CÁLCULO I

1º Grado Matemáticas y 1º Doble Grado Física y Matemáticas, Curso 2017–2018, Primer cuatrimestre

III. Ejercicios (Sucesiones)

- 1. Dados $\alpha, \beta \in \mathbb{R}$ con $\alpha \neq \beta$, define una sucesión $\{x_n\}$ de puntos del conjunto $\{\alpha, \beta\}$ tal que los conjuntos $\{n \in \mathbb{N} : x_n = \alpha\}$ y $\{n \in \mathbb{N} : x_n = \beta\}$ sean infinitos.
- 2. Prueba que las sucesiones $\{1/n^2\}$, $\{1/2^n\}$ y $\{1/n!\}$ convergen a cero.
- 3. ¿Es cierta la siguiente afirmación? Justifica la respuesta probando el resultado o dando un contraejemplo.

Supongamos que $\{x_n\}$ es una sucesión de números reales positivos convergente a x. Entonces x > 0.

- 4. Para cada una de las afirmaciones siguientes, da un ejemplo que verifique el enunciado o prueba que no existe tal ejemplo:
 - a) Una sucesión tal que ninguno de sus términos es 0 ni 1, pero que tiene una subsucesión convergente a 0 y otra convergente a 1.
 - b) Una sucesión que no sea acotada pero que admite una subsucesión convergente.
- 5. Si $\{x_n\}$ e $\{y_n\}$ son sucesiones de números reales tales que $\{x_ny_n\} \to 0$, ¿es cierto que $\{x_n\} \to 0$ ó $\{y_n\} \to 0$? Prueba la afirmación o da un contraejemplo.
- 6. En cada uno de los siguientes casos, probar que la sucesión dada es convergente y calcular su límite:

(a)
$$\left\{\frac{(-1)^n n}{n^2 + 1}\right\}$$

(b)
$$\left\{ \frac{2n+5(-1)^n}{n+1} \right\}$$

(a)
$$\left\{ \frac{(-1)^n n}{n^2 + 1} \right\}$$
 (b) $\left\{ \frac{2n + 5(-1)^n}{n + 1} \right\}$ (c) $\left\{ \frac{(-1)^n n^2 - 3n + 4}{n^3 + 1} \right\}$

7. Calcula el límite de las siguientes sucesiones:

i)
$$\left\{ \frac{1}{n^2} + \frac{2}{n^2} + \ldots + \frac{n}{n^2} \right\}$$

ii)
$$\left\{ \frac{\frac{1}{n^2} + \frac{2}{n^2} + \ldots + \frac{n}{n^2}}{n} \right\}$$

- 8. Sea $J_n = [a_n, b_n]$ una sucesión de intervalos no vacíos tales que $J_{n+1} \subset J_n$ para cada natural n. Supongamos además que $\{b_n-a_n\}\to 0$ y que $x_n\in J_n$ para cada natural n. Pruébese que entonces $\{x_n\}$ es convergente.
- 9. Pruébese que una subsucesión de una sucesión monótona es también monótona.
- 10. Da un ejemplo de una sucesión que converja a cero y que no sea monótona.
- 11. Pruébese que toda sucesión monótona que tiene una subsucesión acotada es convergente.

1

12. Prueba que la sucesión $\{a_n\}$ dada por

$$a_n = \frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{n+n}, \quad \forall n \in \mathbb{N}$$

es convergente y su límite es menor o igual que 1.

13. Prueba que la sucesión $\{x_n\}$ dada por

$$x_1 = 1$$
, $x_{n+1} = x_n + \frac{1}{x_n}$, $\forall n \in \mathbb{N}$

no está acotada.

14. Estudia la convergencia de las siguientes sucesiones

a)
$$x_1 = 1$$
, $x_{n+1} = \sqrt{3x_n}$, $\forall n \in \mathbb{N}$.

c)
$$x_1 = 1$$
, $x_{n+1} = \frac{4+3x_n}{3+2x_n}$, $\forall n \in \mathbb{N}$.

- 1) Sean $a, b \in \mathbb{R}$, $x_1 = a$, $x_2 = b$, $x_{n+2} = \frac{1}{2}(x_{n+1} + x_n)$,
- **n)** Sea $a \in \mathbb{R}^+$, $x_1 = a$, $x_{n+1} = \frac{x_n}{1 + x_n}$, $\forall n \in \mathbb{N}$.
- 15. Dados dos números reales positivos $a_1 < b_1$ definimos las sucesiones dadas por

$$a_{n+1} = \frac{2a_n b_n}{a_n + b_n}, \quad b_{n+1} = \frac{a_n + b_n}{2}, \forall n \in \mathbb{N}.$$

Demuestra que las dos sucesiones son monótonas y convergen al mismo número.

- 16. Sean $\{x_n\}$ e $\{y_n\}$ sucesiones acotadas verificando que $x_n \leq y_n$ para todo $n \in \mathbb{N}$. Probar que lím inf $\{x_n\} \leq \text{lím inf } \{y_n\}$ y que lím sup $\{x_n\} \leq \text{lím sup } \{y_n\}$.

17. Prueba que la sucesión $\left\{\left(1+\frac{1}{n}\right)^n\right\}$ es convergente. **Indicación:** Usando la desigualdad de las medias, se obtiene que si $a,b\in\mathbb{R}^+$, se verifica que $ab^n \leq \left(\frac{a+nb}{n+1}\right)^{n+1}$ para todo natural n. Deducir que la sucesión anterior es creciente. Para

la acotación, usar el binomio de Newton, obtener que $\left(1+\frac{1}{n}\right)^n \leq \sum_{k=0}^n \frac{1}{k!}$. Por último la acotación $n! \geq 2^{n-1}$ para todo $n \in \mathbb{N}$.

18. Sea $\{x_n\}$ una sucesión de números reales tal que las subsucesiones $\{x_{2n}\}$ y $\{x_{2n-1}\}$ son convergentes. Prueba que $\{x_n\}$ es acotada y se verifica

2

$$\liminf\{x_n\} = \min \; \{ \lim\{x_{2n}\}, \lim\{x_{2n-1}\} \}, \qquad \lim \sup\{x_n\} = \max \; \{ \lim\{x_{2n}\}, \lim\{x_{2n-1}\} \}.$$

19. Calcula el límite superior e inferior de las siguientes sucesiones:

a)
$$\left\{ (-1)^n + \frac{1}{n} \right\}$$

b)
$$\left\{ (-1)^n \left(2 + \frac{3}{n} \right) \right\}$$

$$\mathbf{c}) \left\{ \frac{1}{n} + \frac{(-1)^n}{n^2} \right\}$$

$$\mathbf{d}) \left\{ \frac{n + (-1)^n (2n+1)}{n} \right\}$$

- 20. Sean $\{a_n\}$ y $\{b_n\}$ sucesiones de números reales acotadas. Prueba que
 - a) $\limsup \{a_n + b_n\} \le \limsup \{a_n\} + \limsup \{b_n\}$
 - **b)** $\liminf\{a_n+b_n\} \ge \liminf\{a_n\} + \liminf\{b_n\}$
 - c) Si $a_n, b_n \geq 0, \ \forall n \in \mathbb{N}$, entonces

$$\limsup \{a_n b_n\} \le \limsup \{a_n\} \limsup \{b_n\}$$

d) Si $a_n, b_n \geq 0$, $\forall n \in \mathbb{N}$, entonces

$$\liminf\{a_nb_n\} \ge \liminf\{a_n\} \liminf\{b_n\}$$

e) Si $\{a_n\} \to a$, entonces

$$\limsup \{a_n + b_n\} = a + \limsup \{b_n\}$$

f) Si $\{a_n\} \to a$, entonces

$$\liminf \{a_n + b_n\} = a + \liminf \{b_n\}$$

Dar ejemplos para los que las desigualdades en los apartados a), b), c) y d) sean estrictas.

- 21. Sea $\{x_n\}$ una sucesión y supongamos que existe una sucesión $\{y_n\}$ de números reales positivos tal que $\{y_n\} \to 0$ y $|x_{n+k} x_n| \le y_n$ para cualesquiera $n, k \in \mathbb{N}$. Prueba que $\{x_n\}$ es convergente.
- 22. Sea $\{x_n\}$ una sucesión y supongamos que existen $M \in \mathbb{R}$ y $r \in [0, 1[$ tales que $|x_{n+1} x_n| \leq Mr^n$. Prueba que $\{x_n\}$ es convergente.

Indicación: Prueba que $\{x_n\}$ es una sucesión de Cauchy.

- 23. Para cada una de las afirmaciones siguientes, da un ejemplo que verifique el enunciado o prueba que no existe tal ejemplo:
 - c) Una sucesión que admite una subsucesión acotada, pero que no tiene ninguna subsucesión convergente.
 - d) Una sucesión de Cauchy que no sea monótona.
 - e) Una sucesión monótona que no sea de Cauchy.
 - g) Una sucesión no acotada que tiene alguna subsucesión de Cauchy.
- 24. ¿Existe alguna sucesión de Cauchy que admite una subsucesión divergente?

- 25. Da un ejemplo de una sucesión que diverja positivamente y que no sea creciente.
- 26. Sea A un subconjunto de números reales no vacío. Prueba que A no está mayorado si, y sólo si, A contiene una sucesión que diverge positivamente. ¿Se puede conseguir que la sucesión sea creciente?
- 27. Sea $\{x_n\}$ una sucesión y $k \in \mathbb{N}$ fijo. Prueba que $\{x_n\} \to +\infty$ si, y sólo si, $\{x_{k+n}\} \to +\infty$.
- 28. Prueba que una sucesión $\{x_n\}$ diverge positivamente si, y sólo si, las sucesiones $\{x_{2n-1}\}$ y $\{x_{2n}\}$ divergen positivamente. ¿Qué ocurre con los otros tipos de divergencia?
- 29. Prueba que toda sucesión divergente, o bien diverge positivamente, o bien admite una subsucesión que diverge negativamente.
- 30. Estudia la convergencia de las siguientes sucesiones:

(a)
$$\left\{\sqrt{n+1} - \sqrt{n}\right\}$$
 (b) $\left\{\sqrt[3]{n+2} - \sqrt[3]{n-1}\right\}$ (c) $\left\{\frac{\sqrt[3]{n+1} - \sqrt[3]{n}}{\sqrt{n+1} - \sqrt{n}}\right\}$

- 31. Da un ejemplo de una sucesión que diverja, pero que no diverja positivamente ni negativamente.
- 32. Da ejemplos de sucesiones $\{a_n\}$ y $\{b_n\}$ que verifiquen las siguientes condiciones
 - a) Las sucesiones $\{a_n\}$, $\{b_n\}$ y $\{a_n-b_n\}$ divergen positivamente.
 - **b)** Las sucesiones $\{a_n\}$ y $\{b_n\}$ divergen positivamente, pero $\{a_n-b_n\}$ converge.
 - c) Las sucesiones $\{a_n\}$ y $\{b_n\}$ divergen positivamente y $\{a_n-b_n\}$ es acotada y no converge.
 - d) La sucesión $\{a_n\} \to 0$, $\{b_n\}$ diverge positivamente y $\{a_nb_n\}$ diverge.
 - e) La sucesión $\{a_n\} \to 0$, $\{b_n\}$ diverge positivamente y $\{a_nb_n\}$ converge.
 - f) La sucesión $\{a_n\} \to 0$, $\{b_n\}$ diverge positivamente y $\{a_nb_n\}$ no converge ni diverge.
- 33. Sean $x, y \in \mathbb{R}$ con $x \neq y$ y supongamos que las sucesiones $\{x_n\}$ e $\{y_n\}$ verifican que $\{x_n\} \to x$ e $\{y_n\} \to y$. Definimos la sucesión $\{z_n\}$ como sigue

$$z_{2n} = y_n, \qquad z_{2n-1} = x_n, \qquad \forall n \in \mathbb{N}.$$

Prueba que la sucesión $\left\{\frac{z_1+z_2+\ldots+z_n}{n}\right\}$ converge.

34. Dada una sucesión $\{z_n\}$, definimos la sucesión $\{y_n\}$ como sigue

$$y_n = \frac{\sum_{i=1}^n z_i}{n}, \quad \forall n \in \mathbb{N}.$$

Da un ejemplo en el que $\{y_n\}$ sea convergente sin serlo $\{z_n\}$.

35. Estudia la convergencia de las siguientes sucesiones y, calcula su límite (si existe):

(a)
$$\left\{ \frac{1}{n\sqrt{n}} \sum_{k=1}^{n} \sqrt{k} \right\}$$

(b)
$$\left\{ \frac{n^2 \sqrt{n}}{1 + 2\sqrt{2} + 3\sqrt{3} + \dots + n\sqrt{n}} \right\}$$

(c)
$$\left\{\frac{1}{n!}\sum_{k=1}^{n}k!\right\}$$

(d)
$$\left\{ \frac{1}{n^n} \sum_{k=1}^n k^k \right\}$$

- 36. Sea $\{x_n\} \to x \in \mathbb{R}^*$. Para $p \in \mathbb{N}$, estudiar la convergencia de la sucesión $\left\{\frac{1}{n^p} \sum_{k=1}^n k \, x_k\right\}$.
- 37. Probar las siguientes igualdades:

(a)
$$\lim_{n \to \infty} \frac{2^n + n^5}{3^n - \sqrt{n}} = 0$$
 (b) $\lim_{n \to \infty} \frac{n \, 3^n \left(\sqrt{n+1} - \sqrt{n}\right)}{3^n \sqrt{n+1} + 2^n} = \frac{1}{2}$

- 38. Sean P y Q polinomios con coeficientes reales, con $Q(n) \neq 0$ para todo $n \in \mathbb{N}$. Dado $x \in \mathbb{R}^*$, estudiar la convergencia de la sucesión $\{x^n P(n)/Q(n)\}$.
- 39. Probar que las siguientes sucesiones son convergentes y calcular sus límites:

(a)
$$\left\{\sqrt[n]{\frac{3n^3-2}{n^2+1}}\right\}$$
 (b) $\left\{\sqrt[n]{\binom{2n}{n}}\right\}$

- 40. Estudia la convergencia de las siguientes sucesiones:
 - a) $\left\{\frac{1^k + 2^k + \ldots + n^k}{n^{k+1}}\right\}_n$ donde k es un número natural.

b)
$$\left\{ \frac{\frac{2}{1} + \frac{3^2}{2} + \dots + \frac{(n+1)^n}{n^{n-1}}}{n^2} \right\}$$
.

41. Sean $\{a_n\}$ y $\{b_n\}$ sucesiones de números reales tales que

$$a_n > 0 \ \forall n, \qquad \{a_1 + a_2 + \ldots + a_n\} \longrightarrow +\infty, \qquad \{b_n\} \to L,$$

donde $L \in \mathbb{R} \cup \{+\infty, -\infty\}$. Prueba que la sucesión $\left\{\frac{\sum_{k=1}^{n} a_k b_k}{\sum_{k=1}^{n} a_k}\right\} \to L$.

- 42. Sea $\{x_n\}$ una sucesión de números reales convergente a x. Prueba que la sucesión $\left\{\frac{1}{2^n}\sum_{k=1}^n \binom{n}{k}x_k\right\}$ también converge a x.
- 43. Supongamos que $\{a_n\}$ es una sucesión de números reales convergente a un real a. Estudia la convergencia de las siguientes sucesiones:

$$\mathbf{a}) \left\{ \frac{\exp(a_1) + \exp(\frac{a_2}{2}) + \ldots + \exp(\frac{a_n}{n}) - n}{\log n} \right\}.$$

$$\mathbf{b)} \left\{ \frac{a_1 + \frac{a_2}{2} + \ldots + \frac{a_n}{n}}{\log n} \right\}.$$