On Structured Pruning in the Strong Lottery Ticket Hypothesis via Multidimensional Random Subset Sum

Francesco d'Amore

Based on joint work with A. da Cunha and E. Natale [NeurIPS 2023]

Mathematics for AI and ML 19 January 2024

Artificial neural networks are large

Usually ranging from millions to hundreds of billions parameters

- RESNET-50: > 20 millions parameters [He et al. 2015]
- BERT: > 100 millions parameters [Devlin et al. 2018]
- GPT-3: > 100 billions parameters [Brown et al. 2020]

- Resource intensive
- Good results
- Resulting network still large

- Resource intensive
- Good results
- Resulting network still large
- Removing edges (pruning) works well

- Resource intensive
- Good results
- Resulting network still large
- Removing edges (pruning) works well
- \bullet Pruning $\sim 60-80\%$ of the edges can lead to better accuracies [Diffenderfer and Kailkhura 2021]

- Resource intensive
- Good results
- Resulting network still large
- Removing edges (pruning) works well
- \bullet Pruning $\sim 60-80\%$ of the edges can lead to better accuracies [Diffenderfer and Kailkhura 2021]
- Pruning $\sim 99\%$ of the edges can perform well [Hoefler et al. 2021]

• Maybe, we can avoid the effort of dense training

- Maybe, we can avoid the effort of dense training
- Let's test the subnetwork by retraining it

- Maybe, we can avoid the effort of dense training
- Let's test the subnetwork by retraining it
 - Reinitialize

- Maybe, we can avoid the effort of dense training
- Let's test the subnetwork by retraining it
 - Reinitialize
 - Train

- Maybe, we can avoid the effort of dense training
- Let's test the subnetwork by retraining it
 - Reinitialize
 - Train
 - Bad accuracies

• Starting from a random point might be too much

• Starting from a random point might be too much

[Frankle and Carbin ICLR '19]

Rewind instead

Starting from a random point might be too much

[Frankle and Carbin ICLR '19]

- Rewind instead
- \bullet Training is efficient: 10%-20% of the original size

Starting from a random point might be too much

[Frankle and Carbin ICLR '19]

- Rewind instead
- Training is efficient: 10%-20% of the original size
- Similar accuracy

Lottery tickets

• What does it mean?

6 - 1

Lottery tickets

- What does it mean?
- This is not a good algorithm

Lottery tickets

- What does it mean?
- This is not a good algorithm
- Existential result
 - Training is about topology + initialization

The Lottery Ticket Hypothesis (LTH)

[Frankle and Carbin ICLR '19]: winning lottery tickets always exist

The Lottery Ticket Hypothesis (LTH)

[Frankle and Carbin ICLR '19]: winning lottery tickets always exist

Conjecture: every randomly-initialized dense nework g contains a subnetwork f that matches the test accuracy of g once trained for at most the same number of iterations

The Lottery Ticket Hypothesis (LTH)

[Frankle and Carbin ICLR '19]: winning lottery tickets always exist

Conjecture: every randomly-initialized dense nework g contains a subnetwork f that matches the test accuracy of g once trained for at most the same number of iterations

Lot of subsequent work . . .

Intuition

• The considered networks are very large, and random

Intuition

- The considered networks are very large, and random
- They might already contain good subnetworks from scratch!

Intuition

- The considered networks are very large, and random
- They might already contain good subnetworks from scratch!

Intuition

- The considered networks are very large, and random
- They might already contain good subnetworks from scratch!

Intuition

- The considered networks are very large, and random
- They might already contain good subnetworks from scratch!

Learn by pruning

Intuition

- The considered networks are very large, and random
- They might already contain good subnetworks from scratch!

Learn by pruning

Strong winning lottery ticket

Conjecture: every randomly-initialized and sufficiently large nework g contains a subnetwork f that matches the post-training test accuracy of g even without any training

Conjecture: every randomly-initialized and sufficiently large nework g contains a subnetwork f that matches the post-training test accuracy of g even without any training

[Zhou et al. NeurIPS '19] proposes a way to find f: prune weights according to some probability learned through stochastic gradient descent

Conjecture: every randomly-initialized and sufficiently large nework g contains a subnetwork f that matches the post-training test accuracy of g even without any training

[Zhou et al. NeurIPS '19] proposes a way to find f: prune weights according to some probability learned through stochastic gradient descent

Decent accuracy

Conjecture: every randomly-initialized and sufficiently large nework g contains a subnetwork f that matches the post-training test accuracy of g even without any training

[Zhou et al. NeurIPS '19] proposes a way to find f: prune weights according to some probability learned through stochastic gradient descent

Decent accuracy

[Ramanujan et al. CVPR '20] improves on it: random ResNet-50 pruned to match ResNet-34 on ImageNet

Conjecture: every randomly-initialized and sufficiently large nework g contains a subnetwork f that matches the post-training test accuracy of g even without any training

[Zhou et al. NeurIPS '19] proposes a way to find f: prune weights according to some probability learned through stochastic gradient descent

Decent accuracy

[Ramanujan et al. CVPR '20] improves on it: random ResNet-50 pruned to match ResNet-34 on ImageNet

[Diffenderfer and Kailkhura ICLR '21]: works even with binary weights!

Target result: Given a network g with random weights, with high probability, it is possible to prune g to approximate any sufficiently smaller network f

Target result: Given a network g with random weights, with high probability, it is possible to prune g to approximate any sufficiently smaller network f

Target result (equivalent): Let \mathcal{F} be the class of neural networks with a given size. If a network g with random weights is sufficiently large, then, with high probability, it is possible to prune g to approximate any network in \mathcal{F}

Target result: Given a network g with random weights, with high probability, it is possible to prune g to approximate any sufficiently smaller network f

Target result (equivalent): Let \mathcal{F} be the class of neural networks with a given size. If a network g with random weights is sufficiently large, then, with high probability, it is possible to prune g to approximate any network in \mathcal{F}

Size: parameter count and depth

Target result: Given a network g with random weights, with high probability, it is possible to prune g to approximate any sufficiently smaller network f

Target result (equivalent): Let \mathcal{F} be the class of neural networks with a given size. If a network g with random weights is sufficiently large, then, with high probability, it is possible to prune g to approximate any network in \mathcal{F}

- Size: parameter count and depth
- With high probability: 1δ for any given $\delta > 0$

Do we have a theorem?

Target result: Given a network g with random weights, with high probability, it is possible to prune g to approximate any sufficiently smaller network f

Target result (equivalent): Let \mathcal{F} be the class of neural networks with a given size. If a network g with random weights is sufficiently large, then, with high probability, it is possible to prune g to approximate any network in \mathcal{F}

- Size: parameter count and depth
- With high probability: 1δ for any given $\delta > 0$
- Approximation: distance w.r.t. some metric is ε for any given $\varepsilon > 0$

SLTH holds for:

• [Malach et al. ICML '20]: polynomially overparameterized dense networks with ReLU activation functions

- [Malach et al. ICML '20]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. NeurIPS '20]: logarithmically overparameterized dense networks with ReLU activation functions

- [Malach et al. ICML '20]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. NeurIPS '20]: logarithmically overparameterized dense networks with ReLU activation functions
- [Diffenderfer and Kailkhura ICLR '21]: polynomially overparameterized binary dense networks

- [Malach et al. ICML '20]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. NeurIPS '20]: logarithmically overparameterized dense networks with ReLU activation functions
- [Diffenderfer and Kailkhura ICLR '21]: polynomially overparameterized binary dense networks
- [Sreenivasan et al. AlStat '22]: polylogarithmically overparameterized binary dense networks

- [Malach et al. ICML '20]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. NeurIPS '20]: logarithmically overparameterized dense networks with ReLU activation functions
- [Diffenderfer and Kailkhura ICLR '21]: polynomially overparameterized binary dense networks
- [Sreenivasan et al. AlStat '22]: polylogarithmically overparameterized binary dense networks
- [da Cunha et al. ICLR '22]: logarithmically overparameterized convolutional neural networks (CNNs) with ReLU activation functions and non-negative inputs

- [Malach et al. ICML '20]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. NeurIPS '20]: logarithmically overparameterized dense networks with ReLU activation functions
- [Diffenderfer and Kailkhura ICLR '21]: polynomially overparameterized binary dense networks
- [Sreenivasan et al. AlStat '22]: polylogarithmically overparameterized binary dense networks
- [da Cunha et al. ICLR '22]: logarithmically overparameterized convolutional neural networks (CNNs) with ReLU activation functions and non-negative inputs
- [Burkholz NeurIPS, ICML '22]: logarithmically overparameterized dense networks, CNNs, and residual architectures with a wider class of activation functions and less depth overhead

- [Malach et al. ICML '20]: polynomially overparameterized dense networks with ReLU activation functions
- [Pensia et al. NeurIPS '20]: logarithmically overparameterized dense networks with ReLU activation functions
- [Diffenderfer and Kailkhura ICLR '21]: polynomially overparameterized binary dense networks
- [Sreenivasan et al. AlStat '22]: polylogarithmically overparameterized binary dense networks
- [da Cunha et al. ICLR '22]: logarithmically overparameterized convolutional neural networks (CNNs) with ReLU activation functions and non-negative inputs
- [Burkholz NeurIPS, ICML '22]: logarithmically overparameterized dense networks, CNNs, and residual architectures with a wider class of activation functions and less depth overhead
- [Ferbach et al. ICLR '22]: logarithmically overparameterized equivariant networks with ReLU activation functions

- ullet $\mathbf{x} \in \mathbb{R}^{d_0}$, $\mathbf{W}_i \in \mathbb{R}^{d_{i-1} imes d_i}$
- $\sigma(x) = \max(0, x)$ (ReLU)

- ullet $\mathbf{x} \in \mathbb{R}^{d_0}$, $\mathbf{W}_i \in \mathbb{R}^{d_{i-1} imes d_i}$
- $\sigma(x) = \max(0, x)$ (ReLU)

- ullet $\mathbf{x} \in \mathbb{R}^{d_0}$, $\mathbf{W}_i \in \mathbb{R}^{d_{i-1} imes d_i}$
- $\sigma(x) = \max(0, x)$ (ReLU)

- ullet $\mathbf{x} \in \mathbb{R}^{d_0}$, $\mathbf{W}_i \in \mathbb{R}^{d_{i-1} imes d_i}$
- $\sigma(x) = \max(0, x)$ (ReLU)

- ullet $\mathbf{x} \in \mathbb{R}^{d_0}$, $\mathbf{W}_i \in \mathbb{R}^{d_{i-1} imes d_i}$
- $\sigma(x) = \max(0, x)$ (ReLU)

ullet First target: approx y=wx within error arepsilon (no ReLU, one edge only)

ullet First target: approx y=wx within error arepsilon (no ReLU, one edge only)

• Original approach

add intermediate layer, sample $w_i \sim \mathsf{Unif}[-1,1]$ until getting $w \pm \varepsilon$

ullet First target: approx y=wx within error arepsilon (no ReLU, one edge only)

• Original approach

add intermediate layer, sample $w_i \sim \mathsf{Unif}[-1,1]$ until getting $w \pm \varepsilon$

roughly $1/\varepsilon$ samples

 \bullet First target: approx y=wx within error ε (no ReLU, one edge only)

ullet Original approach add intermediate layer, sample $w_i \sim \mathsf{Unif}[-1,1]$ until getting $w \pm arepsilon$

roughly $1/\varepsilon$ samples

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

ullet First target: approx y=wx within error arepsilon (no ReLU, one edge only)

ullet Original approach add intermediate layer, sample $w_i \sim \mathsf{Unif}[-1,1]$ until getting $w \pm arepsilon$

roughly $1/\varepsilon$ samples

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

How many?

 \bullet First target: approx y=wx within error ε (no ReLU, one edge only)

ullet Original approach add intermediate layer, sample $w_i \sim \mathsf{Unif}[-1,1]$ until getting $w \pm arepsilon$

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

How many?

Theorem [Lueker 1998; da Cunha et al. ESA '23]: Let $x_1, \ldots, x_n \in [-1,1]$ be i.i.d. uniform random variables. Given any error parameter $\varepsilon > 0$, there exists a constant C > 0 such that if $n \ge C \log 1/\varepsilon$ then, with probability $1 - \exp \left[(n - C \log 1/\varepsilon)^2/4n \right]$, for each $z \in [-1,1]$ there exists a subset $S \subseteq [n]$ such that $|z - \sum_{i \in S} x_i| < 2\varepsilon$

 \bullet First target: approx y=wx within error ε (no ReLU, one edge only)

ullet Original approach add intermediate layer, sample $w_i \sim \mathsf{Unif}[-1,1]$ until getting $w \pm arepsilon$

ullet Random subset sum (RSS) approach: add intermediate layer, sample $w_i \sim {\sf Unif}[-1,1]$ and find a good subset

How many?

Theorem [Lueker 1998; da Cunha et al. ESA '23]: Let $x_1,\ldots,x_n\in[-1,1]$ be i.i.d. uniform random variables. Given any error parameter $\varepsilon>0$, there exists a constant C>0 such that if $n\geq C\log 1/\varepsilon$ then, with probability $1-\exp\left[(n-C\log 1/\varepsilon)^2/4n\right]$, for each $z\in[-1,1]$ there exists a subset $S\subseteq[n]$ such that $|z-\sum_{i\in S}x_i|<2\varepsilon$

works for all densities h(x) = pf(x) + (1-p)g(x), where f is "uniform"

Target network

Overapameterized network

 $n \geq C \log d^2/\varepsilon$

d=# neurons in the layer

$$\implies \|\mathbf{y} - \mathbf{z}\| \le 2\varepsilon$$

Overapameterized network

$n \geq C \log d^2/\varepsilon$

d=# neurons in the layer

$$\implies \|\mathbf{y} - \mathbf{z}\| \le 2\varepsilon$$

$$n \geq C \log \ell d^2/\varepsilon$$

$$\ell = \#$$
 layers

$$\implies \|\mathbf{y} - \mathbf{z}\| \le 2\varepsilon$$

• Removed edges can be everywhere

• No structure usually implies slower processes

- No structure usually implies slower processes
 - difficulty encoding unstructured sparsity

- No structure usually implies slower processes
 - difficulty encoding unstructured sparsity
 - accessing data is more time consuming than processing

- No structure usually implies slower processes
 - difficulty encoding unstructured sparsity
 - accessing data is more time consuming than processing
 - the processor register allows parallel operations for blocks of memory

- No structure usually implies slower processes
 - difficulty encoding unstructured sparsity
 - accessing data is more time consuming than processing
 - the processor register allows parallel operations for blocks of memory
- What about **structured pruning**

- No structure usually implies slower processes
 - difficulty encoding unstructured sparsity
 - accessing data is more time consuming than processing
 - the processor register allows parallel operations for blocks of memory
- What about structured pruning
 - [Malach et al. ICML '20]: pruning neurons alone requires exponential overparam.

• Removing entire neurons from the middle layer!

• Removing entire neurons from the middle layer!

- Removing entire neurons from the middle layer!
 - removes columns!

$$\begin{bmatrix} 0 & v_{1,2} & 0 & \dots & 0 & v_{i,1} & 0 & \dots \\ 0 & v_{2,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \\ 0 & v_{3,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{3n} \end{bmatrix}$$

- Removing entire neurons from the middle layer!
 - removes columns!
- The one-dimensional RSS result does not work
 - leads to exponential bounds

$$\begin{bmatrix} 0 & v_{1,2} & 0 & \dots & 0 & v_{i,1} & 0 & \dots \\ 0 & v_{2,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \\ 0 & v_{3,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{3n} \end{bmatrix}$$

- Removing entire neurons from the middle layer!
 - removes columns!
- The one-dimensional RSS result does not work
 - leads to exponential bounds
- A multidimensional RSS result is required

$$\begin{bmatrix} 0 & v_{1,2} & 0 & \dots & 0 & v_{i,1} & 0 & \dots \\ 0 & v_{2,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \\ 0 & v_{3,2} & 0 & \dots & 0 & v_{i,2} & 0 & \dots \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_{3n} \end{bmatrix}$$

• Natural generalization

• Natural generalization

Input:

ullet Sequence of n i.i.d. random vectors X_1,\ldots,X_n

• Natural generalization

Input:

- Sequence of n i.i.d. random vectors X_1, \ldots, X_n
- Target vector $\mathbf{z} \in [-1, +1]^d$

• Natural generalization

Input:

- Sequence of n i.i.d. random vectors X_1, \ldots, X_n
- Target vector $\mathbf{z} \in [-1, +1]^d$
- ullet Error parameter $\varepsilon>0$

• Natural generalization

Input:

- Sequence of n i.i.d. random vectors X_1, \ldots, X_n
- Target vector $\mathbf{z} \in [-1, +1]^d$
- Error parameter $\varepsilon > 0$

Question:

• Estimate n such that, with high probability, a subset $S \subseteq [n]$ exists with $\|\mathbf{z} - \sum_{i \in S} X_i\|_{\infty} \leq 2\varepsilon$

ullet Number of arepsilon-cubes: $1/arepsilon^d=2^{d\log 1/arepsilon}$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets

- Number of ε -cubes: $1/\varepsilon^d = 2^{d\log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets
- Target $\mathbf{z} \in [-1, 1]^d$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets
- ullet Target $\mathbf{z} \in [-1,1]^d$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets
- Target $\mathbf{z} \in [-1, 1]^d$

In expectation

• If subset size k, possible subsets: $(n/k)^k \leq \binom{n}{k} \leq (en/k)^k$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets
- Target $\mathbf{z} \in [-1,1]^d$

- If subset size k, possible subsets: $(n/k)^k \leq \binom{n}{k} \leq (en/k)^k$
- Each subset $S \subseteq [n]$, |S| = k, gives a Gaussian $Y_S \sim \mathcal{N}(\mathbf{0}, kI_d)$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets
- Target $\mathbf{z} \in [-1, 1]^d$

- If subset size k, possible subsets: $(n/k)^k \leq \binom{n}{k} \leq (en/k)^k$
- ullet Each subset $S\subseteq [n]$, |S|=k, gives a Gaussian $Y_S\sim \mathcal{N}(\mathbf{0},kI_d)$
- \bullet Probability roughly $(\varepsilon/\sqrt{k})^d$ to hit any $\varepsilon\text{-cube}$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets
- Target $\mathbf{z} \in [-1, 1]^d$

- If subset size k, possible subsets: $(n/k)^k \leq \binom{n}{k} \leq (en/k)^k$
- ullet Each subset $S\subseteq [n]$, |S|=k, gives a Gaussian $Y_S\sim \mathcal{N}(\mathbf{0},kI_d)$
- \bullet Probability roughly $(\varepsilon/\sqrt{k})^d$ to hit any $\varepsilon\text{-cube}$

$$\mathbb{E}\left[\# \text{ subsets approximating any cube}\right] = \sum_{k=1}^n \binom{n}{k} \cdot \left(\frac{\varepsilon}{\sqrt{k}}\right)^d$$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets
- Target $\mathbf{z} \in [-1, 1]^d$

- If subset size k, possible subsets: $(n/k)^k \leq \binom{n}{k} \leq (en/k)^k$
- Each subset $S \subseteq [n]$, |S| = k, gives a Gaussian $Y_S \sim \mathcal{N}(\mathbf{0}, kI_d)$
- ullet Probability roughly $(\varepsilon/\sqrt{k})^d$ to hit any ε -cube

$$\mathbb{E}\left[\# \text{ subsets approximating any cube}\right] = \sum_{k=1}^n \binom{n}{k} \cdot \left(\frac{\varepsilon}{\sqrt{k}}\right)^d$$

$$\geq 2^{n/2} \cdot \left(\frac{\varepsilon}{\sqrt{n/2}}\right)^d = 2^{n/2 - d\log 1/\varepsilon - d/2\log n/2}$$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets
- Target $\mathbf{z} \in [-1, 1]^d$

- If subset size k, possible subsets: $(n/k)^k \leq \binom{n}{k} \leq (en/k)^k$
- Each subset $S \subseteq [n]$, |S| = k, gives a Gaussian $Y_S \sim \mathcal{N}(\mathbf{0}, kI_d)$
- ullet Probability roughly $(\varepsilon/\sqrt{k})^d$ to hit any ε -cube

$$\mathbb{E}\left[\# \text{ subsets approximating any cube}\right] = \sum_{k=1}^n \binom{n}{k} \cdot \left(\frac{\varepsilon}{\sqrt{k}}\right)^d$$

$$\geq 2^{n/2} \cdot \left(\frac{\varepsilon}{\sqrt{n/2}}\right)^d = 2^{n/2 - d\log 1/\varepsilon - d/2\log n/2} \geq 2^{\Theta(n)} \text{ for } n = \Theta(d\log 1/\varepsilon)$$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets
- Target $\mathbf{z} \in [-1,1]^d$

- If subset size k, possible subsets: $(n/k)^k \leq \binom{n}{k} \leq (en/k)^k$
- Each subset $S \subseteq [n]$, |S| = k, gives a Gaussian $Y_S \sim \mathcal{N}(\mathbf{0}, kI_d)$
- ullet Probability roughly $(\varepsilon/\sqrt{k})^d$ to hit any ε -cube

$$\mathbb{E}\left[\# \text{ subsets approximating any cube}\right] = \sum_{k=1}^n \binom{n}{k} \cdot \left(\frac{\varepsilon}{\sqrt{k}}\right)^d$$

$$\geq 2^{n/2} \cdot \left(\frac{\varepsilon}{\sqrt{n/2}}\right)^d = 2^{n/2 - d\log 1/\varepsilon - d/2\log n/2} \geq 2^{\Theta(n)} \text{ for } n = \Theta(d\log 1/\varepsilon)$$

- Number of ε -cubes: $1/\varepsilon^d = 2^{d \log 1/\varepsilon}$
- Sequence of n i.i.d. random vectors $X_1, \ldots, X_n \sim \mathcal{N}(\mathbf{0}, I_d)$
- 2^n possible subsets
- Target $\mathbf{z} \in [-1,1]^d$

- If subset size k, possible subsets: $(n/k)^k \leq \binom{n}{k} \leq (en/k)^k$
- Each subset $S \subseteq [n]$, |S| = k, gives a Gaussian $Y_S \sim \mathcal{N}(\mathbf{0}, kI_d)$
- ullet Probability roughly $(\varepsilon/\sqrt{k})^d$ to hit any ε -cube

$$\mathbb{E}\left[\# \text{ subsets approximating any cube}\right] = \sum_{k=1}^n \binom{n}{k} \cdot \left(\frac{\varepsilon}{\sqrt{k}}\right)^d$$

$$\geq 2^{n/2} \cdot \left(\frac{\varepsilon}{\sqrt{n/2}}\right)^d = 2^{n/2 - d\log 1/\varepsilon - d/2\log n/2} \geq 2^{\Theta(n)} \text{ for } n = \Theta(d\log 1/\varepsilon)$$

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and 0 otherwise

- [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds
- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and 0 otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ number of subsets approximating target \mathbf{z}

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and 0 otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ number of subsets approximating target \mathbf{z}
- $\mathsf{P}\left[Z_n \ge 1\right] \ge (\mathbb{E}\left[Z_n\right])^2 / \mathbb{E}\left[Z_n^2\right]$

• [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds

- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and 0 otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ number of subsets approximating target \mathbf{z}
- $\mathsf{P}\left[Z_n \ge 1\right] \ge (\mathbb{E}\left[Z_n\right])^2 / \mathbb{E}\left[Z_n^2\right]$

ullet Challenge: dealing with dependencies to estimate $\mathbb{E}\left[Z_n^2
ight]$

- [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds
- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and $\mathbf{0}$ otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ number of subsets approximating target \mathbf{z}
- $\mathsf{P}\left[Z_n \ge 1\right] \ge (\mathbb{E}\left[Z_n\right])^2 / \mathbb{E}\left[Z_n^2\right]$
- ullet Challenge: dealing with dependencies to estimate $\mathbb{E}\left[Z_n^2
 ight]$
- choose only subsets of size αn so that the "average intersection" concentrates around $\alpha^2 n$

- [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds
- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and $\mathbf{0}$ otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ number of subsets approximating target \mathbf{z}
- $\mathsf{P}\left[Z_n \ge 1\right] \ge (\mathbb{E}\left[Z_n\right])^2 / \mathbb{E}\left[Z_n^2\right]$
- ullet Challenge: dealing with dependencies to estimate $\mathbb{E}\left[Z_n^2
 ight]$
- choose only subsets of size αn so that the "average intersection" concentrates around $\alpha^2 n$
- Result: $n \ge \operatorname{poly}(d) \log(d/\varepsilon)$ $(\alpha = 1/\sqrt{d})$

- [Borst et al. 2022; Becchetti et al. 2022] use the 2nd moment method to derive bounds
- for $S \subseteq [n]$, $Y_S = 1$ if $\sum_{i \in S} X_i$ approximates target \mathbf{z} and $\mathbf{0}$ otherwise
- $Z_n = \sum_{S \subseteq [n]} Y_S$ number of subsets approximating target \mathbf{z}
- $\mathsf{P}\left[Z_n \ge 1\right] \ge (\mathbb{E}\left[Z_n\right])^2 / \mathbb{E}\left[Z_n^2\right]$
- ullet Challenge: dealing with dependencies to estimate $\mathbb{E}\left[Z_n^2
 ight]$
- choose only subsets of size αn so that the "average intersection" concentrates around $\alpha^2 n$
- Result: $n \ge \operatorname{poly}(d) \log(d/\varepsilon)$ $(\alpha = 1/\sqrt{d})$
- What about approximating all the hypercube $[-1,1]^d$? The **union bound** is highly non-optimal

Apply MRSS for structured pruning

20 - 1

Apply MRSS for structured pruning

- $z_1 \bullet \mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n), \ \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d) \ \text{(here, } d = 3\text{)}$
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

 $x_3' = w_{1,3}x_1$

- $\mathbf{z}_1 \bullet \mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n), \ \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d) \ \text{(here, } d = 3\text{)}$
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

• Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$

 $\dot{\mathbf{w}}_3$

 $x_3' = w_{1,3}x_1$

- $\mathbf{a}_i \bullet \mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n), \ \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d) \ \text{(here, } d = 3)$
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

- Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$
- Solution:

- for
$$S \subseteq [n]$$
, $X_S = \sum_{i \in S} a_{1,i} \mathbf{b}_i$

 $\dot{\mathbf{w}}_3$

- $\mathbf{z}_1 \bullet \mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n), \ \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d) \ \text{(here, } d = 3)$
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

- Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$
- Solution:
 - for $S \subseteq [n]$, $X_S = \sum_{i \in S} a_{1,i} \mathbf{b}_i$
 - conditional on $a_{1,i}$ for each $i \in S$, X_S is distributed as $\mathcal{N}(\mathbf{0}, \sum_{i \in S} a_{1,i}^2 \cdot I_d)$

- $\mathbf{z}_1 \bullet \mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n), \ \mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d) \ \text{(here, } d = 3\text{)}$
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

- Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$
- Solution:
 - for $S \subseteq [n]$, $X_S = \sum_{i \in S} a_{1,i} \mathbf{b}_i$
 - conditional on $a_{1,i}$ for each $i \in S$, X_S is distributed as $\mathcal{N}(\mathbf{0}, \sum_{i \in S} a_{1,i}^2 \cdot I_d)$
 - $\sum_{i \in S} a_{1,i}^2$ is a Chi-squared distribution: concentration inequalities!

- $\mathbf{z}_1 \bullet \mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n)$, $\mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d)$ (here, d = 3)
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

- Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$
- Solution:
 - for $S \subseteq [n]$, $X_S = \sum_{i \in S} a_{1,i} \mathbf{b}_i$
 - conditional on $a_{1,i}$ for each $i \in S$, X_S is distributed as $\mathcal{N}(\mathbf{0}, \sum_{i \in S} a_{1,i}^2 \cdot I_d)$
 - $\sum_{i \in S} a_{1,i}^2$ is a Chi-squared distribution: concentration inequalities!
 - things do not change too much

- $\mathbf{z}_1 \bullet \mathbf{a}_i \sim \mathcal{N}(\mathbf{0}, I_n)$, $\mathbf{b}_i \sim \mathcal{N}(\mathbf{0}, I_d)$ (here, d = 3)
 - For simplicity: no ReLU

$$\|x_1\mathbf{w}_1 - \sum_{i=1}^n x_1a_{1,i}\mathbf{b}_i\|_{\infty} \le \|x_1\|\|\mathbf{w}_1 - \sum_{i=1}^n a_{1,i}\mathbf{b}_i\|_{\infty}$$

- Issue: dependencies among entries of $a_{1,i}\mathbf{b}_i!$
- Solution:
 - for $S \subseteq [n]$, $X_S = \sum_{i \in S} a_{1,i} \mathbf{b}_i$
 - conditional on $a_{1,i}$ for each $i \in S$, X_S is distributed as $\mathcal{N}(\mathbf{0}, \sum_{i \in S} a_{1,i}^2 \cdot I_d)$
 - $\sum_{i \in S} a_{1,i}^2$ is a Chi-squared distribution: concentration inequalities!
 - things do not change too much

Result: $n \ge \operatorname{poly}(d) \cdot \operatorname{polylog}(d\ell/\varepsilon)$

• Restrictions on the structure of the CNN

- Restrictions on the structure of the CNN
- Only ReLU activation function

- Restrictions on the structure of the CNN
- Only ReLU activation function
- $n \ge \operatorname{poly}(d) \cdot \operatorname{polylog}(d\ell/\varepsilon)$ is sufficient

• **Previously**: SLTH holds via unstructured pruning in dense networks, CNNs, etc., with logarithmic overhead

- **Previously**: SLTH holds via unstructured pruning in dense networks, CNNs, etc., with logarithmic overhead
- **Tool**: the one-dimensional RSS problem is heavily exploited

- **Previously**: SLTH holds via unstructured pruning in dense networks, CNNs, etc., with logarithmic overhead
- Tool: the one-dimensional RSS problem is heavily exploited
- Issue: it leads to exponential bounds when trying to achieve structured pruning

- **Previously**: SLTH holds via unstructured pruning in dense networks, CNNs, etc., with logarithmic overhead
- **Tool**: the one-dimensional RSS problem is heavily exploited
- Issue: it leads to exponential bounds when trying to achieve structured pruning
- Solution: multidimensional RSS

- **Previously**: SLTH holds via unstructured pruning in dense networks, CNNs, etc., with logarithmic overhead
- Tool: the one-dimensional RSS problem is heavily exploited
- Issue: it leads to exponential bounds when trying to achieve structured pruning
- **Solution**: multidimensional RSS
- Modifications: adaptation of MRSS to random vectors with dependent entries

- **Previously**: SLTH holds via unstructured pruning in dense networks, CNNs, etc., with logarithmic overhead
- Tool: the one-dimensional RSS problem is heavily exploited
- Issue: it leads to exponential bounds when trying to achieve structured pruning
- **Solution**: multidimensional RSS
- Modifications: adaptation of MRSS to random vectors with dependent entries
- Our result: SLTH holds in CNNs via structured pruning with polynomial overparameterization

- **Previously**: SLTH holds via unstructured pruning in dense networks, CNNs, etc., with logarithmic overhead
- **Tool**: the one-dimensional RSS problem is heavily exploited
- Issue: it leads to exponential bounds when trying to achieve structured pruning
- **Solution**: multidimensional RSS
- Modifications: adaptation of MRSS to random vectors with dependent entries
- Our result: SLTH holds in CNNs via structured pruning with polynomial overparameterization
- Open (1): tightness of MRSS $(n \ge d \log 1/\varepsilon)$?

- **Previously**: SLTH holds via unstructured pruning in dense networks, CNNs, etc., with logarithmic overhead
- **Tool**: the one-dimensional RSS problem is heavily exploited
- Issue: it leads to exponential bounds when trying to achieve structured pruning
- **Solution**: multidimensional RSS
- Modifications: adaptation of MRSS to random vectors with dependent entries
- Our result: SLTH holds in CNNs via structured pruning with polynomial overparameterization
- Open (1): tightness of MRSS $(n \ge d \log 1/\varepsilon)$?
- Open (2): how to replace the union bound?

- **Previously**: SLTH holds via unstructured pruning in dense networks, CNNs, etc., with logarithmic overhead
- **Tool**: the one-dimensional RSS problem is heavily exploited
- Issue: it leads to exponential bounds when trying to achieve structured pruning
- **Solution**: multidimensional RSS
- Modifications: adaptation of MRSS to random vectors with dependent entries
- Our result: SLTH holds in CNNs via structured pruning with polynomial overparameterization
- Open (1): tightness of MRSS $(n \ge d \log 1/\varepsilon)$?
- Open (2): how to replace the union bound?
- Open (3): generalization of CNN structure, activation function, etc.

- **Previously**: SLTH holds via unstructured pruning in dense networks, CNNs, etc., with logarithmic overhead
- **Tool**: the one-dimensional RSS problem is heavily exploited
- Issue: it leads to exponential bounds when trying to achieve structured pruning
- Solution: multidimensional RSS
- Modifications: adaptation of MRSS to random vectors with dependent entries
- Our result: SLTH holds in CNNs via structured pruning with polynomial overparameterization
- Open (1): tightness of MRSS $(n \ge d \log 1/\varepsilon)$?
- Open (2): how to replace the union bound?
- Open (3): generalization of CNN structure, activation function, etc.

Thank you!

• [Lueker 1998; da Cunha et al. 2023]

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$
- Approximate the whole interval

• [Lueker 1998; da Cunha et al. 2023]

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$
- Approximate the whole interval

$$\text{Consider } f_t(x) = \begin{cases} 1 & \text{ if } x \in [-1,1] \text{ and } \exists S \subseteq [t]: \left| x - \sum_{i \in S} X_i \right| < 2\varepsilon \\ 0 & \text{ otherwise} \end{cases}$$

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$
- Approximate the whole interval

Consider
$$f_t(x) = \begin{cases} 1 & \text{if } x \in [-1,1] \text{ and } \exists S \subseteq [t]: \left| x - \sum_{i \in S} X_i \right| < 2\varepsilon \\ 0 & \text{otherwise} \end{cases}$$

 $v_t = \frac{1}{2} \int_{-1}^1 f_t(x) \, \mathrm{d}x$ keeps track of the approximated volume

• [Lueker 1998; da Cunha et al. 2023]

Specific instance of RSSP

- X_1, \ldots, X_n uniform random variables over [-1, 1]
- Error parameter $\varepsilon > 0$
- Approximate the whole interval

$$\text{Consider } f_t(x) = \begin{cases} 1 & \text{ if } x \in [-1,1] \text{ and } \exists S \subseteq [t]: \left| x - \sum_{i \in S} X_i \right| < 2\varepsilon \\ 0 & \text{otherwise} \end{cases}$$

 $v_t = \frac{1}{2} \int_{-1}^1 f_t(x) dx$ keeps track of the approximated volume

By restricting f_t , v_t becomes a sub-martingale