SoPa++: Leveraging explainability from hybridized RNN, CNN and weighted finite-state neural architectures M.Sc. Thesis Defense

Atreya Shankar (799227), shankar.atreya@gmail.com Cognitive Systems: Language, Learning, and Reasoning (M.Sc.) 1st Supervisor: Dr. Sharid Loáiciga, University of Potsdam 2nd Supervisor: Mathias Müller, M.A., University of Zurich

> Foundations of Computational Linguistics Department of Linguistics University of Potsdam, SoSe 2021

> > July 8, 2021

- Introduction
- Background concepts
- 3 Data and methodologies
- **4** Results
- 5 Discussion
- 6 Conclusions
- 7 Future work

Motivation

 Trend of increasingly complex deep learning models achieving SOTA performance on ML and NLP tasks (Figure 1)

- To address emerging concerns such as inductive biases, several studies make arguments for research into XAI; for example Danilevsky et al. (2020) and Arrieta et al. (2020)
- Schwartz et al. (2018) approach XAI in NLP by proposing an explainable hybridized neural architecture called Soft Patterns (SoPa; Figure 2)
- SoPa provides localized and indirect explainability despite being suited for globalized and direct explanations by simplification

Figure 1: Parameter counts of recently released pre-trained language models; figure taken from Sanh et al. (2019)

```
SoPa: Bridging CNNs, RNNs, and Weighted Finite-State Machines

Roy Schwartz* Sam Thomson* Noah A. Smith*

Paul G. Allen School of Computer Science & Engineering, University of Washington

Language Technologies Institute, Carnegie Mellon University

Allen Institute for Artificial Intelligence

{roysch, nasmith}@cs.washington.edu, sthomson@cs.cmu.edu
```

Figure 2: Excerpt from Schwartz et al. (2018)

Objective and research questions

Objective:

 Address limitations of SoPa by proposing SoPa++, which could allow for effective explanations by simplification.

Process:

 We study the performance and explanations by simplification of SoPa++ on the FMTOD data set from Schuster et al. (2019); focusing on the English-language intent classification task.

Research questions:

- Does SoPa++ provide **competitive** performance?
- To what extent does SoPa++ contribute to effective explanations by simplification?
- What interesting and relevant explanations can SoPa++ provide?

- Introduction
- Background concepts
- Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Future work

Explainability

- Transparency is a passive feature that a model exhibits
- Explainability is an active feature that involves target audiences (Figure 3)
- Arrieta et al. (2020) explore a taxonomy of post-hoc explainability techniques
- Prominent explainability techniques include local explanations, feature relevance and explanations by simplification
- Explainability techniques can provide meaningful insights into decision boundaries within black-box models (Figure 4)

Figure 3: Examples of various target audiences in XAI; figure taken from Arrieta et al. (2020)

(a) Husky classified as wolf

(b) Explanation

Figure 4: Local explanation for "Wolf" classification decision, figure taken from Ribeiro et al. (2016)

SoPa: Weighted Finite-State Automaton (WFA)

Definition 1 (Semiring; Kuich and Salomaa 1986)

A semiring is a set $\mathbb K$ along with two binary associative operations \oplus (addition) and \otimes (multiplication) and two identity elements: $\bar 0$ for addition and $\bar 1$ for multiplication. Semirings require that addition is commutative, multiplication distributes over addition, and that multiplication by $\bar 0$ annihilates, i.e., $\bar 0 \otimes a = a \otimes \bar 0 = \bar 0$.

- Semirings follow the following generic notation: $\langle \mathbb{K}, \oplus, \otimes, \bar{0}, \bar{1} \rangle$.
- Max-sum semiring: $\langle \mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0 \rangle$
- Max-product semiring: $\langle \mathbb{R}_{>0} \cup \{-\infty\}, \max, \times, -\infty, 1 \rangle$

Definition 2 (Weighted finite-state automaton; Peng et al. 2018)

A weighted finite-state automaton over a semiring $\mathbb K$ is a 5-tuple $\mathcal A=\langle \Sigma,\mathcal Q,\Gamma,\pmb\lambda,\pmb\rho\rangle$, with:

- a finite input alphabet Σ ;
- a finite state set Q;
- transition matrix $\Gamma: \mathcal{Q} \times \mathcal{Q} \times (\Sigma \cup \{\epsilon\}) \to \mathbb{K}$;
- initial vector $\lambda: \mathcal{Q} \to \mathbb{K}$;
- and final vector $oldsymbol{
 ho}:\mathcal{Q} o\mathbb{K}.$

roduction **Background concepts** Data and methodologies Results Discussion Conclusions Future work Bibliograph

O O O O O

SoPa: Computational graph

Figure 5: Linear-chain NFA with self-loop (blue), ϵ (red) and main-path (black) transitions; figure adapted from Schwartz et al. (2018)

Figure 6: SoPa's partial computational graph; figure taken from Schwartz et al. (2018)

SoPa: Post-hoc explainability techniques

- SoPa provides two post-hoc explainability techniques; namely local explanations and feature relevance
- Local explanations gather highest scoring phrases across the training data (Figure 7)
- Feature relevance perturbs inputs using an occlusion technique to determine the highest impact phrases for a classification decision (Figure 8)
- Overall, both techniques are localized and indirect
- WFAs have a rich theoretical background which can be exploited for more direct and globalized explanations

		Highe	st Scoring Phrases		
Patt. 1	thoughtful and entertaining gentle poignant	, astonishingly , , and	reverent articulate thought-provoking mesmerizing uplifting	portrait cast film portrait story	of of with of in
Patt. 2	's this this a is	€ € €	uninspired bad leaden half-assed clumsy _{sst}	story on comedy film the	purpose

Figure 7: Ranked local explanations from SoPa; table taken from Schwartz et al. (2018)

Analyzed Documents

it 's dumb, but more importantly, it 's just not scary

though moonlight mile is replete with acclaimed actors and actresses and tackles a subject that 's potentially moving, the movie is too predictable and too self-conscious to reach a level of high drama

While its careful pace and seemingly *opaque story* may not satisfy every moviegoer 's appetite, the film 's final scene is soaringly, transparently moving

Figure 8: Feature relevance outputs from SoPa; table taken from Schwartz et al. (2018)

- Introduction
- Background concepts
- 3 Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Future work

- Introduction
- Background concepts
- Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Future work

troduction Background concepts Data and methodologies Results **Discussion** Conclusions Future work Bibliograph

- Introduction
- Background concepts
- Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Future work

roduction Background concepts Data and methodologies Results Discussion **Conclusions** Future work Bibliograph

- Introduction
- Background concepts
- Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Future work

troduction Background concepts Data and methodologies Results Discussion Conclusions **Future work** Bibliograph

- Introduction
- Background concepts
- Data and methodologies
- 4 Results
- 5 Discussion
- 6 Conclusions
- 7 Future work

Bibliography I

- Arrieta, Alejandro Barredo, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot,
 Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López, Daniel Molina,
 Richard Benjamins, et al. (2020). "Explainable Artificial Intelligence (XAI):
 Concepts, taxonomies, opportunities and challenges toward responsible Al". In:
 Information Fusion 58, pp. 82–115.
- Danilevsky, Marina, Kun Qian, Ranit Aharonov, Yannis Katsis, Ban Kawas, and Prithviraj Sen (Dec. 2020). "A Survey of the State of Explainable AI for Natural Language Processing". In: Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing. Suzhou, China: Association for Computational Linguistics, pp. 447–459. URL: https://www.aclweb.org/anthology/2020.aacl-main.46.
- Kuich, Werner and Arto Salomaa (1986). "Linear Algebra". In: Semirings, automata, languages. Springer, pp. 5–103.
- Peng, Hao, Roy Schwartz, Sam Thomson, and Noah A. Smith (2018). "Rational Recurrences". In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Brussels, Belgium: Association for Computational Linguistics, pp. 1203–1214. DOI: 10.18653/v1/D18-1152. URL: https://www.aclweb.org/anthology/D18-1152.

Bibliography II

- Ribeiro, Marco Tulio, Sameer Singh, and Carlos Guestrin (2016). ""Why Should I Trust You?": Explaining the Predictions of Any Classifier". In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pp. 1135–1144.
- Sanh, Victor, Lysandre Debut, Julien Chaumond, and Thomas Wolf (2019).
 "DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter". In: NeurIPS EMC² Workshop.
- Schuster, Sebastian, Sonal Gupta, Rushin Shah, and Mike Lewis (June 2019).

 "Cross-lingual Transfer Learning for Multilingual Task Oriented Dialog". In:

 Proceedings of the 2019 Conference of the North American Chapter of the

 Association for Computational Linguistics: Human Language Technologies, Volume
 1 (Long and Short Papers). Minneapolis, Minnesota: Association for

 Computational Linguistics, pp. 3795–3805. DOI: 10.18653/v1/N19-1380. URL:

 https://www.aclweb.org/anthology/N19-1380.
- Schwartz, Roy, Sam Thomson, and Noah A. Smith (July 2018). "Bridging CNNs, RNNs, and Weighted Finite-State Machines". In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Association for Computational Linguistics, pp. 295–305. DOI: 10.18653/v1/P18-1028. URL: https://www.aclweb.org/anthology/P18-1028.