

Convolutional Neural Networks

Giving eyes to the machines!

Google

[Varun Kohli]

[Lead Strategist]
[Google]

Convolutional Neural Networks

The Evolution!

What are Convolutional Neural Networks?

Building blocks of Convolutional Neural Networks

Layers:

Convolutional Layers

Pooling Layers

Fully Connected Layers

Hyperparameters:

Kernel / Filters

Stride

Padding

Convolutional Layers

	2	1	3
*	1	2	5
	2	4	2

Filter size = 3×3

7 x 7

2x2 + 0x1 + 5x3 + 8x1 + 2x2 + 5x5 + 3x2 + 5x4 + 4x2 = 90

Convolutional Layers

hop 1 bolufinaolumn

\rightarrow	\rightarrow					
2	0	5	3	5	8	2
8	2	5	2	6	4	4
3	5	4	2	6	6	1
3	6	2	6	4	3	7
7	5	3	4	3	3	2
4	6	2	3	6	2	8
2	3	1	6	2	3	6

2	1	3
1	2	5
2	4	2

*

Filter size = 3×3

90	66	95	109	96
100	70	104	100	85
88	90	90	83	88
86	89	76	84	87
72	72	87	71	93

 5×5 Size of output = $[n-f+1] \times [n-f+1]$

$$5x2 + 3x1 + 5x3 + 5x1 + Code demonstration + 2x4 + 6x2 = 95$$

Convolutional Layers with multiple channels

2	0	5	3	5	8	2
8	2	5	2	6	4	4
3	5	4	2	6	6	1
3	6	2	6	4	3	7
7	5	3	4	3	3	2
4	6	2	3	6	2	8
2	3	1	6	2	3	6

	2	1	3	
*	1	2	5	=
	2	4	2	

Filter size = $3 \times 3 \times 3$

90	66	95	109	96
100	70	104	100	85
88	90	90	83	88
86	89	76	84	87
72	72	87	71	93

5 x 5 x 1

 $7 \times 7 \times 3$

Convolutional Layer with multiple filters

How do convolutions work?

Convolutional Layers

Silesian University of Technology, Faculty of Chemistry

Padding

0	0	0	0	0	0	0	0	0
0	2	0	5	3	5	8	2	0
0	8	2	5	2	6	4	4	0
0	3	5	4	2	6	6	1	0
0	3	6	2	6	4	3	7	0
0	7	5	3	4	3	3	2	0
0	4	6	2	3	6	2	8	0
0	2	3	1	6	2	3	6	0
0	0	0	0	0	0	0	0	0

9 x 9 padding = 1

	2	1	3	
*	1	2	5	
	2	4	2	

Filter size = 3×3

40	61	53	66	89	67	36
50	90	66	95	109	96	46
69	100	70	104	100	85	54
92	88	90	90	83	88	44
88	86	89	76	84	87	56
74	72	72	87	71	93	56
41	33	58	48	43	76	27

7 x 7

Size of output = $[n+2p-f+1] \times [n+2p-f+1]$

Code demonstration

Stride

hop 2 columns

hop 2 rows

2	0	5	3	5	8	2
8	2	5	2	6	4	4
3	5	4	2	6	6	1
3	6	2	6	4	3	7
7	5	3	4	3	3	2
4	6	2	3	6	2	8
2	3	1	6	2	3	6

*

2	1	3
1	2	5
2	4	2

Filter size = 3×3 Stride = 2 88 90 88 72 87 93

95

96

90

3 x 3

Size of output = $L(n+2p-f)/s +1 J \times L(n+2p-f)/s +1 J$

$$3 \times 2 + 5 \times 1 + 4 \times 3 + 3 \times 1 +$$
Code demonstration + $5 \times 4 + 3 \times 2 = 88$

Pooling Layers

Max Pooling

Average Pooling

2	0	5	3	5	8	2
8	2	5	2	6	4	4
3	5	4	2	6	6	1
3	6	2	6	4	3	7
7	5	3	4	3	3	2
4	6	2	3	6	2	8
2	3	1	6	2	3	6

_

Filter size = 3×3

Stride = 2

3.7	4.2	4.6
4.2	3.7	3.8
3.6	3.3	3.8

Code demonstration

Fully Connected Layers

LeNet

LeNet - 5

[LeCun et al., 1998. Gradient-based learning applied to document recognition]

LeNet - 5

[LeCun et al., 1998. Gradient-based learning applied to document recognition]

AlexNet

AlexNet

[Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks]

Network in Network

Network In Network

2	0	5	3
8	2	5	2
3	5	4	2
3	6	2	6

4	0	10	6
16	4	10	4
6	10	8	4
6	12	4	12

Network In Network

Network In Network

[Lin et al., 2013. Network in network]

Inception

[Szegedy et al., 2014. Going deeper with convolutions]

GoogLeNet

Inception Module

[Szegedy et al., 2014. Going deeper with convolutions]

GoogLeNet

Inception

Demo : Detecting Airplanes in images

Questions!

See you next time!

