

Proof: Unique Envelope for Time-Warped Stationary Processes

Theorem Statement

Theorem: Let $\{X(\tau), \tau \in \mathbb{R}\}$ be a stationary stochastic process and let $\theta : \mathbb{R} \to \mathbb{R}$ be a strictly monotonically increasing function. Then the time-warped process $Y(t) = X(\theta(t))$ has a unique envelope definition.

Formal Proof

Step 1: Envelope Uniqueness for Stationary Processes

Lemma A: Every stationary process $X(\tau)$ with spectral representation $X(\tau)=\int_{-\infty}^{\infty}e^{i\lambda\tau}dZ(\lambda)$

has a unique envelope $R_X(\tau)=|X_a(\tau)|$ where $X_a(\tau)=X(\tau)+i\hat{X}(\tau)$ is the analytic signal and $\hat{X}(\tau)$ is the Hilbert transform of $X(\tau)$.

Proof of Lemma A:

- ullet For stationary X(au), the Hilbert transform $\hat{X}(au)=\mathcal{H}[X](au)$ is uniquely defined
- ullet The analytic signal $X_a(au)=X(au)+i\hat{X}(au)$ is unique
- ullet Therefore $R_X(au)=|X_a(au)|=\sqrt{X^2(au)+\hat{X}^2(au)}$ is unique \Box

Step 2: Coordinate Transformation Lemma

Lemma B: Let $f:\mathbb{R} o\mathbb{R}$ be strictly monotonic with inverse f^{-1} . If process $\{W(\tau)\}$ has unique envelope $R_W(\tau)$, then process $\{W(f(t))\}$ has unique envelope $R_{W\circ f}(t)=R_W(f(t))$

Proof of Lemma B:

Suppose $\{W(f(t))\}$ has two different envelope definitions $E_1(t)$ and $E_2(t)$.

Define the pullback envelopes:

$$ilde{E}_1(au) := E_1(f^{-1}(au)), \quad ilde{E}_2(au) := E_2(f^{-1}(au))$$

Since $W(\tau)=W(f(f^{-1}(\tau)))$, both $\tilde{E}_1(\tau)$ and $\tilde{E}_2(\tau)$ are envelope definitions for the same process $\{W(\tau)\}$.

By uniqueness of $R_W(au)$: $ilde{E}_1(au) = ilde{E}_2(au) = R_W(au)$ almost surely.

Applying f to both sides:

$$E_1(t) = ilde{E}_1(f(t)) = R_W(f(t)) = ilde{E}_2(f(t)) = E_2(t)$$

Therefore, the envelope is unique: $R_{W\circ f}(t)=R_W(f(t))$ \square

Step 3: Construction of Unique Envelope

Main Proof:

Given $Y(t) = X(\theta(t))$ where $X(\tau)$ is stationary and $\theta(t)$ is strictly increasing:

- 1. **Apply Lemma A**: The stationary process X(au) has unique envelope $R_X(au)$
- 2. Apply Lemma B: With f(t)= heta(t) and W(au)=X(au):
 - \circ θ is strictly monotonic \checkmark
 - $\circ~~X(au)$ has unique envelope $R_X(au)$ 🗸
 - $\circ~$ Therefore Y(t)=X(heta(t)) has unique envelope $R_Y(t)=R_X(heta(t))$
- 3. Explicit Construction:
 - $\circ~$ Quadrature process: $\hat{Y}(t) = \hat{X}(heta(t))$
 - \circ Analytic signal: $Y_a(t) = Y(t) + i \hat{Y}(t) = X(heta(t)) + i \hat{X}(heta(t))$
 - Unique envelope:

$$R_Y(t) = |Y_a(t)| = \sqrt{Y^2(t) + \hat{Y}^2(t)} = \sqrt{X^2(heta(t)) + \hat{X}^2(heta(t))} = R_X(heta(t))$$

Step 4: Verification of Uniqueness

Suppose there exists another envelope definition $ilde{R}_Y(t)$ for Y(t).

By Lemma B's construction: $ilde{R}_X(au):= ilde{R}_Y(heta^{-1}(au))$ would be an envelope for X(au).

But $X(\tau)$ has unique envelope $R_X(\tau)$, so:

$$ilde{R}_X(au) = R_X(au) \implies ilde{R}_Y(heta^{-1}(au)) = R_X(au)$$

Substituting $t= heta^{-1}(au)$ (equivalently au= heta(t)):

$$ilde{R}_Y(t) = R_X(heta(t)) = R_Y(t)$$

Therefore, any envelope definition must equal $R_Y(t)=R_X(heta(t))$, proving uniqueness. \Box

Conclusion

The time-warped stationary process $Y(t) = X(\theta(t))$ inherits envelope uniqueness from the underlying stationary process $X(\tau)$ through the bijective coordinate transformation $\theta(t)$. The unique envelope is explicitly given by:

$$oxed{R_Y(t) = R_X(heta(t)) = \sqrt{X^2(heta(t)) + \hat{X}^2(heta(t))}}$$

This result holds for any strictly monotonic time-warping function $\theta(t)$, regardless of whether the process satisfies Hasofer's transience conditions.