Nassim Rafiefard

Code:27

Project: heartdata

FDA

Import all libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from scipy import stats#
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score, confusion_matrix, classific
from sklearn.model_selection import cross_val_predict, cross_val_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import KFold

import warnings
warnings.filterwarnings("ignore")
```

Import HeartData

In [123... heartdata=pd.read_csv('/Users/nasimrafie/Documents/data science/Tehran Data/Python/1/Section 1/Datasets/Heart data

In [123... heartdata.head()

Out[123.

	Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	ca	thal	С
0	63	1	1	145.0	233.0	1.0	2.0	150.0	0.0	2.3	3.0	0.0	6.0	0
1	37	1	3	130.0	250.0	0.0	0.0	187.0	0.0	3.5	3.0	0.0	3.0	0
2	41	0	2	130.0	204.0	0.0	2.0	172.0	0.0	1.4	1.0	0.0	3.0	0
3	56	1	2	120.0	236.0	0.0	0.0	178.0	0.0	0.8	1.0	0.0	3.0	0
4	57	0	4	120.0	354.0	0.0	0.0	163.0	1.0	0.6	1.0	0.0	3.0	0

In [123... heartdata.tail()

Out[123.

	Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	ca	thal	С
592	52	1	4	140.0	266.0	0.0	0.0	134.0	1.0	2.0	2.0	NaN	NaN	1
593	43	1	4	140.0	288.0	0.0	0.0	135.0	1.0	2.0	2.0	NaN	NaN	1
594	41	1	4	120.0	336.0	0.0	0.0	118.0	1.0	3.0	2.0	NaN	NaN	1
595	44	1	4	135.0	491.0	0.0	0.0	135.0	0.0	0.0	NaN	NaN	NaN	1
596	49	1	4	150.0	222.0	0.0	0.0	122.0	0.0	2.0	2.0	NaN	NaN	1

Data has 587 rows and 14 columns

```
In [123... heartdata.shape
```

Out[123... (597, 14)

```
In [124... print('There are', heartdata.shape[0], 'rows and', heartdata.shape[1], 'columns in heartdata.')
```

There are 597 rows and 14 columns in heartdata.

```
In [124... heartdata.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 597 entries, 0 to 596 Data columns (total 14 columns):

#	Column	Non-Null Count	Dtype
0	Age (age in year)	597 non-null	int64
1	sex	597 non-null	int64
2	chest pain	597 non-null	int64
3	blood pressure	596 non-null	float64
4	cholestoral	574 non-null	float64
5	blood sugar	589 non-null	float64
6	electrocardiographic	596 non-null	float64
7	heart rate	596 non-null	float64
8	exercise induced	596 non-null	float64
9	depression	597 non-null	float64
10	slope	407 non-null	float64
11	ca	303 non-null	float64
12	thal	329 non-null	float64
13	С	597 non-null	int64

dtypes: float64(10), int64(4)
memory usage: 65.4 KB

In [124... heartdata.describe().T

Out[124...

	count	mean	std	min	25%	50%	75%	max
Age (age in year)	597.0	51.182580	9.074366	28.0	44.0	52.0	58.00	77.0
sex	597.0	0.701843	0.457833	0.0	0.0	1.0	1.00	1.0
chest pain	597.0	3.072027	0.965776	1.0	2.0	3.0	4.00	4.0
blood pressure	596.0	132.129195	17.603812	92.0	120.0	130.0	140.00	200.0
cholestoral	574.0	248.655052	59.784805	85.0	211.0	242.5	278.75	603.0
blood sugar	589.0	0.110357	0.313600	0.0	0.0	0.0	0.00	1.0
electrocardiographic	596.0	0.610738	0.869358	0.0	0.0	0.0	2.00	2.0
heart rate	596.0	144.456376	23.794282	71.0	128.0	146.0	162.00	202.0
exercise induced	596.0	0.315436	0.465080	0.0	0.0	0.0	1.00	1.0
depression	597.0	0.816248	1.067938	0.0	0.0	0.2	1.50	6.2
slope	407.0	1.675676	0.572758	1.0	1.0	2.0	2.00	3.0
ca	303.0	0.693069	1.049212	0.0	0.0	0.0	1.00	9.0
thal	329.0	4.811550	1.928854	3.0	3.0	3.0	7.00	7.0
С	597.0	0.410385	0.492316	0.0	0.0	0.0	1.00	1.0

Dataset Attributes

Age: age of the patient [years]

Sex : sex of the patient [M: Male, F: Female]

ChestPainType: chest pain type [TA: Typical Angina, ATA: Atypical Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic]

RestingBP : resting blood pressure [mm Hg]

Cholesterol: serum cholesterol [mm/dl]

FastingBS : fasting blood sugar [1: if FastingBS > 120 mg/dl, 0: otherwise]

RestingECG: resting electrocardiogram results [Normal: Normal, ST: having ST-T wave abnormality (T wave inversions and/or ST elevation or depression of > 0.05 mV), LVH: showing probable or definite left ventricular hypertrophy by Estes' criteria]

MaxHR: maximum heart rate achieved [Numeric value between 60 and 202]

ExerciseAngina : exercise-induced angina [Y: Yes, N: No]

Oldpeak : oldpeak = ST [Numeric value measured in depression]

 ${\tt ST_Slope: the \ slope\ of\ the\ peak\ exercise\ ST\ segment\ [Up: upsloping,\ Flat:\ flat,\ Down:\ downsloping]}$

HeartDisease : output class [1: heart disease, 0: Normal]

Category Counts in Categorical Columns

```
In [125... cat_col=['sex','chest pain', 'electrocardiographic ','exercise induced' ,'slope','ca','thal','blood sugar']
         for column in cat col:
             print(heartdata[column].value_counts( dropna=False))
             print('-'*50)
        sex
        1
             419
        0
            178
        Name: count, dtype: int64
        chest pain
             267
        2
             156
        3
             140
        1
              34
        Name: count, dtype: int64
        electrocardiographic
        0.0
               386
        2.0
               154
        1.0
               56
        NaN
                1
        Name: count, dtype: int64
        exercise induced
        0.0
               188
        1.0
        NaN
                1
        Name: count, dtype: int64
        slope
        2.0
               231
        NaN
               190
        1.0
               154
        3.0
               22
        Name: count, dtype: int64
        -----
        ca
        NaN
               294
        0.0
               179
        1.0
               65
        2.0
              20
        3.0
        9.0
                 1
        Name: count, dtype: int64
        thal
        NaN
               268
        3.0
               173
        7.0
               128
        6.0
               28
        Name: count, dtype: int64
        blood sugar
        0.0
             524
        1.0
                65
        NaN
                8
        Name: count, dtype: int64
In [125... for column in cat col:
             print(heartdata[column].value\_counts(normalize=\textbf{True}, dropna=\textbf{False}))
             print('-'*50)
```

```
sex
1
    0.701843
0
   0.298157
Name: proportion, dtype: float64
chest pain
   0.447236
2
    0.261307
   0.234506
1
   0.056951
Name: proportion, dtype: float64
electrocardiographic
0.0
      0.646566
      0.257956
2.0
1.0
     0.093802
    0.001675
NaN
Name: proportion, dtype: float64
exercise induced
     0.683417
     0.314908
1.0
NaN
     0.001675
Name: proportion, dtype: float64
slope
2.0
      0.386935
    0.318258
NaN
1.0 0.257956
3.0
     0.036851
Name: proportion, dtype: float64
NaN
     0.492462
0.0
      0.299832
1.0
     0.108878
2.0
     0.063652
3.0
     0.033501
9.0
      0.001675
Name: proportion, dtype: float64
thal
NaN
      0.448911
    0.289782
3.0
7.0
    0.214405
6.0
     0.046901
Name: proportion, dtype: float64
blood sugar
0.0 0.877722
1.0
      0.108878
     0.013400
NaN
Name: proportion, dtype: float64
```

Observation In 'ca' column value 9.0 is observed which should be 0.0 and has been typed 9.0 by mistake.

```
In [125... heartdata['ca'][heartdata['ca']==9]=0
In [125... heartdata['ca'].value_counts(normalize=True, dropna=False)
Out[125... ca
    NaN     0.492462
    0.0     0.301508
    1.0     0.108878
    2.0     0.063652
    3.0     0.033501
    Name: proportion, dtype: float64
```

Missing Values

```
In [126... heartdata.isnull().sum()
```

```
Out[126... Age (age in year)
                                     0
         chest pain
                                     0
          blood pressure
          cholestoral
                                    23
          blood sugar
                                     8
          electrocardiographic
                                     1
          heart rate
          exercise induced
                                     1
          depression
                                     0
          slope
                                   190
          ca
                                   294
                                   268
         thal
                                     0
         dtype: int64
```

Univariate Observation

```
In [126... def histogram boxplot(feature, figsize=(15, 10), bins="auto"):
              "" Boxplot and histogram combined
             feature: 1-d feature array
             figsize: size of fig (default (15, 10))
             bins: number of bins (default "auto")
             f, (ax_box, ax_hist) = plt.subplots(
                 nrows=2, # Number of rows of the subplot grid
                 sharex=True, # The X-axis will be shared among all the subplots
                 gridspec_kw={"height_ratios": (.25, .75)},
                 figsize=figsize
             # Creating the subplots
             # Boxplot will be created and the mean value of the column will be indicated using some symbol
             sns.boxplot(x=feature, ax=ax_box, showmeans=True, color='red')
             # For histogram
             sns.histplot(x=feature, kde=False, ax=ax_hist, bins=bins)
             ax_hist.axvline(np.mean(feature), color='g', linestyle='--')
                                                                              # Add mean to the histogram
             ax_hist.axvline(np.median(feature), color='black', linestyle='-') # Add median to the histogram
             plt.show()
In [126... num col1 =heartdata.drop(columns=cat col)
         num col=num col1.drop('c',axis=1)
         num_col.columns
Out[126... Index(['Age (age in year)', 'blood pressure', 'cholestoral ', 'heart rate',
                 'depression '],
                dtype='object')
In [126... for i in num_col:
             p = histogram boxplot(heartdata[i])
             plt.show()
```


Observation

```
In [ ]:
In [127... def bar perc(data, z):
             total = len(data[z]) # Length of the column
             plt.figure(figsize = (15, 5))
             # Convert the column to a categorical data type
             data[z] = data[z].astype('category')
             ax = sns.countplot(x=z, data=data, hue=z, palette='Paired', order=data[z].value_counts().index)
             for p in ax.patches:
                 percentage = '{:.1f}%'.format(100 * p.get_height() / total) # Percentage of each class
                 x = p.get_x() + p.get_width() / 2 - 0.05
                                                                             # Width of the plot
                                                                             # Height of the plot
                 y = p.get_y() + p.get_height()
                                                                             # Annotate the percentage
                 ax.annotate(percentage, (x, y), size = 12)
             plt.show()
                                                                              # Display the plot
```

In [127... for i in cat_col:
 p = bar_perc(heartdata,i)
 plt.show()

Multiivariate Observation

In [127... heartdata.info()

```
RangeIndex: 597 entries, 0 to 596
Data columns (total 14 columns):
#
    Column
                            Non-Null Count Dtype
                            -----
0
    Age (age in year)
                            597 non-null
                                            int64
1
                            597 non-null
    sex
                                            category
2
     chest pain
                            597 non-null
                                             category
3
    blood pressure
                            596 non-null
                                             float64
4
     cholestoral
                            574 non-null
                                            float64
5
    blood sugar
                            589 non-null
                                            category
6
    electrocardiographic
                            596 non-null
                                             category
 7
    heart rate
                            596 non-null
                                             float64
     exercise induced
8
                            596 non-null
                                            category
 9
    depression
                            597 non-null
                                             float64
                            407 non-null
10
    slope
                                            category
                            303 non-null
 11
    ca
                                            category
 12 thal
                            329 non-null
                                            category
 13
    С
                            597 non-null
                                             int64
dtypes: category(8), float64(4), int64(2)
memory usage: 33.9 KB
```

<class 'pandas.core.frame.DataFrame'>

In [127... corr=heartdata.corr() corr

```
Age (age
                                               chest
                                                          blood
                                                                                 blood
                                                                                                                          exercise
                                                                                                                   heart
                                      sex
                                                                 cholestoral
                                                                                         electrocardiographic
                                                                                 sugar
                                                                                                                           induced
                       in year)
                                                pain
                                                       pressure
                                                                                                                    rate
                      1.000000 -0.062397
                                            0.147064
                                                       0.238490
                                                                   0.123624
                                                                              0.176286
                                                                                                    0.260132 -0.303596
                                                                                                                          0.155862
   Age (age in year)
                     -0.062397
                                 1.000000
                                            0.120748
                                                       0.010620
                                                                   -0.076399
                                                                              0.038030
                                                                                                    -0.034982 -0.088691
                                                                                                                          0.148814
                sex
         chest pain
                      0.147064
                                 0.120748
                                            1.000000
                                                       0.021586
                                                                    0.104111
                                                                               0.001428
                                                                                                    0.073320
                                                                                                              -0.322748
                                                                                                                          0.438328
     blood pressure
                      0.238490
                                 0.010620
                                            0.021586
                                                       1.000000
                                                                   0.105189
                                                                              0.136097
                                                                                                    0.077768 -0.117829
                                                                                                                          0.136658
                                -0.076399
                                                       0.105189
                                                                    1.000000
                      0 123624
                                            0.104111
                                                                              0.054867
                                                                                                    0.088498
                                                                                                             -0.076064
                                                                                                                          0 117111
         cholestoral
        blood sugar
                     0.176286
                                 0.038030
                                            0.001428
                                                       0.136097
                                                                   0.054867
                                                                               1.000000
                                                                                                    0.111847 -0.005236
                                                                                                                          0.063431
electrocardiographic
                      0.260132
                                -0.034982
                                            0.073320
                                                       0.077768
                                                                    0.088498
                                                                              0.111847
                                                                                                    1.000000
                                                                                                               0.052515
                                                                                                                          0.071970
          heart rate
                     -0.303596
                                -0.088691
                                           -0.322748
                                                      -0.117829
                                                                   -0.076064
                                                                              -0.005236
                                                                                                    0.052515
                                                                                                               1.000000
                                                                                                                         -0.374642
                                            0.438328
   exercise induced
                     0.155862
                                 0 148814
                                                       0.136658
                                                                   0 117111
                                                                              0.063431
                                                                                                    0.071970 -0.374642
                                                                                                                          1 000000
         depression
                      0.253305
                                 0.095716
                                            0.277695
                                                       0.185216
                                                                   0.065998
                                                                              0.050842
                                                                                                    0.175329 -0.259880
                                                                                                                          0.426849
                      0.078979
                                 0.075835
                                            0.209141
                                                       0.126015
                                                                   0.047846
                                                                              0.058897
                                                                                                    0.032245 -0.402652
                                                                                                                          0.332025
              slope
                                 0.090833
                                            0.227668
                                                                   0.123661
                      0.364036
                                                       0.093548
                                                                              0.148741
                                                                                                    0.136486 -0.253548
                                                                                                                          0.140423
                      0.105296
                                 0.349134
                                            0.245214
                                                       0.133696
                                                                    0.011964
                                                                              0.069128
                                                                                                    -0.012682 -0.302562
                                                                                                                          0.320352
                thal
                      0.216430
                                 0.268343
                                            0.463527
                                                       0.142178
                                                                    0.145802
                                                                              0.090071
                                                                                                    0.137410 -0.342209
                                                                                                                          0.504280
```

```
In [128...
         ## Check for correlation among numerical variables
         #corr = heartdata.corr()
         # Plot the mapp
         plt.figure(figsize = (14, 10))
         sns.heatmap(corr, annot = True, cmap = 'coolwarm', fmt = ".1f")
```

Out[128... <Axes: >

Observation

Chest pain, exercise-induced angina, depression, calcium levels (ca), and thalassemia (thal) all appear to have a correlation with c, with values around 0.5.

Missing value

```
Out[128... Age (age in year)
         chest pain
                                     0
          blood pressure
          cholestoral
                                    23
          blood sugar
          electrocardiographic
                                     1
          heart rate
          exercise induced
                                     1
          depression
                                     0
          slope
                                   190
                                   294
          ca
                                   268
          thal
                                     0
          dtype: int64
```

Outlier Values

Number of outliers based on IQR and Z-score

```
for variable in num_col:
    print(variable)
    Q1=heartdata[variable].quantile(0.25)
    Q3=heartdata[variable].quantile(0.75)
    IQR=Q3-Q1
    zscore=np.abs(stats.zscore(heartdata[variable]))

# print ('min=',heartdata[variable].min(),'max=',heartdata[variable].max(),'median=',heartdata[variable].med.
    print('number of outliers with IQR=',heartdata[(heartdata[variable]<Q1-1.5*IQR)|(heartdata[variable]>Q3+1.5*
    print('number of outliers with zscore=',heartdata[zscore>3].shape[0])
    print( zscore[zscore>3])
Age (age in year)
```

```
number of outliers with IQR= 0
number of outliers with zscore= 0
Series([], Name: Age (age in year), dtype: float64)
blood pressure
number of outliers with IQR= 17
number of outliers with zscore= 0
Series([], Name: blood pressure, dtype: float64)
cholestoral
number of outliers with IQR= 19
number of outliers with zscore= 0
Series([], Name: cholestoral , dtype: float64)
heart rate
number of outliers with IQR= 1
number of outliers with zscore= 0
Series([], Name: heart rate, dtype: float64)
depression
number of outliers with IQR= 11
number of outliers with zscore= 6
101
      3.171150
514
       5.045489
520
     4.483187
527
     3.171150
581
       3.358583
591
       3.920885
Name: depression , dtype: float64
```

Fill outliers which are found by Z-score with null values and the rest with upper and lower amount of data.

```
In [129...

def treat_outliers(df, col):
    # Calculate IQR and Z-score
    Q1 = df[col].quantile(0.25)
    Q3 = df[col].quantile(0.75)
    IQR = Q3 - Q1
    lower_whisker = Q1 - 1.5 * IQR
    upper_whisker = Q3 + 1.5 * IQR
    zscore = np.abs(stats.zscore(df[col]))

# Loop through each value and apply conditions
for idx, value in enumerate(df[col]):
```

Outlier found based on Z-score are added to null values.

```
In [129... heartdata.isnull().sum()
Out[129... Age (age in year)
                                       0
                                       0
          sex
          chest pain
                                       0
          blood pressure
                                       1
          cholestoral
                                      23
          blood sugar
                                       8
          electrocardiographic
                                       1
          heart rate
                                      1
          exercise induced
                                      1
                                      6
          depression
                                     190
          slope
          ca
                                     294
          thal
                                     268
                                      0
          dtype: int64
```

No more outliers are detected in box-plot

```
In [130... for i in num_col:
    p = histogram_boxplot(heartdata[i])
    plt.show()
```



```
In [130... heartdata.isnull().sum()
                                 0
Out[130... Age (age in year)
         sex
                                 0
         chest pain
                                 0
         blood pressure
                                 1
         cholestoral
                                23
         blood sugar
                                 8
         electrocardiographic
         heart rate
                                 1
         exercise induced
                                 1
         depression
                                 6
         slope
                                190
                                294
         ca
         thal
                                268
                                 0
         dtype: int64
        In [130...
Out[130...
                         Count Percentage
            blood pressure
                            1
                                 0.167504
               cholestoral
                            23
                                 3 852596
               blood sugar
                            8
                                 1.340034
        electrocardiographic
                                 0.167504
                heart rate
                                 0.167504
           exercise induced
                                 0.167504
               depression
                            6
                                 1.005025
                           190
                                31.825796
                    slope
                      ca
                           294
                                49.246231
                                44 891122
                     thal
                           268
```

Observation

ca and thal columns have the highest percentage (almost 50%) of missing values.

blood pressure, electrocardiographic, heart rate and exercise induced have the lowest percentage of missing values.

There is no column with more than 50% of missing values.

Finding rows with more than 4 null features to drop

```
In [131... heartdata.columns
Out[131= Index(['Age (age in year)', 'sex', 'chest pain', 'blood pressure',
                   'cholestoral ', 'blood sugar', 'electrocardiographic ', 'heart rate',
                  'exercise induced', 'depression ', 'slope', 'ca', 'thal', 'c'],
                 dtype='object')
In [131...
         heartdata.loc[heartdata['blood pressure'].isnull()==True]
                 Age
                                                        blood
                 (age
                           chest
                                     blood
                                                                                  heart
                                                                                         exercise
                      sex
                                            cholestoral
                                                              electrocardiographic
                                                                                                  depression slope
                                                                                                                      са
                                                                                                                          thal c
                  in
                                  pressure
                                                        sugar
                                                                                         induced
                            pain
                                                                                    rate
                year)
          347
                  48
                        0
                               2
                                      NaN
                                                 308.0
                                                          0.0
                                                                              1.0
                                                                                   NaN
                                                                                             NaN
                                                                                                         2.0
                                                                                                                1.0 NaN NaN 0
In [131... heartdata.loc[heartdata['electrocardiographic '].isnull()==True]
Out[131...
                 Age
                                                                                         exercise
                 (age
                           chest
                                     blood
                                                        blood
                                                                                  heart
                      sex
                                            cholestoral
                                                               electrocardiographic
                                                                                                  depression
                                                                                                             slope
                                                                                                                          thal c
                  in
                            pain
                                  pressure
                                                        sugar
                                                                                   rate
                                                                                         induced
                year)
          562
                                     140.0
                                                 295.0
                                                          0.0
                                                                             NaN 136.0
                                                                                              0.0
                  55
                        1
                               1
                                                                                                         0.0
                                                                                                               NaN
                                                                                                                    NaN
                                                                                                                         NaN
In [131= heartdata.loc[heartdata['heart rate'].isnull()==True]
```

	Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	ca	thal	c
347	48	0	2	NaN	308.0	0.0	1.0	NaN	NaN	2.0	1.0	NaN	NaN	C
hear	tdata.	loc[h	eartda [.]	ta['exerc	ise induced	<mark>l'].</mark> isn	ull()==True]							
	Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	ca	thal	c
347	48	0	2	NaN	308.0	0.0	1.0	NaN	NaN	2.0	1.0	NaN	NaN	C
hear	tdata.	loc[h	eartda [.]	ta['blood	sugar'].is	null()	==True]							
	Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	ca	thal	ď
183	53	0	2	113.0	380.375	NaN	0.0	127.0	0.0	0.0	NaN	NaN	NaN	(
213	46	1	3	150.0	163.000	NaN	0.0	116.0	0.0	0.0	NaN	NaN	NaN	-
289	49	1	4	120.0	297.000	NaN	0.0	132.0	0.0	1.0	2.0	NaN	NaN	
301	56	0	3	130.0	219.000	NaN	1.0	164.0	0.0	0.0	NaN	NaN	7.0	
314	38	0	2	120.0	275.000	NaN	0.0	129.0	0.0	0.0	NaN	NaN	NaN	
316	54	0	2	140.0	309.000	NaN	1.0	140.0	0.0	0.0	NaN	NaN	NaN	
421	40	1	4	120.0	380.375	NaN	0.0	152.0	1.0	1.0	2.0	NaN	6.0	
431	41	1	4	120.0	237.000	NaN	0.0	138.0	1.0	1.0	2.0	NaN	NaN	
hear	tdata.	Loc[h	eartda [.]	ta['chole	storal '].i	.snull()==True].head()							
	Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	ca	thal	
166	54	1	3	150.0	NaN	0.0	0.0	122.0	0.0	0.0	NaN	NaN	NaN	
185	56	1	3	130.0	NaN	0.0	0.0	114.0	0.0	0.0	NaN	NaN	NaN	
189	48	0	2	120.0	NaN	1.0	1.0	148.0	0.0	0.0	NaN	NaN	NaN	
204	43	0	3	150.0	NaN	0.0	0.0	175.0	0.0	0.0	NaN	NaN	3.0	
221	49	0	2	110.0	NaN	0.0	0.0	160.0	0.0	0.0	NaN	NaN	NaN	
Bloc Tha	od pres I and C	sure, a is a	heart also nu	rate and o	exercise inc why it mak	duced's kes ser	s only missing value ase to delete the da	e are f ita. Th	rom the s	same index e line with	No. 3 5 miss	47, w ing va	here alues	
hear	tdata :	hea	rtdata	.drop(347).reset_ind	lex(dro	p= True)							

In [132... pd.DataFrame({'Count':heartdata.isnull().sum()[heartdata.isnull().sum()>0], 'Percentage':heartdata.isnull().sum

Out[132... Count Percentage 3.859060 cholestoral 23 1.342282 blood sugar electrocardiographic 1 0.167785 6 1.006711 depression 190 31.879195 slope 293 49.161074 thal 267 44.798658

Exercise doesnt have null value any more.

Check if null values from thal,ca and slope are from same index:

```
0.981273
         NaN
          0.0
                 0.018727
          1.0
                 0.000000
          2.0
                 0.000000
          3.0
                0.000000
         Name: proportion, dtype: float64
In [133... heartdata.loc[heartdata['slope'].isnull()==True,'ca'].value_counts(normalize=True, dropna=False)
Out[133...
         NaN
                 0.989474
          0.0
                 0.010526
          1.0
                 0.000000
          2.0
                 0.000000
          3.0
                 0.000000
         Name: proportion, dtype: float64
In [133... heartdata.loc[heartdata['slope'].isnull()==True, 'thal'].value counts(normalize=True, dropna=False)
Out[133... thal
         NaN
                 0.910526
          7.0
                 0.036842
          6.0
                 0.031579
          3.0
                 0.021053
         Name: proportion, dtype: float64
In [133... heartdata.loc[heartdata['cholestoral '].isnull()==True,'ca'].value_counts(normalize=True, dropna=False)
Out[133... ca
         NaN
                 0.956522
          0.0
                 0.043478
          1.0
                 0.000000
                 0.000000
          2.0
          3.0
                 0.000000
         Name: proportion, dtype: float64
         There seems to be a strong pattern in missing values, as wherever the ca column has missing
         data the thal, cholestral and slope columns also have missing values.
In [134_ nullcholestral=heartdata.loc[heartdata['cholestoral '].isnull()==True]
```

nullcholestral

In [133... heartdata.loc[heartdata['thal'].isnull()==True,'ca'].value_counts(normalize=True,dropna=False)

		Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	ca	thal	С
1	66	54	1	3	150.0	NaN	0.0	0.0	122.0	0.0	0.0	NaN	NaN	NaN	0
1	85	56	1	3	130.0	NaN	0.0	0.0	114.0	0.0	0.0	NaN	NaN	NaN	0
1	89	48	0	2	120.0	NaN	1.0	1.0	148.0	0.0	0.0	NaN	NaN	NaN	0
2	04	43	0	3	150.0	NaN	0.0	0.0	175.0	0.0	0.0	NaN	NaN	3.0	0
2	21	49	0	2	110.0	NaN	0.0	0.0	160.0	0.0	0.0	NaN	NaN	NaN	0
2	51	39	1	2	120.0	NaN	0.0	1.0	146.0	0.0	2.0	1.0	NaN	NaN	0
2	57	39	1	2	130.0	NaN	0.0	0.0	120.0	0.0	0.0	NaN	NaN	NaN	0
2	58	48	1	2	100.0	NaN	0.0	0.0	100.0	0.0	0.0	NaN	NaN	NaN	0
2	62	49	1	4	140.0	NaN	0.0	0.0	130.0	0.0	0.0	NaN	NaN	NaN	0
2	65	49	0	2	110.0	NaN	0.0	0.0	160.0	0.0	0.0	NaN	NaN	NaN	0
2	67	52	0	2	140.0	NaN	0.0	0.0	140.0	0.0	0.0	NaN	NaN	NaN	0
2	72	40	1	3	140.0	NaN	0.0	0.0	188.0	0.0	0.0	NaN	NaN	NaN	0
2	86	45	1	3	135.0	NaN	0.0	0.0	110.0	0.0	0.0	NaN	NaN	NaN	0
3	05	29	1	2	140.0	NaN	0.0	0.0	170.0	0.0	0.0	NaN	NaN	NaN	0
3	32	47	0	3	130.0	NaN	0.0	0.0	145.0	0.0	2.0	2.0	NaN	NaN	0
3	36	45	0	2	170.0	NaN	0.0	0.0	180.0	0.0	0.0	NaN	NaN	NaN	0
3	45	59	1	4	140.0	NaN	0.0	0.0	140.0	0.0	0.0	NaN	0.0	NaN	0
3	46	53	1	2	120.0	NaN	0.0	0.0	132.0	0.0	0.0	NaN	NaN	NaN	0
4	89	54	1	4	140.0	NaN	0.0	0.0	118.0	1.0	0.0	NaN	NaN	NaN	1
4	91	38	1	4	110.0	NaN	0.0	0.0	150.0	1.0	1.0	2.0	NaN	NaN	1
5	04	52	1	4	170.0	NaN	0.0	0.0	126.0	1.0	1.5	2.0	NaN	NaN	1
5	49	66	1	4	140.0	NaN	0.0	0.0	94.0	1.0	1.0	2.0	NaN	NaN	1
5	65	59	1	4	130.0	NaN	0.0	0.0	125.0	0.0	0.0	NaN	NaN	NaN	1

In [134... nullcholestralslope=nullcholestral.loc[nullcholestral['slope'].isnull()==True] nullcholestralslope

Out[134...

166 54 1 3 150.0 NaN 0.0 0.0 122.0 0.0 0.0 NaN 0 189 48 0 2 120.0 NaN 1.0 1.0 148.0 0.0 0.0 NaN NaN NaN 0 204 43 0 3 150.0 NaN 0.0 0.0 175.0 0.0 0.0 NaN NaN 3.0 0 221 49 0 2 110.0 NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN 0.0 257 39 1 2 130.0 NaN 0.0 0.0 120.0 0.0 0.0 NaN NaN NaN 0.0 262 49 1 4 140.0 NaN 0.0 0.0		Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	ca	thal	С
189 48 0 2 120.0 NaN 1.0 1.0 148.0 0.0 0.0 NaN NaN NaN 0 204 43 0 3 150.0 NaN 0.0 0.0 175.0 0.0 0.0 NaN NaN 3.0 0 221 49 0 2 110.0 NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN 0.0 257 39 1 2 130.0 NaN 0.0 0.0 120.0 0.0 0.0 NaN NaN NaN 0.0 258 48 1 2 100.0 NaN 0.0 0.0 100.0 0.0 NaN NaN NaN 0 262 49 1 4 140.0 NaN 0.0 0.0 130.0 0.0 0.0 NaN NaN NaN 0 265 49 0 2	166	54	1	3	150.0	NaN	0.0	0.0	122.0	0.0	0.0	NaN	NaN	NaN	0
204 43 0 3 150.0 NaN 0.0 0.0 175.0 0.0 0.0 NaN NaN 3.0 0 221 49 0 2 110.0 NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN NaN 0 257 39 1 2 130.0 NaN 0.0 0.0 120.0 0.0 0.0 NaN NaN NaN 0 258 48 1 2 100.0 NaN 0.0 0.0 100.0 0.0 0.0 NaN NaN NaN 0 262 49 1 4 140.0 NaN 0.0 0.0 130.0 0.0 0.0 NaN NaN NaN 0 265 49 0 2 110.0 NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN NaN 0 267 52	185	56	1	3	130.0	NaN	0.0	0.0	114.0	0.0	0.0	NaN	NaN	NaN	0
221 49 0 2 110.0 NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN NaN 0.0 257 39 1 2 130.0 NaN 0.0 0.0 120.0 0.0 0.0 NaN NaN NaN 0.0 258 48 1 2 100.0 NaN 0.0 0.0 100.0 0.0 0.0 NaN NaN NaN 0.0 262 49 1 4 140.0 NaN 0.0 0.0 130.0 0.0 0.0 NaN NaN NaN 0.0 265 49 0 2 110.0 NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN NaN 0.0 0.0 160.0 0.0 0.0 0.0 NaN NaN NaN 0.0 0.0	189	48	0	2	120.0	NaN	1.0	1.0	148.0	0.0	0.0	NaN	NaN	NaN	0
257 39 1 2 130.0 NaN 0.0 0.0 120.0 0.0 0.0 NaN NaN NaN 0 258 48 1 2 100.0 NaN 0.0 0.0 100.0 0.0 NaN NaN NaN 0 262 49 1 4 140.0 NaN 0.0 0.0 130.0 0.0 0.0 NaN NaN NaN 0 265 49 0 2 110.0 NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN NaN 0 267 52 0 2 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN NaN NaN 0 272 40 1 3 140.0 NaN 0.0 0.0 188.0 0.0 0.0 NaN NaN NaN 0 286 45 1 <t< th=""><th>204</th><th>43</th><th>0</th><th>3</th><th>150.0</th><th>NaN</th><th>0.0</th><th>0.0</th><th>175.0</th><th>0.0</th><th>0.0</th><th>NaN</th><th>NaN</th><th>3.0</th><th>0</th></t<>	204	43	0	3	150.0	NaN	0.0	0.0	175.0	0.0	0.0	NaN	NaN	3.0	0
258 48 1 2 100.0 NaN 0.0 100.0 0.0 0.0 NaN NaN NaN 0 262 49 1 4 140.0 NaN 0.0 0.0 130.0 0.0 0.0 NaN NaN NaN 0 265 49 0 2 110.0 NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN NaN 0 267 52 0 2 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN NaN NaN 0 272 40 1 3 140.0 NaN 0.0 0.0 188.0 0.0 0.0 NaN NaN NaN 0 286 45 1 3 135.0 NaN 0.0 0.0 110.0 0.0 0.0 NaN NaN NaN 0 305 29 1 <t< th=""><th>221</th><th>49</th><th>0</th><th>2</th><th>110.0</th><th>NaN</th><th>0.0</th><th>0.0</th><th>160.0</th><th>0.0</th><th>0.0</th><th>NaN</th><th>NaN</th><th>NaN</th><th>0</th></t<>	221	49	0	2	110.0	NaN	0.0	0.0	160.0	0.0	0.0	NaN	NaN	NaN	0
262 49 1 4 140.0 NaN 0.0 0.0 130.0 0.0 0.0 NaN NaN NaN 0 265 49 0 2 110.0 NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN NaN 0 267 52 0 2 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN NaN NaN 0 272 40 1 3 140.0 NaN 0.0 0.0 188.0 0.0 0.0 NaN NaN NaN 0 286 45 1 3 135.0 NaN 0.0 0.0 110.0 0.0 0.0 NaN NaN NaN 0 305 29 1 2 140.0 NaN 0.0 0.0 170.0 0.0 0.0 NaN NaN NaN 0 345 59	257	39	1	2	130.0	NaN	0.0	0.0	120.0	0.0	0.0	NaN	NaN	NaN	0
265 49 0 2 110.0 NaN 0.0 0.0 160.0 0.0 0.0 NaN NaN NaN 0 267 52 0 2 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN NaN NaN 0 272 40 1 3 140.0 NaN 0.0 0.0 188.0 0.0 0.0 NaN NaN NaN 0 286 45 1 3 135.0 NaN 0.0 0.0 110.0 0.0 0.0 NaN NaN NaN NaN 0 305 29 1 2 140.0 NaN 0.0 0.0 170.0 0.0 0.0 NaN NaN NaN 0 336 45 0 2 170.0 NaN 0.0 0.0 180.0 0.0 0.0 NaN NaN NaN 0 345 59 1 4 140.0 NaN 0.0 0.0 140.0 0.0 0	258	48	1	2	100.0	NaN	0.0	0.0	100.0	0.0	0.0	NaN	NaN	NaN	0
267 52 0 2 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN NaN NaN 0 272 40 1 3 140.0 NaN 0.0 0.0 188.0 0.0 0.0 NaN NaN NaN 0 286 45 1 3 135.0 NaN 0.0 0.0 110.0 0.0 0.0 NaN NaN NaN 0 305 29 1 2 140.0 NaN 0.0 0.0 170.0 0.0 0.0 NaN NaN NaN 0 336 45 0 2 170.0 NaN 0.0 0.0 180.0 0.0 0.0 NaN NaN NaN 0 345 59 1 4 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN NaN NaN 0 346 53	262	49	1	4	140.0	NaN	0.0	0.0	130.0	0.0	0.0	NaN	NaN	NaN	0
272 40 1 3 140.0 NaN 0.0 0.0 188.0 0.0 0.0 NaN NaN NaN 0 286 45 1 3 135.0 NaN 0.0 0.0 110.0 0.0 0.0 NaN NaN NaN 0 305 29 1 2 140.0 NaN 0.0 0.0 170.0 0.0 0.0 NaN NaN NaN 0 336 45 0 2 170.0 NaN 0.0 0.0 180.0 0.0 0.0 NaN NaN NaN NaN 0 345 59 1 4 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN NaN 0.0 346 53 1 2 120.0 NaN 0.0 0.0 132.0 0.0 0.0 NaN NaN NaN NaN 1 489 54 1 4 140.0 NaN 0.0 0.0 118.0 1.0 <td< th=""><th>265</th><th>49</th><th>0</th><th>2</th><th>110.0</th><th>NaN</th><th>0.0</th><th>0.0</th><th>160.0</th><th>0.0</th><th>0.0</th><th>NaN</th><th>NaN</th><th>NaN</th><th>0</th></td<>	265	49	0	2	110.0	NaN	0.0	0.0	160.0	0.0	0.0	NaN	NaN	NaN	0
286 45 1 3 135.0 NaN 0.0 0.0 110.0 0.0 0.0 NaN NaN NaN 0 305 29 1 2 140.0 NaN 0.0 0.0 170.0 0.0 0.0 NaN NaN NaN 0 336 45 0 2 170.0 NaN 0.0 0.0 180.0 0.0 0.0 NaN NaN NaN 0 345 59 1 4 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN 0.0 NaN 0 346 53 1 2 120.0 NaN 0.0 0.0 132.0 0.0 0.0 NaN NaN NaN 0 489 54 1 4 140.0 NaN 0.0 0.0 118.0 1.0 0.0 NaN NaN NaN NaN 1	267	52	0	2	140.0	NaN	0.0	0.0	140.0	0.0	0.0	NaN	NaN	NaN	0
305 29 1 2 140.0 NaN 0.0 0.0 170.0 0.0 0.0 NaN NaN NaN 0 336 45 0 2 170.0 NaN 0.0 0.0 180.0 0.0 0.0 NaN NaN NaN 0 345 59 1 4 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN 0.0 NaN 0 346 53 1 2 120.0 NaN 0.0 0.0 132.0 0.0 0.0 NaN NaN NaN NaN NaN 1 489 54 1 4 140.0 NaN 0.0 0.0 118.0 1.0 0.0 NaN NaN NaN NaN 1	272	40	1	3	140.0	NaN	0.0	0.0	188.0	0.0	0.0	NaN	NaN	NaN	0
336 45 0 2 170.0 NaN 0.0 0.0 180.0 0.0 0.0 NaN NaN NaN 0 345 59 1 4 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN 0.0 NaN 0 346 53 1 2 120.0 NaN 0.0 0.0 132.0 0.0 0.0 NaN NaN NaN 0 489 54 1 4 140.0 NaN 0.0 0.0 118.0 1.0 0.0 NaN NaN NaN 1	286	45	1	3	135.0	NaN	0.0	0.0	110.0	0.0	0.0	NaN	NaN	NaN	0
345 59 1 4 140.0 NaN 0.0 0.0 140.0 0.0 0.0 NaN 0.0 NaN 0 346 53 1 2 120.0 NaN 0.0 0.0 132.0 0.0 0.0 NaN NaN NaN NaN 0 489 54 1 4 140.0 NaN 0.0 0.0 118.0 1.0 0.0 NaN NaN NaN 1	305	29	1	2	140.0	NaN	0.0	0.0	170.0	0.0	0.0	NaN	NaN	NaN	0
346 53 1 2 120.0 NaN 0.0 0.0 132.0 0.0 0.0 NaN NaN NaN 0 489 54 1 4 140.0 NaN 0.0 0.0 118.0 1.0 0.0 NaN NaN NaN NaN 1	336	45	0	2	170.0	NaN	0.0	0.0	180.0	0.0	0.0	NaN	NaN	NaN	0
489 54 1 4 140.0 NaN 0.0 0.0 118.0 1.0 0.0 NaN NaN NaN 1	345	59	1	4	140.0	NaN	0.0	0.0	140.0	0.0	0.0	NaN	0.0	NaN	0
	346	53	1	2	120.0	NaN	0.0	0.0	132.0	0.0	0.0	NaN	NaN	NaN	0
565 59 1 4 130.0 NaN 0.0 0.0 125.0 0.0 0.0 NaN NaN NaN 1	489	54	1	4	140.0	NaN	0.0	0.0	118.0	1.0	0.0	NaN	NaN	NaN	1
	565	59	1	4	130.0	NaN	0.0	0.0	125.0	0.0	0.0	NaN	NaN	NaN	1

Out[134...

	Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	ca	thal	С
166	54	1	3	150.0	NaN	0.0	0.0	122.0	0.0	0.0	NaN	NaN	NaN	0
185	56	1	3	130.0	NaN	0.0	0.0	114.0	0.0	0.0	NaN	NaN	NaN	0
189	48	0	2	120.0	NaN	1.0	1.0	148.0	0.0	0.0	NaN	NaN	NaN	0
204	43	0	3	150.0	NaN	0.0	0.0	175.0	0.0	0.0	NaN	NaN	3.0	0
221	49	0	2	110.0	NaN	0.0	0.0	160.0	0.0	0.0	NaN	NaN	NaN	0
257	39	1	2	130.0	NaN	0.0	0.0	120.0	0.0	0.0	NaN	NaN	NaN	0
258	48	1	2	100.0	NaN	0.0	0.0	100.0	0.0	0.0	NaN	NaN	NaN	0
262	49	1	4	140.0	NaN	0.0	0.0	130.0	0.0	0.0	NaN	NaN	NaN	0
265	49	0	2	110.0	NaN	0.0	0.0	160.0	0.0	0.0	NaN	NaN	NaN	0
267	52	0	2	140.0	NaN	0.0	0.0	140.0	0.0	0.0	NaN	NaN	NaN	0
272	40	1	3	140.0	NaN	0.0	0.0	188.0	0.0	0.0	NaN	NaN	NaN	0
286	45	1	3	135.0	NaN	0.0	0.0	110.0	0.0	0.0	NaN	NaN	NaN	0
305	29	1	2	140.0	NaN	0.0	0.0	170.0	0.0	0.0	NaN	NaN	NaN	0
336	45	0	2	170.0	NaN	0.0	0.0	180.0	0.0	0.0	NaN	NaN	NaN	0
346	53	1	2	120.0	NaN	0.0	0.0	132.0	0.0	0.0	NaN	NaN	NaN	0
489	54	1	4	140.0	NaN	0.0	0.0	118.0	1.0	0.0	NaN	NaN	NaN	1
565	59	1	4	130.0	NaN	0.0	0.0	125.0	0.0	0.0	NaN	NaN	NaN	1

In [134...
nullcholestralslopecathal= nullcholestralslopeca.loc[nullcholestralslopeca['thal'].isnull()==True]
nullcholestralslopecathal

Out[134...

	Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	ca	thal	С
166	54	1	3	150.0	NaN	0.0	0.0	122.0	0.0	0.0	NaN	NaN	NaN	0
185	56	1	3	130.0	NaN	0.0	0.0	114.0	0.0	0.0	NaN	NaN	NaN	0
189	48	0	2	120.0	NaN	1.0	1.0	148.0	0.0	0.0	NaN	NaN	NaN	0
221	49	0	2	110.0	NaN	0.0	0.0	160.0	0.0	0.0	NaN	NaN	NaN	0
257	39	1	2	130.0	NaN	0.0	0.0	120.0	0.0	0.0	NaN	NaN	NaN	0
258	48	1	2	100.0	NaN	0.0	0.0	100.0	0.0	0.0	NaN	NaN	NaN	0
262	49	1	4	140.0	NaN	0.0	0.0	130.0	0.0	0.0	NaN	NaN	NaN	0
265	49	0	2	110.0	NaN	0.0	0.0	160.0	0.0	0.0	NaN	NaN	NaN	0
267	52	0	2	140.0	NaN	0.0	0.0	140.0	0.0	0.0	NaN	NaN	NaN	0
272	40	1	3	140.0	NaN	0.0	0.0	188.0	0.0	0.0	NaN	NaN	NaN	0
286	45	1	3	135.0	NaN	0.0	0.0	110.0	0.0	0.0	NaN	NaN	NaN	0
305	29	1	2	140.0	NaN	0.0	0.0	170.0	0.0	0.0	NaN	NaN	NaN	0
336	45	0	2	170.0	NaN	0.0	0.0	180.0	0.0	0.0	NaN	NaN	NaN	0
346	53	1	2	120.0	NaN	0.0	0.0	132.0	0.0	0.0	NaN	NaN	NaN	0
489	54	1	4	140.0	NaN	0.0	0.0	118.0	1.0	0.0	NaN	NaN	NaN	1
565	59	1	4	130.0	NaN	0.0	0.0	125.0	0.0	0.0	NaN	NaN	NaN	1

```
In [134. nullcholestralslopecathal.index
```

In above indexes all four cholestoral, thal,ca and slope are null. These 16 indexes were chosen to be deleted from data

Totally 17 indexes are dropped.

In [135... heartdata = heartdata.drop(nullcholestralslopecathal.index).reset_index(drop=True)

```
In [135...
         pd.DataFrame({'Count':heartdata.isnull().sum()[heartdata.isnull().sum()>0], 'Percentage':heartdata.isnull().sum
                               Count Percentage
                                    7
                                         1.206897
                   cholestoral
                  blood sugar
                                    8
                                         1.379310
           electrocardiographic
                                         0.172414
                                    1
                   depression
                                    6
                                         1.034483
                                 174
                                        30.000000
                        slope
                                 277
                                        47.758621
                           ca
                          thal
                                 251
                                        43.275862
In [135...
          corr
                                Age (age
                                                                                                                        heart
                                                                                                                                exercise
                                                        chest
                                                                  blood
                                                                                         blood
                                                                         cholestoral
                                                                                                electrocardiographic
                                               sex
                                                                                                                                induced
                                 in year)
                                                         pain
                                                               pressure
                                                                                         sugar
                                                                                                                          rate
              Age (age in year)
                                1.000000
                                          -0.062397
                                                     0.147064
                                                               0.238490
                                                                           0.123624
                                                                                      0.176286
                                                                                                           0.260132 -0.303596
                                                                                                                               0.155862
                               -0.062397
                                          1.000000
                                                     0.120748
                                                               0.010620
                                                                           -0.076399
                                                                                      0.038030
                                                                                                          -0.034982
                                                                                                                    -0.088691
                                                                                                                               0.148814
                          sex
                    chest pain
                                0.147064
                                          0.120748
                                                     1.000000
                                                               0.021586
                                                                            0.104111
                                                                                      0.001428
                                                                                                           0.073320 -0.322748
                                                                                                                               0.438328
                blood pressure
                                0.238490
                                          0.010620
                                                     0.021586
                                                               1.000000
                                                                           0.105189
                                                                                      0.136097
                                                                                                           0.077768 -0.117829
                                                                                                                               0.136658
                                0.123624
                                          -0.076399
                                                     0.104111
                                                               0.105189
                                                                            1.000000
                                                                                      0.054867
                                                                                                           0.088498
                                                                                                                    -0.076064
                                                                                                                               0.117111
                   cholestoral
                  blood sugar
                                0.176286
                                          0.038030
                                                     0.001428
                                                               0.136097
                                                                           0.054867
                                                                                      1.000000
                                                                                                           0.111847
                                                                                                                    -0.005236
                                                                                                                               0.063431
           electrocardiographic
                                0.260132
                                          -0.034982
                                                     0.073320
                                                               0.077768
                                                                            0.088498
                                                                                      0.111847
                                                                                                           1.000000
                                                                                                                     0.052515
                                                                                                                               0.071970
                    heart rate
                               -0.303596
                                          -0.088691
                                                    -0.322748
                                                               -0.117829
                                                                           -0.076064
                                                                                     -0.005236
                                                                                                           0.052515
                                                                                                                     1.000000
                                                                                                                               -0.374642
                                0.155862
                                          0.148814
                                                     0.438328
                                                               0.136658
                                                                           0.117111
                                                                                      0.063431
                                                                                                           0.071970 -0.374642
                                                                                                                               1.000000
              exercise induced
                   depression
                                0.253305
                                          0.095716
                                                     0.277695
                                                               0.185216
                                                                           0.065998
                                                                                      0.050842
                                                                                                           0.175329 -0.259880
                                                                                                                               0.426849
                         slope
                                0.078979
                                          0.075835
                                                     0.209141
                                                               0.126015
                                                                           0.047846
                                                                                      0.058897
                                                                                                           0.032245 -0.402652
                                                                                                                               0.332025
                                          0.090833
                                                                           0.123661
                                                                                                           0.136486 -0.253548
                                0.364036
                                                     0.227668
                                                               0.093548
                                                                                      0.148741
                                                                                                                               0.140423
                                0.105296
                                          0.349134
                                                     0.245214
                                                                            0.011964
                                                                                                          -0.012682 -0.302562
                                                                                                                               0.320352
                          thal
                                                               0.133696
                                                                                      0.069128
                                                                            0.145802
                                                                                                           0.137410 -0.342209
                                0.216430
                                          0.268343
                                                     0.463527
                                                               0.142178
                                                                                      0.090071
                                                                                                                               0.504280
In [135...
         heartdata.columns
          Index(['Age (age in year)', 'sex', 'chest pain', 'blood pressure',
                    'cholestoral ', 'blood sugar', 'electrocardiographic ', 'heart rate',
                   'exercise induced', 'depression ', 'slope', 'ca', 'thal', 'c'],
                 dtype='object')
In [136... heartdata.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 580 entries, 0 to 579
         Data columns (total 14 columns):
          #
               Column
                                         Non-Null Count
                                                           Dtype
          0
              Age (age in year)
                                         580 non-null
                                                           int64
          1
                                         580 non-null
                                                           category
              sex
          2
               chest pain
                                         580 non-null
                                                           category
          3
              blood pressure
                                         580 non-null
                                                           float64
          4
               cholestoral
                                         573 non-null
                                                           float64
          5
                                         572 non-null
              blood sugar
                                                           category
          6
              electrocardiographic
                                         579 non-null
                                                           category
          7
                                         580 non-null
              heart rate
                                                           float64
          8
              exercise induced
                                         580 non-null
                                                           category
          9
              depression
                                         574 non-null
                                                           float64
```

Determine the mode for categorical data grouped by sex , so that any null values can be appropriately filled with the most frequent value.

category

category

category

int64

406 non-null

303 non-null

329 non-null

580 non-null

dtypes: category(8), float64(4), int64(2)

10

11 ca

12

13

slope

thal

memory usage: 33.0 KB

С

Null values in the 'blood sugar' column are filled with the mode of Blood sugar, calculated within groups based on sex.

```
In [136...
         heartdata.groupby(['sex'])['blood sugar'].agg(lambda x: x.mode().iloc[0])
Out[136...
         sex
          0
               0.0
              0.0
          1
         Name: blood sugar, dtype: category
          Categories (2, float64): [0.0, 1.0]
In [136... heartdata['blood sugar'] = heartdata['blood sugar'].fillna(
             heartdata.groupby(['sex'])['blood sugar'].transform(lambda x: x.mode().iloc[0] ))
         Null values in the 'slope' column are filled with the mode of slope, calculated within groups based on sex.
In [136...
         heartdata.groupby(['sex'])['slope'].agg(lambda x: x.mode().iloc[0])
         sex
          0
               2.0
              2.0
          1
         Name: slope, dtype: category
         Categories (3, float64): [1.0, 2.0, 3.0]
In [137... heartdata['slope'] = heartdata['slope'].fillna(
             heartdata.groupby(['sex'])['slope'].transform(lambda x: x.mode().iloc[0] ))
         Null values in the 'ca' column are filled with the mode of Ca, calculated within groups based on sex.
In [137... heartdata.groupby(['sex'])['ca'].agg(lambda x: x.mode().iloc[0])
         sex
          0
               0.0
          1
              0.0
          Name: ca, dtype: category
         Categories (4, float64): [0.0, 1.0, 2.0, 3.0]
In [137... heartdata['ca'] = heartdata['ca'].fillna(
             heartdata.groupby(['sex'])['ca'].transform(lambda x: x.mode().iloc[0] ))
         Null values in the 'thal' column are filled with the mode of thal, calculated within groups based on sex.
In [137... heartdata.groupby(['sex'])['thal'].agg(lambda x: x.mode().iloc[0])
         sex
          0
               3.0
          1
               7.0
         Name: thal, dtype: category
         Categories (3, float64): [3.0, 6.0, 7.0]
In [138... heartdata['thal'] = heartdata['thal'].fillna(
             heartdata.groupby(['sex'])['thal'].transform(lambda x: x.mode().iloc[0] ))
         Null values in the electrocardiographic column are filled with the mode of electrocardiographic, calculated within
         groups based on sex.
In [138...
         heartdata.groupby(['sex'])['electrocardiographic '].agg(lambda x: x.mode().iloc[0])
Out[138...
         sex
          0
               0.0
          1
              0.0
          Name: electrocardiographic , dtype: category
          Categories (3, float64): [0.0, 1.0, 2.0]
In [138... heartdata['electrocardiographic '] = heartdata['electrocardiographic '].fillna(
             heartdata.groupby(['sex'])['electrocardiographic '].transform(lambda x: x.mode().iloc[0] ))
         Null values in the Blood Pressure column are filled with the mode of Blood Pressure, calculated within groups
         based on sex.
In [138= | heartdata.groupby(['sex'])['blood pressure'].agg(lambda x: x.mode().iloc[0])
Out[138...
         sex
          0
               130.0
               120.0
         Name: blood pressure, dtype: float64
In [139. | heartdata['blood pressure'] = heartdata['blood pressure'].fillna(
             heartdata.groupby(['sex'])['blood pressure'].transform(lambda x: x.mode().iloc[0] ))
```

Null values in the cholestoral column are filled with the mean of cholestral, calculated within groups based on

```
sex.
```

```
In [139...
          heartdata.groupby(['sex'])['cholestoral '].mean()
Out[139...
               252.913971
          0
          1
               243.860422
          Name: cholestoral , dtype: float64
In [139... heartdata['cholestoral '] = heartdata['cholestoral '].fillna(value = heartdata.groupby(['sex'])['cholestoral '
         Null values in the heart rate column are filled with the mode of heart rate, calculated within groups based on sex
         and chest pain.
In [139... heartdata.groupby(['sex'])['heart rate'].mean()
Out[139... sex
               147.412791
               143.455882
          1
         Name: heart rate, dtype: float64
In [140... heartdata['heart rate'] = heartdata['heart rate'].fillna(value = heartdata.groupby(['sex'])['heart rate'].trans
         Null values in the depression column are filled with the mode of depression, calculated within groups based on
         sex and chest pain.
In [140...
          heartdata.groupby(['sex'])['depression '].mean()
Out[140...
         sex
          0
               0.635673
          1
              0.858437
          Name: depression , dtype: float64
In [140... heartdata['depression '] = heartdata['depression '].fillna(value = heartdata.groupby(['sex'])['depression '].t
In [140... pd.DataFrame({'Count':heartdata.isnull().sum()[heartdata.isnull().sum()>0], 'Percentage':heartdata.isnull().sum
Out[140...
           Count Percentage
```

Scaling

Out[141...

from sklearn.preprocessing import MinMaxScaler
sc=MinMaxScaler()
heartdata_scaled=pd.DataFrame(sc.fit_transform(heartdata),columns=heartdata.columns,index=heartdata.index)
heartdata_scaled

	Age (age in year)	sex	chest pain	blood pressure	cholestoral	blood sugar	electrocardiographic	heart rate	exercise induced	depression	slope	са	thal	С
0	0.714286	1.0	0.000000	0.679487	0.456181	1.0	1.0	0.584	0.0	0.613333	1.0	0.0	0.75	0.0
1	0.183673	1.0	0.666667	0.487179	0.518911	0.0	0.0	0.880	0.0	0.933333	1.0	0.0	0.00	0.0
2	0.265306	0.0	0.333333	0.487179	0.349170	0.0	1.0	0.760	0.0	0.373333	0.0	0.0	0.00	0.0
3	0.571429	1.0	0.333333	0.358974	0.467251	0.0	0.0	0.808	0.0	0.213333	0.0	0.0	0.00	0.0
4	0.591837	0.0	1.000000	0.358974	0.902675	0.0	0.0	0.688	1.0	0.160000	0.0	0.0	0.00	0.0
575	0.489796	1.0	1.000000	0.615385	0.577952	0.0	0.0	0.456	1.0	0.533333	0.5	0.0	1.00	1.0
576	0.306122	1.0	1.000000	0.615385	0.659133	0.0	0.0	0.464	1.0	0.533333	0.5	0.0	1.00	1.0
577	0.265306	1.0	1.000000	0.358974	0.836255	0.0	0.0	0.328	1.0	0.800000	0.5	0.0	1.00	1.0
578	0.326531	1.0	1.000000	0.551282	1.000000	0.0	0.0	0.464	0.0	0.000000	0.5	0.0	1.00	1.0
579	0.428571	1.0	1.000000	0.743590	0.415590	0.0	0.0	0.360	0.0	0.533333	0.5	0.0	1.00	1.0

580 rows × 14 columns

Duplicate

No duplicated value is detected.

Data Splitting

```
In [141_ x = heartdata_scaled.drop("c", axis=1)
          y = heartdata scaled.c # df["c"]
          # x is my ind features
          # y is my target
In [142... from sklearn.model_selection import train_test_split
          # stratify = y
In [142... # from sklearn.model selection import train test split
          Xtrain, \ Xtest, \ Ytrain, \ Ytest = train\_test\_split(x \ , \ y \ , \ test\_size = \ 0.2, \ random\_state = \ 42, \ stratify = y)
          print(Xtrain.shape)
          print(Xtest.shape)
         (464, 13)
         (116, 13)
In [142... Ytest.value_counts()
Out[142... c
          0.0
                  67
          1.0
                  49
          Name: count, dtype: int64
```

Modeling

Decision Tree

```
In [142... from sklearn.tree import DecisionTreeClassifier
```

Hyperparameter Analysis

DT.fit(Xtrain, Ytrain)
pred = DT.predict(Xtest)

pred

#0000 000 000 000000 000 0000 0000000

```
In [143... hp_max=7
    result=[]
    for i in range(1,hp_max):
        DT=DecisionTreeClassifier(max_depth=i)
        DT.fit(Xtrain,Ytrain)
        result.append([i, DT.fit(Xtrain,Ytrain).score(Xtrain,Ytrain),accuracy_score(Ytest,DT.predict(Xtest))])
    result

Out[143... [[1, 0.771551724137931, 0.75],
        [2, 0.7974137931034483, 0.8017241379310345],
        [3, 0.834051724137931, 0.7931034482758621],
        [4, 0.855603448275862, 0.8189655172413793],
        [5, 0.8793103448275862, 0.8017241379310345],
        [6, 0.8987068965517241, 0.8017241379310345]]

Max depth= 4 was selected
```

In [143... DT = DecisionTreeClassifier(random_state = 42,max_depth = 4,min_samples_leaf = 1)

```
0.,\;0.,\;0.,\;0.,\;0.,\;1.,\;0.,\;0.,\;0.,\;0.,\;0.,\;0.,\;0.,\;0.,\;0.,\;1.,\;0.,
                  0.,\;0.,\;0.,\;0.,\;1.,\;0.,\;0.,\;1.,\;0.,\;0.,\;1.,\;0.,\;0.,\;1.,\;0.,\;0.,
                  1., 0., 0., 0., 0., 1., 1., 0., 0., 1., 1., 0., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0.]
In [143... pred == Ytest
Out[143... 54
                   True
          166
                   True
          506
                   True
          106
                   True
          322
                   True
          273
                   True
          375
                  False
          105
                   True
                   True
          71
          58
                   True
          Name: c, Length: 116, dtype: bool
In [143... (pred == Ytest).mean()
          # accuracy
Out[143... 0.8189655172413793
In [144… #Metrics:
          acc = accuracy_score(Ytest, pred)
          #0000 000000 00 0000 00 000 0000 0000
          #0000 000000 0000 00 00 00 000000 000
          rec = recall_score(Ytest, pred)
          pre = precision_score(Ytest, pred)
          fm = f1 score(Ytest, pred)
          conf = confusion matrix(Ytest, pred)
          print(acc, rec, pre, fm)
          print(conf)
         0.8189655172413793 0.6122448979591837 0.9375 0.7407407407407407
          [19 30]]
In [144... print(classification_report(Ytest, pred))
                        precision
                                      recall f1-score
                                                           support
                   0.0
                             0.77
                                         0.97
                                                    0.86
                                                                 67
                             0.94
                                         0.61
                                                    0.74
                                                                 49
                  1.0
                                                    0.82
                                                                116
             accuracy
            macro avg
                             0.86
                                         0.79
                                                    0.80
                                                                116
                             0.84
                                         0.82
                                                    0.81
                                                                116
         weighted avg
In [144... tf= pd.DataFrame(data=result,columns=['Depth','Train','Test'])
          tf
Out[144...
             Depth
                       Train
                                 Test
                 1 0.771552 0.750000
          1
                 2 0.797414 0.801724
          2
                 3 0.834052 0.793103
          3
                 4 0.855603 0.818966
          4
                 5 0.879310 0.801724
          5
                 6 0.898707 0.801724
In [144... tf.set_index('Depth',inplace=True)
          tf
```

```
Out[144...
                   Train
                             Test
          Depth
              1 0.771552 0.750000
             2 0.797414 0.801724
              3 0.834052 0.793103
              4 0.855603 0.818966
              5 0.879310 0.801724
              6 0.898707 0.801724
In [144_ tf.plot(kind='line',xlabel='Max depth of decision Tree',ylabel='Accuracy');
           0.90
                       Train
                       Test
           0.88
           0.86
           0.84
        Accuracy
           0.82
           0.80
           0.78
           0.76
                               2
                                           3
                                                                   5
                                     Max depth of decision Tree
          kf = KFold(10, shuffle = True, random_state = 42)
          scorecross=cross_val_score(DT, x , y , cv = kf, scoring = 'accuracy' )
          scorecross.mean()
Out[145... 0.7948275862068965
          Concat Cross Val Score
In [145...] pred = cross_val_predict(DT, x, y, cv = 10)
          confusion_matrix(y , pred)
Out[145... array([[305, 32],
                 [ 88, 155]])
In [145... # def metric_name(x,y):
          from sklearn.model_selection import GridSearchCV
          DT = DecisionTreeClassifier( )
          param = {'criterion':['gini', 'entropy'] ,
                   'max depth':[3,4,5,6,7] ,
                   'min_samples_split':[3,4,5,6] ,
                   'min_samples_leaf':[2,3,4]}
          GS = GridSearchCV(DT, param ,cv = 10, scoring = "f1")
          GS.fit(x, y)
          #00000 00000 000 000
          # convex opt
          # RandomSearch
          # meta - Heurisitc
Out[145...
                      GridSearchCV
           ▶ estimator: DecisionTreeClassifier
               ▶ DecisionTreeClassifier
```

```
In [145... GS = GridSearchCV(DT, param ,cv = 10, scoring = "f1")
         %time GS.fit(x, y)
        CPU times: user 2.6 s, sys: 4.59 ms, total: 2.6 s
        Wall time: 2.62 s
                      GridSearchCV
          ▶ estimator: DecisionTreeClassifier
               DecisionTreeClassifier
             In [145... GS= GridSearchCV(DT, param ,cv = 10, scoring = "f1", n jobs = -1)
         %time GS.fit(x, y)
        CPU times: user 278 ms, sys: 94.1 ms, total: 373 ms
        Wall time: 2.27 s
Out[145... -
                      GridSearchCV
          ▶ estimator: DecisionTreeClassifier
               DecisionTreeClassifier
In [145... GS.get_params()
Out[145... {'cv': 10,
           'error score': nan,
           'estimator__ccp_alpha': 0.0,
           'estimator__class_weight': None,
           'estimator__criterion': 'gini',
           'estimator__max_depth': None,
'estimator__max_features': None,
           'estimator max leaf nodes': None,
           'estimator__min_impurity_decrease': 0.0,
           'estimator__min_samples_leaf': 1,
           'estimator__min_samples_split': 2,
           'estimator min weight fraction leaf': 0.0,
           'estimator__monotonic_cst': None,
           'estimator__random_state': None,
'estimator__splitter': 'best',
           'estimator': DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',
                                  max_depth=None, max_features=None, max_leaf_nodes=None,
                                  min impurity decrease=0.0, min samples leaf=1,
                                  min_samples_split=2, min_weight_fraction_leaf=0.0,
                                  monotonic cst=None, random state=None, splitter='best'),
           'n_jobs': -1,
           'param grid': {'criterion': ['gini', 'entropy'],
            'max depth': [3, 4, 5, 6, 7],
            'min_samples_split': [3, 4, 5, 6],
            'min_samples_leaf': [2, 3, 4]},
           'pre_dispatch': '2*n_jobs',
           'refit': True,
           'return train score': False,
           'scoring': 'f1',
           'verbose': 0}
In [145... from sklearn import set_config
         set_config(print_changed_only= False)
         DT
Out[145...
                                       DecisionTreeClassifier
         DecisionTreeClassifier(ccp alpha=0.0, class weight=None, criterion='gini',
                                  max depth=None, max features=None, max leaf nodes=None,
                                  min_impurity_decrease=0.0, min_samples_leaf=1,
                                  min_samples_split=2, min_weight_fraction_leaf=0.0,
                                  monotonic cst=None, random state=None, splitter='best')
In [146... GS.best_params_
Out[146... {'criterion': 'entropy',
           'max_depth': 7,
           'min samples leaf': 4,
           'min_samples_split': 5}
In [146... acc DT=GS.best score
         acc DT
```

KNN

```
In [146... from sklearn.neighbors import KNeighborsClassifier
         from sklearn.model selection import cross val predict , cross val score
In [146... KNN = KNeighborsClassifier(n neighbors = 7, weights = "distance")
         scores = cross_val_score(KNN, x , y , cv =10 , scoring = 'accuracy').mean()
In [146... import matplotlib.pyplot as plt
         from sklearn import metrics
         from sklearn.model_selection import train_test_split
         X\_train, X\_test, y\_train, y\_test=train\_test\_split(x, y, test\_size=0.25, random\_state=42)
In [146... scores = []
         k_range = list(range(1,20)) # >> [1,2,3,4,5, ... 25]
         for i in k_range:
             knn = KNeighborsClassifier(n_neighbors=i)
             knn.fit(X_train, y_train)
             y pred = knn.predict(X test)
             scores.append(metrics.accuracy_score(y_test, y_pred))
         plt.plot(k_range, scores)
         plt.xlabel('Value of k for KNN')
         plt.ylabel('Accuracy Score')
         plt.title('Accuracy Scores for Values of k of k-Nearest-Neighbors')
```

Out[146... Text(0.5, 1.0, 'Accuracy Scores for Values of k of k-Nearest-Neighbors')


```
In [146...
         scores=np.array(scores)
         scores
                            , 0.84137931, 0.85517241, 0.86896552, 0.85517241,
Out[146... array([0.8
                 0.87586207, 0.82758621, 0.84137931, 0.84827586, 0.84827586,
                 0.83448276, 0.85517241, 0.84827586, 0.84827586, 0.84827586,
                 0.86206897, 0.85517241, 0.84827586, 0.84137931])
In [146... scores.mean()
Out[146... 0.8475499092558985
In [147... k_range=range(1,15)
         weights_custom=["uniform","distance"]
         param grid = dict(n neighbors=k range, weights=weights custom)
         KNNGreed = GridSearchCV(KNN, param_grid ,cv = 5, scoring = "accuracy")
         KNNGreed.fit(x, y)
```

```
Out[147... ► GridSearchCV ① ⑦

► estimator: KNeighborsClassifier

► KNeighborsClassifier ⑦
```

```
In [147... KNNGreed.cv results
Out[147... {'mean fit time': array([0.00130301, 0.00113258, 0.00125022, 0.00170555, 0.00062089,
                                        0.\overline{00063262}, 0.00067306, 0.00062976, 0.00083013, 0.00057101,
                                        0.00074201,\ 0.00055408,\ 0.00058331,\ 0.00056872,\ 0.00055904,
                                       0.00054183, 0.00054507, 0.00053878]),
                        "std\_fit\_time": array([7.51845864e-04,\ 6.69308696e-04,\ 8.31153435e-04,\ 1.40086430e-03,\ 1.40086430e-04,\ 1.40086440e-04,\ 1.40086440e-04,\ 1.40086440e-04,\ 1.40086440e-04,\ 1.40086440e-04,\ 1.40086440e-04,
                                        3.64720894e-05, 5.87757845e-05, 5.76714781e-05, 5.00289675e-05, 2.57128680e-04, 1.78702638e-05, 1.09200644e-04, 1.47673319e-05,
                                        3.17655873e-05, 1.16455701e-05, 6.22706244e-06, 7.76878809e-06,
                                        8.91563846e - 05, \ 2.10378695e - 05, \ 8.35451633e - 05, \ 4.00601678e - 05,
                                        3.21769347e-05, 1.07782751e-04, 7.80994636e-06, 2.84470035e-05, 5.56369052e-06, 6.92908546e-06, 7.45667209e-06, 6.67980614e-06]),
                        'mean score time': array([0.00474958, 0.0018559 , 0.00424805, 0.00187235, 0.00324321,
                                        0.00106449\,,\; 0.00278244\,,\; 0.00109725\,,\; 0.00334525\,,\; 0.00105429\,,
                                        0.00283775, 0.00146914, 0.00267591, 0.00120034, 0.00265465,
                                        0.0012044 , 0.00267015, 0.0012167 ]),
                        'std score time': array([2.04382325e-03, 8.95732229e-04, 2.87450404e-03, 1.01815412e-03,
                                        1.38869617e-03, 5.47967437e-05, 1.29049227e-04, 4.30970583e-05,
                                        7.86860086e-04, 3.09485316e-05, 1.86478387e-04, 3.09868583e-05,
                                        3.66841211e - 05, \ 2.12443664e - 05, \ 1.70900726e - 05, \ 3.05369435e - 05,
                                        1.79726092e-04, 3.72142610e-05, 2.22723516e-04, 6.02539931e-05, 2.01336245e-04, 2.12744146e-04, 6.02486344e-05, 4.00232581e-05,
                                        2.47241791e-05, 3.05795785e-05, 2.29579141e-05, 1.55139979e-05]),
                        'param_n_neighbors': masked_array(data=[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14],
                                                     mask=[False, False, False, False, False, False, False, False,
                                                                   False, False, False, False, False, False, False,
                                                                   False, False, False, False, False, False, False,
                                                                   False, False, False, False],
                                        fill_value='?'
                                                   dtype=object),
                         'param weights': masked array(data=['uniform', 'distance', 'uniform', 'distance',
                                                                  'uniform', 'distance', 'uniform', 'distance',
    'uniform', 'distance', 'uniform', 'distance',
    'uniform', 'distance', 'uniform', 'distance',
    'uniform', 'distance', 'uniform', 'distance',
    'uniform', 'distance', 'uniform', 'distance',
    'uniform', 'distance', 'uniform', 'distance'],

                                                     mask=[False, False, False, False, False, False, False, False,
                                                                   False, False, False, False, False, False, False,
                                                                   False, False, False, False, False, False, False,
                                                                   False, False, False, False],
                                        fill value='?',
                                                   dtype=object),
                         'params': [{'n_neighbors': 1, 'weights': 'uniform'},
                           {'n_neighbors': 1, 'weights': 'distance'},
                           {'n_neighbors': 2, 'weights': 'uniform'},
                           {'n_neighbors': 2, 'weights': 'distance'},
{'n_neighbors': 3, 'weights': 'uniform'},
                          {'n_neighbors': 3, 'weights': 'uniform'},
{'n_neighbors': 3, 'weights': 'distance'},
{'n_neighbors': 4, 'weights': 'uniform'},
{'n_neighbors': 4, 'weights': 'distance'},
{'n_neighbors': 5, 'weights': 'uniform'},
{'n_neighbors': 5, 'weights': 'distance'},
{'n_neighbors': 6, 'weights': 'uniform'},
{'n_neighbors': 7, 'weights': 'uniform'},
{'n_neighbors': 7, 'weights': 'uniform'},
                          {'n_neighbors': 7, 'weights': 'distance'},
{'n_neighbors': 8, 'weights': 'uniform'},
{'n_neighbors': 8, 'weights': 'distance'},
{'n_neighbors': 9, 'weights': 'uniform'},
{'n_neighbors': 9, 'weights': 'distance'},
                          {'n_neighbors': 10, 'weights': 'uniform'},
{'n_neighbors': 10, 'weights': 'distance'},
{'n_neighbors': 11, 'weights': 'uniform'},
                           {'n_neighbors': 11, 'weights': 'distance'},
```

{'n_neighbors': 12, 'weights': 'uniform'},
{'n_neighbors': 12, 'weights': 'distance'},
{'n_neighbors': 13, 'weights': 'uniform'},
{'n_neighbors': 13, 'weights': 'distance'},

```
{'n_neighbors': 14, 'weights': 'distance'}],
            'split0 test score': array([0.75
                                               , 0.75
                                                                , 0.74137931, 0.75
                                                                                         , 0.72413793,
                   \overline{0.72413793}, 0.71551724, 0.73275862, 0.76724138, 0.76724138,
                                         , 0.75
                                                     , 0.74137931, 0.75862069,
                  0.74137931, 0.75
                             , 0.75862069, 0.75862069, 0.75862069, 0.75
                  0.75
                                                                , 0.75862069,
                   0.76724138, 0.76724138, 0.76724138, 0.75
                  0.76724138, 0.75862069, 0.75862069]),
           'split1 test score': array([0.63793103, 0.63793103, 0.69827586, 0.63793103, 0.70689655,
                   0.70689655,\ 0.73275862,\ 0.69827586,\ 0.73275862,\ 0.73275862,
                   0.72413793, 0.71551724, 0.70689655, 0.70689655, 0.72413793,
                   0.73275862, 0.72413793, 0.72413793, 0.74137931, 0.73275862,
                   0.74137931, 0.74137931, 0.73275862, 0.73275862, 0.73275862,
                  0.73275862, 0.71551724, 0.73275862]),
           'split2 test score': array([0.79310345, 0.79310345, 0.77586207, 0.79310345, 0.79310345,
                   0.78448276, 0.79310345, 0.81896552, 0.81034483, 0.79310345,
                   0.79310345, 0.80172414, 0.80172414, 0.79310345, 0.80172414,
                   0.81034483,\ 0.81896552,\ 0.81896552,\ 0.80172414,\ 0.81034483,
                   0.81034483, 0.81034483, 0.81034483, 0.81034483, 0.81034483,
                  0.81034483, 0.81896552, 0.81034483]),
           'split3 test score': array([0.81896552, 0.81896552, 0.87068966, 0.81896552, 0.87068966,
                   0.86206897, 0.87931034, 0.87068966, 0.87931034, 0.87068966,
                   0.87931034, 0.86206897, 0.87068966, 0.86206897, 0.87931034,
                   0.86206897,\ 0.88793103,\ 0.88793103,\ 0.87931034,\ 0.87931034,
                   0.89655172, 0.89655172, 0.90517241, 0.87931034, 0.89655172,
                  0.88793103, 0.9137931 , 0.89655172]),
           'split4 test score': array([0.81896552, 0.81896552, 0.8362069 , 0.81896552, 0.82758621,
                  0.85344828\,,\; 0.85344828\,,\; 0.8362069\,\;,\; 0.84482759\,,\; 0.84482759\,,
                   0.86206897, 0.85344828, 0.82758621, 0.8362069 , 0.8362069 ,
                    0.82758621, \ 0.81896552, \ 0.81896552, \ 0.84482759, \ 0.82758621, \\
                  0.84482759, 0.8362069 , 0.84482759, 0.82758621, 0.8362069 , 0.82758621, 0.84482759, 0.8362069 ]),
           'mean test score': array([0.7637931 , 0.7637931 , 0.78448276, 0.7637931 , 0.78448276,
                  0.7\overline{8}62069 \ , \ 0.79482759, \ 0.79137931, \ 0.80689655, \ 0.80172414,
                             , 0.79655172, 0.79137931, 0.78793103, 0.8
                  0.79655172,\ 0.80172414,\ 0.80172414,\ 0.80517241,\ 0.8
                   0.81206897, 0.81034483, 0.81206897, 0.8
                                                                  , 0.80689655,
                   0.80517241, 0.81034483, 0.80689655]),
           'std_test_score': array([0.06779174, 0.06779174, 0.06240331, 0.06779174, 0.06168463,
                   0.06390949, 0.06437295, 0.06506194, 0.05246595, 0.05026683,
                   0.06226024, 0.05707912, 0.05754593, 0.05759756, 0.05490236,
                    0.0483374 \ , \ 0.05639802 , \ 0.05639802 , \ 0.05160907 , \ 0.05325326 , 
                   0.05517241, 0.05424873, 0.06007328, 0.05325326, 0.05785504,
                  0.05302951, 0.06874966, 0.05785504]),
           'rank test_score': array([26, 26, 24, 26, 25, 23, 19, 20, 5, 10, 13, 17, 20, 22, 13, 18, 10,
                  10, 8, 13, 1, 3, 1, 13, 5, 9, 3, 5], dtype=int32)}
In [147... KNNGreed.best params
Out[147... {'n neighbors': 11, 'weights': 'uniform'}
In [147... acc knn=KNNGreed.best score
          acc_knn
Out[147... 0.8120689655172415
          Neural Network
In [147... from sklearn.neural network import MLPClassifier
In [147... MLP = MLPClassifier()
          scores = cross_val_score(MLP, x , y , cv =10 , scoring = 'accuracy')
          scores.mean()
Out[147... 0.8344827586206897
In [147... from sklearn.model selection import GridSearchCV
          MLP = MLPClassifier(random_state = 42)
          param = {"activation" : ["relu" , "logistic" , "tanh"],
                    "hidden layer sizes":[(10), (20), (20,30)],
                   "max iter" : [10, 50, 100, 200],
                   # "solver": ["sgd", "adam"],
                   "learning rate init": [0.01, 0.001, 0.025]}
```

{'n_neighbors': 14, 'weights': 'uniform'},

GS = GridSearchCV(MLP, param, cv = 10)

GS.fit(x, y)

```
In [147... GS.best_params_
Out[147... {'activation': 'relu',
         'hidden layer sizes': (20, 30),
         'learning_rate_init': 0.025,
         'max_iter': 10}
In [147... acc nn=GS.best score
        acc_nn
Out[147... 0.85
        Logistic Regression
In [148... from sklearn.linear model import LogisticRegression
In [148... import statsmodels.api as sm
In [148... logreg = LogisticRegression( random_state = 42).fit(X_train,y_train)
        print("Training set score: {:.3f}".format(logreg.score(X train,y train)))
        print("Test set score: {:.3f}".format(logreg.score(X_test,y_test)))
        import statsmodels.api as sm
        \# x = sm.add\_constant(x)
        logit_model=sm.Logit(y,x)
        result=logit_model.fit()
        print(result.summary())
       Training set score: 0.832
       Test set score: 0.862
       Optimization terminated successfully.
               Current function value: 0.392219
               Iterations 7
                              Logit Regression Results
       _____
                                    c No. Observations:
       Dep. Variable:
                       Logit Df Residuals:

MLE Df Model:

Wed, 16 Oct 2024 Pseudo R-squ.:
       Model:
                                                                       567
       Method:
                                                                        12
                                                                    0.4232
       Date:
       Time:
                          15:06:41 Log-Likelihood:
                                                                   -227.49
                              True LL-Null: nonrobust LLR p-value:
       converged:
                                                                    -394 37
                                                                 3.696e-64
       Covariance Type:
       ______
                              coef std err z P>|z| [0.025 0.975]
       Age (age in year) -2.3886 0.667 -3.580 0.000 -3.696 -1.081 sex 0.0608 0.356 0.171 0.864 -0.636 0.758
       chest pain
                            1.1362
                                      0.370
                                               3.069
                                                         0.002
                                                                    0.411
                                                                              1.862
                          -0.2886 0.569
0.0875 0.605
0.2550 0.389
                                               -0.507
                                                                   -1.404
                                                                              0.826
                                                         0.612
       blood pressure
                                               0.145
0.656
                                                          0.885
                                                                    -1.098
                                                                               1.273
       cholestoral
                                                                              1.017
                                                         0.512
                                                                   -0.507
       blood sugar
                           0.5280 0.303
       electrocardiographic
                                                1.745
                                                         0.081
                                                                   -0.065
                                                                              1.121
                            -4.0220
       heart rate
                                       0.566
                                                -7.111
                                                          0.000
                                                                   -5.131
                                                                              -2.913
       exercise induced
                             1.0964
                                       0.284
                                                 3.860
                                                          0.000
                                                                    0.540
                                                                               1.653
                            2.9783
                                                 5.252
                                                          0.000
                                                                    1.867
       depression
                                      0.567
                                                                               4.090
       slope
                            -0.3913
                                       0.509
                                                -0.769
                                                           0.442
                                                                   -1.389
                                                                               0.606
                             3.6927
                                       0.695
                                                5.310
                                                           0.000
                                                                    2.330
                                                                               5.056
       ca
       thal
                             1.4656
                                       0.355
                                                 4.132
                                                           0.000
                                                                     0.770
                                                                               2.161
In [148... acc lr=0.82
```

Out[147... -

GridSearchCV ① ①

Support Vector Machines

In [148... from sklearn.svm import SVC

► estimator: MLPClassifier

► MLPClassifier ⑦

```
score = cross_val_score(SVM , x, y, cv = 10 )
          score mean()
Out[149... 0.8396551724137931
In [150...] SVM = SVC(random state = 42 , class weight = \{0:0.4 , 1:0.6\})
          param = [{"kernel" : ["linear"] ,"C" : [0.01 , 0.1, 1, 10, 100]},
                   {"kernel" : ["rbf"], "gamma" : [0.01, 0.1, 0.2, 0.3], "C": [0.01, 0.1, 1, 10, 100]}, {"kernel" : ["poly"], "degree": [2], "C": [0.01, 0.1, 1, 10, 100]}]
          ######### HINT
          #000 00 000000 00 000 0000 000 0000000
          GS = GridSearchCV(SVM, param, cv = 5, scoring = "accuracy")
          GS.fit(x, y)
          ▶ GridSearchCV ① ??
             ▶ estimator: SVC
                  ► SVC
In [150... GS.best_params_
Out[150... {'C': 1, 'kernel': 'linear'}
In [150... acc_svm=GS.best_score_
         acc svm
Out[150... 0.8172413793103448
          Naive Bayes
In [150... from sklearn.naive bayes import GaussianNB , MultinomialNB
In [151... GNB = GaussianNB()
          scores = cross_val_score(GNB, x , y , cv =10 , scoring = 'accuracy')
          acc_nbg=scores.mean()
         acc_nbg
Out[151... 0.8206896551724139
In [151... #00 0000 000 00000 000 0000
          MNB = MultinomialNB()
          scores = cross_val_score(MNB, x , y , cv =10 , scoring = 'accuracy')
          acc_nbm=scores.mean()
         acc_nbm
Out[151_ 0.789655172413793
In [151... pd.DataFrame(
              [acc_DT, acc_nn, acc_knn, acc_lr, acc_nbg, acc_nbm, acc_svm],
              index=['Decision Tree', 'Neural Network', 'K-Nearest Neighbor', 'Logistic Regression', 'Naive Bayes Gaussian')
              columns=['Cross Val. Accuracy'])
Out[151...
                                Cross Val. Accuracy
                                         0.727442
                  Decision Tree
                 Neural Network
                                         0.850000
             K-Nearest Neighbor
                                         0.812069
             Logistic Regression
                                         0.820000
           Naive Bayes Gaussian
                                         0.820690
               Naive Bayes Multi
                                         0.789655
          Support Vector Machine
                                         0.817241
```

In [149 - SVM = SVC()]