Chapter 7: Reading Delimited Raw Data Files

7.1 Using Standard Delimited Data as Input 7.2 Using Nonstandard Delimited Data as Input

Objectives

- Use the DATA step to create a SAS data set from a delimited raw data file.
- Examine the compilation and execution phases of the DATA step when reading a raw data file.
- Explicitly define the length of a variable by using the LENGTH statement.

An existing data source contains information on Orion Star sales employees from Australia and the United States.

A new SAS data set needs to be created that contains a subset of this existing data source.

This new SAS data set must contain the following:

- only the employees from Australia who are Sales Representatives
- the employee's first name, last name, salary, job title, and hired date
- labels and formats in the descriptor portion

Reading SAS **Data Sets** Reading Excel Worksheets **Reading Delimited** Raw Data Files

libname_____; data _____; Reading SAS set _____; **Data Sets** run; libname _____ data _____; Reading Excel set _____: Worksheets run; data _____; infile _____; Reading Delimited input _____; Raw Data Files run;

sales.csv

Partial sales.csv

comma delimited

120102, Tom, Zhou, M, 108255, Sales Manager, AU, 11AUG1969, 00/01/1903 120103, Wilson, Dawes, M, 87975, Sales Manager, AU, 22JAN1949, 01/01/1974 120121, Irenie, Elvish, F, 26600, Sales Rep. II, AU, 02AUG1944, 01/01/1974 120122, Christina, Ngan, F, 27475, Sales Rep. II, AU, 27JUL 1954, 07/01/1978 120123, Kimiko, Hotstone, F., 26190, Sales Rep. I, AU, 28SEP1964, 10/01/1985 120124, Lucian, Daymond, M, 26480, Sales Rep. I, AU, 13MAY1959, 03/01/1979 120125, Fong, Hofmeister, M, 32040, Sales Rep. IV, AU, 06DEC1954, 03/01/1979 120126, Satyakam, Denny, M. 26780, Sales Rep. II, AU, 20SEP1988, 08/01/2006 120127, Sharryn, Clarkson, F, 28100, Sales Rep. II, AU, 04JAN1979, 11/01/1998 120128, Monica, Kletschkus, F, 30890, Sales Rep. IV, AU, 14JUL 1986, 11/01/2006 120129, Alvin, Roebuck, M, 30070, Sales Rep. III, AU, 22NOV1964, 10/01/1985 120130, Kevin, Lyon, M, 26955, Sales Rep. I, AU, 14DEC1984, 05/01/2006 120131, Marinus, Surawski, M, 26910, Sales Rep. I, AU, 25SEP1979, 01/01/2003 120132, Fancine, Kaiser, F, 28525, Sales Rep. III, AU, 05APR1949, 10/01/1978 120133, Petrea, Soltau, F, 27440, Sales Rep. II, AU, 22APR1986, 10/01/2006 120134, Sian, Shannan, M. 28015, Sales Rep. II, AU, 06JUN1949, 01/01/1974 120135, Alexei, Platts, M, 32490, Sales Rep. IV, AU, 26JAN1969, 10/01/1997

Business Scenario Syntax

Use the following statements to complete the scenario:

```
DATA output-SAS-data-set;

LENGTH variable(s) $ length;

INFILE 'raw-data-file-name';

INPUT specifications;

KEEP variable-list;

LABEL variable = 'label'

variable = 'label';

rormat;

FORMAT variable(s) format;

RUN;
```

The DATA Statement (Review)

The *DATA statement* begins a DATA step and provides the name of the SAS data set being created.

```
INFILE 'raw-data-file-name';
INPUT specifications;
<additional SAS statements>
RUN;
```

The DATA statement can create temporary or permanent data sets.

The INFILE Statement

The INFILE statement identifies the physical name of the raw data file to read with an INPUT statement.

```
DATA output-SAS-data-set;
INFILE 'raw-data-file-name';
INPUT specifications;
<additional SAS statements>
RUN;
```

The physical name is the name that the operating environment uses to access the file.

The INFILE Statement

Examples:

```
Windows infile 's:\workshop\sales.csv';

UNIX infile '/users/userid/sales.csv';

z/OS
(OS/390) infile '.workshop.rawdata(sales)';
```

The INPUT Statement

The *INPUT statement* describes the arrangement of values in the raw data file and assigns input values to the corresponding SAS variables.

```
DATA output-SAS-data-set;
INFILE 'raw-data-file-name';
INPUT specifications;
<additional SAS statements>
RUN;
```

The following are input specifications:

- column input
- formatted input
- list input

7.01 Multiple Answer Poll

Which types of raw data files do you read?

- a. delimited raw data files
- b. raw data files aligned in columns
- c. other
- d. none
- e. not sure

List Input

To read with list input, data values

- must be separated with a delimiter
- can be in standard or nonstandard form.

Partial sales.csv

120102, Tom, Zhou, M, 108255, Sales Manager, AU, 11AUG1969, 06/01/1989
120103, Wilson, Dawes, M, 87975, Sales Manager, AU, 22JAN1949, 01/01/1974
120121, Irenie, Elvish, F, 26600, Sales Rep. II, AU, 02AUG1944, 01/01/1974
120122, Christina, Ngan, F, 27475, Sales Rep. II, AU, 27JUL1954, 07/01/1978
120123, Kimiko, Hotstone, F, 26190, Sales Rep. I, AU, 28SEP1964, 10/01/1985
120124, Lucian, Daymond, M, 26480, Sales Rep. I, AU, 13MAY1959, 03/01/1979
120125, Fong, Hofmeister, M, 32040, Sales Rep. IV, AU, 06DEC1954, 03/01/1979
120126, Satyakam, Denny, M, 26780, Sales Rep. II, AU, 20SEP1988, 08/01/2006
120127, Sharryn, Clarkson, F, 28100, Sales Rep. II, AU, 04JAN1979, 11/01/1998

Delimiter

A space (blank) is the default delimiter.

The *DLM= option* can be added to the INFILE statement to specify an alternate delimiter.

```
DATA output-SAS-data-set;
INFILE 'raw-data-file-name' DLM='delimiter';
INPUT specifications;
<additional SAS statements>
RUN;
```

Standard and Nonstandard Data

 Standard data is data that SAS can read without any special instructions.

Examples of standard numeric data:

58 -23 67.23 00.99 5.67E5 1.2E-2

 Nonstandard data is any data that SAS cannot read without a special instruction.

Examples of nonstandard numeric data:

5,823 (23) \$67.23 01/12/1999 12MAY2006

List Input for Standard Data

List input specification:

INPUT variable <\$>;

- Variables must be specified in the order that they appear in the raw data file, left to right.
- \$ indicates to store a variable value as a character value rather than as a numeric value.
- The default length for character and numeric variables is eight bytes.

List Input for Standard Data

Partial sales.csv

120102, Tom, Zhou, M, 108255, Sales Manager, AU, 11AUG1969, 06/01/1989
120103, Wilson, Dawes, M, 87975, Sales Manager, AU, 22JAN1949, 01/01/1974
120121, Irenie, Elvish, F, 26600, Sales Rep. II, AU, 02AUG1944, 01/01/1974
120122, Christina, Ngan, F, 27475, Sales Rep. II, AU, 27JUL1954, 07/01/1978
120123, Kimiko, Hotstone, F, 26190, Sales Rep. I, AU, 28SEP1964, 10/01/1985
120124, Lucian, Daymond, M, 26480, Sales Rep. I, AU, 13MAY1959, 03/01/1979
120125, Fong, Hofmeister, M, 32040, Sales Rep. IV, AU, 06DEC1954, 03/01/1979
120126, Satyakam, Denny, M, 26780, Sales Rep. II, AU, 20SEP1988, 08/01/2006
120127, Sharryn, Clarkson, F, 28100, Sales Rep. II, AU, 04JAN1979, 11/01/1998

input Employee_ID First_Name \$ Last_Name \$
Gender \$ Salary Job_Title \$ Country \$;

Create a temporary SAS data set named Work.subset3 from the delimited raw data file named sales.csv.

```
data work.subset3;
    infile 'sales.csv' dlm=',';
    input Employee_ID First_Name $ Last_Name $
        Gender $ Salary Job_Title $ Country $;
run;
```

```
281
     data work.subset3;
282
        infile 'sales.csv' dlm=',';
283
        input Employee ID First Name $ Last Name $
284
              Gender $ Salary Job_Title $ Country $;
285
    run;
NOTE: The infile 'sales.csv' is:
      File Name=S:\Workshop\sales.csv,
      RECFM=V, LRECL=256
NOTE: 165 records were read from the infile 'sales.csv'.
      The minimum record length was 61.
      The maximum record length was 80.
NOTE: The data set WORK.SUBSET3 has 165 observations and 7 variables.
```

```
proc print data=work.subset3;
run;
```

Partial PROC PRINT Output

	Employee_	First_	Last_			Job_	
0bs	ID _	Name _	Name_	Gender	Salary	Title	Country
1	120102	Tom	Zhou	M	108255	Sales Ma	AU
2	120103	Wilson	Dawes	М	87975	Sales Ma	AU
3	120121	Irenie	Elvish	F	26600	Sales Re	AU
4	120122	Christin	Ngan	F	27475	Sales Re	AU
5	120123	Kimiko	Hotstone	F	26190	Sales Re	AU
6	120124	Lucian	Daymond	М	26480	Sales Re	AU
7	120125	Fong	Hofmeist	M	32040	Sales Re	AU
8	120126	Satyakam	Denny	M	26780	Sales Re	AU
9	120127	Sharryn	Clarkson	F	28100	Sales Re	AU
10	120128	Monica	Kletschk	F	30890	Sales Re	AU
11	120129	Alvin	Roebuck	M	30070	Sales Re	AU
12	120130	Kevin	Lyon	M	26955	Sales Re	AU

DATA Step Processing

The DATA step is processed in two phases:

- compilation
- execution

During the compilation phase, SAS

- checks the syntax of the DATA step statements
- creates an input buffer to hold the current raw data file record that is being processed
- creates a program data vector (PDV) to hold the current SAS observation
- creates the descriptor portion of the output data set.

```
data work.subset3;
  infile 'sales.csv' dlm=',';
  input Employee_ID First_Name $ Last_Name $
    Gender $ Salary Job_Title $ Country $;
run;
```

```
data work.subset3;
    infile 'sales.csv' dlm=',';
    input Employee_ID First_Name $ Last_Name $
        Gender $ Salary Job_Title $ Country $;
run;
```

In	pu	t E	3u	ffe	r				1										2						
1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	

```
data work.subset3;
    infile 'sales.csv' dlm=',';
    input Employee_ID First_Name $ Last_Name $
        Gender $ Salary Job_Title $ Country $;
run;
```

lr	η	ou	t E	3u	ffe	r				1										2						
	L	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	

PDV

The default length for numeric variables is eight bytes.

```
data work.subset3;
    infile 'sales.csv' dlm=',';
    input Employee_ID First_Name $ Last_Name $
        Gender $ Salary Job_Title $ Country $;
run;
```

lr	η	ou	t E	3u	ffe	r				1										2						
	L	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	

PDV

Employee	First_
_ID	Name
N 8	\$ 8

For list input, the default length for character variables is eight bytes.

```
data work.subset3;
   infile 'sales.csv' dlm=',';
   input Employee_ID First_Name $ Last_Name $
        Gender $ Salary Job_Title $ Country $;
run;
```

In	pu	t E	3u	ffe	r				1										2						
1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8

```
data work.subset3;
    infile 'sales.csv' dlm=',';
    input Employee_ID First_Name $ Last_Name $
        Gender $ Salary Job_Title $ Country $;
    run;
```

Descriptor Portion Work.subset3

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8

7.02 Multiple Choice Poll

Which statement is true?

- a. An input buffer is only created if you are reading data from a raw data file.
- b. The PDV at compile time holds the variable name, type, byte size, and initial value.
- c. The descriptor portion is the first item that is created at compile time.

Partial sales.csv

```
120102, Tom, Zhou, ...
120103, Wilson, Dawes, ...
120121, Irenie, Elvish, ...
120122, Christina, Ngan, ...
120123, Kimiko, Hotstone, ...
120124, Lucian, Daymond, ...
120125, Fong, Hofmeister, ...
```

In	pu	t E	3u	ffe	r				1										2					
1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
•				•		

Partial sales.csv

```
120102, Tom, Zhou, ...

120103, Wilson, Dawes, ...

120121, Irenie, Elvish, ...

120122, Christina, Ngan, ...

120123, Kimiko, Hotstone, ...

120124, Lucian, Daymond, ...

120125, Fong, Hofmeister, ...
```

```
data work.subset3;
  infile 'sales.csv' dlm=',';
  input Employee_ID First_Name $
    Last_Name $ Gender $
    Salary Job_Title $
    Country $;
run;
```

n	pu	t E	3u	ffe	r				1										2					
1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
•				•		

Partial sales.csv

```
120102, Tom, Zhou, ...
120103, Wilson, Dawes, ...
120121, Irenie, Elvish, ...
120122, Christina, Ngan, ...
120123, Kimiko, Hotstone, ...
120124, Lucian, Daymond, ...
120125, Fong, Hofmeister, ...
```

```
data work.subset3;
  infile 'sales.csv' dlm=',';
  input Employee_ID First_Name $
    Last_Name $ Gender $
    Salary Job_Title $
    Country $;
run;
```

```
Input Buffer 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 2 0 1 0 2 , T o m , Z h o u , M , 1 0 8 2 5 5 ,
```

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
				•		

Partial sales.csv

```
120102, Tom, Zhou, ...
120103, Wilson, Dawes, ...
120121, Irenie, Elvish, ...
120122, Christina, Ngan, ...
120123, Kimiko, Hotstone, ...
120124, Lucian, Daymond, ...
120125, Fong, Hofmeister, ...
```

```
data work.subset3;
  infile 'sales.csv' dlm=',';
  input Employee_ID First_Name $
    Last_Name $ Gender $
    Salary Job_Title $
    Country $;
run;
```

```
Input Buffer 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 2 0 1 0 2 , T o m , Z h o u , M , 1 0 8 2 5 5 ,
```

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
120102	Tom	Zhou	M	108255	Sales Ma	AU

Partial sales.csv

```
120102, Tom, Zhou, ...

120103, Wilson, Dawes, ...

120121, Irenie, Elvish, ...

120122, Christina, Ngan, ...

120123, Kimiko, Hotstone, ...

120124, Lucian, Daymond, ...

120125, Fong, Hofmeister, ...
```

```
data work.subset3;
  infile 'sales.csv' dlm=',';
  input Employee_ID First_Name $
    Last_Name $ Gender $
    Salary Job_Title $
    Country $;
    run;
    Implicit OUTPUT;
```

Implicit RETURN;

Input Buffer

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 2 0 1 0 2 , T o m , Z h o u , M , 1 0 8 2 5 5 ,

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
120102	Tom	Zhou	M	108255	Sales Ma	AU

Output SAS Data Set after First Iteration of DATA Step

Work.subset3

EmployeeID	First_ Name	Last _Name	Gender	Salary	Job_ Title	Country
120102	Tom	Zhou	M	108255	Sales Ma	AU

Partial sales.csv

```
120102, Tom, Zhou, ...

120103, Wilson, Dawes, ...

120121, Irenie, Elvish, ...

120122, Christina, Ngan, ...

120123, Kimiko, Hotstone, ...

120124, Lucian, Daymond, ...

120125, Fong, Hofmeister, ...
```

```
infile 's
infile 's
input Emp Reinitialize PDV me $
Last ______;
Salary Job_Title $
Country $;
run;
```

```
Input Buffer 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 2 0 1 0 2 , T o m , Z h o u , M , 1 0 8 2 5 5 ,
```

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
•				•		

Partial sales.csv

```
120102, Tom, Zhou, ...

120103, Wilson, Dawes, ...

120121, Irenie, Elvish, ...

120122, Christina, Ngan, ...

120123, Kimiko, Hotstone, ...

120124, Lucian, Daymond, ...

120125, Fong, Hofmeister, ...
```

```
data work.subset3;
  infile 'sales.csv' dlm=',';
  input Employee_ID First_Name $
    Last_Name $ Gender $
    Salary Job_Title $
    Country $;
run;
```

```
Input Buffer 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 2 0 1 0 2 , T o m , Z h o u , M , 1 0 8 2 5 5 ,
```

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
•				•		

Partial sales.csv

```
120102, Tom, Zhou, ...
120103, Wilson, Dawes, ...
120121, Irenie, Elvish, ...
120122, Christina, Ngan, ...
120123, Kimiko, Hotstone, ...
120124, Lucian, Daymond, ...
120125, Fong, Hofmeister, ...
```

```
data work.subset3;
  infile 'sales.csv' dlm=',';
  input Employee_ID First_Name $
    Last_Name $ Gender $
    Salary Job_Title $
    Country $;
run;
```

```
Input Buffer 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 2 0 1 0 3 , W i 1 s o n , D a w e s , M , 8 7 9
```

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
•				•		

Partial sales.csv

```
120102, Tom, Zhou, ...

120103, Wilson, Dawes, ...

120121, Irenie, Elvish, ...

120122, Christina, Ngan, ...

120123, Kimiko, Hotstone, ...

120124, Lucian, Daymond, ...

120125, Fong, Hofmeister, ...
```

```
data work.subset3;
  infile 'sales.csv' dlm=',';
  input Employee_ID First_Name $
    Last_Name $ Gender $
    Salary Job_Title $
    Country $;
run;
```

```
Input Buffer 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 2 0 1 0 3 , W i 1 s o n , D a w e s , M , 8 7 9
```

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
120103	Wilson	Dawes	M	87975	Sales Ma	AU

Partial sales.csv

```
120102, Tom, Zhou, ...

120103, Wilson, Dawes, ...

120121, Irenie, Elvish, ...

120122, Christina, Ngan, ...

120123, Kimiko, Hotstone, ...

120124, Lucian, Daymond, ...

120125, Fong, Hofmeister, ...
```

```
data work.subset3;
  infile 'sales.csv' dlm=',';
  input Employee_ID First_Name $
    Last_Name $ Gender $
    Salary Job_Title $
    Country $;
    run;
    Implicit OUTPUT;
```

Implicit RETURN;

Input Buffer

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 2 0 1 0 3 , W i 1 s o n , D a w e s , M , 8 7 9

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
120103	Wilson	Dawes	M	87975	Sales Ma	AU

Output SAS Data Set after Second Iteration of DATA Step

Work.subset3

Employee _ID	First_ Name	Last _Name	Gender	Salary	Job_ Title	Country
120102	Tom	Zhou	M	108255	Sales Ma	AU
120103	Wilson	Dawes	М	87975	Sales Ma	AU

Partial sales.csv

```
120102, Tom, Zhou, ...

120103, Wilson, Dawes, ...

120121, Irenie, Elvish, ...

120122, Christina, Ngan, ...

120123, Kimiko, Hotstone, ...

120124, Lucian, Daymond, ...

120125, Fong, Hofmeister, ...
```

```
Continue until EOF

INTITE Sales.csv dlm=',';
input Employee_ID First_Name $
    Last_Name $ Gender $
    Salary Job_Title $
    Country $;
run;
```

```
Input Buffer 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 1 2 0 1 0 3 , W i 1 s o n , D a w e s , M , 8 7 9
```

PDV

Employee _ID N 8	First_ Name \$ 8	Last _Name \$ 8	Gender \$ 8	Salary N 8	Job_ Title \$ 8	Country \$ 8
120103	Wilson	Dawes	M	87975	Sales Ma	AU

7.03 Multiple Choice Poll

Which statement is true?

- a. Data is read directly from the raw data file to the PDV.
- b. At the bottom of the DATA step, the contents of the PDV are output to the output SAS data set.
- c. When SAS returns to the top of the DATA step, any variable coming from a SAS data set is set to missing.

The LENGTH Statement

The *LENGTH statement* defines the length of a variable explicitly.

General form of the LENGTH statement:

LENGTH *variable(s)* \$ *length*;

Example:

```
length First_Name Last_Name $ 12
Gender $ 1;
```

Business Scenario

Create a temporary SAS data set named **Work.subset3** from the delimited raw data file named **sales.csv**.

Business Scenario

```
proc print data=work.subset3;
run;
```

Partial PROC PRINT Output

	First					Employee	
0bs	Name _	Last_Name	Gender	Job_Title	Country	ID	Salary
1	Tom	Zhou	M	Sales Manager	AU	120102	108255
2	Wilson	Dawes	M	Sales Manager	AU	120103	87975
3	Irenie	Elvish	F	Sales Rep. II	AU	120121	26600
4	Christina	Ngan	F	Sales Rep. II	AU	120122	27475
5	Kimiko	Hotstone	F	Sales Rep. I	AU	120123	26190
6	Lucian	Daymond	M	Sales Rep. I	AU	120124	26480
7	Fong	Hofmeister	M	Sales Rep. IV	AU	120125	32040
8	Satyakam	Denny	M	Sales Rep. II	AU	120126	26780
9	Sharryn	Clarkson	F	Sales Rep. II	AU	120127	28100
10	Monica	Kletschkus	F	Sales Rep. IV	AU	120128	30890
11	Alvin	Roebuck	M	Sales Rep. III	AU	120129	30070
12	Kevin	Lyon	M	Sales Rep. I	AU	120130	26955

Compilation

PDV

First _Name \$ 12	Last _Name \$ 18	Gender \$ 1	Job_Title \$ 25	Country \$ 2

Compilation

PDV

First _Name \$ 12	Last _Name \$ 18	Gender \$ 1	Job_Title \$ 25	Country \$ 2	Employee _ID N 8	Salary N 8

Chapter 7: Reading Delimited Raw Data Files

7.1 Using Standard Delimited Data as Input 7.2 Using Nonstandard Delimited Data as Input

Objectives

- Use informats to read nonstandard data.
- Add additional SAS statements to perform further processing in the DATA step.
- Use the DSD option with list input to read consecutive delimiters as missing values.
- Use the MISSOVER option to recognize missing values at the end of a record (Self-Study).

Standard and Nonstandard Data

 Standard data is data that SAS can read without any special instructions.

Examples of standard numeric data:

58 -23 67.23 00.99 5.67E5 1.2E-2

Examples of nonstandard numeric data:

5,823 (23) \$67.23 01/12/1999 12MAY2006

List Input for Nonstandard Data

List input specification:

```
INPUT variable <$> variable < :informat >;
```

- The : format modifier enables you to use an informat to read nonstandard delimited data.
- An informat is an instruction that SAS uses to read data values into a variable.
- The width of the informat can be eliminated.
- For character variables, the width of the informat determines the variable length, if it has not been previously defined.

SAS informats have the following form:

\$	indicates a character informat.
informat	names the SAS informat or user-defined informat.
W	specifies the number of columns to read in the input data.
•	is a required delimiter.
d	specifies an optional decimal scaling factor in the numeric informats.

Selected SAS Informats:

Informat	Definition
\$ <i>w</i> .	reads standard character data.
w.d	reads standard numeric data.
COMMA <i>w.d</i> DOLLAR <i>w.d</i>	reads nonstandard numeric data and removes embedded commas, blanks, dollar signs, percent signs, and dashes.
COMMAXw.d DOLLARXw.d	reads nonstandard numeric data and removes embedded periods, blanks, dollar signs, percent signs, and dashes.
EUROXw.d	reads nonstandard numeric data and removes embedded characters in European currency.

In list input, informats are used to convert nonstandard numeric data to SAS numeric values.

Informat	Raw Data Value	SAS Data Value
COMMA. DOLLAR.	\$12,345	12345
COMMAX. DOLLARX.	\$12.345	12345
EUROX.	€12.345	12345

SAS uses date informats to read and convert dates to SAS date values.

Informat	Raw Data Value	SAS Data Value
MMDDYY.	010160 01/01/60 01/01/1960	0
DDMMYY.	311260 31/12/60 31/12/1960	365
DATE.	31DEC59 31DEC1959	-1

List Input for Nonstandard Data

Partial sales.csv

```
120102, Tom, Zhou, M, 108255, Sales Manager, AU, 11AUG1969, 06/01/1989
120103, Wilson, Dawes, M, 87975, Sales Manager, AU, 22JAN1949, 01/01/1974
120121, Irenie, Elvish, F, 26600, Sales Rep. II, AU, 02AUG1944, 01/01/1974
120122, Christina, Ngan, F, 27475, Sales Rep. II, AU, 27JUL1954, 07/01/1978
120123, Kimiko, Hotstone, F, 26190, Sales Rep. I, AU, 28SEP1964, 10/01/1985
120124, Lucian, Daymond, M, 26480, Sales Rep. I, AU, 13MAY1959, 03/01/1979
120125, Fong, Hofmeister, M, 32040, Sales Rep. IV, AU, 06DEC1954, 03/01/1979
120126, Satyakam, Denny, M, 26780, Sales Rep. II, AU, 20SEP1988, 08/01/2006
120127, Sharryn, Clarkson, F, 28100, Sales Rep. II, AU, 04JAN1979, 11/01/1998
```

```
input Employee_ID First_Name $ Last_Name $
Gender $ Salary Job_Title $ Country $
Birth_Date :date.
Hire_Date :mmddyy.;
```

7.04 **Quiz**

Which INPUT statement correctly uses list input to read the space-delimited raw data file?

Raw Data

```
Donny 5MAY2008 25 FL $43,132.50
Margaret 20FEB2008 43 NC 65,150
```

- input name \$ hired date. age state \$ salary comma.;
- b. input name \$ hired :date. age state \$ salary :comma.;

Business Scenario

Create a temporary SAS data set named **Work**. **subset3** from the delimited raw data file named **sales**. **csv**.

```
data work.subset3;
  length First_Name $ 12 Last_Name $ 18
        Gender $ 1 Job_Title $ 25
        Country $ 2;
  infile 'sales.csv' dlm=',';
  input Employee_ID First_Name $ Last_Name $
        Gender $ Salary Job_Title $ Country $
        Birth_Date :date.
        Hire_Date :mmddyy.;
run;
```

Business Scenario

```
proc print data=work.subset3;
run;
```

Partial PROC PRINT Output

	Finat		•			Empleyee		Dánhh	115.00
	First_					Employee_		Birth_	Hire_
0bs	Name	Last_Name	Gender	Job_Title	Country	ID	Salary	Date	Date
_	_								
1	Tom	Zhou	М	Sales Manager	AU	120102	108255	3510	10744
2	Wilson	Dawes	М	Sales Manager	AU	120103	87975	-3996	5114
3	Irenie	Elvish	F	Sales Rep. II	AU	120121	26600	-5630	5114
4	Christina	Ngan	F	Sales Rep. II	AU	120122	27475	-1984	6756
5	Kimiko	Hotstone	F	Sales Rep. I	AU	120123	26190	1732	9405
6	Lucian	Daymond	M	Sales Rep. I	AU	120124	26480	- 233	6999
7	Fong	Hofmeister	M	Sales Rep. IV	AU	120125	32040	-1852	6999
8	Satyakam	Denny	M	Sales Rep. II	AU	120126	26780	10490	17014
9	Sharryn	Clarkson	F	Sales Rep. II	AU	120127	28100	6943	14184
10	Monica	Kletschkus	F	Sales Rep. IV	AU	120128	30890	9691	17106
11	Alvin	Roebuck	M	Sales Rep. III	AU	120129	30070	1787	9405
12	Kevin	Lyon	М	Sales Rep. I	AU	120130	26955	9114	16922
13	Marinus	Surawski	M	Sales Rep. I	AU	120131	26910	7207	15706
14	Fancine	Kaiser	F	Sales Rep. III	AU	120132	28525	-3923	6848

p107d03

Additional SAS Statements

Additional SAS statements can be added to perform further processing in the DATA step.

```
data work.subset3;
   length First_Name $ 12 Last_Name $ 18
          Gender $ 1 Job_Title $ 25
          Country $ 2;
   infile 'sales.csv' dlm=',';
   input Employee_ID First_Name $ Last_Name $
         Gender $ Salary Job_Title $ Country $
         Birth_Date :date.
         Hire_Date :mmddyy.;
  keep First_Name Last_Name Salary
        Job_Title Hire_Date;
   label Job Title='Sales Title'
         Hire_Date='Date Hired';
   format Salary dollar12. Hire Date monyy7.;
run;
                                            p107d04
```

Additional SAS Statements

```
proc print data=work.subset3 label;
run;
```

Partial PROC PRINT Output

	First_				Date
0bs	Name	Last_Name	Sales Title	Salary	Hired
1	Tom	Zhou	Sales Manager	\$108,255	JUN1989
2	Wilson	Dawes	Sales Manager	\$87,975	JAN1974
3	Irenie	Elvish	Sales Rep. II	\$26,600	JAN1974
4	Christina	Ngan	Sales Rep. II	\$27,475	JUL1978
5	Kimiko	Hotstone	Sales Rep. I	\$26,190	0CT1985
6	Lucian	Daymond	Sales Rep. I	\$26,480	MAR1979
7	Fong	Hofmeister	Sales Rep. IV	\$32,040	MAR1979
8	Satyakam	Denny	Sales Rep. II	\$26,780	AUG2006
9	Sharryn	Clarkson	Sales Rep. II	\$28,100	NOV1998
10	Monica	Kletschkus	Sales Rep. IV	\$30,890	NOV2006

Additional SAS Statements

- The WHERE statement is used to obtain a subset of observations from an input data set.
- The WHERE statement cannot be used to select records from a raw data file.

The subsetting IF can subset data that is in the PDV.

Missing Values in the Middle of the Record

Each record in **phone2.csv** has a contact name, phone number, and a mobile number. The phone number is missing from some of the records.

phone2.csv

Missing data is indicated by two consecutive delimiters.

```
1 1 2 2 3 3 4 4

1---5---0---5---0---5 ---0---5

James Kvarniq, (704) 293/8126, (701) 281-8923

Sandrina Stephand, (919) 271-4592

Cornelia Krahl, (212) 891-3241, (212) 233-5413

Karen Ballinger, (714) 644-9090

Elke Wallstab, (910) 763-5561, (910) 545-3421
```

7.05 Quiz

- Open and submit p107a01.
- Examine the SAS log.
- How many input records were read and how many observations were created?

```
data contacts;
   length Name $ 20 Phone Mobile $ 14;
   infile 'phone2.csv' dlm=',';
   input Name $ Phone $ Mobile $;
run;

proc print data=contacts noobs;
run;
```

Unexpected Results

The missing phone numbers caused unexpected results in the output.

PROC PRINT Output

Name	Phone	Mobile
James Kvarniq	(704) 293-8126	(701) 281-8923
Sandrina Stephano	(919) 871-7830	Cornelia Krahl
Karen Ballinger	(714) 344-4321	Elke Wallstab

Partial SAS Log

```
NOTE: 5 records were read from the infile 'phone2.csv'.

The minimum record length was 31.

The maximum record length was 44.

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.CONTACTS has 3 observations and 3 variables.
```

Consecutive Delimiters in List Input

By default, list input treats two or more consecutive delimiters as a single delimiter and not treated as a missing value.

phone2.csv

The two consecutive commas are not being read as a missing value.

```
1 1 2 2 3 3 4 4

1---5---0---5---0---5----5

James Kvarniq, (704) 293/8126, (701) 281-8923

Sandrina Stephand, (919) 271-4592

Cornelia Krahl, (212) 891-3241, (212) 233-5413

Karen Ballinger, (714) 644-9090

Elke Wallstab, (910) 763-5561, (910) 545-3421
```

The DSD Option

The DSD option for the INFILE statement

- sets the default delimiter to a comma
- treats consecutive delimiters as missing values
- enables SAS to read values with embedded delimiters if the value is surrounded by quotation marks.

General form of a DSD option in an INFILE statement:

INFILE 'raw-data-file-name' DSD;

Using the DSD Option

Adding the DSD option will correctly read the **phone2.csv** data file.

```
data contacts;
   length Name $ 20 Phone Mobile $ 14;
   infile 'phone2.csv' dsd;
   input Name $ Phone $ Mobile $;
   run;

proc print data=contacts noobs;
run;
```

The DLM=',' option is no longer needed in the INFILE statement because the DSD option sets the default delimiter to a comma.

Results

Adding the DSD option gives the expected results. PROC PRINT Output

Name	Phone	Mobile
James Kvarniq Sandrina Stephano Cornelia Krahl Karen Ballinger Elke Wallstab	(704) 293-8126(212) 891-3241(910) 763-5561	(701) 281-8923 (919) 271-4592 (212) 233-5413 (714) 644-9090 (910) 545-3421

Partial SAS Log

```
NOTE: 5 records were read from the infile 'phone2.csv'.
The minimum record length was 31.
The maximum record length was 44.
NOTE: The data set WORK.CONTACTS has 5 observations and 3 variables.
```

Missing Values at the End of a Record (Self-Study)

The data values in **phone.csv** are separated by commas. Each record has a contact name, and then a phone number, and finally a mobile number.

The mobile number and comma delimiter are missing from some of the lines of data. James Kvarniq, (704) 293-8126, (701) 281-8923 Sandrina Stephano, (919) 871-7830 Cornelia Krahl, (212) 891-3241, (212) 233-5413 Karen Ballinger, (714) 344-4321 Elke Wallstab, (910) 763-5561, (910) 545-3421

7.06 Quiz (Self-Study)

Open and submit **p107a02**. Examine the SAS log. How many input records were read and how many observations were created?

```
data contacts;
   length Name $ 20 Phone Mobile $ 14;
   infile 'phone.csv' dsd;
   input Name $ Phone $ Mobile $;
   run;

proc print data=contacts noobs;
run;
```

Unexpected Results (Self-Study)

The missing mobile phone numbers caused unexpected results in the output.

PROC PRINT Output

Name	Phone	Mobile
James Kvarniq	(704) 293-8126	(701) 281-8923
Sandrina Stephano	(919) 871-7830	Cornelia Krahl
Karen Ballinger	(714) 344-4321	Elke Wallstab

Partial SAS Log

```
NOTE: 5 records were read from the infile 'phone.csv'.

The minimum record length was 31.

The maximum record length was 44.

NOTE: SAS went to a new line when INPUT statement reached past the end of a line.

NOTE: The data set WORK.CONTACTS has 3 observations and 3 variables.
```

Missing Values at the End of a Record (Self-Study)

By default, when there is missing data at the end of a row, SAS does the following:

- loads the next record to finish the observation
- writes a note to the log

The MISSOVER Option (Self-Study)

The MISSOVER option prevents SAS from loading a new record when the end of the current record is reached.

General form of an INFILE statement with a MISSOVER option:

INFILE 'raw-data-file-name' MISSOVER;

If SAS reaches the end of the row without finding values for all fields, variables without values are set to missing.

7.07 Quiz (Self-Study)

Open **p107a03** and add the MISSOVER option to the INFILE statement. Submit the program and examine the SAS log. How many input records were read and how many observations were created?

```
data contacts;
   length Name $ 20 Phone Mobile $ 14;
   infile 'phone.csv' dsd;
   input Name $ Phone $ Mobile $;
   run;

proc print data=contacts noobs;
run;
```

Results (Self-Study)

Adding the MISSOVER option gives the expected results. PROC PRINT Output

Name	Phone	Mobile
James Kvarniq Sandrina Stephano Cornelia Krahl Karen Ballinger Elke Wallstab	(704) 293-8126 (919) 871-7830 (212) 891-3241 (714) 344-4321 (910) 763-5561	(701) 281-8923 (212) 233-5413 (910) 545-3421

Partial SAS Log

```
NOTE: 5 records were read from the infile 'phone.csv'.

The minimum record length was 31.

The maximum record length was 44.

NOTE: The data set WORK.CONTACTS has 5 observations and 3 variables.
```

Chapter Review

- 1. What statement identifies the physical filename of the raw data file to read?
- 2. What statement describes the arrangement of values in the raw data file?
- 3. What is the default delimiter when the DLM= option is used?
- 4. What are the two phases of DATA step processing?
- 5. What is a program data vector (PDV)?

Chapter Review

- 6. Why would you use a LENGTH statement?
- 7. What is an instruction that SAS uses to read data values into a variable?
- 8. When would you use a : modifier?