	b.	Use the Euclidean algorithm to find gcd(12345, 54321) and express the gcd as a linear combination m,n of the given numbers and also find m and n.	10	3	2	2
28.	a.i.	Determine whether the following implication is a tautology, by using truth table technique.	6	3	3	2
		$p \to (p \to r) \Rightarrow (p \to q) \to (p \to r).$			1/21	
	ii.	Prove the equivalence without using truth table. $p \rightarrow (q \rightarrow p) \equiv \exists p \rightarrow (p \rightarrow q).$	4	3	3	2
		(OR)				
	b.	Using rules of inference construct an argument to show that the following premises imply the conclusion "It rained". "If it does not rain or if there is no traffic dislocation, then the sports day will be held and the cultural programme will go on"; "If the sports day is held the translation of the translation of the sports day is held the translation of the sports day."	10	3	3	2
		day is held, the trophy will be awarded" and "the trophy was not awarded".				
29). a.	State and prove the necessary and sufficient condition for a subset of a group G to be a subgroup of G.	10	3	4	1
		(OR) [1 0 0 1 1 0]				
	b.	Given the generator matrix $G = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$ corresponding to the	10	3	4	2
		Given the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$ corresponding to the				
		encoding function $e: B^3 \to B^6$, find the corresponding parity check matrix and use it to decode the following received words and hence, to find the original message. Are all the words decoded uniquely? (i) 110101 (ii) 001111 (iii) 111111				
30). a.	Find the minimum spanning tree for the weighted graph using Kruskal's algorithm. A 20 B	10	3	5	2
		23 1 4 9 15 29 25 16 3 C				
	b.i.	(OR) Give an example of a graph which contains (1) An Eulerian circuit and a Hamiltonian circuit that are distinct (2) Neither an Eulerian circuit nor a Hamiltonian circuit	5	3	5	2
	44	By using circuits, prove that the two graphs G_1 and G_2 are isomorphic.	5	3	5	2
	11.	By using circuits, prove that the two graphs G_1 and G_2 are isomorphic. $G_1: \qquad \qquad$				

														g. No.	Reg. No.
--	--	--	--	--	--	--	--	--	--	--	--	--	--	--------	----------

B.Tech. DEGREE EXAMINATION, MAY 2022

Fifth & Sixth Semester

18MAB302T - DISCRETE MATHEMATICS FOR ENGINEERS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.
- (ii) Part - B should be answered in answer booklet.

Max. Marks: 75 Time: 2½ Hours $PART - A (25 \times 1 = 25 Marks)$ Answer ALL Questions

- 1. If the cardinality of the sets A and B are 5 and 3 respectively then the cardinality of A×B is (A) 32 (B) 8
 - - (D) 15
 - (C) 25
- 2. Let $A = \{0,1,2,3,4\}$, $B = \{0,1,2,3\}$ and aRb iff a+b=4, $R = \{(1,3),(2,2),(3,1),(4,0)\}$. Then image of R is equal to
 - (B) {1,2,3} (A) {1,2,3,0} (D) {1,3,4} (C) {1,2,4}
- 3. If A and B are non-empty sets then $A \cup (A-B)$ is
 - (A)
 - (D) A-B
- 1 2 1 2 4. The function $f: z^+ \to z^+$ defined by $f(x) = x^2 + 2$ is
 - (A) Bijective
 - (B) Injective, not surjective
 - (C) Surjective, not injective (D) Neither injective nor surjective
- 5. Let $f(x) = x^3$ and g(x) = 4x + 3 be functions on R. Then fog is
 - (A) $4x^3 + 3$
- (B) $4x^3$

(C) $(4x+3)^3$

(C) B

- (D) 4x+3
- 6. Number of ways in which 'n' persons can be seated round a table is
 - (B) (n-1)!(A) n!
 - (D) (n+2)!(C) (n+1)!
- 7. If a and b are any two integers and non-zero then gcd (a,b) is
 - (A) mn+ab(C) *ma-nb*

- (B) ab divides mn (D) ma+nb
- 8. Generalization of pigeonhole principle for n>m is
 - $\frac{n}{m}$

9.	(A) 151200 (B) 5040 (C) 848 (D) 720	1	2	2	2	19	code	ede can detect a set of at most 5 errors words is Atleast 6	s iff the minimum distance between any tw (B) Atmost 6	70 ¹
10.	The prime factorization of 6647 is (A) $(17^2)(23)$ (B) $(17)(23)$	1	2	2	2		(C)	Atleast 11	(D) Atmost 11	
	(A) $(17)(23)$ (B) $(17)(23)$ (C) $(17^3)(23)$ (D) $(23^2)(17)$					20). The	weight of the word 1101001 is		1
							(A)	1	(B) 3	
11.	The dual of $(p \land (p \lor q)) \rightarrow q \equiv T$ is	1	2	3	2		(C)	4	(D) 7	
	$(A) \exists (\neg \land (\neg \land \land \neg \land \neg)) \land \neg \neg \top \qquad (B) \exists (\land \land \land \neg \land \neg) \land \neg \vdash \neg$)) =								
	$(P \land (P \lor q)) \lor q \equiv I \qquad (B) (P \lor (P \lor q)) \lor q \equiv I$	$(q \land q) \land q \equiv F$				21	· If G=	=(V,E) is an undirected graph with 5	edges then $\sum \deg(Vi) =$	1
	(A) $\exists (p \land (p \lor q)) \lor q \equiv T$ (B) $\exists (p \lor (p \lor q)) \land q \equiv F$ (D) $\exists (p \land (p \lor q)) \land q \equiv F$	$(a \lor a) \lor a \equiv F$							$\frac{1}{i}$	
	(1 (1 1)) 1	1)) 1 =					(A)	10	(B) 5	
12.	The statement if a figure is a square then it is a quadrilater	ral is represented by $p \rightarrow a$	2	3	2		(C)	11	(D) 12	
	then it inverse is	1 71 1				22	The	maximum number of edges in a simp	ole disconnected graph G with n vertices an	a 1
	(A) If a figure is not a square then it is (B) If a figure is	is not a quadrilateral then				22		mponents is	one disconnected graph of with it vertices an	.u ·
	not a quadrilateral it is not a so							The section	(B) $(r_1, l_2)(r_2, l_2+1)$	
	(C) If a figure is quadrilateral then it is (D) If a figure is	is a square then it is not a					(11)	(n+k)(n-k+1)	(n-k)(n-k+1)	
	a square quadrilatera	cal						2	2	
13	Which of the following proposition is a tautology?	1	2	3	2		(C)	n(n-k+1)	(B) $\frac{(n-k)(n-k+1)}{2}$ (D) $\frac{(n-k)^2}{2}$	
15.		1	2	3	Z	*		2	$\frac{(n-\kappa)}{}$	
	$(i) \qquad (p \lor q) \to p$							2	2	
	(ii) $p \lor (p \rightarrow q)$					23.	. A co	nnected graph contains an Euler circi	nit iff each of its vertices is of	1
								Even degree	(B) Odd degree	
								Prime degree	(D) Neither odd nor even	
	(iv) $p \to (p \to q)$					- 24	, ,			
	(A) (i) (B) (ii)					24.		chromatic number of a planar graph i		1
	(C) (iii) (D) (iv)						(A)		(B) 4	
1.4			•	2			(C)	5	(D) 6	
14.	A set of formulae H ₁ , H ₂ H _m is said to be consistent if their (A) Contradiction (B) Tautology		2	3	1	25.	. A tre	e with 100 vertices has		1
							(A)	98 edges	(B) 96 edges	
	(C) Conclusion (D) Implication	1					(C)	100 edges	(D) 99 edges	
15.	Select the correct option:	1	2	3	1			$PART - B (5 \times 10 =$	- 50 Mowles)	
	(I) The proposition $p \rightarrow q$ is F when p is T and q is F							Answer ALL Qu		Marks
	(II) The proposition $p \leftrightarrow q$ is F when p is T and q is F	ì								
	$(A) (I) T (II) T \qquad (B) (I) F (II) F$	F				26. a.			tions, then prove gof:A→C is also invertibl	e ¹⁰
	$(C) (I) T (II) F \qquad \qquad (D) (I) F (II) T$	Γ					and p	prove that $(g \circ f)^{-l} = f^{-l} \circ g^{-l}$.		
16.	The order of an element 'i' of the group $G=\{1,-1,i,-i\}$ unde	er the usual multiplication	2	4	2			(OR)		
	is	i the usual multiplication			-			100-	0 0 1	
	(A) 1 (B) 2									
	(C) 4 (D) 3					b.i.	. 1211	1 0	1 0 1	6
1.7							rina	the transitive closure of $M_R = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	0 0 1	0
1/.	The number of identity elements in a group is	1	2	4	2					
	(A) Unique (B) Distinct							[0	0 0 1	
	(C) More than one (D) Not exist									
	Γ1 0 0	1 1] 1	2	4	2	ii.	· Draw	the Hasse diagram representing the	partial ordering $P = \{(a, b \mid a \text{ divides } b)\}$	} 4
18.	The parity check matrix of the generator matrix	is						1,2,3,4,6,8,12} starting from the diagram	`	,
	[0 1 1	1 0					011 (1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	iaph of I.	
	(A) $\begin{bmatrix} 1 & 0 & 1 & 0 & 0 \end{bmatrix}$ (B) $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$	0 0				27. a.i.	. There	e are 3 piles of identical red, blue and	green balls, where each pile contains atleas	et 6
	1 1 0 1 0	1 0					10 ba	alls. In how many ways 10 balls be se	elected	,,,
							(1)			
		0 1					(2)		ed?	
	(C) $\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \end{bmatrix}$ (D) $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$	0 0				**	Ofor	xy 5 points chosen within an agail-t-	al triangle whose sides are Clared 1 1	1
	1 1 0 1 0	1 0				11.		atleast two points are within a distance	ral triangle whose sides are of length 1, show	v +
							шаг а	moust two points are within a distance	COL 1/2 OF CACH OTHER.	
		0 1						(OR)		
								(OR)		

Page 2 of 4

20MA5&6-18MAB302T

2 4 2

2 4 2

2 5 2

2 5 2

2 5 1

2 5 1

1 5 2

BL CO PO

3 1 1

3 1 2

3 1 2

3 2 2

3 2 2