Reg. No.				
11080 1101				

B.Tech. DEGREE EXAMINATION, NOVEMBER 2023

Fifth Semester

18ECE332T - PRINCIPLES OF ARTIFICIAL INTELLIGENCE

(For the candidates admitted from the academic year 2020-2021 to 2021-2022)

The T		
100	Ot	α.

(i) **Part - A** should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute.

(ii)	Par	t - B & Part - C sho	uld be answered	in ans	wer booklet.					
Time: 3	hours	5				I	Max. N	A ark	ks: 1	00
		PAR	$\Gamma - A (20 \times 1 =$	= 20 N	Marks)	051	Marks	BL	со	PO
			nswer ALL Q							
1	Тит				lowing definitions	of Artificial	1	2	1	, 1
, 1.		lligence (AI)?	Willett of the							
		Acting Humanly		(B)	Thinking Humanly	V				
	• •	Acting Rationally		(D)						
	(0)	Homig Ranonan	,	(2)	7	-J				
2	In A	artificial Intelligen	ce (AI). PEAS	is			1	2	1	1
<i>2</i>		Performance			Performance	Environment				
	(11)	Agent State		()	Actuator Sensors					
	(C)		Environment	(D)	Performance	Environment				
	(0)	Agent State		()	Actuator State					
		1.284								
3.	Sele	ect the ODD one fr	om the followi	ng			1	2	1	1
		Depth first search			Breadth First Sear	ch				
	(C)	Uniform Cost		(D)	Greedy Search					
	()									
4.	If th	e agent has no sen	sor, the nature	of the	e environment is		1	2	1	1
		Fully observable		(B)	Partially Observat	ole				
	(C)	Unknown		(D)	Unobservable					
							•	,		1
5.	The	inference mechan	isms used in kı	iowle	edge based agent are	e	1	1	2	1
	(A)	TELL, ACT			TELL, ASK					
	(C)	POP, PUSH		(D)	TELL, PUSH					
							1	2	2	1
6.				pus A	Ahead \(\text{Wumpus} \)	Alive) \Rightarrow and		-	_	•
	(Wı	ımpus Ahead∧W	umpus Alive) ₋		can be infer	red				
	(A)	~			Wumpus Alive					
	(C)	Shoot		(D)	Wumpus Ahead	∧ Wumpus				
					Alive					
_			11101	,	. (1 1)		. 1	1	2	1
7.	In the	he 4×4 Wumpus	world if there is	s bree	eze in (1,1) write the	e possibility of	_			
		ation of pits using j				`				
		$B_{1,1} \Leftrightarrow (P_{1,2} \wedge P_2)$			$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$					
	(C)	$B_{1,1} \Leftrightarrow (P_{1,2} \wedge P_2)$	1)	(D)	$B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})$	$\wedge P_{1,1}$				

8.		eryone who loves all animals is lo unctive normal form as	ved t	by someone", an be represented in	1	2	2	
	(A)	$\forall_x \ [\forall_y \ (Animal \ (y) \Rightarrow Loves \ (x,y)] \Rightarrow (\exists_y \ Loves \ (y,x)] \ \forall_x \ [\forall_y \ (Animal \ (y) \Rightarrow Loves$		$\exists_x \exists_y \text{ (Animal (y) } \Rightarrow \text{Loves}$				
0	Who	(x,y)] \Rightarrow $(\forall \exists_y \text{ Loves } (y,x)]$	4:-	(x,y)] \Rightarrow $(\exists_y \text{ Loves } (y,x)]$	1	2	3	1
9.	JFK.), At $(P_1, SFO) \wedge Plane(P_1) \wedge Air$	rport		. 1	2	3	,
		JFK)		Effect : At $(P_1, SFO) \wedge \Gamma At (P_1, JFK)$				
	(C)	Effect : At $(P_1, SFO) \wedge At (P_1, JFK)$	(D)	Effect : Γ At $(P_1, SFO) \wedge \Gamma$ At (P_1, JFK)				
10.	(A)	is used for implementing plan ADL	ning (B)		1	1	3	1
	(C)	Predicate Logic	. ,	First Order Logic				
11.		ct the correct one from the follow			1	2	3	1
	(A)	In Planning, First – Order state descriptions Literals must be grand and function – free	(B)	In Planning, First – order state descriptions, Literals must be either Positive / Negative and function free				
	(C)	In planning, First – order state descriptions, Literals must be ground and have function	(D)	In planning, First – order state descriptions, Literals must have more than one literal and function free				
12		list always contains			1	1	3	1
. 4.	(A)	Positive Literals Both Positive and Negative		Negative Literals Functions	1	1	J	1
13.			hen v	which of the following is correct	1	2	4	1
		respect to the joint probability $P(x,y) = P(x/y) P(x)$	(B)	P(x,y) = P(y) P(y) P(y/x)				
	(C)	P(x,y) = P(x) P(y)	(D)	P(x,y) = P(x) + P(y)				
14.	In_state		of the	next state depend only on present	1	2	4	1
	(A) (C)	Bayesian Network Markov Process		Recurrent Neural Network Convolution Neural Networks				
15.	` '	es rule can be used to	(D)	Convolution Neural Networks	1	1	4	1
	(A)	Solve Queries Decrease the complexity of a query		Increase complexity of a query Answer probabilistic queries				
16.	(A)	es rule is [select the correct one] $P\left(\frac{A}{B}\right) = \frac{P(A)P(B/A)}{P(B)}$	(B)	$P\left(\frac{A}{B}\right)P(B) = P\left(\frac{B}{A}\right)$	1	2	4	1
	(C)	$P\left(\frac{B}{A}\right) = P(A) \ P\left(\frac{A}{B}\right)$	(D)	$P\left(\frac{A}{B}\right) = P\left(\frac{B}{A}\right)P(B)$				
- 6 6								

17.	is stated as predicting the value of a state variable at some time t is in the past, given evidence from t and from other times up to the present (A) Recognition (B) Smoothing (C) Segmentation (D) Extraction	1	1	5	1
18.	Select the odd one from the following (A) Solar Cell (B) Camera (C) Piezo Electric (D) Sonar	1	2	5	1
19.	is the process of breaking an image into groups, based on similarities of the pixels (A) Recognition (B) Classification (C) Segmentation (D) Detection	1	1	5	1
20.	Finite State Machines (FSM) possess internally timers are called (A) Augmented FSM (B) Subsumption (C) Generic Robot (D) C++ for Embedded System (CES)	1	2	5	1
21.	PART – B (5 × 4 = 20 Marks) Answer ANY FIVE Questions Find the path cost for the given graph from start node to any one of the goal nodes (G_1 , G_{21} , G_3) using depth first search	Marks 4	BL 4	co 1	PO
22.	Explain the basic parameters of Genetic Algorithm.	4	3	2	1
23.	Explain proposition logic inference rules i. Modus Ponens ii. And elimination with example	4	3	2	1
24.	What are the types of reasoning explain with example.	4	3	2	1
25.	Explain AND – OR search algorithm	4	3	4	1
26.	Explain the Dynamic Bayesian Network Structure	4	3	4	1
27.	Explain the preprocessing steps involved in image processing applications.	4	3	5	1

$PART - C (5 \times 12 = 60 Marks)$

Answer ALL Questions

Marks RI. CO PO 4

1

12

- 28. a. Discuss the following
 - Fully observable and partial observable environment i.
 - ii. Competitive and Co-operative Environment
 - iii. Simple Reflex Agent
 - Goal based Agent iv.

(OR)

b. Find the path from Arad to Bucharest using Greedy search Algorithm

12 1

Heuristic table:

Arad	366	Hirsova	151	Rimnicu	193
Bucharest	0	Iasi	226	Sibiu	253
Craiova	160	Lugoj	244	Timiseare	329
Dobrete	242	Mehadia	241	Urziceni	80
Eforie	161	Neamt	234	Vaslui	199
Fagras	176	Oradea	380	Zerind	374
Giurgiu	77	Pitesti	10		

29. a. What is Knowledge Engineering Process? Explain the algorithm involved 12 3 1 for constructing full adder circuit

(OR)

b. i. Write First Order Logic (FCL) to describe the relation of the following.

3

* * * * *

27NA5-18ECE332T