离散数学习题课

第十讲——群论 (二)

Morphism

• "抽象代数(Abstract Algebra)的研究对象是代数结构 (Algebraic Structures),并且是通过研究保持运算的映射(称为"态射"(morphism))来研究代数结构的。"

Homomorphism

Definition:

Let G, G' be groups. A <u>homomorphism</u> $\varphi : G \to G'$ is any function satisfying the rule:

$$\varphi(ab) = \varphi(a)\varphi(b)$$

Comments:

• A homomorphism $\varphi:G\to G'$ certainly satisfies

(1)
$$\varphi(e) = e';$$
 (2) $\varphi(a^{-1}) = (\varphi(a))^{-1}$

• Let $\ker \varphi = \{x \mid x \in G \land \varphi(x) = e'\}$, then

(1)
$$\ker \varphi \leq G$$
; (2) $G/\ker \varphi \cong \varphi(G)$

Isomorphism

Definition:

Let G, G' be groups, $\varphi: G \to G'$ is any homomorphism,

- If φ is surjective, then φ is called an <u>epimorphism</u>
- If φ is injective, then φ is called a monomorphism
- If φ is bijective, then φ is called an <u>isomorphism</u>

Comments:

- If two groups are isomorphic (to each other), they have the same structure (only with different names)
- For any homomorphism $\varphi: G \to G'$, φ is injective $\iff \ker \varphi = \{e\}$

Cyclic groups

Definition:

A group G is called cyclic if $\exists a \in G$,

$$\langle a \rangle = \{ a^k \mid k \in \mathbb{Z} \} = G$$

such an a is called a generator of G.

Comments:

- Generators are not unique
- Every finite cyclic group of order n is isomorphic to $\langle \mathbb{Z}_n, +_n \rangle$.
- Every infinite cyclic group is isomorphic to $(\mathbb{Z}, +)$.

Cyclic groups (cont.)

Properties:

- Cyclic groups are all abelian
- Subgroups and quotient groups of a cyclic group are also cyclic
- Let G be a finite cyclic group of order n, then for any $d \mid n$, G has a unique subgroup of order d.
- Let $G = \langle a \rangle$ be a cyclic group, then every subgroup of G takes the form $H = \langle a^k \rangle$.

Problems

- 1. Let G be a group, show that, for any $H \leq G$, and for any $N, K \leq G$,
 - (1) $HK \leq G$
 - (2) $NK \leq G$
 - (3) $H \cap K \leq H$
- 2. Let *G* be a group, $N \le G$, |N| = 2, show that $N \subseteq Z(G) = \{a \mid a \in G \land \forall x \in G(ax = xa)\}$
- 3. Let G be a group, $N \subseteq G$, $K \subseteq G$, show that $\langle N \cup K \rangle = NK$

Problems (cont.)

- 4. Let *G* be a group, $Z(G) = \{a \mid a \in G \land \forall x \in G(ax = xa)\}$ be its center. Show that, for any $H \leq Z(G)$,
 - $(1) H \leq G;$
 - (2) If G/H is cyclic, then G is abelian.
- 5. Let G be a group, with |G| = 2p, where p is an odd prime. Show that, if there is a $N \leq G$, such that |N| = 2, then G is cyclic.
- 6. Show that, every finite group of order p^2 is abelian, where p is any prime.

Thank you

Any questions?