Elective II: VLSI Design

Code: CISM 402 Pritha Banerjee

Courtsey for slides: Debasis Mitra, NIT Durgapur

1

Detailed Routing

- Books:
 - Chapter 7 of Naveed A. Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Academic Publishers

Detailed Routing

- Global routing: wire paths are constructed through a subset of routing regions connecting terminals of each net
- The routing regions are divided into channels and switchboxes
- So only need to consider the *channel routing problem* and the *switchbox routing problem*

3

Detailed Routing

Channels and Switchboxes

- There are normally two kinds of rectilinear regions.
 - Channels: routing regions having two parallel rows of fixed terminals.
 - Switchboxes: generalizations of channels that allow fixed terminals on all four sides of the region.

Channel Routing

- For Standard-cell and Full-custom design, channels are expandable
- The goal is to route all nets using the minimum channel width
- Incremental method: route one region at a time
- Ordering of routing region is important
- Slicing floorplan: route channel 1, 2, and 3, no rerouting required; non-slicing: 1,2, 3, 4; 1 may have to be re-routed

5

Channel routing for different design styles

- For Gate-array design, channel widths are fixed. The goal is to finish routing of all the nets.
- For Standard-cell and Full-custom design, channels are expandable. The goal is to route all nets using the minimum channel height
- We will consider the case when the channels are expandable.

Channel Ordering

The width of A is not known until A is routed, we must route A first.

What should be the routing order for this example?

7

Channel Ordering

No feasible channel order!

Need to use switchbox

- 1. Fix the terminals between A & B
- 2. Route B, C, then D (channel)
- 3. Route A (switchbox)

Routing Considerations

Number of terminals

- Majority of nets are two-terminal ones.
- For some nets like clock and power, number of terminals can be very large.
- Each multi-terminal net can be decomposed into several two-terminal nets.

· Net width

- Power and ground nets have greater width.
- Signal nets have less width.

Contd.

· Via restrictions

- Regular: only between adjacent layers.
- Stacked: passing through more than two layers.

Boundary type

- Regular: straight border of routing region
- Irregular

Number of layers

 Modern fabrication technology allows at least five layers of routing.

Net types

- Critical: power, ground, clock nets
- Non-critical: signal nets

Terminologies

- A channel is a routing region bounded by two parallel rows of terminals
 - Without loss of generality, it is assumed that the two rows are horizontal
 - The top and bottom rows are called top boundary and bottom boundary respectively
- The horizontal and vertical dimension of a channel is called channel length and channel height respectively
- The horizontal segment of a net is called a trunk
- The vertical segment of a net that connect the trunk to the terminals are called its *branches*
- The horizontal line along which a trunk is placed is called a track
- A dogleg is a vertical segment that is used to maintain the connectivity of the two trunks of a net on two different tracks

Terminologies

Terminologies

- Routing region consists of one or more layers
- Single –layer routing problem is NP-complete
- Multi-layer routing regions: wires can switch adjacent layers at certain location using vias (electrical connection)
- Multi-layer routing problem is NP-complete
- Restricted layer/ reserved layer model: layers are restricted to one type of wire segment (vertical or horizontal)
- Unreserved layer: No restrictions

13

Modeling of Routing Layers 1 layer VH model 2 layers VHV model HVH model Layer 1 Layer 2 Layer 3 Via 3 layers

Routing Models

- Grid based Model
 - Huge space requirement
 - Wires follow paths along the grid lines
 - Horizontal grid line : track
 - Vertical grid line: column
- Grid less Model

15

Routing Models

Channel Routing problem

• Input:

- Two vectors of the same length to represent the pins on two sides of the channel
 - Each terminal (pin) is assigned a number which represents the net to which that terminals belongs to
 - Terminals numbered zero (vacant terminals) does not belong to any net and therefore requires no electrical connection
- Number of layers and layer model used

• Output:

- Connect pins of the same net together
- Minimize the channel width
- Minimize the number of vias

17

Channel Routing problem

Input:

- Channel length, terminal list, connection list
- Number of layers and layer model used

• Output:

- Connect pins of the same net together
- Minimize the channel width
- Minimize the number of vias

Problem Formulation

- The channel is defined by a rectangular region with two rows of terminals along its top and bottom sides.
 - Each terminal is assigned a number between 0 and N.
 - Terminals having the same label i belong to the same net i.
 - A '0' indicates no connection.
- The netlist is usually represented by two vectors TOP and BOT.
 - TOP(k) and BOT(k) represents the labels on the grid points on the top and bottom sides of the channel in column k, respectively.

Contd.

- The task of the channel router is to:
 - Assign horizontal segments of nets to tracks.
 - Assign vertical segments to connect
 - Horizontal segments of the same net in different tracks.
 - The terminals of the net to horizontal segments of the net.
- Channel height should be minimized.
- Horizontal and vertical constraints must not be violated.

Horizontal Constraints

 There is a horizontal constraint between two nets if the trunks of these two nets overlaps when placed on the same track

21

Horizontal Constraints

Horizontal Constraint Graph:

A undirected graph $G_h = (V, E_h)$, where $V = \{ v_i \mid v_i \text{ represents interval } I_i \text{ corresponding to net } N_i \}$ $E_h = \{ (v_i, v_i) \mid I_i \text{ and } I_i \text{ have non-empty intersection} \}$

For a net N_i , the interval spanned by the net (denoted by I_i) is defined by (I_i, r_i) where I_i , r_i are the left most and right most terminals of the net N_i respectively

Horizontal Constraints

Horizontal Constraint Graph:

A undirected graph $G_h = (V, E_h)$, where $V = \{ v_i \mid v_i \text{ represents interval } I_i \text{ corresponding to net } N_i \}$ $E_h = \{ (v_i, v_i) \mid I_i \text{ and } I_i \text{ have non-empty intersection} \}$

Horizontal constraint graph

23

Horizontal Constraints

Horizontal Constraint Graph:

A undirected graph $G_h = (V, E_h)$, where $V = \{ v_i \mid v_i \text{ represents interval } I_i \text{ corresponding to net } N_i \}$ $E_h = \{ (v_i, v_i) \mid I_i \text{ and } I_i \text{ have non-empty intersection} \}$

Usage:

- HCG plays a major role in determining the channel height
- In a grid based two-layer model, no two nets which have a horizontal constraint may be assigned to the same track
 - The maximum clique in HCG forms the lower bound for channel height: channel density
- In the two-layer gridless model, the summation of widths of nets involved in the maximum clique determine the lower bound

There is a vertical constraint between two nets N_i and N_j if there exists a column such that the top terminal of the column belongs to N_i and the bottom terminal belongs to N_j and i ≠ j

25

Vertical Constraints

Vertical Constraint Graph:

```
A directed graph G_v = (V, E_v), where V = \{ v_i | v_i \text{ represents net } N_i \} E_v = \{ (v_i, v_i) | N_i \text{ has a vertical constraint with } N_i \}
```

Vertical Constraint Graph:

A directed graph $G_h = (V, E_v)$, where $V = \{ v_i | v_i \text{ represents net } N_i \}$ $E_v = \{ (v_i, v_i) | N_i \text{ has a vertical constraint with } N_i \}$

Vertical constraint graph

Vertical Constraints

Vertical Constraint Graph:

A directed graph $G_h = (V, E_v)$, where

 $V = \{ v_i \mid v_i \text{ represents net } N_i \}$

 $E_v = \{ (v_i, v_j) | N_i \text{ has a vertical constraint with } N_j \}$

Note: A vertical constraint implies a horizontal constraint, but the converse is not true

Vertical constraint graph

Vertical Constraint Graph:

A directed graph $G_h = (V, E_v)$, where $V = \{ v_i | v_i \text{ represents net } N_i \}$ $E_v = \{ (v_i, v_i) | N_i \text{ has a vertical constraint with } N_i \}$

Usage:

- VCG also helps in determining the channel height
- In a grid based two-layer model, no two nets in a directed path in the VCG may be assigned to the same track
 - If doglegs are not allowed, then the length of the longest path in VCG forms a lower bound for channel height: channel density
- In the two-layer gridless model, the summation of widths of nets involved in the longest path of VCG determine the lower bound

29

Vertical Constraints

Vertical constraint cycle and Dogleg:

 If VCG is not acyclic then some nets must be doglegged to break the cycle

Vertical constraint cycle and Dogleg:

 If VCG is not acyclic then some nets must be doglegged to break the cycle

31

Combined Constraint Graph

A mixed graph $G_m = (V, E_m)$, where $V = \{ v_i \mid v_i \text{ represents net } N_i \}$ $E_m = \{ E_h \cup E_v \}$

Lower bound for channel width = maximum (The maximum clique in HCG, The longest path in VCG)

Two-layer Channel Routing

- Left-Edge Algorithms (LEA)
 - Basic Left-Edge Algorithm
 - Left-Edge Algorithm with Vertical Constraints
 - Dogleg Router
- · Constraint-Graph Based Algorithm
 - Net Merge Channel Router
 - Gridless Channel Router
- · Greedy Channel Router
- Hierarchical Channel Router

Left-Edge Algorithm

"Wire Routing by Optimizing Channel Assignment within Large Apertures", A. Hashimoto and J. Stevens, DAC 1971, pages 155-169.

- Assumptions:
 - 2-layers routing
 - One horizontal routing layer
 - No doglegs, no vertical constraint
 - Two terminal nets
- Always gives a solution with channel width equal to channel density, i.e., optimal solution.

Left-Edge Algorithm: Ignore VC

• Idea:

- Sorts the horizontal segments of the nets in increasing order of their left end points
- Place them one by one greedily starting from the bottommost (or topmost) available track
 - Scans through the tracks from bottom to top (or top to bottom), and assigns the net to the first track that can accommodate the net

[A net cannot be placed on a track if it has a horizontal constraint with any one of the already placed net at that track]

Time complexity : O(n log n), n : number of intervals

35

Left-Edge Algorithm: Ignore VC

• Illustration:

37

Left-Edge Algorithm: Extension

• Illustration:

• Illustration:

No edge incident on 6

39

Left-Edge Algorithm

• Illustration:

No edge incident on 1

• Illustration:

Left-Edge Algorithm

• Illustration:

42

41

• Illustration:

incident on 4

43

Left-Edge Algorithm

• Illustration:

No edge incident on 2

• Illustration:

45

Vertical constraint consideration

- The Left-edge algorithm ignores vertical constraints.
- When there is only one vertical layer, the algorithm will produce overlapping of vertical wire segments.

If vertical constraint exists

Extension to Left-Edge Algorithm

- Vertical constraints may exist, but there are no directed cycles in the VCG.
- Select a net for routing if
 - · The x-coordinate of the leftmost terminal is the least.
 - There is no edge incident on the vertex corresponding to that net in the VCG.
- After routing a net, the corresponding vertex and the incident edges are deleted from the VCG.
- Other considerations same as the basic left-edge algorithm.

47

Left-Edge Algorithm

Note:

Given a two-layer channel routing problem with no vertical constraints, if doglegs are not allowed, LEA produces a routing solution with minimum number of tracks

Lower bound on channel width

Length of the longest path in the vertical constraint graph

Lower bound on channel width: max{ max clique in HCG (channel density), longest path in VCG}

Constrained LEA

- Consider vertical constraints.
- Similar to the Left-edge algorithm.
- Modifications: Place a horizontal segment only if it does not have any unplaced descendants in the vertical constraint graph G_v . Place it on the bottommost available track above all its descendents in G_v .

Constrained LEA: Example

Vertical constraint graph

1. Sort the left end points.

2. Place nets greedily.

Drawback of constrained LEA

Vertical 10 3 constraint graph

By Constrained Leftedge algorithm

There is a better solution...

Drawback of constrained LEA

The Constrained Left-edge algorithm does not take care of the vertical and horizontal constraints together optimally.

Cycles in VCG: Dogleg Router

• If there is cycle in the vertical constraint graph, the channel is not routable.

• Dogleg can solve the problem.

Reduce Channel height: Dogleg Router

- Since doglegs are not allowed, LEA places an entire net on a single track
- Doglegs can be used to reduce the channel width

55

Reduce channel height: Dogleg Router

- Since doglegs are not allowed, LEA places an entire net on a single track
- Doglegs can be used to reduce the channel width

Reduce channel height: Dogleg Router

- Since doglegs are not allowed, LEA places an entire net on a single track
- Doglegs can be used to reduce the channel width

LEA (Without dogleg) 3 tracks

57

Reduce channel height: Dogleg Router

- Since doglegs are not allowed, LEA places an entire net on a single track
- Doglegs can be used to reduce the channel width

- D. N. Deutsch, "A Dogleg Channel Router", DAC 1976, pages 425-433
- Allows multi-terminal nets and vertical constraints
- Long multi-terminal nets (e.g., power, clock) can be broken into a series of 2-terminal subnets and each subnet can be routed on a different track using doglegs
- Cyclic vertical constraint can not be handled

59

Dogleg Router: Algorithm

- Step 1:
 - If cycle exists in the VCG, return with failure.
- Step 2:
 - Split each multi-terminal net into a sequence of 2-terminal nets.
 - A net 2 .. 2 .. 2 will get broken as 2a .. 2a 2b .. 2b.
 - HCG and VCG gets modified accordingly.
- Step 3:
 - Apply the extended left-edge algorithm to the modified problem.

61

Dogleg Router

Dogleg Router

65

Net Merge Channel Router

Source:

"Efficient Algorithms for Channel Routing"

by T. Yoshimura and E. Kuh

IEEE Trans. On Computer-Aided Design of Integrated Circuits and Systems.

Vol. CAD-1, pp25-35, Jan 1982

- Nets are partitioned into different zones based on horizontal segments of different nets and their constraints
- Proceeds from left to right of the channel and merges nets from adjacent zones
- Does not allow doglegs and cannot handle vertical constraint cycles

67

Net Merge Channel Router

- Due to Yoshimura and Kuh.
- · Basic idea:
 - If there is a path of length p in the VCG, at least p horizontal tracks are required to route the channel.
 - Try to minimize the longest path in the VCG.
 - Merge nodes of VCG to achieve this goal.
- · Does not allow doglegs or cycles in the VCG.
- · How does it work?
 - Partition the routing channel into a number of regions called "zones".
 - Nets from adjacent zones are merged.
 - Merged nets are treated as a "composite net" and assigned to a single track.

Contd.

- Key steps of the algorithm:
 - a) Zone representation
 - b) Net merging
 - c) Track assignment
- An example:

69

Yoshimara and Kuh's Method

Step 1: Zone Representation

- Let S(i) denote the set of nets whose horizontal segments intersect column i.
- Take only those S(i) which are maximal, that is, not a proper subset of some other S(j).
- · Define a zone for each of the maximal sets.
- In terms of HCG / interval graph, a zone corresponds to a maximal clique in the graph.

Scan columnwise, add nets in the current zone whose horizontal segments intersect current column

Zone:

A new zone appears when some intervals begin after some intervals end

73

Yoshimara and Kuh's Method

1 2 3 4 5 6 7 8 9 10 11 12 Cols:

Scan columnwise, add nets in the current zone whose horizontal segments intersect current column

	2	1 2 3	1 2 3 4 5	1 2 3 4 5	1 2 4 5	2 4 6	4 6 7	4 7 8	4 7 8 9	7 8 9	7 9 10	9	
Zone:			1			2	3		4			5	

Components of a zone is either superset or subset of the set so far constructed

A new zone appears when some intervals begin after some intervals end

A new zone appears when some intervals begin after some intervals end

75

Yoshimara and Kuh's Method

- Merges nets as long as two nets from different zones can be merged
- In each iteration, the nets ending in zone z_i are appended to the list Left and the nets starting in Z_{i+1} are kept in list Right
- Nets in Left and Right are merged so as to minimize the increase in the longest path length in VCG
 - Make sure VCG remains acyclic

•6

Zone: 3 1 \ \ 2 5 4 1 -8 9 10

> Left = $\{1, 3, 5\}$ Right = $\{6\}$

> > 77

Yoshimara and Kuh's Method

Zone:

5 •

Left = $\{1, 3, 5\}$ Right = $\{6\}$

{1,6}, {3,6} or {5,6} ?

Zone:

3

5

Left =
$$\{1, 3, 5\}$$

Right = $\{6\}$

Length of the longest path: 4

VCG

79

10

Yoshimara and Kuh's Method

Zone:

3

5

Left =
$$\{1, 3, 5\}$$

Right = $\{6\}$

Length of the longest path: 3

4

•6

Zone:

5 •

Left = $\{1, 3, 5\}$ Right = $\{6\}$

Length of the longest path: 3

10

VCG

81

Yoshimara and Kuh's Method

Zone:

4

5

Left = $\{1, 3, 5\}$

Right =
$$\{6\}$$

1 4 7 5,6 9 2 3 8

Hence, either 3,6 or 5,6 can be merged

Let us merge 5 and 6

Zone:

1

2 | 3 4

5

Left = $\{1, 2, 3\}$

Right = $\{7\}$

VCG

83

Yoshimara and Kuh's Method

Zone:

3 2

4

5

Left = $\{1, 2, 3\}$

Right = $\{7\}$

Yoshimara and Kuh's Method

VCG

85

Yoshimara and Kuh's Method

Yoshimara and Kuh's Method

