Duração: 2h

Metodologias de Otimização e Apoio à Decisão Data: 29/01/2021 Exame – Época Normal

Nota: Apresente todos os cálculos que efetuar e justifique convenientemente as suas respostas.

1. Considere o seguinte problema de Programação Linear:

Maximizar
$$z = 2x_1 - x_2$$

sujeito a
 $2x_1 + 4x_2 \ge 8$ (1)
 $x_1 + 2x_2 \ge 4$ (2)
 $2x_1 + 2x_2 \le 6$ (3)
 $x_1 \ge 0$, $x_2 \ge 0$

Considerando x_3 e x_5 as variáveis *surplus* e *artificial* da restrição funcional (1), x_4 e x_6 as variáveis *surplus* e *artificial* da restrição funcional (2), e x_7 a variável *slack* da restrição funcional (3), o quadro ótimo do *Simplex* é:

	Ci	2	-1	0	0	-M	-M	0	
ΧB	C _B \ x i	X 1	X ₂	X 3	X_4	X 5	X 6	X 7	b
X ₂	-1	0	1	0	-1	0	1	-1/2	1
X 3	0	0	0	1	-2	-1	2	0	0
X ₁	2	1	0	0	1	0	-1	1	2
zj-cj		0	0	0	3	М	M-3	5/2	3

[2.75 valores] a) Determine, efetuando um estudo de <u>pós-otimização</u>, quais as implicações na solução ótima apresentada (no valor de x*, no valor de z* e na base ótima), decorrentes da introdução de uma

nova variável de decisão $\mathbf{x_8}$, com coeficientes nas restrições iguais a $\begin{bmatrix} -2 \\ -1 \\ 1 \end{bmatrix}$ e coeficiente na função

objetivo **c**₈=**7**.

- [2.75 valores] **b)** Determine para que intervalo de **c**₂ (coeficiente da variável **x**₂ na função objetivo), o quadro apresentado acima continuará ótimo.
 - 2. Considere o seguinte problema de Programação Linear Inteira Pura:

Maximizar
$$z = 3x_1 + 4x_2$$

sujeito a
 $2x_1 + x_2 \le 6$ (1)
 $2x_1 + 3x_2 \le 9$ (2)
 $x_2 \le 1$ (3)
 $x_1 \ge 0, x_2 \ge 0$
 $x_1 \in x_2 \text{ inteiros}$

Departamento de Engenharia Informática e de Sistemas

Sendo x_3 , x_4 e x_5 as variáveis *slack* associadas às restrições (1), (2) e (3), respetivamente, suponha que se aplicou o **algoritmo de Gomory** a este mesmo problema e que no final do 1º passo, se obteve o seguinte quadro ótimo:

	Ci	3	4	0	0	0	
ΧB	C _B \ x i	X 1	X 2	X 3	X 4	X 5	b
\mathbf{x}_1	3	1	0	1/2	0	-1/2	5/2
X 4	0	0	0	-1	1	-2	1
X 2	4	0	1	0	0	1	1
zj-cj		0	0	3/2	0	5/2	23/2

[5.00 valores]

a) Retire as suas conclusões e se achar necessário prossiga com o 2º passo do referido algoritmo.

[0.75 valores]

- b) A restrição 2x₁ + x₂ ≥ 2 poderia constituir uma eventual restrição de corte para este problema? Justifique a sua resposta.
- **3.** Considere o seguinte problema de Programação por Metas:

Minimizar z =
$$\left\{d_1^+, d_2^- + d_2^+, d_3^+\right\}$$

sujeito a
 $2x_1 - x_2 + d_1^- - d_1^+ = 2$
 $x_1 + d_2^- - d_2^+ = 1$
 $x_2 + d_3^- - d_3^+ = 1$
 $3x_1 + 3x_2 + d_4^- = 12$
 $x_1 \ge 0, \quad x_2 \ge 0, \quad d_i^- \ge 0, \quad d_i^+ \ge 0 \quad (i = 1, 2, 3, 4)$

[5.00 valores]

a) Resolva o problema pelo método gráfico.

[0.75 valores]

b) Se pretendesse que o valor de $x_1 - x_2$ fosse obrigatoriamente superior ou igual a 2, como é que o representaria no modelo anterior?