Homework 12 of Introduction to Analysis(II)

AM15 黃琦翔 111652028

May 13, 2024

1. (a) Since E is Jordan region, E is bounded and for all $\varepsilon^* > 0$, we can find a grid g s.t. $\operatorname{Vol}(\partial E, g) < \varepsilon^*$. If $x \in \partial \operatorname{int}(E)$, $D(x, \varepsilon) \cap \operatorname{int}(E) \neq \emptyset$ and $D(x, \varepsilon) \cap (M \setminus \operatorname{int}(E)) \neq \emptyset$. Thus, $D(x, \varepsilon) \cap E \neq \emptyset$ and $D(x, \varepsilon) \cap (M \setminus \operatorname{int}(E)) \neq \emptyset$.

If $D(x,\varepsilon)\cap (M\setminus E)\neq \emptyset$, then $x\in \partial E$. If $D(x,\varepsilon)\cap (M\setminus E)=\emptyset$, $D(x,\varepsilon)\subseteq E$. Then, $D(x,\varepsilon)\cap (E\setminus int(E))\neq \emptyset$, that is, $D(x,\varepsilon)\cap \partial E\neq \emptyset$. If $x\in int(E)$, then exists $\varepsilon>0$ s.t. $D(x,\varepsilon)\subseteq int(E)\cap \partial E=\emptyset$. Thus, $x\in \partial E$.

Therefore, $x \in \partial \operatorname{int}(E) \implies x \in \partial E$. Then, $\operatorname{Vol}(\partial \operatorname{int}(E)) \leq \operatorname{Vol}(\partial E) = 0$.

And for cl(E), we can use the same argument to proof $D(x,r) \setminus cl(E)$ is Jordan region for some $U \supseteq cl(E)$ is open and bounded, and that implies cl(E) is Jordan region.

(b) Since $cl(E) = int(E) \cup \partial E$ and $int(E) \subseteq E \subseteq cl(E)$, $Vol(cl(E)) \le Vol(int(E)) + Vol(\partial E) = Vol(int(E)) \le Vol(E) \le Vol(cl(E)).$ Therefore, Vol(cl(E)) = Vol(int(E)) = E.

(c)

- (\Longrightarrow) From (b), we know Vol(int(E)) = Vol(E) > 0, then we can find a set of rectangles R_n s.t. $\sum |R_n| > 0$ and $\bigcup R_n \subseteq \operatorname{int}(E)$. Therefore, $\operatorname{int}(E) \neq \emptyset$.
- (\iff) Since $\operatorname{int}(E)$ is non-empty, for any $x_0 \in \operatorname{int}(E)$, there exists $\varepsilon > 0$ s.t. $D(x_0, \varepsilon) \subseteq \operatorname{int}(E)$. Then, we can find a small rectangle R with each length is $\frac{\varepsilon}{2}$ and R is contained in $D(x_0, \varepsilon)$. Thus, $\operatorname{Vol}(\operatorname{int}(E)) > \left(\frac{\varepsilon}{2}\right)^2 > 0$.

- (d) Since f is continuous, for any $x_0 \in [a,b]$, we can find a sequence $x_k \to x_0$ s.t. $f(x_k) \to f(x_0)$. That is, $A = \{(x, f(x)) \mid x \in [a,b]\}$ is closed. And since $\partial A \subseteq A$, $\operatorname{Vol}(\partial A) \leq \operatorname{Vol}(A)$.
 - Since f is continuous on [a,b] is compact, for all $\varepsilon > 0$, we can find $\delta > 0$ s.t. $|x-y| < \delta$ implies That $|f(x)-f(y)| < \frac{\varepsilon}{b-a}$. Then, we can find a finite increasing sequence $\{x_i \mid x_i \in [a,b]\}_{i=1}^N$ s.t. $[a,b] \subseteq D(x_i,\frac{\delta}{2})$. Therefore, for any $y=f(x),y\in D(f(x_i),\frac{\varepsilon}{b-a})$ for some i.

Then, take $u_0 = a$, $u_i \in D(x_i, \frac{\delta}{2}) \cap D(x_{i+1}, \frac{\delta}{2})$, $u_N = b$, and we can get $[a, b] = \cup [u_i, u_{i+1}]$. Thus, $A \subseteq \bigcup_{i=0}^{N} [u_i, u_{i+1}] \times D(\xi_i, \frac{\varepsilon}{b-a})$ for some $\xi_i \in \{f(x) \mid x \in [u_i, u_i = 1]\}$ with the sum of the rectangles is $\frac{\varepsilon}{b-a} \cdot (b-a) = \varepsilon$. Hence, $\operatorname{Vol}(A) = 0$ and $\operatorname{Vol}(\partial A) = 0$.

- (e) Yes. Since f is integrable, for any $\varepsilon > 0$, we can find an partition P s.t. $|U(f,P)-L(f,P)| < \varepsilon$. That is, $\sum_{i=0}^{N} (\sup_{x \in [x_i, x_{i+1}]} \{f(x)\} \inf_{x \in [x_i, x_{i+1}]} \{f(x)\}) \cdot (x_{i+1} x_i) < \varepsilon$, and each one of the summation is a rectangle that contains all (x, f(x)) in the interval. Thus, $\operatorname{Vol}(A) = 0$ and $\operatorname{Vol}(\partial A) = 0$.
- 2. (a) For $x \in \partial(E_1 \cap E_2)$, $x \in \text{cl}(E_1 \cap E_2) \cap \text{cl}(M \setminus E_1 \cap E_2)$. Then, if $E_1 \cap E_2$ is not Jordan region, $\text{Vol}(E_1 \cap E_2) = a > 0$.
 - (b) Since E_1, E_2 are non-overlapping, $E_1 \cap E_2 \subseteq \partial E_1 \cap \partial E_2$. And since E_1, E_2 are Jordan regions, $Vol(E_1) = Vol(int(E_1))$ and $Vol(E_2) = Vol(int(E_2))$. Also we have $int(E_1) \cup int(E_2) \subseteq E_1 \cup E_2$ and $int(E_1) \cap int(E_2) = \emptyset$.

$$\begin{aligned} \operatorname{Vol}(\operatorname{int}(E_1)) + \operatorname{Vol}(\operatorname{int}(E_1)) &= \operatorname{Vol}(\operatorname{int}(E_1) \cup \operatorname{int}(E_2)) \\ &\leq \operatorname{Vol}(E_1 \cap E_2) \\ &\leq \operatorname{Vol}(\operatorname{int}(E_1)) + \operatorname{Vol}(\operatorname{int}(E_1)) + \operatorname{Vol}(\partial E_1) + \operatorname{Vol}(\partial E_2) \\ &= \operatorname{Vol}(\operatorname{int}(E_1)) + \operatorname{Vol}(\operatorname{int}(E_2)) \\ &= \operatorname{Vol}(E_1) + \operatorname{Vol}(E_2) \end{aligned}$$

Thus, $Vol(E_1 \cup E_2) = Vol(E_1) + Vol(E_2)$.

(c) Let $E_1 \setminus E_1 = S_1$, $E_2 = S_2$. We have S_1 and S_2 are Jordan regions and non-overlapping. Thus, $Vol(E_1) = Vol(S_1 \cup S_2) = Vol(S_1) + Vol(S_1)$ and $Vol(E_1 \setminus E_2) = Vol(E_1) - Vol(E_2)$.

(d) Using (b), (c) and the fact $E_1 \cup E_2 = (E_1 \setminus E_1 \cap E_2) \cup (E_1 \cap E_2) \cup (E_2 \setminus E_2 \cap E_1)$, we can get $Vol(E_1 \cup E_2) = (Vol(E_1) - Vol(E_1 \cap E_2)) + Vol(E_1 \cap E_2) + (Vol(E_2) - Vol(E_1 \cap E_2)) = Vol(E_1) + Vol(E_2) - Vol(E_1 \cap E_2)$.