

3. ALU y camino de datos

Contenidos

- ¿Qué es una A.L.U.?
- Registros
- Buses
- Estructura de una A.L.U.
- Operadores e indicadores
- Estructura del camino de datos basado en buses

¿Qué es una A.L.U.

- A.L.U. son las siglas de Unidad Lógica y Aritmética.
- Es la encargada de realizar las operaciones dentro de una CPU. Por ejemplo AND. XOR, Suma, Resta...
- Para recibir datos y devolver resultados necesita de dos elementos adicionales:
 - Registros: En los que se almacenan los datos a operar y el resultado obtenido
 - Buses: para recibir y enviar los datos antes indicados
- Es manejada por la Unidad de Control (T4)

- Circuito capaz de almacenar información binaria
- Está compuesto por biestables (1 biestable: 1 bit)
- Se caracteriza por:
 - Número de bits que es capaz de almacenar
 - Acceso de entrada/salida de la información
 - Paralelo: toma o muestra todos los bits al mismo tiempo
 - Serie: toma o muestra los bits uno a uno
 - Mixto: combina serie y paralelo.
 - Activación (trigger): Con qué estado del reloj se produce la captura de datos.
 - Nivel alto, nivel bajo (anticuado).
 - Flanco de subida, flanco de bajada.

Registro Paralelo

Almacena y muestra todos los bits a mismo tiempo

- Load
 ► Captura (activo en flanco de bajada)
- − D3-D0► Datos de entrada
- Q3-Q0 ► Datos de salida
- ClearBorrado. El dato es 0
- OE
 ► Control de triestado de salida

Registro Paralelo

Estructura interna

Registro Paralelo

Ejemplo de cronograma de funcionamiento

Registro Serie

Almacena y muestra uno a uno, los bits que componen

los datos

- − CLK▶ Reloj (activo a nivel bajo)
- − EDato de entrada
- − SDatos de salida
- Clear▶ Borrado. Contenido a 0
- OE► Control de triestado de salida

Registro Serie

Estructura interna

Registro Serie

Ejemplo de cronograma de funcionamiento

Funcionamiento de un solo registro paralelo

Banco de registros: conjunto de registros agrupados de manera que el (los) seleccionado(s) está(n) actuando en cada momento

Funcionamiento de un banco de registros

Bus

• Conjunto de líneas eléctricas, cuyo cometido es transportar información de un circuito a otro.

Existen diferentes tipos de buses

Bus

- **Bus unidireccional**: en el que los dispositivos tienen siempre la misma función de receptor o transmisor
- Bus bidireccional: en el que los dispositivos pueden cambiar su función de receptor o transmisor
- Bus serie: se transmite la información bit a bit
- Bus paralelo: La información se transmite en bloques de bits, un bit por cada línea física.
- Bus síncrono: transmite a la frecuencia de un reloj patrón.
- Bus asíncrono: no tiene reloj patrón

Bus – Transferencia de Registros

El computador normalmente utiliza buses compartidos y para ello es necesario que los dispositivos (registros) sean triestado.

- Las señales que se tienen al inicio la letra C, son de carga.
- Las señales que tienen al inicio la letra T, son de control de triestado

Ejemplo. Llevar un dato de R1 a Ri2

Ejemplo. Llevar un dato de R1 a Ri2

1- Selecciono R1

Ejemplo. Llevar un dato de R1 a Ri2

2- Abro el camino al bus compartido mediante TB

Ejemplo. Llevar un dato de R1 a Ri2

3- cargo el dato en Ri2 con flanco en carga

¿Cómo mostrar la secuencia de señales que hace falta para realizar cada operación: **Cronograma**

Ej2: Pasar el dato contenido en Ri1 (6Dh) al registro 4 del banco de registros

Estructura de una ALU

Su símbolo es el siguiente:

Estructura de una ALU

Estructura interna

Operadores

Clasificación:

- Monádicos: Opera un solo dato (NOT A)
- Diádicos: Opera dos datos (A+B)
- Lógicos (AND, NOR, ...)
- Aritméticos (Suma, resta, ...)
- Desplazadores (Lógicos, aritméticos, circulares, lineales ...)
- Otros (detectores de cero, paridad, desbordamiento ...)

Operadores lógicos

Lógicos: Ejemplo 4 bits

Sumador restador entero en complemento a 2

- ¿Qué sucede con los signos?
 - Restar un positivo equivale a sumar un negativo (y viceversa).
 - No hemos definido si las entradas tienen signo o no...
 - ...¡pero es indiferente para el diseño!
 (solamente afecta al cálculo de los bits de estado)
- ¿Y los desbordamientos?
 - La suma de dos números de signo opuesto (o la diferencia de dos números del mismo signo) nunca se desborda.
 - (El valor absoluto del resultado no puede superar el valor absoluto de ninguno de los sumandos. Ej. (+4) + (-3) = +1; (+7) (+8) = -1)
 - La suma de dos números del mismo signo (o la diferencia de números de signo opuesto) sí puede desbordarse.
 - (El valor absoluto de la suma es siempre mayor que el de ambos sumandos, ej. 8 + 9 = 17, 7 (-12) = +19.
 - Regla:Para operaciones con signo, V=1 Si el último y el penúltimo bit de acarreo el difieren.
 - (En operaciones sin signo el desbordamiento lo indica el bit C)

Sumador restador entero en complemento a 2

¿Qué sucede si sumamos/restamos números con signo?

Tenemos que tener en cuenta que podemos exceder el rango de representación: Ejemplo 4 bits

Sumador restador entero en complemento a 2 (num. negativos)

Sumador restador entero en complemento a 2 (num. negativos)

- Son los que se encargan de desplazar o rotar, las posiciones de los bits de los datos de entrada.
- Se generan por medio de multiplexores
- Si el desplazamiento es fijo, se utiliza propio multiplexor de selección de operación para implementarlos. Son considerados operadores monádicos.
- Si el número de bits es variable, es necesario un circuito adicional, también compuesto por multiplexores. Serían entonces operadores diádicos.

- Desplazadores lógicos (derecha e izquierda)
 - Sin bit de acarreo

A3 A2 A1 A0 0

Con bit de acarreo

Desplazadores lógicos (derecha e izquierda)

- Desplazamientos aritméticos (derecha e izquierda)
 - Se usa cuando el dato es un número en complemento a 2.
 - Hacia la derecha: se replica el bit de signo.
 - Hacia la izquierda: se rellena con ceros, y si se modifica el bit de signo en el proceso el indicador V se pone a 1.
 - El último bit que sale va al bit de acarreo

El desbordamiento indica que el signo no es el correcto

- Rotaciones (derecha e izquierda)
 - Sin bit de acarreo

Con bit de acarreo

Otros operadores

- Su ejecución solo afecta a los indicadores.
- Los más habituales son:
 - Detección de resultado nulo (cero)(Z)
 - Signo (N)
 - Acarreo aritmético o de desplazamiento (C)
 - Paridad del resultado (normalmente par) (P)
 - Desbordamiento: representación errónea del resultado (V)
 - Pérdida o falseamiento de signo
 - Necesidad más bits a la hora de representar un número
 - Relación de orden: mayor, menor o igualdad
- Normalmente se generan en operaciones aritméticas o por medio de circuitos especializados.

Otros operadores

- Indicador de cero: genera un 1 cuando el resultado es cero. Es una puerta NOR.
- Indicador de paridad par: genera un 1 cuando el resultado posee paridad par. Es un puerta XOR.

Otros operadores

- Acarreo: Se une directamente al acarreo del operador de suma-resta. También forma parte de varios tipos de desplazamiento.
- Signo: Se genera a partir del sumador-restador
- Desbordamiento: se genera en la etapa de sumaresta. Se corresponde a una puerta XOR que reúne el acarreo final con el de la penúltima etapa.
- Relaciones de orden: Se generan a partir de una resta que solo afecta a los indicadores de cero (Z) y acarreo (C).

Recapitulando...

Estructura interna de una ALU

Camino de datos basado en un bus

Camino de datos basado en un bus de datos único

Camino de datos basado en dos buses

Camino de datos basado en dos buses de datos.

