Sign Talk

A Sign Language Recognition System

Sign Talk

- sEMG vs. RGB-D
- 10 English alphabets with distinct signs were chosen

Background Work for SLR

Gloves

- Users wear a glove which can detect movement and acceleration
- Allows the ability to easily work with a wide variety of hand sizes
- Complex machine learning techniques were not required to handle recognition from gloves

- Able to get accuracy of ~99% for letter by letter recognition
- Unable to do recognize complex gestures requiring significant movement

Camera + Depth Sensor

Camera

- Without depth sensors and only 1 camera letter by letter recognition as done by reasonable success
- Convolutional models were used
- Transfer learning from other big image recognition frameworks was also effective

Camera + Depth

- Most published research used microsoft's kinect for depth sensor
- Was able to get 99% on letter recognition
- With multiple cameras, word by word recognition was successfully achieved with a dictionary of a few hundred words

Wearables such as EMG sensors

- Devices include myo or custom board with emg sensors
- Published research was able to successfully recognize character by character translation
- Difficult to do word by word translation due to the interactions of other muscles in the arm
- algorithms such as SVM produced reasonably well for this task

Hardware

Specs:

- ADS1299
- PIC32MX350F128D
- ESP-WROOM-02

EMG - Channels

PL1		
AVDD 1	1 2	2 AVDD
GND 3		4 GND
BIAS 5	3 4 6	6 BIAS
8N 7		8 8P
7N 9	7 8 9 10	10 7P
6N 11		12 6P
5N 13	11 12	14 5P
4N 15	— 13 14	16 4P
3N 17	15 16	18 3P
2N 19	17 18	20 2P
1N 21	19 20	22 1P
SRB2 23	21 22	24 SRB1
AVSS 25	23 24	26 AVSS
	- 25 26	
CON2X13		

Yellow: Channels

Red: 24-bit Analog-to-Digital Converter

Red: 24-bit Analog-to-Digital Converter

Blue: Microchip

Blue: Microchip

Magenta: Secure Digital Card mount

Cyan: Wireless network card

Tango Tablet

Implementation

Process

- 1. Data Collection
- 2. Preprocessing
- 3. Feature Extraction
- 4. Classification

Data Collection

Preprocessing

Zero Mean

$$X_{zero} = X - mean(X)$$

https://upload.wikimedia.org/wikipedia/commons/1/1d/Medianfilterp.png

Feature Extraction (sEMG)

$$MAV = rac{1}{N} \sum_{i=1}^{N} |Xi|$$

$$-\frac{1}{N}\sum_{i=1}^{N}|X_i|$$

$$SSI = \sum_{i=1}^{N} |Xi|^2$$

$$RMS = \sqrt{rac{1}{N}\sum_{i=1}^{N}Xi^2}$$

STD = std(X)

$$MAX = max(X)$$

$$MIN = min(X)$$

Feature Extraction (RGB-D)

Histogram of oriented gradients

Classification

- ____
- Support VectorMachine (SVM)
- Independent Component Analysis (ICA)
- 3D Convolutional Neural Network

Results

Unknown

- Issues with data collection
- Limited documentation on Hardware
- Couldn't find relevant datasets

References

- [1] Ferat Sahin Celal Savur. "Real-time American Sign Language Recognitionwith Convolutional Neural Networks". In: (2015).
- [2] Yingli Tian Chenyang Zhang. "Multi-Modality American Sign LanguageRecognition". In: (2016).
- [3] Bo Li Qiang Li. "Online Finger Gesture Recognition Using Surface Elec-tromyography Signals". In: (2013), p. 102.
- [4] Celal Savur. "American Sign Language Recognition System by Using Sur-face EMG Signal". In: (Feb. 2015), pp. 1-10.
- [5] Ala Shaabana.XTREMIS.url:https://github.com/shibshib/XTREMIS_CAPSTONE.
- [6] Stavros M Panas Vasiliki Kosmidou Leontios Hadjileontiadis. "Evaluationof surface EMG features for the recognition of American Sign Languagegestures". In: (Aug. 2006).