

InternPro Weekly Progress Update

Name	Email	Project Name	NDA/ Non- NDA	InternPro Start Date	ОРТ
Adharsh Prasad Natesan	anatesan@asu.edu	IT-Core Foundation Suriname	Non-NDA	2024-08-05	Yes

Progress

Include an itemized list of the tasks you completed this week.

#	Action Item/ Explanation	Total Time This Week (hours)
1	Implementing the path planner	3
2	Visualizing the updated Path planning algorithm	3
3	Realistic Farmland Terrain Simulation and Data Collection System for Agricultural Rover	3
4	Implementing AStar algorithm to the new map	3
5	Formulating Multi-Pass Grid AStar algorithm	3
6	Implementing Updated AStar algorithm to the new map	3
7	Work plan for next week	1
8	Report Writing	1
	Total hours for the week:	20

Verification Documentation:

Action Item 1: Implementing the path planner - 3 hour(s).

- Developed a height-based A* pathfinding algorithm that:
 - Generates optimal paths considering terrain elevation differences
 - Implements priority-based cell selection for multiple passes
 - Tracks visit counts to ensure complete field coverage
 - Adapts path planning based on local terrain characteristics
- Created a multi-pass optimization system that:

- Calculates required passes for each grid cell based on height differences from target level
- Prioritizes higher elevation areas requiring more passes
- Ensures minimum single-pass coverage for all cells
- Dynamically updates visit frequency during operation
- Implemented comprehensive visualization tools showing:
 - Color-coded height grid displaying terrain variations from 0.05m to 0.3m
 - Optimal path planning with start (green) and end (red) positions
 - Visit count heatmap indicating coverage frequency
 - Real-time path execution and coverage tracking

- Developed dual-panel visualization system that:
 - o Displays color-coded height grid showing terrain variations from 0.05m to 0.3m across the 12x12 grid cells
 - Illustrates optimal leveling path with clear start position (green marker) and end position (red marker)
 - Generates real-time visit count heatmap indicating coverage frequency across the field
- Created interactive visualization features including:
 - Dynamic colorbar showing elevation scale for terrain height interpretation
 - Clear axis labeling for X and Y grid coordinates
 - Subplot organization for simultaneous display of height and coverage data
 - Path overlay showing complete rover trajectory across the field
- Implemented comprehensive data representation through:
 - Continuous color gradients from blue (low elevation) to yellow (high elevation) for intuitive height visualization
 - Distinct path marking in red for clear trajectory visualization
 - Strategic marker placement showing critical path points
 - Synchronized display of terrain characteristics and planned coverage patterns

- In this task, we focused on developing a realistic farmland terrain simulation and implementing a data collection system for our agricultural rover in MATLAB.
 - Terrain Generation:
 - Created a 5x5 meter high-resolution grid using meshgrid.
 - Generated a base sinusoidal terrain with varying amplitude and frequency.
 - Added random bumps to increase realism and terrain complexity.
 - Applied Gaussian smoothing for smooth transitions between terrain features.
 - Rover Simulation:
 - Defined rover dimensions and created a 3D model using vertices and faces.
 - Implemented a function to generate the rover's 3D structure.
 - Created a visual representation of the rover using MATLAB's patch function.
 - Path Planning:
 - Developed a row-wise path planning algorithm for the rover.
 - Calculated grid resolution based on the rover's plow radius.
 - Generated separate arrays for x and y coordinates of the path.
 - Interpolated z-coordinates for the path using the terrain data.
 - · Data Collection:
 - Implemented a system to collect height data as the rover moves along its path.
 - Created an average height grid to store collected data.
 - Utilized a circular mask to simulate the rover's plow area for data collection.
 - Visualization
 - Plotted the 3D terrain using MATLAB's surf function.
 - Visualized the planned path and the rover's movement in real-time.
 - Created a dynamic legend to display current rover position and data collection status.
 - Generated a final plot showing the average height grid of collected data.
 - Rover Movement Simulation:
 - Calculated 2D gradients for realistic rover orientation on the terrain.
 - Implemented forward, right, and up vector calculations for rover positioning.
 - Applied rotation and translation to the rover model for accurate visualization.
- This task significantly enhanced our agricultural rover simulation by introducing a more realistic terrain model and implementing a data collection system. These improvements provide a solid foundation for future development of terrain leveling algorithms and more complex path planning strategies.

Action Item 4: Implementing AStar algorithm to the new map - 3 hour(s).

- In this task, we developed and implemented a comprehensive terrain leveling system using A* pathfinding algorithm and grid-based data collection for optimal agricultural field leveling.
- A* Algorithm Implementation
 - Developed a modified A* pathfinding algorithm incorporating height-based cost functions
 - Implemented priority-based cell selection for multiple passes based on terrain elevation
 - Created adaptive visit tracking system ensuring complete field coverage
 - Integrated real-time path adjustment based on terrain characteristics
 - Developed cost functions considering height differences, visit counts, and movement efficiency
 - Rover Simulation Development
 - Created visualization system showing rover movement along optimal paths
 - Implemented dynamic terrain modification based on plowing passes
 - Developed real-time height data collection during rover traversal
 - Added progressive terrain leveling with adjustable reduction factors
 - Integrated visit count tracking for monitoring coverage completeness
 - Grid-Based Data Representation
 - Divided 5x5m field into grid cells based on rover's plowing radius (0.2m)
 - Created height mapping system showing terrain variations from 0.05m to 0.3m
 - Implemented visualization tools showing:
 - Color-coded height grid displaying terrain variations
 - Visit count heatmap indicating coverage frequency
 - Real-time path execution and coverage tracking
 - Generated comprehensive elevation maps for analyzing leveling effectiveness
- The system successfully creates efficient paths ensuring complete field coverage while automatically determining optimal number of passes for different terrain heights, representing a significant improvement over previous fixed-pattern approaches.

Action Item 5: Formulating Multi-Pass Grid AStar algorithm - 3 hour(s).

Project Work Summary

- Developed an adaptive height-based path planning system that:
 - Calculates required passes based on height differences from target level
 - Implements priority-based cell selection for multiple passes
 - Ensures complete field coverage through visit count tracking
 - Dynamically updates path planning based on leveling progress
- Created a multi-objective optimization framework that:
 - Balances height differences, visit requirements, and path efficiency
 - Adapts cost functions based on remaining passes needed
 - Implements progressive terrain modification tracking
 - Optimizes coverage patterns for efficient leveling
- Mathematical Formulation
 - State Space:
 - $S = \{(i,j) \mid 0 \le i,j < N\}$ where N is grid dimension
- Required Passes Calculation:
 - required_passes(i,j) = ceil((height_grid(i,j) target_height) / leveling_per_pass)
- Cost Function:
 - f(n) = g(n) + h(n) + terrain cost(n)
 - where:
 - g(n) = path cost from start to current node
 - h(n) = manhattan distance to goal
 - terrain cost(n) = w1*height diff + w2*visit penalty + w3*movement cost
 - height diff = |current height target height|
 - visit_penalty = visits / (required_passes visits + 0.1)
 - movement cost = base cost + gradient penalty
- Optimization Goal:
 - ∘ minimize Σ (terrain_cost) while ensuring: visit_count(i,j) ≥ required_passes(i,j) \forall i,j

Action Item 6: Implementing Updated AStar algorithm to the new map - 3 hour(s).

- Implemented a priority-based A* pathfinding algorithm that:
 - Calculates required passes for each grid cell based on height differences from target level
 - Dynamically adjusts path planning based on remaining required passes
 - Ensures complete field coverage through visit count tracking
 - Optimizes path selection using Manhattan distance heuristics
- Created an adaptive cost function system that:
 - Combines base movement cost, height differences, and visit penalties
 - Prioritizes cells requiring more passes based on current height
 - Implements distance-weighted penalties to optimize path efficiency
 - Adjusts costs dynamically based on remaining required visits
- Developed comprehensive path planning features including:
 - Priority-based cell selection favoring higher elevation areas
 - 8-directional neighbor exploration for flexible path generation
 - Dynamic path segmentation for efficient coverage
 - Visit count tracking to ensure adequate passes for leveling
- The algorithm successfully generates efficient paths that ensure complete field coverage while automatically determining optimal number of passes for different terrain heights, representing a significant improvement over previous fixed-pattern approaches by reducing overall path length and optimizing leveling effectiveness.

Action Item 7: Work plan for next week - 1 hour(s).

Project Work Summary

- Grid Resolution Enhancement
 - Modify grid dimensions to match rover's effective plowing area:
 - Adjust grid size from current 25x25 to 12x12 based on the 5x5m field and 0.2m plow radius
 - Implement proper coordinate transformation between grid indices and actual field coordinates
- Plowing Pattern Optimization
 - Redesign rover's leveling effect simulation:
 - Replace circular plowing area with rectangular or square pattern matching grid cells
 - Implement complete coverage within each grid cell
 - Add overlap between adjacent cells to ensure uniform leveling
- Coverage Verification
 - Develop monitoring system to:
 - Track actual area leveled versus planned coverage
 - Verify leveling effectiveness at grid boundaries
 - Identify any gaps in coverage between grid cells

Action Item 8: Report Writing - 1 hour(s).

Project Work Summary

- Created word document layout to write contents of the weekly progress.
- Created relevant subsections in the epicspro website and documented 20 hours of weekly progress.
- Collected relevant documents research papers, relevant links and company's objective from their portal.

Follow us on:

Twitter | LinkedIn