## Домашнее задание №5

## Болорболд Аригуун Р3111

## Изоморфизм графов

|                        | e <sub>1</sub> | e <sub>2</sub> | <b>e</b> <sub>3</sub> | <b>e</b> <sub>4</sub> | <b>e</b> <sub>5</sub> | e <sub>6</sub> | <b>e</b> <sub>7</sub> | e <sub>8</sub> | <b>e</b> <sub>9</sub> | e <sub>10</sub> | e <sub>11</sub> | e <sub>12</sub> | $\rho(e)$ |
|------------------------|----------------|----------------|-----------------------|-----------------------|-----------------------|----------------|-----------------------|----------------|-----------------------|-----------------|-----------------|-----------------|-----------|
| e <sub>1</sub>         | 0              |                | 1                     | 1                     |                       | 1              |                       | 1              | 1                     |                 |                 | 1               | 6         |
| e <sub>2</sub>         |                | 0              | 1                     | 1                     |                       | 1              |                       |                |                       |                 | 1               | 1               | 5         |
| <b>e</b> <sub>3</sub>  | 1              | 1              | 0                     |                       |                       |                |                       |                |                       |                 | 1               |                 | 3         |
| <b>e</b> <sub>4</sub>  | 1              | 1              |                       | 0                     |                       | 1              |                       |                |                       | 1               |                 |                 | 4         |
| <b>e</b> <sub>5</sub>  |                |                |                       |                       | 0                     |                |                       | 1              | 1                     | 1               |                 | 1               | 4         |
| <b>e</b> <sub>6</sub>  | 1              | 1              |                       | 1                     |                       | 0              |                       | 1              |                       |                 |                 |                 | 4         |
| <b>e</b> <sub>7</sub>  |                |                |                       |                       |                       |                | 0                     | 1              | 1                     | 1               |                 |                 | 3         |
| e <sub>8</sub>         | 1              |                |                       |                       | 1                     | 1              | 1                     | 0              |                       | 1               | 1               |                 | 6         |
| <b>e</b> <sub>9</sub>  | 1              |                |                       |                       | 1                     |                | 1                     |                | 0                     | 1               | 1               |                 | 5         |
| <b>e</b> <sub>10</sub> |                |                |                       | 1                     | 1                     |                | 1                     | 1              | 1                     | 0               |                 |                 | 5         |
| e <sub>11</sub>        |                | 1              | 1                     |                       |                       |                |                       | 1              | 1                     |                 | 0               |                 | 4         |
| e <sub>12</sub>        | 1              | 1              |                       |                       | 1                     |                |                       |                |                       |                 |                 | 0               | 3         |

|                       | X <sub>1</sub> | X <sub>2</sub> | <b>X</b> 3 | <b>X</b> <sub>4</sub> | X <sub>5</sub> | X <sub>6</sub> | X <sub>7</sub> | X <sub>8</sub> | <b>X</b> 9 | X <sub>10</sub> | X <sub>11</sub> | X <sub>12</sub> | $\rho(x)$ |
|-----------------------|----------------|----------------|------------|-----------------------|----------------|----------------|----------------|----------------|------------|-----------------|-----------------|-----------------|-----------|
| X <sub>1</sub>        | 0              | 1              | 1          |                       | 1              | 1              |                |                |            |                 |                 | 1               | 5         |
| <b>X</b> <sub>2</sub> | 1              | 0              |            |                       | 1              | 1              |                | 1              |            |                 | 1               |                 | 5         |
| <b>X</b> <sub>3</sub> | 1              |                | 0          | 1                     |                |                |                | 1              | 1          | 1               | 1               |                 | 6         |
| <b>X</b> <sub>4</sub> |                |                | 1          | 0                     |                |                | 1              | 1              |            |                 | 1               |                 | 4         |
| <b>X</b> <sub>5</sub> | 1              | 1              |            |                       | 0              |                |                | 1              |            |                 |                 |                 | 3         |
| <b>X</b> 6            | 1              | 1              |            |                       |                | 0              |                | 1              | 1          |                 |                 |                 | 4         |
| <b>X</b> <sub>7</sub> |                |                |            | 1                     |                |                | 0              |                | 1          | 1               | 1               | 1               | 5         |
| <b>X</b> 8            |                | 1              | 1          | 1                     | 1              | 1              |                | 0              |            |                 |                 | 1               | 6         |
| <b>X</b> 9            |                |                | 1          |                       |                | 1              | 1              |                | 0          |                 |                 |                 | 3         |
| X <sub>10</sub>       |                |                | 1          |                       |                |                | 1              |                |            | 0               |                 | 1               | 3         |
| X <sub>11</sub>       |                | 1              | 1          | 1                     |                |                | 1              |                |            |                 | 0               |                 | 4         |
| X <sub>12</sub>       | 1              |                |            |                       |                |                | 1              | 1              |            | 1               |                 | 0               | 4         |

Для графа  $G_1 \sum \rho(e) = 52$ . Список  $\rho(e) = \{6, 5, 3, 4, 4, 4, 3, 6, 5, 5, 4, 3\}$ Для графа  $G_2 \sum \rho(x) = 52$ . Список  $\rho(x) = \{5, 5, 6, 4, 3, 4, 5, 6, 3, 3, 4, 4\}$ 

1. Разобьем вершины обоих графов на классы по их степеням.

|   | $\rho(e) = \rho(x) = 6$         | $\rho(e) = \rho(x) = 5$                                                | $\rho(e) = \rho(x) = 4$ | $\rho(e) = \rho(x) = 3$                           |
|---|---------------------------------|------------------------------------------------------------------------|-------------------------|---------------------------------------------------|
| е | e <sub>1</sub> , e <sub>8</sub> | <b>e</b> <sub>2</sub> , <b>e</b> <sub>9</sub> , <b>e</b> <sub>10</sub> | e4, e5, e6, e11         | e <sub>3</sub> , e <sub>7</sub> , e <sub>12</sub> |
| Χ | X3, X8                          | X <sub>1</sub> , X <sub>2</sub> , X <sub>7</sub>                       | X4, X6, X11, X12        | X5, X9, X10                                       |

2. Из таблицы можно заметить, что соответствие вершин графов нет. Поэтому попробуем другой метод: перебор вершин на  $\rho(e) = \rho(x) = 6$ :

| •              |             |
|----------------|-------------|
| е              | Χ           |
| e <sub>1</sub> | <b>7X</b> 3 |
| eø             | X8          |

- 3. Для определения соответствия вершин с  $\rho(e) = \rho(x) = 6$  попробуем связать вершины из классов с  $\rho(e) = \rho(x) = 5$ ,  $\rho(e) = \rho(x) = 4$  и  $\rho(e) = \rho(x) = 3$  с неустановленными вершинами.
  - 3.1.  $e_1 x_3$ ,  $e_8 x_8$



4. Анализ связей вершин показывает соответствие вершин е<sub>6</sub> и х<sub>4</sub>. С учётом этого устанавливаем следующие соответствия:

|       | е                       | X                                                           |
|-------|-------------------------|-------------------------------------------------------------|
|       | / <b>e</b> <sub>2</sub> | X <sub>1</sub>                                              |
| e₁    | e <sub>3</sub>          | X <sub>1</sub> X <sub>2</sub> X <sub>5</sub> X <sub>6</sub> |
|       | e <sub>4</sub>          | X <sub>5</sub>                                              |
|       | <b>e</b> 5              | X <sub>6</sub>                                              |
| e₅    | <b>e</b> <sub>7</sub>   | X <sub>7</sub>                                              |
|       | e <sub>9</sub>          | X9                                                          |
|       | e <sub>10</sub>         | X <sub>10</sub>                                             |
| $e_6$ | e <sub>11</sub>         | X <sub>11</sub> X <sub>4</sub>                              |
|       | e <sub>12</sub>         | X <sub>12</sub>                                             |

5. Анализ связей вершин показывает соответствие вершин е<sub>4</sub> и х<sub>11</sub>. С учётом этого устанавливаем следующие соответствия:

|                | е                      | Х                                                   |
|----------------|------------------------|-----------------------------------------------------|
| e <sub>1</sub> | $/e_2$                 | X <sub>1</sub> ———————————————————————————————————— |
|                | <b>e</b> <sub>3</sub>  | X <sub>2</sub> X <sub>3</sub>                       |
| e <sub>8</sub> | <b>e</b> <sub>5</sub>  | X <sub>5</sub> X <sub>8</sub>                       |
| C8             | e <sub>7</sub>         | X <sub>6</sub>                                      |
| e <sub>6</sub> | <b>e</b> <sub>9</sub>  | X7 X4                                               |
|                | e <sub>10</sub>        | X <sub>9</sub>                                      |
| e <sub>4</sub> | <b>e</b> <sub>11</sub> | X <sub>10</sub>                                     |
| <b>C</b> 4     | <b>e</b> <sub>12</sub> | X <sub>12</sub>                                     |

6. Анализ связей вершин показывает соответствие вершин  $e_{10}$  и  $x_2$ ,  $e_2$  и  $x_7$ . С учётом этого устанавливаем следующие соответствия:

| е                                             | Х                              |
|-----------------------------------------------|--------------------------------|
| $e_1$ $e_3$                                   | X <sub>1</sub>                 |
| <b>e</b> <sub>8</sub> <b>e</b> <sub>5</sub>   | X5 X8                          |
| $e_6$ $e_7$                                   | X <sub>6</sub>                 |
| <b>e</b> <sub>4</sub> <b>e</b> <sub>9</sub>   | X9 X <sub>11</sub>             |
| <b>e</b> <sub>10</sub> <b>e</b> <sub>11</sub> | X <sub>10</sub> X <sub>2</sub> |
| e <sub>2</sub> e <sub>12</sub>                | X <sub>12</sub> X <sub>7</sub> |

7. Анализ связей вершин показывает соответствие вершин е<sub>3</sub> и х<sub>9</sub>, е<sub>5</sub> и х<sub>5</sub>, е<sub>7</sub> и х<sub>6</sub>, е<sub>9</sub> и х<sub>1</sub>, е<sub>11</sub> и х<sub>12</sub>, е<sub>12</sub> и х<sub>10</sub>.

Все вершины имеют свою связь. Таким образом, можно сделать вывод о том, что графы  $G_1$  и  $G_2$  являются изоморфными.