Università degli Studi di Padova

SCUOLA DI SCIENZE

CORSO DI LAUREA IN INFORMATICA

Piano di lavoro

Studente: Francesco LAPENNA - 2072134 Azienda: Azienda S.p.A

Contatti

Studente: Francesco Lapenna, francesco.lapenna.1@studenti.unipd.it, + 39 392 60 45 612 **Tutor aziendale:** Alessandro Brighente, alessandro.brighente@unipd.it, + 39 000 00 00 000

Azienda: Azienda S.p.A, Via Roma 1, Roma (RM), http://example.com/

Scopo dello stage

Lo scopo di questo progetto di stage è implementare un modulo di autenticazione per OpenVLC, piattaforma open-source per Visible Light Communication (VLC).

Lo studente avrà il compito di:

- Configurare due schede BeagleBone Black per consentire la comunicazione tramite luce visibile.
- Studiare lo standard IEEE 802.15.7 per le comunicazioni ottiche wireless a corto raggio, al fine di comprendere i requisiti tecnici e le specifiche.
- Analizzare i requisiti funzionali e non funzionali del modulo di autenticazione.
- Progettare l'architettura del modulo di autenticazione, definendo i componenti principali e le loro interazioni.
- Implementare il modulo di autenticazione sulla piattaforma OpenVLC, garantendo compatibilità e prestazioni ottimali.
- Testare e validare il modulo sviluppato attraverso scenari realistici, verificando il corretto funzionamento e la sicurezza del sistema.
- Documentare dettagliatamente il lavoro svolto, i risultati ottenuti e le eventuali criticità riscontrate.

Interazione tra studente e tutor aziendale

Regolarmente, (almeno una volta la settimana) ci saranno incontri diretti con il tutor aziendale Alessandro Brighente e stakeholders per verificare lo stato di avanzamento, chiarire eventualmente gli obiettivi, affinare la ricerca e aggiornare il piano stesso di lavoro.

Prodotti attesi

Lo studente dovrà produrre una relazione scritta che illustri i seguenti punti.

1. Configurazione delle schede BeagleBone Black

Descrizione dettagliata del processo di configurazione delle schede per consentire la comunicazione tramite luce visibile, includendo eventuali problemi riscontrati e soluzioni adottate.

2. Studio dello standard IEEE 802.15.7

Analisi tecnica dello standard per le comunicazioni ottiche wireless a corto raggio, con un focus sui requisiti tecnici e sulle specifiche rilevanti per il modulo di autenticazione.

3. Progettazione del modulo di autenticazione

Documentazione dell'architettura progettata, con una descrizione dei componenti principali, delle loro interazioni e delle scelte progettuali effettuate.

4. Implementazione del modulo di autenticazione

Dettagli sull'implementazione del modulo sulla piattaforma OpenVLC, includendo il codice sviluppato, le tecnologie utilizzate e le ottimizzazioni effettuate.

5. Test e validazione

Risultati dei test effettuati sul modulo di autenticazione, con scenari realistici, metriche di valutazione e analisi della sicurezza del sistema.

6. Documentazione finale

Relazione completa sul lavoro svolto, comprensiva di risultati ottenuti, criticità riscontrate e possibili sviluppi futuri.

Nel caso in cui lo studente, in seguito all'analisi, abbia ancora tempo a sua disposizione, potrà ...

Contenuti formativi previsti

Durante questo progetto di stage lo studente avrà occasione di approfondire le sue conoscenze nei seguenti ambiti:

- Visible Light Communication (VLC): Studio delle tecnologie di comunicazione tramite luce visibile, con particolare attenzione alla piattaforma OpenVLC.
- **Standard IEEE 802.15.7:** Analisi tecnica dello standard per le comunicazioni ottiche wireless a corto raggio, comprendendo i requisiti tecnici e le specifiche.
- Sicurezza informatica: Progettazione e implementazione di un modulo di autenticazione, con focus su tecniche di sicurezza per la protezione delle comunicazioni.
- Sistemi embedded: Configurazione e utilizzo delle schede BeagleBone Black per applicazioni di comunicazione avanzate.
- **Progettazione software:** Definizione dell'architettura di un modulo software, con attenzione alle interazioni tra componenti e ai requisiti funzionali e non funzionali.
- **Testing e validazione:** Applicazione di metodologie di test per verificare il corretto funzionamento e la sicurezza del sistema sviluppato.
- **Documentazione tecnica:** Redazione di documenti tecnici dettagliati relativi al lavoro svolto, ai risultati ottenuti e alle criticità riscontrate.

Pianificazione del lavoro

Pianificazione settimanale

Prima Settimana (40 ore)

- Incontro per discutere i requisiti e le richieste relativi al sistema da sviluppare;
- Formazione sulle tecnologie adottate, inclusa la piattaforma OpenVLC e le schede BeagleBone Black.
- Studio dello standard IEEE 802.15.7 per le comunicazioni ottiche wireless a corto raggio;
- Studio di esempi già esistenti di autenticazione tramite luce visibile;

Seconda Settimana (40 ore)

- Configurazione iniziale delle schede BeagleBone Black per la comunicazione tramite luce visibile.
- Analisi dei requisiti funzionali e non funzionali del modulo di autenticazione;

Terza Settimana (40 ore)

- Progettazione dell'architettura del modulo di autenticazione, definendo i componenti principali e le loro interazioni;
- Documentazione delle scelte progettuali effettuate;
- Inizio dello sviluppo del modulo di autenticazione sulla piattaforma OpenVLC.

Quarta Settimana (40 ore)

- Continuazione dello sviluppo del modulo di autenticazione;
- Implementazione delle funzionalità principali del modulo;
- Test preliminari per verificare il corretto funzionamento delle funzionalità implementate.

Quinta Settimana (40 ore)

- Continuazione dello sviluppo del modulo di autenticazione;
- Implementazione di eventuali funzionalità aggiuntive richieste;
- Test approfonditi per verificare la sicurezza e la robustezza del sistema.

Sesta Settimana (40 ore)

- Validazione del modulo sviluppato attraverso scenari realistici;
- Analisi dei risultati dei test e risoluzione di eventuali criticità;
- Revisione della documentazione tecnica relativa al modulo.

Settima Settimana (40 ore)

- Preparazione della documentazione finale, comprensiva di risultati ottenuti e criticità riscontrate;
- Revisione del lavoro svolto con il tutor aziendale e il tutor interno:

- Eventuali miglioramenti o modifiche richieste.
- Ottava Settimana Conclusione (40 ore)
 - Consegna della documentazione finale;
 - Presentazione del lavoro svolto ai responsabili del progetto;

Ripartizione ore (NECESSARIA???)

La pianificazione, in termini di quantità di ore di lavoro, sarà così distribuita:

Durata in ore	Descrizione dell'attività
38	Formazione sulle tecnologie
38	Definizione architettura di riferimento e relativa documentazione
12	Analisi del problema e del dominio applicativo
22	Progettazione della piattaforma e relativi test
4	Stesura documentazione relativa ad analisi e progettazione
38	Collaudo Finale
30	Collaudo
5	Stesura documentazione finale
1	Incontro di presentazione della piattaforma con gli stakeholders
2	Live demo di tutto il lavoro di stage
Totale ore	320

Obiettivi

Notazione

Si farà riferimento ai requisiti secondo le seguenti notazioni:

- O per i requisiti obbligatori, vincolanti in quanto obiettivo primario richiesto dal committente;
- D per i requisiti desiderabili, non vincolanti o strettamente necessari, ma dal riconoscibile valore aggiunto;
- F per i requisiti facoltativi, rappresentanti valore aggiunto non strettamente competitivo.

Le sigle precedentemente indicate saranno seguite da una coppia sequenziale di numeri, identificativo del requisito.

Obiettivi fissati

Si prevede lo svolgimento dei seguenti obiettivi:

- Obbligatori
 - <u>O01</u>: Configurare le schede BeagleBone Black per consentire la comunicazione tramite luce visibile.
 - 002: Studiare lo standard IEEE 802.15.7 per comprendere i requisiti tecnici e le specifiche.
 - O03: Progettare e implementare il modulo di autenticazione sulla piattaforma OpenVLC.
 - *O04*: Testare e validare il modulo sviluppato attraverso scenari realistici.
 - 005: Documentare dettagliatamente il lavoro svolto e i risultati ottenuti.

· Desiderabili

- <u>D01</u>: Ottimizzare le prestazioni del modulo di autenticazione per garantire compatibilità e prestazioni ottimali.
- <u>D02</u>: Implementare funzionalità aggiuntive per migliorare la sicurezza e la robustezza del sistema.
- D03: Analizzare i risultati dei test per identificare e risolvere eventuali criticità.

Facoltativi

- F01: Approfondire ulteriori aspetti legati all'ottimizzazione delle prestazioni del modulo.
- F02: Integrare nuove funzionalità innovative per estendere le capacità del sistema.
- <u>F03</u>: Esplorare possibili sviluppi futuri del progetto, come l'integrazione con altre tecnologie di comunicazione.

Approvazione

Il presente piano di lavoro è stato approvato dai seguenti			
Alessandro Brighente	Tutor aziendale		
Francesco Lapenna	Stagista		
Prof. Stefano Cecconello	Tutor interno		

22 Aprile 2025