Convex Optimization

Adrien Taylor

Class notes by Antoine Groudiev

Contents

1	Introduction			2
2	Convex sets			
	2.1	Definitions		
	2.2			2
			Hyperplanes and halfspaces	
			Euclidian balls and ellipsoids	
		2.2.3	Cones	
	2.3	Conve	xity-preserving operations	
			Intersection and union	
			Affine functions	
3	Convex functions			7
4	4 Convex problems			7

Abstract

This document is Antoine Groudiev's class notes while following the class *Deep Learning* at the Computer Science Department of ENS Ulm. It is freely inspired by the lectures of Adrien Taylor.

1 Introduction

2 Convex sets

2.1 Definitions

Definition (Convex set). A set C is a *convex set* if every segment that connects two points in C is in C. Formally:

$$\forall x, y \in C, \forall \theta \in [0, 1], \quad \theta x + (1 - \theta)y \in C$$

Example. Here are some examples of convex and non-convex sets:

In many cases, we will use proper (i.e. non-empty) convex sets, and closed convex sets.

Definition (Convex hull). The *convex hull* of S, denoted Conv(S), is the smallest convex set that contains S.

Definition (Convex combinations). The *convex combinations* of x_1, \ldots, x_k are all the point x of the form:

$$x = \theta_1 x_1 + \dots + \theta_k x_k$$

with $\theta_1, \ldots, \theta_k \geqslant 0$ and $\sum_{i=1}^k \theta_i = 1$.

Property 2.1. The convex hull of a set S is the set of all convex combinations of points in S:

$$Conv(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid (x_i) \in S^k, (\theta_i) \in \mathbb{R}_+^k, \sum_{i=1}^k \theta_i = 1 \right\}$$

2.2 Examples

2.2.1 Hyperplanes and halfspaces

Definition (Hyperplane). A hyperplane is the set of the form:

$$H = \left\{ x \mid a^{\top} x = b \right\}$$

for some $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$. a is called the *normal vector* of H. Hyperspaces are affine and convex.

2

Figure 2.1: Hyperplane

Definition (Halfspace). A halfspace is the set of the form:

$$H = \left\{ x \mid a^{\top} x \leqslant b \right\}$$

for some $a \in \mathbb{R}^n \setminus \{0\}$ and $b \in \mathbb{R}$. a is called the normal vector of H. Halfspaces are convex.

Figure 2.2: Halfspace

2.2.2 Euclidian balls and ellipsoids

Definition (Euclidian ball). The Euclidian ball of center x_c and radius r is the set:

$$B(x_c, r) = \{ x \mid ||x - x_c||_2 \leqslant r \} = \{ x_c + ru \mid ||u||_2 \leqslant 1 \}$$

Euclidian balls are convex.

Definition (Ellipsoid). An *ellipsoid* is the set of the form:

$$E = \{ x \mid (x - x_c)^{\top} P^{-1} (x - x_c) \le 1 \}$$

with $P \in \mathbb{S}_{++}^{n-1}$ and $x_c \in \mathbb{R}^n$. Ellipsoids are convex.

 $^{{}^{1}\}mathbb{S}^{n}_{++}$ denotes the set of symmetric positive definite matrices of size n

Figure 2.3: Ellipsoid

An alternative representation of an ellipsoid is:

$$E = \{ x_c + Au \mid ||u||_2 \le 1 \}$$

for some nonsingular matrix $A \in GL_n(\mathbb{R})$. We can choose A symmatric and positive definite without loss of generality, for instance by choosing $A = P^{1/2}$.

2.2.3 Cones

Definition (Cones). A set K is a cone, or a nonnegative homogeneous set, if:

$$\forall x \in K, \forall \theta \in \mathbb{R}_+^*, \quad \theta x \in K$$

Definition (Convex cone). A set K is a convex cone if:

$$\forall x_1, x_2 \in K, \forall \theta_1, \theta_2 \in \mathbb{R}_+^*, \quad \theta_1 x_1 + \theta_2 x_2 \in K$$

In the followings, we will denote by:

- $\mathbb{S}^n \subset \mathbb{R}^{n \times n}$ the set of symmetric matrices of size n
- \mathbb{S}^n_+ the set of positive semidefinite matrices of size n, that is matrices verifying:

$$\forall z \in \mathbb{R}^n, z^\top X z \geqslant 0$$

also denoted $X \geq 0$.

• \mathbb{S}^n_{++} the set of positive definite matrices of size n, that is matrices verifying:

$$\forall z \in \mathbb{R}^n, z^\top X z > 0$$

also denoted $X \succ 0$.

 \mathbb{S}^n_+ and \mathbb{S}^n_{++} are convex cones.

Special cases of cones include:

Positive orthant $K = \mathbb{R}^n_+ = \{ x \in \mathbb{R}^n \mid x_i \geqslant 0, \forall i \}$

Norm cones $K = \{ (x,t) \in \mathbb{R}^n \times \mathbb{R} \mid ||x|| \leq t \}$. A particular case is the second-order cone (SOC), based on the ℓ_2 norm.

Positive polynomials $K_n = \{ x \in \mathbb{R}^{n+1} \mid \forall t \in \mathbb{R}, \sum_{i=0}^n x_i t^i \geq 0 \}$

Positive semidefinite cone $\mathbb{S}^n_+ = \{ X \in \mathbb{S}^n \mid \forall z \in \mathbb{R}^n, z^\top X z \geqslant 0 \}$

Co-positive cone $\mathbb{S}^n_+ = \{ X \in \mathbb{S}^n \mid \forall z \in \mathbb{R}^n_+, z^\top X z \geqslant 0 \}$

Exponential cone $\{(x, y, z) \in \mathbb{R} \times \mathbb{R}_+^* \times \mathbb{R} \mid z \geqslant ye^{x/y} \}$

Definition (Dual cones). The dual cone to a convex cone K is the set:

$$K^* = \left\{ y \mid \forall x \in K, \quad y^\top x \geqslant 0 \right\}$$

Convex cones and their duals are particularly useful for convex duality. A convex cone that satisfies $K = K^*$ is called *self-dual*.

Definition (Polar cones). The *polar cone* to a convex cone K is the set:

$$K^{\diamond} = \left\{ y \mid \forall x \in K, \quad y^{\top} x \leqslant 0 \right\}$$

We have the identity $K^{\diamond} = -K^*$.

2.3 Convexity-preserving operations

To establish the convexity of a set C, the most basic approach is to apply the definition by proving that every segment that connects two points in C is in C. However, this can be tedious in practice. Instead, we can use operations that preserve convexity.

2.3.1 Intersection and union

Property 2.2 (Convexity is preserved by intersection). For any convex sets C_1 and C_2 , the intersection $C_1 \cap C_2$ is convex.

Likewise, the intersection of an arbitrary number of convex sets is convex.

Remark. The union of convex sets is not necessarily convex. For instance in \mathbb{R} , both [0,1] and [2,3] are convex, but their union $[0,1] \cup [2,3]$ is not.

Definition (Polyhedron). A *polyhedron* is the solution set of finitely many linear inequalities and equalities:

$$S = \{ x \in \mathbb{R}^n \mid Ax \leqslant b, Cx = d \}$$

for $A \in \mathcal{M}_{m,n}(\mathbb{R})$ and $C \in \mathcal{M}_{p,n}(\mathbb{R})$. Polyhedra are convex, since they are the intersection of halfspaces and hyperplanes which are convex.

Example. Let:

$$S = \left\{ x \in \mathbb{R}^m \,\middle|\, \forall t \in \mathbb{R}, \quad |t| \leqslant \frac{\pi}{3} \implies \left| \sum_{k=1}^m x_k \cos(kt) \right| \leqslant 1 \right\}$$

6

S is convex, since it can be written as the intersection of convex sets.

Example. \mathbb{S}^n_+ is convex since it is the intersection of convex sets:

$$\mathbb{S}^n_+ = \left\{ X \in \mathbb{S}^n \, \middle| \, \forall z \in \mathbb{R}^n, z^\top X z \geqslant 0 \right\} = \mathbb{S}^n \cap \bigcap_{z \in \mathbb{R}^n} \left\{ X \in \mathscr{M}_n(\mathbb{R}) \, \middle| \, z^\top X z \geqslant 0 \right\}$$

Each set $\{X \in \mathcal{M}_n(\mathbb{R}) \mid z^\top X z \ge 0\}$ being convex, their intersection is convex. In particular, it doesn't matter if the number of sets is finite, countable or uncountable.

2.3.2 Affine functions

Property 2.3 (The image of a convex set by an affine function is convex). If $L: \mathbb{R}^n \to \mathbb{R}^m$ is an affine function, then if C is convex, L(C) is convex.

More explicitly, let $A \in \mathcal{M}_{m,n}(\mathbb{R})$ and $b \in \mathbb{R}^m$. The affine function L(x) = Ax + b maps C to $L(C) = \{ y \in \mathbb{R}^m \mid \exists x \in C, y = Ax + b \}$, which is convex if C is convex.

Property 2.4 (The pre-image of a convex set by an affine function is convex). If $L: \mathbb{R}^n \to \mathbb{R}^m$ is an affine function, then $L^{-1}(C)$, the pre-image of C by L defined by:

$$L^{-1}(C) = \{ x \in \mathbb{R}^n \mid L(x) \in C \}$$

is convex if C is convex.

Example (Linear matrix inequalities). Let $A_1, \ldots, A_m \in \mathbb{S}^n(\mathbb{R})$. The set:

$$\left\{ x \in \mathbb{R}^m \, \middle| \, \sum_{i=1}^m x_i A_i \succcurlyeq 0 \right\}$$

is an affine pre-image of \mathbb{S}^n_+ for the mapping $L:\mathbb{R}^m\to\mathbb{S}^n$ defined by:

$$L(x) = \sum_{i=1}^{m} x_i A_i$$

 \mathbb{S}^n_+ being convex, the set is convex. $\sum_{i=1}^m x_i A_i \geq 0$ is called a linear matrix inequality.

3 Convex functions

4 Convex problems