entres at: ★ mukherjee nagar ★ munirka ★uttam nagar ★ dilshad garden ★ rohini ★narela

Mock Test - 11

1.(A)
$$\frac{\sqrt{7}}{\sqrt{16+6\sqrt{7}}-\sqrt{16-6\sqrt{7}}}$$

$$\Rightarrow \frac{\sqrt{7}}{\sqrt{(3+\sqrt{7})^2} - \sqrt{(3-\sqrt{7})^2}}$$
$$\Rightarrow \frac{\sqrt{7}}{3+\sqrt{7}-3+\sqrt{7}} \Rightarrow \frac{\sqrt{7}}{2\sqrt{7}} = \frac{1}{2}$$

2.(C)
$$\sqrt{5}$$
, $\sqrt[3]{4}$, $\sqrt[5]{2}$, $\sqrt[7]{3}$

L.C.M. of 2,3,5, and 7 = 210

$$\sqrt{5} = 2 \times 105 \sqrt{5^{105}} = 210 \sqrt{5^{105}}$$

$$\sqrt[3]{4} = \sqrt[3 \times 70]{4^{70}} = 210\sqrt[3]{4^{70}}$$

$$\sqrt[5]{2} = 5 \times 42 \sqrt{2^{42}} = 210 \sqrt{2^{42}}$$

$$\sqrt{3} = 7 \times 30 \sqrt{3^{30}} = 210 \sqrt{3^{10}}$$

Largest number = $210\sqrt{5^{105}}$ = $\sqrt{5}$ Ans.

3.(C) Let the digit at Ten's place = z

$$N = 100x + 10z + y$$

$$N - 100x - y = 10z$$

N - 100x - y is divisible by 10.

4.(A) $m = n^2 - n$

$$m = n (n - 1)$$

$$m^2 - 2m = m(m - 2)$$

$$= n (n-1) \times (n^2 - n - 2)$$

$$= n(n-1) (n-2) \times (n+1)$$

Now, for n = 3

$$m^2 - 2m = (3 - 1)(3 + 1)(3 - 2)$$

= 24

 $m^2 - 2m$ is divisible by 24. Ans.

5.(D) Let the two digits number be 10x + y.

two digits number in reverse order

$$= 10y + x$$

According to question,

$$\Rightarrow$$
 10 × 2x + $\frac{y}{2}$ = 10y + x

$$\Rightarrow 20x - x = 10y - \frac{y}{2}$$

$$\Rightarrow$$
 19x = $\frac{19y}{2}$

$$\Rightarrow \quad \frac{x}{y} = \frac{1}{2}$$

Unit's digit is two times the ten's digits. Ans.

6.(C) Let P & Q be any number say, P = 17, Q = 9. Again, let divisor = 5

Clearly,
$$r_1 \implies 5$$
) 17 (3
 $\Rightarrow r_1 = 2$
Also,
$$\begin{array}{c} -\frac{15}{2} \\ -\frac{5}{4} \end{array}$$
 $\begin{array}{c} P + Q = 26 \\ 5) 26 (5 \\ -\frac{25}{1} \\ r_2 = 1 \end{array}$

$$1$$
 $r = 1$

$$\Rightarrow$$
 $r_2 = 4$

Divisor =
$$5 = R_1 + R_2 - R_3$$

 $5 = 2 + 4 - 1 = 5$ Ans.

7.(B) Let the two digits number be A & B According to question,

$$35\%$$
 of A + B = 120% of B

$$\Rightarrow$$
 35 A = 20 B

$$\Rightarrow \frac{A}{B} = \frac{20}{35} = \frac{4}{7} \Rightarrow 4:7$$

8.(D) Let the five numbers be x, y, z, u, and v.

According to question,

$$\Rightarrow$$
 x + y + z + 6 = u + v(1)

$$\Rightarrow$$
 x + y + z = 2u v(2)

From (1) & (2)

$$2 u + 6 = u + v$$

$$v - u = 6$$

Neither u nor v can be calculated with the help of the above relation

- : Data inadequate. Cases could be many.
- 9.(C) Number of different ways in which 4 boys & 2 girls can be seated.

$$= 6! = 720$$

When two girls seat together,

No. of arrangements = $5! \times 2 = 240$

No. of arrangements when girls do not seat = 720 - 240 = 480. Ans. together

10.(B) Let the cost of 1 orange = Rs. x

Let the cost of 1 apple = Rs. 1.75xNow,

$$\Rightarrow \frac{40}{1.75x} + \frac{16}{x} = 14$$

$$\Rightarrow$$
 40 + 16 × 1.75 = 14 × 1.75 × x.

$$\Rightarrow$$
 40 + 28 = 24.5x

$$\Rightarrow$$
 x = Rs. $\frac{68}{24.5}$

cost of 1 apple =
$$\frac{1.75 \times 68}{24.5}$$

An ISO 9001: 2008 Certified Company

Centres at: ★ mukherjee nagar ★ munirka ★ uttam nagar ★ dilshad garden ★ rohini ★ narela

11. (B)

Atleast 67 electronic graduates should be there to fulfill the conditions given in the question.

12. (C) Cost of painting on Monday = Rs. x

Cost of painting on Tuesday = Rs. x + 3y

Cost of painting on Wednesday = Rs. x + 2y

Cost of painting on Thursday = Rs. x + y

Cost of painting on Friday = Rs. x + 2y

Average daily earning = $\frac{5x + 8y}{5}$

$$= x + \frac{8}{5}y \text{ Ans.}$$

13. (B)	Sugar	Water		Sugar		Water
1st Solution	15	85	⇒	3	:	17
2nd Solution	5	95		1	:	19
Desired Solution	on			1	:	9

By Allegation:-

∴ 20 ltr of 1st solution must be mixed with equal quantity of 2nd solution to make sugar 10% in total mixture

∴ 20 ltr. Ans.

14. (A) Milk Water

15. (A)
$$S_n = \frac{a(r^n - 1)}{r - 1}$$

a = first term

r = Common ratio

n = Number of terms

 t^n = last term

$$1022 = \frac{2(2^n - 1)}{2 - 1}$$

$$511 = 2^{n}-1$$

 $2^{n} = 512$
 $2^{n} = 2^{10}$

 \therefore n = 10 Ans.

16.(C)

Largest 3 digit numbers divisible by 7 = 994 Smallest 3 digit number divisible by 7 = 105

umber of terms =
$$\frac{994 - 105}{7} + 1$$

= 127 + 1= 128

Sum =
$$\frac{n}{2}$$
 [first term + last term]

$$=\frac{128}{2}[994+105]$$

 \Rightarrow 70336 Ans.

17.(A)

Sita : Neeta : Ramesh

For 1st 6 months 45000×6

For next 6 months 45000×6 80000×6

For next 12 months $45000 \times 12 80000 \times 12 120000 \times 12$

3 . 4 . 4

60 24 108 80

A's share of rent = Rs. 1020 = 60 unit

 $\therefore 108 \text{ units} = \frac{1020}{60} \times 108$

C's rent = 1836 Rs. Ans.

19.(B)

Difference between C.I. and S.I. for 3ys Difference between C.I. & S.I. for 2 yrs

$$= \frac{P\left[\frac{r^3}{100^3} + \frac{3r^3}{100^2}\right]}{\frac{Pr^2}{100^2}}$$

$$\frac{\Pr^2}{100^2} \left[\frac{r}{100} + 3 \right]$$

$$\frac{\Pr^2}{100^2}$$

An ISO 9001: 2008 Certified Company

entres at: ★ mukherjee nagar ★ munirka ★uttam nagar ★ dilshad garden ★ rohini ★narela

$$\Rightarrow \frac{25}{8} = \frac{r}{100} + 3$$

$$\therefore \frac{1}{8} = \frac{r}{100}$$

$$r = 12.5\%$$

$$= 12\frac{1}{2}\% \text{ Ans.}$$

$$20.(C) \qquad \frac{PR_1T_1}{100} = \frac{PR_2T_2}{100}$$

$$8n = 7\left(n - \frac{1}{2}\right)$$

$$\Rightarrow$$
 n = 3.5 ATQ,

$$\frac{P \times 8 \times 3.5}{100} + P = 2560$$

$$\Rightarrow$$
 P = 2000 Ans.

21.(A)
$$P = \frac{100 \times S.I.}{R \times T}$$

= $\frac{900 \times 100}{3 \times 6}$ = Rs. 5000 Ans.

Now:-

C.I. - S.I. =
$$P\left[\frac{r^3}{100^3} + \frac{3r^2}{100^2}\right]$$

$$= 5000 \left[\frac{6^3}{100^3} + \frac{3 \times 6^2}{100^2} \right]$$

$$= Rs. 55$$

22.(A)
$$a = \sqrt{2}$$
 $r = \sqrt{2}$

$$S_{10} = \frac{a(r^n - 1)}{r - 1} \implies \frac{\sqrt{2}(\sqrt{2}^{10} - 1)}{\sqrt{2} - 1}$$

$$= \frac{\sqrt{2}(31)}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1}$$

$$\Rightarrow \frac{\sqrt{2}(31)(\sqrt{2}+1)}{1} \Rightarrow 31(2+\sqrt{2})$$

23.(A)

Let 'a' & 'b' be the two numbers

We have,
$$\sqrt{ab} = \frac{4}{5} \left(\frac{a+b}{2} \right)$$

$$\Rightarrow 5\sqrt{ab} = 2(a+b)$$

Squaring both sides

$$25 ab = 4a^2 + 8ab + 4b^2$$

$$\Rightarrow 4x^2 - 17ab + 4b^2 = 0$$

the factors of which are (a - 4b) (4a - b) = 0

(i)
$$a - 4b = 0 \implies \frac{a}{b} = \frac{4}{1}$$

(ii)
$$4a - b = 0 \implies \frac{a}{b} = \frac{1}{4}$$

$$a:b=1:4$$
 Ans.

24.(A) Relative speed = (60 + 6) km/hr

$$= 66 \times \frac{5}{18} = \frac{55}{3} m / sec.$$

Distance = 110 m

$$\therefore \text{ Time} = \frac{110}{55} \times 3 = 6 \text{ sec. Ans}$$

25(A) S.P. of scooter at Abhishek's shop

= Rs. 25,200

S.P. of Bhanu's shop

$$= Rs. [17,600 + 7360]$$

Required Difference = Rs. [25,200 – 24,960]

26(A) Let C.P of each Camera = Rs. 100

1st Case

2nd Case

Rs. 12 @ 20% Profit & Rs. 8 @ 10% profit

All @ 15% Profit

Rs. 1200 @ 20% of profit & Rs. 800 @ 10% profit

Profit Rs. 240

Rs. 80

Total Rs. 320

Rs. 300

Diff. Rs. 20

but Actual diff =

∴ Actual C.P. =
$$\frac{36}{20} \times 100$$
 = Rs. 180 /each

27(A) Let x litres of water added to the solution. According to question:-

$$4\% \text{ of } (10 + x) = 1$$

$$x = \frac{100}{4} - 10$$

= 15 litres Ans.

28(B) Let the total number of workers = xAccording to question:-

20% of 75% of x + 80% of 25% of x = 126

$$\Rightarrow \frac{20 \times 75 \times x}{100 \times 100} + \frac{80 \times 25 \times x}{10 \times 100} = 126$$

$$\therefore x = \frac{126 \times 100 \times 100}{(1500 + 2000)}$$

= Rs. 360 Ans.

An ISO 9001: 2008 Certified Company

Centres at: ★ mukherjee nagar ★ munirka ★ uttam nagar ★ dilshad garden ★ rohini ★ narela

29. (B) Let single ticket = Rs. x

Return ticket = Rs.
$$\frac{5x}{4}$$

$$105\% \text{ of } \frac{5x}{4} = 84$$

$$x = \frac{84 \times 4 \times 4}{5 \times 105} = Rs. 64$$

30 (D) Ratio of the students in the states A & C appearing for exam in 1998

$$= 3:6 = 1:2$$

As the increment in the next year is same for the student of both the states.

- ∴ The no. of students who appeared in the state A in 1998 are = any one of them 3, 6, 9, 12 etc.
- .. Data inadequate. Ans.
- 31(C) Let the no. of children be n.

No. of note books each child have = $\frac{1}{8}$ n ATO,

$$\frac{1}{2}n \times 16 = n \times \frac{1}{8}n$$

$$8n = \frac{n^2}{8}$$

$$n = 64$$

No. of note books distributed

$$= 64 \times \frac{1}{8} \times 64 = 512 \text{ Ans.}$$

- 32. Data Insufficient
- 33. Total Price of component = Rs. 50,000 Expected rejection = 5% = Rs. 2,500

Remaining = Rs. 47,500 = C.P. + 25% Profit C.P. = Rs. 38,000

But, 50% goods rejected, so he was paid 50% of 50,000 i.e. Rs. 25,000

So, Loss = Rs. 38000 - Rs. 25,000 = Rs. 13,000 Ans.

34.(D) 10 M + 15 W = 6 days

60 M + 90 W = 100 M

$$4M = 9W$$

$$IM = \frac{9}{4}W$$

10 M =
$$\frac{45}{2}$$
 W

$$\frac{45}{2}$$
W + 15 W = 6 days

or,
$$\frac{75}{2}$$
 W = 6 days
1 W = Rs. 225 days

35.(D) Suppose women take x hrs to complete the work.

Then child will complete in (x + 15) hrs. According to question,

$$\frac{18}{x+15} \operatorname{work} + \left(\frac{6}{x}\right) \operatorname{work} = \frac{3}{5}$$

$$\frac{18x + 6(x+15)}{x(x+15)} = \frac{3}{5}$$

$$3x^2 + 45x = 90x + 30x + 450$$

$$x^2 - 30x + 5x + 180 = 0$$

$$x(x - 30) + 5(x - 30) = 0$$

$$(x + 5)(x - 30) = 0$$

x = 30

1 work is completed by a women in 30 hrs.

 $\therefore \quad \frac{2}{5} \text{ work is completed by a women in } \frac{2}{5} \times 30$

= 12 hrs. Ans

36.(C)

: Time taken by A alone = 35 hrs Ans.

37.(D) Let the speed of boat = x m/sec and speed of water = y m/sec Speed downstream = (x + y) m/sec Speed upstream = (x - y) m/sec Thus,

$$\frac{20}{x-y} + \frac{20}{x+y} = 4 \min 40 \text{ seconds}$$
$$= 4 \frac{2}{3} \min$$

But here we must have speed of water to calculate speed of boat

Hence, data inadequate. Ans.

38.(A) Total Pipe = 6

1 outlet pipe takes = 6 hr.

1 Inlet pipe takes = 9 hr.

Tank is filled in only 9 hour which means the efficiency of one inlet pipe is utilized and rest became neutral which is possible only in one case

3 inlet pipes = 2 outlet pipes

∴ total inlet pipe = 4 Ans.

39.(D) Speed ratio = 6 : 5

& Speed of Train is 20% faster than the car. Let, the time taken = t min

According to question:-

An ISO 9001: 2008 Certified Company

entres at: ★ mukherjee nagar ★ munirka ★uttam nagar ★dilshad garden ★ rohini ★narela

Speed of car =
$$\frac{75}{t}$$
 = $\frac{75}{\frac{5}{4}}$

 $S_c = 60 \text{ km/hr Ans.}$

$$20 \text{ M} = 30 \text{ W} = 60 \text{ B}$$

 $2 \text{ M} = 3 \text{ W} = 6 \text{ B}$
Now, $2 \text{ M} + 8 \text{ W} + x \text{ B} \rightarrow 2 \text{ day} \rightarrow 60 \text{ units}$
Thus, $2 \text{ M} + 8 \text{ W} + x \text{ B} \rightarrow 1 \text{ day} \rightarrow 30 \text{ units}$
 $2 \times 3 + 8 \times 2 + x \times 1 = 30$

$$6 + 18 + x = 30$$

 $x = (30 - 22) = 8$ boys

41.(A)
$$4A = 6B$$

 $\frac{A}{B} = \frac{B}{C}$ $\frac{B}{C} = \frac{11}{6}$

$$\begin{cases} \frac{A}{B} = \frac{6}{4} \times \frac{11}{11} = \frac{66}{44} \\ \frac{B}{C} = \frac{11}{6} \times \frac{4}{4} = \frac{44}{24} \\ = A : B : C \\ = 66 : 44 : 24 \\ = 33 : 22 : 12 \end{cases}$$

42. (B) A \rightarrow B 100% pure milk

$$\begin{array}{c} B \rightarrow 2:5 \\ C \rightarrow 3:8 \end{array}$$

Now,
$$B + C = 36$$
 litre = (14 + 22) litre

(4 + 6 litre) (10 litre + 16 litre) 10 litre 26 litre

44.(C) Let the population be x. According to question, 100% of x + 15% of x = 45 million (Jan, 2006) In Jan 2005:

$$\therefore x = \frac{45}{115} \times 100 \text{ million} = 39 \text{ million}$$

Vacant seats = 73

$$\therefore$$
 AG = GF,
Let \angle GAF = \angle AGF = x
Now, ext angle \angle FGE = 2x
 \Rightarrow \angle FGE = \angle FEG = 2x
 \therefore AB = BC
 \angle CAB = \angle ACB = x
Now, ext angle \angle CBD = 2x
In \triangle ADE,

$$x + 3x + 3x = 180^{\circ}$$

 $x = \frac{180^{\circ}}{100} = 25^{\circ} (Approx) Ar$

An ISO 9001: 2008 Certified Company

Centres at: ★ mukherjee nagar ★ munirka ★ uttam nagar ★ dilshad garden ★ rohini ★ narela

47.(B) D 3y C

Let BC = x, FB = y = EF = AE \therefore CD = 3y Now:-

$$ar(\Delta CBF) = \frac{1}{2}xy$$

or,
$$ar(\Delta CBE) = \frac{1}{2}x \times 2y = xy$$

$$\therefore \text{ ar}(\Delta \text{ CEF}) = xy - \frac{1}{2}xy$$
$$= \frac{1}{2}xy$$

Now:-

Area of rectangle = 3xy

$$\therefore \quad \frac{\text{ar}(\triangle \text{CEF})}{\text{ar}(\triangle \text{ABCD})} = \frac{1 \times xy}{2 \times 3xy} = 1 : 6 \text{ Ans.}$$

Give AB = 7 m & BG = 2 m

Thus, AG = 5 m

AH = 2m (given)

Thus, HE =
$$AD - AH - ED$$

= $12 - 2 - 2 = 8 \text{ m}$

and OH = 4 m

Area of required figure

$$= (1 \times b) - 2\left(\frac{1}{2} \times b \times h\right)$$

$$= 12 \times 7 - 2 \times \frac{1}{2} \times 5 \times 4$$

$$= 64 \text{ m}^2.$$

Direct method:-

$$\angle QSR = 90^{\circ} - \frac{1}{2} \angle QPR$$
$$= 90^{\circ} - \frac{1}{2} \times 50$$

So,

$$\angle QSR = 65^{\circ} \text{ Ans.}$$

50.(A) Area = $\frac{1}{2}$ × sum of || sides × height

$$35 = \frac{1}{2} \times 14 \times h$$

Height = 5 cm

In ΔDFC,

$$DC^2 = DF^2 + FC^2$$

$$DC^2 = 5^2 + 2^2$$

$$DC^2 = 29$$
 : $DC = \sqrt{29}$

51.(B)

Join AF & EC

Clearly,
$$\angle AFC = \angle AEC$$

(angle on a semi-circle) = 90°

$$\angle AFC \cong \angle AEC (RHS)$$

Thus, AF = EC

And, $\triangle AFD \cong \triangle CEB$ (RHS)

$$\therefore$$
 FD = EB = 2 cm

52.(B) $ar(\Delta AXB) = \frac{1}{2}$ (area of parallelogram) ..(i)

[∴ Having same base]

Similarly,

 $ar(\Delta BFC) = \frac{1}{2}$ (area of parallelogram) ..(ii)

From (i) and (ii),

 $ar(\Delta AXB) = ar(\Delta BFC) Ans.$

ISO 9001: 2008 Certified Company

Centres at: ★ mukherjee nagar ★ munirka ★uttam nagar ★dilshad garden ★ rohini ★narela

BD = a, EF =
$$\frac{a}{2}$$

[: EF | BD and EF =
$$\frac{1}{2}$$
BD]

∴ Area of equilateral (ΔEGF) =
$$\frac{\sqrt{3}}{4} \left(\frac{a}{2}\right)^2$$

= $\frac{\sqrt{3}a^2}{16}$ Ans.

$$AP = n AB$$

Now:-

$$\tan \beta = \frac{AB}{\frac{2}{AP}} = \frac{AB}{\frac{2}{n.AB}} = \frac{1}{2n}$$
 ... (i)

Now:-

$$\Rightarrow$$
 $\tan(\alpha + \beta) = \frac{AB}{AP} = \frac{AB}{n \cdot AB} = \frac{1}{n}$

$$\Rightarrow \frac{\tan\alpha + \tan\beta}{1 - \tan\alpha \cdot \tan\beta} = \frac{1}{n}$$

$$\Rightarrow \frac{\tan\alpha + \frac{1}{2n}}{1 - \tan\alpha \cdot \frac{1}{2n}} = \frac{1}{n}$$

$$\Rightarrow \frac{2n\tan\alpha + 1}{2n - \tan\alpha} = \frac{1}{n}$$

$$\Rightarrow 2n^2 \tan \alpha + n = 2n - \tan \alpha$$

$$\Rightarrow 2n^2 \tan \alpha + \tan \alpha = 2n - n$$

$$\Rightarrow$$
 tan $\alpha [2n^2 + 1] = n$

$$\therefore \tan \alpha = \frac{n}{2n^2 + 1} \text{Ans.}$$

55.(B)

 C_1 = Centre of small circle C_2 = Centre of bigger circle

$$AB = 2AC = 2 \times 2\sqrt{2} = 4\sqrt{2}$$

56.(A) $\csc \theta - \sin \theta$ m and $\sec \theta - \cos \theta = n$ Now.

$$m = \csc \theta - \sin \theta$$

$$= \frac{1}{\sin \theta} - \sin \theta$$

$$m = \frac{\cos^2 \theta}{\sin \theta}$$

$$n = \sec \theta - \cos \theta$$

$$n = \frac{1 - \cos^2 \theta}{\cos \theta} = \frac{\sin^2 \theta}{\cos \theta}$$

$$(m^2n)^{2/3} + (mn^2)^{2/3}$$

$$= \left(\frac{\cos^4 \theta}{\sin^2 \theta} \times \frac{\sin^2 \theta}{\cos^2 \theta}\right)^{2/3} + \left(\frac{\cos^2 \theta}{\sin \theta} \times \frac{\sin^4 \theta}{\cos^2 \theta}\right)^{2/3}$$

=
$$(\cos^3 \theta)^{2/3} + (\sin^3 \theta)^2/3$$

$$= \sin^2 \theta + \cos^2 \theta = 1$$
 Ans.

$$57.(A)$$
 a $\sec \theta + b \tan \theta + c = 0$

$$p \sec \theta + 9 \tan \theta + r = 0$$

$$\Rightarrow \frac{\sec \theta}{br - 9c} = \frac{\tan \theta}{cp - ar} = \frac{1}{aq - bp}$$

$$\Rightarrow \sec \theta = \frac{br - cp}{aq - bp}$$

An ISO 9001: 2008 Certified Company

Centres at: ★ mukherjee nagar ★ munirka ★ uttam nagar ★ dilshad garden ★ rohini ★ narela

and
$$\tan \theta = \frac{cp - ar}{aq - bp}$$

Now:-

$$\sec^2 \theta - \tan^2 \theta = 1$$

$$\Rightarrow \left(\frac{br - cq}{aq - cq}\right)^2 - \left(\frac{cp - ar}{aq - bp}\right)^2 = 1$$

$$\Rightarrow$$
 (br - cq)² - (cp - ar)² = (aq - bp)² Ans.

58.(D)
$$\frac{\cos^4 \alpha}{\cos^2 \beta} + \frac{\sin^4 \alpha}{\sin^2 \beta} = 1$$

$$\Rightarrow \cos^4 \alpha . \sin^2 \beta + \sin^4 \alpha . \cos^2 \beta = \cos^2 \beta . \sin^2 \beta$$

$$\Rightarrow \cos^4 \alpha (1 - \cos^2 \beta) + \cos^2 \beta (1 - \cos^2 \alpha)^2$$
$$= \cos^2 \beta (1 - \cos^2 \beta)$$

$$\Rightarrow \cos^4 \alpha - \cos^4 \beta \cdot \cos^2 \beta - 2\cos^2 \alpha \cdot \cos^2 \alpha + \cos^4 \alpha \cdot \cos^2 \beta = \cos^2 \beta - \cos^4 \beta$$

$$\Rightarrow \cos^4 \alpha - 2\cos^2 \alpha \cdot \cos^2 \beta + \cos^4 \beta = 0$$

$$\Rightarrow (\cos^2 \alpha - \cos^2 \beta)^2 = 0$$

$$\therefore \cos^2 \alpha = \cos^2 \beta$$

$$\Rightarrow 1 - \sin^2 \alpha = 1 - \sin^2 \beta$$

$$\Rightarrow \sin^2 \alpha = \sin^2 \beta$$

$$\therefore \frac{\cos^4 \beta}{\cos^2 \alpha} + \frac{\sin^4 \beta}{\sin^2 \alpha}$$

$$\Rightarrow \frac{\cos^2\beta\cos^2\alpha}{\cos^2\alpha} + \frac{\sin^2\beta\sin^2\alpha}{\sin^2\alpha}$$

$$\Rightarrow \cos^2 \beta + \sin^2 \beta = 1 \text{ Ans.}$$

59.(B)
$$\sqrt{2+\sqrt{2+\sqrt{2+2\cos^8\theta}}}$$

$$= \sqrt{2 + \sqrt{2 + \sqrt{2 + 2\cos^2 4\theta - 1)}}}$$

$$[\because \cos^2\theta = 2\cos^2\theta - 1]$$

$$=\sqrt{2+\sqrt{2+\sqrt{4\cos^8 4\theta}}}$$

$$= \sqrt{2 + \sqrt{2 + 2\cos 4\theta}}$$

$$= \sqrt{2 + \sqrt{2 + 2(2\cos^2 2\theta - 1)}}$$

$$= \sqrt{2 + \sqrt{4\cos^2 2\theta}}$$

$$= \sqrt{2 + 2\cos 2\theta}$$

$$=\sqrt{2+2(\cos^2\theta-1)}$$

=
$$\sqrt{4\cos^2\theta}$$
 = $2\cos\theta$ Ans.

$$60.(C)\cos\theta = \frac{1}{2}\left(a + \frac{1}{a}\right)$$

Squaring both sides:-

$$\cos^2\theta = \frac{1}{4} \left[\left(a + \frac{1}{a} \right)^2 \right]$$

$$2\cos^2\theta = \frac{1}{2} \left[\left(a + \frac{1}{a} \right)^2 \right]$$

Substracting 1 from both sides:-

$$2\cos^{2}\theta - 1 = \frac{1}{2} \left[\left(a + \frac{1}{a} \right)^{2} \right] - 1$$
$$= \frac{1}{2} \left(a^{2} + \frac{1}{a^{2}} + 2 \right) - 1$$
$$= \frac{1}{2} \left(a^{2} + \frac{1}{a^{2}} \right) + 1 - 1$$

LHS:
$$= \frac{1}{2} \left(a^2 + \frac{1}{a^2} \right)$$
Ans.

61.(D)
$$a = \sin \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$b = \cos \frac{\pi}{4} = \frac{1}{\sqrt{2}}$$

$$c = -\csc \frac{\pi}{4} = -\sqrt{2}$$

$$a + b + c = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} - \sqrt{2}$$

= $\sqrt{2} - \sqrt{2} = 0$

$$a^3 + b^3 + c^3 = 3abc$$
 [: $a + b + c = 0$]

$$=3.\frac{1}{\sqrt{2}}.\frac{1}{\sqrt{2}}(-\sqrt{2})$$

$$= \frac{-3}{2}\sqrt{2} \text{ Ans.}$$

$$\therefore$$
 EF = 3AE = $3 \times \frac{\sqrt{5}}{3}$ a

An ISO 9001: 2008 Certified Company

Centres at: ★ mukherjee nagar ★ munirka ★ uttam nagar ★ dilshad garden ★ rohini ★ narela

EF =
$$\sqrt{5}$$
 a

Area of rectangle = $\frac{4}{3}$ a × $\sqrt{5}$ a ... (i)

Area of parallelogram = $2ar(\Delta ADC)$

$$= 2 \times \frac{1}{2} \times 2a \times \frac{\sqrt{5}}{3} a$$
$$= \frac{2\sqrt{5}}{3} a^2 \qquad \dots \text{ (ii)}$$

Required ratio =
$$\frac{2\sqrt{5}}{3}$$
 a²: $\frac{4\sqrt{5}}{3}$ a²

63.(B)
$$x \cos \alpha + y \sin \alpha = P$$
 and (i)

$$x \cos \beta + y \sin \beta = P'$$
 (ii)

Slope of equation (i):-

$$m_1 = -\frac{\cos \alpha}{\sin \alpha}$$

Slope of equation (ii):-

$$m_2 = \frac{\cos \beta}{\sin \beta}$$

Let the angle between line be $\,\theta\,.$ Then,

$$\Rightarrow \tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} = \frac{-\frac{\cos \alpha}{\sin \alpha} + \frac{\cos \beta}{\sin \beta}}{1 + \frac{\cos \alpha}{\sin \alpha} \frac{\cos \beta}{\sin \beta}}$$

$$\therefore \quad \tan \theta = \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\cos \alpha \cos \beta - \sin \alpha \sin \beta}$$

$$\Rightarrow \tan \theta = \frac{\sin(\alpha - \beta)}{\cos(\alpha + \beta)}$$

$$\Rightarrow$$
 tan $\theta = \tan(\alpha - \beta)$

$$\therefore \quad \theta = \alpha - \beta$$

64.(A) By C & D.

$$\frac{\sin(x+y)+\sin(x-y)}{\sin(x+y)-\sin(x-y)} = \frac{a+b+a-b}{a+b-a+b}$$

$$\frac{\sin x \cos y}{\cos x \sin y} = \frac{a}{b}$$

$$\frac{\tan x}{\tan y} = \frac{a}{b} \text{Ans.}$$

65.(B) Putting x = 1

[Always put x = 1 in such questions]

∴ 2 Ans

$$66.(A) \frac{x}{y} + \frac{y}{x} = -1$$

$$\Rightarrow x^{2} + y^{2} + xy = 0 \qquad \dots (i)$$

$$\Rightarrow 2 (x^{3} - y^{3})$$
From (i)
$$\Rightarrow 2(x - y) (x^{2} + y^{2} + xy)$$

$$\Rightarrow 0 \text{ Ans.}$$

67.(A)
$$a(a+2) = a+b+c$$

$$\Rightarrow a+2 = \frac{a+b+c}{a}$$

$$b+2 = \frac{a+b+c}{b}$$

$$c + 2 = \frac{a + b + c}{c}$$

Substituting:-

$$\frac{a}{a+b+c} + \frac{b}{a+b+c} + \frac{c}{a+b+c}$$

$$\Rightarrow \frac{a+b+c}{a+b+c} = 1 \text{ Ans.}$$

68.(D) Multiplying
$$a^{x}.a^{y}.a^{z} = (x + y + z)^{x+y+z}$$

$$a^{(x+y+z)} = (x + y + z)^{x+y+z}$$

$$\Rightarrow$$
 a = x + y + z

69.(A)
$$\frac{1}{1+a^2-a} - \frac{1}{1+a^2+a} - \frac{2a}{1+a^2+a^4}$$
$$\frac{1+a^2+a-1-a^2+a}{(a+a^2)^2-a^2} - \frac{2a}{1+a^2+a^4}$$
$$2a \qquad 2a$$

$$\frac{2a}{1+a^4+a^2} + \frac{2a}{1+a^2+a^4}$$

= 0 Ans.

70.(A)
$$\frac{p}{b-c} = \frac{q}{c-a} = \frac{r}{a-b}$$

$$P = k(b-c), q = k(c-a), r(a-b)$$
than, p + q + r
$$= k(b-c+c-a+a-b)$$
= 0 Ans.

71.(A) pqr = 1 :
$$p = \frac{1}{qr}$$
 & $\frac{1}{p} = qr$

$$\therefore \frac{1}{1 + \frac{1}{qr} + \frac{1}{q}} + \frac{1}{1 + q + \frac{1}{r}} + \frac{1}{1 + r + qr}$$

$$=\frac{qr}{qr+q+1}+\frac{r}{qr+r+1}+\frac{1}{qr+r+1}$$

$$=\frac{qr+r+1}{qr+r+1}=1 \text{ Ans.}$$

An ISO 9001: 2008 Certified Company

Centres at: ★ mukherjee nagar ★ munirka ★ uttam nagar ★ dilshad garden ★ rohini ★ narela

72.(C)

From \triangle BDC since \angle y = 90° - x

$$\angle ADM = y$$

In ΔBDC,

$$\frac{x}{y} = \frac{40}{100}$$
 (i)

In $\triangle ADM$,

$$\frac{x}{y} = \frac{100}{AM} \qquad \dots (ii)$$

from (i) & (ii),

$$\frac{40}{100} = \frac{100}{AM}$$

$$AM = 250 \text{ m}$$

Now, AB = 250 + 40 = 290 m Ans.

73.(C) Let angle of elevation for A, B & C are θ , 2 θ and 3 θ . (According to given condition we choose that)

From $\triangle PAB$,

$$2\theta = \theta + \angle APB$$

$$\Rightarrow \angle APB = \theta$$

$$\therefore \angle PAB = \angle ABP = \theta \Rightarrow AB = BP = a$$

Similarly, in $\triangle BPC$, $\angle BPC = \theta$

from $\triangle OBP$, $\sin 2\theta = h/a$

$$\Rightarrow$$
 h = a sin 2θ \Rightarrow h.2a sin θ cos θ (1)

from
$$\triangle PBC$$
, $\frac{PB}{\sin(180-30)} = \frac{BC}{\sin\theta}$

(by sine rule)

$$\Rightarrow \frac{a}{\sin 3\theta} = \frac{b}{\sin \theta} \Rightarrow \frac{a}{b} = \frac{\sin 3\theta}{\sin \theta}$$

$$\Rightarrow \frac{a}{b} = \frac{3\sin\theta - 4\sin^3\theta}{\sin\theta} = \frac{a}{b} = 3 - 4\sin^2\theta$$

$$\Rightarrow 4 \sin^2\theta = 3 - \frac{a}{b} \Rightarrow \sin^2\theta = \frac{3b - a}{4b}$$

$$\Rightarrow \sin\theta = \sqrt{\frac{3b - a}{4b}} : \cos^2\theta = 1 - \sin^2\theta$$

$$\Rightarrow \cos^2\theta = 1 - \frac{3b - a}{4b} = \frac{a + b}{4b} \Rightarrow \cos\theta = \sqrt{\frac{a + b}{4b}}$$

Putting value of $\sin\theta$ and $\cos\theta$ in (1), we get

$$h = 2a\sqrt{\frac{3b-a}{4b}} \cdot \sqrt{\frac{a+b}{4b}} = \frac{a}{2b}\sqrt{(a+b)(3b-a)}$$

74.(C)

Let the different objects are A and B. According to question:- In Δ APO,

$$\tan\theta = \frac{y}{c}$$

In Δ AQB,

$$\tan(\theta + \alpha) = \frac{x + y}{c}$$

Now.

$$\tan(\alpha) = \tan[(\alpha + \theta) - \theta]$$
$$= \frac{\tan(\theta + \alpha) - \tan \theta}{1 + \tan(\theta + \alpha)\tan \theta}$$

$$= \frac{\frac{x+y}{c} - \frac{y}{c}}{1 + \left(\frac{x+y}{c}\right)\left(\frac{y}{c}\right)} = \frac{cx}{c^2 + xy + y^2}$$

10

$$\Rightarrow \tan \alpha = \frac{cx}{c^2 + xy + y^2}$$

$$\therefore \cot \alpha = \frac{c^2 + xy + y^2}{cx}$$

An ISO 9001: 2008 Certified Company

Centres at: ★ mukherjee nagar ★ munirka ★ uttam nagar ★ dilshad garden ★ rohini ★ narela

 \Rightarrow cx cot x = c² + xy + y²

.... (i)

Similarly,

$$2 \operatorname{cx} \cot \beta = (2c)^2 + xy + y^2 \dots$$
 (ii)

Substracting (i) from (ii):-

$$3 c^2 = cx \left[2cot \beta - cot \alpha\right]$$

$$\therefore x = \frac{3c}{2\cot\beta - \cot\alpha} \text{ Ans.}$$

75.(A)

$$= \frac{22}{7} \times \frac{45}{3} [(7)^2 + (28)^2 + 28 \times 7]$$

$$= \frac{22}{7} \times \frac{45}{3} \times 7[7 + 4 \times 28 + 28]$$

$$= 48510 \text{ cm}^2$$

76.(C) Volume = Area of trapezium × height

Area of Trepezium = $\frac{1}{2}$ × (sum of parallel sides)× height

$$=\frac{1}{2} \times 22 \times 8 = 88 \text{ cm}^2$$

Now,

Volume = Area of base × Height

∴ Height =
$$\frac{1056}{88}$$
 = 12 cm

77.(B) Each interior angle = $\frac{180(n-2)}{n}$

Each exterior angle = $\frac{360}{n}$

ATQ,

$$\frac{180(n-2)}{n} = 2\left(\frac{360}{n}\right)$$

 $= 1024 \text{ cm}^3 \text{ Ans.}$

 \Rightarrow n = 6 Ans.

78.(C) Volume of pyramid

=
$$\frac{1}{3}$$
 × Area of Base × Height
= $\frac{1}{3}$ × 16 × 16 × 12

79.(C)

$$\frac{AB}{AC} = \frac{BD}{DC} = \frac{8}{12} = 2:3$$

$$80.(*) \frac{y+7+7}{3} = 3, \frac{x-3+9}{3} = 4$$

$$\Rightarrow y = -5, x = 6$$

$$\Rightarrow (x, y) = (6, -5)$$

Area =
$$\left| \frac{1}{2} [x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2)] \right|$$

= $\left| \frac{1}{2} \{ 6(-7 + 7) - 3(7 + 5) + 9(-5 - 7) \} \right|$
= 72 unit².

$$81.(D) (a + b + c) = 5$$

Squaring both sides:-

$$[(a + b + c)]^2 = 25$$

$$a^2 + b^2 + c^2 + 2(ab + bc + ca) = 25$$

$$a^2 + b^2 + c^2 = 25 - 20 \ (\because ab + bc + ca = 20)$$

$$= 5$$

Now,

$$a^{3}+b^{3}+c^{3}-3abc$$
= $(a+b+c)$ $(a^{2}+b^{2}+c^{2}-ab-bc-ca)$
= $5(5-10)$
= -25

82.(C)

Area =
$$\frac{1}{2} \times b \times h$$

= $\frac{1}{2} \times \frac{c}{b} \times \frac{c}{a}$
= $\frac{1}{2} \frac{c^2}{ab}$

83.(B) Ist 3-digit no. div. by 6 = 102 Last 3-digit no. div. by 11 : 996 AP = 102,, 996, (cd = 6)

$$99 = 102 + (n - 1)6$$

 $\Rightarrow n = 150 \text{ Ans.}$

An ISO 9001: 2008 Certified Company

Centres at: ★ mukherjee nagar ★ munirka ★uttam nagar ★ dilshad garden ★ rohini ★ narela

84.(C) 6th term = a + 5d

15th term = a + 14d and so on

ATQ,

$$a + 5d + a + 14d = a + 6d + a + 9d + a + 11d$$

19d = a + 26d

$$0 = a + 7d$$

 \Rightarrow 8th term Ans.

85.(B) $b^2 = ac (G.P.)$

$$\frac{a^2 - ac + c^2}{\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}}$$

$$\Rightarrow \frac{a^2 - ac + c^2}{\frac{c^2 - ac + a^2}{a^2c^2}}$$

$$\Rightarrow a^2c^2\left(\frac{a^2-ac+c^2}{a^2-ac+c^2}\right)$$

 $= b^4$

86.(B) SP =
$$(a - at^2)$$

$$SQ = a + \frac{a}{t^2}$$

$$\frac{1}{SP} + \frac{1}{SQ} = \frac{1}{a + at^2} + \frac{t^2}{at^2 + a}$$

$$(1 + t^2) = 1$$

$$=\frac{(1+t^2)}{a(1+t^2)}=\frac{1}{a}$$

87.(A) x = 2

Then,

$$f(2) = (2)^4 + 2(2)^3 - 3(2)^2 + 2 - 1$$

= 16 + 16 - 12 + 2 - 1
= 21 Ans.

88. (A) y = x

$$\Rightarrow x - y = 0$$

&
$$y = x + 3$$

$$\Rightarrow x - y + 3 = 0$$

$$\therefore \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$$

 \Rightarrow y = x + 3 & y = x are parallel

89. (*)
$$3y - x = 6$$

$$5y + 3x = 38$$
$$9y + 5y = 18 + 38$$

$$14y = 56$$

$$\Rightarrow$$
 x = 6, y = 4

Required co-ordinate = (6,4)

90.(B)

$$\frac{(7+\sqrt{5})^2-(7-\sqrt{5})^2}{49-5}$$

$$\frac{49 + 5 + 14\sqrt{5} - 49 - 5 + 14\sqrt{5}}{44}$$

$$= \frac{7}{11}\sqrt{5} = a + \frac{7}{11}\sqrt{5}b$$

$$\therefore a = 0 b = 1$$

91.(D) Half male employee promoted from IT deptt.

$$= \frac{13}{100} \times 1200 = 156$$

Total male employee of IT deptt.

$$= \frac{20}{100} \times 2040 = 408$$

Required % =
$$\frac{156}{408} \times 100 = 38.25\% \sim 38\%$$
 Ans

92. (*) Total employee (Prod. + Mark.) - Male

Employee (Prod. + Mark.) = 3600(35 + 18)% + 2040 (50 + 10)%

= 1908 - 1224

= 684 Ans.

93.(A) Female worker = Total employee in A/c deptt

Male employee in A/c deptt.

= 20% of 3600 – 5% of 2040

12

$$= \frac{5 \times 4}{10} [4 \times 90 - 51]$$

94.(D) Required no. of employee

$$=\frac{1200}{3600} \times 100 = 33.3\%$$
 or 33 Ans.

No. of employee promoted

95.(B) from HR Deptt. ×100

working in HR Deptt.

$$=\frac{\frac{11\times1200}{100}}{\frac{12\times3600}{100}}\times100$$

$$\Rightarrow \frac{1100}{56} = 30.555 = 30.56 \text{ Ans.}$$

96.(A) Expenditure =
$$\frac{\text{Income}}{\frac{\text{Profit }\%}{100} + 1}$$

ATQ,

$$\frac{I_1}{\frac{35}{100} + 1} = \frac{I_2}{\frac{40}{100} + 1}$$

$$\frac{I_1}{I_2} = \frac{135}{140}$$

 $I_1: I_2 = 27: 28 \text{ Ans.}$

An ISO 9001: 2008 Certified Company

Centres at: ★ mukherjee nagar ★ munirka ★ uttam nagar ★ dilshad garden ★ rohini ★ narela

97.(D) Given

$$\therefore \text{ Profit } \% = \frac{\text{Income} - \text{Exp}}{\text{Exp}} \times 100$$
$$= \frac{1.5}{\text{exp}} \times \frac{100}{10} = 40$$

⇒ Expenditure =
$$\frac{15}{4}$$
 =3.75 lakh Ans.

98.(D) Taking the approx. values

$$= \frac{40+45+40+35+30+45}{6}$$

≈39 (same it is very close to 37)

:. It's approx. value can also be seen from graph itself.

99.(D) : Profit % =
$$\left[\frac{\text{Income}}{\text{Exp.}} - 1\right] \times 100$$

Income =
$$\left[\frac{\text{Profit }\%}{100} + 1\right]$$
 Exp.

ATQ,

Exp. A
$$\left[\frac{50}{100} - 1 \right] = \text{Exp. B} \left[\frac{30}{100} + 1 \right]$$

$$\underline{\text{Exp.A}} = \frac{130}{150}$$

Exp A : Exp B = 13 : 15 Ans.

 $100.(D) \quad \frac{\text{Company A}}{\text{Company B}} = \frac{30}{45}$

Profit :-

Com A : Com B = 2 : 3 Ans.

13

An ISO 9001: 2008 Certified Company

Mock Test - 11 (Answer Key)

(A)		26.	(A)
(C)		27.	(A)
(C)		28.	(B)
(A)		29.	(B)
(D)		30.	(D)
(C)		31.	(C)
(B)		32.	(D)
(D)		33.	(A)
(C)		34.	(D)
(B)		35.	(D)
(B)		36.	(C)
(C)		37.	(D)
(B)		38.	(A)
(A)		39.	(D)
(A)		40.	(D)
(C)		41.	(A)
(A)		42.	(B)
(B)		43.	(B)
(B)		44.	(C)
(C)		45.	(A)
(A)		46.	(D)
(A)		47.	(B)
(A)		48.	(A)
(A)		49.	(B)
(A)		50.	(A)
	(C) (C) (A) (D) (C) (B) (D) (C) (B) (B) (A) (A) (A) (B) (B) (C) (A) (A) (A) (A) (A) (A) (A) (A) (A)	(C) (C) (A) (D) (C) (B) (D) (C) (B) (B) (C) (B) (A) (A) (A) (C) (A) (B) (B) (C) (A) (A) (A) (A) (A) (A) (A)	(C) 27. (C) 28. (A) 29. (D) 30. (C) 31. (B) 32. (D) 33. (C) 34. (B) 35. (B) 36. (C) 37. (B) 38. (A) 39. (A) 40. (C) 41. (A) 42. (B) 43. (B) 43. (B) 44. (C) 45. (A) 46. (A) 47. (A) 48. (A) 49.

	3 ,		
51.	(B)	76.	(C)
52.	(B)	77.	(B)
53.	(A)	78.	(C)
54.	(A)	79.	(C)
55.	(B)	80.	(*)
56.	(A)	81.	(D)
57.	(A)	82.	(C)
58.	(D)	83.	(B)
59.	(B)	84.	(C)
60.	(C)	85.	(B)
61.	(D)	86.	(B)
62.	(B)	87.	(A)
63.	(B)	88.	(A)
64.	(A)	89.	(*)
65.	(B)	90.	(B)
66.	(A)	91.	(D)
67.	(A)	92.	(*)
68.	(D)	93.	(A)
69.	(A)	94.	(B)
70.	(A)	95.	(B)
71.	(A)	96.	(A)
72.	(C)	97.	(D)
73.	(C)	98.	(D)
74.	(C)	99.	(D)
75.	(A)	100.	(D)

Ph: 011-27607854, 08860-333-333