Communication Networks I

L2 Local Area Networks

Prof. Dr.-Ing. **Ralf Steinmetz** KOM - Multimedia Communications Lab

Overview

- 1 What are Local Area Networks (LANs)?
- 2 Medium Access Control (MAC)
- 3 Dynamic Channel Allocation: Contention Free
 - 3.1 Polling
 - 3.2 TDMA (Time Division Multiple Access)
 - 3.3 Token Procedure
- 4 Dynamic Channel Allocation: with Contention
 - 4.1 ALOHA
 - **4.2 CSMA**

(Carrier Sense Multiple Access)

- 4.3 Comparing ALOHA, CSMA.., CSMA CD
- 5 Reference Model and Logical Link Control

- 6 IEEE 802.3: CSMA / CD
 - 6.1 802.3: History and Basics
 - 6.2 802.3: Frame Format
 - 6.3 802.3: Frame Format

- Details on Minimum Length

- 6.4 802.3: Control Flow
- 6.5 802.3: Behavior at a Collision
- 6.6 802.3: Switched LANs
- 6.7 802.3: Conclusion CSMA / CD
- 7 IEEE 802.5: Token Ring
 - **7.1 802.5: Ring Topology**
 - 7.2 802.5: MAC Protocol
 - 7.3 802.5: Physical Layer
 - 7.4 802.5: Calculations,

also Ring Bit Number

- 7.5 802.5: MAC Frame Formats
- 7.6 802.5: Summary Token Ring
- 7.7 Comparison of 802.3 and 802.5
- 7.8 IEEE 802.4: Token Bus

1 What are Local Area Networks (LANs)?

Processor / End System Distance	CPUs / end systems are in a common	Example	
10 m	room		
100 m	building	LAN	
1 km	campus		
•••	•••	•••	

A LAN (Local Area Network) is a network

- For the bit-serial transmission of information between components that are
 - independent and
 - connected to each other
- Legally it is controlled by the user
- Its range is usually limited to the area within the property boundaries

Source: ISO TC 97

(International Standardization Organization - Technical Committee 97)

What are Local Area Networks (LANs)?

Features of local area networks ...

Features of Local Area Networks

Relatively high speed, usually >100 Mbps

Easy / reasonably priced connection

No/few telecommunication regulations

Distance limited to a few kilometers

Transmission of varying types of data

- texts, general data
- images, animated images
- audio, video,
- haptics, ...

Connection of different devices

- computers
- terminals / printers
- storage units
- ...

Several senders/sources share a channel/medium

→ MEDIUM ACCESS CONTROL (MAC)

2 Medium Access Control (MAC)

Need of Medium Access Control

- IF several persons (senders/sources)
 share a channel/medium
- THEN it is very likely that two or more will start communicating at the same time
- > schemes needed to avoid "chaos"

Important "sub layer" of L2

- especially for LANs
- technically lower part of L2

Channel Allocation Problem

Static Channel Allocation in LANs and MANs

- + Using schemes such as FDM or TDM
- + Simple
- Does not work well with bursty traffic
- Inefficient and with poor performance

→ Dynamic Channel Allocation in LANs and MANs needed

Dynamic Channel Allocation Schemes

Dynamic Channel Allocation – Terms / Assumptions

Station Model

- N independent stations (computers, ...) generating frames for transmission
- Station is blocked until frame has been successfully transmitted

Single Channel Assumption

 Single channel for all communication (all stations can send / receive)

Collision Assumption

- 2 frames transmitted simultaneously
 → overlap → signal is garbled → collision
- Stations can detect collisions

Time

- Continuous Time
 - frame transmission may start at any instant
 - no master clock

Slotted Time

- Time divided into discrete intervals (slots)
- Frame transmission always begins at the start of slot
- Slot may contain 0, 1, 2, ... frames
- Idle, successful transmission, collision

Without or with Carrier Sense

- Carrier Sense
 - stations know whether channel is in use or not before trying to use it
 - if channel sensed as busy, no station will attempt to transmit until it goes idle
- No Carrier Sense
 - stations cannot sense channel before trying to use it

3 Dynamic Channel Allocation: Contention Free

3.1 Polling

Master Control Station

```
LOOP
 FOR I = 1 TO N
DO
  POLL Station I; /* Request To Send */
  Expected EOT of Station I;
        /* End of Transmission*/
 ENDFOR;
ENDLOOP;
Follow-up Station X
LOOP
Expect Poll for Station X;
 IF Desire to Send to Station I
  THEN Send Message for Station I;
 ENDIF;
 EOT to Master Control Station;
ENDLOOP;
```

Downside

- Master Control Station failure
- Unnecessary querying if requests for transmission do not exist

3.2 TDMA (Time Division Multiple Access)

Station X

```
Waiting for Start Pulse;
I := 1;
LOOP
IF I = X
   THEN Send for the duration \( \Delta T \);
I := (I MOD N) + 1;
ENDIF;
Wait for the next pulse;
ENDLOOP;
```


Downside

- Poor channel usage at stations with low transmission load
- Unused channel capacity is kept available at a varying number of stations
- Centralized pulse synchronization

TDMA Collision-Free: Reservation

Principle

- Transmission sequence among stations defined by PREVIOUSLY distributed RESERVATION REQUESTS
- Alternating
 - distribution of reservation requests and
 - sending of reference data

Features

- Waiting time due to contention period
- Exact timing necessary
- Contention slots need some capacity too

Example: Basic bitmap protocol for 8 stations

- Contention slots: station j (j = 0..7) announces that it has a frame to send
- All stations get complete knowledge about which stations wish to transmit

3.3 Token - Procedure

Example:

```
Station X

LOOP

Expect Token;

IF Desire to Send

THEN Send Reference Message;

ENDIF;

Transmit Token to the Next Station;
```


Principle

ENDLOOP;

- Stations form a virtual or a physical ring
- A token (authorization to send) circulates on this ring
- A station can send, if it has a token

3 Dynamic Channel Allocation: with Contention

4.1 ALOHA

History

- University of Hawaii, 1970
- Originally via radio station with 9.600 bps
 - 413 MHz: centralized sender (to everybody) on earth
 - 407 MHz: here all stations send to the sender

Principle

- Sending without any coordination whatsoever
- Sender listens at the (return-)channel (after sending)
- In case of collision retransmits after a random time interval

ALOHA: Example of a Collision

t: time to send a frame

Collision

- If the beginning of another frame (of a different sender) is between $T_0 t$ and $T_0 + t$
- Collision window: $\lim_{\epsilon \to 0} (2t \epsilon) = 2t$
- Assuming all frames have same length

Downside

High amount of collisions

Slotted ALOHA

Principle

- Like Unslotted ALOHA, but time of sending within a defined time pattern
- Collision
 - if the beginning of a frame is between T_0 and $T_0 + t$,
 - i. e. it cannot start at $T_0 t$
 - It lasts into $T_0 + t$
 - \rightarrow the time pattern cuts the collision window into half (= t)
- Requires centralized synchronization

History

University of Hawaii, 1972

Downside

many collisions, but less than Unslotted ALOHA

ALOHA: Throughput

Assumptions here: a multitude of stations

- *t*: time for sending a frame
- S: amount of new requests to send per frame sending time t
- Poisson's distribution
 - S > 1 : more channel capacity required than available, i. e. almost always collision
 - 0 < S < 1: more sensible
- G: ALL requests to send
 - \blacksquare = S + No. of retransmissions per frame time

Maximum channel usage

- Unslotted ALOHA ≈ 18 %
- Slotted ALOHA ≈ 36 %

4.2 CSMA (Carrier Sense Multiple Access)

ALOHA and Slotted ALOHA

 Station sends (if request to send exists) and realizes only AFTERWARDS, if it was actually able to send

CSMA Principle

- Check the channel BEFORE sending
- Channel status:
 - "busy"
 - no sending activity
 - wait until channel is re-checked
 - OR
 - keep checking continuously until channel is available
 - "available"
 - send
 - still possibility for collision exists!
 - "collision"
 - wait for a random time

CSMA Variation Non-Persistent

Principle

- Request to send → check channel
- Channel status:
 - "busy"
 - wait without checking the channel continuously,
 - channel RE-CHECK ONLY AFTER A RANDOM TIME INTERVAL
 - "available"
 - send
 - "collision"
 - wait for a random time, then re-check channel

Properties

- Assumption that other stations want to send also, therefore it is better to have the intervals for the re-checks randomly determined
- IMPROVED OVERALL THROUGHPUT (EFFICIENCY)
- Longer delays for single stations

CSMA Variation 1-Persistent

Principle

- Request to send → channel check
- Channel status:
 - "busy"
 - continuous re-checking until channel becomes available
 - "available"
 - send, i.e. send with probability p = 1
 - "collision"
 - wait random time, then re-check channel

Properties

- If channel is available: send with probability 1 (thus 1-persistent)
- MINIMIZING THE DELAY OF OWN STATION
- But a lot of collisions at higher load →low throughput

CSMA Variation p-Persistent

Applied with "slotted" channels

Principle

- Request to send → channel check
- Channel status
 - "busy"
 - wait for the next slot, re-check (continuously)
 - "available"
 - send with probability p,
 - wait with probability 1 p for the next slot,
 - check next slot
 - "busy": wait random time, re-check channel
 - "available": send with probability p, wait for next slot with probability 1 p, ...etc.
 - "collision": ..etc.
 - "collision"
 - wait random time, re-check channel

Properties

- COMPROMISE BETWEEN DELAY AND THROUGHPUT
- defined by parameter p

CSMA Variation CD

Carrier Sense Multiple Access with Collision Detection

CSMA 1-persistent with CD

Principle

- Sending station interrupts transmission as soon as it detects a collision
 - saves time and bandwidth
 - frequently used (802.3, Ethernet)
 - station has to realize DURING the sending of a frame if a collision occurred

Extreme case

Short frame, maximum distance to station

CSMA Variation CD: Extreme Case

Extreme Case

Short frame, maximum distance to station

Station can be certain only after 2τ

- that it has occupied the channel with no collision
- (1 km coax cable: $\tau \approx 5 \mu s$)

Collision window

4.3 Comparing ALOHA, CSMA.., CSMA CD

		channel is checked (regarding decision to send, not with regard to collision)			behavior in case of desire to send and if one of the following states has been determined			Time slot	
		before	during	after	busy	available	collision		
ALOHA	pure			х	sender does not know these conditions random		re-transmit after		
	slotted			х			random time interval	X	
CSMA	nonpersist	x		(X)	re-check channel only after random time interval	sends immediately	wait random time interval then re-check channel and send (if possible) (depending on algorithm "available/busy")		
	1 persist.	X		(X)	Continuous wait until channel is Available				
	p persist.	x		(X)	initially: continuous wait until chnl/slot available	sends with probability p, waits with probability 1-p (for next slot, then re- checks status)		X	
	CSMA/CD	х	х		depending on procedure, (see above) 1 parsistant is a g. Ethernot immediate		Terminates sending immediately, waits random time		

Throughput of e.g. Aloha

Comparing Performance: CSMA, ALOHA

S channel usage / throughput per frame

- i. e. new requests to send, per frame sending time t
- Note: possibly long delay

G load (trials per frame-time)

- i.e. all requests to send per frame time
- Re-transmissions added to new requests to send S

5 Reference Model and Logical Link Control

e.g.

- IEEE 802.3 Ethernet
- IEEE 802.3u Fast Ethernet
- IEEE 802.3.....

802.2: Logical Link Control

Reference Model

802.2: Logical Link Control (LLC)

Function

- Subset of HDLC
 - High Level Data Link Control HDLC
- Common interface
 - to L3 for all underlying LAN/MAN/WAN components

Services

- Unacknowledged connectionless (unreliable datagram)
 - upper layers ensure that sequence is maintained, error correction, flow control
- Acknowledged connectionless (acknowledged datagram)
 - each datagram is followed by exactly one acknowledgement
- Connection oriented
 - connect and disconnect
 - data transmission incl. acknowledgement, guaranteed delivery to receiver
 - maintaining the sequence
 - flow control

LLC Frame

Format

Includes LLC Service Access Points SAPs for source and destination

Varying AC frames

Different formats Destination and Start Access Frame source End Frame Preamble delimiter control control addresses Length Data Pad Checksumdelimiter status 802.3 802.4 802.5

6 IEEE 802.3: CSMA / CD

6.1 802.3: History and Basics

Reference

IEEE 802.3: CSMA / CD

History

- **1976**
 - Ethernet by Xerox,Robert Metcalf (2,94 Mbps)
- **1980**
 - Ethernet industrial standard by Xerox, Digital Equipment (today part of HP) and Intel (10 Mbps)
- **1985**
 - IEEE 802.3 based on Ethernet

Robert Metcalfe's drawing of the first Ethernet design.

IEEE 802.3

- Specifies a family based on the 1-persistent CSMA/CD systems
- (1) 10, 100 Mbps, 1, 10, 100, ... Gbps on different media
- Ethernet is a protocol of this family

1-persistent CSMA / CD

- L1: Manchester Encoding
 - (on all cables except for 10BROAD36 broadband, here DPSK)

IEEE 802.3: CSMA / CD

6.2 802.3: Frame Format

Preamble

- Always 7 times 01010101
- Synchronization of the receiver

Start Frame Delimiter

Beginning of the frame (10101011)

Destination Address and Source Address:

- Individually, group, all:
 - unicast → individual address
 - multicast → group address
 - broadcast → all address bits are "1"

.. Destination Address and Source Address: (cont)

Addressing in 16 bit/2 byte format

I/G 15-Bit Address	
--------------------	--

I/G = 0: Individual Address

I/G = 1: Group Address

.. Destination Address and Source Address: (cont)

- Addressing in 6 byte/48 bit format (COMMON PRACTICE)
 - common practice (e.g. with 10 Mbps only this format)
- Address assignment
 - local address assignment (can be done on site by authorized entity)
 - global address assignment
 - IEEE assigns worldwide unique 46 bit addresses
 - 7,03E+13 (7,03 x 10^13) potential addresses
 - L3 (network layer) has to locate address

I/G	U/L	46-Bit Address

I/G = 0: Individual Address

I/G = 1: Group Address

U/L = 0: Globally Administered Address

U/L = 1: Locally Administered Address

Length

- Number of bytes in LLC Data
- Encoded within 2 bytes

LLC Data

■ 0 - 1 500 bytes actual data

Frame Check Sum

Pad

- Min. frame length = 64 bytes (=6+6+2+46+4)
 - for a more simplified recognition of collisions please see below
- Shorter frame length is an invalid frame
- → Potentially padding bytes needed to achieve the minimum frame length

Frame Length – Padding: Some Details

- "IEEE 802.3 packets have minimum size restrictions based on network bandwidth
- When necessary, the data field should be padded (with octets of zero)
 - to meet the 802.3 minimum frame size requirements.
- Padding is
 - not part of the IP packet and is
 - not included in the total length field of the IP header."
- See e.g. www.zvon.org/tmRFC/RFC948/Output/chapter3.html

6.3 802.3: Frame Format – Details on Minimum Length

Reason (for minimum length):

- Transceiver interrupts frame handover during collision
 - i. e. short invalid frames appear
- Algorithm
 - station should recognize during sending of a frame if a collision occurred
 - extreme case: short frame & station at maximum distance

Collision window

■ 802.3 Frame Format

Example: calculation with a length of 450 bit (>56 Byte)

Time to send 450 bits at 10 mbps

$$\frac{450 \text{ bits}}{10*10^6 \text{bits/sec}} = 45 \mu \text{sec}$$

Collision window

• 2τ , during this time 450 bits still have to exist at least on the line of the length $2*d_{max}$:

$$2\tau \leq 45\mu sec$$

With

$$\frac{2d_{max}}{v} = 2\tau$$

$$\frac{2d_{max}}{v} = 2\tau$$
 and $v = 2 * 10^5 \frac{km}{sec}$ (copper)

Resulting in

$$\frac{2d_{max}}{v} \le 45\mu sec$$

$$d_{max} \le \frac{45\mu sec * 2 * 10^5 km}{2 sec}$$

$$d_{max} \le 4.5km$$

- Comment: the sample calculation above constitutes the calculation of the theoretical maximum distance between two stations
- Behavior if parameterized differently:
 - with higher data rates the minimum frame size is large,
 - e. g. 1 Gbps (expansion 2,5 km) 6400 bytes
 - data rates increased but frame size the same: shorter distance possible

6.4 802.3: Control Flow

Backoff = $r * \Delta t$ with Δt = send time for 512 Bits (51.2 µs)

 $0 \le r < 2^k \text{ with } k = \min(n, 10)$

n = number of unsuccessful attempts to send

802.3: Control Flow

6.5 802.3: Behavior at a Collision

collision after first request to send	next attempt after a waiting frames
1st	0 or 1
2nd	0, 1, 2 or 3
3rd	0, 1, 2, 3, 4, 5, 6 or 7
nth	0,, 2 ⁿ -1
16th	error message to L3

Binary Exponential Backoff Algorithm

Effects, behavior...

802.3:Behavior When Colliding

Behavior

- While increasing load → longer waiting periods
- If more stations → lower utilization
- If longer frames → higher utilization

6.6 802.3: Switched LANs

Increasing the throughput by

- Higher data rates than 10Base-T
- Switching function in 802.3

Switch (instead of HUBs) as relaying center

- Station sends frame
- Switch tries to locate
 - first: the receiver within the "board"
 - and (if not located) only then: at a different location

Collision domain

Individual connections combined

But no collisions with other domains

6.7 802.3: Conclusion CSMA / CD

Properties

- + Most widely spread
- + Stations connect without shutting down the network
- + Practically no waiting period during low workload
- Analog components for collision recognition
- Minimum frame size (64 bytes)
- Not deterministic (no maximum waiting period)
- No prioritizing
- When load increases, collisions also increase

→ Poor throughput at high load

6.8 Current News - LAN

Future of the Ethernet

- 2.5/25/50/400 Gigabit Ethernet
- http://www.pcworld.com/article/2835912/is-yourethernet-fast-enough-four-new-speeds-are-inthe-works.html

Ethernet in Cars

- In-vehicle electronics
- Need for standardization
- http://www.computerworld.com/article/2836400/ ethernet-is-coming-to-cars.html

Jome / Networking

Planning the supercharged future of Ethernet: Four new speeds are in the works

Ethernet is coming to cars

reescale's new Ethernet board will allow up to four separate video streams, along with a networking spology to connect all electronic devices together. Credit: Freescale

Ethernet will internally connect electronics in the vehicle and externally, the car to the Internet of Things

RELATED TOPICS

Emerging
Technology

One of the top microchip suppliers for the auto industry has announced its first automotive-grade Ethernet chipset and software, paving the way for car makers to install 100Mbps networks in vehicles.

Screenshot from:

http://www.computerworld.com/article/2836400/ethernet -is-coming-to-cars.html

he Ethernet Alliance, an industry group that promotes IEEE or new projects were up for discussion.

n cloud data centers, there's a standard in the works for the kinds of traffic expected in those clouds a few years discussing a 50Gbps specification. And for enterprises with there may soon be 2.5Gbps Ethernet. That's in addition to

Screenshot from:

http://www.pcworld.com/article/2835912/is-your-ethernet-fast-enough-four-new-speeds-are-in-the-works.html

7 IEEE 802.5: Token Ring

IEEE 802.5: Token Ring

History

- Z-Ring: prototype of a Token Ring (IBM Zurich)
- IBM chooses Token Ring as the in-house LAN standard
 - 1985: IEEE 802.5
 - 1986: IBM Token Ring product

7.1 802.5: Ring Topology

Ring

Not really a broadcast medium, but a multitude of point-to-point lines

Station

Copies information bit by bit from one line to the next (active station)

7.2 802.5: MAC Protocol

Token Protocol

Principle

- Token: Frame with special bit pattern
- One token circulates on the ring
 - 1: before station is permitted to send, it must own and remove the token from the ring
 - 2: station may keep the token for a pre-defined time and may send several frames
 - 3: after sending, the station generates a new token

802.5: MAC Protocol: Early Token Release

Token Ring behavior optimized for increased data rate

- At lower data rate: always data "on the line", i.e. "long bits"
- At higher data rate: frames occupy minor part of the ring (the remainder is lost)

Principle

Append token directly to the last data transmission, always only 1 token in circulation

```
Sender A:
    sends data
    appends (free) token to data

Sender B:
    removes token
    appends its data to frame
    appends (free) token
```

Application

16 Mbps Token Ring and, in a modified variation, on FDDI

802.5: Token and Frames

Typical (measured) values:

- Token circulates 20 times
- Frame circulates once with e.g. 256 byte

Token

■ 3 byte length

Frame

- > 21 byte length
- AC contains TOKENBIT T
 - T = 0: Token
 - T = 1: Data
 - "Remove Token from Ring": change T=0 → T := 1

7.3 802.5: Physical Layer

Parameter

- Medium
 - twisted copper cable (Shielded Twisted Pair) or
 - coaxial conductor
- Digital transmission
 - differential Manchester encoding
- Transmission rates
 - (1 and) 4 Mbps
- Max. 250 stations

Extensions

- Coax, optic fiber (as FDDI)
- Increased transmission rates
 - 16 Mbps
 - (As Early Token Release, IBM product)

7.4 802.5: Calculations, also Ring Bit Number

Additional condition

- Frame with token has to fit completely onto the network
 - otherwise the station sending the token might think that 2 tokens occupy the ring simultaneously
 - because it is receiving a token while it is still sending

Calculation

```
V = signaling speed [approx. 200 m/msec] 
 L = full ring length 
 K = transmission capacity [bit/sec] 
 Ring circulation time: U = L/V 
 Ring bit number: R = U * K 
 ( = no. of bits on the ring) R = L * K/200 (m/\muSec)
```

Example:

```
L = 1000 m; K = 4 Mbps:

R = 20 bit \rightarrow 802.5 token (3byte) does not fit on ring
```

→ Solution: artificial delay at each station

802.5: Calculations, also Ring Bit Number

Solution: artificial delay at each station

Calculation

```
V = signaling speed [approx. 200 m/msec]
D = delay / station [bit]
N = number of connected stations
K = transmission capacity
```

```
Ring circulation time: U = L/V + N * D/K

Ring bit number: R = U * K

= L * K/V + N * D
```

Example

```
L = 1000 m; K = 4 Mbps; N = 50; D = 1:

\rightarrow R = 70 bit
```

802.5: Maximum Waiting Period

What is the maximum waiting period for a station before it receives permission to send again?

• i.e. all stations want to send with the max. amount of allowed time

802.5: Maximum Waiting Period

What is the maximum waiting period for a station before it receives permission to send again?

W = maximum waiting period:

W = all others are sending + token rotates x-times

=
$$(N-1) (P_{max}/K + U) + N(P_{T}/K + U/N)$$

$$= (N-1) (P_{max}/K + U) + NP_{T}/K + U$$

$$= (N-1) (P_{max}/K + U) + U$$

Note: $NP_T/K = 0$ for $P_T \ll P_{max}$

7.5 802.5: MAC Frame Formats

Token Format

SD AC ED

SD = Starting Delimiter (1 octet)

AC = Access Control (1 octet)

ED = Ending Delimiter (1 octet)

Frame Format

802.5: MAC Formats

Access Control (AC)

- T = Token bit: token identifier
- M = Monitor bit: recognizing orphaned messages
- P = Priority bits: token priority
- R = Reservation bits: priority for reserving the next token, e. g. station wants to send frame containing priority N
 - but receives token only if P ≤ N
 - can reserve next token with priority N
 (R := N), if R ≤ N

Direction of Transmission

MSB P P P T M R R R LSB

P = Priority bits

T = Token bit

M = Monitor bit

R = Reservation bits

Priority classes

Priority	Use
0	normal data transfer
1 - 3	available for data transfer
4	bridges
5 - 6	reserved
7	station management

802.5: MAC Formats: Priorities

Example: access by priority

Station A:

sends data at low priority 0

Station B:

reserves priority token by setting access control field

Station A:

generates prioritized token

Station B:

- gets prioritized token and
- sends data with high priority

Station C = Receiver of Station B:

- receives data and
- releases token with previous priority

Priority	Use
0	normal data transfer
1 - 3	available for data transfer
4	bridges
5 - 6	reserved
7	station management

P P P	Т	М	R	R	R
-------	---	---	---	---	---

802.5: MAC Formats

Frame Status (FS)

- A = address-recognized bits
- C = frame-copied bits
- r = reserved bits

RECEIVER RESETS BITS

- A=0 & C=0: destination station does not exist
- A=1 & C=0: destination exists, but frame is not accepted
- A=1 & C=1: destination exists and frame is accepted

Comments

- These bits (Frame Status) are not included in checksum, because
 - this field is changed by a lot of stations
 - then too time-consuming to always re-calculate
- Duplicate included because of increased reliability

802.5 Management Tasks

Stations

- Detect monitor failure
- Determine another monitor (Claim Token procedure)

Monitor recognizes and corrects errors, e. g.

- Orphaned frames
- Lost tokens

7.6 802.5: Summary Token Ring

Properties

- + Digital technology only
- + Multitude of transmission media
- + Wiring centers automatic recognition and repair of cable interrupts
- + Deterministic behavior (max. waiting time)
- + Priorities
- + Random frame lengths
- + Good throughput even during increased utilization
- Central monitor
- Delays because of waiting for token

7.7 Comparison of 802.3 and 802.5

	802.3: CSMA / CD
+	cost efficient
+	most widely spread
+	connecting stations without shutting down the network
+	practically no waiting time during low utilization
-	analog components for collision recognition
-	minimum frame size (64 Bytes)
-	not deterministic (no maximum waiting time)
_	if utilization increasescollisions also increasepoor throughput during high utilization periods

802.5: Token Ring		
+	multitude of transmission media	
+	wiring centers: automatic recognition and repair of cable breaks	
+	deterministic behavior (max. waiting time)	
+	priorities	
+	random frame lengths	
+	good throughput during high utilization	
-	central monitor	
-	delays due to need to wait for token(s)	
_	more expensive than 802.3, Ethernet	

7.8 IEEE 802.4: Token Bus

HISTORY:

 developed and recommended by General Motors in context with MAP (Manufacturing Automation Protocol)