All Women Short lists Methodology

Contents

TO DO:	
Methodology	1
Women vs Men	
Short lists vs Non-Short lists	
Conservatives vs Labour	
All MPs Gender Differences	
POS Analysis	
Tokenising / Keyness	
Bigrams	
Naive Bayes classification	
Topic Models	
Discussion	
Appendix	16
Full topic model summary	10
References	23

TO DO:

2. Male MP topic models matching

Methodology

Previous research on gender differences in political speech patterns has focused on differences between male and female politicians (Yu, 2014) or on variations in Hilary Clinton's speech patterns (Bligh, Merolla, Schroedel, & Gonzalez, 2010; Jones, 2016). This paper focuses on differences in speech patterns between female Labour MPs nominated through All Women Shortlists (AWS) and female Labour MPs nominated through open short lists. We examined differences in speaking styles using the Linguistic Inquiry and Word Count 2015 (LIWC) dictionary (Pennebaker, Boyd, Jordan, & Blackburn, 2015) and the spaCy (Honnibal & Montani, 2017) Parts-of-Speech (POS) tagger. We examined differences in the topics discussed by AWS and non-AWS MPs, using χ^2 tests for individual words and for bigrams. We experimented with unsupervised Latent Dirichlet Allocation (Blei, Ng, & Jordan, 2003), and trained a Naive Bayes classifier to distinguish AWS and non-AWS speeches.

To account for the possible effects of age, parliamentary experience and cohort, and in order to compare women selected through all women short lists to women who were not (but who theoretically had the opportunity to contest all-women short lists), our analysis is been restricted only to Labour MPs first elected to the House of Commons in the 1997 General Election, up to but excluding the 2017 General Election. Comparisons between MPs of different parties are also restricted to MPs first elected in the 1997 General Election, and before the 2017 General Election. Speeches made by the Speaker, including Deputy Speakers, were also excluded. Words contained in parentheses were removed, as they are added by Hansard to provide additional information not actually spoken by the MP. Speeches and data on MPs' gender and party affiliation are

¹e.g. a reference to "the member for Bethnal Green and Bow" in keeping with Parliamentary convention of identifying MPs by their seat rather than their name would be followed by "(Rushnara Ali)".

Table 1: Labour MPs and Intakes

General	Total	Labour	Female	Labour MPs	Intake	Intake	Nominated
Election	MPs	MPs	Labour MPs	Intake	Women	Short list	Short list
1997	659	418	101 (24%)	177	64 (36%)	35	38
2001	659	412	95 (23%)	38	4 (11%)	0	0
2005	646	355	98 (28%)	40	26 (65%)	23	30
2010	650	258	81 (31%)	64	32 (50%)	28	63
2015	650	232	99 (43%)	49	31 (63%)	31	77

from a previously assembled dataset (Odell, 2018). Information on candidates selected through all women short lists is from the House of Commons Library (Kelly, 2016). Unsuccessful General Election candidates selected through all women short lists who were subsequently elected in a byelection are classified as having been selected on an all women short list.

Word classification used the Linguistic Inquiry and Word Count 2015 (LIWC) dictionary (Pennebaker et al., 2015) and tokenising tools from the Quanteda R package (Benoit, 2018). Word counts and words-persentence were calculated using stringi (Gagolewski, 2018), a wrapper to the ICU regex library.

Following Yu (2014) drawing on (Newman, Groom, Handelman, & Pennebaker, 2008) we used the following LIWC categories:

- All Pronouns (pronoun)
- First person singular pronouns (i)
- First person plural pronouns (we)
- Verbs (verb)
- Auxiliary verbs (auxverb)
- Social processes (social)
- Positive emotions (posemo)
- Negative emotions (negemo)
- Tentative words (tentat)
- Articles (article)
- Prepositions (preps)
- Anger words (anger)
- Swear words (swear)
- Cognitive processes (cogproc)
- Words longer than six letters (Sixltr)

We also included mean words-per-sentence (WPS), total speach word count (WC) and Flesch-Kincaid grade level (FK) (Kincaid, Fishburne, Rogers, & Chissom, 1975), calculated using Quanteda (Benoit, 2018) and stringi (Gagolewski, 2018).

Descriptive Statistics

Data in this table is from House of Commons library reports (Audickas, Hawkins, & Cracknell, 2017; Kelly, 2016). All women short lists were not used by Labour during the 2001 General Election.

Women vs Men

There are no categories where gender differences meet the effect size threshold of |0.2| suggested by Cohen (1988, pp. 25–26) to indicate a small effect. 4 categories – words with more than six letters, prepositions, words-per-sentence and Flesh-Kincaid grade level – exceeded the |0.1| threshold suggested by Newman et al (2008).

Table 2: Number of Speeches and Words in Dataset

Gender	Speeches	Words
All	656412	111180398
Female	148702	26231034
Male	507710	84949364
Conservatives		
All	285291	44800169
Female	48768	7363031
Male	236523	37437138
Labour		
All	261942	46494850
Female	84569	15897929
Non-All Women Shortlists	28695	5422776
All Women Shortlists	55874	10475153
Male	177373	30596921
Liberal Democrat		
All	72716	13485902
Female	7552	1503459
Male	65164	11982443
Other		
All	36463	6399477
Female	7813	1466615
Male	28650	4932862
	•	

Table 3: Effect Sizes for Male and Female Labour MPs

	Wo	men	M	en	Effect Size	
	Mean	SD	Mean	SD	Cohen's D	Magnitude
All Pronouns	10.07	4.60	10.15	4.99	0.02	negligible
First person singular pronouns	1.89	2.41	2.02	2.55	0.05	negligible
First person plural pronouns	0.97	1.42	0.99	1.51	0.01	negligible
Verbs	12.82	5.00	12.67	5.36	-0.03	negligible
Auxiliary verbs	7.91	3.45	7.93	3.69	0.01	negligible
Social processes	8.47	4.82	8.18	5.11	-0.06	negligible
Positive emotions	2.73	2.49	2.57	2.54	-0.06	negligible
Negative emotions	1.15	1.68	1.07	1.77	-0.05	negligible
Tentative words	1.48	1.74	1.58	1.90	0.05	negligible
More than six letters	10.58	3.68	10.22	3.92	-0.10	negligible
Articles	7.65	3.30	7.96	3.55	0.09	negligible
Prepositions	12.58	4.42	12.14	4.73	-0.10	negligible
Anger words	0.23	0.81	0.24	0.77	0.01	negligible
Swear words	0.00	0.06	0.00	0.09	0.01	negligible
Cognitive processes	8.68	4.83	8.82	5.15	0.03	negligible
Words per Sentence	43.63	19.68	41.15	20.04	-0.13	negligible
Total Word Count	402.79	691.27	370.18	647.36	-0.05	negligible
Flesh-Kincaid Grade Level	10.81	7.68	9.78	7.87	-0.13	negligible

Table 4: Effect Sizes for Female Labour MPs by selection process

-	All Wor	nen Short lists	Open S	horlists	Effec	t Size
	Mean	SD	Mean	SD	Cohen's D	Magnitude
All Pronouns	10.01	4.67	10.19	4.48	-0.04	negligible
First person singular pronouns	1.86	2.41	1.95	2.42	-0.04	negligible
First person plural pronouns	0.88	1.36	1.16	1.51	-0.19	negligible
Verbs	12.88	5.10	12.69	4.80	0.04	negligible
Auxiliary verbs	7.94	3.49	7.86	3.38	0.02	negligible
Social processes	8.48	4.94	8.46	4.59	0.00	negligible
Positive emotions	2.69	2.52	2.81	2.42	-0.05	negligible
Negative emotions	1.16	1.69	1.13	1.67	0.02	negligible
Tentative words	1.48	1.75	1.49	1.73	0.00	negligible
More than six letters	10.52	3.73	10.70	3.58	-0.05	negligible
Articles	7.69	3.38	7.55	3.15	0.04	negligible
Prepositions	12.55	4.54	12.63	4.15	-0.02	negligible
Anger words	0.23	0.78	0.24	0.88	-0.01	negligible
Swear words	0.00	0.06	0.00	0.05	0.01	negligible
Cognitive processes	8.59	4.90	8.86	4.69	-0.06	negligible
Words per Sentence	44.02	20.45	42.85	18.05	0.06	negligible
Total Word Count	401.77	704.40	404.78	664.97	0.00	negligible
Flesh-Kincaid Grade Level	10.97	7.97	10.48	7.06	0.07	negligible

Short lists vs Non-Short lists

The following plots show changes in the occurrences of selected LIWC terms, words-per-sentence, total word count and Flesch–Kincaid grade level, over the course of an MP's career. There do not appear to be any notable changes in speaking style over the course of female Labour MPs' careers.

There are no categories among female Labour MPs by selection process meeting the |0.2| threshold. Only one category – first person plural pronouns, d=0.19 – exceeded |0.1|.

Conservatives vs Labour

There are no categories with effect sizes exceeding |0.2| between Labour and Conservative MPs, like inter-Labour differences.

All MPs Gender Differences

POS Analysis

Part-of-speech (POS) tagging was done using spaCy (Honnibal & Montani, 2017) and the spacyr package (Benoit & Matsuo, 2018).

Tokenising / Keyness

The most commonly used words by both men and women would be protocol decorum expressions, so we calculate the keyness of words to identify gender differences in the choices of topics raised by men and women, and by short-list and non-short list women.

Table 5: Effect Sizes for All Labour and Conservative MPs

	Lab	our	Conser	vatives	Effect Size	
	Mean	SD	Mean	SD	Cohen's D	Magnitude
All Pronouns	10.12	4.87	10.62	4.84	0.10	negligible
First person singular pronouns	1.98	2.51	2.15	2.56	0.07	negligible
First person plural pronouns	0.98	1.48	1.22	1.70	0.15	negligible
Verbs	12.72	5.24	12.93	5.13	0.04	negligible
Auxiliary verbs	7.92	3.61	8.17	3.58	0.07	negligible
Social processes	8.28	5.02	8.13	4.80	-0.03	negligible
Positive emotions	2.62	2.53	2.85	2.66	0.09	negligible
Negative emotions	1.10	1.74	1.05	1.78	-0.03	negligible
Tentative words	1.55	1.85	1.57	1.88	0.01	negligible
More than six letters	10.34	3.85	10.28	3.76	-0.02	negligible
Articles	7.86	3.48	7.82	3.45	-0.01	negligible
Prepositions	12.28	4.64	12.38	4.49	0.02	negligible
Anger words	0.24	0.78	0.24	0.82	0.01	negligible
Swear words	0.00	0.08	0.00	0.10	0.00	negligible
Cognitive processes	8.77	5.05	8.86	5.06	0.02	negligible
Words per Sentence	41.95	19.96	42.76	20.16	0.04	negligible
Total Word Count	380.71	662.03	335.54	592.41	-0.07	negligible
Flesh-Kincaid Grade Level	10.12	7.82	10.41	7.91	0.04	negligible

Table 6: Effect Sizes for Male and Female MPs, All Parties

	Wo	men	M	en	Effec	Effect Size	
	Mean	SD	Mean	SD	Cohen's D	Magnitude	
All Pronouns	10.31	4.65	10.26	4.90	-0.01	negligible	
First person singular pronouns	1.99	2.45	2.00	2.52	0.00	negligible	
First person plural pronouns	1.11	1.57	1.08	1.59	-0.02	negligible	
Verbs	12.88	4.97	12.80	5.26	-0.02	negligible	
Auxiliary verbs	8.00	3.45	8.08	3.64	0.02	negligible	
Social processes	8.45	4.77	8.00	4.93	-0.09	negligible	
Positive emotions	2.84	2.53	2.69	2.58	-0.06	negligible	
Negative emotions	1.10	1.65	1.08	1.78	-0.01	negligible	
Tentative words	1.47	1.73	1.61	1.91	0.08	negligible	
More than six letters	19.73	6.94	19.25	7.18	-0.07	negligible	
Articles	7.62	3.31	8.00	3.51	0.11	negligible	
Prepositions	12.58	4.36	12.22	4.62	-0.08	negligible	
Anger words	0.23	0.78	0.25	0.82	0.02	negligible	
Swear words	0.00	0.05	0.00	0.10	0.01	negligible	
Cognitive processes	8.67	4.79	8.93	5.12	0.05	negligible	
Words per Sentence	43.25	19.45	42.06	20.12	-0.06	negligible	
Total Word Count	377.31	648.92	358.13	623.49	-0.03	negligible	
Flesh-Kincaid Grade Level	10.63	7.61	10.16	7.89	-0.06	negligible	

Table 7: Part-of-Speech Effect Sizes for Male and Female Labour MPs

	Won	Women		en	Effect Size	
Word Type	Mean	SD	Mean	SD	Cohen's D	Magnitude
All Nouns	22.18	9.60	21.66	10.96	-0.04	negligible
Plural Nouns	5.85	3.72	5.03	3.79	-0.16	negligible
Singular Nouns	15.62	9.84	16.01	11.19	0.02	negligible
Adjectives	9.58	4.78	9.28	5.29	-0.02	negligible
Adverbs	4.91	4.26	5.07	4.91	0.03	negligible
Verbs	20.94	9.52	20.78	10.28	-0.02	negligible

Table 8: Part-of-Speech Effect Sizes for AWS and non-AWS Labour MPs

	All Wo	men Short lists	Open S	Shorlists	Effect Size	
Word Type	Mean	SD	Mean	SD	Cohen's D	Magnitude
All Nouns	22.16	8.78	22.18	10.00	-0.04	negligible
Plural Nouns	6.03	3.60	5.76	3.77	-0.16	negligible
Singular Nouns	15.51	8.97	15.67	10.26	0.02	negligible
Adjectives	9.83	4.59	9.45	4.86	-0.02	negligible
Adverbs	4.95	3.78	4.89	4.49	0.03	negligible
Verbs	20.88	9.04	20.97	9.76	-0.02	negligible

Men vs Women

Keyness – a linguistic measure of the frequency of different words in two groups of texts – reveals clear gender differences in the most disproportionately common words used by female and male Labour MPs. Unsurprisingly, despite male MPs saying almost twice as many words (30601887 vs 15898845) as their female colleagues, female Labour MPs were more than two-and-a-half (2.61) times as likely to say "women". They were also much more likely to refer to "women's" and "woman". Female Labour MPs also appear much more likely to discuss "children", "people", "care", "families", "home", "parents", "work" and social policy areas such as "services", "disabled [people]" and "housing" than their male colleagues. Male MPs were more likely to refer to military topics ("Iraq", "nuclear"), and to parliamentary process and protocol – "question", "political", "conservative", "electoral", "house", "party", "argument" "liberal" and "point" are far more common in speeches by male Labour MPs than by female ones. This could suggest that male MPs are more comfortable using the traditional language of House of Commons debate.

Keyness between Labour MPs, by Gender

Short lists vs Non-Short lists

Keyness differences by selection process are not as obviously stereotypical. Nonetheless, the most common words amongst AWS MPs included "carers", "disabled", "bedroom" and "sen"². Also of note is AWS MPs

²Special Educational Needs

making more references to their "constituency" and its "constituents", suggesting that AWS MPs may draw on the fact they were elected by their constituents as a source political legitimacy, at least more than non-AWS MPs.

Keyness between Female Labour MPs, by Selection Process

Labour vs Conservative

The keyness differences between Labour and Conservative MPs are much greater than gender differences within Labour. The very high use of "Lady" by Conservative MPs is reflective of the greater proportion of female MPs in other parties, as it is often used to refer to comments by other members of the house. It may also represent a greater use of traditional hosue decorum by Conservative MPs.

Keyness between Labour and Conservative MPs

Bigrams

We created bigrams of all first person plural and singular pronouns for female Labour MPs. As above, AWS MPs are far more likely to make references to their constituency or their constituents.

Bigram Keyness in Female Labour MPs by Selection Process

Naive Bayes classification

We trained a Naive Bayes classifier with document-frequency priors and a multinomial distribution to predict the gender of speakers when given speeches by all Labour MPs in our dataset, and the selection process when only given female Labour MPs. The accuracy of both models were roughly equivalent, 70.55% accuracy when predicting gender and 70.84% when predicting short lists. By contrast, the classifier could distinguish between Labour and Conservative speeches with 74.23% accuracy.

Topic Models

Using topic models to classify text is widely used in social sciences (Grimmer & Stewart, 2013), as, when combined with the large volume of plain text data available, it allows for a rapid and consistent method of analysis. Topic modelling and other statistic methods of textual analysis are not a substitute for reading the texts themselves, but can augment other analysis or – as in this case – analyse and classify larger amounts of text than would be feasible using human coders (Grimmer & Stewart, 2013). Topic models classify a series of documents (in this case individual speeches) into one of a given number of topics, identifying terms that are common in some documents but rare in others. When developing topic models, there is a trade-off between high precision in the classification of each document with broader topics when using smaller numbers of topics, or lower precision in individual speech classification with more finely-grained topics when using larger numbers of topics. Grimmer and Stewart also highlight the importance of validating unsurpervised topic models when applied to new sets of texts.

The R package stm (Roberts, Stewart, & Tingley, 2018) implements a structured topic model (STM) (Arora et al., 2013; Roberts, Stewart, & Airoldi, 2016). An STM incorporates data about the writer or speaker into the topic classification algorithm. We incorporated the AWS status of speakers into our topic model. We used an algorithm developed by Lee and Mimno (2014), implemented in the stm package (Roberts et al., 2018), to estimate the number of topics across all speeches made by female Labour MPs, using the "spectral" method developed by Arora et al. (2013). The resulting topic model has 69 topics, across 81,607 documents and a dictionary of 115,477 words.

Short lists vs Non-Short lists

Fruchterman-Reingold (Fruchterman & Reingold, 1991) diagram of all 69 topic models. Larger vertices indicate more common topics, and the plot implements a colour scale to indicate the proportion of speeches classed in that topic made by AWS and non-AWS female Labour MPs.

Topic Number **AWS Speeches** Percent of AWS Non-AWS Percent of Speeches non-AWS Speeches Speeches Topic 1 1,272 1.27%2.37%353 Topic 2 3340.62%127 0.46%Topic 3 241 0.45%0.25%71 Topic 4 550 1.02%133 0.48%Topic 5 826 1.54%206 0.74%Topic 6 978 1.82%915 3.28%Topic 7 1.21%648 2360.85%Topic 8 70 0.13%25 0.09%265

0.49%

309

1.11%

Topic 9

Topic Number	AWS Speeches	Percent of AWS Speeches	Non-AWS Speeches	Percent of non-AWS Speeches
Topic 10	1,024	1.91%	513	1.84%
Topic 11	940	1.75%	580	2.08%
Topic 12	313	0.58%	319	1.14%
Topic 13	325	0.61%	146	0.52%
Topic 14	1,596	2.97%	461	1.65%
Topic 15	1,386	2.58%	642	2.30%
Topic 16	1,407	2.62%	525	1.88%
Topic 17	3,690	6.87%	1,459	5.23%
Topic 18	1,026	1.91%	847	3.04%
Topic 19	640	1.19%	423	1.52%
Topic 20	872	1.62%	216	0.77%
Topic 21	658	1.23%	363	1.30%
Topic 22	818	1.52%	439	1.57%
Topic 23	795	1.48%	518	1.86%
Topic 24	385	0.72%	199	0.71%
Topic 25	240	0.45%	74	0.27%
Topic 26	788	1.47%	200	0.72%
Topic 27	266	0.50%	120	0.43%
Topic 28	847	1.58%	350	1.25%
Topic 29	1,110	2.07%	327	1.17%
Topic 30	1,132	2.11%	462	1.66%
Topic 31	996	1.85%	975	3.49%
Topic 32	76	0.14%	64	0.23%
Topic 33	1,238	2.31%	985	3.53%
Topic 34	1,124	2.09%	521	1.87%
Topic 35	650	1.21%	657	2.35%
Topic 36	601	1.12%	154	0.55%
Topic 37	455	0.85%	194	0.70%
Topic 38	1,246	2.32%	991	3.55%
Topic 39	1,917	3.57%	936	3.35%
Topic 40	848	1.58%	290	1.04%
Topic 41	63	0.12%	40	0.14%
Topic 42	853	1.59%	590	2.11%
Topic 43	1,344	2.50%	604	2.16%
Topic 44	814	1.52%	288	1.03%
Topic 45	602	1.12%	474	1.70%
Topic 46	709	1.32%	150	0.54%
Topic 47	664	1.24%	245	0.88%
Topic 48	940	1.75%	901	3.23%
Topic 49	835	1.55%	563	2.02%
Topic 50	1,328	2.47%	1,219	4.37%
Topic 51	1,076	2.00%	323	1.16%
Topic 52	196	0.36%	85	0.30%
Topic 53	590	1.10%	293	1.05%
Topic 54	1,057	1.97%	824	2.95%
Topic 55	302	0.56%	157	0.56%

(continued)

Topic Number	AWS Speeches	Percent of AWS Speeches	Non-AWS Speeches	Percent of non-AWS Speeches
Topic 56	535	1.00%	398	1.43%
Topic 57	656	1.22%	314	1.13%
Topic 58	468	0.87%	182	0.65%
Topic 59	426	0.79%	183	0.66%
Topic 60	562	1.05%	297	1.06%
Topic 61	86	0.16%	28	0.10%
Topic 62	550	1.02%	343	1.23%
Topic 63	690	1.28%	252	0.90%
Topic 64	594	1.11%	244	0.87%
Topic 65	662	1.23%	457	1.64%
Topic 66	1,493	2.78%	527	1.89%
Topic 67	737	1.37%	451	1.62%
Topic 68	279	0.52%	145	0.52%
Topic 69	1	0.00%	NA	NA%

Topic Number	Top Ten Words
Topic 1	secretary, state, tell, ministers, given, today, department, can, confirm, said
Topic 2	safety, register, registration, indicated, registered, electoral, risk, risks, number, individual
Topic 3	make, sure, statement, progress, difference, northern, ireland, towards, representations, responsibilities
Topic 4	debt, water, credit, charges, pay, loan, loans, people, financial, cost
Topic 5	house, committee, parliament, leader, select, motion, parliamentary, debate, scrutiny, business
Topic 6	new, development, work, need, investment, strategy, must, programme, working, also
Topic 7	road, petition, residents, car, vehicles, petitioners, dogs, roads, site, house
Topic 8	important, agree, welcome, country, making, particularly, thank, part, makes, good
Topic 9	companies, market, company, competition, energy, consumers, prices, price, consumer, customers
Topic 10	women, men, equality, women's, discrimination, rights, gender, equal, woman, marriage
Topic 11	energy, climate, fuel, change, green, carbon, emissions, gas, environmental, industry
Topic 12	office, post, offices, royal, service, closure, mail, services, network, christmas
Topic 13	mr, north, south, east, west, spoke, friends, birmingham, talked, central
Topic 14	pension, scheme, benefit, pensions, benefits, pensioners, system, credit, allowance, income
Topic 15	economy, jobs, economic, growth, unemployment, country, investment, chancellor, budget, crisis
Topic 16	schools, school, education, children, teachers, parents, pupils, educational, special, primary
Topic 17	want, say, one, think, know, need, us, get, go, see
Topic 18	review, report, commission, independent, process, recommendations, inquiry, also, system, standards
Topic 19	business, businesses, small, financial, bank, banks, insurance, rates, industry, enterprise

(continued)

Topic Number	Top Ten Words
Topic 20	wales, industry, welsh, north-east, england, assembly, constituency, jobs, manufacturing, uk
Topic 21 Topic 22	care, services, social, mental, need, health, home, provision, service, older pay, work, workers, employment, working, wage, minimum, employers, paid, national
Topic 23	amendment, clause, amendments, new, 1, lords, section, 2, act, clauses
Topic 24 Topic 25	report, last, since, said, received, published, year, following, official, end made, clear, impact, decision, changes, recent, assessment, decisions, effect, proposed
Topic 26	funding, cuts, fund, cut, budget, grant, spending, bbc, review, flood
Topic 27	money, spent, extra, spend, liberal, cost, spending, value, opposition, tory
Topic 28	constituency, great, community, proud, many, sport, one, also, world, new
Topic 29	families, child, poverty, children, parents, work, credit, working, family, living
Topic 30	party, conservative, vote, parliament, political, election, labour, parties, scottish, elected
Topic 31	point, can, may, issue, take, however, whether, matter, understand, consider
Topic 32	member, said, lady, mentioned, raised, comments, speech, referred, points, remarks
Topic 33	european, uk, eu, countries, united, union, europe, states, british, trade
Topic 34	education, skills, young, training, students, university, college, higher, science, apprenticeships
Topic 35	local, authorities, authority, planning, community, communities, councils, area, guidance, system
Topic 36	disabled, carers, disability, support, disabilities, needs, caring, autism, learning,
Topic 37	can environment, marine, fishing, sea, industry, natural, fish, countryside, rural, fisheries
Topic 38	justice, court, violence, victims, cases, criminal, domestic, courts, prison, offence
Topic 39	international, foreign, rights, human, peace, un, conflict, world, aid, war
Topic 40	day, family, never, told, families, life, happened, constituent, man, went
Topic 41	proposals, future, forward, consultation, plans, meet, paper, current, discuss, bring
Topic 42	behaviour, crime, antisocial, alcohol, young, drugs, drug, problem, use, tackle
Topic 43	housing, homes, social, affordable, private, home, accommodation, rent, need, properties
Topic 44	question, order, mr, put, asked, answer, questions, ask, speaker, time
Topic 45	research, cancer, treatment, medical, condition, screening, disease, can, patients, use
Topic 46	online, internet, farmers, animals, digital, animal, broadband, sites, tickets, technology
Topic 47	defence, forces, armed, plymouth, personnel, service, military, army, nuclear, royal
Topic 48	information, home, security, data, immigration, control, orders, system, terrorism, appeal
Topic 49	police, officers, crime, policing, home, force, service, forces, officer, chief
Topic 50	nhs, hospital, patients, health, services, hospitals, care, service, trust, trusts
Topic 51	tax, budget, cut, chancellor, cuts, rate, income, vat, benefit, hit
Topic 52	years, now, two, time, first, three, past, one, months, ago
Topic 53	staff, doctors, emergency, medical, service, training, nurses, royal, junior, ambulance

(continued)

Topic Number	Top Ten Words
Topic 54	bill, legislation, act, law, rights, provisions, powers, regulations, place, believe
Topic 55	public, sector, private, organisations, service, voluntary, services, society, community, organisation
Topic 56	health, national, inequalities, programme, suicide, disease, department, prevention, among, risk
Topic 57	council, london, areas, city, area, constituency, centre, rural, county, liverpool
Topic 58	advice, legal, cases, civil, hull, aid, case, compensation, claims, service
Topic 59	people, work, many, young, get, people's, can, help, lives, job
Topic 60	tax, revenue, relief, duty, uk, avoidance, hmrc, charities, companies, taxation
Topic 61	government, government's, policy, labour, previous, scotland, scottish, commitment, policies, coalition
Topic 62	trafficking, home, uk, asylum, refugees, immigration, country, human, migration, britain
Topic 63	food, products, industry, smoking, advertising, tobacco, ban, product, standards, shops
Topic 64	members, debate, many, issues, also, today, heard, opportunity, hope, issue
Topic 65	children, child, parents, young, children's, family, contact, vulnerable, adoption, abuse
Topic 66	transport, rail, bus, services, line, travel, train, network, passengers, london
Topic 67	year, million, number, increase, figures, increased, billion, 1, average, cost
Topic 68	support, ensure, can, help, aware, taking, take, provide, action, continue
Topic 69	deal, recently, new, can, lack, great, concern, done, move, given

Discussion

There do not appear to be substantial or meaningful differences in the speaking styles or topic choices of female Labour MPs selected through all women short lists when compared to their female colleagues selected through open short lists using LIWC.

There is more gender distinction in selected terms and topics.

Appendix

Full topic model summary

```
## A topic model with 69 topics, 81607 documents and a 115477 word dictionary.
## Topic 1 Top Words:
##
         Highest Prob: secretary, state, tell, ministers, given, today, department
##
         FREX: secretary, state, confirm, tell, ministers, state's, minister's
##
         Lift: dhar, lowell, gatada's, #nationalistsconfused, 1135, 2.5bn, 36,500
##
         Score: secretary, state, confirm, state's, tell, ministers, department
##
  Topic 2 Top Words:
##
         Highest Prob: safety, register, registration, indicated, registered, electoral, risk
##
         FREX: registration, indicated, hse, canvass, register, gurkhas, safety
##
         Lift: aps, hse, 10-litre, 13a, 14,940, 1760, 1867
##
         Score: safety, registration, register, electoral, indicated, registered, hse
## Topic 3 Top Words:
##
         Highest Prob: make, sure, statement, progress, difference, northern, ireland
```

```
FREX: statement, make, sure, progress, ireland, representations, difference
##
##
         Lift: 101269, 101548, 102938, 103414, 106583, 107305, 109413
##
         Score: make, statement, progress, sure, ireland, northern, milton
## Topic 4 Top Words:
##
         Highest Prob: debt, water, credit, charges, pay, loan, loans
##
         FREX: payday, loan, lenders, debts, loans, debt, charges
##
         Lift: 1,021, 1,025, 1,106, 1,189, 1,273, 1,385, 1,413
         Score: debt, water, payday, loan, loans, lenders, credit
##
## Topic 5 Top Words:
##
         Highest Prob: house, committee, parliament, leader, select, motion, parliamentary
##
         FREX: select, leader, house, motion, committee, backbench, scrutiny
         Lift: e-petitions, praying-against, sherlock, wednesdays, sittings, thursdays, 10,000-signatur
##
##
         Score: committee, house, leader, select, scrutiny, parliament, motion
## Topic 6 Top Words:
##
         Highest Prob: new, development, work, need, investment, strategy, must
##
         FREX: development, strategy, develop, project, regional, projects, partnership
##
         Lift: #1,150, 1.245, 1.875, 128406, 131,000, 18-the, 2002-around
##
         Score: development, regional, investment, strategy, infrastructure, projects, work
## Topic 7 Top Words:
         Highest Prob: road, petition, residents, car, vehicles, petitioners, dogs
##
##
         FREX: petitioners, lap-dancing, petition, dogs, dog, pedestrians, cycling
##
         Lift: 0.037, 0.044, Official, 1,042, 1,072, 1,108, 1,122
##
         Score: petitioners, petition, dogs, road, residents, dog, declares
## Topic 8 Top Words:
##
         Highest Prob: important, agree, welcome, country, making, particularly, thank
##
         FREX: agree, welcome, important, absolutely, makes, making, friend's
##
         Lift: adequacies, and-importantly-much, ayse, ballantine, bobtail-and, bostrom, bucketfuls
         Score: agree, important, thank, welcome, friend's, absolutely, country
##
## Topic 9 Top Words:
##
         Highest Prob: companies, market, company, competition, energy, consumers, prices
##
         FREX: competition, companies, market, wholesale, suppliers, company, regulator
##
         Lift: 1,105, 1,345, ashington, boakye, nord, over-charging, price-fixing
         Score: companies, consumers, energy, market, company, prices, competition
##
## Topic 10 Top Words:
         Highest Prob: women, men, equality, women's, discrimination, rights, gender
##
##
         FREX: gender, bishops, transgender, women's, women, abortion, same-sex
##
         Lift: balmforth, bpas, celebrants, cohabitants, jessy, msafiri, natal
##
         Score: women, women's, equality, men, gender, discrimination, marriage
## Topic 11 Top Words:
##
         Highest Prob: energy, climate, fuel, change, green, carbon, emissions
##
         FREX: renewables, solar, insulation, feed-in, biofuels, greenhouse, dioxide
##
         Lift: fossil, #2,500, #solar, 1-are, 1,129, 1,214, 1,343
         Score: energy, fuel, carbon, emissions, climate, renewable, renewables
##
## Topic 12 Top Words:
         Highest Prob: office, post, offices, royal, service, closure, mail
##
##
         FREX: offices, mail, sub-post, post, sub-postmasters, closures, consignia
##
         Lift: #1.8, #210, #450, 1,001, 1,352, 1,639, 1,827
##
         Score: post, offices, office, mail, closure, postal, sub-post
## Topic 13 Top Words:
         Highest Prob: mr, north, south, east, west, spoke, friends
##
##
         FREX: ealing, spoke, dorset, lothian, ayrshire, glasgow, chris
##
         Lift: argos's, blackford, cairns's, clemency, marxist, no2id, 0.66
##
         Score: mr, east, north, south, west, spoke, birmingham
```

Topic 14 Top Words:

```
##
         Highest Prob: pension, scheme, benefit, pensions, benefits, pensioners, system
##
         FREX: pension, esa, pensions, claimants, retirement, pip, pensioners
         Lift: means-testing, #20,000, #400, 0^{\circ}, 1,052, 1,366, 1,482
##
         Score: pension, pensions, pensioners, allowance, scheme, retirement, credit
##
## Topic 15 Top Words:
         Highest Prob: economy, jobs, economic, growth, unemployment, country, investment
##
         FREX: unemployment, recession, growth, economy, obr, deficit, inflation
##
         Lift: 0.76, 0.83, 1,196, 1,319, 1.04, 1.32, 10-about
##
         Score: economy, jobs, unemployment, growth, economic, recession, chancellor
##
## Topic 16 Top Words:
         Highest Prob: schools, school, education, children, teachers, parents, pupils
##
         FREX: academies, pupil, grammar, schools, pupils, teachers, ofsted
##
         Lift: sen2, 11-plus, leas, pupil, 000-to, 1-regardless, 1,000-pupil
##
         Score: schools, school, teachers, pupils, children, education, parents
##
## Topic 17 Top Words:
##
         Highest Prob: want, say, one, think, know, need, us
##
         FREX: think, say, things, want, something, saying, going
##
         Lift: about-part, arguing-i, beneficial-we, career-many, cause-the, clam, compatriot
##
         Score: think, want, get, say, things, going, us
## Topic 18 Top Words:
##
         Highest Prob: review, report, commission, independent, process, recommendations, inquiry
##
         FREX: recommendations, inquiry, panel, audit, independent, recommendation, reviews
##
         Lift: bourn, cag's, clarke's, clowes, dg, emag, equitable's
         Score: fsa, inquiry, review, commission, recommendations, report, independent
##
## Topic 19 Top Words:
         Highest Prob: business, businesses, small, financial, bank, banks, insurance
##
##
         FREX: smes, medium-sized, businesses, bank, enterprises, enterprise, banking
         Lift: 0.21, 0.84, 1,034, 1,130, 10-fold, 1130, 12.19
##
##
         Score: businesses, business, bank, banks, banking, insurance, small
## Topic 20 Top Words:
         Highest Prob: wales, industry, welsh, north-east, england, assembly, constituency
##
##
         FREX: welsh, wales, steel, cardiff, north-east, assembly, visteon
##
         Lift: a55, angharad, bethesda, co-investment, dewhirst, dogger, gorge
##
         Score: wales, welsh, assembly, manufacturing, steel, north-east, yorkshire
## Topic 21 Top Words:
##
         Highest Prob: care, services, social, mental, need, health, home
##
         FREX: mental, care, social, elderly, older, advocacy, services
##
         Lift: #900,000, 1,051, 1,312, 10,758, 104962, 1089, 13,198
##
         Score: care, mental, services, social, health, older, homes
## Topic 22 Top Words:
         Highest Prob: pay, work, workers, employment, working, wage, minimum
##
##
         FREX: wage, workers, zero-hours, employees, paternity, employer, minimum
##
         Lift: 6.70, 8.20, 85p, awb, e-balloting, hannett, increments
         Score: wage, workers, employers, employment, pay, employees, minimum
##
## Topic 23 Top Words:
         Highest Prob: amendment, clause, amendments, new, 1, lords, section
##
##
         FREX: amendment, nos, insert, subsection, clause, amendments, clauses
##
         Lift: 153a, 22a, 287, 50b, 51b, counter-notice, insured's
##
         Score: clause, amendment, amendments, lords, nos, insert, subsection
## Topic 24 Top Words:
##
         Highest Prob: report, last, since, said, received, published, year
##
         FREX: march, vol, official, january, july, november, published
##
         Lift: 1-2ws, 1,033, 1,099, 1,124,818, 1,337, 1,368,186, 1,595
##
         Score: report, official, vol, published, march, april, november
```

```
## Topic 25 Top Words:
         Highest Prob: made, clear, impact, decision, changes, recent, assessment
##
##
         FREX: made, decision, assessment, clear, decisions, impact, implications
         Lift: 104963, 107312, 116,400, 125214, 125828, 125830, 126370
##
##
         Score: made, assessment, impact, changes, decision, decisions, clear
## Topic 26 Top Words:
         Highest Prob: funding, cuts, fund, cut, budget, grant, spending
         FREX: flood, funding, bbc, formula, grant, flooding, floods
##
##
         Lift: #10.89, #12, #3.3, #bbcdiversity, 1,027, 1,536-will, 1,546
##
         Score: funding, cuts, flood, bbc, budget, spending, flooding
##
  Topic 27 Top Words:
         Highest Prob: money, spent, extra, spend, liberal, cost, spending
##
##
         FREX: money, spent, liberal, spend, democrats, tories, tory
         Lift: 1-but, 10,309.63, 1228, 158.8, 1763, 18-that, 1979-80
##
##
         Score: money, liberal, tory, democrats, conservatives, tories, spending
## Topic 28 Top Words:
##
         Highest Prob: constituency, great, community, proud, many, sport, one
##
         FREX: maiden, arts, football, museum, museums, sport, olympic
##
         Lift: 0.27, 0.51, 1,084, 1,126, 1,468, 1,580-plus, 1,983
##
         Score: arts, sport, museum, maiden, heritage, football, constituency
## Topic 29 Top Words:
         Highest Prob: families, child, poverty, children, parents, work, credit
##
##
         FREX: lone, poverty, childcare, families, low-income, child, nursery
         Lift: 1,000-discriminates, 1,000-not, 1,080, 1,142,600, 1,170, 1,390, 1,664
##
##
         Score: poverty, child, families, children, parents, credit, lone
## Topic 30 Top Words:
##
         Highest Prob: party, conservative, vote, parliament, political, election, labour
##
         FREX: party, vote, voting, conservative, party's, voters, election
##
         Lift: alphabetical, gentry, olga, one-party, randomisation, 1,166, 1,294
##
         Score: party, conservative, vote, scottish, election, elections, political
## Topic 31 Top Words:
##
         Highest Prob: point, can, may, issue, take, however, whether
##
         FREX: matter, point, understand, consider, certainly, accept, possible
##
         Lift: 450,000-in, advised-by, backslid, bill-albeit, bizarre-but, can-enable, cases-roughly
##
         Score: point, matter, issue, gentleman's, consider, shall, whether
## Topic 32 Top Words:
##
         Highest Prob: member, said, lady, mentioned, raised, comments, speech
##
         FREX: member, lady, comments, remarks, bromley, interesting, chislehurst
##
         Lift: 12.20, 130b, 1991-forcing, 2,784, 54,000-worth, achieved-is, arguments-and
##
         Score: member, lady, comments, said, speech, raised, points
## Topic 33 Top Words:
##
         Highest Prob: european, uk, eu, countries, united, union, europe
##
         FREX: accession, enlargement, wto, lisbon, treaty, eu, doha
##
         Lift: 13652, 13653, 13654, 1707, balkan, barnier, blackmailing
##
         Score: eu, european, countries, union, treaty, europe, trade
## Topic 34 Top Words:
         Highest Prob: education, skills, young, training, students, university, college
##
##
         FREX: ema, fe, students, apprenticeship, universities, qualifications, apprenticeships
##
         Lift: ema, #ne, 1,188, 1,308, 1,555-what, 1,740, 1,803
##
         Score: students, education, young, skills, apprenticeships, training, universities
## Topic 35 Top Words:
         Highest Prob: local, authorities, authority, planning, community, communities, councils
##
##
         FREX: authorities, local, authority, planning, councils, councillors, locally
##
         Lift: achcew, central-local, laa, lsp, maas, observances, place-shaping
```

```
Score: local, authorities, authority, councils, planning, communities, community
## Topic 36 Top Words:
##
         Highest Prob: disabled, carers, disability, support, disabilities, needs, caring
         FREX: carers, autism, autistic, disabled, disabilities, disability, dementia
##
##
         Lift: autism, rnib, #185, #85, #hellomynameis, 1,400-one, 10-person
         Score: carers, disabled, disability, autism, disabilities, caring, dementia
##
## Topic 37 Top Words:
         Highest Prob: environment, marine, fishing, sea, industry, natural, fish
##
##
         FREX: fishermen, cod, forestry, biodiversity, habitats, mmo, fishing
         Lift: aquaculture, arable, bee-friendly, biodiversity, birdlife, bycatch, caterpillar
##
##
         Score: marine, fishing, fishermen, fish, fisheries, wildlife, conservation
## Topic 38 Top Words:
         Highest Prob: justice, court, violence, victims, cases, criminal, domestic
##
         FREX: attorney-general, defendants, defendant, prison, prosecutors, solicitor-general, stalkin
##
##
         Lift: #9, 0.08, 0.48, 1,046, 1,237, 10,544, 10.15
##
         Score: violence, prison, court, offence, criminal, rape, victims
## Topic 39 Top Words:
##
         Highest Prob: international, foreign, rights, human, peace, un, conflict
##
         FREX: israel, palestinian, israeli, gaza, sri, zimbabwe, iran
##
         Lift: lankan, saddam, #aleppo, 1,010, 1,476, 1,591, 1224
##
         Score: un, israel, syria, humanitarian, palestinian, israeli, iraq
## Topic 40 Top Words:
         Highest Prob: day, family, never, told, families, life, happened
##
         FREX: man, died, son, story, stories, hillsborough, tragedy
##
##
         Lift: 10,000-seat, 12-inch, 1234, 1519-20, 1635, 1710, 174,995
         Score: families, holocaust, family, constituent, man, died, mother
## Topic 41 Top Words:
         Highest Prob: proposals, future, forward, consultation, plans, meet, paper
##
##
         FREX: proposals, consultation, paper, plans, forward, discuss, white
##
         Lift: 10.42, 107910, 109648, 114061, 119621, 141605, 141607
##
         Score: proposals, consultation, plans, future, forward, paper, white
## Topic 42 Top Words:
##
         Highest Prob: behaviour, crime, antisocial, alcohol, young, drugs, drug
##
         FREX: antisocial, asbos, alcohol, alcohol-related, binge, psychoactive, drinking
##
         Lift: acquisitive, addaction, auto, bailes, crawlers, ghb, gilpin
         Score: antisocial, crime, behaviour, alcohol, drug, drugs, cannabis
##
## Topic 43 Top Words:
##
         Highest Prob: housing, homes, social, affordable, private, home, accommodation
##
         FREX: housing, tenants, rented, tenancies, homelessness, leasehold, landlords
         Lift: one-for-one, one-bedroom, rented, right-to-buy, #19, #21.5, #28.5
##
         Score: housing, homes, tenants, rented, rent, landlords, affordable
##
## Topic 44 Top Words:
##
         Highest Prob: question, order, mr, put, asked, answer, questions
##
         FREX: question, answer, questions, speaker, asked, deputy, answers
##
         Lift: 11.00, 11.57, 12.26, 1223, 1232, 1412, 1555-56
##
         Score: question, speaker, mr, answer, deputy, order, questions
## Topic 45 Top Words:
##
         Highest Prob: research, cancer, treatment, medical, condition, screening, disease
##
         FREX: embryos, prostate, cervical, hepatitis, cloning, transplant, embryo
##
         Lift: abnormalities, cystic, embryo, fertilisation, marrow, @cfaware, #500
##
         Score: cancer, patients, embryos, screening, treatment, tissue, breast
## Topic 46 Top Words:
##
         Highest Prob: online, internet, farmers, animals, digital, animal, broadband
##
         FREX: cull, badgers, badger, fur, bovine, mink, culling
```

```
##
         Lift: culling, @daisydumble, @donna_smiley, @jimspin, @leamingtonsbc, @maggieannehayes, @nhcon
##
         Score: farmers, animals, internet, cull, animal, online, badgers
## Topic 47 Top Words:
         Highest Prob: defence, forces, armed, plymouth, personnel, service, military
##
##
         FREX: mod, naval, hms, submarines, dockyard, veterans, armed
##
         Lift: hms, submarine, submarines, 1,000-people, 1,625, 1,705, 10-3
         Score: defence, armed, forces, plymouth, military, personnel, mod
##
## Topic 48 Top Words:
##
         Highest Prob: information, home, security, data, immigration, control, orders
##
         FREX: extradition, tpims, sia, warrant, detention, checks, tpim
##
         Lift: carlile's, carlile, sia, 10-month, 10,410, 10,500-for, 10.45
         Score: immigration, terrorism, detention, terrorist, tpims, home, security
##
## Topic 49 Top Words:
         Highest Prob: police, officers, crime, policing, home, force, service
##
##
         FREX: constable, constables, officers, policing, police, soca, ipcc
##
         Lift: 2003-morecambe, 9,650, a19s, ashleys, bigg, bounties, ckp
         Score: police, officers, policing, crime, forces, constable, neighbourhood
##
  Topic 50 Top Words:
##
         Highest Prob: nhs, hospital, patients, health, services, hospitals, care
##
         FREX: dentists, dentistry, pharmacies, pct, nhs, hospitals, hospital
##
         Lift: acos, bequest, bernstein, bodmin, catto, cayton, chailey
##
         Score: nhs, patients, hospital, health, patient, hospitals, care
## Topic 51 Top Words:
         Highest Prob: tax, budget, cut, chancellor, cuts, rate, income
##
         FREX: 50p, vat, millionaires, hit, tax, allowances, credits
##
         Lift: #840, 0.76p, 1,003, 1,009, 1,226, 1,275, 1,296
##
##
         Score: tax, vat, budget, credits, chancellor, cuts, income
## Topic 52 Top Words:
##
         Highest Prob: years, now, two, time, first, three, past
##
         FREX: years, three, months, ago, two, past, weeks
##
         Lift: 10-week-old, 10,616, 11-month, 11-point, 1758, 196b, 63,500
##
         Score: years, months, two, ago, three, past, weeks
## Topic 53 Top Words:
         Highest Prob: staff, doctors, emergency, medical, service, training, nurses
##
##
         FREX: ambulance, junior, staffing, doctors, halifax, posts, nurses
##
         Lift: #i'm, 03, 1-who, 1,454, 1,631, 10,000-strong, 10,000-with
##
         Score: staff, doctors, ambulance, nurses, medical, emergency, junior
## Topic 54 Top Words:
         Highest Prob: bill, legislation, act, law, rights, provisions, powers
##
         FREX: bill, legislation, bill's, provisions, passage, regulations, legislative
##
         Lift: 1865, 1990s-when, 1998-it, 19may2000, 2003-largely, 2005-have, 29-year
##
##
         Score: bill, legislation, provisions, rights, law, powers, regulations
## Topic 55 Top Words:
         Highest Prob: public, sector, private, organisations, service, voluntary, services
##
         FREX: public, voluntary, organisations, sector, private, co-operative, volunteering
##
##
         Lift: 1844, af, carpetbaggers, nebulous, puk, 1075, 170-year
##
         Score: public, sector, private, voluntary, organisations, service, services
## Topic 56 Top Words:
##
         Highest Prob: health, national, inequalities, programme, suicide, disease, department
##
         FREX: flu, hiv, pandemic, inequalities, infections, suicide, mortality
##
         Lift: kirkley, lowestoft, nihr, acupuncture, influenza, #148, #3.6
##
         Score: health, vaccine, flu, inequalities, hiv, infection, suicide
## Topic 57 Top Words:
##
         Highest Prob: council, london, areas, city, area, constituency, centre
```

```
##
         FREX: county, mayor, borough, cities, liverpool, city, regeneration
##
         Lift: #12,000, #14.4, #356, #38, #5,000, #500,000, #66.6
##
         Score: london, council, city, regeneration, county, rural, borough
## Topic 58 Top Words:
##
         Highest Prob: advice, legal, cases, civil, hull, aid, case
         FREX: hull, tribunal, legal, compensation, solicitors, advice, concentrix
##
         Lift: 0300, 1,997, 1.148, 1.4m, 112.8, 1147, 128,687
##
         Score: legal, advice, hull, aid, compensation, civil, tribunal
##
## Topic 59 Top Words:
##
         Highest Prob: people, work, many, young, get, people's, can
##
         FREX: people, people's, get, getting, work, young, jobcentre
         Lift: 2,425, 294,488, 3,699, 37,290, 5,320, 50-to-64, 75589
##
##
         Score: people, young, work, get, youth, many, people's
## Topic 60 Top Words:
##
         Highest Prob: tax, revenue, relief, duty, uk, avoidance, hmrc
##
         FREX: evasion, hmrc, gaar, avoidance, inland, stamp, revenue
##
         Lift: 1,643, 3.12, 32.2, 44a, 80g, aaronson, aat
##
         Score: tax, hmrc, avoidance, revenue, relief, evasion, territories
## Topic 61 Top Words:
         Highest Prob: government, government's, policy, labour, previous, scotland, scottish
##
##
         FREX: government, previous, policy, government's, scotland, coalition, scottish
##
         Lift: 2005-perhaps, 80994, actually-that, agency-when, agenda-access, alloway, aware-in
##
         Score: government, scotland, scottish, labour, policy, government's, previous
## Topic 62 Top Words:
##
         Highest Prob: trafficking, home, uk, asylum, refugees, immigration, country
##
         FREX: trafficking, slavery, trafficked, sierra, leone, slave, dubs
##
         Lift: #7, 0.025, 1-yes, 1,060, 1,483, 1,746, 1.123
         Score: trafficking, refugees, asylum, slavery, trafficked, immigration, sierra
##
## Topic 63 Top Words:
##
         Highest Prob: food, products, industry, smoking, advertising, tobacco, ban
##
         FREX: gambling, betting, sunbed, tobacco, cocoa, meat, supermarkets
##
         Lift: 0.7p, 00, 0157, 1,000-almost, 1,032, 1,200-i, 1,666
##
         Score: food, smoking, products, tobacco, advertising, gambling, industry
## Topic 64 Top Words:
         Highest Prob: members, debate, many, issues, also, today, heard
##
##
         FREX: members, debate, heard, speak, sides, issues, hear
##
         Lift: noakes, 6.47pm, accept-or, analysis-but, aspect-listening-is, bunfight, called-making
##
         Score: members, debate, issues, many, opposition, heard, constituents
## Topic 65 Top Words:
##
         Highest Prob: children, child, parents, young, children's, family, contact
##
         FREX: csa, adopters, adoption, child's, cafcass, looked-after, children's
         Lift: csa, @mandatenow, 10-month-old, 10-went, 12j, 150765, 16-only
##
##
         Score: children, child, parents, young, children's, adoption, child's
## Topic 66 Top Words:
         Highest Prob: transport, rail, bus, services, line, travel, train
##
##
         FREX: rail, passengers, passenger, heathrow, hs2, freight, high-speed
##
         Lift: 12-car, 15.15, 50.1, adtranz, anti-icing, bahn, chilterns
         Score: rail, transport, bus, passengers, fares, trains, hs2
##
## Topic 67 Top Words:
         Highest Prob: year, million, number, increase, figures, increased, billion
##
##
         FREX: million, figures, figure, increased, increase, compared, year
##
         Lift: #112, #3,850, #84.3, #87.2, 1,249, 102269, 122.9
##
         Score: million, year, billion, increase, figures, average, increased
## Topic 68 Top Words:
```

```
##
         Highest Prob: support, ensure, can, help, aware, taking, take
##
         FREX: aware, ensure, support, taking, steps, continue, help
##
         Lift: 103684, 103965, 107320, 111532, 112584, 113698, 117890
         Score: support, ensure, steps, aware, help, taking, department
##
## Topic 69 Top Words:
         Highest Prob: deal, recently, new, can, lack, great, concern
##
         FREX: deal, recently, lack, elsewhere, concern, great, improved
##
         Lift: 2004-a, 721,000, added-gva-per, age-of, centres-jacs-which, employment-can, index-the
##
##
         Score: deal, recently, new, worktrack, lack, can, great
```

References

Arora, S., Ge, R., Halpern, Y., Mimno, D., Moitra, A., Sontag, D., . . . Zhu, M. (2013). A Practical Algorithm for Topic Modeling with Provable Guarantees. In S. Dasgupta & D. McAllester (Eds.), *Proceedings of the 30th International Conference on Machine Learning* (Vol. 28, pp. 280–288). Atlanta, Georgia, USA: PMLR. Retrieved from http://proceedings.mlr.press/v28/arora13.pdf

Audickas, L., Hawkins, O., & Cracknell, R. (2017). *UK Election Statistics: 1918-2017* (Briefing Paper No. CBP7529) (p. 89). London: House of Commons Library. Retrieved from http://researchbriefings.parliament.uk/ResearchBriefing/Summary/CBP-7529

Benoit, K. (2018). Quanteda: Quantitative Analysis of Textual Data. https://doi.org/10.5281/zenodo.1004683

Benoit, K., & Matsuo, A. (2018). Spacyr: Wrapper to the 'spaCy' 'NLP' Library. Retrieved from http://github.com/quanteda/spacyr

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. *Journal of Machine Learning Research*, 3(Jan), 993–1022.

Bligh, M., Merolla, J., Schroedel, J. R., & Gonzalez, R. (2010). Finding Her Voice: Hillary Clinton's Rhetoric in the 2008 Presidential Campaign. $Women's\ Studies,\ 39(8),\ 823-850.\ https://doi.org/10.1080/00497878.$ 2010.513316

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed). Hillsdale, N.J.: L. Erlbaum Associates.

Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164. https://doi.org/10.1002/spe.4380211102

Gagolewski, M. (2018). R package stringi: Character string processing facilities. https://doi.org/10.5281/zenodo.1292492

Grimmer, J., & Stewart, B. M. (2013). Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. *Political Analysis*, 21(03), 267–297. https://doi.org/10.1093/pan/mps028

Honnibal, M., & Montani, I. (2017). spaCy 2: Natural language understanding with Bloom embeddings, convolutional neural networks and incremental parsing. *To Appear*. Retrieved from https://spacy.io

Jones, J. J. (2016). Talk "Like a Man": The Linguistic Styles of Hillary Clinton, 1992-2013. Perspectives on Politics, 14(03), 625-642. https://doi.org/10.1017/S1537592716001092

Kelly, R. (2016). *All-women shortlists* (Briefing Paper No. 5057) (p. 34). London: House of Commons Library. Retrieved from https://researchbriefings.parliament.uk/ResearchBriefing/Summary/SN05057

Kincaid, J. P., Fishburne, R. P., Rogers, R. L., & Chissom, B. S. (1975). Derivation of New Readability Formulas (Automated Readability Index, Fog Count and Flesch Reading Ease Formula) for Navy Enlisted Personnel: Fort Belvoir, VA: Defense Technical Information Center. https://doi.org/10.21236/ADA006655

Lee, M., & Mimno, D. (2014). Low-dimensional Embeddings for Interpretable Anchor-based Topic Inference. In *Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)* (pp. 1319–1328). Doha, Qatar: Association for Computational Linguistics. https://doi.org/10.3115/v1/D14-1138

Newman, M. L., Groom, C. J., Handelman, L. D., & Pennebaker, J. W. (2008). Gender Differences in Language Use: An Analysis of $14{,}000$ Text Samples. *Discourse Processes*, 45(3), 211-236. https://doi.org/10.1080/01638530802073712

Odell, E. (2018). Hansard Speeches and Sentiment V2.5.1 [dataset]. https://doi.org/10.5281/zenodo.1306964

Pennebaker, J. W., Boyd, R. L., Jordan, K., & Blackburn, K. (2015). The Development and Psychometric Properties of LIWC2015, 26. Retrieved from https://repositories.lib.utexas.edu/bitstream/handle/2152/31333/LIWC2015_LanguageManual.pdf

Roberts, M. E., Stewart, B. M., & Airoldi, E. M. (2016). A Model of Text for Experimentation in the Social Sciences. *Journal of the American Statistical Association*, 111(515), 988–1003. https://doi.org/10.1080/01621459.2016.1141684

Roberts, M. E., Stewart, B. M., & Tingley, D. (2018). Stm: R Package for Structural Topic Models. Retrieved from http://www.structuraltopicmodel.com

Yu, B. (2014). Language and gender in Congressional speech. Literary and Linguistic Computing, 29(1), 118–132. https://doi.org/10.1093/llc/fqs073