Fragmentación IPv4

Introducción a los Sistemas Distribuidos (75.43)

Universidad de Buenos Aires, Facultad de Ingeniería

- Concepto: MTU (Maximum transmission unit)
 - Máximo tamaño de paquete de datos que se puede transferir en IP
 - Depende de la capa de enlace (por ejemplo, no tenemos la misma MTU en Ethernet que en Wi-Fi).
 - ¿Qué hacemos con paquetes de tamaño X cuando debe enviarse por una red con MTU < X?

- Concepto: MTU (Maximum transmission unit)
 - Máximo tamaño de paquete de datos que se puede transferir en IP

$$MTU = MSS + IP_{header} + TCP_{header} \\$$

 ¿Qué hacemos con paquetes de tamaño X cuando debe enviarse por una red con MTU < X?

Solución: fragmentación

- Fragmentamos el datagrama en partes
 - o Cada fragmento se transmite en un paquete IP diferente
- Fragmentación se hace en hosts y/o routers
- Ensamblado solo en el destino
 - o IP es sin conexión: cada paquete es tratado individualmente
 - O No se puede reensamblar en el camino (y costaría CPU en los routers)

- La info viaja en el header IP:
 - Fragment offset
 - Flags
- Hay que ensamblarlos antes de dárselos a TCP/UDP
- Si uno o más no llegan, se descarta toda la secuencia!
 - (No es problema, eventualmente se pedirá que se reenvie desde la capa superior)

Fragment offset

 Fragment offset tiene 3 bits menos que Total Length

Fragment offset

- Fragment offset tiene 3 bits menos que Total Length
- -> El fragment offset cuenta en unidades de 8 bytes
- Cada bit que nos movemos en FO implica movernos 8 en TL

Total length (16 bits)

xDM Fra

Fragment offset (13 bits)

- Supongamos MTU = 550B
 - 530B payload + 20B header
- Quiero enviar un payload 800B
- Supongamos:
 - Fragmento 1: 530B
 - Fragmento 2: 270B

Total length (16 bits)

xDM

Fragment offset (13 bits)

- Supongamos MTLL = 550R
 - 530
- Quiero
- Supon
 - Fra
- ¿Cuál sería el fragment offset de cada fragmento?
- Fragmento Z. Z706

Total length (16 bits)

x DM Fragment offset (13 bits)

• El primer fragmento tiene FO = 0.

 Para el segundo fragmento, dijimos que por la diferencia entre los campos TL y FO, el offset se expresaba en unidades de 8 bytes.

Total length (16 bits)

x DM Fragment offset (13 bits)

real offset	fragment offset	
8 bytes	1	
530 bytes	???	

Total length (16 bits)

x DM Fragment offset (13 bits)

real offset	fragment offset	
8 bytes	1	
530 bytes	66.25	

NO PUEDO EXPRESAR ESTE NÚMERO EN BINARIO. DEBO CAMBIAR EL TAMAÑO DE LOS FRAGMENTOS

real offset	fragment offset		
8 bytes	1		
530 bytes	66.25		

Total length (16 bits)

XDM

Fragment offset (13 bits)

- Supongamos MTU = 550B
 - 530B payload + 20B header
- Quiero

¿CÓMO CALCULO EL TAMAÑO A UTILIZAR?

Total length (16 bits)

x DM Fragment offset (13 bits)

- Supongamos MTU = 550B
 - 530B payload + 20B header
- Quiero enviar un payload 800B

$$FragmentPayloadSize = floor(\frac{MaxPayloadSize}{8}) * 8$$

Total length (16 bits)

x DM Fragment offset (13 bits)

- Supongamos MTU = 550B
 - 530B payload + 20B header
- Quiero enviar un payload 800B

$$FragmentPayloadSize = floor(\frac{MaxPayloadSize}{8}) * 8$$

$$FragmentPayloadSize = floor(\frac{530B}{8})*8 = 528B$$

Total length (16 bits)

x DM

Fragment offset (13 bits)

- Supongamos MTU = 550B
 - 530B payload + 20B header
- Quiero enviar un payload 800B
- Entonces:
 - Fragmento 1: 528B (FO = 0)
 - Fragmento 2: 800B 528B = 272B (FO = ?)

Total length (16 bits)

x DM Fragment offset (13 bits)

real offset	fragment offset	
8 bytes	1	
528 bytes	???	

Total length (16 bits)

x DM Fragment offset (13 bits)

real offset	fragment offset	
8 bytes	1	
528 bytes	66	

El host A quiere enviar un paquete de tamaño total 620 bytes al host B. Do not fragment **no** es 1.

- El host A comprueba en su configuración el MTU
 - MTU=1000
 - o 1000 > 620
 - Envía el paquete sin más

- El host A comprueba en su configuración el MTU de la red que lo conecta con R1.
 - o MTU=1000
 - o 1000 > 620
 - Envía el paquete sin más

Total length: 620

0|0|Fragment offset: 0

- R1 comprueba la conexión con R2.
 - MTU = 500
 - o 500 < 620.
 - Do not fragment NO es 1 -> Fragmenta
- ¿Cómo se elige el tamaño del payload?
 - Se usa el máximo posible
 - MTU len(header IP)!
 - Recordar que tiene que ser múltiplo de 8!

- MTU = 500. len(header IP) = 20.
- 500 20 = 480 (480 es múltiplo de 8)
- Entonces, Tpayload = 480 (salvo el último, que puede ser menor)
- ¿Cuántos fragmentos se enviarán?

- MTU = 500. len(header IP) = 20
- 500 20 = 480 (480 es múltiplo de 8)
- Entonces, Tpayload = 480 (salvo el último, que puede ser menor)
- ¿Cuántos fragmentos se enviarán?
 - Tpayload original = 600 (TL era 620)
 - o # frag = ceil(600 / 480) = 2
 - uno de 480
 - el otro de 600 480 = 120

• Resumiendo:

- Payload total a enviar = 600
- Tpayload = 480
- # fragmentos = 2

Resumiendo:

- Payload total a enviar: 600
- Tpayload = 480
- # fragmentos = 2

Total length: 120 + 20

0 0 Fragment offset: 60

Resumiendo:

- Cada paquete que llega a R2 se trata en forma independiente.
- Compara TL de cada paquete con el MTU de la red que lo conecta con B
 - Para F1, TL = 500 > 200 -> tenemos que fragmentar
 - Para F2, TL = 140 < 200 -> lo envía sin más.

- Cada paquete que llega a R2 se trata en forma independiente.
- Compara TL de cada paquete con el MTU de la red que lo conecta con B
 - Para F1, TL = 500 > 200 -> tenemos que fragmentar
 - Para F2, TL = 140 < 200 -> lo envía sin más.
- Calculamos el tamaño del payload
 - MTU = 200. len(header ip) = 20
 - o 200 20 = 180

- Cada paquete que llega a R2 se trata en forma independiente.
- Compara TL de cada paquete con el MTU de la red que lo conecta con B
 - Para F1, TL = 500 > 200 -> tenemos que fragmentar
 - Para F2, TL = 140 < 200 -> lo envía sin más.
- Calculamos el tamaño del payload
 - MTU = 200. len(header ip) = 20
 - o 200 20 = 180
- Ojo! El tamaño del payload debe estar alineado a 8 bytes -> Tpayload = 176

- Cada paquete que llega a R2 se trata en forma independiente.
- Compara TL de cada paquete con el MTU de la red que lo conecta con B
 - Para F1, TL = 500 > 200 -> tenemos que fragmentar
 - Para F2, TL = 140 < 200 -> lo envía sin más.
- Calculamos el tal floor(180 / 8) * 8
 - \circ MTU = 200. len(neader ip) = $\angle U$
 - o 200 20 = 180
- Ojo! El tamaño del payload debe estar alineado a 8 bytes -> Tpayload = 176

- Calculamos el tamaño del payload
 - MTU = 200. len(header ip) = 20
 - o 200 20 = 180
- Ojo! El tamaño del payload debe estar alineado a 8 bytes -> Tpayload = 176
 - ¿Cuántos fragmentos enviamos?

- Calculamos el tamaño del payload
 - MTU = 200. len(header ip) = 20
 - o 200 20 = 180
- Ojo! El tamaño del payload debe estar alineado a 8 bytes -> Tpayload = 176
 - ¿Cuántos fragmentos enviamos?
 - Tpayload original = 480
 - o # frag = ceil(480 / 176) = 3
 - **2** x 176
 - 1x 480 176 176 = 128

- Resumiendo (F1):
 - Payload total a enviar = 480
 - \circ Tpayload = 2 x 176, 1x128
 - # fragmentos = 3

¿Cómo quedan los fragmentos de F1?

- Resumiendo (F1):
 - Payload total a enviar = 480
 - Tpayload = 2×176 , 1×128
 - # fragmentos = 3

C1 1	Total length: 176 + 20		
FI_I	0 1 Fragment offset: 0		
	Total langth: 176 + 20		

10tai lengtn: 1/6 + 20 F1_2 Fragment offset: 22 Total length: 128 + 20 F1_3

Fragment offset: 44

- Resumiendo (F1):
 - Payload total a enviar = 480
 - \circ Tpayload = 2 x 176, 1x128
 - # fragmentos = 3

Para el primer fragmento, se copia el FO base del paquete original

Lo que le llega al host B es entonces:

Nro de frag	Fragment offset	Total length	Payload length	More fragments
F1_1	0	196	176	1
F1_2	22	196	176	1
F1_3	44	148	128	1
F2	60	140	120	0

Lo que le llega al host B es entonces:

Nro de frag	Fragment offset	Total length	Payload length	More fragments
F1_1	0	196	176	1
F1_2	22	196	176	1
F1_3	44	148	128	1
F2	60	140	120	0

La suma de los payloads parciales debe dar el payload que queríamos enviar inicialmente 600 = 176 +176 +128 +120

Fragmentación - Ataques DoS

Ataque a hosts:

- Un atacante envía un fragmento, pero no envía el resto.
- El receptor crea un buffer para almacenar los fragmentos para luego reconstruirlos.
- Haciendo esto a gran escala se logra agotar los recursos del host.

Fragmentación - Ataques DoS

Ataque a routers:

- Un atacante envía un paquete para ser fragmentado.
- El router dedica pocos recursos a realizar la fragmentación.
- Haciendo esto a gran escala se logra drenar el CPU del router.

Referencias

- Kurose, James F., and Keith W. Ross. "4.3.2 IPv4 Datagram Fragmentation"
 Computer Networking: A Top-down Approach. 7ed. Hoboken, NJ: Pearson.
- Kurose, James F., and Keith W. Ross. "4.3.3 IPv4 Addressing" Computer Networking: A Top-down Approach. 7ed. Hoboken, NJ: Pearson.