实验23报告

2016K8009909006 刘杰

一、实验任务(10%)

设计静态 5 级流水简单 MIPS CPU, 第三阶段任务如下:

- 1. 至少新增如下 18 条指令: J、BGEZ、BGTZ、BLEZ、BLTZ、BLTZAL、BGEZAL、JALR、LB、LBU、LH、LHU、LWL、LWR、SB、SH、SWL、SWR。
 - 2. 通过仿真和上板运行 lab2 func 2 以及性能测试程序 dhrystone 和 coremark。
 - 3. 优化设计,尽量提高 myCPU 性能。
 - 4. 提交 lab2 的最终作品和实验报告。

二、实验设计(30%)

(一) 数据访存模块设计

本次实验添加存取字节,存取半字以及非对齐访存指令,添加数据访存模块,用于调整访存数据。

读数据其中 4 条按字节或者半字读数据的指令,首先根据虚拟地址判断所取数据的位数。取出的字节或者半字长数据再根据指令进行符号位或零扩展,就能得出最后存入寄存器的数据;对 2 条非对齐取数指令,依旧先要根据虚拟地址选出 1 字节到 4 字节不等的数据,将其与 rt 的原值拼接后写入。结构设计图如下:

写数据新增 4 条指令,都要根据虚拟地址判断写入数据的位数,拉高相应的 data_sram_wen 位数,此外,对于非对齐存数指令还要左移或者右移相应的位数,确保写入内存的数据正确。

(二) 分支跳转模块设计

由于跳转指令增多,添加一个模块用于控制 PC 跳转目标。结构设计图如下:

图 2

三、实验过程(60%)

(一) 实验流水账

2018.10.13

20:00-23:00 阅读指令手册,添加指令。

2018.10.14

13:00-14:00 仿真,在新增的分支跳转指令 BLEZ 处发现第一个 bug,修复 bug。

14:30-16:00 修复第一个 bug 后仿真, 在 SB 指令处发现第二个 bug, 修复 bug。

16:00-17:00 修复第二个 bug 后仿真通过,上板通过,运行 dhrystone 仿真上板通过。

19:00-22:30 运行 markcore 仿真失败,找到第三个 bug,修复 bug 后仿真上板通过。

2018.10.15

18:00-20:00 完成实验报告。

(二) 错误记录

1、错误1

(1) 错误现象

控制台报错,在 BLEZ 指令处应发生跳转而实际未发生。

(2) 分析定位过程

发现 PC 值与 trace 不匹配,往回找到最后 PC 与 trace 匹配的位置,查看这两个位置间指令,出现 BLEZ 指令,查看 rs 值,发现符合跳转条件,但未发生跳转,估计为控制逻辑错误,找到相应代码,发现错误。

(3) 错误原因

跳转条件为 rs<=0, 但是在写代码时将条件写为(rs[31]&&rs==31'd0)。

(4) 修正效果

把分支跳转条件修改为(rs[31] || rs==31'd0)

(5) 归纳总结(可选)

一个不留神引发的事故。

2、错误2

(1) 错误现象

控制台报错, LW 指令存入寄存器的值错误。

(2) 分析定位过程

找到错误指令,发现是 LW 指令。检查读地址未发现错误,按读地址找到上一次写该地址的指令为 SB,发现写入的数据也正确,检查数据写使能信号,找到错误。

(3) 错误原因

SB 写使能信号未根据写入的字节拉高相应位,而是一直为 f,未写入的字节错误的认为是全零。

(4) 修正效果

实际上未写入的字节应该为原内存的数据,而非全0,所以将未写入字节对应的写使能信号拉低。

(5) 归纳总结(可选)

4位写使能信号发挥作用的地方就是在写字节,写半字和不对齐访存。

3、错误3

(1) 错误现象

coremark 测试仿真长时间未停止, 仿真不报错。

(2) 分析定位过程

根据波形,发现EX级卡在一条除法指令一直未完成,检查发现div信号一直未拉高。

(3) 错误原因

除法在 ID 级时发生数据相关需要阻塞,然后错误的将 div 信号置为 0 后随除法指令传入 EX 一级。

(4) 修正效果

将在阻塞时把 div 信号置零的逻辑删除, 重新跑 coremark 通过

(5) 归纳总结(可选)

又是一个不留神引发的事故。

White Har and the high the hig