

CIÊNCIAS DA COMPUTAÇÃO

Prof. César Candido Xavier

cesar.xavier@docente.unip.br

Aspectos Teóricos da Computação ROTEIRO

- Objetivos Curso
- Conteúdo Programático
- Bibliografia
- Provas
- Introdução

Objetivos do Curso

II - OBJETIVOS GERAIS

Permitir que os alunos travem contato com resultados teóricos da Ciência da Computação e avaliem adequadamente a importância dos mesmos.

Prof. César C. Xavier

3

Aspectos Teóricos da Computação

Objetivos do Curso

III - OBJETIVOS ESPECÍFICOS

- Explicar a tese de Turing-Church e seu significado;
- Apresentar exemplos de problemas que não são computáveis;
- Definir as classes de problemas P e NP;
- Explicar o que são problemas NP-completos e NP-difíceis; e
- Apresentar o Teorema da Incompletude de Gödel.

Conteúdo Programático

- 1. Introdução
- 1.1 Hierarquia de Chomsky
- 1.2 Máquina de Estados Finitos
- 1.3 Máquina de Turing: modelo que simula procedimentos computacionais mais gerais que a máquina de estados finitos
- 2. Máquinas de Turing Parte I
- 2.1 A definição formal da Máquina de Turing
- 2.2 A computação na Máquina de Turing: funções recursivas e linguagens recursivamente enumeráveis

Prof. César C. Xavier

E

Aspectos Teóricos da Computação

Conteúdo Programático

- 3. Máquinas de Turing Parte II
- 3.1 Extensões da Máquina de Turing
- 3.2 Máquinas de Turing com Acesso Aleatório
- 3.3 Máquinas de Turing Não-Determinísticas
- 4. Máquinas de Turing como Calculadora de Funções Numéricas
- 5 Problemas Indecidíveis Parte I
- 5.1 A Tese de Turing Church
- 5.2 Máquinas de Turing Universais
- 5.3 O Problema da Parada

Prof. César C. Xavier

Conteúdo Programático

- 6. Problemas Indecidíveis Parte II.
- 6.1 Problemas Não Solucionáveis sobre as Máquinas de Turing e sobre as Gramáticas
- 6.2 Propriedades das Linguagens Recursivas
- 7. Tempo de Execução de um Programa.
- 7.1 Comportamento Assintótico de Funções
- 7.2 Classes de Comportamento Assintótico: complexidade logarítmica, complexidade polinomial (complexidade linear, complexidade quadrática, etc.); complexidade exponencial

Prof. César C. Xavier

7

Aspectos Teóricos da Computação Conteúdo Programático

- 8. Complexidade Computacional Parte I
- 8.1 A Classe P: definição
- 8.2 Grafos Eulerianos e Hamiltonianos
- 9. Complexidade Computacional Parte II
- 9.1 Problema do Caixeiro Viajante
- 9.2 Clique (Máximo e Mínimo)
- 9.3 Problema da Cobertura dos Nós
- 9.4 Problema do Particionamento

Prof. César C. Xavier

Conteúdo Programático

- 10. Complexidade Computacional Parte III
- 10.1 Satisfabilidade e Satisfabilidade Booleana
- 10.2 Problema da Mochila
- 11. Completude NP e Problemas NP-Difíceis
- 11.1 Definição
- 11.2 Teorema de Cook
- 11.3 Problemas NP-Difíceis
- 12. O Teorema de Gödel

Prof. César C. Xavier

9

Aspectos Teóricos da Computação PROVAS

 $NP_{1,2}$: ($NP_{1,2} \times 0,6 + Media_Trabalhos \times 0,4$)

Media_Trabalhos=(Trab_1+Trab_2)/2

Obs.: poderá, ocasionalmente, ter apenas um único trabalho!

Prof. César C. Xavier

Bibliografia

Básica

BROOKSHEAR, J. G. Ciência da computação. 11. ed. Porto Alegre: Bookman, 2013. E-book. p.467. ISBN 9788582600313. Disponível em:

https://integrada.minhabiblioteca.com.br/reader/books/9788582600313/. Acesso em: 03 fev. 2025.

CATARINO, M. H. Teoria da computação. 1. ed. Rio de Janeiro: Freitas Bastos, 2023. E-book. Disponível em:

https://plataforma.bvirtual.com.br/Acervo/Publicacao/211225. Acesso em: 06 out. 2023.

SIPSER, M. Introdução à Teoria da Computação. São Paulo: Cengage Learning Brasil, 2007. E-book. ISBN 9788522108862. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788522108862/. Acesso em: 06 out. 2023.

Prof. César C. Xavier

Aspectos Teóricos da Computação

Bibliografia

Complementar

KOBAYASHI, H. Information Theory. IEEE Transactions on Information Theory. Disponível em: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=18. Acesso em: 06 out. 2023.

LANGE, K. J. Complexity and structure in formal language theory. Disponível em: http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=920. Acesso em: 06 out. 2023.

MENEZES, P. B. Linguagens formais e autômatos. 6.ed. V.3 - Porto Alegre, Sagra Luzzatto, 2011. https://integrada.minhabiblioteca.com.br/reader/books/9788577807994/pageid/0. Acesso em: 06 out. 2023.

SILVA, F. S. C.; MELO, A. C. V. Modelos Clássicos de Computação. Porto Alegre: +A Educação - Cengage Learning Brasil, 2006. E-book. ISBN 9788522108503. Disponível em: https://integrada.minhabiblioteca.com.br/reader/books/9788522108503/. Acesso em: 03 fev. 2025.

SOUSA, C. E. B.; NASCIMENTO, L. B G.; MARTINS, R. L.; et al. Linguagens Formais e Autômatos. São Paulo: Grupo A, 2021. E-book. ISBN 9786556901138. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9786556901138/. Acesso em: 05 out. 2023.

Introdução

Computação

- Priberam:
- (latim computatio, -onis) substantivo feminino

1. Ato ou efeito de computar. = CÁLCULO, CÔMPUTO

- 2. [Informática] Conjunto de conhecimentos e técnicas referentes ao uso de
- 2. [Informática] Conjunto de conhecimentos e técnicas referentes ao uso computadores.

3. [Informática] Processamento automático de dados através de computadores.

https://dicionario.priberam.org/computa%C3%A7%C3%A3o [consultado em 07-08-2022].

Prof. César C. Xavier 13

Aspectos Teóricos da Computação

Introdução

Computação:

Priberam:

(latim computatio, -onis) - substantivo feminino

- 1. Ato ou efeito de computar. = CÁLCULO, CÔMPUTO
- 2. [Informática] Conjunto de conhecimentos e técnicas referentes ao uso de computadores.
- 3. [Informática] Processamento automático de dados através de computadores.

https://dicionario.priberam.org/computa%C3%A7%C3%A3o~[consultado~em~07-08-2022].

Introdução

Computação:

Michaelis:

Sf

1 Ato ou efeito de computar; cálculo, contagem ou cômputo.

2 Inform V processamento de dados.

3 por ext Qualquer trabalho ou atividade que envolve o uso do computador.

 $https://michaelis.uol.com.br/moderno-portugues/busca/portugues-brasileiro/computa\%C3\%A7\%C3\%A3o/[consultado_em_07-08-2022].$

Prof. César C. Xavier

15

Aspectos Teóricos da Computação

Introdução

Ciência da Computação:

Wikipedia:

"Ciência da computação é a ciência que estuda as técnicas, metodologias, instrumentos computacionais e aplicações tecnológicas, que informatizem os processos e desenvolvam soluções de processamento de dados de entrada e saída pautados no computador. Não se restringindo apenas ao estudo dos algoritmos, suas aplicações e implementação na forma de software. Assim, a Ciência da Computação também abrange as técnicas de modelagem de dados e gerenciamento de banco de dados, envolvendo também a telecomunicação e os protocolos de comunicação, além de princípios que abrangem outras especializações da área."

 $https://pt.wikipedia.org/wiki/Ci\%C3\%AAncia_da_computa\%C3\%A7\%C3\%A3o~[consultado~em~07-08-2022].$

Prof. César C. Xavier

Introdução

Ciência da Computação:

Wikipedia:

"A Ciência da Computação lida com fundamentos teóricos da informação, computação, e técnicas práticas para suas implementações e aplicações."

https://pt.wikipedia.org/wiki/Ci%C3%AAncia_da_computa%C3%A7%C3%A3o [consultado em 07-08-2022].

Prof. César C. Xavier

17

Aspectos Teóricos da Computação

Introdução

Teoria da Computação:

"Subcampo da ciência da computação e matemática, que busca determinar quais problemas podem ser computados em um dado modelo de computação."

Prof. César C. Xavier

Introdução

História da Computação:

Evolução dos conceitos

Década de 40 - Da evolução da Matemática até chegar às noções de computabilidade e procedimento, com Turing e Church.

Mark I – 1º Computador lançado em 1944

Prof. César C. Xavier

10

Aspectos Teóricos da Computação

Introdução

História da Computação:

Algoritmo:

A Tese de Church-Turing é uma hipótese sobre a natureza de artefatos mecânicos de cálculo, como computadores, e sobre que tipo de algoritmos eles podem executar.

Prof. César C. Xavier

Introdução

História da Computação:

Algoritmo:

1900: David Hilbert

Os 23 problemas

O 10° Problema: desenvolver um processo, no qual pode ser determinado por um número finito de operações (algoritmo), que indica se um polinômio tem raízes inteiras.

Prof. César C. Xavier

21

Aspectos Teóricos da Computação

Introdução

História da Computação:

Algoritmo:

1900: David Hilbert

Os 23 problemas

O 3º Problema "O problema de decisão" ("Hilbert's Entscheidungsproblem"): existe um procedimento que permite, para qualquer expressão lógica dada, decidir sua validade ou satisfatizibilidade.

Introdução

História da Computação:

Kurt Gödel – (1906-1978)

Certos problemas básicos não podem ser resolvidos por computadores.

Ex.: "O programa *P*, ao receber uma entrada *X*, para ou executa indefinidamente?"

- Alan Turing provou que não há um algoritmo geral que decida isso para todos os casos possíveis.

Prof. César C. Xavier 23

Aspectos Teóricos da Computação

Introdução

História da Computação:

Kurt Gödel – (1906-1978)

Teorema da Incompletude de Gödel

Imagine que você tem uma plaquinha e ela diz "A frase que está escrita do outro lado é verdade." Aí você vira a plaquinha e do outro lado está escrito "A frase que está escrita do outro lado é mentira."

Qual das duas é a correta?

Leia mais em: https://super.abril.com.br/coluna/oraculo/o-que-sao-os-teoremas-da-incompletude-de-godel/

Introdução

História da Computação:

Kurt Gödel – (1906-1978)

Teorema da Incompletude de Gödel

Limitações fundamentais: Não é possível construir um sistema axiomático que resolva todas as questões matemáticas.

Impacto na computação: Inspirou Alan Turing a provar o Problema da Parada, mostrando que certos problemas computacionais são intrinsecamente insolúveis por algoritmos.

Impacto na filosofia: Levantou questões profundas sobre os limites do conhecimento e da compreensão humana.

Prof. César C. Xavier

25

Aspectos Teóricos da Computação

Introdução

História da Computação:

Alan Turing – (1912-1954)

1935 - Turing primeiramente tenta caracterizar exatamente quais funções são capazes de ser computadas

Prof. César C. Xavier

Introdução

História da Computação:

Problema da Parada (Halting Probl<u>em)</u>

"Dado um programa arbitrário P e uma entrada arbitrária x, existe algum algoritmo que consiga determinar, para qualquer combinação possível (P, x), se P irá eventualmente parar ou se executará indefinidamente?"

Prof. César C. Xavier

27

Aspectos Teóricos da Computação

Introdução

História da Computação:

Problema da Parada (Halting Problem)

"Dado um programa arbitrário P e uma entrada arbitrária x, existe algum algoritmo que consiga determinar, para qualquer combinação possível (P, x), se P irá eventualmente parar ou se executará indefinidamente?"

$$H(P,x) = egin{cases} 1, & ext{se o programa } P ext{ parar com entrada } x \ 0, & ext{se o programa } P ext{ n ilde{a}o parar com entrada } x \end{cases}$$

Introdução

Explicação intuitiva

- A prova de não computabilidade do Problema da Parada usa um argumento por contradição. De forma simplificada:
- 1) Suponha que existe um algoritmo (ou máquina de Turing) que computa H(P, x).
- 2) Então, poderia existir um programa especial, digamos Q, que usasse esse algoritmo para fazer o seguinte:
 - Se o programa *P* parar ao receber a si próprio como entrada, então *Q* não para.
 - Se o programa *P* não parar ao receber a si próprio como entrada, então *Q* para.
- 3) Aplicando Q nele mesmo, surge uma contradição lógica inevitável, mostrando que esse algoritmo inicial não pode existir.

Prof. César C. Xavier 29

Aspectos Teóricos da Computação

Introdução

História da Computação:

Alan Turing:

1936 - Maquina de Turing

Uma fita que é dividida em células, uma adjacente à outra. Cada célula contém um símbolo de algum alfabeto finito. O alfabeto contém um símbolo especial branco (aqui escrito como ¬) e um ou mais símbolos adicionais. Assume-se que a fita é arbitrariamente extensível para a esquerda e para a direita, isto é, a máquina de Turing possui tanta fita quanto é necessário para a computação. Assume-se também que células que ainda não foram escritas estão preenchidas com o símbolo branco.

Introdução

História da Computação:

Alan Turing:

1936 - Maquina de Turing

Um registrador de estados, que armazena o estado da máquina de Turing. O número de estados diferentes é sempre finito e há um estado especial denominado estado inicial com o qual o registrador de estado é inicializado.

Prof. César C. Xavier

21

Aspectos Teóricos da Computação

Introdução

História da Computação:

Alan Turing:

1936 - Máquina de Turing

Uma tabela de ação (ou função de transição) que diz à máquina que símbolo escrever, como mover o cabeçote (← para esquerda e → para direita) e qual será seu novo estado, dados o símbolo que ele acabou de ler na fita e o estado em que se encontra. Se não houver entrada alguma na tabela para a combinação atual de símbolo e estado então a máquina para.

História da Computação:

- Alan Turing (1936) Máquina de Turing
 - * é um modelo teórico de um dispositivo de computação que pode simular qualquer algoritmo computacional.
- Componentes

Fita Infinita:

Uma fita dividida em células, cada uma contendo um símbolo. A fita serve como memória e pode ser lida e escrita.

Cabeça de Leitura/Escrita:

Uma unidade que pode mover-se para a esquerda ou para a direita na fita, lendo e escrevendo símbolos.

Tabela de Instruções:

Um conjunto de regras que determina as ações da máquina com base no símbolo atual lido e no estado da máquina.

Estado:

A máquina pode estar em diferentes estados, e o comportamento é determinado pela combinação do estado atual e do símbolo lido. Relevância: A Máquina de Turing é fundamental na teoria da computação, pois estabelece os limites do que pode ser computado e serve como base para o conceito de "computabilidade".

Prof. César C. Xavier

22

Aspectos Teóricos da Computação

Introdução

História da Computação:

A tese de Church-Turing

– Limites da computação:

Alan Turing

Alonzo Church

"Se um cálculo puder ser feito de forma automatizada — por um dado método, num número finito de passos — então também pode ser feito por uma máquina de Turing."

Aspectos Teóricos da Computação Introdução

• Implicações:

- Tudo o que pode ser computado por qualquer meio físico ou matemático efetivo (isto é, por meio de um algoritmo) pode ser computado por uma máquina de Turing.
- Nenhum modelo de computação (passado, presente ou futuro), mesmo com recursos físicos ilimitados, pode resolver problemas que a Máquina de Turing não consegue resolver.
- A Máquina de Turing representa o modelo mais poderoso possível para qualquer tipo de computação algorítmica.

Prof. César C. Xavier

35

Aspectos Teóricos da Computação Introdução

• Implicações:

- Se um problema não pode ser resolvido por uma máquina de Turing (por exemplo, o Problema da Parada), então nenhum outro dispositivo ou linguagem computacional poderá resolvê-lo de maneira algorítmica.
- Não existe um "supercomputador" que, mesmo com mais velocidade, memória ou paralelismo, ultrapasse esse limite teórico de computabilidade, desde que siga os princípios de execução algorítmica passo a passo (ou seja, sem "mágica", oráculos ou recursos infinitos)

Prof. César C. Xavier

Aspectos Teóricos da Computação Introdução

• Implicações:

Termo	Significado na Hipótese de Church-Turing
Máquina de Turing	Modelo universal de computação algorítmica
	Nada que seja computável por qualquer meio vai além da máquina de Turing
Conceito central	Não há "supercomputador" ou linguagem que ultrapasse esse modelo em termos de o que pode ser computado

Prof. César C. Xavier

Aspectos Teóricos da Computação Introdução

- A Hipótese de Church-Turing estabelece os limites do que é "computável" no mundo real, e nos ajuda a distinguir entre:
 - O que é teoricamente solucionável com algoritmos
 - E o que está além das possibilidades da computação, independentemente de avanços tecnológicos
 - Essa tese fundamenta toda a teoria da computação, e é um dos pilares da ciência da computação moderna.

Prof. César C. Xavier

Introdução

História da Computação:

Hipótese de Church (ou de Church-Turing)

"A capacidade de computação representada pela Máquina de Turing é o limite máximo que pode ser atingido por qualquer dispositivo de computação"

(Menezes, P.B. Linguagens Formais e Autômatos. 3ª ed.Porto Alegre: Sagra-Luzzatto, 2000, pg 139)

Prof. César C. Xavier

20

Aspectos Teóricos da Computação

Introdução

História da Computação:

Hipótese de Church (ou de Church-Turing)

"Assim, propomos adotar a máquina de Turing que para em respostas a todas as entradas como sendo a noção formal precisa correspondente à intuitiva ideia de um 'algoritmo'. Nada será considerado como algoritmo se não puder ser expresso na forma de uma máquina de Turing, cuja parada é garantida em resposta a todas as possíveis entradas, e todas elas serão corretamente classificadas como algoritmos"

(Lewis, H.R. & Papadimitriou, C.H. Elementos de Teoria da Computação. 2ª ed. Porto Alegre: Bookman, 2000, pg 238)

Introdução

Fundamentos Teóricos da Computação:

Problema de Ordenação?

Ex.: ordene em ordem crescente 66,8 milhões de números.

Problema de escalonamento?

Ex.: Escalonar as aulas da UNIP (duas aulas não podem ser ministrada na mesma sala ao mesmo tempo.

Prof. César C. Xavier

11

Aspectos Teóricos da Computação Introdução

- Questões Centrais:
 - Quais as capacidades e limitações fundamentais dos computadores?
 - O que (problema) pode e o que não pode ser resolvido por computadores?
 - O que faz alguns problemas serem computacionalmente mais difíceis que outros?

Introdução

Fundamentos Teóricos da Computação:

Complexidade:

classificação de problemas como fáceis ou difíceis (polinomiais x exponenciais).

Computabilidade:

tese de Church-Turing (algoritmos), decidibilidade e indecidibilidade

Autômatos:

definição e propriedades de modelos matemáticos de computação

Prof. César C. Xavier 43

Aspectos Teóricos da Computação

Introdução

Fundamentos Teóricos da Computação:

Introdução

- Fundamentos Teóricos da Computação:
 - O que é um algoritmo?
 - ► O algoritmo deve ser completo, finito e determinístico.
 - completo: sempre produz um resultado
 - finito: tem uma sequencia finita de instruções
 - determinístico: sempre produz o mesmo resultado para a mesma entrada.

Prof. César C. Xavier