

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Τμήμα Πληφοφοφικής

Μάθημα: Τεχνητή Νοημοσύνη Ακαδημαϊκό έτος: 2018–19 Διδάσκων: Ι. Ανδρουτσόπουλος

Τουμανίδου Ανδρομάχη – 3040185

2η Εργασία

Καθώς οι συνεργάτες μου δεν είχαν χρόνο να κάνουμε και τη δεύτερη εργασία μαζί, αξιοποίησα την παράταση των 5 ημερών που δόθηκε και υλοποίησα ατομικά έναν αλγόριθμο μάθησης. Πιο προσιτός μου φάνηκε ο Αφελής Ταξινομητής Bayes (Naive Bayes Classifier). Επέλεξα να προγραμματίσω σε Java, που δεν είναι η καλύτερη επιλογή για χειρισμό πολλών δεδομένων και στατιστικών μετρήσεων, αλλά έχω μεγαλύτερη ευχέρεια σε αυτή και κινήθηκα πιο γρήγορα για την επίλυση του προβλήματος.

Τα αρχεία πηγαίου κώδικα είναι τρία (Word.java, Message.java και SpamFilter.java). Υπάρχουν αναλυτικά σχόλια στον κώδικα και επισυνάπτω και αρχεία εξόδου με αποτελέσματα εκτέλεσης του προγράμματος, καθώς και ένα αρχείο excel με 4 φύλλα με διαγράμματα και πίνακες από τα αποτελέσματα των πειραμάτων.

Πειραματίστηκα με τα υποσύνολα του συνόλου δεδομένων Enron-Spam, που κατέβασα από τον σύνδεσμο http://nlp.cs.aueb.gr/software.html. Έκανα πολλές δοκιμαστικές εκτελέσεις, αλλά στατιστικά δεδομένα και screenshots κράτησα από τρεις συγκεκριμένες εκτελέσεις. Στην πρώτη, χρησιμοποίησα για δεδομένα εκπαίδευσης τα μηνύματα του φακέλου enron1 (5172 μηνύματα) και για δεδομένα ελέγχου τα μηνύματα του φακέλου enron2. Στη δεύτερη εκτέλεση, χρησιμοποίησα τα μηνύματα του φακέλου enron1 και για εκπαίδευση και για πρόβλεψη και, όπως θα φανεί παρακάτω στα διαγράμματα βελτιώθηκαν τα αποτελέσματα πρόβλεψης. Στην τρίτη εκτέλεση, χρησιμοποίησα για

δεδομένα εκπαίδευσης τα μηνύματα των φακέλων enron1, enron2, enron3, enron4 (σύνολο 22541 μηνύματα) και για μηνύματα ελέγχου τα περιεχόμενα του φακέλου enron5.

Η διαδικασία που ακολουθώ στις γραμμές κώδικα είναι η εξής: διαβάζω πρώτα όλα τα μηνύματα εκπαίδευσης, δημιουργώ αντικείμενα τύπου Message, με τις πληροφορίες που μου χρειάζονται, και τα διατηρώ σε μια ArrayList. Στη συνέχεια διαβάζω ένα – ένα τα μηνύματα για τα οποία θα γίνουν προβλέψεις και διατηρώ τις λέξεις τους σε αντικείμενα ArrayList. Για κάθε ένα από αυτά τα αντικείμενα, καλώ τη μέθοδο naiveBayesClassifier() η οποία επιστρέφει μία πρόβλεψη για το αν το μήνυμα είναι spam ή ham. Αποθηκεύω τα αποτελέσματα κάθε πρόβλεψης σε μια γραμμή ενός αρχείου .csv για να μπορώ να τα αξιοποιήσω στο excel και να εξάγω διαγράμματα. Τέλος, κρατάω για κάθε πρόβλεψη αν χαρακτηρίζεται ως True Positive, True Negative, False Positive ή False Negative, συγκρίνοντας με το αν στην πραγματικότητα το μήνυμα είναι spam ή ham. Από τους μετρητές αυτούς υπολογίζω τα μεγέθη Precision, Recall, Accuracy και F1 Score, τα οποία τα υπολογίζω εκ νέου και στο αρχείο excel για διασταύρωση των αποτελεσμάτων.

Για την υλοποίηση του αλγορίθμου μάθησης συμβουλεύτηκα τη διάλεξη 16, το βιβλίο των Russell, Norvig και πηγές από το Διαδίκτυο. Θεωρώ ότι ένα εισερχόμενο μήνυμα είναι ένα σύνολο ξεχωριστών λέξεων <X1, X2,...Xm>. Κάθε λέξη όταν την συναντώ πρώτη φορά δημιουργώ ένα αντικείμενο τύπου Word στο οποίο διατηρώ μετρητές για τις φορές που συναντάω τη λέξη σε spam ή σε ham μηνύματα. Αυτό θα με βοηθήσει στον υπολογισμό των ζητούμενων δεσμευμένων πιθανοτήτων. Αναφορές στα αντικείμενα τύπου Word διατηρώ σε ένα HashMap στο οποίο κλειδιά είναι τα String με τις ίδιες τις λέξεις.

Η μεταβλητή Bernoulli $\bf C$ παίονει την τιμή $\bf 1$ όταν το μήνυμα είναι $\bf spam$ και την τιμή $\bf 0$ όταν το μήνυμα είναι $\bf spam$ και την τιμή $\bf 0$ όταν το μήνυμα είναι $\bf spam$, π.χ. για το σύνολο εκπαίδευσης enron1, είναι $\bf P(C=1)=1500$ / $\bf 5172=0.29$ και η πιθανότητα να είναι $\bf ham \bf P(C=0)=3672$ / $\bf 5172=0.72$.

 $P(C=1) = \pi \lambda \dot{\eta}$ θος των εμφανίσεων σε μηνύματα εκπαίδευσης spam / πλ $\dot{\eta}$ θος όλων των μηνυμάτων εκπαίδευσης spam

 $P(C=0) = \pi \lambda \dot{\eta} \theta$ ος των εμφανίσεων σε μηνύματα εκπαίδευσης ham $/ \pi \lambda \dot{\eta} \theta$ ος όλων των μηνυμάτων εκπαίδευσης ham

 Ω ς συνάρτηση ταξινόμησης χρησιμοποίησα την: $H(X)=1 \leftrightarrow P(C=1 \mid X) > P(C=0) \mid X)$, δηλαδή ένα νέο εισερχόμενο μήνυμα χαρακτηρίζεται spam, αν η πιθανότητα να είναι spam, δεδομένων των λέξεων που περιέχει είναι μεγαλύτερη από την πιθανότητα να είναι ham, δεδομένων των λέξεων που περιέχει. Για τη σύγκριση χρησιμοποιώ μόνο τους αριθμητές των κλασμάτων, εφόσον έχουν ίδιους παρονομαστές, και η συνάρτηση ταξινόμησης αναλύεται ως εξής:

$$H(X) = 1 \leftrightarrow P(C=1) * \Pi P(Xi=xi | C=1) > P(C=0) * \Pi P(Xi=xi | C=1)$$

Ένα νέο εισερχόμενο μήνυμα χαρακτηρίζεται spam, αν (η πιθανότητα να είναι spam) επί το γινόμενο όλων των δεσμευμένων πιθανοτήτων (να περιέχεται η κάθε λέξη σε ένα μήνυμα, δεδομένου ότι το μήνυμα είναι spam) είναι μεγαλύτερη από (την πιθανότητα να είναι ham) επί το γινόμενο όλων των δεσμευμένων πιθανοτήτων (να περιέχεται η κάθε λέξη σε ένα μήνυμα, δεδομένου ότι το μήνυμα είναι ham).

Οι επιμέρους πιθανότητες των γινομένων, υπολογίζονται εύκολα με δύο μεθόδους, κάνοντας υπολογισμούς με τα στοιχεία εμφανίσεων στα μηνύματα εκπαίδευσης που κράτησα σε κάθε instance Word, όπως εξηγήθηκε παραπάνω. Η πιθανότητα να είναι ένα μήνυμα spam(ή ham αντίστοιχα) αναφέρεται πιο πάνω πώς υπολογίζεται. Για τις περιπτώσεις λέξεων που δεν έχουν εμφανιστεί στα μηνύματα εκπαίδευσης, χρησιμοποίησα την εκτιμήτρια Laplace για να μη μηδενίζουν το γινόμενο πιθανοτήτων (έβαλα στη μέθοδο που υπολογίζει τη δεσμευμένη πιθανότητα κάθε λέξης συν 1 στον αριθμητή και συν 2 στον παρονομαστή, εφόσον η C είναι μεταβλητή Bernoulli και παίρνει 2 δυνατές τιμές.

Απολουθούν screenshots από την επτέλεση του προγράμματος παι τα διαγράμματα παι οι πίναπες που προέπυψαν από τις τρεις επτελεσεις.

Πρώτη εκτέλεση

Αποτελέσματα εκτέλεσης προγράμματος

Dictionary has 73533 distincts words. Total training messages: 5172 Total spam training messages: 1500

TruePositives: 1121 FalsePositives: 2855 FalseNegatives: 375 TrueNegatives: 1506

Precision: 0.28194164989939635 Recall: 0.7493315508021391 Accuracy: 0.4485231347106027 F1 Score: 0.409722222222222

MessageFile	Spam	Prediction
0001.1999-12-10.kaminski.ham.txt	FALSE	TRUE
0003.1999-12-10.kaminski.ham.txt	FALSE	TRUE
0004.1999-12-10.kaminski.ham.txt	FALSE	TRUE
0005.1999-12-12.kaminski.ham.txt	FALSE	TRUE
0006.1999-12-13.kaminski.ham.txt	FALSE	TRUE
0007.1999-12-13.kaminski.ham.txt	FALSE	TRUE
0009.1999-12-13.kaminski.ham.txt	FALSE	TRUE
0010.1999-12-14.kaminski.ham.txt	FALSE	TRUE
0012.1999-12-14.kaminski.ham.txt	FALSE	FALSE
0013.1999-12-14.kaminski.ham.txt	FALSE	FALSE
0014.1999-12-14.kaminski.ham.txt	FALSE	TRUE
0015.1999-12-14.kaminski.ham.txt	FALSE	TRUE
0017.1999-12-14.kaminski.ham.txt	FALSE	TRUE
0018.1999-12-14.kaminski.ham.txt	FALSE	TRUE
0020.1999-12-14.kaminski.ham.txt	FALSE	TRUE
0021.1999-12-15.kaminski.ham.txt	FALSE	FALSE
0022.1999-12-15.kaminski.ham.txt	FALSE	TRUE
0023.1999-12-15.kaminski.ham.txt	FALSE	TRUE
0024.1999-12-15.kaminski.ham.txt	FALSE	TRUE
0025.1999-12-15.kaminski.ham.txt	FALSE	TRUE
0027.1999-12-16.kaminski.ham.txt	FALSE	FALSE
0028.1999-12-16.kaminski.ham.txt	FALSE	FALSE
0029.1999-12-16.kaminski.ham.txt	FALSE	TRUE
0031.1999-12-16.kaminski.ham.txt	FALSE	TRUE
0033.1999-12-16.kaminski.ham.txt	FALSE	TRUE
0034.1999-12-16.kaminski.ham.txt	FALSE	TRUE
0035.1999-12-16.kaminski.ham.txt	FALSE	TRUE
0036.1999-12-16.kaminski.ham.txt	FALSE	FALSE
0037.1999-12-16.kaminski.ham.txt	FALSE	TRUE

Count of MessageFile	Prediction		
Category	Ham	Spam	
Spam	375	1121	1496
Ham	1506	2855	4361
Total test messages	1881	3976	5857

Precision	0.28194165	(Precision = TruePositives / (TruePositives + FalsePositives))
Recall	0.749331551	(Recall = TruePositives / (TruePositives + FalseNegatives))
Accuracy	0.448523135	(Accuracy = (True Positives + True Negatives) / (True Positives + False Positives + False Negatives + True Negatives))
F1 Score	0.409722222	(F1 Score = (2 * Recall * Precision) / (Recall + Precision))

Δεύτερη εκτέλεση

Αποτελέσματα εκτέλεσης προγράμματος

Dictionary has 50656 distincts words.

Total training messages: 5172 Total spam training messages: 1500

TruePositives: 1220 FalsePositives: 2763 FalseNegatives: 280 TrueNegatives: 909

Precision: 0.30630178257594776 Recall: 0.813333333333334 Accuracy: 0.41163959783449344 F1 Score: 0.44501185482400146

Count of MessageFile	Prediction			
Category	Ham		Spam	
Spam		280	1220	1500
Ham		909	2763	3672
Total test messages	1	189	3983	5172

Precision	0.306301783	(Precision = TruePositives / (TruePositives + FalsePositives))
Recall	0.813333333	(Recall = TruePositives / (TruePositives + FalseNegatives))
Accuracy	0.411639598	(Accuracy = (True Positives + True Negatives) / (True Positives + False Positives + False Negatives + True Negatives))
F1 Score	0.445011855	(F1 Score = (2 * Recall * Precision) / (Recall + Precision))

Τφίτη εκτέλεση

Αποτελέσματα εκτέλεσης προγράμματος

Dictionary has 137141 distincts words.

Total training messages: 22541 Total spam training messages: 8996

TruePositives: 2717 FalsePositives: 1041 FalseNegatives: 958 TrueNegatives: 459

Precision: 0.72299095263438 Recall: 0.7393197278911564 Accuracy: 0.613719806763285 F1 Score: 0.731064173281313

Count of MessageFile	Prediction		
Category	Ham	Spam	
Spam	958	3 2717	3675
Ham	459	1041	1500
Total test messages	1417	3758	5175


```
Precision0.722990953(Precision = TruePositives / (TruePositives + FalsePositives))Recall0.739319728(Recall = TruePositives / (TruePositives + FalseNegatives))Accuracy0.613719807(Accuracy = (TruePositives + TrueNegatives) / (TruePositives + FalsePositives + FalseNegatives + TrueNegatives))F1 Score0.731064173(F1 Score = (2 * Recall * Precision)) / (Recall + Precision))
```

```
Quick Access 🔛 📳
   # D Wordjava D Messagejava D Spamfilterjava 22

18 10 / Toumanidou Andromachi 3040185 - Texnithi Bohmosynh - Ergasia 2 - Etos 2018-2019
2 "Class pou pericant h main() kair sededous pou ylopologn ton algorilino salbinhs Naive Bayes.
                                             import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileImputStream;
import java.io.FileImputStream;
import java.io.IoException;
import java.io.IoException;
import java.util.Arraylist;
import java.util.Araylist;
                                 16 public class SpamFilter
17 {
                                                               static MashMapcString, Word> dictionary = new MashMapcString,Word>(); //MashMap gia thn dhmiourgia leksikou me tis lekseis pou exoun emfanistei static BufferedWriter predictionResults; //stream gia thn apoShkeysh tum problepseum se arxelo
                                                             public static void main(String args[]) throws IOException
{
                                                                                ArrayList(Message> trainingMessages = trainingMessa
                                                                         predictionResults = new BufferedWriter(new FileWriter("results_train_enron1_test_enron1.cgx", true));
predictionResults = new BufferedWriter(new FileWriter("results_train_enron1_test_enron1.cgx", true));
predictionResults = new BufferedWriter("results_train_enron1_enron2_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enron3_enr
                                                                             int[] results = predict(); //problepseis gia ta mbnymata elegxou kai epistrofh tou plh8ous tum TruePositives, FalsePositives, FalseNegatives, TrueNegatives se array 4 akeraium
                                                                               predictionResults.close(); //kleisimo tou arxeiou twn apotelesmatwn
                                                                                  /*detypaseis sthm konsola
System.out.println("Dictionary content: "#dictionary.keySet());
System.out.println();
System.out.println();
System.out.println("Dictionary has "#dictionary.size()+" distincts words.");
System.out.println("Intel intelligence "#dictionary.size()+" distincts words.");
System.out.println();
System.out.print
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Total training messages: 22541
Total spam training messages: 8996
                        TruePositives: 2717
FalsePositives: 1041
FalseNegatives: 958
TrueNegatives: 459
                        4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Writable Smart Insert 17:2
```

	Train Messages Test Message	es Precision	Recall	Accuracy	F1 Score
Train_enron1,Test_enron2	5172 5	857 0.28194	2 0.749332	0.448523	0.409722
Train_enron1,Test_enron1	5172 5	172 0.30630	2 0.813333	0.41164	0.445012
Train_enron1_2_3_4, Test enron5	22541 5	175 0.72299	1 0.73932	0.61372	0.731064

