

正基科技股份有限公司 SPECIFICATION

SPEC. NO.:		REV:	1.1	
DATE:	06.23.2014			
PRODUCT	NAME:	AP6251U		

	APPROVED	CHECKED	PREPARED	DCC ISSUE
NAME				

AMPAK

AP6251U

WiFi + GPS Module Spec Sheet

Revision History

Date	Revision Content	Revised By	Version
2014/04/08	2014/04/08 - Initial Released		1.0
2014/06/23	Modify pin 29,30,35Add Reference Design	Morris	1.1

Contents

Cc	ontents	2
1.	Introduction	3
2.	Features	4
3.	Deliverables	5
	3.1 Deliverables	5
	3.2 Regulatory certifications	5
4.	General Specification	6
	4.1 General Specification	6
	4.2 Voltages	6
	4.2.1 Absolute Maximum Ratings	6
	4.2.2 Recommended Operating Rating	6
5.	WiFi RF Specification	7
	5.1 2.4GHz RF Specification	7
6.	GPS Specification	9
	6.1 GPS Specification	9
7.	Pin Assignments	10
	7.1 Pin Outline	10
	7.2 Pin Definition	10
8.	Dimensions	12
	8.1 Physical Dimensions	12
	8.2 Layout Recommendation	13
9.	External clock reference	14
	9.1 SDIO Pin Description	14
10	.Host Interface Timing Diagram	15
	10.1 Power-up Sequence Timing Diagram	15
	10.2 SDIO Default Mode Timing Diagram	. 17
	10.3 SDIO High Speed Mode Timing Diagram	. 18
11	.Recommended Reflow Profile	19
12	. Package Information	20
	12.1Label	
	12.2Dimension	22
	12.3 MSL Level / Storage Condition	24

1. Introduction

AMPAK Technology would like to announce a low-cost and low-power consumption module which has all of the WiFi, and GPS functionalities. The highly integrated tiny module makes the possibilities of web browsing, VoIP, and portable navigation applications. With seamless roaming capabilities and advanced security, also could interact with different vendors' 802.11b/g/n Access Points in the wireless LAN.

The module complies with IEEE 802.11 b/g/n standard and it could achieve up to a speed of 72.2Mbps with single stream in 802.11n draft, 54Mbps as specified in 802.11g, or 11Mbps for 802.11b to connect to the wireless LAN. The integrated module provides SDIO interface for WiFi, UART for GPS. The GPS core host-based in the module splits processing functions between the GPS device and the CPU on the host system.

This compact module is a total solution for a combination of WiFi + GPS technologies. The module is specifically developed for Tablet, Smart phones and Portable devices.

2. Features

- 802.11b/g/n single-band radio
- WLAN host interface options:
 - SDIO v2.0x up to 50 MHz clock rate
- GPS able to track up to 24 satellites.
- Supports GPS depends on a passive antenna.

A simplified block diagram of the module is depicted in the figure below.

3. Deliverables

3.1 Deliverables

The following products and software will be part of the product.

- Module with packaging
- Evaluation Kits
- Software utility for integration, performance test.
- Product Datasheet.
- Agency certified pre-tested report with the adapter board.

3.2 Regulatory certifications

The product delivery is a pre-tested module, without the module level certification. For module approval, the platform's antennas are required for the certification.

4. General Specification

4.1 General Specification

Model Name	AP6251U
Product Description Support WiFi / GPS functionalities	
Dimension	L x W x H: 12.0 x 12.0 x 1.5 (typical)mm
WiFi Interface	SDIOV2.0
GPS Interface	UART
Operating temperature	-30°C to 85°C
Storage temperature	-40°C to 85°C
Humidity	Operating Humidity 10% to 95% Non-Condensing

4.2 Voltages

4.2.1 Absolute Maximum Ratings

Symbol	Description	Min.	Max.	Unit
VBAT	Input supply Voltage		6	V
WL_VIO	Voltage source for WiFi SDIO I/O Voltage	-0.5	3.6	٧

4.2.2 Recommended Operating Rating

The module requires two power supplies: VBAT and VDDIO(WL_VIO).

	Min.	Тур.	Max.	Unit
Operating Temperature	-30	25	85	deg.C
VBAT	3.0	3.6	4.8	V
WL_VIO	1.7	3.3	3.6	٧

5. WiFi RF Specification

5.1 2.4GHz RF Specification

Conditions: VBAT=3.6V; WL_VIO=3.3V; Temp:25°C

Feature	Description			
WLAN Standard	IEEE 802.11b/g/n, WiFi compliant			
FrequencyRange	2.400 GHz ~ 2.497 GHz (2.4 GHz ISM Band)			
Number of Channels	2.4GHz: Ch1 ~ Ch14			
Modulation	802.11b : DQPSK, DBPSK, CCK			
Modulation	802.11 g/n : OFDM /64-QAM,16-QAM, QPSK, BPSK			
	802.11b /11Mbps : $16dBm \pm 1.5 dB @ EVM \le -9dB$			
Output Power	802.11g /54Mbps : 15 dBm \pm 1.5 dB @ EVM \leq -25dB			
	802.11n/65Mbps : 14 dBm \pm 1.5 dB @ EVM \leq -28dB			
	- MCS=0 PER @ -85 dBm, typical			
	- MCS=1 PER @ -84 dBm, typical			
Doggiya Consitivity	- MCS=2 PER @ -82 dBm, typical			
Receive Sensitivity	- MCS=3 PER @ -80 dBm, typical			
(11n,20MHz) @10% PER	- MCS=4 PER @ -77 dBm, typical			
@10701 LIX	- MCS=5 PER @ -73dBm, typical			
	- MCS=6 PER @ -71dBm, typical			
	- MCS=7 PER @ -69dBm, typical			
	- 6Mbps PER @ -86 dBm, typical			
	- 9Mbps PER @ -85 dBm, typical			
	- 12Mbps PER @ -85 dBm, typical			
Receive Sensitivity (11g)	- 18Mbps PER @ -83 dBm, typical			
@10% PER	- 24Mbps PER @ -81 dBm, typical			
	- 36Mbps PER @ -78 dBm, typical			
	- 48Mbps PER @ -73 dBm, typical			
	- 54Mbps PER @ -72 dBm, typical			
	- 1Mbps PER @ -90 dBm, typical			
Receive Sensitivity (11b)	- 2Mbps PER @ -89 dBm, typical			
@8% PER	- 5.5Mbps PER @ -88dBm, typical			
	- 11Mbps PER @ -85dBm, typical			
Data Rate	802.11b : 1, 2, 5.5, 11Mbps			
Dala Nale	802.11g: 6, 9, 12, 18, 24, 36, 48,54Mbps			

Data Rate	802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65Mbps
(20MHz ,Long GI,800ns)	
Data Rate	802.11n: 7.2, 14.4, 21.7, 28.9, 43.3, 57.8, 65,72.2Mbps
(20MHz ,short GI,400ns)	
Maximum Input Loval	802.11b : -10 dBm
Maximum Input Level	802.11g/n : -20 dBm
Antenna Reference	Small antennas with 0~2 dBi peak gain

6. GPS Specification

6.1 GPS Specification

Conditions: VBAT=3.6V; WL VIO=3.3V; Temp:25°C

Feature	Description					
General Specification	General Specification					
Frequency Band	GPS: 1575.42 MHz					
Host Interface	HCI UART					
Number of satellites	24 satellites					
Antenna Gain	1.5~5 dBi					
Sensitivity	Cold Start -140dBm, Hot Start -150dBm, Tracking -155dBm					
Characteristics	Condition	Min	TYP	MAX	UNIT	
C/N	w/o LNA @ -130 dBm		36			
C/N	w/ external LNA @ -130 dBm		40			
Autonomous Cold Start	Average TTFF@ -130 dBm			50	s	
Autonomous Warm Start	Average TTFF@ -130 dBm			45	S	
Autonomous Hot Start	Average TTFF@ -130 dBm			3	S	

7. Pin Assignments

7.1 Pin Outline

7.2 Pin Definition

NO	Name	Туре	Description
1	GND	_	Ground connections
2	WL_ANT	I/O	RF I/O port
3	GND	_	Ground connections
4	NC	_	Floating (Don't connected to ground)
5	NC	_	Floating (Don't connected to ground)
6	NC	_	Floating (Don't connected to ground)
7	NC	_	Floating (Don't connected to ground)
8	NC	_	Floating (Don't connected to ground)
9	VBAT	Р	Main power voltage source input
10	NC	_	Floating (Don't connected to ground)
11	NC	_	Floating (Don't connected to ground)
12	WL_RST_N	I	Internal regulators power enable/disable
13	WL_HOST_WAKE	0	WLAN to wake-up HOST
14	SDIO_DATA_2	I/O	SDIO data line 2

	0510 5454 0	1.,,	0010 14 11 0
15	SDIO_DATA_3	I/O	SDIO data line 3
16	SDIO_DATA_CMD	I/O	SDIO command line
17	SDIO_DATA_CLK	I/O	SDIO CLK line
18	SDIO_DATA_0	I/O	SDIO data line 0
19	SDIO_DATA_1	I/O	SDIO data line 1
20	GND	_	Ground connections
21	VIN_LDO_OUT	Р	Internal Buck voltage generation pin
22	WL_VIO	Р	SDIO I/O Voltage support 1.8V or 3.3V
23	VIN_LDO	Р	Internal Buck voltage generation pin
24	LPO	I	External Low Power Clock input (32.768KHz)
25	NC	_	Floating (Don't connected to ground)
26	NC		Floating (Don't connected to ground)
27	NC		Floating (Don't connected to ground)
28	NC	_	Floating (Don't connected to ground)
29	VDD_TCXO	Р	External Power Supply (1.9V) for the TCXO driver
30	TCXO_IN	I	26MHz TCXO input
31	GND	_	Ground connections
32	GPS_RF	I	GPS RF input antenna port
33	GND	_	Ground connections
34	GPS_RST_N	I	Low asserting reset for Bluetooth core
35	VDD_LNA	_	Output Voltage 2.8V
36	GND	_	Ground connections
37	NC	_	Floating (Don't connected to ground)
38	NC	_	Floating (Don't connected to ground)
39	NC	_	Floating (Don't connected to ground)
40	NC	_	Floating (Don't connected to ground)
41	UART_RTS_N	0	GPS UART interface
42	UART_TXD	0	GPS UART interface
43	UART_RXD	I	GPS UART interface
44	UART_CTS_N	I	GPS UART interface
45	TP1 (NC)		Floating (Don't connected to ground)
46	TP2 (NC)		Floating (Don't connected to ground)
47	TP3 (NC)		Floating (Don't connected to ground)

8. Dimensions

8.1 Physical Dimensions

(Unit: mm)

< TOP VIEW >

< Side View >

< TOP VIEW >

8.2 Layout Recommendation

(Unit: mm)

<TOP VIEW >

9. External clock reference

External LPO signal characteristics

Parameter	Specification	Units
Nominal input frequency	32.768	kHz
Frequency accuracy	±30	ppm
Duty cycle	30 - 70	%
Input signal amplitude	400 to 1800	mV, p-p
Signal type	Square-wave	-
In part in an and an an	>100k	Ω
Input impedance	<5	pF
Clock jitter (integrated over 300Hz – 15KHz)	<1	Hz
Output high voltage	0.7Vio - Vio	V

External TCXO signal characteristics

Parameter	Specification	Units
Nominal input frequency	26	MHz
Signal type	Sine-wave	-
Input Voltage Swing	400-1900	mVp-p
Input Voltage	0-1800	mV
Input capacitance	6(max)	pF
Input Low	0-0.1VDD	V
Input High	0.9VDD-VDD	V
Duty cycle	40 - 60	%
Frequency Tolerance(initial accuracy)	± 2	ppm
Frequency Stability	± 0.5	ppm
Aging	±1	Ppm/year
Phase Noise(26Mhz@1KHz carrier offset)	-130(max)	dBc/Hz

9.1 SDIO Pin Description

The module supports SDIO version 2.0 for 4-bit modes It has the ability to stop the SDIO clock and map the interrupt signal into a GPIO pin. This 'out-of-band' interrupt signal notifies the host when the WLAN device wants to turn on the SDIO interface. The ability to force the control of the gated clocks from within the WLAN chip is also provided.

- Function 0 Standard SDIO function (Max BlockSize / ByteCount = 32B)
- Function1 Backplane Function to access the internal System On Chip (SOC) address space(Max BlockSize / ByteCount = 64B)
- Function 2 WLAN Function for efficient WLAN packet transfer through DMA (Max BlockSize/ByteCount=512B)

**

SDIO Pin Description

	SDIO 4-Bit Mode
DATA0	Data Line 0
DATA1	Data Line 1 or Interrupt
DATA2	Data Line 2 or Read Wait
DATA3	Data Line 3
CLK	Clock
CMD	Command Line

10. Host Interface Timing Diagram

10.1 Power-up Sequence Timing Diagram

The module has two signals that allow the host to control power consumption by enabling or disabling the GPS, WLAN and internal regulator blocks. These signals are described below. Additionally, diagrams are provided to indicate proper sequencing of the signals for carious operating states. The timing value indicated are minimum required values: longer delays are also acceptable.

Note that the WL_REG_ON and GPS_RST_ON are in the module. The diagrams show both signals going high at the same time (as would be the case if both REG signals were controlled by a single host GPIO). If two independent host GPIOs are used (on for WL_REG_ON and one for GPS_RST_ON), then only one of the two signals needs to be high to enable the internal regulators.

- WL_REG_ON: Used by the PMU to power up the WLAN section. It is input to control the internal WLAN regulators. When this pin is high, the regulators are enabled and the WLAN section is out of reset. When this pin is low the WLAN section is in reset.
- GPS_RST_ON: Used by the PMU to power up the internal GPS regulators. If the
 GPS_RST_ON pins are low, the regulators are disabled.

WLAN=ON, GPS =ON

WLAN=OFF, GPS =OFF

WLAN=ON, GPS=OFF

WLAN=OFF, GPS=ON

10.2 SDIO Default Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit
SDIO CLK (All values are refferred to mini	mum VIH an	d maximum VI	L ^b)		
Frequency-Data Transfer mode	fPP	0	-	25	MHz
Frequency-Identification mode	fOD	0	-	400	kHz
Clock low time	tWL	10	-	-	ns
Clock high time	tWH	10	-	-	ns
Clock rise time	tTLH	-	-	10	ns
Clock low time	tTHL	-	-	10	ns
Inputs: CMD, DAT (referenced to CLK)					
Input setup time	tISU	5	-	-	ns
Input hold time	tIH	5	-	-	ns
Outputs: CMD, DAT (referenced to CLK)					
Output delay time - Data Transfer mode	tODLY	0	-	14	ns
Output delay time - Identification mode	tODLY	0	-	50	ns

a. Timing is based on CL ≤ 40pF load on CMD and Data.

b. min(Vih) = 0.7 x VDDIO and max(ViI) = 0.2 x VDDIO.

10.3 SDIO High Speed Mode Timing Diagram

Parameter	Symbol	Minimum	Typical	Maximum	Unit
SDIO CLK (All values are refferred to min	imum VIH an	d maximum VI	L ^b)		
Frequency-Data Transfer mode	fPP	0	-	50	MHz
Frequency-Identification mode	fOD	0	-	400	kHz
Clock low time	tWL	7	-	-	ns
Clock high time	tWH	7	-	-	ns
Clock rise time	tTLH	-	-	3	ns
Clock low time	tTHL	-	-	3	ns
Inputs: CMD, DAT (referenced to CLK)					
Input setup time	tISU	6	-	-	ns
Input hold time	tlH	2	-	-	ns
Outputs: CMD, DAT (referenced to CLK)					
Output delay time - Data Transfer mode	tODLY	-	-	14	ns
Output hold time	tOH	2.5	-	-	ns
Total system capacitance (each line)	CL	-	-	40	pF

a. Timing is based on CL ≤ 40pF load on CMD and Data.

b. min(Vih) = 0.7 x VDDIO and max(Vil) = 0.2 x VDDIO.

11. Recommended Reflow Profile

Referred to IPC/JEDEC standard.

Peak Temperature : <250°C Number of Times : ≤2 times

12. AP6251U Reference Design

13. Package Information

13.1Label

Label A→ Anti-static and humidity notice

Label B→ MSL caution / Storage Condition

Label C→ Inner box label.

Label D→ Carton box label .

13.2Dimension

- 1. 10 sprocket hole pitch cumulative tolerance ± 0.20 .
- 2. Carrier camber is within 1 mm in 250 mm.
- 3. Material: Black Conductive Polystyrene Alloy.
- 4. All dimensions meet EIA-481-D requirements.
- 5. Thickness: 0.30±0.05mm.
- 6. Packing length per 22" reel: 98.5 Meters.(1:3)
- 7. Component load per 13" reel: 1500 pcs.

13.3 MSL Level / Storage Condition

LEVEL
Caution 4
This bag contains 4
MOISTURE-SENSITIVE DEVICES
Do not open except under controlled conditions
1. Calculated shelf life in sealed bag: 12 months at< 40℃ and
< 90% relative humidity(RH)
225℃ 240℃ 250℃ 260℃
2. Peak package body temperature:
 After bag is opened, devices that will be subjected to reflow solder or other high temperature process must a) Mounted within: 48 hours of factory conditions <30°C/60% RH, OR b) Stored at <10% RH
 Devices require bake, before mounting, if: a)Humidity Indicator Card is>10%when read at 23±5℃ b)3a or 3b not met
5. If baking is required, devices may be baked for 24 hours at 125±5°C
Note: If device containers cannot be subjected to high temperature or shorter bake times are desired, reference IPC/JEDEC J-STD-033 for bake procedure
Bag Seal Date: See-SEAL DATELABEL
Note:Level and body temperature defined by IPC/JEDED J-STD-020

※NOTE: Accumulated baking time should not exceed 96hrs