

# Separate the Numbers **■**



| Problem | Submissions | Leaderboard | Discussions | Editorial 🔒 |  |  |
|---------|-------------|-------------|-------------|-------------|--|--|
|---------|-------------|-------------|-------------|-------------|--|--|

A numeric string, s, is beautiful if it can be split into a sequence of two or more positive integers,  $a_1, a_2, \ldots, a_n$ , satisfying the following conditions:

- 1.  $a_i a_{i-1} = 1$  for any  $1 < i \le n$  (i.e., each element in the sequence is 1 more than the previous element).
- 2. No  $a_i$  contains a leading zero. For example, we can split s=10203 into the sequence  $\{1,02,03\}$ , but it is not beautiful because 02 and 03 have leading zeroes.
- 3. The contents of the sequence cannot be rearranged. For example, we can split s=312 into the sequence  $\{3,1,2\}$ , but it is not beautiful because it breaks our first constraint (i.e.,  $1-3\neq 1$ ).

The diagram below depicts some beautiful strings:



You must perform q queries, where each query consists of some string s. For each query, print whether or not the string is beautiful on a new line. If it's beautiful, print YES x, where x is the first number of the increasing sequence (if there are multiple such values of x, choose the smallest); otherwise, print N0 instead.

### **Input Format**

The first line contains an integer denoting q (the number of strings to evaluate). Each of the q subsequent lines contains some string s for a query.

#### Constraints

- $1 \le q \le 10$
- $1 \le |s| \le 32$
- Each character in  ${m s}$  is a decimal digit from  ${m 0}$  to  ${m 9}$  (inclusive).

#### **Output Format**

For each query, print its answer on a new line (i.e., either YES x where æ is the smallest first number of the increasing sequence, or NO).

## Sample Input 0

#### Sample Output 0

```
YES 1
YES 9
YES 99
NO
NO
NO
```

#### **Explanation 0**

The first three numbers are beautiful (see the diagram above). The remaining numbers are not beautiful:

- For s = 101103, all possible splits violate the first and/or second conditions.
- For s = 010203, it starts with a zero so all possible splits violate the second condition.
- For s = 13, the only possible split is  $\{1,3\}$ , which violates the first condition.
- For s = 1, there are no possible splits because s only has one digit.

f in Submissions:7132
Max Score:20
Difficulty: Easy
Rate This Challenge:
☆☆☆☆☆

```
Current Buffer (saved locally, editable) & 🗘
                                                                                  Python 3
                                                                                                                  Ö
   #!/bin/python3
 1
 2
 3
    import sys
 4
    from functools import reduce
 5
 6 ▼def is_beauty(num, s, s_len):
        bs = ''
 7
 8
        for m in range(num, num + s len):
 9
            bs = bs + str(m)
10
11 ▼
            if bs == s:
12
                 return True
13
            if len(bs) > len(s):
14
15
                 return False
16
17
        return False
18
19
20 q = int(input().strip())
21 ▼ for a0 in range(q):
22
        s = input().strip()
23
        # your code goes here
24
25
        s_{len} = len(s)
26
        found = False
27
        for n in range(1, int(s_len / 2) + 1):
28
            num = int(s[0:n])
29
            # print('{}---{}'.format(n, num))
30
            \# x1 = [m \text{ for } m \text{ in range(num, num} + s_len)]
31
            # beauti_s = reduce(lambda x, y: str(x) + str(y), x1)
32
            if is_beauty(num, s, s_len) == True:
33 ▼
34
                 print('YES {}'.format(num))
35
                 found = True
36
                 break
37
        if found == False:
38 ▼
39
            print('NO')
```

Line: 39 Col: 20

| Co              | ongrats, you solved this challeng | ge!                                  |  |
|-----------------|-----------------------------------|--------------------------------------|--|
|                 | Challenge your friends: 🕴 🂆 in    |                                      |  |
| ✓ Test Case #0  | ✓ Test Case #1                    | ✓ Test Case #2                       |  |
| ✓ Test Case #3  | ✓ Test Case #4                    | ✓ Test Case #5                       |  |
| ✓ Test Case #6  | ✓ Test Case #7                    | ✓ Test Case #8                       |  |
| ✓ Test Case #9  | ✓ Test Case #10                   | ✓ Test Case #11                      |  |
| ✓ Test Case #12 | ✓ Test Case #13                   | ✓ Test Case #14                      |  |
| ✓ Test Case #15 | ✓ Test Case #16                   | ✓ Test Case #17                      |  |
| ✓ Test Case #18 | ✓ Test Case #19                   | ✓ Test Case #20                      |  |
|                 | You'v                             | e earned 20.00 points. Next Challeng |  |

Contest Calendar | Blog | Scoring | Environment | FAQ | About Us | Support | Careers | Terms Of Service | Privacy Policy | Request a Feature