Journal of Baoshan Teachers 'College

过二硫酸铵与硫代硫酸钠 反应的热力学和动力学

李羚

(保山师范高等专科学校,云南保山 678000)

摘 要:从热力学和动力学两方面,讨论了 $S_2O_8^{2^-}-S_2O_8^{2^-}-I^-$ 系统中, $S_2O_8^{2^-}$ 不与 $S_2O_8^{2^-}$ 直接发生反应的原因。

关键词:反应;热力学;动力学

中图分类号:061 文献标识码:A 文章编号:1008-6587(2003)02-0014-02

Thermodynamics and dynamics in Reaction of Ammonium Peroxodisulfate and Sodium Thiosulphate

Li Ling

(Baoshan Teachers' College, Yunnan Baoshan 678000)

Abstract: Indirect reaction cause of $S_2O_8^{2^-}$ and $S_2O_8^{2^-}$ is under discussion in $S_2O_8^{2^-}$ — $S_2O_3^{2^-}$ — I^- system in the respect of thermodynamics and dynamics.

Key Words: reaction; thermodynamics; dynamics

在无机化学实验的化学反应速度测定实验中[1][2]:

$$\mathbf{S}_{2}\mathbf{O}_{8}^{2-} + 3\mathbf{I}^{-} = 2\mathbf{S}\mathbf{O}_{4}^{2-} + \mathbf{I}_{3}^{-}$$
 (1)

$$2\mathbf{S}_{2}\mathbf{O}_{3}^{2-} + \mathbf{I}_{3}^{-} = \mathbf{S}_{4}\mathbf{O}_{6}^{2-} + 3\mathbf{I}^{-}$$
 (2)

反应(1)的平均速度为
$$v=-\frac{\triangle \left[\mathbf{S}_{2}\mathbf{O}_{8}^{2-}\right]}{\triangle_{\mathbf{t}}}=\mathbf{k}\left[\mathbf{S}_{2}\mathbf{O}_{8}^{2-}\right]^{\mathbf{m}}\left[\mathbf{I}^{-}\right]^{\mathbf{n}}$$

以淀粉溶液作指标剂,通过测定指示剂变蓝的时间及 $S_2O_3^2$ 的起始浓度可确定平均速度 v,进而计算反应(1)的速度常数 k 及级数 m、n。

问题的提出

 $ext{ES}_2O_8^{2^-}-S_2O_3^{2^-}-I^-$ 系统中, I_3^- 能氧化 $S_2O_3^{2^-}$,说明 $S_2O_3^{2^-}$ 的还原能力比 I^- 的强,为什么不考虑 $S_2O_8^{2^-}$ 对 $S_2O_3^{2^-}$ 的氧化,即反应

$$\mathbf{S}_{2}\mathbf{O}_{8}^{2-} + 2\mathbf{S}_{2}\mathbf{O}_{3}^{2-} = 2\mathbf{S}_{04}^{2-} + \mathbf{S}_{4}\mathbf{O}_{6}^{2-}$$

(3) 的存在呢?

2 热力学分析

由 25° C 时的标准电极电势 ϕ^{\bullet} ($SQ_4^{2^{-}}/S_2Q_8^{2^{-}}$)=2. 01V, ϕ^{\bullet} ($S_2Q_3^{2^{-}}/S_4Q_6^{2^{-}}$)=0. 08V, 可看出 ϕ^{\bullet} ($SQ_4^{2^{-}}/S_2Q_8^{2^{-}}$)远大于 ϕ^{\bullet} ($S_2Q_3^{2^{-}}/S_4Q_6^{2^{-}}$), $S_2Q_8^{2^{-}}$ 能与 $S_2Q_3^{2^{-}}$ 发生氧化还原反应,且反应

收稿日期:2003-01-12

$$S_2O_8^{2^-} + 2 S_2O_3^{2^-} = 2 SO_4^{2^-} + S_4O_6^{2^-}$$
 标准电动势E^{*}= φ * ($SO_4^{2^-}/S_2O_8^{2^-}$) $-\varphi$ *($S_2O_8^{2^-}/S_4O_6^{2^-}$) = (2.01-0.08) V =1.93 V 标准平衡常数K^{*} 与标准电动势E^{*} 的关系为 nFE^{*}=RTln K^{*} $ln K$ * = $\frac{nFE}{RT}$ = $\frac{2 \times 96.5 \times 10^3 \times 1.93}{8.314 \times 298}$ = 1.50×10² K *=1.39×10⁶⁵

标准平衡常数很大。

由热力学分析的结果是:S2O²⁻ 与S2O²⁻ 不但能发生反应,而且反应进行得很彻底。

3 动力学分析

 $S_2O_8^{2-}$ 与 $S_2O_3^{2-}$ 反应的速度很慢,即反应的活化能很高,反应速度常数很小,反应所需要的时间很长。要加快反应的速度,需选择适当的催化剂。而在 $S_2O_8^{2-}-S_2O_3^{2-}-I^-$ 系统中,反应(1)与反应(2)的总反应是反应(3),即

$$S_{2}O_{8}^{2-} + 3I^{-} = 2 SO_{4}^{2-} + I_{3}^{-}$$

$$+ 2 S_{2}O_{3}^{2-} + I_{3}^{-} = S_{4}O_{6}^{2-} + 3I^{-}$$

$$S_{2}O_{8}^{2-} + 2 S_{2}O_{3}^{2-} = 2 SO_{4}^{2-} + S_{4}O_{6}^{2-}$$
(3)

且反应(2)进行得非常快,几乎瞬间完成,但反应(1)比反应(2)慢得多,由反应(1)生成的 I_3^- 立即与 $S_2O_3^{2-}$ 反应,生成 $S_4O_6^{2-}$ 和 I^- ,在蓝色出现前,反应系统中 I^- 浓度保持不变。因此 I^- 是 $S_2O_8^{2-}$ 与 $S_2O_8^{2-}$ 反应生成 $S_4O_6^{2-}$ 和 $S_4O_6^{2-}$ 的催化剂。

根据催化剂反应的原理,催化剂能加快反应速度,是因为催化剂改变了反应历程,降低了反应的活化能,增大了反应速度常数。在 $\mathbf{S}_2\mathbf{O}_3^{2^-} - \mathbf{S}_2\mathbf{O}_3^{2^-} - \mathbf{I}^-$ 系统中, $\mathbf{S}_2\mathbf{O}_3^{2^-} - \mathbf{I}_3^-$ 实统中, $\mathbf{S}_2\mathbf{O}_3^{2^-} - \mathbf{I}_3^-$ 实统中, $\mathbf{S}_2\mathbf{O}_3^{2^-} - \mathbf{I}_3^-$ 的反应是沿着活化能低的途径进行,即 $\mathbf{S}_2\mathbf{O}_3^{2^-}$ 先与 \mathbf{I}_3^- 反应生成 $\mathbf{S}_3\mathbf{O}_3^{2^-}$ 和中间产物 \mathbf{I}_3^- , \mathbf{I}_3^- 再与 $\mathbf{S}_2\mathbf{O}_3^{2^-}$ 反应生成 $\mathbf{S}_3\mathbf{O}_3^{2^-}$ 和 \mathbf{I}_3^- 。

由动力学分析的结果是:在 $S_2O_8^{2^-}-S_2O_8^{2^-}-I^-$ 系统中,由于 $S_2O_8^{2^-}$ 与 $S_2O_8^{2^-}$ 的反应速度太慢,在催化剂 I^- 的存在下,反应是按活化能较低,反应速度较快的途径进行催化反应,而 $S_2O_8^{2^-}$ 与 $S_2O_8^{2^-}$ 不直接发生反应。

4 结论

一个化学反应能否发生,要从化学热力学和化学动力学两方面进行讨论。化学热力学只解决反应的可能性,能否实现该反应还需要化学动力学解决。单从热力学的角度来看, $S_2O_8^{2^-}$ 与 $S_2O_8^{2^-}$ 的反应不但能发生,而且反应进行得很完全。但此反应实际上能否发生,还取决于反应的速度。由于此反应的速度太慢。在 $S_2O_8^{2^-}-S_2O_8^{2^-}-I^-$ 系统中, $S_2O_8^{2^-}$ 与 $S_2O_8^{2^-}$ 不直接发生反应,而是沿着先进行反应(1)、再进行反应(2)的途径,发生以 I^- 为催化剂的催化反应。

参考文献:

- [1] 北京师范大学无机化学教研室. 无机化学实验[M]. 北京:高等教育出版社, $1990.82\sim85.$
- [2] 中山大学 · 无机化学实验[M] · 北京 · 高等教育出版社 , 1988 · 65 \sim 67 ·