Swarm Intelligence and Ant Colony Optimization

Background, Methods, and Applications

Lucas deHart

What is Swarm Intelligence?

 Computer simulation of biological processes

Takes inspiration from animals such as bees and ants

What is Swarm Intelligence?

- Best described as "Optimization without knowledge"
- Each agent follows simple rules no higher understanding of the problem
- When many agents act together, a collective intelligence emerges

What is Swarm Intelligence?

- Foraging behavior among insects
- Scouts are sent out from a hive to find food
- Once found, scouts return to tell the hive, and more members of the hive follow the same path
- EfficientSearching?

Properties of Swarm Intelligence

- Large number of "individuals" forms a "population" of possible solutions
- Individuals are fairly homogeneous little variation between types
- Individuals operate autonomously, but interact with each other and their environment
- The group behavior self-organizes

Properties Continued

- Scalability Can increase scale without reprogramming interactions.
 - Number of interactions scales slowly with population size
- Easy to parallelize Individual actions depend only on close neighborhood.
- Fault tolerance Faulty individuals have a small impact and can be easily replaced.

The Swarm Intelligence Family

- Swarm intelligence is a computing approach, rather than a particular algorithm
- →It can be further divided and categorized. Examples of algorithms within swarm intelligence include:
 - → Ant Colony Optimization
 - → Particle Swarm Optimization
 - → The Bee Algorithm

Applications of Swarm Intelligence Algorithms

- Modeling real life swarming behavior
- Swarm Robotics
- Optimization Problems
 - Discrete and Continuous
 - Vehicle Routing, for example

Ant Colony Optimization Algorithms

- Based on the foraging practices of ant hives
- Not a specific Algorithm, but a related family
- Ants leave pheromone trails behind them
- Pheromone trails affect the likelihood that a subsequent ant will follow the same path
- Pheromone trails evaporate, helps prevent convergence to local minima or maxima

ACO: Basic Algorithm

- ACO Solves Combinatorial Optimization Problems
 - Finite number of decision variables → Search Space (S)
 - Constraints among variables (Omega)
 - Function $f:S \to R$
 - Solutions are any set of variables in the search space S that satisfy the constraints Omega
 - Lets look at a specific problem

Traveling Salesman Problem

- A salesman wants to visit each city in an area while ensuring the following things are true:
 - The salesman visits every city
 - The salesman visits each city only once
- Optimize the solution by finding the shortest path for the salesman to take while still obeying the constraints

Traveling Salesman Problem

- Consider a simple map of five cities
- Spatially distributed on a plane
- Considering city A as start point
- Three possible solutions to TSP

Applying ACO to TSP

- We will apply an Ant Colony Optimization Algorithm to the TSP
 - The original ACO Algorithm was developed with TSP in mind
 - TSP is a simple problem to describe, but with a large number of nodes, is difficult to solve well

Step 1: Initialization

- Build the search space S and initialize pheromone levels
 - For each city define a spatially distributed vertex
 - Define edges as connections between vertices
 - For every edge, set pheromone level to t0
- Distribute m ants among the vertices
 - Add the start locations to the solution memory of each ant

Step 2: Construct Ant Solutions

- Iterative solution construction steps occur for each ant
- At each Construction Step, ants add feasible partial solutions to their memory
 - For TSP, partial solutions are steps from one city to another
 - Choice of partial solution determined probabilistically
- Once chosen, deposit pheromone on the edge traveled
- Iterate n-1 times (until complete solutions are formed)

Step 2.5: How do they choose?

- The Ant-Routing Table (Ai)
 holds probabilities that an ant
 will make a particular move
- The pheromone values for a move are given as t
- The nij is the inverse of the distance between the two cities

$$a_{ij} = \frac{\left[t_{ij}\right]^{\alpha} \left[\eta_{ij}\right]^{\beta}}{\sum_{l \in A_i} \left[t_{il}\right]^{\alpha} \left[\eta_{il}\right]^{\beta}} \forall_j \in N_i$$

Step 3 (optional): Apply Local Search

- After obtaining full solutions, local search may be applied in the area of those solutions to improve them further between global iterations
- For a very simple TSP, this is unnecessary
- For more complex problems, Local Search Algorithms can increase the performance of ACO

Step 4: Global Pheromone Update

• After each global iteration (once a set of complete solutions is found), the pheromone levels of each edge are updated.

$$\tau_{ij} = (1 - \rho)\tau_{ij} + \sum_{s \in S_{upd} | c_i^j \in s} g(s)$$

- g(s) is the evaluation function, or how good the particular solution is
- Evaporation helps prevent fast convergence to a local minimum, instead driving the algorithm to search new areas of the search space

Step 5: End

- The Global Iteration is performed a set number of times
- After the conclusion of the iterations, we have a large number of edges with pheromone values
- Because pheromone is distributed more heavily on the best sections of a solution, we can pick the final solution based on the pheromone levels
- Can build a final solution from good solution parts that is better than any individual solution
- No single ant has to traverse the "best" solution

Further Applications

- We have shown how ACO works on a static problem
- However, ACO also works for dynamic problems
 - Dynamic Problems involve changing search spaces
- Adaptation is fairly simple, just let the algorithm run continuously
- Has been used to solve urban traffic problems and telephone network routing

References

- 1. http://www.scholarpedia.org/article/Swarm_intelligence
- 2. http://www.scholarpedia.org/article/Ant_colony_optimization
- 3. Ant Colony Optimization, Saad Ghaleb Yaseen and Nada M A.AL-Slamy, 2008
- 4. Ant Colony Optimization, Overview and Recent Advances, Marco Dorigo and Thomas Stutzle, 2009
- 5. http://staff.washington.edu/paymana/swarm/krink_01.pdf

Image References

- 1.https://commons.wikimedia.org/wiki/File:Bees_Collecting_Pollen_2004-08-14.jpg
- 2. https://commons.wikimedia.org/wiki/File:Weaver_ant_carrying_food.jpg
- 3. https://upload.wikimedia.org/wikipedia/commons/e/e0/
- Vehicle_Routing_Problem_Example.svg

