MATH 2330: Multivariable Calculus

Section 5.2: Double Integrals over General Regions

Vertically Simple or Type I Regions:

$$\iint_D f(x,y) \ dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \ dy \ dx$$

Horizontally Simple or Type II Regions:

$$\iint_D f(x,y) \ dA = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \ dx \ dy$$

Type I or Type II?

Classify each of the following regions as type I, type II, both, or neither.

Examples:

Example 1: Find the volume of the region under f(x,y)=4x+10y above the region D in the xy-plane that is bounded below by y=x and above by $y=x^2$, to the left by x=1 and to the right by x=2.

Example 2: Evaluate $\iint_D x^2 + y^2 \ dA$ where D is the region in the xy-plane bounded by x = y and $x = y^2$.

Example 3: Evaluate $\int_0^1 \int_x^1 e^{y^2} dy dx$.

Example 4: Evaluate $\iint_D x + y \ dA$ for the region D shaded below.

Group Work:

Fun with Double Integration

- **1.** Write double integrals that represent the following areas.
 - (a) The area enclosed by the curve $y \mid x \mid x^2$ and the line $y \mid \frac{x}{x}$

(c) The area enclosed by the curves $y ! = \frac{\pi}{x}$ and $\frac{\pi}{y} ! x$, and the line $y ! \frac{1}{2}$

(d) The area enclosed by the curves $y \mid x^2$ and $y \mid x^2 \mid x^2$, and the line $y \mid 0$

2. What solid region of R³ do you think is represented by $\frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{\#}{\frac{1}{1} x^2} \frac{\#}{1 \times x^2} \frac{1}{1} \frac{x^2}{y^2} dy dx$?