4.1 1) Le premier mois, Vincent possède 427 fr. : $u_1 = 427$. Si l'épargne de Vincent au mois n vaut u_n , elle augmente de 110 fr. le mois suivant : $u_{n+1} = u_n + 110$.

En résumé, la suite $(u_n)_{n\in\mathbb{N}}$ est définie par $\begin{cases} u_1=427\\ u_{n+1}=u_n+110\;,n\geqslant 1 \end{cases}.$

2) $u_1 = 427$ $u_2 = u_1 + 110$ $u_3 = u_2 + 110$ $u_4 = u_3 + 110$ $u_5 = u_4 + 110$... $u_n = u_{n-1} + 110$

En additionnant toutes ces équations, on obtient :

$$u_1+u_2+u_3+u_4+u_5+\ldots+u_n=427+u_1+u_2+u_3+u_4+\ldots+u_{n-1}+(n-1)\cdot 110$$

d'où suit $u_n=427+(n-1)\cdot 110$

3) $u_n \geqslant 2270$ $427 + (n-1) \cdot 110 \geqslant 2270$ $(n-1) \cdot 110 \geqslant 1843$ $n-1 \geqslant \frac{1843}{110}$ $n \geqslant \frac{1843}{110} + 1 = \frac{1953}{110} \approx 17,75$

C'est donc au $18^{\rm e}$ mois que Vincent possède la somme suffisante pour son projet de vacances. Il doit donc patienter 18-1=17 mois.