

# Graphical Models Belief Propagation Algorithm

Clément Bonnet, Charbel-Raphaël Segerie



March 31st, 2021



#### **Table of Contents**

- 1. Belief Propagation on Bayesian Networks
  - a. Theory
  - b. Case Study



- 2. Belief Propagation on Factor graphs
  - a. Theory
  - b. Taxonomy Induction



# **Bayesian Networks**



### Bayesian Networks: Propagation Rules



Acyclic graph, but messages flow in both direction.

 $\lambda(x) = \mathbb{P}(Z_1,...,Z_n|X=x) = \prod_{j=1}^n \overline{\lambda_{Z_j}(x)}$  Likelihood

message Parent-> Child

Prior  $\pi(x) = \sum_{\mathbf{w} \in \{0,1\}^m} \mathbb{P}(X=x|\mathbf{w}) \prod_{k=1}^m \overline{\pi_X(w_k)}$ 

Belief 
$$BEL(x) \equiv \alpha \lambda(x) \pi(x)$$
  
=  $\alpha \left[ \prod_{j=1}^{n} \lambda_{Z_j}(x) \right] \left[ \sum_{\mathbf{w}} P(x \mid \mathbf{w}) \prod_{k=1}^{n} \pi_X(w_k) \right]$ 

#### Bayesian Networks: Updates





Prior:

$$\pi_{Z_j}(x) \propto \pi(x) \prod_{k \neq j} \lambda_{Z_k}(x)$$

#### Bayesian Networks: Boundary Conditions



 $\lambda(Z_n)=(1, 1)$   $\lambda(Z_n)=($ Example of binary states

**Root nodes**: If W is a node with no parents, we set the value of the prior message  $\pi_x(w)$  equal to the prior probabilities.

**Anticipatory nodes**: If X is a childless node that has not been instantiated, we set the  $\lambda(z)$  value as a vector of all 1's

**Evidence nodes**: If evidence X=i is obtained, we set the  $\lambda(z)$  value to (0,...,0,1,0,...0) with 1 at the i<sub>th</sub> position, and we set the likelihood message equal to the evidence node.



| $\mathbb{P}(N R)$ | N = 0 | N = 1 |
|-------------------|-------|-------|
| R = 0             | 0.8   | 0.2   |
| R = 1             | 0     | 1     |

#### Model of the world

| $\mathbb{P}(H R,S)$ | H = 0 | H = 1 |
|---------------------|-------|-------|
| R = 1, S = 1        | 0     | 1     |
| R = 0, S = 1        | 0.1   | 0.9   |
| R = 1, S = 0        | 0     | 1     |
| R = 0, S = 0        | 1     | 0     |

| X | BEL(x) | $\pi(x)$   | $\lambda(x)$ |
|---|--------|------------|--------------|
| R | -      | (0.2, 0.8) | -            |
| S | -      | (0.1, 0.9) | -            |
| N | -      | -          | (1, 1)       |
| Н | -      | -          | (0, 1)       |

**Boundary Conditions** 

#### Bayesian Networks: Case Study → The Wet Grass Example: Likelihood





| X | BEL(x) | $\pi(x)$   | $\lambda(x)$ |
|---|--------|------------|--------------|
| R | -      | (0.2, 0.8) | -            |
| S | -      | (0.1, 0.9) | -            |
| N | -      | -          | (1, 1)       |
| Н | -      | -          | (0, 1)       |

| X | BEL(x)       | $\pi(x)$       | $\lambda(x)$ |
|---|--------------|----------------|--------------|
| R | (0, 0.8)     | (0.2, 0.8)     | (0, 1)       |
| S | (0, 0.9)     | (0.1, 0.9)     | (0, 1)       |
| N | (0.16, 0.84) | (0.16, 0.84)   | (1, 1)       |
| Н | (0, 0.962)   | (0.038, 0.962) | (0, 1)       |

#### Bayesian Networks: Case Study → The Wet Grass Example: Likelihood





| X | BEL(x) | $\pi(x)$   | $\lambda(x)$ |
|---|--------|------------|--------------|
| R | -      | (0.2, 0.8) | -            |
| S | -      | (0.1, 0.9) | -            |
| N | -      | -          | (1, 1)       |
| Н | -      | 1          | (0, 1)       |

| X | BEL(x)       | $\pi(x)$       | $\lambda(x)$ |
|---|--------------|----------------|--------------|
| R | (0, 0.8)     | (0.2, 0.8)     | (0, 1)       |
| S | (0, 0.9)     | (0.1, 0.9)     | (0, 1)       |
| N | (0.16, 0.84) | (0.16, 0.84)   | (1, 1)       |
| Н | (0, 0.962)   | (0.038, 0.962) | (0, 1)       |

#### Bayesian Networks: Case Study → The Wet Grass Example: Likelihood





| X | BEL(x) | $\pi(x)$   | $\lambda(x)$ |
|---|--------|------------|--------------|
| R | -      | (0.2, 0.8) | -            |
| S | -      | (0.1, 0.9) | -            |
| N | -      | -          | (1, 1)       |
| Н | -      | -          | (0, 1)       |

| X | BEL(x)       | $\pi(x)$       | $\lambda(x)$ |
|---|--------------|----------------|--------------|
| R | (0, 0.8)     | (0.2, 0.8)     | (0, 1)       |
| S | (0, 0.9)     | (0.1, 0.9)     | (0, 1)       |
| N | (0.16, 0.84) | (0.16, 0.84)   | (1, 1)       |
| Н | (0, 0.962)   | (0.038, 0.962) | (0, 1)       |

## Bayesian Networks: Case Study: The Wet Grass Example: Priors messages



| $\mathbb{P}(N R)$ | N = 0 | N = 1 |
|-------------------|-------|-------|
| R = 0             | 0.8   | 0.2   |
| R = 1             | 0     | 1     |

Model of the world

| $\mathbb{P}(H R,S)$ | H = 0 | H=1 |
|---------------------|-------|-----|
| R = 1, S = 1        | 0     | 1   |
| R = 0, S = 1        | 0.1   | 0.9 |
| R = 1, S = 0        | 0     | 1   |
| R = 0, S = 0        | 1     | 0   |

Prior 
$$\pi(x) = \sum_{\mathbf{w} \in \{0,1\}^m} \mathbb{P}(X=x|\mathbf{w}) \prod_{k=1}^m \pi_X(w_k)$$

| X | BEL(x) | $\pi(x)$   | $\lambda(x)$ |
|---|--------|------------|--------------|
| R | -      | (0.2, 0.8) | -            |
| S | -      | (0.1, 0.9) |              |
| N | -      | -          | (1, 1)       |
| Н | _      | _          | (0,1)        |

| X | BEL(x)       | $\pi(x)$       | $\lambda(x)$ |
|---|--------------|----------------|--------------|
| R | (0, 0.8)     | (0.2, 0.8)     | (0, 1)       |
| S | (0, 0.9)     | (0.1, 0.9)     | (0, 1)       |
| N | (0.16, 0.84) | (0.16, 0.84)   | (1, 1)       |
| Н | (0, 0.962)   | (0.038, 0.962) | (0, 1)       |

## Bayesian Networks: Case Study: The Wet Grass Example: Priors messages



| $\mathbb{P}(N R)$ | N = 0 | N=1 |
|-------------------|-------|-----|
| R = 0             | 0.8   | 0.2 |
| R = 1             | 0     | 1   |

Model of the world

| ·                   |     | 1   |
|---------------------|-----|-----|
| $\mathbb{P}(H R,S)$ | H=0 | H=1 |
| R=1, S=1            | 0   | 1   |
| R = 0, S = 1        | 0.1 | 0.9 |
| R=1, S=0            | 0   | 1   |
| R = 0, S = 0        | 1   | 0   |

Prior 
$$\pi(x) = \sum_{\mathbf{w} \in \{0,1\}^m} \mathbb{P}(X = x | \mathbf{w}) \prod_{k=1}^m \pi_X(w_k)$$

$$\pi(H=0) = \mathbb{P}(H=0|R=0,S=0) \pi_H(R=0) \pi_H(S=0) + \mathbb{P}(H=0|R=0,S=1) \pi_H(R=0) \pi_H(S=1) + \mathbb{P}(H=0|R=1,S=0) \pi_H(R=1) \pi_H(S=0) + \mathbb{P}(H=0|R=1,S=1) \pi_H(R=1) \pi_H(S=1) = 1 \times (0.2 \times 0.1) + 0.1 \times (0.2 \times 0.9) + 0 \times (0.8 \times 0.1) + 0 \times (0.8 \times 0.9) = 0.02 + 0.018 = 0.038$$



| $\mathbb{P}(N R)$ | N = 0 | N = 1 |
|-------------------|-------|-------|
| R = 0             | 0.8   | 0.2   |
| R = 1             | 0     | 1     |

Model of the world

| $\mathbb{P}(H R,S)$ | H = 0 | H=1 |
|---------------------|-------|-----|
| R = 1, S = 1        | 0     | 1   |
| R = 0, S = 1        | 0.1   | 0.9 |
| R = 1, S = 0        | 0     | 1   |
| R = 0, S = 0        | 1     | 0   |

Belief  $BEL(x) \equiv \alpha \lambda(x) \pi(x)$ 

Product coordinate by coordinate

| X | BEL(x) | $\pi(x)$   | $\lambda(x)$ |
|---|--------|------------|--------------|
| R | -      | (0.2, 0.8) | -            |
| S | -      | (0.1, 0.9) | -            |
| N | -      | -          | (1, 1)       |
| Н | -      | -          | (0, 1)       |

| X | BEL(x)       | $\pi(x)$       | $\lambda(x)$ |
|---|--------------|----------------|--------------|
| R | (0, 0.8)     | (0.2, 0.8)     | (0, 1)       |
| S | (0, 0.9)     | (0.1, 0.9)     | (0, 1)       |
| N | (0.16, 0.84) | (0.16, 0.84)   | (1, 1)       |
| Н | (0, 0.962)   | (0.038, 0.962) | (0, 1)       |



| $\mathbb{P}(N R)$ | N = 0 | N = 1 |
|-------------------|-------|-------|
| R = 0             | 0.8   | 0.2   |
| R = 1             | 0     | 1     |

Model of the world

| $\mathbb{P}(H R,S)$ | H = 0 | H=1 |
|---------------------|-------|-----|
| R = 1, S = 1        | 0     | 1   |
| R = 0, S = 1        | 0.1   | 0.9 |
| R = 1, S = 0        | 0     | 1   |
| R = 0, S = 0        | 1     | 0   |

Belief 
$$BEL(x) \equiv \alpha \lambda(x) \pi(x)$$

| X | BEL(x) | $\pi(x)$   | $\lambda(x)$ |
|---|--------|------------|--------------|
| R | -      | (0.2, 0.8) | -            |
| S | -      | (0.1, 0.9) | -            |
| N | -      | -          | (1, 1)       |
| Н | -      | 1-1        | (0, 1)       |

| X | BEL(x)       | $\pi(x)$       | $\lambda(x)$ |
|---|--------------|----------------|--------------|
| R | (0, 0.8)     | (0.2, 0.8)     | (0, 1)       |
| S | (0, 0.9)     | (0.1, 0.9)     | (0, 1)       |
| N | (0.16, 0.84) | (0.16, 0.84)   | (1, 1)       |
| Н | (0, 0.962)   | (0.038, 0.962) | (0, 1)       |



| $\mathbb{P}(N R)$ | N = 0 | N = 1 |
|-------------------|-------|-------|
| R = 0             | 0.8   | 0.2   |
| R = 1             | 0     | 1     |

Model of the world

|                     | 66    |     |
|---------------------|-------|-----|
| $\mathbb{P}(H R,S)$ | H = 0 | H=1 |
| R = 1, S = 1        | 0     | 1   |
| R = 0, S = 1        | 0.1   | 0.9 |
| R = 1, S = 0        | 0     | 1   |
| R = 0, S = 0        | 1     | 0   |

Belief  $BEL(x) \equiv \alpha \lambda(x) \pi(x)$ 

| X | BEL(x) | $\pi(x)$   | $\lambda(x)$ |
|---|--------|------------|--------------|
| R | -      | (0.2, 0.8) | -            |
| S | -      | (0.1, 0.9) | -            |
| N | -      | -          | (1, 1)       |
| Н | -      | -          | (0, 1)       |

| X | BEL(x)       | $\pi(x)$       | $\lambda(x)$ |
|---|--------------|----------------|--------------|
| R | (0, 0.8)     | (0.2, 0.8)     | (0, 1)       |
| S | (0, 0.9)     | (0.1, 0.9)     | (0, 1)       |
| N | (0.16, 0.84) | (0.16, 0.84)   | (1, 1)       |
| Н | (0, 0.962)   | (0.038, 0.962) | (0, 1)       |



| $\mathbb{P}(N R)$ | N = 0 | N = 1 |
|-------------------|-------|-------|
| R = 0             | 0.8   | 0.2   |
| R = 1             | 0     | 1     |

Model of the world

| $\mathbb{P}(H R,S)$ | H = 0 | H=1 |
|---------------------|-------|-----|
| R = 1, S = 1        | 0     | 1   |
| R = 0, S = 1        | 0.1   | 0.9 |
| R = 1, S = 0        | 0     | 1   |
| R = 0, S = 0        | 1     | 0   |

Belief 
$$BEL(x) \equiv \alpha \lambda(x) \pi(x)$$

| X | BEL(x) | $\pi(x)$   | $\lambda(x)$ |
|---|--------|------------|--------------|
| R | -      | (0.2, 0.8) | -            |
| S | -      | (0.1, 0.9) |              |
| N | -      | -          | (1, 1)       |
| Н | -      | 1-1        | (0, 1)       |

| X | BEL(x)       | $\pi(x)$       | $\lambda(x)$ |
|---|--------------|----------------|--------------|
| R | (0, 0.8)     | (0.2, 0.8)     | (0, 1)       |
| S | (0, 0.9)     | (0.1, 0.9)     | (0, 1)       |
| N | (0.16, 0.84) | (0.16, 0.84)   | (1, 1)       |
| Н | (0, 0.962)   | (0.038, 0.962) | (0, 1)       |



| $\mathbb{P}(N R)$ | N = 0 | N = 1 |
|-------------------|-------|-------|
| R = 0             | 0.8   | 0.2   |
| R = 1             | 0     | 1     |

Model of the world

| $\mathbb{P}(H R,S)$ | H = 0 | H = 1 |
|---------------------|-------|-------|
| R = 1, S = 1        | 0     | 1     |
| R = 0, S = 1        | 0.1   | 0.9   |
| R = 1, S = 0        | 0     | 1     |
| R = 0, S = 0        | 1     | 0     |

Belief  $BEL(x) \equiv \alpha \lambda(x) \pi(x)$ 

etc...

| X | BEL(x) | $\pi(x)$   | $\lambda(x)$ |
|---|--------|------------|--------------|
| R | -      | (0.2, 0.8) | -            |
| S | -      | (0.1, 0.9) | -            |
| N | -      | -          | (1, 1)       |
| Н | -      | 1-1        | (0, 1)       |

| X | BEL(x)       | $\pi(x)$       | $\lambda(x)$ |
|---|--------------|----------------|--------------|
| R | (0, 0.8)     | (0.2, 0.8)     | (0, 1)       |
| S | (0, 0.9)     | (0.1, 0.9)     | (0, 1)       |
| N | (0.16, 0.84) | (0.16, 0.84)   | (1, 1)       |
| Н | (0, 0.962)   | (0.038, 0.962) | (0, 1)       |



#### Holmes sees only his grass

Watson's grass is wet: 0.865

Holmes' grass is wet: 1

It has rained: 0.832

The sprinkler was left on: 0.917

#### If Holmes also sees his neighbor's wet lawn

Watson's grass is wet: 1

Holmes' grass is wet: 1

It has rained: 0.961

The sprinkler was left on: 0.904

Factor Graphs



# Factor Graphs: Theory



Factor Graph = Bipartite Graph

- \_\_\_ Factor node
- Variable node

Total likelihood:

$$p(\mathbf{x}) = \prod_{f \in F} \mathbf{f}_{f}(\mathbf{x}_{f}) = f_{1}(X_{1}) f_{2}(X_{1}, X_{2}) f_{3}(X_{1}, X_{2}) f_{4}(X_{2}, X_{3})$$

Propagation:

$$\mu_{v \to f}(x_v) = \prod_{f \neq 0} \mu_{f \neq 0}(x_v)$$

$$\mu_{f \to v}(x_{v}) = \sum_{\mathbf{x'}_{f}: x'_{v} = x_{v}} f_{f}(\mathbf{x'}_{f}) \prod_{v^{*} \in N(f) \setminus \{v\}} \mu_{v^{*} \to f}(\mathbf{x'}_{v^{*}})$$

Marginals:

$$p_{X_{v}}(x_{v}) \propto \prod_{f \in N(v)} \mu_{f \to v}(x_{v})$$

#### Factor Graphs: Example of Propagation: Variable-to-Factor Node



$$\overrightarrow{\mu_{v \to f}(x_{v})} = \prod_{f \star \in N(v) \setminus \{f\}} \overrightarrow{\mu_{f \star \to v}(x_{v})}$$

Messages from variable X to factor nodes f are vectors of size NbStates(X)

Messages from factor f to variable X are also vectors of size NbStates(X)

We just multiply coordinate by coordinate the two incoming messages

#### Factor Graphs: Example of Propagation: Factor-to-Variable Node



$$\overline{\mu_{f \to v}(x_{v})} = \sum_{\mathbf{x'}_{f}: x'_{v} = x_{v}} f_{f}(\mathbf{x'}_{f}) \prod_{v^{*} \in N(f) \setminus \{v\}} \overline{\mu_{v^{*} \to f}(x'_{v^{*}})}$$

Messages from variable X to factor nodes f are vectors of size NbStates(X)

Messages from factor f to variable X are also vectors of size NbStates(X)

We just multiply coordinate by coordinate the incoming messages

## Factor Graphs: Taxonomy Induction

From a corpus of abstracts on Wikipedia, and a selection of words  $(x_1, ..., x_n)$ , the objective is to discover the taxonomic structure.





## Factor Graphs: Taxonomy Induction → Training



- Trained on a taxonomic structure by maximizing its likelihood
- Gradient Descent computed by finite difference
- Trained on a few iterations upon convergence
- Yet, too many edges are drawn

## Conclusion

Implemented belief propagation on two types of graphs:

- Bayesian networks → case study with the wet grass example
- Factor graphs → taxonomy induction