LINEAR TRANSFORMATIONS

ROHAN RAMCHAND

Let V, W be two vector spaces over a field F.

Definition 1. A linear transformation is a mapping $T: V \to W$ such that for $u, v \in V$ and $\lambda \in F$,

$$T(u+v) = T(u) + T(v)$$
 $T(\mathbf{0}) = \mathbf{0}$
 $T(\lambda u) = \lambda T(u)$ $T(-u) = -T(u)$

Let $T: F^n \to F^m$ be a linear transformation from an n-dimensional field to itself. Then T can be represented as an m-dimensional vector of linear transformations from F^n to F:

$$T = (T_1, T_2, ..., T_m), T_i : F^n \to F.$$

Further, each T_i is a linear transformation:

$$T_i(x_1, x_2, ..., x_n) = a_1^i x_1 + a_2^i x_2 + ... + a_n^i x_n.$$

Then any linear transformation can be represented as an $n \times m$ matrix:

$$T = \begin{bmatrix} a_1^1 & a_2^1 & \dots & a_n^1 \\ a_1^2 & a_2^2 & \dots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ a_1^m & a_2^m & \dots & a_n^m \end{bmatrix}$$

Example. Let T(x,y)=(x+y,x-y) be a linear transformation from $\mathbb{R}^2\to\mathbb{R}^2$. Then

$$T = \left[\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right].$$

Example. Let X, Y be finite sets and $\varphi : X \to Y$ be a map from X to Y. Let F(X), F(Y) be the field of F-valued functions on X and Y, respectively, and let $\varphi^* : F(Y) \to F(X)$ be a mapping of fields such that $\varphi^*(f) = f \circ \varphi$. Then φ^* is a linear transformation.

Proof.

$$\varphi^*(f+g)(x) = (f+g)(\varphi(x))$$

$$= f(\varphi(x)) + g(\varphi(x))$$

$$= \varphi^*(f)(x) + \varphi^*(g)(x)$$

$$\varphi^*(\lambda f) = (\lambda f)(\varphi(x))$$

$$= \lambda f(\varphi(x))$$

$$= \lambda \varphi^*(f)(x)$$

Therefore, φ^* satisfies both properties of a linear transformation and the proof is complete.

OPERATIONS ON LINEAR TRANSFORMATIONS

We define two operations on linear transformations, addition and multiplication by a scalar.

Definition 2. Let $T, S : V \to W$ be linear transformations from a vector space V to a vector space W over the field F. Then

$$(T+S)(v) = T(v) + S(v).$$

Definition 3. Let $T: V \to W$ be a linear transformation from a vector space V to a vector space W over the field F. Then for some $\lambda \in F$,

$$(\lambda \cdot T)(v) = \lambda \cdot T(v).$$

The following theorem is presented without proof.

Theorem 1. Let $T, S: V \to W$ and $\lambda \in F$ as above. Then both T+S and $\lambda \cdot T$ are linear transformations.

Definition 4. Let V and W be two vector spaces over a field F. Then Hom(V, W) is the set of linear transformations from V to W.

Theorem 2. Let $+: \operatorname{Hom}(V, W) \times \operatorname{Hom}(V, W) \to \operatorname{Hom}(V, W)$ and $\alpha: F \times \operatorname{Hom}(V, W) \to \operatorname{Hom}(V, W)$ the operations on linear transformations as defined above. Then the triple $(\operatorname{Hom}(V, W), +, \alpha)$ is a vector space over F.

 $(\operatorname{Hom}(V,W) \text{ is also referred to as the tensor product of } V \text{ and } W\text{-dual}, V \bigoplus W^+.)$

Proof. (Hom(V, W), +) is an abelian group by definition. Let $\mathbf{0}: V \to W$ be the identity function on Hom(V, W); then $\mathbf{0}_V = \mathbf{0}_W \forall v \in V$. Finally, define the additive inverse as (-T)(v) = T(-v) = -T(v). Then (Hom(V, W), +, α) is a vector space.

Note that $\operatorname{Hom}(\operatorname{Hom}(V, W), V)$ is a vector space, as is $\operatorname{Hom}(\operatorname{Hom}(\operatorname{Hom}(V, W), V), W)$, etc. This is known as the *self-reducibility of linear algebra*.

Let $T, S : F^n \to F^m$ be linear transformations. Then, as defined above, $T \leftrightarrow \begin{bmatrix} a_1^1 & \dots & a_n^1 \\ \vdots & \ddots & \vdots \\ a_1^m & \dots & a_n^m \end{bmatrix}$

and
$$S \leftrightarrow \begin{bmatrix} b_1^1 & \dots & b_n^1 \\ \vdots & \ddots & \vdots \\ b_1^m & \dots & b_n^m \end{bmatrix}$$
. Then $T + S \leftrightarrow \begin{bmatrix} c_1^1 & \dots & c_n^1 \\ \vdots & \ddots & \vdots \\ c_1^m & \dots & c_n^m \end{bmatrix}$, where $c_i^j = a_i^j + b_i^j$.

Definition 5. Let $\operatorname{Mat}_{m \times n}(F)$ be the set of all $m \times n$ matrices with elements in F. Let $+ : \operatorname{Mat}(F) \times \operatorname{Mat}(F) \to \operatorname{Mat}(F)$ and $\alpha : F \times \operatorname{Mat}(F) \to \operatorname{Mat}(F)$; $(\operatorname{Mat}_{m \times n}(F), +, \alpha)$ is a vector space.

With this definition, the following theorem is presented without proof.

Theorem 3. Let $\operatorname{Hom}(F^n, F^m)$ be the set of linear transformations from F^n to F^m , and let $\operatorname{Mat}_{m \times n}(F)$ be the set of $m \times n$ matrices with elements in F. Then $\operatorname{Hom}(F^n, F^m) \cong \operatorname{Mat}_{m \times n}(F)$.

We now define one final operation on linear transformations, composition of transformations.

Definition 6. Let U, V, W be three vector spaces over a field F. Let $T: U \to V$ and $S: V \to W$ be linear transformations. Then we define **composition of linear transformations** as $S \circ T: U \to W = S(T(u)), u \in U$.

Theorem 4. Let $S \circ T$ be the composition of linear transformations S and T. Then $S \circ T$ is a linear transformation.

Proof.

$$(S \circ T)(u_1 + u_2) = S(T(u_1 + u_2))$$

$$= S(T(u_1) + T(u_2))$$

$$= S(T(u_1)) + S(T(u_2))$$

$$(S \circ T)(\lambda \cdot u) = S(T(\lambda \cdot u))$$

$$= S(\lambda \cdot T(u))$$

$$= \lambda \cdot S(T(u))$$

Then $S \circ T$ is a linear transformation and the proof is complete.

Finally, as above, let
$$T, S : F^n \to F^n$$
 be linear transformations. Then, as defined above, $T \leftrightarrow \begin{bmatrix} a_1^1 & \dots & a_n^1 \\ \vdots & \ddots & \vdots \\ a_1^n & \dots & a_n^n \end{bmatrix}$ and $S \leftrightarrow \begin{bmatrix} b_1^1 & \dots & b_n^1 \\ \vdots & \ddots & \vdots \\ b_1^n & \dots & b_n^n \end{bmatrix}$. Then $S \circ T \leftrightarrow \begin{bmatrix} c_1^1 & \dots & c_n^1 \\ \vdots & \ddots & \vdots \\ c_1^n & \dots & c_n^n \end{bmatrix}$, where

 $c_i^j = b_i^1 a_1^j + b_i^2 a_2^j + \dots + b_i^n a_n^j$. Therefore, $S \circ T = TS$. (This is presented without proof.)