Machine Learning

VC-Dimension

Fabio Vandin

December 15th, 2023

Restrictions

Definition (Restriction of \mathcal{H} to \mathcal{C})

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, \dots, c_m\} \subset \mathcal{X}$. The restriction \mathcal{H}_C of \mathcal{H} to C is:

$$\mathcal{H}_C = \{ [h(c_1), \ldots, h(c_m)] : h \in \mathcal{H} \}$$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

Note: \mathcal{H}_C is the set of functions from C to $\{0,1\}$ that can be derived from \mathcal{H} .

VC-dimension and Shattering

Definition (Shattering)

Given $C \subset X$, \mathcal{H} shatters C if \mathcal{H}_C contains all $2^{|C|}$ functions from C to $\{0,1\}$.

Hest viction of \mathcal{H} to Cif $|C| = m : 2^{|C|} = 2^m$

VC-dimension and Shattering

Definition (Shattering)

Given $C \subset \mathcal{X}$, \mathcal{H} shatters C if \mathcal{H}_C contains all $2^{|C|}$ functions from C to $\{0,1\}$.

Definition (VC-dimension)

The VC-dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} , is the maximal size of a set $\mathcal{C} \subset \mathcal{X}$ that can be shattered by \mathcal{H} .

Notes:

- VC = Vapnik-Chervonenkis, that introduced it in 1971
- if \mathcal{H} can shatter sets of arbitrarily large size then we say that $VCdim(\mathcal{H}) = +\infty$; $VCdim(\pi) = +\infty,$ • if $|\mathcal{H}| < +\infty \Rightarrow VCdim(\mathcal{H}) \leq \log_2 |\mathcal{H}|$
 W: Prove

VC-dimension and Shattering

Definition (Shattering)

Given $C \subset \mathcal{X}$, \mathcal{H} shatters C if \mathcal{H}_C contains all $2^{|C|}$ functions from C to $\{0,1\}$.

Definition (VC-dimension)

The VC-dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} , is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} .

Notes:

- VC = Vapnik-Chervonenkis, that introduced it in 1971
- if \mathcal{H} can shatter sets of arbitrarily large size then we say that $VCdim(\mathcal{H}) = +\infty$;
- if $|\mathcal{H}| < +\infty \Rightarrow VCdim(\mathcal{H}) \leq \log_2 |\mathcal{H}|$

Intuition: the VC-dimension measures the *complexity* of \mathcal{H} (\approx how large a dataset that is perfectly classified using the functions in \mathcal{H} can be)

Example

Note

To show that $VCdim(\mathcal{H}) = d$ we need to show that:

- **1** $VCdim(\mathcal{H}) \geq d$
- **2** $VCdim(\mathcal{H}) \leq d$

that translates to

- 1 there exists a set C of size d which is shattered by H
- 2 every set of size d+1 is not shattered by \mathcal{H}

Question: why don't we need to consider sets of size > d + 1?

Example: Threshold Functions

$$\mathcal{H} = \{h_a : a \in \mathbb{R}\}$$

where $h_a: \mathbb{R} \to \{0,1\}$ is

$$ightarrow \{0,1\}$$
 is

instance

$$h_{2}(x) = 11x < a$$

$$\{0,1\}$$
 is
$$h_a(x) = \mathbb{1}[x < a] = \begin{cases} 1 & \text{if } x < a \\ 0 & \text{if } x \ge a \end{cases}$$

$$\begin{cases} 1 & \text{if } x < \\ 0 & \text{if } x \ge \end{cases}$$

$$\Rightarrow h_{\delta_1}(c) = 0$$

Example: Threshold Functions

$$\mathcal{H} = \{h_a : a \in \mathbb{R}\}$$

where $h_a: \mathbb{R} \to \{0,1\}$ is

$$h_a(x) = \mathbb{1}[x < a] = \begin{cases} 1 & \text{if } x < a \\ 0 & \text{if } x \ge a \end{cases}$$

$$VC\text{-dimension?}$$

$$C_A \qquad C_2 \qquad C_3 \qquad C_4 \qquad C_4 \qquad C_5 \qquad C_6 \qquad C_7 \qquad C_7 \qquad C_8 \qquad C_9 \qquad C_9$$

$$\begin{array}{c|cccc}
C_3 & C_2 & (C_1 < C_2) \\
\hline
\partial_1 & O & O & \partial_4 < C_4 \\
\hline
& A & \partial_3 & O & C_1 < \partial_3 < C_2 \\
\hline
& O & A & O & O & O \\
\hline
& O & A & O & O & O & O \\
\hline
& O & A & O & O & O & O \\
\hline
& O & A & O & O & O & O \\
\hline
& O & A & O & O & O & O \\
\hline
& O & A & O & O & O & O \\
\hline
& O & A & O & O & O & O & O \\
\hline
& O & A & O & O & O & O & O \\
\hline
& O & A & O & O & O & O & O \\
\hline
& O & A & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O & O \\
\hline
& O & O & O & O & O & O & O &$$

OBTAINED

Example: Intervals

$$\mathcal{H} = \{ h_{a,b} : a, b \in \mathbb{R}, a < b \}$$

where $h_{a,b}: \mathbb{R} \to \{0,1\}$ is

$$h_{a,b}(x) = \mathbb{1}[x \in (a,b)] = \begin{cases} 1 & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$VC \dim(\mathcal{H}) \mathcal{V} \mathbf{2}$$

$$VC \dim(\mathcal{H}) \mathcal{V} \mathbf{3}$$

$$VC \dim(\mathcal{H}) \mathcal{V} \mathbf{3}$$

$$VC \dim(\mathcal{H}) \mathcal{V} \mathbf{4}$$

Example: Intervals

$$\mathcal{H} = \{ h_{a,b} : a, b \in \mathbb{R}, a < b \}$$

where $h_{a,b}: \mathbb{R} \to \{0,1\}$ is

$$h_{a,b}(x) = \mathbb{1}[x \in (a,b)] =$$

$$\begin{cases} 1 & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

1 connect be obtained with

Example: Axis Aligned Rectangles

$$\mathcal{H} = \{h_{(a_1, a_2, b_1, b_2)} : a_1, a_2, b_1, b_2 \in \mathbb{R}, a_1 \le a_2, b_1 \le b_2\}$$

$$h_{(a_1, a_2, b_1, b_2)}(x_1, x_2) = \begin{cases} 1 & \text{if } a_1 \le x_1 < a_2, b_1 \le x_2 \le b_2 \\ 0 & \text{otherwise} \end{cases}$$

$$0 & \text{if } x_1 \le x_2 \le b_2$$

$$0 & \text{otherwise}$$

$$0 & \text{if } x_2 \le b_2 \le b_2$$

Example: Axis Aligned Rectangles

$$\mathcal{H} = \{h_{(a_1,a_2,b_1,b_2)} : a_1, a_2, b_1, b_2 \in \mathbb{R}, a_1 \leq a_2, b_1 \leq b_2\}$$

$$h_{(a_1,a_2,b_1,b_2)}(x_1,x_2) = \begin{cases} 1 & \text{if } a_1 \le x_1 < a_2, b_1 \le x_2 \le b_2 \\ 0 & \text{otherwise} \end{cases}$$

VC-dimension?

Example: Convex Sets

Model set \mathcal{H} such that for $h \in \mathcal{H}$, $h : \mathbb{R}^2 \to \{0,1\}$ with

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in S \\ 0 & \text{otherwise} \end{cases}$$

where S is a convex subset of \mathbb{R}^2

Consider an arbitrary value of ne IN+
(n = size of the set to be shattered)

Consider an orbitrary labeling of C1, C2, ..., Cn:

10 1 5 the hypothesis corresponding to the convex set with vortices given by pairs (Ei, yi)

with yi=1 gives the desired labeling => It can shatter a set of a points for any arbitrarely large n >> VCdin (H) = +∞

Exercise

Consider the classification problem with $\mathcal{X} = \mathbb{R}^2$, $\mathbb{Y} = \{0,1\}$. Consider the hypothesis class $\mathcal{H} = \{h_{(\mathbf{c},a)}, \mathbf{c} \in \mathbb{R}^2, a \in \mathbb{R}\}$ with

$$h_{(\mathbf{c},a)}(\mathbf{x}) = \begin{cases} 1 & \text{if } ||\mathbf{x} - \mathbf{c}|| \le a \\ 0 & \text{otherwise} \end{cases}$$

Find the VC-dimension of \mathcal{H} .

The Fundamental Theorems of Statistical Learning

Theorem

Let $\mathcal H$ be a hypothesis class of functions from a domain $\mathcal X$ to $\{0,1\}$ and consider the 0-1 loss function. Assume that $VCdim(\mathcal H)=d<+\infty$. Then there are absolute constants C_1,C_2 such that

 H has the uniform convergence property with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\varepsilon^2} \leq m_{\mathcal{H}}^{UC}(\varepsilon, \delta) \leq C_2 \frac{d + \log(1/\delta)}{\varepsilon^2}$$

• H is agnostic PAC learnable with sample complexity

$$C_1 \frac{d + \log(1/\delta)}{\varepsilon^2} \le m_{\mathcal{H}}(\varepsilon, \delta) \le C_2 \frac{d + \log(1/\delta)}{\varepsilon^2}$$

Equivalently:

Theorem

Let \mathcal{H} be an hypothesis class with VC-dimension $VCdim(\mathcal{H}) < +\infty$. Then, with probability $\geq 1 - \delta$ (over $S \sim \mathcal{D}^m$) we have:

$$\forall h \in \mathcal{H}, L_{\mathcal{D}}(h) \leq L_{\mathcal{S}}(h) + C\sqrt{\frac{VCdim(\mathcal{H}) + \log(1/\delta)}{2m}}$$

where C is a universal constant.

Note: finding $h \in \mathcal{H}$ that minimizes the upper bound (above) to $L_{\mathcal{D}}(h) \Rightarrow \text{ERM rule}$

Theorem

Let \mathcal{H} be a class with $VCdim(\mathcal{H}) = +\infty$. Then \mathcal{H} is not PAC learnable.

Notes:

• the VC-dimension *characterizes* PAC learnable hypothesis classes

Exercise

Let

$$\mathcal{H}_d = \{ h_{\mathbf{w}}(\mathbf{x}) : h_{\mathbf{w}}(\mathbf{x}) = \operatorname{sign}(\langle \mathbf{w}, \mathbf{x} \rangle) \}$$

where $\mathcal{X} = \mathbb{R}^d$.

Prove that $VCdim(\mathcal{H}_d) = d$.

An Interesting Example...

Note: in previous examples the VC-dimension is equivalent to the number of parameters that define the model... but it is not always the case!

Function of one parameter: $f_{\theta}(x) = \sin^2\left[2^{8x} \arcsin\sqrt{\theta}\right]$

VC-dimension of $f_{\theta}(x)$ is infinite!

In fact, $f_{\theta}(x)$ can approximate any function $\mathbb{R} \to \mathbb{R}$ by changing the value of θ !

FIG. 1: A scatter plot of f_{θ} for $\theta=0.2446847266734745458227540656\cdots$ plotted at integer x values, showing that a single parameter can fit an elephant (left). The same model run with parameter $\theta=0.0024265418055000401935387620\cdots$ showing a fit of a scatter plot to Joan Miró's signature (right). Both use r=8 and require hundreds to thousands of digits of precision in θ .

["One parameter is always enough", Piantadosi, 2018]

Bibliography

[UML] Chapter 6