Analisi Matematikoa Ariketa ebatziak

Irati Puyadena Jauregi

2017ko abenduaren 15a

Aurkibidea

1	Ariketa ebatziak	1
	1.1 Zenbaki arruntak eta osoak	1
	1.2 Zenbaki konplexuak	2
	Ariketa ebatziak 2.1 Topologia	3
3	Ariketa ebatziak	5
	3.1 Segidak \mathbb{R} multzoan	
	on begiden as management.	0
4	Ariketa ebatziak	6
	4.1 Serieak R multzoan	6

1 Gaia Ariketa ebatziak

1.1 Zenbaki arruntak eta osoak

 $1.9\,$ Froga ezazu, indukzioa erabiliz
, n^3-n zenbakia beti dela 3
ren multiploa.

Froga.

$$n=1$$
denean, $1^3-1=0 \Rightarrow 3k=0 \Rightarrow k=0$
$$n=2$$
denean, $2^3-2=8-2=6 \Rightarrow 3k=6 \Rightarrow k=2$

Demagun,
$$n^3 - n = 3k$$
 dela, frogatu behar dugu $(n+1)^3 - (n+1) = 3l$, $l \in \mathbb{Z}$ $(n+1)^3 - (n+1) = n^3 + 3n^2 + 3n + 1 - n - 1 = \underbrace{n^3 - n}_{IH} + 3n^2 + 3n = \underbrace{3k}_{IH} + 3n^2 + 3n = \underbrace{3k}_{$

Hortaz, frogatuta geratzen da $n^3 - n$ zenbakia beti dela 3-ren multiploa.

2 1 Ariketa ebatziak

1.2 Zenbaki konplexuak

16.10 Irudika ezazu planoan erlazio hau betetzen duen zenbaki konplexuen multzoa:

$$|z+i| \leqslant 3$$

Ebazpena.

z = x + yi bada, orduan, z + i = x + yi + i = x + (y + 1)i izango da.

Orain, z + i-ren modulua kalkulatuko dugu.

$$|z+i| = \sqrt{x^2 + (y+1)^2} = \sqrt{x^2 + y^2 + 2y + 1}$$

$$\sqrt{x^2 + y^2 + 2y + 1} \leqslant 3$$

$$x^{2} + y^{2} + 2y + 1 \le 9 \Rightarrow x^{2} + y^{2} \le 8 - 2y$$

Hortaz, zirkunferentzia bat da. Bere zentroa (0, -1) puntua da eta erradioa 3.

Hau da bere grafikoa:

Zirkunferentziaren marrako eta barneko puntuek betetzen dute ekuazioa, horiek baitira zentrotik 3 edo distantzia txikiagora dauden puntuak.

2 Gaia

Ariketa ebatziak

2.1 Topologia

10.3 Irudika ezazu \mathbb{R}^2 espazioaren azpimultzo hau, eta esan ezazu irekia, itxia edo bornatua den:

$$C = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 = 1\}$$

Ebazpena.

Gure ekuazioa zirkunferentzia batena da, zentroa (0,0) eta erradioa 1 izanik.

Hasteko, Cren barneko puntuak aztertuko ditugu.

$$\forall x \in C \ \forall \varepsilon > 0$$

C multzoaren barneko edozein puntu hartuta, R adibidez, bere inguruko puntu guztiak ez daude Cren barnean.

 $B(R,\varepsilon)\cap C\neq\emptyset$, adibidez $R\in C.$

 $B(R,\varepsilon)\cap C^c\neq\emptyset$, adibidez, bolaren barruan eta R-ren eskuinaldean dauden puntuak.

4 2 Ariketa ebatziak

Hortaz, $\stackrel{\circ}{C} = \emptyset \Rightarrow \text{Ondorioz}, C \subseteq \partial(C)$ da.

Orain, Cren osagarriaren puntuak aztertuko ditugu, adibidez, T puntua.

$$\forall T \in C^c \ \varepsilon_o = \frac{1}{2} \min \left\{ d(T,y) / \forall y \in C \right\}$$

$$B(T, \varepsilon_o) \cap C = \emptyset$$

Hori T puntuarekin betetzen den moduan, Cren osagarriaren beste puntu guztiekin beteko da. Hortik ondorengoa ondoriozta dezakegu: $ext(C) = C^c$

Cren osagarriaren puntu guztiak kanpo puntuak direnez, ez dira muga puntuak, hortaz, muga puntu guztiak Cren barneko puntuak dira, hots: $\partial(C) = C$

Guzti hau kontuan izanik, azpimultzoa zein motatakoa den jakiteko, teorian oinarrituko gara.

Azpimultzoa irekia da $C = \stackrel{\circ}{C}$ bada.

Azpimultzo itxia da $C= \stackrel{\circ}{C} \cup \partial(C)$ bada.

Gure kasuan, bigarren baldintza betetzen da, baina ez lehenengoa. Hortaz, C azpimultzoa itxia da, baina ez irekia.

Horrez gain, esan daiteke C azpimultzoa bornatua dela, honakoa betetzen delako:

$$C \in ((0,0),2)$$

3 Gaia Ariketa ebatziak

3.1 Segidak \mathbb{R} multzoan

4.15 Kalkula ezazu segida honen limitea:

$$\frac{n^3 + 4n + 2}{3n^2 + 7}$$

Ebazpena.

Polinomioen arteko zatiduraren limitea aplikatuko dugu; honela dio:

$$\lim_{n \to \infty} \frac{a_k n^k + a_{k-1} n^{k-1} + \dots + a_1 n + a_o}{b_l n^l + b_{l-1} n^{l-1} + \dots + b_1 n + b_o}$$

Zenbakitzaileko eta izendatzaileko maila handieneko gaiak konparatu behar dira.

k>ldenean, segidaren limitea ∞ da.

k=l denean, segidaren limitea $\frac{a_k}{b_l}$ da.

k < l denean, segidaren limitea 0 da.

Kasu honetan, k = 3 eta l = 2 izango lirateke.

k>l betetzen denez, gure limitea ∞ da.

$$\lim_{n \to \infty} \frac{n^3 + 4n + 2}{3n^2 + 7} = \infty$$

4 Gaia Ariketa ebatziak

4.1 Serieak \mathbb{R} multzoan

4.37 Determina ezazu gai orokor hau duen seriearen izaera:

$$1 + \frac{1}{1.001} + \frac{1}{2.001} + \frac{1}{3.001} + \dots$$

Ebazpena.

Seriea honako adierazpenarekin ordezkatu daiteke:

$$\sum_{n} \frac{1}{1000(n-1)+1}$$
, *n*-ren lehen balio posiblea 1 izanik.

Gai positiboko seriea da, $\forall n \geq n_o \ a_n > 0$ betetzen delako.

Esku artean dugun seriea, $\sum_{n} \frac{1}{n}$ seriearen antzekoa da.

 $\sum_n \frac{1}{n}$ serieak ez du Cauchy-ren irizpidea betetzen. Hau da, serie harmonikoaren

batura partzialen $\{S_n\}$ segida ez da konbergentea; ondorioz, $\sum_n \frac{1}{n}$ seriea ez da konbergentea.

Konbergentea ez denez, aukera posible bakarra dibergentea izatea da.

$$\sum_n \frac{1}{n}$$
serie harmoniko dibergentea denez, $\sum_n \frac{1}{1000(n-1)+1}$ seriea ere harmoniko

dibergentea izango da.