4. Groups. Subgroups. Primitive roots.

A. Ushakov

MA503, September 28, 2022

Contents

- Groups.
- Group order. Order of an element.
- Direct product of groups.
- Group homomorphisms.
- Subgroups. Generating set. Finitely generated group.
- Cosets.
- Lagrange theorem.
- Primitive roots modulo n.
- Primitive roots modulo *n*: testing.
- Primitive roots modulo *n*: generating.

Binary functions

Let X be a set. A function $f: X \times X \to X$ is called a **binary function** on X. If there is no ambiguity (f is the only binary function) instead of writing f(a,b) we write $a \cdot b$ or simply ab.

Definition

A binary function · is

- commutative if ab = ba for every $a, b \in X$;
- associative if (ab)c = a(bc) for every $a, b, c \in X$;
- closed on a subset $S \subset X$ if $ab \in S$ for every $a, b \in S$; in this event we also say that S is closed under \cdot . A restriction of \cdot of $S \times S$ is a binary operation too.

We say that a and b commute in G if ab = ba.

Definition

An algebraic structure is a set X, perhaps, equipped with (unary, binary) functions and relations on X satisfying some conditions.

Groups

A group is one of the fundamental algebraic structures.

Definition

Let G be a set and \cdot a binary operation on G. The pair (G, \cdot) is called a **group** if:

- (G1) There exists e ∈ G (called the identity element of G) such that eg = ge = g for every g ∈ G.
 We often use the symbol 1 instead of e in the sequel.
- (G2) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for every $a, b, c \in G$.
- (G3) For every $a \in G$ there exists $b \in G$ (called the **inverse** of a and denoted by a^{-1}) such that ab = ba = e.

The group operation is often called a law of composition, or simply multiplication.

Definition

A group (G, \cdot) is **abelian** if \cdot is commutative.

Other examples of algebraic structures: fields, vector spaces, rings, monoids.

Groups: additive/multiplicative notation

Abelian groups often (not always) use additive notation, i.e., operation + instead of \cdot . That slightly changes the axioms (G1), (G2), (G3)

- (G1) $\exists e \text{ such that } e + g = g + e = g$. It is natural to use the symbol 0 instead of e for the operation +.
- (G2) (a + b) + c = a + (b + c) for every $a, b, c \in G$.
- (G3) $\forall a \exists b$ such that a + b = b + a = 0. It is natural to denote b as -a in this case.

	(G,\cdot)	(G, +)
operation	•	+
identity	1	0
inverse of a	a^{-1}	-a
power of a	a ⁿ	na

Multiplicative vs additive group notation.

Groups: examples

- $(\mathbb{Z}, +)$ is an abelian group with identity 0. The inverse of $n \in \mathbb{Z}$ is -n.
- $(\mathbb{N}, +)$ is not a group.
- Similarly $(\mathbb{Q},+)$, $(\mathbb{R},+)$, $(\mathbb{C},+)$ are groups.
- \bullet (\mathbb{Z}, \cdot) is not a group, only 2 elements have inverses 1 and -1.
- ullet The set $\{1,-1\}\subset \mathbb{Z}$ is a group under the usual multiplication.
- (\mathbb{Q}, \cdot) is not a group, no inverse for 0.
- $(\mathbb{Q} \{0\}, \cdot)$ is a group with identity 1 and inverses $(\frac{m}{n})^{-1} = \frac{n}{m}$ (here $m, n \neq 0$).
- Similarly $(\mathbb{R} \{0\}, \cdot)$, $(\mathbb{C} \{0\}, \cdot)$ are groups.
- \bullet (\mathbb{Q}_+,\cdot) and (\mathbb{R}_+,\cdot) are groups.
- The set of all bijections S_X on a set X is a group under composition.
- $(\mathbb{Z}_n, +)$ is an abelian group with the identity 0.
- Let p be a prime number. A fraction m/p^n is called a p-adic fraction. The set \mathbb{Q}_p of all p-adic fractions is a group under addition.
- \bullet (\mathbb{Z}_n,\cdot) is not a group.
- (U_n, \cdot) is the group of units.

Order

Definition

- A group *G* is **finite** if it contains finitely many elements.
- The order |G| of G is its cardinality (the number of elements it contains).
- The order |g| of $g \in G$ is the least $n \in \mathbb{N}$ such that $g^n = e$, denoted by |g|.
- We say that G has no torsion (torsion-free) if every nontrivial element has infinite order. Otherwise, we say that G has torsion.
- $(\mathbb{Z}_n, +)$ is finite of order n. The order of 1 in \mathbb{Z}_n is n.
- $(\mathbb{Z},+)$, $(\mathbb{Q},+)$ $(\mathbb{R},+)$ and $(\mathbb{C},+)$ are infinite. Every nontrivial element has infinite order.
- $\bullet \ (\mathbb{Q}-\{0\},\cdot)$ is infinite. Every nontrivial element has infinite order.
- (U_n, \cdot) is finite of order $\varphi(n)$.
- |1| = 1 in every multiplicative group.
- |2| = 3 in \mathbb{Z}_3 , |2| = 5 in \mathbb{Z}_5 , |2| = 7 in \mathbb{Z}_7 , |2| = 9 in \mathbb{Z}_9 , |2| = 11 in \mathbb{Z}_{11} .
- |2| = 2 in U_3 , |2| = 4 in U_5 , |2| = 3 in U_7 , |2| = 6 in U_9 , |2| = 10 in U_{11} .

Direct product of groups

Let G_1, \ldots, G_n be groups. Consider the Cartesian product of G_1, \ldots, G_n

$$G_1 \times \ldots \times G_n = \{(g_1, \ldots, g_n) \mid g_i \in G_i\}$$

and define a binary operation · on its elements as follows

$$(a_1,\ldots,a_n)\cdot(b_1,\ldots,b_n)=(a_1b_1,\ldots,a_nb_n).$$

Proposition

The Cartesian product $G_1 \times ... \times G_n$ with binary operation \cdot defined above is a group.

(G1) (e_1,\ldots,e_n) is the identity because for any (g_1,\ldots,g_n) we have

$$(e_1,\ldots,e_n)(g_1,\ldots,g_n)=(e_1g_1,\ldots,e_ng_n)=(g_1,\ldots,g_n).$$

(G2) \cdot is associative because for any $a=(a_1,\ldots,a_n), b=(b_1,\ldots,b_n), c=(c_1,\ldots,c_n)\in G$ we have

$$(ab)c = ((a_1b_1)c_1, \ldots, (a_nb_n)c_n) = (a_1(b_1c_1), \ldots, a_n(b_nc_n)) = a(bc).$$

(G3) $(a_1, \ldots, a_n)^{-1} = (a_1^{-1}, \ldots, a_n^{-1})$ because

$$(a_1,\ldots,a_n)\cdot(a_1^{-1},\ldots,a_n^{-1})=(a_1a_1^{-1},\ldots,a_na_n^{-1})=(e_1,\ldots,e_n)$$

Proposition

$$|\mathit{G}_{1}\times\mathit{G}_{2}|=|\mathit{G}_{1}|\cdot|\mathit{G}_{2}|.$$

Direct product of groups: example

Let
$$G = (U_5, \cdot) \times (\mathbb{Z}_5, +)$$
.

Example. Write down all elements of G and find its order.

$$U_5 = \{1, 2, 3, 4\}$$
 and $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$. Hence, $|G| = 4 \cdot 5 = 20$ and G is a set of pairs $\begin{pmatrix} 1, 0 & (1, 1) & (1, 2) & (1, 3) & (1, 4) \end{pmatrix}$

Example. Which element is the identity of G?

(1,0) is the identity in G because 1 is the identity in U_5 and 0 is the identity in \mathbb{Z}_5 .

Example. Compute $(3,3) \cdot (3,3)$.

$$(3,3) \cdot (3,3) = (3 \cdot 3,3+3) = (4,1).$$

Example. Compute $(3,3)^{-1}$.

 $(3,3)^{-1}=(2,2)$ because 2 is the inverse of 3 in U_5 and 2 is the inverse of 3 in \mathbb{Z}_5 .

Example. Compute $(4,4)^{-1}$.

 $(4,4)^{-1}=(4,1)$ because 4 is the inverse of 4 in U_5 and 1 is the inverse of 4 in \mathbb{Z}_5 .

Direct product of groups: example continued

Let
$$G = (U_5, \cdot) \times (\mathbb{Z}_5, +)$$
.

Example. Show that |(1,1)| = 5 in G.

$$(1,1)^2 = (1,1)(1,1) = (1,2) \qquad (1,1)^3 = (1,2)(1,1) = (1,3) \qquad (1,1)^4 = (1,3)(1,1) = (1,4) \qquad (1,1)^5 = (1,4)(1,1) = (1,0).$$

Example. Show that |(2,1)| = 20 in G.

```
(2,1)^2 = (2,1)(2,1) = (4,2)
                                      (2,1)^3 = (4,2)(2,1) = (3,3)
                                                                           (2,1)^4 = (3,3)(2,1) = (1,4)
                                                                                                                 (2,1)^5 = (1,4)(2,1) = (2,0)
(2,1)^6 = (2,0)(2,1) = (4,1)
                                     (2,1)^7 = (4,1)(2,1) = (3,2)
                                                                           (2,1)^8 = (3,2)(2,1) = (1,3)
                                                                                                                 (2,1)^9 = (1,3)(2,1) = (2,4)
(2,1)^{10} = (2,4)(2,1) = (4,0)
                                     (2,1)^{11} = (4,0)(2,1) = (3,1)
                                                                          (2,1)^{12} = (3,1)(2,1) = (1,2)
                                                                                                                 (2,1)^{13} = (1,2)(2,1) = (2,3)
(2,1)^{14} = (2,3)(2,1) = (4,4)
                                                                          (2,1)^{16} = (3,0)(2,1) = (1,1)
                                     (2,1)^{15} = (4,4)(2,1) = (3,0)
                                                                                                                 (2,1)^{17} = (1,1)(2,1) = (2,2)
(2,1)^{18} = (2,2)(2,1) = (4,3)
                                     (2,1)^{19} = (4,3)(2,1) = (3,4)
                                                                          (2,1)^{20} = (3,4)(2,1) = (1,0).
```

Later we will see that |(a,b)|=lcm(|a|,|b|). Here |2|=4 in \textit{U}_5 and |1|=5 in \mathbb{Z}_5 .

Homomorphism

Let G_1 , G_2 be groups.

A map $\varphi: G_1 \to G_2$ is called a homomorphism if $\varphi(ab) = \varphi(a)\varphi(b)$ for every $a, b \in G_1$ (in which case we say that φ preserves multiplication).

Warning! The identity $\varphi(ab) = \varphi(a)\varphi(b)$ depends on the operations in G_1 and G_2 .

- ab is computed using the operation on G_1 ;
- $\varphi(a)\varphi(b)$ is computed using the operation on G_2 .
- $\varphi: (G_1, +) \to (G_2, \cdot)$ is a homomorphism if $\varphi(a + b) = \varphi(a) \cdot \varphi(b)$.
- $\varphi: (G_1, \cdot) \to (G_2, +)$ is a homomorphism if $\varphi(a \cdot b) = \varphi(a) + \varphi(b)$.
- $\varphi: (G_1, +) \to (G_2, +)$ is a homomorphism if $\varphi(a + b) = \varphi(a) + \varphi(b)$.

Homomorphism: examples

Example. For any groups G_1 , G_2 the map $\varphi: G_1 \to G_2$ given by $\varphi(g) = e_2$ is a homomorphism, called the **trivial homomorphism**.

 φ is a homomorphism because for any $a,b\in G_1$ we have

$$\varphi(a \cdot b) = e_2 = e_2 \cdot e_2 = \varphi(a) \cdot \varphi(b).$$

Example. The map $\varphi : \mathbb{Z} \to \mathbb{Z}_n$ defined by $\varphi(m) = [m]_n$ is a homomorphism.

arphi is a homomorphism because for any $a,b\in\mathbb{Z}$ we have

$$\varphi(a+b)=[a+b]_n=[a]_n+[b]_n=\varphi(a)+\varphi(b).$$

Example. Maps $\pi_1: G_1 \times G_2 \to G_1$ and $\pi_2: G_1 \times G_2 \to G_2$ defined by

$$\pi_1((g_1,g_2)) = g_1$$
 and $\pi_2((g_1,g_2)) = g_2$

are group homomorphisms called projection homomorphisms.

 π_1,π_2 are homomorphisms because for any two elements $(a_1,b_1),(a_2,b_2)\in G_1\times G_2$ we have

$$\pi_1((a_1,b_1)\cdot(a_2,b_2)) = \pi_1((a_1a_2,b_1b_2)) = a_1a_2 = \pi_1((a_1,b_1))\cdot\pi_1((a_2,b_2)),$$

$$\pi_2((a_1,b_1)\cdot(a_2,b_2)) = \pi_2((a_1a_2,b_1b_2)) = b_1b_2 = \pi_2((a_1,b_1))\cdot\pi_2((a_2,b_2)).$$

Homomorphism

A bijective homomorphism $\varphi: G_1 \to G_2$ is called an isomorphism. We say that G_1 and G_2 are isomorphic and write $G_1 \simeq G_2$ if there is an isomorphism $G_1 \to G_2$.

Isomorphic groups are considered the same (up to renaming of elements done by bijection φ).

Main goal of group theory: describe all groups up to isomorphism.

An injective homomorphism $\varphi: G_1 \to G_2$ is called a monomorphism.

A surjective homomorphism $\varphi: G_1 \to G_2$ is called an epimorphism.

Subgroups

Informally, a subgroup of G is a subset that is a group itself.

A subset $H \subseteq G$ is a subgroup of G and write $H \subseteq G$ if the following holds:

(S1) H is closed under ·;

(S2) (H, \cdot) is a group itself.

A subgroup $H \leq G$ is proper if $H \neq G$.

Example. $\{1\} \leq G$ (the trivial subgroup);

Example. $G \leq G$ (the improper subgroup);

Example. $(\mathbb{Z},+) \leq (\mathbb{R},+)$

Example. $(2\mathbb{Z},+) \leq (\mathbb{Z},+)$.

Finitely generated subgroups of G

For $X \subseteq G$ define a set $\langle X \rangle = \{x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n} \mid x_i \in X \text{ and } \varepsilon_i = \pm 1\}.$

Proposition

 $\langle X \rangle$ is the minimal subgroup of G containing X.

 $\langle X \rangle \leq G$ because

- $\langle X \rangle$ is closed under \cdot .
- $1 \in \langle X \rangle$ as a product of $0 \times_i$'s.
- ullet · is associative on $\langle X \rangle$ because it is associative on G.
- $(x_1^{\varepsilon_1} \dots x_n^{\varepsilon_n})^{-1} = x_n^{-\varepsilon_n} \dots x_1^{-\varepsilon_1}$

 $\langle X \rangle$ is minimal because $X \subseteq H \Rightarrow \langle X \rangle \subseteq H$.

For $a \in G$ define a set $\langle a \rangle = \{a^n \mid n \in \mathbb{Z}\}.$

Proposition

 $\langle a \rangle$ is the minimal subgroup of G containing a.

Follows from the proposition above with $X = \{a\}$.

Finitely generated subgroups of G

- We say that $X \subseteq G$ is a **generating set** for G if $G = \langle X \rangle$.
- The subgroup $\langle a \rangle$ is called the subgroup generated by a.
- If $G = \langle X \rangle$, then we say that X generates G, or X is a generating set for G.
- G is cyclic if $G = \langle a \rangle$ for some $a \in G$.
- G is finitely generated if there exists a finite $X \subseteq G$ such that $G = \langle X \rangle$.

Examples of generating sets:

$$\bullet (\mathbb{Z},+) = \langle 1 \rangle$$

•
$$(\mathbb{Z}_n, +) = \langle 1 \rangle$$
 is cyclic

- $U_5 = \langle 2 \rangle$ is cyclic
- $U_7 = \langle 3 \rangle$ is cyclic
- U₈ is not cyclic

•
$$U_9 = \langle 2 \rangle$$
 is cyclic

•
$$(\mathbb{Q},+) = \langle 1/p^e \mid p \text{ is prime and } e \in \mathbb{N} \rangle$$

•
$$(\mathbb{Z}^2, +) = \langle (1,0), (0,1) \rangle$$
 is not cyclic.

$$\bullet \ \{1,-1,i,-i\} = \langle i \rangle$$

•

Classification of cyclic groups

If G is cyclic, then $G \simeq \mathbb{Z}_n$ or $G \simeq \mathbb{Z}$.

G is cyclic $\Rightarrow G = \langle a \rangle = \{\dots, a^{-1}, a^0, a^1, \dots\}$ for some $a \in G$. Consider two cases.

(CASE-I) If |a| = n, then

- $a^s = a^t \Leftrightarrow s \equiv_n t.$
- Hence, the map $[s]_n \stackrel{\varphi}{\mapsto} a^s$ (from \mathbb{Z}_n to G) is well defined and is a bijection.
- φ is a homomorphism because $\varphi([s]_n + [t]_n) = \varphi([s+t]_n) = a^{s+t} = a^s \cdot a^t = \varphi([s]_n) \cdot \varphi([t]_n)$.

(CASE-II) If $|a| = \infty$, then

- $\bullet \ a^s = a^t \Leftrightarrow s = t.$
- Hence, the map $s \stackrel{\varphi}{\mapsto} a^s$ (from \mathbb{Z} to G) is a bijection.
- φ is a homomorphism because $\varphi(s+t)=a^{s+t}=a^s\cdot a^t=\varphi(s)\cdot \varphi(t)$.

Cosets

For $H \leq G$ define a binary relation \equiv_H on G as follows. For $a,b \in G$

$$a \equiv_{\mathcal{H}} b \iff ab^{-1} \in \mathcal{H}.$$

 \equiv_H is an equivalence relation on G.

- (R) $a \equiv_H a$ because $aa^{-1} = 1 \in H$.
- (S) $a \equiv_H b \Rightarrow ab^{-1} \in H \Rightarrow (ab^{-1})^{-1} = ba^{-1} \in H \Rightarrow b \equiv_H a$.

(T)
$$a \equiv_H b \\ b \equiv_H c \Rightarrow ab^{-1} \in H \\ bc^{-1} \in H \Rightarrow ab^{-1} \cdot bc^{-1} = ac^{-1} \in H \Rightarrow a \equiv_H c.$$

The equivalence class

$$[a] = \{ b \in G \mid b \equiv_H a \} = \{ b \in G \mid b = ah \text{ for some } h \in H \} = \mathsf{aH}$$

is called a **left coset** of $H \leq G$.

- $[a]_n = a + \langle n \rangle$ is a coset in \mathbb{Z} .
- $\langle 4 \rangle = \{1,4\}$ and $2\langle 4 \rangle = \{2,3\}$ are cosets in U_5 .

The set of all left (resp. right) cosets forms a partition of G.

Lagrange theorem

|aH| = |bH| for any $a, b \in G$, because $ah \mapsto bh$ is a bijection.

Theorem (Lagrange theorem for a finite group G)

- If $H \leq G$, then |H| divides |G|.
- If $a \in G$, then |a| divides |G|.

Because $|G| = \sum |aH| = |H| \cdot \#$ number of cosets.

The Lagrange theorem implies Fermat little theorem.

$$k = |a| = |\langle a \rangle| \text{ divides } |U_n| = \varphi(n) \quad \Rightarrow \quad \varphi(n) = q \cdot |a|$$

$$\Rightarrow \quad a^{\varphi(n)} = a^{q|a|} = \left(a^{|a|}\right)^q = 1.$$

If gcd(a, n) = 1, then |a| is the least divisor d of $\varphi(n)$ satisfying $a^d \equiv_n 1$.

By definition, |a| is the least positive d s.t. $a^d \equiv 1$. (On the way to contrary)

$$\begin{aligned} |a| \nmid \varphi(n) & \Rightarrow & \varphi(n) = q|a| + r, \text{ where } 1 \leq r < |a| \\ & \Rightarrow & 1 \equiv_n a^{\varphi(n)} = a^{q|a|+r} = \left(a^{|a|}\right)^q a^r \equiv_n a^r. \end{aligned}$$

That contradicts minimality of |a|. Hence, $|a| | \varphi(n) = \varphi(n)$

Order of elements modulo n: examples

Example. Find the order of a = 7 modulo n = 25.

$$\varphi(25) = 20 \implies |7|$$
 is a positive divisor of $20 \implies |7| \in \{1, 2, 4, 5, 10, 20\}$.

Directly find the least power of 7 congruent to 1:

$$\mathbf{7^2} \equiv_{\mathbf{25}} \mathbf{49} \equiv_{\mathbf{25}} \mathbf{-1} \qquad \text{ (hence, } |7| \neq 2) \qquad \qquad \mathbf{7^4} \equiv_{\mathbf{25}} \mathbf{1} \qquad \text{ (hence, } |7| = 4)$$

Hence, |7| = 4 in U_{25} .

Example. Find the order of a = 2 modulo n = 53.

$$\varphi(n) = 52 \Rightarrow |2|$$
 is a positive divisor of $52 \Rightarrow |2| \in \{1, 2, 4, 13, 26, 52\}.$

Directly find the least power of 2 congruent to 1:

$$a^2 \equiv_{53} 4 \neq 1$$
 (hence, $|2| \neq 2$) $a^{13} \equiv_{53} 30 \neq 1$ (hence, $|2| \neq 13$) $a^4 \equiv_{53} 16 \neq 1$ (hence, $|2| \neq 4$) $a^{26} \equiv_{53} 52 \neq 1$, (hence, $|2| \neq 26$)

Hence, |2| = 52 in U_{53} .

Primitive roots modulo *n*

Definition

We say that $a \in \mathbb{Z}$ is a **primitive root modulo** n if $U_n = \langle a \rangle$.

- 2 is a primitive root modulo 3
- 3 is a primitive root modulo 4
- 2,3 are primitive roots modulo 5
- 3,5 are primitive roots modulo 7

- 2,5 are primitive roots modulo 9
- 2, 6, 7, 8 are primitive roots modulo 11
- 2, 6, 7, 11 are primitive roots modulo 13
- there are no primitive roots modulo 12.

Theorem

 U_n is cyclic \Leftrightarrow there are primitive roots modulo n

$$\Leftrightarrow$$
 $n=2$ or $n=4$ or $n=p^r$ or $n=2p^r$, where p is an odd prime

No proof.

Theorem

If there exists a primitive root modulo n, then there are $\varphi(\varphi(n))$ of them.

- U_n is cyclic \Leftrightarrow $U_n \simeq \mathbb{Z}_{\varphi(n)}$
- $\mathbb{Z}_{\varphi(n)} = \langle r \rangle \iff \gcd(\varphi(n), r) = 1 \text{ for any } 0 \leq r < \varphi(n).$
- The number of r's that are coprime with $\varphi(n)$ is $\varphi(\varphi(n))$.

Testing if a is a primitive root modulo n

$$a \in U_n$$
 is a primitive root $\Leftrightarrow |a| = \varphi(n)$ in U_n
 $\Leftrightarrow \varphi(n)$ is the least positive number satisfying $a^{\varphi(n)} \equiv_n 1$
 $\Leftrightarrow a^d \not\equiv_n 1$ for every divisor d of $\varphi(n)$ less than $\varphi(n)$.

Example. Is a = 3 a primitive root of n = 53?

$$\varphi(\textit{n}) = 52 \ \Rightarrow \ |3| \in \{1, 2, 4, 13, 26, 52\}.$$
 Compute the corresponding powers of 3

$$3^1 = 3$$
 $3^2 = 9$ $3^4 \equiv_{53} 28$ $3^{13} \equiv_{53} 30$ $3^{26} \equiv_{53} -1$.

Hence, $|3|_{53} = 52$ and 3 is a primitive root of 53.

Example. Is a = 5 a primitive root of n = 41?

$$\varphi(n)=40 \ \Rightarrow \ |5| \in \{1,2,4,5,8,10,20,40\}$$
. Compute the corresponding powers of 5

$$5^1 = 5$$
 $5^2 = 9$ $5^4 \equiv_{41} 10$ $5^5 \equiv_{41} 9$ $5^8 \equiv_{41} 18$ $5^{10} \equiv_{41} 40$ $5^{20} \equiv_{41} 1$.

Hence, $|5|_{41} = 20$ and 5 is not a primitive root of 41.

Warning! $\varphi(n)$ can have many divisors! Below we show that we do not need to test all of them if we simply want to check if a is primitive or not.

Testing if a is a primitive root modulo n: a better approach

If $d_1 \mid d_2 \mid \varphi(n)$, then

$$a^{d_1} \equiv_n 1 \quad \Rightarrow \quad a^{d_2} \equiv_n 1.$$

Hence, if d_1 witnesses non-primitivity of a, then d_2 witnesses non-primitivity of a.

Hence, it is sufficient to check the greatest divisors of $\varphi(n)$.

(To check if a is a primitive root modulo n)

- Check if gcd(a, n) = 1 (must be true).
- Compute $PPF(\varphi(n)) = p_1^{a_1} \dots p_k^{a_k}$.
- Check if $a^{\frac{\varphi(n)}{p_i}} \equiv_n 1$ (each must be false).

If all conditions are satisfied, then output YES.

For instance.

- For n=53, it is sufficient to check that $a^4 \not\equiv_{53} 1$ and $a^{26} \not\equiv_{53} 1$.
- For n=41, it is sufficient to check that $a^8 \not\equiv_{41} 1$ and $a^{20} \not\equiv_{41} 1$.
- For n = 79, it is sufficient to check that $a^6 \not\equiv_{79} 1$, $a^{26} \not\equiv_{79} 1$, $a^{39} \not\equiv_{79} 1$.

Generating a primitive root modulo n

There is no efficient deterministic procedure to find a primitive root modulo n! We use a randomized algorithm for this purpose.

- Generate a random $2 \le a < n$.
- Using PPF($\varphi(n)$), test if a is a primitive root.
- Q. What is the chance that a randomly generated a is primitive modulo n?

 $U_n\simeq \mathbb{Z}_{arphi(n)}$, where $\mathsf{PPF}(arphi(n))=p_1^{a_1}\dots p_k^{a_k}$. A uniform choice of $a\in U_n$ corresponds a uniform choice of some $a'\in \mathbb{Z}_{arphi(n)}$ and

an choice of some
$$a'\in\mathbb{Z}_{\varphi(n)}$$
 and
$$a \text{ is a primitive root modulo } n \Leftrightarrow \gcd(a',\varphi(n))=1 \Leftrightarrow \left\{ \begin{array}{l} p_1 \nmid a' \\ \vdots \\ p_k \nmid a' \end{array} \right.$$

The chance of the latter is

which is good. E.g., to find a primitive number modulo a 1000 bit long prime p, we need to generate 1000 random a on average.