Convolution Neural Network on Handwritten Digit Recognition

Xiangguang Zheng (Sherwood)

handwritten digit recognition(MNIST data set)

Experiment Environment

- Keras using TensorFlow backend with only CPU support
 - Keras is is a high-level neural networks library, written in Python and capable of running on top of either TensorFlow or Theano

Generic neural network

- using perceptron neural network with one hidden layer
 - 28 * 28 size image = 784 pixel input
 - input are gray scaled
 - o 784 neurons in hidden layer
 - o batch size of 200 with 10 epoches

Basic CNN

- Basic CNN with one convolution layer and one fully connected layer
 - input size 28 * 28 * 1 with only 1 channel (grayscale)
 - convolutional layer:
 - 32 filters with stride 1
 - create 24 * 24 * 32 activation maps
 - max pooling layer 2*2 with stride 2
 - \bullet output is (24 2) / 2 + 1 = 12
 - output volume: 12 * 12 * 32
 - o flatten layer: 4608 * 0.8 = 3686 neurons

larger CNN

- larger CNN with two conv layer and 2 fully connected hidden layer
 - input size 28 * 28 * 1
 - first convolution layer 24 * 24 * 30
 - first max pooling layer 12 * 12 * 30
 - second convolution layer 10 * 10 * 15
 - second max pooling layer 5 * 5 * 15
 - o flattern layer: 375 * 0.8 = 300 neurons

Performance Comparison

How the improvement is achieved

From generic to CNN

- capture structural feature
- blockify the image through each convolution layer to capture each feature individually
- o using multiple filters to capture each feature in depth
- o customized filters for convolution layer

From CNN to larger CNN

- two convolutional layer to transfer low-level feature to higher level feature
- o adding hidden layer adds the depth of flattened fully connected layer
- o improvement is not significant in this case

Question