

Vector Field Visualization

Scientific Visualization – Summer Semester 2021

Jun.-Prof. Dr. Michael Krone

Contents

- Vector calculus
- Characteristic lines
- Arrows and glyphs
- Particle tracing and mapping methods
- Numerical integration
- Particle tracing on grids
- Line integral convolution
- Texture advection
- Topology-based visualization
- 3D vector fields

Focus: Second step of visualization pipeline

- Vector field data
 - Represent direction and magnitude
 - Given by a m-tupel $(f_1, ..., f_m)$ with $f_k = f_k(x_1, ..., x_n)$, $m \ge 2$ and $1 \le k \le m$
 - Typically m = n and n = 2 or n = 3
- Time-dependence: $f_k = f_k(x_1, ..., x_n, t)$
- Often denoted as u(x,t) with u=(u(x,y,z,t),v(x,y,z,t),w(x,y,z,t)) and x=(x,y,z)

- Main application of vector field visualization is flow visualization
 - Motion of fluids (gas, liquid)
 - Geometric boundary conditions
 - Velocity (flow) field u(x, t)
 - Pressure p
 - Temperature T
 - Divergence $\nabla \cdot \boldsymbol{u}$ (or: $div \boldsymbol{u}$)
 - Vorticity $\nabla \times \boldsymbol{u}$ (or: *curl* \boldsymbol{u} , *rot* \boldsymbol{u})
 - Density ρ
 - Conservation of mass, energy, and momentum
 - Navier-Stokes equations, CFD (Computational Fluid Dynamics)

- Flow visualization classification
 - Dimension (2D or 3D)
 - Time-dependency: stationary (steady) vs. instationary (unsteady, transient)
 - Grid type
- In most cases numerical methods required for flow visualization

- Review of basics of vector calculus
- Deals with vector fields and various kinds of derivatives
- Flat (Cartesian) manifolds only
- Cartesian coordinates only
- 3D only

• Scalar function f(x, t)

Gradient

$$\nabla f(\mathbf{x}, t) = \begin{pmatrix} \frac{\partial}{\partial x} f(\mathbf{x}, t) \\ \frac{\partial}{\partial y} f(\mathbf{x}, t) \\ \frac{\partial}{\partial z} f(\mathbf{x}, t) \end{pmatrix} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} f(\mathbf{x}, t)$$

• Gradient vector points into direction of maximum increase of f(x,t)

Laplacian

$$\Delta f(\mathbf{x}, t) = \nabla \cdot \nabla f(\mathbf{x}, t)$$

$$= \frac{\partial^2}{\partial x^2} f(\mathbf{x}, t) + \frac{\partial^2}{\partial y^2} f(\mathbf{x}, t) + \frac{\partial^2}{\partial z^2} f(\mathbf{x}, t)$$

• Laplacian of a scalar is a scalar (of a vector is a vector)

- Vector function u(x,t)
- Jacobian matrix
 ("gradient tensor",
 "velocity gradient")

$$\mathbf{J} = \nabla \mathbf{u}(\mathbf{x}, t) = \begin{pmatrix} \frac{\partial}{\partial x} u & \frac{\partial}{\partial y} u & \frac{\partial}{\partial z} u \\ \frac{\partial}{\partial x} v & \frac{\partial}{\partial y} v & \frac{\partial}{\partial z} v \\ \frac{\partial}{\partial x} w & \frac{\partial}{\partial y} w & \frac{\partial}{\partial z} w \end{pmatrix}$$

Divergence

div
$$\mathbf{u}(\mathbf{x},t) = \nabla \cdot \mathbf{u}(\mathbf{x},t) = \frac{\partial}{\partial x} u(\mathbf{x},t) + \frac{\partial}{\partial y} v(\mathbf{x},t) + \frac{\partial}{\partial z} w(\mathbf{x},t)$$

= $\operatorname{tr}(\mathbf{J})$ (trace of \mathbf{J})

Divergence is a scalar

- Properties of divergence:
 - div **u** is a scalar
 - $div \ u(x_0) > 0$: **u** has a "source" in \mathbf{x}_0
 - $div \ u(x_0) < 0$: **u** has a "sink" in \mathbf{x}_0
 - → Describes relative flow into/out of a region
 - div u consists of derivatives only
 - $\rightarrow div u$ is invariant under addition/subtraction of uniform field:

Gauss theorem (divergence theorem)

$$\int_{V} \nabla \cdot \mathbf{u} \, dV = \oint_{S} \mathbf{u} \cdot d\mathbf{A} \quad \text{(surface element } d\mathbf{A} \text{ points outward } V\text{)}$$

- Continuity equation
 - Flow of mass into a volume V with surface S

$$-\oint_{S} \rho \mathbf{u} \cdot d\mathbf{A}$$

 ρu : momentum density = mass flux

Change of mass inside the volume

$$\frac{\partial}{\partial t} \int_{V} \rho dV = \int_{V} \frac{\partial \rho}{\partial t} dV$$

Conservation of mass

$$\int_{V} \frac{\partial \rho}{\partial t} \, dV = -\oint_{S} \rho \mathbf{u} \cdot d\mathbf{A}$$

- Continuity equation (cont.)
 - Application of Gauss theorem

$$\int_{V} \frac{\partial \rho}{\partial t} dV + \oint_{S} \rho \mathbf{u} \cdot d\mathbf{A} = \int_{V} \left(\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) \right) dV = 0$$

- Above equation must be met for any volume element
- Yields

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

continuity equation in differential form

current $\mathbf{j} = \rho \mathbf{u}$

Curl

$$\mathbf{\omega}(\mathbf{x},t) = \operatorname{curl} \mathbf{u}(\mathbf{x},t) = \nabla \times \mathbf{u}(\mathbf{x},t) = \begin{pmatrix} \frac{\partial}{\partial y} w(\mathbf{x},t) - \frac{\partial}{\partial z} v(\mathbf{x},t) \\ \frac{\partial}{\partial z} u(\mathbf{x},t) - \frac{\partial}{\partial x} w(\mathbf{x},t) \\ \frac{\partial}{\partial x} v(\mathbf{x},t) - \frac{\partial}{\partial y} u(\mathbf{x},t) \end{pmatrix}$$

Stokes theorem

$$\int_{S} \nabla \times \mathbf{u} \cdot d\mathbf{A} = \oint_{C} \mathbf{u} \cdot d\mathbf{s} = \Gamma$$

ds: line element along C

Γ: circulation

- Properties of curl:
 - In CFD, often called vorticity
 - Orientation of ω represents right-handed axis of "local rotation"
 - Angular velocity of close particle is $\|\omega\|/2$
 - ω consists of derivatives only
 - $\rightarrow \omega$ is invariant under addition/subtraction of uniform field
 - $\omega \neq 0$ does not necessarily imply rotational motion!

Shear flow exhibits straight motion but nonzero vorticity

Streamlines:

- Tangential to the vector field (at constant time)
- "Magnetic field lines"
- Path lines:
 - Trajectories of massless particles in the flow
 - "Long time exposure of particles"
- Streak lines:
 - Set of particles started at same position but different times
 - "Trace of dye (smoke) released at fixed position"
- Time lines:
 - Set of particles started on a seeding curve at same time
 - "Chain of bubbles produced by electrolysis by a voltage pulse on a wire"

Streamlines

- Tangential to the vector field
- Vector field at an arbitrary, yet fixed time t
- Streamline is a solution to the initial value problem of an ordinary differential equation:

$$L(0) = x_0$$
, $\frac{d(L(s))}{ds} \times u(L(s), t) = 0$, $\frac{d(L(s))}{ds} = u(L(s), t)$ initial value Streamline $L(s)$ Ordinary Differential Equation (Seed point x_0) (ODE)

• Streamline is curve L(s) with the parameter s (arc length of the curve)

Path lines

- Trajectories of massless particles in the flow
- Vector field can be time-dependent
- Path line is a solution to the initial value problem of an ordinary differential equation:

$$L(t_0) = x_0, \qquad \frac{d(L(t))}{dt} \times u(L(t), t) = 0, \qquad \frac{d(L(t))}{dt} = u(L(t), t)$$
seed point x_0 at time t_0 Streamline $L(t)$ tangential to u at time t

Streak lines

- Trace of dye that is released into the flow at a fixed position
- Connect all particles that passed through a certain position
- Solve initial value problem for each particle
- Time lines (material lines)
 - Propagation of a line of massless elements in time
 - Idea: "consists" of many point-like particles that are traced
 - Connect particles that were released simultaneously
 - Solve initial value problem for each particle
- Stream-, Path-, Streak-, and Time-Surfaces
 - Sets of characteristic lines started at higher-dimensional seeding structure

Comparison of path lines, streak lines, and streamlines

Path lines, streak lines, and streamlines are identical for steady flows

Lagrangian vs. Eulerian

- Difference between Eulerian and Lagrangian point of view
- Lagrangian:
 - Focus on individual particles
 - Can be identified
 - Attached are position, velocity, and other properties
 - Explicit position
 - Standard approach for particle tracing
- Eulerian:
 - Focus on domain
 - No individual particles
 - Properties given on a grid
 - Position of particles is implicit

Visualization: Arrows or Glyphs

- Visualize local features of the vector field:
 - Vector itself (vorticity, Laplacian)
 - Additional data: temperature, pressure, etc.
- Important elements of a vector:
 - Direction
 - Magnitude
 - Not: components of a vector
- Approaches:
 - Arrow plots
 - Glyphs
- → Direct mapping

Direction of vector field (Orientation)

Direction of vector field + Magnitude

→ Length (+width) of arrows Alternative: Color coding

Visualization: Arrows or Glyphs

Glyph that visualizes the Jacobian of a flow field [de Leeuw and van Wijk, 93].

Arrows and Glyphs

- Advantages and disadvantages of glyphs and arrows:
 - + Simple
 - + 3D effects
 - Inherent occlusion effects
 - Poor results if magnitude of velocity changes rapidly (Use arrows of constant length and color code magnitude)

- Basic idea: trace particles
- Characteristic lines
- Mapping approaches:
 - Lines
 - Surfaces
 - Individual particles
 - Texture
 - Sometimes animated
- Density of visual representation
 - Sparse = only a few visual patterns (e.g., only a few streamlines)
 - Dense = complete coverage of the domain by visual structures

- Path lines
 - Improved perception by illuminated streamlines shading model

- Stream balls
 - Encode additional scalar value by radius
 - Problems: perspective projection, direction/orientation not visible

Streak lines

- Stream ribbons
 - Trace two close-by particles
 - Keep distance constant
 - Generate a mesh in between
 - Visualizes twist

- Stream surfaces
 - Set of streamlines, started on a seeding curve
 - Construct mesh in between
 - Insert/delete streamlines in diverging/converging regions
 - Involved techniques exist for handling, e.g., rotating divergent flow

Stream tubes

- Closed seeding curve for stream surface, e.g., triangle or circle
- Relation to conservation laws, e.g., constant flux through cross sections because no flux through tube (Gauss)

- Streamline placement
 - Arrange streamlines to depict overall flow
 - Even distribution of streamlines
 - Show important features of flow
 - Between sparse and dense representation

seeded on regular grid

streamline placement

- Line Integral Convolution (LIC)
 - Texture representation
 - Dense

Numerical Integration of ODEs

• Typical example of particle tracing problem (path line):

$$L(t_0) = x_0$$
, $\frac{d(L(t))}{dt} \times u(L(t), t) = 0$, $\frac{d(L(t))}{dt} = u(L(t), t)$

- Initial value problem for ordinary differential equations (ODE)
- What kind of numerical solver?

Numerical Integration of ODEs

- Rewrite ODE in generic form
- Initial value problem for:

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}, t)$$

Most simple approach: explicit Euler method

$$\mathbf{x}(t+\Delta t)=\mathbf{x}(t)+\Delta t\,\mathbf{f}(\mathbf{x},t)$$

Based on Taylor expansion

$$\mathbf{x}(t+\Delta t) = \mathbf{x}(t) + \Delta t \,\dot{\mathbf{x}}(t) + O(\Delta t^2)$$

- First-order method (global error proportional to Δt)
- Higher accuracy with smaller step size Δt

Numerical Integration of ODEs

- Problem of Euler method
 - Inaccurate

Unstable

• Example:
$$f = -kx$$

$$\mathbf{X} = \mathbf{e}^{-kt}$$
 divergence for $\Delta t > 2/k$

Midpoint method:

- a. Euler step $\Delta \mathbf{x} = \Delta t \mathbf{f}(\mathbf{x}, t)$
- b. Evaluation of **f** at midpoint

$$\mathbf{f}_{\mathsf{mid}} = \mathbf{f} \left(\mathbf{x} + \frac{\Delta \mathbf{x}}{2}, t + \frac{\Delta t}{2} \right)$$

c. Complete step with value at midpoint

$$\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f}_{mid}$$

• Method of second order (global error reduced by factor $1/2^2$ if step $\Delta t/2$)

Fourth-order Runge-Kutta method

$$\mathbf{k}_{1} = \Delta t \,\mathbf{f}(\mathbf{x}, t)$$

$$\mathbf{k}_{2} = \Delta t \,\mathbf{f}\left(\mathbf{x} + \frac{\mathbf{k}_{1}}{2}, t + \frac{\Delta t}{2}\right)$$

$$\mathbf{k}_{3} = \Delta t \,\mathbf{f}\left(\mathbf{x} + \frac{\mathbf{k}_{2}}{2}, t + \frac{\Delta t}{2}\right)$$

$$\mathbf{k}_{4} = \Delta t \,\mathbf{f}\left(\mathbf{x} + \mathbf{k}_{3}, t + \Delta t\right)$$

$$\mathbf{x}(t + \Delta t) = \mathbf{x} + \frac{\mathbf{k}_{1}}{6} + \frac{\mathbf{k}_{2}}{3} + \frac{\mathbf{k}_{3}}{3} + \frac{\mathbf{k}_{4}}{6} + O(\Delta t^{5})$$

- Adaptive step size control
 - Change step size according to the error
 - Decrease/increase step size depending on whether actual local error is high/low
 - Higher integration speed in "simple" regions
 - Good error control
- Approaches:
 - Step size doubling
 - Embedded Runge-Kutta schemes
- Further reading:
 - SA Teukolsky, WT Vetterling, BP Flannery: Numerical Recipes, WH Press

- So far only explicit methods
- Stability problem can be solved by implicit methods
- Implicit Euler method

$$\mathbf{x}(t + \Delta t) - \mathbf{x}(t) = \Delta t \mathbf{f}(\mathbf{x}(t + \Delta t), t + \Delta t)$$

- "Reversing" the explicit Euler integration step $\rightarrow \mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \mathbf{f}(\mathbf{x}, t)$
- Taylor expansion around $t + \Delta t$ instead of t
- Solving the system of non-linear equations to determine $\mathbf{x}(t + \Delta t)$
- Using implicit methods allows larger time steps

- Vector field given on a grid
- Solve

$$L(t_0) = x_0$$
, $\frac{d(L(t))}{dt} = u(L(t), t)$

for the path line

- Incremental integration
- Discretized path of the particle

- Most simple case: Cartesian grid for the path line
- Basic algorithm:


```
Select start point (seed point)

Find cell that contains start point → point location

While (particle in domain) do

Interpolate vector field at current position → interpolation

Integrate to new position → integration

Find new cell → point location

Draw line segment between latest particle positions

Endwhile
```


- Point location (cell search) on Cartesian grids:
 - Indices of cell directly from position (x, y, z)
 - For example: $i_x = (x x_0) / \Delta x$
 - Simple and fast
- Interpolation on Cartesian grids:
 - Bilinear (in 2D) or trilinear (in 3D) interpolation
 - Required to compute the vector field (= velocity) inside a cell
 - Component-wise interpolation
 - Based on offsets (local coordinates within cell)

- How are curvilinear grids handled?
- C-space (computational space) vs. P-space (physical space)

- Particle tracing can either be done in C-space or P-space
- Transformation of
 - Points by Φ
 - Vectors by J

- Transformation of points:
 - From C-space to P-space: $\mathbf{r} = \Phi(\mathbf{s})$
 - From P-space to C-space: $\mathbf{s} = \Phi^{-1}(\mathbf{r})$
- Transformation of vectors:
 - From C-space to P-space: $\mathbf{u} = \mathbf{J} \cdot \mathbf{v}$
 - From P-space to C-space: $\mathbf{v} = \mathbf{J}^{-1} \cdot \mathbf{u}$
 - **J** is Jacobian of Φ :

$$\mathbf{J} = \begin{pmatrix} \frac{\partial \mathbf{\Phi}_{x}}{\partial p} & \frac{\partial \mathbf{\Phi}_{x}}{\partial q} \\ \frac{\partial \mathbf{\Phi}_{y}}{\partial p} & \frac{\partial \mathbf{\Phi}_{y}}{\partial q} \end{pmatrix} \quad \text{(2D case)}$$

- Important properties of C-space integration:
 - + Simple incremental cell search
 - + Simple interpolation
 - Complicated transformation of velocities / vectors
- Important properties of P-space integration:
 - + No transformation of velocities / vectors
 - Complicated point location for bi- / trilinear interpolation

- Mimic physical experiment
 - Place oil drops on surface, apply flow (wind)
- Cover domain with a random texture
 - So-called ,input texture', usually stationary white noise
- Blur (convolve) texture along streamlines using specified filter kernel
- Look of 2D LIC images
 - Intensity distribution along streamlines shows high correlation
 - No correlation between neighboring streamlines

- Global visualization technique
- Dense representation
- Start with random texture
- Smear out along streamlines

- Algorithm for 2D LIC
 - Let $t \to \Phi_0(t)$ be the streamline containing the point (x_0, y_0) at t = 0
 - T(x, y) is the randomly generated input texture (noise)
 - Compute the pixel intensity as:

$$I(x_0, y_0) = \int_{-L}^{L} k(t) \cdot T(\Phi_o(t)) dt$$

convolution with kernel k

- Kernel:
 - Finite support [-L, L]
 - Normalized
 - Often simple box filter used for k(t)
 - Often symmetric (isotropic)

- Algorithm for 2D LIC
 - Convolve a random texture along the streamlines

kernel

k(s)

Extensions

- Fast LIC
 - Problem:
 - New streamline & convolution (integral) is computed at each pixel
 → Slow
 - Idea:
 - Compute very long streamlines & reuse them for many different pixels
 - Incremental computation of the convolution integral
- Oriented LIC (OLIC):
 - Visualizes orientation (in addition to direction)
 - Use sparse texture & anisotropic convolution kernel

OLIC

- Idea: Do not draw "all" streamlines, but only the "important" ones
 - Show only topological skeleton
- Important points in the vector field: critical points
 - Points where the vector field vanishes u = 0 (vector direction is undefined)
 - Sources, sinks, saddles, ...
- Critical points are connected by *separatrices* (streamlines), divide the flow into regions with similar qualitatively similar behavior (in 3D: also 2D-manifolds of streamlines)
- Structure of particle behavior for $t \to +/-\infty$

Examples of structures in 2D

Opposite cases (attracting node, attracting focus) by reversing arrows

• Example: Types of hyperbolic critical points in 3D

The other four types are obtained by reversing arrows

• Example of a topological graph of 2D flow field

• Examples of topology-guided streamline positioning

Saddle connectors in 3D

Summary:

- Draw only relevant streamlines/streamsurfaces (topological skeleton)
- Partition domain into regions with similar flow behavior
- Based on critical points
- Strictly correct only for stationary flows (because streamlines are instantaneous)
- Unsteady flows → Lagrangian coherent structures (finite-time Lyapunov exponent, FTLE)

Feature-Based Visualization: Vortex Extraction

Vortex extraction (vortices are important in fluid flow)

3D Vector Fields

- Most algorithms can be applied to 2D and 3D vector fields
- Main problem in 3D: effective mapping to graphical primitives
- Main aspects:
 - Occlusion & amount of data ("visual clutter")

• e.g., sparse representations, clipping/masking, semi-transparency,...

- Depth perception
 - e.g., shading, occlusion, stereo disparity,...

3D Vector Fields

Flow visualization:
 Combination of vector and scalar visualization techniques

