Introduction to Information Retrieval

Lecture 12: Language Models for IR

Using language models (LMs) for IR

- LM = language model
- We view the document as a generative model that generates the query.
- What we need to do:
- Define the precise generative model we want to use
- Apply to query and find the document(s) that are most likely to have generated the query
- Present most likely document(s) to user

What is a language model?

We can view a finite state automaton as a deterministic language model.

I wish I wish I wish . . .

Cannot generate: "wish I wish" or "I wish I".

Our basic model: each document was generated by a different automaton like this except that these automata are probabilistic.

A probabilistic language model

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03
a	0.1	likes	0.03 0.02 0.04
frog	0.01	that	0.04

This is a one-state probabilistic finite-state automaton – a unigram language model – and the state emission distribution for its one state q_1 . STOP is not a word, but a special symbol indicating that the automaton stops.

frog said that toad likes frog STOP

 $P(\text{string}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.02$

= 0.000000000048

A different language model for each document

language model of d_1			language model of d_2				
W	P(w .)	W	P(w .)	W	P(w .)	w	P(w .)
STOP	.2	toad	.01	STOP	.2	toad	.02
the	.2	said	.03	the	.15	said	.03
a	.1	likes	.02	a	.08	likes	.02
frog	.01	that	.04	frog	.01	that	.05

frog said that toad likes frog STOP

$$P(\text{string} | M_{d1}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.02 = 0.000000000048 = 4.8 \cdot 10^{-12}$$

$$P(\text{string}|M_{d2}) = 0.01 \cdot 0.03 \cdot 0.05 \cdot 0.02 \cdot 0.02 \cdot 0.01 \cdot 0.02 = 0.000000000120 = 12 \cdot 10^{-12}$$
 $P(\text{string}|M_{d1}) < P(\text{string}|M_{d2})$

Thus, document d_2 is "more relevant" to the string "frog said that toad likes frog STOP" than d_1 is.

Using language models in IR

- Each document is treated as (the basis for) a language model.
- Given a query q
- Rank documents based on P(d|q)

$$P(d|q) = \frac{P(q|d)P(d)}{P(q)}$$

- P(q) is the same for all documents, so ignore
- P(d) is the prior often treated as the same for all d
 - But we can give a prior to "high-quality" documents, e.g., those with high PageRank in Web search.
- P(q | d) is the probability of q given d.
- So to rank documents according to relevance to q, ranking according to P(q|d) and P(d|q) is equivalent

Where we are

- In the LM approach to IR, we attempt to model the query generation process.
- Then we rank documents by the probability that a query would be observed as a random sample from the respective document model.
- That is, we rank according to $P(q \mid d)$.
- Next: how do we compute $P(q \mid d)$?
- Notation: M_d : the document model

How to compute P(q | d)

 We will make the same conditional independence assumption as for Naive Bayes.

$$P(q|M_d) = P(\langle t_1, \ldots, t_{|q|} \rangle | M_d) = \prod_{1 \leq k \leq |q|} P(t_k | M_d)$$

 $(|q|: length of q; t_k: the token occurring at position k in q)$

This is equivalent to:

$$P(q|M_d) = \prod_{\substack{\text{distinct term } t \text{ in } q}} P(t|M_d)^{\text{tf}_{t,q}}$$

- $\mathsf{tf}_{t,q}$: term frequency (# occurrences) of t in q
- Multinomial model (omitting constant factor)

Parameter estimation

- Missing piece: Where do the parameters $P(t|M_d)$ come from?
- Start with maximum likelihood

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

 $(|d|: length of d; tf_{t,d}: # occurrences of t in d)$

- We have a problem with zeros
 - A single t with $P(t|M_d) = 0$ will make $P(q|M_d) = \prod P(t|M_d)$
 - We would give a single term "veto power".
 - E.g., for query [Michael Jackson top hits] a document about "top songs" (but not using the word "hits") would have $P(t|M_d) = 0$ That's bad.
- We need to smooth the estimates to avoid zeros.

Smoothing

- Key intuition: A non-occurring term is possible (even though it didn't occur in the particular document), . . .
- . . . but no more likely than would be expected by chance in the collection.
- Notation: M_c : the collection model; cf_t : the number of occurrences of t in the collection; $T = \sum_t cf_t$: the total number of tokens in the collection.

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

• We will use $\hat{P}(t|M_c) = cf_t / T$

Mixture model

- We will use $\hat{P}(t|M_c)$ to "smooth" P(t|d) away from zero.
- $P(t|d) = \lambda P(t|M_d) + (1-\lambda)P(t|M_c)$
- Mixes the probability from the document with the general collection frequency of the word.
- High value of λ : "conjunctive-like" search tends to retrieve documents containing all query words.
- Low value of λ : more disjunctive, suitable for long queries
- Correctly setting λ is very important for good performance

Mixture model: Summary

$$P(q|d) \propto \prod_{1 \leq k \leq |q|} (\lambda P(t_k|M_d) + (1-\lambda)P(t_k|M_c))$$

- What we model: The user has a document in mind and generates the query from this document.
- The equation represents the probability that the document that the user had in mind was in fact this one.

Example 1

- Collection of two docs: d_1 and d_2
- d₁: Jackson was one of the most talented entertainers of all time
- d_2 : Michael Jackson anointed himself King of Pop
- Query q: Michael Jackson
- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = [(0/11 + 1/18)/2] \cdot [(1/11 + 2/18)/2] \approx 0.003$
- $P(q | d_2) = [(1/7 + 1/18)/2] \cdot [(1/7 + 2/18)/2] \approx 0.013$
- Ranking: $d_2 > d_1$

Example 2

- Collection: d_1 and d_2
- d_1 : Xerox reports a profit but revenue is down
- d_2 : Lucene narrows quarter loss but decreases further
- Query q: revenue down
- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = [(1/8 + 2/16)/2] \cdot [(1/8 + 1/16)/2] = 1/8 \cdot 3/32 = 3/256$
- $P(q|d_2) = [(1/8 + 2/16)/2] \cdot [(0/8 + 1/16)/2] = 1/8 \cdot 1/32 = 1/256$
- Ranking: d₁ > d₂

Language Models vs. Vector Space

LMs vs. vector space model

- LMs have some things in common with vector space models.
- Term frequency is directed in the model.
 - But it is not scaled in LMs.
- Probabilities are inherently "length-normalized".
 - Cosine normalization does something similar for vector space.
- Mixing document and collection frequencies has an effect similar to IDF.
 - Terms rare in the general collection, but common in some documents will have a greater influence on the ranking.

LMs vs. vector space model: Assumptions

- Simplifying assumption: Queries and documents are objects of same type.
 - May not be true!
 - The vector space model makes the same assumption.
- Simplifying assumption: Terms are conditionally independent.
 - Not true in most cases
 - Again, vector space model (and Naive Bayes) makes the same assumption.
- Cleaner statement of assumptions than vector space
- Thus, better theoretical foundation than vector space
 - ... but "pure" LMs perform much worse than "tuned" LMs₄₇

LMs vs. vector space model: differences

- LMs vs. vector space model: differences
 - LMs: based on probability theory
 - Vector space: based on similarity, a geometric/ linear algebra notion
 - Collection frequency vs. document frequency
 - Details of term frequency, length normalization etc.

Alternative Language Modeling approaches: Brief discussion

Alternative LM approaches

- Rather than looking at the probability of a document LM generating the query, can look at the probability of a query LM generating the document
 - Challenge: much less text to estimate a LM based on query
 - Advantage: easier to incorporate relevance feedback
- Can make two LMs from the document (M_d) and the query (M_q) , and then ask how different these two LMs are
 - Develop a risk minimization approach for retrieval: compute risk of retrieving a document d as relevant to query q
 - Risk can be estimated as the KL divergence of M_d from M_q

Three ways of developing language modeling approach

Kullback-Leibler Divergence

$$R(d;q) = KL(M_d||M_q) = \sum_{t \in V} P(t|M_q) \log \frac{P(t|M_q)}{P(t|M_d)}$$

Translation Model

- Basic LMs do not consider any deviation in use of language between queries and documents (e.g., synonymous words)
- A translation model allows generation of query words not in a document, by translation to alternate terms with similar meaning
 - Forms the basis of cross-language IR
 - Assume translation model represented by a conditional probability distribution T(x|y) between vocabulary terms
 - Usually built using separate resources such as a thesaurus or bilingual dictionary or a statistical machine translation dictionary

Example: Query Expansion in Language Modeling

Basic Idea: We assume that the translation model can be represented by a conditional probability distribution $T(\cdot|\cdot)$ between vocabulary terms.

The form of the translation query generation model:

$$P(q|M_d) = \prod_{t \in q} \sum_{v \in V} P(v|M_d) T(t|v)$$

P(): basic document language model

T(): translation model

v is a term in the vocabulary, but not contained in the query *t* is a term contained in the query