Risoluzione del compito n. 4 (Febbraio 2024)

PROBLEMA 1

Trovate tutte le soluzioni (z,w), con $z,w\in\mathbb{C}$, del sistema

$$\begin{cases} z^3 + (\sqrt{3} - \mathrm{i})w^2 + z = 0 \\ \bar{w} = \mathrm{i}\bar{z} \ . \end{cases}$$

Dalla seconda equazione ricaviamo $w=-{\rm i}z$, dunque $w^2=-z^2$, che sostituito nella prima ci dà l'equazione di terzo grado in z

$$z^{3} + (-\sqrt{3} + i)z^{2} + z = 0 \iff z(z^{2} + (-\sqrt{3} + i)z + 1) = 0$$
.

Se z=0 risulta w=0. Troviamo ora le radici $z_{1,2}\,$ del polinomio di secondo grado. Il suo discriminante vale

$$\Delta = (-\sqrt{3} + i)^2 - 4 = 3 - 1 - 2\sqrt{3}i - 4 = -2 - 2\sqrt{3}i = 4\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right)$$

ed è il numero complesso di modulo 4 e argomento $4\pi/3$. Le sue radici quadrate hanno modulo 2 e argomento $2\pi/3$ o $5\pi/3$, dunque valgono $\pm(-1+\sqrt{3}\,\mathrm{i})$. Dalla formula risolutiva ricaviamo

$$z_{1,2} = \frac{\sqrt{3} - \mathbf{i} \pm (-1 + \sqrt{3}\,\mathbf{i})}{2}$$

e dunque

$$z_1 = \frac{(\sqrt{3}-1)+(\sqrt{3}-1)i}{2}$$
, $z_2 = \frac{(\sqrt{3}+1)-(\sqrt{3}+1)i}{2}$.

In corrispondenza, ricaviamo

$$w_1 = -iz_1 = \frac{(\sqrt{3}-1)-(\sqrt{3}-1)i}{2}$$
, $w_2 = -iz_2 = \frac{-(\sqrt{3}+1)-(\sqrt{3}+1)i}{2}$

e dunque il sistema ha tre soluzioni: (0,0), (z_1,w_1) , (z_2,w_2) .

PROBLEMA 2

Considerate la funzione $f(x) = (x^3 + x^2 + 2x + 2) e^{-x}$.

- a) Calcolatene i limiti agli estremi del dominio ed il segno.
- b) Calcolate la derivata di f e determinatene gli intervalli di monotonia.
- c) Calcolate la derivata seconda di f e determinatene i punti di flesso e gli intervalli di convessità e/o concavità.
- d) Disegnate il grafico di f.
- e) Calcolate l'area dell'insieme $A = \{(x,y) \in \mathbb{R}^2 \mid 0 \le y \le f(x)\}$.

La funzione è definita su tutto \mathbb{R} e ha limite $-\infty$ per $x \to -\infty$, e dato che l'esponenziale domina sulle potenze ha limite zero per $x \to +\infty$. Inoltre, e^{-x} è sempre positivo, mentre il polinomio si annulla per x = -1 e si fattorizza come

$$x^3 + x^2 + 2x + 2 = x^2(x+1) + 2(x+1) = (x+1)(x^2+2)$$
,

dunque f(x) > 0 se x > -1, f(-1) = 0 e f(x) < 0 se x < -1. Calcoliamo ora

$$f'(x) = e^{-x} (3x^2 + 2x + 2 - x^3 - x^2 - 2x - 2) = e^{-x} (-x^3 + 2x^2) = e^{-x} x^2 (2 - x)$$

per cui f'(x) < 0 se x > 2, f'(x) = 0 se x = 0 o x = 2, f'(x) > 0 se x < 0 o 0 < x < 2. Poiché f è continua su \mathbb{R} , ricaviamo che f è strettamente crescente su $(-\infty,2]$ e strettamente decrescente su $[2,+\infty)$. Inoltre, risulta

$$f''(x) = \frac{d}{dx} e^{-x} (-x^3 + 2x^2) = e^{-x} (-3x^2 + 4x + x^3 - 2x^2) = e^{-x} (x^3 - 5x^2 + 4x) .$$

Dato che

$$x^{3} - 5x^{2} + 4x = x(x^{2} - 5x + 4) = x(x - 1)(x - 4)$$

ricaviamo che f''(x)<0 se $x\in (-\infty,0[\cup]1,4[\;,\;f''(x)=0$ se $x\in \{0,1,4\}$ e f''(x)>0 se $x\in]0,1[\cup]4,+\infty)$. Quindi f ha tre punti di flesso in corrispondenza dei punti di ascissa 0, 1 o 4, mentre f è strettamente concava su $(-\infty,0]$ e su [1,4] ed è strettamente convessa su [0,1] e su $[4,+\infty)$. Infine, da quanto visto l'area di A è uguale all' integrale generalizzato $\int_{-1}^{+\infty}f(x)\,dx$. Per calcolare una primitiva F(x) di f(x),

possiamo integrare (tre volte) per parti. Ma da questo procedimento ricaveremmo che una primitiva è della forma

$$F(x) = (ax^3 + bx^2 + cx + d) e^{-x}, \quad a, b, c, d \in \mathbb{R},$$

per cui è più pratico procedere a rovescio: derivando, risulta

$$F'(x) = (-ax^3 + (3a - b)x^2 + (2b - c)x + (c - d)) e^{-x}.$$

Imponendo che F'(x) = f(x), e semplificando il fattore positivo e^{-x} , risulta

$$-ax^{3} + (3a - b)x^{2} + (2b - c)x + (c - d) = x^{3} + x^{2} + 2x + 2 \iff \begin{cases} -a = 1\\ 3a - b = 1\\ 2b - c = 2\\ c - d = 2 \end{cases}$$

per il principio di identità dei polinomi, da cui segue a cascata che a=-1, b=-4, c=-10, d=-12, dunque $F(x)=(-x^3-4x^2-10x-12)$ e $^{-x}$. In conclusione, risulta

$$\operatorname{area}(A) = \int_{-1}^{+\infty} f(x) \, dx = \left[F(x) \right]_{-1}^{+\infty} = -F(-1) = (-1 + 4 - 10 + 12) \, \mathbf{e} = 5 \, \mathbf{e} \, .$$

PROBLEMA 3

In questo esercizio tutti i coefficienti vanno ridotti ai minimi termini. Considerate le funzioni $f(x) = \sin\left(x + \frac{x^2}{2}\right)$ e $g(x) = \cos x \, \log(1 - x)$.

a) Scrivete lo sviluppo di Taylor di ordine 5 e centrato in $x_0 = 0$ di f(x).

- Scrivete lo sviluppo di Taylor di ordine 5 e centrato in $x_0 = 0$ di g(x). b)
- Trovate l'ordine e la parte principale di infinitesimo, per $x \to 0$, della funzione f(x) + g(x).
- Calcolate al variare di $\alpha \in \mathbb{R}$ il limite $\lim_{x \to 0} \frac{f(x) + g(x) + \alpha(x^4 + x^5)}{x^4 + x^5}$.

Dallo sviluppo al quinto ordine di sen t, con $t = (x + x^2/2)$, ricaviamo

$$sen\left(x + \frac{x^2}{2}\right) = \left(x + \frac{x^2}{2}\right) - \frac{1}{3!}\left(x + \frac{x^2}{2}\right)^3 + \frac{1}{5!}\left(x + \frac{x^2}{2}\right)^5 + o\left(\left(x + \frac{x^2}{2}\right)^5\right)$$

$$= x + \frac{x^2}{2} - \frac{1}{6}\left(x^3 + \frac{3x^4}{2} + \frac{3x^5}{4}\right) + \frac{1}{120}x^5 + o(x^5)$$

$$= x + \frac{x^2}{2} - \frac{x^3}{6} - \frac{x^4}{4} - \frac{7x^5}{60} + o(x^5).$$

Dato poi che $\log(1-x) = -(x+x^2/2+x^3/3+x^4/4+x^5/5) + o(x^5)$, scriviamo

$$\cos x \, \log(1-x) = \left(1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)\right) (-1) \left(x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} + o(x^5)\right)$$

$$= -\left(x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^3}{2} - \frac{x^4}{4} - \frac{x^5}{6} + \frac{x^5}{24} + o(x^5)\right)$$

$$= -x - \frac{x^2}{2} + \frac{x^3}{6} - \frac{3x^5}{40} + o(x^5).$$

Quindi

$$f(x) + g(x) = -\frac{x^4}{4} + o(x^4)$$

è un infinitesimo di ordine 4 con parte principale $-x^4/4$. Infine, dato che $x^4+x^5=$ $x^4 + o(x^4)$, mentre $f(x) + g(x) + \alpha(x^4 + x^5) = (\alpha - 1/4)x^4 + o(x^4)$, risulta

$$\lim_{x \to 0} \frac{f(x) + g(x) + \alpha(x^4 + x^5)}{x^4 + x^5} = \lim_{x \to 0} \frac{(\alpha - 1/4)x^4 + o(x^4)}{x^4 + o(x^4)} = \alpha - \frac{1}{4} , \quad \forall \alpha \in \mathbb{R} .$$

PROBLEMA 4

Motivando la risposta, calcolate al variare dell'esponente $\beta \in \mathbb{R}$ il limite

$$\ell_{eta} = \lim_{x o 0^+} rac{\int_0^x t^4 (\operatorname{e}^{t^2} - 1) \, dt}{x^{eta}} \ .$$

Posto poi $a_n=\int_0^{1/n}t^4(\operatorname{e}^{t^2}-1)\,dt\,,$ determinate al variare di $\gamma\in\mathbb{R}$ il carattere della serie $\sum_n n^\gamma a_n\,.$

La funzione $f(t) = t^4(e^{t^2} - 1)$ è continua su \mathbb{R} , dunque la funzione integrale

$$F(x) := \int_0^x t^4 (e^{t^2} - 1) dt$$

vale zero in x=0 e per il teorema fondamentale del calcolo è derivabile su $\mathbb R$ con derivata $F'(x)=x^4$ (${\rm e}^{x^2}-1$). Quindi se $\beta \leq 0$ il limite richiesto vale zero. Consideriamo ora il caso $\beta>0$: il limite presenta una forma indeterminata 0/0 e sono verificate le ipotesi del primo teorema di de l'Hôpital in quanto $Dx^\beta=\beta x^{\beta-1}>0$ per ogni x>0, dove

$$\lim_{x \to 0^+} \frac{F'(x)}{\beta x^{\beta - 1}} = \lim_{x \to 0^+} \frac{x^4 (e^{x^2} - 1)}{\beta x^{\beta - 1}} = \lim_{x \to 0^+} \frac{e^{x^2} - 1}{\beta x^{\beta - 5}} = \lim_{x \to 0^+} \frac{x^2 + o(x^2)}{\beta x^{\beta - 5}}$$

$$= \lim_{x \to 0^+} \frac{1 + o(x^2)/x^2}{\beta x^{\beta - 7}} = \begin{cases} 0 & \text{se } \beta < 7 \\ 1/7 & \text{se } \beta = 7 \\ +\infty & \text{se } \beta > 7 \end{cases}.$$

Quindi risulta $\ell_{\beta}=+\infty$ se $\beta>7$, $\ell_{7}=1/7$, $\ell_{\beta}=0$ se $\beta<7$. Da quanto sopra deduciamo che $F(x)\sim x^{7}$ per $x\to 0^{+}$, dunque $a_{n}=F(1/n)\sim n^{-7}$ e $n^{\gamma}a_{n}\sim n^{\gamma-7}=1/n^{7-\gamma}$. Ma allora per il criterio del confronto asintotico concludiamo che la serie converge se $\gamma<6$ e diverge positivamente se $\gamma\geq 6$.

Esercizio 1. Sia S l'insieme delle soluzioni della disequazione $\frac{1-2x}{2x^2+x-1} \le 1+6x$. Allora:

(A)
$$S \cap]-2/3,-1/2[=\emptyset$$
.

(C)
$$[-1, -2/3] \subset S$$

(B)
$$[0,1] \subset S$$
.

Risolvendo l'equazione $2x^2 + x - 1 = 0$ otteniamo che la funzione razionale a primo membro esiste per $x \in \mathbb{R} \setminus \{-1, 1/2\}$, ma anche la fattorizzazione $2x^2 + x - 1 =$ (x+1)(2x-1) del denominatore. Quindi, per $x \neq -1$ e $x \neq 1/2$, la disequazione è equivalente a

$$\frac{-(2x-1)}{(x+1)(2x-1)} \le 1 + 6x \iff \frac{-1}{(x+1)} \le 1 + 6x \iff \frac{6x^2 + 7x + 2}{x+1} \ge 0.$$

Dato poi che $6x^2 + 7x + 2 = (2x + 1)(3x + 2)$, e ricordando che $x \neq 1/2$, per la regola dei segni risulta

$$S =]-1, -2/3] \cup [-1/2, 1/2[\cup]1/2, +\infty)$$

e dunque $S \cap]-2/3,-1/2[=\emptyset$, mentre S non è limitato superiormente ed entrambe le inclusioni $[0,1] \subset S$ e $[-1,-2/3] \subset S$ sono false. Se non si vede la semplificazione, si perviene alla disequazione equivalente

$$\frac{12x^3 + 8x^2 - 3x - 2}{2x^2 + x - 1} \ge 0$$

da cui occorre trovare per tentativi una delle radici del polinomio di terzo grado a numeratore, che sono $\pm 1/2$ e -2/3, e riscrivere la disequazione come

$$\frac{(2x-1)(2x+1)(3x+2)}{(x+1)(2x-1)} \ge 0 \iff \frac{(2x+1)(3x+2)}{x+1} \ge 0 \ \mathbf{e} \ x \ne \frac{1}{2} \ .$$

Esercizio 2. La retta tangente il grafico della funzione $f(x) = \log_e x$ in corrispondenza del punto $(e^{-2}, f(e^{-2}))$ ha equazione:

(A)
$$y + 3 = e^2 x$$
.

(C)
$$y = e^{2x} - 3$$

(B)
$$y = e^2 x - 1$$
.

(C)
$$y = e^{2x} - 3$$
.
(D) $y = -2 + e^{-2}(x - e^{-2})$.

Abbiamo $f(e^{-2}) = \log(e^{-2}) = -2$, mentre dalla derivata $D \log x = 1/x$ segue che $f'(e^{-2}) = e^2$. Quindi, dalla formula $y = f(x_0) + f'(x_0)(x - x_0)$, con $x_0 = e^{-2}$ otteniamo

$$y = -2 + e^2(x - e^{-2}) \iff y = -2 + e^2x - 1 \iff y + 3 = e^2x$$
.

Esercizio 3. La successione $(2+3n)\log_{e}\left(\frac{n+5}{n}\right)$ ha limite

(C)
$$+\infty$$
.

Per il limite fondamentale del logaritmo risulta

$$\log\left(\frac{n+5}{n}\right) = \log\left(1 + \frac{5}{n}\right) \sim \frac{5}{n} \,,$$

dunque scriviamo

$$(2+3n)\log_{e}\left(\frac{n+5}{n}\right) = \frac{2+3n}{n} \cdot n\log_{e}\left(\frac{n+5}{n}\right) \to 3\cdot 5 = 15.$$

Esercizio 4. Dato $\alpha \in \mathbb{R}$, l'integrale generalizzato $\int_{1}^{+\infty} \frac{1}{\sqrt{x^{\alpha} + x^{4} - x^{2}}} dx$

(A) converge se $\alpha > 3$.

- (B) converge se e solo se $\alpha > 2$.
- (C) vale $\sqrt{2} 1$ se $\alpha = 4$. (D) non esiste per qualche valore di α .

Ricordando che $(a-b)^{-1}=(a+b)/(a^2-b^2)$ se $a+b\neq 0$ e $a-b\neq 0$, con $a=\sqrt{x^\alpha+x^4}$ e $b = x^2$ possiamo scrivere per ogni $x \ge 1$

$$f(x) := \frac{1}{\sqrt{x^{\alpha} + x^4} - x^2} = \frac{\sqrt{x^{\alpha} + x^4} + x^2}{(x^{\alpha} + x^4) - x^4} = \frac{\sqrt{x^{\alpha} + x^4} + x^2}{x^{\alpha}}.$$

Poiché dunque la funzione f è continua e positiva su $[1, +\infty)$, l'integrale (generalizzato) o converge o diverge positivamente. Inoltre, la velocità del numeratore dipende da α . Se $\alpha > 4$, per $x \to +\infty$ risulta

$$f(x) = \frac{x^{\alpha/2} \left(\sqrt{1 + x^{4-\alpha}} + x^{2-\alpha/2}\right)}{x^{\alpha}} \sim \frac{1}{x^{\alpha/2}}$$

e dato che $\alpha/2 > 1$, per il criterio del confronto asintotico l'integrale converge. Se $\alpha = 4$, otteniamo similmente che $f(x) \sim (\sqrt{2}+1)/x^2$ e dunque che l'integrale converge. Se invece $\alpha < 4$, scriviamo

$$f(x) = \frac{x^2(\sqrt{x^{\alpha-4}+1}+1)}{x^{\alpha}} \sim \frac{2}{x^{\alpha-2}}$$

e dunque l'integrale converge se e solo se $\alpha - 2 > 1$, i.e. $\alpha > 3$, mentre diverge positivamente se e solo se $\alpha \leq 3$. Infine, per $\alpha = 4$ risulta

$$\int_{1}^{+\infty} f(x) \, dx = \int_{1}^{+\infty} \frac{x^{-2}}{\sqrt{2} - 1} \, dx = \left[\frac{-x^{-1}}{\sqrt{2} - 1} \right]_{1}^{+\infty} = \frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1 \neq \sqrt{2} - 1 \, .$$

Esercizio 5. L'integrale indefinito di sen $(\log_e x)$ è

$$(A) \quad \frac{1}{2}x \left(\operatorname{sen}(\log_{\mathsf{e}} x) - \operatorname{cos}(\log_{\mathsf{e}} x)\right) + c.$$

$$(B) \quad -\frac{\operatorname{cos}(\log_{\mathsf{e}} x)}{x} + c.$$

$$(C) \quad \frac{1}{2}x \left(\operatorname{sen}(\log_{\mathsf{e}} x) + \operatorname{cos}(\log_{\mathsf{e}} x)\right) + c.$$

$$(D) \quad \frac{\operatorname{sen}(\log_{\mathsf{e}} x)}{x} + c.$$

(C)
$$\frac{1}{2}x\left(\operatorname{sen}(\log_{e}x) + \cos(\log_{e}x)\right) + c$$

(B)
$$-\frac{\cos(\log_e x)}{x} + c$$

(D)
$$\frac{\operatorname{sen}(\log_{e} x)}{x} + c$$

Calcoliamo:

$$\int \operatorname{sen}(\log x) \, dx = \int_{\substack{\uparrow \\ x = e^t}} \int \operatorname{sen} t \cdot e^t \, dt \,,$$

ma

$$I = \int e^t \sin t \, dt = e^t \sin t - \int e^t \cos t \, dt =$$

$$e^t \sin t - \left(e^t \cos t - \int e^t \cdot (-\sin t) \, dt \right) = e^t (\sin t - \cos t) - I$$

per cui

$$\int \operatorname{sen} t \cdot e^t dt = \frac{1}{2} e^t (\operatorname{sen} t - \cos t) + c = \int_{\substack{e^t = x}} \frac{1}{2} x (\operatorname{sen}(\log x) - \cos(\log x)) + c.$$

Esercizio 6. Le disposizioni di 23 oggetti presi a k per volta sono più delle combinazioni di 24 oggetti presi a 6 per volta. Allora

(A)
$$k \ge 4$$
.

(C)
$$k \neq 6$$

(B)
$$k < 3$$
.

(D)
$$k = 2$$

Abbiamo

$$\begin{split} D_{23,k} &= \frac{23!}{(23-k)!} = 23 \cdot 22 \cdot \cdot \cdot (23-k+1) \;, \\ C_{24,6} &= \frac{24!}{6!18!} = \frac{24 \cdot 23 \cdot 22 \cdot 21 \cdot 20 \cdot 19}{6 \cdot 5 \cdot 24} = 23 \cdot 22 \cdot 19 \cdot 14 \;, \end{split}$$

e se vogliamo che $D_{23,k} > C_{24,6}$ si vede subito che fermarsi a 23 - k + 1 = 21 non basta, mentre se $23-k+1=20,19,\ldots$ la disuguaglianza è verificata, quindi serve $k\geq 4$.

Esercizio 7. Se z = (3i + 1)w allora $(3i + 1)\bar{z}$ è uguale a

(A)
$$10\bar{w}$$
.

(C)
$$(8-6i)w$$

(B)
$$(6i - 8)\bar{w}$$
.

(D)
$$-10w$$

Subito

$$(3i+1)\bar{z} = (3i+1)(1-3i)\bar{w} = (1+9)\bar{w}$$
.