EECS C106A/206A

Discussion #1: Rotations

Agenda

- Introductions
- Logistics
- Rotations
 - Coordinate frames
 - Rotation Matrices
 - Axis-Angle Rotations

ides adapted from Robert Peter Matthew

Introductions

Logistics

- Fill out the Pre-Course Survey!
 - https://tinyurl.com/berkeleyrobotics2018
- Upcoming:
 - Homework 1 due 9/6
 - Midterm 1 on 9/27

Logistics

- Office Hours
 - Starting next week!
 - Tuesdays & Thursdays @ 11:30 12:30, Locations TBA
 - By appointment: brentyi@berkeley.edu
- Discussions
 - Will not comprehensively cover lecture topics
 - Attendance very much not required

lides adapted from Robert Peter Matthew

Coordinate Frames

Coordinate Frames

Points must be described relative to a coordinate frame.

$$p_{\mathbf{A}} = \begin{bmatrix} x_A \\ y_A \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

Coordinate Frames

A single point can be described relative to multiple coordinate frames!

$$p_{\mathbf{A}} = \begin{bmatrix} x_A \\ y_A \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$p_B = \begin{bmatrix} x_B \\ y_B \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

lides adapted from Robert Peter Matthew

Rotation Matrices

Rotations

Rotation matrices can translate between coordinates in different frames.

$$p_{\mathbf{A}} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} p_{\mathbf{B}}$$

 $p_A = R_{AB}p_B$

Multiple Rotations

Given R_{AB} and R_{BC} , how do we compute R_{AC} ?

$$p_A = R_{AB}p_B$$

 $p_B = R_{BC}p_C$
 $p_A = R_{AC}p_C$

$$R_{AC} = R_{AB}R_{BC}$$

Properties of Rotations

Rotation matrices have two key properties:

- Orthonormality
 - $RR^T = R^T R = I$
- Determinant = 1
 - o det(R) = +1

Properties of Rotations

We can define this set of matrices mathematically as:

$$SO(n) = \{R \in \mathbb{R}^{n imes n} \mid RR^T = I_n, det(R) = 1\}$$

...the members of which have the properties:

- 1. Closure: $R_1, R_2 \in SO(n) \implies R_1R_2 \in SO(n)$
- 2. Identity: $R \in SO(n) \implies R = RI_n = I_nR$
- 3. Inverse: $R \in SO(n) \implies RR^{-1} = R^{-1}R = I_n$
- 4. Associativity: $R_1, R_2, R_3 \in SO(n) \implies (R_1R_2)R_3 = R_1(R_2R_3)$

s adapted from Robert Peter Matthew

Axis-Angle Rotations

Rodrigues' Formula

Given an axis ω and an angle θ , we can calculate a corresponding rotation matrix R:

$$R = \mathbb{I}_3 + \frac{\widehat{\omega}}{\|\omega\|_2} \sin(\theta) + \frac{\widehat{\omega}^2}{\|\omega\|_2^2} (1 - \cos(\theta))$$

$$\widehat{\omega} = \begin{bmatrix} \widehat{\omega}_1 \\ \omega_2 \\ \omega_3 \end{bmatrix} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

Rotations about the standard Euclidean bases can be written:

$$R_X(\theta_X) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta_X) & -\sin(\theta_X) \\ 0 & \sin(\theta_X) & \cos(\theta_X) \end{bmatrix}$$

$$R_Y(\theta_Y) = \begin{bmatrix} \cos(\theta_Y) & 0 & \sin(\theta_Y) \\ 0 & 1 & 0 \\ -\sin(\theta_Y) & 0 & \cos(\theta_Y) \end{bmatrix}$$

$$R_Z(\theta_Z) = \begin{bmatrix} \cos(\theta_Z) & -\sin(\theta_Z) & 0 \\ \sin(\theta_Z) & \cos(\theta_Z) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Euler angles are an alternative way to describe rotations, based on the standard Euclidean bases (X, Y, Z)

Often given in "Z-Y-X" form $(\theta_Z, \theta_Y, \theta_Y)$: $R = R_Z R_Y R_X$

- 1. Rotation around fixed X-axis by θ_{χ}
- 2. Rotation around fixed Y-axis by $\theta_{_Y}$
- 3. Rotation around fixed Z-axis by θ_7

Order matters!

Note that...

- 1. Rotation around original X-axis by θ_{x}
- 2. Rotation around original Y-axis by $\theta_{_Y}$
- 3. Rotation around original Z-axis by θ_Z

Is different from...

- 1. Rotation around original Z-axis by θ_7
- 2. Rotation around original Y-axis by $\theta_{_Y}$
- 3. Rotation around original X-axis by θ_{χ}

$$R = R_{\mathbf{Z}} R_{\mathbf{Y}} R_{\mathbf{X}}$$

But...

- 1. Rotation around original X-axis by $oldsymbol{ heta}_{_{\!X}}$
- 2. Rotation around original Y-axis by $\theta_{_{Y}}$
- 3. Rotation around original Z-axis by $oldsymbol{ heta}_{\!\scriptscriptstyle Z}$

Is equivalent to...

- 1. Rotation around original Z-axis by θ_7
- 2. Rotation around **mobile** Y-axis by θ_{γ}
- 3. Rotation around **mobile** X-axis by θ_{χ}

$$R = R_{\mathbf{Z}} R_{\mathbf{Y}} R_{\mathbf{X}}$$

