QR-D	Decomposition:					
s A	1	0	١	1		
***	-1	١	١	1		
	1,	0	ι			
	1-1	1	1			

R2+ Ry= fy 11 R1-P3= R3.

1	7:	\	0	١.	
		- (,	Ø.1	
	\	0	0	0	
		0	(0 0	

: Rank=2. which is less then 3 (no of voril

so that columns vector are not linearly

Independen: Therefore QP - decomposition

not possible.

for OP decomposions

$$\begin{cases} (v_1, v_1)(v_2, v_3)(v_3, v_4) & 0, = \begin{bmatrix} 1 & v_1 = 0 \\ 0 & v_2 = 0 \end{bmatrix}; v_3 = \begin{bmatrix} 1 & v_2 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_4 = \begin{bmatrix} 1 & v_2 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_5 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_4 = 0 \end{bmatrix}; v_5 = \begin{bmatrix} 1 & v_2 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_5 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_6 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_7 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_8 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_9 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_9 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_9 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_9 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_9 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_9 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_9 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_9 = \begin{bmatrix} 1 & v_3 = 0 \\ 0 & v_3 = 0 \end{bmatrix}; v_9 = \begin{bmatrix} 1 &$$

(V3.92) = [2] [1/66 2/16 -1/16]
2 2 [6/3

 $R = \begin{bmatrix} 12 & 12 & 12 \\ 0 & 13 & -\frac{13}{3} \\ 0 & 0 & \frac{2}{3} \end{bmatrix}$

A = \frac{\gamma_{12} -\gamma_{13} \gamma_{16}}{0 \quad \gamma_{16} \quad \gamma_{16}} \quad \frac{\frac{1}{2} \quad \frac{1}{2} \quad \quad \frac{1}{2} \quad \quad \frac{1}{2} \quad \quad \frac{1}{2} \quad \frac{1}{2} \quad \quad \frac{1}{2} \quad \quad \frac{1}{2} \quad \quad \frac{1}{2} \quad \qu

> Find characteristic equation and dimension of cijenspace" · O = (A-IX) (D) del = 0. (1-1) (1-4) = 4 = 0. 12-41-1+484=0 12-5x 20. > (x-5)=0. one dimension

D 0 0 0 Red (17-A)=0. -1 0 = 0. let. 1-1 0. 3 X 0 0 O x 1-1 1-1 =) (1-1) (12-2). +1(-2). 0 13-12-12+X-X=0 13-212=0. 12 (1-21=0 1=0. Now for 0 0. 0 0. -1 -1 0 -O O Ö Rt-65=67 0 0 -1 0 0 0 O 0 O -- X1 - X2 = 0. n 3 -

1	. 1	0	0	
(1	a	0	
0	۵	2	0	

Coram Schmidt process. Apply PP1 = P1 1,9/ PPL = Pz 1821 -> PP= = P3 (F=). - /G /G 0] = [/2 /2 0] - /12 0 1/52 12 152 1/1/2 -1/52 PT= 752 D2 PTAA -74. 617 Y25 -1/52 752 152 Xer Xer 09 0