1 Three-Dimensional Coordinate Systems

1.1 Vectors in the Plane

The first goal for calculus 3 is to define the rectangular coordinate plane in 3-space.

In 2-space, this is the normal coordinate axis with coordinates (x, y).

In 3-space, you now have (x, y, z). We have an xy-plane, a yz-plane, and an xz-plane. Also we have octants in 3-space similar to quadrants in 2-space.

The z-axis is determined by the right-hand rule: if you curl the fingers on your right hand from the positive x-axis to the y-axis, your thumb points in the direction of the positive z-axis.

Exercise Graph (2,3,4).

When graphing points in 3-space, it might be easier to draw a prism to see the three-dimensional components easier.

Exercise Graph (-3, 2, -6).

In 3-space the distance formula is simliar to 2-space. It is the following:

$$d = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$

Example

Find the distance between (2,3,4) and (-3,2,-6).

Plug in the numbers into the formula and the answer gives $d = \sqrt{126}$

Similar to circles in 2-space, there are spheres in 3-space. The equation of a sphere is

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2$$

Example

Write the equation of a sphere with a diameter having endpoints (-1,2,1) and (0,2,3).

We can find the center with the midpoint formula, and the center is $(-\frac{1}{2},2,2)$.

Using the (-1,2,1) endpoint and the center calculated above, we can determine the radius to be $\sqrt{5/4}$.

Therefore the equation of the sphere is $(x+\frac{1}{2})^2+(y-2)^2+(z-2)^2=\frac{5}{4}$.

Example

Find the center and radius of the sphere $x^2 + y^2 + z^2 - 2x - 4y + 8z + 17 = 0$.

When we complete the square for this, we end up getting $(x-1)^2 + (y-2)^2 + (z+4)^2 = 4$.

Therefore, the center is (1, 2, -4) and the radius is 2.

Theorem 1.1

An equation of the form $x^2 + y^2 + z^2 + Gx + Hy + Iz + J = 0$ represents a sphere, a point, or has no graph.

We would get a point if the radius gives you 0, and if the radius is negative, then there is no graph.

Exercise Graph y=3 in \mathbb{R}^3 .

Exercise Describe and sketch the surface in \mathbb{R}^3 represented by y=x.

Exercise Graph $x^2 + z^2 = 1$.

Example

Describe the graph of $1 \le x^2 + y^2 + z^2 \le 4$. What if $z \le 0$?

This will represent the region between the spheres and centered at the origin with radii of 1 and 2. (This is a sphere with center cut out).

The condition $z \leq 0$ will give us a hemisphere, it will only give the lower half of the figure.

1.2 Vectors

Definition: Vector

A vector indicates a quantity that has both magnitude and direction.

Examples include displacement, velocity, or force.

Some ways to notate vectors are \mathbf{u} , \overrightarrow{u} , \overrightarrow{u} , \overrightarrow{AB} , \overrightarrow{AB} . For the last two of these, these are read as a vector starting at A, heading towards B.

We say that 2 vectors are equivalent (or equal) if they have the same length and direction.

0 vector (0) has a length of 0 and no direction. (Note that 0 is a vector because it is bolded.)

Definition: Vector Addition

If \mathbf{u} and \mathbf{v} are positioned so that the initial point of \mathbf{v} is at the terminal point of \mathbf{u} , then $\mathbf{u} + \mathbf{v}$ is the vector from the initial point of \mathbf{u} to the terminal point of \mathbf{v} .

Note that $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

Definition: Scalar Multiplication

If c is a scalar and ${\bf v}$ is a vector, then $c{\bf v}$ is the vector whose length is |c| times the length of ${\bf v}$ and whose direction is the same as ${\bf v}$ if c>0 and is opposite if c<0.

Using the two definitions above, we can find the difference $\mathbf{u} - \mathbf{v}$. From the above definitions, we can rewrite this as $\vec{u} + (-\vec{v})$, which is equivalent to $\vec{u} - \vec{v}$.

Exercise Sketch $\mathbf{a} - 2\mathbf{b}$ and define \mathbf{a} and \mathbf{b} as you wish.

Coordinate Systems: Generally we place the initial point at the origin and then express a vector as $\mathbf{a} = \langle a_1, a_2 \rangle$ or $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ where (a_1, a_2) and (a_1, a_2, a_3) are terminal points.

Given points $A(x_1, y_1)$ and $B(x_2, y_2)$, vector $\mathbf{a} = \mathbf{AB}$ is $\mathbf{a} = \langle x_2 - x_1, y_2 - y_1 \rangle$. (In 3-space the idea is similar.)

Example

Express vector $\overrightarrow{P_1P_2}$ in bracket notation if $P_1(1,3)$ and $P_2(4,-2)$.

Note that we start at the terminal point. Therefore we have $\overrightarrow{P_1P_2}=\langle 4-1,-2-3\rangle=\langle 3,-5\rangle$.

Note that the vector between the two points and the vector found have the same direction and same length.

Arithmetic Operations: If $\vec{v}=\langle v_1,v_2\rangle$ and $\vec{w}=\langle w_1,w_2\rangle$, then

- $\vec{v} + \vec{w} = \langle v_1 + w_1, v_2 + w_2 \rangle$
- $\vec{v} \vec{w} = \langle v_1 w_1, v_2 w_2 \rangle$
- $k\vec{v} = \langle kv_1, kv_2 \rangle$

Example

If $\vec{a}=\langle -2,0,1\rangle$ and $\vec{b}=\langle 3,5,-4\rangle$, find $\vec{a}+\vec{b}$ and $\vec{b}-2\vec{a}$.

Finding $\vec{a} + \vec{b}$ is simple just add them together to get $\langle 1, 5, -3 \rangle$.

To find $\vec{b} - 2\vec{a}$, multiply \vec{a} by 2 to get $\langle -4, 0, 2 \rangle$. Then subtracting gives you $\langle 7, 5, -6 \rangle$.

Properties of Vectors:

- 1. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
- 2. $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$
- 3. $\vec{a} + \mathbf{0} = \vec{a}$
- 4. $\vec{a} + (-\vec{a}) = \mathbf{0}$ (Additive Inverse)
- 5. $c(\vec{a} + \vec{b}) = c\vec{a} + c\vec{b}$
- 6. $(c+d)\vec{a} = c\vec{a} + d\vec{a}$
- 7. $(cd)\vec{a} = c(d\vec{a})$
- 8. $1\vec{a} = \vec{a}$

Example

Prove property #2 from above.

Let
$$\vec{a} = \langle a_1, a_2 \rangle$$
, $\vec{b} = \langle b_1, b_2 \rangle$, and $\vec{c} = \langle c_1, c_2 \rangle$.

From the left side of property 2, we have $\langle a_1, a_2 \rangle + (\langle b_1, b_2 \rangle + \langle c_1, c_2 \rangle)$.

From this, we can simplify to get $\langle a_1 + a_2 \rangle + \langle b_1 + c_1, b_2 + c_2 \rangle$.

This gives us $(a_1 + (b_1 + c_1), a_2 + (b_2 + c_2))$.

From the associative law we can rewrite this as $\langle (a_1+b_1)+c_1,(a_2+b_2)+c_2 \rangle$.

This is $\langle a_1 + b_1, a_2 + b_2 \rangle + \langle c_1 + c_2 \rangle$, which is equivalent to $(\vec{a} + \vec{b}) + \vec{c}$. \square

Unit Vectors: A unit vector is a vector with a length of 1.

In 2-space, define $\vec{i}=\mathbf{i}=\langle 1,0\rangle$ and $\vec{j}=\mathbf{j}=\langle 0,1\rangle$ and 3-space, $\vec{i}=\mathbf{i}=\langle 1,0,0\rangle$, $\vec{j}=\mathbf{j}=\langle 0,1,0\rangle$, and $\vec{k}=\mathbf{k}=\langle 0,0,1\rangle$.

 \vec{i}, \vec{j} , and \vec{k} are called unit or standard basis vectors. All have length 1 and point in the positive direction on the x-y-, and z- axes.

For example, $\vec{a} = \langle 1, 3, -4 \rangle$ can be expressed as $\vec{a} = \vec{i} + 3\vec{j} - 4\vec{k}$.

Example

If $\vec{a} = \vec{i} + 2\vec{j} - 3\vec{k}$, and $\vec{b} = 4\vec{i} + 7\vec{k}$, find $2\vec{a} + 3\vec{b}$.

Adding them together gives $14\vec{i} + 4\vec{j} + 15\vec{k}$.

The norm (or magnitude or length) of a vector is defined as

$$|\vec{v}| = ||\vec{v}|| = \sqrt{v_1^2 + v_2^2}$$

Example

Let $\vec{u} = \vec{i} - 3\vec{j} + 2\vec{k}$ and $\vec{v} = \vec{i} + \vec{j}$. Find:

- $||\vec{u}|| + ||\vec{v}||$ Use the above formula to get $\sqrt{14} + \sqrt{2}$.
- $||\vec{u} + \vec{v}||$. First add the two vectors to get (2, -2, 2). The norm of this is $2\sqrt{3}$.
- $\frac{1}{|\vec{v}|}\vec{v}$ We previously found the magnitude of \vec{v} to be $\sqrt{2}$. So we simply have $\frac{1}{\sqrt{2}}\langle 1,1,0\rangle$. This is $\frac{1}{\sqrt{2}}\vec{i}+\frac{1}{\sqrt{2}}\vec{j}$.
- $||\frac{1}{||\vec{v}||}\vec{v}||$. The norm of $\langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0 \rangle$ is 1.

The vector found in the third part of the previous example is known as a unit vector because it has a norm of 1

The process of obtaining a unit vector with the same direction is called normalizing \vec{v} .

Example

Find the unit vector in the direction of $\vec{a}=2\vec{i}-\vec{j}-2\vec{k}$.

The norm of a is $||\vec{a}|| = \sqrt{4+1+4} = 3$. Then normalizing \vec{a} gives $\langle \frac{2}{3}, -\frac{1}{3}, -\frac{2}{3} \rangle$.

Vectors in Polar Form: Any vector can be written in the following form

$$\vec{v} = ||\vec{v}|| \langle \cos \theta, \sin \theta \rangle$$

We know that $||\vec{v}||$ is the magnitude of the vector and $\langle \cos\theta, \sin\theta \rangle$ is the direction.

Example

Find the angle that $\vec{v} = \langle -\sqrt{3}, 1 \rangle$ makes with the positive x-axis.

We know we can write this as $\langle -\sqrt{3}, 1 \rangle = ||\vec{v}|| \langle \cos \theta, \sin \theta \rangle$.

The magnitude of \vec{v} is 2, so simplifying a little gives us $\langle -\frac{\sqrt{3}}{2}, \frac{1}{2} \rangle = \langle \cos \theta, \sin \theta \rangle$.

From this, we can see that θ is the θ when $\cos\theta = -\frac{\sqrt{3}}{2}$ and $\sin\theta = \frac{1}{2}$. So, $\theta = \frac{5\pi}{6}$.

Forces are often represented by vectors because they have a length and direction. If two forces are applied to the same point, they are concurrent. The two forces together form the resultant force, $\vec{F}_1 + \vec{F}_2$.

Example

Suppose two forces are applied to an eye bracket. Find the magnitude of the resultant and the angle that it makes with the positive x-axis.

From the diagram, we can see that $\vec{F}_1 = 200 \langle \cos 30^{\circ}, \sin 30^{\circ} \rangle = \langle 100 \sqrt{3}, 100 \rangle$.

For \vec{F}_2 , we get $\vec{F}_2 = \langle 300 \cos 70^{\circ}, 300 \sin 70^{\circ} \rangle$.

Adding them gives $\vec{F} = \langle 100\sqrt{3} + 300\cos 70^{\circ}, 100 + 300\sin 70^{\circ} \rangle$.

This approximates to $\langle 275.8, 381.9 \rangle$. The magnitude of this approximates to $||\vec{F}|| \approx 471$ N.

If we let $100\sqrt{3} + 300\cos 70^\circ$ be $||\vec{F}||\cos \theta$, then we can determine the angle.

When we find θ in $\cos\theta=\frac{100\sqrt{3}+300\cos70^{\circ}}{471}$, we get $\theta\approx54.2^{\circ}$.

Example

A 100-lb weight hangs from two wires. Find the forces (tensions) \vec{T}_1 and \vec{T}_2 in both wires and the magnitude of those tensions.

Note that \vec{T}_1 does not have an angle of 50° , rather it has a degree of 130° from the point.

Therefore, we have $\vec{T}_1 = |\vec{T}_1| \langle \cos 130^{\circ}, \sin 130^{\circ} \rangle$.

Note we can rewrite this with to be in the first quadrant as $|\vec{T}_1|\langle -cos50^\circ, \sin 50^\circ \rangle$.

We also have $\vec{T}_2 = |\vec{T}_2| \langle \cos 32^{\circ}, \sin 32^{\circ} \rangle$.

We also see that the weight of the block is $\vec{W}=100\langle 0,-1\rangle=\langle 0,-100\rangle$, so we see to balance this out, both tension forces need to equal $\langle 0,100\rangle$.

Therefore, we see that $-|\vec{T}_1|\cos 50^\circ + |\vec{T}_2|\cos 32^\circ = 0$ (addition of the \vec{i} components).

We also have $|\vec{T}_1 \sin 50^{\circ} + |\vec{T}_2| \sin 32^{\circ} = 100$ (\vec{j} components).

Solving for $|\vec{T_1}|$ and $|\vec{T_2}|$ from this gives us 85.64 lbs and 64.91 lbs respectively.

Plugging these values back in gives us the tension vectors.

$$\vec{T}_1 \approx \langle -55.05, 65.60 \rangle$$

$$\vec{T}_2 \approx \langle 55.05, 34.40 \rangle$$

1.3 The Dot Product

Definition: The Dot Product

If $\vec{a}=\langle a_1,a_2,a_3 \rangle$ and $\vec{b}=\langle b_1,b_2,b_3 \rangle$, then the dot product $\vec{a}\cdot\vec{b}$ is

$$\vec{a} \cdot \vec{b} = a_1 b + 1 + a_2 b_2 + a_3 b_3$$

This is called the scalar or inner product. (Note: 2-space is a similar idea)

Example

$$(\vec{i}+2\vec{j}-3\vec{k})\cdot(2\vec{j}-\vec{k})$$

Using the dot product formula gives you 7.

Properties of dot products:

1.
$$\vec{a} \cdot \vec{a} = |\vec{a}|^2$$

2.
$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

3.
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

4.
$$(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (c\vec{b})$$

5.
$$\vec{0} \cdot \vec{a} = 0$$

Example

Prove the first property from above.

Let
$$\vec{a} = \langle a_1, a_2, a_3 \rangle$$
.

The dot product of \vec{a} and \vec{a} gives us $a_1^2 + a_2^2 + a_3^2$.

The magnitude of this is $\sqrt{a_1^2+a_2^2+a_3^2}^2$ which is equal to $|\vec{a}|^2$ \Box

Example

Prove the third property from above.

Let $\vec{a} = \langle a_1, a_2, a_3 \rangle$, likewise for \vec{b} and \vec{c} .

Then when we do $\vec{a}\cdot(\vec{b}+\vec{c})$ we get

$$\langle a_1, a_2, a_3 \rangle \cdot (\langle b_1, b_2, b_3 \rangle + \langle c_1, c_2, c_3 \rangle)$$

$$= \langle a_1, a_2, a_3 \rangle \cdot \langle b_1 + c_1, b_2 + c_2, b_3 + c_3 \rangle$$

$$= a_1(b_1 + c_1) + a_2(b_2 + c_2) + a_3(b_3 + c_3)$$

$$= a_1b_1 + a_1c_1 + a_2b_2 + a_2c_2 + a_3b_3 + a_3c_3$$

$$= (a_1b_1 + a_2b_2 + a_3b_3) + (a_1c_1 + a_2c_2 + a_3c_3)$$

$$= \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

Theorem 1.2

 $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, where θ is the angle between \vec{a} and \vec{b} .

Corollary 1.3

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

Example

Find the angle between $\vec{u}=\vec{i}-2\vec{j}+2\vec{k}$ and $\vec{v}=-3\vec{i}+6\vec{j}+2\vec{k}.$

The dot product of the two gives -11.

The magnitude of \vec{u} is 3 and the magnitude of \vec{v} is 7.

We see that $\cos \theta = -\frac{11}{3.7}$, so $\theta = 2.12$ radians or 121.6° .

Recall, $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$. Since $|\vec{a}| |\vec{b}|$ is always positive, the sign of the dot product is determined by $\cos \theta$.

- If $\vec{a} \cdot \vec{b} > 0$, then the angle is acute.
- If $\vec{a} \cdot \vec{b} < 0$, then the angle is obtuse.
- If $\vec{a} \cdot \vec{b} = 0$, then the vectors are orthogonal.

To determine if two vectors are parallel, the vectors have to be scalar multiples of each other.

Definition: Direction Angles

The direction angles α , β , and $\gamma([0,\pi])$ are the angles that \vec{a} makes with the positive x-, y-, and z- axes. Their cosines are called direction cosines.

$$\cos \alpha = \frac{\vec{a} \cdot \vec{i}}{\Longrightarrow} \cos \alpha = \frac{a_1}{|\vec{a}|}$$
. Likewise, $\cos \beta = \frac{a_2}{|\vec{a}|}$ and $\cos \gamma = \frac{a_3}{|\vec{a}|}$.

Notice that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

Also $\vec{a} = |\vec{a}| \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$, which can be expressed as $\frac{\vec{a}}{|\vec{a}|} = \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$.

So, the direction cosines form the unit vector in the direction of \vec{a} .

Example

Find the direction cosines of $\vec{a}=\langle 2,-4,4\rangle$ and approximate the direction angles to the nearest degree.

The magnitude of \vec{a} is 6.

From the formulas, we can find that $\cos \alpha = \frac{1}{3}$, $\cos \beta = -\frac{2}{3}$, and $\cos \gamma = \frac{2}{3}$.

Finding the angles gives us $\alpha \approx 71^\circ$, $\beta \approx 132^\circ$, and $\gamma \approx 48^\circ$.

Example

Find the angle between a diagonal of a cube and one of its edges.

Let's call the vector from the diagonal to the edge as \vec{d} and the length of the edge be a.

We get $\vec{d}=\langle a,a,a\rangle$ as a result. The magnitude of \vec{a} ends up being $\sqrt{3a^2}$.

We get that $\cos \alpha = \frac{a}{\sqrt{3}a^2} = \frac{1}{\sqrt{3}}$.

This approximates $\alpha \approx 0.955$ radians or 54.7°.

 $\operatorname{proj}_{\vec{a}}\vec{b}$ is the vector projection of \vec{b} onto \vec{a}

 $\mathsf{comp}_{\vec{a}}\vec{b}$ is the scalar projection of \vec{b} onto \vec{a} (a signed magnitude of the vector projection).

If we look at the scalar projection, $\operatorname{comp}_{\vec{a}}\vec{b}=|\vec{b}|\cos\theta$ and remember that $\cos\theta=\frac{\vec{a}\cdot\vec{b}}{|\vec{a}||\vec{b}|}$. Therefore $\operatorname{comp}_{\vec{a}}\vec{b}=\frac{\vec{a}\cdot\vec{b}}{|\vec{a}|}$.

The projection will just be the magnitude (which is the scalar projection) multiplied by the unit vector: $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|} \left(\frac{\vec{a}}{|\vec{a}|} \right)$.

This is equal to $\frac{\vec{a} \cdot \vec{b}}{|\vec{a}|^2} \vec{a}$.

Example

Find the scalar and vector projections of $\vec{b}=\langle 1,1,2\rangle$ onto $\vec{a}=\langle -2,3,1\rangle$.

The dot product of the vectors is 3, the magnitude of $\vec{a} = \sqrt{14}$.

From the formula above, the scalar projection is $\frac{3}{\sqrt{14}}$.

The vector projection gives $\frac{3}{(\sqrt{14})^2}\langle -2,3,1\rangle$, simplifying to $\langle -\frac{3}{7},\frac{9}{14},\frac{3}{14}\rangle.$

Previously, you learnt work is defined as $W = F \cdot d$ (this only applies when the force is directed along the line of motion).

Now we can define work as $W=(|\vec{F}|\cos\theta)|\vec{d}|$. Moving stuff around gives $W=|\vec{F}||\vec{D}|\cos\theta$.

Now we see that $W = \vec{F} \cdot \vec{d}$. (Work is constant which means it should result in a scalar.)

Example

A wagon is pulled horizontally by exerting a constant force of 10 lb on the handle at an angle of 60° with the horizontal. How much work is done in moving the wagon 50 feet?

We can easily see that the displacement vector is $\vec{d} = \langle 50, 0 \rangle$.

The force vector we must divide into components, so we get $\vec{F} = 10 \langle \cos 60^{\circ}, \sin 60^{\circ} \rangle = \langle 5, 5\sqrt{3} \rangle$.

So the dot product of both vectors gives us 250 ft-lb.