Fare Forecaster

Save Time, Make Money

CONTENTS

INTRO

INTRO

Dillon DiatloData Scientist

dillondiatlo@gmail.com

OBJECTIVE

CHALLENGE

Determine where in NYC for-hire vehicle drivers can make the most money per trip, at that moment.

OBJECTIVE

Sample 212M rows of 2022 NYC for-hire-vehicle trip data to predict total driver revenue by trip.

Deploy an app to help drivers determine which zone to go to for the highest average fare.

EDA

PIT STOP: DOWNSIZING

212,000,000

- Slow to download
- Forever to analyze

MONTH-A | MONTH-B

- Split 'em up
- Chunksize param

CONCATENATE

• Put 'em back together by month

READ | CREATE

- One BIG beautiful df
- ~4M rows

- Right skewed - Most trips between
- \$5-20

- Left skew
- Less trips in the AM

High Passenger Time

- 4:40pm - 4:55pm

- Almost bi-modal
- Mid-hour dip
- Most between 40min - 55min

- Right skewed
- Pattern of dips and peaks every 10-15 minutes

Best Times for Bigger Tips

- 5am, 5pm

Biggest Tips Happen

- 10 minutes past the hour 40 minutes past the hour

Patterns

- Avg size of tips seem to peak every 5 minutes

MODELS

	ТҮРЕ	Preprocessor	Params	Metric SCORE
MODEL 1	GradientBoosting- Regressor	ColumnTransformer OneHotEncoder	random_state=2024	Train r^2: 86.8% Test r^2: 87.4% Train RMSE: \$5.90 Test RMSE: \$6.00
MODEL 2	RandomForest- Regressor	ColumnTransformer OneHotEncoder StandardScaler	n_estimators=250 max_depth=30 min_samples_split=300 max_features='sqrt' n_jobs=4)	Train r^2: 81.2% Test r^2: 78.6%
MODEL 3	LassoCV	StandardScaler	alphas= np.logspace(-3, 0, 100) cv=5 max_iter=10	Train r^2: 86% Test r^2: 86%
MODEL 4	XGBoostRegressor	ColumnTransformer OneHotEncoder	n_estimators=500 max_depth=10 min_samples_split=200 min_child_weight=1 max_features=TKTKTKTKT enable_categorical=True	Test r^2: 12% Test RMSE: \$15.95

WINNER

GradientBoostingRegressor

LinearRegression Baseline

-6%

Train RMSE: \$5.90 Test RMSE: \$6.00

87.4%

Of the variability of average driver revenue per trip can be explained by the features in this model

Features

- 1. trip_miles
- 2. temp
- 3. preciptype
- 4. zone
- 5. borough_name
- 6. trip_duration
- 7. month
- 8. day_of_month
- 9. day_of_week
- 10. hour
- 11. minute
- 12.congestion_surcharge

APP

FEATURES

5-15 minutes

2-10 miles

.

DEMONSTRATION

Click Here to Try

CONCLUSION

NEXT STEPS/RECS

Run experiment again w/ Spark, BigQuery, etc.

probably do by block

made it more bias

versions, include demand data

THANK YOU!

Questions?

Dillon Diatlo

Data Scientist

<u>dillondiatlo@gmail.com</u> <u>Portfolio</u>

