Topologia Algebrica

Zitto e studia.

Parigi 1905 H. Poincarè

Professore: *Gilberto Bini*

Scriba: Gabriele Bozzola

Indice

1	Om	Omotopia Singolare			
	1.1	Introd	uzione	4	
			Richiami di algebra		
		1.1.2	Omomorfismo tra \mathbb{R} e \mathbb{R}^N	7	
		1.1.3	Omologia	9	
		1.1.4	Richiami sul gruppo fondamentale	15	

Lista dei simboli e abbreviazioni

Simbolo	Significato	Pagina	
\mathcal{R}	Anello	4	
\simeq	Spazi omeomorfi	7	
$\stackrel{\sim}{\longrightarrow}$	Omeomorfismo	8	
π_1	Gruppo fondamentale	8	

1.1 Introduzione

1.1.1 Richiami di algebra

Definizione 1.1.1 Un anello è un insieme \mathcal{R} dotato di due operazioni + e · tali che \mathcal{R} sia un gruppo abeliano con l'addizione, sia un monoide con la moltiplicazione (ovvero la moltiplicazione è associativa e possiede un elemento neutro¹) e goda della proprietà distributiva rispetto all'addizione.

Definizione 1.1.2 Un anello si dice **anello commutativo** se l'operazione di moltiplicazione è commutativa.

Definizione 1.1.3 *Un campo* è un anello commutativo in cui ogni elemento non nullo ammette un inverso moltiplicativo.

Definizione 1.1.4 Sia \mathcal{R} un anello commutativo si definisce l' \mathcal{R} -modulo un gruppo abeliano \mathcal{M} equipaggiato con un'operazione di moltiplicazione per uno scalare in \mathcal{R} tale che $\forall v, w \in \mathcal{M}$ e $\forall a, b \in \mathcal{R}$ vale che:

- a(v+w) = av + aw
- (a+b)v = av + bv
- (ab)v = a(bv)

Osservazione 1.1.5 Se \mathcal{R} è un campo allora l' \mathcal{R} -modulo è uno spazio vettoriale.

Sostanzialmente la nozione di \mathcal{R} -modulo generalizza agli anelli il concetto di spazio vettoriale sui campi.

Osservazione 1.1.6 Ogni gruppo abeliano \mathcal{G} è uno \mathbb{Z} -modulo in modo univoco, cioè \mathcal{G} è un gruppo abeliano se e solo e è uno \mathbb{Z} -modulo.

Dimostrazione: Sia $x \in \mathcal{G}$ si definisce l'applicazione di moltiplicazione per un elemento $n \in \mathbb{Z}$ come

$$nx = \begin{cases} \underbrace{x + x + x + \dots}_{n \text{ volte}} & \text{se } n > 0 \\ 0 & \text{se } n = 0 \\ \underbrace{-x - x - x - \dots}_{|n| \text{ volte}} & \text{se } n < 0 \end{cases}$$

¹La richiesta di esistenza dell'elemento neutro, cioè dell'unità non è comune a tutti gli autori, chi non la richiede chiama anello unitario la presente definizione di anello.

Si verfica banalmente che questa operazione è ben definita e soddisfta le giuste proprietà perchè la coppia $(\mathcal{G}, \mathbb{Z})$ sia uno \mathbb{Z} -modulo. A questo punto non è possibile costruire applicazioni diverse che soddisfino le proprietà richieste infatti utilizzando la struttura di anello di \mathbb{Z} : $nx = (1+1+1+1+1\dots)x = x+x+x\dots$, quindi quella definita è l'unica possibile.

Definizione 1.1.7 Siano (X, \cdot) e (Y, \star) due gruppi, un **omomorfismo** è un'applicazione f tra X e Y che preserva la struttura di gruppo, cioè:

$$\forall u, v \in X \quad f(u \cdot v) = f(u) \star f(v)$$

Osservazione 1.1.8 Da questa definizione si trova immediatamente che gli omomorfismi si comportano bene nei confronti dell'inverso, cioè $\forall v \in X$ vale che $f(v^{-1}) = f(v)^{-1}$.

Voglio studiare gli omomorfismi tra Z-moduli.

Definizione 1.1.9 Sia $\varphi: \mathcal{M} \to \mathcal{N}$ un omomorfismo tra gli \mathcal{R} -moduli \mathcal{M} e \mathcal{N} , allora si definisce il **nucleo** e l'**immagine**:

$$\operatorname{Ker}(\varphi) := \{ m \in \mathcal{M} \mid \varphi(m) = 0 \} \qquad \operatorname{Im}(\varphi) := \{ m \in \mathcal{N} \mid m = \varphi(k), k \in M \}$$

Osservazione 1.1.10 $\operatorname{Ker}(\varphi)$ e $\operatorname{Im}(\varphi)$ sono \mathcal{R} -sottomoduli, cioè sono sottoinsiemi di \mathcal{M} e \mathcal{N} che posseggono la struttura di \mathcal{R} -modulo.

Se M_i sono \mathcal{R} -moduli posso fare composizioni di omomorfismi, come:

$$\mathcal{M}_1 \xrightarrow{\varphi_1} \mathcal{M}_2 \xrightarrow{\varphi_2} \mathcal{M}_3$$
 o equivalentemente $\mathcal{M}_1 \xrightarrow{\varphi_2 \circ \varphi_1} \mathcal{M}_3$

Proposizione 1.1.11 *Se vale* $\varphi_2 \circ \varphi_1 = 0$ *allora* $\operatorname{Im}(\varphi_1) \subseteq \operatorname{Ker}(\varphi_2)$.

Dimostrazione: Se
$$u \in \operatorname{Im}(\varphi_1)$$
 allora $\exists v \in \mathcal{M}_2$ tale che $\varphi_1(v) = u$, ma $\varphi_2(u) = \varphi_2(\varphi_1(v)) = (\varphi_2 \circ \varphi_1)(v) = 0$ per ipotesi, quindi $u \in \operatorname{Ker}(\varphi_2)$.

Mi interessano questi morfismi perché hanno un preciso significato geometrico che sarà chiaro successivamente.

Definizione 1.1.12 Siano \mathcal{M} un \mathcal{R} -modulo e \mathcal{N} un suo sottomodulo, allora il **modulo quoziente** di \mathcal{M} con \mathcal{N} e definito da:

$$\mathcal{M}/\mathcal{N} := \mathcal{M}/_{\sim} \quad \textit{dove} \ \sim \ \textit{\`e} \ \textit{definita da:} \ x \sim y \Leftrightarrow x - y \in \mathcal{N}$$

Dove $\mathcal{M}/_{\sim}$ è l'insieme delle classi di equivalenza di \sim equipaggiate con operazioni indotte dall' \mathcal{R} -modulo, cioè se $[u], [w] \in \mathcal{M}/_{\sim}$ e $a \in \mathcal{R}$:

- [u] + [w] = [u + w]
- a[u] = [au]

In questo caso gli elementi di $^{\mathcal{M}}/_{\mathcal{N}}$ sono le classi di equivalenza $[m]=\{\,m+n\mid n\in\mathcal{N}\,\}.$

Siccome $\mathrm{Im}(\varphi)$ è sottomodulo di $\mathrm{Ker}(\varphi)$ allora posso prendere il quoziente:

$$\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)$$

Questo è un sottomodulo. Si nota che questo è sensato solo se si impone la condizione $\varphi_2 \circ \varphi_1 = 0$, altrimenti non c'è l'inclusione e quindi non è possibile fare l'operazione di quoziente. A questo punto ci sono due possibilità:

- 1. $\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)=0$, che significa che $\operatorname{Ker}(\varphi_2)=\operatorname{Im}(\varphi_1)$ in quanto non ci sono elementi di $\operatorname{Ker}(\varphi_2)$ fuori da $\operatorname{Im}(\varphi_1)$, dato che l'unica classe di equivalenza presente è [0] significa che $\forall m \in \operatorname{Ker}(\varphi_1) \ \exists n \in \operatorname{Im}(\varphi_2)$ tale che m-n=0, cioè m e n coincidono e quindi $\operatorname{Ker}(\varphi_2)=\operatorname{Im}(\varphi_1)$.
- 2. $\operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1) \neq 0$, cioè $\exists v \in \operatorname{Ker}(\varphi_2)$ tale che $v \notin \operatorname{Im}(\varphi_1)$ e quindi $\operatorname{Im}(\varphi_1) \subsetneq \operatorname{Ker}(()\varphi_2)$.

Nel primo caso si dice che la successione dei moduli \mathcal{M} e delle applicazioni φ è **esatta** in \mathcal{M}_2 , nel secondo caso la successione è detta **complesso di moduli**.

Sostanzialmente il modulo quoziente quantifica la non esattazza nel punto \mathcal{M}_2 della successione.

Definizione 1.1.13 $H(\mathcal{M}_{\bullet}) = \operatorname{Ker}(\varphi_2)/\operatorname{Im}(\varphi_1)$ è detto modulo di omologia del complesso $M_{\bullet} = M_1 \longrightarrow M_2 \longrightarrow M_3$ con le applicazioni φ_1 e φ_2 .

Per questo $H(\mathcal{M}_{\bullet})$ quantifica quanto il complesso \mathcal{M}_{\bullet} non è esatto. Questo deriva da un problema topologico concreto.

Definizione 1.1.14 La coppia (X, \mathcal{T}) è detta **spazio topologico** (generalmente si omette la \mathcal{T}) se \mathcal{T} è una **topologia**, cioè se è una collezione di insiemi di X tali che:

- 1. $\emptyset, X \in \mathcal{T}$
- 2. $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{T}$ se $A_n \in \mathcal{T} \ \forall n \in \mathbb{N}$
- 3. $\bigcap_{n\in\{0,1,\ldots,N\}}A_n\in\mathcal{T}$ se $A_n\in\mathcal{T}$ $\forall n\in\{0,1,\ldots,N\}$

Gli elementi di \mathcal{T} sono detti **aperti**.

Osservazione 1.1.15 Se τ è la collezione di tutti i sottoinsiemi di X allora le proprietà sono automaticamente verificate e questa è la **topologia discreta**, invece $\tau = \{\emptyset, X\}$ è una topologia ed è la **topologia triviale**. Infine in \mathbb{R}^n si definisce la **topologia usuale** che è la topologia in cui gli aperti sono iperintervalli aperti del tipo $(a_1,b_1)\times (a_2,b_2)\times (a_3,b_3)\cdots\times (a_n,b_n)$. Si dimostra che se si ammettono intersezioni infinite allora la topologia usuale coincide con la topologia triviale in \mathbb{R}^n .

Osservazione 1.1.16 Uno spazio metrico si può rendere topologico definendo gli insiemi aperti come gli intorni sferici aperti.

Osservazione 1.1.17 Sia $A \subseteq X$ spazio topologico, si può rendere anche A uno spazio topologico equipaggiandolo con la **topologia indotta** in cui gli aperti sono gli aperti di X intersecati con A.

Osservazione 1.1.18 Uno spazio topologico è **connesso** se si può scrivere come unione disgiunta di due suoi aperti.

Definizione 1.1.19 Sia X uno spazio topologico l'insieme $\{A_i \mid A_i \in X \ \forall i \}$ è un **ricoprimento** di X se:

$$\bigcup_{i} A_i = X$$

Se in particolare gli insiemi A_i sono aperti il ricoprimento è detto **ricoprimento aperto**.

Definizione 1.1.20 Un insieme U è detto **compatto** se per ogni suo possibile ricoprimento aperto ne esiste un sottoinsieme che è un ricoprimento finito di U.

Definizione 1.1.21 Una mappa tra spazi topologici è detta **omeomorfismo** se è continua e ammette inverso continuo, [cioè se è una mappa uno a uno]. Se due spazi sono omeomorfi si utilizza il simbolo \simeq .

Siccome gli omeomorfismi sono mappe uno a uno due spazi omeomorfi sono essenzialmente identici. La relazione di omeomorfismo costituisce una relazione di equivalenza. Molti degli strumenti sviluppati in questo corso servono a capire se due spazi sono omeomorfi o meno.

1.1.2 Omomorfismo tra \mathbb{R} e \mathbb{R}^N

Definizione 1.1.22 Un arco in uno spazio topologico X tra i punti $x_0 \in X$ e $y_0 \in X$ è una funzione continua da I = [0,1] a X tale che $\alpha(0) = x_0$ e $\alpha(1) = y_0$. Si dice che l'arco parte da x_0 e finisce in y_0 .

Definizione 1.1.23 Uno spazio topologico X è **connesso per archi** se per ogni coppia di punti $x, y \in X$ esiste un arco che parte da x e termina in y.

Proposizione 1.1.24 Se $f: X \to Y$ è una mappa continua suriettiva tra spazi topologici e se X è connesso per archi allora Y è connesso per archi. Questo vale in particolare se f è un omeomorfismo, cioè la connessione per archi è una proprietà invariante per omeomorfismi.

Dimostrazione: Siano y_0, y_1 due punti di Y. La funzione f è suriettiva, e dunque esistono x_0 e x_1 in X tali che $f(x_0) = y_0$ e $f(x_1) = y_1$. Dato che X è connesso, esiste un cammino $\alpha: [0,1] \to X$ tale che $\alpha(0) = x_0$ e $\alpha(1) = x_1$. Ma la composizione di funzioni continue è continua, e quindi il cammino ottenuto componendo α con $f\colon f\circ\alpha: [0,1] \to X \to Y$ è un cammino continuo che parte da y_0 e arriva a y_1 .

Si sa inoltre che:

Proposizione 1.1.25 \mathbb{R}^n è connesso per archi $\forall n \in \mathbb{N}$.

È noto che $\mathbb{R} \not\simeq \mathbb{R}^N$ per $n \ge 2$, infatti basta togliere un punto a \mathbb{R} che diventa sconnesso per archi mentre \mathbb{R}^N rimane connesso per archi anche togliendogli un punto. In questa dimostrazione ho utilizzato il seguente risultato fondamentale:

Proposizione 1.1.26 Se $f: X \to Y$ è omeomorfismo tra spazi topologici allora $f|_U: U \to f(U)$ è omeomorfismo per ogni $U \subseteq X$.

Nel caso considerato $U=x_0$, siccome ho trovato un U per cui la funzione ristretta non è omeomorfismo f non può essere omeomorfismo. Infatti l'immagine di un punto rimane un punto.

Tuttavia vale anche che $\mathbb{R}^2 \not\simeq \mathbb{R}^N$ per $n \ge 3$, infatti:

Dimostrazione: Per assurdo $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^N$ è un omeomorfismo con $n \geq 3$, tolgo un punto da \mathbb{R}^2 , se f omeomorfismo anche la restrizione deve essere omeomorfismo, cioè $\forall p \in \mathbb{R}^2 \quad f: \mathbb{R}^2 \setminus \{p\} \longrightarrow \mathbb{R}^N \setminus \{f(p)\}$. Ma $\mathbb{R}^2 \setminus \{p\} \simeq \mathbb{R} \times \mathcal{S}^1$ con la mappa $\underline{x} \mapsto \left(||\underline{x}||, \frac{x}{||\underline{x}||}\right)$. In pratica sto dicendo che il piano senza un punto è omeomorfo ad un cilindro infinito. Secondo me qui bisogna fare una traslazione e portare p in zero prima di fare questa trasformazione. - Si può fare perché la traslazione è un omeomorfismo Analogamente $\mathbb{R}^n \setminus \{f(p)\} \simeq \mathbb{R} \times \mathcal{S}^{n-1}$. Quindi se esiste un omeomorfismo tra \mathbb{R}^2 e \mathbb{R}^n significherebbe che $\mathbb{R} \times \mathcal{S}^1 \simeq \mathbb{R} \times \mathcal{S}^{n-1}$, ma quindi i gruppi fondamentali dovrebbero essere isomorfi: $\pi_1(\mathbb{R} \times \mathcal{S}^1) \simeq \pi_1(\mathbb{R} \times \mathcal{S}^{n-1})$ ma $\pi_1(\mathbb{R} \times \mathcal{S}^1) = \mathbb{Z}$ infatti il gruppo fondamentale di un prodotto è il prodotto dei gruppi fondamentali e $\pi_1(\mathbb{R}) = 1$, $\pi_1(\mathcal{S}^1) = \mathbb{Z}$ dato che i lacci omotopicamente distinti sono quelli che avvolgono il buco un numero differente di volte. Analogamente $\pi_1(\mathbb{R} \times \mathcal{S}^{n-1}) = 1$ perché le sfere sono contraibili. Trovo quindi che dovrebbero essere isomorfi $\pi_1(\mathbb{R} \times \mathcal{S}^1) = \mathbb{Z}$ e $\pi_1(\mathbb{R} \times \mathcal{S}^{n-1}) = 1$ che è assurdo.

Ho quindi dedotto proprietà topologiche a partire da considerazioni algebriche (con il gruppo fondamentale). Il gruppo fondamentale è un invariante algebrico per problemi topologici.

Definizione 1.1.27 Si definisce il **gruppo fondamentale** di uno spazio topologico X connesso per archi attorno al punto $x_0 \in X$

$$\pi_1(X,x_0) = \{g: \mathcal{S}^1 \to X \mid g \text{ continua}, g(1) = x_0\}/2$$

 $e \sim \dot{e}$ la relazione di omotopia: $g_1 \sim g_2$ se $\exists G : \mathcal{S}^1 \times I \to X$ tale che $G(z,0) = g_1(z), G(z,1) = g_2(z), G(1,t) = x_o$ con G continua. In questo vedo \mathcal{S}^1 come sottospazio di \mathbb{R}^2 con la topologia indotta (il punto 1 è un punto della circonferenza vedendola come insieme nello spazio complesso $\mathcal{S}^1 = \{z \in \mathbb{C} \mid |z| = 1\}$).

Sostanzialmente il gruppo fondamentale è l'insieme dei lacci quozientato rispetto alla relazione di omotopia. Infatti g è un laccio dato che è un arco e il punto di partenza e il punto di arrivo necessariamente coincidono dato che g è definito su \mathcal{S}^1 . Questo perché l'insieme dei lacci non è strutturabile come gruppo in quanto il laccio costante non è l'unità.

Ora voglio mostrare per assurdo che non esiste omomorfismo tra \mathbb{R}^3 e \mathbb{R}^N .

Dimostrazione: Come nel caso precedente suppongo esiste f omeomorfismo tra \mathbb{R}^3 a \mathbb{R}^n , tolgo q da \mathbb{R}^3 e f(q) da \mathbb{R}^n , quindi ottengo l'omomorfismo tra $\mathbb{R} \times \mathcal{S}^2 \simeq \mathbb{R} \times \mathcal{S}^{n-1}$, ma

i gruppi fondamentali associati sono banali, quindi sono isomorfi, e non è posisbile replicare il ragionamento utilizzato sopra.

Poincaré introdusse i gruppi di omotopia superiore.

Definizione 1.1.28 Si definiscono i **gruppi di omotopia superiore** di uno spazio topologico X attorno al punto x_0 per $k \geq 2$:

$$\pi_k(X)(X,x_0) = \{ g: \mathcal{S}^k \to X \mid g \text{ continua}, \ g(p_0) = x_0 \} /_{\sim}$$

Con $p_0 \in \mathcal{S}^k$ e \sim relazione di omotopia.

Studiare i gruppi di omotopia superiore è un problema aperto della topologia moderna. Tuttavia si sa che:

1.
$$\pi_k(\mathcal{S}^m) = 1$$
 per $1 \le k < m$ $(m > 2)$

2.
$$\pi_m(\mathcal{S}^m) \simeq \mathbb{Z}$$
 per $k = m$

3.
$$\pi_1(S^2) = 1$$

4.
$$\pi_2(\mathcal{S}^2) \simeq \mathbb{Z}$$

5.
$$\pi_3(\mathcal{S}^2) \simeq \mathbb{Z}^2$$

Definizione 1.1.29 Sia $A \subseteq X$ con X spazio topologico $i: A \to X$ si definisce mappa di **inclusione** e si scrive $i: A \hookrightarrow X$ se $\forall a \in A$ vale che i(a) = a.

Anche se non so calcolare i gruppi di omotopia superiore non vorrei buttarli via...Vorrei degli invarianti algebrici per problemi topologici, come i gruppi di omotopia.

1.1.3 Omologia

Uso la teoria dell'omologia che mi permette di semplificare i problemi. La teoria dell'omologia serve ad associare agli spazi topologici degli oggetti algebrici meno complicati dei gruppi di omotopia. Ci sono varie possibilità:

- Omologia singolare
- · Omologia cellulare
- Omologia persistente³
- Omologia simpliciale

²Questo da origine alla fibrazione di Hopf che ha molte applicazioni in fisica.

³Questa ha numerose applicazioni pratiche, come la ricostruzione di immagini.

Ma cosa è l'omologia? Assocerò ad ogni spazio topologico (anche patologico) gruppi abeliani e omomorfismi a partire da applicazioni continue tra due spazi topologici. In tutto questo lavoro sempre con anello di base \mathbb{Z} , che quindi rimane sottinteso a meno di scriverlo esplicitamente.

Definizione 1.1.30 In \mathbb{R}^{k+1} si definisce il **simplesso standard** Δ_k l'insieme:

$$\Delta_k = \{ (x_1, x_2, \dots) \in \mathbb{R}^{k+1} \mid \forall i \quad 0 \le x_i \le 1 \ e \sum_{i=1}^{k+1} x_i = 1 \}$$

Osservazione 1.1.31 Alcuni esempi sono:

- Δ_0 è un punto.
- Δ_1 è un segmento omeomorfo a [0,1].

Figura 1.1: 1-Simplesso standard

Definizione 1.1.32 Dato uno spazio topologico X si definisce il k-simplesso singolare in X come un'applicazione continua $g: \Delta_k \to X$.

Spesso conviene identificare il k-simplesso con la sua immagine in X. In quesot modo uno 0-simplesso è un punto in X, mentre un 1-simplesso singolare potrebbe essere sia un segmento che un punto (se la mappa è costante). Siccome il simplesso deforma è detto singolare.

Voglio costruire un complesso di gruppi abeliani e definire l'omologia singolare come l'omologia di tale complesso.

$$S$$
. è il compesso, cioè: $\cdots \to S_{k+1}(X) \to S_k() \to S_{k-1} \to \cdots \to S_0(X)$, dove

$$S_k(X) = \{ \text{combinazioni lineari finite a coefficienti interi:} \\ \sum_g n_g g \mid n_g \in \mathbb{Z}, g \ k - \text{simplessi singolari di } X \}$$

 $S_k(X)$ è un gruppo abeliano con l'operazione somma definita naturalmente:

$$\sum_{g} n_{g}g + \sum_{h} n_{h} = \sum_{g} n_{g}g + \sum_{g} n_{g}^{\star} = \sum_{g} (n_{g} + n_{g}^{\star})g$$

Ad esempio:

$$(n_1g_1 + n_2g_2 + 2n_3g_3) + (m_1g_1 + m_4g_4) = (n_1 + m_1)g_1 + n_2g_2 + 2n_3g_3 + m_4g_4$$

Questa è una somma con tutte le giuste proprietà. Lo zero è la catena con tutti i coefficienti nulli, mentre l'inverso è la catena con i coefficienti opposti. Queste catene sono chiamate k-catene singolari.

Ad esempio: Se k=0 $S_0(X)$ sono catene di punti $(g_0:\Delta_0\to X)$

$$S_0(X) = \{ \sum n_i p_i \mid n_i \in \mathbb{Z}, \ p_i \in X \}$$

Ora devo introdurre le applicazioni tra i vari ${\cal S}_k,$ queste applicazioni saranno il bordo.

Definisco $h: \Delta_1 \to X$ in modo tale che $h(\Delta) = \alpha$ dove α è un **arco**.

Definizione 1.1.33 Uno spazio topologico X si dice **connesso per archi** se $\forall x, y \in X$ esiste un arco con punto iniziale x e punto finale y.

Figura 1.2: 1-Simplesso singolare

Posso ottenere una 0-catena prendendo i punti estremi dell'arco.

Definizione 1.1.34 Sia Δ_k un k-simplesso standard con $k \geq 0$ si definisce l'operatore **faccia** come la mappa F_i^k da Δ_{k-1} a Δ_k tale che $F_i^k(\Delta_{k-1})$ è una faccia di Δ_k .

Ad esempio per k=2 $\Delta_2=\{(x_1,x_2,x_3)\in\mathbb{R}^3 \mid x_1+x_2+x_3=1,\ 0\leq x_i\leq 1\ \forall i\}$, si definisce la base $e_0=(1,0,0)$ $e_1=(0,1,0)$ $e_2=(0,0,1)$, voglio vedere il bordo del triangolo come facce.

[FIGURA, CONSIDERAZIONI]

Esercizio 1 Dimostrare che se $[\cdot,\cdot]$ indica l'inviluppo convesso allora:

- 1. Per j > i vale che $F_i^{k+1} \circ F_i^{k} = [e_0, \dots, e_i, \dots, e_i, \dots, e_k]$.
- 2. Per $j \leq i$ vale che $F_i^{k+1} \circ F_i^{k} = [e_0, \dots, e_j, \dots, e_{i+1}, \dots, e_k]$.

Dato un k-simplesso singolare $\sigma:\Delta_k\to X$ si definisce la mappa $\sigma^{(i)}=\sigma\circ F_i{}^k.$ [FIGURA]

Figura 1.3: Azione dell'operatore faccia

Definizione 1.1.35 Si definisce il **bordo** di un k-simplesso singolare come $\partial_k \sigma = \sum_{i=0}^k (-)^i \sigma^{(i)}$.

Per k=1 $\partial_1\sigma=p_1-p_0$ infatti $\sigma^0=\sigma\circ F_0^{\ 1}=\sigma(1)=p_1$ e $\sigma^0=\sigma\circ F_1^{\ 1}=\sigma(0)=p_0.^4$ Allora definisco $\partial_k:S_k(X)\to S_{k-1}(X)$ infatti per linearità $\partial_k\left(\sum_g n_g g\right)=\sum_g n_g\partial_k g.$ Devo mostrare che ∂_k è un omomorfismo.

Dimostrazione:

$$\begin{split} \partial_k \left(\sum_g n_g g + \sum_g m_g g \right) &= \partial_k \left(\sum_g (m_g + n_g) g \right) = \sum_g (m_g + n_g) \partial_k g = \\ &= \sum_g n_g \partial_k g + \sum_g m_g \partial_k g = \partial_k \left(\sum_g n_g g \right) + \partial_k \left(\sum_g m_g g \right) \end{split}$$

Quindi il complesso è costituito da:

$$\dots \xrightarrow{\partial_{k+1}} S_k(X) \xrightarrow{\partial_k} S_{k-1}(X) \xrightarrow{\partial_{k-1}} \dots$$

Devo verificare che $\partial_k \circ \partial_{k+1} =$. Spesso come notazione si pone $\partial^2 = 0$.

⁴Tecnicamente si intende $p_0=\partial_1\sigma^{(0)}\overline{(1)}$ e $p_1=\partial_0\sigma^{(1)}(1)$.

Dimostrazione: Se σ è un k-complesso singolare $\sigma: \Delta_k \to X$:

$$\begin{split} \partial_k \circ \partial_{k+1} \sigma &= \partial_k \left(\sum_{j=0}^{k+1} (-)^j (\sigma \circ F_j^{\ k+1}) \right) = \sum_{j=0}^{k+1} (-)^j \partial_k (\sigma \circ F_j^{\ k+1}) \\ &= \sum_{j=0}^{k+1} (-)^j \sum_{i=0}^k (-)^i (\sigma \circ F_j^{\ k+1}) \circ F_i^{\ k} = \sum_{j=0}^{k+1} \sum_{i=0}^k (-)^{j+i} \sigma \circ F_j^{\ k+1} \circ F_j^{\ k} \\ &= \sum_{0 \le i < j \le k+1} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} + \sum_{0 \le j < i \le k} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} \\ &= \sum_{0 \le i < j \le k+1} (-)^{i+j} \sigma \circ F_j^{\ k+1} \circ F_i^{\ k} + \sum_{0 \le j < i \le k} (-)^{i+j} \sigma \circ F_{i+1}^{\ k+1} \circ F_j^{\ k} \\ &= 0 \end{split}$$

Sia X uno spazio topologico, voglio definire l'omologia singolare $H_k(X)$, cioè il k-esimo gruppo di omologia singolare. Costruisco il complesso $(S_{\bullet}(X), \partial)$ con:

$$S_k(X) = \{ \sum_g n_g g \mid g \text{ continua, } n_g \in \mathbb{Z} \}$$

E $\partial_k: S_k(X) \to S_{k-1}(X)$ applicazione di bordo con $\partial_k(g) = \sum_{i=0}^k (-)^i g^{(1)}$ con $g: \Delta_k \to X$, e poi lo estendo per linearità. Si trova che $g^{(1)} = g \circ F_i^{\ k}$.

Il lemma fondamentale è $\partial_{k-1} \circ \partial_k = 0$ quindi $S_k \stackrel{\partial_k}{\to} S_{k-1} \stackrel{\partial_{k-1}}{\to} S_{k-2}$ è un complesso e $\partial_k \circ \partial_{k-1}$ è la mappa dalle catene di S_k a quelle di S_{k-2} .

 $(S_{\bullet}(X),\partial)$ è un complesso di gruppi abeliani o $\mathbb{Z}\text{-}$ moduli liberi.

Siccome vale $\partial^2 = 0$ posso calcolare l'omologia di $(S_{\bullet}(X), \partial_{\bullet})$:

gini di k + 1-catene, cioè esplicitamente:

$$H_k(S_{\bullet}(X)) = \frac{\operatorname{Ker}(\partial_k)}{\operatorname{Im}(\partial_{k+1})}$$

Vale che $\operatorname{Ker}(\partial_k)=\{c\in S_K(X)\mid \partial_k(c)=0\}$, cioè le k-catene con bordo nullo, questi sono chiamati k-cicli.

Definizione 1.1.36 Sia $S_{\bullet}(X)$ un complesso di moduli, gli elementi di $\operatorname{Ker}(\partial)$ sono detti k-ciclo, i quali sono quindi le k-catene con bordo nullo.

Come notazione si pone $Z_k(X)$ come il gruppo abeliano dei k-cicli: $Z_k(X) = \text{Ker}(\partial)$. Si pone invece $B_k(X)$ come l'insieme dei bordi, cioè le k-catene singolari che sono imma-

$$B_k(X) = \{ \eta \in S_k(X) \mid \exists b \in S_{k+1}(X), \partial b = \eta \}$$

Per definizione si ha quindi che $H_k(X) = Z_k(X)/B_k(X)$, cioè il gruppo di omotopia è formato dai cicli modulo i bordi.

Esplicitamente gli elementi di $H_k(X)$ sono classi di equivalenza con rappresentante: Sia $[c] \in H_k(X)$ quindi vale che $\partial c = 0$, sia inoltre $c_1 \in [c]$ allora $c_1 - c \in B_k(X)$ e $\partial c_1 = 0$ quindi esiste b tale che $c_1 - c = \partial b$.

Definizione 1.1.37 Due elementi a, b si dicono **omologhi** se differiscono per un bordo.

$$a \sim_{hom} b \Leftrightarrow \exists c \mid \partial_k c$$

Osservazione 1.1.38 Vale che $H_k(X) = 1 \Leftrightarrow B_k(X) = Z_k(X)$, cioè se ogni ciclo è un bordo. In generale si ha che $B_k(X) \subseteq Z_k(X)$ e possono esserci cicli che non sono immagini di bordi.

Scopo del corso è studiare $H_k(X)$.

Proposizione 1.1.39 Sia X uno spazio topologico connesso per archi, allora $H_0 \cong \mathbb{Z}$, cioè è uno \mathbb{Z} -modulo libero di rango 1. In effetti $H_0(X)$ conta le componenti connesse per archi e quindi da informazioni di natura geometrica.

Dimostrazione: Dalla definizione di gruppo di omologia: $H_0(X) = Z_0(X) / B_0(X)$. Ma $Z_0(X) = \{c \in S_o(X) \mid \partial_0 c = 0\}$ e $S_0(X) = \{\sum n_i p_i \mid n_i \in \mathbb{N}, p_i \in X\}$. Tecnicamente uno 0-simplesso è una mappa $\sigma_0 : \Delta_0 \to X$ tale che manda $\Delta_0 = 1$ in $\sigma_0(1) = p_0$ e per questo è naturale l'identificazione con i punti dello spazio topologico. Sia $c \in S_0(X)$ allora $c = \sum n_i p_i$, e vale che $\partial_0(c) = \sum n_1 \partial_0(p) = 0$, infatti per definizione $\partial_0 : S_0(X) \to s_{-1}(X)$, ma $S_{-1}(X)$ in ogni complesso è banale, cioè $S_{-1}(X) \cong 0$. Quindi per ora ho che:

$$H_0(X) = {\binom{\setminus}{S_0}}(X)(B_0(X))$$

Per definizione $B_0(X)=\{x\in S_0(X)\mid \exists \alpha\in S_1(X), \partial_1(\alpha)=x\}, \alpha$ è una catena. Sia $p_0\in X$, allora $q\sim_{hom} p$ se e solo se $\exists \alpha\in S_1(X)$ tale che $q-p_0=\partial_1\alpha$. Per questo motivo i punti sono tutti omologhi, essendo X connesso per archi esiste un arco che connette q e p_0 , infatti per definizione gli archi sono applicaizoni dall'intervallo a X che hanno come bordo $q-p_0$. Esiste quindi un'unica classe di equivalenza.

Definizione 1.1.40 Si definisce inoltre la mappa **grado** come l'applicazione che manda una catena in $S_0(X)$ nella somma dei suoi coefficienti:

$$deg : S_0(X) \longrightarrow \mathbb{Z}$$

$$\sum n_i p_i \longmapsto \sum n_1$$

Teorema 1.1.41 (Teorema fondamentale degli omomorfismi) $Sia\ f: \mathcal{G}_1 \to \mathcal{G}_2 \ un \ omo-morfismo \ tra \ gruppi \ abeliani, \ allora \ vale \ che:$

$$\mathcal{G}_1/_{\mathrm{Ker}(f)} = \mathrm{Im}(f)$$

Proposizione 1.1.42 La mappa grado gode di alcune proprietà:

1. deg è un omomorfismo di gruppi abeliani

- 2. deg è suriettivo
- 3. $\operatorname{Ker}(\operatorname{deg}) \cong B_0(X)$

Se dimostro questa proprietà utilizando il primo teorema degli omomorfismi ...

Dimostro quindi questa proposizione. **Dimostrazione**: Sia $c_1 = \sum n_i p_i$ e $c_2 = \sum m_i q_i$, devo mostrare che $\deg(c_1+c_2) = \deg(c_1) + \deg(c_2)$, cioè che $c_1+c_2 = \sum n_i p_i + \sum m_i q_i = \sum (n_i+m_i)r_i$ dove r_i è quello comune tra le catene, oppure è zero se l'elemento è presente in solo uno delle due catene.

La mappa è suriettiva, basta prendere un punto: $m \in \mathbb{Z}$ e $\deg^{-1}(m) = mp$

Mostro che $\operatorname{Ker}(\operatorname{deg}) = B_0(X)$. Prendo c tale che $\operatorname{deg}(c) = 0$, $\operatorname{ma} c = \sum n_i p_i$ quindi $\sum n_i = 0$, allora $c \in B_0(X)$? Se $Eb \in S_1(X)$ con $\partial_1 b = c$. Prendo p_0 e altri punti p_1, p_2, p_3, \ldots , c is sono archi $\lambda_1, \lambda_2, \lambda_3, \ldots$ che li uniscono a p_0 . Provo a costruire b in questo modo. Siano $\lambda_i : [0,1] \to X$ con $\lambda_i(0) = p_i$ e $\lambda_i(1) = p_i$ considero $c \to \partial (\sum n_1 \lambda_i) = c - \sum n_i \partial \lambda_i = c - \sum n_i (p_i - p_0) = c - \sum n_i p_i = \sum n_i p_0 = 0$. Siccome per ipotesi $p_0 \in \operatorname{Ker}(\operatorname{deg})$ e $c = \sum n_i p_i$ allora $c = \partial (\sum n_i \lambda_i)$ quindi $\sum n_i \lambda_i = b$ da cui $\operatorname{Ker}(\operatorname{deg}) \subseteq B_0(X)$. Mi rimane da mostrare che $B_0(X) \subseteq \operatorname{Ker}(\operatorname{deg})$, infatti ora mostro che se $c \in B_0(X)$ allora $\operatorname{deg}(c) = 0.c = \partial b$ ma se λ_i sono gli archi $b = \sum m_i \lambda_i$ quindi $\partial b = \sum n_i \partial \lambda_i$ ma $\partial \lambda_i = \lambda_i(1) - \lambda_i(0)$ e l'azione dell'opertaore grado è quella di sommare i coefficienti, quindi

$$deg(c) = deg(\partial b) = \sum n_i deg(\partial \lambda_i) = 0$$

Per questo $H_0(X) \cong \mathbb{Z}$ generato dalla classe $[p] \ \forall p \in X$ (con X connesso per archi). Se ci sono più componenti connesse per archi posso ripetere il ragionamento senza connettere componenti distinte, quindi trovo che:

$$H_0(X) \cong \mathbb{Z}^{N_c}$$

Dove N_c è il numero di componenti connesse per archi di X con $N_c < +\infty$.

Cosa si può dire invece su $H_1(X)$?

Sia X spazio topologico e $x_0 \in X$, allora alla coppia (X,x_0) si associa il gruppo fondamentale $\pi_1(X,x_0)$. In generale il gruppo fondamentale non è abeliano, allora conviene studiare la versione abelianizzata: $\mathrm{Ab}(\pi_1(X,x_0)) = \frac{\pi_1(X,x_0)}{\pi_i(X,x_0)'}$ dove ' indica il **gruppo derivato**, cioè il gruppo generato dai comutatori.

$$\pi_1(X, x_0)' = [\pi_1(X, x_0), \pi_1(X, x_0)]$$

Se X è connesso per archi allora $\mathrm{Ab}(\pi_1(X,x_0))\cong H_1(X)$, quindi conoscendo il gruppo fondamentale si può calcolare il primo gruppo di omologia.

1.1.4 Richiami sul gruppo fondamentale

Definizione 1.1.43 Sia X uno spazio topologico e x_0 un suo punto, allora un **laccio** è un arco in X avente come punto di partenza e punto di arrivo il punto x_0 . Un laccio c_{x_0} si dice **costante** se $\forall t \in I$ $c_{x_0}(t) = x_0$ con $x_0 \in X$.

Vorrei strutturare l'insieme dei lacci in uno spazio X come un gruppo con l'operazione di giunzione e avente come unità il laccio costante. Questo non si riesce a fare perché il laccio costante non sempre la giunzione di un laccio con il suo inverso è il laccio costante. Per questo si passa al quoziente rispetto la relazione di omotopia.

Definizione 1.1.44 Sia X uno spazio topologico e $x_0 \in X$ un suo punto, allora la coppia (X, x_0) è detta spazio topologico puntato.

Definizione 1.1.45 Sia (X, x_0) uno spazio topologico puntato e $f: I \to X$ una mappa continua tale che $f(0) = f(1) = x_0 \ \forall t \in I$, si dice che una funzione continua g è **omotopicamente equivalente** a $f(g \sim_H f)$ se esiste una funzione continua $F: I \times I \to X$ tale che;

- $F(0,x) = f(x) \ \forall x \in I$
- $F(1,x) = g(x) \ \forall x \in I$
- $F(s,0) = x_0 \ \forall s \in I$
- $F(s,1) = x_0 \ \forall s \in I$

La relazione \sim_H è detta **relazione di omotopia** e si dimostra essere una relazione di equivalenza.

Figura 1.4: Omotopia: deforma f in g in modo continuo.

Si definisce l'insieme;

$$\pi_1(X,x_0) = \big\{\, f: I \to X \mid f \text{ continua}, f(0) = f(1) = x_0 \,\big\} \big/_{\sim_H}$$

Questo insieme può essere equipaggiato con un'operazione di somma facendolo diventare un gruppo, questo è il **gruppo fondamentale**, tale operazione è: Siano $[f], [g] \in \pi_i(X, x_0)$ si definisce $[f][g] = [f \star g]$, dove l'operazione \star è il **cammino composto**, o **giunzione**, definita da:

$$(f\star g)(t) = \begin{cases} f(2t) & \text{se } 0 \leq t \leq \frac{1}{2} \\ g(2t-1) & \text{se } \frac{1}{2} \leq t \leq 1 \end{cases}$$

L'elemento neutro di questa operazione è il cammino costante $1=[C_{x_0}]$ con $C_{x_0}(t)=x_0 \ \forall t$. L'inverso di un elemento invece è $[f]^{-1}=[\bar{f}]$ dove \bar{f} è il cammino percorso in verso opposto, cioè definito da $\bar{f}(t)=f(1-t)$, in questo modo $\bar{f}(0)=f(1)$ e $\bar{f}(1)=f(0)$. Proprietà:

• $\pi_1(X, x_0)$ è invariante omotopico, cioè se $X \sim_H Y$, cioè se

$$\exists f: X \rightarrow Y, g: Y \rightarrow X \mid f \circ g \sim_{H} 1_{Y} \text{ e } g \circ f \sim_{H} 1_{X}$$

allora $\pi_1(X,x_o)\cong\pi_1(Y,f(x_0)).$ Questo in particolare porta alla seguente utile osservazione:

Osservazione 1.1.46 Se due spazi topologici puntati hanno gruppi fondamentali non isomorfi allora non possono essere omotopicamente equivalenti.

- Se X è **contraibile** (cioè è omotopo ad un punto) allora vale che $\pi_1(X, x_0) \cong 1$, cioè il gruppo fondamentale è banale.
- Si dimostra che:

Proposizione 1.1.47 Se uno spazio tologico X è connesso per archi allora tutti i gruppi fondamentali degli spazi puntati (X, x_0) sono isomorfi, cioè si può omettere la dipendenza da x_0 .

Questo intuitivamente è vero perché se gli spazi sono connessi per archi allora esistono cammini che collegano qualunque coppia di punti.

Definizione 1.1.48 *Uno spazio topologico connesso per archi si dice semplicemente connesso se il suo gruppo fondamentale è banale.*

Osservazione 1.1.49 Non tutti gli spazi semplicemente connessi sono contraibili, come ad esempio S^2 .

• $\pi_1(S^1) \cong \mathbb{Z}$, infatti si può costruire la mappa:

$$\sigma: I \to \mathcal{S}^1$$
$$t \mapsto e^{2\pi i t}$$

Questa è tale che $\sigma(0) = \sigma(1) = 1$ quindi $[\sigma] \in \pi_1(\mathcal{S}^1)$ e $\pi_1(\mathcal{S}^1) \to \mathbb{Z}$ con $[\sigma] \mapsto 1$. Ogni elemento è multiplo di σ e il fattore di proporzionalità conta il numero di avvolgimenti del cammino.

- $\pi_1(X \times Y) \cong \pi_1(X) \times \pi_1(Y)$
- Il gruppo fondamentale si calcola o partendo da gruppi omotopi oppure utilizzando il **teorema di Seifert-van Kampen**, il quale fornisce un metodo algoritmico per il calcolo.

Figura 1.5: Toro piatto, o anche toro di Clifford

Ad esempio: $V_0:=\mathcal{S}^2$ $V_g:=P_{\frac{4g}{N}}$ con $g\in\mathbb{N},g\geq 1$ e $P_{\frac{k}{N}}$ poligono con k lati e con idenfiticazioni. Nel caso g=1 si ottiene un toro piatto. Si usano simboli combinatori per descrivere l'identificazione: si definisce un verso di percorrenza, si assegnano delle lettere a ciascun lato e si scrivono in ordine tali lettere, aggiungendo un esponente -1 quando il verso di percorrenza è opposto. In questo caso quindi si ha $aba^{-1}b^{-1}$.

In genrale si ha $a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}$.

Si dimostra che queste sono varietà differenziabili, in particolare per g=1 si ha un toro, per g=2 un bitoro, g è detto **genere** .

Si trova con il teorema di Seifert-Van Kampen che:

$$\pi_1(V_g)\cong egin{cases} 1 & ext{se }g=0 \ \mathbb{Z}\oplus\mathbb{Z} & ext{se }g=1 \ < a_1b_1\dots\Pi_{i=1}^g[a_i,b_i]=1> & ext{se }g>1 \end{cases}$$

Dove [,] è il commutatore, cioè esattamente $a_1b_1a_1^{-1}b_1^{-1}\dots a_gb_ga_g^{-1}b_g^{-1}$. Solo per g=0 o g=1 si ottengono dei gruppi abeliani, ma io vorrei averlo sempre abeliano, quindi lo abelianizzo.

$$\mathrm{Ab}(\pi_1(X)) = \frac{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = \frac{\pi_1(X)}{\pi_1'(X)}$$

Chiaramente questo gruppo è abeliano e si calcola facilmente che $\mathrm{Ab}(\pi_1(V_g)) \cong \mathbb{Z}^{2g}$ per $g \geq 2$. Si vedono facilmente anche i generatori, ad esempio per un toro sono riportati in figura

L'abelianizzato è uno \mathbb{Z} -modulo.

Osservazione 1.1.50 Sia X uno spazio topologico connesso per archi, $\mathcal G$ un gruppo abeliano. Suppongo esista un omomorfismo di gruppi $\varphi:\pi_1(X)\to \mathcal G$ allora esiste $\varphi':\mathrm{Ab}(\pi_1(X))\to \mathcal G$ omomorfismo di gruppi abeliani.

$$\begin{array}{c}
\pi_1(X) \xrightarrow{\varphi} \mathcal{G} \\
\downarrow^P & \\
\operatorname{Ab}(\pi_1(X))
\end{array}$$

torus_generators.pdf

Figura 1.6: Generatori di un toro

P è la proiezione sul quoziente. φ' esiste perchè in $\mathrm{Ab}(\pi_1(X))$ c'è tutto quello che sta nel nucleo. $\varphi'(a) = \varphi'(P(c)) := \varphi(c)$. Allora $\varphi'(a) = \varphi'(P(d)) = \varphi(d)$, devo mostrare che $\varphi(c) = \varphi(d)$. Siccome $\mathcal G$ è abeliano $p(c) \sim p(d)$, e quindi c = d[x,y] per cui: $\varphi(c) = \varphi(d[x,y])$, siccome φ è omomorfismo:

$$\varphi(d[x,y]) = \varphi(d)\varphi([x,y]) = \varphi(d)\varphi(xyx^{-1}y^{-1}) = \varphi(d)\varphi(x)\varphi(y)\varphi(x)^{-1}\varphi(y)^{-1} = \varphi(d)$$

dove nell'ultimo passaggio ho utilizzato che il gruppo è abeliano. Per questo φ' è ben definito.

Questa osservazione dipende crucialmente dal fatto che il gruppo è abeliano.

Voglio dimostrare che $\mathrm{Ab}(\pi_1(X))\cong H_1(X)$, in questo modo per il teorema di Seifert-van Kampen posso ottenere tante informazioni su $H_1(X)$. Per ora so che $H_1(X)$ è uno \mathbb{Z} -modulo. Se costruisco $\varphi:\pi_1(X)\to H_1(X)$ ottengo gratuitamente la mappa da $\mathrm{Ab}(\pi_1(X))$ a $H_1(X)$.

$$\begin{array}{c}
\pi_1(X) \xrightarrow{\varphi} \mathcal{G} \\
\downarrow_P & \\
\operatorname{Ab}(\pi_1(X))
\end{array}$$

Poi dovrò mostrare che questa mappa è invertibile, cioè $\exists \psi: H_!(X) \to A_1(X)$ tale che $\varphi' \circ \psi = \mathbb{I}_{H_1(X)}$ e $\psi \circ \varphi' = \mathbb{I}_{Ab(\pi_1(X))}$. Provo a costruire φ .

$$\varphi: \pi_1(X) \to H_!(X)$$

 $[f]_H \mapsto [f]_{hom}$

Usando il seguente risultato:

Lemma 1.1.51 Se $f \sim_H g$ allora $f \sim_{hom} g$.

Dimostrazione: Siccome $f \sim_H g$ allora $\exists F$ continua tale $F: I \times I \to X$ tale che F(0,x) = f(x), F(1,x) = g(x) e $F(t,0) = x_0$ in quanto è un laccio. [FIGURA] Voglio mostrare che è il bordo di un 2-simplesso. Faccio l'equivalenza $I \times I / 0xI \simeq \Delta_2$. [FIGURA] E questo è omeomorfo a un 2-simplesso standard. Siccome rimane costante su x_0 questa mappa induce F':

$$I \times I \xrightarrow{F} X$$

$$\downarrow_{P} \xrightarrow{F'} X$$

$$I \times I/_{0 \times I} \simeq \Delta_{2}$$

Calcolo il bordo: $\partial F' = F'^{(0)} - F'^{(1)} + F'^{(2)} = K - g + f$ dove K è il cammino costante per definizione di omotopia. Se K fosse il bordo di qualcosa avrei finito ($\partial w = f - g$). Prendo il 2-simplesso standard K costante e uguale a x_0 (è la stessa costante di K):

$$\partial K = K^{(0)} - K^{(1)} + K^{(2)}$$

ma questi sono uguali perché sono costanti.