

INFRASTRUCTURE DIGITALE

COMPRENDRE LES ENJEUX D'UN SYSTÈME D'INFORMATION (SI)

OBJECTIF

A l'issue de ce module de compétence, vous serez capable d'identifier les éléments constitutifs d'un SI au sein des entreprises.

75 heures

SOMMAIRE

PARTIE 1

Acquérir les connaissances de base sur les systèmes d'information

Chapitre 1 : Notion de SI, Système

informatique et SI Informatisé

Chapitre 2: Fonctions et types du SI

Chapitre 3 : Composantes d'un SI

informatisé

PARTIE 2

Comprendre la notion d'infrastructure informatique

Chapitre 1:1 - Notion

d'infrastructure informatique

Chapitre 2 : Rôle de l'infrastructure

informatique

Chapitre 3 : Gestion de

l'infrastructure informatique

PARTIE 3

Comprendre les différentes architectures de SI

Chapitre 1: Notion

d'architecture de SI et son

importance

Chapitre 2 : Modélisation de

l'architecture de SI

PARTIE 4

Comprendre le fonctionnement d'une base de données

Chapitre 1: concepts relatifs aux

bases de données

Chapitre 2 : Éléments de base

permettant l'implémentation et

l'utilisation d'une BD relationnelle

Chapitre 3: particularités des BD NoSQL

PARTIE 1

ACQUÉRIR LES
CONNAISSANCES DE
BASE SUR LES
SYSTÈMES
D'INFORMATION

COMPRENDRE LA NOTION DE SYSTÈME D'INFORMATION (SI)

- 1 Notion de SI, Système informatique et SI Informatisé
- 2 Fonctions et types du SI
- 3 Composantes d'un SI informatisé

Définitions du Système d'Information

Le SI est <u>une représentation</u> possible de n'importe quel système, notamment tout système humain organisé.

Le SI est le <u>véhicule de la communication</u> dans l'entreprise. Cette communication possède un **langage** dont les mots sont les **données**.

Le système d'information est le système de <u>couplage</u> entre le <u>système</u> <u>opérant</u> et le <u>système de pilotage</u>.

Notion de système d'information (SI), système informatique et SI informatisé

Système informatique et SI informatisé

Le système informatique d'une entreprise est l'ensemble de ressources informatiques matérielles et logicielles permettant d'implémenter une partie du système d'information.

Le système d'information informatisé est un sous-ensemble du système d'information qui utilise le système informatique.

A ne pas confondre

COMPRENDRE LA

NOTION DE SYSTÈME

D'INFORMATION (SI)

- 1 Notion de SI, Système informatique et SI Informatisé
- 2 Fonctions et types du SI
- 3 Composantes d'un SI informatisé

Fonctions d'un système d'information

Saisie : Saisie des données faisant partie du SI pour qu'elles aient une existence réelle.

Mémorisation : Permet de retrouver la donnée ultérieurement (persistance)

Traitement : Permet d'accéder aux données, les mettre à jour et les mettre en forme.

Communication : Permet la communication entre les différents acteurs internes et externes à l'entreprise.

Types de système d'information

Système de pilotage

SI de Pilotage (ou SI Décisionnel)

SI Opérationnel

Système opérant

Organisme

Fonctions et types de système d'information

Le SI opérationnel (ou Opérant) est le système dans lequel s'effectuent les transformations physiques ou intellectuelles sur les flux qui traversent l'entreprise en vue de produire des sorties valorisées.

Il prend en charge la gestion courante de l'entreprise :

- · Gestion du personnel
- Gestion de la production
- Gestion de stocks
- Facturation
- Comptabilité

Fonctions et types de système d'information

Le SI décisionnel (ou de pilotage) est le système dans lequel les décisions sont prises concernant :

- les objectifs assignés au système opérant
- l'affectation des ressources au système opérant
- le contrôle des résultats obtenus
- la régulation

COMPRENDRE LA

NOTION DE SYSTÈME

D'INFORMATION (SI)

- 1 Notion de SI, Système informatique et SI Informatisé
- 2 Fonctions et types du SI
- 3 Composantes d'un SI informatisé

Composantes d'un SI informatisé

INFRASTRUCTURE INFORMATIQUE

CARACTÉRISTIQUES ET
UTILISATIONS DU SI
OPÉRATIONNEL PAR
RAPPORT À CELLES DU SI
DÉCISIONNEL

1 - SI opérationnel Vs SI décisionnel

- 2 BD Production Vs Entrepôt de données
- 3 OLTP Vs OLAP
- 4 Architecture et utilisations d'un SI décisionnel

SI Opérationnel VS SI Décisionnel

SI Décisionnel Informations Consultation uniquement Image successives de l'entreprise dans le temps (historique) Accessibles directement aux utilisateurs BD Multidimensionnelles Entrepôt de données

CARACTÉRISTIQUES ET
UTILISATIONS DU SI
OPÉRATIONNEL PAR
RAPPORT À CELLES DU SI
DÉCISIONNEL

- 1 SI opérationnel Vs SI décisionnel
- 2 BD Production Vs Entrepôt de données
- 3 OLTP Vs OLAP
- 4 Architecture et utilisations d'un SI décisionnel

Base de données de production :

C'est la base contenant les données relatives au système d'information opérationnel.

Les données sont :

- précises,
- non agrégées
- et d'une utilisation orientée vers le présent.

Les données ne contiennent pas d'historique.

Les données ne contiennent pas d'informations externes à l'entreprise.

On peut avoir plusieurs bases de données, une base par domaine.

Pour pouvoir être utilisées à des fins décisionnelles, ces données doivent être transformées et enrichies par des données externes.

Entrepôt de données

C'est une base contenant les données relatives au **système d'information décisionnel**.

Les données sont :

très peu précises,

agrégées

et d'une utilisation orientée vers le futur.

Les données représentent l'historique de l'entreprise.

Présence d'informations externes à l'entreprise.

Généralement une seule base de données mais assez volumineuse.

Utilisable directement par des décideurs.

Alimentée périodiquement à partir de base(s) de données de production.

Utilisée exclusivement en consultation

BD Production VS Entrepôt de données

Caractéristiques	Base de production	Entrepôt de données
Type de contenu	<u>Données</u> de gestion	<u>Informations</u> stratégiques
Type d'utilisateurs	Gestionnaires	Décideurs, Analystes
Redondance	Très peu	Fréquente
Types d'accès	Consultation et mise à jour	Uniquement consultation
Utilisation	Transactionnelle (OLTP)	Décisionnelle (OLAP)
Historique	Quelques jours ou quelques mois	Des années
Exigences en performances	Sévères	Lâches

CARACTÉRISTIQUES ET
UTILISATIONS DU SI
OPÉRATIONNEL PAR
RAPPORT À CELLES DU SI
DÉCISIONNEL

- 1 SI opérationnel Vs SI décisionnel
- 2 BD Production Vs Entrepôt de données
- 3 OLTP Vs OLAP
- 4 Architecture et utilisations d'un SI décisionnel

OLTP VS OLAP

Les applications informatiques peuvent être classées en deux catégories :

Applications OLTP (On-Line Transactional Processing)

Applications OLAP (On-Line Analytical Processing)

Applications OLTP

L'intégrité et la sécurité des données sont privilégiées.

Requêtes simples

- Utilisées par des services de gestion : commerciaux, administratifs, production, etc..
- Nécessitent la connaissance des structures des données.
- Utilisent des bases de données de production
- Manipulent des données homogènes.
- Nombre d'utilisateurs simultanés important.
- Applications critiques.

Exemples d'applications:

Gestion bancaire

Systèmes de réservation

Gestion commerciale, personnel, production, etc.

Applications OLAP

L'analyse et la manipulation des données sont privilégiées.

Requêtes complexes

- Applications d'aide à la décision
- Utilisées par hauts responsables, les services marketing, financiers, contrôleurs de gestion, etc..
- Ne nécessitent pas la connaissance des structures des données.
- Utilisent des data warehouses
- Manipulent des données hétérogènes.
- Nombre d'utilisateurs simultanés relativement faible.

Exemples d'applications:

Analyse des tendances

Analyse des comportements

CARACTÉRISTIQUES ET
UTILISATIONS DU SI
OPÉRATIONNEL PAR
RAPPORT À CELLES DU SI
DÉCISIONNEL

- 1 SI opérationnel Vs SI décisionnel
- 2 BD Production Vs Entrepôt de données
- 3 OLTP Vs OLAP
- 4 Architecture et utilisations d'un SI décisionnel

Architecture et utilisation d'un SI décisionnel

Quelques utilisations du SI décisionnel

Clientèle:

- Qui sont nos clients?
- Pourquoi sont-ils nos clients?
- Comment les conserver ou les faire revenir ?
- Ces clients sont-ils intéressants pour nous ?

Marketing:

- Où placer ce produit dans les rayons?
- Comment cibler plus précisément le mailing concernant ce produit ?

Ventes:

- Prévision des ventes dans un hypermarché pendant un week-end.
- Prévision du personnel

Pour aller plus loin ...

PARTIE 2

IDENTIFIER LES DIFFÉRENTES
INFRASTRUCTURES
INFORMATIQUES

COMPRENDRE LA NOTION
D'INFRASTRUCTURE
INFORMATIQUE

1 - Notion d'infrastructure informatique

- 2 Rôle de l'infrastructure informatique
- 3 Gestion de l'infrastructure informatique

Notion d'infrastructure informatique

L'infrastructure informatique regroupe l'ensemble des équipements matériels et logiciels d'une entreprise.

L'ensemble de ces éléments, connectés entre eux, forme l'infrastructure informatique.

On parle également de système informatique.

Les principaux éléments constitutifs d'une infrastructure principaux éléments d'une in

Les principaux éléments constitutifs d'une infrastructure informatique sont :

- Stations de travail,
- Serveurs,
- Equipements réseau,
- Logiciels de base (OS, SGBD, Middleware...),
- Equipements périphériques (imprimantes, scanners, ...)

COMPRENDRE LA NOTION
D'INFRASTRUCTURE
INFORMATIQUE

- 1 Notion d'infrastructure informatique
- 2 Rôle de l'infrastructure informatique
- 3 Gestion de l'infrastructure informatique

Rôle de l'infrastructure informatique

Le rôle de l'infrastructure informatique est de donner aux collaborateurs d'une entreprise un accès aisé, continu et sécurisé aux applications et aux données de l'entreprise.

L'infrastructure informatique doit être bien entretenue pour assurer le fonctionnement continue de l'entreprise

COMPRENDRE LA NOTION
D'INFRASTRUCTURE
INFORMATIQUE

- 1 Notion d'infrastructure informatique
- 2 Rôle de l'infrastructure informatique
- 3 Gestion de l'infrastructure informatique

Gestion de l'infrastructure informatique

L'infrastructure informatique est gérée par :

- les responsables des infrastructures informatiques,
- les chefs de projet infrastructure informatique,
- des ingénieurs systèmes/réseaux
- des administrateurs système/réseaux

3. Gestion de l'infrastructure informatique

La gestion de l'infrastructure informatique consiste à :

- Mettre en place une organisation du parc informatique,
- Installer le parc informatique,
- Définir et anticiper les besoins en matière de matériel informatique et de logiciels,
- Maintenir le parc informatique,
- Renouveler les équipements usagés, endommagés, hors d'usage, obsolètes,
- Assister les utilisateurs.

IDENTIFIER LES ÉLÉMENTS

CONSTITUTIFS D'UNE

INFRASTRUCTURE

INFORMATIQUE

1 - Stations de travail, Serveurs et Réseaux

- 2 Systèmes d'exploitation
- 3 Infrastructures informatiques et virtualisation
- 4 Infrastructures informatiques et Cloud Computing

Stations de travail

Une station de travail est un dispositif matériel permettant à un utilisateur de réaliser confortablement les tâches relevant de son activité personnelle ou professionnelle.

Elle peut être :

- Un ordinateur de bureau,
- Un ordinateur portable,
- Une tablette,
- Un terminal de saisie

Serveur

Un serveur est un dispositif informatique (machine) qui dispose de ressources (matérielles ou logicielles) et qui accepte de les partager avec d'autres machines.

Il peut être :

- Un serveur de données,
- Un serveur d'applications,
- Un serveur web,
- Un serveur de messagerie,
- Un serveur d'impression,
- Un serveur de stockage, ...

Réseaux Informatiques

Un réseau informatique est un ensemble d'équipements reliés entre eux par des liaisons physiques ou non physiques.

Il permet:

- L'échange entre les différents équipements,
- Le partage des ressources,
- L'augmentation de la résistance aux pannes,
- La réduction des coûts,
- L'augmentation de l'accessibilité
 aux
 ressources informatiques
 (travail à distance)

IDENTIFIER LES ÉLÉMENTS

CONSTITUTIFS D'UNE

INFRASTRUCTURE

INFORMATIQUE

- 1 Stations de travail, Serveurs et Réseaux
- 2 Systèmes d'exploitation
- 3 Infrastructures informatiques et virtualisation
- 4 Infrastructures informatiques et Cloud Computing

Les systèmes d'exploitation

Le système d'exploitation est un **logiciel de base** permettant de **gérer** les différentes **composantes** d'un matériel informatique (station de travail, serveur, smartphone, tablette, ...).

Il constitue la couche **intermédiaire** entre le matériel et les différentes applications installées sur ce matieriel.

Principaux systèmes d'exploitation

Windows (Microsoft),

Windows 10 actuellement.

Mac OS (Apple) présent sur les ordinateurs Apple.

Big Sur actuellement.

Linux (Gratuit et libre),

Principales distribution Ubunto et RedHat.

Autres:

- Smartphones (Android, iOS, Windows PHONE)
- Solaris (Sun)
- AIX (IBM)
- VMS (DEC), ...

IDENTIFIER LES ÉLÉMENTS

CONSTITUTIFS D'UNE

INFRASTRUCTURE

INFORMATIQUE

- 1 Stations de travail, Serveurs et Réseaux
- 2 Systèmes d'exploitation
- 3 Infrastructures informatiques et virtualisation
- 4 Infrastructures informatiques et Cloud Computing

Infrastructure informatique et virtualisation

La virtualisation consiste à créer une version virtuelle des différentes composantes de l'infrastructure informatique de l'entreprise.

Chaque version virtuelle constitue une machine virtuelle.

Chaque machine virtuelle dispose de son système d'exploitation, ses applications et ses périphériques virtuels.

Chaque machine virtuelle peut être installée sur une ou plusieurs machines physiques.

Chaque machine physique peut héberger plusieurs machine virtuelles.

Infrastructure informatique et virtualisation

La gestion des machines virtuelles nécessite un logiciel approprié : Logiciel de virtualisation.

Exemples:

Avantages de la virtualisation

Partitionnement:

- Exécuter plusieurs systèmes d'exploitation sur une seule machine physique.
- Répartir les ressources système entre les machines virtuelles.

Isolation:

- Isoler la gestion des pannes et de la sécurité au niveau matériel.
- Garantir des performances élevées grâce à des contrôles avancés sur les ressources.

Encapsulation:

- Enregistrer l'état complet d'une machine virtuelle dans des fichiers.
- Déplacer et copier des machines virtuelles aussi facilement que des fichiers.

Indépendance vis-à-vis du matériel :

• Migrer n'importe quelle machine virtuelle sur n'importe quel serveur physique.

IDENTIFIER LES ÉLÉMENTS

CONSTITUTIFS D'UNE

INFRASTRUCTURE

INFORMATIQUE

- 1 Stations de travail, Serveurs et Réseaux
- 2 Systèmes d'exploitation
- 3 Infrastructures informatiques et virtualisation
- 4 Infrastructures informatiques et Cloud Computing

Infrastructure informatique et Cloud Computing

L'hébergement de l'infrastructure informatique d'une entreprise peut être fait :

Sur le(s) site(s) de l'entreprise (on-premise) en utilisant ses propres ressources

Dans le cloud (nuage) en utilisant les ressources attribuées par un prestataire externe à travers l'internet.

Le Cloud Computing désigne la livraison de ressources et de services à la demande par Internet.

Le Cloud Computing offre trois catégories de services

laaS (Infrastructure-as-a-Service)

PaaS (Platform-as-a-Service)

SaaS (Software-as-a-service)

Infrastructure informatique et Cloud Computing

	On premise	Cloud
Avantages	 Vous avez la main sur la gestion de votre infrastructure; Proximité et accès physiques aux équipements; Choix et connaissance des différents équipements. 	 Gains à plusieurs niveaux : place (pas besoin d'une salle serveur), budget : vous payez en fonction de vos besoins, installation et maintenance réalisées par un prestataire : vous n'avez plus à y penser flexibilité, continuité de service.
Inconvénients	 Coûts: installation, configuration, maintenance, etc.; Besoin d'une personne compétente en interne qui peut y consacrer du temps; Pas ou peu de flexibilité. 	 Selon le pays d'hébergement, soyez vigilant quant à la sécurité et la confidentialité de vos données. La connexion se fait obligatoirement par internet.

IDENTIFIER LES ÉLÉMENTS

CONSTITUTIFS D'UNE

INFRASTRUCTURE

INFORMATIQUE

- 1 Stations de travail, Serveurs et Réseaux
- 2 Systèmes d'exploitation
- 3 Infrastructures informatiques et virtualisation
- 4 Infrastructures informatiques et Cloud Computing

PARTIE 3

FORMALISMES ET

DÉMARCHES PROPOSÉES

PAR LES MÉTHODES DE

CONCEPTION DES SI (MCSI)

COMPRENDRE LA

NOTION DE MCSI ET SES

OBJECTIFS

1 - Définition et objectifs de MCSI

- 2 Classification des MCSI
- 3 Exemples de MCSI

Définition des MCSI

Une méthode de conception de systèmes d'information (MCSI) permet la description des SI :

- à l'aide d'un formalisme,
- selon une démarche,
- et des moyens de contrôle qualité.

Objectifs des MCSI

- 1. Aider à réaliser le systèmes informatisé correspondant au SI.
- 2. Diminuer les coûts et les risques des projets d'informatisation.
- 3. Rendre l'activité de conception et de développement de SI une activité d'ingénierie au même titre que le génie mécanique, le génie civil, ...
- 4. Permettre à l'équipe de conception et de développement de disposer d'un vocabulaire standard.

COMPRENDRE LA

NOTION DE MCSI ET SES

OBJECTIFS

- 1 Définition et objectifs de MCSI
- 2 Classification des MCSI
- 3 Exemples de MCSI

Classification des MCSI

Génération	Période	Approche
1ère génération	Années 70	Méthodes analytiques ou cartésiennes
2ème génération	Années 80	Méthodes Systémiques
3ème génération	Années 90 +	Méthodes Orientées Objet

COMPRENDRE LA

NOTION DE MCSI ET SES

OBJECTIFS

- 1 Définition et objectifs de MCSI
- 2 Classification des MCSI
- 3 Exemples de MCSI

Exemples de MCSI

Méthodes	Exemples	
Analytiques ou cartésiennes	SADTMéthode de JacksonMéthode de Yourdon	
Systémiques	MeriseAxialInformation Engineering (IE)	
Orientées Objet	 OOD (G. Booch) OOA (S. Shlear et S. Mellor) OMT (J. Rumbaugh et co.) UML (OMG) 	

DÉCOUVRIR LES PRINCIPAUX

FORMALISMES PERMETTANT

LA MODÉLISATION D'UN SI

1 - Modèles de Merise

2 - Diagrammes de base d'UML

3 niveaux de représentation :
Niveau Conceptuel
Niveau Logique
Niveau Physique

Modélisation séparée :

Données

Traitements

Niveau de représentation	Données	Traitement
CONCEPTUEL (Quoi ?)	Modèle Conceptuel de Données (MCD)	Modèle Conceptuel de Traitements (MCT)
LOGIQUE/ORGANISATIONNEL (Qui ?)	Modèle Logique de Données (MLD)	Modèle Organisationnel de Traitements (MOT)
PHYSIQUE (Comment ?)	Modèle Physique de Données (MPD)	Modèle Opérationnel de Traitements (MOpT)

Articulation entre les modèles de Merise :

Exemple de MCD:

DÉCOUVRIR LES PRINCIPAUX

FORMALISMES PERMETTANT

LA MODÉLISATION D'UN SI

- 1 Modèles de Merise
- 2 Diagrammes de base d'UML

2 types de diagrammes :

Statiques (*Structurels*) : 4 diagrammes

Dynamiques (*Comportementaux*) : 5 diagrammes

Diagrammes statiques Diagrammes dynamiques Diagramme de classes Diagramme d'objets Diagramme de composants Diagramme de composants Diagramme de déploiement Diagrammes états-transitions Diagramme d'activités

Exemple de diagramme de classes :

DÉCOUVRIR LES

DIFFÉRENTES

DÉMARCHES UTILISÉES

PAR LES MCSI

- 1 Cycles de conception et de développement des SI
- 2 Modèle en cascade et modèle en V
- 3 Modèles en spirale

Cycle de conception et de développement de SI

Les démarches proposées par les MCSI sont composées d'étapes.

Le découpage du projet en étapes et l'organisation de ces étapes varie selon le modèle de cycle de vie utilisé.

Il existe 3 modèles de cycle de vie de logiciel :

- 1. Modèle en cascade (années 70)
- 2. Modèle en V (années 80)
- 3. Modèle en spirale (années 90 2000)

DÉCOUVRIR LES

DIFFÉRENTES

DÉMARCHES UTILISÉES

PAR LES MCSI

- 1 Cycles de conception et de développement des SI
- 2 Modèle en cascade et modèle en V
- 3 Modèles en spirale

Modèle en cascade et en V

Modèle en cascade :

Modèle en cascade et en V

Modèle en V:

DÉCOUVRIR LES
DIFFÉRENTES
ARCHITECTURES DE SI

1 - Architecture centralisée

- 2 Architectures client/serveur
- 3 Architectures orientées services
- 4 Virtualisation

Architecture centralisée

• C'est la plus ancienne des architectures.

Les trois couches logicielles (Présentation, logique appune seule machine dite mainframe.

Les utilisateurs accèdent à cette machine à travers de

• Elle n'est quasiment plus utilisée aujourd'hui.

Architecture centralisée : Inconvénients

Dépendance totale d'un système centralisé

Dépendance d'un constructeur

Coût de maintenance très élevé

Possibilités graphiques et multimédia très limitées

Intégration difficile de la micro informatique

DÉCOUVRIR LES
DIFFÉRENTES
ARCHITECTURES DE SI

- 1 Architecture centralisée
- 2 Architectures client/serveur
- 3 Architectures orientées services
- 4 Virtualisation

Architectures client/serveur

- Risque de surcharge du client
- Syndrome du «client obèse»
- Difficultés de déploiement d'applications

Présentation (IHM)

Logique applicative

Gestion de données

- Environnement graphique et multimédia
- Ouverture
- Intégration facile de la micro informatique

Architecture à 3 niveaux (tiers)

Difficulté d'utiliser des technologies différentes sur le serveur d'application

Présentation (IHM)

Logique applicative

Gestion de données

- Client léger
- Déploiement facile

Architecture à n niveaux (tiers)

Intégration complexe des différentes composantes matérielles et logicielles

Présentation (IHM)

Logique applicative

Gestion de données

Exemples de serveurs intermédiaires :

- Serveur d'applications,
- Serveur web,
- Serveur de composants,

DÉCOUVRIR LES
DIFFÉRENTES
ARCHITECTURES DE SI

- 1 Architecture centralisée
- 2 Architectures client/serveur
- 3 Architectures orientées services
- 4 Virtualisation

Architectures orientées services

Architectures orientées services

Analogie avec les architectures client/serveur :

- Producteur de services ≅ Serveur
- Consommateur ≅ Client

Différence avec les architectures client/serveur :

 Pas de liaison directe entre client et serveur (couplage faible)

DÉCOUVRIR LES
DIFFÉRENTES
ARCHITECTURES DE SI

- 1 Architecture centralisée
- 2 Architectures client/serveur
- 3 Architectures orientées services
- 4 Virtualisation

Architectures virtualisées

Architecture traditionnelle

Architecture virtualisée

Avantages de l'architecture virtualisée

- Simplicité d'administration
- Simplicité de déploiement
- Systèmes d'exploitation adaptés
- Optimisation de l'utilisation des ressources physiques

PARTIE 2 ET PARTIE 3

QUIZZ

A vous de jouer!

TP 4: Quizz

Quizz de 10 questions pour évaluer la compréhension des concepts 1 à 13 (Infrastructures informatiques)

TP 5 : Quizz

Quizz de 10 questions pour évaluer la compréhension des concepts de 8 à 13 (Architectures des SI)

Évolution de chacune des fonctions du SI pendant les périodes suivantes :

- ♦ Avant l'informatique (< 1960)</p>
- ♦ Informatique centralisée (de 1960 à 1990)
- ♦ Informatique décentralisée (1990 à 2010)
- ♦ Informatique communicante (> 2010)
- Il s'agit de décrire comment les différentes fonction du SI étaient réalisées pendant chacune des 4 périodes citées ci-dessus.