VENUS 论文笔记

1 引言

图处理系统主要分为分布式图处理系统和单机图计算系统。

分布式处理系统有 Pregel[5]及其对应的开源实现 Giraph 以及 GraphLab[6]、PowerGraph[7]、GraphX[8]和 Cyclops[9]。这些分布式系统大部分采用"think like a vertex"的思想,即以点为中心(vertex-centric)的计算模型。

单机图计算系统有以点为中心的计算模型的 GraphChi[13]和以边为中心的计算模型的 X-Stream[10],另外还有 VENUS[14]、GridGraph[15]等。

2 VENUS

2.1 GraphChi 缺点

- 1. 预处理需要对边的源节点进行排序,开销大;
- 2. 执行前需要将 shard 中节点的入出和出边全部加载到内存
- 3. 执行后更新过的节点值需要传播到其他 shard
- 4. 图数据的加载和计算是分开的,没有充分利用磁盘和 I/O 的并行来提高计算性能;
- 5. 对 shard 内的边排序后,每个点所对应的边不在相邻的位置,缓存局部性不 高。

2.2 VENUS 介绍

将顶点分片,分别构建了 g-shard 和 v-shard,其中 g-shard 与 GraphChi 中 shard 的概念类似,存储了一个子点集对应的所有入边,但是不用对边进行排序,而是 将目的顶点相同的边存储在相邻的位置。v-shard 存储对应一个 g-shard 中所有目 的顶点和源顶点的值。另外,使用了一个全局的点值表,v-shard 从其中读取和 写回对应的点值。

系统计算点的更新值时,无须像 GraphChi 将所有的入边和出边同时加载进内存,只需将入边加载进内存,同时节点更新后,不用再将更新值写入出边,这样可以极大地减少 I/O。此外,当加载完 g-shard 中一个点的所有入边时,即可对该点的值进行计算,重叠了 I/O 和 CPU 的时间开销,极大地提高了系统的性能。实验结果表明,VENUS 的性能显著地好于 GraphChi 和 X-Stream。

文章提出了两种 IO 友好的算法来支持高效的流线型处理。在管理计算中的所有 shard 时,第一种算法把每个 shard 中的节点 value 存储在不同的文件中,来方便在执行时的快速检索。这就导致一旦一个 shard 执行完之后要即使的更新这些文件。第二种算法采用了 merge-join 来构建节点 value。

举例:

TABLE I SHARDING EXAMPLE: VENUS

Interval	$I_1 = [1, 3]$	$I_2 = [4, 6]$	$I_3 = [7, 9]$
v-shard	$I_1 \cup \{4,6,8,9\}$	$I_2 \cup \{1,2,7,9\}$	$I_3 \cup \{1,2,5,6\}$
g-shard	$2,4,6,8 \to 1$	$1,6,9 \rightarrow 4$	$1,5,9 \rightarrow 7$
	$4,6,9 \rightarrow 2$	$1,2,6,7 \to 5$	$6,7,9 \rightarrow 8$
	$2,4 \rightarrow 3$	$1,2,7,9 \rightarrow 6$	$1,2 \rightarrow 9$
S(I)	4	1	1
	6	2	2
	8	7	5
	9	9	6

Fig. 3. Example Graph

TABLE II SHARDING EXAMPLE: GRAPHCHI

Interval	$I_1 = [1, 2]$	$I_2 = [3, 5]$	$I_3 = [6, 7]$	$I_4 = [8, 9]$
Shard	$2 \rightarrow 1$	$1 \rightarrow 4,5$	$1 \rightarrow 6,7$	$1 \rightarrow 9$
	4 → 1,2	$2 \rightarrow 3,5$	$2 \rightarrow 6$	$2 \rightarrow 9$
	$6 \rightarrow 1,2$	$4 \rightarrow 3$	5 → 7	$6 \rightarrow 8$
	$8 \rightarrow 1$	$6 \rightarrow 4,5$	$7 \rightarrow 6$	$7 \rightarrow 8$
	$9 \rightarrow 2$	$7 \rightarrow 5$	$5 \rightarrow 6,7$	$9 \rightarrow 8$
		$9 \rightarrow 4$		

2.3 性能

预处理时间:

Dataset	GraphChi	VENUS	
Twitter	424	570	
clueweb12	19,313	18,845	
Netflix	180	75	
KDDCup	454	169	
Synthetic-4M	17	18	
Synthetic-6M	23	30	
Synthetic-8M	34	41	
Synthetic-10M	47	53	

VSP—VENUS
PSW—GraphChi
ECP—X-Stream

PageRank on Twitter Graph:

TABLE VIII
EXPERIMENT RESULTS: PAGERANK ON CLUEWEB12

System	Time	Read	Write
PSW	15,495 s	661GB	661GB
ECP	26,702 s	1,121GB	571GB
VSP-I	7,074 s	213GB	43GB
VSP-II	6,465 s	507GB	19GB