Ginkgo — Interactive analysis and quality assessment of single-cell CNV data

Tyler Garvin, Robert Aboukhalil, Jude Kendall, Timour Baslan, Gurinder S. Atwal, Jim Hicks, Michael Wigler, Michael C. Schatz

Outline

Outline

Why should we use single-cell sequencing over bulk sequencing?

Single cell expression profiles

Single cell research. Illumina.

Heterogeneity

Metagenomics

Single cell research. Illumina.

Microbiome

- Human cells
- Bacteria
- Fungi
- Virus

- Temporal dynamics
- Diet-dependent dynamics
- Stress-related dynamics

Immunology

- Massive diversity rivaled only by germ cells
- Somatic recombination

- B cells antibody generation
- T cells antigen response

What is structural variation?

Difference in cogy number, orientation, or location of any genomic sequence over 50 bp in size

What are CNVs?

Single-cell sequencing for CNV analysis

Tumor evolution

Clonal evolution in tumors

Clonal evolution in tumors

Cancer metastasis

Cancer metastasis

DNA repair in cancer

In-vitro fertilization

DNA replication & cell cycle

late vs. early replicating regions

Single-cell vs. bulk sequencing

Single-cell vs. bulk sequencing

Whole Genome Amplification

- 1) MDA: Multiple displacement amplification
- 2) DOP-PCR: Degenerate oligonucleotide-primed PCR
- MALBAC: Multiple annealing and looping-based amplification

Identifying CNVs: bulk vs. single-cell

Identifying CNVs: bulk vs. single-cell

Low coverage allows us to study copy-number variants <1X coverage, often <0.1X

Low coverage allows us to study copy-number variants <1X coverage, often <0.1X

Divide genome into "bins" with \sim 50 – 100 reads / bin

Segmentation

Circular Binary Segmentation (CBS)

Outline

Analysis Pipeline

Analysis Pipeline Bin reads GC bias Map reads correction Remove Segment bins duplicates and call integer copy-number .FASTQ BAM to BED Interactive Galaxy visualization Ginkgo

Tumour evolution inferred by single-cell sequencing

Nicholas Navin^{1,2}, Jude Kendall¹, Jennifer Troge¹, Peter Andrews¹, Linda Rodgers¹, Jeanne McIndoo¹, Kerry Cook¹, Asya Stepansky¹, Dan Levy¹, Diane Esposito¹, Lakshmi Muthuswamy³, Alex Krasnitz¹, W. Richard McCombie¹, James Hicks¹ & Michael Wigler¹

10 postalogous to the translation to

and or

Sintent

Analysis completed.

CCD View results.

* home

		ter . **	SWITHIN	-	Manager, Steph	And received	India of Department
	-	-	GIIIII	0.71.00	1000	1000	+=
	-	-		-	1,040,07	1000	100
	-	_	111/100	-	1/0/0	1,000	107
	**	-	medien.	110(0)),40,66	1945	134
	-	-	esities	4,000	11869	***	***
=	ni.	Personal St.	marine.	16.11(41)	1868	Leading	140
-	_	-	prepired speedow	0.00	and .	(march	a) dente a

C this committee

Annua yaar musir wax of the University antime.

Shape frances

Benchel 1015

Bridg cross doc rister as businesses Separately cross to discrete cards Graining and troops so time discrete

Inches

- is broaded and province on the last
- College Author Colonia Property Street
- Sunday Control of the

.

Married Woman Control of Carlot Add Street

Reduction from the excellent charter is desired in temporary of the position in the excellent planed in the temporary of the position of the colored in the position with

The Board Than 100, notice for Your Art of the party of t

Section Total Section in card in action of the company of the comp

Married Control of the Control

Outline

Whole Genome Amplification (WGA) methods

MALBAC (Multiple Annealing and Looping Based Amplification Cycles)

Comparison of WGA methods

Paper	WGA Method	Tissue
Navin et al., 2011	DOP-PCR	Breast (T10)
Navin et al., 2011	DOP-PCR	Breast (T16P/M)
McConnnell et al., 2013	DOP-PCR	Neuron
Lu et al., 2012	MALBAC	Sperm
Ni et al., 2013	MALBAC	Lung
Hou et al., 2013	MALBAC	Oocyte
Kirkness et al., 2013	MDA	Sperm
Wang et al., 2012	MDA	Sperm
Evrony et al., 2012	MDA	Neuron

Explore the effects of WGA method on data quality:

- 1) GC bias
- 2) Coverage dispersion

GC Bias

Coverage Dispersion

Garvin and Aboukhalil et al., Nature Methods, 2015

Coverage Dispersion

Summary

- Ginkgo is a platform for single-cell CNV analysis and visualization
- For copy-number analysis, we recommend DOP-PCR
- Check out Ginkgo and give us feedback
 - qb.cshl.edu/ginkgo
 - http://qb.cshl.edu/ginkgo/workshop/fog.pdf
 - Garvin and Aboukhalil et al., Nature Methods, 2015

>1K

21,500 PAGEVIEWS

10 MIN TIME SPENT

Thanks

Ginkgo Team

Rob Aboukhalil

Jude Kendall
Timour Baslan
Jim Hicks
Gurinder S. Atwal
Michael Wigler
Michael C. Schatz

