Algoritmi pentru grafuri și aplicații

Gălbiniță Sebastian

September 6, 2020

Cuprins

- Drumuri minime de sursă unică
 - Relaxare
 - Algoritmul lui Dijkstra
- 2 Drumuri minime între toate perechile de vârfuri
 - Structura unui drum minim
 - Algoritmul Floyd-Warshall
- Flux maxim
 - Metoda lui Ford-Fulkerson

Drumuri minime de sursă unică

Fie un graf orientat ponderat G = (V, E) și funcția cost $f : E \longrightarrow \mathbb{R}$. Costul drumului $p = [\alpha_0, \alpha_1, ..., \alpha_k]$ este dat de

$$f(p) = \sum_{i=1}^{k} f(\alpha_{i-1}, \alpha_i)$$

Astfel putem defini costul unui drum minim

$$\delta(u,v) = \begin{cases} \min\{f(p): u \leadsto v\}, & \text{dacă există drum de la } u \text{ la } v \\ \infty, & \text{altfel} \end{cases}$$

Relaxare

Pentru fiecare nod $v \in V$, se va reține un **predecesor** $\omega[v]$ și conservăm un atribut d[v].

Procesul de relaxare a unei muchii (u, v) este dat de următoarea inegalititate:

$$d[v] > d[u] + f(u,v)$$

Algoritmul lui Dijkstra

Algoritmul lui Dijkstra rezolvă problema drumurilor minime de sursă unică într-un graf orientat ponderat G=(V,E) pentru care toate costurile muchiilor sunt nenegative. Vom presupune că pentru fiecare muchie $(u,v)\in E$, $f(u,v)\geq 0$.

```
DIJKSTRA (G, f, s)

1: INIȚIALIZEAZĂ-SURSĂ-UNICĂ(G, s)

2: S \leftarrow \emptyset

3: Q \leftarrow V(G)

4: while Q \neq \emptyset

5: u \leftarrow \text{EXTRAGE-MIN}(Q)

6: S \leftarrow S \cup \{u\}

7: for fiecare vârf v \in Adj[u]

8: RELAXEAZĂ(u, v, f)
```

Drumuri minime între toate perechile de vârfuri

Fie un graf orientat ponderat G = (V, E) și o funcție de costuri $f : E \longrightarrow \mathbb{R}$ aplicată arcelor grafului. Pentru fiecare $u, v \in V$, determinăm un **drum de cost minim** de la u la v. Ca date de intrare avem o matrice A, având dimensiunea $n \times n$.

$$a_{ij} = egin{cases} 0, & \mathsf{dac}\ i = j, \ f(i,j), & \mathsf{dac}\ i
eq j \ \mathrm{si}\ (i,j) \in E, \ \infty, & \mathsf{dac}\ i
eq j \ \mathrm{si}\ (i,j)
otin E. \end{cases}$$

lar ca date de ieșire o matrice $D = (d_{ij})$ de dimensiune $n \times n$.

Structura unui drum minim

Presupunem că graful este reprezentat printr-o matrice de adiacență $A=(a_{ij})$. Considerăm un **drum minim** p de la nodul i la j și presunem că are m arce. Presupunând că nu sunt cicluri de cost negativ, atunci m este finit. Dacă i=j, atunci p are costul p0 și nu conține nici un arc. Dacă nodurile sunt distincte, atunci descompunem drumul p în $i \stackrel{p'}{\leadsto} k \to j$, unde drumul p' conține cel mult m-1 arce. Mai mult, p' este un drum minim de la i la k. Deci avem următoarea egalitate:

$$\delta(i,j) = \delta(i,k) + f(k,j).$$

Determinarea drumurilor minime

Presupunem ca date de intrare matricea $A=(a_{ij})$, determinăm o serie de matrici $D^{(1)},D^{(2)},...,D^{(n-1)}$, unde, pentru m=1,2,...,n-1 avem $D^{(m)}=(d_{ij}^{(m)})$. Matricea finală $D^{(n-1)}$ va conține costurile drumurilor minime.

```
EXTINDE(D, A)
1: n \leftarrow linii[D]
2: fie B = (b_{ij}) matrice cu dimensiunea n \times n
3: for i \leftarrow 1, n
4: for j \leftarrow 1, n
5: b_{ij} \leftarrow \infty
6: for k \leftarrow 1, n
7: b_{ij} \leftarrow \min(b_{ij}, d_{ik} + a_{kj})
8: return B
```

Determinarea drumurilor minime

$$d_{ij}^{(m)} = \min \left(d_{ij}^{(m-1)}, \min_{1 \le k \le n} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\} \right) = \min_{1 \le k \le n} \left\{ d_{ik}^{(m-1)} + a_{kj} \right\}$$

Deoarece am determinat șirul de n-1 matrice, putem transpune tot ce scris într-o funcție.

DRUMURI-MINIME(A)

- 1: $n \leftarrow linii[A]$
- 2: $D^{(1)} \leftarrow A$
- 3: **for** *i* ← 2, n 1
- 4: $D^{(i)} \leftarrow \mathsf{EXTINDE}\ (D^{(i-1)}, A)$
- 5: return $D^{(n-1)}$

Algoritmul Floyd-Warshall

Algoritmul lui Floyd-Warshall este un algoritm pentru găsirea celor mai scurte drumuri într-un graf orientat ponderat cu cost pozitiv sau negativ. Acest algoritm se bazează pe următoarea observație. Fie $V=\{1,2,...,n\}$ mulțimea nodurilor lui G. Considerăm submulțimea $\{1,2,...,k\}$ pentru un anumit k. Pentru orice pereche de noduri $i,j\in V$, considerăm toate drumurile de la i la j ale căror noduri intermediare fac parte din mulțimea $\{1,2,...,k\}$. Fie p drumul de cost minim dintre aceste drumuri. Algoritmul Floyd-Warshall exploatează o relație între drumul p și drumul minim de la i la j cu toate nodurile intermediare.

p: toate nodurile intermediare din $\{1, 2, ..., k\}$

Dacă k nu este nod intermediar al drumului p, un drum minim de la nodul i la j cu toate nodurile intermediare din mulțimea $\{1,2,...,k-1\}$ este, de asemenea, un drum minim de la i la j cu toate nodurile intermediare din mulțimea $\{1,2,...,k\}$. Dacă k este nod intermediar al drumului p, atunci împărțim p în două alte drumuri. Deoarece p este drum minim rezultă că și p_1 este drum minim de la i la k cu toate nodurile intermediare din mulțimea $\{1,2,...,k-1\}$. Analog pentru p_2 .

Intrarea este o matrice A de dimensiune $n \times n$. Funcția returnează matricea $D^{(n)}$ a costurilor drumurilor minime.

```
FLOYD-WARSHALL(A)

1: n \leftarrow linii[A]

2: D^{(0)} \leftarrow A

3: for k \leftarrow 1, n

4: for i \leftarrow 1, n

5: for j \leftarrow 1, n

6: d_{ij}^{(k)} \leftarrow min(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)})

7: return D^{(n)}
```

Flux maxim

Problema **fluxului maxim** este aceea de a determina cantitatea cea mai mare de material care poate fi transportată pornind de la sursă și ajungând la destinație ținând cont de restricțiile de capacitate.

Fluxuri și rețele de transport

O rețea de transport este un graf orientat G=(V,E) în care fiecărei muchii $(u,v)\in E$ îi este atașată o capacitate nenegativă $c(u,v)\geq 0$. Dacă $(u,v)\notin E$ atunci considerăm c(u,v)=0. Fixăm nodul sursă s și nodul destinație d. Denumim fluxul G ca fiind o funcție $f:V\times V\to \mathbb{R}$ care satisface următoarele condiții:

- **1** Restricția de capacitate: Pentru orice $u, v \in V$, $f(u, v) \le c(u, v)$.
- **2** Antisimetria: Pentru orice $u, v \in V, f(u, v) = -f(u, v)$.
- **3 Conservarea fluxului**: Pentru orice $u \in V \setminus \{s, d\}$ avem

$$\sum_{v\in V}f(u,v)=0$$

Denumim **capacitatea reziduală** a arcului (u, v) ca fiind cantitatea de flux adițională care poate fi transportată de la u la v, fără a depăși c(u, v).

Metoda lui Ford-Fulkerson

În fiecare iterație a metodei lui Ford-Fulkerson căutăm un drum oarecare de ameliorare p și mărim fluxul f de-a lungul drumului p cu capacitatea reziduală $c_f(p)$.

METODA-FORD-FULKERSON(s, d, G)

- 1: **for** fiecare arc $(u, v) \in E[G]$
- 2: $f(u,v) \leftarrow 0$
- 3: $f(v, u) \leftarrow 0$
- 4: **while** există un drum de la s la d în rețeaua reziduală G_f
- 5: $c_f(p) \leftarrow min\{c_f(u,v)|(u,v) \in p\}$
- 6: **for** fiecare (u, v) din p
- 7: $f(u,v) \leftarrow f(u,v) + c_f(p)$
- 8: $f(u,v) \leftarrow -f(u,v)$