Stochastic Processes: Homework 0

Martín Prado

November 2023 Universidad de los Andes — Bogotá Colombia

Exercise 1

Consider a sequence of i.i.d. random variables $(X_i)_{i\in\mathbb{N}}$ with $\mathbf{E}\,X_i=0$ and $\mathbf{Var}\,X_i=1$ for every $i\in\mathbb{N}$.

1. Show with th Law of Large Numbers that,

$$\lim_{n\to\infty} \|X_1,\dots,X_n\|_2 - \sqrt{n} \to 0$$

- (a) in \mathbb{P} ,
- (b) a.e.,
- (c) in distribution,
- (d) Show that if $X_i \in L^p$ for some p > 1, then it converges in L^q for every $q \in [1 \le p)$.
- 2. Infer from the previous results that for

$$\text{Law}(X_1, \dots, X_n) \approx \text{UNI}(\sqrt{n}\mathbb{S}^{n-1})$$

Solution Part 1

Theorem 1 (Laws of Large Numbers). Let $(X_i)_{i\in\mathbb{N}}$ be a sequence of i.i.d. random variables such that $\mathbf{E} X_i = \mu$ for every $i\in\mathbb{N}$, and let $\overline{X_n} = \frac{1}{n}\sum_{i=1}^n X_i$. Then,

$$\lim_{n\to\infty} \mathbf{P}\{\|\overline{X_n} - \mu\| > \varepsilon\} = 0, \ \forall \varepsilon > 0.$$
 (Weak Law of Large Numbers)

$$\mathbf{P}\{\lim_{n\to\infty}\overline{X_n}\neq\mu\}=0.$$

(Strong Law of Large Numbers)

Definition 1.1 (Convergence in probability). Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables. We say that X_n converges to X in probability i.e. $X_n \stackrel{p}{\to} X$ when

$$\lim_{n \to \infty} \mathbf{P}\{\|X_n - X\| > \varepsilon\} = 0, \quad \forall \varepsilon > 0.$$

Definition 1.2 (Convergence almost everywhere). Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables. We say that X_n converges to X almost everywhere (or almost surely) i.e. $X_n \stackrel{a.e.}{\to} X$ when

$$\mathbf{P}\{\lim_{n\to\infty} X_n \neq X\} = 0$$

According to theorem 1 and the previous definitions, since $(X_i^2)_{n\in\mathbb{N}}$ is still a sequence of i.i.d. random variables,

(a)
$$\frac{1}{n} \|X_1, \dots, X_n\|_2^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{p} \mathbf{E} X^2 = \mathbf{Var} X - \mathbf{E} X = 1$$

(b)
$$\frac{1}{n} \|X_1, \dots, X_n\|_2^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \xrightarrow{a.e.} \mathbf{E} X^2 = \mathbf{Var} X - \mathbf{E} X = 1$$

Therefore,

$$||X_1, \dots, X_n||_2 - \sqrt{n} \xrightarrow{p} 0, \qquad ||X_1, \dots, X_n||_2 - \sqrt{n} \xrightarrow{a.e.} 0.$$

Definition 1.3 (Convergence of distribution). Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables with probability distributions P_n . Let X a random variable with a probability distribution P. We say that X_n converges to X in distribution i.e. $X_n \stackrel{d}{\to} X$ if

$$\lim_{n \to \infty} \mathbf{E}\left[f(X_n)\right] = \mathbf{E}\left[f(X)\right]$$

for every bounded and continuous function $f: \mathcal{X} \to \mathbb{R}$.

Theorem 2. A direct consequence of Fatou's Lemma and Dominated Convergence is that,

$$X_n \xrightarrow{a.e.} X \implies X_n \xrightarrow{p} X \implies X_n \xrightarrow{d} X.$$

Thus, this proves that

(c)
$$||X_1, \dots, X_n||_2 - \sqrt{n} \stackrel{d}{\longrightarrow} 0.$$

Definition 2.1 (Convergence in L_p). Let $(X_n)_{n\in\mathbb{N}}$ be a sequence of random variables. For some $p\in[1,\infty)$, we say that X_n converges to X in L_p norm i.e. $X_n\stackrel{L_p}{\to} X$ if $\mathbf{E}\,|X_n|^p$ and $\mathbf{E}\,|X|^p$ exist, and

$$\lim_{n \to \infty} \mathbf{E} |X_n - X|^p = 0$$

for every bounded and continuous function $f: \mathcal{X} \to \mathbb{R}$.

Theorem 3 (Exercise 1.d.). Convergence in L_p implies convergence in L_q for every $q \in [1, p)$.

Exercise 2

Show that for every random variable $X \in L^2$,

$$\mathbf{E} |X - \mathbf{E} X|^2 \le \mathbf{E} |X|^2$$

Exercise 3

Let $f:[0,1] \to \mathbb{R}$ be a continuos function. Show with the Law of Large Numbers that there exists a sequence of polynomial $(P_n)_{n\in\mathbb{N}}$ such that $\deg(P_n)=n$ and,

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |f(x) - P_n(x)| = 0.$$