Learning Loopy Graphical Models with Latent Variables: Efficient Methods and Guarantees

Anima Anandkumar

U.C. Irvine

Challenge: High-Dimensional Learning

Social Networks

Financial Modeling

Genetic Analysis

Neural Activity

Examples for Graphical Approaches

Modeling High-Dimensional Data

- Qualitative relationships: graph structure.
- Quantitative relationships: interaction strengths.

Topic Models

- Data: Word co-occurrences.
- Graph: Topic-word structure.

Financial Models

- Data: Stock returns.
- Graph: Company Classification.

Phylogenetics, Social Interactions, Computer Vision, ...

High-Dimensional Analysis

Steps Involved

- Estimate graph structure and strength of interactions.
- Employ the model to predict future behavior.

Focus on High-Dimensional Graph Estimation

- Graphical model on p (labeled) nodes
- n observations at the nodes

Challenges for High-Dimensional Estimation

- Computational Complexity: large p
- Sample Complexity: No. of samples n for consistency $(p \gg n)$
- Presence of Hidden or Latent Variables

Goals

Tractable regimes, Novel methods, Provable guarantees

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

• MLE: Max-weight tree with estimated mutual information weights

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice
- n samples and p nodes

Sample complexity:
$$\frac{\log p}{n} = O(1)$$
.

Data processing inequality for Markov chains

$$I(X_1; X_3) \le I(X_1; X_2), I(X_2; X_3).$$

Tree Structure Estimation (Chow and Liu '68)

- MLE: Max-weight tree with estimated mutual information weights
- Pairwise statistics suffice
- n samples and p nodes

Sample complexity:
$$\frac{\log p}{n} = O(1)$$
.

What other classes of graphical models are tractable for learning?

Beyond Tree Models: Motivation

Topic Models

- Common words in different topics.
- Presence of latent or hidden variables.

Efficient Methods for High-dimensional Graph Estimation.

State of Art Approaches

Approaches Employed

Combinatorial approaches, Convex relaxation.

Algorithms for Structure Estimation

- Chow and Liu (68): Tree estimation
- Meinshausen and Bühlmann (06): Convex relaxation
- Ravikumar, Wainwright, Lafferty (10): Convex relaxation
- Bresler, Mossel and Sly (09): Bounded-degree graphs ...

Learning with Hidden Variables

- Erdös, et. al. (99): Latent trees
- Daskalakis, Mossel and Roch (06): Latent trees
- Chandrasekaran, Parrilo and Willsky (11): Latent Gaussian models,

Structure Estimation in Latent Variable Models

- Number of hidden variables and location unknown
- Estimate graph over all variables

Structure Estimation in Latent Variable Models

- Number of hidden variables and location unknown
- Estimate graph over all variables

Structure Estimation in Latent Variable Models

- Number of hidden variables and location unknown
- Estimate graph over all variables

Structure Estimation in Latent Variable Models

- Number of hidden variables and location unknown
- Estimate graph over all variables

Contributions

- Trees and girth-constrained graphs.
- Algorithms based on pairwise statistics.
 - Local tests to recover global structure.
- Low sample and computational requirements
- Applicable in topic, financial and social domains

Graph Estimation in Loopy Models with Latent Variables

Outline

- Introduction
- 2 Structure Estimation in Latent Graphical Models
 - Latent Tree Models
 - Loopy Latent Models
- 3 Experiments
- 4 Conclusion and Extensions

- Number and location of hidden variables unknown
- Estimate graph over all variables
- Trees and girth-constrained graphs

- Number and location of hidden variables unknown
- Estimate graph over all variables
- Trees and girth-constrained graphs

Information Distances $[d_{i,j}]$ for Tree Models

Gaussian: $d_{ij} := -\log |\rho_{ij}|$. Discrete: $d_{ij} := -\log |\operatorname{Det}(P_{i,j})|$.

- Number and location of hidden variables unknown
- Estimate graph over all variables
- Trees and girth-constrained graphs

Information Distances $[d_{i,j}]$ for Tree Models

Gaussian:
$$d_{ij} := -\log |\rho_{ij}|$$
. Discrete: $d_{ij} := -\log |\operatorname{Det}(P_{i,j})|$.

$$[d_{i,j}]$$
 is an additive tree metric:

$$[d_{i,j}]$$
 is an additive tree metric: $egin{aligned} d_{k,l} = \sum_{(i,j) \in \operatorname{Path}(k,l;E)} d_{i,j}. \end{aligned}$

- Number and location of hidden variables unknown
- Estimate graph over all variables
- Trees and girth-constrained graphs

Information Distances $[d_{i,j}]$ for Tree Models

Gaussian:
$$d_{ij} := -\log |\rho_{ij}|$$
. Discrete: $d_{ij} := -\log |\operatorname{Det}(P_{i,j})|$.

$$[d_{i,j}]$$
 is an additive tree metric:

$$[d_{i,j}]$$
 is an additive tree metric: $egin{aligned} d_{k,l} = \sum_{(i,j) \in \operatorname{Path}(k,l;E)} d_{i,j}. \end{aligned}$

• Extensions for multivariate linear models (A. et. al. '11)

- Number and location of hidden variables unknown
- Estimate graph over all variables
- Trees and girth-constrained graphs

Information Distances $[d_{i,j}]$ for Tree Models

Gaussian:
$$d_{ij} := -\log |\rho_{ij}|$$
. Discrete: $d_{ij} := -\log |\operatorname{Det}(P_{i,j})|$.

$$[d_{i,j}]$$
 is an additive tree metric:

$$[d_{i,j}]$$
 is an additive tree metric: $egin{aligned} d_{k,l} = \sum_{(i,j) \in \operatorname{Path}(k,l;E)} d_{i,j}. \end{aligned}$

Extensions for multivariate linear models (A. et. al. '11)

Learning latent tree using $[\hat{d}_{i:i}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j \ \text{leaves with common parent}$
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

•
$$-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j \ \text{leaves with common parent}$$

• $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

•
$$-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$$
 leaves with common parent

• $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

Exact Statistics: Distances $[d_{i,j}]$

Let $\Phi_{ijk} := d_{i,k} - d_{j,k}$.

- $-d_{i,j} < \Phi_{ijk} = \Phi_{ijk'} < d_{i,j} \ \forall \ k, k' \neq i, j, \iff i, j$ leaves with common parent
- $\Phi_{ijk} = d_{i,j}$, $\forall k \neq i, j$, \iff i is a leaf and j is its parent.

Sample Statistics: ML Estimates $[\hat{d}_{i,j}]$

- Sibling test and remove leaves
- Build tree from bottom up

- Sibling test and remove leaves
- Build tree from bottom up

- Sibling test and remove leaves
- Build tree from bottom up

- Sibling test and remove leaves
- Build tree from bottom up

- Sibling test and remove leaves
- Build tree from bottom up

- Sibling test and remove leaves
- Build tree from bottom up

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Chow-Liu Based Grouping (Choi, Tan, A., Willsky '11)

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Chow-Liu Based Grouping (Choi, Tan, A., Willsky '11)

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Chow-Liu Based Grouping (Choi, Tan, A., Willsky '11)

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Efficient Initial Tree on Observed Nodes (MST)

Minimum spanning tree using edge weights $[\hat{d}_{i,j}]$.

Proof Ideas

Relating Chow-Liu Tree with Latent Tree

ullet Surrogate $\operatorname{Sg}(i)$ for node i: observed node with strongest correlation

$$\operatorname{Sg}(i) := \operatorname*{argmin}_{j \in V} d_{i,j}$$

Neighborhood preservation

$$(i,j) \in T \Rightarrow (\operatorname{Sg}(i),\operatorname{Sg}(j)) \in T_{\operatorname{ML}}.$$

Chow-Liu grouping reverses edge contractions

Proof by induction

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

Latent Models on Large Girth Graphs

 Pairwise statistics not related to trees in general

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

Latent Models on Large Girth Graphs

 Pairwise statistics not related to trees in general

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

Latent Models on Large Girth Graphs

 Pairwise statistics not related to trees in general

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

Latent Models on Large Girth Graphs

- Pairwise statistics not related to trees in general
- Under weak interactions (absence of long range correlations), local statistics converge to a tree limit.

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

Latent Models on Large Girth Graphs

- Pairwise statistics not related to trees in general
- Under weak interactions (absence of long range correlations), local statistics converge to a tree limit.

Motivation: Topic Models

- Common words among topics.
- Latent or hidden nodes.
- Typically long cycles: Locally tree-like.

Latent Models on Large Girth Graphs

- Pairwise statistics not related to trees in general
- Under weak interactions (absence of long range correlations), local statistics converge to a tree limit.

Local additivity $d_{k,l} \approx$

$$d_{k,l} \approx \sum_{(i,j) \in \text{Path}(k,l;E)} d_{i,j}.$$

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

- Consider local neighborhoods for building local MST
- Merge the MSTs to obtain a loopy graph
- Run latent tree routine on different local neighborhoods

Original Graph

Local CL Grouping

Guarantees for Latent Structure Learning

- Depth δ : worst-case distance between hidden and observed nodes.
- Parameter β : depends on min. and max. node and edge potentials
 - $\Rightarrow \beta = 1$ for homogeneous models.

Theorem (A., Valluvan '12)

Proposed method correctly recovers graph structure w.h.p. on p observed nodes and n samples when

$$\frac{J_{\min}^{-2\delta\beta(\beta+1)-2}\log p}{n} = O(1).$$

Guarantees for Latent Structure Learning

- Depth δ : worst-case distance between hidden and observed nodes.
- Parameter β : depends on min. and max. node and edge potentials
 - ightharpoonup eta = 1 for homogeneous models.

Theorem (A., Valluvan '12)

Proposed method correctly recovers graph structure w.h.p. on p observed nodes and n samples when

$$\frac{J_{\min}^{-2\delta\beta(\beta+1)-2}\log p}{n} = O(1).$$

• Fully observed case $\delta=0$: $n=\Omega(J_{\min}^{-2}\log p)$

Latent Models on Large Girth Graphs Akin to Latent Trees

Insights and Implications

Tradeoff between depth δ and girth g

Roughly require: $\delta < g/4$.

Tradeoff between max. edge strength $J_{\rm max}$ and degree Δ

Require $J_{\text{max}} < \text{atanh}(\Delta^{-1})$.

Insights and Implications

Tradeoff between depth δ and girth g

Roughly require: $\delta < g/4$.

Tradeoff between max. edge strength $J_{\rm max}$ and degree Δ

Require $J_{\text{max}} < \operatorname{atanh}(\Delta^{-1})$.

Sample complexity for uniform node sampling

Given ρ fraction of nodes as observed nodes,

$$n = \Omega\left(\Delta^2 \rho^{-4} (\log p)^5\right).$$

Necessary conditions for structure recovery

For any deterministic algorithm, the number of samples n needs to be

$$n = \Omega\left(\frac{\Delta_{\min}}{\rho}\log p\right)$$

Insights and Implications

Tradeoff between depth δ and girth q

Roughly require: $\delta < g/4$.

Tradeoff between max. edge strength $J_{\rm max}$ and degree Δ

Require $J_{\text{max}} < \operatorname{atanh}(\Delta^{-1})$.

Sample complexity for uniform node sampling

Given ρ fraction of nodes as observed nodes,

$$n = \Omega\left(\Delta^2 \rho^{-4} (\log p)^5\right).$$

Necessary conditions for structure recovery

For any deterministic algorithm, the number of samples n needs to be

$$n = \Omega\left(\frac{\Delta_{\min}}{\rho}\log p\right)$$

Outline

- Introduction
- 2 Structure Estimation in Latent Graphical Models
 - Latent Tree Models
 - Loopy Latent Models
- 3 Experiments
- Conclusion and Extensions

Outline

- Introduction
- Structure Estimation in Latent Graphical Models
 - Latent Tree Models
 - Loopy Latent Models
- 3 Experiments
- 4 Conclusion and Extensions

Summary and Outlook

Summary

- High-dimensional estimation via graphical approaches
- Model classes where learning is tractable
- Efficient methods for learning
- Guarantees on sample and computational complexities

Summary and Outlook

Summary

- High-dimensional estimation via graphical approaches
- Model classes where learning is tractable
- Efficient methods for learning
- Guarantees on sample and computational complexities

Outlook

- Removing girth constraint on latent models
- Characterizing criterion for tractable learning
- Learning beyond regime of correlation decay

Structure Estimation in Random Graph Models

- Fully observed models (no latent nodes)
- Random graph models such as Erdős-Rényi and small world

Structure Estimation in Random Graph Models

- Fully observed models (no latent nodes)
- Random graph models such as Erdős-Rényi and small world

Structure Estimation in Random Graph Models

- Fully observed models (no latent nodes)
- Random graph models such as Erdős-Rényi and small world

Structure Estimation in Random Graph Models

- Fully observed models (no latent nodes)
- Random graph models such as Erdős-Rényi and small world

Graph Estimation Through Search for Vertex Separators

 Naïve search for separators is exponential in maximum node degree

Structure Estimation in Random Graph Models

- Fully observed models (no latent nodes)
- Random graph models such as Erdős-Rényi and small world

- Naïve search for separators is exponential in maximum node degree
- Novel criterion: sparse local separation

Structure Estimation in Random Graph Models

- Fully observed models (no latent nodes)
- Random graph models such as Erdős-Rényi and small world

- Naïve search for separators is exponential in maximum node degree
- Novel criterion: sparse local separation

Structure Estimation in Random Graph Models

- Fully observed models (no latent nodes)
- Random graph models such as Erdős-Rényi and small world

- Naïve search for separators is exponential in maximum node degree
- Novel criterion: sparse local separation
- A large family of graphs have sparse local separators: e.g small world, Erdős-Rényi .

Structure Estimation in Random Graph Models

- Fully observed models (no latent nodes)
- Random graph models such as Erdős-Rényi and small world

Graph Estimation Through Search for Vertex Separators

- Naïve search for separators is exponential in maximum node degree
- Novel criterion: sparse local separation
- A large family of graphs have sparse local separators: e.g small world, Erdős-Rényi .

Novel Criteria for High-Dimensional Estimation

Extensions and Connections

Topology Discovery With Few Participants (A., Hassidim, Kelner '11)

- End-to-end delays between participants in Erdős-Rényi random graph
- Edit distance guarantees with vanishing fraction of participants

Extensions and Connections

Topology Discovery With Few Participants (A., Hassidim, Kelner '11)

- End-to-end delays between participants in Erdős-Rényi random graph
- Edit distance guarantees with vanishing fraction of participants

Covariance Decomposition

- Multiple graphs: combination of statistical relationships
- Markov and Independence Domains

Extensions and Connections

Topology Discovery With Few Participants (A., Hassidim, Kelner '11)

- End-to-end delays between participants in Erdős-Rényi random graph
- Edit distance guarantees with vanishing fraction of participants

Covariance Decomposition

- Multiple graphs: combination of statistical relationships
- Markov and Independence Domains

Graphical Model Mixtures

- Multiple graphs: context specific dependencies
- Hidden context
- Learning guarantees

The Big Picture

http://newport.eecs.uci.edu/anandkumar