

ŘADA PRO KONSTRUKTÉRY

ČASOPIS PRO ELEKTRONIKU A AMATÉRSKÉ VYSÍLÁNÍ ROČNÍK XXXIX/1990 ● ČÍSLO 2

Vážaní štanáži

V TOMTO SEŠITĚ

ZAJ	ÍMAVÁ ZAPOJENÍ
AK	ONSTRUKCE DO DÍLNY
	oje, nabíječe, stabilizátory 42
2011	Mahijani alayanyah
	akumulátorů
	lodnoduchú nahíjaž pro
	oku 12 V 49
	aku 12 V
	Měnič napětí pro holicí strojek 45
	Regulovaný zdroj proudu 47
	Impulsní regulátor ss motorku 47
	Elektrický schodišťový automat 48
NT U	echnika
	Jednoduchý stereofonní
	zesilovač
	integrovany nr zesilovac 45
	Malý mixážní pult50
	Integrovaná barevná hudba 52
	Elektronický bubeník54
	Kontrola chodu magnetofonů 55
	lmitátor zvuků hoříčího dřeva 57
	Jednoduchý nf generátor 58
	Elektronická kočka60
Elel	ktronika a hračky
	Elektronický terč
	Moderní napájecí zdroj pro
	kolejiště 63
	Elektrická výzbroj jízdního kola . 63
	Ozvučení plyšové hračky 65
Užit	ečné přístroje a postupy
	pro dílnu
i	pro dílnu Ruční stříkačka laků 66
	Vrtačka pro plošné spoje 66
	Vrtačka pro plošné spoje 66 Nejen ultrazvukové praní
	a čistění69
	Povrchová úprava předmětů
	z Al
	Elektrická modelářská pilka 7
1144	ková elektronika
UZII	Kontrolní zařízení do včelína 73
	Signalizace poklesu hladiny
	Signalizace pokiesu niadiny
	kapaliny
	Elektronický bytový teploměr 7

AMATÉRSKÉ RADIO ŘADA B

Inzerce

přijímačů (dokončení) 80

AMATERSKE HADIO HADJA B Vydává vydavatelství NAŠE VOJSKO, s. p., Vladislavova 26, 135 66 Praha 1, tel. 26 06 51–7. Šéfredaktor ing. Jan Klabal, Redakční radu řídí ing. J. T. Hyan. Redaktor L. Kalousek, OK1FAC. Redakce Jungmannova 24, 113 66 Praha 1, tel. 26 06 51–7, šéfredaktor linka 354, redaktor linka 353, sekretářka linka 355. Ročně vyjde 6 čísel. Cena výtisku 6 Kčs. pololetní předplatné 18 Kčs. Rozšířuje PNS, v jednotkách ozbrojených sil vydavatelství NAŠE VOJSKO, administrace Vladislavova 26 Praha 1 Informace o předplatném podá vatelství NAŠE VÖJSKO, administrace Vladislavova 26, Praha 1. Informace o předplatném podá a objednávky přijímá každá administrace PNS, pošta, doručovatel a předplatitelská střediska. Objednávky do zahraničí vyřizuje PNS – ústřední expedice a dovoz tisku Praha, administrace vývozu tisku, Kovpakova 26, 160 00 Praha 6. Tiskne NAŠE VOJSKO, s. p., závod 08, 160 00 Praha 6, Vlastina ulice č. 889/23.
Za původnost a správnost příspěvku odpovídá autor. Návštěvy v redakci a telefonické dotazy po 14. hodině. Číslo indexu 46 044.
Toto číslo má vyjít podle plánu 12. 4. 1990.
© Vydavatelství NAŠE VOJSKO.

Vážení čtenáři,

v úvodu tohoto čísla Amatérského radia pro konstruktéry nejprve několik slov od autora zajímavých zapojení a konstrukcí do dílny, ing. M. Arendáše:

"V celém našem státě probíhá změna jak politických, tak hospodářských vztahů. Proč o tom mluvit v úvodu odborného časopisu, jehož obsah je tentokrát zaměřen na popisy jednoduchých zařízení, určených všem zájemcům o zájmovou činnost v elektrotechnice? Předpokládám, že se změnou toho, čemu říkáme výrobní vztahy, se zvětší zájem o popisovaná zařízení v další, dříve neznámé kategorii čtenářstva. Tím myslím nově "vznikající" podnikatele. U nich by mohl vzniknout zájem dvojího druhu podle jejich zaměření; zájem, který odpovídá výrobci, který hledá za-jímavou výrobní náplň, a zájem, který odpovídá podnikateli, jemuž se některé z popisovaných přístrojů hodí jako výrobní prostředek. Mnohý z nových podníkatelů bude např. potřebovat své výrobky nebo jejich části eloxovat, přitom nebude třeba mít k dispozici právě velké investiční prostředky – takový podnikatel jistě uvítá jednoduché zařízení, které by alespoň pro začátek umožnilo realizovať jeho představy o výrob-

Na příští rok připravuji po dohodě s redakcí pokračování tohoto čísla AR řady B, tj. číslo s hruba stejným obsahem a zaměřením. Proto bych uvítal jakékoli připomínky a případné podněty, kterých bych mohl využít při zpracování a vytváření obsahu tohoto budoucího čísla AR řady B. Děkuji."

Dostáváme do redakce velmi mnoho dopisů na nejrůznější témata, těší nás důvěra, kterou nám v nich čtenáři vyslovují a současně se omluváme za nedostatky, na které nás upozorňujete. V poslední době dokonce dostáváme dopisy, v nichž je vidět snaha, řešit nebo navrhovat řešení zásadních otázek, týkajících se rozvoje elektrotechniky a elektroniky. Ukázkou tohoto druhu dopisů je dopis, který jsme obdrželi začátkem února. Na dopisech tohoto druhu je potěšitelné především to, že jasně ukazují, jak mnoha lidem leží na srdci naše budoucnost, a to nejen "elektronická

Vážená redakce,

Mám pro vás dvě zprávy. Bohužel ani jedna není dobrá. Ale dále již zcela vážně. Jsme lidé, kteří se zabývají elektronikou a proto plně neseme zodpovědnost za její současný stav u nás. Nebudeme si dále Ihát - je katastrofální. Protože jsem však optimista, nevidím budoucnost zcela černě.

Protože nastává období utahování opasků asi tak do roku 2000, je třeba učinit následující:

Světový vývoj se ubíral cestou vpřed, která byla klikatá. Protože my jsme však v podstatě stáli na místě, ztratila se nám špička vývoje kdesi za horizontem.

A tady to právě vidím optimistic-

Jsou totiž dvě cesty v zásadě — jít slepě po stopách vývoje tak dlouho, až špičku dohoníme kdesi v budoucnu nebo se povznést nad současnost a z výšky najít směr, kterým se vývoj ubírá, odhadnout, kde bude v roce 2000 a pak se vydat přímým směrem. To má však několik nevýhod — půjdeme deset let "o hladu a bídě" a když dorazíme na předem určené místo. můžeme tam být sami. Vývoj se může odklonit jiným směrem. Čím bude odhad vývoje kvalifikovanější a tím přesnější, tím bude výsledná odchylka menší.

Když však půjdeme po stopách vývoje (lépe řečeno ve stopách vývoje), máme jistotu, že jdeme správnou cestou. Může se však stát, že nebudeme mít tolik sil jako ti před námi a že je již nikdy nedohoníme. V tom případě by to znamenalo konec české elektroniky ve světě.

Psal by se rok 2000.

Vyzývám všechny, kteří mají rádi dobrodružství, na dlouhou cestu do světa. Dlouhou neimíň deset let. Nebude sice prošlapaná, domnívám se však, že vím, kudy povede. Často nebudeme příliš sytí a budem padat únavou. Jestliže však dojdeme včas a zbavíme-li se po cestě neblahých návyků posledních 40 let, ti nejlepší nám jistě podají ruku. A naše děti se budou mít snad už lépe a budou mít před sebou i lepší a snad i snazší budoucnost, než jaká čeká na nás.

> Roman Carba Poříčany"

Všechny další dopisy a náměty zpracujeme a postupně vás s nimi seznámíme. Jen všeobecně - neivětší zájem by byl o čísla s přehledem článků v minulých ročnících AR, Radioamatérského zpravodaje a Sdělovací techniky. Čelou věc znovu uvážíme, neboť dosud bylo největší překážkou najít vhodný způsob honorování této práce. Snad budeme mít v nových pod-mínkách možnost odměnit tuto práci tak, aby se zpracovateli vyplatila alespoň tak, jako každému jinému autoru jednotlivých čísel AR řady B s běžným obsahem. Samozřejmě jsme i nadále vděčni za každý námět, který přinese zisk čtenářům.

A na závěr informaci o budoucích dvou číslech AR řady B: číslo 3 bude věnováno moderním operačním zesilovačům (typy, jejich technické údaje, zapojení vývodů, aplikační zapojení), vyjde 7. června, číslo 4 bude probírat zapojení hledačů kovových předmětů od nejjednodušších ke složitým (s konstrukčními údaji), číslo bude doplněno dalšími zajímavými zapojeními z nejrůznějších oborů elektrotechniky, vyjde 2. srpna.

Na shledanou nad stránkami AR řady B se těší redakce

ZAJÍMAVÁ ZAPOJENÍ A KONSTRUKCE DO DÍLNY

Ing. Miroslav Arendáš

Zdroje, nabíječe, stabilizátory

Nabíjení olověných akumulátorů nesymetrickým střídavým proudem

Nabíječ olověných akumulátorů patří mezi klasické amatérské konstrukce a domnívám se, že každý, kdo trochu začal s elektronikou a jakoukoli domácí výrobou amatérských přístrojů, nějaký

nabíječ již zhotovil.

Návrhů a možných variant takovýchto zařízení je samozřejmě velmi mnoho. Jejich složitost a potřebnost pro sou-kromníka, pokud vlastní např. pouze osobní automobil, je samozřejmě diskutabilní. Pokud máte dobře seřízenou elektrickou výbavu ve voze, tak u některých typů automobilů obvykle nepotřebujete nabíjet akumulátor po několik let. Vezmete-li literaturu nebo prolistujete-li technické časopisy, najdete nejrůznější pokyny, co s akumulátorem, počínaje duchaplnými radami, podle nichž byste měli týdně kontrolovat stav hladiny elektrolytu, dolévat destilovanou vodu a natírat svorky vazelínou. Pokyny a rady končí obvykle doporučeními o velikosti nabíjecích proudů, složitými konstrukcemi amatérských nabíječek s regulací a časovými spínači.

Druhý, krajně opačný názor praví, že nějakým dodatečným nabíjením již vlastně nemůžete akumulátoru ani prospět, ani uškodit, protože ať jej dobijete jakýmkoli proudem, nemůžete "dohonit" ty velice špatné podmínky, které má celé roky při provozu ve vozidle.

Řekl bych, že pravda je někde uprostřed. Typickým příkladem jsou např. automobily Škoda s motorem vzadu, tj. prakticky všechny typy od Š 1000 až po poslední typy Š 125, které jezdí v zimním období v městském provozu vlastně s polonabitým akumulátorem, bez rezervy elektrického výkonu pro případné ranní startování, když náhle uhodí velký mráz. Proto je dobré, když majitel Škodovky při příchodu prvních mrazů akumulátor z vozidla vyjme a bez dlouhého zkoumání počátečního nabití jej přes noc dobije jmenovitým proudem 3 až 4 A. Škodovkářům doporučují opakovat dobíjení ještě alespoň dvakrát za zimu. Zvlášť pokud jezdíme jen krátké trasy. Zrovna tak potřebujeme nabíječ tehdy, když si koupíme nový akumulátor ve stavu suchý, nabitý a nenalitý, který sami uvádíme do provozu. Pro takovéto dobíjení vystačíme samozřejmě s jakýmkoli nabíječem.

Přes všechno, co jsem zde uvedl, je obrovské množství zájemců, kteří si uvědomují cenu olověného akumulátoru a jsou ochotni s ním zacházet tak, aby jeho dobu života co nejvíce prodloužili. Kromě motoristů je to také mnoho chatařů, či těch, kteří baterii akumulátorů potřebují jako zdroj elektrické energie tam, kde není rozvod střídavého napětí.

Jednou z nabíjecích metod, které mají velice dobrý vliv na stav akumulátorů, je nabíjení nesymetrickým střídavým prou-

dem. Tento způsob nabíjení se ve svém počátku považoval za téměř zázračný. Casem se na něj zapomnělo – skutećností však jsou dobré praktické výsledky. Princip vychází z patentu Ernesta Beera (lit. 1). Současný vybíjecí proud při nabíjení má depolarizační účinky na elektrodách, čímž se zvětšuje účinnost nabíjení. Elektrody pak jsou mechanicky pevnější, nastává i částečná desulfatizace, takže starým akumulátorům se vrací jejich téměř původní kapacita. Tuto metodu lze použít u všech olověných akumulátorů a je vhodná i pro některá použití v galvanoplastice. V lit. 2 se uvádí, že olověný automobilový akumulátor, který byl několik let používán v motorovém vozidle, měl před počátkem nabíjení asi 20 % původní jmenovité kapacity v Ah. Po třech nabíjecích a vybíjecích cyklech střídavým nesymetrickým proudem, tj. po nabití baterie až do znaků plného nabití a opětném vybití s okamžitým novým nabíjením, se zvětšila kapacita na 80 %. Téměř zničený akumulátor se touto metodou oživil a obnovil. Zbývá říci a vysvětlit, co to je střídavý nesymetrický nabíjecí proud a jak jej prakticky dosáh-

V podstatě jde o pochod, při němž se akumulátor nabíjí a zároveň částečně vybíjí v poměru 1:10 až 5. Tedy použijeme nejlépe stejnosměrný (usměrněný) střídavý proud, kterým nabíjíme. K akumulátoru připojíme zároveň vybíjecí rezistor, nejlépe žárovku. V jedné půlperiodě prochází nabíjecí proud, v chybějící půlperiodě se baterie vybíjí zpět "do žárovky" pět až desetkrát menším proudem.

Na obr. 1 je schéma nabíječe, který je pro uvedenou metodu nabíjení vhodný. Nejprve jak pracuje tyristorový regulátor.

Dvojcestně usměrněné střídavé napětí na výstupu můstkového usměrňovače, určené pro napájení zátěže (akumulátoru) použijeme zároveň k napájení regulátoru. Přes omezovací rezistor R₁ (5 W) a dvě diody D₁ a D₂ dostaneme na Zenerově diodě D₃ napětí +9 V. D₄ je v podstatě jen oddělovací dioda, která má ke katodě připojeny filtrovací kondenzátory C₁ a C₂; z tohoto bodu se napájejí oba integrované obvody IO₁ a IO₂ i kolektor tranzistoru T₁.

Hradla H₁ a H₂ (CMOS NDR) pracují jako tvarovací obvod (pravoúhlý průběh) napětí, vzniklého z půlperiod střídavého síťového napětí na Zenerově diodě D₃. IO₂ je "dekadický čítač a budič displeje"

Obr. 1. Nabíječ akumulátorů "střídavým" proudem

s výstupy 0 až 9. Přepínačem Př $_1$ lze zvolit polohu řízení mezi 10 až 90 % a při vyřazení čítače z provozu v poloze "do zátěže všechny půlperiody" a tedy výkon 100 %. Za přepínačem Př $_1$ je připojen bistabilní klopný obvod z hradel H $_3$ a H $_4$. Následuje oddělovací tranzistor, který přes R $_6$ dodává impulsy pro řízení tyristoru. IO $_1$ je 4× 2vstupové hradlo NOR typu 4001E (nebo např. SSSR K175LE5). IO $_2$ je dekadický čítač, budič displeje typu 40174 (nebo MC14017, nebo SSSR K176TE8).

Průběhy napětí v bodech 1 až 5 jsou na obr. 2. V bodu 1 je průběh pravoúhlého napětí za tvarovačem na vstupu čítače, v bodě 2 lze naměřit každý desátý impuls, určený pro převracení bistabilní-

Obr. 2. Průběhy napětí (při přepínači Př, v poloze 30 %)

ho klopného obvodu. Bod 3 je zvolen náhodně pro regulaci 30 %. V bodu 4 jsou tvarované impulsy z bistabilního bovodu, které v podstatě určují dobu sepnutí tyristoru. V bodě 5 je průběh napětí na zátěži.

Regulátor na obr. 1 je navržen jako univerzální pro různé použití. Chceme-li nabíjet dvanáctivoltový akumulátor s proudem do 10 A, doplníme si ve schématu na obr. 1 chybějící údaje asi takto: D₅ až D₈ KY717, Ty KT705, transformátor Tr 220 V/24 V, 300 W, žárovku zvolíme podle velikosti zpětného proudu, obvykle postačí 12 V/10 W. Omezovacím rezistorem R₈ omezíme maximální proud do baterie při přepnu-

tém Př $_2$ do polohy 2 a Př $_1$ na 100 %. Odpor rezistoru bývá podle typu transformátoru Tr asi 3 až 5 Ω . Při nabíjení střídavým nesymetrickým proudem je přepínač Př $_2$ v poloze 2.

Zájemce, které zajímá jen popisovaná metoda nabíjení a konstrukce zde popsaného nabíječe se jim zdá příliš složitá, bych chtěl odkázat na knihu "Nabíječe a nabíjení", která vyšla v SNTL, v níž je popsaná celá řada daleko jednodušších typů 4].

Deska s plošnými spoji pro zapojení na obr. 1 je na obr. 3, stejně jako deska osazená součástkami.

- 1 Ernest Beer: US patent 2752550.
- [2] Radio Fernsehen Elektronik 22/1972, s. 741 až 743.
- [3] Lukašenko, S.: Regulátor výkonu . . . Radio (SSSR) 12/1987.
- [4] Arendáš, M.: Nabíječe a nabíjení. SNTL: Praha 1988.

Jednoduchý nabíječ pro akumulátor 12 V

Ten, kdo má nabíječ jen pro vlastní potřebu (automobilista amatér), využije jej velice málo. Zato požaduje, aby (když ho jednou za rok vyndá ze skříně) spolehlivě a bezpečně pracoval. Zvláště proto, že poměrně dlouhá nabíjecí doba vyžaduje nechat obvykle akumulátor nabíjet i přes noc, samozřejmě bez dozoru.

Proto jsou velice oblíbené jednoduché a tím i spolehlivé konstrukce nabíječek. Minimum elektrických součástek: trubičková pojistka 0,5 A v pouzdru 7AA 65412, běžný transformátor 220/24 V (OJN 32 220/24 50 VA), čtyři usměrňovací diody KY708 na malých chladičích, jeden přepínač, dvouvláknová automobilová žárovka do předního reflektoru nákladního automobilu 35/50 W – 24 V a dvě výstupní svorky vyžaduje nabíječ na obr. 4.

Funkci podle schématu na obr. 4 snad ani nemusíme popisovat. Použít může-

Obr. 4. Jednoduchý nabíječ akumulátorů

me prakticky libovolný transformátor s převodem 220/24 V, pokud bude mít příkon větší než 50 VA. K usměrnění je možno použít prakticky libovolný usměrňovací blok, pokud (s určitou rezervou) snese zatěžovací proud větší než 3 A. Přepínačem Př, který je běžný páčkový, přepínáme vlákna reflektorové žárovky z dálkových na klopené a tím méně a více omezujeme výstupní proud. Větší proud je kolem 2 A, menší asi 1,3 A. Nabíječ je "zkratuvzdorný", při zkratu se žárovka Ž rozsvítí naplno. Při nabíjení svítí asi polovičním svitem - protože jsme v předním panelu vypilovali okénko a je na ni vidět dovnitř přístroje, tento svit signalizuje činnost nabíječe, tedy nabíjení.

Jak známo, wolframová žárovka svou charakteristikou linearizuje nabíjecí charakteristiku nabíječe. Je to způsobeno známou vlastností wolframových žárovek: Při zapnutí ve studeném stavu dávají (odebírají) velký proud, při plném ohřátí se proud podstatně zmenšuje. V nabíječi tato jinak nepříjemná vlastnost působí kladně. Na počátku nabíjení je proud žárovkou více omezován, na konci nabíjení, kdy se napětí na akumulátoru zvětšuje, se nabíjecí proud zmenšuje méně, protože se žárovka jeví jako nelineární odpor (odpor se zmenšuje se zmenšujícím se proudem).

Pokud seženete originální transformátor a žárovku, bude se hodit i konstrukční návrh. Konstrukce je jasná z výkresů (obr. 5), snad je třeba upozornit na drobnosti. Přivařený šroubek M4 ve dně krabice slouží k připojení zelenožlutého třetího (ochranného, nulovacího) vodiče přípojné síťové šňůry. Zařízení nemá síťový spínač, vypínáme jej pouze vytažením přívodní šňůry ze zásuvky. Síťo-

Obr. 3. Deska s plošnými spoji nabíječe (X224)

KD607 R, 470 C₁ 200ju

2×KC508 Obr. 6. Zdroj 9 V z akumulátoru

KZZ73

vou šňůru musíme zajistit proti vytržení zevnitř přístroje příchytkou, takovou, jakou má každá zásuvka nebo zástrčka.

Chladiče stačí tři, musí být elektricky vzájemně izolované. V originále jsou použity profily pro stavební krycí panely. Vhodným materiálem ke zhotovení chladičů je hliník nebo dural. Za zmínku stojí i upevnění žárovky – využívá se toho, že prostřední svorka reflektorové žárovky je zároveň vývod, takže ji můžeme přímo připevnit na výstupní svorku nabíječe.

Zdroi napětí 9 V. napájený z akumulátoru auta

Mnohé bateriové spotřebiče, jako jsou rádia, magnetofony, televizory, přehrávače atd. mívají napájecí napětí 9 V. Pokud je chceme použít např. v kempovacím přívěsu a máme k dispozici napájecí napětí 12 V z akumulátoru auta, potřebujeme zhotovit si jednoduchý napáječ.

Je si třeba uvědomit, že palubní napětí, odebírané z automobilu, může kolísat od asi 10 V (akumulátor téměř vybitý) až po horní hranici téměř 15 V (v době, kdy pracuje motor a alternátor, případně u starších typů automobilů dynamo, akumulátor nabíjí). Zapojení na obr. 6 pracuje tak, že stabilizuje výstupní napětí. Jeho přesná úroveň je v podstatě dána Zenerovým napětím referenční diody D₁. Jinak je zapojení na obr. 6 jednoduché. Tranzistor T₃ je zapojen jako zesilovač chybového napětí. Oba tranzistory T₁ a T₂ jsou v zapojení, které se užívá

pro zvětšení zesilovacího činitele. Kondenzátor C2 jednak vyhlazuje napájecí napětí na vstupu regulátoru, jednak zamezuje kmitání.

Spotřebič na výstupu by neměl mít větší příkon než 50 W. Tranzistor T₁ bychom měli umístit na důkladný chladič o ploše alespoň 500 cm². Pojistku Po volíme podle nabíjeného spotřebiče.

Pro většinu běžných použití toto zapojení vyhoví. Některé spotřebiče však vyžadují podle konkrétních poměrů přidat ještě odrušovací členy. V takovém případě nejprve zvětšíme kapacitu kondenzátoru C1, případně přidáme ještě další vyhlazovací kondenzátor na vstup.

Miniaturní síťový zdroj

Klasický síťový zdroj pro libovolný elektronický spotřebič se obvykle skládá ze síťového transformátoru, usměrňovače, vyhlazovacích členů a případného stabilizátoru. Toto uspořádání dnes příliš nevyhovuje. Ztráty tepla, konstrukce síťového transformátoru a velké vyhlazovací kondenzátory svazují projektantům ruce. Běžný síťový transformátor je velký a těžký, chladiče usměrňovacích a stabilizačních prvků musí mít určitou velikost a hmotnost, aby mohly tepelnou ztrátu vyzářit. S tímto teplem musíme pak počítat i v celém zařízení, do kterého je síťový zdroj navržen. Zhusta se pak stává, že síťový zdroj určuje velikost celého zařízení a představuje podstatnou část jeho hmotnosti. Proto je snaha hledat nové principy a konstrukce nutná. Víme, že chemické články nebo baterie nejsou, obzvláště při nutném větším odběru proudu všelékem. I ty mají své rozměry a určitou, poměrně značnou

Zapojení na obr. 7 představuje jedno z moderních řešení napájecího zdroje, určeného zejména pro malé elektronické přístroje s obvody s logikou TTL či jiné, např. stolní kalkulačky, hodiny a stopky, teploměry i další typy měřicích přístrojů či pomůcek. Parametry zdroje: napájení 220 V/50 Hz, výstupní napětí +5 V, maximální zátěž 3 W, účinnost 75 %, všechny součástky na desce s plošnými spoji 36 × 40 mm s maximální výškou 20 mm.

Zdroj jako takový nemá klasický síťo-vý transformátor. Transformátor Tr na výstupu je navinut na relativně malém toroidním jádře, což zachovává základní výhodu klasického zdroje, tj. že výstupní napětí je spolehlivě galvanicky odděleno od napětí sítě.

Napájecí síťové napětí 220 V/50 Hz se přivádí na integrovaný blok čtyř diod (označeno jako D₁, typ KC407A) v můstkovém zapojení. Svítivá dioda D₂ indikuje zapnutí a zároveň jí prochází celý odebíraný proud, což je při plné

B-R

Obr. 7. Zdroj 5 V, 3 W

zátěži asi 20 mA. Obvody zdroje jsou napájeny vnitřním stejnosměrným napětím, které se vytváří na sériově zapojených diodách D3 až D5 a filtruje třemi elektrolytickými kondenzátory C2 až C4. Omezovací rezistor R₁ je zároveň kolektorovou zátěží tranzistoru T2. Základem zapojení je generátor pravoúhlého signálu, který se tvoří na výstupu operačního zesilovače. Jeho kmitočet je určen zejména časovou konstantou členů R₄C₄ ve zpětné vazbě IO. Výstupní pravouhlé napětí spíná přes vazební kondenzátor C6 dvojici střídavě pracujících tranzistorů T₁ a T₂. Kmitočet generátoru ie asi 35 kHz. Při sepnutí T₁ se náboj kondenzátoru C3 vybíje do vinutí I transformátoru Tr tak, že proud jeho vinutím prochází zleva do prava. Při sepnutí T2 se vybíjí kondenzátor C4 a proud prochází primárním vinutím Tr opačným směrem. Tr není ovšem klasický transformátor. Má dvě vinutí, Í: 500 z drátem o Ø 0,15 mm CuL, a II: 50 z drátem o Ø 0,3 mm CuL se středním vývodem. Tr má toroidní jádro o rozměrech 12 × 8 × 3 mm. Jeho malá vlastní indukčnost dovolila zvolit tak relativně vysoký kmitočet generátoru.

Co říci závěrem? Všechny polovodičové součástky jsou sovětské výroby. Jednou z nevýhod konstrukce z hlediska československého zájemce je skutečnost, že ne za všechny prvky najde rovnocennou tuzemskou náhradu. Jde zejména o tyto součástky: D_3 , typ KS162A, je parametrický stabilizátor 5,8 až 7 V, 150 mA; KS630 jsou Zenerovy diody o U_Z = 130 V, 5 W; tranzistory KT940A jsou bez chladičů, P_C = 1,1 W, f_{mez} = 90 MHz a U_{CE} = 300 V. Cypuštanov, A.: Miniaturnyj setěvoj. Radio (SSSR) 4/1986.

Napětím řízený zdroj pravoúhlých impulsů

Na obr. 8 je zvláštní způsob zapojení astabilního, napětím řízeného oscilátoru, zdroje pravoúhlých impulsů, který pracuje v rozsahu 100 až 3000 kHz, přičemž změna kmitočtu na výstupu je přímo úměrná změně řídicího stejnosměrného napětí.

Zapojení používá jediný integrovaný obvod, dvouvstupové hradlo NAND v provedení CMOS. Pouzdro se 14 vývody obsahuje čtyři hradla. IO vyrábí celá

řada firem – TESLA jako MHB4011, NDR jako V4011D, SSSR – K561LA7, Motorola – CD4011 atd.

Celé zapojení je dokonale souměrné. Funkce je jasná ze schématu. Při zapnutí se obvod překlopí do náhodné polohy. Předpokládejme např., že v prvním případě je na výstupu Q hradla H2 úroveň log. 1. Kladné napětí se pak přenáší přes diodu D2 na vstup 2 hradla H3. Zvětšování tohoto napětí je zpožďováno členem RC, tvořeným R₂C₁, který s počátečním vstupním napětím určuje okamžik, za který se obvod překlopí. Po překlopení pracuje pak druhá polovina obvodu, kladné napětí z výstupu Q se dostává přes druhou diodu D₁ na vstup 12. Jeho zvětšování pak zpožďuje člen R₁C₁ a počáteční napětí, dané vstupním napětím. Kmitočet je pak úměrný časové konstantě R₁, R₂ a C₁. Uvedeného rozsahu 100 až 3000 kHz lze dosáhnout při pasívních

Obr. 8. Řízený zdroj pravoúhlých impulsů

Obr. 9. Změna kmitočtu při změně vstupního

součástkách R_1 , $R_2=3,3$ až $10~k\Omega$ a C=33~pF až 3,3~nF. Rozsah změny kmitočtu otáčením potenciometru R_3 je asi 1:8. Závislost změny kmitočtu na změnách vstupního řídicího napětí je na obr. 9.

Uvedené zapojení má celou řadu předností: Malý odběr proudu je dán samozřejmě použitým obvodem CMOS, velký regulační rozsah, lineární závislost mezi vstupním napětím a kmitočtem, možnost měnit střídu impulsů změnami R₁ a R₂. Určitou nevýhodou je nutnost použít (pokud chceme obsáhnout celý rozsah 1:8) na vstupu i záporné řídicí napětí.

Soukup, P.: Spannungsgesteuerter Oscillator mit V4011. Radio Fernsehen Elektronik 5/88.

Měnič napětí pro holicí strojek

Měnič napětí je zařízení, které potřebujeme, když chceme zapnout síťový spotřebič tam, kde nemáme k dispozici zásuvku. Obvykle to bývá na chatě, v automobilu, při kempování o dovolené apod.

Úvodem je třeba říci, že zejména jednoduché měniče napětí se dělají jednoúčelové, pouze pro jeden typ spotřebiče
nebo pro velmi podobná zařízení. Zcela
univerzální měnič, který by dokázal jednoduchým a levným způsobem přeměnit
stejnosměrné napětí z baterie na rovnocenné síťové napětí 220 V, 50 Hz, aby
bylo možno použít libovolný spotřebič,
se prakticky nevyrábí. V praxi to vypadá
tak, že teprve tehdy, když se chceme
zabezpečit vlastní elektrickou energií,
oceníme láci a perfektní službu, kterou
nám za "ty peníze" poskytují Energetické závody téměř bez starostí.

Dále popisovaný měnič napětí je určen pouze k napájení holicích strojků, příp. ekvivalentních zařízení. Je si třeba uvědomit, že např. běžný automobilový akumulátor ve škodovce má kapacitu 35 Ah. Pokud je plně nabitý, tak dále popisovaný měnič při plném zatížení (16 W) z ní odebírá proud 1,4 A, což stačí v ideálním případě do úplného vybití akumulátoru na 25 hodin provozu. Použijeme-li měnič pro holicí strojek, tedy asi na 5 minut denně, je to zanedbatelné. Budeme-li však měničem napájet zářivku pro svícení, je si třeba předem podle příkonu zářivky spočítat, jak dlouho nám je akumulátor potřebnou energii schopen dodávat.

Měnič podle schématu na obr. 10 je určen pro spotřebiče o maximálním příkonu 16 W a napětí 220 V. Ideálním napájecím zdrojem je dvanáctivoltový automobilový akumulátor. Pro některá, zejména krátkodobá používání je jej možné napájet ze tří plochých baterií nebo devíti monočlánků. Vhodným spotřebičem je holicí strojek s frézičkami na 220 V, např. typ Charkiv 5, Agidel ze SSSR. Tyto strojky vyhovují jak svým příkonem, tak tím, že mají pro pohon

holicích fréz kolektorový motorek, kterému je jedno, je-li napájen střídavým nebo stejnosměrným proudem.

K tomuto měniči lze používat i jiné spotřebiče. Můžeme k němu připojit síťový fotoblesk. V takovémto případě má pak oprávnění použití burelových baterií, protože zařízení můžeme zhotovit jako přenosné. Podobně jej lze použít k napájení stroboskopické výbojky, např. k seřizování chodu automobilového motoru.

Jedno z nejvýhodnějších použití je napájení zářivky. To, o co přijdeme na ztrátách při přeměně stejnosměrného napětí na střídavý proud a zpětným usměrněním, získáme zvětšenou světelnou účinností zářivky. Malé zářivkové trubice jsou v poslední době stále více propagovány a používají se pro celou řadu svítidel např. v přenosných svítilnách, v autobusech, některé firmy je montují jako osvětlení do osobních automobilů, kempovacích přívěsů apod. Zářivka nepotřebuje startér, kondenzátor ani omezovací tlumivku. Kolíky na konci trubice se spojí do krátka a vývody z obou konců se připojí na výstup z měniče.

Odběr měniče bez zatížení - tj. naprázdno - z baterií je asi 0,4 A při zatížení od 60 mA až do proudu 1,4 A (účinnost asi 75 %). Zapojení je v podstatě dvoutaktní generátor, v němž obaspínací tranzistory pracují střídavě do společného pracovního vinutí transformátoru a mají společné zpětnovazební vinutí L3. Střídavé otevírání jednoho a druhého tranzistoru zabezpečují diody D₂ a D₃. Rezistor R₁ omezuje maximální bazový proud. Odpor rezistoru Ro v součinu s kapacitou kondenzátoru C2 tvoří časovou konstantu, která určuje kmitočet generátoru (naprázdno 850 Hz, při zatížení měniče asi na 650 Hz). Vlivem kmitů generovaných v primárním vinutí vzniká v transformátoru magnetický tok, který vyvolává v sekundárním vinutí L4 střídavé napětí. To se usměrňuje běžným můstkovým usměrňovačem z diod D₄ až D₇ a filtruje kondenzátorem C₃. Pro lepší a spolehlivý start generátoru při zapnutí a pro oddělení proudových špiček je v obvodu zpětné vazby zařazena tlumívka o indukčnosti 50 µH. Její indukčnost není kritická, je navinuta na feritovém otevřeném jádru a v krajním případě ji je možno, pokud nebudeme

mít s nasazováním generátoru při zapnutí potíže, i vynechat (nahradit propojkou).

 T_1 a T_2 jsou dva výkonové tranzistory p-n-p typu KD334. Oba umístíme na chladiče.

Transformátor Tr je složen z plechů E, materiál permaloy tloušťky 0,8 až 0.15 mm. Rozměry jádra 8 × 16 mm. Jak je v amatérských konstrukcích zvykem, není vždy k dispozici přesný typ plechů. Pro daný kmitočet i přenášený výkon můžeme použít i feritové jádro E nebo skládané železné plechy El. Rozměr jádra by pak měl být trochu větší, dimenzovaný na výkon 20 W. Ze zkušenosti lze říci, že při takovýchto záměnách není nebezpečí, že by zařízení nepracovalo, ale obvykle se mění jeho účinnost. Primární vinutí L1 a L2 má 45 závitů drátu o Ø 0,5 mm CuL. Zpětnovazební vinutí L3 má 15 závitů drátu o Ø 0,3 mm. Sekundární (výstupní) vinutí 900 závitů drátu o Ø 0,2 mm. Doporučuje se navinout jako první sekundární vinutí L₄ dospod. Pak prokladovou izo-lační vrstvu a obě primární vinutí L₁ a L₂ (dva vodiče současně), jako poslední navinout zpětnovazební vinutí L3.

Všechny diody jsou běžné křemíkové usměrňovací typy. U diod na výstupu (D₄ až D₇) se požaduje závěrné napětí alespoň 1 kV. Z hlediska oteplení je nutné diodu D₁ umístit na chladič.

Zdroj dává naprázdno na výstupních svorkách napětí 380 až 450 V. Při zatížení by se nemělo výstupní napětí zmenšit pod 200 V. Vzhledem k výstupnímu napětí je třeba, aby byl měnič proveden tak, aby vyhovoval všem bezpečnostním předpisům. Zejména doporučujeme, aby na výstupu byla běžná síťová zásuvka a všechny živé díly zařízení byly chráněny před přímým dotekem.

Prototyp měniče napětí byl zhotoven na pertinaxové desce o rozměrech 90 × 85 mm. Místa pro pájecí body byla zabezpečena dutými nýtky o ∅ 2 mm. Je možno použít i desku kuprextitu a pro jednotlivé spoje navrhnout plošné spoje. Celek je pak vhodné umístit v pertinaxové nebo plastové krabici 130 × 90 × 50 mm. Možné rozložení součástek je na obr. 11.

Uvedených rozměrů zařízení lze pochopitelně dosáhnout jen tehdy, když zachováme zejména velikost transformátoru Tr. Autor konstrukce A. Mežlumjan, od něhož byl po úpravě návod na tento měnič napětí převzat, použil tyto originální polovodičové součástky z produkce SSSR: T₁ a T₂ – KT837G, D₁ – KD202, D₂ a D₃ – KD105V, D₄ až D₇ – KD105G. Transformátor má plechy E320 nebo E330.

Mežlumjan, A.: Preobrazovatěl naprjaženija dlja elektrobritvy. Radio (SSSR) 3/88.

Regulovaný zdroj proudu

Na schématu obr. 12 je jednoduchý regulovaný zdroj konstantního proudu, pracující v rozsahu 100 mA až 1,5 A s plynulým nastavením potenciometrem R₃. Napěťové omezení je asi 6 V. Zdroj je vhodný jako mobilní nabíječ malých akumulátorků a vzhledem k dobrému činiteli stabilizace (kolem 2%) i jako zdroj pro měření předního napětí diod, tyristorů, triaků, případně pro měsaturačního napětí výkonových tranzistorů. Diodu měříme tak, že ji připojíme v propustném směru na výstupní svorky, když jsme předem nastavili dovolený přední proud diodou. Přední napětí pak změříme přímo na diodě voltmetrem. Výhodou takového měření je to. že stabilizace proudu dává záruku, že diodu nepoškodíme. Přitom měříme ve správném pracovním bodě, který udává výrobce.

Na sekundární straně transformátoru Tr jsou dvě vinutí. Pracovní 8 V/1,5 A k napájení vlastního zdroje a pomocné 20 V/0,3 A k vytvoření referenčního napětí. To stačí vzhledem k malému odběru proudu usměrnit pouze jednocestně diodou D₅. D₆ je Zenerova dioda, na níž se vytváří stabilizované napětí, používané jako referenční pro celý proudový zdroj. Odporovým trimrem R₁ nastavíme proud Zenerovou diodou. Napětí ze Zenerovy diody přivádíme na dělič, tvořený rezistorem R₂ a potenciometrem R₃. Z běžce potenciometru se část referenčního napětí přivede na bázi tranzistoru T₂. Tranzistory T₁ a T₂ jsou v Darlingtonově zapojení. Z vnějšího pohledu Ize tuto dvojici považovat za jeden tranzistor. Jakmile se zvětší napětí na R4, které je úměrné proudu předcházejícími výstupními svorkami, nad velikost napětí na bázi tranzistoru, začnou se zavírat tranzistory T2 i T1. Tak je zajištěna automatická regulace proudu. Změnou polohy běžce potenciometru R3 se mění napětí na bázi T2 a tím i nastavený konstantní proud.

Impulsní regulátor rychlosti otáčení stejnosměrného motoru

Na obr. 13. je jednoduchý impulsní regulátor stejnosměrného motoru, který pracuje s motory až do výkonu 100 W. Impulsní regulace umožňuje široký rozsah změny rychlosti otáčení, od 50 do 2000 ot/min. Regulace je plynulá a ocení se zejména při malých rychlostech otá-

čení motoru. Regulace změnou buzení nebo pouhým zmenšováním napájecího napětí nepracuje zdaleka v takovémto rozsahu a zejména při malých rychlostech otáčení motoru je méně plynulá.

Základem regulátoru je jednoduchý zdroj pravoúhlých impulsů, tvořený obvodem tranzistoru T1 a hradlem H1 integrovaného obvodu MH7400. Kmitočet a tím i výslednou rychlost otáčení motoru měnímé plynule změnou konstanty RC, tedy natáčením potenciometru R₃. Hradlo H₂ je zapojeno jako tvarovač a "negátor" impulsů. Paralelní spojení dvou hradel H₃ a H₄ je voleno proto, abychom dostali dostatečný výkon pro vybuzení koncového výkonového tranzistoru T2. Při správné funkci by se tento tranzistor měl otevírat až do saturace při příchodu kladného impulsu; při logické úrovni log. 0 na výstupech hradel H3 musí být zcela zavřený. O správné funkci se lze přesvědčiť rozpojením vstupů a hradlu H2 a při postupném přivedení log. 1 a log. 0 na jeden ze vstupů.

Zapojení je nezkratuvzdorné, proto je třeba připojit motor přes konektor. Tranzistor T₂ umístíme na chladič. Připojený motor může mít příkon podle maximálního dovoleného kolektorového proudu tranzistoru T₂. Vývod označený 14 ze Zenerovy diody D₁ je připojen jako kladné napájecí napětí na vývod 14 integrovaného obvodu MH7400.

Galvanicky oddělené spínání zdroje optoelektrickým členem

Někdy je z hlediska rušení nezbytné galvanicky oddělit elektrický obvod akčních členů od řídicích obvodů např. počítače. Je to důležité zejména tehdy, šíří-li spínaný obvod do řídicí jednotky nedefinované rušení a spolehlivé odstranění rušivých signálů by si vyžádalo použít rozměrné filtrační prvky. Tento případ nastává při spínání komutátorových motorů, vysokonapěťových zdrojů, sirén, zvonků apod. Klasickým způsobem takového oddělení je použití relé.

Pokud se však chceme vyhnout kontaktnímu spínání z důvodu spolehlivosti nebo dalšího rušení jiskřením, lze použít čistě elektronické řešení. Jedním z možných způsobů je použít optoelektrické spojovací členy. S. p. TESLA ES nabízí optoelektrické spojovací členy WK 164 12, WK 164 13 a WK 164 14. Tyto spojovací členy se skládají ze svítivé diody, která tvoří vysílač, a z fototranzistoru ve funkci přijímače signálu. Izolační

napětí mezi těmito prvky je 4000 V u typu WK 164 12 a 2500 V u typu WK 164 13 a WK 164 14. Izolační odpor vstup/výstup je 1000 MΩ u typu WK 164 12 a WK 164 13 a 10 000 MΩ u typu WK 164 14. Z těchto údajů vyplývá i stupeň oddělení obvodů.

Řídicí jednotka (např. počítač) může být pro dosažení co nejspolehlivějšího odrušení napájena např. z akumulátoru a ovládaný akční člen může být v krajním případě spojen galvanicky se síťovým napětím, aniž je ohrožena bezpečnost obsluhy řídicího systému. Přitom je zaručena odolnost tohoto systému proti síťovému rušení.

Příklad použití optoelektrického spojovacího členu je na obr. 14. V tomto případě je spínán zdroj s integrovaným výkonovým stabilizátorem napětí typu

Obr. 14. Použití optoelektrického spojovacího členu

MA7805 až MA7824, podle napětí, které potřebuje spínat. Tyto obvody se vyrábějí pro 5 V, 12 V, 15 V a 24 V. Všechny uvedené typy jsou určeny pro maximální proud 1 A.

Na obr. 14a je použito zapojení s jediným tranzistorem, na druhém zapojení (obr. 14b) je zapojení se dvěma tranzistory. Optoelektrický člen spíná vlastně vstupní napětí do stabilizátoru. Musíme počítat s tím, že spínané napětí U_n musí být větší o úbytek napětí na tranzistoru a stabilizátoru, tedy asi o 5 V, než je stabilizované napětí na výstupu stabilizátoru, U_s . Napětí pro napájení světelné diody a rezistor R₁ musí být voleny tak,

Obr. 12. Regulovatelný zdroj konstantního proudu

Obr. 13. Impulsní regulátor rychlosti otáčení stejnosměrného motoru

aby diodou protékal proud asi 30 mA pro WK 164 12 a WK 164 13 a 50 mA pro WK 164 14. Tranzistor T₁ musí napěťově a proudově vyhovovat spínané zátěži a musí mít patřičně proudové zesílení s ohledem na použitý optoelektrický člen. Na místě T₁ můžeme použít např. tranzistor KD367 v Darlingtonově zapojení nebo podle zapojení na obr. 14b může být T₁ např. tranzistor KD333 a T₂ typ KC238C.

Pájení se dvěma teplotními režimy

Ten, kdo často pájí elektronická zařízení a přístroje ví, že nejlepší je páječka s odporovým vyhřívacím tělískem. Pistolová páječka je těžká do ruky a navíc má nezaručenou kvalitu pájení - cín se snadno přepaluje a velice snadno lze "vyrobit" noční můru všech opravářů elektronických zařízení - studený spoj. Poloprofesionální i profesionální pracoviště, elektronické laboratoře, opravářské dílny i mnozí amatéři používají raději páječky s odporovým vyhříváním hrotu, ať již na 220 V nebo pro drobné práce v provedení mikro, která používá obvykle napětí menší.

Navrhované zařízení je vestavěno do stojánku na odkládání páječky. Je součástí pracovního stolu. Pracuje tak, že páječce, která se do stojánku odkládá, lze nastavit dva pracovní režimy. Jeden pro pájení a jeden pro odložení na stojánek. Zařízení je univerzální v tom, že můžeme použít prakticky libovolný typ páječky. Oba režimy se přepínají automaticky po zapnutí přístroje na síť. Činnost při přepínání je kontrolována a signalizována dvěma žárovkami

Jaké má zařízení výhody? Šetří elektrickou energii, lze nastavit optimální pájecí teplotu, pokud mezi pájením děláme různé úkony, tak se cín na hrotu odložené páječky nepřepaluje a hrot tedy nemusíme při pájení tak často čistit.

Princip činnosti je zcela jednoduchý a patrný ze schématu na obr. 15. Jakmile postavíme páječku na stojánek, spojíme vaný proud do páječky ze stavu A do Pro pájení v režimu A nastavíme teplotu páječka v pohotovostní poloze. Napájecí hranici nebo mírně pod hranici tání cínu. režimu B trimr R₃ připíná paralelně k R₂, případně můžeme trimry nahradit i pevnu musíme zvyknout a využít jí např. pro nanesení kalafuny na spoj apod.

Transformátor Tr volíme podle toho. jaké máme relé. Lze např. použít běžný zvonkový transformátor 220/6 V a převinout cívku relé RP 100 na 8 V. Lze použít i transformátorek používaný pro signalizační žárovky. Žárovky samozřejmě volíme podle napětí transformátoru, při šestivoltovém sekundárním napětí isou vhodné 6,3 V/50 mA.

Pro mechanickou konstrukci volíme podlouhlou krabici o (orientačně) rozměrech $400 \times 100 \times 50$ mm. Na vrchní odkládací desku přišroubujeme tepelně elektricky izolující asbest. Páječku odkládáme do kovové vidlice, umístěné na asbestové desce.

Funkčně podobné zařízení se stejným způsobem přepínání dvou režimů práce páječky pomocí relé bylo popisováno ve FA 9/83, nemá však triakový regulátor. V režimu A se páječka napájí přímo ze sítě, v režimu B ze sítě přes kondenzá-

okruh relé Re. To sepne a připojí regulostavu B. Zároveň zhasne zelená žárovka A a rozsvítí se červená žárovka B. Žárovky jsou spínány druhými kontakty relé. K regulaci proudu se používá standardní zapojení triakového regulátoru. páječky odporovým trimrem R₂. Menší než jmenovitý proud je vhodný zejména tehdy, pájíme-li drobnější součástky a hrot je hodně upilovaný. V režimu B je proud se v tomto případě nastavuje trimrem R₃ asi na poloviční velikost, těsně na Oba trimry R₂ i R₃ mají stejný odpor. Je možno volit i variantu, při které se při nými rezistory. Zvedneme-li páječku ze stojánku, tak se při přepnutí zařízení do režimu A začne páječka ohřívat a pájet můžeme začít asi po 10 až 15 sekundách. To je zcela vyhovující prodleva, na kterou si samozřejmě v pracovním úko-

KY701 242 100 D. C₁ 220 100n 100u 220n/ /600 V KR205

Obr. 15. Pájení se dvěma teplotními režimy

tor, který pracuje jako srážecí nebo omezovací impedance. Jeho kapacita se volí podle odporu vyhřívacího tělíska v rozsahu 0,5 až 5 μF. Kondenzátor musí být papírový, nejlépe v provedení MP na 1000 V. Taková jednostupňová regulace je také bezeztrátová. Uváděná triaková regulace, která je technicky dokonaleiší a dovolí nastavit páječce optimální pracovní režim, nevyhoví tam, kde pracujeme s radiopřijímači, televizory apod. Obvykle se ii totiž nepodaří dostatečně odrušit a je ji třeba při slaďování přijímačů vypínat.

Weissling, R.: Vorschaltgerät für Lötkolben zum Überhitzungsschutz. Funkamateur 9/83, s. 439.

Elektrický schodišťový automat

Schodišťový automat, který po stisknutí tlačítka na chodbě zapíná osvětlení a po nastaveném čase je automaticky vypne, patří dnes k samozřejmě výbavě každého domu. Mě osobně se líbí racionalizační opatření, které doporučuje s těmito zařízeními nešetřit. U několikapodlažních domů, v nichž všichni do vyšších poschodí jezdí jen výtahem, lze osvětlovat chodbu jen v jednom patře a schodiště do pater nad a pod. Je vyloženým plýtváním, když přijdete do dvacetipodlažního věžáku, rozsvítíte chodbu se schodištěm od střechy po přízemí, do příslušného poschodí jedete výtahem – a když otevřete jeho dveře, tak světlo obvykle již nesvítí. Přitom technické řešení se značnými úsporami energie je tak jednoduché.

Staré typy schodišťových spínačů měly tzv. "rtuťová prasátka", která se pomalu elektromagneticky překlápěla. Novější typy automatů jsou založeny na vtahování kotvy do elektromagnetu a následném "volném pádu" (při vypnutí tlačítka) přes pružinu. Velikost "napružení" pak určuje dobu, za niž se spínají kontakty, spojené mechanicky s kotvou. Přes ně se spínají žárovky osvětlení. Víme, že tyto mechanické schodišťové automaty nejsou ideální a mají mnoho závad. Moderní elektronika dovoluje stejné zařízení zkonstruovat velice jednoduché. Jedno z typických zapojení je na obr. 16.

Tr je běžný zvonkový transformátor. Jeho napětí jednocestně usměrníme diodou D. Na vyhlazovacím kondenzátoru C₃ bychom měli mít stejnosměrné napětí asi 11 V. Vlastní časovací obvod je tvořen univerzálním časovacím integrovaným obvodem typu NE555, který se k nám dováží např. z NDR. Po stisknutí tlačítka Tl se objeví na výstupu 3 a rezistoru R, kladné napětí, které sepne triak Tc a ten pak osvětlovací žárovky. Dobu sepnutí triaku určuje člen RC, $(R_3 + R_2)C_2$, jehož časovou konstantu můžeme regulovat odporovým trimrem.

Ve schématu úmyslně chybí typ triaku. Ten musíme zvolit podle počtu a příkonu spínaných osvětlovacích žárovek. Nejprve sečteme jejich příkony a vypočteme spínaný proud. Např. máme na chodbě čtyři žárovky 220 V/100 W; $P_c = 4 \times 100 = 400 \text{ W}$. Celkový proud

je pak
$$I_c = \frac{P_c}{U} = \frac{400}{220} = 1,9 \text{ A}.$$

Nezapomínáme, že žárovka s wolframovým vláknem má větší odběr proudu při zapnutí než odpovídá proudu při jmenovitém příkonu, takže počítáme s proudovou rezervou. Vhodný typ pro konkrétní případ je KT730/700. Při značném počtu žárovek lze triakem spínat relé (nebo jiný mechanický prvek pro spínání velkých proudů), jehož kontakty pak spínají jednotlivé větve se žárovkami.

Nf technika

Jednoduchý stereofonní zesilovač

Nf zesilovače patří již tradičně k nejžádanějším stavebním návodům vůbec. Důkazem je vždy čtenářský ohlas, který s podivem nezávisí ani na momentální nabídce přístrojů v maloobchodním prodeji.

Zesilovač potřebujete ke gramofonovému šasi, magnetofonu, tuneru, můžete jím doplnit malý přenosový přehrávač, je nutný i ke každému elektronickému hudebnímu nástroji apod. Uváděný návod na stavbu zesilovače patří k těm nejjednodušším a nejlevnějším, z toho vyplývá i nenáročnost a snadnost jeho konstrukce. Má výstupní výkon 2×5 W Pro sinusový signál. To v podmínkách malého bytu vyhoví všem běžným požadvkům. Zesilovač lze použít také v osobním automobilu, protože mu postačí nesymetrické napájecí nestabilizované napětí v rozsahu +10 až +20 V.

Schéma zesilovače je na obr. 17. Ze zesilovače je na obrázku nakreslen pouze jeden, tj. pravý kanál. Druhý, levý kanál je totožný. Potenciometry R₄ pro zesílení, R₁₀ pro stereováhu a R₁₄ pro korekci vysokých tónů jsou dvojité na společném hřídeli a ovládány vždy jedním knoflíkem na panelu. Zapojení je

Obr. 17. Jednoduchý stereofonní zesilovač

téměř bez úprav převzaté ze zařízení Ziphona Combo 923 z NDR. V originálu je použit integrovaný obvod A210, který je s integrovaným obvodem TESLA MBA810 identický jak co do parametrů, tak ve vnějším provedení i zapojení vývodů.

Napájecí zdroj má nestabilizované výstupní napětí. Základem je transformátor Tr, ten má jádro z plechů M17. Plechy jsou skládány obvyklým způsobem střídavě, bez vzduchové mezery. Primární vinutí má 2930 závitů drátu o Ø 0.14 mm CuL, sekundární vinutí 220 závitů drátu o Ø 0,6 mm CuL. Střídavé napětí se usměrňuje čtyřmi diodami KY702 (nebo podobnými) v běžném můstkovém zapojení. Pro využití jmenovitého výkonu obvodu MBA810 nebo pro použití v automobilu je vhodné doplnit zdroj ještě stabilizátorem. Postačí např. jediný integrovaný obvod MA7815. Samozřejmě, že v automobilu odpadne síťový transformátor a usměrňovací diody. Přívod se zapojí přímo na napájecí soustavu pouze přes pojistku.

Na panelu přístroje je síťový spínač S₁, tři ovládací prvky (hlasitost, stereofonní váha a tónová clona) a pět konektorů, K₁ pro krystalovou přenosku, která může být připojena trvale, čímž ušetříme přepínač, K₂ je univerzální vstup s citli-

vostí 500 mV. Na kolíky 4 a 5 připojíme magnetofon, na 1 a 3 tuner. Na výstupní straně je konektor K₃ pro připojení sluchátek. Ten má mít vestavěné vypínací kontakty (S₂) pro odpojování reproduktorové soustavy (pravého i levého kanálu). Reproduktorové soustavy jsou připojeny přes dva standardní konektory K₄.

Závěrem lze říci, že zesilovač svým zapojením vychází z doporučeného zapojení určeného výrobci integrovaných zesilovačů. Prakticky jde o nejjednodušší zapojení, které dnešní, u nás dostupná technika umožňuje použít.

Integrovaný nf stereofonní zesilovač $2 \times 15 (2 \times 10) W$

Na obr. 18 jsou dvě varianty nízkofrekvenčního stereofonního zesilovače v kategorii Hi-Fi s IO. Zesilovač 2×15 W má tři integrované obvody, IO $_1=A1524D,$ IO $_2$ a IO $_3$ jsou totožné a to typu A2030. Druhá varianta zesilovače má jen dva integrované obvody – IO $_1$ také A1524D a koncový stupeň s dvojitým IO $_4=A2005.$ Všechny integrované obvody jsou pro našeho uživatele dostupné z výroby NDR.

Úvedený stereofonní nízkofrekvenční zesilovač představuje generační rozdíl

proti běžným zesilovačům svojí kompletní integrací. Největší podíl na tom má jednoúčelový lineární integrovaný obvod A1524, který obsahuje vstupní, korekční, budicí, případně i oddělovací část stereofonního zesilovače ve dvou nezávislých zesilovacích větvích, tedy prakticky celou vstupní část standardně používaných nf zesilovačů. Má charakteristické vlastnosti, které zaručují, že při doporučených zapojeních se výsledné zařízení zařadí do třídy Hi-Fi.

Pro zajímavost uvedu i nejzajímavější údaje: Výhodou je pro oba kanály společné, nesouměrné, tedy jedním koncem uzemněné napájecí napětí 12 V (odběr proudu asi 40 mA). Minimální zatěžovací odpor je 4 Ω. Zesílení je určeno poměrem odporů vnějších rezistorů R5 a R₆ v jedné větvi, R₇ a R₈ v druhé. Tyto členy určují stupeň záporné zpětné vazby a tím i zesílení. Zdá se, že největší výhodou je možnost použít pro řízení zesílení, balance, výšek a hloubek čtyři stejné, pouze jednoduché lineární potenciometry 47 kΩ. Úspora na ceně těchto součástí (neboť běžné zesilovače musí mít potenciometry dvojité a případně i logaritmické) i na potřebném "zástavbovém" prostoru znamená, že zesilovač se vyplatí použít jak v profesionálních, tak v amatérských konstrukcích. Další úspory jsou nasnadě: menší počet pasívních i aktivních součástek, menší odběr proudu a tím i menší napájecí zdroj a v neposlední řadě možnost "miniaturnějšího" provedení.

Na obr. 18 je celý kompletní zesilovač i s koncovým stupněm. Varianta 2× 15 W má pro koncový stupeň napájení +30 V, které je (jako u vstupní části) společné pro oba kanály a nesouměrné. Při zatížení 2× 4 Ω je zisk zesilovače 30 dB a na zátěži je při plném vybuzení zesilovače efektivní sinusové napětí 7,75 V.

Druhá varianta koncového stupně (s integrovaným obvodem A2005 a nesouměrným stabilizovaným napájením +18 V) dodává při zátěži $2\times 8~\Omega$ výkon pouze $2\times 8~W$. Při zatížení $2\times 4~\Omega$ je zisk 29 dB, při plném vybuzení a výkonu $2\times 10~W$ bude tedy na výstupu efektivní sinusové napětí 5,65 V.

Uvedené zapojení je v podstatě standardní, doporučené výrobcem, kterým je VEB Halbleiterwerk Frankfurt/O. Všechny uvedené integrované obvody jsou od tohoto výrobce. Pro ostatní součástky lze najít běžné československé náhrady.

Obvod pro regulaci stereofonních nízkofrekvenčních zesilovačů A1254D. RFE (NDR) č. 4/88, s. 220.

Výkonový zesilovač pro elektrickou kytaru

Uvedený nízkofrekvenční zesilovač je určen pro připojení dynamického snímače elektrické kytary, případně pro připojení dynamického mikrofonu. Může sloužit i jako zesilovač gramofonového signálu krystalové vložky.

Obr. 19. Výkonový zesilovač pro kytaru

Technické parametry

Maximální výkon na zátěži: 30 W.

Citlivost: 1 mV. Zkreslení: 1 až 1,5 %. Napájecí napětí: nestabilizované 40 až 45 V. Zatěžovací impedance: 4 Ω.

Malé kapely se obvykle vybavují elektronikou tak, že každý nástroj má svůj zesilovač a mnohdy i reproduktorovou skříň. Vyhnou se tak nutnosti nejen použít společný zesilovač o velkém výkonu a směšovací pult, ale i mít zvukaře. Popisovaný zesilovač splňuje nároky pro malý, kompaktní a přenosný přístroj, který může používat jak při společných produkcích kapely, tak při cvičeních doma.

Jednoduchost zapojení je vykoupena mnohými ústupky. Zesilovač nemá korekce výšek ani hloubek. Obvykle se totiž lze spokojit s korekcemi na vstupní části, umístěnými přímo na kytaře. Chybí vývody pro sluchátka, vstupy pro různé impedančně rozdílné budiče signálu, indikace promodulování atd. Na druhé straně je stavba jednodušší, návod není kombinován žádnými alternativami.

Celé schéma podle obr. 19 se skládá ze dvou částí, předzesilovače a koncového stupně. Předzesilovač je tvořen dvojicí vzájemně stejnosměrně vázaných v kaskádě zapojených tranzistorů T₁ a T₂. Rezistor R₁₀ tvoří zápornou zpětnou vazbu. Jako "záporná zpětná vazba" působí i stabilní emitorové předpětí na emitoru T₂, vynucené velkou kapacitou kondenzátoru C₅.

Regulačním potenciometrem R₁₁ se řídí zesílení celého přístroje, zároveň to je jediný regulační prvek na panelu. K1 je vstupní konektor, běžný nf – stačí v tříkolíkovém provedení. Vstupní připojovací šňůra však musí být stíněná, aby se do přívodního kabelu neindukoval nežádoucí brum. Koncové tranzistory T₆ a T₇ tvoří komplementární pár. Toto zapojení zaručuje teplotní stabilitu. Koncový stupeň je zároveň vybaven silnou zápornou vazbou (rezistory R₁₈, R₁₄, R₁₃), která poměrně malé nelineární zaručuie zkreslení. Napěťové zesílení koncového stupně zajišťuje tranzistor T3. Kmitočtovou stabilitu zajišťuje ještě jedna záporná zpětná vazba, tvořená děličem z rezistorů R₁₉, R₂₀, zavedená do báze budicího tranzistoru T₄.

Oba koncové tranzistory T₆ a T₇ je třeba umístit na důkladný chladič o minimální ploše 500 cm². Pokud budou tran-

zistory mít slídové podložky, může být chladičem i zadní stěna přístroje.

Pro napájení použijeme jednoduchý nestabilizovaný síťový zdroj podle obr. 20. Síťový spínač transformátor Tr má převod 220 V/32 V. Tr si musíme navinout, jádro je El32×32. Primární vinutí

Obr. 20. Síťový zdroj pro zesilovač

má 1220 závitů drátu CuL o \emptyset 0,355 mm, sekundární 178 závitů drátu CuL o \emptyset 1 mm. K usměrnění použijeme čtyři diody KY704, které vzhledem k odběru proudu umístíme na chladiče. Svítivá dioda D_5 signalizuje zapnutí přístroje.

Závérem lze snad jen dodat, že výstup z konektoru K₂ není zkratuvzdorný, takže při náhodném zkratu na výstupu se mohou zničit tranzistory T₆ a T₇.

Malý mixážní pult

Mixážní (nebo také směšovací) pult je nutným vybavením zvukového studia. Potřebujeme jej v případech, kdy zaznamenáváme nebo zesilujeme nízkofrekvenční zvukový signál, přicházející z několika zdrojů současně, obvykle z několika mikrofonů v kombinaci s přehrávkou gramofonové desky či magnetofonového záznamu atp. Nutný je pro malou kapelu, divadelní scénu, diskotéku i pro případné nahrávání na magnetofon pro nejrůznější účely.

Hudební kapely, které mají pouze jeden výkonový zesilovač, používají obvykle několik mikrofonů, případně i různé elektronické nástroje. Výstupní signály z těchto různých zdrojů je pak třeba přivést do směšovacího pultu. Každý signál musí mít samostatně nastavitelnou úroveň zesílení. Výstup pak připojíme na zesilovač, který musí mít vstupní signál o správné napěťové úrovni.

Malý mixážní pult na obr. 21 patří k velice jednoduchým zařízením, které je možno zhotovit i ve skromných amatérských podmínkách. Každý zdroj elektrického signálu má svůj připojovací konektor K₁ a K₄, příslušný nastavovací odpo-

Obr. 22. Blokové schéma automatického směšovače

rový trimr (R_1 až R_4), kterým lze nastavit impedanci vstupu. Uroveň napětí, která směšujeme, se pak při provozu nastavuje pouze podle sluchu příslušnými potenciometry R_5 až R_8 . Ty umístíme na panelu přístroje. Operační zesilovač především impedančně přizpůsobuje výstupní signál, jeho zesílení je vlivem záporné zpětné vazby (rezistor R_{13}) poměrně malé. Celkové zesílení pak regulujeme potenciometrem R_{14} , který také umístíme na předním panelu.

Profesionální směšovací pulty mívají obvykle ještě vestavěny indikátory modulační úrovně jednotlivých kanálů. To pak umožňuje i kontrolu promodulování jednotlivých signálů a jejich lepší nastavování. U popisovaného přístroje musíme vystačit se sluchem – úrovně signálů musíme nastavovat na základě zkušenosti a zkoušek.

Pro konstrukci použijeme plochou skříňku, na její vrchní ploše umístíme všechny potenciometry. Trimry umístíme do skříňky tak, aby je bylo možno ovládat jen šroubovákem. Jako vstupy a výstupy použijeme běžné nf konektory.

Jasné je, že popsaný mixážní pult nemůže nikdy soutěžit s profesionálním zařízením. Nicméně pro jednoduchá amatérská použití vyhoví.

Automatický "mixér" pro diskotéky

Přístroj je úplný automat, který nahrazuje práci zvukaře se směšovacím pultem. Na jeho vstupu je připojen obvykle zdroj nf signálu a mikrofon. Jakmile promluvíme do mikrofonu, začne se hudba tlumit, aby byl dobře slyšet mluvený komentář - stejně, jako to ručně dělá zvukař na mixážním pultu ve chvíli, kdy moderátor potřebuje mluveným slovem zasáhnout do programu. Přístroj je určen jako doplněk k mixážnímu pultu nebo jako samostatné zařízení tam, kde mixážní pult není k dispozici. Použití je na diskotékách, při ozvučování filmů, při divadelních představeních, jevištních vystoupeních hudebních těles a zkrátka všude tam, kde moderátor nebo "diskžokej" vstupuje živě do programu s mluveným komentářem.

Nyní si stručně vysvětlíme činnost zařízení, nejprve podle blokového schématu na obr. 22. Přístroj má tři vstupy. Jeden, označený K₁, pro mikrofon a dva nf vstupy K₂ + K₃ pro magnetofon, gramofon, případně rozhlasový přijímač. Vyžaduje dobře filtrované a stabilizované napájecí napětí +12 V s odběrem asi

100 mA. Přístroj nemá žádné nastavovací prvky, po zapnutí se předpokládá zcela automatická funkce. Přístroj se nastavuje a seřizuje řadou odporových trimrů šroubovákem v otvorech pod panelem. Úroveň mluveného slova se přednastavuje podle typu a druhu použitého mikrofonu, nejprve hrubě trimrem R₁ a později jemně trimrem R₁₂. Každý z obou vstupů nf signálu má korekční člen pro úpravu vstupní napěťové úrovně. Vstup K2 se koriguje trimrem R2, vstup K₃ trimrem R₄. Trimr R₂₉ určuje vhodný poměr zeslabení nf hudebního signálu vůči signálu z mikrofonu. Obvykle se vyžaduje, aby se při slovním komentáři hudba zcela neutlumovala, tj. aby bylo mluvené slovo hudebním doprovodem podbarveno.

V klidu je vstup pro mikrofon zablokován, tzn. že je horní část schématu (tj. tranzistory T1 až T4) mimo funkci a zařízení se chová, jako by tam tyto členy vůbec nebyly. Nízkofrekvenční signál připojený na konektory K₂ a K₃ projde kaskádou tranzistorů T₅ až T₇ bez zesílení a zvláštní úpravy až na výstup K4. Poslední tranzistor této kaskády T₇ je zapojen jako emitorový sledovač, který odděluje celé zařízení a přizpůsobuje výstup k dalším zařízením v nf cestě signálu. Tranzistor T₆ je zapojen jako směšovač nf signálu se signálem z mikrofonu. Člen s tranzistorem T₅ pracuje jako atenuátor. Jakmile se na výstupu detektoru objeví stejnosměrný signál, otevře se FET T₈, připojí se dělič signálu a nf signál ze vstupů K2 a K3 se zeslabí.

Tranzistory T₁ a T₂ jsou zapojeny jako dvoustupňový zesilovač mikrofonního signálu. Jejich výstupní signál se na odporovém trimru R₁₂, který je zároveň zatěžovacím kolektorovým odporem tranzistoru T2, rozděluje na dvě větve. Jedna vede na směšovač T₆, v němž se mikrofonní signál (m.s.) směšuje s nízkofrekvenčním signálem a odtud pokračuje přes emitorový sledovač na výstup. Druhá větev signálu jde na zesilovací stupeň T₃, který má veliké zesílení, a na detektor střídavého signálu T₄, na jehož výstupu se v případě, mluví-li se do mikrofonu, objeví stejnosměrný signál Zvětšování stejnosměrného signálu je zpožděno členem R₂₈C₁₄. Jakmile tedy začneme mluvit do mikrofonu, začne se v atenuátoru vlivem stejnosměrného signálu z detektoru pomalu otevírat FET T₈ a nízkofrekvenční signál ze vstupů K₂ a K₃ se začne zeslabovat. Jakmile se mikrofonní signál přeruší, zmizí steinosměrný řídicí signál z detektoru a nf signál postupuje na výstup s původní úrovní.

Podrobněji si vysvětlíme činnost podle kompletního schématu na obr. 23. Mikrofon se připojuje na konektor K₁. Paralelně k jeho vstupu je připojen odporový trimr R₁. Je nutný zejména pro případy, kdy používáme různé typy mikrofonů. Blokovací kondenzátor C₁ zmenšuje náchylnost následujících stupňů na kmitání a rušení. Zabraňuje i rušení silným rozhlasovým vysílačem zejména tehdy, jeli na vstup K₁ připojena dlouhá mikrofonní šňůra. Následný dvoustupňový mikro-

fonní zesilovač je tvořen dvěma tranzistorovými stupni s T₁ a T₂ ve standardním zapojení. Stejnosměrný pracovní režim tranzistorů zabezpečují rezistory Re a R₁₀. Rezistory v emitorech R₉ a R₁₁ bez paralelních kondenzátorů představují zápornou zpětnou vazbu, která zabezpečuje stabilitu a zmenšuje nelineární zkreslení. Zesílení mikrofonního zesilovače ziistíme měřením na kolektoru T2. Odporový trimr R₁₂ pracuje zároveň jako kolektorová zátěž T2. Protože pro směšovač se odebírá jen část zesíleného mikrofonního signálu, slouží zároveň k jemné regulaci zesílení mikrofonního signálu.

Zesílený mikrofonní signál postupuje přes vazební člen C₄R₁₄ na bázi omezovače T3. Stejnosměrný pracovní bod je určen odporem rezistoru R₁₄, zátěž tvoří rezistor R₁₅. Na kolektoru T₃ je nf signál zesílen tak, že je omezován, samozřejmě jen při mezních vstupních signálech z mikrofonu. Detektor, převádějící střídavý mikrofonní signál na stejnosměrné napětí, tvoří obvody tranzistoru T₄. Za nepřítomnosti nf signálu, tedy v době kdy se nemluví do mikrofonu, je tranzistor T₄ uzavřen a kondenzátor C₈ je přes rezistor R₁₈ nabit na plné napájecí napětí +12 V. Stejné napětí je v tomto klidovém stavu i na kondenzátoru C₁₄ a na elektrodě S tranzistoru T₈.

Jakmile se začne mluvit do mikrofonu, dostane se mikrofonní signál přes kaskádu tranzistorů T1 až T3 a tranzistor T4 se začíná tímto signálem otevírat. Kondenzátor C₈ se úměrně s jeho otevřením začíná vybíjet. Tranzistor T₈ se stane plně vodivým až ve chvíli, kdy se napětí na jeho elektrodě S blíží nule. Proto, aby se T₈ neotevíral skokem a soustava nekmitala ve chvíli, kdy např. poklepeme na mikrofon nebo při náhodném prvním zvuku, vyrovnávají se napětí pozvolná s časovou konstantou C₁₄R₂₈, C₈ + vybíjecí odpor tranzistoru T₄. S pozvolným uzavíráním tranzistoru T₈ se pozvolna uzavírá cesta nízkofrekvenčnímu signálu ze vstupů K2 a K3. Se stejným zpožděním se tato cesta po zmizení mikrofonního signálu otevírá.

Jakmile je FET T₈ uzavřen, není vstupní signál přicházející na bázi tranzistoru T5 omezován. Začne-li se tento tranzistor otevírat, připojuje se dolní konec odporového trimru R₂₉ k nulovému napětí a podle podílu odporů rezistorů R₁₉R₂₉ se dělí i nf signál. To znamená, že změnou nastavení R₂₉ lze měnit úroveň přenosu nízkofrekvenčního signálu při zapnutí mikrofonu. Střed děliče nf signálu je přes vazební kondenzátor C9 připojen na bázi tranzistoru T5, který je vzhledem k nutnému velkému vstupnímu odporu zapojen jako emitorový sledovač. Stejnosměrný pracovní bod je dán odporem rezistoru R20.

Směšovač mikrofonního a nízkofrekvenčního signálu představují rezistory R₂₂ a R₂₃ v bázi tranzistoru T₆. Stejnosměrný pracovní bod tohoto stupně určuje rezistor R₂₄, zapojený z kolektoru do báze a určující potřebné kladné bázové předpětí. Poslední stupeň tvořený tranzistorem T₇ je v podstatě pouze od-

dělovacím členem s malým vstupním odporem. Z jeho emitoru se přivádí signál přes vazební kondenzátor C₁₃ přímo na výstup 8 (konektor K₄).

Ke spuštění a uvedení zařízení do provozu je třeba Avomet, tónový generátor a osciloskop. Zařízení zapneme a zkontrolujeme jeho činnost.

Postup nastavení: Nejprve je třeba nastavit odporový trimr R₁ do střední polohy. Pak na vstup K1 připojíme tónový generátor a nastavíme kmitočet 1 kHz, výstupní napětí asi 0,8 mV. Avometem měříme stejnosměrné napětí na C₈, které by nemělo být větší než 0,4 V. Po odpojení generátoru by se toto napětí mělo pomalu zvětšit asi na 4 až 6 V. Tento rozsah změny stejnosměrného signálu stačí pro dobrou práci automatické regulace. Je-li při zapnutém generátoru napětí na C₈ větší než 0,5 V, znamená to, že tranzistory T3 a T4 málo zesilují a pokud není jiná závada, je nutno změnit odpory rezistorů R₁₄ a R₁₇. Pak zvětšíme úroveň vstupního signálu až na 6 mV a osciloskopem prověříme na kolektorech tranzistorů T1 a T2 tvar sinusového signálu (není-li zkreslen).

Dále nastavíme odporový trimr R₁₂ do levé krajní polohy (podle schématu na obr. 23), takže vazební kondenzátor C5 je přímo spojen s kolektorem T2. Osciloskopem prověříme tvar signálu 1 kHz na kolektoru T₆ a výstupu 8 konektoru K₄. Pokud nejde o jinou závadu, tak případné chyby ve zkreslení signálu je nutno upravit stejnosměrným předpětím tranzistorů, tedy změnou odporu rezistorů R24 a R26. Amplituda signálu v obou případech má být 0,7 až 1 V. Dále je třeba připojit generátor se signálem 1 kHz na vstupy K₂ a K₃ a nastaviť napěťovou úroveň asi na 0,35 V. Mikrofonní vstup K1 zkratujeme. Při otáčení trimry R₂ a R₄ od minima prověřujeme průchod nf signálu od T5 k T7. Výstúpní napětí by mělo mít amplitudu 0,35 až 0,5 V. Pokud v této fázi připojíme na K₁ mikrofon, můžeme již činnost zařízení vyzkoušet. Odpory rezistorů R₁, R₂, R₄, R₁₂ a R₂₉ definitivně nastavíme podle konkrétních připojených zařízení; R₁ podle typu mikrofonu, R₂ a R₄ podle úrovně výstupu z magnetofonu či gramofonu. Výstupní úroveň mikrofonního signálu nastavíme odporovým trimrem R₁₂, rezistorem R₂₉ nastavíme úroveň zeslabení nf signálu vůči signálu z mikrofonu. Určitá potíž spočívá v tom, že trimry R₁₂ a R₂₉ nelze přesně nastavit pomocí tónového generátoru - výhodné je však alespoň je přednastavit a za skutečných podmínek provozu je pouze "dotáhnout"

Zařízení napájíme ze zdroje 12 V, maximální odběr proudu bude asi 100 mA. Pokud budeme zařízení provozovat samostatně, je vhodné k němu zhotovit i síťový zdroj. Zdroj na obr. 24 je v podstatě v klasickém uspořádání: síť je přivedena přes spínač a pojistku na transformátor (plechy E25, převod 220/12 až 14 V).

Mechanickou část tvoří dvě desky s plošnými spoji. Deska o rozměru 70 × 145 mm (obr. 25) obsahuje všechny součástky z obr. 24; vývody na schématu i na návrhu plošných spojů jsou označeny shodnými čísly. Napájecí zdroj má vlastní desku s plošnými spoji, její návrh je na obr. 26.

Integrovaná barevná hudba

Zhotovit miniaturní barevnou hudbu lze i s jednoúčelovým integrovaným obvodem. Ten není samozřejmě určen jen amatérům, ale jeho konstrukci si vynutila vzrůstající obliba doprovodných světelných efektů při reprodukování zejména taneční hudby. Víme, že se světelné efekty vyskytují prakticky na každé diskotéce. Výstupy pro barevnou hudbu již nyní mají různé profesionálně vyrobené zesilovače, určené nejenom pro hudební skupiny, ale třeba i pro domácí reprodukci gramofonových či magnetofonových pásků.

Schéma na obr. 27 představuje prakticky nejjednodušší zapojení obvodu, které umožňuje zhotovit tak malý přístroj, že může sloužit jako doplněk přenosného walkmana a vejde se třeba i do obroučky brýlí. Tak, jak je zařízení navrženo, lze jej vestavět i do přenosného radiomagnetofonu a tři svítivé diody na výstupu mohou sloužit také jako indikátor nf signálu. Stejným způsobem můžeme vestavět toto zařízení do jakéhokoli zdroje nf signálu (na výstup s malou impedancí, např. paralelně k reproduktoru). Chceme-li spínat větší světelné zdroje, je třeba na výstupy 1, 2, 3 místo LED připojit spínací tranzistory a jimi spínat buď malé žárovky nebo relé, které pak mohou spínat síťové napětí (použít lze i případně triaky apod.).

Vhodnost použití jednoúčelového integrovaného obvodu musíme posoudit ze dvou hledisek: Zda jeho cena bude menší než ta, když bychom celé zapojení realizovali s klasickými diskrétními součástkami. Druhým hlediskem je potřebná velikost provedení.

Použitý integrovaný obvod nevyžaduje stabilizované napájení a pracuje s napájecím napětím UB v rozsahu 4 až 8 V. Odběr určuje ve velké míře zátěž, kterou představují tři barevné svítivé diody. Velikost tohoto proudu pak určuje zejména odpor vnějšího rezistoru R₃, rozptyl doporučeného odporu od 12 do 33 kΩ je dán velkým možným rozsahem napájecího napětí U_B. Větší odpor rezistoru R₃ použijeme pro horní hranici UB a menší pro dolní. Při odporu v uvedených mezích se odběr proudu pohybuje kolem 18 mA. Zesílení určuje vnější rezistor R_4 , při jeho odporu 120 Ω je zisk 0 dB, což předpokládá pro dobrou funkci vstupní nf signál 0,8 V. Kmitočtové vlast-

Obr. 26. Deska s plošnými spoji zdroje pro zapojení z obr. 24 (X226)

Obr. 27. Integrovaná barevná hudba

nosti určují kondenzátory C3, C4, C5 a C6. Při kapacitách uvedených na schématu barevná hudba pracuje v pásmu kmitočtů 750 až 2800 Hz.

Deska s plošnými spoji pro navrženou konstrukci má rozměr 75 × 15 mm (obr. 28), což ji skutečně umožňuje vestavět do obroučky brýlí. Tři LED jsou pak v těsné blízkosti skel a oka. Nf signál a napájecí napětí dostáváme ze sluchátek walkmana, samozřejmě, že pro tento účel musíme výstup přehrávače upravit. Do jaké míry sé barevná hudba v brýlích rozšíří nebo se stane dokonce mezi mladými módou nedovedu posoudit, ani bych nechtěl předpovídat. Faktem je, že hračky ze světelných diod, "elektrické" šperky, které nosí mladí při diskotéce, isem už viděl. Pro navrhované zařízení volíme tři barvy LED - dostupné jsou červená, zelená a žlutá. Typ LED není pro uvedené zapojení rozhodující.

Potřebný integrovaný obvod vyrábí kromě jiných firem pro nás v dostupné oblasti NDR a to pod označením A1488D a v PLR firma CEMI jako UL1488K.

Elektronický bubeník

Moderní kapely využívají stále více elektronických pomůcek a elektronic-kých nástrojů. V současné době nelze říci, kde se tento vývoj zastaví. Faktem je, že nejen složitost, ale i cena kompletního vybavení je dnes veliká i pro profesionály. Hudebníci amatéři si obvykle musí pomoci všelijak - a nikoli pouze ve finanční otázce. Na hudební nástroje a elektronické vybavení zesilovači, skříněmi atd. nepotřebujeme jenom peníze,

Obr. 28. Deska s plošnými spoji pro zapojení z obr. 27 (X227)

většina těchto věcí je na tuzemském trhu nedostupná a přiváží se z ciziny – tím je ovšem pro většinu amatérů prakticky nedostupná.

Popisovaný hudební nástroj má do profesionálního zařízení daleko. Nicméně je schopen v mnoha případech drahý profesionální nástroj nahradit. Činnost si popíšeme podle schématu na obr. 29. Elektronický bubeník na schématu není však jen "hudební" nástroj, ale zastává i funkci elektronického metronomu s rozsahem 40 až 210 úderů za minutu s výstupem signálu na konektoru K1. S ním je elektricky svázán druhý nástroj, vlastní "bubeník", který má výstup na konektoru K2.

Metronom je tvořen generátorem se dvěma tranzistory, T₁ a T₂, které jsou zapojeny jako tranzistor s jedním přechodem. Kmitočet je určen kapacitou kondenzátoru C2 a odporem rezistorů R1 + R2. Bude-li mít R1 minimální odpor, měli bychom na výstupu K1 dostat signál o kmitočtu odpovídajícímu 210 až 220 kmitům za minutu, tj. 3,5 až 3,6 Hz. Tranzistor T₃ je v podstatě pouze spínací, který dolní svorku výstupu K1 spojuje se zemí. Na výstup K1 můžeme přímo připojit reproduktor. Zvuk úderů je totožný se zvukem, který vznikne, připojujeme-li plochou baterii přímo k reproduktoru: jde tedy pouze o rytmické lupání, udávající základní rytmus.

Druhou část zapojení tvoří "bubnovací nástroj". Ten je s první částí sesynchronizován. Z kolektoru tranzistoru T₃ se impulsy metronomu přivádějí na vstup 14 IO3, což je běžný dekadický čítač typu MH7490. Ten má čtyři výstupy v kódu BCD, na které je připojen dekadický dekodér IO4 typu MH7442. Oba integrované obvody jsou použity prakticky podle doporučených zapojení. Přicházejí-li na čítač impulsy, projevuje se to na jeho výstupech jako změna úrovní (v dvojkové soustavě o čtyřech dekádách). Dekodér pak tyto úrovně přemění na dekadický výstup 0 až 9. Na výstupu dekodéru je připojen přepínač Př₂, kterým volíme "takt" 2/4, 3/4, 4/4 atd. Z běžce přepínače zavádíme výstupní impuls z dekodéru přes hradlo H22 do nulovacího vstupu dekadického čítače. To znamená, že tímto impulsem se dekadický čítač nuluje a začíná čítat od

Zařízení obsahuje ještě generátor signálu zvukových kmitočtů, tvořený dvěma hradly NAND, H₁₁ a H₁₂. Kmitočet určuje konstanta RC, tvořená odporem rezistoru R₆ a kapacitou kondenzátorů C₃ až C6, které volíme přepínačem Př. Tón tohoto generátoru se na výstup K2 dostane jen v době trvání impulsu z dekadického kodéru přes hradlo H21, hradlo H13 a invertor H₁₄. Na výstup K₂ pak připojíme mixážní pult nebo přímo vstup výko-

nového zesilovače.

Přístroj má napájení +5 V, odběr proudu je 80 až 250 mA podle zatížení výstupu K₁. Pokud na K₁ připojíme vstup zesilovače, tak se odběr zmenší pod 100 mA. Ve skromném případě vystačíme s napájením jednou plochou baterií nebo třemí monočlánky.

Na panelu přístroje jsou tyto ovládací prvky:

volíme čtyři různé vysoké tóny úderů, připomínající "poklice" či

Př₂ - dekadický přepínač určuje takt úderu bubnu, nejčastěji používáme 2/4, 3/4, 4/4, 6/4;

R₁ - potenciometr k nastavení metronomu. Knoflík na hřídeli potenciometru opatříme jednoduchou stupnicí (40 až 208 úderů za minutu). Obvykle potřebujeme takty: 60, 96, 132 a 162 úderů - ty je vhodné na stupnici zdůraznit.

Stabilita kmitočtu závisí na stabilitě napájecího napětí. Výhodné je tento přístroj postavit jako součást zařízení, které již máme (zesilovače, mixážního pultu apod.). Ušetříme napájecí zdroj, propojovací šňůry, připojení na síť apod. Vzhledem k malému počtu součástí lze zařízení zhotovit jako miniaturní.

Kontrola chodu magnetofonů

Na úvod jedna citace z knihy Adriena Hofhanse Magnetofony, jejich údržba a měření, SNTL 1982, str. 34: "... měření kolísání rychlosti posuvu pásku je v amatérských podmínkách prakticky neproveditelné. Neproveditelné je však i pro většinu opraven, neboť pro speciální měření nejsou vybaveny." Kolísání rychlosti posuvu je proto v naprosté většině případů posuzováno jen subjektivně, což ovšem může vést k neřešitelným sporům. Jednotlivé subjektivní názory se mohou navzájem podstatně lišit, a to, co jednomu posluchači ještě vůbec nevadí, může být pro druhého již nevyhovující.

Dále popisovaný jednoúčelový přístroj je určen jako měřicí pomůcka pro měření, seřizování a opravy rychlosti posuvu magnetofonového pásku a pro měření jeho kolísání. Je vhodný pro všechny typy magnetofonů, tedy jak pro magnetofony cívkové, tak i kazetové.

Nejprve je třeba si uvědomit základní údaje, které jsou uváděny v souvislosti s chodem magnetofonového pásku. Rychlost posuvu záznamového materiálu se udává v cm/s a je odvozena ze základní rychlosti, kterou původně stanovili v anglosaských oblastech v palcích za sekundu. Jestliže se zprvu používala rychlost posuvu magnetofonového pásku 30"/s (což odpovídá 76,2 cm/s), vycházejí všechny ostatní rychlosti ien dělením tohoto necelého čísla. Takže dnešní řada používaných rychlos-Tí je: 76,2 cm/s, 38,1 cm/s, 19,05 cm/s, 9,525 cm/s, 4,7625 cm/s, 2,38125 cm/s. Praktické uživatelské a spotřebitelské přístroje používají dnes jen poslední čtyři rychlosti a výrobci rychlost posuvu v prospektech obvykle zaokrouhlují, někdy i jen na celá čísla.

Na posuv pásku jsou kladeny požadavky, které určuje československá norma ČSN 36 8430. Především rychlost posuvu pásku nesmí mít odchylku od jmenovité rychlosti větší než ±2% u všech běžných magnetofonů, ±1,5% u magnetofonů třídy Hi-Fi. Druhým požadavkem na posuv pásku je dodržení jeho rovnoměrnosti. Posuv pásku nesmí mít krátkodobé odchylky od jmenovité rychlosti. Stejná norma určuje tato povolená maximální kolísání rychlosti posu-

Norma nerozlišuje kotoučové a kazetové magnetofony. Pro přístroje ve třídě Hi-Fi platí jednotný požadavek pro všechny rychlosti posuvu: maximální kolísání posuvu pásku ±0,2 %.

Kolísání rychlosti může být způsobeno nejrůznějšími mechanickými, ale
i elektrickými závadami. Druhy těchto
závad se mění pochopitelně nejen podle
druhu mechanické konstrukce magnetofonu, ale i podle druhu motoru. Přenosné
magnetofony mají stejnosměrné motorky, kvalitní přístroje ve třídě Hi-Fi i nejrůznější způsoby regulace a stabilizace
rychlosti otáčení. Pro měření kolísání
rychlosti posuvu je nutný standardní,
jakostně nahraný kontrolní pásek (pří-

padně kazeta) se záznamem sinusového signálu o kmitočtu 3150 Hz. Tento záznam by měl mít vlastní kolísání menší než ±0.05 %. Použije-li se tentýž magnetofon dvakrát, tj. pro nahrání a přehrání kontrolního sinusového signálu, bude kolísání rychlosti v krajně nepříznivém případě dvojnásobné. Proto je nutno mít kontrolní pásek nahraný buď profesionálně nebo jej pořídit na profesionálním magnetofonu se zaručenými vlastnostmi. Pro rozlišení kolísání uvažujeme změny v kmitočtu v rozsahu od 0,1 do 200 Hz. Změny pomalejší i rychlejší nás z hlediska fyziologie poslechu nezajímají.

S přístrojem podle obr. 30 se pracuje tak, že na jeho vstup připojíme výstup kontrolovaného magnetofonu při odpojeném reproduktoru. V magnetofonu přehráváme kontrolní pásek s kmitočtem 3150 Hz. Přístroj má vestavěný oscilátor se stejným kmitočtem, který v rozsahu běžných teplot od +24 do +42 °C kolísá méně než ±0,4 %. Přístroj pracuje na záznějovém principu, takže rychlost pásku kontrolujeme na nulový zázněj, kolísání pak sluchem jako změnu tónu v reprodukčním zařízení přístroje.

Činnost přístroje si popíšeme podle schématu na obr. 30. Magnetofonový výstup připojíme na konektor K₁. Napě-

Obr. 30. Kontrola kolísání rychlosti posuvu magnetofonů

Obr. 31. Deska s plošnými spoji pro zapojení z obr. 30 (X228)

(rezistor R₁₇ není ve schématu, má odpor 17 kΩ, ošetřuje vstupy nevyužitého hradla)

ťová úroveň tohoto signálu by měla být v rozmezí od 20 mV do 2 V. Hradla Ha a H5 upraví tento signál na napěťovou úroveň asi 7 až 8 V. Přístroj má vestavěný generátor 3150 Hz, ve kterém aktivní prvek tvoří hradlo H₁. Odporovým trimrem R₄ nastavíme jeho přesný kmitočet. Stabilizaci kmitočtu zajišťuje dodatečná stabilizace napájecího napětí +6 V (podle Zenerova napětí diody D1); integrovaný obvod IO1 se napájí z kolektoru stabilizačního tranzistoru T₁. Zařízení má dva integrované obvody IO1 a IO2 typu MHB4001, každý obsahuje čtyři dvouvstupová hradla NOR. IO₁ obsahuje hradla H₁, H₂, H₃ a IO₂ hradla H₄ až H₇, přičemž jedno hradlo v IO1 je nevyužito. Oba signály (od zkoušeného magnetofonu a od vnitřního oscilátoru) se směšují na tranzistorech T2, T3 a T4. Tranzistory T2 a T3 by měly být vybrány tak, aby jejich zesilovací činitele byly stejné, přičemž požadavek je, aby byly větší než 150 (h_{21F}>150). Pasívní součástky C₆, C₇, C₈, R₇, R₈ a R₉ tvoří nf filtr. Reproduktor z miniaturního tranzistorového přijímače má velkou impedanci, vystačíme i s telefonním sluchátkem 50 Ω nebo s jakýmkoli malým reproduktorem, připojíme-li výstupní převodní transformátor. Napájecí napětí +9 V musí být stabilizováno s přesností ±0,2 V a dostatečně filtrováno (zvlnění<0,5 %). Odběr celého zařízení v podstatě určuje výstupní část, tj. tranzistor T5 s reproduktorem, zbylá část zařízení má odběr menší než 20 mA. V sovětském originále byly použity tyto aktivní součástky.

$$\begin{array}{lll} \text{IO}_1, \, \text{IO}_2 & 2\times \, \text{K176LE5} \\ \text{T}_1, \, \text{T}_2, \, \text{T}_3, \, \text{T}_4 & 4\times \, \text{KT3102V} \\ \text{T}_5 & 1\times \, \text{KT3107B} \\ \text{D}_1 & \text{KC156A} \end{array}$$

Z mechanického hlediska lze přístroj zhotovit jako miniaturní. Všechny součástky konektoru a reproduktoru se vejdou na desku s plošnými spoji o rozměrech 80×60 mm (obr. 31). V dílenské praxi je možné napájet přístroj z externího stabilizovaného zdroje, pokud vyhovuje požadovanou kvalitou.

Hofhans, A.: Magnetofony, jejich údržba a měření. SNTL: Praha 1982. Šijanov, N.: Jak nastavit rychlost pásku. Radio (SSSR) 4/1985.

Hudební pomůcka pro iluzionisty

Popisovaný přístroj je něco mezi pomůckou či doplňkem pro iluzionisty a zajímavou hračkou. Rozhodně patří do kategorie zvláštních přístrojů, které nelze nikde koupit. Je to v podstatě jednoduchý hudební nástroj, který nemá klávesnici. Hraje se tak, že se rukou nebo jakýmkoli elektricky vodivým předmětem přibližujeme k tyči, která z přístroje vyčnívá. Ta je velice podobná běžné prutové anténě, jakou má téměř každý tranzistorový přijímač pro příjem VKV.

Nástroj se skládá ze dvou generátorů, které pracují na blízkém kmitočtu. Jeden z generátorů lze ovládat knoflíkem na panelu přístroje, druhý se rozlaďuje přibližováním ruky k jeho vstupní části, což technicky znamená, že se změní kapacita článku *RC*. Pak následuje směšovač a nízkofrekvenční část přístroje. Celý přístroj obsahuje tři integrované obvody CMOS typu MHB4011. Každý z těchto obvodů se skládá ze čtyř hradel NAND, dvě hradla zůstávají nevyužita. První integrovaný obvod IO₁ obsahuje hradla H_{1/1} až H_{1/3}, druhý H_{2/1} až H_{2/3} a třetí IO₃ hradla H_{3/1} až H_{3/4} (obr. 32).

Obr. 32. Hudební pomůcka pro iluzionisty

Aby byl přístroj dostatečně citlivý na parazitní kapacitu, která je samozřejmě malá (řádu pikofaradů), musí oba generátory pracovat na kmitočtu kolem 300 kHz. Kmitočet každého generátoru určuje člen RC. První generátor je tvořen hradly H_{1/1} a H_{1/2}. Jeho kmitočet určuje kapacita kondenzátoru C2 a odpor rezistoru R₁. Parazitní kapacita ovlivňuje vstupy hradla H_{1/1} přes vazební kondenzátor C1. Druhý generátor pracuje na stejném principu. Je to volně kmitající astabilní multivibrátor s kmitočtem určeným článkem RC z C3 a sériově spojených rezistorů R2 a R3. Aktivními prvky druhého generátoru jsou hradla H_{2/1} a H_{2/2}. R₂ je proměnný s vývodem na panelu (potenciometr). Jeho otáčením můžeme měnit kmitočet a tím nastavit počáteční tón. Třetí hradla IO1 a IO2 jsou použita pouze jako oddělovací členy.

Kmitočet obou generátorů se směšuje na hradlech v IO3. Ta jsou všechna propojena paralelně a to tak, že je můžeme považovat za jedno hradlo se dvěma vstupy a jediným výstupem. Spojeny jsou vždy liché vstupy, sudé vstupy a výstupy. Kmitočet prvního generátoru z oddělovacího stupně je připojen na jeden vstup směšovače, kmitočet druhého na druhý vstup. Nyní si představíme, že směšovač je jediné výkonové hradlo NAND, které má na jednom vstupu signál o kmitočtu f₁ z prvního generátoru, na druhém vstupu signál o kmitočtu f2 z druhého generátoru. Na výstupu je signál, který odpovídá součtu a rozdílu kmitočtů obou vstupních signálů. Vzhledem k připojené nízkofrekvenční části mají pro nás význam jenom zvukové kmitočty do 15 kHz.

Přístroj pracuje velice primitivně. Generátor G_2 naladíme potenciometrem R_2 tak, aby rozdílový kmitočet $f_1 - f_2$ nebo $f_2 - f_1$ byl slyšitelný v reproduktoru jako výchozí, základní tón. První generátor

 G_1 pak začneme rozlaďovat přibližováním ruky ke kovovému prutu. Podle toho, je-li generátor G_2 naladěn výše nebo níže než G_1 , se tón v reproduktoru přístroje přibližováním ruky k prutu snižuje nebo zvyšuje. V iluzionistických produkcích může být prut nahrazen i jiným kovovým předmětem a zvukem tak lze doplňovat pohyby, aniž by se iluzionista nějakého předmětu přímo dotýkal.

Nízkofrekvenční část přístroje je velice jednoduchá. Na výstupy hradel H₇ až H₁₀ je připojeno přes vazební kondenzátor C₄ primární vinutí transformátoru. Je použit běžný transformátor z tranzistorového přijímače včetně malého reproduktoru. Zesílení se reguluje změnou nastavení potenciometru R₄, kterým se řídí proud v primárním vinutí transformátoru. Pokud bychom si transformátor chtěli zhotovit, postačí jakékoli miniaturní jádro (vystačíme i s feritovým jádrem), převod volíme 2 až 3:1.

Pokud pro použití na jevišti při produkci nestačí zvuk reproduktoru, je nutno zařízení ještě doplnit o vývod pro směšovací pult nebo vstup výkonového zesilovače. Schéma takového doplňku je na obr. 33. Je nutno přidat jeden tranzistor T₁, jehož bázi připojíme přes vazební

Obr. 33. Schéma doplňku k zapojení na obr. 32

kondenzátor C_8 na výstupy směšovače (integrovaného obvodu IO_3). Výstup K_1 pak vyvedeme na konektor. Je nutno jen poznamenat, že C_8 , T_1 a potenciometr R_7 (což může být i trimr nebo při vyzkoušeném a vždy stálém připojení na stejný typ směšovacího pultu pouze rezistor) nejsou nakresleny na desce s plošnými spoji (obr. 34).

Přístroj napájíme z jedné destičkové devítivoltové baterie nebo ze dvou plochých baterií 2× 4,5 V. Odběr proudu je přibližně v rozmezí 7 až 10 mA. Napájecí část přístroje je na obr. 33. Každý z integrovaných obvodů má svůj filtrační kondenzátor, zapojený k vývodu 14 a obvody IO₁ a IO₂ mají v napájecí části vřazen ještě sériový rezistor. Je to proto, aby se nežádoucím způsobem nesměšovaly signály přes napájecí zdroj a nevznikaly parazitní oscilace na napájecích přívodech.

Přístroj musí být umístěn v kovové krabici o přibližných rozměrech $30 \times 75 \times 145$ mm. To proto, aby se mohla měnit vstupní kapacita při přiblížení ruky. Plášť přístroje musí být spojen se záporným pólem baterie. Na panelu skříňky bude spínač (zapojený v přívodu baterie) a dva potenciometry, R₂ "kmitočet" a R₄ "zesílení". Pokud použijeme ještě emitorový sledovač s tranzistorem T₁, slouží jako výstup nf signálu konektor K₁. Všechny součástky se vejdou na

desku s plošnými spoji o rozměrech 70×140 mm. Z desky s plošnými spoji je funkční pouze pravá polovina. Levá část s vyvrtanými děrami slouží pro připevnění reproduktoru. Z přístroje vyčnívá kovový prut o délce 500 až 600 mm, tloušťky asi 6 mm. Může to být i trubička, lze ji nahradit i výsuvnou anténou tranzistorového přijímače. Je připojena dvěma maticemi M4 kolmo do desky s plošnými spoji v bodě P. Je samozřejmě nutné, aby kovový prut byl od pláště přístroje izolován.

Nečajev, I.: Termenvoks. Radio (SSSR) č. 10/86.

lmitátor zvuků hořícího dřeva

Zařízení je určeno jako doplněk k domácímu elektrickému krbu. Elektronické obvody umožňují vytvářet přístroje, generující různé přírodní zvuky jednoduchým způsobem a integrované obvody umožňují jejich zhotovení za přijatelnou cenu. Tyto obvody potom můžeme používat pro zpříjemnění prostředí v domácnosti, v klubovnách, nebo společenských místnostech, ale také při ozvučování filmů, při divadelních představeních nebo při sestavování akustických nahrávek apod. Svým způsobem jsou tyto zvukové efekty věrohodnější než originál. Zvukař při divadelním představení používá obvykle již nahrané celky doplňkových zvuků na magnetofonovém pásku a nemanipuluje s podobnými generátory během představení.

Autor původního konstrukčního návrhu, podle kterého je následující návod ideově převzat, doporučuje ještě jedno, víceméně specifické použití. Tímto autorem je M. Šišov z Tuly (Radio SSSR, č. 10/1986, str. 50 a 51) a originální přístroj v sovětské verzi sloužil jako doplněk umělého táboráku, umístěného v pionýrské klubovně.

Imitátor vydává zvuky planoucího ohně, podbarvené praskáním dřeva. Protože tento zvuk má v přírodě náhodný charakter, je nutno vytvořit signál o nepravidelné intenzitě a kmitočtu, avšak s typickým charakterem kmitočtového průběhu. Princip získání takového signálu není příliš složitý. Základem je šumový generátor náhodného signálu.

Z tohoto signálu vybereme nízkofrekvenční obalovou křivku. Tento průběh se porovnává v omezovači se stejnosměrnou úrovní napětí. Zesilujeme pouze vrcholové části záporné větve obalové křivky a získáme tak výsledný signál, který se zesiluje běžným zesilovačem (např. z rozhlasového přijímače) a připojuje k vhodně umístěným reproduktorům

Zapojení přístroje je na obr. 35. Zdrojem základního šumového signálu je přechod p-n stabilizační diody Ď₁. Ta je zapojena ve funkčně jinak nevhodném režimu. Použijeme běžnou Zenerovu diodu se Zenerovým napětím asi 11 V, např. tvpu 6NZ70. Funkčně nevhodným. režimem zde rozumíme příliš malý příčný proud. Dioda tedy nestabilizuje a pracuje v části charakteristiky s velkým dynamickým odporem. Příčný proud, protékající diodou, nastavíme volbou odporu omezovacího rezistoru R₁. Tento proud je v našem případě asi 40 μA. Amplituda střídavé složky šumového napětí by měla být asi 3 mV. Ne každá dioda má stejnou charakteristiku a stejné šumové napětí ve stejném pracovním bodě, proto případně upravíme velikost

šumového napětí změnou odporu rezistoru R_1 nebo v krajním případě výměnou diodv.

Zesílení prvního operačního zesilovače IO_1 je dáno zápornou zpětnou vazbou, určenou poměrem $(R_4 + R_5)/R_2$, při součástkách podle obr. 35 je zesílení A = 250 až 300.

Protože je mezi diodou D₁ a invertujícím zesilovačem vazební kondenzátor C₁, zesiluje se pouze střídavá složka signálu. Rezistor R₃ kompenzuje vstupní proud invertujícího vstupu operačního zesilovače. Na výstupu 6 operačního zesilovače IO₁ je napěťový průběh podle obr. 36a, což je zesílený šumový signál s obecným kmitočtovým spektrem.

Pro náš účel potřebujeme ze šumového signálu vybrat jen některé průběhy napětí. Proto je operační zesilovač IO₂ zapojen jako aktivní nízkofrekvenční filtr.

Odpory rezistorů R₇ až R₉ spolu s kapacitami kondenzátorů C₄ až C₆ určují horní mezní kmitočet filtru asi na 400 Hz. Zesílení filtru určuje poměr R₁₀/R₁₁. Odpory těchto rezistorů upravujeme, je-li na výstupu IO₂ buď příliš velké nebo malé napětí. Na výstupu 6 integrovaného obvodu IO₂ bychom měli dostat průběh střídavého napětí podle obr. 36b.

Obr. 36. Napěťové průběhy v zapojení

Střídavý signál vedeme přes vazební kondenzátor C7 a omezovací sériový rezistor R₁₄ na bázi tranzistoru T₁. Tento tranzistor je v klidovém stavu otevřen do saturace. Je otevírán kladným napětím. přiváděným přes rezistory R₁₂, R₁₃ a R₁₄ na jeho bázi. Střídavé napětí z výstupu IO2 tranzistor zavírá. Posuv steinosměrné úrovně z obr. 36b zajišťuje nastavitelný trimr R₁₃. Tímto trimrem, jak je patrné z průběhů napětí na obr. 36, je možné nastavovat četnost i střídavou úroveň výstupního signálu. Podbarvení spodním střídavým signálem (podle obr. 36c), který imituje hluk plamene, vzniká samo, nestálostí tranzistoru T1 v saturaci.

Tranzistor T_2 tvoří již jen oddělovací stupeň, na jehož kolektoru dostaneme výstupní signál. Amplituda výstupního signálu se mění potenciometrem R_{20} . Na výstup zařízení, který je ještě stejnosměrně oddělen vazebním kondenzátorem C_{10} , připojíme vstup běžného zesilovače s reproduktory. Amplituda výstupního signálu je asi $0,1\ V$.

Přístroj napájíme ze symetrického napájecího zdroje napětím ±12 V. Odběr zařízení je asi 50 mA. Na jakost a stabilitu napájecího napětí nejsou kladeny žádné mimořádné požadavky.

Zkratová zkoušečka se zvukovou indikací

Víme, že často potřebujeme prověřit konektor a jeho přívodní vodiče. Podobných úkonů, kdy je třeba "prozvonit" spojení, je mnohem více a při práci s různými přístroji se vyskytují prakticky denně. Jednoduchý "zkratoměr" je pro tyto práce prakticky základní pomůckou. Někdy stačí žárovka a baterie. Navržený generátor je samozřejmě složitější, má ovšem i své opodstatnění. Prověřovaný spoi není namáhán téměř žádným proudem, takže není nebezpečí poškození polovodičových součástek. Při zkratu odporu do 10 Ω - se ozve zvukový signál, což je obvykle lepší, než rozsvícené světélko, protože můžeme mít zkoušečku na dlouhých drátech i mimo zkoušený přístroj, nebo dokonce v kap-

Funkce přístroje podle obr. 37 je jednoduchá. První hradlo H₁ pracuje jako invertor. Na jeho vstupech je přes rezistor R₁ log. 1, na výstupu log. 0. Jakmile spojíme svorky K₁ a K₂ do zkratu, tak se tento stav obrátí a nastartuje se generátor akustického kmitočtu, tvořený hradly H₂ až H₄. Kmitočet je určen odporem rezistoru R₄ a kapacitou kondenzátoru C₁. Pro rozsah kmitočtu od 600 do 1000 Hz lze použít C₁ s kapacitou od 2 do 5 mikrofaradů. Rezistorem R₅ nastavujeme hlasitost. Jako zdroj zvuku lze použít jakýkoli miniaturní reproduktor, v nouzi postačí i telefonní sluchátko.

V případě, že pro napájení používáme jen plochou baterii nebo tři tužkové články, je Zenerova dioda D_1 s rezistorem R_3 zbytečná. Pro D_1 volíme libovolný typ se Zenerovým napětím mezi 5 a 5,5 V. Sta-

bilizace napájecího napětí touto diodou je nutná tehdy, připojujeme-li zkoušečku k vnějšímu zdroji napětí.

Jednoduchý nízkofrekvenční generátor

Nízkofrekvenční generátor zejména sinusového signálu patří k základnímu vybavení každého pracoviště a je základním přístrojem potřebným při opravách zesilovačů, směšovačů, přijímačů, reprodukčních zařízení atp. Oceníme jej zejména při oživování a výrobě takovýchto zařízení.

Navrhovaný generátor (obr. 38) je zajímavý zejména svou jednoduchostí a tím i poměrně snadnou konstrukcí. Přitom se jeho parametry přibližují profesionálním generátorům střední třídy. Pro speciální použití je zajímavý i dolní rozsah kmitočtu, 0,042 Hz. Je to umožněno zejména tím, že v zapojení nejsou žádné vazební kondenzátory. Jistou nevýhodou je určitá napěťová nestabilita, která není kontrolována žádným měřicím přístrojem na výstupu. Lze upozornit i na to, že celý generátor má odběr proudu asi 25 mA, takže by bylo možno jej napájet z baterií a zhotovit jej jako přenosný o poměrně malých rozměrech. Pokud bychom trochu slevili z parametrů dosahovaných při napájení ze síťového zdroje, vystačíme s napájecím napětím 2× 9 V z destičkových baterií 6F22.

Technické parametry

Napájecí napětí: síťové 220 V, 50 Hz. Vnitřní zdroj: 2× 12 V, odběr proudu 25 mA.

Výstupní mezivrcholové napětí: 5 V při $R_z = 250 \Omega$.

Zkreslení sin. signálu: max. 3 %.
Kmitočtový rozsah: 0,042 Hz až
51,5 kHz, v šesti přepínatelných
rozsazích.

Tvar výstupních signálů: sinusový, trojúhelníkovitý a pravoúhlý.

Schéma nízkofrekvenčního generátoru je na obr. 38.

Napájecí zdroj přístroje je připojen na síť 220 V/50 Hz přes pojistku 0,5 A a síťový spínač. Transformátor Tr je na běžném jádru EI 32×32 se sekundárním efektivním napětím 8 V. Zapnutí přístro-

Amatérske! A 1 (1) B/2

Obr. 37. Zkratová zkoušečka

je na předním panelu je signalizováno svítivou diodou D₈. Ve schématu není vyznačen její typ, vyhoví prakticky každá bez úpravy omezovacího předřadného rezistoru Ř₄₀. Následuje usměrňovač, který je zapojen jako zdvojovač ss napětí. Pro usměrnění vyhoví jakákoli čs. křemíková dioda. Vzhledem k možné miniaturizaci doporučuji typy KY130, příp. KA501 (až 504). Referenční napětí poskytují dvě stejné diody D₉ a D₁₀, které vybíráme podle Zenerova napětí (pokud možno shodné, $U_7 = 12 \text{ V}$). Výkonový člen usměrňovacího a stabilizačního bloku tvoří dvojice komplementárních tranzistorů T4 a T5. Z výrobků TESLA doporučuji jako nejvhodnější KF506 a KF517. Napětím ±12 V je napájen stupeň generátoru s tranzistory T2 a T3 operační zesilovače OZ₁ až OZ₄. Všechny čtyři operační zesilovače jsou v jednom pouzdru integrovaného obvodu B084, výrobce NDR se 14 vývody, kladné napětí je přivedeno na vývod 4. záporné na vývod 11. Pro kompenzaci vstupů jednotlivých operačních zesilovačů je přidán ještě jeden stupeň stabilizace se dvěma Zenerovými diodami D₁₁ a D_{12} , které mají napětí $U_Z = 6.8 \text{ V}$. Trimry R₃₄, R₃₅, R₃₆ přivádějí toto stejnosměrné napětí do vstupů - operačních zesilovačů. Propoje jsou na schématu označeny čísly 1 až 4. Trimry se v podstatě nastavuje "symetrie" jednotlivých operačních zesilovačů. Přesně je třeba symetrii nastavit osciloskopem vždy tak, že vstup osciloskopu při ss rozsahu připojíme na výstup příslušného operačního zesilovače OZ₁ až OZ₃ a běžci trimrů R₃₄ až R₃₆ otáčíme tak, aby výstupní napětí na obrazovce osciloskopu bylo vždy souměrné.

Základ celého zapojení tvoří generátor osazený OZ₁. Lineárním potenciometrem R₁ lze měnit plynule kmitočet v rozsahu 1:11. Hrubě, po skocích se kmitočet mění změnou kondenzátorů C1 až C₆ přepínačem Př₁. Ti, kteří nebudou potřebovat signály velmi nízkých kmitočtů, si patrně první dva rozsahy ani nezapojí. Výstup z generátoru se dělí do tří větví. Přímý výstup jde přes trimr R₁₀, kterým se nastavuje při běžci potenciometru R₂₂ v horní poloze na výstupu K₁ výstupní mezivrcholové napětí 5 V. Samozřejmě při přepínači Př₂ v prostřední poloze. Průběh výstupního napětí by měl být trojúhelníkovitý. Druhý výstup

z OZ_1 jde na omezovač tvořený OZ_2 . Ten vytváří pravoúhlý signál. Tvar ani střídu výstupních impulsů nelze měnit. Střída signálu by měla být přibližně 1:1. Rezistorem R_{25} nastavíme zesílení omezovače tak, aby impuls měl co nejlepší tvar, velikost výstupního signálu pak srovnáme stejně jako u trojúhelníkového průběhu analogicky přepnutím P_2 do první polohy a nastavením trimru R_9 tak, aby na výstupu z generátoru (K_1) bylo při běžci R_{22} v horní poloze také požadované napětí.

Třetí výstup ze základního generátoru je veden na operační zesilovač OZ3, který spolu s FET T1 vytváří a zesiluje sinusový signál. Zkreslení sinusového signálu Íze ovlivnit pouze změnou zpětné vazby OZ₃, tj. odporovým trimrem R₁₂. Pokud nemáme analyzátor nebo měřič zkreslení, je nutné nastavit nejmenší zkreslení sinusového výstupního signálu pouze podle osciloskopu. Bohužel je známo, že pouhým okem se pozná zkreslení větší než asi 5 %, menší se odhaduje velice těžko. Optimum nastavujeme při 1 Hz a 10 kHz. Velikost výstupního signálu pak analogicky jako v předchozích případech nastavíme při správně přepnutém Př₂ trimrem R₁₆.

Z předchozího plyne, že při oživování celého přístroje je zcela nezbytný alespoň Avomet a osciloskop. Činnost dalších obvodů je zřejmá přímo ze schématu. Operační zesilovač IO_4 budí souměrný koncový stupeň s tranzistory T_2 , T_3 (komplementární dvojice, měly by být vybrány tak, aby oba měly stejné zesílení h_{21E}).

Celé zařízení má technický půvab tehdy, když se vyrobí z originálních součástí. Zejména je důležitý integrovaný operační zesilovač B084, který obsahuje všechny čtyři OZ₁ až OZ₄ se společným napájením ±12 V v jednom pouzdře. FET je v originále sovětské výroby. Lze jej nahradit naším KF520. Komplementární dvojici výstupních tranzistorů T₃ a T₄ lze nahradit tranzistory KF507 a KF517, které ovšem musíme párovat. D₁ až D₄ jsou křemíkové diody běžného typu, např. vyhoví KA501. Zenerovy diody pak vybereme co nejmenšího výkonu podle potřebného Zenerova napětí. Všechny potenciometry a trimry jsou lineární.

Na panelu přístroje jsou kromě výstupních svorek tři potenciometry. R₁ se stupnicí "kmitočet plynule", která je nelineární od 4,5 do 50, první polovina je asi od 5 do 10, do tří čtvrtin do dvaceti a do padesáti zbytek. Druhou stupnici "výstupní napětí plynule" dáme k hřídeli potenciometru R_{22} , tato stupnice je lineární. Třetí ovládací prvek na panelu slouží ke kompenzaci a posunutí "nuly" potenciometrem R_{37} . Kompenzací Ize posouvat stejnosměrnou úroveň výstupního napětí o $\pm 2,5$ V.

Přístroje proti hlodavcům

Ultrazvuk se stává moderním prostředkem v boji s nežádoucími a parazitujícími zvířaty jako jsou holubi, hlodavci apod. Chemické prostředky, tj. postřiky, plynové "patrony" a otrávené návnady jsou mnohdy nebezpečné, ne vždy neškodné a obvykle i zhoršují životní prostředí. Některé látky, dříve zcela běžné, jsou dnes již z těchto důvodů zcela zakázány. Proto specializované firmy, zabývající se deratizací, začínají používat ultrazvukové přístroje.

Na západoněmeckém trhu jsou např. přístroje Ultrasonic Dekur 2000 nebo UD 4000. Tyto přístroje vydávají signál měnitelného kmitočtu 5 až 21 kHz a jsou podle prospektu schopné ochránit plo-. chu asi 250 m². Používají se v místech, v nichž bráníme hnízdiť divokým holubům, proti hlodavcům všeho druhu i proti jiným drobným ptákům a savcům. Bohužel, jak v naší, tak ve světové technické literatuře chybí solidní odborná pojednání o praktických výsledcích, dosahovaných těmito přístroji. Prospektům, které dodávají výrobci, jak všichni dobře víme, nelze zcela věřit. Obvykle z komerčních důvodů nadsazují a zcela úmyslně neseznamují odběratele s celou šíří problémů. Přitom nezodpovězených otázek je velmi mnoho. Lze účinně tyto přístroje používat v plenéru třeba proti hryzci? Když přístroj používáme trvale třeba ve velkoskladech, nezvyknou si další generace hlodavců na účinky ultrazvuku? Jak přístroj provozovat v prostorách, kde jsou lidé? Stačí jej zapínat jenom na noc, když není personál přítomen? Jak ultra-zvuk působí na lidi? Tato otázka je mimochodem velmi zaiímavá. Je známo. že oblast působení ultrazvuku na člověka je velmi široká. Obecně se ví, že ultrazvuk při zvyšující se intenzitě nejprve vytváří velice nepříjemné, špatně definovatelné "klíma", později se dostavují podle vnímavosti jedinců fyziologické poruchy. Naopak při některých kmitočtech a malých intenzitách může ultrazvuk působit příznivě. Také se ho v medicíně používá při některých tkáňových onemocněních. Nevyjasněné je i komplexní působení ultrazvuku na hmyz. Vyrábějí se i ultrazvukové repelenty. Přitom signály některých kmitočtů komáry přitahují, jiné naopak odpuzují.

Většina sériově vyráběných přístrojů pracuje na kmitočtech od 5 do 30 kHz. Mám ovšem vážné podezření, že tento rozsah kmitočtů je volen ne proto, že jde o optimálně působící signály vzhledem k fyziologii toho kterého zvířete, na které má přístroj působit, ale zejména proto, že v této oblasti ještě s dobrou účinností pracují běžné vysokotónové reproduktory. Speciální ultrazvukové vysílací moduly jsou pro použití v běžných komerčních přístrojích příliš drahé.

Přístroje jsou konstruovány tak, že signál základního generátoru je ještě modulován nebo rozmítán signálem pomaluběžného generátoru o kmitočtu 2 až 10 Hz. Následuje zcela běžný tranzistorový stupeň a přípojka na reproduktor. Přístroj může být umístěn i mimo chráněný prostor. Tam je umístěn třeba jen reproduktor, připojený běžným dvoužilovým kabelem. Vzhledem k požadovanému účinku se považuje za nutné, aby příkon koncového stupně byl alespoň 10 W. Plocha, která má být přístrojem pokryta, je úměrná vyzařovanému výkonu. Vzhledem k směrové vyzařovací charakteristice reproduktorů není kruhová, nýbrž směrem od reproduktoru eliptická. Počítá se, že vzpomínanou plochu kolem 250 m² by měl ochránit přístroj s příkonem koncového stupně kolem 10 W. Ve větších prostorách se obvykle používá přístrojů několik.

Žádný z československých podniků se výrobou podobných přístrojů nezabývá. Řada z těchto přístrojů se k nám do republiky na přání nejrůznějších podniků a odběratelů již dovezla z valutové oblasti. Přičemž, jak vyplývá z textu celého článku, jde o zařízení technicky velice primitivní. Pro jeho výrobu je k dispozici dostatečná součástková základna. Lze jej proto i snadno amatérsky vyrobit.

Součástky lze obvykle umístit na desplošnými spoji s rozměry 60 × 95 mm. Pokud neumite navrhnout celé zapojení a spoje vyleptat, můžete se spokojit s univerzální deskou. Ta obsahuje malé obdélníčky, na které se pájejí jednotlivé vývody součástek. Spoje se vedou drátem. Jako napáječ lze použít automobilový akumulátor, v nouzi dvě ploché baterie. Ideální je síťový zdroj, postačí zvonkový transformátor nebo jakýkoli transformátor se sekundárním napětím od 8 do 12 V. K usměrnění použijeme čtyři diody, např. KY701,

Obr. 39. "Deratizační" přístroi

KY132 a jeden vyhlazovací kondenzátor o kapacitě 500 až 1000 μF na 15 V.

Celkové zapojení přístroje je na obr. 39. Zařízení obsahuje rozmítací generátor s kmitočtem 3 až 8 Hz. Ten je tvořen tranzistory T₁ až T₂. Tímto generátorem se rozmítá signál základního generátoru 15 kHz, tvořený tranzistory T₃ a T₄. Kmitočet se mění při změně napětí baterie při jejím vybíjení. Protože však na přesném kmitočtu nezáleží, nemá přístroj stabilizované napájecí napětí. Kmitočet základního generátoru upravíme za hranici slyšitelnosti změnou kapacity kondenzátoru C5. Jejím zvětšováním se kmitočet snižuje a naopak.

Na výstupu použijeme běžný, nejlépe vysokotónový reproduktor 4 nebo 8 Ω. Zapojení je nenáročné na výběr součástek, úmyslně jsou voleny nejběžnější typy tranzistorů. Zařízení pracuje zcela bezpečně až do okolní teploty +40 °C.

Přístroi lze také zhotovit technikou dutých nýtků. V takovém případě použijeme pertinaxovou destičku s rozměry 60×95 mm o tloušťce 1 až 1,5 mm. Předběžně si rozvrhneme rozmístění součástek. V místech pájecích bodů vyvrtáme díry, do nichž vsadíme a roznýtújeme malé mosazné duté nýtky s průměrem 2 mm. Součástky do nýtků zapájíme a drátovými spoji, vedenými na druhé straně desky, je podle schématu propojí-

Obsahuje-li přístroj síťový napájecí zdroj, je třeba jej zabezpečit proti úrazu elektrickým proudem. Přístroj musí být v ochranném krytu, musí být zajištěn proti požáru a umístěn v takovém prostředí, aby při náhodném zkratu nemohl vzniknout požár.

Elektronická kočka

Přístroj imituje zvuk mňoukání kočky. Elektronické imitátory nejrůznějších zvuků jsou velice populární. V zahraničních katalozích najdete elektronické přístroje proti hlodavcům, pískající repelenty proti komárům apod. Jde o přístroje veskrze humánní, které nezabíjejí, ale pouze zahánějí. Z hlediska ekologie a ochrany přírody jsou rozhodně lepší než pasti a jedy. Mají ovšem jednu společnou nevýhodu. Chybí ucelené teorie o fyziologickém působení zvuku jak na zvěř tak na hmyz. Ačkoli je jejich funkčnost nesporná, musíme si přístroj sami vyzkoušet, ověřit si potřebnou hlasitost zvuku a působení přístroje sami v konkrétním prostředí. Popisovaný přístroj je určen pro plašení ptáků, tj. špačků, vran, holubů apod.

Funkci přístroje si popíšeme podle obr. 40. Základem je pomaluběžný multivibrátor, tvořený tranzistory T₁ a T₂. Výstup z něj je na kolektoru tranzistoru T2. Impulsy jsou pravoúhlé a mají střídu, tj. poměr mezera/impuls 1:2. Opakovací kmitočet multivibrátoru je 0,3 Hz. Kmitočet je dán články RC v kolektorech tran-

zistorů T1 a T2.

Článek tvořený rezistorem R₅ a kondenzátorem C₃ je v podstatě integrátor. To způsobuje, že na kondenzátoru C3 je pilovité, popř. trojúhelníkovité napětí s periodou kmitání multivibrátoru. Toto napětí pak přes rezistor, který je vlastně jenom oddělovacím členem, naměříme také na bázi tranzistoru T3. Je-li na bázi T₃ kladné napětí, tak vlivem kladné zpětné vazby členem C₄R₇C₅R₈C₆ tranzistor Obr. 40. "Elektronická kočka"

kmitá na zvukovém kmitočtu asi 800 Hz. Protože kladné napětí na bázi tohoto tranzistoru se lineárně mění, tak se mírně mění i kmitočet generátoru i amplituda generovaných impulsů. Výsledný zvuk se podobá mňoukání. Opakovací kmitočet je daný základním kmitočtem pomaluběžného multivibrátoru, tedy 0,3 Hz. Začíná pomalým zvětšováním intenzity zvuku až po výrazné mňoukání, po němž následuje útlum k nule.

Výstupní signál z kolektoru tranzistoru T_3 vedeme přes vazební kondenzátor C_7 na vstup libovolného nízkofrekvenčního zesilovače. To může být např. gramofonový nebo magnetofonový vstup rozhlasového přijímače, zesilovač pro kytaru apod. Pokud nebudeme zesilovat zvuk ovládacím prvkem zesilovače, je vhodné připojit potenciometr R_{10} . Ten je někdy potřebný i jako impedanční a amplitudové přizpůsobení přístroje k následnému nf zesilovacímu stupni.

Přístroj napájíme nestabilizovaným stejnosměrným napětím 9 V, možno i z baterie. Odběr ze zdroje je maximálně 20 mA

Elektronika a hračky

Svět je zaplaven elektronikou. Pronikla do všech oborů, tedy i do hračkářského průmyslu. Když však píšeme svět, trochu přeháníme, protože např. naše obchody jsou v tomto sortimentu chudě zásobené. Domácí výroba téměř neexistuje, téměř vše, co můžeme dětem koupit je z dovozu. Výjimku snad tvoří některé elektronické stavebnice. Veřejnost, která posuzuje úroveň domácí elektroniky prakticky jen podle množství, kvality a sortimentu spotřebního zboží, naše výrobce kritizuje. K nápravě tohoto stavu je však třeba trochu víc: technická a ekonomická analýza. Srovnání technických a ekonomických skutečností u výrobců, kteří tvoří v elektronice světovou špičku.

Protože jde o velice rozsáhlý obor a velký sortiment výrobků, dovolte, abych uvedl dva příklady. Ekonomicky a technicky zajímavou oblastí výrobců spotřební elektroniky je Asie. Vedle největší elektronické mocnosti Japonska tam vznikají podniky spotřební elektroniky doslova jako houby po dešti. Čínská lidová republika zřídila pro pronikání zahraničního kapitálu celé oblasti volného podnikání, kde se vyrábějí zejména elektronické výrobky. Vzor má v kolonii Hong Kong. Tamní výrobci byli proslulí levným spotřebním zbožím, které vyžadovalo množství ruční práce, malé investice a malý výrobní prostor. Nyní do oblasti svého působení zahrnují i elektroniku. Je však nutno vidět že ne celou elektroniku, ale pouze některé specializované oblasti. Vyrábějí jednoduchá rádia, kalkulačky, malé počítače, digitální hodinky, magnetofonové přehrávače a obrovský sortiment nejrůznějších elektronických hraček. Jen tak mimochodem. Čtyři firmy z Hong Kongu během posledních deseti let ovládly více než padesát procent světového trhu s miniaturními hodinkovými články. Možná, že je vhodné si vzít nějaký konkrétní příklad.

Hongkongská firma Levis je známá svými levnými digitálními hodinkami. U nás se prodávaly donedávna v dost velikém sortimentu před Tuzexem. Podobnou technologií, jakou jsou vyrobeny tyto hodinky, vyrábí tato firma i další výrobky. Jedním z nich je např. miniaturní piano. Základ tvoří stejně jako u digitálních hodinek jediný integrovaný obvod, přitmelený na malé destičce s ploš-

nými spoji. Jinak piánko obsahuje minimum pasívních součástek: dva kondenzátory, jeden rezistor, krystalový reproduktor a dvě knoflíkové napájecí baterie. Vše připevněno pájením na desce s plošnými spoji. Zařízení nemá žádný vypínač, v době, kdy nezní žádný tón, je odběr proudu tak malý, že vypínač není třeba. Technickou zajímavostí je provedení klávesnice. Tu tvoří monolitický pryžový výlisek. Spojení se vytvoří špalíčkem polovodičové pryže ve spodní části výlisku, který prstem dotlačíme na příslušné místo na desce s plošnými spoji. plastikové ie $100 \times 50 \times 8$ mm. Další zajímavostí je, že jsem nenašel žádné šroubové nebo nýtové spojení. Vše jen výlisky do sebe sesazené a pájení cínem. Hračka je dodávána s plastikovým "penálem" s jednoduchým návodem a několika melodiemi. Faktem je, že se určitě líbí dětem všeho věku a pěkným provedením i dospělým. Elektronický oscilátor má poměrně dobrou stabilitu, takže na rozdíl od jiných mechanických hudebních nástrojů pro děti nekazí hudební sluch falešnými tóny. Navíc lze piánko použít i jako ladičku.

O způsobu výroby a ekonomickém výsledku pro výrobce nevíme prakticky

nic. Nikdo se iím nechlubí. Ví se, že technické zázemí, tj. výrobní zařízení i vývoj obstarávají velké japonské monopoly. Sériovost těchto výrobků ide do miliónů a je jimi zaplavován doslova celý svět. Na obranu našich výrobců bych chtěl uvést, že ani velké západoevropské firmy se v této oblasti do žádného konkurenčního boje nepouštějí. O ceně, za jakou takový výrobek dodává výrobce, moc nevíme, maloobchodní vylučuje téměř dokonale konkurenci. O rozšíření těchto výrobků po celém světě se stará vedle legálního vývozu celá rozsáhlá pašerácká síť a samozřejmě i celosvětový turistický ruch. Levná elektronika je dobrým suvenýrem prakticky pro každého turistu, který navštíví některé místo volného bezcelního mezinárodního obchodu.

Finálním výrobcem je malá firma, která využívá technického a kapitálového zázemí velkých monopolů do všech důsledků. Výrobní prostory jsou vzhledem k jednoduchosti výroby také primitivní. Žádný vývoj, žádná technická příprava výroby, velké odbytové oddělení, které se nezastaví před jakýmkoli obchodnickým trikem. Žádný zaručený odbyt na domácím trhu, prakticky celá produkce se musí vyvézt. Velikost produkce a sériovost jsou určeny nikoli technickými, ale odbytovými možnostmi. Výroba se buď utlumí nebo ve velice krátkém čase zmnohonásobí podle toho, je-li o výrobek zájem nebo ne.

Faktem je, že těžko můžeme očekávat, že by některý socialistický podnik mohl takovýmto dravčím způsobem podnikat. V socialistických zemích, kde je plánovaná výroba, se žádnému výrobci nechce do rizikového podnikání a obvykle nezačne výrobu, pokud nemá zajištěn určitý minimální odběr výrobků na tuzemském trhu. V současné době vidíme, že např. elektronické hry, vyrobené podobnou technologií, vyrábí jen Sovětský svaz, kde tato podmínka je vzhledem k velikosti uzavřeného domácího trhu splněna.

V Sovětském svazu jsou v oblasti elektroniky použité v dětských hračkách mnohem dále než my. Vedle vzpomínaných elektronických her na bázi hybridních integrovaných obvodů se zejména v poslední době objevilo na trhu množství elektronických hraček. Jen namátkou mohu jmenovat řízené pásové vozidlo, rádio vestavěné do kostky, imitátor ptačích hlasů apod., velké množství nejrůznějších elektronických stavebnic počínaje miniaturním televizorem a konče mnoha různými přenosnými rozhlasovými přijímači.

Snád jako v minulém případě bychom se měli u nějakého konkrétního výrobku zastavit. Obohacením sovětského trhu tímto sortimentem způsobilo nařízení, že každý výrobce ve státě musí určitou část své výroby vyčlenit pro spotřební zboží.

Vím, že v současné době zejména Jednotná zemědělská družstva hledají vhodnou doplňkovou výrobu se snahou podnikat. Jednoduché elektronické hračky by jim samozřejmě velice dobře vyhovovaly. Potíž je však v tom, že udělá-li se na takový výrobek v našich ekonomických podmínkách kalkulace, tak i JZD, které má velice malou výrobní režii, nedokáže středně složitou elektronickou hračku vyrobit např. pod 1000 Kčs, velkovýrobce s velkou režií by byl pochopitelně ještě dražší.

Zamyslíme-li se nad těmito nespornými fakty, vidíme, že celou řadu výrobků v oblasti hraček bychom technicky dovedli vyrobit. Dokonce v oblasti přidružených výrob u zemědělských podniků je volná kapacita a chuť podnikat. Takže problém je pouze v ekonomické kalkulaci, v ceně zejména polovodičových součástek, v neschopnosti nebo nemožnosti používat méně jakostní polovodičové a jiné součástky apod. Pokud tyto zábrany nebudou odstraněny, nebudou se moci tuzemské podniky vůbec do podobných výrobků pustit.

Elektronický terč pro vzduchovku

Cílem střelby je ocelová kulička, kterou umístíme do malého okénka. Zdánlivě visí ve volném prostoru, což způsobuje elektromagnetické pole tlumivky, které ji zvedá. Prostor je hlídán světelným paprskem žárovky Ž₁. Jakmile se kulička z tohoto paprsku vychýlí, projde elektromagnetem větší proud a kulička se "přizvedne". Jakmile se kulička dostane zpět do světelného paprsku, začne se proud elektromagnetem zmenšovat, kulička opět mírně padá. Úkolem střelce je brokem vzduchovky kuličku z této zpětné vazby vyrazit. Situace je však ztížena tím, že kulička představuje "živý" cíl, jehož pohyb je nepravidelný.

Obr. 41. Elektronický terč

Princip činnosti přístroje si vysvětlíme podle elektrického schématu obr. 41. Fototranzistor T₁ je umístěn v malé rource o vnitřním průměru 2 mm a délce 15 mm. Ta zabezpečuje, že aktivní plocha fototranzistoru je osvětlována pouze úzkým paprskem světla ze žárovky Ž₁. Tento paprsek tvoří s fototranzistorem světelnou závoru, která drží kuličku v prostoru paprsku (obr. 42). Tato světelná závora je umístěna pod pólem silného elektromagnetu Tl. Jakmile na fototranzistor T₁ dopadne světlo, tak se otevře a kladným napětím přivedeným na

Obr. 42. K činnosti zapojení na obr. 41 "

bázi se začne otevírat i druhý tranzistor T2. Ten pak následně otevře ještě oba tranzistory T₃ a T₄, které "pustí" do tlumivky Tl plný proud z napájecího zdroje. Vlivem časové konstanty (tvořené dvěma kondenzátory C1 a C2) má otevírání a zavírání celé kaskády tranzistorů určité časové zpoždění. Proudem tlumivky se vytvoří elektromagnetické pole. které začne kuličku přitahovat k pólovému nástavci. Kuličku zastíní a přeruší paprsek světla pro fototranzistor, ten se uzavře a pomalu se uzavírá i zesilovací řetěz T2 až T4. Buzení elektromagnetu se zmenšuje a kulička začne zase mírně padat. Odporovým trimrem R₁ lze kuličku "uklidnit" a pohyb nahoru a dolů regulovat.

Použijeme ocelovou kuličku z kuličkového ložiska. Nejvhodnější průměr je 10 až 15 mm. Tlumivkou je část E transformátoru se skládanými plechy o velikosti 25 × 25 mm. Cívku si musíme navinout sami. Doporučuji 1000 závitů drátu o průměru 0,5 mm. Jako jádro je, možno použít i jiný typ plechů, např. z cívek stykačů apod. Velikost jádra není pro dané použití kritická.

Žárovky Ž₂ a Ž₃ osvětlují prostor za kuličkou a samotnou kuličku, aby ji bylo dobře vidět. Jejich světlo by nemělo dopadat na aktivní plochu fototranzistoru. Pro napájení lze použít např. zdroj pro elektrircké vláčky, nastavený na plné výstupní napětí. Pouze se k němu správnou polaritou připojí jeden vyhlazovací kondenzátor 50 μF/25 V.

Napájecí zdroj pro elektrické hračky

Každý, kdo začne používat moderní elektrické hračky, brzy zjistí, že s napájením bateriemi jsou problémy. Přitom napájení elektrickým bezpečným proudem potřebuje celá řada elektrických hraček.

Napájet motorek potřebují mnohé sestavy stavebnice Merkur. Lego nebo pod. Běžné jsou malé vrtačky pro plošné spoje nebo pro modeláře, v nichž jsou malé motorky 12 nebo 24 V. Pro pájení drobných vodičů a součástek používáme mikropáječky, které je vhodné napájet regulovaným napětím 0 až 12 V. Mámeli kolejiště vláčků nebo autodráhu, pak se bez vhodného napájecího zdroje neobejdeme. Ti zkušenější dokáží takovýto zdroj použít i pro nabíjení malých akumulátorků. V nouzi lze vhodně navržený univerzální zdroj použít i pro dobíjení 12 nebo 6voltového automobilového akumulátoru. Samozřejmě, že podstatně menším než imenovitým proudem, ale pro vlastní funkci nabíjení to není na závadu, pouze se prodlouží nabíjecí doba. Akumulátoru to naopak, Ize-li tento termín v technice použít, "dělá dobře"

Jaké má dále popisovaný napájecí zdroj parametry? Napájíme jej ze sítě 220 V/50 Hz, příkon je max. 50 VA. Výstupní napětí je +15 a -15 V/1 A nebo 1× 30 V s odběrem proudu max. 1 A, -12 V až +12 V plynule regulovatelné v celém rozsahu při odběru do 1 A a s proudovým omezením asi 1,5 A. Tento výstup zdroje je zároveň krátkodobě zkratuvzdorný.

Funkci napájecího zdroje si popíšeme podle schématu na obr. 43. Přívod sítového napětí je z levé strany přes síťovou pojistku Po₁ a dvojpólový spínač S na primární stranu síťového transformátoru Tr. Střed sekundárního vinutí je uzemněn a tento bod je zároveň nulovým potenciálem pro výstupní svorku 0 V. Následuje běžné můstkové zapojení usměrňovacích diod D₁ až D₄. Pak jsou dva filtrační kondenzátory C₁ a C₂, mají být z bezpečnostních důvodů dimenzované na napětí 30 V. Svítivá dioda D5 na předním panelu zdroje signalizuje jeho zapnutí. Usměrněné neregulované napětí je vyvedeno na výstupní svorky +15, 0 a -15 V. Tento výstup bychom měli chránit před zbytečnými zkráty. Je v podstatě jištěn jen pojistkou Po₂, 1,5 A. Při trvalém zkratu je nebezpečí, že se prorazí některá z diod D₁ až D₄. Pokud, vzhledem k použití, zkraty na těchto výstupech nemůžeme vyloučit, doporučuji k usměrnění použít čtyři např. desetiampérové diody, např. KY708 apod. Výstupní napětí 30 V dostaneme mezi svorkami - 15 a + 15 V.

Regulovaná část zdroje je také poměrně jednoduchá. Skládá se ze dvou funkčně totožných částí. Pro regulaci a proudové omezení kladných napětí slouží tranzistory T₁ a T₃, pro záporné napětí tranzistory T₂ a T₄. Je-li běžec potenciometru R₃ přesně uprostřed od-

Amatérské: A D (1) B/2

Obr. 43. Napájecí zdroj elektronické hračky

porové dráhy, je na výstupní svorce ±12 V nulové napětí. Jakmile posuneme běžec potenciometru směrem k hornímu konci odporové dráhy, zůstanou tranzistory T2 a T4 uzavřeny. Tranzistor T1 se kladným napětím do báze přiváděným přes rezistor R5 začíná otevírat. Na regulovaném výstupu se začne zvětšovat kladné napětí. Proudové omezení začne pracovat, když zatěžujeme výstup. Úbytek výstupního proudu na rezistoru R, způsobí otevírání tranzistoru T3; T3 se začne otevírat až při úbytku napětí na R₇ větším než 0,7 V. Čím více je otevřen tranzistor T3, tím více je zavřen regulační tranzistor T1.

Natočíme-li běžec potenciometru Ra směrem k dolnímu konci odporové dráhy, vyřadíme z činnosti horní část zapojení a dolní část pracuje shodně s předchozím popisem, reguluje se však záporné napětí. Svítivé diody D₆ a D₇ indikují činnost zdroje - jedna činnost kladné větve, druhá záporné větve. Při zvětšování napětí vždy jedna začne svítit a intenzita světla je úměrná velikosti výstupního napětí. Při zkratu její svit pohasne. Proto volíme každou jiné barvy, nejlépe pro kladnou větev díodu červenou a pro zápornou zelenou (modrá

obvykle není k dispozici).

Při konstrukci zdroje musíme vyjít z velikosti síťového transformátoru. Transformátory 220 V/24 V jsou běžné a obvykle lze nějaký typ koupit. Pokud jej budeme muset sami zhotovit, je vhodné použít plechy El 32 × 32, primární vinutí bude mít 1140 závitů drátu o Ø 0,3 mm CuL, sekundární (2× 12 V) 2× 70 závitů drátem o Ø 1 mm CuL. Díody D₁ až D₄ nemusí být na chladičích. Jako regulační potenciometr R3 lze použít lineární posuvný typ TP 640 nebo TP 650. Na chladiče o ploše min. 40 cm² musíme umístit oba regulační tranzistory T₁ a T₂. Já jsem tyto tranzistory umístil na zadní stěnu zdroje, kterou jsem zhotovil z hliníkového plechu tloušťky 2 mm. Je však třeba od této elektricky uzemněné stěny tranzistory izolovat tenkou slídovou podložkou. Trochu potíží bývá s rezistory R7 a R₈. Měly by mít odpor 0,5 Ω (1 W). Patrně je v obchodě nekoupíte. Pak je nutné sehnat konstantanový (nebo jiný odporový) drát, postačí tloušťky asi 0,3 mm. Odměříme délku, která má odpor 0.5Ω a navineme jej na rezistor, který má odpor větší než 10 Ω.

Závěrem upozorňuji, že napájecí zdroj, který dáme do rukou dětem, musí být dokonale zabezpečen proti úrazu elektrickým proudem, zejména síťový přívod a obvody primárního okruhu transformátoru. Proto tuto konstrukci doporučuji jen vyspělejším amatérům, kteří mají již praktické zkušenosti s bezpečnostními předpisy. V každém případě je vhodné přístroj po dokončení nechat prohlédnout nějakým "elektrikářem", který reviduje elektrická zařízení.

Moderní napájecí zdroj pro kolejiště

Náročnému modeláři běžný regulovaný zdroj napětí pro řízení kolejiště většinou nestačí. Složité kolejiště je třeba dálkově ovládat. Vyskytují se i jedinci, kteří chtějí použít k jeho řízení malý počítač, který je už pro mnoho modelářů běžný. Pak pro programovou volbu musíte mít zdroj, který lze ovládat logickými signály např. v kódu BCD. Požadavků je samozřejmě víc. Malé kolektorové motorky lze sice řídit změnou napětí, ale pomalá jízda lokomotivy (malé napětí) bývá pak "cukavá". Změna zatížení např. při přejezdu výhybek při pomalé jízdě znamená, že se vlak zastavuje a pro opětný rozjezd musíme napětí zvětšit. Moderní zdroje nemají regulaci napětí "směrem dolů", ale mění se na zdroje impulsní. Motorek je tedy napájen místo steinosměrným napětím pouze impulsy. Rychlost otáčení motorku requlujeme tak, že měníme šířku impulsů, které mají imenovitou úroveň +12 V. Čím je šířká impulsů menší, tím se samozřejmě motorek lokomotivy točí pomaleji. Napájení impulsy znamená rovnoměrnější chod motorku při menších rychlostech otáčení.

Požadavků je samozřejmě víc. Napájení kolejiště musí být zkratuvzdorné. V poslední době je zdůrazňován i požadavek pomalého rozjezdu a dojezdu vlaku. Otázka je, zda je vhodné, aby obvody, které zabezpečí pomalý rozjezd vlaku, byly součástí centrálního zdroje pro kolejiště, nebo dílčích úseků trati, kde předpokládáme zastavování či rozjezd. Takovým úsekem je např. část trati před semaforem nebo nástupištěm na nádraží. Shrneme-li všechny tyto požadavky, znamená to dohromady poměrně složité, nároky na dříve zcela jednoduché zařízení. Ještě nedávno stačil transformátor a čtyři diody s odporovou regulací proudu do kolejiště. Dětem obvykle vystačilo napájení ze dvou nebo tří plochých baterií. Dnes se odborná modelářská literatura hemží složitými elektronickými zapojeními. Domnívám se, že není od věci, když se podíváme, jak lze řešit tento problém máme-li špičkové elektronické součástky.

Na obr. 44 je schéma speciálního zdroje, který spĺňuje většinu kladených požadavků. Pro nás má ovšem jednu nevýhodu. Používá dva těžko v tuzemsku dostupné integrované výkonové nf zesilovače. Nejbližší možná tuzemská náhrada je IO TESLA MDA2020, při jeho použití bude však zapojení vyžadovat mírné úpravy.

pulsů lze upravit poměrem odporů vstupních rezistorů ($(R_1/R_2 \text{ a } R_4/R_3)$. Potenciometrem R_s nastavujeme pousymetrii impulsů, takže jejím porušení jede vlak rychleji vpřed a pomaleji vzad. Pro ovládání zařízení jsou využity pouze neinvertující (+) vstupy zesilovače (3). Invertující vstupy (-) 2 mají zavedenu vazbu, která způsobí, že celek pracuje jako astabilní multivibrátor při určité kombinaci napětí na vstupech 3; 5 je výstup zesilovačů, 1 je vstup pro kompenzaci a vývody, 6, 7 a 4 jsou určeny pro napájení. Pomalý rozjezd a případný pomalý dojezd vlaku zajistíme změnou napětí na vstupech II a III celého zařízení buď dodatečnými obvody nebo pouhým připojením kondenzátoru vhodné kapacity.

Zařízení ovládáme buď tlačítky na panelu nebo je možno použít logické výstupy příslušného interfejsu v kódu BCD. Všechny stavy činnosti vyjadřuje následuiící tabulka:

Vstup	I.	II.	III.	IV.
plný chod vpřed	Н	χ.	L	L
plný chod vzad	L	L	Х	Н
pracovní chod vpřed	L	Н	L	L
pracovní chod vzad	L	L	Н	L
motor stop	Н	Х	Н	Χ
motor stop	1	- 1	1	ŧ

kde L je dolní úroveň logického ovládacího signálu, H horní úroveň logického ovládacího signálu a X je rozpojený vstup, příp. libovolný stav.

Elektrická výstroj jízdního kola

Rychlý rozvoj silničního provozu vyžaduje zdokonalená dopravní pravidla. Tato nová pravidla, tak i stále se zvětšující hustota silničního provozu, vyžadují zvýšené nároky na technickou dokonalost dopravních prostředků. Možnost identifikace cyklisty při snížené viditelnosti se řeší aktivními a pasívními zdroji světel. Aktivními zdroji světel jsou přední a zadní reflektor. K pasívním zdrojům světla patří všechna odrazová skla. Ta se zejména v poslední době umisťují i na různá pohyblivá místa, jako jsou šlapátka, přední a zadní kola. K významnému pasívnímu zabezpečení za snížené viditelnosti patří i oděv cyklisty.

Obr. 44. Moderní napájecí zdroj pro kolejiště

Funkce zapojení je v podstatě prostá. Jsou použity dva výkonové monolitické integrované nf zesilovače TBA820M. Zkratuvzdornost napájecího zdroje zajišťuje vnitřní zapojení těchto integrovaných obvodů, takže zkratem v místě připojení motoru zařízení nepoškodíme. Obecně má motor čtyři režimy chodu, podle toho, jak vstupním napětím otevřeme integrované zesilovače. Při pracovním režimu "chod vpřed" nebo "chod vzad" dostává motorek pouze impulsy. Napětí těchto im-

Uvedenou problematikou se na celém světě zabývá celá řada výzkumných pracovišť a institucí, zpřesňují se normy a nařízení. Například Mezinárodní organizace pro normalizaci, ISO, uvádí upřesněné požadavky v normě ISO 6742 Osvětlovací a odrazná zařízení, v níž se předepisují fotometrické a fyzikální požadavky, zkušební metody a požadavky

na osvětlovací zařízení pro jízdní kola. K fotometrickým požadavkům patří údaje o svítivosti předního světlometu a koncového světla napájeného z baterie se zkušební metodikou. Samozřejmě i barva světlometu a koncového světla. Norma dále obsahuje požadavky na elektrický zdroj. Elektrickým zdrojem může být generátor, primární baterie nebo akumulátor. Pro generátor norma určuje vlastnosti podle tabulky:

rychlost kola v km/h	výstupní napětí v % jmenovitého napětí		
	min.	max.	
5	50	117	
-10	85	117	
30	95	117	

Jako generátory elektrické energie se u nás i ve světě nejvíce používají malé alternátorky, které tuto normu splňují.

Podrobíme-li problematiku účinnosti generátoru rozboru, je dosavadní stav následující: obvyklý převod standardního byciklu je z běžně používaného kola na pastorek generátoru v poměru 1:33. Tento nadměrný převod, včetně nadměrného tlaku na ložiska a prokluzování pastorku na plášti pneumatiky se velkou měrou podílí na katastrofálně malé účinnosti. Ta je, počítáme-li od šlapátek, v rozmezí 5 až 8 %. To znamená, že pro výkon 3 W musí cyklista vynaložit výkon 37 až 60 W. Uvažujeme-li, že člověk je schopen po delší dobu vydávat výkon kolem 200 W, vidíme, že střední zátěž pro svícení odpovídající 50 W předstayuje energie 25 %. V praxi to vede k tomu, že cyklisté nechávají alternátorek odpojený někdy i tehdy, když už je osvětlení nutné.

Existují již sice systémy, které mají až 4× větší účinnost, ale jsou zatím poměrně drahé a ani u nás, ani ve světě se zatím nepoužívají. Většinou jsou součástí náboje předního kola. Základem jsou několikapólové alternátory s trvalými magnety. Větší účinnosti se dosahuje tím, že prakticky nepotřebují třecí převod.

Jednou z možností, jak řešit tuto problematiku, je použít záložní akumulátor (podobně jako u automobilu). Provedení by mohlo být velice jednoduché - přes diody by se trvale dobíjela malá baterie článků NiCd. Jakmile by bicykl neměl potřebnou rychlost, hradil by potřebný výkon ke svícení akumulátor. Sériově spojené články NiCd se však musí třídit, zejména podle stejné ampérhodinové kapacity (i když jde o stejné typy). Tím je více méně zaručeno, že články nebudou přepólovány při hlubokém výbíjení, neboť tak lze článek NiCd velice snadno zničit. Druhým důvodem, proč se tato možnost téměř nepoužívá, je již uváděná malá účinnost přeměny mechanické energie na elektrickou, takže kromě jízdy s kopce nikdy nemáme na kole aktivní přebytek elektrické energie. A ještě jeden poměrně závažný důvod omezuje uvedenou možnost a to vlastní charaktéristika používaného bicyklu alternátoru. Alternátor je navržen jako zdroj konstantního proudu. To znamená, že k němu lze jen se špatnými výsledky připojit jinou zátěž kromě jmenovité zátěže, kterou je žárovka předního reflektoru a

zadního koncového světla. Obvykle se totiž zmenší jeho jmenovité napětí a s tím i výkon.

Současně používané alternátorky 6 V/3 W mají při konstantní zátěži jmenovité výstupní napětí a proto nepotřebují žádnou vnější ani vnitřní regulaci. Nevýhodou je jejich veliká napěťová závislost na změně zatěžovacího odporu. Tuto závislost lze charakterizovat i takto: přední žárovka odebírá proud 0,4 A, zadní

0,1 A. Alternátorek je navržen jako zdroj konstantního proudu 0,5 A, při tomto odebíraném proudu má i jmenovité napětí 6 V. Při přepálení žárovky předního reflektoru zbývá jen proudová cesta přes žárovku koncového světla a ta se obvykle při větší rychlosti kola přepálí.

Ačkoli je elektrická výzbroj motorových vozidel dnes na vysoké technické úrovni, u bicyklů je ještě celá řada možností s obrovským polem působnosti. V časopisech se objevují zhruba dva způsoby možné přídavné regulace, kterých lze využít.

Jedno z nejlepších řešení této situace je doplnit současný systém alternátor – žárovky o nezávislý zdroj s jednoduchou automatikou, která přepíná a odpojuje alternátor podle toho, dodává-li nebo nedodává-li dostatek elektrické energie. Nezávislým zdrojem je baterie čtyř běžných monočlánků nebo čtyř malých pouzdřených akumulátorků NiCd.,,Automatika" na kolo se nedobíjí. Po jízdě musíme akumulátorky dobít doma.

Současné standardní zapojení elektrické výbavy jízdního kola je na schématu na obr. 45. Alternátor je jedním pólem ukostřen, stejně jako obě přední a zadní světla. Ke každé žárovce vede pouze jeden vodič. Uzavření elektrického okruhu druhým vodičem obstarává rám kola. Na obr. 46 je úprava na "automatické přepínání osvětlení". Potřebujeme jednu běžnou usměrňovací diodu (např. typ KY701). C je vyrovnávací elektrolytický kondenzátor 2000 μF/ 15 V. Nejdůležitější součástkou je relé Re. Nejlépe vyhovuje typ LUN 6 V. Lze použít i šestivoltové modelářské relé. Bohužel se však neobejdeme bez spínače S. Zapojení pracuje takto: světla se rozsvítí vždy, když sepneme spínač.

Jsou v tomto případě napájena přes klidový kontakt relé Re. Jakmile připojíme alternátor a rozjedeme se dostatečnou rychlostí, začne alternátor dodávat napětí, to nabudí cívku relé Re a přes spínací kontakt tohoto relé se připojí napětí alternátoru také na žárovky Ž a Z2 v reflektoru a koncovém světle. Pokud by relé přepínalo při příliš malé rychlosti, pomůžeme si tím, že do série s jeho cívkou připojíme jednu nebo dvě křemíkové diody. Navrhované řešení jistě není ideálním zařízením. Vyžaduje totiž před každou jízdou zkontrolovat stav baterií, ti. odhadnout, isou-li v takovém stavu, aby po celou cestu vydržely svítit atd.

Druhé možné řešení je na obr. 47. Toto zapojení se objevuje v amatérských časopisech v různých variantách. Vvužívá časového obvodu 555. Zapojení nemá žádný spínač. Začne pracovat až po připojení alternátoru. Jakmile dává alternátor proud, isou obě žárovky napájeny jeho napětím a reflektor i koncové světlo bicyklu svítí. Zároveň se nabíjejí všechny tři kondenzátory připojené k časovači 555. Jakmile však s bicyklem zastavíme nebo příliš zpomalíme, zmenší se napětí alternátoru a tu nastává kritický okamžik, kdy je cyklista nejvíce ohrožen. Časovací obvod 555 se překlopí, relé Re sepne a po dobu, než se vybije kondenzátor C3, zůstane relé sepnuto. V našem případě, při součás-tkách podle obr. 47 to je asi 3 minuty. Po tuto dobu jsou světla napájena z baterie. Baterií isou zde buď monočlánky nebo knoflíkové akumulátory NiCd. Na schématu je nakresleno i jejich trvalé dobíjení přes diodu D₁ a rezistor R₁. Samozřejmě, že o tomto dobíjení platí to, co jsme si řekli v úvodu: Nezapojíme je, když cesta vede převážně po rovině; lze je použít především v kopcovitém terénu, kdy vzniká přebytek energie při jízdách z kopce. Nejvhodnějším relé Re je i zde relé LUN 6 V.

Elektronická hrací kostka

Elektronické hry a hračky zaplavují svět. Některé z nich je možné u nás nebo i v cizině koupit, mnohé z nich si však musíme nebo můžeme zhotovit sami. Mezi ty druhé patří popisovaná elektronická hrací kostka, která nahrazuje známou házecí kostku, vhodnou pro mnoho her (např. pro hru "Člověče nezlob se").

diod. Tato kombinace pak představuje

některou z číslic 1 až 6.

Obr. 46. Úprava zapojení

Obr. 50. Ozvučení plyšové hračky

Zapojení kostky je na obr. 48. Dvě invertující hradla H_5 a H_6 jsou zapojena jako generátor impulsů. Ten sice kmitá neustále, ale jeho výstupní impulsy přivádíme do čítače tvořeného integrovaným obvodem MH7490 pouze tehdy, jeli stisknuto tlačítko TI. Kmitočet generátoru impulsů je určen zejména kapacitou kondenzátoru C_1 . V klidovém stavu je na výstupech čítače A, B, C, D kombinace logických úrovní log. 0 a log. 1. Tu zavádíme do jednoduchého dekodéru, tvořeného invertory integrovaného obvodu MH7405. Prostřednictvím tohoto dekodéru se pak spínají a tím rozsvěcují svítivé diody takto:

číslo na výstupu MH7490	Kombinace rozsv. diod D₁ až D ₇	to představuje číslo
 . 9	7	1
0	1, 2	2
1	1, 2, 7	3
2	1, 2, 5, 6	4
3	1, 2, 5, 6, 7	5
4	1, 2, 3, 4, 5, 6	6

Všechny součástky jsou připájeny na jednostranné desce s plošnými spoji obr. 49. Oba integrované obvody lze pájet přímo do desky bez objímek. Pokud chceme kostku napájet z baterií, doporučujeme čtyři sériově spojené tužkové články. Potom je zbytečná Zenerova dioda D, kterou vynecháme; místo rezistoru R₉ použijeme drátovou propojku.

Všechny součástky jsou tuzemské výroby. Oba integrované obvody i svítivé

R2 D8 P01

diody jsou výroby TESLA. Na druhu použitých rezistorů a kondenzátorů vůbec nezáleží.

Ozvučení plyšové hračky

Nejprve si řekneme, co popisované zařízení umí. Jakmile se na mikrofon dostane dostatečně silný zvuk, ozve se ze sluchátka mňoukání. Jistě si vzpomenete, že podobná hračka existuje. Mnozí si ji už přivezli ze svých zahraničních cest a lze ji celkem běžně koupit na různých prodejních burzách. Je to malá krabíčka, sloužící jako přívěsek na klíče nebo ji lze připnout k čemukoli. Když zavoláte, či zapískáte, začne krabička sama pískat. Má to usnadnit hledání klíčů nebo třeba celé kabelky. Horší je, že kabelka může začít pískat třeba v autobuse, protože zařízení nemá spínač. Tovární "klíčenka" bývá obvykle miniaturní, obsahuje totiž pouze jeden integrovaný obvod, který bohužel nemáme k dispozici. Pokud tedy zařízení začneme vyrábět z diskrétních součástek, bude trochu větší a bude mít i větší spotřebu proudu. Tím se také poněkud omezí jeho použití, přestane být dobře přenosné. Také spínač je téměř nezbytný, zejména když pro napájení použijeme malou destičkovou devítivoltovou baterii. Naše zařízení se hodí např. do plyšového medvěda, kocoura nebo tyg-

Obr. 49. Deska s plošnými spoji pro zapojení z obr. 48 (X230)

ra. Ten, když na něho začneme zblízka mluvit, začne mňoukat.

Činnost si popíšeme podle schématu (obr. 50). Příjem zvuku zajišťuje běžná telefonní mikrofonní vložka. Citlivost mikrofonu můžeme částečně upravit změnou odporu rezistoru R₁. Následuje dvoustupňový stejnosměrně vázaný zesilovač, tvořený tranzistory T₁ a T₂. Tranzistor T₃ je zapojen jako emitorový sledovač a pracuje jako oddělovací člen, který impedančně přizpůsobuje zesilovač k následujícímu detektoru (velký vstupní a malý výstupní odpor). Akustický signál v mikrofonu se musí projevit jako určité kladné stejnosměrné napětí na emitoru T3. Stejnosměrné napětí se zvětšuje v závislosti na intenzitě zvuku dopadajícího na mikrofon. Kondenzátor C2 nízkofrekvenční usměrněný signál nejenom filtruje, ale zároveň působí i jako zpožďovací člen, který dodává zařízení určitou setrvačnost. Ťa způsobuje, že zařízení začne pracovat, až když se kondenzátor C2 nabije a obráceně – pracuje ještě do doby, když už není akustický signál, ale kondenzátor C2 se vybíjí. Generátorem zvuku je upravený multivibrátor, tvořený tranzistory T₅ a T₆. Jeho kmitočet je určen součástkami C₅R₈ a C₄ s odporem sluchátka. Velký význam pro vznik kňouravého zvuku má pomalé otevírání a uzavírání tranzistorů multivibrátoru napájecím napětím při nabíjení kondenzátorů C2 a C5.

Multivibrátor je napájen přes spínací tranzistor T_4 . Ten má v bázi dvě antiparalelně zapojené diody D_1 a D_2 , které vytvářejí předpětí asi 0,7 V. To zamezuje tomu, aby se tranzistor T_4 neotevíral ani částečně při malých úrovních zvukového signálu. Zařízení tedy začne pracovat až do určité úrovně zvukové hladiny. Zvuk vydává telefonní sluchátko Sl, připadně můžeme použít reproduktorek s velkou impedancí z malého franzistorového přijímače. K napájení použijeme devítivoltovou baterii, odběr bez signálu je menší než 10 mA.

Při umisťování zařízení do plyšové hračky musíme sluchátko i mikrofon uložit tak, aby mezi nimi nenastávala kladná akustická vazba. To znamená, aby zvuk ze sluchátka zároveň nevybuzoval mikrofon. Jestliže sluchátko umístíme do tlamy zvířete, tak mikrofon musí být na zádech hračky.

Užitečné přístoje a postupy pro dílnu

Autosprej ze sifonové lahve

Popisovaný návod má své nesporné výhody: Nádoba i těsnicí materiály jsou továrními výrobky, bombičky s naplní CO2 jsou levné a běžně dostupné. Po-

stup úpravy je následující:

Z tlakové šroubovací hlavy sifonu se prakticky odstraní vše (tj. páka pro vypouštění sodovky, šroubení tvořící vrchlík hlavy, pryžové těsnění i pružina, která na těsnění tlačí), kromě kompletního mechanismu pro plnění láhve plynem z bombičky. Prodloužená zobáková výpusť pro sodovou vodu se odřízne a zárovná pilníkem. Otvor, kterým sodovka vytékala a otvor, v němž se pohybovala páčka vypouštění, musíme tlakotěsně uzavřít. Je-li hlava z hliníku, postačí opatrně "zavařit" otvory. V bakelitové hlavě oba otvory zalepíme epoxidovým lepidlem. Tlak v lahvi je však značný – aby epoxidovou zátku nevyrazil, vtlačíme do ještě tekutého epoxidu při lepení kovovou záplatu z plechu tloušťky přibližně 0,5 mm. Hlavu ovineme izolepou. aby tuhnoucí "kaše" nevytekla a celek necháme podle předpisu zatvrdnout. Než ztvrdne, zhotovíme z mosazi soustružením nové víčko krytu tlakové hľa-B na obr. 51. Úvedený závit M14 × 1,5 mm je u nových československých sifonů. Použijeme-li jiné nádoby, músíme závit případně upravit podle konstrukce.

Z již prázdného autospreje pro rozstřihnutí pláště vymontujeme držák trysky a trysku. Stříkací hlavu smontujeme podle obrázku tak, že k zalepenému tělesu hlavy 1 se šroubením 2, v němž je ponechán celý systém prorážecí jehly, připojíme držák trysky 3 z prázdného autospreje. Jeho hadičku však prodlou-

6 (1) (5)

Obr. 51. "Autosprej" ze sifonové láhve

žíme bužírkou 4 tak, aby sahala až ke dnu sifonové nádoby. Pod dosedací plošku držáku trysky přijde pryžová podložka, kterou zhotovíme podle C. Celek upevníme vysoustruženým víčkem krytu 6, utažením za vroubkovaný obvod.

Čistou sifonovou nádobu lze plnit nátěrovou hmotou asi do 3/4 výšky nádoby. Hmota má být řidší než při úpravě pro tlakovzdušné pneumatické pistole. Dále postupujeme podobně jako při přípravě "sodové" vody. Před zašroubováním kompletní hlavy nesmíme u kovových sifonů zapomenout vložit do hradla plastikový prstenec 7 z původní nádoby. Do držáku nasadíme shora trysku 8 z autospreje. Bombičku s CO₂ zatlačujeme otáčením křídlové matice proti jehle. Závit vždy lehce přimázneme a ke konci otáčíme rychleji, aby při propíchnutí zátky uniklo z bombičky co nejméně plynu. Stříkáme stisknutím vrcholku trysky prstem ze vzdálenosti asi 30 cm od lakované plochy. Zásady nástřiku jsou stejné jako u autosprejů. Nádobu držíme svisle, občas s ní krouživým pohybem zamícháme. Po skončení nástřiku musíme trysku vyjmout a ihned omýt v připravené nádobce s ředidlem!

Bylo by nepoctivé neuvést i nevýhody. Stříkací tlak se s ubýváním nátěrové hmoty mění. Odpomůžeme tomu tím. že lahev plníme nátěrovou hmotou jen do 1/3 nádoby – pak je rozdíl mezi počáteč-ním a konečným tlakem mnohem menší.

Zařízení se dobře osvědčilo pro mazací a impregnační účely. K trysce přidáme bužírku a můžeme promazávat i nepřístupná místa. Lze stříkat i dutiny automobilu Resistinem. V žádném případě kvalita stříkání není taková, že by zařízení nahradilo vzduchovou lakýrnickou pistoli.

Ruční stříkačka laku – fixírka

Jednoduchá ruční stříkačka nahradí náročnou vzduchovou pistoli, která vyžaduje pro tlakový vzduch kompresor. Návodů na zhotovení se už v minulosti objevilo mnoho. Tento návod má však tu výhodu, že se využívá šroubovacího víčka na běžné nápojové lahve. Když jsou laky nebo stříkací tekutiny uskladněny v takovýchto lahvích, pak stačí tekutinou zatřepat, našroubovat fixírku a začít stříkat. Tlakový vzduch dodává běžná cyklistická hustilka. Do jejího ústí je zašroubována tryska se zúženým otvorem pro výtok vzduchu, která drží také úhelníček z tlustšího plechu (obr. 52). V jeho druhém rameni je zasazena sací trubička, jejíž horní ústí, zúžené na průměr asi 1 mm, je právě v ose otvoru trysky. Dolní, šikmo seříznutý konec trubičky zasa-

Obr. 52. "Ruční" stříkačka laku

huje až ke dnu lahvičky s lakem, kterou našroubujeme na standardní závit, upevněný rovněž na vodorovném rameni úhelníčku. Je výhodné, podaří-li se opatřit větší počet stejných lahviček, na každý používaný druh laku jednu, s ple-chovým nebo bakelitovým uzávěrem. Jeden z nich upevníme na stříkačku, ostatní zbudou k uzavírání lahviček. Po našroubování na stříkačku musí mít do lahvičky přístup vzduch, jinak by bylo odsávání barvy ztíženo. Proto je na náčrtku vyznačena dírka, procházející raménkem úhelníčku a uzávěrem.

Ke stříkání se hodí lak libovolného druhu, který lze rozředit vhodným ředidlem na hustotu zcela řídkého sirupu. Zvláště výhodné jsou nitrolaky, ředěné acetonem, jejichž doba schnutí je krátká (asi hodinu) a vzhled velice pěkný. Násoskou načerpáme vhodné množství barvy z plechovky a vypustíme do příslušné lahvičky. Jednoduchý stojánek umožní, aby násoska důkladně vykapala bez dlouhého držení v ruce, načež jí nasajeme ředidlo a zapumpováním násosku vypláchneme. Ředidlo můžeme používat dosti dlouho, i když je již poměrně znečištěné, protože jde jen o to, odstranit z násosky přebytek laku a znemožnit, aby po zaschnutí trubičku ucpal. Týmž ředidlem vyčistíme po stříkání násosku stříkačky.

Stříkání samotné není obtížné, postaráme-li se o to, aby rozprášený lak nemohl znečistit okolí a aby výpary ředidla nezpůsobily požár nebo dokonce výbuch. Většina laků (zejména nitrocelulózové) má totiž ředidla hořlavá. Proto pozor na otevřený oheň a cigarety, které do naší "stříkárny" nepatří, alespoň po-kud jsou otevřeny plechovky s laky a ředidlem.

Vrtačka pro plošné spoje

Každý, kdo se zabývá elektronikou, musí vrtat díry do desek s plošnými spoji. Problematika vrtání velice tvrdých sklolaminátových desek je i v průmyslu poměrně stále špatně dořešená. Sklolaminát je velice tvrdý, potřebné díry mají průměry obvykle menší než 1 mm. Při velkosériové výrobě by bylo ideální díry prorážet, ale raznice pro takový účel je velice náročná a dlouho nevydrží. V současné době profesionálové používají speciální vrtačky, které mívají rychlost otáčení i větší než 60 000 ot/min. Amatéři díry do desek s plošnými spoji obvykle vrtají běžnou univerzální vrtačkou, kterou lze umístit do stojánku. Toto řešení je však pouze nouzové zejména proto, že při vrtání bez stojánku se často stane, že se tenký vrták zlomí. Proto se každému, kdo sklolaminát vrtá častěji, vyplatí zhotovit si malou jednoúčelovou vrtačku. Jednoúčelovou tím, že se spokojíme s jedním průměrem vrtáku, zpravidla v oblasti 0,7 až 1,5 mm. Celou konstrukci můžeme rozdělit na dvě části: na konstrukci vrtačky a konstrukci příslušného stojánku.

Pro konstrukci vrtačky potřebujeme vhodný stejnosměrný motorek. Na něj musíme zhotovit kleštinu pro upevnění vrtáčku. Důležitá je především volba správného typu motorku, zejména proto, že většina amatérů raději pracuje s tím. co má po ruce, než by pracně sháněla jeden určitý typ. Použití stejnosměrného motorku do napájecího napětí 24 V má tu výhodu, že se nemusíme starat o zabezpečení přívodu proti úrazu elektrickým proudem, použité napětí je bezpečné, takže motorek nemusí mít dvojitou izolaci ani další náležitosti, předepsané vyhláškou pro elektrické nářadí napájené ze sítě. Musíme mít ovšem napáječ, buď obvyklý regulovaný stejnosměrný zdroj, nebo nabíječ akumulátorů, napáječ autodráhy nebo i automobilový akumulátor. Použitím bateriového napájení se ovšem zbavíme možnosti plynule regulovat rychlost otáčení vrtačky změnou vstupního napětí, kterou máme při použití některého plynule regulovatelného zdroje. Pro vrtání desky s plošnými spoji lze použít prakticky každý stejnosměrný motorek s malým napájecím napětím. Nutné je ovšem, aby měl zajištění proti axiálnímu namáhání hřídele, které vzniká při vrtání - tomu bohužel většina malých modelářských motorků bez úpravy nevyhovuje. Z československých výrobků se pro tento účel zdá nejvhodnější typ K6A1, výrobce MEZ Náchod, který má tyto štítkové údaje: napájení 24 V, 2 W a 500 ot/min.

Vrták je připojen ke hřídeli motorku pomocí dvojité kleštiny, která je na fotografii. Rozložený komplet sestavy je fotografován úmyslně na čtverečkovaném papíru. Poz. A je vrták, následuje převlečná matice, která je vyrobena z mosazného šestihranu 8 mm (poz. B, obr. 53). Výška matice je 10 mm, vnitřní závit M7 má výšku asi 6 mm, pak je úkos 70° stejný vně i uvnitř matice. Matice má čelní díru o Ø 3,5 mm. Poz. C (obr. 54) je malá vnitřní kleština, která se stahuje a drží vrták. Má výšku 12,5 mm, základní materiál je tyčová mosaz o Ø 5 mm. Tato malá kleština je jednoúčelová pro daný typ vrtáku, proto její čelní díra musí mít stejný průměr jako použitý vrták. Vrták se pak upevní stažením kleštiny převlečnou maticí. Malá vnitřní kleštiná je svým osazeným průměrem (4 mm) vsazena do větší kleštiny – poz. D (obr. 55), která je určena pro přichycení hřídele motorku. Větší kleština má výšku 20 mm, základním materiálem pro zhotovení je tyčová mosaz průměru 7 mm. Po celé délce válcového průřezu má závit M7. Kleština má z obou konců díry, do první – čelní se nasune válcový konec malé vnitřní kleštiny s průměrem 4 mm. Díra na druhém konci má průměr totožný s průměrem hřídele použitého motorku. Obě kleštiny jsou více než do poloviny výšky podélně rozříznuty, aby získaly svěrací schopnost při stahování. Celek je sešroubován dvěma stejnými převlečnými maticemi, našroubovanými na vnější závit M7 větší kleštiny. K povolení a utažení potřebujeme cit a dva stranové klíčky 8 mm. Na fotografii již vidíte celou sestavu. Druhý, větší motorek vpravo na tomto obrázku je určen ke stejnému účelu, ale má malou, amatérsky zhotovenou univerzální hlavici. Její zhotovení je složitější a náročnější, neboť potřebujeme soustruh. Zájemcům bych chtěl poradit - je to zmenšenina běžné univerzální vrtací hlavičky z vrtačky (v poměru 1:2,5). Na hřídeli motorku je připevněna

amatérske? AD 10

67 -

pouzdrem se dvěma zajišťovacími červíky M2.

Druhou nezávislou částí konstrukce je stojánek, který potřebujeme pro vrtání většího množství děr. Čelý stojánek je na fotografiích na obálce. Čísla pozic jednotlivých dílů jsou na obou těchto obrázcích shodná (viz též obr. 56):

Poz. 1 – tlačná ruční páka, opatřená kuličkou, která tvoří ochranu proti úrazu. Páka je zhotovena z "hlazenky" o Ø 4 mm, délka výchozího materiálu je 220 mm, na obou koncích je závit M4 × 8 mm (obr. 56j).

Poz. 2 – horní deska stojánku. Materiálem je překližka tloušťky 10 mm.Možno použít i pertinax nebo bakelit. Rozměry: šířka 100 mm, výška 45 mm. Výřez má hloubku 25 mm (obr. 56a).

Poz. 3 – vodicí sloupky. Potřeba 3 ks, materiál tyčovina nebo i trubky o vnějším

průměru 10 mm. Délka je u všech tří kusů shodná (210 mm). Jejich výška samozřejmě určuje i výšku stojánku.

Poz. 4 – opěrné křidélko pro tlačnou ruční páku. Je připevněno na posuvné nosné plošince – poz. 6 –, tak, aby přesahovalo tuto plošinku a stálo v cestě tlačné ruční páce, která jeho prostřednictvím stlačuje při vrtání plošinku i s motorkem dolů směrem k vrtanému materiálu (obr. 56e).

Poz. 5 – vodicí pouzdra pro vodicí sloupky. Jsou pevnou částí posuvné plošinky, mají výšku 30 mm a vnitřní průměr suvně lícuje s vodicími sloupky (obr. 56d).

Poz. 6 – dělená posuvná prostřední plošinka. Posouvá se po vodicích sloupcích, které tvoří trojúhelník o základně 85 mm. Prostřední sloupek je ve vrcholu rovnoramenného trojúhelníka ve vzdále-

nosti 25 mm od základny. Tvar plošinky je patrný z obr. 56c. Je zhotovena ze stejného materiálu jako horní deska stojánku o stejné tloušťce 10 mm, zadní šířka je 100 mm. Boční výřezy ve stranách jsou pouze kvůli odlehčení. V ose plošinky je výřez pro motorek. V druhé dělené části plošinky je výřez zrcadlového tvaru. Výřez pro motorek nemusí být kruhový. Skoro lepší je tvar kosočtverce, který zaručuje větší univerzálnost, motorek je stahováním obou dílů plošinky vždy držen čtyřmi dotykovými místy.

Obě části plošinky jsou spojeny dvěma šrouby M5 s maticemi, které lze povolovat rukou.

Poz. 7 (stejně poz. 12, 13, obr. 56f) – stavěcí kroužky navlečené na vodicích sloupcích. Je to vždy mezikruží, vnější průměr 20 mm, vnitřní otvor lícuje s průměrem vodicích sloupků, mají výšku 8 mm. Pro připevnění na vodicím sloupku mají závit M3 pro zajišťovací šroubek.

Poz. 8 - otočné uložení tlačné páky. Základem je kostka 25×25×25 mm s dírou o Ø 10 mm, která umožňuje nasadit kostku na vodicí sloupek. V kostce je závit M5, ve kterém je šroubem připevněno mezikruží výšky 8 mm, vnější průměr 8 mm, vnitřní průměr = 5,1 mm. Toto mezikruží je navlečeno na připevňovacím šroubu M5, který je v závitu kostky a drží ji na vodicím sloupku. Šroub M5 je tak dlouhý, že se mezikruží volně otáčí. V tomto mezikruží je kolmo na jeho střed v ose pláště vyříznut závit M4, do kterého je našroubován konec tlačné ruční páky (obr. 56g, 56k, 56i). Poz. 9 - tlačná pružina navlečená na vodicím sloupku. Ťlak a výšku lze jemně

nastavit stavěcími kroužky. **Poz. 10** – motorek vrtačky. Na fotografiích je doporučovaný typ K6A1.

Poz. 11 – dvojitá kleština s vrtákem o Ø 6,8 mm, který je běžný pro vrtání desek s plošnými spoji, osazovanými elektronickými součástkami typu tranzistor, dioda, integrovaný obvod, kondenzátor, miniaturní rezistor.

Poz. 14 – základna celého stojanu. Je zhotovena ze stejného materiálu jako víko stojanu a pohyblivá plošinka. Hlavní rozměry 100 × 150 mm. Zespodu čtyři seříznuté pryžové nožky. V základně jsou vyfrézovány dvě podélné drážky, které jsou určeny pro připevnění celého stojánku k pracovnímu stolu malými truhlářskými svěrkami.

Nejen ultrazvukové praní a čistění

Technologie praní a čistění se vyvíjí stejně jako celá technika. Mám na mysli jak praní oděvů, tak průmyslové čistění různých předmětů. Technologie je to již dost stará. Po druhé světové válce při zavádění saponátů se dokonce vyráběly v některých zemích i pračky, pracující na principu chvění vody, určené pro domácnosti. Vítězství dnešních automatických praček je způsobeno podle našeho soudu jen tím, že dokáží v jednom procesu relativně jednoduchým způsobem prádlem míchat, vyvářet, ale i odstředit a vymáchat. Praní běžného prádla v ultrazvukových pračkách je rychlejší, lépe se využije účinnosti saponátů a je samozřejmě energeticky výhodnější. Je zcela

možné, že se časem domácí pračky na těchto principech opět objeví.

Jiná situace je v průmyslu, kde se ultrazvukové pračky stále více používají: v elektrotechnickém průmyslu pro praní součástek, celých desek, pro součástky jemné mechaniky, hodinky, součástky přístrojů, díly jak nových, tak starých opravovaných šicích strojů, populární je čištění skla, brýlí, optických přístrojů apod. Výrobcem průmyslových praček pracujících na principu ultrazvukového kmitání je v ČSSR VÚMA, menší typy vyrábí i TESLA Vráble. Používaný kmitočet je obvykle kolem 20 kHz, vyskytují se však i kmitočty vyšší (až do 40 kHz).

Fyzikální próces čištění nebo, chceteli, praní spočívá v tom, že se pomocí generátoru rozkmitají všechny části kapaliny a tím se za působení rozpouštědla, tj. mýdla, saponátu, trichloru atd. odstraňují nečistoty prakticky všude, kam pronikla i kapalina. Intenzita ultrazvukového pole se udává ve W/cm², běžně se pohybuje od 0,1 do 5 W/cm². Intenzita není v celém prostoru homogenní a závisí nejen na generátoru, množství kapaliny, ale i na vizkozitě, měrné hmotnosti kapaliny a praných předmětů atd.

Vyrobit si doma ultrazvukovou pračku s kmitočtem 20 kHz je dost obtížné. Podobných výsledků lze však dosáhnout i s kmitočty nižšími. Jednoduché zařízení lze zhotovit, využijeme-li kmitočet sítě a tímto kmitočtem pomocí ponořeného

zvonu rozkmitáme kapalinu v libovolné vaně nebo nádobě.

Ke stavbě pračky lze použít transsformátorové jádro El, jehož část E je stažena čtyřmi pásky A (obr. 57). Jejich horní konec přechází v patky k připevnění na víko krytu, kam je jádro přišroubováno čtyřmi zapuštěnými šrouby M4. Dolní konec je vyhnut v patky, do nichž jsou zašroubovány šrouby D pro pružiny p1. Část I jádra je sevřena na krajích šroubky nebo nýtky a úhelníčky B s rozšířenými otvory pro klouzátka b2 z mosazi, jejich okraje, přesahující úhelníček B. isou zároveň vedením pro pružiny. Pružiny jsou svírány k úhelníčkům B vodivými šrouby D se závitem M4, pro který je maticí zahnutá část A; aby se svorníky při otřesech nevytáčely, je tam ještě přítužná matice. Nastavit mezeru na nejvhodnější velikost - asi 1 mm - lze maticí nad pružinou p1, ale při její vhodné délce není matice zapotřebí a pružina může spočívat přímo na úhelníčku A. Stlačováním pružin se totiž nemění vlastní kmitočet systému; ten je dán pouze hmotou kmitající části (kotvy a zvonu s příslušenstvím) a tvrdostí pružin p1,

Uprostřed kotvy I je třmen C, přinýtovaný do díry ve středu délky I a zajištěný proti klopení tím, že jeho okraje jsou promáčknuty oblinami takových rozměrů, aby při dotažení třmenu spočinuly na jádru I. Ve třmenu je důkladně zanýtována ocelová matice M10, do níž zavrtáváme čep s odpovídajícím závitem, který je naražen a zanýtován do trubky F, která nese zvon; je výhodné, je-li jeho dolní okraj zřetelně poddajný. Materiál, který se nejlépe osvědčil, je měď tloušťky 0,5 mm.

Do jádra musíme vrtat tři díry: dvě na koncích vnějších ramen E pro stažení dolních konců pásků A, třetí uprostřed části I pro upevnění třmene C. Žádný ze šroubů nebo nýtků není zapotřebí izolovat.

Magnet pračky je uložen v krytu, vytlačeném z hliníkového plechu tloušťky 1,5 mm, s dolní částí válcovou, s kulovým ukončením, horní částí podoby jednoduchého víka. Na té je upevněn jak magnet čtyřmi patkami v páscích A, tak rukojeť z žehličky. Otvorem ve středu kulové části dole prochází trubka F; chceme-li zajistit magnet proti vlhkosti, která by tam vnikala při praní, vložíme sem volně plstěnou podložku; přitlačovanou pružinou p3 a podložkou G.

Na horní straně jádra E je připevněna pertinaxová, od kostry dosti vzdálená svorkovnice a s dvěma přinýtovanými maticemi pro připojení šňůr kabelu na vývody magnetu. Vedle je příponka, která zajistí spoj proti tahu za ohebný kabel. Kabel vychází z víka krytu dírou, opatřenou pryžovou průchodkou, těsnou a důkladnou.

Cívku magnetu navineme drátem o Ø 1 mm a pro střídavé napětí 24 V je třeba 250 závitů. Odběr asi 1,2 až 1,5 A závisí na velikosti vzduchové mezery. Vodu či jinou kapalinu rozkmitává

zvon, který je do nádoby s kapalinou ponořen. Nádoba může být jakákoli, ovšem intenzita praní je tím větší, čím je kapaliny méně. Nevýhodou takovéhoto jednoduchého zařízení je poměrně veliký hluk.

Na závěr ještě tabulka časů praní a některých v praxi používaných kapalin:

Předmět	Materiál	Nečistota	Čisticí kapalina	Pracovní podmínky	
				teplota [°]	čas [s]
optické sklo	sklo	smola živice Fe ₂ O ₃	trychlóretylén nebo 5% saponát (Jar)	60	60
plynové kohouty	ocel litina	lapovací pasta vodorozpustná	roztok saponátu ve vodě	60	30
elektronické součástky, díly, desky	mosaz, postříbřené vodiče, cín	tavidlo po pájení	trichlóretylén nebo Gp-pural	30/60 60	60
součástky ve strojírenství	ocel	lešticí pasta, olej	perchlóretylén	80	10–60
tiskové matrice	mosaz	olej, prach	5% roztok saponátu ve vodě (Jar)	80	60–120

Povrchová úprava hliníkových předmětů

Popisovaná metoda umožňuje amatérské eloxování, tj. elektrolytickou úpravu povrchu hliníku a většiny jeho slitin (dural apod.).

Hliník se na vzduchu pokrývá samovolně vrstvou stálého a odolného oxidu, ta je však tenká a naopak, jak je také dobře známo, ztěžuje aplikaci některých ochranných procesů, jako je galvanické pokovení aj., a také spájení cínem. Hliník a slitiny jsou na vzduchu poměrně stálé, delší účinky prostředí nebo agresívnější atmosféra porušují jeho vzhled i mechanické vlastnosti dost podstatně a ani lak na holém povrchu není trvanlivý.

Nejlepší povrchovou ochranou je uměle vytvořená vrstva oxidu, která chrání před atmosférou i mírným otíráním, dovoluje trvanlivé barvení a dobře váže lak. Známe dvojí způsob povrchové oxidace hliníku a jeho slitin:

Chemické oxidování bez použití elektrického proudu (např. moření v louhu);
 Elektrolytické (anodické) oxidování elektrickým proudem. Bez ohledu na způsob vytváření oxidu se u nás vžil pro tyto metody název "eloxování".

tyto metody název "eloxování".

Vrstva, chránící kov, je v podstatě oxid, látka mimořádně tvrdá (9° Mohsovy stupnice). Volbou vhodného způsobu lze získat buď vrstvy velmi tvrdé, které mají chránit předměty proti poškrábání, anebo vrstvy měkčí a pórovitější, které jsou schopny přijímat impregnační látky, vázat lakovou vrstvu nebo barvivo, které kovu dodává pěkný vzhled.

Zmínili jsme se, že se ryzí hliník na vzduchu ihned okysličuje, vzniká slabá ochranná vrstvička (asi 0,2 μm), která v suchém prostředí dostatečně chrání kov před další korozí. Chemickou cestou lze tuto vrstvu zesílit deseteronásobně (2 μm), kdežto elektrolyticky až na stonásobek (20 μm). Protože nejlepší vlastnosti má tlustá vrstva, používá se nejvíce eloxování.

Elektrochemický proces v příslušném vodném roztoku probíhá takto: Na kovové nerozpustné katodě uniká vodík a na anodě, kterou tvoří hliníkový předmět určený k eloxování, stoupá alkalita koncentrováním hydroxylového iontu OH utvoří ionty OH na anodě povlak nerozpustného hydroxidu hlinitého. Ten klade proudu odpor a tím se vrstva ohřeje. odvodní, čímž nastává proměna hydroxidu na oxid. Protože tento proces nastává postupně na povrchu předmětu, je vznikající vrstva "nerozlučně" spojena s kovem a nemůže se od něho odloupnout. Je také patrno, že oxid vzniká z vlastní kovové podstaty. Tím je vysvětleno, proč při eloxování povrch sice z počátku nabývá, ale poté se vrací na původní rozměr a delším procesem dokonce ubývá. (Rozdíl proti galvanickému pokovování viz obr. 58.)

Vanu pro lázeň volíme kameninovou nebo skleněnou a její velikost je dána rozměry předmětů, které chceme eloxovat. Vhodnou nádobu opatříme na protilehlých stranách sběrnými tyčemi, ke kterým připojíme přívody proudu. Na sběrné tyče zavěšujeme držáky, do nichž upevníme předměty, určené k eloxování. Závěsy musí být z hliníku a je lépe volit tlustší materiál, neboť po každém použití je musíme očistit od vzniklého oxidu, který je izolantem. Oxid lze odstranit buď oškrábáním nebo v koncentrovaném louhu.

Obr. 58. Pracoviště pro povrchovou úpravu hliníkových předmětů

Do připravené vany nalijeme 30% roztok kyseliny sírové. Pozor při zřeďování kyseliny! Vždy nalévejte kyselinu do vody – nikdy naopak. Předměty k eloxování musíme nejdříve upravit, aby jejich povrch byl vzhledný. Vrstva kysličníku je totiž průhledná a struktura povrchu nezměněna a nedosáhli bychom dobrého vzhledu, kdyby předmět sám jej neměl už před oxidací.

Nejvhodnější úpravou povrchu je vysoký lesk, jemné broušení nebo kartáčování. Nejvhodnějším materiálem pro eloxování je kov, zpracovaný za studena (válcováním i tažením). Nejméně vhodné jsou odlitky i dodatečné opracované (nestejnorodost, pórovitost, nečistoty).

Po mechanické úpravě povrchu zavěsíme předmět na očištěný držák a před zavěšením do lázně jej odmastíme v 2% roztoku kyseliny dusičné. Potom důkladně opereme v tekoucí vodě a nesmíme na předmět sahat. Do lázně zavěšujeme, při používání střídavého proudu. předměty tak, aby na obou pólech měly asi stejný povrch. Odhadneme povrch předmětů na jednom pólu (v dm²) a podle toho nastavíme regulačním odporem proud na hustotu asi 3 A/dm2. Zapneme proud a podle toho, jak tlustou vrstvu hodláme vytvořit, určíme dobu oxidování. Vyzkoušeli jsme, že pro běžnou potřebu stačí 20 až 25 minut. Po skončení procesu a vypnutí proudu opereme eloxované předměty v tekoucí vodě a vysušíme je buď v horkém vzduchu, nebo v dřevěných pilinách.

Takto vytvořená vrstva oxidu musí být průhledná s jemným mléčným nádechem a je dostatečnou ochranou proti korozi. Můžeme ji ještě dále zušlechtovat, a to impregnací, barvením nebo

barvením a impregnací.

Impregnujeme roztokem vodního skla nebo mastnými, nevysychavými látkami, jako jsou vosky, parafin, stearin, lněný olej apod. Impregnované předměty vyleštíme flanelem a získáme téměř sklovitý povrch.

Barvení eloxovaných předmětů můžeme přirovnat k barvení velikonočních vajíček. Může se využívat všech organických a anorganických pigmentových barviv. Zkusili jsme s dobrým výsledkem bary na vajíčka. Jak se barví vajíčka, to si každý přečte na sáčku s barvami a chcete-li barvit eloxované předměty, udělejte to přesně tak. Koncentrací barviva (nezapomeňte přidat 1/5 obsahu octa) a dobou vyváření dosáhnete libovolných odstínů.

- Je-li lázeň po delší dobu trvale v provozu, musí být chlazena; teplota nesmí překročit 35 °C.
- Musíme dodržovat určenou proudovou hustotu.
- 3. Čistíme předměty, ať mechanicky nebo chemicky až těsně před oxidací. Tímto způsobem lze oxidovat většinu slitin hliníku, mimo elektron (slitina obsahující hořčík), který vyžaduje lázeň složitějšího obsahu. Slitiny, obsahující měď, mangan a křemík (dural aj.), dávají po-

Nákonec zmínku o neobvykle veliké elektrické pevnosti eloxováním vzniklé vrstvy. Využívá se jí v elektrolytických kondenzátorech. Např. vrstva tloušťky 5 μm vydrží průrazné napětí 60 až

vrchy vzhledné a čiré.

100 V, tloušťky 20 µm 300 až 400 V. Aby se dosáhlo ještě větší elektrické pevnosti, impregnují se vrstvy různými organickými i anorganickými izolačními látkami. Tím bylo dosaženo průrazné pevnosti 1000 až 5000 V, přesto, že impregnační látky ani oxidová vrstva, obě týchž rozměrů, samy o sobě nemají větší pevnost než 150 až 300 V.

Vlastní provedení pracoviště je patrné z obr. 58. Přívody proudu do aluminiových závěsů musí být takové, aby neměly velký přechodový odpor. Dobré je vyříznout závit a vodič připevnit pod šroub a řádně utáhnout. Ideální je vodiče přivařit. Doporučená proudová hustota je 3 A/dm² eloxované plochy na jedné elektrodě. Pro malé předměty tedy stačí napájecí zdroj regulovatelný do 10 A. Použijeme běžný transformátor 220 V/ 24 V. 250 W. Jako ampérmetr můžeme použít jakýkoli střídavý přístroj. Velikost proudu je orientační a slouží spíše k tomu, abychom mohli za steiných podmínek proces znovu opakovat. Nezapomeneme, že běžnými Avomety a podobnými přístroji nesmíme trvale měřit na maximálním proudovém rozsahu (oteplení bočníku). Proud regulujeme v primární straně transformátoru standardně zapojeným triakovým regulátorem. Ten, kdo si bude zhotovovat transformátor, může zvolit i variantu s běžným přepínačem odboček na primární nebo sekundární straně. Pak je zdroj pro eloxování zcela primitivní.

Elektrická modelářská pilka

Modelářská práce je v podstatě množství drobných úkonů, v nichž řezání pilkou tvoří procentuálně veliký díl. Mechanizace a urychlení řezání je vždy vítané, obzvláště když se zároveň zlepší kvalita práce. Elektrickou pilku využije každý trochu aktivní modelář a práce potřebná k jejímu zhotovení se velice snadno zhodnotí.

Popisované zařízení je elektrická bezmotorová modelářská pilka, ve které řezacím nástrojem je běžný plátek tzv. lupénkové pilky. Kmitavý svislý pohyb plátku vytváří elektromagnet, který vibruje s kmitočtem sítě. Celá soustava kmitá vynucenými pohyby. Schematický je princip znázornén na obr. 59 a náhradním elektrickým schématem (obr. 60), které představuje elektrický model mechanické soustavy. Aby pilka řezala, musí být napjata. To zajišťuje mechanický systém se dvěma pružinami (obr. 59 i obr. 60) označenými C₁ a C₂. Jejich

Obr. 59. Princip "bezmotorové" modelářské pilkv

Obr. 60. Náhradní elektrické schéma pilky

Obr. 61. Úprava cívky

Obr. 62. Mechanické uspořádání pilky

výsledná poddajnost je mechanickou kapacitou. Mechanickou obdobou indukčnosti tvoří hmota systému představovaná hlavně kotvou elektromagnetu. Síťový kmitočet je poměrně vysoký, proto součin LC musí být co nejmenší. Pro mechanickou konstrukci to znamená, že poddajnost systému má být co největší a kotva má mít co nejmenší hmotnost. Navíc konstrukce musí mít možnost určitého "ladění", abychom byli schopni nastavit optimální režim kmitání a "rozkmit" pilky v našem konkrétním případě změnou poddajností horní napínací prušroubováním napínacího žiny (tedy šroubu M).

Základem celého zařízení je elektromagnet, který je zhotoven z plechů E transformátoru El32 × 32 mm. Jádro elektromagnetu tvoří jen plechy E, které v horních sloupcích musíme provrtat a ve středních sloupcích ještě mosaznými nýty snýtovat. Pokud použijeme plechy tloušíky 0,5 mm, potřebujeme 60 až 64 ks plechů E. Existují ještě plechy tloušíky 0,3 mm, kterých musíme mít pochopitelně víc. Pro naši konstrukci nemůžeme použít originální cívku. Musíme ji upravit tak (viz obr. 61), že ji o 10 mm zkrátíme. Získaný prostor je nutný pro rozkmit kotviček přinýtovaných na membráně. Napájení přístroje je

220 V (od cívky elektromagnetu). Pro navinutí cívky použijeme měděný lakovaný drát o Ø 0,4 mm. Navineme asi 1600 závitů, což představuje 7 z/V. Přístroj má odběr asi 0,5 A a vzhledem k velké proudové hustotě kolem 4 A/mm² nesnese trvalý provoz. Cívka (její povrch) může mít maximální teplotu 80 °C - tu má asi za hodinu trvalého řezání. Pak je nutno přístroj vypnout a nechat elektromagnet vychladnout. Ti, co mají více zkušeností s vinutím transformátorů, po odzkoušení přístroje elektromagnet vyjmou a cívku budou impregnovat lakem a celek vypálí při teplotě 200 °C v peci. To z hlediska funkce není nutné, ale elektromagnet získá na mechanické pevnosti, lak pronikne do skulin a zamezí vnikání prachu i vlhkosti. Navíc žádné jeho části nevibrují a zařízení je pak tišší.

Kmitající membrána R je připevněna nad elektromagnetem asi ve výšce 10 mm pomocí konstrukce, kterou tvoří dva páskové nosiče P, připevněné dvěma šrouby M4 × 40, které zároveň stahují horní část krajních sloupků z plechů elektromagnetů (obr. 62). Na krajích páskových nosičů jsou čtyři úhelníčky B, dvěma příčnými lištami 55 × 15 × 2 mm, vyrobenými ze stejného pásku jako postranní páskové nosiče P. Membrána je upevněna tak, aby mohla příčně kmitat i v krajích. V příčných lištách jsou dvě díry a šrouby M4 × 25 mm (S) stahují kraje membrány mezi pryžové páskové těsnění a vždy dva 50 mm dlouhé úhelníčky N na každém kraji membrány (obr. 62). Připevňovací otvory v membráně mají být oválné (viz obr. 62) proto, aby bylo možno membránu případně dostatečně napružit. V geometrickém středu membrány je nýtováním upevněn dolní držák lupénkové pilky U₁ a pomocí tvarovaného členu X ještě dvě kotvičky K. Plochý tvar v podobě křížku u tvarovácího členú X je volen proto, aby se kotvičky nemohly na membráně pootáčet. Kotvičky jsou dva měkkého železa velikosti 32 × 14 × 10 mm, které pomáhají ocelové membráně kmitat vynucenými kmity. Funkčně jsou kotvičky pólové magnetické nástavce. Samotná membrána musí být z kaleného ocelového plechu tloušťký 0,8 mm (50 × 150 mm). Elektromagnet s membránou a příslušnými připevňovacími prvky tvoří kompaktní vyjímatelný celek, který je přišroubován jako běžný transformátor čtyřmi šrouby M4 do rámu pilky. Umístěn je napříč pod stolkem, který má díru o Ø 5 mm pro průchod pilky. Zbytek zařízení je nakreslen na sestavě obr. 63. Dřevěná základna, na které je vpředu pomocí jednoduchého úhelníku z páskoviny 5 × 20 mm připevněn stolek z ocelového plechu tloušťky 4 mm. Podélný otvor v noze stolku a připevňovací šroub s křídlovou maticí umožňuje výškově nastavit stolek o asi 30 mm. Funkčně důležité jsou 4 listové pružiny L z ocelového kaleného páskového plechu. Konce vrchních dvou pružin je nutno ohřát a popustit, aby změkly. V jejich koncích je vypilováno rozvidlení pro připevnění horního upínacího prvku pilky. Upínacím horním prvkem U2 je provrtaný dřík šroubu M4 bez hlavy. Pilku přitahujeme mezi dvě podložky dvěma maticemi M4. Důležitý je i stavěcí šroub M ve vrcholu rámu V, kterým měníme mechanickou poddajnost horních pružin L. Při správné funkci, když zařízení zapneme, napínání horních pružin zvětšuje rozkmit. Správné napnutí je takové, když se tento maximální rozkmit při dalším napínání již začíná zmenšovat.

horní upínací člen

upínací kříž pro kotvy

vrchol rámu

základna

Fe

dřevo

Fe

dřevo

V optimálních podmínkách má pilka zdvih naprázdno 5 až 7 mm, při řezání 3 až 5 mm. Proti běžnému řezání dostaneme jemnější piliny a je vhodné při práci zajistit odsávání, například vysavačem.

	ks	základní použité díly mm	material
В	4	úhelníček z páskoviny 10 × 2	Fe
C	2	příčná lišta 55 × 15 × 2	Fe
G	4	pryžová podložka 52 × 10 × 0,5	5 pryž
Н	1	svislá část rámu	dřevo
J	64	plechy z El trafo 32 × 32	Fe
Κ	2	kotva 32 × 14 × 10	Fe
L	4	pružina, pásková ocel 20 × 0,5	
M	1	napájecí šroub M4	Fe
N	4	úhelník $52 \times 5 \times 5$	Fe
Ρ	2	páskový nosič 160 × 15 × 2	Fe
R	1	membrána $150 \times 50 \times 0.8$	ocel. kalený plech
Uı	1	dolní upínací člen	Fe

Zajímavá zapojení

Bezmotorový mixer pro kapaliny

Popisované zařízení má zcela univerzální charakter a je také univerzálně použitelné. V domácí dílně se hodí radioamatérovi pro míchání kyseliny při leptání plošných spojů, lze jím míchat v tanku vývojku při vyvolávání negativů, využijí jej i amatérští biologové a chemici. Při současném nedostatku profesionálně vyráběných podobných zařízení nebude asi neobvyklé, když si popisované zařízení zhotoví v údržbářské dílně i mnohá fyzikální, biologická či chemická laboratoř.

Neiprve jak mixer pracuje. Princip Ize zjednodušeně popsat asi takto: Základem je jednoduché elektronické zařízení napájené z akumulátorové baterie nebo ze sítě, které vyrobí čtveřici po sobě jdoucích výkonových impulsů. Těmi je napájena čtveřice cívek s železným jádrem. Nádobu, v níž chceme kapalinu mísit, postavíme na železná přesahující jádra těchto cívek a na dno nádoby umístíme krátký tyčový trvalý magnet. Postupně přicházející impulsy vytvářejí v iádrech cívek točivé elektromagnetické pole, které nutí trvalý magnet se na dně nádoby otáčet. Rychlost sledu přicházejících impulsů lze plynule regulovat potenciometrem na skříňce elektronického zařízení.

Základem zařízení je tedy jeho elektronická část. Potřebné impulsy se generují ve zcela jednoduchém zapojení, tvořeném dvěma hradly H₁ a H₂ integrovaného obvodu IO₁ typu MH7400 (obr. 64). Tento astabilní multivibrátor má kmitočet určen časovými konstantami součástek C₁R₃ a C₂R₁R₂, kde R₁ je potenciometr, jehož hřidel vyvedeme na panel elektroniky a jeho otáčením měníme kmitočet a částečně i střídu impulsů.

Pokud je tato změna pro naše potřeby nedostatečná, změníme odpory rezistorů a kapacity kondenzátorů, přičemž směrem k vyšším kmitočtům odpory rezistorů i kapacity kondenzátoprů zmenšujeme. Při potřebě snížit kmitočet, např. proto, že mísíme hustší druhy kapalin a magnet nestačí rotovat, nebo jsme si zařízení zvětšili a používáme k míchání větší magnet, je třeba kapacity kondenzátorů C₁ a C₂ zvětšit, případně zvětšit i odpory příslušných rezistorů.

Výstup astabilního multivibrátoru je připojen na vstupy čtyř klopných obvodů D, které tvoří kruhový čítač o čtyřech krocích a který je realizován dvěma integrovanými obvody IO2 a IO3 typu MH5474. Při zapnutí napájení se klopné obvody D nastaví vlivem kladného napětí přicházejícího přes R4 a C3 na vstupy 1, 11, 1, 13 do výchozí polohy. Každému impulsu z multivibrátoru pak odpovídá jedna ze čtyř kombinací na výstupech 5 a 9. Na tyto výstupy jsou připojeny báze výkonových tranzistorů, celkem čtyři dvojice tranzistorů n-p-n a p-n-p, T1 až T₈. Ty mají v kolektorech zapojeny čtyři cívky se železnými jádry, které jsou navíc vždy dvě a dvě sériově spojené. Začátky vinutí cívek jsou vyznačeny na schématu tečkami.

Po příchodu prvního impulsu (první

Obr. 64. Elektronická část mixeru

krok) je na výstupu 5 obvodu IO2 log. 1, tedy +5 V. Na ostatních výstupech klopných obvodů D je log. 0. Úroveň log. 1 přes R₉ otevře tranzistory T₆ a T₇ a cívkami L₃ a L₄ protéká proud zprava doleva. Ostatní tranzistory jsou všechny zavřeny. Příchodem dalšího impulsu se log. 1 "přemístí" na výstup 9 dalšího klopného obvodu D, IO₂. Kladným napětím přivedeným do bází se T₁ a T₄ otevřou, přičemž všechny ostatní tranzistory jsou zavřeny. To způsobí, že protéká proud pouze cívkami L1 L2 zleva napravo. V třetím taktu se otevřou tranzistory T₅ a T₈ a proud začne téci cívkami L₃ a L4, jenže opačným směrem než v prvním taktu - zleva doprava. Čtvrtý takt po příchodu čtvrtého impulsu znamená, že se sepnou tranzistory T2 a T3 a proud cívkami L1 a L2 se obrátí oproti "druhému taktu. Děj se periodicky opakuie tak, že proud prochází vždý jedním párem cívek a směr proudu v cívkách se periodicky střídá. To vytváří na konci cívek, na "vyčnívajících" železných jádrech, točivé magnetické pole

Mechanické uspořádání: Čtyři cívky L₁ až L₄ jsou postaveny na výšku, těsně vedle sebe a přišroubovány na podložce z magneticky měkkého materiálu. Nádobu, ve které budeme mísit kapalinu, postavíme na vyčnívající železná jádra cívek. Nádoba musí být z nemagnetického materiálu, tedy skleněná, z plastické hmoty, kameninová, mosazná, nerezová, hliníková apod. Neměla by mít tlusté dno, protože se intenzita magnetického pole se čtvercem vzdálenosti zmenšuje. Tyčový magnet vložíme na dno nádoby. Lepší než kruhový je čtvercový nebo obdélníkový profil. Délka magnetu má být přibližně stejná jako průměr kružnice opsané po železných jádrech cívek L1 až

Mechanickou velikost cívek a počty závitů volíme podle velikosti nádoby, ve které hodláme kapalinu míchat. Pokud pro malé nádoby nebo na případnou zkoušku vyhoví cívky starých relé typu RP 24 V, můžeme je použít prakticky bez úpravy. Pro tyto typy cívek postačí použít spínací tranzistory typu KF506 a KF517 prakticky bez chladičů. Jinak typy spínacích tranzistorů určíme podle druhu cívek, které jsme navinuli. Lze samozřejmě zhotovit mixer o poměrně velikém výkonu.

Celek je napájen nestabilizovaným a jen málo filtrovaným napětím +12 až 20 V. Tři integrované obvody je třeba napájet napětím +5 V. Obvyklý způsob je připojit na hlavní napájecí napětí přes rezistor Zenerovu diodu s $U_Z = 5 V$, která bohatě stačí tři obvody napájet. Celkový odběr mixéru je dán prakticky odběrem proudu do cívek.

Radio (SSSR), č. 6/1985

Užitková elektronika pro soukromníky a národní hospodářství

S přestavbou národního hospodářství v Sovětském svazu se neustále zvyšuje zájem o to, jak pomoci zemědělství. Úrčitou specialitou je rubrika v populárním amatérském časopise RADIO, která se v originále nazývá: "Dlja narodnovo chozjajstva i byta". Zde jsou uveřejňovány návody na výrobu přístrojů a zařízení, která jsou vhodná jak pro amatéry, tak třeba i pro různé organizace, podniky nebo sovchozy. Možná i pro výrobce, kteří by dovedli zařízení upravit pro sériovou výrobu a začít je vyrábět. Dále uvedený článek, popisující elektrickou kontrolu včelína v zimě, je volným překladem typického příspěvku, uveřejněného v této rubrice. Autorem je V. Skrypnik z Charkova, příspěvek byl otištěn v Radio č. 7/1987 na str. 41.

Kontrolní elektronické zařízení do včelína

Popisované zařízení jsou dva nezávisle pracující přístroje, určené pro kontrolu zazimovaných včelstev. Jedním je zesilovač, který umožňuje poslech vnitřního hluku, druhým elektrický teploměr.

Pro provoz přístroje musíme jednotlivé úly opatřit snímači s vnějšími vývody na konektor. Zařízení je přenosné, napáiené bateriemi. Informace o zimním stavu zazimovaného včelstva se získá po připojení zařízení pomocí konektoru ke snímačům, aniž bychom včely rušili a museli úly odkrývat. Zřejmou výhodou je, že můžeme včelstva periodicky kontrolovat i v místě a době, kdy okolní teplota vzduchu je extrémně nízká.

Celý přístroj včetně napájecích baterií se vejde do krabice o rozměrech asi 220 × 160 × 90 mm. Všechny elektronické součástky jsou na desce s plošnými spoji. Na předním panelu je pouze spínač, signálka kontroly zapnutí, mikroampérmetr ocejchovaný jako teploměr a dva konektory K_1 a K_2 . Jeden pro připojení sluchátek, druhý pro připojení snímače v úlu.

Činnost přístroje si popíšeme podle elektronického schématu na obr. 66. Snímačem uvnitř úlu je mikrofonní vložka a dioda D₁. K přístroji se snímač připojuje konektorem K_1 . Použijeme běžný pětikolíkový nebo tříkolíkový nf konektor. Zesilovač hlukového signálu je tvořen kaskádou tranzistorů T₁, T₂ a T₃. Mikrofonní vložka je připojena přes vazební kondenzátor C₁ přímo na bázi prvního tranzistoru T₁. Stabilitu zesilovače a určitou nezávislost zesílení na napájecím napětí, tedy na jeho změnách vlivem vybíjení baterií, zaručuje záporná zpětná vazba tvořená součástkami R₁₅, C₃ a R₂. Jejich změnou, zejména zmenšením nebo zvětšením odporu obou rezistorů, lze upravit zesílení celé tranzistorové kaskády. To bývá nutné při použití mikrofonní vložky s menší citlivostí (případně podle druhu použitých sluchátek). Zápornou zpětnou vazbu tvoří i člen RC v emitoru T₁ složený z R₅ a C₄. Na výstup přes druhý vazební kondenzátor C₅ a konektor K₂ připojujeme sluchátka s velkou impedancí. Protože zesilovač nemá žádné nastavovací prvky, je třeba, abychom při oživování zkontrolovali jeho činnost. A nejenom to, výstupní úroveň hluku ve sluchátkách musí být přiměřená. Na obr. 66 jsou ve schématu označeny kontrolní měřicí body; při oživování celého zařízení nebo při kontrole jeho činnosti bychom v těchto bodech měli naměřit uvedená napětí. Měříme běžným ručkovým voltmetrem. Při hledání závady rozpojíme zápornou zpětnou vazbou tak, že odpájíme rezistor R₁₅.

Obr. 66. Schéma kontrolního zařízení do včelína

Při kontrole úrovně hluku lze samozřejmě připojit místo sluchátek i střídavý voltmetr. Měříme na "střídavém" rozsahu 1 až 10 V. Tato úroveň se pak lépe zapisuje a vyjadřuje jasnou číselnou informaci, vhodnou k dlouhodobému sledování při opakovaných kontrolách. Všechny použité elektrolytické kondenzátory, tj. C₁, C₄ a C₅ mohou být na napětí 5 V nebo samozřejmě větší. Výjimku tvoří C₂, který musí být s ohledem na napájecí napětí dimenzován minimálně na 15 V.

Druhým vestavěným přístrojem je elektrický teploměr. Snímačem měřené teploty je běžná křemíková dioda D1. Fyzikálně se zde využívá její tepelné nestálosti. Jako diodu lze použít typ KY721, který jsem zvolil proto, že ji lze našroubovat do kovové podkladové kosrozměrů orientačních $20 \times 20 \times 20$ mm. Kostka pak může být jednoduše připevněna prakticky v libovolném místě vnitřní části úlu tak, aby zazimovanému včelstvu nepřekážela, může být tedy např. součástí rámu atd. Dioda je zapojena v jedné větvi můstku. Ostatní větve tvoří rezistory R₃, R₆ a R₇, ke kterému je sériově připojen trimr R₁₀, který se používá při cejchování teplomě-

Napájení je stabilizováno dvěma "odstupňovanými" Zenerovými diodami D_2 a D_3 , D_2 by měla mít $U_Z=9$ V a D_3 asi $U_Z=11$ V. Jelikož si přístroj budeme cejchovat a nastavovat sami, nejsou Zenerova napětí diod kritická. První dioda však musí mít U_Z alespoň o 1 V menší, než je napětí baterie a druhá o 2 V menší, než je Zenerovo napětí první diody. Můstek je napájen ze Zenerovy diody D_2 . V druhé úhlopříčce můstku je zapojen mikroampérmetr. Jeho citlivost by měla být asi 100 μ A na plnou výchylku ručky.

Jistou komplikací je použití několika snímačů, Když je totiž v každém z úhlů jiná dioda, lze pouze velmi nesnadno vybrat diody se stejnou charakteristikou. aby odpovídalo cejchování teploměru. Máme-li jeden snímač, můžeme měřicí přístroj ocejchovat velice přesně ve °C od 0 do 50 °C. Při několika diodách musíme vhodné diody vybírat, k výběru je třeba zhotovit kovovou lištu se závity, kam diody našroubujeme. Anody diod vyvedeme na přepínač. Diody ponoříme do oleje nebo destilované vody a již hotovým přístrojem vybereme diody tak, aby při stejné teplotě kapaliny byl rozptyl výchylky mikroampérmetru co možno nejmenší. Chceme-li mít měření co nejpřesnější, můžeme si zhotovit pro jednotlivé diody korekční křivky. Obvykle se podaří vybrat diody, které se vzájemně neliší o více než 3 %.

Přístroj napájíme ze tří plochých baterií nebo devíti tužkových článků. Ten, kdo předpokládá častější užívání, zvolí devět monočlánků, které zaručují delší dobu života. Odběr celého zařízení je 45 mA, což je přijatelné, neboť zaručuje, že při občasném používání přístroje vydrží baterie celou zimní sezónu bez výměny. Kontrolu zapnutí přístroje indikuje svítivá dioda D₄. Může to být prakticky libovolný typ. Můžeme ji nahradit i kontrolní žárovkou, ale ta má vždy mnohem větší spotřebu proudu, obvykle mnohonásobně převyšující spotřebu celého zařízení.

Všechny součástky lze umístit na dess plošnými spoji velikosti Λ 95 × 38 mm (viz původní článek). Desku s plošnými spoji připevníme ve skříňce zařízení čtyřmi distančními sloupky osmi $M3 \times 30 \text{ mm}$ а M3 × 5 mm. Mikrofonní vložkou by měl být dynamický, případně elektromágnetický mikrofon. V krajním případě použijeme mikrofonní telefonní vložku. Doporučuje se umístit ji do roury z PVC, kterou běžně používají instalatéři a konce roury přelepit hustou sítkou.

O měřeních je vhodné vést deník. Obvykle důležitější než údaj o absolutní teplotě uvnitř úlu a úrovni hluku je záznam z předchozích měření a dále jeho porovnání se stávající změřenou teplotou při vzájemném srovnání úlů.

Jako tranzistory lze použít jakékoli univerzální tranzistory n-p-n, např. KC508 apod.

Akustický indikátor

Při zavádění jakékoli automatizace, robotizace či při potřebě pouhé signalizace je potřeba umět převést sledované veličiny na elektrický signál. Důvod je jasný. Dnešní úroveň elektroniky umožňuje elektrický signál libovolně zpracovat, zaznamenat a vyhodnotit. Pro připojení následných automatizačních prvků je elektrické vyjádření stavu, úrovně či hodnoty přímo nutné. Hledání stále nových principů převodu fyzikálních veličin na elektrický signál umožňuje vyplňovat bílá místa a prakticky automatizovat výrobní procesy i v provozech, kde to dosud nebylo možné.

Popisované zařízení pracuje na zcela novém principu, který umožňuje ve sledovaném prostoru indikovat přítomnost jakýcholi např. i nemagnetických předmětů a materiálů, včetně sypkých hmot. Pokud je snímač ve vodotěsném provedení s dostatečnou ochranou, tak i přítomnost tekutiny. Použitý princip má i delší výhodu. Za určitých předpokladů lze tímto způsobem u sypkých hmot a tekutin indikovat hladinu. Při úpravě zapojení elektronického vyhodnocovače lze také porovnávacím způsobem zarčovat hustotu látky ve sledovaném prostoru.

Jak přístroj pracuje? Základem je akustický snímač. Ten obsahuje kromě dvou vazebních kondenzátorů mikrofonní telefonní vložku a sluchátko s malou impedancí. Důležité je mechanické provedení snímače. Oba prvky, tj. sluchátko a vložka jsou proti sobě obráceny aktivní stranou a jsou mechanicky umístěny tak. aby mohla snadno nastat akustická zpětná vazba. Doporučená vzdálenost mezi sluchátkem a mikrofonní vložkou je 150 mm. Při jiných rozměrech je nutno měnit poměry ve zpětnovazební smyčce. Snímač je nutno zhotovit jako mechanicky kompaktní celek, podobný telefonnímu "sluchátku" s "vykloněnými" nástavci pro vložky. Akustický signál vzniklý zpětnou vazbou má kmitočet asi 1000 Hz. Při přítomnosti cizího předmětu, kyseliny, nebo sypké hmoty ve sledovaném prostoru se akustická zpětná vazba přeruší.

Přístroj pracuje tak, že přes operační zesilovač a oba komplementární tranzistory T1 a T2 (obr. 67) se uzavírá kladná zpětná vazba. Odporovým trimrem R5 nastavujeme její velikost tak, aby při prázdném sledovaném prostoru zněl akustický signál, jakmile vložíme do sledovaného prostoru předmět nebo látku, musí se signál spolehlivě zatlumit. Zároveň generátor musí spolehlivě nasazovat. V podstatě to znamená, že zpětná vazba musí být dostatečně silná pro spolehlivý začátek kmitání a přitom menší než tlumicí vlastnosti předmětu mezi oběma vložkami. Spínač S slouží pouze pro rozpojení zpětné vazby. Při jeho vypnutí nesmí zesilovač kmitat vlastními kmity. Nutný je i při opravách a seřizová-

Další operační zesilovač IO_2 má zesílení dané poměrem R_8 : R_7 a na jeho výstupu je připojen běžný detektor. Ten je tvořen diodou D_1 a filtračním kondenzátorem. Na bázi T_3 je pak logická úroveň signálu, odpovídající zjišťovanému stavu, tj. log. 0 = 0 V - generátor je utlumen a zjišťovaný předmět je uvnitř sledovaného prostoru, log. 1 = +15 V - generátor pracuje a sledovaný prostor je volný. Následný kaskádní stupeň z tranzistorů T_3 a T_4 pouze spíná běžné

čtyřiadvacetivoltové telefonní nebo relé LUN pro připojení silových automatizačních prvků.

Zajímavé je, že tento princip lze také použít u kapalin a sypkých hmot pro porovnávací měření hustoty. V takovém případě je třeba sledovaný prostor zúžit, ti. osovou vzdálenost mikrofonní a sluchátkové vložky zkrátit na minimum podle druhu hmoty, kterou budeme zkoumat. Hustota je pak úměrná nutnému zesílení kladné zpětné vazby, takovému, aby generátor kmitů nasadil v případě, že je ve sledovaném prostoru zkoumaná látka. Pro přesná měření pak obvykle nevyhoví běžná mikrofonní uhlíková vložka a je potřeba dynamický mikrofon, který má zaručené elektricko-mechanické vlastnosti. Zesílení je dáno odporovými děliči ve zpětné vazbě generátoru kmitů, tedy v obvodu operačního zesilovače IO1. V našem případě je dáno poměrem $R_3 + R_5 ku R_1 + odpor mikrofonní vložky. Protože "odporovou veliči$ nu" R₃ +R₅ dovedeme realizovat jako proměnnou, je pak hustota kapaliny úměrná velikosti odporu ve zpětné vazbě ve chvíli, kdy generátor nasadí ke kmitům. Tato alternativa přístroje samozřejmě znamená konstrukční i návrhovou změnu celého přístroje.

Signalizace poklesu hladiny kapaliny

Výšku hladiny kapaliny musíme hlídat v mnoha případech. Střežíme minimální hladinu ve studni, aby se nezavzdušnilo čerpadlo, ve vyrovnávací nádržce ústředního topení, ve vyrovnávací nádržce chladiče v automobilu apod. Přístroj má téměř univerzální použití: Ize jím hlídat vlhkost zeminy ve skleníku nebo jenom v nádobě, v níž je násada, na které nám obzvlášť záleží. Můžeme jej mít i přenosný a hlídat třeba napouštění bazénu na zahradě.

Přístroj je navržen tak, že pokud je sonda ponořena ve vlhku, nic se neděje. Jakmile oschne, přeruší se její elektrický obvod a spustí se signalizace. Ve vlhkém prostředí protéká mezi sondou a kapalinou malý proud do báze tranzistoru T₁ (obr. 68) a ten je udržován ve vodivém stavu. Tranzistory T2 a T3 jsou uzavřeny a žárovka Ž nesvítí. Tranzistor T₄ je udržován ve vodivém stavu proudem procházejícím přes žárovku a rezistor R₅. Jakmile se sonda vynoří z kapaliny, přeruší se udržovací proud bází tranzistoru T₁ a tranzistory T₂ a T₃ se otevírají. Žárovka Ž se rozsvítí a tranzistor T₄ se zavírá zmenšením napětí na jeho bázi. Po nabití kondenzátoru C_1 se tranzistory T_2 a T_3 opět zavírají, žárovka zhasne. Po krátké době, pokud i nadále zůstal T_1 uzavřen, se děj opakuje, protože kondenzátor C_1 se samovolně vybíjí přes rezistory R_2 a R_4 . Opakování děje je asi 2 Hz. Zapojení pracuje jako multivibrátor, signalizační žárovka zhasíná a periodicky se opět rozsvěcí. Ve stejném rytmu se přerušuje pískání sluchátka, které je připojeno v obvodu generátoru tónu tvořeného tranzistorem T_5 .

Přístroj má bateriové napájení +12 V. Odběr v době pouhého střežení, tedy když není zapojena signalizace výšky hladiny, je pouze několik miliampérů.

Mechanicky je sonda konstruovaná z vodivého kovového materiálu, který ovšem musí být korozivzdorný. Toho lze dosáhnout např. tím, že běžný ocelový plech dobře pocínujeme. Sonda musí být upevněna v měřené nádobě nebo ve studní na dobře izolovaných nosnících. Druhým pólem pro elektrický obvod je samá kapalina. Pokud tedy zavádíme signalizaci třeba ve studni, postačí zemní odpor tak, že "mínus" napájecího zdroje dobře uzemníme. V nádobách ústředního topení stačí uzemnit kovový rozvod. V izolačních nádobách je třeba na dno nádoby umístit druhou kovovou elektrodu, kterou musíme vodivě propojit s "mínusem" napájecího zdroje celého přístroje.

Sledovač televizního signálu

Přístroj je jednoduchou a šikovnou pomůckou pro opravy televizorů. Vzhledem ke své velikosti je vhodný i pro mobilní opravy u zákazníků. Úvodem chci podotknout, že nejde o amatérské zapojení. Tak, jak je schéma přístroje na obr. 69 nakresleno, jde o prodávaný přístroj, který na sovětském trhu dostanete za přístupnou cenu 10 rublů. Proto-

že jde o jednoduché zapojení, není problém přístroj v amatérských podmínkách postavit. Obzvláště proto, že ne každý má možnost si takovou zajímavou, levnou a potřebnou praktickou pomůcku přivést.

Přístroj je dodáván jako sonda o rozměrech 245×35×28 mm a hmotnosti 150 g včetně baterie. Má jeden vývodní kabel s krokodýlkem, který se připojuje na kostru televizoru (+ baterie, tj. kostra přístroje) a kovový dotykový hrot, na který je připojena svorka označená výstup. Napájení přístroje zabezpečuje iedna destičková miniaturní devítivoltová baterie, odběr ze zdroje je asi 3 mA. Přístroj je v podstatě jednoduchý blokovací ościlátor se základním kmitočtem 5 až 7 MHz, jehož signál je modulován zvukovým kmitočtem 200 až 850 Hz. Výstupní signál přístroje je schopen vytvořit na obrazovce zkoušeného televizoru 2 až 20 horizontálních pruhů. Rozptyl kmitočtů je dán zmenšováním napětí baterie při jejím stárnutí a tolerančním rozptylem použitých součástek.

Výstupní mezivrcholové napětí je asi 30 mV a lze je regulovat od nuly do maxima potenciometrem na panelu přístroje. Sledovač signálu je schopen pro-

Obr. 69. Sledovač televizního signálu 🧓

KC507

věřit průchod signálu celým televizorem od vf části až po zvukovou, obrazovou část i obvody synchronizace. Princip činnosti je jednoduchý. Jak jsem již uvedl, je základem blokovací oscilátor (obr. 69), tvořený tranzistorem T₁ v zapojení se společnou bází. Základní kmitočet je dán rezonančním kmitočtem obvodu L₁C₂. Tranzistor T₂ je zapojen jako emitorový sledovač, který pracuje jako od-

určen pro skupinové spínání diod LED a má vestavěný vnitřní stabilizátor napětí. Proto také jeho napájení nepotřebuje stabilizaci. Vstupní napětí je úměrné měřené teplotě, přivádí se na vstup 17, na druhý vstup se přivádí stejnosměrné referenční napětí stabilizované referenční Zenerovou diodou D₂. Specialitou integrovaného obvodu je vývod 2. Změnou napětí na tomto vývodu se mění proud na výstupech 4 až 15 a tím i svítivost diod D₃ až D₁₄. Změnu tohoto napětí zajišťuje automaticky fototranzistor T2. Jakmile na něj dopadne světlo, tak se otevře a na vstup 2 integrovaného obvodu se dostane větší kladné napětí. Na výstupech pro

dělovací člen s impedančním přizpůsobením, tj. má velký vstupní a malý výstupní odpor. Výstup na kovový dotykový hrot je vyveden z běžce potenciometru R₅. Tento potenciometr má zároveň spínač, kterým se přístroj uvádí do činnosti.

Přes svou jednoduchost má konstrukce i své záludnosti. Obě cívky jsou navinuty drátem o Ø 0,2 až 0,3 mm na feritových tyčkách o Ø 2 mm a délce 15 mm. K dosažení správných indukčností je potřeba podle materiálu tyčky nejdříve zvolit počet závitů zkusmo a měřením správnou indukčnost nastavit odvinutím

nebo přivinutím závitů.

V originálu byly použity germaniové tranzistory p-n-p typu P416A. Ty mají mezní kmitočet 60 MHz, $P_{\rm C}$ =100 mW. Za tento tranzistor nemáme rovnocennou tuzemskou náhradu. Nejbližším ekvivalentem TESLA je tranzistor OC170, který se již však nevyrábí. T2, který je zapojen jako sledovač, můžeme nahradit prakticky libovolným křemíkovým vf tranzistorem p-n-p s mezním kmitočtem kolem 100 MHz. Pokud budeme takový tranzistor chtít použít místo T₁, bude nutno volbou odporu rezistorů R₁ až R₃ upravit stejnosměrný pracovní bod oscilátoru.

Při stavbě tohoto přístroje vyvstává ještě jeden téměř banální problém. Regulační potenciometr R5 se spínačem se používá téměř výlučně v malých tranzistorových rádiích k zesílení zvuku. V miniaturním provedení s lineárním průběhem odporu se běžně nevyskytuje. V nouzi se sice spokojíme s logaritmickým, nicméně ten je pro tento účel málo vhodný.

Výstupní kondenzátor může mít kapacitu v rozmezí 5 až 100 nF a musí být dimenzován na napětí nejméně 600 V (pro elektronkové TV přijímače raději na 1000 V).

Elektronický bytový teploměr

Jde o jednoduchý elektronický měřicí přístroj, určený do domácnosti pro kontrolu a měření pokojové teploty. Svým rozsahem i provedením se nehodí pro umístění venku. Teplota je indikována svítivými diodami, digitálně, po jednom stupni Celsia v rozsahu +15 až +26 °C. Jako teplotní čidlo je použit běžný typ

A277D Π2k2 4×KY130 Ю 100 n D₅ D۵ Obr. 70. Elektronický bytový teploměr D,

termistoru. Postupné zapínání svítivých diod zajišťuje jediný analogový integrovaný obvod Á277D z produkce NDR, který je na tuzemském trhu. Ostatní součástky jsou domácí výroby. Svítivé diody se rozsvěcují v celém sloupci, takže když je např. indikována teplota +20 °C, tak svítí i všechny diody indikující teploty nižší.

Přístroj (obr. 70) můžeme teoreticky napájet z baterií o napětí +9 V. Pak vzhledem k odběru nemůže pracovat teploměr trvale. Odběr ze zdroje kolísá od 50 do 500 mA, podle toho, kolik diod je rozsvíceno a jakou intenzitou diody svítí. Přístroj má automatickou regulaci svítivosti diod v závislosti na intenzitě vnějšího osvětlení a tato automatická regulace mění proud každou diodou v rozmezí 15 až 30 mA. Pro trvalý provoz přístroje je nutno použít jednoduchý síťový zdroj, který nemusí mít stabilizaci výstupního napětí. Je v něm použit běžný zvonkový transformátor Tr. K usměrnění střídavého proudu můžeme vzhledem k malému sekundárnímu napětí a poměrně malému odběru použít libovolné křemíkové usměrňovací diody (D₁₅ až D₁₈ na elektrickém schématu). Napájecí napětí +9 V se přivádí na vývody 1 (0 V) a 18 (+9 V) integrovaného obvodu. Tento obvod typu A277D je

připojení svítivých diod se to projeví větším proudem. Naopak ve tmě je fototranzistor uzavřený, napětí na vstupu 2 je menší a diody dostávají menší proud a tím i méně svítí - to oceníme zejména v noci, kdy by bez regulace teploměr svítil tak, že by to mohlo v místnosti nepříjemně rušit. Práh, tedy počáteční svítivost diod nastavíme odporovým trimrem R₉. Vstupní proud do vstupu 2 při největším kladném napětí má þýt

maximálně 10 mA.

Vstupní napětí úměrně měřené teplotě snímáme jako úbytek napětí, vytvářející se v teplotně závislém odporu, termistoru R₂. Kladné napětí (úbytek napětí) se přivádí na vstup 17 integrovaného obvodu. Změna tohoto napětí znamená postupné zapínání jednotlivých diod D₁₄ až D₃. Termistor R₂ mění svůj odpor v závislosti na teplotě. Aby byla zajištěna určitá stabilita a přesnost měření, je termistor napájen konstantním stabilizovaným proudem. Stabilizaci vytváří obvod tranzistoru T₁ s rezistory R₁, R₃ se Zenerovou diodou D₁. Zapojení pracuje na známém principu: jakmile se na rezistoru R₃ zvětší úbytek napětí na úroveň Zenerova napětí diody D₁, tranzistor T₁ se zavírá. Změnou, tedy otáčením trimru Ra se mění velikost konstantního napájecího proudu, který prochází termisto-

Obr. 71. Deska s plošnými spoji X231 pro zapojení z obr. 70

T20

rem R_2 . Tím se také mění úbytek napětí na termistoru při stejné teplotě a proto se také trimrem R_3 zařízení cejchuje na správnou teplotu.

Vzhledem k nelinearitě charakteristiky temistoru je vhodné, když zařízení cejchujeme přesně uprostřed stupnice, nejlépe na přechod mezi teplotami 20 až

Konstrukce přístroje vychází z desky s plošnými spoji rozměrů 190 × 55 mm (obr. 71). Celé zařízení se pak vejde do skříňky z plastické hmoty s orientačními rozměry 240 × 70 × 20 mm. Samozřejmě, že bez napájecího zdroje. Ten musíme umístit do zvláštní krabice a se zařízením jej spojit dvojžilovým kabelem.

Pokud je zdroj spojen se sítí vidlicí do zásuvky, můžeme si ušetřit i síťový spínač a kontrolku. Upozorňuji na nutnou bezpečnost při práci se síťovým napětím, i když kryt zvonkového transformátoru je sám o sobě bezpečný. Nutné je umístit skříňku se síťovým zdrojem na nehořlavou podložku. Z hlediska estetiky je vhodné použít svítivé diody různých barev. Např. pro dolní část měřených teplot diody barvy zelené, pro střední teploty žluté a pro nejvyšší teploty červené.

Ve schématu nejsou uvedeny typy svítivých diod. Ty mohou být prakticky libovolného druhu – vybíráme je jen podle barvy, případně i tvaru a velikosti tak, jak je dostaneme koupit nebo jak se nám líbí. K obvodu A277D lze připojit prakticky libovolné dostupné typy jak domácí, tak dovezené.

The state of the s

Ovládání relé jedním tlačítkem

Jedno ze zajímavých zapojení je na obr. 72. Běžné relé 24 V ovládáme tlačítkem – tedy jeho sepnutí a následným novým stisknutím i jeho rozepnutí. Jako vždy i zde je něco za něco. To něco je kromě ovládacího tlačítka ještě nutnost použít kondenzátor C, rezistor R a spínací tyristor. Funkce je jasná ze schématu na obr. 72. Při sepnutí tlačítka začne

Obr. 72. Ovládání relé jedním tlačítkem

vést tyristor, sepne relé. Tyristor zůstane v sepnutém stavu i při uvolnění tlačítka a relé tedy také sepnuté (ovšem jen tehdy, když je napájecí napětí +24 V vyhlazené). Když tlačítko uvolníme, nabije se kondenzátor C opačně, tj. přes rezistor R na napětí 24 V, protože druhý jeho "polep" je sepnutým tyristorem uzemněn. Novým stisknutím tlačítka přes kontakt re relé Re vybijeme kondenzátor C tak, že vyvoláme v obvodu tyristoru "protiproud"; postačují k rozpojení obvodů: tyristorový obvod se rozpojí a relé odpadne.

Radio (SSSR), č. 12/1987

Zapínání dvou spotřebičů v daném, neměnném pořadí

Mnohdy je potřeba, aby dva spotřebiče, které na sebe funkčně navazují, jsme zapínali tak, že jeden vždy zapneme první, pak teprve lze zapnout druhý. Ten druhý nemůže pracovat nebo nesmí pracovat bez činnosti tohoto prvního. Totéž by mělo být i při vypínání. Typickým případem je např. topení s nuceným oběhem, které může pracovat jen s ventilátorem. V malém je takovým příkladem vysoušeč vlasů. Dříve to byla např. zařízení s elektronkami, u nichž bylo nejprve nutno připojit žhavicí napětí, pak teprve napětí anodové. Takových případů dvou nezávislých spotřebičů bychom měli i více.

Obr. 73. Zapínání dvou spotřebičů v daném pořadí

Schéma jednoduchého zabezpečení následného zapínání s pomocí dvou dvoupólových spínačů je na obr. 73. Uvedené zapojení pracuje tak (jak si snadno na schématu vysledujete), že při zapnutí libovolného spínače S₁ nebo S₂ se připne nejprve první spotřebič, při zapnutí libovolného druhého spínače teprve druhý spotřebič. Samozřejmě, že totéž se děje při vypínání.

Protože dvoupólové spínače dostaneme koupit i pro běžný síťový rozvod, lze tímto způsobem zapínat přímo síťový přívod 220 V. Lze snad jen podotknout, že je velice vhodné takovou, byť triviálně jednoduchou automatiku, vybavit kontrolní indikaci zapnutí spotřebičů.

Světelný spínač Na obr. 74 je použití integrovaného obvodu typu 555 jako světelného spínače. Obvod spíná relé Re, když na fotorezistor R_F dopadá světlo, jehož intenzita přesahuje určitou velikost. Fotorezistor by bylo možno také nahradit fototranzistorem.

Obvod typu 555 zde nepracuje na rozdíl od běžných aplikací jako monostabilní nebo astabilní klopný obvod, ale jako komparátor. Obvykle pracuje obvod 555 tak, že spínací impuls na vstupu 2 uvede výstupní úroveň do stavu "1". Tento impuls musí být menší než je 1/3 napájecího napětí. Výstup je na úrovni "1" tehdy, pokud je vstupní napětí větší než 2/3 napájecího napětí. Toto zapojení využívá jen spínacího vstupu, protože výstup musí zůstat na úrovni "1". Napětí na tomto vstupu musí být velké asi 1/3 napájecího napětí. Čím je menší odpor rezistoru mezi přívody 5 a 7, tím větší je hystereze spínání. Stejným způsobem by působil rezistor, pokud jej zapojíme do obvodu napájecího napětí. Čítlivost obvodu ie možno nastavit volbou odporu rezistoru R, který lze nahradit potenciometrem.

Spínačem lze ovládat i síťové napětí, pokud relé tomuto napětí vyhoví a konstrukce zabraňuje případnému úrazu elektrickým proudem z hlediska izolačních a mechanických

pevností. Použité relé je nejvhodnější pro napětí 12 V s jmenovitým přítažným proudem 8 mA. Vyhoví však i jiná relé. Napájecí napětí obvodu 555 nesmí být větší než 16 V. Kondenzátor C₁ a rezistor R₂ udržuje relé v rozpojeném nebo sepnutém stavu

asi 10 s a zabraňuje tak přepínání kontaktů relé v kratších intervalech, kdy například dopadne na fotorezistor náhodný odlesk světla nebo záblesk či naopak zmenší-li se přechodně intenzita dopadajícího světla, což způsobí krátkodobé zmenšení napětí na žárovce.

OPTOELEKTRONICKÝ DIFÚZNY SNÍMAČ ODS-01-R

Tento snímač pracuje na princípe odrazu infračerveného žiarenia od povrchu predmetov a umožňuje široké nasadenie vo všetkých odvetviach priemyslu pre snímanie osôb alebo predmetov.

Vlastnosti:

- necitlivosť na okolité svetlo
- vysoká odolnosť voči prachu, vlhkosti a nečistotám
- moderná konštrukcia
- priemyselné prostredie

Použitie:

- kontrola prítomnosti paliet v sklade
- snímanie pretrhnutia pásov (papier, plasty, plech)
- snímanie prítomnosti osôb napr. na WC alebo v umývarkach a následná regulácia toku vody
- automatické spúšťanie rôznych zariadení pri priblížení ruky alebo inej časti tela (sušenie rúk, ochrana strážených objektov, automatické rozsvecovače svetla)

Parametre:

- dosah max. 0,9 m
- krytie IP 65 S
- teplota -10 °C až +55 °C
- napájanie: 24 V jednosmerné rozmery 95 x 70 x 34,5 mm
- výstupný člen: relé RP 210

Amatérske AD 10 B/2

Adresa dodávateľa: VUKOV, š. p., VVJ Senzor, nám. Februárového víťazstva 19, 040 40 Košice, telefon 240 74/75, telex 77 808 vukke. Cena 1160 Kčs, dodávka okamžite, bližšie informácie - Doc. ing. Paulik, CSc.

Chcete Váš počítač lépe využívat? Využijte nabídky grafické periferie

z LABORATORNÍCH PŘÍSTROJŮ PRAHA

Grafická jednotka XY 4150 (4140)

- Vám zabezpečí zápis vyhodnocených dat jak ve formě analogového záznamu, tak ve formě alfanumerického popisu, kresbu technických výkresů, elektronických schémat apod. na formát A4
- spolupracuje pomocí modulu styku s domácími i zahraničními počítači ZX Spectrum, Delta, Didaktik Gama, PMD /85/2, SAPI 1, IQ 151

Výrobky objednejte: Laboratorní přístroje Praha oddělení prodeje, ing. Pešek Máchova 5

120 00 Praha 2 tel. 25 49 35

ZAVT, a. s.,

odštěpný podnik Výzkumný ústav matematických strojů upozorňuje zájemce o publikaci "AKTUALITY VÝPOČETNÍ TECHNIKY".

která vychází 4x ročně, že je možné se přihlásit k jejímu odběru ve VÚMS, Loretánské nám. č. 3, 118 55 Praha 1 (k rukám H. Linhartové). Odběr bude fakturován ročně, cena 1 výtisku asi 50 Kčs.

KIKUSUI Oscilloscopes

Superior in Quality, first class in Performance!

Phoenix Praha A.S., Ing. Havliček, Tel.: (2) 69 22 906

elainco

ÚVOD DO PROBLEMATIKY DRUŽICOVÝCH PŘIJÍMAČŮ

(Dokončení)

11. Celkové propojení

Celkové propojení bude záležet na konkrétním provedení přijímače a použitých pře-pínačích, potenciometrech atd. Na obr. 105 je propojení jednotlivých desek družicového přijímače, v tab. 8 je uveden seznam ovládacích prvků. Pokud některé obvody nepoužijeme, jako např. přepínání šířky pásma ve vf dílu, zapojení předvolby, přepínání šířky pásma v části audio, přepínání polarity signálu video, přepínání výstupního obvodu části video, AFC atd., propojení se zjednoduší a příslušné ovládací prvky odpadnou. Někeré obvody lze propojit trvale propojkami. Jedná se např. o přepínač polarity signálu video S3, přepínač cesty S4 atd. Použijeme-li pomocný vstup 10 na desce VAL pro připojení např. descrambleru, lze přepínač S₄ nahradit elektronickým automatickým přepínáním, odvozeným z descrambleru.

Oba hlavní díly (tj. vf díl a díł VAL) jsou propojeny propojkami, které vedou z průchodkových kondenzátorů na vf dílu do descrambleru.

VAL To je posupute do pýrstupků v rámu ky VAL. Ta je nasunuta do výstupků v rámu vf dílu a připájena. Pokud však budeme s vf dílem experimentovat, je výhodnější oba díly v těchto výstupcích nepájet, ale k propojení zemí použít krátké propojovací vodiče. Jestliže výstupy audio a video budou blízko konektoru, mohou být propojky i z krátkých nestíněných vodičů.

Tab. 8. Seznam ovládacích prvků

P ₁ P ₂	ladění přijímače ladění zvuku
S₁ S₂ S₃ S₄	spínač AFC přepínač ladění (ručně – předvolba)
ა₂ ი	přepínač polarity videosignálu
O3	přepínač polatity videosignatu přepínač cesty video (z přijímače
5₄	– z pomocného vstupu 10)
S₅	přepínač šířky pásma
۱	(2. mf zesilovač)
S ₆	zvětšení zesílení zesilovače video
S ₆ S ₇	přepínač signálu pro modulátor
'	(normál – test)
S ₈	přepínač šířky pásma části audio

OVĚŘENO V REDAKCI

Již v úvodu můžeme odpovědně říci, že tento přijímač je nejlepší konstrukcí (zvláště vf díl), která se nám dostala do rukou.

Postavili jsme několik kusů vf dílu a přitom se prokázalo, že je dokonale reprodukovatelný. Nejdůležitější je přesně a čistě pracovat

U prvního kusu vf dílu jsme, po nastavení ss napětí, přednastavili jádra cívek podle originálu (viz fotografie v minulém čísle AR B). Jednotlivé části jsme zkontrolovali na nepříliš kvalitním sovětském rozmítači; výsledky měření byly proto pouze orientační. Nakonec jsme přijímač doladili podle obrazul

Díl VAL jsme nastavovali pouze vf generátorem a osciloskopem, což bohatě postačuje.

Přijímač jsme porovnávali s přijímačem Grundig STR201 s použitím paraboly o Ø 50 cm (tak malý průměr jsme použili proto, abychom mohli pozorovat obrazy jednotlivých stanic při hraničním příjmu). Mezi oběma přijímači nebyl patrný žádný rozdíl v kvalitě obrazu.

Pro "klid duše" jsme tento kus ještě nechali zkontrolovat na kvalitní měřicí aparatuře. Kromě několika "kosmetických" zásahů, nutných proto, aby průběhy signálu v jednotlivých bodech byly perfektní, jsme do přijímače nemuseli zasáhnout.

Další postavené kusy byly naprosto shodné. Pro zvláště slabý signál je vhodné použít na místě prvního tranzistoru BFG65. Vyzkoušeli jsme i BFQ69 (přestože ho autoři nedoporučují) a i ten vyhovoval. Pro běžné použití však naprosto vyhovují typy BFR90 z NSR.

U posledního ověřovaného kusu byly použity dokonce tranzistory BFR90 z Maďarska. Vstupní díl měl menší zesílení, což se projevovalo při slabším signálu, při běžném příjmu však přijímač také vyhovoval.

val. Při stavbě se projevila jediná závada. U jednoho z tunerů kmital směšovač. Po výměně KF910 závada zmizela.

Velmi důležité je připájení krytů cívek z obou stran desky s plošnými spoji. Také přepážky musí být dokonale připájeny z obou stran.

Přijímač je velmi dobře konstruován z hlediska možnosti různého ovládání a ladění. Protože ladicí napětí je pouze 12 V, můžeme je přepínat spínači CMOS (4051–3, 4066). Tyto integrované spínače lze jednoduše řídit např. přijímačem dálkového ovládání U806. Předvolba může být realizována jak mechanicky (trimry), tak elektronicky (napěťová syntéza – MHB193). Rovněž by bylo možné přijímač řídit mikropočítačem s pamětí

CMOS RAM. Pro vysílač dálkového ovládání je nejlepší použít (z dostupných IO) U807.

nı je nejiepsi pouzit (z dostupnych IO) U807. Závěrem však musíme ještě jednou zdůraznit, že přes všechny chvály, které jsme zcela právem o přijímači zde uvedli, nemůže jej stavět "bastlíř", neboli konstruktér "vrabčích hnízd". Je třeba nejen pečlivě a čistě pracovat, ale hlavně u vf dílu se co nejpřesněji držet návodu autorů.

INZERCE

Inzerci přijímá osobně a poštou Vydavatelství Naše vojsko, inzertní oddělení (inzerce ARB) Vladislavova 26, 113 66 Praha 1, tel. 26 06 51–9 linka 294. Uzávěrka tohoto čísla byla 10. 2. 1990, do kdy jsme museli obdržet úhradu za inzerát. Neopomeňte uvést prodejní cenu, jinak inzerát neuveřejníme. Text inzerátu pište čitelně, aby se předešlo chybám vznikajícím z nečitelnosti předlohv.

PRODEJ

LF357 (40), MH1KK1 (50) a rôzne IO, T, C, R. Zoznam zašiem. E. Hajdu, Vojenská 6; 040 01 Košice.

Sov. osciloskop zn. H 3013 nepoužitý (900), merací pristr. V, A, Ω, T (1200), rôzne T, D, R, C, digitrony, radiče, prepínače, konektory, mikr. spin., jazyč. relé 12,24 V ako LUN, zoznam za známku. Len písomne. N. Trnka, Listová 25/b, 821 05 Bratislava.

SO42 (90), μΑ733 (80), BFR90, 91 (40, 45), kapac. ker. trimre 2÷6 pF (15) BF245C (20), NE564 (80), NE567 (70), BFW 93 (40), BFG65 (190). Dr. J. Dlugoš, Prostějovská 5, 080 01 Prešov.

Multimetr BM 518 (2750). P. Nagy, Petöfiho 38, 821 06 Bratislava, tel. 24 85 96.

Siemens BFQ69 (200), BFT97 (150), BFT66 (150), Philips BFG 65 (200), BFR90 (70), BFR91 (70), BFR96 (80), BF272 (20). P. Poremba, Clementisova 12, 040 14 Košice.

Nízkošumový širokopásmový zosilňovač $40\div800$ MHz, $1\times$ BFG65, $1\times$ BFR90, zisk 24 dB, 75/75 Ω (400), vhodný pre príjem slabých TV signálov. F. Ridarčik, Karpatská 1, 040 01 Košice.

2 ks obč. RTS (2200), oprava nutná, bližší dopisem. P. Kašpar, Vojtova 21a, 639 00 Brno.

BFG65 (190), Kat. Conrad 1990, 900 str. (120). J. Prchal, Gollova 10, 460 01 Liberec IV.

KOUPĚ

RX-KV fb. Elektronky 11TA31, EF183, EF80, ECF82. J. Szkandera, Kollárova 1135/5, 363 01 Ostrov n. Ohří.

Ancitsu Instruments

World Leader in

Optical Fiber Measurement Technology

Phoenix Praha A.S., Ing. Havliček, Tel.: (2) 69 22 906

elainco