Duração: 90 minutos

Teste de Análise Matemática EE - versão B

Nome:	Nr.:	Curso: MIEEIC

Apresente todos os cálculos efectuados.

- 1. Considere a função real definida em \mathbb{R}^2 , $g(x,y)=by^3+x^3-yx$, onde b é uma constante real.
 - (a) Determine os pontos críticos de g, em função do parâmetro real b.

(b) Determine os valores de b para os quais g admite extremos, justificando com os cálculos.

(c) Para b=1 classifique os pontos críticos de g (minimizantes, maximizantes ou pontos de sela), quanto à existência de extremos.

2.	Determine t	rês	números	positivos	cuia	soma	é I	3 >	0 e	cuio	produto	seia	máximo.	

3. Calcule o integral triplo $\iiint_R 1\,dV$ onde a região de integração é $R = \left\{ (x,y,z) \in \mathbb{R}^3 : x^2 \le z \le x \, \land \, 0 \le x \le 1 \, \land \, -1 \le y \le 2 \right\}.$

4. Determine o valor do integral duplo $\iint_U x \, dx dy$, usando coordenadas polares (r, θ) . A região de integração U é a parte do anel que se encontra no 1º quadrante limitado entre as circunferências centradas na origem e de raios 1 e 2 e limitada entre a reta y=0 e a reta y=x. **Nota:** a transformação de coordenadas cartesianas em polares é dada por x=r. $\cos\theta$, y=r. $\sin\theta$.

5. Considere o sólido limitado pelos paraboló
ides $z=x^2+y^2$ e $z=4-x^2-y^2$.

(a) Escreva, usando integrais iterados, o integral triplo que permite calcular o volume do sólido.

(b) Escreva o integral anterior usando coordenadas cilíndricas (r, θ, z) . **Nota:** a transformação de coordenadas cartesianas em cilíndricas é dada por $x = r \cdot \cos \theta$, $y = r \cdot \sin \theta$, z = z.

6. Considere a região plana S representada na figura.

(a) Escreva, usando integrais iterados, o integral (ou soma de integrais) que permite calcular a área da região plana S.

(b) Usando a mudança de variáveis u=y-x e v=y+x, escreva o integral duplo nas novas variáveis u,v.

3