

IN THE SPECIFICATION:

Please replace the paragraph beginning at line 20 of page 1 with the following:

---Present day telephony voice networks, have a network built around circuit switches, end offices, a toll network, tandem switches, and twisted wires. These voice networks are referred to as a public switched telephone network (PSTN) or plain old telephone service (POTS). Due to bandwidth limitations of plain old telephone service (POTS), there is an inherent inability to efficiently integrate multiple types of media such as telephony, data communication for personal computers (PC), and television (TV) broadcasts. Accordingly, a new broadband architecture is required. This new architecture gives rise to a new array of user services.---

Please replace the paragraph beginning at line 26 of page 6 with the following:

---The broadband network 1 may include any number of interconnected head-end hubs 115, IP networks 120, and/or ATM networks 185. Further, the IP network 120 and/or ATM network 185 may be connected to one or more other networks and devices such as:

- (1) external networks including a public switched telephone network (PSTN) 170 160, an a signaling system 7 (SS7) network 170, an Internet 180, and/or a wireless network 144;
- (2) various components including one or more private branch exchanges 146, terminals 142 including computers and wireless devices, and/or one or more stand alone broadband residential gateways 300;
- (3) one or more administration centers 155;
- (4) one or more secure network management data networks 190 such as a network operations center (NOC);
- (5) one or more billing systems 195 such as OSS; and/or
- (6) one or more centralized control centers such as what is referred to as an IP central station 200.---

Please replace the paragraph beginning at line 3 of page 10 with the following:

(f)

--- Again referring now to Fig. 2, the IP central station 200 may include a central router 200 210, for example, a gigabit switch, which may be utilized to interconnect

various servers and gateways contained in the IP central station 200. The central router 210 provides for example Ethernet switching and aggregate traffic between servers, gateways and the IP network 120 and/or ATM network 185 backbone. In one exemplary embodiment, the central router 210 provides high-speed, non-blocking IP and IP multicast Layer 3 switching and routing. The IP central station 200 may include one or more of the following servers: the least cost server (LCS) 255, the time of day (TOD) server 212, the dynamic host control protocol (DHCP) server, the trivial file transfer protocol (TFTP) server, and the domain name service (DNS) server 214, the system management (SM) server 216, the call manager (CM) server 218, the announcement server (AS) 220, the multimedia server (MS) 222, and/or the conference server (CS) 224. As illustrated in Figs. 2, the servers may be separate servers, for example the call manager server 218, or may be incorporated into a single server. In the exemplary embodiment, the dynamic host control protocol server 131, trivial file transfer protocol server 132, and the domain name service server 214 are each incorporated in a single server facility. Each server in the IP central station 200 may include computer(s), storage device(s), and specialized software for implementing particular predefined functions associated with each server. In this manner, the servers in the IP central station may be provisioned as a main server and one or more back-up servers to provide redundant processing capabilities. Similarly, the router may be implemented as a main router and a back-up router with similar routing functionality.---

By

---The IP central station 200 may also include, for example, one or more of the following gateways; a <u>an</u> element management gateway (EMG) 238, an accounting gateway (AG) 240, an Internet (Boarder) gateway (IG) 236, a signaling system 7 (SS7)) gateway (SG) 234, a voice gateway (VG) 232, and/or a multimedia gateway (MG) 230. The IP central station 200 may utilize one or more of these gateways to provide centralized system intelligence and control of voice and/or data IP packets.---

p.10

Please replace the paragraph beginning at line 10 of page 12 with the following:

--- The system management (SM) server 216 may include responsibility for the overall operational state and functioning of components in the broadband network 1, either alone, or in combination with other system management servers 216. The system management (SM) server 216 may be variously configured to provide monitoring and administrative functions for devices within the broadband network 1. For example, the system management server 216 may be configured to provide management of various database functions, memory buffer functions, and software utility functions within the broadband network 1. Software management includes, for example, version control, generic control, and/or module control.---

---In still further embodiments, announcements may be generated elsewhere in the broadband network 1, stored as files, and distributed to one or more announcement servers via a file transfer protocol or resource such as the trivial file server 214 using one or more file transfer protocols. In many embodiments, it is desirable to store announcements in an appropriate encoding format (e.g., G.711 or G.729) within the Announcement Server. The announcement may have an audio component and/or a an audio/video component. The audio/video component may be stored using a combination of an encoding format (e.g., G.711) and/or a standard file format such as wave (WAV), MPEG, and other suitable formats.---

Please replace the paragraph beginning at line 24 of page 13 with the following:

---In one exemplary method of operation, a user picks up a telephone which sends a signal to the call manager 218. Subsequently, the call manger 218 may establish a connection to the announcement server 220 and play one or more pre-recorded and/or predetermined announcements (hypertext and/or audio). Signaling tones such as a busy signal may be played by the broadband residential gateway 300 or the call manager 218, but Special Information Tones (SIT) and/or messages may also be included as part of an announcement file. In this way, the user experience is enhanced such that the user receives a busy message and/or hypertext announcement providing one of several options

4

for contacting the called party. The additional information may include the ability to leave a message, type-in a chat note, page the called party, barge-in on the call, and/or other user or system defined call handling capabilities.---

Please replace the paragraph beginning at line 7 of page 14 with the following:

---The announcement server 220 may also be programmed with various system messages such as an announcement indicating that a number dialed is incorrect or that the call did not go through as dialed, that the lines are busy, that all liens between two countries are currently busy, that the called party has changed numbers, that the called parties party's phone has been disconnected, that one or more system errors have occurred, and/or other announcement messages.--

Please replace the paragraph beginning at line 13 of page 14 with the following:

--- The call manager (CM) 218 may be variously configured. In exemplary embodiments, the call manager 218 provides a centralized call control center for supporting call set-up and tear-down in the broadband network 1. The call manager 218 may be configured to include trunk and line information maintenance, call state maintenance for the duration of a call, and/or user service features execution. The call manager 218 may also provide for call processing functions such as a standardized call model for processing the various voice connections such as voice over IP calls. In exemplary embodiments, a standardized "open" call model may be utilized which supports standardized application programming interfaces (APIs) to provide transport services and other user functions such as calling cards. An open application programming interface and call set-up interface in the call manager will enable third party applications to be loaded into the call manager 218 and broadband residential gateway 300. This will facilitate the development of third party applications for enhancing the functionality of components in the broadband network 1. For example, third parties and other equipment vendors may manufacture various broadband residential gateways 300 for use in the broadband network 1 by writing applications to support the open call model of the call manager 218. The call manager 218 and/or broadband residential gateway 300 may also be configured to execute and/or accept commands form

p. 12

from a standardized scripting language which may generate instructions for the call manager 218 and/or broadband residential gateway 300 to execute various functions. The scripting functionality may include the ability to execute an entire call model including interfaces to the signaling system 7 (SS7) 170, the public switched telephone network 160, IP network 120, ATM/frame/cell relay network 185, and/or other functions within, for example, IP central station 200 such as the multimedia server 222, announcement server 220, system management server 216, conference server 224, time of day server 212, least cost server 255, and/or domain name server 214.---

Please replace the paragraph beginning at line 4 of page 18 with the following:

--- The gateways in the IP central station 200 may be configured to provide translation of signals to and/or from the various servers in the IP central station 200, the IP network 120, the public switched telephone network 160, the signaling system 7 (SS&) network 170, the Internet 180, and/or the secured management data (SMD) network 190. The gateways typically support one or more of the following group of functions: call processing; signaling system 7 (SS7) connectivity; billing support; OAM&P support; connection to public switched telephone network; control CoS QoS/QoS parameters; and enhanced services .---

Please replace the paragraph beginning at line 3 of page 25 with the following:

---Referring to Fig. 3, a preferred embodiment for a broadband residential gateway (BRG) 300 will now be described and explained. The broadband residential gateway 300 may be configured as the interface unit between the remainder of the customer premise equipment 102 devices and the external network. The broadband residential gateway 300 may be connected to the remainder of the broadband network 1 using any suitable mechanism such as a gateway directly into an IP network and/or a cable connection. In the most preferred embodiments, a hybrid fiber-coaxial plant connection is utilized such as hybrid fiber-coaxial (HFC)plant 112. The hybrid fibercoaxial plant 112 allows numerous broadband residential gateways 300 to be included on an existing hybrid fiber-coaxial plant 112 without modification to the plants plant's infrastructure.---

Please replace the paragraph beginning at line 13 of page 25 with the following:

---The broadband residential gateway 300 may be variously configured to, for example, provide high-speed cable modem capabilities to interconnect one or more associated PCs with each other and with the remainder of the broadband network 1, provide functionality to one or more TVs (using, for example, either an integrated or separate decoder functionality, e.g., set top box 350), one or more telephone connections such as plain old telephone service (POTS) phones and/or digital telephones, displays, wireless interfaces, voice processing, remote control interface, display interface, and/or administrative functions. In exemplary embodiments, the broadband residential gateway 300 may perform the following: a) providing conversion between analog voice and IP voice packets, b) multiplexing/demultiplexing streams of IP voice packets, and/or c) supporting multiplexing/demultiplexing of multiple incoming and outgoing signals including multiple voice, multimedia, data, system administration, and/or TV information signals.---

Please replace the paragraph beginning at line 25 of page 25 with the following:

---Where the elements of the broadband residential gateway 300 are interconnected, the interconnection may be provided by one or more data buses, for

screen logic module for driving one or more local and/or remote displays for interfacing with the broadband residential gateway 300 and/or one or more connected devices, c) one

or more TV port modules 336 for interconnecting televisions, set-top devices, and/or

other audiovisual devices to the broadband residential gateway 300, d) one or more data

example, a high speed bus (HSB) 360, processor bus 380, and/or other interconnection systems. The high speed bus 360,380 may be configured to provide a flexible conduit for transferring information between the internal hardware, processors and ports. In exemplary embodiments of the broadband residential gateway 300, the high speed bus 360 may include one or more of the following functional units: a) a universal remote control receiver module 365 for receiving wireless (e.g., infrared, and/or RF) signals (e.g., keyboard signals and/or remote control signals) for control of the broadband residential gateway 300 and/or any connected devices, b) a display, display driver, touch

P)

port modules 334 for connecting/interconnecting data enabled devices (e.g., personal computers, palm top devices, etc.), e) one or more telephony port modules 332 for interconnecting one or more analog and/or digital telephones, f) one or more peripheral port modules 342 for interconnecting one or more peripheral devices such as disk drives, data storage devices, video cassette recorders, DVD devices, audio devices, video devices (e.g., camcorders, digital cameras, digital video recorders, stereos, etc.), g) one or more external/internal intercom modules 344 for interconnecting remote intercom and/or security monitoring devices, h) one or more wireless interface modules 345 for interconnecting with various wireless extension devices such as wireless TVs, cordless and/or wireless telephones, wireless LANs, etc.) i) one or more voice recognition/voice synthesis modules 355 for generating voice announcements, voice messages, and voice prompts and for recognizing voice generated commands and data, j) set-top box module 350 for performing the functions associated with a set-top box locally and/or for communicating with one or more remotely coupled set-top foxes, k) memory 322 (e.g., DRAM, RAM, flash, and/or other memory) for storing information and operating data within the broadband residential gateway 300, 1) transceiver 302 for communicating with one or more external broadband networks, m) operating program store 330 (e.g., ROM, flash, etc.) for storing at least portions of the operating programs for the broadband residential gateway 300 and/or interconnected devices, n) security processor, smart card and/or credit card interface module 340 for providing secure processing functions and/or credit card/smart card transaction functions, and/or o) distributed processing controller 306 which may be microprocessor and/or one or more interconnected distributed processing modules for controlling the broadband residential gateway 300. Where the distributed processing controller 306 includes one or more distributed processing modules, the modules may including a telephony processing module (P1) 308, data processing module (P23) 314, IP processing module (P5) 316, and/or an operations administration maintenance and provisioning processing module (P6) 318 interconnected through one or more busses such as processor bus 380. The processor bus 380 and/or high speed bus 360 may include any suitable interconnect bus including intelligent bus configurations incorporating smart buffer logic (not shown in Fig. 3) to facilitate data transfer between interconnected processors and/or modules. The various modules and/or

processing components of the broadband residential gateway 300 may be powered by, for example, a power supply unit (not shown). Each of the individual modules of the broadband residential gateway will now be described in more detail.---

--- The transceiver 302 may include circuits for converting digital signals to and

Please replace the paragraph beginning at line 14 of page 27 with the following:

from RF signals suitable for transmission across a broadband network such as the hybrid fiber-coaxial plant 112. The transceiver 302 may include one or more input/output ports such as a cable interface (e.g., an F connector cable connection) and/or a fiber optic interface connected to a communication media (e.g., hybrid fiber-coaxial Plant 112). The transceiver 302 may be compatible with the DOCSIS 1.0 or later specifications. For signaling purposes, the broadband residential gateway 300 may be compatible with the Media Gateway Control Protocol (MGCP) or other compatible signaling protocol (e.g., SIP or H.GCP) to support telephony applications. The transceiver 302 may serve as a modem, a translator and/or a mulitiplexor/demultiplexor. Data received from the network may be de-multiplexed and placed on the data bus for dispatch to the appropriate peripherals and/or ports. Data from the various ports and peripherals may be multiplexed together for distribution over one or more broadband networks (e.g., the hybrid fiber-coaxial (HFC) plant 112). Where a hybrid fiber-coaxial plant 112 is utilized, the data may be multiplexed onto various frequency bands of the hybrid fiber-coaxial plant 112 in

Please replace the paragraph beginning at line 3 of page 28 with the following:

queuing and/or IP tunneling of data packets across the broadband network.---

---Although the illustration of a display, display drivers, and touch screen logic device 228 suggests that the a display is integral to the broadband residential gateway 300, alternative embodiments of the broadband residential gateway 300 may provide a user interface via the TV screen, PC screen, video telephone, and/or other display devices in addition to, or in lieu of, a display integral to the broadband residential gateway 300.---

a continuous data stream(s). and/or packetized data stream(s). To facilitate data transfer for various networks, the transceiver 302 may be include one or more registers for data

p.16

Please replace the paragraph beginning at line 26 of page 28 with the following:

-- In yet further embodiments, multiple broadband residential gateways 300 may be configured through, for example, IP tunneling, to set-up an intercom connection between multiple remote broadband residential gateways 300. In this manner, an administrative assistant at the office may be contacted via an intercom connection present at the user's home. Thus, one or more individuals disposed at either local and/or remote locations with diverse types of equipment may communicate as an intercom group without the need to communicate via normal dialing procedures .---

--- In one embodiment of the display 338 operation, a user may touch an icon

Please replace the paragraph beginning at line 26 of page 30 with the following:

representing a pending voicemail and/or multimedia mail message. The panel may be configured to send an electronic signal to the processing controller 306 and/or an attached processor such as the telephony processor. On receiving the signal, the P1 telephony processor 308 may be configured to generate an IP packet via the transceiver 302 across portions of the broadband network 1 to the multimedia server 222 in IP central station 200. The multimedia server 222 may authenticate the request by, for example, verifying locations of the request and/or the identity of the requesting party. Where identity of the calling party is being verified, the user enters an access password by an audio and/or keyboard request. Where an audio request is generated, the user may utilize the external/internal intercom module 344 of the broadband residential gateway 300, or via a text message entered into the display 338. The user may then enter the appropriate access code via the onscreen soft keypad, microphone, and/or keyboard. Alternatively, the message could be stored locally in the memory 322 of the broadband residential gateways memory 322 and depending on whether there is a password lock on the broadband residential gateway 300, the user may not have to enter a password to access the message. Where the message is stored locally in the memory 322 of the broadband residential gateways memory 322 rather than IP central station 200, the display 338 simply recalls the message from memory and presents to the user to provide one-touch instant message

retrieval .---

p.17

Please replace the paragraph beginning at line 15 of page 31 with the following:

---In embodiments where the broadband residential gateway 300 supports multiple mailboxes, the icons on the LCD/LED may be personalized to show the identity of the owner of the message. Each user may have a different password to ensure privacy of access. An activity log which tracks past and present messages and/or archives multimedia messages may be presented on display 338. The archive may be stored locally, or at a remote location such as IP central station 200. The archive may be utilized by the user to recall messages which have long since been erased from local storage by may be retrieved from IP central station 200 on tape and/or disk storage. This is preferably an optional feature for those users who are less security conscious. The multimedia messages need not be displayed only on display 338. In alternate alternative embodiments, any of the peripheral devices attached to the broadband residential gateway 300 are capable of receiving the multimedia messages.---

Please replace the paragraph beginning at line 26 of page 31 with the following:

--- The memory 322 may be variously configured to include one or more fieldupgradeable card slots for permitting memory expansion. Certain users may wish to enable higher end applications such as near video on demand (e.g., pausing of shows via buffering in memory), video conferencing of multiple users, multi-party conferences, call waiting for multiple parties, etc. Accordingly, the use of a broadband residential gateway 300 allows the user to upgrade memory via inserting additional cards. Alternatively, the user may use system memory in IP central station 200 and buffer data remotely .---

Please replace the paragraph beginning at line 7 of page 32 with the following:

--- As previously indicated, smart buffer logic (SBL) may be coupled to the telephony port(s) 332, data port(s) 334, TV port(s) 336, peripheral port(s) 342, and/or the distributed processing controller (DPC) 306. Where the smart buffer logic is utilized, it may function to buffer the IP packets for delivery over the communication network such as the hybrid fiber-coaxial plant 112. In addition, the smart buffer logic may include selectable switching and routing algorithms based on services and applications associated with each port. Depending on the destination of the IP traffic, the smart buffer logic may

multiplex signals from various devices to effect faster information transfer. The smart buffer logic may also allow direct memory access between memory 322 and one or more of the devices and/or ports coupled to the high speed bus 360 .---

Please replace the paragraph beginning at line 17 of page 32 with the following:

wendy w koba esq

--- The telephony port(s) 332 may include various interface circuitry (e.g., analog interface, logic and firmware for interfacing with the Plain Old Telephone (POTs) telephones). Also the telephony port(s) 332 may also be configured to include user interface logic, voice processing logic, voice activity detector logic, voice CODECs, and DTMF (dual tone multi-frequency) tone sensing logic. Echo cancellation and automatic gain control may also be utilized in the telephony port(s) 332 circuitry. In one embodiment, RJ-11 connectors for a plurality of lines (e.g., 4) are provided for connection to one or more existing plain old telephone system 110 telephone units. However, the broadband residential gateway 300 may contain any number of telephone connection ports. In this manner, any number of existing user phones may be connected directly to the broadband residential gateway 300 without modification. Alternatively, the broadband residential gateway can be configured to support, in addition to as alternative to the plain old telephone system telephone units, ISDN telephones and/or other digital phones (e.g., IP telephones) using an appropriate interface.---

Please replace the paragraph beginning at line 29 of page 37 with the following:

--- The head-end 117 may originate CATV signals for transmission over the distribution network. However, in alternate alternative embodiments, signals may be inserted at other points in the distribution network, such as at various hubs or may arise at remote locations in the network such as IP central station 200. Down stream channels may be utilized to facilitate the transmission of signals from the head-end or other input distribution points to the subscriber premise. Where analog RF signals arrive at the broadband residential gateway 300 of the customer premise equipment 102, typically, the transceiver circuitry 302 will detect if the signal is addressed to this broadband residential gateway 300. If so, the transceiver will allow reception of the RF signal. Upon conversion to a digital format, the signal is typically output over the high speed bus

(HSB) 360 to one or more associated devices for processing. For example, where the signal is a TV signal, the signal may be output directly to the TV port 336 and/or processed by the settop box 350 prior to outputting to the TV ports 336 and/or display 338. Where user channel selection is preformed performed directly in the broadband residential gateway 300, channel selection may be preformed performed by remote control receiver 365 using an external device such as a remote control. The remote control receiver may receive a plurality of individually coded remote control commands from different receivers and process the signals for only one associated device in accordance with the received commands. Alternative channel inputs include the display 338 and/or any associated keypad. Authorization to certain channels may be controlled by security processor 340.---

Please replace the paragraph beginning at line 28 of page 42 with the following:

---Fig. 6 illustrates an exemplary call flow of an on-network call to another onnetwork user, with the call being handled by a single call manager (CM) 218. In alternate alternative embodiments, different portions of the call set-up sequence may be handled by more than one call manager 218 in the IP network 120. The exemplary "on-network" call processing sequence operates as follows:---