5) Statistical Test

Vitor Kamada

December 2018

Reference

Tables, Graphics, and Figures from
Introductory Statistics with
Randomization and Simulation

Diez et al. (2014): Ch 2 - Foundation for inference

Rosen B and Jerdee T. 1974. "Influence of sex role stereotypes on personnel decisions." Journal of Applied Psychology 59(1):9-14

CVs were randomly assigned to 48 male bank supervisors

CVs were identical, except that half was male and the other half female

 H_0 : Gender \perp Decision vs H_A : Gender $\neg \perp$ Decision

decision promoted not promoted Total 21 24 male 3 gender female 14 10 24 48 Total 35 13

$$\frac{21}{24} - \frac{14}{24} = 29.2\%$$

100 Simulations

		decision		
		promoted	not promoted	Total
gender_simulated	male	18	6	24
	female	17	7	24
	Total	35	13	48

Medical Consultant

Average complication rate for liver donor surgeries in the US is about 10%

A Medical Consultant had only 3 complications in the 62 liver donor surgeries $\hat{p} = \frac{3}{62} \cong 0.048$

```
np.random.seed(77)  pHat = np.random.binomial(62, 0.1, size=10000)/62 \\ sum(pHat < 0.048)/10000
```

import numpy as np

10000 Simulations

import matplotlib.pyplot as plt
plt.hist(pHat, bins=18)

$$\hat{p} < 0.048 = 0.0449$$

6/14

95% Confidence Interval for a Proportion (p)

$$SE = \sqrt{\frac{p(1-p)}{n}} \cong \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} = \sqrt{\frac{0.048(1-0.048)}{62}}$$

$$p \pm z * SE$$

$$0.048 \pm 1.96 \times 0.02725$$

$$[-0.005$$
 to $0.10]$

$$ME = z * SE = 0.0534$$

Decision Errors

Hypothesis Test for a Proportion (p)

$$H_0: p \ge 0.1$$
 vs $H_a: p < 0.1$

$$SE = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.1(1-0.1)}{62}} = 0.038$$

$$z = \frac{\hat{p} - p}{SE} = \frac{0.0484 - 0.1}{0.038} = -1.35$$

$$P(z < -1.35) = 0.0875$$

Frederick S and et. al. 2009. Opportunity Cost Neglect. Journal of Consumer Research 36: 553-561.

Control Group:

- (A) Buy this entertaining video.
- (B) Not buy this entertaining video.

Treatment Group:

- (A) Buy this entertaining video.
- (B) Not buy this entertaining video. Keep the \$14.99 for other purchases.

Opportunity Cost

	d€		
	buy DVD	not buy DVD	Total
control group	56	19	75
treatment group	41	34	75
Total	97	53	150

decision buy DVD not buy DVD Total 0.747 0.253 1.000 control group treatment group 0.547 0.453 1.000 Total 0.647 0.353 1.000

$$\hat{p}_t - \hat{p}_c = \frac{34}{75} - \frac{19}{75} = 20\%$$

1000 Simulations

	decision		
	buy DVD	not buy DVD	Total
simulated-control group	46	29	75
simulated-treatment group	51	24	75
Total	97	53	150

Framing Effect

	-AFT, Local 6075 (American Association of University Professors-American tion of Teachers)
I have	elected to become (select one):
	$\bf Union\ member$ with all the benefits of membership. Dues are currently assessed at the rate of .9% of gross salary.
	Fair Share fee payer at 81% of regular dues, with no benefits of membership.
	Fund contributor at 110% of regular dues to a university-wide Provost's fund (100% for those hired before September 1, 1995, or who had tenure or ESS as of September 1, 2002): ☐ Scholarship or ☐ Research

Economist Subscription

Print

Weekly print edition Notebook

Introductory offer 12 weeks for only US\$12

Subscribe now

BEST VALUE

Print + Digital

Digital edition
Audio edition
The Economist Espresso daily
Economist.com
Online archive since 1997
Weekly print edition
Notebook

Introductory offer 12 weeks for only US\$12

Subscribe now

Digital

Digital edition
Audio edition
The Economist Espresso daily
Economist.com
Online archive since 1997
Notebook

Introductory offer 12 weeks for only US\$12

Subscribe now

