ГЛАВА Функции нескольких переменных (продолжение)

§ Экстремумы функции некольких переменных

Пусть функция $f(\mathbf{x})$ определена при $\mathbf{x} = (x_1, \dots, x_n)^T \in D \subset \mathbb{R}^n$.

Определение. 1) Точка $\mathbf{a} = (a_1, \dots, a_n)^T \in D$ называется точкой локального минимума функции $f(\mathbf{x})$, если:

$$\exists \delta > 0: \ \forall x \in (U_{\delta}(\mathbf{a}) \cap D) \ \Rightarrow \ f(\mathbf{x}) \ge f(\mathbf{a}).$$

2) Точка $\mathbf{a} = (a_1, \dots, a_n)^T \in D$ называется точкой локального максимума функции $f(\mathbf{x})$, если:

$$\exists \delta > 0 : \ \forall x \in (U_{\delta}(\mathbf{a}) \cap D) \ \Rightarrow \ f(\mathbf{x}) \leq f(\mathbf{a}).$$

Здесь

$$U_{\delta}(\mathbf{a}) = \{ \mathbf{x} \in \mathbb{R}^n : \ \rho(\mathbf{x}, \mathbf{a}) < \delta \}$$

 $-\delta$ -окрестность точки \mathbf{a} ; $\rho(\cdot)$ — метрика в пространстве \mathbb{R}^n .

Точки локального минимума и максимума называются точками локального экстремума.

Теорема (необходимые условия локального экстремума). Пусть \mathbf{a} — внутренняя точка области D, и функция $f(\mathbf{x})$ имеет частные производные по своим аргументам в этой точке. Тогда для того чтобы точка \mathbf{a} являлась точкой локального экстремума функции $f(\mathbf{x})$ необходимо, чтобы выполнялись условия:

$$f'_{x_i}(\mathbf{a}) = 0, \quad i = 1, \dots, n.$$

Доказательство. Рассмотрим функцию

$$F(x_1) = f(x_1, a_1, \dots, a_n).$$

Тогда точка $x_1 = a_1$ является точкой локального экстремума функции $F(x_1)$. По теореме Ферма имеем:

$$F'(a_1) = f'_{x_1}(\mathbf{a}) = 0.$$

Аналогично показывается равенство нулю в точке **a** остальных частных производных функции $f(\mathbf{x})$. Теорема доказана.

Замечание. Отметим, что необходимое условие локального экстремума: $f'_{x_i}(\mathbf{a}) = 0, \ i = 1, \dots, n$, можно переписать в виде: $df(\mathbf{a}) = 0$, или $\nabla f(\mathbf{a}) = \mathbf{0}$.

Замечание. Выписанные условия экстремума являются только необходимыми, но не достаточными. Например, пусть $f(x,y)=x^2-y^2$. Тогда $f'_x(0,0)=0$, $f'_y(0,0)=0$, но тем не менее точка (0,0) не является точкой локального экстремума функции f(x,y). В самом деле, $f(\delta,0)>0$, $f(0,\delta)<0$ для любого сколь угодно малого $\delta>0$, т.е. в любой окрестности точки (0,0) имеются как точки, в которых значение функции больше, чем f(0,0)=0, так и точки, в которых меньше.

Далее точку \mathbf{a} , для которой $df(\mathbf{a})=0$, будем называть стационарной точкой функции $f(\mathbf{x})$, или точкой, "подозрительной" на экстремум.

Замечание. Если точка а не является внутренней точкой области D и/или в этой точке не существуют частные производные функции $f(\mathbf{x})$, то пользоваться сформулированной выше теоремой, вообще говоря, нельзя.

Далее пусть в точке ${\bf a}$ выполнены необходимые условия локального экстремума. Для установления достаточных условий дополнительно предположим, что функция

 $f(\mathbf{x})$ имеет непрерывные частные производные до второго порядка включительно в окрестности точки \mathbf{a} . Тогда по формуле Тейлора для любой точки \mathbf{x} из этой окрестности имеем:

$$f(\mathbf{x}) = f(\mathbf{a}) + df(\mathbf{a}) + R_2,$$

где

$$R_2 = \frac{1}{2} \left(\frac{\partial}{\partial x_1} dx_1 + \ldots + \frac{\partial}{\partial x_n} dx_n \right)^2 f(\tilde{\mathbf{x}}) = \frac{1}{2} \sum_{i,j=1}^n f''_{x_i x_j}(\tilde{\mathbf{x}}) dx_i dx_j,$$

где $\tilde{\mathbf{x}}$ — некоторая точка, лежащая на отрезке, соединяющем точки \mathbf{a} и \mathbf{x} . Выражение R_2 представляет собой квадратичную форму относительно dx_1, \ldots, dx_n :

$$R_2 = \frac{1}{2} (\mathbf{dx})^T \mathbf{S}(\tilde{\mathbf{x}}) \mathbf{dx}.$$

Здесь $\mathbf{dx} = (dx_1, \dots, dx_n)^T$; $\mathbf{S}(\tilde{\mathbf{x}}) = \{f''_{x_i x_j}(\tilde{\mathbf{x}})\}_{i,j=1}^n$ — матрица Гессе в точке $\tilde{\mathbf{x}}$. Учитывая стационарность точки \mathbf{a} , получаем, что

$$\Delta f = f(\mathbf{x}) - f(\mathbf{a}) = R_2.$$

Таким образом, для того, чтобы точка $\bf a$ была точкой локального минимума (максимума), достаточно потребовать, чтобы выражение R_2 было положительным (отрицательным) при всех $\bf x$ из некоторой окрестности точки $\bf a$.

Для продолжения анализа рассмотрим некоторые результаты из теории квадратичных форм.

Квадратичной формой называется функция вида

$$\varphi(\mathbf{z}) = \mathbf{z}^T \mathbf{A} \mathbf{z} = \sum_{i,j=1}^n a_{ij} z_i z_j.$$

Здесь $\mathbf{z}=(z_1,\ldots,z_n)^T;\;\mathbf{A}=\{a_{ij}\}_{i,j=1}^n$ — симметричная матрица квадратичной формы.

Определение. *Квадратичная форма (матрица квадратичной формы) называется:*

- 1) положительно определенной, если $\varphi(\mathbf{z}) > 0$, $\forall \mathbf{z} \neq \mathbf{0}$;
- 2) отрицательно определенной, если $\varphi(\mathbf{z}) < 0, \forall \mathbf{z} \neq \mathbf{0};$
- 3) знакопостоянной положительной, если $\varphi(\mathbf{z}) \geq 0, \ \forall \mathbf{z} \in \mathbb{R}^n;$
- 4) знакопостоянной отрицательной, если $\varphi(\mathbf{z}) \leq 0, \ \forall \mathbf{z} \in \mathbb{R}^n;$
- 5) знакопеременной, если $\exists \mathbf{z}_1, \mathbf{z}_2 \in R^n : \varphi(\mathbf{z}_1) > 0, \ \varphi(\mathbf{z}_2) < 0.$

Пример. Пусть n=2. Тогда

- 1) $\varphi(x,y) = x^2 + y^2$ положительно определенная квадратичная форма;
- 2) $\varphi(x,y) = -x^2 y^2$ отрицательно определенная квадратичная форма;
- 3) $\varphi(x,y) = (x-y)^2$ знакопостоянная положительная квадратичная форма;
- 4) $\varphi(x,y) = -(x-y)^2$ знакопостоянная отрицательная квадратичная форма;
- 5) $\varphi(x,y) = x^2 y^2$ знакопеременная квадратичная форма.

Теорема (критерий Сильвестра). 1) Для того, чтобы квадратичная форма была положительно определенной необходимо и достаточно, чтобы все левые верхние угловые миноры ее матрицы были положительными.

2) Для того, чтобы квадратичная форма была отрицательно определенной необходимо и достаточно, чтобы левые верхние угловые миноры ее матрицы чередовали знак, начиная с "-".

Пример. Пусть

$$\varphi(z_1, z_2, z_3) = 3z_1^2 + 2z_2^2 + 4z_3^2 - z_1z_2 + 2z_1z_3 + 4z_2z_3.$$

Матрица этой квадратичной формы имеет вид:

$$\mathbf{A} = \begin{pmatrix} 3 & -1/2 & 1 \\ -1/2 & 2 & 2 \\ 1 & 2 & 4 \end{pmatrix}.$$

Вычислим ее левые верхние угловые миноры:

$$\Delta_1 = 3 > 0$$
, $\Delta_2 = 23/4 > 0$, $\Delta_3 = 7 > 0$.

Согласно критерию Сильвестра, данная квадратичная форма — положительно определенная.

Пример. Пусть

$$\varphi(z_1, z_2, z_3) = -z_1^2 - z_2^2 - z_3^2 + z_1 z_2.$$

Матрица этой квадратичной формы имеет вид:

$$\mathbf{A} = \begin{pmatrix} -1 & 1/2 & 0 \\ 1/2 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

Вычислим ее левые верхние угловые миноры:

$$\Delta_1 = -1 < 0$$
, $\Delta_2 = 3/4 > 0$, $\Delta_3 = -3/4 < 0$.

Согласно критерию Сильвестра, данная квадратичная форма — отрицательно определенная.

Вернемся теперь к рассмотрению экстремумов функции.

Теорема (достаточные условия локального экстремума). Пусть \mathbf{a} — внутренняя точка области D, функция $f(\mathbf{x})$ имеет непрерывные частные производные по своим аргументам в этой точке до второго порядка включительно, и $df(\mathbf{a}) = 0$. Тогда:

- 1) если матрица S(a) положительно определена, то a- точка локального минимума;
- 2) если матрица S(a) отрицательно определена, то a- точка локального максимима:
- 3) если матрица $\mathbf{S}(\mathbf{a})$ знакопеременная, то \mathbf{a} не является точкой локального экстремума;
- 4) если матрица S(a) знакопостоянная, но не знакоопределенная, то точка a может как являться точкой локального экстремума, так u не являться.

Для доказательства данной теоремы достаточно заметить, что, в силу непрерывности, если матрица Гессе положительно определена (отрицательно определена, знакопеременна) в точке \mathbf{a} , то тогда она будет таковой и во всех точках $\tilde{\mathbf{x}}$ из некоторой малой окрестности точки \mathbf{a} . Таким образом, в пунктах 1)–3) вопрос о достаточных условиях локального экстремума решается на основе проверки знака второго дифференциала $d^2 f(\mathbf{a})$.

Для иллюстрации пункта 4) теоремы рассмотрим функции $f_1(x,y) = x^4 + y^4$ и $f_2(x,y) = x^3 + y^3$. В обоих случаях точка (0,0) — это стационарная точка, и матрицы Гессе в этой точке — нулевые (знакопостоянные). Однако, для функции $f_1(x,y)$ точка (0,0) является точкой экстремума (минимума), а для функции $f_2(x,y)$ — нет.

Если матрица S(a) — знакопостоянная, но не знакоопределенная, то для построения достаточных условий локального экстремума надо задействовать производные и дифференциалы порядка выше второго (см. формулу Тейлора):

$$\Delta f = f(\mathbf{x}) - f(\mathbf{a}) = df(\mathbf{a}) + \frac{1}{2!}d^2f(\mathbf{a}) + \frac{1}{3!}d^3f(\mathbf{a}) + \frac{1}{4!}d^4f(\mathbf{a}) + \dots$$

Отметим, что хороших (простых) критериев проверки знакоопределенности однородных форм порядка выше 2, вообще говоря, нет.

Определение. 1) Точка $\mathbf{a} \in D$ называется точкой глобального минимума функции $f(\mathbf{x})$ в области D, если: $f(\mathbf{x}) \geq f(\mathbf{a})$, $\forall x \in D$.

2) Точка $\mathbf{a} \in D$ называется точкой глобального максимума функции $f(\mathbf{x})$ в области D, если: $f(\mathbf{x}) \leq f(\mathbf{a})$, $\forall x \in D$.

Точки глобального минимума и максимума называются точками глобального экстремума. Глобальные экстремумы (если они существуют) могут достигаться либо в точках локального экстремума внутри области D, либо на границе области D. Заметим, что для проверки граничных точек области D на экстремальность сформулированные выше теоремы применять нельзя. В этом случае можно воспользоваться методами поиска условного экстремума (см. далее).

Пример. Найдем экстремумы функции

$$f(x,y) = x^3 - 3xy + 2y^2 - y + 1$$

в пространстве \mathbb{R}^2 .

Выписываем необходимые условия экстремума:

$$f'_x = 3x^2 - 3y = 0$$
, $f'_y = -3x + 4y - 1 = 0$.

Данная система уравнений имеет два решения: (1,1) и $(-\frac{1}{4},\frac{1}{16})$.

Проверяем достаточные условия экстремума:

$$f_{x^2}'' = 6x$$
, $f_{xy}'' = -3$, $f_{y^2}'' = 4$.

Значит,

$$\mathbf{S}(x,y) = \begin{pmatrix} 6x & -3 \\ -3 & 4 \end{pmatrix}.$$

Матрица $\mathbf{S}(1,1)$ положительно определена, следовательно, точка (1,1) — точка локального минимума; матрица $\mathbf{S}(-\frac{1}{4},\frac{1}{16})$ — знакопеременная, следовательно, точка $(-\frac{1}{4},\frac{1}{16})$ не является точкой локального экстремума.

Нетрудно заметить, что

$$\sup_{R^2} f(x, y) = +\infty, \quad \inf_{R^2} f(x, y) = -\infty,$$

т.е. глобальных экстремумов в области R^2 у функции нет.

Пример. Рассмотрим задачу: найти экстремумы функции

$$f(x,y) = (x-1)^2 + (y-2)^2 + 1$$

при $(x,y) \in D$, где

$$D: x^2 + y^2 \le 9.$$

Ищем сначала локальные экстремумы внутри области D:

$$f'_x = 2(x-1) = 0, \quad f'_y = 2(y-2) = 0.$$

Получили одну стационарную точку: $(1,2) \in D$.

Имеем

$$f_{x^2}'' = f_{y^2}'' = 2, \quad f_{xy}'' = 0.$$

Строим матрицу Гессе:

$$\mathbf{S}(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}.$$

Она положительно определена при любых x и y, значит, (1,2) — точка локального (нетрудно заметить, что и глобального) минимума (см. рисунок 1).

Рис. 1.

Глобальный максимум функции в области D достигается на границе этой области. Из уравнения границы:

$$x^2 + y^2 = 9$$

можно исключить одну из переменных, например,

$$y = \pm \sqrt{9 - x^2}, \quad x \in [-3, 3],$$

и свести задачу к поиску безусловного экстремума:

$$F(x) = f(x, \pm \sqrt{9 - x^2}) = (x - 1)^2 + (\pm \sqrt{9 - x^2} - 2)^2 + 1 \to \text{extr}$$

при $x \in [-3, 3]$.

Можно уравнение границы записать в параметрическом виде:

$$\left\{ \begin{array}{ll} x=3\cos t,\\ y=3\sin t, \end{array} \right. \quad t\in [0,2\pi].$$

Тогда снова получим одномерную задачу на поиск безусловного экстремума:

$$\tilde{F}(t) = f(3\cos t, 3\sin t) = (3\cos t - 1)^2 + (3\sin t - 2)^2 + 1 \to \text{extr}$$
при $t \in [0, 2\pi].$

Решив полученную задачу в одной или другой форме, найдем глобальный максимум функции, достигаемый ею на границе области D. Также на границе области D имеется один локальный минимум.