Stochastic Gradient Descent

On-line learning and intro to (Feedforward) Neural Networks

Closely follows CB: 5.1 through 5.3.3

*Advanced Coverage of gradient descent in KM 8.1-8.4

Goals

- Intro to non-linear Regression via neural networks
- What is (not) neural about neural nets?
- Understand how to apply Stochastic Gradient Descent based learning for neural networks
- Insights into why neural nets are so popular (and tricky)
 - How to finesse the bias-variance tradeoff
 - Benefits of online training
- Intro to deep learning

Beyond linear Regression

- linear in fixed transform ("phi") space
 - (nonlinear in original space)
- almost linear methods
 - piecewise linear (e.g. CART); locally linear regression, etc.
- general nonlinear forms (e.g. using basis functions, i.e. the "phi"s, that are also learnt)
 - e.g. feedforward neural networks (MLP, Conv Nets,...)
 - MLPs are universal approximators, just like polynomials.

Universal approximator family of functions: Given any *continuous* function, there is some member of that family that can exactly match it

How to Learn the Weights?

- Linear Regression with Cost E(w) = SSE or MSE
 - **direct** solution ("pseudo-inverse solution") gives optimal weights, w* (for given dataset, minimizing the empirical error)
 - One Step: Given initial guess, $w^{(0)}$, can find w^* in one update step.
 - Newton's "root finding" step
 - Iterative using Gradient Descent: Given initial guess, w⁽⁰⁾, iteratively update w by "going down the gradient" till you reach w*.
- **Nonlinear models:** E(w) is not quadratic, and in general non-convex.
 - weights are typically updated in an iterative manner (could be "online" or batch iterative)
 - SGD a popular choice, is on-line.

Gradient Descent for MLR

- See (very introductory) Coursera Lectures by Andrew Ng, and Bishop Ch 5.1, 5.2
- For a linear model, the cost function $E(\mathbf{w})$ is quadratic in \mathbf{w}
 - weights can be obtained by doing gradient descent (incrementally moving down the cost surface in weight space)

Learning Rate

- Learning rate η is crucial
 - Too low: slow convergence
 - Somewhat high: convergence with oscillations
 - Too high: unstable/divergence

What happens when gradients differ greatly across the weight dimensions? (Sketch below).

Gradient Descent for Non-Linear Models

E(w) is not quadratic, and in general non-convex, with *multiple local minima*.

<u>Visualize GD as well as some second-order methods</u>
http://www.benfrederickson.com/numerical-optimization/
(look at Gradient Descent example first, then Nelder-Mead)

- motivates adaptive learning rates, and second order methods that look at curvatures (2nd derivative) in addition to gradients.

• Note: True gradient descent is a batch algorithm, involving all of the training data. (why?)

Stochastic gradient descent (SGD)

- "on-line" version (stochastic gradient descent or SGD): replace true gradient by "instantaneous" gradient, that reduces error only on the new instance (pun intended!)
- e.g. for linear models, with τ as (inner loop) iteration number, n denoting the datapoint being considered, we get:

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \nabla E_n$$

=
$$\mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \boldsymbol{\phi}(\mathbf{x}_n)) \boldsymbol{\phi}(\mathbf{x}_n).$$

This is known as the least-mean-squares (LMS) algorithm or the Widrow-Hoff rule.

Note: Data items considered one at a time (a.k.a. online learning)

Stokhos = "to aim"

SGD example from KM pg. 290

Figure 8.16: Illustration of the LMS algorithm. Left: we start from $\boldsymbol{\theta} = (-0.5, 2)$ and slowly converging to the least squares solution of $\hat{\boldsymbol{\theta}} = (1.45, 0.93)$ (red cross). Right: plot of objective function over time. Note that it does not decrease monotonically. Generated by code.probml.ai/book1/8.16.

Sequential Learning with SGD

- Learning rate: too small → too slow
 - Too large → oscillatory, or may even diverge
- Should η be fixed or adaptive (second order methods)?
- Is convergence needed or not?
 - Streaming data?
 - Non-stationary? May not want to converge!
 - If convergence is desired, then η should decrease with time.
 - (e.g. choose $\eta = a/t$)
 - Batch training data?
 - Two loops:
 - outer: # of epochs
 - inner (one per epoch) = one pass over the training dataset.
 - Typically stop when validation error "flattens" vs. # of epochs.

Why SGD?

Better for large data sets

- + Often faster than batch gradient descent
 - Can do "mini-batches" as a practical trade-off
- + Less prone to local minima, so often applied to complex models (and correspondingly complex error surfaces)
- + useful to scale inputs to help find learning rate (usually fixed)
- + works for non-stationary environments as well as online settings

Also used for more complex error surfaces, though many second-order methods, that also consider the Hessian (matrix of curvatures) in addition to the Jacobian (vector of slopes), exist. (see "conjugate gradient" in the animation link on previous slide).

* Ruder's Blog on advanced gradient descent optimization algorithms.

A Neuron

From https://en.wikipedia.org/wiki/Neuron

1-layer (Artificial) Neural Networks

 Viewing (generalized) linear model as a "neural network" (draw below)

- Learning through SGD
- (déjà vu) LMS Algorithm, Widrow-Hoff rule from ADALINE (1960)

ADALINE

• https://www.youtube.com/watch?v=hc2Zj55j1zU

Multi-Layered Perceptrons (MLP) (most popular neural network before deep learning)

• Bishop Fig 5.1 (right). Typical 2-layered MLP for Regression (with one hidden layer of **M units** and 2 layers of adaptive weights):

Choice of activation functions:

- Hidden layer: tanh/sigmoid
- Output layer: linear / sigmoid or softmax
- Universal approximator if output layer cells are linear and hiddent layer is nonlinear with h() = tanh/sigmoid/gaussian/...

Hidden layer with activation function h():

Output layer with activation function -^

$$a_{j} = \sum_{i=1}^{D} w_{ji}^{(1)} x_{i} + w_{j0}^{(1)} \qquad z_{j} = h(a_{j})$$

$$a_{k} = \sum_{j=1}^{M} w_{kj}^{(2)} z_{j} + w_{k0}^{(2)} \qquad y_{k} = \sigma(a_{k})$$

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^M w_{kj}^{(2)} h \left(\sum_{i=1}^D w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

Overall:

(Multi-path) Chain Rule from Calculus

Depicts relations among 4 variables (not a neural net)

e.g. consider
$$z = (1-x)^3 + \sin(5x)$$

Solve using
$$y1 = (1-x)$$
; $y2 = 5x$

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y_1} \frac{\partial y_1}{\partial x} + \frac{\partial z}{\partial y_2} \frac{\partial y_2}{\partial x}$$

Adaline

- □ Adaptive Linear Element
- Adaptive linear combiner cascaded with a hard-limiting quantizer
- Linear output transformed to binary by means of a threshold device
- □ Training = adjusting the weights
- Activation functions

Learning via Error Backpropagation

• Consider single output, y(x), sigmoid hidden units, linear output units

$$y(x) = ?$$

 $Error = (t-y)^2$

- So for given x, and using SGD, how will you update
 - _ A second layer weight?
 - _ A first layer weight?

• What changes if we have K outputs?

Backpropagation: Intuition

Simple video and follow-up

See Bishop 5.3.1 for application to MLP Z = cell output, feeding into next layer that is closer to the final output f = cell activation function. (relates z to inputs x, y) Gradient of Error w.r.t. x (or y) involve previously computed gradient w.r.t. z

Local gradient times upstream gradient 2

Learning via Error Backpropagation

- 1. forward pass (from input layer through to output layer): compute outputs of successive layers, given the inputs to that layer
- 2. Compute error (loss) at final output layer by comparing with desired output values.
- 3. backward pass (from output layer to input layer): compute gradients of weights w.r.t. loss, layer by layer; and update all the weights.
- Cycle through all the data:
 - For batch settings: ONE EPOCH = one pass through the training dataset.

Design Parameters to be Aware about

- # of hidden units/nodes
 - model complexity
- # of epochs/iterations
 - how long do you train: best is use a cross-validation set to decide when to stop
- Activation function
 - typically tanh or logistic, a.k.a. sigmoid
- Learning rate (SGD is used to update weights)
 - Speed of training
- Momentum: (a second order gradient descent method) <u>https://distill.pub/2017/momentum/</u>
- * More advanced methods, including demos (also see KM 8-8.4)

Visualizing the Workings of an MLP

- http://playground.tensorflow.org/
- (both regression and classification examples with different degrees of difficulty).
- TRY IT OUT!

Model Complexity for MLP

• complexity related to # of hidden units AND amount of training (number of passes or epochs through the data)

MLPs with 1, 3 and 10 hidden units, trained till MSE train flattened out

Fact: The "effective number of parameters" (or effective degrees of freedom) of an MLP increases with amount of training.

So, with less training M=10 solution looks like a network with M < 10 but with more training ...

Adjusting Complexity

- "effective # of parameters" increases with # of epochs !!
 - Select adequately powerful model
 - while training, monitor performance using validation set
 - **stop training** when error on validation set reaches a minimum
 - SAS fig.

Deep Learning

- Amazing improvements in speech recognition, NLP, recognizing objects in images,...
- See http://deeplearning.net/
 - For hype/investment, see Frank Chen video
 https://www.youtube.com/watch?v=ht6fLrar91U starting 32:00

Going Deep

See tutorial at: http://www.iro.umontreal.ca/~bengioy/talks/mlss-austin.pdf

From Facebook's Deepface paper (2014)

https://www.cs.toronto.edu/~ranzato/publications/taigman_cvpr14.pdf

Our method reaches an accuracy of 97.35% on the Labeled Faces in the Wild (LFW) dataset, reducing the error of the current state of the art by more than 27%, closely approaching human-level performance.

Figure 2. Outline of the *DeepFace* architecture. A front-end of a single convolution-pooling-convolution filtering on the rectified input, followed by three locally-connected layers and two fully-connected layers. Colors illustrate outputs for each layer. The net includes more than 120 million parameters, where more than 95% come from the local and fully connected layers.

A mostly complete chart of

So which method should I choose?

- Depends on type, complexity of problem; data size
 - (i) try linear regression first
 - Explore data; Study residues
 - do feature selection/transformation if needed
 - If robustness is needed, try "rlm" (R package), or use SVR.
 - (ii) Now try a set of powerful but not so interpretable models
 (MLP, deep learning, etc)
 - (estimate complexity of fit using a few trial runs)
 - How much is the gap between (i) and (ii)?
 - Consider Decision tree based regression if interpretation is important or a piecewise constant answer is more "actionable"
- Still lacking? try ensemble approaches specially GBDT/XGBoost, which also rank-orders the features.

 © Joydeep Ghosh UT-ECE

Caution: Modeling Inverse Problems

• Forward problem reasonably characterized by a function, but not the reverse problem

• t is not h(x) + (zero-mean, unimodal) noise

So Least squares solution will bomb

- Solutions:
 - model joint pdf
 - build piecewise models

_

x (measured output of physical system)

Extras

(Recap) Linear Regression

• Studied extensively and have well-developed theory (variable selection methods, extensions for dealing with correlated data, evaluation of results,...)

Model:
$$E(y \mid x) = \beta_0 + \beta_1 x_1 + ... + \beta_k x_k + i.i.d.$$
 Gaussian error term

- Evaluating the coefficients
 - consider standard errors
 - Consider coefficients if both x and y's were normalized
 - Doing significance test to see if each term should be dropped.
 - Many predictors? Better to do forward search...

Toy illustration for SGD

y = cost;

x is scalar parameter that can be adjusted

$$y = (x-4)^2 + (x-5)^2$$

$$\min_{x} \sum_{i} (x - z_{i})^{2} = \min_{x} \sum_{i} \ell(x, z_{i})$$

$$\ell(x, z) = (x - z)^{2}$$

$$x^{t+1} = x^{t} - \eta \frac{\partial \ell(x^{t}, 4)}{\partial x}$$

$$x^{t+2} = x^{t+1} - \eta \frac{\partial \ell(x^{t+1}, 5)}{\partial x}$$

Toy illustration for SGD

 $\min_{x} \sum_{i} (x - z_{i})^{2} = \min_{x} \sum_{i} \ell(x, z_{i})$ $\ell(x, z) = (x - z)^{2}$ $x^{t+1} = x^{t} - \eta \frac{\partial \ell(x^{t}, 4)}{\partial x}$ $x^{t+2} = x^{t+1} - \eta \frac{\partial \ell(x^{t+1}, 5)}{\partial x}$

Weight Update through Error Back-propagation*

Takeaway: weights are updated through (online) SGD, using chain rule to "propagate" the error back from output towards the input nodes.

- Derived from chain rule for partial derivatives, applied to SGD
- Three stages:
 - 1. Evaluate an "error signal" at the output units with net input a_k

$$\delta_k = \frac{\partial E_n}{\partial a_k}$$

2. Propagate the signal backwards through the network

$$\delta_j = g'(a_j) \sum_k w_{kj} \delta_k$$

3. Evaluate derivatives

$$\frac{\partial E_n}{\partial w_{ji}} = \delta_j z_i$$

