

Adverserial Non-Negative Matrix Factorization for Single Channel Source Separation

DNA Seminar 16. November 2022

Martin Ludvigsen

Department of Mathematical Sciences, NTNU.

NTNU

Prelude

Figure: "De-mixing" music. Measure single channel. Source: https://source-separation.github.io/tutorial/landing.html

Single Channel Source Separation (SCSS)

Problem formulation

$$v = \sum_{i=1}^{S} u_i = Au,$$

$$A = \begin{bmatrix} I & \cdots & I \end{bmatrix}, \quad u = \begin{bmatrix} u_1^T & \cdots & u_S^T \end{bmatrix}^T.$$

Given measured mixed signal $v \in \mathbb{R}^m$, want to recover up to S individual source signals $u_i \in \mathbb{R}^m$, i = 1, ..., S.

Single Channel Source Separation (SCSS)

Problem formulation

$$v=\sum_{i=1}^{S}u_{i}=Au,$$

$$A = \begin{bmatrix} I & \cdots & I \end{bmatrix}, \quad u = \begin{bmatrix} u_1^T & \cdots & u_S^T \end{bmatrix}^T.$$

Given measured mixed signal $v \in \mathbb{R}^m$, want to recover up to S individual source signals $u_i \in \mathbb{R}^m$, i = 1, ..., S.

- ► Linear inverse problem.
- ▶ Underdetermined \rightarrow need prior information about the source signals.
- ▶ Data-driven approach is most reasonable for many problems.

Given a mixed image $v = u_0 + u_1$, can we recover the individual images u_0 and u_1 ?

Structure of talk

- Introduction
- Non-Negative Matrix Factorization (NMF)
 - NMF for SCSS
 - NMF as projection onto convex cones
- Data setting for inverse problems and SCSS
- Adverserial regularization functions
 - Adverserial regularization functions for SCSS
 - Adverserial NMF (ANMF)
 - Numerical algorithm for ANMF
- Numerical experiments

Non-Negative Matrix Factorization (NMF)

- ▶ Assume non-negative $M \times N$ matrix $V \approx WH$.
- ▶ *W* is non-negative $M \times d$ matrix.
- ▶ *H* is non-negative $d \times N$ matrix.
- $ightharpoonup d \ll N, M$ is the rank of the decomposition chosen a priori.

Figure: Source:

https://en.wikipedia.org/wiki/Non-negative_matrix_factorization

► Also called sparse (non-negative) dictionary learning.

$$\min_{W,H>0} \|V - WH\|_F^2 + \mu_H |H|_1 + \mu_W |W|_1.$$

► Non-convex, non-unique solutions.

NMF for source separation

- Assume that we have data from each individual source, stored columnwise in matrices U_i .
- ▶ During training, fit NMF for each matrix U_i → learn S non-negative bases W_i .
- ▶ During testing, want to separate *v*:

$$\min_{\substack{h_i \geq 0 \\ i=1,\dots,S}} \|v - \sum_{i=1}^{S} W_i h_i\|^2 + \mu_H \sum_{i=1}^{S} \|h_i\|_1.$$

- ▶ After solving $W_i h_i$ should approximate the *i*-th source.
- ▶ Define $W = [W_1 \cdots W_S]$, $h = [h_1^T \cdots h_S^T]^T$, write problem as

$$\min_{h>0} \|v - Wh\|^2 + \mu_H \|h\|_1.$$

Post-process with Wiener filter to ensure that the sources sum to v:

Separated signals
$$u_i = v \odot \frac{W_i h_i}{\sum_{i=1}^{S} W_i h_i}$$
.

MNIST data

Figure: Zero digits and one digits from the MNIST dataset. For each source (each digit) we have N=2500 grayscale images with resolution 28×28 , which can be stored in a matrix $U_i\in\mathbb{R}_+^{784\times 2500}$

NMF basis vectors

Figure: NMF basis vectors (columns of W_0 and W_1) for zero digits and one digits using N=2500 images each and d=16 basis vectors.

NMF projections

Figure: NMF projections (columns of W_0H_0 and W_1H_1) using N=2500 and d=16 for zero and one digits onto their respective bases.

NMF separation

NMF interpreted as projection onto convex cone

Define the convex cone $C(W) = \{Wh : W \in \mathbb{R}_+^{M \times d}, h \in \mathbb{R}_+^d\}$.

NMF taining can be formulated as the bi-level problem

$$\label{eq:weights} \begin{split} \min_{W\geq 0} \|U-WH(U)\|_F,\\ \text{where } H(U) = \arg\min_{\hat{H}\geq 0} \|U-W\hat{H}\|_F. \end{split}$$

where the upper part consists of fitting the cone C(W).

Lower level training/test problem is projecting u onto the cone C(W)

$$\min_{h\geq 0} \|u - Wh\| = \min_{v \in C(W)} \|u - v\| = \|u - P_{C(W)}(u)\| = d_{C(W)}(u)$$

where $P_{C(W)}(u) = Wh(u)$ is the projection onto C(W), and $d_C(u)$ is the distance to C(W).

Can we do better than fitting the convex cones individually? Can we use more of the data available?

Data setting

- ▶ Distribution of individual sources, $u_i \sim \mathbb{P}_{U_i}$.
- ▶ Distribution of measured mixed signals $v \sim \mathbb{P}_V$.
- ▶ Joint distribution $(v, u_1, ..., u_s) \sim \mathbb{P}_{V \times U_1 \times ... \times U_s} = \mathbb{P}_{V \times U}$.

Data setting

- ▶ Distribution of individual sources, $u_i \sim \mathbb{P}_{U_i}$.
- ▶ Distribution of measured mixed signals $v \sim \mathbb{P}_V$.
- ▶ Joint distribution $(v, u_1, ..., u_S) \sim \mathbb{P}_{V \times U_1 \times ... \times U_S} = \mathbb{P}_{V \times U}$.
- ▶ **Supervised**: Have access to \mathbb{P}_U , \mathbb{P}_V and the joint $\mathbb{P}_{V \times U}$.
- ▶ **Unsupervised**: Have access to individual sources \mathbb{P}_{U_i} , mixed signals \mathbb{P}_V , but not joint $\mathbb{P}_{V \times U}$.
- ➤ **Synthetic supervised**: Unsupervised, but we use the forward model to create supervised data.
- ► We are interested in the unsupervised case where creating synthetic supervised data is infeasible.

Supervised data setting

Figure: Supervised: Have access to all labeled data and joint between them.

Unsupervised data setting

Figure: Unsupervised: Only have access to individual labeled data, but no "links" between them. We also do not have $\mathbb{P}_U = \mathbb{P}_{U_0 \times U_1}$.

Source separation with regularization functions

Regularization approach to source separation with pre-trained regularization functions R_i :

$$\min_{u_i,\forall i} \frac{1}{2} \| \sum_{i=1}^{S} u_i - v \|^2 + \sum_{i=1}^{S} \lambda_i R_i(u_i).$$

where $\lambda_i > 0$ are regularization parameters.

Goal: Learn suitable $R_i \rightarrow$ learn sets C_i that approximate the data and select $R_i = d_{C_i}$.

Adverserial regularization functions for source separation

Based on work by S. Lunz, O. Öktem and C. Schönlieb (*Adversarial Regularizers in Inverse Problems*, 2018)

- ▶ Define true data for source i, $u_i \sim \mathbb{P}_{U_i}$.
- ▶ Define the adverserial data for source i, \mathbb{P}_{Z_i} , which we choose as data from other sources and mixed data.
- $ightharpoonup R_i$ should be small for data belonging to \mathbb{P}_{U_i} .
- $ightharpoonup R_i$ should be large for data belonging to \mathbb{P}_{Z_i} .
- $ightharpoonup R_i$ should be sufficiently regular.

Fit regularization function by solving

$$\min_{R_i \in \Theta: \|R\|_L \le 1} \mathbb{E}_{u \sim \mathbb{P}_{U_i}}[R_i(u)] - \mathbb{E}_{u \sim \mathbb{P}_{Z_i}}[R_i(u)]$$

where Θ is a parameterized space of functions, like neural networks, and $\|.\|_{\ell}$ denotes the Lipschitz constant.

Wasserstein Distance

$$\mathbb{W}(\mathbb{P}_{Z}, \mathbb{P}_{U}) = \min_{R: ||R||_{V} < 1} \mathbb{E}_{u \sim \mathbb{P}_{U}}[R(u)] - \mathbb{E}_{u \sim \mathbb{P}_{Z}}[R(u)]$$

is the (dual form of the) Wasserstein distance between the probability distributions \mathbb{P}_U and \mathbb{P}_Z .

Using the Wasserstein distance for learning structures of distributions in machine learning was popularized in work by M. Arjovsky et. al (*Wasserstein GAN* 2017).

Adverserial regularization as distance to convex set

Idea: Parameterize regularization function $R(u) = ||u - P_C(u)|| = d_C(u)$, where C is a convex set, specifically a convex cone.

- ► *R* is convex.
- ightharpoonup R is Lipschitz continuous with constant L=1.
- ► *R* has an easily computable proximal operator (soft-thresholding).
- ▶ If *C* is a convex cone, *R* is positive 1-homogenous: R(cu) = cR(u) for c > 0.
- Naturally links to existing methods like NMF/SVD, autoencoders, GANs...

Adverserial NMF (ANMF)

Minimize Wasserstein distance where *R* is constrained to the distance to convex cones:

$$\begin{split} & \min_{W \geq 0} \mathbb{E}_{u \sim \mathbb{P}_{U}}[d_{C(W)}(u)] - \mathbb{E}_{u \sim \mathbb{P}_{Z}}[d_{C(W)}(u)] \\ & \approx \min_{W \geq 0} \frac{1}{N_{r}} \sum_{i=1}^{N_{r}} \|u_{r}^{(i)} - Wh(u_{r}^{(i)})\|_{2} - \frac{1}{N_{z}} \sum_{i=1}^{N_{z}} \|u_{z}^{(i)} - Wh(u_{z}^{(i)})\|_{2} \\ & \text{where } h(u) = \arg\min_{\hat{h} \geq 0} \|u - W\hat{h}\|. \end{split}$$

- ▶ If we ignore the second term, this is just standard NMF.
- ► Can alternatively use Frobenius (squared) norm instead of 2-norm.
- ▶ With ANMF we want to both fit the true data \mathbb{P}_U well and the adverserial data \mathbb{P}_Z poorly.

Weighted ANMF

Problem: NMF is already low complexity \to NMF is bad at reconstructing data that is not in \mathbb{P}_U .

Weighted ANMF

Problem: NMF is already low complexity \rightarrow NMF is bad at reconstructing data that is not in \mathbb{P}_U .

Solution: Fit a mix between NMF and ANMF

$$\begin{split} & \min_{W \geq 0} (1 - \frac{\tau}{\tau}) \underbrace{\mathbb{E}_{u \sim \mathbb{P}_U}[d_{C(W)}(u)]}_{\text{NMF}} + \underbrace{\tau}_{\underbrace{\left(\mathbb{E}_{u \sim \mathbb{P}_U}[d_{C(W)}(u)] - \mathbb{E}_{u \sim \mathbb{P}_Z}[d_{C(W)}](u)\right)}_{\text{ANMF}} \\ &= \min_{W \geq 0} \mathbb{E}_{u \sim \mathbb{P}_U}[d_{C(W)}(u)] - \underline{\tau} \mathbb{E}_{u \sim \mathbb{P}_Z}[d_{C(W)}(u)], \end{split}$$

where $0 \le \tau \le 1$ is a tuning parameter chosen a priori.

Low τ values \rightarrow fit real data well.

High τ values \rightarrow fit adverserial data poorly.

Numerical algorithm for NMF

Multiplicative algorithm popularized by D. Lee and H. Seung (*Algorithms for Non-Negative Matrix Factorization* 2001).

Multiplicative updates for fitting NMF to the matrix U with (quared) Frobenius norm:

$$W \leftarrow W \odot \frac{UH^{T}}{WHH^{T} + \mu_{W}}$$
$$H \leftarrow H \odot \frac{W^{T}U}{W^{T}WH + \mu_{H}}$$

All updates are non-negative, can prove that this converges to local minimizer. Initialize with non-negative random matrices.

For large datasets, divide *U* and *H* into batches and apply updates for each batch, Stochastic Multiplicative Update.

Numerical algorithm for ANMF

Similarly, we obtain multiplicative updates for fitting ANMF to $U_r \approx WH_r$ and adverserially to $U_z \neq WH_z$ with $N_r = N_z$ in squared Frobenius norm:

$$W \leftarrow W \odot \frac{U_r H_r^T + W H_z H_z^T}{U_z H_z^T + W H_r H_r^T + \mu_W}$$
$$H_r \leftarrow H_r \odot \frac{W^T U_r}{W^T W H_r + \mu_H}$$
$$H_z \leftarrow H_z \odot \frac{W^T U_z}{W^T W H_z + \mu_H}$$

Complexity scales with the total amount of data \rightarrow use standard NMF as warm start initial conditions.

Convergence of NMF and ANMF algorithms

Figure: Convergence of numerical algorithms for NMF (left) and ANMF (right) with different batch sizes. N=2500, d=32, $\tau=1.0$. For both experiments choosing the batch size to be 0.1N yields the best results as well as shortest computation time.

SCSS with NMF and ANM

Figure: Real mixed and unmixed images test data.

SCSS with NMF and ANMF

Figure: True data, NMF recovered and ANMF recovered solutions with d=32, $\tau=0.5$, N=2500.

SCSS with NMF and ANMF

Figure: True data, NMF recovered and ANMF recovered solutions with d=32, $\tau=0.5$, N=2500.

SCSS with ANMF for different *d*

Figure: Comparison of separatation accuracy (distance between recovered and real data) for NMF and ANMF with different τ using 800 test data. All experiments are done using 100 epochs of training.

Generalization to any generative method

Generator	$g_C:H o C$	$g_{\mathcal{C}}(h) = Wh$
Projection	$P_C:X\to C$	$P_C(v) = g(\arg\min_{h \in H} v - g(h))$
		$= \arg\min_{u \in C} \ v - u\ $
Distance	$d_C:X\to\mathbb{R}_+$	$d_C(v) = \min_{u \in C} \ v - u\ $
		$= \ v - P_C(v)\ $

Different testing problems:

$$\min_{u_i} \| \sum_i u_i - v \|^2 + \sum_i \lambda_i d_{C_i}(u_i)$$

$$\lambda_i \to \infty \implies \min_{h_i \in H} \| \sum_i g_i(h_i) - v \| = \min_{u_i \in C_i} \| \sum_i u_i - v \|$$

$$\lambda_i \to 0 \implies \min_{u_i, \sum_i u_i = v} \sum_i \mu_i d_{C_i}(u_i)$$