Robustness of electoral systems to external attack

G. M. Givi, R. Delabays and P. Jacquod

University of Applied Sciences in Western Switzerland University of Geneva

November 9, 2020

Dynamics

The dynamics with *natural opinions* ($\mathbf{x}_0 \in [-1,1]^N$)

$$\dot{\mathbf{x}} = -D^{-1} \mathbb{L}_{\epsilon} \mathbf{x} - (\mathbf{x} - \mathbf{x}_0), \qquad (1)$$

where $\mathbf{x} \in \mathbb{R}^N$ and \mathbb{L}_{ϵ} is the Laplacian matrix,

$$\mathbb{L}_{\epsilon,ij} := \begin{cases} -1 & i \neq j , |x_{0i} - x_{0j}| < \epsilon ,\\ -\sum_{k} \mathbb{L}_{ik} & \text{if } i = j ,\\ 0 & \text{otherwise.} \end{cases}$$
 (2)

 \mathbb{I} is the identity matrix and D is the degree matrix.

$$D_i := \begin{cases} \sum_k \mathbb{L}_{\epsilon, ik} & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$
 (3)

G. M. Givi

Dynamics

Natural opinion :

$$f(x_{0i}) = \frac{p}{\sigma\sqrt{2\pi}} e^{-\frac{(x_{0i}-\mu-\Delta)^2}{2\sigma^2}} + \frac{(1-p)}{\sigma\sqrt{2\pi}} e^{-\frac{(x_{0i}-\mu+\Delta)^2}{2\sigma^2}},$$
 (4)

where μ : bias

 Δ : polarization

 σ : standard deviation

 $p \in [0,1]$: proportion of negatively opinionated agents .

Outcome:

$$\mathbf{x}^* = (D^{-1} \mathbb{L}_{\epsilon} + \mathbb{I})^{-1} \mathbf{x}_0. \tag{5}$$

External Attack

Dynamics with the external attack :

$$\dot{\mathbf{x}} = -D^{-1} \mathbb{L}_{\epsilon} \mathbf{x} - (\mathbf{x} - \mathbf{x}_0 - \boldsymbol{\omega}). \tag{6}$$

Outcome with external attack:

$$\mathbf{x}^{**} = (D^{-1}\mathbb{L}_{\epsilon} + \mathbb{I})^{-1}(\mathbf{x}_0 + \boldsymbol{\omega}). \tag{7}$$

Effort needed to change the outcome of election:

$$\xi \coloneqq \|\boldsymbol{\omega}\|_1. \tag{8}$$

Example

Figure: Interaction graph of x_0

Example

Figure: Interaction graph of x^*

Example

Figure: Interaction graph of x^{**} after changing the outcome of the election.

Strategies and Electoral Unit

Strategies:

- Random: Random nodes are selected for influence.
- *Minimum*: The agents with opinion close to zero are selected to influence first.

Electoral Unit:

- Country
- States
- Districts

Minimum vs Random

Figure: Minimum vs Random strategy

Effect of change in Polarization (Δ)

Figure: Effect of change in polarization on the effort needed to change the outcome of the election with $\mu=0(\text{Left})$ and $\mu=0.05$ (Right).

Effect of change in proportion of votes (p)

Figure: Effect of change in polarization on the effort needed to change the outcome of the election with $\mu=0$.

Electoral Systems

Single Representative (SR) / House of Representative (HOR):

$$o(\mathbf{x}^*) = \sum_{i} \operatorname{sign}(x_i^*), \qquad (9)$$

Proportional Representative (PR) :

$$m_{A} = Round \left[\frac{m}{n} \sum_{i; x_{i}^{*} \in [x_{A}]} |\operatorname{sign}(x_{i}^{*})| \right], \tag{10}$$

Winner Takes All Representative (WTAR) :

$$m_A := \begin{cases} m, & \text{if } \sum_i (x_i^* > 0) > \sum_i (x_i^* < 0), \\ 0 & \text{otherwise.} \end{cases}$$
 (11)

assuming that party A is positively opinionated.

Robustness of electoral systems

At left: Type of Natural opinion

At Right : The parameter p is varied in order to impose the majority as per the data of results in HOR election in US with $\mu=0$ and $\Delta/\sigma=1.5$.

Robustness of electoral systems

At left: Type of Natural opinion

At Right : The parameter μ is varied in order to impose the majority as per the data of results in HOR election in US with p=0.5 and $\Delta/\sigma=1.5$

Robustness of electoral systems

At left: Type of Natural opinion

At Right : The parameter μ is varied in order to impose the majority as per the data of results in HOR election in US with p=0 and $\Delta/\sigma=0$

Summary

- Highly robust : Proportional Representative in states
 Least robust : Single Representative in states
- Society is highly robust when the society is opinionated (parameter μ) with no polarization (Δ)