COMPSCI 689 Lecture 14: Probabilistic Supervised learning

Brendan O'Connor

College of Information and Computer Sciences University of Massachusetts Amherst

Slides by Benjamin M. Marlin (marlin@cs.umass.edu).

Parametric Probability Mass Function

Definition: A parametric probability mass function $P: \mathcal{Z} \to \mathbb{R}$ for a discrete random variable Z is a function that satisfies the requirements below for any value of the parameters ϕ with parameter space Φ :

- Normalization: $\sum_{z \in \mathcal{Z}} P(Z = z | \phi) = 1$
- Non-Negativity: $\forall z \in \mathcal{Z} P(Z = z | \phi) > 0$

Example: Bernoulli Random Variables

Consider a biased coin. Let ϕ be the probability that the coin comes up heads. Let $Z \in \{0, 1\}$ be the value of the coin flip (1 for heads, 0 for tails). We thus have:

- Values: $\mathcal{Z} = \{0, 1\}$
- Parameters: $\phi \in [0, 1]$
- Parameter Space: $\Phi = [0, 1]$
- Mass Function: $P(Z = z | \phi) = \phi^z (1 \phi)^{(1-z)}$

Parametric Probability Density Function

Definition: A parametric probability density function $p: \mathcal{Z} \to \mathbb{R}$ for a continuous random variable Z is a function that satisfies the requirements below for any value of the parameters ϕ with parameter space Φ :

- Normalization: $\int_{\mathcal{Z}} p(Z=z|\phi)dz = 1$
- Non-Negativity: $\forall z \in \mathcal{Z} \ p(Z = z | \phi) \ge 0$

Example: Normal Random Variables

Consider the univariate normal random variable Z.

- Values: $\mathcal{Z} = \mathbb{R}$
- Parameters: $\mu \in \mathbb{R}$, $\sigma \in \mathbb{R}^{>0}$
- Parameter Space: $\Phi = \mathbb{R} \times \mathbb{R}^{>0}$
- Density Function: $p(Z=z|\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp(-\frac{1}{2\sigma^2}(z-\mu)^2)$

Probabilistic Models

■ Definition: A parametric probability model \mathbb{P} for discrete random variable Z with parametric probability mass function P and parameter space Φ is the set of all probability mass functions generated by P and Φ :

$$\mathbb{P} = \{ P(Z|\phi) | \phi \in \Phi \}$$

■ Definition: A parametric probability model \mathbb{P} for a continuous random variable Z with with parametric probability density function P and parameter space Φ is the set of all probability density functions generated by P and Φ :

$$\mathbb{P} = \{ p(Z|\phi) | \phi \in \Phi \}$$

Parameter Estimation for Probabilistic Models

Let $\mathcal{L}(\mathcal{D}, \phi)$ be a loss function that measures how "close" a data set \mathcal{D} is to a parametric probability mass or density function with parameters ϕ . Given such a loss function, we can estimate the parameters as follows.

The Parameter Estimation Problem

$$\hat{\phi} = \operatorname*{arg\,min}_{\phi \in \Phi} \mathcal{L}(\mathcal{D}, \phi)$$

This selects the best fitting distribution from the model \mathbb{P} .

Maximum Likelihood Estimation

The most common such loss function used to estimate the parameters of probabilistic models is the negative log likelihood function:

$$nll(\mathcal{D}, \phi) = -\sum_{n=1}^{N} \log P(Z = z_n | \phi)$$

■ This loss function derives from the idea of selecting the parameters ϕ that make the data the most likely:

$$\hat{\phi} = \operatorname*{arg\,max}_{\phi \in \Phi} \prod_{n=1}^{N} P(Z = z_n | \phi)$$

Example: Bernoulli Distribution

- Let $P(Z = z | \phi) = \phi^z (1 \phi)^{(1-z)}$ for $\mathcal{Z} = \{0, 1\}$ and $\phi \in [0, 1]$.
- Suppose we have a data set $\mathcal{D} = [z_1, ..., z_N]$ and we want to find the MLE of ϕ .
- The negative log likelihood function is shown below and is subject to $\phi \in [0,1]$:

$$nll(\mathcal{D}, \phi) = -\sum_{n=1}^{N} (z_n \log \phi + (1 - z_n) \log(1 - \phi))$$

■ The MLE is $\hat{\phi} = \frac{1}{N} \sum_{n=1}^{N} z_n$.

Example: Normal Mean

- Let $p(Z = z | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(z \mu)^2\right)$
- Suppose we have a data set $\mathcal{D} = [z_1, ..., z_N]$ and we want to find the MLE of μ .
- The negative log likelihood function is:

$$nll(\mathcal{D}, \mu, \sigma) = \sum_{n=1}^{N} \left(\frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} (z_n - \mu)^2 \right)$$

■ The MLE is $\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} z_n$.

Probabilistic Supervised Learning

- In probabilistic supervised learning, our goal is to model the true probability distribution of the outputs $y \in \mathcal{Y}$ given the inputs $\mathbf{x} \in \mathcal{X}$.
- If \mathcal{Y} is discrete, our goal is to model $P_*(Y = y | \mathbf{X} = \mathbf{x})$ with a conditional parametric probability mass function $P(Y = y | \mathbf{X} = \mathbf{x}, \theta)$.
- If \mathcal{Y} is uncountable, our goal is to model $p_*(Y = y | \mathbf{X} = \mathbf{x})$ with a conditional parametric probability density function $p(Y = y | \mathbf{X} = \mathbf{x}, \theta)$.

Generating Supervised Probabilistic Models

- We can very flexibly generate probabilistic supervised learning models by combining unconditional probability models with regression models that predict their parameter values.
- We can select different probability models to provide distributions over different output spaces.
- We can use any type of regression model including both linear and non-linear models.
- We may need to apply a transformation to the regression model outputs to ensure that the predicted parameter values always fall in the parameter space of the unconditional model.

Learning Supervised Probabilistic Models

So long as all model components are differentiable functions, we can learn the model parameters θ by minimizing the conditional negative log likelihood function given a data set \mathcal{D} :

$$nll(\mathcal{D}, \theta) = -\sum_{n=1}^{N} \log P(Y = y | \mathbf{X} = \mathbf{x}, \theta)$$

This is technically maximum conditional likelihood estimation, but is also often just referred to as maximum likelihood estimation.

Example: Probabilistic Linear Regression

- Suppose that $\mathcal{Y} = \mathbb{R}$ and $\mathcal{X} \in \mathbb{R}^D$.
- Unconditional Model:

$$p(Y = y | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y - \mu)^2\right)$$

Conditional Model:

$$p(Y = y | \mathbf{X} = \mathbf{x}, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y - f_w(\mathbf{x}))^2\right)$$

- Parameter Prediction Function: $f_w(\mathbf{x}) = \mathbf{x}\mathbf{w}$
- Model Parameters: $\theta = [\mathbf{w}, \sigma]$
- Negative Log Likelihood:

$$nll(\mathcal{D}, \theta) = -\sum_{n=1}^{N} \log p(Y = y_n | \mathbf{X} = \mathbf{x}_n, \theta)$$

Example: Probabilistic Linear Regression

$$nll(\mathcal{D}, \theta) = -\sum_{n=1}^{N} \log p(Y = y_n | \mathbf{X} = \mathbf{x}_n, \theta)$$

$$= -\sum_{n=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y_n - f_w(\mathbf{x}_n))^2 \right) \right)$$

$$= -\sum_{n=1}^{N} \left(-\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} (y_n - \mathbf{x}_n \mathbf{w})^2 \right)$$

$$= \sum_{n=1}^{N} \left(\frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} (y_n - \mathbf{x}_n \mathbf{w})^2 \right)$$

Minimizing this NLL for a fixed value of σ is equivalent to learning the OLS linear regression model under ERM.

Example: Probabilistic Non-linear Regression

- Suppose that $\mathcal{Y} = \mathbb{R}$ and $\mathcal{X} \in \mathbb{R}^D$.
- Unconditional Model:

$$p(Y = y | \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(y - \mu)^2\right)$$

Conditional Model:

$$p(Y = y | \mathbf{X} = \mathbf{x}, \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} (y - f(\mathbf{x}))^2\right)$$

- Parameter Prediction Function: $f(\mathbf{x}) = \text{an MLP, CNN, RNN,}$ transformer, etc.
- Negative Log Likelihood:

$$nll(\mathcal{D}, \theta) = -\sum_{n=1}^{N} \log p(Y = y_n | \mathbf{X} = \mathbf{x}_n, \theta)$$

Making Predictions

- Given a probabilistic supervised model, we can produce an estimate of the conditional probability of y given \mathbf{x} by plugging the estimated parameters $\hat{\theta}$ into the model.
- In the case of discrete y, when we need to issue a prediction, we typically predict the value that achieves the maximum conditional probability given \mathbf{x} and $\hat{\theta}$:

$$\hat{y} = \arg\max_{y \in \mathcal{Y}} P(Y = y | \mathbf{X} = \mathbf{x}, \hat{\theta})$$

■ In the case of continuous *y*, we can predict different functions of the conditional distribution. The most commonly used prediction is the conditional mean of *y*:

$$\hat{y} = E_{p(Y=y|\mathbf{X}=\mathbf{x},\hat{\theta})}[y] = \int_{\mathcal{V}} yp(Y=y|\mathbf{X}=\mathbf{x},\hat{\theta})dy$$