# **Lecture Notes for MAT3220**

**Suggested Citation:** Alet Heezemans and Mike Casey (2018), "Lecture Notes for MAT3220", : Vol. xx, No. xx, pp 1–18. DOI: 10.1561/XXXXXXXXX.

This article may be used only for the purpose of research, teaching, and/or private study. Commercial use or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher approval.



## Contents

| 1 | From Linear to Conic Programming                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|---|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | 1.1                                             | Preliminaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2  |
|   | 1.2                                             | Introduction to Linear Programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3  |
|   | 1.3                                             | Dual to a Linear Programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
|   | 1.4                                             | Applications of LP: Compressive Sensing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8  |
|   | 1.5                                             | Simplex Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17 |
|   | 1.6                                             | Duality Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 24 |
| 2 | Geometry and Duality for Linear Programming     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26 |
|   | 2.1                                             | The polyhedral geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26 |
|   | 2.2                                             | Fundamental Theorems for Linear Programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29 |
|   | 2.3                                             | More Theorems of Alternatives: the case for polyhedrons $% \left( 1\right) =\left( 1\right) \left( 1$ | 35 |
| 3 | Computational Complexity for Linear Programming |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |
|   | 3.1                                             | A case study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37 |
|   | 3.2                                             | Computational Complexity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 38 |
|   | 3.3                                             | Complexity of Linear Programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40 |
| 4 | The                                             | KKT Condition for Nonlinear Programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 45 |
|   | 4.1                                             | unconstrained Optimality Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 45 |
|   | 4.2                                             | Constrained Optimality Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46 |
|   | 4.3                                             | Projection Problem                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50 |

|    | 4.4                                        | The Augmented Lagrangian Dual                           | 51 |  |  |
|----|--------------------------------------------|---------------------------------------------------------|----|--|--|
| 5  | Basic Algorithms for Nonlinear Programming |                                                         |    |  |  |
|    | 5.1                                        | Gradient Algorithms                                     | 54 |  |  |
|    | 5.2                                        | The Pure Newton's Method                                | 61 |  |  |
|    | 5.3                                        | Practical Implementation of Newton's method             | 64 |  |  |
| 6  | Primal-Dual Interior Point Methods (PDIPM) |                                                         |    |  |  |
|    | 6.1                                        | PDIPM for Linear Programming                            | 68 |  |  |
| 7  | Coni                                       | ic Optimization Models                                  | 76 |  |  |
| 8  | Reviewing                                  |                                                         |    |  |  |
|    | 8.1                                        | $KKT\ condition\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .\ .$ | 81 |  |  |
|    | 8.2                                        | Basic Algorithm                                         | 83 |  |  |
|    | 8.3                                        | Interior Point Method                                   | 85 |  |  |
|    | 8.4                                        | Machine Learning                                        | 87 |  |  |
|    | 8.5                                        | First-order Methods                                     | 87 |  |  |
| 9  | The                                        | Distribution and Installation                           | 90 |  |  |
|    | 9.1                                        | Pre-requisites                                          | 90 |  |  |
|    | 9.2                                        | The Distribution                                        | 90 |  |  |
|    | 9.3                                        | Installation                                            | 91 |  |  |
| 10 | Quic                                       | ck Start                                                | 93 |  |  |
|    | 10.1                                       | \documentclass                                          | 93 |  |  |
|    | 10.2                                       | \issuesetup                                             | 94 |  |  |
|    |                                            | \maintitleauthorlist                                    | 94 |  |  |
|    |                                            | \author and \affil                                      | 94 |  |  |
|    | 10.5                                       | $\verb    add bibresource   $                           | 94 |  |  |
| 11 | Style                                      | e Guidelines and LATEX Conventions                      | 95 |  |  |
|    | 11.1                                       | Abstract                                                | 95 |  |  |
|    |                                            | Acknowledgements                                        | 95 |  |  |
|    | 11.3                                       | References                                              | 95 |  |  |
|    | 11.4                                       | Citations                                               | 96 |  |  |
|    | 11.5                                       | Preface and Other Special Chapters                      | 96 |  |  |

|                  | 11.6 Long Chapter and Section Names             | 97  |  |  |
|------------------|-------------------------------------------------|-----|--|--|
|                  | 11.7 Internet Addresses                         | 97  |  |  |
| 12               | ? Compiling Your FnT Article                    |     |  |  |
|                  | 12.1 Compiling Your Article Prior to Submission | 98  |  |  |
|                  | 12.2 Preparing the Final Versions               | 99  |  |  |
|                  | 12.3 Compiling The Final Versions               | 99  |  |  |
|                  | 12.4 Wednesday                                  | 100 |  |  |
| Acknowledgements |                                                 |     |  |  |
| Ар               | pendices                                        | 106 |  |  |
| Α                | Journal Codes                                   | 107 |  |  |
| В                | Files Produced During Compilation               | 109 |  |  |
| Re               | References                                      |     |  |  |

## Lecture Notes for MAT3220

Alet  $Heezemans^1$  and  $Mike\ Casey^2$ 

#### ABSTRACT

This document is the typed lecture notes for MAT3220

 $<sup>^{1}</sup>now\ publishers,\ Inc.;\ alet.heezemans@nowpublishers.com$ 

<sup>&</sup>lt;sup>2</sup>now publishers, Inc.; mike.casey@nowpublishers.com

## From Linear to Conic Programming

#### 1.1 Preliminaries

#### **Solvability of Convex Programming**

**Theorem 1.1.** Consider a convex program

$$\mathrm{Opt} = \left\{ \begin{array}{ll} \mathrm{minimize} & f(x) \\ \mathrm{subject\ to} & x \in \mathbb{R}^n \\ & g_i(x) \leq 0, i \in [m] \\ & |x_j| \leq 1, j \in [n] \end{array} \right\}$$

in which we assume that

$$|f(x)| \le 1, |g_j(x)| \le 1, \quad \forall x \in B := \{|x_j| \le 1, \forall j\}.$$

Then for each  $\epsilon \in (0,1)$ , one can find an  $\epsilon$ -optimal solution

$$x_{\epsilon} \in B : f(x_{\epsilon}) - \text{Opt} \le \epsilon, g_i(x_{\epsilon}) \le \epsilon, \forall i,$$

or to conclude correctly that the problem is infeasible at the cost of at most

$$3n^2\log\left(\frac{2n}{\epsilon}\right)$$
.

A convex programming always has a lot of structure. A good algorithm should utilize a prior knowledge of the problem's structure in order to accelerate the solution process.

**Conic Programming: Structure-revealing representation** Linear programming has the standard form:

$$\min_{x} \left\{ c^{\mathsf{T}} x: \ Ax - b \ge 0 \right\} \Longleftrightarrow \min_{x} \left\{ c^{\mathsf{T}} x: \ Ax - b \in \mathbb{R}_{+}^{m} \right\}.$$

We can introduce the nonlinearity by considering the conic programming:

$$\min_{x} \left\{ c^{\mathrm{T}}x : Ax - b \ge_{\mathcal{K}} 0 \right\} \Longleftrightarrow \min_{x} \left\{ c^{\mathrm{T}}x : Ax - b \in \mathcal{K} \right\},$$

in which K is a regular cone.

**Remark 1.1.** Each convex programming admits the equivalent conic formulation. Although a general convex cone may have no more structure than a general convex function, the following three types of cones allow to represent most convex problems:

- $\mathcal{LP}$ : non-negative orthants  $\mathbb{R}^m_{\perp}$ ;
- $\mathcal{CQP}$ : Direct products of Lorentz cones:

$$\mathbb{L}_{+}^{p} := \{ u \in \mathbb{R}^{p} : u_{p} \ge \|[u_{1}; \dots; y_{p-1}]\|_{2} \}$$

which leads to the SOCP formulation;

•  $\mathcal{SDP}$ : direct products of semi-definite cones  $\mathbb{S}^p_+ = \{ M \in \mathbb{S}^p : M \succeq 0 \}$ , which leads to the SDP formulation.

## 1.2 Introduction to Linear Programming

The most important issue for LP is the LP duality theory, which answers the following basic question:

How to give the certificate for the infeasibility of a system of strict/nonstrict linear inequalities:

$$\begin{cases} Px > p(a) \\ Qx \ge q(b) \end{cases}$$

Every solution is a certificate for feasiblity. The duality certify when the system has no solutions.

**Remark 1.2.** Simple Sufficient Condition for Infeasiblity: if there eixsts non-negative weight vectors s and y such that the inequality

$$[s^{\mathrm{T}}P + y^{\mathrm{T}}Q]x \mathbf{\Omega} s^{\mathrm{T}}p + y^{\mathrm{T}}q, \qquad \mathbf{\Omega} = \begin{cases} > & s \neq 0 \\ \ge & s = 0 \end{cases}$$

with unknowns x has no solutions. Then the original linear inequality is infeasible. In particular, this inequality has no solutions if and only if  $P^{T}s + Q^{T}y = 0$ , and

- either  $\Omega = ">"$  and  $s^{\mathrm{T}}p + y^{\mathrm{T}}q \geq 0$ ;
- or  $\Omega = " \ge "$  and  $s^{\mathrm{T}}p + y^{\mathrm{T}}q > 0$ .

The remark implies the following proposition:

**Proposition 1.1.** Given system of strict and nonstrict linear inequalities

$$\begin{cases}
Px > p \\
Qx \ge q
\end{cases}$$
(S)

Associate (S) with the following two systems of linear equalities/inequalities with unknowns s, y:

$$\mathcal{T}_1: \begin{cases} s, y \ge 0 \\ P^{\mathsf{T}}s + Q^{\mathsf{T}}y = 0 \\ p^{\mathsf{T}}s + q^{\mathsf{T}}y \ge 0 \\ \sum_i s_i > 0 \end{cases} \qquad \mathcal{T}_2: \begin{cases} y \ge 0 \\ Q^{\mathsf{T}}y = 0 \\ q^{\mathsf{T}}y > 0 \end{cases}$$

If one of the sytem  $\mathcal{T}_1, \mathcal{T}_2$  has a solution, then  $(\mathcal{S})$  has no solutions.

**Theorem 1.2** (General Theorem of Alternative). The sufficient condition for the infeasibility of (S) stated in Proposition 1.1 is necessary and sufficient.

**Remark 1.3.** Apply the GTA to the system

$$Qx \ge q \tag{S_{NS}}$$

This system is unsolvable if and only if  $\mathcal{T}_2$  is solvable.

**Corollary 1.3.** 1. A system of linear inequalities is infeasible if and only if one can combine the inequalities to obtain a contradictory inequality:

$$0^{\mathrm{T}}x \ge 1$$
, or  $0^{\mathrm{T}}x > b, b \ge 0$ .

2. Inhomogeneous Farkas Lemma: a scalar linear inequality  $a_0^{\mathrm{T}}x \leq b_0$  is a consequence of a solvable system of linear inequalies  $a_i^{\mathrm{T}}x \leq b_i, i=1,2,\ldots,m$  if and only if

$$a_0 = \sum_{i=1}^{m} \lambda_i a_i, \quad b_0 = \lambda_0 + \sum_{i=1}^{m} \lambda_i b_i, \qquad \lambda_i \ge 0, i = 0, 1, \dots, m.$$

**Theorem 1.4** (Homogeneous Farkas Lemma). A homogeneous linear inequality  $a^{\mathrm{T}}x \geq 0$  is a consequence of a system of homogeneous linear equalities  $a_i^{\mathrm{T}}x \geq 0, i=1,2,\ldots,m$  if and only if

$$\exists y \ge 0, a = \sum_{i} y_i a_i.$$

The outline for proving GTA is to directly prove Homogeneous Farkas Lemma (HFL), and then derive GTA from HFL.

 $HFL \Longrightarrow GTA$ . Given the system

$$\begin{cases}
Px > p \\
Qx \ge q
\end{cases}$$
(S)

we associate it with the system (w.r.t.  $x, t, \epsilon$ )

$$\begin{cases}
Px - tp - \epsilon \mathbf{1} \ge 0 \\
Qx - tq \ge 0 \\
t - \epsilon \ge 0
\end{cases}$$
( $\mathcal{H}$ )

We can see that (S) has no solutions if and only if  $(\mathcal{H})$  has no solutions with  $\epsilon > 0$ , i.e., iff the homogeneous linear inequality  $-\epsilon \geq 0$  is a consequence of the system of homogeneous linear equalities  $(\mathcal{H})$ . Then applying HFL gives the desired result.

Now we prove the HFL by the polyhedral representation fact:

**Definition 1.1.** • A set  $X \subseteq \mathbb{R}^n$  is a polyhedral if it is a soluiton set of a finite system of non-strict linear inequalities:

$$\exists A, b: \ X = \{x \in \mathbb{R}^n: \ Ax \le b\}.$$

• A polyhedral representation of a set  $X \subseteq \mathbb{R}^n_x$  is a representation of X as the projection of a higher-dimensional polyhedral set

$$X^{+} = \{ [x; u] : Ax + Bu \le c \} \subseteq \mathbb{R}^{n}_{x} \times \mathbb{R}^{k}_{u}$$

onto the x-space, i.e., as the image of  $X^+$  under the projection mapping  $[x; u] \mapsto x$ :

$$X = \{ x \in \mathbb{R}^n : \exists u, Ax + Bu \le c \}.$$

**Proposition 1.2.** A set is a polyhedral iff it admits the polyhedral representation, i.e., the projection X of a polyhedral set onto the space of x-variables can be represented as a solution set of finite system of nonstrict linear inequalities in x-variable only.

*Proof.* Without loss of generality, assume that u is one-dimensional. Split all inequalities  $a_i^T x + b_i u \le c_i, 1 \le i \le I$  into three groups:

- When  $b_i = 0$  (denote  $i \in I_1$ ), we obtain  $a_i^{\mathrm{T}} x \leq c_i$ ;
- When  $b_i > 0$  (denote  $i \in I_2$ ), we obtain  $u \le \alpha_i^{\mathrm{T}} x + \beta_i$ ;
- When  $b_i < 0$  (denote  $i \in I_3$ ), we obtain  $u \ge \alpha_i^{\mathrm{T}} x + \beta_i$ .

Observe that a vector  $\bar{x}$  belongs to the projection of  $X^+$  iff  $\bar{x}$  satisfies  $a_i^T \bar{x} \leq c_i, \forall i \in I_1$ , and there exists  $u \in \mathbb{R}$  so that affine upper bounds/lower bounds are satisfied. The latter is possible if and only if each upper bound on u is greater than each lower bound on u, i.e.,

$$X = \left\{x: \; \exists u, Ax + ub \leq c\right\} = \left\{x: \quad \begin{aligned} &a_i^{\mathsf{T}}x \leq c_i, i \in I_1\\ &\alpha_i^{\mathsf{T}}x + \beta_i \geq \alpha_j^{\mathsf{T}}x + \beta_j, \forall i \in I_2, \forall j \in I_3 \end{aligned}\right\}$$

Hence, X is a polyhedral.

*Proof of HFL.* The nontrivial part is to show that, if a is not a conic combination of  $a_1, \ldots, a_n$ , then  $a^{\mathrm{T}}d < 0$  for some d with  $a_i^{\mathrm{T}}d \geq 0, i =$ 

 $1, 2, \ldots, n$ . Observe that  $Cone(a_1, \ldots, a_n)$  admits the polyhedral representation:

$$Cone(a_1, \dots, a_n) = \left\{ x : \exists u, \ u \ge 0 \\ x - \sum_i u_i a_i = 0 \right\}$$

Hence, there exists a finite system of inequalities  $p_j^T x \ge b_j, 1 \le j \le J$  such that

Cone
$$(a_1, ..., a_n) = \{x : p_j^T x \ge q_j, j = 1, 2, ..., J\}.$$

- Since  $0 \in \text{Cone}(a_1, \ldots, a_n)$ , we imply  $q_j \leq 0, \forall j$ ;
- Since  $a \notin \text{Cone}(a_1, \ldots, a_n)$ , we imply  $p_{j^*}^T a < q_{j^*}$  for some  $j^*$ , and thus  $p_{j^*}^T a < 0$ .
- Since  $ta_i \in \text{Cone}(a_1, \ldots, a_n)$ , we imply  $p_{j^*}^T(ta_i) \geq q_{j^*} \geq 0, i = 1, 2, \ldots, n$ .

Taking  $d \equiv p_{j^*}$  completes the proof.

#### 1.3 Dual to a Linear Programming

We aim to ask when will a real number a become a lower bound on the optimal value of an LP problem:

$$\min_{x} \{c^{\mathrm{T}}x: Ax - b \ge 0\}?$$
 (P)

This question essentially means when would the linear inequality  $c^{T}x \ge a$  is a corollary of the finite system of linear inequalities  $Ax \ge b$ . A sufficient condition is to get the target inequality by aggregation:

$$\exists y \ge 0, \qquad A^{\mathrm{T}}y = c, y^{\mathrm{T}}b \ge a.$$

This sufficient condition is also necessary, provided that (P) is feasible. The proof is based on Corollary 1.3.

**Theorem 1.5.** The optimal value in the optimization problem

$$\max_{y} \ \{b^{\mathrm{T}}y: \ A^{\mathrm{T}}y = c, y \geq 0\} \tag{D}$$

is a lower bound on the optimal value in (P). If the optimal value in (P) is finite, then (D) is solvable with Opt(P) = Opt(D).

**Corollary 1.6.** Consider the LP problem (P) and the dual problem (D). Let (x, y) be the pair of primal and dual feasible solutions. Then  $c^{T}x = b^{T}y$  if and only if  $y_{i}(Ax - b)_{i} = 0, i = 1, 2, ..., m$ .

#### 1.4 Applications of LP: Compressive Sensing

The basic problem of signal processing is the following: given the observation  $y = Ax + \eta$ , in which  $A \in \mathbb{R}^{m \times n}$  denotes the sensing matrix, and  $\eta$  denotes the observation noise, we wish to recover x.

**Parametric case** Assume that  $m \gg n$ . Assume that  $\eta = \sigma \zeta, \zeta \sim \mathcal{N}(0, I_m)$ , then the typical estimate is by Least Squares:

$$\hat{x}(y) = \underset{w \in \mathbb{R}^n}{\arg \min} ||Aw - y||_2^2.$$

**Non-parametric case** Assume that  $m \ll n$ , then y = Ax does not define x uniquely when  $\eta = 0$ . Hence a priori information on x is needed. In *compressive sensing*, a priori information is that x is sparse, i.e., has at most a given number  $s \ll m$  of nonzero entries.

In practice, many real-life signals x become sparse when presented by some selected basis, which indicates the applicability of compressive sensing.

The formal mathematical framework of compressive sensing is to solve the following system for x:

$$y = Ax + \eta, \quad \|\eta\| \le \eta, \|x\|_0 \le s.$$

When  $\delta = 0$ , the recovery problem becomes the  $\ell_0$ -minimization:

$$\hat{x} = \underset{w \in \mathbb{R}^n}{\arg\min} \Big\{ \|w\|_0 : Aw = y \Big\}.$$

**Proposition 1.3.** Let each  $m \times 2s$  submatrix of the  $m \times n$  matrix A be of rank 2s. Then in the noiseless case the  $\ell_0$  minimization recovers exactly each s-sparse signal x.

*Proof.* Suppose that x is feasible for the minimization problem, then

$$\|\hat{x}\|_0 \le \|x\|_0 \le s \implies \|x - \hat{x}\| \le 2s.$$

This combines with  $A(x - \hat{x}) = 0$  and the assumption that each 2s columns of A are independent implies  $x - \hat{x} = 0$ .

The bad news is that  $\ell_0$ -minimization is difficult to solve, and the remedy is to solve the  $\ell_1$ -minimization problem instead:

$$\hat{x} = \underset{w \in \mathbb{R}^n}{\operatorname{arg\,min}} \Big\{ \|w\|_1 : Aw = y \Big\}.$$

An extension of  $\ell_1$ -minimization for noisy case is

$$\hat{x} = \underset{w \in \mathbb{R}^n}{\operatorname{arg\,min}} \Big\{ \|w\|_1 : \|Aw - y\| \le \delta \Big\}.$$

Here we answer two basic questions about compressive sensing:

- 1. When will the sensing matrix A become s-good, i.e., when would the  $\ell_1$ -recovery in the noiseless case  $\delta = 0$  recovers exactly each s-sparse signal x?
- 2. For s-good A, what are the error bounds of  $\ell_1$  recovery in the presence of noise?

**Proposition 1.4.** The sensing matrix A is s-good if and only if the nullspace property is satisfied: for each subset I of the cardinality s of the index set  $\{1, 2, \ldots, n\}$ , and for each  $z \in \text{Ker}(A) \setminus \{0\}$ ,

$$||z_I||_1 < \frac{1}{2}||z||_1.$$

*Proof.* 1. Suppose that the nullspace property is not satisfied, i.e., for some index set I we have  $||z_I||_1 \ge ||z_J||_1$  with  $J = \{1, 2, ..., n\} \setminus I$ . Let the true signal be the s-sparse signal  $x = z_I$ , then

$$Az = 0 \implies Ax = A[-z_J].$$

Together with the fact that  $||z_J|| \le ||z_I|| = ||x||_1$ , we can assert that x is not the unquie solution to  $\min_w \{||w||_1 : Aw = Ax\}$ , i.e., A is not s-good.

2. Suppose that the nullspace property is satisfied. Let x be a ssparse vector, so that  $x = x_I$  for some index set I with  $\operatorname{card}(I) \leq s$ .

Let  $\hat{x} = \min_{w} \{ \|w\|_1 : Aw = Ax \}$ . Assume on the contrary that  $z = \hat{x} - x \neq 0$ . Take  $J = \{1, 2, ..., n\} \setminus I$ . Since  $0 \neq z \in \text{Ker}(A)$ , the nullspace property implies  $\|z_I\|_1 < \|z_J\|_1$ . Hence,

$$||x_I||_1 - ||\hat{x}_I||_1 \le ||z_I||_1 < ||z_J||_1 = ||\hat{x}_J||_1.$$

Or equivalently,  $||x|| = ||x_I||_1 < ||\hat{x}||_1$ . The proof is completed.

To answer the question 2), we define

$$||x||_{s,1} = \max_{I: \operatorname{Card}(I) \le s} ||x_I||_1$$
$$= \max_{u} \left\{ u^{\mathrm{T}} x : ||u||_{\infty} \le 1, ||u||_1 \le s \right\},$$

where the second equality is because for a positive integer  $s \leq n$ , the extreme points of the convex polytope

$$U_s = \{ u \in \mathbb{R}^n : ||u||_{\infty} \le 1, \sum_i |u_i| \le s \}$$

are exactly the vectors with s nonzero entries equal to  $\pm 1$ .

**Lemma 1.7.** The sensing matrix A is s-good if and only if

$$\kappa_s(A) = \max_x \{ \|x\|_{s,1} : Ax = 0, \|x\|_1 \le 1 \}$$

$$= \max_{x,u} \{ u^{\mathsf{T}} x : u \in U_s, Ax = 0, \|x\|_1 \le 1 \} < \frac{1}{2}$$

**Lemma 1.8.** For each integer  $s \leq n$ , each  $m \times n$  matrix A, each norm  $\|\cdot\|$ , there exists  $\beta < \infty$  such that

$$\forall x \in \mathbb{R}^n, \quad \|x\|_{s,1} \le \beta \|Ax\| + \kappa_s(A) \|x\|_1, \tag{*}$$

and the infimum of  $\beta$  is denoted as  $\beta_s(A, \|\cdot\|)$ .

*Proof.* Let P be the orthogonal projector on Ker(A), then

$$||z||_{s,1} \le ||(I-P)z||_{s,1} + ||Pz||_{s,1}$$

$$\le ||(I-P)z||_1 + \kappa_s(A)||Pz||_1$$

$$\le ||(I-P)z||_1 + \kappa_s(A)[||z||_1 + ||(I-P)z||_1]$$

$$\le (1+\kappa_s(A))||(I-P)z||_1 + \kappa_s(A)||z||_1$$

$$\le \alpha(1+\kappa_s(A))||(I-P)z|| + \kappa_s(A)||z||_1$$

$$= \alpha(1+\kappa_s(A))||Az|| + \kappa_s(A)||z||_1.$$

The quantities  $\kappa_s(A)$  and  $\beta_s(A, \|\cdot\|)$  are responsible for the error bound in imperfect  $\ell_1$ -recovery.

**Theorem 1.9.** Let A be the  $m \times n$  sensing matrix, and s be a positive integer. Assume that:

- signal  $x \in \mathbb{R}^n$  is nearly s-sparse:  $||x x^s||_1 \le v$  for some s-sparse vector  $x^s$ ;
- noise  $\eta$  in the observation  $y = Ax + \eta$  satisfies  $\|\eta\| \le \delta$  for given  $\eta \ge 0$ ;
- $\hat{x}$  is obtained from  $A, y, \delta$  by imperfect  $\ell_1$ -recovery:

$$\|\hat{x}\|_{1} \le \nu + \min_{w} \{\|w\|_{1} : \|Aw - y\| \le \delta, \qquad \|A\hat{x} - y\| \le \delta + \epsilon.\}$$

Assume (\*) and  $\kappa_s(A) < \frac{1}{2}$ , then the following error bound holds true:

$$||x - \hat{x}||_1 \le \frac{2\beta_s(A, ||\cdot||)[2\delta + \epsilon] + 2v + \nu}{1 - 2\kappa_s(A)}.$$

*Proof.* Let I be the collection of indexes of the s-largest in magnitude entries in x and construct  $x^s = x_I$ . Take  $J = \{1, 2, ..., n\} \setminus I$  and  $z = \hat{x} - x$ . Denote  $\kappa = \kappa_s(A)$  and  $\beta = \beta_s(A, ||\cdot||)$ , then we have

$$\|\hat{x}\|_{1} \le \nu + \text{Opt} \le \nu + \|x\|_{1} = \nu + \|x_{I}\|_{1} + \|x_{J}\|_{1}$$
$$\|Az\| \le \|A\hat{x} - y\| + \|Ax - y\| \le 2\delta + \epsilon$$

$$\|\hat{x}_J\|_1 - \|x_J\|_1 \le \|\hat{x}\|_1 - \|\hat{x}_I\|_1 - \|x_J\|_1 \le \nu + \|x_I\|_1 - \|\hat{x}_I\|_1 \le \nu + \|z_I\|_1$$

Now we are able to derive the upper bound on z:

$$||z_I||_1 \le \beta ||Az|| + \kappa(A)||z||_1$$

$$||z_I||_1 \le \frac{\beta}{1-\kappa} ||Az|| + \frac{\kappa}{1-\kappa} ||z_J||_1 \le \frac{\beta(2\delta+\epsilon)}{1-\kappa} + \frac{\kappa}{1-\kappa} ||z_J||_1$$

$$||z||_1 \le \frac{\beta(2\delta+\epsilon)}{1-\kappa} + \frac{1}{1-\kappa} ||z_J||_1$$

It suffices to upper bound  $||z_J||_1$  to complete the proof:

$$\|\hat{x}_J\|_1 - \|x_J\|_1 \le \nu + \|z_I\|_1 \le \nu + \frac{\beta(2\delta + \epsilon)}{1 - \kappa} + \frac{\kappa}{1 - \kappa} [\|\hat{x}_J\|_1 + \|x_J\|_1]$$
$$\|z_J\|_1 \le \frac{\nu(1 - \kappa) + \beta(2\delta + \epsilon) + 2(1 - \kappa) \|x_J\|_1}{1 - 2\kappa}.$$

**Remark 1.4.** Let  $||z||_{s,1}$  denote the total magnitude of s-largest in magnitude entries in z. The sensing matrix A is s-good means that the  $\ell_1$ -minimization recovers exactly all s-sparse signals in the noiseless case, if and only if the nullspace property is satisfied:

$$\kappa_s(A) = \max_z \{ \|z\|_{s,1} : Az = 0, \|z\|_1 \le 1 \} < \frac{1}{2}.$$

Given the norm  $\|\cdot\|$  on  $\mathbb{R}^m$ , we have  $\|z\|_{s,1} \leq \beta_s \|Az\| + \kappa_s(A)\|z\|_1$  for any z, with properly selected  $\beta_s$ . When  $\kappa_s(A) < 1/2$ , the term  $\beta_s, \kappa_s$  are responsible for error bounds in imperfect  $\ell_1$  recovery.

**Tractability of s-goodness** It is unclear how to verify the nullspace property in reasonable time. Here we discuss some sufficient conditions for s-goodness, i.e., an efficiently computable upper bound, denoted as  $\kappa_s^+(A)$ , on the quantity

$$\kappa_s(A) = \max_z \{ \|z\|_{s,1} : \|z\|_1 \le 1, Az = 0 \}.$$

Then  $\kappa_s^+(A)$  will act as a sufficient condition for s-goodness.

**Proposition 1.5.** The quantity

$$\kappa_s^+(A) = \min_{H \in \mathbb{R}^{m \times n}} \max_j \|\operatorname{Col}_j[I - H^{\mathrm{T}}A]\|_{s,1} \ge \kappa_s(A).$$

*Proof.* For any  $H \in \mathbb{R}^{m \times n}$ , we have

$$\kappa_{s}(A) = \max_{z} \{ \|z\|_{s,1} : \|z\|_{1} \le 1, Az = 0 \}$$

$$= \max_{z} \{ \|[I - H^{T}A]z\|_{s,1} : \|z\|_{1} \le 1, Az = 0 \}$$

$$\leq \max_{z} \{ \|[I - H^{T}A]z\|_{s,1} : \|z\|_{1} \le 1 \}$$

$$= \max_{z} \left\{ \|\sum_{j} z_{j} \operatorname{Col}_{j} [I - H^{T}A]\|_{s,1} : \|z\|_{1} \le 1 \right\}$$

$$\leq \max_{z} \left\{ \sum_{j} |z_{j}| \|\operatorname{Col}_{j} [I - H^{T}A]\|_{s,1} : \|z\|_{1} \le 1 \right\}$$

$$= \max_{j} \|\operatorname{Col}_{j} [I - H^{T}A]\|_{s,1}$$

Assume that we can find a matrix H such that

$$\kappa^{+}(A) = \max_{j} \|\text{Col}_{j}[\Delta]\|_{s,1} < \frac{1}{2}, \quad \Delta = I - H^{T}A.$$

Then  $x = [\Delta + H^{T}A]x$  for any  $x \in \mathbb{R}^{n}$ , which implies

$$||x||_{s,1} \le s||H^{T}Ax||_{\infty} + \sum_{j=1}^{n} |x_j|||\operatorname{Col}_j(\Delta)||_{s,1} \le \beta||Ax|| + \kappa^{+}||x||_{1}.$$

Hence, we can assert that  $\beta_s(A, \|\cdot\|) \leq s \max_j \|\operatorname{Col}_j[H]\|_*$ .

**Remark 1.5.** 1. Computing  $\kappa_s^+(A)$  and the associated H reduces into LP:

$$\kappa_{s}^{+}(A) = \min_{H,\tau} \left\{ \tau : \| \operatorname{Col}_{j}[I - H^{T}A] \|_{s,1} \leq \tau \right\}$$

$$= \min_{\substack{y^{1}, \dots, y^{n} \\ t_{1}, \dots, t_{n} \\ H, \tau}} \left\{ \tau : \begin{array}{l} -y^{j} - t_{j} \mathbf{1} \leq \operatorname{Col}_{j}[I - H^{T}A] \leq y^{j} + t_{j} \mathbf{1}, 1 \leq j \leq n \\ y^{j} \geq 0, \sum_{i=1}^{n} y_{i}^{j} + s t_{j} \leq \tau, 1 \leq j \leq n \end{array} \right\}$$

2. When s = 1,

$$\kappa_1^+(A) = \kappa_1(A) = \max_{1 \le j \le n} \max_{x} \{x_j : Ax = 0, ||x|| \le 1\}$$
$$= \min_{H} \max_{i,j} |(I - H^T A)_{i,j}|$$

3. It is easy to see that  $\kappa_s^+(A) \leq \frac{s}{r}\kappa_r^+(A)$  when  $1 \leq r \leq s$ . In particular,  $\kappa_s^+(A) \leq s\kappa_1^+(A)$ . Once we have  $\kappa_1^+(A) < \frac{1}{2s}$ , we can assert the s-goodness of A.

Define the mutual incoherence of  $A = [A_1, \dots, A_n]$  as

$$\mu(A) = \max_{i \neq j} \frac{|A_i^{\mathrm{T}} A_j|}{A_j^{\mathrm{T}} A_j}.$$

We set  $H = \frac{1}{1+\mu(A)}[A_1/(A_1^{\mathrm{T}}A_1), \dots, A_n/(A_n^{\mathrm{T}}A_n)]$ , then

- the diagonal entries in  $H^{T}A$  are  $\frac{1}{1+\mu(A)}$ ;
- magnitude of the off-diagonal entries in  $H^{\mathrm{T}}A$  are upper bounded by  $\frac{\mu(A)}{1+\mu(A)}$ .

Hence, H certifies that  $\kappa_1^+(A) \leq \frac{\mu(A)}{\mu(A)+1}$ , which implies that A is s-good when  $\frac{2s\mu(A)}{\mu(A)+1} < 1$ .

**Remark 1.6.** When entries of the sensing matrix A are drawn at random from Gaussian/uniform distribution, the typical value of  $\mu(A)$  is as small as  $O(1)\sqrt{\log(n)/m}$ . The simplified sufficient condition " $\kappa_1^+(A) < \frac{1}{2s}$ " implies that a typical A from random ensembles just specified is  $O(\sqrt{m/\log n})$ -good.

**Proposition 1.6** (Bad news for non-square matrix). When the sensing matrix  $A \in \mathbb{R}^{m \times n}$  is essentially non-square, i.e.,  $n \geq 2m$ , the verifiable sufficient condition can certify s-goodness only when  $s \leq O(1)\sqrt{m}$ .

*Proof.* Assume that  $n \geq 2m$  and H certifies  $\kappa_s^+(A) < 1/2$ . Setting  $\bar{n} = 2m$  and denote D by the angular  $\bar{n} \times \bar{n}$  submatrix of  $H^TA$ . Then rank $(D) \leq m$ , and thus  $I_{\bar{n}} - D$  has at least  $\bar{n} - m \geq m$  singular values that are greater than 1, and therefore

$$\sum_{i,j\in[\bar{n}]} [I_{\bar{n}} - D]_{i,j}^2 \ge m.$$

On the other hand,

$$u \in \mathbb{R}^{\bar{n}} \implies ||u||_2^2 \le \max(\bar{n}/s^2, 1) ||u||_{s, 1}^2.$$

Since  $\|\text{Col}_{j}[I_{\bar{n}} - D]\|_{s,1} < 1/2$ , we have

$$\sum_{i,j\in[\bar{n}]} [I_{\bar{n}} - D]_{i,j}^2 = \|\text{Col}_j[I_{\bar{n}} - D]\|_2^2 \le \max(\bar{n}/s^2, 1) \cdot 1/4.$$

Hence, 
$$s \leq \sqrt{m}$$
.

**Remark 1.7.** It is known that  $m \times n$  matrices of Gaussian matrix, Rademacher matrix are s-good with s as large as  $O(1)m/\log(2n/m)$ , with high probability, which is better than the sufficient condition of the order  $O(\sqrt{m})$ .

**Definition 1.2.** The sensing matrix  $A \in \mathbb{R}^{m \times n}$  satisfies the *restricted* isometry property with parameters  $\delta, k$ , denoted as  $RIP(\delta, k)$ , if multiplying A by a k-sparse vector we nearly preserve  $\ell_2$  norm:

$$(1-\delta)\|x\|_2^2 \le \|Ax\|_2^2 \le (1+\delta)\|x\|_2^2$$
, for all k-sparse vector xssssss

**Proposition 1.7.** A random Gaussian/Rademacher  $m \times n$  matrix is, with probability approaching 1 as m, n grow, RIP(0.1, k) with k as large as  $O(m/\log(2n/m))$ .

**Proposition 1.8.** The sensing matrix A is s-good whenever A is RIP $(\delta, 2s)$  with  $\delta < 1/3$ .

**Remark 1.8.** Our verifiable sufficient condition for s-goodness, even in its simplest form, allows to certify at least the square root of the goodness level as guaranteed by (heavily computationally intractable) RIP.

We usually consider the standard linear programming (LP) model:

$$\max \sum_{j=1}^{n} c_{j} x_{j} \text{s.t.} \quad \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \quad i = 1, \dots, m x_{j} \geq 0, j = 1, \dots, n$$
 (1.1)

Or more generally, the constraints with equalities:

min 
$$\sum_{j=1}^{n} c_j x_j$$
s.t. 
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad i \in I$$

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \quad i \in E$$

$$x_i \geq 0, j = 1, \dots, n$$

It's often convenient to write the LP (1.1) into the compact matrix form:

$$\begin{array}{ll}
\text{max} & \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\
\text{s.t.} & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b} \\
& \boldsymbol{x} > \boldsymbol{0}
\end{array} \tag{1.2}$$

where  $\boldsymbol{c} \in \mathbb{R}^n, \boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{b} \in \mathbb{R}^m$ .

We also write  $\boldsymbol{A}$  as the column form:

$$A = \begin{pmatrix} a_1, & \cdots & a_n \end{pmatrix}$$

where  $a_i$  is the *i*-th column of A. We also express the submatrix of A, i.e.,  $A_I \subset A$  as:

$$\mathbf{A}_I := [a_i \mid i \in I],$$

where I is a subset of  $\{1, 2, \ldots, n\}$ .

**Dictionaries of an LP** We can introduce slack variables to transform (1.1) into LP with equalities:

$$x_{n+i} := b_i - \sum_{j=1}^n a_{ij} x_j, \quad i = 1, \dots, m$$

Let  $z = \sum_{j=1}^{n} c_j x_j$  be the objective function, and therefore we obtain a dictionary for the LP (1.1):

$$x_{n+i} = b_i - \sum_{j=1}^n a_{ij} x_j, \quad i = 1, \dots, m$$

$$z = \sum_{j=1}^n c_j x_j$$
Dictionary (1.3)

Assume that  $b_i \geq 0$  for i = 1, ..., m. Therefore we obtain a feasible solution associated with the dictionary, say dictionary solution:

$$x_{j} = 0$$
, for  $j = 1, ..., n$   $x_{n+i} = b_{i}$  for  $i = 1, ..., m$ 

It's clear how to improve the current dictionary solution:

- If  $c_j \leq 0, \forall j$ , then we cannot possibly improve the dictionary solution
- If  $c_j > 0$  for some  $1 \le j \le n$ , we increase the value for  $x_j$  from 0 into maximal value, while fixing  $x_j = 0$  for  $1 \le k (\ne j) \le n$ . Keep implementing until  $c_j \le 0, \forall j$ .

### **Example 1.1.** Consider the optimization problem

$$\max \quad 5x_1 + 4x_2 + 3x_3$$
s.t. 
$$2x_1 + 3x_2 + x_3 \le 5$$

$$4x_1 + x_2 + 2x_3 \le 11$$

$$3x_1 + 4x_2 + 2x_3 \le 8$$

$$x_1 > 0, \ x_2 > 0, \ x_3 > 0$$

$$(1.4a)$$

We can find its dictionary:

$$x_{4} = 5 - 2x_{1} - 3x_{2} - x_{3}$$

$$x_{5} = 11 - 4x_{1} - x_{2} - 2x_{3}$$

$$x_{6} = 8 - 3x_{1} - 4x_{2} - 2x_{3}$$

$$z = 0 + 5x_{1} + 4x_{2} + 3x_{3}$$
(1.4b)

Since  $c_1 > 0$ , increasing value for  $x_1$  suffices to consider the dictionary below instead:

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}$$

$$x_{5} = 11 - 4x_{1} - x_{2} - 2x_{3}$$

$$x_{6} = 8 - 3x_{1} - 4x_{2} - 2x_{3}$$

$$z = 0 + 5x_{1} + 4x_{2} + 3x_{3}$$

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}$$

$$x_{5} = 1 + 5x_{2} + 0x_{3} + 2x_{4}$$

$$x_{6} = \frac{1}{2} + \frac{1}{2}x_{2} - \frac{1}{2}x_{3} + \frac{3}{2}x_{4}$$

$$z = \frac{25}{2} - \frac{7}{2}x_{2} + \frac{1}{2}x_{3} - \frac{5}{2}x_{4}$$

$$(1.4c)$$

Also, since  $c_3 > 0$ , increasing value for  $x_3$  suffices to consider the dictionary below instead:

$$x_{1} = \frac{5}{2} - \frac{3}{2}x_{2} - \frac{1}{2}x_{3} - \frac{1}{2}x_{4}$$

$$x_{3} = 1 + x_{2} + 3x_{4} - 2x_{6}$$

$$x_{5} = 1 + 5x_{2} + 0x_{3} + 2x_{4}$$

$$x_{3} = 1 + x_{2} + 3x_{4} - 2x_{6}$$

$$x_{5} = 1 + 5x_{2} + 2x_{4} + 2x_{6}$$

$$z = \frac{25}{2} - \frac{7}{2}x_{2} + \frac{1}{2}x_{3} - \frac{5}{2}x_{4}$$

$$x_{3} = 1 + x_{2} + 3x_{4} - 2x_{6}$$

$$x_{5} = 1 + 5x_{2} + 2x_{4} + 2x_{6}$$

$$z = 13 - 3x_{2} - x_{4} - x_{6}$$

$$(1.4d)$$

### 1.5 Simplex Method

**Notations** The general dictionary for the problem (1.1) can be expressed as:

$$x_{i} = \bar{b}_{i} - \sum_{j \in N} \bar{a}_{ij} x_{j}, \quad i \in B$$

$$z = \zeta - \sum_{j \in N} \bar{c}_{j} x_{j}$$

$$(1.5)$$

where

- 1. the set B is called a basis, with |B| = m
- 2. the set N is called a non-basis, with |N| = n m. Moreover,  $B \cup N = \{1, \dots, n\}$ .
- 3. the basis B is said to be *primal feasible* if  $\bar{b} \geq 0$ , since in this case we can choose a primal feasible solution by setting non-basis variables to be zero and basis variables  $x_i$  to be  $\bar{b}_i$ .

4. the non-basis N is said to be *dual feasible* if  $\bar{c} \leq 0$ , since in this case we can choose a dual feasible solution by setting non-basis variables to be  $\bar{c}_i$  and other variables to be 0.

One can verify that in (1.5),

$$egin{aligned} ar{oldsymbol{b}} &= oldsymbol{A}_B^{-1} oldsymbol{b} \ ar{oldsymbol{c}}_N^{
m T} &= oldsymbol{c}_N^{
m T} - oldsymbol{c}_B^{
m T} oldsymbol{A}_B^{-1} oldsymbol{A}_N \ ar{oldsymbol{A}}_N &= oldsymbol{A}_B^{-1} oldsymbol{A}_N \ \zeta &= oldsymbol{c}_R^{
m T} oldsymbol{A}_B^{-1} oldsymbol{b} \end{aligned}$$

One can verify that  $(x_B, x_N) = (A_B^{-1}b, 0)$  is a basic solution.

**Simplex Method Algorithm** The assumption for the working of simplex method is that we are given a primal feasible basic solution, i.e.,  $\bar{b} \geq 0$ . The framework for obtaining an improved solution is summarized in (1).

**Remark 1.9.** The *one-step* of the simplex method is also called a *pivot step*, i.e., choose one pivot variable entering the basis and one leaving the basis.

The objective value for a successful pivot is improved by  $\frac{\bar{e}_j \bar{b}_i}{\bar{a}_{ij}}$ . However, the simplex method may not necessarily increase the objective value at each pivot, e.g., the case  $\bar{b}_i = 0$  coul happen. In this case, the basic solution is said to be degenerate.

Since there are no more than  $\binom{n}{m}$  (finite) possible bases, the simplex method will stop on two cases: (a) declaring the problem is unbounded; (b) finding a basic optimal solution.

**Pivot Rules** The *simplex method* specializes into a *simplex algorithm* if one specifies a *pivot rule* to determine which one variable to enter the basis and which one to leave, when there is a choice to make. Note that there exists some pivot rules that will make the problem face into cycling circumstance (see the example below), but here we list some examples of pivot rules that will be shown to definitely avoid cycling circumstance:

#### Algorithm 1 Framework for the one step of the Simplex Method

#### Input:

Primal feasible basic solution;

#### Output:

Improved feasible basic solution;

- 1: Find Entering Basis Variable j
  - Search for  $j \in N$  such that  $\bar{c}_j > 0$
  - If none exists then the current basic solution is optimal; otherwise choose one of such j.
- 2: Find Leaving Basis Variable i
  - Search for  $i \in B$  such that  $\bar{a}_{ij} > 0$
  - If none exists then the problem is unbounded; otherwise choose

$$i \in \arg\min\left\{\frac{\bar{b}_i}{\bar{a}_{ij}} : \bar{a}_{ij} > 0, \ i \in B\right\}$$

- 3: Basis Update:  $B \leftarrow B \cup \{j\} \setminus \{i\}$ , and then form the corresponding basic solution.
  - Dantzig's pivot rule: choose the largest positive coefficient to enter the basis.
  - The maximum improvement rule: try all the combinations and pick the pivot pair with the largest improvement.
  - Bland's rule: Among the candidates always pick the one with the smallest index.

**Example 1.2.** This example shows that some pivot rules may let the problem face into cycling circumstance, i.e., the algorithm solves the

problem in a loop and fails to go out:

$$x_5 = -0.5x_1 + 5.5x_2 + 2.5x_3 - 9x_4$$

$$x_6 = -0.5x_1 + 1.5x_2 + 0.5x_3 - x_4$$

$$x_7 = 1 - x_1$$

$$z = \mathbf{10}x_1 - 57x_2 - 9x_3 - 24x_4$$

Choosing  $x_1$  to enter the basis and  $x_5$  to leave gives:

$$x_1 = -2x_5 + 11x_2 + 5x_3 - 18x_4$$

$$x_6 = x_5 - 4x_2 - 2x_3 + 8x_4$$

$$x_7 = 1 + 2x_5 - 11x_2 - 5x_3 + 18x_4$$

$$z = -20x_5 + 53x_2 + 41x_3 - 204x_4$$

Choosing  $x_2$  to enter the basis and  $x_6$  to leave gives:

$$x_1 = 0.75x_5 - 2.75x_6 - 0.5x_3 + 4x_4$$

$$x_2 = 0.25x_5 - 0.25x_6 - 0.5x_3 + 2x_4$$

$$x_7 = 1 - 0.75x_5 - 13.25x_6 + 0.5x_3 - 4x_4$$

$$z = -6.75x_5 - 13.25x_6 + 14.5x_3 - 98x_4$$

Choosing  $x_3$  to enter the basis and  $x_1$  to leave gives:

$$x_3 = 1.5x_5 - 5.5x_5 - 2x_1 + 8x_4$$

$$x_2 = -0.5x_5 + 2.5x_5 + x_1 - 2x_4$$

$$x_7 = 1 - x_1$$

$$z = 15x_5 - 93x_5 - 29x_1 + 18x_4$$

Choosing  $x_4$  to enter the basis and  $x_2$  to leave gives:

$$x_3 = -0.5x_5 + 4.5x_5 + 2x_1 - 4x_2$$

$$x_4 = -0.25x_5 + 1.25x_5 + 0.5x_1 - 0.5x_2$$

$$x_7 = 1 - x_1$$

$$z = \mathbf{10.5}x_5 - 70.5x_5 - 20x_1 - 9x_2$$

Choosing  $x_5$  to enter the basis and  $x_3$  to leave gives:

$$x_5 = 9x_6 + 4x_1 - 8x_2 - 2x_3$$

$$x_4 = -x_6 - 0.5x_1 + 1.5x_2 + 0.5x_3$$

$$x_7 = 1 - x_1$$

$$z = 24x_6 + 22x_1 - 93x_2 - 21x_3$$

Choosing  $x_6$  to enter the basis and  $x_4$  to leave gives the *same dictionary* as we started:

$$x_5 = -0.5x_1 + 5.5x_2 + 2.5x_3 - 9x_4$$

$$x_6 = -0.5x_1 + 1.5x_2 + 0.5x_3 - x_4$$

$$x_7 = 1 - x_1$$

$$z = \mathbf{10}x_1 - 57x_2 - 9x_3 - 24x_4$$

#### **Theorem 1.10.** Bland's pivot rule would aviod cycling.

*Proof.* We show this claim by contradiction. If Bland's pivot rule produces cycling, let's study one cycle. For a sequence of dictionaries that form a cycle, let's delete all the variables that neither leave nor enter the basis, then it will remain a cycle.

In all these dictionaries, all  $\bar{b}_i$  will be zero, since otherwise the objective value will be strictly increased.

Let's study the tablau of dictionaries. It's a matrix that stores all the coefficients of a dictionary:

Two vectors are of special interest. The last row of the tablau in left part can be written as

$$\bar{\boldsymbol{c}}^{\mathrm{T}} = \boldsymbol{c} - \boldsymbol{c}_{\scriptscriptstyle R}^{\mathrm{T}} \boldsymbol{A}_{\scriptscriptstyle R}^{-1} \boldsymbol{A}$$

For the chosen  $j \in N$ , the direction

$$d_i^{(j)} = \begin{cases} -\bar{a}_{ij}, & i \in B \\ 0, & i \neq j \\ 1, & i = j \end{cases}$$

It's clear that  $\bar{\boldsymbol{c}}^{\mathrm{T}}\boldsymbol{d}^{(j)} = \bar{c}_{j}$ .

Suppose that  $\ell$  is the largest index of all variables that are involved in the cycle. Let (B, N) be the pivot where  $\ell$  was about to enter the basis,  $\mathbf{v} = \bar{\mathbf{c}}$  be the last row for that tableau at that point; let (B', N') be the pivot where  $\ell$  was about to leave the basis, and k was to enter the basis at that point,  $\mathbf{d}^{(k)}$  be the corresponding direction vector,  $\mathbf{u}$  the last row of that tableau.

It's clear that

- $\boldsymbol{v}$  is everywhere non-positive except for one position  $v_{\ell} > 0$
- ${m d}^{(k)}$  is everywhere non-negative except for one position  $d_\ell^{(k)} < 0$

Moreover,  $v - u \in \mathcal{R}(A^{T})$  and  $d^{(k)} \in \mathcal{N}(A)$ , which implies

$$0 = (\boldsymbol{v} - \boldsymbol{u})^{\mathrm{T}} \boldsymbol{d}^{(k)} = \boldsymbol{v}^{\mathrm{T}} \boldsymbol{d}^{(k)} - \boldsymbol{u}_k < 0,$$

which is a contradiction.

**Lemma 1.11.** Given the condition that the LP (1.2) has one basic feasible solution, then the LP (1.2) with perturbations, i.e.,

$$\text{s.t.} \quad \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} + \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_m \end{pmatrix}$$

$$\boldsymbol{x} \geq \boldsymbol{0}$$

$$(1.6)$$

will face no degeneracy for  $\forall \varepsilon \in (0, \varepsilon_1)$  for some  $\varepsilon_1 > 0$ .

*Proof.* For any basis B, the feasible solution for LP (1.6) is  $\mathbf{A}_B^{-1}(\bar{\mathbf{b}} + \boldsymbol{\varepsilon})$ . Suppose its i-th component is zero, i.e.,  $0 + 0\varepsilon_1 + \cdots + 0\varepsilon_m$ .

However, its *i*-th component is  $e_i^{\mathrm{T}} A_B^{-1} (\bar{b} + \varepsilon)$ , which implies  $e_i^{\mathrm{T}} A_B^{-1} = \mathbf{0}$ , which is a contradiction.

Question: what's the conclusion for page 19 in slides 1?

#### Two-Phase Simplex Method Given a dictionary

$$x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j, \quad i = 1, \dots, m,$$

with some  $b_i < 0$ , the question is how to choose an initial basic feasible solution? The two-phase simplex method proceeds as follows:

1. Introduce a new variable  $x_0$ 

$$x_{n+i} = b_i - \sum_{j=1}^{n} a_{ij} x_j + x_0, \quad i = 1, \dots, m,$$

and an objective  $-x_0$  to maximize

- 2. Suppose that  $b_i < 0$  is the smallest valu. Perform a pivot on  $x_0$  and thus  $x_{n+i}$  will turn the dictionary into a feasible one.
- 3. This non-cycling pivots will lead to either (a) an optimal basis where  $x_0$  is within the basis, and we conclude this problem is infeasible; (b) or we have  $x_0$  out of the basis, and we just delete  $x_0$  and plug back the original objective, and go from there.

#### **Example 1.3.** Given the dictionary

$$x_4 = 4 - 2x_1 + x_2 - 2x_3$$

$$x_5 = -5 - 2x_1 + 3x_2 - x_3$$

$$x_6 = -1 + x_1 - x_2 + 2x_3$$

We first add the new variable  $x_0$  and an objective  $-x_0$ :

$$x_4 = 4 - 2x_1 + x_2 - 2x_3 + x_0$$

$$x_5 = -5 - 2x_1 + 3x_2 - x_3 + x_0$$

$$x_6 = -1 + x_1 - x_2 + 2x_3 + x_0$$

$$z = -x_0$$

Choosing  $x_0$  entering the basis and  $x_5$  leaving the basis, we obtain:

$$x_4 = 9 - x_2 + x_3 + x_5$$

$$x_0 = 5 + 2x_1 - 3x_2 - x_3 + x_5$$

$$x_6 = 4 + 3x_1 - 4x_2 + 3x_3 + x_5$$

$$w = -5 - 2x_1 + 3x_2 + x_3 - x_5$$

and our feasible solution is  $(x_1, x_2, x_3, x_4, x_5, x_6) = (0, 0, 0, 9, 0, 4)$ .

#### 1.6 Duality Results

**Theorem 1.12.** A linear programming problem can only be (i) feasible; or (ii) infeasible. In case (i), then there exists a basic feasible solution, and further with two possibilities: (i.a) an optimal solution exists, in that case a basic optimal solution exists (i.b) the problem is unbounded.

**Duality problem is the best possible upper bounding problem** Consider the primal problem

$$(P) \qquad \begin{array}{ll} \max & \boldsymbol{c}^{\mathrm{T}}\boldsymbol{x} \\ \text{s.t.} & \boldsymbol{A}\boldsymbol{x} \leq \boldsymbol{b} \\ \boldsymbol{x} \geq 0 \end{array}$$

Take any  $y \ge 0$  such that  $y^T A \ge c^T$ , and thus  $y^T b$  becomes an upper bound for the optimal value. Therefore the best possible upper bounding problem becomes:

$$(D)$$
  $\max_{\mathbf{s.t.}} \quad \mathbf{b}^{\mathrm{T}} \mathbf{y}$   
 $\mathbf{s.t.} \quad \mathbf{A}^{\mathrm{T}} \mathbf{y} \geq \mathbf{c}$   
 $\mathbf{y} \geq 0$ 

which is known as the dual problem.

The proceed above can be summarized as the weak duality theorem:

**Theorem 1.13** (Weak Duality). Let x, y be the primal feasible, and dual feasible solution to (P) and (D), respectively, then we always have  $b^{T}y \geq c^{T}x$ .

**Theorem 1.14** (Strong Duality). If (P) has an optimal solution, then (D) has an optimal solution. Moreover, the optimal values coincide.

*Proof.* Let B be an optimal basis for (P), then we have

$$m{A}_B^{-1} m{b} \geq 0, \quad egin{bmatrix} m{c}^{\mathrm{T}} & m{0}_m^{\mathrm{T}} \end{bmatrix} - m{c}_B^{\mathrm{T}} m{A}_B^{-1} egin{bmatrix} m{A} & m{I} \end{bmatrix} \leq 0$$

Therefore we construct the dual feasible solution  $\mathbf{y} := \mathbf{A}_B^{-1} \mathbf{c}_B$ , which implies  $\mathbf{b}^{\mathrm{T}} \mathbf{y} = \mathbf{c}_B^{\mathrm{T}} \mathbf{A}_B^{-1} \mathbf{b}$ . Therefore  $\mathbf{b}^{\mathrm{T}} \mathbf{y}$  should be the optimal solution for (D).

#### **Complentarity Slackness**

**Theorem 1.15** (Complentarity Condition). Consider the primal and dual problem

If (P) has an optimal solution  $(\boldsymbol{x}, \boldsymbol{s})$  and (D) has an optimal solution  $(\boldsymbol{y}, \boldsymbol{w})$ , then

$$s \circ y = 0$$
 $w \circ x = 0$ 

**Remark 1.10.** 1. If (P) is feasible and unbounded, then (D) must be infeasible.

- 2. The dual of the dual problem is the primal problem
- 3. There is possibility that both (P) and (D) are infeasible. Consider the self-dual problem for example:

max 
$$x_1 - x_2$$
  
s.t.  $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \le \begin{pmatrix} -1 \\ 1 \end{pmatrix}$   
 $x_1 \ge 0, x_2 \ge 0$ 

4. Therefore, the relationship for primal and dual problems can be summarized in the table below:

|            | Feasible | Unbounded | Infeasible |
|------------|----------|-----------|------------|
| Feasible   | Y        | N         | N          |
| Unbounded  | N        | N         | Y          |
| Infeasible | N        | Y         | Y          |

## **Geometry and Duality for Linear Programming**

### 2.1 The polyhedral geometry

The constraint of a LP forms a polyhedron. One example for a LP with tenary variables is shown in the Fig (2.1)

Let's introduce some terminologies formally:

**Definition 2.1.** • *Hyperplane* is the set  $\{x \mid a^{T}x = b\}$ 

ullet Half-space is the set  $\{m{x} \mid m{a}^{\mathrm{T}} m{x} \leq m{b}\}$ 



Figure 2.1: Illustration for polyhedral geometry



Figure 2.2: Over-determination results Figure 2.3: Perturbation diminishes in Degeneracy over-determination

• The polyhedron P is the intersection of finite number of half-spaces:

$$P = \left\{ \boldsymbol{x} \middle| \boldsymbol{a}_i^{\mathrm{T}} \boldsymbol{x} \le \boldsymbol{b}_i, \ i = 1, \dots, m \right\}$$

- ullet The dimension of a polyhedron is defined as the lowest dimension affine space containing P
- The face of a polyhedron is defined as

$$\{\boldsymbol{x} \mid \boldsymbol{a}^{\mathrm{T}}\boldsymbol{x} = \boldsymbol{b}\} \cap P,$$

where  $P \subseteq \{ \boldsymbol{x} \mid \boldsymbol{a}^{\mathrm{T}} \boldsymbol{x} \leq \boldsymbol{b} \}.$ 

• Note that the face of a polyhedron is also a polyhedron. Therefore we define *facet* is the face of P that is one dimensional lower than that of P; the *vertex* of P is the face of P that has dimension 0.

**Remark 2.1.** In space  $\mathbb{R}^n$ , normally *n* hyperplanes intersect at one point

If P is full dimensional (i.e., with diemension n), then a vertex of P is an intersection of n facets.

However, sometimes there is a case that more than n hyperplanes intersect at one point, say a vertex, which creates degeneracy (show in Fig (2.4)). In such case, adding regularization, i.e., perturbation dimishes over-determination.



Figure 2.4: Illustration for adjacent ver- Figure 2.5: Path for simplex pivots tices



Figure 2.6: Illustration for a polyhedral cone

**Definition 2.2.** Given a full dimensional P, we say two distinct vertices of P are *adjacent* if they are in the same n-1 hyperplane.

**Remark 2.2.** Every update for simplex pivots move from a vertice to one of its adjacent position.

**Definition 2.3.** A polyhedral cone is defined as an intersection of a finite number of half-spaces, i.e.,  $K = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{A}\boldsymbol{x} \geq \boldsymbol{0} \}$ , where  $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ . In geometry shown in Fig (2.6), a polyhedral cone is a cone where its boundaries are polyhedral



Figure 2.7: Illustration for a convex hull

**Definition 2.4.** Given a set of points S, we can define its convex hull as

$$\operatorname{conv} \ \operatorname{hull}(S) := \left\{ \sum_{i=1}^{m} \lambda_{i} \boldsymbol{y}_{i} \middle| \ \forall \boldsymbol{y}_{i} \in S, \lambda_{i} \geq 0, \sum_{i=1}^{m} \lambda_{i} = 1 \right\}$$

In other words, a convex hull of S is a set, in which each point is a convex combination of points in S.

## 2.2 Fundamental Theorems for Linear Programming

**Theorem 2.1** (Caratheodory's Theorem). Let  $P \subseteq \mathbb{R}^n$  be a set of points. For each  $\boldsymbol{x} \in \text{conv}(P)$ , there exists a set  $P' \subseteq P$  of cardinality at most n+1, such that  $\boldsymbol{x} \in \text{conv}(P')$ .

**Definition 2.5.** The point x in a convex set S is an extremal point if

- 1.  $x \in S$
- 2. x is a convex combination of  $y, z \in S$  implies y = z = x.

Sometimes it is difficult to define the extremal point, if the convex set covers infinite area. Therefore, we define the points in the boundary of vertices instead:

**Definition 2.6.** A ray d in a convex cone K is an extremal ray if

- 1.  $d \in \mathcal{K}$
- 2. If d can be written as non-negative summation of two rays  $\xi_1, \xi_2 \in \mathcal{K}$ , then  $d = \xi_1 = \xi_2$

**Definition 2.7.** 1. A polytope is a convex hull of a finite number of points

- 2. A polytope is also a polyhedron
- 3. In general, a polyhedron can be written as

$$\left\{ \sum_{i=1}^{m} \lambda_i p_i + \sum_{j=1}^{\ell} \mu_j d_j \middle| \lambda_i \ge 0, \sum_{i=1}^{m} \lambda_i = 1, \mu_j \ge 0 \right\}$$

In other words,

$$H = P + C$$
,

where H, P, C denote collections of polyhedrons, polytopes, polyhedral cones, respectively.

**Definition 2.8.** If K is a convex cone, then its *dual cone* is defined as

$$\mathcal{K}^* = \{ \boldsymbol{s} \mid \langle \boldsymbol{s}, \boldsymbol{x} \rangle \ge 0, \ \forall \boldsymbol{x} \in \mathcal{K} \}.$$

The Fig (2.8) represents one illustration for convex cone and its dual cone, but note that the dual cone may not necessarily larger than the convex cone itself. (Counter-example: Lorentz cone)

A polyhedral cone can be represented in two ways:

$$\{ \boldsymbol{A} \boldsymbol{x} \mid \boldsymbol{x} \ge 0 \}$$
 and  $\{ \boldsymbol{x} \mid \boldsymbol{B}^{\mathrm{T}} \boldsymbol{x} \ge 0 \}$ 

Here we consider two cones  $\{Ax \mid x \geq 0\}$  and  $\{y \mid A^Ty \geq 0\}$ :

**Theorem 2.2.** Two cones  $K_1 = \{ Ax \mid x \ge 0 \}$  and  $K_2 = \{ y \mid A^T y \ge 0 \}$  are actually duality pairs.

*Proof.* It's obvious that  $\{Ax \mid x \ge 0\} \subseteq \{y \mid A^Ty \ge 0\}^*$ .

Given that  $\boldsymbol{b} \notin \{\boldsymbol{A}\boldsymbol{x} \mid \boldsymbol{x} \geq 0\}$ , there exists  $\boldsymbol{y}$  such that  $\boldsymbol{A}^{\mathrm{T}}\boldsymbol{y} \geq 0$  and  $\langle b, y \rangle < 0$  (by Farkas Lemma), i.e.,  $\boldsymbol{b}$  cannot be in  $\{\boldsymbol{y} \mid \boldsymbol{A}^{\mathrm{T}}\boldsymbol{y} \geq 0\}^*$ .  $\square$ 

**Theorem 2.3** (Farkas Lemma). If  $\mathbf{b} \notin \{A\mathbf{x} \mid \mathbf{x} \geq 0\}$ , then there exists  $\mathbf{y}$  such that  $\mathbf{A}^{\mathrm{T}}\mathbf{y} \geq 0$  and  $\langle \mathbf{b}, \mathbf{y} \rangle < 0$ .



Figure 2.8: Illustration for a convex cone and its dual cone

An equivalent form of Farkas Lemma is as follows (known as the *theorem of alternatives*):

Either  $Ax = b, x \ge 0$  has a solution, or  $A^Ty \ge 0, \langle b, y \rangle = -1$  has a solution, but not neither, nor both.

*Proof.* Consider the primal LP

The dual LP is

(D) min 
$$\langle \boldsymbol{b}, \boldsymbol{y} \rangle$$
  
such that  $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} \geq 0$   
 $\langle \boldsymbol{b}, \boldsymbol{y} \rangle \geq -1$ 

Since the primal problem is feasible and bounded, and so an optimal solution exists. By strong duality theorem,  $\{x \mid Ax = b, x \geq 0\} = \emptyset$  iff the (D) admits negative optimal value.

**Remark 2.3.** The Farkas Lemma essentially claims that given a polyhedron  $\mathcal{K}_1 = \{ \boldsymbol{x} \mid \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \geq 0 \}$  and a point  $\boldsymbol{y}$  outside  $\mathcal{K}_1$ , we can always find an affine that separates  $\mathcal{K}_1$  and  $\boldsymbol{y}$  (see Fig (2.9))

**Remark 2.4.** Consider instead the case  $\{x \mid Ax = b\} = \emptyset$ . We can imply  $b \notin \mathcal{R}(A)$ , i.e., there exists y such that  $A^{\mathrm{T}}y = 0$  and  $\langle b, y \rangle \neq 0$ .



Figure 2.9: Illustration for the separation of  $\mathcal{K}_1$  and y

Actually, we can generalize this separation into general polyhedron.

**Theorem 2.4** (Separation Theorem). Let  $H \subseteq \mathbb{R}^n$  be a general *polyhedron*. Suppose that  $\mathbb{R}^n \ni p \notin H$ , then there exists an affine  $f(x) = c^T x + d$  satisfying

$$f(\boldsymbol{p}) < 0, \quad f(\boldsymbol{x}) = \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} + \boldsymbol{d} > 0, \forall \boldsymbol{x} \in H$$

*Proof.* Consider a general polyhedron H with vertices  $\{p_i \mid i = 1, ..., m\}$  and extreme rays  $\{d_j \mid j = 1, ..., \ell\}$ . Since  $p \notin H$ , the system (2.1) does not have a solution:

$$\mathbf{p} = \sum_{i=1}^{m} \lambda_i \mathbf{p}_i + \sum_{j=1}^{\ell} \mu_j \mathbf{d}_j$$

$$1 = \sum_{i=1}^{m} \lambda_i$$

$$0 \le \lambda_i, \quad i = 1, \dots, m$$

$$0 \le \mu_j, \quad j = 1, \dots, \ell$$

$$(2.1)$$

By Farkas Lemma, there exists  $y \in \mathbb{R}^n$  and  $s \in \mathbb{R}$  such that

$$s + p_i^{\mathrm{T}} y \ge 0, \quad i = 1, \dots, m$$
  
 $d_j^{\mathrm{T}} y \ge 0, \quad j = 1, \dots, \ell$   
 $s + p^{\mathrm{T}} y < 0$ 

**Remark 2.5.** It's also easy to derive the Farkas Lemma from the Separation Theorem:

Suppose  $b \notin \{Ax \mid x \geq 0\}$ , then there is a separating hyperplane  $c^{T}z = d$ , such that

$$c^{\mathrm{T}}b < d$$
,  $c^{\mathrm{T}}z > d$ ,  $\forall z = Ax$ , with  $x \ge 0$ 

which implies that  $\mathbf{A}^{\mathrm{T}} \mathbf{c} \geq 0, d < 0, \mathbf{c}^{\mathrm{T}} \mathbf{b} < d.$ 

There are different ways to show the same result. Our previous proof of Theorem (2.3) is based on the *finiteness of the simplex method*, i.e., the duality of LP. Terence Tao applied a different and more direct method to show the Farkas Lemma, let's study it in detail.

First we aim to show the Farkas Lemma in the dual way:

**Theorem 2.5** (Rephrased Form of Farkas Lemma). Let  $P_i(x) = \sum_{j=1}^n p_{ij}x_j - r_i$ , i = 1, ..., m. If the system  $P_i(x) \ge 0$  for i = 1, ..., m does not have a solution, then there exists  $y_i \ge 0$  such that  $\sum_{i=1}^m y_i P_i(x) = -1$ .

*Proof.* We can show this result by induction on n:

• When n = 1, we can scale  $P_i(x) \ge 0$  possibly into three cases:

$$x_1 - a_i \ge 0, \ i \in I_+; \quad -x_1 + b_j \ge 0, \ j \in I_-; \quad c_k \ge 0, \ k \in I_0$$

If there exists  $k \in I_0$  with  $c_k < 0$ , we let  $y_k = -1/c_k$  and  $y_\ell = 0, \forall \ell \neq k$ ; otherwise there exists  $i \in I_+$  and  $j \in I_-$  with  $a_i > b_j$ , we let  $y_i = y_j = 1/(a_i - b_j)$  and  $y_\ell = 0, \forall \ell \neq i, j$ . Therefore, we obtain  $\sum_{i=1}^m y_i P_i(x) = -1$ .

• Now suppose that this theorem is shown for dimension no more than n. Consider the case where we have n+1 variables:  $\bar{x} =$ 

 $(\boldsymbol{x}, x_{n+1}), \ \boldsymbol{x} \in \mathbb{R}^n$ . We can scale the original inequalities over  $P_i(\bar{\boldsymbol{x}})$  according to the coefficients of  $x_{n+1}$  to obtain the following equivalent system of inequalities:

$$\begin{cases}
P_{i}(\bar{x}) := x_{n+1} - Q_{i}(x) \ge 0, & i \in I_{+} \\
P_{j}(\bar{x}) := -x_{n+1} - Q_{j}(x) \ge 0, & j \in I_{-} \\
P_{k}(\bar{x}) := Q_{k}(x) \ge 0, & k \in I_{0}
\end{cases}$$
(2.2)

Note that the system

$$\begin{cases}
-Q_i(x) + Q_j(x) \ge 0, & i \in I_+, j \in I_- \\
Q_k(x) \ge 0, & k \in I_0
\end{cases}$$
(2.3)

has a solution implies that the original system would have a solution too. Due to the hypothesis of the lemma, (2.3) does not have a solution.

By the induction hypothesis, there exists  $y_{ij}, y_k \geq 0$  such that

$$\sum_{i \in I_+, j \in I_-} y_{ij}(-Q_i(x) + Q_j(x)) + \sum_{k \in I_-} y_k Q_k(x) = -1$$

Therefore, we imply

$$\sum_{i \in I_{+}} \left( \sum_{j \in I_{-}} y_{ij} \right) (x_{n+1} - Q_{i}(x)) + \sum_{j \in I_{-}} \left( \sum_{i \in I_{+}} y_{ij} \right) (-x_{n+1} + Q_{j}(x)) + \sum_{k \in I_{0}} y_{k} Q_{k}(x) = -1$$

The Farkas Lemma is shown by this induction argument.

Then we are ready to show the following form of separation theorem:

**Theorem 2.6** (Repharsed Form of Separation Theorem). If polytopes  $P_1, P_2$  do not intersect, then there is an affine  $f(x) = \langle y, x \rangle + y_0$  such that

$$f(\boldsymbol{x}) \ge 1, \ \forall \boldsymbol{x} \in P_1 \quad f(\boldsymbol{x}) \le 1, \ \forall \boldsymbol{x} \in P_2$$

*Proof.* Suppose the extreme points of  $P_1, P_2$  are  $\{p_1, \ldots, p_s\}$  and  $\{q_1, \ldots, q_t\}$ , respectively. Therefore, it suffices to show that

$$\langle \boldsymbol{y}, \boldsymbol{p}_i \rangle + y_0 \ge 1, \ i = 1, \dots, s; \ \langle \boldsymbol{y}, \boldsymbol{q}_j \rangle + y_0 \le -1, \ j = 1, \dots, t$$

$$(2.4)$$

Suppose on the contrary that (2.4) does not have a solution  $(\boldsymbol{y}, \boldsymbol{y}_0)$ . Then the Farkas Lemma asserts that there exists  $u_i \geq 0, i = 1, \ldots, s$  and  $v_i \geq 0, j = 1, \ldots, t$  such that

$$\sum_{i=1}^{s} u_i(\langle \boldsymbol{y}, \boldsymbol{p}_i \rangle + y_0 - 1) + \sum_{i=1}^{t} v_j(-\langle \boldsymbol{y}, \boldsymbol{q}_j \rangle - y_0 - 1) = -1$$

which implies

$$\sum_{i=1}^{s} u_i \mathbf{p}_i - \sum_{j=1}^{t} v_j \mathbf{q}_j = 0$$

$$\sum_{i=1}^{s} u_i - \sum_{j=1}^{t} v_j = 0$$

$$\sum_{i=1}^{s} u_i + \sum_{j=1}^{t} v_j = 1$$

Therefore,  $\sum_{i=1}^{s} u_i = \sum_{j=1}^{t} v_j = 1/2$ , and thus

$$P_1 \ni 2\sum_{i=1}^{s} u_i \mathbf{p}_i = 2\sum_{j=1}^{t} v_j \mathbf{q}_j \in P_2$$

which contradicts to the assumption that  $P_1 \cap P_2 = \emptyset$ .

The same argument applies if *polytopes* is replaced by *polyhedron*.

### 2.3 More Theorems of Alternatives: the case for polyhedrons

Some more refined forms of the theorems of alternatives exist. Here we list some examples.

**Notations** Let x, y be two vectors, we denote  $x \geq y$  to be " $x \geq y$  and  $x \neq y$ ", and similarly for  $x \leq y$ .

**Theorem 2.7** (Gordan). Either Ax > 0 has a solution, or  $A^{T}y = 0, y \ge 0$  has a solution.

**Theorem 2.8** (Stiemke). Either  $Ax \ge 0$  has a solution, or  $A^Ty = 0, y > 0$  has a solution.

**Theorem 2.9** (Gale). Assuming  $Ax \le b$  is feasible, then either  $Ax \le b$  has a solution, or  $A^{T}y = 0, b^{T}y = 0, y > 0$  has a solution.

**Theorem 2.10** (Tucker). Suppose that  $A \neq \mathbf{0}$ . Either  $Ax \geq 0$ ,  $Bx \geq 0$ , Cx = 0 has a solution, or  $A^{\mathrm{T}}u + B^{\mathrm{T}}v + C^{\mathrm{T}}w = 0$ , u > 0,  $v \geq 0$  has a solution.

**Theorem 2.11** (Motzkin). Suppose that  $A \neq 0$ . Either

$$Ax > 0, Bx \ge 0, Cx = 0$$

has a solution, or

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{u} + \boldsymbol{B}^{\mathrm{T}}\boldsymbol{v} + \boldsymbol{C}^{\mathrm{T}}\boldsymbol{w} = 0, \boldsymbol{u} \geq 0, \boldsymbol{v} \geq 0$$

has a solution.

# Computational Complexity for Linear Programming

### 3.1 A case study

Suppose we aim to find a shortest path on a directed network, from the source node s to the sink node t. The network is supposed to be  $\mathcal{N} = (V, E; w)$ , where  $V = \{v_1, \ldots, v_n\}$  is the set of nodes, E is the set of edges, and w is the vectors of weights, i.e.,  $w_{ij}$  denotes the weight on the edge  $(v_i, v_j)$ .

We need to input this instance into the computer. One way is to use the *node-arc* incidence matrix:

$$a_{ij} = \begin{cases} -1, & \text{if } v_i \text{ is the head of arc } e_j \\ 0, & \text{if } v_i \text{ is not related to arc } e_j \\ +1, & \text{if } v_i \text{ is the tail of arc } e_j \end{cases}$$

### Input size of a problem

- 1. Suppose |V| = n and |E| = m, then inputting the matrix A requires to touch the keyboard mn + 2m times.
- 2. To tell the vector w into computer, we need w to be *integer-valued* (since otherwise the problem will be much more difficult.

question: do w need to be positive?). Typing  $w_{ij}$  requires at most  $\lfloor \log_2(|w_{ij}|+1)\rfloor + 1$  bits. Therefore typing the vector w requires totally

$$\sum_{(v_i,v_j)\in E} \lfloor \log_2(|w_{ij}|+1)\rfloor + |E| \text{ bits}$$

3. Therefore, the input-length (size) of this problem is

$$L = mn + 3m + \sum_{(v_i, v_j) \in E} \lfloor \log_2(|w_{ij}| + 1) \rfloor.$$

The Running Time Complexity It's logical that the total amount of perations required by an algorithm to solve this problem is dependent on L.

Consider applying the *Dijkstra* algorithm to find the shortest path from the source node s to the sink node t. Define a relevant working set S that contains all the nodes with *known shortest distance* to t. Initially  $S = \{t\}$ . At each iteration, by *dynamic programming principle*, one node is identified to be in S after at most  $\mathcal{O}(|V|)$  comparisions. Therefore, the overall computational complexity is  $\mathcal{O}(|V|^2)$ .

### 3.2 Computational Complexity

**Polynomial Time Algorithm** If an algorithm solves a combinatorial problem with input size L with total number of operations no more than a polynomial of L, then it is called a *polynomial-time* algorithm.

The Dijkstra algorithm requires no more than  $\mathcal{O}(L^2)$  (question:  $\mathcal{O}(L)$  or  $\mathcal{O}(L^2)$ ?) operations to terminate, and therefore it is a polynomial-time algorithm.

However, there are many combinatorial problems for which no polynomial time algorithms are known, e.g., the longest path problem, the Hamitonian circle problem, the maximum cut, and many more.

#### 3.2.1 P & NP

**Definition 3.1** (NP problem). If a combinatorial decision problem with input size L is such that:

if the answer to the problem is yes, then a yes-certificate exists and the length (size) of which is polynomial in L.

then we call the problem is NP.

**Definition 3.2** (co-NP problem). If a combinatorial decision problem with input size L is such that:

if the answer to the problem is no, then a no-certificate exists and the length (size) of which is polynomial in L.

then we call the problem is *co-NP*.

**Definition 3.3** (P problem). A *polynomially solvable* problem is called to be P.

It's clear that  $P \subseteq NP$  and  $P \subseteq co-NP$ .

**Definition 3.4** (NP-Complete problem). The problem in NP such that any other problem in NP can be reduced to it is called to be *NP-Complete*.

It's strongly believed (haven't shown) that NP-Complete problems are not in P.

#### 3.2.2 Dimensions and Parameters

A decision problem typically involves dimension and the parameters of the problem, though there are mixed in the definition of input-length L.

- In the case study, n = |V| and m = |E| are known to be the problem dimensions, and the weight w is known as the problem parameter.
- For the linear programming with integer-valued parameters

$$\max \sum_{j=1}^{n} c_j x_j$$
 such that 
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i, \quad i = 1, \dots, m$$
 
$$x_j \geq 0, \quad j = 1, \dots, n$$

the problem dimension would be m and n, and the input-length is

$$L = mn + m + n + \sum_{j=1}^{n} \lfloor \log_2(|c_j| + 1) \rfloor + \sum_{i=1}^{m} \lfloor \log_2(|b_i| + 1) \rfloor + \sum_{i=1}^{m} \sum_{j=1}^{n} \lfloor \log_2(|a_{ij} + 1|) \rfloor.$$

### 3.2.3 Other terminologies

**Definition 3.5** (Weak & Strong Polynomial Time Algorithms). If a *polynomial-time* algorithm requires number of operations to be *polynomial* in dimensions, then the algorithm is called the *strongly polynomial*, otherwise it is only *weakly polynomial* 

**Remark 3.1.** Note that the input size of a problem defines the polynomial time, and the dimension specializes the strong & weak polynomial time. The number of operations is different from the number of *bit* operations. The Dijkstra algorithm is strongly polynomial.

**Definition 3.6** (Weak & Strong NP-Completeness). If an NP-complete is such that even when it is restricted to be the case where all the parameters are constants, it still remains to be NP-complete, then it is called strongly NP-Complete, otherwise it is called weakly NP-complete.

Example: the 2-partition problem is weakly NP-complete; the Hamiltonian circle problem is strongly NP-complete.

**Definition 3.7.** If a decision version of the problem is *NP-complete* or *co-NP-complete*, then the problem is called *NP-Hard*.

For example, the travelling salesman (TRS) problem is NP-Hard.

### 3.3 Complexity of Linear Programming

#### 3.3.1 LP is both NP and Co-NP

The decision version of LP is: does there exists  $\boldsymbol{x}$  satisfying

$$c^{\mathrm{T}}x \geq v$$
,  $Ax \leq b$ ,  $x \geq 0$ ?

- 1. If the answer is yes, then a certificate is such x, whose size can be bounded by a polynomial of the input-length.
- 2. If the answer is no, then the above system is infeasible. By Farkas Lamma, there exists  $y_0 \ge 0$  and  $y \ge 0$  such that

$$-y_0 \boldsymbol{c}^{\mathrm{T}} + \boldsymbol{y}^{\mathrm{T}} \boldsymbol{A} \ge 0, \quad -y_0 \boldsymbol{v} + \boldsymbol{y}^{\mathrm{T}} \boldsymbol{b} < 0.$$

In this case, the size of no-certificate  $(y_0, \mathbf{y})$  can be bounded by a polynomial of the input-length.

#### 3.3.2 Is LP in P?

In the complexity theory, we believe that  $P \subsetneq NP$ , i.e.,  $P \neq NP$ -Complete and  $NP \cap Co-NP = P$ . Therefore, a natural question arises: Is linear programming in P? The answer is no, but the simplex method is *not* a polynomial time algorithm. Let's study an example first.

The Klee-Minty Example (n=3) Consider solving a LP using the Largest Coefficient Rule:

$$\begin{array}{ll} \max & 100x_1+10x_2+x_3\\ \text{such that} & x_1\leq 1\\ & 20x_1+x_2\leq 100\\ & 200x_1+20x_2+x_3\leq 10000\\ & x_1>0, x_2>0, x_3>0 \end{array} \tag{3.1a}$$

We can find its dictionary:

$$x_{4} = 1 - x_{1}$$

$$x_{5} = 100 - 20x_{1} - x_{2}$$

$$x_{6} = 10000 - 200x_{1} - 20x_{2} - x_{3}$$

$$z = 100x_{1} + 10x_{2} + x_{3}$$
(3.1b)

If we choose the variable with largest coefficient to enter the basis, i.e.,  $x_1$ , we obtain:

$$x_{1} = 1 - x_{4}$$

$$x_{5} = 80 + 2 - x_{4} - x_{2}$$

$$x_{6} = 9800 + 200x_{4} - 20x_{2} - x_{3}$$

$$z = 100 - 100x_{4} + \mathbf{10}x_{2} + x_{3}$$
(3.1c)

If we choose the variable with largest coefficient to enter the basis, i.e.,  $x_2$ , we obtain:

$$x_{1} = 1 - x_{4}$$

$$x_{2} = 80 + 20x_{4} - x_{5}$$

$$x_{6} = 8200 - 200x_{4} + 20x_{5} - x_{3}$$

$$z = 900 + \mathbf{100}x_{4} - 10x_{5} + x_{3}$$
(3.1d)

If we choose the variable with largest coefficient to enter the basis, i.e.,  $x_4$ , we obtain:

$$x_{4} = 1 - x_{1}$$

$$x_{2} = 100 - 20x_{1} - x_{5}$$

$$x_{6} = 8000 + 200x_{1} + 20x_{5} - x_{3}$$

$$z = 1000 - 100x_{1} - 10x_{5} + x_{3}$$
(3.1e)

If we choose the variable with largest coefficient to enter the basis, i.e.,  $x_3$ , we obtain:

$$x_4 = 1 - x_1$$

$$x_2 = 100 - 20x_1 - x_5$$

$$x_3 = 8000 + 200x_1 + 20x_5 - x_6$$

$$z = 9000 + \mathbf{100}x_1 + 10x_5 - x_6$$
(3.1f)

If we choose the variable with largest coefficient to enter the basis, i.e.,  $x_1$ , we obtain:

$$x_{1} = 1 - x_{4}$$

$$x_{2} = 80 + 20x_{4} - x_{5}$$

$$x_{3} = 8200 - 200x_{4} + 20x_{5} - x_{6}$$

$$z = 9100 - 100x_{4} + \mathbf{10}x_{5} - x_{6}$$
(3.1g)

If we choose the variable with largest coefficient to enter the basis, i.e.,  $x_5$ , we obtain:

$$x_{1} = 1 - x_{4}$$

$$x_{5} = 80 + 20x_{4} - x_{2}$$

$$x_{3} = 9800 + 200x_{4} - 20x_{2} - x_{6}$$

$$z = 9900 + \mathbf{100}x_{4} - 10x_{2} - x_{6}$$
(3.1h)

If we choose the variable with largest coefficient to enter the basis, i.e.,  $x_4$ , we obtain:

$$x_4 = 1 - x_1$$

$$x_5 = 100 - 20x_1 - x_2$$

$$x_3 = 10000 - 200x_1 - 20x_2 - x_6$$

$$z = 10000 - 100x_1 - 10x_2 - x_6$$
(3.1i)

After total 7 simplex pivot steps, we get the optimal solution. This process is mazy, while it only contains 3 variables.

**General Case** Consider the general Klee-Minty example:

$$\max_{\substack{j=1\\ \text{such that}}} \sum_{j=1}^{n} 10^{n-j} x_j$$
  
such that 
$$2 \sum_{j=1}^{i-1} 10^{i-j} x_j + x_i \le 100^{i-1}, \quad i = 1, \dots, n$$
  
$$x_j \ge 0, \quad j = 1, \dots, n$$

Its input-length (in digits) should be:

$$\sum_{j=1}^{n} (n-j-1) + \sum_{i=1}^{n} (2(i-1)+1) + \sum_{i=1}^{n} \left(\sum_{j=1}^{i-1} (i-j-1)+1\right)$$

$$= \frac{n^3 + 12n^2 + 5n}{6}$$

$$= \mathcal{O}(n^3)$$

Let the slack variables be:

$$s_i := 100^{i-1} - 2\sum_{j=1}^{i-1} 10^{i-j} x_j - x_i, \quad i = 1, \dots, n$$

One can show that in every feasible basis, either  $x_i$  or  $s_i$  must be in the basis, i = 1, ..., n, which implies that there are  $2^n$  feasible basis in total.

If applying the largest coefficient pivot rule, then after  $2^{n-1} - 1$  iterations, the last row reads

$$z = 10 \left( 100^{n-2} - \sum_{j=1}^{n-2} 10^{n-1-j} x_j - s_{n-1} \right) + x_n$$

After further  $2^{n-1}$  iterations, the last row reads

$$z = 90 \cdot 100^{n-2} + 10 \left( \sum_{j=1}^{n-2} 10^{n-1-j} x_j + s_{n-1} \right) - s_n$$

After further  $2^{n-1}$  iterations, the last row reads

$$z = 100^{n-1} - \sum_{j=1}^{n-1} 10^{n-j} x_j - s_n,$$

which corresponds to an optimal basic solution.

**Remark 3.2.** Since the total number of pivot steps for the Klee-Minty example is  $\mathcal{O}(2^n-1)$  for a problem whose input-length is  $\mathcal{O}(n^3)$ , it shows that in the worst case the simplex method with the largest coefficient pivot rule is exponential.

Most other conceivable simplex pivot rules all admit similar exponential examples. However, it remains open that whether we can find a special simplex pivot rule that is polynomial even in the worst case.

The following figure shows the Geometric process for the Klee-Minty example with n = 3, and here  $(s_1, s_2, s_3) = (x_1, 100x_2, 10000x_3)$ :



**Figure 3.1:** A Geometric Picture for the Klee-Minty example with n=3

# The KKT Condition for Nonlinear Programming

### 4.1 unconstrained Optimality Condition

Consider the unconstrained optimization

$$\min \quad f(x) \tag{4.1}$$

where  $f: \mathbb{R}^n \to \mathbb{R}$  is an *m*-th order continuously differentiable function. We aim to find the optimality condition for this problem.

**Theorem 4.1** (First Order Necessary Condition). Given the condition that  $f \in \mathcal{C}^1$ , if  $x^*$  is a local minimum point, then  $\nabla f(x^*) = 0$ .

**Theorem 4.2** (Second Order Necessary Condition). Given the condition that  $f \in \mathcal{C}^2$ , if  $x^*$  is a local minimum point, then  $\nabla f(x^*) = 0$  and  $\nabla^2 f(x^*) \succeq 0$ .

**Theorem 4.3** (Second Order Sufficient Condition). Given the condition that  $f \in \mathcal{C}^2$ , if  $\nabla f(x^*) = 0$  and  $\nabla^2 f(x^*) \succ 0$ , then  $x^*$  is a local minimum point.

**Theorem 4.4** (First Order Necessary and Sufficient Condition). If f is convex, then  $x^*$  is a local minimum point if and only if  $0 \ni \partial f(x^*)$ .

П

*Proof.* All theorems above relies on the Taylor expansion and

$$f(x^* + \Delta x) \ge f(x^*), \forall \Delta x \iff \text{the point } x^* \text{ is minimum}$$

All the conditions above only involve the explicit quantities related to x. Now we turn into the constrained optimization case.

### 4.2 Constrained Optimality Condition

Consider the special constrained optimization

where  $\mathcal{X} \subseteq \mathbb{R}^n$  is usually pre-assumed to be a closed convex set.

**Definition 4.1** (Tangent Cone). Let  $\hat{x} \in \mathcal{X}$ . The *tangent cone* of  $\mathcal{X}$  at point  $\hat{x}$  is defined as

$$\mathcal{T}(\hat{x}) := \left\{ y \neq 0 \middle| \exists x^k \in \mathcal{X} : \ x^k \to \hat{x} \ \& \ \frac{x^k - \hat{x}}{\|x^k - \hat{x}\|} \to \frac{y}{\|y\|} \right\} \cup \{0\}$$

It's clear that  $\mathcal{T}(\hat{x})$  denotes all feasible directions from  $\hat{x}$  within  $\mathcal{X}$ 

Therefore we obtain a necessary optimality condition for constrained optimization, which is beautiful in theory but not that useful in practice:

**Theorem 4.5** (First Order Necessary Condition). If  $x^*$  is a local minimum point for the constraint (neither necessarily convex nor closed) set  $\mathcal{X}$ , then

$$\langle \nabla f(x^*), y \rangle \ge 0, \ \forall y \in \mathcal{T}(x^*),$$

i.e., 
$$\nabla f(x^*) \in (\mathcal{T}(x^*))^*$$
.

**Theorem 4.6.** The above condition becomes necessary and sufficient if f is convex. In that case, we may weaken the condition into

$$\partial f(x^*) \cap (\mathcal{T}(x^*))^* \neq \emptyset.$$

47

*Proof.* The proof relies on the fact that f is convex iff

$$f(y) \ge f(x) + \langle d, (y - x) \rangle, \forall x, y \in \mathcal{X},$$

where  $d \in \partial f(x^*)$ .

**Theorem 4.7.** Given further condition that  $\mathcal{X}$  is a convex set, if  $x^*$  is a local minimum point for the constraint set  $\mathcal{X}$ , then

$$\langle \nabla f(x^*), y - x^* \rangle \ge 0, \ \forall y \in \mathcal{X}.$$

This condition becomes sufficient if f is convex.

### 4.2.1 Characteration of Tangent Cone

1. Consider the polyhedral constraint set

$$\mathcal{X} = \{ x \mid a_i^{\mathrm{T}} x \le b_i, \ i = 1, \dots, m \}$$

Let  $\hat{x} \in \mathcal{X}$ , and  $I(\hat{x}) = \{i \mid a_i^T \hat{x} = b_i\}$ . Then we have

$$\mathcal{T}(\hat{x}) = \{ d \mid a_i^{\mathrm{T}} d \le 0, \ \forall i \in I(\hat{x}) \}.$$

2. Consider another more general constraint set

$$\mathcal{X} = \left\{ x \middle| \begin{cases} h_i(x) = 0, \ i = 1, \dots, m; \\ g_j(x) \le 0, \ j = 1, \dots, r \end{cases} \right\}.$$

For  $\hat{x} \in \mathcal{X}$ , define  $I(\hat{x}) = \{j \mid g_j(\hat{x}) = 0\}$  likewise. Let's introduce a easily computable cone

$$C(\hat{x}) = \left\{ d \middle| \langle \nabla h_i(\hat{x}), d \rangle = 0, \ i = 1, \dots, m; \\ \langle \nabla g_j(\hat{x}), d \rangle \leq 0, \ \forall j \in I(\hat{x}) \right\}.$$

It's clear that  $\mathcal{T}(\hat{x}) \subseteq \mathcal{C}(\hat{x})$ . However, in general  $\mathcal{T}(\hat{x}) \neq \mathcal{C}(\hat{x})$ . (Consider  $\mathcal{X} = \{(x_1, x_2) \mid x_1 \geq 0, x_2^2 \leq 0\}$ ).

A popular condition to ensure the equality is the *Linear Independence Constraint Qualification* (LICQ):

The vectors  $\nabla h_i(x)$ ,  $i = 1, ..., m; \nabla g_j(x)$ ,  $j \in I(x)$  are always linearly independent for  $\forall x \in \mathcal{X}$ .

**Theorem 4.8.** Under the LICQ, if the functions  $h_i, g_j$  are differentiable with Lipschitz continuous gradient, then  $\mathcal{T}(\hat{x}) = \mathcal{C}(\hat{x})$ .

*Proof.* Consider the case for which  $\mathcal{X}$  does not have equality constraints. Take  $d \in \mathcal{C}(\hat{x})$ . Applying LICQ and Theorem (2.7), there exists  $\hat{d}$  such that

$$\langle \nabla g_i(\hat{x}), \hat{d} \rangle < 0, \ i \in I(\hat{x}).$$

Consider  $x(t) = \hat{x} + td + t^{1.5}\hat{d}$ , we imply

$$g_i(x(t)) < 0, i \in I(\hat{x}), \text{ for } 0 < t < \varepsilon,$$

where  $\varepsilon > 0$  is sufficiently small. Therefore,  $d \in \mathcal{T}(\hat{x})$ .

### 4.2.2 The KKT Condition

The optimization problem below admits another type of optimality condition:

min 
$$f(x)$$
  
such that  $h_i(x) = 0, i = 1, ..., m;$   $g_j(x) \le 0, j = 1, ..., r$   $(4.3)$ 

**Theorem 4.9** (Karush, Kuhn, and Tucker). Suppose that  $x^*$  is an optimal solution to the problem (4.3), then under some *regularity* condition (e.g., LICQ), there exists  $\lambda \in \mathbb{R}^m$  and  $\mu \in \mathbb{R}^r_+$  such that

$$\begin{cases} \nabla f(x^*) + \sum_{i=1}^m \lambda_i \nabla h_i(x^*) + \sum_{j=1}^r \mu_j \nabla g_j(x^*) = 0 \\ \mu_j g_j(x^*) = 0, \ j = 1, \dots, r. \end{cases}$$

### 4.2.3 The Lagrangian Dual Problem

The KKT condition relates the explicit variable x with the implicit variable  $(\lambda, \mu)$ . Now we take a close look at implicit variables, and they are called the *Lagrangian multipliers*.

Define the Lagrangian function

$$\mathcal{L}(x; \lambda, \mu) := f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{r} \mu_j g_j(x), \ \mu_j \ge 0.$$

Let  $d(\lambda, \mu) := \min_x \mathcal{L}(x; \lambda, \mu)$ , which implies the Lagrangian dual problem:

$$\max_{\text{such that}} \quad d(\lambda, \mu)$$

$$\text{such that} \quad \lambda \in \mathbb{R}^m, \mu \in \mathbb{R}^r_+$$

$$(4.4)$$

### 4.2.4 Duality for conic optimization

Consider the conic optimization problem

min 
$$\langle \boldsymbol{c}, \boldsymbol{x} \rangle$$
 such that  $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}$   $\boldsymbol{x} \in \mathcal{K}$ 

its Lagrangian dual problem is

$$\begin{array}{ll} \max & \langle \boldsymbol{b}, \boldsymbol{y} \rangle \\ \text{such that} & \boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} + \boldsymbol{s} = \boldsymbol{c} \\ & \boldsymbol{s} \in \mathcal{K}^* \end{array}$$

Note that linear programming is a special conic optimization.

The conic optimization problem is commonly solved by simultaneously optimizing the primal and the dual problem, due to the duality theorem:

- 1. Weak duality: any feasible primal solution value is an upper bound for any feasible dual solution value.
- 2. Strong duality: under some conditions, i.e., for some special conic optimization problems such as LP, the primal optimal value coincides with the dual optimal value.

The dual variable are some hidden, implicit, potential quantities that are implied by the primal variables at the optimality. The *optimality balance* is

$$\begin{cases}
\mathbf{A}\mathbf{x} = \mathbf{b} \\
\mathbf{x} \in \mathcal{K} \\
\mathbf{A}^{\mathrm{T}}\mathbf{y} + \mathbf{s} = \mathbf{c} \\
\mathbf{s} \in \mathcal{K}^{*} \\
\langle \mathbf{x}, \mathbf{s} \rangle = 0
\end{cases}$$
(4.5)

### 4.3 Projection Problem

Now we introduce a useful optimization problem, which can be applied to solve the system (4.5):

$$\begin{array}{ll} \min & \frac{1}{2}\|x-v\|^2 \\ \text{such that} & x \in \mathcal{X} \end{array} \tag{4.6}$$

This problem is called the projection of v onto the closed convex set X

### 4.3.1 Projection onto the nonnegative orthant

In particular, the problem is formulated as:

$$\min_{\substack{\frac{1}{2} \|x - v\|^2 \\ \text{such that}}} \frac{\frac{1}{2} \|x - v\|^2}{x > 0.} \tag{4.7}$$

Therefore, the KKT condition is

$$\begin{cases} x - v - \mu = 0 \\ x \ge 0, \mu \ge 0, \langle x, \mu \rangle = 0 \end{cases}$$

In this case, the solution to the system above is

$$x = [v]_+, \quad \mu = -[v]_-$$

The corresponding dual problem is

$$\max \quad -\frac{1}{2}\|\mu+v\|^2 + \frac{1}{2}\|v\|^2$$
 such that  $\mu \ge 0$ 

Check First Order Optimality Condition Directly Another way is to apply Theorem (4.5) directly:

$$\mathcal{T}([v]_+) = \{d \mid d_i \ge 0, i \in J\}, \text{ where } J = \{i \mid v_i \le 0\}.$$

Since  $\nabla \mid_{x=[v]_+} (\frac{1}{2} ||x-v||^2) = [v]_+ - v$ , we have

$$\langle [v]_+ - v, d \rangle \ge 0, \ \forall d \in \mathcal{T}([v]_+).$$

Therefore, by Theorem (4.5),  $[v]_+$  is optimal to the nonnegative cone projection problem.

51

### 4.3.2 Projection onto the affine linear space Ax = b

In particular, the problem is formulated as:

$$\begin{array}{ll} \min & \frac{1}{2}\|x-v\|^2 \\ \text{such that} & Ax=b. \end{array} \tag{4.8}$$

The solution for this problem is

$$x^* = v + A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1})(b - Av)$$
  
=  $(I - A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} A)v + A^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} b$   
$$\lambda^* = (AA^{\mathrm{T}})^{-1} (b - Av)$$

The solution is implied from the first order optimality condition:

$$\langle \nabla f(x^*), d \rangle = \langle x^* - v, d \rangle$$
  
=  $(b - Av)^{\mathrm{T}} (AA^{\mathrm{T}})^{-1} Ad$   
=  $0$ .

for any feasible direction  $d \in \mathcal{T}(x^*) = \{d \mid Ad = 0\}.$ 

### 4.3.3 General Projection Problem

Let  $\mathcal{X}$  be a closed convex set and suppose  $v \notin \mathcal{X}$ . Consider

$$\min \frac{1}{2} ||x - v||^2$$
  
such that  $x \in \mathcal{X}$ 

Suppose that  $x^*$  is the projection, i.e., optimal solution, then

$$\langle x^* - v, x - x^* \rangle \ge 0, \ \forall x \in \mathcal{X}.$$

Often, we denote the projection as  $x^* = [v]_{\mathcal{X}}$ .

# 4.4 The Augmented Lagrangian Dual

Now consider a more general optimization problem instead of projection:

min 
$$f(x)$$
  
such that  $Ax = b$   
 $x \in \mathcal{X}$ 

In projection problem we see that when the objective function involves the squared term, the optimization becomes easy becasue of the strong convexity of squared term. Therefore, we introduce an *augmented La*grangian function

$$\mathcal{L}_{\gamma}(x;\lambda) = f(x) + \lambda^{\mathrm{T}}(Ax - b) + \frac{\gamma}{2} ||Ax - b||_{2},$$

where  $\gamma > 0$  denotes the penality parameter. Like (4.4), define  $d_{\gamma}(\lambda) = \min_{x \in \mathcal{X}} \mathcal{L}_{\gamma}(x; \lambda)$ , and consider the dual problem

$$\max_{\text{such that}} d_{\gamma}(\lambda)$$

$$\delta \in \mathbb{R}^{m}$$

$$(4.9)$$

question: what's this dual problem relates to the primal problem?

**Proposition 4.1** (Convexity).  $d_{\gamma}(\lambda)$  is concave in  $\lambda$ . Therefore the dual problem (4.9) is always a convex optimization problem.

*Proof.* The dual function  $h(y) = \min_{x} a(x) + y^{\mathrm{T}}b(x)$  is always concave in y. (question: do we need to specify that  $\mathcal{X}$  is a convex set?)

**Proposition 4.2** (Smooth).  $d_{\gamma}(\lambda)$  is differentiable in  $\lambda$ .

*Proof.* Note that  $x_y \in \arg\min a(x) + y^{\mathrm{T}}b(x)$  implies  $b(x_y) \in \partial h(y)$ , since

$$h(y') \le h(y) + (y'-y)^{\mathrm{T}} b(x_y), \ \forall y'.$$

Therefore, for  $x_{\lambda} \in \arg\min f(x) + \lambda^{\mathrm{T}}(Ax - b) + \frac{\gamma}{2} ||Ax - b||^2$ , we have

$$Ax_{\lambda} - b \in \partial d_{\gamma}(\lambda).$$

To show the differentiablity suffices to show the uniqueness of the subgradient. Suppose there exists two solutions  $x'_{\lambda}$  and  $x''_{\lambda}$ . By optimality condition,

$$\begin{cases} \langle \nabla f(x'_{\lambda}) + A^{\mathrm{T}}\lambda + \gamma A^{\mathrm{T}}(Ax'_{\lambda} - b), x''_{\lambda} - x'_{\lambda} \rangle \ge 0, \\ \langle \nabla f(x''_{\lambda}) + A^{\mathrm{T}}\lambda + \gamma A^{\mathrm{T}}(Ax''_{\lambda} - b), x'_{\lambda} - x''_{\lambda} \rangle \ge 0 \end{cases}$$

Adding them up and noting that  $\langle \nabla f(x') - \nabla f(x''), x' - x'' \rangle \ge 0$ , we have

$$Ax'_{\lambda} - b = Ax''_{\lambda} - b \implies \nabla d_{\gamma}(\lambda) = Ax_{\lambda} - b.$$

**Proposition 4.3** (Continuous differentiable).  $\nabla d_{\gamma}(\lambda)$  is Lipschitz continuous with a Lipschitz constant  $1/\gamma$ .

*Proof.* Let  $\lambda'$  and  $\lambda''$  be two vectors, similar as previous proof, we have:

$$\begin{cases} \langle \nabla f(x_{\lambda'}) + A^{\mathrm{T}} \lambda' + \gamma A^{\mathrm{T}} (A x_{\lambda'} - b), x_{\lambda''} - x_{\lambda'} \rangle \ge 0, \\ \langle \nabla f(x_{\lambda''}) + A^{\mathrm{T}} \lambda'' + \gamma A^{\mathrm{T}} (A x_{\lambda''} - b), x_{\lambda'} - x_{\lambda''} \rangle \ge 0 \end{cases}$$

Adding them up, we have

$$\gamma \|A(x_{\lambda''} - x_{\lambda'})\|^2 \le (\lambda' - \lambda'')^{\mathrm{T}} A(x_{\lambda''} - x_{\lambda'})$$

By Cauchy-Schwarz inequality,

$$\|\nabla d_{\gamma}(\lambda') - \nabla d_{\gamma}(\lambda'')\| \le \frac{1}{\gamma} \|\lambda' - \lambda''\|.$$

# **Basic Algorithms for Nonlinear Programming**

### 5.1 Gradient Algorithms

### 5.1.1 Preliminaries: convergence analysis

Consider an iterative algorithm for solving the optimization problem  $\min f(x)$ , producing iterates  $\{x^0, x^1, \dots\}$ .

- 1. The possible error measurements are as follows. The stopping criteria depends on these error measurements.
  - $e(x^k) := ||x^k x^*||;$
  - $e(x^k) = f(x^k) f(x^*);$

where  $x^*$  denotes the underlying optimal solution.

- 2. We say the algorithm converges if  $\lim_{k\to\infty} e(x^k) = 0$
- 3. There are different types of convergence rate:
  - (a) R-linear convergence: there exists  $a \in (0,1)$  such that  $e(x^k) \le Ca^k$ ;
  - (b) Q-linear convergence: there exists  $a \in (0,1)$  such that  $\frac{e(x^{k+1})}{e(x^k)} \le a$ ;

55

(c) Sub-linear convergence:  $e(x^k) \le C/k^p$  for some p > 0.

question: when say about convergence rate, do we need to specify which error measurements we use?

# 5.1.2 The (Sub)gradient algorithm for Unconstrained Optimization

Consider an unconstrained optimization problem min f(x), where f may not necessarily be smooth. Let  $\{t_k > 0 \mid k = 0, 1, \dots\}$  be a sequence of step-sizes. Let's study the simpleest first order optimization algorithm.

### Algorithm 2 The (Sub)gradient Algorithm

**Input:** Initial guess  $x^0 \in \mathcal{X}$ 

**Output:** Optimal solution  $\hat{x}$ 

For k = 0, 1, ..., do

- Take  $d^k \in \partial f(x^k)$ ;
- $\bullet \ x^{k+1} \leftarrow x^k t_k d^k$

end for.

**Worst Case Bounds** Consier a convex optimization model where f is a completely unknown function. The first order type algorithm esentially produces a sequence of iterates  $\{x^k \mid k=0,1,2,\dots\}$  in such a way that  $x^k$  is in the affine space spanned by

$$x^0, g(x^0), \dots, g(x^{k-1}), \text{ where } g(\cdot) = \partial f(\cdot).$$

• Suppose f is Lipschitz continuous and no other information is known, we can construct an example such that

$$\min_{x \in \text{Span}\{x^0, g(x^0), \dots, g(x^{k-1})\}} f(x) - f(x^*) \ge \mathcal{O}(\frac{1}{\sqrt{k}}), \ \forall k = 1, 2, \dots, \lfloor \frac{n}{2} \rfloor$$

Therefore, the first order type algorithm can never reach the convergence rate faster than  $\mathcal{O}(\frac{1}{\sqrt{k}})$ .

• Additionally, if we know f is differentiable and  $\nabla f$  is Lipschitz continuous, then we can construct an example such that

$$\min_{x \in \operatorname{Span}\{x^0, g(x^0), \dots, g(x^{k-1})\}} f(x) - f(x^*) \ge \mathcal{O}(\frac{1}{k^2}), \ \forall k = 1, 2, \dots, \lfloor \frac{n}{2} \rfloor$$

Therefore, the first order type algorithm can never reach the convergence rate faster than  $\mathcal{O}(\frac{1}{k^2})$  for optimizing this class of function.

### 5.1.3 Gradient Algorithm with Exact Line-Search

First we discuss the optimization with a uniform convex function. This assumption is by default unless specifically mentioned. A nice Q-linear convergence result is obtained:

**Theorem 5.1.** Suppose there exists  $0 < m \le M$  such that  $0 > mI \ge \nabla^2 f(x) \ge MI$  (i.e., f is uniformly convex), and an exact line search is performed per iteration:

$$t_k := \arg\min_{t} f(x^k - t\nabla f(x^k)),$$

then

$$f(x^{k+1}) - f(x^*) \le \left(1 - \frac{m}{M}\right) [f(x^k) - f(x^*)]$$
 (5.1)

*Proof.* • (Uniform Convexity implies Strongly Convexity) For  $\forall x_1, x_2 \in \text{dom}(f)$ , by mean-value theorem,

$$f(x_2) = f(x_1) + \langle \nabla f(x_1), x_2 - x_1 \rangle + \frac{1}{2} (x_2 - x_1)^{\mathrm{T}} \nabla^2 f(\xi) (x_2 - x_1),$$

where  $\xi$  is some number between  $x_2$  and  $x_1$ . Applying the uniform convexity of f, we derive the strongly convexity property:

$$\frac{m}{2} \|\boldsymbol{x}_1 - \boldsymbol{x}_2\|_2^2 \le f(\boldsymbol{x}_2) - f(\boldsymbol{x}_1) - \langle \nabla f(\boldsymbol{x}_1), \boldsymbol{x}_2 - \boldsymbol{x}_1 \rangle \le \frac{M}{2} \|\boldsymbol{x}_1 - \boldsymbol{x}_2\|_2^2$$
(5.2)

• (Applying Strongly Convexity Property) On the one hand, by setting  $x_1 = x^*$  and  $x_2 = x$  in (5.2), we obtain:

$$\frac{m}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2 \le f(\boldsymbol{x}) - f(\boldsymbol{x}^*) \le \frac{M}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2$$
 (5.3)

On the other hand, by setting  $x_1 = x$  and  $x_2 = x^*$  in (5.2), we obtain

$$egin{aligned} & rac{m}{2} \|m{x} - m{x}^*\|_2^2 \leq f(m{x}^*) - f(m{x}) - \langle 
abla f(m{x}), m{x}^* - m{x} 
angle \\ & \leq f(m{x}^*) - f(m{x}) + \|
abla f(m{x})\| \cdot \|m{x}^* - m{x}\| \\ & \leq -rac{m}{2} \|m{x} - m{x}^*\|_2^2 + \|
abla f(m{x})\| \cdot \|m{x}^* - m{x}\| \end{aligned}$$

which implies  $m\|\boldsymbol{x} - \boldsymbol{x}^*\| \leq \|\nabla f(\boldsymbol{x})\|$ . Similarly, we get

$$m\|\boldsymbol{x} - \boldsymbol{x}^*\| \le \|\nabla f(\boldsymbol{x})\| \le M\|\boldsymbol{x} - \boldsymbol{x}^*\| \tag{5.4}$$

• (Upper Bounding left and right side of (5.1)) Moreover, we upper bounding the left side of (5.1) by setting  $x_2 = x^{k+1}$  and  $x_1 = x^k$  in (5.2):

$$f(\boldsymbol{x}^{k+1}) - f(\boldsymbol{x}^{k}) \leq \langle \nabla f(\boldsymbol{x}^{k}), \boldsymbol{x}^{k+1} - \boldsymbol{x}^{k} \rangle + \frac{M}{2} \|\boldsymbol{x}^{k+1} - \boldsymbol{x}^{k}\|^{2}$$

$$\leq -\frac{1}{2M} \|\nabla f(\boldsymbol{x}^{k})\|^{2}$$
(5.5)

where the second inequality is active when  $\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \frac{1}{M} \nabla f(\boldsymbol{x}^k)$ . On the other hand, by setting  $\boldsymbol{x}_2 = \boldsymbol{x}^*$  and  $\boldsymbol{x}_1 = \boldsymbol{x}^k$  in (5.2), we obtain

$$f(\mathbf{x}^{k}) - f(\mathbf{x}^{*}) \leq \langle \nabla f(\mathbf{x}^{k}), \mathbf{x}^{k} - \mathbf{x}^{*} \rangle - \frac{m}{2} \|\mathbf{x}^{k} - \mathbf{x}^{*}\|_{2}^{2}$$

$$\leq \|\nabla f(\mathbf{x}^{k})\| \|\mathbf{x}^{k} - \mathbf{x}^{*}\| - \frac{m}{2} \|\mathbf{x}^{k} - \mathbf{x}^{*}\|_{2}^{2} \quad (5.6)$$

$$\leq \frac{1}{2m} \|\nabla f(\mathbf{x}^{k})\|^{2}$$

Therefore, substituting (5.6) into (5.5), we obtain

$$f(x^{k+1}) - f(x^k) \le -\frac{m}{M} [f(x^k) - f(x^*)]$$

Or equivalently,

$$f(\boldsymbol{x}^{k+1}) - f(\boldsymbol{x}^*) \le \left(1 - \frac{m}{M}\right) [f(\boldsymbol{x}^k) - f(\boldsymbol{x}^*)]$$

question: this proof also holds for  $t_k = \frac{1}{M}$ . Thus what is the intuition behind the line search.

question: is uniformly convex and strongly convex talking about the same thing?

### 5.1.4 Gradient Algorithm with Diminishing Step Sizes

Consider a pre-scribed diminishing step size  $\{\alpha_k\} \to 0$  but satisfies the infinite travel condition  $\sum_{k=1}^{\infty} \alpha_k = \infty$ .

In this case, for sufficiently large k, we have  $\alpha_k \leq \frac{1}{M}$  and similar to the idea in (5.5),

$$f(\boldsymbol{x}^{k+1}) \le f(\boldsymbol{x}^k) - \frac{\alpha_k}{2} \|\nabla f(\boldsymbol{x}^k)\|^2$$

which implies that  $\nabla f(\boldsymbol{x}^k)$  cannot be bounded away from 0 whenever  $f(\boldsymbol{x}^k)$  is finitely lower bounded. In other words, if a finite minimum exists for  $f(\boldsymbol{x}^k)$ , then the iterates satisfy  $\lim_{k\to\infty}\inf \|\nabla f(\boldsymbol{x}^k)\| = 0$ .

We can further show the whole sequence  $f(\boldsymbol{x}^k)$  converges:

*Proof.* w.l.o.g., assume the inequality below holds for  $k=1,2,\ldots,$  i.e.,  $\alpha_k \leq \frac{1}{M}$ :

$$f(\boldsymbol{x}^{k+1}) \le f(\boldsymbol{x}^k) - \frac{\alpha_k}{2} \|\nabla f(\boldsymbol{x}^k)\|^2$$

Therefore, for any  $k = 1, 2, \ldots$ ,

$$f(\boldsymbol{x}^{k+1}) - f(\boldsymbol{x}^*) \le f(\boldsymbol{x}^k) - f(\boldsymbol{x}^*) - \frac{\alpha_k}{2} \|\nabla f(\boldsymbol{x}^k)\|^2$$
  
 
$$\le (1 - m\alpha_k)[f(\boldsymbol{x}^k) - f(\boldsymbol{x}^*)]$$

where the second inequality is by applying (5.6). It follows that

$$f(x^n) - f(x^*) \le [f(x^1) - f(x^*)] \prod_{k=1}^n (1 - m\alpha_k) \to 0,$$

i.e.,  $\lim_{n\to\infty} f(\boldsymbol{x}^n) = f(\boldsymbol{x}^*)$ .

There is another way to show the convergence of  $\{\nabla f(\boldsymbol{x}^k)\}$ :

$$\|\nabla f(\boldsymbol{x}^n)\|^2 \le 2M[f(\boldsymbol{x}^n) - f(\boldsymbol{x}^*)] \implies \lim_{n \to \infty} \nabla f(\boldsymbol{x}^k) = \mathbf{0}.$$

We summarize the results above as a theorem for the convergence of the gradient algorithm with diminishing step sizes:

**Theorem 5.2.** Suppose there exists  $0 < m \le M$  such that  $0 > mI \ge \nabla^2 f(x) \ge MI$  (i.e., f is uniformly convex), and the dimishing step size is performed per iteration:

$$\alpha_k \to 0$$
, but  $\sum_{k=1}^{\infty} \alpha_k = \infty$ ,

then either  $f(x^k) \to -\infty$  or else  $\{f(x^k)\}$  converges to a finite value and  $\nabla f(x^k) \to \mathbf{0}$ .

### 5.1.5 Gradient Algorithm with Armijo's Rule

Consider a general iterative descent algorithm  $\boldsymbol{x}^{k+1} = \boldsymbol{x}^k + \alpha_k \boldsymbol{d}^k$ . The Armiijo's rule for choosing step sizes is as follows:

Let  $\gamma \in (0,1)$  (question: 1/2?). Start with s > 0 and continue with  $\beta s, \beta^2 s, \ldots$ , until  $\beta^{\ell} s$  falls within the set of  $\alpha$  with the condition

$$f(\boldsymbol{x}^k) - f(\boldsymbol{x}^k + \alpha \boldsymbol{d}^k) \ge -\gamma \alpha \cdot \nabla^{\mathrm{T}} f(\boldsymbol{x}^k) \boldsymbol{d}^k$$

In this case we have  $\alpha_k = s\beta^{\ell}$  and

$$f(\boldsymbol{x}^k) \ge f(\boldsymbol{x}^k + \alpha_k \boldsymbol{d}^k) - \gamma \alpha_k \nabla^{\mathrm{T}} f(\boldsymbol{x}^k) \boldsymbol{d}^k$$
 (5.7a)

$$f(\boldsymbol{x}^k) < f(\boldsymbol{x}^k + \alpha_k/\beta \boldsymbol{d}^k) - \gamma \alpha_k/\beta \cdot \nabla^{\mathrm{T}} f(\boldsymbol{x}^k) \boldsymbol{d}^k$$
 (5.7b)

We can analysis the convergence result for gradient algorithm, i.e.,  $\boldsymbol{d}^k = -\nabla f(\boldsymbol{x}^k)$ :

• From the (5.7b) and the Taylor expansion on  $f(\mathbf{x}^k + \alpha_k \mathbf{d}^k)$  we obtain:

$$f(\boldsymbol{x}^k) + \gamma \alpha_k / \beta \cdot \nabla^{\mathrm{T}} f(\boldsymbol{x}^k) \boldsymbol{d}^k < f(\boldsymbol{x}^k) + \alpha_k / \beta \nabla^{\mathrm{T}} f(\boldsymbol{x}^k) \boldsymbol{d}^k + \frac{M}{2} (\alpha_k / \beta)^2 \|\boldsymbol{d}^k\|^2$$

Or equivalently,  $\alpha_k > \frac{2\beta(1-\gamma)}{M}$ 

• Combining the (5.7a), (5.6) and the bound on  $\alpha_k$ , we obtain

$$f(\boldsymbol{x}^k + \alpha_k \boldsymbol{d}^k) \le f(\boldsymbol{x}^k) - 4\beta\gamma(1-\gamma)\frac{m}{M}[f(\boldsymbol{x}^k) - f(\boldsymbol{x}^*)]$$

Therefore, we get the Q-linear convergence for Armijo's rule:

$$f(\boldsymbol{x}^{k+1}) - f(\boldsymbol{x}^*) \le \left(1 - 4\beta\gamma(1 - \gamma)\frac{m}{M}\right) [f(\boldsymbol{x}^k) - f(\boldsymbol{x}^*)]$$

### 5.1.6 The Gradient Algorithm for non-strongly convex case

The estimations of convergence so far are based on the assumption that m > 0. Now we discuss the case where m = 0. The function is convex but not necessarily strongly convex.

Assume that the set of optimal solutions is a bounded set, and that there is a bounded *level set*. If still apply the exact line search, the iterates will be bounded. Note that the inequalities below still hold:

$$f(\boldsymbol{x} + \alpha \boldsymbol{d}) \le f(\boldsymbol{x}) - \frac{1}{2M} \|\nabla f(\boldsymbol{x})\|^2$$
$$f(\boldsymbol{x}) - f(\boldsymbol{x}^*) \le \|\nabla f(\boldsymbol{x})\| \cdot \|\boldsymbol{x} - \boldsymbol{x}^*\|$$

Assume that  $\|\boldsymbol{x}^k - \boldsymbol{x}^*\| \leq C$ , and let  $e(\boldsymbol{x}^k) = f(\boldsymbol{x}^k) - f(\boldsymbol{x}^*)$ , Using the inequalities above, it's easy to show that

$$e(\mathbf{x}^{k+1}) \le e(\mathbf{x}^k) - c[e(\mathbf{x}^k)]^2$$
, where  $c = \frac{1}{2MC^2}$ .

which follows that

$$\frac{1}{e(\boldsymbol{x}^{k+1})} \ge \frac{1}{e(\boldsymbol{x}^k)} + \frac{c}{1 - c \cdot e(\boldsymbol{x}^k)}$$
$$\ge \frac{1}{e(\boldsymbol{x}^k)} + c$$
$$\ge \cdots$$
$$\ge \frac{1}{e(\boldsymbol{x}^1)} + k \cdot c$$

Therefore, we obtain the *sublinear rate of convergence*:

$$e(\boldsymbol{x}^{k+1}) \le \frac{e(\boldsymbol{x}^1)}{1 + k(c \cdot e(\boldsymbol{x}^1))}$$

### 5.1.7 Linear Convergence without Second Order Differentiability

Acutally, the assumptions on the existence of  $\nabla^2 f$  is unnecessaryin Theorem (5.1). We can weaken the condition by the inequality below to obtain the same linear convergence result:

$$\sigma \| \boldsymbol{x} - \boldsymbol{y} \|^2 \le \langle \nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y}), \boldsymbol{x} - \boldsymbol{y} \rangle \le L \| \boldsymbol{x} - \boldsymbol{y} \|^2, \ \forall \boldsymbol{x}, \boldsymbol{y},$$
 (5.8)

where  $0 < \sigma \le L < \infty$ .

- **Remark 5.1.** The condition (5.8) can be implied by uniform convexity.
  - The interpretation of (5.8) is that, restricting f to any line segment between x and y, the function h(t) := f(x + t(y x)) satisfies

$$0 \le \frac{h'(t) - h'(s)}{t - s} \le L, \quad \forall 0 \le s < t \le 1,$$

i.e., the slope of  $\nabla f$  is bounded.

• The condition (5.8) implies the strong convexity, which can be shown by appying the directional derivative and (5.8):

$$\frac{\sigma}{2} \|\boldsymbol{y} - \boldsymbol{x}\|^2 \le f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \le \frac{L}{2} \|\boldsymbol{y} - \boldsymbol{x}\|^2$$

Therefore, we can use the same logic to show the following inequalities:

$$f(\boldsymbol{x} - \alpha \nabla f(\boldsymbol{x})) - f(\boldsymbol{x}) \le -\frac{1}{2L} \|\nabla f(\boldsymbol{x})\|^2$$
$$\sigma \|\boldsymbol{x} - \boldsymbol{x}^*\|^2 \le \|\nabla f(\boldsymbol{x})\| \|\boldsymbol{x} - \boldsymbol{x}^*\|$$
$$f(\boldsymbol{x}^*) \ge f(\boldsymbol{x}) - \frac{1}{2\sigma} \|\nabla f(\boldsymbol{x})\|^2$$

nad therefore,

$$f(\boldsymbol{x} - \alpha \nabla f(\boldsymbol{x})) - f(\boldsymbol{x}^*) \le \left(1 - \frac{\sigma}{L}\right) [f(\boldsymbol{x}) - f(\boldsymbol{x}^*)].$$

### 5.2 The Pure Newton's Method

Now we discuss a particularly important method in optimization: Newton's method.

**Motivation** This method is a *linearlization scheme* for solving a non-linear equation.

• For scalar form of nonlinear equation g(x) = 0, we apply Taylor's expansion on the root  $\hat{x}$ :

$$g(\hat{x}) = g(x) + g'(x)(\hat{x} - x) + o(|\hat{x} - x|)$$

Ignoring the high order part we get an approximation, i.e., iterative formula

$$\bar{x} = x - \frac{g(x)}{g'(x)}.$$

• Consider a *n*-dimensional equation  $g_{1:n}(x_1, \ldots, x_n) = 0$ , we have a similar solution

$$g(\hat{x}) = g(x) + J(g(x)) \cdot (\hat{x} - x) + o(\|\hat{x} - x\|)$$

where J(g(x)) denotes the Jacobian matrix of g:

$$\mathbb{R}^{n \times n} \ni J(g(\boldsymbol{x})) := \left[ \frac{\partial g_i(\boldsymbol{x})}{\partial x_j} \right]$$

Therefore, the unconstrained optimization problem suffices to solve a nonlinear equation  $\nabla f(\mathbf{x}) = 0$ , and the iterative formula is

$$\bar{\boldsymbol{x}} = \boldsymbol{x} - [\nabla^2 f(\boldsymbol{x})]^{-1} \nabla f(\boldsymbol{x}), \text{ (Newton's Method)}$$

**Remark 5.2.** 1. Newton's direction may not necessarily exist;

- 2. It is a descent direction for strongly convex functions;
- 3. However, the function may not necessarily decrease even for strongly convex function.
- 4. It minimizes a strongly convex quadratic function in just one step.
- 5. The pure form of Newton's method can be modified by taking another step length.

### 5.2.1 Local Convergence Analysis

We analysis the convergence rate for Newton's method under the convexity and continuity conditions first:

**Assumption:** The function f is convex, twice continuously differentiable, and that  $\nabla^2 f(\mathbf{x}^*)$  is non-singular for local minimum  $\mathbf{x}^*$ .

A key inequality for the analysis is

$$abla f(oldsymbol{y}) = 
abla f(oldsymbol{x}) + \int_0^1 
abla^2 f(oldsymbol{x} + t(oldsymbol{y} - oldsymbol{x})) \cdot (oldsymbol{y} - oldsymbol{x}) \, \mathrm{d}t$$

Suppose that  $x^k$  is close to  $x^*$  enough, then  $\nabla^2 f(x^k)$  is non-singular as well due to the continuity of determinant function. It follows that

$$\begin{aligned} & \boldsymbol{x}^{k+1} - \boldsymbol{x}^* = \boldsymbol{x}^k - \boldsymbol{x}^* - [\nabla^2 f(\boldsymbol{x}^k)]^{-1} \nabla f(\boldsymbol{x}^k) \\ & = [\nabla^2 f(\boldsymbol{x}^k)]^{-1} [\nabla^2 f(\boldsymbol{x}^k) (\boldsymbol{x}^k - \boldsymbol{x}^*) - \nabla f(\boldsymbol{x}^k)] \\ & = [\nabla^2 f(\boldsymbol{x}^k)]^{-1} \left[ \nabla^2 f(\boldsymbol{x}^k) (\boldsymbol{x}^k - \boldsymbol{x}^*) - \int_0^1 \nabla^2 f(\boldsymbol{x}^* + t(\boldsymbol{x}^k - \boldsymbol{x}^*)) (\boldsymbol{x}^k - \boldsymbol{x}^*) \, \mathrm{d}t \right] \\ & = [\nabla^2 f(\boldsymbol{x}^k)]^{-1} \left\{ \int_0^1 [\nabla^2 f(\boldsymbol{x}^k) - \nabla^2 f(\boldsymbol{x}^* + t(\boldsymbol{x}^k - \boldsymbol{x}^*))] (\boldsymbol{x}^k - \boldsymbol{x}^*) \, \mathrm{d}t \right\} \end{aligned}$$

Thererfore,

$$\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\| \le \|\boldsymbol{x}^k - \boldsymbol{x}^*\| \cdot \|[\nabla^2 f(\boldsymbol{x}^k)]^{-1}\| \cdot \int_0^1 \|\nabla^2 f(\boldsymbol{x}^k) - \nabla^2 f(\boldsymbol{x}^* + t(\boldsymbol{x}^k - \boldsymbol{x}^*))]\| dt$$

Since  $\mathbf{x}^k$  is close to  $\mathbf{x}^*$ ,  $\|[\nabla^2 f(\mathbf{x}^k)]^{-1}\|$  is bounded. Since  $\nabla^2 f(\mathbf{x})$  is continuous, the integration term goes to zero as  $\|\mathbf{x}^k - \mathbf{x}^*\| \to 0$ . Thus we imply  $\|\mathbf{x}^{k+1} - \mathbf{x}^*\| = o(\|\mathbf{x}^k - \mathbf{x}^*\|)$ , ensuring a superlinear convergence.

**Extra Assumption**: The term  $\nabla^2 f(x)$  is Lipschitz con-

tinuous: there exists  $L_2 > 0$  such that

$$\|\nabla^2 f(\boldsymbol{x}) - \nabla^2 f(\boldsymbol{y})\| \le L_2 \|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y}.$$

This extra assumption will ensure a quadratic convergence rate:

$$\| {m x}^{k+1} - {m x}^* \|$$

$$\leq \| [\nabla^2 f(\boldsymbol{x}^k)]^{-1} \| \cdot \| \boldsymbol{x}^k - \boldsymbol{x}^* \| \cdot \int_0^1 \| \nabla^2 f(\boldsymbol{x}^k) - \nabla^2 f(\boldsymbol{x}^* + t(\boldsymbol{x}^k - \boldsymbol{x}^*)) ] \| dt$$

$$\leq \frac{L_2}{2} \| [\nabla^2 f(\boldsymbol{x}^k)]^{-1} \| \cdot \| \boldsymbol{x}^k - \boldsymbol{x}^* \|^2.$$

Further Assumption: Based on the previous two assumptions, we assume that f is strongly convex.

In this case, it is easy to show that

$$\|\boldsymbol{x}^{k+1} - \boldsymbol{x}^*\| \le \frac{L_2}{2m} \|\boldsymbol{x}^k - \boldsymbol{x}^*\|^2.$$

This inequality introduces a region of attraction, i.e., as soon as  $\mathbf{x}^k$  falls into the neighborhood of  $\mathbf{x}^*$  with radius  $2m/L_2$ , the iterates will be trapped in the neighborhood and converge to  $\mathbf{x}^*$  quadratically.

**Remark 5.3.** The pure form of Newton's method, however, has several drawbacks:

- 1. It in general does not guarantees global convergence if no additional assumption is given. Fortunartely, if f is strongly convex, then the Newton's method with line-search (e.g., with Armijo's step-length rule) will be globally convergent with a globally linear convergence rate.
- 2. If f is not *strictly* convex, then  $\nabla^2 f$  may be singular. Even worse, if f is not convex, then the Newton's direction may not be a descent direction. In next section we will discuss how to handle such a situation.

### 5.3 Practical Implementation of Newton's method

# 5.3.1 Cholesky Factorization

First let's introduce a technique in optimization algorithms that can reduce computational complexity: the *Cholesky factorization*.

Consider the case where  $\nabla^2 f(\boldsymbol{x}^k) \succ 0$ , and the Newton's direction can be found by solving the linear system

$$\nabla^2 f(\boldsymbol{x}^k) \boldsymbol{d} = -\nabla f(\boldsymbol{x}^k).$$

Directly computing the inverse of  $\nabla^2 f(x^k)$  is computationally expansive, which motivates us to apply the *Cholesky factorization* as follows:

65

1. First apply the Cholesky factorization to get  $\nabla^2 f(\boldsymbol{x}^k) = \boldsymbol{L}_k \boldsymbol{L}_k^{\mathrm{T}}$ , where  $\boldsymbol{L}_k$  is a lower triangular matrix, resulting in the following Newton's equation

$$\boldsymbol{L}_{k}\boldsymbol{L}_{k}^{\mathrm{T}}\boldsymbol{d} = -\nabla f(\boldsymbol{x}^{k}).$$

2. Firstly solve the lower triangular system below by forward substitution:

$$\boldsymbol{L}_k \boldsymbol{y} = -\nabla f(\boldsymbol{x}^k)$$

The complexity for this process is  $\mathcal{O}(n^2)$ .

3. Then solve the triangular system below by backforward substitution:

$$\boldsymbol{L}_k^{\mathrm{T}}\boldsymbol{d} = \boldsymbol{y}_k$$

Again, this step takes complexity  $\mathcal{O}(n^2)$ .

The basic Cholesky factorization algorithm is as follows:

### Algorithm 3 Basic Cholesky factorization Algorithm

**Input:** A positive definite  $n \times n$ matrix A

Output: Lower triangular matrix L such that  $A = LL^{T}$ 

For j = 1 : n, do

• For i = j + 1 : n, do

$$- l_{ij} = \left(a_{ij} - \sum_{k=1}^{j-1} l_{jk} l_{ik}\right) / l_{jj}$$

end for.

$$l_{jj} = \left(a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2\right)^{1/2}.$$

end for.

**Remark 5.4.** If A is not positive semidefinite, then at a certain stage we will encounter a j such that

$$a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2 < 0.$$

In that case, the Cholesky decomposition cannot proceed. Note that the Cholesky decomposition takes about  $\mathcal{O}(n^3)$  operations.

### 5.3.2 Modified Newton's method

In case the Hessian matrix is not positive definite, the following remedies can be applied:

If there occurs  $a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2 < 0$  for a certain j, then we simply increase  $a_{jj}$  so that the quantity becomes positive again. (question: increase how much?)

This remedy has the same effect of changing  $\nabla^2 f(\boldsymbol{x}^k)$  into  $\nabla^2 f(\boldsymbol{x}^k) + \Delta^k > 0$ , where  $\Delta^k$  is non-negative (question: positive or non-negative?) diagonal, which suffices to solve the regularized equation

$$(\nabla^2 f(\boldsymbol{x}^k) + \Delta^k)\boldsymbol{d} = -\nabla f(\boldsymbol{x}^k).$$

Moreover, we may use the direction with Armijo's line search technique to guarantee the global convergence. (how to show?)

### 5.3.3 The Trust Region Approach

Another way to handle the case that  $\nabla^2 f(\boldsymbol{x}^k)$  is indefinite is to use the trust region approach. It is the complement of the line search approach.

The direction  $d^k$  for each iteration suffices to consider the trust region subproblem

min 
$$\langle \nabla f(\boldsymbol{x}^k), \boldsymbol{d} \rangle + \frac{1}{2} \boldsymbol{d}^{\mathrm{T}} \nabla^2 f(\boldsymbol{x}^k) \boldsymbol{d}$$
 such that  $\|\boldsymbol{d}\| \leq \delta$ 

where  $\delta > 0$  is called the trust region radius.

**Remark 5.5.** It can be shown that when  $\delta$  is sufficiently small,  $f(\boldsymbol{x}^k + \boldsymbol{d}^k) < f(\boldsymbol{x}^k)$ , i.e.,  $\boldsymbol{d}^k$  is the descent direction. This trust region subproblem can be efficiently solved (question: which method? curious about it)

# 5.3.4 Implementation of Least Squares Problem

Consider solving the nonlinear least square problem (NLSP)

min 
$$f(x) = \frac{1}{2} \sum_{i=1}^{m} f_i^2(x)$$

Firstly note that

$$\nabla f(x) = \sum_{i=1}^{m} f_i(x) \nabla f_i(x)$$
$$\nabla^2 f(x) = \sum_{i=1}^{m} [\nabla f_i(x) \nabla^{\mathrm{T}} f_i(x) + f_i(x) \nabla^2 f_i(x)]$$

The so-called Gauss-Newton method is a *quasi-Newton's method*, specialized to this NLSP:

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \alpha_k \left( \sum_{i=1}^m \nabla f_i(\boldsymbol{x}^k) \nabla^{\mathrm{T}} f_i(\boldsymbol{x}^k) \right)^{-1} \left( \sum_{i=1}^m f_i(\boldsymbol{x}^k) \nabla f_i(\boldsymbol{x}^k) \right)$$

**Remark 5.6.** It works well when  $f_i$ 's are not *too linear*, or when at the optimality,  $f_i$ 's are close to zero.

A variantion of the Gauss-Newton's method operates as follows:

$$\boldsymbol{x}^{k+1} = \boldsymbol{x}^k - \alpha_k \left( \sum_{i=1}^m \nabla f_i(\boldsymbol{x}^k) \nabla^{\mathrm{T}} f_i(\boldsymbol{x}^k) + \lambda_k \boldsymbol{I} \right)^{-1} \left( \sum_{i=1}^m f_i(\boldsymbol{x}^k) \nabla f_i(\boldsymbol{x}^k) \right)$$

which is called the Levenberg-Marquardt method.

Note that if consider solving the equation  $f_{1:n}(\mathbf{x}_{1:n}) = \mathbf{0}$ , the Gauss-Newton direction is just the Newton direction itself.

# Primal-Dual Interior Point Methods (PDIPM)

### 6.1 PDIPM for Linear Programming

Consider a linear programming problem

min 
$$c^{T}x$$
  
such that  $Ax = b$   $(P)$   
 $x \ge 0$   $(6.1)$ 

with its dual problem

$$\begin{array}{ll} \max & \boldsymbol{b}^{\mathrm{T}}\boldsymbol{y} \\ \text{such that} & \boldsymbol{A}^{\mathrm{T}}\boldsymbol{y} + \boldsymbol{s} = \boldsymbol{c} \\ & \boldsymbol{s} \geq 0 \end{array} \tag{6.2}$$

We assume that the *primal-dual slater condition* (what is it?) holds. Consider solving the barriered problem of (P) for  $\mu > 0$ :

min 
$$c^{\mathrm{T}}x - \mu \sum_{i=1}^{n} \ln x_i$$
  
such that  $Ax = b$  (6.3)

69

#### 6.1.1 Duality Gap

Let  $\boldsymbol{x}(\mu)$  be the optimal solution for  $(P_{\mu})$ . By KKT condition, there exists  $\boldsymbol{y}(\mu) \in \mathbb{R}^m$  such that

$$\boldsymbol{c} - \mu \boldsymbol{x}(\mu)^{-1} - \boldsymbol{A}^{\mathrm{T}} \boldsymbol{y}(\mu) = \boldsymbol{0}.$$

Define the slack variable  $s(\mu) := \mu x(\mu)^{-1} = c - A^{T}y(\mu)$ . It's clear that:

- 1.  $\boldsymbol{x}(\mu)$  is primal-feasible to  $(P_{\mu})$ ; while  $(\boldsymbol{y}(\mu), \boldsymbol{s}(\mu))$  is dual-feasible to  $(D_{\mu})$
- 2. The duality gap between  $\boldsymbol{x}(\mu)$  and  $(\boldsymbol{y}(\mu), \boldsymbol{s}(\mu))$  is

$$\boldsymbol{x}(\mu)^{\mathrm{T}}\boldsymbol{s}(\mu) = n\mu.$$

## 6.1.2 Convergence of Barrier Problem $P_{\mu}$

The set  $\{x(\mu) \mid \mu > 0\}$  is known as the *primal analytic central path*; and the set  $\{(y(\mu), s(\mu)) \mid \mu > 0\}$  is known as the *dual analytic central path*.

**Proposition 6.1.** The set  $\{x(\mu) \mid 0 < \mu \le 1\}$  and  $\{(y(\mu), s(\mu)) \mid 0 < \mu \le 1\}$  are bounded.

*Proof.* Let  $\tilde{\boldsymbol{x}}$  be an interior for (P) and  $(\tilde{\boldsymbol{y}}, \tilde{\boldsymbol{s}})$  be an interior for (D). Then  $\tilde{\boldsymbol{x}} - \boldsymbol{x}(\mu) \in \mathcal{N}(\boldsymbol{A})$  and  $\tilde{\boldsymbol{s}} - \boldsymbol{s}(\mu) \in \text{Range}(\boldsymbol{A}^{\text{T}})$ , which implies

$$0 = (\tilde{\boldsymbol{x}} - \boldsymbol{x}(\mu))^{\mathrm{T}} (\tilde{\boldsymbol{s}} - \boldsymbol{s}(\mu)) = \tilde{\boldsymbol{x}}^{\mathrm{T}} \tilde{\boldsymbol{s}} - \tilde{\boldsymbol{x}}^{\mathrm{T}} \boldsymbol{s}(\mu) - \tilde{\boldsymbol{s}}^{\mathrm{T}} \boldsymbol{x}(\mu) + n\mu.$$

Therefore,  $\{x(\mu) \mid 0 < \mu \le 1\}$  and  $\{(y(\mu), s(\mu)) \mid 0 < \mu \le 1\}$  must be bounded. (question: how to specify?)

**Proposition 6.2.** The set  $\{(\boldsymbol{x}(\mu),\boldsymbol{y}(\mu),\boldsymbol{s}(\mu))\mid 0<\mu\leq 1\}$  converges to  $(\hat{\boldsymbol{x}},\hat{\boldsymbol{y}},\hat{\boldsymbol{s}})$  as  $\mu\to 0$ . Moreover, the active sets  $B:=\{i\mid \hat{x}_i>0\}$  and  $N=\{j\mid \hat{s}_j>0\}$  form a partition of  $\{1,\ldots,n\}$ .

*Proof.* • Due to the boundness of  $\{(\boldsymbol{x}(\mu), \boldsymbol{y}(\mu), \boldsymbol{s}(\mu)) \mid 0 < \mu \leq 1\}$ , we imply there exists a subsequence  $\mu_k$  such that

$$\lim_{k \to \infty} (\boldsymbol{x}(\mu), \boldsymbol{y}(\mu), \boldsymbol{s}(\mu)) = (\hat{\boldsymbol{x}}, \hat{\boldsymbol{y}}, \hat{\boldsymbol{s}})$$

It's clear that  $\hat{x}$  is primal optimal and  $(\hat{y}, \hat{s})$  is dual optimal. By complementarity condition,  $B \cap N = \emptyset$ .

• At the same time, consider the equality again that

$$0 = (\hat{\boldsymbol{x}} - \boldsymbol{x}(\mu_k))^{\mathrm{T}} (\hat{\boldsymbol{s}} - \boldsymbol{s}(\mu_k)) = -\sum_{i \in B} \hat{x}_i s_i(\mu_k) - \sum_{i \in N} \hat{s}_j x_j(\mu_k) + n\mu_k.$$

Or equivalently,

$$n = \sum_{i \in B} \frac{\hat{x}_i}{x_i(\mu_k)} + \sum_{j \in N} \frac{\hat{s}_j}{s_j(\mu_k)}.$$

Taking  $k \to \infty$ , we imply |B| + |N| = n, i.e., B and N form a partition of  $\{1, \ldots, n\}$ .

• Next we show that  $\hat{x}$  is unique. We shall show that  $\hat{x}_B$  is the optimal solution to

$$\max_{\text{such that}} \sum_{i \in B} \ln x_i$$
such that  $\mathbf{A}_B \mathbf{x}_B = \mathbf{b}$  (O)

and then the uniqueness of  $\hat{x}_B$  is proved due to the strict concavity of the objective function. (question: why the uniqueness of  $\hat{x}_B$  implies the uniqueness of  $\hat{x}$ ?)

The KKT condition for (O) gives

$$\boldsymbol{x}_B^{-1} \in \operatorname{Range}(\boldsymbol{A}_B^{\mathrm{T}}) \quad \boldsymbol{A}_B \boldsymbol{x}_B = \boldsymbol{b}$$

We may verify that  $\hat{x}_B$  satisfies the condition above.

**Remark 6.1.** The particular optimal solution x, denoted by x(0) is called the *analytic center of the optimal face*. If taking  $\mu \to \infty$ , then  $x(\mu)$  converges to the optimal solution of

max 
$$\sum_{i=1}^{n} \ln x_i$$
 such that  $A_B x_B = b$ 

which is known as the analytic center of the feasible region.

Note that x(0) + s(0) > 0, i.e., there are strictly complementary.

#### 6.1.3 Central Path Following Algorithm

**Theorem 6.1** (Interior Decomposition Theorem). Suppose that (P) and (D) both satisfy the Slater's condition. Let  $\mathcal{F}_P$  be the feasible set for (P), and  $\mathcal{F}_D$  be the feasible set for (D). Then for any  $\omega \in \mathbb{R}^n_{++}$ , there exists unique  $x \in \text{int}(\mathcal{F}_P)$  and  $s \in \text{int}(\mathcal{F}_D)$  such that  $w = x \circ s$ .

*Proof.* The optimal solution for the strictly convex problem

$$\begin{aligned} & \min \quad c^{\mathrm{T}} x - \sum_{i=1}^{n} \omega_i \ln x_i \\ & \text{with} \quad Ax = b \end{aligned}$$

satisfies the requirement.

The idea for central path following algorithm is that we should approach the optimal solution by tracing the central path (question: why the equality for all  $1 \le i \le n$ ?)

$$x_i(\mu)s_i(\mu) = \mu, \ 1 \le i \le n,$$

as  $\mu \to 0$ .

One type of algorithm is given below:

1. Given the current primal-dual solution (x, y, s), suppose our next target solution is (x', y', s'), and denote

$$\Delta x = x' - x$$
,  $\Delta y = y' - y$ ,  $\Delta s = s' - s$ 

2. It suffices to solve the following systems in each iteration (why?) (have question on the third equality):

$$\begin{cases} A\Delta x = 0\\ A^{\mathrm{T}}\Delta y + \Delta s = 0\\ s \circ (x' - x) + x \circ (s' - s) = x' \circ s' - x \circ s - (x' - x) \circ (s' - s) \end{cases} \tag{6.4}$$

Or equivalently,

$$\begin{cases} A\Delta x = 0\\ A^{\mathrm{T}}\Delta y + \Delta s = 0\\ 0 = 0 \end{cases}$$
 (6.5)

Since the nonlinear system is difficult to solve, we just apply Newton's method to solve it approximately in each iteration:

$$\begin{cases}
A\Delta x = 0 \\
A^{T}\Delta y + \Delta s = 0 \\
S\Delta x + X\Delta s = w' - w
\end{cases}$$
(6.6)

**Reformulation** We define  $D := (XS^{-1})^{1/2}$  and  $V := (XS)^{1/2}$ , and  $d_x = D^{-1}\Delta x$ ,  $d_y = \Delta y$ ,  $d_s = D\Delta s$ , then (6.6) is equivalent to

$$\begin{cases}
ADd_x = 0 \\
(AD)^{\mathrm{T}} d_y + d_s = 0 \\
d_x + d_s = V^{-1}(w' - w)
\end{cases}$$
(6.7)

Why it is essentially a projection problem?

### 6.1.4 Scaling Transformation

The origin pair of LP can be scaled from

$$\begin{array}{lll} \min & c^{\mathrm{T}}x & \max & b^{\mathrm{T}}y \\ \mathrm{with} & Ax = b \ , & \mathrm{with} & A^{\mathrm{T}}y + s = c \\ & x \geq 0 & s \geq 0 \end{array}$$

into

$$\begin{array}{lll} \min & (Dc)^{\mathrm{T}}x' & \max & b^{\mathrm{T}}y' \\ \mathrm{with} & ADx' = b \ , & \mathrm{with} & (AD)^{\mathrm{T}}y' + s' = Dc \\ & x' \geq 0 & s' \geq 0 \end{array}$$

such that

$$x' = D^{-1}x$$
,  $y' = y$ ,  $s' = Ds$ 

Now we answer why the (6.7) is a projection problem. It can be rewritten as

$$\begin{cases} ADd_x = 0 \\ (AD)^{\mathrm{T}}d_y + d_s = 0 \\ d_x + d_s = d := V^{-1}(w' - w) \end{cases} \implies \begin{cases} d_x = P_{AD}(d) \\ d_s = (I - P_{AD})(d) \end{cases}$$

### 6.1.5 Step Size Control

Consider the iterates

$$x(t) = x + t\Delta x$$
,  $s(t) = s + t\Delta s$ 

The idea is to make  $x(t) \circ s(t)$  stay close to the central line (why?) and converge to zero.

**Definition 6.1** (Neighborhoods of the central line). We define the neighborhood of the central line using either 2-norm or  $\infty$ -norm:

$$\mathcal{N}_2(\beta) = \left\{ v^2 \middle| \|1/\mu v^2 - \mathbf{1}\|_2 \le \beta \right\}$$
$$\mathcal{N}_{\infty}(\beta) = \left\{ v^2 \middle| \|1/\mu v^2 - \mathbf{1}\|_{\infty} \le \beta \right\}$$

where  $0 < \beta < 1$  is a constant and  $\mu = \mathbf{1}^{\mathrm{T}} v^2 / n$ .

In this algorithm we choose the next target point w' as

$$w' := \rho \mu \mathbf{1}$$
, where  $0 < \rho < 1$ 

As a result,  $d = -v + \rho \mu v^{-1}$  (question: what is v, and what is  $v^{-1}$ ?). Assume that  $x \circ s = v^2 \in \mathcal{N}(\beta)$ , which implies

$$v_i^2 \ge (1 - \beta)\mu, \ \forall i$$

Note that  $x + t\Delta x > 0$ ,  $s + t\Delta s > 0$  iff  $v + td_x > 0$ ,  $v + td_s > 0$ 

## **Convergence Analysis**

1.

$$||(d_x) \circ (d_s)||_2 \le \frac{1}{2} ||d||_2^2$$
$$||(d_x) \circ (d_s)||_{\infty} \le \frac{1}{4} ||d||_2^2$$

2. 
$$||d||_2^2 \le \frac{1}{\sqrt{1-\beta}} \left( ||1/\mu v^2 - \mathbf{1}||_2 + (1-\rho)\sqrt{n} \right) \sqrt{\mu}$$

This inequality can be shown using the fact that  $x \circ s = v^2 \in \mathcal{N}(\beta)$ 

3. Note that

$$v(t)^{2} = (x + t\Delta x) \circ (s + t\Delta s)$$
$$\mu(t) = \mathbf{1}^{\mathrm{T}} v(t)^{2} / n$$

which implies

$$\left\| \frac{1}{\mu(t)} v(t)^2 - \mathbf{1} \right\| \le \beta - \frac{t}{1 - t + t\rho} \left[ \rho \beta - \frac{(\|v^2/\mu - \mathbf{1}\|_2 + (1 - \rho)\sqrt{n})^2}{2(1 - \beta)} t \right]$$
$$x(t)^{\mathrm{T}} s(t) = (1 - (1 - \rho)t)x^{\mathrm{T}} s$$

### Algorithm 4 PDIPM

**Input:** Initial Guess  $(x^{(0)}, s^{(0)}) \in \mathcal{N}(\beta)$ 

- 1: Let k = 0.
- 2: Compute  $\Delta x^{(k)}$  and  $\Delta s^{(k)}$
- 3: Compute the maximum step length  $t^* > 0$  such that

$$(x^{(k)} + t^* \Delta x^{(k)}) \circ (s^{(k)} + t^* \Delta s^{(k)}) \in \mathcal{N}(\beta)$$

4: Let 
$$x^{(k+1)} = x^{(k)} + t^* \Delta x^{(k)}$$
; and  $s^{(k+1)} = s^{(k)} + t^* \Delta s^{(k)}$ .  
Let  $k = k + 1$  and go to step 2.

## **Algorithm 5** Algorithm for computing $\Delta x^{(k)}$ and $\Delta s^{(k)}$

**Input:** Current point  $x^{(k)}, s^{(k)}$ 

1: Solve the nonlinear system below approximately using Newton's method.

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{\mathrm{T}} & I \\ S & 0 & X \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta s \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ (x^{(k)} + \Delta x) \circ (s^{(k)} + \Delta s) - x^{(k)} \circ s^{(k)} - \Delta x \circ \Delta s \end{pmatrix}$$

Question: another version of pdipm:

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A^{\mathrm{T}} & I \\ S & 0 & X \end{pmatrix} \begin{pmatrix} \Delta x \\ \Delta y \\ \Delta s \end{pmatrix} = \begin{pmatrix} r_p \\ r_d \\ r_c \end{pmatrix}$$

where  $r_p, r_d, r_c$  denotes the residuals for primal, dual, and complementarity.

# **Conic Optimization Models**

#### **Notations**

**Definition 7.1** (pointed convex cone). A subset  $\mathcal{K} \subseteq \mathbb{R}^n$  is called a *pointed convex cone* in  $\mathbb{R}^n$  if the following conditions are satisfied:

- 1.  $0 \in \mathcal{K}$
- 2. If  $x, -x \in \mathcal{K}$ , then x = 0
- 3. If  $x \in \mathcal{K}$ , then  $tx \in \mathcal{K}, \forall t > 0$
- 4. If  $x, y \in \mathcal{K}$ , then  $x + y \in \mathcal{K}$

**Definition 7.2** (Proper). Cone K is called *proper* if

- 1.  $\mathcal{K}$  is convex
- 2. K is solid, i.e., it is full dimensional
- 3. K is pointed.

#### 7.0.1 Problem Setting

A generic conic optimization model:

$$egin{array}{ll} \min & oldsymbol{c}^{\mathrm{T}} oldsymbol{x} \ \mathrm{such that} & oldsymbol{A} oldsymbol{x} = oldsymbol{b} \ oldsymbol{x} \in \mathcal{K} \end{array}$$

where  $\mathcal{K} \subseteq \mathbb{R}^n$  is the closed convex cone. w.l.o.g., we assume that rows of A are all linearly independent.

**Example 7.1** (Second Order Cone Programming). The *Lorentz cone*, or say the *second order cone* is denoted as:

$$SOC(n+1) = \left\{ \begin{pmatrix} t \\ \boldsymbol{x} \end{pmatrix} \middle| t \in \mathbb{R}, \boldsymbol{x} \in \mathbb{R}^n, t \ge \|\boldsymbol{x}\| \right\}$$

The SOC(2) looks like the ice-cream.

The Cartesian Product of second order cones is denoted as

$$\mathcal{K} = SOC(d_1 + 1) \times \cdots \times SOC(d_m + 1).$$

For example, if  $\mathbf{x} = [\mathbf{x}_1^{\text{T}}, \mathbf{x}_2^{\text{T}}, \mathbf{x}_3^{\text{T}}]^{\text{T}} \in S_1 \times S_2 \times S_3$ , then  $\mathbf{x}_1 \in S_1, \mathbf{x}_2 \in S_2, \mathbf{x}_3 \in S_3$ .

If K is taken as a Cartesian Product of second order cones, then conic optimization is called the *second order cone programming*, or SOCP for short.

For example, for  $t \geq \sqrt{x^{T}Ax}$ , we can reformulate this constraint as

$$\begin{pmatrix} t \\ y \end{pmatrix} \in \text{SOC}, \text{ where } y = A^{1/2}x$$

**Example 7.2** (Semidefinite Programming). If  $\mathcal{K}$  is taken as the cone of *positive semidefinite matrices*, i.e.,  $\mathbb{S}^n$  or  $\mathbb{H}^n$ , then the conic optimization model is called *Semidefinite Programming* (SDP).

Here the standard model treats the matrix as decision variables:

min 
$$C \bullet X$$
  
such that  $A_i \bullet X = b_i, i = 1, ..., m$   
 $X \succeq 0$ 

where  $X \bullet Y$  denotes the inner product between X and Y:

$$X \bullet Y = \sum_{i,j} X_{ij} Y_{ij} = \operatorname{trace}(X^{\mathrm{T}}Y)$$

In general,  $LP \subseteq SOCP \subseteq SDP$ .

## Example 7.3 (Best Location Problem).

$$\min \quad \sum_{i=1}^{n} \omega_i ||x - a_i||$$

Or equivalently,

min 
$$\sum_{i=1}^{n} \omega_i t_i$$
  $\begin{pmatrix} t_i \\ x - a_i \end{pmatrix} \in SOC, i = 1, \dots, m$ 

### **Example 7.4** (QCQP). Consider the following QCQP

$$\begin{aligned} & \min & & x^{\mathrm{T}}Q_0x + 2b_0^{\mathrm{T}}x \\ & \text{such that} & & x^{\mathrm{T}}Q_ix + 2b_i^{\mathrm{T}}x + c_i \leq 0, \ i = 1, \dots, m \end{aligned}$$

where  $Q_i \succeq 0, i = 0, \ldots, m$ .

Observe the tricks:

$$\begin{pmatrix} t \\ x \end{pmatrix} \in \text{SOC} \Longleftrightarrow t \ge 0, t^2 \ge x^{\mathsf{T}} x$$

Therefore,

$$t \geq x^{\mathrm{T}}x \Longleftrightarrow \begin{cases} \frac{t+1}{2} \geq 0 \\ (\frac{t+1}{2})^2 \geq (\frac{t-1}{2})^2 + x^{\mathrm{T}}x \end{cases} \Longleftrightarrow \begin{pmatrix} \frac{t+1}{2} \\ \frac{t-1}{2} \\ x \end{pmatrix} \in \mathrm{SOC}(n+2)$$

## **Example 7.5** (Finding Largest Eigenvalue).

$$\begin{array}{ll} \text{min} & t \\ \text{such that} & tI - A \in \mathbb{S}^n_+ \end{array}$$

Or equivalently,

$$\begin{array}{ll} \min & t \\ \text{such that} & tI-A=X \\ & X\succeq 0 \end{array}$$

min 
$$t$$
  
such that  $tI - A_0 - \sum_{j=1}^m x_j A_j \in \mathbb{S}^n_+$ 

Furthermore, the sum of first k largest eigenvalues of a matrix can be found using SDP.

**Example 7.6.** The polynomial optimization problem can be solved using SDP:

min 
$$x^{2n} + a_1 x^{2n-1} + \dots + a_{2n}$$

Equivalently,

$$\max \quad t \\ x^{2n} + a_1 x^{2n-1} + \dots + a_{2n} - t \ge 0, \ \forall x \in \mathbb{R}$$

**Definition 7.3** (Dual Cone). Let  $K \in \mathbb{R}^n$  be a closed convex cone. Its dual cone is defined as

$$\mathcal{K}^* = \{ \boldsymbol{y} \mid \langle \boldsymbol{x}, \boldsymbol{y} \rangle \ge 0, \forall \boldsymbol{x} \in \mathcal{K} \}$$

**Theorem 7.1** (Bipolar Theorem). If  $K \in \mathbb{R}^n$  is a closed convex cone, then

$$(\mathcal{K}^*)^* = \mathcal{K}$$

1. Unconstrained optimization:

$$\min f(x)$$

2. Constrained optimization:

3. Regulated convex optimization

$$\min \quad f(x) + h(x)$$
with  $x \in \mathcal{X}$ 

where h denotes the regularization function.

4. Structured optimization:

$$\begin{array}{ll}
\min & f(x) \\
\text{with} & x \in \mathcal{X} \\
& Ax = b
\end{array}$$

5. Separable optimization but with coupling constraint:

min 
$$f(x) + g(y)$$
  
with  $x \in \mathcal{X}, y \in \mathcal{Y}$   
 $Ax + By = b$ 

#### **Basic Inequalities**

1. (Without convexity) Given that  $\|\nabla f(x) - \nabla f(y)\| \le L\|x - y\|$ , we imply

$$f(u) \le f(v) + \nabla^{\mathrm{T}} f(v) \cdot (u - v) + \frac{L}{2} ||u - v||^2$$

2. If f is convex for  $\alpha \in \partial f(x)$ , then

$$f(u) \ge f(v) + \alpha^{\mathrm{T}}(u - v), \ \forall u, v$$

3. Let  $x^* = \arg\min_{x \in \mathcal{X}} f(x)$ , then

$$\nabla^{\mathrm{T}} f(x^*)(x - x^*) \ge 0, \ \forall x \in \mathcal{X}$$

What about non-differentiable f(x)?

## Reviewing

#### 8.1 KKT condition

**Definition 8.1** (Tangent Cone). Given a subset  $\mathcal{X} \subseteq \mathbb{R}^n$  and  $\hat{x} \in \mathcal{X}$ , the tangent cone of  $\mathcal{X}$  at  $\hat{x}$  is given by:

$$\mathcal{T}(\hat{x}) = \{0\} \cup \left\{ y \neq 0 \middle| \exists x^k \in \mathcal{X} : x^k \to \hat{x}, \ \& \frac{x^k - \hat{x}}{\|x^k - \hat{x}\|} \to \frac{y}{\|y\|} \right\}$$

**Proposition 8.1.** A vector y is tangent of X at  $\hat{x}$  iff exists  $\{x_k\} \subseteq X$  with  $x_k \to \hat{x}$  and positive  $\{\alpha_k\}$  such that

$$\alpha_k \to 0, \frac{x_k - x}{\alpha_k} \to y.$$

*Proof.* Let y be tangent of X at  $\hat{x}$ . For y = 0, take  $x_k = \hat{x}$  and  $\alpha_k = 1/k$ ; otherwise take  $\{x_k\}$  be the same as in the definition of tangent cone, and  $\alpha_k = \|x_k - \hat{x}\|/\|y\|$ .

Conversely, if y=0, then y is tangent; otherwise, we imply  $x_k\to \hat{x}$  and

$$\frac{x_k - \hat{x}}{\|x_k - \hat{x}\|} = \frac{(x_k - \hat{x})/\alpha_k}{\|(x_k - \hat{x})/\alpha_k\|} \to \frac{y}{\|y\|}$$

82 Reviewing

**Proposition 8.2.** Suppose that  $x^*$  is a local minimum for closed set  $\mathcal{X}$ , then

$$\nabla f(x^*) \in (\mathcal{T}(x^*))^*, \iff \nabla^{\mathrm{T}} f(x^*) y \ge 0, \forall y \in \mathcal{T}(x^*)$$

*Proof.* Suppose that y is a nonzero tangent of X at  $x^*$ , then exists  $\{\xi^k\}$  and  $\{x^k\} \subseteq X$  with  $x^k \neq x^*$  such that

$$\xi^k \to 0, x^k \to x^*, \frac{x^k - x^*}{\|x^k - x^*\|} = \frac{y}{\|y\|} + \xi^k$$

By MVT,  $f(x^k) = f(x^*) + \nabla f(\tilde{x}^k)^{\mathrm{T}}(x^k - x^*)$ , i.e.,

$$f(x^k) = f(x^*) + \frac{\|x^k - x^*\|}{\|y\|} \nabla f(\tilde{x}^k)^{\mathrm{T}} y^k,$$

with  $y^k = y + ||y|| \xi^k$ . Suppose on the contrary that y is a descent direction of f at  $x^*$ , i.e.,  $\nabla f(x^*)^T y < 0$ , then argue that  $\nabla f(\tilde{x}^k)^T y^k < 0$ , which follows that  $f(x^k) < f(x^*)$ .

**Corollary 8.1.** For convex X, all  $x - x^*$  belong to  $T(x^*)$ , and therefore  $\nabla^{\mathrm{T}} f(x^*)(x - x^*) \geq 0$  for any  $x \in X$ . Nondifferentiable:  $d^{\mathrm{T}}(x - x^*) \geq 0$ , where d is some vector in  $\partial f(x^*)$ .

**Example 8.1.** For the polyhedral  $\mathcal{X} = \{x \mid a_i^{\mathrm{T}} x \leq b_i, i = 1, \dots, m, a_i^{\mathrm{T}} x = b_i, i = m + 1, \dots, m + n\}$ , we denote  $I(\hat{x}) = \{m + 1, \dots, m + n\} \cup \{i \in 1 : m \mid a_i^{\mathrm{T}} \hat{x} = b_i\}$  Then the tangent cone at  $\hat{x}$  is  $\mathcal{T}(\hat{x}) = \{d \mid a_i^{\mathrm{T}} d = 0, i = m + 1, \dots, m + n; a_i^{\mathrm{T}} d \leq 0, i \in I(\hat{x}) \cap \{1 : m\}\}$ 

One direction is clear by noting the tangent cone contains all feasible direction. For the other, for  $i \in I(\hat{x})$ , we have

$$a_i^{\mathrm{T}} d = \lim_{k \to \infty} \frac{a_i^{\mathrm{T}} x_k - a_i^{\mathrm{T}} \hat{x}}{\alpha_k} = \lim_{k \to \infty} \frac{a_i^{\mathrm{T}} x_k - b_i}{\alpha_k}$$

Therefore, for  $i \in \{m+1: m+n\}$ , we have  $a_i^{\mathrm{T}}d = 0$ , for  $i \in I(\hat{x}) \cap \{1: m\}$  we have  $a_i^{\mathrm{T}}d \leq 0$ .

Suppose  $\mathcal{X} = \{x \mid h_i(x) = 0, i = 1 : m; g_j(x) \leq 0, j = 1 : r\}$  and  $I(\hat{x}) = \{j \mid g_j(\hat{x}) = 0\}$ . Introduce the computable cone

$$\mathcal{C}(\hat{x}) = \{ d \mid (\nabla h_i(\hat{x}))^{\mathrm{T}} d = 0, i = 1, \dots, m \mid (\nabla g_j(\hat{x}))^{\mathrm{T}} d \leq 0, \forall j \in I(\hat{x}) \}$$
  
Then  $\mathcal{T}(\hat{x}) \subseteq \mathcal{C}(\hat{x})$ 

**Proposition 8.3.** Under Linear Independence Constraint Qualification, i.e., for any  $x \in \mathcal{X}$ ,

$$\nabla h_i(x), i = 1, \dots, m; \ \nabla g_i(x), j \in I(x)$$

are always linearly independent. Together with the Lipschitz continuity of gradient,  $\mathcal{T}(\hat{x}) = \mathcal{C}(\hat{x})$ .

*Proof.* Ignore equality constraints. By Gordan's theorem, due to LICQ, exists  $\hat{d}$  such that  $\nabla g_i(\hat{x})^T \hat{d} < 0, i \in I(\hat{x})$ . Then for  $x(t) = \hat{x} + td + t^{1.5}\hat{d}$ , we have  $g_i(x(t)) < 0, i \in I(\hat{x})$ , with  $t \in (0, \varepsilon)$  and  $\varepsilon$  sufficiently small. Therefore,  $d \in \mathcal{T}(\hat{x})$ .

### 8.2 Basic Algorithm

For lipschitz continous f,  $\min_{x \in \mathcal{L}(x^0, g(x^0), \dots, g(x^{k-1}))} f(x) - f(x^*) \ge \mathcal{O}(1/\sqrt{k})$ ; for lipschitz continous gradient f,  $\mathcal{O}(1/k^2)$ .

**Theorem 8.2.** For  $0 \prec mI \preceq \nabla^2 f(x) \preceq MI$ , and line search

$$t_k = \arg\min_t f(x^k - t\nabla f(x^k)),$$

we have 
$$f(x^{k+1}) - f(x^*) \le (1 - m/M)(f(x^k) - f(x^*)).$$

*Proof.* By MVT, one can show that

$$m||x-x^*|| \le ||\nabla f(x)|| \le M||x-x^*||, \quad f(x+\alpha d) \le f(x) - \frac{1}{2M}||\nabla f(x)||^2$$

Further,  $f(x) - f(x^*) \le \|\nabla f(x)\| \|x - x^*\| - \frac{m}{2} \|x - x^*\|^2 \le \frac{1}{2m} \|\nabla f(x)\|^2$ . Therefore,

$$f(x + \alpha d) \le f(x) - \frac{1}{2M} \|\nabla f(x)\|^2 \le f(x) - \frac{m}{M} (f(x) - f(x^*))$$

Or we have the Q-convergence rate

$$f(x + \alpha d) - f(x^*) \le (1 - m/M)(f(x) - f(x^*))$$

84 Reviewing

Dimishing step size:

$$f(x^{k+1}) \le f(x^k) - \frac{\alpha_k}{2} \|\nabla f(x^k)\|^2$$

Therefore converge. Also, we imply  $c \sum_k \alpha^k ||\nabla f(x^k)||^2 < \infty$ , i.e.,

$$\liminf \|\nabla f(x^k)\| \to 0 \implies f(x) - f(x^*) \le \frac{1}{2m} \|\nabla f(x)\|^2$$
$$\implies f(x^{k+1}) - f(x^*) \le (1 - m\alpha_k)(f(x^k) - f(x^*)),$$

which follows that  $\lim f(x^n) \to f(x^*)$  and  $\|\nabla f(x^n)\|^2 \le 2M(f(x^n) - f(x^*))$ .

Armijo's rule: Fix  $s>0, \beta\in(0,1), \gamma\in(0,1),$  and  $\ell$  be the smallest integer such that

$$f(x^k) - f(x^k + \beta^{\ell} s d^k) \ge -\gamma s \nabla f(x^k)^{\mathrm{T}} d^k$$

and  $\alpha_k = s\beta^{\ell}$ . Therefore,

$$f(x^k) \ge f(x^k + \alpha_k d^k) - \gamma \alpha_k \nabla f(x^k)^{\mathrm{T}} d^k$$
  
$$f(x^k) < f(x^k + \alpha_k / \beta d^k) - \gamma \alpha_k / \beta \nabla f(x^k)^{\mathrm{T}} d^k$$

which follows that

$$\begin{aligned} \alpha_k &> \frac{2\beta(1-\gamma)}{M} \\ f(x^k + \alpha_k d^k) &\leq f(x^k) + \gamma \alpha_k \nabla f(x^k)^{\mathrm{T}} d^k \\ &\leq f(x^k) - 4\beta \gamma (1-\gamma) \frac{m}{M} (f(x^k) - f(x^*)) \end{aligned}$$

Non-strongly convexity with line-search:

$$f(x + \alpha d) \le f(x) - \frac{1}{2M} \|\nabla f(x)\|^2$$
$$f(x) - f(x^*) \le \|\nabla f(x)\| \|x - x^*\|$$

Let  $||x^k - x^*||$  and  $e(x^k) = f(x^k) - f(x^*)$ , which follows that

$$e(x^{k+1}) \le e(x^k) - ce(x^k)^2, \quad c = \frac{1}{2MC^2}$$

which implies

$$\frac{1}{e(x^{k+1})} \geq \frac{1}{e(x^k)} + \frac{c}{1 - ce(x^k)} \geq \frac{1}{e(x^k)} + c \geq \frac{1}{e(x^1)} + kc$$

Without second order differentiability:

$$||\sigma|| ||x - y||^2 \le (\nabla f(x) - \nabla f(y))^{\mathrm{T}} (x - y) \le L ||x - y||^2$$

we imply

$$\frac{\sigma}{2}||y - x||^2 \le f(y) - f(x) - \nabla f(x)^{\mathrm{T}}(y - x) \le \frac{L}{2}||y - x||^2$$

and

$$f(x - \alpha \nabla f(x)) - f(x^*) \le (1 - \sigma/L)(f(x) - f(x^*))$$

Local convergence on Newton's method:

$$x^{k+1} - x^* = (\nabla^2 f(x^k))^{-1} \left\{ \int_0^1 [\nabla^2 f(x^k) - \nabla^2 f(x^* + t(x^k - x^*))](x^k - x^*) dt \right\}$$

Least squares:  $f(x) = \frac{1}{2} \sum_{i=1}^{m} f_i(x)^2$ , then

$$\nabla f(x) = \sum_{i=1}^{m} f_i(x) \nabla f_i(x), \quad \nabla^2 f(x) = \sum_{i=1}^{m} [\nabla f_i(x) \nabla f_i(x)^{\mathrm{T}} + f_i(x) \nabla^2 f_i(x)]$$

#### 8.3 Interior Point Method

Remall the primal and dual LP with slater condition holds:

min 
$$c^{T}x$$
 max  $b^{T}y$   
with  $Ax = b$ ,  $A^{T}y + s = c$   
 $x > 0$   $s > 0$ 

Define the interior region

$$\mathcal{F}^{\circ}(P) = \{ x \in \mathbb{R}^n \mid Ax = b, x > 0 \}$$
$$\mathcal{F}^{\circ}(D) = \{ (y, s) \in \mathbb{R}^m \times \mathbb{R}^n \mid A^{\mathrm{T}}y + s = c, s > 0 \}$$

Consider the problem  $(P_{\mu})$ :  $\min_{\mathcal{F}^{\circ}(P)} B_{\mu}(x) := c^{\mathrm{T}}x - \mu \ln x$ . By KKT condition,

• Suppose  $x(\mu)$  is a solution for  $(P_{\mu})$ , and there exists  $y(\mu)$  such that

$$c - \mu x(\mu)^{-1} - A^{\mathrm{T}} y(\mu) = 0.$$

Define 
$$s(\mu) = \mu x(\mu)^{-1} = c - A^{T} y(\mu)$$
.

86 Reviewing

•  $(y(\mu), s(\mu))$  is a solution to  $(D_{\mu})$ , duality gap  $x(\mu)^{\mathrm{T}} s(\mu) = n\mu$ .

- Boundedness of  $x(\mu)$  and  $s(\mu)$ :  $0 = (\tilde{x} x(\mu))^{\mathrm{T}}(\tilde{s} s(\mu))$
- Limit of central path: suppose as subsequence  $\mu_k \to 0$ ,

$$(x(\mu_k), y(\mu_k), s(\mu_k)) \rightarrow (\hat{x}, \hat{y}, \hat{s}).$$

Construct  $B = \{i \mid \hat{x}_i > 0\}$  and  $N = \{j \mid \hat{s}_j > 0\}$ . Since  $\hat{x}$  primal optimal,  $(\hat{y}, \hat{s})$  dual optimal,  $B \cap N = \emptyset$ . From  $0 = (\hat{x} - x(\mu_k))^{\mathrm{T}}(\hat{s} - s(\mu_k))$  we imply

$$n = \sum_{i \in B} \frac{\hat{x}_i}{x_i(\mu_k)} + \sum_{j \in N} \frac{\hat{s}_j}{s_j(\mu_k)} \implies |B| + |N| = n.$$

Therefore, B, N forms a partition of  $\{1: n\}$ 

• Uniqueness of  $\hat{x}$ : note that  $\hat{x}_B$  is unique since it's optimal for the strict concave problem  $\{\max \sum_{i \in B} \ln x_i \mid A_B x_B = b\}$  by verifying KKT condition:

$$A_B x_B = b, \ x_B^{-1} \in \text{Range}(A_B^{\mathrm{T}})$$

**Proposition 8.4.** For  $B_{\mu}$  to have a minimizer on  $\mathcal{F}^{\circ}(P)$ , it's necessary and sufficient to let  $\mathcal{F}^{\circ}(P)$  and  $\mathcal{F}^{\circ}(D)$  be non-empty

Proof. Sufficiency: In this case, when  $(\hat{x}, \hat{y}, \hat{s})$  is feasible,  $B_{\mu}(x) = \hat{y}^{\mathrm{T}}b + \sum_{j=1}^{n}(\hat{s}_{j}x_{j} - \mu \ln x_{j})$ . Note that when  $x_{j} \to 0$  or  $x_{j} \to \infty$ ,  $B_{\mu}(x) \to \infty$ . Therefore, we find  $x_{j}^{l} > 0$ ,  $x_{j}^{u} > 0$  such that  $B_{\mu}(x) \leq B_{\mu}(\hat{x})$ , we have  $0 < x^{l} \leq x_{j} \leq x^{u}, \forall j$ . Since  $B_{\mu}$  is continuous over a non-empty closed and bounded set  $\mathcal{C} = \{x \in \mathcal{F}^{\circ}(P), x^{l} \leq x \leq x^{u}\}$ , by Weierstrass theorem, exists a minimizer of  $B_{\mu}$  on  $\mathcal{C}$ .

Necessity: check KKT condition.

**Proposition 8.5.** For  $\mathcal{F}^{\circ}(P)$  and  $\mathcal{F}^{\circ}(D)$  be non-empty, a necessary and sufficient condition for  $x \in \mathcal{F}^{\circ}(P)$  be the unique minimizer of  $B_{\mu}$  is that exists  $(y, s) \in \mathcal{F}^{\circ}(D)$  such that

$$A^{\mathrm{T}}y + s = c$$
$$Ax = b$$
$$x \circ s = \mu$$

87

*Proof.* Consider the KKT condition for the strongly convex problem  $\{\min c^{\mathrm{T}}x - \mu \ln x \mid Ax = b\}$ 

### 8.4 Machine Learning

The solution for min  $\frac{1}{2} \| \mathbf{A}^{\mathrm{T}} y - \mathbf{b} \|^2 + \frac{\gamma}{2} \| \mathbf{y} \|^2$  is

$$y^* = (\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}} + \gamma \boldsymbol{I})^{-1}\boldsymbol{A}\boldsymbol{b}$$

Sparse optimization:

min 
$$\operatorname{rank}(X)$$
  
 $X_{ij} = r_{ij}$ , known entries  $(i, j) \in I$ 

Convex relaxation:

min 
$$||X||_*$$
  
 $X_{ij} = r_{ij}$ , known entries  $(i, j) \in I$ 

Or min 
$$||X||_* + \mu \sum_{(i,j) \in I} (X_{ij} - r_{ij})^2$$
  
Logistic regression model: min  $\sum_{i=1}^m \ln(1 + \exp(-s_i(w^T x_i - b)))$ 

#### 8.5 First-order Methods

1. Conditional gradient:

$$y^{k+1} = \arg\min_{y \in \mathcal{X}} (\nabla f(x^k))^{\mathrm{T}} (y - x^k)$$
$$x^{k+1} = x^k + t_k (y^{k+1} - x^k)$$

The lipschitz condition for gradient implies

$$f(y) \le f(x) + (\nabla f(x))^{\mathrm{T}} (y - x) + \frac{L}{2} ||y - x||^2$$

Then we imply

$$f(x^{k+1}) \le f(x^k) + t_k (\nabla f(x^k))^{\mathrm{T}} (y^{k+1} - x^k) + \frac{L}{2} t_k^2 D^2$$
  
$$\le f(x^k) + (f(x^*) - f(x^k)) t_k + \frac{LD^2 t_k^2}{2}$$

88 Reviewing

2. Proximal point algorithm:  $x^{k+1} = \arg\min_{x \in \mathcal{X}} f_k(x) + \frac{1}{2t_k} ||x - x^k||^2$ , where  $f_k$  is approximation of f.

The subgradient inequality is that  $f(y) \ge f(x) + \nabla f(x)^{\mathrm{T}}(y-x)$ . For iteration  $\ell$ ,

$$\left(d^{\ell+1} - \frac{x^{\ell} - x^{\ell+1}}{t_{\ell}}\right)^{\mathrm{T}} (x - x^{\ell+1}) \ge 0, \forall x \in \mathcal{X}$$

$$f_{\ell}(x) - f_{\ell}(x^{\ell+1}) \ge \left(\frac{x^{\ell} - x^{\ell+1}}{t_{\ell}}\right)^{\mathrm{T}} (x - x^{\ell+1})$$

$$\|x^{\ell} - x\|^{2} \ge \|x^{\ell+1} - x\|^{2} + 2t_{\ell}(f_{\ell}(x^{\ell+1}) - f_{\ell}(x)) + \|x^{\ell+1} - x^{\ell}\|^{2}$$

$$\|x^{\ell+1} - x^{\ell}\|^{2} \le \|x^{\ell} - x\|^{2} - 2t_{\ell}(f_{\ell}(x^{\ell+1}) - f_{\ell}(x)) - \|x^{\ell+1} - x^{\ell}\|^{2}$$

The proximal point algorithm yields monotonically improving iterates:

$$f(x^{\ell+1}) \le f_{\ell}(x^{\ell+1}) + \frac{L}{2} ||x^{\ell+1} - x^{\ell}||^2 \le f_{\ell}(x^{\ell}) = f(x^{\ell})$$

3. Gradient Projection:  $x^{k+1} = [x^k - t_k \nabla f(x^k)]_{\mathcal{X}}$ , i.e.,

$$x^{k+1} = \arg\min_{x \in \mathcal{X}} (\nabla f(x^k))^{\mathrm{T}} (x - x^{\ell}) + \frac{1}{2t_{\ell}} ||x - x^{\ell}||^2$$

This is because

$$(d^{\ell})^{\mathrm{T}}(x-x^{\ell}) + \frac{1}{2t_{\ell}} \|x - x^{\ell}\|^{2} = \frac{1}{2t_{\ell}} \|x - (x^{\ell} - t_{\ell}d^{\ell})\|^{2} - \frac{t_{\ell}}{2} \|d^{\ell}\|^{2}$$

4. ISTA:

$$x^{k+1} = \arg\min_{x \in \mathcal{X}} \nabla f(x^k)^{\mathrm{T}} (x - x^k) + \frac{L}{2} ||x - x^k||^2 + h(x)$$

Apply the optimality condition,

$$h(x^{\ell+1}) \le h(x) - h'(x^{\ell+1})^{\mathrm{T}}(x - x^{\ell+1})$$
  
 
$$\le h(x) + \nabla f(x^{\ell})^{\mathrm{T}}(x - x^{\ell+1}) + L(x^{\ell+1} - x^{\ell})^{\mathrm{T}}(x - x^{\ell+1})$$

Then bound  $f(x^{\ell+1})$ :

$$f(x^{\ell+1}) \leq f(x) + \nabla f(x^{\ell})^{\mathrm{T}} (x^{\ell+1} - x) + \frac{L}{2} ||x^{\ell+1} - x^{\ell}||^2$$

Then we bound  $h(x^{\ell+1}) + f(x^{\ell+1})$ , by using

$$2(w_1 - w_2)^{\mathrm{T}}(w_3 - w_1) + \|w_1 - w_3\|^2 = \|w_2 - w_3\|^2 - \|w_1 - w_2\|^2$$

5. Bregman Distance:  $B(y,x) = \Phi(y) - \Phi(x) - \nabla \Phi(x)^{\mathrm{T}}(y-x)$ , where  $\Phi$  is smooth and strongly convex.

$$x^{k+1} = \arg\min_{x \in \mathcal{X}} (d^k)^{\mathrm{T}} (x - x^k) + \frac{1}{t_k} B(x, x^k), \ d^k \in \partial f(x^k).$$

Observe  $B(y, x) \ge \sigma ||y - x||$  and

$$B(w, u) + B(u, v) - B(w, v) = [\nabla \Phi(v) - \Phi(u)]^{T}(w - u)$$

Then bound

$$t^{\ell}(d^{\ell})^{\mathrm{T}}(x^* - x^{\ell}) \ge B(x^*, x^{\ell+1}) - B(x^*, x^{\ell}) + \sigma \|x^{\ell} - x^{\ell+1}\|^2$$

and

$$t^{\ell}(f(x^*) - f(x^{\ell})) \ge B(x^*, x^{\ell+1}) - B(x^*, x^{\ell}) + \sigma \|x^{\ell} - x^{\ell+1}\|^2 - \left(\frac{\tau}{2} \|x^{\ell} - x^{\ell+1}\|^2 + \frac{t_{\ell}^2}{2\tau} \|d^{\ell}\|^2\right), \forall \tau$$

Let  $\tau = 2\sigma$  and  $t_{\ell} = 1/\sqrt{k}$ .

For Lipschitz continuity, bound  $t_{\ell}(d^{\ell})^{\mathrm{T}}(x^{\ell+1}-x^{\ell})$ .

## The Distribution and Installation

### 9.1 Pre-requisites

You will need a working LaTeX installation. We recomend using pdflatex to process the files. You will also need biber.exe installed. This is distributed as part of the latest versions of LiveTex and MikTex. If you have problems, please let us know.

#### 9.2 The Distribution

The distribution contains 2 folders: nowfnt and nowfnttexmf.

#### 9.2.1 Folder nowint

This folder contains the following files using a flat stucture required to compile a FnT issue:

- $\bullet$  essence\_logo.eps
- $\bullet$  essence\_logo.pdf
- $\bullet \ \ now\_logo.eps$
- $\bullet$  now\_logo.pdf

9.3. Installation 91

- nowfnt.cls
- nowfnt-biblatex.sty
- NOWFnT-data.tex

It also contains the following folders:

**journaldata** A set of data files containing the journal-specific data for each journal. There are three files per journal:

- <jrnlcode>-editorialboard.tex
- <jrnlcode>-journaldata.tex
- <jrnlcode>-seriespage.tex

<jrnlcode> is the code given in Appendix A. You will need these three files to compile your article.

**SampleArticle** This folder contains this document as an example of an article typeset in our class file. The document is called FnTarticle.tex. It also contains this PDF file and the .bib file.

#### 9.2.2 Folder nowfnttexmf

This folder contains all the files required in a texmf structure for easy installation.

#### 9.3 Installation

If your LATEX installation uses a localtexmf folder, you can copy the nowtexmf folder to the localtexmf folder and make it known to your TEX installation. You can now proceed to use the class file as normal.

If you prefer to use the flat files, you will need to copy all the required files each time into the folder in which you are compiling the article. Do not forget to copy the three data files for the specific journal from the folder journaldata.

You may need to configure your TEX editor to be able to run the programs. If you have problems installing these files in your own system, please contact us. We use Computer Modern fonts for some of the

journals. You will need to make sure that these fonts are installed. Refer to your system documentation on how to do this.

# **10**

## **Quick Start**

The now-journal class file is designed is such a way that you should be able to use any commands you normally would. However, do **not** modify any class or style files included in our distribution. If you do so, we will reject your files.

The preamble contains a number of commands for use when making the final versions of your manuscript once it has been accepted and you have been instructed by our production team.

### 10.1 \documentclass

The options to this command enable you to choose the journal for which you producing content and to indicate the use of biber.

\documentclass[<jrnlcode>,biber]{nowfnt}.

<jrnlcode> is the pre-defined code identifying each journal. See Appendix A for the appropriate <jrnlcode>. 94 Quick Start

### 10.2 \issuesetup

These commands are only used in the final published version. Leave these as the default until our production team instructs you to change them.

### 10.3 \maintitleauthorlist

This is the authors list for the cover page. Use the name, affilliation and email address. Separate each line in the address by \\.

Separate authors by \and. Do not use verbatim or problematic symbols. \_ (underscore) in email address should be entered as \\_. Pay attention to long email addresses.

If your author list is too long to fit on a single page you can use double column. In this case, precede the \maintitleauthorlist command with the following:

\booltrue{authortwocolumn}

## 10.4 \author and \affil

These commands are used to typeset the authors and the afilliations on the abstract page of the article and in the bibliographic data.

**\author** uses an optional number to match the author with the affiliation. The author name is written <surname>, <firstname>.

**\affil** uses an optional number to match the author with the author name. The content is <affiliation>; <email address>.

## 10.5 \addbibresource

Use this to identify the name of the bib file to be used.

# 11

# Style Guidelines and LATEX Conventions

In this section, we outline guidelines for type setting and using IATEX that you should follow when preparing your document

#### 11.1 Abstract

Ensure that the abstract is contained within the \begin{abstract}
environment.

## 11.2 Acknowledgements

Ensure that the acknowledgements are contained within the \begin{acknowledgements} environment.

#### 11.3 References

now publishers uses two main reference styles. One is numeric and the other is author/year. The style for this is pre-defined in the  $\LaTeX$ 

distribution and must not be altered. The style used for each journal is given in the table in Appendix A. Consult the sample-now.bib file for an example of different reference types.

The References section is generated by placing the following commands at the end of the file.

\backmatter \printbibliography

#### 11.4 Citations

Use standard \cite, \citep and \citet commands to generate citations. Run biber on your file after compiling the article. This will automatically create the correct style and format for the References.

#### 11.4.1 Example citations

This section cites some sample references for your convenience. These are in author/year format and the output is shown in the References at the end of this document.

Example output when using citet: arvolumenumber is a citation of reference 1 and Bertsekas (1995) is a citation of reference 2.

Example output when using citep: (beditorvolumenumber) is a citation of reference 3 and (inproceedings) is a citation of reference 4.

## 11.5 Preface and Other Special Chapters

If you want to include a preface, it should be defined as follows:

```
\chapter*{Preface}
\markboth{\sffamily\slshape Preface}
  {\sffamily\slshape Preface}
```

This ensures that the preface appears correctly in the running headings. You can follow a similar procedure if you want to include additional unnumbered chapters (e.g., a chapter on notation used in the paper), though all such chapters should precede Chapter 1.

Unnumbered chapters should not include numbered sections. If you want to break your preface into sections, use the starred versions of section, subsection, etc.

### 11.6 Long Chapter and Section Names

If you have a very long chapter or section name, it may not appear nicely in the table of contents, running heading, document body, or some subset of these. It is possible to have different text appear in all three places if needed using the following code:

\chapter[Table of Contents Name]{Body Text Name}
\chaptermark{Running Heading Name}

Sections can be handled similarly using the **sectionmark** command instead of **chaptermark**.

For example, the full name should always appear in the table of contents, but may need a manual line break to look good. For the running heading, an abbreviated version of the title should be provided. The appearance of the long title in the body may look fine with LATEX's default line breaking method or may need a manual line break somewhere, possibly in a different place from the contents listing.

Long titles for the article itself should be left as is, with no manual line breaks introduced. The article title is used automatically in a number of different places by the class file and manual line breaks will interfere with the output. If you have questions about how the title appears in the front matter, please contact us.

#### 11.7 Internet Addresses

The class file includes the url package, so you should wrap email and web addresses with \url{}. This will also make these links clickable in the PDF.

# **12**

# **Compiling Your FnT Article**

During the first run using the class file, a number of new files will be created that are used to create the book and ebook versions during the final production stage. You can ignore these until preparing the final versions as described in Section 12.3. A complete list of the files produced are given in Appendix B.

## 12.1 Compiling Your Article Prior to Submission

To compile an article prior to submission proceed as follows:

- Step 1: Compile the LATEX file using pdflatex.
- Step 2: Run biber on your file.
- Step 3: Compile again using pdfLaTeX. Repeat this step.
- **Step 4:** Inspect the PDF for bad typesetting. The output PDF should be similar to FnTarticle.pdf. Work from the first page when making adjustments to resolve bad line breaks and bad page breaks. Rerun pdfLaTeX on the file to check the output after each change.

#### 12.2 Preparing the Final Versions

If you choose the option to compile the final versions of your PDF for publication, you will receive a set of data from our production team upon final acceptance. With the exception of "lastpage", enter the data into the \issuesetup command in the preamble.

**lastpage**— This is the last page number in the sequential numbering of the journal volume. You will need to enter this once you have compiled the article once (see below).

#### 12.3 Compiling The Final Versions

The final versions should be created once you received all the bibliographic data from our Production Team and you've entered it into the preamble. You will be creating a final online journal version pdf; a printed book version pdf; and an ebook version pdf.

- Step 1: Compile the LATEX file using pdfLaTeX.ArAuthor et al., 2014
- Step 2: Run biber on your file.
- Step 3: Compile again using pdfLaTeX. Repeat this step.
- **Step 4:** Inspect the PDF for bad typesetting. The output PDF should be similar to FnTarticle.pdf. Work from the first page when making adjustments to resolve bad line breaks and bad page breaks. Rerun pdfLaTeX on the file to check the output after each change.
- **Step 5:** When you are happy with the output make a note of the last page number and enter this in \issuesetup.
- Step 6: Compile the article again.
- **Step 7:** Open the file <YourFilename>-nowbook.tex. This will generate the printed book version pdf.
- Step 8: Compile the LATEX file using pdflatex.
- Step 9: Run biber on your file.

- Step 10: Compile again using pdfLaTeX. Repeat this step.
- **Step 11:** Repeat steps 7-10 on the file: <YourFilename>-nowebook.tex. This will generate the ebook version pdf.
- **Step 12:** Repeat steps 7-10 on the file: <YourFilename>-nowplain.tex. This will generate a plain version pdf of your article. If you intend to post your article in an online repository, please use this version.

#### 12.4 Wednesday

**Proposition 12.1.** G is hamiltionian implies that for any nonempty  $S \subseteq V$ , G - S has at most |S| components.

**Theorem 12.1.** G is Hamiltionian if for any vetices v, w such that  $(v, w) \notin E$ ,

$$\deg(v) + \deg(w) \ge n$$

#### Knapsacle Problem

$$\max \sum_{i=1}^{n} v_i u_i$$
 such that 
$$\sum_{i=1}^{n} w_i u_i \leq W$$
 
$$u_i \in \{0, 1\}, \ i = 1, \dots, n$$

This is the binary integer programming problem, which is NP-complete. We cannot find exact solution to this problem. There are  $2^n$  possible solutions, which requires exponential time.

We can find some "pseudo"-polynomial algorithm. Assumption:

1. W is an integer.

State: remaining capacity, define as  $X_k$ .

Stage: iterm  $1, \ldots, n$ .

$$J_N(x_N) = \begin{cases} v_N & \text{if } N \le X_N \\ 0, & \text{if } w_N > X_N \end{cases}$$

$$J_N(x_{N-1}) = \begin{cases} 0 + J_N(X_N), & \text{if } w_{N-1} > X_{N-1}, \text{Here } X_N = \\ \max\{v_{N-1} + J_N(x_N), 0 + J_N(x_N)\}, & \text{if } w_{N-1} \le X_{N-1} \end{cases}$$

Here why the DP has "pesduo"-polynomial time, and the  $w_i$  should be integer?

Let's list states  $\{x_1,\ldots,x_N\}$ . For each stage k, there would be W+1. Each iteration at most 2 computation, and therefore we face  $2(W+1)\cdot N$ 

### 12.4.1 Label Correcting Methods

Shortest Path. Back up some information.

The label refers to the intermediate information.

 $A^*$ -algorithm; Bellman-Ford Algorithm

Benchmark: MILP, CPLEX, CVX.

### 12.4.2 DP problems with perfect state information

**Linear Quadratic System** Let  $x_k \in \mathbb{R}^1$  be the state;  $u_k \in \mathbb{R}^n$  be the control;  $\omega_k \in \mathbb{R}^n$  be the disturbance.

System Dynamics.

$$x_{k+1} = A_k x_k + B_k u_k + \omega_k$$

Stage cost:

$$x_k'Q_kx_k + u_k'R_ku_k$$

Here  $Q_k$  is required to be positive-semi-definite symmetric matrix;  $R_k$  to be positive-definite symmetric matrix.

$$J_{n-1}(x_{n-1}) = \min_{u_{n-1}} \mathbb{E}_{\omega} \left\{ x'_{n-1} Q_{n-1} x_{n-1} + u'_{n-1} R_{n-1} u_{n-1} + J_n(x_n) \right\}$$

where

$$J_n(x_n) = (A_{n-1}x_{n-1} + Bu_{n-1} + \omega)'Q_n(A_{n-1}x_{n-1} + Bu_{n-1} + \omega)$$

## 12.4.3 Linear Quadratic

Dynamics:

$$x_{k+1} = A_k x_k + B_k u_k + \omega_k$$

Stage cost:

$$x_k'Q_kx_k + u_k'R_ku_k, \ Q_k \succeq 0, R_k \succ 0$$

Cost to go function:

$$J_k(x_k) = \min_{u_k} \mathbb{E}_{\omega_k} [x_k' Q_k x_k + u_k' R_k u_k + J_{k+1}(x_{k+1})]$$

The final cost is

$$J_N(x_N) = x_N' Q_N x_N$$

At N-1 stage

$$x'_{N-1}Q_{N-1}x_N + u'_{N-1}R_{N-1}u_{N-1} + \mathbb{E}[(A_{N-1}x_{N-1} + B_{N-1}u_{N-1} + \omega_{N-1})'Q_N(A_{N-1}x_{N-1} + B_{N-1}u_{N-1} + \omega_{N-1})]$$

Optimization model:

$$\frac{\partial}{\partial u}(u'Hu + 2r'u + c) = 2Hu + 2r \implies Hu = -r \implies u^* = -H^{-1}r$$

For N-1 stage, we have

$$H = R_{N-1} + B'_{N-1}Q_N B_{N-1}$$

$$r' = x'_{N-1}A'_{N-1}Q_N B_N$$

$$c = x'_{N-1}(Q_{N-1} + A'_{N-1}Q_N A_{N-1})x_{N-1} + \mathbb{E}_{\omega}(\omega'_{N-1}Q_N \omega_{N-1})$$

Therefore,

$$u_{N-1}^* = -(R_{N-1} + B_{N-1}'Q_N B_{N-1})^{-1} B_N Q_N A_{N-1} x_{N-1},$$

which is linear in terms of  $x_{N-1}$ , which is so called linear controller. Therefore,

$$J_{N-1}(x_{N-1}) = x'_{N-1}K_{N-1}x_{N-1} + \mathbb{E}(\omega'_{N-1}Q_N\omega_{N-1})$$

The linear controller will be tested during mid-term or final.

$$J_0(x_0) = x_0' K_0 x_0 + \sum_{k=0}^{N-1} \mathbb{E}_{\omega} \{ \omega_k' K_{k+1} \omega_k \}$$

$$K_{k-1} = f(K_k) \implies K_{k-1} = K_k$$
, for large  $k$ .

**Riccati Equation** for stationary ststem, i.e.,  $A_k = A, B_k = B, Q_k = Q, R_k = R$ .

$$K = A'(K - KB(B'KB + R)^{-1}B'K)A + Q$$

Therefore as time goes long enough, the cost to go function  $J_k(x_k)$  will be a constant plus over stages. such a constant K is called the optimal stationary controller.

Stability. For  $u^* = Lx$ , we imply

$$x_{k+1} = Ax_k + Bu_k + \omega_k = (A + BL)x_k + \omega_k$$

Care about  $\lim_{k\to\infty} (A+BL)^k = 0$ .

Here

$$L = -(B'KB + R)^{-1}B'KA$$

It suffices to solve

$$P_{k+1} = A^2 \left( P_k - \frac{B^2 P_k^2}{B^2 P_k + R} \right) + Q$$

Then consider the case that  $A_k, B_k$  are all random matrices, i.e., independent.  $Q_k \succeq 0, R_k \succ 0$ .

$$L_k = -(R_k + \mathbb{E}(B_k' K_{k+1} B_k))^{-1} \mathbb{E}(B_j' K_{k+1} A_k)$$

Note that

$$P_{\infty} = \frac{\mathbb{E}A^2RP}{R + EB^2P} + \frac{\mathbb{E}A^2\mathbb{E}B^2 - (\mathbb{E}A)^2(\mathbb{E}B)^2}{R + \mathbb{E}B^2P}$$

Certainty Equivalence

State:  $x_k$ , inventory level

Control:  $u_k \geq 0$ , number of orders placed

Disturbance:  $\omega_k$ : damand

Dynamics:

$$x_{k+1} = (x_k + u_k - \omega_k)$$

Stage cost:

• Ordering cost:  $c \cdot u_k$ 

• Maintaining cost: full backlog. $\mathbb{E}_{\omega_k}(r(x_k+u_k-\omega_k))$ . where  $r(z)=hz^++pz^-$  is a convex function. We imply the maintaining cost is  $H(x_k+u_k)$ , which is convex.

$$J_k(x_k) = \min_{u_k \ge 0} \left\{ cu_k + H(x_k + u_k) + \mathbb{E}[J_{k+1}(x_k + u_k - \omega_k)] \right\}$$

Define  $Y = x_k + u_k$ , and therefore

$$G(Y) = cY + H(Y) + \mathbb{E}[J(Y - \omega_k)]$$

Therefore, we can always set  $Y = x_k + u_k = S_k$ , where  $S_k$  minimizes G(Y).

# Acknowledgements

The authors are grateful to Ulrike Fischer, who designed the style files, and Neal Parikh, who laid the groundwork for these style files.

**Appendices** 

# A

## **Journal Codes**

The table below shows the journal codes to be used in \documentclass. For Example: \documentclass[ACC,biber] {nowfnt}

| ${f J}$ ournal                          | <pre><jrnlcode></jrnlcode></pre> | Ref. Style  |
|-----------------------------------------|----------------------------------|-------------|
| Annals of Corporate Governance          | ACG                              | Author/Year |
| Annals of Science and Technology Policy | ASTP                             | Author/Year |
| FnT Accounting                          | ACC                              | Author/Year |
| FnT Comm. and Information Theory        | CIT                              | Numeric     |
| FnT Databases                           | DBS                              | Author/Year |
| FnT Econometrics                        | ECO                              | Author/Year |
| FnT Electronic Design Automation        | EDA                              | Author/Year |
| FnT Electric Energy Systems             | EES                              | Author/Year |
| FnT Entrepreneurship                    | ENT                              | Author/Year |
| FnT Finance                             | FIN                              | Author/Year |
| FnT Human-Computer Interaction          | HCI                              | Author/Year |
| FnT Information Retrieval               | INR                              | Author/Year |
| FnT Information Systems                 | ISY                              | Author/Year |
| FnT Machine Learning                    | MAL                              | Author/Year |
| FnT Management                          | MGT                              | Author/Year |
| FnT Marketing                           | MKT                              | Author/Year |
| FnT Networking                          | NET                              | Numeric     |
|                                         |                                  | Continues   |

108 Journal Codes

| ${f J}$ ournal                     | <jrnlcode $>$        | Ref. Style  |
|------------------------------------|----------------------|-------------|
| FnT Optimization                   | OPT                  | Numeric     |
| FnT Programming Languages          | PGL                  | Author/Year |
| FnT Robotics                       | ROB                  | Author/Year |
| FnT Privacy and Security           | $\operatorname{SEC}$ | Author/Year |
| FnT Signal Processing              | SIG                  | Numeric     |
| FnT Systems and Control            | SYS                  | Author/Year |
| FnT Theoretical Computer Science   | TCS                  | Numeric     |
| FnT Technology, Information and OM | TOM                  | Author/Year |
| FnT Web Science                    | WEB                  | Author/Year |

# B

## **Files Produced During Compilation**

The files that are created during compilation are listed below. The additional \*.tex files are used during the final production process only. See Section 12.3.

```
<YourFilename>-nowbook.tex
<YourFilename>-nowchapter.tex
<YourFilename>-nowebook.tex
<YourFilename>-nowechapter.tex
<YourFilename>-nowsample.tex
<YourFilename>-nowplain.tex
<YourFilename>.aux
<YourFilename>.bbl
<YourFilename>.bcf
<YourFilename>.blg
<YourFilename>.log
<YourFilename>.out
<YourFilename>.pdf
<YourFilename>.run.xml
<YourFilename>.synctex.gz
<YourFilename>.tex
<YourFilename>.toc
```

## References

- ArAuthor, A., B. Author, and C. Author (2014). "An article on something interesting (volume only)". *Journal of interesting Things*. 6: 1–122. I have something special to say about this publication. ISSN: 0899-8256. DOI: 10.5161/202.00000013. URL: http://www.nowpublishers.com/ (accessed on 07/10/2014).
- Bertsekas, D. (1995). "Dynamic Programming and Optimal Control". In: vol. 1.
- Sutton, R. S. (1988). "Learning to predict by the methods of temporal differences". *Machine Learning*. 3: 9–44.
- Watkins, C. J. C. H. and P. Dayan (1992). "Q-learning". In: *Machine Learning*. 279–292.