Lab07-Amortized Analysis

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2020.

* If there is any problem, please contact TA Shuodian Yu.

- $*\ Name: Zehao\ Wang \qquad Student\ ID: 518021910976 \qquad Email:\ davidwang 200099@sjtu.edu.cn$
- 1. For the TABLE-DELETE Operation in Dynamic Tables, suppose we construct a table by multiplying its size by $\frac{2}{3}$ when the load factor drops below $\frac{1}{3}$. Using *Potential Method* to prove that the amortized cost of a TABLE-DELETE that uses this strategy is bounded above by a constant.

Solution. Define

$$\Phi_i = |2num_i - size_i|$$

as the potential function.

If the i-th step is TABLE-DELETE, then

• When $\alpha_{i-1} > \frac{1}{2}$, then $num_i = num_{i-1} - 1$ and $size_i = size_{i-1}$.

$$\hat{C}_i = 1 + |2num_i - size_i| - |2num_{i-1} - size_{i-1}|$$

$$= 1 + |2num_i - size_i| - |2num_{i-1} - size_{i-1}|$$

$$= 1 + 2num_i - size_i - 2num_{i-1} + size_{i-1} = -1$$

• When $\alpha_{i-1} = \frac{1}{2}$, namely $num_{i-1} = \frac{size_{i-1}}{2}$, then $num_i = num_{i-1} - 1$ and $size_i = size_{i-1}$.

$$\hat{C}_i = 1 + |2num_i - size_i| - |2num_{i-1} - size_{i-1}|$$

$$= 1 + 0 + 2(num_i + 1) - size_i = 3$$

• When $\frac{1}{3} < \alpha_{i-1} < \frac{1}{2}$, then $num_i = num_{i-1} - 1$, $size_i = size_{i-1}$.

$$\hat{C}_{i} = 1 + |2num_{i} - size_{i}| - |2num_{i-1} - size_{i-1}|
= 1 + size_{i} - 2num_{i} + 2num_{i-1} - size_{i-1}
= 1 + 2(num_{i-1} - num_{i})
= 1 + 2 = 3$$
(1)

• When $\alpha_{i-1} = \frac{1}{3}$, then $num_i = num_{i-1} - 1$, $size_i = \frac{2size_{i-1}}{3}$, $num_i + 1 = \frac{size_i}{2}$.

$$\begin{split} \hat{C}_i &= num_{i-1} + |2num_i - size_i| - |2num_{i-1} - size_{i-1}| \\ &= num_{i-1} + 1 - |2num_{i-1} - 3n_{i-1}| \\ &= num_{i-1} + 1 - num_{i-1} = 1 \end{split}$$

Therefore the amortized cost of TABLE-DELETE is bounded above by a constant.

2. A **multistack** consists of an infinite series of stacks S_0, S_1, S_2, \dots , where the i^{th} stack S_i can hold up to 3^i elements. Whenever a user attempts to push an element onto any full stack S_i , we first pop all the elements off S_i and push them onto stack S_{i+1} to make room. (Thus, if S_{i+1} is already full, we first recursively move all its members to S_{i+2} .) An illustrative example is shown in Figure 1. Moving a single element from one stack to the next takes O(1) time. If we push a new element, we always intend to push it in stack S_0 .

图 1: An example of making room for one new element in a multistack.

- (a) In the worst case, how long does it take to push a new element onto a multistack containing n elements?
- (b) Prove that the amortized cost of a push operation is $O(\log n)$ by Aggregation Analysis.
- (c) (Optional Subquestion with Bonus) Prove that the amortized cost of a push operation is $O(\log n)$ by Potential Method.

Solution.

(a) The worst case happens when $n = \sum_{i=0}^{k} 3^{i}$. Every element in the multi-stack should be moved once.

Then the time complexity of the push operation is O(n).

(b) Assume that we try to push $\sum_{i=0}^{k+1} 3^i + 1$ elements into the multi-stack.

Consider the process of pushing elements to make the size of stack change from $\sum_{i=0}^{k} 3^i + 1$ to $\sum_{i=0}^{k+1} 3^i + 1$. In this process, $n = 3^{k+1}$, namely $k = \log_3 n - 1$.

Assume when pushing the m-th element into the multi-stack, we need to move T_m elements from one stack to another.

By observation, we can see when m is a multiple of 3^i , $T_m = \sum_{j=0}^i 3^j$. Otherwise, $T_m = 1$. Therefore the total number of movement is:

$$1 + 1 + (3 + 1) + 1 + 1 + (3 + 1) + 1 + 1 + (9 + 3 + 1) + \cdots$$

$$= 3^{0} \times 3^{k+1} + 3^{1} \times 3^{k} + 3^{2} \times 3^{k-1} + \cdots + 3^{k+1} \times 1$$

$$= (k+2)3^{k+1}$$

 3^{k+1} elements are pushed into the multi-stack while changing the size of multi-stack change from $\sum_{i=0}^k +1 = n-3^{k+1}$ to $\sum_{i=0}^{k+1} 3^i +1$.

We have

$$\frac{(k+2)3^{k+1}}{3^{k+1}} = k+2 = \log_3 n + 1$$

Taking pushing new elements into consideration, the average number of operations is $\log_3 n + 1 + 1$.

Therefore the time complexity is $O(\log n)$.

(c) Assume that the number of elements in the multi-stack is n.

By observation, we can know that there exists an k(n) such that $\sum_{i=0}^{k(n)} 3^i < n \le \sum_{i=0}^{k(n)+1} 3^i$.

Then we can get $k(n) = \lceil \log_3(2n-1) \rceil - 2$.

And we define $|S_j(i)|$ to be the number of elements in the j-th stack when we have pushed i elements into the multi-stack. $(i \ge 0, j \ge 0)$

Define

$$\Phi(i) = \begin{cases} (k(i)\log_3 n - \sum_{j=0}^{k(i)} j |S_j(i)| & i \neq \sum_{j=0}^m 3^j + 1, integer \ m \\ 0 & i = 0 \end{cases}$$

as potential function.

Define

$$C_i = \sum_{j=0}^{k(i)} j|S_j(i)| - \sum_{j=0}^{k(i-1)} j|S_j(i-1)|$$

Then

$$\begin{split} \hat{C}_i &= C_i + \Phi(i) - \Phi(i-1) \\ &= C_i + k(i) \log_3 i - \sum_{j=0}^{k(i)} j |S_j(i)| - k(i-1) \log_3 (i-1) + \sum_{j=0}^{k(i-1)} j |S_j(i-1)| \\ &\approx (k(i) - k(i-1)) \log_3 i \\ &\leq \log_3 i \end{split}$$

Therefore we can know the time complexity of push is $O(\log n)$.

- 3. Given a graph G = (V, E), and let V' be a strict subset of V. Prove the following propositions.
 - (a) Let T be a minimum spanning tree of a G. Let T' be the subgraph of T induced by V', and let G' be the subgraph of G induced by V'. Then T' is a minimum spanning tree of G' if T' is connected.
 - (b) Let e be a minimum weight edge which connects V' and $V \setminus V'$. There exists a minimum weight spanning tree which contains e.

Solution. (a)

• Statement: If T' is connected, it must be a tree.

Proof.

Assume T' is connected but T' is not a tree. According to the definition of a tree, if T' is connected but not a tree, it must have a cycle in it.

However, $T = T' \cup (T \setminus T')$. If T' has a cycle, T must have a cycle, which is contradictory to the condition that T is a tree. Therefore T' must be a tree if it is connected.

- Assume T is a minimum spanning tree but T' is not a minimum spanning tree, then there is a certain edge e₀ which connect two vertexes in V' and form a cycle C₀ with certain edges in E. What's more, w(e₀) < w(a) for an edge a₀ ∈ C₀.
 In this case, the total weight of T' ⊕ (a₀, e₀) is smaller than T'. However, because T' ⊆ T, therefore (T' ⊕ (a₀, e₀)) ∪ (T \ T') is a spanning tree with a smaller weight than T, which is contradictory to the condition that T is a minimal spanning tree. Therefore the assumption does not make sense. Then T' is a minimum spanning tree of G' if T' is connected.
- (b) Assume that the minimum spanning tree T' does not contain e. Edges in the minimum spanning tree T' can be divided into three parts:
 - Edges connecting vertexes in V'
 - Edges connecting vertexes in $V \setminus V'$
 - A single edge e' which connects one vertex in V and another in $V \setminus V'$

Because the two vertexes connected by e' and e are in V and $V \setminus V'$ separately, neither e' nor e can form any circle with edges in E' or edges connecting vertexes in $V \setminus V'$.

According to the definition of e, its weight is smaller than e'.

Then replace e' with e and we can still get a spanning tree T. This new tree has a smaller weight than T', which is contradictory to the assumption that T' is minimum spanning tree.

Therefore the assumption does not make sense. There must exist a minimum weight spanning tree which contains e.

Remark: Please include your .pdf, .tex files for uploading with standard file names.