Review of PDF and R

Emanuele Coradin

March 2024

Contents

1	Pairing and ordering objects	1
2	Probability distributions in R	1
	2.1 Binomial distribution	1
	2.2 Geometric Distribution	4

1 Pairing and ordering objects

We can identify different useful tools to compute the numbers of different pairings as orderings that we can apply to a sequence of length r taken from a dictionary of n objects.

2 Probability distributions in R

R provides almost all the standard PDFs that we could wish. The name convention prescribes: * d for the pdf * p for the cumulative density function (cdf) * q for the quantile function * r to sample a random number from the distribution.

Now we will experiment with them with same simple exercise.

2.1 Binomial distribution

The Binomial probability function is described by: $P(X = k) = \binom{n}{k} \cdot p^k \cdot (1-p)^{n-k}$

First of all let's define a palette.

```
color_vector <- c("#CC0000",</pre>
                              # Wine-like color
                  "#0072B2",
                               # Strong blue
                  "#CC79A7",
                               # Muted purple
                  "#D55E00",
                               # Vermilion
                  "#009E73",
                                # Bluish green
                   "#56B4E9",
                                # Sky blue
                  "#E69F00")
                                # Yellow-orange
# Parameters for the binomial distribution
n <- c(5, 10, 15, 20) # number of trials
linetype \leftarrow 2-(1:length(n))\%2
p <- 1./2. # probability of success
# Generate values for x (number of successes)
x <- 0:20
```

```
#define a function to prepare the plots
plot_pdf <- function(N) {dbinom(x, N, p)}</pre>
binomial_pdf <- sapply(n, plot_pdf)</pre>
# create the first straight line plot
plot(x,binomial_pdf[,1], type = "s", lwd = 2, col = color_vector[1],
     xlab = "Number of Successes", ylab = "Probability", lty = linetype[1])
# create all the others
for (i in 2:length(n)) {
  lines(x, binomial_pdf[, i], col=color_vector[i], type='s', lwd=2, lty = linetype[i])
}
grid() # Add grid
# Create legend labels with strings "n = "
legend_labels <- paste("n =", n)</pre>
# Add a legend
legend("topright", legend = legend_labels, col = color_vector[1:length(n)], lty = linetype, lwd = 2)
# Add a title
title("Theoretical Binomial Distribution P = 0.5")
```

Theoretical Binomial Distribution P = 0.5

Number of Successes

```
# Parameters for the binomial distribution

n <- c(5, 10, 15, 20) # number of trials
linetype <- 2-(1:length(n))%%2
p <- 1./5. # probability of success</pre>
```

```
# Generate values for x (number of successes)
x <- 0:20
#define a function to prepare the plots
plot_pdf <- function(N) {dbinom(x, N, p)}</pre>
binomial_pdf <- sapply(n, plot_pdf)</pre>
# create the first straight line plot
plot(x,binomial_pdf[,1], type = "s", lwd = 2, col = color_vector[1],
     xlab = "Number of Successes", ylab = "Probability", lty = linetype[1])
# create all the others
for (i in 2:length(n)) {
  lines(x, binomial_pdf[, i], col=color_vector[i], type='s', lwd=2, lty = linetype[i])
}
grid() # Add grid
# Create legend labels with strings "n = "
legend_labels <- paste("n =", n)</pre>
# Add a legend
legend("topright", legend = legend_labels, col = color_vector[1:length(n)], lty = linetype, lwd = 2)
title("Theoretical Binomial Distribution P = 0.2")
```

Theoretical Binomial Distribution P = 0.2

2.2 Geometric Distribution

The Geometric distribution can be described by: $P(X = k) = (1 - p)^{k-1} \cdot p$

Now let's visualize it.

```
# Parameters for the binomial distribution
p <- c(1./2., 1/4, 1/10, 10**(-3)) # probability of success
linetype <- 2-(1:length(p))%%2</pre>
# Generate values for x (number of successes)
x <- 0:20
#define a function to prepare the plots
plot_pdf <- function(P) {dgeom(x, P)}</pre>
binomial_pdf <- sapply(p, plot_pdf)</pre>
# create the first straight line plot
plot(x,binomial_pdf[,1], type = "s", lwd = 2, col = color_vector[1],
     xlab = "Number of Successes", ylab = "Probability", lty = linetype[1], log="y")
# create all the others
for (i in 2:length(p)) {
  lines(x, binomial_pdf[, i], col=color_vector[i], type='s', lwd=2, lty = linetype[i])
}
grid() # Add grid
# Create legend labels with strings "p = "
legend_labels <- paste("p =", p)</pre>
# Add a legend
legend("topright", legend = legend_labels, col = color_vector[1:length(p)], lty = linetype, lwd = 2)
# Add a title
title("Theoretical Geometric distribution")
```

Theoretical Geometric distribution

