

Existem 10 tipos de pessoas no mundo. As que entendem binário e as que não entendem.

Bytes e bases Octal/Hexadecimal

Paulo Ricardo Lisboa de Almeida

Binário

A máquina opera na base 2.

Base binária.

Temos somente 2 algarismos possíveis: 0 e 1. Os "dígitos" binários são chamados de bits.

bit: binary digit.

Byte

A um **conjunto de 8 bits**, damos o nome de **byte**.

Na maioria das CPUs, a menor unidade em que podemos operar é um byte.

Exemplo: no seu computador x86-64, a memória é endereçada a byte.

Cada endereço físico da memória suporta 1 byte.

Byte

A um **conjunto de 8 bits**, damos o nome de **byte**.

Na maioria das CPUs, a menor unidade em que podemos operar é um byte.

Exemplo: no seu computador x86-64, a memória é endereçada a byte.

Cada endereço físico da memória suporta 1 byte.

Nibble

Um **nibble** é o equivalente a **meio byte**.

4 bits.

É especialmente útil quando estamos lidando com valores em **hexadecimal**.

Exemplo

```
101<sub>10</sub> = 0110 0101<sub>2</sub>
Nibble Nibble
Byte
```

Prefixos

Da mesma forma que no SI, podemos adicionar prefixos.

kilo, mega, giga, ...

Exemplo, um 1kB é um kilobyte, e corresponde a 1.000 Bytes.

Prefixos

Da mesma forma que no SI, podemos adicionar prefixos.

kilo, mega, giga, ...

Exemplo, um 1kB é um kilobyte, e corresponde a 1.000 Bytes.

Mas durante o curso, você vai aprender que se lidarmos com potências de 2, as coisas são mais simples.

Então idealmente 1 kB deve ter 2^{10} = 1024 Bytes.

E 1 MB deve ter 2^{10} = 1024 Kilobytes = 2^{20} Bytes = 1048576 Bytes.

•••

Confusão

Agora quando nos referenciamos a 1 KB, estamos falando de 1.000 Bytes, ou 1.024 Bytes?

Na computação, **geralmente vai ser a potência de 2**.

Para evitar confusão, a International Electrotechnical Commission (IEC) criou a seguinte nomenclatura:

Decimal term	Abbreviation	Value	Binary term	Abbreviation	Value	% Larger
kilobyte	KB	10 ³	kibibyte	KiB	210	2%
megabyte	MB	10 ⁶	mebibyte	MiB	220	5%
gigabyte	GB	10°	gibibyte	GiB	230	7%
terabyte	TB	1012	tebibyte	TiB	240	10%
petabyte	PB	1015	pebibyte	PiB	2 ⁵⁰	13%
exabyte	EB	1018	exbibyte	EiB	260	15%
zettabyte	ZB	1021	zebibyte	ZiB	270	18%
yottabyte	YB	1024	yobibyte	YiB	280	21%

Patterson, D.; Hennessy, 2017.

Mais confusão

Um kB (com B maiúsculo) é um kilobyte, enquanto um kb ou kbit (com b minúsculo) é um kilobit.

Representações

Representações usadas no manuscrito de Bakhshali, datado de 224–993 DC.

Octal e Hexadecimal

Na computação é comum o uso das bases Octal (base 8) e Hexadecimal (base 16).

São potências de 2.

Facilita a conversão para binário.

No sistema octal, os numerais válidos são ...?

Octal e Hexadecimal

Na computação é comum o uso das bases Octal (base 8) e Hexadecimal (base 16).

São potências de 2.

Facilita a conversão para binário.

Na base octal, os numerais válidos são 0, 1, 2, 3, ...,7.

Na base hexadecimal, os numerais válidos são ...?

Octal e Hexadecimal

Na computação é comum o uso das bases Octal (base 8) e Hexadecimal (base 16).

São potências de 2.

Facilita a conversão para binário.

Na base octal, os numerais válidos são 0, 1, 2, 3, ...,7.

Na base hexadecimal, os numerais válidos são 0,1,2,...,9,A,B,C,D,E,F.

A conversão octal/hexadecimal para binário, e vice-versa, é direta.

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	б
7	0111	7	7
8	1000	-	8
9	1001	-	9
10	1010	-	A
11	1011	-	В
12	1100	-	С
13	1101	-	D
14	1110	-	E
15	1111	-	F

Para converter de binário para octal.

Separe os algarismos em grupos de 3 do bit menos significativo para o mais significativo.

Um conjunto de **3 bits é um octeto**.

Utilizar a tabela para obter o valor de cada octeto, e esse será o valor em octal.

Exemplo: Converter 110010011101_2 para octal.

Desconsidere esse primeiro zero da tabela quando converter octal.

De	cimal	Binário	Octal	Hexadecimal
	0	000	0 0	0
	1	000	1	1
	2	001	0 2	2
	3	001	1 3	3
	4	010	0 4	4
	5	010	1 5	5
	6	011	0 6	б
	7	011	1 7	7
	8	100	0 -	8
	9	100	1 -	9
	10	101	0 -	А
	11	101	1 -	В
	12	110	0 -	С
	13	110	1 -	D
	14	111	0 -	E
	15	111	1 -	F

Exemplo: Converter 110010011101_2 para octal.

 $110\ 010\ 011\ 101_2$ = 6235_8

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	-	8
9	1001	-	9
10	1010	-	A
11	1011	-	В
12	1100	-	С
13	1101	-	D
14	1110	-	E
15	1111	-	F

Para converter de octal para binário basta fazer o inverso.

Convertemos cada algarismo octal para seus 3 dígitos binários equivalentes.

Converter 1366_8 para binário.

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	-	8
9	1001	-	9
10	1010	-	A
11	1011	-	В
12	1100	-	С
13	1101	-	D
14	1110	-	E
15	1111	-	F

Converter 1366_8 para binário. $1366_8 = 001 \ 011 \ 110 \ 110_2$

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	-	8
9	1001	-	9
10	1010	-	10
11	1011	-	11
12	1100	-	12
13	1101	-	13
14	1110	-	14
15	1111	-	15

Para a conversão entre hexadecimal e binário, vice-versa, usamos o mesmo procedimento utilizado para octal.

Agora separe em **grupos de 4 bits.**

Hextetos ou Nibbles.

Converter 110010011101₂ para hexadecimal.

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	-	8
9	1001	-	9
10	1010	-	A
11	1011	-	В
12	1100	-	С
13	1101	-	D
14	1110	-	E
15	1111	-	F

Converter 110010011101_2 para hexadecimal. $1100\ 1001\ 1101_2 = C9D_{16}$

Decimal	Binário	Octal	Hexadecimal
0	0000	0	0
1	0001	1	1
2	0010	2	2
3	0011	3	3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	-	8
9	1001	-	9
10	1010	-	A
11	1011	-	В
12	1100	-	С
13	1101	-	D
14	1110	-	E
15	1111	-	F

Exercícios

A. Converta os seguintes valores:

- a. 11111111111₂ para octal e hexadecimal.
- b. 111011₂ para octal, hexadecimal e decimal
- c. 628A16 para binário
- d. 765₈ para binário e hexadecimal

Referências

Ronald J. Tocci, Gregory L. Moss, Neal S. Widmer. Sistemas digitais. 10a ed. 2017.

Padilla, A.. Fantastic Numbers and Where to Find Them: A Cosmic Quest from Zero to Infinity. 2023.

Marcia A. G. Ruggiero, Vera L. R. Lopes. Cálculo numérico aspectos teóricos e computacionais. 1996.

Thomas Floyd. Widmer. Sistemas Digitais: Fundamentos e Aplicações. 2009.

Licença

Esta obra está licenciada com uma Licença <u>Creative Commons Atribuição 4.0 Internacional.</u>

