

MATHEMATICS METHODS ATA

FORMULA SHEET

7102

Copyright @ School Curriculum and Standards Authority, 2016

Commons Attribution 4.0 International (CC BY) licence.

This document – apart from any third party copyright material contained in it — may be freely copied, or communicated on an infrance, for onco-roomercial purposes in educational railtitulons, provided that it is not changed and finat the School Curiculum and Sandool Curiculum and sand the copyright owner, and that the Subject of the set of infringed.

Copyring or communication for any other purposes can be done only within the terms of the Copyright Act 1988 or with prior written done only within the terms of the Copyright Act 1988 or with permassion of any other principlums and Standards Authority Copyright or communication of sny third party copyright material can be done only within the terms of the Copyright Act 1988 or with permassion of the copyright of the Copyright Act 1988 or with permassion of the copyright of the Copyright Act 1988 or with permassion of the copyright Act 1988 or with prior written

Any content in this document that has been derived from the Australian Curriculum may be used under the terms of the Creative

This document is valid for teaching and examining until 31 December 2017.

Mathematics Methods Formula Sheet 2017

2017/1749

MATHEMATICS METHODS 4 FORMULA SHEET

Probability

$\frac{(g \cup V)_d}{(g \cup V)_d} = (g V)_d$	$(A \cap A)^{q} - (A)^{q} + (A)^{q} = (A \cup A)^{q}$
$(h)^{A} - 1 = (h)^{A}$	For any event Λ and its complement Λ'

Expected value: $E(x) = \int_{-\infty}^{\infty} x p(x) dx$	Variance: $\sigma^2 = \int_{\infty}^{-\infty} (x)^2 dx$	$xp(x)d_{z}(n-$	
Sontinuous random variable: $P(a \ge b)$	$xp(x)d_{q}^{v} = (q \ge X)$		
Discrete random variable: $P(X = x) = P(x)$	$(x)dx \subseteq E(x) = \mathcal{H}$	$(x)d_{z}(n-x) =_{z} o$	
$x^{-n}(q-1)^x d\binom{n}{x} = (x=X)^q$:nothudintelib lisimonia	du = n'	$\alpha_{5} = np (1-p)$	
Bernoulli: mean is the sample proportion \hat{q}	d = n	$o_{\overline{z}} = b \ (1 - b)$	
Random variables and probability distributions	Mean	√ariance	

Margin of error: $E=z\sqrt{\hat{p}(1-\hat{p})}$	Confidence interval: $\overline{(\overline{q-1})} \overrightarrow{q} \bigvee z + \widehat{q} \ge q \ge \overline{(\overline{q-1})} \overrightarrow{q} \bigvee z - \widehat{q}$
Mean: $E(\hat{p}) = p$	Standard deviation: $\frac{(q-1)q}{n} / = s$
Sample proportions	$\frac{u}{X} = \dot{q}$

Note: Any additional formulas identified by the examination panel as necessary will be included in the body of the particular question.

2

FORMULA SHEET

Differentiation and integration

$\frac{d}{dx}(x^n) = nx^{n-1}$		$\int x^n dx = \frac{x^{n+1}}{n+1}$	$+c$, $n \neq -1$
$\frac{d}{dx}\left(e^{ax-b}\right) = ae^{ax-b}$		$\int e^{ax} dx = \frac{1}{a} e^{ax}$	+ c
$\frac{d}{dx}(\ln x) = \frac{1}{x}$		$\int \frac{1}{x} dx = \ln x + \frac{1}{2} \ln x + \frac{1}{$	-c, $x > c$
$\frac{d}{dx}\left(\ln f(x)\right) = \frac{f'(x)}{f(x)}$		$\int \frac{f'(x)}{f(x)} dx = 1$	n f(x) + c, f(x) > 0
$\frac{d}{dx}(\sin(ax-b)) = a\cos(ax-b)$		$\int \sin(ax-b)dx$	$c = -\frac{1}{a}\cos(ax - b) + c$
$\frac{d}{dx}(\cos(ax-b)) = -a\sin(ax-b)$		$\int \cos(ax-b)d$	$x = \frac{1}{a} \sin(ax - b) + c$
	If $y = uv$		If y = f(x) g(x)
Product rule	then	or	then
T Todact raie	$\frac{d}{dx}(uv) = u\frac{dv}{dx} + \frac{du}{dx}v$		y'=f'(x) g(x) + f(x) g'(x)
	If $y = \frac{u}{v}$		If $y = \frac{f(x)}{g(x)}$
	then	or	then
Quotient rule	$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		$y' = \frac{f'(x) g(x) - f(x) g'(x)}{(g(x))^2}$
	If $y = f(u)$ and $u = g(x)$		If $y = f(g(x))$
Chain rule	then	or	then
Chairritile	$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$		y' = f'(g(x)) g'(x)
Fundamental theorem	$\frac{d}{dx} \left(\int_{a}^{x} f(t) dt \right) = f(x)$	and	$\int_{a}^{b} f'(x) dx = f(b) - f(a)$
Incremental formula	$\delta y \approx \frac{dy}{dx} \times \delta x$		
Exponential growth and decay	$\frac{dP}{dt} = kP \iff P = P_0 e^{kt}$		

See next page

FORMULA SHEET

MATHEMATICS METHODS

Mensuration

Parallelogram	A = bh	
Triangle	$A = \frac{1}{2}bh$ or $A = \frac{1}{2}ab\sin C$	
Trapezium	pezium $A = \frac{1}{2} (a + b)h$	
Circle	$A = \pi r^2$ and $C = 2\pi r = \pi d$	

3

Prism	V = Ah, where A is the area of the cross section	
Pyramid	$V = \frac{1}{3}Ah$, where A is the area of the cross section	
Cylinder	$V = \pi r^2 h$	$TSA = 2\pi rh + \pi r^2 h$
Cone	$V = \frac{1}{3} \pi r^2 h$	$TSA = \pi rs + \pi r^2$, where s is the slant height
Sphere	$V = \frac{4}{3} \pi r^3$	$TSA = 4\pi r^2$

Trigonometry

$\sin^2 x + \cos^2 x = 1 \qquad \tan x = \frac{\sin x}{\cos x}$

Logarithms

$x = \log_a b \iff a^x = b$	$a^{\log_a b} = b$ and $\log_a(a^b) = b$
$\log_a mn = \log_a m + \log_a n$	$\log_a \frac{m}{n} = \log_a m - \log_a n$
$\log_a(m^k) = k \log_a m$	$\log_e x = \ln x$

See next page