有界線型拡張定理

1

命題 1.1. $(X,\|\cdot\|_X),(Y,\|\cdot\|_Y)$ をノルム空間とする. $(Y,\|\cdot\|_Y)$ が完備であるならば, X の稠密部分空間 A で定義される有界線型作用素は, 作用素ノルムを保ったまま, X 上に一意に拡張できる.

証明. $x \in X$ に対して, Tx を, $a_n \in A$ で $a_n \to x$ である点列を適当にひとつ選ぶと, Ta_n は完備ノルム空間 Y のコーシー列であるので, 極限が存在するので,

$$\tilde{T}(x) \coloneqq \lim_{n \to \infty} T(a_n)$$

により定める. well-defined であることを確かめるために, $b_n \in A$ で $b_n \to x$ である点列をとる. T は $a,b \in A$ に対して

$$||Ta - Tb|| \le ||T|| \, ||a - b||$$

が成り立つため、一様連続である. 従って、 $\varepsilon > 0$ に対して $\delta > 0$ で

$$||a - b|| \le \delta \Rightarrow ||Ta - Tb|| < \varepsilon$$

を満たすものが存在する. 従って, $N_1 \in \mathbb{N}$ で, $n \geq N_1$ ならば

$$||Ta_n - Tb_n|| < \varepsilon$$

となるものがとれる. また, $N_2 \in \mathbb{N}$ で, $n > N_2$ ならば,

$$||Tb_n - \tilde{T}x|| < \varepsilon$$

を満たすものが存在する. 従って, $n > \max\{N_1, N_2\}$ であるならば,

$$\left\| Tb_n - \tilde{T}x \right\| \le \left\| Tb_n - Ta_n \right\| + \left\| Ta_n - \tilde{T}x \right\| < 2\varepsilon$$

が成り立つ. 従って, $\tilde{T}: X \to Y$ は well-defined である. また, $c_1, c_2 \in \mathbb{R}, a, b \in X$ に対して,

$$\tilde{T}(c_1 a + c_2 b) - c_1 \tilde{T}(a) - c_2 \tilde{T}(b) = \lim \left(T(c_1 a_n + c_2 b_n) - c_1 \tilde{T}(a_n) - c_2 \tilde{T}(b_n) \right) = \lim 0 = 0$$

より線型である. また,

$$\left\|\tilde{T}\right\| = \sup\left\{\frac{\left\|\tilde{T}x\right\|}{\|x\|} \mid x \in X, x \neq 0\right\} \ge \sup\left\{\frac{\|Ta\|}{\|a\|} \mid a \in A, x \neq 0\right\} = \|T\|$$

と

$$\left\|\tilde{T}x\right\| = \left\|\lim Ta_n\right\| = \lim \left\|Ta_n\right\| \le \lim \left\|T\right\| \left\|a_n\right\| = \left\|T\right\| \left\|x\right\|$$

より, $\left\| \tilde{T} \right\| \leq \|T\|$ であることから,

$$\left\|\tilde{T}\right\| = \|T\|$$

が成り立つ. また, T の線型拡張 $\hat{T}: X \to Y$ で, $\left\|\hat{T}\right\| = \left\|\tilde{T}\right\|$ であるが, $\hat{T} \neq \tilde{T}$ であるものが存在するとする. $\tilde{T}x \neq \hat{T}x$ なる $x \in X$ をとると, $a_n \in A$ で $a_n \to x$ であるものがとれて,

$$0 \neq \hat{T}x - \tilde{T}x = \lim Ta_n - \lim Ta_n = 0$$

より矛盾するので、このような拡張は一意である.