

Горизонтал текисликда чапдан ўнгга 0 дан N-1 гача номерланган N та тоғлар ётади. i тоғнинг баландлиги H_i ($0 \le i \le N-1$).га тенг. Ҳар бир тоғ тепасида бир киши яшайди.

Сиз 0 дан Q-1 гача рақамланған Q учрашувлар ўтказмоқчисиз. j учрашувга ($0 \le j \le Q-1$) L_j дан R_j гача тоғларда яшовчи барча шахслар иштирок этади ($0 \le L_j \le R_j \le N-1$). Ушбу учрашув учун сиз х тоғни йиғилиш нуқтаси сифатида танлашингиз керак ($L_j \le x \le R_j$). Ушбу йиғилиш қуйидаги қийматға эга:

- Йиғилишнинг нархи ҳар бир қатнашчининг нархининг йиғиндисига тенг
- ullet y ($L_j \leq y \leq R_j$) тоғидан келган алохида иштирокчининг қиймати x ва y (x ва y киради) орасидаги максимал тоғнинг баландлигига тенг
- ullet Хусусан, x тоғдан иштирокчининг нархи х тоғининг баландлиги H_x га тенг

Хар бир учрашувнинг мумкин бўлган минимал нархини топишингиз керак.

Хар бир йиғилишдан сўнг барча иштирокчилар ўз тоғларига қайтиб кетишади, шунинг учун ҳар бир йиғилишнинг нархи аввалги учрашувларга боғлиқ эмас.

Амалга ошириш тафсилотлари (Дастур ҳақида)

Сиз қуйидаги функцияни амалга оширишингиз керак:

int64[] minimum costs(int[] H, int[] L, int[] R)

- \bullet H: оғларнинг баландликларини ифодаловчи N массив узунлиги;
- L ва R: Q узунликдаги массивлар, йиғилиш қатнашчиларининг интервалини ифодалайди;
- Ушбу функция Q узунликдаги \$C\$ массивни қайтариши керак. j учрашувни ўтказиш бўйича барча қийматлар учун f C_j ($0 \le j \le Q-1$) қиймати минимал бўлиши лозим;
- ullet N ва Q қийматлари массивлар узунлиги бўлиб, уларни амалга ошириш тафсилотлари (қоидалар)га мувофиқ топиш мумкин.

• Мисол

N=4, H=[2, 4, 3, 5], Q=2, L=[0, 1] dва R=[2, 3] бўлсин.

Бахолаш тизимининг намунаси minimum_costs([2, 4, 3, 5], [0, 1], [2, 3]) ни чақиради.

j=0 учрашув учун $L_j=0$, $R_j=2$, шунинг учун унда 0, 1 ва 2 тоғларда яшовчи одамлар иштирок этади. Агар учрашув жойи этиб 0 тоғ танланса, 0 рақамли учрашувнинг нарҳи қуйидагича ҳисобланади:

- ullet 0 тоғдан иштирокчининг нархи $\max\{H_0\}=2$ бўлади.
- 1 тоғдан иштирокчининг нархи 1 is $\max\{H_0,H_1\}=4$ бўлади.
- ullet 2 тоғдан иштирокчининг нарҳи $\max\{H_0,H_1,H_2\}=4$ бўлади.
- ullet Натижада 0 рақамли учрашувни ўтказиш қиймати 2+4+4=10 бўлади.

0 учрашувни арзонрок нархда ўтказиш имконияти бўлмаганлиги сабабли, 0 йиғилишнинг минимал қиймати 10 га тенг бўлади. j=1 учрашув учун $L_j=1, R_j=3$, шунинг учун унда 1, 2 ва 3 тоғларда яшовчи одамлар иштирок этади. Агар учрашув жойи этиб 2 тоғ танланса, 1 рақамли учрашувнинг нархи қуйидагича ҳисобланади:

- ullet 1 тоғдан иштирокчининг нархи $\max\{H_1,H_2\}=4$ бўлади.
- ullet 2 тоғдан иштирокчининг нархи $\max\{H_2\}=3$ бўлади.
- ullet 3 тоғдан иштирокчининг нархи $\max\{H_2,H_3\}=5$ бўлади.
- ullet Натижада 1 рақамли учрашувни ўтказиш қиймати 4+3+5=12 бўлади.

1-рақам билан учрашувни арзонроқ нархда ўтказиш имконияти бўлмаганлиги сабабли, ушбу учрашувнинг минимал қиймати 12 ни ташкил этади.

Илова қилинган архивдаги sample-01-in.txt и sample-01-out.txt файллар ушбу мисолга мос келади. Архивда шунингдек кириш ва чиқишнинг бошқа мисоллари мавжуд.

Constraints

- 1 < N < 750000
- $1 \le Q \le 750000$
- $1 < H_i < 1\,000\,000\,000\,(0 < i < N-1)$

- $0 \le L_j \le R_j \le N 1 \ (0 \le j \le Q 1)$
- $(L_j, R_j) \neq (L_k, R_k) \ (0 \leq j < k \leq Q 1)$

Kichik masalalar (Taglavhalar)

- 1. (4 балл) $N \leq 3\,000$, $Q \leq 10$
- 2. (15 балл) $N \leq 5\,000$, $Q \leq 5\,000$
- 3. (17 балл) $N \leq 100\,000$, $Q \leq 100\,000$, $H_i \leq 2~(0 \leq i \leq N-1)$
- 4. (24 балл) $N \leq 100\,000$, $Q \leq 100\,000$, $H_i \leq 20$ ($0 \leq i \leq N-1$)
- 5. (40 балл) Қушимча чекловлар йуқ

Бахолаш тизимининг намунаси

Бахолаш тизимининг намунаси кириш маьлумотларини қуйидаги форматда ўқийди:

- 1-катор: *N Q*
- ullet 2:-катор H_0 H_1 \cdots H_{N-1}
- ullet 3+j ($0\leq j\leq Q-1$) -катор: L_j R_j

Бахолаш тизимининг намунаси minumum_costs функцияси томонидан қайтарилган қийматни қуйидаги форматда чоп этади (ёзади):

$$ullet$$
 $1+j$ ($0\leq j\leq Q-1$) -катор: C_j