# Simulering og eksperimentel modelbestemmelse

Klaus Trangbæk

ktr@es.aau.dk

Automation & Control
Aalborg University
Denmark

# Dagens program

- Modeller og modellering: koncepter
  - Definitioner
  - Simulering
  - Matematiske modeller
- Modelbeskrivelse
  - Overføringsfunktioner
  - Tilstandsbeskrivelse
  - Blok-diagrammer
- Diskretiseringsmetoder
- Simulering af lineære og ulineære dynamiske systemer i Matlab

# Modeller og modellering: koncepter

#### **Definition:**

**Model:** en repræsentation – i en brugbar form – af de essentielle dele af et system.

# Karakterisering af modeller/modellering

#### Modeller:

```
matematiske – andre
parametriske – ikke-parametriske
kontinuert tid – diskret tid
input/output – tilstands
lineære – ulineære
dynamisk – statisk
tidsinvariant – tidsvarierende
SISO – MIMO
```

Modellering/systemidentifikation:

```
teoretisk (fysisk) – eksperimentel
white-box – gray-box – black-box
strukturbestemmelse – parameter-estimation
tidsdomæne – frekvensdomæne
direkte – indirekte
```

# **Fysiske parametre**

Fysiske parametre er modelparametre med en indlysende fysisk mening eller betydning.

# **Simulering**

#### Formål:

- At opnå forståelse af systemet
- Forudsigelse af fremtidigt system output
- Design og test af kontrolsystem
- Optimering af konstruktion
- Træning af operatører på real-tids simulatorer
- Model parameter estimation fra eksperimenter

# **Simulering**

#### Formål:

- At opnå forståelse af systemet
- Forudsigelse af fremtidigt system output
- Design og test af kontrolsystem
- Optimering af konstruktion
- Træning af operatører på real-tids simulatorer
- Model-parameter-estimation fra eksperimenter

#### En computer simulation forudsætter:

- En diskrettids-model
- Mulighed for at udføre eksperimenter på modellen, fx. specificere inputsignal og parametre
- Grafiske værktøjer til at præsentere resultatet

## **Matematiske Modeller**

#### Modelbeskrivelser:

- Overføringsfunktion
- Tilstandsbeskrivelse
- Blok-diagram

# Diskretiseringsmetoder

| Navn                             | Algoritme                                                      | Karakteristik                    |
|----------------------------------|----------------------------------------------------------------|----------------------------------|
| Forward Euler                    | $s \to \frac{z-1}{T}$                                          | x'(t) konstant over perioden     |
| Tustin (Bilineær transformation) | $s \to \frac{2}{T} \frac{z-1}{z+1}$                            | x'(t) variere lin. over perioden |
| Step invariant (ZOH ækvivalent)  | $G_d(z) = (1 - z^{-1})Z\{\frac{1}{s}G(s)\}$                    | u(t) konstant over perioden      |
| Ramp invariant (Tr H ækvivalent) | $G_d(z) = \frac{(1-z^{-1})^2}{z^{-1}T} Z\{\frac{1}{s^2}G(s)\}$ | u(t) variere lin. over perioden  |
| Pole-Zero<br>mapping             | $z_0 = e^{s_0 T}$                                              |                                  |

### Invariante transformationer

Givet et analogt system G(p).

Bestem overføringsfunktionen  $G_d(q)$  for et diskret system (modellen), så outputtene er ens til samplingstidspunkterne:

$$t = kT \quad \Rightarrow \quad y_d(k) = y(kT)$$





# Simulering af lineært system i Matlab

Senstools behøver en Matlab funktion: y = simprocess(u,t,par)

Eksempel: Lineært system  $\frac{Y(s)}{U(s)} = \frac{K}{1 + s\tau}$ 

- a) Tistandsmodel og for-løkke
- b) 'filter'/'dlsim' funktion
- c) 'Isim' fkt.

# Simulering af ulineært system i Matlab



$$e < -e_0$$
:  $u = -u_0$ 

Mætning: 
$$-e_0 \le e \le e_0$$
:  $u = ke$ 

$$e_0 < e$$
:  $u = u_0$ 

# Modellering og simulering af højttaler

#### Steprespons:



# Ulineær højttalermodel

#### Steprespons:



# Simulering af ulineært system i Matlab

Senstools behøver en Matlab funktion: y = simprocess(u,t,par)

- a) Tistandsmodel og for-løkke
- b) 'odexxx' funktion
- c) 'simulink'

# Næste Forelæsning

Næste gang ser vi på:

- Senstools
- Parameter-estimation med Senstools