Evaluating Program Semantics Reasoning with Type Inference in System *F*

Yifeng He¹, Luning Yang², Chris Gonzalo¹, Hao Chen¹

¹University of California, Davis; ²University of Hong Kong

Design of TF-Bench

Experimental results

References

Test-time compute: let's think step by step

- Chain-of-Thought prompting [Wei+22] enables *reasoning* in LLMs.
- CoT decomposes multi-step problems into intermediate (reasoning) steps.
- CoT becomes a training paradigm [Ope24; Dee+25; Mue+25].

Figure 1: TTC example [Mue+25].

- Pre-trained knowledge: rules
- In-context knowledge + prompt: assumptions/hypotheses
- CoT: reasoning
 - step 1: lemma 1
 - step 2: lemma 2
 - _ ...
- Response: a proposition

The evaluation gap

Reasoning LLMs are evaluated on math and coding:

- Mathematical reasoning
 - AIME 2024: high school math competition
 - MATH-500: math problem solving
- Code generation
 - LiveCodeBench [Jai+25]: LeetCode, online coding contests
 - SWE-Bench [Jim+24]: patch generation

What is missing in the idea of *reasoning* for code?

- program-centric deductive system
- \implies reason about structural logic behind programs

Propositions as types

- Types in the programming \cong propositions in the logic [Wad15].
- A function type $A \to B \cong$ the proposition $A \Longrightarrow B$ [Cur₃₄].
- Type inference is natural deduction.

Listing 1: Example task for the break function

Figure 2: Claude 3.7' extended thinking mode on the task in Listing 1, $\sqrt{\ }$.

But wait, are LLMs really reasoning about *program semantics*?

Input transformations leads to significant performance drop:

- Semantic-preserving code transformations [AD22; Yan+22; Liu+23].
- Perturbations on math problems [Mir+24; Jia+24; Gul+24].

Listing 2: The task in 1 after alpha-rewrite

Figure 3: Claude 3.7' extended thinking mode on the task in Listing 2, $\sqrt{\ }$.

Design of TF-Bench

Experimental results

References

Benchmark construction

We use the Haskell Prelude [Jono3] for the following reasons:

- 1. A formal deductive type system: System F (and System $F_{<}^{-1}$).
- 2. The type signature is concise and is decoupled from the function body.
- 3. Type equivalence is formally verifiable (w/ signature only).
- 4. Haskell is the most popular language that meets these conditions.

```
1 map :: (a -> b) -> [a] -> [b]
2 map f [] = []
map f (x:xs) = f x : map f xs
```

Listing 3: Parametric polymorphic

```
1 (==) :: Eq a => a -> a -> Bool
2 x == y = not (x /= y)
```

Listing 4: Ad-hoc polymorphism

¹for bounded quantification

Removing natural language from tasks

We design three *alpha-rewrite* operators to remove NL from the tasks:

- NL-Type: Int, Char, Bool, Eq, Ord ... \rightarrow T1, T2, T3, T4, T5 ...
- Type-Var: a, b, c, d, e $\dots \rightarrow$ t1, t2, t3, t4, t5 \dots
- Binding: map, not, foldl, (+) $\dots \rightarrow$ f1, f2, f3, f4 \dots

Implementation details:

- Operators have type Task -> Either Task Error.
- Operators are commutative and associative under composition [Kle65].
- Transformed tasks are alpha-equivalent to the original tasks.

Construction pipeline and statistics

Figure 4: Pipeline to construct TF-Bench.

In total, TF-Bench has 188 tasks,

- 26.6% are monomorphic functions,
- 32.4% are parametric polymorphisms,
- and 41.0% are ad-hoc polymorphisms.

TF-Bench_{pure} is the NL-free version of TF-Bench.

Evaluation methodology

Figure 5: Pipeline to evaluate LLMs on TF-Bench.

- 1. We use the ground-truth signature to add definitions for new types.
- 2. We prompt the LLMs with tasks to generated a type signature.
- 3. We construct a proof using the ground-truth and generated signatures.
- 4. If the proof compiles, the two signatures are equivalent.
- 5. Otherwise we analyze what the error is.

Design of TF-Bench

Experimental results

References

Research questions

We ask the following questions around program semantics reasoning:

- 1. What is the performance gap of LLMs on TF-Bench and TF-Bench pure?
- 2. How effective is TTC of models after reinforcement learning?
- 3. Can fine-tuning on math/code improve reasoning?

RQ1. The performance gap

Model	Version	TTC	Acc	Acc _{pure}	RS
Claude-3.5-sonnet	2024-06-20	X	85.46	48.97	57.3
Claude-3.7-sonnet	2025-02-19	✓	90.42	55.85	61.77
GPT-O ₃ -mini	2025-01-31	1	90.43	48.40	53.52
GPT-O ₃	2025-04-16	✓	81.91	52.66	64.29
DeepSeek-V3	2025-03-25	Х	83.51	43.62	52.23
DeepSeek-R1	2025-01-20	✓	86.70	44.15	50.92
	30B-A3B	1	81.38	40.43	49.68
Qwen3	32B	✓	87.94	43.09	49.00
	235B-A22B-FP8	✓	85.11	44.15	51.87

Table 1: Main evaluation results. $RS(m) = Acc_{pure}(m)/Acc(m)$.

RQ2. The effectiveness of TTC

Model	TTC	Acc	Acc _{pure}	RE	
Qwen3-235B-FP8	Х	80.49	35.64	1.37	
Qwell3-235D-110	✓	86.70	44.15		
Claude-3.7-sonnet	X	87.77	46.81	2 41	
Glaude-3./-solillet	✓	90.42	55.85	3.41	
Gemini-2.5-flash	X	78.19	30.32	2.00	
Ocimini-2.5-iiasii	✓	83.51	51.06	3.90	

Table 2: Reasoning effectiveness of top LLMs.

$$RE(m_{\rm ttc}, m) = \frac{Acc_{\rm pure}(m_{\rm ttc}) - Acc_{\rm pure}(m)}{Acc(m_{\rm ttc}) - Acc(m)} = \frac{\Delta_{\rm pure}}{\Delta}.$$

RQ3: Fine-tuning on math/code I

FT Corpus	Base Model (FT Model)	Size	Acc	FT Acc	Δ	Acc _{pure}	FT Acc _{pure}	$\Delta_{ m pure}$
Code	Gemma (CodeGemma)	7B	48.94	53.19	+ 4.25	7.45	12.23	+ 4.78
	DeepSeek-V2 (-Coder)	16B	29.79	55.32	+ 25.53	7.98	15.96	+ 7.98
		236B	38.30	80.85	+ 42.55	11.17	36.70	+ 25.53
	Mistral (Codestral)	22B	61.17	63.30	+ 2.13	19.68	11.17	- 8.51
	Qwen2.5 (-Coder)	1.5B	30.32	36.70	+ 6.38	6.91	9.04	+ 2.13
		7B	65.96	61.17	- 4.79	21.28	21.28	0.00
		32B	74.47	82.45	+ 7.98	36.17	31.91	- 4.26
Math	Mistral (Mathstral)	7B	45.21	47.34	+ 2.13	7.99	15.43	+ 7.44
	Qwen2 (-Math)	7B	40.43	43.09	+ 2.66	3.19	10.64	+ 7.45
		72B	63.83	71.28	+ 7.45	21.81	33.51	+ 11.7

Table 3: Result comparison of fine-tuning. FT Corpus: the corresponding fine-tuning corpus. Δ, Δ_{pure} : absolute increase in accuracy after fine-tuning.

RQ3: Fine-tuning on math/code II

- fine-tuning on code sometimes leads to a decline in performance,
- fine-tuning on math consistently results in performance + gains,
- fine-tuning on code exhibit smaller or negative improvements on TF-Bench_{pure}, i.e. RE < 0,
- the *same models* fine-tuned on math demonstrate greater improvements on TF-Bench_{pure}, i.e. $\eta > 1$, although not as significant as TTC.

Observation: Fine-tuning on math might enhance the models' reasoning ability, which also translates effectively tasks related to code.

Design of TF-Bench

Experimental results

References

Large Language Models". In: Advances in Neural Information Processing Systems. 2022. URL: https://openreview.net/forum?id=_VjQlMeSB_J.

Jason Wei et al. "Chain of Thought Prompting Elicits Reasoning in

[Ope24] OpenAI. OpenAI o1 System Card. 2024. URL: https://cdn.openai.com/o1-system-card.pdf.

[Wei+22]

[Dee+25] DeepSeek-AI et al. DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning. 2025. arXiv: 2501.12948 [cs.CL]. URL: https://arxiv.org/abs/2501.12948.

[Mue+25] Niklas Muennighoff et al. "s1: Simple test-time scaling". In: arXiv preprint arXiv:2501.19393 (2025).

[Jai+25] Naman Jain et al. "LiveCodeBench: Holistic and Contamination Free Evaluation of Large Language Models for Code". In: *The Thirteenth International Conference on Learning Representations*. 2025. URL: https://openreview.net/forum?id=chfJJYC3iL.

	https://doi.org/10.1145/2699407.
[Cur34]	H. B. Curry. "Functionality in Combinatory Logic". In: Proceedings of the National Academy of Sciences 20.11 (1934), pp. 584-590. DOI: 10.1073/pnas.20.11.584. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.20.11.584. URL: https://www.pnas.org/doi/abs/10.1073/pnas.20.11.584.

http://dx.doi.org/10.1145/3510003.3510049.

https://openreview.net/forum?id=VTF8yNQM66.

on Learning Representations. 2024. URL:

10.1145/3510003.3510049. URL:

Carlos E Jimenez et al. "SWE-bench: Can Language Models Resolve Real-world Github Issues?" In: The Twelfth International Conference

Philip Wadler. "Propositions as types". In: Commun. ACM 58.12 (Nov.

Toufique Ahmed and Premkumar Devanbu. "Multilingual training for

software engineering". In: Proceedings of the 44th International Conference on Software Engineering. ICSE '22. ACM, May 2022. DOI:

2015), pp. 75-84, ISSN: 0001-0782, DOI: 10.1145/2699407, URL:

[Jim + 24]

[Wad15]

[AD22]

[Yan+22] Zhou Yang, Jieke Shi, Junda He, and David Lo. "Natural attack for pre-trained models of code". In: *Proceedings of the 44th International Conference on Software Engineering*. ICSE '22. Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 1482–1493. ISBN: 9781450392211. DOI: 10.1145/3510003.3510146. URL: https://doi.org/10.1145/3510003.3510146.

[Liu+23] Shangqing Liu, Bozhi Wu, Xiaofei Xie, Guozhu Meng, and Yang Liu. "Contrabert: Enhancing code pre-trained models via contrastive learning". In: 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE. 2023, pp. 2476–2487.

[Mir+24] Iman Mirzadeh et al. GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models. 2024. arXiv: 2410.05229 [cs.LG]. URL: https://arxiv.org/abs/2410.05229.

Bowen Jiang et al. "A Peek into Token Bias: Large Language Models Are Not Yet Genuine Reasoners". In: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing.

Miami, Florida, USA: Association for Computational Linguistics, Nov. 2024, pp. 4722–4756. DOI: 10.18653/v1/2024.emnlp-main.272.

URL: https://aclanthology.org/2024.emnlp-main.272/.

Simon Peyton Jones. Haskell 98 language and libraries: the revised

[Gul+24] Aryan Gulati et al. "Putnam-AXIOM: A Functional and Static Benchmark for Measuring Higher Level Mathematical Reasoning". In:

The 4th Workshop on Mathematical Reasoning and AI at NeurIPS'24.
2024. URL: https://openreview.net/forum?id=YXnwlZeOyf.

report. Cambridge University Press, 2003.

[Kle65] H. Kleisli. "Proc. Amer. Math. Soc. 16 (1965), 544-546". In:

Proceedings of the American Mathematical Society 16 (1965)

[Jia+24]

[Jono3]

Proceedings of the American Mathematical Society 16 (1965), pp. 544–546. ISSN: 0002-9939. DOI: 10.1090/S0002-9939-1965-0177024-4.

Design of TF-Bench

Experimental results

References

Formal reasoning in deductive systems

Definition

A deductive system (or inference system) is specified by ²

- a collection of judgments/assertions/validations,
- a collection of steps (inference rules) that move from validation to validation, and finally to the proposition.

Natural deduction is a deductive system that reason from assumptions.

²This is not a completely standard definition, but is an illustrative description.

Effects of different rewrite operators

Figure 6: Accuracy on TF-Bench with different rewrite operators. None: the original TF-Bench. NL-Ty: rewriting NL types. Ty-Var: rewriting type variables. Binding: rewriting binding names. Pure: TF-Bench_{pure}.

