Name:	
Mame.	

Factor, solve or simplify each expression in Table I. Then, find the corresponding answer in Table II. This will give you a correspondence between a letter and a number. Use this to reveal the mystery phrase.

Mystery phrase

(Dependent origination) Table I Simplify Simplify $(2x^3 - 5)^2$ $C \rightarrow 3$ Factor $6x^2 + 11x - 10$ $1 - 6x = -9x^2$ Factor Factor Solve Factor

Table II

Table II				
$ \begin{array}{c} 1 \\ (3x-2)(2x+5) \end{array} $	3, -3, -2	$5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$ \begin{array}{ccc} 2 & \checkmark \\ (2x-1)(3x-1) \end{array} $	
$11 \\ 4x^6 - 20x^3 + 25$	3 \(\sqrt{\frac{1}{3}} \)	$\frac{9}{x^{12}y^9}$	6	
$7 \qquad \checkmark \\ x = 0 \text{ or } x = 2$	$ \begin{array}{c} 10 \\ (x^3 + 3y)(x^6 - 3x^3y \\ $	$8 \sim (x+4)^2$	$\frac{12}{\frac{9y^9}{8x^2}}$	

Some extra challenge factoring:

1. Factor:
$$16x^2 + 2x + \frac{1}{16}$$

ne extra challenge factoring:

1. Factor:
$$16x^2 + 2x + \frac{1}{16}$$
 $(4x)^2$
 $(4x)^2$

2. Factor:
$$2xy - 4x^2 - \frac{y^2}{4} = -\left(4x^2 - 2xy + \frac{y^2}{4}\right) = -\left(2x + \frac{y}{2}\right)^2$$

3. Factor:
$$-x - 4 + \frac{x^2}{2} = \frac{1}{2} \left(x^2 - \lambda x - \beta \right) = \frac{1}{2} \left(x^2 - 4x +$$