"计算机组织结构"作业 06 参考答案

- 1. 假定有两个用来存储 10TB 数据的 RAID 系统,每个磁盘的大小均为 2TB。系统 A 使用 RAID 1 技术,系统 B 使用 RAID 5 技术。请问:[刘璟,121250083]
 - a) 系统 A 需要比系统 B 多用多少存储容量(单位: TB)?

A 系统需 20TB 存储容量; B 系统采用 6 个磁盘, 需 12TB 存储容量, 多用 8TB

b) 假定一个应用需要向磁盘写入一块数据,若磁盘读或写一块数据的时间为 30ms,则最坏情况下,在系统 A 上写入一块数据需要多少时间(单位: 毫秒)?

30_{ms}

- c) 如果问题 b)是在系统 B上写入一块数据,需要多少时间(单位:毫秒)? 120ms(最坏情况:两读两写)
- d) 哪个系统更加可靠?

A更加可靠。

RAID1 通过镜像对整个数据进行了备份,只要其中一份数据所在磁盘出现了问题,通过另一份数据就可以很方便的进行恢复;而 B 系统中,如果两块磁盘同一对应位置同时存在故障,相应的数据就无法进行恢复了。

2. 假设一个分页虚拟存储系统的虚拟地址为 40 位,物理地址为 36 位,页大小为 16KB,按字节编址。若页表中的有效位、存储保护位、修改位、使用位共占 4 位,磁盘地址不在页表中。则该存储系统中每个程序的页表大小为多少(单位: MB)?(说明: 1.假设每个程序都能使用全部的虚拟内存; 2.页表项的长度必须为字节的整数倍)

按字节编址,故:

虚拟主存页面个数: 2^{(40-14)=2²⁶ 物理主存页面数: 2^{(36-14)=2²²} 页表项的最小长度: 22+4=26 根据说明 2, 取 32 位 (4B) 页表大小: 2^{26*4B=256MB}}

3. 假设一个计算机系统中有一个TLB和一个L1 data cache。该系统按字节编址,虚拟地址 16 位,物理地址 12 位;页大小为 128B,TLB 为 4-路组相连,共有 16 个页表项;L1 data cache 采用直接映射方式,块大小为 4B,共 16 行。在 系统运行的某一时刻,TLB、页表和 L1 data cache 中的部分内容如下图所示(16 进制表示):

组	标	页	有	标	页	有	标	页	有	标	页	有	
号	记	框	效	记	框	效	记	框	效	记	框	效	
			位			位			位			位	_
0	05	_	0	09	1D	1	00	08	1	07	10	1	

1	13	1C	1	02	17	1	04		0	OA		0
2	02	09	1	80	_	0	06		0	03	11	1
3	07	_	0	63	12	1	OA	34	1	72	_	0

TLB 的内容 [缪晓伟, 121250101; 陆一飞, 121250094; 贾俊腾, 111130046; 李任我行, 131250212]

虚页号	页框号	有效位
000	08	1
001	03	1
002	14	1
003	02	1
004	_	0
005	16	1
006		0
007	07	1
008	13	1
009	17	1
00A	09	1
00B		0
00C	19	1
00D	_	0
00E	11	1
00F	OD	1

页表的前 16 行内容

行索引	标记	有效位	字节3	字节 2	字节1	字节 0
0	19	1	12	56	С9	AC
1	_	0	_			_
2	1B	1	03	45	12	CD
3	_	0				_
4	32	1	23	34	C2	2A
5	OD	1	46	67	23	3D
6	_	0	_			_
7	10	1	12	54	65	DC
8	24	1	23	62	12	3A
9	_	0				_
A	2D	1	43	62	23	C3
В	_	0	_			_
С	12	1	76	83	21	35
D	16	1	А3	F4	23	11
Е	33	1	2D	4A	45	55
F	_	0	_	_	_	

L1 data cache 的内容

请问:

a) 虚拟地址中哪几位表示虚拟页号?

页大小 128B, 所以低 7 位为页内偏移量, 从而高 9 位为虚拟页号

b) 虚拟页号的哪几位表示 TLB 标记?

虚拟页号中高 7 位为 TLB 标记

c) 物理地址中哪几位表示物理页号?

物理地址高5位表示物理页号,低7位表示页内偏移量

d) 在访问 cache 时,物理地址哪几位表示行号?

低 2 位表示块内地址,中间 4 位表示行号,高 6 位是标记字段

e) CPU 从地址 067AH 中取出的值为多少?

4AH

虚拟地址 067AH=0000 0110 0111 1010B,高 9 位虚页号为 0000 0110 0B (00CH); 对应 TLB 组号 0,查找 03H 标记,没有对应项,故 TLB 缺失;

查找页表,发现 00CH 项有效位为 1,取出对应页框号 19H=11001B;

将页框号与页内偏移组成物理地址: 11001 111 1010B, 计算中间 4 位得到 cache 行号 E, 高 6 位得标记 33H, 比对吻合,且有效位为 1,块内地址为 10B=2,所以取 出数据 4AH

4. 虚拟内存的大小是否等于主存的容量加上磁盘的容量? 为什么?

不对。

- 一个系统虚拟内存的上限由两方面决定:
- 1) 系统寻址空间的大小,如系统寻址宽度为 32 位,则能支持的虚拟内存大小最多为 (2³2),即 46 大小。
- 2)虚拟内存借助磁盘空间来实现,所以虚拟内存一定小于磁盘空间大小。

在不超过上述两条限制的情况下,具体的虚拟内存大小会根据具体设置而定,但磁盘的容量通常会远大于虚拟内存的容量。

5. 在使用了快表(TLB)和 cache 的情况下,CPU 读写一个数据,需要访问多少次主存? (需要假设各种情况的概率)

假设 TLB 命中率为 Pris, 虚页载入的概率为 Pv, cache 命中率为 Pc,则:

TLB 命中且虚页载入且 cache 命中的概率为: P_{TLB} * P_V * P_C (0次)

TLB 命中且虑页载入但 cache 未命中的概率为: $P_{TLB} * P_V * (1 - P_C)$ (1次)

TLB 命中但虚页未载入的概率为: PTLB * (1 - Pv) (1次)

TLB 未命中但虚页载入且 cache 命中的概率为: $(1 - P_{TLB}) * P_V * P_C$ (1 次)

TLB 未命中但虚页载入且 cache 未命中的概率为: $(1 - P_{TLB}) * P_V * (1 - P_C)$ (2次)

TLB 未命中且虚页未载入的概率为: $(1 - P_{TLB}) * (1 - P_{V})$ (2次)

所以,平均的主存访问次数为:

 $0 * (P_{TLB} * P_V * P_C) + 1 * (P_{TLB} * P_V * (1 - P_C) + P_{TLB} * (1 - P_V) + (1 - P_{TLB}) * P_V *$

 P_c) + 2 * ((1 - P_{TLB}) * P_v * (1 - P_c) + (1 - P_{TLB}) * (1 - P_v)) = 2 - P_{TLB} - P_v * P_c

注: 也可以这样理解,最坏情况下需要访问 2 次主存,1 次是页表查找,1 次是存取数据。如果 TLB 命中,则可以不用进行页表查找(此时概率为 P_{TLB});如果载入且 cache 命

中,则可以不用从主存中存取数据(此时概率为 Pv*Pc)。