Analyse

Chapitre 7 : Régularité elliptique

Lucie Le Briquer

17 décembre 2017

1 Rappels et fonctions harmoniques

1.1 Théorèmes

- Théorème 1

 $n \geq 2$, $\Omega \subset \mathbb{R}^n$ ouvert borné quelconque. $\mathcal{H}_0^1(\Omega)$ s'injecte de façon compacte dans $\mathcal{L}^2(\Omega)$.

Théorème 2

 $n \geqslant 2$, $\mathcal{H}^1(\mathbb{R}^n)$ s'injecte continûement dans $\mathcal{L}^{2^*}(\mathbb{R}^n)$ où $2^* = \frac{2n}{n-2}(\mathbb{R}^n)$.

Pour le Théorème 1 on utilise que si $u \in \mathcal{H}^1_0(\Omega)$ alors u prolongée par 0 sur $\mathbb{R}^n \setminus \Omega$ appartient à $\mathcal{H}^1(\mathbb{R}^n)$. \mathcal{H}^1 espace de Hilbert.

- **Définition 1** (ouvert borné \mathcal{C}^1 , régulier) -

On dit que Ω ouvert borné est C^1 s'il existe un nombre fini d'ouverts $U_i \subset \mathbb{R}^n$ et d'applications $\theta_i \colon \overline{U_i} \longrightarrow \overline{\mathcal{B}(0,1)}$ tels que :

- $\partial \Omega \subset \bigcup_{1}^{N} U_{i}$
- θ_i bijection de $\overline{U_i}$ sur $\overline{\mathcal{B}(0,1)}$, $\theta_i \in \mathcal{C}^1(\overline{U_i})$, $\theta_i^{-1} \in \mathcal{C}^1(\overline{\mathcal{B}(0,1)})$
- $\theta_i^{-1}(B_+) = U_i \cap \Omega$ où $B_+ = \mathcal{B}(0,1) \cap \{(x',x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : x_n > 0\}$
- $\theta_i^{-1}(B_0) = U_i \cap \partial\Omega$ où $B_0 = \mathcal{B}(0,1) \cap \{(x',x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : x_n = 0\}$

Remarque. Correspond à dire que le bord est localement le graphe d'une fonction C^1 .

- **Théorème 3** (d'extension) ——

Si Ω est \mathcal{C}^1 alors $\exists E_{\Omega} \colon \mathcal{H}^1(\Omega) \longrightarrow \mathcal{H}^1(\mathbb{R}^n)$ linéaire continue telle que $E_{\Omega}u|_{\Omega} = u$.

Théorème 4

Soit Ω borné \mathcal{C}^1 , $n \geqslant 2$, $\mathcal{H}^1(\Omega)$ s'injecte de façon compacte dans $\mathcal{L}^1(\Omega)$ pour tout $2 \leqslant q < \frac{2n}{n-2}$.

Preuve.

Idem à Théorème $1 \Rightarrow$ injection compacte dans $\mathcal{L}^2(\Omega)$. Mais :

$$||f_n||_{\mathcal{L}^q} \leqslant C(q,n)||f_n||_{\mathcal{L}^2}^{\alpha}||f_n||_{\mathcal{L}^{2^*}}^{1-\alpha}$$

Théorème 5 (Poincaré) —

Soit Ω un ouvert borné \mathcal{C}^1 . Il existe une constante $C(\Omega)$ telle que $\forall u \in \mathcal{H}^1(\Omega)$ avec $\int_{\Omega} u dx = 0$, on a :

$$\int_{\Omega} |u|^2 dx \leqslant C(\Omega) \int_{\Omega} |\nabla u|^2 dx$$

Remarque. Donc :

$$\int_{\Omega} \left| u - \frac{1}{|\Omega|} \int u dx \right|^{2} \leqslant C(\Omega) \int_{\Omega} |\nabla u|^{2} dx \quad \forall u \in \mathcal{H}^{1}(\Omega)$$

Preuve.

Par l'absurde, si faux alors il existe une suite (u_n) de fonctions $u_n \in \mathcal{H}^1(\Omega)$ telles que :

$$\int_{\Omega} u_n dx = 0, \quad \int_{\Omega} |u_n(x)|^2 dx = 1, \quad \int_{\Omega} |\nabla u_n|^2 dx \leqslant \frac{1}{n}$$

Alors $||u_n||_{\mathcal{H}^1}^2 = ||u_n||_{\mathcal{L}^2}^2 + ||\nabla u_n||_{\mathcal{L}^2}^2 \leqslant 1 + \frac{1}{n}$ donc (u_n) est bornée dans $\mathcal{H}^1(\Omega)$. On peut extraire une sous-suite $(u_{n'})$ qui converge dans $\mathcal{L}^2(\Omega)$ fortement. Mais $(\nabla u_{n'})$ de Cauchy dans $\mathcal{L}^2(\Omega)$ donc en fait $(u_{n'})$ converge dans $\mathcal{H}^1(\Omega)$ vers $u \in \mathcal{H}^1(\Omega)$. Alors, par convergence forte pour les normes, u vérifie:

$$\int_{\Omega} u dx = 0, \quad \int_{\Omega} |u(x)|^2 dx = 1, \quad \int_{\Omega} |\nabla u|^2 dx = 0 \ \Rightarrow \ u \text{ constante}$$

Absurde, u ne peut être constante par 1 et 2.

1.2 Fonctions harmoniques

Une fonction harmonique est une fonction vérifiant :

$$\Delta u = 0$$

Définition 2 (solution faible) —

On dit que $u \in \mathcal{H}^1(\Omega)$ est solution faible de $\Delta u = 0$ si :

$$\int_{\Omega} \nabla u \cdot \nabla \varphi dx = \sum_{i=1}^{n} \int_{\Omega} \partial_{x_i} u \partial_{x_i} \varphi dx = 0$$

 $\forall \varphi \in \mathcal{C}_0^1(\Omega).$

Remarque. Soit Ω ouvert, U ouvert borné de \mathbb{R}^n avec Ω strictement inclus dans U ($\exists V, \ V \subset U, \ V \cap \Omega$) = \emptyset). Soit $f\mathcal{L}^2(U)$ avec $\operatorname{supp} f \subset V$.

Par exemple $F \in \mathcal{L}^2(V)$ et $f = \mathbb{1}_V F \in \mathcal{L}^2(U)$.

On a vu qu'il existe $u \in \mathcal{H}_0^1(U)$ solution faible de $\Delta u = f$. Alors u vérifie $\Delta u = 0$ dans Ω .

- **Théorème 6** (Weyl) -

Si $u \in \mathcal{H}^1(\Omega)$ est harmonique (au sens faible), alors $u \in \mathcal{C}^{\infty}(\Omega)$. \triangle pas $\mathcal{C}^{\infty}(\overline{\Omega})$!

- Lemme 1 (Caccioppoli) —

Supposons $u \in \mathcal{C}^{\infty}(\Omega)$ harmonique et considérons deux boules concentriques $\mathcal{B}(r) \subset\subset \mathcal{B}(R) \subset \Omega$. Alors, $\forall c \in \mathbb{R}$, on a :

$$\int_{\mathcal{B}(r)} |\nabla u|^2 dx \leqslant \frac{K}{(R-r)^2} \int_{\mathcal{B}(R)} (u(x)-c)^2 dx$$

 \triangle $\subset\subset$: relativement compact

Remarque. Contrôle de $\|\nabla u\|_{\mathcal{L}^2}$ par $\|u\|_{\mathcal{L}^2}$ (inverse de Poincaré).

Preuve.

Introduisons $\eta \in \mathcal{C}_0^{\infty}(\mathcal{B}(R))$ telle que $\eta = 1$ sur $\mathcal{B}(r)$. Alors $\varphi = (u - c)\eta^2 \in \mathcal{C}_0^{\infty}(\Omega)$. On a :

$$\int_{\Omega} \Delta u dx = 0 \quad \text{donc} \quad \int_{\Omega} \nabla \varphi . \nabla u dx = 0$$

Or $\nabla \varphi = \eta^2 \nabla u + (u - c) 2\eta \nabla \eta$. Donc:

$$\begin{split} \int_{\Omega} \eta^2 |\nabla u|^2 dx &= \left| \int_{\Omega} (u-c) 2\eta \nabla \eta. \nabla u dx \right| \\ &\leqslant 2 \int_{\Omega} |u-x| |\eta| |\nabla \eta| \nabla u| dx \\ &\leqslant 2 \left(\int_{\Omega} \eta^2 |\nabla u|^2 \right)^{\frac{1}{2}} \left(\int_{\Omega} |u-c|^2 |\nabla \eta|^2 \right)^{\frac{1}{2}} \\ \Rightarrow &\left(\int_{\Omega} \eta^2 |\nabla u|^2 dx \right)^{\frac{1}{2}} \leqslant 2 \left(\int_{\Omega} |u-c|^2 |\nabla \eta|^2 \right)^{\frac{1}{2}} \end{split}$$

Or $\int_{\Omega} \eta^2 |\nabla u|^2 \geqslant \int_{\mathcal{B}(r)} |\nabla u|^2$, alors :

$$\int_{\Omega} |u-c|^2 |\nabla \eta|^2 \leqslant \frac{K}{(R-r)^2} \int_{\mathcal{B}(R)} |u-c|^2$$

Lemme 2

Considérons $\mathcal{B}(x_0, R) \subset \Omega$, $\forall k$, $\exists K$ tel que $\forall u \in \mathcal{C}^{\infty}(\Omega)$ avec $\Delta u = 0$ on a :

$$\int_{\mathcal{B}(x_0,R/2)} |\nabla^k u|^2 dx \leqslant K \int_{\mathcal{B}(x_0,R)} |u|^2 dx$$

 $\nabla^k \longrightarrow \partial_x^\beta, \, \beta \leqslant k.$

Preuve. Si $\Delta u = 0$ alors $\Delta \partial_x^{\alpha} u = 0$, $\forall \alpha \in \mathbb{N}^n$, on itère le lemme précédent.

Preuve. (du Théorème 6)

Soit $u \in \mathcal{H}^1(\Omega)$ solution faible de $\Delta u = 0$. Introduisons une approximation de l'identité :

$$\phi_{\varepsilon}(y) = \varepsilon^{-n} \phi\left(\frac{y}{\varepsilon}\right)$$

où $\phi \in \mathcal{C}_0^{\infty}(\mathbb{R}^n)$, $\phi \geqslant 0$, $\int \phi = 1$, supp $\phi \subset\subset \mathcal{B}(0,1)$. On pose :

$$u_{\varepsilon}(x) = \int_{\mathbb{R}^n} u(x-y)\phi_{\varepsilon}(y)dy$$

pour $x \in \Omega_{\varepsilon} = \{x \in \Omega \mid \operatorname{dist}(x, \partial \Omega) > \varepsilon\}.$

 $\phi_{\varepsilon}(y) \neq 0 \ \Rightarrow \ y \in \mathcal{B}(0,\varepsilon)$. Alors $u_{\varepsilon} \in \mathcal{C}^{\infty}(\Omega_{\varepsilon})$ et $\Delta u_{\varepsilon} = 0$. Montrons que :

$$\delta u_{\varepsilon} = 0 \iff \int \Delta u_{\varepsilon} \varphi dx = 0 \ \forall \varphi \in \mathcal{C}_0^1(\Omega_{\varepsilon})$$

On a $\int \Delta u_{\varepsilon} \varphi = -\int \nabla u_{\varepsilon} \cdot \nabla \varphi$. Or:

$$\nabla u_{\varepsilon} = \int u(y) \nabla \phi_{\varepsilon}(x - y) dy = -\int \nabla u(y) \phi_{\varepsilon}(x - y) dy$$

par définition de la dérivée au sens faible. Donc :

$$\nabla u_{\varepsilon} = \int \nabla u(x - y)\phi_{\varepsilon}(y)dy$$

et,

$$\int \nabla u_{\varepsilon} \nabla \varphi dx = \int \left(\int \nabla u(x-y) \cdot \nabla \varphi dx \right) \phi_{\varepsilon}(y) dy \underset{\text{Fubini}}{=} 0$$

 $\operatorname{car} \int \nabla u. \nabla \theta dx = 0 \ \forall \theta \in \mathcal{C}_0^1(\Omega).$

On peut appliquer le Lemme 2:

$$\int_{\mathcal{B}(R/2)} \left| \nabla^k (u_{\varepsilon} - u_{\varepsilon'}) \right|^2 \leqslant C \int_{\mathcal{B}(R)} |u_{\varepsilon} - u_{\varepsilon'}|^2 dx \quad \forall \mathcal{B}(R) \subset \subset \Omega$$

Or $u_{\varepsilon} \longrightarrow u$ dans $\mathcal{L}^{2}(\omega) \ \forall \omega \subset\subset \Omega$ donc de Cauchy. Donc on en déduit que $u \in \mathcal{H}^{k}(\mathcal{B})$ pour toute boule $\mathcal{B} \subset \Omega \Rightarrow u \in \mathcal{C}^{\infty}$.

2 Théorème de De Giorgi-Nash

2.1 Définitions et énoncé

Fixons $n \ge 2$ et considérons un ouvert borné régulier connexe. On s'intéresse à l'E.D.P. LU = 0 où $L = \operatorname{div}(A(x)\nabla \cdot)$ et $A = (a_{i,j})1 \le i,j \le n$. I.e. :

$$0 = Lu = \sum_{i=1}^{n} \sum_{j=1}^{n} \partial_i (a_{ij} \partial_j u)$$

Définition 3 (elliptique) -

On dit que L est elliptique s'il existe deux constantes $0 < \lambda, \Lambda$ telles que :

- 1. $\sup_{i,j} \|a_{i,j}\|_{\mathcal{L}^{\infty}(\Omega)} \leqslant \Lambda$
- 2. $\forall x \in \Omega, \ \forall \xi \in \mathbb{R}^n,$

$$\sum_{i,j=1}^{n} a_{i,j}(x)\xi_i\xi_j \geqslant \lambda |\xi|^2$$

Remarque. Contexte minimal.

 $1. \Rightarrow :$

$$a(u,v) = \sum_{i,j=1}^{n} \int_{\Omega} a_{i,j}(x) \partial_i u \partial_j v dx$$

est continue sur $\mathcal{H}^1 \times \mathcal{H}^1$ dans \mathbb{R} .

2. \Rightarrow a est cœrcive (pour appliquer Lax-Milgram)

Exemple. Si $A = \text{id alors } L = \Delta$.

- **Définition 4** (solution faible de Lu = 0) —

On dit que $u \in \mathcal{H}^1(\Omega)$ est une solution faible de Lu = 0 ssi $\forall \varphi \in \mathcal{C}^1_0(\Omega)$, on a :

$$\int_{\Omega} (A\nabla u) \cdot \nabla \varphi dx = 0$$

- **Théorème 7** (De Giorgi) —

Pour toute boule $\mathcal{B} \subset \Omega$, il existe $\alpha \in]0,1]$ et c>0 tels que $\forall u \in \mathcal{H}^1(\Omega)$ solution faible de Lu=0 avec L elliptique, on a :

$$||u||_{\mathcal{L}^{\infty}(\mathcal{B})} + \sup_{x,y \in \mathcal{B}, x \neq y} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}} \leqslant c||u||_{\mathcal{L}^{2}(\Omega)}$$

Preuve. (idées)

Changements non linéaire d'inconnues $v = \phi(y)$. Problème : $Lv \neq 0$ en général. Il faut étendre la notion de solution et trouver des fonctions ϕ qui respectent cette structure.

Caccioppoli ok si $\Delta u \geqslant 0$.

 $Id\acute{e}e$ 1. Considérer des sous-solutions telles que $Lu\geqslant 0$.

Idée 2. Si ϕ convexe croissante alors $L\phi(u) \ge 0$.

$$|u|^{p\to+\infty}$$
 va permettre de contrôler $||u||_{\mathcal{L}^{\infty}}$ et $\log(u) \longrightarrow \frac{|u(x)-u(y)|}{|x-y|^{\alpha}}$.

2.2 Démonstration du théorème de De Giorgi

- **Définition 5** (sous-solution) -

Soit $u \in \mathcal{C}^2(\Omega)$. Supposons $A \in \mathcal{C}^1(\Omega)^{n \times n}$. On dit que u est sous-solution si $Lu \geqslant 0$.

- Propriété 1 —

Si $\phi \colon \mathbb{R} \longrightarrow \mathbb{R}$ est \mathcal{C}^2 convexe et croissante alors $\phi(u)$ est sous-solution dès que u est sous-solution.

Preuve.

$$L\phi(u) = \sum_{i,j} \partial_i (a_{i,j} \partial_j \phi(u))$$

$$= \underbrace{\phi'(u)}_{\geqslant 0 \text{ croissante}} \times \underbrace{Lu}_{\geqslant 0 \text{ sous-sol}} + \underbrace{\phi''(y)}_{\geqslant 0 \text{ cvx}} \times \underbrace{\sum_{i,j} a_{i,j} \partial_i u \partial_j u}_{\geqslant \lambda |\nabla u|^2 \geqslant 0 \text{ ellipticité}}$$

$$\geqslant 0$$

Remarque. Extension au sens faible?

- **Définition 6** (sous-solution faible) -

Soit $u \in \mathcal{H}^1(\Omega)$. On dit que u est une sous-solution faible si :

$$\int_{\Omega} A \nabla u \cdot \nabla \varphi dx \leqslant 0 \quad \forall \varphi \in \mathcal{C}_0^1(\Omega), \text{ avec } \varphi \geqslant 0$$

- Propriété 2

Soit $\phi \colon \mathbb{R} \longrightarrow [0, +\infty[$ convexe et croissante. Soit $u \in \mathcal{H}^1(\Omega)$ une sous-solution faible. Soit $\omega \subset\subset \Omega$, si $\phi(u) \in \mathcal{L}^2(\Omega)$ alors $\phi(u) \in \mathcal{H}^1(\omega)$ et $\phi(u)$ est une sous-solution faible dans ω .

- Lemme 3 -

Soit $G \in \mathcal{C}^1(\mathbb{R})$ avec G' bornée sur \mathbb{R} . Si $u \in \mathcal{H}^1(\Omega)$ alors $G(u) \in \mathcal{H}^1(\Omega)$ et les dérivées faibles sont $\partial_j(G(u)) = G'(u)\partial_j u$.

Preuve.

 $\exists K > 0$ tel que $|G(t) - G(0)| \leq K|t| \ \forall t \in \mathbb{R}$ car G' bornée. Alors :

$$|G(u(x))| \leqslant G(0) + K|u(x)|$$

Donc $G(u) \in \mathcal{L}^2(\Omega)$ $(G(0) \in \mathcal{L}^2(\Omega) \text{ car } \Omega \text{ born\'e})$. Par ailleurs $G'(u) \in \mathcal{L}^{\infty}(\Omega) \text{ donc } G'(u)\partial_j u \in \mathcal{L}^2(\Omega)$. Il reste à voir que :

$$\forall \varphi \in \mathcal{C}_0^1(\Omega), \ \int G(y)\partial_j \varphi dx = -\int G'(y)\partial_j u \varphi dx$$

- 1. Comme Ω est régulier, $\exists E_{\Omega} \colon \mathcal{H}^{1}(\Omega) \longrightarrow \mathcal{H}^{1}(\mathbb{R}^{n})$ linéaire continue.
- 2. $\mathcal{C}_0^{\infty}(\mathbb{R}^n)$ est dense dans $\mathcal{H}^1(\mathbb{R}^n)$.

On en déduit que $C^1(\overline{\Omega})$ est dense dans $\mathcal{H}^1(\Omega)$.

Démonstration. Soit $u \in \mathcal{H}^1(\Omega)$. $E_{\Omega}u \in \mathcal{H}^1(\mathbb{R}^n) \Rightarrow \exists \theta_p \in \mathcal{C}_0^{\infty}(\mathbb{R}^n), \ \theta_p \longrightarrow E_{\Omega}u \ \text{dans} \ \mathcal{H}^1(\mathbb{R}^n)$. Alors $\theta_p|_{\Omega} \longrightarrow u \ \text{dans} \ \mathcal{H}^1(\Omega)$ (exercice). (Attention! $\overline{\mathcal{C}_0^1(\Omega)}^{\mathcal{H}^1} = \mathcal{H}_0^1(\Omega)$) Si $\theta_p \in \mathcal{C}^1(\overline{\Omega})$ alors :

$$\int G(\theta_p)\partial_j\varphi = -\int G'(\theta_p)\partial_j\theta_p\varphi$$

Puis on passe à la limite :

$$|G(\theta_p) - G(u)| \leqslant \sup_{\mathbb{R}} |G'||\theta_p - u| \qquad \Rightarrow \|G(\theta_p) - G(u)\|_{\mathcal{L}^2(\Omega)} \longrightarrow 0$$

Donc:

$$\int G(\theta_p)\partial_j\varphi \longrightarrow \int G(\theta)\partial_j\varphi$$

(par Cauchy-Schwarz ou convergence faible). Et:

$$\int G'(\theta_p)\partial_j\theta_p\varphi \longrightarrow \int G'(u)\partial_ju\varphi$$

En effet,

$$G'(\theta_p)\partial_j\theta_p\varphi - G'(u)\partial_ju\varphi = (G'(\theta_p) - G'(u))\partial_ju\varphi + G'(\theta_p)(\partial_j\theta_p - \partial_ju)\varphi$$

Puis on utilise que $\theta_p \longrightarrow u$ p.p. (quitte à extraire une sous-suite), donc :

$$\int (G'(\theta_p) - G'(u)) \partial_j u \varphi \longrightarrow 0 \quad \text{par convergence domin\'e}$$

Et on écrit :

$$\int |G'(\theta_p)(\partial_j \theta_p - \partial_j u)\varphi| \leq ||G'||_{\mathcal{L}^{\infty}} ||\theta_p - u||_{\mathcal{H}^1} ||\varphi||_{\mathcal{L}^2}$$

donc:

$$\int G'(\theta_p)(\partial_j \theta_p - \partial_j u)\varphi \xrightarrow[p \to +\infty]{} 0$$

On a:

$$\int G(u)\partial_j\varphi = -\int G'(u)\partial_j u\varphi$$

Preuve. Propriété 2

• Étape 1. On suppose que ϕ est \mathcal{C}^2 , croissante et $\phi''(y) = 0$ pour $|y| \ge R$ avec R assez grand. Le Lemme 3 implique que $\phi(u) \in \mathcal{H}^1(\Omega)$. Montrons que $\forall \varphi \in \mathcal{C}^1_0(\Omega), \ \varphi \ge 0$, on a :

$$\int_{\Omega} A \nabla \phi(u) . \nabla \varphi \leqslant 0$$

On vérifie que :

$$\int A\nabla\phi(u).\nabla\varphi = \int A\phi'(u)\nabla u.\nabla\varphi$$
$$= \int A\nabla u.\nabla(\phi'(u)\varphi) - \int \varphi\phi''(u)A\nabla(u).\nabla u$$

On a $\int \varphi \phi''(u) A \nabla u \cdot \nabla u \ge 0$ par hypothèses. Il reste à voir que :

$$\int_{\Omega} A \nabla u. \nabla \left(\phi'(u) \varphi \right) \leqslant 0(*)$$

Pour le voir, rappelons que :

$$\int_{\Omega} A \nabla u \cdot \nabla \theta dx \leqslant 0 \quad \forall \theta \in \mathcal{C}_0^1(\Omega), \ \theta \geqslant 0 \qquad (**)$$

Par densité de $C_0^1(\Omega)$ dans $\mathcal{H}_0^1(\Omega)$, vrai aussi sur $\mathcal{H}_0^1(\Omega)$. On a $\phi'(u) \in \mathcal{H}^1(\Omega)$ (lemme précédent) et $C^1(\overline{\Omega})$ dense dans $\mathcal{H}^1(\Omega)$ donc $\exists g_n \in C^1(\overline{\Omega})$ $g_n \xrightarrow[n \to +\infty]{} \phi'(u)$ dans $\mathcal{H}^1(\Omega)$. Alors $g_n \varphi \in C_0^1(\Omega)$ et $g_n \varphi \xrightarrow[n \to +\infty]{} \phi'(u) \varphi$ dans $\mathcal{H}^1(\Omega)$ car le produit par φ est continu sur $\mathcal{H}^1(\Omega)$. On applique (**) avec $\theta = g_n \varphi$ et on fait tendre n vers $+\infty$ et on obtient (*).

• Étape 2.

Lemme

Soit $\phi \colon \mathbb{R} \longrightarrow [0, +\infty[$ convexe croissante. $\exists \phi_n$ convexes croissantes \mathcal{C}^2 , affines à l'infinie telles que :

$$0 \leqslant \phi_n \leqslant \phi$$
 et $\phi_n \xrightarrow[n \to +\infty]{} \phi$ simplement

 $-\phi$ convexe croissante $\Rightarrow \phi$ a une limite en $-\infty$.

N'est pas \mathcal{C}^2 , croît en $\exp(x)$ en $+\infty$. Il faut régulariser pour obtenir \mathcal{C}^2 et affine à l'infini.

- Étape (a) : on tronque.

 $\tilde{\phi}_n(t) = \begin{cases} \phi(t) \text{ si } t \in [-n, n] \\ \phi(-n) \text{ si } t \leq n \\ a_n(t-n) + \phi(n) \text{ si } t \geq n \end{cases}$

où $a_n = \phi'_d(n)$ (dérivée à droite car ϕ convexe).

- Étape (b) :

$$\psi_{n,p}(x) = \int_{\mathbb{R}} \rho_p(x-y)\tilde{\phi}_n(y)dy = \int_{\mathbb{R}} \rho_p(y)\tilde{\phi}_n(x-y)dy$$

où $\rho_p \in \mathcal{C}_0^{\infty}(\mathbb{R})$, $\rho_p(t) = p\rho(pt)$ avec $\rho \geqslant 0$ et $\rho \in \mathcal{C}_0^{\infty}(\mathbb{R})$. Alors $\psi_{n,p} \in \mathcal{C}^{\infty}(\mathbb{R})$ est convexe, croissante et $\psi_{n,p} \geqslant 0$.

En ajoutant les hypothèses $\int_{\mathbb{R}} \rho = 1$ et $\operatorname{supp}(\rho) \subseteq]-\infty,0]$, on a de plus $\psi_{n,p} \leqslant \tilde{\phi}_n$ (on fait des moyennes locales avec tout le poids à gauche, et $\tilde{\phi}_n$ croissante). Quitte à décaler $\tilde{\phi}_n$ vers le bas (i.e. à lui retirer $\phi(n)$) on en tire $\psi_{n,p} \leqslant \phi$.

De plus $\psi_{n,p}(u) \xrightarrow[p \to +\infty]{} \tilde{\phi}_n(u) \ \forall y$. En effet :

$$\psi_{n,p}(x) - \tilde{\phi}_n(x) = p \int_R \rho(py) \left[\tilde{\phi}_n(x-y) - \tilde{\phi}_n(x) \right] dy$$

Si $x \leq -n-k$ ou $x \geq n+k$ (k tel que $\operatorname{supp}(\rho) \subseteq [-k,0]$), on a $\psi_{1,p}''(x) = 0$, et en fait $\psi_{n,p}(x) = \tilde{\phi}_n(x)$.

Il reste à montrer que $\psi_{n,p}(x) \xrightarrow[p \to +\infty]{} \tilde{\phi}_n(x)$ pour $x \in [-n-k, n+k]$.

Rappel. Par le lemme des trois pentes, une fonction convexe est localement lipschitzienne. Sur [-n-2k,n+2k], il existe c_n tel que $|\tilde{\phi}_n(t_1)-\tilde{\phi}_n(t_2)| \leq c_n|t_1-t_2|$. Donc si $x \in [-n-k,n+k]$ et $y \in \operatorname{supp}(\rho(p \cdot)) \subseteq [-k,0]$, on a :

$$|\tilde{\phi}_n(x-y) - \tilde{\phi}_n(x)| \leqslant c_n|y|$$

Donc:

$$|\psi_{n,p}(x) - \tilde{\phi}_n(x)| \le c_n \int p|y|\rho(py)dy \le \frac{c_n}{p} \left(\int_{\mathbb{R}} |z|\rho(z)dz\right)$$

– Étape (c) : on pose $\phi_n(t) = \psi_{n,\lfloor n \rfloor n}(t)$. Fin de la preuve si $\lim_{-\infty} \phi = 0$; sinon, on se ramène à ce cas.

• Étape 3.

Lemme (Cacciopoli)

Considérons une sous-solution faible positive $v \in \mathcal{H}^1(\Omega)$ et un ouvert $\omega \subset\subset \Omega$. Il existe $C = C(\lambda, \Lambda, n, \omega, \Omega)$ tel que :

$$\int_{\Omega} |\nabla v|^2 dx \leqslant C \int_{\Omega} v^2 dx$$

De plus si $\omega = \mathcal{B}(x_0, \rho)$ et $\Omega = \mathcal{B}(x_0, r)$ avec $0 < \rho < r$, on a $C \leqslant \frac{K(\lambda, \Lambda, n)}{(r - \rho)^2}$

Preuve.

$$v \text{ sous-solution } \Leftrightarrow \forall \varphi \in \mathcal{C}^1_0(\Omega), \ \varphi \geqslant 0, \ \int_{\Omega} (A \nabla u) \nabla \varphi \leqslant 0$$

$$\Leftrightarrow \ \forall \varphi \in \mathcal{H}^1_0(\Omega), \ \varphi \geqslant 0, \ \int_{\Omega} (A \nabla u) \nabla \varphi \leqslant 0 \qquad \text{par densit\'e}$$

Soit $\eta \in \mathcal{C}_0^{\infty}(\Omega)$ telle que $\eta(x) = 1$ si $x \in \omega$). Alors $\varphi = \eta^2 v \in \mathcal{H}_0^1(\Omega)$ (à vérifier en exercice). Donc :

$$\int A\nabla v.\nabla(\eta^2 v)dx \leqslant 0 \qquad (\eta^2 v \geqslant 0)$$

Ainsi,

$$\int \eta^2 A \nabla v. \nabla v dx \leqslant -2 \int \eta v A \nabla v. \nabla \eta dx$$

Puis on écrit :

1.

$$\int_{\Omega} \eta^2 A \nabla v \cdot \nabla v dx \underset{\text{ellipticit\'e}}{\geqslant} \lambda_{\Omega} \eta^2 |\nabla v|^2 dx$$

2.

$$\left| \int \eta v A \nabla v . \nabla \eta dx \right| \lesssim \left(\int \underbrace{\eta^2 |A \nabla v|^2}_{\leqslant \Lambda^2 \eta^2 |\nabla v|^2} \right)^{\frac{1}{2}} \left(v^2 |\nabla \eta|^2 \right)^{\frac{1}{2}}$$

D'où:

$$\lambda \left(\int_{\Omega} \eta^{2} |\nabla v|^{2} \right) \leqslant \Lambda \left(\int_{\Omega} \eta^{2} |\nabla v|^{2} \right)^{\frac{1}{2}} \left(\int_{\Omega} v^{2} |\nabla \eta|^{2} \right)^{\frac{1}{2}}$$

$$\Rightarrow \lambda \left(\int_{\Omega} \eta^{2} |\nabla v|^{2} \right)^{\frac{1}{2}} \leqslant \Lambda \left(\int_{\Omega} \eta^{2} |\nabla v|^{2} \right)^{\frac{1}{2}}$$

Donc:

$$\int_{\omega} |\nabla v|^2 \leqslant \int_{\Omega} \eta^2 |\nabla v|^2 \leqslant \left(\frac{\Lambda}{\lambda}\right)^2 \int_{\Omega} v^2 |\nabla \eta|^2 \leqslant \|\nabla \eta\|_{\mathcal{L}^{\infty}}^2 \left(\frac{\Lambda}{\lambda}\right)^2 \left(\int_{\Omega} v^2\right)$$

D'où le résultat voulu : si $\omega = \mathcal{B}(x_0, \rho)$, $\Omega = \mathcal{B}(x_0, r)$ alors $\exists \eta$ convenant et telle que $\|\nabla \eta\|_{\mathcal{L}^{\infty}(\Omega)} \leq \frac{2}{r-\rho}$

• Étape 4. Fin de la démonstration.

Soit $\phi \colon \mathbb{R} \longrightarrow \mathbb{R}^+$ convexe, croissante, $u \in \mathcal{H}^1(\Omega)$ sous-solution faible telle que $\phi(u) \in \mathcal{L}^2(\Omega)$. Montrons que $\forall \omega \subset\subset \Omega$, $\phi(u \in \mathcal{H}^1(\omega))$ est sous-solution faible dans ω .

Par l'étape 2, il existe ϕ_n convexe croissante, \mathcal{C}^2 , affine à l'infini telle que $0 \leqslant \varphi_n \leqslant \phi$ et $\phi_n \xrightarrow[n \to +\infty]{} \phi$ simplement.

Par l'étape 1, $\phi_n(u)$ est sous-solution faible, et positive car ϕ_n à valeurs dans \mathbb{R}^+ . Par l'étape 3, il existe c tel que $\forall n \in \mathbb{N}$:

$$\int_{\omega} |\nabla \phi_n(u)|^2 \leqslant c \int_{\Omega} |\phi_n(u)|^2 \leqslant c \in_{\Omega} |\phi(u)|^2$$

Par ailleurs $\phi_n(u) \xrightarrow[n \to +\infty]{} \phi(u)$ dans $\mathcal{L}^2(\Omega)$ donc dans $\mathcal{L}^2(\omega)$, par convergence dominée. Montrons que $\phi(u) \in \mathcal{H}^1(\omega)$.

– Preuve 1. $\mathcal{H}^1(\omega)$ est un espace de Hilbert. $(\phi_n(u))$ est une suite bornée dans un Hilbert donc on peut en extraire une sous-suite qui converge faiblement. Elle converge fortement dans $\mathcal{L}^2(\omega)$ par ce qui précède, doc elle converge fortement par unicité de la limite dans $\mathcal{L}^2(\omega)$ (qui se démontrer par densité de \mathcal{C}_0^{∞} dans \mathcal{L}^2).

- Preuve 2. $f \in \mathcal{H}^1(\omega)$ ssi $f \in \mathcal{L}^2(\omega)$ et $\exists c > 0$ tel que $\forall \varphi \in \mathcal{C}^1_0(\omega)$ on ait :

$$\left| \int f \partial_f \varphi \right| \leqslant C \|\varphi\|_{\mathcal{L}^2} \qquad \text{(critère de dualité)}$$

Donc si $f_n \xrightarrow[n \to +\infty]{} f$ dans \mathcal{L}^2 et (f_n) bornée dans \mathcal{H}^1 , on a $f \in \mathcal{H}^1$ car :

$$\left| \int f \partial_j \varphi \right| = \left| \lim \int f_n \partial_j f_n \varphi \right| \leqslant \overline{\lim} \|\partial_j f_n\|_{\mathcal{L}^2} \|\varphi\|_{\mathcal{L}^2} \leqslant C \|\varphi\|_{\mathcal{L}^2}$$

Donc $\phi(u) \in \mathcal{H}^1(\omega)$. De plus :

$$\int A \nabla \phi_n(u). \nabla \varphi \leqslant 0 \quad \Rightarrow \quad \int A \nabla \phi(u). \nabla \varphi \leqslant 0$$

Donc $\phi(u)$ est sous-solution faible.

2.3 Itérations de Moser

Théorème 8 -

Soit $x_0 \in \Omega$ et $0 < \rho < r$ avec $\mathcal{B}(x_0, r) \subset \Omega$). $\exists c > 0$ tel que pour toute sous-solution positive $v \in \mathcal{H}^1(\Omega)$,

$$||v||_{\mathcal{L}^1(\mathcal{B}(x_0,l))} \le c||v||_{\mathcal{L}^1(\mathcal{B}(x_0,r))}$$

Remarque. La moitié de De Giorgi

Preuve. Pour $j \in \mathbb{N}$, on pose $R_j = \rho + 2^{-j}(r - \rho)$. Alors :

$$\mathcal{B}(x_0, \rho) \subset \mathcal{B}_{j+1} \subset \mathcal{B}_j \subset \ldots \subset \mathcal{B}(x_0, r)$$
 où $\mathcal{B}_j = \mathcal{B}(x_0, R_j)$

Moser : il existe k > 1 tel que $v_{j+1} = v^{k^{j+1}}$ estimé dans $\mathcal{L}^2(\mathcal{B}_j)$ en fonction de v^{k^k} dans $\mathcal{L}^2(\mathcal{B}_j)$.

Lemme

Soit
$$k \in \left[1, \frac{n}{n-2}\right]$$
 si $n \geqslant 3, k \in [1, +\infty[$ si $n = 2$. Il existe $\gamma > 0$ tel que $\forall j \in \mathbb{N}, \ \forall v \in \mathcal{H}^1(\mathcal{B}_j)$:

$$||v^k||_{\mathcal{L}^2(\mathcal{B}_j)}^2 \leqslant \gamma ||\nabla v||_{\mathcal{L}^2(\mathcal{B}_j)}^{2k} + \gamma ||v||_{\mathcal{L}^2(\mathcal{B}_j)}^{2k}$$

Preuve. On a vu que, si $n \geqslant 3$, $\mathcal{H}^1(\mathbb{R}^n) \hookrightarrow \mathcal{L}^p(\mathbb{R}^n) \ \forall p \in \left[2, \frac{2n}{n-2}\right]$ et $\mathcal{H}^1(\mathbb{R}^2) \hookrightarrow \mathcal{L}^p(\mathbb{R}^n) \ \forall p \in [2, +\infty[$ (pas vu en cours).

Pour $\mathcal{H}^1(\Omega)$ avec Ω régulier, on a les mêmes injections car il existe un opérateur de prolongement $E_{\Omega} \colon \mathcal{H}^1(\Omega) \longrightarrow \mathcal{H}^1(\mathbb{R}^n)$ tel que $E_{\Omega} f|_{\Omega} = f$. En particulier, $\exists E_{\mathcal{B}(x_0,1)} \colon \mathcal{H}^1(\mathcal{B}(x_0,1)) \longrightarrow \mathcal{H}^1(\mathbb{R}^n)$. On en déduit $E_{\mathcal{B}_j}$ en composant $E_{\mathcal{B}(x_0,1)}$ avec :

$$D_k : \begin{cases} \mathcal{H}^1(\mathcal{B}_j) & \longrightarrow & \mathcal{H}^1(\mathcal{B}(x_0, 1)) \\ f & \longmapsto & f(x_0 + R_j(x - x_0)) \end{cases}$$

On vérifie que $\sup_{j} \|D_j\|_{\mathcal{L}(\mathcal{H}^1(\mathcal{B}_j),\mathcal{H}^1(\mathcal{B}(x_0,1)))} < +\infty$. Donc $\|v\|_{\mathcal{L}^{2k}(\mathcal{B}_j)} \leqslant c\|v\|_{\mathcal{H}^1(\mathcal{B}_j)}$.

Lemme

Soit k comme dans le lemme précédent et $v \in \mathcal{H}^1(\mathcal{B}_j)$ sous-solution faible positive. Alors $v^k \in \mathcal{H}^1(\mathcal{B}_{j+1})$ et v^k sous-solution faible positive. De plus, $\exists c$ tel que $\forall j$,

$$||v^k||_{\mathcal{L}^2(\mathcal{B}_{j+1})} \leqslant c2^{kj}||v||_{\mathcal{L}^2(\mathcal{B}_j)}$$

Preuve. Soit $\phi(t) = 0$ si $t \leq 0$ et t^k sinon. ϕ est convexe croissante (pas \mathcal{C}^2 si n > 4 quelque soit k) et $v^k = \phi(v)$. Par hypothèse, $v \in \mathcal{H}^1(\mathcal{B}_j)$ donc $v \in \mathcal{L}^{2k}\mathcal{B}_j$, alors $\phi(v) \in \mathcal{L}^2(\mathcal{B}_j)$ et donc $\phi(v) \in \mathcal{H}^1(\mathcal{B}_{j+1})$. Alors par le lemme précédent :

$$\begin{split} \|v^k\|_{\mathcal{L}^2(\mathcal{B}_{j+1})}^2 &\leqslant \gamma \|\nabla v\|_{\mathcal{L}^2(\mathcal{B}_{j+1})}^{2k} + \gamma \|v\|_{\mathcal{L}^2(\mathcal{B}_{j+1})}^{2k} \\ &\leqslant \gamma c_j^k \|v\|_{\mathcal{L}^2(\mathcal{B}_{j+1})}^{2k} + \gamma \|v\|_{\mathcal{L}^2(\mathcal{B}_{j+1})}^{2k} \qquad \text{où } c_j \leqslant \frac{K}{(r_i - r_{i+1})} \end{split}$$

Donc $c_j \leqslant \frac{1}{(2^{-j}(r-\rho))^2}$. D'où :

$$\|v^k\|_{\mathcal{L}^2(\mathcal{B}_{j+1})}^2 \le \left(\gamma \frac{A^k}{(r-\rho)^2} + 1\right) 2^{kj} \|v\|_{\mathcal{L}^2(\mathcal{B}_j)}^{2k}$$

Ce qui termine la preuve du lemme. Revenons à la preuve du théorème. Posons $N_j = ||v||_{\mathcal{L}^{2n^j}(\mathcal{B}_j)}$. Alors $N_0 = ||v||_{\mathcal{L}^2(\mathcal{B}_0)}$ et $N_\infty \sim ||v||_{\mathcal{L}^\infty(\mathcal{B}(x_0,\rho))}$ (heuristique à montrer). Posons $v_j = v^{k^j}$, alors $N_j = ||v_j||_{\mathcal{L}^2(\mathcal{B}_j)}^{\frac{1}{k^j}}$ et $v_{j+1} = v_j^k$. Alors par le second lemme :

$$||v_{j+1}||^2_{\mathcal{L}^2(\mathcal{B}_{j+1})} \le C2^{kj} ||v_j||^{2k}_{\mathcal{L}^2(\mathcal{B}_j)}$$

Donc:

$$N_{j+1}^2 = \|v_{j+1}\|_{\mathcal{L}^2(\mathcal{B}_{j+1})}^{\frac{2}{k^{j+1}}} \leqslant (C2^{kj})^{\frac{1}{k^{j+1}}} \underbrace{\|v_j\|_{\mathcal{L}^2(\mathcal{B}_j)}^{\frac{2}{k^{j}}}}_{=N_i^2}$$

Ainsi:

$$N_{j+1}^2 \leqslant (C2^{kj})^{\frac{1}{k^{j+1}}} N_j^2 \qquad \Rightarrow \qquad N_j^2 \leqslant \prod_{k=1}^{+\infty} (c2^{pk})^{\frac{1}{k^p}} N_0^2$$

Ce produit est fini car:

$$\log \left(\prod_{p=1}^{+\infty} (c2^{pk})^{\frac{1}{k^p}} \right) = \sum_{p=1}^{+\infty} \frac{1}{k^p} \log(c2^{pk}) < +\infty$$

Donc $N_j \leq CN_0 \ \forall j$. Montrons que ceci implique que $v \in \mathcal{L}^{\infty}(\mathcal{B}(x_0, \rho))$. Posons $M = 2CN_0$ et $A = \{x \in \mathcal{B}(x_0, \rho) \mid v(x) \geqslant M\}$. Alors :

$$N_j^{2k^j}\int_{\mathcal{B}_j}v^{2k^j}dx\geqslant \int_A M^{2k^j}dx=|A|M^{2k^j}$$

Or $N_j^{2k^j} \le (CN_0)^{2k^j} = (\frac{M}{2})^{2k^j}$. Donc :

$$|A|M^{2k^j} \leqslant M^{2k^j} 2^{-2k^j}$$
 i.e. $\forall j, |A| \leqslant 2^{-2k^j} \xrightarrow[j \to +\infty]{} 0$

D'où
$$|A| = 0$$
 i.e. $||v||_{\mathcal{L}^{\infty}(\mathcal{B}(x_0, \rho))} \leq M = 2CN_0 \leq 2C||v||_{\mathcal{L}^2(\mathcal{B}(x_0, r))}$