Problemas de Variable Compleja

Plano complejo

2.1.1 (primer parcial 14/15)

- A. Considérese la ecuación cosh(z) = i, donde z ∈ C. De los afijos de las soluciones de la ecuación anterior se puede afirmar que:
 - 1 Ninguno de ellos tiene parte real negativa
 - 2 Estón contenidos en dos rectas paralelas al eje imaginario.
 - 3 Estón contenidos en dos rectas paralelas al eje real.
 - 4 No es cierta ninguna de las otras tres respuestas.

Singularidades y residuos

2.2.1 (primer parcial 14/15)

B. Sea f la función definida como

$$f(z) = \frac{\sin z}{z^2 (z - \pi)^2}, \quad \forall z \in \mathbb{C} - \{0, \pi\}.$$

Su residuo en $z=\pi$ vale

(5)
$$\frac{1}{\pi^2}$$
.

(6)
$$-\frac{1}{\pi^2}$$
.

$$(7) - \frac{1}{2\pi}$$

(8)
$$\frac{1}{2\pi}$$
.

2.2.2 (primer parcial 16/17)

D. (3 puntos) Anotar en el siguiente recuadro el residuo en z=1 de la función

$$f(z) = \frac{(z+1)e^z}{(z-1)^3}$$
.

2.2.3 (primer parcial 18/19)

C. (3 puntos) Dada la función $f(z) = \frac{z \cosh z}{\sinh z}$

Anotar en el siguiente recuadro sus puntos singulares aislados, especificando en cada caso el tipo de singularidad, así como el valor del residuo de f(z) en dichos puntos.

2.2.4 (primer parcial 19/20)

C. (3 puntos) Dada la función $f(z) = \frac{\left(e^{i2z} - 1\right)^2}{z^2 \left(e^{i2z} + 1\right)}$

Anotar en el siguiente recuadro sus puntos singulares aislados, especificando en cada caso el tipo de singularidad, así como el valor del residuo de f(z) en dichos puntos.

2.2.5 (final extraordinario 14/15)

D. Hallar el residuo en $z = \pi$ de la función:

$$f(z) = \frac{z}{\sin z}$$

2.2.6 (final ordinario 14/15)

D. Anotar en el siguiente recuadro (de la forma más simplificada posible) el residuo en $z=\frac{\pi}{2}$ de la función:

$$f(z) = z \tan(z)$$
.

2.2.7 (final extraordinario 16/17)

D. (3 puntos) Anotar en el siguiente recuadro el residuo en $z=\pi$ de la función

$$f(z) = \frac{z - \pi}{(\sin(2z))^2}.$$

2.2.8 (final ordinario 16/17)

D. (3 puntos) Anotar en el siguiente recuadro el residuo en z=0 de la función

$$f(z) = \frac{1 - e^z}{(\sin z)^2}.$$

Funciones analíticas y armónicas

2.3.1 (primer parcial 14/15)

C. Sea $u:]0, \infty[\times \mathbb{R} \to \mathbb{R}^2$ la función definida como $u(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$. Sobre la función u se puede afirmar que:

Admite como armónica conjugada a la función $v(x, y) = \frac{1}{x^2 + y^2}$.

No es una función armónica.

Es la parte real de una función analítica en su dominio de definición.

No es cierta ninguna de las otras tres respuestas.

2.3.2 (primer parcial 15/16)

C. (5 puntos) Sea la función real de dos variables definida en todo \mathbb{R}^2 como

$$u(x,y) = x^3 + bx - axy^2 + c,$$

donde $a,\,b$ y c son números reales. Se pide hallar los valores de $a,\,b$ y c para los que se cumplen simultáneamente las condiciones:

- i) la función u = u(x, y) es la parte real de una función analítica f = f(z),
- ii) f(-1) = 0,
- iii) el residuo en z=0 de la función $g(z)=\frac{f(z)}{z}$ es 1

Anotar en el siguiente recuadro tanto los valores de a, b y c como la expresión analítica de f en función de z.

2.3.3 (primer parcial 16/17)

C. (3 puntos) Sea la función compleja de variable compleja, z = x + iy, definida como

$$f(z) = (e^x + ae^{-x})\cos y + i(be^x + ce^{-x})\sin y$$

donde a, b y c son números reales. Se pide hallar los valores de a, b y c para los que la función f cumple i) f(0) = 2 y ii) es analítica en todo $\mathbb C$. Anotar en el siguiente recuadro tanto los valores de a, b y c como la expresión analítica de f en función de z.

2.3.4 (primer parcial 19/20)

D. (3 puntos) Sea la función real de dos variables reales definida como

$$u(x,y) = \cos x \left(e^y + e^{ky}\right), \qquad k \in \mathbb{R}$$

Anotar los valores de k para los que u es la parte real de una función, f(z), analítica en algún dominio del plano complejo.

Anotar la correspondiente función armónica conjugada, v = v(x, y).

Anotar la expresión analítica de f(z), en función de z=x+iy, sabiendo $f(z)\neq 0$ para todo $z\in\mathbb{C}$ y $f(\pi)=-2$.

2.3.5 (final extraordinario 15/16)

C. (3 puntos) Sea $u(x,y) = y^2 - g(x)$ función armónica en \mathbb{R}^2 . Anotar en el siguiente recuadro la expresión de la función real g(x) y de la función armónica conjugada v(x,y), sabiendo que la función analítica f(z) = u(x,y) + iv(x,y) cumple las condiciones f(0) = 0 y f'(0) = 1.

2.3.6 (final extraordinario 16/17)

C. (3 puntos) Sea la función de dos variables definida como

$$u(x, y) = (x^2 - y^2)(1 + x) + a x y^2,$$

donde a es un número real. Se pide anotar en el siguiente recuadro el valor de a para el que la función u es la parte real de una función analítica, asi como la correspondiente funcion armonica conjugada, v = v(x, y), que se anula en el origen.

2.3.7 (final ordinario 16/17)

C. (3 puntos) Sea la función de dos variables definida como

$$u(x,y) = e^{-ax} \cos(a-2)y,$$

donde a es un número real. Se pide anotar en el siguiente recuadro el valor de a para el que la función u es la parte real de una función analítica, así como la correspondiente función armónica conjugada, v=v(x,y) que se anula en el origen, y la expresión analítica de $f=u(x,y)+\mathrm{i}\,v(x,y)$ en función de $z=x+\mathrm{i}\,y$.

2.3.8 (primer parcial 21/22)

Ejercicio B

1. Dominio de analiticidad de la función

$$f(z) = \log \left(\frac{z - a(1+i)}{z - a(1-i)}\right) \text{ siendo } a > 0 \text{ y } \log z = \operatorname{Ln} |z| + i \operatorname{arg} z, \quad -\frac{\pi}{2} < \operatorname{arg} z \leq \frac{3\pi}{2}$$

• En el dominio donde sea analítica

$$f'(z) =$$

2. Calcular la integral

$$\int_{\Gamma} f'(z)f(z)\,dz$$

 $\Gamma=\Gamma_1\cup\Gamma_2$ el contorno orientado con origen en $z_I=a(1+2i)$ y final en $z_F=a.$

2.3.9 (primer parcial 21/22)

1. Valores de n para los que existe una función entera, f(z), cuya derivada cumple

$$\operatorname{Re}(f'(z)) = a(y + x^n), \quad n \in \mathbb{N}, a > 0$$

2. Expresión general de la función analítica, f(z), en función de z = x + iy

3. Si cumple
$$\int_{|z|=R} \frac{f(z)}{z} dz = 0$$
 $(R > 0)$ Además cumple $\int_{|z|=2} \frac{f(z)}{(z-1)^2} dz = 2\pi a i$

Integrales de línea en el plano

2.4.1 (primer parcial 14/15)

D. Sea la expresión integral

$$I = \int_{\gamma} |z| \, \mathrm{d}z,$$

donde γ es el contorno orientado simple formado por los segmentos [-2,-1] y [1,2] del eje real y la semicircunferencia $z={\rm e}^{{\rm i}\theta}$ con $-\pi \le \theta \le 0$, siendo los puntos inicial y final del contorno z=-2 y z=2 respectivamente. Se pide anotar en el siguiente recuadro el valor de I.

Nota. Nótese que el contorno γ está dado por la representación param

Nota. Nótese que el contorno γ está dado por la representación paramétrica $\gamma:[0,2+\pi]\to\mathbb{C}$ dedinida por $\gamma(\theta)=-2+\theta+0$ i si $\theta\in[0,1],$ $\gamma(\theta)=\exp(\mathrm{i}(\theta-1-\pi))$ si $\theta\in]1,1+\pi],$ $\gamma(\theta)=\theta-\pi+0$ i si $\theta\in]1+\pi,2+\pi]$

2.4.2 (primer parcial 15/16)

B. (3 puntos) Anotar en el siguiente recuadro el valor de la expresión integral

$$I = \int_{\gamma} |z|^2 \, \mathrm{d}z, \qquad -$$

donde γ es la semi-circunferencia de centro 1+i0 y radio unidad que empieza en el origen y termina en 2+i0 (NOTA.- Ojo con la orientación y, si es necesario, téngase en cuenta que $\int_0^{\pi} \cos^2\theta d\theta = \int_0^{\pi} \sin^2\theta d\theta = \pi/2$.)

2.4.3 (primer parcial 16/17)

B. (3 puntos) Anotar en el siguiente recuadro el valor de la expresión integral

$$I = \int_{\Gamma} \cos|z| \, \mathrm{d}z,$$

donde Γ es el recinto cerrado, recorrido en sentido positivo, formado por la semi-circunferencia de centro el origen y radio π contenida en el semiplano de las partes imaginarias positivas y el segmento $[-\pi,\pi]$ de la recta real

2.4.4 (primer parcial 17/18)

B. (3 puntos) Anotar en el siguiente recuadro el valor de la expresión integral

$$I_{\underline{\mathbf{A}}} = \int_{\Gamma} \operatorname{Log} \bar{z} \, \mathrm{d}z,$$

donde Log es el logaritmo principal y Γ es la semi-circunferencia de centro el origen y radio 2 contenida en el semiplano de las partes imaginarias positivas recorrida desde 2 a -2

2.4.5 (primer parcial 17/18)

C. (3 puntos) Para la misma curva Γ del apartado anterior, anotar en el siguiente recuadro el valor de la integral

$$I_{\mathbf{z}} = \int_{\Gamma} z \, \mathrm{e}^{2z} \, \mathrm{d}z,$$

2.4.6 (primer parcial 18/19)

B. (3 puntos) Anotar en el siguiente recuadro el valor de la integral

$$I = \int_{\Gamma} \frac{\overline{z} + i}{|z - i|^2} \, dz \; :$$

donde Γ es el segmento recto orientado con origen en el punto -i del eje imaginario y final en el punto 1 del eje real (z(t)=t-(1-t)i para $t\in[0,1]$

2.4.7 (primer parcial 18/19)

D. (3 puntos) Sea g(z) una función entera tal que

$$\oint_C \frac{g(z)}{z - z_0} dz = 2\pi i \quad \text{para todo } z_0 \in \mathbb{C}$$

siendo C la circunferencia $|z - z_0| = 1$ orientada positivamente.

Anotar el siguiente recuadro la expresión general de g(z)

Anotar el valor de la integral

$$\oint_{\Gamma} \frac{g(z)}{z^4 - 1} \, dz$$

siendo Γ el cuadrado de centro en z=1 y lado 3, orientado positivamente, de la figura.

2.4.8 (primer parcial 19/20)

B. (3 puntos) Anotar en el siguiente recuadro el valor de la integral

$$\int_{\Gamma} (z-i) \operatorname{Log}(z-i) \, dz$$

siendo Γ el contorno orientado de la figura, con origen en el punto -1 y final en el punto 1, ambos del eje real.

2.4.9 (final ordinario 13/14)

A. Sea $\gamma:[0,2\pi]\to\mathbb{C}$ el arco definido por $\gamma(\theta)=\frac{1}{5}\cos(\theta)+\mathrm{i}\sin(\theta)$. El valor de la integral

$$\int_{\gamma} \frac{\operatorname{Ln}(3+z)}{z \cos(z)} dz$$

es:

- 2πLn(3)i.
- (2) πLn(3)i.

(3) Ln(3).

(4) Ninguna de las otras tres respuestas.

2.4.10 (final extraordinario 14/15)

 \boldsymbol{A} . Hallar el valor de la integral

$$I = \int_{\gamma} \bar{z}^2 \, \mathrm{d}z,$$

donde γ es el arco de circunferencia de radio 2 y centro el origen comprendido en el primer cuadrante y recorrido desde z=2+i0 a z=0+i2.

2.4.11 (final ordinario 14/15)

A. El valor de la integral

$$I = \int_{\gamma} \bar{z}|z| \,dz,$$

donde γ es la circunferencia de radio 1 y centro el origen recorrida en sentido positivo ($z={\rm e}^{{\rm i}\theta}$) una sola vez, es:

 $(1) 2\pi$

(2) $2\pi i$

(3) $-2\pi i$

(4) (

2.4.12 (final extraordinario 15/16)

B. (3 puntos) Anotar en el siguiente recuadro el valor de la expresión integral

$$I = \int_{\Gamma} \sin|z| \, \mathrm{d}z,$$

donde z = x + iy y Γ es el segmento orientado de la bisectriz del primer cuadrante que va desde el origen, (0 + i0), al punto (1 + i).

2.4.13 (final ordinario 15/16)

B. (3 puntos) Anotar en el siguiente recuadro el valor de la expresión integral

$$I = \int_{\gamma} (a y + \mathrm{i} b (x + 1)) \, \mathrm{d}z,$$

donde $z=x+\mathrm{i}y,\,\gamma$ es la circunferencia de centro el origen y radio unidad y a y b son números complejos dados (NOTA.- Téngase en cuenta que $\int_0^{2\pi}\cos^2\theta\mathrm{d}\theta=\int_0^{2\pi}\sin^2\theta\mathrm{d}\theta=\pi$.)

C. (3 puntos) Sea f(z) = ay + ib(x + 1) el integrando de la expresión anterior. Sabiendo que f(0) = 2, anotar en el siguiente recuadro los valores de a y b que hacen que f sea analítica y la correspondiente expresión de f en función de z.

2.4.14 (final ordinario 16/17)

B. (3 puntos) Anotar en el siguiente recuadro el valor de la expresión integral

$$I = \int_{\Gamma} \exp(\bar{z}) \, \mathrm{d}z,$$

donde Γ es el segmento orientado que va desde el origen al afijo de ($\pi + i\pi$) sobre la bisectriz del primer cuadrante.

Desarrollos de Taylor y Laurent

2.5.1 (primer parcial 14/15)

E. Anotar en el siguiente recuadro la forma general del desarrollo en serie de Laurent alrededor del origen de la función

$$f(z)=\cosh\left(\frac{1}{z}\right)-z\,\sinh\left(\frac{1}{z}\right).$$

(Es suficiente con dar la expresión de los tres términos de menor orden y no nulos de dicho desarrollo)

2.5.2 (primer parcial 15/16)

D. (3 puntos) Anotar en el siguiente recuadro el radio de convergencia R y los tres términos de menor orden y no nulos del desarrollo en serie de McLaurin (en z=0) de la función

$$z f(z) = \frac{e^z}{(z-1)^3}.$$

2.5.3 (primer parcial 15/16)

E. (3 puntos) Anotar en el siguiente recuadro el radio de convergencia exterior R_e y los tres términos de la parte principal (términos potenciales de exponente negativo) del desarrollo en serie Laurent de la función del apartado D en z = 1.

2.5.4 (primer parcial 16/17)

E. (3 puntos) Anotar en el siguiente recuadro el radio de convergencia exterior Re y los tres términos de la parte principal (términos potenciales de exponente negativo) del desarrollo en serie de Laurent en $z = -\pi/2$ de la función:

$$f(z) = \frac{(z - \pi/2) \sin z}{(z + \pi/2)^3}.$$

2.5.5 (primer parcial 17/18)

D. (3 puntos) Anotar en el siguiente recuadro el radio de convergencia R y los tres primeros términos no nulos del desarrollo en serie de McLaurin de la función:

$$f(z) = \frac{z \sin z + 2(\cos z - 1)}{z^4}.$$

2.5.6 (primer parcial 18/19)

C. (3 puntos) Dada la función $f(z) = \frac{z \cosh z}{\sinh z}$

Anotar en el siguiente recuadro, la parte principal del desarrollo en serie de Laurent (potencias : negativas de z)en el entorno 0<|z|< R, especificando el valor de R

2.5.7 (primer parcial 19/20)

C. (3 puntos) Dada la función
$$f(z) = \frac{\left(e^{i2z} - 1\right)^2}{z^2 \left(e^{i2z} + 1\right)}$$

Anotar en el siguiente recuadro, la parte principal del desarrollo en serie de Laurent (potencias negativas de z) en el entorno 0 < |z| < R, especificando el valor de R

2.5.8 (final ordinario 13/14)

Considérese para la función f(z) el desarrollo de Laurent indicado:

$$f(z) = \frac{1}{(z+1)(z-1)^2} = \frac{b_2}{(z-1)^2} + \frac{b_1}{(z-1)} + a_0 + a_1(z-1) + \dots + a_n(z-1)^n + \dots$$

B. Su dominio de convergencia es:

(5)
$$0 < |z-1| < 1$$

(6)
$$0 < |z-1| < 2$$

(8)
$$0 < |z-1| < \infty$$

 ${m C}$. El valor de los dos primeros coeficientes es:

(9)
$$b_2 = \frac{-1}{2}$$
 y $b_1 = \frac{1}{2}$

(10)
$$b_2 = 1$$
 y $b_1 = -2$

(9)
$$b_2 = \frac{-1}{2}$$
 y $b_1 = \frac{1}{2}$ (10) $b_2 = 1$ y $b_1 = -2$ (11) $b_2 = \frac{1}{2}$ y $b_1 = \frac{-1}{4}$ (12) $b_2 = 1$ y $b_1 = \frac{1}{2}$

(12)
$$b_2 = 1$$
 y $b_1 = \frac{1}{2}$

D. Indicar en el siguiente recuadro la forma general de los coeficientes a_n para $n \ge 0$.

2.5.9 (final extraordinario 14/15)

B. Empezando por las potencias negativas, hallar los tres primeros términos no nulos del desarrollo en serie de Laurent de la función

$$f(z) = \frac{\tanh z}{z^3}.$$

2.5.10 (final ordinario 14/15)

B. Los tres primeros términos del desarrollo en serie de Mac-Laurin de la función

$$f(z) = \frac{\tanh z}{z}$$

Son

(5)
$$1 - \frac{z^2}{3} - \frac{2z^4}{5!}$$

(6)
$$1 + \frac{z^2}{3} + \frac{z^4}{15}$$

(7)
$$1 - \frac{z^2}{3} + \frac{2z^4}{15}$$

(8)
$$1 + \frac{z^2}{3} + \frac{2z^4}{5!}$$

2.5.11 (final extraordinario 15/16)

E. (3 puntos) Anotar en el siguiente recuadro el término general del desarrollo en serie de McLaurin (en z=0) de la función (recuerde que el desarrollo de la función derivada es el desarrollo derivado)

$$f(z) = \frac{z+1}{(1-z)^2}.$$

F. (3 puntos) Anotar en el siguiente recuadro el desarrollo en serie Laurent en |z-1| > 0 de la función del apartado E.

2.5.12 (final ordinario 15/16)

E. (3 puntos) Anotar en el siguiente recuadro el radio de convergencia R y el término general del desarrollo en serie de McLaurin (en z=0) de la función

$$f(z) = \frac{4}{z^2 + 2z - 3}.$$

F. (3 puntos) Anotar en el siguiente recuadro la parte principal (términos potenciales de exponente negativo) y los dos primeros términos de exponente positivo del desarrollo en serie Laurent en 0 < |z-1| < 4 de la función del apartado E.

2.5.13 (final ordinario 16/17)

E. (3 puntos) Anotar en el siguiente recuadro los términos no nulos de la parte principal (términos potenciales de exponente negativo) del desarrollo en serie de Laurent en $z = \pi$ de la función:

$$f(z) = \frac{\sin(2z)}{(z-\pi)^6}$$

Integrales reales usando complejos

2.6.1 (primer parcial 14/15)

F. Anotar en el siguiente recuadro el valor principal de la integral real impropia

$$I = V.P. \int_{-\infty}^{\infty} \frac{1 - 2x}{(1 + x)(1 + x^2)} dx.$$

2.6.2 (primer parcial 15/16)

F. (3 puntos) Anotar en el siguiente recuadro el valor de la integral real impropia

$$I = V.P. \int_{-\infty}^{\infty} \frac{e^{i2x}}{x(4-x^2)} dx.$$

2.6.3 (primer parcial 16/17)

F. (3 puntos) Anotar en el siguiente recuadro el valor de la integral real

$$I = \int_0^{2\pi} \frac{\sin \theta}{(2 - \sin \theta)} d\theta.$$

2.6.4 (primer parcial 17/18)

E. (3 puntos) Anotar en el siguiente recuadro el valor de la integral real

$$I = \int_{-\infty}^{+\infty} \frac{x^2 - x + 1}{(x^4 + 2x^2 + 1)} dx.$$

2.6.5 (primer parcial 18/19)

E. (3 puntos) Anotar en el siguiente recuadro el valor de la integral real

$$\int_0^\infty \frac{\cos(\pi x)}{x^4 - 1} dx$$

junto con el dibujo del contorno empleado para realizar la integración en el plano complejo, en el caso de que ésta sea necesaria.

2.6.6 (primer parcial 19/20)

E. (3 puntos) Anotar en el siguiente recuadro el valor de la integral real

$$\int_0^{+\infty} \frac{\sin(2x)}{x(x^2+9)} \, dx$$

junto con el dibujo del contorno empleado para realizar la integración en el plano complejo, en el caso de que ésta sea necesaria.

2.6.7 (final ordinario 13/14)

F. Indicar en el siguiente recuadro el valor de la integral real impropia $I=\int_{-\infty}^{\infty}\frac{\mathrm{d}x}{(x^4+4\,x^2+4)};$

2.6.8 (final ordinario 13/14)

 \boldsymbol{A} . Considérese la integral

$$\int_{-\infty}^{+\infty} \frac{\cos^2(x)}{x^2 + 1} dx.$$

El valor de la integral anterior es

(1)
$$\frac{\pi}{2}(1+\cos(2))$$

(2)
$$\frac{\pi}{2}(1 + \exp(-2))$$

(3)
$$\frac{\pi}{2}$$

(4) Ninguno de los otros tres valores.

B. Considérese la integral

$$\int_0^{2\pi} \frac{\sin(\theta)}{3 + \sin(\theta)} d\theta.$$

El valor de la integral anterior es: (5) $2\pi(1-\frac{3}{\varpi})$. (6) $\pi(2-\frac{3}{2\sqrt{2}})$.

(5)
$$2\pi(1-\frac{3}{\sqrt{2}})$$
.

(6)
$$\pi(2-\frac{3}{2\sqrt{2}})$$

(7)
$$\pi(2-\frac{3\sqrt{2}}{2})$$
.

(8) Ninguno de los otros tres valores.

2.6.9 (final extraordinario 14/15)

C. Hallar el valor de la integral real impropia

$$I = \int_{-\infty}^{\infty} \frac{\sin x}{x \left(4 + x^2\right)} \mathrm{d}x.$$

2.6.10 (final ordinario 14/15)

C. El valor de la integral real impropia

$$I = \int_{-\infty}^{\infty} \frac{\cos(2\,x)}{4+x^2} \mathrm{d}x$$

(9)
$$\frac{\pi}{4}e^{-2}$$

(10)
$$\frac{\pi}{2}e^{-4}$$

(11)
$$\frac{\pi}{2}e^2$$

(12)
$$\frac{\pi}{4}e^4$$

2.6.11 (final extraordinario 15/16)

D. (3 puntos) Anotar en el siguiente recuadro el valor de la integral real impropia

$$I = \int_{-\infty}^{\infty} \frac{x+1}{x(x^2+4)} \mathrm{d}x.$$

2.6.12 (final ordinario 15/16)

D. (3 puntos) Anotar en el siguiente recuadro el valor de la integral real impropia

$$I = \int_{-\infty}^{\infty} \frac{x^2 + 1}{(x^2 + 4)^2} dx.$$

2.6.13 (final extraordinario 16/17)

E. (3 puntos) Anotar en el siguiente recuadro el valor de la integral

$$I = \int_{\infty}^{\infty} \frac{e^{i2x}}{(x^2+1)(x^2+4)} dx.$$

2.6.14 (final ordinario 16/17)

F. (3 puntos) Anotar en el siguiente recuadro el valor de la integral real

$$I = \int_{-\infty}^{\infty} \frac{2x^2}{(x^2+1)(x^2+4)} dx,$$

2.6.15 (primer parcial 21/22)

$$\frac{\sin\left(\frac{a}{z}i\right)}{\cosh\left(\frac{a}{z}\right)}, \qquad a>0$$
 1. Puntos singulares de

2. $\oint_{\Gamma} f(z) dz$ siendo Γ el cuadrado de centro el origen y lado $l > 2\frac{2a}{\pi}$ orientado positivamente.