

Digital Signal and Image Processing CSC 701

Subject In-charge

Ms. Sweedle Machado

Assistant Professor

email: sweedlemachado@sfit.ac.in

Module II

Discrete Fourier Transform

Introduction

- Fourier Series is the mathematical way of representing periodic signal.
- Fourier Transform is the mathematical way of representing the aperiodic signal.
- Both Fourier series and Fourier Transform convert a signal from time domain to frequency domain.
- Fourier Transform of discrete signal is of two types:
 - Discrete Time Fourier Transform (DTFT)
 - Discrete Fourier Transform (DFT)

 For more information refer https://www.youtube.com/watch?v=spUNpyF58BY

Diagrammatic representation of Fourier Transform, DTFT, DFT

Fig. shows development of DFT formula

Fig. development of DFT formula

DTFT- Discrete Time Fourier Transform

 DTFT- Fourier transform of discrete-time signals is called the Discrete-Time Fourier Transform

Signal in Time domain

Signal in Frequency domain

Formula:
$$X(\omega) = \sum_{n=-\infty}^{\infty} x(n) e^{-j\omega n}$$

DTFT Example 1

$$x(n) = \{1, -2, 2, 3\}$$

$$X(\omega) = F\{x(n)\} = \sum_{n = -\infty}^{\infty} x(n) e^{-j\omega n}$$

$$= x(0) + x(1) e^{-j\omega} + x(2) e^{-j2\omega} + x(3) e^{-j3\omega}$$

$$= 1 - 2e^{-j\omega} + 2e^{-j2\omega} + 3e^{-j3\omega}$$

DTFT Example 2

Given

$$x(n) = \begin{cases} n, & -4 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}$$

$$X(\omega) = F\{x(n)\} = \sum_{n=-4}^{4} ne^{-j\omega n}$$

$$= -4e^{j4\omega} - 3e^{j3\omega} - 2e^{j2\omega} - e^{j\omega} + e^{-j\omega} + 2e^{-j2\omega} + 3e^{-j3\omega} + 4e^{-4j\omega}$$

$$= -2j \{4 \sin 4\omega + 3 \sin 3\omega + 2 \sin 2\omega + \sin \omega\}$$

Limitations of DTFT

- DTFT transforms are defined for infinite-length signals
- DTFT's are the function of continuous variable
- Hence they cannot be processed by computers and processors
- In other words, DTFT are not numerically computable

.....these problems are overcome by $\overline{\mathsf{DFT}}$

DFT is obtained by sampling DTFT

DFT- Discrete Fourier Transform

• DFT- The DFT is one of the most powerful tools in digital signal processing which enables us to find the spectrum of a finite-duration signal.

Signal in Time domain

Signal in Frequency domain

Formula:
$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk} = \sum_{n=0}^{N-1} x(n) e^{-j(2\pi/N)nk}$$

DFT Analysis and Synthesis

N= Period

The DFT transform:

$$X(k) = \sum_{n=0}^{N-1} \underline{x(n)} \, e^{-j2\pi \frac{kn}{N}} \quad \text{analysis}$$

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j2\pi \frac{kn}{N}} \quad \text{synthesis} \quad \text{IDF7}$$

Alternative formulation:

$$X(k) = \sum_{n=0}^{N-1} x(n) W^{kn} \leftarrow x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) W^{-kn}$$

$$W = e^{-j\frac{2\pi}{N}}$$

Twiddle Factor: Used to speed up DFT and IDFT calculations

Types of DFT in our scope of syllabus

- 1. 2- point DFT
- 2. 4- point DFT
- 3. 8- point DFT

Few Basics..

$$\frac{\cos \pi}{\cos \pi} = -1 \qquad \text{Sim } \pi = 0$$

$$\frac{\cos \pi}{2} = 0 \qquad \text{Sim } \pi = 1$$

$$\cos \pi/2 = 0 \qquad \text{Sim } \pi/2 = 1$$

Construction of Twiddle factor matrix (W) for different types of DFT

Twiddle factor Matrix for N-point DFT

Twiddle factor Matrix for N-point DFT

2 –point DFT

Twiddle factor Matrix Calculation for 2- Point DFT

Twiddle factor Matrix Calculation for 2- Point IDFT

Problem on 2-point DFT

4-point DFT

Twiddle factor Matrix Calculation for 4- Point DFT

	mJN=047 minuot 21						
	ie n= 0 +03						
0	K = 0 +0_3						
-	n=0 n=1 n=2 n=9						
-	- K=0 Wy Wy Wy Wy						
W	- K=1 Wy Wu Wu Wy						
	K=2 W" W" W" W"						
	K=9 W" W" W" W"						
	· 100/0C						
	$w_{y} = e^{-j \frac{\pi \pi \kappa / N}{N}}$						
	- JY II (0)						
	P Segrange = 1						
71	of P. seauthers in DF						

Twiddle factor Matrix Calculation for 4- Point DFT

Twiddle factor Matrix for 4- Point DFT & IDFT

DFT

 $egin{bmatrix} 1 & 1 & 1 & 1 \ 1 & -j & -1 & j \ 1 & -1 & 1 & -1 \ 1 & j & -1 & -j \ \end{bmatrix}$

IDFT

 Find complex conjugate i.e. change the sign of 'j'

<u>Problem-1:</u>Calculate the four point DFT of four point sequence x(n)=(0,1,2,3).

Solution: The four point DFT in matrix form is given by

$$X_4 = [W_4]_{X_4}$$

$$X_{4} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 2 \\ 3 \end{bmatrix}$$

$$X_{4} = \begin{bmatrix} 0+1+2+3 \\ 0-j-2+3j \\ 0-1+2-3 \\ 0+j-2-3j \end{bmatrix} = \begin{bmatrix} 6 \\ 2j-2 \\ -2 \\ -2j-2 \end{bmatrix}$$

$$X_4 = \{6, 2j-2, -2, -2j-2\}$$

Find IDFT of above sequence.

EXAMPLE 6.8 Find the DFT of the sequence

$$x(n) = \{1, 2, 1, 0\}$$

Solution: The DFT X(k) of the given sequence $x(n) = \{1, 2, 1, 0\}$ may be obtained by solving the matrix product as follows. Here N = 4.

$$\begin{bmatrix} X(0) \\ X(1) \\ X(2) \\ X(3) \end{bmatrix} = \begin{bmatrix} W_N^0 & W_N^0 & W_N^0 & W_N^0 \\ W_N^0 & W_N^1 & W_N^2 & W_N^3 \\ W_N^0 & W_N^2 & W_N^4 & W_N^6 \\ W_N^0 & W_N^3 & W_N^6 & W_N^9 \end{bmatrix} \begin{bmatrix} x(0) \\ x(1) \\ x(2) \\ x(3) \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 \\ -j2 \\ 0 \\ j2 \end{bmatrix}$$

The result is DFT $\{x(n)\} = X(k) = \{4, -j2, 0, j2\}$.

Find IDFT of above sequence.

EXAMPLE 6.9 Find the DFT of $x(n) = \{1, -1, 2, -2\}$.

Solution: The DFT, X(k) of the given sequence $x(n) = \{1, -1, 2, -2\}$ can be determined using matrix as shown below.

$$X(k) = \begin{bmatrix} W_4^0 & W_4^0 & W_4^0 & W_4^0 \\ W_4^0 & W_4^1 & W_4^2 & W_4^3 \\ W_4^0 & W_4^2 & W_4^4 & W_4^6 \\ W_4^0 & W_4^3 & W_4^6 & W_4^9 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ -1-j \\ 6 \\ -1+j \end{bmatrix}$$

$$\therefore DFT \{x(n)\} = X(k) = \{0, -1 - j, 6, -1 + j\}$$

EXAMPLE 6.10 Find the 4-point DFT of $x(n) = \{1, -2, 3, 2\}$.

Solution: Given $x(n) = \{1, -2, 3, 2\}$, the 4-point DFT $\{x(n)\} = X(k)$ is determined using matrix as shown below.

DFT
$$\{x(n)\} = X(k) = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 3 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ -2+j4 \\ 4 \\ -2-j4 \end{bmatrix}$$

$$Table Table Tabl$$

8-point DFT

Twiddle factor Matrix for 8- Point DFT

1.	K=0	Wo	.M80	W ₈ °	Wg 0	Wg.	Wg°	Wg	W80
	c=	Wg	Wh'	Wg2	W83	Wg4	No2	We	WgT
War	1=2	Wgb	W82	Wgy	We	W8	Wg10	Wg 2	Wg 14
118-		Wg	-Wg3	Wg	W89	Wg 12	West	Wg 18	W0 21
	11=4	W80	Wa4	Wg 8	Wg	Watc	Wg 20	W8 24	Wg 28
	7 100		Wg	Wood	Wels	We	W25	Wg 36	Mass
	K= C	Wgo	W8°	Wgl2	W2 18	W8 24	M8	Wg	WR
	14=7	W8º	W,	Wo 14	Wg 21	W. 28	Wg	Weth	Weg

Twiddle factor Matrix for 8- Point DFT

Twiddle factor Matrix for 8- Point DFT

Comparison between DTFT and DFT

- DFT is a sampled version of DTFT, where the frequency term ω is sampled. But, we know that DTFT is obtained by using the sampled form of input signal x(t). So, we find that DFT is obtained by the double sampling of x(t).
- DFT gives only positive frequency values, whereas DTFT can give both positive and negative frequency values.
- DTFT and DFT coincide at intervals of $\omega = 2\pi k/N$, where k = 0, 1, ..., N 1.
- To get more accurate values of DFT, number of samples N must be very high but when N is very high, the required computation time will also be very high.