

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS E INFORMÁTICA

TEORIA DOS GRAFOS E COMPUTABILIDADE - PROF. SILVIO JAMIL F. GUIMARÃES 2024/1 (PROVA 2)

Rafael Vilefort

CORRIGIDO

INSTRUÇÕES

A prova terá duração de 100 minutos com uma pontuação de 100%.

Nenhum material auxiliar é permitido. O uso de equipamentos eletrônicos é proibido.

Todas as questões só possuem uma resposta correta, e valem o mesmo valor.

Na folha de respostas, preencha totalmente sem ultrapassar as linhas, usando CANETA, o quadrado referente à sua resposta.

QUESTÃO 1

Seja um grafo não-direcionado e não-ponderado G. Seja uma busca em largura de G a partir de um vértice r. Sejam d(r, u) e d(r, v) os comprimentos dos caminhos mais curtos de r para u e v, respectivamente, em G. Se u for visitado antes de v durante a busca em largura, qual das seguintes afirmações está correta?

A d(r, u) > d(r, v)

 $d(r, u) \le d(r, v)$

C $d(r, u) \ge d(r, v)$

D d(r, u) < d(r, v)

QUESTÃO 2

Seja o grafo não-direcionado G = (V, E). Analise as assertivas a seguir, assinalando V, se a assertiva for verdadeira, ou F, se a assertiva for falsa.

- () K_n (grafo completo) O grafo completo K_n é regular para todos os valores de $n \geq 1$, já que o grau de cada vértice
- () C_n (grafo ciclo) O grafo ciclo C_n é regular para todos os valores de $n \geq 3$, já que o grau de cada vértice é sempre
- () W_n (grafo roda) O grafo roda W_n é regular apenas para n=3.
- W_n (grafo roda) W₃ é isomorfo ao K₄.

A ordem correta, de cima para baixo, das respostas destas assertivas é:

 \blacksquare V-V-V-V \blacksquare V-F-F-F \blacksquare \blacksquare V-F-F-F-V-F

INSTITUTO DE CIÊNCIAS EXATAS E INFORMÁTICA TEORIA DOS GRAFOS E COMPUTABILIDADE - PROF. SILVIO JAMIL F. GUIMARÃES 2024/1 (PROVA 2)

Rafael Vilefort

Corrigido

QUESTÃO 3

Seja G = (V, E) um grafo direcionado em que V é o conjunto de vértices e E é o conjunto de arestas.

- () Se G'=(V,E') em que $E'=\{(u,v)\mid (u,v)\not\in E\}$ então G e G' possuem os mesmos componentes conexos.
- () Se G'=(V,E') em que $E'=\{(u,v)\mid (v,u)\in E\}$ então G e G' possuem os mesmos componentes conexos.
- () Se G'=(V,E') em que $E'=\{(u,v)\mid$ existe um caminho de tamanho menor ou igual a 2 de u para v em $E\}$ então G e G^{\prime} possuem os mesmos componentes conexos.
- () Se G'=(V',E) em que V' é o conjunto de vértices em G que não são isolados então G e G' possuem os mesmos componentes conexos.
- A Há duas afirmativas corretas. Há três afirmativas corretas. B Todas as afirmativas estão corretas. Há somente uma afirmativa correta.

QUESTÃO 4

Seja G=(V,E) um grafo não direcionado, e (G,W) um grafo ponderado nas arestas. Considere que os pesos das arestas são inteiros positivos e todos os valores são distintos. Analise as assertivas a seguir.

- 1. A árvore geradora mínima é única.
- 2. O menor caminho entre quaisquer dois vértices é único pois todos os pesos das arestas são distintos.
- Somente o item (1) está correto. C Somente o item (2) está correto.
- B Nenhum dos itens está correto. D Os dois itens estão corretos.

Instituto de Ciências Exatas e Informática Teoria dos Grafos e Computabilidade – Prof. Silvio Jamil F. Guimarães 2024/1 (Prova 2)

Rafael Vilefort

CORRIGIDO

QUESTÃO 5

Seja o grafo não-direcionado G=(V,E). Analise as assertivas a seguir, assinalando V, se a assertiva for verdadeira, ou F, se a assertiva for falsa.

- () Um grafo direcionado é fortemente conexo se há um caminho de um vértice u para outro vértice v ou de v para u .
- () Um grafo não direcionado é conexo se houver caminho entre quaisquer par de vértices.
- () Em um grafo completo com 10 vértices (nomeado de A a J), o número total de circuitos hamiltonianos que iniciam em A é 10!.
- () Se um grafo possui um caminho (aberto) hamiltoniano então é possui um caminho (aberto) euleriano.
- () Se um grafo possui um caminho (aberto) euleriano então ele possui um caminho (aberto) hamiltoniano.
- () Existe um algoritmo para identificar se um grafo possui um ciclo hamiltoniano.
- () Existe um algoritmo para identificar se um grafo possui um ciclo euleriano.

A ordem correta, de cima para baixo, das respostas destas assertivas é:

A F-V-F-F-F-V

CV-F-V-V-V-F-F

F - V - F - F - F - V - V

D V-F-V-V-F-F

QUESTÃO 6

Considere um grafo não direcionado G com vértices $\{a,b,c,d,e\}$. No grafo G, cada aresta tem peso distinto. A aresta $\{c,d\}$ é a aresta com peso mínimo e a aresta $\{a,b\}$ é a aresta com peso máximo. Então, qual das afirmações a seguir é falsa?

- $oxed{A}$ Toda árvore geradora mínima de G deve conter $\{c, d\}$.
- Nenhuma árvore geradora mínima contém $\{a, b\}$.
- $oxed{C}$ G tem uma árvore geradora mínima única.
- $\boxed{\mathbb{D}} \; \mbox{Se} \; \{a,b\}$ estiver em uma árvore geradora mínima, então sua remoção deve desconectar G

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS E INFORMÁTICA TEORIA DOS GRAFOS E COMPUTABILIDADE – PROF. SILVIO JAMIL F. GUIMARÃES 2024/1 (PROVA 2)

Rafael Vilefort

	Corrigido				
	QUESTA	ÃO 7			
ons	idere as seguintes afirmações.				
()	Não existe grafo simples, conexo e não direcionados com	80 vértices e 77 arestas.			
()	() Todos os vértices de um grafo de Euler (possui ciclo euleriano) possuem grau par.				
()	() Todo grafo simples, acíclico, conexo e não direcionado com 50 vértices tem, no mínimo, dois vértices de grau 1.				
()	Existe um grafo bipartido com mais que 10 vértices com	conjunto independente de tamanho máximo igual a 2.			
=	Há três afirmativas corretas. Há somente uma afirmativa correta.	C Há duas afirmativas corretas. Todas as afirmativas estão corretas.			
	QUEST	ÃO 8			
eja egui	() ,	n grafo ponderado nas arestas. Analise as assertivas a			
1.	Supondo que todos os pesos das arestas são diferentes, a bottleneck mínimo são iguais.	a árvore geradora mínima de G e o a árvore geradora com			
2.	2. Achar uma árvore geradora mínima em G pode ser revolvido por meio da solução de um problema de árvore de Steiner quando o critério de otimização é a minimização da soma dos pesos das arestas e os terminais são iguais a V				
3.	Seja $T\subseteq G$ uma árvore geradora mínima de G. Sejam de é equivalente a encontrar o menor caminho entre u e v en	is vértices u e v . Achar o menor caminho entre u e v em G in T .			
	Somente o item (2) está correto.	C Há somente dois itens corretos.			
В	Somente o item (3) está correto.	D Nenhum dos itens está correto.			

INSTITUTO DE CIÊNCIAS EXATAS E INFORMÁTICA TEORIA DOS GRAFOS E COMPUTABILIDADE – PROF. SILVIO JAMIL F. GUIMARÃES 2024/1 (PROVA 2)

Rafael Vilefort

Corrigido

QUESTÃO 9

Analise as assertivas a seguir, assinalando V, se a assertiva for verdadeira, ou F, se a assertiva for falsa.

- () Um grafo não direcionado e sem ciclos não possui vértices com grau de entrada zero.
- () Seja um grafo G = (V, E), se e = {u, v} é uma aresta pertencente à E, pode-se afirmar que: (i) u e v são vértices e pertencem à V; (ii) u e v são chamados de vértices adjacentes.
- () Seja um grafo G = (V, E), se e = {u, v} é uma aresta pertencente à E, pode-se afirmar que: (i) u e v são vértices e pertencem à V; (ii) u e v são chamados de vértices vizinhos.
- () Seja um grafo G = (V, E), se e = (u, v) é uma aresta pertencente à E, pode-se afirmar que: (i) u é predecessor de v;
 e (ii) v é sucessor de u;
- Seja um grafo G = (V, E), se todo vértice u ∈ V é vizinho a todo vértice v ∈ V, então G é chamado de grafo completo.
- () O número de arestas de uma árvore geradora mínima de 10 vértices é igual a 10.
- () Um grafo G = (V, E) é chamado grafo nulo se $E = \emptyset$.

A ordem correta, de cima para baixo, das respostas destas assertivas é:

A V-F-V-F-V-F

CV-F-F-V-V-F-F

B F-V-F-F-V-V

F - V - V - V - F - F - V

QUESTÃO 10

Seja G um grafo não-direcionado ponderado e e uma aresta com peso máximo em G. Suponha que haja uma árvore geradora de peso mínimo em G contendo a aresta e. Qual das seguintes afirmações é sempre VERDADEIRA?

- A aresta e não pode estar contida em um ciclo.
- \fbox{B} Existe um ciclo em G com todas as arestas de peso máximo.
- Existe um cut-set em G com todas as arestas de peso máximo.
- D Todas as arestas em G têm o mesmo peso.

Instituto de Ciências Exatas e Informática Teoria dos Grafos e Computabilidade – Prof. Silvio Jamil F. Guimarães 2024/1 (Prova 2)

Rafael Vilefort

CORRIGIDO

Qu			

Seja o grafo não-direcionado $G=(V,E)$ em que $V=\{a,b,c,d,e\}$ e $E=\{\{a,b\},\{b,c\},\{b,d\},\{a,d\},\{c,e\}\}$	
Analise as assertivas a seguir, assinalando V, se a assertiva for verdadeira, ou F, se a assertiva for falsa. () O vértice "e" é um vértice pendente () O vértice "d" é um vértice pendente () O vértice "a" é um vértice de corte () O vértice "c" é um vértice de corte () Já um caminho entre os vértices "a" e "e" () G é um grafo regular	
A F-F-V-V-F-F B V-V-V-F-V-V ■ V-F-F-V-V-F	

QUESTÃO 12

Seja G=(V,E) em que $V=\{a,b,c,d\}$ e $E=\{\{a,b\},\{a,d\},\{b,c\},\{c,d\},\{b,d\}\}$. Quantas árvores geradoras mínimas existem no grafo G?

A 3

B 16

C 7

8

QUESTÃO 13

Seja G=(V,E) um grafo não-direcionado e (G,W) um grafo ponderado nas arestas. Analise as assertivas a seguir.

- 1. G tem uma única árvore geradora mínima se não houver duas arestas em G com o mesmo peso.
- G tem uma única árvore geradora mínima se, para cada corte de G, existe uma aresta de peso-mínimo cruzando o corte.
- A Somente o item (2) está correto.

C Somente o item (1) está correto.

Os dois itens estão corretos.

D Nenhum dos itens está correto.

Instituto de Ciências Exatas e Informática Teoria dos Grafos e Computabilidade – Prof. Silvio Jamil F. Guimarães 2024/1 (Prova 2)

Rafael Vilefort

CORRIGIDO

QUESTÃO 14

Em um grafo não-direcionado e conexo, uma ponte é uma aresta cuja remoção desconecta grafo. Qual afirmação é verdadeira?

- A Toda aresta de um clique de tamanho maior ou igual a 3 é um ponte.
- B Uma árvore não tem pontes.
- C Um grafo com pontes não pode ter um ciclo.
- Uma ponte não pode ser parte de um ciclo simples.

QUESTÃO 15

Seja G=(V,E) um grafo direcionado e (G,W) um grafo ponderado sendo $W:V\mapsto \mathbb{Z}^+$. Como alterar o algoritmo de Dijkstra para encontrar o menor caminho de um vértice s para todos os vértices do grafo? As menores distâncias serão armazenadas em um vetor d.

Analise as assertivas a seguir, assinalando V, se a assertiva for verdadeira, ou F, se a assertiva for falsa.

- () Alterar a função de atualização da distância em um vértice dado v, quando há uma aresta de u para v, para $d[v] = \min\{d[v], d[u] + w(v)\}$.
- () Não alterar a distância inicial atribuída para s.
- () Alterar a função de atualização da distância em um vértice dado v, quando há uma aresta de u para v, para $d[v] = \min\{d[v], d[v] + w(u)\}$.
- () Os valores iniciais das distâncias para todos os vértices, exceto o primeiro, será igual à ∞.

A ordem correta, de cima para baixo, das respostas destas assertivas é:

 $\boxed{A} \ F-V-V-V$

V-F-F-V

CV-V-F-F

D F-F-V-F

Instituto de Ciências Exatas e Informática Teoria dos Grafos e Computabilidade – Prof. Silvio Jamil F. Guimarães 2024/1 (Prova 2)

Rafael Vilefort

CORRIGIDO

QUESTÃO 16

Considere um grafo não direcionado G com vértices $\{a,b,c,d,e,f,g\}$. Analise as assertivas a seguir, assinalando V, se a assertiva for verdadeira, ou F, se a assertiva for falsa.

- Caso o conjunto de vértices C = {a, c, d} for um conjunto independente máximo, então o subgrafo de G induzido pelos vértices {b, e, f, g} é completo.
- Caso o conjunto de vértices C = {a, c, d} for uma cobertura de vértices mínima, então o subgrafo de G induzido pelos vértices {b, e, f, g} é completo.
- () Caso o conjunto de vértices C = {a, c, d} for uma cobertura de vértices, então o subgrafo de G induzido pelos vértices {b, e, f, g} é nulo.

A ordem correta, de cima para baixo, das respostas destas assertivas é:

A V – V – V	B V - F - V	F - F - V	D F-V-F	
QUESTÃO 17				

Considere um grafo não-direcionado G com vértices $\{a, b, c, d, e, f, g\}$. Analise as assertivas a seguir, assinalando V, se a assertiva for verdadeira, ou F, se a assertiva for falsa.

- () O algoritmo para encontrar um conjunto independente máximo é baseado na escolha dos vértices de menor grau.
- () Seja o algoritmo para encontrar um conjunto independente máximo baseado na escolha dos vértices de menor grau. Pode-se afirmar que este algoritmo sempre terá a resposta ótima quando todos os graus forem diferentes.
- () Considere que G seja um grafo bipartido em que há 2 vértices em um conjunto e 4 vértices no outro conjunto. Podemos afirmar que o conjunto independente máximo de G será igual a 4.

A ordem correta, de cima para baixo, das respostas destas assertivas é:

Todas as assertativas	B Há somente duas as-	C Há somente uma as-	D Todas as assertativas
são falsas.	sertativas verdadeiras.	sertativa verdadeira.	são verdadeiras.