

UiO Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Successive Approximation Register (SAR) Analog to Digital Converter (ADC)

By Espen Klein Nilsen and Vegard Midtbøen

Content

- Introduction
- Requirements
- Solution
- Conclusion

Introduction SAR ADC

- Sample-and-Hold
- Comparator
- Digital-to-Analog
 Converter
- SAR Logic

Figure 1.1: Block diagram

Introduction SAR ADC

Figure 1.2: Example of 4-bit SAR ADC conversion

Introduction Sample-and-Hold

- Snatches a value of a analog signal and holds it constant
- Ф1:on
 →C charges to Vin
- Ф1:off
 - \rightarrow Vout = Vin

Figure 1.3: Input signal and sampled signal

Figure 1.4: Sample and Hold

Introduction Comparator

- Compares two input signals
- Outputs logic high or low

Introduction Digital-to-Analog Converter

R-2R ladder

$$V_{LSB} = V_{ref} \cdot \frac{1}{2^N}$$

$$BinVal = \sum_{i=0}^{N-1} 2^i \cdot b_i$$

$$V_{out} = V_{LSB} \cdot BinVal$$

$$V_{Max} = V_{ref} \cdot \frac{2^N - 1}{2^N}$$

Figure 1.5: Example of 8-bit R-2R ladder

d7	d6	d5	d4	d3	d2	d1	d0	Voltage	Bit
0	0	0	0	0	0	0	1	4,687 mV	d0
0	0	0	0	0	0	1	0	9,375 mV	d1
0	0	0	0	0	1	0	0	18,75 mV	d2
0	0	0	0	1	0	0	0	37,50 mV	d3
0	0	0	1	0	0	0	0	75,00 mV	d4
0	0	1	0	0	0	0	0	150,0 mV	d5
0	1	0	0	0	0	0	0	300,0 mV	d6
1	0	0	0	0	0	0	0	600,0 mV	d7
1	1	1	1	1	1	1	1	1,195 mV	all

Table 3.2: Output voltage DAC

Introduction SAR Logic

Figure 1.7: SAR logic block

Figure 1.8: Typical timing diagram for the SAR logic block

Requirements SAR ADC

- Input sampling rate: 1 M samples/s
- Output resolution: 8 bits
- Supply voltage: VDD = 1.2 V, and VSS = 0 V
- No missing codes

Requirements DAC

- Sampling rate: 8 M samples/s
- Resolution: 8 bits
- Supply voltage: VDD = 1.2 V, and VSS = 0 V
- DNL $< \pm 0.5 LSB$
- INL $< \pm 0.5 LSB$
- VOUT(P-P) >= 0.6 V
- Cload = 50 fF

Requirements Comparator

- Delay <= 0.5 clock cycle
- Supply Voltage: VDD = 1.2 V and VSS = 0 V
- Offset < 0.5 LSB
- Gain > VDD/Vref /2n
- Cload = 50 fF

Results

- Sample-and-Hold
- Comparator
- Digital-to-Analog Converter
- SAR logic
- SR Latch
- Output buffers

Results Sample-and-Hold Implementation and Layout

- Transmission gate
- Inverter

Figure 3.1: Sample and Hold design

Figure 3.3: Layout for Sample and hold without capacitor

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Results

Sample-and-Hold Implementation and

Layout

Figure 3.4: Layout for Sample and hold

Results Sample-and-Hold Simulation

Figure 3.2: Sample and Hold simulation output

Results Comparator Implementation and Layout

- Rail-to-rail input
- Large transistors

Figure 3.5: Comparator design

Figure 3.8: Layout for the Comparator

Results Comparator Simulation

Figure 3.6: Comparator simulation output, $V_{ref} \le 600 mV$

Figure 3.7: Sample and Hold simulation output, $V_{ref} > 600 \, mV$ INF4420 – Projects in analogue/mixed-signal design

Det matematisk-naturvitenskapelige fakultet

Results Requirement fulfillment

- Achieved
 - Delay
 - Offset
 - Gain

Results
Digital-to-Analog Converter Implementation and Layout

- R-2R
- Buffers convert from 1V to 1.2V
- Each resistance divided in four
- R = 320 kOhm

Figure 3.12: Implemented 8-bit R-2R ladder

Results Digital-to-Analog Converter Simulation

R = 10K2R = 20K

Figure 3.13: Simulation using $10k (20k)\Omega$

R = 100K2R = 200K

 $\label{eq:figure 3.14:Simulation using 100k (200k)} Figure 3.14: Simulation using 100k (200k) \Omega \\ INF4420 - Projects in analogue/mixed-signal design$

Results Digital-to-Analog Converter Simulation

R = 320K2R = 640K

Figure 3.15: Simulation using 320k (640k) Ω

Results Requirement fulfillment

- Achieved
 - Sampling rate of 8 M samples/s (10 M ok)
 - INL and DNL (software calculations)
 - Monotonic
 - Output voltage

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Results SAR logic

- Not simulated on its own
- Verified with the complete system

Det matematisk-naturvitenskapelige fakultet

Results SR Latch

 Needed to include SR Latch for control of sample-and-hold

Table 3.3: SR latch function table

Figure 3.18: SR latch

Figure 3.19: Layout for the SR Latch

Det matematisk-naturvitenskapelige fakultet

Results Output buffers

- High impedance for the DAC
- Not simulated

Figure 3.20: Output buffers

Figure 3.21: Layout for the Output buffers

Results SAR System Implementation and Layout

- The total area consumed:
 - $-220 \mu m \times 140 \mu m$

Figure 3.22: Block diagram representing the complete system

Results SAR System Implementation and Layout

Figure 3.24: Implementation of the SAR system in layout

Results SAR System Simulation

Figure 3.26: SAR system performance dynamics

Results Requirement fulfillment

- Achieved
 - Input sampling rate of 1 M samples/s
 - Output resolution: 8 bits
- Not Verified
 - No missing codes

Conclusion

- Improvements
 - DAC design
 - SR latch
 - Layout
- Almost all requirements fulfilled