Usinage par procédés non traditionnels

Cours SYS 849-6

Procédés non traditionnels

- À action mécanique
 - Jet d'eau et jet d'eau abrasif
 - Usinage ultrasonique
- Procédés électrochimiques
 - Usinage électrochimique
 - Ébavurage et rectification électrochimiques
- Procédés thermiques
 - Electro-érosion: EDM
 - Laser, plasma
- Procédés chimiques

Jet d'eau et jet d'eau abrasif

Applications

- Mousse
- Bois
- Carrelage/Marbre
- Plastique
- Etc

Usinage au jet d'eau : Principes, applications et avantages

Usinages au jet d'eau:

- o pression de 800 à 4000 bars.
- ajout de particules abrasives (silicates, alumine) pour la découpe de l'acier et du béton.
- o buse d'injection en saphir diamètre d'injection de 0,075 à 0,5 mm.
- o vitesse du jet: 1000 m/s (3 fois la vitesse du son).
- o vitesse de coupe: 1m/min pour des épaisseurs jusqu'à100mm.
- o découpe à sec due à la grande pression.

Avantage:

- propre.
- o immatériel (ne chauffe pas).
- o inusable et facilement réglable.
- o précis (quelques 1/100èmes de mm).

Usinage au jet d'eau : Inconvénients et utilisations

Inconvénients:

- o limitation quant à la forme et à la profondeur de pénétration.
- o durée de vie des buses (200 heures sous 4000 bars).
- coût de l'installation: 100 000 à 140 000 €, et encore autant pour la filtration et l'adoucissement de l'eau.

Utilisation:

Carton ondulé, contreplaqué, éponge, explosif, poisson surgelé, cube de glace, laine de verre, cuir, plaques d'amiante, verre, tôle, céramique, acier, aluminium, acier inoxydable, composites, marbre.

Usinage au jet d'eau:

Jet d'eau pure pour les **matériaux tendres**. Buse de coupe de 0,08 mm à 0,30 mm (sertie d'un saphir industriel)

Jet d'eau abrasif utilisé pour les matériaux les plus durs et les plus épais. Buse de coupe de 0,20 mm à 0,40 mm (sertie d'un saphir ou d'un diamant industriel)

http://www.decoup-jet-eau.com/jet-deau

L'eau sous très haute pression sort de la buse de découpe :

- à une vitesse de 900 m/s à 4135 bars (environ 3 fois la vitesse du son).
- a une vitesse de 1 200 m/s à 6150 bars (environ 4 fois la vitesse du son).

Découpe à l'eau pure - Les paramètres

Permet la découpe de matériaux ductiles ou de composites

Le débit d'eau est fonction de la pression et du Ø de la buse. Le débit d'eau approximatif peutêtre calculé par la formule :

$$O = 0.53 * Db^2 * \sqrt{P}$$

Q : Débit en (I/min)

Db : Diamètre de la buse(mm)P : pression de service (bar)

les débits d'eau sont en général assez faible souvent inférieur à 0.4 l/min

Vitesses de coupe

Vitesse de coupe en mm/min suivant le type de matériaux et l'épaisseur

Matériaux Epaisseur Matériaux	5 mm	10 mm	15 mm	20 mm	25 mm	30 mm	50 mm	100 mm
Acier rapide	678	370	236	169	128	102	48	18
Acier inoxydable 304	833	454	290	208	159	125	60	22
Titane	1083	590	377	270	206	163	78	28
Aluminium	2250	1226	782	561	427	339	162	59
Granite (Mohogany)	2974	1621	1035	741	565	448	214	78
Composites Fibres de Carbone	3915	2135	1363	975	744	590	281	103
Verre	4315	2352	1502	1075	820	650	310	113
Marbre	4672	2547	1626	1164	888	704	336	123
Plexiglas	4904	2674	1707	1222	932	739	352	129
Composites Fibre de Verre	5948	3243	2070	1482	1131	896	427	156
Kevlar	6195	3378	2156	1543	1178	934	445	163
Graphite	8087	4409	2815	2015	1538	1219	581	213
Carreau de céramique	8869	4835	3087	2210	1686	1337	637	233

Ces valeurs représentent la vitesse de séparation maximale et sont obtenues en travaillant à 4100 bar, 3,7 l/min, et 580 g/min d'abrasif (FLOW PASERplus Garnet, mesh 80). Pour une découpe d'ébauche, comptez 80% de ces valeurs et 40% pour une découpe de qualité. Ces valeurs sont théoriques et non

http://www.decoup-jet-eau.com/jet-deau

Usinage avec jet abrasif

FIGURE 26.4 Abrasive jet machining (AJM).

• Jet d'eau Abrasifs: Al2O3, dioxide de silicium, Applications diamètre de l'orifice = 0.25 à 0.63 mm

• gaz + abrasifs

gaz = air, azote, helium, dioxyde de carbone pression de 0.2 à 1.4 Mpa

diamètre orifice: 0.075 à 1.0 mm distance orifice-pièce = 3 à 75 mm

finition, ébavurage, netoyage, séparation des pièces

Coupe des matériaux durs: céramiques, pierres

Le système de découpe à l'abrasif comprend :

- un injecteur d'abrasifs,
- · un doseur d'abrasifs,

Les abrasifs utilisés sont caractérisés par :

- · leur dureté,
- · leur dimension : granulométrie,
- la matière : composition,
- leur forme : espèce.

Types d'abrasifs

ABRASIFS	COMPOSITION	DENSITÉ	D	URETÉ
Grenat	Trisilicates d'alumine, magnésie, calcite, oxyde de fer, manganèse, ou oxyde chrome	3,4 à 4,3	Mohs: Knoop:	7,5 1 350
Oxyde d'aluminium	99,5 à 99,9 % d'oxyde d'aluminium pur avec de la silice et des impuretés minérales	3,95 à 4	Mohs: Knoop:	8-9 2 100
Carbure de silicium	Carbure de silicium	3,2	Mohs: Knoop	9,15 2 500
Particules d'acier	0,85 % de carbone 0,4 % de silicone 0,6 % de manganèse	8,7	Mohs : Knoop :	400-800
Scories de cuivre		0	Mohs: Knoop:	
Sable de silice	Dioxyde de silicium	2,2 à 2,65 Knoop :	Mohs : 700	N-
Poudre de verre	TAA	2,45 à 2,5 Knoop :	Mohs: 400-600	5,5

Propriétés les plus utilisées des matériaux abrasifs ainsi que leur composition chimique.

Avantages de la découpe au jet d'eau:

- Coupe à froid sans influence thermique
- Coefficient d'utilisation optimal de la matière grâce à la réduction maximale des distances entre les pièces
- Usinage non polluant et propre sans émanation de gaz de fumées toxiques
- Productivité élevée grâce aux installations à plusieurs têtes de découpe

Usinage ultrasonique

Performance de l'usinage ultrasonique

Le procédé peut être caractérisé par trois critères principaux (performances):

- débit de matière ;
- usure relative de la sonotrode ;
- état de surface.

Les performances dépendent essentiellement:

- · du matériau à usiner,
- du matériau de la sonotrode
- · du matériau des grains abrasifs
- d'autres paramètres (Concentration, paramètres ultrasonores, charge statique)

Dimension des grains	Grain 600	Grain 280		
Verre	100	100		
Carbure de tungstène	1	9		
Acier rapide	0,4	2,7		

Enlèvement de matière suivant le matériau et la dimension des grains. (Usinage du verre pris comme référence 100)

Référence BM7240 | Date de publication : 10 avr. 1998 | Daniel KREMER

Performance de l'usinage ultrasonique

Abrasif	Dureté Knoop	Pouvoir de coupe relatif
Diamant	6 500 à 7 000	1
Nitrure de bore cubique	4 700	0,95
Carbure de bore	2 800	0,50 à 0,60
Carbure de silicium	2 500	0,25 à 0,45
Alumine	2 000 à 2 100	0.14 à 0.16

Dureté et pouvoir de coupe des grains d'abrasif

Vitesse de pénétration (mm/min)

2

120

160

Dimension des grains (µm)

180

Vitesse de pénétration en fonction de la dimension des grains (usinage du verre) (d'après Neppiras)

Référence BM7240 | Date de publication : 10 avr. 1998 | Daniel

Vitesse de pénétration

(mm/min)

4

3

2

1

0

40

80

120

160

180

Dimension des grains (µm)

40

Vitesse de pénétration en fonction de la dimension des grains (usinage du verre) (d'après Neppiras)

Qualité de surface en fonction de la dimension des grains pour différents matériaux (d'après Kennedy et Grieve)

NEPPIRAS (E.A.) - Report on ultrasonic machining. - Metalworking Production, 100, no 27-33, 1968.

KENNEDY (D.C.), GRIEVE (R.J.) - Ultrasonic machining, - a review, The Production Engineer, Sept. 1975

Référence BM7240 | Date de publication : 10 avr. 1998 | Daniel KREMER

Usinage par ultrasons: Quelques exemples

Exemples d'électrodes en graphite usinées par ultrasons (Doc. ENSAM-EXTRUDE HONE)

Exemples de pièces en céramiques usinées par ultrasons (Doc. ENSAM)

Usinage ultrasonique du granit

femto st Sciences & Technologies

Usinage électrochimique

Usinage électrochimique vs chimique

Usinages chimiques: dissolution d'un matériau dans un bain d'acide

- protection des zones à ne pas usiner.
- trempage de la pièce dans un bain acide.
- très lent (0,3 à 0,6mm/h).
- usinage sans effort.

Usinages électrochimiques:

- outil électrode.
- plus rapide que le chimique mais dégagement d'hydrogène et d'oxygène.
- recyclage des boues dangereuses (4Fe(OH)₃).
- L'outil ne s'use que par contact avec l'électrolyte.

Usinage électrochimique

Vitesse d'avance : V_f = C . I/A

A: aire frontale de l'electrode (mm²)

I : courant (A)

Courant (I) allant jusqu'à 1200 A C: Constante = f(matériau)

TABLE 26.1 Typical values of specific removal rate C for selected work materials in electrochemical machining.

Work Material ^a	Specific Rer	noval Rate C		Specific Removal Rate C		
	mm ³ /amp-sec	(in.3/amp-min)	Work Material ^a	mm ³ /amp-sec	(in.3/amp-min)	
Aluminum (3)	3.44×10^{-2}	(1.26×10^{-4})	Steels:			
Copper (1)	7.35×10^{-2}	(2.69×10^{-4})	Low alloy	3.0×10^{-2}	(1.1×10^{-4})	
Iron (2)	3.69×10^{-2}	(1.35×10^{-4})	High alloy	2.73×10^{-2}	(1.0×10^{-4})	
Nickel (2)	3.42×10^{-2}	(1.25×10^{-4})	Stainless	2.46×10^{-2}	(0.9×10^{-4})	
(-)		,	Titanium (4)	2.73×10^{-2}	(1.0×10^{-4})	

Compiled from data in [5].

'Most common valence given in parentheses ()—assumed in determining specific removal rate C. For different valence, compute C by multiplying C by most common valence and dividing by actual valence.

Usiner de l'aluminium avec un courant I = 1200A et une électrode de 300 mm², Vitesse d'avance $V_f = 0.14$ mm/s = 8.4 mm/min

Usinage électrochimique

• Applications :

- Formes irrégulières et complexes des moules
- Perçage de plusieurs trous à la fois
- Perçage des trous non ronds
- Ébavurage

Avantages

- pas de contact, peu de dommage à la pièce.
- peu d'usure de l'outil
- pas de bavures

Désavantages

- coûts du système électrique
- coûts de traitement de l'électrolyte

Variantes du procédé électrochimique

Rectification électrochimique

Tournage électrochimique

Référence B7270 | Date de publication : 10 mai 1996 | Pierre LECHERVY

Exemples de pièces obtenues par procédé électrochimique

Exemples de **pièces ébavurées par ECM** (doc. Dubuis)

Exemples de **pièces usinées par ECM** (doc. AEG-Elotherm)

Avantages et inconvénients de l'usinage électrochimique

Avantages:

- l'usinage de tout matériau conducteur (aciers ordinaires et inoxydables, alliages réfractaires à base de nickel ou cobalt, alliages à base de titane, matériaux frittés, etc.), quel que soit leur état de traitement métallurgique;
- un usinage surfacique avec une vitesse de pénétration importante tout en permettant l'obtention d'un état de surface de finition sans perturbations métallurgiques ;
- l'absence d'opération d'ébauche;
- la reproduction de formes complexes ;
- le perçage avec des rapports profondeur/diamètre très importants (< 200);
- l'usinage de parois minces par usinage simultané des deux côtés de la pièce, par exemple pour les aubes de turbomachines;
- l'absence d'usure de l'outil;
- un contrôle aisé des paramètres de l'usinage permettant une grande reproductibilité.

Les inconvénients relatifs :

- aux problèmes de corrosion ;
- aux difficultés inhérentes à l'électrolyte ;
- à l'existence de pressions hydrauliques élevées (inférieures à 25 bar);
- aux études et à la mise au point de(s) l'outil(s).

Usinage électrochimique: Remarques et applications

Remarques

- Usinage sans échauffement du métal.
- Obtention de surfaces complexes.
- Usinage de matériaux durs, traités ou réfractaires et conducteurs.
- Usure nulle de l'outil.
- Bon état de surface sans trace d'outil.
- Débit important de métal usiné (5 à 10 fois celui de l'électroérosion).
- Le déplacement de l'électrode-outil n'est pas asservi.
- La précision d'usinage reste faible.
- Forme de l'électrode difficile à déterminer pour certains usinages.

Applications

- Rectification plane ou cylindrique.
- Ebauche de matrices ou moules, ébavurage, affûtage.
- Possibilités : précision 0,01 mm en rectification et 0,1 mm en défonçage.

Comparaison usinage Électrochimique vs Électroérosion

	Rugosité Ra (µm)	Précision dimensionnelle (mm)	Usure de l'électrode		Puissance absorbée (W par cm³/min)
Electroérosion	0.2 à 0.4	0.01 à 0.02	oui	4.8	1700
Electrochimique	0.1	0.05	non	16	7150

Comparaison des 2 procédés pour un travail de défonçage

Avantages de l'électrochimie sur l'électroérosion

- Débit de matière 3 à 4 fois supérieur.
- Pas d'opération d'ébauche ni de demi-finition.
- Suppression totale de l'usure de l'outil.

Inconvénients de l'électrochimie sur l'électroérosion

- La puissance consommée pour enlever un cm³ de métal est 2 à 3 fois supérieur.
- La précision maximale est de 0.05 mm (à cause du phénomène d'érosion).
- La pression importante de l'électrolyte tend à écarter la pièce de l'outil et à les déformer s'ils ne sont pas suffisamment rigides.

Usinage électrochimique Pièces usinées Ailes de turbine Profondeur d'usinage 5 mm Cycle d'usinage 40 min Rugosité Ra < 0,2 µ Possage à 10 empreintes Usinage de denture: Hauteur: 6,5mm Posage: 10 pièces Cycle d'usinage: 11 min Rugosité Ra < 0,2 µm Pièce usinée Pièce brute Centre d'Applications et d'essais Français

Avantage usinage Électrochimique

L'usinage Électrochimique apporte des solutions d'applications jusqu'alors irréalisables d'un point de vue technique ou en termes de rentabilité :

- Aucune usure d'électrode (outil).
- Aucune incidence thermique sur la structure métallique. (Température du processus entre 20 50°C)
- Aucun risque de micro- fissure Pas de surface blanche.
- Vitesse d'usinage de 0,1 à 2 mm/min. (10 fois plus rapide que l'électro érosion à enfonçage)
- Réalisation de formes complexes irréalisables par un autre procédé.
- Les qualités de surface de l'électrode sont reproduites à valeur identique.
- Rugosité pouvant atteindre Ra 0,03μm.
- Pas de contrainte mécanique sur la pièce.

Exemple d'usinage Électrochimique

	Comparaison de l'ECM par rapport à d'autres procédés d'usinage								
Caractéristiques		ECM	Électro-érosion EDM	Enlèvement mécanique de matière	Usinage chimique UC	Usinage ultrasons US			
Matériau :									
métallique	conducteur électrique	oui	oui	oui	oui	difficile			
composite i	non conducteur électrique	non	non	oui	non	non			
céramique	non conducteur électrique	non	non	oui	non	oui			
taux d'usinabilité		sans influence	sans influence	très influent	sans influence	influent			
Usinage :									
surface gauche		surfacique	surfacique	linéaire	surfacique	surfacique/linéair			
ébavurage peu accessible		oui	non	non	non	non			
contournag	e/trépanage	oui	oui	oui	non	oui			
perçage	cylindrique	oui	oui	oui	oui	oui			
,	de forme	oui	oui	non	oui	oui			
rapport pro	fondeur/diamètre	200	10 à 20	10 à 20	2	5 à 10			
diamètre m	inimal	0,15	0,05	suivant matériaux	[1]	0,5			
tournage		oui	oui	oui	non	non			
cycle : ébau	uche + finition	non	oui	oui	non	non/oui [2]			
Outil :									
spécifique		oui	oui	non	masque	oui			
consommal	ble	non	oui	oui	oui	oui			
Contrainte de surface		sans	[3]	compression	sans	peu de compression			
État de surf	face Ra (μm)	0,6	< 0,6	< 0,6	0,8	< 0,6			
Influence d	u Ra sur le temps d'usinage	sans	très importante	importante	sans	peu			

- [1] -suivant applications et techniques de masquage.
 [2] -suivant la technologie d'usinage.
 [3] -ZAT : zone affectée thermiquement.

Système d'ébavurage Électrolytique de petites pièces et de prototypes

Vol. II - Septembre 2005 - TRAMETAL

Usinage par électroérosion

Machines actuelles pour électroérosion

Machine d'électroérosion à électrode rotative Vollmer pour la production d'outils PCD

Vol. II - Septembre 2005 - TRAMETAL

Machines actuelles pour électroérosion

Machine à percer par électroérosion TOP EDM, spécialement conçue pour les applications aéronautiques et spatiales.

Vol. II - Septembre 2005 - TRAMETAL

Usinage par électroérosion: EDM

Des décharges électriques (étincellages) produisent des T° très élevées qui fondent ou évaporent le métal au voisinage de l'électrode.

Pas de contact: durété de la pièce n'influence pas la coupe

Usinage par électroérosion: EDM

- 2 variantes
 - L'électroérosion avec électrode : EDM
 - L'électroérosion à fil : Wire EDM
- Applications
 - Matrices et moules de forgeage, extrusion, moulage par injection, d'estampage, etc..
 - Pièces minces
 - Perçage des trous à axe non perperndiculaire à une surface plane.
 - Usinage des matériaux conducteurs durs.

Caractéristique de l'usinage :

- Usinage sans déformation (faible dimension, pas de contact pièce-outil);
- Usinage de métaux durs, traités ou réfractaires ;
- Précision de l'ordre de 0.01 mm jusqu'à 2 μm en finition. ;
- Reproduction automatique de forme ;
- Obtention de surfaces complexes ;
- Usure de l'électrode (difficile à contrôler) ;
- Limité aux matériaux conducteurs et aux formes démoulables ;
- Débit maximal de copeaux: ébauche (5cm³/min) et finition (0.05cm³/min).

Applications

- Usinage de matrices de forge et moule de fonderie.
- Découpage au fil (contour de pièces, analogie avec scie à ruban).
- Moyens pratiquement réservés à l'obtention d'outillage.

Électroérosion vs Fraisage conventionnel

En partant d'un même bloc de métal, on obtient la pièce prismatique trois fois plus vite en électroérosion, et sans copeaux

Usinages LASER

Usinages LASER (Light Amplificated by Stimulated Emission of Radiation):

- découpe jusqu'à 10mm d'épaisseur maxi.
- puissance de 20 à25kW dans l'industrie (contre quelques mW dans le médical).
- Possibilité d'usiner dans des zones difficiles d'accès.
- soudage de matériaux différents.
- mauvais rendement (20%).
- nécessite des protections importantes.

4 applications principales:

- le soudage.
- le découpage.
- le traitement de surface.
- le marquage (identification de pièces...).

Usinages par faisceau d'électrons

Usinages par faisceau d'électrons: (vitesse: 2/3 de la vitesse de la lumière)

Avantages:

- outil immatériel, inusable et facilement réglable.
- soudures de qualité avec des joints étroits.
- faibles déformations (économie de matière).
- soudage de matériaux facilement oxydables (car sous vide).
- soudage d'épaisseurs importantes: 250mm maxi.
- bonnes conditions de travail (pas de bruits ni fumées).
- soudure de matériaux différents.

Inconvénients:

- faire un vide poussé: 10⁻² à 10⁻⁴Torr; 1Torr =1mm de Hg.
- émission de rayons X (enceinte en acier ou en plomb).
- faisceau sensible à E et B déviation du faisceau (on ne peut pas souder de plastiques).

Etat de surface en usinage chimique

TABLE 26.3 Surface finishes expected in chemical milling.

Surface Finish Range				
μ m	μ -in.			
1.8-4.1	(70–160)			
0.8-1.8	(30-70)			
0.8-6.4	(30–250)			
0.4-2.5	(15–100)			
	μm 1.8–4.1 0.8–1.8 0.8–6.4			

Compiled from [5] and [13].

Rms: Root mean square

Utilisation d'usinage chimique pour découper les pièces minces avec forme particulière

Épaisseur aussi petite que 0.025 mm (0.001 in) Tolérances ± 0.0025 mm (1/10000 in)

Source: Groover, Fundamentals of Modern Manufacturing, John Wiley & Sons, 2002

Utilisation d'usinage chimique pour les pièces minces

FIGURE 26.19 Parts made by chemical blanking (courtesy Buckbee-Mears St. Paul).

Comparaison des procédés

TABLE 26.4 Applicability of selected nontraditional machining processes to various work materials. For comparison, conventional milling and grinding are included in the compilation.

		Nontraditional Processes								Conventional	
	Me	Mech		Thermal				Chem	Processes		
Work Material	USM	WJC	ECM	EDM	EBM	LBM	PAC	СНМ	Milling	Grinding	
Aluminum	С	С	В	В	В	В	A	A	А	Α	
Steel	В	D	Α	Α	В	В	A	A	Α	Α	
Super alloys	C	D	A	A	В	В	Α	В	В	В	
Ceramic	Α	D	D	D	A	A	D	C	D	C	
Glass	Α	D	D	D	В	В	D	В	D	C	
Silicon			D	D	В	В	D	В	D	В	
Plastics	В	В	D	D	В	В	D	C	В	C	
Cardboard ^b	D	A	D	D			D	D	D	D	
Textiles ^c	D	A	D	D			D	D	D	D	

Compiled from [13] and other sources.

Key: A = good application, B = fair application, C = poor application, D = not applicable, and blank entries indicate no data available during compilation.

^aRefers to silicon used in fabricating integrated circuit chips.

^bIncludes other paper products.

^cIncludes felt, leather, and similar materials.

