PalmerPenguinsData

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

```
summary(cars)
##
       speed
                      dist
## Min. : 4.0
                 Min. : 2.00
## 1st Qu.:12.0
                 1st Qu.: 26.00
## Median :15.0
                Median : 36.00
## Mean :15.4
                Mean : 42.98
                 3rd Qu.: 56.00
## 3rd Qu.:19.0
## Max. :25.0
                 Max. :120.00
```

Including Plots

You can also embed plots, for example:

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

#Data library(remotes) remotes::install_github("allisonhorst/palmerpenguins") library(palmerpenguins) library(tidyverse)

#Variable class class(penguinssex)class(penguinsbody_mass_g)

#Variable levels levels(penguins\$sex)

summary(penguins) summary(penguinssex)summary(penguinsbody_mass_g)

#Missing Data is.na(penguins) is.na(penguins $flipper_length_m m$) is.na(penguinssex)

#Analysis with NA value penguins %>% group_by(island) %>% summarise(mean(bill_length_mm))

#NA counts bar graph penguins %>% #group_by(species) %>% select(everything()) %>% summarise_all(funs(sum(is.na(.)))) %>% pivot_longer(cols = 1:7, names_to = 'columns', values_to = 'NA_count') %>% arrange(desc(NA_count)) %>% ggplot(aes(y = columns, x = NA_count)) + geom_col(fill = '#F0E442') + geom_label(aes(label = NA_count)) + # scale_fill_manual(values = c("darkorange","purple","cyan4")) + theme_minimal() + labs(title = "N/A Count for Palmer's Penguins")

#Bar Graph Counts penguins %>% count(species) %>% ggplot() + geom_col(aes(x = species, y = n, fill = species)) + geom_label(aes(x = species, y = n, label = n)) + scale_fill_manual(values = c("#009E73", "#CC79A7", "gray")) + theme_minimal() + labs(title = "Penguin Species Count")

#Class for all seven variables class(penguinsspecies) class(penguinsisland) $class(penguinsbill_length_m m) class(penguinsbill_depth_m m)$ $class(penguins flipper_length_m m) class(penguins body_mass_g)$ class(penguins sex)

#Level for all seven variables levels(penguinsspecies) levels(penguinsisland) levels(penguins $bill_length_mm$) $levels(penguinsbill_depth_mm)$ levels(penguins $flipper_length_mm$) $levels(penguinsbody_mass_g)$ levels(penguins\$sex)

#Summary for all seven variables summary(penguinssex)summary(penguinsisland) summary(penguinsspecies) $summary(penguinsbill_length_mm)$ summary(penguins $bill_depth_mm$) $summary(penguinsflipper_length_mm)$ summary(penguinsspecies)