MIDDLE EAST TECHNICAL UNIVERSITY DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE568 - SELECTED TOPICS ON ELECTRICAL MACHINES PROJECT #2 REPORT March 31, 2020

Motor Winding Design and Analysis

1 Introduction

In this project, different stator winding topologies will be discussed. The differences between integer and fractional slot windings will be investigated by means of winding factors for different harmonic components. Further, two different motors with fractional slot concentrated windings will be analyzed using finite element method. Their resultant magnetic aspects will be compared.

2 Integral-Slot Winding Design

For the given number of slots, poles and phases, four different windings have been designed. These are:

- Single layer
- · Double layer, full pitched
- Double layer, 5/6 pitched
- Double layer, 4/6 pitched

For all these designs, distribution, pitch and winding factors have been calculated using 2.1, 2.2 and 2.3, respectively where n is harmonic order, q is number of slots per pole per phase, α is electrical angle between two slots and λ is pitch angle of a coil, in radians.

$$k_d(n) = \frac{\sin(\frac{nq\alpha}{2})}{q\sin(\frac{n\alpha}{2})}$$
 (2.1)

$$k_p(n) = \sin(\frac{n\lambda}{2}) \tag{2.2}$$

$$k_w(n) = k_d(n) \times k_p(n) \tag{2.3}$$

2.1 SINGLE LAYER

Winding diagram for one pole pair is given below.

Slot		1										
Layer 1	A1+	A2+	C1-	C2-	B1+	B2+	A1-	A2-	C1+	C2+	B1-	B2-

Winding factors for this winding topology for first, third and fifth harmonics using 2.1-2.3 are presented on the table below.

	First	Third	Fifth
k_d	0.966	0.707	0.259
k_p	1.000	-1.000	1.000
k_w	0.966	-0.707	0.259

2.2 Double Layer, Full Pitched

Winding diagram of full-pitched double layer winding for one pole pair is given below.

Slot	1	2	3	4	5	6	7	8	9	10	11	12
Layer 1	A1+	A2+	C1-	C2-	B1+	B2+	A3-	A4-	C3+	C4+	В3-	B4-
Layer 2	A3+	A4+	C3-	C4-	B3+	B4+	A1-	A2-	C1+	C2+	B1-	B2-

Winding factors for this winding topology for first, third and fifth harmonics using 2.1-2.3 are presented on the table below.

	First	Third	Fifth
k_d	0.966	0.707	0.259
k_p	1.000	-1.000	1.000
k_w	0.966	-0.707	0.259

2.3 Double Layer, 5/6 PITCHED

Winding diagram of 5/6-pitched double layer winding for one pole pair is given below.

Slot	1	2	3	4	5	6	7	8	9	10	11	12
Layer 1	A1+	A2+	C1-	C2-	B1+	B2+	A3-	A4-	C3+	C4+	В3-	B4-
Layer 2	A4+	C3-	C4-	B3+	B4+	A1-	A2-	C1+	C2+	B1-	B2-	A3+

Winding factors for this winding topology for first, third and fifth harmonics using 2.1-2.3 are presented on the table below.

	First	Third	Fifth
k_d	0.966	0.707	0.259
k_p	0.966	-0.707	0.259
k_w	0.933	-0.500	0.067

2.4 Double Layer, 4/6 Pitched

Winding diagram of 4/6-pitched double layer winding for one pole pair is given below.

Slot	1	2	3	4	5	6	7	8	9	10	11	12
Layer 1	A1+	A2+	C1-	C2-	B1+	B2+	A3-	A4-	C3+	C4+	В3-	B4-
Layer 2	C3-	C4-	B3+	B4+	A1-	A2-	C1+	C2+	B1-	B2-	A3+	A4+

Winding factors for this winding topology for first, third and fifth harmonics using 2.1-2.3 are presented on the table below.

	First	Third	Fifth
k_d	0.966	0.707	0.259
k_p	0.866	0.000	-0.866
k_w	0.837	0.000	-0.224

2.4.1 COMMENTS

For the first two topologies, there is no difference in electromagnetic point of view, therefore their configurations and winding factors are identical. Short-pitched windings have poorer fundamental winding factor. However, third harmonic component of full-pitched topology is quite high, where in short-pitched equivalents, this is low.

4/6-pitched winding is the most feasible topology among all of them. Even if its fundamental winding factor is the lowest, no third order and very little fifth order harmonic voltage is induced in this topology.

3 Fractional-Slot Winding Design

3.1 24 SLOTS, 22 POLES

Winding diagram of 24 slot - 22 pole fractional slot concentrated winding is given below.

Slot	1	2	3	4	5	6	7	8	9	10	11	12
Forward	0	165	330	135	300	105	270	75	240	45	210	15
Reverse	180	345	150	315	120	285	90	255	60	225	30	195
Third	0	135	270	45	180	315	90	225	0	135	270	45
Fifth	0	105	210	315	60	165	270	15	120	225	330	75
Phase	A+	A-	A+	A-	C-	C+	C-	C+	B+	B-	B+	B-
		•		•								
Slot	13	14	15	16	17	18	19	20	21	22	23	24
Forward	180	345	150	315	120	285	90	255	60	225	30	195
Reverse	0	165	330	135	300	105	270	75	240	45	210	15
Third	180	315	90	225	0	135	270	45	180	315	90	225
Fifth	180	285	30	135	240	345	90	195	300	45	150	255
Phase	A-	A+	A -	A+	C+	C-	C+	C-	B-	B+	B-	B+

Figure 3.1: Phasor diagram of 24/22 winding (fundamental)

Figure 3.2: Phasor diagram of 24/22 winding (third and fifth)

Phasor diagrams of windings for fundamental, third and fifth order harmonics are given in Fig. 3.1 and 3.2

Following a geometrical approach, the distribution factor can be found as the ratio of the vectoral sum to arithmetic sum of the vectors.

$$k_d(1) = \frac{2cos(7.5) + 2cos(22.5)}{4}$$

$$k_d(3) = \frac{2cos(22.5) + 2cos(67.5)}{4}$$

$$k_d(5) = \frac{cos(37.5) + 2cos(112.5) + cos(142.5)}{4}$$

3.2 30 SLOTS, 22 POLES

Winding diagram of 30 slot - 22 pole fractional slot concentrated winding is given below.

Slot	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Forward	0	132	264	36	168	300	72	204	336	108	240	12	144	276	48
Reverse	180	312	84	216	348	120	252	24	156	288	60	192	324	96	228
Third	0	36	72	108	144	180	216	252	288	324	0	36	72	108	144
Fifth	0	300	240	180	120	60	0	300	240	180	120	60	0	300	240
Phase	A+	A-	C-	B-	A-	C-	C+	B+	A+	C+	B+	B-	A-	C-	B-
	•														
Slot	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Forward	180	312	84	216	348	120	252	24	156	288	60	192	324	96	228
Reverse	0	132	264	36	168	300	72	204	336	108	240	12	144	276	48
Third	180	216	252	288	324	0	36	72	108	144	180	216	252	288	324
Fifth	180	120	60	0	300	240	180	120	60	0	300	240	180	120	60
Phase	A-	A+	C+	B+	A+	C+	C-	B-	A-	C-	B-	B+	A+	C+	B+

Phasor diagrams of windings for fundamental, third and fifth order harmonics are given in Fig. 3.3 and 3.4

Figure 3.3: Phasor diagram of 30/22 winding (fundamental)

Following a geometrical approach, the distribution factor can be found as the ratio of the vectoral sum to arithmetic sum of the vectors.

$$k_d(1) = \frac{2cos(6) + 2cos(18) + 1}{5}$$

$$k_d(3) = \frac{2cos(18) + 2cos(54) + 1}{5}$$

$$k_d(5) = \frac{cos(30) + 2cos(90) + 1 + cos(150)}{5}$$

Figure 3.4: Phasor diagram of 30/22 winding (third and fifth)

Figure 4.1: Winding Diagram

- 3.3 30 Slots, 22 Poles
- 4 2D FEA MODELLING
- 4.1 24 Slots, 22 Poles
- 4.2 30 Slots, 22 Poles
- 5 CONCLUSION

Figure 4.2: Air-Gap Flux Density

Figure 4.3: Induced Voltage

Figure 4.4: Cogging Torque

Figure 4.5: Winding Diagram

Figure 4.6: Air-Gap Flux Density

Figure 4.7: Induced Voltage

Figure 4.8: Cogging Torque