EDWARD O'CALLAGHAN

Contents

1.	Metric space	2
1.1.	Metrics	2
1.2.	Topology of a metric space	2
2.	Topological Space	

1. Metric space

1.1. Metrics.

Definition 1.1 (Metric space). A *metric space* is a order pair (X, d) where X is a set and d is some function $d: X \times X \to X$ that satisfies, for all $x, y, z \in X$,

- $d(x,y) \ge 0$ and d(x,y) = 0 iff x = y;
- d(x,y) = d(y,x) (symmetric);
- $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

We call d a metric on X.

Problem 1.2 (Discrete metric). Suppose

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y, \\ 0 & \text{if } x = y. \end{cases}$$

Prove d(x, y) defines a metric.

Example 1.3 (Eucliean metric). Consider the set of real n-tuples $M = \mathbb{R}^n$.

For points $\mathbf{x} = \{x_1, \dots, x_n\}$ and $\mathbf{y} = \{y_1, \dots, y_n\}$ in \mathbb{R}^n we set

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$$

Definition 1.4 (Continuity). Let (X, d_X) and (Y, d_Y) be metric spaces. We say that the mapping $f: X \to Y$ is continuous at a point $x_0 \in X$, if

$$\forall \epsilon > 0 \,\exists \delta > 0 \,\forall x \in X : d_X(x, x_0) < \delta \implies d_Y(y, y_0) < \epsilon.$$

The mapping $f: X \to Y$ is said to be *continuous* if f is continuous at every point $x_0 \in X$.

1.2. **Topology of a metric space.** A metric space provides sufficient structure to study the notions of convergence and thus continuity. A closer study of continuity of mappings in the setting of metric spaces revels that a metric need not be of a specific type. Rather, a class of subsets defined by the metric lead to the concept of the underlying *topology* in a metric space that is decisive for continuity to make sense.

Definition 1.5 (Open set). A subset U of a metric space M = (X, d) is said to be *open* if;

$$\forall x \in U \, \exists \epsilon > 0 : d(x, y) < \epsilon \, \forall y \in X \implies y \in U.$$

Alternatively, we may consider defining the notion of a open ball $B_{\epsilon}(x)$ and using this equivalently to redefine a open set.

Definition 1.6 (Open ball). Let M = (X, d) be an arbitrary metric space and let some point $x_0 \in X$ with $\epsilon \in \mathbb{R}^+$. Then an open ball with center x_0 and radius ϵ is defined as:

$$B_{\epsilon}(x_0) = \{ x \in X : d(x_0, x) < \epsilon \}$$

Remark. A closed ball may be defined in a similar way, that is,

$$B_{\epsilon}(x_0) = \{ x \in X : d(x_0, x) \le \epsilon \}$$

Hence we have the alternative definition in the following way.

Definition 1.7 (Open set - alternative). For some arbitrary metric space M = (X, d) and open ball $B_{\epsilon}(x)$ where $\epsilon > 0$. A subset $U \subset X$ is said to be a *open set* if,

$$\forall x \in U \,\exists \epsilon > 0 : B_{\epsilon}(x) \subseteq U.$$

Another piece of terminology that is often seen in topology is that of a neighbourhood which we define here for completeness.

Definition 1.8 (Neighbourhood). Suppose a arbitrary metric space M = (X, d). A neighborhood of some point $x \in X$ is a subset $V \subset X$ such that $B_{\epsilon}(x) \subseteq V$.

In this case, we call the open set V the ϵ -neighborhood of the point x in the set X.

By the abstraction of open sets we may describe continuity of a mapping by way that is independent of the metric.

Theorem 1.9. Let $f: X \to Y$ be a mapping between metric spaces (X, d_X) and (Y, d_Y) . Then f is continuous if and only if for every open set V in Y, the set $f^{-1}(V)$ is an open set in X.

Proof. Consider the mapping $f: X \to Y$ between metric spaces (X, d_X) and (Y, d_Y) . Now, suppose that $V \subset Y$ so that $\forall y \in V \exists \epsilon > 0 : B_{\epsilon}(y) \subseteq V$ is an open set V in Y.

Then, if f is continuous and $U \subset X$ with $X = f^{-1}(V)$, we have

$$\forall x \in f^{-1}(V) \,\exists \delta > 0 : B_{\delta}(x) \subseteq f^{-1}(V)$$
$$\implies \forall x \in U \,\exists \delta > 0 : B_{\delta}(x) \subseteq U$$

and so U is a open set in X. Since f^{-1} exists the converse is trivially so.

2. Topological Space

Definition 2.1 (Topological space). A topological space is a pair (X, \mathcal{T}) where X is a set and $\mathcal{T} \subset 2^X$ such that:

- $\emptyset, X \in \mathcal{T};$
- $v, A \subset I$, • For $\{U_i\}_{i=1}^n \subseteq \mathcal{T}$ we have $\bigcap_{i=1}^n U_i \in \mathcal{T}$;

• For $U_{\lambda} \in \mathcal{T} : \lambda \in \Lambda$ give some an arbitrary indexing set Λ we have $\bigcup_{\lambda \in \Lambda} U_{\lambda} \in \mathcal{T}$.

In particular \mathcal{T} is **closed under** *finite* intersections and *arbitrary*, possibly uncountably infinite, unions. We may denote the pair (X, \mathcal{T}) by \mathcal{T}_X .

If (X, \mathcal{T}) is a topological space, we call \mathcal{T} a topology on X. A set $U \in \mathcal{T}$ is called the *open set* of the topology \mathcal{T} .

Example 2.2. TODO..

 $V \subseteq X$ is closed if its complement is open. The topology could be defined equivalently by the collection of closed sets, which enjoys finite unions and arbitrary intersection. If $Z \subset X$, the closure of Z, denoted \bar{Z} , is the intersection of all closed sets containing Z. By the arbitrary intersection property of closed sets, \bar{Z} is closed. A neighbourhood of a point $x \in X$ is any open subset $V \subset X$ containing x.

Definition 2.3 (Discrete topology). A discrete topology has every subset open.

Definition 2.4 (Indiscrete topology). A *indiscrete topology* has no open sets except \emptyset and X itself.