Time Series Forecast with Neural Networks COMP432 - Custom Project - G27

Zijian Wang (40011864) Matheus Nogueira (40220168)

Concordia University

5 December 2021

Introdution

Goal

The main goal is of this project is to implement and compare different time series forecast models, from classic until fancier ones. The comparison was done by **Root Mean Squared Error** - **RMSE** for both stationary and non-stationary series, when applied.

Introdution

Goal

The main goal is of this project is to implement and compare different time series forecast models, from classic until fancier ones. The comparison was done by **Root Mean Squared Error** - **RMSE** for both stationary and non-stationary series, when applied.

Time Series

3 were the time series chosen for this project and all of them are *financial* time series.

Introdution

Goal

The main goal is of this project is to implement and compare different time series forecast models, from classic until fancier ones. The comparison was done by **Root Mean Squared Error** - **RMSE** for both stationary and non-stationary series, when applied.

Time Series

3 were the time series chosen for this project and all of them are *financial* time series.

- American Airlines Stock Prices
- USD Dollar x Canadian Dollar Currency
- USD Dollar x Brazilian Real Currency

Models

The following models were implemented:

Models

The following models were implemented:

- ARIMA
- ARIMA + GARCH
- 3 Random Forest Regressor
- Support Vector Machine Regressor
- Multi Layer Perceptron Neural Networks
- Recurrence Neural Networks
- Facebook Prophet Model

Models

The following models were implemented:

- ARIMA
- ARIMA + GARCH
- Random Forest Regressor
- Support Vector Machine Regressor
- Multi Layer Perceptron Neural Networks
- Recurrence Neural Networks
- Facebook Prophet Model

Hyperparameter Search

All but 3 models were implemented without hyperparameter search:

Models

The following models were implemented:

- ARIMA
- ARIMA + GARCH
- 8 Random Forest Regressor
- Support Vector Machine Regressor
- Multi Layer Perceptron Neural Networks
- Recurrence Neural Networks
- Facebook Prophet Model

Hyperparameter Search

All but 3 models were implemented without hyperparameter search:

- ◆ ARIMA and GARCH ⇒ don't have hyperparameters
- \bullet RNN \Longrightarrow training time

Results - American

The results are summarized in the tables below:

American Training RMSE		
Method	Statio	Non-statio
ARIMA	0.0880	X
GARCH	0.0880	X
RF	0.0487	0.0013
SVM	0.0609	0.0725
MLP	0.0577	0.0102
RNN		
Prophet	0.1253	0.0431

Table: American Train Errors

American Forecast RMSE		
Method	Statio	Non-statio
ARIMA	0.1534	X
GARCH	0.1534	X
RF	0.0539	0.0099
SVM	0.0730	0.0965
MLP	0.0648	0.0050
RNN		
Prophet	0.0920	0.0758

Table: American Forecast Errors

Results USD/CAD

USD CAD Series Train RMSE		
Method	Statio	Non-statio
ARIMA	0.0001	X
GARCH	0.0001	X
RF	0.0475	0.0016
SVM	0.0604	0.0421
MLP	0.0548	0.0088
RNN		
Prophet	0.1205	0.0440

Table: USD/CAD Train Errors

LICD CAD Carias Farranat DMCF		
USD CAD Series Forecast RMSE		
Method	Statio	Non-statio
ARIMA	0.0011	X
GARCH	0.0011	X
RF	0.0547	0.0079
SVM	0.0586	0.0463
MLP	0.0538	0.0043
RNN		
Prophet	0.1004	0.1302

Table: USD/CAD Forecast

Errors

Results - USD/BRL

The results are summarized in the tables below:

USD BRL Series Train RMSE		
Method	Statio	Non-statio
ARIMA	0.0042	X
GARCH	0.0042	X
RF	0.0357	0.00087
SVM	0.0448	0.0734
MLP	0.0420	0.0066
RNN		
Prophet	0.0895	0.0377

Table: USD/BRL Train Errors

USD BRL Series Forecast RMSE		
Method	Statio	Non-statio
ARIMA	0.0031	X
GARCH	0.0031	X
RF	0.0687	0.0080
SVM	0.0794	0.1038
MLP	0.0863	0.0063
RNN		
Prophet	0.1605	0.0912

Table: USD/BRL Forecast Errors

Conclusion

COMPLETE!!!

Bibliography

- [1] Christopher M Bishop. *Pattern Recognition and Machine Learning*. Springer, 2006.
- [2] Sean J Taylor and Benjamin Letham. Forecasting at scale. The American Statistician, 72(1):37–45, 2018.
- [3] Ruey S Tsay. *Analysis of financial time series*, volume 543. John wiley & sons, 2005.