INSTITUTO FEDERAL DO AMAZONAS – IFAM CAMPUS MANAUS DISTRITO INDUSTRIAL CURSO DE ENGENHARIA DE CONTROLE E AUTOMAÇÃO

5° Laboratório de Controle Moderno

Regras para Sintonia de Controladores PID

MINJAE LINS CHUNG - 2020001395

GABRIEL ALMEIDA SANTOS DE OLIVEIRA - 2021000042

Trabalho solicitado pelo professor Dr. Flávio José Aguiar Soares para atribuição de nota avaliativa na disciplina de Controle Moderno do curso superior de ECAT do IFAM/CMDI.

- 1. Seja o sistema físico definido por $Gp(s) = \frac{2}{s^2+4}e^{-2s^2}$.
- a) Obtenha a resposta a uma entrada degrau para $\frac{2}{s^2+4}$.

Figura 1. Entrada degrau para o sistema $\frac{2}{s^2+4}$. Produzido no MatLab.

b) Obtenha a resposta a uma entrada degrau para e^{-s^2} .

Figura 2. Entrada degrau para o sistema e^{-s^2} . Produzido no MatLab.

c) Apresente o polinômio correspondente a $G_p(s)$.

Figura 3. Polinômio de $G_{p(s)}$. Produzido no MatLab.

d) Obtenha a resposta a uma entrada degrau.

Figura 4. Resposta de $G_{p(s)}$ a uma entrada degrau. Produzido no MatLab.

- e) O que você pode dizer com relação a estabilidade deste sistema? **Resposta:** Este sistema é instável.
- f) Este comportamento já era esperado? Por quê? Resposta: Sim, era esperado. Pois, ao solucionar a equação característica da FT é obtido dois polos no eixo das ordenadas com parte real nula, caracterizando um sistema oscilatório.
- g) Considere o primeiro método de sintonia de Ziegler-Nichols. Isole a parte do gráfico similar a Figura 4. Estime os valores da constante de tempo T e do tempo morto L.

Figura 5. Transiente com atraso. Fonte: acervo do professor da matéria.

Figura 6. Estimação do tempo morto e constante de tempo. Produzido no MatLab.

Resposta: L = 1.07 eT = 1.2

h) Obter os ganhos para controladores PI usando o primeiro método de Ziegler-Nichols.

Resposta:

•
$$K_p = 0.9 * \frac{T}{L} = 0.9 * \frac{1.2}{1.07} = 1.009$$

• $T_i = \frac{L}{0.3} = \frac{1.07}{0.3} = 3.56$

•
$$T_i = \frac{L}{0.3} = \frac{1.07}{0.3} = 3.56$$

i) Obter os ganhos para controladores PID usando o primeiro método de Ziegler-Nichols.

Resposta:

•
$$K_p = 1.2 * \frac{T}{L} = 1.2 * \frac{1.2}{1.07} = 1.345$$

•
$$T_i = 2 * L = 2 * 1.07 = 2.14$$

•
$$T_d = \frac{L}{2} = \frac{1.07}{2} = 0.535$$

j) Obtenha a função de transferência do controlador $G_c(s)$, considerando os casos em que $G_c(s)$ seja um controlador PI ou um controlador PID. Utilize o primeiro método de ZN.

Figura 7. FT de $G_{c(s)}$ para controlador PID pelo 1° método de ZN. Produzido no MatLab.

k) Obtenha a função de transferência do global G(s), considerando os casos em que $G_c(s)$ seja um controlador PI ou um controlador PID. Utilize o primeiro método de ZN.

```
3.658 \text{ s}^4 - 15.92 \text{ s}^3 + 10.41 \text{ s}^2 + 56.2 \text{ s} + 32.3
0.214 s^6 + 3.424 s^5 + 16.26 s^4 + 39.38 s^3 + 61.63 s^2 + 102.7 s
```

Figura 8. FT global $G_{q(s)}$ para controlador PID pelo 1° método de ZN. Produzido no MatLab.

l) Considerando o segundo método de Ziegler-Nichols, obtenha o ganho crítico K_{cr} e o período crítico P_{cr} .

Resposta: Não aplicável, pois $K_{cr} = 0$. Este fato é evidente ao analisar o diagrama do lugar das raízes deste sistema.

Figura 9. Diagrama do lugar das raízes de $G_p(s)$, evidenciando o ganho crítico do sistema. Produzido no MatLab.

m) Obter os ganhos para controladores PI usando o segundo método de Ziegler-Nichols.

Resposta: Não aplicável, pois $K_{cr} = 0$.

n) Obter os ganhos para controladores PID usando o segundo método de Ziegler-Nichols.

Resposta: Não aplicável, pois $K_{cr} = 0$.

o) Obtenha a função de transferência do controlador $G_{c(s)}$, considerando os casos em que $G_{c(s)}$ seja um controlador PI ou um controlador PID. Utilize o segundo método de ZN.

Resposta: Não aplicável, pois $K_{cr} = 0$.

- p) Obter a função de transferência global $G_{g(s)}$, considerando os casos em que $G_{c(s)}$ seja um controlador PI ou um controlador PID. Utilize o segundo método de ZN. **Resposta:** Não aplicável, pois $K_{cr} = 0$.
- q) Obter os ganhos para um controlador PI e para um controlador PID usando o método CHR para o problema servo e para o problema regulatório com 20% de sobressinal.

Resposta: Analisando o gráfico da Figura 5, é possível obter os parâmetros $\tau =$ 1.9, $\theta = L = 1.07$ e k = 1. Logo, nossos ganhos PI e PID serão:

•
$$PI = \begin{cases} K_p = \frac{0.6*\tau}{k*\theta} = \frac{0.6*1.9}{1.07} = 1.065 \\ T_i = \tau = 1.9 \end{cases}$$

•
$$PID = \begin{cases} K_p = \frac{0.96 * \tau}{k * \theta} = \frac{0.96 * 1.9}{1.07} = 1.704 \\ T_i = 1.357 * \tau = 1.357 * 1.9 = 2.578 \\ T_d = 0.473 * \theta = 0.473 * 1.07 = 0.506 \end{cases}$$

r) Obter os ganhos para controladores PID usando o método CC.

•
$$K_p = \left(1.35 + 0.25 * \left(\frac{\theta}{\tau}\right)\right) * \frac{\tau}{k*\theta} = \left(1.35 + 0.25 * \frac{1.07}{1.9}\right) * \frac{1.9}{1*1.07} = 2.6471$$

•
$$T_i = \frac{\left(1.35 + 0.25 * \left(\frac{\theta}{\tau}\right)\right)}{\left(0.54 + 0.33 * \left(\frac{\theta}{\tau}\right)\right)} * \theta = \frac{\left(1.35 + 0.25 * \frac{1.07}{1.9}\right)}{\left(0.54 + 0.33 * \frac{1.07}{1.9}\right)} * 1.07 = \frac{1.49}{0.725} * 1.07 = 2.199$$

•
$$T_d = \frac{0.5*\theta}{1.35+0.25*(\frac{\theta}{\tau})} = \frac{0.5*1.07}{1.35+0.25*\frac{1.07}{1.9}} = 0.797$$

s) Obter os ganhos para um controlador PI e PID usando o método da Integral do erro usando os critérios de desempenho IAE e ITAE.

Reposta: usando a tabela de critérios abaixo é possível estimar os ganhos de um controlador PI e PID, visto que os parâmetros $\tau e \theta$ já foram obtidos anteriormente.

Tabela 1. Constantes para o método da Integral do Erro. Problema Servo							
Controlador	Critério	Α	В	С	D	Е	F
PI	IAE	0.758	0.861	1.02	-0.323	N/A	N/A
PI	ITAE	0.586	-0.916	1.03	-0.165	N/A	N/A
PID	IAE	1.086	-0.869	0.740	-0.130	0.348	0.914
PID	ITAE	0.965	-0.850	0.796	-0.147	0.308	0.929
Fonte: Engenharia de Controle Moderno, OGATA. 5° Ed. 2010.							

Sendo os ganhos calculados pelas seguintes equações:

•
$$K_p = \frac{1}{k} * A * \left(\frac{\theta}{\tau}\right)^B$$

• $T_i = \frac{\tau}{C + D * \frac{\theta}{T}}$

$$\bullet \quad T_i = \frac{\tau}{C + D * \frac{\theta}{\tau}}$$

•
$$T_d = E * \left(\frac{\theta}{\tau}\right)^F$$

Os ganhos do controlador PI e PID pelos métodos de IAE e ITAE para o problema servo podem ser vistos na Tabela 2 abaixo:

Tabela 2. Ganhos dos controladores PI e PID							
Controlador	Critério	K_p	T_i	T_d			
PI	IAE	0.4623	2.2670	N/A			
PID	IAE	1.7887	2.8495	0.2059			
PI	ITAE	0.9916	2.0276	N/A			
PID	ITAE	1.5721	2.6640	0.1807			

2. Refazer o problema anterior adotando $G_p(s) = \frac{2s+25}{s^2+4s+25}$.

Resposta: Aplicando uma entrada degrau em $G_p(s)$ é possível estimar os valores dos parâmetros de tempo morto e constante de tempo.

Figura 10. Estimação do tempo morto e constante de tempo. Produzido no MatLab.

Sendo assim,

- $\tau = 0.26$
- $\theta = 0.0419$
- k = 1.28

Logo, aplicando os valores encontrados nas equações da Integral do Erro para o problema servo, temos:

Tabela 3. Ganhos dos controladores PI e PID						
Controlador	Critério	K_p	T_i	T_d		
PI	IAE	0.1230	0.2686	N/A		
PID	IAE	4.1450	0.316	0.0656		
PI	ITAE	2.4370	0.2591	N/A		
PID	ITAE	3.5576	0.3367	0.0565		