1. A common problem in mathematical physics is that of solving the Fredholm integral equation

$$f(x) = \phi(x) + \int_{a}^{b} K(x, t)\phi(t)dt$$

where the function f(x) and K(x,t) are given and the problem is to obtain $\phi(x)$.

- Describe a numerical method for solving the above equation
- Solve the following equation

$$\phi(x) = \pi x^2 + \int_0^{\pi} 3(0.5\sin(3x) - tx^2)\phi(t)dt$$

Obtain the exact solution of the above and compare your numerical solution with it.

- 2. Evaluate $I = \int_0^1 \frac{e^{-x}}{\sqrt{x}} dx$ by subdividing the domain into $n \in \{5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000\}$ panels.
 - Using rectangular rule.
 - Make a change of variable $x = t^2$ and use rectangular rule.

Compare the two methods above in terms of accuracy and cost. Explain the difference, if any

3. The Householder's method is a generalization of the Newton method and the sequence of iterates is given by

$$x_{n+1} = x_n + d \frac{(1/f)^{d-1} (x_n)}{(1/f)^d (x_n)}$$

where $(1/f)^k(x_n)$ is the k^{th} derivative of the function 1/f evaluated at x_n . Note that taking d=1, we obtain the Newton method. Prove that if f(x) is d+1 times continuously differentiable function, i.e., $f^{(d+1)}$ exists and is continuous, and if the sequence of iterates converge to a root a, then we have

$$|x_{n+1} - a| \le K |x_n - a|^{d+1}$$
 for some $K > 0$ eventually

The above statement means that the order of convergence of the above method is d+1.

- 4. Let f(x) be a twice differentiable strictly convex function with a single simple (i.e., multiplicity of the root is one) root at x = a. Prove that the Newton method converges to the root irrespective of the initial guess.
- 5. Prove that the function $w(x) = xe^x a$ has only one real root for a > 0.
 - Write a program to obtain the root of the above using (i) bisection (ii) Newton method (iii) Secant method.
 - Explain in detail why, when and for what initial guess does each of the method converge.
 - What happens when a < 0? Perform a complete analysis on the convergence for a < 0 as well.