DATA VISUALIZATION LAB MANUAL MR23-1CS0150

Index

S.No	Task
	Import a sales dataset and perform different data manipulation techniques.
Week1	
Week 2	Perform different data pre-processing techniques on the sales dataset.
Week 3	Conduct a complete data analysis on a given student results dataset and derive
	insights using the ggplot2 package in R.
Week 4	Perform a data analysis on the weather dataset and extract insights using the
	ggplot2 package in R. Utilize Histograms, Box plots, Bar charts, Scatter plots,
	and Line charts to visualize the data.
Week 5	Merge two DataFrames and apply various data manipulation techniques using
	the Pandas library in Python.
Week 6	Use the Python 'Matplotlib' to perform a thorough data analysis and extract
	insights from a given Housing dataset.

WEEK-1

Import a sales dataset and perform below data manipulation techniques.

- 1.Add new rows
- 2. Create new column "total revenue" by multiplying quantity sold by the price.
- 3.Delete rows.
- 4.Delete column.
- 5. Rename "Quantity" column to "Quantity sold".
- 6. Create new columns for "day", "month" and "year" from "Order Date".
- 7.Add +2 to "Quantity" variable of South Region.

```
# Load sales dataset
data = read.csv("C:/Users/Dell/Desktop/MRU/DV/Datasets/sales data.csv",fileEncodi
ng = "UTF-8-BOM")
#examin the data
head(data)
##
    Row.ID
                 Order.ID Order.Date Ship.Date
                                                    Country Region
## 1 1 CA-2016-152156 08-11-2016 11-11-2016 United States South
## 2
         2 CA-2016-152156 08-11-2016 11-11-2016 United States South
## 3
        3 CA-2016-138688 12-06-2016 16-06-2016 United States
      4 US-2015-108966 11-10-2015 18-10-2015 United States South 5 US-2015-108966 11-10-2015 18-10-2015 United States South
## 4
## 5
        6 CA-2014-115812 09-06-2014 14-06-2014 United States
## 6
                                                              West
##
                      Sales Quantity
          Category
## 1
         Furniture 261.9600
         Furniture 731.9400
                                   3
## 3 Office Supplies 14.6200
                                   2
## 4 Furniture 957.5775
## 5 Office Supplies 22.3680
          Furniture 48.8600
# Check the dimentions
dim(data)
## [1] 690
#check the structure of the data
str(data)
## 'data.frame': 690 obs. of 9 variables:
## $ Row.ID : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Order.ID : Factor w/ 321 levels "CA-2014-101476",..: 157 157 146 273 273 1
2 12 12 12 12 ...
## $ Order.Date: Factor w/ 262 levels "01-02-2014", "01-03-2014",...: 60 60 91 86
86 66 66 66 66 ...
## $ Ship.Date : Factor w/ 279 levels "01-05-2016", "01-06-2016", ...: 99 99 143 16
7 167 126 126 126 126 126 ...
## $ Country : Factor w/ 1 level "United States": 1 1 1 1 1 1 1 1 1 1 ...
## $ Region : Factor w/ 4 levels "Central", "East", ...: 3 3 4 3 3 4 4 4 4 4 ...
## $ Category : Factor w/ 3 levels "Furniture", "Office Supplies",..: 1 1 2 1 2
1 2 3 2 2 ...
## $ Sales
              : num 262 731.9 14.6 957.6 22.4 ...
## $ Quantity : int 2 3 2 5 2 7 4 6 3 5 ...
tail(data)
##
       Row.ID
                   Order.ID Order.Date Ship.Date
                                                      Country Region
```

```
686 CA-2014-157784 05-07-2014 08-07-2014 United States
## 686
                                                                   South
## 687
          687 CA-2014-157784 05-07-2014 08-07-2014 United States
                                                                   South
## 688
          688 CA-2014-157784 05-07-2014 08-07-2014 United States
                                                                   South
## 689
          689 CA-2017-161480 25-12-2017 29-12-2017 United States
                                                                    East
          690 US-2014-117135 21-06-2014 23-06-2014 United States
## 690
                                                                   South
##
                         Sales Quantity
              Category
## 685 Office Supplies 167.440
                                      2
## 686
            Technology 479.970
                                      3
## 687 Office Supplies 14.620
                                      2
## 688 Office Supplies 19.440
                                      3
             Furniture 191.984
                                      2
## 689
## 690
             Furniture 104.010
```

1.ADD rows

```
df <- data.frame(</pre>
  Row.ID = c(693L, 694L),
  Order.ID = c("CA-2016-789123", "US-2018-987654"),
  Order.Date = c("05-11-2015", "14-12-2016"),
  Ship.Date = c("12-11-2015", "20-12-2016"),
  Country = c("United States", "United States"),
  Region = c("West", "Central"),
  Category = c("Technology", "Furniture"),
  Sales = c(543.8, 789.6),
  Quantity = c(2L, 7L)
)
data = rbind(data,df)
head(data)
##
     Row.ID
                  Order.ID Order.Date Ship.Date
                                                        Country Region
## 1
          1 CA-2016-152156 08-11-2016 11-11-2016 United States
## 2
          2 CA-2016-152156 08-11-2016 11-11-2016 United States
                                                                 South
## 3
          3 CA-2016-138688 12-06-2016 16-06-2016 United States
                                                                  West
          4 US-2015-108966 11-10-2015 18-10-2015 United States
## 4
                                                                 South
## 5
          5 US-2015-108966 11-10-2015 18-10-2015 United States
                                                                 South
          6 CA-2014-115812 09-06-2014 14-06-2014 United States
## 6
                                                                  West
##
            Category
                        Sales Quantity
## 1
           Furniture 261.9600
                                      2
                                     3
## 2
          Furniture 731.9400
## 3 Office Supplies 14.6200
                                     2
## 4
           Furniture 957.5775
                                     5
                                     2
## 5 Office Supplies 22.3680
           Furniture 48.8600
                                     7
## 6
dim(data)
## [1] 692
             9
print(data[data$Row.ID==693, ])
##
       Row.ID
                    Order.ID Order.Date Ship.Date
                                                          Country Region
## 691
          693 CA-2016-789123 05-11-2015 12-11-2015 United States
         Category Sales Quantity
## 691 Technology 543.8
                                2
```

2.Create new column "Total_revenue" by multiplying quantity sold by the price.

library(dplyr)

```
data = mutate(data, Total_revenue=Sales*Quantity)
head(data)
##
     Row.ID
                  Order.ID Order.Date Ship.Date
                                                        Country Region
## 1
          1 CA-2016-152156 08-11-2016 11-11-2016 United States
## 2
          2 CA-2016-152156 08-11-2016 11-11-2016 United States
                                                                 South
## 3
          3 CA-2016-138688 12-06-2016 16-06-2016 United States
                                                                  West
## 4
          4 US-2015-108966 11-10-2015 18-10-2015 United States
                                                                 South
## 5
          5 US-2015-108966 11-10-2015 18-10-2015 United States
                                                                 South
## 6
          6 CA-2014-115812 09-06-2014 14-06-2014 United States
                                                                  West
##
                        Sales Quantity Total_revenue
            Category
## 1
           Furniture 261.9600
                                      2
                                              523.920
                                      3
## 2
           Furniture 731.9400
                                             2195.820
## 3 Office Supplies 14.6200
                                      2
                                               29.240
                                     5
           Furniture 957.5775
                                             4787.887
## 5 Office Supplies
                      22.3680
                                     2
                                              44.736
                                     7
## 6
           Furniture 48.8600
                                              342.020
```

3.Delete first 5 rows.

```
data = data[-1:-5, ]
dim(data)
## [1] 687 10
```

4.Delete "Row.ID" column.

```
data$Row.ID = NULL
head(data)
##
            Order.ID Order.Date Ship.Date
                                                  Country Region
## 6
     CA-2014-115812 09-06-2014 14-06-2014 United States
                                                            West
     CA-2014-115812 09-06-2014 14-06-2014 United States
                                                            West
      CA-2014-115812 09-06-2014 14-06-2014 United States
## 8
                                                            West
## 9
      CA-2014-115812 09-06-2014 14-06-2014 United States
                                                            West
## 10 CA-2014-115812 09-06-2014 14-06-2014 United States
                                                            West
## 11 CA-2014-115812 09-06-2014 14-06-2014 United States
                                                            West
                         Sales Quantity Total_revenue
##
             Category
## 6
            Furniture
                        48.860
                                       7
                                               342.020
                         7.280
                                       4
## 7
      Office Supplies
                                                29.120
## 8
           Technology 907.152
                                       6
                                              5442.912
## 9
     Office Supplies
                        18.504
                                       3
                                                55.512
                                       5
## 10 Office Supplies 114.900
                                               574.500
            Furniture 1706.184
                                       9
                                             15355.656
## 11
```

5. Reaname "Quantity" column to "Quantity_sold".

```
data = rename(data, Quantity_sold=Quantity)
head(data)
##
            Order.ID Order.Date Ship.Date
                                                 Country Region
## 6
    CA-2014-115812 09-06-2014 14-06-2014 United States
                                                           West
## 7
     CA-2014-115812 09-06-2014 14-06-2014 United States
                                                           West
## 8
     CA-2014-115812 09-06-2014 14-06-2014 United States
                                                           West
## 9 CA-2014-115812 09-06-2014 14-06-2014 United States
                                                           West
```

```
## 10 CA-2014-115812 09-06-2014 14-06-2014 United States
                                                             West
## 11 CA-2014-115812 09-06-2014 14-06-2014 United States
                                                             West
##
                          Sales Quantity_sold Total_revenue
             Category
## 6
            Furniture
                         48.860
                                            7
                                                     342.020
## 7
                                            4
      Office Supplies
                          7.280
                                                      29.120
## 8
                        907.152
                                            6
                                                    5442.912
           Technology
## 9
      Office Supplies
                        18.504
                                            3
                                                      55.512
## 10 Office Supplies 114.900
                                             5
                                                     574.500
## 11
            Furniture 1706.184
                                                   15355.656
```

6.Create new columns for "Order_day", "Order_month" and "Order_year" from "Order.Date".

```
library(tidyr)
data = data %>% separate(Order.Date, into=c("Order_day","Order_month","Order_year
"), sep='-')
head(data)
##
            Order.ID Order_day Order_month Order_year Ship.Date
                                                   2014 14-06-2014
## 6
      CA-2014-115812
                                          06
                             09
##
  7
      CA-2014-115812
                             09
                                          06
                                                   2014 14-06-2014
## 8
      CA-2014-115812
                             09
                                          96
                                                   2014 14-06-2014
## 9
      CA-2014-115812
                             99
                                          06
                                                   2014 14-06-2014
## 10 CA-2014-115812
                             09
                                          06
                                                   2014 14-06-2014
## 11 CA-2014-115812
                             09
                                          06
                                                   2014 14-06-2014
##
            Country Region
                                   Category
                                                Sales Quantity sold
## 6
                                                                   7
      United States
                       West
                                  Furniture
                                               48.860
                       West Office Supplies
## 7
      United States
                                                7.280
                                                                   4
                                                                   6
## 8
      United States
                       West
                                              907.152
                                 Technology
## 9
      United States
                       West Office Supplies
                                                                   3
                                               18.504
                                                                   5
## 10 United States
                       West Office Supplies 114.900
                       West
                                                                   9
## 11 United States
                                  Furniture 1706.184
##
      Total revenue
## 6
            342.020
## 7
             29.120
## 8
           5442.912
## 9
             55.512
## 10
            574.500
          15355.656
## 11
```

7.Add +2 to "Quantity" variable of South Region.

```
head(data[data$Region=="South", ])
##
            Order.ID Order day Order month Order year Ship.Date
                                                   2017 20-04-2017
## 13 CA-2017-114412
                             15
                                         04
                                         09
## 44 CA-2017-139619
                             19
                                                   2017 23-09-2017
## 70 CA-2016-119823
                             04
                                         06
                                                   2016 06-06-2016
## 73 US-2015-134026
                             26
                                         04
                                                   2015 02-05-2015
## 74 US-2015-134026
                             26
                                         04
                                                   2015 02-05-2015
  75 US-2015-134026
                                         04
                                                   2015 02-05-2015
##
                             26
##
            Country Region
                                   Category
                                              Sales Quantity_sold
                     South Office Supplies
                                                                 3
## 13 United States
                                             15.552
## 44 United States South Office Supplies 95.616
                                                                 2
```

```
South Office Supplies 75.880
                                                                  2
## 70 United States
                                  Furniture 831.936
                                                                  8
## 73 United States
                     South
## 74 United States
                      South
                                  Furniture
                                              97.040
                                                                  2
## 75 United States
                      South Office Supplies
                                              72.784
                                                                  1
      Total revenue
##
## 13
             46.656
## 44
            191.232
## 70
            151.760
## 73
           6655.488
## 74
            194.080
## 75
             72.784
data$Quantity_sold[data$Region == "South"] <- data$Quantity_sold[data$Region == "</pre>
South"] + 2
head(data[data$Region=="South", ])
##
            Order.ID Order_day Order_month Order_year Ship.Date
                                                   2017 20-04-2017
## 13 CA-2017-114412
                             15
                                          04
## 44 CA-2017-139619
                             19
                                          09
                                                   2017 23-09-2017
## 70 CA-2016-119823
                             04
                                          06
                                                   2016 06-06-2016
## 73 US-2015-134026
                             26
                                          04
                                                   2015 02-05-2015
## 74 US-2015-134026
                                          04
                                                   2015 02-05-2015
                             26
## 75 US-2015-134026
                             26
                                          04
                                                   2015 02-05-2015
##
            Country Region
                                   Category
                                               Sales Quantity_sold
                     South Office Supplies
## 13 United States
                                              15.552
                                                                  5
## 44 United States
                      South Office Supplies
                                                                  4
                                              95.616
## 70 United States
                      South Office Supplies
                                              75.880
                                                                  4
## 73 United States
                      South
                                  Furniture 831.936
                                                                 10
## 74 United States
                                                                  4
                      South
                                  Furniture
                                             97.040
                                                                  3
## 75 United States
                      South Office Supplies
                                              72.784
##
      Total revenue
## 13
             46.656
## 44
            191.232
## 70
            151.760
## 73
           6655.488
## 74
            194.080
## 75
             72.784
```

WEEK-2

Perform below data pre-processing techniques on the sales dataset.

- 1. Delete Unnecessary columns
- 2. Handle missing values
- 3. Remove duplicate data
- 4. Create Country, Order_year and Order_Id from Order_Id variable
- 5. Remove outliers from sales column

```
# Load sales dataset
data = read.csv("C:/Users/Dell/Desktop/MRU/DV/Datasets/sales data preprocess.csv", fileEnc
oding = "UTF-8-BOM")
#examin the data
head(data)
##
     Row.ID
                  Order.ID Order.Date Ship.Date Region
                                                               Category
## 1
          1 CA-2016-152156 08-11-2016 11-11-2016 South
                                                              Furniture
## 2
          2 CA-2016-152156 08-11-2016 11-11-2016
## 3
          3 CA-2016-138688 12-06-2016 16-06-2016
                                                   West Office Supplies
          4 US-2015-108966 11-10-2015 18-10-2015
## 4
                                                  South
                                                              Furniture
## 5
          5 US-2015-108966 11-10-2015 18-10-2015 South Office Supplies
          6 CA-2014-115812 09-06-2014 14-06-2014
                                                   West
##
        Sales Quantity
## 1 261.9600
                     2
                     3
## 2 731.9400
## 3 14.6200
                     2
## 4 957.5775
                     5
                     2
## 5 22.3680
## 6 48.8600
                     7
```

1. Delete Unnecessary columns

```
# Row.ID not required for analysis.Delete Row.ID
data$Row.ID = NULL
head(data)
##
           Order.ID Order.Date Ship.Date Region
                                                        Category
                                                                     Sales
## 1 CA-2016-152156 08-11-2016 11-11-2016 South
                                                       Furniture 261.9600
## 2 CA-2016-152156 08-11-2016 11-11-2016
                                                                  731.9400
## 3 CA-2016-138688 12-06-2016 16-06-2016
                                            West Office Supplies 14.6200
## 4 US-2015-108966 11-10-2015 18-10-2015 South
                                                       Furniture 957.5775
## 5 US-2015-108966 11-10-2015 18-10-2015 South Office Supplies 22.3680
## 6 CA-2014-115812 09-06-2014 14-06-2014
                                            West
                                                                   48.8600
     Ouantity
##
## 1
            2
## 2
            3
            2
## 3
## 4
            5
            2
## 5
            7
## 6
```

2. Handle missing values

```
#replace blank values with NA
data[data == ""] = NA
head(data)
##
           Order.ID Order.Date Ship.Date Region
                                                                     Sales
                                                        Category
## 1 CA-2016-152156 08-11-2016 11-11-2016 South
                                                       Furniture 261.9600
## 2 CA-2016-152156 08-11-2016 11-11-2016
                                                             <NA> 731.9400
                                            <NA>
## 3 CA-2016-138688 12-06-2016 16-06-2016
                                            West Office Supplies 14.6200
## 4 US-2015-108966 11-10-2015 18-10-2015 South
                                                       Furniture 957.5775
## 5 US-2015-108966 11-10-2015 18-10-2015 South Office Supplies 22.3680
## 6 CA-2014-115812 09-06-2014 14-06-2014
                                                             <NA> 48.8600
                                            West
     Quantity
##
## 1
            2
## 2
            3
## 3
            2
            5
## 4
## 5
            2
            7
## 6
# find the percentage of missing values column wise
missing_percentage = colSums(is.na(data))/nrow(data)*100
print(missing_percentage)
##
     Order.ID Order.Date Ship.Date
                                        Region
                                                 Category
                                                               Sales
##
     0.000000
                0.000000
                           0.000000
                                      3.890490
                                                 5.187320
                                                            1.873199
##
     Quantity
##
    0.000000
# replace Sales missing values by mean()
#calculate mean of sales
mean_sales = mean(data$Sales, na.rm = TRUE)
#replace by mean
data$Sales = replace(data$Sales, is.na(data$Sales), mean sales)
Mode = function(x){
  a = table(x)
  mode_value = names(a[which.max(a)])
  return(mode_value)
}
# replace Region and Category missing values by mode
# find the mode of Region and replace
region mode = Mode(data$Region)
print(region_mode)
## [1] "West"
data$Region = replace(data$Region, is.na(data$Region), region mode)
```

```
#find the mode of Category and replace
category_mode = Mode(data$Category)
print(category_mode)

## [1] "Office Supplies"

data$Category = replace(data$Category, is.na(data$Category), category_mode)
```

3. Remove duplicate data

```
# Using unique() in Base R
dim(data)
## [1] 694   7
data = unique(data)
dim(data)
## [1] 690   7
```

4. Create Country, Order_year and Id from Order_Id variable

```
library(tidyr)
data = data %>% separate(Order.ID, into = c("Country", "Order_year", "Id"), sep = "-")
data$Order.ID = NULL
head(data)
##
     Country Order_year
                           Id Order.Date Ship.Date Region
                                                                  Category
                   2016 152156 08-11-2016 11-11-2016 South
## 1
         CA
                                                                 Furniture
## 2
         CA
                   2016 152156 08-11-2016 11-11-2016 West Office Supplies
## 3
         CA
                  2016 138688 12-06-2016 16-06-2016 West Office Supplies
         US
                  2015 108966 11-10-2015 18-10-2015 South
## 4
                                                                 Furniture
                  2015 108966 11-10-2015 18-10-2015 South Office Supplies
## 5
         US
         CA
                  2014 115812 09-06-2014 14-06-2014 West Office Supplies
## 6
##
       Sales Quantity
## 1 261.9600
                     2
## 2 731.9400
                     3
                     2
## 3 14.6200
                     5
## 4 957.5775
                     2
## 5 22.3680
                     7
## 6 48.8600
```

5. Remove outliers from sales column

```
dim(data)
## [1] 690 9
```

```
Q1 = quantile(data$Sales, 0.25)
Q3 = quantile(data$Sales, 0.75)

IQR = Q3-Q1

lower_bound = Q1 - 1.5*IQR
upper_bound = Q3 + 1.5*IQR

outliers = data$Sales < lower_bound | data$Sales > upper_bound
print(dim(data[outliers, ]))

#remove outlier rows
data = data[!outliers, ]
dim(data)

## [1] 690  9

## [1] 80  9

## [1] 610  9
```

WEEK-3

Conduct a complete data analysis on a given student results dataset and derive insights using the ggplot2 package in R.

```
# load sales dataset
data = read.csv("C:/Users/Dell/Desktop/MRU/DV/Datasets/students marks.csv", fileEncoding =
 "UTF-8-BOM")
#examin the data
head(data)
          Name Gender Age Section Science English History Maths
## 1 1 Bronnie Female 13
                                C
                                       21
                                               81
                                                       62
                                                            49
## 2 2 Lemmie
                 Male 15
                                В
                                       29
                                               41
                                                      17
                                                            40
                               С
## 3 3 Danya Female 14
                                       12
                                               87
                                                      16
                                                            96
## 4 4
         Denna Female 14
                                                      82
                               В
                                       15
                                               53
                                                             33
## 5 5 Jocelin
                 Male 14
                               Α
                                       43
                                               6
                                                       3
                                                            21
## 6 6 Malissa Female 14
                                       98
                                                       85
                                                            76
                                               51
str(data)
## 'data.frame':
                   250 obs. of 9 variables:
## $ id : int 1 2 3 4 5 6 7 8 9 10 ...
## $ Name : Factor w/ 247 levels "Abel", "Adah", ...: 47 148 68 73 132 157 117 36 62 228
## $ Gender : Factor w/ 2 levels "Female", "Male": 1 2 1 1 2 1 1 2 2 2 ...
          : int 13 15 14 14 14 14 14 14 15 15 ...
## $ Section: Factor w/ 3 levels "A", "B", "C": 3 2 3 2 1 3 2 2 1 3 ...
## $ Science: int 21 29 12 15 43 98 38 25 39 35 ...
## $ English: int 81 41 87 53 6 51 74 51 16 25 ...
## $ History: int 62 17 16 82 3 85 54 41 22 37 ...
## $ Maths : int 49 40 96 33 21 76 60 80 49 27 ...
# find the percentage of missing values column wise
missing percentage = colSums(is.na(data))/nrow(data)*100
print(missing percentage)
##
        id
             Name Gender
                              Age Section Science English History
                                                                   Maths
##
        0
```

1. Distribution of Science and English Marks

```
library(ggplot2)

# Assuming 'data' is your dataframe
ggplot(data, aes(x = Science)) +
   geom_histogram(binwidth = 5, fill = 'blue', color = 'black') +
   stat_bin(binwidth = 5, geom = "text", aes(label = ..count..), vjust = -0.5) +
   ggtitle("Distribution of Science Marks")
```

[&]quot;Distribution of Science Marks"


```
ggplot(data, aes(x = English)) +
  geom_histogram(binwidth = 5, fill = 'green', color = 'black') +
  stat_bin(binwidth = 5, geom = "text", aes(label = ..count..), vjust = -0.5) +
  ggtitle("Distribution of English Marks")
```

Distribution of English Marks

- 1. How many students are there with science marks > 75 (approximately)?
- 2. How many students are there with English marks > 75 (approximately)?
- 3. How many students are there with science marks < 35 (approximately)?

2. Gender-wise Performance of Maths and History marks

```
ggplot(data, aes(x = Gender, y = History, fill = Gender)) +
  geom_boxplot() +
  ggtitle("Gender-wise Performance in History")
```



```
ggplot(data, aes(x = Gender, y = Maths, fill = Gender)) +
  geom_boxplot() +
```


Answer the below questions from above box plots:

- 1. Which gender has the highest average math score?
- 2. Are there any outliers in the math marks?
- 3. Which gender performed well in the math exam?

3. Section and gender wise Performance of maths subject

Jitter Plot of Section vs Gender Vs Maths 75 Gender Female Male

Answer the below questions from above jitter plot:

B

Section

- 1. Draw jitter plot for remaining subjects also.
- 2. Which gender from what section performed well in the math, science, english and History exams?

C

4. Calculate total marks and analyze them with id, section and gender

```
library(dplyr)
# create total column
data = mutate(data, Total = Maths + Science + English + History)
head(data)
##
           Name Gender Age Section Science English History Maths Total
## 1 1 Bronnie Female 13
                                  C
                                         21
                                                 81
                                                         62
                                                                49
                                                                     213
## 2
      2
        Lemmie
                  Male
                       15
                                  В
                                         29
                                                 41
                                                         17
                                                                40
                                                                     127
                                  C
          Danya Female 14
                                         12
                                                 87
                                                         16
                                                                96
## 3
                                                                     211
## 4
          Denna Female
                        14
                                  В
                                         15
                                                 53
                                                         82
                                                                33
                                                                     183
## 5
      5 Jocelin
                  Male
                        14
                                  Α
                                         43
                                                  6
                                                          3
                                                                21
                                                                      73
      6 Malissa Female 14
                                  C
                                         98
                                                 51
                                                         85
                                                                76
                                                                     310
ggplot(data, aes(x = Total,y = id, shape = Gender, color = Section)) +
 geom_point(size = 3)
```


Answer the below questions from above scatter plot:

- 1. student from which section and gender got the highest total marks.
- 2. student from which section and gender got the least total marks.

5. Line plot between id and total marks

```
ggplot(data, aes(x = Total, y = id)) +
  geom_line(size = 2, color = "blue") +
  geom_point(color = "red", size = 2) +
  geom_text(aes(label=id))
```


Answer the below questions from above line plot:

What is the ID of the student who got the highest marks? What is the ID of the student who got the least marks?

WEEK-5

Merge two Data Frames and apply various data manipulation techniques.

Merge two Data Frames

import pandas as pd
read the files
data1 = pd.read_csv("C:/Users/Dell/Desktop/MRU/DV/Datasets/salesdata.csv")
data1.head()

 *		Order ID	Order Date	Ship Date	Customer ID	Country	City	State	Postal Code	Region	Category	Sales	Quantity	Discount	Profit
	0		08-11- 2016		CG- 12520	United States	Henderson	Kentucky	42420	South	Furniture	261.9600	2.0	0.00	41.9136
	1	CA- 2016- 152156	08-11- 2016	11- 11- 2016	CG- 12520	United States	Henderson	Kentucky	42420	South	Furniture	731.9400	3.0	0.00	219.5820

data2 = pd.read_csv("C:/Users/Dell/Desktop/MRU/DV/Datasets/returnsdata.csv") data2.head()

₹		Returned	Order ID
	0	Yes	CA-2017-153822
	1	Yes	CA-2017-129707
	2	Yes	CA-2014-152345
	3	Yes	CA-2015-156440
	4	Yes	US-2017-155999

merging two dataframes using inner join
data = pd.merge(data1, data2, on='Order ID', how='inner')
data.head()

→ *	Order ID	Order Ship Date Date	Customer ID	Country	City	State	Postal Code	Region	Category	Sales	Quantity	Discount	Profit	Returne
	CA- 0 2014- 143336	27- 01- 08- 09- 2014 2014	ZD- 21925	United States	San Francisco	California	94109	West	Office Supplies	8.56	2.0	0.0	2.4824	Ye
	CA- 1 2014- 143336	27- 01- 08- 09- 2014 2014	ZD- 21925	United States	San Francisco	California	94109	West	Technology	213.48	3.0	0.2	16.0110	Ye

data.shape

→ (104, 15)

Different data manipulation techniques

1. Delete rows

```
# Delete 2nd and 41th rows

data = data.drop([1,40])

data.shape

(102, 15)
```

2. Delete columns 'Customer ID', 'Postal Code'.

data = data.drop(['Customer ID', 'Postal Code'], axis=1)
data.head()

₹		Order ID	Order Date	Ship Date	Country	City	State	Region	Category	Sales	Quantity	Discount	Profit	Returned
	0	CA-2014- 143336	27-08- 2014	01-09- 2014	United States	San Francisco	California	West	Office Supplies	8.56	2.0	0.0	2.4824	Yes
	2	CA-2014- 143336	27-08- 2014	01-09- 2014	United States	San Francisco	California	West	NaN	22.72	4.0	0.2	7.3840	Yes
	3	CA-2016-	17-06-	18-06-	United	Troy	New York	East	Office	208.56	6.0	0.0	52.1400	Yes

3. Modify the values

Round the 'Profit' column to 2 decimal places
data['Profit'] = data['Profit'].round(2)
data.head()

₹		Order ID	Order Date	Ship Date	Country	City	State	Region	Category	Sales	Quantity	Discount	Profit	Returned
	0	CA-2014- 143336	27-08- 2014	01-09- 2014	United States	San Francisco	California	West	Office Supplies	8.56	2.0	0.0	2.48	Yes
	2	CA-2014- 143336	27-08- 2014	01-09- 2014	United States	San Francisco	California	West	NaN	22.72	4.0	0.2	7.38	Yes
	3	CA-2016-	17-06-	18-06-	United	Troy	New York	East	Office	208.56	6.0	0.0	52.14	Yes

4. Create new column from existing columns

```
# Create 'Price_per_Unit' column
data['Price_per_Unit'] = data['Sales'] / data['Quantity']

# Extract the year from 'Order ID'
data['OrYear'] = df['Order ID'].str.split('-').str[1]
data.head()
```

	Order ID	Order Date	Ship Date	Country	City	State	Region	Category	Sales	Quantity	Discount	Profit	Returned	Prise_per_Unit
0	CA- 2014- 143336	27- 08- 2014	01- 09- 2014	United States	San Francisco	California	West	Office Supplies	8.56	2.0	0.0	2.4824	Yes	4.280
2	CA- 2014- 143336	27- 08- 2014	01- 09- 2014	United States	San Francisco	California	West	Nan	22.72	4.0	0.2	7.3840	Yes	5.680
4)

5. Handle missing data

```
import numpy as np
 # replace blank strings with 'NaN'
 data = data.replace('',np.nan)
 # calculate % of missing values columnwise
 missing_percentage = data.isna().sum()/len(data)*100
 missing_percentage
   Order ID
             0.000000
             0.000000
   Order Date
             0.000000
   Ship Date
   Country
             0.000000
             0.000000
             0.000000
   Region
             0.000000
             6.862745
   Category
             0.000000
   Sales
   Quantity
             5 882353
             0.000000
   Discount
   Profit
             0.000000
   Returned
             0.000000
   Price_per_Unit
             5.882353
   dtype: float64
# fill the missing values of Category, Quantity and Price per Unit columns
data['Category'] = data['Category'].fillna(data['Category'].mode()[0])
data['Quantity'] = data['Quantity'].fillna(data['Quantity'].mean())
data['Price_per_Unit'] = data['Price_per_Unit'].fillna(data['Price_per_Unit'].mean())
# calculate % of missing values columnwise
missing_percentage = data.isna().sum()/len(data)*100 missing_percentage
  → Order ID
                  0.0
     Order Date
                  0.0
     Ship Date
                  0.0
     Country
                  0.0
     City
                  0.0
     State
                  0.0
     Region
                  0.0
     Category
                  0.0
     Sales
                  0.0
```

data.shape

Quantity Discount Profit

Returned

Price_per_Unit

dtype: float64

0.0

0.0

0.0

→ (102, 14)

6. Remove duplicate entries

data = data.drop_duplicates()
data.shape

→ (102, 14)

No duplicates rows

WEEK-6

Use the Python 'Matplotlib' to perform a thorough data analysis and extract insights from a given Housing dataset.

```
import pandas as pd
# read the Housing dataset
data =
pd.read_csv("C:/Users/Dell/Desktop/MRU/DV/Datasets/Housing.cs
v")
```

data.head()

 *	price	area	bedrooms	bathrooms	stories	mainroad	guestroom	basement	hotwaterheating	airconditioning	parking	furnishing
	0 6195000	5500	3	2	4	yes	yes	no	no	yes	1	semi-fu
	1 6195000	6350	3	2	3	yes	yes	no	no	yes	0	fu
	2 6195000	5500	3	2	1	yes	yes	yes	no	no	2	fu
	3 6160000	4500	3	1	4	yes	no	no	no	yes	0	unfu
	4 6160000	5450	4	2	1	yes	no	yes	no	yes	0	semi-fu

check the
shape of
dataset
data.shape

→ (299, 12)

data.info()

```
<class
 'pandas.c
ore.frame.
DataFrame
RangeInde
 x: 299
 entries.
 0 to 298
   Data
 columns
(total 12
columns):
      # Column Non-Null Count Dtype
      0 price 299 non-null
1 area 299 non-null
2 bedrooms 299 non-null
3 bathrooms 299 non-null
4 stories 299 non-null
5 mainroad 299 non-null
6 guestroom 299 non-null
7 basement 299 non-null
                                                       int64
                                                       int64
                                                       int64
                                                        int64
                                                       int64
                                                        object
                                                       object
                                   299 non-null
                                                       object
            basement
       8 hotwaterheating 299 non-null
                                                       object
           airconditioning 299 non-null
                                                        object
                                   299 non-null
       10 parking
                                                       int64
       11 furnishingstatus 299 non-null
                                                       object
      d
```

check the missing
values

data.isnull().sum()

\rightarrow	price	0
	area	0
	bedrooms	0
	bathrooms	0
	stories	0
	mainroad	0
	guestroom	0
	basement	0
	hotwaterheating	0
	airconditioning	0
	parking	0
	furnishingstatus dtype: int64	0

1. Box plot for price

```
import matplotlib.pyplot as
plt

# Create box plot for the 'price'
column
plt.boxplot(data['price'])

# Add title and labels
plt.title('Box Plot of price',
fontsize=14)
plt.ylabel('House price',
fontsize=12)

# Display the plot
plt.show()
```


Average house price = 4500000

There are no outliers

range of house price = around 4000000 to 5400000

2. Histogram for area

#Create histogram for area

```
plt.hist(data['area'], bins=5, edgecolor='black',
color='skyblue')

# Add labels and title
plt.title('Distribution of house area',
fontsize=14) plt.xlabel('House area',
fontsize=12)
plt.ylabel('Frequency', fontsize=12)

# Display the plot
plt.show()
```

`*

most of the house area is in the range from 2000 sqft to
 7200 sqft

3. Bar chart between mainroad and price

```
# Group data by 'mainroad' and sum the price
grouped_data = data.groupby('mainroad')['price'].sum()
plt.bar(grouped_data.index, grouped_data.values,
color='orange')
# Add labels and title
plt.xlabel('mainroad facing',
fontsize=12) plt.ylabel('total
price', fontsize=12)
plt.title('Bar chart between mainroad and price',
fontsize=14)
# Add data labels on top of the bars
```

• The houses facing the main road are the most expensive.

yes

4. box plot for parking vs price

mainroad facing

0.4

0.2

0.0

135747500

no

```
# Create box plot for Sales grouped by Region
data.boxplot(column='price', by='parking', grid=False,
patch_artist=True)

# Add title and labels
plt.title('box plot for parking vs price', fontsize=14)
# Remove default 'Boxplot grouped by Region'
plt.suptitle('')
plt.xlabel('no of parkings',
fontsize=12)
plt.ylabel('house price',
fontsize=12)
# Display the plot
plt.show()
```


• The houses with 2 parking spaces are the most expensive.

5. jitter plot for furnishingstatus vs price

```
import seaborn as sns
import matplotlib.pyplot as plt

# Create a jitter plot Region vs Sales
sns.stripplot(x=data['furnishingstatus'], y=data['price'],
jitter=0.3)

# Add labels and title
plt.xlabel('furnishingstatus')
plt.ylabel('price')
plt.title('Jitter Plot furnishingstatus vs
price')

# Show the plot
plt.show()
```


No insights

semi-furnished

6. scatter plot between area and price

furnished furnishingstatus

```
# Create scatter plot
plt.scatter(data['area'], data['price'], color='blue')

# Add labels and title
plt.title('area wise price distribution', fontsize=14)
plt.xlabel('area', fontsize=12)
plt.ylabel('price', fontsize=12)

# Display the plot
plt.show()
```

∓* area wise price distribution 6.0 5.5 price 2.0 4.5 4.0 2000 4000 6000 8000 10000 12000 14000 16000 area

There exists a bit positive relation between area and price

7. subplots among guestroom vs basement vs price

```
data.guestroom.unique()
⇒ array(['yes', 'no'], dtype=object)
data.basement.unique()
→ array(['no', 'yes'], dtype=object)
import matplotlib.pyplot as plt
# Create a figure with four subplots sharing both x and y axes
fig, axes = plt.subplots(2, 2, sharex=True, sharey=True,
figsize=(10, 10))
# Get the unique regions from the data
guestrooms = data['guestroom'].unique()
basements = data['basement'].unique()
# Plot sales by country for each region
for i, x in enumerate(guestrooms):
    for j, y in enumerate(basements):
        g_data = data[(data['guestroom'] == x) &
(data['basement'] == y)]
        axes[i,j].boxplot(g_data['price'])
        axes[i][j].set_title(f'House price distribution where
                guestrooms=\{x\} and basements=\{y\} ', size = 8)
# Display the plots
plt.show()
```

3.5