LISTA DE CÁLCULO III - CÁLCULO VETORIAL

Seção 16.2 - Integrais de Linha

1 – 16 Calcule a integral de linha onde C é a curva dada.

- 1. $\int_C y^3 ds$, $C: x = t^3$, y = t, $0 \le t \le 2$
- 2. $\int_C xy ds$, $C: x = t^2, y = 2t, 0 \le t \le 1$
- 3. $\int_C xy^4 ds$, C é a metade direita do círculo $x^2 + y^2 = 16$.
- 4. $\int_C x \sin y ds$, C é o segmento de reta que liga (0,3) a (4,6).
- 5. $\int_C (x^2y^3 \sqrt{x})dy$, C é o arco da curva $y = \sqrt{x}$ de (1,1) a (4,2).
- 6. $\int_C \sin x dx$, C é o arco da curva $x = y^4$ de (1, -1) a (1, 1).
- 7. $\int_C xydx + (x-y)dy$, C consiste no segmento de reta de (0,0) a (2,0) e de (2,0) a (3,2).
- 8. $\int_C x \sqrt{y} dx + 2y \sqrt{x} dy$, C consiste na metade superior da circunferência $x^2 + y^2 = 1$ de (0,1) a (1,0) e no segmento de reta de (1,0) a (4,3).
- 9. $\int_C xy^3 ds$, $C: x = 4\sin t$, $y = 4\cos t$, z = 3t, $0 \le t \le \pi/2$
- 10. $\int_C xyz^2ds$, C é o segmento de reta de (-1,5,0) a (1,6,4).
- 11. $\int_C xe^{yz}ds$, C é o segmento de reta de (0,0,0) a (1,2,3).
- 12. $\int_C (2x+9z)ds$, $C: x=t, y=t^2, z=t^3, 0 \le t \le 1$
- 13. $\int_C x^2 y \sqrt{z} dz$, $C: x = t^3, y = t, z = t^2, 0 \le t \le 1$
- 14. $\int_C z dx + x dy + y dz$, $C: x = t^2, y = t^3, z = t^2, 0 \le t \le 1$
- 15. $\int_C (x+yz)dx + 2xdy + xyzdz$, C consiste nos segmentos de reta de (1,0,1) a (2,3,1) e de (2,3,1) a (2,5,2)
- 16. $\int_C x^2 dx + y^2 dy + z^2 dz,$ C consiste nos segmentos de reta de (0,0,0) a (1,2,-1) e de (1,2,-1) a (3,2,0)
- 17. Seja F um campo vetorial mostrado na figura.

Figura 1: Campo Vetorial F

a) Se C_1 é o segmento de reta vertical de (-3, -3) a (-3, 3), determine se $\int_{C_1} F \cdot dr$ é positiva, negativa ou zero.

1

- b) Se C_2 é o círculo de raio 3 e centro na origem percorrido no sentido anti-horário, determine se $\int_{C_2} F \cdot dr$ é positiva, negativa ou zero.
- 18. A figura mostra um campo vetorial F e duas curvas, C_1 (em verde no sentido anti-horário) e C_2 (em vermelho no sentido horário). As integrais e linha de F sobre C_1 e C_2 são positivas, negativas ou nulas? Explique.

Figura 2: Campo Vetorial F

19 – 22 Calcule a integral de linha $\int_C F dr$, onde C é a curva dada pela função vetorial r(t).

19.
$$F(x,y) = xyi + 3y^2j, r(t) = 11t^4i + t^3j, 0 \le t \le 1$$

20.
$$F(x,y,z) = (x+y)i + (y-z)j + z^2k, r(t) = t^2i + t^3j + t^2k, 0 \le t \le 1$$

21.
$$F(x, y, z) = \sin xi + \cos yj + xzk, r(t) = t^3i - t^2j + tk, 0 \le t \le 1$$

22.
$$F(x, y, z) = zi + yj - xk, r(t) = ti + \sin tj + \cos tk, 0 \le t \le \pi$$

- 33. Um arame fino é entortado no formato da semicircunferência $x^2 + y^2 = 4$, $x \ge 0$. Se a densidade linear for uma constante K, determine a massa e o centro de massa do arame.
- 34. Um arame fino tem a forma da parte que esta no primeiro quadrante da circunferência com centro na origem e raio a. Se a função densidade for $\delta(x,y) = kxy$, encontre a massa e o centro de massa do arame.
- 35. Determine o centro de massa de um arame com o formato da hélice $x=2\sin t,\,y=2\cos t,$ $z=3t,\,0\leq t\leq 2\pi,$ se a densidade for uma constante k.
- 36. Determine a massa e o centro de massa de um arame com o formato da hélice x=t, $y=\cos t, z=\sin t,$ $0\leq t\leq 2\pi,$ se a densidade em qualquer ponto for igual ao quadrado da sua distância do ponto a origem.
- 37. Se um arame com densidade linear $\rho(x,y)$ está sobre uma curva plana C, seus momentos de inércia em relação aos eixos x e y são definidos por:

$$I_x = \int_C y^2 \rho(x, y) ds$$
 $I_y = \int_C y^2 \rho(x, y) ds$

Determine o momento de inércia de um arame com o formato de um semicírculo $x^2+y^2=1$, $y\geq 0$, é mais grosso perto da base do que perto do topo, sendo a sua função densidade em qualquer ponto proporcional a sua distância a reta y=1.

2

38. Se um arame com densidade linear $\rho(x, y, z)$ está sobre uma curva plana C, seus momentos de inércia em relação aos eixos $x, y \in z$ são definidos por:

$$\begin{split} I_x &= \int_C (y^2 + z^2) \rho(x,y) ds \\ I_y &= \int_C (x^2 + z^2) \rho(x,y) ds \\ I_z &= \int_C (x^2 + y^2) \rho(x,y) ds \end{split}$$

Determine o momento de inércia de um arame com o formato da hélice $x=2\sin t,$ $y=2\cos t,$ z=3t, $0\leq t\leq 2\pi,$ se a densidade for uma constante k.

- 39. Determine o trabalho realizado pelo campo de força F(x,y) = xi + (y+2)j sobre um objeto que se move sobre um arco da cicloide $r(t) = (t \sin t)i + (1 \cos t)j$, $0 \le t \le 2\pi$.
- 40. Determine o trabalho realizado pelo campo de força $F(x,y) = x \sin yi + yj$ em uma partícula que se move sobre a parábola $y = x^2$ de (-1,1) a (2,4).
- 41. Determine o trabalho realizado pelo campo de força F(x,y) = (y+z)i + (x+z)j + (x+y)k sobre uma partícula que se move ao longo do segmento de reta (1,0,0) a (3,4,2).
- 42. A força exercida pela carga elétrica colocada na origem sobre uma partícula carregada em um ponto (x, y, z) com vetor posição r = (x, y, z) é $F(r) = kr/|r|^3$, onde k é uma constante. Determine o trabalho realizado quando a partícula se move sobre o segmento de reta de (2, 0, 0) a (2, 1, 5).
- 43. Um homem pesando 160 lb carrega uma lata de tinta de 25 lb por uma escada helicoidal em torno de um silo com raio de 20 pés. Se o silo tem 90 pés de altura e o homem da três voltas completas em torno do silo, quanto trabalho é realizado pelo homem contra a gravidade para subir ao topo?
- 44. Suponha que exista um furo na lata de tinta do Exercício 43 e 9 lb de tinta vazam da lata de modo contínuo e uniforme durante a subida do homem. Quanto trabalho é realizado?
- 47. Um objeto se move sobre a curva C, mostrada na figura, de (1,2) a (9,8). Os comprimentos dos vetores do campo de força F são medidos em newtons pela escala nos eixos. Estime o trabalho realizado por F sobre o objeto.

Figura 3: Campo de Força F

RESPOSTAS – SEÇÃO 16.2 – INTEGRAIS DE LINHA

1.
$$(145\sqrt{145} - 1)/54$$

2.
$$(8/15)(\sqrt{2}+1)$$

4.
$$(20\sin 6 - 60\cos 6 - 20\sin 3)/9$$

8.
$$(226 + 84\sqrt{3})/15$$

10.
$$236\sqrt{21}/15$$

11.
$$(\sqrt{14}/12)(e^6-1)$$

12.
$$(14\sqrt{14}-1)/6$$

$$13. \ 1/5$$

15.
$$97/3$$

$$16. \ 35/3$$

b) Negativa

18.
$$C_1$$
 Positiva

 C_2 Negativa

21.
$$6/5 - \cos 1 - \sin 1$$

22.
$$\pi$$

33.
$$2k\pi$$
, $(\pi/4,0)$

34.
$$ka^3/2$$
, $(2a/3, 2a/3)$

35.
$$(0,0,3\pi)$$

36.
$$\frac{2\sqrt{2}\pi(4\pi^2+3)}{3}$$
, $(\frac{3\pi(2\pi^2+1)}{4\pi^2+3}, \frac{6}{4\pi^2+3}, \frac{-6\pi}{4\pi^2+3})$

37.
$$((3\pi - 8)k/6, (3\pi - 4)k/6)$$

38.
$$(4k\pi\sqrt{13}(1+6\pi^2), 4k\pi\sqrt{13}(1+6\pi^2), 8k\pi\sqrt{13})$$

39.
$$2\pi^2$$

40.
$$(15 - \cos 4 + \cos 1)/2$$

42.
$$(k/30)(15-\sqrt{30})$$

43.
$$1.67 \times 10^4$$
 pés-lb

44.
$$1.62 \times 10^4$$
 pés–lb

47. 22