

Institutt for datateknikk og informasjonsvitskap

Eksamensoppgåve i TDT4300 Datavarehus og datagruvedrift

Fagleg kontakt under eksamen: Kjetil Nørvå	g	
Tlf.: 73596755		
Eksamensdato: 26. mai 2016		
Eksamenstid (frå-til): 09.00-13.00		
Hjelpemiddelkode/Tillatne hjelpemiddel: D: I	ngen trykte eller handsk	rivne
ŀ	njelpemiddel tilletne. Bes	stemt,
•	enkel kalkulator tillate.	
Annan informasjon:		
Målform/språk: Nynorsk		
Sidetal (utan framside): 4		
Sidetal vedlegg: 0		
		Kontrollert av:
	Dato	Sign
Informasjon om trykking av eksamensoppgåve		
Originalen er:		
1-sidig X 2-sidig □		
svart/kvit X fargar □		

Oppgåve 1 – Diverse – 15 % (alle delar tel likt)

- a) Nemn fire formål med klyngevalidering/evaluering.
- b) Forklar fire teknikkar for data-vasking i kontekst av web-bruk-data.
- c) Gjeve to bit-vektorar p og q:

```
p = 1010000111
q = 1000001101
```

Rekn ut Jaccard-koeffisienten for bitvektorane p og q.

Oppgåve 2 – Modellering – 15 %

I denne oppgåva skal de modellere eit datavarehus for bilskadar i forsikringsselskapet Lillebrand. Lillebrand ønskjer eit datavarehus for å kunne analysere hendingar som har medført forsikringsutbetalingar.

Eksempel på analysar ein skal vere i stand til å gjere mot datavarehuset:

- Tal på skadar i 2015.
- Gjennomsnittleg tal på skadar per månad.
- Tal på skadar for kvart kvartal i 2015.
- Totalt beløp utbetalt for kvar biltype.
- Tal på skadar av type "kollisjon" per by.

Skildringa er litt upresist formulert og det er ein del av oppgåva å velje ut det som skal vere med. Vi er først og fremst ute etter at du skal vise modelleringsprinsippet for datavarehus. Forklar kort eventuelle føresetnader du finn det nødvendig å gjere.

Lag eit stjerne-skjema for denne case-skildringa.

Oppgåve 3 – OLAP – 15 % (5 % på a og 10 % på b)

a) Gjeve kube med dimensjonar:

Time(day-month-quarter-year)
Item(item_name-brand-type)
Location(street-city-province_or_state-country)

Gå utifrå følgjande materialiserte kuboidar:

- 1) {year, item_name, city}
- 2) {year, brand, country}
- 3) {year, brand, province_or_state}
- 4) {item_name, province_or_state} where year = 2004

Gjeve følgjande OLAP-spørjing: {*item_name*, *province_or_state*} med vilkår "*year* = 2006" Kven av dei materialiserte kuboidane kan brukast til å prosessere spørjinga? Grunngje svaret.

b) Gjeve eit datavarehus med tre tabellar Location/Item/Sales, der Sales er fakta-tabellen og dei to andre er dimensjonstabellar. Vi ønskjer å bruke *join-indekser* for å kunne utføre spørjingar meir effektivt. Vis struktur og innhald for join-indeksane Location/Sales og Item/Sales med utgangspunkt i innhaldet i dei tre tabellane under.

Location		
LocKey	CityName	
L1	Oslo	
L2	Athen	
L3	Trondheim	

Item		
ItemKey	ItemName	
I1	Sony-TV	
I2	Rolex	
I3	Lexus	

Sales			
TransID	LocKey	ItemKey	Price
T1	L1	I1	5
T2	L2	I2	8
T3	L1	I1	6
T4	L3	I1	5
T5	L3	I3	9
T6	L1	I2	8
T7	L1	I1	4

Oppgåve 4 – Klynging – 10 %

Gjeve et to-dimensjonalt datasett som vist i tabellen til høgre. Utfør klynging ved hjelp av DBSCAN på dette datasettet, gjeve MinPts=4 (inkl. eige punkt) og Eps=3 (inkl. punkt som har distanse 3). Bruk Manhattan –distanse som avstandsmål.

\mathbf{X}	Y
4	8 9
4	
4	10
4	13
4	14 3 7
5	3
5	7
5	14
X 4 4 4 4 5 5 6 6	15
6	16
6	19
7	11
7	16
7	17
6 7 7 7 7	18
7	19

Oppgåve 5 – Klassifisering – 20 % (5 % på a og 15 % på b)

- a) Forklar kryssvalidering ("cross validation") og kva denne teknikken vert brukt til.
- b) Eit bilforsikringsselskap har for eksisterande kundar lagra informasjon som inkluderer kundenr, alder (L/M/H, dvs. 18-25/26-70/71-100), biltype, køyrelengde per år (4000/8000/20000/Uavgrensa), bonus (Lav/Middels/Høg) og om dei har hatt skade på bilen som vart dekka av forsikringa. Når nye kundar bed om tilbod på forsikring, ønskjer selskapet å sette prisen til normal eller høg basert på om dei trur kunden kjem til å få skade på bilen eller ikkje, dvs. dei ønskjer å predikere attributtet "Skade".

Kundenr	Alder	Biltype	Køyrelengde per år	Bonus	Skade
1	L	Ferrari	8000	Lav	Ja
2	М	BMW	8000	Høg	Nei
3	Н	Lexus	Uavgrensa	Høg	Ja
4	L	Audi	8000	Høg	Nei
5	Н	Opel	8000	Lav	Ja
6	М	Toyota	8000	Lav	Nei
7	М	Honda	8000	Høg	Nei
8	М	Nissan	8000	Høg	Nei
9	М	Audi	Uavgrensa	Høg	Nei
10	М	BMW	8000	Lav	Ja
11	Н	Toyota	Uavgrensa	Høg	Nei
12	L	Nissan	4000	Lav	Ja
13	L	Opel	Uavgrensa	Høg	Ja
14	М	Audi	8000	Høg	Nei
15	М	Opel	8000	Høg	Nei
16	М	Toyota	4000	Lav	Nei

Gå utifrå at vi skal bruke *avgjerdstre* ("decision tree") som klassifiseringsmetode. Vi bruker då data i tabellen over som treningsdata. Vi bruker *Gini index* som mål for ureinheit ("impurity"), og følgjande to formlar kan vere til hjelp for å løyse oppgåva:

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$GAIN_{split} = GINI(p) - \left(\sum_{i=1}^{k} \frac{n_i}{n} GINI(i)\right)$$

Oppgåve: Målet med klassifiseringa er å kunne predikere "Skade". Rekn ut *GAIN*_{split} for splitting på (1) "*Alder*" og (2) "*Bonus*". Kven av disse splittingane ville du valt for å starte opprettinga av avgjerdstreet? Grunngje svaret.

Oppgåve 6 – Assosiasjonsreglar – 25 % (10 % på a, 5 % på b, og 10 % på c)

a) Gå utifrå handlekorg-data som er gjeve under. Bruk apriori-algoritmen til å finne alle frekvente elementsett med minimum støtte på 50 % (dvs. *minimum support count* er 4). Bruk $F_{k-1} \times F_{k-1}$ -metoden for kandidat-generering.

TransaksjonsID Element

Transansjonsis	Licincii
T1	ABCDFGH
T2	DKM
T3	FK
T4	ACGH
T5	ACDDGH
T6	BM
T7	DFKM
T8	ABCDGH

- b) Gå utifrå handlekorg-data som er gjeve under. Du skal no bruke *FP-growth-algoritmen* til å finne alle frekvente elementsett med minimum støtte på 60 % (dvs. *minimum support count* er 3).
 - 1) Konstruer eit FP-tre basert på datasettet.
 - 2) Finn frekvente elementsett ved å bruke FP-growth-algoritmen. Bruk tabell-notasjon med følgjande kolonnar for å vise resultatet:
 - Element
 - "Conditional pattern base"
 - "Conditional FP-tree"
 - Frekvente elementsett

TransaksjonsID Element

T1	f, a, c, d, g, i, m, p
T2	a, b, c, f, l, m, o
T3	b, f, h, j, o
T4	b, c, k, s, p
T5	a, f, c, e, l, p, m, n