uc3m Universidad Carlos III de Madrid

Grado en Ingeniería en Tecnologías Industriales 2019-2020 *Trabajo de Fin de Grado*

LINEALIZACIÓN DE OSCILADOR EN ANILLO CONTROLADO POR TENSIÓN MEDIANTE CAPACIDADES CONMUTADAS

Roberto Uceda Gómez

Tutor: Eric Gutiérrez Fernández Leganés, fecha

Esta obra se encuentra sujeta a la licencia Creative Commons

Reconocimiento - No Comercial - Sin Obra Derivada

RESUMEN

En este trabajo se desarrolla un estudio cuyo objetivo es el diseño de una nueva arquitectura de convertidor analógico digital por oscilador controlado por tensión que reduzca el ruido y el consumo en comparación con las arquitecturas habituales.

Palabras clave: ADC-VCO, Oscilador en anillo, Conversión Analógico-Digital, CMOS

TODO

DEDICATORIA

TODO

ÍNDICE GENERAL

1. INTRODUCCIÓN	1
1.1. Motivación del trabajo	2
1.2. Objetivos	2
1.3. Marco regulador	2
1.4. Esquema de este documento	3
2. ESTADO DEL ARTE	4
2.1. Transistores MOS	4
2.2. Tecnología CMOS	5
2.3. Conversión analógico-digital	6
2.4. Arquitecturas de ADC actuales	8
2.5. Modulación sigma-delta en ADCs	9
3. ANÁLISIS	11
3.1. Idea inicial	11
3.2. VCO	11
4. CONCLUSIONES (?)	14
5. ENTORNO SOCIOECONÓMICO (?)	15
6. PRESUPUESTO / PLANIFICACIÓN / PROCESO (?)	16
RIBI IOGRAFÍA	17

ÍNDICE DE FIGURAS

2.1	Corte de transistor MOSFET	4
2.2	Transistor MOS, canal-p	5
2.3	Transistor MOS, canal-n	5
2.4	Inversor CMOS	5
2.5	Señal analógica a digital	6
2.6	ADC de conversión directa tipo flash	8
2.7	ADC integrador de doble rampa	8
2.8	Bloques de un modulador $\Sigma\Delta$	9
2.9	Modulación $\Sigma\Delta$ de una señal de 1.5kHz	10
3.1	Símbolo y tabla de verdad de una puerta inversora	12
3.2	Esquemático de una puerta inversora con transistores MOS	12
3.3	VCO compuesto por 5 puertas inversoras	13
3.4	Esquemático de un VCO	13

ÍNDICE DE TABLAS

Lista de abreviaturas		X
-----------------------	--	---

ADC Analog to Digital Converter, Convertidor Analógico-Digital

CMOS Complimentary Metal-Oxide Semiconductor

MOSFET Metal Oxide Semiconductor Field Effect Transistor, también

llamados transistores MOS

TABLA 1. LISTA DE ABREVIATURAS

1. INTRODUCCIÓN

Los convertidores ADC¹ son onmipresentes en nuestro día a día. Sin ellos, no sería posible realizar una llamada con un teléfono móvil, o disfrutar de un sistema de climatización en nuestro hogar, o utilizar el control de crucero en nuestro coche. El objetivo de estos importantes bloques de la electrónica es convertir señales físicas, como ondas electromagnéticas, temperatura ambiente, o la posición de un eje, en señales digitales interpretables por un sistema basado en la electrónica digital. Una vez tenemos estas señales, normalmente compuestas por un flujo de bits, pueden ser procesadas por un microcontrolador para después tomar las decisiones necesarias para conseguir el objetivo deseado, como activar el compresor del aire acondicionado si la temperatura sube de cierto límite preestablecido.

Cada día que pasa aumenta la demanda de aparatos más rápidos, compactos, y eficientes. Por regla general, la miniaturización de la electrónica tiene un impacto positivo en estos criterios. Los transistores son los componentes fundamentales de los circuitos integrados, donde recae el grueso de consumo y tamaño en un sistema electrónico. Estos transistores aumentan su eficiencia energética según disminuye su tamaño, además de permitir mayores frecuencias de operación. Por esto, existe un gran incentivo en la búsqueda de arquitecturas y técnicas de fabricación que permitan transistores más pequeños.

La ley de Moore ayuda a poner un poco de contexto histórico a esta carrera por la disminución de los transistores. Gordon Moore anunció en 1965 una tendencia en la, por aquel entonces emergente, industria de la electrónica: cada dos años se duplicaba la cantidad de componentes presente en un circuito integrado en la misma superficie [1]. A más componentes, mayor poder de procesamiento, pero también mayor coste de fabricación por la complejidad y delicadeza requerida en los procesos.

¹Analog to Digital Converter. En español, Convertidor Analógico a Digital

1.1. Motivación del trabajo

Debido a las altas velocidades de reloj y los requisitos de consumo y fabricación (espacio ocupado, número de componentes), los ADC usados actualmente presentan problemas. Los ADC basados en la arquitectura sigma delta necesitan un amplificador operacional a modo de integrador. Los ADC basados en VCO actuales, o bien necesitan un integrador de manera similar a los sigma-delta, o bien necesitan una compensación de linearidad mediante circuitería digital. Los amplificadores operacionales y los circuitos de compensación requieren de mucho espacio y gran número de componentes, además de consumir más de lo deseable. Este trabajo se centra en la búsqueda de una nueva arquitectura usando un VCO tanto como integrador como cuantificador, que permita ahorrar la necesidad de circuitos de compensación o amplificadores operacionales, manteniendo o mejorando el comportamiento lineal, la resolución, y el ancho de banda de las arquitecturas ya existentes.

1.2. Objetivos

El grueso de este trabajo se encuentra en el plano teórico. El primer paso es realizar un estudio de las arquitecturas de ADC ya existentes, centrándose en aquellas que emplean VCOs. A partir de este estudio, se estudiará la viabilidad de varias ideas de diferentes publicaciones que aún no han sido implementadas. Para esto, se utilizarán herramientas de simulación basadas en SPICE. Una vez probada la efectividad de la arquitectura, la siguiente tarea será montar un circuito con componentes discretos sobre protoboard, medir los parámetros de funcionamiento, y así dejar demostrada la factibilidad de la arquitectura. TODO: consultar Eric

1.3. Marco regulador

TODO preguntar a Eric

1.4. Esquema de este documento

TODO por decidir

2. ESTADO DEL ARTE

Para entender las arquitecturas de ADC modernas es imprescindible conocer primero los bloques fundamentales sobre los que se asienta la microelectrónica actualmente: los transistores MOSFET².

2.1. Transistores MOS

Fig. 2.1. Corte de transistor MOSFET³

Un transistor MOSFET es un tipo de transistor bipolar que se usa para amplificar y conmutar señales eléctricas dentro de un circuito. Se compone de cuatro entradas: fuente, puerta, drenador, y sustrato, que normalmente está conectado a la fuente. Cuando se aplica un voltaje en la puerta, se crea un canal en el medio semiconductor que permite el paso de corriente entre la fuente y el drenador. Podemos distinguir dos tipos de transistores MOS: los canal-n y los canal-p, dependiendo del dopaje del silicio usado en su fabricación. Los canal-n tienen un dopaje negativo en el silicio de la fuente y el drenador, que se consigue añadiendo impurezas de un elemento como fósforo, dejando electrones libres que actúan como portadores de carga. En el caso de los canal-p, se dopan con elementos como boro, que dejan huecos (ausencia de electrones en capas de valencia), y estos actúan como portadores de carga.

²Metal Oxide Semiconductor Field Effect Transistor

³Fuente: http://ece-research.unm.edu/jimp/vlsi/slides/chap2_1.html

Estos son los símbolos más usados para representar transistores MOS:

Fig. 2.2. Transistor MOS, canal-p⁴

Fig. 2.3. Transistor MOS, canal-n⁵

2.2. Tecnología CMOS

La tecnología de fabricación CMOS⁶ utiliza una combinación de transistores MOS de canal n y canal p para implementar las funciones de un microprocesador. Por ejemplo, un inversor (puerta lógica NOT) se consigue con la siguiente disposición:

Truth Table	Integrated Circuit
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	V_{in} T_2 T_1 T_1

Fig. 2.4. Inversor CMOS⁷

⁴Fuente: Analog Integrated Circuit Design[2]

⁵Fuente: Analog Integrated Circuit Design[2]

⁶Complementary MOS

⁷Fuente: https://www.oreilly.com/library/view/introduction-to-digital/

Los circuitos CMOS tienen un bajo consumo, tienen una buena resistencia al ruido, y son relativamente fáciles de diseñar. Es por esto que se ha convertido en la tecnología dominante en los microcircuitos.

2.3. Conversión analógico-digital

La tarea de un convertidor analógico-digital, o ADC, es convertir una señal de espectro continuo en el tiempo en una señal de valores discretos cuantizable.

Fig. 2.5. Señal analógica a digital⁸

En un ADC, la señal analógica original sufre dos transformaciones: un muestreo y una cuantificación. El muestro toma valores de la señal a una frecuencia concreta, descartando los intermedios. La cuantificación transforma el espectro continuo de la señal en un conjunto de valores finito. Esto es suficiente para lograr un conjunto de palabras (conjunto de bits de longitud definida) a una frecuencia de trabajo, para ser almacenadas o procesadas por un microcontrolador.

Estos son algunos de los parámetros básicos que describen el comportamiento y prestaciones de un ADC:

⁸Fuente: https://electronics.stackexchange.com/questions/352784/in-digital-systems-do-we-discretize-both-time-and-magnitude-or-only-time

- **Frecuencia de muestreo:** Frecuencia a la cual se toman medidas de la señal original.

 Determina el ancho de banda.
- **Ancho de banda:** Rango de frecuencias de la señal original que puede ser correctamente muestreada, cuantizada, y posteriormente recreada.
- **Resolución:** Número de pasos máximo entre rango de valores de la señal analógica. Determina el error de cuantificación y el SNR máximo.
- **SNR:** Signal to Noise Ratio. Relaciona la potencia de la señal de interés y el ruido de fondo existente.

En cuanto a errores en la conversión, estas son las principales fuentes:

- **Cuantificación:** Para una muestra dada en un momento determinado, diferencia entre el valor de la señal original y valor de la señal cuantificada. Surge porque para cada valor discreto de la señal cuantificada, existe un rango con infinitos valores intermedios en la señal original.
- **Linealidad:** Falta de correlación lineal entre entrada y salida del ADC. Necesita ser corregida para evitar divergencias entre entrada y salida que distorsionan la lectura.
- **Offset:** Para valores muy bajos de señal original, la lectura puede ser distorsionada si no se corrige el offset.
- **Ganancia:** Si no se ajusta correctamente, se puede inducir en un error creciente a medida que se recorre la curva de respuesta.

Es importante diferenciar dos tipos de ADC según su frecuencia de muestreo:

- A frecuencia de Nyquist: La frecuencia de muestreo es igual a dos veces la frecuencia máxima de la señal a capturar[3][4].
- **Sobremuestreados:** La frecuencia de muestreo es superior a la frecuencia de Nyquist; habitualmente unas diez veces mayor.

La mayoría de arquitecturas de ADC actuales trabajan con sobremuestreo, ya que permiten una mejor gestión del ruido.

2.4. Arquitecturas de ADC actuales

Existen multitud de arquitecturas ADC: flash, aproximaciones sucesivas, de integración, de rampa, de seguimiento, tensión-frecuencia, y un largo etcétera.

Fig. 2.6. ADC de conversión directa tipo flash⁹

Fig. 2.7. ADC integrador de doble rampa¹⁰

Los más cercanos a la materia de este estudio son los de integración, en concreto los que utilizan la modulación sigma-delta.

⁹Fuente: https://www.allaboutcircuits.com/textbook/digital/chpt-13/flash-adc/

¹⁰Fuente: http://www.electronics-tutorial.net/analog-integrated-circuits/

2.5. Modulación sigma-delta en ADCs

Un ADC que utiliza el principio de modulación sigma-delta, también llamado modulador sigma-delta, o $modulador \Sigma \Delta$, tiene como bloques principales un sumador, un integrador, y un cuantificador, además de un bucle de retroalimentación. Este es el esquema de bloques básico de un modulador $\Sigma \Delta$:

Fig. 2.8. Bloques de un modulador $\Sigma\Delta^{11}$

El funcionamiento de este tipo de ADC sigue los pasos siguientes. La señal original (x(t)) es sumada a la salida del cuantificador (y(t)) en magnitud negativa. La salida (y(t)) es un flujo de un bit de profundidad, por lo que debe ser transformada a magnitud real a través de un DAC. El integrador forma un filtro de paso bajo sobre la diferencia entre señal original y cuantificada de tal manera que se consigue una realimentación de baja frecuencia, consiguiendo una reducción del ruido de cuantificación en la banda de respuesta.

Este es un ejemplo gráfico del resultado de la modulación $\Sigma\Delta$:

¹¹Fuente: Oversampled Analog-To-Digital Converter Architectures Based On Pulse Frequency Modulation[5]

Fig. 2.9. Modulación $\Sigma\Delta$ de una señal de 1.5kHz¹²

Se puede observar que el promedio de la señal modulada de 1 bit es proporcional a la señal original.

Con respecto a un ADC de aproximaciones sucesivas o de seguimiento, la modulación $\Sigma\Delta$ una gran linealidad en la curva de respuesta y una disminución del ruido de fondo, ya que el bucle tenderá a hacer que la salida y(t) sea cero. El cuantificador suele ser un comparador implementado con un amplificador operacional de alta ganancia, con una referencia ajustada a la aplicación. Además suele existir un circuito sample-and-hold con una frecuencia de reloj que se ajusta a la entrada al circuito que recibirá la señal ya convertida a digital.

Las principales desventajas de la conversión por modulador $\Sigma\Delta$ son la necesidad de una frecuencia de muestreo muy alta respecto a la original, lo cual es un problema a la hora de convertir señales de muy alta frecuencia; TODO: añadir más desventajas

TODO: explicar VCO (o mejor en desarrollo?)

¹²Fuente: http://www.cs.tut.fi/sgn/arg/rosti/1-bit/

3. ANÁLISIS

TODO: nombre para este capítulo

En este capítulo se expone el análisis de una nueva arquitectura de ADC que emplea

un VCO como cuantificador e integrador.

3.1. Idea inicial

La idea fundamental de la nueva arquitectura es sustituir el integrador y el cuantificador

de un ADC de tipo $\Sigma\Delta$ por un VCO. Esto eliminaría la necesidad de un amplificador

operacional presente en un $\Sigma\Delta$, rebajando por tanto el número de componentes necesarios

y el consumo total del sistema. TODO: preguntar a Eric la fuente original de la idea

El primer paso para desarrollar el estudio es comprender cómo funciona un VCO.

3.2. VCO: Oscilador Controlado por Voltaje

Un VCO, siglas de Voltage Controlled Oscillator es un componente formado por

transistores MOSFET que emite un flujo de pulsos cuya frecuencia es proporcional al

voltaje de alimentación.

En su forma más básica, consiste en un número impar de puertas inversoras colocadas

en un bucle. En las entradas de alimentación de las puertas se conecta la señal a modular.

La señal ya modulada aparece entre la salida y la entrada de cualquier par de puertas.

Esta es la representación simbólica de una puerta inversora, con sus conexiones nom-

bradas:

11

Fig. 3.1. Símbolo y tabla de verdad de una puerta inversora

Así se consigue un inversor en tecnología CMOS. El transistor superior es de canal-p, y el inferior es de canal-n.

Fig. 3.2. Esquemático de una puerta inversora con transistores MOS

Cuando la señal de entrada está en cero lógico (0 voltios) el transistor canal-n se encuentra con una diferencia de voltaje baja entre la puerta y la fuente, así que no hay paso de corriente entre la fuente y el drenador. Por su parte, en el transistor canal-p la diferencia de voltaje entre la puerta y la fuente es grande (la fuente está conectada a una fuente de

alimentación VCC que proporciona un voltaje llamado bias), así que la corriente entre su fuente y drenador es no nula. Así, en la salida el voltaje es equivalente al voltaje de bias VCC.

Cuando la señal de entrada está en uno lógico (cercano al voltaje de bias), ocurre lo contrario: el transistor n entra en su región activa (permite el paso de corriente) mientras que el p entra en zona de corte (no permite el paso de corriente). Así, la salida estará conectada a tierra, normalmente cero voltios.

Fig. 3.3. VCO compuesto por 5 puertas inversoras

Fig. 3.4. Esquemático de un VCO

4. CONCLUSIONES (?)

5. ENTORNO SOCIOECONÓMICO (?)

6. PRESUPUESTO / PLANIFICACIÓN / PROCESO (?)

BIBLIOGRAFÍA

- [1] G. E. Moore, "Cramming more components onto integrated circuits," *Electronics*, vol. 38, n.° 8, 1965.
- [2] T. C. Carusone, D. A. Johns y K. W. Martin, *Analog Integrated Circuit Design*, 2.^a ed. John Wiley & Sons, Inc., 2012.
- [3] H. Nyquist, "Certain topics in telegraph transmission theory," *Transactions of the American Institute of Electrical Engineers*, vol. 47, n.º 2, 1928.
- [4] C. E. Shannon, "Communication in the presence of noise," *Proceedings of the Institute of Radio Engineers*, vol. 37, 1949.
- [5] E. G. Fernández, "Oversampled Analog-To-Digital Converter Architectures Based On Pulse Frequency Modulation," Tesis doct., Universidad Carlos III de Madrid, 2017.
- [6] S. W. Smith, *The Scientist and Engineer's Guide to Digital Signal Processing*, 2.^a ed. California Technical Publishing, 1999.
- [7] J. M. de la Rosa, *Sigma-delta converters : practical design guide*, 2.ª ed. John Wiley & Sons Ltd, 2018.
- [8] T. Kite, "Understanding PDM Digital Audio," Audio Precision, Inc., inf. téc., 2012. [En línea]. Disponible en: http://users.ece.utexas.edu/~bevans/courses/realtime/lectures/10_Data_Conversion/AP_Understanding_PDM_Digital_Audio.pdf.
- [9] R. Garvi, L. M. Alvero-Gonzalez, C. Perez, E. Gutierrez y L. Hernandez, "VCO-ADC linearization by switched capacitorfrequency-to-current conversion," Universidad Carlos III de Madrid.