Summary of COMP523 Advanced Algorithm

May 8, 2023

Symmetry Notation

1.1 Asymptotic Notation

Asymptotic notation is a way of describing the limiting behavior of a function when the argument tends towards a particular value or infinity. In computer science, asymptotic notation is frequently used to describe the running time or space usage of an algorithm.

- O-notation: f(n) = O(q(n)) if there exist constants c and n_0 such that $0 \le f(n) \le cq(n)$ for all $n \ge n_0$.
- Ω -notation: $f(n) = \Omega(g(n))$ if there exist constants c and n_0 such that $0 \le cg(n) \le f(n)$ for all $n \ge n_0$.
- Θ -notation: $f(n) = \Theta(g(n))$ if there exist constants c_1 , c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$.
- o-notation: f(n) = o(g(n)) if for any constant c > 0, there exists a constant n_0 such that $0 \le f(n) < cg(n)$ for all $n \ge n_0$.
- ω -notation: $f(n) = \omega(g(n))$ if for any constant c > 0, there exists a constant n_0 such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.

1.2 Comparing Functions

1.2.1 Transitivity

- f(n) = O(g(n)) and g(n) = O(h(n)) implies f(n) = O(h(n)).
- $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ implies $f(n) = \Omega(h(n))$.
- $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ implies $f(n) = \Theta(h(n))$.

For example, $n^2 = O(n^3)$ and $n^3 = O(n^4)$ implies $n^2 = O(n^4)$.

1.2.2 Reflexivity

- f(n) = O(f(n)).
- $f(n) = \Omega(f(n))$.
- $f(n) = \Theta(f(n))$.

For example, $n^2 = O(n^2)$.

1.2.3 Symmetry

- f(n) = O(g(n)) implies g(n) = O(f(n)).
- $f(n) = \Omega(g(n))$ implies $g(n) = \Omega(f(n))$.
- $f(n) = \Theta(g(n))$ implies $g(n) = \Theta(f(n))$.
- f(n) = o(g(n)) implies $g(n) = \omega(f(n))$.
- $f(n) = \omega(g(n))$ implies g(n) = o(f(n)).

For example, $n^2 = O(n^3)$ implies $n^3 = \Omega(n^2)$.

1.2.4 Transpose Symmetry

- f(n) = O(g(n)) if and only if $g(n) = \Omega(f(n))$.
- $f(n) = \Theta(g(n))$ if and only if $g(n) = \Theta(f(n))$.
- f(n) = o(g(n)) if and only if $g(n) = \omega(f(n))$.
- $f(n) = \omega(g(n))$ if and only if g(n) = o(f(n)).

For example, $n^2 = O(n^3)$ if and only if $n^3 = \Omega(n^2)$.

1.2.5 sum and maximum

$$f_1(n) + f_2(n) + \dots + f_k(n) = \Theta(\max(f_1(n), f_2(n), \dots, f_k(n)))$$

where k is a constant positive integer.

Let $f_j(n) = j$, k = n, then

$$f_1(n) + f_2(n) + \dots + f_k(n) = n(n+1)/2 = \Theta(n^2)$$

1.2.6 Running time hierarchy

- logarithmic: $O(\log n)$
- linear: O(n)
- $n \log n$: $O(n \log n)$
- quadratic: $O(n^2)$
- polynomial: $O(n^k)$
- exponential: $O(c^n)$
- constant: O(1)
- superconstant: $\omega(1)$
- sublinear: o(n)
- superlinear: $\omega(n)$
- superpolynomial: $\omega(n^k)$
- subexponential: $o(c^n)$

1.3 Expect of algorithms

Correctness: An algorithm is correct if it halts with the correct output for every input instance.

Termination: An algorithm is terminating if it halts for every input instance.

Efficiency: An algorithm is efficient if it halts with the correct output for every input instance and runs in polynomial

time.

Recursion and Divide and Conquer techniques

2.1 Finding Majority in array

The pesudocode of the algorithm is shown in Algorithm 2.1.

Algorithm 1 Finding Majority in array

```
1: procedure MAJORITY(A)
        n \leftarrow \text{length of } A
        if n = 0 then
 3:
 4:
            return -1
        end if
        if n = 1 then
            return A[1]
 8:
        if n1 and n is odd then
 9:
10:
        end if
11:
        Array B of size n/2
12:
        set j=0
13:
        for i = 1 to n/2 do
14:
15:
            if A[2i-1] = A[2i] then
                B[j] \leftarrow A[2i-1]
16:
                j \leftarrow j+1
17:
            end if
18:
19:
        end for
20:
        m \leftarrow \mathsf{MAJORITY}(B)
        count \leftarrow 0
21:
        for i=1 to n do
22:
            if A[i] = m then
                count \leftarrow count + 1
24:
            end if
25:
        end for
        if count > n/2 then
27:
            return m
28:
29:
        else
            \mathbf{return} - 1
        end if
32: end procedure
```

Correctness:

Lemma: If A has a majority element, then the majority element of A is also the majority element of B.

Base case: n = 1, the majority element is A[1].

Induction hypothesis: Assume that the lemma is true for n = k, we will prove that the lemma is true for n = k + 1.

Induction step: If A has a majority element, then the majority element of A is also the majority element of B.

Case 1 (A has a majority element m): Then by the lemma, it is also the majority element of B. Then m appears more than k/2 times in B. Then m appears more than (k+1)/2 times in A.

Case 2 (A has no majority element): Then B has no majority element. Then A has no majority element.

Proof the lemma:

proof by contradiction. Assume that A has a majority element m and B has a majority element m', but $m \neq m'$.

Let x be the numbers of occurrence of m in A.

Let y be the numbers of occurrence of m' in B.

Then 2y times from pairs that are represented in B by a value different from m', and x-2y times, since each occurrence of m in A that is not paired with another occurrence of m in A is paired with an occurrence of m' in B.

In total, this gives 2y + x - 2y = x occurrences of m in A, which is a contradiction.

Running time:

Recursive formula for the running time:

$$T(n) \le T(n/2) + cn$$

where c is a constant.

The solution to the recurrence is T(n) = O(n).

2.2 Searching in logarithmic time

Searching faster with BinarySearch.

It is a particular case of the divide-and-conquer paradigm.

Input: A sorted array A of n elements and a value x.

Output: An index i such that A[i] = x or the special value -1 if x does not appear in A.

Pseudocode is shown in Algorithm 2.2.

Algorithm 2 BinarySearch

```
1: procedure BINARYSEARCH(x, i, j)
       if i = j then
2.
          if A[i] = x then
3:
4:
              return i
          else
5:
              return -1
6:
          end if
7:
       else
8:
          if x = A[|(i+j)/2|] then
9:
              return |(i+j)/2|
10:
          else if x < A[|(i+j)/2|] then
11:
              return BINARYSEARCH(x, i, |(i + j)/2|)
12:
13:
              return BINARYSEARCH(x, |(i+j)/2| + 1, j)
14:
          end if
15:
       end if
17: end procedure
```

Running time:

The number of comparisons performed by BinarySearch is:

$$T(n) \le T(n/2) + 4$$

Keep calculate:

$$\begin{split} T(n) &\leq T(n/2) + 4 \\ &\leq T(n/4) + 4 + 4 \\ &\leq T(n/8) + 4 + 4 + 4 \\ &\leq T(n/2^k) + 4k \\ &\leq T(n/2^{\log(n-1)}) + 4\log(n-1) \\ &= T(2) + 4(\log n - 1) \\ &\leq 4\log n - 4 \\ &= 4\log n \end{split}$$

proof $T(n) \leq 4 \log n$:

Base case: n = 1, $T(1) = 0 \le 4 \log 1 = 0$.

Induction hypothesis: Assume that the lemma is true for n = k, we will prove that the lemma is true for n = k + 1. Induction step: $T(k+1) \le 4\log(k+1)$.

$$T(k+1) \le T(k/2) + 4$$

$$\le 4 \log(k/2) + 4$$

$$= 4 \log k - 4 + 4$$

$$= 4 \log k$$

$$\le 4 \log(k+1)$$

Memory usage:

The memory usage of BinarySearch is:

$$M(n) = O(\log n)$$

Comparing BinarySearch and LinearSearch:

$$T_{ ext{BinarySearch}}(n) = O(\log n)$$

$$T_{ ext{LinearSearch}}(n) = O(n)$$

$$T_{ ext{BinarySearch}}(n) = O(\log n) < O(n) = T_{ ext{LinearSearch}}(n)$$
 $M_{ ext{BinarySearch}}(n) = O(\log n) < O(1) = M_{ ext{LinearSearch}}(n)$

2.3 Running time of Divide and Conquer algorithms

The Master Theorem:

Suppose that T(n) satisfies the recurrence:

$$T(n) \le aT(n/b) + cn^d$$

where $a \ge 1$, b > 1, c > 0 and $d \ge 0$ are constants.

Then T(n) has the following asymptotic bounds:

$$T(n) = \begin{cases} O(n^d) & \text{if } d > \log_b a \\ O(n^d \log n) & \text{if } d = \log_b a \\ O(n^{\log_b a}) & \text{if } d < \log_b a \end{cases}$$

This theorem is useful for solving recurrences of the form:

$$T(n) = aT(n/b) + f(n)$$

where $a \ge 1, b > 1$ and f(n) is an asymptotically positive function. **Example**:

```
\begin{split} T(n) &= 8T(n/2) + 100n^2\\ a &= 8, b = 2, f(n) = 100n^2, d = 2, \log_b a = \log_2 8 = 3.\\ d &= 2 < \log_b a = 3, \text{ so } T(n) = O(n^{\log_b a}) = O(n^3). \end{split}
```

2.4 Finding piar of points closest to each other

Input: A set P of n points in the plane.

Output: The pair of points in P that are closest to each other. **Pseudocode** is shown in Algorithm 2.4. **Running time**:

```
Algorithm 3 ClosestPair
```

```
1: procedure CLOSESTPAIR(P_1, \ldots, P_n)

2: Construct P_x and P_y. P_x is sorted by x-coordinate, P_y is sorted by y-coordinate.

3: return CLOSESTPAIRREC(P_x, P_y)

4: end procedure
```

Algorithm 4 ClosestPairRec

```
1: procedure CLOSESTPAIRREC(P_x, P_y)
        if |P_x| = |P_y| \le 3 then
2:
             For each pair of points (P_i, P_j), compute d(P_i, P_j)
 3:
             return the pair of points with the smallest distance
4:
 5:
         end if
        Construct Q_x, Q_y, R_x and R_y.
 6:
        (l_1, l_2) = \text{CLOSESTPAIRREC}(Q_x, Q_y)
 7:
        (r_1, r_2) = \text{CLOSESTPAIRREC}(R_x, R_y)
 8:
        \delta = \min\{d(l_1, l_2), d(r_1, r_2)\}\
9:
10:
        x^* = the largest x-coordinate in Q_x
         L = (x, y) : x = x^*
11:
        S = \{ p \in P : p \in L \text{ and } p \text{ is within } \delta \text{ of } L \}
12:
        Construct S_v
13:
14:
        for p \in S do
             Let q be the point in S_v closest to p
15:
             if d(p,q) < \delta then
16:
                 \delta = d(p,q)
17:
                 (s_1, s_2) = (p, q)
18:
             end if
19:
        end for
20:
        if d(s_1, s_2) < \min\{d(l_1, l_2), d(r_1, r_2)\} then
21:
             return (s_1, s_2)
22:
        end if
23:
        if d(l_1, l_2) < d(r_1, r_2) then
24:
25:
             return (l_1, l_2)
26:
27:
             return (r_1, r_2)
        end if
28:
29: end procedure
```

```
T(n) \le 2T(n/2) + O(n \log n) = O(n \log n) Example:
```

Graph Algorithms

3.1 Graph Definitions

Graph: A graph G consists of a set V of vertices and a set E of edges, where each edge is associated with a pair of vertices.

Directed Graph: A directed graph G consists of a set V of vertices and a set E of directed edges, where each directed edge is associated with an ordered pair of vertices.

Undirected Graph: An undirected graph G consists of a set V of vertices and a set E of undirected edges, where each undirected edge is associated with an unordered pair of vertices.

Neighbours of a vertex v: Set of vertices that are connected to v by an edge.

Degree of a vertex v: number of neighbours of v, denoted by deg(v).

Path: A sequence of (non-repeating) nodes with consecutive nodes being connected by an edge.

length = node count - 1 = edge count.

Distance between two nodes: The number of edges in the shortest path between the two nodes.

Graph diameter: The maximum distance between any two nodes in the graph.

Lines, cycles, trees and cliques:

Line: A graph with n vertices and n-1 edges. **Cycle**: A graph with n vertices and n edges.

cliques: A graph with n vertices and n(n-1)/2 edges.

Tree: A graph with n vertices and n-1 edges.

Graph representations:

Adjacency matrix: A $n \times n$ matrix A where $A_{ij} = 1$ if there is an edge between i and j, and $A_{ij} = 0$ otherwise. examples of adjacency matrices:

Given the following graph:

The adjacency matrix is:

$$\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{bmatrix}$$

Adjacency matrix for directed graphs: A $n \times n$ matrix A where $A_{ij} = 1$ if there is an edge from i to j, and $A_{ij} = 0$ otherwise.

examples of adjacency matrices for directed graphs: Given the following graph:

The adjacency matrix is:

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Adjacency list: A list of lists, where the ith list contains the neighbours of vertex i. Given the following graph:

The adjacency list is:

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 \\ 0 & 1 & 3 \\ 0 & 2 \end{bmatrix}$$

Adjacency list for directed graphs: A list of lists, where the ith list contains the neighbours of vertex i. Given the following graph:

The adjacency list is:

$$\begin{bmatrix} 1 & 2 \\ 2 \\ 3 \\ 0 \end{bmatrix}$$

Adjacency matrix vs adjacency list:

Adjacency matrix	Adjacency list
O(1) to check if there is an edge between i and j	O(min(deg(i), deg(j))) to check if there is an edge between i and j
O(n) to find the neighbours of i	O(deg(j)) to find the neighbours of i
$O(n^2)$ space	O(n+m) space

3.2 Depth-first search

Depth-first search: A graph search algorithm that explores the neighbours of a vertex before exploring the neighbours of its neighbours.

example of depth-first search:

The depth-first search sequence is:

0, 1, 2, 3, 5, 4

Depth-first search algorithm:

Algorithm 5 Depth-first search algorithm

```
1: procedure DFS(G, v)
         for e \in V do
2:
             \quad \textbf{if} \ e \ \text{is unexplored then} \\
3:
                  u = \text{head of } e
 4:
                  if u is unexplored then
 5:
                      e is a tree edge
 6:
                      DFS(G, u)
 7:
                  else
 8:
                      e is a back edge
9:
                  end if
10:
             end if
11:
         end for
12:
13: end procedure
```

Running time of depth-first search: O(n+m)

3.3 Breadth-first search

Breadth-first search: A graph search algorithm that explores the neighbours of a vertex before exploring the neighbours of its neighbours.

exaqmple of breadth-first search:

The breadth-first search sequence starting from vertex 0 is $0,\,1,\,2,\,3,\,4,\,5.$

Breadth-first search algorithm:

Algorithm 6 Breadth-first search algorithm

```
1: procedure BFS(G, s)
         initial empty list L
 3:
         L \leftarrow s
 4:
         i \leftarrow 0
         while L[i] \neq \emptyset do
 5:
             L_{i+1} \leftarrow emptylist
 6:
             for v \in L[i] do
 7:
                 for edges (e) incident to v do
 8:
                      if e is unexplored then
 9:
                          w \leftarrow the other end of e
10:
                          if w is unexplored then
11:
                               label e as a tree edge
12:
                               add w to L_{i+1}
13:
                          else
14:
15:
                               label e as a cross edge
16:
                          end if
                      end if
17:
                 end for
18:
             end for
19:
20:
             i \leftarrow i + 1
         end while
21:
22: end procedure
```

Running time of breadth-first search: O(n+m)

3.4 Strong Connectivity

Directed graph: A graph where the edges have a direction.

Examples:

DFS and BFS on directed graphs:

Very similar to undirected graphs, except that we only consider edges that go out of a vertex.

Running time is O(n+m)

For example graph above the DFS sequence is 0, 1, 2, 3.

The BFS sequence is 0, 1, 2, 3.

3.4.1 Connectivity

Weak connectivity: If we ignore the direction for all edges, there would be a pah from any vertex to any other vertex. Strong Connectivity: For every two nodes u and v, there is a path from u to v and a path from v to u.

3.4.2 Mutual Reachability

Two nodes u and v are mutually reachable if there is a path from u to v and a path from v to u.

Strong connectivity: For every pair of nodes u and v, these two nodes are mutually reachable.

Transitivity: If u is mutually reachable with v and v is mutually reachable with w, then u is mutually reachable with w.

3.4.3 Testing strong connectivity

```
Algorithm 7 Testing strong connectivity
```

```
1: procedure TESTSTRONGCONNECTIVITY(G)
       define G^R to be the graph with the same vertices as G but with all edges reversed
       Select a node s in G
3:
       BFS(G, s), BFS(G^R, s)
4:
       for each node v do
 5:
          if v is unexplored in either BFS then
              return False
 7:
           end if
8:
       end for
9:
10:
       return True
11: end procedure
```

3.5 Testing bipartiteness

Bipartite graph: A graph G = (V, E) is bipartite if any only if the vertices can be partitioned into two sets V_1 and V_2 such that every edge has one end in V_1 and the other end in V_2 .

A Graph G = (V, E) is bipartite if and only if it has no odd cycles.(odd cycle: a cycle with odd number of edges)

Testing bipartiteness:

```
Given a graph G = (V, E), we want to test if G is bipartite. Given a graph G = (V, E), decide if it is 2-colourable. Given a graph G = (V, E), decide if it has an odd cycle. Colouring the nodes It is quite familiar with BFS:
```

Algorithm 8 Colouring the nodes

```
1: procedure Colouring(G, s)
        initial empty list L
 3:
        initial empty list C
 4:
        L \leftarrow s
        C[s] \leftarrow red
 5:
        i \leftarrow 0
 6:
        while L[i] \neq \emptyset do
 7:
 8:
             L_{i+1} \leftarrow emptylist
             for v \in L[i] do
 9:
                 for edges (e) incident to v do
10:
                     if e is unexplored then
11:
                          w \leftarrow the other end of e
12:
                          if w is unexplored then
13:
                              label e as a tree edge
14:
15:
                              add w to L_{i+1}
16:
                              if i+1 is odd then
                                  C[w] \leftarrow green
17:
                              else
18:
                                  C[w] \leftarrow red
19:
20:
                              end if
                          else
21:
                              label e as a cross edge
22:
                              if C[v] = C[w] then
23:
                                   return False
24:
                              end if
25:
                          end if
26:
27:
                     end if
                 end for
28:
             end for
29:
             i \leftarrow i + 1
30:
31:
        end while
        for e(v, w) \in G do
32:
             if C[v] = C[w] then
33:
                 return False
34:
35:
             end if
        end for
36:
        return True
37:
38: end procedure
```

Running time of colouring the nodes: O(n+m)

Correctness of colouring the nodes:

Proof by contradiction.

Suppose that G is not bipartite.

Then G has an odd cycle.

Suppose to the contrary that the algorithm return True.

That means that the algorithm did not detect the odd cycle.

3.6 DAGs and Topological Ordering

DAG: A directed acyclic graph (DAG) is a directed graph with no directed cycles. examples of DAGs:

Topological ordering: Given a graph G = (V, E), a topological ordering of G is an ordering of the nodes u_1, u_2, \ldots, u_n such that for every edge (u_i, u_j) , we have i < j.

Intutively, a topological ordering is an ordering of the nodes such that every edge goes from left to right. example of topological ordering based on given graph above:

Topological ordering implies DAG:

- If G has a topological ordering, then G is a DAG.
- Suppose by contradiction that G has a topological ordering u_1, u_2, \ldots, u_n but G also has a cycle C.
- Let u_i be the smallest element of C in the topological ordering.
- Let u_i be its predecessor in C.
- u_i must appear before u_i in the topological ordering.
- This contradicts the fact that u_j is the smallest element of C in the topological ordering.

DAG implies topological ordering:

Proof by induction: Base case: If G has one or two nodes, then G has a topological ordering.

Induction steps: Assume that a DAG up to k nodes has a topological ordering(induction hypothesis). we will prove that a DAG with k+1 nodes has a topological ordering.

- By our lemma, there is at least one source node in G, and let u be the node.
- ullet Put u at the beginning of the topological ordering.
- ullet Consider the graph G', obtained by G by removing u and its incident edges.
- G' is a DAG with k nodes.
- It has a topological ordering u_1, u_2, \ldots, u_k by the induction hypothesis.
- Append this ordering to u to get a topological ordering of G.

Here is the algorithm:

Algorithm 9 Topological Sorting

- 1: **procedure** TopologicalSorting(G)
- 2: find a source vertex u
- 3: set u as the first element of the topological ordering
- 4: $G' \leftarrow G$ with u and its incident edges removed
- 5: $L \leftarrow \text{TopologicalSorting}(G')$
- 6: append L to u
- 7: end procedure

Running time of the algorithm is $O(n^2)$

Modified Topological Sorting:

Running time of the algorithm is O(n+m)

Algorithm 10 Modified Topological Sorting

```
1: procedure ModifiedTopologicalSorting(G)
        L \leftarrow emptylist
3:
        S \leftarrow \text{set of all source vertices}
       while S \neq \emptyset do
4:
 5:
           remove a vertex u from S
           append u to L
6:
           for each edge (u, v) do
7:
                remove edge (u, v) from G
8:
                if v is a source vertex then
9.
                    add v to S
10:
                end if
11:
            end for
12:
       end while
13:
       if G has edges then
14:
15:
            return G has a cycle
16:
            return L
17:
       end if
18:
19: end procedure
```

3.7 Finding strongly connected components

connected components: A connected component of an undirected graph is subgraph of the graph where any two nodes are connected by a path.

strongly connected components: A strongly connected component of a directed graph is a subgraph of the graph where any two nodes are mutually reachable. (mutually reachable: there is a path from u to v and a path from v to u)

Finding strongly connected components:

Kosaraju's algorithm:

Algorithm 11 Kosaraju's algorithm

```
1: procedure KOSARAJU(G)
2: Initialise stack S
3: Select a arbitrary node s
4: DFS_tree=DFS(G, s)
5: S \leftarrow nodes in DFS_tree
6: G^R \leftarrow nodes in order of S
7: DFS(G^R, s)
8: return the nodes in the DFS tree
9: end procedure
```

Running time of Kosaraju's algorithm: O(n+m)Correctness of Kosaraju's algorithm:

- Define a meta-graph of G, called $G^{SCC} = (V^{SCC}, E^{SCC})$.
- Supposed that G has strongly connected components (SCCs) C_1, C_2, \ldots, C_k , for some k.
- $V^{SCC} = \{C_1, C_2, \dots, C_k\}$ contains some of the SCCs of G.
- There is an edge (C_i, C_j) in E^{SCC} if G contains a directed edge (x, y) such that $x \in C_i$ and $y \in C_j$, crossing different components.

Examples:

The SCCs are $\{0,1,2,3\}$ and $\{4,5\}.$ The meta-graph is:

Greedy Algorithms

The greedy approach:

- The goal is to find a global solution to a problem.
- The solution will be built up in small consecutive steps.
- For each step, we choose the best option available to us at that moment.

4.1 Interval Scheduling

Interval Scheduling:

A set of requests $R = \{1, 2, \dots, n\}$.

- Each request i has a start time s_i and a finish time f_i .
- Alternative view: every request is an interval $[s_i, f_i]$.

Two requests i and j are compatible if $[s_i, f_i]$ and $[s_j, f_j]$ do not overlap.

Goal: Find a maximum-size subset of compatible requests.

Example:

Interval scheduling.

- Job j starts at s_j and finishes at f_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum subset of mutually compatible jobs.

Figure 4.1: Interval Scheduling

Interval Scheduling Algorithm:

Algorithm 12 Interval Scheduling Algorithm

```
1: procedure IntervalScheduling([s_1, f_1], [s_2, f_2], \dots, [s_n, f_n])
        R is the set of requests
2:
        A \leftarrow \emptyset
3.
        while R \neq \emptyset do
4:
            select a request i in R with the smallest finishing time
 5:
6:
 7:
            remove all requests from R that are incompatible with i
        end while
8:
9:
        return A
10: end procedure
```

Running time of Interval Scheduling Algorithm: $O(n \log n)$

Correctness of Interval Scheduling Algorithm: Since the algorithm always selects the request with the smallest finishing time, it is clear that the algorithm will always select a compatible request. **Arguing optimality**:

4.2 Minimum Spanning Trees

Consider a connected graph G = (V, E), such that each edge e = (v, w) of E, there is an associated cost c_e . **Goal**: Find a spanning tree T of E so that the graph G' = (V, T) has minimum cost. **Example**:

Greedy approach 1:

- Start with an empty set of edges T.
- ullet Repeat until T forms a spanning tree:
 - Select an edge e of minimum cost.
 - If $T \cup \{e\}$ does not contain a cycle, then add e to T.

krukals algorithm:

Algorithm 13 Krukals algorithm

```
1: procedure KRUKALS(G)
         T \leftarrow \emptyset
2:
3:
         while T is not a spanning tree do
             select an edge e of minimum cost
4:
             if T \cup \{e\} does not contain a cycle then
5:
                  \operatorname{add} e \operatorname{to} T
 6:
             end if
 7:
         end while
 8.
9.
         return T
10: end procedure
```

Running time of Krukals algorithm: $O(m \log n)$ Greedy approach 2:

- Start with an empty set of edges T.
- Start with a node s.
 - Add an edge e = (s, v) of minimum cost to T.
- Repeat until T forms a spanning tree:

Prims algorithm:

Algorithm 14 Prims algorithm

```
1: procedure PRIMS(G)
2: T \leftarrow \emptyset
3: s \leftarrow an arbitrary node
4: while T is not a spanning tree do
5: add an edge e = (s, v) of minimum cost to T
6: s \leftarrow v
7: end while
8: return T
9: end procedure
```

Running time of Prims algorithm: $O(m \log n)$ minimum spanning tree of example graph:

the minimum spanning tree sequence is d, a, c, b, e, f, h, g.

Greedy approach 3:

- Start with the full graph G = (V, E).
- Delete an edge from G
 - the edge of maximum cost
- Repeat until G forms a spanning tree:

Reverse-delete algorithm:

Algorithm 15 Reverse-delete algorithm

```
1: procedure REVERSEDELETE(G)
2: T \leftarrow G
3: while T is not a spanning tree do
4: delete an edge e of maximum cost from T
5: end while
6: return T
7: end procedure
```

For when two edges have the same cost, use distinct labels to distinguish them.

Optimal with Priorty Queue:

Add PQ to Prim's algorithm.

Algorithm 16 Optimal with Priorty Queue

```
1: procedure OPTIMAL(G)
        T \leftarrow \emptyset
 2:
        s \leftarrow \text{an arbitrary node}
 3:
 4:
        PQ \leftarrow empty priority queue
 5:
        for each node v do
            add v to PQ with key \infty
 6:
        end for
 7:
        decrease key of s to 0
 8:
        while PQ is not empty do
9:
            v \leftarrow \text{node} with minimum key in PQ
10:
            add an edge e = (s, v) of minimum cost to T
11:
12:
            for each edge e = (v, w) incident to v do
13:
                if w is in PQ then
14:
                    decrease key of w to c_e
15:
16:
                end if
            end for
17:
        end while
18:
19:
        return T
20: end procedure
```

Running time of Optimal with Priorty Queue: $O(m \log n)$

4.3 Clustering

- a collection of n objects
- they have different degrees of similarity
- we want to organise them into coherent groups
- there is a notion of distance between objects

Definition:

- Given a set U of n elements, a k-clustering of U is a partition of U into non-empty subsets C_1, C_2, \ldots, C_k .
- The spacing of a k-clustering is the minimum distance between any pair of points in different clusters.

Goal:Among all possible k-clusterings, find one with minimum spacing. **Example**:

Greedy approach:

- Pick two objects p_i and p_j with minimum distance $d(p_i, p_j)$.
- Connect them with an edge $e = (p_i, p_j)$.

- ullet Continue like this until we have k clusters.
- If the edge e under consideration connects two object p_i and p_j already in the same cluster, then discard e.

kruskals algorithm:

```
Algorithm 17 kruskals algorithm for clustering
```

```
Require: A graph G = (V, E)
Ensure: A minimum spanning tree of G with k clusters
 1: procedure KRUSKAL(G, k)
        T \leftarrow \emptyset
 2:
        C \leftarrow \{\{v\} \mid v \in V\}
                                                                                                                 ▶ Initial clusters
 3:
        Sort edges in E in increasing order of weight
 4:
        for \{u,v\} \in E do
 5:
            if C contains k clusters then
 6:
                break
 7:
            end if
 8:
            if clusters containing u and v are different in C then
 9:
                 T \leftarrow T \cup \{\{u,v\}\}
10:
                merge clusters containing u and v in C
11:
            end if
12:
13:
        end for
        \mathbf{return}\ T
14:
15: end procedure
```

For Given example, the result of divide them into 3 clusters is:

$$\{a,b,c,d\},\{e,f,h\},\{g\}$$

Dynamic Programming

The paradigm of dynamic programming: Given a problem P, define a sequence of subproblems, with the following properties:

- The subproblems are ordered from the simplest to the largest
- The largest problem is our original problem P
- The optimal solution of a subproblem can be structured from the optimal solutions of smaller subproblems.

Solve the subproblems from the smallest to the largest. When you solve a subproblem, store the solution and use it to solve larger subproblems.

5.1 Weighted Interval Scheduling

- A set of requests $R = \{1, 2, ..., n\}$.
 - Request i has a start time s_i and a finish time f_i , and a value v_i .
 - Alternative view: every request is an interval $[s_i, f_i]$ associated with a value v_i .
- Two requests i and j are compatible if $[s_i, f_i]$ and $[s_j, f_j]$ do not overlap.

build up a solution:

- 1. let O the optimal solution
- 2. O contains an optimal solution O' of the subproblem $R' = \{1, 2, \dots, i-1\}$
- 3. in order to find O, it suffices to look at smaller problems and find $O(1, 2, \dots, j)$ for some j
- 4. Let O_j be a shorthand for $O(1,2,\ldots,j)$ and let OPT(j) be its total value.
- 5. Define OPT(0) = 0
- 6. Then $O = O_n$ with value OPT(n)
- 7. OPT(j) can be computed from OPT(j-1)
- 8. $OPT(j) = \max\{OPT_{p_j} + v_j, OPT(j-1)\}$

Algorithm 18 ComputeOPT

```
1: procedure ComputeOPT(j)
2: if j=0 then
3: return 0
4: else
5: return \max\{\text{ComputeOPT}(p_j) + v(j), \text{ComputeOPT}(j-1)\}
6: end if
7: end procedure
```

```
Correctness: ComputeOPT(j) correctly computes OPT(j) for all j=0,1,\ldots,n. Proof by induction: 

Base case: OPT(0)=0 by definition. 

Inductive step: Assume that it is true for all i< j.(Induction hypothesis) return \max\{\operatorname{COMPUTEOPT}(p_j)+v(j),\operatorname{COMPUTEOPT}(j-1)\} 

Running time: \Omega(2^n) 

Memoization: 

• Compute ComputeOPT(j) for all j=0,1,\ldots,n. 

• Store it in an accessible place to use again later. 

• Keep an array M[0,\ldots,n]. 

– initially M[j]=\operatorname{EMPTY} for all j=0,1,\ldots,n. 

– when ComputeOPT(j) is called, M[j]=\operatorname{ComputeOPT}(j).
```

Algorithm 19 M-ComputeOPT

```
procedure M-COMPUTEOPT(j)

if j=0 then

return 0

else if M[j] is not empty then

return M[j]

else

M[j] \leftarrow \max\{\text{M-COMPUTEOPT}(p_j) + v(j), \text{M-COMPUTEOPT}(j-1)\}

return M[j]

end if

end procedure
```

Running time: $O(n \log n)$

Algorithm 20 Find-Solution

```
\begin{array}{l} \textbf{procedure} \; \mathsf{FIND\text{-}SOLUTION}(j) \\ & \textbf{if} \; j = 0 \; \textbf{then} \\ & \textbf{return} \; \emptyset \\ & \textbf{else} \\ & \textbf{if} \; \; \textbf{then} v(j) + \mathbf{M\text{-}COMPUTEOPT}(p_j) > \mathbf{M\text{-}COMPUTEOPT}(j-1) \\ & \textbf{return} \; \{j\} \cup \mathsf{FIND\text{-}SOLUTION}(p_j) \\ & \textbf{else} \\ & \textbf{return} \; \mathsf{FIND\text{-}SOLUTION}(j-1) \\ & \textbf{end} \; \textbf{if} \\ & \textbf{end} \; \textbf{if} \\ & \textbf{end} \; \textbf{procedure} \end{array}
```

Dynamic Programming vs Divide and Conquer:

Dynamic Programming:

- DP is an optimisation techniques and is only applicable to problems that have optimal substructure.
- DP splits the problem into parts, finds solutions to the parts and joins them. (The parts are not significantly smaller than the original problem and are overlapping.)
- In DP, the subproblems dependency can be represented by a directed acyclic graph.

Divide and Conquer:

- DC is not normally used for optimisation problems.
- DC splits the problem into parts, finds solutions to the parts and joins them. (The parts are significantly smaller than the original problem and are nonoverlapping.)
- In DC, the subproblems dependency can be represented by a tree.

5.2 Subset Sum

Problem Description:

- Given a set of n items $1, 2, \ldots, n$
- Each item i has a non-negative weight w_i .
- Given a bound W.
- Goal: select a subset S of items such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} w_i$ is maximised.

Dynamic Programming: To find the optimal value of OPT(n), we need

- the optimal value of OPT(n-1) if item n is not selected.
- the optimal value of the solution on input 1,2,...,n-1 with weight bound $W-w_n$.

subproblems:

- Assumptions:
 - W is an integer
 - Every w_i is an integer
- subproblem for each $i=0,1,\ldots,n$ and each integer $0 \le w \le W$.
- Let OPT(i, w) be the optimal value of the solution on subset $1, 2, \ldots, i$ with weight bound w.

Algorithm 21 SubsetSum

```
procedure SUBSETSUM(n,w)

Array M[0,\ldots,n,0,\ldots,W]

M[0,w]=0 for each w=0,1,\ldots,W

for i=1 to n do

for w=0 to W do

if w_i>w then

M[i,w]=M[i-1,w]
else
M[i,w]=\max\{M[i-1,w],M[i-1,w-w_i]+w_i\}
end if
end for
end for
return M[n,W]
end procedure
```

Running time: O(nW)

5.3 knapSack

Problem Description:

- Given a set of n items $1, 2, \ldots, n$
- Each item i has a non-negative weight w_i and a non-negative value v_i .
- ullet Given a bound W.
- Goal: select a subset S of items such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i$ is maximised.

the fractional knapsack problem:

- Given a set of n items $1, 2, \ldots, n$
- Each item i has a non-negative weight w_i and a non-negative value v_i .
- Given a bound W.
- Goal: select a fraction x_i of each item i such that $\sum_{i \in S} w_i x_i \leq W$ and $\sum_{i \in S} v_i x_i$ is maximised.

The 0/1 knapsack problem: Solution for 0/1 knapsack problem:

```
Algorithm 22 0/1 knapsack in dynamic programming
```

```
procedure 0/1 KNAPSACK(n,W)
Array M[0,\ldots,n,0,\ldots,W]
M[0,w]=0 for each w=0,1,\ldots,W
for i=1 to n do
for w=0 to W do
if w_i>w then
M[i,w]=M[i-1,w]
else
M[i,w]=\max\{M[i-1,w],M[i-1,w-w_i]+v_i\}
end if
end for
end for
return M[n,W]
```

Network Flow

6.1 Network Flow Definitions

Flow network: A flow network is a directed graph G = (V, E) with the following properties:

- Each edge $(u, v) \in E$ has a non-negative capacity c_e .
- There is a single source s in V.
- There is a single sink t in V.
- All other nodes in $V-\{s,t\}$ are called intermediate nodes.

example:

Further definitions:

- The source s has no incoming edges.
- The sink t has no outgoing edges.
- There is at least one edge incident to each node.
- All capacities are integers.

Flow: An (s-t) flow is a function $f: E \to \mathbb{R}^+$, mapping each edge e to a non-negative real number f(e). A feasible flow must satisfy the following conditions:

- Capacity: For each edge $e \in E$, $0 \le f(e) \le c_e$.
- Flow conservation: for each node $v \in V \{s,t\},$ we have

$$\sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e)$$

The source s generates flow, and the sink t absorbs flow.

Value of a flow f, denoted val(f), is the total amount of flow generated by the source s:

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

Generally, define $f^{out}(v)$ and $f^{in}(v)$ for the flow going out of(resp. going into) node v. Similarly, define $f^{out}(S)$ and $f^{in}(S)$ for sets of nodes S.

6.2 Maximum Flow Problem

The maximum flow problem: Given a flow network G = (V, E), find a flow of maximum possible value. algorithm for maximum flow:

Idea: push flow forward on edges with leftover capacity, push flow backward on edges that are already carrying flow. The residual graph G_f :

The residual graph G_f of G(also called the flow network) is defined as follows:

- The node set V_f of G_f is the same as the node set V.
- For each edge $(u, v) \in E$ which $f(e) < c_e$, there are $c_e f(e)$ "leftover" units of capacity.
 - We will call this number the **residual capacity** of edge e.
 - We will call the edge e a forward edge.
- For each edge $(u, v) \in E$ with f(e) > 0, there is an edge e' = (v, u) in E_f with a capacity of f(e). We will call the edge e' a backward edge.

Working with residual graphs:

- Find an (s-t) path P in G_f . This is called an **augmenting path**.
- Define the bottleneck of P,
 - Denoted bottleneck(P, f)
 - to be the minimum residual capacity of any edge in P.
- Define the augmentation of flow f into flow f'
 - Denoted $\operatorname{augment}(f, P)$.

Augmenting the flow:

Feasibility of capacity:

Algorithm 23 Augmenting the flow

```
1: procedure AUGMENT(f, P)
        b \leftarrow \text{bottleneck}(P, f)
2:
 3:
        for each edge e = (u, v) \in P do
            if e is a forward edge then
4:
                 f(e) \leftarrow f(e) + b
 5:
6:
                 f(e) \leftarrow f(e) - b
 7:
            end if
8:
        end for
9.
        return f
10:
11: end procedure
```

consider an arbitrary edge $e = (u, v) \in P$. Suppose that e is a forward edge.

$$0 \le f(e) \le f'(e) = f(e) + b \le f(e) + (c_e - f(e)) = c_e$$

Suppose that e is a backward edge.

$$c_e \ge f(e) \ge f'(e) = f(e) - b \ge f(e) - (f(e) - 0) = 0$$

The Ford-Fulkerson algorithm:

Algorithm 24 Max-flow algorithm

```
1: procedure MAX-FLOW(G, s, t)
2: f(e) \leftarrow 0 for all edges e \in E
3: while there exists an (s - t) path P in G_f do
4: f \leftarrow \operatorname{augment}(f, P)
5: f' \leftarrow \operatorname{update}(f)
6: G_f \leftarrow \operatorname{update}(G_f, f)
7: end while
8: return f
9: end procedure
```

Running time of Ford-Fulkerson algorithm: O(mC), where C is the maximum capacity of any edge in the network.

6.3 Min Cut theorem

A cut C is a partition of the nodes of G into two sets S and T such that $s \in S$ and $t \in T$.

The capacity of a cut C=(S,T) of a cut C is the sum of the capacities of the edges "out of" S: these are edges (u,v) such that $u \in S$ and $v \in T$.

The min-cut theorem: In every flow network, the value of the maximum flow is equal to the capacity of the minimum cut.

A series of facts:

Fact 1: Let f be any (s-t) flow and let (S,T) be any cut. Then $v(f)=f^{out}(S)-f^{in}(S)$.

- 1. By definition, $v(f) = f^{out}(s)$.
- 2. By definition $f^{in}(s) = 0$.
- 3. Hence, $v(f) = f^{out}(s) f^{in}(s)$.
- 4. For every other node $v \neq s, t$, we have $f^{out}(v) = f^{in}(v)$.
- 5. Therefore, $v(f) = \sum_{v \in S} (f^{out}(v) f^{in}(v))$.
- 6. rewrite as $v(f) = \sum_{v \in S} (f^{out}(v) f^{in}(v)) = \sum_{e \text{ out of } S} f(e) \sum_{e \text{ into } S} f(e) = f^{out}(S) f^{in}(S)$.

Fact 2: Let f be any (s-t) flow and let (S,T) be any (s-t) cut. Then $v(f) = f^{out}(T) - f^{in}(T)$.

Fact 3: Let f be any (s-t) flow and let (S,T) be any (s-t) cut. Then $v(f) \le c(S,T)$.

$$\begin{split} v(f) &= f^{out}(S) - f^{in}(S) \\ &\leq f^{out}(S) \\ &= \sum_{e \text{ out of } S} f(e) \\ &\leq \sum_{e \text{ out of } S} c(e) \\ &= c(S,T) \end{split}$$

Fact 4: Let f be any (s-t) flow in G such that the residual graph G_f contains no augmenting paths. Then there exists an (s-t) cut (S^*, T^*) such that $v(f) = c(S^*, T^*)$.

Proving fact 4: In the residual graph G_f , identify all nodes that are reachable from the source s. Let S^* be the set of these nodes, and let $T^* = V - S^*$.

```
1. s \in S^* and t \in T^*.
2. No edge of G_f crosses from S^* to T^*.
3. Every edge of G_f crosses from T^* to S^*.
4. f^{out}(S^*) = v(f).
5. f^{in}(S^*) = 0.
                                   v(f) = f^{out}(S^*) - f^{in}(S^*)
                                        = \sum_{e \text{ out of } S^*} f(e) - \sum_{e \text{ into } S^*} f(e)= \sum_{e \text{ out of } S^*} c(e) - 0
```

Fact 5: If all capacities are integers, then there exists a maximum flow f for which f(e) is an integer for every edge e.

 $= c(S^*, T^*)$

6.4 **Choosing Better Augmenting Paths**

The Edmonds-Karp algorithm:

```
Algorithm 25 Edmonds-Karp algorithm
```

```
1: procedure EDMONDS-KARP(G, s, t)
         f(e) \leftarrow 0 for all edges e \in E
         while there exists an (s-t) path P in G_f do
3:
             P is a shortest (s-t) path
4:
             f \leftarrow \operatorname{augment}(f, P)
 5:
             f' \leftarrow \text{update}(f)
6:
             G_f \leftarrow \operatorname{update}(G_f, f)
 7:
         end while
8:
9:
         return f
10: end procedure
```

Running time of Edmonds-Karp algorithm: $O(nm^2)$, where n is the number of nodes and m is the number of edges in the network.

The shortest path can be found in O(m) time using BFS.

6.5 **Modeling with Network Flows**

Bipartite graphs: A graph G = (V, E) is bipartite if any only if it can be partitioned into two sets A and B such that every edge has one endpoint in A and one endpoint in B.

Maximum bipartite matching:

Matching: A subset M of edges E such that each node $v \in V$ appears in at most one edge $e \in M$.

Maximum matching: A matching with maximum cardinality.

examples of bipartite graphs:

example of maximum bipartite matching:

exapmle of maximal bipartite matching:

From matchings to flows:

Maximum Flow and Maximum Matching

The size of the maximum matching is equal to the value of the maximum flow.

The edges of M are the edges that carry flow form A to B in the residual network.

Running time: O(mn)

Baseball Elimination

- Given a set S of teams
- For each team x in S, the current number of wins w_x
- For teams x and y in S, they still have to play g_{xy} games against each other
- ullet Given a designated team z
- Can z still win the turnament?

From Baseball Elimination to flows

- For each pair of teams x and y, create a vertex v_{xy}
- For each team x, create a vertex v_x
- For each pair of teams x and y, create an edge (s, v_{xy}) with capacity g_{xy}
- For each team x, create an edge (v_x, t) with capacity $w_z + g_{xz} w_x$
- For each pair of teams x and y, create an edge (v_{xy}, v_x) with infinite capacity
- For each pair of teams x and y, create an edge (v_{xy}, v_y) with infinite capacity

Open pit mining

- Given a set S of blocks
- For each block x in S, the value v_x of the ore in the block
- For each block x in S, the cost c_x of mining the block
- For each block x in S, the set N_x of blocks that are neighbors of x
- Given a designated block z
- What is the maximum value of ore that can be mined?

From open pit mining to flows

- For each block x in S, create a vertex v_x
- For each block x in S, create an edge (s, v_x) with capacity v_x
- For each block x in S, create an edge (v_x, t) with capacity c_x
- For each block x in S, create an edge (v_x, v_y) with infinite capacity for each block y in N_x

NP-Completeness

7.1 NP-Completeness

Polynomial time reduction

- Given a problem A to solve
- Reduce solving A to solving B
- Assume there is an algorithm ALG^B that solves B at cost O(1)
- Construct an algorithm ALG^A that solves A, which uses ALG^B as a subroutine
- If ALG^A runs in polynomial time, then this is a polynomial time reduction

How to work with reductions

Positive: Assume that I want to solve problem A and I know how to solve problem B.

I can try come up with a polynomial time reduction $A \leq^p B$, which will give me a polynomial time algorithm for A. Contrapositive: Assume that there is a problem A for which it is unlikely that there is a polynomial time algorithm that solves A.

If I come up with a polynomial time reduction $A \leq^p B$, it is also unlikely that there is a polynomial time algorithm that solves B.

B is "at least as hard to solve as" A, because if I could solve B, I could also solve A.

Types of reductions

- Turing reduction: $A \leq_T B$
 - A reduction which solves A using (potentially many) calls to an oracle for B
 - As known as Cook reduction
- Many-one reduction: $A \leq_m B$
 - A reduction which converts instances of A to instances of B
 - Also known as Karp reduction

Problem classification

Problems in P:

Searching, sorting, minimum spanning tree, graph traversal, maximum flow, minimum cut, weighted interval scheduling, etc.

Problems in NP:

subset sum, knapSack, weighted interval scheduling, Searching, sorting, minimum spanning tree, graph traversal, maximum flow, minimum cut, etc.

NP-hardness

A problem B is NP-hard if for every problem A in NP, $A \leq^p B$.

If every problem in NP is polynomial time reducible to B, then this captures the fact that B is at least as hard as any problem in NP.