# Course Project

# Vortex Shedding Past Cylinder: Turbulence

## • Objective :

- Analyse the flow around square cylinder
- 2. Compare Fluent data with Lyin [1] experimental data.

## Process and Methodology :

- 1. Literature survey
- 2. CFD simulation and Validation

### Results and Outcome:

| Flow Parameters              | Experiment Value | Numerical Model |
|------------------------------|------------------|-----------------|
| Reynolds Number              | 21400            | 21400           |
| Free stream turbulence level | 2%               | 2%              |
| Strouhal number              | 0.132            | 0.131           |
| Drag Coefficient             | 2.05-2.23        | 2.14            |
| Working Fluid                | Water            | Water           |





#### Vortex shedding past cylinder



# Flow Simulation and Grid Details

#### **Simulation Details**

| Flow Parameters              | Value  |
|------------------------------|--------|
| Reynolds<br>Number           | 21400  |
| Free stream turbulence level | 2%     |
| Strouhal number              | 0.132  |
| Cylinder<br>diameter         | 0.04 m |
| Working Fluid                | Water  |





#### Time Step Calculation

$$U = 0.5375 m/s$$

$$St = \frac{fD}{U}$$

$$f = \frac{St \cdot U}{D} = 1.77375Hz$$

$$T = 0.563777s$$

$$Step = 0.01s$$

$$Total = 15s$$

$$Iterations = 1500$$





- SST k-ω model has good behaviour in adverse pressure gradients and separating flow [5]
- Numerical Cd matches with experimental value
- 2D simulation model with FVM and SIMPLE algorithm for governing equations. [3]
- Second order implicit scheme for time discretization and third order scheme for spatial discretization.