Mastery Homework 3

Rafael Laya

Fall 2018

Section 1.8

Problem 26.

Statement: Let \vec{u} and \vec{v} be linearly independent vectors in \mathbb{R}^3 , and let P be the plane through \vec{u}, \vec{v} , and $\vec{0}$. The parametric equation of P is $\vec{x} = s\vec{u} + t\vec{v}$ (with $s, t \in \mathbb{R}$). Show that a linear transformation $T : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ maps P onto a plane through $\vec{0}$, or onto a line through $\vec{0}$, or onto just the origin in \mathbb{R}^3 . What must be true about $T(\vec{u})$ and $T(\vec{v})$ in order for the image of the plane P to be a plane?

Solution: let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be a linear transformation. We want to apply T to the parametric equation of the plane P in order to apply linearity and see what corresponds to the parametric equation that we obtain. From there we will be able to deduce what has to be true about $T(\vec{u})$ and $T(\vec{v})$ in order for the image of the plane P to be a plane. Therefore using the linearity of T consider:

$$T(\vec{x}) = T(s\vec{u} + t\tilde{v})$$

$$= T(s\vec{u}) + t T(t\vec{v})$$

$$= s T(\vec{u}) + t T(\vec{v})$$

Every \vec{x} gets mapped as a linear combination of $T(\vec{u}), T(\vec{v})$. Therefore the plane P gets mapped into $\mathrm{Span}(\{T(\vec{u}), T(\vec{v})\})$. Then:

• If $T(\vec{u}), T(\vec{v})$ are both the zero vector, then $Span(\{T(\vec{u}), T(\vec{v})\}) = \{\vec{0}\}$ and the plane P gets mapped directly into the Origin, $\vec{0}$. See that if we let $T(\vec{u}) = T(\vec{v}) = \vec{0}$ then:

$$T(\vec{x}) = s(\vec{0}) + t(\vec{0}) = \vec{0} + \vec{0} = \vec{0}$$

• If $T(\vec{u}), T(\vec{v})$ are linearly dependent and they are not both zero (say $T(\vec{u}) \neq \vec{0}$, without loss of generality), then either one vector is zero and the Span is the line that goes through the origin and the other vector (say $T(\vec{u})$), or one is a multiple $k \neq 0$ of the other and $Span(\{T(\vec{u}), T(\vec{v})\}) = Span(\{T(\vec{u}), k T(\vec{u})\}) = Span(\{T(\vec{u})\})$ or simply by theorem since $\{T(\vec{u})\}$ is a linearly independent set and $\{T(\vec{u}), T(\vec{v})\}$ is linearly dependent (after we added only one vector to the set) they have the same Span, which is a line through the origin. See that if we let $T(\vec{v}) = k T(\vec{u})$

$$T(\vec{x}) = s T(\vec{u}) + tk T(\vec{v}) = (s + tk) T(\vec{u})$$

or if we let $T(\vec{v}) = \vec{0}$ while $T(\vec{u}) \neq \vec{0}$ then:

$$T(\vec{x}) = s T(\vec{u}) + t(\vec{0}) = s T(\vec{u}) + \vec{0} = s T(\vec{u})$$

In any case, this is the equation of a line through the origin.

• If $T(\vec{u})$, $T(\vec{v})$ are linearly independent, then $Span(\{T(\vec{u}), T(\vec{v})\})$ is a Plane through the origin and through both vectors $T(\vec{u})$, $T(\vec{v})$ (the equation that led to this discussion is precisely the parametric equation of a plane).

Looking at what we have in our third bullet point we can also answer the last question: $T(\vec{u}), T(\vec{v})$ have to be linearly independent so that the image of the plane P is mapped into another plane under the transformation T.

Problem 31

Statement: Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation, and let $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ be a linearly dependent set in \mathbb{R}^n . Explain Why the Set $\{T(\vec{v_1}), T(\vec{v_2}), T(\vec{v_3})\}$ is linearly dependent.

Solution: We will use the definition of linearly dependent set of vectors for $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ and then we will apply the transformation T to our resulting equation, by linearity we will be able to extract the coefficients of the linear combination and decide about the linearly dependency of the set $\{T(\vec{v_1}), T(\vec{v_2}), T(\vec{v_3})\}$ (which will show at least a nontrivial solution). Suppose then $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ is a linearly dependent set in \mathbb{R}^n . That is,

$$x_1\vec{v_1} + x_2\vec{v_2} + x_3\vec{v_3} = \vec{0}$$

Has a non-trivial solution $(c_1, c_2, c_3) \neq (0, 0, 0)$. Apply T to the equation above when $(x_1, x_2, x_3) = (c_1, x_2, c_3)$

$$T(c_1\vec{v_1} + c_2\vec{v_2} + c_3\vec{v_3}) = T(\vec{0})$$

Using the linearity of T, and the fact that $T(\vec{0}) = T(\vec{0} + \vec{0}) = T(\vec{0}) + T(\vec{0})$ and therefore $T(\vec{0}) = \vec{0}$ (keep in mind that the input is the vector zero in \mathbb{R}^n and the output is the vector zero in \mathbb{R}^m),

$$T(c_1\vec{v_1} + c_2\vec{v_2} + c_3\vec{v_3}) = T(c_1\vec{v_1}) + T(c_2\vec{v_2}) + T(c_3\vec{v_3})$$
$$= c_1 T(\vec{v_1}) + c_2 T(\vec{v_2}) + c_3 T(\vec{v_3}) = \vec{0}$$

Therefore,

$$x_1 \operatorname{T}(\vec{v_1}) + x_2 \operatorname{T}(\vec{v_2}) + x_3 \operatorname{T}(\vec{v_3}) = \vec{0}$$

Has a non-trivial solution $(x_1, x_2, x_3) = (c_1, c_2, c_3)$ and the set $\{T(\vec{v_1}), T(\vec{v_2}), T(\vec{v_3})\}$ is a linearly dependent set.

Problem 34

Statement: Let $T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a linear transformation. Show that if T maps two linearly independent vectors onto a linearly dependent set, then the equation $T(\vec{x}) = \vec{0}$ has a nontrivial solution.

Solution: Let $\{\vec{v_1}, \vec{v_2}\}$ be a linearly independent set in \mathbb{R}^n and suppose $\{T(\vec{v_1}), T(\vec{v_2})\}$ is a linearly dependent set. Then:

$$x_1 \vec{v_1} + x_2 \vec{v_2} = \vec{0}$$

only has trivial solution and,

$$x_1 T(\vec{v_1}) + x_2 T(\vec{v_2}) = \vec{0}$$

has a non-trivial solution $(x_1, x_2) = (c_1, c_2) \neq (0, 0)$. Then using linearity of T,

$$c_1 \operatorname{T}(\vec{v_1}) + c_2 \operatorname{T}(\vec{v_2}) = \operatorname{T}(c_1 \vec{v_1}) + \operatorname{T}(c_2 \vec{v_2})$$

= $\operatorname{T}(c_1 \vec{v_1} + c_2 \vec{v_2})$

And so,

$$T(c_1\vec{v_1} + c_2\vec{v_2}) = \vec{0}$$

 $T(\vec{x}) = \vec{0}$ has a non-trivial solution since the vector $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2}$ is a solution to $T(\vec{x}) = \vec{0}$ and it is not the zero vector since by assumption $x_1 \vec{v_1} + x_2 \vec{v_2} = \vec{0}$ only has trivial solution but here $(c_1, c_2) \neq (0, 0)$.

Problem 36

Statement: Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be the transformation that projects each vector $\vec{x} = (x_1, x_2, x_3)$ onto the plane $x_2 = 0$, So $T(\vec{x}) = (x_1, 0, x_3)$. Show that T is a linear transformation.

Solution: Let $\vec{v} = (v_1, v_2, v_3)$ and $\vec{u} = (u_1, u_2, u_3)$ be any two vectors in \mathbb{R}^3 and let $\lambda \in \mathbb{R}$. Now consider:

$$T(\vec{v}) + T(\vec{u}) = T((v_1, v_2, v_3) + (u_1, u_2, u_3))$$

$$= T(v_1 + u_1, v_2 + u_2, v_3 + u_3)$$

$$= (v_1 + u_1, 0, v_3 + u_3)$$

$$= (v_1, 0, v_3) + (u_1, 0, u_3)$$

$$= T(\vec{v}) + T(\vec{u})$$

And,

$$T(\lambda \vec{v}) = T(\lambda(v_1, v_2, v_3))$$

$$= T(\lambda v_1, \lambda v_2, \lambda v_3)$$

$$= (\lambda v_1, 0, \lambda v_3)$$

$$= \lambda(v_1, 0, v_3)$$

$$= \lambda T(\vec{v})$$

Since this is true for all $\vec{v}, \vec{u} \in \mathbb{R}^3$ and $\lambda \in \mathbb{R}$ Then T is a linear transformation by definition.

1.9

Problem 22

Statement: Let $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ be a linear transformation such that $T(x_1, x_2) = (x_1 - 2x_2, -x_1 + 3x_2, 3x_1 - 2x_2)$ find \vec{x} such that $T(\vec{x}) = (-1, 4, 9)$

Solution: Given the formula of the linear transformation we can find $T(\vec{e_1}) = T(1,0)$ and $T(\vec{e_2}) = T(0,1)$. By theorem 10 we can write the transformation matrix A and then we will solve the system $A\vec{x} = \vec{b}$ where $\vec{b} = \begin{bmatrix} -1\\4\\9 \end{bmatrix}$. Let's find the images of $\vec{e_1}$, $\vec{e_2}$ under T,

$$T(\vec{e_1}) = T(1,0) = (1-2(0), -1+3(0), 3(1)-2(0)) = (1, -1, 3)$$

 $T(\vec{e_2}) = T(0,1) = (0-2(1), -0+3(1), 3(0)-2(1)) = (-2, 3, -2)$

Therefore the transformation matrix A is:

$$A = \begin{bmatrix} 1 & -2 \\ -1 & 3 \\ 3 & 2 \end{bmatrix}$$

We can rewrite $T(\vec{x})$ as: $T(\vec{x}) = A\vec{x}$. We want to find \vec{x} such that $T(\vec{x}) = \vec{b}$ which is solved by row reducing the augmented matrix $A \vec{b}$

$$\begin{bmatrix} 1 & -2 & -1 \\ -1 & 3 & 4 \\ 3 & -2 & 9 \end{bmatrix} \xrightarrow[R_3 - 3R_1]{} \begin{bmatrix} 1 & -2 & -1 \\ 0 & 1 & 3 \\ 0 & 4 & 12 \end{bmatrix} \xrightarrow[R_3 - 4R_2]{} \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$$

The solution is

$$\begin{cases} x_1 = 5 \\ x_2 = 3 \end{cases}$$

In the desired form, $\vec{x} = (5,3)$ is such that $T(\vec{x}) = (-1,4,9)$