UNIVERSIDADE EVANGÉLICA DE GOIÁS

CONCORRÊNCIA DE PROCESSOS

Sistemas Operacionais Engenharia de Software Prof. Jeferson Silva

DEFINIÇÃO DE CONCORRÊNCIA DE PROCESSOS

Concorrência de processos é um conceito da computação.

Ocorre quando dois ou mais processos tentam acessar o mesmo recurso compartilhado ao mesmo tempo.

A concorrência de processos pode causar problemas de sincronização.

RECURSOS COMPARTILHADOS EM SISTEMAS OPERACIONAIS

Quando um recurso é compartilhado, ele pode ser acessado por vários processos

Os recursos compartilhados mais comuns incluem arquivos, impressoras e dispositivos de entrada e saída

O compartilhamento de recursos requer algum tipo de mecanismo de controle, como semáforos ou exclusão mútua

PROBLEMAS DA CONCORRÊNCIA DE PROCESSOS

A concorrência de processos pode causar problemas de sincronização

Exemplos incluem deadlock e race condition

É importante garantir a sincronia adequada dos recursos compartilhados

ESCALONADOR DE PROCESSOS

 Finalização do tempo de execução ou o processo se bloqueia à espera de um recurso que necessita

GERÊNCIA DA CONCORRÊNCIA DE PROCESSOS

O sistema operacional é responsável por criar, destruir, suspender, retomar e sincronizar os processos que estão em concorrência.

Para isso, ele utiliza mecanismos como escalonamento, interrupção, comunicação e exclusão mútua.

ESCALONAMENTO DE PROCESSOS

O escalonamento é a técnica que define qual processo deve utilizar o processador em cada momento, levando em conta critérios como prioridade, tempo de espera, tempo de execução, etc.

INTERRUPÇÕES

A interrupção é o evento que ocorre quando o processador precisa atender a uma solicitação de um processo ou de um dispositivo de entrada e saída, alterando o fluxo de execução do sistema.

COMUNICAÇÃO - IPC

A comunicação é a forma como os processos trocam informações entre si, podendo ser por meio de arquivos, memória compartilhada, mensagens, etc.

EXCLUSÃO MÚTUA

A exclusão mútua é o princípio que garante que apenas um processo tenha acesso a um recurso compartilhado por vez, evitando conflitos e inconsistências.

DESAFIOS DA CONCORRÊNCIA DE PROCESSOS

A concorrência de processos traz vários benefícios para o sistema operacional, mas também implica em alguns desafios e problemas que devem ser tratados com cuidado.

Alguns desses desafios são:

- o deadlock,
- o starvation,
- a inanição
- •e a condição de corrida.

DEADLOCK

O deadlock é a situação em que dois ou mais processos ficam bloqueados indefinidamente, esperando por um recurso que está sendo utilizado por outro processo.

STARVATION

O starvation é a situação em que um processo fica esperando por um recurso por um tempo muito longo, sendo prejudicado pelo escalonamento.

INANIÇÃO

A inanição é a situação em que um processo consome muitos recursos, impedindo que outros processos tenham acesso a eles.

CONDIÇÃO DE CORRIDA

A condição de corrida é a situação em que o resultado de uma operação depende da ordem de execução dos processos, podendo gerar resultados incorretos ou indesejados.

ESTRATÉGIAS DE COMBATE AOS DESAFIOS

Para evitar deadlock, starvation, inanição e condição de corrida em concorrência de processos, é preciso adotar algumas estratégias e soluções

EVITAR DEADLOCK

Uma forma de evitar deadlock é aplicar o algoritmo do banqueiro, que simula a alocação e liberação de recursos pelos processos, verificando se há algum estado seguro, ou seja, um estado em que existe uma sequência de execução que não leva ao deadlock.

EVITAR DEADLOCK

Outra forma é usar um protocolo de prevenção ou detecção de deadlock, que impõe alguma restrição sobre a forma como os processos solicitam e liberam os recursos, ou que verifica periodicamente se há algum ciclo de espera entre os processos.

EVITAR STARVATION

Uma forma de evitar starvation é usar um escalonamento justo, que garante que todos os processos tenham uma chance igual ou proporcional de acessar o processador, independentemente de sua prioridade ou tempo de espera.

EVITAR STARVATION

Outra forma é usar um mecanismo de envelhecimento, que aumenta a prioridade dos processos que estão esperando há muito tempo, dando-lhes mais oportunidades de serem escolhidos pelo escalonador.

EVITAR INANIÇÃO

Uma forma de evitar inanição é limitar o tempo de uso dos recursos pelos processos, usando um sistema de quotas ou de temporização, que obriga os processos a liberarem os recursos após um certo período ou quantidade de uso.

EVITAR INANIÇÃO

Outra forma é usar um mecanismo de feedback, que reduz a prioridade dos processos que consomem muitos recursos, dando mais chances aos processos que consomem menos.

EVITAR CONDIÇÃO DE CORRIDA

Uma forma de evitar condição de corrida é usar um mecanismo de exclusão mútua, que garante que apenas um processo por vez possa acessar um recurso compartilhado, usando alguma técnica como semáforos, monitores, locks, etc.

EVITAR CONDIÇÃO DE CORRIDA

Outra forma é usar um mecanismo de sincronização, que coordena a ordem de execução dos processos que dependem uns dos outros, usando alguma técnica como barreiras, variáveis de condição, sinais, etc.

VANTAGENS DA CONCORRÊNCIA DE PROCESSOS

A concorrência de processos é a capacidade de um sistema operacional de executar vários processos ao mesmo tempo, aproveitando os recursos disponíveis de forma eficiente e transparente.

A concorrência de processos traz várias vantagens para os sistemas operacionais

MELHOR UTILIZAÇÃO DO PROCESSADOR

Ao invés de deixar o processador ocioso enquanto espera por uma entrada ou saída, o sistema operacional pode alternar entre diferentes processos que estão prontos para executar, aumentando o grau de multiprogramação e o rendimento do sistema.

MELHOR RESPOSTA AO USUÁRIO

Ao permitir que vários processos sejam executados de forma concorrente, o sistema operacional pode oferecer uma melhor experiência ao usuário, reduzindo o tempo de espera e aumentando a interatividade.

Por exemplo, um usuário pode editar um documento enquanto ouve música ou navega na internet, sem que um processo interfira no outro.