Équations différentielles (suite)

1er février 2016

1 Gérer des EDO d'ordre 2, 3, ...

Considérons l'équation d'un amortisseur soumis à une excitation de pulsation ω :

$$my'' = -cy' - ky + \alpha \cos \omega t$$

Ce n'est pas une équation d'ordre 1. Comment la gérer?

On introduit Y(t) = (y(t), y'(t)).

En posant $\pi_0:(x,y)\mapsto x$ et $\pi_1:(x,y)\mapsto y$:

$$Y'(t) = (y'(t), y''(t))$$

$$= (y'(t), (-cy'(t) - ky(t) + \alpha \cos \omega t)m^{-1})$$

$$= (\pi_1(Y(t)), (-c\pi_1(Y(t)) - k\pi_0(Y(t)) + \alpha \cos \omega t)m^{-1})$$

$$= F(Y(t), t)$$

où $F: (Y,t) \mapsto (\pi_1(Y), (-c\pi_1(Y) - k\pi_0(Y) + \alpha\cos\omega t)m^{-1})$ On s'est ramené à une équation d'ordre 1! Résolution :

```
>>> m = 250 # kg

>>> omega = 1 # s ** (-1)

>>> alpha = 0 # N

>>> k = 1000 # N / m

>>> c = 500 # N * m * s**(-1)

>>> y0 = 1 # m

>>> t0 = 0

>>> t1 = 20 # s

>>> n = 1000

>>> h = float(t1 - t0) / n
```

```
>>> def F(Y, t) :
...    y, yp = Y
...    ypp = (-c*yp - k*y + alpha*cos(omega*t)) / m
...    return array([yp, ypp])
... les_t, les_y = euler_vectoriel(F, t0, t1,
>>> array([y0, yp0]), h)
```


2 Portraits de phase

On porte sur le graphe les couples $(y(t),y^{\prime}(t))$:

3 Influence du pas de discrétisation

On reprend l'exemple de l'amortisseur, avec c=100 et avec différentes valeurs du pas de discrétisation $h=(t_1-t_0)/n$:

Le premier graphe est clairement délirant sur le plan physique ... Plusieurs facteurs contribuent à l'erreur :

- des erreurs de méthode (la méthode d'Euler n'est pas parfaite)
- des erreurs de calcul (les flottants ne sont pas les réels)

Pour les erreurs de méthode, on dit qu'il y a convergence si :

- 1. la somme $e(h) = \sum_{k=0}^{n} |y(t_k) y_k|$ des petites erreurs commises à chaque étape tend vers 0 quand h tend vers 0 (e(h) est appelée erreur de consistance relative à la solution y).
- 2. et certaines conditions de *stabilité* de la méthode employée sont respectées (essentiellement, si l'on commet une petite erreur à chaque étape du calcul des y_k , menant à de nouvelles approximations \tilde{y}_k , alors si l'erreur de consistance relative aux y_k est petite, l'erreur entre les y_k et les \tilde{y}_k doit être petite aussi).

On dit qu'une méthode est d'ordre p s'il existe une constante K>0 telle que $e(h)\leq Kh^p$, autrement dit l'erreur de consistance est un $O(h^p)$.

La méthode d'Euler est une méthode d'ordre 1.

4 Autres méthodes

4.1 Méthode d'Euler implicite

La méthode d'Euler présentée jusqu'ici est dite explicite : y_{k+1} ne dépend que y_k et t_k .

$$y_{k+1} = y_k + hF(y_k, t_k)$$

Mais en reprenant les approximations qui ont conduit à ce schéma, nous pouvons aussi bien écrire:

$$y_{k+1} = y_k + hF(y_{k+1}, t_k)$$

ce qui mène à la méthode d'Euler implicite.

Elle a un gros inconvénient : pour trouver y_{k+1} , il faut résoudre une équation (numériquement).

Mais elle a un avantage : elle est souvent plus stable.

4.2 Méthode de Heun

Si $y_n = y(t_n)$, il existe $c \in]t_n, t_{n+1}[$ tel que

$$y(t_{n+1}) = y_n + hy'(c)$$

Tout le problème est d'estimer y'(c).

On connaît l'idée de la méthode d'Euler explicite :

$$y'(c) \approx y'(t_n)$$

Donc on pose $k_1 = F(y_n, t_n)$.

Puis

$$y_{n+1} = y_n + hk_1$$

(erreur locale en $O(h^2)$)

L'idée de la méthode de Heun est la suivante :

$$y'(c) \approx \frac{y'(t_n) + y'(t_{n+1})}{2}$$

On pose $k_1 = F(y_n, t_n)$. Alors $k_1 = y'(t_n)$.

On estime $y'(t_{n+1})$ en utilisant $y'(t_{n+1}) = F(y(t_{n+1}), t_{n+1})$. Pour cela, on estime $y(t_{n+1})$ par la méthode d'Euler explicite.

On pose donc : $k_2 = F(y_n + hk_1, t_n + h)$ (erreur en $O(h^2)$). Puis

$$y_{n+1} = y_n + h\left(\frac{k_1 + k_2}{2}\right)$$

On peut alors montrer que l'erreur locale est en $O(h^3)$.

4.3 Méthode de Runge-Kutta

Pour évaluer y'(c), on calcule

$$\frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

où k_1 , k_2 , k_3 et k_4 sont des évaluations des pentes :

 k_1 pente en y_n

 k_2 pente évaluée en $t_n + \frac{h}{2}$ en utilisant k_1 pour estimer $y(t_n + \frac{h}{2})$

 $k_3\,$ pente évaluée en $y_n+\frac{h}{2}$ en utilisant k_2 pour estimer $y(t_n+\frac{h}{2})$

 k_4 pente évaluée en $t_n + h$ en utilisant k_3 pour estimer $y(t_n + h)$.

$$k_1 = F(y_n, t_n)$$

$$k_2 = F(y_n + \frac{h}{2}k_1, t_n + \frac{h}{2})$$

$$k_3 = F(y_n + \frac{h}{2}k_2, t_n + \frac{h}{2})$$

$$k_4 = F(y_n + hk_3, t_n + h)$$

$$y_{n+1} = y_n + h\left(\frac{k_1 + 2k_2 + 2k_3 + k_4}{6}\right)$$

On peut alors montrer que l'erreur locale est en $O(h^5)$. Il s'agit d'une méthode d'ordre de convergence 4. Elle est facile à programmer et donc très populaire.