Devoir à la maison n°16

Problème 1 –

Partie I - Intégrales de Wallis

On pose pour tout $n \in \mathbb{N}$,

$$I_n = \int_0^{\frac{\pi}{2}} \sin^n(x) dx$$

- **1.** Calculer I_0 et I_1 .
- 2. En intégrant par parties, trouver une relation de récurrence entre I_n et I_{n+2} .
- 3. En déduire une expression de I_{2n} et I_{2n+1} pour tout $n\in\mathbb{N}$ à l'aide de factorielles.
- $\textbf{4.} \ \ \text{V\'erifier que } (I_n)_{n\geqslant 0} \ \text{est d\'ecroissante. En d\'eduire que } \frac{n+1}{n+2} I_n \leqslant I_{n+1} \leqslant I_n \ \text{pour tout } n \in \mathbb{N}.$
- 5. Démontrer que $I_{n+1} \underset{n \to +\infty}{\sim} I_n$.
- **6.** Établir que pour tout $n \in \mathbb{N}$, $(n+1)I_{n+1}I_n = \frac{\pi}{2}$.
- 7. En déduire que $I_n \underset{n \rightarrow +\infty}{\sim} \sqrt{\frac{\pi}{2n}}.$

Partie II - Formule de Stirling

On pose pour tout $n \in \mathbb{N}^*$, $u_n = \frac{n^n e^{-n} \sqrt{n}}{n!}$.

- $\textbf{1. Pour tout } n \in \mathbb{N}^*, \text{ on pose } \nu_n = \ln \frac{u_{n+1}}{u_n}. \text{ Montrer que } \nu_n \underset{\scriptscriptstyle n \to +\infty}{=} \mathcal{O} \ \bigg(\frac{1}{n^2}\bigg).$
- 2. En déduire que (u_n) converge vers une certaine limite $l \in \mathbb{R}_+^*$.
- 3. Montrer que $l = \frac{1}{\sqrt{2\pi}}$ et en déduire un équivalent de n!.

EXERCICE 1.

Soient $(a_n)_{n\geqslant n_0}$ et $(B_n)_{n\geqslant n_0}$ deux suites complexes. On définit alors deux suites $(A_n)_{n\geqslant n_0}$ et $(b_n)_{n\geqslant n_0}$ de la manière suivante :

$$\forall n\geqslant n_0,\; A_n=\sum_{k=n_0}^n a_k,\; b_n=B_{n+1}-B_n$$

- 1. Montrer que $\sum_{k=n_0}^n a_k B_k = A_n B_n \sum_{k=n_0}^{n-1} A_k b_k$ pour tout entier $n \geqslant n_0$.
- **2.** Dans cette question, on suppose que (A_n) est bornée et que (B_n) est une suite réelle décroissante de limite nulle.
 - a. Montrer que la série $\sum_{n\geqslant n_0}b_n$ converge.
 - **b.** En déduire que la série $\sum_{n\geqslant n_0} \alpha_n B_n$ converge.
 - $\textbf{c.} \;$ En déduire en particulier que la série $\sum_{n\geqslant n_0} (-1)^n B_n$ converge.
- **3.** Soient $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ et $\alpha \in \mathbb{R}$.
 - a. Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=1}^n e^{ik\theta}$.
 - **b.** Discuter en fonction du réel α la nature de la série $\sum_{n\in\mathbb{N}^*}\frac{e^{n\mathrm{i}\theta}}{n^{\alpha}}.$

On précisera notamment dans les cas de convergence s'il s'agit ou non de convergence absolue. De même, dans les cas de divergence, on précisera s'il s'agit ou non de divergence grossière.

- $\textbf{c.} \ \ \text{En d\'eduire la nature des s\'eries} \sum_{n \in \mathbb{N}^*} \frac{\cos(n\theta)}{n^\alpha} \ \text{et} \ \sum_{n \in \mathbb{N}^*} \frac{\sin(n\theta)}{n^\alpha}.$
- **4.** Montrer que si (B_n) converge vers 0, si (A_n) est bornée et si $\sum_{n\geqslant n_0} b_n$ est absolument convergente, alors $\sum_{n\geqslant n_0} a_n B_n$ est convergente.