《微积分A2》第1周第1课

教师 杨利军

清华大学数学科学系

2020年02月17-21日

联系方式

办公室:理科楼A323

<u>电话</u>: 62796895(O), 13521891215(M)

微信群名: 微A2甲YLJ, 微A2乙YLJ

email: lyang@mail.tsinghua.edu.cn

教材

<u>教材</u>:《高等微积分教程》(下),章纪民,闫浩,刘智新编著,清华大学出版社,2015,(价39元,教材中心有售)

参考书1

1. 《数学分析教程》上下两册, 第三版, 常庚哲史济怀编著. 第二版的电子版已上载到网络学堂.

参考书2

2. James Stewart, Calculus, 7th edition, 2012年, pp. 1381. 英文电子版已上载于网络学堂. 这本教材通俗易懂, 图文并茂, 说理透彻. 强烈推荐!

3. 《数学分析习题课讲义》上下两册, 第二版, 谢惠民等编著,

4. 《流形上的分析》, 曼克勒斯(美)著

教学方式

鉴于当前的特殊时期, 我们的远程上课方式采用:

观看老师上课录像 + 线上线下交流

具体做法如下:老师将制作好的上课录像(每周五个学时,对应有五个mp4文件),以及上课讲义(每周也有五个pdf文件),通过网络网络学堂,提前传送给同学们.请大家从头到尾认真观看上课录像,仔细研读上课讲义.然后独立完成本周所布置的作业.有需要可随时与老师和助教交流.

助教信息

陈付恺, 数学系博士生, cfk19@mails.tsinghua.edu.cn 谷夏, 数学系博士生, gux19@mails.tsinghua.edu.cn 朱雨薇, 数学系博士生, zhuyw18@mails.tsinghua.edu.cn 周武爱, 自动化系博士生, zwa17@mails.tsinghua.edu.cn

四位助教均已实名加入了两个班的微信群:

微A2甲YLJ, 微A2乙YLJ

作业,线上和线下答疑

作业:每周布置一次作业,同学们从第二周开始,每周周一之前提交上一周的作业.作业通过网络学堂提交.助教也通过网络学堂,将批改好的作业返还给大家.

<u>线上答疑</u>:在我们两个班上课时间段,即每周周一9:50-12:15,周三8:00-9:35,13:30-15:05,周五9:50-12:15,老师将开启腾

线下答疑:除了在线答疑之外,大家还可以在任何时间通过微信向老师和助教提出任何问题.必要时可将问题写在纸上,然后拍照发微信.

讯(或 zoom)会议模式, 在线回答同学们的问题.

考试及成绩

期中考试: 2020年4月18日(周六)下午13:30-15:30, 细节待定

成绩评定: 20% 作业成绩 + 30% 期中成绩 + 50% 期末成绩

欧氏空间IRn

为简洁计考虑欧氏空间 IR^2 , 其定义为 $IR^2 \stackrel{\triangle}{=} \{(x,y),x,y \in IR\}$, 它的元素 (x,y) 常称作点或向量. 其上的加法与数乘定义如下 $(a_1,b_1) + (a_2,b_2) \stackrel{\triangle}{=} (a_1+a_2,b_1+b_2),$ $c(a,b) \stackrel{\triangle}{=} (ca,cb).$

可以验证,集合 IR2 关于上述加法和数乘构成一个线性空间.

加法的三角形法则, 平行四边形法则

欧氏空间中的点和向量可看作同义语. 在线性代数课程里, 我们知道两个点(或向量)的加法满足三角形法则, 或平行四边形法则. 如图

IR² 的内积, 范数以及距离

欧氏空间 \mathbb{R}^2 中的任意两点 $\alpha_1=(\mathsf{x}_1,\mathsf{y}_1)$, $\alpha_2=(\mathsf{x}_2,\mathsf{y}_2)$ 标准内积为 $(\alpha_1,\alpha_2)\stackrel{\triangle}{=}\mathsf{x}_1\mathsf{x}_2+\mathsf{y}_1\mathsf{y}_2$. 任意点 $\alpha=(\mathsf{x},\mathsf{y})$ 的范数即长度定义为 $\|\alpha\|\stackrel{\triangle}{=}\sqrt{(\alpha,\alpha)}=\sqrt{\mathsf{x}^2+\mathsf{y}^2}$. 任意两点 α_1 和 α_2 的距离定义为 $\rho(\alpha_1,\alpha_2)\stackrel{\triangle}{=}\|\alpha_1-\alpha_2\|$, 即

 $\rho(\alpha_1,\alpha_2) \stackrel{\triangle}{=} \sqrt{(\mathsf{x}_1-\mathsf{x}_2)^2+(\mathsf{y}_1-\mathsf{y}_2)^2}.$

距离的性质

不难证明, 上述所定义的距离具有如下性质: 对任意三点 α_1 , α_2 , α_3 ,

- (i) 正定性: $\rho(\alpha_1, \alpha_2) \geq 0$; 等号成立, 当且仅当 $\alpha_1 = \alpha_2$;
- (ii) 对称性: $\rho(\alpha_1, \alpha_2) = \rho(\alpha_2, \alpha_1)$;
- (iii) 三角不等式: $\rho(\alpha_1, \alpha_2) \leq \rho(\alpha_1, \alpha_3) + \rho(\alpha_3, \alpha_2)$.

证明留作习题. 见习题1.1第1题(第7页).

邻域, 去心邻域

Definition

设 $x_0 \in \mathbb{R}^n$, $\delta > 0$. (i) 称点集 $\{x \in \mathbb{R}^n, ||x_0 - x|| < \delta\}$ 为点 x_0 的 δ (开)邻域, 也称作(开)球域, 常记作 $B(x_0, \delta)$

(ii) 称点集 $\{x \in R^n, 0 < \|x_0 - x\| < \delta\}$ 为点 x_0 的去心 δ 邻域. 常记作 $B^{\circ}(x_0, \delta)$. 显然 $B^{\circ}(x_0, \delta) = B(x_0, \delta) \setminus \{x_0\}$.

内点与内部, 外点与外部, 开集与闭集

Definition

定义: 设 Ω 是 \mathbb{R}^n 的子集. (i) 点 $z_0 \in \mathbb{R}^n$ 称为点集 Ω 的内点(interior point), 如果 Ω 包含 z_0 的一个邻域 $B(z_0, \delta)$;

- (ii) 集合 Ω 所有内点构成的集合称为 Ω 的内部, 常记作 Ω° ;
- (iii) 点 $z_0 \in \mathbb{R}^n$ 称为点集 Ω 的外点(exterior point), 如果 z_0 是 余集 $\Omega^C = \mathbb{R}^n \setminus \Omega$ 的内点;
- (iv) 集合 Ω 所有外点构成的集合称为 Ω 的外部;
- (v) 集合 Ω 称为开的(open), 如果 Ω 的每个点都是 Ω 的内点, 即 $\Omega=\Omega^\circ$;
- (vi) 集合 Ω 称为闭的(closed), 如果其余集 Ω^{C} 是开集.

开集与闭集的例子

Example

- (i) 我们约定, 空集(常记作 \emptyset 或 ϕ) 也称为开集. 由这个约定知 欧氏空间 \mathbb{R}^n 和空集 \emptyset 既是开集又是闭集.
- (ii) 上半开平面 $\{(x,y),y>0\}\subset \mathbb{R}^2$ 是开集, 其余集下半开平面 $\{(x,y),y\leq 0\}\subset \mathbb{R}^2$ (含 x 轴) 是闭集.
- (iii) 平面 IR² 去掉一个点后的集合是开集.
- (vi) 存在许多既不开也不闭的集合. 例如平面 IR^2 中的点集 $\{0 < ||z|| \le 1\}$ 就是.

例子续

(vii) 任意邻域 $B(z_0,\delta)$ 为开集.

证明: 对于任意 $z_1 \in B(z_0, \delta)$, 取 $0 < \varepsilon < \delta - \rho(z_0, z_1)$, 则开 球 $B(z_1, \varepsilon) \subset B(z_0, \delta)$.

因此 z_1 是邻域 $B(z_0,\delta)$ 的内点. 从而 $B(z_0,\delta)$ 的每个点都是内点. 这就证明了 $B(z_0,\delta)$ 是开集. 证毕.

开集与闭集的性质

Theorem

定理: (i) 任意多个开集的并是开集;

- (ii) 有限多个的开集的交 (intersection) 是开集;
- (iii) 任意多个闭集的交是闭集;
- (iv) 有限多个闭集的并 (union) 是闭集.

证明留作习题. 见习题 1.2 题 3(3), 题 4(4).

边界点与边界,闭包

Definition

定义: 给定点集 $\Omega \subset \mathbb{R}^n$,

- (i) 点 $z_0 \in \mathbb{R}^n$ 称为集合 Ω 的边界点(boundary point), 如果点 z_0 的每个邻域 $B(z_0, r)$ 既含有 Ω 的点, 又含有余集 Ω^C 的点;
- (ii) 集合 Ω 所有边界点构成的集合称为 Ω 的边界, 常记作 $\partial\Omega$;
- (iii) 并集 $\Omega \cup \partial \Omega$ 称为集合 Ω 的闭包(closure), 常记作 $\bar{\Omega}$.

例子

Example

- (i) 平面上开圆盘 $||z-z_0|| < r$ 的边界是圆周 $||z-z_0|| = r$. 其闭包为 $||z-z_0|| \le r$, 称为闭圆盘.
- (ii) 全空间 \mathbb{R}^n 没有边界点, 故它的边界是空集, 即 $\partial \mathbb{R}^n = \emptyset$.
- (iii) 单点集 $\Omega = \{a\}$ 的边界就是其自身, 即 $\partial \Omega = \Omega = \{a\}$.

集合的连通性, 开区域与闭区域

Definition

- (i) 点集 $\Omega \subset \mathbb{R}^n$ 称为(道路)连通的(connected), 如果对于 Ω 中的任意两点, 存在一条完全包含在 Ω 的折线连接这两个点.
- (ii) 若点集 Ω 不是(道路)连通的,则称它为非连通的.
- (iii) 连通的非空开集称为开区域(或简称区域).
- (iv) 开区域的闭包称为闭区域.

开区域与闭区域例子

Example

- (i) 全空间 IRⁿ 是开区域, 也是闭区域;
- (ii) 每个开邻域 $\|z-z_0\| < r$ 都是开区域, 其闭包 $\|z-z_0\| \le r$ 都是闭区域;
- (iii) 上半平面 $\{(x,y), y > 0\}$ (不含 x 轴) 是 \mathbb{R}^2 中的开区域,
- (iv) 下半平面 $\{(x,y), y \le 0\}$ (含 x 轴) 是 \mathbb{R}^2 中的闭区域.

点列收敛性

Definition

设 $\{z_k\}\subset IR^n$ 为一点列. 若存在 $z^*\in IR^n$, 使得 $\rho(z_k,z^*)\to 0$, 或 $\|z_k-z^*\|\to 0$, 当 $k\to +\infty$, 则称点列 $\{z_k\}$ 收敛于点 z^* , 并记作 $z_k\to z^*$ 或 $\lim_{n\to +\infty} z_k=z^*$.

有理由相信, \mathbb{R}^n 中的点列收敛, 当且仅当点列的 n 个坐标构成的 n 个数列均收敛. 以下是 n=3 时的结论.

Theorem

点列 $\alpha_k=(x_k,y_k,z_k)\to \alpha^*=(x^*,y^*,z^*)$,当且仅当 $x_k\to x^*$, $y_k\to y^*$ 和 $z_k\to z^*$.

定理证明

Proof.

$$(x_k, y_k, z_k) \rightarrow (x^*, y^*, z^*)$$
 $\iff \sqrt{(x_k - x^*)^2 + (y_k - y^*)^2 + (z_k - z^*)^2} \rightarrow 0$
 $\iff |x_k - x^*| \rightarrow 0, |y_k - y^*| \rightarrow 0, |z_k - z^*| \rightarrow 0$
此即 $x_k \rightarrow x^*, y_k \rightarrow y^*, z_k \rightarrow z^*.$ 证毕.

IRⁿ 的完备性 (completeness)

回忆实数集 IR 具有完备性, 是指 IR 中的每个 Cauchy 序列均收敛. 实数序列 $\{x_k\}\subset IR$ 称为 Cauchy 序列, 如果这个序列满足条件: 对任意 $\varepsilon>0$, 存在自然数 N, 使得对任意正整数 i, j \geq N, 均有 $|x_i-x_j|<\varepsilon$. 欧氏空间 IR^n 继承了实数集 IR 的完备性.

$\mathsf{Theorem}$

欧氏空间 IRⁿ 是完备的,即 IRⁿ 中的每个 Cauchy 序列均收敛.

定理证明

Proof.

<u>证明</u>: 为简洁计, 只证明情形 n=2 时的结论. 设 $\{(x_k,y_k)\}$ 是 \mathbb{R}^2 中的 Cauchy 点列, 则显然两个数列 $\{x_k\}$ 和 $\{y_k\}$ 都是 \mathbb{R} 中的 Cauchy 序列. 根据 \mathbb{R} 的完备性可知数列 $\{x_k\}$ 和 $\{y_k\}$ 均收敛. 设 $x_k \to x^*$, $y_k \to y^*$, 则 $(x_k,y_k) \to (x^*,y^*)$. 故 Cauchy 序列 $\{(x_k,y_k)\}$ 收敛, 且收敛于点 (x^*,y^*) . 证毕.