Bachelor Thesis

Nicolai Krebs

November 26, 2021

1/65

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

Table of Contents

- Motivation
- 2 Attack Cost Estimation
- Ring and Module Variants
- Morms and Distributions
- **5** Generic Parameter Search
- 6 Demo

Table of Contents

- Motivation
- 2 Attack Cost Estimation
- Ring and Module Variants
- 4 Norms and Distributions
- 5 Generic Parameter Search
- 6 Demo

• Quantum computers can efficiently solve classically hard problems

- Quantum computers can efficiently solve classically hard problems
 - Shor's algorithm (1994)¹

Nicolai Krebs Lattice Parameter Estimation November 26, 2021 4 / 65

¹P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," *SIAM J. Comput.*, vol. 26, no. 5, pp. 1484–1509, 1997.

- Quantum computers can efficiently solve classically hard problems
 - Shor's algorithm (1994)¹
 - Efficiently solves integer factorization problem

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," *SIAM J. Comput.*, vol. 26, no. 5, pp. 1484–1509, 1997.

- Quantum computers can efficiently solve classically hard problems
 - Shor's algorithm (1994)¹
 - Efficiently solves integer factorization problem
 - E.g., RSA becomes insecure

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," *SIAM J. Comput.*, vol. 26, no. 5, pp. 1484–1509, 1997.

- Quantum computers can efficiently solve classically hard problems
 - Shor's algorithm (1994)¹
 - Efficiently solves integer factorization problem
 - E.g., RSA becomes insecure
- Different hardness assumptions needed

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," *SIAM J. Comput.*, vol. 26, no. 5, pp. 1484–1509, 1997.

- Quantum computers can efficiently solve classically hard problems
 - Shor's algorithm (1994)¹
 - Efficiently solves integer factorization problem
 - E.g., RSA becomes insecure
- Different hardness assumptions needed
- ⇒ Lattice-based cryptography

¹P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," *SIAM J. Comput.*, vol. 26, no. 5, pp. 1484–1509, 1997.

Lattice

Lattice

Figure: Lattice with basis $\mathbf{b}_1 = (0,1)^{\mathsf{T}}, \ \mathbf{b}_2 = (2,1)^{\mathsf{T}}$

Lattice

Figure: Lattice with basis $\mathbf{b}_1 = (0,1)^{\mathsf{T}}, \ \mathbf{b}_2 = (2,1)^{\mathsf{T}}$

Lattice

Figure: Lattice with basis $\mathbf{b}_1 = (0,1)^{\mathsf{T}}, \ \mathbf{b}_2 = (2,1)^{\mathsf{T}}$

Lattice

Figure: Lattice with basis $\mathbf{b}_1 = (0,1)^{\mathsf{T}}, \ \mathbf{b}_2' = (2,0)^{\mathsf{T}}$

Lattice

Figure: Lattice with basis $\mathbf{b}_1 = (0,1)^{\mathsf{T}}, \ \mathbf{b}_2' = (2,0)^{\mathsf{T}}$

SVP_{γ} and GapSVP_{γ}

Given a basis ${\bf B}$ of a lattice Λ , the (approximate) Shortest Vector Problem (SVP $_{\gamma}$) is the problem of finding a short lattice vector ${\bf v}\in \Lambda$ such that $0<\|{\bf v}\|\le \gamma\lambda_1(\Lambda)$. The corresponding decision version is the ${\rm GAPSVP}_{\gamma}$ problem, in which we are asked to decide whether $\lambda_1(\Lambda)\le 1$ or $\lambda_1(\Lambda)\ge \gamma$ given a basis ${\bf B}$ of Λ . If neither is the case, any answer is accepted.

SVP_{γ} and GapSVP_{γ}

Given a basis ${\bf B}$ of a lattice Λ , the (approximate) Shortest Vector Problem (SVP $_{\gamma}$) is the problem of finding a short lattice vector ${\bf v}\in \Lambda$ such that $0<\|{\bf v}\|\le \gamma\lambda_1(\Lambda)$. The corresponding decision version is the ${\rm GAPSVP}_{\gamma}$ problem, in which we are asked to decide whether $\lambda_1(\Lambda)\le 1$ or $\lambda_1(\Lambda)\ge \gamma$ given a basis ${\bf B}$ of Λ . If neither is the case, any answer is accepted.

 \bullet Worst-case to average-case reduction from ${\rm SVP}_{\gamma}$ to the Short Integer Solution (SIS) ${\rm problem^2}$

²M. Ajtai, "Generating hard instances of lattice problems (extended abstract)," in *Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May* 22-24, 1996, G. L. Miller, Ed., ACM, 1996, pp. 99–108.

SVP_{γ} and GAPSVP_{γ}

Given a basis ${\bf B}$ of a lattice Λ , the (approximate) Shortest Vector Problem (SVP $_{\gamma}$) is the problem of finding a short lattice vector ${\bf v}\in \Lambda$ such that $0<\|{\bf v}\|\leq \gamma\lambda_1(\Lambda)$. The corresponding decision version is the ${\rm GAPSVP}_{\gamma}$ problem, in which we are asked to decide whether $\lambda_1(\Lambda)\leq 1$ or $\lambda_1(\Lambda)\geq \gamma$ given a basis ${\bf B}$ of Λ . If neither is the case, any answer is accepted.

- \bullet Worst-case to average-case reduction from ${\rm SVP}_{\gamma}$ to the Short Integer Solution (SIS) ${\rm problem^2}$
- ullet Similar reduction from GAPSVP_{γ} to the Learning with Errors (LWE) problem³
- ²M. Ajtai, "Generating hard instances of lattice problems (extended abstract)," in *Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May* 22-24, 1996, G. L. Miller, Ed., ACM, 1996, pp. 99–108.
- ³O. Regev, "On lattices, learning with errors, random linear codes, and cryptography," in *Proceedings of the* 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, H. N. Gabow and R. Fagin, Eds., ACM, 2005, pp. 84–93.

The LWE_{n,q,m,χ} distribution

Given an integer $n \geq 1$, a modulus $q \geq 2$, an error distribution χ on \mathbb{Z}_q , and a fixed secret vector \mathbf{s} , let $\mathcal{A}_{\mathbf{s},\chi}$ be the probability distribution over $\mathbb{Z}_q^n \times \mathbb{Z}_q$ by choosing a vector $\mathbf{a}_i \in \mathbb{Z}_q^n$ uniformly at random and $e_i \in \mathbb{Z}_q$ according to χ .

The LWE_{n,q,m,χ} distribution

Given an integer $n \geq 1$, a modulus $q \geq 2$, an error distribution χ on \mathbb{Z}_q , and a fixed secret vector \mathbf{s} , let $\mathcal{A}_{\mathbf{s},\chi}$ be the probability distribution over $\mathbb{Z}_q^n \times \mathbb{Z}_q$ by choosing a vector $\mathbf{a}_i \in \mathbb{Z}_q^n$ uniformly at random and $e_i \in \mathbb{Z}_q$ according to χ . $\mathcal{A}_{\mathbf{s},\chi}$ outputs m samples

$$(\mathbf{a}_i, \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i \mod q) \in \mathbb{Z}_q^n \times \mathbb{Z}_q.$$

The LWE_{n,q,m,χ} distribution

Given an integer $n \geq 1$, a modulus $q \geq 2$, an error distribution χ on \mathbb{Z}_q , and a fixed secret vector \mathbf{s} , let $\mathcal{A}_{\mathbf{s},\chi}$ be the probability distribution over $\mathbb{Z}_q^n \times \mathbb{Z}_q$ by choosing a vector $\mathbf{a}_i \in \mathbb{Z}_q^n$ uniformly at random and $e_i \in \mathbb{Z}_q$ according to χ . $\mathcal{A}_{\mathbf{s},\chi}$ outputs m samples

$$(\mathbf{a}_i, \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i \mod q) \in \mathbb{Z}_q^n \times \mathbb{Z}_q.$$

ullet m samples can be represented by matrix $\mathbf{A} \in \mathbb{Z}_q^{n imes m}$ and vector \mathbf{z} with

$$\mathbf{z} = \mathbf{A}^\mathsf{T} \mathbf{s} + \mathbf{e} \mod q$$

The LWE_{n,q,m,χ} distribution

Given an integer $n \geq 1$, a modulus $q \geq 2$, an error distribution χ on \mathbb{Z}_q , and a fixed secret vector \mathbf{s} , let $\mathcal{A}_{\mathbf{s},\chi}$ be the probability distribution over $\mathbb{Z}_q^n \times \mathbb{Z}_q$ by choosing a vector $\mathbf{a}_i \in \mathbb{Z}_q^n$ uniformly at random and $e_i \in \mathbb{Z}_q$ according to χ . $\mathcal{A}_{\mathbf{s},\chi}$ outputs m samples

$$(\mathbf{a}_i, \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i \mod q) \in \mathbb{Z}_q^n \times \mathbb{Z}_q.$$

ullet m samples can be represented by matrix $\mathbf{A} \in \mathbb{Z}_q^{n imes m}$ and vector \mathbf{z} with

$$\mathbf{z} = \mathbf{A}^\mathsf{T} \mathbf{s} + \mathbf{e} \mod q$$

ullet Search-LWE asks to recover ullet and Decision-LWE asks to distinguish m samples from uniformly random

The LWE_{n,q,m,χ} distribution

Given an integer $n \geq 1$, a modulus $q \geq 2$, an error distribution χ on \mathbb{Z}_q , and a fixed secret vector \mathbf{s} , let $\mathcal{A}_{\mathbf{s},\chi}$ be the probability distribution over $\mathbb{Z}_q^n \times \mathbb{Z}_q$ by choosing a vector $\mathbf{a}_i \in \mathbb{Z}_q^n$ uniformly at random and $e_i \in \mathbb{Z}_q$ according to χ . $\mathcal{A}_{\mathbf{s},\chi}$ outputs m samples

$$(\mathbf{a}_i, \langle \mathbf{a}_i, \mathbf{s} \rangle + e_i \mod q) \in \mathbb{Z}_q^n \times \mathbb{Z}_q.$$

ullet m samples can be represented by matrix $\mathbf{A} \in \mathbb{Z}_q^{n imes m}$ and vector \mathbf{z} with

$$\mathbf{z} = \mathbf{A}^\mathsf{T} \mathbf{s} + \mathbf{e} \mod q$$

- ullet Search-LWE asks to recover ullet and Decision-LWE asks to distinguish m samples from uniformly random
- (Primal) LWE lattice

$$\Lambda_q(\mathbf{A}^\intercal) = \{\mathbf{v} \in \mathbb{Z}^m \mid \exists \mathbf{y} \in \mathbb{Z}^n : \mathbf{v} = \mathbf{A}^\intercal \mathbf{y} \mod q \}$$

The Short Integer Solution (SIS) Problem

The SIS Problem

Given a uniformly random matrix $\mathbf{A}^{n\times m}$, the $\mathsf{SIS}_{n,q,m,\beta}$ problem asks us to find a vector $\mathbf{s}\in\mathbb{Z}^m$ such that

$$\mathbf{A} \cdot \mathbf{s} = \mathbf{0} \mod q$$

where $0 < ||\mathbf{s}|| \le \beta$.

The Short Integer Solution (SIS) Problem

The SIS Problem

Given a uniformly random matrix $\mathbf{A}^{n\times m}$, the $\mathsf{SIS}_{n,q,m,\beta}$ problem asks us to find a vector $\mathbf{s}\in\mathbb{Z}^m$ such that

$$\mathbf{A} \cdot \mathbf{s} = \mathbf{0} \mod q$$

where $0 < ||\mathbf{s}|| \le \beta$.

• (Dual) SIS lattice

$$\Lambda_q^\perp(\mathbf{A}) = \{\mathbf{v} \in \mathbb{Z}^m \mid \mathbf{A} \cdot \mathbf{v} = \mathbf{0} \mod q \}$$
 .

• SIS: OWF, CRHF, IBE, DIGSIG

10 / 65

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

- SIS: OWF, CRHF, IBE, DIGSIG
- LWE: PKE, IBE, SHE, FHE, ...

- SIS: OWF, CRHF, IBE, DIGSIG
- LWE: PKE, IBE, SHE, FHE, ...
- Security of resulting scheme depends on chosen parameters

10 / 65

Nicolai Krebs Lattice Parameter Estimation

- SIS: OWF, CRHF, IBE, DIGSIG
- LWE: PKE, IBE, SHE, FHE, ...
- Security of resulting scheme depends on chosen parameters
 - Bit security level sec

- SIS: OWF, CRHF, IBE, DIGSIG
- LWE: PKE, IBE, SHE, FHE, ...
- Security of resulting scheme depends on chosen parameters
 - Bit security level sec
 - E.g., $\sec = 128$ means that attacker needs $> 2^{128}$ operations

10 / 65

Nicolai Krebs Lattice Parameter Estimation

- SIS: OWF, CRHF, IBE, DIGSIG
- LWE: PKE, IBE, SHE, FHE, ...
- Security of resulting scheme depends on chosen parameters
 - Bit security level sec
 - E.g., $\sec = 128$ means that attacker needs $> 2^{128}$ operations
- How to estimate the concrete hardness of a given instance?

10 / 65

Nicolai Krebs Lattice Parameter Estir

- SIS: OWF, CRHF, IBE, DIGSIG
- LWE: PKE, IBE, SHE, FHE, ...
- Security of resulting scheme depends on chosen parameters
 - Bit security level sec
 - ullet E.g., $\sec=128$ means that attacker needs $>2^{128}$ operations
- How to estimate the concrete hardness of a given instance?
 - Estimate the runtime cost of best attacks

- SIS: OWF, CRHF, IBE, DIGSIG
- LWE: PKE, IBE, SHE, FHE, ...
- Security of resulting scheme depends on chosen parameters
 - Bit security level sec
 - E.g., $\sec = 128$ means that attacker needs $> 2^{128}$ operations
- How to estimate the concrete hardness of a given instance?
 - Estimate the runtime cost of best attacks
- LWE Estimator⁴ encapsulates attack estimates for LWE

Nicolai Krebs Lattice Parameter Estimation November 26, 2021 10 / 65

⁴M. R. Albrecht, R. Player, and S. Scott, "On the concrete hardness of learning with errors," *J. Math. Cryptol.*, vol. 9, no. 3, pp. 169–203, 2015.

A unified Python library that includes

11 / 65

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

A unified Python library that includes

• Estimates of attack algorithms against LWE and SIS

11 / 65

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

A unified Python library that includes

- Estimates of attack algorithms against LWE and SIS
- Up-to-date cost models

11 / 65

Nicolai Krebs Lattice Parameter Estimation

A Tool for the Estimation of Lattice Parameters

A unified Python library that includes

- Estimates of attack algorithms against LWE and SIS
- Up-to-date cost models
- Classes for LWE, SIS and their ring and module variants as well as unconditionally secure variants

11 / 65

A Tool for the Estimation of Lattice Parameters

A unified Python library that includes

- Estimates of attack algorithms against LWE and SIS
- Up-to-date cost models
- Classes for LWE, SIS and their ring and module variants as well as unconditionally secure variants
- Distribution classes and ℓ_p -norm bounds

11 / 65

A Tool for the Estimation of Lattice Parameters

A unified Python library that includes

- Estimates of attack algorithms against LWE and SIS
- Up-to-date cost models
- Classes for LWE, SIS and their ring and module variants as well as unconditionally secure variants
- Distribution classes and ℓ_p -norm bounds
- An efficient generic parameter search

Table of Contents

- Motivation
- Attack Cost Estimation
- Ring and Module Variants
- 4 Norms and Distributions
- Generic Parameter Search
- 6 Demo

12 / 65

Root Hermite factor

13 / 65

- Root Hermite factor
 - ullet Given a basis $oldsymbol{\mathsf{B}}=\{oldsymbol{\mathsf{b}}_1,\ldots,oldsymbol{\mathsf{b}}_n\}$ with $\|oldsymbol{\mathsf{b}}_1\|\leq\cdots\leq\|oldsymbol{\mathsf{b}}_n\|$

13 / 65

- Root Hermite factor
 - Given a basis $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ with $\|\mathbf{b}_1\| \leq \dots \leq \|\mathbf{b}_n\|$
 - ullet Basis **B** has root Hermite factor δ iff

$$\|\mathbf{b}_1\|pprox \delta^n\det(\Lambda)^{1/n}$$

Nicolai Krebs Lattice Parameter Estimation

- Root Hermite factor
 - Given a basis $\mathbf{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ with $\|\mathbf{b}_1\| \leq \dots \leq \|\mathbf{b}_n\|$
 - ullet Basis **B** has root Hermite factor δ iff

$$\|\mathbf{b}_1\| pprox \delta^n \det(\Lambda)^{1/n}$$

• The Lenstra, Lenstra and Lovász (LLL) algorithm⁵

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

⁵A. Lenstra, H. Lenstra, and L. Lovász, "Factoring polynomials with rational coefficients," *Mathematische Annalen*, vol. 261, Dec. 1982.

- Root Hermite factor
 - ullet Given a basis $oldsymbol{\mathsf{B}}=\{oldsymbol{\mathsf{b}}_1,\ldots,oldsymbol{\mathsf{b}}_n\}$ with $\|oldsymbol{\mathsf{b}}_1\|\leq\cdots\leq\|oldsymbol{\mathsf{b}}_n\|$
 - ullet Basis **B** has root Hermite factor δ iff

$$\|\mathbf{b}_1\| pprox \delta^n \det(\Lambda)^{1/n}$$

- The Lenstra, Lenstra and Lovász (LLL) algorithm⁵
 - Finds short vectors of length at most $2^{n/2}\lambda_1(\Lambda)$ in polynomial time

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

⁵A. Lenstra, H. Lenstra, and L. Lovász, "Factoring polynomials with rational coefficients," *Mathematische Annalen*, vol. 261, Dec. 1982.

- Root Hermite factor
 - ullet Given a basis $oldsymbol{\mathsf{B}} = \{oldsymbol{\mathsf{b}}_1, \dots, oldsymbol{\mathsf{b}}_n\}$ with $\|oldsymbol{\mathsf{b}}_1\| \leq \dots \leq \|oldsymbol{\mathsf{b}}_n\|$
 - ullet Basis **B** has root Hermite factor δ iff

$$\|\mathbf{b}_1\| pprox \delta^n \det(\Lambda)^{1/n}$$

- The Lenstra, Lenstra and Lovász (LLL) algorithm⁵
 - Finds short vectors of length at most $2^{n/2}\lambda_1(\Lambda)$ in polynomial time
 - In practice achieves $\delta \approx 1.021$ on average

⁵A. Lenstra, H. Lenstra, and L. Lovász, "Factoring polynomials with rational coefficients," *Mathematische Annalen*, vol. 261, Dec. 1982.

• The Block Korkin-Zolotarev (BKZ) algorithm⁶

⁶C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

- The Block Korkin-Zolotarev (BKZ) algorithm⁶
 - Simplified runtime estimate: $\rho \cdot n \cdot t_k$

⁶C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

- The Block Korkin-Zolotarev (BKZ) algorithm⁶
 - Simplified runtime estimate: $\rho \cdot n \cdot t_k$

⁶C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

- The Block Korkin-Zolotarev (BKZ) algorithm⁶
 - Simplified runtime estimate: $\rho \cdot n \cdot t_k$
 - ρ : number of rounds
 - t_k : cost of SVP oracle in dimension k

⁶C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

- The Block Korkin-Zolotarev (BKZ) algorithm⁶
 - Simplified runtime estimate: $\rho \cdot n \cdot t_k$
 - ρ : number of rounds
 - t_k : cost of SVP oracle in dimension k
 - Most significant progress in first 8 rounds⁷ \Rightarrow LWE-Estimator chooses $\rho=8$ with estimated output quality

$$\lim_{n\to\infty}\delta\approx\left(\frac{k(\pi k)^{\frac{1}{k}}}{2\pi e}\right)^{\frac{1}{2(k-1)}}$$

⁶C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

Realizing an SVP oracle in dimension k:

15 / 65

Realizing an SVP oracle in dimension k:

Enumeration algorithms

15 / 65

Nicolai Krebs Lattice Parameter Estimation

Realizing an SVP oracle in dimension k:

- Enumeration algorithms
 - Enumerate all lattice vectors in a bounded region

Realizing an SVP oracle in dimension k:

- Enumeration algorithms
 - Enumerate all lattice vectors in a bounded region
 - Can be improved by "relaxing" the approximation, pruning the search tree, and preprocessing

15 / 65

Realizing an SVP oracle in dimension k:

- Enumeration algorithms
 - Enumerate all lattice vectors in a bounded region
 - Can be improved by "relaxing" the approximation, pruning the search tree, and preprocessing
 - In $2^{\mathcal{O}(k \log k)}$ time and polynomial space

15 / 65

Nicolai Krebs Lattice Parameter Estimation

Realizing an SVP oracle in dimension k:

- Enumeration algorithms
 - Enumerate all lattice vectors in a bounded region
 - Can be improved by "relaxing" the approximation, pruning the search tree, and preprocessing
 - In $2^{O(k \log k)}$ time and polynomial space
- Sieving algorithms

Realizing an SVP oracle in dimension k:

- Enumeration algorithms
 - Enumerate all lattice vectors in a bounded region
 - Can be improved by "relaxing" the approximation, pruning the search tree, and preprocessing
 - In $2^{\mathcal{O}(k \log k)}$ time and polynomial space
- Sieving algorithms
 - Create a list of lattice points and combine list points such that resulting points have smaller length

15 / 65

Lattice Parameter Estimation

Realizing an SVP oracle in dimension k:

- Enumeration algorithms
 - Enumerate all lattice vectors in a bounded region
 - Can be improved by "relaxing" the approximation, pruning the search tree, and preprocessing
 - In $2^{\mathcal{O}(k \log k)}$ time and polynomial space
- Sieving algorithms
 - Create a list of lattice points and combine list points such that resulting points have smaller length
 - In $2^{\mathcal{O}(k)}$ time and exponential space

15 / 65

Nicolai Krebs Lattice Parameter Estimation

BKZ Sieving Cost Models

Name	Cost model
Q-Sieve (paranoid lower bound) ⁸	$2^{0.2075k}$
Q-Sieve ⁹	$2^{0.265k}$
Sieve ⁹	$2^{0.292k}$

⁸E. Alkim, L. Ducas, T. Pöppelmann, *et al.*, "Post-quantum key exchange - A new hope," in *25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016*, T. Holz and S. Savage, Eds., USENIX Association, 2016, pp. 327–343.

⁹M. R. Albrecht, V. Gheorghiu, E. W. Postlethwaite, et al., "Estimating quantum speedups for lattice sieves," in Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II, S. Moriai and H. Wang, Eds., ser. Lecture Notes in Computer Science, vol. 12492, Springer, 2020, pp. 583–6132.

BKZ Enumeration Cost Models

Name	Cost model
Lotus ¹⁰	$2^{0.125k\log k - 0.755k + 2.254}$
Enum $+$ O(1) 10	$2^{0.187k\log k - 1.019k + 16.1}$
Q-Enum + $O(1)^{10}$	$2^{0.0936k \log k - 0.51k + 8.05}$
BKZ2.0-Enum ¹¹	$2^{0.184k \log k - 0.995k + 16.25}$
ABF20-Enum 11	$2^{0.125k\log k}$
Q-ABF20-Enum 11	$2^{0.0625k\log k}$

¹⁰M. R. Albrecht, B. R. Curtis, A. Deo, et al., "Estimate all the {lwe, ntru} schemes!" In Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 351–367.

 $^{^{11}}$ M. R. Albrecht, S. Bai, P.-A. Fouque, et al., "Faster enumeration-based lattice reduction: Root hermite factor $k^{1/(2k)}$ time $k^{k/8+o(k)}$," in Advances in Cryptology - CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II, D. Micciancio and T. Ristenpart, Eds., ser. Lecture Notes in Computer Science, vol. 12171, Springer, 2020, pp. 186–212.

BKZ Enumeration Cost Models

BKZ Enumeration Cost Models

Approaches to Solving LWE

SIS Attack Estimates Comparison

Figure: SIS with $n^2 < q < 2n^2$, $m = 2n\sqrt{n \log q}$, $s = 2\sqrt{n \log q}$

SIS Attack Estimates Prioritization

Algorithm	Priority	Justification
Lattice Reduction MR	1	fastest, low cost estimates
Lattice Reduction RS	2	same results as lattice-reduction, not always applicable
Combinatorial Attack	10	fast, often higher cost results
Combinatorial Conservative	9	fast, slighly lower estimates than Combinatorial Attack

LWE Attacks Estimates Comparison

Figure: LWE with $\sigma = 2.828, \ m = \infty, \ n < q < 2n$

LWE Attacks Estimates Comparison

Figure: LWE with parameters chosen as in Regev (ACM 2005)¹²

¹²O. Regev, "On lattices, learning with errors, random linear codes, and cryptography," in *Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005*, H. N. Gabow and R. Fagin, Eds., ACM, 2005, pp. 84–93.

LWE Attack Estimates Prioritization

Algorithm	Priority	Justification
Meet-in-the-Middle	5	fastest, high cost estimate, as a prefilter
Primal uSVP	10	fast, low cost estimatate estimates
Dual Attack	20	fast, often higher estimates than Primal uSVP
Dual Attack (no LLL)	30	fast, often higher estimates than Dual
Coded-BKW	90	slow, somtimes very low cost estimate (for small stddev),
		does not always yield results
Decoding Attack	100	slow, often higher estimates than faster algorithms
Arora-Ge	200	extremely slow, often higher estimates, does not
		always yield results

Table of Contents

- Motivation
- 2 Attack Cost Estimation
- Ring and Module Variants
- 4 Norms and Distributions
- Generic Parameter Search
- 6 Demo

Ring and Module Variants

• Interpret $r \in \mathcal{R}$ as an n dimensional vector s.t. $r = \sum_{i=0}^{n-1} r_i x^i$

27 / 65

Ring and Module Variants

- Interpret $r \in \mathcal{R}$ as an n dimensional vector s.t. $r = \sum_{i=0}^{n-1} r_i x^i$
- Each a_i in ring variant corresponds to an n × n block in the matrix A' of the standard integer variant obtained by rotation:

$$\operatorname{Rot}(a) = \begin{pmatrix} a_0 & -a_{n-1} & \cdots & -a_1 \\ a_1 & a_0 & \cdots & -a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

Nicolai Krebs

- Interpret $r \in \mathcal{R}$ as an n dimensional vector s.t. $r = \sum_{i=0}^{n-1} r_i x^i$
- Each a_i in ring variant corresponds to an n × n block in the matrix A' of the standard integer variant obtained by rotation:

$$\mathsf{Rot}(a) = \begin{pmatrix} a_0 & -a_{n-1} & \cdots & -a_1 \\ a_1 & a_0 & \cdots & -a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

$$\Rightarrow$$
 $\mathbf{A}' = [\mathsf{Rot}(a_1) \mid \cdots \mid \mathsf{Rot}(a_m)]$

- Interpret $r \in \mathcal{R}$ as an n dimensional vector s.t. $r = \sum_{i=0}^{n-1} r_i x^i$
- Each a_i in ring variant corresponds to an n × n block in the matrix A' of the standard integer variant obtained by rotation:

$$\mathsf{Rot}(a) = \begin{pmatrix} a_0 & -a_{n-1} & \cdots & -a_1 \\ a_1 & a_0 & \cdots & -a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

$$\Rightarrow$$
 $\mathbf{A}' = [\mathsf{Rot}(a_1) \mid \cdots \mid \mathsf{Rot}(a_m)]$

- Interpret $r \in \mathcal{R}$ as an n dimensional vector s.t. $r = \sum_{i=0}^{n-1} r_i x^i$
- Each a_i in ring variant corresponds to an n × n block in the matrix A' of the standard integer variant obtained by rotation:

$$\mathsf{Rot}(a) = egin{pmatrix} a_0 & -a_{n-1} & \cdots & -a_1 \ a_1 & a_0 & \cdots & -a_2 \ dots & dots & \ddots & dots \ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

$$\Rightarrow$$
 $\mathbf{A}' = [\mathsf{Rot}(a_1) \mid \cdots \mid \mathsf{Rot}(a_m)]$

For module variants this becomes

			$n \cdot m$	
	$\bigcap_{i=1}^{n} \operatorname{Rot}(\boldsymbol{a}_{1,1})$	$Rot(\boldsymbol{a}_{1,2})$		$\operatorname{Rot}(\boldsymbol{a}_{1,m})$
$i \cdot d$ -	i	i	N.	÷
	$\operatorname{Rot}(\pmb{a}_{d,1})$	$\operatorname{Rot}(\boldsymbol{a}_{d,2})$		$\operatorname{Rot}(\boldsymbol{a}_{d,m})$

Resulting mapping to standard variant:

• $\mathsf{RSIS}_{n,q,m,\beta} \longrightarrow \mathsf{SIS}_{n,q,m\cdot n,\beta}$

28 / 65

Resulting mapping to standard variant:

- $RSIS_{n,q,m,\beta} \longrightarrow SIS_{n,q,m\cdot n,\beta}$
- $MSIS_{n,d,q,m,\beta} \longrightarrow SIS_{n \cdot d,q,m \cdot n,\beta}$

28 / 65

Resulting mapping to standard variant:

- $RSIS_{n,q,m,\beta} \longrightarrow SIS_{n,q,m\cdot n,\beta}$
- $MSIS_{n,d,q,m,\beta} \longrightarrow SIS_{n\cdot d,q,m\cdot n,\beta}$
- $\mathsf{RLWE}_{n,q,m,\chi} \longrightarrow \mathsf{LWE}_{n,q,m\cdot n,\chi}$

28 / 65

Resulting mapping to standard variant:

- $RSIS_{n,q,m,\beta} \longrightarrow SIS_{n,q,m\cdot n,\beta}$
- $MSIS_{n,d,q,m,\beta} \longrightarrow SIS_{n\cdot d,q,m\cdot n,\beta}$
- $\mathsf{RLWE}_{n,q,m,\chi} \longrightarrow \mathsf{LWE}_{n,q,m\cdot n,\chi}$
- $\mathsf{MLWE}_{n,d,q,m,\chi} \longrightarrow \mathsf{LWE}_{n\cdot d,q,m\cdot n,\chi}$

28 / 65

LWE and SIS Classes Overview

Table of Contents

- Morms and Distributions

Nicolai Krebs Lattice Parameter Estimation

Norms and Distributions

ullet Classes norm.Lp and norm.Cp for ℓ_p -norms and norms on the canonical embedding respectively

31 / 65

Norms and Distributions

- \bullet Classes norm.Lp and norm.Cp for $\ell_p\text{-norms}$ and norms on the canonical embedding respectively
- Norm bounding in class methods to_Lp(), addition and multiplication supported

31 / 65

Norms and Distributions

- \bullet Classes norm.Lp and norm.Cp for $\ell_p\text{-norms}$ and norms on the canonical embedding respectively
- Norm bounding in class methods to_Lp(), addition and multiplication supported
- Uniform and Gaussian distribution and Gaussian to bound in module distributions

31 / 65

Table of Contents

- Motivation
- 2 Attack Cost Estimation
- Ring and Module Variants
- Morms and Distributions
- **5** Generic Parameter Search
- 6 Demo

Algorithm 1: Generic Search

Input: sec, initial_params, next_parameters, parameter_cost, problem_instance

Algorithm 1: Generic Search

Input: sec, initial_params, next_parameters, parameter_cost, problem_instance L = OrderedList(initial_params)

Algorithm 1: Generic Search

```
Input: sec, initial_params, next_parameters, parameter_cost, problem_instance L = OrderedList(initial_params)

while L \neq \emptyset do

| current_params = L.pop()
| instances = parameter_problem(current_params)
```

Algorithm 1: Generic Search

Algorithm 1: Generic Search

```
Input: sec, initial params, next parameters, parameter cost, problem instance
L = OrderedList(initial\_params)
while L \neq \emptyset do
   current params = L.pop()
   instances = parameter_problem(current_params)
   result = estimate(instances, sec)
   if result is secure then
      return (result, current_params)
   else
       next param sets = next parameters(current params)
       forall param set in next param sets do
          sort param_set into L according to parameter_cost function
```

Table of Contents

- Motivation
- 2 Attack Cost Estimation
- Ring and Module Variants
- 4 Norms and Distributions
- Generic Parameter Search
- 6 Demo

34 / 65

Thank You!

35 / 65

References I

- P. W. Shor, "Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer," *SIAM J. Comput.*, vol. 26, no. 5, pp. 1484–1509, 1997.
- M. Ajtai, "Generating hard instances of lattice problems (extended abstract)," in *Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996*, G. L. Miller, Ed., ACM, 1996, pp. 99–108.
- O. Regev, "On lattices, learning with errors, random linear codes, and cryptography," in *Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005*, H. N. Gabow and R. Fagin, Eds., ACM, 2005, pp. 84–93.
- M. R. Albrecht, R. Player, and S. Scott, "On the concrete hardness of learning with errors," *J. Math. Cryptol.*, vol. 9, no. 3, pp. 169–203, 2015.

References II

- A. Lenstra, H. Lenstra, and L. Lovász, "Factoring polynomials with rational coefficients," *Mathematische Annalen*, vol. 261, Dec. 1982.
- C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.
- Y. Chen, "Réduction de réseau et sécurité concrete du chiffrement completement homomorphe," PhD thesis, Paris 7, 2013.
- E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, "Post-quantum key exchange A new hope," in 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12, 2016, T. Holz and S. Savage, Eds., USENIX Association, 2016, pp. 327–343.

References III

M. R. Albrecht, V. Gheorghiu, E. W. Postlethwaite, and J. M. Schanck, "Estimating quantum speedups for lattice sieves," in *Advances in Cryptology - ASIACRYPT 2020 - 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7-11, 2020, Proceedings, Part II, S. Moriai and H. Wang, Eds., ser. Lecture Notes in Computer Science, vol. 12492*, Springer, 2020, pp. 583–613.

M. R. Albrecht, B. R. Curtis, A. Deo, A. Davidson, R. Player, E. W. Postlethwaite, F. Virdia, and T. Wunderer, "Estimate all the {lwe, ntru} schemes!" In Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 351–367.

References IV

- M. R. Albrecht, S. Bai, P.-A. Fouque, P. Kirchner, D. Stehlé, and W. Wen, "Faster enumeration-based lattice reduction: Root hermite factor $k^{1/(2k)}$ time $k^{1/(2k)}$ time $k^{1/(2k)}$ time $k^{1/(2k)}$ in Advances in Cryptology CRYPTO 2020 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part II, D. Micciancio and T. Ristenpart, Eds., ser. Lecture Notes in Computer Science, vol. 12171, Springer, 2020, pp. 186–212.
- O. Regev, Lecture notes in lattices in computer science, Fall 2004.
- R. Lindner and C. Peikert, "Better key sizes (and attacks) for lwe-based encryption," in Topics in Cryptology CT-RSA 2011 The Cryptographers' Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings, A. Kiayias, Ed., ser. Lecture Notes in Computer Science, vol. 6558, Springer, 2011, pp. 319–339.

References V

- M. R. Albrecht, R. Fitzpatrick, and F. Göpfert, "On the efficacy of solving LWE by reduction to unique-syp." in Information Security and Cryptology - ICISC 2013 - 16th International Conference, Seoul, Korea, November 27-29, 2013, Revised Selected Papers, H.-S. Lee and D.-G. Han. Eds., ser. Lecture Notes in Computer Science, vol. 8565. Springer, 2013, pp. 293–310.
- A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," J. ACM, vol. 50, no. 4, pp. 506–519, 2003.
- D. Micciancio and O. Regev, "Lattice-based cryptography," in Post-Quantum Cryptography, D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191, ISBN: 978-3-540-88702-7.

References VI

V. Lyubashevsky, C. Peikert, and O. Regev, "A toolkit for ring-lwe cryptography," in Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, T. Johansson and P. Q. Nguyen, Eds., ser. Lecture Notes in Computer Science, vol. 7881, Springer, 2013, pp. 35–54.

C. Baum, I. Damgård, V. Lyubashevsky, S. Oechsner, and C. Peikert, "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385.

References VII

- I. Damgård, C. Orlandi, A. Takahashi, and M. Tibouchi, "Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices," in Public-Key Cryptography -PKC 2021 - 24th IACR International Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I, J. A. Garay, Ed., ser. Lecture Notes in Computer Science, vol. 12710, Springer, 2021, pp. 99-130.
- I. Damgård, V. Pastro, N. P. Smart, and S. Zakarias, "Multiparty computation from somewhat homomorphic encryption," in Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, R. Safavi-Naini and R. Canetti, Eds., ser. Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 643–662.

References VIII

V. Lyubashevsky, "Lattice signatures without trapdoors," in *Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings*, D. Pointcheval and T. Johansson, Eds., ser. Lecture Notes in Computer Science, vol. 7237, Springer, 2012, pp. 738–755.

43 / 65

• Given basis $\mathbf{B} = [\mathbf{b}_1 \cdots \mathbf{b}_n]$

44 / 65

- Given basis $\mathbf{B} = [\mathbf{b}_1 \cdots \mathbf{b}_n]$
- Define $\tilde{\mathbf{b}}_i$ as follows:

44 / 65

- Given basis $\mathbf{B} = [\mathbf{b}_1 \cdots \mathbf{b}_n]$
- Define $\tilde{\mathbf{b}}_i$ as follows:
 - $\bullet \ \ \tilde{\textbf{b}}_1 = \textbf{b}_1$

44 / 65

- Given basis $\mathbf{B} = [\mathbf{b}_1 \cdots \mathbf{b}_n]$
- Define $\tilde{\mathbf{b}}_i$ as follows:
 - $oldsymbol{ ilde{b}}_1 = oldsymbol{b}_1$
 - For $i \in \{2, ..., n\}$:

$$\tilde{\mathbf{b}}_i = \mathbf{b}_i - \pi_{\mathsf{span}(\mathbf{b}_1, \dots, \mathbf{b}_{i-1})}(\mathbf{b}_i).$$

Nicolai Krebs Lattice Parameter Estimation

- Given basis $\mathbf{B} = [\mathbf{b}_1 \cdots \mathbf{b}_n]$
- Define $\tilde{\mathbf{b}}_i$ as follows:
 - $oldsymbol{ ilde{b}}_1 = oldsymbol{b}_1$
 - For $i \in \{2, ..., n\}$:

$$\tilde{\mathbf{b}}_i = \mathbf{b}_i - \pi_{\mathsf{span}(\mathbf{b}_1, \dots, \mathbf{b}_{i-1})}(\mathbf{b}_i).$$

 $oldsymbol{ ilde{B}} = \left[oldsymbol{ ilde{b}}_1 \cdots oldsymbol{ ilde{b}}_n
ight]$ is the Gram-Schmidt orthogonalization of $oldsymbol{B}$

- Given basis $\mathbf{B} = [\mathbf{b}_1 \cdots \mathbf{b}_n]$
- Define $\tilde{\mathbf{b}}_i$ as follows:
 - $oldsymbol{ ilde{b}}_1 = oldsymbol{b}_1$
 - For $i \in \{2, ..., n\}$:

$$\tilde{\mathbf{b}}_i = \mathbf{b}_i - \pi_{\mathsf{span}(\mathbf{b}_1, \dots, \mathbf{b}_{i-1})}(\mathbf{b}_i).$$

- $oldsymbol{ ilde{g}} = \left[ilde{oldsymbol{b}}_1 \cdots ilde{oldsymbol{b}}_n
 ight]$ is the Gram-Schmidt orthogonalization of $oldsymbol{B}$
- We define Gram-Schmidt coefficients

$$\mu_{i,j} = rac{\left\langle ilde{\mathbf{b}}_j, \mathbf{b}_i
ight
angle}{\left\langle ilde{\mathbf{b}}_j, ilde{\mathbf{b}}_j
ight
angle}$$

The LLL Algorithm

• Proposed by Lenstra, Lenstra and Lovász in 13

¹³ A. Lenstra, H. Lenstra, and L. Lovász, "Factoring polynomials with rational coefficients," *Mathematische Annalen*, vol. 261, Dec. 1982.

The LLL Algorithm

- Proposed by Lenstra, Lenstra and Lovász in¹³
- Finds short vectors of length at most $2^{n/2}\lambda_1(\Lambda)$ in polynomial time

¹³ A. Lenstra, H. Lenstra, and L. Lovász, "Factoring polynomials with rational coefficients," *Mathematische Annalen*, vol. 261, Dec. 1982.

- Proposed by Lenstra, Lenstra and Lovász in¹³
- ullet Finds short vectors of length at most $2^{n/2}\lambda_1(\Lambda)$ in polynomial time
- A θ -LLL reduced basis ensures two criteria:

Nicolai Krebs Lattice Parameter Estimation November 26, 2021 45 / 65

¹³ A. Lenstra, H. Lenstra, and L. Lovász, "Factoring polynomials with rational coefficients," *Mathematische Annalen*, vol. 261, Dec. 1982.

- Proposed by Lenstra, Lenstra and Lovász in¹³
- Finds short vectors of length at most $2^{n/2}\lambda_1(\Lambda)$ in polynomial time
- A θ -LLL reduced basis ensures two criteria:
 - Size-reduced: $|\mu_{i,j}| \leq \frac{1}{2}$ for $1 \leq i \leq n$ and j < i

Nicolai Krebs Lattice Parameter Estimation November 26, 2021 45 / 65

¹³A. Lenstra, H. Lenstra, and L. Lovász, "Factoring polynomials with rational coefficients," *Mathematische Annalen*, vol. 261, Dec. 1982.

- Proposed by Lenstra, Lenstra and Lovász in¹³
- Finds short vectors of length at most $2^{n/2}\lambda_1(\Lambda)$ in polynomial time
- A θ -LLL reduced basis ensures two criteria:
 - Size-reduced: $|\mu_{i,j}| \leq \frac{1}{2}$ for $1 \leq i \leq n$ and j < i
 - Lovász condition: $\theta \|\tilde{\mathbf{b}}_i\|^2 > \|\mu_{i+1,i}\tilde{\mathbf{b}}_i + \tilde{\mathbf{b}}_{i+1}\|^2$ for $1 \leq i < n$

Nicolai Krebs Lattice Parameter Estimation November 26, 2021 45 / 65

¹³A. Lenstra, H. Lenstra, and L. Lovász, "Factoring polynomials with rational coefficients," *Mathematische Annalen*, vol. 261, Dec. 1982.

Algorithm 2: The LLL Algorithm^a

 $\begin{array}{l} \textbf{function} \ \theta\text{-LLL}(\mathbf{B} \in \mathbb{Z}^{m \times n}) \\ | \ \ \mathsf{Compute} \ \tilde{\mathbf{B}} \end{array}$

Algorithm 2: The LLL Algorithm^a

$$\begin{array}{c|c} \mathbf{function} \ \theta\text{-LLL}(\mathbf{B} \in \mathbb{Z}^{m \times n}) \\ & \mathbf{Compute} \ \tilde{\mathbf{B}} \\ & \mathbf{for} \ i = 2, \dots, n \ \mathbf{do} \\ & \mathbf{for} \ j = i-1, \dots, 1 \ \mathbf{do} \\ & \mathbf{b}_i = \mathbf{b}_i - \lfloor \mu_{i,j} \rceil \mathbf{b}_j \end{array}$$

46 / 65

Nicolai Krebs Lattice Parameter Estimation

Algorithm 2: The LLL Algorithm^a

```
function \theta-LLL(\mathbf{B} \in \mathbb{Z}^{m \times n})
      Compute B
      for i = 2, ..., n do
             for i = i - 1, ..., 1 do
            \lfloor \mathbf{b}_i = \mathbf{b}_i - \lfloor \mu_{i,j} \rceil \mathbf{b}_j
      if \exists i such that \theta \|\tilde{\mathbf{b}}_i\|^2 > \|\mu_{i+1,i}\tilde{\mathbf{b}}_i + \tilde{\mathbf{b}}_{i+1}\|^2 then
             Swap \mathbf{b}_i and \mathbf{b}_{i+1}
             Return \theta-LLL(B)
      else
        Return B
```


46 / 65

Nicolai Krebs Lattice Parameter Estimation

^aO. Regev. Lecture notes in lattices in computer science. Fall 2004.

• LLL reduce input basis $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$

Nicolai Krebs Lattice Parameter Estimation Nove

¹⁴C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings,* L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

- LLL reduce input basis $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$
- In jth iteration project block $\mathbf{b}_j, \dots, \mathbf{b}_{j+k-1}$ to the orthogonal complement of span $(\{\mathbf{b}_i \mid i \in [j-1]\})$

¹⁴C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

- LLL reduce input basis $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$
- In jth iteration project block $\mathbf{b}_j, \dots, \mathbf{b}_{j+k-1}$ to the orthogonal complement of span $(\{\mathbf{b}_i \mid i \in [j-1]\})$
- ullet Run SVP oracle on the projected block to obtain shortest vector $oldsymbol{b}'_{\text{new}}$ in the projected lattice

¹⁴C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

- LLL reduce input basis $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$
- In jth iteration project block $\mathbf{b}_j, \dots, \mathbf{b}_{j+k-1}$ to the orthogonal complement of span $(\{\mathbf{b}_i \mid i \in [j-1]\})$
- ullet Run SVP oracle on the projected block to obtain shortest vector $oldsymbol{b}'_{\text{new}}$ in the projected lattice
- Recover lattice vector \mathbf{b}_{new} from \mathbf{b}'_{new}

¹⁴C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

- LLL reduce input basis $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$
- In jth iteration project block $\mathbf{b}_j, \dots, \mathbf{b}_{j+k-1}$ to the orthogonal complement of span $(\{\mathbf{b}_i \mid i \in [j-1]\})$
- ullet Run SVP oracle on the projected block to obtain shortest vector $oldsymbol{b}'_{\text{new}}$ in the projected lattice
- \bullet Recover lattice vector \boldsymbol{b}_{new} from \boldsymbol{b}'_{new}
- If \mathbf{b}_{new} is new, insert \mathbf{b}_{new} into list of basis vectors and run LLL on $\{\mathbf{b}_j,\ldots,\mathbf{b}_{j-1},\mathbf{b}_{\text{new}},\mathbf{b}_j,\ldots,\mathbf{b}_h\}$ to obtain n linearly independent basis vectors

¹⁴C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

- LLL reduce input basis $\{\mathbf{b}_1, \dots, \mathbf{b}_n\}$
- In jth iteration project block $\mathbf{b}_j, \dots, \mathbf{b}_{j+k-1}$ to the orthogonal complement of span $(\{\mathbf{b}_i \mid i \in [j-1]\})$
- ullet Run SVP oracle on the projected block to obtain shortest vector $oldsymbol{b}'_{\text{new}}$ in the projected lattice
- \bullet Recover lattice vector \boldsymbol{b}_{new} from \boldsymbol{b}'_{new}
- If \mathbf{b}_{new} is new, insert \mathbf{b}_{new} into list of basis vectors and run LLL on $\{\mathbf{b}_j,\ldots,\mathbf{b}_{j-1},\mathbf{b}_{\text{new}},\mathbf{b}_j,\ldots,\mathbf{b}_h\}$ to obtain n linearly independent basis vectors
- Repeat until no change in n iterations, counter j resets to 1 after n k + 1 iterations (one round)

¹⁴C.-P. Schnorr and M. Euchner, "Lattice basis reduction: Improved practical algorithms and solving subset sum problems," in *Fundamentals of Computation Theory, 8th International Symposium, FCT '91, Gosen, Germany, September 9-13, 1991, Proceedings*, L. Budach, Ed., ser. Lecture Notes in Computer Science, vol. 529, Springer, 1991, pp. 68–85.

• Various improvements: early termination, local preprocessing, progressive BKZ

48 / 65

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

- Various improvements: early termination, local preprocessing, progressive BKZ
- Simplified runtime estimate: $\rho \cdot n \cdot t_k$

48 / 65

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

- Various improvements: early termination, local preprocessing, progressive BKZ
- Simplified runtime estimate: $\rho \cdot n \cdot t_k$
 - $m{\circ}$ ho: number of rounds

48 / 65

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

- Various improvements: early termination, local preprocessing, progressive BKZ
- Simplified runtime estimate: $\rho \cdot n \cdot t_k$
 - ρ : number of rounds
 - t_k : cost of SVP oracle in dimension k

- Various improvements: early termination, local preprocessing, progressive BKZ
- Simplified runtime estimate: $\rho \cdot n \cdot t_k$
 - ρ : number of rounds
 - t_k : cost of SVP oracle in dimension k
- ullet Most significant progress in first 8 rounds $^{15} \Rightarrow$ LWE-Estimator chooses ho = 8

PhD thesis, Paris 7, 2013.

Nicolai Krebs

Lattice Parameter Estimation

November 26, 2021 48/65

¹⁵Y. Chen, "Réduction de réseau et sécurité concrete du chiffrement completement homomorphe,"

BDD_{\sim}

Given a lattice $\Lambda \subset \mathbb{R}^m$ and a target vector $\mathbf{t} \in \mathbb{R}^m$ such that dist $(\mathbf{t}, \Lambda) < \gamma \lambda_1(\Lambda)$, the (approximate) Bounded Distance Decoding (BDD $_{\gamma}$) is the problem of finding the closest lattice vector $\mathbf{v} \in \Lambda$, i.e., $\mathbf{v} = \arg\min_{\mathbf{v}' \in \Lambda} \|\mathbf{v}' - \mathbf{t}\|$.

BDD_{γ}

Given a lattice $\Lambda \subset \mathbb{R}^m$ and a target vector $\mathbf{t} \in \mathbb{R}^m$ such that $\mathrm{dist}(\mathbf{t}, \Lambda) < \gamma \lambda_1(\Lambda)$, the (approximate) Bounded Distance Decoding (BDD_γ) is the problem of finding the closest lattice vector $\mathbf{v} \in \Lambda$, i.e., $\mathbf{v} = \arg\min_{\mathbf{v}' \in \Lambda} \|\mathbf{v}' - \mathbf{t}\|$.

Consider the LWE lattice $\Lambda_q(\mathbf{A}^\intercal) = \{ \mathbf{v} \in \mathbb{Z}^m \mid \exists \mathbf{y} \in \mathbb{Z}^n : \mathbf{v} = \mathbf{A}^\intercal \mathbf{y} \mod q \}.$

Nicolai Krebs

BDD_{\sim}

Given a lattice $\Lambda \subset \mathbb{R}^m$ and a target vector $\mathbf{t} \in \mathbb{R}^m$ such that dist $(\mathbf{t}, \Lambda) < \gamma \lambda_1(\Lambda)$, the (approximate) Bounded Distance Decoding (BDD $_{\gamma}$) is the problem of finding the closest lattice vector $\mathbf{v} \in \Lambda$, i.e., $\mathbf{v} = \arg\min_{\mathbf{v}' \in \Lambda} \|\mathbf{v}' - \mathbf{t}\|$.

Consider the LWE lattice $\Lambda_q(\mathbf{A}^{\mathsf{T}}) = \{ \mathbf{v} \in \mathbb{Z}^m \mid \exists \mathbf{y} \in \mathbb{Z}^n : \mathbf{v} = \mathbf{A}^{\mathsf{T}}\mathbf{y} \mod q \}.$

• $z = A^T s + e \mod a = A^T s + e + ax$ for some $x \in \mathbb{Z}^m$

BDD_{γ}

Given a lattice $\Lambda \subset \mathbb{R}^m$ and a target vector $\mathbf{t} \in \mathbb{R}^m$ such that $\mathrm{dist}(\mathbf{t}, \Lambda) < \gamma \lambda_1(\Lambda)$, the (approximate) Bounded Distance Decoding (BDD_γ) is the problem of finding the closest lattice vector $\mathbf{v} \in \Lambda$, i.e., $\mathbf{v} = \arg\min_{\mathbf{v}' \in \Lambda} \|\mathbf{v}' - \mathbf{t}\|$.

Consider the LWE lattice $\Lambda_q(\mathbf{A}^\intercal) = \{ \mathbf{v} \in \mathbb{Z}^m \mid \exists \mathbf{y} \in \mathbb{Z}^n : \mathbf{v} = \mathbf{A}^\intercal \mathbf{y} \mod q \}.$

- ullet $\mathbf{z} = \mathbf{A}^{\mathsf{T}}\mathbf{s} + \mathbf{e} \mod q = \mathbf{A}^{\mathsf{T}}\mathbf{s} + \mathbf{e} + q\mathbf{x}$ for some $\mathbf{x} \in \mathbb{Z}^m$
- \bullet A^Ts + qx

BDD_{γ}

Given a lattice $\Lambda \subset \mathbb{R}^m$ and a target vector $\mathbf{t} \in \mathbb{R}^m$ such that $\mathrm{dist}(\mathbf{t}, \Lambda) < \gamma \lambda_1(\Lambda)$, the (approximate) Bounded Distance Decoding (BDD_γ) is the problem of finding the closest lattice vector $\mathbf{v} \in \Lambda$, i.e., $\mathbf{v} = \arg\min_{\mathbf{v}' \in \Lambda} \|\mathbf{v}' - \mathbf{t}\|$.

Consider the LWE lattice $\Lambda_q(\mathbf{A}^{\intercal}) = \{ \mathbf{v} \in \mathbb{Z}^m \mid \exists \mathbf{y} \in \mathbb{Z}^n : \mathbf{v} = \mathbf{A}^{\intercal}\mathbf{y} \mod q \}.$

- ullet $\mathbf{z} = \mathbf{A}^{\mathsf{T}}\mathbf{s} + \mathbf{e} \mod q = \mathbf{A}^{\mathsf{T}}\mathbf{s} + \mathbf{e} + q\mathbf{x}$ for some $\mathbf{x} \in \mathbb{Z}^m$
- $\bullet \ \mathbf{A}^\mathsf{T}\mathbf{s} + q\mathbf{x}$
- dist $(\mathbf{z}, \Lambda_q(\mathbf{A}^\intercal) = \|\mathbf{e}\|$ and, in general, $\|\mathbf{e}\| < \gamma \lambda_1(\Lambda_q(\mathbf{A}^\intercal))$

Nicolai Krebs

BDD_{γ}

Given a lattice $\Lambda \subset \mathbb{R}^m$ and a target vector $\mathbf{t} \in \mathbb{R}^m$ such that $\mathrm{dist}(\mathbf{t}, \Lambda) < \gamma \lambda_1(\Lambda)$, the (approximate) Bounded Distance Decoding (BDD $_{\gamma}$) is the problem of finding the closest lattice vector $\mathbf{v} \in \Lambda$, i.e., $\mathbf{v} = \arg\min_{\mathbf{v}' \in \Lambda} \|\mathbf{v}' - \mathbf{t}\|$.

Consider the LWE lattice $\Lambda_q(\mathbf{A}^{\intercal}) = \{ \mathbf{v} \in \mathbb{Z}^m \mid \exists \mathbf{y} \in \mathbb{Z}^n : \mathbf{v} = \mathbf{A}^{\intercal}\mathbf{y} \mod q \}.$

- ullet $\mathbf{z} = \mathbf{A}^{\mathsf{T}}\mathbf{s} + \mathbf{e} \mod q = \mathbf{A}^{\mathsf{T}}\mathbf{s} + \mathbf{e} + q\mathbf{x}$ for some $\mathbf{x} \in \mathbb{Z}^m$
- \bullet $A^Ts + qx$
- dist $(\mathbf{z}, \Lambda_q(\mathbf{A}^\intercal) = \|\mathbf{e}\|$ and, in general, $\|\mathbf{e}\| < \gamma \lambda_1(\Lambda_q(\mathbf{A}^\intercal))$
- Solving BDD solves LWE

Decoding Attack¹⁶

¹⁶R. Lindner and C. Peikert, "Better key sizes (and attacks) for lwe-based encryption," in *Topics in Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings*, A. Kiayias, Ed., ser. Lecture Notes in Computer Science, vol. 6558, Springer, 2011, pp. 319–339.

- Decoding Attack¹⁶
 - Reduction step: run BKZ to improve basis quality

¹⁶R. Lindner and C. Peikert, "Better key sizes (and attacks) for lwe-based encryption," in *Topics in Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings*, A. Kiayias, Ed., ser. Lecture Notes in Computer Science, vol. 6558, Springer, 2011, pp. 319–339.

- Decoding Attack¹⁶
 - Reduction step: run BKZ to improve basis quality
 - Decoding step: run a generalized variant of Babai's Nearest Planes (GNP) algorithm to enumerate candidate lattice vectors

¹⁶R. Lindner and C. Peikert, "Better key sizes (and attacks) for lwe-based encryption," in *Topics in Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings*, A. Kiayias, Ed., ser. Lecture Notes in Computer Science, vol. 6558, Springer, 2011, pp. 319–339.

- Decoding Attack¹⁶
 - Reduction step: run BKZ to improve basis quality
 - Decoding step: run a generalized variant of Babai's Nearest Planes (GNP) algorithm to enumerate candidate lattice vectors
 - Choose parameters for BKZ and GNP such that $t_{\text{DEC}} = \rho \cdot (t_{\text{BKZ}} + t_{\text{GNP}})$ is minimized

¹⁶R. Lindner and C. Peikert, "Better key sizes (and attacks) for lwe-based encryption," in *Topics in Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings*, A. Kiayias, Ed., ser. Lecture Notes in Computer Science, vol. 6558, Springer, 2011, pp. 319–339.

Primal uSVP¹⁷

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹⁷ M. R. Albrecht, R. Fitzpatrick, and F. Göpfert, "On the efficacy of solving LWE by reduction to unique-svp," in *Information Security and Cryptology - ICISC 2013 - 16th International Conference, Seoul, Korea, November 27-29, 2013, Revised Selected Papers*, H.-S. Lee and D.-G. Han, Eds., ser. Lecture Notes in Computer Science, vol. 8565, Springer, 2013, pp. 293–310.

- Primal uSVP¹⁷
 - Embed LWE lattice $\Lambda(\mathbf{B})$ in a new lattice $\Lambda(\mathbf{B}')$ with uSVP structure

$$\mathbf{B}' = egin{pmatrix} \mathbf{B} & \mathbf{z} \\ \mathbf{0}^\intercal & \mu \end{pmatrix}$$

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹⁷M. R. Albrecht, R. Fitzpatrick, and F. Göpfert, "On the efficacy of solving LWE by reduction to unique-svp," in *Information Security and Cryptology - ICISC 2013 - 16th International Conference, Seoul, Korea, November 27-29, 2013, Revised Selected Papers*, H.-S. Lee and D.-G. Han, Eds., ser. Lecture Notes in Computer Science, vol. 8565, Springer, 2013, pp. 293–310.

- Primal uSVP¹⁷
 - Embed LWE lattice $\Lambda(\mathbf{B})$ in a new lattice $\Lambda(\mathbf{B}')$ with uSVP structure

$$\mathbf{B}' = egin{pmatrix} \mathbf{B} & \mathbf{z} \\ \mathbf{0}^\intercal & \mu \end{pmatrix}$$

• Unique shortest vector in Λ' is $\mathbf{z}' = [-\mathbf{e}^\intercal, -\mu]^\intercal$ for some μ

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹⁷M. R. Albrecht, R. Fitzpatrick, and F. Göpfert, "On the efficacy of solving LWE by reduction to unique-svp," in *Information Security and Cryptology - ICISC 2013 - 16th International Conference, Seoul, Korea, November 27-29, 2013, Revised Selected Papers*, H.-S. Lee and D.-G. Han, Eds., ser. Lecture Notes in Computer Science, vol. 8565, Springer, 2013, pp. 293–310.

- Primal uSVP¹⁷
 - Embed LWE lattice $\Lambda(B)$ in a new lattice $\Lambda(B')$ with uSVP structure

$$\mathbf{B}' = egin{pmatrix} \mathbf{B} & \mathbf{z} \\ \mathbf{0}^\intercal & \mu \end{pmatrix}$$

- Unique shortest vector in Λ' is $\mathbf{z}' = [-\mathbf{e}^\intercal, -\mu]^\intercal$ for some μ
- Run BKZ to find z' and recover s

¹⁷M. R. Albrecht, R. Fitzpatrick, and F. Göpfert, "On the efficacy of solving LWE by reduction to unique-svp," in *Information Security and Cryptology - ICISC 2013 - 16th International Conference, Seoul, Korea, November 27-29, 2013, Revised Selected Papers*, H.-S. Lee and D.-G. Han, Eds., ser. Lecture Notes in Computer Science, vol. 8565, Springer, 2013, pp. 293–310.

• Consider the dual SIS lattice $\Lambda_q(\mathbf{A}^\intercal)^\perp = \{\mathbf{y} \in \mathbb{Z}^m \mid \mathbf{A}\mathbf{y} = \mathbf{0} \mod q\}$

¹⁸R. Lindner and C. Peikert, "Better key sizes (and attacks) for lwe-based encryption," in *Topics in Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings*, A. Kiayias, Ed., ser. Lecture Notes in Computer Science, vol. 6558, Springer, 2011, pp. 319–339.

- Consider the dual SIS lattice $\Lambda_q(\mathbf{A}^\intercal)^\perp = \{\mathbf{y} \in \mathbb{Z}^m \mid \mathbf{A}\mathbf{y} = \mathbf{0} \mod q\}$
- ullet For a lattice vector ${f v}\in \Lambda_q({f A}^{\scriptscriptstyle extsf{T}})^\perp$ it holds that

$$\langle \mathbf{v}, \mathbf{z} \rangle = \langle \mathbf{v}, \mathbf{A}^\mathsf{T} \mathbf{s} \rangle + \langle \mathbf{v}, \mathbf{e} \rangle = \langle \mathbf{v} \mathbf{A}^\mathsf{T}, \mathbf{s} \rangle + \langle \mathbf{v}, \mathbf{e} \rangle$$

= $\langle \mathbf{v}, \mathbf{e} \rangle \mod q$

¹⁸R. Lindner and C. Peikert, "Better key sizes (and attacks) for lwe-based encryption," in *Topics in Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings*, A. Kiayias, Ed., ser. Lecture Notes in Computer Science, vol. 6558, Springer, 2011, pp. 319–339.

- Consider the dual SIS lattice $\Lambda_q(\mathbf{A}^\intercal)^\perp = \{\mathbf{y} \in \mathbb{Z}^m \mid \mathbf{A}\mathbf{y} = \mathbf{0} \mod q\}$
- ullet For a lattice vector ${f v}\in \Lambda_q({f A}^{\scriptscriptstyle extsf{T}})^\perp$ it holds that

$$\langle \mathbf{v}, \mathbf{z} \rangle = \langle \mathbf{v}, \mathbf{A}^\mathsf{T} \mathbf{s} \rangle + \langle \mathbf{v}, \mathbf{e} \rangle = \langle \mathbf{v} \mathbf{A}^\mathsf{T}, \mathbf{s} \rangle + \langle \mathbf{v}, \mathbf{e} \rangle$$

= $\langle \mathbf{v}, \mathbf{e} \rangle \mod q$

• Test whether $\langle \mathbf{v}, \mathbf{e} \rangle \mod q$ corresponds to Gaussian of width $\|\mathbf{v}\| \cdot s$

¹⁸R. Lindner and C. Peikert, "Better key sizes (and attacks) for lwe-based encryption," in *Topics in Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings*, A. Kiayias, Ed., ser. Lecture Notes in Computer Science, vol. 6558, Springer, 2011, pp. 319–339.

- Consider the dual SIS lattice $\Lambda_q(\mathbf{A}^{\intercal})^{\perp} = \{ \mathbf{y} \in \mathbb{Z}^m \mid \mathbf{A}\mathbf{y} = \mathbf{0} \mod q \}$
- For a lattice vector $\mathbf{v} \in \Lambda_a(\mathbf{A}^{\mathsf{T}})^{\perp}$ it holds that

$$\langle \mathbf{v}, \mathbf{z} \rangle = \langle \mathbf{v}, \mathbf{A}^\mathsf{T} \mathbf{s} \rangle + \langle \mathbf{v}, \mathbf{e} \rangle = \langle \mathbf{v} \mathbf{A}^\mathsf{T}, \mathbf{s} \rangle + \langle \mathbf{v}, \mathbf{e} \rangle$$

= $\langle \mathbf{v}, \mathbf{e} \rangle \mod q$

- Test whether $\langle \mathbf{v}, \mathbf{e} \rangle \mod q$ corresponds to Gaussian of width $\|\mathbf{v}\| \cdot s$
- Advantage is close to $\exp(-\pi(\|\mathbf{v}\|s/q)^2)$

¹⁸R. Lindner and C. Peikert, "Better key sizes (and attacks) for lwe-based encryption," in *Topics in* Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings, A. Kiayias, Ed., ser. Lecture Notes in Computer Science, vol. 6558, Springer, 2011, pp. 319–339.

- ullet Consider the dual SIS lattice $\Lambda_q(\mathbf{A}^\intercal)^\perp = \{\mathbf{y} \in \mathbb{Z}^m \mid \mathbf{A}\mathbf{y} = \mathbf{0} \mod q\}$
- ullet For a lattice vector ${f v}\in \Lambda_q({f A}^{\scriptscriptstyle extsf{T}})^\perp$ it holds that

$$\langle \mathbf{v}, \mathbf{z} \rangle = \langle \mathbf{v}, \mathbf{A}^\mathsf{T} \mathbf{s} \rangle + \langle \mathbf{v}, \mathbf{e} \rangle = \langle \mathbf{v} \mathbf{A}^\mathsf{T}, \mathbf{s} \rangle + \langle \mathbf{v}, \mathbf{e} \rangle$$

= $\langle \mathbf{v}, \mathbf{e} \rangle \mod q$

- Test whether $\langle \mathbf{v}, \mathbf{e} \rangle \mod q$ corresponds to Gaussian of width $\|\mathbf{v}\| \cdot s$
- Advantage is close to $\exp(-\pi(\|\mathbf{v}\|s/q)^2)$
- Finding a short non-zero vector v in the dual SIS lattice solves Decision-LWE

¹⁸R. Lindner and C. Peikert, "Better key sizes (and attacks) for lwe-based encryption," in *Topics in Cryptology - CT-RSA 2011 - The Cryptographers' Track at the RSA Conference 2011, San Francisco, CA, USA, February 14-18, 2011. Proceedings,* A. Kiayias, Ed., ser. Lecture Notes in Computer Science, vol. 6558, Springer, 2011, pp. 319–339.

• Reduce dimension of input matrix **A** by finding collisions of its column vectors

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹⁹A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," *J. ACM*, vol. 50, no. 4, pp. 506–519, 2003.

- Reduce dimension of input matrix A by finding collisions of its column vectors
- In each step eliminate b components of the samples

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹⁹A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," *J. ACM*, vol. 50, no. 4, pp. 506–519, 2003.

- Reduce dimension of input matrix A by finding collisions of its column vectors
- In each step eliminate b components of the samples
 - $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ and $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ where \mathbf{a}_i and \mathbf{a}_i match in the last b components

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹⁹A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," *J. ACM*, vol. 50, no. 4, pp. 506–519, 2003.

- Reduce dimension of input matrix A by finding collisions of its column vectors
- In each step eliminate b components of the samples
 - $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ and $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ where \mathbf{a}_i and \mathbf{a}_i match in the last b components
 - $oldsymbol{a}_i oldsymbol{a}_j$ has only zero entries in the last b components

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹⁹A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," *J. ACM*, vol. 50, no. 4, pp. 506–519, 2003.

- Reduce dimension of input matrix A by finding collisions of its column vectors
- In each step eliminate b components of the samples
 - $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ and $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ where \mathbf{a}_i and \mathbf{a}_i match in the last b components
 - $\mathbf{a}_i \mathbf{a}_j$ has only zero entries in the last b components
 - $\bullet \ z_i z_j = \langle \mathbf{a}_i \mathbf{a}_j \rangle + e_i e_j$

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹⁹A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," *J. ACM*, vol. 50, no. 4, pp. 506–519, 2003.

- Reduce dimension of input matrix A by finding collisions of its column vectors
- In each step eliminate b components of the samples
 - $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ and $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ where \mathbf{a}_i and \mathbf{a}_i match in the last b components
 - $\mathbf{a}_i \mathbf{a}_i$ has only zero entries in the last b components
 - $z_i z_j = \langle \mathbf{a}_i \mathbf{a}_j \rangle + e_i e_j$
- Repeat a times until only small number of components left

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

¹⁹A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," *J. ACM*, vol. 50, no. 4, pp. 506–519, 2003.

- Reduce dimension of input matrix A by finding collisions of its column vectors
- In each step eliminate b components of the samples
 - $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ and $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ where \mathbf{a}_i and \mathbf{a}_i match in the last b components
 - $\mathbf{a}_i \mathbf{a}_i$ has only zero entries in the last b components
 - $z_i z_j = \langle \mathbf{a}_i \mathbf{a}_j \rangle + e_i e_j$
- Repeat a times until only small number of components left
- Recover secret vector by means of hypothesis testing and back substitution

¹⁹ A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," *J. ACM*, vol. 50, no. 4, pp. 506–519, 2003.

- Reduce dimension of input matrix A by finding collisions of its column vectors
- In each step eliminate b components of the samples
 - $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ and $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ where \mathbf{a}_i and \mathbf{a}_i match in the last b components
 - $\mathbf{a}_i \mathbf{a}_j$ has only zero entries in the last b components
 - $z_i z_j = \langle \mathbf{a}_i \mathbf{a}_j \rangle + e_i e_j$
- Repeat a times until only small number of components left
- Recover secret vector by means of hypothesis testing and back substitution
- Runtime complexity $\approx (a^2 n) \cdot \frac{q^b}{2}$

¹⁹A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," *J. ACM*, vol. 50, no. 4, pp. 506–519, 2003.

- Reduce dimension of input matrix A by finding collisions of its column vectors
- In each step eliminate b components of the samples
 - $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ and $z_i = \langle \mathbf{a}_i \mathbf{s} \rangle + e_i$ where \mathbf{a}_i and \mathbf{a}_i match in the last b components
 - $\mathbf{a}_i \mathbf{a}_j$ has only zero entries in the last b components
 - $z_i z_j = \langle \mathbf{a}_i \mathbf{a}_j \rangle + e_i e_j$
- Repeat a times until only small number of components left
- Recover secret vector by means of hypothesis testing and back substitution
- Runtime complexity $pprox (a^2n)\cdot rac{q^b}{2}$
- Estimator uses a variant called Coded-BKW

¹⁹A. Blum, A. Kalai, and H. Wasserman, "Noise-tolerant learning, the parity problem, and the statistical query model," *J. ACM*, vol. 50, no. 4, pp. 506–519, 2003.

Other Approaches

• Exhaustive search: Meet-In-The-Middle attack

54 / 65

Other Approaches

- Exhaustive search: Meet-In-The-Middle attack
- Arora-GB: solve system of non-linear equations

54 / 65

Other Approaches

- Exhaustive search: Meet-In-The-Middle attack
- Arora-GB: solve system of non-linear equations
- In practice much slower than other algorithms

54 / 65

Nicolai Krebs Lattice Parameter Estimation

• Finding short vector $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with $\|\mathbf{v}\| \leq \beta$ in the dual SIS lattice solves SIS

²⁰D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*,
D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 147–191, ISBN: 978-3-540-88702-7.

- Finding short vector $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with $\|\mathbf{v}\| \leq \beta$ in the dual SIS lattice solves SIS
- Lattice reduction yields $\mathbf{b_1}$ of length length $\|\mathbf{b_1}\| = \delta^m q^{n/m}$ (under the assumption that $\det(\Lambda(\mathbf{A}^\intercal)^\perp) \approx q^n$)

²⁰D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*, D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191, ISBN: 978-3-540-88702-7.

- Finding short vector $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with $\|\mathbf{v}\| \leq \beta$ in the dual SIS lattice solves SIS
- Lattice reduction yields $\mathbf{b_1}$ of length length $\|\mathbf{b_1}\| = \delta^m q^{n/m}$ (under the assumption that $\det(\Lambda(\mathbf{A}^\intercal)^\perp) \approx q^n$)
- Optimal subdimension is $m' = \sqrt{\frac{n \log q}{\log \delta}}$

²⁰D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*, D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191, ISBN: 978-3-540-88702-7.

- Finding short vector $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with $\|\mathbf{v}\| \leq \beta$ in the dual SIS lattice solves SIS
- Lattice reduction yields $\mathbf{b_1}$ of length length $\|\mathbf{b_1}\| = \delta^m q^{n/m}$ (under the assumption that $\det(\Lambda(\mathbf{A}^\intercal)^\perp) \approx q^n$)
- Optimal subdimension is $m' = \sqrt{\frac{n \log q}{\log \delta}}$
- Log root Hermite Factor for optimal subdimension is

$$\log \delta = \frac{\log^2 \beta}{4n \log q}$$

²⁰D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*, D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191, ISBN: 978-3-540-88702-7.

- Finding short vector $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with $\|\mathbf{v}\| \leq \beta$ in the dual SIS lattice solves SIS
- Lattice reduction yields $\mathbf{b_1}$ of length length $\|\mathbf{b_1}\| = \delta^m q^{n/m}$ (under the assumption that $\det(\Lambda(\mathbf{A}^\intercal)^\perp) \approx q^n$)
- Optimal subdimension is $m' = \sqrt{\frac{n \log q}{\log \delta}}$
- Log root Hermite Factor for optimal subdimension is

$$\log \delta = \frac{\log^2 \beta}{4n \log q}$$

• Similar result in Rückert and Schneider (2010, IACR Cryptol. ePrint Arch.)

²⁰D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*, D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191, ISBN: 978-3-540-88702-7.

• Find $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with coefficients bounded by β , i.e., $\|\mathbf{v}\|_{\infty} \leq \beta$

²¹D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*, D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191, ISBN: 978-3-540-88702-7.

- Find $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with coefficients bounded by β , i.e., $\|\mathbf{v}\|_{\infty} \leq \beta$
- Divide columns of **A** into 2^k sets of $m/2^k$ vectors

²¹D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*,
D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 147–191, ISBN: 978-3-540-88702-7.

- Find $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with coefficients bounded by β , i.e., $\|\mathbf{v}\|_{\infty} \leq \beta$
- Divide columns of **A** into 2^k sets of $m/2^k$ vectors
- ullet Compute a new set of all linear combinations of the vectors for each set with coefficients bounded by eta

²¹D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*,
D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 147–191, ISBN: 978-3-540-88702-7.

- Find $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with coefficients bounded by β , i.e., $\|\mathbf{v}\|_{\infty} \leq \beta$
- Divide columns of **A** into 2^k sets of $m/2^k$ vectors
- \bullet Compute a new set of all linear combinations of the vectors for each set with coefficients bounded by β
- $\Rightarrow L = (2\beta + 1)^{m/2^k}$ vectors per set

²¹D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*,
D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 147–191, ISBN: 978-3-540-88702-7.

- Find $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with coefficients bounded by β , i.e., $\|\mathbf{v}\|_{\infty} \leq \beta$
- Divide columns of **A** into 2^k sets of $m/2^k$ vectors
- \bullet Compute a new set of all linear combinations of the vectors for each set with coefficients bounded by β
- $\Rightarrow L = (2\beta + 1)^{m/2^k}$ vectors per set
 - In each step pairwise combine vectors of two sets such that $\log_q L$ components are eliminated

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

²¹D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*, D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191, ISBN: 978-3-540-88702-7.

- Find $\mathbf{v} \in \Lambda(\mathbf{A}^{\mathsf{T}})^{\perp}$ with coefficients bounded by β , i.e., $\|\mathbf{v}\|_{\infty} \leq \beta$
- Divide columns of **A** into 2^k sets of $m/2^k$ vectors
- \bullet Compute a new set of all linear combinations of the vectors for each set with coefficients bounded by β
- $\Rightarrow L = (2\beta + 1)^{m/2^k}$ vectors per set
 - ullet In each step pairwise combine vectors of two sets such that $\log_q L$ components are eliminated
 - Overall cost dominated by list size L, total cost $\approx 2^k \cdot L \cdot \log_2(q) \cdot n$

²¹D. Micciancio and O. Regev, "Lattice-based cryptography," in *Post-Quantum Cryptography*, D. J. Bernstein, J. Buchmann, and E. Dahmen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 147–191, ISBN: 978-3-540-88702-7.

RSIS

Let \mathcal{R}_a be the quotient ring $\mathbb{Z}_a[x]/\langle x^n+1\rangle$. Given $a_1,\ldots,a_m\in\mathcal{R}_a$ chosen independently from the uniform distribution, the Ring-SIS problem RSIS_{n,a,m,β} asks to find $s_1,\ldots,s_m\in\mathcal{R}$ such that $\sum_{i=1}^m \mathbf{a}_i \cdot s_i = 0 \mod q$ and $0 < \|\mathbf{s}\| \le \beta$, where $\mathbf{s} = [s_1, \dots, s_m]^\mathsf{T} \in \mathcal{R}^m$.

RSIS

Let \mathcal{R}_a be the quotient ring $\mathbb{Z}_a[x]/\langle x^n+1\rangle$. Given $a_1,\ldots,a_m\in\mathcal{R}_a$ chosen independently from the uniform distribution, the Ring-SIS problem RSIS_{n,a,m,β} asks to find $s_1,\ldots,s_m\in\mathcal{R}$ such that $\sum_{i=1}^m \mathbf{a}_i \cdot s_i = 0 \mod q$ and $0 < \|\mathbf{s}\| \le \beta$, where $\mathbf{s} = [s_1, \dots, s_m]^\mathsf{T} \in \mathcal{R}^m$.

• Interpret $r \in \mathcal{R}$ as an *n* dimensional vector s.t. $r = \sum_{i=0}^{n-1} r_i x^i$

RSIS

Let \mathcal{R}_q be the quotient ring $\mathbb{Z}_q[x]/\langle x^n+1\rangle$. Given $a_1,\ldots,a_m\in\mathcal{R}_q$ chosen independently from the uniform distribution, the Ring-SIS problem $\mathrm{RSIS}_{n,q,m,\beta}$ asks to find $s_1,\ldots,s_m\in\mathcal{R}$ such that $\sum_{i=1}^m \mathbf{a}_i\cdot s_i=0\mod q$ and $0<\|\mathbf{s}\|\leq \beta$, where $\mathbf{s}=[s_1,\ldots,s_m]^{\mathsf{T}}\in\mathcal{R}^m$.

- Interpret $r \in \mathcal{R}$ as an n dimensional vector s.t. $r = \sum_{i=0}^{n-1} r_i x^i$
- Each a_i in RSIS corresponds to an $n \times n$ block in the standard SIS matrix \mathbf{A}_{SIS} obtained by rotation:

$$\operatorname{Rot}(a) = \begin{pmatrix} a_0 & -a_{n-1} & \cdots & -a_1 \\ a_1 & a_0 & \cdots & -a_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{pmatrix}$$

RSIS

Let \mathcal{R}_q be the quotient ring $\mathbb{Z}_q[x]/\langle x^n+1\rangle$. Given $a_1,\ldots,a_m\in\mathcal{R}_q$ chosen independently from the uniform distribution, the Ring-SIS problem $\mathrm{RSIS}_{n,q,m,\beta}$ asks to find $s_1,\ldots,s_m\in\mathcal{R}$ such that $\sum_{i=1}^m \mathbf{a}_i\cdot s_i=0\mod q$ and $0<\|\mathbf{s}\|\leq \beta$, where $\mathbf{s}=[s_1,\ldots,s_m]^{\mathsf{T}}\in\mathcal{R}^m$.

- Interpret $r \in \mathcal{R}$ as an n dimensional vector s.t. $r = \sum_{i=0}^{n-1} r_i x^i$
- Each a_i in RSIS corresponds to an $n \times n$ block in the standard SIS matrix \mathbf{A}_{SIS} obtained by rotation:

$$\mathsf{Rot}(a) = egin{pmatrix} a_0 & -a_{n-1} & \cdots & -a_1 \ a_1 & a_0 & \cdots & -a_2 \ \vdots & \vdots & \ddots & \vdots \ a_{n-1} & a_{n-2} & \cdots & a_0 \ \end{pmatrix}$$

 \Rightarrow $\mathbf{A}_{SIS} = [\mathsf{Rot}(a_1) \mid \cdots \mid \mathsf{Rot}(a_m)]$

RSIS

Let \mathcal{R}_q be the quotient ring $\mathbb{Z}_q[x]/\langle x^n+1\rangle$. Given $a_1,\ldots,a_m\in\mathcal{R}_q$ chosen independently from the uniform distribution, the Ring-SIS problem $\mathrm{RSIS}_{n,q,m,\beta}$ asks to find $s_1,\ldots,s_m\in\mathcal{R}$ such that $\sum_{i=1}^m \mathbf{a}_i\cdot s_i=0\mod q$ and $0<\|\mathbf{s}\|\leq \beta$, where $\mathbf{s}=[s_1,\ldots,s_m]^{\mathsf{T}}\in\mathcal{R}^m$.

- Interpret $r \in \mathcal{R}$ as an n dimensional vector s.t. $r = \sum_{i=0}^{n-1} r_i x^i$
- Each a_i in RSIS corresponds to an $n \times n$ block in the standard SIS matrix \mathbf{A}_{SIS} obtained by rotation:

$$\mathsf{Rot}(a) = \left(egin{array}{cccc} a_0 & -a_{n-1} & \cdots & -a_1 \ a_1 & a_0 & \cdots & -a_2 \ dots & dots & \ddots & dots \ a_{n-1} & a_{n-2} & \cdots & a_0 \end{array}
ight)$$

- \Rightarrow $\mathbf{A}_{SIS} = [\mathsf{Rot}(a_1) \mid \cdots \mid \mathsf{Rot}(a_m)]$
 - $RSIS_{n,a,m,\beta} \longrightarrow SIS_{n,a,m,n,\beta}$

MSIS

Let \mathcal{R}^d be a module with ring dimension n and module rank d. Given $\mathbf{a}_1,\ldots,\mathbf{a}_m\in\mathcal{R}_q^d$ chosen independently from the uniform distribution, the Module-SIS problem $\mathsf{MSIS}_{n,d,q,m,\beta}$ asks to find $s_1,\ldots,s_m\in\mathcal{R}$ such that $\sum_{i=1}^m\mathbf{a}_i\cdot s_i=\mathbf{0}\mod q$ and $0<\|\mathbf{s}\|\leq\beta$, where $\mathbf{s}=[s_1,\ldots,s_m]^{\mathsf{T}}\in\mathcal{R}^m$.

MSIS

Let \mathcal{R}^d be a module with ring dimension n and module rank d. Given $\mathbf{a}_1,\ldots,\mathbf{a}_m\in\mathcal{R}_q^d$ chosen independently from the uniform distribution, the Module-SIS problem $\mathsf{MSIS}_{n,d,q,m,\beta}$ asks to find $s_1,\ldots,s_m\in\mathcal{R}$ such that $\sum_{i=1}^m\mathbf{a}_i\cdot s_i=\mathbf{0}\mod q$ and $0<\|\mathbf{s}\|\leq\beta$, where $\mathbf{s}=[s_1,\ldots,s_m]^{\mathsf{T}}\in\mathcal{R}^m$.

• Module element \mathbf{a}_i corresponds to $n \cdot d \times n$ block in \mathbf{A} and for \mathbf{A} can be viewed as a $n \cdot d \times n \cdot m$ matrix

MSIS

Let \mathcal{R}^d be a module with ring dimension n and module rank d. Given $\mathbf{a}_1,\ldots,\mathbf{a}_m\in\mathcal{R}^d_q$ chosen independently from the uniform distribution, the Module-SIS problem $\mathsf{MSIS}_{n,d,q,m,\beta}$ asks to find $s_1,\ldots,s_m\in\mathcal{R}$ such that $\sum_{i=1}^m\mathbf{a}_i\cdot s_i=\mathbf{0}\mod q$ and $0<\|\mathbf{s}\|\leq\beta$, where $\mathbf{s}=[s_1,\ldots,s_m]^{\mathsf{T}}\in\mathcal{R}^m$.

			n · m	
	$Rot(\boldsymbol{a}_{1,1})$	$\mathrm{Rot}(\pmb{a}_{1,2})$		$\mathrm{Rot}(\pmb{a}_{1,m})$
$n \cdot d$	i	:	N.	i
	$\operatorname{Rot}(a_{d,1})$	$\mathrm{Rot}(\boldsymbol{a}_{d,2})$		$\operatorname{Rot}(\boldsymbol{a}_{d,m})$

MSIS

Let \mathcal{R}^d be a module with ring dimension n and module rank d. Given $\mathbf{a}_1,\ldots,\mathbf{a}_m\in\mathcal{R}_q^d$ chosen independently from the uniform distribution, the Module-SIS problem $\mathsf{MSIS}_{n,d,q,m,\beta}$ asks to find $s_1,\ldots,s_m\in\mathcal{R}$ such that $\sum_{i=1}^m\mathbf{a}_i\cdot s_i=\mathbf{0}\mod q$ and $0<\|\mathbf{s}\|\leq\beta$, where $\mathbf{s}=[s_1,\ldots,s_m]^\mathsf{T}\in\mathcal{R}^m$.

- Module element \mathbf{a}_i corresponds to $n \cdot d \times n$ block in \mathbf{A} and for \mathbf{A} can be viewed as a $n \cdot d \times n \cdot m$ matrix
- $MSIS_{n,d,q,m,\beta} \longrightarrow SIS_{n\cdot d,q,m\cdot n,\beta}$

Ring-LWE and Module-LWE

RLWE Distribution

Let χ be the error distribution on $\mathbb{T}_{\mathcal{R}^{\perp}}=\mathcal{K}_{\mathbb{R}}/\mathcal{R}^{\perp}$ and $s\in\mathcal{R}^{\perp}$ be the secret. Then, we define $\mathcal{A}_{q,s,\chi}^{(\mathcal{R})}$ as the Ring-LWE (RLWE) distribution on $\mathcal{R}_q\times\mathbb{T}_{\mathcal{R}^{\perp}}$ obtained by choosing $a\in\mathbb{R}_q$ uniformly at random and an error term $e\in\mathbb{T}_{\mathcal{R}^{\perp}}$ according to χ , and returning samples $(a,(a\cdot s)/q+e)$.

Ring-LWE and Module-LWE

RLWE Distribution

Let χ be the error distribution on $\mathbb{T}_{\mathcal{R}^{\perp}}=\mathcal{K}_{\mathbb{R}}/\mathcal{R}^{\perp}$ and $s\in\mathcal{R}^{\perp}$ be the secret. Then, we define $\mathcal{A}_{q,s,\chi}^{(\mathcal{R})}$ as the Ring-LWE (RLWE) distribution on $\mathcal{R}_q\times\mathbb{T}_{\mathcal{R}^{\perp}}$ obtained by choosing $a\in\mathbb{R}_q$ uniformly at random and an error term $e\in\mathbb{T}_{\mathcal{R}^{\perp}}$ according to χ , and returning samples $(a,(a\cdot s)/q+e)$.

MLWE Distribution

Let χ be the error distribution on $\mathbb{T}_{\mathcal{R}^{\perp}}$ and $\mathbf{s} \in (\mathcal{R}^{\perp})^d$ be the secret vector. Then, we define $\mathcal{A}_{q,\mathbf{s},\chi}^{(\mathcal{M})}$ as the Module-LWE (MLWE) distribution on $(\mathcal{R}_q)^d \times \mathbb{T}_{\mathcal{R}^{\perp}}$ obtained by choosing $\mathbf{a} \in (\mathbb{R}_q)^d$ uniformly at random and an error term $e \in \mathbb{T}_{\mathcal{R}^{\perp}}$ according to χ , and returning samples $(\mathbf{a}, \frac{1}{q}\langle \mathbf{a}, \mathbf{s} \rangle + e)$.

• $\mathsf{RLWE}_{n,q,m,\chi} \longrightarrow \mathsf{LWE}_{n,q,m\cdot n,\chi}$

Ring-LWE and Module-LWE

RLWE Distribution

Let χ be the error distribution on $\mathbb{T}_{\mathcal{R}^{\perp}}=\mathcal{K}_{\mathbb{R}}/\mathcal{R}^{\perp}$ and $s\in\mathcal{R}^{\perp}$ be the secret. Then, we define $\mathcal{A}_{q,s,\chi}^{(\mathcal{R})}$ as the Ring-LWE (RLWE) distribution on $\mathcal{R}_q\times\mathbb{T}_{\mathcal{R}^{\perp}}$ obtained by choosing $a\in\mathbb{R}_q$ uniformly at random and an error term $e\in\mathbb{T}_{\mathcal{R}^{\perp}}$ according to χ , and returning samples $(a,(a\cdot s)/q+e)$.

MLWE Distribution

Let χ be the error distribution on $\mathbb{T}_{\mathcal{R}^{\perp}}$ and $\mathbf{s} \in (\mathcal{R}^{\perp})^d$ be the secret vector. Then, we define $\mathcal{A}_{q,\mathbf{s},\chi}^{(\mathcal{M})}$ as the Module-LWE (MLWE) distribution on $(\mathcal{R}_q)^d \times \mathbb{T}_{\mathcal{R}^{\perp}}$ obtained by choosing $\mathbf{a} \in (\mathbb{R}_q)^d$ uniformly at random and an error term $e \in \mathbb{T}_{\mathcal{R}^{\perp}}$ according to χ , and returning samples $(\mathbf{a}, \frac{1}{q}\langle \mathbf{a}, \mathbf{s} \rangle + e)$.

- $\mathsf{RLWE}_{n,q,m,\chi} \longrightarrow \mathsf{LWE}_{n,q,m\cdot n,\chi}$
- $\mathsf{MLWE}_{n,d,q,m,\chi} \longrightarrow \mathsf{LWE}_{n\cdot d,q,m\cdot n,\chi}$

Statistically Secure MLWE (Gaussian Variant)²²

• Given mth cyclomatic number field K of degree $n = \phi(m)$ and integer $q \ge 2$ and

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

²²V. Lyubashevsky, C. Peikert, and O. Regev, "A toolkit for ring-lwe cryptography," in *Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings*, T. Johansson and P. Q. Nguyen, Eds., ser. Lecture Notes in Computer Science, vol. 7881, Springer, 2013, pp. 35–54 and the series of t

Statistically Secure MLWE (Gaussian Variant)²²

- Given mth cyclomatic number field K of degree $n = \phi(m)$ and integer $q \ge 2$ and
- $\mathbf{A} = [\mathbf{I}_{[m]} \mid \bar{\mathbf{A}}] \in (\mathcal{R}_q)^{[m] \times [m+d]}$ with positive integers $m \leq m+d \leq \operatorname{poly}(n)$ and uniformly random matrix $\bar{\mathbf{A}}$

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

Statistically Secure MLWE (Gaussian Variant)²²

- Given mth cyclomatic number field K of degree $n = \phi(m)$ and integer $q \ge 2$ and
- $\mathbf{A} = [\mathbf{I}_{[m]} \mid \bar{\mathbf{A}}] \in (\mathcal{R}_q)^{[m] \times [m+d]}$ with positive integers $m \leq m+d \leq \operatorname{poly}(n)$ and uniformly random matrix $\bar{\mathbf{A}}$
- Let $\mathbf{x} \in (\mathcal{R}_q)^{[m+d]}$ where each component is chosen from a discrete Gaussian distribution of parameter $s > 2n \cdot q^{m/(m+d)+2/(n(m+d))}$ over \mathcal{R}

Statistically Secure MLWE (Gaussian Variant)²²

- Given mth cyclomatic number field K of degree $n = \phi(m)$ and integer $q \ge 2$ and
- $\mathbf{A} = [\mathbf{I}_{[m]} \mid \bar{\mathbf{A}}] \in (\mathcal{R}_q)^{[m] \times [m+d]}$ with positive integers $m \leq m+d \leq \operatorname{poly}(n)$ and uniformly random matrix $\bar{\mathbf{A}}$
- Let $\mathbf{x} \in (\mathcal{R}_q)^{[m+d]}$ where each component is chosen from a discrete Gaussian distribution of parameter $s > 2n \cdot q^{m/(m+d)+2/(n(m+d))}$ over \mathcal{R}
- Then $\mathbf{A}\mathbf{x} \in (\mathcal{R}_q)^{[m]}$ is within statistical distance $2^{-\Omega(n)}$ of the uniform distribution over $(\mathcal{R}_q)^{[m]}$)

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

²²V. Lyubashevsky, C. Peikert, and O. Regev, "A toolkit for ring-lwe cryptography," in *Advances in Cryptology - EUROCRYPT 2013, 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings,* T. Johansson and P. Q. Nguyen, Eds., ser. Lecture Notes in Computer Science, vol. 7881, Springer, 2013, pp. 35–54.

• Given $\mathbf{A} = [\mathbf{I}_{[m]} \mid \bar{\mathbf{A}}] \in (\mathcal{R}_q)^{[m] \times [m+d]}$ as before, $1 < d_2 < n$, where d_2 is a power of 2 and a prime q congruent to $2d_2 + 1 \pmod{4d_2}$

61 / 65

²³C. Baum, I. Damgård, V. Lyubashevsky, *et al.*, "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385.

- Given $\mathbf{A} = [\mathbf{I}_{[m]} \mid \bar{\mathbf{A}}] \in (\mathcal{R}_q)^{[m] \times [m+d]}$ as before, $1 < d_2 < n$, where d_2 is a power of 2 and a prime q congruent to $2d_2 + 1 \pmod{4d_2}$
- If $\beta \in \mathbb{R}$ such that $\beta_{min} \leq \beta \leq \beta_{max}$ with

$$eta_{ extit{min}} = rac{q^{m/(m+d)} \cdot 2^{2 ext{sec}/((m+d) \cdot n)}}{2} \ eta_{ extit{max}} = rac{1}{2\sqrt{d_2}} \cdot q^{1/d_2} - 1$$

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

²³C. Baum, I. Damgård, V. Lyubashevsky, *et al.*, "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385.

- Given $\mathbf{A} = [\mathbf{I}_{[m]} \mid \bar{\mathbf{A}}] \in (\mathcal{R}_q)^{[m] \times [m+d]}$ as before, $1 < d_2 < n$, where d_2 is a power of 2 and a prime q congruent to $2d_2 + 1 \pmod{4d_2}$
- If $\beta \in \mathbb{R}$ such that $\beta_{min} \leq \beta \leq \beta_{max}$ with

$$eta_{ extit{min}} = rac{q^{m/(m+d)} \cdot 2^{2 ext{sec}/((m+d) \cdot n)}}{2} \ eta_{ extit{max}} = rac{1}{2\sqrt{d_2}} \cdot q^{1/d_2} - 1$$

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

²³C. Baum, I. Damgård, V. Lyubashevsky, *et al.*, "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385.

- Given $\mathbf{A} = [\mathbf{I}_{[m]} \mid \bar{\mathbf{A}}] \in (\mathcal{R}_q)^{[m] \times [m+d]}$ as before, $1 < d_2 < n$, where d_2 is a power of 2 and a prime q congruent to $2d_2 + 1 \pmod{4d_2}$
- If $\beta \in \mathbb{R}$ such that $\beta_{min} \leq \beta \leq \beta_{max}$ with

$$eta_{ extit{min}} = rac{q^{m/(m+d)} \cdot 2^{2 ext{sec}/((m+d) \cdot n)}}{2} \ eta_{ extit{max}} = rac{1}{2\sqrt{d_2}} \cdot q^{1/d_2} - 1$$

then any (all-powerful) algorithm $\mathcal A$ has advantage at most $2^{-{\tt sec}}$ in distinguishing $\mathbf A\mathbf x\in(\mathcal R_q)^{[m]}$ from the uniform distribution, where $\mathbf x$ is chosen uniformly random with $\|\mathbf x\|_\infty\leq\beta$

²³C. Baum, I. Damgård, V. Lyubashevsky, *et al.*, "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385.

ullet Given $\mathbf{A} = [\mathbf{I}_{[m]} \mid ar{\mathbf{A}}] \in (\mathcal{R}_q)^{[m] imes [m+d]}$ as before

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

²⁴I. Damgård, C. Orlandi, A. Takahashi, *et al.*, "Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices," in *Public-Key Cryptography - PKC 2021 - 24th IACR International Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I, J. A. Garay, Ed., ser. Lecture Notes in Computer Science, vol. 12710, Springer, 2021, pp. 99-130.*

- ullet Given $oldsymbol{\mathsf{A}} = [oldsymbol{\mathsf{I}}_{[m]} \mid ar{oldsymbol{\mathsf{A}}}] \in (\mathcal{R}_q)^{[m] imes [m+d]}$ as before
- ullet It should be hard to find $\mathbf{r},\mathbf{r}'\in\mathcal{R}_q^{m+d}$ of ℓ_2 -norm $\leq B$ such that $\mathbf{A}\cdot(\mathbf{r}-\mathbf{r}')=\mathbf{0}$ mod q

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

²⁴I. Damgård, C. Orlandi, A. Takahashi, et al., "Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices," in *Public-Key Cryptography - PKC 2021 - 24th IACR International Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I,* J. A. Garay, Ed., ser. Lecture Notes in Computer Science, vol. 12710, Springer, 2021, ppg-99-130.

- ullet Given $oldsymbol{\mathsf{A}} = [oldsymbol{\mathsf{I}}_{[m]} \mid ar{oldsymbol{\mathsf{A}}}] \in (\mathcal{R}_q)^{[m] imes [m+d]}$ as before
- ullet It should be hard to find $\mathbf{r},\mathbf{r}'\in\mathcal{R}_q^{m+d}$ of ℓ_2 -norm $\leq B$ such that $\mathbf{A}\cdot(\mathbf{r}-\mathbf{r}')=\mathbf{0}$ mod q
- We demand that $\Pr[\mathbf{A} \cdot \mathbf{r} = \mathbf{0}] \leq 2^{-\sec}$ with non zero elements \mathbf{r} in the Euclidean ball $B_m(0,2B)$

- ullet Given $oldsymbol{\mathsf{A}} = [oldsymbol{\mathsf{I}}_{[m]} \mid ar{oldsymbol{\mathsf{A}}}] \in (\mathcal{R}_q)^{[m] imes [m+d]}$ as before
- ullet It should be hard to find $\mathbf{r},\mathbf{r}'\in\mathcal{R}_q^{m+d}$ of ℓ_2 -norm $\leq B$ such that $\mathbf{A}\cdot(\mathbf{r}-\mathbf{r}')=\mathbf{0}$ mod q
- We demand that $\Pr[\mathbf{A} \cdot \mathbf{r} = \mathbf{0}] \leq 2^{-\sec}$ with non zero elements \mathbf{r} in the Euclidean ball $B_m(0,2B)$
- Satisfied if

$$B \leq 2^{rac{-\sec}{(m+d)\cdot n}-1} \cdot q^{rac{m}{m+d}} \cdot \sqrt{rac{(m+d)\cdot n}{2\pi e}}$$

²⁴I. Damgård, C. Orlandi, A. Takahashi, *et al.*, "Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices," in *Public-Key Cryptography - PKC 2021 - 24th IACR International Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I, J. A. Garay, Ed., ser. Lecture Notes in Computer Science, vol. 12710, Springer, 2021, Pp. 99-130.*

- ullet Given $oldsymbol{\mathsf{A}} = [oldsymbol{\mathsf{I}}_{[m]} \mid ar{oldsymbol{\mathsf{A}}}] \in (\mathcal{R}_q)^{[m] imes [m+d]}$ as before
- ullet It should be hard to find $\mathbf{r},\mathbf{r}'\in\mathcal{R}_q^{m+d}$ of ℓ_2 -norm $\leq B$ such that $\mathbf{A}\cdot(\mathbf{r}-\mathbf{r}')=\mathbf{0}$ mod q
- We demand that $\Pr[\mathbf{A} \cdot \mathbf{r} = \mathbf{0}] \leq 2^{-\sec}$ with non zero elements \mathbf{r} in the Euclidean ball $B_m(0,2B)$
- Satisfied if

$$B \leq 2^{\frac{-\sec}{(m+d)\cdot n}-1} \cdot q^{\frac{m}{m+d}} \cdot \sqrt{\frac{(m+d)\cdot n}{2\pi e}}$$

Also works for RSIS and SIS

²⁴I. Damgård, C. Orlandi, A. Takahashi, *et al.*, "Two-round n-out-of-n and multi-signatures and trapdoor commitment from lattices," in *Public-Key Cryptography - PKC 2021 - 24th IACR International Conference on Practice and Theory of Public Key Cryptography, Virtual Event, May 10-13, 2021, Proceedings, Part I, J. A. Garay, Ed., ser. Lecture Notes in Computer Science, vol. 12710, Springer, 2021, pp. 99-130.*

Let $f \in \mathcal{R}_q$ with $f = \sum_i f_i X^i$ and $\sigma : K \to \mathbb{C}$ with number field K the canonical embedding²⁵ and $p, q \in \mathbb{N}$.

²⁵C. Baum, I. Damgård, V. Lyubashevsky, et al., "More efficient commitments from structured lattice assumptions," in Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385; I. Damgård, V. Pastro, N. P. Smart, et al., "Multiparty computation from somewhat homomorphic encryption," in Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, R. Safavi-Naini and R. Canetti, Eds., ser. Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 643–662.

Let $f \in \mathcal{R}_q$ with $f = \sum_i f_i X^i$ and $\sigma : K \to \mathbb{C}$ with number field K the canonical embedding²⁵ and $p, q \in \mathbb{N}$.

• $||f||_p \le ||f||_q$, for $\infty \ge p \ge q \ge 1$

²⁵C. Baum, I. Damgård, V. Lyubashevsky, *et al.*, "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385; I. Damgård, V. Pastro, N. P. Smart, *et al.*, "Multiparty computation from somewhat homomorphic encryption," in *Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings*, R. Safavi-Naini and R. Canetti, Eds., ser. Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 643–662.

Let $f \in \mathcal{R}_q$ with $f = \sum_i f_i X^i$ and $\sigma : K \to \mathbb{C}$ with number field K the canonical embedding²⁵ and $p, q \in \mathbb{N}$.

- $||f||_p \le ||f||_q$, for $\infty \ge p \ge q \ge 1$
- $\bullet \ \lim_{q'\to q} \|f\|_p \leq \lim_{q'\to q} n^{\frac{1}{p}-\frac{1}{q'}} \|f\|_{q'} \ \text{for} \ 1 \leq p \leq q \leq \infty$

²⁵C. Baum, I. Damgård, V. Lyubashevsky, et al., "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385; I. Damgård, V. Pastro, N. P. Smart, et al., "Multiparty computation from somewhat homomorphic encryption," in *Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings*, R. Safavi-Naini and R. Canetti, Eds., ser. Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 643–662.

Let $f \in \mathcal{R}_q$ with $f = \sum_i f_i X^i$ and $\sigma : K \to \mathbb{C}$ with number field K the canonical embedding²⁵ and $p, q \in \mathbb{N}$.

- $||f||_p \le ||f||_q$, for $\infty \ge p \ge q \ge 1$
- $\bullet \ \lim\nolimits_{q'\to q}\|f\|_p \leq \lim\nolimits_{q'\to q} n^{\frac{1}{p}-\frac{1}{q'}}\|f\|_{q'} \ \text{for} \ 1\leq p\leq q\leq \infty$
- $\|\sigma(f)\|_{\infty} \le \|f\|_{1} \le n^{1-\frac{1}{p}} \|f\|_{p}$ for $p \ge 1$

²⁵C. Baum, I. Damgård, V. Lyubashevsky, et al., "More efficient commitments from structured lattice assumptions," in Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385; I. Damgård, V. Pastro, N. P. Smart, et al., "Multiparty computation from somewhat homomorphic encryption," in Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings, R. Safavi-Naini and R. Canetti, Eds., ser. Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 643–662.

Let $f \in \mathcal{R}_q$ with $f = \sum_i f_i X^i$ and $\sigma : K \to \mathbb{C}$ with number field K the canonical embedding²⁵ and $p, q \in \mathbb{N}$.

- $||f||_p \le ||f||_q$, for $\infty \ge p \ge q \ge 1$
- $\lim_{q' \to q} \|f\|_p \le \lim_{q' \to q} n^{\frac{1}{p} \frac{1}{q'}} \|f\|_{q'}$ for $1 \le p \le q \le \infty$
- $\|\sigma(f)\|_{\infty} \le \|f\|_{1} \le n^{1-\frac{1}{p}} \|f\|_{p}$ for $p \ge 1$
- $||f||_p \le n^{\frac{1}{p}} ||f||_{\infty} \le n^{\frac{1}{p}} ||\sigma(f)||_{\infty}$ for $p \le \infty$

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

²⁵C. Baum, I. Damgård, V. Lyubashevsky, et al., "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385; I. Damgård, V. Pastro, N. P. Smart, et al., "Multiparty computation from somewhat homomorphic encryption," in *Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings*, R. Safavi-Naini and R. Canetti, Eds., ser. Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 643–662.

Let $f \in \mathcal{R}_q$ with $f = \sum_i f_i X^i$ and $\sigma : K \to \mathbb{C}$ with number field K the canonical embedding²⁶ and $p, q \in \mathbb{N}$.

²⁶C. Baum, I. Damgård, V. Lyubashevsky, *et al.*, "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385; I. Damgård, V. Pastro, N. P. Smart, *et al.*, "Multiparty computation from somewhat homomorphic encryption," in *Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings*, R. Safavi-Naini and R. Canetti, Eds., ser. Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 643–662.

Let $f \in \mathcal{R}_q$ with $f = \sum_i f_i X^i$ and $\sigma : K \to \mathbb{C}$ with number field K the canonical embedding²⁶ and $p, q \in \mathbb{N}$.

• $||f \cdot g||_{\infty} \le ||f||_{\infty} \cdot ||g||_{1}$

²⁶C. Baum, I. Damgård, V. Lyubashevsky, *et al.*, "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385; I. Damgård, V. Pastro, N. P. Smart, *et al.*, "Multiparty computation from somewhat homomorphic encryption," in *Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings*, R. Safavi-Naini and R. Canetti, Eds., ser. Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 643–662.

Let $f \in \mathcal{R}_q$ with $f = \sum_i f_i X^i$ and $\sigma : K \to \mathbb{C}$ with number field K the canonical embedding²⁶ and $p, q \in \mathbb{N}$.

- $\bullet \|f \cdot g\|_{\infty} \leq \|f\|_{\infty} \cdot \|g\|_{1}$
- $||f \cdot g||_{\infty} \le ||f||_2 \cdot ||g||_2$

Let $f \in \mathcal{R}_q$ with $f = \sum_i f_i X^i$ and $\sigma : K \to \mathbb{C}$ with number field K the canonical embedding²⁶ and $p, q \in \mathbb{N}$.

- $\bullet \|f \cdot g\|_{\infty} \leq \|f\|_{\infty} \cdot \|g\|_{1}$
- $||f \cdot g||_{\infty} \le ||f||_2 \cdot ||g||_2$
- $\|\sigma(\mathbf{x}\cdot\mathbf{y})\|_p \leq \|\sigma(\mathbf{x})\|_{\infty} \cdot \|\sigma(\mathbf{y})\|_p$

Let $f \in \mathcal{R}_q$ with $f = \sum_i f_i X^i$ and $\sigma : K \to \mathbb{C}$ with number field K the canonical embedding²⁶ and $p, q \in \mathbb{N}$.

- $\bullet \|f \cdot g\|_{\infty} \leq \|f\|_{\infty} \cdot \|g\|_{1}$
- $||f \cdot g||_{\infty} \le ||f||_2 \cdot ||g||_2$
- $\|\sigma(x \cdot y)\|_p \leq \|\sigma(x)\|_{\infty} \cdot \|\sigma(y)\|_p$
- Encapsulated in to_Lp() and to_Cp() of the norm classes Lp and Cp

²⁶C. Baum, I. Damgård, V. Lyubashevsky, et al., "More efficient commitments from structured lattice assumptions," in *Security and Cryptography for Networks - 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings*, D. Catalano and R. D. Prisco, Eds., ser. Lecture Notes in Computer Science, vol. 11035, Springer, 2018, pp. 368–385; I. Damgård, V. Pastro, N. P. Smart, et al., "Multiparty computation from somewhat homomorphic encryption," in *Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings*, R. Safavi-Naini and R. Canetti, Eds., ser. Lecture Notes in Computer Science, vol. 7417, Springer, 2012, pp. 643–662.

Classes for uniform and Gaussian distribution in the module distributions

Nicolai Krebs Lattice Parameter Estimation November 26, 2021

²⁷V. Lyubashevsky, "Lattice signatures without trapdoors," in *Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,* D. Pointcheval and T. Johansson, Eds., ser. Lecture Notes in Computer Science, vol. 7237, Springer, 2012, pp. 738–755.

- Classes for uniform and Gaussian distribution in the module distributions
- Gaussian

²⁷V. Lyubashevsky, "Lattice signatures without trapdoors," in *Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,* D. Pointcheval and T. Johansson, Eds., ser. Lecture Notes in Computer Science, vol. 7237, Springer, 2012, pp. 738–755.

- Classes for uniform and Gaussian distribution in the module distributions
- Gaussian
 - Constructors for standard deviation σ , $s = \sigma \sqrt{2\pi}$, and $\alpha = \frac{s}{q} = \frac{\sqrt{2\pi}\sigma}{q}$

²⁷V. Lyubashevsky, "Lattice signatures without trapdoors," in *Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,* D. Pointcheval and T. Johansson, Eds., ser. Lecture Notes in Computer Science, vol. 7237, Springer, 2012, pp. 738–755.

- Classes for uniform and Gaussian distribution in the module distributions
- Gaussian
 - Constructors for standard deviation σ , $s=\sigma\sqrt{2\pi}$, and $\alpha=\frac{s}{q}=\frac{\sqrt{2\pi}\sigma}{q}$
 - Gaussian to bound conversion²⁷

²⁷V. Lyubashevsky, "Lattice signatures without trapdoors," in *Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,* D. Pointcheval and T. Johansson, Eds., ser. Lecture Notes in Computer Science, vol. 7237, Springer, 2012, pp. 738–755.

- Classes for uniform and Gaussian distribution in the module distributions
- Gaussian
 - Constructors for standard deviation σ , $s=\sigma\sqrt{2\pi}$, and $\alpha=\frac{s}{q}=\frac{\sqrt{2\pi}\sigma}{q}$
 - Gaussian to bound conversion²⁷
 - For ℓ_{∞} -norm:

$$\beta = s \sqrt{\frac{(\sec + 1) \ln(2)}{\pi}}$$

²⁷V. Lyubashevsky, "Lattice signatures without trapdoors," in *Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,* D. Pointcheval and T. Johansson, Eds., ser. Lecture Notes in Computer Science, vol. 7237, Springer, 2012, pp. 738–755.

- Classes for uniform and Gaussian distribution in the module distributions
- Gaussian
 - Constructors for standard deviation σ , $s = \sigma \sqrt{2\pi}$, and $\alpha = \frac{s}{q} = \frac{\sqrt{2\pi}\sigma}{q}$
 - Gaussian to bound conversion²⁷
 - For ℓ_{∞} -norm:

$$eta = s \sqrt{rac{(\sec + 1) \ln(2)}{\pi}}$$

• For ℓ_2 -norm:

$$\Pr\left[\|X\|_2 > \sigma\sqrt{2n}\right] \leq 2^{\frac{n}{2}(1-\log e)}$$

²⁷V. Lyubashevsky, "Lattice signatures without trapdoors," in *Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,* D. Pointcheval and T. Johansson, Eds., ser. Lecture Notes in Computer Science, vol. 7237, Springer, 2012, pp. 738–755.

- Classes for uniform and Gaussian distribution in the module distributions
- Gaussian
 - Constructors for standard deviation σ , $s = \sigma \sqrt{2\pi}$, and $\alpha = \frac{s}{q} = \frac{\sqrt{2\pi}\sigma}{q}$
 - Gaussian to bound conversion²⁷
 - For ℓ_{∞} -norm:

$$eta = s \sqrt{rac{(\sec + 1) \ln(2)}{\pi}}$$

• For ℓ_2 -norm:

$$\Pr\left[\|X\|_2 > \sigma\sqrt{2n}\right] \le 2^{\frac{n}{2}(1-\log e)}$$

$$\Rightarrow$$
 Set $\beta = \sigma \sqrt{2n}$, if $2^{\frac{n}{2}(1-\log e)} \le 2^{-\sec c}$

²⁷V. Lyubashevsky, "Lattice signatures without trapdoors," in *Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,* D. Pointcheval and T. Johansson, Eds., ser. Lecture Notes in Computer Science, vol. 7237, Springer, 2012, pp. 738–755.

- Classes for uniform and Gaussian distribution in the module distributions
- Gaussian
 - Constructors for standard deviation σ , $s = \sigma \sqrt{2\pi}$, and $\alpha = \frac{s}{q} = \frac{\sqrt{2\pi}\sigma}{q}$
 - Gaussian to bound conversion²⁷
 - For ℓ_{∞} -norm:

$$eta = s \sqrt{rac{(\sec + 1) \ln(2)}{\pi}}$$

• For ℓ_2 -norm:

$$\Pr\left[\|X\|_2 > \sigma\sqrt{2n}\right] \le 2^{\frac{n}{2}(1-\log e)}$$

- \Rightarrow Set $\beta = \sigma \sqrt{2n}$, if $2^{\frac{n}{2}(1-\log e)} \le 2^{-\sec n}$
- In all other cases to_Lp() bounds the value via ℓ_2 -norm

²⁷V. Lyubashevsky, "Lattice signatures without trapdoors," in *Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Cambridge, UK, April 15-19, 2012. Proceedings,* D. Pointcheval and T. Johansson, Eds., ser. Lecture Notes in Computer Science, vol. 7237, Springer, 2012, pp. 738–755.