Course	10CCC20E1 Course	ARTIFICIAL INTELLIGENCE	Course	C	Professional Core	L	T	Р	С	
Course Code	18CSC305J Name	ARTIFICIAL INTELLIGENCE	Category	C	Professional Core	3	0	2	4	

Pre-requisite Nil	Co-requisite Courses	lil	Progressive Courses Nil
Course Offering Department	Computer Science and Engineering	Data Book / Codes/Standards	Nil

Course Lo	earning Rationale (CLR): The purpose of learning this course is to:	Learning Program Learning Outcomes (PLG							PLO)	 LO)									
	Provide a broad understanding of the basic techniques for building intelligent computer systems and an understanding of how AI is applied to problems.	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	_																		
	Understand the search technique procedures applied to real world problems	(Bloom)	oficiency(%)	8	9	2	 						¥						
	Understand the types of logic and knowledge representation schemes	읆)C	ent(7	2	Je.		ge				eamWork		nce				
	Acquire knowledge in planning and learning algorithms) g	Se.	Ĭ.			l do	Ľ,	sac	9			Эaп	_	ina	ing			
CLR-6:	Gain knowledge in Al Applications and advances in Artificial Intelligence	inking		ttai	2	2 2	<u> </u>	ssic	ΠIC	릒	± ₹		-	atio	%. ∓	arn			
		느	౼	Αğ	-	A	ű	sis,D	Toc	8CL	me abil		al	is:	√lgt	gLe			
Course Lo	earning Outcomes (CLO): At the end of this course, learners will be able to:	Levelof	ExpectedPr	ExpectedAttainment(%)	os bolino e/Jeniro o eio e 7	ProblemAnalysis	Design&Development	Analysis,Design, Research	용	Society&Culture	Environment& Sustainability	Ethics	Individual &	Communication	ProjectMgt.&Finance	LifeLongLearning	PS0-1	PS0-2	PS0-3
CLO-1:	Formulate a problem and build intelligent agents	1	80	70	٨	M	М	М	Н	-	-	-	Μ	L	-	Н	L	L	L
CLO-2:	Apply appropriate searching techniques to solve a real world problem	2	85	75	٨	1 H	Н	Н	Н	-	-		Μ	L	-	Н	М	L	M-
CLO-3:	Analyze the problem and infer new knowledge using suitable knowledge representation schemes	2	75	70	٨	1 H	Н	М	Н	-	-		Μ	L	-	Н	М	L	Μ
CLO-4:	Develop planning and apply learning algorithms on real world problems	2	85	80	٨	1 H	М	Н	Н	-	-		Μ	L	-	Н	М	Μ	M
CLO-5:	Design an expert system and implement natural language processing techniques	3	85	75	٨	1 H	Н	Н	Н	-	-	-	М	L	-	Н	Н	М	Н
CLO-6:				70	L	Н	M	Μ	Н	-	-	-	Н	L	-	Н	Н	Μ	Н

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Introduction to AI-AI techniques	Searching techniques- Uniformed search- General search Algorithm		Planning- Planning problems, Simple planning agent	Expert system-Architecture
•	SLO-2	Problem solving with AI	Uniformed search Methods-Breadth first search	Knowledge base agents-Logic Basics	Planning languages	Pros and Cons of expert system
	SLO-1	Al Models, Data acquisition and learning aspects in Al	Uniformed search Methods-Depth first search	Logic-Propositional logic-syntax ,semantics and inferences	Blocks world ,Goal stack planning	Rule based systems
S-2	SLO-2	Problem solving- Problem solving process, Formulating problems	Uniformed search Methods-Depth limited search	Propositional logic- Reasoning patterns	Mean Ends Analysis	Frame based expert system
S-3	SLO-1	Problem types and characteristics	Uniformed search Methods- Iterative Deepening search	Predicate logic – Syntax and semantics, instance and is relationship	Non-linear Planning	Case study
3-3	SLO-2	Problem space and search	Bi-directional search	Unification and Resolution	Conditional planning, Reactive planning	Case study
-	SLO-1	Lab 1: Implementation of toy problems	Lab4: Implementation and Analysis of	Lab 7: Implementation of unification and	Lab 10 :Implementation of block world	Natural language processing-Levels of
4-5	SLO-2		DFS and BFS for an application	resolution for real world problems.	problem	NLP
S-6	SLO-1	Intelligent agent	Informed search- Generate and test, Best First search	Knowledge representation using rules	Learning- Machine learning	Syntactic and Semantic Analysis
	31 U-7	Rationality and Rational agent with performance measures	Informed search-A* Algorithm	Knowledge representation using semantic nets	Goals and Challenges of machine learning	
S-7	SLO-1	Flexibility and Intelligent agents	AO* research	Knowledge representation using frames	Learning concepts, models	Information Extraction

	SLO-2	Task environment and its properties	Local search Algorithms-Hill Climbing, Simulated Annealing	Inferences	Artificial neural network based learning- Back propagation	Machine translation
S-8	SLO-1	Types of agents	Local Beam Search	Uncertain Knowledge and reasoning- Methods	Support vector machines	NLP Applications
	SLO-2	Other aspects of agents	Genetic Algorithms	Bayesian probability and belief network	Reinforcement learning	NLP Applications
S 9-10		Lab 2: Developing agent programs for real world problems	Lab 5: Developing Best first search and A* Algorithm for real world problems	Lab 8: Implementation of knowledge representation schemes - use cases	Lab 11: Implementation of learning algorithms for an application	Lab 14:Implementation of NLP programs
S-11	SLO-1	Constraint satisfaction problems(CSP)	Adversarial search Methods-Game playing-Important concepts	Probabilistic reasoning	Adaptive learning	Advance topics in Artificial Intelligence- Cloud Computing and intelligent agent
	SLO-2	Crypto arithmetic puzzles	Game playing and knowledge structure	Probabilistic reasoning over time	Multi_agent based learning	Business intelligence and analytics
S-12	SLU-1	CSP as a search problem-constrains and representation	Game as a search problem-Minimax approach	Forward and backward reasoning	Ensemble learning	Sentiment Analysis
	SLO-2	CSP-Backtracking, Role of heuristic	Minimax Algorithm	Other uncertain techniques-Data mining	Learning for decision making	Deep learning Algorithms
S-13	SLO-1	CSP-Forward checking and constraint propagation	Alpha beta pruning	Fuzzy logic	Distributed learning	Deep learning Algorithms
	SLO-2	CSP-Intelligent backtracking	Game theory problems	Dempster -shafer theory	Speedup learning	Planning and logic in intelligent agents
S 14-15		Lab 3: Implementation of constraint satisfaction problems	Lab 6: Implementation of minimax algorithm for an application	Lab 9: Implementation of uncertain methods for an application	Lab12: Development of ensemble model for an application	Lab 15: Applying deep learning methods to solve an application.

Learning Resources

- Parag Kulkarni, Prachi Joshi, Artificial Intelligence –Building Intelliegent Systems, 1St ed., PHI learning,2015
- 2. DeepakKemhani,FirstcourseinArtificilaIntelligence,McGrawHillPvtLtd,2013
- 3. Stuart J. Russell, Peter Norwig , Artificial Intelligence A Modern approach, 3rd Pearson Education, 2016
- ${\it 4. Prateek Joshi,} Artificial Intelligence with Phython,} 1^{St} ed., Packt Publishing, 2017$
- 5. DenisRothman,ArtificialIntelligencebyExample,Packt,2018

_earning	Assessn	nent

	Bloom's			Conti	nuous Learning Asso	essment (50% weigh	ntage)			Final Examination (50% weightage				
	Level of Thinking	CLA -	1 (10%)	CLA – :	2 (15%)	CLA - 3	3 (15%)	CLA - 4	(10%)#	FIIIai Examination	i (50% weightage)			
	Level of Trilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	20%	20%	10%	10%	15%	15%	15%	15%	15%				
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20% 20%		20%			
Level 3	Evaluate Create	10%	10%	20%	20%	15%	15%	15%	15%	15%	15%			
	Total	10	0 %	100	0 %	100) %	100) %	-				

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr.Jagatheeswaran, Lead, Auxo labs jagatheeswarans.iot@auxolabs.in	1. Dr. Chitrakala, Anna University, au.chitras@gmail.com	1. Dr.M.Pushpalatha, SRMIST
2.	2.	2. Dr.GVadivu, SRMIST
	3.	3. Dr.C.Lakshmi, SRMIST

Code Name Convirtues C	Course	18CSC304J	Course	COMPILED DESIGN	Course	C	Professional Care	L	T	Р	C
	Code		Name		Category	C	Professional Core	3	0	2	4

Pre-requisite Courses	18CSC301T	_	equisite ourses	Nil	Progressive Courses	
Course Offering	Department	Computer Science and Enginee	eering	Data Book / Codes/Standar	rds Nil	

	L	.earni	ng	_					Prog	ram l	Learn	ing O	utco	nes (PLO)				
Course Learning Rationale (CLR): The purpose of learning this course is to:	1	2	3		Т	2	3	4	5	6	7	8	9	10	11	12	13	14 1	15
CLR-1: Utilize the mathematics and engineering principles for the Design of Compilers			3	_		_	J		3	- 0	· ·	U	,	10		12	10	17 1	13
CLR-2: Acquire knowledge of Lexical Analyzer from a specification of a language's lexical rules	E	(%)	9		υ								¥						
CLR-3: Acquire knowledge of Syntax Analyzer for parsing the sentences in a compiler grammar	(Bloom)		ctedAttainment(%)	-	n n		elopment		a				eamWork		ance				
CLR-4: Gain knowledge to translate a system into various intermediate codes) (B	ien	me	-	Š .	Sis	md	c`	age	a			am	_	nan	ning			
CLR-5: Analyze the methods of implementing a Code Generator for compilers	Ę.	ofic	Taj.	\$	Ž .	alys		esign,	l Ns	Culture	∞ >		Te	tion	튽	arni			
CLR-6: Analyze and Design the methods of developing a Code Optimizer	hinking	ctedProficiency	₽		<u>.</u>	٩ű	De	ع ک	00	ŋ	neu biji		<u>~</u>	nica	g.	Lea			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	LevelofT	Expecte	Expecte		ahnamouvhiiiaaiiihii	ProblemAnaly	Design&Dev	Analysis Researc	ModernTool Us	Society&	Environment Sustainabilit	Ethics	8 Individual	Communication	ProjectMgt.&Fin	rifeLongL∈	PS0-1	?	PS0-3
CLO-1: Acquire the knowledge of mathematics and engineering principles for the Design of Compilers	3	80	70	Н	Н	' <i>I</i>	Н	Н	М	L	L	L	Μ	Μ	L	Н	Н	H H	i
CLO-2: Acquire the ability to identify specification of a language's lexical rules of Lexical Analyzer	3	85	75	Н	Н	' I	Н	Н	М	L	L	L	М	Μ	L	Н	Н	H H	I = I
CLO-3: Apply the knowledge of Syntax Analyzer for parsing the sentences in a compiler grammar	3	75	70	Н	Н	·	Н	Н	Μ	L	L	L	Μ	Μ	L	Н	Н	H H	i
CLO-4: Understand the concepts of translation of various intermediate codes.	3	85 85	80	Н	Н	' <i>I</i>	Н	Н	М	L	L	L	Μ	Μ	L	Н	Н	H H	i
CLO-5: Apply the knowledge to implement Code Generator for compilers			75	Н	Н		Н	Н	М	L	L	L	М	Μ	L	Н	Н	H H	l
CLO-6: Analyze and Design the methods of developing a Code Optimizer			70	Н	Н	' <i>I</i>	Н	Н	М	L	L	L	Μ	Μ	L	Н	Н	H H	l l

Durati	on (hour)	15	15	15	15	15
S-1	SLO-1	Compilers – Analysis of the source program	Syntax Analysis Definition - Role of parser	Bottom Up Parsing	Intermediate Code Generation	Code optimization
	SLO-2	Phases of a compiler – Cousins of the Compiler	Lexical versus Syntactic Analysis	Reductions	Intermediate Languages - prefix - postfix	Introduction– Principal Sources of Optimization
S-2	SLO-1	Grouping of Phases – Compiler construction tools	Representative Grammars	Handle Pruning	Quadruple - triple - indirect triples Representation	Function Preserving Transformation
	SLO-2	Lexical Analysis – Role of Lexical Analyzer	Syntax Error Handling	Shift Reduce Parsing	Syntax tree- Evaluation of expression - three-address code	Loop Optimization
S-3	SLO-1	Input Buffering	Elimination of Ambiguity, Left Recursion	Problems related to Shift Reduce Parsing	Optimization of basic Blocks	
	SLO-2	Specification of Tokens	Left Factoring	Conflicts During Shift Reduce Parsing	Intermediate languages – Declarations	Building Expression of DAG
S 4-5	SLO-1 SLO-2	Lab 1 - Implementation of Lexical Analyzer	Lab 4Elimation of Ambiguity, Left Recursion and Left Factoring	Lab 7 - Shift Reduce Parsing	Lab 10-Intermediate code generation – Postfix, Prefix	Lab 13 Implementation of DAG
S-6	SLO-1	Finite automation - deterministic	Top down parsing	LR Parsers- Why LR Parsers	Assignment Statements	Peephole Optimization
	SLO-2	Finite automation - non deterministic	Recursive Descent Parsing, back tracking	Items and LR(0) Automaton, Closure of Item Sets,	Boolean Expressions, Case Statements	Basic Blocks, Flow Graphs
S-7	SLO-1	Transition Tables	Computation of FIRST	LR Parsing Algorithm	Back patching – Procedure calls	Next -Use Information

	SLO-2	Acceptance of Input Strings by Automata	Problems related to FIRST	Operator Precedence Parser Computation of LEADING	Code Generation	Introduction to Global Data Flow Analysis
S-8	SLO-1	State Diagrams and Regular Expressions	Computation of FOLLOW	Computation of TRAILING	Issues in the design of code generator	Computation of gen and kill
	SLO-2	Conversion of regular expression to NFA – Thompson's	Thompson's Problems related to FOLLOW TRAILING		The target machine – Runtime Storage management	Computation of in and out
S 9-10	SLO-1 SLO-2	Lab 2 conversion from Regular Expression to NFA	Lab 5 -FIRST AND FOLLOW computation	Lab 9. Computation of LEADING AND Lab 11 Intermediate code		Lab 14 : Implementation of Global Data Flow Analysis
S-11	SLO-1	Conversion of NFA to DFA	FA Construction of a predictive parsing table SLR Grammars		A simple Code generator	Parameter Passing.
	SLO-2	Simulation of an NFA	Predictive Parsers LL(1) Grammars	SLR Parsing Tables	Code Generation Algorithm	Runtime Environments
S-12	SLO-1	Converting Regular expression directly to DFA	Transition Diagrams for Predictive Parsers	Problems related to SLR	Register and Address Descriptors	Source Language issues
	SLO-2	Minimization of DFA	Error Recovery in Predictive Parsing	Construction of Canonical LR(1) and LALR	Generating Code of Assignment Statements	Storage Organization
S-13	SLO-1	Minimization of NFA	Predictive Parsing Algorithm	Construction of LALR	Cross Compiler – T diagrams	Activation Records
	SLO-2	Design of lexical analysis (LEX)	Non Recursive Predictive Parser	Problems related to Canonical LR(1) and LALR Parsing Table	Issues in Cross compilers	Storage Allocation strategies
S 14-15	SLO-1 SLO-2	Lab 3 Conversion from NFA to DFA	Lab 6 Predictive Parsing Table	Lab9 Computation of LR(0) items	Lab 12 : A simple code Generator	Lab 15: Implement any one storage allocation strategies(heap, stack, static)

Learning Resources

- $1.\ Alfred VAho, Jeffery DUllman, Ravi Sethi, "Compilers, Principle stechniques and tools", Pearson$
- 2. S. Godfrey Winster, S. Aruna Devi, R. Sujatha, "Compiler Design", Yesdee Publishing Pvt. Ltd, 2016
- $3. \ \ \textit{WilliamM.Waite} and \textit{GerhardGoos.CompilerConstruction.Springer-Verlag,NewYork,2013}.$

- K. Muneeswaran,, "CompilerDesign", OxfordHigherEducation, Fourthedition 2015
 DavidGalles, "ModernCompilerDesign", PearsonEducation, Reprint 2012.
 RaghavanV., "Principles of Compiler Design", TataMcGraw Hill

Learning Asse	ssment											
	Bloom's Continuous Learning Assessment (50% weightage) Final											
	Level of Thinking	CLA -	1 (10%)	CLA – :	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#	FIIIdi Examination	n (50% weightage)	
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%	
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%	
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%	
	Total	100	0 %	100	0 %	100) %	100) %		-	

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
		1. Ms.R.Jeya
		2. Mrs.J. Jeyasudha

Course	18CSC303J	Course	DATARASE MANAGEMENT SYSTEMS	Course	C	Professional Core	L	T	Р	С	
Code	100303033	Name	DATABASE MANAGEMENT SASTEMS	Category	C	FTOTESSIONAL COTE	3	0	2	4	

Pre-requisite Nil	Co-requisite Courses	Nil	Progressive Courses	Nil
Course Offering Department	Computer Science and Engineering	Data Book / Codes/Standards	Nil	

Course L	earning Rationale (CLR):	The purpose of learning this course is to:	L	earnir	ıg
CLR-1:	Understand the fundamenta	ls of Database Management Systems, Architecture and Languages	1	2	3
CLR-2:	Conceive the database desi	gn process through ER Model and Relational Model	(n	(%)	(9
CLR-3:	Design Logical Database S	chema and mapping it to implementation level schema through Database Language Features	(Bloom)	.y ('	<u>څ</u>
CLR-4:		ructure Query Language (SQL) and PL/SQL	g) (B	ExpectedProficiency	nme
CLR-5:	Familiarize the Improvement	t of the database design using normalization criteria and optimize queries		rofi	ttai
CLR-6:	LR-6: Understand the practical problems of concurrency control and gain knowledge about failures and recovery		evelofThinking	P P	ΙŞ
Course L	earning Outcomes (CLO):	the end of this course, learners will be able to:			ExpectedAttainment(%)
CLO-1:	Acquire the knowledge on E	BMS Architecture and Languages	3	80	70
CLO-2:	Apply the fundamentals of c ER diagrams	lata models to model an application's data requirements using conceptual modeling tools like	3	85	75
CLO-3:	Apply the method to conver	the ER model to a database schemas based on the conceptual relational model	3	75	70
CLO-4:	Apply the knowledge to crea	ate, store and retrieve data using Structure Query Language (SQL) and PL/SQL	3	85	80
CLO-5:	Apply the knowledge to imp	rove database design using various normalization criteria and optimize queries	3	85	75
CLO-6:	Appreciate the fundamental	concepts of transaction processing- concurrency control techniques and recovery procedures.	3	85	75

	Program Learning Outcomes (PLO)													
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
∓ EngineeringKnowledge	≂ Problem Analysis	∽ Design&Development	─ Analysis,Design,Research	· ModernTool Usage	· Society&Culture	, Environment& Sustainability	· Ethics	¬ Individual & TeamWork	Communication	⁻⁻ ProjectMgt.&Finance	∓LifeLongLearning	1-DSO ·	7-0Sd ·	· PS0-3
Н	Н	Н	Н	Н	-		-	Н	Н	Н	Н	-	•	-
Н	Н	Н	Н	Н	-	-		Н	Н	Н	Н	-	-	-
Н	Н	Н	Н	Н	-	-	-	Н	Н	Н	Н	-	-	-
Н	Н	L	М	L	-	-	-	М	М	Μ	L	-	-	-
Н	L	L	L	L	-	-	-	Н	L	L	L			

Duration	on (hour)	15	15	15	15	15
S-1	SLO-1	What is Database Management System	Database Design	Basics of SQL-DDL,DML,DCL,TCL	Relational Algebra – Fundamental Operators and syntax, relational algebra	Transaction concepts, properties of transactions,
	SLO-2	Advantage of DBMS over File Processing System	Design process	Structure Creation, alternation	queries, Tuple relational calculus	
S-2	SLO-1	Introduction and applications of DBMS	Entity Relation Model	Defining Constraints-Primary Key, Foreign Key, Unique, not null, check, IN operator		serializability of transactions,
	SLO-2	Purpose of database system				testing for serializability, System recovery,
S-3	SL0-1	Views of data	ER diagram	Functions-aggregation functions	Pitfalls in Relational database, Decomposing bad schema	Concurrency Control
	SLO-2			Built-in Functions-numeric, date, string functions, string functions, Set operations,	Functional Dependency – definition, trivial and non-trivial FD	
		Lab 1: SQL Data Definition Language Commands on sample exercise	Lab4: Inbuilt functions in SQL on sample exercise.	Lab 7 : Join Queries on sample exercise.	Lab10: PL/SQL Procedures on sample exercise.	Lab 13: PL/SQL Exception Handling
S 4-5	SLO-2	* The abstract of the project to construct database must be framed		* Frame and execute the appropriate DDL,DML,DCL,TCL for the project	* Frame and execute the appropriate Join Queries for the project	* Frame and execute the appropriate PL/SQL Procedures and Functions for the project
S-6	SLO-1	Database system Architecture	Keys , Attributes and Constraints	Sub Queries, correlated sub queries	closure of FD set , closure of attributes	Two- Phase Commit protocol, Recovery and Atomicity
	SLO-2				irreducible set of FD	
S-7	SLO-1	Data Independence	Mapping Cardinality	Nested Queries, Views and its Types	Normalization – 1Nf, 2NF, 3NF,	Log-based recovery
	SLO-2					
S-8	SLO-1	The evolution of Data Models	Extended ER - Generalization,	Transaction Control Commands	Decomposition using FD- dependency	concurrent executions of transactions and

	SLO-2		Specialization and Aggregation	Commit, Rollback, Savepoint	preservation,	related problems
S 9-10	SLO-2	Lab 2: SQL Data Manipulation Language Commands * Identification of project Modules and functionality	Lab 5: Construct a ER Model for the application to be constructed to a Database	Lab 8: Set Operators & Views. * Frame and execute the appropriate In- Built functions for the project	Lab 11: PL/SQL Functions * Frame and execute the appropriate Set Operators & Views for the project	Lab 14: PL/SQL Trigger * Frame and execute the appropriate PL/SQL Cursors and Exceptional Handling for the project
S-11	SLO-1	Degrees of Data Abstraction	ER Diagram Issues	PL/SQL Concepts- Cursors	BCNF	Locking mechanism, solution to concurrency related problems
	SLO-2		Weak Entity			
S-12	SLO-1	Database Users and DBA	Relational Model	Stored Procedure, Functions Triggers and Exceptional Handling	Multi- valued dependency,	Deadlock
	SLO-2				4NF	
S-13	SLO-1	Database Languages	Conversion of ER to Relational Table	Query Processing	Join dependency and 5NF	two-phase locking protocol, Isolation, Intent locking
	SLO-2					
	SLO-1	Lab 3: SQL Data Control Language	Lab 6: Nested Queries on sample exercise	Lab9: PL/SQL Conditional and Iterative Statements	Lab 12: PL/SQL Cursors	Lab 15 : * Frame and execute the
S 14-15	SLO-2	Commands and Transaction control commands to the sample exercises * Identify the issues that can arise in a business perspective for the application	* Construction of Relational Table from the ER Diagram	* Frame and execute the appropriate Nested Queries for the project	* Frame and execute the appropriate PL/SQL Conditional and Iterative Statements for the project	appropriate PL/SQL Cursors and Exceptional Handling for the project * Demo of the project

Learning Resources

- 1. Abraham Silberschatz, Henry F. Korth, S. Sudharshan, Database System ConceptsII, Sixth Edition, Tata McGraw Hill,2011.
- 2. Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems II, Sixth Edition, Pearson Education, 2011.
- 3. CJ Date, A Kannan, S Swamynathan, An Introduction to Database Systems, Eight Edition, Pearson Education, 2006.
- 4. Rajesh Narang, Database Management Systems, 2nd ed., PHI Learning Private Limited,2011.
- 4. Martin Gruber, Understanding SQL, Sybex,1990
- 5. SharadMaheshwari,IntroductiontoSQLandPL/SQL,2^ded.,LaxmiPublications,2016.
- RaghuramaKrishnan, JohannesGehrke, DatabaseManagementSystems, 3rdEdition, McGrawHill Education, 2003.

Learning Asso	essment										
	Bloom's Continuous Learning Assessment (50% weightage)										
	Level of Thinking	CLA -	1 (10%)	CLA – :	2 (15%)	CLA – 3	3 (15%)	CLA – 4	(10%)#	FIIIdi Examination	n (50% weightage)
	Level of Trilliking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 2	Apply Analyze	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 3	Evaluate Create	10%	10%	15%	15%	15%	15%	15%	15%	15%	15%
	Total	10	0 %	100	0 %	100) %	100) %		-

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.Mariappan Vaithilingam, Engineering Leader Amazon, dr.v.m@ieee.org		1. Ms. Sasi Rekha Sankar SRMIST
2 Mr. Padinath CDET Amzan abadhrinath@amail.com		2. Mr.Elizer, SRMIST
2. Mr. Badinath, SDET, Amzon, sbadhrinath@gmail.com		3. Mrs. Hemavathy, SRMIST

Course		Course		Course	_		L	T	Р	С
Code	18CSE484T	Name	DEEP LEARNING	Category	E	Professional Elective	3	0	0	3

Pre-requisite Courses	Nil		Co-requisite Courses	Vil		Progressive Courses	Nii
Course Offerin	g Department	Computer Science and E	Engineering	Data B	ook / Codes/Standards	Nil	

Course L	earning Rationale (CLR): The purpose of learning this course is to:	L	earniı	ng					Prog	ram L	_earni	ing Oı	utcon	nes (F	PLO)				
CLR-1:	Understand the concepts of Neural Networks and Deep Learning	1	2	3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:	Understand Deep neural network and layered learning approach																		
CLR-3:	Study and understand CNN and RNN for deep learning							rc p			billity				i				
CLR-4:	Learn and understand Auto Encoders and its applications	(Bloom)	cy (%)	nt(%)	edae	•	nent	ea	ө		Sustainability		eamWork		ce				
CLR-5:	Understand concept of transfer learning and its applications with keras		xpectedProficiency	Attainme	naKnow	nalysis	evelopn	Jesign, Res	ool Usage	Sulture			~ 	ication	jt.&Finar	earning			
Course L	earning Outcomes (CLO): At the end of this course, learners will be able to:	LevelofThinking	Expected	ExpectedAttainment(%)	EnaineerinaKnowledae	ProblemAnalysis	Design&Development	Analysis,De	ModernTool	Society&Culture	Environment&	Ethics	Individual	Communi	ProjectMgt.&Finance	LifeLongLearning	PS0-1	PS0-2	PS0-3
CLO-1:	Apply basic mathematical concepts in Deep Learning	2	80	85	Н		-	-	H-	-	-	-	-	-	-	Н	Н	-	-
CLO-2:	Work with powerful framework for supervised learning	3	75	80	Н	Н	-	-	Н	-	-	-	-	-	- 1	Н	Н	Н	М
CLO-3:	Deal with Convolution Neural Networks	2	85	80	Н	Н	Н	-	Н	-	-	-	-	-	- 1	Н	Н	Н	Н
CLO-4:	Analyze various types efficient data encoders	2	80	75	Н	Н	-	-	Н	-	-	-	-	-		Н	Н	Н	Н
CLO-5:					Н	Н	Н	Н	Н	-	-	-	-	-	-	Н	Н	Н	Н

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Historical trends in deep learning – Machine Learning basics	Introduction to Simple DNN	Convolution Neural Networks Introduction	Encoder	Deep Architectures in Vision
3-1	SLO-2	Unsupervisea Training	Platform for Deep Learning	Convolution Operation	Decoder	AlexNet to ResNet
S-2	SLO-1	Linear Algebra for machine learning		Motivation	Auto Encoders Introduction	Transfer Learning
3-2	SLO-2	Testing - Cross Validation	Deep Feed Forward Networks Introduction	Pooling	Auto Encoders	Transier Learning
S-3		Dimensionality Reduction	Learning XOR	Normalization	Under Complete Auto Encoder	Siamese Networks
3-3	SLO-2	Over fitting /Under Fitting	Gradient-Based Learning	Applications in Computer Vision - ImageNet	Regularized Auto Encoder	Siamese Networks
S-4	SLO-1	Hyper parameters and validation sets	Various Activation Functions, ReLU, Sigmoid – Error Functions	Sequence Modelling –VGGNet, LeNet	Stochastic Auto Encoder	Metric Learning
	SLO-2	Estimators – Bias - Variance	Architecture Design	Recurrent Neural Networks	Denoising Auto Encoder	Ranking / Triplet Loss
	SLO-1	Loss Function Regularization	Differentiation Algorithms		Contractive Auto Encoder	
S-5	SLO-2	Biological Neuron – Idea of Computational units	Regularization methods for Deep Learning	RNN topologies- Difficulty in Training RNN	Auto Encoder Applications	RCNNs with keras
S-6	SLO-1	McCulloch-Pitts units and Thresholding logic	Early Stopping	Long Short Term Memory	Dimensionality Reduction and Classification using Auto encoders	CNN-RNN
	SLO-2	Linear Perceptron	Drop Out		Recommendation	
	SLO-1	Perceptron Learning Algorithm		Bidirectional LSTMs	Ontimization for Doon Loarning Ontimizara	
S-7	SLO-2	Convergence theorem for Perceptron Learning Algorithm	Difficulty of training deep neural networks		Optimization for Deep Learning-Optimizers -RMS prop for RNNs	Applications in captioning and Video tasks
	SLO-1	Linear Separability		Bidirectional RNNs		
S-8	SLO-2	Multilayer perceptron –The first example of network with Keras code	Greedy layer wise training		SGD for CNNs	3D CNNs
S-9	SLO-1	- Backprobagation	Optimization methods for Neural	Application case study -Handwritten digits recognition using deep learning, LSTM with	Application case study – Image dimensionality reduction using encoders	Application case study – Image recognition
	SLO-2	ga	Networks-Adagrad, Adam		LSTM with Keras – sentiment Analysis	using RCNN and transfer learning

Ii											
Learning Asses	ssment									ı	
	Bloom's			Conti	nuous Learning Asse	essment (50% weigl	ntage)			Einal Evamination	(50% weightage)
	Level of Thinking	CLA -	1 (10%)	CLA –	2 (15%)	CLA – 3	3 (15%)	CLA – 4	(10%)#	FIIIai Examination	i (50% weightage)
	Lever of Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	CIEale		1								

Neural Networks: A Systematic Introduction, RaulRojas, 1996. ChristopherandM.Bishop, "PatternRecognitionandMachineLearning", SpringerScienceBusinessMedia, 2006. JasonBrownlee, "DeepLearningwithPython", ebook, 2016.

100 %

100 %

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

100 %

lanGoodfellow, YoshuaBengio, AaronCourville, "DeepLearning", MITPress, 2016. KevinP. Murphy, "MachineLearning: AProbabilistic Perspective", MITPress, 2012.

100 %

Learning 1. Resources 2.

Total

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1.	1.	1. Dr.E.Poovammal
2.	2.	2. Dr.G.Vadivu
		3. Mr.Joseph James

100 %

၁ ဧ				15						{	PSO-3	H	Z	7	Ξ	7	H
О О				14							PSO - 2		٠	٠	٠	٠	٠
0				13							1 - OS9	1	'	٠	٠	٠	•
J 3				12				бι	ims	д ре	noJ əfid	١	٠.		•	٠	•
			(O	7			90	ugu	8. Fi	.tgN	Project I	١	٠		٠	٠	
			es (P	10					noit	nica	nmmoO	١	٠		٠	٠	•
			tcom	6			Ιοικ	Ŋμ	Теаг	al &	ubivibn		١.		٠.		•
	_		JO BU	œ							Ethics						•
o l	Ē		Program Learning Outcomes (PLO)	7	A	tilid	enie	ısn	S	uəw	Inorivn∃	٠	٠	٠	٠	٠	٠
Open Elective		Ē	ram	9				E	unijr	s Ci	Society	٠	٠	٠	٠	٠	•
en E			Prog	2				әбе	sU I	00T	Modern	٠			٠	٠	
ŏ				4		иср	eese	ЭЯ ,	ubis	; De	sisylsnA				١.	7	7
				3			ļue	ud	oleve	8 D	Design		Ø	Z	Z	N	M
				2				S	isyle	ınA ı	Problem	Н		N			N
				_			әбр	əlw	Kno	6uµ	eenign∃	Н	Ŧ	H	Ή	Н	Н
0	s ve		<u>6</u>	3		(%) 1	uəu	niet	tΑ b	Expecte	20	75	20	80	75	75
Course	Progressive Courses		Learning	2		(4	%) /	Suc	iofici	ıЧр	Expecte	80	82	72	82	82	80
Cate	P.O.		۲	-		(ι	uoo	IB) I	Juiyu	iiΥΤ	level of	2	7	7	7	2	2
FIBER OPTICS AND OPTOELECTRONICS	NI NI	ngineering Data Book / Codes/Standards	e is to:	CLR-1: Analyze the basic laws and theorems of light associated with the optical fiber communication and the classification of optical fibers	as attenuation and dispersion.	ources and Defectors		cuits and devices	CLR-6: Utilize the basic optical concepts applied in various engineering problems and identify appropriate solutions		will be able to:	CLO-1: Review the basic theorems related to fiber optic communication, and attain knowledge of types of optical fibers	ommunication	ss, light sources and detectors	nplifiers		n and optoelectronic devices
Course FIBE	Co-requisite Courses	Electronics and Communication Engineering	The purpose of learning this course is to:	d theorems of light associated with	Address concepts related to transmission characteristics such as atten	CLR-3: Explore the fundamentals of optoelectronics display devices, Sources	CLR-4: Gain to information on Optical modulators and amplifiers	CLR-5: Illustrate the integration methods available for optoelectronic circuits and devices	cepts applied in various engineerin	_	Course Learning Outcomes (CLO): At the end of this course, learners will be	related to fiber optic communicatio	CLO-2: Understand the optical signal distortion factors in optical fiber communi	CLO-3: Familiarize the principle and operation of various display devices, light	CLO-4: Acquire knowledge of various optoelectronic modulators and amplifiers	CLO-5: Understand the various optoelectronic integrated circuits	CLO-6: Acquire fundamental concepts related to optical communication and optoelectronic devices
S Z	_			s and	ted to	als of	Optica	n meth	l conc	Ī	···	ems r	signa	e and	variou.	s opto	oncep
18ECO107T	Ψ.	ng Department	Course Learning Rationale (CLR):	Analyze the basic law optical fibers	ress concepts rela	olore the fundament	in to information on	strate the integration	ize the basic optica		ng Outcomes (CLO	iew the basic theor	derstand the optical	niliarize the principl	ruire knowledge of	derstand the various	uire fundamental c
Course Code	Pre-requisite Courses	Course Offering Department	Course Learnir	CLR-1: Ané opti	CLR-2: Ado	CLR-3: Exp	CLR-4: Gai	CLR-5: Illus	CLR-6: Util,		Course Learnii	CLO-1: Rev	CLO-2: Unc	CLO-3: Fan	CLO-4: Acq	CLO-5: Unc	CLO-6: Aca

Jurati	Duration (hour)	Introduction to Optical Fibers	Transmission Characteristics of Optical Fibers	Display Devices, Light Sources and Detection Devices	Optoelectronic Modulators and Switching Devices	Optoelectronic Integrated Circuits
		6	6	o	6	0
S-1	S-1 SLO-1	Evolution of fiber optic system	Attenuation – Absorption, Attenuation units Display devices – Photo luminescence	Display devices – Photo luminescence	Analog and Digital Modulation	Optoelectronic integrated circuits - Introduction
	SLO-2	Elements of an optical fiber transmission link	Attenuation – Scattering losses	Cathode luminescence	Electro optic modulators – Electro optic effect – Longitudinal electro optic modulator	Need for Integration - Hybrid and Monolithic Integration
S-2	SL0-1	Elements of an optical fiber transmission link	Attenuation – Bending losses, microbending and macro bending losses	Electro luminescence	Electro optic modulators – Transverse electro optic modulator	Hybrid and Monolithic Integration
	SLO-2	SLO-2 Advantages of fiber optic system	Attenuation - Core cladding losses	Injection luminescence	Acousto optic modulators – Transmission type – Raman Nath modulator	Materials and processing of OEICs
رې	SLO-1	S-3 SLO-1 Characteristics and behavior of light	Signal distortion in optical waveguides	Light source materials	Acousto optic modulators – Reflection type Application of optoelectronic integrated – Bragg modulator	Application of optoelectronic integrated circuits
	SLO-2	SLO-2 Total internal reflection	Types of dispersion-Intramodal and Intermodal dispersion	Surface emitting LEDs	Solving Problems	Slab and Strip Waveguides
4	SLO-1	S-4 SLO-1 Acceptance angle	Material dispersion	Edge emitting LEDs	Optical switching and logic devices – self- Integrated transmitters and receivers – electro-optic-device	Integrated transmitters and receivers – Front end photo receivers
	SLO-2	SLO-2 Numerical aperture, Critical angle	Material dispersion, Waveguide dispersion	Naveguide dispersion Quantum efficiency and LED power – Internal quantum efficiency derivation	Optical switching and logic devices – Bipolar controller modulator	Integrated transmitters and receivers – photoreceiver noise and bandwidth considerations
S-5	SL0-1	Solving Problems	Waveguide dispersion	Quantum efficiency and LED power – External quantum efficiency and total LED power	Optical switching and logic devices- tunable threshold logic gate – Switching speed and energy.	Integrated transmitters and receivers – PIN-HBT photoreceivers
	SL0-2	Solving Problems	Signal distortion in single mode fibers	Solving Problems	Optical Amplifiers – General applications of Integrated transmitters and receivers	Integrated transmitters and receivers –

					optical amplifiers	OEIC transmitters – equivalent circuit for integrated receivers
9-8	SLO-1	S-6 SLO-1 Ray optics	Polarization mode dispersion	Semiconductor laser diode	Semiconductor optical amplifiers – Basic configuration	Integrated transmitters and receivers – Complex circuits and arrays
	SLO-2	SLO-2 Types of rays	Polarization mode dispersion, Intermodal dispersion	dispersion, Intermodal Modes and threshold condition	Semiconductor optical amplifiers – Optical Integrated transmitters and receivers gain - Limitations	Integrated transmitters and receivers - optical control and microwave oscillators
7-0	SLO-1	S-7 SLO-1 Optical fiber modes	Intermodal dispersion	Photo detection principle	Erbium doped fiber amplifiers – energy Guided w level diagram and amplification mechanism couplers	Guided wave devices – Waveguide and couplers
	SLO-2	SLO-2 Optical fiber configurations	Solving Problems	PIN Photodiode	Erbium doped fiber amplifiers – EDFA configuration	Guided wave devices – Active guided wave devices
φ	SLO-1	S-8 SLO-1 Single mode fibers	Solving Problems	PIN photodiode - Avalanche Photodiode	Solving Problems	Guided wave devices – Mach Zehnder Interferometers
	SLO-2	SLO-2 Multimode Fibers	Pulse Broadening in Graded Index Waveguides	Avalanche Photodiode	Solving Problems	Active couplers
6-6	SLO-1	S-9 SLO-1 Step Index Fibers	Mode Coupling	Noise mechanism in photodetectors	Fiber Raman Amplifiers – Configuration – Forward pumping	Active Couplers
	SLO-2	Graded Index Fibers	Design Optimization of Single Mode Fibers Solving Problems	Solving Problems	Fiber Raman Amplifiers – Backward pumping	Active Couplers

7.

				Confir	Assertion Assert	esement (50% weigh	tage)				
	Bloom's	CLA-	CLA – 1 (10%)	CLA – 2 (15%)	2 (15%)	:LA – 2 (15%) CLA – 3 (15%)	(15%)	CLA-4 (10%)#	#(10%)#	Final Examination	Final Examination (50% weightage)
	Level of Ininking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
1	Remember	40.0%		/0 00		/0 VC		/0 00		/000	
- - - - - - - - - - - - - - - - - - -	Understand	40 %		30 %		20.70		90.00	•	20%	•
0 000	Apply	/0 0/		/0 0/		70 0/		70.07		7007	
7	Analyze	40.70		40.70		40 %		6/ 04	•	40%	•
6 000	Evaluate	/0 00		/0 00		/0 00		/0 00		/000	
רמעם	Create	0/ 07		9/ 00		9/ 00	•	9/ 00	•	20/00	•
	Total	101	100 %	100	100 %	100 %	%:	100	100 %	10(100 %
					2		•				

#CLA - 4 can be from any combination of these. Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Mr. Anuj Kumar, Bombardier Transportation, Ahmedabad, kumaranuj.anii@gmail.com	1. Dr. Meenakshi, Professor of ECE, CEG, Anna University, meena68@annauniv.edu	1. Dr. S. Sathiyan, SRMIST
2. Mr. Hariharasudhan - Johnson Controls, Pune, hariharasudhan v@jci.com	2. Dr. Venkatesan, Sr. Scientist, NIOT, Chennai, venkat@niot.res.in	

Course Code	18CSE479T	Course Name	STATISTIC	AL MACHINE LEARNING	Cours Catego		Ε	Professional Elective	3	T 0	P 0	<u>C</u>
Pre-requisit Courses	te _{Nil}		Co-requisite Courses	Nil	P	rogressiv Courses		Nil				
Course Offer	ing Department	CSE	·	Data Book / Codes/Stand	dards Nil							

				1																
Course L	earning Rationale (CLR): The purpose of learning this course is to:	Learning Program Learning Outcomes (PLO)																		
CLR-1:	3					1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2:																			1	
CLR-3:	CLR-3: KNN classifier Gain knowledge on the basics of probabilistic approaches like Naïve Bayes, Bayes Theorem CLR-4: Acquire knowledge on Support Vector machines CLR-5: Introduce the working principle of Artificial Neural potwerks					e		+						논					ı	
CLR-4:	CLR-4: Acquire knowledge on Support Vector machines)		edc		nen		е				eamWor		inance			ı	
CLR-5:	CLR-5: Introduce the working principle of Artificial Neural networks					owl	.si	ndc	_`	sag	e			am	_	inar	ning		ı	
CLR-6:	CLR-6: Understand the K-means clustering techniques, PCA and SVD					Ж	alys	vel	esign,		₫	<u></u> ≱ ≥		-	atio	&F			.	
		Thinking	듄	dAi		erin	ηAn	&De	ري د	Toc	ety&Culture	ronment8		al 8	nic.	Mgt	gLe		ı	23
Course Lea	arning Outcomes (CLO): At the end of this course, learners will be able to:	Levelof	ExpectedPro	ExpectedAttainment(%)		EngineeringKnowledge	ProblemAnalysis	Design&Development	Analysi	Modern Tool Usage	Society	Environment& Sustainability	Ethics	Individual &	Communication	ProjectMgt.&F	LifeLongLea	PS0-1	PS0-2	PS0-3
CLO-1:	Acquire the knowledge on statistical machine learning techniques.	1	80	85		Н	-	-	-	-	-	-	-	-	-	-	Н	Н	- 1	-
	Acquire the ability to build model based on logistic regression and random forest techniques	1	75	80		Н	Н	,	-		-	-	-	-	-		Н	Н	- 1	-
CLO-3:				80		Н	-	-	-	-	-	-	-	-	-	-	Н	Н	- 1	-
	Apply the knowledge of Kernel functions in practical applications	3	80	75		Н	Н	Н	Н	-	-	-	-	-	-	-	Н	Н	М	Н
CLO-5:	CLO-5: Apply the knowledge of K-means clustering on real world examples			85		Н	-	Н	Н	-	-	-		-	-	-	Н	Н	М	Н
CLO-6:	LO-6: Acquire the knowledge on using PCA and SVD with Scikit-learn			85		Н	-	Н	Н	-	-	-	-	-	-	-	Н	Н	М	Н

Duration	on (hour)	9	9	9	9	9
	SLO-1	Statistical terminology for model building and validation-Machine Learning,Major	Comparison between regression and machinelearning models	K-nearest neighbors-KNN voter example	Support Vector Machines and Neural Networks-Support vector machines	K-means clustering-K-means working
S-1		differences between statistical modeling	Compensating factors in machine learning models	Curse of dimensionality-Curse of dimensionality with 1D, 2D, and 3D example		methodology from first principles
	SLO-1	Steps in machine learning model	Assumptions of linear regression			Ontino al accepto a factoria and about a
S-2	SLO-2	developmentand deployment	Steps applied in linearregression modeling	Curse of dimensionality with 3D example	Support vector classifier	Optimal number of clusters and cluster evaluation
		Statistical fundamentals and terminology	Example of simple linear regression from	KNN classifier with breast cancer	Support vector machines	
S-3	SLU-2	for model building and validation	first principles	Wiscons in data example	"	The elbow method
S-4		Bias versus variance trade-off,Train and test data	Machine learning models - ridge and lasso regression-Example of ridge regression machine learning,Example of lasso regression machine learning model	Naive Bayes	Kernel functions	K-means clustering with the iris data example
	SLO-1	Linear regression versus gradient descent	Logistic Regression Versus Random			Principal component analysis - PCA-PCA
S-5	SLO-2	Machine learning losses	Forest-Maximum likelihood estimation	Probability fundamentals-Joint probability	Artificial neural networks - ANN	working methodology from first principles
	SLO-1	When to stop tuning machine learning	Terminology involved in logistic regression	Understanding Bayes theorem with		PCA applied on handwritten digitsusing
S-6	SLO-2	models	Applying steps in logistic regression modeling	conditional probability	Forward propagation and backpropagation	scikit-learn
S-7	SLO-1	Train, validation, and test	Random forest-Example of random forest	Naivo Pavos classification	Optimization of neural networks-Stochastic	Singular value decomposition - SVD
3-7	SLO-2	data Cross-validation	using German credit data Grid search on random forest	Naive Bayes classification	gradient descent - SGD	Singular value decomposition - 3VD

S-8 SLC	0-1 Orid Search	Variable importance plot	Laplace estimator	Introduction to deep learning-Solving methodology	SVD applied on handwritten digitsusing scikit-learn
S-9 SLC			Naive Bayes SMS spam classification example	Deen learning software	SVD applied on handwritten digitsusing scikit-learn

-		3.	Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An Introduction to Statistical Learning
Learning Resources	 PratapDangeti, "StatisticsforMachineLearning", PacktPublishingLtd., 2017. MasashiSugiyama, "IntroductiontoStatisticalMachineLearning", Elsevier, 2016 	4.	with Applications in R, Springer,2015 Hastie Trevor, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer-Verlag New York Inc, February2009

Learning Asses	ssment												
	Bloom's			Contir	nuous Learning Ass	essment (50% weigh	ntage)			Einal Evamination	(E00/ woightage)		
	Level of Thinking	CLA –	1 (10%)	CLA – 2	CLA – 2 (15%)					FIIIai Examinado	al Examination (50% weightage)		
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice		
Level 1	Remember	40 %		30 %		30 %		30 %	_	30%			
Level I	Understand	40 /0	-	30 70	<u> </u>	30 %	-	30 70	-	3070	-		
Level 2	Apply	40 %		40 %		40 %		40 %	_	40%			
Level 2	Analyze	40 /0	-	40 /0	<u> </u>	40 //	-	40 /0	-	4070	-		
Level 3	Evaluate	20 %		30 %		30 %		30 %	_	30%			
Level 3	Create	20 /0	-	30 70	-	30 %	,	30 76	-	3070	ı		
	Total	100	0 %	100) %	100) %	100) %	10) %		

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.Harisekharan, CTO, Sri Sesha a Technologies Pvt. Ltd., Chennai	1. Dr.Bagavandas, Cetre for Statistics, SRMIST	1. Dr.G.Vadivu
2. Mr. S. Sudarsun – Chief Scientist, Co-Founder, Buddhealth	2. Dr. Sampath, Professor, Department of Statistics, Madras University	2. Dr.C.Lakshmi
		3.Dr.G.Manju

Course		Course		Course	_		L	Т	Р	С
Code	18CSE481T	Name	APPLIED MACHINE LEARNING	Category	E	Professional Elective	3	0	0	3

Pre-requisite Courses	18CSE392T		Co-requisite Courses	Nil		Progressive Courses	Nil
Course Offering	Department	CSE			Data Book / Codes/Standards	Nil	

Course L Rationale		The purpose of learning this course is to:	ı	Learnin	ıg	Program Learning Outcomes (PLO)															
CLR-1:	: Analyze the text data using Machine Learning				3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Analyze the audio data using Machine Learning				(%)	9																
CLR-3:	R-3: Analyze Time series and Sequential data using Machine Learning				nent(5					arch			billity								1
CLR-4:	-4: Analyze the Image Content using Machine Learning			roficie	ttainn		edge		ent	esear	a)		Sustainability		Nork		ce				
CLR-5:	Visualize the	data	evelofThinking	xpectedProficiency	ExpectedAttainment(%)		EngineeringKnowledge	ProblemAnalysis	sign&Development	Analysis,Design,Rese	ModernTool Usage	Culture			ıl & TeamWork	nication	ProjectMgt.&Finance	Learning			
	Course Learning Outcomes (CLO): At the end of this course, learners will be able to:			ш	Ш		Engineel	Problem	Design&	Analysis	ModernT	Society&Culture	Environment&	Ethics	Individual	Communication	ProjectIV	LifeLongL	PS0-1	PS0-2	PS0-3
CLO-1:	Identifying patterns in text using topic modeling			75	80		Н	М	Н		Н	-	-	-	-	-	-	Н	Н	Н	Н
CLO-2 :	Building a speech recognizer				80		Н	М	Н	1	Н	-		-	-	-	-	Н	Н	Н	Н
CLO-3 :	Extracting statistics from time series data, Building Conditional Random Fields for sequential text data			75	80		Н	М	Н	-	Н	-		-	-	-	-	Н	Н	Н	Н
CLO-4:	Building an object recognizer		3	75	80		Н	М	Н	-	Н	-	-	-	-	-	-	Н	Н	Н	Н

Durati	on (hour)	9	9	9	9	9
S-1	SLO-1	Text Feature Engineering Introduction	Speech Recognition Introduction	Dissecting Time Series and Sequential Data	Image Content Analysis	Biometric Face Recognition
3-1	SLO-2	Cleaning text data	Reading audio data	Introduction	Computer Vision	Face detection from the image and video
S-2	SLO-1	Preprocessing data using tokenization	Plotting audio data	Transforming data into the time series format Pandas and Numpy to convert Time Series data	Operating on images using OpenCV- Python	Capturing and processing video from a webcam Resizing and Scaling
	SLO-2	Tagging and categorising words	Transforming audio signals into the frequency domain	Plotting time series data	Learn to extract and load the image	Building a face detector using Haar cascades
S-3	SLO-1	Sequential tagging, Backoff tagging	Apply Fourier transform signal and plot	Slicing time series data Operating on time series data	Detecting edges Histogram equalization	determine the location of a face in the video frames captured from the webcam
	SLO-2	Creating features from text data- Stemming,	Generating audio signals with custom parameters	Plotting sliced time series data	Sobel filter, Laplacian edge detector, Canny edge detector	Face detector on the grayscale image
S-4	SLO-1 SLO-2	Lemmatising Bagging using random forests	Generate the time axis Synthesizing music	Operating on time series data Extracting statistics from time series data	Histogram equalization Visualize gray scale image	Building eye and nose detectors Face cascade classifier

S-5	SLO-1	Implementing bag of words	Construct the audio sample -amplitude and frequency	Correlation coefficients	Detecting corners	Visualize eye and nose detector
3-3	SLO-2	Testing prepared data	synthesizer function	Plotting and understanding correlations	Understand the output corner detection image	Performing Principal Components Analysis
	SLO-1	Analyze the results	Extracting frequency domain features	Building Hidden Markov Models for sequential data	Detecting SIFT feature points	PCA in face recognition systems
S-6	SLO-2	Building a text classifier	MFCC and filter bank features	Prepare the Time Series data	SIFT feature detection	Convert the dataset from a five- dimensional set to a two-dimensional set
	SLO-1	Analyzing the sentiment of a sentence	Building Hidden Markov Models	Train Gaussian HMM	Visualize the feature detected image	Kernel Principal Components Analysis
S-7	SLO-2	Implement the sentiment analysis of a sentence	HMM training and prediction	Visualizing the model	Building a Star feature detector	Perform Kernel PCA
S-8	SLO-1	Identifying patterns in text using topic modeling	Building a speech recognizer	Building Conditional Random Fields for sequential text data	Detect features using the Star feature detector	Plot the PCA-transformed data
3-0	SLO-2	Implement identifying patterns in text using topic modeling	MFCC features	CRF Model	Visualize keypoints on the input image	Plot Kernel PCA-transformed data
S-9	SLO-1	Case study- Twitter Data	Case study	Analyzing stock market data using Hidden Markov Models	Creating features using visual codebook and vector quantization	Performing blind source separation
	SLO-2	Case study- Twitter Data	Case study	Train the HMM and visualize	Method to quantize the data points	Independent Components Analysis

Learning
Resources

PrateekJoshiandco,Python:RealWorldMachineLearning,PacktPublishing,2016
 SebastianRaschka,PythonMachineLearning,PacktPublishing,2013.

- RichertCoelho, BuildingMachineLearningSystemswithPython,PacktPublishing,2016 MichaelBowles,MachineLearninginPython,Wiley&Sons,2015

Learning Assessment											
	Bloom's	Continuous Learning Assessment (50% weightage)								Final Examination (50% weightage)	
	Level of	CLA - 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA - 4 (10%)#		Final Examination (50% weightage)	
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	40 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Understand										
Level 2	Apply	40 %	-	40 %	-	40 %	-	40 %	-	40%	-
	Analyze										
Level 3	Evaluate	20 %	-	30 %	-	30 %	-	30 %	-	30%	-
	Create										
	Total	100 %		100 %		100 %		100 %		100 %	

[#] CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
Dr.Harisekharan,CTO,Sri SeshaaTechnologies Pvt. Ltd., Chennai	Dr.J.Suresh, SSN College of Engineering	1. Dr.G.Vadivu						
Mr. S. Sudarsun – Chief Scientist, Co-Founder, Buddhealth	Dr. Sharmila Shankar, Crescent Institute of Science and Technology	2. Mr.Karthik Nanmaran						
		3. Dr.Renukadevi						