Introduction to Computational Chemistry

Part 2: Reaction Pathways from Scratch

Eno Paenurk & Patrick Finkelstein & Felix Pultar

03.05.2023

Webinar overview

- Part 1: Takeoff
- Part 2: Reaction pathways from scratch
- Part 3: Preparing structures
- Part 4: Density Functional Theory
- Part 5: Organometallics
- Part 6: Spectroscopy
- Part 7: Chemical concepts

What you should know already

- Access to the cluster
- Navigation in the terminal
- Submission of simple scripts

Goals today

- Automated calculation of reaction energy profiles (black box approach)
- Analysis of the computational pipeline
- Things to consider/potential problems

Provide bridge between ChemDraw and other graphical interfaces and QM software that runs in the terminal on Linux clusters.

Example from Last Week

Which pathway will the reaction go?

Goal for today

1,3-Isoxazoline

1.2-Isoxazoline

Result: $\Delta\Delta G^{\ddagger}=2.6$ kcal/mol (energy barrier), $\Delta\Delta G=1.4$ kcal/mol (free energy difference)

Where to Start

Option 1: concerted (Huisgen)

Option 2: stepwise (Firestone)

- Consider reasonable mechanisms
- Partition into elementary steps
- Identify relevant intermediates and transition states

Critical / Stationary Points

- Reactants and Intermediates: Local minima on potential energy surface
- Transition States: First-order saddle points connecting two minima

Problem: Potential Energy Surface is High-Dimensional

J. Comp. Chem. 2003, 24, 1514.

Computational Workflow

General workflow to compute a reaction profile (black box today, details in later weeks):

- Onvert 2D ChemDraws to 3D objects (Week 3)
- @ Geometry optimization (Week 4)
- Frequency calculation and check for imaginary frequencies (Week 4)
- Extraction of Gibbs free energy (Week 4)
- Analysis of transition state (Week 4)

Typically *trivial* to localize reactants but *hard* to localize transition states

Introducing autodE

Most of these steps have been automated for you!

How to cite: *Angew. Chem. Int. Ed.* **2021**, *60*, 4266–4274
International Edition: doi.org/10.1002/anie.202011941
German Edition: doi.org/10.1002/ange.202011941

autodE: Automated Calculation of Reaction Energy Profiles— Application to Organic and Organometallic Reactions

Tom A. Young, Joseph J. Silcock, Alistair J. Sterling, and Fernanda Duarte*

https://github.com/duartegroup/autodE

Introducing autodE

Describe reaction programmatically with Python and SMILES

```
1 | import autode as ade
2 ade.Config.n_cores = 4
3
4 rxn = ade.Reaction("CCl.[F-]>>CF.[Cl-]", name='sn2', solvent_name='water', temp=273.15)
5 rxn.calculate_reaction_profile(free_energy=True)
```

SMILES: simplified molecular-input line-entry system (stay tuned!) https://duartegroup.github.io/autodE/quickstart.html

Tailored autodE for Euler and Grace: icctools

Import code from icctools

```
from icctools import librxn
```

Define reaction ...

```
rxn_name = "sn2-reaction" # no spaces
rxn_smiles = "CCl.[F-]>>CF.[Cl-]"
rxn_solvent = "water"
rxn_temperature = 273.15
```

... and resources

```
n_cores = 4
memory_per_core = 1024 # in MB
method = librxn.Method.XTB
```

Run calculation and print results

4 D F 4 AB F 4 B F B

Components of autodE Used in this Course

Python module to interface electronic structure theory software

- RDKit (Greg Landrum, Riniker Group @ ETHZ)
 Cheminformatic toolkit
- xtb (Grimme Group @ University of Bonn)
 lmethod: Fast but inaccurate semi-empirical software
- ORCA (Neese Group @ MPI Mühlheim)
 hmethod: Comprehensive electronic structure software package

Combination of lmethod and hmethod reduces computational cost

Overview: Workflow autodE

- Convert SMILES strings to mathematical graph
- Identify forming and breaking bonds
- Enumerate conformers of products and starting materials
- Conformer geometry optimization
- Localize **TS candidates** via *relaxed scan* along involved bonds
- Enumerate TS conformers and optimize geometries
- Verify transition state by following the reaction coordinate
- Single point calculation of stationary points
- Frequency calculation (Hessian matrix)
- Extract Gibbs free energy and plot profile

We will deal with many of these concepts in more detail in the following weeks.

Minimal Introduction to SMILES

Idea: Encode chemical structure with characters

- Hydrogens, single and aromatic bonds are usually omitted
- Stereocenters, double and triple bonds, cycles, etc. supported

https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html

Minimal Introduction to SMILES

Idea: Encode chemical structure with characters

- Hydrogens, single and aromatic bonds are usually omitted
- Stereocenters, double and triple bonds, cycles, etc. supported
- Separation of molecules with ".", reaction arrow with ">>"

CN1CCN(CC1)S(=O)(C2=CC(C3=NC4=C(C(N3)=O) N(N=C4CCC)C)=C(OCC)C=C2)=O

$$Ph \longrightarrow Ph \longrightarrow N^+O^- \longrightarrow Ph \longrightarrow N$$

C=CC1=CC=CC=C1.[O-][N+]#CC2=CC=CC=C2>> C3(C4=CC=CC=C4)=NOCC3C5=CC=CC=C5

Warning: SMILES can fail for certain types of molecules and organometallics (see Week 3).

Copy & Paste with ChemDraw to SMILES

Advice: Always double-check generated SMILES, e.g., via ChemDraw (Paste Special).

Result of icctools and autodE

Next week we will also look at the generated 3D structures.

Motivating Example: Ireland-Claisen in Total Synthesis

Duarte, ACIE 2021, 60, 4266-4274.

Motivating Example: Rh-Catalyzed Hydroformylation

Duarte, ACIE 2021, 60, 4266-4274.

We encourage you to look at the paper and supporting information to see more examples.

Known Issues with autodE

Caveats of Automation

- All steps from SMILES parsing to the final profile are automated
- If any step fails, calculations cannot easily be recovered
- Some errors may be undiscovered (e.g., wrong double bond geometry, wrong TS geometry, ...)

Fix:

- Update software regularly
- Check error files and structures (see exercises and next weeks)
- Check that your generated SMILES actually encode what you think they encode

Things to keep in mind I

One calculation for each elementary step

- Many reactions in the lab involve multiple steps
- Submit one calculation for each elementary step (i.e., arrow pushing)

Using adequate methods

- AutodE has reasonable defaults
- But, your systems may require changing these defaults (next weeks!)

Things to keep in mind II

Concentration effects

- Gibbs free energy depends on the different concentrations of reactant and product.
- Account for very big excess (e.g., in a catalytic reaction) through a correction term:

$$\Delta G = \Delta G^{\circ} + R \operatorname{Tln} \frac{[Product]}{[Reactant]}$$

Temperature effects

- Calculate the thermochemical correction at the correct temperature
- Fast and easy calculation once you have the Hessian (see Handout)

Things to keep in mind III

Homolytic cleavages:

Can lead to multireference transition states

Potential fix:

Consult your local computationalist

Things to keep in mind but with no easy solution

Non-statistical effects

Statistical rate theories may not be adequate to describe the experimental behaviour (see *PCCP*, **2011**, *13*, 20906)

Entropic intermediates

If the TS corresponding to the rds of a reaction is not a maximum on the PES but an entropic maximum, it will not be found with the methods we showed (see *JACS* **2012**, *134*, 1914)

Live Demo

Exercises

28 / 28