2017.1 Human Media Multicore Computing Midterm Exam (10am-11:30am, 4/21)

supervisor	
signature	

Stu	ıdentID# : (), Name	e : ()
		language unless instructed to		
		ne most appropriate English w	rords . <u>x</u> means the word	l starts with alphabet 'x'.
Abbreviation 'SI) ()]) (1. 5	,
(a. S) (b. l) (c. M) (d. D)
• (e.) is coord	lination of simultaneous events	s in order to obtain correct ru	ın-time order.
 Parallelism over: 	heads mainly include			
- cost of),		
- cost of	(g.),		
- cost of	(h.),		
- and ex	tra (redundant) computation			
• Amdahl's law im	nplies that parallel programmin	ng is worthwhile when (k.).
have many copi requested it. Wh	nen one of the copies of data	with a separate (i. y in the main memory and o is changed, the other copies nges in the values of shared	ne in the local (same as i. must reflect that change. (j.	
• (k. computational re		e capability of a system to i	ncrease total throughput unde	er an increased load wher
	is a type of flaw in an electing of other uncontrollable ev	ronic or software system wh vents.	ere (m.) the
		ning statements is True or Fal e subtraction: -2 points) is app		may not give your answer
	n advantages of cluster comp	area where memories are dyr uting is to provide global men		
	alancing is more suitable for	heterogeneous multicore syste	em than for homogeneous mul	ticore system.
(d) In UNIX, global (e) Fine-grained p	variables are shared by prod	cesses in a multi-process prophead associated with commun		ompared to coarse-grained
3. (12 points) (a) W	What is producer-consumer pr	roblem in multi-threaded and o	concurrent programming? Expl	lain with sufficient details.
(b) What does the	JAVA code "x.join();" do	? Explain with sufficient detail	s. ()
(c) What is Moore	s's law? Explain. ()
4. (8 points) There (iv) mapping.	e are largely four steps for	creating a parallel program: (i) decomposition, (ii) assignm	ent, (iii) orchestration, and
	needs to be done in the deco	mposition step. Explain with s	sufficient details.	
()
(h) Describe what a	needs to be done in the assig	gnment step. Explain with suff	icient details	
(s, Describe what I		Same ocep. Dapidii with Sull		`

5.(39 points) Consider a multi-threaded JAVA program that computes the number of prime numbers between 1 and NUM_END using NUM_THREAD threads (Prob 4 of Lab 1). Assume that NUM_END can be divided by NUM_THREAD. Consider a static load balancing method where we divide entire number range (1 ~ NUM_END) into NUM_THREAD chunks : (1 ~ NUM_END/NUM_THREAD), (NUM_END/NUM_THREAD+1 ~ $2*NUM_END/NUM_THREAD+1$ ~ $NUM_END/NUM_THREAD+1$ ~ NUM_END/NUM_THRE

The main problem of above method is that it results in bad load balancing and poor parallel performance.

- (a) Why does above method result in bad load balancing? Explain with sufficient details.
- (b) Explain your method that modifies above method to solve above problem. Your method should use static load balancing approach that results in good load balancing. Draw a picture that is similar to above picture for your explanation.

Explain your method:	Picture:

- (c) Explain why your method results in good load balancing. (
- (d) Fill out empty boxes with appropriate JAVA code that adopts a static load balancing approach with good load balancing.

```
class PrimeThread extends Thread {
  int min_val, max_val, counter;

PrimeThread(int x, int y) {
    min_val = x;
    max_val = y;
    counter=0;
}

public int getCounter() {
    return counter;
}

private boolean isPrime(int x) {
    int i;
    if (x<=1) return false;
    for (i=2;i<x,i++) {
        if ((x%i == 0) && (i!=x)) return false;
    }
    return true;
}</pre>
```

```
public class ex4 {
  private static final int NUM_THREAD=4;
  private static final int NUM_END=200000;

public static void main(String[] args) {
  int i,sum=0;
  int Width;
  PrimeThread[] t = new PrimeThread[NUM_THREAD];

  System.out.println("number of prime numbers: "+sum);
}
```