Decision Trees

COSC 410: Applied Machine Learning

Spring 2022

Prof. Apthorpe

Outline

- Prediction
- Training
- Impurity Metrics
- Feature Importance
- Perks
- Overfitting

Decision Tree Prediction

- Start at root node
- 2. Continue to child node that satisfies root condition...repeat until you reach a leaf
- 3. Predict **mode** (classification) or **mean** (regression) of training labels in the leaf

Patrick Triest

Decision Tree Perks

- Little preprocessing required
 - Accepts nominal, numeric, or binary data
 - Standardization/normalization unnecessary

Trained model is easily interpretable

Trained model indicates feature importance

Decision Tree Training

- Goal: Train a balanced tree with minimal training error
- Classification and Regression Tree (CART) algorithm

Greedy Algorithm:

Tree many not be optimally balanced But optimal alg. is NP-complete

• Select a feature k and threshold t_k that divide the examples in current node by number and label **as equally as possible** (minimize cost function J)

• Repeat for each child node until max depth is reached or all leaf nodes are pure

Node Impurity Metrics

- Lowest when all examples have same label
- Highest when examples are spread evenly across labels

• Gini Impurity
$$G = 1 - \sum_{k=1}^{n} \left(\frac{||\text{examples in class } k||}{||\text{all examples}||} \right)^2$$

• Entropy
$$H = -\sum_{k=1}^{n} \frac{||\text{examples in class } k||}{||\text{all examples}||} \log \left(\frac{||\text{examples in class } k||}{||\text{all examples}||} \right)$$

Skip classes with no examples to avoid undefined log(0)

5

Feature Importance

2/15/22

- Features can be ranked by **importance** to a decision tree
 - Mean increase in purity from splitting on feature across the tree
 - Varies depending on stochastic tree construction algorithm
 - Best to train several trees and average importance

- More "important" features are more predictive of labels
 - Provides intuition about underlying phenomenon you are attempt to model

Overfitting

• Decision trees are non-parametric

- Can fit the training data exactly...just keep adding nodes until each leaf is pure
- Leaf nodes with only a small number of training examples may cause overfitting
- Max depth hyperparameter
 - Limit tree to a specific depth
- Min split hyperparameter
 - Don't add child nodes if current node has fewer than a threshold # of examples

Pruning

 Train full tree and iteratively remove nodes that provide less than a threshold decrease in cost

Programming Practice

DecisionTrees.ipynb

Questions?