CPEN 400Q Lecture 21 Stabilizer codes

Wednesday 26 March 2025

Announcements

- Last content lecture on Monday; presentations for two classes + two tutorials after (attendance expected - come support your classmates!)
- Project rubric available on PrairieLearn
- Quiz 10 on *Tuesday* before presentation
- TA4 due Friday 23:59

Last time

We made a code to fix phase flip errors by making them look like bit flip errors in a different basis. α 1000 + β 1111

$$\mathcal{E}(\alpha|0\rangle + \beta|1\rangle) = \alpha|0\rangle_L + \beta|1\rangle_L = \alpha|+++\rangle + \beta|---\rangle$$

2025-03-26 CPEN400Q 2024W2 L21 3 / 22

Last time

We *concatenated* the bit and phase flip codes to create a 9-qubit code that corrected *any* single-qubit error.

This worked because if a code can correct a set of error operations $\{E_j\}$, it can also correct linear combinations of them.

2025-03-26 CPEN400Q 2024W2 L21 4 / 22

Learning outcomes

Today:

- Outline the conditions under which errors can be corrected
- Define the stabilizers of a quantum error correcting code
- S Express the bit flip, phase flip, Shor code, and 5-qubit code in the stabilizer formalism

2025-03-26 CPEN400Q 2024W2 L21 5 / 22

Conditions for quantum error correction

Formal definition of a quantum error correcting code is a *subspace*, C, called the **codespace**.

Example: bit flip code.

Define **projector** onto codespace,

$$P = |000\rangle \langle 000| + |111\rangle \langle 111|$$

$$p^2 = P$$

(B)

Image: Nielsen & Chuang, Fig. 10.5

2025-03-26 6 / 22 CPEN400Q 2024W2 L21

Conditions for quantum error correction

$$PE_i^{\dagger}E_jP = \alpha_{ij}P$$

Theorem 10.1: (Quantum error-correction conditions) Let C be a quantum code, and let P be the projector onto C. Suppose $\mathcal E$ is a quantum operation with operation elements $\{E_i\}$. A necessary and sufficient condition for the existence of an error-correction operation \mathcal{R} correcting \mathcal{E} on C is that

$$P E_i T E_j P = \alpha_{ij} P \qquad (10.16)$$

for some Hermitian matrix α of complex numbers.

If such an \mathcal{R} exists, $\{E_i\}$ is called a *correctable set of errors*. [17X XXI (1000 X 000) + HAJXAN) (111 X 000) + 1000 X 411) 147=210007 +B11977 = |111 × 000 | + (000 × 111 |

2025-03-26 CPEN400Q 2024W2 L21 7 / 22

Last week / last class, we considered two recovery circuits for the bit flip code.

2025-03-26 8 / 22 CPEN400Q 2024W2 L21

Stabilizers

We can consider a more general invariant than parity: eigenvalues 10007 w.r.t. special subsets of the Pauli group.

> **곤군군**: 10207

The *n*-qubit Pauli group is

$$\mathcal{P}_n = \{I, X, Y, Z\}^{\otimes n} \times \{1, -1, i, -1\} \qquad \text{110d7}$$

Example: Which two-qubit Paulis is this Bell state a +1eigenstate of?

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|00\rangle + |11\rangle \right)$$

(II)

군군 XX

1014>

Bit flip code: stabilizers

Consider our logical states:

$$|0\rangle_L = |000\rangle$$
$$|1\rangle_L = |111\rangle$$

Which three-qubit Paulis are these states +1 eigenstates of?

Stabilizers

Let S be a subgroup of \mathcal{P}_n .

Let V_S be a set of states that are +1 eigenstates for all $P \in S$.

Then, S is the **stabilizer** of V_S , and V_S is stabilized by S.

Facts about S:

- \blacksquare -1 is never in S
- all items of S commute
- choosing S uniquely defines the fixed subspace, V_S

Bit flip code: stabilizers generators

Let's determine a *minimal* representation of the group in terms of its stabilizer generators.

2025-03-26 CPEN400Q 2024W2 L21 12 / 22

Logical Z: need a Pauli that

- stabilizes the logical state but is not in S
- commutes with everything in S
- has the right action on the subspace

Logical X: need a Pauli that

- stabilizes the logical state but is *not* in *S*
- commutes with everything in S
- has the right action on the subspace
- anticommutes with logical Z

note: need to redefine logical states to include Z_i as a stabilize: 107 Stab by (221, 122, 732)

XI=XXX

We can use this formalism to construct circuits for error detection and recovery: simply measure the stabilizer generators.

2025-03-26 CPEN400Q 2024W2 L21 14 / 22 Correctible errors all anticommute with at least one of the generators, so we can detect their presence in the syndrome measurement.

stab.gan	XII	IXI	IIX
子子工	-1	-1	+1
IZZ	+1	-1	-1

2025-03-26 15 / 22 CPEN400Q 2024W2 L21

Bit flip code: stabilizers and logical errors

Danger: error that $\underline{commutes}$ with all elements of S, but isn't in S.

$$\alpha \mid +++ \rangle + \beta \mid --- \rangle$$

$$S: \langle XXI, IXX \rangle \quad Z_{L} = XXX$$

2025-03-26 CPEN400Q 2024W2 L21 17 / 22

Name	Operator
g_1	ZZĪIIIII
g_2	IZZIIIII
g_3	IIIZZIIII
g_4	IIIIIZZIII
g_5	IIIIIIZZI
g_6	IIIIIIZZ
g_7	XXXXXXXXIII
g_8	IIIXXXXXXXX
\bar{Z}	XXXXXXXXX
\bar{X}	ZZZZZZZZZ

Screenshot: Nielsen & Chuang, chapter 10.5.6.

The Hamming bound

What is the smallest number of physical qubits that we can use to make a logical qubit, and correct any single-qubit error?

General bound:

- n physical qubits
- k logical qubits
- up to t errors

$$\sum_{i=0}^{t} (N) 3^{i} \cdot 2^{k} \leq 2^{n}$$

$$(3^0 + 3n)2 = (1 + 3n)2 < 2^n \Rightarrow n > 5$$

$$\begin{split} |0_L\rangle &= \frac{1}{4} \left[|00000\rangle + |10010\rangle + |01001\rangle + |10100\rangle \right. \\ &+ |01010\rangle - |11011\rangle - |00110\rangle - |11000\rangle \\ &- |11101\rangle - |00011\rangle - |11110\rangle - |01111\rangle \\ &- |10001\rangle - |01100\rangle - |10111\rangle + |00101\rangle \right] \\ |1_L\rangle &= \frac{1}{4} \left[|11111\rangle + |01101\rangle + |10110\rangle + |01011\rangle \\ &+ |10101\rangle - |00100\rangle - |11001\rangle - |00111\rangle \\ &- |00010\rangle - |11100\rangle - |00001\rangle - |10000\rangle \\ &- |01110\rangle - |100111\rangle - |01000\rangle + |11010\rangle \right] \end{split}$$

Name	Operator	
g_1	XZZXI	
g_2	IXZZX	
g_3	XIXZZ	
g_4	ZXIXZ	
$ar{Z}$	ZZZZZ	
\bar{X}	XXXXX	

Screenshot: Nielsen & Chuang, chapter 10.5.6.

2025-03-26 CPEN400Q 2024W2 L21 20 / 22

Properties of stabilizer codes

Stabilizer code usually described by notation [[n, k, d]]:

- code has 2^{n-k} stabilizer generators
- $\mathbf{d} = \mathbf{d}$ distance (minimum weight of Paulis that commute with everything in S but aren't in S)
- a distance d code can correct (d-1)/2 errors

Next time

Next class (last class):

- More on stabilizer codes; fault-tolerant quantum computing
- Quiz on Tuesday (+ presentations)

Action items:

- TA4 due Friday at 23:59
- Work on project

Recommended reading:

- From this class: Codebook EC; N&C 10.1-10.5
- For next class: Codebook EC; N&C 10.6