	School: Campus:
	Academic Year: Subject Name: Subject Code:
	turion TERSITY Semester: Program:
	Date:
	Classroom Learning (Learning by Listening and Observations)
	(Bearing by Bistering and Observations)
Non	no of the Topies w
ivai	ne of the ToPic: Nodes
<u>Lea</u>	rning Outcome:
Can	conts learned (Montier 2/2 principles).
Con	cepts learned (Mention 2/3 principles):
_Bas	ed on the classwork, the principal concepts I have learned include:
1	The fundamental concept of a blackchain node as a stakeholder's device that maintains a convert the
ĺ.	The fundamental concept of a blockchain node as a stakeholder's device that maintains a copy of the
	distributed ledger and participates in the network.
2.	The complete architecture of blockchain networks, distinguishing between full nodes, lightweight
	nodes, and miner nodes.
3.	The characteristics of node consensus mechanisms, primarily Proof-of-Work (PoW) and Proof-of-Stake
	(PoS), which ensure data integrity and security.
Nov	techniques learned:
INGW	rtechniques learned.
Addit	cionally, I have acquired new knowledge in the following areas:
1.	Techniques for how nodes use cryptographic hashes (like SHA-256) to link blocks and create an
	immutable chain.
2.	Procedures for how nodes communicate and propagate new transactions and blocks across the peer-
	to-peer network.
3.	The process of transaction validation and block verification performed by nodes to achieve consensus
	without a central authority. The concept of a "genesis block" and how nodes initialize their copy of the blockchain.
4.	The concept of a genesis block and now houes initialize their copy of the blockchain.

Page No.....

* Related Project/Practice work experienced and learned:

During the practice sessions of the lab work, I engaged in and developed proficiency with programs and simulations in the following areas:

- 1. Creating a basic structure for a block containing index, timestamp, data, previous hash, and current hash.
- 2. Simulating a simple blockchain with multiple nodes that can accept transactions and mine new blocks.
- 3. Writing algorithms to demonstrate proof-of-work (mining) and the importance of the longest chain rule.
- 4. Creating a basic consensus protocol to handle conflicts between different node chains.

* New Software/Machine/Tool/Equipment/Experiment learned:

- Got exposure to **Bitcoin Core** as an example of running a full node.
- Learned about tools like **Geth (Go-Ethereum)** for deploying Ethereum nodes.

* Application of concept(s) (preferably real life scenario):

- 1. Full Nodes: Run by enthusiasts and businesses to enforce the rules of a cryptocurrency like Bitcoin or Ethereum, providing security and decentralization.
- 2. Mining Nodes: Specialized nodes that compete to solve complex mathematical problems to add new blocks to the chain and earn rewards (in PoW systems).
- 3. Lightweight (SPV) Nodes: Used in cryptocurrency wallets on phones and computers to verify transactions without storing the entire blockchain, enabling everyday use.

* Case Studies/Examples:

- 1. Bitcoin Network: A global network of thousands of nodes maintains and secures the Bitcoin ledger, making it censorship-resistant and trustless.
- 2. Supply Chain Tracking: Companies like IBM Food Trust use a permissioned blockchain where nodes are operated by farmers, processors, and retailers to track food provenance.
- 3. Decentralized Finance (DeFi): Applications are built on blockchain networks where nodes execute smart contract code to facilitate lending, borrowing, and trading without intermediaries.

Assessmer	71	t:
-----------	----	----

Marks Obtained: / 10

Signature of the Faculty:

Signature of the Student:

Name: PN Archana

Regn. No.: 240720100147

Page No.....

^{*}As applicable according to the topic. One sheet per topic (10-20) to be used.