Návrh a implementace bezpečnosti v podnikových aplikacích

Pavel Horal < pavel.horal@orchitech.cz >

Obsah přednášky

- úvod do problematiky
 - o aplikace, bezpečnost, ...
- základní pojmy
 - informační bezpečnost, řízení přístupů, řízení bezpečnosti
- kryptosystémy a PKI
 - o šifrování, hashe, razítka
 - PKI a související standardy
- protokoly a implementace
 - HTTP, OpenID, OAuth, SAML, Kerberos, WSS
 - Linux, Windows, OSX
- bezpečnostní standardy
 - o ISO, CC, ...

Podnikové aplikace

- podpora fungování podniku (ERP, CRM, BI, CMS, ...)
- řízená obchodními požadavky
- integrace s okolními systémy
- zpracování a správa dat
- implementuje obchodní procesy
- konkrétní skupina uživatelů, různé role

Minesweeper, SAP, Office, SharePoint, Facebook, stackoverflow.com, bbc.co.uk, MySQL, ICQ, OpenWrt

Bezpečnost obecně

Stav, kdy je systém schopen odolávat známým a předvídatelným vnějším a vnitřním hrozbám, které mohou negativně působit proti jednotlivým prvkům (případně celému systému) tak, aby byla zachována struktura systému, jeho stabilita, spolehlivost a chování v souladu s cílovostí. Je to tedy míra stability systému a jeho primární a sekundární adaptace.

Aplikační bezpečnost

Application security is the use of software, hardware, and procedural methods to protect applications from external threats.

Zdroj: http://searchsoftwarequality.techtarget.com/definition/application-securit

Application security encompasses measures taken throughout the code's life-cycle to prevent gaps in the security policy of an application or the underlying system (vulnerabilities) through flaws in the design, development, deployment, upgrade, or maintenance of the application.

Co to znamená?

- Aplikace by měla zamezit odcizení dat.
- Aplikace by měla zamezit poškození dat.
- Aplikace by měla zajistit dostupnost dat.
- Aplikace by měla odolat chybovým stavům.
- Aplikace by měla fungovat správně.
- Aplikace by měla umožnit prokázání správné funkčnosti.
- Aplikace by měla, ...

Pro zamyšlení: protokol z výslechu, corpus delicti, zatykač, vojenská informace?

Oblasti bezpečnosti

Application Security	Regulatory compliance		Role and thorization concepts	Data protection and privacy		Auditing
Secure Collaboration	Identity federation			Security interoperability		Trust management
Secure User Access	Identity management			cation and Access control		
Infrastructure Security	Network and communication security	ns	Platform security	System security		Front-end security
Software Life- Cycle Security	Secure development	Secure default configuration		Secure delivery		Secure change management

Informační bezpečnost

Základní principy

- autenticita
- o integrita
- důvěrnost
- dostupnost
- nepopiratelnost
- zodpovědnost
- důvěryhodnost
- sledovatelnost

Řízení přístupů

- identifikace
- autentizace
- autorizace

Analýza rizik

- identifikace a ohodnocení zdrojů
- odhalení zranitelnosti a hrozeb
- návrh protiopatření pro minimalizaci rizik
- připuštění rizika, odstranění rizika, přenesení rizika
- každé protiopatření má svoji cenu (ne nutně finanční)
- vypůjčené pojmy z biometrie
 - false acceptance rate
 - false rejection rate

Obvyklé hrozby

- Validace / ošetření vstupů
 - buffer overflow, injection attacks, denormalizace
- Modifikace kódu systému
- Útok na autentizační schéma
 - odposlech, brute foce, slovníkový útok, reply, odcizení přihlašovacích údajů
- Útok na autorizační schéma
 - zvýšení práv, získání důvěrných dat, manipulace s daty
- Konfigurační řízení
 - získání konfiguračních dat, přístup k administrativním rozhraním, chybějící zodpovědnost

Obvyklé hrozby

- Citlivá data
 - o přístup k citlivým datům, odposlech, manipulace
- Session management
 - o odcizení session, reply, man in the middle
- Kryptografie
 - špatné generování nebo správa klíčů, slabá kryptografie
- Parameter manipulation
 - o query, form, cookie, header
- Exception management
 - zobrazení citlivých dat, nedostupnost
- Auditing and logging
 - odmítnutí zodpovědnosti, nedetekovatelný útok

Metody zabezpečení

- procesní bezpečnost (politiky, ...)
- fyzická bezpečnost (zámky, ...)
- síťová bezpečnost (topologie, aktivní prvky, ...)
- bezpečnost operačních systémů
- aplikační bezpečnost (řízení přístupu, ...)
- datová bezpečnost (zálohy, ...)

bezpečnost při vývoji

Řízení bezpečnosti

kontinuální vyhodnocování a zajišťování bezpečnosti

Zdroj: Gary McGraw: Software Securit

"Cílem bezpečnostního projektu je docílení takového stavu, aby úsilí, riziko odhalení a finanční prostředky potřebné na narušení bezpečnostního systému byly adekvátní v porovnání s hodnotou, která je bezpečnostním systémem chráněna."

Základní principy

- Určení a oddělení zodpovědnosti
- Zajištění nejslabšího článku
- Zabezpečení chybných stavů
- Jednoduchost návrhu
- Opatrnost v důvěře
- Princip nejmenšího práva
- Princip čtyř očí a obecně dvojité kontroly
- Auditní stopa
- Použití ověřených technologií

Autentizace

- ověření proklamované identity
- autentizace vs. identifikace
- autentizace je dokazovacím procesem
- důkaz je vlastnictví, znalost nebo vlastnost
- vícefaktorová autentizace
- úspěšná autentizace má své vlastnosti
 - úroveň a typ autentizace
 - o autentizační kanál
 - 0 ...

Aplikace a jejich prostředí

- desktopová aplikace
 - o běží v OS
 - o nativní vs. VM
- webová aplikace
 - běží na serveru
 - o tlustý vs. tenký klient
- mobilní aplikace
 - běží v mobilním zařízení
 - o práva na HW a data

Webové aplikace

- aplikace běžící v prohlížeči (tenký klient)
- aplikace postavené na webových technologiích (HTTP)

- HTTP (RFC 2068)
 - request / response protokol
 - metoda + URI, response kód a status
 - hlavičky a tělo

Webová autentizace

BASIC

- jméno a heslo zakódované v BASE64
- o posílá se s každým requestem

DIGEST

- HA1=MD5(username:realm:password) v BASE64
- HA2=MD5(method:URI)
- MD5(HA1:nonce:HA2) posílá se s každým requestem
- nonce (reply attack)

Formulářová autentizace

- HTML formulář na jméno a heslo
- speciální URI na zpracování autentizace
- uložení autentizace?

Webová autentizace

- Klientské SSL
 - o autentizaci na úrovni SSL
 - autentizace privátním klíčem (využití asymetrické kryptografie)
 - uložení autentizace?
- Další metody
 - SPNEGO / Kerberos
 - OAuth
 - OpenID Connect
 - SAML
 - CAS
 - o JWT
 - 0 ..

Návrh a implementace bezpečnosti v podnikových aplikacích

Pavel Horal < pavel.horal@orchitech.cz >

Kryptologie

- nauka zkoumající metody dosažení cílů informační bezpečnosti
 - o důvěrnost, integrita, autenticita, nepopiratelnost, ...
- kryptografie vs. kryptoanalýza
- produkty jsou kryptografické služby s komponenty
 - kryptografické protokoly (např. výměna klíčů)
 - kryptografická schémata (např. módy blokových šifer)
 - atomické primitivy (např. blokové šifry nebo hashovací funkce)
- bezpečnost komponent je
 - o prokazatelná vs. neprokazatelná (ekvivalence s obtížným problémem)
 - o podmíněná vs. nepodmíněná (neschopnost provést útok v reálném čase)

Šifrování

- algoritmus pro šifrování a dešifrování textu / dat za použití tajného klíče
- ve výsledku jde o funkce c=E(k,m) a m=D(k,c)
- základní vlastností je délka klíče (bruteforce attack)
 - o 128, 256, 512, 1024, ... O(N) pro šifrování, O(2^N) pro útok
- symetrické vs. asymetrické šifry (prokazatelná bezpečnost)
 - IDEA, Blowfish, DES, AES, RSA, RC4, DH, OTP, ...
- proudové vs. blokové šifry
 - Kolik dat zašifrují blokové šifry?
- vlastnosti konfuze a difuze

Asymetrická kryptografie

- 2 klíče, jeden pro šifrování a druhý pro dešifrování
- nazýváno též jako kryptografie s veřejným klíčem
- vzájemný matematický vztah klíčů, obtížně odvoditelné
- šifrování, podpis, razítko

RSA

- malá Fermatova věta a^{p-1}≡1 (mod p)
- aritmetika v z_n, kde n=p□·q
- veřejný klíč

```
\circ e; 1 < e < \phi(n)
```

soukromý klíč

```
o b; e \cdot b \equiv 1 \pmod{\phi(n)}
```

šifrování

```
\circ E(m) = m<sup>e</sup> mod n
```

dešifrování

```
\circ D(c) = c<sup>d</sup> mod n
```

 nalezení d je ekvivalentní problému faktorizace, RSA však nemusí být

D-H Key Exchange

- založeno na problému diskrétního logaritmu
 - \circ $a^x \equiv c \pmod{n}$
- základní průběh
 - dohoda na cyklycké grupě z a generátoru g
 - Alice má privátní klíč a a Bob má privátní klíč b
 - z pohledu Alice (Bob obdobně):
 - Alice dostane q^b
 - Alice vypočítá finální klíč (g^b) ^a=g^{ab}
 - útočník se znalostí n, g, g^a, g^b není schopen jednoduše zjistit g^{ab}

AES (Rijndael)

délky klíč 128, 192 a 256 bitů

Shamirovo sdílení tajemství

- cílem je tajemství s rozdělit na n částí tak, aby stačila znalost k
 částí k rekonstrukci S, ale ne k-1
- založeno na existenci unikátního polynomu stupně n pro n+1 bodů
 - o $S = a_n a_{n-1} \dots a_1 a_0$ o $a_n x^n + a_{n-1} x^{n-1} \dots a_2 x^2 + a_1 x + a_0$

použití v DVB nebo komplexních schématech

Módy blokových šifer

- Proč je problém prostě jen šifrovat odděleně?
- možnost generovat klíč a nebo řetězit šifrování
- ECB (Electronic Codebook)
- CBC (Cipher Block Chaining)
- CFB, OFB, CTR, (MAC), ...

Electronic Codebook (ECB) mode encryption

Cipher Block Chaining (CBC) mode encryption

Padding a inicializační vektor

- inicializační vektor (veřejný, unikátní, náhodný)
- blokové šifry vyžadují plný blok → padding

- Mělo by být jasné, co znamená:
 - AES/CBC/PKCS5Padding
 - RSA/ECB/PKCS1Padding
 - 0 ...

Šifrování – útoky

- zlomení, narušení, malleability (ohebnost ŠT)
- útoky pomocí orákula
 - only ciphertext
 - known plaintext
 - chosen plaintext (adaptivní útok)
 - chosen ciphertext (adaptivní útok)
- Kreckhoffův předpoklad útočník zná vše kromě klíče
 - o porovnat se security through obscurity
- Lineární a diferenciální kryptoanalýza
- Útoky postranními kanály
 - time, power, EM, ...

Hash

- funkce $VSTUP \rightarrow OTISK (Z^* \rightarrow Z^k)$
- jednosměrná, bezkolizní
- kolize
 - Nalezení libovolných M a M´ tak, že h(M) = h(M´).
 - Pro M nalezení M ′ tak, že h(M) = h(M ′).
- MD5 (128b), SHA (190b), SHA-2 (256b/512b)
- Použití v podpisech, hesla (k čemu je sůl?), MAC, ...

Zabezpečená komunikace

- Handshake
 - Kdo jsi a kdo jsem já?
 - Co umíš za šifru? Čím budeme šifrovat?
 - Jaký hash budeme používat?
- Domluva na klíči
- Posíláme data

http://httpd.apache.org/docs/2.0/mod/mod_ssl.html#sslciphersuite

https://wiki.mozilla.org/Security/Server_Side_TLS

Další relevantní oblasti

- Steganografie
 - postupy pro ukrytí dat v jiných datech
- Samoopravné kódy
 - o BCH, Hamming, RS, ...
- Linked hash a witness value

Public Key Infrastructure

- Důvěryhodnost certifikátů
 - Jak mohu věřit certifikátu?
- Certifikační autorita
 - Kdo to je? Kdo se jí může stát?
- Vydávání certifikátů
 - Jak předat certifikát k podpisu bez vyzrazení klíče?
 - Jak autorita ověří, že nevydává certifikát podvodníkovi?
- Odvolání certifikátů
 - Jak se dozvím o odvolaných certifikátech?
- ...

X.509

- X.509
 - struktura certifikátu
- ASN.1
 - o obecná struktura
- DFR
 - o kódování

```
Certificate:
Data:
  Version: 1 (0x0)
  Serial Number: 7829 (0x1e95)
  Signature Algorithm: md5WithRSAEncryption
  Issuer: C=ZA, ST=Western Cape, L=Cape Town, O=Thawte Consulting cc,
       OU=Certification Services Division, CN=Thawte Server CA/emailAddress=server-certs@thawte.com
  Validity:
    Not Before: Jul 9 16:04:02 1998 GMT
    Not After: Jul 9 16:04:02 1999 GMT
  Subject: C=US, ST=Maryland, L=Pasadena, O=Brent Baccala,
       OU=FreeSoft, CN=www.freesoft.org/emailAddress=baccala@freesoft.org
  Subject Public Key Info:
    Public Key Algorithm: rsaEncryption
    RSA Public Key: (1024 bit)
       Modulus (1024 bit):
          00:b4:31:98:0a:c4:bc:62:c1:88:aa:dc:b0:c8:bb:33:35:19:d5:0c:64:b9:3d:41:b2:96:fc:f3:31:e1:
          66:36:d0:8e:56:12:44:ba:75:eb:e8:1c:9c:5b:66:70:33:52:14:c9:ec:4f:91:51:70:39:de:53:85:17:
          16:94:6e:ee:f4:d5:6f:d5:ca:b3:47:5e:1b:0c:7b:c5:cc:2b:6b:c1:90:c3:16:31:0d:bf:7a:c7:47:77:
          8f:a0:21:c7:4c:d0:16:65:00:c1:0f:d7:b8:80:e3:d2:75:6b:c1:ea:9e:5c:5c:ea:7d:c1:a1:10:bc:b8:
          e8:35:1c:9e:27:52:7e:41:8f
       Exponent: 65537 (0x10001)
Signature Algorithm: md5WithRSAEncryption
  93:5f:8f:5f:c5:af:bf:0a:ab:a5:6d:fb:24:5f:b6:59:5d:9d:92:2e:4a:1b:8b:ac:7d:99:17:5d:cd:19:f6:ad:ef:63:2f:92:
  ab:2f:4b:cf:0a:13:90:ee:2c:0e:43:03:be:f6:ea:8e:9c:67:d0:a2:40:03:f7:ef:6a:15:09:79:a9:46:ed:b7:16:1b:41:72:
  0d:19:aa:ad:dd:9a:df:ab:97:50:65:f5:5e:85:a6:ef:19:d1:5a:de:9d:ea:63:cd:cb:cc:6d:5d:01:85:b5:6d:c8:f3:d9:f7:
```

8f:0e:fc:ba:1f:34:e9:96:6e:6c:cf:f2:ef:9b:bf:de:b5:22:68:9f

PKCS

Standardy pro kryptografii s veřejným klíčem

- PKCS#7
 - Cryptographic Message Syntax (.p7, .p7s)
- PKCS#10
 - Certificate Signing Request (.p10)
- PKCS#12
 - Personal Information Exchange Syntax (.pfx, .p12)

OWASP

- Projekty s vazbou na Internetovou bezpečnost
- Auditní projekty
 - ASVS hodnocení bezpečnosti
 - OWTF, ... (automatizované) testování
- Bezpečnostní frameworky
 - HDIV integrita v rámci tzv. HTTP konverzací
 - 0 ...
- Žebříčky zranitelností
 - TOP 10 pro webové aplikace
 - TOP 10 pro mobilní aplikace

Návrh a implementace bezpečnosti v podnikových aplikacích

Pavel Horal < pavel.horal@orchitech.cz >

@include X

- Technologie a OS
 - o HSM, AD, AGLDP, PAM, JAAS
- WSS
- Data lifecycle
- Provozní bezpečnost
 - o IDS, IPS
- Audit

Téma na test

- OAuth
- OpenID Connect
- SAML
- SASL
- NTLM
- CAS
- JWT
- PEP / PAP
- PKCS #7, #12

Situace – organizace

- discovery
- autentizace
- autorizace

Kerberos

- KDC key distribution center
 - AS autentizační server
 - TGS autorizační server
- AP aplikační server
- Centrální autorizace
- REALM a jeho význam
- Využívá na transportní vrstvu
- Reply attack?
- Man in the middle attack?

Kerberos

- Ticket
 - zašifrovaný (částečně čím?)
 - session key
 - timestamp
- Flagy
 - Post-dated tickets
 - Proxy tickets
 - Forwardable tickets
- Example
 - klist
 - https://www.ietf.org/rfc/rfc4120.txt
 - http://web.mit.edu/kerberos/krb5-1.12/doc/admin/enctypes.html

Kerberos

- GSS API / JGSS
 - Kdo komunikuje s KDC (aplikace nebo OS)?
- SPNEGO
 - Chci to použít na webu!
- Cross-realm autentizace
 - TRUST jako specifický konstrukt.

Situace – distribuovaná aplikace

- autentizace
- session

JSON Web Token

- Struktura pro zabezpečné přenášení tzv. claims
- Součásti
 - hlavička (typ, alg)
 - payload (claims)
 - podpis
- <u>Možnost zašifrovat paylout</u>

Situace – delegace

- trust
- delegace

OAuth 2.0

OAuth 2.0

- Authorization grant povolení přístupu
 - authorizatization code
 - o implicit
 - password
 - client credentials
- Access token
- Refresh token

Situace – externí autentizace

- autentizace
- discovery
- registration
- attributes

OpenID ± 2 Connect

Situace – trust

společná pravidla

SAML

- Security Assertion Markup Language
- Tři základní účastníci:
 - Principal (uživatel)
 - Identity Provider (IdP)
 - Service Provider (SP)
- Assertion ověření
 - Authentication statements
 - Attribute statements
 - Authorization statements

SAML

- SAML protocols
 - Assertion Query, Authentication, Artifact Resolution, Single Logout, ...
- SAML bindings
 - SOAP, HTTP Redirect, HTTP POST, HTTP Artifact, ...
- SAML profiles
 - Web Browser SSO, Identity Provider Discovery, Single Logout, Artifact Resolution,
- SAML metadata

SAML

Situace - ...

- WS komunikace
 - o WSS
- centralizace autorizace
 - definice vs. vyhodnocování
- dohoda na autentizaci
 - SPNEGO, SASL, ...
- single-sign-on a single-sign-out
 - o IWA, CAS,
- ...

XACML

- eXtensible Access Control Markup Language
- Komponenty
 - o PAP, PDP, PIP, PRP
- Objekty
 - Subject, Resource, Action, Environment
- Struktura
 - o PolicySet, Policy, Rule

ukázka

- principal objekt reprezentující uživatele
- authentication objekt reprezentující autentizaci
- granted authority oprávnění v rámci aplikace
- security context kontext běhu aplikace
 - standardně vázaný na vlákno
 - o občas vázaný i na kód
 - v HTTP vázaný na HTTP požadavek

- SecurityContextHolder
 - ThreadLocal
 - InheritableThreadLocal
 - Global

- vše ostatní
 - o inicializace contextu
 - o autorizace na základě contextu

- Filter chain
 - sada filtrů s oddělenými úlohami a pravomocemi
 - více filter chainů dle patternu
 - může být i prázdný
- Základní sada filtrů
 - autentizační filtry (BASIC, SPNEGO, DIGEST, FORM)
 - processing URI
 - persistence filtry
 - autorizační filtry
 - zpracování chybových stavů
- AuthenticationEntryPoint
 - o inicializace autentizačního protokolu

- Základní filtry
 - FilterSecurityInterceptor
 - ExceptionTranslationFilter
 - AccessDeniedHandler
 - AuthenticationEntryPoint
 - Processing filters
 - UsernamePasswordAuthenticationFilter
 - ...
 - SecurityContextPersistenceFilter
 - SecurityContextRepository

- AuthenticationManager
 - o autorita schopná ověřit Authentication objekt
- ProviderManager
 - DaoAuthenticationProvider
 - UserDetailsService
- PasswordEncoder
 - SaltSource

- Autorizace
 - pre-invocation vs post-invocation
 - FilterSecurityInterceptor vs MethodSecurityInterceptor (AOP)
- Expression-based access control
 - založeno na SpEL
 - o hasRole()
 - hasPermission()
 - isAuthenticated()

- ACL domain object security
- SecurityUtils a SecurityAdvisor
- LDAP, CAS, Kerberos