Static single assignment form (1)

Static single assignment form (SSA) is an intermediate representation where

- ► Each definition defines a unique name
- ► Each use refers to a single definition

Static single assignment form (2)

Example (1)

TACL code

if (a < 0) a = -a; a = 2 * a; ^ a

Alternate IR

cjump $a < 0, l_1, l_2$

 $l_1: a \leftarrow -a$ $l_2: a \leftarrow 2 \times a$ return a

Static single assignment form (3)

Example (1, cont.) SSA form

Removing the ϕ -function

Static single assignment form (4)

 $\phi\text{-functions}$ reconcile different values for a name coming along different edges

A ϕ -function $a = \phi(a, \dots, a)$ in node m selects the correct value for a according to the CFG edge traversed to reach m

 $\phi\text{-functions}$ are a device for encoding data-flow information and are not meant to be implemented

All ϕ -functions in a block are considered as being evaluated simultaneously

 ϕ -functions are only needed for global names (i.e., names that are not local to a basic block)

Dominance

A control flow graph (CFG) node m dominates node n if every path from the root to n passes through m

 \triangleright m is a dominator of n

Node m strictly dominates n if m is a dominator of n and $m \neq n$

m is a strict dominator of n

Node n is in the dominance frontier (DF) of m if

- m dominates a predecessor of n, and
- m does not strictly dominate n

Static single assignment form (5)

A join point is a CFG node that has multiple predecessors

 $\phi\text{-functions}$ are only needed at join points

A node $n \in DF(m)$ is a join point in the CFG since

- a. There is a path in the graph from m to n
- b. There is a path from the root of the graph to n that does not go through m (otherwise, m would strictly dominate n)
- c. In the path from m to n, n is the first node not strictly dominated by m

Inserting ϕ -functions

If node m defines a, every node in DF(m) needs a ϕ -function for a

Static single assignment form (6)

Translating into SSA

- 1. Building the CFG
- 2. Computation of the dominance frontiers
- 3. Insertion of ϕ -functions
 - ightharpoonup Adding a ϕ -function for a to a node makes that node define a
- 4. Numbering the definitions
- 5. Renaming uses

Static single assignment form (7)

Example (2)

TACL code

r = 1; while (n > 0) [r = r * n; n = n - 1;

CFG

Alternate IR

 $r \leftarrow 1$ $\mid B_0$ l_0 : cjump $n > 0, l_1, l_2 \mid B_1$ l_1 : $r \leftarrow r \times n$ $\mid B_2$ j = 0 j = 0 l_2 : return $r \mid B_3$

Dominance

	Dominates	DF
B_0	B_0, B_1, B_2, B_3	_
B_1	B_0, B_1, B_2, B_3 B_1, B_2, B_3	B_1
B_2	B_2	B_1
B_3	B_3	_

Static single assignment form (8)

Example (2, cont.)

Inserting ϕ -functions

 $DF(B_0) = \emptyset$, so B_0 does not cause the insertion of any ϕ -function

Since B_1 does not define any name, it will not imply the insertion of any ϕ -function

 B_2 defines names r and n and ϕ -functions for both names are needed in all nodes in $DF(B_2) = \{B_1\}$

 B_1 now defines r and n, but $DF(B_1) = \{B_1\}$ and, since B_1 already has the corresponding ϕ -functions, no further ϕ -function is needed

Static single assignment form (9)

Example (2, cont. 2)

Numbering definitions

Once ϕ -functions have been inserted, all name definitions are numbered so all define a different name

Each name's definition 0 is available at the start node

Every use of a name is then renamed to reflect the definition that reaches it

Static single assignment form (10)

SSA form incorporates both control-flow and data-flow information

The fact that each use refers to a single definition, makes it straightforward to implement copy-propagation and constant-propagation, and to recognise duplicate expressions

Translating out of SSA form

After program transformation and optimisation, the remaining ϕ -functions must be removed for code generation

To remove each $a_i \leftarrow \phi(e_1, \dots, e_k)$, a definition $a_i \leftarrow e_j$ is inserted at the end of the block where edge j starts, for every $j \in \{1, \dots, k\}$

Static single assignment form (11)

Example (2, cont. 3)

Code after constant--propagation and useless-code elimination

Once r_1 's definition is propagated, $r_1 \leftarrow 1$ becomes useless code

Static single assignment form (12)

Example (2, cont. 4)

Removing ϕ -functions

Since B_1 is the only block with a ϕ -function, definitions for r_2 and n_1 are inserted in its predecessors B_0 and B_2

Static single assignment form (13)

The lost-copy problem (1)

Following the previous rule when translating out of SSA form may sometimes lead to incorrect code

Static single assignment form (14)

The lost-copy problem (2)

This may be avoided by inserting a dummy node in edges that start from a node from where at least one other edge starts and arrive at a node where at least one other edge arrives

This is called edge splitting

After ϕ -function removal Edge splitting

Now z_1 gets the wrong value

Static single assignment form (15)

The lost-copy problem (3)

After ϕ -function removal again

Now z_1 gets the correct value