PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-281678

(43)Date of publication of application: 10.10.2001

(51)Int.CI.

G02F 1/1341

G02F 1/13

(21)Application number: 2000-092195

(71)Applicant: FUJITSU LTD

(22)Date of filing:

29.03.2000

(72)Inventor: MURATA SATOSHI

SUGIMURA HIROYUKI

NAKAYAMA NORIMICHI

INOUE HIROYASU

(54) METHOD OF MANUFACTURING LIQUID CRYSTAL DISPLAY DEVICE

PROBLEM TO BE SOLVED: To provide a method for manufacturing a liquid crystal display device, in which a liquid crystal can be dripped with a quantity most suited for respective substrates, with respect to the method for manufacturing the liquid crystal display device, using the dripping injection method.

SOLUTION: In a dripping injection step, in the case of manufacturing two liquid crystal display panels with division of one glass substrate 80 into two panels, for example, describing two CF(color filter) substrates 82, on which post spacers are formed, as A plane and B plane respectively as shown in figure, heights of the posts at a plurality of points (five points expressed by numerals 1-5 in the example shown in the figure) in the respective A and B planes are measured with a laser displacement detector 84 and an average value is obtained. In this way, the height of the post spacers is measured beforehand, and the quantity of the liquid crystal to be dripped is controlled based on the measured value.

LEGAL STATUS

[Date of request for examination]

07.04.2003

[Date of sending the examiner's decision of rejection]

07.12.2004

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3678974

[Date of registration]

20.05.2005

[Number of appeal against examiner's decision of

2005-00211

rejection]

[Date of requesting appeal against examiner's decision of 05.01.2005

rejection

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開2001-281678 (P2001-281678A)

(43)公開日 平成13年10月10日(2001.10.10)

(51) Int.Cl.7	•	識別記号	F I	テーマコード(参考)
G02F	1/1341		G 0 2 F 1/1341	2H088
	1/13	101	1/13 1 0	1 2H089

審査請求 未請求 請求項の数6 OL (全 9 頁)

(21)出願番号	特顧2000-92195(P2000-92195)	(71)出願人	000005223
			富士通株式会社
(22) 出顧日	平成12年3月29日(2000.3.29)		神奈川県川崎市中原区上小田中4丁目1番1号
		(72)発明者	村田・聡
	•	,	神奈川県川崎市中原区上小田中4丁目1番
			1号 富士通株式会社内
		(72)発明者	杉村、安幸
•		1	神奈川県川崎市中原区上小田中4丁目1番
			1号 富士通株式会社内
		(74)代理人	100101214
			弁理士 森岡 正樹
		,	
		1	最終質に続く

最終頁に続く

(54) 【発明の名称】 液晶表示装置の製造方法

(57)【要約】

【課題】本発明は、滴下注入法を用いた液晶表示装置の 製造方法に関し、基板毎に最適な滴下量で液晶を滴下で きる液晶表示装置の製造方法を提供することを目的とす る。

【解決手段】滴下注入工程において、1枚のガラス基板80から2枚の液晶表示パネルを作製する2面取りの場合、例えば柱状スペーサが形成された2枚のCF基板82を図示のようにA面、B面として、A面とB面のそれぞれで、複数点(図示例では数字1~数字5の5箇所)の支柱高さをレーザ変位計84で測定して平均値を求める。このようにして柱状スペーサの支柱高さを予め測定し、測定値に基づいて液晶滴下量を制御する。

【特許請求の範囲】

【請求項1】基板上に液晶を滴下し、前記基板の液晶滴 下面側を対向基板に対向させて真空中で貼り合わせから 大気圧に戻すことにより液晶注入を行う液晶表示装置の 製造方法において、

液晶を滴下する基板の状態に基づいて、貼り合わせる2 枚の基板間に封止される最適液晶量を予測し、予測値に 基づいて滴下液晶量を制御することを特徴とする液晶表 示装置の製造方法。

【請求項2】請求項1記載の液晶表示装置の製造方法に おいて、

前記最適液晶量は、前記2枚の基板間のセル厚を決定するために設けられた柱状スペーサの高さを測定して予測することを特徴とする液晶表示装置の製造方法。

【請求項3】請求項1記載の液晶表示装置の製造方法に おいて、

前記最適液晶量は、前記2枚の基板間のセル厚を決定するために散布された球状粒子の散布密度を測定して予測することを特徴とする液晶表示装置の製造方法。

【請求項4】請求項1乃至3のいずれか1項に記載の液 20 晶表示装置の製造方法において、

前記最適液晶量の予測は、多面取り基板にあってはパネル形成領域毎に行うことを特徴とする液晶表示装置の製造方法。

【請求項5】請求項1乃至4のいずれか1項に記載の液 晶表示装置の製造方法において、

前記最適液晶量の予測は、前記2枚の基板の一方にメインシールを形成する工程と並行に行われることを特徴とする液晶表示装置の製造方法。

【請求項6】請求項1乃至4のいずれか1項に記載の液 晶表示装置の製造方法において、

前記最適液晶量の予測は、前記液晶を滴下する基板ステージ上で行うことを特徴とする液晶表示装置の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、液晶表示装置の製造方法に関し、特に、滴下注入法を用いて2枚の基板間に液晶を封止する液晶表示装置の製造方法に関する。

[0002]

【従来の技術】液晶表示装置のなかでも、薄膜トランジスタ(TFT)をスイッチング素子として用いたアクティブマトリクス型のカラー液晶表示装置はフラットパネルディスプレイの主流として注目され、高品質で大量生産できる製造方法が要求されている。

【0003】液晶表示装置の製造工程は大別すると、ガラス基板上に配線パターンや薄膜トランジスタ(TFT)等のスイッチング素子(アクティブマトリクス型の場合)等を形成するアレイ工程と、配向処理やスペーサの配置、及び対向するガラス基板間に液晶を封入するセ 50

2

ル工程と、ドライバICの取付けやバックライト装着などを行うモジュール工程とからなる。

【0004】このうちセル工程で行われるスペーサの配置プロセスでは、ビーズ状の多数の球状粒子を基板面に散布する方法と、球状粒子に代えて、対向するガラス基板の一方または双方に柱状スペーサを形成する方法のいずれかが用いられる。これらの方法で形成されるスペーサは、対向するガラス基板間のセルギャップ(セル厚)を一定に保つために用いられる。

【0005】また、液晶注入プロセスでは、TFTが形成されたアレイ基板と、それに対向してカラーフィルタ(CF)等が形成された対向基板とをシール剤を介して貼り合わせた後シール剤を硬化させ、次いで液晶と基板とを真空槽に入れてシール剤に開口した注入口を液晶に浸けてから槽内を大気圧に戻すことにより基板間に液晶を封入する方法(真空注入法)が用いられている。

【0006】それに対し近年、例えばアレイ基板周囲に 枠状に形成したメインシールの枠内の基板面上に規定量 の液晶を滴下し、真空中でアレイ基板と対向基板とを貼 り合せて液晶封入を行う滴下注入法が注目されている。 この滴下注入法は、従来の液晶表示パネルの製造に広く 用いられてきた真空注入法と比較して、第1に液晶材料 の使用量を大幅に低減できること、第2に液晶注入時間 を短縮できること等から、液晶表示パネル製造のコスト を低減し量産性を向上させる可能性を有しているため、 液晶表示パネル製造工程での適用が強く望まれている。

[0007]

【発明が解決しようとする課題】滴下注入法では、液晶 滴下注入装置(ディスペンサ)を用いて所定量の液晶を 基板上に滴下する。ところが、ディスペンサの滴下精度 やセルギャップのばらつきにより、貼り合わせる 2 枚の 基板間に封止される液晶量に過不足が生じるという問題 がある。封止された液晶量が不足しているといわゆる気 泡ができてしまう。また封止液晶量が多いと表示むらを 生じる。これら気泡や表示むらを生じているパネルはいずれも不良品となる。

【0008】セルギャップを柱状スペーサで確保する方法では、基板上に数ミクロンの高さの樹脂製支柱を形成するため、基板間で支柱高さ(膜厚)にばらつきが生じ易い。基板間での支柱高さのばらつきが大きいと、ある基板用に設定した液晶滴下量を他の基板にそのまま適用すると、液晶量が多過ぎたり少な過ぎたりする事態を生じる。1枚のガラス基板から複数の液晶表示パネルを形成する多面取り用基板でも、各表示パネル形成領域間で支柱高さにばらつきを生じる可能性がある。このため、多面取りガラス基板内の最適液晶滴下量は各表示パネル形成領域毎に異なる場合が生じる。

【0009】また、セルギャップをビーズ散布により確保する方法では、大きさのほぼ揃った球状粒子が使用されるが、ビーズの散布数(散布密度)により貼り合わせ

る2枚の基板間に封止される最適液晶量が異なるので上 記と同様に滴下液晶量の過不足が生じる場合がある。

【0010】本発明の目的は、滴下注入法において、基 板毎に最適な滴下量で液晶を滴下できる液晶表示装置の 製造方法を提供することにある。

[0011]

【課題を解決するための手段】上記目的は、基板上に液 晶を滴下し、前記基板の液晶滴下面側を対向基板に対向 させて真空中で貼り合わせから大気圧に戻すことにより 液晶注入を行う液晶表示装置の製造方法において、液晶 を滴下する基板の状態に基づいて、貼り合わせる2枚の 基板間に封止される最適液晶量を予測し、予測値に基づ いて滴下液晶量を制御することを特徴とする液晶表示装 置の製造方法により達成される。

【0012】上記本発明の液晶表示装置の製造方法にお いて、前記最適液晶量は、前記2枚の基板間のセル厚を 決定するために設けられた柱状スペーサの高さを測定し て予測することを特徴とする。

【0013】上記本発明の液晶表示装置の製造方法にお いて、前記最適液晶量は、前記2枚の基板間のセル厚を 決定するために散布された球状粒子の散布密度を測定し て予測することを特徴とする。

【0014】上記本発明の液晶表示装置の製造方法にお いて、前記最適液晶量の予測は、多面取り基板にあって はパネル形成領域毎に行うことを特徴とする。

【0015】上記本発明の液晶表示装置の製造方法にお いて、前記最適液晶量の予測は、前記2枚の基板の一方 にメインシールを形成する工程と並行に行われることを 特徴とする。

【0016】上記本発明の液晶表示装置の製造方法にお いて、前記最適液晶量の予測は、前記液晶を滴下する基 板ステージ上で行うことを特徴とする。

【0017】本発明によれば、滴下注入法を用いる液晶 表示装置の製造方法において、柱状スペーサの支柱高さ を測定し、その測定値に基づいて最適液晶量を滴下する ことができる。また、球状粒子を散布する場合は、その・ 散布密度を測定してそれに基づいて最適液晶量を滴下す ることができる。したがって、本発明によれば、液晶表 示パネル毎に最適な液晶量を滴下でき、液晶量の不足に よるいわゆる気泡や液晶量の過多による表示むらをなく すことができ、安定した量産が可能となる。

[0018]

【発明の実施の形態】本発明の一実施の形態による液晶 表示装置の製造方法を図1乃至図11を用いて説明す る。図1は、本実施の形態による液晶表示装置の製造方 法で用いるCF基板の構成例であって、MVA方式(M ulti-domain Vertical Alig nment)液晶表示装置で用いられるCF基板を示し ている。このCF基板は、樹脂重ねによりブラックマト リクス (BM) を形成する際に、さらに突起構造を重ね 50 は、空気を吸入して所定のタイミングで空気流入口 4

てスペーサを兼ねる支柱を設けたスペーサレスCFの一

【0019】図1 (a) において、斜線を付した部分は それぞれ色樹脂R、G、Bが形成されてカラーフィルタ として機能する部分である。それ以外の部分は色樹脂が 重ね合わされてブラックマトリクスBMとして機能す る。その上に突起20、20cが形成される。図1 (b) は図1 (a) のA-A' 線における断面図であ る。図1(b)より、ガラス基板22上に色樹脂R、 G、Bが形成されるが、横方向の各画素間では2色の色 樹脂が重ね合わされてブラックマトリクスBMが形成さ れている。また、図1(c)は図1(a)のB-B'線 における断面図である。格子点を除く部分は2色の樹脂 が重ね合わされてブラックマトリクスBMとなっている が、格子点においては、3色の色樹脂が重ね合わされ、 さらに、突起20の一部である突起20cが重ね合わさ れ、その部分が柱状スペーサ(支柱)として機能してい

【0020】次に、本実施の形態による液晶表示装置の 製造方法で用いるフランジャーポンプ式のディスペンサ の概略の構成について図2を用いて説明する。図2にお いて、ディスペンサ30は、中空の円筒形状の筐体32 を有しており、円筒形状の中心軸をほぼ鉛直方向に向け て使用するようになっている。 筐体32内には、円筒形 状の中心軸に沿って細長い棒状のピストン34が鉛直方 向に移動可能に支持されている。ピストン34の先端部 は、筐体32の鉛直下方端に設けられたノズル36内方 を移動することができるようになっている。 筐体32の ノズル36近傍の側壁の開口からは、液晶収納容器38 内の液晶が供給管40を介して図示の矢印に沿ってノズ ル36にまで流入できるようになっている。ノズル36 内に達した液晶は、ノズル36でのピストン34先端の 移動量に依存してノズル36から滴下するようになって おり、外力を受けない限り液晶自身の表面張力によりノ ズル36から吐出しないようになっている。

【0021】筐体32内の空気室の側壁には、鉛直方向 に離れて設けられた2つの空気流入口42、44が取り 付けられている。ピストン34には、空気室内を2つに 分離する隔壁46が固定されている。隔壁46は、ピス トン34と共に、空気流入口42、44の間の空気室内 壁を摺動することができるようになっている。したがっ て、隔壁46は、空気流入口42から空気室内に空気が 流入すると鉛直下方に圧力を受けて下方に移動し、空気 流入口44から空気室内に空気が流入すると鉛直上方に 圧力を受けて上方に移動する。これにより、ピストン3 4を鉛直方向に所定量移動させることができるようにな っている。

【0022】空気流入口42、44は、ポンプコントロ ーラ48に接続されている。ポンプコントローラ48

2、44のいずれかに空気を送り込むようになってい る。

【0023】以上説明した構成のディスペンサ30は、 1ショット当り5mgの液晶50を滴下するようになっ ている。なお、この1ショット当りの液晶滴下量は、筐 体32上方に突出したピストン34に固定されたマイク ロゲージ52を用いて、ピストン34の鉛直方向の移動 量を制御することにより調整するこができるようになっ ている。

【0024】次に、本発明の実施の形態による液晶表示 10 装置の製造方法で用いる滴下注入法の概要を図3を用い て説明する。まず、図3 (a) に示すように、例えば、 TFT等のスイッチング素子が形成されたアレイ基板6 0の基板面上の複数箇所に、ディスペンサ30(図示せ ず)から液晶62を滴下する。次いで、表示領域内に共 通 (コモン) 電極やカラーフィルタが形成され、表示領 域外周囲に紫外線(UV)照射で硬化するUVシール剤 64が塗布された対向基板であるCF基板66を位置合 わせしてアレイ基板60に貼り付ける。この工程は真空 中で行われる。次いで、貼り合わせた基板を大気中に戻 20 場合の最適滴下範囲212は240~250mgであ すと図3(b)に示すように、貼り合わされたアレイ基 板60とCF基板66間の液晶62が大気圧により拡散 する。次に、図3 (c) に示すように、シール剤64の 塗布領域 (メインシール) に沿う移動方向68でUV光 源70を移動させながらUV光72をシール剤64に照 射し、シール剤64を硬化させる。これにより、アレイ 基板60とCF基板66との間のセルギャップ(セル 厚)が、図1で示した複数の支柱20cにより確保され た液晶表示パネルができあがる。

【0025】ここで、セル厚と最適滴下量との関係は、 例えば図4に示すようになっている。図4は、額縁部対 角の長さが15インチでセル厚が5μmの液晶表示パネ ルについて示している。これ以降の各図においても当該 液晶表示パネルを例にとって説明するものとする。図4 は、横軸に液晶の滴下量(mg)をとって最適滴下量の 範囲及び液晶量の過不足について示しており、図中ほぼ 中央に示す250mgが最適滴下量であることを示して いる。なお、当該液晶表示パネルでの滴下量マージン

(最適滴下量の範囲) 200は、最適滴下量の±2.0 %であり、245mg~255mgの範囲となる。滴下 40 ネル不良が生じてしまう。 量が245mg以下の範囲202では液晶量が不足し、 いわゆる気泡が生じて不良パネルとなる。また、滴下量 が255mgを超える範囲204では余分の液晶が周囲 の額縁部分に押しやられ、額縁部分のセル厚の増加によ る表示むらが生じて不良パネルとなる。

【0026】図5は、液晶表示パネルの柱状スペーサの 支柱高さと最適液晶量との関係を示している。図5にお いて、横軸は支柱高さ(μm)を表し、縦軸は最適液晶 量(mg)を表している。図5に示すように、支柱高さ が 5μ mを中心に ± 0 . 2μ mの範囲内でばらつくと、

最適液晶量は250mgを中心に±10mgの範囲内で ばらつく。

【0027】図4との比較から分かるように、15イン チパネルの場合、セル厚が5μmであると、最適滴下量 の範囲は、支柱高さが5±0.1 µmの範囲内にある場 合に得られる。実際、支柱高さのばらつきは同一ロット であればほぼ±0.1μm以内に収まっている。ところ が、成膜条件などにより異なるロット同士の場合には、 ±0. 2 μ mのばらつきが生じ得る。また、1 枚のガラ ス基板から複数のパネルを形成する多面取りの場合、ガ ラス基板上の各パネル形成領域に形成される柱状スペー サの支柱高さが各パネル形成領域間で±0.1μm程度 相違することがあり得る。

【0028】支柱髙さの相違に対する最適滴下量の範囲 は例えば図6に示すようになる。図6の横軸は滴下量 (mg)を表している。図6において、支柱高さが5 μ mの場合の最適滴下範囲210は、245mg~255 mgである。これは、図4に示した最適滴下量の範囲2 00と同一である。これに対し支柱高さが4.9μmの る。また、支柱高さが 5. 1 μ m の場合の最適滴下範囲 214 t 250~260 mg である。

【0029】液晶の滴下量が支柱高さ5μm用に設定し てあるとして、実際に液晶滴下する基板の支柱高さが、 図6に示すように4. 9μ mであったり5. 1μ mであ ったりすると次のような問題が生じる。すなわち、最適 滴下範囲212の基板に最大許容滴下量の250mgを 越える範囲 (矢印216で示す) の液晶が滴下されると 液晶過多が生じる。あるいは、最適滴下範囲214の基 30 板に最小許容滴下量の250mgより少ない範囲(矢印 218で示す)の液晶が滴下されると液晶不足が生じ

【0030】このように、支柱高さに対して滴下量が 2. 0%以上違うと不良が発生する。換言すれば、支柱 高さが $0.1 \mu m$ 違うとすれば、 $5 \mu m$ のセル厚に対し 2%の狂いが生じる。セル厚が5μmであると仮定して 液晶の滴下量を固定してしまうと、基板毎の支柱高さの ばらつきを吸収できるマージンが全くないためディスペ ンサ等の他の要素が原因で液晶滴下量がばらついたらパ

【0031】そこで、本実施の形態では、図3を用いて 説明した滴下注入工程において、柱状スペーサの支柱高 さを予め測定し、測定値に基づいて液晶滴下量を制御で きるようにしている。

【0032】図7は、支柱高さを測定する方法を例示し ている。図7は、1枚のガラス基板80から2枚の液晶 表示パネル82を作製する2面取りの場合を示してい る。例えば柱状スペーサが形成された2枚のCF基板8 2を図示のようにA面、B面として、A面とB面のそれ 50 ぞれで、複数点(図示例では数字1~数字5の5箇所)

の支柱高さをレーザ変位計84で測定して平均値を求め る。なお、CF基板面は所定の配向処理等が既に施され

【0033】次に、配向処理後のTFT基板側には熱併 用型のUVシール剤を塗布する。次いで、図7に示した 方法で予め測定されたCF基板側の支柱高さに基づい て、TFT基板側に滴下する液晶の量を制御する。

【0034】液晶滴下には、図8に示すように、ディス ペンサを2台用意する。一方のディスペンサ90は、図 2で説明したものと同一であり、1ショット当たり5m 10 gの液晶を滴下するように調整されている。他方のディ スペンサ92は、ディスペンサ90と同一構造を有して いるが、マイクロゲージ52を調節して1ショット当た り2mgの液晶を滴下するように調整されている。

【0035】図8に示すように、TFT基板を形成する ガラス基板94も、CF基板形成用のガラス基板80 (図7参照) と同様に、2枚のTFT基板96を得る2 , 面取りの構成になっている。各TFT基板形成する領域 82には、外周囲に枠状に塗布したUVシール剤により メインシール98が形成されている。

【0036】まず、UVシール剤98の枠内のTFT基 板96を形成する面上に、1ショット5mgに調整した ディスペンサ90を用い、予め測定したCF基板側に配 置した柱状スペーサの支柱高さの平均値に基づいて所定 量の液晶100を滴下する。例えばCF基板のできあが りの寸法測定(抜き取り)でA面が平均5μm、B面が 平均5. 1μmの支柱高さを有している場合を例にとっ て説明する。

【0037】A面に対向するTFT基板が形成される面 では、標準としてディスペンサ90により1ショット5 mgの液晶を50ショット滴下する。例えば基板毎ある いは所定間隔での抜き取りにより柱状スペーサの支柱高 さを測定し、0. 1μmの増減ばらつきで1ショット増 加、もしくは1ショット減の制御をする。

【0038】B面に対向するTFT基板が形成される面 では、標準としてディスペンサ90により1ショット5 mgの液晶を51ショット滴下する。例えば基板毎ある いは所定間隔での抜き取りにより柱状スペーサの支柱高 さを測定し、0. 1 μ m の増減ばらつきで1ショット増 加、もしくは1ショット減の制御をする。

【0039】ディスペンサ90は滴下量について±1% のばらつきを有しているので、滴下量マージン内で滴下 するには、図6で説明した支柱高さ毎の最適滴下範囲の 中央部近くへ滴下量を制御しないと不良が発生する可能 性がある。また、1ショットの滴下量設定値が大きくて 微細な調整に不具合が生じる場合がある。そのような場 合には、滴下量の少ないディスペンサ92で調整分の液 晶101を滴下して微調整する。

【0040】次いで、このようにして滴下量を制御した

で貼り合わせる。大気解放時面内が真空に保たれている ため、差圧でギャップ形成が完了する。その後、シール 剤98にUV光を照射して一次硬化し、次いでオーブン にて熱硬化を行う。貼り合わせた2枚のガラス基板の各 面の所定位置をスクライブして切断することにより、2 枚の液晶表示パネルが得られる。

【0041】なお、ディスペンサのショット数が、50 回と多いため滴下される液晶の総滴下量にばらつきがで る可能性がある。したがって、(1)必要な全重量また は全体積に応じた液晶を予め定量後、全液晶を滴下する 方法、または(2)パネルを重量計に設置して液晶をデ ィスペンサで滴下しつつ、積算された重量の変化量をモ ニタして滴下量を決める方法を含めてもよい。

【0042】次に、図9乃至図11を用いて、本実施の 形態による液晶表示装置の製造方法で用いるインライン プロセス装置の構成例について説明する。図9は、支柱 髙さ測定とシール描画を並行して行う場合の装置構成を 示している。図9において、CF基板とTFT基板は、 共に配向処理を終えて洗浄機1250、122に搬入さ 20 れてそれぞれ洗浄される。洗浄されたCF基板は、支柱 高さ測定装置124に搬送される。洗浄されたTFT基 板は、シール描画装置126に搬送される。

【0043】支柱高さ測定装置124は、例えばレーザ 変位計を備えている。CF基板に形成された柱状スペー サの複数点の支柱高さが測定され、その平均値が支柱高 さ測定結果として液晶滴下装置128に与えられる。-方、シール描画装置126は、図2に示したディスペン サと同様の構造・機能を有しており、UVシール剤をT FT基板の外周囲に枠状に描画してメインシールを形成 30 する。メインシールの形成されたTFT基板は、液晶滴 下装置128に搬送される。

【0044】液晶滴下装置128は、図2に示したディ スペンサを有し、CF基板での支柱高さの測定結果に基 づく所定量の液晶をTFT基板のメインシール内に滴下 する。次いで、CF基板とTFT基板は真空貼り合わせ 装置130に搬送されて所定のセルギャップを保って貼 り合わされ、UV硬化装置132にて硬化処理を受けた 後下流装置へ搬送される。

【0045】次に、図10を用いて本実施の形態による 40 液晶表示装置の製造方法で用いるインラインプロセス装 置の他の構成例について説明する。図10は、支柱高さ 測定とシール描画を同一の基板でほぼ同時に行う場合の 装置構成を示している。図10において、洗浄されたC F基板は、支柱高さ測定及びシール描画装置125に搬 入され、支柱高さの測定とシール描画がほぼ同時に行わ れる。シール描画は、基板面の起伏をレーザ変位計で監 視しながら行われるので、当該レーザ変位計を支柱高さ の測定にも用いるようにしている。したがって、洗浄さ れたTFT基板は、シール描画されることなくそのまま ガラス基板同士を、図3 (b) で説明したように真空中 50 液晶滴下装置128に挿入される。この場合には、CF 9

基板にシール描画が行われる。図10の構成によれば、 TFT基板側のシール描画装置が省略できるので、装置 の設置スペースを減らすことができる。

【0046】次に、図11を用いて本実施の形態による 液晶表示装置の製造方法で用いるインラインプロセス装置のさらに他の構成例について説明する。図11は、支柱高さ測定と液晶滴下をほぼ同時に行う場合の装置構成を示している。図11において、洗浄されたCF基板は、支柱高さ測定及び液晶滴下装置129に搬送される。また、シール描画装置126でシール描画がなされ 10たTFT基板も支柱高さ測定及び液晶滴下装置129に搬入される。

【0047】支柱高さ測定及び液晶滴下装置129は、ディスペンサに加え、支柱高測定用の小型のレーザ変位計が液晶滴下のXYステージに組み込まれている。したがって、支柱高さ測定及び液晶滴下装置129では、CF基板上の柱状スペーサの支柱高さの測定値に基づく所定量の液晶をCF基板またはTFT基板に滴下する。図11の構成によっても、装置の設置スペースを減らすことができる。

【0048】以上の過程で作製された液晶表示パネルは、支柱高さに応じて液晶量が決定されている。そのため、液晶の不足によるいわゆる気泡や過多によるギャップ不良は全く発生しないことになるので、極めて安定した表示品質を保つことができるようになる。また、製作日が異なるCF基板を混在してプロセス上に流すことは、従来では不良の発生を意味していたが、本実施の形態によれば、その制約がなくなるだけでなく、同一ロット内での最適滴下量の変動や、多面取り用ガラス基板面内での最適滴下量の変動を全て吸収できるので、滴下注 30入法による液晶表示装置の量産に対応できるようになる。

【0049】本発明は、上記実施の形態に限らず種々の変形が可能である。たとえば、上記実施の形態では柱状スペーサをCF基板側に設けているが、それに限らずTFT基板側に設けてもよく、また、CF基板とTFT基板の双方に設けるようにしてもよい。

【0050】また、セル厚を柱状スペーサにより確保する例で説明したが、本発明はそれに限らず、片方基板にビーズを散布してセル厚を確保する方法にも同様に適用 40 可能である。ビーズ散布の場合には、従来から他目的で測定しているビーズの散布密度を滴下量制御にフィードバックさせ、散布密度に基づいて所定量の液晶を滴下するようにすれば上記実施の形態と同様の効果を得ることができる。

[0051]

【発明の効果】以上の通り本発明によれば、液晶表示パネル毎に最適な液晶量を滴下できるので、いわゆる気泡や液晶過多によるギャップ不良をなくすことができ、安定した量産が可能となる。したがって、本発明によれ

は、滴下注入プロセスによる不良を低減させて、現行の 真空注入プロセス並みの歩留りを達成できるようにな る。また、滴下注入法の適用による工程の簡略化による コスト低減を図ることができる。

【図面の簡単な説明】

【図1】本発明の一実施の形態による液晶表示装置の製造方法で用いるCF基板の構成例を示す図である。

【図2】本発明の一実施の形態による液晶表示装置の製造方法で用いるディスペンサの説明図である。

【図3】本発明の一実施の形態による液晶表示装置の製造方法で用いる滴下注入法の説明図である。

【図4】 最適滴下量の範囲と液晶量の過不足の説明図である。

【図 5 】支柱高さと最適液晶量との関係図である。

【図6】各種の支柱高さに対する最適滴下量の範囲の説明図である。

【図7】 髙さ測定の説明図である。

【図8】本発明の一実施の形態による液晶表示装置の製造方法で用いる滴下注入法における滴下量制御の説明図 20 である。

【図9】本発明の一実施の形態による液晶表示装置の製造方法で用いるインラインプロセス装置の構成例を示す図である

【図10】本発明の一実施の形態による液晶表示装置の 製造方法で用いるインラインプロセス装置の他の構成例 を示す図である。

【図11】本発明の一実施の形態による液晶表示装置の 製造方法で用いるインラインプロセス装置のさらに他の 構成例を示す図である。

30 【符号の説明】

- 20 突起
- 20 c 突起 (支柱)
- 30 ディスペンサ
- 3 2 管体
- 34 ピストン
- 36 ノズル
- 38 液晶収容器
- 40 供給管
- 42、44 空気流入口
- 0 46 隔壁
 - 48 ポンプコントローラ
 - 50 液晶
 - 52 マイクロゲージ
 - 60 アレイ基板 (TFT基板)
 - 62 液晶
 - 64 UVシール剤
 - 66 CF基板
 - 68 移動方向
 - 70 UV光源
- 50 72 UV光

-6-

80 ガラス基板

82 パネル (CF基板) となる基板面

II

84 レーザ変位計

90、92 ディスペンサ

9.4 ガラス基板

96 TFT基板となる基板面

98 UVシール剤

100、101 液晶

120、122 洗浄機

124 支柱高さ測定装置

125 支柱高さ測定及びシール描画装置

126 シール描画装置

128 液晶滴下装置

129 支柱髙さ測定及び液晶滴下装置

130 真空貼り合わせ装置

132 UV硬化装置

【図1】

【図 2】

【図 5】 265 255 255 256 257 240 235 4.75 4.8 4.85 4.9 4.95 5 5.05 5.1 5.15 5.2 5.25 支柱高さ (μm)

滴下量(mg)

【図8】

【図7】

【図9】

【図10】

【図11】

フロントページの続き

(72) 発明者 中山 徳道

神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内

(72) 発明者 井上 弘康

神奈川県川崎市中原区上小田中4丁目1番 1号 富士通株式会社内

F ターム(参考) 2H088 FA09 FA11 FA20 MA16 MA17 2H089 NA22 NA32 NA33 NA42 NA44 NA45 NA55 NA60 QA16

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.