IOWA STATE UNIVERSITY

Department of Economics, Department of Electrical & Computer Engineering

Report on:

ERCOT PNNL Contract 401882: *Start Date* 3/19/2018

Development of an Integrated Transmission and Distribution Test System to Evaluate Transactive Energy Systems

ISU Project Team:

PI Leigh Tesfatsion & Co-PI Zhaoyu Wang

Grad Research Assistant: Swathi Battula

PNNL/ISU Web Conference, 22 March 2019

ERCOT Contract: Presentation Outline

- Original Task/Milestone Schedule: M1-M3
- □ Updated Task/Milestone Schedule: M1, M2, M3.1, M3.2, M3.3
- M3.2: Completed Work on AMES V5.0
- M3.2: Work in Progress on AMES V5.0 and ERCOT 200-Bus Test Case
 - ✓ Key Milestone: ERCOT 200-Bus Test Case now runs for multiple successive simulated days with no compilation or run-time errors
- Questions for PNNL regarding modeling of GLD's house object file name `house_e.cpp'
- Preparation for AMES V5.0 J-Unit Testing: Event Sequencing

Original Task & Milestone Schedule

Milestone	Date Due	Original Description
M1	May 31, 2018	5-zone model of the old ERCOT system, posted to a web repository.
M2	Sep 30, 2018	Nodal model of the new ERCOT system, posted to a web repository.
M3	Sep 30, 2018	Submitted conference or journal paper on this work.

Updated Task & Milestone Schedule

Milestone	Date	Date Delivered	Fuller Descriptions of Actual Work
	Due		
M1* DONE	May 31,	June 5,	Development of 8-Bus ERCOT model (with nodal locational marginal
	2018	2018	pricing); grid/load/gen data posted at PNNL repository
M2.1 DONE	Sept 30,	August 1,	Basic 8-Bus ERCOT Test System, implemented via AMES V3.1,
	2018	2018	posted at https://github.com/ITDProject/ERCOTTestSystem
M2.2 DONE	Sept 30,	August 24,	8-Bus ERCOT Test System (with wind power), implemented via AMES V3.2,
	2018	2018	posted at https://github.com/ITDProject/ERCOTTestSystem
M3.1 DONE	Sept 30,	August 31,	200-Bus ERCOT Test System (with wind power), implemented via AMES V3.2,
	2018	2018	posted at
			https://github.com/ITDProject/ERCOTTestSystem/tree/master/ERCOT_Test_
			Systems/The 200Bus ERCOT Test System
M3.2**	July 31,		200-Bus ERCOT Test System (with Non-Dispatchable Generation),
	2019		implemented via AMES V5.0, to be posted at PNNL/ISU repositories.
M3.3**	July 31,		Paper to be submitted
	2019		that focuses on the development of the ERCOT Test Systems

^{*} M1 Modification (Ok'd by PNNL): For M1 we have skipped the modeling of the old (zonal) ERCOT system and instead directly worked to develop an 8-bus model of the new (nodal) ERCOT system.

^{• **} M3 Modification: Contract extension through July 31, 2019 received from PNNL on March 4, 2019, for completion of task M3

Summary of AMES V5.0 Work to Date for M3.2

- ☐ Extension of AMES V5.0 Capabilities for Milestone M3.2
 - [DONE] Coding for Daily DAM SCUC optimization
 - [DONE] Coding for RTM SCED optimization every M minutes with a user-specified M
 - [DONE] Coding for FNCS integration to enable network co-simulation
 - [DONE] Detailed documentation for analytical DAM SCUC/SCED optimization in AMES V5.0
 - [DONE] Basic documentation for AMES V5.0, including a detailed list for all parameters/flags and initial state variables that need user configuration.

Summary of AMES V5.0 Work to Date for M3.2 ... Continued

[DONE]

Modified `PSST' Code

- ➤ To ensure correct refreshing of initial DAM/RTM conditions for multiple-day runs.
- > To report DAM LMPs and GenCo Commitments back to the user.
- > To read 'startup' and 'shutdown' cost components from AMES
- To produce output messages related to solver, e.g. status of the solver, termination condition of the solver
- ➤ To include the parameter 'Maximum Time Limit' to allow the solver to terminate after the prescribed time has elapsed

Verification Tests Done

- Verified 'DAM SCUC' outcomes for their correctness for simple test cases
- Verified 'RTM SCED' outcomes for their correctness for simple test cases with RTM running every five minutes (i.e., M=5)
- Verified that AMES V5.0 runs for multiple days
- Verified that all the cost components from AMES are read correctly into the SCUC formulation

Summary of AMES V5.0 Work to Date for M3.2...Continued

- VerTestCaseBaseCase DONE
 - This test case produces SCUC/SCED outcomes under the following conditions:
 - ✓ Transmission congestion is absent
 - ✓ Minimum power generation limits are taken to be zero
 - ✓ Start up, shut down and no-load costs are taken to be zero
 - ✓ Minimum up-time and down-time values are taken to be 0 (hr)
 - ✓ No ramping limits
 - Day-ahead and real-time load forecasts are set equal
 - This test case provides a base case for later comparison purposes.
- VerTestCaseGenMinPowerLevel **DONE**
 - This test case verifies a generator's minimum power level is maintained when it is committed, given the above-stated conditions (i) and (iii)-(vi).
- VerTestCaseUpTimeDownTime DONE
 - This test case verifies a generator's minimum up time and down time are maintained when it is committed, given the above-stated conditions (i) and (iii)-(vi).
- VerTestCaseMultiDayRun DONE
 - This test case verifies DAM/RTM initial conditions are refreshed appropriately when AMES V5.0 is run for multiple successive days.

Note: Files for the above test cases are uploaded at https://github.com/ITDProject/ERCOTTestSystem/tree/dev-source-code/AMES-V5.0/DATA/VerificationTestCases

Summary of Additional Completed and Ongoing AMES V5.0 Verification Test Cases

VerTestCaseCostComponents

The purpose of this test case is to verify cost component aspects of the SCUC formulation under the above-stated conditions (i)-(ii) and (iv)-(vi) – i.e., to verify that the SCUC formulation correctly includes no load, start-up, dispatch, and shut-down cost components.

✓ DONE

- VerTestCaseCostComponentsNoLoad
 This test case verifies that no load cost is appropriately taken into account in SCUC/SCED formulation given the above-stated conditions (i), (ii) and (iv)-(vi).
- ✓ To be completed
 - VerTestCaseCostComponentsStartUP
 - VerTestCaseCostComponentsShutDown

Latest Work on AMES V5.0 ... The 200-Bus ERCOT Test Case

- This past week, run-time errors were observed for reading of SCED data while running the 200-bus test case for multiple days.
- Modified AMES V5.0 code to ensure correct reading of SCED data.
- With the latest modifications, AMES V5.0 is now able to run test case 'AMES ercot 200bus.dat' without run-time errors for multiple days.
- Uploaded the modified <u>'AMES_ercot_200bus.dat'</u> file at <u>https://github.com/ITDProject/ERCOTTestSystem/tree/dev-source-code/AMES-V5.0/DATA/ERCOT</u>
- Uploaded the latest code at <u>https://github.com/ITDProject/ERCOTTestSystem/tree/dev-source-code/AMES-V5.0</u>

Questions on GLD's House Object ... Preliminaries

Query 1: Does the `house_e.cpp' appropriately model the voltage being taken into house object from triplex meter object?

Preliminary Materials:

The following code snippet taken from 'house_e.cpp' file indicates that a house can be connected between any of the '1-3' (1N) or '2-3'(2N) 120 V circuit of the secondary transformer.

(Note: A triplex meter is used to connect a house to power system and the triplex_meter provides voltage to the house panel.)

```
The house e object implements a single family home. The house e
      only includes the heating/cooling system and the power panel.
      All other end-uses must be explicitly defined and attached to the
      panel using the house_e::attach() method.
10
11
       Residential panels use a split secondary transformer:
12
13
14
      @verbatim
          ----- 1 <-- 120V
15
              )||( 120V ^
16
          1puV )||(----- 3(N) 240V <-- 0V
17
                       120V v
18
19
      @endverbatim
20
21
      120V objects are assigned alternatively to circuits 1-3 and 2-3 in the order
22
      in which they call attach. 240V objects are assigned to circuit 1-2
23
```

Questions on GLD's House Object ... Preliminaries Continued

The following code snippet (taken from `house_e.cpp' file) shows that pCircuit_V stores the values of voltage1N and voltage 2N in consecutive memories

```
// local object name, meter object name
1210
         struct {
1211
                 complex **var;
1212
                 char *varname;
1213
                 } map[] = { {&pCircuit_V,
                                                     "voltage_12"}, // assumes 1N and 2N follow immediately in memory
1214
                                                     "residential_nominal_current_1"}, // assumes 2 and 3(12) follow
                             {&pLine_I,
1215
                                 immediately in memory - off-nominal angles are handled externally
                                                     "shunt_1"}, // assumes 2 and 3 (12) follow immediately in memory
                             {&pShunt,
1216
                                                     "power_1"},  // assumes 2 and 3 (12) follow immediately in memory
                             {&pPower,
1217
                         /// @todo use triplex property mapping instead of assuming memory order for meter variables
1218
                             (residential, low priority) (ticket #139)
                         };
1219
```

The following code snippet (taken from `house_e.cpp' file) shows the magnitude of pCircuit_V[0] taken for calculations.

Questions on GLD's House Object ... Continued

Query 1.1: What does pCircuit_V[0] represent? Does it represent voltage1N?

Query 1.2: If pCircuit_V[0] represents voltage1N, then voltage 1N appears to be chosen irrespective of where the house is connected (1N or 2N).

✓ Is this right?

Query 1.3: Also, if pCircuit_V[0] represents voltage1N, then -- for a house that is connected between `2-3' (2N) -- it appears that the `house_e.cpp' code does not capture the voltage magnitude appropriately.

✓ Is this right?

Note: Line 1218 in the code says "TODO: use triplex property mapping instead."

Questions on GLD's House Object ... Continued

Query 2: Does the 'house_e.cpp' appropriately take into account the nominal voltage (or voltage reference)?

The following code snippet taken from `house_e.cpp' file indicates that either 120 V or 240 V taken as the nominal voltage.

```
/* update all voltage factors */
2302
         for (c=panel.circuits; c!=NULL; c=c->next)
2303
2304
             // get circuit type
2305
2306
             int n = (int)c->type;
             if (n<0 || n>2)
2307
                 GL_THROW("%s:%d circuit %d has an invalid circuit type (%d)", obj->oclass->name, obj->id, c->id, (int)c-
2308
                     >type);
             c->pLoad->voltage_factor = c->pV->Mag() / ((c->pLoad->config&EUC_IS220) ? 240 : 120);
2309
2310
             if ((c->pLoad->voltage_factor > 1.06 || c->pLoad->voltage_factor < 0.88) && (ANSI_voltage_check==true))
                 gl_warning("%s - %s:%d is outside of ANSI standards (voltage = %.0f percent of nominal 120/240)", obj-
2311
                     >name, obj->oclass->name,obj->id,c->pLoad->voltage_factor*100);
2312
         return TS_NEVER;
2313
2314 }
```

However, in the following code snippet, 240 V is hard-coded to adjust the voltage:

✓ Should not the nominal voltage here be set to the nominal voltage in the previous step?

Preparation for AMES V5.0 J-Unit Testing: Event Sequencing

AMES V5.0: Sequence of Events During a Typical Simulated Day

AMES – PSST : Sequence of Events

- **Step 0**: Set D = 1
- **Step 1:** Set H = 0 and I = 0
- Step 2: AMES starts DAM on day 'D' to plan for next-day operations on day 'D+1'.
- **Step 3:** AMES writes 'ReferenceModel.dat' file and makes an external call to PSST to solve a Security-Constrained Unit Commitment (SCUC) optimization.
- **Step 4:** PSST reads the input file 'ReferenceModel.dat' and performs SCUC.
- **Step 5:** Status of each unit is set to 0/1 based on the SCUC outcomes in the previous step and another call to SCUC is made to obtain dual solutions i.e LMP at each bus.
- **Step 6:** PSST writes SCUC outcomes from Step 3 and Step 4 into 'xfertoames.dat' and 'DAMLMP.dat' files.
- Step 7: AMES reads commitment and LMP data from 'DAMLMP.dat' and 'xfertoames.dat' and updates its DAM outcomes.
- Step 8: AMES starts RTM operations for interval 'I' (interval duration = 'M' min).
- **Step 9:** AMES writes 'rt-unitcommitments.dat' (contains generator unit commitments of day 'D' and 'RTReferenceModel.dat' and makes an external call to PSST to solve Security-Constrained Economic Dispatch (SCED) optimization.

AMES – PSST : Sequence of Events ... Continued

Step 10: PSST writes SCED outcomes into 'RTSCED.dat'.

Step 11: AMES reads dispatch and LMP data from 'RTSCED.dat' and updates RTM outcomes.

Step 12: AMES posts RTM LMPs.

Step 13: