MATHEMATIK FÜR PHYSIKER 1 Aufgabenblatt 14

Abgabe: 15.02.2022 bis 15:00 Uhr in der Übungsgruppe. **Bitte in 2-3er Gruppen abgeben**.

Hausaufgaben (20 Punkte)

A14.1 Zeigen Sie für $n \in \mathbb{N}$, dass die Abbildung

$$S_n \to S_n, \qquad \sigma \mapsto \sigma^{-1}$$

bijektiv ist. (4)

A14.2 Beweisen Sie Proposition 10.9. Also, dass für eine Matrix $A \in \mathbb{R}^{n \times n}$ die Abbildung (4)

$$\mathbb{R}^{n \times n} \ni B \mapsto \det(AB) \in \mathbb{R}$$

eine Multilinearform ist.

- **A14.3** Zeigen Sie, dass für eine bijektive lineare Abildung $L: V \to W$ gilt, dass L^{-1} linear ist. (4)
- **A14.4** Es sei $A \in \mathbb{K}^{n \times n}$ diagonalisierbar, mit

$$S^{-1}AS = diag(\lambda_1, \dots, \lambda_n).$$

Weiter sei $S = (v_1 | \dots | v_n)$. Der Vektor v_i entspricht also der i-ten Spalte von S. Zeigen Sie, dass v_i ein Eigenvektor von A zum Eigenwert λ_i ist. (4)

A14.5 Beweisen Sie Korollar 11.5. Seien $\lambda_1, \dots, \lambda_m$ die paarweise verschiedenen Eigenwerte zu einer Matrix $A \in \mathbb{K}^{n \times n}$. Weiter sei N_{λ_i} der Eigenraum zu λ_i und \mathcal{B}_i zugehörige Basis. Zeigen Sie, dass die Menge (4)

 $\bigcup_{i=1}^{m} \mathcal{B}_i$

linear unabhängig ist.

A14.6 Diagonalisieren Sie die folgenden Matrizen über \mathbb{R} bzw. \mathbb{C} .

$$A := \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{pmatrix} \quad \text{und} \quad B := \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$