Chapter 8: Main Memory

Chapter 8: Memory Management

- Background
- Swapping
- Contiguous Memory Allocation
- Segmentation
- Paging
- Structure of the Page Table
- Example: The Intel 32 and 64-bit Architectures
- Example: ARM Architecture

Paging

- Physical address space of a process can be noncontiguous; process is allocated physical memory whenever the latter is available
 - Avoids external fragmentation
 - Avoids problem of varying sized memory chunks
- Divide physical memory into fixed-sized blocks called frames
 - Size is power of 2, between 512 bytes and 16 Mbytes
- Divide logical memory into blocks of same size called pages
- Keep track of all free frames
- To run a program of size N pages, need to find N free frames and load program
- Set up a page table to translate logical to physical addresses
- Backing store likewise split into pages
- Still have Internal fragmentation

Address Translation Scheme

- Address generated by CPU is divided into:
 - Page number (p) used as an index into a page table which contains base address of each page in physical memory
 - Page offset (d) combined with base address to define the physical memory address that is sent to the memory unit

For given logical address space 2^m and page size 2ⁿ

Paging Hardware

Paging Model of Logical and Physical Memory

Paging Example

n=2 and m=4 32-byte memory and 4-byte pages

Page M=2 Sport >3

Paging Example Problem -1

Given

Logical address space = 4GB Physical address space = 64GB Page size = 4KB

Find out the number of pages, number of frames and number of entries in the page table, number of bits in logical address and physical address.

Number of pages = 4GB/4KB = 2^20 Number of frames = 64GB/4KB = 2^32 Number of entries in the page table = 2^20 Number of bits in LA = 32bits Number of bits in PA = 36bits

Paging Example Problem -2

Given

A system has Logical address represented using 7 bits, physical address representing 6 bits and page size as 8 bytes. Calculate the number of pages and number of frames.

Number of bits used to represent page offset = 3bits (page size = 8byte = 2^3 bytes) Number of bitas to represent page number = 7-3 = 4bits Number of pages = 2^4 = 16

Number of bits to represent frame number = 6-3 = 3bits. So number of frames = $2^3 = 8$

Paging (Cont.)

- Calculating internal fragmentation
 - Page size = 2,048 bytes
 - Process size = 72,766 bytes
 - 35 pages + 1,086 bytes
 - Internal fragmentation of 2,048 1,086 = 962 bytes
 - Worst case fragmentation = 1 frame 1 byte
 - On average fragmentation = 1 / 2 frame size
 - So small frame sizes desirable?
 - But each page table entry takes memory to track
 - Page sizes growing over time
 - 4 Solaris supports two page sizes 8 KB and 4 MB
- Process view and physical memory now very different
- By implementation process can only access its own memory

Free Frames

Before allocation

After allocation

Implementation of Page Table

Page table is kept in main memory

- Page-table base register (PTBR) points to the page table
- Page-table length register (PTLR) indicates size of the page table
- In this scheme every data/instruction access requires two memory accesses
 - One for the page table and one for the data / instruction
- The two memory access problem can be solved by the use of a special fast-lookup hardware cache called associative memory or translation look-aside buffers (TLBs)

 8 to 1624

Associative Memory

Associative memory – parallel search

Page #	Frame #

- Address translation (p, d)
 - If p is in associative register, get frame # out
 - Otherwise get frame # from page table in memory

Paging Hardware With TLB

Effective Access Time

- Associative Lookup = ε time unit
 - Can be < 10% of memory access time
- Hit ratio = α
 - Hit ratio percentage of times that a page number is found in the associative registers; ratio related to number of associative registers
- Consider $\alpha = 80\%$, $\epsilon = 20$ ns for TLB search, 100ns for memory access
- Effective Access Time (EAT)
- Consider $\alpha = 80\%$, $\epsilon = 20$ ns for TLB search, 100ns for memory access
 - EAT = $0.80 \times 120 + 0.20 \times 220 = 140 \text{ns}$
- Consider more realistic hit ratio -> α = 99%, ϵ = 20ns for TLB search, 100ns for memory access
 - EAT = $0.99 \times 120 + 0.01 \times 220 = 121 \text{ns}$

Memory Protection

- Memory protection implemented by associating protection bit with each frame to indicate if read-only or read-write access is allowed
 - Can also add more bits to indicate page execute-only, and so on
- Valid-invalid bit attached to each entry in the page table:
 - "valid" indicates that the associated page is in the process' logical address space, and is thus a legal page
 - "invalid" indicates that the page is not in the process' logical address space
 - Or use page-table length register (PTLR)
- Any violations result in a trap to the kernel

Valid (v) or Invalid (i) Bit In A Page Table

14 bit address space (0 to 16383)

End of Chapter 8

