Lasers e Ótica Biomédica

Pedro Jorge

Propagation of a Laser beam - Gaussian beam

Gaussian beam

When considering the effects of diffraction, an ideal Laser beam behaves like a "Gaussian beam".

w₀=beam waist (radius)

 Z_0 or Z_r =Raleigh distance

$$w(z_0) = \sqrt{2}w_0$$

$$2z_0 = \frac{2\pi n w_0^2}{\lambda}$$

$$I(r, z) = I_0 \left(\frac{w_0}{w(z)}\right)^2 \exp\left(-\frac{2r^2}{w(z)^2}\right)$$

self-Fourier Transform characteristic of the Gaussian beam

$$w(z)^2 = w_0^2 \left[1 + \left(\frac{z}{z_0} \right)^2 \right]$$

$$2z_0 = \frac{2\pi n w_0^2}{\lambda}$$

https://www.newport.com/n/gaussian-beam-optics

Gaussian beam

$$heta \simeq rac{\lambda}{\pi w_0}$$

$$\Theta=2\theta$$

Figure 3.2-4 Focusing a collimated beam.

Calculate the waist of a beam from an HeNe Laser, with 1 mm of diameter, after being focused by a lens with f=10 mm.

$$w = \sqrt{w_0^2 + (\theta_L z)^2}$$

Numerical aperture of a lens

$$NA = n \sin \alpha \approx \frac{nD}{2f} = \frac{n}{2(f/\#)}$$

$$NA' = n \sin \alpha' \approx \frac{nD'}{2f} = \frac{n}{2(f/\#)'}$$

Guided Optics

Critical angle: Total Internal reflection

$$(n_i > n_t)$$

$$\theta_t = 90^{\circ}$$

$$\sin \theta_i = \frac{n_t}{n_i} \sin \theta_t$$

$$\sin \theta_i = \frac{n_t}{n_i} \sin \theta_t$$
 $\theta_c = \theta_i = \arcsin \left(\frac{n_2}{n_1}\right)$

Optical Fibres

Numerical Aperture and acceptance angle

$$\theta_a = \sin^{-1}[NA]$$

$$NA = (n_{co}^2 - n_{cl}^2)^{1/2}$$

Typical values

MM

NA de 0.1 a 0.5

SM

NA 0.12 (de 012 a 0.35)

Types of fibres

Attenuation

- Fiber to use in each application depend on the Laser wavelength, its energy and the working power.
- Type of material and its purity determine absorption.(Quartz, pure Silica, polymers...)
- For high energies, small defects can lead to catastrophic failures.

https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6840

Articulated arm

Set of mirrors and/or prism in articulated supports

Used whenever optical fibers are not adequate for the transport of the laser radiation. (eg. too much energy)

Disadvantages

- dimensions
- limited movement ability
- rigid structure
- Diameter of the arm ~ 15-50 mm

Bundles

Laser endoscope

A tool for (simultaneous diagnostic & therapy

dimensions

 $http://www.richard-wolf.com/no_cache/products_pi1\%5Bproduct\%5D=139\&tx_snetrwproducts_pi1\%5Baction\%5D=show\&tx_snetrwproducts_pi1\%5Bcontroller\%5D=Product$

Hand pieces

type

Fixed focus

Variable focus

sapphire

deflectors

diffusor

Hot spots

Fiber protection

micromanipulators

- Shifts the LASER beam without affecting the microscope
- When coupling light into the system, the LASER should not interfere with the field of view of the microscope.

zoom:

allow different focal distances to be used (short focal distances) *focusing* for cutting (long focal distances) Unfocusing *for* coagulation

Laser biomicroscope

Bibliography and multimedia

https://www.thorlabs.com/navigation.cfm?guide_id=26

http://www.ophiropt.com/laser-measurement-instruments/laser-power-energy-meters/services/focal-spot-size-calculator-for-gaussian-beams

https://www.newport.com/n/gaussian-beam-optics

https://www.youtube.com/watch?v=0MwMkBET_5I&list=PLwLbbNL-Qn4PoOch2MKLK2C8T4fW_aQyz

https://www.youtube.com/watch?v=1UF9fJtZHAY

http://www.genesis.net.au/~ajs/projects/medical_physics/endoscopes/

			Tsia chapts	Niemz	Hecht
18/2	Semana 2	Gaussian optics: laser beam manipulation and calculations. Optical systems for beam maniipulation. Geometric optics basics.image formation, beam expander;	1.8,1.2.1 .3 1.9,		5.1-2, 5.2.3, 5.4.2, 5.6, 5.7.1-2