

AIT Austrian Institute of Technology

Accessing remote I/Os with Ethernet POWERLINK and 4DIAC

Filip Andrén Electrical Energy Systems Energy Department

W3 Second 4DIAC User's Workshop (4DIAC)

16th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA'2011) September 5th-9th, 2011, Toulouse, France

Content

- Introduction / Motivation
- Overview Ethernet POWERLINK and openPOWERLINK
- IEC 61499 Integration of Ethernet POWERLINK
- 4DIAC/openPOWERLINK Toolchain
- Configuration of Decentralized I/O Modules
- Implemented Test Case
- Future Activities

Introduction / Motivation

4DIAC and POWERLINK

- New control environment needed for AIT power distribution laboratory
 - Switches and loads
 - Control devices
 - Measurement units
- Based on standardized methods and free/open source
 - IEC 61499 as distributed control system
 - 4DIAC for distributed control
 - openPOWERLINK for decentralized I/O access
- Integration of openPOWERLINK and 4DIAC Framework needed
 - Development of IEC 61499 Ethernet POWERLINK I/O SIFBs
 - Integration of the openPOWERLINK stack into the FORTE (4DIAC-RTE)

Overview Ethernet POWERLINK

Main Characteristics

- Standard Ethernet
 - Only real-time solution based on standard Ethernet
 - Fully compliant to IEEE 802.3
 - Ready for future evolutions of Ethernet
- High performance
 - 100 Mbits/s
 - 100 ns synchronization
 - 100 µs cycle time
- Simplicity
 - Basic and robust mechanism
 - No complex time synchronization
 - Adequate to industrial automation

Source: Ethernet POWERLINK Standardisation Group (EPSG)

Overview openPOWERLINK

Main Characteristics

- openPOWERLINK
 - Open Source POWERLINK stack (MN/CN)
 - Developed by SYS TEC electronic GmbH
 - Released under Open Source BSD license
 - Generic code (multi-platform)
 - Hosted on SourceForge
- Two stack implementations for Linux
 - Linux kernel module (max. performance)
 - Userspace library using libpcap
- Stack implementation on Windows
 - Implementation based on WinPcap library

Concept Overview

IEC 61499 System Model

Function Block Library

Master Node FB

Function Block Library

Client Node FBs – Generic I/O FB

9

IEC 61499 Integration of Ethernet POWERLINK

Function Block Library

Client Node FBs – Analogue I/O FBs

Function Block Library

Client Node FBs – Digital I/O FBs

4DIAC Integration

openPOWERLINK stack access through wrapper class

4DIAC/openPOWERLINK Toolchain

Distributed IEC 61499 System with Decentralized I/O Modules

- Necessary Tools/Software
 - FieldbusDESIGNER
 - openCONFIGURATOR
 - 4DIAC-IDE
 - FORTE

Configuration of Decentralized I/O Modules

- Two Possibilities
 - Originally with header xap.h → compilation of FORTE necessary
 - Configuration using xap.xml & mnobd.cdc
 - → no need to compile FORTE for every new I/O setup

Implemented Test Case

Hardware Setup

Test Application

Implemented Test Case

Control Application

Control Application Resource

Implemented Test Case

Control Application

IO Resource Application

Future Activities

Plans for the upcoming months

- Implementation of additional I/O modules (e.g. temperature module, etc.)
- Porting to Linux
- Documentation of the source code
- User documentation
- Further tests in the AIT laboratory environment
- Provision as 4DIAC open source module under the EPL

AIT Austrian Institute of Technology

your ingenious partner

Filip Andrén

Electrical Energy Systems

Energy Department

AIT Austrian Institute of Technology

Österreichisches Forschungs- und Prüfzentrum Arsenal Ges.m.b.H.

Giefinggasse 2 | 1210 Vienna | Austria

P +43(0) 50550-6680 | M +43(0) 664 2351916 | F +43(0) 50550-6390

filip.andren@ait.ac.at | http://www.ait.ac.at