

Непараметрическое оценивание

Непараметрическая оценка плотности. Потери, риск. Ядерная оценка плотности.

ПМИ ФКН ВШЭ, 20 октября 2018 г.

Денис Деркач 1

¹ФКН ВШЭ

Оглавление

Непараметрическая оценка плотности

Постановка задачи

Потери, риск

Определение параметра сглаживания

Доверительная трубка для плотности

Ядерная оценка плотности

Выбор ширины ядра

Доверительный интервал для усредненной плотности

Многомерный случай

Непараметрическая регрессия

Доверительная трубка для функции регрессии

Многомерный случай

Непараметрическая оценка плотности

Постановка задачи

Пусть задана выборка: $X_1,\dots,X_n\sim F$. F - абсолютно непрерывная функция распределения с неизвестной плотностью p. Необходимо оценить p в точке x, т.е. построить $\hat{p}_n(x)=\hat{p}_n(x;X_1,\dots,X_n)$.

NB: Ранее в аналогичных задачах мы искали $p \in \{p(x;\theta), \theta \in \Theta\}, \Theta \subset \mathbb{R}^n$, где есть зависимость от параметров.

MSE, функция риска

Пусть в точке x_0 построена оценка $\hat{p}_n(x_0)$ плотности. Рассматривая квадратичную функцию потерь, приходим к следующему понятию.

Определение

Mean Square Error:

$$MSE(\hat{p}_n, p; x_0) = \mathbb{E}_p[(\hat{p}_n(x_0) - p(x_0))^2].$$

MISE

Если же построена оценка $\hat{p}_n(x) \, \forall x \in \mathbb{R}$, то

Определение

Mean Integrated Squared Error:

$$MISE(\hat{p}_n, p) = \mathbb{E}_p \left[\int_{\mathbb{R}} (\hat{p}_n(x) - p(x))^2 dx \right].$$

Bias

Определение

Смещение (bias)

$$bias(x_0) = \mathbb{E}_p \hat{p}_n(x_0) - p(x_0)$$

Разложение ошибки

Лемма

$$MSE(\hat{p}_n, p, x_0) = bias^2(x_0) + \text{Var}_p \hat{p}_n(x_0) =$$

= $[\mathbb{E}_p \hat{p}_n(x_0) - p(x_0)]^2 + \mathbb{E}_p [\hat{p}_n(x_0) - \mathbb{E}_p \hat{p}_n(x_0)]^2$

Лемма

$$MISE(\hat{p}_n, p) = \int_{\mathbb{R}} bias^2(x)dx + \int_{\mathbb{R}} Var_p \hat{p}_n(x)dx$$

Гистограмма

Простейший способ оценить плотность - построить гистограмму Возьмём интервал $[a,b)\ni X_1,\dots X_n$ Поделим его на M равных частей Δ_i размера $h=\frac{b-a}{M}$:

$$\Delta_i = [a+ih, a+(i+1)h), i=0,1,\ldots,M-1].$$

Пусть ν_i - число элементов выборки, попавших в Δ_i ;

Определение

$$\hat{p}_n(x) = \begin{cases} \frac{\nu_0}{nh}, & x \in \Delta_0, \\ \dots & \\ \frac{\nu_{N-1}}{nh}, & x \in \Delta_{M-1}; \end{cases} = \frac{1}{nh} \sum_{i=0}^{M-1} \nu_i \mathbb{I}\{x \in \Delta_i\}$$

При
$$x\in\Delta_i$$
 и малом h : $\mathbb{E}_p\hat{p}_n(x)=\frac{\mathbb{E}\nu_j}{nh}=\frac{\int\limits_{\Delta_j}^{}p(u)du}{h}\approx\frac{p(x)h}{h}=p(x)$ Денис Деркач

Непараметрическая оценка плотности

Постановка задачи Потери, риск

Определение параметра сглаживания

Доверительная трубка для плотности Ядерная оценка плотности

Выбор ширины ядра Доверительный интервал для усредненной плотности Многомерный случай

Непараметрическая регрессия

Доверительная трубка для функции регрессии Многомерный случай

Гистограмма: определение параметра сглаживания

Рассмотрим выбор h - параметра сглаживания Проведём вычисления для $x_0 \in \Delta_j$:

$$bias(x_0) = \mathbb{E}_p \hat{p}_n(x_0) - p(x_0) = \frac{1}{h} \int_{\Delta_j} p(x) dx - \frac{1}{h} \int_{\Delta_j} p(x_0) dx =$$

$$= \frac{1}{h} \int_{\Delta_j} (p(x) - p(x_0)) dx \approx \frac{1}{h} \int_{\Delta_j} p'(x_0) (x - x_0) dx \approx$$

$$\approx p'(x_0) [a + (j + \frac{1}{2})h - x_0]$$

$$\int_{a}^{b} bias^{2}(x_{0})dx_{0} = \sum_{j=0}^{N-1} \int_{\Delta_{j}} bias^{2}(x_{0})dx_{0} =$$

$$= \sum_{j=0}^{N-1} \int_{\Delta_{j}} [p'(x_{0})]^{2} [a + (j + \frac{1}{2})h - x_{0}]^{2} dx_{0} \approx$$

$$\approx \sum_{j=0}^{N-1} [p'(a + (j + \frac{1}{2})h)]^{2} \int_{\Delta_{j}} (a + (j + \frac{1}{2})h - x_{0})^{2} dx_{0}$$

$$= \sum_{j=0}^{N-1} [p'(a + (j + \frac{1}{2})h)]^{2} \left(-\frac{(a + (j + \frac{1}{2})h - x_{0})^{3}}{3} \right) \Big|_{\Delta_{j}} \approx$$

$$pprox \left(\int\limits_{a}^{b} [p'(x)]^2 dx\right) \frac{h^2}{12}.$$

$$\mathbb{V}ar_{p}\hat{p}_{n}(x_{0}) = \mathbb{V}ar_{p}\frac{\nu_{j}}{nh} = \frac{1}{(nh)^{2}}\mathbb{V}ar_{p}\nu_{j} =$$

$$= \frac{1}{(nh)^{2}}n\int_{\Delta_{j}}p(x)dx(1 - \int_{\Delta_{j}}p(x)dx) \approx \frac{1}{nh^{2}}\int_{\Delta_{j}}p(x)dx$$

$$\int_{a}^{b}\mathbb{V}ar_{p}\hat{p}_{n}(x_{0})dx_{0} = \sum_{j=0}^{N-1}\left(\frac{1}{nh^{2}}\int_{\Delta_{j}}p(x)dx\right)h =$$

$$= \frac{1}{nh}\int_{a}^{b}p(x)dx = \frac{1}{nh}$$

Таким образом,

undersmoothing.

$$MISE(\hat{p}_n, p) = \left(\int_{\mathbb{R}} [p'(x)]^2 dx\right) \frac{h^2}{12} + \frac{1}{nh}$$

Чем больше h, тем больше смещение и меньше дисперсия, и наоборот. Это называется <u>bias-variance tradeoff.</u> Ситуации с большим h - oversmoothing, с маленьким -

Пример неоптимального сглаживания

Значение h, при котором MISE минимальный

$$h^* = \frac{1}{n^{\frac{1}{3}}} \left(\frac{6}{\int_{\mathbb{R}} [p'(x)]^2 dx} \right)^{\frac{1}{3}}.$$

При этом

$$MISE(\hat{p}_n,p)pprox rac{C}{n^{rac{2}{3}}},$$
 где $C=\left(rac{3}{4}
ight)^{rac{2}{3}}\left(\int\limits_{\mathbb{R}}[p'(x)]^2dx
ight)^{rac{1}{3}}.$

Таким образом, при использовании гистограммы с оптимальным h, MISE убывает как $n^{-\frac{2}{3}}$:

На практике h^* нельзя вычислить, так как h^* зависит от неизвестной истинной плотности.

Поэтому оценим MISE и минимизируем по h оценку.

Так как:

$$\int_{\mathbb{R}} (\hat{p}_n(x) - p(x))^2 dx = \int_{\mathbb{R}} \hat{p}_n(x)^2 dx - 2 \int_{\mathbb{R}} \hat{p}_n(x) p(x) dx + \int_{\mathbb{R}} p(x)^2 dx,$$

то достаточно оценить и минимизировать только

$$\mathcal{J}(h) = \int_{\mathbb{R}} \hat{p}_n(x)^2 dx - 2 \int_{\mathbb{R}} \hat{p}_n(x) p(x) dx.$$

Определение

Оценка риска с помощью кросс-валидации:

$$\hat{\mathcal{J}}(h) = \int_{\mathbb{R}} [\hat{p}_n(x)]^2 dx - \frac{2}{n} \sum_{i=1}^n \hat{p}_{(-i)}(X_i),$$

где $\hat{p}_{(-i)}$ - оценка гистограммы по выборке без i-ого наблюдения.

Теорема

$$\mathbb{E}\hat{\mathcal{J}}(h) \approx \mathbb{E}\mathcal{J}(h)$$

Теорема

Для гистограм оценка функции риска:

$$\hat{\mathcal{J}}(h) = \frac{2}{(n-1)h} - \frac{n+1}{(h-1)h} \sum_{j=1}^{M} \left(\frac{\nu_j}{n}\right)^2$$

Типичное поведение $\hat{\mathcal{J}}(h)$ имеет вид:

Таким образом, вместо неизвестного MISE можно минимизировать $\hat{\mathcal{J}}(h)$ и найти оптмимальное h_{cv} , которое будет недалеко от $h_{id}=h^*$.

Непараметрическая оценка плотности

Постановка задачи

Потери, риск

Определение параметра сглаживания

Доверительная трубка для плотности

Ядерная оценка плотности

Выбор ширины ядра

Миогомериный случай

Многомерный случай

Непараметрическая регрессия

Доверительная трубка для функции регрессии Многомерный случай

Пусть необходимо построить доверительные интервалы для p. Для этого будем использовать гистограмму $\hat{p}_n(x)$, определенную ранее.

Определим

$$\overline{p_n}(x)=\mathbb{E}\hat{p}_n(x)=rac{\int_{\Delta_j}p(u)du}{h}$$
 для $x\in\Delta_j$. По сути, $\overline{p_n}$ - "гистограммное" усреднение плотности p .

Определение

Пара функций $(p_-(x), p_+(x))$ является $1 - \alpha$ доверительной областью (трубкой), если для любого x:

$$\mathbb{P}_p\left(p_-(x) \le \overline{p_n}(x) \le p_+(x)\right) \ge 1 - \alpha$$

Теорема

Пусть M=M(n) - число ячеек в гистограмме \hat{p}_n , причем $M(n)\to\infty$ и $\frac{M(n)\log(n)}{n}\to\infty$ при $n\to\infty$.

Определим

$$p_{-}(x) = (\max{\{\sqrt{\hat{p}_{n}(x)} - C, 0\}})^{2}, p_{+}(x) = (\sqrt{\hat{p}_{n}(x)} + C)^{2},$$

где
$$C=rac{1}{2}z_{rac{lpha}{2M}}\sqrt{rac{M}{n(b-a)}}$$

Тогда $(p_-(x),p_+(x))$ является $1-\alpha$ доверительным интервалом.

Из центральной предельной теоремы

$$\frac{\nu_j}{n} = \frac{1}{n} \sum_{i=1}^n \mathbb{I}\{x_i \in \Delta_j\} \sim \mathcal{N}\left(\int_{\Delta_j} p(x)dx, \frac{\int_{\Delta_j} p(x)dx(1-\int_{\Delta_j} p(x)dx)}{n}\right)$$

Согласно дельта-методу
$$\sqrt{\frac{\nu_j}{n}} \sim \mathcal{N}\left(\sqrt{\int\limits_{\Delta_j} p(x)dx}, \frac{1}{4n}\right)$$
. Более того, можно показать, что $\sqrt{\frac{\nu_j}{n}}$ приблизительно независимы. Тогда $2\sqrt{n}\left(\sqrt{\frac{\nu_j}{n}}-\sqrt{\int\limits_{\Delta_j} p(x)dx}\right) pprox \xi_j$, где $\xi_0,\dots,\xi_{M-1}\sim \mathcal{N}(0,1)$.

Доверительная трубка

$$A = \{p_{-}(x) \le \overline{p_{n}}(x) \le p_{+}(x) \forall x\} =$$

$$= \{\sqrt{p_{-}(x)} - c \le \sqrt{\overline{p_{n}}(x)} \le \sqrt{p_{+}(x)} + c \forall x\} =$$

$$= \{\max_{x} |\sqrt{\hat{p}(x)} - \sqrt{\overline{p_{n}}(x)}| \le c\}$$

Тогда
$$\mathbb{P}(A^c) = \mathbb{P}\{\max_x | \sqrt{\hat{p}_n(x)} - \sqrt{\overline{p_n}(x)}| > c\} = \mathbb{P}\left\{\max_{j=\overline{0,M-1}} \left| \sqrt{\frac{\nu_j}{nh}} - \sqrt{\frac{\Delta_j}{nh}} \right| > c\right\} \approx \mathbb{P}\left\{\max_{j=\overline{0,M-1}} \frac{|\xi_j|}{2\sqrt{nh}} > \frac{z_{\frac{\alpha}{2n}}}{2}\sqrt{\frac{M}{n(b-a)}}\right\} = \mathbb{P}\{\max_{j=\overline{0,M-1}} |\xi_j| > z_{\frac{\alpha}{2M}}\} \leq \sum_{j=0}^{M-1} \mathbb{P}\{|\xi_j| > z_{\frac{\alpha}{2M}}\} = \sum_{j=0}^{M-1} \frac{\alpha}{M} = \alpha,$$

т.е. для предъявленных $p_-(x), p_+(x)$ выполнено определение доверительной трубки.

Комментарии о доверительных трубках

- > Важным условием для предыдущего вывода является наличие большого количества семплов n. В случае малого количества семплов ситуация может отличаться, в зависисости от использованного метода оценки.
- > Разные отрасли используют разные определения ширины доверительной трубки (от 68% до 100%).

Непараметрическая оценка плотности

Постановка задачи
Потери, риск
Определение параметра сглаживания
Доверительная трубка для плотности

Ядерная оценка плотности

Выбор ширины ядра Доверительный интервал для усредненной плотности Многомерный случай

Непараметрическая регрессия

Доверительная трубка для функции регрессии Многомерный случай

Ядерная оценка плотности

Позволяет получить более гладкие по сравнению с гистограммной оценки, быстрее сходящиеся к плотности.

Определение

Ядро - функция K такая, что

$$K(x) \ge 0, \int\limits_{\mathbb{R}} K(x)dx = 1, \int\limits_{\mathbb{R}} xK(x)dx = 0, \sigma_K^2 \equiv \int\limits_{\mathbb{R}} x^2K(x)dx$$

Ядерная оценка плотности

Определение

Ядерная оценка плотности имеет вид:

$$\hat{p}_n(x) = rac{1}{nh} \sum_{i=1}^n K\left(rac{x-x_i}{h}
ight), h -$$
ширина ядра

Виды ядер

Examples

- **◄** $K(x) = \frac{1}{2} \mathbb{I}\{|x| < 1\}$ прямоугольное ядро
- $lacktriangledown K(x) = (1-|x|)\mathbb{I}\{|x|<1\}$ треугольное ядро
- $\blacktriangleleft K(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$ Гауссовское ядро
- $lacktriangledown K(x) = rac{3}{4}(1-x^2)\mathbb{I}\{|x|<1\}$ ядро Епанечникова

Далее мы будем рассматривать только гладкие ядра.

Примеры ядер

Вид ядерной функции K влияет на "качество" оценки не так сильно, как выбор ширины ядра h.

Выбор ширины ядра

Теорема

$$MISE(\hat{p}_n, p) \approx \frac{1}{4} \sigma_K^4 h^4 \int_{\mathbb{R}} (p''(x))^2 dx + \frac{1}{nh} \int_{\mathbb{R}} (K(x))^2 dx$$

Минимум достигается при $h = h^*$:

$$h^* = \left(\frac{1}{n} \frac{\int\limits_{\mathbb{R}} (K(x))^2 dx}{\left(\int\limits_{\mathbb{R}} x^2 K(x) dx\right)^2 \left(\int\limits_{\mathbb{R}} p''(x))^2 dx\right)}\right)^{\frac{1}{5}}$$

При этом $MISE(\hat{p}_n,p) = O\left(n^{-\frac{4}{5}}\right)$

Выбор ширины ядра

Воспользуемся bias-variance decomposition:

$$bias(x) = \mathbb{E}_{p}\hat{p}_{n}(x) - p(x) = \int_{\mathbb{R}} \left(\frac{1}{nh} \sum_{i=1}^{n} K(\frac{x-x_{i}}{h})\right) p(x_{1}) \dots p(x_{n}) dx_{1} \dots dx_{n} - \frac{1}{n} \sum_{i=1}^{n} \int_{\mathbb{R}} K(z) p(x) dz \approx \int_{\mathbb{R}} K(z) [-p'(x)zh + p''(x)\frac{(zh)^{2}}{2}] dz = \frac{1}{2} \sigma_{K}^{2} h^{2} p''(x)$$

$$\int_{\mathbb{R}} (bias(x))^{2} dx = \frac{1}{4} \sigma_{K}^{4} h^{4} \int_{\mathbb{R}} [p''(x)]^{2} dx$$

Выбор ширины ядра

$$\int\limits_{\mathbb{R}} \mathbb{V} ar_p \hat{p}_n(x) dx = \int\limits_{\mathbb{R}} \mathbb{V} ar_p [\frac{1}{nh} \sum_{i=1}^n K(\frac{x-x_i}{h}) dx = \\ \frac{1}{(nh)^2} \sum_{i=1}^n \int\limits_{\mathbb{R}} \mathbb{V} ar_p K(\frac{x-x_i}{h}) dx \leq \frac{1}{(nh)^2} \sum_{i=1}^n \int\limits_{\mathbb{R}} \mathbb{E}_p K(\frac{x-x_i}{h})^2 dx = \\ \frac{1}{(nh)^2} \sum_{i=1}^n \int\limits_{\mathbb{R}} \int\limits_{\mathbb{R}} K(\frac{x-x_i}{h})^2 p(x_i) dx_i dx = \\ \frac{1}{(nh)^2} \sum_{i=1}^n \int\limits_{\mathbb{R}} p(x_i) \int\limits_{\mathbb{R}} K(\frac{x-x_i}{h})^2 dx dx_i = \\ \frac{1}{(nh)^2} \sum_{i=1}^n \int\limits_{\mathbb{R}} p(x_i) dx_i h \int\limits_{\mathbb{R}} K^2(z) dz = \frac{1}{nh} \int\limits_{\mathbb{R}} K^2(z) dz$$
 Минимум $MISE(\hat{p}_n, p)$ достигается в некотором h^* .

Выбор ширины ядра

Подставляя h^* в \hat{p}_n , получаем, что $MISE = O(n^{-\frac{4}{5}})$, т.е. сходимость ядерной оценки лучше, чем у гистограммы. Можно показать, что при достаточно общих условиях нельзя получить скорость лучше, чем $n^{-\frac{4}{5}}$.

Выбор ширины ядра

Как и в случае с гистограммной, при больших h имеет место oversmoothing, а при маленьких - undersmoothing из-за bias-variance tradeoff.

Непараметрическая оценка плотности

Постановка задачи Потери, риск Определение параметра сглаживания Доверительная трубка для плотности

Ядерная оценка плотности

Выбор ширины ялра

Доверительный интервал для усредненной плотности

Многомерный случай

Непараметрическая регрессия

Доверительная трубка для функции регрессии Многомерный случай

Доверительный интервал

Определим $\overline{p_n}(x)=\mathbb{E}\hat{p}_n(x)=\int\limits_{\mathbb{R}}\frac{1}{h}K(\frac{x-u}{h})p(u)du$. Допустим, что $supp(p)\subset (a,b)$.

Тогда определим $(1-\alpha)$ доверительную трубку.

$$p_{-}(x) = \hat{p}_{n}(x) - \frac{z_{\alpha}}{\sqrt{n}}s(x),$$

$$p_{+}(x) = \hat{p}_{n}(x) + \frac{z_{\alpha}}{\sqrt{n}}s(x).$$

Где
$$s^2(x)=\frac{1}{n-1}\sum_{i=1}^n[Y_i(x)-\overline{Y_n}(x)]^2, Y_i(x)=\frac{1}{h}K(\frac{x-X_i}{h}),$$
 $z_{\alpha}=\Phi^{-1}\left(\frac{1+(1-\alpha)^{\frac{w}{b-a}}}{2}\right), \Phi-$ функция стандартного нормального распределения. w - эффективная ширина ядра.

Доверительный интервал для усредненной плотности

Непараметрическая оценка плотности

Постановка задачи Потери, риск Определение параметра сглаживания Доверительная трубка для плотности

Ядерная оценка плотности

Выбор ширины ядра Доверительный интервал для усредненной плотности Многомерный случай

Непараметрическая регрессия

Доверительная трубка для функции регрессии Многомерный случай

Ядерная оценка плотности: многомерный случай

Пусть теперь данные многомерные, то есть i-ое наблюдение - вектор размерности d:

$$X_i = [X_i^1, \dots X_i^d]^T.$$

Пусть $h = [h_1, \dots, h_d]^T$ - вектор ширины ядра вдоль каждого измерения.

Тогда:

$$\hat{p}_n(x) = \frac{1}{nh_1 \cdot \dots \cdot h_d} \sum_{i=1}^n \left[\prod_{j=1}^d K\left(\frac{x_j - X_i^j}{h_j}\right) \right],$$

где $x = [x_1, \dots, x_d]^T$ — произвольная точка в \mathbb{R}^d

Ядерная оценка плотности: многомерный случай

Для такой оценки риск

$$\begin{split} MISE(\hat{p}_n,p) \approx \\ \frac{1}{4}\sigma_K^4 \left[\sum_{j=1}^d h_j^4 \int\limits_{\mathbb{R}^d} p_{jj}^2(x) dx + \sum_{j \neq k} h_j^2 h_k^2 \int\limits_{\mathbb{R}^d} p_{jj}(x) p_{kk}^2(x) dx \right] + \\ \frac{\left(\int\limits_{\mathbb{R}^d} K^2(x) dx \right)^d}{n h_1 \cdot \ldots \cdot h_d}, \\ \text{где } p_{jj}(x) = \frac{\partial^2 p(x)}{\partial x_j^2} \end{split}$$

Оптимальная ширина ядра $h_i^* \approx c n^{-\frac{1}{4+d}}$

При этом риск имеет порядок: $MISE(\hat{p}_n, p) = O(n^{-\frac{4}{4+d}}).$

Проклятие размерности

Оптимальный порядок риска $O(n^{-\frac{4}{4+d}})$, т.е. наблюдаем "проклятье размерности" - при росте d скорость сходимости к истинной плотности падает.

Рассмотрим таблицу объёмов выборки, необходимых для того, чтобы средний квадрат ошибки в нуле был меньше 0.1 в зависимости от размерности наблюдений в случае многомерной нормальной плотности и оптимальной ширины ядра:

d	1	2	3	4	5	6	7	8	9
n	4	19	67	223	768	2790	10700	43700	187000

где d — размерность данных, n — необходимый объём выборки.

Непараметрическая

регрессия

Непараметрическая оценка плотности

Постановка задачи

Потери, риск

Определение параметра сглаживания

Доверительная трубка для плотности

Ядерная оценка плотности

Выбор ширины ядра
Доверительный интервал для усредненной плотности

Непараметрическая регрессия

Доверительная трубка для функции регрессии Многомерный случай

Пусть имеется n наблюдений: $(X_1, Y_1) \dots (X_n, Y_n)$, сгенерированных из совместной плотности p(x, y).

Наблюдения связаны соотношением:

$$Y_i = r(X_i) + \varepsilon_i, \varepsilon_i - i.i.d, \mathbb{E}\varepsilon_i = 0, \mathbb{V}ar\varepsilon_i = \sigma^2$$

Необходимо оценить функцию регрессии:

$$r(x) = \mathbb{E}(Y|X=x) = \int\limits_{\mathbb{R}} y p(y|x) dy = \int\limits_{\mathbb{R}}^{\mathbb{R}} y p(x,y) dy = \int\limits_{\mathbb{R}}^{\mathbb{R}} y p(x,y) dy = \int\limits_{\mathbb{R}} y p(x,y) dy$$
.

Определение

Пусть $\hat{p}_n(x)$ и $\hat{p}_n(x,y)-$ ядерные оценки плотностей по выборкам $\{X_1,\ldots,X_n\}$ и $\{(X_1,Y_1)\ldots,(X_n,Y_n)\}$ соответственно с ядром K. Тогда, если $\hat{p}_n(x)\neq 0$, то

$$\hat{r}_n(x) = \frac{\int\limits_{\mathbb{R}} y \hat{p}_n(x, y) dy}{\hat{p}_n(x)}$$

•

Для оценки r(x) используется оценка Надарая-Ватсона:

Определение

$$\hat{r}_n^{NW} = \sum_{i=1}^n w_i(x) Y_i$$
, где $w_i = \frac{K(\frac{x-X_i}{h})}{\sum\limits_{j=1}^n K(\frac{x-X_j}{h})}$, K заданная ядерная функция

Таким образом, это взвешенная сумма Y_i , где точки близкие к х имеют больший вес.

NB: оценку Надарайя-Ватсона можно применять и в случае, когда X_i — фиксированные и детерминированные числа (например, $X_i = \frac{i}{n}$).

Перейдём к риску и выбору ширины ядра.

Теорема

$$\begin{split} MISE(\hat{r}_n^{NW},r) \approx & \\ \approx & \frac{h^4}{4} (\int\limits_{\mathbb{R}} x^2 K^2(x) dx)^4 \int (r''(x) + 2r'(x) \frac{p'(x)}{p(x)})^2 dx + \\ \frac{1}{h} \int\limits_{\mathbb{R}} \frac{\sigma^2 \int\limits_{\mathbb{R}} K^2(x) dx}{np(x)} dx \end{split}$$

Оптимальная ширина ядра: $h^* = cn^{-\frac{1}{5}}$

Порядок риска при этой ширине: $MISE(\hat{r}_n^{NW},r)=O(n^{-\frac{4}{5}})$

Опять же, h^* нельзя выписать на практике, так как она зависит от неизвестных r(x), p(x).

Поэтому минимизируют по h оценку риска

$$\hat{\mathcal{J}}(h) = \sum_{i=1}^{n} (Y_i - \hat{r}_{(-i)}^{NW}(X_i))^2,$$

где $\hat{r}^{NW}_{(-i)}$ - оценка Надарайя-Ватсона, построенная по выборке, из которой удалено наблюдение (X_i,Y_i)

Теорема

$$\hat{\mathcal{J}}(h) = \sum_{i=1}^{n} \left(Y_i - \hat{r}_{(-i)}^{NW}(X_i) \right)^2 \frac{1}{\left(1 - \frac{K(0)}{\sum_{j=1}^{n} K\left(\frac{X_i - X_j}{h}\right)} \right)^2},$$

Как и в случае с гистограммной и ядерной оценкой плотности, наблюдается bias-variance tradeoff: при больших h имеет место oversmoothing - оценка слишком сглажена, а при маленьких h имеет место undersmoothing - оценка излишне подстроилась под данные.

Непараметрическая оценка плотности

Постановка задачи

Потери, риск

Определение параметра сглаживания

Доверительная трубка для плотности

Ядерная оценка плотности

Выбор ширины ядра

Доверительный интервал для усредненной плотности

Многомерный случай

Непараметрическая регрессия

Доверительная трубка для функции регрессии

Многомерный случай

Доверительная трубка для функции регрессии

Построим доверительную область. Сначала оценим σ^2 . Пусть X_i упорядочены по возрастанию. Предполагая, что r(x) - гладкая функция, получаем $r(X_{i+1}) - r(X_i) \approx 0$. Тогда:

$$Y_{i+1} - Y_i = [r(X_{i+1}) + \varepsilon_{i+1}] - [r(X_i) + \varepsilon_i] \approx \varepsilon_{i+1} - \varepsilon_i$$

$$\mathbb{V}ar(Y_{i+1} - Y_i) \approx \mathbb{V}ar(\varepsilon_{i+1} - \varepsilon_i) = \mathbb{V}ar\varepsilon_{i+1} + \mathbb{V}ar\varepsilon_i = 2\sigma^2$$

$$\Rightarrow \hat{\sigma}^2 = \frac{1}{2(n-1)} \sum_{i=1}^{n-1} (Y_{i+1} - Y_i)^2$$

Будем строить доверительную область для сглаженной версии $\overline{r}_n(x)=\mathbb{E}(\hat{r}_n^{NW}(x))$ настоящей функции регрессии r.

Доверительная трубка для функции регрессии

Приближенный $(1-\alpha)$ доверительный интвервал для $\overline{r}_n(X)$ имеет вид:

$$r_{-}(x) = \hat{r}_n^{NW}(x) - C$$

$$r_{+}(x) = \hat{r}_n^{NW}(x) + C,$$

Где $\hat{\sigma}, w_i$ - определены выше, $C = z_{\alpha} \hat{\sigma} \sqrt{\sum_{i=1}^n w_i^2(x)}$,

 $z_{lpha}=\Phi^{-1}\left(rac{1+(1-lpha)^{rac{w}{b-a}}}{2}
ight), \Phi$ — функция стандартного нормального распределения, w - эффективная ширина ядра, $X_1,\dots,X_n\in(a;b)$

Доверительная трубка для функции регрессии

Непараметрическая оценка плотности

Постановка задачи

Потери, риск

Определение параметра сглаживания

Доверительная трубка для плотности

Ядерная оценка плотности

Выбор ширины ядра

Доверительный интервал для усредненной плотности

Многомерный случай

Непараметрическая регрессия

Доверительная трубка для функции регрессии

Многомерный случай

Непараметрическая регрессия: многомерный случай

Если $X=[X_1,\dots,X_n]^T$, то из-за проклятия размерности бесполезно обобщать оценку Надарайя-Ватсона аналогично способу, как мы делаем в ядерной оценке плотности. Вместо этого можно рассмотреть аддитивную модель

▶
$$Y = \sum_{j=1}^d r_j(X^j) + \alpha + \varepsilon$$
 или

$$Y = \sum_{j=1}^{d} r_j(X^j) + \sum_{j < k} r_{jk}(X^j X^k) + \alpha + \varepsilon$$

Непараметрическая регрессия: многомерный случай

Подготовка первой аддитивной модели:

Algorithm (Backfitting)

Инициализация : $\hat{\alpha} = \overline{Y_n}; \hat{r}_1, \dots \hat{r}_d$

Пока не стабилизируется $\hat{r}_1,\ldots,\hat{r}_d$ повторять;

- Для всех $j = 1, \ldots, d$:
 - 1. Вычислить $\widetilde{\varepsilon}_i = Y_i \hat{\alpha} \sum_{k \neq i} \hat{r}_k(X_i^k), i = 1, \dots, n$
 - 2. Получить $\hat{r}_j(X^j)$ функцию регрессии $\widetilde{\varepsilon}_i$ на j-ую компоненту X^j (то есть в качестве наблюдений имеем $\{(X_1^j,\widetilde{\varepsilon}_1),\dots,(X_n^j,\widetilde{\varepsilon}_n)\}$

_{Денис Дерка}**3**. Положить
$$\hat{r}_j := \hat{r}_j - \frac{1}{n} \sum_{i=1}^n \hat{r}_j(X_i^j)$$

Доверительная трубка для регрессии

Замечание: Построенная доверительная трубка как и в случае с гистограммной и ядерной оценками плотности не является в точности доверительным интервалом для функции регрессии, но подходит для сглаженной версии. Например, доверительный интервал для плотности в случае ядерной оценки является на самом деле доверительным интервалом для функции, равной сглаженной с помощью этого же ядра истинной плотности, получить доверительный интервал для самой плотности сложно по следующим причинам.

Пусть $\hat{p}_n(x)$ - оценка плотности p(x).

Обозначим $\mathbb{E}\hat{p}_n(x)=\overline{p_n}(x), \mathbb{V}ar\hat{p}_n(x)=S_n(x)$, тогда

$$\frac{\hat{p}_n(x) - p_n(x)}{S_n(x)} = \frac{\hat{p}_n(x) - \overline{p_n}(x)}{S_n(x)} + \frac{\overline{p_n}(x) - p_n(x)}{S_n(x)}$$

Доверительная трубка для регрессии

Продолжение замечания:

Обычно, по центрельной предельной теореме, первое слагаемое сходится к стандартному нормальному распределению, используя которое и строится доверительный интервал. Второе слагаемое равняется отношению смещения к стандартному отклонению. При параметрическом оценивании смещение обычно значительно меньше, чем стандартное отклонение, то есть второе слагаемое стремится к нулю при увеличении объёма выборки. В непараметрическом оценивании оптимальное сглаживание приводит к тому, что смещение и стандартное отклонение "балансируются". В таком случае второе слагаемое может не стремиться к нулю даже при больших объёмах выборки, поэтому доверительный интервал не будет центрирован на истинную Диротинасть.

64