Aufgabe 6 (8 Punkte):

Es sei K ein Körper. Wir betrachten $V = K^2$ mit der Standardbasis $E = \{e_1, e_2\}$. Seien $b_1 = e_1 + e_2$ und $b_2 = e_1$. Dann ist $B = \{b_1, b_2\}$ eine Basis von V. Sei nun V^* der Dualraum zu V, $E^* = \{e_1^*, e_2^*\}$ die duale Basis zu E und $B^* = \{b_1^*, b_2^*\}$ die duale Basis zu E.

Schreiben Sie b_1^* und b_2^* als Linearkombinationen von e_1^* und e_2^* .

Lösung:

Die Zuordnung $b_1 \mapsto e_1$ und $b_2 \mapsto e_2$ setzen wir zu einer linearen Abbildung $f: V \to V$ fort. Es gilt $f(e_1) = f(b_2) = e_2$ und $f(e_2) = f(b_1 - b_2) = e_1 - e_2$. Folglich gilt

$$M(f^*; e_1^*, e_2^*) = M(f; e_1, e_2)^T = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}^T = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}.$$

Insbesondere gilt $b_1^* = f^*(e_1^*) = e_2^*$ und $b_2^* = f^*(e_2^*) = e_1^* - e_2^*$.

Def. die lineare Abb.
$$f: V \rightarrow V$$
 durch $f(b_1):=e_1$, $f(b_2):=e_2$

$$f(e_1) = f(b_1) = e_2 = 0 \cdot e_1 + 1 \cdot e_2$$

$$f(e_2) = f(b_1 - b_2) = f(b_1) - f(b_2) = e_1 - e_2 = 1 \cdot e_1 + (-1) \cdot e_2$$

$$= M_E^E(f) = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$$

$$Saft = M_E^*(f) = \begin{pmatrix} M_E^E(f) \end{pmatrix}^T = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}$$

$$= M_E^*(f) = 0 \cdot e_1^* + 1 \cdot e_2^* = e_2^*$$

$$f'(e_2^*) = 1 \cdot e_1^* + (-1) \cdot e_2^* = e_1^* - e_2^*$$

$$f^*: V \rightarrow K, \quad f^*(e) = e_0 \cdot e_1^*$$

$$f^*(e_1^*) = e_1^* \cdot e_1^* = e_1^* \cdot e_1^* + (e_1^* \circ f)(e_2) \cdot e_2^* = e_1^*$$

$$f^*(e_2^*) = e_1^* \circ f = (e_1^* \circ f)(e_1) \cdot e_1^* + (e_1^* \circ f)(e_2) \cdot e_2^* = e_1^*$$

$$f^*(e_2^*) = e_1^* \circ f = (e_2^* \circ f)(e_1) \cdot e_1^* + (e_1^* \circ f)(e_2) \cdot e_2^* = e_1^*$$

$$f^*(e_2^*) = e_1^* \circ f = (e_2^* \circ f)(e_1) \cdot e_1^* + (e_2^* \circ f)(e_2) \cdot e_2^* = e_1^*$$

$$f^*(e_2^*) = e_1^* \circ f = (e_2^* \circ f)(e_1) \cdot e_1^* + (e_2^* \circ f)(e_2) \cdot e_2^* = e_1^*$$

Alternativ:

Aufgabe

Es seien K ein Körper und $V = \{ax^2 + bx + c \mid a, b, c \in K\}$ der Vektorraum der Polynome vom Grad ≤ 2 mit der Basis $b_1 = 1$, $b_2 = x$ und $b_3 = x^2$. Weiter sei V^* der Dualraum von V mit dualer Basis $B^* = \{b_1^*, b_2^*, b_3^*\}$.

- (a) Zeigen Sie, dass für jedes $\alpha \in K$ die Abbildung $\lambda_{\alpha} \colon V \to K, \ f \mapsto f(\alpha)$ ein Element des Dualraums V^* ist.
- (b) Stellen Sie λ_{α} als Linear kombination von b_1^*, b_2^* und b_3^* dar.
- (c) Zeigen Sie, dass $\{\lambda_{\alpha}, \lambda_{\beta}, \lambda_{\gamma}\}$ für paarweise verschiedene $\alpha, \beta, \gamma \in K$ eine Basis von V^* ist.

Lösung

Zu (a): Es sei $\alpha \in K$. Für Polynome $p = ax^2 + bx + c$, $q = dx^2 + ex + f$ und $\delta \in K$ gilt:

$$\lambda_{\alpha}(\delta p + q) = (\delta p + q)(\alpha) = \delta(a\alpha^2 + b\alpha + c) + d\alpha^2 + e\alpha + f = \delta\lambda_{\alpha}(p) + \lambda_{\alpha}(q)$$

Zu (b): Für $p = ax^2 + bx + c$ folgt aus $b_1^*(f) = c$, $b_2^*(f) = b$ und $b_3^*(f) = a$

$$\lambda_{\alpha}(f) = a\alpha^{2} + b\alpha + c = b_{3}^{*}(f)\alpha^{2} + b_{2}^{*}(f)\alpha + b_{1}^{*}(f) = (\alpha^{2}b_{3}^{*} + \alpha b_{2}^{*} + b_{1}^{*})(f)$$

also gilt $\lambda_{\alpha} = \alpha^2 b_3^* + \alpha b_2^* + b_1^*$.

Zu (c): Es seien $\alpha, \beta, \gamma \in K$. Nach (b) haben $\lambda_{\alpha}, \lambda_{\beta}$ und λ_{γ} bezüglich der Basis b_1^*, b_2^*, b_3^* die

Koeffizientenvektoren $\begin{pmatrix} 1 \\ \alpha \\ \alpha^2 \end{pmatrix}$, $\begin{pmatrix} 1 \\ \beta \\ \beta^2 \end{pmatrix}$ und $\begin{pmatrix} 1 \\ \gamma \\ \gamma^2 \end{pmatrix}$. Sind α , β und γ paarweise verschieden, so sind wegen

$$\det\begin{pmatrix} 1 & 1 & 1\\ \alpha & \beta & \gamma\\ \alpha^2 & \beta^2 & \gamma^2 \end{pmatrix} = (\gamma - \beta)(\gamma - \alpha)(\beta - \alpha) \neq 0$$

die Koeffizientenvektoren und damit λ_{α} , λ_{β} und λ_{γ} linear unabhängig. Diese bilden eine Basis von V^* , da dim $V^* = \dim V = 3$ gilt.

A	4	ale:																									
					0												,										
5	iei l) ei	h eu	Llic	K- 0	lime	h Sìo	na le	er V	ekt	orra	aum	mi	† J.	Sas	eh	A	und	B								
((* ,	. . .	Β* .	lie 2	امدما) .: .:	zen	duc	low	R	C 54	' la	1/0la	W	*										
	, (()	VI 0		10		A12 7	ישכיי	1011	Jen .	VVV	(6)	י ו	ر م د	. 01		V	•										
4	eise	n S	ie:																								
т	.B*		((T)	3 ₁ T)-1																						
	A*	=	((1,	4 /	1																						
L	ösu	หรู่:																									
				3* .	. *		Satz	,	A .		\T		,_	<i>A</i> .	т		_ f	3 , -	1,1	r /	· /_F	З ,Т	1-1				
T	J*	=	W,) A* (idi)	=	(M)	A B(io	$l_{v})$),	_	(1	B)	`=	= ((Τ,)	· = (lΠ		1				

Aufgabe Sei V ein n-dimensionaler K-Vektorraum und $\varphi_1,\ldots,\varphi_n\in V^*$ Linearformen auf V. Zeigen Sie, dass die folgenden Aussagen äquivalent sind. i) $(\varphi_1, \ldots, \varphi_n)$ sind linear abhängig in V^* . ii) Es gibt ein $v \in V \setminus \{0\}$, so dass $\varphi_1(v) = \ldots = \varphi_n(v) = 0$. **Hinweis:** Betrachten Sie die Abbildung: $\psi: V \to K^n$, $v \mapsto (\varphi_1(v), \dots, \varphi_n(v))^{\top}$.