Lecture 1

August 20, 2024

Contents

	1.1	First Law of Thermodynamics	4
1	Basi	Basic Concepts	
	0.3	Statistical Mechanics, the secret weapon of physicists	4
	0.2	Thermodynamics is omnipresent	3
	0.1	Thermodynamics and Statistical Physics differences	3

0.1 Thermodynamics and Statistical Physics differences

Thermodynamics:

- Macroscopic
- Continuous Matter
- differentiable
- Necessary relations based on some axioms
- All properties of matter $(\Delta H_m, \Delta S_v, c_v, \lambda, D)$ must be measured

Statistical Physics

- microscopic
- discrete particles
- Mechanics
- statistical behavior of simplified models
- Bottom up explanation of thermodynamics
- Properties of model matter $(\Delta H_m, \Delta S_v, c_v, \lambda, D)$ can be calculated or measured in a simulation

0.2 Thermodynamics is omnipresent

- Climate: basis for modelling
- Sustainability:
 - Efficiency in the process industry
 - Energy efficient heating and cooling of buildings
 - Efficient engines and refrigerators
- Basic research:
 - Condensed matter physics
 - High energy physics
 - Cosmology
 - Biophysics
 - Meteorology
 - Geology
 - Chemistry
- \Rightarrow Relevant for jobs

0.3 Statistical Mechanics, the secret weapon of physicists

- Make microscopic models of new phenomena
- Models follow laws of physics and statistics
- Derive macroscopic models

1 Basic Concepts

T is the temperature of an object.

If you have an object with T_1 and one with T_2 , then they are at thermal equilibrium iff $T_1 = T_2$.

Heat is related to Energy, such that heat is the microscopic kinetic energy. In a macroscopic picture, heat is the transport of Energy. Heat is written as Q.

Work is the mechanical energy acting on a system. It is written as W. Mechanically, it is $W = F\Delta x$. Work is an Energy.

A system is isolated from the rest of the world, but there can be energy exchange between them. They can exchange work or heat for example. The internal energy of a System is denoted as U, E.

1.1 First Law of Thermodynamics

Energy is conserved, that is, energy cannot be destroyed or created, only exchanged. Any change of energy in a system is caused by a transfer of energy with the outside

world. That being, $\Delta U = Q + W$.