Machine Learning: Assignment 1

Gohil Dwijesh 2017CS50407

January 2020

1 Linear Regression

- Learning rate: 0.0001.
- \bullet stopping criteria: if modulus of the derivative of the cost function is less than 0.0005.
- Matrix formula used:

$$\frac{\partial J(\theta)}{\partial \theta} = \frac{1}{m} * (X^{\mathrm{T}} X \theta - X^{\mathrm{T}} Y)$$

$$J(\theta) = \frac{1}{2m} (Y - X\theta)^{\mathrm{T}} (Y - X\theta)$$

• Where X is an (m x n) matrix, m = number of training examples, and n = number of features.

Figure 1: $J(\theta)$ as a function of θ_0 , θ_1

Figure 2: $h_{\theta}(x)$ and training data

Figure 3: Question 1: Contour of cost function and iteration points

Figure 4: Question 1: Contour of cost function at learning rate: 0.1

Figure 5: Question 1: Contour of cost function at learning rate: 0.001

Figure 6: Question 1: Contour of cost function at learning rate: 0.025

2 Sampling and Stochastic Gradient Descent

2.1 Implementing stochastic gradient descent

Batch size	$theta_0$	$theta_1$	$theta_2$	epochs	opt. avg	history	error
1	2.98841157	0.98489459	1.95629993	1	NA	5000	1.09743707
100	2.99857972	1.00004456	1.99967958	5	0.531	2000	0.98300276
10000	2.91204599	1.01900053	1.99320696	126	0.05	50	1.00538196
1000000	3.0002548	1.0002631	1.9995629	23753	0.0012	1	0.98300278
NA	3	1	2	NA	NA	NA	0.98294692

Table 1: Sampling and Stochastic Gradient Descent

2.2 Explanation

- As the batch size increases the number of epochs before converging increases.
- As the batch size decreases the speed of convergence increases.
- As the batch size increases, it converges to assumed hypothesis theta values, because it is going towards batch gradient descent as we increase the batch size.

Figure 7: Question 2: batch size: 100

Figure 8: Question 2: Batch size: 10000

3 Logistic Regression

• θ : 0.40125316, 2.5885477, -2.72558849

Figure 9: Question 3: Linear boundary separating the two classes

4 Gaussian Discriminant Analysis

| 0.5 |
Table 2:
$$\phi$$

| -0.75529433 |
0.68509431 |
Table 3: μ_0

| 0.75529433 |
-0.68509431 |
Table 4: μ_1

| 0.38158978 | -0.15486516 |
-0.15486516 | 0.64773717

Table 5: Σ_0

| 0.47747117 | 0.1099206 |
0.1099206 | 0.41355441 |
Table 6: Σ_1

| 0.42953048 | -0.02247228 |
-0.02247228 | 0.53064579

• Equation of the boundary separating the two classes:

$$x.^{\mathsf{T}}(\Sigma_{1}^{-1} - \Sigma_{0}^{-1})x + 2(\mu_{0}^{\mathsf{T}}\Sigma_{0}^{-1} - \mu_{1}^{\mathsf{T}}\Sigma_{1}^{-1})x + \mu_{1}^{\mathsf{T}}\Sigma_{1}^{-1}\mu_{1} - \mu_{0}^{\mathsf{T}}\Sigma_{0}^{-1}\mu_{0} + \log_{e}((\frac{1-\phi}{\phi})^{2}\frac{|\Sigma_{1}|}{|\Sigma_{0}|}) = 0$$

• If we assume that our features shares the Σ matrix then we get a linear boundary and if we assume that the features can have different Σ s then we get a quadratic boundary. Looking at the training data, assuming the later case is a good choice.

Table 7: Σ

Figure 10: Question 4: Boundary separating the two classes