

INF755 Méthodes d'analyse et de conception

Hiver 2108 Séance-1

Chargé de cours: Alain Cardinal

Plan de la séance-1

- Tours de table (présentation des étudiants)
- Lecture du plan de cours
- L'introduction au domaine du développement
- La modélisation dans les entreprises
- Le MDA c'est quoi ?
- Exercice en classe (cas)

Alain Cardinal

- Maîtrise en Sc. des (TI)
- BAC en enseignement (TI)
- DEC Informatique de gestion
- 35 ans d'expérience dans le domaine des TI
 - Chargé de projet
 - Architecte d'entreprise
 - Concepteur principal (solution d'affaires)
 - Conseiller en gestion des TI
 - Conseiller en intelligence d'affaires
 - Administrateur de données...

Alain Cardinal suite...

• Chargé de cours U de S (INF755)

• Chargé de cours ÉTS (MTI515, MTI825, GTI210)

• Chargé de cours ENAP (ENP7503, ENP7828)

• Chargé de cours HEC (Intelligence d'affaires contexte international)

Professeur
 Data Science Institue

Formateur UQÀM (base de données)

Qui suis-je? Étudiant(e)

- Prénom / Nom
- Profil académique
 - Avant la maîtrise
 - Au sein de la maîtrise
- Expérience en industrie
 - Années d'expérience, types de logiciels, postes occupés, sujets du cours...
- Attentes face au cours

Plan du cours INF755

Conférenciers

- Michel Boudrias
 - (directeur principal architecture d'entreprise banque National)
- Serge Piote ou Richard Poulin
 - (Directeur de projet majeur TI)
 - (conseiller sénior gestion du changement)
- À confirmer

Plan de la séance-1

- Tours de table (présentation des étudiants)
- Lecture du plan de cours
- L'introduction au domaine du développement
- La modélisation dans les entreprises
- Le MDA c'est quoi ?
- Exercice en classe (cas)

Quelques objectifs d'apprentissage concernant les SI

- 1. Quels **changements** organisationnels le développement de nouveaux systèmes entraîne-t-il ?
- Quelles grandes activités comporte le processus de développement d'un système ?
- 3. Quelles méthodes utilise-t-on pour modéliser et concevoir un système?
- 4. Quelles **méthodes de rechange** permettent de développer un système d'information ?
- 5. Quelles seront les nouvelles approches pour le développement d'applications, à l'ère de l'entreprise numérique ?

Un aperçu du développement d'un système

TABLEAU 183-1 LES SPECIFICATIONS ENTRANT DANS LA CONCEPTION D'UN SYSTÈME

SORTIE

Support Contenu Calendrier

ENTRÉE

Origines Flux Saisie des données

INTERFACE UTILISATEUR

Simplicité Efficacité Logique Rétroaction Erreurs

CONCEPTION DE LA BASE DE DONNÉES

Relations logiques entre les données Exigences en matière de volume et de vitesse Organisation et conception des fichiers Caractéristiques des enregistrements

TRAITEMENT

Calculs Modules des programmes Rapports nécessaires Calendrier des sorties

PROCÉDURES MANUELLES

Définition des activités Personnes responsables Échéances Méthodes Lieux

CONTRÔLES

Contrôles des entrées (caractères, limites, logique)
Contrôles du traitement (cohérence, décompte des enregistrements)
Contrôles des sorties (totaux, échantillons de sorties)

Controles des sorties (totaux, echantillons de sorties; Contrôles des procédés (mots de passe, formules spéciales)

SÉCURITÉ

Contrôle des accès Plans en cas de catastrophe Vérification

DOCUMENTATION

Documentation pour l'exploitation Documents sur les systèmes Documents destinés aux utilisateurs

CONVERSION

Transfert des fichiers Démarrage de nouvelles procédures Sélection de la méthode d'essai Passage vers le nouveau système

FORMATION

Sélection des techniques de formation Conception des modules de formation Choix des installations de formation

CHANGEMENTS ORGANISATIONNELS

Conception nouvelle des tâches Conception des emplois Conception des processus Conception de la structure des bureaux et de l'organisation Structures hiérarchiques

TABLEAU 13-2

LE DÉVELOPPEMENT DE SYSTÈME

ACTIVITÉ ESSENTIELLE	DESCRIPTION
Analyse de système	Détermination des problèmes Recherche de solutions Définition des besoins en information
Conception de système	Définition des spécifications de conception
Programmation	Conversion des spécifications de conception en codes de programmation
Mise à l'essai	Essai de programme Essai de système Essai d'acceptation
Conversion	Planification de la conversion Préparation de la documentation Formation des utilisateurs et du personnel technique
Production et entretien	Mise en exploitation du système Évaluation du système Modification du système

Plan de la séance-1

- Introduction directeur adjoint
- Tours de table (présentation des étudiants)
- Lecture du plan de cours
- L'introduction au domaine du développement
- La modélisation dans les entreprises
- Le MDA c'est quoi ?
- Exercice en classe (cas)

Modélisation

- UML
- BPMN
- MDA (Model Driven Architecture)
- SOA (à l'aide des Services Web)
- Domain Specific Language
- Merise
 - DFD, MCD, MRD

Les frameworks, autour de:

- Eclipse, NetBean
- Visual Studio...

Pourquoi modéliser?

- Un modèle est une <u>abstraction</u> du monde concret, qui facilite sa compréhension
- Un modèle peut être sous forme graphique et/ou textuelle
- S'il est sous forme graphique, il doit être complété par une présentation textuelle

La modélisation dans les entreprises ???

- Une perte de temps pour les noninformaticiens et même les informaticiens
- Une évolution inéluctable avec les nouveaux outils
- Modéliser = prêcher dans le désert?
 Cela dépend de la culture de votre département.

15

Quelques chiffres

- 256 milliards en projet logiciel aux US.
 - 16% sont complétés en temps et dans les coûts
 - 31% sont annulés (81G\$)
 - 53% dépassent le budget prévu
 - 42% seulement sont livrés avec les exigences initiales

Quelques chiffres...

- Une grande proportion de projets TI échouent. Pourquoi?
 - Plusieurs facteurs
 - Les <u>mauvaises exigences en font partie</u>
- Si ça va si mal, c'est qu'il y a quelque chose qu'on ne fait pas bien. Il faut se remettre en question!

Réussite, Échec

- Mais qu'est-ce qu'un projet réussi?
 - Dans les temps?
 - Dans le budget?
 - Avec les fonctions prévues?
 - ROI, TCO... ???

Rappel

- Notre domaine est très jeune (60 ans?)
 - Génie de la construction…5000 ans?
- Mais nous progressons très rapidement.
 - Pourquoi l'ingénierie en TI?
 - Artisanat vs génie (le pif vs la méthode)
 - Âge du génie logiciel / TI Maturité
 - Science virtuelle vs Mécanique, construction
- Une tendance...De l'artisanat à l'industrialisation du développement logiciel

Industrialisation

- Vers le milieu du 19e siècle
- Segmenter le travail des individus pour ne pas être dépendant d'un artisan
- Permet une production beaucoup plus efficace, en série.
- Augmente la qualité (tests…)

Plan de la séance-1

- Introduction directeur adjoint
- Tours de table (présentation des étudiants)
- Lecture du plan de cours
- L'introduction au domaine du développement
- La modélisation dans les entreprises
- Le MDA c'est quoi ?
- Exercice en classe (cas)

MDA c'est quoi?

http://www.modeliosoft.com/fr/technologies/mda.html

Une Architecture orienté par modèles

Deux applications d'un même concept de base

Techniques de développement assisté par ordinateur

(Réf.: Software Factories, Greenfield, J., p.144)

- Un modèle très détaillé, beaucoup de code généré
- CASE Tools (Computer-aided software engineering)
- Mal adapté au développement agile qui implique souvent des <u>solutions</u> <u>partielles</u> très tôt dans le cycle de développement
- Synchronisation difficile
- Éloignée de la plateforme

- Exemple : Outils graphiques de modélisation des classes
- Plus proche de la plateforme
- Code généré pour la plateforme
- Plus simple
- Aide généralement le développeur à voir les dépendances entre les classes
- Il reste beaucoup de code à faire à la main.

- Existence d'un framework logiciel
- On se base sur le framework pour automatiser-compléter la production de certains éléments, comme les éléments graphiques.
- Abstraction plus élevée
- VB6 et ses formulaires
- .NET, Hibernate
- Peu d'abstractions au niveau du modèle
 - Classe, entité-relation

Réf.: Software Factories, Greenfield, J.,

- Finalement, il y a la possibilité d'avoir une « pile » de modèles
- D'un modèle à l'autre, il y a transformation vers un modèle de plus en plus précis
- Approche MDA
- Concept de Domain Specific Language
 - Pour un domaine particulier, on crée des « templates » réutilisables
 - Permets la contribution des experts métiers

Domain specific language

Réf.: Software Factories, Greenfield, J.,

Exemple (modèle textuel)

- À partir des spécifications des exigences logicielles:
 - L'acteur saisit la commande, contenant:
 - l'adresse de livraison
 - l'adresse de facturation
 - Le système crée la commande
 - L'acteur saisit un détail de la commande, avec:
 - le nom du produit
 - · la quantité demandée
 - le prix du produit
 - Le système crée le détail et revient à l'étape 3
 - L'acteur termine la commande
 - Le système ferme la commande

Model Driven Architecture

Un modèle (Diagramme de classes UML)

Concept principal de MDA

Modéliser pour documenter le système

Modéliser pour construire le système

Les différentes étapes du MDA

Levels or types of MDA models.

Avant et après le MDA

Requirements Management with Use Cases v2001.03.00

Copyright © 1998, 2001 Rationa Software, all rights reserved

Perspective d'emplois (analyste TI)

Perspective d'emplois Exemple STM

Exercice-1

- <u>Cas</u>-3
 - Identifier les cas d'utilisation
 - Réaliser le diagramme des cas d'utilisation du système
 - Diagramme des cas d'utilisation

séance-2

- Architecture des systèmes d'information
- Méthodologie : MACROSCOPE (en cascade)
- UML: Intro. Diagrammes
- Merise: Intro. Modèles
- Distribution du travail-1
- Lectures:
 - Voir site Web du cours

Questions?

