Задачи к лабораторной работе на тему «Программирование на языке C++ с использованием рекурсивных функций и функций со сложными параметрами»

Цель работы

Изучить особенности написания программ на языке С++ с использованием рекурсивных функций и функций со сложными параметрами.

Указания к выполнению работы

При решении задачи 1 написать по крайней мере одну функцу \mathfrak{I} (не main), у которой в качестве параметров используются указатели или ссылу \mathfrak{I} . дл. вариантов 1-27 возвращаемый тип функции — void.

При решении задачи 2 написать по крайней мере одну функцию (не main), у которой в качестве параметров используются указатели ссылки т. массивы. Обеспечить неоднократный вызов функций пользователя.

При решении задачи 3 написать по крайней мере о у рекурсивную функцию (отличную от функции для вычисления факториала натур льного числа). Обеспечить минимально возможное количество передаваемых в рок рсивную функцию параметров. При решении задач недопустимо использовать опера орг цикла безусловные переходы, а также создавать и использовать глобальные программные объекты.

Индивидуальные чару лнты заданий

Задача 1

- 1. Описать бестиповую функтик powAB (A, B, C), вычисляющую значение числа A возведенного в степень числа C . Созвращающую ее в переменной C (A и B вещественные). С помощью этой функтии найти $a1^{b1}$, $a2^{b2}$, $a3^{b3}$ для заданных a1, a2, a3, b1, b2, b3.
- 2. Описать бестиповую 1 у, кцию Mean (X, Y, AMean, GMean), вычисляющую среднее арифметическое AMean и среднее геометрическое GMean двух положительных чисел X и Y (X и Y веще стенные). С помощью этой функции найти среднее арифметическое и среднее гео ис трическое пар (A, B), (A, C), (A, D) для заданных A, B, C, D.
- 3. Описать бесть овую функцию TrianglePS (a, P, S), вычисляющую по стороне а равностороннего треугольника его периметр P и площадь S (a вещественное). С помощью этой dv и дии найти периметры и площади трех равносторонних треугольников с задат че ми сторонами.
- 4. Опис ть сестиповую функцию RectPS (x1, y1, x1, y2, P, S), вычисляющую периметр P и пл дь 3дь S прямоугольника со сторонами, параллельными осям координат, по координатам (x1, y1), (x2, y2) его противоположных вершин (x1, y1, x2, y2 вещественнь x). С помощью этой функции найти периметры и площади трех прямоуголь x0 ов с заданными противоположными вершинами.
- 5 Описать бестиповую функцию DigitCountSum (N, C, S), находящую количеств C цифр числа N, а также их сумму S (N целое). С помощью этой функции найти оличество и сумму цифр для каждого из пяти заданных целых чисел.
- 6. Описать бестиповую функцию InvertDigits (K), меняющую порядок следования цифр целого положительного числа K на обратный (K —целое). С помощью этой функции поменять порядок следования цифр на обратный для каждого из пяти заданных целых чисел.
- 7. Описать бестиповую функцию AddRightDigit (D, K), добавляющую к целому положительному числу K справа цифру D (D, K целые, $0 \le D \le 9$). С помощью этой

функции последовательно добавить к данному числу K справа заданные цифры D1 и D2, выводя результат каждого добавления.

- 8. Описать бестиповую функцию $AddLeftDigit\ (D,\ K)$, добавляющую к целому положительному числу K слева цифру $D\ (D,\ K$ целые, $0 \le D \le 9$). С помощью этой функции последовательно добавить к данному числу K слева заданные цифры D1 и D2, выводя результат каждого добавления.
- 9. Описать бестиповую функцию Swap (X, Y), меняющую содержимое переменных X и Y (X и Y вещественные). С помощью этой функции для заданных переменных A, B, C, D последовательно поменять содержимое следуют u п.р. A и B, C и D, B и C и вывести новые значения A, B, C, D.
- 10. Описать бестиповую функцию Minmax (X, Y), записыт и шую в переменную X минимальное из значений X и Y, а в переменную Y максимальное из этих значений $(X \cup Y)$ вещественные). Используя четыре вызова этой функциг, чайти минимальное и максимальное из заданных чисел A, B, C, D.
- 11. Описать бестиповую функцию SortInc3 (A, B, C), меняющую содержимое переменных A, B, C таким образом, чтобы их значения ок з лись упорядоченными по возрастанию (A, B, C вещественные). С помощью C ў функции упорядочить по возрастанию два заданных набора из трех чисел: (A1, B^{*} , C^{*} 1) и (A2, B2, C2).
- 12. Описать бестиповую функцию $SortDec^2$ (ϵ , B, C), меняющую содержимое переменных A, B, C таким образом, чтобы их значения оказались упорядоченными по убыванию (A, B, C вещественные). С по лощию этой функции упорядочить по убыванию два заданных набора из трех чисел: (A, B, C) и (A2, B2, C2).
- 13. Описать бестиповую функцию Sh_J , Right3 (A, B, C), выполняющую правый циклический сдвиг: значение A переходит в b значение B в C, значение C в A (A, B, C) вещественные). С помощью этой фугкц C0 выполнить правый циклический сдвиг для двух заданных наборов из трех чисел: $(A^{-1}, D^{-1}, C1)$ и (A2, B2, C2).
- 14. Описать бестиповую фу. тдию *ShiftLeft3* (A, B, C), выполняющую левый циклический сдвиг: значение A пере тодил в C, значение C в B, значение B в A (A, B, C вещественные). С помощью этом функции выполнить левый циклический сдвиг для двух заданных наборов из трех чис. π : (A1, B1, C1) и (A2, B2, C2).
- 15. Описать бестиповую функцию *ChangeDigitN* (K, N, D), заменяющую N-ю цифру целого положительного числа K (цифры в числе нумеруются справа налево) на цифру D. Предполагается, что в числе K количество цифр не меньше N. Для каждого из пяти заданных целых положительных чисел K1, K2, ..., K5 и заданного D вызвать функцию ChangeDigitN C чараметром N, изменяющимся от 1 до 5.
- 16. Описать бетиповую функцию SecToHMS (TS, H, M, S), определяющую по времени TS (в секунд, x) содержащееся в нем количество часов H, минут M и секунд S (TS целое). Исполь уд элу функцию, найти количество часов, минут и секунд для пяти заданных отрезков эремени TS1, TS2, ..., TS5.
- 17. Описать бестиповую функцию HMSToSec (H, M, S, TS), определяющую по заданному м менту времени в часах H, минутах M и секунда S количество секунд TS, прошедши, о начала суток (H, M и S целые). Используя эту функцию, найти количес P секунд, прошедших от начала суток для трех заданных временных моментов H1/M1 S1, C12/M2/S2, C12/M3/S3.
- 18. Описать бестиповую функцию *CheckTime* (H, M, S), преобразует временной отрезок, заданный количеством часов H, минут M и секунд S в правильный формат (H, M, S целые). Правильным считается формат, в котором количество секунд S и минут M не превышает значение 59. Используя эту функцию, привести к правильному формату два заданных временных отрезка: (T1, M1, S1) и (T2, M2, S2).
- 19. Описать бестиповую функцию $IncTime\ (H, M, S, T)$, которая увеличивает на T секунд время, заданное в часах H, минутах M и секундах S (H, M и S целые положительные). Дано время (в часах H, минутах M, секундах S), а также целые числа T1

- и T2. Используя функцию IncTime, увеличить данное время на T1 секунд, затем полученный результат увеличить на T2 секунд. Вывести промежуточные и итоговые значения H, M, S.
- 20. Описать бестиповую функцию IncTime2 (H1, M1, S1, H2, M2, S2), которая увеличивает время, заданное в часах H1, минутах M1 и секундах S1 на величину, заданную моментом времени из часов H2, минут M2 и секунд M3 (M3), а также целые положительные). Дано время (в часах M3, минутах M3, секундах M3), а также целые числа M3, M3, M4, M3, M4, M4, M5, M4, M5, M5,
- 21. Описать бестиповую функцию Time24ToTime12 (H M, S, am), которая преобразует время, заданное в часах H, минутах M и секундах S $^{\rm T}$, M и S целые положительные) из 24-часового формата в 12-часовой, при этом p $_{\rm T}$ времени в 12-часовом формате устанавливается признак принадлежности момента в $_{\rm T}$ ени первой половине суток am (am логическое). Используя эту функцию, привест. к новому формату два заданных временных отрезка: (T1, M1, S1) и (T2, M2, S2).
- 22. Описать бестиповую функцию Time12ToTine24 (H, M, S, am), которая преобразует время, заданное в часах H, минутах M, с кундах S (H, M и S целые положительные), а также признаку принадлежности мо тента времени первой половине суток am (am логическое) из 12-часового формата в 24-часовой. Используя эту функцию, привести к новому формату два заданных времен лых отрезка: (T1, M1, S1, am1) и (T2, M2, S2, am2).
- 23. Описать бестиповую функцин *C. eckDate* (D, M, Y), преобразует дату, заданную номером дня D, номером месяца M годом Y в правильный формат (D, M, Y целые). Правильным считается формат, в стором номер месяца не больше 12 (в противном случае записать в M остаток то дения M на 12), а номер дня D не превышает максимально возможное число дней в косяце M (в противном случае записать в D остаток от деления D на максимально возможное число дней в месяце M). Используя эту функцию, привести к правильному формату две заданных даты: (D1, M1, Y1) и (D2, M2, Y2).
- 24. Описать бестипот и функцию PrevDayDate (D, M, Y), которая по информации о правильной дать включающей номер дня D, номер месяца M и год Y, определяет предыдущую дать D, M, Y целые). Применить функцию PrevDayDate к трем исходным датам и вы ве эги полученные значения предыдущих дат.
- 25. Описать f с иповую функцию NextDayDate (D, M, Y), которая по информации о правильной дате, включающей номер дня D, номер месяца M и год Y, определяет следующу о дату (D, M, Y целые). Применить функцию NextDayDate к трем исходным датам у гла ести полученные значения следующих дат.
- 26. Опте ть бестиповую функцию PrevMonthDate (D, M, Y), которая по информации о правильной дате, включающей номер дня D, номер месяца M и год Y, определяет дату в предыдущем месяце (D, M, Y целые). Если в предыдущем месяце максимальное количество дней меньше текущего D, то D заменяется на максимальное количество дней предыдущего месяца. Применить функцию PrevMonthDate к трем исходным датам и вывести полученные значения предыдущих дат.
- 27. Описать бестиповую функцию NextMonthDate (D, M, Y), которая по информации о правильной дате, включающей номер дня D, номер месяца M и год Y, определяет дату в следующем месяце (D, M, Y целые). Если в следующем месяце максимальное количество дней меньше текущего D, то D заменяется на максимальное количество дней следующего месяца. Применить функцию NextMonthDate к трем исходным датам и вывести полученные значения следующих дат.
- 28. Напишите функцию, параметрами которой служат адреса трех переменных вещественного типа. Функция должна возвращать адрес (значение указателя) той из

переменных, адресуемых параметрами, которая имеет максимальное значение. В основной программе с помощью обращения к функции поменяйте знак значения максимальной из трех переменных. Для решения данной задачи используйте вспомогательную функцию, возвращающую адрес максимальной из переменных, адресуемых двумя параметрами-указателями.

- 29. Описать функцию LinearSolve (A, B, C, X), решающую линейное уравнение $A \cdot X + B = C$ и возвращающую результат через ссылку $X \cdot (A, B, C, X)$ вещественные). Функция должна возвращать целое значение: 1, если существует ровно один корень, 0, если корней не существует, и -1, если корней бесконечно много. \mathcal{L} помощью этой функции найти решение двух линейных уравнений, заданных двумя в борами из трех чисел: (A1, B1, C1) и (A2, B2, C2). Вывести на экран значения коро ей или сообщения: «корней нет» или «корней бесконечно много».
- 30. Описать функцию LinearSystemSolve (A1, B1, C1, A2, B2, C2, X, Y), решающую систему из двух линейных уравнений: $A1 \cdot X + B1 \cdot Y \cdot C1$, $A2 \cdot X + B2 \cdot Y = C2$ и возвращающую результат через ссылки X и Y (A1, B1, C1, A2, B2, C2, X, Y вещественные). Функция должна возвращать целое значени: 1, если существует ровно одно решение, 0, если система не имеет решений, и -1, ссл. система имеет бесконечно много решений. С помощью этой функции найти в чение двух систем линейных уравнений с двумя неизвестными, заданных двумя на бор ими из шести чисел: (A1, B1, C1, A2, B2, C2) и (A2, B2, C2, A3, B3, C3). Вывести на экран значения корней или сообщения: «решений нет» или «решений бесконечно много».
- 31. Описать функцию ArrayUnique (1, N) которая удаляет из целочисленного одномерного массива A размера N повтор чок чеся элементы (с перераспределением памяти) и возвращает новый размер масс. Г.а. С помощью этой функции сделайте уникальными элементы в двух массивах AI и A2 размеров NI и N2 соответственно.
- 32. Опишите функцию с пере элим числом аргументов, в которой количество параметров передается как обязательных параметр, и определяющую сумму целых чисел, переданных как необязательные параметры.
- 33. Опишите функцию с тер менным числом аргументов, в которой признаком конца списка необязательных пар метров является число 0, и определяющую среднее арифметическое значение всех н Убязательных параметров.
- 34. Написать подпреть эмму поиска численного решения уравнения на заданном интервале методом бисекции. В качестве параметров подпрограммы передавать указатель на функцию, определяющие уравнение, начальное и конечное значения промежутка (a и b) и точность ε . Найту, о шение для уравнений $x^2 x = 0$ и $\sqrt{x} x = 0$ на заданном интервале с заданной точностью (границы интервала и точность вычислений вводятся пользователем). При четользовании метода бисекции рассматриваемый отрезок делится пополам.
- 35. На и эть программу поиска максимума действительной функции одной переменной на зыданном отрезке методом золотого сечения. В качестве параметров подпрограмм и гередавать указатель на функцию, начальное и конечное значения отрезка $(a \ u \ b)$ и то че сть решения ε . Найти максимумы функций $f(x) = x^3 \cos x$ и $g(x) = \sin x \cos x$ на за унном интервале с заданной точностью, где границы интервала и точность вычис. енай вводятся пользователем. При использовании метода золотого сечения рассм, триваемый отрезок делится в пропорции золотого сечения в обоих направлениях, т.е. выбираются две точки x_1 и x_2 такие, что:

$$\frac{b-a}{b-x_1} = \frac{b-a}{x_2-a} = \phi = \frac{1+\sqrt{5}}{2}$$
, где ϕ – пропорция золотого сечения.

Задача 2

1. Даны два одномерных массива действительных чисел u и v размеров n и m соответственно. Составив функцию, вычисляющую произведение элементов массива,

найти отношение произведения элементов массива u к произведению элементов массива v

- 2. Даны два одномерных массива действительных чисел u и v размеров n и m соответственно. Составив функцию, вычисляющую сумму элементов массива, найти разность суммы элементов массива u и суммы элементов массива v.
- 3. Даны два одномерных массива действительных чисел u и v размеров n и m соответственно. Составив функцию, вычисляющую среднее арифметическое элементов массива, определить, в каком из массивов u или v среднее значение всех элементов больше.
- 4. Даны два одномерных массива действительных чисел *и* и *v* глзмеров *n* и *m* соответственно. Составив функцию, вычисляющую среднее геом трическое элементов массива, найти разность среднего геометрического элементов массива, и и *v*.
- 5. Даны два массива натуральных чисел u и v размерог v и m соответственно. Составив функцию, выполняющую поиск наименьшего общег кратного элементов массива, найти наибольшее значение из НОК массивов u и v.
- 6. Даны два массива натуральных чисел u и v размер з i и m. Составив функцию, выполняющую поиск наибольшего общего делителя лементов массива, найти наименьшее значение из НОД для элементов массивов v v.
- 7. Дан одномерный массив действительны у асел u размера n. Составив функцию, выполняющую поиск максимального элемента массива среди его первых k элементов, выполнить сортировку массива u по в эрастанию методом выбора.
- 8. Дан одномерный массив действит эльн іх чисел u размера n. Составив функцию, выполняющую поиск минимальн это элемента массива среди его первых k элементов, выполнить сортировку массива u п у у у у у ыванию методом выбора.
- 9. Даны два одномерных массив д йствительных чисел u и v размеров n и m соответственно. Составив функцию, вы э. и ющую добавление к каждой ячейке массива заданное действительное число, найт m массивов, полученных суммой вектора u с каждым из элементов массива v.
- 10. Даны два одномерных мосства действительных чисел u и v размеров n и m соответственно. Составив функцик вычисляющую сумму только тех элементов массива, индекс которых является vи лом Фибоначчи, определить наибольшую из соответствующих сумм для ма x вов u и v.
- 11. Даны два массира действительных чисел u и v размеров n и m. В каждом массиве найти сумму его э не сентов, индекс которых является простым числом.
- 12. Даны два массть действительных чисел размеров n и m. Заменить в каждом из них все элементы, след эщие за наибольшим по модулю значением на единицу (если наибольших по модулю значений несколько, то заменить все элементы, следующие за первым из них).
- 13. Даны две матрицы действительных чисел размеров $n_1 \times m_1$ и $n_2 \times m_2$ соответственно. Паписать программу определяющую, в какой из матриц среднее арифметичес ое ее элементов наибольшее.
- 14. Дан массив, содержащий 2n вещественных чисел, в котором последовательно записан и ординаты вершин некоторого n-угольника: x_1 , y_1 , x_2 , y_2 , x_3 , y_3 , ... x_n , y_n . Найти значен из периметров n-угольника при увеличении каждой из координат на единицу. Напры тер, при n=3 и массиве, содержащем значения $\{0,0,2,0,0,2\}$ вывести значения шести периметров для n-угольников с координатами: $\{1,0,2,0,0,2\}$, $\{0,1,2,0,0,2\}$, $\{0,0,3,0,0,2\}$, $\{0,0,2,1,0,2\}$, $\{0,0,2,0,1,2\}$, $\{0,0,2,0,0,3\}$.
- 15. Дан одномерный массив действительных чисел u размера n. Составив функцию, выполняющую сдвиг элементов массива вправо с позиции k до позиции t, выполнить сортировку вектора u по возрастанию методом вставки (используя функцию сдвига).

- 16. Даны массивы целых чисел v и u размера n и m соответственно. Определить для массива v массив v_I , а для массива u массив u_I состоящие только из тех их элементов v и u соответственно, которые меньше целого числа k и являются полными квадратами (целое неотрицательное число n называется полным квадратом, если найдется целое число m такое, что $n = m^2$).
- 17. Даны два натуральных числа n и m. Определив функцию, составляющую массив, содержащий простые делители целого числа, найти наименьшее из сумм каждого третьего делителя для чисел n и m.
- 18. Составив функцию для удаления строки с заданным номер и и двумерного массива (с перераспределением памяти оставшиеся строки должны быть расположены плотно), решить следующую задачу. Дана матрица действительных члссл размера $n \times m$ и массив Ind размера k из целых чисел (k < n-1; элементы $0 \le Ina_l$: n < m). С помощью разработанных функций исключить из массива строки с инд n < m сами, хранящимися в массиве n < m
- 19. Даны две матрицы действительных чисел раз. еров $n_1 \times m_1$ и $n_2 \times m_2$ соответственно. Написать программу, определяющую след ка о і из матриц наибольший.
- 20. Даны два массива целых чисел размеров n и m целые числа k и t. Если в первом массиве нет ни одного элемента, совпадающ т с k, то первый элемент этого массива, не меньший всех остальных элементов, увсличить на k. По такому же правилу преобразовать второй массив применительно k значению k.
- 21. Даны два массива целых чисел разм ϵ_{P} ов n и m и целые числа k и t. Если в первом массиве все элементы не превосходят k, а во втором массиве все элементы не превосходят t, то в первом массиве заменть се элементы равные k значением t, в противном случае во втором массиве заменить се элементы, равные t значением t.
- 22. Даны две матрицы действитє вы ях чисел A и B размеров $n_1 \times m_1$ и $n_2 \times m_2$ соответственно $(n_1, m_1, n_2, m_2 \ge 2)$. F то умма элементов матрицы A кратна сумме элементов матрицы B, то необходимс томенять местами первую и последнюю строки каждой из матриц, в противном случае ьторую и предпоследнюю строки.
- 23. Дана матрица A действит применения данной функции μ м. Трице A.
- 24. Дана матрица A те. ствительных чисел размера $n \times m$ и вектор B действительных чисел размера m. Вывести м трицы, полученные заменой в матрице A каждой строки на вектор B.
- 25. Даны две мастицы действительных чисел A и B размеров $n_1 \times m_1$ и $n_2 \times m_2$ соответственно $(n_1, n_1, n_2, m_2 \ge 2)$. Составив функцию для вычисления суммы элементов вектора, проверить сто для матриц A и B сумма элементов каждой отдельной строки положительна. В да эсти номера строк, с не положительной суммой элементов.
- 26. Даны две матрицы действительных чисел A и B размеров $n_1 \times m_1$ и $n_2 \times m_2$ соответствеь то $(n_1, m_1, n_2, m_2 \ge 2)$, а также два натуральных числа k_1 и k_2 ($k_1 \le m_1, k_2 \le m_2$). Составив ϕ_1 нь дию для обмена значениями строк двумерного массива под номерами i и j, отсорти ϕ_1 ть матрицу A по возрастанию элементов столбца с индексом k_1 , а матрицу B по 1 озрастанию элементов столбца с индексом k_2 .
- 27. Дана матрица A действительных чисел размера $n \times n$. Составив функцию для обмена столбца и строки двухмерного массива, поменять местами те строки и столбцы матрицы A, первые элементы которых совпадают.
- 28. Даны n массивов действительных чисел, представляющие собой коэффициенты многочлена вида $a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$. Получить n массивов коэффициентов, полученных при делении многочленов на действительное число t.
- 29. Даны две матрицы действительных чисел A и B размеров $n_1 \times n_1$ и $n_2 \times n_2$ соответственно $(n_1, n_2, \ge 2)$. Составив функцию для вычисления суммы элементов

квадратной матрицы, которые расположены ниже главной диагонали, найти максимальное значение такой суммы в матрицах A и B.

- 30. Даны две матрицы действительных чисел A и B размеров $n_1 \times m_1$ и $n_2 \times m_2$ соответственно (n_1 , m_1 , n_2 , $m_2 \ge 2$). Составив функцию для поиска максимального из повторяющихся элементов матрицы, определить в какой из матриц A или B максимальный из повторяющихся элементов является минимальным.
- 31. Дана матрица A действительных чисел размера $n \times m$. Составив функцию, проверяющую есть ли отрицательные элементы в указанной строке двумерного массива, удалить из массива все строки с отрицательными элементами.
- 32. Дана матрица A действительных чисел размера $n \times m$. Состаь τ функцию, для поиска значения максимального элемента в одномерном массив , глынуть элементы каждой строки матрицы A циклически вправо на величину, р. лую значению ее максимального элемента (отрицательное значение максимума озн. лет сдвиг влево).
- 33. Дана матрица A действительных чисел размера $n \times n$. Составив функцию для вычисления скалярного произведения двух векторов одинаков, го размера, определить, является ли матрица A ортонормированной, т. е. такой, m скалярное произведение каждой пары ее различных строк равно 0, а скалярное проn n эдение строки самой на себя равно 1.
- 34. Дана матрица A действительных чисе. размера $n \times m$. Составив функцию, проверяющую по возрастанию или убыванию упорядочена указанная строка двумерного массива, упорядочить по возрастанию все строку матрицы A, которые не упорядочены по убыванию.
- 35. Даны две матрицы действите чьк чисел A и B размеров $n \times m$ и $m \times k$ соответственно $(n, m, k \ge 2)$. Составив функцию, вычисляющую сумму произведений соответствующих элементов двух вектор в одинакового размера, найти результат матричного умножения матрицы A на муже B.

Задача З

- 1. Напишите рекурсивную функцию для вывода на экран цифр натурального числа в обратном порядке.
- 2. Напишите ректр чвную функцию вычисления произведения цифр натурального числа.
- 3. Напишите регурсивную функцию нахождения максимальной цифры натурального числа n.
- 4. Напишите рекурсивную функцию вычисления количества цифр в натуральном числе n, то ладающих с цифрой m.
- 5. Даго га гуральное число n. Используя рекурсивную функцию определить сколько раз в него тречается его минимальная цифра.
- 6. Даны первый член и разность арифметической прогрессии. Напишите рекурсивную фучкцию для нахождения суммы *п* первых членов прогрессии.
- 7.) аны первый член и знаменатель геометрической прогрессии. Напишите рекурси (P) γ функцию для нахождения n-го члена прогрессии.
- 8. Напишите рекурсивную функцию вычисления двойного факториала (напр. 14ep, 5!!=1*3*5, 8!!=2*4*6*8).
- 9. Напишите рекурсивную функцию вычисления степени n числа n (n натуральное число).
- 10. Напишите рекурсивную функцию для расчета степени n действительного числа a (n целое число).
 - 11. Напишите рекурсивную функцию для расчета 2^n (n натуральное число).\
- 12. Напишите рекурсивную функцию вычисления суммы n первых чисел Фибоначчи (n целое, n > 1).

- 13. Напишите рекурсивную функцию вычисления сумму первых чисел Фибоначчи, не превышающих натурального k.
- 14. Напишите рекурсивную функцию для вычисления суммы $x + x^2 + x^3 + ... + x^n$ (x действительное, n натуральное число).
- 15. Напишите рекурсивную функцию для вычисления суммы $x + \frac{x}{2} + \frac{x}{3} + ... + \frac{x}{n}$ (x действительное, n натуральное число).
- 16. Напишите рекурсивную функцию для расчета значения следующего выражения при заданном целом неотрицательном n: $\sqrt{n+\sqrt{n-1+\sqrt{n-2}+...\sqrt{1}}}$
- 17. Используя рекурсивную функцию, вычислите значеги депной дроби: $x = 1 + \frac{1}{3 + \frac{1}{5 + \frac{1}{-\frac{1}{m}}}}$
- 18. Используя рекурсивную функцию, для заданчого числа n определить значение произведения $\frac{1}{3}\prod_{i=1}^{n}\frac{3^{i}}{3i+1}$
- 19. Используя рекурсивную функцию, для $3\iota \mathcal{F}a$ іного числа n определить значение суммы $\frac{n}{\sum_{i=1}^{n} i!}$
- 20. Используя рекурсивную функцию, дл. заданного числа n определить значение выражения $\sum_i \prod_j f(x)$, где $f(x) = x \cdot i + j$. x действительное число, i = 0,1,...n, j = 1,3,...2n-1.
- 21. Используя рекурсивную функци э, для заданного числа n определить значение выражения $\prod_i \sum_j f(x)$, где f(x) = x j = 1,2,...n.
- 22. Используя рекурсивную ф ти дию, для заданного числа n определить значение выражения $\prod_i \sum_j f(x)$, где $f(x) = x^i + x^j$, x действительное число, i = 0,1,...n, j = 1,2,...n-1.
- 23. Вася учится в третьем к тассе и сейчас он проходит тему «Простые дроби с натуральными числителем и з. аменателем». Оказывается, что дробь называется правильной, если ее числитель и знаменателя, и несократимой, если числитель и знаменатель являются взаимис тростыми. Вася очень любит математику и поэтому дома он решает много задач. У данный момент Вася ищет наибольшую правильную несократимую дробь, у ко орой сумма числителя и знаменателя равна *N*. Требуется написать программу, котор за поможет Васе решить эту задачу.

Входные данные - (дно целое число N (3 $\leq N \leq 2.10^9$).

Выходные да нь е - два числа – числитель и знаменатель найденной дроби, разделенные пробе и м.

- 24. Наг чыте рекурсивную функцию для возведения целого x в натуральную степень y с испол эванием алгоритма бинарного возведения в степень.
- 25. Задано натуральное число x. Найдите число способов представить его в виде суммы чет, гред натуральных чисел: x = a + b + c + d, где $a \le b \le c \le d$.

В одные данные - целое число x ($1 \le x \le 1500$).

Вых дные данные - ответ на задачу.

 \sim По данному числу N выведите все строки длины N из нулей и единиц в обратном лексикографическом порядке.

Входные данные - единственное число N ($1 \le N \le 10$)

Bыходные данные - все строки длины N из нулей и единиц в обратном лексикографическом порядке.

Пример входных данных:

2

Пример выходных данных:

10

01 00

- 27. Напишите рекурсивную функцию, которая переводит данное натуральное число в p-ичную систему счисления ($2 \le p \le 9$).
 - 28. Найдите перестановку по её номеру в лексикографическом порядке.

В первой строке входных данных содержится число N (1 \leq $N \leq$ 12) — количество элементов в перестановке, во второй — число K (1 \leq $N \leq$ $N \leq$ 1) — номер перестановки. Выведите N чисел — искомую перестановку.

Пример входных данных:

12

239500800

Пример выходных данных:

6 12 11 10 9 8 7 5 4 3 2 1

- 29. Напишите рекурсивную функцию, которая удаль эт из целого числа все цифры, совпадающие с цифрой k.
- 30. Напишите функцию для определения миним \mathfrak{d} ного элемента одномерного массива, использующую вспомогательную рекурсивну о функцию, находящую минимум среди последних элементов массива, начиная с k-го.
- 31. Напишите рекурсивную функцию root (a, b, e), которая методом деления отрезка пополам находит с точностью e корегь уравнения f(x) = 0 на отрезке [a, b] (считать, что e > 0, a < b, f(a) f(b) < 0 и f(x) генрезывная и монотонная на отрезке [a, b] функция).
- 32. Головоломка "Ханойские Седини" состоит из трех стержней, пронумерованных числами 1, 2, 3. На слержень 1 надета пирамидка из n дисков различного диаметра в порядке возраста. И диаметра. Диски можно перекладывать с одного стержня на другой по одному, при этом диск нельзя класть на диск меньшего диаметра. Необходимо переложить всю пирамидку со стержня 1 на стержень 3 за минимальное число перекладывани"

Напишите программу, ксторая для данного числа дисков n печатает последовательность перекладыв той в формате a b c, где a - номер перекладываемого диска, b - номер стержня с ксторого снимается данный диск, c - номер стержня на который надевается данный чиск. Например, строка 1 2 3 означает перемещение диска номер 1 со стержня 2 на стржень 3. В одной строке печатается одна команда. Диски пронумерованы числами γ 1 до n в порядке возрастания диаметров.

33. Легион — Сеновная организационная единица в армии Древнего Рима. В разное время легиот и имели разную численность и различное построение. Самым простым построечи ем была шеренга. Чтобы из N солдат легиона, выстроенных в шеренгу, отобрать троих в мазведку, выполнялись следующие операции: если солдат в шеренге больше трех, то шеренга разбивалась на две, одна из которых состоит из солдат, стоящих на четных позициях, а вторая — из стоящих на нечетных позициях. Для всех полученных шеренг эта тра цедура повторялась до тех пор, пока в каждой из них не останется не более трех со. Те. Если солдат осталось трое, то данную группу можно послать в разведку. Требустся эпределить, сколько групп по три человека может быть сформировано из исход эи шеренги.

Входные данные - единственное целое число N - количество солдат в шеренге ($0 \le N < 10^{18}$).

Выходные данные - одно целое число – количеть групп по три человека, сформированных из исходной шеренги.

34. Лесенкой называется набор кубиков, в ко. $\gamma_{\rm L}$ эм каждый более верхний слой содержит кубиков меньше, чем предыдущий. То вбуется написать программу, вычисляющую число лесенок, которое можно построить из N кубиков.

Входные данные - натуральное число N ($^1 \le N \le 100$) — количество кубиков в лесенке.

Выходные данные - число лесенок, кот $_{1}$ че можно построить из N кубиков.

35. Дано количество сообщений 13 1 екотором форуме (N натуральное, не более 1000). Также таблица, в которой указано как не сообщения на каком уровне находятся. В первой колонке таблицы написань номера сообщений (натуральные числа, не превосходят 10^6). Во второй колонке тапротив номера сообщения стоит либо 0, если сообщение является корнем (начал м) некоторой темы, либо номер того сообщения, ответом на которое является текуш \approx Например, для следующих исходных данных:

4

10

20

3 1

43

структуре форум из эглядит следующим образом:

Гита тируется что данные во втором столбце корректны (то есть в качестве «роди ель кого» может быть указано только существующее сообщение, а также что струк ра не имеет циклов и что от любого сообщения есть путь к «корню» форума).

Пусть администратор форума желает удалить сообщение с номером k (а также всю подветвь форума от этого сообщения). Сколько сообщений всего будет удалено (включая само сообщение номер k)?

 $Bxoдные\ данные\ -$ сначала вводится натуральное число N (не превышает 1000) – общее количество сообщений на форуме.

Затем вводится N строк таблицы, по 2 числа на строке — номер текущего сообщения и номер того сообщения, ответом на которое является текущее (или 0).

В последней строке вводится натуральное число k. Гарантируется, что сообщение с

