

Лекция 8 Деревья принятия решений

Ксения Стройкова

21 ноября 2016

План занятия

Деревья решений

Деревья решений

Задача

Дано:

обучающая выборка из профилей нескольких десятков тысяч человек

- пол (binary)
- ▶ возраст (numeric)
- ▶ образование (nominal)
- ▶ и еще 137 признаков
- наличие интереса к косметике

Задача:

Для рекламной кампании определить, характеристики людей, интересующихся косметикой

Обама или Клинтон?

Decision Tree: The Obama-Clinton Divide

Хороший день для партии в гольф

Регионы принятия решений

Рекурсивный алгоритм

```
function decision_tree(X_N):
        if X N satisfies leaf criterion:
            L = create_leaf(X N)
            assign_class(L)
 5
        else:
6
            L = create node(X N)
            X_1, \dots, X_S = split(L)
            for i in 1..S:
9
                C = decision_tree(X_i)
10
                add child(L, C)
11
        return L
```

CART

Classification And Regression Trees

- 1. Как происходит разделение?
- 2. На сколько детей разделять каждый узел?
- 3. Какой критерий листа выбрать?
- 4. Как укоротить слишком большое дерево?
- 5. Как выбрать класс каждого листа?
- 6. Что делать, если часть значений отсутствует?

Чистота узла

Задача

Выбрать метод, позволяющий разделить узел на два или несколько детей наилучшим образом

Ключевое понятие – impurity узла.

1. Misclassification

$$i(N) = 1 - \max_{k} p(x \in C_k)$$

2. Gini

$$i(N) = 1 - \sum_{k} p^{2}(x \in C_{k}) = \sum_{i \neq j} p(x \in C_{i})p(x \in C_{j})$$

3. Информационная энтропия

$$i(N) = -\sum_{k} p(x \in C_{k}) \log_{2} p(x \in C_{k})$$

Теория информации

Количество информации ~ "степень удивления"

$$h(x) = -\log_2 p(x)$$

Информационная энтропия H[x] = E[h(x)]

$$H[x] = -\sum p(x)\log_2 p(x)$$
 или $H[x] = -\int p(x)\log_2 p(x)dx$

Упражнение

Дана случайная величина x, принимающая 4 значения с равными вероятностями $\frac{1}{4}$, и случайная величина y, принимающая 4 значения с вероятностями $\{\frac{1}{2},\ \frac{1}{4},\ \frac{1}{8},\ \frac{1}{8}\}$. Вычислить H[x] и H[y].

Выбор наилучшего разделения

Критерий

Выбрать признак и точку отсечения такими, чтобы было максимально уменьшение *impurity*

$$\Delta i(N, N_L, N_R) = i(N) - \frac{N_L}{N} i(N_L) - \frac{N_R}{N} i(N_R)$$

Замечания

- ▶ Выбор границы при числовых признаках: середина?
- Решения принимаются локально: нет гарантии глобально оптимального решения
- ▶ На практике выбор impurity не сильно влияет на результат

Если разделение не бинарное

Естественный выбор при разделении на B детей

$$\Delta i(N, N_1, \dots, N_B) = i(N) - \sum_{k=1}^B \frac{N_k}{N} i(N_k) \rightarrow \max$$

Предпочтение отдается большим В. Модификация:

$$\Delta i_B(N, N_1, \dots, N_B) = rac{\Delta i(N, N_1, \dots, N_B)}{-\sum_{k=1}^B rac{N_k}{N} \log_2 rac{N_k}{N}}
ightarrow \mathsf{max}$$

(gain ratio impurity)

Использование нескольких признаков

Практика

Задача

Вычислить наилучшее бинарное разделение корневого узла по одному признаку, пользуясь gini impurity.

Nº	Пол	Образование	Работа	Косметика
1	M	Высшее	Да	Нет
2	M	Среднее	Нет	Нет
3	М	Нет	Да	Нет
4	M	Высшее	Нет	Да
1	Ж	Нет	Нет	Да
2	Ж	Высшее	Да	Да
3	Ж	Среднее	Да	Нет
4	Ж	Среднее	Нет	Да

Когда остановить разделение

Split stopping criteria

- никогда
- ▶ использовать валидационную выборку
- установить минимальный размер узла
- ightharpoonup установить порог $\Delta i(N)>eta$

Укорачиваем дерево

Pruning (a.k.a. отрезание ветвей)

- 1. Растим "полное" дерево T_0
- 2. На каждом шаге заменяем самый "слабый" внутренний узел на лист

$$R_{\alpha}(T_k) = err(T_k) + \alpha size(T_k)$$

3. Для заданного lpha из получившейся последовательности

$$T_0 \succ T_1 \succ \ldots \succ T_r$$

выбираем дерево T_k , минимизирующее $R_{\alpha}(T_k)$

Значение lpha выбирается на основании тестовой выборки или CV

Какой класс присвоить листьям

- 1. Простейший случай: класс с максимальным количеством объектов
- 2. Дискриминативный случай: вероятность $p(C_k|x)$

Вычислительная сложность

Выборка состоит из n объектов, описанных m признаками

Предположения

- 1. Узлы делятся примерно поровну
- 2. Дерево имеет $\log n$ уровней
- 3. Признаки бинарные

Обучение. Для узла с k обучающими объектами:

Вычисление impurity по одному признаку O(k) Выбор разделяющего признака O(mk) Итог: $O(mn) + 2O(m\frac{n}{2}) + 4O(m\frac{n}{4}) + \ldots = O(mn\log n)$

Применение. $O(\log m)$

Отсутствующие значения

- ▶ Удалить объекты из выборки
- ▶ Использовать отстутсвие как отдельную категорию
- ▶ Вычислять impurity, пропуская отсутствующие значения
- ▶ Surrogate splits: разделяем вторым признаком так, чтобы было максимально похоже на первичное разделение

Surrogate split

$$c_{1}: \quad x_{1} = \begin{pmatrix} 0 \\ 7 \\ 8 \end{pmatrix}, \ x_{2} = \begin{pmatrix} 1 \\ 8 \\ 9 \end{pmatrix}, \ x_{3} = \begin{pmatrix} 2 \\ 9 \\ 0 \end{pmatrix}, \ x_{4} = \begin{pmatrix} 4 \\ 1 \\ 1 \end{pmatrix}, \ x_{5} = \begin{pmatrix} 5 \\ 2 \\ 2 \end{pmatrix}$$

$$c_{2}: \quad y_{1} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}, \ y_{2} = \begin{pmatrix} 6 \\ 0 \\ 4 \end{pmatrix}, \ y_{3} = \begin{pmatrix} 7 \\ 4 \\ 5 \end{pmatrix}, \ y_{4} = \begin{pmatrix} 8 \\ 5 \\ 6 \end{pmatrix}, \ y_{5} = \begin{pmatrix} 9 \\ 6 \\ 7 \end{pmatrix}$$

Задача о косметике

 X_0 – возраст, X_2 – неоконченное высшее образование, X_6 - пол

Задачи регрессии Impurity узла N

$$i(N) = \sum_{y \in N} (y - \overline{y})^2$$

Присвоение класса листьям

- ▶ Среднее значение
- ▶ Линейная модель

Кроме CART

- ID3 Iterative Dichotomiser 3
 - ▶ Только номинальные признаки
 - ▶ Количество детей в узле = количество значений разделяющего признака
 - Дерево растет до максимальной высоты
- C4.5 Улучшение ID3
 - ▶ Числовые признаки как в CART, номинальные как в ID3
 - При отсутствии значения используются все дети
 - ▶ Укорачивает дерево, убирая ненужные предикаты в правилах
- **C5.0** Улучшение **C4.5**
 - Проприетарный

Demo

Решающие деревья. Итог

- + Легко интерпретируемы. Визуализация (ня!)
- + Любые входные данные
- + Мультикласс из коробки
- + Предсказание за $O(\log m)$
- Склонны к переобучению
- Жадные и нестабильные
- Плохо работают при дисбалансе классов

Ключевые фигуры

- Claude Elwood Shannon (Теория информации)
- Leo Breiman (CART, RF)
- ► John Ross Quinlan (ID3, C4.5, C5.0)

Вопросы

