

Feature A	Feature B	Feature C	Target
Yes	Yes	205	Yes
No	Yes	180	Yes
Yes	No	210	Yes
Yes	Yes	167	Yes
No	Yes	156	No
No	No	125	No

Feature A	Feature B	Feature C	Target	가증치
Yes	Yes	205	Yes	
No	Yes	180	Yes	1
Yes	No	210	Yes	$\frac{1}{6}$
Yes	Yes	167	Yes	
No	Yes	156	No	
No	No	125	No	

Feature A	Feature B	Feature C	Target	가증치
Yes	Yes	205	Yes	
No	Yes	180	Yes	1
Yes	No	210	Yes	$\frac{1}{6}$
Yes	Yes	167	Yes	
No	Yes	156	No	
No	No	125	No	

Total Error = 오류가 난 데이터 / 전체 데이터

Amount of say = $\frac{1}{2} \log(\frac{1-Total\ Error}{Total\ Error})$

New Sample Weight * $e^{Amount \ of \ say}$

New Sample Weight = Sample Weight * $e^{-Amount\ of\ say}$

대충 가중치를 부여한다는 뜻

Feature A	Feature B	Feature C	Target	가증치
Yes	Yes	205	Yes	0.14
No	Yes	180	Yes	0.14
Yes	No	210	Yes	0.14
Yes	Yes	167	Yes	0.30
No	Yes	156	No	0.14
No	No	125	No	0.14

가중치 0.14 0.00 ~ 0.14 0.14 ~ 0.28 0.14 0.28 ~ 0.42 0.14 0.42 ~ 0.72 0.30 $0.72 \sim 0.86$ 0.14 0.86 ~ 1.00 0.14

1.초기에는 같은 값의 가중치를 부여한다 2.Stump중 가장 지니계수가 낮은(=잘 분류된) Stump를 선택 3.가중치를 업데이트 후 새로운 데이터 셋을 만든다, 4. 새로운 만들어진 데이터 셋으로 Stump를 다시 만든다. 5.이 과정을 일정 Loop 동안 반복한다.

키	좋아하는 색깔	성별	몸무게
1.6	파랑	남성	88
1.6	초록	여성	76
1.5	파랑	여성	56
1.8	빨강	남성	73
1.5	초록	남성	77
1.4	파랑	여성	57

몸무게 평균 값 = 71.2

오차 88 – 71.2 76 – 71.2 56 – 71.2 73 – 71.2 77 – 71.2 57 – 71.2 000

₹	좋아하는 색깔	성별	몸무게	오차
1.6	파랑	남성	88	16.8
1.6	초록	여성		4.8
1.5	파랑	여성	56	-15.2
1.8	빨강	남성		1.8
1.5	초록	남성	77	5.8
1.4	파랑	여성		-14.2

₹	좋아하는 색깔	성별	몸무게	오차
1.6	파랑	남성	88	15.1
1.6	초록	여성		4.3
1.5	파랑	여성	56	-13.7
1.8	빨강	남성		1.4
1.5	초록	남성	77	5.4
1.4	파랑	여성		-12.7

- 1.초기에는 평균값으로 모든 예측 값을 예측한다.
- 2.실제 값과 오차를 구해, 해당 오차를 예측하는 Tree 를 만든다.
- 3.기존 예측 값에 오차 * learning rate 를 더해서,
- 4. 새로운 예측 값으로 업데이트 한다.
- 5.이 과정을 일정 Loop 동안 반복한다.

장점: Random Foest 보다 예측 성능이 뛰어남 단점: 1. 하이퍼 파라미터 튜닝 노력이 필요 2. 병렬처리를 지원하지 않기 때문에 학습에 매우 많은 시간이 필요

