misc

SCHWARZ $[0,1] \xrightarrow{f} \mathbb{R}$ continuous, $f(x+h) + f(x-h) - 2f(x) = o(h^2)$ for all $x \in (0,1)$ implies f(x) = ax + b is affine.

<u>proof</u> wlog f(0) = f(1) = 0. let $g_{\varepsilon}(t) = f(t) - \varepsilon t(1-t)$. then $\frac{g(t+h)+g(t-h)-2g(t)}{h^2} \to 2\varepsilon$ for $t \in (0,1)$ meaning g_{ε} has maximum at 0 or 1. hence $g_{\varepsilon} \leq 0$ for all ε and $f \leq 0$. similarly $f \geq 0$.

<u>claim</u> $a_n = o(n)$ (weakly) increasing sequence of positive integers $\implies \frac{n}{a_n}$ contains all positive integers.

<u>proof</u> as ka_n has the same properties, it suffices to show $a_n = n$ has a solution. at n = 1 we have \geq , and at some point <. we cannot however have a flip from > to < as $a_n > n \implies a_{n+1} \geq n+1$.

claim a bounded harmonic function $g: \mathbb{R}^n \to \mathbb{R}$ is constant.

$$\underline{\underline{\text{proof}}} \text{ fix two points } p, q. \text{ then } f(p) - f(q) = \frac{\int_{B_R(p)\Delta B_r(q)} \pm f}{\text{Vol} B_R}, \text{ but } \text{Vol}(B_R(p)\Delta B_R(q)) = o(\text{Vol} B_R) \text{ is negligible.}$$

<u>claim</u> a bounded harmonic function $g: \mathbb{Z}^n \to \mathbb{R}$ is constant.

proof suppose not. let $r(x) = \Delta_{e_1} g(x) = g(x+e_1) - g(x)$. then $r(x) + r(x+e_1) + \cdots + r(x+ke_1)$ is uniformly bounded. wlog $s = \sup r(x) > 0$. fix x_{ε} with $r(x_{\varepsilon}) > s - \varepsilon$. since $r(x) \le s$ and $\frac{1}{2d} \sum_{x \sim y} r(x) = r(y)$, we get $g(x_{\varepsilon} + e_1) > s - 2d\varepsilon$. taking k big and ε small yields arbitrarily large $r(x_{\varepsilon}) + r(x_{\varepsilon} + e_1) + \cdots + r(x_{\varepsilon} + ke_1) > (k+1)s - \varepsilon(1+2d+\cdots+(2d)^k)$.