Homework 2

Jaden Wang

Problem (LN 5.8). Show that if $f: \mathbb{R}^n \to \mathbb{R}^m$ and we identify $T_p\mathbb{R}^n$ and $T_{f(p)}\mathbb{R}^m$ with \mathbb{R}^n and \mathbb{R}^m the standard way ($[\alpha] \mapsto \alpha'(0)$), then df_p may be identified with the linear transformation determined by the Jacobian matrix $(\partial f^i/\partial x_j)$.

Proof. Define $\alpha_i: (-\varepsilon, \varepsilon) \to \mathbb{R}^n, t \mapsto (0, \dots, t, \dots, 0)$ where t is at the ith entry. Then $[\alpha_i] \mapsto \alpha_i'(0) = e_i$ under the identification. The identification yields

$$df_p: T_p \mathbb{R}^n \to T_{f(p)} \mathbb{R}^m, [\alpha] \mapsto [f \circ \alpha] \Rightarrow$$
$$df_p: \mathbb{R}^n \to \mathbb{R}^m, \alpha'(0) \mapsto (f \circ \alpha)'(0).$$

Then,

$$df_p(e_i) = df_p(\alpha'(0))$$

$$= (f \circ \alpha_i)'(0)$$

$$= Df(0) \circ \alpha'_i(0)$$
Euclidean chain rule
$$= Df(0)(e_i)$$

Thus, we see that df_p (after identification) and the Jacobian matrix Df(0) agree on the standard basis. Therefore they represent the same linear map.

The following two exercises show the functoriality of the differential operator.

Problem (LN 5.9). Show that if $f: M \to N$ and $g: N \to L$ are smooth maps, then, for any $p \in M$, we have the chain rule

$$d(g \circ f)_p = dg_{f(p)} \circ df(p).$$

Proof. Let $[\gamma]$ be a tangent vector in T_pM . Thus $\gamma(0) = p$. Recall the definition (with identification):

$$df_p([\gamma]) = (f \circ \gamma)'(0).$$

By repeatedly applying this definition, we have

$$d(g \circ f)_p([\gamma]) = ((g \circ f) \circ \gamma)'(0)$$

$$= ((g \circ (f \circ \gamma))'(0)$$

$$= dg_{f \circ \alpha(0)}(f \circ \gamma)'(0)$$

$$= dg_{f(p)}df_p([\gamma]).$$

Problem (LN 5.10). Show that if $f: M \to N$ is a diffeomorphism, then df_p is a linear isomorphism for all $p \in M$. In particular, conclude that if M and N are diffeomorphic, then $\dim(M) = \dim(N)$.

Proof. Since f is a diffeomorphism, it admits a smooth inverse f^{-1} . Then given $p \in M$, we have

$$f^{-1} \circ f = \mathrm{id}_M$$

$$d(f^{-1} \circ f)_p = \mathrm{id}_{T_pM} \qquad \qquad \text{differential of identity is identity}$$

$$d(f^{-1})_{f(p)} \circ df_p = \mathrm{id}_{T_pM}. \qquad \qquad \text{chain rule}$$

The other direction follows similarly. Thus df_p has a two-sided linear inverse — it is a linear isomorphism. By linear algebra, the tangent spaces of M and N must have the same dimension for all points. Since the tangent space and the manifold must have the same dimension, dim $M = \dim N$.

Problem (do Carmo 0.2). Prove that the tangent bundle of a smooth manifold M is orientable.

Proof. Let $\{U_{\alpha}, \phi_{\alpha}\}_{{\alpha} \in J}$ be an atlas of M. Since ϕ_{α} is a diffeomorphism, the differential $d\phi_{\alpha}$: $TU_{\alpha} \to \mathbb{R}^n \times \mathbb{R}^n, (p, v) \mapsto (\phi_{\alpha}(p), d\phi_p(v))$ is a diffeomorphism. Thus $\{TU_{\alpha}, (\phi_{\alpha}, d\phi_{\alpha})\}_{{\alpha} \in J}$ is an atlas of TM. For any $p \in U_{\alpha} \cap U_{\beta}$, let $q = \phi_{\alpha}(p)$. The transition map is

$$d\phi_{\beta} \circ d\phi_{\alpha}^{-1}(q, v) = (\phi_{\beta} \circ \phi_{\alpha}^{-1}(q), d\phi_{\beta p} \circ d\phi_{\alpha}^{-1}(q))$$
$$d(d\phi_{\beta} \circ d\phi_{\alpha}^{-1})_{(q,v)} = (d(\phi_{\beta} \circ \phi_{\alpha}^{-1})_{q}, d(d\phi_{\beta p} \circ d\phi_{\alpha}^{-1}_{q})_{v})$$

$$= (d(\phi_{\beta} \circ \phi_{\alpha}^{-1})_q, d(d(\phi_{\beta} \circ \phi_{\alpha}^{-1})_q)_v).$$

Notice that $\phi_{\alpha\beta q} := d(\phi_{\beta} \circ \phi_{\alpha}^{-1})_q$ is a linear operator, so its derivative is itself for any v. It is also the derivative of a diffeomorphism so it has nonzero determinant. Thus we obtain

$$\det d(d\phi_{\beta} \circ d\phi_{\alpha}^{-1})_{(q,v)} = \det(\phi_{\alpha,\beta q}, \phi_{\alpha,\beta q})$$
$$= \det(\phi_{\alpha,\beta q})^{2} > 0,$$

where the last equality comes from determinant of the product linear operator. This proves that the transition maps are orientation-preserving and thus TM is orientable.

Problem (do Carmo 0.8). Let M_1, M_2 be smooth manifolds. Let $f: M_1 \to M_2$ be a local diffeomorphism. Prove that if M_2 is orientable, then so is M_1 .

Proof. Since M_2 is orientable, it admits an atlas $\{(V_{\alpha}, \psi_{\alpha})\}_{\alpha \in J}$ where all transition maps are orientation-preserving, *i.e.* the determinant is positive. For any point $x \in M_1$, there exists an open set O_x such that $f|_{O_x}$ is a diffeomorphism onto its image. For any V_{α} that contain f(x), we set $U_{\alpha,x} = f^{-1}(V_{\alpha} \cap f(O_x))$, $\phi_{\alpha,x} = \psi_{\alpha} \circ f|_{U_{\alpha,x}}$. Then if there is another $U_{\beta,x}$ that contains x, for any $p \in U_{\alpha,x} \cap U_{\beta,x}$, let $q = \phi_{\alpha,x}(p)$. Notice $f(p) = \psi_{\alpha}^{-1}(q)$. We abuse the notation f for $f|_{U_{\alpha,x}\cap U_{\beta,x}}$ below, the transition map is

$$\phi_{\beta,x} \circ \phi_{\alpha,x}^{-1}(q) = \psi_{\beta} \circ f \circ f^{-1} \circ \psi_{\alpha}^{-1}(q)$$

$$d(\phi_{\beta,x} \circ \phi_{\alpha,x}^{-1})_q = d\psi_{\beta f(p)} \circ df_p \circ df_{f(p)}^{-1} \circ d(\psi_{\alpha}^{-1})_q$$

$$\det d(\phi_{\beta,x} \circ \phi_{\alpha,x}^{-1})_q = \left(\det d\psi_{\beta f(p)} \det d(\psi_{\alpha}^{-1})_q\right) \left(\det df_p \det df_{f(p)}^{-1}\right)$$

$$\det d(\phi_{\beta,x} \circ \phi_{\alpha,x}^{-1})_q = \det \left(d\psi_{\beta f(p)} d(\psi_{\alpha}^{-1})_q\right) > 0.$$

Therefore, $\{(U_{\alpha,x},\phi_{\alpha,x})\}_{\alpha\in J,x\in M_1}$ is an atlas of M_1 with orientation-preserving maps. \square