# Lumpability of Markov chains and reward processes

Ana Sokolova, Erik de Vink

{asokolov,evink}@win.tue.nl.

TU/e

What is lumpability all about?

- What is lumpability all about?
  - \* General lumpability

- What is lumpability all about?
  - \* General lumpability
  - \* Rewards and performance analysis

- What is lumpability all about?
  - \* General lumpability
  - \* Rewards and performance analysis
- Ordinary lumpability

- What is lumpability all about?
  - \* General lumpability
  - \* Rewards and performance analysis
- Ordinary lumpability
- Exact lumpability

- What is lumpability all about?
  - \* General lumpability
  - \* Rewards and performance analysis
- Ordinary lumpability
- Exact lumpability
- Properties of interest

- What is lumpability all about?
  - \* General lumpability
  - \* Rewards and performance analysis
- Ordinary lumpability
- Exact lumpability
- Properties of interest
- Results

- What is lumpability all about?
  - \* General lumpability
  - \* Rewards and performance analysis
- Ordinary lumpability
- Exact lumpability
- Properties of interest
- Results
- Conclusions

#### Example:



$$M = (S, P, \pi)$$

$$S = \{1, 2, 3, 4\}$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 1 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 \\ \frac{3}{4} & \frac{1}{4} & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 \end{bmatrix}$$

$$\pi = [\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0]$$

#### Example:



#### Example:





• Markov chain,  $X(n) = M = (S, P, \pi)$ 



• Markov chain,  $X(n) = M = (S, P, \pi)$ 



• Partition L on S.

• Markov chain,  $X(n) = M = (S, P, \pi)$ 



- Partition L on S.
- $\Rightarrow$  Lumped stochastic process is  $\hat{X}(n)$ , with  $\hat{X}(n) = i \Leftrightarrow X(n) \in C_i \in L$ .

• Markov chain,  $X(n) = M = (S, P, \pi)$ 



- Partition L on S.
- $\Rightarrow$  Lumped stochastic process is  $\hat{X}(n)$ , with  $\hat{X}(n) = i \Leftrightarrow X(n) \in C_i \in L$ .
  - When is  $\hat{X}(n)$  a markov chain ???

## General lumpability

Th. The Markov chain  $M=(S,P,\pi)$  is lumpable w.r.t a partition  $L=\{C_1,\ldots,C_m\}$  on S iff there exists a matrix  $\hat{P}$  of order m, such that for all  $i,j\in\{1,\ldots,m\}$  and for all  $k\geq 0$  it holds

$$\hat{P}^{k}(i,j) = \frac{\sum_{i' \in C_i} \pi(i') \sum_{j' \in C_j} P^{k}(i',j')}{\hat{\pi}(i)}$$

## General lumpability

Th. The Markov chain  $M=(S,P,\pi)$  is lumpable w.r.t a partition  $L=\{C_1,\ldots,C_m\}$  on S iff there exists a matrix  $\hat{P}$  of order m, such that for all  $i,j\in\{1,\ldots,m\}$  and for all  $k\geq 0$  it holds

$$\hat{P}^{k}(i,j) = \frac{\sum_{i' \in C_i} \pi(i') \sum_{j' \in C_j} P^{k}(i',j')}{\hat{\pi}(i)}$$

Notation: 
$$M \stackrel{L}{\to}_l \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi})$$
 for  $\hat{\pi}(i) = \sum_{i' \in C_i} \pi(i')$ 

 $M_1 \sim_l M_2$  if they have a common lumping.

## General lumpability - rewards

Def. The MRP  $M = (S, P, \pi, r)$  is lumpable w.r.t a partition  $L = \{C_1, \dots, C_m\}$  on S iff the chain  $(S, P, \pi)$  is.

Notation:  $M \stackrel{L}{\rightarrow}_{lp} \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi}, \hat{r})$  for

## General lumpability - rewards

Def. The MRP  $M = (S, P, \pi, r)$  is lumpable w.r.t a partition  $L = \{C_1, \ldots, C_m\}$  on S iff the chain  $(S, P, \pi)$  is.

Notation:  $M \stackrel{L}{\rightarrow}_{lp} \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi}, \hat{r})$  for

$$\hat{r}(i) = \frac{\sum_{i' \in C_i} \underline{\pi}(i') r(i')}{\sum_{i' \in C_i} \underline{\pi}(i')}$$

## General lumpability - rewards

Def. The MRP  $M = (S, P, \pi, r)$  is lumpable w.r.t a partition  $L = \{C_1, \ldots, C_m\}$  on S iff the chain  $(S, P, \pi)$  is.

Notation:  $M \stackrel{L}{\rightarrow}_{lp} \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi}, \hat{r})$  for

$$\hat{r}(i) = \frac{\sum_{i' \in C_i} \underline{\pi}(i') r(i')}{\sum_{i' \in C_i} \underline{\pi}(i')}$$

Recall:  $pm(M) = \sum_{i \in S} r(i)\underline{\pi}(i)$ 

Th. If  $M \stackrel{L}{\rightarrow}_{lp} \hat{M}$  then  $pm(M) = pm(\hat{M})$ .

Def. Let  $M = (S, P, \pi)$  and  $L = \{C_1, \dots, C_m\}$  a partition on S. If for all  $C_i, C_j \in L$  and all  $i', i'' \in C_i$ 

$$\sum_{j' \in C_j} P(i', j') = \sum_{j' \in C_j} P(i'', j')$$

then M is ordinary lumpable w.r.t L.

Def. Let  $M=(S,P,\pi)$  and  $L=\{C_1,\ldots,C_m\}$  a partition on S. If for all  $C_i,C_j\in L$  and all  $i',i''\in C_i$ 

$$\sum_{j' \in C_j} P(i', j') = \sum_{j' \in C_j} P(i'', j') = \hat{P}(i, j)$$

then M is ordinary lumpable w.r.t L.

Def. Let  $M=(S,P,\pi)$  and  $L=\{C_1,\ldots,C_m\}$  a partition on S. If for all  $C_i,C_j\in L$  and all  $i',i''\in C_i$ 

$$\sum_{j' \in C_j} P(i', j') = \sum_{j' \in C_j} P(i'', j') = \hat{P}(i, j)$$

then M is ordinary lumpable w.r.t L.

Notation:  $M \stackrel{L}{\rightarrow}_{ol} \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi})$ 

Def. Let  $M=(S,P,\pi)$  and  $L=\{C_1,\ldots,C_m\}$  a partition on S. If for all  $C_i,C_j\in L$  and all  $i',i''\in C_i$ 

$$\sum_{j' \in C_j} P(i', j') = \sum_{j' \in C_j} P(i'', j') = \hat{P}(i, j)$$

then M is ordinary lumpable w.r.t L.

Notation:  $M \stackrel{L}{\rightarrow}_{ol} \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi})$ 

 $M_1 \sim_{ol} M_2$  if they have a common ordinary lumping

Def. Let  $M=(S,P,\pi)$  and  $L=\{C_1,\ldots,C_m\}$  a partition on S. If for all  $C_i,C_j\in L$  and all  $i',i''\in C_i$ 

$$\sum_{j' \in C_j} P(i', j') = \sum_{j' \in C_j} P(i'', j') = \hat{P}(i, j)$$

then M is ordinary lumpable w.r.t L.

Notation:  $M \stackrel{L}{\rightarrow}_{ol} \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi})$ 

 $M_1 \sim_{ol} M_2$  if they have a common ordinary lumping

Prop. 
$$M \stackrel{L}{\rightarrow}_{ol} \hat{M} \Rightarrow M \stackrel{L}{\rightarrow}_{l} \hat{M}$$

# Example - ordinary lumpability



$$M = (S, P, \pi)$$

$$S = \{1, 2, 3, 4\}$$

$$L = \{\{1, 2\}, \{3, 4\}\}$$

$$P = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 \\ \frac{1}{8} & \frac{5}{8} & 0 & \frac{1}{4} \end{bmatrix}$$

$$\pi = [\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0]$$

## Example - ordinary lumpability

$$\hat{M}$$

$$\frac{\frac{1}{2}}{x\left[\frac{3}{4}\right]}$$

$$\frac{\frac{1}{2}}{\frac{3}{4}}$$

$$y\left[\frac{1}{4}\right]$$

$$M = (S, P, \pi)$$

$$S = \{1, 2, 3, 4\}$$

$$L = \{\{1, 2\}, \{3, 4\}\}$$

$$P = \begin{bmatrix} \frac{1}{2} & 0 & 0 & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} & 0 \\ \frac{1}{8} & \frac{5}{8} & 0 & \frac{1}{4} \end{bmatrix}$$

$$\pi = [\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0]$$

Def. Let  $M=(S,P,\pi)$  and  $L=\{C_1,\ldots,C_m\}$  a partition on S. If for all  $C_i,C_j\in L$  and all  $j',j''\in C_j$ 

$$\sum_{i' \in C_i} P(i', j') = \sum_{i' \in C_i} P(i', j''), \ \pi(j') = \pi(j'')$$

then M is exactly lumpable w.r.t L.

Def. Let  $M=(S,P,\pi)$  and  $L=\{C_1,\ldots,C_m\}$  a partition on S. If for all  $C_i,C_j\in L$  and all  $j',j''\in C_j$ 

$$\sum_{i' \in C_i} P(i', j') = \sum_{i' \in C_i} P(i', j''), \ \pi(j') = \pi(j'')$$

then M is exactly lumpable w.r.t L.

Notation: 
$$M \stackrel{L}{\to_{el}} \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi})$$
 for  $\hat{P}(i,j) = \frac{|C_j|}{|C_i|} \sum_{i' \in C_i} P(i',j')$ 

Def. Let  $M=(S,P,\pi)$  and  $L=\{C_1,\ldots,C_m\}$  a partition on S. If for all  $C_i,C_j\in L$  and all  $j',j''\in C_j$ 

$$\sum_{i' \in C_i} P(i', j') = \sum_{i' \in C_i} P(i', j''), \ \pi(j') = \pi(j'')$$

then M is exactly lumpable w.r.t L.

Notation: 
$$M \stackrel{L}{\rightarrow}_{el} \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi})$$
 for  $\hat{P}(i,j) = \frac{|C_j|}{|C_i|} \sum_{i' \in C_i} P(i',j')$ 

 $M_1 \sim_{el} M_2$  if they have a common ordinary lumping

Def. Let  $M=(S,P,\pi)$  and  $L=\{C_1,\ldots,C_m\}$  a partition on S. If for all  $C_i,C_j\in L$  and all  $j',j''\in C_j$ 

$$\sum_{i' \in C_i} P(i', j') = \sum_{i' \in C_i} P(i', j''), \ \pi(j') = \pi(j'')$$

then M is exactly lumpable w.r.t L.

Notation: 
$$M \stackrel{L}{\to_{el}} \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi})$$
 for  $\hat{P}(i,j) = \frac{|C_j|}{|C_i|} \sum_{i' \in C_i} P(i',j')$ 

 $M_1 \sim_{el} M_2$  if they have a common ordinary lumping

Prop. 
$$M \stackrel{L}{\rightarrow}_{el} \hat{M} \Rightarrow M \stackrel{L}{\rightarrow}_{l} \hat{M}$$

Def. Let  $M=(S,P,\pi)$  and  $L=\{C_1,\ldots,C_m\}$  a partition on S. If for all  $C_i,C_j\in L$  and all  $j',j''\in C_j$ 

$$\sum_{i' \in C_i} P(i', j') = \sum_{i' \in C_i} P(i', j''), \ \pi(j') = \pi(j'')$$

then M is exactly lumpable w.r.t L.

Notation:  $M \stackrel{L}{\rightarrow}_{el} \hat{M}, \ \hat{M} = (L, \hat{P}, \hat{\pi})$  for  $\hat{P}(i,j) = \frac{|C_j|}{|C_i|} \sum_{i' \in C_i} P(i',j')$ 

 $M_1 \sim_{el} M_2$  if they have a common ordinary lumping

Note: In the exact case for rewards

$$\hat{r}(i) = \frac{\sum_{i' \in C_i} r(i')}{|C_i|}$$

## Example - exact lumpability



$$M = (S, P, \pi)$$

$$S = \{1, 2, 3, 4\}$$

$$L = \{\{1\}, \{2, 3\}, \{4\}\}$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 1 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 \\ \frac{3}{4} & \frac{1}{4} & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 \end{bmatrix}$$

$$\pi = \begin{bmatrix} \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0 \end{bmatrix}$$

$$\pi = [\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0]$$

## Example - exact lumpability



$$M = (S, P, \pi)$$

$$S = \{1, 2, 3, 4\}$$

$$L = \{\{1\}, \{2, 3\}, \{4\}\}$$

$$P = \begin{bmatrix} 0 & 0 & 0 & 1 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{2} & 0 \\ \frac{3}{4} & \frac{1}{4} & 0 & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} & 0 \end{bmatrix}$$

$$\pi = [\frac{1}{2}, \frac{1}{4}, \frac{1}{4}, 0]$$

transitivity:

$$M_1 \longrightarrow M_2 \longrightarrow M_3 \qquad \stackrel{?}{\Rightarrow} \qquad M_1 \longrightarrow M_3$$

#### transitivity:

$$M_1 \longrightarrow M_2 \longrightarrow M_3$$
  $\stackrel{?}{\Rightarrow}$   $M_1 \longrightarrow M_3$  p-transitivity:

$$M_2$$

$$L' \nearrow L''$$

$$M_1 - -\bar{L}'' - > M_3$$

transitivity:

$$M_1 \longrightarrow M_2 \longrightarrow M_3 \qquad \stackrel{?}{\Rightarrow} \qquad M_1 \longrightarrow M_3$$

p-transitivity:



Prop. p-transitivity implies transitivity











Prop. ∗♦ implies ♦.

♦ - property \*♦ - property:





Prop.  $*\diamond$  implies  $\diamond$ .

Prop.  $\diamond$  and transitivity imply  $\sim$  equivalence.

## Results - lumpability relations

|                  | ordinary | exact | general |
|------------------|----------|-------|---------|
| p-transitivity   | yes      | no    | yes     |
| transitivity     | yes      | no    | yes     |
| $\Diamond$       | yes      | no    | yes     |
| *                | yes      | no    | no      |
| $\sim$ is equiv. | yes      | no    | yes     |

### Results - lumpability relations

|                  | ordinary | exact | general |
|------------------|----------|-------|---------|
| p-transitivity   | yes      | no    | yes     |
| transitivity     | yes      | no    | yes     |
| $\Diamond$       | yes      | no    | yes     |
| *                | yes      | no    | no      |
| $\sim$ is equiv. | yes      | no    | yes     |

The same holds with or without rewards.

for the properties of interest

- for the properties of interest
  - \* general lumpability no real practical use

- for the properties of interest
  - \* general lumpability no real practical use
  - \* ordinary lumpability "well behaved"

- for the properties of interest
  - \* general lumpability no real practical use
  - \* ordinary lumpability "well behaved"
  - \* exact lumpability good for rewards

- for the properties of interest
  - \* general lumpability no real practical use
  - \* ordinary lumpability "well behaved"
  - \* exact lumpability good for rewards
- future aims

- for the properties of interest
  - \* general lumpability no real practical use
  - \* ordinary lumpability "well behaved"
  - \* exact lumpability good for rewards
- future aims
  - \* lumpability in simulation

- for the properties of interest
  - \* general lumpability no real practical use
  - \* ordinary lumpability "well behaved"
  - \* exact lumpability good for rewards
- future aims
  - \* lumpability in simulation
  - lumpability and conditional reward reduction together

- for the properties of interest
  - \* general lumpability no real practical use
  - \* ordinary lumpability "well behaved"
  - \* exact lumpability good for rewards
- future aims
  - \* lumpability in simulation
  - lumpability and conditional reward reduction together
  - \*