Problem 1.

- 1. Since $A^2\mathbf{v} A\mathbf{v} = A\mathbf{v} \mathbf{v}$, we have $(A^2 2A + I)\mathbf{v} = (A I)^2\mathbf{v} = \mathbf{0}$. This implies that \mathbf{v} is a generalized eigenvector of A with eigenvalue $\lambda = 1$, because $\mathbf{v} \in N_2(A \lambda I) \subseteq N_\infty(A \lambda I)$.
- 2. A counter example is $A = \begin{bmatrix} \frac{1+\sqrt{5}}{2} \\ \frac{1-\sqrt{5}}{2} \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Since $A^2 = A + I$, we have $A^2\mathbf{x} = A\mathbf{x} + \mathbf{x}$ for all vectors \mathbf{x} , and thus each term in the sequence is the sum of the previous two. However, note that the x-axis and y-aixs are the two eigenspaces of A with distinct eigenvalues, therefore \mathbf{v} , in neither of which, is not a generalized eigenvector of A.

- 3. Suppose $a_i x^i$ is the last (in descending order) non-zero term of p(x). If p(x) is a generalized eigenvector of M, then $(x-1)^k p(x) = 0$ for some $k \in \mathbb{N}^*$. This implies that the last term of $(x-1)^k p(x)$ which is $a_i x^i$ is 0. Contradiction.
- 4. We claim that $\dim(\operatorname{Ker}(A^{k+1}) \operatorname{Ker}(A^k)) \leq \dim(\operatorname{Ker}(A^k) \operatorname{Ker}(A^{k-1}))$ for any $k \in \mathbb{N}^*$.

Proof: Each **v** in $\operatorname{Ker}(A^{k+1}) - \operatorname{Ker}(A^k)$ gives a vector A**v** in $\operatorname{Ker}(A^k) - \operatorname{Ker}(A^{k-1})$, and since **v** ∉ $\operatorname{Ker}(A^k)$, A**v** ≠ **0**, hence there are as many linear independent A**v**'s as linear independent **v**'s. Therefore $\operatorname{dim}(\operatorname{Ker}(A^k) - \operatorname{Ker}(A^{k-1}))$ is no less than $\operatorname{dim}(\operatorname{Ker}(A^{k+1}) - \operatorname{Ker}(A^k))$.

Accordingly, we have $\dim \operatorname{Ker}(A^k) \leq k \dim \operatorname{Ker}(A)$. If $A^5 = O$, then $\dim \operatorname{Ker}(A^5) = n$, and therefore $\dim \operatorname{Ker}(A) \geq \frac{n}{5}$.

5. We claim that for any $\mathbf{v} \in \text{Ran}(A)$, there exists a unique $\mathbf{w} \in \text{Ran}(A^{\mathrm{T}})$ s.t. $\mathbf{v} = A\mathbf{w}$. This implies that A is invertible between $\text{Ran}(A^{\mathrm{T}})$ and Ran(A).

Proof: If $\mathbf{v} \in \operatorname{Ran}(A)$, then there does exist a vector $\mathbf{w}' \in \mathbb{C}^n$ s.t. $\mathbf{v} = A\mathbf{w}'$. Since $\mathbb{C}^n = \operatorname{Ran}(A^{\mathrm{T}}) \oplus \operatorname{Ker}(A)$, we have the respective decomposition $\mathbf{w}' = \mathbf{w} + (\mathbf{w}' - \mathbf{w})$, and thus $\mathbf{v} = A\mathbf{w}$. On the other hand \mathbf{w} is unique, because if $\widetilde{\mathbf{w}}$ does the same thing, then $\widetilde{\mathbf{w}} - \mathbf{w} \in \operatorname{Ran}(A^{\mathrm{T}})$, and $A(\widetilde{\mathbf{w}} - \mathbf{w}) = \mathbf{v} - \mathbf{v} = \mathbf{0}$ i.e. $\widetilde{\mathbf{w}} - \mathbf{w} \in \operatorname{Ker}(A)$, producing $\widetilde{\mathbf{w}} - \mathbf{w} = \mathbf{0}$, so they are the same.

Similarly we conclude that A^{T} is invertible between Ran(A) and Ran(A^{T}). Hence AA^{T} is invertible on Ran(A). Let B be the inverse of AA^{T} on Ran(A) and zero otherwise (Moore-Penrose inverse), then $AA^{T}B = BAA^{T} = P$ where P is the projection to Ran(A).

Since $AA^{\mathrm{T}}AAA^{\mathrm{T}} = O$, for any $\mathbf{v} \in \mathbb{C}^n$,

$$\mathbf{0} = B(AA^{\mathrm{T}}AAA^{\mathrm{T}})BA\mathbf{v}$$

$$= (BAA^{\mathrm{T}})A(AA^{\mathrm{T}}B)A\mathbf{v}$$

$$= PAPA\mathbf{v}$$

$$= A^{2}\mathbf{v},$$

i.e. $A^2 = O$. According to the conclusion above, $2 \dim \operatorname{Ker}(A) \ge \dim \operatorname{Ker}(A^2) = n$, i.e. $\dim \operatorname{Ker}(A) \ge \frac{n}{2}$.

Problem 2.

1. When A, B are 2×2 matrices,

$$A \otimes B = \begin{bmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{bmatrix},$$

and

$$B\otimes A = \begin{bmatrix} a_{11}b_{11} & a_{12}b_{11} & a_{11}b_{12} & a_{12}b_{12} \\ a_{21}b_{11} & a_{22}b_{11} & a_{21}b_{12} & a_{22}b_{12} \\ a_{11}b_{21} & a_{12}b_{21} & a_{11}b_{22} & a_{12}b_{22} \\ a_{21}b_{21} & a_{22}b_{21} & a_{21}b_{22} & a_{22}b_{22} \end{bmatrix}.$$

Note that $B \otimes A$ is $A \otimes B$ permuting both the second and the third row and column, hence

$$P = P^{-1} = P_{23} = \begin{bmatrix} 1 & & & \\ & & 1 & \\ & 1 & & \\ & & & 1 \end{bmatrix}.$$

2. Since

$$A \otimes I = egin{bmatrix} a_{11} & a_{12} & & & & \\ & a_{11} & & a_{12} & & \\ a_{21} & & a_{22} & & & \\ & a_{21} & & a_{22} & & \end{bmatrix}$$

can be decomposed to two independent submaps $A_1 : \mathbf{v} \mapsto A\mathbf{v}$ where $\mathbf{v} \in \operatorname{Span}\{\mathbf{e}_1, \mathbf{e}_3\}$, and $A_2 : \mathbf{v} \mapsto A\mathbf{v}$ where $\mathbf{v} \in \operatorname{Span}\{\mathbf{e}_2, \mathbf{e}_4\}$, hence $e^{A \otimes I}$ is the direct sum of e^{A_1} and e^{A_2} , which is $e^A \otimes I$.

Similarly, $I \otimes B$ can be decomposed to submaps B_1 and B_2 on $\mathrm{Span}\{\mathbf{e}_1, \mathbf{e}_2\}$ and $\mathrm{Span}\{\mathbf{e}_3, \mathbf{e}_4\}$ respectively, and therefore $\mathrm{e}^{I \otimes B} = I \otimes \mathrm{e}^B$.

3. Since

$$(A \otimes I)(I \otimes B) = (AI) \otimes (IB) = A \otimes B,$$

and

$$(I \otimes B)(A \otimes I) = (IA) \otimes (BI) = A \otimes B,$$

 $A \otimes I$ and $I \otimes B$ commutes. Therefore

$$e^A \otimes e^B = (e^A I) \otimes (I e^B) = (e^A \otimes I)(I \otimes e^B) = e^{A \otimes I} e^{I \otimes B} = e^{A \otimes I + I \otimes B} = e^{A \oplus B}.$$

4.

$$\operatorname{tr}(A \oplus B) = \operatorname{tr} \begin{bmatrix} a_{11} + b_{11} & b_{12} & a_{12} \\ b_{21} & a_{11} + b_{22} & & a_{12} \\ a_{21} & a_{22} + b_{11} & b_{12} \\ & a_{21} & b_{21} & a_{22} + b_{22} \end{bmatrix}$$
$$= (a_{11} + a_{22})(b_{11} + b_{22})$$
$$= \operatorname{tr}(A) + \operatorname{tr}(B).$$

- 5. WLOG suppose A is Jordanized. For each Jordan block of A with eigenvalue $\lambda \neq 0$, there exists a $\mu \in \mathbb{C}$ s.t. $e^{\mu} = \lambda$. Consider the matrix X by replacing λ with μ for each Jordan block of A, then we have e^X agrees with A on every Jordan block, and thus $e^X = A$.
- 6. If both A and B are invertible then $A = e^X$ and $B = e^Y$ for some X, Y. Hence $A \otimes B = e^X \otimes e^Y = e^{X \oplus Y}$. Since $\det e^X = e^{\operatorname{tr}(X)}$,

$$\det(A \otimes B) = e^{\operatorname{tr}(X \oplus Y)} = e^{\operatorname{tr}(X) + \operatorname{tr}(Y)} = e^{\operatorname{tr}(X)} e^{\operatorname{tr}(Y)} = \det(A) \det(B).$$

This remains correct when A and/or B is not invertible as a result of continuity.

Problem 3.

1. An example is

$$A = \begin{bmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ & & 0 & 1 \\ & & -1 & 0 \end{bmatrix},$$

whose Jordan normal form is

$$J = B^{-1}AB = \begin{bmatrix} i & 1 & & \\ & i & & \\ & & -i & 1 \\ & & & -i \end{bmatrix},$$

under the basis

$$B = \begin{bmatrix} 1 & 0 & \mathbf{i} & 0 \\ \mathbf{i} & 0 & 1 & 0 \\ 0 & 1 & 0 & \mathbf{i} \\ 0 & \mathbf{i} & 0 & 1 \end{bmatrix}.$$

2. An example is

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix},$$

where we have

$$AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \neq BA = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

They are both in their JNF and they differ.

3. An example is

$$A = \begin{bmatrix} & i \\ -i & \end{bmatrix},$$

whose Jordan normal form is

$$J=B^{-1}AB=\begin{bmatrix}1&\\&-1\end{bmatrix},$$

under the basis

$$B = \begin{bmatrix} \mathbf{i} & \mathbf{1} \\ \mathbf{1} & \mathbf{i} \end{bmatrix}.$$

4. Suppose λ is an eigenvalue of A, then $e^{\lambda} = \lambda + 1$ i.e. $\lambda = 0$. Hence all eigenvalues of A are 0 so A is nilpotent, $A^4 = O$. Expand the analytic function e^A at 0 and we have $\sum_{n=0}^{\infty} \frac{1}{n!} A^n = A + I$, i.e.

$$O = \sum_{n=2}^{\infty} \frac{1}{n!} A^n = \frac{1}{2} A^2 + \frac{1}{6} A^3.$$

Since A is Jordan normal, this implies that $A^2 = O$, hence dimensions of Jordan blocks of A do not exceed 2. Therefore, all possible A's are

3

though the last three are in fact equivalent.

Problem 4.

1. Suppose $p(x) = (k_0, k_1, k_2, k_3)$ under the basis $(e_0, e_1, e_2, e_3) = (1, x, x^2, x^3)$. The multiple of q(x) will always have its first term the same as xp(x), which is k_3x^4 . Therefore, $(Mp)(x) = xp(x) - k_3q(x) = (-dk_3, k_0 - ck_3, k_1 - bk_3, k_2 - ak_3)$, i.e.

$$A = \begin{bmatrix} & & & -d \\ 1 & & & -c \\ & 1 & & -b \\ & & 1 & -a \end{bmatrix}.$$

2. According to the compatibility with addition and multiplication of modular arithmetic, if $a \equiv b \pmod{x}$ then $P(a) \equiv P(b) \pmod{x}$ for any polynomial P(x). Therefore since

$$(Mp)(x) \equiv xp(x) \pmod{q(x)},$$

we have

$$(P(M)p)(x) \equiv P(x)p(x) \pmod{q(x)}$$

for any polynomial P(x). And since $(P(M)p)(x) \in V$, it is the remainder itself. Let $P(x) = \mu(x)$ the minimal polynomial of A, then $\mu(M) = 0$, and we have

$$0=(\mu(M)p)(x)=\mu(x)p(x)\bmod q(x)$$

for any $p(x) \in V$. This happens if and only if $\mu(x)$ is a multiple of q(x), as well as a monic polynomial and of the lowest degree among all. Therefore $\mu(x) = q(x)$, and since its degree is 4 = n, it is the characteristic polynomial of A as well.

3. Note that $A^i e_0 = e_i$, thus $A^i e_j = A^{i+j} e_0 = A^j e_i$ (i, j = 0, 1, 2, 3). Since B commutes with A and therefore any power of A, the i-th (counting from 0) column of B is

$$Be_i = BA^i e_0 = A^i Be_0 = A^i \sum_{j=0}^3 B_{j0} e_j = \sum_{j=0}^3 B_{j0} A^i e_j = \sum_{j=0}^3 B_{j0} A^j e_i,$$

the same as that of $\sum_{j=0}^{3} B_{j0}A^{j}$. Hence $B = \sum_{j=0}^{3} B_{j0}A^{j}$, which is a polynomial function of A.

- 4. Because the minimal polynomial of A coincides with its characteristic polynomial $(\mu(x) = \chi(x) = q(x))$, the Jordan normal form of A has no Jordan blocks sharing a common eigenvalue. Therefore we get the JNF straight from $\chi(x)$, which results in diag(0,1,2,3).
- 5. Similarly, the JNF is

$$\begin{bmatrix} 0 & 1 & & & \\ & 0 & & & \\ & & 1 & & \\ & & & 2 \end{bmatrix}.$$

Problem 5.

- 1. For any orthogonal matrix A, $AA^{T} = I$, hence $-(A-I)(A^{T}-I) = -AA^{T} + A + A^{T} I = A + A^{T} 2I$.
- 2. Since $f(0) = f(0)^{T} = I$, according to the conclusion above,

$$\lim_{t \to 0} \frac{-(f(t) - I)(f(t)^{\mathrm{T}} - I)}{t} = \lim_{t \to 0} \frac{f(t) + f(t)^{\mathrm{T}} - 2I}{t}$$

$$= \lim_{t \to 0} \frac{f(t) - f(0)}{t} + \lim_{t \to 0} \frac{f(t)^{\mathrm{T}} - f(0)^{\mathrm{T}}}{t}$$

$$= f'(0) + f'(0)^{\mathrm{T}}.$$

3. Note that

$$\lim_{t \to 0} \frac{-(f(t) - I)(f(t)^{\mathrm{T}} - I)}{t} = -\lim_{t \to 0} \left(\frac{f(t) - f(0)}{t} \cdot \frac{f(t)^{\mathrm{T}} - f(0)^{\mathrm{T}}}{t} \cdot t \right)$$
$$= -f'(0)f'(0)^{\mathrm{T}} \lim_{t \to 0} t$$
$$= O,$$

hence compare with the equation in the last subproblem and we have $f'(0) + f'(0)^{T} = O$, i.e. f'(0) is skew-symmetric.

4. Since $f(t) \in SO_n$,

$$I = f(t)f(t)^{\mathrm{T}}.$$

Take the derivative of t to both sides of the equation and

$$O = f'(t)f(t)^{T} + f(t)f'(t)^{T}$$

= $f'(t)f(t)^{T} + (f'(t)f(t)^{T})^{T}$
= $f'(t)f(t)^{-1} + (f'(t)f(t)^{-1})^{T}$,

i.e. $f'(t)f(t)^{-1}$ is skew-symmetric.

5. Since $f'(t)f(t)^{-1} = A$, f'(t) = Af(t). Note that this is a first-order homogeneous differential equation and e^{At} is a solution to it, so the general solution is $e^{At}B$ where B is a constant depending on initial conditions. When t = 0, $f(0) = B \in SO_n$.