CSCI-UA 472 Artificial Intelligence

Muhammad Wajahat Mirza

mwm356@nyu.edu

Homework 08

December 1, 2020

Problem 1

Solution to A

Consider the following PCFG in Chomsky Normal Form:

 $S \rightarrow NP VP [0.6]$

 $S \rightarrow Noun VP [0.3]$

 $S \to NP \text{ Verb } [0.1]$

 $NP \rightarrow Adj Noun [0.7]$

 $NP \rightarrow AdjList Noun [0.3]$

 $VP \rightarrow Verb Noun [0.5]$

 $VP \rightarrow Verb NP [0.3]$

 $\mathrm{VP} \to \mathrm{Verb}\ \mathrm{Adv}\ [0.2]$

 $AdjList \rightarrow Adj Adj [1.0]$

Lexicon:

Noun \rightarrow "fast" [0.1]

Noun \rightarrow "fish" [0.6]

Noun \rightarrow "swim" [0.2]

 $Verb \rightarrow "fast" [0.1]$

 $Verb \rightarrow \text{``fish''} \ [0.8]$

 $\mathrm{Verb} \,\rightarrow\, \mathrm{``long''}\ [0.1]$

 $\mathrm{Verb} \rightarrow \mathrm{``swim''}\ [0.6]$

 $Adj \rightarrow \text{"fast"} [0.5]$

 $Adj \rightarrow "long" [0.5]$

 $Adv \rightarrow \text{"fast"} [0.8]$

 $Adv \rightarrow "long" [0.2]$

A. Trace the workings of the CYK algorithm on the sentence "long fast fish swim" in the style of the example on the course web site.

B. What are the two possible parse trees for this sentence?

Solution to Problem 1

Iterations of line 4

Solution to A:

i=4

```
Create the following leaves:
i=1
                       | ---- | --- | 0.1]
A. [Verb | 1 | 1 | long
B. [Adj | 1 | 1 | long | ---- | 0.5]
C. [Adv | 1 | 1 | long | ---- | --- | 0.2]
i=2
                        | ---- | --- | 0.1]
D. [Noun | 2 | 2 | fast
E. [Verb | 2 | 2 | fast | ---- | 0.1]
F. [Adj | 2 | 2 | fast | ---- | --- | 0.5]
                        | ---- | --- | 0.8]
G. [Adv | 2 | 2 | fast
i=3
H. [Noun | 3 | 3 | fish | ---- | 0.6]
                       | ---- | --- | 0.8]
I. [Verb | 3 | 3 | fish
```

J. [Noun | 4 | 4 | swim | ---- | 0.2]
K. [Verb | 4 | 4 | swim | ---- | 0.6]

Rule VP → Verb Noun [0.5]

```
Combination of A & D and prob of rule has probability 0.1 * 0.1 * 0.5 = 0.005
       Change M to be [VP | 1 | 2 | --- | A | D | 0.005]
       Rule VP → Verb Adv [0.2]
       Combination of A & G and prob of rule has probability 0.1 * 0.8 * 0.2 = 0.016
       Change M to be [VP | 1 | 2 | --- | A | G | 0.016]
 M=AdjList
   k=1
       Create node N. [AdjList | 1 | 2 | --- | --- | 0]
       Rule AdjList → Adj Adj [1.0]
       Combination of B & F and prob of rule has probability 0.5 * 0.5 * 1.0 = 0.25
       Change N to be [AdjList | 1 | 2 | --- | B | F | 0.25]
i=2
i=3
M=NP
     k=1
       Create node O. [NP | 2 | 3 | --- | --- | 0]
       Rule NP → Adj Noun [0.7]
       Combination of F & H and prob of rule has probability 0.5 * 0.6 * 0.7 = 0.21
       Change O to be [NP | 2 | 3 | --- | F | H | 0.21]
 M=VP
    k=1
       Create node P. [VP | 2 | 3 | --- | --- | 0]
       Rule VP → Verb Noun [0.5]
       Combination of E & H and prob of rule has probability 0.1 * 0.6 * 0.5 = 0.03
       Change P to be [VP | 2 | 3 | --- | E | H | 0.03]
i=3
j=4
M=VP
     k=1
       Create node Q. [VP | 3 | 4 | --- | --- | 0]
       Rule VP → Verb Noun [0.5]
       Combination of I & J and prob of rule has probability 0.8 * 0.2 * 0.5 = 0.08
       Change Q to be [VP | 1 | 2 | --- | I | J | 0.08]
length=3
i=1
j=3
M=S
   k=1
      No rules apply.
   k=2
       Create node R. [S | 1 | 3 | --- | --- | 0]
```

```
Rule S \rightarrow NP Verb [0.1]
       Combination of L & I and prob of rule has probability 0.035 * 0.8 * 0.1 = 0.0028
       Change R to be [S | 1 | 3 | --- | L | I | 0.0028]
M=NP
   k=1
       No rules apply.
    k=2
       Create node S. [NP | 1 | 3 | --- | --- | 0]
       Rule NP → AdjList Noun [0.3]
       Combination of N & H and has probability 0.25 * 0.6 * 0.3 = 0.045
       Change S to be [NP | 1 | 3 | --- | N | H | 0.045]
 M=VP
    k=1
        Create node T. [VP | 1 | 3 | --- | --- | 0]
        Rule VP → Verb NP [0.3]
        Combination of A & O and has probability 0.1 * 0.21 * 0.3 = 0.0063
        Change T to be [VP | 1 | 3 | --- | A | 0 | 0.0063]
i=2
j=4
M=S
     k=1
        Create node U. [S | 2 | 4 | --- | --- | 0]
        Rule S \rightarrow Noun VP [0.3]
        Combination of D & Q and has probability 0.1 * 0.08 * 0.3 = 0.0024
        Change U to be [S | 2 | 4 | --- | D | Q | 0.0024]
    k=2
        Rule S \rightarrow NP Verb [0.1]
        Combination of 0 \& K and has probability 0.21 * 0.6 * 0.1 = 0.0126
        Change U to be [S | 2 | 4 | --- | 0 | K | 0.0126]
length=4
 i=1
 j=4
 M=S
      k=1
        No rules apply.
      k=2
         Create node V. [S | 1 | 4 | --- | --- | 0]
         Rule S \rightarrow NP VP [0.6]
         Combination of L & Q and has probability 0.035 * 0.08 * 0.6 = 0.00168
         Change V to be [S | 1 | 4 | --- | L | Q | 0.00168]
      k=3
```

```
Rule S \rightarrow NP Verb [0.1] Combination of T & K and has probability 0.045 * 0.6 * 0.1 = 0.0027 Change V to be [S | 1 | 4 | --- | T | K | 0.0027]
```

Done. Termination!

Final tree:

S

NP

AdjList

Adj Long

Adj fast

Noun fish

Verb swim

Solution to B:

Using the "Final Tree" from part A obtained by the CYK algorithm, the parse tree yielded is as follows:

Based on the last iteration, second possible parse tree could look like this but it is has lower probability.

End of Assignment. Thank you!