Chapitre 1 : Le champ électrostatique

I Loi de Coulomb pour deux particules élémentaires

A) Postulat de la charge

A toute particule élémentaire, on peut associer une grandeur scalaire q:

- Invariante par changement de référentiel
- Conservative :

On a $q_1 + q_2 = q_3 + q_4$ (ou, macroscopiquement : $\sigma_q = 0$)

- Algébrique : positive ou négative (ou nulle)

B) Loi de Coulomb

1) Enoncé

On considère une charge q_1 fixe dans un référentiel R.

• Cette charge q_1 en P modifie l'espace autour d'elle et crée en M un champ $\vec{E}(M) = \frac{q_1}{4\pi\varepsilon_0} \frac{\vec{r}}{r^3}$ où $\vec{r} = \overrightarrow{PM}$.

 \mathcal{E}_0 : permittivité du vide; $\mathcal{E}_0 = \frac{1}{4\pi . 10^{-7} c^2}$ (en F.m⁻¹); c'est une valeur exacte.

On a
$$\varepsilon_0 \approx \frac{1}{36\pi} \cdot 10^9 \,\text{F.m}^{-1} \approx 8,85418782 \cdot 10^{-12} \,\text{F.m}^{-1} \sim 10^{-11} \,\text{S.I.}$$

• On considère une charge q_2 fixe ou mobile en M.

Cette charge subit alors une force $\vec{F} = q_2 \vec{E}(M)$

2) Discussion

- La loi reste valable en relativité C'est une loi fondamentale de la physique.
- Si q_1 se déplace, $\vec{E}(M)$ est variable et il y a en plus un champ \vec{B} .

C) Principe de superposition

On admet (principe) que \vec{E} créé par des charges $q_1,...q_p$ vérifie $\vec{E} = \sum_{i=1}^p \vec{E}_i$.

II Loi de Coulomb macroscopique

A) Du microscopique au macroscopique

$$\int_{P^{\times}} d\tau$$

On note
$$\rho(P,t) = \frac{\sum_{i \in d\tau} q_i}{d\tau}$$
 (rappel : la barre désigne une valeur moyenne)

1) Champ microscopique

Les charges q_i ont une vitesse d'agitation \vec{v}_i , et produisent donc un champ électromagnétique $\vec{e}_i(M,t)$, $\vec{b}_i(M,t)$

2) Champ macroscopique

On a
$$d\vec{E} = \overline{\sum_{i \in d\tau}} \frac{\vec{e}_i}{4\pi . \varepsilon_0} = \frac{\rho . d\tau}{4\pi . \varepsilon_0} \frac{\vec{r}}{r^3} = \frac{dq}{4\pi \varepsilon_0} \frac{\vec{r}}{r^3}$$

On retrouve donc un champ coulombien.

On a de plus
$$d\vec{B} = \overline{\sum_{i \in d\tau} \vec{b_i}} = \vec{0}$$

Ainsi, les particules sont mésoscopiquement au repos.

B) Le champ électrostatique macroscopique

On a
$$d\vec{E} = \frac{1}{4\pi\epsilon_0} \rho . d\tau \frac{\vec{r}}{r^3}$$

1) Schématisation volumique

On a
$$\vec{E}(M) = \frac{1}{4\pi\varepsilon_0} \iiint \rho(P) \frac{\vec{r}}{r^3} d\tau$$

- Si *M* est extérieur à *V*, l'intégrale converge.
- Sinon:

On considère que ρ est borné ($|\rho| < \rho_0$)

Alors $\vec{E}(M) = \vec{E}_l(M) + \vec{E}_l(M)$, où \vec{E}_l est le champ créé à l'intérieur d'une petite boule S_R de rayon R, et \vec{E}_l par le reste de la distribution, qui converge.

On va montrer que $\vec{E}_i(M)$ est borné :

$$\left| \vec{E}_i(M) \right| \leq \frac{1}{4\pi\varepsilon_0} \iiint_{S_R} \rho_0 \frac{1}{r^2} d\tau = \frac{\rho_0 R}{\varepsilon_0}$$

Donc \vec{E}_i est borné, et l'intégrale converge.

Donc *E* est défini aussi dans la distribution.

2) Schématisation surfacique

On a
$$\vec{E}(M) = \frac{1}{4\pi\varepsilon_0} \iint \sigma(P) \frac{\vec{r}}{r^3} ds$$

Le champ diverge lorsque M est un point de la surface.

3) Schématisation linéique

$$\vec{E}(M) = \frac{1}{4\pi\varepsilon_0} \int \lambda(P) \frac{\vec{r}}{r^3} dl$$

4) Schématisation discrète

On a
$$\vec{E} = \sum_{i} \frac{q_i}{4\pi\varepsilon_0} \frac{\vec{r_i}}{r^3}$$
, $\rho = \sum_{i} q_i \delta(\vec{r} - \vec{r_i})$

III Potentiel électrostatique, rotationnel du champ E.

A) Potentiel électrostatique

1) Charge ponctuelle

Une charge q placée en P produit en M un champ:

$$\vec{E}(M) = \frac{q}{4\pi\varepsilon_0} \frac{\vec{r}}{r^3} = -\vec{\nabla}_M \frac{q}{4\pi\varepsilon_0 r}$$

Donc
$$\vec{E}(M) = -\vec{\nabla}_M V$$
 où $V = \frac{q}{4\pi \varepsilon_0 r} + \text{cte}$.

2) Répartition volumique de charges

• Expression :

$$\vec{E}(M) = \frac{1}{4\pi\varepsilon_0} \iiint \rho(P) \frac{\vec{r}}{\underline{r}^3} d\tau$$

$$-\bar{\nabla}_M \frac{1}{2}$$

 $\vec{\nabla}_{\scriptscriptstyle M}$ correspond à une dérivation par rapport à r et est donc indépendant de P

Ainsi,
$$\vec{E}(M) = -\vec{\nabla}_M \left(\frac{1}{4\pi\varepsilon_0} \iiint \frac{\rho(P)}{r} d\tau \right) = -\vec{\nabla}_M V$$

Où
$$V = \frac{1}{4\pi\varepsilon_0} \iiint \frac{\rho(P)}{r} d\tau + \text{cte}$$

• Convergence de l'intégrale :

A l'extérieur de la distribution, on a bien convergence.

A l'intérieur, on applique la même méthode que pour le champ :

Dans une petite boule de rayon R, le potentiel créé est majoré :

$$|V_i(M)| \le \frac{1}{4\pi\varepsilon_0} \iiint_{S_R} \rho_0 \frac{1}{r} d\tau = \frac{\rho_0 R^2}{2\varepsilon_0}$$

Donc l'intégrale converge sur la petite boule, et aussi en dehors, donc V est défini sur la distribution.

3) Répartition surfacique de charge

• Expression du potentiel :

$$V = \frac{1}{4\pi\varepsilon_0} \iint \sigma(P) \frac{1}{r} ds$$

• V est aussi défini sur S :

 $V(M) = V_e(M) + V_i(M)$, ou $V_e(M)$ converge et:

$$\left|V_{i}(M)\right| \leq \frac{1}{4\pi\varepsilon_{0}} \iint_{\text{disque}} \sigma_{0} \frac{dS}{r} = \frac{\sigma_{0}}{4\pi\varepsilon_{0}} \iint \frac{2\pi . r. dr}{r} = \frac{1}{2} \frac{\sigma_{0} R}{\varepsilon_{0}}$$

• V est continu à la traversée de la répartition :

En coupe,

On a
$$V_2 - V_1 = V_{e_2} - V_{e_1} + V_{i_2} - V_{i_1}$$

 $V_{e_2} - V_{e_1}$ peut être rendu aussi petit qu'on veut :

Il suffit de prendre 1 et 2 suffisamment proches l'un de l'autre.

On a de plus $|V_{i_1}| < |V_i|, |V_{i_2}| < |V_i|,$

$$\text{Et } \left|V_i\right| < \frac{1}{2} \frac{\sigma_0 R}{\varepsilon_0} \text{ . Donc } \left|V_{i_1} - V_{i_2}\right| < \frac{\sigma_0 R}{\varepsilon_0}, \text{ soit } \left|V_{i_1} - V_{i_2}\right| \underset{R \to 0}{\longrightarrow} 0$$

Remarque:

V n'est pas défini sur la distribution pour une distribution linéique ou discrète.

B) Circulation de *E*.

On a
$$\vec{E} = -\vec{\nabla}V$$
, donc $dV = -\vec{E} \cdot d\vec{l}$
Et $\int_{P}^{Q} \vec{E} \cdot d\vec{l} = V(P) - V(Q)$

C) Surfaces équipotentielles, lignes de champ

1) Définition

• Equipotentielle :

C'est un domaine d'équation $V(\vec{r})$ = cte (en général, c'est une surface)

• Lignes de champ:

C'est une courbe Γ telle que \vec{E} est tangent à $\Gamma: \vec{E} \wedge d\vec{l} = \vec{0}$ le long de Γ , et Γ est orienté par $\vec{E}: \vec{E} \cdot d\vec{l} > 0$

2) Propriétés

• Les lignes de champ sont normales aux équipotentielles :

Pour tout $d\vec{r}$ sur l'équipotentielle, dV=0, donc $\vec{E}\cdot d\vec{r}=0$, et \vec{E} est bien normal à l'équipotentielle.

• Le potentiel décroît le long d'une ligne de champ :

$$\overrightarrow{\vec{E}}$$

On a $\vec{E} \cdot d\vec{r} > 0$, donc dV < 0

D) Rotationnel de *E*.

1) Première équation locale du champ

$$\vec{E} = -\vec{\nabla}V \iff \vec{\nabla} \wedge \vec{E} = \vec{0}$$

2) Discussion

- La relation n'est valable qu'en électrostatique (sinon, $\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}$)
- $\vec{\nabla} \wedge \vec{E} = \vec{0} \Leftrightarrow \vec{E}$ est à circulation conservative.
- Elle est valable pour tout champ en $\frac{\vec{r}}{r^n}$.

IV Théorème de Gauss et divergence de E.

A) Théorème de Gauss

1) Préliminaire

Flux du champ \vec{E} créé par une charge ponctuelle à travers une surface quelconque :

$$P \xrightarrow{q^{+}} \int_{\Sigma} M_{\theta \to d\vec{S}}$$
On a $d\phi = \vec{E}(M) \cdot d\vec{S} = \frac{q}{4\pi\varepsilon_{0}} \frac{\vec{r}}{r^{3}} \cdot d\vec{S} = \frac{q}{4\pi\varepsilon_{0}} d\Omega$
Soit $\phi = \frac{q}{4\pi\varepsilon_{0}} \Omega$

2) Flux de E à travers une surface fermée

- Charge ponctuelle:
- Si q est intérieur à Σ , on a $\Omega = 4\pi$, donc $\phi = \frac{q}{\varepsilon_0}$
- Si q est extérieur à Σ :

On a $d\Omega_1 = -d\Omega_2$, et donc en intégrant $\Omega = 0$, soit $\phi = 0$.

• Ensemble de charges ponctuelles :

On a
$$\vec{E} = \sum \vec{E}_i$$
. Donc $\phi = \sum \phi_i = \sum_{i \text{ intérieur}} \frac{q_i}{\varepsilon_0} = \frac{Q_{\text{int}}}{\varepsilon_0}$

• Répartition volumique :

On a
$$\phi = \iiint_V \frac{\rho d\tau}{\varepsilon_0}$$

Ainsi, la formule devient $\oint_{S} \vec{E} \cdot d\vec{S} = \iiint_{V} \frac{\rho d\tau}{\varepsilon_{0}}$

3) Théorème de Gauss

$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon_0}$$

4) Théorème de Earnshaw

Enoncé :

Il n'existe pas d'extremum absolu de potentiel dans une région de l'espace vide de charge.

(Extremum absolu : la dérivée est nulle et la fonction est (dé)croissante dans toutes les directions de l'espace ; Extremum relatif : la dérivée est simplement nulle – comme pour une selle de cheval par exemple)

• Démonstration :

Si on a par exemple un maximum absolu en M, alors toutes les lignes de champ partent du point M (puisque V décroît le long d'une ligne de champ)

Ainsi, $\phi > 0$, donc il y a une charge en M.

• Conséquence :

On ne peut pas confiner la matière avec un champ électrostatique.

Ceci a déjà été vu quand on a remarqué qu'il ne pouvait pas y avoir d'équilibre stable dans une configuration de la forme :

$$Q \stackrel{\vdash}{\qquad \qquad } 4Q$$

(Où Q, 4Q sont des charges fixes et q mobile)

Et ce quel que soit le signe des charges, ou même si on ajoute d'autres charges fixes autour de q.

B) Divergence de *E*.

1) Deuxième équation locale du champ

$$M$$
 $+$
 P

On a
$$\vec{E}(M) = \iiint \frac{\rho(P)}{4\pi\varepsilon_0} \frac{\vec{r}}{r^3} d\tau$$

Donc
$$\vec{\nabla}_M \cdot \vec{E}(M) = \iiint \frac{\rho(P)}{4\pi\varepsilon_0} \vec{\nabla}_M \cdot \frac{\vec{r}}{r^3} d\tau$$

(On dérive uniquement par rapport à M)

Or,
$$\frac{\vec{r}}{r^3} = -\vec{\nabla}_M \frac{1}{r}$$
. Donc $\vec{\nabla}_M \cdot \frac{\vec{r}}{r^3} = -\vec{\nabla}_M^2 \frac{1}{r} = -\vec{\nabla}_P^2 \frac{1}{r} = 4\pi \delta(\vec{r})$

Et
$$\vec{\nabla}_M \cdot \vec{E}(M) = \frac{\rho(M)}{\varepsilon_0}$$
, ou $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$

2) Discussion

- L'égalité est encore valable pour des charges mobiles ou même pour un champ qui n'est pas créé par des charges.
- On aurait pu montrer l'égalité à partir du théorème de Gauss.

• Un champ en $\frac{\vec{r}}{r^4}$ (par exemple) ne vérifierait pas l'équation. En fait :

$$\vec{\nabla} \wedge \vec{E} = \vec{0}
\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}
\iff \vec{E} = \iiint \frac{\rho}{4\pi\varepsilon_0} \frac{\vec{r}}{r^3} d\tau + \vec{K}$$

3) Cas d'une charge ponctuelle

Pour $\rho = q \delta(\vec{r})$, $\vec{\nabla} \cdot \vec{E} = \frac{q}{\varepsilon_0} \delta(\vec{r})$, la divergence est nulle partout sauf sur la charge où elle n'est pas définie.

4) Cas d'une répartition surfacique/linéique

C'est la même chose.

Remarque:

On peut aussi appliquer le théorème de Gauss pour la gravitation avec la correspondance

$$\frac{1}{4\pi\varepsilon_0} \leftrightarrow -G$$

V Relation de passage à la traversée d'une distribution surfacique

A) Potentiel V.

On a vu que pour une distribution bornée, V est défini et continu sur la surface.

B) Champ E.

1) De la schématisation volumique à la schématisation surfacique

Densité:

Donc
$$\rho \to \rho'(n) = \sigma \delta(n)$$

Ainsi, \vec{E} est en réalité défini sur la surface (c'est à cause du modèle qu'il est divergeant)

On a donc une relation en 0 :

On va montrer que
$$\vec{\nabla} \wedge \vec{E} = \vec{0}$$
 $\Rightarrow \vec{E}_2 - \vec{E}_1 = \frac{\sigma}{\varepsilon_0} \vec{n}$

C'est-à-dire qu'il y a continuité de la composante tangentielle de E et discontinuité de la composante normale.

2) Continuité de la composante tangentielle

$$\begin{array}{c|c} & \stackrel{M_{2\star}}{\longrightarrow} \stackrel{d\vec{l}}{\longrightarrow} \stackrel{N_2}{\longrightarrow} \\ \hline M_1^* & \stackrel{N_1}{\longrightarrow} \\ \hline \text{On a } V(M_2) - V(M_1) < \varepsilon \,, \ V(N_2) - V(N_1) < \varepsilon' \\ \hline \text{Donc } V(M_2) - V(M_1) - (V(N_2) - V(N_1)) < \varepsilon'' \text{ soit } \\ V(M_2) - V(N_2) - (V(M_1) - V(N_1)) < \varepsilon'' \\ \hline \text{Ou } \vec{E}_2 \cdot d\vec{l} - \vec{E}_1 \cdot d\vec{l} < \varepsilon'' \\ \hline \text{Donc } (\vec{E}_2 - \vec{E}_1) \cdot d\vec{l} = 0, \forall d\vec{l} \text{ sur } \Sigma \\ \hline \text{Soit } \vec{E}_{T_2} - \vec{E}_{T_1} = \vec{0} \text{ (on n'a utilisé que le fait que } \vec{\nabla} \wedge \vec{E} = \vec{0} \text{)} \\ \hline \end{array}$$

3) Discontinuité de la composante normale

On a
$$\delta \phi = \frac{\delta q}{\varepsilon_0}$$

Soit $\delta \phi_1 + \delta \phi_2 + \delta \phi_1 = \frac{\sigma dS}{\varepsilon_0}$ ($\delta \phi_1$: flux latéral)
Lorsque les deux parois sont très proches:
 $\delta \phi_1 \to 0$
 $\delta \phi_2 = \vec{E}_2 \cdot \vec{n}.dS$, $\delta \phi_1 = -\vec{E}_1 \cdot \vec{n}.dS$

$$\delta \phi_2 = E_2 \cdot \vec{n}.dS$$
, $\delta \phi_1 = -E_1 \cdot \vec{n}.dS$
Donc $(\vec{E}_2 - \vec{E}_1) \cdot \vec{n} = \frac{\sigma}{\varepsilon_0}$

Ou
$$\vec{E}_{N_2} - \vec{E}_{N_1} = \frac{\sigma}{\varepsilon_0} \vec{n}$$

(On n'utilise ici que le fait que $\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\mathcal{E}_0}$)

4) Relation de passage globale

$$\vec{E}_2 - \vec{E}_2 = \frac{\sigma}{\varepsilon_0} \vec{n} \ .$$

VI Equations locales pour V.

A) Expression

1) Equation de Poisson

$$\begin{vmatrix} \vec{\nabla} \wedge \vec{E} = \vec{0} \iff \vec{E} = -\vec{\nabla} V \\ \vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0} \end{vmatrix} \Rightarrow \boxed{\vec{\nabla}^2 V = \frac{-\rho}{\varepsilon_0}}$$

2) Equation de Laplace

Dans une région où $\rho = 0$, on a $\vec{\nabla}^2 V = 0$

Remarque:

On a $\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$, donc toutes les dérivées ne sont pas de même signe (on retrouve le théorème de Earnshaw)

B) Résolution

1) Conditions aux limites

• Dirichlet:

$$\rho$$
 donné V donné $\vec{\nabla}^2 V = \frac{-\rho}{\varepsilon_0}$

La solution de l'équation est unique (si on la trouve!)

• Neumann

$$\rho \text{ donn\'e}$$

$$\frac{\partial V}{\partial n} = \vec{\nabla} V \cdot \vec{n} = -\vec{E} \cdot \vec{n} \text{ donn\'e}$$

$$\vec{\nabla}^2 V = \frac{-\rho}{\varepsilon_0}$$

Alors la solution est unique à une constante additive près.

2) Commentaires

On a ainsi deux méthodes pour calculer V:

• L'utilisation de la loi de Coulomb $V(M) = \iiint \frac{\rho d\tau}{4\pi\varepsilon_0 r}$

Mais il faut connaître ρ sur tout l'espace.

• Equation de Poisson $\vec{\nabla}^2 V = \frac{-\rho}{\varepsilon_0}$

On n'a besoin de ρ que sur un domaine

Récapitulatif:

$$\vec{E} = \frac{q}{4\pi\varepsilon_0} \frac{\vec{r}}{r^3}$$
 ou $\vec{E} = \iiint \frac{\rho d\tau}{4\pi\varepsilon_0} \frac{\vec{r}}{r^3}$

Circulation conservative.

Circulation conservative

$$\vec{E} = -\vec{\nabla} V$$

$$\vec{\nabla} \wedge \vec{E} = \vec{0}$$

$$\vec{E}_{T_2} - \vec{E}_{T_1} = \vec{0}$$

Flux non conservatif Théorème de Gauss:

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

$$\vec{E}_{N_2} - \vec{E}_{N_1} = \frac{\sigma}{\varepsilon_0} \vec{n}$$

$$\vec{\nabla}^2 V = \frac{-\rho}{\varepsilon_0}$$

$$\vec{\nabla}^2 V = \frac{-\rho}{\varepsilon_0}$$

VII Exemples de champs et potentiels particuliers

A) Méthodes de calcul de *E*.

• Calcul direct:

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \iiint \rho d\tau \frac{\vec{r}}{r^3}$$

3 intégrales scalaires à priori.

- Calcul par le potentiel :
- Plus commode car V est scalaire.
- On a deux méthodes pour calculer V.
- Pour calculer \vec{E} ensuite, il faut V tout autour.
- Utilisation du théorème de Gauss :

$$\oint \vec{E} \cdot d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon_0}$$

Applicable uniquement avec beaucoup de symétries.

B) Champ E uniforme

Si
$$\vec{E} = E\vec{u}_x$$

Densité de charge :
$$\rho = +\varepsilon_0 \vec{\nabla} \cdot \vec{E} = 0$$

Potentiel :
$$dV = -\vec{E} \cdot d\vec{l} = -Edx$$
, donc $V = -Ex + cte$

C) Répartition volumique uniforme entre deux plans parallèles

Symétries:

Invariance par translation orthogonale à Ox.

Donc V ne dépend que de x, et $\vec{E} = E(x)\vec{u}_x$.

Invariance par symétrie par rapport à yOz

Donc V(x) = V(-x). Donc E(x) = -E(-x)

Calcul de \vec{E} :

Pour x > 0:

On a $\phi = \phi_g + \phi_l + \phi_d$

Et $\phi_g = 0$ (paroi de gauche) car E(0) = 0,

 $\phi_1 = 0 \text{ car } \vec{E} // Ox$,

 $\phi_d = E(x)S$

Donc $\phi = E(x)S$

Si $0 \le x \le a$, $Q_{\text{int}} = \rho_0 Sx$, donc $E(x) = \frac{\rho_0}{\varepsilon_0} x$, soit $\vec{E}(x) = \frac{\rho_0}{\varepsilon_0} x \vec{u}_x$

Si $x \ge a$, $Q_{\text{int}} = \rho_0 Sa$, donc $\vec{E}(x) = \frac{\rho_0}{\varepsilon_0} a \vec{u}_x$

Lorsque $a \to 0$ et $\rho_0 \to +\infty$ mais de sorte que $2a\rho_0 = \text{cte} = \sigma$:

D) Fil rectiligne uniformément chargé

Symétries:

Translation d'axe Oz.

Rotation autour de z.

Ainsi, V ne dépend que de r, et $\vec{E} = E(r)\vec{u}_r$

Calcul du champ:

$$\phi = \frac{Q_{\rm int}}{\mathcal{E}_0} \, .$$

On a
$$\oiint \vec{E} \cdot d\vec{S} = \frac{\lambda h}{\varepsilon_0}$$
, soit $ES = \frac{\lambda h}{\varepsilon_0}$.

Donc
$$\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \vec{u}_r$$

Calcul du potentiel:

Calcul direct:

$$M \xrightarrow{r'} P$$

On a
$$V(M) = \int_{z=-\infty}^{+\infty} \frac{\lambda dz}{4\pi\varepsilon_0 r'}$$

On fait le changement de variable $z = r \tan \theta$, $r' = \frac{r}{\cos \theta}$

$$V(M) = \int_{\theta = -\pi/2}^{\pi/2} \frac{\lambda r d\theta}{4\pi\varepsilon_0 \frac{r}{\cos\theta} \cos^2\theta} = \int_{\theta = -\pi/2}^{\pi/2} \frac{\lambda d\theta}{4\pi\varepsilon_0 \cos\theta} = \frac{\lambda}{4\pi\varepsilon_0} \left[\ln \left| \tan \left(\frac{\theta}{2} + \frac{\pi}{4} \right) \right| \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}}$$

L'intégrale est donc divergente.

Calcul par le champ:

$$dV = -\vec{E} \cdot d\vec{l} = \frac{-\lambda}{2\pi\varepsilon_0 r} dr$$

Donc
$$V = V_0 - \frac{\lambda}{2\pi\varepsilon_0} \ln \frac{r}{r_0}$$

E) Disque uniformément chargé

1) Champ sur l'axe

On a $\vec{E} = E(z)\vec{u}_z$. Une surface dS crée en M un champ $d\vec{E} = \frac{\sigma dS}{4\pi\varepsilon_0} \frac{\vec{r}}{r^3}$, soit

$$dE_z = \frac{\sigma dS}{4\pi\varepsilon_0} \frac{1}{r^2} \cos\theta.$$

Donc $E_z = \frac{\sigma}{4\pi\varepsilon_0} \iint \frac{dS}{r^2} \cos\theta$. Pour une petite bande, $dS = 2\pi r' dr'$.

On a
$$r = \frac{z}{\cos \theta}$$
, $r' = z \tan \theta$.

Donc

$$E_{z} = \frac{\sigma}{4\pi\varepsilon_{0}} \int_{\theta=0}^{\alpha} \frac{\cos^{2}\theta}{z^{2}} \times 2\pi z \tan\theta \frac{z}{\cos^{2}\theta} \cos\theta d\theta = \frac{\sigma}{2\varepsilon_{0}} \int_{0}^{\alpha} \sin\theta d\theta$$
$$= \frac{\sigma}{2\varepsilon_{0}} (1 - \cos\alpha) = \frac{\sigma}{2\varepsilon_{0}} \left(1 - \frac{z}{\sqrt{z^{2} + R^{2}}} \right)$$

(Pour z > 0)

Si $z \gg R$, on a un champ proche de celui créé par une charge ponctuelle.

2) Champ au voisinage de l'axe

On a $E_r(r, \theta, z), E_{\theta}(r, \theta, z), E_z(r, \theta, z)$

On a une symétrie de révolution : donc V ne dépend que de r, z.

Donc
$$E_r(r,z)$$
, $E_\theta = \frac{\partial V}{\partial \theta} = 0$, $E_z(r,z)$

Champ à l'ordre 1 en r:

$$E_r(r,z) = E_r(0,z) + r \left(\frac{\partial E_r}{\partial r}\right)_{r=0} = 0 + r.\alpha(z)$$

$$E_z(r,z) = E_r(0,z) + r \left(\frac{\partial E_z}{\partial r}\right)_{z=0} = E_r(0,z) + r.\beta(z)$$

Première méthode:

En connaissant $\begin{cases} \vec{\nabla} \cdot \vec{E} = 0 \\ \vec{\nabla} \wedge \vec{E} = \vec{0} \end{cases}$ (il n'y a pas de charge en *M*), on peut calculer

 α, β .

Autre méthode:

- Circulation de \vec{E} :

On a

$$\delta C = 0 = \underbrace{E_z(0, z)dz}_{AB} + \underbrace{\int_0^r r' \alpha(z + dz)dr'}_{BC} - \underbrace{E_z(r, z)dz}_{CD} - \underbrace{\int_0^r r' \alpha(z)dr'}_{DA}$$
$$= \frac{1}{2}(\alpha(z + dz) - \alpha(z))r^2 - r\beta(z)dz$$

Donc
$$\frac{1}{2}\alpha'(z).r = \beta(z)$$

Donc en considérant l'ordre 0, $\beta(z) = 0$

(Attention : on ne peut pas écrire que $\alpha'(z) = 0$ car le membre de droite ne correspond à un DL qu'à l'ordre 0 en r.)

- Flux de \vec{E} :

On a $\delta \phi = 0$

Soit $\pi r^2 (E_z(0, z + dz) - E_z(0, z)) + 2\pi r dz \times E_r(r, z) = 0$ (au premier ordre)

Donc
$$\pi . r^2 \frac{dE_z(0,z)}{dz} dz + 2\pi . r. dz \times E_r(r,z) = 0$$

D'où
$$E_r(r,z) = \frac{-r}{2} \frac{dE_z(0,z)}{dz}$$
, puis $\alpha = \frac{-1}{2} \frac{dE_z(0,z)}{dz}$

Remarque:

On n'a utilisé ici que des symétries de révolution pour appliquer le raisonnement (et le fait qu'il n'y a pas de charge là où on l'applique)

On verra que ce type de résultat s'applique aussi en magnétostatique.

VIII Complément

Détermination de la répartition de charge à partir du potentiel :

$$o^{r}M$$

On suppose que $V(r) = \frac{q}{4\pi\varepsilon_0 r} e^{-r/a}$, où q et a sont des constantes.

1) Analyse

La répartition de charge possède une symétrie sphérique.

On pourrait utiliser la formule $\vec{\nabla}^2 V = \frac{-\rho}{\varepsilon_0}$, mais il faut connaître $\vec{\nabla}^2$ en coordonnées sphériques ; on a peut-être aussi une répartition surfacique, qu'on ne pourrait pas trouver avec cette formule.

2) Champ *E*.

On a:

$$\begin{split} \vec{E} &= -\vec{\nabla} V = \frac{-\partial V}{\partial r} \vec{u}_r = \frac{-q}{4\pi\varepsilon_0} e^{-r/a} \bigg(\frac{-1}{r^2} - \frac{1}{ar} \bigg) \vec{u}_r \\ &= \frac{q}{4\pi\varepsilon_0} e^{-r/a} \bigg(\frac{1}{r^2} + \frac{1}{ar} \bigg) \vec{u}_r \end{split}$$

3) Calcul de $\phi(r)$.

On a
$$\phi(r) = \frac{q}{\varepsilon_0} e^{-r/a} \left(1 + \frac{r}{a} \right) \left(= E_r \times 4\pi r^2 \right)$$

4) Calcul de ρ .

On a $\phi(r+dr) - \phi(r) = \frac{4\pi r^2 dr \cdot \rho}{\varepsilon_0}$ (répartition de charge entre deux sphères

de rayons r et r+dr)

Donc
$$\rho = \frac{\mathcal{E}_0}{4\pi r^2} \frac{d\phi}{dr} = \frac{-1}{4\pi} \frac{1}{ar} e^{-r/a}$$

Problème:

On a trouvé que $\rho < 0$, et $\lim_{r \to +\infty} \phi(r) = 0$

Donc d'après le théorème de Gauss (dans « tout l'espace »), $\int_0^{+\infty} \rho = 0$

Ainsi, il y a forcément une charge ponctuelle en O (qui n'a pas été « détectée » par les sphères successives), qui compense ainsi exactement toute la distribution à l'extérieur.

5) Charge ponctuelle

On a $\lim_{r\to 0}\phi(r)=\frac{q}{\mathcal{E}_0}$. On a donc une charge q en O, et une charge -q répartie selon $\rho(r)$.

6) Commentaires

- On aurait très bien pu trouver des distributions surfaciques avec cette méthode (on aurait $d\phi = +\infty$ sur la surface)
- Cette répartition modélise l'atome d'hydrogène.
- Interaction forte:

Yukawa: l'énergie potentielle de l'interaction forte vaut

$$U = \frac{-g^2}{r}e^{-r/a}$$
, où $\frac{g^2}{hc} \approx 14.5$.