Networks with Sub-Networks

Kyushu Institute of Technology Graduate School of Life Science and Systems Engineering ICAROB presentation, Jan 14, 2020 Ninnart Fuengfusin, Hakaru Tamukoh

Content

- 1. Background
- 2. Objectives
- 3. Methodology
- 4. Experimental Results and Discussion
- 5. Conclusion

Background

• Mobile devices have varied specifications:

- To put a neural network (NN) into mobile devices:
 - ✓ Balance trade-off between latency and performance of a NN given the specification of devices. (Middle point)
- A NN that is suitable to both of devices.

Objective

To explore NN model that can:

- ✓ Adjust the performance and latency on demand.
 - ➤ More depth, better performance, worse the latency.
- ✓ Without consuming the <u>high amount memory footprint</u>.

We propose Network with Sub-Networks (NSN).

✓ A NN that can rearrange its weights into the smaller NN.

Methodology

General Updating:

$$w_{1:1} = w_{1:1} - lr \frac{\partial L}{\partial w_{1:1}}$$

$$w_{2:2} = w_{2:2} - lr \frac{\partial L}{\partial w_{2:2}}$$

Since, $w_{2:2}$ is a copy of $w_{1:1}$.

$$w_{2:2} = w_{2:2} - \frac{lr}{2} \left(\frac{\partial L}{\partial w_{1:1}} + \frac{\partial L}{\partial w_{2:2}} \right)$$

$$w_{1:1} = w_{2:2}$$

Notation

Model#:Weight#

Size of Weight

Activation

Experimental Results and Discussion

Experimental Setting:

- Two settings: dense NN with a hidden layer and two hidden layers as Network.
- Dataset: MNIST^[1]
- Training Epoch: 600
- Training batch: 128
- Learning rate (lr): 0.3, step down every 200 epoch.
- Optimization: Gradient Descent with Momentum
- Regularization: Dropout [2] and L2 regularization.

Experimental Results and Discussion

Base-Line Neural Network:

	Test Accuracy	Number Parameters
NN with 2 hidden layers	0.9886	1.24M
NN with a hidden layers	0.9882	0.62M
Softmax-Regression	0.9241	7.85k

Proposed Method NSN:

	Test Accuracy	Number Parameters
Network (NN with 2 hidden layers)	0.989	1.24M
Sub-network#1 (NN with a hidden layers)	0.9843	0.62M
Sub-network#2 (Softmax-Regression)	0.926	7.85k

- Bias toward **Network**. Sub-Networks have less test accuracy than base-line.
- Better result from regularization effect?

Reference

- [1] Y. LeCun, C. Cortes, and C. Burges, "Mnist hand-written digit database," *AT&T Labs [Online]*. *Available: http://yann.lecun.com/exdb/mnist*, vol. 2, p. 18, 2010.
- [2] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting", *The Journal of Machine Learning Research*, vol. 15, no. 1, pp. 1929–1958, 2014.

Thank you! ご清聴ありがとうございました。

http://www.brain.kyutech.ac.jp/~tamukoh/

