Guía 1: ejercicios

Ejercicio 1

Item A

Verdadero. Para ello, veamos cada afirmación:

- $R=\emptyset$ es una relación binaria sobre X: sí, dado que $\emptyset\subseteq X^2$
- R es transitiva, simétrica y antisimétrica respecto a X: sí, dado que al ser vacío, no hay relaciones entre los elementos de X, por lo que no hay elementos que no cumplan con las propiedades.

Item B

Falso. Se puede ver por contraejemplo considerando $X = \{1, 2, 3\}$ y $R = \{(1, 2), (2, 1), (1, 3)\}$. Luego, es claro que:

- No es antisimétrica, dado que $1R2 \wedge 2R1$ pero $1 \neq 2$
- No es simétrica, dado que $1R3 \Rightarrow 3R1$

Item C

Verdadero. Se puede notar dado que si $R = A^2$, entonces:

- Es reflexiva porque $\forall x \in A, (x, x) \in R$
- Es transitiva porque, en particular, $(x,y) \in R \forall x,y \in A$
- Es simétrica porque, en particular, $(x,y) \in R \forall x,y \in A$

Luego, entonces, por definición, es una relación de equivalencia.

Item D

Falso. Dado que si $A \neq \emptyset$, entonces no cumple con la reflexividad.

Item E

Verdadero. Es trivial de ver.

Item F

Falso. Lo veamos por contraejemplo. Por (c) sabemos que $R = \mathbb{N}^2$ es una relación de equivalencia sobre \mathbb{N} . Luego, R no es una relación de equivalencia sobre $\mathbb{N} - \{1\}$, porque no es una relación binaria sobre $\mathbb{N} - \{1\}$, dado que $\mathbb{N}^2 \nsubseteq (\mathbb{N} - \{1\})^2$.

Ejercicio 2

Sea R una relación de equivalencia sobre A y sea $a \in A$, entonces tenemos que $a/R = \{b \in A : aRb\}$ por definición. Luego, como R es una relación de equivalencia, por definición es reflexiva, por lo que se cumple aRa. Finalmente, y en base a la definición de a/R, tenemos que $a \in a/R$.

Ejercicio 3

Sea R una relación de equivalencia sobre A y sean $a,b\in A$, vamos a ver los dos casos del sí y solo sí:

- $aRb \Rightarrow a/R = b/R$: si aRb, entonces $\forall x \in b/R$ se cumple bRx, por lo que por transitividad aRx; lo que significa que $x \in a/R$. Luego, por reflexividad sabemos que bRa, por lo que de forma análoga sale que $\forall x \in a/R, x \in b/R$. Finalmente, esto significa que a/R = b/R.
- $aRb \Leftarrow a/R = b/R$: por (2), sabemos que $b \in b/R$. Luego, como $a/R = b/R, b \in a/R$, por lo que por definición de a/R, aRb.

Finalmente, entonces, se demuestra que $aRb \iff a/R = b/R$.

Ejercicio 4

Sea R una relación de equivalencia sobre A y sean $a, b \in A$, veamos los dos casos:

- Supongamos que $a/R \neq b/R$, entonces por (3) tenemos que *no se cumple* aRb. Luego, queda claro que $\exists x \in A : x \in a/R \land x \in b/R$, dado que eso significaría que aRx y bRx, por lo que por simetría tendríamos xRb y, por transitividad, aRb llegando a un absurdo. Luego, entonces, si no se cumple la igualdad entre a/R y b/R, entonces estos no comparten ningún elemento. Es decir, $a/R \cap b/R = \emptyset$.
- Supongamos que $a/R \cap b/R \neq \emptyset$, entonces $\exists x \in A : x \in a/R \land x \in b/R$. Luego, por lo mismo que antes, esto significaría aRb, por lo que por (3) se cumple que a/R = b/R.

Finalmente, entonces, esto significa que se cumple siempre que $a/R \cap b/R = \emptyset \lor a/R = b/R$.

Ejercicio 5

Si consideramos $R = \{(x,y) \in \mathbb{Z}^2 : 5|x-y\}$, entonces \mathbb{Z}/R tiene 5 clases de equivalencia que son los 5 conjuntos de números separados según su resto en la división por 5.

Es decir,

$$\mathbb{Z}/R = \{\{5k: k \in \mathbb{Z}\}, \{5k+1: k \in \mathbb{Z}\}, \{5k+2: k \in \mathbb{Z}\}, \{5k+3: k \in \mathbb{Z}\}, \{5k+4: k \in \mathbb{Z}\}\}.$$

Ejercicio 6

Sea $R = \{(x,y) \in \mathbb{N}^2 : x,y \leq 6\} \cup \{(x,y) \in \mathbb{N}^2 : x,y > 6\}$, entonces podemos ver que:

- Es una relación binaria sobre \mathbb{N} , dado que $R\subseteq\mathbb{N}^2$
- Es reflexiva porque $\forall x \in \mathbb{N}: x \leq 6, (x,x) \in R$ y $\forall y \in \mathbb{N}: y > 6, (y,y) \in R$, lo cual significa que $\forall z \in \mathbb{N}, (z,z) \in R$
- Es transitiva porque si $\exists x,y,z\in\mathbb{N}:xRy\wedge yRz$, entonces o bien $x,y,z\leq 6$, o bien x,y,z>6, lo que significa que, en ambos casos, se cumple xRz
- Es simétrica porque si $\exists x,y \in \mathbb{N} : xRy$, entonces o bien $x,y \leq 6$, o bien x,y > 6, lo que significa que, en ambos casos, se cumple yRx

Luego, demostramos que R es una relación de equivalencia sobre \mathbb{N} .

Respecto a \mathbb{N}/R , es sencillo notar que tiene 2 clases de equivalencias, dado que $\mathbb{N}/R=\{\{x\in\mathbb{N}:x\leq 6\},\{x\in\mathbb{N}:x>6\}\}.$

Ejercicio 7

Item A

Verdadero. Sea R una relación de equivalencia sobre $A \neq \emptyset$, entonces veamos que:

$$|A/R| = 1 \iff orall a, b \in A, a/R = b/R \stackrel{(3)}{\Longleftrightarrow} orall a, b \in A, aRb \iff R = A^2$$

Por lo que se demuestra que $|A/R|=1 \iff R=A^2$.

Item B

Falso. Si R es una relación de equivalencia sobre A, entonces $A/R = \{a/R : a \in A\}$

Item C

Falso. Sea R una relación de equivalencia sobre $A = \{1, 2, 3, 4, 5\}$, entonces $|\{i/R : i \in A\}| = |A/R|$. Luego, si $R = A^2$, por (a) tenemos que $|A/R| = 1 \neq 5$.

Item D

Falso. Sea $R=\{(x,y)\in A^2: x=y\}=\{(x,x): x\in A\}$ una relación de equivalencia sobre A, entonces tenemos que $a/A=\{a\}\forall a\in A$. Luego, esto significa que $A/R=\{a/A: a\in A\}=\{\{a\}: a\in A\}\neq A$.

Item E

Falso. Digamos $R = \mathbb{N}^2$ una relación de equivalencia sobre \mathbb{N} y $C = \{1\} \subseteq \mathbb{N}$. Luego, es claro que $C \nsubseteq A/R$ dado que $A/R = \{\{x : x \in \mathbb{N}\}\}$.

Ejercicio 8

Item A

Sea R una relación de equivalencia sobre A, entonces veamos que:

$$egin{aligned} ker(\pi_R) & \overset{ ext{def. } ker}{=} \{(a,b) \in A : \pi_R(a) = \pi_R(b)\} \ & \overset{ ext{def. } \pi_R}{=} \{(a,b) \in A : a/R = b/R\} \ & \overset{(3)}{=} \{(a,b) \in A : aRb\} \ & = R \end{aligned}$$

por lo que se demuestra que $ker(\pi_R) = R$.

Item B

Sea ${\it R}$ una relación de equivalencia sobre ${\it A}$, entonces veamos que:

$$egin{aligned} \pi_R ext{ es inyectiva} & \stackrel{ ext{def.}}{\Longleftrightarrow} \ orall x, y \in A, (\pi_R(x) = \pi_R(y) \Rightarrow x = y) \ & \stackrel{ ext{def.}}{\Longleftrightarrow} \ orall x, y \in A, (x/R = y/R \Rightarrow x = y) \ & \stackrel{ ext{(3)}}{\Longleftrightarrow} \ orall x, y \in A, (xRy \Rightarrow x = y) \ & \stackrel{ ext{(3)}}{\Longleftrightarrow} \
otag X, y \in A: (xRy \land x
eq y) \ & \stackrel{ ext{(3)}}{\Longleftrightarrow} \
otag R = \{(x,x): x \in A\} = \{(x,y) \in A^2: x = y\} \end{aligned}$$

por lo que se demuestra que π_R es inyectiva si y solo si $R=\{(x,y)\in A^2: x=y\}$. \blacksquare

Ejercicio 9

Sean $\mathcal P$ una partición de A y $a\in A$, por definición sabemos que $\exists S\in \mathcal P: a\in S$ y que $\forall S'\neq S\in \mathcal P, S\cap S'=\emptyset$, por lo que, entonces $a\notin S'$. Luego, se demuestra que S es único. \blacksquare

Ejercicio 10

Item A

Sea \mathcal{P} una partición de A, definimos $R_{\mathcal{P}}=\{(a,b)\in A^2: a,b\in S \text{ para algún }S\in \mathcal{P}\}$. Luego, notemos que:

- Es una relación binaria sobre A, dado que $R_{\mathcal{P}} \subseteq A^2$
- Es reflexiva porque $\forall x \in A, xR_{\mathcal{P}}x$, dado que $x \in S$ para algún $S \in \mathcal{P}$
- Es transitiva porque $\forall x,y,z\in A: xR_{\mathcal{P}}y\wedge yR_{\mathcal{P}}z$ tenemos que $x,y\in S$ y $y,z\in S$ para algún $S\in\mathcal{P}$. Luego, como $x,z\in S$, entonces $xR_{\mathcal{P}}z$
- Es simétrica porque $\forall x,y \in A: xR_{\mathcal{P}}y$ implica que $x,y \in S$ para algún $S \in \mathcal{P}$, por lo que $y,x \in S$ y, por lo tanto, $yR_{\mathcal{P}}x$

Finalmente, entonces, se demuestra que $R_{\mathcal{P}}$ es una relación de equivalencia sobre A.

Item B

Sea R una relación de equivalencia sobre A, entonces notemos para $A/R = \{a/R : a \in A\}$ que:

- $\forall a \in A, a/R \subseteq A$ (por def.) y $a/R \neq \emptyset$ (dado que $a \in a/R$)
- $\forall a,b \in A: a/R \neq b/R, a/R \cap b/R = \emptyset$ por (4)
- $\bigcup_{a \in A} a/R = A$

Finalmente, entonces, por definición, se demuestra que A/R es una partición de A.

Ejercicio 11

Item A

Impreciso. \mathcal{P} si es una partición de X, entonces no es una relación binaria sobre X y, menos, una relación de equivalencia. Luego, x/\mathcal{P} no tiene sentido.

Item B

Impreciso. No tiene sentido lo escrito. En particular, una partición de X es un conjunto de conjuntos de elementos de X.

Item C

Falso. $\{1,3\}, \{2,4\}, \{5,6\}$ **no** es una partición de $\{1,2,3,4,5,6\}$ porque no es un conjunto. Para que lo sea, debería ser $\{\{1,3\}, \{2,4\}, \{5,6\}\}$.

Item D

Verdadero. Porque X es un conjunto de elementos de X y \mathcal{P} es un conjunto de conjuntos de elementos de X.

Item E

Verdadero. Bajo el mismo criterio que (d), dado que A/R con R relación de equivalencia, es una partición de A.

Item F

Verdadero. Esto se nota por que al ser biyección, se necesita que tanto A y A/R tengan la misma cardinalidad. Luego, A/R tiene que ser de la forma $\{\{a:a\in A\}\}$, lo que significa que $R=\{(x,x):x\in A\}$.

Ejercicio 12

Item A

Falso. Porque la partición que se hace con \mathbb{Z}/R con $R=\{(x,y)\in\mathbb{Z}:2|x-y\}$ es la de números impares por un lado y números pares por el otro. Es decir, $\mathbb{Z}/R=\{\{2k:k\in\mathbb{Z}\},\{2k+1:k\in\mathbb{Z}\}\}$. Luego, tendríamos, por ejemplo, que $1=f(0/R)=f(2/R)=\frac{1}{5}$, lo cual es absurdo.

Item B

Impreciso. Porque no es una función, dado que si la consideramos como f en el caso de (a), entonces 0 = f(0/R) = f(2/0) = 2, lo cual es absurdo.

Ejercicio 13

Si tenemos $F:\mathbb{N} \to \{0,1,2,3\}$ dada por $F(n)=n \mod 4$, entonces notemos que $ker(F)=\{(x,y)\in\mathbb{N}^2:x\mod 4=y\mod 4\}$, por lo que para $n\in\mathbb{N}$ se cumple que $n/ker(F)=\{x\in\mathbb{N}:x\mod 4=n\mod 4\}$ (es decir, es el conjunto de números con mismo resto módulo 4 que n).

Teniendo esto en mente, si consideramos $f: A/ker(F) \to \mathbb{N}$ como f(n/ker(F)) = F(n), tenemos que esta es una función dado que la invariante de cada grupo de la partición es, justamente, su resto módulo 4.

Respecto a las preguntas de inyectividad o survectividad, tenemos para f que:

- Es inyectiva porque si $\exists n, m \in \mathbb{N} : f(n/ker(F)) = f(m/ker(F))$, entonces F(n) = F(m), por lo que $n \mod 4 = m \mod 4$, lo que significa que n/ker(F) = m/ker(F)
- No es suryectiva porque $Im(f)=\{0,1,2,3\}
 eq \mathbb{N}$

Ejercicio 14

Item A

Sea $F:A\to B$ una función sobreyectiva, entonces veamos que ker(F) es una relación de equivalencia sobre A respecto a los valores de Im(F)=B (al ser sobreyectiva). Es decir, $ker(F)=\{(a,b)\in A^2: F(a)=F(b)\}.$

Ahora, esto significa que $a/ker(F)=\{x\in A: F(x)=F(a)\}$, por lo que si consideramos $f:A/ker(F)\to B$ como f(a/ker(F))=F(a), tenemos que es una función porque la invariante de cada grupo de la partición A/ker(F) es, justamente, el valor de F en ese grupo. \blacksquare

Item B

Ahora, si queremos ver si f es biyectiva, notemos que, a diferencia del ejercicicio (13), acá definimos $f: A/ker(F) \to B$. Luego, teniendo esto en cuenta, veamos que:

- Es inyectiva porque si $\exists a,b \in A: f(a/ker(F)) = f(b/ker(F))$, entonces F(a) = F(b), por lo que a/ker(F) = b/ker(F) dado que cada grupo de A/ker(F) tiene un único valor de F
- Es sobreyectiva porque Im(f) = Im(F) = B, dado que F es sobreyectiva

Con ello, entonces, se demuestra que f es biyectiva.