

WHAT IS CLAIMED IS:

1 1. A method for sound signal classification, comprising:
2 receiving a sound signal;
3 specifying meta-data to be extracted from the sound signal;
4 dividing the sound signal into a set of frames;
5 applying a fitness function to the frames to create a set of fitness data;
6 selecting a frame from the set of frames, if the frame's corresponding fitness
7 datum within the set of fitness data exceeds a predetermined threshold value;
8 extracting the meta-data from the selected frames; and
9 classifying the sound signal based on the meta-data extracted from the selected
10 frames.

1 2. The method of claim 1:
2 wherein the sound signal is a speech signal.

1 3. The method of claim 1 wherein specifying includes:
2 specifying age range meta-data.

1 4. The method of claim 1 wherein specifying includes:
2 specifying gender meta-data.

1 5. The method of claim 4 wherein selecting includes:
2 setting the threshold so that a ratio of frames selected to frames not selected is
3 between about 1:2 and about 1:3.

1 6. The method of claim 1 wherein specifying includes:
2 specifying accent meta-data.

1 7. The method of claim 1 wherein specifying includes:
2 specifying dialect meta-data.

1 8. The method of claim 1 wherein specifying includes:
2 specifying identity meta-data.

1 9. The method of claim 1 wherein dividing includes:
2 dividing the sound signal into a set of time frames.

1 10. The method of claim 1 wherein dividing includes:
2 dividing the sound signal into a set of equal length time frames.

1 11. The method of claim 1 wherein applying includes:
2 calculating a signal strength of the sound signal frame.

1 12. The method of claim 1 wherein selecting includes:
2 selecting a frame for meta-data extraction, if the frame's fitness datum exceeds
3 a greatest fitness datum within the set of fitness data by a predetermined margin.

1 13. The method of claim 1 wherein extracting includes:
2 extracting the meta-data from the selected frames using a Multi-Layer
3 Perceptron (MLP) neural network.

1 14. The method of claim 13 wherein extracting includes:
2 extracting the meta-data from the selected frames using a MLP neural network
3 having an input layer with nodes corresponding to the sound signal's Mel-Cepstral
4 components.

1 15. The method of claim 1 further wherein classifying includes:
2 assigning the sound signal to that meta-data class to which a largest number of
3 the selected frames have been assigned.

1 16. The method of claim 1 further wherein classifying includes:
2 adding together each of the selected frame's confidence scores for each meta-
3 data class; and
4 assigning the sound signal to that meta-data class having a highest total
5 confidence score.

1 17. The method of claim 1 further wherein classifying includes:
2 assigning the sound signal to that meta-data class having a statistically longest
3 run-length.

1 18. A method for sound signal classification, comprising:
2 receiving a speech signal;
3 specifying meta-data to be extracted from the sound signal;
4 dividing the sound signal into a set of equal length time frames;
5 applying a fitness function to the frames to create a set of fitness data;

6 selecting a frame for meta-data extraction, if the frame's fitness datum exceeds
7 a greatest fitness datum within the set of fitness data by a predetermined margin;
8 extracting the meta-data from the selected frames using a Multi-Layer
9 Perceptron (MLP) neural network;
10 adding together each of the selected frame's confidence scores for each meta-
11 data class; and
12 assigning the sound signal to that meta-data class having a highest total
13 confidence score.

1 19. A system for sound signal classification comprising a:
2 means for receiving a sound signal;
3 means for specifying meta-data to be extracted from the sound signal;
4 means for dividing the sound signal into a set of frames;
5 means for applying a fitness function to the frames to create a set of fitness
6 data;
7 means for selecting a frame from the set of frames, if the frame's
8 corresponding fitness datum within the set of fitness data exceeds a predetermined
9 threshold value;
10 means for extracting the meta-data from the selected frames; and
11 means for classifying the sound signal based on the meta-data extracted from
12 the selected frames.