基于收益预测和 CVaR 约束的投资组合优化

袁靖松

金融数学专题展示

2023.12

Outline

- 1 研究背景
- 2 理论模型
- 3 数据实验
- 4 结论与不足

改进期望收益

Mean-Variance 存在缺陷,模型建立在资产收益率服从正态分布等诸多限制性假设之上;均值作为期望收益与实际市场不符;低通滤波;不适于短期投资;

Figure 1: Distribution

改进风险度量

- 使用方差度量风险
 - 对异常值敏感, 极端风险事件, 会显著影响方差计算;
 - 只关注收益率分布的前两矩,忽略分布的尾部;
- ② 使用 CVaR 来度量风险损失
 - 对异常值不敏感
 - 不依赖分布假设
 - 考虑分布的尾部, 更好处理异常值
- ◎ 结合机器学习方法与现代投资组合优化理论 [1]

资产及收益率

- N 种资产
- 收益率矩阵 N×T

$$R = \begin{bmatrix} r_1^1 & r_1^2 & r_1^3 & \dots & r_1^T \\ r_2^1 & r_2^2 & r_2^3 & \dots & r_2^T \\ r_3^1 & r_3^2 & r_3^3 & \dots & r_3^T \\ \dots & \dots & \dots & \dots & \dots \\ r_N^1 & r_N^2 & r_N^3 & \dots & r_N^T \end{bmatrix} = \begin{bmatrix} R_1 & R_2 & R_3 & \dots & R_T \end{bmatrix}$$

其中 R_t 为 t 时期 N 种资产的收益率矩阵;

权重矩阵 N×1

$$w = \begin{bmatrix} w_1 & w_2 & w_3 & \dots & w_N \end{bmatrix}^T$$

VaR 及 CVaR

● 价值损失函数

$$L(w,R) = -w^T R$$

其中, $w \in W \subseteq \mathbb{R}^N$, W 为可行集; \mathbb{R} 为随机变量, 密度函数为 $P(\mathbb{R})$:

• L(w,R) 是依赖于 w 的随机变量,小于临界值 λ 的概率为:

$$\varphi(w,\lambda) = \int_{L(w,R) \le \lambda} P(R) dR$$

• 置信水平: $\alpha \in (0,1)$

$$\begin{aligned} \mathsf{VaR} : \lambda_{\alpha}(w) &= \mathsf{inf}\{\lambda \in R; \varphi(w,\lambda) \geq \alpha\} \\ \mathsf{CVaR} : \phi_{\alpha}(w) &= E[L(w,R)|L(w,R) \geq VaR(w)] \\ &= \frac{1}{1-\alpha} \int_{L(w,R) \geq \lambda_{\alpha}(w)} L(w,R) P(R) dR \end{aligned}$$

 利用 Rockafellar 和 Uryasev 同时计算 VaR 和 CVaR 的功 能函数 $F_{\alpha}(w,R)$ 有

$$F_{\alpha}(w,\lambda) = \lambda + \frac{1}{1-\alpha} \int_{R \in \mathbb{R}^{N}} [L(w,R) - \lambda]^{+} P(R) dR$$

其中, λ 即 VaR 值, $[0,x]^+ = \max(0,x)$

- Rockafellar 和 Uryasev 提出,当 P(R) 的解析式未知时,可 以使用基于历史数据的情景分析法,产生情景矩阵,将多重 积分转化为求和运算;
- 假设有 m 种情况,可以取 N 种债券 m 个时期的收益率 [3]

$$\widehat{F}_{\alpha}(w,R) = \lambda + \frac{1}{m(1-\alpha)} \sum_{t=1}^{m} [L(w,R_t) - \lambda]$$

优化问题建模

- CVaR 最小化
 - 目标函数 (决策变量: w)

$$\min_{w} \lambda + \frac{1}{m(1-\alpha)} \sum_{t=1}^{m} [-w^{T}R_{t} - \lambda]$$

约束条件

$$s.t. \ w^T I = 1$$
$$w \ge 0$$

- ② 方差最小化
 - 目标函数 (决策变量: w)

$$\min_{w} w^T \Sigma w$$

约束条件

s.t.
$$w^T I = 1$$

$$w \ge 0$$

数据及因子

- 历史数据
 - 沪深 300 名单内股票及指数月度收益数据
 - 时间范围 2005.04(month85) 至 2021.12(month285)
- ② 部分因子

● 财务因子: 利润能力、偿债能力、资产周转率、现金流;

• 成长因子: 营收增长、利润增长、现金流增长;

• 市场因子: 股价相关、市值因子、动量;

● 其他因子: 风险、交易量、评级、股东持股变化、技术指标;

财务因子	成长因子	市场因子	风险因子	技术指标	其他因子
ROE_q	Sales_G_q	return_1m	beta	macd	LN_capital
ROE_ttm	Profit_G_q	return_3m	std_1m	dea	HAlpha
ROA_q	OCF_G_q	return_6m	std_3m	dif	grossprofitmargin_q

Table 1: Factors

选股及预测

- 打分法选股
 - 线性回归模型拟合训练集数据
 - 使用回归系数、信息系数、因子协方差法为因子分配权重
 - 根据不同股票的因子,得到分数较高的股票
- ② 预测测试集收益率
 - 使用 PCA 进行因子合成 (Number of components based on Kaiser Criterion: 16)

Figure 2: Scree Plot

优化问题重构

- 决策变量为 weights
- ② 根据历史数据计算 VaR
 - 历史组合收益 Portfolio return = Weights.T×R
 - 置信水平为 $\alpha = 99\%$
 - 拟合组合收益的分布, 取 1% 处分位数为 VaR 值 = λ
- ◎ 加入预测数据计算 CVaR(目标函数)
 - 合并过去 40 个月历史数据,及预测的下 1 个月数据,形成 新的数据集
 - 代入 m, α , $L(w, R_t) = -Weights. T \times R_t$, λ 到之前的解析式中

$$\widehat{F}_{\alpha}(w,R) = \lambda + \frac{1}{m(1-\alpha)} \sum_{t=1}^{m} [L(w,R_t) - \lambda]$$

Rolling Window

- 投资目标是短期投资
- ② 使用滚动训练的方法调整
 - 训练集最少使用 60 个月的数据, 最多不超过 84 个月
 - 测试集是训练集之后的 3 个月
 - 每3个月更新一次训练集及测试集
 - 测试集每个月轮动一次,持仓时间实际上是 1 个月
 - 测试集使用上一个月的因子数据,结合打分法选出下一个月的股票(避免未来函数)

Figure 3: Framework

回测思路

- 三种因子分配权重方法
 - 按回归系数归一化配比
 - 按信息系数归一化配比
 - 按协方差矩阵的逆做配比
- ② 两种最优权重求解方法
 - Mean-Variance 模型最小方差组合的权重
 - 使 CVaR 值最小的权重
- ③ 与沪深 300 指数的收益对比
 - 将最优权重分别代入当月的实际收益率, 计算组合收益
 - 将组合的收益与沪深 300 指数的收益对比

策略收益表现-Coef

- 没有稳定明显地跑赢指数,CVaR 策略小幅度优于 MV 策略
- 交易因子和财务因子,占较大权重

Figure 4: Return and Compound Value

策略回撤-Coef

- 两种策略最大回撤在 20% 30%, 总体上回撤幅度低于指数
- 大幅回撤发生在 2020 年 5 月份之后

Figure 5: Drawdown Comparison Coef

策略收益表现-IC

- 总体上完全可以跑赢指数, CVaR 策略完全优于 MV 策略;
- 2015 年股市异常波动,高杠杆场外配资是股市异常波动主要原因; 2020 年年初,选股策略失效,可能是受疫情影响;

Figure 6: Return and Compound Value

策略回撤-IC

- 在 2019 年末及 2020 年初,回撤幅度大幅增加
- 财务因子及股价因子, 占较大权重

Figure 7: Drawdown Comparison IC

策略收益表现-Corr

- 总体上大幅跑赢指数,CVaR 策略逐步优于 MV 策略;
- 2015 年异常波动; 2019 年年初异常波动, 处于 18 年以来 衰退末期, 风险偏好回升, 估值修复;

Figure 8: Return and Compound Value

策略回撤-Corr

- 总体上回撤幅度较小
- 股价及增长率因子占比为主,重视技术及情绪因子
- 疫情之后,传统的成长,动量等因子逐渐失效,估值,盈利, 杠杆,非线性市值等因子表现突出

Figure 9: Drawdown Comparison Corr

策略对比

- CVaR 策略基本优于 MV 策略,使用 Corr 方法选股 +CVaR 策略最优
- 10 年期平均年化收益率 15%

策略	最大回撤	夏普比率	信息比率	年化收益率	收益回撤比
Coef	29.901%	1.272	-0.556	3.450%	11.538%
CVaR_coef	26.713%	1.510	-0.309	4.867%	18.218%
lc	28.526%	1.345	-0.526	3.739%	13.108%
CVaR_ic	42.263%	1.395	-0.484	4.025%	9.524%
Corr	17.969%	2.884	0.396	9.346%	52.009%
CVaR_Corr	16.723%	3.256	1.149	15.199%	90.889%
hs300	40.558%	1.336	0.000	6.845%	16.877%

Table 2: Strategy Comparison

小结

- CVaR 策略具有一定可行性
 - 投资组合的权重决策,基本优于 MV 最小方差策略
 - CVaR 对损失风险更加敏感,投资组合的波动性更小
 - 一定程度避免了人为模型设定误差和参数估计误差
 - 同时获取超额收益的能力具有一定保障
- ② CVaR 策略的有效性受到诸多条件的影响
 - 数据集划分、轮动周期
 - 因子的数量及有效性
 - 选股方法及选股数量

不足

研究背景

- 数据量小
 - 只筛选出了沪深 300 的股票,整体的数据量较低
 - 需要较多的历史数据才能拟合的比较精准
 - 但历史数据的有效样本略微不足
 - 月度数据,策略实效性较低
- ② 历史数据选取时段缺乏标准(40个月)
 - 过去时段过短,样本量少,反映尾部分布特征的样本较少
 - 过去时段过长,样本量过多,收益率分布函数可能变化,无 法反映先期收益率的分布特征
- ③ 没有考虑投资者观点
 - 只考虑了风险指标
 - 缺少对资产预期收益率的观点
 - 只适合极端风险厌恶的投资者
 - 理想的模型应该是权衡收益与风险的

针对 CVaR 策略的改进方向

- 改进目标函数的估计方法
 - $F_{\alpha}(w,\lambda) = \lambda + \frac{1}{1-\alpha} \int_{R \in \mathbb{R}^N} [L(w,R) \lambda]^+ P(R) dR$
 - 目标函数中包含极大值函数,是非光滑凸规划问题
 - 考虑使用非参数核估计方法 [5]
- ② 改进约束条件
 - 考虑交易成本
 - 加入投资者观点,如定价误差参数、预期收益率等 $w^TR \geq \pi$
 - 梯度计算公式 + 迫近束求解 [2]
 - 假设一种分布,如非对称-Laplace 分布 [4]
- ◎ 改进代码实现方法
 - 尝试更多 ML/DNN 方法选股及预测
 - 改进滚动及调仓周期
 - 改进因子配比方法
 - 使用更高频数据

因子权重

● 三种方法对应的因子权重

Coef	IC	;	Corr		
Factors	Weights	Factors	Weights	Factors	Weights
turn_6m	0.11	EP	0.07	EP	0.18
exp_wgt_return_12m	0.06	EPcut	0.06	EPcut	0.14
turn_12m	0.05	ROE_ttm	0.06	BP	0.10
bias_turn_6m	0.04	Profit_G_q	0.06	SP	0.09
exp_wgt_return_1m	0.03	ROE_q	0.05	NCFP	0.07
turn_3m	0.03	OCFP	0.05	OCFP	0.07
exp_wgt_return_6m	0.03	ROE_G_q	0.04	DP	0.06
return_1m	0.03	SP	0.04	G/PE	0.06
std_6m	0.03	DP	0.04	Sales_G_q	0.06
std_1m	0.03	ROA_ttm	0.03	Profit_G_q	0.05

Table 3: Weights of Factors

と文献し

IEEE Access, 8:115393-115405, 2020.

Li Jia Tong, Jie Shen, and Na Xu. An infeasible incremental bundle method for nonsmooth optimization problem based on cvar portfolio. Complexity, 2021.

📄 荣喜民 and 夏江山. 基于 cvar 约束的指数组合优化模型及实证分析. 数理统计与管理, 26(4), 2007.

参考文献 ||

- i 黄金波, 吴莉莉, and 尤亦玲. 非对称 laplace 分布下的均值-var 模型. 中国管理科学, 30(5):31–40, 2022.
- 量 黄金波, 李仲飞, and 姚海祥. 基于 cvar 核估计量的风险管理. 管理科学学报, 17(3):49-59, 2014.

Thank You!