Programming Languages: Imperative Program Construction Practicals 2. Propositional Logic

Shin-Cheng Mu

Autumn Term, 2021

Prove each of the following properties using only axioms or theorems established before it (for example, prove (3.11) using only (1.?) and (3.1) - (3.10)).

Note that there are more than one ways to prove a property. You may discover a proof that is better than the one given in the solution.

- 1. Prove (3.9): $\neg (p \equiv q) \equiv \neg p \equiv q$.
- 2. Prove (3.12): $\neg \neg p \equiv p$.
- 3. Prove (3.13): $\neg False \equiv True$.
- 4. Prove (3.29): $p \lor True \equiv True$.
- 5. Prove (3.32): $p \lor q \equiv p \lor \neg q \equiv p$.
- 6. Prove (3.42): $p \land \neg p \equiv False$.
- 7. Prove (3.43a): $p \land (p \lor q) \equiv p$.
- 8. Prove (3.44a). $p \land (\neg p \lor q) \equiv p \land q$.
- 9. Prove (3.65): $p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$.
- 10. Prove (3.66): $p \land (p \Rightarrow q) \equiv p \land q$.
- 11. Prove (3.67): $p \land (q \Rightarrow p) \equiv p$.
- 12. Prove (3.68): $p \lor (p \Rightarrow q) \equiv True$.
- 13. Prove (3.69): $p \lor (q \Rightarrow p) \equiv q \Rightarrow p$.
- 14. Prove (3.78): $(p \Rightarrow r) \land (q \Rightarrow r) \equiv (p \lor q \Rightarrow r)$.
- 15. Prove that $(p \Rightarrow q) \land (p \Rightarrow r) \equiv (p \Rightarrow q \land r)$.
- 16. Prove that $(r \Rightarrow)$ is monotonic with respect to implication. That is, $(p \Rightarrow q) \Rightarrow ((r \Rightarrow p) \Rightarrow (r \Rightarrow q))$.
- 17. Prove that $(\Rightarrow r)$ is anti-monotonic with respect to implication. That is, $(p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$.
- 18. Prove that conjunction is monotonic with respect to implication. That is, $(p \Rightarrow q) \Rightarrow ((p \land r) \Rightarrow (q \land r))$.