CRYPTOGRAPHY

МЕТОДИ ТА ЗАСОБИ КРИПТОГРАФІЧНОГО ЗАХИСТУ ІНФОРМАЦІЇ

ШИФР ВИЖЕНЕРА

I.2.2 Шифр Виженера (Vigenere, 1585)

Идея \rightarrow задается вектор K ключей (m < n) — секретное кодовое слово

$$egin{aligned} oldsymbol{K} & = egin{bmatrix} oldsymbol{k}_0 \ oldsymbol{k}_i \ oldsymbol{k}_{m-1} \end{bmatrix} & oldsymbol{k}_i = oldsymbol{s}_l \in \mathbb{Z}_n! \end{aligned}$$

Шифрование
$$\rightarrow c_t = (s_t + k_{t(mod m)}) mod n$$

Дешифрование
$$\rightarrow s_i = (c_t - k_{t(mod m)}) mod n$$

І.2.2 Шифр Виженера. Пример

K = СУПЕРКЛЮЧ M = ПРИВІТ_СТУДЕНТИ_КІБ M = ПРИВІТ_СТ УДЕНТИ_КІ Б

$$k_0 = C \rightarrow 20; s_0 = \Pi \rightarrow 18;$$

 $c_0 = (20+18) \mod 31 = 7; c_0 = 7 \rightarrow \epsilon$

С = ЄИЩЗЯШЛПН ІШХУЗНЛІЕ У

Использовать словарь аддитивного шифра.

Создать СЕКРЕТНОЕ слово (6 символов). Модифицировать программу аддитивного шифра для шифра Виженера.

ШИФР ПЛЕЙФЕРА

Шифр Плейфера

Идея \rightarrow задается m * m матрица K ключей $(m * m \ge n)$

$$egin{bmatrix} oldsymbol{k}_{0,0} & ... & k_{0,m} \ oldsymbol{k}_{i,j} & & & \ oldsymbol{k}_{m,0} & oldsymbol{k}_{m,m} & & & \ \end{pmatrix}$$

$$\mathbf{k}_{i,j} = \mathbf{s}_l \in \mathbb{Z}_n!$$

Каждый $k_{i,j}$ есть символ алфавита.

Размещение $k_{i,j}$ в матрице K собственно и есть секретный ключ.

Мощность
$$||K|| = (m * m)!$$

Открытый текст $s_0, s_1, s_2, s_3, ...$ разбивается на пары символов S_1, S_2 .

$$S_1 \xrightarrow{S_1, S_2} k_{i_1, j_1} \quad S_2 \xrightarrow{k_{i_2, j_2}}$$

Шифр Плейфера

Шифрование. Для каждой пары символов находим шифросимволы:

Если
$$i1 = i2, j1 \neq j2 \rightarrow$$
 $c_1 = k_{i_1,j_1+1 \pmod{m}}$, $c_2 = k_{i_1,j_2+1 \pmod{m}}$

Если $i1 \neq i2, j1 = j2 \rightarrow$
 $c_1 = k_{i_1+1 \pmod{m},j_1}$, $c_2 = k_{i_2+1 \pmod{m},j_1}$

Если $i1 \neq i2, j1 \neq j2 \rightarrow$
 $c_1 = k_{i_1,j_2}$, $c_2 = k_{i_2,j_1}$

Шифр Плейфера. Пример

В открытом тексте используется 36 символов: украинские большие буквы и спецсимволы

A	Б	В	Γ	۲	Д	Е	ϵ	Ж	3
И	1	Ï	Ь	Й	K	Л	M	Н	0
п	P	C	Т	У	Φ	X	Ц	Ч	Ш
Щ	Ю	Я			,				

1. Формирование ключевой матрицы Матрица *К* размерности 6 * 6 выбирается в соответствии с вариантом задания. При формировании матрицы необходимо учесть кодировку украинских символов.

2. Функция шифрования. def encrypt_message (message)

return (ciphertext)
message — исходное сообщение
ciphertext — зашифрованное сообщение

!!!! Проверки исходного сообщения:

- 1. Четное число символов.
- 2. Нет символов не из принятого множества.
- 3. Нет двух одинаковых символов, идущих подряд.

3. Функция дешифрования. def decrypt_message (ciphertext)

return (planetext)
ciphertext — зашифрованное сообщение
planetext — расшифрованное сообщение

!!!! Проверки исходного сообщения:

- 1. Четное число символов.
- 2. Нет символов не из принятого множества.
- 3. Нет двух одинаковых символов, идущих подряд.

Задание

1. Генерация ключевой матрицы

(см. вариант)

2. Ввод текста открытого сообщения

(см. вариант)

- 3. Шифрование.
- 4. Вывод шифрограммы.
- 5. Дешифрация.
- 6. Вывод расшифрованного сообщения.
- 7. Сравнение исходного текста и расшифрованного.
- 8. Вывод о работе

СУПЕР Задание

Задано открытое сообщение и соответствующая шифрограмма.

Найти ключевую матрицу К

END #4