CSCI567 Machine Learning (Spring 2018) Introduction to Reinforcement Learning

Michael Shindler

Lecture 25, April 23 2018

Outline

Administration

2 Reinforcement Learning

Acknowledgements

- Today's lecture is based on a lecture by Chao-Kai Chiang
- His lecture was given at USC last November
- Dr. Chiang's acknowledgements are the next slide:

Slides References

- The slides are modified or inspired from the following slides
 - Remi Munos.
 http://mlss11.bordeaux.inria.fr/docs/mlss11Bordeaux MunosPart1.pdf
 - David Silver.http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
 - Satinder Singh.
 http://videolectures.net/site/normal_dl/tag=69270/mlss2010_singh_rlt.p
 df
 - Richard Sutton.
 http://media.nips.cc/Conferences/2015/tutorialslides/SuttonIntroRL-nips-2015-tutorial.pdf

Outline

- Administration
- 2 Reinforcement Learning

Administration

- Quiz 3 is on Friday.
 - Have a pencil for the Scantron portion
 - You may use writing tool of your choice for non-Scantron part.
 - Know your USC Student ID #
 Be sure to bubble in your ID # on Scantron
 - Know your enrolled discussion section
- Quiz 2 scores are posted on blackboard.
 - Average: 18.82Median: 19.0St Dev: 4.42

Outline

- Administration
- Reinforcement Learning

What is RL & What for

- What is Reinforcement Learning (RL)?
 - A general purpose framework mimicking human's learning process

- What for?
 - To advance AI

 Human learning as a Sequential Decision Making problem

- E.g., financial investment, playing chess, etc.

 Human learning as a Sequential Decision Making problem

A person with a goal

 Human learning as a Sequential Decision Making problem

- A person with a goal observing an environment

 Human learning as a Sequential Decision Making problem

- Needs to decide an action to take ("Decision")
 - Action ⇒ affect environment ⇒ toward the goal

 Human learning as a Sequential Decision Making problem

 Cycle repeated for multiple iterations until the goal is achieved ("Sequential")

8

Reinforcement learning as a Sequential Decision
 Making problem

An agent observing the state s of the environment

Reinforcement learning as a Sequential Decision
 Making problem

– The agent needs to decide an **action** a to take

Reinforcement learning as a Sequential Decision
 Making problem

- Feedback: **reward signal** r and **next state** s' of the environment

Reinforcement learning as a Sequential Decision
 Making problem

- Goal: Make sequential decisions to maximize the total reward $\sum_t r_t$ it gathers

Why Can RL Advance AI?

Freedom to learn interactively with the environment

 Freedom to switch/modify/improve the way of learning and acting during its learning process

Characteristics of RL

- Uncertain / changing environment
 - Need for trial & error
- Actions may have long term consequences
 - Affect the future states or data observed: data is no longer i.i.d.
 - Affect the future reward signals received
- Reward may be delayed
 - No supervision
- Require a balance between immediate reward and longterm reward
 - Need for exploration & exploitation

Characteristics of RL

- Uncertain / changing environment
- Actions may have long term consequences
- Reward may be delayed
- Require a balance between immediate reward and longterm reward
- · E.g., Chess
 - current move affects future moves
 - rewarded when you are win at the end of the game
 - getting one piece now vs. winning in the end

- Playing games: Go, Chess, Atari, poker, ...
- Explore worlds: Labyrinth, 3D worlds, ...
- · Continuous control: real-world, simulation
- Recommendation system
- Robotics
- Operation research: warehousing, transportation, scheduling
- Adaptive treatment design, biological modeling, ...

REINFORCEMENT LEARNING

REINFORCEMENT LEARNING

Mathematical Formulation
Value Functions & Bellman Equations
Assumptions
Approaches

REINFORCEMENT LEARNING

Mathematical Formulation

Value Functions & Bellman Equations

Assumptions

Approaches

Modeling an Environment

Markov Decision Processes (MDPs)

$$\langle S, A, P, R, \gamma \rangle$$

- S : a finite set of states
- A : a finite set of actions
- − P : a state transition function
 - p(s',r|s,a): the probability
 of observing r and reaching s' after taking a at s.

- R: a reward function
 - $\mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- γ : a discount factor γ ∈ [0,1]
 - · Role and function: later

Modeling an Environment

Markov Decision Processes (MDPs)

$$\langle S, A, P, R, \gamma \rangle$$

- S : a finite set of states
- A : a finite set of actions
- P : a state transition function
 - p(s', r|s, a): the probability
 - of observing r and reaching s' after taking a at s.

Markov property

$$S, A_t = a$$

- γ : a discount factor γ ∈ [0,1]
 - · Role and function: later

An Example: Student MDP

An Example: Student MDP

An Example: Student MDP

Next

- Covered
 - Formulation of the **environment**
- Next
 - Formulation of agent's behavior
 - Interaction between agent and environment

MDP: Policy & Trajectory

- $\langle S, A, P, R, \gamma \rangle$
- Trajectory: an agent's history

$$- s_1, a_1, \dots, s_{t-1}, a_{t-1}, s_t$$

- E.g.,
 - c1, Study, c2, Sleep, bed
 - c1, Facebook, rest, Facebook, rest, Quit, c1, Study, c2, Study, c3, Study, bed
 - c1, Study, c2, Study, c3, Pub, c2, Sleep, bed

MDP: Policy & Trajectory

- $\langle S, A, P, R, \gamma \rangle$
- Policy: a function defines an agent's behavior
 - A deterministic policy

$$a_t = \pi(s_t)$$

- A stochastic policy

$$\pi(a_t|s_t) = \mathbb{P}[A_t = a|S_t = s]$$

- E.g.,
 - Study = π (class2)
 - $\pi(\text{Facebook}|\text{class1}) = 1/3$, $\pi(\text{Study}|\text{class1}) = 2/3$

MDP: Reward & Return

- $\langle S, A, P, R, \gamma \rangle$
- Reward R_{t+1}
 - A feedback signal
 - How well agent is doing at step t
- Return G_t
 - Total discounted reward from step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$$

MDP: Reward & Return

- $\langle S, A, P, R, \gamma \rangle$
- Reward R_t
- Return
 - Total discounted reward from step t

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$$

- γ: defines present value of future rewards
- γ close to 0: "myopic" evaluation
- γ close to 1: " far-sighted" evaluation

MDP: Interaction with Environment

- "D" in MDP: Decision (policy) from the agent
 - $p(s_{t+1}, r_{t+1} | s_t, \pi(a_t | s_t))$
 - Transition probability is affected by agent's policy π
 - E.g.,
 - $p(s_{t+1} = c2, r_{t+1} = +1 | s_t = c3, a_t = \text{Pub})$ = $0.4 * \pi(a_t = Pub | s_t = c3)$
 - Policy π in turn affects the trajectory and the corresponding return

MDP: Interaction with Environment

- "D" in MDP: Decision (policy) from the agent
 - $p(s_{t+1}, r_{t+1} | s_t, \pi(a_t | s_t))$

Nature of on proba environment t's policy from agent

•
$$p(s_{t+1} = c2, r_{t+1} = +1 | s_t = c3, a_t = \text{Pub})$$

= $0.4 * \pi(a_t = \text{Pub} | s_t = c3)$

Policy π in turn affects the trajectory and the corresponding return

MDP: Goal of Learning

- $\langle S, A, P, R, \gamma \rangle$
- Policy π
- Return G_t
 - (Total discounted reward from step t)

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$$

• Goal of Learning: find an optimal π_* which maximizes the (expected) return G_t

One More Example: Maze

- A grid world example
- States S: Agent's location
- Actions A: N, E, S, W
- Dynamics P: How actions (directions) change the states (locations)
 - **Rewards** R:-1 per step

One More Example: Maze

A deterministic policy:
 arrows are π(s) for each state s

Next

- Covered
 - Mathematical formulation
 - Environment
 - Agent
 - Interaction
 - Goal of learning
- Next
 - How to evaluate a policy π ?
 - How to learn an optimal policy π_* ?

REINFORCEMENT LEARNING

Mathematical Formulation

Value Functions & Bellman Equations

Assumptions

Approaches

• Given: An MDP $\langle S, A, P, R, \gamma \rangle$ and a policy π

Definition: State-value function

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

- $p(s_{t+1}, r_{t+1} | s_t, \pi(a_t | s_t))$
- $-G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$
- The **expected return** of π from state s

Student MDP Example

•
$$v_{\pi}(s)$$
 for
$$\pi(a|s) = 0.5, \gamma = 1$$

•
$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

•
$$G_t = R_{t+1} + \gamma R_{t+2} + \cdots$$

= $\sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$

· Expanding the state-value function:

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s] \end{aligned}$$

Expanding the state-value function:

$$\begin{split} v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s] \end{split}$$

Expanding the state-value function:

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s] \end{aligned}$$

Expanding the state-value function:

$$\begin{split} v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \cdots | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \cdots) | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} | S_{t} = s] \\ &= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_{t} = s] \end{split}$$

Bellman Equation for MDP (I)

• The **Bellman equation** for v_{π}

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) | S_t = s]$$

- Bellman equation decomposes the value function into two parts:
 - Immediate reward R_{t+1}
 - Discounted value $\gamma v_{\pi}(S_{t+1})$
 - Usage: an iterative way to compute $v_{\pi}(s)$, given $v_{\pi}(S_{t+1})$ is known

Student MDP Example

- MDP with $\pi(a|s) = 0.5, \gamma = 1$
- $v_{\pi}(s)$ = $\mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$
 - Previously:

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

– Now: compute $v_{\pi}(s)$ iteratively

$$v_{\pi}(c3) = 7.4$$

= $[0.5 * (10 + 0)] + [0.5 * (1 + 0.2 * -1.3 + 0.4 * 2.7 + 0.4 * 7.4)]$

Next

- Covered
 - State-value function $v_{\pi}(s)$
 - Evaluate expected return of π from state s
 - Bellman equation for v_π
 - Compute v_{π} iteratively
- Next
 - A **second way** to **evaluate** a policy π
 - Finding an optimal policy π_*

• Given: An MDP $\langle S, A, P, R, \gamma \rangle$ and a policy π

Definition: Action-value function

$$q_{\pi}(s, \mathbf{a}) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = \mathbf{a}]$$

- The **expected return** of **first taking** action a then following π
- $-G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+1+k}$
- Recall: State-value function $v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$

Bellman Equation for MDP (II)

• The **Bellman equation** for $q_{\pi}(s, a)$

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

- Usage: later
- Recall: Value functions & their Bellman equations
 - State-value function

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

- Action-value function

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

= $\mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$

Next

- Covered
 - Value functions and Bellman equations to evaluate a policy
 - State-value function

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

Action-value function

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a]$$

= $\mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$

- Next
 - Finding an optimal policy π_*

Optimal Policy

- Definition: Partial ordering over policies $\pi \geq \pi'$ if $v_{\pi}(s) \geq v_{\pi'}(s)$, $\forall s$
- Theorem
 - − There exists an optimal policy: $\pi_* \ge \pi$, $\forall \pi$
 - All optimal policies achieve the **optimal value**: $v_{\pi_*}(s) = v_*(s)$ and $q_{\pi_*}(s,a) = q_*(s,a)$

Optimal Value Functions

- Definitions
 - Optimal state-value function

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

- The maximum state-value function over all policies
- Optimal action-value function

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

- The maximum action-value function over all policies
- Specify the best possible performance in the MDP

Finding an Optimal Policy

An optimal policy:

$$\pi_*(a|s) = 1 \text{ if } a = \underset{a}{\operatorname{argmax}} q_*(s, a)$$

- $q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$
- One immediately has the optimal policy if $q_*(s, a)$ is known.

Student MDP Example

Bellman Optimality Equations

- How to compute $q_*(s, a)$?
 - Applying Bellman optimality equations
- Similarly, optimal value functions also have the corresponding Bellman optimality equations

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

$$= \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+a}) | S_t = s, A_t = a]$$

Solving an Optimal Policy

Approach #1:
 Can we simply solve the Bellman optimality equations to obtain q_{*}(s, a)?

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

- No. Since
 - Bellman optimality equation is non-linear
 - In general no closed form solution

Finding an Optimal Policy

Approach #2:
 Second form of q_{*}(s, a):

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+a}) | S_t = s, A_t = a]$$

· Recall:

$$q_*(s, a) = \mathbb{E}[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') | S_t = s, A_t = a]$$

= $\mathbb{E}[R_{t+1} + \gamma v_*(S_{t+a}) | S_t = s, A_t = a]$

Student MDP Example

Student MDP Example

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

 $v_*(c1) = \max\{-1 + 6, -2 + 8\} = 6$

Finding an Optimal Policy

- How to compute $v_*(s)$?
- Recall:

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

Next

- Covered
 - Definition of the **optimal policy** $\pi_*(s)$
 - Bellman optimality equations
 - Finding $\pi_*(s)$ given either $q_*(s,a)$ or $v_*(s)$
- Next
 - Iterative approaches inspired by Bellman equations

REINFORCEMENT LEARNING

Mathematical Formulation

Value Functions & Bellman Equations

Assumptions: Known Model

Approaches: Dynamic Programming

Value Iteration

Recall: Bellman optimality equation

$$\boldsymbol{v}_*(\boldsymbol{s}) = \max_{a} \mathbb{E}[R_{t+1} + \gamma \boldsymbol{v}_*(\boldsymbol{S}_{t+1}) | S_t = s, A_t = a]$$

- $-\langle S, A, P, R, \gamma \rangle$ is given
- Previously: If $oldsymbol{v}_*(oldsymbol{S_{t+1}})$ is known, RHS above computes $oldsymbol{v}_*(s)$

Value Iteration

Recall: Bellman optimality equation

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

- $-v_*(s)$ stores and reuses values
- Recursive decomposition of Bellman equation
- Dynamic Programming applies
 - Break a problem down into subproblems
 - Combine solutions to subproblems

Value Iteration

Recall: Bellman optimality equation

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

- $-v_*(s)$ stores and reuses values
- Recursive decomposition of Bellman equation
- Idea: turning Bellman optimality equation into iterative updates:

$$v_{t+1}(s) \leftarrow \max_{a} \mathbb{E}[R_{t+1} + \gamma v_t(S_{t+1}) | S_t = s, A_t = a]$$

Value Iteration

Recall: Bellman optimality equation

$$v_*(s) = \max_{a} \mathbb{E}[R_{t+1} + \gamma v_*(S_{t+1}) | S_t = s, A_t = a]$$

- $-v_*(s)$ stores and reuses values
- Recursive decomposition of Bellman equation
- Idea: turning Bellman optimality equation into iterative updates:

$$v_{t+1}(s) \leftarrow \max_{a} \mathbb{E}[R_{t+1} + \gamma v_t(S_{t+1}) | S_t = s, A_t = a]$$

Combine solutions

Value Iteration

• $v_{t+1}(s) \leftarrow \max_{a} \mathbb{E}[R_{t+1} + \gamma v_t(S_{t+1}) | S_t = s, A_t = a]$

```
Initialize array V arbitrarily (e.g., V(s) = 0 for all s \in S^+)
Repeat
   \Delta \leftarrow 0
   For each s \in S:
        v \leftarrow V(s)
        V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
        \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta (a small positive number)
Output a deterministic policy, \pi \approx \pi_*, such that
   \pi(s) = \operatorname{arg\,max}_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]
```

Reinforcement Learning Approaches

Next

- Covered
 - The first **iterative method**, **Value Iteration**, to learn $v_*(s)$ so that we can use $v_*(s)$ to find out the optimal policy $\pi_*(s)$.
- Next
 - Introduce another iterative method called Policy Iteration
 - The foundation of many state-of-the-art RL algorithms.

Policy Evaluation

Bellman equation

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1})|S_t = s]$$

- $-v_{\pi}(s)$ stores and reuses solutions
- Recursive decomposition of Bellman equation
- Dynamic Programming applies
 - Break a problem down into subproblems
 - Combine solutions to subproblems

Policy Evaluation

Iterative policy evaluation

$$v_{\pi}(s) \approx v_{t+1}(s) \leftarrow \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{t}(S_{t+1}) | S_{t} = s]$$

- Stores and reuses solutions
- Recursive decomposition of Bellman equation

```
Repeat  \Delta \leftarrow 0  For each s \in \mathcal{S}:  v \leftarrow V(s)   V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) \big[ r + \gamma V(s') \big]   \Delta \leftarrow \max(\Delta,|v-V(s)|)  until \Delta < \theta (a small positive number)
```


Iterative Policy Evaluation: Small Gridworld

- Undiscounted episodic MDP $(\gamma = 1)$
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- \blacksquare Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Iterative Policy Evaluation: Small Gridworld

Iterative Policy Evaluation: Small Gridworld

Policy Improvement

• **Improve** a given policy π by acting greedily:

$$\pi' = \arg\max_{a} q_{\pi}(s, a)$$

3. Policy Improvement $\begin{array}{l} policy\text{-}stable \leftarrow true \\ \text{For each } s \in \mathcal{S}: \\ old\text{-}action \leftarrow \pi(s) \\ \pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) \big[r + \gamma V(s') \big] \\ \text{If } old\text{-}action \neq \pi(s), \text{ then } policy\text{-}stable \leftarrow false \\ \text{If } policy\text{-}stable, \text{ then stop and return } V \approx v_* \text{ and } \pi \approx \pi_* \end{array}$

Policy Improvement

• Improve a given policy π by acting greedily:

$$\pi' = \arg\max_{a} q_{\pi}(s, a)$$

• \Rightarrow improve the value from any state s over one step:

$$q_{\pi}(s, \pi'(s)) \ge q_{\pi}(s, \pi(s)) = v_{\pi}(s)$$

⇒ improve the value function

$$v_{\pi'}(s) \ge v_{\pi}(s)$$

Policy Improvement

• When improvement stops:

$$q_{\pi}(s,\pi'(s)) = \max_{a} q_{\pi}(s,a) = v_{\pi}(s)$$

- \Rightarrow the Bellman optimality equation $v_*(s) = \max_a q_*(s,a)$ is satisfied.
- $\Rightarrow v_{\pi}(s) = v_{*}(s)$, so π is optimal

Policy Iteration

Policy Evaluation + Policy Improvement

```
1. Initialization V(s) \in \mathbb{R} \text{ and } \pi(s) \in \mathcal{A}(s) \text{ arbitrarily for all } s \in \mathcal{S}
2. Policy Evaluation Repeat \Delta \leftarrow 0 For each s \in \mathcal{S}: v \leftarrow V(s) V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s)) \big[ r + \gamma V(s') \big] \Delta \leftarrow \max(\Delta,|v-V(s)|) until \Delta < \theta (a small positive number)
```

3. Policy Improvement $policy\text{-stable} \leftarrow true$ For each $s \in \mathcal{S}$: $old\text{-action} \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) [r + \gamma V(s')]$ If $old\text{-action} \neq \pi(s)$, then $policy\text{-stable} \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Reinforcement Learning Approaches

Next

- Covered
 - Iterative methods for finding optimal π_* when $\langle S, A, P, R, \gamma \rangle$ is known
 - · Policy Iteration
 - Value Iteration
- Next
 - What if P and R of $\langle S, A, P, R, \gamma \rangle$ is **unknown**?

REINFORCEMENT LEARNING

Mathematical Formulation

Value Functions & Bellman Equations

Assumptions: Unknown Model

Approaches: Temporal Difference

Temporal Difference Learning

- Now: P and R unknown
 - Policy Iteration & Value Iteration don't work
- Idea: Temporal difference update
 - Current estimate q_t and new trajectory s, a, r, s'

$$- (1 - \alpha) \cdot q_t(s, a) + \alpha \cdot (r + \gamma q_t(s', a'))$$

= $q_t(s, a) + \alpha \cdot [(r + \gamma q_t(s', a')) - q_t(s, a)]$

$$- q_{t+1}(s,a) \leftarrow q_t(s,a) + \alpha \cdot \left[\left(r + \gamma q_t(s',a') \right) - q_t(s,a) \right]$$

Temporal Difference Learning

Sarsa: An on-policy TD control algorithm

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
Repeat (for each step of episode):
Take action A, observe R, S'
Choose A' from S' using policy derived from Q (e.g., \epsilon-greedy) Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma Q(S',A') - Q(S,A)\big]S \leftarrow S'; A \leftarrow A';until S is terminal
```

• ϵ -greedy sampling on $q_t(s',a)$: $a' = \begin{cases} \max\limits_{a'} q_t(s',a') \text{ with probability } 1 - \epsilon \\ \min\text{formly at random with probability } \epsilon \end{cases}$

Temporal Difference Learning

Q-learning: An off-policy TD control algorithm

```
Initialize Q(s,a), \forall s \in \mathcal{S}, a \in \mathcal{A}(s), arbitrarily, and Q(terminal\text{-}state, \cdot) = 0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
Take action A, observe R, S'
Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]
S \leftarrow S'
until S is terminal
```

- Choose a' such that $q_t(s',a') = \max_a q_t(s',a)$
- $q_{t+1}(s,a) \leftarrow q_t(s,a) + \alpha \cdot \left(r + \gamma \max_a q_t(s',a) q_t(s,a)\right)$

Sarsa Example: Windy Gridworld

Example: Cliff Walking

Reinforcement Learning Approaches

