Electrical Network Analysis (EE-241)

Assignment # 5, Spring 2021

Submission Deadline: Thursday July 01, 2021

Maximum Marks: 100

- 1. (a) State the complex frequency or frequences \mathbf{s} as well as \mathbf{s}^* associated with each function: [4]
 - i. $f(t) = 5e^{-10t}\cos 50t$
 - ii. $q(t) = (4e^{-2t} e^{-t})\cos(5t 93^{\circ})$
 - iii. $h(t) = 7e^{-9t}\sin(100t + 9^o)$
 - iv. $i(t) = 2\sin 60t$
 - (b) Use real constants A, B, θ, ϕ etc. to construct the general form of a real time function characterized by the following frequency components: [3]
 - i. $(10 j3) s^{-1}$
 - ii. $0.25 \ s^{-1}$
 - iii. $0 \ s^{-1}, 1 \ s^{-1}, -j \ s^{-1}, (1+j) \ s^{-1}$
 - (c) The following voltage sources $Ae^{Bt}\cos(Ct+\theta)$ are connected (one at a time) to a 280 Ω resistor. Calculate the resulting current at t=0,0.5 and 1s assuming passive sign convention. [3]
 - i. $A = 1 \text{ V}, B = 0.2 \text{ Hz}, C = 0, \theta = 45^{\circ}.$
 - ii. $A = 285 \,\text{mV}, B = -1 \,\text{Hz}, C = 2 \,\text{rad/s}, \theta = -45^{\circ}$
- 2. (a) For the circuit shown in Figure 4, the voltage source is chosen such that it can be represented by the complex frequency domain function $\mathbf{V}e^{st}$, with $\mathbf{V} = 2.5/-20^o$ and $s = 1+j100 \ s^{-1}$. Calculate
 - i. **s***
 - ii. the time-domain representation of voltage v(t)
 - iii. the current i(t)
 - (b) With regard to the circuit depicted in Figure 4, determine the time-domain voltage v(t) which corresponds to a frequency domain current of $5/30^{\circ}$ A for a complex frequency of $s = (-3+j) \,\mathrm{s}^{-1}$.

Figure 1: Circuit diagram for problem 2

3. (a) Find the **Laplace Transform** of g(t), h(t) and k(t) shown in Figure 2.

[6]

Figure 2: Functions for problem 3a

(b) Show that the **Laplace Transform** of the square wave is $F(s) = \frac{1}{s(1+e^{-as})}$. [4]

- 4. (a) Obtain an expression for $\mathbf{G}(s)$ if g(t) is given by
 - i. $[5u(t)]^2 u(t)$
 - ii. $3e^{-2t}u(t) + 5u(t)$
 - iii. tu(2t)
 - iv. $\delta(t) + u(t) tu(t)$
 - v. $2e^{-t}u(t) + 3u(t)$
 - (b) Let $i_1 = 20e^{-3t}\cos 4t$ A and $i_2 = 30e^{-3t}\sin 4t$ A in the circuit of Figure 3. Work in the frequency domain to find \mathbf{V}_x and then find v_x . [5]

[5]

Figure 3: Circuit diagram for problem 4b

- 5. (a) Prove that $\frac{d^2v}{dt^2} \Leftrightarrow s^2 \mathbf{V}(s) sv(0^-) v'(0^-)$ [2]
 - (b) Prove that $\int_{0^{-}}^{t} v(x)dx \Leftrightarrow \frac{\mathbf{V}(s)}{s}$ [2]
 - (c) Prove that $f(t-a)u(t-a) \Leftrightarrow e^{-as} \mathbf{F}(s)$
 - (d) Show that $\lim_{t\to 0^+} f(t) = \lim_{s\to\infty} [\mathbf{sF(s)}]$ [2]
 - (e) Show that $\lim_{t\to\infty} f(t) = \lim_{s\to 0} [\mathbf{sF(s)}]$ [2]
- 6. (a) Apply the **initial or the final-value theorem** as appropriate to determine $f(0^+)$ and $f(\infty)$ for the following functions:

i.
$$\frac{1}{s^2(s+4)^2(s+6)^3} - \frac{2s^2}{s} + 9$$
 [2]

ii.
$$\frac{4s^2+1}{(s+1)^2(s+2)^2}$$
 [2]

- (b) Find the **Inverse Laplace Transform** of the functions $\frac{s+3}{s^2+7s+10}$ and $\frac{10}{(s^2+6s+10)(s+2)}$ [3+3]
- 7. (a) Assuming zero initial conditions in Figure 4, find i(t) and v(t).
 - i. In time-domain. [3]
 - ii. Working initially in the s-domain and then converting back to time domain. [3]

Figure 4: Circuit diagram for problem 7a

(b) In the circuit of Figure 5, $v(0^-) = 1.2 \text{ V}$ and $i(0^-) = 0.4 \text{ A}$. Find v(t) and i(t) for t > 0. [4]

Figure 5: Circuit diagram for problem 7b

8. (a) Using either **Thevenin's** or **Norton's Theorem**, determine an equivalent network for the terminals a - b in the Figure 6 for zero initial conditions. What will be the current in a 1 F capacitor if connected between terminals a - b? [2]

Figure 6: Circuit diagram for problem 8a

(b) For the circuit of Figure 7, the switch S is closed at t = 0, a steady state having previously existed. Find the expression for the current in the resistor R for t > 0. You may use any Network Theorem. [4]

Figure 7: Circuit diagram for problem 8b

[4]

(c) For the circuit shown in Figure 8, obtain an expression for $v_x(t)$.

Figure 8: Circuit diagram for problem 8c

9. (a) Let
$$h(t) = 2e^{-3t}u(t)$$
 and $x(t) = u(t) - \delta(t)$. Find $y(t) = h(t) \star x(t)$ by [2]

- i. using convolution in the time domain
- ii. finding H(s) and X(s) and then obtaining inverse Laplace Transform of H(s).X(s)
- (b) If a network is found to have the transfer function $H(s) = \frac{s}{s^2 + 8s + 7}$, determine the s-domain output voltage for $v_{in}(t)$ equal to [4]
 - i. 3u(t) V
 - ii. $25e^{-2t}u(t)$ V
 - iii. 4u(t+1) V
 - iv. $2 \sin 5t V$

- (c) A particular network is known to be characterized by the transfer function $H(s) = \frac{s+1}{s^2+23s+60}$. Determine the critical frequencies of the output if the input is [4]
 - i. $2u(t) + 4\delta(t)$
 - ii. $-5e^{-t}u(t)$
 - iii. $4te^{-2t}u(t)$
 - iv. $5\sqrt{2}e^{-10t}\cos 5t \ u(t)$
- 10. (a) For each of the two networks shown in Figure 9, write the **Transfer Functions** H(s) and determine their **poles** and **zeros**. [2]

Figure 9: Circuit diagrams for problem 10a

- (b) The **Transfer Function** of a circuit is $H(s) = \frac{-5s}{s^2 + 15s + 50}$. Determine the impulse response and step response of this circuit. [4]
- (c) Design a circuit which produces the transfer function $H(s) = \frac{V_{out}}{V_{in}}$ equal to [4]
 - i. 5(s+1)
 - ii. $\frac{5}{6+1}$
 - iii. $5\frac{s+1}{s+2}$
 - iv. $3\frac{s+50}{(s+75)^2}$