Package 'fitDTVARMx'

September 21, 2024
Title Fit the Discrete-Time Vector Autoregressive Model
Version 0.0.0.9000
Description Fit the discrete-time vector autoregressive model using the 'OpenMx' package.
<pre>URL https://github.com/jeksterslab/fitDTVARMx,</pre>
https://jeksterslab.github.io/fitDTVARMx/
<pre>BugReports https://github.com/jeksterslab/fitDTVARMx/issues</pre>
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
VignetteBuilder knitr
Depends R (\geq 3.0.0), OpenMx
Imports stats
Suggests knitr, rmarkdown, testthat, simStateSpace
RoxygenNote 7.3.2
NeedsCompilation no
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>
Contents
coef.dtvaridmx
coef.dtvarmx
DTVAR
FitDTVARMx
print.dtvaridmx
print.dtvarmx
summary.dtvaridmx
summary.dtvaridmy
vcov.dtvaridmx

2 coef.dtvarmx

Index 19

coef.dtvaridmx	Parameter Estimates	
----------------	---------------------	--

Description

Parameter Estimates

Usage

```
## S3 method for class 'dtvaridmx'
coef(object, alpha = FALSE, psi = FALSE, theta = FALSE, ...)
```

Arguments

object	Object of class dtvaridmx.
alpha	Logical. If alpha = TRUE, include estimates of the alpha vector, if available. If alpha = FALSE, exclude estimates of the alpha vector.
psi	Logical. If psi = TRUE, include estimates of the psi matrix, if available. If psi = FALSE, exclude estimates of the psi matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a list of vectors of parameter estimates.

Author(s)

Ivan Jacob Agaloos Pesigan

Description

Parameter Estimates

```
## S3 method for class 'dtvarmx'
coef(object, alpha = FALSE, psi = FALSE, theta = FALSE, ...)
```

Arguments

object	Object of class dtvarmx.
alpha	Logical. If alpha = TRUE, include estimates of the alpha vector, if available. If alpha = FALSE, exclude estimates of the alpha vector.
psi	Logical. If psi = TRUE, include estimates of the psi matrix, if available. If psi = FALSE, exclude estimates of the psi matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a vector of parameter estimates.

Author(s)

Ivan Jacob Agaloos Pesigan

DTVAR

Fit the First-Order Discrete-Time Vector Autoregressive Model

Description

Fit the First-Order Discrete-Time Vector Autoregressive Model

Usage

```
DTVAR(
   data,
   observed,
   id,
   byid = FALSE,
   model = 1,
   try = 1000,
   ncores = NULL,
   ...
)
```

Arguments

data Data frame. A data frame object of data for potentially multiple subjects that

contain a column of subject ID numbers (i.e., an ID variable), and at least one

column of observed values.

observed Character vector. A vector of character strings of the names of the observed

variables in the data.

id Character string. A character string of the name of the ID variable in the data.

byid Logical. If byid = TRUE, fit the model by id.

model Model number (1, 2, 3, or 4). See Details for model description.

try Positive integer. Number of extra optimization tries.

ncores Positive integer. Number of cores to use.

... Additional optional arguments to pass to mxTryHardctsem.

Details

Note that the mean and covariance matrix of the initial condition are fixed to a null vector and an identity matrix, resprectively. The DTVAR() function fits four versions of the first-order discrete-time vector autoregressive model. Use the FitDTVARIDMx() or FitDTVARMx() functions to have more control over the model specification.

Model 1:

The measurement model is given by

$$\mathbf{y}_{i,t} = oldsymbol{\eta}_{i,t}$$

where $\mathbf{y}_{i,t}$ represents a vector of observed variables and $\boldsymbol{\eta}_{i,t}$ a vector of latent variables for individual i and time t.

The dynamic structure is given by

$$oldsymbol{\eta}_{i.t} = oldsymbol{eta} oldsymbol{\eta}_{i.t-1} + oldsymbol{\zeta}_{i.t}, \quad ext{with} \quad oldsymbol{\zeta}_{i.t} \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

where $\eta_{i,t}$, $\eta_{i,t-1}$, and $\zeta_{i,t}$ are random variables, and β , and Ψ are model parameters. Here, $\eta_{i,t}$ is a vector of latent variables at time t and individual i, $\eta_{i,t-1}$ represents a vector of latent variables at time t-1 and individual i, and $\zeta_{i,t}$ represents a vector of dynamic noise at time t and individual i. β denotes a matrix of autoregression and cross regression coefficients, and Ψ the covariance matrix of $\zeta_{i,t}$. In this model, Ψ is a diagonal matrix.

Model 2:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{\varepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{\varepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}\right)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and Λ , and Θ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\eta_{i,t}$ a vector of latent random variables, and $\varepsilon_{i,t}$ a vector of random measurement errors, at time t and individual i. Λ denotes a matrix of factor loadings, and Θ the covariance matrix of ε . In this model, Λ is an identity matrix and Θ is a diagonal matrix.

The dynamic structure is given by

$$oldsymbol{\eta}_{i.t} = oldsymbol{eta} oldsymbol{\eta}_{i.t-1} + oldsymbol{\zeta}_{i.t}, \quad ext{with} \quad oldsymbol{\zeta}_{i.t} \sim \mathcal{N}\left(\mathbf{0}, oldsymbol{\Psi}
ight)$$

where $\eta_{i,t}$, $\eta_{i,t-1}$, and $\zeta_{i,t}$ are random variables, and β , and Ψ are model parameters. Here, $\eta_{i,t}$ is a vector of latent variables at time t and individual i, $\eta_{i,t-1}$ represents a vector of latent variables at time t-1 and individual i, and $\zeta_{i,t}$ represents a vector of dynamic noise at time t and individual i. β denotes a matrix of autoregression and cross regression coefficients, and Ψ the covariance matrix of $\zeta_{i,t}$. In this model, Ψ is a diagonal matrix.

Model 3:

The measurement model is given by

$$\mathbf{y}_{i,t} = \mathbf{\Lambda} \boldsymbol{\eta}_{i,t} + \boldsymbol{arepsilon}_{i,t}, \quad ext{with} \quad \boldsymbol{arepsilon}_{i,t} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{\Theta}
ight)$$

where $\mathbf{y}_{i,t}$, $\eta_{i,t}$, and $\varepsilon_{i,t}$ are random variables and Λ , and Θ are model parameters. $\mathbf{y}_{i,t}$ represents a vector of observed random variables, $\eta_{i,t}$ a vector of latent random variables, and $\varepsilon_{i,t}$ a vector of random measurement errors, at time t and individual t. Λ denotes a matrix of factor loadings, and Θ the covariance matrix of ε . In this model, Λ is an identity matrix and Θ is a diagonal matrix.

The dynamic structure is given by

$$oldsymbol{\eta}_{i,t} = oldsymbol{lpha} + oldsymbol{eta} oldsymbol{\eta}_{i,t-1} + oldsymbol{\zeta}_{i,t}, \quad ext{with} \quad oldsymbol{\zeta}_{i,t} \sim \mathcal{N}\left(oldsymbol{0}, oldsymbol{\Psi}
ight)$$

where $\eta_{i,t}$, $\eta_{i,t-1}$, and $\zeta_{i,t}$ are random variables, and α , β , and Ψ are model parameters. Here, $\eta_{i,t}$ is a vector of latent variables at time t and individual i, $\eta_{i,t-1}$ represents a vector of latent variables at time t-1 and individual i, and $\zeta_{i,t}$ represents a vector of dynamic noise at time t and individual i. α denotes a vector of intercepts, β a matrix of autoregression and cross regression coefficients, and Ψ the covariance matrix of $\zeta_{i,t}$. In this model, Ψ is a diagonal matrix.

Model 4:

Model 4 is similar to Model 3 except that Ψ is a symmetric matrix in Model 4.

Value

Returns an object of class dtvaridmx if byid = TRUE or dtvarmx if byid = FALSE. The returned object is a list with the following elements:

call Function call.

args List of function arguments.

fun Function used ("FitDTVARIDMx" if byid = TRUE or "FitDTVARMx" if byid = FALSE).

output A list of fitted OpenMx models byid = TRUE or a single fitted OpenMx model if byid = FALSE.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. *Structural Equation Modeling: A Multidisciplinary Journal*, 25(2), 307–324. doi:10.1080/10705511.2017.1369354

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*, 81(2), 535–549. doi:10.1007/s1133601494358

See Also

Other DTVAR Functions: FitDTVARIDMx(), FitDTVARMx()

Examples

```
# byid = FALSE
# Generate data using the simStateSpace package-----
sim <- simStateSpace::SimSSMVARFixed(</pre>
 n = 5,
 time = 100,
 mu0 = rep(x = 0, times = 3),
 sigma0_1 = t(chol(diag(3))),
 alpha = rep(x = 0, times = 3),
 beta = matrix(
   data = c(
     0.7, 0.5, -0.1,
     0.0, 0.6, 0.4,
    0, 0, 0.5
   ),
   nrow = 3
 psi_l = t(chol(diag(3)))
data <- as.data.frame(sim)</pre>
# Fit the model------
library(fitDTVARMx)
fit <- DTVAR(</pre>
 data = data.
 observed = c("y1", "y2", "y3"),
 id = "id",
 byid = FALSE
print(fit)
summary(fit)
coef(fit)
vcov(fit)
# ------
# Generate data using the simStateSpace package------
set.seed(42)
beta_mu <- matrix(</pre>
 data = c(
   0.7, 0.5, -0.1,
   0.0, 0.6, 0.4,
   0, 0, 0.5
 ),
 nrow = 3
beta_sigma <- diag(3 * 3)</pre>
```

```
beta <- simStateSpace::SimBetaN(</pre>
 n = 5,
 beta = beta_mu,
 vcov_beta_vec_l = t(chol(beta_sigma))
)
sim <- simStateSpace::SimSSMVARIVary(</pre>
 n = 5,
 time = 100,
 mu0 = list(rep(x = 0, times = 3)),
 sigma0_l = list(t(chol(diag(3)))),
 alpha = list(rep(x = 0, times = 3)),
 beta = beta,
 psi_l = list(t(chol(diag(3))))
data <- as.data.frame(sim)</pre>
# Fit the model-----
library(fitDTVARMx)
fit <- DTVAR(</pre>
 data = data,
 observed = c("y1", "y2", "y3"),
 id = "id",
 byid = TRUE
)
print(fit)
summary(fit)
coef(fit)
vcov(fit)
## End(Not run)
```

FitDTVARIDMx

Fit the First-Order Discrete-Time Vector Autoregressive Model by ID

Description

Fit the First-Order Discrete-Time Vector Autoregressive Model by ID

```
FitDTVARIDMx(
  data,
  observed,
  id,
  alpha_fixed = TRUE,
  alpha_values = NULL,
  alpha_free = NULL,
  alpha_lbound = NULL,
```

```
alpha_ubound = NULL,
  beta_values = NULL,
  beta_free = NULL,
  beta_lbound = NULL,
  beta_ubound = NULL,
  psi_diag = TRUE,
  psi_values = NULL,
 psi_free = NULL,
  psi_lbound = NULL,
  psi_ubound = NULL,
  theta_fixed = TRUE,
  theta_values = NULL,
  theta_free = NULL,
  theta_lbound = NULL,
  theta_ubound = NULL,
 mu0_fixed = TRUE,
 mu0_values = NULL,
 mu0_free = NULL,
 mu0_lbound = NULL,
 mu0\_ubound = NULL,
  sigma0_fixed = TRUE,
  sigma0_diag = TRUE,
  sigma0_values = NULL,
  sigma0_free = NULL,
  sigma0_lbound = NULL,
  sigma0_ubound = NULL,
  try = 1000,
 ncores = NULL,
)
```

Arguments

data	Data frame. A data frame object of data for potentially multiple subjects that contain a column of subject ID numbers (i.e., an ID variable), and at least one column of observed values.
observed	Character vector. A vector of character strings of the names of the observed variables in the data.
id	Character string. A character string of the name of the ID variable in the data.
alpha_fixed	Logical. If alpha_fixed = TRUE, the dynamic model intercept vector alpha is fixed at zero. If alpha_fixed = FALSE, the dynamic model intercept vector alpha is estimated.
alpha_values	Optional starting values for alpha. If alpha_fixed = TRUE, alpha_values will be used as fixed values. If alpha_fixed = FALSE, alpha_values will be used as starting values.
alpha_free	Optional logical vector representing free parameters for alpha.
alpha_lbound	Optional lower bound for alpha. Ignored if alpha_fixed = TRUE.

alpha_ubound Optional upper bound for alpha. Ignored if alpha_fixed = TRUE.

beta_values Numeric matrix. Optional starting values for beta.

beta_free Optional logical matrix representing free parameters for beta.

beta_lbound Numeric matrix. Optional lower bound for beta.
beta_ubound Numeric matrix. Optional upper bound for beta.

psi_free Optional logical matrix representing free parameters for psi.

psi_lbound Numeric matrix. Optional lower bound for psi.

psi_ubound Optional upper bound for psi.

theta_fixed Logical. If theta_fixed = TRUE, the measurement error matrix theta is fixed to

zero. If theta_fixed = FALSE, estimate the diagonal measurement error matrix

theta.

theta_values Optional starting values for theta. Ignored if theta_fixed = TRUE.

theta_free Optional logical matrix representing free parameters for theta.

theta_lbound Optional lower bound for theta. Ignored if theta_fixed = TRUE.

theta_ubound Optional upper bound for theta. Ignored if theta_fixed = TRUE.

mu0_fixed Logical. If mu0_fixed = TRUE, initial mean vector mu0 is fixed. If mu0_fixed =

FALSE, initial mean vector mu0 is estimated.

mu0_values Optional starting values for mu0. If mu0_fixed = TRUE, mu0_values will be used

as fixed values. If mu0_fixed = FALSE, mu0_values will be used as starting

values.

mu0_free Optional logical vector representing free parameters for mu0.

mu0_lbound Optional lower bound for mu0. Ignored if mu0_fixed = TRUE.

mu0_ubound Optional upper bound for mu0. Ignored if mu0_fixed = TRUE.

sigma0_fixed Logical. If sigma0_fixed = TRUE, initial mean vector sigma0 is fixed. If sigma0_fixed

= FALSE, initial mean vector sigma0 is estimated.

sigma0_values Optional starting values for sigma0. If sigma0_fixed = TRUE, sigma0_values

will be used as fixed values. If sigma0_fixed = FALSE, sigma0_values will be

used as starting values.

sigma0_free Optional logical matrix representing free parameters for sigma0.

sigma0_lbound Optional lower bound for sigma0. Ignored if sigma0_fixed = TRUE.

sigma@_ubound Optional upper bound for sigma@. Ignored if sigma@_fixed = TRUE.

try Positive integer. Number of extra optimization tries.

ncores Positive integer. Number of cores to use.

. . . Additional optional arguments to pass to mxTryHardctsem.

Value

Returns an object of class dtvaridmx which is a list with the following elements:

```
call Function call.args List of function arguments.fun Function used ("FitDTVARIDMx").output A list of fitted OpenMx models.
```

Author(s)

Ivan Jacob Agaloos Pesigan

References

Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. *Structural Equation Modeling: A Multidisciplinary Journal*, 25(2), 307–324. doi:10.1080/10705511.2017.1369354

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*, 81(2), 535–549. doi:10.1007/s1133601494358

See Also

Other DTVAR Functions: DTVAR(), FitDTVARMx()

Examples

```
## Not run:
# Generate data using the simStateSpace package-----
set.seed(42)
beta_mu <- matrix(</pre>
  data = c(
   0.7, 0.5, -0.1,
   0.0, 0.6, 0.4,
   0, 0, 0.5
  ),
  nrow = 3
beta_sigma <- diag(3 * 3)</pre>
beta <- simStateSpace::SimBetaN(</pre>
  n = 5,
 beta = beta_mu,
  vcov_beta_vec_l = t(chol(beta_sigma))
sim <- simStateSpace::SimSSMVARIVary(</pre>
  n = 5,
  time = 100,
  mu0 = list(rep(x = 0, times = 3)),
  sigma0_l = list(t(chol(diag(3)))),
  alpha = list(rep(x = 0, times = 3)),
```

```
beta = beta,
  psi_l = list(t(chol(diag(3))))
)
data <- as.data.frame(sim)

# Fit the model------
library(fitDTVARMx)
fit <- FitDTVARIDMx(
  data = data,
   observed = c("y1", "y2", "y3"),
  id = "id"
)
print(fit)
summary(fit)
coef(fit)
vcov(fit)

## End(Not run)</pre>
```

FitDTVARMx

Fit the First-Order Discrete-Time Vector Autoregressive Model

Description

Fit the First-Order Discrete-Time Vector Autoregressive Model

```
FitDTVARMx(
  data,
  observed,
  id,
  alpha_fixed = TRUE,
  alpha_values = NULL,
  alpha_free = NULL,
  alpha_lbound = NULL,
  alpha_ubound = NULL,
  beta_values = NULL,
  beta_free = NULL,
  beta_lbound = NULL,
  beta_ubound = NULL,
  psi_diag = TRUE,
  psi_values = NULL,
  psi_free = NULL,
  psi_lbound = NULL,
  psi_ubound = NULL,
  theta_fixed = TRUE,
```

```
theta_values = NULL,
  theta_free = NULL,
  theta_lbound = NULL,
  theta_ubound = NULL,
 mu0_fixed = TRUE,
 mu0_values = NULL,
 mu0_free = NULL,
 mu0_1bound = NULL,
 mu0\_ubound = NULL,
 sigma0_fixed = TRUE,
  sigma0_diag = TRUE,
  sigma0_values = NULL,
  sigma0_free = NULL,
  sigma0_lbound = NULL,
  sigma0_ubound = NULL,
  try = 1000,
 ncores = NULL,
)
```

Arguments

psi_free

data	Data frame. A data frame object of data for potentially multiple subjects that contain a column of subject ID numbers (i.e., an ID variable), and at least one column of observed values.
observed	Character vector. A vector of character strings of the names of the observed variables in the data.
id	Character string. A character string of the name of the ID variable in the data.
alpha_fixed	Logical. If alpha_fixed = TRUE, the dynamic model intercept vector alpha is fixed at zero. If alpha_fixed = FALSE, the dynamic model intercept vector alpha is estimated.
alpha_values	Optional starting values for alpha. If alpha_fixed = TRUE, alpha_values will be used as fixed values. If alpha_fixed = FALSE, alpha_values will be used as starting values.
alpha_free	Optional logical vector representing free parameters for alpha.
alpha_lbound	Optional lower bound for alpha. Ignored if alpha_fixed = TRUE.
alpha_ubound	Optional upper bound for alpha. Ignored if alpha_fixed = TRUE.
beta_values	Numeric matrix. Optional starting values for beta.
beta_free	Optional logical matrix representing free parameters for beta.
beta_lbound	Numeric matrix. Optional lower bound for beta.
beta_ubound	Numeric matrix. Optional upper bound for beta.
psi_diag	Logical. If psi_diag = TRUE, psi is a diagonal matrix.
psi_values	Numeric matrix. Optional starting values for psi.

Optional logical matrix representing free parameters for psi.

psi_lbound	Numeric matrix. Optional lower bound for psi.
psi_ubound	Optional upper bound for psi.
theta_fixed	Logical. If theta_fixed = TRUE, the measurement error matrix theta is fixed to zero. If theta_fixed = FALSE, estimate the diagonal measurement error matrix theta.
theta_values	Optional starting values for theta. Ignored if theta_fixed = TRUE.
theta_free	Optional logical matrix representing free parameters for theta.
theta_lbound	Optional lower bound for theta. Ignored if theta_fixed = TRUE.
theta_ubound	Optional upper bound for theta. Ignored if theta_fixed = TRUE.
mu0_fixed	Logical. If mu0_fixed = TRUE, initial mean vector mu0 is fixed. If mu0_fixed = FALSE, initial mean vector mu0 is estimated.
mu0_values	Optional starting values for mu0. If mu0_fixed = TRUE, mu0_values will be used as fixed values. If mu0_fixed = FALSE, mu0_values will be used as starting values.
mu0_free	Optional logical vector representing free parameters for mu0.
mu0_lbound	Optional lower bound for mu0. Ignored if mu0_fixed = TRUE.
mu0_ubound	Optional upper bound for mu0. Ignored if mu0_fixed = TRUE.
sigma0_fixed	Logical. If sigma0_fixed = TRUE, initial mean vector sigma0 is fixed. If sigma0_fixed = FALSE, initial mean vector sigma0 is estimated.
sigma0_diag	Logical. If sigma@_diag = TRUE, sigma@ is a diagonal matrix.
sigma0_values	Optional starting values for sigma0. If sigma0_fixed = TRUE, sigma0_values will be used as fixed values. If sigma0_fixed = FALSE, sigma0_values will be used as starting values.
sigma0_free	Optional logical matrix representing free parameters for sigma0.
sigma0_lbound	Optional lower bound for sigma0. Ignored if sigma0_fixed = TRUE.
sigma0_ubound	Optional upper bound for sigma0. Ignored if sigma0_fixed = TRUE.
try	Positive integer. Number of extra optimization tries.
ncores	Positive integer. Number of cores to use.
•••	Additional optional arguments to pass to mxTryHardctsem.

Value

Returns an object of class dtvarmx which is a list with the following elements:

call Function call.args List of function arguments.fun Function used ("FitDTVARMx").output A fitted OpenMx model.

Author(s)

References

Hunter, M. D. (2017). State space modeling in an open source, modular, structural equation modeling environment. *Structural Equation Modeling: A Multidisciplinary Journal*, 25(2), 307–324. doi:10.1080/10705511.2017.1369354

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*, 81(2), 535–549. doi:10.1007/s1133601494358

See Also

Other DTVAR Functions: DTVAR(), FitDTVARIDMx()

Examples

```
## Not run:
# Generate data using the simStateSpace package------
set.seed(42)
sim <- simStateSpace::SimSSMVARFixed(</pre>
 n = 5,
 time = 100,
 mu0 = rep(x = 0, times = 3),
 sigma0_1 = t(chol(diag(3))),
 alpha = rep(x = 0, times = 3),
 beta = matrix(
   data = c(
     0.7, 0.5, -0.1,
     0.0, 0.6, 0.4,
     0, 0, 0.5
   ),
   nrow = 3
 ),
 psi_l = t(chol(diag(3)))
data <- as.data.frame(sim)</pre>
# Fit the model------
library(fitDTVARMx)
fit <- FitDTVARMx(</pre>
 data = data,
 observed = c("y1", "y2", "y3"),
 id = "id"
print(fit)
summary(fit)
coef(fit)
vcov(fit)
## End(Not run)
```

print.dtvaridmx 15

print.dtvaridmx

Print Method for Object of Class dtvaridmx

Description

Print Method for Object of Class dtvaridmx

Usage

```
## S3 method for class 'dtvaridmx'
print(x, means = TRUE, ...)
```

Arguments

x an object of class dtvaridmx.

means Logical. If means = TRUE, return means. Otherwise, the function returns raw

estimates.

... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

print.dtvarmx

Print Method for Object of Class dtvarmx

Description

Print Method for Object of Class dtvarmx

Usage

```
## S3 method for class 'dtvarmx'
print(x, ...)
```

Arguments

x an object of class dtvarmx.

... further arguments.

Author(s)

16 summary.dtvarmx

summary.dtvaridmx

Summary Method for Object of Class dtvaridmx

Description

Summary Method for Object of Class dtvaridmx

Usage

```
## S3 method for class 'dtvaridmx'
summary(object, means = TRUE, ...)
```

Arguments

object an object of class dtvaridmx.

means Logical. If means = TRUE, return means. Otherwise, the function returns raw

estimates.

... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

summary.dtvarmx

Summary Method for Object of Class dtvarmx

Description

Summary Method for Object of Class dtvarmx

Usage

```
## S3 method for class 'dtvarmx'
summary(object, ...)
```

Arguments

object an object of class dtvarmx.
... further arguments.

Author(s)

vcov.dtvaridmx 17

vcov.dtvaridmx Sampling Covariance Matrix of the Parameter Estimates	vcov.dtvaridmx	Sampling Covariance Matrix of the Parameter Estimates	
--	----------------	---	--

Description

Sampling Covariance Matrix of the Parameter Estimates

Usage

```
## S3 method for class 'dtvaridmx'
vcov(object, alpha = FALSE, psi = FALSE, theta = FALSE, ...)
```

Arguments

object	Object of class dtvaridmx.
alpha	Logical. If alpha = TRUE, include estimates of the alpha vector, if available. If alpha = FALSE, exclude estimates of the alpha vector.
psi	Logical. If psi = TRUE, include estimates of the psi matrix, if available. If psi = FALSE, exclude estimates of the psi matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a list of sampling variance-covariance matrices.

Author(s)

Ivan Jacob Agaloos Pesigan

vcov.dtvarmx	Sampling Covariance Matrix of the Parameter Estimates	

Description

Sampling Covariance Matrix of the Parameter Estimates

```
## S3 method for class 'dtvarmx'
vcov(object, alpha = FALSE, psi = FALSE, theta = FALSE, ...)
```

18 vcov.dtvarmx

Arguments

object	Object of class dtvarmx.
alpha	Logical. If alpha = TRUE, include estimates of the alpha vector, if available. If alpha = FALSE, exclude estimates of the alpha vector.
psi	Logical. If psi = TRUE, include estimates of the psi matrix, if available. If psi = FALSE, exclude estimates of the psi matrix.
theta	Logical. If theta = TRUE, include estimates of the theta matrix, if available. If theta = FALSE, exclude estimates of the theta matrix.
	additional arguments.

Value

Returns a list of sampling variance-covariance matrices.

Author(s)

Index

```
* DTVAR Functions
    DTVAR, 3
    FitDTVARIDMx, 7
    FitDTVARMx, 11
* fitDTVARMx
    DTVAR, 3
    FitDTVARIDMx, 7
    FitDTVARMx, 11
* fit
    DTVAR, 3
    FitDTVARIDMx, 7
    FitDTVARMx, 11
* methods
    coef.dtvaridmx, 2
    coef.dtvarmx, 2
    print.dtvaridmx, 15
    print.dtvarmx, 15
    summary.dtvaridmx, 16
    summary.dtvarmx, 16
    vcov.dtvaridmx, 17
    vcov.dtvarmx, 17
coef.dtvaridmx, 2
coef.dtvarmx, 2
DTVAR, 3, 10, 14
DTVAR(), 4
FitDTVARIDMx, 5, 7, 14
FitDTVARIDMx(), 4
FitDTVARMx, 5, 10, 11
FitDTVARMx(), 4
print.dtvaridmx, 15
print.dtvarmx, 15
summary.dtvaridmx, 16
summary.dtvarmx, 16
vcov.dtvaridmx, 17
vcov.dtvarmx, 17
```