Exercícios: Método Delta e transformações estabilizadoras da variância

Disciplina: Inferência Estatística (MSc) Instrutor: Luiz Carvalho

Agosto/2022

Notação: Como convenção adotamos $\mathbb{R}=(-\infty,\infty),\ \mathbb{R}_+=(0,\infty)$ e $\mathbb{N}=\{1,2,\ldots\}$.

Motivação: Em muitas aplicações de inferência paramétrica estamos interessados em estimar quantidades de interesse $g(\theta)$ em vez do parâmetro θ diretamente. Quando vale um teorema central do limite para uma classe de estimadores $(\hat{\theta}_n)_{n\geq 1}$, é possível computar a distribuição assintótica de $g(\hat{\theta}_n)$, sujeito a algumas restrições em g. Ao conjunto de técnicas envolvidas neste procedimento chamamos $m\acute{e}todo$ Delta. Nesta lista veremos algumas aplicações do método Delta, em particular para encontrar as chamadas transformações estabilizadoras da variância.

Transformações estabilizadoras da variância

Suponha que $E_{\theta}[X] = \mu(\theta)$ é a nossa quantidade de interesse. Aplicando o teorema central do limite, temos

$$\sqrt{n} \left(\bar{X}_n - \mu \right) \xrightarrow{d} \text{Normal}(0, \sigma^2(\theta)).$$
 (1)

O problema é que $\sigma^2(\theta) = v(\mu)$ é função de μ , a quantidade que queremos estimar. Idealmente, gostaríamos que a distribuição-limite fosse independente de μ . Para tanto, queremos uma transformação $g: \mathcal{X} \to \mathbb{R}$ tal que

$$\sqrt{n} \left(g(\bar{X}_n) - g(\mu) \right) \xrightarrow{d} \text{Normal} \left(0, [g'(\mu)]^2 v(\mu) \right),$$
(2)

tenha variância constante com respeito a μ . Ou seja, queremos g tal que $g'(\mu)v(\mu)=a$ para todo μ . Se g cumpre estes requisitos, dizemos que é uma transformação estabilizadora da variância.

Dos livros-texto:

- a) KN, Ch8: 4a;
- b) CB, Ch5: 5.66.

Extra:

1. (Família exponecial) Suponha que X_1, X_2, \ldots, X_n é uma amostra aleatória de uma família dominada P_{θ} da família exponencial com um parâmetro, sob parametrização canônica, isto é, a densidade é

$$p_{\eta}(x) = h(x) \exp \left[\eta(\theta) T(x) - B(\theta) \right].$$

Seja $\hat{\eta}(\boldsymbol{X}_n)$ o estimador de máxima verossimilhança (EMV) de $\eta(\theta)$ sob este modelo.

(a) Encontre a distribuição assintótica de

$$\sqrt{n}\{\hat{\eta}(\boldsymbol{X}_n) - \eta\},\$$

e discuta se o EMV atinge a cota inferior de Cramér-Rao $\it assintoticamente.$

- (b) Considere estimar uma quantidade de interesse $g(\theta)$. Assumindo que g é contínua, diferenciável e com derivada diferente de zero, encontre um intervalo de confiança aproximado (assintótico) para $\lambda = g(\theta)$ com nível $1-\alpha, \ \alpha \in (0,1)$.
- 2. (**Binomial**) Seja X_1, X_2, \ldots, X_n uma amostra aleatória de uma distribuição binomial com número de tentativas $n \in \mathbb{N}$ conhecido e probabilidade de sucesso $\theta \in (0,1)$ desconhecida.
 - (a) Considere estimar $w_1(\theta) = \theta(1 \theta)$. Seja $\delta_1(\boldsymbol{X}_n)$ o EMV para w_1 . Encontre a distribuição assintótica de

$$\sqrt{n} \left\{ \delta_1(\boldsymbol{X}_n) - w_1(\theta) \right\}.$$

(b) O que acontece com a distribuição assintótica de $\delta_1(\boldsymbol{X}_n)$ quando $\theta=1/2$? Encontre sequências $(a_n)_{n\geq 1}$ e $(b_n)_{n\geq 1}$ tal que

$$a_n \left(\delta_1(\boldsymbol{X}_n) - b_n \right) \xrightarrow{d} X,$$

com X distribuído Bernoulli com parâmetro $\theta=1/2$. **Dica:** faça $Y_n=X_n-(n/2)$ e aplique o teorema central do limite a Y_n .

- (c) Mostre que $g(x) = \arcsin(\sqrt{x})$ é uma transformação estabilizadora da variância.
- 3. (Normal com variância desconhecida) Seja X_1, X_2, \ldots, X_n uma amostra aleatória de uma distribuição normal com média 0 e variância $\theta > 0$ desconhecida.
 - (a) Encontre $Var_{\theta}(\bar{X}_n)$;
 - (b) Mostre que uma transformação estabilizadora da variância neste caso é $g(x) = \log(x) + c, \ c \in \mathbb{R}.$