# CSC236 winter 2020, week 6: Recursive correctness

Recommended supplementary reading: Chapter 2 Vassos course notes

Colin Morris
colin@cs.toronto.edu
http://www.cs.toronto.edu/~colin/236/W20/

February 10, 2020

## Master Theorem proof sketch

A postscript to last week

$$T(n) = aT(\frac{n}{b}) + \Theta(n^d) \xrightarrow{\text{Master Theorem}} T(n) \in \begin{cases} \Theta(n^d) & \text{if } a < b^d \\ \Theta(n^d \log_b n) & \text{if } a = b^d \\ \Theta(n^{\log_b a}) & \text{if } a > b^d \end{cases}$$

$$T(n) = n^{d} + aT(n/b)$$

$$= n^{d} + a((n/b)^{d} + aT(n/b^{2}))$$

$$= n^{d} + a((n/b)^{d} + a((n/b^{2})^{d} + aT(n/b^{3})))$$

$$= n^{d} + a(n/b)^{d} + a^{2}(n/b^{2})^{d} + a^{3}T(n/b^{3})$$
...
$$= \sum_{i=0}^{\log_{b} n} a^{i}(n/b^{i})^{d}$$



#### Proving correctness

- ► Formally proving that my code will 'do the right thing' on any appropriate input
- ► Contrast with unit testing: verifies that my code does the right thing on certain specific inputs
  - "Beware of bugs in the above code; I have only proved it correct, not tried it." -Donald Knuth
- ▶ Do people do this in the real world? Yes! (Sometimes)
  - ► Think of code that runs on medical devices or airplanes

#### Example: factorial

```
def fact(n):
    """Return n!
    """
    if n == 0:
       return 1
    return n * fact(n-1)
```

```
P(n):
```

## A more complex example: max

```
def max(A):
    if len(A) == 1:
        return A[0]
    max_tail = max(A[1:])
    if A[0] > max_tail:
        return A[0]
    else:
        return max_tail
```

#### A more complex example: max

```
def max(A):
    if len(A) == 1:
        return A[0]
    max_tail = max(A[1:])
    if A[0] > max_tail:
        return A[0]
    else:
        return max_tail
```

P(n): For any list A of length n, max(A) returns the maximum element of that list.

- ▶ Is *P*(0) true?
- ▶ Is *P*(2) true?

## Correctness can only be defined relative to some specifications

- **Precondition**: For what inputs is the behaviour of my algorithm defined?
  - ▶ Note: my algorithm can do *anything* on other inputs (including crash)
- ▶ **Postcondition**: What *should* be true after my algorithm terminates?
  - Usually describes the return value. Or, for an 'in-place' algorithm, describes how the inputs have changed.
- ▶ 'My algorithm is correct' ≡ Whenever the precondition holds, my algorithm terminates, and the postcondition is true.

(Often these will be given to you along with the algorithm. Sometimes you'll have to come up with reasonable ones to make your proof work.)

## Specifications for max

```
def max(A):
    if len(A) == 1:
        return A[0]
    max_tail = max(A[1:])
    if A[0] > max_tail:
        return A[0]
    else:
        return max_tail
```

```
Pre(A):
```

Post(A):

$$P(n)$$
: for any list A, len(A) =  $n \land Pre(A) \implies Post(A)^1$ 

<sup>&</sup>lt;sup>1</sup>You don't need to define separate predicates for pre- and post-conditions, but you may find it notationally convenient.

# Proving max correct, relative to specifications

```
1  def max(A):
2    if len(A) == 1:
3       return A[0]
4    max_tail = max(A[1:])
5    if A[0] > max_tail:
6       return A[0]
7    else:
8       return max_tail
```

# Proving max correct, relative to specifications

```
1  def max(A):
2    if len(A) == 1:
3       return A[0]
4    max_tail = max(A[1:])
5    if A[0] > max_tail:
6       return A[0]
7    else:
8       return max_tail
```

## Recipe: proving correctness of recursive programs

- 1. Determine the program's **preconditions** (i.e. valid inputs) and **postconditions** (the 'correct' behaviour)
- 2. Define predicate  $P(n) \approx$  'for all inputs of size n, precondition  $\implies$  postcondition'
- 3. Use induction to prove  $\forall n \in \mathbb{N}, P(n)$ 
  - 3.1 Basis: Corresponds to the part of the program where the recursion 'bottoms out' (usually at the start of the function)
  - 3.2 Inductive step: Prove that, if the program does the right thing on smaller inputs, it does the right thing on the next input size.
    - May use simple induction (if the algorithm reduces problems of size n to n-1), or complete induction (e.g. if problems of size n are reduced to problems of size n/2)

## Divide-and-conquer maximum

```
1  def maximum(A):
2    if len(A) == 1:
3       return A[0]
4    mid = len(A) // 2
5    L_max = maximum(A[:mid])
6    R_max = maximum(A[mid:])
7    if L_max > R_max:
8       return L_max
9    else:
10    return R_max
```

#### Divide-and-conquer maximum

```
def maximum(A):
    if len(A) == 1:
        return A[0]
    mid = len(A) // 2
    L_max = maximum(A[:mid])
    R_max = maximum(A[mid:])
    if L_max > R_max:
        return L_max
    else:
        return R_max
```

```
Proof sketch (complete induction)

Let n \in \mathbb{N}^+. Assume \forall k \in \mathbb{N}, 0 < k < n \Longrightarrow P(k). (IH)

Let A be a list of length n, and assume \operatorname{Pre}(A). WTS:

Post(A)

Case 1: n = 1. Post(A) holds (same reasoning as our previous basis)

Case 2: n > 1.

Show that our IH applies to recursive calls on lines 5-6

Use IH and outcome of check on line 7 to show that postcondition holds in either case, whether we reach line 8 or line 10.
```

# Detail: showing that our IH applies to recursive calls

```
def maximum(A):
     if len(A) == 1:
       return A[0]
     mid = len(A) // 2
     L_max = maximum(A[:mid])
     R_max = maximum(A[mid:])
     if L_max > R_max:
       return L_max
     else:
       return R_max
10
```

For convenience, let

$$ightharpoonup$$
 L = A[:mid]

WTS:

▶ 
$$0 < len(L) < n$$

▶ 
$$0 < len(R) < n$$

#### Lemma

 $\forall n \in \mathbb{N}, \lfloor n/2 \rfloor + \lceil n/2 \rceil = n$ 

**Proof:** 

## Detail: showing postcondition holds

```
def maximum(A):
    if len(A) == 1:
        return A[0]

mid = len(A) // 2

L_max = maximum(A[:mid])

R_max = maximum(A[mid:])

if L_max > R_max:
    return L_max

else:
    return R_max
```

# A very silly way to sum a list

```
def sum(A):
  """Pre: A is a list containing
 only natural numbers.
 Post: return the sum of the
 numbers in A."""
  if len(A) == 0:
  return 0
  first = A[0]
  if first == 0:
 return sum(A[1:])
 else:
 A[O] = A[O] - 1
   return 1 + sum(A)
```

```
P(n): For any list A of length n, Pre(A) \implies Post(A)
```

10

12

Prove  $\forall n \in \mathbb{N}, P(n)$  by induction?

#### Silly sum

```
def sum(A):
     """Pre: A is a list containing
     only natural numbers.
     Post: return the sum of the
     numbers in A."""
     if len(A) == 0:
     return 0
     first = A[0]
     if first == 0:
       return sum(A[1:])
10
11
     else:
       A[O] = A[O] - 1
12
       return 1 + sum(A)
13
```

#### Proving the correctness of median

```
def median(A):
     """Pre: A is a non-empty list of unique ints.
     Post: returns the median of A."""
     return select(A, len(A)//2)
   def select(A, k):
     """Pre: A is a non-empty list of unique ints.
     Post: returns the element that would be at
     index k if A were sorted."""
     pivot = A[0]
10
11
  tail = A[1:]
  S = [x \text{ for } x \text{ in tail if } x < pivot]
12
13
     L = [x \text{ for } x \text{ in tail if } x > pivot]
     if len(S) == k:
14
        return pivot
15
     elif len(S) > k:
16
        return select(S, k)
17
     else:
18
       return select(L, k - len(S) - 1)
19
```