2023

CNN을 이용한 제품 구분

작성일: 2023.06.08

학번: 2023254002

성명: 이민수

META BIOMED CO., LTD.

Diamond Quality Gold Service Silver Price

CNN을 이용한 제품 구분

1. 개요

Sample Name	Double	Kog
Sample 개수	test 50EA train 50EA	test 50EA train 50EA
사용 Model	Relu 및 Sigmoid	

2. Sample 사진

Kog

META BIOMED CO., LTD.

CNN을 이용한 제품 구분

Diamond Quality Gold Service Silver Price

Double

META BIOMED CO., LTD.

CNN을 이용한 제품 구분

Diamond Quality Gold Service Silver Price

Double

META BIOMED CO., LTD.

CNN을 이용한 제품 구분

```
import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
# Mount Google Drive to access the dataset
from google.colab import drive
drive.mount('/content/drive')
# Path to the folders containing the images
Double_path = '/content/drive/MyDrive/Double'
Kog_path = '/content/drive/MyDrive/Kog'
# Parameters
image size = (64, 64)
batch_size = 32
# Data augmentation and preprocessing
train_datagen = ImageDataGenerator(
    rescale=1.0/255.0,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True
```

Diamond Quality Gold Service Silver Price

META BIOMED CO., LTD.

Diamond Quality Gold Service Silver Price

CNN을 이용한 제품 구분

```
test_datagen = ImageDataGenerator(rescale=1.0/255.0)
# Load and preprocess the training set
train_set = train_datagen.flow_from_directory(
    Double_path,
    target_size=image_size,
    batch size=batch size,
    class_mode='binary'
# Load and preprocess the test set
test_set = test_datagen.flow_from_directory(
    Kog path,
    target size=image size,
    batch_size=batch_size,
    class mode='binary'
# Create the CNN model
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(image_size[0], image_size[1], 3)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile the model
model.compile(optimizer='adam', loss='binary crossentropy', metrics=['accuracy'])
```


META BIOMED CO., LTD.

CNN을 이용한 제품 구분

```
# Train the model
model.fit(
    train_set,
    steps_per_epoch=train_set.samples // batch_size,
    epochs=100,
    validation_data=test_set,
    validation_steps=test_set.samples // batch_size
)
```

Diamond Quality Gold Service Silver Price

02 결론

META BIOMED CO., LTD. Diamond Quality Gold Service Silver Price

CNN을 이용한 제품 구분

```
3/3 [---
                   Epoch 88/100
3/3 [==============] - 3s 1s/step - loss: 0.6355 - accuracy: 0.5588 - val loss: 0.6924 - val accuracy: 0.5417
Epoch 89/100
Epoch 90/100
3/3 [===================] - 3s 1s/step - loss: 0.6278 - accuracy: 0.6146 - val_loss: 0.6904 - val_accuracy: 0.5521
Epoch 91/100
3/3 [===============] - 3s 1s/step - loss: 0.6310 - accuracy: 0.6029 - val_loss: 0.6912 - val_accuracy: 0.5312
Epoch 92/100
3/3 [=======================] - 3s 2s/step - loss: 0.6243 - accuracy: 0.6176 - val_loss: 0.6875 - val_accuracy: 0.5521
Epoch 93/100
3/3 [===================] - 3s 1s/step - loss: 0.6346 - accuracy: 0.5735 - val_loss: 0.7265 - val_accuracy: 0.4792
Epoch 94/100
Epoch 95/100
3/3 [==============] - 3s 2s/step - loss: 0.6529 - accuracy: 0.5735 - val loss: 0.7354 - val accuracy: 0.4583
Epoch 96/100
Epoch 97/100
3/3 [==================] - 3s 1s/step - loss: 0.6422 - accuracy: 0.5625 - val_loss: 0.7288 - val_accuracy: 0.4792
Epoch 98/100
3/3 [=============] - 4s 2s/step - loss: 0.6621 - accuracy: 0.5441 - val loss: 0.7189 - val accuracy: 0.5000
Epoch 99/100
3/3 [=================] - 4s 1s/step - loss: 0.6047 - accuracy: 0.7353 - val_loss: 0.7244 - val_accuracy: 0.4792
Epoch 100/100
3/3 [==============] - 3s 1s/step - loss: 0.6307 - accuracy: 0.6354 - val_loss: 0.7077 - val_accuracy: 0.5104
<keras.callbacks.History at 0x7f50be7eec50>
```

02 결론

META BIOMED CO., LTD.

Diamond Quality Gold Service Silver Price

CNN을 이용한 제품 구분

3. 결론

- Loss 0.6307 / accuracy 0.6354를 확인 하였음.
- 정확도 및 오차가 신뢰할 수 있는 수준이 못 미친다고 판단 함. 추가적인 Sample 이미지 개수 추가 및 code의 수정이 필요하다고 생각됨.