Warper

Efficiently Adapting Learned Cardinality Estimators to Data and Workload Drifts

Beibin Li^{1,2}, Yao Lu², Srikanth Kandula²

¹ University of Washington, Seattle, WA

² Microsoft Research, Redmond, WA

2022

Machine Learning (ML) for Database Systems

Research

Index Tuning

Graph Paritioning

Practice

Oracle's HeatWave

Google's AlloyDB

MIT's SageDB

Challenge in Al Applications:

Training and Testing Distribution Shifts (Drifts)

Cardinality Estimation and Its Machine Learning Process

Data Shifts

(e.g., insert, delete, update)
 f(weight <= 3 and price <= 3)</pre>

Weight	Price	
1.0	1.0	
1.0	1.5	
3.0	4.2	

Workload Shifts

P(x): distribution of input data features

Weight Bound	Price Bound
< 1.0	< 1.0
< 2.1	< 2.0
< 4.0	< 3.8

Performance After Data Shifts

Shifts Lead to Regression

State-of-the-art for Adaption in CE

Scheme	How
LM ^[1] Naru ^[3]	Re-train
MSCN ^[2]	Completely re-train or fine-tune model
DeepDB ^[4]	Partial re-train

- Other DB tasks (e.g., [5]) use apriori training
 - Ad-hoc
 - Domain insights
 - Overly general.

^[1] Dutt, Anshuman, et al. "Selectivity estimation for range predicates using lightweight models." *Proceedings of the VLDB Endowment* 12.9 (2019): 1044-1057.

^[2] Kipf, Andreas, et al. "Learned cardinalities: Estimating correlated joins with deep learning." CIDR (2019).

^[3] Yang, Zongheng, et al. "Deep unsupervised cardinality estimation." Proceedings of the VLDB Endowment, 13.3 (2019)

^[4] Hilprecht, Benjamin, et al. "DeepDB: learn from data, not from queries!." Proceedings of the VLDB Endowment 13.7 (2020): 992-1005.

^[5] Ma, Lin, et al. "Active Learning for ML Enhanced Database Systems." Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 2020.

Goals

- Agnostic to ML Models
- Small Computation Overhead
- Quick Adaptation

Drift Case 1: Workload Distribution Drift

- Table stays the same
- Workload changed

Drift Case 1: Warper with GAN (Generative Adversarial Network)

Drift Case 1: Experiments

- Black Box Models: LM (VLDB 19'), MSCN (CIDR 19')
- Three datasets
- 12 new queries arrive per minute.

Drift Case 1: Summary

- Workload Drift
- Scenario: number of new query predicates is small
- Goal: adapt the black-box ML model quickly
- Solution: synthesize additional queries for the model

However, what if the number of new queries is large?

Drift Case 2: Too Many to Label

- Table stays the same
- Workload changed

Previous Distribution

	Weight Bound	Price Bound	Card. GT
	< 1.0	< 1.0	10
	< 2.1	< 2.0	20
Many	> 2.9	> 3.0	20
Queries			•••

New Distribution

Drift Case 2: Warper with Picker

Drift Case 2: Summary

- Workload Drift
- Scenario: number of new queries is large
- Solution: select novel queries with higher priority

A few queries
CPU is in idle
CPU cannot label all

Both Drift Case 1 and Drift Case 2 are workload drift

Drift Case 3: Data Shifted

Data Table

Queries

Weight Bound	Price Bound	Card.
< 1.0	< 1.0	100
< 2.1	< 2.0	2 d
		/\

Weight Bound	Price Bound	Card. GT
< 1.0	< 1.0	?
< 2.1	< 2.0	?
		?

Re-calculate Ground Truth

Drift Case 3: Solution (for Data Shift)

CE

3.0x

1.3x

1.5x

Summary of These Drift Cases

- Workload and Data shifts can happen at the same time.
- Other different drift examples (scenarios), and End-to-End experiment with continuous drifts are shown in the paper.

Related Work

- Active Learning
 - HAL (SIGMOD 19'), ADCP (SIGMOD 20'), Wilds (PMLR 21'), ...
- Generative Adversarial Network (GAN)
 - Deep Learning: GAN (NeurIPS 14'), InfoGAN (NeurIPS, 16'), CycleGAN (ICCV 17'),
 StyleGAN2 (ECCV 20'), TransGAN (NeurIPS 21')
 - DB: Relative Data Synthesis (VLDB 20')

Conclusion

- ML for System also Suffers from Data and Workload Shifts
- Create Warper to Adapt for Cardinality Estimation
 - Low Computation Overhead
 - 3x − 6x Faster Adaptation in Slow.
 - 1-2x Faster Adaptation in Fast.
- Future: Examine More Real Workloads in End-to-End Setting

Thank You!