Semantic Web Technologies and Applications

Dr P Sreenivasa Kumar

Professor, CS&E Department
I I T Madras, Chennai
INDIA

Web and Semantic Web

- Web of Documents
 - HTML, Hyperlinks
 - Search engines
 - Keyword based access
 - Meant for Humans
- Web of Data (aka the Semantic Web)
 - RDF, RDFS, OWL, Labeled-Links
 - Querying, Inferences
 - Meant for Software Agents

Web and Semantic Web

- Web of Documents
 - Manual navigation
 - Manual information assimilation
 - Tedious to perform web-based tasks
- Web of Data (aka the Semantic Web)
 - Agent programs find resources
 - Process information from resources
 - Perform tasks on behalf of humans
 - A new way of data integration / smart processing

Travel Arrangements

Want to travel to
Mumbai for a
meeting at 11am at
IIT Bombay on Jan
21st. Return after
Lunch

No suitable flight tickets on 21st. Shall I book night stay at Mumbai?

OK, try
IIT Bombay
Guest House

Agent
"understands" terms
from travel
domain

Mail from IITB GH manager
E-tkts to Mumbai (20th
evening)
To Chennai (21st afternoon)
Taxi-Cab bookings for
transfers

The Foundations

- XML
 - Extensible Markup Language
 - Framework for creating markup languages
 - Domain dependent tags
 - Unlike HTML's fixed set of tags
 - Data is not just for rendering in browsers
 - Data becomes self-describing
 - Programs can make use of data
 - A step towards adding semantics to data
 - Generalizes relational, object models

Typical XML Data

```
<institute>
  <name>Indian Institute of Technology Madras </>
  <department><name>Mathematics</name>
               <address> HSB321</address>
            <phone>8510</phone>
            <head>M T Nair</head>
  </department>
  <department> <name>Computer Science and Engineering</name>
            <address> <bldg>CSB</bldg> <room>101</room>
                </address>
             <phone>4350</phone> <phone>4351</phone>
             <head><firstName>Krishna</firstName>
                    <lastName>Sivalingam/lastName>
             </head>
  </department> ...
</institute>
```

Benefits of XML

- Creating standard formats for domains
 - Markup languages
 - Easy exchange of data platform independent
 - Machine process-able and human readable
 - Promotes interoperability
 - Organizations/individuals develop domain models
 - More than a hundred markup languages created
 - XHTML, BizTalk, ebXML, ChemML, MathML, VoiceXML
 - http://en.wikipedia.org/wiki/List_of_XML_markup_languages
 - Web Services
 - Orchestrated Data Exchange

Data Exchange

Data Exchange Simplified

Ambiguous Meaning

```
<department>
    <name>Mathematics</name>
    <institute>Indian Institute of Technology Madras</institute>
        <address>HSB321</address>
        <phone>8510</phone>
        ...
</department>
```

Is Department part of Institute? or Is Institute part of Department?

Structure alone can not convey meaning....

Semantic Web

- Basic items represented
 - Things of interest in the domain
 - Physical as well as abstract entities
 - Persons, Books, Cities, Loans, Reservations
 - Relations between entities
 - Domain-specific: Child-of, Parent-of (Family Domain)
 - Taxonomical: surgeon-doctor; others...
- Globally unique names
 - Use URIs as names for things/relations

Web of Data Foundations - RDF

- RDF Resource Description Framework
 - A resource is any entity of interest
 - Individual entities, entity types, binary relations ...
 - Represented by URIs
- Description
 - Set of triples each triple is a statement
 - (subject, predicate, object) (iit-m, located-In, Chennai)
 - or (resource, property, value) (iit-m, founded-in, 1959)
 - Conceptually, a graph
 - Nodes resources, Directed edges relations
 - Framework for building semantic models

Typical RDF Triples

. . .

http://www.iitm.ac.in rdf:type acad:Institute

http://www.cse.iitm.ac.in rdf:type acad:Department

Classes

acad:partOf rdf:type rdf:Property

acad:partOf rdfs:domain acad:AdministrativeUnit

acad:partOf rdfs:range acad:AdministrativeUnit

Individuals

http://www.cse.iitm.ac.in acad:partOf http://www.iitm.ac.in

http://www.iitm.TGH.ac.in acad:partOf http://www.iitm.ac.in

acad:isHeadOf rdf:type rdf:Property

acad:isHeadOf rdfs:domain acad:Professor

acad:hasHead rdfs:inverseOf acad:isHeadOf

. . .

An example RDF graph..

Baskaran 2017

Web of Data Foundations

- RDFS (resource description framework schema)
 - rdfs:subClassOf, rdfs:subPropertyOf
 - rdfs:domain, rdfs:range
- OWL (web ontology language)
 - owl:equivalentClass owl:sameAs
 - owl:inverseOf owl:symmetricProperty
 - owl:allValuesFrom
 - owl:someValuesFrom
 - owl:functionalProperty
 - etc...

Modeling Issues

- Old wine in a new bottle?
- Classes, properties etc
 - OO modeling, programming
- Important differences
 - Closed vs. Open world assumption
 - Set of properties
 - Does not determine membership in a class
 - Does not characterize a class
 - Properties are first-class citizens
 - Can be defined independent of a class

Closed vs Open World Assumption

- Databases CWA
 - Only explicitly mentioned statements are true
 - All other statements are false
- 'Web of Data' context OWA
 - Explicitly mentioned statements are true
 - Other statements are unknown
 - Can not be taken as false
 - New information can always come up

Classes or Concepts

- Class or Concept
 - Set of individual resources
 - Faculty, AcademicStaffMember, AdministrativeUnit
 - A class can be subset of another class
 - Faculty subClassOf AcademicStaffMember
- Class membership
 - Has to be explicitly stated
 - Can be inferred due to
 - subClassOf relations or
 - Domain / Range of properties

Properties or Relations (or predicates)

- Properties are first-class citizens
 - Defined independent of classes
 - Essentially binary relations
 - "having a name" is a generic property
 - persons, streets, pets, mountains, buses
 - A property can have one or more domain/range
- A property can be a sub-property of another
 - isWifeOf is a sub property of isSpouseOf
 - isBrotherOf is a sub property isSiblingOf

Semantic Model

- Set of classes/concepts
 - Class hierarchy
- Set of properties and property hierarchy
 - Object properties partOf
 - Datatype properties hasPhone
- Additional information about properties
 - What properties are Symmetric? Transitive?
 Functional?, Inverses of properties, etc
- Individuals and Relationships among them
 - Data triples (cse.iitm.ac.in, partOf, iitm.ac.in)

Also known as a Domain Ontology

Academic Institute Model

Concepts

- Student, Faculty, Course, Grade, etc
- Faculty (a subclass of AcademicStaffMember)
- AsstProfessors, AssocProfessors, Professors
 (all disjoint sub-classes of Faculty) etc
- Properties
 - teaches, taughtBy, enrolls, supervises
- Individuals URI's are used
- Written in OWL, machine process-able

Description Logic(s)

- Underlying mathematical basis for OWL-DL
- Decidable subsets of First Order Logic
- Variable free, compact notation for
 - Concepts, properties (binary relations),
 - Property restrictions
 - E.g., Parent A person having at least one child
 - Number restrictions
 - E.g., Any person can have at most two parents
 - Quantification
 - E.g., Persons with only girl children
 - And many more …

Example: Family Ontology

Given:

```
Concepts: Person, Man, Woman; Property: hasChild Person ≡ Man □ Woman; Man □ Woman ≡ ⊥
```

```
Parent ≡ Person □ ∃ hasChild.Person

Mother ≡ Parent □ Woman; Father ≡ Parent □ Man

GrandFather ≡ Man □ ∃ hasChild.Parent

GrandMother ≡ Woman □ ∃ hasChild.Parent

GrandParent ≡ GrandFather □ GrandFather

PersonWithOnlyDaugters ≡ Parent □ ∀ hasChild.Woman

Person □ = 2hasParent.Person
```

. . .

IIT Ontology – a snippet

E V Vinu, 2016

IITStudent(tom) IIT_MS_Student(tom) hasAdvisor(tom, bob) IITPhdStudent(sam) hasAdvisor(sam, alice) hasAdvisor(sam, roy) AssistantProf(alice) In DL notation. Can also be written in OWL. What is "roy"?

Some DL Operators

Construct	Syntax	Interpretation
Concept intersection	$C \sqcap D$	$(C \sqcap D)^{\mathcal{I}} = (C^{\mathcal{I}} \cap D^{\mathcal{I}})$
Concept union	$C \sqcup D$	$(C \sqcup D)^{\mathcal{I}} = (C^{\mathcal{I}} \cup D^{\mathcal{I}})$
Concept negation	$\neg C$	$(\neg C)^{\mathcal{I}} = (\Delta^{\mathcal{I}} \setminus C^{\mathcal{I}})$
Universal restriction	∀R.C	$(\forall R.C)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \forall b, (a,b) \in R^{\mathcal{I}} \rightarrow b \in C^{\mathcal{I}}\}$
Existential restriction	∃R.C	$(\exists R.C)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \exists b, (a,b) \in R^{\mathcal{I}} \land b \in C^{\mathcal{I}}\}$
Minimum cardinality	≥nR	$(\geq nR)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \{b \mid (a,b) \in R^{\mathcal{I}}\} \geq n\}$
Maximum cardinality	≤nR	$(\leq nR)^{\mathcal{I}} = \{a \in \Delta^{\mathcal{I}} \mid \{b \mid (a,b) \in R^{\mathcal{I}}\} \leq n\}$
Concept inclusion	$C \sqsubseteq D$	$(C \sqsubseteq D)^{\mathcal{I}} = (\mathcal{C}^{\mathcal{I}} \subseteq \mathcal{D}^{\mathcal{I}})$
Concept equivalence	$C \equiv D$	$(C \equiv D)^{\mathcal{I}} = (C^{\mathcal{I}} = \mathcal{D}^{\mathcal{I}})$

Namespaces

- Namespace Represented by a URI
 - Terms concept names, property names etc
 - Used in a specific context
- Same term in different contexts
 - different meanings e.g, title: books, persons
 - different namespaces
- RDF/RDFS/OWL namespaces
- Terms class, type, domain, range, subclass, ...
- Used to define terms in domain ontologies
- Defined domain-terms separate namespace

Where exactly is the semantics?

Semantics

- Meaning of terms
- Every medical surgeon is also a doctor
- med:Surgeon rdfs:subClassOf med:Doctor
- Meanings get fixed
 - By standardizing the meanings of terms in the ontology frameworks
 - RDF, RDFS, OWL ontology frameworks
 - Applications can interpret them in only one way

Ontologies in Manufacturing

- GSPAS AI system of Ford Motor Company
 - Global State Process Allocation System
 - Input is a set of Process Sheets
 - Process Sheet
 - High-level instructions for assembling a part
 - Written in Ford's own "Standard Language"
 - Employs KL-One based
 - Manufacturing Ontology
 - Lexical Ontology
 - Re-engineered into RDF/OWL by us at IITM

Car Assembly

GSPAS System

FORD's GSPAS Ontology

- KL-one based ontology
 - 10,000+ concepts
 - Models knowledge about:
 - Ford's Standard Language, Vehicle Assembly
- Multiple hierarchies
 - Verbs, nouns lexical-related
 - Operations, Parts, tools Vehicle-related
- One single namespace for all terms
 - Homonym problem eg 'hammer' tool; operation
 - 'power hammer' is a 'hammer' and hence an operation!!

An Example Process Sheet

TITLE: ASSEMBLE IMMERSION HEATER TO ENGINE

- 10 OBTAIN ENGINE BLOCK HEATER ASSEMBLY FROM STOCK
 20 LOOSEN HEATER ASSEMBLY TURNSCREW USING POWER TOOL
 30 APPLY GREASE TO RUBBER O-RING AND CORE OPENING
 40 INSERT HEATER ASSEMBLY INTO RIGHT REAR CORE PLUG HOSE
 50 ALIGN SCREW HEAD TO TOP OF HEATER
- TOOL 20 1 P AAPTCA TSEQ RT ANGLE NUTRUNNER
 TOOL 30 1 C COMM TSEO GREASE BRUSH
- Translated into low-level, detailed shop-floor operator instructions
 - Ontology definitions of operations, parts are used

Ergonomic Analysis

- Knowledge-based ergonomic analysis
- Ergonomic violations in a process sheet
 - Frequency violations
 - "Standard Language" verb/operation usage
 - Indicates a certain operation frequency
 - More than a certain threshold humanly impossible
 - Heavy-part violations
 - A heavy part usage
 - Without appropriate lift/hoist mechanism
 - Inferences from verb/part name to be done

Issues with current system

- KL-One a very early KR framework
 - Custom-built KL-One editors are used by Ford
- KB Update Module
 - GUI based, Enables updates & error-checking
 - Difficult to maintain as system migrated ...
- KB and Application: tightly coupled
 - Difficult to extract knowledge for use in other applications
- All terms in a single namespace

Re-Engineered Ontology

Ontologies in S/W Engineering

- Automatic software synthesis from modules
- Simulation software for satellite launch vehicles
- Launch vehicle ontology
 - Subsystems and their inter-relationships
 - Simulation requirements
 - Gross / Fine / h/w-in-loop etc
 - Incompatible choices
 - Subsystem applicable math models
- Agent does the synthesis
 - Given the end-user specs, produces a custom-assembled simulation s/w that meets the specs.

Ontology LV-Onto Segment

Example Domain Knowledge

- 1. Whatever may be the requirements for a project, all environmental aspects need to be simulated.
- Taking care of sixDOF requires more specific-aspects to be simulated compared to threeDOF.
- Whenever a rocket stage uses liquid propulsion, the sloshing of the liquid stage needs to be simulated.
- Projects only with actual control and sixDOF will require the aspect of Control Power Plant (CPP) for simulation.

Knowledge Organization

LV-Onto SWRL Rules (1/2)

- R1. Software_Project(?x), Environmental_Aspect(?y) \rightarrow hasSpecificAspect(?x, ?y)
- R2. Software_Project(?x) → hasSpecificAspect(?x, massCG)
- R3. Software_Project(?x), Aerodynamics_Aspect(?y) → hasSpecificAspect(?x, ?y)
- R4. Software_Project(?x) → hasSpecificAspect(?x, stg1Force)
- R5. $Software_Project(?x)$, $hasNumberOfDOF(?x, sixDOF) \rightarrow hasSpecificAspect(?x, momentOfInertia)$
- R6. Software_Project(?x), hasNumberOfDOF(?x, sixDOF), Onboard_Algorithmic_Aspect(?y) → hasSpecificAspect(?x, ?y)
- R7. Software_Project(?x), hasStage1Type(?x, liquidPropulsion) → hasSpecificAspect(?x, stg1Slosh)

SWRL Rules (2/2)

- R8. Software_Project(?x), hasNumberOfDOF(?x, sixDOF), hasControlMode(?x, actualControl) → hasSpecificAspect(?x, stg1CPP)
- R9. Software_Project(?x), hasNumberOfStages(?x, twoStage) → hasSpecificAspect(?x, stg2Force)
- R10. Software_Project(?x), hasNumberOfStages(?x, twoStage), hasStage2Type(?x, liquidPropulsion) →
 hasSpecificAspect(?x, stg2Slosh)
- R11. Software_Project(?x), hasNumberOfStages(?x, twoStage), hasNumberOfDOF(?x, sixDOF), hasControlMode(?x, actualControl) → hasSpecificAspect(?x, stg2CPP)
- R12. Software_Project(?x), hasNumberOfDOF(?x, threeDOF), hasControlMode(?x, actualControl) →
 hasIncompatiableRequirement(?x, actualControl)

Overall System Architecture

Reasoning and Querying

- Data Sources
 - Publish/Provide RDF triples
- Reasoners / Extractors
 - Derive new information
 - Establish new connections
- Query languages
 - Retrieve information SPARQL
- Applications
 - Carry out tasks for us

Travel Arrangements Example

The Agent

- Consults travel and accommodation semantic model
- Sends booking requests to Travel Agent
- Consults IIT-Bombay semantic model
- Sends email request to GH in-charge
- Consults call taxi semantic model
- Sends booking requests for cars
- Sends me an email about what to do!!

References

- Semantic Web Primer (2nd edition),
 - Grigoris Antoniou and Frank van Harmelen
 - MIT Press, 2008.
- Foundations of Semantic Web Technologies
 - Markus Kroetzsch, Pascal Hitzler, and Sebastian Rudolph, CRC Press, 2010.
- http://www.w3.org/
- Protégé Ontology editor from Stanford University

References

- S. S. Uma Sankari, P. Sreenivasa Kumar, C. Geethaikrishnan, R. Vikraman Nair: Ontology for Launch Vehicle Mission Simulation. J. Aerosp. Inf. Syst. 14(3): 198-202 (2017)
- Nestor Rychtyckyj, Venkatesh Raman, Baskaran Sankaranarayanan, P. Sreenivasa Kumar, Deepak Khemani: Ontology Re-Engineering: A Case Study from the Automotive Industry. Al Magazine 38(1): 49-60 (2017)