Deep Learning 101

Word Embedding

Schedule

week	Date	Topic
9	10.27	Environment setup, python, Jupyter, PyCharm, TensorFlow, & regression
10	11.03	Training and testing
11	11.11	CNN
12	11.18	RNN
13	11.24	Word embedding & confusion matrix
14	12.01	Autoencoder & GAN

Today's Class

- Recap
- Word embedding
- Confusion matrix
- Lab time

How to model sequence?

Predicting the next word

"The quick brown fox jumped over the lazy ____"

- 1. Fixed window
- 2. Bag of words
- 3. Big fixed window?
 - Long term dependency

Sequence Modeling: Design Criteria

To model sequences, we need to:

- I. Handle variable-length sequences
- 2. Track **long-term** dependencies
- 3. Maintain information about **order**
- 4. Share parameters across the sequence

RNN (Intuition)

RNN in a nutshell

Apply a **recurrence relation** at every time step to process a sequence:

Note: the same function and set of parameters are used at every time step

http://introtodeeplearning.com

Recap - RNN

- Question: How to model a sequence?
 - e.g. next word prediction
- RNN intuition: keeping the memory of previous words
- $\bullet \ h_t = f_w(h_{t-1}x_t)$
- Problems with Vanilla RNN: vanishing gradients
- → LSTM gated cells

RNN Applications

What is the meaning of a word?

Question: How do you represent words?

How to represent the meaning of a word?

• WordNet? Explicit handmade definitions for each word (aka, discrete

semantics)

Problems with discrete semantics

- Time consuming
- Requires human labor (huge)
- Incomplete: new words, etc.
- Subjective
- Missing nuances
- Can't compute accurate word similarity

What if you represent the wordings in "features"?

Word	Male	Female	Royalty	Age
King	Yes	No	Υ	50
Queen	No	Yes	Υ	50
Man	Yes	No	N	45
Woman	No	Yes	N	40
Prince	Yes	No	Υ	20
Princess	No	Yes	Υ	18

What if you turn the features into numbers?

Word	Male	Female	Royalty	Age
King	0.9	0.2	0.9	0.9
Queen	0.1	0.8	0.8	0.8
Man	0.8	0.1	0.2	0.7
Woman	0.1	0.7	0.3	0.8
Prince	0.8	0.3	0.6	0.5
Princess	0.2	0.8	0.7	0.6

Word embedding intuition

Word Embedding Intuition

- "You shall know a word by the company it keeps."
 - J. R. Firth (1957)
- Define a model that aims to predict between a center word w_t and context words in terms of word vectors. (Skip Gram)
 - p(context|w_t)
- Skip grams: Predict context words given target (position independent)
- Continuous Bag of Words (CBOW): Predict target word from bag-ofwords context

Two models of word embedding

Word embedding – training data

Word embedding

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Output weights for "car"

Word embeddings

king − man + woman ~= queen king man woman king-man+woman

queen

Visualization of word embedding

- Korean:
 - http://word2vec.kr
- TensorFlow word embeddings:
 - https://projector.tensorflow.org/
- TensorFlow pre-trained models:
 - https://tfhub.dev/s?module-type=text-embedding

Lab time

- To clone: from your terminal
 - >git clone https://github.com/changsin/DeepLearning-101.git
- Or use google colab to point to the git hub repository
- Git is an open source version control system
 - Github is a host service using git.