Package 'vivaldi'

March 21, 2023

```
Type Package
Title Viral Variant Location and Diversity
Version 1.0.1
Description Analysis of minor alleles in Illumina sequencing data of viral
     genomes. Functions in 'vivaldi' primarily operate on vcf files.
License MIT + file LICENSE
URL https://github.com/GreshamLab/vivaldi
BugReports https://github.com/GreshamLab/vivaldi/issues
Imports dplyr (>= 1.0.2), ggplot2 (>= 3.3.2), glue (>= 1.4.2),
     magrittr (>= 2.0.1), plotly (>= 4.10.0), seqinr (>= 4.2-8),
     tidyr (>= 1.1.2), tidyselect (>= 1.1.2), vcfR (>= 1.12.0)
Suggests kableExtra, knitr, rmarkdown, testthat (>= 3.0.0)
VignetteBuilder knitr
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Config/testthat/edition 3
Depends R (>= 2.10)
NeedsCompilation no
Author Marissa Knoll [aut],
     Katherine Johnson [aut],
     Megan Hockman [aut],
     Eric Borenstein [aut],
     Mohammed Khalfan [aut],
     Elodie Ghedin [aut],
     David Gresham [aut, cre, cph]
Maintainer David Gresham <dg107@nyu.edu>
Repository CRAN
```

Date/Publication 2023-03-21 20:10:02 UTC

2 add_metadata

R topics documented:

	add_metadata	2
	af_distribution	3
	arrange_data	4
	dNdS_segment	5
	example_filtered_SNV_df	5
	filter_variants	6
	merge_replicates	7
	plot_shannon	8
	position_allele_freq	9
	prepare_annotations	10
	read_reference_fasta_dna	10
	shannon_entropy	11
	shared_snv_plot	12
	shared_snv_table	13
	snpeff_info	14
	snv_genome	14
	snv_location	15
	snv_segment	16
	tally_it	17
	tstv_plot	18
	tstv_ratio	18
Index		20

add_metadata

add_metadata

Description

Adds metadata information to the vcf dataframe

Usage

```
add_metadata(df, metadf, by_vcf, by_meta)
```

Arguments

df	A rearranged vcf dataframe (arrange_data)
metadf	A metadata dataframe
by_vcf	A vector of column names in the vcf dataframe that should be used to merge the vcf data with the metadata
by_meta	A vector of column names in the metadata dataframe that should be used to merge the metadata with the vcf data

af_distribution 3

Value

A vcf dataframe with metadata included

Examples

 $af_distribution$

af_distribution

Description

Plots distribution of all minor variants

Usage

```
af_distribution(df)
```

Arguments

df

A dataframe that has been arranged (arrange_data) and filtered (filter_variants)

Value

plots with the distribution of all minor variants

4 arrange_data

Examples

arrange_data

arrange_data

Description

Reads in a directory of VCF files and converts them into a single dataframe

Usage

```
arrange_data(
  vardir,
  reference_fasta,
  annotated = "yes",
  ntlist = c("A", "G", "T", "C", "-"),
  verbose = FALSE
)
```

Arguments

vardir Directory path containing vcf files reference_fasta

Reference fasta file used for alignment

annotated Whether the VCF files are annotated using snpeff "yes" or "no" (default "yes")

ntlist Nucleotides (default A, T, G, C) used for finding multiple alt alleles

verbose set verbosity of the vcfR commands

Value

A large dataframe containing information from all input VCF files

dNdS_segment 5

dNdS_segment

dNdS_segment

Description

Reads in a dataframe that has been arranged (arrange_data), filtered (filter_variants), and annotated (prepare_annotations), calculates dNdS, and outputs plots

Usage

```
dNdS_segment(annotation_df, SPLICEFORMS)
```

Arguments

annotation_df A rearranged, filtered, and annotated vcf dataframe - must be for amino-acid

specific calculations, cannot be the same as the dataframe used for SNP calcu-

lations

SPLICEFORMS A character vector of isoform names

Value

A plot showing the dN/dS ratio for each splice form (rather than segment) for each sample

Examples

```
# Sample Data
head(example_filtered_SNV_df)
dim(example_filtered_SNV_df)

# Plot showing the dN/dS ratio for each splice form
SPLICEFORMS = c("H1N1_PB2.1", "H1N1_PB1.1","H1N1_NS.2")
dNdS_segment(example_filtered_SNV_df, SPLICEFORMS)
```

```
example_filtered_SNV_df
```

Example Dataframe The DF_filt_SNVs dataframe created in the vignette

Description

Example Dataframe The DF_filt_SNVs dataframe created in the vignette

Usage

```
example_filtered_SNV_df
```

filter_variants

Format

'example_filtered_SNV_df' A data frame with 735 rows and 57 columns:

```
filter_variants
```

filter_variants

Description

Filters single-nucleotide variants using a coverage and frequency cutoff

Usage

```
filter_variants(df, coverage_cutoff = 200, frequency_cutoff = 0.03)
```

Arguments

```
df A rearranged VCF dataframe (rearranged using the arrange_data function)

coverage_cutoff

The coverage cutoff for calling a SNV (default: 200x)

frequency_cutoff

Frequency cutoff for calling a SNV (default: 3%)
```

Value

A filtered VCF dataframe

merge_replicates 7

merge_replicates merge_replicates

Description

Merges replicate VCF files into a single dataframe

Usage

```
merge_replicates(vardf, repdata, nameofrep1, nameofrep2, commoncols)
```

Arguments

vardf Data frame of variants

repdata Data frame of replicate information

nameofrep1 Name of variable representing the first replicate, must be written with quotes

nameofrep2 Name of variable representing the second replicate

commoncols List of columns to merge the replicates by

Value

a data frame containing replicate information

```
df <- data.frame(sample = c("m1", "m2", "m1", "m2", "m1"),</pre>
                  CHROM = c("PB1", "PB1", "PB2", "PB2", "NP"),
                  POS = c(234, 234, 240, 240, 254),
                  REF = c("G", "G", "A", "A", "C"),
ALT = c("A", "A", "G", "G", "T"),
                  minorfreq = c(0.010, 0.022, 0.043, 0.055, 0.011),
                  majorfreq = c(0.990, 0.978, 0.957, 0.945, 0.989),
                  minorcount = c(7, 15, 26, 32, 7),
                  majorcount = c(709, 661, 574, 547, 610),
                  gt_DP = c(716, 676, 600, 579, 617)
)
# Dataframe shows a pair of replicates and their variants at 3 positions.
replicates <- data.frame(filename = c("m1","m2"),</pre>
                           replicate = c("rep1", "rep2"),
                           sample = c("a_2_iv", "a_2_iv")
)
# Dataframe showing relationship between filename, replicate, and sample name
replicates
```

8 plot_shannon

```
# Merge by the following columns
cols = c("sample","CHROM","POS","REF","ALT")

merge_replicates(df, replicates, "rep1", "rep2", cols)
# The dataframe now contains the 2 variants at positions 234 & 240 that were
# detected in both sequencing replicates whereas the variant at position 254
# was only in a single replicate so it was removed during the merge.
```

plot_shannon

plot_shannon

Description

Reads in a dataframe that has been arranged (arrange_data), filtered (filter_variants), and piped through the Shannon calculations (shannon_entropy) and outputs plots

Usage

```
plot_shannon(shannon_df)
```

Arguments

shannon_df

A dataframe that has been arranged (arrange_data), filtered (filter_variants), and piped through the Shannon calculations (shannon_entropy)

Details

The 'plot_shannon()' function takes the variant dataframe and generates three plots. 1. The Shannon entropy, or amount of diversity, at each position in the genome at which a variant was found. 2. The Shannon entropy summed over each segment 3. The Shannon entropy summed over each genome A higher value indicates more diversity.

Value

Three plots showing the nt Shannon, chrom Shannon, and full genome Shannon calculations

position_allele_freq 9

```
genome_size = 13133

# Modify the dataframe to add 5 new columns of shannon entropy data:
# 1. shannon_ntpos
# 2. chrom_shannon
# 3. genome_shannon
# 4. shannon_chrom_perkb
# 5. genome_shannon_perkb
shannon_df = shannon_entropy(df, genome_size)

# Plot
plot_shannon(shannon_df)
```

```
position_allele_freq position_allele_freq
```

Description

Reads in a dataframe that has been arranged (arrange_data) and filtered (filter_variants) and outputs plots

Usage

```
position_allele_freq(vardf, segment, nt)
```

Arguments

vardf A rearranged (arrange_data) and filtered (filtered_variants) vcf dataframe

segment Name of segment (must be in quotes)

nt Position on segment (must be in quotes)

Value

A plot showing the the frequencies of the major and minor allele at the given position across all samples

```
position_allele_freq(example_filtered_SNV_df,"H1N1_NP", "1247")
```

```
prepare_annotations
```

Description

Separates the SNPeff annotations found in an annotated and rearranged VCF dataframe (arranged using arrange_data)

Usage

```
prepare_annotations(df)
```

Arguments

df

A rearranged and annotated VCF dataframe

Value

A dataframe containing each annotation on a separate column

Examples

```
# Example: Shows the separation of the ANN column based on | delimiter.
test <- data.frame( ANN = c("A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P"))
# The ANN column will be split based on the strings in `snpeff_info()` and
# an additional "error" column.
snpeff_info()
# Split the SNPeff annotations in "ANN" column and save to dataframe `df`
df <- prepare_annotations(df)
# The one "ANN" column is split into 16 columns
dim(test)
dim(df)</pre>
```

Description

Imports reference fasta, generates a dataframe with chroms and chrom lengths

Usage

```
read_reference_fasta_dna(reference_fasta)
```

shannon_entropy 11

Arguments

```
reference_fasta
```

The name and location of the reference fasta file used for alignment

Value

A dataframe containing the chroms and chrom lengths of a reference fasta

shannon_entropy

shannon_entropy

Description

Takes a rearranged vcf dataframe and calculates the Shannon entropy

Usage

```
shannon_entropy(df, genome_size)
```

Arguments

df A rearranged vcf dataframe (arrange_data)

genome_size Size of whole genome being used

Details

Shannon entropy is a commonly used metric to describe the amount of genetic diversity in sequencing data. It is calculated by considering the frequency of the ALT and REF allele at every position and then summing those values over 1) a segment or 2) the entire genome. These values can then be normalized by sequence length (kb) in order to compare across different segments or samples.

Value

A dataframe with Shannon entropy/kb calculations for the chroms and entire genome

shared_snv_plot

```
# MOdify the dataframe to add 5 new columns of shannon entropy data:
# 1. shannon_ntpos
# 2. chrom_shannon
# 3. genome_shannon
# 4. shannon_chrom_perkb
# 5. genome_shannon_perkb
shannon_entropy(df, genome_size)
```

shared_snv_plot

shared_snv_plot

Description

Reads in a dataframe that has been arranged (arrange_data) and filtered (filter_variants) and outputs plots

Usage

```
shared_snv_plot(vardf, samples = unique(DF_filt$sample))
```

Arguments

vardf A rearranged (arrange_data) and filtered (filtered_variants) vcf dataframe
samples A vector of samples to be compared (default:all samples in DF_filt)

Value

A plot showing the location of variants and the number of samples that contain each variant

```
samples = c("a_1_fb", "a_1_iv", "a_2_fb", "a_2_iv", "a_3_fb", "a_3_iv", "b_1_fb", "b_1_iv")
shared_snv_plot(example_filtered_SNV_df, samples)
```

shared_snv_table 13

shared_snv_table

shared_snv_table

Description

Reads in a dataframe that has been arranged (arrange_data) and filtered (filter_variants) and outputs a table

Usage

```
shared_snv_table(vardf)
```

Arguments

vardf

A rearranged (arrange_data) and filtered (filtered_variants) vcf dataframe

Details

The 'shared_snv_table()' function takes the variant dataframe and creates a new table, listing the variants in descending order of frequency how many samples they are found in. This function is meant to simplify further investigation of visual patterns in the previous plot.

Value

A table listing variants in order by how many samples they are found in

```
# Sample dataframe has 57 columns
dim(example_filtered_SNV_df)

# Simplify sample dataframe
df <- shared_snv_table(example_filtered_SNV_df)

# Dataframe created has 15 columns
df
dim(df)</pre>
```

snv_genome

 $snpeff_info$

 $snpeff_info$

Description

Returns vector containing information in snpeff annotations

Usage

```
snpeff_info()
```

Value

Returns vector containing information in snpeff annotations

Examples

```
snpeff_info()
```

snv_genome

snv_genome

Description

Reads in a dataframe that has been arranged (arrange_data) and filtered (filter_variants) and outputs plots

Usage

```
snv_genome(vardf)
```

Arguments

vardf

A rearranged (arrange_data) and filtered (filtered_variants) vcf dataframe

Value

A bar plot showing the number of variants per sample colored by their SNPEff annotation

snv_location 15

Examples

snv_location

snv_location

Description

Reads in the vcf dataframe and generates a plot showing the frequency and location of SNVs

Usage

```
snv_location(df)
```

Arguments

df

A rearranged dataframe

Value

A plot showing the location and frequency of SNVs found across samples

snv_segment

snv_segment

snv segment

Description

Reads in a dataframe that has been arranged (arrange_data) and filtered (filter_variants) and outputs plots

Usage

```
snv_segment(vardf)
```

Arguments

vardf

A rearranged (arrange_data) and filtered (filtered_variants) vcf dataframe

Value

A bar plot showing the number of variants colored by their SNPEff annotation

```
tally_it

)
    df
snv_segment(df)
```

tally_it

Example 2: Sample data

snv_segment(example_filtered_SNV_df)

tally it

Description

Groups the input vcf data frame using a list of variables and tallies the number of occurrences

Usage

```
tally_it(df, groupit, new_colname)
```

Arguments

df A rearranged vcf dataframe (arrange_data)

groupit A vector containing column names that data should be grouped by

Value

A dataframe with columns from the 'groupit' vector and the number of times each unique grouping occurs in the data

18 tstv_ratio

```
groupit = c('sample')
tally_it(df, groupit, "snv_count")
```

tstv_plot

tstv_plot

Description

Plots Ts/Tv ratios

Usage

```
tstv_plot(df)
```

Arguments

df

TsTv dataframe generated using the tstv_ratio function

Value

two plots showing the K2P and simple Ts/Tv ratios

Examples

```
df <- tstv_ratio(example_filtered_SNV_df,1300)
tstv_plot(df)</pre>
```

tstv_ratio

tstv_ratio

Description

Inputs a filtered and rearranged vcf dataframe and calculates the transition/transversion ratio

Usage

```
tstv_ratio(df, genome_size)
```

Arguments

df The filtered and rearranged variant dataframe

genome_size Size of whole genome being used

Value

A dataframe containing the calculated transition/transversion ratio (R or basic_tstv)

tstv_ratio 19

Examples

tstv_ratio(example_filtered_SNV_df, 13000)

Index

```
* datasets
    example_filtered_SNV_df, 5
add_metadata, 2
af\_distribution, 3
arrange\_data, 4
dNdS_segment, 5
example_filtered_SNV_df, 5
filter_variants, 6
merge_replicates, 7
plot_shannon, 8
position_allele_freq, 9
\verb|prepare_annotations|, 10
read\_reference\_fasta\_dna, 10
shannon_entropy, 11
\verb|shared_snv_plot|, 12|
shared_snv_table, 13
{\tt snpeff\_info,\,14}
snv_genome, 14
snv_location, 15
snv_segment, 16
tally_it, 17
tstv_plot, 18
tstv\_ratio, 18
```