



# Letter Sequence Labeling for Compound Splitting

Jianqiang Ma, Verena Henrich and Erhard Hinrichs University of Tübingen, SFB 833 & Department of Linguistics

# Compound Splitting

#### **Task**

Input: Ortsname 'place name'

Output: Ort Name

- compounds are written as contiguous strings without word delimiters in many languages
- treating each compound as a unique word would dramatically increase the vocabulary size
- impact: identifying compounds and their constituents can benefit NLP tasks such as machine translation

### Frequency-based approach

- idea: the splitting hypothesis that has the highest geometric mean of frequencies of constituent words is the best splitting (Koehn and Knight, 2003)
- many state-of-the-art splitters for German (Popović et al., 2006; Weller and Heid, 2012) are based on it
- limitation: high frequency does *not* guarantee correct splitting; relying on other NLP tools for better results

# Proposed Method

#### Motivation

- learning to make splitting decisions
- exploiting rich word form features such as *-ung* (a German suffix) implicitly as letter ngrams
- avoiding dependencies on external morphological analyzer and/or POS tagger as in current methods

## Letter Sequence Labeling

- splitting outputs are encoded as string sequences with white spaces added between constituent words
  e.g. Ortsname → Orts name
- compound splitting is formulated as *labeling* each letter in terms of its positional role within words

Input: Ortsname Label: BMMEBMME

- label set: {Begin, Middle, End, Singleton}
- model: linear chain conditional random fields (CRF, Lafferty et al., 2001)
- **features**: functions describing letter ngrams in the input and the label for the current/previous letter

## Experiments

### Compiling the GermaNet dataset

- extraction of 51,667 unique **compounds** from GermaNet 9.0 (Henrich and Hinrichs, 2011); each compound has up to 5 constituents (avg. 2.1)
- sampling of 31,076 unique **non-compounds** from the rest words in the GermaNet with the constraint that the word length is no more than 10 letters
- the total set consists of 82,743 words

### **Experiments with GermaNet dataset**

• disjoint training/development/test sets (7:1:2)

#### Results of our method with different features

| model           | precision | recall | accuracy |
|-----------------|-----------|--------|----------|
| uni- & bi-grams | 0.873     | 0.833  | 0.857    |
| + trigrams      | 0.937     | 0.920  | 0.925    |
| + 4-grams       | 0.952     | 0.940  | 0.942    |
| + 5-grams       | 0.955     | 0.941  | 0.943    |

### **Experiments with PE dataset**

- the PE dataset: 342 compound tokens and 3,009 non-compounds from Parra Escartín (2014); each compound has 2-5 constituents (avg. 2.3)
- training with the GermaNet data except those words appearing in PE data; testing on PE data

#### Comparison with the state-of-the-art

| model                  | precision | recall | accuracy |
|------------------------|-----------|--------|----------|
| Popović et al. (2006)* | 0.961     | 0.752  | 0.972    |
| Weller & Heid (2012)*  | 0.992     | 0.757  | 0.975    |
| this work              | 0.855     | 0.930  | 0.980    |

<sup>\*</sup> Results are from Parra Escartín (2014)

#### Error analysis of the precision score

- half of the "non-compounds" that our model "wrongly" splits *are* adjective/verbal compounds
- the rest of true *wrong split* errors can be reduced by using higher quality training cases of non-compound

### Conclusion

- letter sequence labeling can split compounds accurately without using external NLP modules
- letter ngrams can capture morpho/orthographic regularities without manually encoding knowledge