Отчет о выполнении 2 задания практикума кафедры СКИ

Р.М. Куприй, 323 группа Факультет ВМК МГУ имени М.В. Ломоносова

1. Задание

По заданию написана программа для решения системы линейных уравнений Ax = b, с плотной матрицей A и векторами x, b. Алгоритм решения системы уравнений состоит из приведения матрицы к верхнетреугольному виду методом отражений Хаусхолдера, а затем решение получившейся системы методом обратного хода Гаусса.

Метод отражений Хаусхолдера заключается в последовательном умножении матрицы разложения на плотную матрицу A и на вектор правой части. При этом, матрица разложения не хранится в явном виде, поскольку достаточно на каждой итерации разложения вычислять и хранить один вектор Хаусхолдера. Для более эффективной работы кэша, матрица A хранится по столбцам.

В программе реализована параллельная версия алгоритма, с использованием интерфейса передачи сообщений.

Приведено сравнение времени работы программы и её ускорения при использовании технологий OpenMPI и MPI.

2. Методика тестирования

В программе замеряется время разложения матрицы и время решение системы обратным ходом Гаусса, общее время есть сумма этих двух составляющих. Для верификации результатов вычисляется невязка решения: ||Ax-b||, а также при известном решении системы – невязка ошибки: ||x-solution||. Примером известного решения может быть единичный вектор x, который возникает тогда, когда вектор b составлен из сумм строк матрицы A.

Для тестирования производительности использовалась параллельная вычислительная система Polus, с 3 вычислительными узлами, в каждом из которых 2 10 ядерных процессора IBM POWER8. Для компиляции использовался компилятор mpix1C с флагом опимизации -O5. Запуски проводились с привязкой процессов к физическим ядрам с помощью флагов запуска —map-by core —bind-to core.

Программа запускалась 6 раз для каждого замера, с выбором наименьшего времени исполнения, чтобы исключить выбросы. Получены резльтаты для плотных матриц разного размера, при использовании 1, 2, 4, 8, 32, 60 процессов соотвественно.

3. Оценки эффективности МРІ программы

Для каждого набор входных данных приведены графики общего времени решения системы, ускорения и эффективности.

Для небольшой матрицы, размером 1000 строк, максимальное ускорение достига-

ется на 60 процессах, при этом падение эффективности, как и рост ускорения – носит достаточно линейных характер (Графики 1). Низкая эффективность при большом числе процессов обусловлена большой долей коммуникаций между процессами на фоне сравнительно небольших входных данных.

Рис. 1. Результаты распараллеливания программы для матрицы размером 1000 строк; верхний график – времена исполнения, срений – достигаемое ускорение, нижний – эффективность ускорения работы программы.

В следующем наборе измерений использовалась матрица размером 4000 строк. С

ростом объема данных растёт ресурс параллелизма, который можно использовать. Это повышает эффективность распараллеливания. Ускорение растёт почти линейно, а эффективность не опускается ниже 80%. (Графики 2).

Рис. 2. Результаты распараллеливания программы для матрицы размером 4000 строк; верхний график – времена исполнения, срений – достигаемое ускорение, нижний – эффективность ускорения работы программы.

Последний набор данных использует матрицу размером 6000 строк. На нём также эффективность работы программы превышает 80%, а ускорение растёт почти линей-

но с ростом числа процессов. На этом датасете достигается максимальное ускорение в 52 раза при использовании 60 процессов (Графики 3).

Рис. 3. Результаты распараллеливания программы для матрицы размером 6000 строк; верхний график – времена исполнения, срений – достигаемое ускорение, нижний – эффективность ускорения работы программы.

Для всех расчетов, невязка ошибки составляла около 10^{-9} степени.

4. Сравнение ОрепМРІ и МРІ версий программ

При использовании нитей больше, чем физических ядер на процессорах одного узла, эффективность распараллеливания ОрепМР резко снижается, в отличии от МРІ, где эффективно распределяются процессы между узлами вычислительной системы. На крупных датасетах разница в эффективности особо заметна. Так, при максимальном числе процессов, достигаемое ускорение МРІ программы в 2.5 раза выше, чем при использовании ОрепМР (Графики 4).

Рис. 4. Результаты сравнения OpenMP и MPI программ; верхний график — сравнение времени работы OpenMP и MPI программ (во сколько MPI быстрее), нижний график — сравнение достигаемого ускорения MPI и OpenMP программ (во сколько раз ускорение MPI выше чем ускорение OpenMP). Стобцы на графиках соответствуют матрицам размером 1000, 4000 и 6000 строк соответственно.