

AFRL-ML-WP-TP-2007-563

NEGATIVE THERMAL EXPANSION IN ULTRATHIN PLASMA POLYMERIZED FILMS (POSTPRINT)

**Srikanth Singamaneni, Melburne C. LeMieux, Hao Jiang, Timothy J. Bunning, and
Vladimir V. Tsukruk**

**Hardened Materials Branch
Survivability and Sensor Materials Division**

MARCH 2007

Approved for public release; distribution unlimited.

See additional restrictions described on inside pages

STINFO COPY

© 2007 American Chemical Society

**AIR FORCE RESEARCH LABORATORY
MATERIALS AND MANUFACTURING DIRECTORATE
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750
AIR FORCE MATERIEL COMMAND
UNITED STATES AIR FORCE**

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Wright Site (AFRL/WS) Public Affairs Office and is available to the general public, including foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) (<http://www.dtic.mil>).

AFRL-ML-WP-TP-2007-563 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*/Signature//

TIMOTHY J. BUNNING, Ph.D.
Research Lead
Exploratory Development
Hardened Materials Branch

//Signature//

MARK S. FORTE, Acting Chief
Hardened Materials Branch
Survivability and Sensor Materials Division

//Signature//

TIM J. SCHUMACHER, Chief
Survivability and Sensor Materials Division

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government's approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

1. REPORT DATE (DD-MM-YY)			2. REPORT TYPE		3. DATES COVERED (From - To)		
March 2007			Journal Article Postprint				
4. TITLE AND SUBTITLE NEGATIVE THERMAL EXPANSION IN ULTRATHIN PLASMA POLYMERIZED FILMS (POSTPRINT)			5a. CONTRACT NUMBER In-house				
			5b. GRANT NUMBER				
			5c. PROGRAM ELEMENT NUMBER 62102F				
6. AUTHOR(S) Srikanth Singamaneni and Vladimir V. Tsukruk (Georgia Institute of Technology) Melburne C. LeMieux (Iowa State University) Timothy J. Bunning and Hao Jiang (AFRL/MLPJ)			5d. PROJECT NUMBER 4348				
			5e. TASK NUMBER RG				
			5f. WORK UNIT NUMBER M08R1000				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)			8. PERFORMING ORGANIZATION REPORT NUMBER AFRL-ML-WP-TP-2007-563				
Georgia Institute of Technology School of Materials Science and Engineering Atlanta, GA 30332		Hardened Materials Branch (AFRL/MLPJ) Survivability and Sensor Materials Division Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750					
Iowa State University Department of Materials Science and Engineering Ames, IA 50011		Air Force Materiel Command United States Air Force					
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Air Force Research Laboratory Materials and Manufacturing Directorate Wright-Patterson Air Force Base, OH 45433-7750 Air Force Materiel Command United States Air Force			10. SPONSORING/MONITORING AGENCY ACRONYM(S) AFRL/MLPJ				
			11. SPONSORING/MONITORING AGENCY REPORT NUMBER(S) AFRL-ML-WP-TP-2007-563				
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited.							
13. SUPPLEMENTARY NOTES Journal article published in to Chemical Materials, Vol. 19, 2007. Paper contains color. © 2007 American Chemical Society. The U.S. Government is joint author of this work and has the right to use, modify, reproduce, release, perform, display, or disclose the work. PAO Case Number: AFRL/WS 07-0178, 29 Jan 2007.							
14. ABSTRACT Because of the increasing applications of polymer films with nanoscale thickness, it is imperative to fully characterize the physical properties in these films, which could be significantly different from the bulk properties due to the surface and interfacial effects. Interactions with the substrate and high specific surface area (film/air and film/substrate) can cause peculiar properties of the ultrathin polymer films. In a recent study the glass transition of a free standing and supported PS film was found to vary significantly with thickness. Other studies have unveiled several interesting phenomena such as the depth dependent glass transition temperature and thickness dependent thermal expansion. It has been reported that substrate interactions alter the thermal properties of ultrathin poly-(2-vinylpyridine films. A non monotonic thermal behavior was observed in ultrathin polycarbonate films with a negative and positive thermal expansion below and above glass transition temperature, respectively.							
15. SUBJECT TERMS Ultrathin poly-(2-vinylpyridine film, Ultrathin Polycarbonate film, Ultrathin Polymer film							
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT: SAR		18. NUMBER OF PAGES 10	19a. NAME OF RESPONSIBLE PERSON (Monitor) Timothy J. Bunning 19b. TELEPHONE NUMBER (Include Area Code) N/A		
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified					

Negative Thermal Expansion in Ultrathin Plasma Polymerized Films

Srikanth Singamaneni,[§] Melburne C. LeMieux,[†]
Hao Jiang,[‡] Timothy J. Bunning,^{*,‡} and
Vladimir V. Tsukruk^{*,§}

School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, and Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433

Received September 15, 2006

Revised Manuscript Received November 28, 2006

Because of the increasing applications of polymer films with nanoscale thickness, it is imperative to fully characterize the physical properties in these films, which could be significantly different from the bulk properties due to the surface and interfacial effects. Interactions with the substrate and high specific surface area (film/air and film/substrate) can cause peculiar properties of the ultrathin polymer films.^{1–8} In a recent study, the glass transition of a free-standing and supported PS film was found to vary significantly with thickness.^{9,10} Other studies have unveiled several interesting phenomena such as the depth-dependent glass-transition temperature and thickness-dependent thermal expansion.^{11–16} It has been reported that substrate interactions alter the thermal properties of ultrathin poly-(2)-vinylpyridine films.¹⁷ A non-monotonic thermal behavior was observed in ultrathin polycarbonate films with a negative and positive thermal expansion below and above the glass-transition temperature respectively.¹⁸

* To whom correspondence should be addressed. E-mail: vladimir@mse.gatech.edu (V.V.T.); Timothy.Bunning@WPAFB.AF.MIL (T.J.B.).

[§] Georgia Institute of Technology.

[†] Iowa State University. Current address: Chemical Engineering Department, Stanford University.

[‡] Air Force Research Laboratory, Wright-Patterson AFB.

- (1) *Responsive Polymer Materials: Design and Applications*; Minko, S., Ed.; Blackwell Publishing: Ames, IA, 2006.
- (2) *Tribology Issues and Opportunities in MEMS*; Bhushan, B., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997.
- (3) Advincula, R. C.; Brittain, W. J.; Caster, K. C.; Ruhe, J. *Polymer Brushes*; Wiley: Weinheim, Germany, 2004.
- (4) Tsukruk, V. V. *Adv. Mater.* **2001**, *13*, 95.
- (5) Tsukruk, V. V. *Prog. Polym. Sci.* **1997**, *22*, 247.
- (6) Luzinov, I.; Minko, S.; Tsukruk, V. V. *Prog. Polym. Sci.* **2004**, *29*, 635.
- (7) LeMieux, M. C.; Minko, S.; Usov, D.; Stamm, M.; Tsukruk, V. V. *Langmuir* **2003**, *19*, 6126.
- (8) Julthongpuput, D.; LeMieux, A.; Tsukruk, V. V. *Polymer* **2003**, *44*, 4557.
- (9) Forrest, J. A.; Dalnoki-Veress, K.; Dutcher, J. R. *Phys. Rev. E* **1997**, *56*, 5705.
- (10) Gorbunov, V. V.; Fuchigami, N.; Tsukruk, V. V. *High Perform. Polym.* **2000**, *12*, 603.
- (11) Fakao, K.; Miyamoto, Y. *Phys. Rev. E* **2000**, *61*, 1743.
- (12) Forrest, J. A.; Mattsson, J. *Phys. Rev. E* **2000**, *61*, R53.
- (13) Lenhart, J. L.; Wu, W. *Macromolecules* **2002**, *35*, 5145.
- (14) Kawana, S.; Jones, R. A. L. *Phys. Rev. E* **2001**, *63*, 021501.
- (15) Forrest, J. A.; Dalnoki-Veress, K.; Stevens, J. R.; Dutcher, J. R. *Phys. Rev. Lett.* **1996**, *77*, 2002.
- (16) Keddie, J. L.; Jones, R. A. L.; Cory, R. A. *Faraday Discuss.* **1994**, *98*, 219.
- (17) Zanten, J. J.; Wallace, W. E.; Wu, W. *Phys. Rev. E* **1996**, *53*, R2053.

Properties of ultrathin polymer films strongly depend on the fabrication routines. Plasma-enhanced chemical vapor deposition (PECVD) is one of the popular fabrication techniques that is a solventless (dry) process, resulting in organic films with high solvent, scratch, and corrosion resistance and excellent thermal and chemical stability.¹⁹ Plasma polymerization allows the deposition of ultrathin polymer films compatible with lithographic fabrication methods, finding applications in sensing devices, MEMS, optical devices,^{20–23} and nanoscale photonics,^{22,24} or as biocompatible interfaces.²⁵ The chemical reactions during the plasma polymerization are significantly different from those observed in conventional polymerizations.^{19,26} Excited organic species, free radicals, and ions react with each other to produce high-molecular-weight and highly crosslinked chains. The technique offers a unique advantage of the ability to polymerize almost any organic molecule, some of which are impossible otherwise. Because of the fragmentation of the chains and irregular crosslinking, plasma polymers could display very intriguing and novel physical properties.²⁷ An additional aspect of plasma polymers is that when deposited as thin films, they inevitably possess residual stresses due to their growth mechanisms that can significantly alter their physical behavior.^{28,29}

In this communication, we report on the unusual thermal behavior of ultrathin plasma-polymerized polymer films on silicon wafers. Remarkably, a large, reversible negative thermal expansion of plasma polymerized polyacrylonitrile (ppPAN) and polytrimethyl silyl acetonitrile (ppPTSA) in the normal direction was observed and related to the thermally induced stress release of a grainy microstructure. We compare this to the behavior of conventional spin-cast films as well as that of polystyrene (PS) spin-cast and plasma films.

The chemical structures of the monomers used as precursors for the plasma polymerization are shown in Table 1. The polymer films were deposited by the PECVD technique in a custom built PECVD reactor and thoroughly characterized with FTIR, AFM, and XPS according to the procedures described in detail elsewhere (see the Supporting Information

- (18) Soles, C. L.; Douglas, J. F.; Jones, R. L.; Wu, W. *Macromolecules* **2004**, *37*, 2901.
- (19) Yasuda, H. *Plasma Polymerization*; Academic Press, Inc.: New York, 1985.
- (20) LeMieux, M.; McConney, M. E.; Lin, Y-H.; Singamaneni, S.; Jiang, H.; Bunning, T. J.; Tsukruk, V. V. *Nano Lett.* **2006**, *6*, 730.
- (21) Bruno, P.; Cicala, G.; Corsi, F.; Dragone, A.; Losacco, A. M. *Sens. Actuators, B* **2004**, *100*, 126.
- (22) Jiang, H.; Johnson, W. E.; Grant, J. T.; Eyink, K.; Johnson, E. M.; Tomlin, D. W.; Bunning, T. J. *Chem. Mater.* **2003**, *15*, 340.
- (23) Goodman, J. J. *Polym. Sci.* **1960**, *44*, 551.
- (24) Jiang, H.; O'Neill, K.; Grant, J. T.; Tullis, S.; Eyink, K.; Johnson, W. E.; Fleitz, P.; Bunning, T. J. *Chem. Mater.* **2004**, *16*, 1292.
- (25) Shen, M.; Pan, Y. V.; Wagner, M. S.; Hauch, K. D.; Castner, D. G.; Ratner, B. D.; Horbett, T. A. *J. Biomater. Sci., Polym. Ed.* **2001**, *12*, 961.
- (26) Grill, A. *Cold Plasma in Materials Fabrication*; IEEE Press: New York, 1994.
- (27) Biederman, H. *Plasma Polymer Films*; Imperial College Press: London, 2004.
- (28) Yasuda, H.; Hirotsu, T. *J. Appl. Polym. Sci.* **1977**, *21*, 3179.
- (29) Yasuda, H. *Plasma Proc. Polym.* **2005**, *2*, 293.

Table 1. Thermal Characteristics of Nanoscale Polymer Films^a

Polymer	Ultrathin films from present study							Bulk films (obtained from literature)	
	Plasma polymerized				Spin-cast				
	α (K ⁻¹) 10 ⁻⁴	t (nm)	R (nm)	C (deg)	α (K ⁻¹) 10 ⁻⁴	t (nm)	R (nm)		
PS	1.9	148	1.5	69	1.7	169	0.25	0.8–2.8 ^b [Ref. 11,43]	
PAN	-3.1	95	1.7	55	1.6	20	0.20	1.0 [Ref. 44]	
PTSA	-2.5	97	0.5	75	NA ^c	-	-	-	

^a α , Linear thermal expansion coefficient below T_g ; t , thickness; R , rms roughness over $1 \times 1 \mu\text{m}^2$ area; C , contact angle. ^b Thickness dependent. ^c Cannot be polymerized by conventional techniques.

Figure 1. AFM images showing the surface morphology of (a,b) pp PS, (c) pp PAN, and (d) pp PTSA. The z range is 20 nm for all images.

for technical details).^{22,30–33} (Table 1). All the PECVD polymer films were deposited on freshly cleaned (100) silicon wafers within an argon (99.999%) atmosphere. FTIR was used to confirm the chemical composition of the polymer films and their cross-linked structure.³⁴ Thermal expansion of the polymer films was studied by measuring the thickness of the films in the course of heating and cooling using ellipsometry, and the thickness value was independently confirmed by AFM.

AFM images of the polymer films are shown in Figure 1 (see additional data in the Supporting Information). The plasma-polymerized films exhibited a well-developed grainy surface morphology with grain sizes below 100 nm as compared to the smooth surfaces of spin-cast films with no specific features (see the Supporting Information). The rms surface microroughness was found to be 1.5 and 1.7 nm for pp PS and ppPAN, respectively, with ppPTSA displaying the lower microroughness at 0.5 nm. In all cases, the microroughness of plasma-polymerized films is much higher than that observed for spin-cast films (around 0.2 nm; Table

1). A contact angle within 55–75° corresponds to modestly hydrophilic surfaces, which is well below that expected for bulk polymers (e.g., 90° for PS) and indicated the presence of polar groups at the surface that could be generated by post-plasma reaction with ambient.

Thermal expansion of spin-cast PS films is plotted for second and third thermal cycles (each cycle was acquired within 6–8 h) in Figure 2a. In all the experiments, the first heating and cooling cycles were disregarded to eliminate preparation pre-history. The thermal expansion coefficient was found to be $(1.7 \pm 0.3) \times 10^{-4} \text{ K}^{-1}$ for spin-cast PS film and $(1.9 \pm 0.3) \times 10^{-4} \text{ K}^{-1}$ for ppPS, which is within a conventional range of values (Table 1). Thermal expansion of the spin-cast PAN with a thickness of 20.5 nm is also linear with a thermal expansion coefficient of $1.6 \times 10^{-4} \text{ K}^{-1}$, which is slightly higher than but close to that for the bulk film (Figure 2c, Table 1).

However, the plasma-polymerized polymers exhibited a significantly nonlinear variation of thickness with temperature when cooled (Figure 2b,d,e). The final thickness was 0.3–0.5 nm higher than the initial thickness immediately after cooling (for the sake of clarity, cycle 3 was normalized to the same elevated temperature thickness as that in Figure 2b,d,e). However, the film restored to original thickness after a long relaxation time (~8 h). This behavior was observed for all the plasma-polymerized films, whereas the spin-cast films exhibited no such hysteresis. We suggest that the observed hysteresis followed by relaxation might be due to the stresses that developed in the polymer during the deposition process. In fact, a hysteresis behavior of residual stresses in plasma-deposited thin films during thermal cycling was previously reported and attributed to different rates of relaxation.^{35–37}

Moreover, the thermal behavior of two plasma-polymerized films was absolutely uncharacteristic for conventional polymers. In both cases, we have observed thermal contraction of the film in the vertical direction during heating (Figure 2d, e). Furthermore, this negative thermal expansion was found to be reversible, with some hysteresis followed by

(30) Haaland, P.; Targove, J. *Appl. Phys. Lett.* **1992**, *61*, 34.
 (31) Tsukruk, V. V.; Bliznyuk, V. N. *Langmuir* **1998**, *14*, 446.
 (32) Tsukruk, V. V. *Rubber Chem. Technol.* **1997**, *70*, 430.
 (33) Lemieux, M. C.; Usov, D.; Minko, S.; Stamm, M.; Shulha, H.; Tsukruk, V. V. *Macromolecules* **2003**, *36*, 7244.
 (34) Socrates, G. *Infrared and Raman Characteristic Group Frequencies Tables and Charts*, 3rd ed.; Wiley: New York, 2001.

(35) Mukherjee, M.; Bhattacharya, M.; Sanyal, M. K.; Geue, Th.; Grenzer, J.; Pietsch, U. *Phys. Rev. E* **2002**, *66*, 061801.
 (36) Thurn, J.; Cook, R. F. *J. Appl. Phys.* **2002**, *91*, 1988.
 (37) Cao, Z.; Zhang, X. *Sens. Actuators, A* **2006**, *127*, 221.

Figure 2. (a–e) Film thickness vs temperature for plasma-polymerized and spin-coated polymer films for second and third heating and cooling cycles and (f) schematics of the plasma polymer film with the wedge-shaped morphology undergoing a stress release with heating that causes lateral expansion and normal contraction of the wedges.

relaxation as discussed above for ppPS. The thermal expansion coefficient calculated from the linear portion below 50 °C was $(-3.1 \pm 0.2) \times 10^{-4} \text{ K}^{-1}$ for ppPAN and $(-2.5 \pm 0.2) \times 10^{-4} \text{ K}^{-1}$ for ppPTSA (Table 1).

This unusual negative thermal expansion (NTE) behavior is suggested to be caused by the presence of high residual stress in the polymer film, which is common for plasma-polymerized materials combined with developed grainy surface morphology as depicted in Figure 2f. The high in-plane compressive stress common for plasma-polymerized polymers might originate from their specific, wedge-type growth.^{38,39} The residual stresses arise because of the wedging effect during the deposition process, where the high-energy fragments wedge in the existing film. In fact, for some plasma-polymerized polymers, we estimated in-plane compressive stress to be as high as 50 MPa, which is close to or exceeds the yield strength of polymeric materials.²⁰ Figure 2f shows a schematic representation of the plasma polymer films with wedge-shaped individual grains in highly compressive state. An increase in the temperature causes these polymer grains to expand laterally with a simultaneous vertical contraction of the entire film. It is worth noting that although the residual stresses occur for all the plasma-polymerized polymers, the NTE phenomenon was only for ppPAN and ppPTSA. The actual cause for this remains uncovered, but we should note that both the NTE polymers possess a C≡N group that should lead to a higher degree of cross-linking and different topology in comparison with ppPS.

In fact, NTE has been previously observed in some special cases, e.g., along the chain direction for fully aligned linear polyethylene chains.⁴⁰ A different effect exhibited by thermal stresses and elasticity in the negative axial thermal expansion of isotactic polypropylene has been discussed.⁴¹ Recently, it has been proposed that a decrease in the entropy associated

with expansion in some systems makes thermal contraction thermodynamically favorable.³⁵ However, the nature of NTE in amorphous polymer films studied here should be very different and similar to the case of high stresses comparable to the yield stress, which significantly alters the thermal expansion behavior of the polymer films.⁴²

The negative thermal expansion phenomenon in nanoscale polymer films may find applications in technologies requiring nanocoatings with zero thermal expansion. Harnessing these residual stresses either by refining the deposition procedures or by freezing in the nonequilibrium state will be a key issue. By designing composite materials comprising elements with negative thermal expansions, we could eliminate effective temperature variations in the nanocomposite materials. These materials can find interesting applications in microelectronic and optical devices as a means of controlling and compensating the conventional materials' thermal expansion.

Acknowledgment. The authors thank S. Peleshanko for the synthesis of PAN used in spin-coated films. The authors acknowledge the financial support from AFOSR through Grants FA9550-04-C-0099, F49620-03-C-0069, and NSF-CTS-0506832.

Note Added after ASAP Publication: The Supporting Information Available paragraph has been modified from the original version of this paper, which was published on the Web December 19, 2006. The paper was re-published on December 21, 2006.

Supporting Information Available: Detailed experimental methods, FTIR spectra of the polymers, additional AFM images. This material is available free of charge via the Internet at <http://pubs.acs.org>.

CM0622093

(38) Yasuda, H.; Hirotsu, T.; Olf, H. G. *J. Appl. Polym. Sci.* **1977**, *21*, 3179.
 (39) Yu, Q. S.; Yasuda, H. K. *J. Polym. Sci., Part A: Polym. Chem.* **1999**, *37*, 1577.
 (40) White G. K.; Choy, C. L. *J. Polym. Sci., Part B: Polym. Phys.* **1984**, *22*, 835.
 (41) Lacks, D. J.; Rutledge, G. C. *Macromolecules* **1995**, *28*, 1115.
 (42) Reiter, G.; de Gennes, P. G.; *Eur. Phys. J. E* **2001**, *6*, 25.
 (43) *Styrene, Its Polymers, Copolymers and Derivatives*; Boundy, R. H., Boyer, R. F., Eds.; Reinhold: New York, 1952.
 (44) Brandrup, J.; Immergut, E. H.; Grulke, E. A., Eds.; *Polymer Handbook*, 4th ed.; Wiley: New York, 1999.