Paper Review

Semantics-aware BERT for Language Understanding

Zhang et al., AAAI, Feb 2020

Myeongsup Kim

Integrated M.S./Ph.D. Student
Data Science & Business Analytics Lab.
School of Industrial Management Engineering
Korea University

Myeongsup_kim@korea.ac.kr

CONTENTS

- Prerequisites
- 2 SemBERT
- **3** Experiments
- 4 Discussion

1. Prerequisites

- Steps of Natural Language Processing
- BERT: Bidirectional Encoder Representations from Transformers
- Semantic Role Labeling

<Steps of Natural Language Processing>

-BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

<BERT>

양방향적 학습이 가능하도록 Transformer Encoder의 목적함수를 변형한 형태 대형 언어 코퍼스에 대해 비지도 학습으로 Language Model을 구축하고, 지도 학습으로 하위 NLP task 에 적용하는 준지도 학습의 언어 모형

Sen A: I am MS.
Sen B: I study deep learn

Sen B: I study deep learning.

Masked Language Model

Next Sentence Prediction

Input: I am [Mask1]. I [Mask2] deep learning. Label: [Mask1] = MS, [Mask2] = study Input: Sen A = I am MS.
Sen B = I study deep learning
Label: IsNext

-BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

<Input Representation>

BERT의 Input은 Token Embedding, Positional Embedding, Segment Embedding의 합으로 구성 문장의 시작을 의미하는 [CLS] 토큰과 문장의 구분 및 종료를 의미하는 [SEP] 토큰을 포함하여 Input을 형성

```
Input: I am MS. I study deep learning.

Input: [CLS], I, am, MS, [SEP], I study, deep, learning, [SEP]

Embedding = Token + Segment + Positional Embedding
```

-BERT : Pre-training of Deep Bidirectional Transformers for Language Understanding

<Token Embedding>

Input: [CLS], I, am, MS, [SEP], I study, deep, learning, [SEP]

-BERT : Pre-training of Deep Bidirectional Transformers for Language Understanding

<Segment Embedding>

Input: [CLS], I, am, MS, [SEP], I study, deep, learning, [SEP]

-BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

<Positional Embedding>

Input: [CLS], I, am, MS, [SEP], I study, deep, learning, [SEP]

-BERT : Pre-training of Deep Bidirectional Transformers for Language Understanding

<Input Representation>

Prerequistes Property Days Argining of Door Bidirection

-BERT : Pre-training of Deep Bidirectional Transformers for Language Understanding

-BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

<Encoder>

-BERT : Pre-training of Deep Bidirectional Transformers for Language Understanding

<Encoder>

-BERT : Pre-training of Deep Bidirectional Transformers for Language Understanding

<Masked Language Model>

Random으로 15%의 Token을 [MASK] Token으로 변환한 후, 주변 문맥을 이용하여 [MASK] Token을 예측하는 Pre-training 방법

-BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

<Next Sentence Prediction>

Corpus에서 두 문장을 이어 붙여 해당 문장이 원래 Corpus에서 이어져 있던 문장인지를 예측하는 Pre-training 방법

-BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

<Does BERT Understand Semantics?>

<Semantic Role Labeling>

문장에서 서술어(Predicate)를 중심으로 "누가(Who), 무엇을(What), 어떻게(How), 왜(Why)" 등을 인식하는 Task, 서술어에 대한 논항(Argument)를 찾고, 각 논항의 의미 역할을 결정

<BIO Tagging>

"Beginning, Inside, Outside"의 약자로, Token-level의 Tag를 통해 각 Argument 또는 Predicate의 시작과 끝을 표기하는 기법

<BIO Tagging>

"Beginning, Inside, Outside"의 약자로, Token-level의 Tag를 통해 각 Argument 또는 Predicate의 시작과 끝을 표기하는 기법

<BIO Tagging>

"Beginning, Inside, Outside"의 약자로, Token-level의 Tag를 통해 각 Argument 또는 Predicate의 시작과 끝을 표기하는 기법

<BIO Tagging>

"Beginning, Inside, Outside"의 약자로, Token-level의 Tag를 통해 각 Argument 또는 Predicate의 시작과 끝을 표기하는 기법

<BIO Tagging>

"Beginning, Inside, Outside"의 약자로, Token-level의 Tag를 통해 각 Argument 또는 Predicate의 시작과 끝을 표기하는 기법

<BIO Tagging>

"Beginning, Inside, Outside"의 약자로, Token-level의 Tag를 통해 각 Argument 또는 Predicate의 시작과 끝을 표기하는 기법

<BIO Tagging>

"Beginning, Inside, Outside"의 약자로, Token-level의 Tag를 통해 각 Argument 또는 Predicate의 시작과 끝을 표기하는 기법

<BIO Tagging>

"Beginning, Inside, Outside"의 약자로, Token-level의 Tag를 통해 각 Argument 또는 Predicate의 시작과 끝을 표기하는 기법

<Proposition Bank Style>

Palmer et al., 2004

Arguments (ARG-, AA)		Adjuncts (AM-)	
ARG0	agent	AM-ADV	general-purpose
ARG1	patient, object	AM-CAU	cause
ARG2	•••	AM-DIR	direction
ARG3	•••	AM-DIS	discourse marker
ARG4	•••	AM-EXT	extent
AA	•••	AM-LOC	location
References (R-)		AM-MNR	manner
R-ARG0	reference of agent	AM-MOD	modea verb
R-ARG1	reference of patient	AM-NEG	negation marker
R-AM-TMP	reference of temporal	AM-PNC	purpose
•••	•••	AM-PRD	predication
•••	•••	AM-REC	reciprocal
Verbs (V)		AM-TMP	temporal
V	predicate	AM-INS	instrument

<Syntactic Variation>

Yesterday, Kristina hit Scott with a baseball bat

AM-TMP ARG0 V ARG1 AM-INS

Temporal Agent Predicate Object Instrument

- ✓ Scott was hit by Kristina yesterday with a baseball bat
- ✓ Yesterday, Scott was hit with a baseball bat by Kristina
- ✓ With a baseball bat, Kristina hit Scott yesterday
- ✓ Yesterday Scott was hit by Kristina with a baseball bat
- ✓ Kristina hit Scott with a baseball bat yesterday

2. SemBERT

- Semantic Embedding
- Contextual Embedding
- Semantic Integration

<Overall Architecture>

<Overall Architecture>

<Semantic Role Labeling>

<Semantic Embedding>

<Semantic Embedding>

<Overall Architecture>

<Perspective Integration>

2 SemBERT
-Semantic Embedding

2 SemBERT -Semantic Embedding

<Overall Architecture>

<Word Level Embedding>

2 SemBERT -Semantics Integration

<Overall Architecture>

SemBERT -Semantics Integration <Semantics Integration> reconstructing dormitories will not be approved cavanaugh **Semantics** reconstructing dormitories dormitories cavanaugh reconstructing cavanaugh by Integration **Semantic** Contextual **Embedding Embedding** Reconstructing dormitories will not be approved by cavanaugh 52/67

<Semantics Integration>

Fine-tuning

3. Experiments

- GLUE
- SQuAD 2.0
- SNLI
- Parameters
- Ablation Study

3 Experiments -GLUE Dataset

<GLUE>

Method	Classif	ication	Natural L	Natural Language Inference		Semantic Similarity			Score
	CoLA	SST-2	MNLI	QNLI	RTE	MRPC	QQP	STS-B	-
	(mc)	(acc)	m/mm(acc)	(acc)	(acc)	(F1)	(F1)	(pc)	-
			Leaderborad	(Septembe	er, 2019)				
ALBERT	69.1	97.1	91.3/91.0	99.2	89.2	93.4	74.2	92.5	89.4
RoBERTa	67.8	96.7	90.8/90.2	98.9	88.2	92.1	90.2	92.2	88.5
XLNET	67.8	96.8	90.2/89.8	98.6	86.3	93.0	90.3	91.6	88.4
In literature (April, 2019)									
BiLSTM+ELMo+Attn	36.0	90.4	76.4/76.1	79.9	56.8	84.9	64.8	75.1	70.5
GPT	45.4	91.3	82.1/81.4	88.1	56.0	82.3	70.3	82.0	72.8
GPT on STILTs	47.2	93.1	80.8/80.6	87.2	69.1	87.7	70.1	85.3	76.9
MT-DNN	61.5	95.6	86.7/86.0		75.5	90.0	72.4	88.3	82.2
BERTBASE	52.1	93.5	84.6/83.4	-	66.4	88.9	71.2	87.1	78.3
BERTLARGE	60.5	94.9	86.7/85.9	92.7	70.1	89.3	72.1	87.6	80.5
Our implementation									
SemBERTBASE	57.8	93.5	84.4/84.0	90.9	69.3	88.2	71.8	87.3	80.9
SemBERTLARGE	62.3	94.9	87.6/86.3	94.6	84.5	91.2	72.8	87.8	82.9

3 Experiments -GLUE Dataset

<GLUE>

Method	Classif	ication	Natural L	anguage Ir	nference	Sem	nantic Simila	arity	Score
	CoLA	SST-2	MNLI	QNLI	RTE	MRPC	QQP	STS-B	-
	(mc)	(acc)	m/mm(acc)	(acc)	(acc)	(F1)	(F1)	(pc)	-
	Leaderborad (September, 2019)								
ALBERT	69.1	97.1	91.3/91.0	99.2	89.2	93.4	74.2	92.5	89.4
RoBERTa	67.8	96.7	90.8/90.2	98.9	88.2	92.1	90.2	92.2	88.5
XLNET	67.8	96.8	90.2/89.8	98.6	86.3	93.0	90.3	91.6	88.4
	In literature (April, 2019)								
BiLSTM+ELMo+Attn	36.0	90.4	76.4/76.1	79.9	56.8	84.9	64.8	75.1	70.5
GPT	45.4	91.3	82.1/81.4	88.1	56.0	82.3	70.3	82.0	72.8
GPT on STILTs	47.2	93.1	80.8/80.6	87.2	69.1	87.7	70.1	85.3	76.9
MT-DNN	61.5	95.6	86.7/86.0	-	75.5	90.0	72.4	88.3	82.2
BERTBASE	52.1	93.5	84.6/83.4	-	66.4	88.9	71.2	87.1	78.3
BERTLARGE	60.5	94.9	86.7/85.9	92.7	70.1	89.3	72.1	87.6	80.5
	Our implementation								
SemBERTBASE	57.8	93.5	84.4/84.0	90.9	69.3	88.2	71.8	87.3	80.9
SemBERTLARGE	62.3	94.9	87.6/86.3	94.6	84.5	91.2	72.8	87.8	82.9

3 Experiments -SQuAD 2.0 Dataset

<SQuAD 2.0>

Model	EM	F1
#1 BERT + DAE + AoA	85.9	88.6
#2 SG-Net	85.2	87.9
#3 BERT + NGM + SST	85.2	87.7
U-Net (Sun et al. 2018)	69.2	72.6
RMR + ELMo + Verifier (Hu et al. 2018)	71.7	74.2
Our implementation		
BERTLARGE	80.5	83.6
SemBERTLARGE	82.4	85.2
SemBERT*LARGE	84.8	87.9

3 Experiments -SNLI Dataset

<SNLI>

Model	Dev	Test			
In literature					
DRCN (Kim et al. 2018)	-	90.1			
SJRC (Zhang et al. 2019)	-	91.3			
MT-DNN (Liu et al. 2019)	92.2	91.6			
Our implementation					
BERTBASE	90.8	90.7			
SemBERTBASE	91.2	91.0			
BERTLARGE	91.3	91.1			
SemBERTLARGE	92	91.6			
BERTWWM	92.1	91.6			
SemBERTWWM	92.2	91.9			

3 Experiments -Parameters

<Parameters>

Model	Params	Shared	Rate
	(M)	(M)	(M)
MT-DNN	3,060	340	9.1
BERT on STILT	335	-	1.0
BERT	335	-	1.0
SemBERT	340	-	1.0

3 Experiments -Ablation Study

<Ablation Study>

Model	SNLI	SQuAD 2.0	
	Dev	EM	F1
BERTLARGE	91.3	79.6	82.4
BERTLARGE + SRL	91.5	80.3	83.1
SemBERTLARGE	92.3	80.9	83.6

3 Experiments -Ablation Study

<Ablation Study>

Number	1	2	3	4	5
Accuracy	91.49	91.36	91.57	91.29	91.42

<Max Number of Predicate-argument Structure m>

Proportion	0%	20%	40%
SQuAD 2.0 F1	87.93	87.31	87.24

<Turning Labels Proportion>

4. Discussion

- Does SemBERT Understand Semantics?

<Now, SemBERT Understands>

Yesterday, Kristina hit Scott with a baseball bat

AM-TMP ARG0 V ARG1 AM-INS

Temporal Agent Predicate Object Instrument

- ✓ Scott was hit by Kristina yesterday with a baseball bat
- ✓ Yesterday, Scott was hit with a baseball bat by Kristina
- ✓ With a baseball bat, Kristina hit Scott yesterday
- ✓ Yesterday Scott was hit by Kristina with a baseball bat
- ✓ Kristina hit Scott with a baseball bat yesterday

<Now, SemBERT Understands>

✓ How are you?

✓ How old are you?

✓ What is your age?

<Now, SemBERT Understands>

$$\sqrt{\frac{\text{What is your age?}}{\text{R-ARG0}}} \frac{\text{V}}{\text{V}} \frac{\text{ARG0}}{\text{ARG0}}$$

< Steps of Natural Language Processing >

Q&A

Thank You