

Алгоритмы и структуры данных

Сортировки

Алгоритмы сортировки

- *Сортировка* процесс упорядочивания элементов массива
- Многие программы используют алгоритмы сортировки.
 Часто время их работы определяется временем сортировки
- Данные часто упорядочены каким либо
- Многие задачи существенно быстрее решаются на предварительно упорядоченных данных

- 1. Простые сортировки
- 2. Предел скорости
- 3. Ускорение
- 4. Хорошие сортировки
- 5. Особые свойства
- 6. Поразрядная сортировка
- 7. Сравнение

Сортировка 1 и 2х элементов


```
void sort_1(int *a) {
    return;
}

void sort_2(int *a) {
    if (a[1] < a[0]) {
        swap(a[1], a[0]);
    }
}</pre>
```

Сортировка Зх элементов


```
void sort 3(int *a) {
  if (a[1] < a[0]) {
    if (a[2] < a[1]) {
      // 2 1 0
    } else {
      if (a[2] < a[0]) {
       // 1 2 0
      } else {
        // 1 0 2
  } else {
    if (a[2] < a[0]) {
      // 2 0 1
    } else {
      if (a[2] < a[1]) {
        // 0 2 1
      } else {
        // 0 1 2
```

Избыточное сравнение

Прострые сортировки

- Существует множество алгоритмов сортировка
 - Сортировка выбором Selection Sort
 - Сортировка вставками Insertion Sort
 - Пузырьковая сортировка Bubble Sort

Сортировка выбором

- Разделим массив на две части: левую упорядоченную и правую неупорядоченную
- Будем гарантировать, что элементы в правой части больше чем в левой
- Выберем наименьший элемент в правой части и переставим его в её начало
- После каждого выбора и перестановки, будем смещать границу между частями массива на 1 вправо
- Выбор каждого нового элемента требует прохода по правой части
- Для сортировки массива из N элементов требуется N-1 проход

Сортировка выбором

Сортировка выбором


```
void selection_sort(int *a, int n) {
  for (int i = 0; i < n - 1; ++i) {
    int min_index = i;
    for (int j = i + 1; j < n; ++j) {
        if (a[j] < a[min_index]) min_index = j;
    }
    swap(a[i], a[min_index]);
}

void swap(int &a, int &b ) {
  int tmp = a;
    a = b;
    b = tmp;
}</pre>
```

Сортировка выбором: Анализ

- В общем случае алгоритм сортировки состоит из сравнения ключей и перестановки элементов
- Время работы алгоритма пропорционально количеству сравнений и количеству перестановок
- Внешний цикл совершает *n-1* итерацию
- В каждой итерации 1 перестановка
- В 1й итерации **n-1** сравнение, во 2й **n-2**, ... в n-1й **1**
- lacktriangle Ровно n(n-1)/2 сравнений
- Ровно n-1 перемещений

Сортировка выбором: Анализ

- Количество операций не зависит от состава массива
- Сложность в лучшем и в худшем случае совпадает: $O(n^2)$

Сортировка вставками

- Сортировка вставками простой алгоритм часто применяемый на малых объёмах данных
 - Самый популярный метод сортировки у игроков в покер
- Массив делится на две части, упорядоченную левую и неупорядоченную - правую
- На каждой итерации выбираем элемент из правой части и вставляем его на подходящее место в левой части
- Массив из *п* элементов требует *n-1* итерацию

Сортировка вставками

D
Q
<u>_</u>
<u>—</u>
Ģ
$\overline{}$

		_			_
23	78	45	8	32	56
23	78	45	8	32	56
					-
23	45	78	8	32	56
	•	-			
8	23	45	78	32	56
	•		-		
8	23	32	45	78	56
8	23	32	45	56	78
		•			

Unordered

Сортировка вставками


```
void insertion_sort(int *a, int n) {
  for (int i = 1; i < n; ++i) {
    int tmp = a[i];
    for (int j = i; j > 0 && tmp < a[j-1]; --j) {
       a[j] = a[j-1];
    }
    a[j] = tmp;
}</pre>
```

Сортировка вставками: Анализ

 Время работы алгоритма зависит не только от размера массива, но и от порядка элементов

Лучший случай:

→ O(n)

- Массив упорядочен по возрастанию
- Внутренний цикл сделает 0 итераций
- Количество копирований: 2*(n-1)
 → 0(n)
- Количество сравнений: (n-1)
 → 0(n)

Худший случай:

→ O(n²)

- Массив упорядочен в порядке убывания:
- Внутренний цикл работает i-1 итерацию, для i = 2,3, ..., п
- Количество копирований: 2*(n-1)+(1+2+...+n-1)= 2*(n-1)+ n*(n-1)/2 → $0(n^2)$
- Количество сравнений: (1+2+...+n-1)= n*(n-1)/2
 → O(n²)

В среднем:

Сортировка пузырьком

- Сортировка пузырьком частный случай сортировки выбором
- Массив делится на две части, упорядоченную левую и неупорядоченную - правую
- На каждой итерации проходим правую часть сравнивая текущий элемент с соседом слева
 - меняем элементы местами если сосед больше
 - Иначе, уменьшаем индекс текущего на 1
- Наименьший элемент всплывает к границе левой части
- Останавливаемся если не было ни одного обмена
- Массив из *п* элементов требует максимум *п-1* итерацию

Сортировка пузырьком

Сортировка пузырьком: Анализ

- Лучший случай
 - 1 проход, **N-1** сравнение, **0** обменов => O(N)
- Худший случай
 - *N-1* проход, *N(N-1)/2* сравнений, *N-1* обменов => $O(N^2)$

Сортировка пузырьком

Предел скорости

• Оценка сложности

Теоретико-числовая оценка сложности

- Количество перестановок N элементов: N!
- 1 сравнение = 1 бит информации
- Для записи номера перестановки нужно

$$log_2(N!) \cong N \ log(N)$$
 бит

Сортировка вставками. n(log(n)) ?

- Будем искать позицию вставки в упорядоченную часть массива бинарным поиском
- $lacksymbol{\bullet}$ $O(n\log(n))$ операций сравнения
- $lacksymbol{\circ}$ $O(n^2)$ операций перемещения
- Используем memmove для уменьшения константы $oldsymbol{\mathcal{C}}_2$
- $T(n) \leq C_1 n \log(n) + C_2 n^2$

Сортировка вставками. n(log(n))?


```
void memmove(char *dst, char *src, int size);

void insertionSortFast(int *a, int n) {
  for (int i = 1; i < n; ++i) {
    int new_pos = binary_search(a, i, a[i]);

  if (new_pos < i) {
    int tmp = a[i];
    memmove(&a[new_pos + 1], &a[new_pos],
        (i - new_pos)*sizeof(int));

    a[new_pos] = tmp;
  }
}</pre>
```

Сортировка вставками. n(log(n))?

- lacktriangle Будем искать позицию вставки за время $oldsymbol{O}(log(i-k))$
- $lacksymbol{lack}$ $O(n\log(n)), heta(n)$ операций сравнения
- ullet $O(n^2), heta(1)$ операций перемещения

Хорошие сортировки

- Пирамидальная сортировка Heap Sort
- Сортировка слиянием Merge Sort
- Быстрая сортировка Quick Sort

Пирамидальная сортировка

- N вставок в кучу: N O(log(N))
- N Извлечение минимума из кучи: N O(log(n))
- Построение кучи из N элементов: O(2N•log(N))

Пирамидальная сортировка.


```
void heap_insert(int *a, int n, int x)
{
    a[n+1] = x;
    for (int i = n+1; i > 1;) {
        if (a[i] > a[i/2]) {
            swap(a[i], a[i/2]);
            i = i/2;
        } else {
            break;
        }
    }
}
```

Пирамидальная сортировка ...


```
void heap_pop(int *a, int n) {
   swap(a[n],a[1]);

for (int i = 1; 2*i < n;) {
   i *= 2;
   if (i+1 < n && a[i] < a[i+1]) {
      i += 1;
    }
   if (a[i/2] < a[i]) {
      swap(a[i/2], a[i]);
   }
}</pre>
```

Пирамидальная сортировка ..!


```
void heap_sort(int *data, int n) {
  int *buff = new int[n+1];
  for (int i = 0; i < n; ++i) {
    heap_insert(buff, i, data[i]);
  }
  for (int i = 0; i < n; ++i) {
    data[n-1-i] = buff[1];
    heap_pop(buff, n - i);
  }
  delete [] buff;
}</pre>
```

Пирамидальная сортировка

- Построить пирамиду за линейное время: O(N)
- **N** раз достать максимальный элемент: **O(N•log(N))**
- Не использовать дополнительную память

- Для каждого внутреннего элемента восстановить порядок
- По 2 сравнения на уровень дерева
- N/2 2


```
void heap make(int *a, int n) {
  for (int i = n/2; i >= 1; --i) {
    for (int j = i; j \le n/2;) {
      int k = j*2;
      if (k+1 \le n \text{ and } a[k] \le a[k+1]) {
        ++k;
      if (a[j] < a[k]) {
        swap(a[k],a[j]);
        j = k;
      } else {
        break;
```



```
void heap_sort_fast(int *data, int n)
{
  heap_make(data - 1, n);
  for (int i = 0; i < n; ++i) {
    heap_pop(data - 1, n - i);
  }
}</pre>
```

Пирамидальная сортировка как эволюция сортировки выбором

Сортировка Хоара: QuickSort

- Разделим массив на 2 части, так что элементы в левой меньше чем в правой
- Применим эту процедуру к левой и правой частям рекурсивно

QuickSort: Split

- Установим 2 указателя: і в начало массива, ј в конец
- Будем помнить под каким указателем лежит «пивот»
- Если a[j] > a[i], поменяем элементы массива под l, j
- Сместим на 1 указатель, не указывающий на «пивот»
- Продолжим пока i != j

QuickSort: Split

i									j
Е	F	С	В	S	Н	Z	D	Α	G
Е	F	С	В	S	Н	Z	D	A	G
	_							_	
Α	F	С	В	S	Н	Z	D	Е	G
Α	Е	С	В	S	Η	Z	D	F	G
Α	D	С	В	S	Η	Z	Е	F	G
Α	D	С	В	S	Н	Z	Е	F	G
Α	D	С	В	S	Н	Z	Е	F	G
Α	D	С	В	Е	Н	Z	S	F	G
Α	D	С	В	Е	Н	Z	S	F	G
Α	D	С	В	Е	Н	Z	S	F	G
				,			~		

Сортировка Хоара


```
void quick sort(int *a, int n) {
  int i = 0;
  int j = n - 1;
 bool side = 0;
  while (i != j) {
    if (a[i] > a[j]) {
      swap(a[i], a[j]);
     side = !side;
    if (side) {
      ++i;
    } else{
      --j;
  if (i > 1) quick sort(a, i);
  if (n > i+1) quick sort(a + (i+1), n - (i+1));
```

Quicksort: анализ

■ Предположим, что split делит массив в соотношении 1:1

$$T(n) \le c_1 + c_2 n + T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right) =$$

$$= \sum_{k=0}^{\log_2 n} \{c_1 2^k + c_2 n\} = c_1 n + c_2 n \log(n)$$

$$T(n) = O(n \log(n))$$

Quicksort: анализ

Упорядоченный массив делится в соотношении 1:n-1

$$T(n) = c_1 + c_2 n + T(n-1) = \frac{1}{2}c_2 n^2 + c_1 n = O(n^2)$$

Quicksort: выбор пивота

- 1й элемент
- Серединный элемент
- Медиана трёх
- Случайный элемент
- Медиана
- Медиана по трём случайным
- **=** ...

Quicksort-killer

- Последовательность, приводящая к времени: $T(n) = O(n^2)$
- [1,2,3,...n] ⇔ первый элемент
- Для любого предопределённого порядка выбора пивота, существует killer-последовательность

http://www.cs.dartmouth.edu/~doug/mdmspe.pdf

Свойства сортировок

- Локальная сортировка сортировка не требует дополнительной памяти
- *Стабильная* сортировка сохраняет порядок следования равных элементов

Стабильность сортировки

- Постоянство порядка элементов с неразличимыми ключами
- Сортировка двузначных чисел по старшему разряду
 [21,22,23,24,25,19,18,17,16] => [19,18,17,16,21,22,23,24,25]

Algorithm	insertion	select	heap	quick	merge
stable	Yep	Yep	No	Possible	???

 Любую сортировку можно сделать стабильной, за O(n) дополнительной памяти

Локальность сортировки

- Отсутствие необходимости во внешней памяти
- Тривиальные сортировки локальны
- Скорость плата за локальность

Algorithm	insertion	select	heap	quick	merge
Inplace	$O(n^2)$	$O(n^2)$	$O(n\log(n))$	$O(n\log(n))$??	$O(n\log(n))$??
$O(\log(n))$				$O(n\log(n))$	
O(n)					$O(n\log(n))$

http://akira.ruc.dk/~keld/teaching/algoritmedesign_f04 /Artikler/04/Huang88.pdf <= inplace merge</p>

Порядковые статистики

 К-й порядковой статистикой называется элемент, который окажется на k-й позиции после сортировки массива

Рандомизованная медиана

Медиана \Leftrightarrow RandSelect(A[1, N], k); k = N/2

- Случайно выберем элемент из A: A[j]
- Разобьём А на 2 части: меньше/больше А[j]
- Пусть позиция A[j] в разделённом массиве: k
- k < j?
 - Найдём: RandSelect(A[1, j], k)
 - Иначе: RandSelect(A[j+1, N], k-j)

Quicksort: медиана за линейное время

Медиана \Leftrightarrow SELECT(A[1,N], k); k = N/2

- Разобьём массив на пятёрки
- Отсортируем каждую пятёрку
- Найдём медиану середин пятёрок
- Разобьём массив на 2 группы: меньше/больше медианы пятёрок
- Пусть индекс медианы в массиве ј
- = j > k?
 - найдём: SECLECT(A[1, j], k)
 - иначе: SELECT(A[j+1, N], k-j)

Медиана за линейное время

Медиана за линейное время: анализ

- Разобьём массив на пятёрки
- ullet Отсортируем каждую пятёрку $c_1 N$
- ullet Найдём медиану середин пятёрок T(N/5)
- Разобьём массив на 2 группы <> медианы медиан: $c_2 N$
 - найдём: SECLECT(A[1, j], k) => T(j)
 - иначе: SELECT(A[j+1, N], k-j) => T(N-j); $0.3N \le j \le 0.7N$;
- $T(N) \le T(\frac{N}{5}) + cN + T(0.7N); \implies T(N) = O(N);$

?
Ponpochi

Спасибо за внимание!

Иванов Георгий Поиск.mail.ru