GAGAACAAAG				1320
			GTGACCCTTT				1380
50	TCTGTGTCTG	GAAGGGGGTC	AAATCCACGG	GAAAGATCGT	GTACTTCACT	GCTACATTCC	1440 1500
50	CCTACGTGGT	CTATCTCAAG	CTGCTGGTGC CCTGACTGGT	CAAAGCTGGG	GTCCCCTCAG	GTGTGGATAG	1560
			TTTTCTTACG				1620
	GCAGCTACAA	CCGCTTCAAC	AACAACTGCT	ACAAGGACGC	CATCATCCTG	GCTCTCATCA	1680
<i></i>	ACAGTGGGAC	CAGCTTCTTT	GCTGGCTTCG	TGGTCTTCTC	CATCCTGGGC	TTCATGGCTG	1740
55	CAGAGCAGGG	CGTGCACATC	TCCAAGGTGG	CAGAGTCAGG	GCCGGGCCTG	GCCTTCATCG	1800
	CCTACCCGCG	CCTCCTTCACG	CTGATGCCAG CTCGACAGCC	AGTTTCTAGG	TGTGGAGGGC	TTCATCACCG	1860 1920
	GCCTCCTCGA	CCTCCTCCCG	GCCTCCTACT	ACTTCCGTTT	CCAAAGGGAG	ATCTCTGTGG	1980
	CCCTCTGTTG	TGCCCTCTGC	TTTGTCATCG	ATCTCTCCAT	GGTGACTGAT	GGCGGGATGT	2040
60	ACGTCTTCCA	GCTGTTTGAC	TACTACTCGG	CCAGCGGCAC	CACCCTGCTC	TGGCAGGCCT	2100
			GCCTGGGTGT				2160
	CCTGTATGAT	CGGGTACCGA	CCTTGCCCCT	GGATGAAATG	GTGCTGGTCC	CTCCTTCACCC	2220 2280
	CGCTGGTCTG	COTOTACCCC	TTCATCTTCA TGGTGGGGTG	ACGUIGIGIA	CTACGAGCCG	CCCCTCTCCCT	2340
65	CCATGCTGTG	CGTGCCGCTG	CACCTCCTGG	GCTGCCTCCT	CAGGGCCAAG	GGCACCATGG	
0.0	CTGAGCGCTG	GCAGCACCTG	ACCCAGCCCA	TCTGGGGCCT	CCACCACTTG	GAGTACCGAG	2460
	CTCAGGACGC	AGATGTCAGG	GGCCTGACCA	CCCTGACCCC	AGTGTCCGAG	AGCAGCAAGG	2520
	TCGTCGTGGT	GGAGAGTGTC	ATGTGACAAC	TCAGCTCACA	TCACCAGCTC	ACCTCTGGTA	2580
70	GCCATAGCAG	CCCCTGCTTC	AGCCCCACCG	CACCCCTCCA	GGGGGCCTGC	CTTTCCCTGA	2640
70	CACTTTTGGG	GTCTGCCTGG	AACCCCAAAA	ATATCACAAC	CCACCAAAAA	CACTAAAACA TAGATGCCTC	2700 2760
	TCCCCCTCCA	GCCCTAGCCG	AGCTGGTCCT	AGGCCCCGCC	TAGTGCCCCA	CCCCCACCCA	2820
	CAGTGCTGCA	CTCCTCCTGC	CCCTGCCACG	CCCACCCCCT	GCCCACCTCT	CCAGGCTCTG	2880
	CTCTGCAGCA	CACCCGTGGG	TGACCCCTCA	CCCCAGAAGC	AGCAGTGGCA	GCTTGGGAAA	2940
75						GGAGGCAGGG	
						CCCATCCCTG	
						CCAATCGCCA	
						GGAGAGTATA TCTGGGCAAA	
80						TGCTTGTATA	
	TTTCTAAAAA	GAGGAAGGAG	CCCAAACCAT	CCTCTCCTTA	CCACTCCCAT	CCCTGTGAGC	3360
	CCTACCTTAC	CCCTCTGCCC	CTAGCCAAGG	AGTGTGAATT	TATAGATCTA	ACTTTCATAG	3420
	GCAAAACAAA	AGCTTCGAGC	TGTTGCGTGT	GTGAGTCTGT	TGTGTGGATG	TGCGTGTGTG	3480
85						CTGTCCCCAC	
05						CTGGGTGTCT CCCAGGAAGG	
						CACCTCCAGT	

	WO 02	/086443					
5	TGACCCCAAG	AAAGGCTTCC CCTGCGGGGA	CCCACGTTTG CCGACACCCA CATTCTACTG	GACAGAGGCT	GCAGGGCTGG	GGCTGGGTGA	3780 3840 3900
3		67 Protein cession #: 1					
10	į.	11	21	31	41	51	
10	FIMSCVGFAV INVWNICPLF CVEIFRHEDC	GLGNVWRFPY KGLGYASMVI ANASLANLTC	 PLIAPGPDGA LCYKNGGGVF VFYCNTYYIM DQLADRRSPV	LIPYVLIALV VLAWGFYYLV IEFWENKVLR	GGIPIFFLEI KSFTTTLPWA LSGGLEVPGA	SLGQFMKAGS TCGHTWNTPD LNWEVTLCLL	60 120 180 240
15	GSPQVWIDAG SILGFMAAEQ GVEGFITGLL TTLLWQAFWE	TQIFFSYAIG GVHISKVAES DLLPASYYFR CVVVAWVYGA	VYFTATFPYV LGALTALGSY GPGLAFIAYP FQREISVALC DRFMDDIACM	NRFNNNCYKD RAVTLMPVAP CALCFVIDLS IGYRPCPWMK	AIILALINSG LWAALFFFML MVTDGGMYVF WCWSFFTPLV	TSFFAGFVVF LLLGLDSQFV QLFDYYSASG CMGIFIFNVV	300 360 420 480 540
20			GWAFALSSML PVSESSKVVV		LRAKGTMAER	MÖHPLÖBIMG	600
25	Nucleic Act	68 DNA sequid Accession lence: 178-2	1 #: NM_0219	953.1			
	1	11	21	31	41	51	
30	CGCACGAGGG	 	GGTCCGGCGC	 GAGCCCCCCTT	CCGGGGCCCT	 GGCTCGGCCC	60
50			GCCCGCCTTC				120
			TGTGATTCTC				180
			ACTGATTCTC AGAGGAGGAA				240 300
35			GGAAGTGGCG				360
	ATCAAGATTA	TTAACCACCC	CACCATGCCC	AACACGCAAG	TAGTGGCCAT	CCCCAACAAT	420
			CACAGCACTG				480 540
			CATCAGCTGT CTATGATGCC				600
40			GGATGTGAAT				660
			AGATGGTGAG				720
			AAAGATGAGT				780 840
			GAATTGTCAC CTGGCAGAAC				900
45	ATGGCCATGA	TACAATTCGC	CATCAACAGC	ACTGAGAGGA	AGCGCATGAC	TTTGAAAGAC	960
			CCACTTTCCC				1020
			CCTTTCCCTG GACCATTCAC				1080 1140
			CCCAGGGTCT				1200
50			GCTCCGCCGG				1260
			GCCACTGCTA				1320
			ACTGGTGTTG				1380 1440
			AGAGCTTGCC GGGGATAGCT				1500
55			AGGGTTTTCT				1560
			GGAAATGCCA				1620
			CTCCCCGGCC				1680 1740
			TCCCACCCCA GGAAATGCTT				1800
60			GCATCTACTG				1860
			TTCCCGCTGG				1920
						TAAGACACCC CAGAACCCCT	1980 2040
						CCCAGTACAA	
65						TCTCAGCACC	
						TTCAGAACCC	
						CGTCCCCAAG GACAGAAGGC	
						CAGCTTTCCT	
70						TATTCCTGAG	
						GGGCACTCCA TCTGCTCCTC	
						CTGCTGGGAC	
	CTTGTGTTCC	CCAAGAGTAT	CTGATTCCTC	TGCTGTCCCT	GCCAGGAGCT	GAAGGGTGGG	2700
75						CATTCTCTGC	
						GTATAAATTC TCCAGAGACT	
						GCTTTTAGTT	
0.0	TTGATAGAAG	GGAAGACCTG	CAGTGCACGG	TTTCTTCCAG	GCTGAGGTAC	CTGGATCTTG	3000
80	GGTTCTTCAC	TGCAGGGACC	CAGACAAGTG	GATCTGCTTG	CCAGAGTCCT	TTTTGCCCCT	3060
						CTGGTTAAAA CAACTGAAGC	
						CCCAATCATA	
^ ~						AAAGGGCCCC	
85	TGACCTGCCT	GGCTTCCTTA	GCTTGCCCCT	CAGCTTTGCA	AAGAGCCACC	CTAGGCCCCA	3360
				AACACTAACT	ACTCAATAAA	AGCGAAGGTG	3420
	GACCNAAAAA	AAAAAAAA	AAAA				

Seq ID NO: 69 Protein sequence: Protein Accession #: NP_068772.1

	FIOCEAN ACC	Jessiel #. I	_000772.1				
5	•		21	2.7	41	51	
9	1	11	1	31	i i	1	
				HDKD CDY COH	ONOVEYORE	A DOMOGRADA	60
		LKRRRLPLPV	_				
		PNTQVVAIPN					120
1.0		AKRTEVTLET					180
10		SSDGLGSRSI					240
	YMAMIQFAIN	STERKRMTLK	DIYTWIEDHF	PYFKHIAKPG	WKNSIRHNLS	LHDMFVRETS	300
	ANGKVSFWTI	HPSANRYLTL	DQVFKPLDPG	SPQLPEHLES	QQKRPNPELR	RNMTIKTELP	360
	LGARRKMKPL	LPRVSSYLVP	IOFPVNOSLV	LOPSVKVPLP	LAASLMSSEL	ARHSKRVRIA	420
		APLSSAGPGK					480
15		APSFKEESSH					540
10		LPPCVDEPEL					600
		TPSKSVLPRT					660
		ESPQRLLSSE				GLAANRSLTE	720
20	GLVLDTMNDS	LSKILLDISF	PGLDEDPLGP	DNINWSQFIP	ELQ		
20							
	Sea ID NO:	70 DNA sequ	ience				
		id Accession		29.1			
		ience: 178-2					
25	couring sequ	iciicc. 170 i					
25	1	11	21	31	41	51	
	1	11		31	1	1	
	1		<u> </u>	<u> </u>			
		GGACCCGGCC					60
20		GGAGCCCGGA					120
30	CAGTCTGGAG	GGTCCACACT	TGTGATTCTC	AATGGAGAGT	GAAAACGCAG	ATTCATAATG	180
	AAAACTAGCC	CCCGTCGGCC	ACTGATTCTC	AAAAGACGGA	GGCTGCCCCT	TCCTGTTCAA	240
		GTGAAACATC					300
		AGGCCTCCAA					360
		TTAACCACCC					420
35							
33		ACAGCATCAT					480
		AATTCATCCT					540
		CCCAAACCAG					600
	GGACCAAAAC	CTGCAGCTAG	GGATGTGAAT	CTTCCTAGAC	CACCTGGAGC	CCTTTGCGAG	660
		AGACCTGTGC					720
40		AGTGGCTTCG					780
-10		AGGAAAAGGA					840
		CATCAGCGTC					900
		TACAATTCGC					960
. ~	ATCTATACGT	GGATTGAGGA	CCACTTTCCC	TACTTTAAGC	ACATTGCCAA	GCCAGGCTGG	1020
45	AAGAACTCCA	TCCGCCACAA	CCTTTCCCTG	CACGACATGT	TTGTCCGGGA	GACGTCTGCC	1080
	AATGGCAAGG	TCTCCTTCTG	GACCATTCAC	CCCAGTGCCA	ACCGCTACTT	GACATTGGAC	1140
	CAGGTGTTTA	AGCAGCAGAA	ACGACCGAAT	CCAGAGCTCC	GCCGGAACAT	GACCATCAAA	1200
		CCCTGGGCGC					1260
		CTATCCAGTT					1320
50							
50		CCCTGGCGGC					1380
		CCCCCAAGGT					1440
		AAGAGGAGAA					1500
	CAGACTATCA	AGGAGGAAGA	AATCCAGCCT	GGGGAGGAAA	TGCCACACTT	AGCGAGACCC	1560
	ATCAAAGTGG	AGAGCCCTCC	CTTGGAAGAG	TGGCCCTCCC	CGGCCCCATC	TTTCAAAGAG	1620
55	GAATCATCTC	ACTCCTGGGA	GGATTCGTCC	CAATCTCCCA	CCCCAAGACC	CAAGAAGTCC	1680
		TTAGGTCCCC					1740
		AGAGGAGCCG					1800
		TGCTCTTCTC					1860
60		ACTCCTCTGA					1920
60		CACCCATTAA					1980
	CTCCCCAGAA	CCCCTGAATC	CTGGAGGCTC	ACGCCCCCAG	CCAAAGTAGG	GGGACTGGAT	2040
		TACAAACCCC					2100
	ATGGATCTCA	GCACCACTCC	CTTGCAAAGT	GCTCCCCCCC	TTGAATCACC	GCAAAGGCTC	2160
	CTCAGTTCAG	AACCCTTAGA	CCTCATCTCC	GTCCCCTTTG	GCAACTCTTC	TCCCTCAGAT	2220
65	ATAGACCTCC	CCAAGCCAGG	CTCCCCGGAG	CCACAGGTTT	CTGGCCTTGC	AGCCAATCGT	2280
00	TCTCTCACAC	AACCCCTCCT	CCTGGACACA	ATGAATGACA	GCCTCAGCAA	GATCCTGCTG	
						CAACTGGTCC	
	GACATCAGCT	TTCCTGGCCI	GGACGAGGAC	CCACIGGGCC	CIGACAACAI	CANCIGGICC	2400
						GCTGTCCACC	
7 0						GCAGGCAGGG	
70	ACTGTTCTGC	TCCTCATAGC	TCCCTGCTGC	CTGATTATGC	AAAAGTAGCA	GTCACACCCT	2580
	AGCCACTGCT	GGGACCTTGT	GTTCCCCAAG	AGTATCTGAT	TCCTCTGCTG	TCCCTGCCAG	2640
						CCCCCAGCCT	2700
	Chahacayana	TOTOLING	VCACACACATI	CALCCCAGVA	CTTTGCAGGG		2760
75						TTCCTTAGAT	
75						TGACTTCTGT	
						TCCAGGCTGA	
						GCTTGCCAGA	
						CTGCAAGAAG	
	AAATCCTCCT	TAAAAAACTC	ԴԻՐԻՐԻՐԻՐԻՐԻ	GGTCAGGAGT	TGAATTTGGG	GTGGGAGGAT	3120
80						TTCTCTGATA	
50						GGCTTGAGAA	
	ATGTCCCCAA	TCATACCAGG	GAGACTGGCA	TIGHCGAGAA	COCCUE	GGCIIGAGAA	3240
	GGCCGAAAGG	GCCCCTGACC	TGCCTGGCTT	CCTTAGCTTG	CCCCTCAGCT	TTGCAAAGAG	3300
	CCACCCTAGG	CCCCAGCTGA	CCGCATGGGT	GTGAGCCAGC	TTGAGAACAC	TAACTACTCA	3360
o ~	ATAAAAGCGA	AGGTGGAAAA	AAAAAAAAA	AAAAAA			
85							
	Sea ID NO.	71 Protein	sequence:				
		cession #: 2					
	TIOCETH WC	CCDDION #: 4					

Protein Accession #: AAH06529.1

	1	11	21	31	41	51	
_	MKTSPRRPLI	LKRRRLPLPV	ONAPSETSEE	EPKRSPAQQE	 SNQAEASKEV	AESNSCKFPA	60
5		PNTQVVAIPN AKRTEVTLET					120 180
	LSNIQWLRKM	SSDGLGSRSI	KQEMEEKENC	HLEQRQVKVE	EPSRPSASWQ	NSVSERPPYS	240
		STERKRMTLK HPSANRYLTL					300 360
10	SYLVPIQFPV	NQSLVLQPSV	KVPLPLAASL	MSSELARHSK	RVRIAPKVLL	AEEGIAPLSS	420 480
		FGEGFSPLLP SQSPTPRPKK					540
		PSTSRWAAEL LTPPAKVGGL					600 660
15	LLSSEPLDLI	SVPFGNSSPS	DIDVPKPGSP				720
	LDISFPGLDE	DPLGPDNINW	SQFIPELQ				
	Seq ID NO:	72 DNA sequ	ience				
20	•	id Accession Lence: 178-2		.1			
				2.1	41		
2.5	1	11	21	31	41	51	
25		GGACCCGGCC GGAGCCCGGA					60 120
	CAGTCTGGAG	GGTCCACACT	TGTGATTCTC	AATGGAGAGT	GAAAACGCAG	ATTCATAATG	180
		CCCGTCGGCC GTGAAACATC				TCCTGTTCAA .	240 300
30	AATCAAGCAG	AGGCCTCCAA	GGAAGTGGCA	GAGTCCAACT	CTTGCAAGTT	TCCAGCTGGG	360
		TTAACCACCC ACAGCATCAT					420 480
		ACAGCATCAT					540
25	CGGCCTCAAA	CCCAAACCAG	CTATGATGCC	AAAAGGACAG	AAGTGACCCT	GGAGACCTTG	600
35		CTGCAGCTAG AGACCTGTGC					660 720
		AGTGGCTTCG					780
		AGGAAAAGGA					840
40		CATCAGCGTC TACAATTCGC					900 960
-10		GGATTGAGGA					1020
		TCCGCCACAA					1080
		TCTCCTTCTG AGCCACTGGA					1140 1200
45		CGAATCCAGA					1260
		GGAAGATGAA					1320
		TGAACCAGTC TCATGAGCTC					1380 1440
~~		GGGAACAGGT					1500
50		GTACACCCAT					1560
		AGGAGGGGAT GAGAAGGGTT					1620 1680
		GGGAGGAAAT					1740
55		GGCCCTCCCC					1800 1860
33		AATCTCCCAC TCTCGGAAAT					1920
		AACAGCATCT					1980
		GTACTTCCCG					2040
60		AGCTCAGCTA CCATCTCCTC					2100 2160
	TGGAGGCTCA	CGCCCCAGC	CAAAGTAGGG	GGACTGGATT	TCAGCCCAGT	ACAAACCTCC	2220
						CACCACTCCC	2280 2340
						ACCCTTAGAC CAAGCCAGGC	2400
65	TCCCCGGAGC	CACAGGTTTC	TGGCCTTGCA	GCCAATCGTT	CTCTGACAGA	AGGCCTGGTC	
						TCCTGGCCTG TGAGCTACAG	
						TCCAAGGCTC	2640
70	AGTGCACCCC	AAGCCTCTGA	GTGAGGACAG	CAGGCAGGGA	CTGTTCTGCT	CCTCATAGCT	2700
70						GGACCTTGTG TGGGAACAAC	2760 2820
		GTGAAAAGAG					2880
	GTCTCTTACC	TTCCCTGATC	TTTGCAGGGT	${\tt GGTCCGTGTA}$	AATAGTATAA	ATTCTCCAAA	2940
75		ATTATAAATG GATGACCTGG					3000 3060
, ,		CCTGCAGTGC					3120
	TCACTGCAGG	GACCCAGACA	AGTGGATCTG	CTTGCCAGAG	TCCTTTTTGC	CCCTCCCTGC	3180
		TGTTTCCAAG GTCAGGAGTT				AAAAAAGTCT	3240 3300
80							3360
	AGACTGGCAT	TGACGAGAAC	TCAGGTGGAG	GCTTGAGAAG	GCCGAAAGGG	CCCCTGACCT	
						CCCAGCTGAC GGTGGACAAA	
0.5	AAAAAAAAA		_ JAGAACACI		while conn	CCICORONIA	2240
85							
	Seq ID NO:	73 Protein	sequence:				

Seq ID NO: 73 Protein sequence: Protein Accession #: AAC51128.1

```
MKTSPRRPLI LKRRRLPLPV QNAPSETSEE EPKRSPAQQE SNQAEASKEV AESNSCKFPA
                                                                             60
 5
       GIKIINHPTM PNTQVVAIPN NANIHSIITA LTAKGKESGS SGPNKFILIS CGGAPTQPPG
                                                                            120
       LRPOTOTSYD AKRTEVILET LGPKPAARDV NLPRPPGALC EQKRETCADG EAAGCTINNS
                                                                            180
       LSNIOWLRKM SSDGLGSRSI KOEMEEKENC HLEOROVKVE EPSRPSASWQ NSVSERPPYS
                                                                            240
       YMAMIQFAIN STERKRMTLK DIYTWIEDHF PYFKHIAKPG WKNSIRHNLS LHDMFVRETS
                                                                            300
       ANGKVSFWTI HPSANRYLTL DQVFKPLDPG SPQLPEHLES QQKRPNPELR RNMTIKTELP
10
       LGARRKMKPL LPRVSSYLVP IQFPVNQSLV LQPSVKVPLP LAASLMSSEL ARHSKRVRIA
                                                                            420
       PKVFGEQVVF GYMSKFFSGD LRDFGTPITS LFNFIFLCLS VLLAEEGIAP LSSAGPGKEE
                                                                            480
       KLLFGEGFSP LLPVOTIKEE EIOPGEEMPH LARPIKVESP PLEEWPSPAP SFKEESSHSW
                                                                            540
       EDSSQSPTPR PKKSYSGLRS PTRCVSEMLV IQHRERRERS RSRRKQHLLP PCVDEPELLF
                                                                            600
       SEGPSTSRWA AELPFPADSS DPASOLSYSO EVGGPFKTPI KETLPISSTP SKSVLPRTPE
                                                                            660
15
       SWRLTPPAKV GGLDFSPVQT SQGASDPLPD PLGLMDLSTT PLQSAPPLES PQRLLSSEPL
                                                                            720
       DLISVPFGNS SPSDIDVPKP GSPEPQVSGL AANRSLTEGL VLDTMNDSLS KILLDISFPG
                                                                            780
       LDEDPLGPDN INWSQFIPEL Q
       Seg ID NO: 74 DNA seguence
20
       Nucleic Acid Accession #: Eos sequence
       Coding sequence: 111-416
                                                   41
                                                              51
                             21
                                        31
25
       GGGAAGAGCC AGGCTGAGCC TTATAAAGGA CTGCTCTTTG TCCAAACACA CACATCTCAC
                                                                             60
       TCATCCTTCT ACTCGTGACG CTTCCCAGCT CTGGCTTTTT GAAAGCAAAG ATGAGCAACA
                                                                            120
       CTCAAGCTGA GAGGTCCATA ATAGGCATGA TCGACATGTT TCACAAATAC ACCAGACGTG
       ATGACAAGAT TGAGAAGCCA AGCCTGCTGA CGATGATGAA GGAGAACTTC CCCAACTTCC
                                                                            240
       TTAGTGCCTG TGACAAAAG GGCACAAATT ACCTCGCCGA TGTCTTTGAG AAAAAGGACA
                                                                            300
30
       AGAATGAGGA TAAGAAGATT GATTTTCTG AGTTTCTGTC CTTGCTGGGA GACATAGCCA
                                                                            360
       CAGACTACCA CAAGCAGAGC CATGGAGCAG CGCCCTGTTC CGGGGGCAGC CAGTGACCCA
                                                                            420
       GCCCCACCAA TGGGCCTCCA GAGACCCCAG GAACAATAAA ATGTCTTCTC CCACCAGA
       Seq ID NO: 75 Protein sequence:
35
       Protein Accession #: Eos sequence
                                                               51
                             21
                                        31
                                                   41
       MSNTOAERSI IGMIDMFHKY TRRDDKIEKP SLLTMMKENF PNFLSACDKK GTNYLADVFE
40
       KKDKNEDKKI DFSEFLSLLG DIATDYHKQS HGAAPCSGGS Q
       Seg ID NO: 76 DNA sequence
       Nucleic Acid Accession #: Eos sequence
45
       Coding sequence: 111-416
                                        31.
                                                   41
                                                              51
       GGGAAGAGCC AGGCTGAGCC TTATAAAGGA CTGCTCTTTG TCCAAACACA CACATCTCAC
                                                                             60
50
       TCATCCTTCT ACTCGTGACA CTTCCCAGTT CTGGCTTTTT GAAAGCAAAG ATGAGCAACA
                                                                            120
       CTCAAGCTGA GAGGTCCATA ATAGGCATGA TCGACATGTT TCACAAATAC ACCGGACGTG
                                                                            180
       ATGGCAAGAT TGAGAAGCCA AGCCTGCTGA CGATGATGAA GGAGAACTTC CCCAATTTCC
                                                                            240
       TCAGTGCCTG TGACAAAAAG GGCATACATT ACCTCGCCAC TGTCTTTGAG AAAAAGGACA
                                                                            300
       AGAATGAGGA TAAGAAGATT GATTTTCTG AGTTTCTGTC CTTGCTGGGA GACATAGCCG
                                                                            360
55
       CAGACTACCA CAAGCAGAGC CATGGAGCGG CGCCCTGTTC TGGGGGAAGC CAGTGATCCA
                                                                            420
       GCCCACCAA GGGGCCTCCA GAGACCCCAG GAACAATAAG TGTCTCCTCC CACCAGA
       Seq ID NO: 77 Protein sequence:
       Protein Accession #: XP_048124.1
60
                                                              51
                                        31
                                                   41
       MSNTQAERSI IGMIDMFHKY TGRDGKIEKP SLLTMMKENF PNFLSACDKK GIHYLATVFE
                                                                             60
       KKDKNEDKKI DFSEFLSLLG DIAADYHKQS HGAAPCSGGS Q
65
       Seg ID NO: 78 DNA seguence
       Nucleic Acid Accession #: Z73678.1
       Coding sequence: 253-2433
70
                                                               51
                             21
                                        31
                                                   41
       GGGGTGGTGC AGGGCAGGGG TGGTATATCC TGTCTGACGG AGGGCGGGCC TCGCCAGTGC
                                                                             60
       CAGAGAGGGA CGAACCAGGG TGGAAGCGCC AGGAGCAGCT GCAGGGAGCC CTCACGCGGA
                                                                            120
75
       CCTCGCACTC TATGGCCGTA GGGAGCCGCT GAGAGCGAGA AGAGCACGCT CCTGCCCGCC
                                                                            180
       CGCTGCACCG CACCTCGCCT CGCCTCTCTG CTCTCCTAGG CCCCGGCCGC GCGCCACCCG
                                                                            240
       CCTCCCGCCA CCATGAACCA CTCGCCGCTC AAGACCGCCT TGGCGTACGA ATGCTTCCAG
                                                                            300
       GACCAGGACA ACTCCACGTT GGCTTTGCCG TCGGACCAAA AGATGAAAAC AGGCACGTCT
                                                                            360
       GGCAGGCAGC GCGTGCAGGA GCAGGTGATG ATGACCGTCA AGCGGCAGAA GTCCAAGTCT
                                                                            420
80
       TCCCAGTCGT CCACCCTGAG CCACTCCAAT CGAGGTTCCA TGTATGATGG CTTGGCTGAC
                                                                            480
       AATTACAACT ATGGGACCAC CAGCAGGAGC AGCTACTACT CCAAGTTCCA GGCAGGGAAT
       GGCTCATGGG GATATCCGAT CTACAATGGA ACCCTCAAGC GGGAGCCTGA CAACAGGCGC
                                                                            600
       TTCAGCTCCT ACAGCCAGAT GGAGAACTGG AGCCGGCACT ACCCCCGGGG CAGCTGTAAC
                                                                            660
       ACCACCGCC CAGGCAGCGA CATCTGCTTC ATGCAGAAAA TCAAGGCGAG CCGCAGTGAG
                                                                            720
85
       CCCGACCTCT ACTGTGACCC ACGGGGCACC CTGCGCAAGG GCACGCTGGG CAGCAAGGGC
                                                                            780
       CAGAAGACCA CCCAGAACCG CTACAGCTTT TACAGCACCT GCAGTGGTCA GAAGGCCATA
       AAGAAGTGCC CTGTGCGCCC GCCCTCTTGT GCCTCCAAGC AGGACCCTGT GTATATCCCG
```

	WO 02/						
		GCAACAAGGA					960
		TCGAGTGCAG					1020
		AGTACCAGGC					1080
_	GAATCTGCCA	AGCAACAGGT	CTATCAGCTG	GGAGGCATCT	GCAAGCTGGT	GGACCTCCTC	1140
5		ACCAGAACGT					1200
	AGGAGCACCA	CCAACAAGCT	GGAGACCCGG	AGGCAGAATG	GGATCCGCGA	GGCAGTCAGC	1260
		GAACCGGGAA					1320
		CTGACGAGCT					1380
1.0		TCATTCCCTT					1440
10	GTGGTGGACC	CTGAGGTCTT	CTTCAATGCC	ACAGGCTGCT	TGAGGAACCT	GAGCTCGGCC	1500
		GCCAGACCAT					1560
		GTGTAGCGGC					1620
		ACCTCTCCTA					1680
4 =		CCCGCAACGC					1740
15		TGATGAACAA					1800
		GCTGGTTGTA					1860
	AAGAGCAAGA	AAGATGCTAC	CCTGGAGGCC	TGTGCTGGTG	CCCTGCAGAA	CCTGACAGCC	1920
		TGATGTCCAG					1980
•		CCCGCCTCCT					2040
20		ACATGTCCCG					2100
	CCGGAGGTGA	CCAGGCTCCT	CACCAGCCAC	ACTGGCAATA	CCAGCAACTC	CGAAGACATC	2160
	TTGTCCTCGG	CCTGCTACAC	TGTGAGGAAC	CTGATGGCCT	CGCAGCCACA	ACTGGCCAAG	2220
	CAGTACTTCT	CCAGCAGCAT	GCTCAACAAC	ATCATCAACC	TGTGCCGAAG	CAGTGCCTCA	2280
~ -	CCCAAGGCCG	CAGAAGCTGC	CCGGCTTCTC	CTGTCTGACA	TGTGGTCCAG	CAAGGAACTG	2340
25	CAGGGTGTCC	TCAGACAGCA	AGGTTTCGAT	AGGAACATGC	TGGGAACCTT	AGCTGGGGCC	2400
		GGAACTTCAC					2460
	TGCAGGAAGA	TATGACCCAG	CTGAGAAGCC	CTCAGGCCTC	GCTGGATGGG	GTTTTCTGTC	2520
	CATCCTGTGC	AGTATTTGGG	AAAGTTCACA	AGAAACTGAG	AAGAAACCTA	AAAACTGTGG	2580
		GATTTTTAGA					2640
30		GGGCGGGGG					2700
	TTTCTTCCTC	TGAGAAATGG	TATATATATG	TGTCTAATGT	AAGTGTGTGC	ATGCATGTGC	2760
	GCGTGCATGT	GTGTGTGTGT	GAGTGTCTTA	AAGCATAACC	ACAAACTGCA	AAAAGCTAGG	2820
	TAAGCTATTT	TGTTGCAGCT	CATAAGGTGG	TGAAAAGGAC	TCTCCTGTGT	TTCTTACTCA	2880
~ -	TAGGCAAGGA	CAACATGTGC	TTTTTGGTGA	GCTGCTCATA	ATTCCTGAAA	TGTGTGGTGC	2940
35	CAGGGCAAGG	GGGCCATCAC	TGCAGTCAGG	CCCTCAGAGG	AGTCCTGCAG	GCTTCCTACC	3000
	AGTGGTCTCC	AAGGGTGCAG	GAGTAACTGG	GGCTGGGCCA	GCCTCCCCCC	TTACAAGGCT	3060
		AAGGGAGGTC					3120
	ACCCCTCCAG	CAGCGCCACA	AGGACTGAGG	TTGGGTAGGT	GTGAGGTTCC	AGAGGACAGC	3180
40	AGGACACTCT	CGCATACTTT	GCCAAATGAG	GCCTGCTCAG	AGGAGTAGGA	GCTGAAAGAT	3240
40	GGTGCCTTCC	ACCCTCTTGG	GCTGTGTGCC	CATCAGAGCA	GGCTCAGCCT	GCAAAGGCCC	3300
	TGCATTCAGA	GGTCTTGTAA	TCTACTTGTT	GCAGGAGAAA	GAAGGTAAAA	AATGATTTTT	3360
	TTAAGAAAAG	CTATTTTATT	GCAGCTCTTT	CCCAAGAGCT	GTTCTGGGAA	TGGCTGGTCT	3420
		AGTGGAGAGG					3480
4.5		GTTGGGGTAT					3540
45		GGGAGTGTTT					3600
		AGTGCCATAT					3660
		CTTCCCCTGA					3720
		CAGGGCTATT					3780
~ 0	TCAGACCAGC	AGCAGCAGGA	GGGCTCCCGA	GGGCCTTATG	AGAAAACCTG	TGTGGACATC	3840
50	CCTTGGTGTA	CACTAAGACA	GAGCAGAGCC	CAGCGCTCCC	AAGCCTTCCT	CCTTCCAGCT	3900
		TGCTAGCATT					3960
		AATATAAGAT					4020
		CACCACCCCC					4080
	AACACTGATG	TGGACTCAGT	ATGACAACTG	AGATGGGGGA	AGCCAGACAT	GTGAGGACGC	4140
55		GAGGTGTCCC					4200
	ATACCCTCCC	TTGCTTCTGT	TCACACTGGG	AGGCCCACTC	CTGGCTCACC	TCTCCCTCTC	4260
	AGGGACCCAC	GTGGGAGCCT	GGATCCCTGG	ACTGTCCTGG	GCATAGGTTT	CAGGGGCCTC	4320
	CTTTGTTGTC	ATCAGAACCC	AGAGGAATTC	TTCTCCTAAA	AAATACGTAT	GGCATACCAA	4380
CO		GCAGTGTCCT					4440
60		TGCGGCTTAT					4500
		GGCTGGGGGC					4560
	CATGTGAACC	TTACCAGCCC	AGGCGGATGC	CCCTTCCCCT	TAGCACTACC	CTGGCCTCCT	4620
	GCATCCCCTC	GCCTCATGTT	CCTCCCACCT	TCAAAGAATG	AAGAGCCCCA	TGGGCCCAGC	4680
<i>(</i>	CCCTGCCCTG	GGAACCAGGC	AGCCTTCCAG	ACCTCAGGGG	CTGAGGCAGA	CTATTAGGGC	4740
65	AGGGCTGACT	TTGGTGACAC	TGCCCATTCC	CTCTCAGGCC	AGCTCAGGTC	ACCCGGGCCT	4800
	CTGACCCAGG	CCTGTCACTT	TGAGAGGGGC	AAAACTGAGA	GGGGCTTTTC	CTAGAGAAAG	4860
	AGAACAAGGA	GCTTGCCAGG	CTTCATGTAG	CCGACACACG	TCTCAGGATT	TTAAGTCCAC	4920
	ATTGGCCTCA	CACTAGCCTA	GGCCAATGCC	CAAAATAAGG	AGTTCCAATT	TGGGGCCAAA	4980
70	TGAGGAAGGA	CACAGACTCT	GCCCTGGGAT	CTCCTGTGCT	AGCGGCCAAT	GACAAATCCA	5040
70	GTCATTGGCC	ACCAGCCACC	TCTGCAGTGG	GGACCACACT	AGCAGCCCTG	ACTCCACACT	5100
	CCTCCTGGGG	ACCCAAGAGG	CAGTGTTGCT	GTCTGCGTGT	CCACCTTGGA	ATCTGGCTGA	5160
	ACTGGCTGGG	AGGACCAAGA	CTGCGGCTGG	GGTGGGCAGG	GAAGGGAAGC	CGGGGGCTGC	5220
	TGTGAGGGAT	CTTGGAGCTT	CCCTGTAGCC	CACCTTCCCC	TTGCTTCATG	TTTGTAGAGG	5280
<i>a c</i>		CGGCCAGGCC				TGCTTTTTT	5340
75	GGAAATAGAG	AAAATCAATA	AATTGCTAGT	GTTTCTTTGA	AAAAAAAA		
		79 Protein cession #: (
90							
80	1	11	21	31	41	51	
	J	1			I VORDINA (MIX	POKOKOGOGO	
	MNHSPLKTAL	AYECFQDQDN	STLALPSDQK	MKTGTSGRQR	VQEQVMMTVK	KUKSKSSUSS	60
	TLSHSNRGSM	YDGLADNYNY	GTTSRSSYYS	KFQAGNGSWG	YPI YNGTLKR	EPUNKRESSY	120
85	SQMENWSRHY	PRGSCNTTGA	GSDICFMQKI	RASKSEPDLY	CDEKGILEKKG	THEOVERE	180
S	QNRYSFYSTC	SGQKAIKKCP	VKPPSCASKQ	DEATTERISC	NATIONALGUAR	MINDLY DOM	240 300
	ECSGLTIPKA	VQYLSSQDEK	IQALGAYYIQ	TREAMONTE	AGMY ELOSOT	TOTAL DESTROY	360
	ONVQQAAAGA	LRNLVFRSTT	иктетикбие	TYDUADDUKK	TOWNTY OUT	TOURNISSI	200

5	DELKEELIAD QTMRNYSGLI RNAYTEKSST DATLEACAGA MSRHPLLHRV	ALPVLADRVI DSLMAYVQNC GCFSNKSDKM LQNLTASKGL MGNQVFPEVT CRSSASPKAA	VAASRCDDKS MNNNYDCPLP MSSGMSQLIG RLLTSHTGNT	VENCMCVLHN EEETNPKGSG LKEKGLPQIA SNSEDILSSA	LSYRLDAEVP WLYHSDAIRT RLLQSGNSDV CYTVRNLMAS	TRYRQLEYNA YLNLMGKSKK VRSGASLLSN QPQLAKQYFS	420 480 540 600 660 720
10	Nucleic Aci	80 DNA sequid Accession lence: 180-1	1 #: NM_006	516.1			
1.5	1	11	21	31	41	51	
15)		A GGN A A GGN G	CCCCCCCCC	50
	GTCAGAGTCG	TCCCCGAGTG CAGTGGGAGT TCGCCACCCG	CCCCGGACCG	GAGCACGAGC	CTGAGCGGGA	GAGCGCCGCT	60 120 180
•		CAGCAAGAAG					240
20		GCAGTTTGGC					300
		CAACCAGACA					360
		CTGGTCCCTC CCTTTTCGTT					420 480
		CGTGTCCGCC					540
25		GGGCCGCTTC					600
		GGGTGAAGTG					660
		CGTCGTCGGC					720
		CCTGTGGCCC					780
30		GCCCTTCTGC					840 900
50		CAAGAGTGTG GAAGGAAGAG					960
		CTCCCCCGCC					1020
		GTCTGGCATC					1080
25		GCAGCCTGTG					1140
35		GCTGTTTGTG					1200 1260
		GGCGGGTTGT					1320
		CCCCATCCCA					1380
40	CAGCTGCCAT	TGCCGTTGCA	GGCTTCTCCA	ACTGGACCTC	AAATTTCATT	GTGGGCATGT	1440
40		TGTGGAGCAA					1500
		CTTCATCTTC TTCCGGCTTC					1560 1620
		TCCCCTGGGG					1680
		AGCAGCCCTA					1740
45		ATGTCAGCCG					1800
	CCAGAAGAAT	ATTCAGGACT	TAACGGCTCC	AGGATTTTAA	CAAAAGCAAG	ACTGTTGCTC	1860
		AGACAAGCAA GAGTCTCCTG					1920 1980
		ACTAAGCCCT					2040
50		GTCCTAAGGA					2100
		TGGCCACCCG					2160
		TGCCCCTTCC					2220 2280
		GTTGGGAGCA AGTCTCCTTT					2340
55		AAACTCACTG					2400
		TTATATATAT					2460
		AAGCCAACTT					2520
		TGGTTTTTAG					2580 2640
60		AGTGAGACAG				CAAAAATCTG	2700
00						AGGCATTTCT	
	ATCACATATT	TGATAGTTGG	TGTTCAAAAA	AACACTAGTT		CGTGATGCTC	2820
	AGGCTTGAAA	TCGCATTATT	TTGAATGTGA	AGGGAA			
65	Sec ID NO.	81 Protein	gemience.				
0.0		cession #: 1					
۵			_				
	1	11	21	31.	41	51 1	
70	MEDGGARIAG	RLMLAVGGAV	LOST OFCVNT	CVINADOKVI	FEEVMOTWAL	ſ	60
70		IFSVGGMIGS					120
						AQVFGLDSIM	180
		SIIFIPALLQ					240
75		MMREKKVTIL					300 360
13		IGSGIVNTAF AIFGFVAFFE					420
		PYVFIIFTVL					480
	ELFHPLGADS				-		
80	Con TD 370	00 5338	.ongc				
50		82 DNA sequ id Accession		01			
		uence: 44-5		-			
	_						
85	1	11	21 I	31 I	41 I	51 l	
00	GGGGGCGCCG	CGCGCTGACC	CTCCCTGGGC	ACCGCTGGGG	ACGATGGCGC	TGCTCGCCTT	60
	GCTGCTGGTC	GTGGCCCTAC	CGCGGGTGTG	GACAGACGCC	AACCTGACTG	CGAGACAACG	120

		/086443					
		GACTCCCAGC					180
	TGAGAGAGAA	AACACTTTCG	AGTGCCAGAA	CCCAAGGAGG	TGCAAATGGA	CAGAGCCATA	240
		GCGGCCGTGA					300
_		GCAGCGATGG					360
5		TTCTTTTACC					420
		TCATCAGTGT					480
		GCCATCCTCC					540
		CTGCCACAGA					600
10		TTAAACTTGT					660
10	GGGATGGGAG	AGTGGGGATC	AGGTGCAGTT	AGECTETTAAC	CCTCAAGGGT	TUTTTAACTC	720 780
		GAAGTCCAGA					840
		TTGTAACTCA CTTCAGTATT					900
		CTTCCGACCT					960
15		ATCCCTGGAG					1020
13		CCATTCCAGT					1080
		CCAGGAGGCA					1140
		ACAGGTGCAC					1200
		AGTAGAGAGC					1260
20		GAGCTGAGAA					1320
		CACGAAAAA					
	Seq ID NO:	83 Protein	sequence:				
25	Protein Acc	cession #: A	AAH01291				
25							
	1	11	21	31	41	51	
			1				
		ALPRVWTDAN					60
20		AVKIFPRFFM				FYLKCCKIRY	120
30	CNLEGPPINS	SVFKEYAGSM	GESCGGLWLA	ILLLLASIAA	GLSLS		
		84 DNA sequ		202 1			
		id Accession		393.1			
35	coaing sequ	ience: 229-2	3/20				
55	1	11	21	31	41	51	
	i	1	î	i	Ī	ī	
	անանակարարարար 	TTTTTTGCTT	DDDAAAAAGC	CATGACGGCT	CTCCCACAAT	TCATCTTCCC	60
		TTGTATTATT					120
40		AGTCTCCTTC					180
		CGCCGCCGCC					240
		AACCCCAGCA					300
		ATGATGAACC					360
	CTCCTCACCT	GTGGGCAGTG	CCAGATGAAC	TTCCCATTGG	GGGACATTCT	TATTTTTATC	420
45		GGAAACAATG					480
		CACCAATCGA					540
		AAGATGACGA					600
		CAGATAAACT					660
5 0		TCCCCACGCC					720
50		GCAGCTACAC					780
	CTCTTGCAAC	ACGCACAGAA	CACTCATGGA	TTAAGAATCT	ACTTAGAAAG	CGAACACGGA	840
		CCCCGCGGGT					900
		ATGGGATTCA					960
55		CGAGAGAGGC					1020 1080
55		CACCACCGAG					1140
		TGGAGCCTCC					1200
		GCCCACCGCT					1260
		CAGGTAGCAA					1320
60		CTCCCTCCCA					1380
•		TTCAGAGCAA					1440
		ACCTGTGCGA					1500
	AAGACGCACA	TGCACAAATC	GTCCCCCATG	ACGGTCAAGT	CCGACGACGG	TCTCTCCACC	1560
	GCCAGCTCCC	CGGAACCCGG	CACCAGCGAC	TTGGTGGGCA	GCGCCAGCAG	CGCGCTCAAG	1620
65	TCCGTGGTGG	CCAAGTTCAA	GAGCGAGAAC	GACCCCAACC	TGATCCCGGA	GAACGGGGAC	1680
		AGGAGGACGA					1740
		GCGAGAGGGT					1800
		GCTCGCGGGG					1860
70		AGGGCATGGT					1920
70		AGAAGCATAA					1980
		ACTCGGTGGC					2040
		CCCCGGGCGA					2100
	AGCCCCAGCT	CGCTGAGCCC	CTTCTCTAAG	CGCATCAAGC	TCGAGAAGGA	GTTCGACCTG	2160
75	CCCCCGGCCA	CGATGCCCAA	CACGGAGAAC	GTGTACTCGC	AGTGGCTCGC	CGGCTACGCG	2220
15	GCCTCCAGGC	AGCTCAAAGA	TCCCTTCCTT	AGCTTCGGAG	ACTUCAGACA	ACCOCCCTTTT	2280
		CGGAGCACTC					2340
		GAGGGATCTC					2400 2460
	ATTAGTGGTC	CGGGCACGGG GGAAAGTCTT	CAGGCCCAGC	T CHAMAGAGG	CTCTCCACAC	CACACACTIGI	2460 2520
80		GGCCTTATAA					2520
50	CTCACCACCC	ACATGAAAAC	GCATGCCCAC	GTGGGGAAGG	ACGTTTACA	ATGTGAAATT	2640
	TGTAAGATGC	CTTTTAGCGT	GTACAGTACC	CTGGAGAAAC	ACATGAAAA	ATGGCACAGT	2700
		TGAATAATGA					2760
		ACACCCCCTT					2820
85	CCTGTAGGAT	TTTTTTCTAG	TCCCATGTGA	TTTAAACAAA	CAAACAAACA	AACAGAAGTA	2880
	ACGAAGCTAA	GAATATGAGA	GTGCTTGTCA	CCAGCACACC	TGTTTTTTT	CTTTTTCTTT	2940
	TTCTTTTTTC	TTTTTCCTTT	TTTTTTTT	TCCTTTATGT	TCTCACCGTT	TGAATGCATG	3000

```
ATCTGTATGG GGCAATACTA TTGCATTTTA CGCAAACTTT GAGCCTTTCT CTTGTGCAAT
                                                                           3060
       AATTTACATG TTGTGTATGT TTTTTTTAA ACTTAGACAG CATGTATGGT ATGTTATGGC
       TATTTTAAAT TGTCCCTAAT TCGTTGCTGA GCAAACATGT TGCTGTTTCC AGTTCCGTTC
                                                                           3180
       TGAGAGAAAA AGAGAGAGA AGAGAAAAAG ACCATGCTGC ATACATTCTG TAATACATAT
                                                                           3240
 5
       CATGTACAGT TTTATTTTAT AACGTGAGGA GGAAAAACAG TCTTTGGATT AACCCTCTAT
                                                                           3300
       AGACAGAATA GATAGCACTG AAAAAAAATC TCTATGAGCT AAATGTCTGT CTCTAAAGGG
                                                                           3360
       TTAAATGTAT CAATTGGAAA GGAAGAAAAA AGGCCTTGAA TTGACAAATT AACAGAAAAA
                                                                           3420
       CAGAACAAGT TTATTCTATC ATTTGGTTTT AAAATATGAG TGCCTTGGAT CTATTAAAAC
                                                                           3480
       CACATCGATG GTTCTTTCTA CTTGTTATAA ACTTGTAGCT TAATTCAGCA TTGGGTGAGG
                                                                           3540
10
       TAATAAACCT TAGGAACTAG CATATAATTC TATATTGTAT TTCTCACAAC AATGGCTACC
                                                                           3600
       TAAAAAGATG ACCCATTATG TCCTAGTTAA TCATCATTTT TCCTTTAGTT TAATTTTATA
                                                                           3660
       AACAAAACTG ATTATACCAG TATAAAAGCT ACTTTGCTCC TGGTGAGAGC TTAAAAGAAA
                                                                           3720
       TGGGCTGTTT TGCCCAAAGT TTTATTTTTT TTAAACAATG ATTAAATTGA ATGTGTAATG
                                                                           3780
       TGCAAAAGCC CTGGAACGCA ATTAAATACA CTAGTAAGGA GTTCATTTTA TGAAGATATT
15
       TGCTTTAATA ATGTCTTTTT AAAAATACTG GCACCAAAAG AAATAGATCC AGATCTACTT
                                                                           3900
       GGTTGTCAAG TGGACAATCA AATGATAAAC TTTAAGACCT TGTATACCAT ATTGAAAGGA
                                                                           3960
       AGAGGCTGAC AATAAGGTTT GACAGAGGGG AACAGAAGAA AATAATATGA TTTATTAGCA
                                                                           4020
       CAACGTGGTA CTATTTGCCA TTTAAAACTA GAACAGGTAT ATAAGCTAAT ATTGATACAA
                                                                           4080
       TGATGATTAA CTATGAATTC TTAAGACTTG CATTTAAATG TGACATTCTT AAAAAAAGAA
                                                                           4140
20
       GAGAAGAAT TTTAAGAGTA GCAGTATATA TGTCTGTGCT CCCTAAAAGT TGTACTTCAT
                                                                           4200
       TTCTTTTCCA TACACTGTGT GCTATTTGTG TTAACATGGA AGAGGATTCA TTGTTTTAT
       TTTTATTTT TTAATTTTT CTTTTTTATT AAGCTAGCAT CTGCCCCAGT TGGTGTTCAA
                                                                           4320
       ATAGCACTTG ACTCTGCCTG TGATATCTGT ATCTTTTCTC TAATCAGAGA TACAGAGGTT
                                                                           4380
       GAGTATAAAA TAAACCTGCT CAGATAGGAC AATTAAGTGC ACTGTACAAT TTTCCCAGTT
                                                                           4440
25
       TACAGGTCTA TACTTAAGGG AAAAGTTGCA AGAATGCTGA AAAAAAATTG AACACAATCT
                                                                           4500
       CATTGAGGAG CATTTTTTAA AAACTAAAAA AAAAAAAACT TTGCCAGCCA TTTACTTGAC
                                                                           4560
       TATTGAGCTT ACTTACTTGG ACGCAACATT GCAAGCGCTG TGAATGGAAA CAGAATACAC
       TTAACATAGA AATGAATGAT TGCTTTCGCT TCTACAGTGC AAGGATTTTT TTGTACAAAA
                                                                           4680
       CTTTTTTAAA TATAAATGTT AAGAAAAATT TTTTTTAAAA AACACTTCAT TATGTTTAGG
                                                                           4740
30
       GGGGAACTGC ATTTTAGGGT TCCATTGTCT TGGTGGTGTT ACAAGACTTG TTATCCATTT
                                                                           4800
       AAAAATGGTA GTGGAAATTC TATGCCTTGG ATACACACCG CTCTTCAGGT TGTAAAAAAA
                                                                           4860
       AAAAACATAC ATTGGGGAAA GGTTTAAGAT TATATAGTAC TTAAATATAG GAAAATGCAC
                                                                           4920
       ACTCATGTTG ATTCCTATGC TAAAATACAT TTATGGTCTT TTTTCTGTAT TTCTAGAATG
       GTATTTGAAT TAAATGTTCA TCTAGTGTTA GGCACTATAG TATTTATATT GAAGCTTGTA
                                                                           5040
35
       TTTTTAACTG TTGCTTGTTC TCTTAAAAGG TATCAATGTA CCTTTTTTGG TAGTGGAAAA
                                                                           5100
       AAAAAAGACA GGCTGCCACA GTATATTTTT TTAATTTGGC AGGATAATAT AGTGCAAATT
                                                                           5160
       ATTTGTATGC TTCAAAAAAA AAAAAAAGAG AGAAACAAAA AAGTGTGACA TTACAGATGA
                                                                           5220
       GAAGCCATAT AATGGCGGTT TGGGGGAGCC TGCTAGAATG TCACATGGAT GGCTGTCATA
                                                                           5280
       GGGGTTGTAC ATATCCTTTT TTGTTCCTTT TTCCTGCTGC CATACTGTAT GCAGTACTGC
40
       AAGCTAATAA CGTTGGTTTG TTATGTAGTG TGCTTTTTGT CCCTTTCCTT CTATCACCCT
                                                                           5400
       ACATTCCAGC ATCTTACCTT CATATGCAGT AAAAGAAAGA AAGAAAAAA AAGGAAAAAA
                                                                           5460
       AAAAAAAAC CAATGTTTTG CAGTTTTTTT CATTGCCAAA AACTAAATGG TGCTTTATAT
                                                                           5520
       TTAGATTGGA AAGAATTTCA TATGCAAAGC ATATTAAAGA GAAAGCCCGC TTTAGTCAAT
                                                                           5580
       ACTITITGT AAATGGCAAT GCAGAATATT TTGTTATTGG CCTTTTCTAT TCCTGTAATG
                                                                           5640
45
       AAAGCTGTTT GTCGTAACTT GAAATTTTAT CTTTTACTAT GGGAGTCACT ATTTATTATT
       GCTTATGTGC CCTGTTCAAA ACAGAGGCAC TTAATTTGAT CTTTTATTTT TCTTTGTTTT
                                                                           5760
       TATTTTTTT TTTATTTAGA TGACCAAAGG TCATTACAAC CTGGCTTTTT ATTGTATTTG
                                                                           5820
       TTTCTGGTCT TTGTTAAGTT CTATTGGAAA AACCACTGTC TGTGTTTTTT TGGCAGTTGT
                                                                           5880
       CTGCATTAAC CTGTTCATAC ACCCATTTTG TCCCTTTATT GAAAAAATAA AAAAAATTAA
                                                                           5940
50
       Seq ID NO: 85 Protein sequence:
       Protein Accession #: NP 075044.1
55
                  11
                             21
                                         31
                                                    41
                                                               51
       MSRRKQGKPQ HLSKREFSPE PLEAILTDDE PDHGPLGAPE GDHDLLTCGQ CQMNFPLGDI
       LIFIEHKRKQ CNGSLCLEKA VDKPPSPSPI EMKKASNPVE VGIQVTPEDD DCLSTSSRRI
                                                                            120
       CPKQEHIADK LLHWRGLSSP RSAHGALIPT PGMSAEYAPQ GICKDEPSSY TCTTCKQPFT
                                                                            1.80
60
       SAWFLLOHAO NTHGLRIYLE SEHGSPLTPR VGIPSGLGAE CPSQPPLHGI HIADNNPFNL
                                                                            240
       DRIPGSVSRE ASGLAEGREP PTPPLESPPP RHHLDPHRIE RLGAEEMALA THHPSAFDRV
                                                                            300
       LRLNPMAMEP PAMDFSRRLR ELAGNTSSPP LSPGRPSPMQ RLLQPFQPGS KPPFLATPPL
                                                                            360
       PPLQSAPPPS QPPVKSKSCE FCGKTFKFQS NLVVHRRSHT GEKPYKCNLC DHACTQASKL
       KRHMKTHMHK SSPMTVKSDD GLSTASSPEP GTSDLVGSAS SALKSVVAKF KSENDPNLIP
                                                                            480
65
       ENGDEEEED DEEEEEEEE EEEELTESER VDYGFGLSLE AARHHENSSR GAVVGVGDES
                                                                            540
       RALPDVMOGM VLSSMOHFSE AFHOVLGEKH KRGHLAEAEG HRDTCDEDSV AGESDRIDDG
                                                                            600
       TVNGRGCSPG ESASGGLSKK LLLGSPSSLS PFSKRIKLEK EFDLPPATMP NTENVYSOWL
                                                                            660
       AGYAASROLK DPFLSFGDSR QSPFASSSEH SSENGSLRFS TPPGELDGGI SGRSGTGSGG
                                                                            720
       STPHISGPGT GRPSSKEGRR SDTCEYCGKV FKNCSNLTVH RRSHTGERPY KCELCNYACA
70
       OSSKLTRHMK THGOVGKDVY KCEICKMPFS VYSTLEKHMK KWHSDRVLNN DIKTE
       Seg ID NO: 86 DNA seguence
       Nucleic Acid Accession #: XM_035292.2
75
       Coding sequence: 53-1576
                                                               51
                                                    41
                                         31
       GCTCGCTGGG CCGCGGCTCC CGGGTGTCCC AGGCCCGGCC GGTGCGCAGA GCATGGCGGG
                                                                             60
80
       TGCGGGCCCG AAGCGGCGCC CGCTAGCGGC GCCGGCGGCC GAGGAGAAGG AAGAGGCGCG
                                                                            120
       GGAGAAGATG CTGGCCGCCA AGAGCGCGGA CGGCTCGGCG CCGGCAGGCG AGGGCGAGGG
       CGTGACCCTG CAGCGGAACA TCACGCTGCT CAACGGCGTG GCCATCATCG TGGGGACCAT
       TATCGGCTCG GGCATCTTCG TGACGCCCAC GGGCGTGCTC AAGGAGGCAG GCTCGCCGGG
                                                                            300
       GCTGGCGCTG GTGGTGTGGG CCGCGTGCGG CGTCTTCTCC ATCGTGGGCG CGCTCTGCTA
                                                                            360
85
       CGCGGAGCTC GGCACCACCA TCTCCAAATC GGGCGGCGAC TACGCCTACA TGCTGGAGGT
CTACGGCTCG CTGCCCGCCT TCCTCAAGCT CTGGATCGAG CTGCTCATCA TCCGGCCTTC
                                                                            420
                                                                            480
       ATCGCAGTAC ATCGTGGCCC TGGTCTTCGC CACCTACCTG CTCAAGCCGC TCTTCCCCAC
                                                                            540
```

```
CTGCCCGGTG CCCGAGGAGG CAGCCAAGCT CGTGGCCTGC CTCTGCGTGC TGCTGCTCAC
                                                                           600
       GGCCGTGAAC TGCTACAGCG TGAAGGCCGC CACCCGGGTC CAGGATGCCT TTGCCGCCGC
                                                                           660
       CAAGCTCCTG GCCCTGGCCC TGATCATCCT GCTGGGCTTC GTCCAGATCG GGAAGGGTGA
                                                                            720
       TGTGTCCAAT CTAGATCCCA ACTTCTCATT TGAAGGCACC AAACTGGATG TGGGGAACAT
                                                                           780
 5
       TGTGCTGGCA TTATACAGCG GCCTCTTTGC CTATGGAGGA TGGAATTACT TGAATTTCGT
                                                                           840
       CACAGAGGAA ATGATCAACC CCTACAGAAA CCTGCCCCTG GCCATCATCA TCTCCCTGCC
                                                                           900
       CATCGTGACG CTGGTGTACG TGCTGACCAA CCTGGCCTAC TTCACCACCC TGTCCACCGA
                                                                           960
       GCAGATGCTG TCGTCCGAGG CCGTGGCCGT GGACTTCGGG AACTATCACC TGGGCGTCAT
                                                                           1020
       GTCCTGGATC ATCCCCGTCT TCGTGGGCCT GTCCTGCTTC GGCTCCGTCA ATGGGTCCCT
10
       GTTCACATCC TCCAGGCTCT TCTTCGTGGG GTCCCGGGAA GGCCACCTGC CCTCCATCCT
                                                                           1140
       CTCCATGATC CACCCACAGC TCCTCACCCC CGTGCCGTCC CTCGTGTTCA CGTGTGTGAT
                                                                          1200
       GACGCTGCTC TACGCCTTCT CCAAGGACAT CTTCTCCGTC ATCAACTTCT TCAGCTTCTT
                                                                          1260
       CAACTGGCTC TGCGTGGCCC TGGCCATCAT CGGCATGATC TGGCTGCGCC ACAGAAAGCC
                                                                           1320
       TGAGCTTGAG CGGCCCATCA AGGTGAACCT GGCCCTGCCT GTGTTCTTCA TCCTGGCCTG
                                                                           1380
15
       CCTCTTCCTG ATCGCCGTCT CCTTCTGGAA GACACCCGTG GAGTGTGGCA TCGGCTTCAC
                                                                           1440
       CATCATCCTC AGCGGGCTGC CCGTCTACTT CTTCGGGGTC TGGTGGAAAA ACAAGCCCAA
                                                                           1500
       GTGGCTCCTC CAGGGCATCT TCTCCACGAC CGTCCTGTGT CAGAAGCTCA TGCAGGTGGT
                                                                          1560
       CCCCCAGGAG ACATAGCCAG GAGGCCGAGT GGCTGCCGGA GGAGCATGC
20
       Seg ID NO: 87 Protein seguence:
       Protein Accession #: XP_035292.2
                                                   41
                                                              51
                                        31
25
       MAGAGPKRRA LAAPAAEEKE EAREKMLAAK SADGSAPAGE GEGVTLQRNI TLLNGVAIIV
                                                                             60
       GTIIGSGIFV TPTGVLKEAG SPGLALVVWA ACGVFSIVGA LCYAELGTTI SKSGGDYAYM
                                                                           120
       LEVYGSLPAF LKLWIELLII RPSSQYIVAL VFATYLLKPL FPTCPVPEEA AKLVACLCVL
       LLTAVNCYSV KAATRVQDAF AAAKLLALAL IILLGFVQIG KGDVSNLDPN FSFEGTKLDV
                                                                            240
       GNIVLALYSG LFAYGGWNYL NFVTEEMINP YRNLPLAIII SLPIVTLVYV LTNLAYFTTL
                                                                            300
30
       STEOMLSSEA VAVDFGNYHL GVMSWIIPVF VGLSCFGSVN GSLFTSSRLF FVGSREGHLP
                                                                            360
       SILSMIHPQL LTPVPSLVFT CVMTLLYAFS KDIFSVINFF SFFNWLCVAL AIIGMIWLRH
                                                                            420
       RKPELERPIK VNLALPVFFI LACLFLIAVS FWKTPVECGI GFTIILSGLP VYFFGVWWKN
                                                                            480
       KPKWLLQGIF STTVLCQKLM QVVPQET
35
       Seq ID NO: 88 DNA sequence
       Nucleic Acid Accession #: NM_005268.1
       Coding sequence: 168-989
40
                                        31
                                                               51
       TAAAAAGCAA AAGAATTCGC GGCCGCGTCG ACACGGGCTT CCCCGAAAAC CTTCCCCGCT
                                                                             60
       TCTGGATATG AAATTCAAGC TGCTTGCTGA GTCCTATTGC CGGCTGCTGG GAGCCAGGAG
                                                                           120
       AGCCCTGAGG AGTAGTCACT CAGTAGCAGC TGACGCGTGG GTCCACCATG AACTGGAGTA
                                                                            180
45
       TCTTTGAGGG ACTCCTGAGT GGGGTCAACA AGTACTCCAC AGCCTTTGGG CGCATCTGGC
       TGTCTCTGGT CTTCATCTTC CGCGTGCTGG TGTACCTGGT GACGGCCGAG CGTGTGTGGA
                                                                            300
       GTGATGACCA CAAGGACTTC GACTGCAATA CTCGCCAGCC CGGCTGCTCC AACGTCTGCT
                                                                            360
       TTGATGAGTT CTTCCCTGTG TCCCATGTGC GCCTCTGGGC CCTGCAGCTT ATCCTGGTGA
                                                                            420
       CATGCCCCTC ACTGCTCGTG GTCATGCACG TGGCCTACCG GGAGGTTCAG GAGAAGAGGC
                                                                            480
50
       ACCGAGAAGC CCATGGGGAG AACAGTGGGC GCCTCTACCT GAACCCCGGC AAGAAGCGGG
                                                                            540
       GTGGGCTCTG GTGGACATAT GTCTGCAGCC TAGTGTTCAA GGCGAGCGTG GACATCGCCT
                                                                            600
       TTCTCTATGT GTTCCACTCA TTCTACCCCA AATATATCCT CCCTCCTGTG GTCAAGTGCC
                                                                            660
       ACGCAGATCC ATGTCCCAAT ATAGTGGACT GCTTCATCTC CAAGCCCTCA GAGAAGAACA
                                                                            720
       TTTTCACCCT CTTCATGGTG GCCACAGCTG CCATCTGCAT CCTGCTCAAC CTCGTGGAGC
                                                                            780
55
       TCATCTACCT GGTGAGCAAG AGATGCCACG AGTGCCTGGC AGCAAGGAAA GCTCAAGCCA
                                                                            840
       TGTGCACAGG TCATCACCCC CACGGTACCA CCTCTTCCTG CAAACAAGAC GACCTCCTTT
                                                                            900
       CGGGTGACCT CATCTTTCTG GGCTCAGACA GTCATCCTCC TCTCTTACCA GACCGCCCCC
       GAGACCATGT GAAGAAAACC ATCTTGTGAG GGGCTGCCTG GACTGGTCTG GCAGGTTGGG
                                                                           1020
       CCTGGATGGG GAGGCTCTAG CATCTCTCAT AGGTGCAACC TGAGAGTGGG GGAGCTAAGC
                                                                           1080
60
       CATGAGGTAG GGGCAGGCAA GAGAGAGGAT TCAGACGCTC TGGGAGCCAG TTCCTAGTCC
                                                                           1140
       TCAACTCCAG CCACCTGCCC CAGCTCGACG GCACTGGGCC AGTTCCCCCT CTGCTCTGCA
                                                                           1200
       GCTCGGTTTC CTTTTCTAGA ATGGAAATAG TGAGGGCCAA TGC
       Seq ID NO: 89 Protein sequence:
65
       Protein Accession #: NP_005259.1
                                                    41
                                                               51
       MNWSIFEGLL SGVNKYSTAF GRIWLSLVFI FRVLVYLVTA ERVWSDDHKD FDCNTRQPGC
70
       SNVCFDEFFP VSHVRLWALQ LILVTCPSLL VVMHVAYREV QEKRHREAHG ENSGRLYLNP
                                                                            120
                                                                            180
       GKKRGGLWWT YVCSLVFKAS VDIAFLYVFH SFYPKYILPP VVKCHADPCP NIVDCFISKP
       SEKNIFTLFM VATAAICILL NLVELIYLVS KRCHECLAAR KAQAMCTGHH PHGTTSSCKQ
                                                                           240
       DDLLSGDLIF LGSDSHPPLL PDRPRDHVKK TIL
75
       Seg ID NO: 90 DNA sequence
       Nucleic Acid Accession #: NM_002391.1
       Coding sequence: 26-457
80
                                                    41
                                                               51
                             21
                                         31
       CGGGCGAAGC AGCGCGGGCA GCGAGATGCA GCACCGAGGC TTCCTCCTCC TCACCCTCCT
       CGCCTGCTG GCGCTCACCT CCGCGGTCGC CAAAAAGAAA GATAAGGTGA AGAAGGGCGG
                                                                            120
       CCCGGGGAGC GAGTGCGCTG AGTGGGCCTG GGGGCCCTGC ACCCCCAGCA GCAAGGATTG
                                                                            180
       CGGCGTGGGT TTCCGCGAGG GCACCTGCGG GGCCCAGACC CAGCGCATCC GGTGCAGGGT
85
                                                                            240
       GCCCTGCAAC TGGAAGAAGG AGTTTGGAGC CGACTGCAAG TACAAGTTTG AGAACTGGGG
       TGCGTGTGAT GGGGGCACAG GCACCAAAGT CCGCCAAGGC ACCCTGAAGA AGGCGCGCTA
```

5	CAATGCTCAG AAAGGCCAAA GCCCCTGGTG CACCAGTGCC ACTCCCCAGC TGAGCCTCCC	TGCAGGAGA GCCAAGAAAG TCACATGGGG TTCTGTCTGC CCCACCCCTA CCAAAGCAAT AACACATCAA	GGAAGGAAA CCTGGCCACG TCGTTAGCTT AGTGCCCAAA GTGAGTCCCA	GGACTAGACG CCCTCCCTCT TAATCAATCA GTGGGGAGGG GAGCCCGCTT	CCAAGCCTGG CCCAGGCCCG TGCCCTGCCT ACAAGGGATT TTGTTCTTCC	ATGCCAAGGA AGATGTGACC TGTCCCTCTC CTGGGAAGCT CCACAATTCC	420 480 540 600 660 720 780
10		91 Protein cession #: N					
	1	11	21	31	41	51	
15	CGAQTQRIRC	I LLALLALTSA RVPCNWKKEF KAKAKAKKGK	GADCKYKFEN				60 120
20	Nucleic Act	92 DNA sequ id Accession nence: 98-80	1 #: NM_005	130.1			
25	1	11	21	31	41	51 ,	
30	CGTGTGCTCA GCTCTCCTTC GAATGGACTT	CACAGCTGCA GAACAAGGTG CTCCTACTGG CACAGCAAAG	AACGCCCAGC CTGCTCAGGT TGGTCTCAGA	TGCAGCCATG GCTCCTGGTG ACAAAAGGAC	AAGATCTGTA GAGGGGAAAA ACTCTGGGCA	GCCTCACCCT AAAAAGTGAA ACACCCAGAT	60 120 180 240
	CAGATGGGCT GGACCATGAA TGAGAGAGTC ATATTCCAAG	AGCAGGCCCG GCTACTGAGC TTTTCCTGTG TATTGGAAAC ACAGCTGTGA	AGGAGGAGGG TCTTTGCTGG AAGTTGCCCG AAACCAGAGT	CATCTCTCTC CAATCCAACC GAATCTGCGC GTGCAGAAAG	AAGGTTGAGT TCATGCCTAA TCACAGAAAG GATTTTCCAG	GCACTCAATT AGCTCAAGGA ACATCTGTAG AATCCAGTCT	300 360 420 480 540
35	GTCCCCCAGG GACCATGGCC GACTGCCCTG	AGCTCCACTC GAGCACATCA ACCAAAGCTC GAGTTCTGTG ACGTCATGCT	AGGGCAAAGA CCGAGTGTGT GAGAGACTTG	GACCACCCC GGAGGACCCA GAGCTCTCTC	TCTAGCCTAG GATATGGCAA TGCACATTCT	CAGTGACCCA ACCAGAGGAA TCCTCAGCAT	600 660 720 780 840
40	TGTGCTTAGT TGGAATTTGC TTCCATGGCC	CCCTCTGTAT GAGTGCAACG CTTATTTTC CACACAGCTA TTCAGTGCAA	AAATATTTAA TTGGATGCGA TGTGTTTGAG	ACAAGTTTTG TGTTCAGAGG CAGCGAAGAG	TATTTTTTGC CTGTTTCCTG TCTTTGAGCT	TTTTGTGTTT CAGCATGTAT GAATGAGCCA	900 960 1020 1080 1140
45	TTTTTCAAAA Seq ID NO:	AAAAAAAAAA 93 Protein cession #: 1	AAA sequence:				
50					4.7	e 1	
50	1	11	21]	31	41 	51	
55	VTKDQANCRW RSQKDICRYS	FLLLAAQVLL AATEQEEGIS KTAVKTRVCR ATKAPECVED	VEGKKKVKNG LKVECTQLDH KDFPESSLKL	EFSCVFAGNP VSSTLFGNTK	TSCLKLKDER PRKEKTEMSP	VYWKQVARNL REHIKGKETT	60 120 180
	Seq ID NO: 94 DNA sequence Nucleic Acid Accession #: NM_012101 Coding sequence: 125-1891						
60		1					
	1 	11	21	31	41.	51	
		GTGTGTCTCT					60 120
65		GTCACCTATC GCTGCAGATG					180
		TCGGGCCCCA					240 300
		ACCAACGGGC GGGGAAGGTA					360
70		GTCGAGTCCG AGGTCGCCGT					420 480
, 0	TACCTTTGCC	GAAAAGGGCG	ACGTGCGCAA	GTCCATTTTC	TCGGAGTCCC	GGAAGCCCAC	540
		ATGGAGCCCG CGGTCCAAGT					600 660
75	CAAGCAGAAG	GCGGTCAAGT	CCTGCCTGGT	GTGCCAGGCC	TCCTTCTGCG	AGCTGCATCT	720
75		CTGGAGGGCG CGCAAGTGTC					780 840
	CCAGACCTGC	ATCTGCTACC	TTTGCATGTT	CCAGGAGCAC	AAGAATCATA	GCACCGTGAC	900
		GCCAAGGCCG ATTGAGATTG					960 1020
80	CAAGAGCTTC	ACCACCAATG	AGAAGGCCAT	CCTGGAGCAG	AACTTCCGGG	ACCTGGTGCG	1080
		AAGCAAAAGG GTGAAGGTGA					1140 1200
	GGACAAGCAG	ACCCGGGAGC	AGCTGCATAG	CATCAGCGAC	TCTGTGTTGT	TTCTGCAGGA	1260
85		TTGATGAGCA GAGGGCCTGG					1320 1380
	ATGCATGCGC	CACGTTGAGA GAGAACGGTG	AGATGTGCAA	GGCGGACCTG	AGCCGTAACT	TCATTGAGAG	1440 1500
	OUNCERCATO	GNONNCOOLG	CIONCONICO				

```
GGGTGAGTGG AGTGCACCGG ACACCATGAA GAGATACTCC ATGTACCTGA CACCCAAAGG
                                                                         1560
      TGGGGTCCGG ACATCATACC AGCCCTCGTC TCCTGGCCGC TTCACCAAGG AGACCACCCA
                                                                         1620
      GAAGAATTTC AACAATCTCT ATGGCACCAA AGGTAACTAC ACCTCCCGGG TCTGGGAGTA
                                                                         1680
      CTCCTCCAGC ATTCAGAACT CTGACAATGA CCTGCCCGTC GTCCAAGGCA GCTCCTCCTT
                                                                         1740
 5
                                                                         1800
       CTCCCTGAAA GGCTATCCCT CCCTCATGCG GAGCCAAAGC CCCAAGGCCC AGCCCCAGAC
       TTGGAAATCT GGCAAGCAGA CTATGCTGTC TCACTACCGG CCATTCTACG TCAACAAAGG
                                                                          1860
       CAACGGGATT GGGTCCAACG AAGCCCCATG AGCTCCTGGC GGAAGGAACG AGGCGCCACA
       CCCCTGCTCT TCCTCCTGAC CCTGCTGCTC TTGCCTTCTA AGCTACTGTG CTTGTCTGGG
                                                                         1980
      TGGGAGGGAG CCTGGTCCTG CACCTGCCCT CTGCAGCCCT CTGCCAGCCT CTTGGGGGGCA
                                                                         2040
10
      GTTCCGGCCT CTCCGACTTC CCCACTGGCC ACACTCCATT CAGACTCCTT TCCTGCCTTG
                                                                         2100
       TGACCTCAGA TGGTCACCAT CATTCCTGTG CTCAGAGGCC AACCCATCAC AGGGGTGAGA
                                                                         2160
       TAGGTTGGGG CCTGCCCTAA CCCGCCAGCC TCCTCCTCTC GGGCTGGATC TGGGGGCTAG
      CAGTGAGTAC CCGCATGGTA TCAGCCTGCC TCTCCCGCCC ACGCCCTGCT GTCTCCAGGC
CTATAGACGT TTCTCTCCAA GGCCCTATCC CCCAATGTTG TCAGCAGATG CCTGGACAGC
                                                                          2280
                                                                          2340
       ACAGCCACCC ATCTCCCATT CACATGGCCC ACCTCCTGCT TCCCAGAGGA CTGGCCCTAC
                                                                          2400
15
       GTGCTCTCTC TCGTCCTACC TATCAATGCC CAGCATGGCA GAACCTGCAG TGGCCAAGGG
                                                                          2460
       CTGCAGATGG AAACCTCTCA GTGTCTTGAC ATCACCCTAC CCAGGCGGTG GGTCTCCACC
                                                                          2520
       ACAGCCACTT TGAGTCTGTG GTCCCTGGAG GGTGGCTTCT CCTGACTGGC AGGATGACCT
                                                                          2580
       TAGCCAAGAT ATTCCTCTGT TCCCTCTGCT GAGATAAAGA ATTCCCTTAA CATGATATAA
                                                                          2640
       TCCACCCATG CAAATAGCTA CTGGCCCAGC TACCATTTAC CATTTGCCTA CAGAATTTCA
20
                                                                          2700
       2760
       GTGCCTTACA CACTGCCCCC ACCCTCAGCC GTTGCCCCAT CAGAGGCTGC CTCCTCCTTC
                                                                          2820
       2880
       AGCAGCACAG TGGGGACATC TCCCGTCTCA ACAGCCCCAG GCCTATGGGG GCTCTGGAAG
                                                                          2940
       GATGGGCCAG CTTGCAGGGG TTGGGGAGGG AGACATCCAG CTTGGGCTTT CCCCTTTGGA
25
       ATAAACCATT GGTCTGTC
       Seq ID NO: 95 Protein sequence:
       Protein Accession #: NP_036233.1
30
                                                   41
                  11
                             21
                                        31
       MEAADASRSN GSSPEARDAR SPSGPSGSLE NGTKADGKDA KTTNGHGGEA AEGKSLGSAL
                                                                           120
       KPGEGRSALF AGNEWRRPII QFVESGDDKN SNYFSMDSME GKRSPYAGLQ LGAAKKPPVT
35
       FAEKGDVRKS IFSESRKPTV SIMEPGETRR NSYPRADTGL FSRSKSGSEE VLCDSCIGNK
                                                                           180
       QKAVKSCLVC QASFCELHLK PHLEGAAFRD HQLLEPIRDF EARKCPVHGK TMELFCQTDQ
       TCICYLCMFQ EHKNHSTVTV EEAKAEKETE LSLQKEQLQL KIIEIEDEAE KWQKEKDRIK
                                                                           300
       SFTTNEKAIL EQNFRDLVRD LEKQKEEVRA ALEQREQDAV DQVKVIMDAL DERAKVLHED
                                                                           360
       KOTREQLHSI SDSVLFLQEF GALMSNYSLP PPLPTYHVLL EGEGLGQSLG NFKDDLLNVC
40
                                                                           420
       MRHVEKMCKA DLSRNFIERN HMENGGDHRY VNNYTNSFGG EWSAPDTMKR YSMYLTPKGG
                                                                           480
       VRTSYQPSSP GRFTKETTQK NFNNLYGTKG NYTSRVWEYS SSIQNSDNDL PVVQGSSSFS
       LKGYPSLMRS QSPKAQPQTW KSGKQTMLSH YRPFYVNKGN GIGSNEAP
45
       Seq ID NO: 96 DNA sequence
       Nucleic Acid Accession #: NM_080668.1
       Coding sequence: 83-841
                                                              51
                                        31
                                                   41
50
       GGCACGAGGG CAGCGAGTGG CCTTCCCGGT TGGCGCGCGC CCGGGGCGGC GGCGCTGGAG
       GAGCTCGAGA CGGAGCCTAG TTATGTCTGG GAGGCGAACG CGGTCCGGAG GAGCCGCTCA
                                                                           120
       GCGCTCCGGG CCAAGGGCCC CATCTCCTAC TAAGCCTCTG CGGAGGTCCC AGCGGAAATC
                                                                           180
       AGGCTCTGAA CTCCCGAGCA TCCTCCCTGA AATCTGGCCG AAGACACCCA GTGCGGCTGC
                                                                           240
       AGTCAGAAAG CCCATCGTCT TAAAGAGGAT CGTGGCCCAT GCTGTAGAGG TCCCAGCTGT
55
       CCAATCACCT CGCAGGAGCC CTAGGATTTC CTTTTTCTTG GAGAAAGAAA ACGAGCCCCC
                                                                           360
       TGGCAGGGAG CTTACTAAGG AGGACCTTTT CAAGACACAC AGCGTCCCTG CCACCCCCAC
                                                                            420
       CAGCACTCCT GTGCCGAACC CTGAGGCCGA GTCCAGCTCC AAGGAAGGAG AGCTGGACGC
                                                                            480
       CAGAGACTTG GAAATGTCTA AGAAAGTCAG GCGTTCCTAC AGCCGGCTGG AGACCCTGGG
                                                                           540
       CTCTGCCTCT ACCTCCACCC CAGGCCGCCG GTCCTGCTTT GGCTTCGAGG GGCTGCTGGG
                                                                            600
60
       GGCAGAAGAC TTGTCCGGAG TCTCGCCAGT GGTGTGCTCC AAACTCACCG AGGTCCCCAG
       GGTTTGTGCA AAGCCCTGGG CCCCAGACAT GACTCTCCCT GGAATCTCCC CACCACCCGA
                                                                            720
       GAAACAGAAA CGTAAGAAGA AGAAAATGCC AGAGATCTTG AAAACGGAGC TGGATGAGTG
                                                                            780
       GGCTGCGGCC ATGAATGCCG AGTTTGAAGC TGCTGAGCAG TTTGATCTCC TGGTTGAATG
                                                                            840
       AGATGCAGTG GGGGGTGCAC CTGGCCAGAC TCTCCCTCCT GTCCTGTACA TAGCCACCTC
                                                                           900
65
       CCTGTGGAGA GGACACTTAG GGTCCCCTCC CCTGGTCTTG TTACCTGTGT GTGTGCTGGT
                                                                            960
       GCTGCGCATG AGGACTGTCT GCCTTTGAGG GCTTGGGCAG CAGCGGCAGC CATCTTGGTT
       TTAGGAAATG GGGCCGCCTG GCCCAGCCAC TCACTGGTGT CCTGTCTCTT GTCGTCCTGT
                                                                           1080
       CCTTCCTATC TCCCCAAAGT ACCATAGCCA GTTTCCAGAT GGGCCACAGA CTGGGGAGGA
                                                                           1140
70
       GAATCAGTGG CCCAGCCAGA AGTTAAAGGG CTGAGGGTTG AGGTGAGAGG CACCTCTGCT
                                                                          1200
       CTTGTTGGGA GGGGTGGCTG CTTGGAAATA GGCCCAGGGG CTCTGCCAGC CTCGGCCTCT
                                                                           1260
       CCCTCCTGAG TTGCCTTCTG TTGGTGGCTT TCTTCTTGAA CCCACCTGTG TAAAGAGGTT
                                                                           1320
       TTCAGTTCCG TGGGTTTCCC CTTTGATTCT GTAAATAGTC CCAGAGAGAA TTCGTGGGCT
                                                                           1380
        GAGGGCAATT CTGTCTTGGA GGAAGAAGCT GGACATTCAG CCTGTGGAGT CTGAGTTTTG
                                                                           1440
        AAGGATGTAG GGAGCCTTAG TTGGGTCTCA GACCATAAGT GTGTACTACA CAGAAGCTGT
                                                                           1500
 75
        GTTTTCTAGT TCTGGTCTGC TGTTGAGATG TTTGGTAAAT GCCAGGTTGA TAGGGCGCTG
                                                                           1560
        GCTGCTTGGA GCAAAGGGTG CATTTCAGGG TGTGGCCACC AGGTGCTGTG AGTTTCTGTG
                                                                           1620
        GCTCATGGCC TCTGGGCTGG TCCCTTGCAC AGGGCCCACG CTGGAGTCTT ACCACTCTGC
                                                                           1680
        TGCAGGGGTG GAAGGTGGCC CCTCTTGTCA CCCATACCCA TTTCTTACAA AATAAGTTAC
                                                                           1740
 80
        ACCGAGTCTA CTTGGCCCTA GAAGAGAAAG TTGAAGAGTC CCAGACCTAC TAGCATTTTG
                                                                           1800
        CAACTATGCT TGTAAAGTCC TCGGAAAGTT TCCTCGCGTA CCAGACAGCG GCGGGGGCTG
                                                                           1860
        ATAGCAATTT TAGTTTTTGG CCTCCCTATC CTCTCACATG AGAACACTGC CTGGATGCAT
                                                                           1920
        CTCATGATCT CTGGAGAATT TCCCCATCTT TCTCTTCTTT CCATCGTGTG GATTCAATAG
                                                                           1980
        TTTGGATTTG AAGGCTGCCC TGCCCCCGAC TCTCCTGCCG CACCCCTGGC CATTGTACCT
                                                                           2040
        TTTGATGTTT AGAAGTTCGT GGAAGTAGAC GCTGAGGTGT GCAGAGGAGC TGGTGGATAA
 85
                                                                           2100
        CAGAGAATGC CAGGGAAGAT GAGTGCTGGG TCAGGGTACT TGGATGAAAC GGTGCAGGCC
        AGGCGGGCCC TAATAAAACC CTCTGCCAGG TCTGGGAGTC CCAGGCCATC TGCTCAACGC
```