Oppgaver MAT2500

Fredrik Meyer

24. september 2014

- **Oppgave 1.** a) Vis at det å være kombinatorisk like er en ekvivalensrelasjon på mengden av polyedre.
- b) Hvis K er et simplisialt polyeder, uttrykk antall sideflater, f som en funksjon av antall hjørner v. Gjør det samme for antall kanter e.

Løsning 1. a) Vi skal vise at det å være kombinatorisk lik er en ekvivalensrelasjon på mengen av polyedre. Skriv $P \sim Q$ om to polyedre P og Q er kombinatorisk like. Vi må vise tre ting: at $P \sim P$, at hvis $P \sim Q$, så er også $Q \sim P$, og til slutt at om $P \sim Q$ og $Q \sim R$, så er også $P \sim R$.

Første først: "Selvsagt" finnes det bijeksjoner $V_P \to V_P$, $E_P \to E_P$ og $F_P \to F_P$. Vi velger bare alle avbildningene til å være identitetsavbildningene (dette går an, siden det er snakk om samme mengde).

Anta nå at $P \sim Q$, det vil si, det finnes bijeksjoner $\phi_V: V_P \to V_Q$, $\phi_E: E_P \to E_Q$ og $\phi_F: F_p \to F_Q$. Dette er bijeksjoner, så det finnes inverser $\phi_V^{-1}: V_Q \to V_P$, $\phi_E^{-1}: E_Q \to E_P$ og $\phi_F^{-1}: F_Q \to F_P$. Nå har vi tre bijeksjoner mellom som i definisjonen, men vi må sjekke at de bevarer inklusjon: så la h være et hjørne i Q og k en kant i Q. Vi ønsker å se at $\phi_v^{-1}(h) \in \phi_E^{-1}(k)$ hvis og bare hvis h er med i k. Siden $P \sim Q$ er $h' \in k'$ hvis og bare hvis $\phi_V(h') \in \phi_E(k')$, og dette skal gjelde for alle h', k'. Siden vi har bijeksjoner mellom hjørnemengdene og kantmengdene kan vi sette $h' = \phi_V^{-1}(h)$ og $k' = \phi_E^{-1}(k)$. Dermed har vi at $\phi_V^{-1}(h) \in \phi_E^{-1}(k)$ hvis og bare hvis $h \in k$ siden $\phi_V(\phi_V^{-1}(h)) = h$ og $\phi_E(\phi_E^{-1}(k)) = k$. Dermed er $Q \sim P$.

Anta nå at $P \sim Q$ og $Q \sim R$. Vi må vise at $P \sim R$. Vi er altså gitt bijeksjoner $\phi_V^{PQ}: V_P \to V_Q, \ \phi_V^{QR}: V_Q \to V_R$, og har lyst å finne en bijeksjon $V_P \to V_R$. Men dette klart: vi bruker $\phi_V^{QR} \circ \phi_V^{PQ}$, altså sammensetningen

av de to bijeksjonene vi hadde. Det er klart at sammensetningen av to bijeksjoner er en bijeksjon. Vi gjør akkurat det samme for bijeksjonene av kant- og flatemengdene.

Vi må vise at hvis h,k er et hjørne og en kant i P, så er $h \in k$ hvis og bare hvis $\phi_V^{QR} \circ \phi_V^{PQ}(h) \in \phi_E^{QR} \circ \phi_V^{PQ}(h)$. Men dette er klart: $h \in k$ hvis og bare hvis $\phi_V^{PQ}(h) \in \phi_E^{PQ}(k)$, og siden $\phi_V^{PQ}(h)$ er et hjørne i Q og $\phi_E^{PQ}(k)$ er en kant i Q, så gjelder dette hvis og bare hvis $\phi_V^{QR} \circ \phi_V^{PQ}(h) \in \phi_E^{QR} \circ \phi_V^{PQ}(h)$.

b) Hvis K er simplisial, betyr det per definisjon at alle flatene er trekanter. Det betyr at hver flate har tre hjørner som naboer, men fra hvert hjørne v er det deg v flater, så vi har at

$$3f = \sum_{v \in V_P} \deg v.$$

Men fra setning 3.2 vet vi at $\sum \deg v = 2e$, slik at vi har at 3f = 2e. Dermed er $f = \frac{2}{3}e$. Men fra Eulers formel er e = f + v - 2, og vi utleder at f = 2(v - 2).

- c) Et simplisialt polyeder med 4 hjørner må nødvendigvis være ekvivalent med et tetraeder. Et simplisialt polyeder med 5 hjørner må være en dobbelpyramide på en trekant. Med seks hjørner er det to muligheter. Den ene muligheten er et oktaeder, mens den andre muligheten er for eksempel å sette sammen tre irregulære trekanter i planet, og ta pyramiden over disse. Eventuelt se på eksemplet fra Figur 3 fra forrige gang.
- d) Dette har vi gjort før.

Oppgave 2. La G være en endelig gruppe som virker på en endelig mengde X. For en $g \in G$, la $X_g = \{x \in X \mid gx = x\}$.

 \Diamond

a) Bruk en insidenskorrespondanse til å vise at

$$\sum_{x \in X} |G_x| = \sum_{g \in G} |X_g|.$$

Løsning 2. a) La oss telle antall løsninger av "likningen" gx = x. Mer presist: vi har lyst til å telle antall par $(x, g) \in X \times G$ slik at gx = x.

Om vi fikserer $x \in X$, så er løsningene gitt ved nettopp de $g \in G$ som fikserer x, med andre ord, elementer i G_x . Dermed finner vi alle løsninger ved å gjøre dette for alle $x \in X$, slik at på den ene siden er antall slike par gitt ved

$$\sum_{x \in X} |G_x|.$$

På den andre siden: fiksér $g \in G$. Da er de x som tilfredsstiller gx = x nettopp gitt ved elementer i X_g . Så for å telle slike par, må vi gjøre dette for alle $g \in G$, og vi får uttrykket

$$\sum_{g \in G} |X_g|.$$

Disse uttrykkene er like siden de teller samme ting.

b)