2

WHAT IS CLAIMED IS:

1	1. An isolated nucleic acid encoding an IRAK-4 polypeptide, said
2	polypeptide having at least about 98% amino acid sequence identity to SEQ ID NO:1 or
3	to a subsequence thereof, wherein the amino acid sequence of the polypeptide comprises
4	an alanine residue at an amino acid position corresponding to amino acid position 81 of
5	SEQ ID NO:1, and wherein said nucleic acid comprises at least about 400 nucleotides.
1	2. The nucleic acid of claim 1, wherein the polypeptide further
2	comprises an amino acid selected from the group consisting of:
3	(i) a valine residue at an amino acid position corresponding to amino acid
4	position 432 of SEQ ID NO:1;
5	(ii) a leucine residue at an amino acid position corresponding to amino
6	acid position 437 of SEQ ID NO:1;
7	(iii) an arginine residue at an amino acid position corresponding to amino
8	acid position 444 of SEQ ID NO:1; and
9	(iv) a glutamine residue at an amino acid position corresponding to amino
10	acid position 451 of SEQ ID NO:1.
	•
1	3. The nucleic acid of claim 2, wherein the polypeptide comprises
2	each of the amino acids listed as (i) to (iv).
1	4. The nucleic acid of claim 1, wherein the polypeptide comprises an
2	amino acid sequence of SEQ ID NO:1.
1	5. The nucleic acid of claim 1, wherein the polypeptide comprises at
2	least about 100 amino acids.
1	6. The nucleic acid of claim 1, wherein the polypeptide comprises at
2	least about 450 amino acids.
1	7. The nucleic acid of claim 1, wherein the nucleic acid comprises a
2	cytosine at a nucleotide position corresponding to nucleotide position 242 of SEQ ID
3	NO:2.
1	8. The nucleic acid of claim 7, wherein the nucleic acid further

comprises a nucleotide selected from the group consisting of:

3	(i) a thymine at a nucleotide position corresponding to nucleotide position		
4	1295 of SEQ ID NO:2;		
5	(ii) a thymine at a nucleotide position corresponding to nucleotide position		
6	1302 of SEQ ID NO:2;		
7	(iii) a thymine at a nucleotide position corresponding to nucleotide		
8	position 1310 of SEQ ID NO:2;		
9	(iv) an adenine at a nucleotide position corresponding to nucleotide		
10	position 1332 of SEQ ID NO:2; and		
11	(v) an adenine at a nucleotide position corresponding to nucleotide		
12	position 1353 of SEQ ID NO:2.		
1	9. The nucleic acid of claim 8, wherein the nucleic acid comprises		
2	each of the nucleotides listed as (i) to (v).		
1	10. The nucleic acid of claim 1, wherein the nucleic acid comprises a		
2	nucleotide sequence of SEQ ID NO:2.		
1	11. The nucleic acid of claim 1, wherein the nucleic acid comprises at		
2	least about 1350 nucleotides.		
1	12. The nucleic acid of claim 1, wherein the polypeptide specifically		
2	binds to antibodies generated against a polypeptide comprising an amino acid sequence of		
3	SEQ ID NO:1.		
1	13. The nucleic acid of claim 1, wherein the nucleic acid is operably		
2	linked to a promoter.		
1	14. An expression cassette comprising the nucleic acid of claim 13.		
1	15. An isolated cell comprising the expression cassette of claim 14.		
1	16. An isolated IRAK-4 polypeptide, said polypeptide having at least		
2	about 98% amino acid sequence identity to SEQ ID NO:1 or to a subsequence thereof,		
3	wherein the amino acid sequence of the polypeptide comprises an alanine residue at an		
4	amino acid position corresponding to amino acid position 81 of SEQ ID NO:1, and		
5	wherein the polypeptide comprises at least about 100 amino acids.		

2

1

2

1

1	17. The polypeptide of claim 16, wherein the polypeptide further
2	comprises an amino acid selected from the group consisting of:
3	(i) a valine residue at an amino acid position corresponding to amino acid
4	position 432 of SEQ ID NO:1;
5	(ii) a leucine residue at an amino acid position corresponding to amino
6	acid position 437 of SEQ ID NO:1;
7	(iii) an arginine residue at an amino acid position corresponding to amino
8	acid position 444 of SEQ ID NO:1; and
9	(iv) a glutamine residue at an amino acid position corresponding to amino
0	acid position 451 of SEQ ID NO:1.
1	18. The polypeptide of claim 17, wherein the polypeptide comprises all
2	of the amino acids listed as (i) to (iv).
1	19. The polypeptide of claim 16, wherein the polypeptide comprises an
2	amino acid sequence of SEQ ID NO:1.

- The polypeptide of claim 16, wherein the polypeptide is encoded 20. by a nucleic acid comprising a nucleotide sequence of SEQ ID NO:2.
- The polypeptide of claim 16, wherein the polypeptide specifically 21. binds to antibodies generated against a polypeptide comprising an amino acid sequence of 2 3 SEQ ID NO:1.
- The polypeptide of claim 16, wherein the polypeptide comprises at 1 22. least about 450 amino acids. 2
- An isolated nucleic acid encoding an IRAK-4 polypeptide, said 1 23. polypeptide comprising at least about 70% amino acid sequence identity to SEQ ID NO:3 2 or to a subsequence thereof. 3
- The nucleic acid of claim 23, wherein said polypeptide comprises 1 24. an amino acid sequence of SEQ ID NO:3. 2

l		25.	The nucleic acid of claim 23, wherein said nucleic acid comprises
2	at least about	70% nu	cleotide sequence identity to SEQ ID NO:4 or to a subsequence
3	thereof.		
		26.	The nucleic acid of claim 23, wherein said nucleic acid comprises a
ı 2	muslantida ana		of SEQ ID NO:4.
۷	nucleotide sec	quence c	11 SEQ ID 110.4.
1		27.	The nucleic acid of claim 23, wherein said nucleic acid hybridizes
2	under stringer	nt hybrid	dization conditions to a nucleic acid comprising a nucleotide
3	sequence of S	EQ ID I	NO:4.
,		28.	The nucleic acid of claim 23, wherein said nucleic acid is operably
1 2	linked to a pro		The fluctere acid of claim 25, wherein said fluctere acid is operably
2	inked to a pro	omoter.	
1		29.	An expression cassette comprising the nucleic acid of claim 28.
1		30.	An isolated cell comprising the expression cassette of claim 29.
1		31.	A method of making an IRAK-4 polypeptide, the method
2	comprising:		
3		(i) intr	roducing a nucleic acid of claim 1 or claim 19 into a host cell or
4	cellular extra	ct;	
5		(ii) ind	cubating said host cell or cellular extract under conditions such that
6	said IRAK-4	polyper	otide is expressed in the host cell or cellular extract; and
7		(iii) re	covering the IRAK-4 polypeptide from the host cell or cellular
8	extract.		
1		32.	A method of identifying a compound useful in the treatment of
2	inflammators		es, comprising the steps of:
3	minaminatory		ntacting an IRAK-4 polypeptide with said compound, wherein said
4	IR AK-4 poly	. ,	comprises at least about 70% amino acid sequence identity to SEQ
5	ID NO:1 or S		-
6		-	termining the functional effect of said compound on said IRAK-4
7	polypeptide.	() 40	
	Farence		

multiple sclerosis, and diabetes.

1		33.	The method of claim 32, wherein said IRAK-4 comprises an amino
2	acid sequence	shown	as SEQ ID NO:1 or SEQ ID NO:3.
1		34.	The method of claim 32, wherein the compound inhibits IRAK-4
2	kinase activity	у.	
1		35.	The method of claim 32, wherein said IRAK-4 is present inside of
2	a eukaryotic o		The modeled of claim 52, where shall be a pro-
-	# *		
1		36.	A method of treating an inflammatory disease in a patient, the
2	method comp	rising a	dministering to said patient a therapeutically effective amount of a
3	compound the	at modu	alates IRAK-4.
1		37.	The method of claim 36, wherein said compound inhibits IRAK-4
2	kinase activit	y.	
1		38.	The method of claim 36, wherein said compound is identified using
2	the method o	f claim	32.
1		39.	The method of claim 36, wherein the inflammatory disease is
	colouted from		oup consisting of pulmonary diseases and diseases of the airway,
2			autoimmune diseases, cancer, cardiovascular diseases, diseases of the
3			em, CD14 mediated sepsis, non-CD14 mediated sepsis, osteoarthritis,
5			sis, diseases of the skin, inflammatory bowel disease, Behcet's
6			ng spondylitis, sarcoidosis, gout, and ophthalmic diseases and
7	conditions.	,	
		40	The method of claim 39, wherein the pulmonary disease and
1		40.	
2		-	y is selected from the group consisting of Adult Respiratory Disease
3			Chronic Obstructive Pulmonary Disease (OPD), pulmonary fibrosis,
4	interstitial lu	ng dise	ase, asthma, chronic cough, and allergic rhinitis
1		41.	The method of claim 39, wherein the autoimmune disease is
2	selected from	n the gr	oup consisting of rheumatoid arthritis, systemic lupus erythematosus,

1	42. The method of claim 39, wherein the cancer is selected from the group consisting of solid tumors, skin cancer, and lymphoma.
1 2	43. The method of claim 39, wherein the cardiovascular disease is selected from the group consisting of stroke and atherosclerosis.
1	44. The method of claim 39, wherein the disease of the central nervous system is a neurodegenerative disease.
1	45. The method of claim 39, wherein the disease of the skin is selected from the group consisting of rash, contact dermatitis, and atopic dermatitis.
1 2	46. The method of claim 39, wherein the inflammatory bowel disease is selected from the group consisting of Crohn's disease and ulcerative colitis.
1 2 3	47. A method of inhibiting the transduction of a signal resulting from the activation of an IL-1R/Toll receptor in a cell, the method comprising introducing into said cell an inhibitor of the activity or expression of IRAK-4.
1 2	48. The method of claim 47, wherein said IL-1R/Toll receptor is activated by IL-1.
1	49. The method of claim 47, wherein said inhibitor comprises a dominant negative form of IRAK-4.
1 2	50. The method of claim 49, wherein said dominant negative form of IRAK-4 comprises a mutation in a lysine residue in the ATP binding pocket.
1 2	51. The method of claim 50, wherein said mutation comprises a substitution of alanine residues for lysine residues within said IRAK-4 at amino acid

The method of claim 49, wherein said dominant negative form of IRAK-4 is a truncated form of IRAK-4.

The method of claim 52, wherein said truncated form of IRAK-4 consists essentially of amino acids 1 to 191 of SEQ ID NO:1.

1	54.	The method of claim 47, wherein said inhibitor comprises a
2	compound identified	using the method of claim 32.
1	55.	The method of claim 45, wherein said inhibitor inhibits activation
2	of at least one transc	ription factor.
l	56.	The method of claim 53, wherein said transcription factor activates
2	NFκB in said cell.	
1	57.	A nonhuman transgenic animal comprising a mutation in an
2	endogenous IRAK-4	gene.
1	58.	The transgenic animal of claim 57, wherein said mutation
2	inactivates said endo	genous IRAK-4 gene.
1	59.	The mutation of claim 58, wherein said mutation comprises a
2	deletion of all or par	t of said endogenous IRAK-4 gene.
1	60.	The transgenic animal of claim 57, wherein said animal is a mouse
1	61.	An isolated mutant mammalian cell comprising a mutation in an
2	endogenous IRAK-4	gene.
1	62.	The isolated mutant mammalian cell of claim 61, wherein said
2	mutation inactivates	said endogenous IRAK-4 gene.