

Algorithms and Data Structures 2 CS 1501

Fall 2021

Sherif Khattab

ksm73@pitt.edu

Announcements

- Upcoming deadlines:
 - Homework 3 is due on 2/7
 - Lab 2 is due on 2/4

Previous lecture ...

- BinaryNode
- BinaryTree

CourseMIRROR Reflections

This Lecture

- Binary Search Tree
 - How to add and delete
- Runtime of BST operations
 - Find, add, delete
- Red-Black BST (Balanced BST)
 - definition and basic operations

Let's build a Binary Search Tree

- Work in groups of 2-3 students
- Add the following integers to a Binary Search Tree in the following order:

10, 8, 17, 7, 5, 20, 15, 16, 4

Reflect on the steps that you followed

- How did you add 4 to the tree?
- What steps did you follow?

10, 8, 17, 7, 5, 20, 15, 16, <u>4</u>

How to add?

- How to add a data item entry into a BST rooted at root?
- What if root.data.compareTo(entry) == 0?
- What if root.data.compareTo(entry) < 0?
 - Move left or right?
 - What if no child?
 - What if there is a child?
- What if root.data.compareTo(entry) > 0?
 - Move left or right?
 - What if no child?
 - What if there is a child?
- What if I tell you that you have a friend who can add into a BST.
 - How can you use the help of that friend?

Let's see the code for adding into a BST

- Available online at:
 - https://cs1501-2224.github.io/handouts/CodeHandouts/TreeADT/Slides/ #/7/0/0
 - The slides are under the CodeHandouts/TreeADT/slides folder in the handout repository
 - https://github.com/cs1501-2224/handouts

Let's build a Binary Search Tree

- Work in groups of 2-3 students
- Add the following integers to a Binary Search Tree in the following order:

4, 5, 7, 8, 10, 8, 15, 16, 17, 20

Reflect on the steps that you followed

 How many comparisons did you have to make to add 20?

4, 5, 7, 8, 10, 8, 15, 16, 17, <u>20</u>

Run-time of add (and find by the way)

- # comparisons = height of the tree (in the worst case)
- Run-time is Theta(tree height)
- On average tree height is Theta(log n)
 - n is the number of data items

Let's switch to delete!

- Work in groups of 2-3 students
- In the Binary Search Tree that you built out of the following order:

- 10, 8, 17, 7, 5, 20, 15, 16, 4
- How would you delete 4?
- How would you delete 5?
- How would you delete 10?

Let's build a Binary Search Tree

- Work in groups of 2-3 students
- In the Binary Search Tree that you built out of the following order:

10, 8, 17, 7, 5, 20, 15, 16, 4

- How would you delete 4?
- How would you delete 5?
- How would you delete 10?

Let's see the code for deleting from a BST

- Available online at:
 - https://cs1501-2224.github.io/handouts/CodeHandouts/TreeADT/Slides/ #/7/0/0
 - The slides are under the CodeHandouts/TreeADT/slides folder in the handout repository
 - https://github.com/cs1501-2224/handouts

Red-Black BST

- Definition
 - two colors for links (nodes)
 - red links are always to the left children
 - at most one red-link per node
 - all black-link paths are the same
 - root node is always black
 - Why?
 - <u>maximum</u> height = 2*log n !!
- Basic operations
 - rotate left
 - rotate right
 - flip color
 - preserve the properties of the red-black BST!

Red-black BST example

Please submit your reflections by using the CourseMIRROR App

If you are having a problem with CourseMIRROR, please send an email to **coursemirror.development@gmail.com**

8/29/2022

