

Discrete Math Exam Part 2 Cheat Sheet by TheEmu001 via cheatography.com/30732/cs/9214/

Predicates and Quantified Statements					
Universal	$\forall x \in D, P(x)$	$\exists x \in D, \sim P(x)$			
Existential	$\exists (x,y) {\in D, x}{\neq} y P(x,y)$	$\forall (x,y) {\in D, x}{\neq} y {\sim}P(x,y)$			
Universal Conditional	$\forall x, P(x) \rightarrow Q(x)$	$\exists x \in D P(x) \land \sim Q(x)$			
~existential = universal ~universal = existential					

$\forall x \in D, {^{\sim}Q}(x) {\rightarrow^{\sim}P}(x)$
$Q(x) {\to} P(x) \; \forall x \in D$
$\forall x \in D, ^{\sim}P(x) {\rightarrow} ^{\sim}Q(x)$

MQ Invalid Arguments	
Quantified Converse	$\forall x, P(x) \rightarrow Q(x)$
	Q(j) for a particular j
	∴P(j)
Quantified Inverse Error	$\forall x, P(x) \rightarrow Q(x)$
	~P(j) for a particular j
	∴~Q(j)

Multiple Quantifiers					
Existential MQ	$\exists x \in D \forall y \in E, P(x, y)$				
Neg. MQ	$\forall x \in D, \exists y \in E \mid P(x, y)$ [original]	$\exists x \in D, \forall y \in E \mid {}^{\sim}P(x, y)$ [negation]			
Universal Modes Pones		$\forall x \in Z, P(x) {\rightarrow} Q(x)$			
		$P(k), for a particular k \in Z$			
		∴ ~Q(k)			
Universal Modus Tones		$\forall x \in D, P(x) {\rightarrow} Q(x)$			
		${^\sim}Q(j),j\in D$			
		∴ ~P(j)			

By TheEmu001

cheatography.com/theemu001/

Not published yet.

Last updated 22nd September, 2016.

Page 1 of 1.

Sponsored by Readability-Score.com

Measure your website readability!

https://readability-score.com

Cheatography

Discrete Exam 1 Cheat Sheet by TheEmu001 via cheatography.com/30732/cs/9211/

List of E	quivalences	s	Statements (co	ont)		Subse	ts		Tautologie	es and Contradictions	
Condition	na p→q≡~ (p∧~q)	p→q≡~p∨q	Universal Existential	For all	& there exists	B⊆A		ubset, uperset	Tautologie	s Always true statements	t
Statemnt			Existential Univ	ersal There	exists & for all	Proper	Subs	sets:	Contradicti	,	С
contrapos tive	si p→q≡~o	q→~p	Functions			elemer		at belong to	ns	statements	C • T-1
Converse	e p→q	q→p				subset			p∧~p≡ c	T∧F≡c	F∧T≡
	(cond)	(converse)	Requirements: - Arrow coming	out of every el	ement in				pvt≡t	p∧ c ≡ c	
inverse	p→q (cond)	~p→~p (inverse)	domain	t oan anly have	ene alamant	Relation			operator	n law : variable absorbi	ng
		by absence	of domain conn	•		Relatio	ns=	subsets of cartesian product		table to prove law iables don't play a role validity	in
SAME			unsatisfied requ			$R \subseteq A$	хВ	Relation	pv(p∧q)≡	p; p∧(p∨q)≡ p	
Useful S	ymbols		y can be used r		values only			⊆ Domain x Codomain	p→q truth	table	
	,	sal operator)	Predicates and	d Quantified St	atements	Domaii	n	SET that		Truth Table for $p \rightarrow q$	
	`	ntial operator)	Statement	original	negated			includes		$\begin{array}{c cccc} p & q & p \rightarrow q \\ \hline T & T & T \\ \hline T & F & F \end{array}$	
	the set		type		-			every element		F T T F F T	
Λ ai	nd		Universal	$\forall x \in D, P(x)$	∃x∈D,			from			
~ no			E 1 1 2 2 1		~P(x)			source	Argument	Truth Table	
	quivalent		Existential Universal Cond	itional			-	have to	Argument	Trutti Table	
	ubset		Universal Cond	шопаг		include	orae	red pairs	p q r ~ q T T T F	Pennises Concless	r .
	uperset		Set-Builder No	tation		DeMor	gan's	s Law	T T F T T F T F T F T T F F T T F	T F T F T T F T T F T F T F T F T F T F	This row shows that ar argument of this form have true premises and conclusion. Hence this of argument is invalid.
{}, er ∅	mpty set		Elements/ B	elongs to	h that	• Tells handle		w to unction and	F F T F F	F F T T T T T T T T T T T T T T T T T T	
↔ bi	conditional ((both are true)	variables			-		negations		r = row where both prei	mises are
Stateme	nts		K	x	(x)}	~(p^q) ~(pvq)	= ~p	∧~q		and conclusion = TRUE	is a valid
Universa		or all, for ach	set	V Domain(set)	Predicate	"The collose(I) is unplu) or th	ne machine	argument Argument	s	
Existentia		t least, there xists	Set-Roster No	tation		v u) ≡	~l ^~		p→q	major premise	
Condition	nal If	→ then	A = {1, 2, 3 1	00}				ctor is not	р	minor premise	
Universa	l Fo	or all & if-then	use ellipses for	larger sets		loose and the machine is not unplugged" ~pvq is the opposite of p^~q		∴q	therefore, conclusion		
Condition	nal								ka assumptions or hypng truth table	otheses	
							gan's	law, no h table			

By TheEmu001

cheatography.com/theemu001/

Not published yet. Last updated 21st September, 2016. Page 1 of 2. Sponsored by **CrosswordCheats.com** Learn to solve cryptic crosswords!

http://crosswordcheats.com

Discrete Exam 1 Cheat Sheet by TheEmu001 via cheatography.com/30732/cs/9211/

Argument Forms (VALID)	
Modus Pones	p→q
	р
	∴q
Modus Tollens	$p \rightarrow q$
	~q
	∴~p
Gneralization	р
	∴pvq
Specialization	p^q
	∴q
Elimination	pvq
	~q
	∴р
Transitivity	$p{ o}q$
	$q{ ightarrow} r$
	$\cdot p \rightarrow r$
Proof by div. into cases	pvq
	$p{ o}r$
	$q{ ightarrow} r$
	∴r

Fallacy (INVALID ARGUMENTS)	
Converse Error	p→q
	q
⇒	∴p
Inverse Error	$q \rightarrow p$
	~p
	∴~q

By TheEmu001 cheatography.com/theemu001/

Not published yet. Last updated 21st September, 2016. Page 2 of 2. Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords! http://crosswordcheats.com

Discreet Structures: Module 1 Cheat Sheet by ftlauderdale via cheatography.com/135515/cs/28137/

N	All Natural numbers =	{1	. 2.	3.	4.	}	}
---	-----------------------	----	------	----	----	---	---

 Z^{+} All Positive integers = {0, 1, 2, ...}

Common Sets (copy)

N	All Natural numbers =	{1	. 2	. 3	. 4.		}
---	-----------------------	----	-----	-----	------	--	---

 Z^{+} All Positive integers = {0, 1, 2, ...}

	m	

 $4\in A$ 4 is an element of A

2 ∉ A 2 is not an element of A

Examples (copy)

 $4\in A$ 4 is an element of A

2 ∉ A 2 is not an element of A

Examples (copy)

 $4\in \mathsf{A}$ 4 is an element of A

 $2\notin A$ 2 is not an element of A

4 is an element of A $4\in A$

2 ∉ A 2 is not an element of A

4 is an element of A $4\in A$

2 ∉ A 2 is not an element of A

By ftlauderdale

cheatography.com/ftlauderdale/

Published 27th May, 2021. Last updated 27th May, 2021. Page 1 of 1.

Sponsored by Readable.com Measure your website readability! https://readable.com

Cheatography

DIP Exam 2 Cheat Sheet

by Sawyer McLane (samclane) via cheatography.com/32204/cs/9879/

Complex Unit Circle

Discrete Fourier Transform

$$X_k \stackrel{ ext{def}}{=} \sum_{n=0}^{N-1} x_n \cdot e^{-2\pi i k n/N}, \quad k \in \mathbb{Z}$$

Sinc Definition

$$\operatorname{sinc}(x) \equiv \begin{cases} 1 & \text{for } x = 0 \\ \frac{\sin x}{x} & \text{otherwise,} \end{cases}$$

2D DFT Definition

$$F[k,l] = \frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} f[m,n] e^{-j2\pi \left(\frac{k}{M}m + \frac{l}{N}n\right)}$$

2D Continuous Fourier Transform

$$F(u,v) = \int \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(ux+vy)} dx \, dy$$

Wrap Around Error

Solved by zero padding

If f(x) and h(x) are A and B samples respectively, pad f(x) and h(x) with zeros so both have length P>=A+B-1

If not zero, creates discontinuity called "frequency leakage", equivalent to convolving with sinc() function

Reduced by multiplying with function that tapers smoothly to zero (windowing or apodizing)

Butterworth Lowpass Filter

$$H(u, v) = \frac{1}{1 + \left[\frac{D(u,v)}{D_s}\right]^{2n}}$$

D0 is cutoff freq and D(u,v) is distribution of (u,v) from centered origin. n is order

2D Convolution

 $x[m,n] = \sum_{i=1}^{n} \sum_{j=1}^{n} x[i,j] \cdot \mathcal{O}(m-i,n-j)$

Spatial Shift Theorem

$$\mathcal{F}\{f(t-t_0)\}(s) = e^{-j2\pi s t_0} F(s)$$

Spatial transform only affects FT phase

Conjugate Symetry

 $F^*(u,v) = F(-u, -v)$ (Conjugate Symmetry) $F^*(-u,-v) = -F(u,v)$ (Conjugate Asymmetry)

Fourier Spectrum and Phase Angle

 $F(u, v) = |F(u, v)| e^{j\phi(u,v)}$ $|F(u, v)| = [R^2(u, v) + I^2(u, v)]^{1/2}$ $\phi(u, v) = tan^{-1} \left[\frac{I(u, v)}{R(u, v)}\right]$

Steps for Filtering

- 1 + 2. Given f(x,y) is MxN, zero pad to 2Mx2N (PxQ)
- 3. Multiply by (-1)X+y to center
- 4. Take DFT of f(x,y) to get F(u,v)
- 5. Generate symmetric filter H(u,v) of size PxQ
- 6. Get processed image $gp(x,y)={real[\mathbb{F}^{-1}-\{G(u,v)\}\}^*(-1)^{X+y}}$

Laplacian in Freq. Domain

$$\begin{split} H(u,v) &= -4\pi^2(u^2 + v^2) \\ H(u,v) &= -4\pi^2 \left[\left(a - \frac{P}{2} \right)^2 + \left(v - \frac{Q}{2} \right)^2 \right] \\ H(u,v) &= -4\pi^2 P^2 + \left(u, v \right)^2 + \left(v - \frac{Q}{2} \right)^2 \right] \\ &= \sqrt{\tau^2}(x,v) = \sigma^2 H(u,v) P(u,v) \\ \text{Enhancements}(x,v) &= f(x,v) + f(x,v) + eV^2 f(x,y), \ c - 1 \\ g(x,v) &= 3^2 \cdot K(v,v) H(u,v) - F(u,v) \\ g(x,v) &= 3^2 \cdot K(v,v) H(u,v) - F(u,v) \\ g(x,v) &= 3^2 \cdot 1 \left\{ 1 + 4\pi^2 D(u,v) F(u,v) \right\} \\ g(x,v) &= 3^2 \cdot 1 \left\{ 1 + 4\pi^2 D(u,v) F(u,v) \right\} \end{split}$$

Impulse Train Definition

 $\psi_P(t) \stackrel{\Delta}{=} \sum_{m=-\infty}^{\infty} \delta(t - mP)$

Convolution Definition

$$\begin{split} (f*g)[n] &\stackrel{\mathrm{def}}{=} \sum_{m=-\infty}^{\infty} f[m] \, g[n-m] \\ &= \sum_{m=-\infty}^{\infty} f[n-m] \, g[m]. \end{split}$$

2D Sampling

 $\sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \delta(x - nX)\delta(y - mY)$

Frequency Shift Theorem

 $\mathcal{L}\Big[e^{-at}f(t)\Big] = F(s+a)$

DC Component

 $F(0, 0) = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} f(x, y) = MN\overline{f}(x, y)$

Gaussian Filter

$$\begin{split} \text{Low-Pass} & H(u) = Ae^{\frac{-2}{16\sigma^2}} \\ & h(x) = \sqrt{2\pi\sigma}Ae^{-2\pi\sigma^2x^2x^2} \\ & h(x) = \sqrt{2\pi\sigma}Ae^{-2\pi\sigma^2x^2x^2} \\ & \text{High-Pass} & \text{(wide-narrow band): } H(u) = Ae^{\frac{-2}{12\sigma^2}} - Be^{\frac{-2}{12\sigma^2}} \\ & h(x) = \sqrt{2\pi\sigma}Ae^{-2\pi^2\sigma^2x^2} - \sqrt{2\pi\sigma_2}Be^{-2\pi\sigma^2x^2}x^2 \end{split}$$

Unsharp, Highboost, High-Emphasis

 $g(x,y) = \mathfrak{F}^{-1} \left\{ \left[1 + k H_{HP}(u,v) \right] F(u,v) \right\}$

gmask(x,y) = f(x,y) - flp(x,y) g(x,y) = f(x,y) + k*gmask(x,y) k=1, unsharp k>1, highboost

Fourier Series Definition

 $F_a(x) = a_0 + \sum_{k=1}^{k=n} (a_k \cos(kx) + b_k \sin(kx)).$

Convolution Theorem

$$\begin{split} \mathcal{F}\{f * g\} &= \mathcal{F}\{f\} \cdot \mathcal{F}\{g\} \\ \mathcal{F}\{f \cdot g\} &= \mathcal{F}\{f\} * \mathcal{F}\{g\} \\ f * g &= \mathcal{F}^{-1}\big\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\big\} \\ f \cdot g &= \mathcal{F}^{-1}\big\{\mathcal{F}\{f\} * \mathcal{F}\{g\}\big\} \end{split}$$

Space convolution = frequency multiplication

To shift F(0,0) (DC Component) to center, multiply by $(-1)^{x+y}$

Power Spectrum

P(u, v) = |F(u, v)|

Total power of image is just sum of P(u,v) over P-1,Q-1

a = 100[doublesum P(u,v)/Pt]

By **Sawyer McLane** (samclane)

cheatography.com/samclane/ samclane.github.io Published 18th November, 2016. Last updated 18th November, 2016. Page 1 of 2.

Sponsored by **Readable.com**Measure your website readability!
https://readable.com

EECS 203 Exam 2 Cheat Sheet by Kalbi via cheatography.com/19660/cs/2790/

Permutations, no repetition

If *n* and *r* are integers with $0 \le r \le n$, then $P(n, r) = \frac{n!}{(n-r)!}$

permutation formula, ORDER MATTERS (i.e. ways to sort 5 of 10 students in a line)

Permutations, repetition

The number of r-permutations of a set of n objects with repetition allowed is n^r .

very easy, just use product rule as shown

Combinations, no repetition

The number of r-combinations of a set with n elements, where n is a nonnegative integer an r is an integer with $0 \le r \le n$, equals $C(n, r) = \frac{n!}{r!(n-r)!}.$

combination formula, ORDER does NOT matter (i.e committee of 3 out of 5 students)

Combinations, repetition

There are C(n+r-1,r) = C(n+r-1,n-1)r-combinations from a set with n elements when repetition of elements is allowed.

Bars and stars! Order does not matter, ways to select bills/fruit and place in a container

C/P Quick table

TABLE 1 Combinations and Permutations With and Without Repetition.					
Туре	Repetition Allowed?	Formula			
r-permutations	No	$\frac{n!}{(n-r)!}$			
r-combinations	No	$\frac{n!}{r!\;(n-r)!}$			
r-permutations	Yes	n^r			
r-combinations	Yes	$\frac{(n+r-1)!}{r! (n-1)!}$			

quick reference

Binomial Theorem

THE BINOMIAL THEOREM Let x and y be variables, and let n be a nonnegative integer. Then $(x+y)^n = \sum_{n=0}^n \binom{n}{j} x^{n-j} y^j = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \dots + \binom{n}{n-1} y y^{n-1} + \binom{n}{n} y^n.$

binomial theorem... coefficient is a Combination.

Pascal's identity

PASCAL'S IDENTITY Let n and k be positive integers with $n \ge k$. Th $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}.$

binomial coefficients, a recursive definition

Finite probability

If S is a finite nonempty sample space of equally likely outcomes, and E is an event, is a subset of S then the nonlockhility of E is $n(E) = \frac{|E|}{|E|}$.

event over sample space. event is a subset of sample space

Compliment of probability event

Let E be an event in a sample space S. The probability of the event $\overline{E}=S-E$, the complementary event of E, is given by $p(\overline{E})=1-p(E).$

technique to calculate some probabilities

Probability of union of 2 events

et E_1 and E_2 be events in the sample space S. Then $p(E_1 \cup E_2) = p(E_1) + p(E_2) - p(E_1 \cap E_2).$

useful for proving things

Conditional Probability

Let E and F be events with p(F) > 0. The conditional probability of E given F, denoted by $p(E \mid F)$, is defined as $p(E \mid F) = \frac{p(E \cap F)}{a(F)}.$

probability of E given F E|F

Definition of independent event

The events E and F are independent if and only if $v(E \cap F) = v(E)v(F)$.

use for proofs

Pigeonhole Principle

THE GENERALIZED PIGEONHOLE PRINCIPLE If N objects are placed into k boxes, then there is at least one box containing at least $\{N/k\}$ objects.

if k is a positive integer and k+1 or more objects are placed into boxes, at least 1 box has 2+ objects

Bernoulli trials probability of success

The probability of exactly k successes in n independent Bernoulli trials, with probability of success p and probability of failure q=1-p, is $C(n,k)p^kq^{n-k}.$

.

By **Kalb**i

cheatography.com/kalbi/

Published 3rd November, 2014. Last updated 3rd November, 2014. Page 1 of 2. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com

EECS 203 Exam 2 Cheat Sheet by Kalbi via cheatography.com/19660/cs/2790/

Baye's theorem

BAYEST THEOREM. Suppose that E and F are create from a sample space S such that $\frac{\mu(E)}{\mu(E)} \neq 0 \text{ and } \frac{\mu(E)}{\mu(E)} \frac{\mu(E)}{\mu(E)} \frac{\mu(E)}{\mu(E)}$ calculate probability of i.e diseases/diagnosis, probability of spam...

By **Kalbi** cheatography.com/kalbi/

Published 3rd November, 2014. Last updated 3rd November, 2014. Page 2 of 2. Sponsored by **Readability-Score.com**Measure your website readability!
https://readability-score.com

EECS 203 Exam 1 Cheat Sheet by Kalbi via cheatography.com/19660/cs/2638/

table 1

TABLE 7 Logical Equivalences Involving Conditional Statements. $p \rightarrow q = \neg p \lor q \\ p \rightarrow q = \neg q \rightarrow \neg p \\ p \lor q = \neg q \rightarrow \neg p \\ p \land q = \neg (p \rightarrow q) \\ \neg (p \rightarrow q) \land (p \rightarrow r) = p \rightarrow (q \land r) \\ (p \rightarrow q) \lor (p \rightarrow r) = p \rightarrow (q \land r) \\ (p \rightarrow q) \lor (p \rightarrow r) = p \rightarrow (q \lor r) \\ (p \rightarrow q) \lor (p \rightarrow r) = p \rightarrow (q \lor r) \\ (p \rightarrow q) \lor (p \rightarrow r) = p \rightarrow (q \lor r) \\ (p \rightarrow q) \lor (p \rightarrow r) = p \rightarrow (q \lor r)$

kk

Proof Laws

 $(p \to r) \lor (q \to r) \equiv (p \land q) \to r$

TABLE 6 Logical Equivalences.				
Equivalence	Name			
$p \wedge \mathbf{T} \equiv p$ $p \vee \mathbf{F} \equiv p$	Identity laws			
$p \lor \mathbf{T} \equiv \mathbf{T}$ $p \land \mathbf{F} \equiv \mathbf{F}$	Domination laws			
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws			
$\neg(\neg p) \equiv p$	Double negation law			
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws			
$(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$	Associative laws			
$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws			
$\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$	De Morgan's laws			
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) \equiv p$	Absorption laws			
$p \lor \neg p \equiv \mathbf{T}$ $p \land \neg p \equiv \mathbf{F}$	Negation laws			

k

Inference

Rule of Inference	Tautology	Name
$ \begin{array}{c} p \\ p \rightarrow q \\ \therefore \overline{q} \end{array} $	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \rightarrow q \\ \therefore \ \overline{} p \end{array} $	$(\neg q \land (p \to q)) \to \neg p$	Modus tollens
$\begin{array}{c} p \rightarrow q \\ q \rightarrow r \\ \therefore p \rightarrow r \end{array}$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$ \begin{array}{c} p \vee q \\ \neg p \\ \therefore \overline{q} \end{array} $	$((p \vee q) \wedge \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \rightarrow (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \wedge q) \to p$	Simplification
$\begin{array}{c} p \\ q \\ \therefore \overline{p \wedge q} \end{array}$	$((p) \land (q)) \to (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore q \lor r$	$((p \vee q) \wedge (\neg p \vee r)) \rightarrow (q \vee r)$	Resolution

k

Set ID's

TABLE 1 Set Identities.	
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

wow

C

By Kalbi cheatography.com/kalbi/

Published 6th October, 2014. Last updated 6th October, 2014. Page 1 of 1.

DeMorgans Quant

TABLE 2 De Morgan's Laws for Quantifiers.			
Negation	Equivalent Statement	When Is Negation True?	When False?
$\neg \exists x P(x)$	$\forall x \neg P(x)$	For every x , $P(x)$ is false.	There is an x for which $P(x)$ is true.
$\neg \forall x P(x)$	$\exists x \neg P(x)$	There is an x for which $P(x)$ is false.	P(x) is true for every x .

k

Quant Inference

TABLE 2 Rules of Inference for Quantified Statements.	
Rule of Inference	Name
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation
$\therefore \frac{P(c) \text{ for an arbitrary } c}{\forall x P(x)}$	Universal generalization
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation
$\therefore \frac{P(c) \text{ for some element } c}{\exists x P(x)}$	Existential generalization

m

2 Var Quant

TABLE 1 Quantifications of Two Variables.			
Statement	When True?	When False?	
$ \forall x \forall y P(x, y) \\ \forall y \forall x P(x, y) $	P(x, y) is true for every pair x, y .	There is a pair x , y for which $P(x, y)$ is false.	
$\forall x\exists y P(x,y)$	For every x there is a y for which $P(x, y)$ is true.	There is an x such that $P(x, y)$ is false for every y .	
$\exists x \forall y P(x,y)$	There is an x for which $P(x, y)$ is true for every y .	For every x there is a y for which $P(x, y)$ is false.	
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x , y for which $P(x, y)$ is true.	P(x, y) is false for every pair x, y .	

k

Union/Intersect Collection

The union of a collection of sets is the set the contains those elements that are members of a function as it in the collection. We true the rotation $A_1 \cup A_2 \cup \cdots \cup A_n = \bigcup_{i=1}^n A_i$ to denote the union of the sets A_1, A_2, \ldots, A_n .

..

Sponsored by **Readability-Score.com** Measure your website readability!

https://readability-score.com

Discrete Math Cheat Sheet

by Dois via cheatography.com/11428/cs/1340/

Complex Numbers

j ² = -1	j ³ = -j
$j^4 = 1$	z = a + bj
$z = r(\sin \theta + j\sin \theta)$	$z = rej\theta$
$tan^{-1} b/a = \theta$	$\cos^{-1} a/r = \theta$
$sin^{-1} b/r = \theta$	$(a + bj)^* = a - bj$
$ z = r = sqrt(a^2 + b^2)$	$ z ^X = z^X $
$arg(z)^{x} = x arg(z)$	$arg(z) = \theta + 2k\pi$
$(\cos\theta+jsin\theta)^k$	= $\cos k\theta + j\sin k\theta$
$=(e^{j\theta})^k=e^{jk\theta}$	< DeMoivre's Theorum

* means conjugate

j = i = sqrt(-1) = imaginary unit

Find roots example:

 $z^2 = -4j$

Convert to exponential form first:

z² = 4e-jπ/2

$$|z^2| = r^2 = \operatorname{sqrt}(0^2 + 4^2) = 4$$

|z| = r = 2

k = (0, 1 ... n where n = expon' of z) = 0, 1

 $arg(z^2) = 2 arg(z) = -\ddot{l} \in /2 + 2k\ddot{l} \in$

arg(z) = -π/4 + kπ

Substitute values of k (0, 1) for $z = |z|e^{jarg(z)} = 2e^{-j\tilde{l}\in/4}$, $2e^{j\tilde{l}\in/4}$

Discrete Probability & Sets & Whatever

Probability

1. $P(x) = {}^{n}Cx \cdot p^{x} \cdot (1-p)^{n-x}$

2. $P(x) = ({}^{X}Ck)(({}^{N-X})C(n-k))/{}^{N}Cn$

Set Theory

A = B when A subset of B & B subset of A

A - B = A n B'

Au(AnB) = A

A n (A u B) = A

A u A' = U

A n A' = nullset or {}

Power set of S is the set of ALL SUBSETS of

 $S \text{ e.g. } S = \{1,2\} \text{ , } P(S) = \{ \{ \}, \{ 1 \}, \{ 2 \}, \{ 1,2 \} \}$

 $|A| = n, |P(A)| = 2^n$

Sets A and B are disjoint iff A n B = {}

Cardinality of union: |A u B| = |A| + |B| - |A n B|

Proof by induction:

Show that when p(k) is true, p(k + 1) follows.

1. Binomial Distribution

n = trials, x = successes, p = probability of success

2. Hypergeometric Distribution

N = deck size, n = draws, X = copies of card, k

= successes

Matrix Manipulations

AT: Transpose of A - Switch Rows with

Columns (R1 becomes C1, R2 becomes C2

etc.)

-A = -1 . A

A-1: Inverse of A

 $A^{-1} . I = I = A . I$

 $A^{-1}A=I$

Augment Identity matrix to matrix and perform Guass-Jordon elimination on both to get change Identity matrix to the Inverse.

EROs:

Switch Rows

Scale Row (Multiply entire row)

Add multiple of different row to another

A matrix A is in row echelon form if

1. The nonzero rows in A lie above all zero rows (when there is at least a nonzero row and a zero row).

2. The first nonzero entry in a nonzero row (called a pivot) lies to the right of the pivot in the row immediately above it.

By **Dois** cheatography.com/dois/

Published 30th October, 2013. Last updated 2nd June, 2014. Page 1 of 1. Sponsored by **CrosswordCheats.com**Learn to solve cryptic crosswords!

http://crosswordcheats.com