Vorlesung Analysis II

June 27, 2025

Teil 3: Gewöhnliche Differentialgleichungen

an17: DGLn mit "getrennten Variablen"

Stichworte: DGL mit getrennten Variablen, AWA, Beispiele

Literatur [Hoffmann], Kapitel 7.2

17.1. Einleitung: Wir untersuchen DGLn mit "getrennten Variablen" x und y.

17.2. <u>Motivation</u>: wir behandeln DGLn, wo sich alle Terme y und ihren Ableitungenauf die eine Seite, und die Terme mit x auf die andere Seite bringen lassen. Nach einer solchen "Variablentrennung" ist die DGL leicht lösbar Integration.

17.3. Verinbarung: Wir betrachtten DGLn der Form

Annahmen: $i_1.i_2 \subseteq \mathbb{R}$ Intervalle,

 $f: i_1 \to \mathbb{R} \text{ stetig, } g: i_2 \to \mathbb{R} \text{ stetig mit } g(s) \neq 0 \text{ für } s \in i_2.$

17.4. Aufgabe: Zu den Anfangswerten $a \in i_1$ und $b \in i_2$ suchen wir ein $IVi \subseteq \mathbb{R}$ mit $a \in i \subseteq i_1$ und eine auf i def. Lsg. y von (*) mit $\underline{y(a)=b}$.

"AWA"=Anfangswertaufgabe

17.5. Grobe Idee: Umformung zu y'(t)g(y(t)) = f(t)

und Integration: $\int_a^x y'(t)g(y(t))dt = \int_a^x f(t)dt$.

Die Substitution s := y(t) ergibt auf der l.s. gerade $\int_{y(a)}^{y(x)} g(s) ds$, was dann nach y(x) aufgelöst wird.

17.6. Bemerkung:

- (1.) Durch "Variazion" von a und b werden alle Lsgn. erfasst.
- (2.) Eine Lsg. von (*) ist automatisch stetig diff'bar.

17.7. Setze $F(x) := \int_a^x f(t)dt (x \in i_1), G(y) := \int_b^y g(s)ds (y \in i_2)$

Da g in i_2 keine Nst. hat (und daher Konstantes VZ hat, denn g ist stetig), ist <u>G streng monoton</u> (isoton oder antiton).

G ist stetig diff'bar, für $i_3:=G(i_2)$ ist also $G:I_2 \to i_3$ bijektiv.

Nach An12.2./an8.8. ist $\overline{G}^{-1}: i_3 \to i_2$ stetig diff'bar, und ebenso streng monoton.

17.8. Feststellung: Für eine auf einem IV (Intervall) i, $a \in i \subseteq i_1$, def. diff'bare Fkt. y mit $y(t) \in i_2(t \in i)$ ist die AWA äquivalent zu $G(y(x))F(x), x \in i \Leftrightarrow y(x) = G^{-1}(F(x)) = (G^{-1} \circ F)(x),$ $x \in i$.

Ist nun i_0 das "maximale" IV mit $a \in i_0$ \$subseteq i_1 und $F(x) \in i_3, x \in i_0$,

dann gilt: $y_0 := G^{-1} \circ F_{rio}$ ist Lsg. der AWA.

Jede andere Lsg. der AWA entsteht durch Einschränkung.

17.9. Bsp.: $y' = -\frac{x}{y}$, y > 0, \rightarrow nehmen $i_2 = \mathbb{R}$, f(x) = -x, $i_2 =]0$, $\infty[$, g(y) = y und bel. $a \in i_1, b \in i_2$, erhalten: $2F(x) = -x^2 + a^2$, $2G(y) = y^2 - b^2$, und somit $i_3 = G(i_2) =] - \frac{1}{2}b^2, \infty[$. mit $r = \sqrt{a^2 + b^2}$ ergibt sich $i_0 =] - r, r[$. Die Forderung G(y(x)) = F(x) liefert $y(x)^2 - b^2 = -x^2 + a^2 \Rightarrow y(x) = \sqrt{r^2 - x^2}, x \in i_0$.

17.10. Bsp.: $y' = \sqrt{y}$, $y \ge 0, y(0) = 0 \to \text{Nehmen } i_1 = \mathbb{R}, i_2 =]0, \infty[$,

 $\underline{f}(x) := \underline{1} \ (x \in i_1), \ \underline{g}(s) := s^{\frac{-1}{2}} \ (s \in i_2).$

• <u>Für b=0</u> sind wegen $0 \notin i_2$ obige Überlegung nicht anwendbar.

• Falls $a \in i_1, b \in i_2$: Setze $F(x) := \int_b^y f(t)dt = x-a, x \in i_1,$

 $G(y) := \int_{b}^{y} s^{-1/2} ds = 2(\sqrt{y} - \sqrt{b}), y \in i_{2},$

 $i_3(:=G(i_2)) =]-2\sqrt{b}, \infty[, i_0 =]a - 2\sqrt{b}, \infty[,$

 $y_0(x) := G^{-1}(F(x)) = \frac{1}{4}(x - a + 2\sqrt{b})^2, x \in i_0.$

Mit $\underline{\alpha} := a - 2\sqrt{b}$ liefert dann $\underline{\mathbf{y}}(\mathbf{x}) := \begin{cases} 0, x \leq \alpha \\ \frac{1}{4}(x - \alpha), x > \alpha \end{cases}$ einer Lsg. auf ganz \mathbb{R} .

17.11. Bem. zu 17.10: Falls $\alpha \geq 0$, erhält man eine Lsg.

Es ex. also lokal (hier z.B. um die 0 herum) unendlich viele Lsgn. der AWA,

diese liegen zwischen der "Kleinsten" Lsg. $y_{min}=0$ und der "größten" Lsg. $y_{max}(x):=\begin{cases} 0, x \leq 0 \\ \frac{1}{4}x^2, x>0. \end{cases}$

17.12. Bsp.: $y' = y^2$, y(0) = b > 0. \rightarrow Nehmen $i_1 = \mathbb{R}, i_2 =]0, \infty[m]$

 $i_3=G(i_2)=]-\infty, \frac{1}{b}[=i_0, \underline{y_0(x)}:=G^{-1}(F(x))=G^{-1}(x)=\frac{b}{1-bx}, x\in i_0.$ Beachten: Die Lsgn. besitzen individuelle maximale existenz IVe, obwohl die DGL mit völlig regulären Funktionen gebildet wird.

