Invariant measure of SDEs

Based on lectures given by Xue-Mei Li

Kexing Ying

June 24, 2024

Semigroup theory

Let X be a Banach space and let $\{T_t: X \to X\}_{t \ge 0}$ be a family of bounded linear operators. We say that $\{T_t\}$ is a semigroup if $T_{s+t} = T_s \circ T_t$ and $T_0 = \mathrm{id}$. If futhermore, the map $(x,t) \mapsto T_t x$ is continuous, then we say $\{T_t\}$ is a C_0 -semigroup.

Lemma 1. A semigroup $\{T_t\}$ is C_0 if and only if for any $x \in X$, the map $t \mapsto T_t x$ is continuous at 0 and there exists some constants M, a such that $||T_t|| \le Me^{at}$.

Proof. The forward direction is clear by decomposing $||T_t|| \le (\sup_{0 \le s \le 1} ||T_s||) ||T_1||^{\lfloor t \rfloor}$.

For the converse, we first realize that the map $t \mapsto T_t x$ is continuous for any $x \in X$. Indeed, for t, h > 0, we have

$$||T_{t+h}x - T_tx|| = ||T_t(T_hx - x)|| \to 0$$

as $h \downarrow 0$. Moreover,

$$||T_t x - T_{t-h} x|| = ||T_{t-h} (T_h x - x)|| \le M e^{(at \lor 0)} ||T_h x - x|| \to 0$$

as $h \downarrow 0$. Thus, the map is continuous in t everywhere. With this in mind, it is easy to show that the semigroup is C_0 by the triangle inequality.

By the Banach-Steinhaus theorem, the condition $||T_t|| \leq Me^{at}$ can be dropped.

For a C_0 -semigroup T, we will be interested in its *generator* defined as

$$\mathcal{L}: \mathcal{D}(\mathcal{L}) \subseteq X \to X: \mathcal{L}f = \lim_{t \to 0} \frac{T_t f - f}{t}.$$

Moreover, we define its adjoint as operator \mathcal{L}^* such that

$$\mathcal{L}^*: \mathcal{D}(\mathcal{L}^*) \supseteq X^* \to X^*: \mathcal{L}^*l = l \circ L.$$

This is well-defined as $\mathcal{D}(\mathcal{L})$ is dense in X.

The resolvent of the generator is defined as

$$\rho(\mathcal{L}) = \{ \lambda \in \mathcal{C} : (\lambda - \mathcal{L}) : \mathcal{D}(\mathcal{L}) \to X \text{ is invertible} \}.$$

For each $\lambda \in \rho(\mathcal{L})$, we define $R_{\lambda} = (\lambda - \mathcal{L})^{-1}$. The spectrum of \mathcal{L} is $\sigma(\mathcal{L}) = \rho(\mathcal{L})^{c}$. An important identity for the resolvent is

$$R_{\lambda} - R_{\mu} = (\mu - \lambda)R_{\mu}R_{\lambda}$$

for any $\lambda, \mu \in \rho(\mathcal{L})$.

Lemma 2. $\mathcal{D}(\mathcal{L})$ is dense in X, invariant under T_t and

$$\partial_t T_t x = \mathcal{L} T_t x = T_t \mathcal{L} x$$

for any $x \in \mathcal{D}(\mathcal{L})$. Moreover, for any $l \in \mathcal{D}(\mathcal{L}^*)$, we have that

$$\partial_t \langle l, T_t x \rangle = \langle L^* l, T_t x \rangle.$$

Proof. Defining $x_t = \int_0^t T_s x ds$ for any $x \in X$, we have that $\mathcal{L}x_t = T_t x - x$ so $x_t \in \mathcal{D}(\mathcal{L})$ and $t^{-1}x_t \to x$ in X as $t \downarrow 0$. For the second statement, integrate both side and write $T_t x$ as $\mathcal{L}x_t + x$

Lemma 3. Let T be a C_0 -semigroup satisfying $||T_t|| \le Me^{at}$ and let $\lambda \in \mathbb{C}$ be such that $\text{Re}(\lambda) > a$. Then $\lambda \in \rho(\mathcal{L})$ and

$$R_{\lambda} = \int_{0}^{\infty} e^{-\lambda t} T_{t} \mathrm{d}t.$$

Invariant measures

Let (B_t) be a standard Brownian motion in \mathbb{R}^d , we look at an SDE of the form

$$dx_t = b(x_t)dt + \sigma(x_t)dB_t$$
 (1)

where $b: \mathbb{R}^d \to \mathbb{R}^d$ and $\sigma: \mathbb{R}^d \to \mathbb{R}^{d \times d}$ are sufficiently regular to guarantee certain well-posedness. We are interested in finding a/the invariant measure of the SDE.

It is well known that the solution of the SDE (1) is a Markov process and we will first look at its infinitesimal generator. To find this, we recall that we say the semigroup T_t corresponds to the Markov process (x_t) if for all $s, t \ge 0$, we have that $T_t f(x_s) = \mathbb{E}[f(x_{s+t}) \mid \mathscr{F}_s]$ for any bounded measurable function f. Thus, denoting T the transition semigroup of (x_t) , by Itô's formula (and adopting Einstein's notation), we have that for any $f \in C_b^2$

$$\begin{split} T_t f(x) &= \mathbb{E}[f(x_t) \mid x_0 = x] \\ &= \mathbb{E}\Big[f(x) + \partial_i f(x) \mathrm{d} x_t^i + \partial_{ij}^2 f(x) \mathrm{d} \langle x^i, x^j \rangle_t \Big] \\ &= f(x) + \mathbb{E}\Big[\partial_i f(x) b_i(x_t) \mathrm{d} t + \partial_i f(x) \sigma_i(x_t) \mathrm{d} B_t + \frac{1}{2} \partial_{ij}^2 f(x) \sigma_i(x_t) \sigma_j(x_t) \mathrm{d} t \Big] \\ &= f(x) + \partial_i f(x) \int_0^t b_i(x_s) \mathrm{d} s + \frac{1}{2} \partial_{ij}^2 f(x) \int_0^t \sigma_i(x_s) \sigma_j(x_s) \mathrm{d} s. \end{split}$$

Hence, taking derivatives in t at 0, we have that

$$\mathscr{L}f(x) = \partial_i f(x)b_i(x) + \frac{1}{2}\partial_{ij}^2 f(x)\sigma_i(x)\sigma_j(x). \tag{2}$$

The generator is useful in determining the invariant measure of the SDE via the following argument. Suppose that $d\pi = \rho(x)dx$ is an invariant measure of the SDE, then for any $f \in D(\mathcal{L})$, we have that

$$\int T_t f \, \mathrm{d}\pi - \int f \, \mathrm{d}\pi = 0$$

for any $t \ge 0$, and thus,

$$\int \mathcal{L} f \, \mathrm{d}\pi = \lim_{h\downarrow 0} \int T_h f \, \mathrm{d}\pi - \int f \, \mathrm{d}\pi = 0.$$

On the other hand, denoting \mathcal{L}^* the adjoint of \mathcal{L} , we have

$$\int \mathcal{L}f \, \mathrm{d}\pi = \int (\mathcal{L}f(x))\rho(x) \mathrm{d}x = \int f(x)\mathcal{L}^*\rho(x) \mathrm{d}x.$$

Hence, we have that $\int f(x)\mathcal{L}^*\rho(x)\mathrm{d}x = 0$ for any $f \in D(\mathcal{L})$. Thus, as $D(\mathcal{L})$ is dense in $L^2(\pi)$, we have that $\mathcal{L}^*\rho = 0$. With this in mind, by finding the adjoint \mathcal{L}^* and solving the PDE $\mathcal{L}^*\rho = 0$, we obtain a candidate for the invariant measure of the SDE (1). This is a special case of the Fokker-Planck equation where the system is autonomous.

To compute \mathcal{L}^* we find

$$\mathcal{L}^* g(x) = -\partial_i g(x) b_i(x) + \frac{1}{2} \partial_{ij}^2 g(x) \sigma_i(x) \sigma_j(x)$$

$$+ \partial_i g(x) \sigma_i(x) \partial_j \sigma_j(x) + \frac{1}{2} \partial_{ij}^2 (\sigma_i \sigma_j)(x) - g(x) \nabla \cdot b(x).$$

In the case of additive noise, i.e. $\sigma = I$, we thusly have

$$\mathcal{L}^*g(x) = -\partial_i g(x)b_i(x) + \frac{1}{2}\partial_{ij}^2 g(x) - g(x)\nabla \cdot b(x).$$