Dual-Feasible Dictionaries

Z325FU04 - Modèles Linéaires de la Recherche Opérationnelle Sensitivity Analysis

Hervé Kerivin, PhD

Université Clermont Auvergne Institut d'Informatique LIMOS UMR 6158 CNRS Clermont-Ferrand

Office: ISIMA B133

kerivin@isima.fr

An Example: Primal LP Problem

Initial dictionary

Dual-Feasible Dictionaries

•00000

First-iteration dictionary (x₃ enters, x₁ leaves)

Dual-Feasible Dictionaries

000000

An Example: Dual LP Problem

$$\begin{array}{rcl}
\min w = & 5y_1 & + & 3y_2 \\
s.t. & 3y_1 & + & y_2 & \ge & 4 \\
& & 2y_1 & - & 3y_2 & \ge & -13 \\
& & 5y_1 & + & 2y_2 & \ge & 7 \\
& & & y_1, y_2 & \ge & 0
\end{array}$$

Associated dual original dictionary

Associated dual first-iteration dictionary

Mirror Images: Initial Dictionaries

Primal

$$x_1 = 5 - 3x_3 - 2x_4 - 5x_5$$

 $x_2 = 3 - x_3 + 3x_4 - 2x_5$
 $z = 4x_3 - 13x_4 + 7x_5$

Dual

$$y_3 = -4 + 3y_1 + y_2$$

$$y_4 = 13 + 2y_1 - 3y_2$$

$$y_5 = -7 + 5y_1 + 2y_2$$

$$-w = -5y_1 - 3y_2$$

Mirror Images: First-Iteration Dictionaries

Primal

000000

Dual

$$y_4 = \frac{47}{3} + \frac{2}{3}y_3 - \frac{11}{3}y_2$$

$$y_5 = -\frac{1}{3} + \frac{5}{3}y_3 + \frac{1}{3}y_2$$

$$y_1 = \frac{4}{3} + \frac{1}{3}y_3 - \frac{1}{3}y_2$$

$$-w = -\frac{20}{3} - \frac{5}{3}y_3 - \frac{4}{3}y_2$$

Mirror Images

Primal dictionary

Dual-Feasible Dictionaries

000000

$$\frac{x_r = \overline{b}_r - \sum\limits_{s \in N} \overline{a}_{rs} x_s}{z = \overline{d} + \sum\limits_{s \in N} \overline{c}_s x_x} \qquad (r \in B)$$

with $x_r(r \in B)$ basic and $x_s(s \in N)$ nonbasic

Dual dictionary

$$\frac{y_s = -\overline{c}_s + \sum\limits_{r \in B} \overline{a}_{rs} y_r}{-w = -\overline{d} - \sum\limits_{r \in B} \overline{b}_r x_r} \qquad (s \in N)$$

with $y_s(s \in N)$ basic and $y_r(r \in B)$ nonbasic

Dual-Feasibility

Dual-feasible dictionary

The primal dictionary

$$\frac{x_r = \overline{b}_r - \sum_{s \in N} \overline{a}_{rs} x_s}{z = \overline{d} + \sum_{s \in N} \overline{c}_s x_x} \qquad (r \in B)$$

is dual-feasible if the corresponding dual dictionary

$$\frac{y_s = -\overline{c}_s + \sum_{r \in B} \overline{a}_{rs} y_r}{-w = -\overline{d} - \sum_{r \in B} \overline{b}_r x_r}$$
 (s \in N)

is feasible

The primal dictionary is dual-feasible if and only if $\overline{c}_s \leq 0$ for all $s \in N$

Main Idea

- A dual variable y_k is basic in (2) if and only if the corresponding primal variable x_k is nonbasic in (1)
- A dual dictionary arising from (2) by a single pivot, with y_i entering and y_j leaving the basis, will correspond to the primal dictionary arising from (1) by a single pivot, with x_i leaving and x_j entering the basis

Main idea

- Begin with a dual-feasible dictionary (1)
- Iteration
 - choose a subscript $i \in B$ so that

$$\overline{b}_i < 0$$

• find a subscript $j \in N$ so that

$$\overline{a}_{ij} < 0$$
 and $\frac{\overline{c}_j}{\overline{a}_{ij}} \le \frac{\overline{c}_s}{\overline{a}_{is}}$ for all $s \in N$ with $\overline{a}_{is} < 0$

• pivot with x_i leaving and x_i entering the basis

An Example

Primal LP problem

Dual-Feasible Dictionaries

Primal dictionary (dual-feasible)

Correspondent dual dictionary

An Iteration

- Leaving variable
 - basic variable x_1 : $\overline{b}_1 = -4$
 - basic variable x_3 : $\overline{b}_3 = 3$
- Entering variable
 - nonbasic variable x_2 : $\frac{\overline{c}_2}{\overline{a}_{12}} = \frac{4}{3}$
 - nonbasic variable x_4 is ignored since $\overline{a}_{14} = 11 \ge 0$
 - nonbasic variable x_5 : $\frac{\overline{c}_5}{\overline{a}_{15}} = \frac{1}{1} = 1$
- Pivot with x_5 entering and x_1 leaving the basis yields the dual-feasible dictionary

Termination

• If no $i \in B$ satisfies

$$\overline{b}_i < 0$$

then, dictionary (1) is not only dual-feasible but also feasible; it describes an optimal solution $x_1^*, x_2^*, \dots, x_{n+m}^*$ by

- $x_{e}^{*} = 0$ for all $s \in N$
- $x_r^* = \overline{b}_r$ for all $r \in B$
- If no $j \in N$ satisfies

$$\overline{a}_{ij} < 0 \text{ and } \frac{\overline{c}_{j}}{\overline{a}_{ij}} \leq \frac{\overline{c}_{s}}{\overline{a}_{is}} \text{ for all } s \in N \text{ with } \overline{a}_{is} < 0$$

then the dual problem is unbounded, and the primal problem is infeasible

Four Questions

- How is the leaving variable found?
- How is the entering variable found?
- **1** How are the numbers \overline{b}_r updated?
- **4** How are the numbers \overline{c}_s updated?

Dual-feasible dictionary in matrix terms

We write

•
$$x_B^* = B^{-1}$$

$$\bullet \ \overline{c}_N = c_N - c_B B^{-1} A_N$$

$$A = \begin{pmatrix} -6 & 1 & 2 & 4 & 1 & 0 & 0 \\ 3 & -2 & -1 & -5 & 0 & 1 & 0 \\ -2 & 1 & 0 & 2 & 0 & 0 & 1 \end{pmatrix} \quad b = \begin{pmatrix} 14 \\ -25 \\ 14 \end{pmatrix}$$
$$c = \begin{pmatrix} -5 & -3 & -3 & -6 & 0 & 0 & 0 \end{pmatrix}$$

Initialization

We may initialize by

$$x_B^* = \begin{pmatrix} x_5^* \\ x_6^* \\ x_7^* \end{pmatrix} = \begin{pmatrix} 14 \\ -25 \\ 14 \end{pmatrix}$$

$$\overline{c}_N = \begin{pmatrix} \overline{c}_1 & \overline{c}_2 & \overline{c}_3 & \overline{c}_4 \end{pmatrix} = \begin{pmatrix} -5 & -3 & -3 & -6 \end{pmatrix}$$

Step 1

How is the leaving variable found?

• Is there a subscript $i \in B$ so that

$$\overline{b}_i < 0$$
?

• The numbers $\overline{b}_r(r \in B)$ are readily available

STEP 1

- If $x_R^* > 0$, then stop: x^* is an optimal solution
- Otherwise, choose the leaving variable: it may be any basic variable x_i with $x_i^* < 0$
- Our example: x_6 is the leaving variable

Step 2

How is the entering variable found? (part 1)

• Is there a subscript $j \in N$ so that

$$\overline{a}_{ij} < 0 \text{ and } \frac{\overline{c}_j}{\overline{a}_{ij}} \leq \frac{\overline{c}_s}{\overline{a}_{is}} \text{ for all } s \in N \text{ with } \overline{a}_{is} < 0$$

First m rows of the dual-feasible dictionary

$$x_B = B^{-1}b - B^{-1}A_Nx_N$$

- If the leaving variable x_i appears in the pth position in the basis heading, then the desired numbers \overline{a}_{is} composed the pth row of $B^{-1}A_N$
- Let v be the pth row of B^{-1} ; the pth row of $B^{-1}A_N$ equals vA_N
- Vector v may be found by solving the system

$$vB = e$$

with e standing for the pth row of the $m \times m$ identity matrix

Step 2 (cont'd)

STEP 2

Let p be so that x_i appears in the pth position in the basis heading. Let e stand for the pth row of the $m \times m$ identity matrix.

- Solve the system vB = e
- Compute $w_N = vA_N$

Each \overline{a}_{is} is a component w_s of this vector w_N

Step 2 (Our Example)

- B = I
- p = 2
- The system vB = e is

$$\begin{pmatrix} v_1 & v_2 & v_3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$$

- $v = (0 \ 1 \ 0)$
- The vector $w_N = vA_N$ is

$$(w_1 \quad w_2 \quad w_3 \quad w_4) = (0 \quad 1 \quad 0) \begin{pmatrix} -6 & 1 & 2 & 4 \\ 3 & -2 & -1 & -5 \\ -2 & 1 & 0 & 2 \end{pmatrix}$$

•
$$w_N = (3 -2 -1 -5)$$

Step 3

How is the entering variable found? (part 2)

- The numbers $\overline{a}_{is}(s \in N)$ are known (i.e., $\overline{a}_{is} = w_s$)
- Find the nonbasic variable x_i so that
 - $w_i < 0$, and
 - $\min\{\frac{\overline{c}_s}{w_s}: s \in N \text{ with } w_s < 0\} = \frac{\overline{c}_j}{w_j}$

STEP 3

Let *J* be the set of those nonbasic variables x_i for which $w_i < 0$.

- If $J = \emptyset$, then stop: the problem is infeasible
- Otherwise, find the x_j in J that minimizes $\frac{\overline{c}_j}{w_j}$, and let it be the entering variable

Step 3 (Our Example)

 $J = \{x_2, x_3, x_4\}$

- nonbasic variable x_2 : $\frac{\overline{c}_2}{w_2} = \frac{-3}{-2} = \frac{3}{2}$
- nonbasic variable x_3 : $\frac{\overline{c}_3}{w_4} = \frac{-3}{-1} = 3$
- nonbasic variable x_4 : $\frac{\overline{c}_3}{w_4} = \frac{-6}{-5} = \frac{6}{5}$
- x_4 is the entering variable

Step 4

How are the numbers $\overline{b}_r(r \in B)$ updated?

First m rows of the dual-feasible dictionary

$$x_B = B^{-1}b - B^{-1}A_Nx_N$$

= $x_B^* - B^{-1}A_Nx_N$
= $\overline{b}_B - B^{-1}A_Nx_N$

- The numbers $\overline{b}_r(r \in B)$ can be updated as for the revised simplex method
- Having determined the entering variable x_j and therefore the entering column a
 - solve the system Bd = a
 - replace x_B^* by $x_B^* td$ with $t = \frac{\overline{b}_i}{\overline{a}_{ij}} = \frac{x_i^*}{w_j}$

Step 4

Solve the system Bd = a with a standing for the entering column

Step 4 (Our Example)

Entering column

$$a = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix}$$

• The system Bd = a is

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix}$$

•
$$d = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix}$$

Step 5

How are the numbers $\overline{c}_s(s \in N)$ updated?

The z-row can be recorded as

Dual-Feasible Dictionaries

$$z = \overline{d} + \overline{c}_j x_j + \sum_{s \in N \setminus \{s\}} \overline{c}_s x_s$$

Pivoting: substituting for x_i from

$$x_j = \frac{1}{\overline{a}_{ij}}(\overline{b}_i - x_i - \sum_{s \in N \setminus \{s\}} \overline{a}_{is}x_s)$$

The formula for z get updated into

$$z = \overline{d} + \overline{c}_j \frac{1}{\overline{a}_{ij}} (\overline{b}_i - x_i - \sum_{s \in N \setminus \{s\}} \overline{a}_{is} x_s) + \sum_{s \in N \setminus \{s\}} \overline{c}_s x_s$$

• Writing w_s for each $\overline{a}_{is}(s \in N)$, we obtain

$$z = (\overline{d} + \overline{b}_i \frac{\overline{c}_j}{\overline{w}_j}) - \frac{\overline{c}_j}{\overline{w}_j} x_i + \sum_{s \in N \setminus \{s\}} (\overline{c}_s - w_s \frac{\overline{c}_j}{\overline{w}_j}) x_s$$

Step 5 (cont'd)

- New coefficient $\overline{c}_i = -rac{\overline{c}_j}{\overline{w}_i}$
- for each $s \in N = \{j\}$, new coefficient is $\overline{c}_s + \overline{c}_i w_s$

Step 5

- Set the value x_j^* at $t = \frac{x_j^*}{w_j}$
- Replace the values x_B^* by $x_B^* td$
- Replace the leaving column of B by the entering column
- In the basis heading, replace the leaving variable by the entering variable
- ullet Set $\overline{c}_i = -rac{\overline{c}_j}{\overline{w}_i}$; add $\overline{c}_i w_s$ to each \overline{c}_s with s
 eq i

Step 5 (Our Example)

- Leaving variable: x₆
- Entering variable: x4

$$t = \frac{x_6^*}{w_4} = \frac{-25}{-5} = 5$$

•
$$x_B^* = \begin{pmatrix} x_5^* \\ x_4^* \\ x_7^* \end{pmatrix} = \begin{pmatrix} 14 - 4t \\ t \\ 14 - 2t \end{pmatrix} = \begin{pmatrix} -6 \\ 5 \\ 4 \end{pmatrix}$$

• New basis matrix $B = E_1$ with the eta matrix

$$E_1 = \begin{pmatrix} 1 & 4 & 0 \\ 0 & -5 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

 \bullet New reduced-cost vector; $\overline{c}_6 = -\frac{\overline{c}_4}{w_6} = -\frac{6}{5}$ and

$$\begin{array}{lll} \overline{c}_N & = & \left(\overline{c}_1 & \overline{c}_2 & \overline{c}_3 & \overline{c}_6\right) \\ & = & \left(-5 + 3\overline{c}_6 & -3 - 2\overline{c}_6 & -3 - \overline{c}_6 & \overline{c}_6\right) \\ & = & \left(-\frac{43}{\overline{c}} & -\frac{3}{\overline{c}} & -\frac{9}{\overline{c}} & -\frac{6}{\overline{c}}\right) \end{array}$$

Sensitivity Analysis

- Numerical data often represent only rough estimates of quantities
- Replacing the original data by more pessimistic or optimistic estimates of the quantities; adding new data; removing some data
- How does the optimal policy changes as the data change?
- Solving the initial LP problem is only the starting point for further analysis
 of the situation

Sensitivity analysis

Sensitivity analysis is a method for making changes in the original problem data and computing a new optimal solution without re-solving the problem

Variations

- One may create a number a variations on the original LP problem
 - changes to the objective function
 - changes to the right-hand side
 - adding a new variable

- adding a new constraint
- changes to the left-hand side
- Idea: If the problem changes are small, one expects the optimal solution to change in a predictable fashion
- Similar problems are likely to have similar solutions, and so it is often easier to exploit the results obtained in solving the original problem; no need to solve each of the modified problems from scratch

Original LP Problem

Consider the following LP in the standard form

maximize
$$z = \sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ for $i = 1, 2, ..., m$
 $x_j \ge 0$ for $j = 1, 2, ..., n$ (3)

- How the results found by the simplex method in solving (3) can be exploited in solving modified version
- After adding slack variables, (3) becomes

maximize
$$CX$$

subject to $AX = b$
 $X \ge 0$ (4)

• Let x* be the optimal solution to (4)

Dual-Feasible Dictionaries

Changes to the Objective Function

Changes are restricted to the objective function cx

maximize
$$\tilde{c}x$$

subject to $Ax = b$
 $x \ge 0$ (5)

- x* remains feasible in (5); it can be used to initialize the simplex method on (5)
- If x* is dual-feasible, then it is optimal to (5)
- If c differs from c only slightly, then an optimal solution to (5) is likely to differ from the optimal solution x^* only slightly, and the number of iteration leading from x^* to an optimal solution is likely to be small

Changes to the Right-Hand Side

Changes are restricted to the right-hand side b

maximize
$$CX$$

subject to $AX = \tilde{b}$
 $X > 0$ (6)

- x^* defines a basic solution \tilde{x} of (6) by $\tilde{x}_N = x_N^*$ and $B\tilde{x}_B = \tilde{b} A_N \tilde{x}_N$
- x̃ is dual-feasible; it can be used to initialize the dual-simplex method on
 (6)
- If \tilde{x} is feasible in (6), then it is optimal to (6)
- If \tilde{b} differs from b only slightly, then an optimal solution to (6) is likely to differ from the optimal solution x^* only slightly, and the number of iteration leading from x^* to an optimal solution is likely to be small

Adding a New Variable

• New variable x_{n+1} is introduced

maximize
$$cx + \tilde{c}_{n+1}x_{n+1}$$

subject to $Ax + \tilde{a}_{n+1}x_{n+1} = b$
 $x \ge 0$
 $x \ge 0$
 $x \ge 0$
 $x \ge 0$

- $(x_1^* x_2^* ... x_n^* 0)^T$ is a feasible basic solution; it can be used to initialize the simplex method on (7) $(x_{n+1}$ is a nonbasic variable)
- If the reduced cost of x_{n+1} has the right sign (and $\begin{pmatrix} x_1^* & x_2^* & \dots & x_n^* & 0 \end{pmatrix}^T$ is feasible), then it is optimal to (7)

Adding a New Constraint

• New constraint $\sum\limits_{j=1}^n \tilde{a}_j x_j \leq \tilde{b}_0$ is introduced

maximize
$$cx$$

subject to $Ax = b$

$$\sum_{j=1}^{n} \tilde{a}_{j}x_{j} + x_{n+1} = \tilde{b}_{0}$$

$$x \ge 0$$

$$x_{n+1} \ge 0$$
(8)

• $(x_1^* x_2^* \dots x_n^* x_{n+1}^*)^T$ with

$$x_{n+1}^* = \tilde{b}_0 - \sum_{i=1}^n \tilde{a}_i x_i$$

is a dual-feasible basic solution; it can be used to initialize the dual-simplex method on (8) (x_{n+1}) is a basic variable)

Changes to the Left-Hand Side

Changes to the left-hand side of problem (4) into

maximize
$$cx$$

subject to $\tilde{A}x = b$
 $x \ge 0$ (9)

- If the changes leading from (4) to (9) are only slight, then an optimal solution to (9) is likely to differ from the optimal solution x^* only slightly
- Changes of a_{ij} at basic variable x_i might make B into a singular matrix \tilde{B}
- As long as the entries a_{ij} of A remain unchanged for all variables x_j basic in x*, the vector x̃ may be obtained by
 - first, converting x_N^* into \tilde{x}_N
 - then, solving the system $B\tilde{x}_B = \tilde{b} \tilde{A}_N \tilde{x}_N$
 - \tilde{x} is a feasible basic solution; it can be used to initialize the simplex method on (9)

Changes to a Basic Column

- Changes in column a_i with x_i basic variable can be thought as
 - introduction of a new variable $x_{n+1} \ge 0$ with
 - column ã_i
 - objective function coefficient $\tilde{c}_{n+1} = c_i$
 - combined with setting $0 \le x_i \le 0$
- The resulting LP problem may almost be handled as a problem of type
 (9)