6. Naive Bayes classifier

Shabana K M

PhD Research Scholar Computer Science and Engineering

IIT Palakkad26 September 2021

Recap

- Logistic regression
 - Gradient descent update
 - Multi-class classification One vs all approach
- k-nearest neighbor algorithm
 - regression, classification
 - pros and cons
- Cross-validation
 - holdout method
 - k-fold
 - leave one out
 - stratified k-fold

Cross validation: The idea

Cross validation techniques

Figure: Holdout method

Figure: k-fold cross validation

Cross validation techniques

Cross validation techniques

Figure: stratified k-fold cross validation

Motivation

Conditional probability and Bayes theorem

Bayes theorem - example

Given

- A doctor knows that Cold causes fever 50% of the time
- Prior probability of any patient having cold is 1/50,000
- Prior probability of any patient having fever is 1/20

If a patient has fever, what's the probability he/she has cold?

$$P(cold|fever) = \frac{P(fever|cold) * P(cold)}{P(fever)}$$

$$P(cold|fever) = \frac{0.5 * 1/50000}{1/20} = 0.0002$$

Naive Bayes classifier

- supervised machine learning algorithm based on Bayes theorem
- makes strong independence assumption on features
 - assumes that the presence (or absence) of a particular feature of a class is unrelated to the presence (or absence) of any other feature
 - for instance, in gender prediction, a person's height and weight is assumed to independently contribute to the probability that a person is male/female
 - naive assumption
- demonstrated good performance in many complex real-world applications
- easy to build and particularly useful for very large data sets
- only requires a small amount of training data to estimate parameters

Bayesian classifiers

- features and class variable considered as random variables
- **given** a data point with attributes $(x_1, x_2, ..., x_D)$
 - goal is to predict the target class y
 - specifically, find the value of y that maximizes $P(y|x_1, x_2, ..., x_D)$
- how to estimate $P(y|x_1, x_2, ..., x_D)$ directly from data?

Bayesian classifiers

Approach: Use Bayes theorem

$$P(y|x_1, x_2, ..., x_D) = \frac{P(x_1, x_2, ..., x_D|y)P(y)}{P(x_1, x_2, ..., x_D)}$$

- choose value of y that maximizes $P(y|x_1, x_2, ..., x_D)$
- equivalent to choosing value of y that maximizes $P(x_1, x_2, ..., x_D|y)P(y)$
 - since the denominator doesn't depend on the class y, it can be considered a constant

How to estimate $P(x_1, x_2, ..., x_D|y)$ and P(y) ?

Naive Bayes classifier

Assume all features are independent when class is given

$$P(x_1, x_2, ..., x_D|y = i) = P(x_1|y = i)P(x_2|y = i)...P(x_D|y = i)$$

 $P(x_j|y=i)$ can be estimated for all values of j=1,...,D and i=1,...,L

- D: number of features
- L: number of classes

A new data point is classified to class k if $P(y = k) \prod_{j=1}^{D} P(x_j | y = k)$ is maximum over all values of y

Estimating class probabilities from data

• Class probabilities: P(y = k)

$$P(y = k) = \frac{\text{Number of observations with } y = k}{\text{Total number of observations}}$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

■
$$P(y = Yes) = 3/10$$

■
$$P(y = No) = 7/10$$

Estimating conditional probabilities - Discrete attributes

• Conditional probabilities: $P(x_i|y=k)$

$$P(x_j = z | y = k) = \frac{\text{No: of observations with class } y = k \text{ having } x_j = z}{\text{Total number of observations with class } y = k}$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

•
$$P(Status = Married|y = No) = 4/7$$

$$P(Status = Single|y = No) = 2/7$$

•
$$P(Status = Divorced|y = No) = 1/7$$

$$P(Status = Married|y = Yes) = 0$$

Sample correction

• if a given class and feature value never occur together in the training set then the frequency-based probability estimate will be zero

if
$$P(x_i|y = k) = 0$$
, for some $1 \le i \le D$, then $P(x_1|y = k)P(x_2|y = k)...P(x_D|y = k) = 0$

- this is undesirable as the information in the other attributes is lost
- a small sample correction or pseudo-count is employed such that no probability is ever set to be exactly zero smoothing techniques

Estimating conditional probabilities - Continuous attributes

- Discretize the range into bins
 - define bins for the attribute
 - use one ordinal attribute per bin
 - violates independence assumption
- Probability density estimation
 - o assume that the attribute follows a normal distribution
 - use data to estimate parameters of the distribution (mean and standard deviation)
 - estimate the conditional probability $P(x_i|y=j)$ based on this distribution

Naive Bayes - Example

PlayTennis: training examples

1 my territis. transing examples							
Day	Outlook	Temperature	Humidity	Wind	PlayTennis		
D1	Sunny	Hot	High	Weak	No		
D2	Sunny	Hot	High	Strong	No		
D3	Overcast	Hot	High	Weak	Yes		
D4	Rain	Mild	High	Weak	Yes		
D5	Rain	Cool	Normal	Weak	Yes		
D6	Rain	Cool	Normal	Strong	No		
D7	Overcast	Cool	Normal	Strong	Yes		
D8	Sunny	Mild	High	Weak	No		
D9	Sunny	Cool	Normal	Weak	Yes		
D10	Rain	Mild	Normal	Weak	Yes		
D11	Sunny	Mild	Normal	Strong	Yes		
D12	Overcast	Mild	High	Strong	Yes		
D13	Overcast	Hot	Normal	Weak	Yes		
D14	Rain	Mild	High	Strong	No		

Naive Bayes - Example

Learning Phase

Outlook	Play=Yes	Play=No
Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Temperature	Play=Yes	Play=No
Hot	2/9	2/5
Mild	4/9	2/5
Cool	3/9	1/5

Humidity	Play=Yes	Play=No
High	3/9	4/5
Normal	6/9	1/5

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

$$P(\text{Play=}Yes) = 9/14$$
 $P(\text{Play=}No) = 5/14$

Naive Bayes - Example

Given a new observation x' = (Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong), predict its label (Play = Yes/No)

• Compute conditional probabilities

$$\begin{split} & \text{P(Outlook=}Sunny \,|\, \text{Play=}Yes) = 2/9 \\ & \text{P(Temperature=}Cool \,|\, \text{Play=}Yes) = 3/9 \\ & \text{P(Huminity=}High \,|\, \text{Play=}Yes) = 3/9 \\ & \text{P(Wind=}Strong \,|\, \text{Play=}Yes) = 3/9 \\ & \text{P(Play=}Yes) = 9/14 \end{split}$$

$$P(Outlook=Sunny | Play=No) = 3/5$$

 $P(Temperature=Cool | Play==No) = 1/5$
 $P(Huminity=High | Play=No) = 4/5$
 $P(Wind=Strong | Play=No) = 3/5$
 $P(Play=No) = 5/14$

• Compute P(y|x') using Bayes rule

$$\begin{split} &P(Yes \mid \textbf{x}') \approx [P(Sunny \mid Yes)P(Cool \mid Yes)P(High \mid Yes)P(Strong \mid Yes)]P(Play=Yes) = 0.0053 \\ &P(No \mid \textbf{x}') \approx [P(Sunny \mid No) P(Cool \mid No)P(High \mid No)P(Strong \mid No)]P(Play=No) = 0.0206 \end{split}$$

Since P(Yes|x') < P(No|x'), x' is labeled with **Play = No**

Bag of words model

the I love this movie! It's sweet. fairy to but with satirical humor. The alwavs loveto 3 whimsical dialogue is great and the and adventure scenes are fun... seen anyone friend happy dialogue It manages to be whimsical yet recommend and romantic while laughing adventure would satirical whimsical at the conventions of the movie fairy tale genre. I would but to romantic times sweet recommend it to just about several again satirical anyone. I've seen it several would adventure times, and I'm always happy to scenes the manages genre to see it again whenever I fairy have a friend who hasn't while humor seen it yet! whenever have conventions have great

Spam detection

		Label							SMS	
	0	spam	SECR	ET PRIZ	ZE! CL/	AIM SECR	ET P	RIZE	NOW!!	
	1	ham			C	oming to i	my s	ecret	party?	
	2	spam			Winne	er! Claim s	ecre	t priz	e now!	
					1					
					\downarrow					
.abe	el	secret	prize	claim	now	coming	to	my	party	winne
abe par		secret 2	prize 2	claim 1	now 1	coming	to	my 0	party 0	winne
	n		•						• •	winne
par	n n	2	2	1	1	0	0	0	0	winne

 $P(Ham|w_1,w_2,...,w_n) \propto P(Ham) \cdot \prod P(w_i|Ham)$

References

1 https://web.iitd.ac.in/~bspanda/BY.pdf

Thanks Google for the pictures!