

GRADUATE APTITUDE TEST IN ENGINEERING 2024

अभियांत्रिकी स्नातक अभिक्षमता परीक्षा २०२४

ORGANISING INSTITUTE: INDIAN INSTITUTE OF SCIENCE, BENGALURU

SCORE CARD

Name of the Candidate

VIVEK KUMAR GUPTA

Name of the Parent/Guardian

VIJAY PRASAD GUPTA

Registration No. CE24S44004001

Test Paper

Civil Engineering (CE)

Date of Examination	February 4, 2024		
GATE Score	374	*Marks out of 100	30.41
All India Rank (AIR) in the test paper	9768	Qualifying Marks	
		General	28.3
Number of candidates appeared for the test paper	85869	EWS/OBC-NCL	25.4
		SC/ST/PwD	18.8

*Normalized marks across two sessions of the test paper

Prof. Chandra Sekhar Seelamantula Organising Chairperson, GATE 2024 On behalf of NCB-GATE Ministry of Education (MoE)

6b55eb4f4a5582a534cbd9cf4ca4b9cb

A candidate is considered **qualified** if the marks secured are greater than or equal to the qualifying marks mentioned for the category, for which a valid category certificate, if applicable, must be produced along with this Score Card.

This Score Card is valid up to 31st March 2027.

GATE SCORE COMPUTATION

The GATE 2024 score is calculated using the formula

$$\mathsf{GATE}\;\mathsf{Score} = \;\mathsf{S_q} + (\mathsf{S_t} - \mathsf{S_q}) \, \frac{(\mathsf{M} - \mathsf{M_q})}{(\mathsf{M_t} - \mathsf{M_q})}$$

where

M is the normalised marks obtained by the candidate in the paper mentioned on the GATE 2024 Score Card M_a is the qualifying marks for general category candidates in the paper

 M_t is the mean of marks of top 0.1% or top 10 (whichever is larger) of all the candidates who appeared for the test paper (i.e., including all sessions)

 $S_a = 350$, is the score assigned to M_a

 $S_t = 900$, is the score assigned to M_t

 M_q is 25 marks (out of 100) or μ + σ , whichever is greater. Here μ is the mean and σ is the standard deviation of marks of all the candidates who appeared for the test paper.