SAT-Based Model Checking: IC3 and Lazy Abstraction

Verification course Lecture 10, June 12, 2017

Part B

Incremental Construction of Inductive Clauses for Indubitable Correctness

or simply: IC3 A Simplified Description

"SAT-Based Model Checking without Unrolling", Aaron Bradley, VMCAI 2011
"Efficient Implementation of Property Directed Reachability",
Niklas Een, Alan Mishchenko, Robert Brayton, FMCAD 2011

Notations

- System is modeled as (V,I,T), where:
 - V is a finite set of variables
 - $I \subseteq 2^V$ is the set of initial states
 - $T \subset 2^{V} \times 2^{V}$ is the set of transitions

Suitable for hardware: V is over {0, 1}

- A safety property of the form AGP
 - P is a propositional formula over V

Induction for proving AGP

- The simple case: P is an inductive invariant
 - $-I \Rightarrow P$
 - $-P \wedge T \Rightarrow P'$
- Notation: P' the value of P in the next state
- I(V) => P(V)
- P(V) ∧ T(V, V') => P(V')

Induction for proving AGP

- Usually, P is not an inductive invariant
- BUT a stronger inductive invariant R may exist (strengthening)
 - I => RR ∧ T => R'R => P
- R can be computed in various ways (BDDs, kinduction, Interpolation-Sequence,...)

Inductive invariant

IC3

- The Goal: Find an Inductive Invariant stronger than P by learning relatively inductive facts (incrementally)
 - Recall: F is inductive invariant if
 - I => F
 - $F \wedge T \Rightarrow F'$
 - If F is stronger than P, i.e., F => P, then
 - F \ P \ T => F' => P'

What Makes IC3 Special?

- No unrolling of the transition relation T is required
- All previous approaches require unrolling
 - Searching for an inductive invariant
 - Unrolling = A form of strengthening
- IC3 strengthens in a different way
 - Learning relatively inductive facts locally

IC3 Basics

• Iteratively compute Over-Approximated Reachability Sequence (OARS) $\langle F_0, F_1, ..., F_k \rangle$ s.t.

```
-F_0 = INIT
```

- $F_i \Rightarrow P$: P is an invariant up to k

 $- F_i \Rightarrow F_{i+1}$: $F_i \subseteq F_{i+1}$

- $F_i \wedge T \Rightarrow F'_{i+1}$: Simulates one forward step

 F_i - over-approximates the set of states reachable within i steps

• If $F_{i+1} \Rightarrow F_i$ then fixpoint

IC3 Basics

- P is inductive relative to F if
 - $-I \Rightarrow P$
 - $F \wedge P \wedge T \Rightarrow P'$

- Notations:
 - Cube s: conjunction of literals
 - $v_1 \wedge v_2 \wedge \neg v_3$ Represents a state
 - s is a cube => ¬s is a clause (DeMorgan)

OARS

A Backward Search

- Search for a predecessor s to some error state: P ∧ T ∧ ¬P'
 - If none exists, property P holds:
 - $(P \land T \land \neg P')$ unsat IFF $(P \land T \Rightarrow P')$ valid
- Otherwise, try to block s
 - $-P=P \wedge \neg S$
 - BUT, first need to show the s is not reachable

IC3 - Initialization

- · Check satisfiability of the two formulas:
 - I \ ¬P
 - $I \wedge T \wedge \neg P'$
- If both are unsatisfiable then:
 - $-I \Rightarrow P$
 - $-I \wedge T \Rightarrow P'$
- · Therefore
 - $F_0 = I, F_1 = P$
 - $\cdot \langle F_0, F_1 \rangle$ is OARS

IC3 - Initialization

- Our OARS contains F₀ and F₁
 - If P is an inductive invariant done!
 - Otherwise:
 - F₁ should be strengthened

- P is not an inductive invariant
 - $F_1 \wedge T \wedge \neg P'$ is satisfiable
 - From the satisfying assignment get the state s that can reach the bad states

- Is s reachable or not?
 - Hard to know
 - If it is reachable a CEX exists
 - · Why?

- Is s reachable in one transition from the previous set? (Bounded reachability)
 - Check $F_0 \wedge T \wedge s'$
 - If satisfiable, s is reachable from F_0 (CEX)
 - Otherwise, block it = remove it from F₁
 - $F_1 = F_1 \land \neg s$

- Iterate this process until $F_1 \wedge T \wedge \neg P'$ becomes unsatisfiable
 - $F_1 \wedge T \Rightarrow P'$ holds
 - F₂ can be defined to be P
 - Any problems/issues with that?

- New iteration, check $F_2 \wedge T \wedge \neg P'$
 - If satisfiable, get s that can reach ¬P
 - Now check if s can be reached from F_1 by $F_1 \wedge T \wedge s'$
 - If it can be reached, get t and try to block it

- To block t, check F₀ ∧ T ∧ t'
 - If satisfiable, a CEX
 - If not, t is blocked, get a "new" t by $F_1 \wedge T \wedge s'$
 - If it can be reached, get t* and try to block it
 -You get the picture ©

General Iteration

- Given an OARS $\langle F_0, F_1, ..., F_k \rangle$, define $F_{k+1} = P$
- Apply a backward search
 - Find predecessor s in F_k that can reach a bad state
 - Check $F_k \wedge T \wedge \neg P'$
 - If none exists $(F_k \wedge T \Rightarrow P')$, move to next iteration
 - If exists, try to find a predecessor t to s in F_{k-1}
 - $(F_{k-1} \wedge T \wedge s')$
 - If none exists $(F_{k-1} \wedge T \Rightarrow \neg s')$, s is removed from F_k
 - $F_k = F_k \wedge \neg s$
 - Otherwise: Recur on (t,F_{k-1})
 - We call (t,k-1) a proof obligation
- If we can reach I, a CEX exists

That Simple?

- Looks simple
- But this "simple" solution does NOT work
- It amounts to States Enumeration
 - Too many states...
- Does IC3 enumerate states?
 - In general No.
 It applies generalization for removing more than one state at a time
 - Sometimes, yes (when IC3 does not perform well)

Generalization

Consider the case:

- State s in F_k can reach a bad state in one transition
- s in not reachable (in k transitions):
 - Therefore $F_{k-1} \wedge T \Rightarrow \neg s'$ holds
- We want to generalize this fact
 - s is a single state
 - Goal: Find a set of states, unreachable in k transitions

Generalization

- We know $F_{k-1} \wedge T \Rightarrow \neg s'$
- And, ¬s is a clause
- Generalization: Find a sub-clause $c \subseteq \neg s$ s.t. $F_{k-1} \wedge T = c'$
 - Sub clause means less literals
 - Less literals implies less satisfying assignments
 (a v b v c) vs. (a v b)
 - $c \Rightarrow \neg s$ c is a stronger fact
- $F_k = F_k \wedge c$
 - More states are removed from F_k , making it stronger/more precise (closer to R_k)

Generalization

• How do we find a sub-clause $c \subseteq \neg s \ s.t.$ $F_{k-1} \wedge T => c'$?

Options:

- 1. Trial and Error
 - Try to remove literals from ¬s while $F_{k-1} \wedge T \wedge \neg c'$ remains unsatisfiable
- 2. Use the UnSAT Core
 - $F_{k-1} \wedge T \wedge s'$ is unsatisfiable

Observation 1

- Assume a state s in F_k can reach a bad state in one transition
- Important Fact: s is not in F_{k-1} (!!)
 - $F_{k-1} \wedge T \Rightarrow F_k$
 - $-F_k \Rightarrow P$
 - If s was in F_{k-1} we would have found it in an earlier iteration
- Therefore: $F_{k-1} \Rightarrow \neg s$

Inductive Generalization

- Assume a state s in F_k can reach a bad state in one transition
- Assume s is not reachable (in k transitions):
 - We get $F_{k-1} \wedge T \Rightarrow \neg s'$ holds
- BUT, this is equivalent: $F_{k-1} \land \neg s \land T \Rightarrow \neg s'$
 - Since $F_{k-1} \Rightarrow \neg s$
- This looks familiar!
 - I => ¬S
 - Otherwise, CEX! (I ≠> ¬s ⇔ s is in I)
 - $\neg s$ is inductive relative to F_{k-1}

Inductive Generalization

- Find $c \subseteq \neg s$ s.t. $F_{k-1} \wedge c \wedge T \Rightarrow c'$ and $I \Rightarrow c$ hold
- Define $F_k^* = F_k \wedge c$
- Since $F_i \Rightarrow F_{i+1}$, c is inductive relative to F_{k-1} , F_{k-2} ,..., F_0
 - Add c to all of these sets
 - $F_i^* = F_i \wedge c$
- $F_i^* \wedge T => F_{i+1}^* \text{ hold}$

Observation 2

- Assume a state s in F_i can reach a bad state in a number of transitions
- s is also in F_j for j > i, since F_i => F_j
- a longer CEX may exist
 - s may not be reachable in i steps, but it may be reachable in j steps
- If s is blocked in F_i , it must be blocked in F_j for j > i
 - Otherwise, a CEX exists

Push Forward

Push Forward - summary

- s is removed from F_i
 - by conjoining a sub-clause c: $F_i = F_i \wedge c$
- c is a clause learnt at level i
 Try to push it forward to j >= i
 - If $F_j \wedge T \Rightarrow c' \text{ holds}$
 - c is implied by F_j in level j+1, $F_{j+1} = F_{j+1} \wedge c$
 - Else: s was not blocked at level j > i
 - Add a proof obligation (s,j)
 - If s is reachable from I, CEX!

IC3 - Key Ingredients

- Backward Search
 - Find a state s that can reach a bad state in a number of steps
 - s may not be reachable (over-approximations)
- Block a State
 - Do it efficient, block more than s
 - Generalization
- Push Forward
 - An inductive fact at frame i may also be inductive at higher frames
 - If not, a longer CEX is found

IC3 - High Level Algorithm

```
If I \land \neg P is SAT return false: // CEX
If I \wedge T \wedge \neg P' is SAT return false: // CEX
OARS = \langle I,P \rangle; // \langle F_0,F_1 \rangle
k=1
while (OARS.is_fixpoint() == false) do
    while (F_k \wedge T \wedge \neg P' \text{ is } SAT) do
        s = get_state();
        If (block_state(s, k) == false) return cex; //
        recursive function
    extend(OARS);
    push_forward();
return valid:
```