MATH214 Homework 1

Tianzong Cheng

February 2023

1 Exercise 1

1.1 Question 1

Let (S,*) and (S',*') and (S'',*'') be three algebraic structures. Suppose $f: S \to S', g: S' \to S''$ and $h = f \circ g: S \to S''$.

Then we have
$$\begin{cases} f(x*y) = f(x)*'f(y) \\ g(f(x)*'f(y)) = g \circ f(x)*''g \circ f(y) \end{cases}$$

Thus we have $g \circ f(x * y) = g \circ f(x) *'' g \circ f(y)$, namely h(x * y) = h(x) *'' h(y). So the composition of f and g is a homomorphism.

1.2 Question 2

According to the definition of isomorphisim, an isomorphisim is a bijection. Let f be an isomorphisim from S to S' and $a \in S$, $a' \in S'$. Since f is a bijection, we have f(a) = a' and $f^{-1}(a') = a$. We can easily observe that f^{-1} is also bijective because f is the inverse function of f^{-1} .

Next we need to show that f^{-1} is a homomorphism. $\forall x', y' \in S'$,

$$f^{-1}(x' *' y') = f^{-1}(f(x) *' f(y))$$

$$= f^{-1}(f(x * y))$$

$$= x * y$$

$$= f^{-1}(x') * f^{-1}(y)$$

1.3 Question 3

- a) homomorphism
- b) endomorphism
- c) automorphism
- d) automorphism
- e) homomorphism

2 Exercise 2

Set 3, 4, 6 are vector subspaces meeting the requirments.

3 Exercise 3

3.1 Question 1

 $\forall \alpha \in V \text{ and } \forall k \in \mathbb{R},$