Machine Learning Techniques

(機器學習技法)

Lecture 2: Dual Support Vector Machine

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

Embedding Numerous Features: Kernel Models

Lecture 1: Linear Support Vector Machine

linear SVM: more robust and solvable with quadratic programming

Lecture 2: Dual Support Vector Machine

- Motivation of Dual SVM
- Lagrange Dual SVM
- Solving Dual SVM
- Messages behind Dual SVM
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models

Non-Linear Support Vector Machine Revisited

$$\min_{b,\mathbf{w}} \quad \frac{1}{2}\mathbf{w}^T\mathbf{w}$$
s. t.
$$y_n(\mathbf{w}^T\underbrace{\mathbf{z}_n}_{\Phi(\mathbf{x}_n)} + b) \ge 1,$$
for $n = 1, 2, ..., N$

Non-Linear Hard-Margin SVM

$$\mathbf{0} \ \mathbf{Q} = \begin{bmatrix} \mathbf{0} & \mathbf{0}_{\tilde{d}}^T \\ \mathbf{0}_{\tilde{d}} & \mathbf{I}_{\tilde{d}}^T \end{bmatrix}; \mathbf{p} = \mathbf{0}_{\tilde{d}+1};$$
$$\mathbf{a}_n^T = y_n \begin{bmatrix} 1 & \mathbf{z}_n^T \end{bmatrix}; c_n = 1$$

- 3 return $b \in \mathbb{R}$ & $\mathbf{w} \in \mathbb{R}^{\tilde{d}}$ with $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{\Phi}(\mathbf{x}) + b)$
- demanded: not many (large-margin), but sophisticated boundary (feature transform)
- QP with $\tilde{d} + 1$ variables and N constraints —challenging if \tilde{d} large, or infinite?! :-)

goal: SVM without dependence on \tilde{d}

Todo: SVM 'without' \tilde{d}

Original SVM

(convex) QP of

- $\tilde{d} + 1$ variables
- N constraints

'Equivalent' SVM

(convex) QP of

- N variables
- N + 1 constraints

Warning: Heavy Math!!!!!

- introduce some necessary math without rigor to help understand SVM deeper
- 'claim' some results if details unnecessary
 - —like how we 'claimed' Hoeffding

'Equivalent' SVM: based on some dual problem of Original SVM

Motivation of Dual SVM

Key Tool: Lagrange Multipliers

Regularization by Constrained-Minimizing E_{in}

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) \text{ s.t. } \mathbf{w}^T \mathbf{w} \leq \mathbf{C}$$

Regularization by Minimizing E_{aug}

$$\min_{\mathbf{w}} E_{\text{aug}}(\mathbf{w}) = E_{\text{in}}(\mathbf{w}) + \frac{\lambda}{N} \mathbf{w}^{\mathsf{T}} \mathbf{w}$$

• C equivalent to some $\lambda \geq 0$ by checking optimality condition

$$\nabla E_{\mathsf{in}}(\mathbf{w}) + \frac{2\lambda}{N}\mathbf{w} = \mathbf{0}$$

- regularization: view λ as given parameter instead of C, and solve 'easily'
- dual SVM: view λ 's as unknown given the constraints, and solve them as variables instead

how many λ 's as variables? N—one per constraint

Starting Point: Constrained to 'Unconstrained'

min b.w

$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

 $y_n(\mathbf{w}^T\mathbf{z}_n+b)\geq 1$, s.t. for n = 1, 2, ..., N

objective

with Lagrange multipliers $\searrow_{\mathbb{R}} \alpha_n$,

$$\mathcal{L}(b, \mathbf{w}, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^{N} \alpha_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b))$$

Claim

SVM $\equiv \min_{b,\mathbf{w}} \left(\max_{\substack{a || \alpha_p > 0}} \mathcal{L}(b,\mathbf{w},\alpha) \right) = \min_{b,\mathbf{w}} \left(\infty \text{ if violate }; \frac{1}{2}\mathbf{w}^T\mathbf{w} \text{ if feasible} \right)$

- any 'violating' (b, w): $\max_{\substack{n | n > 0 \\ n \neq 0}} \left(\square + \sum_{n} \alpha_{n} (\text{some positive}) \right) \to \infty$
- any 'feasible' (b, \mathbf{w}) : $\max_{\mathbf{all} \ \alpha > 0} \left(\Box + \sum_{n} \alpha_n (\text{all non-positive}) \right) = \Box$

constraints now hidden in max

Consider two transformed examples $(\mathbf{z}_1, +1)$ and $(\mathbf{z}_2, -1)$ with $\mathbf{z}_1 = \mathbf{z}$ and $\mathbf{z}_2 = -\mathbf{z}$. What is the Lagrange function $\mathcal{L}(b, \mathbf{w}, \alpha)$ of hard-margin SVM?

$$\mathbf{1} \ \ \frac{1}{2} \mathbf{w}^T \mathbf{w} + \alpha_1 (\mathbf{1} + \mathbf{w}^T \mathbf{z} + b) + \alpha_2 (\mathbf{1} + \mathbf{w}^T \mathbf{z} + b)$$

$$2 \frac{1}{2} \mathbf{w}^T \mathbf{w} + \alpha_1 (\mathbf{1} - \mathbf{w}^T \mathbf{z} - b) + \alpha_2 (\mathbf{1} - \mathbf{w}^T \mathbf{z} + b)$$

3
$$\frac{1}{2}$$
w^T**w** + α_1 (1 + **w**^T**z** + b) + α_2 (1 + **w**^T**z** - b)

$$\mathbf{4} \ \frac{1}{2} \mathbf{w}^T \mathbf{w} + \alpha_1 (\mathbf{1} - \mathbf{w}^T \mathbf{z} - b) + \alpha_2 (\mathbf{1} - \mathbf{w}^T \mathbf{z} - b)$$

Consider two transformed examples $(\mathbf{z}_1,+1)$ and $(\mathbf{z}_2,-1)$ with $\mathbf{z}_1=\mathbf{z}$ and $\mathbf{z}_2=-\mathbf{z}$. What is the Lagrange function $\mathcal{L}(b,\mathbf{w},\alpha)$ of hard-margin SVM?

$$\mathbf{1} \ \ \frac{1}{2} \mathbf{w}^T \mathbf{w} + \alpha_1 (\mathbf{1} + \mathbf{w}^T \mathbf{z} + b) + \alpha_2 (\mathbf{1} + \mathbf{w}^T \mathbf{z} + b)$$

$$2 \frac{1}{2} \mathbf{w}^T \mathbf{w} + \alpha_1 (\mathbf{1} - \mathbf{w}^T \mathbf{z} - b) + \alpha_2 (\mathbf{1} - \mathbf{w}^T \mathbf{z} + b)$$

3
$$\frac{1}{2}\mathbf{w}^T\mathbf{w} + \alpha_1(1 + \mathbf{w}^T\mathbf{z} + b) + \alpha_2(1 + \mathbf{w}^T\mathbf{z} - b)$$

 $\mathbf{4} \quad \frac{1}{2} \mathbf{w}^T \mathbf{w} + \alpha_1 (\mathbf{1} - \mathbf{w}^T \mathbf{z} - b) + \alpha_2 (\mathbf{1} - \mathbf{w}^T \mathbf{z} - b)$

Reference Answer: (2)

By definition,

$$\mathcal{L}(b, \mathbf{w}, \alpha) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + \alpha_1 (1 - y_1 (\mathbf{w}^T \mathbf{z}_1 + b)) + \alpha_2 (1 - y_2 (\mathbf{w}^T \mathbf{z}_2 + b))$$

with
$$(z_1, y_1) = (z, +1)$$
 and $(z_2, y_2) = (-z, -1)$.

Lagrange Dual Problem

for any fixed α' with all $\alpha'_n \geq 0$,

$$\min_{\boldsymbol{b}, \mathbf{w}} \left(\max_{\text{all } \alpha_n \geq 0} \mathcal{L}(\boldsymbol{b}, \mathbf{w}, \alpha) \right) \geq \min_{\boldsymbol{b}, \mathbf{w}} \mathcal{L}(\boldsymbol{b}, \mathbf{w}, \boldsymbol{\alpha'})$$

because $max \ge any$

for best $\alpha' \geq \mathbf{0}$ on RHS,

$$\min_{b,\mathbf{w}} \left(\max_{\text{all } \alpha_n \geq 0} \mathcal{L}(b,\mathbf{w},\alpha) \right) \geq \underbrace{\max_{\substack{\text{all } \alpha_n' \geq 0 \\ \text{Lagrange dual problem}}} \min_{b,\mathbf{w}} \mathcal{L}(b,\mathbf{w},\alpha')}_{\text{Lagrange dual problem}}$$

because best is one of any

Lagrange dual problem:

'outer' maximization of α on lower bound of original problem

Strong Duality of Quadratic Programming

$$\min_{\substack{b,\mathbf{w} \\ \text{equiv. to original (primal) SVM}}} \underbrace{\max_{\substack{\mathbf{all} \ \alpha_n \geq 0}} \left(\min_{\substack{b,\mathbf{w} \\ b,\mathbf{w}}} \mathcal{L}(b,\mathbf{w},\alpha) \right) }_{\text{Lagrange dual}}$$

- '≥': weak duality
- '=': strong duality, true for QP if
 - convex primal
 - feasible primal (true if Φ-separable)
 - linear constraints
 - -called constraint qualification

exists primal-dual optimal solution (b, \mathbf{w}, α) for both sides

Solving Lagrange Dual: Simplifications (1/2)

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0} \left(\min_{\boldsymbol{b}, \mathbf{w}} \underbrace{\frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^{N} \boldsymbol{\alpha}_n (1 - y_n (\mathbf{w}^T \mathbf{z}_n + b))}_{\mathcal{L}(\boldsymbol{b}, \mathbf{w}, \boldsymbol{\alpha})} \right)$$

- inner problem 'unconstrained', at optimal: $\partial \mathcal{L}(b, \mathbf{w}, \mathbf{q}) = \sum_{i=1}^{N} \nabla_i \mathbf{q}$
 - $\frac{\partial \mathcal{L}(b, \mathbf{w}, \boldsymbol{\alpha})}{\partial b} = 0 = -\sum_{n=1}^{N} \alpha_n y_n$
- no loss of optimality if solving with constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$

but wait, b can be removed

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0} \left(\min_{\boldsymbol{b}, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \boldsymbol{\alpha}_n (1 - y_n(\mathbf{w}^T \mathbf{z}_n)) - \sum_{n=1}^N \boldsymbol{\alpha}_n (1 - y_n(\mathbf{w}^T \mathbf{z}_n)) \right)$$

Solving Lagrange Dual: Simplifications (2/2)

$$\max_{\substack{\mathbf{all } \alpha_n \geq 0, \sum y_n \alpha_n = 0}} \left(\min_{\substack{b, \mathbf{w}}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \alpha_n (1 - y_n(\mathbf{w}^T \mathbf{z}_n)) \right)$$

• inner problem 'unconstrained', at optimal:

$$\frac{\partial \mathcal{L}(\mathbf{b}, \mathbf{w}, \boldsymbol{\alpha})}{\partial w_i} = 0 = w_i - \sum_{n=1}^{N} \alpha_n y_n z_{n,i}$$

• no loss of optimality if solving with constraint $\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n$

but wait!

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0, \mathbf{w} = \sum \boldsymbol{\alpha}_n y_n \mathbf{z}_n} \left(\min_{b, \mathbf{w}} \frac{1}{2} \mathbf{w}^T \mathbf{w} + \sum_{n=1}^N \boldsymbol{\alpha}_n - \mathbf{w}^T \mathbf{w} \right)$$

$$\iff \max_{\substack{\boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0, \mathbf{w} = \sum \boldsymbol{\alpha}_n y_n \mathbf{z}_n} -\frac{1}{2} \| \sum_{n=1}^N \boldsymbol{\alpha}_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \boldsymbol{\alpha}_n$$

KKT Optimality Conditions

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0, \mathbf{w} = \sum \boldsymbol{\alpha}_n y_n \mathbf{z}_n} - \frac{1}{2} \| \sum_{n=1}^N \boldsymbol{\alpha}_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \boldsymbol{\alpha}_n$$

if primal-dual optimal $(b, \mathbf{w}, \boldsymbol{\alpha})$,

- primal feasible: $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$
- dual feasible: $\alpha_n > 0$
- dual-inner optimal: $\sum y_n \alpha_n = 0$; $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$
- primal-inner optimal (at optimal all 'Lagrange terms' disappear):

$$\alpha_n(1-y_n(\mathbf{w}^T\mathbf{z}_n+\mathbf{b}))=0$$

—called **Karush-Kuhn-Tucker (KKT) conditions**, necessary for optimality [& sufficient here]

will use KKT to 'solve' (b, \mathbf{w}) from optimal α

For a single variable w, consider minimizing $\frac{1}{2}w^2$ subject to two linear constraints $w \ge 1$ and $w \le 3$. We know that the Lagrange function $\mathcal{L}(w,\alpha) = \frac{1}{2}w^2 + \alpha_1(1-w) + \alpha_2(w-3)$. Which of the following equations that contain α are among the KKT conditions of the optimization problem?

- **3** $\alpha_1(1-w)=0$ and $\alpha_2(w-3)=0$.
- all of the above

For a single variable w, consider minimizing $\frac{1}{2}w^2$ subject to two linear constraints $w \geq 1$ and $w \leq 3$. We know that the Lagrange function $\mathcal{L}(w,\alpha) = \frac{1}{2}w^2 + \alpha_1(1-w) + \alpha_2(w-3)$. Which of the following equations that contain α are among the KKT conditions of the optimization problem?

- **3** $\alpha_1(1-w)=0$ and $\alpha_2(w-3)=0$.
- 4 all of the above

Reference Answer: (4)

- (1) contains dual-feasible constraints;
- (2) contains dual-inner-optimal constraints;
- 3 contains primal-inner-optimal constraints.

Dual Formulation of Support Vector Machine

$$\max_{\text{all } \boldsymbol{\alpha}_n \geq 0, \sum y_n \boldsymbol{\alpha}_n = 0, \mathbf{w} = \sum \boldsymbol{\alpha}_n y_n \mathbf{z}_n} \qquad -\frac{1}{2} \| \sum_{n=1}^N \boldsymbol{\alpha}_n y_n \mathbf{z}_n \|^2 + \sum_{n=1}^N \boldsymbol{\alpha}_n$$

standard hard-margin SVM dual

$$\begin{aligned} & \min_{\pmb{\alpha}} & & \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_n \alpha_m y_n y_m \mathbf{z}_n^T \mathbf{z}_m - \sum_{n=1}^{N} \alpha_n \\ & \text{subject to} & & \sum_{n=1}^{N} y_n \alpha_n = 0; \\ & & & \alpha_n \geq 0, \text{for } n = 1, 2, \dots, N \end{aligned}$$

(convex) QP of N variables & N + 1 constraints, as promised

how to solve? yeah, we know QP! :-)

Dual SVM with QP Solver

optimal
$$\alpha = ?$$

$$\min_{\alpha} \qquad \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \mathbf{z}_{n}^{\mathsf{T}} \mathbf{z}_{m}$$

$$- \sum_{n=1}^{N} \alpha_{n}$$
subject to
$$\sum_{n=1}^{N} y_{n} \alpha_{n} = 0;$$

$$\alpha_{n} \geq 0,$$
for $n = 1, 2, \dots, N$

optimal
$$\alpha \leftarrow \mathsf{QP}(\mathbf{Q}, \mathbf{p}, \mathbf{A}, \mathbf{c})$$

$$\min_{\alpha} \quad \frac{1}{2}\alpha \mathbf{Q}\alpha + \mathbf{p}^{\mathsf{T}}\alpha$$
subject to
$$\mathbf{a}_{i}^{\mathsf{T}}\alpha \geq c_{i},$$

for i = 1, 2, ...

- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$
- $p = -1_N$
- $\mathbf{a}_{\geq} = \mathbf{y}, \ \mathbf{a}_{\leq} = -\mathbf{y};$ $\mathbf{a}_{n}^{T} = n$ -th unit direction
- $c_> = 0$, $c_< = 0$; $c_n = 0$

note: many solvers treat equality (a_{\geq}, a_{\leq}) & bound (a_n) constraints specially for numerical stability

Dual SVM with Special QP Solver

optimal
$$\alpha \leftarrow \mathsf{QP}(\ \mathbf{Q}_{\mathsf{D}}\ , \mathbf{p}, \mathbf{A}, \mathbf{c})$$

$$\min_{\alpha} \quad \frac{1}{2} \alpha \mathbf{Q}_{\mathsf{D}} \alpha + \mathbf{p}^{\mathsf{T}} \alpha$$

subject to special equality and bound constraints

- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$, often non-zero
- if N = 30,000, dense Q_D (N by N symmetric) takes > 3G RAM
- need special solver for
 - not storing whole Q_D
 - utilizing special constraints properly

to scale up to large N

usually better to use **special solver** in practice

KKT conditions

if primal-dual optimal (b, \mathbf{w}, α) ,

- primal feasible: $y_n(\mathbf{w}^T\mathbf{z}_n + b) \ge 1$
- dual feasible: $\alpha_n \ge 0$
- dual-inner optimal: $\sum y_n \alpha_n = 0$; $\mathbf{w} = \sum \alpha_n y_n \mathbf{z}_n$
- primal-inner optimal (at optimal all 'Lagrange terms' disappear):

$$\alpha_n(1 - y_n(\mathbf{w}^T\mathbf{z}_n + b)) = 0$$
 (complementary slackness)

- optimal $\alpha \Longrightarrow$ optimal w? easy above!
- optimal $\alpha \Longrightarrow$ optimal b? a range from primal feasible & equality from comp. slackness if one $\alpha_n > 0 \Rightarrow b = y_n \mathbf{w}^T \mathbf{z}_n$

comp. slackness:

 $\alpha_n > 0 \Rightarrow$ on fat boundary (SV!)

Consider two transformed examples $(\mathbf{z}_1, +1)$ and $(\mathbf{z}_2, -1)$ with $\mathbf{z}_1 = \mathbf{z}$ and $\mathbf{z}_2 = -\mathbf{z}$. After solving the dual problem of hard-margin SVM, assume that the optimal α_1 and α_2 are both strictly positive. What is the optimal b?

- 0 1
- **2** 0
- **3** 1
- 4 not certain with the descriptions above

Consider two transformed examples $(\mathbf{z}_1, +1)$ and $(\mathbf{z}_2, -1)$ with $\mathbf{z}_1 = \mathbf{z}$ and $\mathbf{z}_2 = -\mathbf{z}$. After solving the dual problem of hard-margin SVM, assume that the optimal α_1 and α_2 are both strictly positive. What is the optimal b?

- 0 1
- **2** 0
- **3** 1
- 4 not certain with the descriptions above

Reference Answer: (2)

With the descriptions, at the optimal (b, \mathbf{w}) ,

$$b = +1 - \mathbf{w}^T \mathbf{z} = -1 + \mathbf{w}^T \mathbf{z}$$

That is, $\mathbf{w}^T \mathbf{z} = 1$ and b = 0.

Support Vectors Revisited

- on boundary: 'locates' fattest hyperplane; others: not needed
- examples with $\alpha_n > 0$: on boundary
- call α_n > 0 examples (z_n, y_n)
 support vectors (candidates)
- SV (positive α_n)
 ⊂ SV candidates (on boundary)

• only SV needed to compute **w**:
$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{z}_n = \sum_{SV} \alpha_n y_n \mathbf{z}_n$$

• only SV needed to compute b: $b = y_n - \mathbf{w}^T \mathbf{z}_n$ with any SV (\mathbf{z}_n, y_n)

SVM: learn fattest hyperplane by identifying support vectors with dual optimal solution

Representation of Fattest Hyperplane

SVM

$$\mathbf{w}_{\mathsf{SVM}} = \sum_{n=1}^{N} \alpha_n (y_n \mathbf{z}_n)$$

 α_n from dual solution

PLA

$$\mathbf{w}_{\mathsf{PLA}} = \sum_{n=1}^{N} \beta_{n}(y_{n}\mathbf{z}_{n})$$

 β_n by # mistake corrections

 $\mathbf{w} = \text{linear combination of } y_n \mathbf{z}_n$

- also true for GD/SGD-based LogReg/LinReg when w₀ = 0
- call w 'represented' by data

SVM: represent w by SVs only

Summary: Two Forms of Hard-Margin SVM

Primal Hard-Margin SVM

$$\min_{\substack{b,\mathbf{w}}} \quad \frac{1}{2}\mathbf{w}^{\mathsf{T}}\mathbf{w}$$
sub. to
$$y_n(\mathbf{w}^{\mathsf{T}}\mathbf{z}_n + b) \ge 1,$$
for $n = 1, 2, ..., N$

- $\tilde{d} + 1$ variables, N constraints —suitable when $\tilde{d} + 1$ small
- physical meaning: locate specially-scaled (b, w)

Dual Hard-Margin SVM

$$\min_{\alpha} \frac{1}{2} \alpha Q_{D} \alpha - \mathbf{1}^{T} \alpha$$
s.t.
$$\mathbf{y}^{T} \alpha = 0;$$

$$\alpha_{n} > 0 \text{ for } n = 1, \dots, N$$

- N variables,
 N + 1 simple constraints
 —suitable when N small
- physical meaning: locate SVs (\mathbf{z}_n, y_n) & their α_n

both eventually result in optimal (b, \mathbf{w}) for fattest hyperplane $g_{\text{SVM}}(\mathbf{x}) = \text{sign}(\mathbf{w}^T \Phi(\mathbf{x}) + b)$

Are We Done Yet?

goal: SVM without dependence on \tilde{d}

$$\begin{split} \min_{\alpha} & \quad \frac{1}{2}\alpha \mathbf{Q}_{\mathsf{D}}\alpha - \mathbf{1}^{T}\alpha \\ \text{subject to} & \quad \mathbf{y}^{T}\alpha = 0; \\ & \quad \alpha_{n} \geq 0, \text{for } n = 1, 2, \dots, N \end{split}$$

- N variables, N + 1 constraints: no dependence on \tilde{d} ?
- $q_{n,m} = y_n y_m \mathbf{z}_n^T \mathbf{z}_m$: inner product in $\mathbb{R}^{\tilde{d}}$ $-O(\tilde{d})$ via naïve computation!

no dependence only if avoiding naïve computation (next lecture :-))

Consider applying dual hard-margin SVM on N=5566 examples and getting 1126 SVs. Which of the following can be the number of examples that are on the fat boundary—that is, SV candidates?

- **1** 0
- 2 1024
- **3** 1234
- 4 9999

Consider applying dual hard-margin SVM on N=5566 examples and getting 1126 SVs. Which of the following can be the number of examples that are on the fat boundary—that is, SV candidates?

- **1** 0
- 2 1024
- 3 1234
- **4** 9999

Reference Answer: 3

Because SVs are always on the fat boundary,

SVs \leq # SV candidates \leq N.

Summary

1 Embedding Numerous Features: Kernel Models

Lecture 2: Dual Support Vector Machine

- Motivation of Dual SVM want to remove dependence on d
- Lagrange Dual SVM
 KKT conditions link primal/dual
- Solving Dual SVM another QP, better solved with special solver
- Messages behind Dual SVM
 SVs represent fattest hyperplane
- next: computing inner product in $\mathbb{R}^{\tilde{d}}$ efficiently
- 2 Combining Predictive Features: Aggregation Models
- 3 Distilling Implicit Features: Extraction Models