

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER 2. GOVT ACCESSION NO	3. RECIPIENT'S CATALOG NUMBER
NRL Memorandum Report 4493 #0-A098080	
4. TITLE (and Subtitle)	S. TYPE OF REPORT & PERIOD COVERED
	Interim report on a continuing
A NUMERICAL STUDY OF THE NANOSECOND AND	NRL problem.
SUBNANOSECOND PERFORMANCE OF GEKKO XII-	6. PERFORMING ORG. REPORT NUMBER
MODULE	
7. AUTHOR(e)	S. CONTRACT OR GRANT NUMBER(s)
R. H. Lehmberg and J. M. McMahon	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Naval Research Laboratory	AREA & WORK UNIT NUMBERS
•	47-0859-0-1
Washington, D.C. 20375	4. 0000 0-1
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Department of Energy	April 23, 1981
Washington, D.C. 20545	13. NUMBER OF PAGES
	28
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimited.	
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from	n Report)
18. SUPPLEMENTARY NOTES	
9. KEY WORDS (Continue on reverse elde if necessary and identity by block number)	
Laser modelling	
Glass laser model	i
Comparison with shiva	
ABSTRACT (Continue on reverse side if necessary and identify by block number) A numerical study is conducted to examine the performant Module, a phosphate glass laser system currently under develop study shows that with appropriate modifications, this system si	ment at Osaka University. The
to 3.6 TW/beam in a 50 psec pulse, and 2-2.5 kJ/beam in a 1 is between the GEKKO XII-Module and Shiva beam line configurating glass retrofit of Shiva could produce nanosecond pulse energies up	nsec pulse. The similarity be- ions suggests that a phosphate

CONTENTS

1.	INTRODUCTION	1
2.	GEKKO XII-MODULE CONFIGURATION	2
3.	COMPUTER CODE	6
4.	SHORT PULSE TEST CASE	7
5.	NANOSECOND PULSE PERFORMANCE	9
6.	SUMMARY 2	23
7.	ACKNOWLEDGMENTS	24
REF	'ERENCES 2	25

According for

A NUMERICAL STUDY OF THE NANOSECOND AND SUBNANOSECOND PERFORMANCE OF GEKKO XII-MODULE

1. Introduction

The GEKKO XII laser at Osaka University will ultimately be a twelve beam, 20 kJ, 40 TW system design for laser fusion studies. Recently, Osaka University scientists reported on the short pulse performance of the prototype module of this laser, which is called GEKKO XII-Module, quoting an output of up to 3.4 TW/beam before beam breakup was encountered. The GEKKO XII-Module performance is of especial interest to the U.S. ICF program because the components are similar to those in the Shiva laser at Lawrence Livermore National Laboratory with the significant difference that LGH-7 phosphate laser glass is used rather than a silicate laser glass. The performance of this laser should therefore provide data on the performance to be expected from Shiva when it is retrofitted with phosphate glass as part of the Nova upgrade.

In this report, we summarize the results of a numerical investigation of the expected performance of the GEKKO XII-Module laser at nanosecond and subnanosecond pulsewidths. The configuration and amplifier (small signal) performance were as specified by the Osaka laser group. The large signal behavior was calculated using the NRL laser amplifier code KARL, plus a spatial filter transmission algorithm similar to that used to model the present performance of Shiva. The Osaka claim of 3.4 TW/beam in a short pulse is reasonable; however, the reported configuration is not a particularly good choice for nanosecond operation, as coating damage would be expected at slightly above 1000J/beam. Various reconfiguration

Manuscript submitted February 10, 1981.

choices and passive optics modifications were examined to alleviate this problem, and with a reasonably optimum strategy, outputs of 1800-2000J/beam appear possible. Addition of a second twenty cm amplifier to each beam would raise the output to about 2500J/beam.

2. GEKKO XII-Module Configuration

The GEKKO XII-Module consists of various preamplifiers followed by a 5-10 cm beam telescope/spatial filter; a 10 cm disc amplifier; a Faraday rotator package; another 10 cm disc amplifier; a 10-15 cm spatial filter telescope; a 15 cm disc amplifier; a Faraday Rotator package; a 15-20 cm spatial filter; a 20 cm disc amplifier; a Faraday Rotator package. A final lens was assumed at the end of the chain as an initial element of a relay telescope/beam expander before the target optics. Figure 1 is the schematic diagram, and Figure 2 shows a recent picture of the installation, with the oscillator and preamplifier section in the center, and the first test arm on the right hand side.

In the computer studies, the performance of components reported by the Osaka group was used where the information was available; where such information was not available, the specifications of the equivalent Shiva component were used. Exact component values are tabulated in the computer printouts included with this report. It should be noted that the reported gain of the 15 cm amplifier was significantly lower than the achievable value. This amplifier is less efficient because the diameter of its flashlamp circle is comparable to that of the 20 cm amplifier, in order to accompodate additional fixtures used for testing liquid edge cladding of the laser glass. Table 1 shows a comparison of the amplifier gains on GEKKO XII-Module and Shiva, and the ratio of

Fig. 1-Schematic diagram of a single beam line of the Gekko XII Module, as reported in ref. 1

Recent picture of Gekko XII, showing the oscillator and preamplifier section in the center, and the first test arm on the right hand side.

Table 1: Comparison of Shiva and Gekko XII Disc Amplifiers

Ratio of Gain Coefficients	1.65	1.27	1.73
Gekko Gain	8.5	3.4	3.2
Shiva Gain	3.67	2.61	1.95
Aperture (cm)	10	15	20

the gain coefficients for the two systems. A gain of 3.4 was reported for this amplifier, but a gain of at least 4.88 should be possible if one compares, for example, the 10 cm amplifiers. In computing the Gekko XII short pulse performance we used the reported gain for this amplifier, but in examining nanosecond operation we looked at the performance both with the reported gain and with what should be the achievable gain for the 15 cm disk module.

3. Computer Code

The numerical calculations were carried out using the KARL code with twenty radial zones and fifty time steps for each optical component. For the pulse incident at the 50 mm rod, the temporal shape was assumed to be Gaussian, while the radial profile was a hyper-Gaussian $\exp\{-(r/r_0)^{12}\}$ with $r_0=20$ mm.

The laser amplifiers were modelled by the Avizones-Grotbeck rate equations 7 with a lower level relaxation term:

$$\partial I/\partial z = \alpha_0 (W_2 - \eta W_1) I - \gamma I$$

 $\partial W_2/\partial t = -(W_2 - \eta W_1) I/(1 + \eta) F_s, \qquad W_2(-\infty) = 1$
 $\partial W_1/\partial t = -\partial W_2/\partial t - W_1/T_1, \qquad W_1(-\infty) = 0$

Here, I is the intensity, W_2 $\{W_1\}$ is the normalized upper {lower} level population, n is the upper/lower level degeneracy ratio (n=1 in all of the runs shown here), F_s is the short pulse saturation flux, and T_1 is the lower level relaxation time. The initial gain coefficient α_0 is found from the relation $\alpha_0 = \gamma + L^{-1} \ln G_0$, where G_0 is the measured small signal gain of the amplifier, L is the active path length, and γ

is the loss coefficient, which models the estimated 1% loss per disc. For most of the runs shown here, we chose $F_s=2.42~\mathrm{J/cm}^2$ % with $T_1=3~\mathrm{nsec}$; in Tables VIII and X, however, we used the more optimistic value $F_s=3.6~\mathrm{J/cm}^2$ (with $T_1=1000~\mathrm{nsec}$). In test problems where $\gamma \neq 0~\mathrm{and}$ $T_1>>t_{(pulse)}$, the numerical solutions were found to agree with the Frantz-Nodvik theory to an accuracy better than 1%, even under heavily saturated conditions.

Quantities computed after each component include total power and energy, incremented and total B integrals, peak to average intensity ratios, maximum intensity, and energy density. These are defined in more detail in Table 11. For the nanosecond cases spatial filter transmission was assumed to be unity, as the largest ΔB generated between successive spatial filters was 1.8 in all the cases studied here. For the short pulse cases a LLNL algorithm was used, as discussed below.

4. Short Pulse Test Case

The code was operated to predict GEKKO XII-Module short pulse (50 ps) performance. The spatial filter transmission algorithm used, $T(B) = \{1 + 2 \times 10^{-4} \text{ exp } (2\Delta B)\}^{-1}$, was obtained from W.F. Hagen of LLNL, and is the one in use for Shiva and Nova calculations. The generation of low spatial frequency ripples by pinhole truncation and low frequency self-focusing noise amplification was not explicitly included, but was modelled by restricting the spatial profile to have a peak/average intensity ratio greater than 1.6 to 1.

Table III shows a computer listing for the short pulse performance of the original design reported in Ref. 1. Here, a spatial filter was also added at the output of the reported configuration, in order to

Table II: Glossary of Parameters Appearing in the Computer Listings

(2/m2/C)	1			ļ	_
On-exis flux (J/cm²)	FLUX	•		$\cdot \mid$.992601
intensity (or					٠ <u>.</u>
Peak On-axis intensity (GW/cm ²)	IMAX			$\cdot \mid$.198E01
×n11 20	=			ł	.19
On-axis flux/average flux	į				
(pp	P/AV				8
Peak on-axis net B integral (rad)	۵				1.680
. a jen sixe"					
Peak On-	ВТМХ				75
	<u>ھ</u>				0.575
reak On-axis B increment					
Peak On-axis B :-	BIMX				99
	8				0.165
Total energy (J)	i				
lesoT	EQUT				0
	3				.464E01
(P5) Jamod		İ			i
beak power (GW)	¥				E02
×əpu ı	PMAX				.927E02
(1013 ^{near} ref ^{ractive} index					1
17110	N2			•	3.00)
Linear refractive index	_				–
rinear refract.		١.			
(6-	9				1.504 0, T1
(⁽⁶⁾ Pl ⁽⁶⁾					0.
Inc.idence	ANGL				82 11
JO . 40.	æ	'	•	-	56.33 ETA =
Small signal gain or transmission					-
1 lems	0F 1N	.			.50
	3				8, 2
Glass thickness (cm)					FS =
-13!43 ssela	THCK				
	弄	.	•	•	6x 2.43
(cm)					6x 2.50
(e.g. DSC = Disc amplifier) Beam aperture (cm)	APER				
	AP	.	•	•	0.00 ALD =
Optical component					
21140					SC

Lower level relaxation time (nsec) Upper level degeneracy/lower level degeneracy Short pulse saturation flux $h \mathbf{w}/2 \sigma \left(J/c \mathbf{m}^2 \right)$

Gain coefficient x major diameter

DSC

highlight the problem with this design. Immediately after the 20 cm disc module, over 4TW/beam of focusable power is available (incremental B = 1.95). However, the Faraday rotator package (POL-ROT-POL) immediately following has a very large additional B increment (1.88), and one would expect that much of the power through the final lens would not be focusable. The focusable output is shown on the bottom line of Table III, and the corresponding spatial and temporal profiles are shown in Figure 3. The center of the pulse has clearly been "blown out", resulting in a focusable power of only 2.4TW/beam. It should be noted that the 3.4 TW performance reported in Ref. 3 was measured without the final Faraday rotator package.

Fortunately, this package can be retained in the system without a significant loss of performance. Interchanging the location of Faraday Rotator modules and disk modules in both the 15 and 20 cm sections, one obtains a focusable power of 3.6 TW/beam as shown in Table IV and Figure 4. The reconfigured system has adequate isolation in that a 60% back-reflection would still produce only 1.5J/cm² on the 20 cm Faraday rotator.

5. Nanosecond Pulse Performance

The expected nanosecond performance of the reported configuration is summarized in Table V. This design is limited by damage to the AR coated input lens of the 10-15 cm telescope at an output of about 1000 J/beam. This is essentially the same problem as encountered with Shiva at long pulses; i.e., even with the added gain in the phosphate disc amplifiers, the laser is still optimized for short pulses. In this calculation we used a saturation flux of 2.42 J/cm^2 . Use of a higher saturation flux such as 3.6J/cm^2 would increase the output slightly (ie. $\sim 10\%$).

TABLE 111: SHORT (50 psec) PULSE PERFORMANCE OF REPORTED GEKKO SYSTEM

# 1					•	ř		1001		X		14 4 X	
	٠.00						.1006 01	.500E-01	000	•	1.60	.858E-61	.429£-(
;	5.04 CA10.	1x30.66	13.40	0.00 ETA= 1	0.00 1.504 ETA= 1.00.	1.050	.1336 12	.663E 00	0.213	6.213	1.682	.1146 01	.56BE-
Ĭ	.00	2x 0.8u		56.43	1.507	1.240	.1256 92	.624E 00	0.029	0.242	1.682	.10 JE 01.	-3346-
264	\$.00	14 7.03	96.0	0.00	1.500	1.000	. 120E 02	. 5996 00	0.122	97.0	1.682	.1035 01	-3136-
5	63.	CH.0 K5	0.94	\$6.43	1.507	1.243	.11% 92	.5636 00	970.0	0.391	1.682	.964E GG	-3285-
Š		1# 9.PJ	9.44	0.00	1.507	1.240	.111E 02	.557E 00	0.016	90+00	1.682	.9556 00	-3116-
ž	06.91	18 0.03	1.00	1.32	0.000	0.00	.111E 02	. 557E 00	0.00	901-0	1.682	.239E 46	.1196-
5117	36.9.	1x 0.83	66.0	0.0	1.567	1.240	.110E 02	.551E 00	0.004	0.410	1-682	.236E 00	-1186-
986	10.66	68 2.43 2.50, FS	8.50 S= 2.42	56.38 1.50 EIA: 1.00.	1.504	1.050 Ti= 3.00)	.9276 42	.464E 01	9-165	0.575	1.68	1996 41	.932E-
ĸ	16.00	2× 0.80	0.94	56.43	1.507	1.240	.8716 62	.436E 01	0 - 0 20	9.626	1.680	.186F 01	.9326-
108	10.00	1x 0.90	86.0	0.30	1.673	2.100	.854E 02	.4276 01	9.0.0	0.672	1.600	.183E 01	.9136-6
ĭ	10.00	2x 0.80	9.0	56.43	1.507	1.240	. 80 3E 02	.4016 01	940.0	0.M	1.680	.1726 61	-1650"
980	10.03	6X 2-49 2-50. FS	8.56 = 2.42*	56.38 ETA: 1	56.38 1.504 ETA: 1.00.	1.050	.631E 03	3176 02	1.155	1.673	1.665	.1346 62	.6116
2	10.00	1x 9.80	66.3	0.00	1.507	1.240	.625E 03	.3136 02	9.219	2.092	1.665	.132E 62	.4646
39	15.00	1x 9.00	1.00	0.00	0.000	0.000	.622£ 03	.313F 02	00000	2.0.2	1.664	.585€ 01	.294E
CHS	15.00	1x 1.10	66*0	0.00	1.507	1.240	.616E 03	.309E 02	0.132	2.224	1.664	10 3625.	.2916
980	15.00	4H 3.00 2.554 FS	3.40 = 2.42,	56.38 1.5 ETA= 1.80;	5	1.050	·1936 u4	.9716 02	1.808	4.032	1.649	.180E 02	.996£
104	15.00	11. 1.1J	96.0	56.43	1.507	1.240	. 18 1t 04	.913€ 02	0.314	4.344	1.649	.1698 62	.1526
101	14.60	1X 1.10	96.0	0.00	1,573	7.100	.177E 04	.8948 02	0.578	4.918	1.649	.166E 02	.8356
Ę	15.00	1X 1.10	96-0	56.43	1.507	1.240	.1674 04	.8416 02	0.2.0	\$.206	1.649	.154E 02	.7656
E S	15.00	1K 1.13	9.49	0.00	1.507	1.240	.165E 04	.A32E 02	0.351	3.554	1.649	.154E 02	.1116
SP 6	20.00	C0-0 X1	1.00	0.00	0.000	0.063	.144E 04	.789€ 02	0.00	5.554	1.617	.722E 01	.4066
SE I	20.00	1x 1.50	66.1	00.0	1.567	1.246	.143£ 04	. 781E 02	0.222	5.774	1.617	.71SE 01	.4026
250	20.00 (A10=	3# 3.26 3.96. FS	3.20	56.38 (TA: 1	56.18 1.504 [FA= 1.00,	1.050	.417E 04	.226E 03	1.732	1.459	1.601	.210E 02	.1156
104	76.00	1X 1.53	3.94	56.43	1.507	1-240	. 392E D4	.2136 03	0.500	1.937	1.601	.1976 02	.101.
101	20.00	1X 1.53	96.0	33.6	1.673	2.100	.384E 04	.209E 03	0.920	9.836	1.601	.1936 62	.1066
164	^ J. J.	1K 1.50	* 6 * 0	\$6.43	1.507	1.240	.361E 04	.1966 03	0.461	9.287	1.601	.1826 92	. 9996
LÄS	ج ي• ر ب	ix 1.5.	6. 19	9.00	1.507	1.240	.3578 04	.1946 03	0.558	9.033	1.601	.190€ 62	.3196
SPF	۰.ر ۵۰۰	13.0 ×1	1.0	0.00	0.000	0000	.238E 04	.151E 03	00000	9.833	1.490	.116E 02	.714E

Fig. 3 — Temporal (3a) and spatial (3b) profiles and the output of the reported configuration with a 50 psec input pulse. In (3a): **Overon** = Power, **Overon** = Intensity on axis, and **O** = Total nonlinear phase distortion (Bintegral) on axis. In (3b): **Overon** = Flux, **Overon** = Intensity at the time of peak power, and **O** = Total nonlinear phase distortion at the time of peak power.

į

TABLE IV: SHORT (50 psec) PERFORMANCE OF RECONFIGURED SYSTEM

M. 1.053

1E: 0.050

		1061		ANGL	2	7	¥	F 0 6 1	10	=	*	1	1974
315	5.6						.1006 01	-500E-01	0.00	••••	1.6	.0586-01	******
:	5.00	1130.00 0.43. FS:	60 13.40 FS: 2.42,	6.00 1.504	_	1.050	.1336 02	.4436 00	0.213	6.213	~	.1146 01	.5606-01
Ę	30.6	2K 0.86	0.44	56.43	1.507	1.244	.1256 82	.4246 80	4.024	6.242	1.682	.1078 01.	19-3465.
284	5.00	1x 7.03	3.96	0.0	1.500	1.000	.120E 02	.59% 00	0.122	9.364	7.602	.10 35 01.	.5136-01
=	•••	2x 0.00	:	\$6.43	1.507	1.240	.11 X 02	.56 × 00	1.024	1.331	1.482	. 1446 11	18-3295-
587	\$. 00	1x 0.83	3.99	9.00	1.507	1.240	.1116 02	.\$576 00	910.0	0.10	1.682	. 4556 00	. 477k -01
\$65	10.00	1x 0.03	1.00	3.0	0.000	0.00	.1114 02	.5576 00	0.00	9.40	1.682	.239£ 46	.1196-01
2	10.00	1X 0.69	9.99	9.00	1.507	1.240	-1106 02	. \$516 00	••••		1.462	.236E 00	.1186-61
986	10.00	6x 2.40 2.50, FS=	8.50	56.38 1.50 ElA: 1.00.	•	1.050	.927E 02	-161E 01	••••	6.575	1.1	.1986 01	.9926-61
ž	10.00	2x 0.00	9.9	\$6.43	1.507	1.240	.0716 02	.436E 01	0.050	9.424	1.48	.1866 01	.9326-01
1	10.00	11 D.0	96.0	0.00	1.673	2-100	.1546 02	.4276 91	4.0.0	0.472	1.6	.1636 41	.9136-01
, š	00.01	2K 0.63	9.94	\$6.43	1.507	1.240	.00 36 02.	. 4016 01	9.816	0.718	1.48	.1728 01	10-3169.
25	10.00 (ALD:	6x 2.40 2.50, FS*	7.42	54.34 1.584 Efa. 1.60,		11-050		.3176 02	1.155	1:13	1.165	.1346 62	. 4116
18	10.60	11 6.00	0.99	00.0	1.507	1.240	.625£ 03	3136 02	6.219	2.042	1.665	.132E 02	.6646 00
\$	15.00	1x 0.00	30.1	90.0	0.000	0.000	.622£ 03	3136 02	0.00	2.0.2	1.464	.505£ 01	.2946 00
7 112	15.00	11 1.10	6.9	0.0	1.507	1.240	.416E 03	.3096 02	0.132	2.224	1-664	.579E 61	.2911 00
Ę	15.00	1K 1.10	0.94	\$6.43	1.507	1.240	.57% 03	.2916 02		2.325	1.66	.544E 01	.2746 00
:	15.00	11 1.10	a. 98	3.00	1.673	2.100	.567£ 03	.285F 02	*::	115.5	1.46.	.533€ 01	.2406 00
Ę	15.00	11 1.10		56.43	1.507	1.24	.53% 63	.2686 02		7.604	1.664	.5016 01	.2526 66
980	15.00	4x 3.00 2.55. FS=	3.40	56.38 1.504 FTA: 1.00;		1.050	.1606 04	.849€ 02	1.575	= ;	1.451	.157E 62	.7336 06
5	15.00	1x 1.10	6.33	0.0	1.507	1.246	.1676 04	.0416 02	1.354	4.532	1.451	.1566 62	.785E 00
***	30.00	11 0.0	90.	0.0	0.000	0.000	.1636 04	-833E 02		4.532	1,696	.0546 01	.4376 00
58 1	20.00	1x 1.50	6.4	0.00	1.507	1.240	.1628 04	.025E 02	0.262	4.793	1.646	.0446	.4326 00
ŧ	20.00	1x 1.50		\$6.43	1.507	1.240	.152E 04	.775E 02	0.202		1.44	.7956 01	.4046 00
1	20.00	11 1.50	9.9	0.00	1.673	7.100	11% 04	. 760E 02	9.370	5.362	1.446	1116 01	.3916 00
Ę	20.00	11 1.50	9.34	\$6.43	105.1 1.501	1.240	10 3011.	.7146 02	9.1.0	5.547	1.646	.1326 01	.374£ BB
25	20.00 (ALD:	31 3.20 3.96. FS:	3.20	56.38 1.504 Ela: 1.00.	.00.	1.050 Ti. 3.00)	.411£ 04	. 2666 03	1.765	7.204	1.629	.213E 42	.1686 41
Ę	20.00	14 1.53	6.0	90.0	1.507	1.240	.407E 04	.2066 03	159.0	7.923	1.429	.211F 02	.1076 01
ş	20.00	1E 0.03	00.1	0.0	0.00	0.000	.3586 04	.1966 03	000.	1.923	1.601	.1785 62	. 1116 00

Fig. 4 — Temporal (4a) and spatial (4b) profiles at the output of the reconfigured system with a 50 psec input pulse. The curves have the same meaning as those in Figs. (3a, b).

TABLE V: NANOSECOND PERFORMANCE OF REPORTED GEKKO SYSTEM

	1					7								-
		THE	=	VIRCE	2	~	PRAIL	1903	***		***	-	4014	
315	5.00						15 821	. 12% 01	0.00	••••	1.400	.107.	1011 00	}
2	1.00 (M.b.	1 x 30. 00	15 13, 10 FS= 2, 12,		1,00 1,504 1.056 tin 1.00. 11-3.0		137E 02	*1 30E 05	1.23	¥2:4	174	16 3511-	1110	i
*	•••	2x 0.00	:	\$6.43	1.507	1.24	1296 02	.1306 02	0.020	6.267	1.64	.1006 01	10 3601	•
304	5.00	11.7.61	9.0	6.10	1.30 1.588	1.00	28 3521.	20 3521.	171.0	95.9	1.640	.1646 01	.1698 61	
*	•••	21 0.00	:	56.43	1.507	1.240	.1166 62	.117E 02	9.036	4.416	1.64	.0766 00	.0058 60	
Ę	••••			9.0	1.507	1.24	.1156 02	.1166 02	•:•:•	6.432	1.640	. 3446	.9756 00	;
13	16.00	14 6.00	6.93	9.00	1.507	1.748	.1146 62	.1156 02	199.9	1.436	1.646	.2396 66	.2416 80	
936	10.00	68 2.40 8.50 2.501 FS* 2.420	1.50	54.36 1.50 ETA: 1.00.	*	11. 3.00)	.61.28 62	.016E 02	0.152	195-0	1.41	.1676 01	.1606 03	
1	10.00	28 0.03	•	56.43	1.507	1.240	.7646 62	.76% 02	1.0.0	W	1.616	378 01	11506 01	}
•		11 1.80	6.9	•	1.673	2.199	1906 92	.1546 42	6.139	9.669	1.414	-154 C	13 365 61	
ž	••••	2x 0.03	•	56.43	1.567	1.240	70 3502	7006 05	0.030	9.70	1.616	.14% 01	10 3961	
250	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	£. 50 5	. 2. 23.	\$4.30 1.50 FYE: 1.00.		1.050	. 307. 03	.3146 63	6.679	1.357	1.526	10 3000	. 1106 01	
5	10.0	1x 0.00	:	:	1.547	1.246	. M4E 03	.3116 03		1-447	1.526	.598F B1		
5	15.0	11 1.10	:	•	1.507	1.24	. Nek .	. 306.	••••	1.85	1.524	.2636 01	.2666 01	
2	13.68	48 3.88 2.55, FS:	7.6		54.38 1.584 ETA: 1.00:	11. 3.00.	.64 8 83	.6788 83	N.9.0	2.173	1.475	in ans.	19 3995.	
.	15.00	11.13		\$6.43	1.507	1.24	10.3629	£9.31£ 43	•	2.200	1.475	.5366 01	.5 326 01	4
=	15.00	11 1:10		•	1.673	2.100	.6166 03	.4296 03	6.103	5.365	1.479	. 5256 01	. \$216 01	
ŧ.	15.00	12 1.10	:	\$6.43	1.507	1.240	.57% B3	.5476 03	70.0	2.447	1.475	.4996 01	10 jest.	
Ē	13.0	11 1.10	:	•	1.507	1.240	19716	.5016 03	•	2.88.5	1.475		ii ziv	
=	20.00	11 1.50		•	1.507	1.240	. 548 83	. 57%		2.62	1.478	.2726 61	.2701 01	į
35		31 3.26 3.96, FS:	3.20		56.30 1.504 £14- 1.66-	1.65	.1226 04	.1226 04		3.120	1.431	.570¢ 01	10 3055	
ž	26.00	12 1.53	3.	\$6.43	1.587	1.248	.1156 64	.1156	.13	3.244	1.431	. 5446	. x x .	
191	79.65	H 1.91		1.1	1.17	7.116	THE BY	W WITH	1.33	1.456	1.03	TI XIZ.	10 M16.	
ŧ	••••	11 1.53	:	\$6.43	1.517	1.74	.1066 05	.1046	121.0	3.55	1.13	.9016	. ***	
1.15	•••	12 1.53	:	9.0	1.507	1.24	: ×:	** ***	151.1	3.6%	1.431	.4366	.4776 01	

The performance can be improved somewhat by the use of uncoated input lenses to the spatial filters, and the interchange of disc and Faraday Rotator modules. Table VI summarizes this case for a saturation flux of 2.42 J/cm². One can now obtain 1300 Joules/beam with a maximum allowable backreflection of 65% (assuming a 5J/cm² damage threshold⁹ at the AR coated Faraday rotator). Note, however, that the highest fluxes are still encountered on the same 10-15 cm spatial filter lens, so we have not removed the bottleneck.

Increasing the gain of the 15 cm disc amplifier from 3.4 to 4.88 will also improve the situation somewhat, as shown in Table VII for a 2.42 J/cm² saturation flux. The output increases to 1500 J/beam, and the bottlenecking is further reduced. If a saturation flux of 3.6 J/cm² is assumed (Table VIII), even less bottlenecking is evident, and an output of 1710J/beam is obtained. The allowable backreflection for these two cases is 60% and 45%, respectively.

To increase the output above this level, it is necessary to either increase the gain of the high energy section or decrease the losses in this section. One way to decrease the losses is to replace the uncoated spatial filter lenses with lenses fabricated of a phase separable glass such as Hoya ARG-2. Tables IX and X show the expected performance if this is done for saturation fluxes of 2.42 and 3.6 J/cm², respectively. Outputs of 1800J/beam and 2060J/beam were obtained for the two cases, and the allowable backreflections were 48% and 35%. Note, however, that moderately high fluxes were incident on the AR-coated Faraday Rotator glass; i.e., 4.51J/cm² and 5.12J/cm².

The alternate strategy (ie. increase of the gain) was examined by modeling the performance with an additional 20 cm amplifier. Table XI and Fig. 5

TABLE VI: NANOSECOND PERFORMANCE OF RECONFIGURED SYSTEM WITH UNCOATED INPUT LENSES

			THE				LOG3	1111	P VIE	MILA	1011	MA
2.60					i	. 5000 01	. 500F 0.	7.0		1.486	NO 3627	M 3627"
5.5	5.00 1130.00 13.40	13:41	1.50	1.5	1.05	20 90K.	. 3926 62	0.159	0.135		.3106 03	.3346 .3
		225.2 45.			100 7 010							
	21 0.0	-	56.43	1.507	1.24	72 9050	. NOE 02			1.595	10 3267	.2996 01
***	11 7.50	:	:	1.50		. N. W. 02	.35 % 02	6.333	1.14	1.505	: 300g	. MOS.
10.0	23. 4.63	34.4	18.63	1.587	1.240	20 M26.	. 332E 02	1.571	1:23	1.595	16 X W.	19 3942.
145 5.00		:	:	1.507	1.200	.3196 02	.3296 02	6.043	1.201	1.505	.260E 01	.2676 83
	22 6.6	:	:	1.507	1.24	.3166 02	.3266 02		1.291	1.33	*****	* ***
	19.30 61 7.00 (410- 2.50. F	FS: 2.42.	56, 34 1.58 [14: 1.00.		11- 1-00	-1036 03	.187E 03	193.1	1.439	1.534	10 3296	. 3698 11
M. 10.00	10.00 - 21 0.00	F. W.	15.43 1.307	1	JE J	1178 11	-1174 63	2:03	i.n.	1.536	.MIF 31	WH II
10.00	11 0.40	9.0		1.00	2.100	.168 93	.178 13	1.005	74.85	34336	13 3467	13 11 11
••••	23 0.00	:	\$4.43	105.11	***	.1506 13	.1626 93	9.105	1.88	1.536	.3146 01	.3166 61
18.8 (8.9	10.10 L. 2.10 (ALP- 2.50. F	FS- 2.42.	56.38 1.59 [14- 1.00.	•	1.188	.3686 13	.510E 03	C.283	2.4.2	1.436	.HR 11	HW.
18:88	11 5.88	1.43	1.1	1:491	9:43	en sur.	Willem.	121.0	3.445	1.436	10 3600:	10 1000
1.85 15.00	11.10		3	1.507	1.200		.4706 03	•••	3-122	1,436	2331F 01	.3696 01
::	11 1.10		\$6.43		1.24	.4306 03	.4306 03	••••	3-18	**	.3676 01	.3456 01
15.86	וניניו	1.41	1:11	1.603	2.130	.436 05	.4416 03	1.126	3.284	1.434	. 3666 81	19 3066
15.00	11 111	•	\$4.43	1.507	1.240		.4146 03	0.013	3.345	1.436	.3396 01	. 3746 .
15.00	41 3.40 2.55. FS	3.40	56.30 1.504 ETA- 1.00;	.00.	11- 3.80	.05 36 63	.05 K 03	0.00		1.38	. No. 11	
15.00	11 1.16	•••	:	1.451	9.450	.7966 83	.7%6 03	•.122		1.33	.6556 01	.6266 01
20.05	11 1.50		:	1:82	1.74	. 7864 .	.1106 03	6.113	4.18	1.396	3056 05	. 3446 01
2.0	11 1.50		\$6.43	1.507	2	.7416 03	.740 6 93	1966	1489	1.79	WH II	11116 11
***	1R 1.50	•	3	1.473	2.100	.7246 03	. 7266 03	•••••	1.391	1.39	.3366 01	.3216 01
×	11 1.50	:	54.43	1.507	1.240	.6026 03	.6828 83	8	1500	1.39	.3166 01	. 3584
20.05	34.0	3.20	96:30 1:500		1.050 .14% 94	11% 11	10 2011	1111	41935	14352	.6686 91	PARTE AL
		24.2			11 3.30)							

TABLE VII: EFFECT OF HIGHER GAIN 15cm AMPLIFIER

, die		1													100	•		Ì								
	161	80 367Y	10 1000	-10 MIZ	10 3437	2706 01	.2676 61	2616 00	.3656 41	. M.H. BE.	to Mile	.3166 01	10.3436	.1046	11111		.3506 41	11111		.7304 01	7111	19 1986	.3746 61	.3941 01	19 989	4355.81
	1111	. 90 M24°	10 3027	10 22 67	.2 90E 01	.2636 01	.240E 01	98 35 YF	.3628 61	. Bate of	10 360	.3346.	· 10 MM	.0096 01	11111	.3671 01	.) 366€	13.8		.7626 01	19 20()	4101.01	.4016 61	.3776 65	138 01	-M15 91
	47.4	1.66	1488	1.595	1.595	1.595	1.595	1.595	1.536	1.5%	7874	.1.536	99:1	1.436	Attal	**	1.036	1.136	1.375	1.375	1.375	1.17	1.375	1.373	1111	1111
	1 L	•	8274	16137	1.160	1.230	1.201	1.291	1.435	1:416	7997	1.005	2.30	3.045	2777	3.18	3.246	3.352	1.81	*::	4.274		7.502	4.576	2.039	1975
	1018		9-759	918-8	•.333	11.0.0		0.011	196.	6.692	2000	0.005	1.203	0.121	1111	:	0.126	1.013	1.941	9.1.0	9.138	1010			1111	4114
	1003	.500	23. 37.Er	20 3005	.3536 02	3326 02	.3296 02	.3266 62	.1076 03	.1766 63	1126 01	.1426 03	. 3018.	.4036 03	13 3615		.4416 03	1916	.1026 04	.948E 03	. 9366 . 03	.0026 03		.012 03	116K PA	.115% 21 .11% 21
	X Del	10 3065	20 3082	23.388.62	. 34 44.	.3236 02	.3196 02	.3166 02	.1036 03	11.18.11	10 100	.1506 03	565€ 13	.4716 03	18 831	.438 63	.4306 03	1016 03	.1026 04	.9516 03	. M. 10	. 105£ 03		.01% 03	11885 89	1138 61
1.053	~		11. 3.000	1.258	:	1.240	1.240	1.240	54.30 1.504 1.050 ETA: 1.00: TI: 3.00)	1.248	20100	1.746	1.064	0. 950	10250	1.240	2.100	1.250	11.00		1.346	1.29	2.100	1.70	11.4.400 ALBOR BO	9.00 La151 9.750
1	O III		4	ם	1.50	1.507	0.00 1.507	0.00 1.507	1.504	36.48 1.507	1141	56.43 1.587	11:18 1:144 [11: 1:06	0.00 1.451	1884	1.567	8.60 1.673	1,507	\$6.30 1.504 E10: 1.004	1.451	191 1.90	1641 1487	1.673	101.11 1.107	1021 1 3028 20038 10804 75: 7.47, 118: 1.60.	1887
	PROT		A 13-40 A 1-10	26.43		\$6.43		;			144			1	614	56.43	13.0	\$6.43		0.0	l	- 1	 •	1	7	
1.603	er 18			1	***		:	6.93	***************************************	H.	184	•	6.50	9.43	22.0	:	-	3.94	20.2	1.43	9.9	44	÷.	9.0	10 1 15 E	9.93
-	THE		1.	. 3	_	21 0.00	1X 0.00	11 •.e	3.	10.0 %	11 0.00	28 0.03		1X 6.00	21.11	12 1.18	11 1.13	11 1.13		12 1.10	11 1.50	11.1.11	11 1.50	11 1.50	17.1.	18.11.21
	7347	3.0	KIL 112	5.00 2E	9.0	•	3.0		16.00 6K 2	10.00	10-11	16.00 21	10.46 ch 2	10.06	12.00		15.00	14.00	15.00 03	13.0	20.00	17 10-02	3C.00	39.00	20.00 31.	31 80 32
		3	\$	4	ž		Ē	Ş	ž	=		Ę	¥	5	4	Ĭ	•		ž	Ē	3		•		¥	9

TABLE VIII: EFFECT OF HIGHER SATURATION FLUX

1.051

	*	į	=======================================	19	9	~	į	19e	=	Ē	***	:	1111	
=	٠,						.2584 61	.2501 61	0.00	:	1.184	.214E 00	.214E 90	
•	141	2000	13:11:51	f # 1 = 1.404		1.053	.25%f 02	.2591 62	3.451	154.0	1.636	.2156 41	.2366 01	
ž.	,	(1.0.1)	•	\$1.63	1.507	1.24	.2428 82	.24 H 02	0.055		1.634	.2021 01	.2036 01	
¥	}	18 7.0.	96.		1.506	1.003	.232t 32	.2346 02	6.231	. 7.1	1.636	.1946 61	13 7651.	
*	***	78.1 E.	:	\$6.43	1.547	1.244	20 3617.	.220t 02	0-044		1.634	.10 3501.	.1136 01	
Ē	6.5	30.0 EE	•••	9.00	1.5.7	1.243	.2164 62	.2176 02	0.930		1.434	.1016 61	.1036.11	
Š		14 0.4		· .	1.507	1.249	70 3517.	.2156 02	107.0	9.626	1.634	.4476 00	.4106 80	
×	CF. 71	68 7.43 2.5us 65:	1.66	56.48 1.50 (14: 1.05.	1.504	1.650	.1456 03	.146F 63	3.776		1.597	.2965 01	.2966 01	
¥	•	28 6.63			1.597	1.240	. 1366 63	.1376 33	0.075	1.178	1.597	.2787 01	.2788 01	į
	17.0	11 7.6.	•	÷.	1.673	2.103	.134 33	361.	6-169	1.246	1.537	.273€ 61	.2136 61	
Ę	10.16	79.0	•	\$6.43	1.507	1.240	.1256 43	.1266 03	•••••	1.315	1.597	.2566 01	.2571 01	
¥	16.35	(3.2 4.4.2	36.4	1,95 1.55		1.050	.5646 (3	. 507F 33	1.130	2.391	1.501		. 1488 61	
Ē	37.18	76.4 11	? :	90.0	1.451	0.450	.4706 #3	.4736 03	9.124	2.505	1.561	.9146 81	.9036 63	
Š	15.00	11 1.10		6. 1.6	1.507	1.240			160.3	5.584	1.501	.402E 01	.3976 01	
ĸ	7,000		;	\$6.43	1.507	1.240	.4384 03	.440F 0.5	611.0	2.654	1.501	.3785 41	.3746 61	
•	1, .00	11.10	•	3. . u	1.673	2.100	.42% 33	.4311 03	0.129	2.113	1.501	.376 .1	.3648 01	
Ę	13.60	1.13	*	\$6.43	1.507	1.240	. 40 36 03	.405F 03	9.00	2.032	1.501	.3485 01	.3446	!
š	1	3.74	***	56.38 1.504 .[A: 1.60.		1.050	.11% 64	.11% 14	1.323	3. 718	1.431		. 1976 (3	
Ē	15.40	11.1.1	()	73.6	1.451	054-0	.1056 34	.1316 04	4.165	3.859	1.437		.4366 61	
Ş	26.00	1X 1.*3	•		1.537	1.240	1046 04	.1025 04	0.153	3.990	1.437	.493€ 01	10 3777	
Ĭ	9. 1.	7. 1 AT	*	2006	1.5.1	1.240	.9741 63	. 9575 43	6.138	1.0.4	1.437	. 1646 91	.4386 61	
•	90,05	12 1.50	86°u.	0.10	1.673	2.100	9546 03	. 9384 .03	0.216	4.275	1.437	.454F 01	18 3624	
£	20.00	1X 1.53		\$6.43	1.507	1.240	19978 63	.03180.	9-109	4.368	1.437	.4277 01	- IL 3£19.	1
350	6 14 3 6 14 3	f.fig 18 3,20 (41.9x 3,46v FS:	3.60	56. 18 3.504 FFA: 1.80+		1.054	10160.	.1436 04	0.856	5.04	1.395	.9066 41	.0126 01	
Š	00.95	1X 1. 6	3.93	3.00	1.451	6.953	.1781 04	.1716 04	0.213	\$.226	1.395	.1396 41	19 31 61.	}

TABLE IX: RECONFIGURED SYSTEM WITH HIGHER GAIN 15cm AMPLIFIER AND ARG-2 LENSES

	46.6	THEK	N2 19	AMGL	2	#5	PRAN		EOUT	×	ž	***	1041	411
316	9.00						.750€ 01		.750E 01	•	:	1.61	.6436 66	.643£ 86
•	5.00	1430.60 0.43. FS	13.40	0.00 1.504 ETA= 1.00.		1.050	.48% 02	. 585	£ 65	1.023	1.623	1.577	.3936 01	
8	5.0	2x 0.00	***	56.43 1.507	1.507	1.240	.4606 02	_	.475E 02	• • • •	1.120	1.577	.36% 11	.3016 03
78.4	9.00	1X 7.09	0.94	•.00	1.500	1,000	.441E 02	-	.456E 02	0.422	1.530	1.577	.3556 01	.3666 01
Ę	5.00	2X 0.88	0.94	56.43	1.507	1.240	.415E 02		.429E 02	0.030	1.617	1.577	.33% (1	.3446 41
58.1	\$.00	1x 0.0	0.93	0.0	1.507	1.240	.4116 02	_	.424E 02	0.055	1.470	1.577	.330€ 01	.3416 01
SE SE	10.00	1X 0.80		:	1.507	1.240	.407E 02	-	.420E 02	•:•:•	1.483	1.577	.1166 00	.1446 00
930	10.00 CALD=	6K 2.40 2.50: FS=	8.50 = 2.42,	56.38 1.504 ETA: 1.00:	1.504	1.050 Ti- 3.00)	.2196 03		.224E 03	0.439	5-109	1.511	.424E 01	.432E 01
Ĕ	10.00	2x 0.80	9.94	56.43	1.507	1.240	.206 03	-	.211E 03	• • • •	2.211	1.511	.3996 (1)	.466 11
10	10.00	1x 0.00		0.0	1.673	2.100	. 20 25 03		.207E 03	0.03	2.304	1.511	.3916 61	.3986 01
Ę	10.00	2x 0.80	16.0	56.43	1.507	1.240	.190E 83		.1946 03	1.03	2.398	1.511	.3476 61	.3746 61
₽\$€	10.00 (ALD=	6x 2.40 2.50, FS	8.50 S= 2.42.	56.30 1.504 ETA= 1.00.		1.050	.540E 03		.577E 03	1.359	3.555	1.412	.105E 02	.1046 02
S II	10.00	1K 0.80	6.99	0.00	1.507	1.240	. 5556 43		.571E 03	6.172	3.689	1.412	.1046 02	.1036 62
SET	15.06	1X 1.10	6.9	0.0	1.507	1.240	.549E 03		.565E 03	•11.0	3.77	1.412	-458E 01	.4526 61
Ę	15.00	1x 1.10		56.43	1.507	1.240	. 516E 03		. 531E 03	::	3.633	1.412	.4316 01	14 342 41
101	15.00	1X 1.10	0.98	0.0	1.673	5.100	.506E 03	·	.521E 03	1.147	3.946	1.412	.4226 01	.4166 01
ž	15.00	1x 1.10		56.43	1.507	1-240	.475€ 03		.48% 03	6.034	***	1.412	.3976 61	. 3516 01
986	15.00 (ALD=	4x 3.00 3.28. FS=	4.80 = 2.42,	56.38 1.504 ETA= 1.00.	1.504	1.050	.1156 04	-	.1146 04	1.072		1.352	.933€ 0.1	
511	15.00	14 1.10	0.99	0.00	1.507	1.240	.1146 04		.1136 04	0.210	4.950	1.352	.9246 01	.0416 01
£ 1	30.00	1X 1.50	0.44	0.00	1.507	1.240	.112E 04		·1116 04	0.159	9.000	1:352	.5146 01	.439E 81
Ĭ	20.00	1x 1.50	:	\$6.43	1.507	1.240	.106E 64		. 1056 04	6.123	5.143	1.352	.483E 01	.4516 01
. 101	20.00	1X 1.50	:	90.00	1.673	. 2-100 .	-104E.04	•	.143E 04	6.225	5-297	1.352	.4748 01,	,4428,03
Ę	20.08	1X 1.50	9.34	56.43	1.507	1.240	.974€ 03		. 945E 03	1.113	5.315	1.352	.445E 61	.4156 01
986	20.00 (ALD=	3x 3.20 3.96. FS=	3.20	56.38 1.584 EIA= 1.00.	1.50	1.050 .190E T1= 3.00)	.1906 04	. 182E	:		\$. \$	1.314	.646 61	.746 01
581	20.00	11 1.50	6.3	0.00	0.00 1.507	1.240	.188. 04		.100E 04	9.265	4.152	1.314	.0566 01	.7526 01

TABLE X: EFFECT OF HIGHER SATURATION FLUX

Wt. 1.053	IN AMEL NO N2 PRAN EOUT OTEN PIN P/AV 1953 GLUY	0 3 3 6 6 1 . 3 3 6 6 1 0 . 0 0 0 0 0 1 . 6 5 4 £ 5 9 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 6.00 1.504 1.650 .320E 02 .321E 02 0.579 0.579 1.624 .245E 01 .246E 01	11 3547 1.307 1.246 1306 02 3026 02 0.867 0.647 1.624 .2496 01 .2366 01	14 0.00 1.500 1.000 .200 02 .290 02 0.205 0.931 1.626 .2390 01 .2400 01	04 56.43 1.587 1.248 .271E 02 .272E 02 0.0641 0.992 1.626 .225E 01 .226E 01	19 0.00 1.507 1.24A .260E 02 .270E 02 0.037 1.029 1.626 .222E 01 .223E 01	19 0.00 1.507 1.240 .264E 02 .247E 02 0.009 1.030 1.424 .551E 00 .553E 00	50 56.38 1.504 1.050 .17% 03 .17% 03 0.329 1.367 1.581 .3516 01 .3496 01	14 56.43 1.507 1.248 .16 % 03 .16 % 03 0.089 1.454 1.501 .330E 01 .320E 01	18 0.00 1.673 2.100 .159£ 03 .160E 03 0.002 1.534 1.5B1 .323E 01 .321E 01	14 54-43 1,507 1,240 ,154E 03 ,150E 03 0,002 1,614 1,501 ,304E 01 ,302E 01	10 56.38 1.504 1.050 .561E 03 .563E 03 1.291 2.016 1.402 .100E G2 .104E G2	19 0.00 1.507 1.240 .554E 03 .557E 03 0.110 2.971 1.402 .107E 02 .105E 02	19 0.00 1.507 1.240 .550E 03 .551E 03 0.107 3.065 1.402 .472E 01 .463E 01	14 56.43 1.507 1.240 .517E 03 .510E 03 0.003 3.137 1.402 .444E 61 .435E 01	18 0.00 1.673 2.100 .507E 03 .500E 03 0.152 3.270 1.402 .435E 01 .426E 01	14 56.43 1.507 1.240 .474E 03 .470E 03 0.076 3.336 1.402 .409E 01 .401E 03	10 56.38 1.504 1.050 .126E 04 .123E 04 1.172 4.337 1.417 .105E 02 .980E 01.10, Eta: 1.00, 11:00000	99 0.00 1.507 1.240 .123E 04 0.236 4.526 1.417 .104E 02 .970E 01	19 0.00 1.507 1.240 .124E 04 .121E 04 0.180 4.669 1.417 .579E 01 .545E 01	14 56.43 1.507 1.240 .114E 04 .114E 04 0.130 4.700 1.417 .544E 01 .512E 01	18 0.00 1.673 2.100 .114E 04 .111E 04 0.254 , 4.902 1.417 .534E 01 .502E 01	14 56.43 1.507 1.240 .107E 04 .105E 04 0.127 5.004 1.417 .501E 01 .412E 01	
			1.050	1.240	1.000	1.240	1.240	1.240	1.056	1.240	2.100	1.24	11.050	1.240	1.24	1.240	2.100	1.24	11.656	1.246	1.24	1.240	2.100	1.240	
•			0.00 £7A= 1.						8.50 56.30 1.5 3.60. Efå 1.00.				0.50 56.38 1.5 3.60, ETA: 1.00.					8.11 54.43 1.5	4.18 56.38 1.5 3.60, ETA= 1.00					0.14 56.43 1.5	
16. 1.090	PHCE		1130.00 13.40	08.0 HZ	14 7.03	2x 0.80	1X 0.80	1 0.00	6K 2.40	08.6 XS	11 0.00	21 0.00	68 2.40 : 2.50, FS=	1X 0.88	11 1.10	1x 1.10	12 1.10	11 1.10	4H 3.00	1X 1.10	11 1.50	1x 1.50	1X 1.50	1X 1.50	
	4764	\$16 5.00	3.00 (ALD:	981 5.00	PBC 5.00	PP. 5.00	LHS 5.00	10.00	85C 10.00 (ALD=	10.01	10.01	P. 10.00	BSC 10.00 (ALD=	10.01	18.00	POL 15.00	15.00	POL 15.00	05C 15.00	15.00	145 20.00	PR 20.00	40T 20.00	POL 20.00	

RECONFIGURED SYSTEM WITH HIGHER GAIN 15cm AMPLIFIER, UNCOATED INPUT LENSES, AND AN ADDITIONAL 20cm AMPLIFIER TABLE XI:

WL= 1.053

16= 1.303

	APER	THER	61 IN	ANGL	9	~#	×	EGUT	× 10	445	A/4		1914
916	5.00						.500E 01	.5006 01	00000	000.	1 -684	.429E 08	.429£ 00
2	5.00 1X3	0.0	6 13.40 FS= 2.42.	0.00 1.5 ETA: 1.00.	3	1.050	,300E 02	. 392E 02	0.759	0.759	1.595	.310€ 61	.3166 01
10	60.4	2x 3.8	3.94	\$6.43	1.537	1.240	.358E 02	.368E 02	6.019	0.837	1.595	13 3262*	19 3562.
2	6.00 ··· 1X	1X - 2.00	30.0	3	10500	1.000	343E -05	3636 · 03	6.333	1.166	- 1.595	-380£ 61	3000
Ę	9.00	2x 0.80	16.0	56.43	1.507	1.240	.323E 02	.332E 02	0.071	1.238	1.595	.2636 01	.270£ 01
LBS	60.	17 0.80	66.0	0.00	1.507	1.240	.319E 02	.329E 02	0.043	1.283	1.595	.260E 01	.267E 01
LMS	10.00	. 1x 0.80	8640	0.00			-3366 63	3266-02-	110-0	167-1		-04456-80	# 9199·
9SC	10.00 6x	6x 2.40	0.50	56.38	1.504	1.050	.1636 03	.1876 03	191.0	1.635	1.536	.362E 01	.3656 01
5	11.00	2x n.83	3.94	\$6.43	1.547	1.243	.1726 03	.176€ 03	260.0	1.719	1.536	.3416 61	.3436 61
101	10.00	1X 0.03	0.98	9.00	1.673	2.100	.168E 03	.172E 03	0.085	1.802	1.536	.3346 .1	.3376 01
=	#2- 90°01 -	2K 9.A3	***	****	1.503	1-246	1696 01	41625-43	4448	-	1.536	4 344	###
98C	16.00 6x	6x 2.43	8.50 	56.38 1.504		1.050 	. 505E 03	.5186 03	1.203	2.942	1.436	.952E 01	.9476 01
LHS	10.00	1X 0.80	0.93	0.00	1.451	0.950	.4716 03	.487£ 03	0.121	3.045	1.436	10 3680.	10 3 101.
SIT	14.00	C1-1 X1	66.0	0.00	1.507	1.240	.466E 03	.478E 03	0.089	3.122	1.436	.3916 01	.309£ 01
Ĭ	14.60	- 1X tete-		-64.63	1054	1.249	-4366-63-	450E- 03	990.0	3.100	+ + + 3+ ···		*****
101	15.00	1x 1.10	96.0	9.0	1.673	2.100	.430E 03	.4416 03	0.126	3.288	1.436	.360E B1	.356£ 01
.	15.00	1.1 ×1	26.3	\$6.43	1.507	1.240	.404E 03	.4146 03	6.963	3.342	1.436	.3396 61	.3376 61
DSC	15.00 4K (ALD= 3.2)	4x 3.00 3.28, FS=	2,42	ETA= 1.00.	4	71= 3.00)	, 102E .04	.102E 04	. 246.9	- 250-+	1-316-1	-1396-01	-1016-01
- 587	***		649	8	# +	950-0	49516 03	-9486 43		4.1.70	4.375	103501	100000
SEI	20.00	1X 1.5J	0.99	00.0	1.507	1.240	.9414 03	.938E 03	0.135	4.274	1.375	.436 61	.4116 61
Ę	20.00	1x 1.50	0.94	56.43	1.507	1.240	. 005E 03	. 882E 03	0.104	4.354	1.375	.4166 61	.3846 01
101	96,35		9646	944	- Fe 9 - Fe 9 3 -	- 3018	10676 43	**************************************	151.0	4.502	1.315	10 11 11	- +0 1046-
ĭ	26.00	1X 1.50	3.94	56.43	1.5 37	1.240	. 815€ 03	.8126 93	960.0	4.576	1.375	.3776 63	.3566 61
980	20.00 3K	3x 3.23 3.96, FS=	3.20	56.38 ETA= 1.	1.504	1.050 T1= 3.00)	.1668 04	.160E 04	0.743	5.090	1.337	. 759€ 01	. 6888 01
9 80	20.00 3r (ALD= 3.96	37 3.20 3.96. FS=	3.20	56.38 1.50 tfa= 1.80.	1 1	1.050	.275E 04	.261E 04	1.334	5.955	1.298	,125E 02	-108E 02
13	69.37	11 1.59	6.43	4.	1.451	0.450	257E 04	. 244E 04	9.536	6.129	1.298		

Fig. 5 — Temporal (5a) and spatial (5b) profiles at the output of the system described in Table XI with a nanosecond input pulse. The curves have the same meaning as those in Figs. (3a, b).

show the results for a case where this was done using uncoated spatial filter input lenses and a saturation flux of 2.42 J/cm^2 . An output of 2500 Joules/beam was obtained from the laser at the same total B integral as found in the previous cases at 1800 and 2060 J/beam outputs; moreover, the flux on the Faraday Rotator was reduced to 3.86 J/cm^2 . The allowable backreflection in this configuration was 25%. With a higher saturation flux or ARG-2 lenses, the output energy would not increase because the output lens is now the weak link; however, these expedients could be used to reduce the B integral and the flux on earlier components to slightly lower values.

6. Summary

The GEKKO XII-Module phosphate laser system appears capable in the reported configuration of substantially exceeding the Shiva performance. In fact, it appears that it would closely match the per beam performance of Argus (2.5 TW short pulse, 1000J in a nanosecond pulse) with much lower cost because of the smaller number of amplifiers.

The reported configuration, however, does not appear to represent the most cost effective strategy for either short or long pulses. A different configuration of the same elements and a different type of input spatial filter lens appears capable of increasing the output by at least 50%. Adding an additional twenty centimeter amplifier to each arm appears to be a relatively cost effective strategy for boosting the output in nanosecond pulses to 2.5 kJ per beam. Although these designs would provide adequate isolation for most single beam experiments, they would probably have to be supplemented by plasma shutters at the outputs in multi beam configurations, where backreflection could be a serious problem.

If Shiva were retrofitted with phosphate glass, it should be capable of 35kJ or more with the present amplifiers, and 50kJ with an additional 20cm phosphate disc amplifier per beam.

7. Acknowledgments

The authors wish to thank Prof. Y. Kato of Osaka University for several helpful suggestions and comments.

References

- Y. Kato, S. Nakai and C. Yamanaka, Proceedings of the IAEA Technical Committee on Advances in Inertial Confinement Systems; ed. by C. Yamanaka (Institute of Laser Engineering, Osaka University, 1980) p. 59
- 2. C. Yamanaka, Topical Meeting on Inertial Confinement Fusion (San Diego, CA, 26-28 February, 1980) paper TUA3.
- 3. Y. Kato, K. Yoshida, J. Kuroda and C. Yamanaka, Appl. Phys. Lett (in print).
- 4. Laser Program Annual Report 1978, Lawrence Livermore Laboratory UCRL-50021-78 (Vol. 1, Sec. 2).
- 5. Y. Kato, private communication.
- 6. J.M. McMahon, R.H. Lehmberg and S.E. Bodner, <u>Technical Digest:</u>

 <u>Inertial Confinement Fusion</u>, published by Optical Society of America,

 Paper TuB3-1 (1978).
- 7. P.V. Avizones and R.L. Grotbeck, J. Appl. Phys. <u>37</u>, 687 (1966).
- 8. This value was obtained from the expression hy/2 σ and the measured LGH-7 cross section $\sigma = 3.9 \times 10^{-20}$ cm². (S.E. Stokowski, R.A. Saroyan and M.J. Weber; Nd-Doped Laser Glass Spectroscopic and Physical Properties, Lawrence Livermore Laboratory report prepared for USDOE under contract No. W-7405-Eng-48; November 1978). For a pulsewidth of 1 nsec and a lower level relaxation time $T_1 = 3$ nsec, the effective saturation flux is approximately 2.6 J/cm².
- Laser Program Annual Report-1979, Lawrence Livermore National Laboratory UCRL-50021-79 (Vol. 1, Sec. 2)

DISTRIBUTION LIST

USDOE (50 copies) P.O. Box 62 Oak Ridge, TN 37830

National Technical Information Service (24 copies)
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NRL, Code 2628 (35 copies)

NRL, Code 4730 (100 copies)

NRL, Code 4700 (25 copies)

USDOE (8 copies)
Office of Inertial Fusion
Washington, D.C. 20545
Attn: Dr. G. Canavan

Dr. R. Schriever Dr. S. Kahalas Dr. T. Godlove Dr. K. Gilbert Dr. S. Barish

Lawrence Livermore Laboratory P.O. Box 808 Livermore, CA 94550 Attn: Dr. J. Lindl, L32 Dr. L. Coleman

Dr. J. Nuckolls
Dr. J. Emmett
Dr. J. Hunt
Dr. W. Simmons
Dr. R. Speck
Dr. J. Holzrichter

Los Alamos Scientific Laboratory Los Alamos, NM 87545 Attn: Dr. J. Kindel Dr. S. Rockwood

University of Rochester Laboratory for Laser Energetics Rochester, NY 14627 Attn: Dr. J. Soures Dr. W. Seka

National Research Council Division of Physics 100 Susser Drive Ottawa K1A-OR6, Canada Rutherford Laboratory Chilton, Didcot Oxon OX11 OQX England Attn: Dr. M. Key

Sandia Laboratory Albuquerque, NM 87115 Attn: Dr. J. Yonas

Institute for Laser Engineering Osaka University Suita Osaka, 565 JAPAN Attn: Dr. C. Yamanaka 1

Schaefer Assoc. 1901 N. Fort Myer Drive Arlington, VA 22211 Attn: Dr. E. Gerry

Dr. Y. Kato

Science Applications Inc. Crystal City, VA 22102 Attn: Dr. W. Sooy

