33; 36: 'b'Rta vec'f g'Ektewkyu'Grgvt½plequ'3

Experimento 04: Análise Temporal de Capacitores e Indutores

1) Objetivos

Estudo das características elétricas de capacitores e indutores: determinação da relação tensão x corrente.

2) Estudo pré-laboratorial

2.1) Cálculos teóricos

- a) Considerando um sinal senoidal $V(t)=V\sin(\omega t+\phi)$ aplicado entre os terminais de um capacitor, encontre a fórmula para a relação $V_C(t)/i_C(t)$. Em seguida conclua: qual a relação entre a magnitude da tensão e da corrente no capacitor? Qual a diferença de fase entre os sinais $i_C(t)$ e $V_C(t)$? Atenção: lembre-se que $\omega=2\pi f$, com ω dado em rad/s e f em Hz.
- b) Considerando um sinal senoidal $i(t)=I\sin(\omega t+\phi)$ aplicado entre os terminais de um indutor, encontre a fórmula para a relação $V_L(t)/i_L(t)$. Em seguida conclua: qual a relação entre a magnitude da tensão e da corrente no indutor? Qual a diferença de fase entre os sinais $i_L(t)$ e $V_L(t)$? Atenção: lembre-se que $\omega=2\pi f$, com ω dado em rad/s e f em Hz.
- c) Encontre as expressões matemáticas dos sinais $i_C(t)$ e $V_C(t)$ para o circuito da Fig.2.1a. Ou seja, obtenha a corrente e a tensão sobre o capacitor quando ligado em série ao resistor R e à fonte de sinal V_g . Modele a onda quadrada como um circuito que chaveia a cada meio período entre uma fonte de $+1\,V$ e uma de $-1\,V$. Para facilitar as contas, suponha que, ao final de cada meio período, o circuito está em regime permanente DC.
- d) Encontra as expressões matemáticas dos sinais $i_L(t)$ e $V_L(t)$ para o circuito da Fig.2.1b. Ou seja, obtenha a corrente e a tensão sobre o indutor quando ligado em série ao resistor R e à fonte de sinal V_g . Modele a onda quadrada como um circuito que chaveia a cada meio período entre uma fonte de $+1\,V$ e uma de $-1\,V$. Para facilitar as contas, suponha que, ao final de cada meio período, o circuito está em regime permanente DC.

Figura 2.1: Circuitos para avaliação da relação $V \times i$ no capacitor (a) e no indutor (b).

2.2) Simulação

Faça a simulação dos dois circuitos da Fig. 2.1. Considere duas situações:

a) V_q é uma onda quadrada;

Apresente os gráficos de corrente e tensão no capacitor/indutor sobrepostos ao sinal da fonte.

Atenção: Se não for possível visualizar correntes com seu simulador, note que por tratar-se de um circuito de malha única, a corrente é a mesma em todos os componentes. E lembre-se que em um resistor, tensão e corrente tem exatamente a mesma forma de onda a menos de um fator de escala: $V_R(t) = Ri_R(t)$. Assim, a corrente pode ser obtida indiretamente observando-se a tensão V_R e dividindo seu valor por R. Caso necessário, reposicione o resistor, trocando-o de lugar com o capacitor/indutor para manter o mesmo referencial de terra nos dois canais do osciloscópio.

b) V_a é uma onda senoidal de mesma amplitude e frequência que a onda quadrada correspondente;

Apresente os gráficos de corrente e tensão sobre os componentes do circuito (fonte, resistor, capacitor/indutor) ao longo do tempo

Obtenha também o valor eficaz e a diferença de fase das tensões com relação à corrente. Se não for possível medir o valor eficaz em seu simulador, meça o valor de tensão (amplitude ou pico-a-pico) com cursores e calcule o valor eficaz da seguinte forma: $V_{RMS} = V_{amp}/\sqrt{2} = V_{pp}/(2\sqrt{2})$.

Simulação Capacitor (Onda Senoidal)				
	Diferença de fase	Valor eficaz de		
Componente	com relação à corrente	tensão		
	$\phi[\circ ou rad]$	$V_{RMS}[V]$		
Fonte				
Resistor				
Capacitor				

Simulação Indutor (Onda Senoidal)				
	Diferença de fase	Valor eficaz de		
Componente	com relação à corrente	tensão		
	$\phi[\circ ou rad]$	$V_{RMS}[V]$		
Fonte				
Resistor				
Indutor				

3) Procedimento Experimental

3.1) Determinação da relação entre a corrente e a tensão em um capacitor

- a) Ligue o gerador de função e ajuste uma forma de onda quadrada de frequência $750\ Hz$ com $1\ V$ de amplitude (isto é, $2\ V_{pp}$) e valor médio nulo. Monte o circuito da Fig. 2.1a e ligue os terminais negativos do osciloscópio no ponto indicado pelo terra e os terminais positivos dos canais nos pontos indicados para o canal 1 (CH1) e canal 2 (CH2). Se for necessário, associe um ou mais capacitores para obter uma capacitância próxima de $100\ nF$.
- b) No osciloscópio, o canal 1 corresponderá à tensão na fonte, enquanto o canal 2 corresponderá à tensão no capacitor. A tensão no resistor pode ser visualizada usando a função MATH do osciloscópio para calcular $V_R = V_{CH1} V_{CH2}$. Note que a corrente no capacitor $i_C(t)$ é igual à corrente no resistor $i_R(t)$ e tem exatamente a mesma forma de onda que a tensão no resistor multiplicada por um fator de escala pois $i_C(t) = i_R(t) = V_R(t)/R$, em que $R = 1k\Omega$.
- c) Esboce essas três formas de onda de tensão usando a mesma escala de tensão para todos os canais, de forma a facilitar comparações. Com base em seus conhecimentos teóricos, compare qualitativamente a relação observada entre a tensão e a corrente em um capacitor com o que se esperava do ponto de vista teórico. Como varia a corrente em um capacitor para uma tensão constante? Como varia a tensão para uma corrente constante?
- d) Mude a forma de onda do gerador de funções de quadrada para senoidal. Usando cursores, meça qual a defasagem (positiva ou negativa) da corrente no capacitor $i_C(t)$ (que é proporcional à tensão no resistor) com relação à tensão no capacitor $V_C(t)$. Meça o valor eficaz de tensão V_{RMS} de cada uma das três formas de onda.

3.2) Determinação da relação entre a corrente e a tensão em um indutor

- a) Ligue o gerador de função e ajuste uma forma de onda quadrada de frequência 50~kHz com 1~V de amplitude (isto é, $2~V_{pp}$) e valor médio nulo. Monte o circuito da Fig. 2.1b e ligue os terminais negativos do osciloscópio no ponto i 1ndicado pelo terra e os terminais positivos dos canais nos pontos indicados para o canal 1 (CH1) e canal 2 (CH2). Se for necessário, associe um ou mais indutores para obter uma indutância próxima de $330~\mu H$.
- b) No osciloscópio, o canal 1 corresponderá à tensão na fonte, enquanto o canal 2 corresponderá à tensão no indutor. A tensão no resistor pode ser visualizada usando a função MATH do osciloscópio para calcular $V_R=V_{CH1}-V_{CH2}$. Note que a corrente no indutor $i_L(t)$ é igual à corrente no resistor $i_R(t)$ e tem exatamente a mesma forma de onda que a tensão no resistor multiplicada por um fator de escala pois $i_L(t)=i_R(t)=V_R(t)/R$, em que $R=1k\Omega$.
- c) Esboce essas três formas de onda de tensão usando a mesma escala de tensão para todos os canais, de forma a facilitar comparações. Com base em seus conhecimentos teóricos, compare qualitativamente a relação observada entre a tensão e a corrente em um indutor com o que se esperava do ponto de vista teórico. Como varia a corrente em um indutor para uma tensão constante? Como varia a tensão para uma corrente constante?
- d) Mude a forma de onda do gerador de funções de quadrada para senoidal. Usando cursores, meça qual a defasagem (positiva ou negativa) da corrente no indutor $i_L(t)$ (que é proporcional à tensão no resistor) com relação à tensão no capacitor $V_L(t)$. Meça o valor eficaz de tensão V_{RMS} de cada uma das três formas de onda.

119148 – Prática de Circuitos Eletrônicos 1 – Folha de Dados

Turma:	Data:/
Aluno:	Matrícula:

Experimento 04: Análise Temporal de Capacitores e Indutores

Procedimento 3.1 c): Onda quadrada sobre capacitor

Tensão na fonte:

Tensão no resistor:

Tensão no capacitor:

Procedimento 3.1 d): Onda senoidal sobre capacitor

Experimento Capacitor (Onda Senoidal)					
Componente	Diferença de fase com relação	Diferença de fase com relação	Valor eficaz de tensão	Valor eficaz de tensão V_{RMS}	
	à corrente $\phi[^\circ ext{ou rad}]$ (simulação)	à corrente $\phi[^\circ \text{ou rad}]$ (experimental)	V_{RMS} (simulação)	V_{RMS} (experimental)	
Fonte					
Resistor					
Capacitor					

Procedimento 3.2 c): Onda quadrada sobre indutor

Tensão na fonte:

Tensão no resistor:

Tensão no indutor:

Procedimento 3.2 d): Onda senoidal sobre indutor

Experimento Indutor (Onda Senoidal)					
Componente	Diferença de fase com relação	Diferença de fase com relação	Valor eficaz de tensão	Valor eficaz de tensão V_{RMS}	
	à corrente $\phi[^\circ ext{ou rad}]$ (simulação)	à corrente $\phi[^\circ ext{ou rad}]$ (experimental)	V_{RMS} (simulação)	V_{RMS} (experimental)	
Fonte					
Resistor					
Indutor					