第三章一单纯形方法题解

- 用单纯形方法解下列线性规划问题。
- (1) min $-9x_1-16x_2$

s. t.
$$x_1 + 4x_2 + x_3 = 80$$
,
 $2x_1 + 3x_2 + x_4 = 90$,
 $x_j \ge 0$, $j = 1, 2, 3, 4$.

s. t.
$$3x_1 - x_2 + 2x_3 \le 7$$
, $-2x_1 + 4x_2 \le 12$, $-4x_1 + 3x_2 + 8x_3 \le 10$, $x_1, x_2, x_3 \ge 0$.

(5) min $-3x_1-x_2$

s. t.
$$3x_1 + 3x_2 + x_3 = 30$$
,
 $4x_1 - 4x_2 + x_4 = 16$,
 $2x_1 - x_2 \leq 12$,
 $x_j \geq 0$, $j = 1, 2, 3, 4$.

(2) max $x_1 + 3x_2$

s. t.
$$2x_1+3x_2+x_3 = 6$$
,
 $-x_1 + x_2 + x_4 = 1$,
 $x_j \ge 0$, $j=1,2,3,4$.

(3) $\max -x_1+3x_2+x_3$ (4) $\min 3x_1-5x_2-2x_3-x_4$

s. t.
$$3x_1 - x_2 + 2x_3 \le 7$$
, s. t. $x_1 + x_2 + x_3 \le 4$, $-2x_1 + 4x_2 \le 12$, $4x_1 - x_2 + x_3 + 2x_4 \le 6$, $-4x_1 + 3x_2 + 8x_3 \le 10$, $-x_1 + x_2 + 2x_3 + 3x_4 \le 12$, $x_1, x_2, x_3 \ge 0$, $j = 1, 2, 3, 4$.

解 (1) 用单纯形方法求解过程如下:

$$x_1$$
 x_2 x_3 x_4
 x_3 1 ① 1 0 80

 x_4 2 3 0 1 90

9 16 0 0 0

$$x_{1} \quad x_{2} \quad x_{3} \quad x_{4}$$

$$x_{2} \quad \frac{1}{4} \quad 1 \quad \frac{1}{4} \quad 0 \quad 20$$

$$x_{4} \quad \frac{5}{4} \quad 0 \quad -\frac{3}{4} \quad 1 \quad 30$$

$$5 \quad 0 \quad -4 \quad 0 \quad -320$$

$$x_{2} \quad 0 \quad 1 \quad \frac{2}{5} \quad -\frac{1}{5} \quad 14$$

$$x_{1} \quad 1 \quad 0 \quad -\frac{3}{5} \quad \frac{4}{5} \quad 24$$

$$0 \quad 0 \quad -1 \quad -4 \quad -440$$

最优解 \bar{x} = (24,14,0,0),最优值 f_{min} = -440.

(2) 用单纯形方法求解过程如下:

(2) 用单纯形方法求解过程如下。

最优解 $\bar{x} = \left(\frac{3}{5}, \frac{8}{5}, 0, 0\right)$,最优值 $f_{\text{max}} = \frac{27}{5}$.

(3) 引入松弛变量 x4,x5,x6,化成标准形式:

用单纯形方法求解过程如下:

最优解
$$\bar{x} = \left(\frac{78}{25}, \frac{114}{25}, \frac{11}{10}, 0, 0, 0\right)$$
,最优值 $f_{\text{max}} = \frac{583}{50}$.

(4) 引入松弛变量 x₅,x₆,x₇,化成标准形式;

用单纯形方法求解过程如下:

	x_1	x_{i}	x_3	x_4	x_3	x_{6}	.x ₇	
x_5	1	1	1	0	1	0	0	4
x_6	4	-1	1	2	O	1	O	6
X7	-1	1	2	3	0	0	1	12
	-3	5	2	1	Ō	0	Ö	Ö

最优解 \bar{x} = (0,4,0, $\frac{8}{3}$,0, $\frac{14}{3}$,0),最优值 f_{min} = $-\frac{68}{3}$.

(5) 引入松弛变量 x5, 化成标准形式:

min
$$-3x_1 - x_2$$

s. t. $3x_1 + 3x_2 + x_3 = 30$,
 $4x_1 - 4x_2 + x_4 = 16$,
 $2x_1 - x_2 + x_5 = 12$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5$.

用单纯形方法求解过程如下:

$$x_{1} \qquad x_{2} \qquad x_{3} \qquad x_{4} \qquad x_{5}$$

$$x_{2} \qquad 0 \qquad 1 \qquad \frac{1}{6} \qquad -\frac{3}{24} \qquad 0 \qquad 3$$

$$x_{1} \qquad 1 \qquad 0 \qquad \frac{1}{6} \qquad \frac{3}{24} \qquad 0 \qquad 7$$

$$x_{5} \qquad 0 \qquad 0 \qquad -\frac{1}{6} \qquad \frac{3}{8} \qquad 1 \qquad 1$$

$$0 \qquad 0 \qquad -\frac{2}{3} \qquad -\frac{1}{4} \qquad 0 \qquad -24$$

最优解 \bar{x} = (7,3,0,0,1),最优值 f_{min} = -24.

2. 求解下列线性规划问题:

(1) min
$$4x_1 + 6x_2 + 18x_3$$

s. t. $x_1 + 3x_3 \ge 3$,
 $x_2 + 2x_3 \ge 5$,

$$x_1, x_2, x_3 \ge 0.$$

(3) max
$$3x_1 - 5x_2$$

s. t. $-x_1 + 2x_2 + 4x_3 \le 4$,
 $x_1 + x_2 + 2x_3 \le 5$,
 $-x_1 + 2x_2 + x_3 \ge 1$,
 $x_1 \cdot x_2 \cdot x_3 \ge 0$.

(5) max
$$-3x_1+2x_2-x_3$$

s. t. $2x_1+x_2-x_3 \le 5$,
 $4x_1+3x_2+x_3 \ge 3$,
 $-x_1+x_2+x_3=2$,
 $x_1,x_2,x_3 \ge 0$.

(7) min
$$3x_1 - 2x_2 + x_3$$

s. t. $2x_1 - 3x_2 + x_3 = 1$,
 $2x_1 + 3x_2 \geqslant 8$,
 $x_1, x_2, x_3 \geqslant 0$.

(9) min
$$2x_1 + x_2 - x_3 - x_4$$

s. t. $x_1 - x_2 + 2x_3 - x_4 = 2$,
 $2x_1 + x_2 - 3x_3 + x_4 = 6$,
 $x_1 + x_2 + x_3 + x_4 = 7$,
 $x_j \ge 0$, $j = 1, 2, 3, 4$.

(2) max
$$2x_1 + x_2$$

s. t. $x_1 + x_2 \le 5$,

$$x_1 - x_2 \ge 0$$
,
 $6x_1 + 2x_2 \le 21$,

$$x_1, x_2 \ge 0$$
.

(4) min
$$x_1 - 3x_2 + x_3$$

s. t.
$$2x_1 - x_2 + x_3 = 8$$
,
 $2x_1 + x_2 \ge 2$,
 $x_1 + 2x_2 \le 10$,
 $x_1, x_2, x_3 \ge 0$.

(6) min
$$2x_1 - 3x_2 + 4x_3$$

s. t. $x_1 + x_2 + x_3 \le 9$,
 $-x_1 + 2x_2 - x_3 \ge 5$,
 $2x_1 - x_2 \le 7$,
 $x_1, x_2, x_3 \ge 0$.

(8) min
$$2x_1 - 3x_2$$

s. t. $2x_1 - x_2 - x_3 \ge 3$,
 $x_1 - x_2 + x_3 \ge 2$,
 $x_1, x_2, x_3 \ge 0$.

(10) max
$$3x_1 - x_2 - 3x_3 + x_4$$

s. t. $x_1 + 2x_2 - x_3 + x_4 = 0$,
 $x_1 - x_2 + 2x_3 - x_4 = 6$,
 $2x_1 - 2x_2 + 3x_3 + 3x_4 = 9$,
 $x_j \ge 0$, $j = 1, 2, 3, 4$.

解 (1) 引入松弛变量 x_4, x_5, x_6 , 化为标准形式:

min
$$4x_1 + 6x_2 + 18x_3$$

s. t. $x_1 + 3x_3 - x_4 = 3$,

$$x_2 + 2x_3 - x_5 = 5,$$

 $x_j \ge 0, \quad j = 1, 2, \dots, 5.$

用单纯形方法求解过程如下:

最优解 $\bar{x} = (0,3,1,0,0)$,最优值 $f_{min} = 36$.

(2) 引入松弛变量 xs,x4,x5,化成标准形式:

max
$$2x_1 + x_2$$

s. t. $x_1 + x_2 + x_3 = 5$,
 $x_1 - x_2 - x_4 = 0$,
 $6x_1 + 2x_2 + x_5 = 21$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5$.

	x_1	x.	x_3	x_4	X5	y	
x_3	1	1	1	O	0	O	5
у	1	-1	0	-1	0	1	0
x_5	6	2	0	0	1	0	21
	1	-1	0	-1	0	0	0
$x_{\mathfrak{d}}$	0	2	1	1	0	-1	5
x_1	1	-1	0	-1	0	1	0
x_5	0	8	0	6	1	-6	21
	0	0	0	0	0	-1	0

得到原线性规划的一个基本可行解.由此出发求最优解,过程如下:

最优解 $\bar{x} = \left(\frac{11}{4}, \frac{9}{4}, 0, \frac{1}{2}, 0\right)$,最优值 $f_{\text{max}} = \frac{31}{4}$.

(3) 引入松弛变量 x4,x5,x6,化成标准形式:

max
$$3x_1 - 5x_2$$

s.t. $-x_1 + 2x_2 + 4x_3 + x_4 = 4$,
 $x_1 + x_2 + 2x_3 + x_5 = 5$,
 $-x_1 + 2x_2 + x_3 - x_6 = 1$,
 $x_j \ge 0$, $j = 1, 2, \dots, 6$.

用两阶段法求解,为此引入人工变量 y,解下列线性规划:

min
$$y$$

s. t. $-x_1 + 2x_2 + 4x_3 + x_4 = 4$,
 $x_1 + x_2 + 2x_3 + x_5 = 5$,
 $-x_1 + 2x_2 + x_3 - x_6 + y = 1$,
 $x_j \ge 0$, $j = 1, 2, \dots, 6$, $y \ge 0$.

得到原线性规划的一个基本可行解 $x = \left(0, \frac{1}{2}, 0, 3, \frac{9}{2}, 0\right)$.

由此出发求最优解,过程如下:

最优解 \bar{x} = (2,1,1,0,0),最优值 f_{max} =1.

(4) 引入松弛变量 x4,x5,化为标准形式:

min
$$x_1 - 3x_2 + x_3$$

s. t. $2x_1 - x_2 + x_3 = 8$,
 $2x_1 + x_2 - x_4 = 2$,
 $x_1 + 2x_2 + x_5 = 10$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5$.

用两阶段法求解.

引入人工变量 y,解下列线性规划:

min y
s. t.
$$2x_1 - x_2 + x_3 = 8$$
,
 $2x_1 + x_2 - x_4 + y = 2$,
 $x_1 + 2x_2 + x_5 = 10$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5$, $y \ge 0$.

求解过程如下:

得原线性规划的一个基本可行解x=(1,0,6,0,9).

从求得的基本可行解出发,求最优解.求解过程如下:

	x_1	x_2	x_1	x_4	x_5	
x_3	0	-2	1	1	0	6
x_1	1	$\frac{1}{2}$	0 -	$-\frac{1}{2}$	0	1
x_5	0	3 2	0	$\frac{1}{2}$	1	9
	0	$\frac{3}{2}$	0	$\frac{1}{2}$	0	7

	x_1	.T2	x_3	x_4	x_{5}	
x_3	4	0	1	-1	0	10
x_2	2	1	0	-1	0	2
x_5	-3	0	0	2	1	6
	-3	0	0	2	0	4
x_1	5 2	0	1	0	$\frac{1}{2}$	13
x_2	1/2	1	0	0	$\frac{1}{2}$	5
x_4	$-\frac{3}{2}$	0	0	1	$\frac{1}{2}$	3
	0	0	0	Ō	-1	-2

最优解 \bar{x} = (0,5,13,3,0),最优值 f_{min} = -2.

(5) 引入松弛变量 x4,x5,化成标准形式:

max
$$-3x_1 + 2x_2 - x_3$$

s. t. $2x_1 + x_2 - x_3 + x_4 = 5$,
 $4x_1 + 3x_2 + x_3 - x_5 = 3$,
 $-x_1 + x_2 + x_3 = 2$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5$.

先引入人工变量 $y_1, y_2,$ 解下列线性规划:

min
$$y_1 + y_2$$

s. t. $2x_1 + x_2 - x_3 + x_4 = 5$,
 $4x_1 + 3x_2 + x_3 - x_5 + y_1 = 3$,
 $-x_1 + x_2 + x_3 + y_2 = 2$,
 $x_i \ge 0, j = 1, 2, \dots, 5, y_1, y_2 \ge 0$.

求解过程如下:

得到一个基本可行解 $x = \left(0, \frac{1}{2}, \frac{3}{2}, 6, 0\right)$.

从求得的基本可行解出发求最优解,过程如下:

$$x_4$$
 x_2
 x_3
 x_4
 x_5
 x_6
 x_7
 x_8
 x_8
 x_8
 x_8
 x_8
 x_9
 x_9

最优解x=(0,2,0,3,3).最优值 fmax=4.

(6) 引入松弛变量 x4 * x5 , x6 , 化成标准形式:

min
$$2x_1 - 3x_2 + 4x_3$$

s. t. $x_1 + x_2 + x_3 + x_4 = 9$,
 $-x_1 + 2x_2 - x_3 - x_5 = 5$,
 $2x_1 - x_2 + x_6 = 7$,
 $x_j \ge 0$, $j = 1, 2, \dots, 6$.

用大M法求解.

引入人工变量 y,取大正数 M,解下列线性规划:

min
$$2x_1 - 3x_2 + 4x_3 + My$$

s. t. $x_1 + x_2 + x_3 + x_4 = 9$.
 $-x_1 + 2x_2 - x_3 - x_5 + y = 5$.
 $2x_1 - x_2 + x_6 = 7$.
 $x_j \ge 0$, $j = 1, 2, \dots, 6$, $y \ge 0$.

求解过程如下:

	x_1	x_2	x_1	x_4	x_5	x_6	у	
x_4	1	1	1	1	Ō	0	Ô	9
y	-1	2	-1	0	-1	0	1	5
x_6	2	-1	0	0	0	1	0	7
	-M-2	2M + 3	-M-4	0	-M	0	0	5 <i>M</i>
x_{i}	3 2	0	3 2	1	$\frac{1}{2}$	0	$-\frac{1}{2}$	13 2
x2	$-\frac{1}{2}$	1	$-\frac{1}{2}$	0	$-\frac{1}{2}$	0	$\frac{1}{2}$	5/2
.X6	3 2	0	$-\frac{1}{2}$	0	$-\frac{1}{2}$	1	$\frac{1}{2}$	19 2
	$-\frac{1}{2}$	0	$-\frac{5}{2}$	0	3 2	0	$-M-\frac{3}{2}$	$-\frac{15}{2}$
.X5	3	0	3	2	1	0	-1	13
.X2	1	1	1	1	0	0	0	9
X6	3	0	1	1	0	1	0	16
	-5	0	-7	-3	0	0	− <i>M</i>	—27

最优解 \bar{x} = (0,9,0,0,13,16),最优值 f_{min} = -27.

(7) 引入松弛变量 x4, 化成标准形式:

min
$$3x_1 - 2x_2 + x_3$$

s. t. $2x_1 - 3x_2 + x_3 = 1$,
 $2x_1 + 3x_2 - x_4 = 8$,
 $x_j \ge 0$, $j = 1, 2, 3, 4$.

用大 M 法求解.

引进人工变量 y,取大正数 M,解下列线性规划:

min
$$3x_1 - 2x_2 + x_3 + My$$

s. t. $2x_1 - 3x_2 + x_3 = 1$,
 $2x_1 + 3x_2 - x_4 + y = 8$,
 $x_j \ge 0$, $j = 1, 2, 3, 4$, $y \ge 0$.

求解过程如下:

最优解
$$\bar{x} = \left(0, \frac{8}{3}, 9, 0\right)$$
,最优值 $f_{min} = \frac{11}{3}$.

(8) 引入松弛变量 x4,x5,化成标准形式:

min
$$2x_1 - 3x_2$$

s. t. $2x_1 - x_2 - x_3 - x_4 = 3$,
 $x_1 - x_2 + x_3 - x_5 = 2$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5$.

用大M 法求解,引进人工变量 y_1,y_2 ,取大正数M,解下列线性规划:

min
$$2x_1 - 3x_2 + M(y_1 + y_2)$$

s. t. $2x_1 - x_2 - x_3 - x_4 + y_1 = 3$,
 $x_1 - x_2 + x_3 - x_5 + y_2 = 2$,
 $x_j \ge 0$, $j = 1, 2, \dots, 5, y_1, y_2 \ge 0$.

	x_1	x_2	x_3	x_4	x_5	y 1	Уz	
y ₁	2	-1	-1	-1	0	1	0	3
Уz	1	-1	1	0	-1	0	1	2
	3M-2	-2M+3	0	-M	-M	0	0	5 <i>M</i>
x_1	1	$-\frac{1}{2}$	$-\frac{1}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	0	3/2
Уz	0	$-\frac{1}{2}$	$\frac{3}{2}$	$\frac{1}{2}$	-1	$-\frac{1}{2}$	1	1/2
	0	$-\frac{1}{2}M+2$	$\frac{3}{2}M-1$	$\frac{1}{2}M-1$	-M	$-\frac{3}{2}M+1$	0	$\frac{1}{2}M+3$
x_1	1	$-\frac{2}{3}$	0	$-\frac{1}{3}$	$-\frac{1}{3}$	1/3	$\frac{1}{3}$	<u>5</u> 3
<i>x</i> ₃	0	$-\frac{1}{3}$	1	$\frac{1}{3}$	$-\frac{2}{3}$	$-\frac{1}{3}$	$\frac{2}{3}$	$\frac{1}{3}$
	0	$\frac{5}{3}$	0	$-\frac{2}{3}$	$-\frac{2}{3}$	$\frac{2}{3}$ $-M$	$\frac{2}{3}$ -M	$\frac{10}{3}$

现行基本可行解下,对应 x_2 的判别数大于 0,约束系数第 2 列无正元,人工变量均为非基变量,取值为 0,因此不存在有限最优解.

(9) 用修正单纯形法求解. 初始基本可行解未知,用两阶段法.

min
$$y_1 + y_2 + y_3$$

s. t. $x_1 - x_2 + 2x_3 - x_4 + y_1 = 2$,
 $2x_1 + x_2 - 3x_3 + x_4 + y_2 = 6$,
 $x_1 + x_2 + x_3 + x_4 + y_3 = 7$,

$$x_j \ge 0$$
, $j = 1, 2, 3, 4$; $y_j \ge 0, j = 1, 2, 3$.

记约束系数矩阵、约束右端和费用系数向量如下:

$$\mathbf{A} = [p_1 \ p_2 \ p_3 \ p_4 \ p_5 \ p_6 \ p_7] = \begin{bmatrix} 1 & -1 & 2 & -1 & 1 & 0 & 0 \\ 2 & 1 & -3 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix},$$

$$b = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 7 \end{bmatrix}, \quad c = (c_1, c_2, c_3, c_4, c_5, c_6, c_7) = (0, 0, 0, 0, 1, 1, 1).$$

取初始可行基

$$\boldsymbol{B} = [p_5 \ p_6 \ p_7] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

约束右端向量

$$\overline{b} = B^{-1}b = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ 7 \end{bmatrix} = \begin{bmatrix} 2 \\ 6 \\ 7 \end{bmatrix},$$

基变量费用系数向量 $c_B = (c_5, c_6, c_7) = (1, 1, 1)$, 单纯形乘子 $w = c_B B^{-1} = (1, 1, 1)$, 目标函数值 $f = c_B \bar{b} = 15$, 构造初表:

	1	1	1	15
уı	1	0	0	2
<i>y</i> ₂	0	1	0	6
Уa	0	0	1	7

第1次迭代:

计算现行基下对应各变量的判别数:

$$z_1 - c_1 = wp_1 - c_1 = 4$$
, $z_2 - c_2 = wp_2 - c_2 = 1$,
 $z_3 - c_3 = wp_3 - c_3 = 0$, $z_4 - c_4 = wp_4 - c_4 = 1$,
 $z_5 - c_5 = z_6 - c_6 = z_7 - c_7 = 0$,

$$z_1 - c_1 = \max_{j} \{z_j - c_j\} = 4$$
,因此 x_1 进基.

主列

$$\mathbf{B}^{-1}\mathbf{p}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

作主元消去运算:

	1	1	1	15
y 1	1	0	0	2
y 2	ō	1	0	6
уз	0	0	1	7
	-3	1	1	7
x_1	1	0	0	2
Уz	-2	1	O	2
y 3	-1	0	1	5

x_1	
4	
1	
2	
1	

 x_2

第2次迭代:

由上表知,单纯形乘子 w=(-3,1,1),计算现行基下对应各变量的判别数:

$$z_2 - c_2 = wp_2 - c_2 = 5$$
, $z_3 - c_3 = wp_3 - c_3 = -8$,
 $z_4 - c_4 = wp_4 - c_4 = 5$, $z_5 - c_5 = wp_5 - c_5 = -4$,
 $z_1 - c_1 = z_6 - c_6 = z_7 - c_7 = 0$, $z_2 - c_2 = \max_i \{z_j - c_j\} = 5$.

计算主列

$$\mathbf{B}^{-1}\mathbf{p}_{2} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}.$$

作主元消去运算:

	-3	1	1	7
x_1	1	0	0	2
y2	-2	1	0	2
<i>y</i> 3	-1	0	1	5

第3次迭代:

由前表知,单纯形乘子 $w = \left(\frac{1}{3}, -\frac{2}{3}, 1\right)$,计算现行基下对应各变量的判别数:

$$z_{3} - c_{3} = wp_{3} - c_{3} = \frac{11}{3}, \quad z_{4} - c_{4} = wp_{4} - c_{4} = 0,$$

$$z_{5} - c_{5} = wp_{5} - c_{5} = -\frac{2}{3}, \quad z_{6} - c_{6} = wp_{6} - c_{6} = -\frac{5}{3},$$

$$z_{1} - c_{1} = z_{2} - c_{2} = z_{7} - c_{7} = 0, \quad z_{3} - c_{3} = \max_{j} \{z_{j} - c_{j}\} = \frac{11}{3}.$$

第3次迭代:

由前表知,单纯形乘子 $w = \left(\frac{1}{3}, -\frac{2}{3}, 1\right)$,计算现行基下对应各变量的判别数:

$$z_{3}-c_{3}=wp_{3}-c_{3}=\frac{11}{3}, \quad z_{4}-c_{4}=wp_{4}-c_{4}=0,$$

$$z_{5}-c_{5}=wp_{5}-c_{5}=-\frac{2}{3}, \quad z_{6}-c_{6}=wp_{6}-c_{6}=-\frac{5}{3},$$

$$z_{1}-c_{1}=z_{2}-c_{2}=z_{7}-c_{7}=0, \quad z_{3}-c_{3}=\max\{z_{j}-c_{j}\}=\frac{11}{3}.$$

计算主列:

$$\boldsymbol{B}^{-1}\boldsymbol{p}_{3} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & 0 \\ -\frac{2}{3} & \frac{1}{3} & 0 \\ \frac{1}{3} & -\frac{2}{3} & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{3} \\ -\frac{7}{3} \\ \frac{11}{3} \end{bmatrix}.$$

作主元消去运算:

 x_3

$$\begin{array}{r}
\frac{11}{3} \\
-\frac{1}{3} \\
-\frac{7}{3} \\
\frac{11}{3}
\end{array}$$

$$x_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ \frac{4}{11} & \frac{3}{11} & \frac{1}{11} & 3 \\ x_2 & -\frac{5}{11} & -\frac{1}{11} & \frac{7}{11} & 3 \\ x_3 & \frac{1}{11} & -\frac{2}{11} & \frac{3}{11} & 1 \end{bmatrix}$$

显然, $\forall j$,有 $z_j = c_j \le 0$,一阶段已达最优.下面进行第2阶段.从求得的基本可行解

$$x = (3,3,1,0)^{T}$$

出发,求线性规划的最优解.记 $(c_1,c_2,c_3,c_4)=(2,1,-1,-1)$.

第1次迭代:

基变量为 x1,x2,x3. 先计算单纯形乘子:

$$\mathbf{w} = c_{\mathbf{B}} \mathbf{B}^{-1} = (2, 1, -1) \begin{bmatrix} \frac{4}{11} & \frac{3}{11} & \frac{1}{11} \\ -\frac{5}{11} & -\frac{1}{11} & \frac{7}{11} \\ \frac{1}{11} & -\frac{2}{11} & \frac{3}{11} \end{bmatrix} = \left(\frac{2}{11}, \frac{7}{11}, \frac{6}{11}\right).$$

目标函数值 $f = c_B x_B = 8$. 现行基下对应各变量的判别数: $z_1 - c_1 = z_2 - c_2 = z_3 - c_3 = 0$, $z_4 - c_4 = w p_4 - c_4 = 2$. 计算主列:

$$\boldsymbol{B}^{-1}\boldsymbol{p}_{4} = \begin{bmatrix} \frac{4}{11} & \frac{3}{11} & \frac{1}{11} \\ -\frac{5}{11} & -\frac{1}{11} & \frac{7}{11} \\ \frac{1}{11} & -\frac{2}{11} & \frac{3}{11} \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

作主元消去运算:

第2次迭代:

计算对应各变量的判别数, 因为只有 1 个非基变量 x2, 只需计算对应 x2 的判别数.

$$z_2 - c_2 = wp_2 - c_2 = -2 < 0$$

已经达到最优. 最优解 $\bar{x} = (3,0,1,3)$, 最优值 $f_{min} = 2$.

(10) 用修正单纯形法求解.

初始基本可行解未知,下面用大M法.引入人工变量 y_1, y_2, y_3 ,取一个大正数M,解下列线性规划:

$$\begin{array}{lll} \max & 3x_1-x_2-3x_3+x_4-M(y_1+y_2+y_3)\\ \text{s. t.} & x_1+2x_2-x_3+x_4+y_1 & =0\,,\\ & x_1-x_2+2x_3-x_4 & +y_2 & =6\,,\\ & 2x_1-2x_2+3x_3+3x_4 & +y_3=9\,,\\ & x_j\geqslant 0\,, \quad j=1\,,2\,,3\,,4\,, \quad y_j\geqslant 0\,, \quad j=1\,,2\,,3\,. \end{array}$$

记约束系数矩阵、右端向量及目标系数向量如下:

$$\mathbf{A} = [\mathbf{p}_1 \ \mathbf{p}_2 \ \mathbf{p}_3 \ \mathbf{p}_4 \ \mathbf{p}_5 \ \mathbf{p}_6 \ \mathbf{p}_7] = \begin{bmatrix} 1 & 2 & -1 & 1 & 1 & 0 & 0 \\ 1 & -1 & 2 & -1 & 0 & 1 & 0 \\ 2 & -2 & 3 & 3 & 0 & 0 & 1 \end{bmatrix},$$

 $b = [0,6,9]^{\mathsf{T}}, \quad c = (c_1,c_2,c_3,c_4,c_5,c_6,c_7) = (3,-1,-3,1,-M,-M,-M).$ 取初始基:

$$\boldsymbol{B} = [p_5 \ p_6 \ p_7] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

单纯形乘子 $w=c_BB^{-1}=[-M,-M,-M]$,目标函数值 $f=c_BB^{-1}b=-15M$.构造初表:

第1次迭代:

计算现行基下对应各变量的判别数:

$$z_1 - c_1 = wp_1 - c_1 = -4M - 3$$
, $z_2 - c_2 = wp_2 - c_2 = M + 1$,
 $z_3 - c_3 = wp_3 - c_3 = -4M + 3$, $z_4 - c_4 = wp_4 - c_4 = -3M - 1$,
 $z_5 - c_5 = z_6 - c_6 = z_7 - c_7 = 0$, $z_1 - c_1 = \min_i \{z_i - c_i\} = -4M - 3$.

计算主列:

$$\mathbf{B}^{-1}\mathbf{p}_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}.$$

作主元消去运算:

	-M	-M	-M	-15M
y1	1	0	0	0
y2	0	1	0	6
y ₃	0	0	1	9

y ₃	0	0	1	9
	3M+3	- <i>M</i>	-M	-15M
x_1	1	0	0	0
y ₂	-1	1	0	6
y ₃	-2	0	1	9

$$\begin{array}{c|c}
x_1 \\
\hline
-4M-3 \\
\hline
1 \\
2
\end{array}$$

第2次迭代:

计算现行基下对应各变量的判别数:

$$z_2 - c_2 = wp_2 - c_2 = 9M + 7, \quad z_3 - c_3 = wp_3 - c_3 = -8M,$$

$$z_4 - c_4 = wp_4 - c_4 = M + 2, \quad z_5 - c_5 = wp_5 - c_5 = 4M + 3,$$

$$z_1 - c_1 = z_6 - c_6 = z_7 - c_7 = 0, \quad z_3 - c_3 = \min_i \{z_i - c_i\} = -8M.$$

计算主列:

$$\mathbf{B}^{-1}\mathbf{p}_{3} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 5 \end{bmatrix}.$$

作主元消去运算:

	3M+3	-M	-M	-15M
x_1	1	Ō	O	0
y ₂	-1	1	Ō	6
y ₃	-2	0	1	9

-8M -1 3 5

第3次迭代:

计算现行基下对应各变量的判别数:

$$z_{2}-c_{2}=wp_{2}-c_{2}=-\frac{3}{5}M+7, \quad z_{4}-c_{4}=wp_{4}-c_{4}=\frac{13}{5}M+2,$$

$$z_{5}-c_{5}=wp_{5}-c_{5}=\frac{4}{5}M+3, \quad z_{7}-c_{7}=wp_{7}-c_{7}=\frac{8}{5}M,$$

$$z_{1}-c_{1}=z_{3}-c_{3}=z_{6}-c_{6}=0,$$

计算主列:

$$\mathbf{B}^{-1}\mathbf{p}_{2} = \begin{bmatrix} \frac{3}{5} & 0 & \frac{1}{5} \\ \frac{1}{5} & 1 & -\frac{3}{5} \\ -\frac{2}{5} & 0 & \frac{1}{5} \end{bmatrix} \begin{bmatrix} 2 \\ -1 \\ -2 \end{bmatrix} = \begin{bmatrix} \frac{4}{5} \\ \frac{3}{5} \\ -\frac{6}{5} \end{bmatrix}.$$

作主元消去运算:

$$x_2$$

$$-\frac{3}{5}M+7$$

$$\frac{\frac{4}{5}}{\frac{3}{5}}$$

$$-\frac{6}{5}$$

第4次迭代:

$$z_4 - c_4 = wp_4 - c_4 = \frac{97}{3}$$
, $z_5 - c_5 = wp_5 - c_5 = M + \frac{2}{3}$,
 $z_6 - c_6 = wp_6 - c_6 = M - \frac{35}{3}$, $z_7 - c_7 = wp_7 - c_7 = M + 7$.

判别数均非负,已达到最优解.最优解和最优值分别是 $\bar{x} = (1,1,3,0)$ 和 $f_{max} = -7$.

证明用单纯形方法求解线性规划问题时,在主元消去前后对应同一变量的判别数有下列关系:

$$(z_j - c_j)' = (z_j - c_j) - \frac{y_{rj}}{y_{rk}} (z_k - c_k),$$

其中 $(z_i - c_i)'$ 是主元消去后的判别数,其余是主元消去前的数据, y_{ik} 为主元.

证 约束矩阵记作 $A = [p_1 \ p_2 \cdots \ p_n]$, 主元消去前后的基分别记作 B 和B, 基变量的费用系数向量分别记作 C_B 和 C_B , 同时记 B = 1 $p_j = y_j$, $Q_B = 1$ $p_j = y_j$, 1 元前去前后,单纯形方法中第 1 行j 列元素分别记为 y_i 和 y_i , 1 元化 y_i $y_$

$$\begin{cases} y_{ij} = y_{ij} - \frac{y_{ik}}{y_{ik}}y_{ij}, & i \neq i \\ y_{ij} = \frac{y_{ij}}{y_{ik}}. \end{cases}$$

因此,主元消去前后的判别数zj-cj与(zj-cj)'必有下列关系:

$$\begin{aligned} (z_j - \epsilon_j)' &= e_B \cdot B - 1 \cdot p_j = \epsilon_j \\ &= e_B \cdot j \cdot j - \epsilon_j \\ &= \sum_{i \neq r} \epsilon_i B_i \cdot \left(y_i j - \frac{y_{ik}^2}{y_{ik}} y_i \epsilon_j \cdot \right) + \epsilon_k \cdot \frac{y_i j}{y_{ik}} - \epsilon_j \\ &= (z_j - \epsilon_j) - \epsilon_i B_i \cdot y_i \epsilon_j - \sum_{i \neq r} \epsilon_i B_i \cdot \frac{y_{ik}^2}{y_{ik}} y_i \epsilon_j + \epsilon_k \cdot \frac{y_i j}{y_{ik}} \\ &= (z_j - \epsilon_j) - \epsilon_i B_i \cdot y_i \epsilon_j - \frac{y_i j}{y_{ik}} \cdot \sum_{i \neq r} \epsilon_i B_i \cdot y_{ik} + \epsilon_k \cdot \frac{y_i j}{y_{ik}} \\ &= (z_j - \epsilon_j) - \frac{y_i j}{y_{ik}} \cdot \sum_{i = 1}^{N} \epsilon_i B_i \cdot y_{ik} + \epsilon_k \cdot \frac{y_i j}{y_{ik}} \end{aligned}$$

$$\begin{cases} y_{ij} = y_{ij} - \frac{y_{ik}}{y_{ik}} y_{ij}, & i \neq r, \\ \\ y_{ij} = \frac{y_{ij}}{y_{ik}}, & \end{cases}$$

因此,主元清去前后的判别数 $z_j = c_j$ 与 $(z_j = c_j)'$ 必有下列关系:

$$\begin{split} (z_j - c_f)' &= \epsilon y \ B - 1 \ pj - \epsilon j \\ &= \epsilon B \ y \ j - \epsilon j \\ &= \sum_{i \neq r} \epsilon B_i \left(y_{ij} - \frac{y_{ik}}{y_{rk}} y_{rj} \right) + \epsilon k \frac{y_{rj}}{y_{rk}} - \epsilon j \\ &= (z_j - \epsilon_j) - \epsilon B_r \ y_{rj} - \sum_{i \neq r} \epsilon B_i \frac{y_{ik}}{y_{rk}} y_{rj} + \epsilon k \frac{y_{rj}}{y_{rk}} \\ &= (z_j - \epsilon_j) - \epsilon B_r \ y_{rj} - \frac{y_{rj}}{y_{rk}} \sum_{i \neq r} \epsilon B_i \ y_{ik}^2 + \epsilon k \frac{y_{rj}}{y_{rk}} \\ &= (z_j - \epsilon_j) - \frac{y_{rj}}{y_{rk}} \sum_{i=1}^m \epsilon B_i \ y_{ik}^2 + \epsilon k \frac{y_{rj}}{y_{rk}} \\ &= (z_j - \epsilon_j) - \frac{y_{rj}}{y_{rk}} \left(\sum_{i=1}^m \epsilon B_i \ y_{ik}^2 - \epsilon k \right) \\ &= (z_j - \epsilon_j) - \frac{y_{rj}}{y_{rk}} (z_k - \epsilon_k). \end{split}$$

- ,假设一个线性规划问题存在有限的最小值 f_0 . 现在用单纯形方法求它的最优解(最小值点),设在第 k 次迭代得到一个退化的基本可行解,且只有一个基变量为零($x_i=0$),此时目标函数值 $f_k > f_0$,试证这个退化的基本可行解在以后各次迭代中不会重新出现.
- 证 设现行基本可行解中,基变量 $x_{B_r} = x_j = 0$,其他基变量均取正值.目标函数值为 f_k . 若下次迭代中, x_p 进基, x_j 离基,则迭代后对应非基变量 x_j 的判别数为负数,后续迭代中 x_j 不进基. 若下次迭代中, x_p 进基, x_j 仍为基变量,则 x_p 进基后的取值 $x_p = \min \left\{ \frac{\overline{b}_i}{y_{ik}} \middle| y_{ik} > 0, i \neq r \right\} > 0$,新的基本可行解处,目标函数值 $f = f_k (z_p c_p) x_p < f_k$,由于单纯形方法得到的函数值序列单调减小,因此原退化的基本可行解不会重复出现.
- 5. 假设给定一个线性规划问题及其一个基本可行解. 在此线性规划中,变量之和的上界为 σ ,在已知的基本可行解处,目标函数值为f,最大判别数是 z_k-c_k ,又设目标函数值的允许误差为 ε ,用 f_0 表示未知的目标函数的最小值. 证明: 若

$$z_b - c_b \leq \varepsilon/\sigma$$

则

$$f - f_0 \leq \varepsilon$$
.

证 考虑线性规划:

min
$$f = \frac{\text{def}}{=} cx$$

s. t. $Ax = b$,
 $x \ge 0$.

在已知基本可行解x处的目标函数值f与最小值f。有如下关系:

$$f_0 = f - \sum_{j \in R} (z_j - c_j) x_j$$
,

其中R 是非基变量的下标集. z_i 一 c_i 是对应非基变量 x_i 的判别数. 显然有

$$f - f_0 = \sum_{j \in \mathbb{R}} (z_j - c_j) x_j \leqslant \sum_{j \in \mathbb{R}} (z_k - c_k) x_j \leqslant \frac{\varepsilon}{\sigma} \sum_{j \in \mathbb{R}} x_j \leqslant \frac{\varepsilon}{\sigma} \cdot \sigma = \varepsilon.$$

6. 假设用单纯形方法解线性规划问题

min
$$cx$$

s. t. $Ax = b$,
 $x \ge 0$.

在某次迭代中对应变量 x, 的判别数 z, -c, >0, 且单纯形表中相应的列 y, $= B^{-1}p$, ≤ 0 . 证明

$$d = \begin{bmatrix} -y_j \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$

是可行域的极方向. 其中分量 1 对应 x_i.

证 不妨设 $A \neq m \times n$ 矩阵, 并记作

$$\mathbf{A} = [p_1 \ p_2 \ \cdots \ p_m \ \cdots \ p_n] = [\mathbf{B} \ p_{m+1} \ \cdots \ p_n].$$

由于

$$Ad = \begin{bmatrix} B \ p_{m+1} \cdots p_j \cdots p_n \end{bmatrix} \begin{bmatrix} -B^{-1} p_j \\ 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} = -p_j + p_j = 0,$$

且 $d \ge 0$,因此 d 是可行域的方向.

下面证明 d 是极方向. 设 d 可表示成可行域的两个方向 d (1) 和 d (2) 的正线性组合,即

$$d = \lambda d^{(1)} + \mu d^{(2)}, \tag{1}$$

其中 $\lambda,\mu>0$, $d^{(1)}\ge0$, $d^{(2)}\ge0$,比较(1)式两端的各分量,易知 $d^{(1)}$ 和 $d^{(2)}$ 有下列形式。

$$\boldsymbol{d}^{(1)} = \begin{bmatrix} d_{B}^{(1)} \\ 0 \\ \vdots \\ a_{j} \\ \vdots \\ 0 \end{bmatrix}, \quad \boldsymbol{d}^{(2)} = \begin{bmatrix} d_{B}^{(2)} \\ 0 \\ \vdots \\ b_{j} \\ \vdots \\ 0 \end{bmatrix}, \quad a_{j}, b_{j} > 0.$$

由于 d⁽¹⁾是可行域的方向,因此 Ad ⁽¹⁾ = 0, d⁽¹⁾≥0,即

$$Bd_B^{(1)} + a_i p_i = 0.$$
 (2)

同理,由Ad(2)=0,知

$$Bd_{B}^{(2)} + b_{i}p_{i} = 0. (3)$$

由(2)式及(3)式得到

$$\frac{1}{a_j} B d_{\,a}^{\,(1)} = \frac{1}{b_j} B d_{\,a}^{\,(2)} \,.$$

两端左乘 B^{-1} ,则有

$$d_B^{(2)} = \frac{b_j}{a_j} d_B^{(1)}$$
.

代入方向 d⁽²⁾,从而得到

$$d^{(1)} = \frac{b_i}{a_i} d^{(1)}, \quad \text{i.e. } p = a_j, b_j > 0,$$

即 $d^{(1)}$, $d^{(2)}$ 是同向非零向量. 因此方向 d 不能表示成两个不同方向的正线性组合,d 是可行域的极方向.

7. 用关于变量有界情形的单纯形方法解下列问题:

(1) min
$$3x_1 - x_2$$
 (2) max $-x_1 - 3x_3$
s. t. $x_1 + x_2 \le 9$, s. t. $2x_1 - 2x_2 + x_3 = 6$, $x_1 + 2x_2 + x_3 + x_4 = 10$, $0 \le x_1 \le 4$, $0 \le x_2 \le 4$, $0 \le x_3 \le 4$, $0 \le x_4 \le 12$.
(3) min $x_1 + 2x_2 + 3x_3 - x_4$ (4) max $4x_1 + 6x_2$

3) min
$$x_1 + 2x_2 + 3x_3 - x_4$$
 (4) max $4x_1 + 6x_2$
s. t. $x_1 - x_2 + x_3 - 2x_4 \le 6$, s. t. $2x_1 + x_2 \le 4$,
 $2x_1 + x_2 - x_3 \ge 2$, $3x_1 - x_2 \le 9$,
 $-x_1 + x_2 - x_3 + x_4 \le 8$, $0 \le x_1 \le 4$,
 $0 \le x_1 \le 3$, $0 \le x_2 \le 3$.
 $1 \le x_2 \le 4$,

$$0 \leq x_3 \leq 10,$$

$$2 \leq x_4 \leq 5.$$

解 (1) 引进松弛变量 x3, 写成下列形式:

min
$$3x_1 - x_2$$

s. t. $x_1 + x_2 + x_3 = 9$,
 $0 \le x_i \le 6$, $i = 1, 2$, $x_3 \ge 0$.

取初始基本可行解:

$$x_B = x_3 = 9$$
, $x_{N_1} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, 目标函数值 $f_0 = 0$.

单纯形表如下:

$$x_1$$
 x_2 x_3
 x_4 x_5 x_5
 x_5 x_7 x_8 x_8 x_9 $x_$

取下界的非基变量下标集 $R_1 = \{1,2\}$,取上界的非基变量下标集 $R_2 = \emptyset$.已用符号 1 标注在表下.

选择 x_2 作为进基变量,令 $x_2=0+\Delta_2=\Delta_2$,计算 Δ_2 :

$$\beta_1 = \frac{9-0}{1} = 9$$
, $\beta_2 = \infty$, $\beta_3 = 6-0=6$,

令 $\Delta_2 = \min\{9, \infty, 6\} = 6$,因此, $x_2 = 6$,取值上界,仍为非基变量,基变量是 x_3 ,取值改变:

$$x_B = x_3 = b - y_2 \Delta_2 = 9 - 6 = 3$$
, $f = f_0 - (z_2 - c_2)x_2 = 0 - 1 \times 6 = -6$.
修改单纯形表如下:

$$x_1$$
 x_2 x_3
 x_3
 x_4
 x_5
 x_7
 x_8
 x_9
 $x_$

取下界的非基变量下标集 $R_1 = \{1,2\}$,取上界的非基变量下标集 $R_2 = \emptyset$. 已用符号 1 标注在表下.

选择 x_2 作为进基变量,令 $x_2=0+\Delta_2=\Delta_2$,计算 Δ_2 :

$$\beta_1 = \frac{9-0}{1} = 9$$
, $\beta_2 = \infty$, $\beta_3 = 6-0=6$,

令 $\Delta_2 = \min\{9, \infty, 6\} = 6$,因此, $x_2 = 6$,取值上界,仍为非基变量,基变量是 x_3 ,取值改变:

$$x_B = x_3 = b - y_2 \Delta_2 = 9 - 6 = 3$$
, $f = f_0 - (z_2 - c_2)x_2 = 0 - 1 \times 6 = -6$.
修改单纯形表如下:

$$x_1$$
 x_2 x_3
 x_4 x_5 x_5 x_5 x_6 x_7 x_8 x_8 x_8 x_9 x_9

已经达到最优,最优解 $\bar{x} = (0,6,3)$,最优值 $f_{min} = -6$.

(2) 用两阶段法求解, 先求一个基本可行解, 为此解下列线性规划:

min y
s. t.
$$2x_1 - 2x_2 + x_3$$
 $+ y = 6$,
 $x_1 + 2x_2 + x_3 + x_4$ $= 10$,
 $0 \le x_1 \le 4$,
 $0 \le x_2 \le 4$,
 $0 \le x_3 \le 4$,
 $0 \le x_4 \le 12$,
 $y \ge 0$.

取初始基本可行解:

$$x_B = \begin{bmatrix} y \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix}, \quad x_{N_1} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

单纯形表如下:

选择变量 x_1 , 令 $x_1 = 0 + \Delta_1 = \Delta_1$, 下面计算增量 Δ_1 :

$$\beta_1 = \min\left\{\frac{6-0}{2}, \frac{10-0}{1}\right\} = 3, \quad \beta_2 = \infty, \quad \beta_3 = 4.$$

令 $\Delta_1 = \min\{3, \infty, 4\} = 3$,因此 $x_1 = 3$. 未达 x_1 的上界,作为进基变量.

$$\begin{bmatrix} y \\ x_4 \end{bmatrix} = \begin{bmatrix} 6 \\ 10 \end{bmatrix} - 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 7 \end{bmatrix}, \quad f = f_0 - (z_1 - c_1)x_1 = 6 - 2 \times 3 = 0,$$

y 离基,修改单纯形表如下:

$$x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad y$$

$$x_{1} \quad 1 \quad -1 \quad \frac{1}{2} \quad 0 \quad \frac{1}{2} \quad 3$$

$$x_{4} \quad 0 \quad 3 \quad \frac{1}{2} \quad 1 \quad -\frac{1}{2} \quad 7$$

$$0 \quad 0 \quad 0 \quad 0 \quad -1 \quad 0$$

一阶段问题已经达到最优,修改单纯形表,进行第二阶段:

已经达到最优,最优解 \bar{x} = (3,0,0,7),最优值 f_{max} = -3.

(3) 用两阶段法求解, 先解下列线性规划, 求一个基本可行解:

min y
s. t.
$$x_1 - x_2 + x_3 - 2x_4 + x_5 = 6$$
,
 $2x_1 + x_2 - x_3 - x_6 + y = 2$,
 $-x_1 + x_2 - x_3 + x_4 + x_7 = 8$,
 $0 \le x_1 \le 3$,
 $1 \le x_2 \le 4$,
 $0 \le x_3 \le 10$,
 $2 \le x_4 \le 5$,
 $x_5, x_6, x_7, y \ge 0$.

取初始基本可行解:

$$x_{N_1} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}, \quad x_B = \begin{bmatrix} x_5 \\ y \\ x_7 \end{bmatrix} = \begin{bmatrix} 11 \\ 1 \\ 5 \end{bmatrix}, \quad f = 1.$$

单纯形表如下:

选择变量 x_1 , 令 $x_1 = \Delta_1$, 计算 Δ_1 的取值:

$$\beta_1 = \min\left\{\frac{11-0}{1}, \frac{1-0}{2}\right\} = \frac{1}{2}, \quad \beta_2 = \infty, \quad \beta_3 = 3-0 = 3.$$

令 $\Delta_1 = \min\left\{\frac{1}{2}, \infty, 3\right\} = \frac{1}{2}$. 修改右端列,取 $x_1 = \frac{1}{2}$,原来基变量的取值为

$$\begin{bmatrix} \mathbf{x}_5 \\ \mathbf{y} \\ \mathbf{x}_7 \end{bmatrix} = \begin{bmatrix} 11 \\ 1 \\ 5 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{21}{2} \\ 0 \\ \frac{11}{2} \end{bmatrix},$$

y 离基, x_1 进基,新基下目标值 $f = f_0 - (z_1 - c_1)\Delta_1 = 1 - 2 \times \frac{1}{2} = 0$. 修改后单纯形表如下:

得到原来线性规划的一个基本可行解.

下面进行第二阶段,从求得的基本可行解出发,求最优解.为此,先修改上面单纯形表.

$$x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6} \quad x_{7}$$

$$0 \quad -\frac{3}{2} \quad \frac{3}{2} \quad -2 \quad 1 \quad \frac{1}{2} \quad 0 \quad \frac{21}{2}$$

$$x_{1} \quad 1 \quad \frac{1}{2} \quad -\frac{1}{2} \quad 0 \quad 0 \quad -\frac{1}{2} \quad 0 \quad \frac{1}{2}$$

$$x_{7} \quad 0 \quad \frac{3}{2} \quad -\frac{3}{2} \quad 1 \quad 0 \quad -\frac{1}{2} \quad 1 \quad \frac{11}{2}$$

$$0 \quad -\frac{3}{2} \quad -\frac{7}{2} \quad 1 \quad 0 \quad -\frac{1}{2} \quad 0 \quad \frac{1}{2}$$

选择变量 x_4 , 令 $x_4 = 2 + \Delta_4$, 下面求 Δ_4 :

$$\beta_1 = \frac{11}{2} - 0 = \frac{11}{2}, \quad \beta_2 = \infty, \quad \beta_3 = 5 - 2 = 3.$$

$$Φ$$
 $Δ_4 = min { 11/2, ∞, 3 } = 3, x_4$ 取上界值.

$$\begin{bmatrix} x_5 \\ x_1 \\ x_7 \end{bmatrix} = \begin{bmatrix} \frac{21}{2} \\ \frac{1}{2} \\ \frac{11}{2} \end{bmatrix} - 3 \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{33}{2} \\ \frac{1}{2} \\ \frac{5}{2} \end{bmatrix}, \quad f = f_0 - (z_4 - c_4) \Delta_4 = \frac{1}{2} - 1 \times 3 = -\frac{5}{2}.$$

修改单纯形表右端列,得下表:

求得最优解 $\bar{x} = \left(\frac{1}{2}, 1, 0, 5, \frac{33}{2}, 0, \frac{5}{2}\right)$,最优值 $f_{min} = -\frac{5}{2}$.

(4) 引入松弛变量 x3,x4,化成

max
$$4x_1 + 6x_2$$

s. t. $2x_1 + x_2 + x_3 = 4$,
 $3x_1 - x_2 + x_4 = 9$,
 $0 \le x_1 \le 4$,
 $0 \le x_2 \le 3$,
 $x_3, x_4 \ge 0$.
 $x_8 = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \end{bmatrix}, \quad x_{N_1} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

目标函数值 f。=0. 列表如下:

选择 x_2 , 令 $x_2 = 0 + \Delta_2$. 下面求 Δ_2 :

$$\beta_1 = \frac{4-0}{1} = 4$$
, $\beta_2 = \infty$, $\beta_3 = 3-0 = 3$, $\Delta_2 = \min\{4, \infty, 3\} = 3$.

非基变量 x_2 改为取值上界,令 $x_2=3$. 仍取 x_3 , x_4 作为基变量. 修改右端列:

$$\begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \end{bmatrix} - 3 \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 12 \end{bmatrix}, \quad f = f_0 - (z_2 - c_2)\Delta_2 = 18,$$

得下列单纯形表:

还未达到最优.

选择变量 x_1 ,令 $x_1=0+\Delta_1$ 计算 Δ_1 :

$$\beta_1 = \min\left\{\frac{1-0}{2}, \frac{12-0}{3}\right\} = \frac{1}{2}, \quad \beta_2 = \infty, \quad \beta_3 = 4-0 = 4.$$

$$\diamondsuit \Delta_1 = \min \left\{ \frac{1}{2}, \infty, 4 \right\} = \frac{1}{2}. \mathbb{R}$$

$$x_1 = \frac{1}{2}, \quad \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 12 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{21}{2} \end{bmatrix}, \quad f = f_0 - (z_1 - c_1)\Delta_1 = 18 - (-4) \times \frac{1}{2} = 20.$$

x1 进基,x3 离基取下界. 经迭代得到新单纯形表:

已经达到最优,最优解 $\bar{x} = \left(\frac{1}{2}, 3, 0, \frac{21}{2}\right)$,最优值 $f_{\text{nax}} = 20$.

8. 用分解算法解下列线性规划问题:

(1)
$$\max x_1 + 3x_2 - x_3 + x_4$$
 (2) $\max 5x_1 - 2x_3 + x_4$ s. t. $x_1 + x_2 + x_3 + x_4 \le 8$, s. t. $x_1 + x_2 + x_3 + x_4 \le 30$, $x_1 + x_2 \le 6$, $x_1 + x_2 \le 12$,

$$x_3 + 2x_4 \le 10$$
, $2x_1 - x_2 \le 9$, $-x_3 + x_4 \le 4$, $-x_3 + x_4 \le 2$, $x_j \ge 0$, $j = 1, 2, 3, 4$. $x_j \ge 0$, $j = 1, 2, 3, 4$.

(3)
$$\max x_1 + 2x_2 + x_3$$
 (4) $\min -2x_1 + 4x_2 - x_3 + x_4$
s. t. $x_1 + x_2 + x_3 \le 12$, s. t. $x_1 + 2x_2 + 4x_3 + x_4 \le 20$, $-x_1 + x_2 \le 2$, $-x_1 + x_2 \le 3$, $-x_1 + 2x_2 \le 8$, $x_1 \le 4$, $x_3 \le 3$, $x_3 - 5x_4 \le 5$, $x_1 \cdot x_2 \cdot x_3 \ge 0$. $x_j \ge 0$, $j = 1, 2, 3, 4$.

(5) min
$$-x_1 - 8x_2 - 5x_3 - 6x_4$$

s. t. $x_1 + 4x_2 + 5x_3 + 2x_4 \le 7$,
 $2x_1 + 3x_2 \le 6$,
 $5x_1 + x_2 \le 5$,
 $3x_3 + 4x_4 \ge 12$,
 $x_3 \le 4$,
 $x_4 \le 3$,
 $x_i \ge 0$, $j = 1, 2, 3, 4$.

解 (1) 把线性规划写为下列形式:

max
$$cx$$

s. t. $Ax \leq b$,
 $x \in S$,

其中, $x=(x_1,x_2,x_3,x_4)^{\mathsf{T}},c=(1,3,-1,1),A=(1,1,1,1),b=8$,

$$S = \left\{ x \middle| \begin{array}{l} x_1 + x_2 \leqslant 6 \\ x_3 + 2x_4 \leqslant 10 \\ -x_3 + x_4 \leqslant 4 \\ x_j \geqslant 0, \quad j = 1, 2, 3, 4 \end{array} \right\}.$$

引入松弛变量 $v \ge 0$. 设集合 S 有 t 个极点,有 t 个极方向,则每个 $x \in S$ 可表示为

$$x = \sum_{j=1}^{t} \lambda_{j} x^{(j)} + \sum_{j=1}^{t} \mu_{j} d^{(j)},$$

$$\sum_{j=1}^{t} \lambda_{j} = 1,$$

$$\lambda_j \geqslant 0, \quad j = 1, 2, \dots, t,$$

 $\mu_j \geqslant 0, \quad j = 1, 2, \dots, l.$

主规划为

$$\max \sum_{j=1}^{l} (cx^{(j)}) \lambda_{j} + \sum_{j=1}^{l} (cd^{(j)}) \mu_{j}$$
s. t.
$$\sum_{j=1}^{l} (Ax^{(j)}) \lambda_{j} + \sum_{j=1}^{l} (Ad^{(j)}) \mu_{j} + v = b,$$

$$\sum_{j=1}^{l} \lambda_{j} = 1,$$

$$\lambda_{j} \ge 0, \quad j = 1, 2, \dots, t,$$

$$\mu_{j} \ge 0, \quad j = 1, 2, \dots, l, \quad v \ge 0.$$

下面用修正单纯形法解主规划.

取集 S 一个极点 $x^{(1)} = (0,0,0,0)^T$,将其对应的变量 λ_1 和松弛变量 v 作为初始基变量,初始基

$$\mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{B}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

在主规划中,基变量的目标系数 $c_B = (0, cx^{(1)}) = (0, 0)$. 在基 B 下,单纯形乘子 $(w, \alpha) = c_B B^{-1} = (0, 0)$,约束右端 $\bar{b} = \begin{bmatrix} 8 \\ 1 \end{bmatrix}$,目标函数值 $f = c_B \bar{b} = 0$.修正单纯形法中,初表如下:

	0	0	0
υ	1	0	8
λι	0	1	1

第1次迭代:

解子规划,求最小判别数:

min
$$(wA - c)x + a$$

s. t. $x \in S$.

即

min
$$-x_1 - 3x_2 + x_3 - x_4$$

s. t. $x_1 + x_2 \le 6$
 $x_3 + 2x_4 \le 10$,
 $-x_3 + x_4 \le 4$,
 $x_j \ge 0$, $j = 1, 2, 3, 4$.

化为标准形式:

min
$$-x_1 - 3x_2 + x_3 - x_4$$

s. t. $x_1 + x_2$ $+ x_5$ = 6,
 $x_3 + 2x_4$ $+ x_6$ = 10,
 $-x_3 + x_4$ $+ x_7 = 4$,
 $x_j \ge 0$, $j = 1, 2, \dots, 7$.

用单纯形法求解如下:

	x_1	x_2	x_3	x_4	x_5	x_6	x_7	
.T5	1	1	0	0	1	0	0	6
X6	0	0	1	2	0	1	0	10
x7	0	0	-1	1	0	0	1	4
	1	3	-1	1	0	0	0	0
<i>x</i> ₂	1	1	0	0	1	0	0	6
<i>x</i> ₆	0	0	1	2	0	1	0	10
<i>x</i> 7	0	0	-1	1	0	0	1	4
	-2	0	-1	1	- 3	0	0	-18
<i>x</i> ₂	1	1	0	0	1	0	0	6
.X6	0	0	3	0	0	1	-2	2
.x4	0	0	-1	1	0	0	1	4
	-2	0	0	0	-3	0	-1	-22

主规划的最小判别数 $z_2 - c_2 = -22$,集合 S 的一个极点 $x^{(2)} = (0,6,0,4)^{\mathsf{T}}$. 计算主列:

$$y_2 = B^{-1} \begin{bmatrix} Ax^{(2)} \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 1 \end{bmatrix}.$$

作主元消去运算:

第2次迭代:

先解子规划,求最小判别数:

由第 1 次迭代结果知,在新基下单纯形乘子 $w=\frac{11}{5}$, $\alpha=0$, $wA-c=\left(\frac{6}{5},-\frac{4}{5},\frac{16}{5},\frac{6}{5}\right)$.

min
$$(wA - c)x + \alpha$$

s. t. $x \in S$.

即

min
$$\frac{6}{5}x_1 - \frac{4}{5}x_2 + \frac{16}{5}x_3 + \frac{6}{5}x_4$$

s. t. $x \in S$.

修改第1次迭代中子规划最优表最后一行,然后用单纯形法求子规划最优解:

	x_1	x_2	x_3	x_4	<i>x</i> ₅	X-6	x_7	
<i>x</i> ₂	1	1	0	0	1	0	0	6
.X.6	0	0	3	0	0	1	-2	2
x_4	0	0	-1	1	0	0	1	4
	-2	0	$-\frac{22}{5}$	0	$-\frac{4}{5}$	0	<u>6</u> 5	0
x2	1	1	0	0	1	0	0	6
x_6	0	0	1	2	0	1	0	10
x7	0	0	-1	1	0	0	1	4
	-2	0	$-\frac{16}{5}$	- 6 5	$-\frac{4}{5}$	0	0	$-\frac{24}{5}$

得到集合 S 的一个极点 $x^{(3)}=(0,6,0,0)$,现行主规划最小判别数 $z_3-c_3=-\frac{24}{5}$, λ_3 进基.

$$\mathbf{y}_{3} = \mathbf{B}^{-1} \begin{bmatrix} \mathbf{A} \mathbf{x}^{(3)} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{10} & 0 \\ -\frac{1}{10} & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} \\ \frac{2}{5} \end{bmatrix}.$$

得到集合 S 的一个极点 $x^{(3)} = (0,6,0,0)$, 现行主规划最小判别数 $z_3 - c_3 = -\frac{24}{5}$, λ_3 进基.

$$\mathbf{y}_{3} = \mathbf{B}^{-1} \begin{bmatrix} \mathbf{A} \mathbf{x}^{(3)} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{10} & 0 \\ -\frac{1}{10} & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{5} \\ \frac{2}{5} \end{bmatrix}.$$

作主元消去运算:

 λ_3

$$\lambda_{2} = \begin{bmatrix} 1 & 12 & 20 \\ \frac{1}{4} & -\frac{3}{2} & \frac{1}{2} \\ \lambda_{3} & -\frac{1}{4} & \frac{5}{2} & \frac{1}{2} \end{bmatrix}$$

第3次迭代:

解子规划求最小判别数:

$$wA - c = 1 \cdot (1, 1, 1, 1) - (1, 3, -1, 1) = (0, -2, 2, 0).$$

min $(wA - c)x + a$

s. t. $x \in S$.

訓

min
$$-2x_z + 2x_3 + 12$$

s. t. $x \in S$.

子规划的最小值为0,即主规划在现行基下最小判别数为0,因此达到最优,最优解是

$$\bar{x} = \lambda_2 x^{(2)} + \lambda_3 x^{(3)} = \frac{1}{2} \begin{bmatrix} 0 \\ 6 \\ 0 \\ 4 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 6 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 6 \\ 0 \\ 2 \end{bmatrix}.$$

最优值 $f_{max} = 20$.

(2) 第一个约束记作 $A_1x_1 + A_2x_2 \leq b$, 其中 $A_1 = (1,1)$, $A_2 = (1,1)$, b = 30. 相应地,记 c =

$$(c_{1},c_{2}),c_{1}=(5,0),c_{2}=(-2,1),S_{1}=\left\{x_{1}=\begin{bmatrix}x_{1}\\x_{2}\end{bmatrix} \middle| \begin{array}{l}x_{1}+x_{2}\leqslant12\\2x_{1}-x_{2}\leqslant9\\x_{1},x_{2}\geqslant0\end{array}\right\},S_{2}=\left\{x_{2}=\begin{bmatrix}x_{3}\\x_{4}\end{bmatrix} \middle| \begin{array}{l}-x_{3}+x_{4}\leqslant2\\x_{3}+2x_{4}\leqslant10\\x_{3},x_{4}\geqslant0\end{array}\right\}.$$

线性规划记为:

max
$$c_1x_1 + c_2x_2$$

s. t. $A_1x_1 + A_2x_2 \le b$,
 $x_1 \in S_1$,
 $x_2 \in S_2$.

由于 S_1 , S_2 均是有界集,不存在方向,设 S_1 的极点为 $x_1^{(j)}$, $j=1,2,\cdots,t_1$, S_2 的极点为 $x_2^{(j)}$,

 $j=1,2,\dots,t_2,$ 引入松弛变量 $v\geq 0$.

主规划如下:

$$\max \sum_{j=1}^{t_1} (c_1 x_1^{(j)}) \lambda_{1j} + \sum_{j=1}^{t_2} (c_2 x_2^{(j)}) \lambda_{2j}$$
s. t.
$$\sum_{j=1}^{t_1} (A_1 x_1^{(j)}) \lambda_{1j} + \sum_{j=1}^{t_2} (A_2 x_2^{(j)}) \lambda_{2j} + v = b,$$

$$\sum_{j=1}^{t_1} \lambda_{1j} = 1,$$

$$\sum_{j=1}^{t_2} \lambda_{2j} = 1,$$

$$\lambda_{1j} \ge 0, \quad j = 1, 2, \dots, t_1,$$

$$\lambda_{2j} \ge 0, \quad j = 1, 2, \dots, t_2.$$

分别取 S₁ 和 S₂ 的极点

$$x^{(1)} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad x^{(2)} = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

初始基变量 v, λ_1 , λ_2 ,初始基矩阵 B 为三阶单位矩阵.单纯形乘子和约束右端向量分别是

$$(w, \alpha) = c_B B^{-1} = (0, 0, 0) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = (0, 0, 0), \quad \overline{b} = B^{-1} \begin{bmatrix} b \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 30 \\ 1 \\ 1 \end{bmatrix}.$$

用修正单纯形方法解主规划,初表如下:

	0	0	0	0
υ	1	0	0	30
λ11	0	1	0	1
λ21	0	0	1	1

第1次迭代:

为确定进基变量,分别求解下列两个子规划. 先解第一个子规划:

min
$$(wA_1 - c_1)x_1 + a_1$$

s. t. $x_1 \in S_1$. (1)

即

min
$$-5x_1$$

s. t. $x_1 + x_2 \le 12$,
 $2x_1 - x_2 \le 9$,

$$x_1, x_2 \ge 0$$
.

子规划的最优解和最优值分别是 $\mathbf{x}_1^{(2)} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$, $Z_{1, \min} = -35$.

再解第二个子规划:

min
$$(wA_2 - c_2)x_2 + a_2$$

s. t. $x_2 \in S_2$. (2)

即

min
$$2x_3 - x_4$$

s. t. $-x_3 + x_4 \le 2$,
 $x_3 + 2x_4 \le 10$,
 $x_3, x_4 \ge 0$.

子规划最优解和最优值分别是 $\mathbf{x}_{z}^{(2)} = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $Z_{2,\min} = -2$.

对应 λ_{12} 的判别数 $x_{12}-c_{12}=-35$,最小,因此 λ_{12} 作为进基变量. 主列是

$$y_1^{(2)} = B^{-1} \begin{bmatrix} A_1 x_1^{(2)} \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 12 \\ 1 \\ 0 \end{bmatrix}.$$

下面作主元消去运算:

	0	0	0	0
v	1	0	0	30
λ_{11}	0	1	0	1
λ_{21}	0	0	1	1
			_	
	0	35	0	35
U	1	-12	0	18

À12
-35
12
1
0

第2次迭代:

先解子规划确定进基变量.

解子规划(1):

min
$$-5x_1 + 35$$

s. t. $x_1 + x_2 \le 12$,

$$2x_1 - x_2 \leq 9$$

$$x_1, x_2 \geqslant 0.$$

子规划的最优解和最优值分别是 $\mathbf{x}_1^{(3)} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \end{bmatrix}$, $Z_{1,\min} = 0$.

解子规划(2):

min
$$2x_3 - x_4$$

s. t. $-x_3 + x_4 \le 2$,
 $x_3 + 2x_4 \le 10$,
 $x_3, x_4 \ge 0$.

子规划的最优解和最优值分别是 $x_2^{(3)} - \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} - \begin{bmatrix} 0 \\ 2 \end{bmatrix}, Z_{2,\min} = -2.$

λ23进基,计算主列:

$$\mathbf{y}_{z}^{(3)} = \mathbf{B}^{-1} \begin{bmatrix} \mathbf{A}_{z} \mathbf{x}_{z}^{(3)} \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & -12 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

$$\lambda_{z_{1}}$$

	0	35	0	35	
TU UF	1	-12	0	18	
λ_{12}	0	1	Ō	1	
λ_{21}	0	0	1	1	
	0	35	2	37	
w	1	-12	-2	16	
λ ₁₂	0	1	0	1	
λ23	0	0	1	1	

-2]
2	1
0	
1	

第3次迭代:

子规划(1)计算结果同前.

子规划(2),即

750 AG (27 9 P)

min
$$2x_3 - x_4 + 2$$

s. t. $-x_3 + x_4 \le 2$,
 $x_3 + 2x_4 \le 10$,
 $x_1, x_2 \ge 0$.

子规划(2)的最优值 Z_{3,min}=0.

经两次迭代,在现行基下,对应各变量的判别数均大于或等于0,因此达到最优.最优解

$$\overline{x} = \begin{bmatrix} \lambda_{12} x_1^{(2)} \\ \lambda_{23} x_2^{(3)} \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \\ 0 \\ 2 \end{bmatrix}, \quad f_{\text{max}} = 37.$$

(3) 将线性规划记为

max
$$cx$$

s. t. $Ax \leq 12$,
 $x \in S$,

其中 $\mathbf{x} = (x_1, x_2, x_3)^{\mathsf{T}}, \mathbf{c} = (1, 2, 1), \mathbf{A} = (1, 1, 1),$

$$S = \begin{cases} x \begin{vmatrix} -x_1 + x_2 \leqslant 2 \\ -x_1 + 2x_2 \leqslant 8 \\ x_3 \leqslant 3 \\ x_1, x_2, x_3 \geqslant 0 \end{cases}.$$

设 S 有 t 个极点 $x^{(j)}$, $j=1,2,\cdots,t$, 有 l 个极方向 $d^{(j)}$, $j=1,2,\cdots,l$. 引入松弛变量 $v \ge 0$. 主规划如下:

max
$$\sum_{j=1}^{l} (cx^{(j)}) \lambda_{j} + \sum_{j=1}^{l} (cd^{(j)}) \mu_{j}$$
s. t.
$$\sum_{j=1}^{l} (Ax^{(j)}) \lambda_{j} + \sum_{j=1}^{l} (Ad^{(j)}) \mu_{j} + v = 12,$$

$$\sum_{j=1}^{l} \lambda_{j} = 1,$$

$$\lambda_{j} \geqslant 0, \quad j = 1, 2, \dots, t,$$

$$\mu_{j} \geqslant 0, \quad j = 1, 2, \dots, l, \quad v \geqslant 0.$$

下面用修正单纯形方法解主规划:

取集合 S 的一个极点 $\mathbf{x}^{(1)} = (0,0,0)^{\mathsf{T}}$,初始基变量为 v 和 λ_1 ,初始基 \mathbf{B} 是二阶单位矩阵. 单纯形乘子 $(w,a) = c_{\mathbf{B}}\mathbf{B}^{-1} = (0,0)$,约束右端 $\mathbf{b} = \begin{bmatrix} 12 \\ 1 \end{bmatrix}$ 现行基本可行解下的目标函数值 f = 0. 初表为

第1次迭代:

解子规划,求最小判别数:

min
$$(wA - c)x + a$$

s. t. $x \in S$,

其中 wA - c = (-1, -2, -1),上式即

min
$$-x_1 - 2x_2 - x_3$$

s. t. $-x_1 + x_2 \leq 2$,
 $-x_1 + 2x_2 \leq 8$,
 $x_3 \leq 3$,
 $x_j \geq 0$, $j = 1, 2, 3$.

用单纯形方法求解,求得集合 S 的一个极方向, $d^{(1)} = (2,1,0)^{T}$.

主规划中,对应 μ_1 的判别数($\pi A - c$) $d^{(1)} = -4$, μ_1 进基, 主列

$$\mathbf{y}_1 = \mathbf{B}^{-1} \begin{bmatrix} \mathbf{Ad}^{(1)} \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}.$$

用表格形式计算如下:

第2次迭代:

先解子规划,求判别数:

$$wA - c = \frac{4}{3}(1,1,1) - (1,2,1) = \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right).$$

子规划为

min
$$\frac{1}{3}x_1 - \frac{2}{3}x_2 + \frac{1}{3}x_3$$

s. t. $-x_1 + x_2 \leqslant 2$,
 $-x_1 + 2x_2 \leqslant 8$,
 $x_3 \leqslant 3$,

$$x_1, x_2, x_3 \ge 0.$$

用单纯形方法求得子规划最优解 $x^{(2)} = (4,6,0)^{T}$,最小值 $z = -\frac{8}{3}$. λ_{z} 为进基变量,主列

$$\mathbf{y}_2 = \mathbf{B}^{-1} \begin{bmatrix} \mathbf{A} \mathbf{x}^{(2)} \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 10 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{10}{3} \\ 1 \end{bmatrix}.$$

用表格形式计算如下:

第3次迭代:

$$wA - c = \frac{4}{3}(1,1,1) - (1,2,1) = \left(\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right), w = \frac{4}{3}, \alpha = \frac{8}{3}$$
. 子规划如下:
$$\min \quad \frac{1}{3}x_1 - \frac{2}{3}x_2 + \frac{1}{3}x_3 + \frac{8}{3}$$

s. t.
$$-x_1 + x_2 \le 2$$
,
 $-x_1 + 2x_2 \le 8$,
 $x_3 \le 3$,
 $x_1, x_2, x_3 \ge 0$.

子规划最优解 $x^{(3)} = (4,6,0)^{T}$,最优值 z=0. 结果表明,主规划已达最优解. 原问题的最优解为

$$\bar{x} = \lambda_2 x^{(2)} + \mu_1 d^{(1)} = 1 \cdot \begin{bmatrix} 4 \\ 6 \\ 0 \end{bmatrix} + \frac{2}{3} \cdot \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{16}{3} \\ \frac{20}{3} \\ 0 \end{bmatrix},$$

$$\bar{k} \text{ def} f_{\text{max}} = \frac{56}{3}.$$

(4) 将线性规划写成下列形式:

min
$$c_1x_1 + c_2x_2$$

s. t. $A_1x_1 + A_2x_2 \le 20$,
 $x_1 \in S_1$,
 $x_2 \in S_2$,

 S_1 是有界集,设有 t_1 个极点 $x_1^{(1)}$, $x_1^{(2)}$,…, $x_1^{(4)}$. S_2 是无界集,设有 t_2 个极点,有 l 个极方向. 引入松弛变量 v. 主规划如下:

$$\min \sum_{j=1}^{t_1} (c_1 x_1^{(j)}) \lambda_{1j} + \sum_{j=1}^{t_2} (c_2 x_2^{(j)}) \lambda_{2j} + \sum_{j=1}^{l} (c_2 d^{(j)}) \mu_j$$
s. t.
$$\sum_{j=1}^{t_1} (A_1 x_1^{(j)}) \lambda_{1j} + \sum_{j=1}^{t_2} (A_2 x_2^{(j)}) \lambda_{2j} + \sum_{j=1}^{l} (A_2 d^{(j)}) \mu_j + v = 20,$$

$$\sum_{j=1}^{t_1} \lambda_{1j} = 1,$$

$$\lambda_{1j} \geqslant 0, j = 1, 2, \dots, t_1,$$

 $\lambda_{2j} \geqslant 0, j = 1, 2, \dots, t_2,$
 $\mu_j \geqslant 0, j = 1, 2, \dots, l, v \geqslant 0.$

取
$$S_1$$
 的极点 $x_1^{(1)} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, S_2 的极点 $x_2^{(1)} = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. 初始基变量取 $v_1, \lambda_{11}, \lambda_{21}$.

初始基**B** 是三阶单位矩阵,单纯形乘子(w, a_1 , a_2)=(0,0,0),目标值 z=0,初始单纯形表如下:

	0	0	0	0
υ	1	0	0	20
λ11	0	1	0	1
λ21	0	0	1	1

第1次迭代:

解下列子规划:

$$\max_{\mathbf{x}_1} (\mathbf{x} \mathbf{A}_1 - \mathbf{c}_1) \mathbf{x}_1 + \mathbf{a}_1$$

s. t. $\mathbf{x}_1 \in \mathbf{S}_1$.

即

max
$$2x_1 - 4x_2$$

s. t. $-x_1 + x_2 \le 3$,
 $x_1 \le 4$,
 $x_1, x_2 \ge 0$.

子规划的最优解 $x_1^{(2)} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix}$,最优值 $z_1 = 8$,即主规划中对应 λ_{12} 的判别数是 8, λ_{12} 进

基,主列

$$\mathbf{y}_{12} = \mathbf{B}^{-1} \begin{bmatrix} \mathbf{A}_1 \, \mathbf{x}_1^{(2)} \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \\ 0 \end{bmatrix}.$$

用表格形式计算如下:

	0	0	0	0
υ	1	0	0	20
λ11	0	1	0	1
λ_{21}	0	0	1	1

8
4
1
0

 λ_{12}

	0	-8	0	-8
ซ	1	-4	0	16
λ_{12}	0	1	0	1
λ21	0	0	1	1

第2次迭代: 解下列子规划:

$$\max (wA_1 - c_1)x_1 + a_1$$

s. t. $x_1 \in S_1$.

即

max
$$2x_1 - 4x_2 - 8$$

s. t. $-x_1 + x_2 \le 3$,
 $x_1 \le 4$,
 $x_1, x_2 \ge 0$.

子规划的最优解同第 1 次迭代,最优值 $z_1=0$. 现行解下,对应 λ_1 ,的判别数均小于或等于 0.

再解子规划:

$$\max_{\mathbf{x}} (wA_2 - c_2)x_2 + a_2$$

s. t. $x_2 \in S_2$,

即

max
$$x_3 - x_4$$

s. t. $x_3 - 5x_4 \le 5$,
 $-x_3 + 2x_4 \le 2$,
 $x_3, x_4 \ge 0$.

用单纯形方法解子规划,可知无界. S_2 的一个极方向 $d^{(1)} = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$. 在主规划中,对应于 μ_1 的

判别数
$$(wA_2-c_2)d^{(1)}=(1,-1)\begin{bmatrix} 5\\1 \end{bmatrix}=4,\mu_1$$
 进基,主列

$$\mathbf{y} = \mathbf{B}^{-1} \begin{bmatrix} \mathbf{A}_2 \mathbf{d}^{(1)} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & -4 & 0 \\ 0 & \mathbf{1} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 21 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 21 \\ 0 \\ 0 \end{bmatrix}.$$

用表格形式计算如下:

	0	-8	0	- 8
v	1	-4	0	16
λ12	0	1	0	1
λzı	0	0	1	1
	4			
	$-\frac{4}{21}$	$-\frac{152}{21}$	0	$-\frac{232}{21}$
<i>p</i> e ₁			0	
με ₁ λ ₁₂	<u>1</u>	21		21 16

第3次迭代:

解子规则

$$\max (wA_1 - c_1)x_1 + \alpha_1$$

s. t. $x_1 \in S_1$,

IJ

$$\max \frac{38}{21}x_1 - \frac{92}{21}x_2 - \frac{152}{21}$$

s. t.
$$-x_1 + x_2 \leq 3$$
,

$$x_1 \leqslant 4$$
,

$$x_1,x_2\geqslant 0$$
.

子规划的最优解
$$x_1^{(3)} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix} = x_1^{(2)}$$
,最优值 $z_1 = 0$.

再解子规划:

max
$$(wA_2 - c_2)x_2 + a_2$$

s. t. $x_2 \in S_2$,

即

$$\max \quad \frac{5}{21}x_3 - \frac{25}{21}x_4$$

s. t.
$$x_3 - 5x_4 \le 5$$
,

$$-x_3+2x_4\leqslant 2\,,$$

$$x_3, x_4 \ge 0.$$

子规划最优解
$$x_2^{(2)} = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix}$$
,最优值 $z_2 = \frac{25}{21}$.

主规划中,对应 λ_{22} 的判别数为 $\frac{25}{21}$,主列

$$\mathbf{y} = \mathbf{B}^{-1} \begin{bmatrix} \mathbf{A}_2 \mathbf{x}_2^{(2)} \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{21} & -\frac{4}{21} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 20 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{20}{21} \\ 0 \\ 1 \end{bmatrix}.$$

用表格形式计算如下:

	$-\frac{4}{21}$	$-\frac{152}{21}$	0	$-\frac{232}{21}$
μ_1	1 21	$-\frac{4}{21}$	0	$\frac{16}{21}$
λ_{12}	0	1	0	1
λ_{z_1}	0	0	1	1
	1			
	l - i	-7	0	-12

 $\frac{25}{21}$ 01

 λ_{22}

第4次迭代: 解子规划:

$$\max_{1 \leq x_1 \leq x_2 \leq x_1} (wA_1 - c_1)x_1 + \alpha_1$$

s. t. $x_1 \in S_1$,

即

max
$$\frac{7}{4}x_1 - \frac{9}{2}x_2 - 7$$

s. t. $-x_1 + x_2 \le 3$,
 $x_1 \le 4$,
 $x_1, x_2 \ge 0$.

子规划最优解 $x_1^{(4)} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix} = x_1^{(2)}$,最优值 $z_1 = 0$.

解子规划:

$$\max_{\mathbf{x}} (w\mathbf{A}_2 - \mathbf{c}_2)x_2 + a_2$$

s. t. $x_2 \in S_2$,

įΠ

max
$$-\frac{5}{4}x_4$$

s. t. $x_3 - 5x_4 \le 5$,
 $-x_3 + 2x_4 \le 2$,
 $x_3, x_4 \ge 0$.

子规划最优解
$$x_2^{(3)} = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 5 \\ 0 \end{bmatrix} = x_2^{(2)}$$
,最优值 $z_2 = 0$.

主规划对应各变量的判别数均小于或等于 0, 因此达到最优. 主规划的最优解是 $\lambda_{12} = 1$, $\lambda_{21} = \frac{4}{20}$, $\lambda_{22} = \frac{16}{20}$, 其余变量均为非基变量, 取值为 0.

原来问题最优解

(5) 线性规划写成下列形式:

min
$$c_1x_1 + c_2x_2$$

s. t. $A_1x_1 + A_2x_2 \le b$
 $x_1 \in S_1$,
 $x_2 \in S_2$,

其中
$$\mathbf{x}_1 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}, \mathbf{c}_1 = [-1, -8], \mathbf{c}_2 = [-5, -6], \mathbf{A}_1 = [1, 4], \mathbf{A}_2 = [5, 2], b = 7.$$

$$S_{1} = \left\{ x_{1} \middle| \begin{array}{l} 2x_{1} + 3x_{2} \leqslant 6 \\ 5x_{1} + x_{2} \leqslant 5 \\ x_{1}, x_{2} \geqslant 0 \end{array} \right\}, \quad S_{2} = \left\{ x_{2} \middle| \begin{array}{l} 3x_{3} + 4x_{4} \geqslant 12 \\ x_{3} \leqslant 4 \\ x_{4} \leqslant 3 \\ x_{3}, x_{4} \geqslant 0 \end{array} \right\}.$$

 S_1 和 S_2 均为有界集. 设 S_1 有 t_1 个极点: $\mathbf{x}_1^{(1)}$, $\mathbf{x}_1^{(2)}$, ..., $\mathbf{x}_1^{(t_1)}$, S_2 有 t_2 个极点: $\mathbf{x}_2^{(1)}$, $\mathbf{x}_2^{(2)}$, ..., $\mathbf{x}_2^{(t_2)}$. 主规划写成

x52, 主规划写成

$$\begin{aligned} \min & & \sum_{j=1}^{t_1} (c_1 x_1^{(j)}) \lambda_{1j} + \sum_{j=1}^{t_2} (c_2 x_2^{(j)}) \lambda_{2j} \\ \text{s. t.} & & \sum_{j=1}^{t_1} (A_1 x_1^{(j)}) \lambda_{1j} + \sum_{j=1}^{t_2} (A_2 x_2^{(j)}) \lambda_{2j} + v = b, \\ & & \sum_{j=1}^{t_1} \lambda_{1j} & = 1, \\ & & \sum_{j=1}^{t_2} \lambda_{2j} & = 1, \\ & & \lambda_{1j} \geqslant 0, j = 1, 2, \cdots, t_1, \\ & & \lambda_{2j} \geqslant 0, j = 1, 2, \cdots, t_2, v \geqslant 0, \end{aligned}$$

下面用修正单纯形方法解主规划.

先给定初始基. 取 S_1 的一个极点 $\mathbf{x}_1^{(1)} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, S_2 的一个极点 $\mathbf{x}_2^{(1)} = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, 初始基变量为 $v_1 \lambda_{11}$, λ_{21} , 构造初表:

第1次迭代:

解子规划:

$$\max (wA_1 - c_1)x_1 + \alpha_1$$

s. t. $x_1 \in S_1$,

即

max
$$x_1 + 8x_2$$

s. t. $2x_1 + 3x_2 \le 6$,
 $5x_1 + x_2 \le 5$,
 $x_1, x_2 \ge 0$.

子规划最优解 $x_1^{(2)} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$,最优值 $z_1 = 16$.可知主规划中对应 λ_{12} 的判别数为 16, λ_{12} 进

基,主列

$$\mathbf{y} = \mathbf{B}^{-1} \begin{bmatrix} \mathbf{A}_1 \mathbf{x}_1^{(2)} \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 8 \\ 1 \\ 0 \end{bmatrix}.$$

用表格形式计算如下:

AIZ
16
8
1
0

	-2	0	0	-14
λ ₁₂	1 8	0	0	7 8
λ11	$-\frac{1}{8}$	1	0	1 8
λ_{21}	0	0	1	1

第2次迭代:

解子规划

$$\max (wA_1 - c_1)x_1 + \alpha_1$$

s. t. $x_1 \in S_1$,

即

max
$$-x_1$$

s. t. $2x_1 + 3x_2 \le 6$,
 $5x_1 + x_2 \le 5$,
 $x_1, x_2 \ge 0$.

子规划的最优解 $x_1^{(2)} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = x_1^{(1)}$,最优值 $z_1 = 0$.即主规划中对应 λ_1 ,的最大判别数为 0.

再解子规划

max
$$(wA_2 - c_1)x_2 + a_2$$

s. t. $x_2 \in S_2$,

訓

max
$$-x_1$$

s. t. $2x_1 + 3x_2 \le 6$,
 $5x_1 + x_2 \le 5$,
 $x_1, x_2 \ge 0$.

子规划的最优解 $\mathbf{x}_1^{(2)} = \begin{bmatrix} 0 \\ 2 \end{bmatrix} = \mathbf{x}_1^{(1)}$,最优值 $z_1 = 0$.即主规划中对应 λ_{1j} 的最大判别数为 0.

再解子规划

max
$$(uA_2 - c_2)x_2 + a_2$$

s. t. $x_2 \in S_2$,

即

max
$$-5x_3 + 2x_4$$

s. t. $3x_3 + 4x_4 \ge 12$,
 $x_3 \le 4$,
 $x_4 \le 3$,
 $x_3, x_4 \ge 0$.

用两阶段法求得子规划最优解 $x_2^{(2)} = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$,最优值 $z_2 = 6$,即主规划中对应 λ_{22} 的

判别数为6, 22, 进基, 主列为

$$\mathbf{y} = \mathbf{B}^{-1} \begin{bmatrix} \mathbf{A}_2 \mathbf{x}_2^{(2)} \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{8} & 0 & 0 \\ -\frac{1}{8} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 6 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{3}{4} \\ -\frac{3}{4} \\ 1 \end{bmatrix}.$$

用表格形式计算如下:

6
3 4
$-\frac{3}{4}$
1

λ:22

第3次迭代: 解子规划:

$$\max (wA_1 - c_1)x_1 + \alpha_1$$

s. t. $x_1 \in S_1$,

訓

max
$$-5x_3 + 2x_4 - 6$$

s. t. $3x_3 + 4x_4 \ge 12$,
 $x_3 \le 4$,
 $x_4 \le 3$,
 $x_3, x_4 \ge 0$.

子规划的最优解
$$x_2^{(3)} = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix} = x_2^{(2)}$$
,最优值 $z_2 = 0$.

主规划已达到最优,最优解是: $\lambda_{11} = \frac{7}{8}$, $\lambda_{12} = \frac{1}{8}$, $\lambda_{22} = 1$, 其余变量均为非基变量, 取值为 0.

原来问题最优解:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \lambda_{11} x_1^{(1)} + \lambda_{12} x_1^{(2)} \\ \lambda_{22} x_2^{(2)} \end{bmatrix} = \begin{bmatrix} 0 \\ \frac{1}{4} \\ 0 \\ 3 \end{bmatrix},$$

最优值 f_{min}=-20.