LUNDS TEKNISKA HÖGSKOLA MATEMATIK

TENTAMENSSKRIVNING OPTIMERING 2014-04-22 kl 08-13

Students may use the formula sheet and a pocket calculator. All solutions should be properly justified.

- 1. Consider the set $S = \{(x, y) \in \mathbb{R}^2 : y^2 \le x \le y\}$.
 - a) Draw the set S and the set of all feasible directions at (1,1). (0.2)
 - b) Assume that (1,1) is the local minimum point for some function f(x,y) in S. Draw the set of all possible gradients $\nabla f(1,1)$. Which of the eight vectors $(\pm 3, \pm 2)$ and $(\pm 2, \pm 3)$ belong to this set? (0.5)
 - c) Does the optimization problem

minimize
$$e^{(x-y)^2} - \cos(\ln(x^4 + y^{2014}))$$
 subject to $(x, y) \in S$

have a solution? (0.3)

2. Consider the matrix A and the (column) vector b given by

$$A = \begin{pmatrix} 1 & 0 & 1 & -2 \\ -2 & 2 & 1 & -1 \\ 1 & 1 & -1 & 2 \end{pmatrix}, \quad b = \begin{pmatrix} 1 \\ 6 \\ 1 \end{pmatrix}.$$

- a) Find out whether b belongs to the convex hull of the columns of A. (0.4)
- b) Suggest three different methods (analytical or numerical) that you think may be applied to solve the optimization problem

$$\min \|Ax - b\|^2 \quad \text{subject to } x \ge 0.$$

Provide details and explanations why your choice is going to work. (0.6)

- **3.** Consider the matrix A and the vector b from the Problem 2.
 - a) Use the Simplex method (Phase 1) to find out whether the set

$$S = \{ x \in \mathbf{R}^4 \colon Ax = b, \ x \ge 0 \}$$

is nonempty. In that case, calculate a basic feasible solution. (0.5)

b) Consider the problem of minimizing $f(x_1, x_2, x_3, x_4) = x_1 - x_4$ subject to Ax = b and $x \ge 0$. Find out by the Complementary Slackness Principle whether the vector (1, 0, 16, 8) is the optimal solution. (0.5)

Please, turn over

- **4.** a) Prove that the sum of two convex functions is a convex function. (0.4)
 - b) Denote $f(x, y, z) = e^{x+y+z} 1$. Are the following functions convex in \mathbb{R}^3

•
$$g(x, y, z) = |\max\{f(x, y, z), 0\}|$$
? (0.3)

•
$$h(x, y, z) = \max\{|f(x, y, z)|, 0\}$$
? (0.3)

Motivate your answer!

5. Solve the following problem by KKT method

min
$$xyz$$
 subject to $x^2 + y^2 + z \le 4$, $z \ge 0$.

6. a) Solve the following optimization problem

min
$$x^2 + y^2 + xy^2 + y$$
 subject to $4 \le y^2 - x^2$, $x \ge 0$.

using the duality method with the set $X = \{(x, y) \in \mathbf{R}^2 \colon x \ge 0\}.$ (0.5)

b) Prove the existence and uniqueness of the global minimum for a quadratic polynomial with a positive-definite Hessian. (0.5)

GOOD LUCK!