A Glimpse into Geographic Diversity of Generative Al with Scale-based Evaluation

Zilong Liu

Department of Geography and Regional Research University of Vienna

Introduction

- Geographic diversity is the characteristic of a concept varying across space due to factors such as physical surroundings or cultural traditions.
- A lack of geographic diversity constrains **model generalizability** across space. Images classifiers trained on Open Images or ImageNet exhibit a representation bias towards the West but against the Global South [1].
- The increasing accessibility of generative AI may foster a feedback loop, raising concerns about the potential to perpetuate and amplify biases present in current and future models.

Regional Disparities in Fill-Mask Performance

I first examined **geographic features**, geo-diverse concepts constituting gazetteers (*the vocabulary of geography* [2]), and approached the notion of geographic diversity centered around their **extension**.

Figure 1: An example retrieval process of a dbo:Sea feature dbr:Mediterranean_Sea and its abstract from DBpedia

Figure 2: An example fill-mask experiment about a dbo:Bay feature dbr:Gulf_of_Thailand, implemented in the OpenAl Playground

- On a local level, there is not only insufficiency but also regional disparities in GPT-4's fill-mask performance for dbo:WorldHeritageSite features which belong to all the peoples of the world, irrespective of the territory on which they are located. Also, the **multimodal** variant may encode even **less** geographic knowledge than the unimodal version.
- When assessed on a **larger** geographic scale, regional disparities may become **smaller**. The gpt-4-1106-preview model had an accuracy with a range of 0.43 on a country level, compared with a range of 0.133 on a UNESCO-region level. Same for gpt-4-vision-preview, the accuracy had a range of 0.34 on a country level, which was larger than a range of 0.11 on a UNESCO-region level.

Table 1: The top five countries (with more than ten sites) ordered by the percentage of correct predictions by two GPT-4 variants, respectively, on dbo:WorldHeritageSite features

gpt-4-1106-preview	gpt-4-vision-preview	
France (0.5)	India (0.41)	
India (0.47)	China (0.33)	
China (0.39)	Spain (0.31)	
Italy (0.38)	Italy (0.29)	
Belgium (0.33)	Belgium (0.25)	

Table 2: The UNESCO regions ordered by the percentage of correct predictions by two GPT-4 variants, respectively, on dbo:WorldHeritageSite features

gpt-4-1106-preview	gpt-4-vision-preview	
Latin America and the Caribbean (0.413)	Africa (0.37)	
Asia and the Pacific (0.407)	Asia and the Pacific (0.36)	
Africa (0.4)	Arab States (0.28)	
Europe and North America (0.36)	Europe and North America (0.27)	
Arab States (0.28)	Latin America and the Caribbean (0.26)	

Regional Defaults in Generated Photorealistic Forests

- I moved onto text-to-image generation with a goal of uncovering regional defaults, to describe the emerging phenomenon that models are prone to **over-proportionally** depicting certain regions.
- Similar observations have been found for culture subjects [3], but in my work I continued to focus on geographic features and studied how DALL·E 2 characterizes **forests**.

Figure 3: A subset of forest images generated following the region hierarchy

A cross-level image similarity is computed with structural similarity index measure (SSIM) to detect regional defaults which have scale-dependent nature.

$$SSIM(x,y) = I(x,y)^{\alpha} \cdot c(x,y)^{\beta} \cdot s(x,y)^{\gamma}$$

$$I(x,y) = \frac{2\mu_{x}\mu_{y} + c_{1}}{\mu_{x}^{2} + \mu_{y}^{2} + c_{1}}$$

$$c(x,y) = \frac{2\sigma_{x}\sigma_{y} + c_{2}}{\sigma_{x}^{2} + \sigma_{y}^{2} + c_{2}}$$

$$s(x,y) = \frac{\sigma_{xy} + c_{3}}{\sigma_{x}\sigma_{y} + c_{3}}$$

$$(1$$

- Regional defaults for World shows that lower-level defaults could be geographically inconsistent with higher-level defaults.
- The defaults do not correspond to the **most widely forested regions** in reality.

Table 3: The most similar regions to World based on SSIM

Level	Most Similar		
UN region	Europe (0.18)		
UN sub-region	Latin America and the Caribbean (0.30)		
UN intermediate region	Southern Africa (0.13)		
ISO country or dependent territory	Uganda (0.26)		

Table 4: The most widely forested regions (with extent measured in $10^6 \, km^2$) at each level based on FAO Global Forest Resources Assessment 2020 statistics

Level	Most Forested Region	Forest Extent
UN region	Americas	13.6
UN sub-region	Eastern Europe	8.3
UN intermediate region	South America	6.1
ISO country or dependent territory	Russian Federation	8.1

Conclusions and Future Work

- A lack of geographic diversity exists across **modalities** but in different forms, where real-world datasets or statistics play a different role.
- Considering the connection among scales [2], future evaluation should consider the interplay in geographic scales, e.g., developing alignment standards based on geographically weighted aggregation.

References

- [1] Shankar, S., Halpern, Y., Breck, E., Atwood, J., Wilson, J., & Sculley, D. (2017). No classification without representation: Assessing geodiversity issues in open data sets for the developing world. arXiv preprint arXiv:1711.08536.
- [2] Jackson, P. (2006). Thinking geographically. Geography, 91(3), 199-204.
- [3] Qadri, R., Shelby, R., Bennett, C. L., & Denton, E. (2023, June). Ai's regimes of representation: A community-centered study of text-to-image models in south asia. In Proceedings of the 2023 ACM Conference on Fairness, Accountability, and Transparency (pp. 506-517).