Package 'sisireg'

December 13, 2024

Version 1.1.2
Description Implementation of the SSR-Algorithm. The Sign-Simplicity-Regression model is a nor
parametric statistical model which is based on residual signs and simplicity assump-
tions on the regression function. Goal is to calculate the most parsimonious regression func-

tion satisfying the statistical adequacy requirements. Theory and functions are specified in Met-

zner (2020, ISBN: 979-8-68239-420-3, ``Trendbasierte Prognostik") and Metzner (2021, ISBN: 979-8-59347-027-0, ``Adäquates Maschinelles Lernen").

License GPL (>= 2)
Encoding UTF-8
Imports zoo, reticulate
RoxygenNote 7.1.1
NeedsCompilation yes
Author Lars Metzner [aut, cre]
Maintainer Lars Metzner <lars.metzner@ppi.de>
Repository CRAN
Date/Publication 2024-12-13 09:40:02 UTC

Title Sign-Simplicity-Regression-Solver

Contents

axe	2
axe_narch_model	3
axe_narch_predict	4
fii_model	5
fii_prediction	6
onnx_load	7
onnx_save	
psplot	10
psplot3d	10
psplotnd	11
psvalid	12
runyalid	13

2 axe

axe		Da Pa			l f	or	t	he	A	хI	Ξ-1	Ma	эd	el	(<i>P</i>	1 <i>x</i>	ioi	mc	ıti	c	E	co	no	m	et	ric	: 1	Ис	ode	eli	ng	ŗ
Index																																25
	tauM	 				•																				•						23
	ssrnd_predict . ssr_predict																															
	ssrnd																															
	ssrmlp_train																															
	ssr3d_predict . ssrmlp_predict .																															
	ssr3d																															
	ssr																															
	snarch	 																														14

Description

Calculation of the relevant data for the AxE-model from a financial time series: trend, volatiliy, change in quotes and risk level.

Usage

axe(quotes)

Arguments

quotes financial time series

Value

data frame

quotes	the given time series
trend5	5-day trend
trend10	10-day trend
trend20	20-day trend
vola5	5-day volatility
vola10	10-day volatility
vola20	20-day volatility
chng5	5-day price change
chng10	10-day price change
chng20	20-day price change
risk5	5-day risk level
risk10	10-day risk level
risk20	20-day risk level

axe_narch_model 3

Author(s)

Dr. Lars Metzner

References

Dr. Lars Metzner (2020) Trendbasierte Prognostik. Independently Published.

Examples

```
set.seed(1234)
s <- 13000 + cumsum(rnorm(100))
df_axe <- axe(s)
op <- par(mfrow=c(3,1))
plot(s, type = "1")
plot(df_axe$trend5, type = "1")
abline(a = 0, b = 0)
plot(df_axe$vola5, type = "1")
par(op)</pre>
```

axe_narch_model

implementation of the AxE model based on the ssr-MLP

Description

Trains a 2-layer MLP with a given time series of quotes with price changes or volatility as target value. The coordinates (or independent factors) are given through the AxE model)

Usage

```
axe_narch_model(quotes, T, tgt)
```

Arguments

```
quotes array with observations. 

T period: T = 5, 10 or 20. 

tgt target variable: tgt = 'trend' or 'vola'.
```

Value

model the trained model for prediction.

Author(s)

Dr. Lars Metzner

References

4 axe_narch_predict

Examples

```
set.seed(1234)
n <- 250
s \leftarrow 13000 + cumsum(rnorm(n))
T = 20
# create model for 5-day trend
model <- axe_narch_model(s, T, 'trend')</pre>
# calculate prognosis for trend
s_{-} < - s[n] + cumsum(rnorm(20))
s_T <- axe_narch_predict(model, s_, 'trend')</pre>
# plot the results
plot(seq(1:20), s_{-}, type = "l",
    xlim = c(0,21+T), ylim = c(min(s_, s_T)-5, max(s_, s_T)+5))
points(20+T, s_T, col='red', pch = 16)
# create model for 5-day vola
model <- axe_narch_model(s, T, 'vola')</pre>
r_T <- axe_narch_predict(model, s_, 'vola')</pre>
lines(c(20+T,20+T), c(s_T-r_T, s_T+r_T), col='orange')
```

axe_narch_predict

Prediction function for the AxE-NARCH model

Description

Calculates the prediction for a given model

Usage

```
axe_narch_predict(model, quotes, tgt)
```

Arguments

model previously calculated model.

quotes 20 days of history.

tgt target variable: tgt = 'trend' or 'vola'.

Value

prediction prediction based in the model and the given coordinates.

Author(s)

Dr. Lars Metzner

References

fii_model 5

Examples

```
set.seed(1234)
n <- 250
s \leftarrow 13000 + cumsum(rnorm(n))
# create model for 5-day trend
model <- axe_narch_model(s, T, 'trend')</pre>
# calculate prognosis for trend
s_ <- s[n] + cumsum(rnorm(20))
s_T <- axe_narch_predict(model, s_, 'trend')</pre>
# plot the results
plot(seq(1:20), s_{-}, type = "1",
    xlim = c(0,21+T), ylim = c(min(s_, s_T)-5, max(s_, s_T)+5))
points(20+T, s_T, col='red', pch = 16)
# create model for 5-day vola
model <- axe_narch_model(s, T, 'vola')</pre>
r_T <- axe_narch_predict(model, s_, 'vola')
lines(c(20+T,20+T), c(s_T-r_T, s_T+r_T), col='orange')
```

fii_model

Factor-wise Influence Indicator (Model-fii) for a given ssrmlp model

Description

The Model-fii depicts the overall influence of the input factors on the resulting trained ssrmlp model. For computation a unit matrix is used to accumulate the weights for each factor separately.

Usage

```
fii_model(W)
```

Arguments

W

a trained ssrmlp model

Value

fii

array of influence indicators

Author(s)

Dr. Lars Metzner

6 fii_prediction

Examples

```
# generate data
set.seed(42)
x <- rnorm(300)
y <- rnorm(300)
z <- rnorm(300) + atan2(x, y)
# coordinates
X <- matrix(cbind(x,y), ncol = 2)
Y <- as.double(z)
# Training
W <- ssrmlp_train(X, Y)
fii_model(W)</pre>
```

fii_prediction

Factor-wise Influence Indicator (Prediction-fii) for a given ssrmlp model regarding a given input vector

Description

The Prediction-fii depicts the overall influence of the given input factors on the resulting prediction from a trained ssrmlp model. For computation the components of the input vectors a taken separately as input for the model.

Usage

```
fii_prediction(W, x)
```

Arguments

W a trained ssrmlp model

x a matrix of input vectors

Value

fii array of influence indicators

Author(s)

Dr. Lars Metzner

onnx_load 7

Examples

```
# generate data
set.seed(42)
x <- rnorm(300)
y <- rnorm(300)
z <- rnorm(300) + atan2(x, y)
# coordinates
X <- matrix(cbind(x,y), ncol = 2)
Y <- as.double(z)
# Training
W <- ssrmlp_train(X, Y)
fii_prediction(W, X)</pre>
```

onnx_load

Loading a ssrmlp model from ONNX file

Description

Loading a ssrmlp model from ONNX file (also see onnx.ai). This function uses the onnx python implementation, hence a python environment including modules onnx and numpy is required.

Usage

```
onnx_load(filename)
```

Arguments

filename fully qualified file name

Value

w parameters of ssrmlp model

Author(s)

Dr. Lars Metzner

Examples

```
# generate data
set.seed(42)
x <- rnorm(300)
y <- rnorm(300)
z <- rnorm(300) + atan2(x, y)
# coordinates
X <- matrix(cbind(x,y), ncol = 2)
Y <- as.double(z)</pre>
```

8 onnx_save

```
# Training
ssrmlp_model <- ssrmlp_train(X, Y)</pre>
# only if python is available
if (reticulate::py_module_available('onnx')) {
 tryCatch(
    {
      # save in ONNX format
      onnx_save(ssrmlp_model, 'file.onnx')
      # loading the file in ONNX format
      W <- onnx_load('file.onnx')</pre>
      # prediction with original implementation
      p \leftarrow t(c(0.25, 0.25))
      pred <- ssrmlp_predict(p, W)</pre>
      # and now test with onnxruntime.ai
    },
   error = function(cond) {
      message(conditionMessage(cond))
    },
    finally = {
      # cleanup
      file.remove('file.onnx')
      # to avoid NOTE in R CHECK
      tempfile <- reticulate::import("tempfile")</pre>
      tmp <- tempfile$gettempdir()</pre>
      if (dir.exists(file.path(tmp, "__pycache__"))) {
        unlink(file.path(tmp, "__pycache__"), recursive = TRUE, force = TRUE)
      tmp_py_files <- list.files(tmp,</pre>
                          pattern = "^__autograph_generated_file.*py$", full.names = TRUE)
      file.remove(tmp_py_files)
      print("done")
   }
 )
}
```

onnx_save

Saving a ssrmlp model in onnx format to file

Description

Saving a ssrmlp model in onnx format to file (also see onnx.ai). This function uses the onnx python implementation, hence a python environment including modules onnx and numpy is required.

Usage

```
onnx_save(ssrmlp_model, filename)
```

onnx_save 9

Arguments

```
ssrmlp_model a trained ssrmlp model filename fully qualified file name
```

Author(s)

Dr. Lars Metzner

Examples

```
# generate data
set.seed(42)
x <- rnorm(300)
y <- rnorm(300)
z \leftarrow rnorm(300) + atan2(x, y)
# coordinates
X <- matrix(cbind(x,y), ncol = 2)</pre>
Y <- as.double(z)
# Training
ssrmlp_model <- ssrmlp_train(X, Y)</pre>
# prediction
p \leftarrow t(c(0.25, 0.25))
pred <- ssrmlp_predict(p, ssrmlp_model)</pre>
# only if python is available
if (reticulate::py_module_available('onnx')) {
  tryCatch(
    {
      # save in ONNX format
      onnx_save(ssrmlp_model, 'file.onnx')
      # and now test with onnxruntime.ai
    },
    error = function(cond) {
      message(conditionMessage(cond))
    },
    finally = {
      # cleanup
      file.remove('file.onnx')
      # to avoid NOTE in R CHECK
      tempfile <- reticulate::import("tempfile")</pre>
      tmp <- tempfile$gettempdir()</pre>
      if (dir.exists(file.path(tmp, "__pycache__"))) {
        unlink(file.path(tmp, "__pycache__"), recursive = TRUE, force = TRUE)
      tmp_py_files <- list.files(tmp,</pre>
                           pattern = "^__autograph_generated_file.*py$", full.names = TRUE)
      file.remove(tmp_py_files)
      print("done")
   }
 )
}
```

10 psplot3d

psplot

Partial Sum Plot

Description

Plots the Partial Sums with their quantiles for a given set of observations und the corresponding regression function.

Usage

```
psplot(dat, mu, text = 'Sample')
```

Arguments

dat observations.

mu regression function. text title of the chart.

Value

No explicit return value: a plot is generated

Author(s)

Dr. Lars Metzner

References

Dr. Lars Metzner (2021) Adäquates Maschinelles Lernen. Independently Published.

Examples

```
psplot(sin(seq(-pi, pi, length.out = 200))+rnorm(200),
   sin(seq(-pi, pi, length.out = 200)), text='Test')
```

psplot3d

Partial Sum Plot for 2-dimensional coordinates

Description

Plots the partial sum statistic for the 3-dimensional SSR model

Usage

```
psplot3d(koord, z, mu, text = "Sample")
```

psplotnd 11

Arguments

koord data frame with coordinates.

z vector of observations.

mu vector of discrete regression function.

text optional: title for the plot.

Value

No explicit return value: a plot is generated

Author(s)

Dr. Lars Metzner

References

Dr. Lars Metzner (2021) Adäquates Maschinelles Lernen. Independently Published.

Examples

```
# generate data
set.seed(1234)
x <- rnorm(900)
y <- rnorm(900)
xy <- data.frame(x=x, y=y)
z <- rnorm(900) + atan2(x, y)
# Training
df_model <- ssr3d(xy, z, k = 4, fn = 8)
# plot partial sum statistic
psplot3d(xy, z, df_model$mu, 'ssr3d')</pre>
```

psplotnd

Partial Sum Plot for the multidimensional coordinates

Description

plots the partial sum statistic for the general n-dimensional SSR-model

Usage

```
psplotnd(koord, dat, mu, text = "Sample")
```

Arguments

koord data frame with coordinates. dat data frame of observations.

mu list of discrete regression function.

text optional: title for the plot.

12 psvalid

Value

No explicit return value: a plot is generated

Author(s)

Dr. Lars Metzner

References

Dr. Lars Metzner (2021) Adäquates Maschinelles Lernen. Independently Published.

Examples

```
# generate data
set.seed(1234)
x <- rnorm(900)
y <- rnorm(900)
xy <- data.frame(x=x, y=y)
z <-data.frame(z=rnorm(900) + atan2(x, y))
# Training
df_model <- ssrnd(xy, z, k = 4, fn = 8)
# plot partial sum statistic
psplotnd(xy, z, df_model$mu, 'ssr3d')</pre>
```

psvalid

Partial Sum Validity Check

Description

Checks, if a given regression function is adequate with respect to the partial sum criterium.

Usage

```
psvalid(dat,mu)
```

Arguments

dat obervations.

mu discrete regression function.

Value

valid function is valid?

Author(s)

Dr. Lars Metzner

runvalid 13

References

Dr. Lars Metzner (2021) Adäquates Maschinelles Lernen. Independently Published.

Examples

runvalid

Maximum Run Validity Check

Description

Checks, if a given regression function is adequate with respect to the maximum run criterium.

Usage

```
runvalid(dat,mu,k=NULL)
```

Arguments

dat obervations.

mu discrete regression function.k optional: maximum run length.

Value

valid function is valid?

Author(s)

Dr. Lars Metzner

References

Dr. Lars Metzner (2021) Adäquates Maschinelles Lernen. Independently Published.

Examples

14 snarch

snarch	S-NARCH Model
onar cn	b initiality

Description

Calculates the long-, middle- and short-term trends and vola for a financial time series.

Usage

```
snarch(dat)
```

Arguments

dat financial time series.

Value

data frame

tr20	long-term trend
v120	long-term vola
tr10	middle-term trend
vl10	middle-term vola
tr5	short-term trend
v15	short-term vola

Author(s)

Dr. Lars Metzner

References

Dr. Lars Metzner (2019) Finanzmathematische Zeitreihenanalyse. Independently Published.

Examples

```
# generate test data
set.seed(1234)
x <- seq(1:250)
dat <- 13000 + cumsum(rnorm(250))
# calculate the S-NARCH model
df <- snarch(dat)
# plot the results
op <- par(mfrow=c(1,3))
plot(x,dat)
lines(x,df$tr20)
lines(x,df$tr20 - df$vl20, lty = 'dotted')
lines(x,df$tr20 + df$vl20, lty = 'dotted')</pre>
```

ssr 15

```
plot(x,dat)
lines(x,df$tr10)
lines(x,df$tr10 - df$vl10, lty = 'dotted')
lines(x,df$tr10 + df$vl10, lty = 'dotted')
plot(x,dat)
lines(x,df$tr5)
lines(x,df$tr5 - df$vl5, lty = 'dotted')
lines(x,df$tr5 + df$vl5, lty = 'dotted')
par(op)
```

ssr

Onedimensional SSR-model calculation

Description

Calculates L1- and L2-functions satisfiying the partial sum criterium.

Usage

Arguments

df	data frame with two-dimensional data.
y1	optional: fixed value left.
yn	optional: fixed value right.
fn	optional: partial-sum-quantile (standard: generic calculation from data).
iter	optional: maximum number of iterations.
minStat	optional: boolean value for the minimum statistic.
ne	optional: boolean value for non-equidistant observations.
11	optional: boolean value for function type.
ps	optional: sign criterium (partial sum or run).

Value

mu SSR-function as array.

Author(s)

Dr. Lars Metzner

References

16 ssr3d

Examples

```
# generate equidistant data
set.seed(1234)
x \leftarrow seq(0, 2*pi, length.out = 200)
y < -4*sin(x) + rnorm(200)
df <- data.frame(x=x, y=y)</pre>
# calculate regression functions
11 <- ssr(df, ne=FALSE, ps=FALSE)</pre>
12 <- ssr(df, ne=FALSE, l1=FALSE)
lmin <- ssr(df, ne=FALSE, minStat=TRUE, ps=FALSE)</pre>
# plot results
plot(x, y, main = 'Sign-Simplicity-Regression',
        xlab = 't', ylab = 'sin(t)+noise')
lines(x, 11, col = 'blue')
lines(x, 12, col = 'red')
lines(x, lmin, col = 'purple')
legend("topleft", inset=c(0.01, 0.01),
        legend=c("L1 run-crit.", "L2 ps-crit.", "L1 min-stat."),
        col=c("blue", "red", "purple"), lty=1:1)
# generate nonequidistant data
df <- data.frame(x=runif(500, min=-1, max=1)*pi)</pre>
df$y <- sin(df$x)*20 + rnorm(nrow(df), mean=0, sd=10)
# calculate regression function
dfl1 \leftarrow ssr(df, fn = 5)
# plot results
plot(df)
lines(dfl1, col = 'red')
```

ssr3d

3-dimensional SSR model

Description

Calculates the regression function for the 3-dimensional SSR-model.

Usage

```
ssr3d(koord, dat, k = NULL, fn = NULL, iter = 1000)
```

Arguments

koord	data frame with 2-dimensional coordinates.
dat	vector with observations.
k	optional: maxumum run length for the model.
fn	optional: quantile for partial sums.
iter	optional: number of iterations for the numeric solver.

ssr3d_predict 17

Value

df data frame with the relevant model data.

Author(s)

Dr. Lars Metzner

References

Dr. Lars Metzner (2021) Adäquates Maschinelles Lernen. Independently Published.

Examples

```
# generate data
set.seed(1234)
x <- rnorm(900)
y <- rnorm(900)
xy <- data.frame(x=x, y=y)
z <- rnorm(900) + atan2(x, y)
# Training
df_model <- ssr3d(xy, z)</pre>
```

ssr3d_predict

3-dimensional SSR model prediction

Description

Calculates the prediction for a given 3-dimensional SSR model.

Usage

```
ssr3d_predict(df_model, xy, ms = FALSE)
```

Arguments

df_model data frame with model coordinates.

xy data frame with coordinates for prediction.

ms optional: boolean value to use the minimal surface algorithm.

Value

z array with predictions.

Author(s)

Dr. Lars Metzner

18 ssrmlp_predict

References

Dr. Lars Metzner (2021) Adäquates Maschinelles Lernen. Independently Published.

Examples

```
# generate data
set.seed(1234)
x <- rnorm(900)
y <- rnorm(900)
xy <- data.frame(x=x, y=y)
z <- rnorm(900) + atan2(x, y)
# Training
df_model <- ssr3d(xy, z)
# Prediction
xx <- c(c(0,1), c(-1,1), c(1,-1))
xx <- matrix(xx, ncol = 2)
yy <- ssr3d_predict(df_model, xx)</pre>
```

ssrmlp_predict

Prediction function for the ssrMLP

Description

Calculates the prediction for a given ssrMLP

Usage

```
ssrmlp_predict(X, W)
```

Arguments

X matrix of coordinates.

W the weight matrices from ssrmlp_train method.

Value

Yp array with predictions.

Author(s)

Dr. Lars Metzner

References

ssrmlp_train 19

Examples

```
# generate data
set.seed(42)
x <- rnorm(300)
y <- rnorm(300)
z <- rnorm(300) + atan2(x, y)
# coordinates
X <- matrix(cbind(x,y), ncol = 2)
Y <- as.double(z)
# Training
W <- ssrmlp_train(X, Y)
Yp <- ssrmlp_predict(X, W)</pre>
```

ssrmlp_train

2-layer MLP with partial sum optimization

Description

Calculates the weights of a 2-layer MLP with respect to the partial sums critereon

Usage

```
ssrmlp_train(X, Y, std=TRUE, opt='ps', hl = NULL, W = NULL,
k=10, fn=4, eta=0.75, maxIter=1000,
facfct_ex = NULL, errfct_ex = NULL, alpha = NULL)
```

Arguments

Χ	matrix with n-dimensional coordinates.
Υ	array with observations.
std	optional: standardizing values if TRUE.
opt	optional: optimizing function ('ps', 'lse', 'ps_11', 'ps_lse', 'ext').
hl	optional: array tupel with number of perceptrons in each layer.
W	optional: previously calculates weights for refining the model.
k	optional: number of neighbors per quadrant.
fn	optional: quantile for partial sums.
eta	optional: constant factor of the gradient algorithm.
maxIter	optional: number of iterations for the numeric solver.
facfct_ex	optional: first derivative of external error function, for opt='ext' only.
errfct_ex	optional: external error function, for opt='ext' only.
alpha	optional: weight parameter for error function.

20 ssrnd

Value

W List with weight matrices.

Author(s)

Dr. Lars Metzner

References

Dr. Lars Metzner (2021) Adäquates Maschinelles Lernen. Independently Published.

Examples

```
# generate data
set.seed(42)
x <- rnorm(300)
y <- rnorm(300)
z <- rnorm(300) + atan2(x, y)
# coordinates
X <- matrix(cbind(x,y), ncol = 2)
Y <- as.double(z)
# Training
W <- ssrmlp_train(X, Y)</pre>
```

ssrnd

Multi-dimensional SSR model

Description

Calculates the multi-dimensional SSR model

Usage

```
ssrnd(koord, dat, k = NULL, fn = NULL, iter = 1000)
```

Arguments

koord data frame with n-dimensional coordinates.

data frame with observations.

k optional: maxumum run length for the model.

fn optional: quantile for partial sums.

iter optional: number of iterations for the numeric solver.

Value

df data frame with the relevant model data.

ssrnd_predict 21

Author(s)

Dr. Lars Metzner

References

Dr. Lars Metzner (2021) Adäquates Maschinelles Lernen. Independently Published.

Examples

```
# generate data
set.seed(1234)
x <- rnorm(300)
y <- rnorm(300)
xy <- data.frame(x=x, y=y)
z <-data.frame(z=rnorm(300) + atan2(x, y))
# Training
df_model <- ssrnd(xy, z)</pre>
```

ssrnd_predict

Prediction function for the multi-dimensional SSR model

Description

Calculates the prediction for a given multi-dimensional SSR model

Usage

```
ssrnd_predict(df_model, xx)
```

Arguments

df_model data frame with model coordinates.

xx data frame with coordinates for prediction.

Value

z list with predictions.

Author(s)

Dr. Lars Metzner

References

22 ssr_predict

Examples

```
# generate data
set.seed(1234)
x <- rnorm(300)
y <- rnorm(300)
xy <- data.frame(x=x, y=y)
z <-data.frame(z=rnorm(300) + atan2(x, y))
# Training
df_model <- ssrnd(xy, z)
# Prediction
xx <- c(c(0,1), c(-1,1), c(1,-1))
xx <- matrix(xx, ncol = 2)
yy <- ssrnd_predict(df_model, xx)</pre>
```

ssr_predict

SSR model Prediction

Description

Calculates the prediction for a given SSR model.

Usage

```
ssr_predict(df, xx)
```

Arguments

df dataframe containing two series with x- und y-values.

xx array containing locations for predictions.

Value

yy array containing the predicted values.

Author(s)

Dr. Lars Metzner

References

tauM 23

Examples

```
set.seed(1234)
df <- data.frame(x=runif(500, min=-1, max=1)*pi)
df$y <- sin(df$x)*20 + rnorm(nrow(df), mean=0, sd=10)
plot(df, xlim=c(-4, 4))
dfl1 <- ssr(df)
lines(dfl1)
xx <- c(-4, -1, 0, 1, 4)
yy <- ssr_predict(dfl1, xx)
points(xx,yy, pch='+', col='red', cex=2)</pre>
```

tauM

Trend-based Correlation

Description

Calculates the trend-based correlation of two time series based on the trend function (Metzner's Tau)

Usage

```
tauM(x, y)
```

Arguments

```
x time series.
y time series.
```

Value

trend-based correlation.

Author(s)

Dr. Lars Metzner

References

Dr. Lars Metzner (2020) Trendbasierte Prognostik. Independently Published.

Examples

```
set.seed(1234)
s <- seq(-pi, pi, length.out = 200)
x <- s + rnorm(200)
y <- exp(s) + 5*rnorm(length(s))
op <- par(mfrow=c(1,2))
plot(x)
plot(y)</pre>
```

24 tauM

```
par(op)

p <- cor(x,y) # 0.5037

t <- cor(x,y, method = 'kendall') # 0.2959

tm <- tauM(x, y) # 0.0867</pre>
```

Index

1.1	21.16
* models	ssr3d, 16
fii_model, 5	ssr3d_predict, 17
fii_prediction, 6	ssr_predict, 22
onnx_load, 7	ssrmlp_predict, 18
onnx_save, 8	ssrmlp_train, 19
* model	ssrnd, 20
axe, 2	ssrnd_predict, 21
<pre>axe_narch_model, 3</pre>	tauM, 23
<pre>axe_narch_predict, 4</pre>	* regression
psplot, 10	axe_narch_model, 3
psplot3d, 10	<pre>axe_narch_predict, 4</pre>
psplotnd, 11	psplot, 10
psvalid, <mark>12</mark>	psplot3d, 10
runvalid, 13	psplotnd, 11
snarch, 14	psvalid, 12
ssr, 15	runvalid, 13
ssr3d, <u>16</u>	ssr, 15
ssr3d_predict, 17	ssr3d, 16
ssr_predict, 22	ssr3d_predict, 17
ssrmlp_predict, 18	ssr_predict, 22
ssrmlp_train, 19	ssrmlp_predict, 18
ssrnd, 20	ssrmlp_train, 19
ssrnd_predict,21	ssrnd, 20
tauM, 23	ssrnd_predict, 21
* nonparametric	* ts
axe, 2	axe, 2
<pre>axe_narch_model, 3</pre>	<pre>fii_model, 5</pre>
<pre>axe_narch_predict, 4</pre>	$fii_prediction, 6$
<pre>fii_model, 5</pre>	onnx_load, 7
fii_prediction, 6	onnx_save, 8
onnx_load, 7	snarch, 14
onnx_save, 8	tauM, 23
psplot, 10	
psplot3d, 10	axe, 2
psplotnd, 11	$axe_narch_model, 3$
psvalid, 12	<pre>axe_narch_predict, 4</pre>
runvalid, 13	
snarch, 14	fii_model, 5
ssr, 15	fii_prediction, 6
*	— i

26 INDEX

```
onnx_load, 7
onnx_save, 8
psplot, 10
psplot3d, 10
{\it psplotnd}, 11
psvalid, 12
runvalid, 13
snarch, 14
ssr, 15
ssr3d, 16
ssr3d_predict, 17
ssr\_predict, 22
ssrmlp_predict, 18
ssrmlp_train, 19
ssrnd, 20
{\tt ssrnd\_predict}, \textcolor{red}{21}
tauM, 23
```