

United International University

Department of Computer Science and Engineering

CSI 309/CSE 4509: Operating System Concepts Final Examination Summer 2021

Time: 1 Hour 30 Minutes Full Marks: 25

[Any examinee found adopting unfair means will be expelled from the trimester/program as per UIU disciplinary rules.]

[Answer all the questions. Figures in the right margin indicate marks.]

1. a. Why do we need page replacement algorithms?

[1+3]

For the given reference string below, apply the Optimal page-replacement algorithm for 5 initially empty page frames. Show the details of what pages are in those 5-page frames and use (x) to mark when a page fault occurs. Find the number of page faults that may occur in this case.

Reference String: 14384647353187

- b. Assume that the system's overall memory access time is 20 nanoseconds. For 10000 [2] instructions, there is page fault overhead on both sides =10000 nanoseconds (approx.). It takes 4000000 nanoseconds to swap pages in. Around 50% of time it needs to swap the page out which takes 2000000 nanoseconds. Now, calculate the **Effective Access Time (EAT)** for a page fault rate of *p*=0.2?
- 2. a. Explain **Race Condition** with the following statements for process *P1* and *P2*. Here *P* is a shared variable with initial value=3. How many different values of "*P*" you can get? Execute the instructions in order:

First order: [i, ii, iii, iv] Second order: [i, iii, iv, ii] Third order: [iii, i, iv, ii]

P1()		P2()
{		{
i.	Q=P-1;	iii. R=2*P;
ii.	P=2*Q;	iv. P=R-1;
}	~	}
,		,

[4]

[5]

Prove the **Mutual Exclusion** and **Progress** criteria of synchronizing various processes in critical section using **Binary Semaphore** (S) technique for process P_1 , P_2 P_N . S is initialized with 1. Prove for the following scenario:

- i. P_1 is in critical section but P_2 wants to enter into critical section.
- ii. P_1 has finished its task and P_2 again wants to enter into critical section.
- 3. a. Consider the following condition of an operating system in the following table.

Process	Allocation			Max			Available		
	Α	В	С	Α	В	С	A	В	C
P0	1	1	2	4	3	3	2	1	0
P1	2	1	2	3	2	2			
P2	4	0	1	9	0	2			
P3	0	2	0	7	5	3			
P4	1	1	2	1	1	2			

- i. Calculate the content of the need matrix?
- ii. Determine the total amount of resources of each type?
- iii. Is the system in a safe state? (Note: Check for safe sequence)
- b. For the following Resource Allocation Graph (RAG), fill up the request and allocation table [2] for process *P1*, *P2* and *P3* provided below, regarding resource type *R1* and *R2*. Is there any deadlock occurring?

	Alloc	ation	Request		
Process	Resc	urce	Resource		
	R1	R2	R1	R2	
P1					
P2					
P3					

- 4. a. Calculate the total number of head movements using Circular LOOK (C-LOOK) and SCAN [2+2] disk scheduling algorithm for the following requests queue: 82, 95, 178, 36, 112, 15, 123, 53, 64. The current head position of read/write is 50. Draw the chart by moving from left to right.
 - b. Answer the following regarding file blocks allocation strategies:

[1+1]

- i. Which type of fragmentation occurs for contiguous allocation of file blocks.
- ii. Why indexed allocation suffers from pointer overhead issue?