Toxic Comment Classification

Nishant Aman 27 May 2018

Contents

1	Introduction	
	1.1 Problem Statement	3
	1.2 Data3	
2	Methodology	
	2.1 Exploratory data analysis	5
	2.2 Preprocessing	
	2.2.1 Case Folding	6
	2.2.2 Removing StopWords	6
	2.2.3 Removing Numbers	
	2.2.4 Punctuation Marks	
	2.2.5 Stemming	
	2.2.6 TF-IDF vectorizer	7
	2.3 Vizualization	7
3.	. Modelling	
	3.1 Modelling and Evaluation	11
	3.1.1 Random Forest	12
	3.1.2 Multinomial Naïve Bayes	14
	3.1.3 Logistic Regression	16
4.	. Conclusion	
	. References	
A	ppendix	

Chapter 1

Introduction

1.1 Problem Statement

The aim of the project is to detect potentially toxic comments on Wikipedia. The threat of abuse and harassment online means that many people stop expressing themselves and give up on seeking different opinions. Platforms struggle to effectively facilitate conversations, leading many communities to limit or completely shut down user comments.

The multi headed model should be able of classifying comments into 6 categories based on their toxicity(threat,obscene,toxic,severe toxic,insult,hate speech) and to find patterns in the sentences using NLP techniques.

1.2 Data

We have been provided with 2 datasets i.e. Training and Test.

The training dataset contains 159571 observations of 6 variables.

id – unique id for comment text column.

Comment_text- Sentence to be classified.

threat,obscene,toxic,severe toxic,insult,hate speech- Categories to which comment text to be classified.

Our task is to build classification models which will predict probability of each type of comment. Given below is a sample of the data set that we are using to predict probability of different toxicity:

Figure 1.1: Sample train Data

	id	comment_text	toxic	severe_toxic	obscene	threat	insult	identity_hate
0	0000997932d777bf	Explanation\nWhy the edits made under my usern	0	0	0	0	0	0
1	000103f0d9cfb60f	D'aww! He matches this background colour I'm s	0	0	0	0	0	0
2	000113f07ec002fd	Hey man, I'm really not trying to edit war. It	0	0	0	0	0	0
3	0001b41b1c6bb37e	"\nMore\nI can't make any real suggestions on	0	0	0	0	0	0
4	0001d958c54c6e35	You, sir, are my hero. Any chance you remember	0	0	0	0	0	0

The test dataset contains 153164 observations of 2 variables. id – unique id for comment text column. Comment_text- Sentence to be classified.

Figure 1.2: Sample test Data

	id	comment_text
0	00001cee341fdb12	Yo bitch Ja Rule is more succesful then you'll
1	0000247867823ef7	== From RfC == \n\n The title is fine as it is
2	00013b17ad220c46	" \n\n == Sources == \n\n * Zawe Ashton on Lap
3	00017563c3f7919a	:If you have a look back at the source, the in
4	00017695ad8997eb	I don't anonymously edit articles at all.

Chapter 2

Methodology

2.1 Exploratory Data Analysis

The summary of train dataset is shown below for various categories is shown as follows:

Fig 2.1 Summary

	toxic	severe_toxic	obscene	threat	insult	identity_hate
count	159571.000000	159571.000000	159571.000000	159571.000000	159571.000000	159571.000000
mean	0.095844	0.009996	0.052948	0.002996	0.049364	0.008805
std	0.294379	0.099477	0.223931	0.054650	0.216627	0.093420
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
75%	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
max	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000

It can be seen that majority(around 75%) of dataset are labeled as '0' in each category.

The count of various categories present in the 'train' file:

Fig 2.2 Counts of various categories

	count
none	143346
toxic	15294
obscene	8449
insult	7877
severe_toxic	1595
identity_hate	1405
threat	478

Note- None refers to the unlabeled columns

The distribution of various labeled categories as follows:

Fig 2.3 Data visualization in various categories

From above figure, we can see that data is highly imbalanced in all the categories.

2.2 Pre Processing

As we can see in above datasets, there are punctuation marks, Numbers, unwanted spaces which doesn't impart any information.

These are removed using regex, String and nltk packages.

2.2.1 Case Folding

The first preprocessing step is Case folding. Here, we are converting all the letters in the Corpus to lowercase using tolower() function.

2.2.2 Removing Stopwords

Stopwords are the commonly used words like "the", "is" etc, these words often does not help in the model building.

We have removed all the English stopwords from our corpus after evaluating that removing stopwords is helping our model to predict the output better.

2.2.3 Removing Numbers

Numbers are removed as it does not help in prediction.

2.2.4 Punctuation Marks

Punctuation marks like comma, fullstop are removed as it does not help in prediction.

2.2.5 Stemming

Stemming is the process of converting each word of the sentence to its root form by deleting or replacing suffixes.

Here we are using SnowballStemmer from nltk package for this purpose.

2.2.6 TF-IDF Vectorizer

Term frequency and inverse term frequency are defined as follows:

TF(t) = (Number of times term t appears in a document) / (Total number of terms in the document)

IDF(t) = log10(Total number of documents / Number of documents with term t in it)

IDF actually tells us how important the word is to the document. This is because when we calculate TF, we give equal importance to every single word. Now, if the word appears in the dataset more frequently, then its term frequency (TF) value is high while not being that important to the document. So, if the word the appears in the document 100 times, then it's not carrying that much information compared to words that are less frequent in the dataset.

2.3 Vizualization

Word cloud for different categories is shown as follows:

Fig 2.4 **Toxic**

Obscene

Insult

Chapter 3

Modelling

3.1 Modelling and evaluation

We have the data in proper format that is fed into machine learning algorithms. Our data is in form of matrix where all the words are a feature and the values are tf-idf that we have calculated earlier. Now we will built multiple machine learning models on top of the data and compare the accuracy of each algorithm to determine the best fit for multi-label classification.

First we will build a model using Random forest algorithm and then used Naive Bayes algorithm, based on the popular Bayes' probability theorem..

Then we will build a model using logistic-regression algorithm since it performs very well when we have large amount of text data.

Various terms used below are defined as follows:

Accuracy = TP+TN/Total

Precision = TP/(TP+FP)

Recall = TP/(TP+FN)

where

TP = True positive means no of positive cases which are predicted positive

TN = True negative means no of negative cases which are predicted negative

FP = False positive means no of negative cases which are predicted positive

FN= False Negative means no of positive cases which are predicted negative

Support:

The support is the number of samples of the true response that lie in that class.

F1 score:

The F1 score is a weighted harmonic mean of precision and recall such that the best score is 1.0 and the worst is 0.0.

3.1.1 Random Forest

The random forest algorithm generates a random subset of the data from the training dataset and uses this to generate a decision tree for each of the subsets of the data.

Upon using random forest with default parameter we get an accuracy for various categories as follows:

Fig 3.1 Accuracy

Processing toxic	
Training accuracy is	95.28285763117415
Processing severe_toxic	
Training accuracy is	98.98213031010843
Processing obscene	
Training accuracy is	97.66801496420365
Processing threat	
Training accuracy is	99.71514840767959
Processing insult	
Training accuracy is	96.65204428492756
Processing identity_hate	
Training accuracy is	99.17772840350177

Fig 3.2 Classification Report

Processing t	toxic					
	precision	recall	f1-score	support		
0	0.96	0.99	0.97	47576		
1	0.84	0.62	0.72	5083		
avg / total	0.95	0.95	0.95	52659		
avg / cocar	0.55	0.55	0.55	32033		
Processing s	ovene tovic					
Processing s		11	64			
	precision	recall	f1-score	Support		
0	0.99	1.00	0.99	52133		
1	0.47	0.08	0.14	526		
avg / total	0.99	0.99	0.99	52659		
Processing o	bscene					
_	precision	recall	f1-score	support		
	•					
0	0.98	0.99	0.99	49828		
1	0.86	0.67	0.75	2831		
-	0.00	0.07	0.75	2031		
ova / total	0.07	0.00	0.00	F26F0		
avg / total	0.97	0.98	0.98	52659		
Processing t						
	precision	recall	f1-score	support		
0	1.00	1.00	1.00	52507		
1	0.64	0.06	0.11	152		
avg / total	1.00	1.00	1.00	52659		
-						
Processing	g insult					
•	precision	recal	l f1-score	support		
	0 0.97	0.9	9 0.98	50016		
		0.5				
	1 0.74	0.5	1 0.00	2043		
/ +-+-	-1 0.00	0.0	7 0.00	52650		
avg / tota	al 0.96	0.9	7 0.96	52659		
Processing	g identity_hat					
	precision	recal	l f1-score	support		
	0 0.99	1.0	0 1.00	52188		
	1 0.62	0.1	0 0.17	471		
avg / tota	al 0.99	0.9	9 0.99	52659		
_						

3.1.2 Multinomial Naïve Bayes

Naïve bayes with default parameters gives an accuracy for various categories as follows:

Fig 3.3 Accuracy

Processing toxic	
Training accuracy is	94.71885147837976
Processing severe_toxic	
Training accuracy is	99.04099963918799
Processing obscene	
Training accuracy is	96.91220873924685
Processing threat	
Training accuracy is	99.70565335460225
Processing insult	
Training accuracy is	96.47163827645797
Processing identity_hate	
Training accuracy is	99.09986896826753

Fig 3.4 Classification report

Processing t	toxic			
J	precision	recall	f1-score	support
0	0.95	1.00	0.97	47576
1	0.94	0.48	0.64	5083
avg / total	0.95	0.95	0.94	52659
Processing s	severe_toxic			
	precision	recall	f1-score	support
0	0.99	1.00	1.00	52133
1	0.71	0.07	0.12	526
avg / total	0.99	0.99	0.99	52659
Processing o	bscene			
	precision	recall	f1-score	support
0	0.97	1.00	0.98	49828
1	0.92	0.47	0.62	2831
avg / total	0.97	0.97	0.96	52659
Processing t	threat			
	precision	recall	f1-score	support
0	1.00	1.00	1.00	52507
1	0.00	0.00	0.00	152
avg / total	0.99	1.00	1.00	52659
Processing in	nsult			
	precision	recall	f1-score	support
0	0.97	1.00	0.98	50016
1	0.83	0.37	0.51	2643
avg / total	0.96	0.96	0.96	52659
Processing id				
	precision	recall	f1-score	support
0	0.99	1.00	1.00	52188
1	0.20	0.00	0.00	471
avg / total	0.98	0.99	0.99	52659

3.1.3 Logistic Regression

Logistic regression with default parameters gives an accuracy for various categories as follows

Fig 3.5					
Processin	g toxic	0			
Training	accuracy is		95.7120340	3027023	
	ng severe_to:				
_	accuracy is		99.0789798	35149738	
	ig obscene				
_	accuracy is		97.7439753	38882242	
Processin	_				
_	accuracy is		99.7322395	50321882	
Processin	_				
_	accuracy is		96.9368958	37724795	
	ng identity_				
Training	accuracy is		99.2005165	53088741	
D					
Processing t		nocol1	£1 scope	suppost	
	precision	recall	f1-score	support	
0	0.96	0.99	0.98	47576	
1	0.92	0.61	0.73	5083	
-	0.52	0.01	0.75	3003	
avg / total	0.96	0.96	0.95	52659	
,			0.00	52555	
Processing s	evere toxic				
Ü	precision	recall	f1-score	support	
0	0.99	1.00	1.00	52133	
1	0.59	0.25	0.35	526	
avg / total	0.99	0.99	0.99	52659	
Processing o					
	precision	recall	f1-score	support	
0	0.98	1.00	0.99	49828	
1	0.92	0.64	0.75	2831	
aug / +a+a1	0.00	0.00	0.00	F26F0	
avg / total	0.98	0.98	0.98	52059	
Processing threat					
Troccooning t	precision	recal1	f1-score	support	
	p. 22232011		. 2 500. 0	25pport	
0	1.00	1.00	1.00	52507	
1	0.72	0.12			
avg / total	1.00	1.00	1.00	52659	

Processing insult					
	precision	recall	f1-score	support	
0	0.97	0.99	0.98	50016	
1	0.81	0.50	0.62	2643	
avg / total	0.97	0.97	0.97	52659	
Processing i	dentity_hate				
	precision	recall	f1-score	support	
0	0.99	1.00	1.00	52188	
1	0.72	0.17	0.28	471	
avg / total	0.99	0.99	0.99	52659	

4. Conclusion

The accuracy of all the models are above 90% for various categories but the time consumption by Random forest is more than the Naïve Bayes and Logistic Regression.

Hence, Logistic regression and Naïve bayes are preferable over Random Forest.

After analyzing the conclusion reports and accuracy score of various model above, I have choosen Logistic regression over naïve bayes as it performs a little better compared to than Naïve Bayes.

5. References

https://www.analyticsvidhya.com/

https://www.kaggle.com/

https://www.datasciencecentral.com/

https://www.wikipedia.org/

APPENDIX

Python Code

```
#Set working directory
os.chdir("D:\Edwisor\Pro1")

# Labels to be classified
target = ['toxic', 'severe_toxic', 'obscene', 'threat', 'insult', 'identity_hate']

# Load training dataset
train = pd.read_csv("train.csv")

#Dataset vizualization
fig,ax = plt.subplots(2,3,figsize=(16,10))
ax1,ax2,ax3,ax4,ax5,ax6 = ax.flatten()
sns.countplot(train['toxic'],ax=ax1)
sns.countplot(train['severe_toxic'],ax=ax2)
sns.countplot(train['obscene'],ax=ax3)
sns.countplot(train['threat'],ax = ax4)
sns.countplot(train['insult'],ax=ax5)
sns.countplot(train['identity_hate'], ax = ax6)
```

```
# Load testing dataset
test = pd.read_csv("test.csv")
```

```
#Removal of stopwords
sw = stopwords.words('english')
def stp(text):
    text = [text.lower() for text in text.split() if text.lower() not in sw]
    return " ".join(text)
```

```
train['comment_text'] = train['comment_text'].apply(stp)
test['comment_text'] = test['comment_text'].apply(stp)
```

```
# Removal of numbers, punctuation marks

def clean_text(text):
    text = text.lower()
    text = re.sub(r"what's", "what is ", text)
    text = re.sub(r"\'s", " ', text)
    text = re.sub(r"\'ve", " have ", text)
    text = re.sub(r"can't", "cannot ", text)
    text = re.sub(r"n't", " not ", text)
    text = re.sub(r"i'm", "i am ", text)
    text = re.sub(r"\'re", " are ", text)
    text = re.sub(r"\'d", " would ", text)
    text = re.sub(r"\'ll", " will ", text)
    text = re.sub('\\\', ' , text)
    text = re.sub('\\\', ' , text)
    text = re.sub('\\\'s+', ' , text)
    text = text.strip(' ')
    return text
```

```
cleaned train comment = []
for i in range(0,len(train)):
     cleaned_comment = clean_text(train['comment_text'][i])
     cleaned train comment.append(cleaned comment)
train['comment text'] = pd.Series(cleaned train_comment).astype(str)
cleaned_test_comment = []
for i in range(0,len(test)):
     cleaned comment = clean_text(test['comment_text'][i])
     cleaned test comment.append(cleaned comment)
test['comment_text'] = pd.Series(cleaned_test_comment).astype(str)
#Stemming
stemmer = SnowballStemmer("english")
def stemming(text):
     text = [stemmer.stem(word) for word in text.split()]
     return " ".join(text)
train['comment_text'] = train['comment_text'].apply(stemming)
test['comment_text'] = test['comment_text'].apply(stemming)
#WordCl.oud
word_counter = {}
def split_text(text):
  return ' '.join([word for word in text.split() if word not in (sw)])
for label in target:
 d = Counter()
 train[train[label] == 1]['comment_text'].apply(lambda t: d.update(split_text(t).split()))
 word_counter[label] = pd.DataFrame.from_dict(d, orient='index')\
                            .rename(columns={0: 'count'})\
                             .sort_values('count', ascending=False)
for label in target:
 print(label)
 wc = word_counter[label]
 wordcloud = Wordcloud(width = 1000, height = 500, stopwords=STOPWORDS, background_color = 'black').generate_from_frequencies(
                  wc.to_dict()['count'])
```

plt.figure(figsize = (15,8))
plt.imshow(wordcloud)
plt.axis('off')
plt.show()

```
from sklearn.feature extraction.text import TfidfVectorizer
vec tf = TfidfVectorizer(stop words='english',lowercase=True,
                max features = 10000)
X train vec = vec tf.fit transform(X train)
X train vec
<106912x10000 sparse matrix of type '<class 'numpy.float64'>'
       with 2373507 stored elements in Compressed Sparse Row format>
X_test_vec = vec_tf.transform(X_test)
X_full_test = vec_tf.transform(test.comment_text)
X_test_vec
<52659x10000 sparse matrix of type '<class 'numpy.float64'>'
       with 1166300 stored elements in Compressed Sparse Row format>
from sklearn.linear model import LogisticRegression
from sklearn.naive bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
from sklearn import metrics
from sklearn.metrics import classification_report
lr = LogisticRegression()
# create submission file
submission = pd.read_csv("sample_submission.csv")
for label in target:
    print('Processing {}'.format(label))
    lr.fit(X_train_vec, y_train[label])
    y_pred1 = lr.predict(X_test_vec)
                                        {}'.format(accuracy_score(y_test[label], y_pred1)*100))
    print('Training accuracy is
    test_y_prob = lr.predict_proba(X_full_test)[:,1]
    print(classification_report(y_test[label], y_pred1))
    submission[label] = test_y_prob
    submission.to_csv('submission.csv', index=False)
nb=MultinomialNB()
# create submission file
submission = pd.read csv("sample submission.csv")
for label in target:
    print('Processing {}'.format(label))
    nb.fit(X_train_vec, y_train[label])
    y_pred1 = nb.predict(X_test vec)
    print('Training accuracy is
                                         {}'.format(accuracy_score(y_test[label], y_pred1)*100))
    test y prob = nb.predict_proba(X_full_test)[:,1]
    print(classification report(y test[label], y pred1))
    submission[label] = test_y_prob
    submission.to csv('submission.csv', index=False)
```

```
rf=RandomForestClassifier()

# create submission file
submission = pd.read_csv("sample_submission.csv")

for label in target:
    print('Processing {}'.format(label))
    rf.fit(X_train_vec, y_train[label])
    y_pred1 = rf.predict(X_test_vec)
    print('Training accuracy is {}'.format(accuracy_score(y_test[label], y_pred1)*100))
    test_y_prob = nb.predict_proba(X_full_test)[:,1]
    print(classification_report(y_test[label], y_pred1))
    submission[label] = test_y_prob
    submission.to_csv('submission.csv', index=False)
```