Métodos Numéricos

Colectânea de problemas resolvidos para Engenharia Informática

Índice

1	Teoria dos erros	1
2	Equações não lineares	6
3	Interpolação polinomial	22
4	Sistemas de equações lineares	32
5	Sistemas de equações não lineares	40
6	Aproximação	51
7	Integração numérica	62
8	Equações diferenciais ordinárias	71

Índice de figuras

1	Teorema de Taylor	4
2	Separação de raizes, gráficos das funções $y=x$ e $y=4\cos x$.	7
3	Separação de raizes, gráficos das funções $y = \ln x$ e $y = \frac{2}{x}$	11
4	Separação de raizes, gráficos das funções $y = x$ e $y = \frac{2}{3}\sin x + \frac{1}{2}$	13
5	Método de Newton, gráfico de $\frac{1}{x} = \tan x$	15
6	Interpolação: gráfico de $P_3(x)$	23
7	Gráficos de $y = \cos(\pi x)$ e do polinómio $P_3(x)$ em $[0;1]$	25
8	Método das aproximações sucessivas, $f_1(x,y) = 0$ e $f_2(x,y) = 0$	41
9	Gráficos das funções $f_1(x,y) = 0$ e $f_2(x,y) = 0$	44
10	Método de Newton, $f_1(x,y) = 0$ e $f_2(x,y) = 0$	47
11	Aproximação de um conjunto de pontos por uma linha recta .	52
12	Aproximação de um conjunto de pontos por um polinómio do	
	terceiro grau	54
13	Linearização para uma função $y = Ce^{Ax}$	58
14	Aproximação de $f(x) = \frac{x^3}{2}$ por uma linha recta	60
15	Cálculo do integral $I = \int_{-\frac{3}{2}}^{\frac{3}{2}} \sqrt{e^x} dx$	64
16	Método de Taylor de segunda ordem para $y' = \frac{y}{2} + x$	75

1 Teoria dos erros

Exercícios resolvidos

Exemplo 1.1 Calcular com a precisão possível, admitindo que todos os dados são precisos, relativamente aos dígitos que os compõem, as seguintes expressões:

- a) 2.15 1.39 + 2.67
- b) 1.97×2.75

Resolução

Para a resolução deste exemplo podem utilizar-se dois métodos de cálculo. O primeiro consiste na utilização dos conceitos de erro absoluto e erro relativo.

Com base nesses conceitos o resultado para a) é 3.43 ± 0.015 uma vez que o erro absoluto máximo é 0.005 + 0.005 + 0.005 = 0.015. Pode-se assim concluir que o resultado será 3.4, com 2 dígitos significativos (2**S**) e que estará certamente entre 3.415 e 3.445.

Quanto a b) o produto 5.445 deve obedecer ao erro relativo máximo:

$$\frac{0.005}{1.97} + \frac{0.005}{2.75} + \frac{0.005}{1.97} \times \frac{0.005}{2.75} \cong \left(\frac{1}{1.97} + \frac{1}{2.75}\right) \times 0.005$$

Portanto o erro absoluto máximo será $\equiv 0.004 \times 5.418 \cong 0.02$ sendo a resposta correcta 5.4.

O segundo método referido é utilizar uma aritmética com intervalos.

Neste caso o número aproximado 2.15 representa um número que se situa no intervalo [2.145, 2.155] e o mesmo para os restantes. Assim o resultado para a) fica situado no intervalo limitado inferiormente por

$$2.145 - 1.395 + 2.665 = 3.415$$

e superiormente por

$$2.155 - 1.385 + 2.675 = 3.445$$

Identicamente para b), o resultado situa-se no intervalo limitado inferiormente por

$$1.965 \times 2.745 \cong 5.39$$

e superiormente por

$$1.975 \times 2.755 \cong 5.44$$

Conclui-se então que os resultados aproximados correctos de a) e b) são 3.4 e 5.4.

Exemplo 1.2 Através da Série de Taylor determine um polinómio de Taylor de grau n para a função $f(x) = \ln x$ no ponto $x_0 = 1$. Determine também o resto respectivo associado.

 $Utilize~o~resultado~obtido~para~calcular~o~valor~aproximado~de~\ln 1.2~e~compare~com~o~valor~exacto.$

Resolução

Para a função $f(x) = \ln x$ obtem-se sucessivamente,

$$f'(x) = \frac{1}{x}$$
, $f''(x) = -\frac{1}{x^2}$, $f'''(x) = \frac{2}{x^3}$, $f^{(iv)}(x) = -\frac{6}{x^4}$, etc.

ou, em geral,

$$f^{(n)}(x) = (-1)^{(n-1)} \frac{(n-1)!}{x^n}$$

Para $x_0 = 1$ tem-se,

$$f(x_0) = 0$$
, $f'(x_0) = 1$, $f''(x_0) = -1$, $f'''(x_0) = 2$, $f^{(iv)}(x) = -6$, $f^{(v)}(x) = 24$ etc.

ou, em geral,

$$f^{(n)}(x_0) = (-1)^{n-1}(n-1)!$$

Assim, $\ln x = P_x + R_{n+1}(x)$, com

$$P_n(x) = (x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \dots + \frac{(x-1)^{n-1}}{n}$$

$$R_{n+1}(x) = (-1)^n \frac{(x-1)^{n+1}}{n+1} \frac{1}{\eta^{n+1}}$$

para qualquer η entre 1 e x, Figura 1.

Pode-se agora utilizar o polinómio de Taylor anterior para calcular o valor aproximado de ln 1.2.

Considerando 5 termos na série, isto é, para n=5, e fazendo x=1.2, obtem-se

$$\ln 1.2 = 0.2 - \frac{0.2^2}{2} + \frac{0.2^3}{3} - \frac{0.2^4}{4} + \frac{0.2^5}{5} - \frac{0.2^6}{6} \frac{1}{\eta^6}$$
$$= 0.1823306667 - \frac{0.2^6}{6} \frac{1}{\eta^6} = \frac{1.0666667 \times 10^{-5}}{\eta^6}$$

Figura 1: Teorema de Taylor

para qualquer η entre 1 e 1.2.

É evidente que,

$$\frac{1.0666667 \times 10^{-5}}{\eta^6} \le 1.0666667 \times 10^{-5}$$

Pode-se assim considerar 0.1823306667 como uma aproximação a l
n1.2com um erro inferior a $1.0666667\times 10^{-5}.$

O valor exacto de l
n1.2é0.1823215568do que resulta que a diferença entre o valor exacto e a aproximação obtida será de

$$|0.1823215568 - 0.1823306667| \cong 9.11 \times 10^{-6}$$

valor consistente com o limite do erro obtido.

Exemplo 1.3 Determinar o número de condição das seguintes funções:

a)

$$f(x) = \frac{x^2}{2}$$

b)

$$f(x) = \frac{1}{2 - x}$$

Resolução

a) Sendo a função, $f(x) = \frac{x^2}{2}$,

$$f'(x) = x$$

O seu número de condição será

$$\left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{x \cdot x}{\frac{x^2}{2}} \right| = 2$$

Obtem-se um valor constante e igual a 2.

b) Para a função, $f(x) = \frac{1}{2-x}$,

$$f'(x) = \frac{1}{(2-x)^2}$$

е

$$\left| \frac{xf'(x)}{f(x)} \right| = \left| \frac{\frac{x}{(2-x)^2}}{\frac{1}{2-x}} \right| = \left| \frac{1}{2-x} \right|$$

valor que pode ser muito elevado para x próximo de 2.

A função é assim mal condicionada para $x\simeq 2.$

2 Equações não lineares

Exercícios resolvidos

Exemplo 2.1 Calcule a raiz da equação seguinte, que existe no intervalo [1, 2] pelos método da falsa posição (Régula Falsi) ou das partes proporcionais.

$$2\cos x - \frac{x}{2} = 0$$

Faça uma estimativa do valor do erro da aproximação obtida.

Resolução

Considerando $a_0 = 1$ e $b_0 = 2$, tem-se f(0) = 0.581 e f(2) = -1.832 existindo portanto uma raiz no intervalo [1, 2].

Note-se que esta raiz não é única. Para o verificar uma estratégia possível é a construção do gráfico da função ou, dos gráficos da sua decomposição em duas funções mais simples, com gráficos conhecidos num referencial X0Y.

Como a função f(x) se pode escrever na forma $2\cos x = \frac{x}{2}$, pode decomporse a função f(x) em duas partes y = x e $y = 4\cos x$ cujos gráficos, num referencial X0Y, se desenham na figura 2 e verificar então os pontos de intersecção das duas curvas, que são as raizes da equação dada.

Aplicando a fórmula correspondente ao método pretendido, obtem-se,

$$c_0 = 2 - (-1.832) \times \frac{(2-1)}{-1.832 - 0.581} = 1.241$$

e $f(c_0) = f(1.241) = 0.027$ de que resulta $f(c_0)f(b_0) < 0$, estando a raiz localizada no intervalo [1.241, 2].

Figura 2: Separação de raizes, gráficos das funções y = x e $y = 4\cos x$

Assim $a_1 = c_0$ e $b_1 = b_0$ obtendo-se a nova aproximação

$$c_1 = 2 + 1.832 \times \frac{(2 - 1.241)}{-1.832 - 0.027} = 1.252$$

e $f(c_1)=f(1.252)=0.001$. Como $f(c_1)f(b_1)<0$ a raiz estará contida no intervalo [1.252;2] e portanto $a_2=c_1$ e $b_2=b_1$.

Calculando uma nova aproximação

$$c_2 = 2 + 1.832 \times \frac{(2 - 1.252)}{-1.832 - 0.001} = 1.252$$

Obtem-se um resultado idêntico ao da iteração anterior.

Nestas condições, estando o processo iterativo estabilizado, calcula-se o valor de f(1.253) = -0.001, o que permite concluir que a raiz procurada se encontra no intervalo [1.252; 1.253]

A tabela seguinte apresenta uma síntese dos resultados.

i	a_i	b_i	c_i	$f(c_i)$
0	1	2	1.241	0.027
1	1.241	2	1.252	0.001
2	1.252	2	1.252	0.001

Como se verificou que f(1.252) = 0.001 > 0 e f(1.253) = -0.001 < 0, a raiz procurada $\eta \in [1.252, 1.253]$

Sendo $f(x)=2\cos x-\frac{x}{2}$ a sua derivada será $f'(x)=-2\sin x-\frac{1}{2}$ e portanto:

$$|f'(x)| = \left| -2\sin x - \frac{1}{2} \right|$$

No intervalo [1.252, 1.253] a função |f'(x)| é crescente e assim,

$$K = \min_{1.252 \le x \le 1.253} |f'(x)| = |f'(1.252)| = 2.399$$

Nestes termos o erro da aproximação obtida será,

$$|\eta - \bar{x}| \le \frac{|f(\bar{x})|}{K} = \frac{|f(1.252)|}{2.399} = \frac{0.001}{2.399} \cong 4 \times 10^{-4}$$

Exemplo 2.2 Separe em intervalos de uma unidade as raizes da equação:

$$f(x) = 2x^3 - 7x + 2.5 = 0$$

Calcule a maior das raizes dessa equação pelo método da secante.

Resolução

Construa-se a tabela de valores da função $f(x) = 2x^3 - 7x + 2.5$ seguinte,

X	f(x)
2	4.5
1	-2.5
0	2.5
-1	7.5
-2	0.5
-3	-30.5

Pode-se então verificar que existem raizes reais da equação nos intervalos [-3,-2], [0,1] e [1,2], sendo esta última a raiz que se pretende calcular pelo método da secante.

Considerando os dois pontos extremos do intervalo [1, 2] em que existe a raiz procurada, verifica-se que $f(x_0) = f(1) = -2.5$ e $f(x_1) = f(2) = 4.5$.

Aplicando agora a fórmula relativa ao método da secante tem-se sucessivamente,

$$x_2 = x_1 - f(x_1) \times \frac{x_1 - x_0}{f(x_1) - f(x_0)} = 2 - 4.5 \frac{1}{4.5 + 2.5} = 1.357$$

e f(1.357) = -2.001,

$$x_3 = 1.357 - (-2.001) \frac{1.357 - 2}{-2.001 - 4.5} = 1.555$$
 $f(1.555) = -0.865$

$$x_4 = 1.555 - (-0.865) \frac{1.555 - 1.357}{-0.865 - (-2.001)} = 1.706$$
 $f(1.706) = 0.488$

$$x_5 = 1.706 - 0.488 \frac{1.706 - 1.555}{0.488 - (-0.865)} = 1.652$$
 $f(1.555) = -0.047$

$$x_6 = 1.652 - (-0.047) \frac{1.652 - 1.706}{-0.047 - 0.488} = 1.657$$
 $f(1.657) = 8 \times 10^{-5}$

Atendendo ao valor da função em 1.657, f(1.657) = 0.00008 pode-se aceitar este valor como a raiz procurada tendo em atenção o número de casas decimais com que se trabalhou.

O processo iterativo sintetiza-se na tabela seguinte,

i	x_i	$f(x_i)$
0	1	-2.5
1	2	4.5
2	1.357	-2.001
3	1.555	-0.856
4	1.706	0.488
5	1.652	-0.047
6	1.657	8×10^{-5}

Exemplo 2.3 Determine uma aproximação da raiz da equação não linear seguinte:

$$\frac{1}{2}\ln x = \frac{1}{x}$$

Resolução

Uma outra forma de escrever a equação dada é,

$$f(x) = \frac{1}{2}\ln x - \frac{1}{x} = 0$$

e tal como em exemplos anteriores a pesquisa da raiz desta equação não linear f(x) = 0 pode fazer-se através da construção dos gráficos da sua decomposição

em duas funções mais simples, com gráficos conhecidos num referencial X0Y e que neste caso são, $y = \ln x$ e $y = \frac{2}{x}$.

Obtem-se assim a figura 3 que permite determinar de modo aproximado o o ponto de intersecção das duas curvas.

Figura 3: Separação de raizes, gráficos das funções $y=\ln x$ e $y=\frac{2}{x}$

Da figura 3 pode verificar-se que ponto de intersecção do gráfico das duas funções é aproximadamente $x\cong 2.$

Não se indicando qual o método a utilizar para o cálculo aproximado da raiz vai utilizar-se o método de Newton, que pelas suas propriedades deverá conduzir a uma convergência rápida e para o qual se pode tomar como aproximação inicial o valor de $x_0 = 2$.

Sendo,

$$f(x) = \frac{1}{2} \ln x - \frac{1}{x} = 0$$

obtem-se,

$$f'(x) = \frac{1}{2x} + \frac{1}{x^2}$$

Aplicando então a fórmula do método de Newton à equação que se pretende resolver, tem-se

$$x_{i+1} = x_i - \frac{\frac{1}{2} \ln x_i - \frac{1}{x_i}}{\frac{1}{2x_i} + \frac{1}{x_i^2}}$$

Começando o processo iterativo com i = 0 e $x_0 = 2$ obtem-se a seguinte tabela de valores, em que se utilizaram 3 casas decimais.

i	x_i
0	2
1	2.307
2	2.345
3	2.346
3	2.346

A raiz procurada é portanto 2.346 e, pode verificar-se a rapidez de convergência do processo iterativo, uma vez que com três iteracões se obtem a raiz com três casas decimais de precisão.

Exemplo 2.4 Determine, pelo método de Newton, a raiz da equação seguinte:

$$f(x) = \frac{2}{3}\sin x - x + \frac{1}{2} = 0$$

Resolução

Como já se viu no Exemplo 2.1, uma estratégia a considerar na pesquisa das raizes de uma equação não linear f(x) = 0 é a construção do gráfico da

função ou, dos gráficos da sua decomposição em duas funções mais simples, com gráficos conhecidos num referencial X0Y.

Neste exemplo pode decompor-se a função f(x) em duas partes y=x e $y=\frac{2}{3}\sin x+\frac{1}{2}$ cujos gráficos, num referencial X0Y, se desenham na figura 4 e determinar então de modo aproximado o ponto de intersecção das duas curvas.

Figura 4: Separação de raizes, gráficos das funções y=x e $y=\frac{2}{3}\sin x+\frac{1}{2}$

Da figura 4 pode verificar-se que ponto de intersecção do gráfico das duas funções é aproximadamente $x\cong 2$, pelo que se pode tomar como aproximação inicial para o método de Newton $x_0=2$

Aplicando então a fórmula do método de Newton à equação que se pretende resolver, tem-se

$$x_{i+1} = x_i - \frac{\frac{2}{3}\sin x_i - x_i + \frac{1}{2}}{\frac{2}{3}\cos x_i - 1}$$

Começando o processo iterativo com i=0 obtem-se a seguinte tabela de valores, em que se utilizaram 3 casas decimais.

i	x_1
0	2
1	1.916
2	1.913
3	1.913

A raiz procurada é portanto 1.913 e, verifique-se a rapidez de convergência do processo iterativo.

Exemplo 2.5 Calcule, pelo método de Newton, a raiz positiva mínima da equação seguinte com 4 algarismos decimais de precisão.

$$f(x) = \frac{1}{x} - \tan x = 0$$

Resolução

Começa-se por decompor a função dada f(x) em duas partes $y=\frac{1}{x}$ e $y=\tan x$ cujos gráficos, num referencial X0Y, se desenham na figura 5 e, determina-se de modo aproximado o ponto de intersecção das duas curvas dos respectivos gráficos.

Da figura 5 pode concluir-se que uma aproximação inicial pode ser $x_0=1$ Sendo,

$$\tan x = \frac{\sin x}{\cos x}$$

a equação dada pode escrever-se $f(x) = \cos x - x \sin x = 0$ e a derivada da função f(x) é,

Figura 5: Método de Newton, gráfico de $\frac{1}{x} = \tan x$

$$f'(x) = -2\sin x - x\cos x$$

Assim,

$$x_{i+1} = x_i - \frac{\cos x_i - x_i \sin x_i}{-2\sin x_i - x_i \cos x_i}$$

Considerando a aproximação inicial $x_0=1$ obtem-se a seguinte tabela de valores, pela aplicação do método de Newton,

i	x_i	$x_{i+1} - x_i$
0	1	-0.1260
1	0.8740	-0.0136
2	0.8604	-0.0001
3	0.8603	0.0000
4	0.8603	-

Pode assim admitir-se como valor aproximado da raiz procurada, com 4 casas decimais, $\bar{x} = 0.8603$.

Para o confirmar, o erro desta aproximação pode ser calculado de um modo mais preciso. Sendo o valor de f(0.8603) = 0.0001 > 0 e de f(0.8604) = -0.0002 < 0 verifica-se que $\bar{x} \in [0.8603; 0.8604]$ e como nesse intervalo |f'(x)| é crescente e ter-se-á:

$$K = \min_{0.8603 \le x \le 0.8604} |f'(x)| = |f'(0.8603)| = 2.0772$$

Assim,

$$|\eta - \bar{x}| \le \frac{|f(\bar{x})|}{2.0772} \le 4.8 \times 10^{-5}$$

Exemplo 2.6 Determine o número de raizes reais positivas e o número de raizes reais negativas da equação:

$$f(x) = 2x^3 - 7x^2 + 3.5 = 0$$

Separe em intervalos de uma unidade as raizes dessa equação.

Calcule a maior das raizes dessa equação pelo método das aproximações sucessivas ou do ponto fixo.

Resolução

Aplicando a regra de Descartes tem-se a seguinte sucessão de coeficientes não nulos para o polinómio $P_3(x)$.

$$\{2, -7, 3.5\}$$

Nestas condições o número de variações de sinal é $V_+=2$ pelo que o número de raizes reais positivas será de 2 ou 0 (2-2=0).

Para as raizes reais negativos aplica-se a mesma regra de Descartes ao polinómio $P_n(-x)$. Tem-se então,

$$P_3(-x) = 2(-x)^3 - 7(-x)^2 + 3.5 = 0$$
 $P_3(-x) = -2x^3 - 7x^2 + 3.5 = 0$

Daqui resulta a sucessão de coeficientes não nulos,

$$\{-2, -7, 3.5\}$$

O número de variações de sinal é agora $V_{-}=1$ pelo que o número de raizes reais negativas será de 1.

Construa-se a tabela de valores da função $f(x) = 2x^3 - 7x^2 + 3.5$ seguinte,

X	f(x)
4	19.5
3	-5.5
2	-8.5
1	-1.5
0	3.5
-1	-5.5
-2	-40.5

Pode-se verificar que existem raizes reais da equação nos intervalos [-1,0], [0,1] e [3,4], o que confirma os resultados obtidos pela regra de Descartes. É esta última a raiz que se pretende calcular pelo método das aproximações sucessivas.

Tem então que se escrever a equação dada na forma x = g(x).

Numa primeira tentativa opta-se por escrever:

$$7x^2 = 2x^3 + 3.5$$
 $x^2 = \frac{2x^3 + 3.5}{7}$ $x = \sqrt{\frac{2x^3 + 3.5}{7}} = g(x)$

Calcule-se a derivada de g(x).

$$g'(x) = \frac{1}{2} \left(\frac{2x^3 + 3.5}{7} \right)^{-1/2} \frac{6x^2}{7} = \frac{3x^2}{7} \frac{1}{\sqrt{\frac{2x^3 + 3.5}{7}}}$$

Pode verificar-se que para qualquer $x \in [3,4]$ se tem |g'(x)| > 1 não se verificando portanto convergência do método das aproximações sucessivas.

Tem então que se tentar escrever a equação dada de outro modo, na forma x = g(x).

$$x^{3} = \frac{7x^{2} - 3.5}{2}$$
 $x = \sqrt[3]{\frac{7x^{2} - 3.5}{2}} = g(x)$

Ou,

$$x = g(x) = \left(\frac{7x^2 - 3.5}{2}\right)^{1/3}$$

A respectiva derivada g'(x) é:

$$g'(x) = \frac{7x}{3} \frac{1}{\sqrt[3]{\left(\frac{7x^2 - 3.5}{2}\right)^2}}$$

Pode agora verificar-se que para qualquer $x \in [3, 4]$ se tem |g'(x)| < 1. Por exemplo para x = 3.5, tem-se |g'(x)| = 0.685.

Assim, a expressão a aplicar para o cálculo da raiz pelo método das aproximações sucessivas será,

$$x_{i+1} = \sqrt[3]{\frac{7x_i^2 - 3.5}{2}}$$

Utilizando como aproximação inicial o ponto médio do intervalo [3, 4], isto é $x_0 = 3.5$, obtem-se a seguinte tabela de valores,

i	x_i
0	3.5
1	3.452
2	3.419
3	3.396
4	3.380
5	3.369
6	3.361
•••	• •
12	3.345
13	3.344

Note-se o número elevado de iterações necessárias para obter a raiz com a precisão de 3 casas decimais, o que é consequência de o valor de |g'(x)|, no intervalo em que se situa a raiz, ser relativamente próximo de 1.

Exemplo 2.7 Considere a equação algébrica:

$$f(x) = 3x^5 - 5x^3 + 8x^2 + 4x - 2 = 0$$

Determine o número de raizes reais positivas e raizes reais negativas da equação dada. Calcule o limite inferior das raizes reais positivas dessa mesma equação.

Utilize um dos métodos estudados para calcular a menor raiz real positiva.

Resolução

Aplicando a regra de Descartes tem-se a seguinte sucessão de coeficientes não nulos para o polinómio $P_5(x) \equiv f(x)$.

$${3, -5, 8, 4, -2}$$

Nestas condições o número de variações de sinal é $V_+=3$ pelo que o número de raizes reais positivas será de 3 ou 1 (3 -2=1).

Para as raizes reais negativos aplica-se a mesma regra de Descartes ao polinómio $P_5(-x)$. Tem-se então,

$$P_5(-x) = 3(-x)^5 - 5(-x)^3 + 8(-x)^2 - 4x - 2 = 0$$

$$P_5(-x) = -3x^5 + 5x^3 + 8x^2 - 4x - 2 = 0$$

Daqui resulta a sucessão de coeficientes não nulos,

$$\{-3, 5, 8, -4, -2\}$$

O número de variações de sinal é agora $V_{-}=2$ pelo que o número de raizes reais negativas será de 2 ou 0 (2-2=0).

Para o cálculo do limite inferior das raizes reais positivas da equação aplicase a fórmula:

$$R \le 1 + \sqrt[i]{\frac{\beta}{a_n}}$$

Como esta fórmula permite apenas obter o limite superior das raizes reais positivas da equação dada é necessário transformar essa equação através da substituição de variável $y=\frac{1}{x}$. Obtem-se então:

$$P_5\left(\frac{1}{x}\right) = 3\left(\frac{1}{x}\right)^5 - 5\left(\frac{1}{x}\right)^3 + 8\left(\frac{1}{x}\right)^2 - 4\left(\frac{1}{x}\right) - 2 = 0$$

$$P_5\left(\frac{1}{x}\right) = \frac{3}{x^5} - \frac{5}{x^3} + \frac{8}{x^2} + \frac{4}{x} - 2 = 0$$

$$P_5\left(\frac{1}{x}\right) = 2x^5 - 4x^4 - 8x^3 + 5x^2 - 3 = 0$$

$$R \le 1 + \sqrt[1]{\frac{8}{2}} = 1 + 4 = 5$$

Tem agora que se calcular o inverso do valor obtido devido à mudança de variável efectuada, pelo que se obtem para limite inferior das raizes reais positivas $r = \frac{1}{5} = 0.2$.

Para calcular a menor raiz real positiva tem, em primeiro lugar, que se localizar essa raiz. Como f(0.2) = -0.919 e f(0.4) = 0.591 essa raiz localiza-se no intervalo [0.2, 0.4], pelo que se pode utilizar o método de Newton para a calcular, uma vez que, em princípio, será o que a permite obter mais rapidamente.

A fórmula do método de Newton aplicada a este caso será:

$$x_{i+1} = x_i - \frac{3x_i^5 - 5x_i^3 + 8x_i^2 + 4x_i - 2}{15x_i^4 - 15x_i^2 + 16x_i + 4}$$

Os resultados obtidos constam da tabela seguinte:

i	x_i
0	0.3
1	0.327
2	0.3270
3	0.3270

3 Interpolação polinomial

Exercícios resolvidos

Exemplo 3.1 Considere a seguinte tabela de valores de uma função:

x_i	0.3	0.5	0.7	0.9
$y_i = f(x_i)$	0.441	1.225	2.401	3.136

Determine, por interpolação, o valor previsível dessa função em x = 0.6.

Resolução

Sendo os pontos tabelados da função não equidistantes, pode aplicar-se a fórmula de Lagrange ou a fórmula de Newton para argumentos não equidistantes. Escolhendo a primeira destas fórmulas, tem-se:

$$P_3(x) = 0.441 \frac{(x - 0.5)(x - 0.7)(x - 0.8)}{(-0.2)(-0.4)(-0.5)} +$$

$$1.225 \frac{(x - 0.3)(x - 0.7)(x - 0.8)}{(0.2)(-0.2)(-0.3)} +$$

$$2.401 \frac{(x - 03)(x - 0.5)(x - 0.8)}{(0.4)(0.2)(-0.1)} +$$

$$3.136 \frac{(x - 0.3)(x - 0.5)(x - 0.7)}{(0.5)(0.3)(0.1)}$$

$$P_3(x) = -11.025(x - 0.5)(x - 0.7)(x - 0.8)$$

$$+102.083(x - 0.3)(x - 0.7)(x - 0.8)$$

$$-300.125(x - 0.3)(x - 0.5)(x - 0.8)$$

$$+209.067(x - 0.3)(x - 0.5)(x - 0.7)$$

Para determinar o valor previsível da função em x=0.6, basta agora calcular $P_3(x=0.6)$, figura 6.

$$P_3(x=0.6) = 1.764$$

Figura 6: Interpolação: gráfico de $P_3(x)$

Exemplo 3.2 Considere, no intervalo [0;1], a função:

$$y = f(x) = \cos(\pi x)$$

Utilize os pontos $x_0=0$, $x_1=\frac{1}{3}$, $x_2=\frac{3}{5}$ e $x_3=1$ para obter uma aproximação de Lagrange $P_3(x)$ dessa função.

Calcule directamente o erro de $P_3(x)$ nos pontos x=0.25 e x=0.5 relativamente ao valor da função.

Deduza uma expressão do erro para a aproximação polinomial calculada e aplique nos pontos x = 0.25 e x = 0.5.

Resolução

Calculem-se os valores de $y_i(x)$.

$$y_0 = \cos(0) = 1.0$$
 $y_1 = \cos\left(\frac{1}{3}\pi\right) = 0.5$

$$y_2 = \cos\left(\frac{3}{5}\pi\right) = -0.309$$
 $y_3 = \cos(\pi) = -1.0$

$$P_3(x) = 1.0 \frac{\left(x - \frac{1}{3}\right)\left(x - \frac{3}{5}\right)\left(x - 1.0\right)}{\left(-\frac{1}{3}\right)\left(-\frac{3}{5}\right)\left(-1.0\right)} + 0.5 \frac{\left(x - 0.0\right)\left(x - \frac{3}{5}\right)\left(x - 1.0\right)}{\frac{1}{3}\left(\frac{1}{3} - \frac{3}{5}\right)\left(\frac{1}{3} - 1.0\right)} -$$

$$0.309 \frac{(x-0.0)(x-\frac{1}{3})(x-1.0)}{(\frac{3}{5})(\frac{3}{5}-\frac{1}{3})(\frac{3}{5}-1.0)} - 1.0 \frac{(x-0.0)(x-\frac{1}{3})(x-\frac{3}{5})}{1.0(1.0-\frac{1}{3})(1.0-\frac{3}{5})}$$

A expressão de $P_3(x)$ será portanto,

$$P_3(x) = -5.0\left(x - \frac{1}{3}\right)\left(x - \frac{3}{5}\right)(x - 1.0) + 8.438x\left(x - \frac{3}{5}\right)(x - 1.0) + 4.828x\left(x - \frac{1}{3}\right)(x - 1.0) - 3.75x\left(x - \frac{1}{3}\right)\left(x - \frac{3}{5}\right)$$

Figura 7: Gráficos de $y = \cos(\pi x)$ e do polinómio $P_3(x)$ em [0; 1]

Assim, tem-se
$$P_3(x = 0.25) = 0.711$$
 e $P_3(x = 0.5) = -6.333 \times 10^{-4}$.

Nestes termos, e sendo os valores de $y = f(x = 0.25) = \cos(\frac{\pi}{4}) = 0.707$ e $y = f(x = 0.5) = \cos(\frac{\pi}{2}) = 0.0$, pode-se verificar que o erro calculado directamente, para cada um desses pontos, é dado por,

$$|f(0.25) - P_3(0.25)| = |0.707 - 0.711| = 0.004$$

$$|f(0.5) - P_3(0.5)| = |0 - (-6.333 \times 10^{-4})| = 6.333 \times 10^{-4} = 0.00063$$

Aplicando a expressão do erro na aproximação de Lagrange, obtem-se para qualquer $c \in [0; 1]$,

$$E_3(x) = \frac{(x-0)(x-\frac{1}{3})(x-\frac{3}{5})(x-1)f^{(IV)}(c)}{(3+1)!}$$

Como $f^{(IV)}(x) = \pi^4 \cos(\pi x)$ verifica-se que,

$$\max_{0.0 \le x \le 1.0} \left| f^{(IV)}(x) \right| = \max_{0.0 \le x \le 1.0} \left| \pi^4 \cos(\pi x) \right| = \pi^4$$

Nestes termos, o erro em valor absoluto será dado por,

$$|E_3(x)| = \left| 4.059(x-0)(x-\frac{1}{3})(x-\frac{3}{5})(x-1) \right|$$

Para x=0.25 e x=0.5 da expressão anterior resulta, respectivamente, $|E_3(x=0.25)|=0.022$ e $|E_3(x=0.5)|=0.051$, valores muito maiores, mas compatíveis com os obtidos a partir do cálculo directo.

Exemplo 3.3 Considere a função,

$$y = f(x) = \ln(2x)$$

no intervalo [0.5; 2]. Utilize os pontos $x_0 = 0.5$, $x_1 = 0.7$, $x_2 = 1.0$, $x_3 = 1.3$ e $x_4 = 2.0$ para obter uma aproximação de Newton dessa função.

Calcule directamente o erro da aproximação polinomial no ponto x=0.9 relativamente ao valor da função.

Deduza uma expressão do erro para a aproximação polinomial calculada e aplique no ponto x = 0.9.

Resolução

Calculem-se os valores de $y_i(x)$.

$$y_0 = \ln 1.0 = 0.0$$
 $y_1 = \ln 1.4 = 0.3365$
 $y_2 = \ln 2.0 = 0.6931$ $y_3 = \ln 2.6 = 0.9555$
 $y_4 = \ln 4.0 = 1.3863$

Para obter o polinómio interpolador $P_4(x)$ forme-se a tabela de diferenças divididas,

0.5 0.0	dem
0.7 0.3365 1.6825 -0.9876 1.0 0.6931 -0.5233 -0.28 1.3 0.9555 -0.2593 0.2031 2.0 1.3863 -0.6154	

Desta tabela resulta o polinómio interpolador $P_4(x)$ (grau ≤ 4),

$$P(x) = 0.0 + 1.6825(x - 0.5) - 0.9876(x - 0.5)(x - 0.7) +$$

$$+0.5804(x - 0.5)(x - 0.7)(x - 1.0) -$$

$$0.2515(x - 0.5)(x - 0.7)(x - 1.0)(x - 1.3)$$

Assim,
$$P_4(x = 0.9) = 0.5885$$
.

O valor da função $f(x) = \ln(2x)$ no mesmo ponto é $\ln 1.8 = 0.5878$ e pode-se verificar que o erro calculado directamente é dado por,

$$|f(0.9) - P_4(0.9)| = |0.5878 - 0.5885| = 0.0007$$

Aplicando agora a expressão do erro na aproximação de Newton, obtem-se para qualquer $c \in [0; 1]$,

$$E_4(x) = \frac{(x - 0.5)(x - 0.7)(x - 1.0)(x - 1.3)(x - 2.0)f^{(V)}(c)}{(4 + 1)!}$$

Como $f^{(V)}(x) = \frac{24}{x^5}$, sendo uma função decrescente em [0.5; 2.0], verifica-se que o seu valor máximo é em x = 0.5 e,

$$\max_{0.5 \le x \le 2.0} |f^{(V)}(x)| = \max_{0.5 \le x \le 2.0} \left| \frac{24}{x^5} \right| = 768$$

Nestes termos, o erro em valor absoluto será dado por,

$$|E_4(x)| = |6.4(x-0.5)(x-0.7)(x-1.0)(x-1.3)(x-2.0)|$$

Para x = 0.9 da expressão anterior resulta $|E_3(x = 0.5)| = 0.023$, valor muito maior, mas compatível com o obtido a a partir do cálculo directo.

Exemplo 3.4 Determine aproximadamente, por interpolação inversa, no intervalo [0; 1], o zero da equação:

$$f(x) = \sqrt{0.5 + x^3} - e^{-\frac{x}{4}} = 0$$

Resolução

A função f(x) é estritamente crescente em [0;1] e possui inversa nesse intervalo.

A função f(x) muda de sinal no intervalo dado tendo um único zero nesse mesmo intervalo $f(0) \times f(1) < 0$.

Considerem-se os seguintes valores de x_i no intervalo [0;1],

x	0.0	0.25	0.5	0.75	1.0
y = f(x)	-0.293	-0.221	-0.092	0.131	0.446

Para obter o polinómio interpolador de $g(y) = f^{-1}(x)$ forme-se a tabela de diferenças divididas que permite obter o polinómio interpolador da função inversa nesse intervalo.

y_i	x_i	1. ordem	2. ordem	3. ordem	4. ordem
-0.293 -0.221	0.0	3.472	7 632		
-0.221	0.25	1.938	-7,632 -2.321	12.526	-13.475
0.131	0.75	1.121 0.794	-0.608	2.568	
0.446	1.0	001			

Desta tabela resulta o polinómio interpolador de g(y) (grau ≤ 4).

$$P(y) = 0.0 + 3.472(y + 0.293) - 7.632(y + 0.293)(y + 0.221) +$$

$$12.526(y + 0.293)(y + 0.221)(y + 0.092) -$$

$$13.475(y + 0.293)(y + 0.221)(y + 0.092)(y - 0.131)$$

E, fazendo agora y=0 em $P_4(y)$ pode obter-se a raiz aproximada da equação dada.

$$P_4(y=0) = 0.608$$

Este valor pode ser confirmado substituindo-o na equação dada f(x = 0.608) verificando-se que se trata efectivamente de uma aproximação da raiz.

$$f(x = 0.608) \simeq -0.008$$

Exemplo 3.5 A tabela seguinte dá os valores de uma dada função no intervalo [0.55; 1.25]. Aplicando a fórmula de Newton para diferenças progressivas determine o valor aproximado dessa função em x = 0.9

x	y = f(x)
0.55	0.6607
0.65	0.8073
0.75	0.9630
0.85	1.1284
0.95	1.3039
1.05	1.4900
1.15	1.6872
1.25	1.8961

Resolução

Construindo a tabela de diferenças progressivas respectiva, verifica-se que as de terceira ordem são aproximadamente constantes, pelo que não é necessário calcular diferenças de ordem superior a essa.

x	f(x)	$\triangle f$	$\triangle^2 f$	$\triangle^3 f$
0.55	0.6607			
		0.1466		
0.65	0.8073		0.0091	
		0.1557		0.0006
0.75	0.9630		0.0097	
		0.1654		0.0004
0.85	1.1284		0.0101	
		0.1755		0.0005
0.95	1.3039		0.0106	
		0.1861		0.0005
1.05	1.4900		0.0111	
		0.1972		0.0006
1.15	1.6872		0.1117	
		02089		
1.25	1.8961			

Analisando a tabela, verifica-se que se pode tomar como x_0 o valor da tabela mais próximo do valor pertendido x=0.9, isto é, pode escrever-se $x_0=0.85$.

Nestas condições, sendo o passo h = 0.1 tem-se,

$$s = \frac{x - 0.85}{0.1} = 10x - 8.5$$

A fórmula de Newton para diferenças progressivas será então,

$$P_3(x = 0.9) = 1.1284 + 0.1755 \times (10x - 8.5) +$$

$$0.0106 \times \frac{(10x - 8.5)(10x - 9.5)}{2!} +$$

$$0.0005 \times \frac{(10x - 8.5)(10x - 9.5)(10x - 10.5)}{3!} = 1.2149$$

Verifique-se que o valor obtido é igual, até à quarta casa decimal, ao valor da função tabelada, que é a função f(x)=x $e^{\frac{x}{3}}$ cujo valor é também f(x=0.9)=1.2149.

4 Sistemas de equações lineares

Exercícios resolvidos

Exemplo 4.1 Determinar a factorização de Doolitle da matriz A seguinte,

$$\mathbf{A} = \begin{pmatrix} 2 & -1 & 2 & 0 \\ 3 & 2 & 1 & 1 \\ -1 & -2 & 1 & 2 \\ 4 & 0 & -4 & -2 \end{pmatrix}$$

Resolução

As fórmulas a aplicar são as seguintes:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}$$
 $j \ge i$ $l_{ij} = \frac{\left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}\right)}{u_{jj}}$ $j < i$

Teremos então sucessivamente,

$$i = 1$$
 $u_{1j} = a_{1j}$ $j = 1, 2, 3, 4$

$$u_{11} = a_{11} = 2$$
 $u_{12} = a_{12} = -1$ $u_{13} = a_{13} = 2$ $u_{14} = a_{14} = 0$

$$j = 1 l_{i1} = \frac{a_{i1}}{u_{11}} i = 2, 3, 4$$

$$l_{21} = \frac{a_{21}}{u_{11}} = \frac{3}{2}$$
 $l_{31} = \frac{a_{31}}{u_{11}} = \frac{-1}{2}$ $l_{31} = \frac{a_{31}}{u_{11}} = \frac{4}{2} = 2$

$$i = 2$$
 $u_{2j} = a_{2j} - l_{21}u_{1j}$ $j = 2, 3, 4$

$$u_{22} = a_{22} - l_{21}u_{12} = 2 - \frac{3}{2} \times (-1) = \frac{7}{2}$$

$$u_{23} = a_{23} - l_{21}u_{13} = 1 - \frac{3}{2} \times 2 = -2$$

$$u_{24} = a_{24} - l_{21}u_{14} = 1 - \frac{3}{2} \times 0 = 1$$

$$j = 2 l_{i2} = \frac{a_{i2} - l_{i1}u_{12}}{u_{22}} i = 3, 4$$

$$l_{32} = \frac{a_{32} - l_{31}u_{12}}{u_{22}} = \frac{-2 - \left(-\frac{1}{2}\right)(-1)}{\frac{7}{2}} = \frac{-\frac{5}{2}}{\frac{7}{2}} = -\frac{5}{7}$$
$$l_{42} = \frac{a_{42} - l_{41}u_{12}}{u_{22}} = \frac{0 - 2(-1)}{\frac{7}{2}} = \frac{\frac{2}{1}}{\frac{7}{2}} = \frac{4}{7}$$

$$i = 3$$
 $u_{3j} = a_{3j} - l_{31}u_{1j} - l_{32}u_{2j}$ $j = 3, 4$

$$u_{33} = a_{33} - l_{31}u_{13} - l_{32}u_{23} = 1 - \left(-\frac{1}{2}\right)2 - \left(-\frac{5}{7}\right)(-2) = \frac{4}{7}$$

$$u_{34} = a_{34} - l_{31}u_{14} - l_{32}u_{24} = 2 - \left(-\frac{1}{2}\right) \times 0 - \left(-\frac{5}{7}\right) \times 1 = \frac{19}{7}$$

$$j = 3 l_{i3} = \frac{a_{i3} - l_{i1}u_{13} - l_{i2}u_{23}}{u_{33}} i = 4$$

$$l_{43} = \frac{a_{43} - l_{41}u_{13} - l_{42}u_{23}}{u_{33}} = \frac{-4 - 2 \times 2 - \left(\frac{4}{7}\right)(-2)}{\frac{4}{7}} = \frac{-\frac{48}{7}}{\frac{4}{7}} = -12$$

$$i = 4 u_{4j} = a_{4j} - l_{41}u_{1j} - l_{42}u_{2j} - l_{43}u_{3j} j = 4$$

$$u_{44} = a_{44} - l_{41}u_{14} - l_{42}u_{24} - l_{43}u_{34} =$$

$$-2 - 2 \times 0 - \frac{4}{7} \times 1 - (-12) \times \frac{19}{7} = 30$$

Efectuando a verificação, tem-se,

$$LU = A$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ \frac{3}{2} & 1 & 0 & 0 \\ -\frac{1}{2} & -\frac{5}{7} & 1 & 0 \\ 2 & \frac{4}{7} & -12 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 & 2 & 0 \\ 0 & \frac{7}{2} & -2 & 1 \\ 0 & 0 & \frac{4}{7} & \frac{19}{7} \\ 0 & 0 & 0 & 30 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 2 & 0 \\ 3 & 2 & 1 & 1 \\ -1 & -2 & 1 & 2 \\ 4 & 0 & -4 & -2 \end{pmatrix}$$

Exemplo 4.2 Resolver o sistema de equações lineares seguintes aplicando o método de Crout.

$$\begin{cases} 2x_1 - 2x_2 + 3x_3 = 3\\ -2x_1 + x_2 + x_3 = -1\\ 3x_1 - x_2 - x_3 = 3 \end{cases}$$

Resolução

$$\mathbf{A} = \begin{pmatrix} 2 & -2 & 3 \\ -2 & 1 & 1 \\ 3 & -1 & -1 \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$$

Aplicando as fórmulas relativas ao método de Crout,

$$l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj}$$
 $j \le i$ $u_{ij} = \frac{\left(a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}\right)}{l_{ii}}$ $j > i$

$$j = 1 l_{i1} = a_{i1} i = 1, 2, 3$$

$$l_{11} = a_{11} = 2$$
 $l_{21} = a_{21} = -2$ $l_{31} = a_{31} = 3$

$$i = 1$$
 $u_{1j} = \frac{a_{1j}}{l_{11}},$ $j = 2, 3$

$$u_{12} = \frac{a_{12}}{l_{11}} = \frac{-2}{2} = -1$$
 $u_{13} = \frac{a_{13}}{l_{11}} = \frac{3}{2}$

$$j = 2 l_{i2} = a_{i2} - l_{i1}u_{12} i = 2,3$$

$$l_{22} = a_{22} - l_{21}u_{12} = 1 - (-2)(-1) = -1$$

$$l_{32} = a_{32} - l_{31}u_{12} = -1 - 3(-1) = 2$$

$$i = 2$$

$$u_{2j} = \frac{a_{2j} - l_{21}u_{1j}}{l_{22}} \qquad j = 3$$

$$u_{23} = \frac{a_{23} - l_{21}u_{13}}{l_{22}} = \frac{1 - (-2) \times \frac{3}{2}}{-1} = -4$$

$$j = 3 l_{i3} = a_{i3} - l_{i1}u_{13} - l_{i2}u_{23} i = 3$$

$$l_{33} = a_{33} - l_{31}u_{13} - l_{32}u_{23} = -1 - 3 \times \frac{3}{2} - 2(-4) = \frac{5}{2}$$

Efectuando a verificação, tem-se,

$$LU = A$$

$$\begin{pmatrix} 2 & 0 & 0 \\ -2 & -1 & 0 \\ 3 & 2 & \frac{5}{2} \end{pmatrix} \begin{pmatrix} 1 & -1 & \frac{3}{2} \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -2 & 3 \\ -2 & 1 & 1 \\ 3 & -1 & -1 \end{pmatrix}$$

Como $\mathbf{A} = \mathbf{L}\mathbf{U}$ tem-se que $\mathbf{A}\mathbf{x} = \mathbf{b}$ se pode escrever $(\mathbf{L}\mathbf{U})\mathbf{x} = \mathbf{b}$, ou $\mathbf{L}(\mathbf{U}\mathbf{x}) = \mathbf{b}$ com $\mathbf{U}\mathbf{x} = \mathbf{y}$ e $\mathbf{L}\mathbf{y} = \mathbf{b}$.

Nestes termos por substituição regressiva, obtem-se o valor de y

$$\begin{pmatrix} 2 & 0 & 0 \\ -2 & -1 & 0 \\ 3 & 2 & \frac{5}{2} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 3 \\ -1 \\ 3 \end{pmatrix}$$

$$\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ -2 \\ 1 \end{pmatrix}$$

Finalmente o valor de ${\bf x}$ obtem-se de ${\bf U}{\bf x}={\bf y}$ também por substituição regressiva.

$$\begin{pmatrix} 1 & -1 & \frac{3}{2} \\ 0 & 1 & -4 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{3}{2} \\ -2 \\ 1 \end{pmatrix}$$

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$$

Exemplo 4.3 Resolver o sistema de equações lineares seguintes pelos métodos de Jacobi e Gauss-Seidel, considerando como aproximação inicial $\mathbf{x}^{(0)} = \mathbf{d}$. Utilize 3 casas decimais na resolução.

Faça uma estimativa do número de iterações necessárias para obter um erro na aproximação inferior a 1×10^{-3} .

$$\begin{cases}
12.0x_1 - 3.6x_2 + 2.4x_3 + 3.6x_4 = 16.8 \\
-2x_1 + 16.0x_2 - 4.0x_3 + 4.0x_4 = -30.0 \\
5.0x_1 + 4.0x_2 - 20.0x_3 - 8.0x_4 = -31.0 \\
-2x_1 + 2x_2 + 6.0x_3 - 15.0x_4 = -7.0
\end{cases}$$

Resolução

Escrevendo o sistema de equações lineares na forma iterativa tem-se:

$$\begin{cases} x_1 = 1.4 + 0.3x_2 - 0.2x_3 - 0.3x_4 \\ x_2 = -1.875 + 0.125x_1 + 0.25x_3 - 0.25x_4 \\ x_3 = 1.55 + 0.25x_1 - 0.2x_2 - 0.4x_4 \\ x_4 = -\frac{7}{15} + \frac{2}{15}x_1 - \frac{2}{15}x_2 - 0.4x_3 \end{cases}$$

A matriz G e o vector d são então:

$$\mathbf{G} = \begin{pmatrix} 0 & 0.3 & -0.2 & -0.3 \\ 0.125 & 0 & 0.25 & -0.25 \\ 0.25 & 0.2 & 0 & -0.4 \\ 0.133 & -0.133 & -0.4 & 0 \end{pmatrix} \qquad \mathbf{d} = \begin{pmatrix} 1.4 \\ -1.875 \\ 1.55 \\ -\frac{7}{15} \end{pmatrix}$$

A solução exacta do sistema de equações lineares é $\mathbf{x}=(1,-1,2,-1)$. Verifica-se que $\|\mathbf{G}\|_{\infty}=0.85<1$ e também que $\|\mathbf{G}\|_{1}=0.95<1$, pelo existe convergência de qualquer um dos métodos iterativos.

Apresentam-se na tabela seguinte os resultados do método de Jacobi, onde na última coluna se escreve a norma do erro de cada aproximação em relação à solução exacta.

k	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$x_4^{(k)}$	$\ \mathbf{e}^{(\mathrm{k})}\ _{\infty}$
0	1.400	-1.875	1.550	-0.467	0.875
1	0.668	-1.196	1.712	-0.650	0.350
2	0.894	-1.201	1.738	-0.903	0.262
3	0.963	-1.103	1.894	-0.882	0 118
4	0.955	-1.060	1.923	-0.949	0.077
5	0.982	-1.038	1.956	-0.967	0.044
6	0.988	-1.021	1.975	-0.980	0.025
7	0.993	-1.013	1.985	-0.989	0.015
8	0.996	-1.008	1.991	-0.993	0.009
9	0.997	-1.004	1.995	-0.996	0.005
10	0.999	-1.003	1.997	-0.998	0.003
11	0.999	-1.002	1.998	-0.999	0.002
12	0.999	-1.001	1.999	-0.999	0.001

Na tabela que se segue figuram os resultados do método de Gauss-Seidel, onde, de modo idêntico, na última coluna se escreve a norma do erro de cada aproximação em relação à solução exacta.

k	$x_1^{(k)}$	$x_2^{(k)}$	$x_3^{(k)}$	$x_4^{(k)}$	$\left\ \mathbf{e}^{(\mathrm{k})}\right\ _{\infty}$
0	1.400	-1.875	1.550	-0.467	0.875
1	0.668	-1.287	1.646	-0.864	0.354
2	0.944	-1.129	1.906	-0.953	0.129
3	0.966	-1.040	1.965	-0.985	0 040
4	0.991	-1.014	1.989	-0.995	0.014
5	0.997	-1.004	1.996	-0.998	0.004
6	0.999	-1.001	1.999	-0.999	0.001
7	1.000	-1.000	2.000	-1.000	0.000

A velocidade de convergência do método de Gauss-Seidel é claramente melhor que a do método de Jacobi, o que se pode verificar pela diminuição mais rápida da norma do erro nas sucessivas iterações

Aplicando a fórmula que permite estimar o número de iterações,

$$\left\|\mathbf{x}-\mathbf{x}^{(k)}\right\|_{\infty} \leq \frac{\left\|\mathbf{G}\right\|_{\infty}^{k+1}}{1-\left\|\mathbf{G}\right\|_{\infty}}\left\|\mathbf{d}\right\|_{\infty}$$

obtem-se,

$$\frac{0.85^{k+1} \times 1.875}{1 - 0.85} < 10^{-3}$$

de que resulta,

$$(k+1)\ln(0.85) < \ln(8.0 \times 10^{-5})$$

Seriam portanto necessárias 57 iterações, estimativa claramente exagerada, tendo em atenção os resultados que já se obtiveram, o que resulta do modo de obtenção da fórmula utilizada.

5 Sistemas de equações não lineares

Exercícios resolvidos

Exemplo 5.1 Determine pelo método das aproximações sucessivasa a raiz de coordenadas positivas do sistema de equações não lineares,

$$\begin{cases} f_1(x,y) = xy - 3x^2 + 1.5y + 1 = 0 \\ f_2(x,y) = xy + y - 3 = 0 \end{cases}$$

Resolução

As funções $f_1(x,y)$ e $f_2(x,y)$ definem curvas no plano (x,y) e, portanto, a solução do sistema procurada será o ponto (η_1,η_2) do primeiro quadrante em que essas curvas se encontram.

Construam-se então as curvas aproximadas das equações $f_1(x,y) = 0$ e $f_2(x,y) = 0$, que se podem obter das funções equivalentes:

$$y = \frac{3x^2 - 1}{x + 1.5} \qquad \qquad y = \frac{3}{x + 1}$$

Da análise da figura 8 pode verificar-se que uma aproximação inicial da solução procurada poderá ser $(x_0, y_0) \equiv (1.5; 1.5)$.

Para se poder aplicar o método das aproximações sucessivas é agora necessário escrever o sistema dado na forma seguinte:

Figura 8: Método das aproximações sucessivas, $f_1(x,y) = 0$ e $f_2(x,y) = 0$

$$\begin{cases} x = \varphi_1(x, y) = \sqrt{\frac{y(x+1.5)+1}{3}} \\ y = \varphi_2(x, y) = \frac{3}{x+1} \end{cases}$$

Sendo agora necessário proceder à verificação das condições de convergência numa região de R^2 que contenha o ponto. Para simplificar os cálculos necessários à resolução do problema considera-se apenas o próprio ponto da aproximação inicial $(x_0, y_0) \equiv (1.5; 1.5)$.

Para tal, é necessário o cálculo das derivadas parciais,

$$\frac{\partial \varphi_1}{\partial x} = \frac{1}{2} \times \frac{1}{\sqrt{\frac{y(x+1.5)+1}{3}}} \times \frac{y}{3}, \qquad \frac{\partial \varphi_1}{\partial y} = \frac{1}{2} \times \frac{1}{\sqrt{\frac{y(x+1.5)+1}{3}}} \times \frac{x+1.5}{3}$$

$$\frac{\partial \varphi_2}{\partial x} = \frac{-3}{(x+1)^2}, \qquad \frac{\partial \varphi_2}{\partial y} = 0$$

Considerando a aproximação inicial da solução determinada $(x_0, y_0) \equiv (1.5; 1.5)$, obtem-se,

$$\frac{\partial \varphi_1}{\partial x} \simeq 0.185, \qquad \qquad \frac{\partial \varphi_1}{\partial y} \simeq 0.369$$

$$\frac{\partial \varphi_2}{\partial x} \simeq -0.48, \qquad \frac{\partial \varphi_2}{\partial y} = 0$$

de que resulta,

$$\left| \frac{\partial \varphi_1}{\partial x} \right| + \left| \frac{\partial \varphi_1}{\partial y} \right| \simeq 0.554 < 1, \qquad \left| \frac{\partial \varphi_2}{\partial x} \right| + \left| \frac{\partial \varphi_2}{\partial y} \right| \simeq 0.48 < 1$$

O processo iterativo do método das aproximações sucessivas é portanto convergente.

Podem agora calcular-se as sucessivas aproximações a partir das fórmulas, que se apresentam na tabela seguinte.

$$x_{i+1} = \varphi_1(x_i, y_i) = \sqrt{\frac{y_i(x_i + 1.5) + 1}{3}}$$
 $(i = 0, 1, 2, ...)$

$$y_{i+1} = \varphi_2(x_i, y_i) = \frac{3}{x_i + 1},$$
 $(i = 0, 1, 2, ...)$

i	x_i	y_i
0	1.5	1.5
1	1.354	1.2
2	1.214	1.274
3	1.219	1.355
4	1.250	1.352
5	1.254	1.333
6	1.248	1.331
7	1.246	1.335
8	1.247	1.336
9	1.248	1.335
10	1.247	1.335
11	1.247	1.335

Obtem-se assim a solução do sistema de equações não lineares procurada, que com quatro algarismos significativos é $(\eta_1, \eta_2) \equiv (1.247; 1.335)$.

Exemplo 5.2 Determine, pelo método de Newton, a raiz com as duas coordenadas positivas do sistema de equações não lineares seguinte, realizando 3 iterações.

$$\begin{cases} f_1(x,y) = x - y^2 + 0.5 = 0 \\ f_2(x,y) = y - x^3 = 0 \end{cases}$$

Resolução

A equação $f_1(x,y) = x - y^2 + 0.5 = 0 \quad \text{ pode escrever-se na forma:}$ $x = y^2 - 0.5$

A equação $f_2(x,y) = y - x^3 = 0$ pode escrever-se na forma:

$$y = x^3$$

Assim podem desenhar-se as curvas aproximadas das duas equações $f_1(x,y) = 0$ e $f_2(x,y) = 0$,

Figura 9: Gráficos das funções $f_1(x,y) = 0$ e $f_2(x,y) = 0$

Aplique-se agora o método de Newton.

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - W^{-1}(\mathbf{x}^{(i)}) f(\mathbf{x}^{(i)})$$

Da figura 9 pode verificar-se que uma aproximação inicial possível é por exemplo $(x_0, y_0) \equiv (1.5; 1.5)$, pelo que:

$$\mathbf{x}^{(0)} = \left(\begin{array}{c} 1.5\\ 1.5 \end{array}\right)$$

$$\mathbf{f}(\mathbf{x}^{(0)}) = \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} -0.25 \\ -1.875 \end{pmatrix}$$

A matriz jacobiana W é:

$$W(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 1 & -2y \\ -3x^2 & 1 \end{pmatrix}$$

Pelo que:

$$W(\mathbf{x}^{(0)}) = \begin{pmatrix} 1 & -3 \\ -6.75 & 1 \end{pmatrix} \qquad |W(\mathbf{x}^{(0)})| = -19.25$$

$$W^{-1}(\mathbf{x}^{(0)}) = \frac{1}{-19.25} \begin{pmatrix} 1 & 6.75 \\ 3 & 1 \end{pmatrix}^{\mathrm{T}}$$

Resultando para $\mathbf{x}^{(1)}$:

$$\mathbf{x}^{(1)} = \begin{pmatrix} 1.5 \\ 1.5 \end{pmatrix} - \begin{pmatrix} 0.052 & 0.156 \\ 0.351 & 0.052 \end{pmatrix} \begin{pmatrix} -0.25 \\ -1.875 \end{pmatrix} = \begin{pmatrix} 1.195 \\ 1.315 \end{pmatrix}$$

De modo idêntico se obtêm as aproximações $\mathbf{x}^{(2)}$ e $\mathbf{x}^{(3)}$, resultando a seguinte tabela de valores,

i	$x^{(i)}$	$y^{(i)}$
0	1.5	1.5
1	1.195	1.315
2	1.092	1.263
3	1.079	1.257

Neste exemplo, pelo método de Newton, apenas com três iterações obtevese uma aproximação com um erro muito reduzido.

Calculando o valor de $\mathbf{f}(\mathbf{x}^{(3)}),$ obtem-se:

$$\mathbf{f}(\mathbf{x}^{(3)}) = \begin{pmatrix} -0.001\\ 0.001 \end{pmatrix}$$

Exemplo 5.3 Determine, pelo método de Newton, a raiz situada no primeiro quadrante do sistema de equações não lineares,

$$\begin{cases} f_1(x,y) = x^2 - x + y^2 - 0.75 = 0 \\ f_2(x,y) = y - \ln 2x - x = 0 \end{cases}$$

Resolução

A equação $f_1(x,y)=x^2-x+y^2-0.75=0$ pode escrever-se na forma $(x-a)^2+(y-b)^2=R^2$, o que conduz a:

$$(x - 0.5)^2 + (y - 0)^2 = 1^2$$

Pode assim concluir-se que se trata de uma circunferência de raio R=1 e centro no ponto $(a,b)\equiv (0.5,0.0)$.

A partir das equações equivalentes seguintes, podem construir-se as curvas aproximadas das equações $f_1(x,y) = 0$ e $f_2(x,y) = 0$.

$$(x - 0.5)^2 + (y - 0)^2 = 1^2$$
 $y = \ln 2x + x$

Figura 10: Método de Newton, $f_1(x,y)=0$ e $f_2(x,y)=0$

Aplique-se agora o método de Newton.

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - W^{-1}(\mathbf{x}^{(i)}) \ f(\mathbf{x}^{(i)})$$

Da figura 10 pode verificar-se que uma aproximação inicial possível é por exemplo, $(x_0, y_0) \equiv (0.6; 1.0)$, pelo que:

$$\mathbf{x}^{(0)} = \left(\begin{array}{c} 0.6\\1.0 \end{array}\right)$$

$$\mathbf{f}(\mathbf{x}^{(0)}) = \begin{pmatrix} f_1(x,y) \\ f_2(x,y) \end{pmatrix} = \begin{pmatrix} 0.001 \\ 0.218 \end{pmatrix}$$

A matriz jacobiana W é:

$$W(\mathbf{x}) = \begin{pmatrix} \frac{\partial f_1}{\partial x} & \frac{\partial f_1}{\partial y} \\ \\ \frac{\partial f_2}{\partial x} & \frac{\partial f_2}{\partial y} \end{pmatrix} = \begin{pmatrix} 2x - 1 & 2y \\ \\ -\frac{1}{x} - 1 & 1 \end{pmatrix}$$

Pelo que:

$$W(\mathbf{x}^{(0)}) = \begin{pmatrix} 0.2 & 2.0 \\ -2.667 & 1.0 \end{pmatrix}$$
 $|W(\mathbf{x}^{(0)})| = 5.534$

$$W^{-1}(\mathbf{x}^{(0)}) = \frac{1}{5.534} \begin{pmatrix} 1.0 & 2.667 \\ -2.0 & 0.2 \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 0.181 & -0.361 \\ 0.482 & 0.036 \end{pmatrix}$$

Resultando para $\mathbf{x}^{(1)}$:

$$\mathbf{x}^{(1)} = \begin{pmatrix} 0.6 \\ 1.0 \end{pmatrix} - \begin{pmatrix} 0.181 & -0.361 \\ 0.482 & 0.036 \end{pmatrix} \begin{pmatrix} 0.001 \\ 0.218 \end{pmatrix} = \begin{pmatrix} 0.677 \\ 0.987 \end{pmatrix}$$

De modo idêntico se obtem a aproximação $\mathbf{x}^{(2)}$, resultando a seguinte tabela de valores,

i	$x^{(i)}$	$y^{(i)}$
0	0.6	1.0
1	0.677	0.987
2	0.679	0.984

Com o método de Newton, apenas com duas iterações obteve-se uma aproximação com um erro muito reduzido, ao contrário do que em geral sucede com o método das aproximações sucessivas, em que é necessário um número elevado de iterações para obter uma boa aproximação da solução.

Com efeito se se calcular o valor de $f(\mathbf{x}^{(2)})$, obtem-se:

$$\mathbf{f}(\mathbf{x}^{(2)}) = \begin{pmatrix} 0.000 \\ -0.001 \end{pmatrix}$$

Exemplo 5.4 Determinar pelo método de Newton, a solução aproximada de cordenadas positivas do sistema de equações não lineares seguinte. Utilize como aproximação inicial $\mathbf{x}^{(0)} = (2, 1, 1)$.

$$\begin{cases} x^2 + 2xy + z^2 = 8.0 \\ x + y^2 - 3xz = -2.5 \\ 2x - 2y^2 + xz^2 = 3.0 \end{cases}$$

Resolução

Escreva-se o sistema de equações não lineares na forma seguinte:

$$\begin{cases} f_1(x, y, z) = x^2 + 2xy + z^2 - 8.0 = 0 \\ f_2(x, y, z) = x + y^2 - 3xz + 2.5 = 0 \\ f_3(x, y, z) = 2x - 2y^2 + xz^2 - 3.0 = 0 \end{cases}$$

A matriz W correspondente será:

$$W(\mathbf{x}) = \begin{pmatrix} 2x + 2y & 2x & 2z \\ 1 - 3z & 2y & -3x \\ 2 + z^2 & -4y & 2xz \end{pmatrix}$$

Considerando a aproximação inicial dada $\mathbf{x}^{(0)}=(2,1,1)$ tem-se sucessivamente:

$$\mathbf{f}(\mathbf{x}^{(0)}) = \begin{pmatrix} 1.0 \\ -0.5 \\ 1.0 \end{pmatrix} \qquad \mathbf{W}(\mathbf{x}^{(0)}) = \begin{pmatrix} 6 & 4 & 2 \\ -2 & 2 & -6 \\ 3 & -4 & 4 \end{pmatrix}$$

Nestes termos pode calcular-se a matriz $W^{-1}(\mathbf{x}^{(0)})$ cujo valor é:

$$W^{-1}(\mathbf{x}^{(0)}) = \begin{pmatrix} 0.121 & 0.182 & 0.212 \\ 0.076 & -0.136 & -0.242 \\ -0.015 & -0.272 & -0.151 \end{pmatrix}$$

Resultando assim para $\mathbf{x}^{(1)}$:

$$\mathbf{x}^{(1)} = \begin{pmatrix} 2\\1\\1 \end{pmatrix} - \begin{pmatrix} 0.121 & 0.182 & 0.212\\ 0.076 & -0.136 & -0.242\\ -0.015 & -0.272 & -0.151 \end{pmatrix} \begin{pmatrix} 1.0\\-0.5\\1.0 \end{pmatrix} = \begin{pmatrix} 1.758\\1.098\\1.030 \end{pmatrix}$$

De modo semelhante se obtêm as aproximações seguintes, resultando a seguinte tabela de valores,

i	$x^{(i)}$	$y^{(i)}$	$z^{(i)}$
0	2	1	1
1	1.758	1.098	1.030
2	1.768	1.082	1.025
3	1.757	1.094	1.035
4	1.757	1.094	1.035

Note-se que para a aproximação $\mathbf{x}^{(3)},$ se tem já:

$$\mathbf{f}(\mathbf{x}^{(3)}) = \begin{pmatrix} 0.003 \\ -0.002 \\ 0.002 \end{pmatrix}$$

pelo que a aproximação $\mathbf{x}^{(3)}$ coincide, até à terceira casa decimal, com o valor que se obtem para $\mathbf{x}^{(4)}$, sendo a raiz aproximada do sistema de equações não lineares, que se pretendia obter.

6 Aproximação

Exercícios resolvidos

Exemplo 6.1 Determine a linha recta que aproxima pelo método dos mínimos quadrados o conjunto seguinte de pontos (recta de regressão linear):

	1.1											
y_i	2.2	2.8	2.6	2.3	3.1	2.7	3.0	2.8	3.1	2.6	2.9	3.3

Resolução

Tem-se n=12 (número de pontos) e, realizando os cálculos:

$$\sum_{i=1}^{12} x_i = 27.6 \qquad \sum_{i=1}^{12} x_i^2 = 70.94$$

$$\sum_{i=1}^{12} y_i = 33.4 \qquad \sum_{i=1}^{12} x_i y_i = 78.71$$

$$a = \frac{12 \times 78.71 - 27.6 \times 33.4}{12 \times 70.94 - 27.6^2} = 0.253$$

$$b = \frac{1}{12}(33.4 - 0.253 \times 27.6) = 2.201$$

Obtem-se assim a recta:

$$y = ax + b = 0.253x + 2.201$$

A figura 11 ilustra a resolução do problema.

Figura 11: Aproximação de um conjunto de pontos por uma linha recta

Exemplo 6.2 Determine um polinómio do terceiro grau que aproxima pelo método dos mínimos quadrados o conjunto seguinte de pontos:

	-1.0							
y_i	2.1	1.6	1.2	1.7	2.3	3.0	3.9	3.5

Resolução

Sendo a equação do polinómio do terceiro grau dada por:

$$p_3(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3$$

obtem-se para m=3 e n=8 (n número de pontos), o seguinte sistema de equações normais,

$$\begin{cases} a_0 \sum_{i=1}^8 x_i^0 + a_1 \sum_{i=1}^8 x_i + a_2 \sum_{i=1}^8 x_i^2 + a_3 \sum_{i=1}^8 x_i^3 = \sum_{i=1}^8 x_i^0 y_i \\ a_0 \sum_{i=1}^8 x_i + a_1 \sum_{i=1}^8 x_i^2 + a_2 \sum_{i=1}^8 x_i^3 + a_3 \sum_{i=1}^8 x_i^4 = \sum_{i=1}^8 x_i y_i \\ a_0 \sum_{i=1}^8 x_i^2 + a_1 \sum_{i=1}^8 x_i^3 + a_2 \sum_{i=1}^8 x_i^4 + a_3 \sum_{i=1}^8 x_i^5 = \sum_{i=1}^8 x_i^2 y_i \\ a_0 \sum_{i=1}^8 x_i^3 + a_1 \sum_{i=1}^8 x_i^4 + a_2 \sum_{i=1}^8 x_i^5 + a_3 \sum_{i=1}^8 x_i^6 = \sum_{i=1}^8 x_i^3 y_i \end{cases}$$

Efectuando os cálculos para os 8 pontos da tabela dada, obtem-se o seguinte sistema de equações:

$$\begin{cases} 8a_0 + 11.5a_1 + 39.25a_2 + 125.875a_3 = 19.3 \\ 11.5a_0 + 39.25a_1 + 125.875a_2 + 452.313a_3 = 38.0 \\ 39.25a_0 + 125.875a_1 + 452.313a_2 + 1654.469a_3 = 132.2 \\ 125.875a_0 + 452.313a_1 + 1654.469a_2 + 6191.828a_3 = 445.431 \end{cases}$$

Resolvendo o sistema de equações pelo método de eliminação de Gauss, obtem-se como resultado:

$$\begin{cases}
 a_0 = 1.255 \\
 a_1 = -0.116 \\
 a_2 = 0.656 \\
 a_3 = -0.120
\end{cases}$$

$$p_3(x) = 1.26 - 0.12x + 0.66x^2 - 0.12x^3$$

Figura 12: Aproximação de um conjunto de pontos por um polinómio do terceiro grau

A figura 12 ilustra a resolução do problema.

Exemplo 6.3 Considere a seguinte tabela de valores de duas grandezas:

- 1			0.35					
ı	x_i	0.187	0.601	1.224	2.069	3.137	4.421	5.928

Ajuste uma função do tipo potência a esse conjunto de valores, sabendo que o expoente dessa função é M=2.

Resolução

Pretende-se um ajustamento com a forma $y=Ax^M,$ com $x\equiv t$ e $y\equiv x.$ Aplicando directamente a fórmula obtêm-se os resultados:

$$A = \frac{\sum_{i=1}^{n} x_i^M y_i}{\sum_{i=1}^{n} x_i^{2M}}$$

$$\sum_{i=1}^{7} t_i^2 x_i = 14.4318 \qquad \sum_{i=1}^{7} t_i^4 = 2.9458$$

$$A = \frac{\sum_{i=1}^{7} t_i^2 x_i}{\sum_{i=1}^{7} t_i^4} = \frac{14.4318}{2.9458} = 4.899$$

Exemplo 6.4 Ajuste, por linearização, uma função do tipo $y = Ax^B$ ao conjunto de pontos dado na tabela seguinte, que estabelece a relação entre duas grandezas:

						4.4		
y_i	0.37	2.01	4.44	7.25	11.23	14.73	18.66	24.55

Resolução

Tem-se:

$$\ln y = \ln(Ax^B) = \ln A + \ln(x^B) = \ln A + B \ln x$$

e, pode realizar-se a mudança de variáveis:

$$Y = \ln y$$
 $X = \ln x$

Para a constante A faz-se $C = \ln A$.

Obtem-se assim uma relação linear entre as novas variáveis X e Y,

$$Y = C + BX$$

Os pontos originais (x_i, y_i) , no plano x, y foram transformados nos pontos $(X_i, Y_i) \equiv (\ln x_i, \ln y_i)$ no plano X, Y tendo-se realizado um processo de linearização de dados.

Fazendo os cálculos das novas variáveis obtem-se a seguinte tabela de valores.

$X_i \equiv \ln x_i$	-0.511	0.405	0.833	1.099	1.335	1.482	1.609	1.758
$Y_i \equiv \ln y_i$	-0.994	0.698	1.491	1.981	2.419	2.690	2.926	3.201

Tem-se n=8 (número de pontos) e, realizando os cálculos:

$$\sum_{i=1}^{8} X_i = 8.010$$

$$\sum_{i=1}^{8} X_i^2 = 12.027$$

$$\sum_{i=1}^{8} Y_i = 14.412 \qquad \sum_{i=1}^{8} X_i Y_i = 21.761$$

$$B = \frac{8 \times 21.761 - 8.010 \times 14.412}{8 \times 12.027 - 8.010^2} = 1.830$$

$$C = \frac{1}{8}(14.412 - 1.830 \times 8.010) = -0.031$$

Como $C = \ln A$ resulta que $A = e^C$.

$$A = e^{-0.031} = 0.969$$

Pelo que, e finalmente, se tem:

$$y = 0.969x^{1.830}$$

Exemplo 6.5 Considere a seguite tabela de valores que estabelece a relação entre duas grandezas. Determine uma função que se ajuste a essa tabela de valores.

						3.0		
y_i	0.2	0.9	1.7	3.2	6.2	11.5	20.8	38.7

Resolução

Analisando os dados, verifica-se que os relativos à variável x apresentam uma variação linear, enquantos que os relativos à variável y apresentam uma variação que, em primeira aproximação, se pode considerar exponencial, como se pode verificar na figura 13 através dos pontos assinalados com círculos vazios (notem-se as escalas diferentes).

Será então de tentar uma linearização de dados, da forma $y = Ce^{Ax}$

Tem-se $\ln y = \ln C + Ax$ e pode agora realizar-se a mudança de variáveis:

$$Y = \ln y$$
 $X = x$ $B = \ln C$

Obtem-se assim uma relação linear entre as novas variáveis X e Y,

Figura 13: Linearização para uma função $y=Ce^{Ax}$

$$Y = B + AX$$

Efectuando os cálculos para as novas variáveis X e Y obtem-se a seguinte tabela de valores.

$X_i \equiv x_i$	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
$Y_i \equiv \ln y_i$	-1.609	-0.105	0.531	1.163	1.825	2.442	3.035	3.656

Sendo o número de pontos n=8, realizando os cálculos:

$$\sum_{i=1}^{8} X_i = 18.0 \qquad \qquad \sum_{i=1}^{8} X_i^2 = 51.0$$

$$\sum_{i=1}^{8} Y_i = 10.938 \qquad \sum_{i=1}^{8} X_i Y_i = 39.348$$

$$A = \frac{8 \times 39.348 - 18.0 \times 10.938}{8 \times 51.0 - 18.0^2} = 1.404$$

$$B = \frac{1}{8}(10.938 - 1.404 \times 18.0) = -1.792$$

Como $B = \ln C$ resulta que $C = e^B$.

$$C = e^{-1.792} = 0.167$$

Pelo que, e finalmemnte, se tem:

$$y = 0.167e^{1.404x}$$

Utilizando esta função para estimar os valores nos pontos \boldsymbol{x}_i dados obtemse:

						3.0		
y_i	0.34	0.68	1.37	2.77	5.59	11.27	22.74	45.89

Valores bastante aproximados aos iniciais e que se marcaram na figura 13, através dos pontos com os círculos cheios.

Exemplo 6.6 Determine a linha recta que aproxima pelo método dos mínimos quadrados, no intervalo $-1 \le x \le 2$, a função f(x):

$$f(x) = \frac{x^3}{2}$$

Resolução

Sendo a equação da recta dada por y=ax+b, pretende-se minimizar,

$$I(a,b) = \int_{-1}^{2} \left(\frac{x^3}{2} - ax - b\right)^2 dx$$

Para se obter um mínimo deve verificar-se:

$$\frac{\partial I(a,b)}{\partial a} = \frac{\partial I(a,b)}{\partial b} = 0$$

Figura 14: Aproximação de $f(x) = \frac{x^3}{2}$ por uma linha recta

Obtem-se assim o sistema de equações:

$$\begin{cases} \frac{\partial I(a,b)}{\partial a} = 2\int_{-1}^{2} \left(\frac{x^3}{2} - ax - b\right)(-x)dx = 0\\ \frac{\partial I(a,b)}{\partial b} = \int_{-1}^{2} \left(\frac{x^3}{2} - ax - b\right)(-1)dx = 0 \end{cases}$$

$$\begin{cases} \int_{-1}^{2} (ax^{2} + bx) dx = \int_{-1}^{2} \frac{x^{4}}{2} dx \\ \int_{-1}^{2} (ax + b) dx = \int_{-1}^{2} \frac{x^{3}}{2} dx \end{cases}$$

Efectuando os cálculos obtem-se finalmente:

$$\begin{cases} 3a + \frac{3}{2}b = \frac{33}{20} \\ \frac{3}{2}a + 3b = \frac{15}{8} \end{cases} \qquad \begin{cases} a = \frac{21}{10} \\ b = \frac{1}{10} \end{cases}$$

A figura 14 ilustra a resolução do problema.

7 Integração numérica

Exercícios resolvidos

Exemplo 7.1 Deduza uma fórmula de integração com a forma seguinte:

$$\int_{-\frac{3}{2}}^{\frac{3}{2}} f(x)dx = A_0 f(-1) + A_1 f(-\frac{1}{2}) + A_2 f(\frac{1}{2}) + A_3 f(1)$$

Com essa fórmula calcule:

$$I = \int_{-\frac{3}{2}}^{\frac{3}{2}} \sqrt{e^x} dx$$

Resolução

Pretendendo-se uma fórmula com quatro pontos, considerando para f(x) monómios da forma $f(x) = x^k$, (k = 0, 1, 2, 3):

$$\int_{-\frac{3}{2}}^{\frac{3}{2}} 1 dx = 3$$

$$\int_{-\frac{3}{2}}^{\frac{3}{2}} x dx = 0$$

$$\int_{-\frac{3}{2}}^{\frac{3}{2}} x^2 dx = \frac{9}{4}$$

$$\int_{-\frac{3}{2}}^{\frac{3}{2}} x^3 dx = 0$$

Obtem-se o seguinte sistema de equações lineares:

$$\begin{cases}
A_0 + A_1 + A_2 + A_3 = 3 \\
-A_0 - \frac{1}{2}A_1 + \frac{1}{2}A_2 + A_3 = 0 \\
A_0 + \frac{1}{4}A_1 + \frac{1}{4}A_2 + A_3 = \frac{9}{4} \\
-A_0 - \frac{1}{8}A_1 + \frac{1}{8}A_2 + A_3 = 0
\end{cases}$$

A solução deste sistema é:

$$A_0 = 1$$
 $A_1 = 0.5$ $A_2 = 0.5$ $A_3 = 1$

A fórmula de integração procurada será portanto:

$$\int_{-\frac{3}{2}}^{\frac{3}{2}} f(x)dx = f(-1) + \frac{1}{2} \times f(-0.5) + \frac{1}{2} \times f(0.5) + f(1)$$

Trata-se de uma fórmula exacta para todos os polinómios de grau ≤ 3 , que aplicada à função dada conduz ao seguinte resultado.

$$I = \int_{-\frac{3}{2}}^{\frac{3}{2}} \sqrt{e^x} dx = \sqrt{e^{-1}} + \frac{1}{2} \times \sqrt{e^{-0.5}} + \frac{1}{2} \times \sqrt{e^{0.5}} + \sqrt{e^1} = 3.2867$$

Refira-se que, para este exemplo simples, se pode calcular directamente o valor do integral pelo Teorema Fundamental do Cálculo, e esse valor é:

$$\int_{-\frac{3}{2}}^{\frac{3}{2}} \sqrt{e^x} dx = 3.2893$$

Figura 15: Cálculo do integral $I = \int_{-\frac{3}{2}}^{\frac{3}{2}} \sqrt{e^x} dx$

Verifica-se que o valor aproximado não difere muito do valor exacto, sendo a fórmula com quatro pontos bastante precisa.

Exemplo 7.2 Considere o integral:

$$I = \int_{1}^{3} x(\ln x)^{2} dx$$

Determine o número de sub-intervalos que é necessário utilizar na regra dos trapézios composta, para calcular I com um erro inferior a 5×10^{-3} .

Realize o seu cálculo por essa mesma regra com n = 10.

Resolução

O erro na regra dos trapézios composta é dado por:

$$E_n(f) = -\frac{n \cdot h^3}{12} f''(\eta) \qquad \qquad \eta \in [a, b]$$

É, assim, necessário calcular a segunda derivada da função integranda.

$$f(x) = x(\ln x)^2$$
 $f''(x) = \frac{2}{x}(1 + \ln x)$

$$\max_{1 \le x \le 3} \left| \frac{2}{x} (1 + \ln x) \right| = 2$$

Como nh = b - a = 3 - 1 = 2, obtem-se a desigualdade:

$$\frac{2h^2}{12} \times 2 < 0.005 \qquad \qquad h < 0.122$$

De que resulta a necessidade de 17 sub-intervalos. $(\frac{2}{0.122}=16.3)$

O cálculo de I pela regra dos trapézios composta, com n=10, apresenta-se a seguir (h=0.2):

i	x_i	$f(x_i)$
0	1.0	0.0
1	1.2	0.0399
2	1.4	0.1585
3	1.6	0.3534
4	1.8	0.6219
5	2.0	0.9609
6	2.2	1.3677
7	2.4	1.8395
8	2.6	2.3738
9	2.8	2.9683
10	3.0	3.6208

Pelo que:

$$\int_{1}^{3} x(\ln x)^{2} dx \approx \frac{0.2}{2} \left[f(1.0) + f(3.0) \right] + 0.2 \sum_{i=1}^{9} f(x_{i}) = 2.499$$

Refira-se que, a avaliar pelo número de sub-intervalos que é necessário utilizar para obter um resultado com um erro inferior a 5×10^{-3} , nem todos os algarismos do resultado obtido são precisos.

Exemplo 7.3 Calcular pela regra de Simpson composta, com n = 10 e 5 casas decimais, o integral I:

$$I = \int_{0.5}^{2} x e^{-x} dx$$

Faça uma estimativa do erro do resultado obtido pela aplicação dessa regra.

Resolução

Tem-se
$$n = 2m = 10$$
 e $h = (2.0 - 0.5)/10 = 0.15$.

Vai utilizar-se a forma da regra de Simpson composta, simplificada:

$$I \cong \frac{h}{3}[f(x_0) + f(x_n) + 4\sigma_1 + 2\sigma_2]$$

Pode então construir-se a seguinte tabela de valores

i	x_i	$f(x_{2j-1})$	$f(x_{2j})$
0	0.5		0.30327
1	0.65	0.33933	
2	0.8		0.35946
3	0.95	0.36740	
4	1.1		0.36616
5	1.25	0.35813	
6	1.4		0.34524
7	1.55	0.32898	
8	1.7		0.31056
9	1.85	0.29089	
10	2.0		0.27067

Deste modo $\sigma_1=1.68473$ e $\sigma_2=1.38142,$ resultando

$$I \cong \frac{h}{3}[f(x_0) + f(x_n) + 4\sigma_1 + 2\sigma_2] = 0.50379$$

Calcule-se agora o erro do resultado anterior.

No exemplo em estudo, a função integranda é:

$$f(x) = xe^{-x}$$

Sendo necessária a quarta derivada, obtem-se para seu valor:

$$f^{(IV)}(x) = (x-4)e^{-x}$$

Aplique-se agora a expressão do erro na regra de Simpson composta.

$$E_n(f) = -\frac{n \cdot h^5}{180} f^{(4)}(\eta) \qquad \eta \in [a, b]$$

$$\max_{0.5 \le x \le 2} |f^{(4)}(x)| = \max_{0.5 \le x \le 2} |(x-4)e^{-x}| = 2.123$$

Assim, como nh = 1.5:

$$|E_n(f)| \le 1.5 \times \frac{h^4}{180} \times 2.123 \simeq 9.0 \times 10^{-6}$$

O valor de I será então dado por:

$$I = 0.50379 \pm 0.00001$$

Exemplo 7.4 Calcule pela regra de Gauss com n = 5 e 6 casas decimais, o integral I:

$$I = \int_{1}^{3} \sqrt{x^2 + \ln x} dx$$

Resolução

Como a tabela com as regras de Gauss está definida para os polinómios de Legendre, no intervalo [-1,+1] é necessário efectuar a sua generalização.

Considere-se o integral genérico:

$$\int_{a}^{b} f(x)dx$$

Pode realizar-se a mudança de variável seguinte,

$$x = \frac{b+a}{2} + \frac{b-a}{2}t, \qquad dx = \frac{b-a}{2}dt$$

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \int_{-1}^{+1} f\left(\frac{b+a}{2} + \frac{b-a}{2}t\right) dt$$

Aplicando agora a regra de Gauss, tem-se:

$$\int_{a}^{b} f(x)dx = \frac{b-a}{2} \sum_{i=1}^{n} A_{i}f(x_{i})$$

$$x_i = \frac{b+a}{2} + \frac{b-a}{2}t_i$$
 $i = 1, 2, \dots, n$

Os valores da variável t_i são os zeros dos polinómios de Legendre $P_n(x)$ que figuram na tabela das fórmulas de Gauss-Legendre.

Aplicando ao integral I tem-se a = 1 e b = 3. Assim:

$$x_i = \frac{3+1}{2} + \frac{3-1}{2}t = 2 + t_i$$

$$x_1 = 2 + t_1 = 1.093820$$
 $x_2 = 2 + t_2 = 1.461531$

$$x_3 = 2 + t_3 = 2.000000$$
 $x_4 = 2 + t_4 = 2.538469$

$$x_5 = 2 + t_3 = 2.906180$$

Pode assim construir-se a seguinte tabela de valores:

i	x_i	$f(x_i)$
1	1.093820	1.134072
2	1.461531	1.586051
3	2.000000	2.166367
4	2.538469	2.715766
5	2.906180	3.084270

Que permite obter directamente o valor do integral a partir dos coeficientes A_i , da tabela das fórmulas de Gauss-Legendre.

$$I = \frac{b-a}{2} \sum_{i=1}^{5} A_i f(x_i) = 0.236927 \times 1.134072 + 0.478629 \times 1.586051$$

 $+0.568889 \times 2.166367 + 0.478629 \times 2.715766 + 0.236927 \times 3.084270$

=4.290836

8 Equações diferenciais ordinárias

Exercícios resolvidos

Exemplo 8.1 Considere-se o problema de valor inicial seguinte:

$$y' = y - x,$$
 $0 \le x \le 1,$ $y(0) = \frac{1}{2}$

Calcule-se a sua solução aproximada pelo método de Euler, com passos h=0.1 e h=0.01, neste último caso apresentando só os resultados de 10 em 10 cálculos.

Resolução

A solução desta equação diferencial linear de primeira ordem, para as condições iniciais dadas é, $y(x) = -0.5e^x + x + 1$, o que permitirá comparar os resultados aproximados obtidos com essa solução exacta.

Tem-se então pelo método de Euler (Taylor de primeira ordem):

$$y_{i+1} = y_i + hT_k(x_i, y(x_i))$$
 $i = 0, 1, \dots, n-1$

$$y_{i+1} = y_i + h(f(x_i, y_i)) = y_i + h(y_i - x_i)$$

A tabela seguinte apresenta os resultados aproximados obtidos para o passo h=0.1, bem como a sua comparação com a solução exacta y(x).

i	x_i	y_i	y(x)	$\varepsilon = y(t_i) - y_i $
0	0.0	0.5	0.5	0.0
1	0.1	0.55	0.5474	0.0026
2	0.2	0.595	0.5893	0.0057
3	0.3	0.6345	0.6251	0.0094
4	0.4	0.6680	0.6541	0.0139
5	0.5	0.6947	0.6756	0.0191
6	0.6	0.7142	0.6889	0.0253
7	0.7	0.7256	0.6931	0.0325
8	0.8	0.7282	0.6872	0.0410
9	0.9	0.7210	0.6702	0.0508
10	1.0	0.7031	0.6409	0.0622

A tabela que se segue apresenta os resultados aproximados obtidos para o passo h=0.01, mas apenas de 10 em 10 pontos, bem como a sua comparação, nesse pontos, com a solução exacta y(x).

i	x_i	y_i	y(x)	$\varepsilon = y(t_i) - y_i $
0	0.0	0.5	0.5	0.0
10	0.1	0.5477	0.5474	0.0003
20	0.2	0.5899	0.5893	0.0006
30	0.3	0.6261	0.6251	0.0010
40	0.4	0.6556	0.6541	0.0015
50	0.5	0.6777	0.6756	0.0021
60	0.6	0.6917	0.6889	0.0028
70	0.7	0.6966	0.6931	0.0035
80	0.8	0.6916	0.6872	0.0044
90	0.9	0.6757	0.6702	0.0055
100	1.0	0.6476	0.6409	0.0067

Analisando os dois quadros, verifica-se que o erro da aproximação aumenta quando se avança no intervalo de 0 para 1, e que esse erro é muito maior no caso do passo h=0.1 relavimente ao passo h=0.01. O método de Euler é muito sensível ao tamanho do passo utilizado no cálculo da solução aproximada.

Exemplo 8.2 Determine majorantes para o erro cometido ao resolver pelo método de Euler, o problema anterior (exemplo 8.1), com passos h=0.1 e h=0.01.

Resolução

Para o problema de valor inicial do exemplo 7.1, tem-se f(x,y) = y - x e a solução exacta é, $y(x) = -0.5e^x + x + 1$.

Nestas condições:

$$\frac{\partial f}{\partial y} = 1 \qquad \qquad y''(x) = -0.5e^x$$

Como se pretende uma constante L tal que $|f_y(x,y)| \le L$, pode considerarse L=1 e tem-se no intervalo $[0,1], |y''(x)| \le |0.5e^1| \cong 1.359...$

Assim pode tomar-se para K o valor K = 1.36.

Nestes termos para encontrar um majorante para o erro que se comete no extremo do intervalo, em x = 1, onde esse erro é maior, pode escrever-se $x_i - x_0 = 1$ e, pela expressão do erro no método de Euler, obtem-se:

$$|\varepsilon| \le \frac{h \times 1.36}{2 \times 1} \left(e^{1(1-0)} - 1 \right) \le 1.168h$$

Para os dois passos considerados obtêm-se os seguintes valores:

h	ε	
0.1	0.117	
0.01	0.012	

Valores perfeitamente compatíveis com os constantes das duas tabelas com os resultados do método de Euler para h=0.1 e h=0.01.

Exemplo 8.3 Considere-se o problema de valor inicial:

$$y' = \frac{y}{2} + x$$
, $-1 \le x \le 1$, $y(-1) = 1$

Determine a sua solução aproximada pelo método de Taylor de segunda ordem, com passo h = 0.2.

Resolução

A solução desta equação diferencial linear de primeira ordem, para as condições iniciais dadas é a que se segue e que permitirá comparar os resultados aproximados obtidos com a solução exacta.

$$y(x) = 3e^{\frac{1}{2}}e^{\frac{1}{2}x} - 2x - 4$$

Tem-se então pelo método de Taylor de segunda ordem:

$$y_{i+1} = y_i + hT_k(x_i, y(x_i))$$
 $i = 0, 1, \dots, n-1$

$$y_{i+1} = y_i + h\left[f + \frac{h}{2!}f'\right] = y_i + 0.2\left[f + \frac{0.2}{2!}f'\right]$$

$$f'(x,y) = f_x + f_y f = 1 + \frac{1}{2} \left(\frac{y}{2} + x \right) = 1 + \frac{y}{4} + \frac{x}{2}$$

Pelo que:

$$y_{i+1} = y_i + 0.2\left(\frac{y_i}{2} + x_i\right) + \frac{0.2^2}{2}\left(1 + \frac{y_i}{4} + \frac{x_i}{2}\right)$$
$$= 1.105y_i + 0.21x_i + 0.002$$

A tabela seguinte apresenta os resultados aproximados obtidos, bem como a sua comparação com a solução exacta, ver figura 16.

i	x_i	y_i	$y(t_i)$	$\varepsilon = y(t_i) - y_i $
0	-1.0	1.0	1.0	0.0
1	-0.8	0.9150	0.9155	0.0005
2	-0.6	0.8631	0.8642	0.0011
3	-0.4	0.8477	0.8496	0.0019
4	-0.6	0.8727	0.8756	0.0029
5	0.0	0.9423	0.9462	0.0039
6	0.2	1.0612	1.0664	0.0052
7	0.4	1.2346	1.2413	0.0067
8	0.6	1.4682	1.4766	0.0084
9	0.8	1.7684	1.7788	0.0104
10	1.0	2.1421	2.1548	0.0127

Note-se que o erro deste método iterativo, $\varepsilon = |y(x_i) - y_i|$, cresce desde -1, início do intervalo no qual se define a condição inicial, até ao outro extremo do intervalo, em 1. Pode-se, entretanto verificar que esse erro é muito menor que o verificado no método de Euler com passo h = 0.1, mesmo utilizando neste caso um passo maior, h = 0.2.

O método de Taylor de segunda ordem é um método de resolução aproximada de equações diferenciais ordinárias com uma precisão elevada, ao contrário do que sucede com o método de Euler, em que para se obter uma precisão elevada tem que se utilizar um passo muito curto, o que implica a necessidade de muitos cálculos.

Figura 16: Método de Taylor de segunda ordem para $y'=\frac{y}{2}+x$

Exemplo 8.4 Determine a solução aproximada, pelo método de Runge-Kutta de segunda ordem, com o mesmo passo h = 0.2, do problema de valor inicial anterior (exemplo 8.3).

Resolução

A aplicação à equação diferencial linear de primeira ordem, para as condições iniciais dadas, do método de Runge-Kutta de ordem 2, é a que se segue, sendo também efectuada a comparação dos resultados aproximados obtidos com a solução exacta.

$$y_{i+1} = y_i + \frac{1}{2}(K_1 + K_2),$$
 $K_1 = hf(x_i, y_i),$ $K_2 = hf(x_i + h, y_i + K_1)$

$$K_1 = 0.2 \left(\frac{y_i}{2} + x_i\right)$$
 $K_2 = 0.2 \left(\frac{y_i + K_1}{2} + x_i + 0.2\right)$

A tabela seguinte apresenta os resultados aproximados obtidos, bem como a sua comparação com a solução exacta.

i	x_i	y_i	K_1	K_2	$y(t_i)$	$\varepsilon = y(t_i) - y_i $
0	-1.0	1.0	-0.1	-0.07	1.0	0.0
1	-0.8	0.9150	-0.0685	-0.0354	0.9155	0.0005
2	-0.6	0.8631	-0.0337	0.0029	0.8642	0.0011
3	-0.4	0.8477	0.0048	0.0453	0.8496	0.0019
4	-0.2	0.8728	0.0473	0.0920	0.8756	0.0028
5	0.0	0.9425	0.0943	0.1437	0.9462	0.0037
6	0.2	1.0615	0.1462	0.2008	1.0664	0.0049
7	0.4	1.2350	0.2035	0.2639	1.2413	0.0063
8	0.6	1.4687	0.2669	0.3336	1.4766	0.0079
9	0.8	1.7690	0.3369	0.4106	1.7788	0.0098
10	1.0	2.1428			2.1548	0.0120

Como se pode verificar, comparando as tabelas dos resultados dos métodos de Taylor de segunda ordem (Exemplo 8.3) e Runge-Kutta de ordem 2 (Exemplo 8.4), a precisão de ambos é semelhante e elevada. O erro no fim do último

passo do intervalo da solução é, no primeiro método de $\varepsilon = |y(x_i) - y_i| = 0.0127$ e no segundo método de $\varepsilon = |y(x_i) - y_i| = 0.0120$.

Exemplo 8.5 Considere o problema de valor inicial seguinte:

$$y' = \frac{y}{2} - \frac{3}{2}x$$
, $0 \le x \le 2$, $y(0) = 2$

Determine a sua solução aproximada pelo método de Adams-Moulton com três passos e h=0.1.

Resolução

A solução exacta deste problema de valor inicial, para as condições dadas, que permitirá fazer a comparação com os resultados aproximados obtidos é:

$$y(x) = -4e^{\frac{1}{2}x} + 3x + 6$$

Por sua vez a expressão do método de Adams-Moulton com três passos é:

$$y_{i+1} = y_i + \frac{h}{24}(9f_{i+1} + 19f_i - 5f_{i-1} + f_{i-2})$$

Nestes termos existe a necessidade de utilizar um método auxiliar para obter os valores aproximados da solução, nos três primeiros pontos. Nada sendo dito sobre esse método auxiliar, utilizar-se-á, em primeiro lugar, o método de Euler, por ser o mais simples.

Para o problema em estudo a expressão do método de Euler, que permite obter os valores em $x_1=0.1$ e $x_2=0.2$ (em x_0 o valor é dado pela condição inicial $y_0=2$), será então:

$$y_{i+1} = y_i + 0.1 \left(\frac{y_i}{2} - \frac{3}{2} x_i \right)$$

Por outro lado tendo em atenção que $0 \le x \le 2$, pode escrever-se:

$$x_i = 0 + hi = 0.1i$$
 $x_{i+1} = 0.1i + 0.1$ $x_{i-1} = 0.1i - 0.1$ $x_{i-2} = 0.1i - 0.2$

Assim, realizando as substituições necessárias, a expressão do método de Adams-Moulton com três passos será:

$$y_{i+1} = y_i + \frac{0.1}{24} \left[9\left(\frac{y_{i+1}}{2} - \frac{3}{2}x_{i+1}\right) + 19\left(\frac{y_i}{2} - \frac{3}{2}x_i\right) - 5\left(\frac{y_{i-1}}{2} - \frac{3}{2}x_{i-1}\right) + \left(\frac{y_{i-2}}{2} - \frac{3}{2}x_{i-2}\right) \right]$$

$$y_{i+1}\left(1 - \frac{0.9}{48}\right) = y_i\left(1 + \frac{1.9}{48}\right) - \frac{0.5}{48}y_{i-1} + \frac{0.1}{48}y_{i-2} - 0.015i - 0.0075$$

Explicitando y_{i+1} ,

$$y_{i+1} = \frac{1}{0.98125} \left(1.03958y_i - 0.01042y_{i-1} + 0.00208y_{i-2} - 0.015i - 0.0075 \right)$$

A tabela seguinte apresenta os resultados aproximados obtidos, bem como a sua comparação com a solução exacta.

i	x_i	Adams-Moulton	$y(t_i)$	Erro (ε)
0	0.0	2.0	2.00000	-
1	0.1	2.10	2.09492	0.00508
2	0.2	2.190	2.17932	0.01068
3	0.3	2.26391	2.25266	0.01125
4	0.4	2.32618	2.31439	0.01179
5	0.5	2.37627	2.36390	0.01237
6	0.6	2.41354	2.40057	0.01297
7	0.7	2.43735	2.42373	0.01362
8	0.8	2.44699	2.43270	0.01429
9	0.9	2.44175	2.42675	0.01500
10	1.0	2.42086	2.40512	0.01574
11	1.1	2.38352	2.36699	0.01653
12	1.2	2.32887	2.31153	0.01734
13	1.3	2.25605	2.23784	0.01821
14	1.4	2.16411	2.14499	0.01912
15	1.5	2.05208	2.03200	0.02008
16	1.6	1.91893	1.89784	0.02109
17	1.7	1.76356	1.74141	0.02215
18	1.8	1.58485	1.56159	0.02326
19	1.9	1.38160	1.35716	0.02444
20	2.0	1.15255	1.12687	0.02568

Note-se a elevada precisão dos resultados obtidos, mesmo utlizando como método auxiliar para obter os valores da solução aproximada nos três primeiros pontos, o método de Euler, que é relativamente pouco preciso.

Se em vez deste, se utilizasse como método auxiliar, um método mais preciso, como por exemplo o de Runge-Kutta de segunda ordem, os resultados seriam ainda muito mais precisos.

Considere-se então este método, para esse efeito.

$$y_{i+1} = y_i + \frac{1}{2}(K_1 + K_2)$$

$$K_1 = 0.1\left(\frac{y_i}{2} - \frac{3}{2}x_i\right) \qquad K_2 = 0.1\left(\frac{y_i + K_1}{2} + \frac{3}{2}(x_i + 0.1)\right)$$

A tabela seguinte apresenta os resultados aproximados obtidos, utilizando o método de Runge-Kutta de segunda ordem como método auxiliar, bem como a sua comparação com a solução exacta.

i	x_i	Adams-Moulton	$y(t_i)$	Erro (ε)
0	0.0	2.0	2.00000	-
1	0.1	2.09500	2.09492	0.00008
2	0.2	2.17950	2.17932	0.00018
3	0.3	2.25284	2.25266	0.00018
4	0.4	2.31455	2.31439	0.00016
5	0.5	2.36404	2.36390	0.00014
6	0.6	2.40069	2.40057	0.00012
7	0.7	2.42384	2.42373	0.00011
8	0.8	2.43279	2.43270	0.00009
9	0.9	2.42682	2.42675	0.00007
10	1.0	2.40516	2.40512	0.00004
11	1.1	2.36702	2.36699	0.00003
12	1.2	2.31153	2.31153	0.00000
13	1.3	2.23782	2.23784	0.00002
14	1.4	2.14494	2.14499	0.00005
15	1.5	2.03193	2.03200	0.00007
16	1.6	1.89774	1.89784	0.00010
17	1.7	1.74129	1.74141	0.00012
18	1.8	1.56144	1.56159	0.00015
19	1.9	1.35699	1.35716	0.00017
20	2.0	1.12668	1.12687	0.00019

Bibliografia

- [1] Asaithambi, N. S. Numerical Analysis, Theory and Pratice, Sounders College Publishing, 1995.
- [2] Atkinson, K. E. An Introduction to Numerical Analysis, John Wiley, 1989.
- [3] Conte, S. D. e De Boor, C. *Elementary Numerical Analysis*, McGraw-Hill, 1980.
- [4] Pina, Heitor L. G. Métodos Numéricos, Escolar Editora, 2010.
- [5] Ralston, A. e Rabinowitz P. A First Course in Numerical Analysis, McGraw-Hill, 1978.
- [6] Valente, F. P. Análise Numérica, Livro de texto, Edição do Instituto Politécnico da Guarda, 2015.
- [7] Valente, F. P. Análise Numérica, Tópicos e Problemas, Coleção Politécnico da Guarda, Edição do Instituto Politécnico da Guarda, 2018.