UNIVERSIDADE FEDERAL DA GRANDE DOURADOS

FACET

Lista 03 12/09/2016

- (1) Considere o campo de forças $\overrightarrow{F}(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$.
 - a) Calcule o trabalho realizado pelo campo \overrightarrow{F} numa partícula que se move ao longo da curva C, que consiste do arco da parábola $y = x^2 1$ com $-1 \le x \le 2$, seguido do segmento da reta que une os pontos (2,3) e (-1,0).
 - b) Mostre que $\oint_C \overrightarrow{F} \cdot d\overrightarrow{r'} = 0$ para toda curva fechada simples C, suave por partes, que circunda a origem.
- (2) Calcule o trabalho realizado pelo campo de forças \overrightarrow{F} numa partícula que se move ao longo de uma curva lisa C, do ponto A ao ponto B dados:
 - a) $F(x,y) = 3y\mathbf{i} + 3x\mathbf{j}$ do ponto A = (1,2) ao ponto B = (4,0).
 - b) $F(x,y) = ye^{xy}\mathbf{i} + xe^{xy}\mathbf{j}$ do ponto A = (-1,1) ao ponto B = (2,0).
 - c) $F(x, y, z) = 2xy\mathbf{i} + x^2\mathbf{j} + 2\mathbf{k}$ do ponto A = (0, 1, 1) ao ponto B = (1, 0, 1).
 - d) $F(x,y,z) = 2x \operatorname{sen} z \mathbf{i} + (z^3 e^y) \mathbf{j} + (x^2 \cos z + 3yz^2) \mathbf{k}$ do ponto A = (1,1,1) ao ponto B = (1,2,3).
- (3) Considere as funções $P(x,y)=\frac{-y}{x^2+y^2}$ e $Q(x,y)=\frac{x}{x^2+y^2}$, definidas para $(x,y)\neq (0,0)$. Considere ainda D a região descrita por $0< x^2+y^2\leq R$ e ∂D a curva fronteira desta região.
 - a) Mostre que $\oint_{\partial D} P dx + Q dy = 2\pi$;
 - b) Mostre que $\int \int_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y}\right) dx dy = 0$. Por que isto não contradiz o Teorema de Green?
 - c) Mostre que $\oint_C Pdx + Qdy = 2\pi$ para toda curva fechada simples, suave por partes, orientada no sentindo anti-horário que circunda a origem.

- (4) Calcule as integrais de linha:
 - a) $\oint_C ydx xdy$, onde C é o triângulo definido pelos pontos A = (0,0), B = (2,0) e C = (0,4), no sentido horário.
 - b) $\oint_C y dx x dy$, onde C é a cardióide de equação polar

$$r(\theta) = 2(1 + \cos\theta) \quad (0 \le \theta \le 2\pi)$$

e equação paramétrica

$$\overrightarrow{r}(\theta) = (2\cos t + \cos 2t + 1, 2\operatorname{sen}t + \operatorname{sen}2t).$$

Bons estudos!

Bibliografia:

Stewart, J. - Cálculo Vol II

Flemming, D. - Cálculo B

Howard, A. - Cálculo Vol II

Guidorizzi, H. - Um curso de cálculo Vol 3.