Research Methods for Political Science

Bivariate statistics: t-tests

Dr. Thomas Chadefaux

Assistant Professor in Political Science
Thomas.chadefaux@tcd.ie

Comparing means

One-sample case (week 4)

- Two-sample case
 - Independent samples
 - Paired samples

Testing hypotheses

- Testing hypotheses
 - Null hypothesis (H_0)
 - Alternative hypothesis (H₁)

Null hypothesis

 We ask: if the null hypothesis were true, how likely would we be to collect data that is as extreme or more extreme than we have?

Dependent samples t-test

- Comparing two measurements for the same participants
- Example: thermometer score for Ahern
 (M=65.5, SD = 24.2) and Bruton (M=45.74, SD = 22.85). Is this difference statistically significant?
- N = 2570

Step 1: Assumptions

Random sampling
Level of measurement interval-ratio
Sampling distribution is normal

Step 2: stating the null hypothesis: mean difference equals 0:

$$H_0: \mu_D = 0$$
 $(H_1: \mu_D \neq 0)$

$$(\mathsf{H}_1:\mu_D\neq 0)$$

Step 3: Selecting the Sampling Distribution and Establishing the Critical Region

As we do not know the population standard deviation of the difference between Ahern and Bruton, we use a t-test with df = n - 1 (two-tailed). As, N = 2570, df = 2569.

Therefore, with $\alpha = 0.05$, t(critical) = 1.96 (check your understanding: why 1.96? How did we find it?)

First, calculate the difference between Ahern and Bruton. (SPSS: Transform ... Compute)

For dependent samples (paired samples):

$$t = \frac{\overline{D} - \mu_D}{s_D / \sqrt{N}}$$

Remember the null hypothesis: $\mu_D = 0$

Descriptive Statistics Minimum Maximum Mean Std. Deviation Ν Statistic Statistic Statistic Statistic Statistic Std. Error difference 2570 -100.00100.00 19.7720 .65323 33.11554 Valid N (listwise) 2570

$$t = \frac{19.77 - 0}{33.12/\sqrt{2750}} = \frac{19.77}{0.653} = 30.27$$

Step 5: Making a decision

t(obtained) = 30.27t(critical) = +/- 1.96

As t(obtained) fell in the *critical region*, we have to reject the null hypothesis.

Conclusion?

Paired samples in SPSS

 Analyze ... Compare Means ... Paired-samples t-test

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	THERMOMETER DEGREE-AHERN, BERTIE	65.5128	2570	24.20657	.47749
	THERMOMETER DEGREE-BRUTON, JOHN	45.7409	2570	22.85454	.45082

Paired Samples Correlations

	N	Correlation	Sig.
Pair 1 THERMOMETER DEGREE-AHERN, BERTIE & THERMOMETER DEGREE-BRUTON, JOHN	2570	.011	.594

Paired Samples Test

				Paired Difference	es				
				Std. Error	95% Confidence Interval of the Difference				
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	THERMOMETER DEGREE-AHERN, BERTIE - THERMOMETER DEGREE-BRUTON, JOHN	19.77198	33.11554	.65323	18.49108	21.05289	30.268	2569	.000

P-value

- As usual, notice the pvalue. Remember that the p-value is the sum of the tail areas, i.e, p(|t|>t)
- (check your understanding: What is the connection between t-values and zvalues?)

Independent samples

- Comparing means between two groups, e.g. political interest for men (M = 5, SD = 3.16, N = 10) and women (M = 5.4, SD = 2.31, N = 10) (fake data)
- Note that these two samples are not paired.
 I.e., we are asking different people. These samples are independent
- Can we say the difference in political interest is statistically significant?

Step 1: Assumptions

Random sampling
Level of measurement interval-ratio
Sampling distribution is normal
Independent observations

Step 2: stating the null hypothesis

$$H_0: \mu_1 = \mu_2 \ (or: \mu_1 - \mu_2 = 0)$$

 $(H_1: \mu_1 \neq \mu_2)$

Step 3: Selecting the Sampling Distribution and Establishing the Critical Region

As we do not know the population standard deviation of the difference between men and women, we use a t-test with df = $N_1 + N_2 - 2$ (two-tailed). As, N_1 = 10, N_2 = 10, df = 10 + 10 - 2 = 18

Therefore, t(critical) can be looked up in Fields' table and is equal to 2.10 ($\alpha = 0.05$).

For an independent-samples t-test:

$$t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{S_1^2}{N_1} + \frac{S_2^2}{N_2}\right)}}$$

Remember, that under the null hypothesis $\mu_1 - \mu_2 = 0$, thus

$$t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\left(\frac{S^2}{N_1} + \frac{S^2}{N_2}\right)}}$$

Remember, that under the null hypothesis $\mu_1 - \mu_2 = 0$, thus

$$t = \frac{5 - 5.4}{\sqrt{\left(\frac{3.16^2}{10} + \frac{2.31^2}{10}\right)}} = \frac{-0.4}{1.24} = -0.323$$

Step 5: Making a decision

Equality of variances

- The independent samples t-test assumes that the variances of the two samples are (roughly) equal. If not, SPSS can make adjustments for us.
- Levene's Test for Equality of Variances tests the null hypothesis that the variances of two groups are equal.
- Some objections to using it (Field 2013: 194)

Interpreting Levene's test

P-value	Hypothesis rejected	What does this mean?
< 0.05	Yes	Equal variances cannot be assumed, adjustments need to be made
> 0.05	No	Equal variances can be assumed, adjuments not necessary.

Independent samples t-test in SPSS

 Analyze ... Compare Means ... Independentsamples t-test

Group Statistics

	gender	N	Mean	Std. Deviation	Std. Error Mean
interest	Male	10	5.0000	3.16228	1.00000
	Female	10	5.4000	2.31900	.73333

Independent Samples Test

		t-test for Equality of Means								
				95% Confidence Inten Mean Std. Error Difference						
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Difference	Lower Upper	
interest	Equal variances assumed	1.500	.236	323	18	.751	40000	1.24007	-3.00529	2.20529
	Equal variances not assumed			323	16.509	.751	40000	1.24007	-3.02227	2.22227

Group Statistics

	gender	N	Mean	Std. Deviation	Std. Error Mean
interest	Male	10	5.0000	3.16228	1.00000
	Female	10	5.4000	2.31900	.73333

		Levene's Test for Equality of Variances		
		F	Sig.	
interest	Equal variances assumed	1.500	.236	
	Equal variances not assumed			

Independent Samples Test

_	t-test for Equality of Means								
				Mean	Std. Error	95% Confidence Differ			
	t	df	Sig. (2-tailed)	Difference	Difference	Lower	Upper		
Γ.	323	18	.751	40000	1.24007	-3.00529	2.20529		
_	323	16.509	.751	40000	1.24007	-3.02227	2.22227		

Two-sided or one-sided?

- Depends on alternative hypothesis:
 - One-sided: H_1 : $\mu > \mu_0$, or $\mu < \mu_0$
 - Two-sided: H_1 : $\mu \neq \mu_0$

