Novel heteroaryl derivatives and their use as medicaments

Field of the invention

The invention relates to novel heteroaryl derivatives of the formula 1, to their preparation and to their use as medicaments, in particular for treating tumors.

Description of the invention

According to one aspect of the invention, novel quinoline derivatives of the formula 1

$$\begin{array}{c}
R \\
R_1
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
R_4
\end{array}$$

$$\begin{array}{c}
R_1
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
R_1
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
R_1
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
R_2$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
R_2$$

$$\begin{array}{c}
R_2
\end{array}$$

10

in which

R, R_1 , R_2 , R_3 can be attached to any of the quinoline carbon atoms C_2 to C_8 , are the same or different and independently of one another denote hydrogen, straight-chain or branched (C_1 - C_8)-alkyl,

¢,

5

10

15

 (C_3-C_7) -cycloalkyl, straight-chain or branched (C_1-C_8) alkylcarbonyl, preferably acetyl, straight-chain or branched (C_1-C_8) -alkoxy, halogen, aryl- (C_1-C_8) -alkoxy, preferably benzyloxy or phenylethyloxy, nitro, amino, mono-(C₁-C₄)alkylamino, $di-(C_1-C_4)$ -alkylamino, (C_1-C_8) alkoxycarbonylamino, (C₁-C₆)-alkoxycarbonylamino-(C₁-C₈)alkyl, cyano, straight-chain or branched cyano-(C₁-C₆)-alkyl, carboxyl, (C₁-C₈)-alkoxycarbonyl, (C₁-C₄)-alkyl which is substituted by one or more fluorine atoms, preferably the trifluoromethyl group, carboxy- (C_1-C_8) -alkyl or (C_1-C_8) alkoxycarbonyl- (C_1-C_6) -alkyl, (C_2-C_6) -alkenyl, preferably allyl, (C₂-C₆)-alkynyl, preferably ethynyl or propargyl, straight-chain or branched cyano-(C₁-C₆)-alkyl, preferably cyanomethyl, aryl, where the aryl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of halogen, straight-chain or branched (C₁-C₈)-alkyl, (C₃-C₇)-cycloalkyl, carboxyl, straightchain or branched (C₁-C₈)-alkoxycarbonyl, preferably tertbutoxycarbonyl, by trifluoromethyl, hydroxyl, straight-chain or branched (C_1-C_8) -alkoxy, preferably methoxy or ethoxy, benzyloxy, nitro, amino, mono-(C₁-C₄)-alkylamino, di-(C₁- C_4)-alkylamino, cyano, straight-chain or branched cyano-(C_1 -C₆)-alkyl, where additionally R and R₁ or R₂ and R₃ may form a fused aromatic 6-membered ring with the quinoline ring

20

forming an acridine ring which for its part can be substituted at any C atom ring position by the radicals R, R_1 , R_2 and R_3 having the meanings mentioned above;

Z is oxygen or sulfur, where the radical

$$Z$$
 P
 $(CH_2)m$
 R
 $CH_2)m$

substituted on the quinoline heterocycle can be attached to C atoms C_2 - C_8 of the quinoline ring skeleton;

- P, Q independently of one another represent oxygen or in each case two hydrogen atoms (i.e. -CH₂-);
- 10 X is nitrogen or C- R_5 , where R_5 represents hydrogen or (C_1-C_6) -alkyl;
 - n,m independently of one another denotes an integer between 0-3, with the proviso that in the case n = 0, X denotes a CR_5R_6 group where R_5 and R_6 independently of one another represent hydrogen or (C_1-C_6) -

10

15

20

alkyl and that the nitrogen atom adjacent to the C=Z group is substituted by a hydrogen atom or a (C-C₆)-alkyl group;

R₄ or a straight-chain or branched (C₁-C₂₀)-alkyl radical which can be saturated or unsaturated, with one to three double and/or triple bonds, and which can be unsubstituted or may optionally be substituted at the same or different C atoms by one, two or more aryl, heteroaryl, halogen, cyano, (C₁-C₆)-alkoxycarbonylamino, (C₁- C_6)-alkoxy, amino, mono- (C_1-C_4) -alkylamino or di- (C_1-C_4) alkylamino; a (C_6-C_{14}) -aryl radical, (C_6-C_{14}) -aryl- (C_1-C_4) -alkyl radical, or a a (C_2-C_{10}) -heteroaryl or (C_2-C_{10}) -heteroaryl- (C_1-C_4) alkyl radical which contains one or more heteroatoms selected from the group of N, O and S, where the (C₁-C₄)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C₁-C₆)-alkyl, halogen or oxo (=O), and where the (C₆-C₁₄)-aryl or (C₂-C₁₀)-heteroaryl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of straight-chain or branched (C₁-C₈)- (C_3-C_7) -cycloalkyl, halogen, cyano, (C_1-C_6) alkoxycarbonylamino, (C₁-C₆)-alkoxy, carboxyl, (C₁-C₈)alkoxycarbonyl, straight-chain or branched (C₁-C₆)-alkyl which is atoms, preferably or more fluorine one substituted by trifluoromethyl, hydroxyl, straight-chain or branched (C₁-C₈)alkoxy, preferably methoxy or ethoxy, where adjacent oxygen atoms

10

15

may also be linked by (C_1-C_2) -alkylene groups, preferably by a methylene group, benzyloxy, nitro, amino, mono- (C_1-C_4) -alkylamino, di- (C_1-C_4) -alkylamino, aryl, which for its part can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of straight-chain or branched (C_1-C_8) -alkyl, (C_3-C_7) -cycloalkyl, carboxyl, straight-chain or branched (C_1-C_8) -alkoxycarbonyl, by trifluoromethyl, hydroxyl, straight-chain or branched (C_1-C_8) -alkoxy, preferably methoxy or ethoxy, benzyloxy, nitro, amino, mono- (C_1-C_4) -alkylamino, di- (C_1-C_4) -alkylamino, cyano, straight-chain or branched cyano- (C_1-C_6) -alkyl;

and their structural isomers and stereoisomers, in particular tautomers, diastereomers and enantiomers, and their pharmaceutically acceptable salts, in particular acid addition salts, are provided.

Thus, for example, the compounds of the formula (1) according to the invention which have one or more centers of chirality and which are present as racemates can be separated by methods known per se into their optical isomers, i.e. enantiomers or diastereomers. The separation can be carried out by column separation on chiral phases or by recrystallization from an optically active solvent or using an optically active acid or base or by derivatization with an optically active reagent, such as, for example, an optically active alcohol, and subsequent removal of the radical.

15

Furthermore, the quinoline derivatives of the formula (1) according to the invention can be converted into their salts with inorganic or organic acids, in particular, for pharmaceutical use, into their physiologically acceptable salts. Acids which are suitable for this purpose are, for example, hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, fumaric acid, succinic acid, lactic acid, citric acid, acetic acid, tartaric acid, malic acid, embonic acid, malonic acid, trifluoroacetic acid or maleic acid.

Moreover, the compounds of the formula (1) according to the invention can, if they contain a sufficiently acidic group, such as a carboxyl group, be converted, if desired, into their salts with inorganic or organic bases, in particular, for pharmaceutical use, into their physiologically acceptable salts. Bases which are suitable for this purpose are, for example, sodium hydroxide, potassium hydroxide, calcium hydroxide, lysine, cyclohexylamine, ethanolamine, diethanolamine and triethanolamine.

According to a preferred embodiment, quinoline derivatives of the formula 1 are provided in which R, R1, R2, R3, X, Z, P, Q, n and m have the meanings given above and

20 R₄ denotes a straight-chain or branched (C₁-C₂₀)-alkyl radical which can be saturated or unsaturated, with one to three double and/or triple bonds, and which can be unsubstituted or optionally substituted on the same or different C atoms by one, two or more aryl, heteroaryl, halogen, (C1-C6)-alkoxy, amino, mono-(C_1 - C_4)-alkylamino or di-(C_1 - C_4)-alkylamino;

5

10

U

15

20

a phenyl ring or a naphthyl ring, each of which can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of straight-chain or branched (C₁-C₈)-alkyl, (C₃-C₇)cycloalkyl, halogen, carboxyl, (C1-C8)-alkoxycarbonyl, straightchain or branched (C₁-C₆)-alkyl which is substituted by one or more fluorine atoms, preferably trifluoromethyl, hydroxyl, straight-chain or branched (C1-C8)-alkoxy, preferably methoxy or ethoxy, where adjacent oxygen atoms may also be linked by (C₁-C₂)-alkylene groups, preferably a methylene group, benzyloxy, nitro, amino, mono- (C_1-C_4) -alkylamino, di- (C_1-C_4) -alkylamino, aryl, which for its part can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of straight-chain or branched (C_1-C_8) -alkyl, (C_3-C_7) -cycloalkyl, carboxyl, straight-chain branched (C₁-C₈)-alkoxycarbonyl, by trifluoromethyl, hydroxyl, straight-chain or branched (C1-C8)-alkoxy, preferably methoxy or ethoxy, benzyloxy, nitro, amino, mono-(C1-C4)-alkylamino, di-(C1-C₄)-alkylamino, cyano, straight-chain or branched cyano-(C₁-C₆)alkyl;

a 2-, 4-, 5- or 6-pyrimidinyl radical, or a 2-, 4-, 5- or 6-pyrimidinyl- (C_1-C_4) -alkyl radical, where the (C_1-C_4) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 2-, 4-, 5- or 6-pyrimidinyl radical can be unsubstituted or mono- to trisubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl-and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 3-, 4-, 5- or 6-pyridazinyl radical, or a 3-, 4-, 5- or 6-pyridazinyl- (C_1-C_4) -alkyl radical, where the (C_1-C_4) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 3-, 4-, 5- or 6-pyridazinyl radical can be unsubstituted or mono- to trisubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or

10

15

20

polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryland (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 2-, 3-, 5- or 6-pyrazinyl radical, or a 2-, 3-, 5- or 6-pyrazinyl-(C_1 - C_4)-alkyl radical, where the (C_1 - C_4)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1 - C_6)-alkyl, halogen or oxo (=O), and the 2-, 3-, 5- or 6-pyrazinyl radical can be unsubstituted or mono- to trisubstituted by the same or different substituents from the group of hydrogen, (C_1 - C_6)-alkyl, halogen, nitro, amino, mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, hydroxyl, (C_1 - C_6)-alkoxy, benzyloxy, carboxyl, (C_1 - C_6)-alkoxycarbonyl, (C_1 - C_6)-alkoxycarbonylamino or (C_1 - C_6)-alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6 - C_{10})-aryl-and (C_6 - C_{10})-aryl-(C_1 - C_6)-alkyl;

a 3-, 4-, 5-, 6-, 7-, or 8-cinnolinyl radical, or a 3-, 4-, 5-, 6-, 7-, or 8-cinnolinyl- (C_1-C_4) -alkyl radical, where the (C_1-C_4) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 3-, 4-, 5-, 6-, 7-, or 8-cinnolinyl radical can be unsubstituted or mono- to pentasubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino,

hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 2-, 4-, 5-, 6-, 7-, or 8-quinazolinyl radical, or a 2-, 4-, 5-, 6-, 7-, or 8-quinazolinyl-(C_1 - C_4)-alkyl radical, where the (C_1 - C_4)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of hydrogen, (C_1 - C_6)-alkyl, halogen or oxo (=O), and the or [sic] 2-, 4-, 5-, 6-, 7-, or 8-quinazolinyl radical can be unsubstituted or mono- to pentasubstituted by the same or different substituents from the group of hydrogen, (C_1 - C_6)-alkyl, halogen, nitro, amino, mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, hydroxyl, (C_1 - C_6)-alkoxy, benzyloxy, carboxyl, (C_1 - C_6)-alkoxycarbonyl, (C_1 - C_6)-alkoxycarbonylamino or (C_1 - C_6)-alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6 - C_{10})-aryl-and (C_6 - C_{10})-aryl-(C_1 - C_6)-alkyl;

a 2-, 3-, 5-, 6-, 7-, or 8-quinoxalinyl radical, or a 2-, 3-, 5-, 6-, 7-, or 8-quinoxalinyl- (C_1-C_4) -alkyl radical, where the (C_1-C_4) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the or [sic] 2-, 3-, 5-, 6-, 7-, or 8-quinoxalinyl radical

can be unsubstituted or mono- to pentasubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

10

5

10

15

a 1-, 4-, 5-, 6-, 7-, or 8-phthalazinyl radical, or a 1-, 4-, 5-, 6-, 7-, or 8-phthalazinyl-(C_1 - C_4)-alkyl radical, where the (C_1 - C_4)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1 - C_6)-alkyl, halogen or oxo (=O), and the or [sic] 1-, 4-, 5-, 6-, 7-, or 8-phthalazinyl radical can be unsubstituted or mono- to pentasubstituted by the same or different substituents from the group of hydrogen, (C_1 - C_6)-alkyl, halogen, nitro, amino, mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, hydroxyl, (C_1 - C_6)-alkoxy, benzyloxy, carboxyl, (C_1 - C_6)-alkoxycarbonyl, or (C_1 - C_6)-alkoxycarbonylamino or (C_1 - C_6)-alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6 - C_{10})-aryl and (C_6 - C_{10})-aryl-(C_1 - C_6)-alkyl;

20

a 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolyl radical, or a 2-, 3-, 4-, 5-, 6-, 7 or 8-quinolyl- (C_1-C_4) -alkyl radical, where the (C_1-C_4) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or

<u>*</u>.

5

10

15

20

different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 2-, 3-, 4-, 5-, 6-, 7- or 8-quinolyl radical can be unsubstituted or mono- to hexasubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, preferably methyl, particularly preferably 2-methyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryland (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolyl radical, or a 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolyl- (C_1-C_4) -alkyl radical, where the (C_1-C_4) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 1-, 3-, 4-, 5-, 6-, 7- or 8-isoquinolyl radical can be unsubstituted or mono- to hexasubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkylwhich is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 2-, 6-, 8- or 9-[9H]-purinyl radical, or a 2-, 6-, 8- or 9-[9H]-purinyl-(C_1 - C_4)-alkyl radical, where the (C_1 - C_4)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1 - C_6)-alkyl, halogen or oxo (=O), and the 2-, 6-, 8- or 9-[9H]-purinyl radical can be unsubstituted or mono- to trisubstituted by the same or different substituents from the group of hydrogen, (C_1 - C_6)-alkyl, halogen, nitro, amino, mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, hydroxyl, (C_1 - C_6)-alkoxy, benzyloxy, carboxyl, (C_1 - C_6)-alkoxycarbonyl, (C_1 - C_6)-alkoxycarbonylamino or (C_1 - C_6)-alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6 - C_{10})-aryl-and (C_6 - C_{10})-aryl-(C_1 - C_6)-alkyl;

a 2-, 6-, 7- or 8-[7H]-purinyl radical, or a 2-, 6-, 7- or 8-[7H]-purinyl-(C_1 - C_4)-alkyl radical, where the (C_1 - C_4)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1 - C_6)-alkyl, halogen or oxo (=O), and the 2-, 6-, 7- or 8-[7H]-purinyl radical can be unsubstituted or mono- to trisubstituted by the same or different substituents from the group of hydrogen, (C_1 - C_6)-alkyl, halogen, nitro, amino, mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, hydroxyl, (C_1 - C_6)-alkoxy, benzyloxy, carboxyl, (C_1 - C_6)-alkoxycarbonyl, (C_1 - C_6)-alkoxycarbonylamino or (C_1 - C_6)-alkyl which is mono- or

10

15

20

polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryland (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl radical, or a 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl- (C_1-C_4) -alkyl radical, where the (C_1-C_6) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-acridinyl radical can be unsubstituted or mono- to octasubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-phenanthridinyl radical, or a 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-phenanthridinyl- (C_1-C_6) -alkyl radical, where the (C_1-C_6) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen or oxo (=O), and the 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8- or 9-phenanthridinyl radical can be unsubstituted or mono- to octasubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -

10

15

20

alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, (C_6-C_{10}) -aryl- (C_1-C_6) -alkoxy, preferably benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 2-, 3-, 4-, 5- or 6-pyridyl radical where the 2-, 3-, 4-, 5- or 6-pyridyl radical can be unsubstituted or mono- to tetrasubstituted by the same or different substituents from the group of hydrogen, (C_1 - C_6)-alkyl, halogen, nitro, amino, mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, hydroxyl, (C_1 - C_6)-alkoxy, benzyloxy, carboxyl, (C_1 - C_6)-alkoxycarbonyl, (C_1 - C_6)-alkoxycarbonylamino or (C_1 - C_6)-alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6 - C_{10})-aryl and (C_6 - C_{10})-aryl-(C_1 - C_6)-alkyl;

a 2-, 3-, 4-, 5- or 6-pyridinyl-(C_1 - C_6)-alkyl radical, where the (C_1 - C_6)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1 - C_6)-alkyl, halogen or oxo (=O), and the 2-, 3-, 4-, 5- or 6-pyridinyl radical can be unsubstituted or mono- to tetrasubstituted by the same or different substituents from the group of hydrogen, (C_1 - C_6)-alkyl, halogen, nitro, amino, mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, hydroxyl, (C_1 - C_6)-alkoxy, benzyloxy, carboxyl, (C_1 - C_6)-alkoxycarbonyl, (C_1 - C_6)-alkoxycarbonylamino or (C_1 - C_6)-alkylamino,

10

15

20

which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 2-, 3-, 4- or 5-thienyl radical, or a 2-, 3-, 4- or 5-thienyl-(C_1 - C_6)-alkyl radical, where the (C_1 - C_6)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1 - C_6)-alkyl, halogen or oxo (=O), and the 2-, 3-, 4- or 5-thienyl radical can be unsubstituted or mono- to trisubstituted by the same or different substituents from the group of hydrogen, (C_1 - C_6)-alkyl, halogen, nitro, amino, mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, hydroxyl, (C_1 - C_6)-alkoxy, benzyloxy, carboxyl, (C_1 - C_6)-alkoxycarbonyl, (C_1 - C_6)-alkoxycarbonylamino or (C_1 - C_6)-alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6 - C_{10})-aryl and (C_6 - C_{10})-aryl-(C_1 - C_6)-alkyl;

a 2-, 4-, or 5-thiazolyl radical, or a 2-, 4-, or 5-thiazolyl- (C_1-C_6) -alkyl radical, where the (C_1-C_6) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 2-, 4-, or 5-thiazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl

10

which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 3-, 4-, or 5-isothiazolyl radical, or a 3-, 4-, or 5-isothiazolyl-(C_1 - C_6)-alkyl radical, where the (C_1 - C_6)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1 - C_6)-alkyl, halogen or oxo (=O), and the 3-, 4-, or 5-isothiazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, (C_1 - C_6)-alkyl, halogen, nitro, amino, mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, hydroxyl, (C_1 - C_6)-alkoxy, benzyloxy, carboxyl, (C_1 - C_6)-alkoxycarbonyl, (C_1 - C_6)-alkoxycarbonylamino or (C_1 - C_6)-alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6 - C_{10})-aryl-and (C_6 - C_{10})-aryl-(C_1 - C_6)-alkyl;

a 2-, 4-, 5-, 6-, or 7-benzothiazolyl radical, or a 2-, 4-, 5-, 6-, or 7-benzothiazolyl-(C₁-C₆)-alkyl radical, where the (C₁-C₆)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C₁-C₆)-alkyl, halogen or oxo (=O), and the 2-, 4-, 5-, 6-, or 7-benzothiazolyl radical can be unsubstituted or mono- to tetrasubstituted by the same or different substituents from the group of hydrogen, (C₁-C₆)-alkyl, halogen, nitro, amino, mono-(C₁-C₆)-alkylamino, di-(C₁-C₆)-alkylamino,

10

15

20

hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 1-, 2-, 4-, or 5-imidazolyl radical, or a 1-, 2-, 4-, or 5-imidazolyl- (C_1-C_6) -alkyl radical, where the (C_1-C_6) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 1-, 2-, 4-, or 5-imidazolyl radical can be unsubstituted or mono- to trisubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryland (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 1-, 3-, 4-, or 5-pyrazolyl radical, or a 1-, 3-, 4- or 5-pyrazolyl-(C_1 - C_6)-alkyl radical, where the (C_1 - C_6)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1 - C_6)-alkyl, halogen or oxo (=O), and the 1-, 3-, 4- or 5-pyrazolyl radical can be unsubstituted or mono- to trisubstituted by the same or different substituents from the

group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryland (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 1-, 2-, 3-, 4-, or 5-pyrrolyl radical, or a 1-, 2-, 3-, 4-, or 5-pyrrolyl- (C_1-C_6) -alkyl radical, where the (C_1-C_6) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 1-, 2-, 3-, 4- or 5-pyrrolyl radical can be unsubstituted or mono- to tetrasubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 1-, 3-, or 5-[1.2.4]-triazolyl radical, or a 1-, 3-, or 5-[1.2.4]-triazolyl- (C_1-C_6) -alkyl radical, where the (C_1-C_6) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen or

10

15

20

oxo (=O), and the 1-, 3-, or 5-[1.2.4]-triazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 1-, 4-, or 5-[1.2.3]-triazolyl radical, or a 1-, 4-, or 5-[1.2.3]-triazolyl- (C_1-C_6) -alkyl radical, where the (C_1-C_6) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 1-, 4-, or 5-[1.2.3]-triazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl

a 1- or 5-[1H]-tetrazolyl radical, or a 1-, or 5-[1H]-tetrazolyl-(C_1 - C_6)-alkyl radical, where the (C_1 - C_6)-alkyl radical can be

and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 1-, or 5-[1H]-tetrazolyl radical can be unsubstituted or substituted by hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryland (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

10

15

5

a 2- or 5-[2H]-tetrazoyl radical, or a 2- or 5-[2H]-tetrazolyl-(C_1 - C_6)-alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1 - C_6)-alkyl, halogen or oxo (=O), and the 2- or 5-[2H]-tetrazolyl radical can be unsubstituted or substituted by hydrogen, (C_1 - C_6)-alkyl, halogen, nitro, amino, mono-(C_1 - C_6)-alkylamino, di-(C_1 - C_6)-alkylamino, hydroxyl, (C_1 - C_6)-alkoxy, benzyloxy, carboxyl, (C_1 - C_6)-alkoxycarbonyl, (C_1 - C_6)-alkoxycarbonylamino or (C_1 - C_6)-alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6 - C_{10})-aryland (C_6 - C_{10})-aryl-(C_1 - C_6)-alkyl;

20

a 2-, 4-, or 6-[1.3.5]-triazinyl radical, or a 2-, 4-, or 6-[1.3.5]-triazinyl- (C_1-C_6) -alkyl radical, where the (C_1-C_6) -alkyl radical can be

unsubstituted or mono- or polysubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen or oxo (=O), and the 2-, 4-, or 6-[1.3.5]-triazinyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 2-, 4-, or 5-oxazolyl radical, or a 2-, 4-, or 5-oxazolyl- (C_1-C_6) -alkyl radical, where the (C_1-C_6) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 2-, 4-, or 5-oxazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 3-, 4-, or 5-isoxazolyl radical, or a 3-, 4-, or 5-isoxazolyl- (C_1-C_6) -alkyl radical, where the (C_1-C_6) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 3-, 4-, or 5-isoxazolyl radical can be unsubstituted or mono- or disubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl;

a 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl radical, or a 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl- (C_1-C_6) -alkyl radical, where the (C_1-C_6) -alkyl radical can be unsubstituted or mono- or polysubstituted by the same or different substituents from the group of (C_1-C_6) -alkyl, halogen or oxo (=O), and the 1-, 2-, 3-, 4-, 5-, 6- or 7-indolyl radical can be unsubstituted or mono- to hexasubstituted by the same or different substituents from the group of hydrogen, (C_1-C_6) -alkyl, halogen, nitro, amino, mono- (C_1-C_6) -alkylamino, di- (C_1-C_6) -alkylamino, hydroxyl, (C_1-C_6) -alkoxy, benzyloxy, carboxyl, (C_1-C_6) -alkoxycarbonyl, (C_1-C_6) -alkoxycarbonylamino or (C_1-C_6) -alkyl which is mono- or polysubstituted by fluorine, preferably trifluoromethyl, (C_6-C_{10}) -aryl and (C_6-C_{10}) -aryl- (C_1-C_6) -alkyl and the

isomers, in particular tautomers, diastereomers and enantiomers, and the pharmaceutically acceptable salts, in particular acid addition salts, thereof.

According to a further embodiment, quinoline derivatives of the formula (1) are provided which are characterized in that R, R_1 , R_2 , R_3 , X, Z, P, Q, n and m have the meanings given above and R_4 represents phenyl which is unsubstituted or substituted by one to five the same or different (C_1-C_6) -alkoxy groups, where adjacent oxygen atoms may also be linked by (C_1-C_2) -alkylene groups.

According to a further embodiment, quinoline derivatives of the formula (1) are provided which are characterized in that R, R_1 , R_2 , R_3 , X, Z, P, Q, n and m have the meanings given above and R_4 represents 3,5-dimethoxyphenyl.

According to a further embodiment, quinoline derivatives of the formula (1) are provided which are characterized in that R₄ has the meanings given above, R, R₁, R₂, R₃ each represent a hydrogen atom, Z represents an oxygen atom and X represents a nitrogen atom, P and Q each represent two hydrogen atoms (i.e. -CH2-), m is zero and n is the integer 2.

According to a further embodiment, quinoline derivatives of the formula (1) are provided which are characterized in that R, R₁, R₂, R₃ each

represent a hydrogen atom, Z represents an oxygen atom, X represents a nitrogen atom, P and Q each represent two hydrogen atoms (i.e. -CH2-), m is zero, n represents the integer 2 and R_4 represents a 3,5-dimethoxyphenyl radical.

According to a further aspect of the invention, a process for preparing quinoline derivatives of the formula (1) is provided which is characterized in that a quinoline carboxylic acid of the formula (2)

$$\begin{array}{c}
Z \\
R_1
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
R_2
\end{array}$$

$$\begin{array}{c}
(2)
\end{array}$$

in which R, R1, R2, R3 have the meanings given above, Z denotes an oxygen or sulfur atom and Y represents a leaving group such as halogen, hydroxyl, (C1-C6)-alkoxy, preferably methoxy or ethoxy, -O-tosyl, -O-mesyl or imidazolyl, is reacted with an amine of the formula (3)

in which R4, X, P, Q, m and n are as defined above, using, if appropriate, diluents and auxiliaries, and the desired quinoline derivatives are formed.

Synthesis route:

The compounds of the formula 1 can be obtained according to Scheme 1 below:

Scheme 1

20

The starting materials (2) and (3) are either commercially available or can be prepared by procedures known per se. The starting materials (2) and (3) are useful intermediates for preparing the quinoline derivatives of the formula (1) according to the invention.

The solvents and auxiliaries to be used, if appropriate, and the reaction parameters to be used, such as reaction temperature and reaction time, are known to the person skilled in the art owing to his expert knowledge.

The quinoline derivatives of the formula (1) according to the invention are suitable as medicaments, in particular as antitumor agents, for treating mammals, in particular man, but also domestic animals such as horses, cattle, dogs, cats, hares, sheep, poultry and the like.

According to a further aspect of the invention, a method for controlling tumors in mammals, in particular man, is provided which is characterized in that at least one quinoline derivative of the formula (1) is administered to a mammal in an amount effective for the treatment of the tumor. The therapeutically effective dose of the quinoline derivative according to the invention in question which is to be administered for the treatment depends inter alia on the nature and the stage of the oncosis, the age and the sex of the patient, the type of administration and the duration of the treatment. Administration can take place orally, rectally, buccally

٠.

(for example sublingually), parenterally (for example subcutaneously, intramuscularly, intradermally or intravenously), topically or transdermally.

According to a further aspect of the invention, medicaments for the treatment of tumors are provided which are characterized in that they comprise, as active ingredient, at least one quinoline derivative according to any of Claims 1 to 4 or a pharmaceutically acceptable salt thereof, if appropriate together with customary pharmaceutically acceptable auxiliaries, additives and carriers. These can be solid, semisolid, liquid or aerosol preparations. Suitable solid preparations are, for example, capsules, powders, granules, tablets. Suitable semisolid preparations are, for example, ointments, creams, gels, pastes, suspensions, oil-in-water and water-in-oil emulsions. Suitable liquid preparations are, for example, sterile aqueous preparations for parenteral administration which are isotonic with the blood of the patient.

The invention is to be illustrated in more detail by the example below, without being restricted to the example.

1-(3,5-dimethoxyphenyl)-4-(4-quinolyl-carbonyl)piperazine

2 g (11.5 mmol) of quinoline-4-carboxylic acid were suspended in 80 ml of DMF. With stirring, 1.74 g (17.2 mmol) of N-methylmorpholine and then a Py-BOP mmol) o f solution o f 8.95 (17.2)benzotriazolyltripyrrolidinophosphonium hexafluorophosphate) and 2.56 g (11.5 mmol) of 1-(3,5-dimethoxyphenyl)piperazine in 25 ml of DMF were added to this mixture. The mixture was stirred at RT for 12 h, the DMF was distilled off under reduced pressure and the residue was purified on a silica gel column (Kieselgel 60, from Merck AG, Darmstadt) using the mobile phase dichloromethane/methanol/25 percent ammonia (90:10:1. v/v/v).

Yield: 3.4 g (78.3% of theory)

m.p.: 146-148°C

m/e (M+H)	378	378	537	408	528
Code-Nr.	24203	43589	68780	68675	68823
₇					
ø	Ŧ.	Τ̈́	H ₂	H ²	²
<u>а</u>	ĭ	τ̈́	H ₂	H	T T
Ε	0	0	0	0	0
E	7	7	2	2	2
2	0	0	0	0	0
×	z	Z	z	Z	z
Ŗ.	Ŧ	_. エ	1-CI	I	7-CH ₃
ጜ	I	I	6-СН3	I	I
αź	I	I.	I	3-ОН	エ
œ	I	I	2-(4-chloro= phenyl)		2-(3,4-dimeth= oxyphenyl)
Ex.	-	2 HCI- Salz	3	4	2

Table 8: New Chinolyl-Derivatives with antitumoral activity