

Contents

- Overview of 'semantic vision'?
- Image classification/ recognition
- Bag-of-words
 - Recall
 - Vocabulary tree
- Classification
 - K nearest neighbors
 - Naïve Bayes
 - [Support vector machine]

Is this a street light? (Recognition / classification)

SOICT

Where are the people? (Detection)

Is that Potala palace? (Identification)

What's in the scene? (semantic segmentation)

What type of scene is it? (Scene categorization)

Challenge: variable viewpoint

Michelangelo 1475-1564

SOICT SCHOOL OF

9

Challenge: variable illumination

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY —

image credit: J. Koenderink

Challenge: deformation

Challenge: background clutter

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Kilmeny Niland. 1995

Challenge: intra-class variations

Image Classification/ Recognition

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Image Classification/ Recognition

(assume given set of discrete labels) {dog, cat, truck, plane, ...}

cat

Image Classification: Problem

SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

10

Data-driven approach

- · Collect a database of images with labels
- Use ML to train an image classifier
- Evaluate the classifier on test images

Example training set

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

20

A simple pipeline - Training

21

A simple pipeline - Training

A simple pipeline - Training

22

A simple pipeline - Training

Bag of words

Basic model Vocabulary tree

Bag-of-words

- Local feature ~~ a word
- An image ~~ a document
- Apply a technique for textual document representation:

vector model

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Bag-of-words

represent a data item (document, texture, image) as a histogram over features

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

29

Standard BOW pipeline

(for image classification)

Dictionary Learning:

Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify:

Train and test data using BOWs

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY —

3

Dictionary Learning:

Learn Visual Words using clustering

1. extract features (e.g., SIFT) from images

What kinds of features can we extract?

• Regular grid

- Vogel & Schiele, 2003
- Fei-Fei & Perona, 2005

• Interest point detector

- Csurka et al. 2004
- Fei-Fei & Perona, 2005
- Sivic et al. 2005

Other methods

- Random sampling (Vidal-Naquet & Ullman, 2002)
- Segmentation-based patches (Barnard et al. 2003)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Dictionary Learning:

Learn Visual Words using clustering

2. Learn visual dictionary (e.g., K-means clustering)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

How do we learn the dictionary?

Example dictionary

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

Source: B. Leibe

3

Dictionary Learning:

Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify:

Train and test data using BOWs

Encode:

build Bags-of-Words (BOW) vectors for each image

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

39

Encode:

build Bags-of-Words (BOW) vectors for each image

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

4

TF-IDF

Term Frequency Inverse Document Frequency

$$v_d = [n(w_{1,d}) \ n(w_{2,d}) \ \cdots \ n(w_{T,d})]$$

weight each word by a heuristic

$$\boldsymbol{v}_d = [n(w_{1,d})\alpha_1 \ n(w_{2,d})\alpha_2 \ \cdots \ n(w_{T,d})\alpha_T]$$

$$n(w_{i,d})lpha_i = n(w_{i,d})\log\left\{rac{\sum_{d'}\mathbf{1}[w_i\in d']}{\sum_{d'}\mathbf{1}[w_i\in d']}
ight\}$$

SOICT

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Scalability: Alignment to large databases

- What if we need to align a test image with thousands or millions of images in a model database?
 - Efficient putative match generation
 - · Fast nearest neighbor search, inverted indexes

What is a Vocabulary Tree?

Nister and Stewenius CVPR 2006

What is a Vocabulary Tree?

Nister and Stewenius CVPR 2006

- Multiple rounds of K-Means to compute decision tree (offline)
- Fill and query tree online

45

Slide credit: D. Nister

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Slide credit: D. Nister

Slide credit: D. Nister

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY —

Dictionary Learning:

Learn Visual Words using clustering

Encode:

build Bags-of-Words (BOW) vectors for each image

Classify:

Train and test data using BOWs

K nearest neighbors

Distribution of data from two classes

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

5

Distribution of data from two classes

Which class does q belong too?
school of INFORMATION AND COMMUNICATION TECHNOLOGY

Distribution of data from two classes

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

57

K-Nearest Neighbor (KNN) Classifier

 $\underline{\text{Non-parametric}} \text{ pattern classification} \\ \text{approach}$

Consider a two class problem where each sample consists of two measurements (x,y).

For a given query point q, assign the class of **the nearest neighbor**

Compute the **k nearest neighbors** and assign the class by <u>majority vote</u>.

k = 3

CHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

Nearest Neig	hbor is competitive	
+029150870277364955774736 50111/076764811457/147108 50165081467933943144705160 74953465018449437317007876 7495346501849437317007876 7495467667688888888888888888888888888888888	## 62 65 00 87 6 1 7 4 1 1 27 4 8 0 7 7 6 3 8 4 4 20 1 4 0 5 7 8 2 4 7 8 6 7 8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	710102134 7010234 7
		12.0
	Linear classifier (1-layer NN)	
	K-nearest-neighbors, Euclidean	5.0
MNIST Digit Recognition	K-nearest-neighbors, Euclidean, deskewed	2.4
 Handwritten digits 	K-NN, Tangent Distance, 16x16	1.1
 28x28 pixel images: d = 784 	K-NN, shape context matching	0.67
 60,000 training samples 		3.6
 10,000 test samples 	1000 RBF + linear classifier	
Yann LeCunn	SVM deg 4 polynomial	1.1
	2-layer NN, 300 hidden units	4.7
	2-layer NN, 300 HU, [deskewing]	1.6
auc.	LeNet-5, [distortions]	0.8
SCHOOL OF INFORMATION AND CO	Boosted LeNet-4, [distortions]	0.7
	-	59

What is the best distance metric between data points?

- Typically Euclidean distance
- Locality sensitive distance metrics
- Important to normalize.
 Dimensions have different scales

How many K?

- Typically k=1 is good
- Cross-validation (try different k!)

Distance metrics

$$D({m x},{m y})=\sqrt{(x_1-y_1)^2+\cdots+(x_N-y_N)^2}$$
 Euclidean

$$D(m{x},m{y}) = rac{m{x}\cdotm{y}}{\|m{x}\|\|m{y}\|} = rac{x_1y_1+\cdots+x_Ny_N}{\sqrt{\sum_n x_n^2}\sqrt{\sum_n y_n^2}}$$
 Cosine

$$D(oldsymbol{x},oldsymbol{y}) = rac{1}{2} \sum_n rac{(x_n - y_n)^2}{(x_n + y_n)}$$
 Chi-squared

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY —

Distance metrics

L1 (Manhattan) distance

L2 (Euclidean) distance

$$d_1(I_1,I_2) = \sum_p |I_1^p - I_2^p|$$

$$d_2(I_1,I_2) = \sqrt{\sum_p ig(I_1^p - I_2^pig)^2}$$

- Two most commonly used special cases of p-norm

$$\left|\left|x
ight|\right|_{p}=\left(\left|x_{1}\right|^{p}+\cdots+\left|x_{n}\right|^{p}
ight)^{rac{1}{p}}\qquad p\geq1,x\in\mathbb{R}^{n}$$

CIFAR-10 and NN results

Example dataset: CIFAR-10 10 labels 50,000 training images 10,000 test images.

For every test image (first column), examples of nearest neighbors in rows

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

C A

k-nearest neighbor

- Find the k closest points from training data
- Labels of the k points "vote" to classify

Hyperparameters

- · What is the best distance to use?
- What is the best value of k to use?
- i.e., how do we set the hyperparameters?
- Very problem-dependent
- Must try them all and see what works best

Try out what hyperparameters work best on test set.

Trying out what hyperparameters work best on test set: Very bad idea. The test set is a proxy for the generalization performance! Use only VERY SPARINGLY, at the end. train data test data

SOICT SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

Validation

use to tune hyperparameters evaluate on test set ONCE at the end

Cross-validation

70

Example of 5-fold cross-validation for the value of **k**.

Each point: single outcome.

The line goes through the mean, bars indicated standard deviation

(Seems that $k \sim = 7$ works best for this data)

How to pick hyperparameters?

- Methodology
 - Train and test
 - Train, validate, test
- Train for original model
- · Validate to find hyperparameters
- Test to understand generalizability

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

7

kNN

Pros

- simple yet effective

Cons

- search is expensive (can be speed-up)
- storage requirements
- difficulties with high-dimensional data

kNN -- Complexity and Storage

- N training images, M test images
- Training: O(1)
- Testing: O(MN)
- Hmm...
 - Normally need the opposite
 - Slow training (ok), fast testing (necessary)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY -

7

Other classifiers

- Naïve Bayes
- SVM
- Random Forest
- Neural Network
- •

References

Most of these slides were adapted from:

- 1. Ioannis Yannis, Gkioulekas (16-385 Computer Vision, Spring 2020, CMU)
- 2. Kristen Grauman (CS 376: Computer Vision, Spring 2018, The University of Texas at Austin)
- 3. Noah Snavely (Cornell University)
- 4. Fei-Fei Li (Stanford University)

SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

76

