Заняття 10. Комутатори операторів фізичних величин x_i , p_i , L_i , L^2 .

Аудиторне заняття

- 1. Знайти комутатори операторів компонентів імпульсу та радіус вектора.
- 2. Побудувати оператор моменту імпульсу \hat{L} у прямокутній декартовій системі координат. (№2.27)
- 3. Знайти комутатор операторів компонент моменту імпульсу $[\hat{L_v},\hat{L_z}]$. (№2.28a)
- 4. Знайти комутатор оператора квадрату моменту імпульсу $\hat{L}^2 = \hat{L_x}^2 + \hat{L_y}^2 + \hat{L_z}^2$ з оператором $\hat{L_x}$. (№2.30a)
- 5. Відомо, що власна функція одномірної системи у певному стані має вигляд $\psi(x) = C \exp\left(-\frac{x^2}{a^2} + ik_0 x\right)$, де a та k_0 відомі константи. Для даного стану знайти а) величину константи C; б) середнє значення координати < x >. (№2.31а,б)

Домашнє завдання

1. Знайти комутатори наступних компонент моменту імпульсу:

а)
$$[\hat{L_x}, \hat{L_z}]$$
; б) $[\hat{L_z}, \hat{L_z}]$. (№2.28б,в)

- 2. Знайти комутатор оператора квадрату моменту імпульсу $\hat{L}^2 = \hat{L_x}^2 + \hat{L_y}^2 + \hat{L_z}^2$ з оператором $\hat{L_z}$. (№2.30в)
- 3. Знайти правила комутації наступних операторів: а) $\hat{L_x}$ та $\hat{p_x}$; б) $\hat{L_x}$ та $\hat{p_y}$; в) $\hat{L_x}$ та $\hat{p_z}$. (№2.29)
- 4. Відомо, що власна функція одномірної системи у певному стані має вигляд $\psi(x) = C \exp\left(-\frac{x^2}{a^2} + ik_0x\right)$, де a та k_0 відомі константи. Знайти середнє значення імпульсу < p > у цьому стані. (№2.31в)
- 5. Визначити середнє значення фізичної величини, що описується оператором $\hat{L_z}^2$ в стані, який описується функцією ψ (ϕ) = $C \sin^2 \phi$ (C невідома константа). (№2.35)