[4]

	11.	Simplify the following context free grammar	
		$G = \{ S> aAB / DCD \}$	
		$A \longrightarrow baA / \varepsilon$	
		$B \longrightarrow bCe / b / \varepsilon$	
		$C \longrightarrow cCf/c$	
		$E \longrightarrow ED/f/\epsilon$	
		}	
OR	iii.	Convert the following grammar to CNF form.	(
		G =	
		$\{S \longrightarrow AaA/bB/a\}$	
		$A \longrightarrow aSS / bAab / b$	
		$B \longrightarrow aBb / \varepsilon$	
		}	
Q.5	i.	Explain deterministic Push Down Automata.	3
	ii.	Design Push down automata for the following CFL.	7
		$L = \{ a^n b^n c^m \mid n,m \ge 1 \}$	
OR	iii.	What is Pumping lemma theorm? Check the following languages	7
		are CFL or not using pumping lemma.	
		(a) $L = \{ a^i b^i c^i \mid i \ge 1 \}.$	
		(b) $L = \{ a^{x+1} \mid x \text{ is prime number } \}.$	
Q.6		Attempt any two:	
	i.	Write down any five closure properties of Recursive Language.	4
	ii.	Design Turing machine for the following language.	4
		$L = \{ a^n b^{2n} c^{2n} \mid n > = 0 \}$	
	iii.	What is Turing machine? Write down difference between	4
		deterministic and non-deterministic turing machine.	

Total No. of Questions: 6

Total No. of Printed Pages:4

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2022 CS3CO10 Theory of Computation

Programme: B.Tech.

Branch/Specialisation: CSE

Duration: 3 Hrs.

Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Q.1 i. Given the language L = {ab, aa, baa}, which of the following 1 strings are in L*?
 - I. abaabaaabaa
 - II. aaaabaaaa
 - III. baaaaabaaaab
 - IV. baaaaabaa
 - (a) I, II and III
- (b) II, III and IV
- (c) I, II and IV
- (d) I, III and IV
- ii. Which one of the following languages over the alphabet $\{0,1\}$ is described by the regular expression: (0+1)*0(0+1)*0(0+1)*?
 - (a) The set of all strings containing the substring 00.
 - (b) The set of all strings containing at most two 0's.
 - (c) The set of all strings containing at least two 0's.
 - (d) The set of all strings that begin and end with either 0 or 1.
- iii. Which of the following is regular language?

(a) $L = \{ a^n b^m | n > = 1 \text{ and } m > = 1 \}$

- (b) $L = \{ a^n b^n \mid n \ge 100 \}$
- (c) $L = \{ a^n b^m | n > m \}$
- (d) None of these
- iv. According to Arden's Theorem if P and Q be two regular 1 expressions and R is any state, then R = Q + RP has a unique solution that is-
 - (a) R = PQ*

- (b) $R = QP^*$
- (c) R = P + QP*
- (d) None of these

P.T.O.

	White Call Call is EALGED	1		
v.	Which one of the following is FALSE?			
	(a) There is unique minimal DFA for every regular language.			
	(b) Every NFA can be converted to an equivalent PDA.			
	(c) Complement of every context-free language is recursive.			
	(d) Every nondeterministic PDA can be converted to an equivalent deterministic PDA.			
vi.	If L1 and L2 is regular languages and L3 is CFL then which of the			
V 1.	following is true?			
	(a) (L3 – L1) U L2 is context free			
	(b) $(L3 \cap L2) \cup L1$ is not context free			
	(c) ~L1 U L2 is context free			
	(d) None of these			
vii.	A PDA machine configuration (p, w, y) can be correctly	1		
	represented as:			
	(a) (current state, unprocessed input, stack content)			
	(b) (unprocessed input, stack content, current state)			
	(c) (current state, stack content, unprocessed input)			
	(d) None of these			
viii.	Consider a Context free Grammar G is in GNF form. The number			
	of derivation steps required to generate string w of length 50 from			
	grammar G is			
	(a) 50 (b) 99 (c) 101 (d) Depends on G	_		
1X.	Halting problem of Turing Machine is-	1		
	(a) Always Decidable			
	(b) Always Undecidable			
	(c) Decidable in case of recursive languages (d) Nana of these			
v	(d) None of these If set A is set of recursive language and P is set of recursive	1		
х.	If set A is set of recursive language and B is set of recursive enumerable language, then-			
	(a) A is a subset of B (b) B is a subset of A			
	(c) A and B are the same set (d) A and B are disjoint sets			
	(-) 2			
i.	What is Arden's theorem?	3		
ii.	Explain different closure properties of Regular Language with the	7		
	help of example.			

Q.2

- OR iii. Design Melay and Moore machine to find one's and two's 7 complement of binary number.
- Q.3 i. Write down main difference between NFA with null, NFA without null and DFA.
 - ii. Covert the following FSA to minimized DFA.

OR iii. Design DFA for the following NFA with ϵ .

Q.4 i. Check the given string is generated by the following context free 4 grammar or not using CYK algorithm.

String = aabbc

P.T.O.

6

Marking Scheme CS3CO10 Theory of Computation

Q.1	i.	Given the language $L = \{ab, aa, baa\}$, which of the following strings are in L^* ?	
		I. abaabaaabaa	
		II. aaaabaaaa	
		III. baaaaabaaaab	
		IV. baaaaabaa	
		(c) I, II and IV	
	ii.		1
	11.	Which one of the following languages over the alphabet $\{0,1\}$ is	1
		described by the regular expression: $(0+1)*0(0+1)*0(0+1)*$?	
		(c) The set of all strings containing at least two 0's.	1
	iii.	Which of the following is regular language?	1
	•	(a) $L = \{ a^n b^m \mid n \ge 1 \text{ and } m \ge 1 \}$	1
	iv.	According to Arden's Theorem if P and Q be two regular	1
		expressions and R is any state, then $R = Q + RP$ has a unique solution	
		that is-	
		(b) $R = QP^*$	1
	v.	Which one of the following is FALSE?	1
		(d) Every nondeterministic PDA can be converted to an equivalent deterministic PDA.	
	vi.	If L1 and L2 is regular languages and L3 is CFL then which of the	1
	V 1.	following is true?	•
		(a) (L3 – L1) U L2 is context free	
		(c) ~L1 U L2 is context free	
	vii.	A PDA machine configuration (p, w, y) can be correctly represented	1
	V 11.	as:	1
		(a) (current state, unprocessed input, stack content)	
	viii.	Consider a Context free Grammar G is in GNF form. The number of	1
	V 111.	derivation steps required to generate string w of length 50 from	1
		grammar G is .	
		(a) 50	
	ix.	Halting problem of Turing Machine is-	1
	11.	(c) Decidable in case of recursive languages	1
		(5) Decidable in case of feedisive languages	

	х.	If set A is set of recursive language and B is enumerable language, then- (a) A is a subset of B	set of recursive	1
Q.2	i.	Definition	2 Marks	3
V		Equation	1 Mark	
	ii.	At least 7 closure properties with example.	1 1/10/11	7
OR	iii.	one's complement Melay + Moore machine	3.5 Marks	7
		Two's complement Mealy + Moore machine	3.5 Marks	
Q.3	i.	At least 4 difference (NFA with null, NFA without	null and DFA)	4
			1 Mark each	
			(1 Mark*4)	
	ii.	Minimized DFA/ diagram table	2 Marks	6
		Converting steps	4 Marks	
OR	iii.	DFA/ diagram table	2 Marks	6
		Converting steps	4 Marks	
Q.4	i.	CNF form	2 Marks	4
		Final Solution	2 Marks	
	ii.	Remove useless symbol	2 Marks	6
		Remove unit production	2 Marks	
		Remove € production	2 Marks	
OR	iii.	Simplification steps	2 Marks	6
		CNF conversion steps	4 Marks	
Q.5	i.	PDA definition	1 Mark	3
		PDA types	2 Marks	
	ii.	Diagram/solution steps/rules	7 Marks	7
OR	iii.	Theorem.	2 Marks	7
		(a)	2.5 Marks	
		(b)	2.5 Marks	
Q.6		Attempt any two:		
	i.	5 closure properties of Recursive Language.	1 Mark each	5
			(1 Mark*5)	
	ii.	TM definition	1 Mark	5
		Solution steps(diagram/table/rules)	4 Marks	
	iii.	TM definition	2 Marks	5
		At least 3 difference	1 Mark each	
			(1 Mark*3)	