61A Extra Lecture 4

Thursday, February 19

1

2

What's the point?

- Why do we encode things?
 - You don't speak binary
 - Computers don't speak English

http://pixshark.com/confused-face-clip-art.htm

A First Attempt

· Let's use an encoding

Letter	Binary	Letter	Binary
а	0	n	1
b	1	0	0
С	0	р	1
d	1	q	1
е	1	r	0
f	0	s	1
g	0	t	0
h	1	u	0
i	1	V	1
j	1	W	1
k	0	Х	1
I	1	у	0
m	1	Z	0

3

4

Analysis

Pros

- Encoding was easy
- Took a very small amount of space

Cons

• Decoding it was impossible

Decoding

- Encoding by itself is **useless**
- Decoding is also necessary
- So… we need more bits
- $\boldsymbol{\cdot}$ How many bits do we need?
- \cdot lowercase alphabet
- 5 bits

5

6

8

A Second Attempt

· Let's try another encoding

Letter	Binary	Letter	Binary
а	00000	n	01101
b	00001	0	01110
С	00010	р	01111
d	00011	q	10000
е	00100	r	10001
f	00101	S	10010
g	00110	t	10011
h	00111	U	10100
i	01000	V	10101
j	01001	W	10110
k	01010	X	10111
I	01011	у	11000
m	01100	z	11001

7

Analysis

Pros

- Encoding was easy
- Decoding was possible

Cons

- · Takes more space...
- $\boldsymbol{\cdot}$ What restriction did we place that's unnecessary?
- Fixed length

Variable Length Encoding

- · Problems?
 - When do we start and stop?
 - String of As and Bs: ABA
 - · A 00, B 0
 - · Encode ABA: 00000
 - · Decode 00000:
 - · ABA, AAB, BAA?
 - What lengths do we use?

A Second Look at Fixed Length

Letter	Binary	Letter	Binary
а	00000	n	01101
b	00001	0	01110
С	00010	р	01111
d	00011	q	10000
е	00100	r	10001
f	00101	S	10010
g	00110	t	10011
h	00111	u	10100
i	01000	V	10101
j	01001	W	10110
k	01010	X	10111
I	01011	у	11000
m	01100	Z	11001

10

9

 What happens when...?

 Letter
 Binary
 Letter
 Binary

 a
 0
 n
 1

 b
 1
 0
 0

 c
 0
 p
 1

 d
 1
 q
 1

 e
 1
 r
 0

 f
 0
 s
 1

 g
 0
 t
 0

 h
 1
 u
 0

 i
 1
 v
 1

 j
 1
 w
 1

 k
 0
 x
 1

 l
 1
 y
 0

 m
 1
 z
 0

11 12

What happens when...?

• Rule 2: Only leaves get labels

A	
	00
В	0

An Optimal Encoding

- $\boldsymbol{\cdot}$ Start with a tree
- What kinds of things do we want to encode with this?
- What letter do we want to appear the most?
- · How about the least?
- This is called a **Huffman Encoding**

13 14

Huffman Encoding

- $\boldsymbol{\cdot}$ Let's pretend we want to come up with the optimal encoding:
 - AAAAAAAABBBBBCCCCCCDDDDDDDDD
 - A appears 10 times
 - B appears 5 times
 - C appears 7 times
 - D appears 9 times

Huffman Encoding

- $\boldsymbol{\cdot}$ Start with the two smallest frequencies
- A appears 10 times, B appears 5 times, C appears 7 times, D appears 9 times

15 16

Huffman Encoding • And finally...

17

18

Huffman Encoding

- · Another example...
 - AAAAAAAAAABCCD
 - A appears 10 times
 - B appears 1 time · C appears 2 times

 - D appears 1 time

Huffman Encoding • Start with the two smallest frequencies \cdot A appears 10 times, B appears 1 time, C appears 2 times, D appears 1 time

20

19

Huffman Encoding

• Start with the two smallest frequencies

 $\boldsymbol{\cdot}$ A appears 10 times, B & D appear a combined 2 times, C appears 2 times

Huffman Encoding

• And finally...

21

22