26. ML Advice STA3142 Statistical Machine Learning

Kibok Lee

Assistant Professor of
Applied Statistics / Statistics and Data Science
Jun 13, 2024

Assignment 5 (Final Exam Replacement)

- Due Friday 6/14, 11:59pm
- Topic: Convolutional Neural Networks
 - Derive gradients for NN layers
 - Implement layers for CNNs
 - Train a CNN classifier for MNIST digit recognition
- Please read the instruction carefully!
 - Submit one pdf and one zip file separately
 - Write your code only in the designated spaces
 - Do not import additional libraries
 - •
- If you feel difficult, consider to take option 2.

Announcement

About delayed release of assignment grades & plagiarism

- We expect to release grading results starting from the next week.
- Don't worry about plagiarism if you are honest and you did your own work. (Note: we know most students are honest.)
- If not, please carefully check the assignment policy in Lecture 1 and go through the link below.
 - https://www.classum.com/main/course/113295/community/40

ML Advice: How to Read Papers

Source: Andrew Ng

ML Conferences/Journals

- ML: NeurIPS, ICML, ICLR*, ...
- AI: AAAI, IJCAI, AISTATS, ...
- CV: CVPR, ICCV, ECCV, ...
- NLP: ACL, EMNLP, NAACL, ...
- Journal: TPAMI, JMLR, TMLR*, IJCV, TIP, TACL, ...

- Acceptance rate is about 20~30%.
- *: made recently; publication record is often not counted in Korea

How much popular?

- As of Jun 12, 2024
- ML/CV conferences
- Journals accepting ML papers
- ICCV @ 26th place
- AAAI @ 33rd place
- ACL @ 45th place
- TPAMI @ 56th place
 - The most prestigious journal in ML

	Categories ▼			
)		Publication	<u>h5-index</u>	<u>h5-median</u>
	1.	Nature	<u>467</u>	707
	2.	The New England Journal of Medicine	<u>439</u>	876
L	3.	Science	424	665
	4.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	<u>422</u>	681
	5.	The Lancet	<u>368</u>	688
	6.	Nature Communications	<u>349</u>	456
	7.	Advanced Materials	<u>326</u>	415
	8.	Cell	<u>316</u>	503
	9.	Neural Information Processing Systems	309	503
	10.	International Conference on Learning Representations	<u>303</u>	563
	11.	JAMA	<u>286</u>	476
	12.	Science of The Total Environment	<u>273</u>	375
	13.	Nature Medicine	<u>268</u>	459
	14.	Proceedings of the National Academy of Sciences	<u>268</u>	394
	15.	Angewandte Chemie International Edition	<u>266</u>	362
	16.	Chemical Reviews	<u>264</u>	459
	17.	International Conference on Machine Learning	<u>254</u>	463
	18.	Chemical Society Reviews	<u>248</u>	390
	19.	Journal of Cleaner Production	<u>246</u>	321
	20.	Nucleic Acids Research	<u>238</u>	539
	21.	European Conference on Computer Vision	238	390
	,			

How to read papers

- Complete list of papers
 - Conference
 - Journal
 - Twitter, Medium, blog posts, friends
- Initially skim and quickly check the high-level idea of the papers
- Go into more depth into more relevant/important papers
- Update paper list (cited papers, follow ups, etc.)
- Go into deeper into more details for relevant ones

How a general paper is organized

- Title, author info
- Abstract
- 1. Introduction
- 2. Related work
- 3. Approach
- 4. Experiments/Discussion
- 5. Conclusion
- Reference
- Appendix

Reading a paper

Do multiple passes

- Title / Abstract / Figures
- Intro / Conclusions / Figures + skim the rest
 - (Skim related work)
- Read but skip/skim math
- Read math and try to understand the key technical ideas
- Read the whole paper but skip parts that don't make sense

Reading a paper

Try to answer these questions while reading paper

- What did the authors try to accomplish?
- What were the key elements of the approach?
- What can you use yourself?
- What other references do you want to follow?

Reading a paper: technical details

Math

Re-derive math from scratch

Code

- Run open-source code
- Read the details of the code
- Re-implement from scratch

Reading a paper: consistency is important

- Steady, consistent reading N papers a week is much better than reading lots of papers in short bursts
- This is true for any learning!

Source: Andrew Ng

- Short-term goal:
 - Job (big company or startup)
 - International: Adobe, Amazon, DeepMind, Facebook (Meta), Google, IBM, Intel, Microsoft, NVIDIA, Qualcomm, ...
 - Domestic: Kakao, LG, Line, Naver, Samsung, SK T-brain, ...
 - MS
 - PhD
- Overall, you want to do important works.

- Specific questions:
 - 1. How to get jobs?
 - 2. Selecting a position

Recruiters look for:

- Technical skills (ML knowledge and skills: quiz, coding, etc.)
- Meaningful / significant work
 - Making things work
 - Applications
 - Show evidence that you can do important works

Unique Value Proposition (UVP)

 A clear statement that describes the benefit of your "expertise and skills", how you solve your customer's needs and what distinguishes you from others (e.g., "competition").

Examples of prospects / customers:

- Company
- Research Community
- Academia/Schools

http://duffy.agency/insight/how-to-write-a-compelling-value-proposition/

ML Career Advice: Breadth vs. Depth

Ideally you want to have T-shaped expertise (both breadth and depth)

• Breadth:

- ML Areas: ML, DL, Vision, NLP, RL, etc.
- Breadth within DL: NN, Optimization, CNN, RNN/LSTM, Unsupervised Learning, Generative Models, Deep RL, etc.

• Depth:

- Projects
- Open-source
- Research
- Internship

ML Career Advice: Breadth vs. Depth

Ideally you want to have **T-shaped expertise** (both breadth and depth)

- Non-ideal cases:
 - Only breadth but no depth
 - Only depth but no breadth
 - Breadth + many small projects without significant results

ML Career Advice: Breadth vs. Depth

How to expertise?

- Breadth: Foundational skills
 - Coursework
 - Reading papers
- Depth:
 - Focused work on relevant projects
 - Try your best to achieve significant results
 - Solving problems, new applications, improving performance, open-source code, publishing papers, etc.

Selecting a job

Key factor: Work with great people on important projects

- Focus on the team that you will interact with (10-30 people)
- Manager
- Not on "brand"

Ultimately, your ideal end-goal (career-wise) should be making impacts.

Other tips:

Talk to people; do internships

Selecting a job: decision making

- List key aspects/criteria of the job (some examples, but not limited to)
 - Team (colleagues, manager, etc.)
 - Projects
 - Potential impact
 - Growth potential (company, team, etc.)
 - Learning (personal growth)
 - Compensation
 - Family
 - Work-life balance
 - Culture
- Rate the importance of these criteria (1-10 scale)
- Rate individual scores for different job options
- Calculate the weighted average

The End!