Implication Textuelle et Réécriture Soutenance de thèse

Paul Bédaride

UHP Nancy/Loria

18 octobre 2010

Vandœuvre

Implication Textuelle

Pourquoi?

Tâche de base pour les systèmes :

- d'extraction d'information
- de recherche d'information
- de question-réponse
- de synthèse de documents

Définition :

Capacité humaine à déduire une hypothèse à partir d'un texte

 \Rightarrow

• Exemples :

Texte

9

Hypothèses

Le ministre a quitté Bagdad.

Le ministre était à Bagdad. Le ministre n'est pas à Bagdad.

Le ministre est à Paris.

Plan

- Introduction
 - Implication Textuelle
 - Approches existantes
 - Réécriture
- Afazio : un système basé sur la réécriture
 - Architecture du système
 - Le calcul sémantique
 - Exemple
- Évaluation sur des suites de tests contrôlées
- Vers une analyse plus approfondie des systèmes
 - Motivation
 - ARTE: un schéma d'annotation fin pour le RTE
 - Fouille d'erreurs
- Conclusion
 - Contributions de la thèse
 - Perspectives

Recognising Textual Entailment Challenge

- Introduit par Ido Dagan et Oren Glickman en 2006
- Un nouveau challenge chaque année
- Suite de développement composée de 800 problèmes
- Suite de tests composée de 800 problèmes
- Distribution uniforme des implications et des non-implications
- Problèmes construits à partir de systèmes :
 - d'extraction d'information
 - de recherche d'information
 - de question-réponse
 - de synthèse de documents
- Campagne du RTE 2007 :
 - 23 systèmes avec 41 soumissions
 - Exactitude (pourcentage de réponses correctes) entre 54% et 75%

Exemple d'entrée du RTE

 Texte : Depuis qu'il a vu le jour en 2004, Katamari Damacy a continué de devenir un des plus grands succès de l'histoire des jeux vidéos.

• Hypothèse : Katamari Damacy est sorti en 2004.

• Réponse : Oui

• Système : Extraction d'information

Classement par type de connaissance

- Implications basées sur des connaissances syntaxiques : Jean achète un vélo. ⇒ Un vélo est acheté par Jean.
 Jean achète un vélo. ⇒ C'est Jean qui achète un vélo.
- Implications basées sur des connaissances lexicales :
 Un chat mange une pomme. ⇒ Un animal mange un fruit.

 Le verre est vide. ⇒ Le verre n'est pas plein.
- Implications basées sur des connaissances encyclopédiques :
 Jean a vu Edith Piaf au Zénith. ⇒ Edith Piaf a chanté à Nancy.
- Implications basées sur les quantificateurs :
 - Tous les animaux mangent des fraises.

 ⇒ Tous les chats mangent des fruits.
 - ⇒ lous les chats mangent des fruits
 - Aucun animal ne mange des fruits.
 - \Rightarrow Aucun chat ne mange des fraises.

Implication logique et implication textuelle

- Implication Textuelle (RTE)
 Capacité humaine à déduire une hypothèse à partir d'un texte
- Implication Logique (Afazio, NutCracker)
 L'hypothèse doit être vraie dans tous les mondes où le texte est vrai
- Exemple :

Texte : Environ deux jours avant la conférence,

Marie était dans le bureau de Jean à Nancy.

Hypothèse: Jean travaille à Nancy.

Implication Textuelle : Oui Implication Logique : Non

Approches existantes

- Chevauchements de mots [Valentin Jijkoun and Maarten de Rijke]
 - # lemmes en commun du Texte et de l'Hypothèse # lemmes de l'Hypothèse > seuil
- Alignement de structures linguistiques [Milen Kouylekov and Bernardo Magnini]
 - Trouver la séquence d'éditions permettant d'obtenir la structure syntaxique de l'Hypothèse à partir de celle du Texte
 - La somme des scores des éditions ne doit pas dépasser un certain seuil
- Méthode symbolique [Johan Bos] (Afazio)
 - Dérivation de la représentation sémantique du Texte et de l'Hypothèse à partir de leurs analyses syntaxiques
 - Test de l'implication entre les sémantiques à l'aide d'outils de preuve

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : 01 \Rightarrow_{r_1} 0 $10 \Rightarrow_{r_2}$ 1 $10 \Rightarrow_{r_2}$ 1 $10 \Rightarrow_{r_3}$ 0

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - \bullet $r_1, r_2, r_3 : 1101$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$
 - $r_2, r_1, r_3 : 1101$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$
 - \bullet $r_2, r_1, r_3 : 1101$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3: 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$
 - $r_2, r_1, r_3 : 1101 \rightarrow_{r_2} 111$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$
 - $r_2, r_1, r_3 : 1101 \rightarrow_{r_2} 111$
 - \bullet r_3, r_1, r_2 : 1101

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$
 - $r_2, r_1, r_3 : 1101 \rightarrow_{r_2} 111$
 - \bullet $r_3, r_1, r_2 : 1101$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$
 - $r_2, r_1, r_3 : 1101 \rightarrow_{r_2} 111$
 - $r_3, r_1, r_2 : 1101 \rightarrow_{r_3} 11001$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$
 - $r_2, r_1, r_3 : 1101 \rightarrow_{r_2} 111$
 - $r_3, r_1, r_2 : 1101 \rightarrow_{r_3} 11001$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$
 - $r_2, r_1, r_3 : 1101 \rightarrow_{r_2} 111$
 - $r_3, r_1, r_2 : 1101 \rightarrow_{r_3} 11001 \rightarrow_{r_3} 110001$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$
 - $r_2, r_1, r_3 : 1101 \rightarrow_{r_2} 111$
 - $r_3, r_1, r_2 : 1101 \rightarrow_{r_3} 11001 \rightarrow_{r_3} 110001$

- Modèle de calcul permettant d'appliquer des transformations sur des objets
- Un ensemble de règles de réécriture forme un système de réécriture
- Un système de réécriture peut ne pas satisfaire :
 - la propriété de confluence
 - la propriété de terminaison
- La stratégie d'application des règles est importante car elle permet de forcer la confluence et la terminaison d'un système.
- Exemple :
 - Système de réécriture : $01 \Rightarrow_{r_1} 0$ $10 \Rightarrow_{r_2} 1$ $0 \Rightarrow_{r_3} 00$
 - Application du système sur le mot 1101
 - $r_1, r_2, r_3 : 1101 \rightarrow_{r_1} 110 \rightarrow_{r_2} 11$
 - $r_2, r_1, r_3 : 1101 \rightarrow_{r_2} 111$
 - $r_3, r_1, r_2 : 1101 \rightarrow_{r_3} 11001 \rightarrow_{r_3} 110001 \rightarrow_{r_3} \dots$

Confluence et terminaison dans Afazio

- La confluence des systèmes de réécriture vers la solution voulue est assurée par l'utilisation d'une stratégie de réécriture appliquant les règles les plus spécifiques en premier
 - Exemple : le passif long avant le passif court
- La stratégie de réécriture est calculée automatiquement en testant si les règles de réécriture se filtrent entres elles
 - Exemple : le passif court filtre le passif long et doit donc être appliqué après
- La terminaison est assurée par la définition de niveaux de ressources, et l'utilisation de règles consommant des ressources d'un niveau pour créer des ressources du niveau supérieur

- Introduction
 - Implication Textuelle
 - Approches existantes
 - Réécriture
- 2 Afazio : un système basé sur la réécriture
 - Architecture du système
 - Le calcul sémantique
 - Exemple
- 3 Évaluation sur des suites de tests contrôlées
- 4 Vers une analyse plus approfondie des systèmes
 - Motivation
 - ARTE : un schéma d'annotation fin pour le RTE
 - Fouille d'erreurs
- Conclusion
 - Contributions de la thèse
 - Perspectives

Architecture du système

- Entrée : le texte et l'hypothèse
- Analyse en constituants du texte et de l'hypothèse
- Analyse en dépendances
- Étiquetage des rôle sémantiques
- Dérivation des formules logiques
- Test de la validité de l'implication entre les formules associées au Texte et à l'Hypothèse à l'aide d'un prouveur de théorèmes et d'un constructeur de modèles

Stanford

Systèmes de réécriture

Paradox Équinox

Le calcul sémantique

- Logique du première ordre
- Représentation néo-Davidsonnienne des verbes
- Une seule formule associée à une analyse
 - Portée des quantificateurs = syntaxe
- Calcul sémantique basé sur la réécriture à partir des structures linguistiques dérivées antérieurement (constituants et dépendances syntaxiques, étiquetage sémantique)

Exemple

« Every man loves a woman »

Texte

Exemple

- Texte
- Analyse en constituants

Exemple

- Texte
- Analyse en constituants
- Dérivation des dépendances

- Texte
- Analyse en constituants
- Dérivation des dépendances
- Étiquetage de rôles sémantiques

- Texte
- Analyse en constituants
- Dérivation des dépendances
- Étiquetage de rôles sémantiques
- Initialisation de la racine

- Texte
- Analyse en constituants
- Dérivation des dépendances
- Étiquetage de rôles sémantiques
- Initialisation de la racine
- Initialisation des têtes.

- Texte
- Analyse en constituants
- Dérivation des dépendances
- Étiquetage de rôles sémantiques
- Initialisation de la racine
- Initialisation des têtes
- Création des fragments

- Texte
- Analyse en constituants
- Dérivation des dépendances
- Étiquetage de rôles sémantiques
- Initialisation de la racine
- Initialisation des têtes
- Création des fragments
- Liaison des fragments

- Texte
- Analyse en constituants
- Dérivation des dépendances
- Étiquetage de rôles sémantiques
- Initialisation de la racine
- Initialisation des têtes
- Création des fragments
- Liaison des fragments
- Remplissage des fragments

- Texte
- Analyse en constituants
- Dérivation des dépendances
- Étiquetage de rôles sémantiques
- Initialisation de la racine
- Initialisation des têtes
- Création des fragments
- Liaison des fragments
- Remplissage des fragments
- Rattachement à la racine

- Texte
- Analyse en constituants
- Dérivation des dépendances
- Étiquetage de rôles sémantiques
- Initialisation de la racine
- Initialisation des têtes
- Création des fragments
- Liaison des fragments
- Remplissage des fragments
- Rattachement à la racine

 $\forall M.(man(M) \Rightarrow \exists W.(woman(W) \land \exists E.(love(E) \land arg0(E, M) \land arg1(E, M))))$

- Introduction
 - Implication Textuelle
 - Approches existantes
 - Réécriture
- 2 Afazio : un système basé sur la réécriture
 - Architecture du système
 - Le calcul sémantique
 - Exemple
- 3 Évaluation sur des suites de tests contrôlées
- 4 Vers une analyse plus approfondie des systèmes
 - Motivation
 - ARTE : un schéma d'annotation fin pour le RTE
 - Fouille d'erreurs
- Conclusion
 - Contributions de la thèse
 - Perspectives

Génération de suites de tests

- Pourquoi?
 - Les problèmes du RTE mélangent plusieurs classes de phénomènes
 - Permet de mieux analyser l'impact des systèmes de reconnaissance d'implications textuelles sur les différents types de connaissance
- Génération semi-automatique de suites de tests annotés
 - Représentations sémantiques définies manuellement
 - Génération automatique de phrases à l'aide d'un réalisateur de surface (Genl [Eric Kow])
 - Test l'implication avec outils de preuve
- Problèmes annotés à l'aide des informations de constructions du Texte et l'Hypothèse fournies par Genl

Évaluation

• Suite de tests syntaxiques (1000 problèmes) :

Système	implications	non-implications	corpus entier
Afazio	68,0%	64,4%	66,2%
Nutcracker	89,2%	1,8%	46,8%
Nutcracker*	27,8%	90,8%	60,9%

• Suite de tests sur les quantificateurs (60 problèmes) :

Système	implications	non-implications	corpus entier
Afazio	100,0%	73,3%	86,7%
Nutcracker	23,3%	100,0%	61,7%
Nutcracker*	73,3%	100,0%	86,7%

• Erreurs : mauvaises analyses de l'analyseur de Stanford

- Introduction
 - Implication Textuelle
 - Approches existantes
 - Réécriture
- 2 Afazio : un système basé sur la réécriture
 - Architecture du système
 - Le calcul sémantique
 - Exemple
- 3 Évaluation sur des suites de tests contrôlées
- Vers une analyse plus approfondie des systèmes
 - Motivation
 - ARTE : un schéma d'annotation fin pour le RTE
 - Fouille d'erreurs
- Conclusion
 - Contributions de la thèse
 - Perspectives

Motivation

Objectif :

analyser l'impact des différents phénomènes linguistiques et extra-linguistiques sur les performances des différentes approches

• Pré-requis :

annotation fine des données (par phénomène)

Méthode :

évaluation visant l'identification des sources d'erreurs plutôt qu'un taux d'exactitude

ARTE : un schéma d'annotation fin pour le RTE

- Schéma d'annotation pour le RTE [Konstantina Garoufi]
- Annotations pour les implications (400 problèmes) :
 - Identité (365) : Identité
 - Lexique (121): Acronyme, Hyperonyme, Synonyme, ...
 - Syntaxe (126) : Apposition, Alternation, ...
 - Discours (179): Contre-factif (0), Implicatif (14), Négation (2), ...
 - Raisonnement (305) : Modifieur, Quantificateur, ...
- Classification des 41 systèmes selon les approches utilisées :
 - BD lexicale (32)
 - Chevauchement de mots (13)
 - Alignement (29)
 - Inférence (5)

Évaluation basée sur l'exactitude

 Moyennes des exactitudes (ordonnée) des systèmes utilisant une approche (colonne) sur le sous-corpus de problèmes annotés avec une classe de phénomènes (abscisse)

Évaluation basée sur l'exactitude

 Moyennes des exactitudes (ordonnée) des systèmes utilisant une approche (colonne) sur le sous-corpus de problèmes annotés avec une classe de phénomènes (abscisse)

- Résultats contre-intuitifs
 - Le lexique est moins bien géré que le raisonnement
 - Les systèmes à base de chevauchement de mots ont de meilleurs résultats que ceux à base d'inférence sur les problèmes de raisonnement

Les limites de l'exactitude

 Le cas du Lexique et du Raisonnement sur les systèmes à base de chevauchement de mots

		Phénomènes	# Problèmes	Exactitude
1		Lexique sans Raisonnement	29	69%
2		Raisonnement sans Lexique	213	66%
3		Lexique et Raisonnement	92	52%
+	3	Lexique	121	56% (-14pts)
+	3	Raisonnement	305	61% (-5pts)

• Problème : distribution non uniforme des phénomènes

• **Solution**: utilisation d'un algorithme de fouille d'erreurs

La fouille d'erreur : une méthode d'évaluation alternative

- Algorithme de fouille d'erreurs pour les analyseurs syntaxiques
 [Sagot De la Clergerie 2008]
- Permet de trouver les n-grammes qui posent problème à l'analyseur
- Hypothèse : un seul n-gramme est la cause de l'échec
- Objectif: Calculer un taux de suspicion pour chaque n-gramme

Un algorithme pour la fouille d'erreurs

Algorithme par point fixe applicable à un corpus de tests

- Phase d'initialisation :
 - Problème mal analysé :
 taux de suspicion partagé équitablement par les occurrences
 de classe de phénomènes qui lui sont associées
 - Problème bien analysé:
 taux de suspicion nul pour les occurrences de classe de phénomènes qui lui sont associées
- ② Calcul du taux de suspicion moyen pour chaque classe de phénomènes
- Rééquilibrage des taux de suspicion :
 - Problème mal analysé :

taux de suspicion moyen d'une occurrence

somme des taux de suspicion moyen de toutes les occurrences associées au problème

Problème bien analysé :
 rien ne change

Fouille d'erreurs appliquée sur les résultats de chaque système

 Moyennes des taux de suspicion (ordonnée) des classes de phénomènes (abscisse) sur les systèmes utilisant une approche (colonne)

- Le raisonnement est moins bien géré que le lexique
- Les systèmes à base de chevauchement de mots ont toujours meilleurs résultats que ceux à base d'inférence sur le raisonnement

Fouille d'erreurs appliquée sur les résultats de tous les systèmes

• Taux de suspicion des couples classe de phénomènes/approche

- Le raisonnement est moins bien géré que le lexique
- Les systèmes à base de chevauchement de mots ont les moins bons résultats

La fouille d'erreurs permet . . .

- d'identifier les points forts et les points faibles des systèmes
- d'analyser des systèmes combinant plusieurs approches sur des corpus avec une distribution non uniforme des différentes classes de phénomènes

- Introduction
 - Implication Textuelle
 - Approches existantes
 - Réécriture
- Afazio : un système basé sur la réécriture
 - Architecture du système
 - Le calcul sémantique
 - Exemple
- 3 Évaluation sur des suites de tests contrôlées
- 4 Vers une analyse plus approfondie des systèmes
 - Motivation
 - ARTE : un schéma d'annotation fin pour le RTE
 - Fouille d'erreurs
- Conclusion
 - Contributions de la thèse
 - Perspectives

Contributions de la thèse

- Une analyse critique de la campagne RTE
- Un système de reconnaissance d'implications textuelles basé sur la réécriture
 - Normalisation des structures verbales [TALN'08, IWCS'09]
 - Normalisation des structures nominales [LTC'09]
 - Calcul des formules logiques à partir des structures obtenues [LNAl'11]

Les contributions de la thèse (suite)

- Une méthode pour la génération de suite de tests d'implications textuelles
 - Génération semi-automatique de suites de tests annotés [LREC'10,COLING'10]
 - Algorithme de sélection d'un sous-ensemble d'éléments satisfaisant un ensemble de contraintes de distribution
- Une méthode alternative pour l'évaluation des systèmes de reconnaissance d'implications textuelles [LREC'10,COLING'10]
 - Adaptation d'une méthode de fouille d'erreurs développée par la communauté de l'analyse syntaxique
 - Réévaluation du RTE2 annoté avec le schéma d'annotation ARTE
 - Évaluation comparative d'Afazio et de Nutcracker

Perspectives

RTE :

 Analyse des cas où l'implication logique et l'implication textuelle diffèrent

Afazio :

- Désambiguisation des verbes grâce aux types sémantiques de leurs arguments (Stuttgart)
- Extension du calcul sémantique (couverture, sous-spécification)
- Applicabilité des logiques de Markov et non-monotones à la détection d'implications textuelles

Génération de suite de tests :

- Mise en œuvre d'une méthode d'annotation automatique qui prenne en compte l'alignement du texte et de l'hypothèse
- Ajout de nouveaux phénomènes