课程名称: 代数学

第一次作业

姓名: 樊昊

学号: 242131001

第零章

题目 3. 举例说明, 整数集合 \mathbb{Z} 上存在映射 $f: \mathbb{Z} \to \mathbb{Z}$, 使得 f 有左 (右) 逆但无右 (左) 逆。

解答.¹ 取 $h: k \mapsto 2k$, 则 $g: 2k \mapsto k, 2k + 1 \mapsto 0$ 是 h 的左逆. 因为 h 非满射, 没有右逆. 这里 g 有右逆 h, 但是非单射所以没有左逆. 分别取 f = g, f = h 即可.

题目 4. 试判断自反性、对称性和传递性对下列二元关系是否成立?

- (i) 实数系 \mathbb{R} , x y 为 2π 的整数倍;
- (ii) $\mathbb{R}, x \geq y$;
- (iii) $\mathbb{R}, x > y$;
- (iv) S 是仅含一个元素的集, x > y.

解答.² 关于 $S = \{*\}$, 此时 > 视作 $S \times S$ 子集应该为空集, 对称性, 传递性成立 (vacuous truth).

表 1: 问题 5

	反身性	对称性	传递性
(i)	✓	✓	✓
(ii)	✓	×	✓
(iii)	×	×	✓
(iv)	×	✓	✓

题目 5. 试判断自反性、对称性和传递性对下列二元关系是否成立?

- (i) $\mathbb{R}, |x y| = 1;$
- (ii) $\mathbb{R}, |x-y| \leq 1;$
- (iii) $\mathbb{R}, x y = 1;$
- (iv) $\mathbb{R}, x + y = 1$.

解答.3 见下表.

表 2: 问题 6

PC =: 14/C 0				
	反身性	对称性	传递性	
(i)	×	✓	×	
(ii)	✓	✓	×	
(iii)	×	×	×	
(iv)	×	✓	×	

题目 11. 设 X,Y,Z 为任意集合, 又设 $\psi_i: X \to Y, i=1,2,\eta: Y \to Z$. 证明: "如果 $\eta\psi_1=\eta\psi_2$, 则 $\psi_1=\psi_2$ " 对任意 ψ_1,ψ_2 都成立的充要条件是 η 是一个单射。

解答.⁴ 充分性: 若 η 是单射, 且 $\eta\psi_1 = \eta\psi_2$, 则任意 $x \in X$ 有 $\eta(\psi_1(x)) = \eta(\psi_2(x))$. 因为单射性, $\psi_1(x) = \psi_2(x)$ 总成立, 即 $\psi_1 = \psi_2$.

必要性: 若 η 不是单射, 则有 $a,b \in Y$ 使得 $\eta(a) = \eta(b)$. 不难构造 $\psi_1(x) = a \neq b = \psi_2(x)$, 且 $\psi_1|_{X\setminus\{x\}} = \psi_2|_{X\setminus\{x\}}$. 则 $\eta\psi_1 = \eta\psi_2$ 但是 $\psi_1 \neq \psi_2$.

题目 15. 应用定理 7, 证明欧拉函数 $\varphi(n)$ 可写成

$$\varphi(n) = n \sum_{d|n} \frac{\mu(d)}{d}.$$

解答.⁵ 记 $[r] = \{1, 2, \dots, r\}$. 由定理 7, 对 $n = p_1^{e_1} \cdots p_r^{e_r}$, 有

$$\begin{split} \frac{\varphi(n)}{n} &= (1-p_1^{-1}) \cdots (1-p_r^{-1}) \\ &= \sum_{\ell=0}^r \sum_{\substack{\sharp \{i \mid k_i=1\} = \ell}} (-1)^\ell p_1^{-k_1} \cdots p_r^{-k_r} \\ &= \sum_{\substack{k_i \in \{0,1\}^r, \\ i \in [r]}} \frac{\mu(p_1^{k_1} \cdots p_r^{k_r})}{p_1^{k_1} \cdots p_r^{k_r}} \\ &= \sum_{\substack{d \mid n, \\ d \neq r \neq \tau \mid \exists l \neq r}} \frac{\mu(d)}{d} = \sum_{d \mid n} \frac{\mu(d)}{d}. \end{split}$$

题目 18 . 证明: 若 f(n) 是一个乘性函数, 则 $h(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) f(d)$ 也是一个乘性函数。

解答.⁶ 对于互素的 $n_1, n_2,$ 有

$$h(n_1 n_2) = \sum_{d \mid n_1 n_2} \mu\left(\frac{n_1 n_2}{d}\right) f(d) = \sum_{\substack{d_1 \mid n_1, \\ d_2 \mid n_2}} \mu\left(\frac{n_1}{d_1} \frac{n_2}{d_2}\right) f(d_1 d_2)$$
$$= \sum_{d_1 \mid n_1} \mu\left(\frac{n_1}{d_1}\right) f(d_1) \sum_{d_2 \mid n_2} \mu\left(\frac{n_2}{d_2}\right) f(d_2)$$
$$= h(n_1) h(n_2).$$

题目 21. 证明

$$\sum_{\substack{1 \leq r \leq n \\ (r,n)=1}} r = \frac{1}{2} n \varphi(n).$$

解答.7 左边即对落在 [1,n] 的一组 mod n 剩余类求和, 故

$$\sum_{\substack{1 \le r \le n \\ (r,n)=1}} r = \sum_{\substack{1 \le r \le n \\ (r,n)=1}} n - r = \sum_{\substack{1 \le r \le n \\ (r,n)=1}} \frac{r + (n-r)}{2} = \frac{1}{2} n \varphi(n).$$

群论

第一章

题目 5. 在 S_3 中找出两个元素 x, y, 适合

$$(xy)^2 \neq x^2y^2.$$

解答.⁸ 只要 $xy \neq yx$ 即可. 取 x = (12), y = (13). 则

$$xy = (132) \neq yx = (123).$$

题目 8. 证明: 群 G 为一交换群当且仅当映射 $x \mapsto x^{-1}$ 是一同构映射。

解答.⁹ 记 $i: x \mapsto x^{-1}$. i 是双射. 熟知 $(xy)^{-1} = y^{-1}x^{-1}$. 所以 i 是同构当且仅当 $y^{-1}x^{-1} = x^{-1}y^{-1}, \forall x, y$; 当且仅当 $xy = yx, \forall x, y$.

题目 13. 设群 G 的阶为一偶数, 证明 G 中必有一个元素 $a \neq e$ 适合 $a^2 = e$.

解答.¹⁰ 在集合 G 上定义关系: $g \sim h \iff gh = e$. 则 \sim 是等价关系. 并且, 每个等价类一定是一个元或者两个元. 注意 $[e] = \{e\}$,

$$\sharp G = \sum_{[g] \in G/\sim} \sharp [g] = 1 + \sum_{\substack{[g] \in G/\sim \\ [g] \neq [e] \\ \not = 65\%}} \sharp [g],$$

所以求和项有奇数, 即某等价类为一个元, 也即 $a^2 = e$.

题目 16. 在群 $SL_2(\mathbb{Q})$ 中, 证明元素

$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

的阶为 4, 元素

$$B = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

的阶为 3, 而 AB 为无限阶元素.

解答.11 直接计算

$$A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \ A^3 = -A \neq I, \ A^4 = I.$$

于是阶为 4.

$$B^2 = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}, \ B^3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

于是阶为 3.

$$AB = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ (AB)^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}, \ \forall n \ge 1.$$

于是 AB 为无限阶元素.

第二章

题目 21. 证明任一非交换的 6 阶群同构于 S_3 .

解答.¹² 设 G 为非交换 6 阶群. 由 Sylow 第三定理,

$$N_3 := \text{Sylow } 3$$
-子群的个数 $\equiv 1 \pmod{3}$,

且 N_3 | 2, 可见 N_3 = 1. 所以有唯一一个 Sylow-3 群 P_3 , 且是正规子群. 现在, 除去子群 P_3 , 还有 3 个元素, 均不是 3 阶元, 又不是单位元; Langrange 定理保证阶数只能从 1,2,3,6 取; 如果有 6 阶元, 那么群应是循环群, 和非交换的假设矛盾.

取一个三阶元 g , 一个二阶元 h; 则 $\langle g \rangle \cap \langle h \rangle = \{e\}$ 且 $\langle g,h \rangle = G$. 由于 $\langle g \rangle$ 是指数 2 的子群,是正规的,也就是说 $G = \langle g \rangle \rtimes \langle h \rangle$,有共轭作用 $\langle h \rangle \cap \langle g \rangle$,且这个不是平凡的作用(作用平凡即 $hgh^{-1} = g$,换言之 $\langle g \rangle$, $\langle h \rangle$ 交换,此时 G 由他们生成从而交换).非平凡的群作用对应一个非平凡的同态 $\langle h \rangle \to \operatorname{Aut}(\langle g \rangle)$,而 $\operatorname{Aut}(\langle g \rangle) \cong \mathbb{Z}/\langle 2 \rangle$,所以这共轭作用只能是

$$hgh^{-1} = g^2, hg^2h^{-1} = g.$$

综上所述,

$$G = \langle g, h \mid g^3 = h^2 = e, hgh^{-1} = g^2, hg^2h^{-1} = g \rangle;$$

欲求的同构由

$$G \rightarrow S_3 : q \mapsto (123), h \mapsto (12)$$

给出.

题目 22. 定出全部互不相构的 15 阶群。

解答.¹³ 由 Sylow 第三定理,

$$N_5 := \text{Sylow 5-子群的个数} \equiv 1 \pmod{5}$$
,

且 $N_5 \mid 3$, 可见 $N_5 = 1$. 所以有且仅有一个 5 阶正规子群 H. 同理有且仅有一个 3 阶正规子群 K. 两个正规子群交为 $\{e\}$: $H \cap K$ 中元素阶数整除 3,5 于是为 1. 计数

$$|HK| = \frac{|H||K|}{|H \cap K|} = 15 \implies G = HK$$

由内直积的刻画, 这就是 $G = H \times K$; 换言之, $G \cong \mathbb{Z}/\langle 3 \rangle \times \mathbb{Z}/\langle 5 \rangle \cong \mathbb{Z}/\langle 15 \rangle$, 由中国剩余定理. 综上所述, 同构意义下, 15 阶群只有 $\mathbb{Z}/\langle 15 \rangle$.

题目 23. 设 p,q 为不同的素数, 证明不存在阶为 pq 的单群。

解答.¹⁴ 不妨设 p < q. 由 Sylow 第三定理, $N_q \equiv 1 \pmod{q}$. 且 $N_q \mid p$ 所以 $N_q = 1$, 此时 Sylow q-子 群即正规子群.

题目 24. 设 p,q 为不同的素数, 证明 p^2q 阶群必包含一个正规西罗子群。

尝试.

- 当 p < q, 有 $N_p \equiv 1 \pmod{p}$, $N_p \mid q \implies N_q = 1$; 此时 Sylow q-子群正规.
- 当 p > q, 有 $N_q \equiv 1 \pmod q$, $N_q \mid p^2$. 不妨设没有 p^2 阶元, 否则它生成 Sylow-p 子群, 并且是唯一的, 等价于正规的.

- $若 N_q = 1$, 则 Sylow-q 子群正规;
- 若 $N_q = p$, 则 $p = 1 \pmod{q}$. 这 p 个 Sylow q-子群两两仅相交于 $\{e\}$, 计数可得 q-阶元有 p(q-1) 个. 所以有 p(p-q-1) 个元, 阶数取值于 $\{1, p, pq\}$.
- 若 $N_q = p^2$, 则 $p^2 = 1 \pmod{q}$. 这 p^2 个 Sylow q-子群两两仅相交于 $\{e\}$, 计数可得 q-阶元有 $p^2(q-1)$ 个. 所以有 p^2 个元, 阶数从 $\{1,p,pq\}$ 中取.

补充

题目 1.k 是奇数,证明 2k 阶群必有一个 k 阶子群.

尝试. 一定有 Sylow 2-子群 (同构于 $\mathbb{Z}/\langle 2 \rangle$), 设某个 Sylow 2-子群的生成元为 g. 设 G 在正则表示 ρ 下 有 $G \lesssim S_n$, 此时 $\rho(G) \cap A_n$ 是 $\rho(G)$ 的正规子群, 对应的 $\rho^{-1}(A_n)$ 是 G 的正规子群

题目 3. 设 G 是有限群, p 是 |G| 的最小素因子。又设 $H \leq G$ 且 |G:H| = p, 则 $H \triangleleft G$.

题目 4. (N/C 定理) 设 $H \leq G$,则 $N_G(H)/C_G(H)$ 同构于 $\operatorname{Aut}(H)$ 的一个子群,记做 $N_G(H)/C_G(H) \lesssim \operatorname{Aut}(H)$.

解答.¹⁸ 对 $g \in N_G(H)$ 有 $\phi_g \colon H \to H, h \mapsto ghg^{-1}$ 良好定义,且是群 H 的自同构. 于是有同态 $\varphi \colon N_G(H) \to \operatorname{Aut}(H), g \mapsto \varphi_g$. 容易知道 $\ker \varphi = C_G(H)$,同态基本定理给出

$$N_G(H)/C_G(H) \lesssim \operatorname{Aut}(H).$$

更多习题

题目 5. Prove that all the groups of order p^2 is commutative. Here p is a prime number.

解答.¹⁹ Let G be a group of order p^2 . Then it has a nontrivial center, whose order is p^2 or p. If $=p^2$ the G=Z(G). If |Z(G)|=p then it is isomorphic to $\mathbb{Z}/\langle p\rangle$, let $Z(G)=\langle g\rangle$. What's more, $|G\setminus Z(G)|=p^2-p$ elements are not in center and take $h\in G\setminus Z(G)$, which generates a subgroup H of order p. Now,

$$|Z(G)H| = \frac{|Z(G)| \times |H|}{|Z(G) \cap H|} = p^2 \implies Z(G)H = G.$$

Thus, $G = Z(G) \times H$, and this semi-direct product is trivial, since $g \in Z(G)$ ensures $hgh^{-1} = g$. Now, $G \cong (\mathbb{Z}/\langle p \rangle)^2$ is commutative. Therefore, it is impossible that |Z(G)| = p.

Above all, all the groups of order p^2 is Abelian.

题目 8. Let M be a finite abelian group $\neq 0$. Can M be made into a left Q-module?

解答.²⁰ It can't be made into a left \mathbb{Q} -module. Else, for $0 \neq g \in M$, for $n \in \mathbb{Z}_{>0}$ we have $\frac{1}{n}g \in M$. It turns out that $\operatorname{ord}(\frac{1}{n}g) = n \operatorname{ord}(g)$ and $\operatorname{ord}(\frac{1}{n}g) > |M|$ for large n, which is impossible due to Langrange's Theorem.

题目 11 . Show that any subgroup of index two is normal. Hence prove that A_n is normal in S_n . 第 1 章第 12 题

解答.21 Let G be a group and $H \leq G$ is of index two. Then for $g \in G$, either gH = H or $G = H \sqcup gH$.

- If gH = H, then $(gH)^{-1} = H^{-1}g^{-1} = H^{-1} = H$ and hence $gHg^{-1} = g(Hg^{-1}) = gH = H$.
- If $G = H \sqcup gH$, then $g \notin H$ and hence $Hg \neq H$; so $G = H \sqcup Hg$. Compare and it follows gH = Hg.

Above all, H is normal.

For A_n , it is known that $|A_n| = n!/2 = |S_n|/2$ that is of index two and thus is normal.

题目 12. Verify that the intersection of any set of normal subgroups of a group is a normal subgroup. Show that if H and K are normal subgroups, then HK is a normal subgroup.

解答.²² Let $\{G_i\}_{i\in I}$ be a family of normal subgroups of G and $\{\pi_i\colon G\twoheadrightarrow G/G_i\}_{i\in I}$ be the natural projections. Then

$$\pi \colon G \to \prod_{i \in I} G/G_i, \ g \mapsto (\pi_i(g))_{i \in I}$$

is a group hommorphism, with kernel $\ker \pi = \bigcap_{i \in I} G_i$, which must be a normal subgroup. Let H, K be normal subgroups of G.

• It is a subgroup. Let $h_1, h_2 \in H$ and $k_1, k_2 \in K$, we have

$$(h_1k_1)^{-1}h_2k_2 = k_1^{-1}h_1^{-1}h_2k_2 = \underbrace{(k_1^{-1}h_1^{-1}h_2k_1)}_{\in H}k_1^{-1}k_2 \in HK.$$

• It is normal. Let $g \in G$, $ghkg^{-1} = (ghg^{-1})(gkg^{-1}) \in HK$ and hence HK is normal.

题目 15 . Show that if $a^m = b^m$ and $a^n = b^n$, for m and n relatively prime positive integers, and a and b in a commutative domain, then a = b.

解答.23 By Bézout's Theorem, there are $u, v \in \mathbb{Z}$ s.t. um + vn = 1. Therefore

$$a = a^{um+vn} = (a^m)^u \cdot (a^n)^v = (b^m)^u \cdot (b^n)^v = b^{um+vn} = b.$$

题目 16. Determine the sign of the permutation

$$\begin{pmatrix} 1 & 2 & \cdots & n-1 & n \\ n & n-1 & \cdots & 2 & 1 \end{pmatrix}$$

解答.²⁴ The permutation σ is strictly decreasing, so

$$\operatorname{Inv}_{\sigma} \coloneqq \{(i,j) \mid 1 \leq i < j \leq n, \ \sigma(i) > \sigma(j)\} = \bigcup_{i=1}^n \{(i,j) \mid 1 \leq i < j \leq n\} \implies \sharp \operatorname{Inv}_{\sigma} = \frac{n(n-1)}{2}.$$

And hence, $sign(\sigma) = (-1)^{n(n-1)/2}$.

题目 17 . Show that if α is any permutation, then

$$\alpha(i_1 i_2 \cdots i_r) \alpha^{-1} = (\alpha(i_1) \alpha(i_2) \cdots \alpha(i_r))$$

解答.25 For $k \in [r]$ and addition in the sense of mod r:

$$\alpha(i_k) \stackrel{\alpha^{-1}}{\longmapsto} i_k \stackrel{(i_1 i_2 \cdots i_r)}{\longmapsto} i_{k+1} \stackrel{\alpha}{\longmapsto} \alpha(i_{k+1}).$$

For elements ℓ such that $\alpha(\ell) \notin \{i_k \mid k \in [r]\}$:

$$\alpha(\ell) \stackrel{\alpha^{-1}}{\longmapsto} \ell \stackrel{(i_1 i_2 \cdots i_r)}{\longmapsto} \ell \stackrel{\alpha}{\longmapsto} \alpha(\ell).$$

Above all, the equality holds.

题目 18. Show that S_n is generated by the n-1 transpositions $(12),(13),\ldots,(1n)$ and also by the n-1 transpositions $(12),(23),\ldots,(n-1n)$. 第 2 章第 10 题

解答.²⁶ We know that S_n is generated by $\{(ij) \mid 1 \leq i < j \leq n\} =: B$. Now, B is generated by $C := \{(12), (13), \ldots, (1n)\}$ since

$$(ij) = (1j)(1i)(1j).$$

Also, C is generated by $(12), (23), \ldots, (n-1 n)$, since

$$(13) = (12)(23)(12),$$

$$(14) = (13)(34)(13),$$

$$\cdots = \cdots$$

$$(1 \ n) = (1 \ n-1)(n-1 \ n)(1 \ n-1).$$

环论

第一章

题目 31. 环 L 中元素 e_L 称为一个左单位,如果对所有的 $a \in L$,

$$e_L a = a;$$

元素 e_R 称为一个右单位, 如果对所有的 $a \in L$,

$$ae_R = a$$
.

证明:

- (i) 如果 L 既有左单位又有右单位,则 L 具有单位元素。
- (ii) 如果 L 有左单位,L 无零因子,则 L 具有单位元素。
- (iii) 如果 L 有左单位,但没有右单位,则 L 至少有两个左单位。

尝试. 设左、右单位分别是 e_L, e_R , 则他们相等:

$$e_L = e_L e_R = e_R.$$

证明 L 具有右单位即可.

题目 43 . C[0,1] 为全体定义在闭区间 [0,1] 上的连续函数组成的环。证明:

- (i) 对于 C[0,1] 的任一非平凡的理想 I, 一定有一实数 θ , $0 \le \theta \le 1$, 使 $f(\theta) = 0$ 对所有的 $f(x) \in I$ 都成立;
- (ii) $f(x) \in C[0,1]$ 是一零因子当且仅当点集

$${x \in [0,1] \mid f(x) = 0}$$

包含一个开区间。

解答.²⁸ 反证, 假若结论不成立, 则对每个点 $\theta \in [0,1]$ 有 $f_{\theta} \in I$ 使得 $f_{\theta}(\theta) \neq 0$. 由连续性, $f_{\theta}|_{U_{\theta}} \neq 0$ 对某个开集 $U_{\theta} \ni \theta$ 成立. 利用 [0,1] 的紧致性, 找出有限个 U_{1}, \ldots, U_{m} 覆盖 [0,1] 和相应区间上非零的 f_{1}, \ldots, f_{m} . 则 $f \coloneqq \sum_{i=1}^{m} f_{i}^{2} \in I$ 且 f 可逆, 因为 f > 0. 现在, I = C[0,1], 矛盾.

充分性: 容易构造一个非零函数, 在 $f^{-1}\{0\}$ 上非零而在 $[0,1]\setminus f^{-1}\{0\}$ 上恒为 0. 于是 f 是零因子. 必要性: 反证法, 若 $f^{-1}\{0\}$ 不含任何开区间, 且存在 $g\in C[0,1], g\cdot f=0$ 则 $[0,1]\setminus g^{-1}\{0\}\subseteq f^{-1}\{0\}$ 是一个开集, 故而 $=\varnothing$, 即 g=0.

题目 44. 令 $F = \mathbb{Z}/p\mathbb{Z}$ 为 p 个元素的域。求

- (i) 环 $M_n(F)$ 的元素的个数;
- (ii) 群 $GL_n(F)$ 的元素的个数。

解答.29 作为 F-线性空间, $M_n(F) \cong F^{n \times n}$, 所以 $|M_n(F)| = |F^{n^2}| = p^{n^2}$.

矩阵 $A \in GL_n(F)$ 当且仅当其列向量是线性无关组. 分步计数: 第一列列向量, 可以选择的非零向量有 p^n-1 个; 第二列的选择范围剔除第一列生成的子空间, 即 p^n-p 种; 第三列的选择范围, 剔除前两个列向量生成的子空间, 即 p^n-p^2 种; 类似继续... 结论即

$$|GL_n(F)| = (p^n - 1)(p^n - p) \cdots (p^n - p^{n-1}).$$

第三章

题目 5. 设 F 为一个特征 p 的域, p 为素数, 证明

$$(a+b)^p = a^p + b^p$$
, 对所有的 $a, b \in F$.

域的特征概念可以推广到幺环上去。如果幺环 R 的单位元素 e 生成的加法群 $G = \{ne \mid n \in \mathbb{Z}\}$ 是一个无限群,则 R 叫做特征 0 的环;若 G 是一个有限群,令 k = |G|,则 k 叫做环 R 的特征。证明:若 R 为整环,则 R 的特征为 0 或为一个素数,而且若 R 的特征为素数 p,则上面等式对 R 也成立。

解答.³⁰ 对特征 p 的域 F, 按照二项式定理, 只需证明 $p \mid \binom{p}{j}$, $\forall j \in [p-1]$. 这当然成立: 只有分子出现了 p, 分母没有出现.

下证明整环有特征 0 或者素数 (等式的成立性证明一样). 设 G 是有限群, 且设 k 为特征, 则 $k\mathbf{1} = 0$. 若 k = mn, $m, n \in \mathbb{Z}_{\geq 1}$, 注意 $k\mathbf{1} = m\mathbf{1} \cdot n\mathbf{1} = 0$, 所以 $m\mathbf{1} = 0$ 或者 $n\mathbf{1} = 0$. 特征的定义保证 m = k 或者 n = k. 综上所述, k 是素数.

更多习题

题目 19. Determine the ideals and the maximal ideals and prime ideals of $\mathbb{Z}/(60)$.

解答.³¹ In a PID (especially, $\mathbb{Z}/(60)$), maximal ideals are the same as prime ideals. There is a natural projection $\mathbb{Z} \to \mathbb{Z}/(60)$. Thus we have a correspondence:

$$\{ \text{Ideals } I_2 \subseteq \mathbb{Z}/(60) \} \stackrel{1:1}{\longleftrightarrow} \{ \text{Ideals } I_1 \subseteq \mathbb{Z} : I_1 \supseteq \ker[\mathbb{Z} \twoheadrightarrow \mathbb{Z}/(60)] \}.$$

The maximal ideals are those ideals generated by $\overline{2}, \overline{3}, \overline{5}$ as Figure 1.

图 1: Ideals of $\mathbb{Z}/60\mathbb{Z}$

题目 20 . Let G be an abelian group with a finite set of generators which is periodic in the sense that all of its elements have finite order. Show that G is finite.

解答.32 Let $\{g_1,\ldots,g_m\}$ be a periodic set of generators. Then it suffices to show that

$$g_1^{k_1}g_2^{k_2}\cdots g_m^{k_m}, \quad k_i \in \mathbb{Z}$$

have only finitely many results, since G is Abelian. By periodicity, we can restrict $|k_i| \leq k$ for some $k \in \mathbb{Z}$ and then we have $|G| \leq k^m$.

题目 24. Verify that for $a, b \in \mathbb{R}$, the mapping

$$a + b\sqrt{-1} \mapsto \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

is an isomorphism of \mathbb{C} with a subring of $M_2(\mathbb{R})$.

解答.33 Denote the mapping by φ , then it is additive. For multiplication,

$$\begin{split} \varphi((a+b\sqrt{-1})(c+d\sqrt{-1})) &= \varphi(ac-bd+(ad+bc)\sqrt{-1}) \\ &= \begin{pmatrix} ac-bd & ad+bc \\ ad+bc & ac-bd \end{pmatrix} = \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} c & d \\ -d & c \end{pmatrix} \\ &= \varphi(a+b\sqrt{-1})\varphi(c+d\sqrt{-1}). \end{split}$$

Thus, $\varphi \colon \mathbb{C} \to \varphi(\mathbb{C})$ is an isomorphism, where $\varphi(\mathbb{C}) = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} : a,b \in \mathbb{R} \right\}$ is a subring of $M_2(\mathbb{R})$.