Layer 1 & 2 Physical and Datalink Technologies

Data-Link Layer Functions

Defines:

- Physical source and destination addresses
- Higher-layer protocol (service access point) associated with frame
- Network topology
- Frame sequencing
- Flow control
- Connection-oriented or connectionless

Ethernet and IEEE 802.3

- · Benefits and background
 - Ethernet is the most popular physical layer LAN technology because it strikes a good balance between speed, cost, and ease of installation
 - Supports virtually all network protocols
 - Xerox initiated, then joined by DEC & Intel in 1980
- Revisions of Ethernet specification
 - Fast Ethernet (IEEE 802.3u) raises speed from 10 Mbps to 100 Mbps
 - Gigabit Ethernet is an extension of IEEE 802.3 which increases speeds to 1000 Mbps, or 1 Gbps

Network Cabling

- · Media connecting network components
 - NIC cards take turns transmitting on the cable
 - LAN cables only carry one signal at a time
 - WAN cables can carry multiple signals simultaneously
- Three primary types of cabling
 - Twisted-pair (or copper)
 - Coaxial cable
 - Fiber-optic cable

Ethernet and Fast Ethernet

Protocol	Max. Segment Length (m)	Transmission Medium	Application
10Base2	185	50-ohm coaxial	A: Link user stations
10Base5	500	50-ohm coaxial	A: Link user stations
10BaseF	Refers to 10BaseFB, 10BaseFL, and 10Base FP		
10BaseFB	2000	Fiber-optic	A: Add segments
10BaseFL	1000–2000	Fiber-optic	A: Operate w/ FOIRL
10BaseFP	500	Fiber-optic	Star topo w/out repeaters
10BaseT	100	2-pairs TP	Sends link signals
10Broad36	3600	Broadband coax	A: Broadband
100BaseFX	400	2 strands of multimode fiber-optic cable	
100BaseT	100	UTP	10BaseT function + more
100BaseT4	100	4 prs Cat 3-5 UTP	-
100BaseTX	100	2 prs UTP or STP	-
100BaseX	Refers to 2 strand/pair 100BaseFX and 100BaseTX		

LAN/WAN Devices

- Hubs
- Bridges
- Switches
- Routers

Hub

 Device that serves as the center of a star topology network, sometimes referred to as a multiport repeater, or in Ethernet, a concentrator; no forwarding intelligence

Hubs Operate at Physical Layer

- All devices are in the same collision domain.
- All devices are in the same broadcast domain.
- Devices share the same bandwidth.

Hubs: One Collision Domain

 More end stations means more collisions.

CSMA/CD is used.

Switches

- Use bridging technology to forward traffic between ports.
- Provide full dedicated data transmission rate between two stations that are directly connected to the switch ports.
- Build and maintain address tables called content-addressable memory (CAM).

Switching—"Dedicated" Media

- Uses bridging technology to forward traffic (i.e. maintains address tables, and can filter)
- Provides full dedicated transmission rate between stations that are connected to switch ports
- · Used in both local-area and in wide-area networking
- · All types available—Ethernet, Token Ring, ATM

- Switching Modes

 Three selectable switching modes supported
 - FastForward (cut-through)
 - FragmentFree (modified cut-through)
 - Store-and-Forward

