Appendix A Data Sets

All data sets are included in the R library SMSdata that may be downloaded via the quantlet download center: www.quantlet.org. All data sets are available also on the Springer webpage.

A.1 Athletic Records Data

This data set provides data on athletic records in 100, 200, 400, 800, 1,500, 5,000, 10,000 m, and Marathon for 55 countries.

A.2 Bank Notes Data

Six variables were measured on 100 genuine and 100 counterfeit old Swiss 1000-franc bank notes. The data stem from Flury and Riedwyl (1988). The columns correspond to the following 6 variables.

 X_1 : length of the bank note

 X_2 : height of the bank note, measured on the left

 X_3 : height of the bank note, measured on the right

 X_4 : distance of the inner frame to the lower border

 X_5 : distance of the inner frame to the upper border

 X_6 : length of the diagonal

Observations 1–100 are the genuine bank notes and the other 100 observations are the counterfeit bank notes.

A.3 Bankruptcy Data

The data are the profitability, leverage, and bankruptcy indicators for 84 companies.

The data set contains information on 42 of the largest companies that filed for protection against creditors under Chap. 11 of the U.S. Bankruptcy Code in 2001–2002 after the stock market crash of 2000. The bankrupt companies were matched with 42 surviving companies with the closest capitalizations and the same US industry classification codes available through the Division of Corporate Finance of the Securities and Exchange Commission (SEC 2004).

The information for each company was collected from the annual reports for 1998–1999 (SEC 2004), i.e., 3 years prior to the defaults of the bankrupt companies. The following data set contains profitability and leverage ratios calculated, respectively, as the ratio of net income (NI) and total assets (TA) and the ratio of total liabilities (TL) and total assets (TA).

A.4 Car Data

The car data set (Chambers et al. 1983) consists of 13 variables measured for 74 car types. The abbreviations in the data set are as follows:

 X_1 : P price

 X_2 : M mileage (in miles per gallon)

X₃: R78 repair record 1978 (rated on a 5-point scale: 5 best, 1 worst)

 X_4 : R77 repair record 1977 (scale as before)

 X_5 : H headroom (in inches)

 X_6 : R rear seat clearance (in inches)

 X_7 : Tr trunk space (in cubic feet)

 X_8 : W weight (in pound) X_9 : L length (in inches)

 X_{10} : T turning diameter (clearance required to make a U-turn, in feet)

 X_{11} : D displacement (in cubic inches)

 X_{12} : G gear ratio for high gear

 X_{13} : C company headquarters (1 United States, 2 Japan, 3 Europe)

A.5 Car Marks

The data are averaged marks for 24 car types from a sample of 40 persons. The marks range from 1 (very good) to 6 (very bad) like German school marks. The variables are:

 X_1 : A economy X_2 : B service

 X_3 : C nondepreciation of value

 X_4 : D price, mark 1 for very cheap cars

 X_5 : E design X_6 : F sporty car X_7 : G safety

 X_8 : H easy handling

A.6 Classic Blue Pullover Data

This is a data set consisting of 10 measurements of 4 variables. A textile shop manager is studying the sales of "classic blue" pullovers over 10 periods. He uses three different marketing methods and hopes to understand his sales as a fit of these variables using statistics. The variables measured are

 X_1 : number of sold pullovers

 X_2 : price (in EUR)

X₃: advertisement costs in local newspapers (in EUR)
X₄: presence of a sales assistant (in hours per period)

A.7 Fertilizer Data

The yields of wheat have been measured in 30 parcels, which have been randomly attributed to 3 lots prepared by one of 3 different fertilizers A, B, and C.

 X_1 : fertilizer A X_2 : fertilizer B X_3 : fertilizer C

A.8 French Baccalauréat Frequencies

The data consist of observations of 202,100 French baccalauréats in 1976 and give the frequencies for different sets of modalities classified into regions. For a reference, see Bouroche and Saporta (1980). The variables (modalities) are:

 X_1 : A philosophy letters

 X_2 : B economics and social sciences

 X_3 : C mathematics and physics

 X_4 : D mathematics and natural sciences

 X_5 : E mathematics and techniques

 X_6 : F industrial techniques X_7 : G economic techniques X_8 : H computer techniques

A.9 French Food Data

The data set consists of the average expenditures on food (bread, vegetables, fruit, meat, poultry, milk, and wine) for several different types of families in France (manual workers = MA, employees = EM, managers = CA) with different numbers of children (2, 3, 4, or 5 family members). The data are taken from Lebart et al. (1982).

A.10 Geopol Data

This data set contains a comparison of 41 countries according to 10 different political and economic parameters:

 X_1 : popu population X_2 : giph gross internal product per habitant X_3 : ripo rate of increase of the population X_4 : rupo rate of urban population X_5 : rlpo rate of illiteracy in the population X_6 : rspo rate of students in the population X_7 : eltp expected lifetime of people X_8 : rate of nutritional needs realized rnnr X_0 : nunh number of newspapers and magazines per 1,000 habitants X_{10} : nuth number of television per 1,000 habitants

A.11 German Annual Population Data

The data set shows yearly average population and unemployment rates for the old federal states in Germany (given in 1,000 inhabitants).

A.12 Journals Data

This is a data set that was created from a survey completed in the 1980's in Belgium questioning people's reading habits. They were asked where they live (10 regions

comprising 7 provinces and 3 regions around Brussels) and what kind of newspaper they read on a regular basis. The 15 possible answers belong to 3 classes: Flemish newspapers (first letter ν), French newspapers (first letter f) and both languages (first letter f).

 X_1 : WaBr Walloon Brabant X_2 : Brar Brussels area X_3 : Antw Antwerp

X₄: FlBr Flemish Brabant
X₅: OcFl Occidental Flanders
X₆: OrFl Oriental Flanders

 X_7 : Hain Hainaut X_8 : Lièg Liège X_9 : Limb Limburg X_{10} : Luxe Luxembourg

A.13 NYSE Returns Data

This data set consists of returns of seven stocks traded on the New York Stock Exchange (Berndt 1990). The monthly returns of IBM, PanAm, Delta Airlines, Consolidated Edison, Gerber, Texaco, and Digital Equipment Company are stated from January 1978 to December 1987.

A.14 Plasma Data

In Olkin and Veath (1980), the evolution of citrate concentration in the plasma is observed at 3 different times of day for two groups of patients. Each group follows a different diet.

 X_1 : 8 AM X_2 : 11 AM X_3 : 3 PM

A.15 Time Budget Data

In Volle (1985), we can find data on 28 individuals identified according to gender, country where they live, professional activity, and matrimonial status, which indicates the amount of time each person spent on 10 categories of activities over $100 \, \text{days} (100.24 \, \text{h} = 2,400 \, \text{h} \text{ total in each row})$ in 1976.

 X_1 : prof: professional activity

 X_2 : tran: transportation linked to professional activity

 X_3 : hous: household occupation

 X_4 : kids: occupation linked to children

 X_5 : shop: shopping

 X_6 : pers: time spent for personal care

 X_7 : eat: eating X_8 : slee: sleeping

wawe:

wnwe:

 X_9 : tele: watching television X_{10} : leis: other leisure activities active men in the United States maus:

active women in the United States waus: nonactive women in the United States wnus:

married men in United States mmus: married women in United States wmus: single men in United States msus: single women in United States wsus: active men from Western countries mawe: active women from Western countries

married men from Western countries mmwe: married women from Western countries wmwe: mswe: single men from Western countries

nonactive women from Western countries

single women from Western countries wswe: active men from Yugoslavia mayo:

active women from Yugoslavia wayo: nonactive women from Yugoslavia wnyo: married men from Yugoslavia mmyo: wmyo: married women from Yugoslavia msyo: single men from Yugoslavia wsyo: single women from Yugoslavia

active men from Eastern countries maea: active women from Eastern countries waea: nonactive women from Eastern countries wnea: married men from Eastern countries mmea:

married women from Eastern countries wmea: single men from Eastern countries msea: single women from Eastern countries wsea:

A.18 U.S. Crime Data 349

A.16 Unemployment Data

This data set provides unemployment rates in all federal states of Germany in September 1999.

A.17 U.S. Companies Data

The data set consists of measurements for 79 U.S. companies. The abbreviations are as follows:

 X_1 : A assets (USD) X_2 : S sales (USD)

 X_3 : MV market value (USD)

 X_4 : P profits (USD) X_5 : CF cash flow (USD)

 X_6 : E employees

A.18 U.S. Crime Data

This is a data set consisting of 50 measurements of 7 variables. It states for 1 year (1985) the reported number of crimes in the 50 states of the United States classified according to 7 categories (X_3-X_9) :

 X_1 : land area (land)

*X*₂: population 1985 (popu 1985)

 X_3 : murder (murd)

 X_4 : rape

 X_5 : robbery (robb) X_6 : assault (assa) X_7 : burglary (burg) X_8 : larcery (larc) X_9 : auto theft (auto)

 X_{10} : U.S. states region number (reg) X_{11} : U.S. states division number (div)

Division Numbers		Region Numbers	
1	Northeast	1	
2	Midwest	2	
3	South	3	
4	West	4	
5			
6			
7			
8			
9			
	1 2 3 4 5 6 7 8	1 Northeast 2 Midwest 3 South 4 West 5 6 7 8	

A.19 U.S. Health Data

This is a data set consisting of 50 measurements of 13 variables. It states for 1 year (1985) the reported number of deaths in the 50 states of the U.S. classified according to 7 categories:

 X_1 : land area (land)

 X_2 : population 1985 (popu)

 X_3 : accident (acc)

 X_4 : cardiovascular (card)

 X_5 : cancer (canc)

 X_6 : pulmonary (pul)

 X_7 : pneumonia flu (pneu)

 X_8 : diabetes (diab)

 X_9 : liver (liv)

 X_{10} : doctors (doc)

 X_{11} : hospitals (hosp)

 X_{12} : U.S. states region number (reg) X_{13} : U.S. states division number (div)

A.20 Vocabulary Data

This example of the evolution of the vocabulary of children can be found in Bock (1975). Data are drawn from test results on file in the Records Office of the Laboratory School of the University of Chicago. They consist of scores, obtained from a cohort of pupils from the 8th through 11th grade levels, on alternative forms of the vocabulary section of the Cooperative Reading Test. It provides scaled scores for the sample of 64 subjects (the origin and units are fixed arbitrarily).

A.21 WAIS Data 351

A.21 WAIS Data

Morrison (1990) compares the results of 4 subtests of the Wechsler Adult Intelligence Scale (WAIS) for 2 categories of people. In group 1 are $n_1 = 37$ people who do not present a senile factor; in group 2 are those ($n_2 = 12$) presenting a senile factor.

WAIS subtests:

 X_1 : information X_2 : similarities X_3 : arithmetic

 X_4 : picture completion

- Andrews, D. (1972). Plots of high-dimensional data. Biometrics, 28, 125-136.
- Bartlett, M. S. (1954). A note on multiplying factors for various chi-squared approximations. *Journal of the Royal Statistical Society, Series B, 16,* 296–298.
- Becker, R. A., Chambers, J. M., & Wilks, A. R. (1988). The new S language. A programming environment for data analysis and graphics. Pacific Grove, CA: Wadsworth & Brooks/Cole Advanced Books & Software.
- Belsley, D. A., Kuh, E., & Welsch, R. E. (1980). Regression diagnostics. New York: Wiley.
- Berndt, E. R. (1990). The practice of econometrics: Classic and contemporary. Reading: Addison-Wesley.
- Bock, R. D. (1975). Multivariate statistical methods in behavioral research. New York: McGraw-Hill.
- Bouroche, J.-M., & Saporta, G. (1980). L'analyse des données. Paris: Presses Universitaires de France.
- Breiman, L. (1973). Statistics: With a view towards application. Boston: Houghton Mifflin Company.
- Breiman, L., Friedman, J. H., Olshen, R., & Stone, C. J. (1984). Classification and regression trees. Belmont: Wadsworth.
- Bühlmann, P., & van de Geer, S. (2011). *Statistics for high-dimensional data*, Springer Series in Statistics. Heidelberg: Springer.
- Cabrera, J. L. O. (2012). locpol: Kernel local polynomial regression. R package version 0.6-0.
- Carr, D., Lewin-Koh, N., & Maechler, M. (2011). hexbin: Hexagonal binning routines. R package version 1.26.0.
- Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (1983). *Graphical methods for data analysis*. Boston: Duxbury.
- Chambers, J. M., & Hastie, T. J. (1992). Statistical models in S. Boca Raton: Chapman & Hall/CRC.
- Chernoff, H. (1973). Using faces to represent points in k-dimensional space graphically. *Journal of the American Statistical Association*, 68, 361–368.
- Cook, D., Buja, A., & Cabrera, J. (1993). Projection pursuit indexes based on orthonormal function expansions. *Journal of Computational and Graphical Statistics*, 2(3), 225–250.
- Cook, R. D. (1998). Regression graphics. New York: Wiley.
- Cook, R. D., & Weisberg, S. (1991). Comment on sliced inverse regression for dimension reduction. *Journal of the American Statistical Association*, 86(414), 328–332.
- Duan, N., & Li, K.-C. (1991). Slicing regression: A link-free regression method. Annals of Statistics, 19(2), 505–530.

Eddy, W. (1982). Convex hull peeling, in H. Caussinus, P. Ettinger, & R. Tomassone (Eds.), COMPSTAT 1982 5th Symposium held at Toulouse 1982 (pp. 42–47). Heidelberg: Physica-Verlag.

- Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. (2013). Regression: models, methods and applications. New York: Springer.
- Feller, W. (1966). An introduction to probability theory and its application (Vol. 2). New York: Wiley.
- Flury, B., & Riedwyl, H. (1981). Graphical representation of multivariate data by means of asymmetrical faces. *Journal of the American Statistical Association*, 76, 757–765.
- Flury, B., & Riedwyl, H. (1988). *Multivariate statistics, a practical approach*. London: Chapman and Hall.
- Fox, J., & Weisberg, S. (2011). An R companion to applied regression (2nd ed.). Thousand Oaks, CA: Sage.
- Franke, J., Härdle, W., & Hafner, C. (2011). Statistics of financial markets: An introduction (3rd ed.). Berlin: Springer.
- Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models via coordinate descent. *Journal of Statistical Software*, 33(1), 1–22.
- Friedman, J. H., & Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data analysis. *IEEE Transactions on Computers*, C23, 881–890.
- Genest, M., Masse, J.-C., & Plante, J.-F. (2012). depth: Depth functions tools for multivariate analysis. R package version 2.0-0.
- Hall, P., & Li, K.-C. (1993). On almost linearity of low dimensional projections from high dimensional data. *Annals of Statistics*, 21(2), 867–889.
- Härdle, W., Moro, R., & Schäfer, D. (2005). Predicting bankruptcy with support vector machines, in P. Čížek, W. Härdle, & R. Weron (Eds.), Statistical Tools for Finance and Insurance (pp. 225– 248). Berlin: Springer
- Härdle, W., Müller, M., Sperlich, S., & Werwatz, A. (2004). *Nonparametric and semiparametric models*. Berlin: Springer.
- Härdle, W., & Simar, L. (2015). Applied multivariate statistical analysis (4th ed.). Berlin: Springer.
- Harville, D. A. (1997). Matrix algebra from a statistician's perspective. New York: Springer.
- Harville, D. A. (2001). Matrix algebra: Exercises and solutions. New York: Springer.
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The elements of statistical learning: Data mining, inference, and prediction*, Springer Series in Statistics (2nd ed.). New York: Springer.
- Hendrickson, A. E., & White, P. O. (1964). Promax: A quick method for rotation to oblique simple structure. *British Journal of Statistical Psychology, 17*(1), 65–70.
- Hlubinka, D., Kotík, L., & Vencálek, O. (2010). Weighted halfspace depth. *Kybernetika*, 46(1), 125–148.
- Hosmer, D. W., & Lemeshow, S. (1989). Applied logistic regression. New York: Wiley.
- Hui, G., & Lindsay, B. G. (2010). Projection pursuit via white noise matrices. *Sankhya B*, 72(2), 123–153. With a discussion by Surajit Ray and a rejoinder by the authors.
- Johnson, R. A., & Wichern, D. W. (1998). Applied Multivariate Analysis (4th ed.). Englewood Cliffs: Prentice Hall.
- Jones, M. C., & Sibson, R. (1987). What is projection pursuit? (with discussion). *Journal of the Royal Statistical Society, Series A*, 150(1), 1–36.
- Kaiser, H. F. (1985). The varimax criterion for analytic rotation in factor analysis. *Psychometrika*, 23, 187–200.
- Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab—an S4 package for kernel methods in R. *Journal of Statistical Software*, 11(9), 1–20.
- Knight, K., & Fu, W. (2000). Asymptotics for Lasso-type estimators. The Annals of Statistics, 28(5), 1356–1378.
- Kötter, T. (1996). Entwicklung statistischer Software, Ph.D. thesis, Institut für Statistik und Ökonometrie, Humboldt-Universität zu Berlin.
- Kruskal, J. B. (1965). Analysis of factorial experiments by estimating a monotone transformation of data. *Journal of the Royal Statistical Society, Series B, 27, 251–263.*

Lang, D. T., Swayne, D., Wickham, H., & Lawrence, M. (2012). rggobi: Interface between R and GGobi. R package version 2.1.19.

- Lebart, L., Morineau, A., & Fénelon, J. P. (1982). Traitement des Donnés Statistiques: Méthodes et programmes. Paris: Dunod.
- Li, K.-C. (1991). Sliced inverse regression for dimension reduction (with discussion). *Journal of the American Statistical Association*, 86(414), 316–342.
- Ligges, U., & Mächler, M. (2003). Scatterplot3d—an R package for visualizing multivariate data. *Journal of Statistical Software*, 8(11), 1–20.
- Liu, R. Y. (1988). On a notion of simplicial depth. Proceedings of the National Academy of Sciences USA, 85(6), 1732–1734.
- Liu, R. Y. (1990). On a notion of data depth based on random simplices. *The Annals of Statistics*, 18(1), 405–414.
- Lockhart, R., Taylor, J., Tibshirani, R. J., & Tibshirani, R. (2013). A significance test for the lasso. arXiv preprint arXiv:1301.7161.
- Lokhorst, J., Venables, B., Turlach, B., & Maechler, M. (2013). lasso2: L1 constrained estimation aka lasso'. R package version 1.2-16.
- Lütkepohl, H. (1996). Handbook of matrices. Chichester: Wiley.
- Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. Duluth/London: Academic.
- McCullagh, P., & Nelder, J. A. (1989). *Generalized linear models*, Monographs on Statistics and Applied Probability (2nd ed., Vol. 37). London: Chapman and Hall.
- Mizera, I., & Müller, C. H. (2004). Location-scale depth. *Journal of the American Statistical Association*, 99(468), 949–989. With comments and a rejoinder by the authors.
- Morrison, D. F. (1990). Multivariate statistical methods. New York: McGraw-Hill.
- Nenadic, O., & Greenacre, M. (2007). Correspondence analysis in R, with two- and three-dimensional graphics: The ca package. *Journal of Statistical Software*, 20(3), 1–13.
- Neter, J., Wasserman, W., Kutner, M. H., & Wasserman, W. (1996). *Applied linear statistical models*. (4 ed.). Chicago: Irwin.
- Olkin, I., & Veath, M. (1980). Maximum likelihood estimation in a two-way analysis with correlated errors in one classification. *Biometrika*, 68, 653–660.
- Osborne, M. R., Presnell, B., & Turlach, B. A. (2000). On the LASSO and its dual. *Journal of Computational and Graphical Statistics*, 9(2), 319–337.
- Puntanen, S., Styan, G. P. H., & Isotalo, J. (2011). *Matrix tricks for linear statistical models*. Heidelberg: Springer.
- R Core Team (2013). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. www.R-project.org.
- Rousseeuw, P. J., Ruts, I., & Tukey, J. W. (1999). The bagplot: A bivariate boxplot. *The American Statistician*, 53(4), 382–387.
- Schott, J. R. (1994). Determining the dimensionality in sliced inverse regression. *Journal of the American Statistical Association*, 89(425), 141–148.
- Searle, S. R. (1982). Matrix algebra useful for statistics. Chichester: Wiley.
- Seber, G. A. F. (2008). A matrix handbook for statisticians. Hoboken, NJ: Wiley.
- SEC (2004). Archive of historical documents, Securities and Exchange Commission. www.sec. gov/cgi-bin/srch-edgar.
- Serfling, R. J. (2002). Approximation theorems of mathematical statistics. New York: Wiley.
- Setodji, C. M., & Cook, R. D. (2004). K-means inverse regression. Technometrics, 46(4), 421–429.
- Sobel, R. (1988). Panic on Wall Street: A classic history of America's financial disasters with a new exploration of the crash of 1987. New York: Truman Talley Books/Dutton.
- Swayne, D. F., Lang, D. T., Buja, A., & Cook, D. (2003). GGobi: Evolving from XGobi into an extensible framework for interactive data visualization. *Computational Statistics and Data Analysis*, 43(4), 423–444.
- Therneau, T. M., Atkinson, B., Ripley, B., Oksanen, J., & Deáth, G. (2012). *mvpart: Multivariate partitioning*. R package version 1.6-0.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society, Series B*, 58(1), 267–288.

Tibshirani, R. (2011). Regression shrinkage and selection via the lasso: A retrospective. *Journal of the Royal Statistical Society, Series B*, 73(3), 273–282.

- Trapletti, A., & Hornik, K. (2012). tseries: Time series analysis and computational finance. R package version 0.10-30.
- Tukey, J. W. (1975). Mathematics and the picturing of data, in *Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974)* (Vol. 2, pp. 523–531). Montreal, QC: Canadian Mathematical Congress.
- Turlach, B. A., & Weingessel, A. (2011). quadprog: Functions to solve quadratic programming problems. R package version 1.5-4.
- Vapnik, V. N. (2000). The nature of statistical learning theory (2nd ed.). New York: Springer.
- Venables, W. N., & Ripley, B. D. (2002). *Modern applied statistics with S* (4th ed.). New York: Springer.
- Volle, V. (1985). Analyse des Données. Paris: Economica.
- Wand, M. (2012). KernSmooth: Functions for kernel smoothing for Wand & Jones (1995). R package version 2.23-8.
- Wang, Y. (2012). Model selection, in J. E. Gentle, W. K. Härdle, & Y. Mori (Eds.), *Handbook of computational statistics* (2nd ed., pp. 469–498). Berlin: Springer.
- Ward, J. H. (1963). Hierarchical grouping methods to optimize an objective function. *Journal of the American Statistical Association*, 58, 236–244.
- Weisberg, S. (2002). Dimension reduction regression in R. *Journal of Statistical Software*, 7(1), 1–22.
- Wolf, P. (2012). aplpack: Another Plot PACKage: stem.leaf, bagplot, faces, spin3R, and some slider functions. R package version 1.2.7.
- Zeileis, A., & Grothendieck, G. (2005). zoo: S3 infrastructure for regular and irregular time series. *Journal of Statistical Software, 14*(6), 1–27.
- Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society, Series B*, 67(2), 301–320.
- Zuo, Y., & Serfling, R. (2000). General notions of statistical depth function. The Annals of Statistics, 28(2), 461–482.
- Zvára. (2008). Regression (in Czech), Prague: Matfyzpress.

Actual error rate (AER), 258 Adjoint matrix, xix, 22 Agglomerative algorithm, 225 Akaike's information criterion (AIC), 155, 158 Analysis of variance (ANOVA), 123, 126–128, 144, 301, 302 balanced, 145 unbalanced, 147 ANCOVA, 144 Andrews' curves, 3, 15 ANOVA. See Analysis of variance (ANOVA) aplpack, viii	variables, 281, 282, 284 vectors, 281, 282 Canonical hyperplane, 323 Capital asset pricing model (CAPM), 309, 310 car, viii, 161 CART. See Classification and regression tree (CART) Cauchy distribution, 50 CCA. See Canonical correlation analysis (CCA) cdf. See Cumulative distribution function (cdf) Centering matrix, xvii, 36, 74
Apparent error rate (APER), 251, 258 Asymptotic normality, xix Average linkage, 226	Central hole index, 321 Central limit theorem (CLT), xviii, 44, 50 Central mass index, 321 Centroid distance, 226 Centroid linkage, 226
Bagplot, 320 Balanced dice, 105 Bandwidth, 7 Bartlett correction, 214 Bayes discrimination rule, 246, 250, 252 Beta factor, 311 Between-group sum of squares, 247, 252 Between variance, 246 Bias, xix Binomial distribution, 257 Binomial inverse theorem, 25 Boxplot, 3, 4, 6, 33, 320	Characteristic function, xvi Characteristic polynomial, xx Chernoff faces. See Flury–Chernoff faces χ^2 distance, 239 χ^2 distribution, xviii quantile, xviii χ^2 statistic, 259, 260, 266 Classification and regression trees (CART), 319, 322 Gini criterion, 323 least squares criterion, 323 twoing criterion, 323 CLT. See Central limit theorem (CLT) Cluster analysis, 225
ca, viii, 263 Canonical correlation analysis (CCA) analysis, 281, 283, 287 coefficient, 281, 282	average linkage, 226 centroid linkage, 226 complete linkage, 226, 233 median linkage, 226

single linkage, 226, 230, 233	Cramer-Rao theorem, 90
Ward method, 226, 227, 229, 230, 235	Credit scoring, 245
Coefficient of determination, 32, 37, 38, 144	Critical value, xx, 104
Cofactor, xx	Cross-validation, 161
Column coordinates, 263	Cumulants, xvi
Column factor, 263, 264	Cumulative distribution function cdf, xvi, xx,
contributions to variance, 264	xxiii, 43
Column frequency, 259	empirical, xxi
Common factors, 205	joint, xvi
Communality, 206	marginal, xvi
Complete linkage, 226, 233	
Computational statistics, 319	
Conditional distribution, xx, 45, 56, 59, 69, 72,	Data cloud, 167, 168
73, 75, 76, 78–80	Data depth, 319
Conditional expectation, xvi, 46, 47, 53, 55,	Data matrix, xvii
58, 69, 79, 81, 85, 86	standardized, 36
Conditional moments, xx, 45	Dendrogram, 226
Conditional pdf, 58, 62	Density. See Probability density function (pdf)
Conditional probability, 59	depth, viii
Conditional variance, xvi, 47, 53, 58, 81	Depth function, 320
Confidence interval, 143	Derivative, xx
Confidence region, 114	Descriptive techniques, 3
Conjoint measurement analysis, 301	Design matrix, 141, 301, 304
nonmetric solution, 302	Determinant, xviii, xxi, 21, 22, 24
Consumer preferences, 301	Deviance, 145
Contingency table, xx, 239, 259, 265,	null, 155
276–278	residual, 145, 155
Contour ellipse, 66	Diagonal, xviii
Contrast matrix, 126, 132	Discrimination
Convergence	analysis, 245
in distribution, xviii	Fisher's (see Fisher's LDA)
in probability, xviii	ML (see ML discrimination)
Convex hull peeling, xviii, 320	rule, 245
Correlation, xvi, 29, 32, 34, 36, 81,	Disparity, 290
83, 281	Dissimilarity, 290
empirical, xvii	Distance matrix, 225, 289
multiple, 85	Distribution, xv
partial, 84	χ^2 , xviii
Correlation matrix, 29, 36, 180	conditional, xx, 45
empirical, xvii	exponential, 69
corresp, 263	F-, xviii
Correspondence analysis, 259, 260, 276–278	Gaussian, xxiii
explained variance, 264	Hotelling, xviii, 72, 108, 112, 126
Cost of misclassification, 255	marginal, xxii, 46
Covariance, xvi, 28, 29, 35, 36, 42, 55,	multinormal, xxiii
88, 170	normal, xviii, xxiii
empirical, xvii	t-, xviii
Covariance matrix, xvi, 37, 42, 43, 55,	Wishart, 72, 133
72, 183	Distribution function. See also Cumulative
diagonal, 98	distribution function (cdf)
empirical, xvii	empirical, xxi
partitioned, 71, 88	dr, viii, 322
Covariance test statistic, 163	Draftman plot, 3, 15
Cramer-Rao lower bound, 91, 95, 96, 98	Duality, 168

edf. See Empirical distribution function (edf)	Generalized linear model GLM, 145
Effective dimension reduction (EDR)	GGobi, viii, 321
direction, 321, 329, 331	Gini criterion, 323
space, 321	glmnet, vii, 163
Efficient portfolio, 310	Gradient, xxi
Eigenvalue, xxi, 22, 42, 168, 181, 183, 192,	Gradient vector, 23
247, 260, 263, 285	Graphical techniques, 3
Eigenvector, xxi, 168, 181, 192, 247, 260, 262, 285	Guided tour, 321
Elastic net, 158, 159	Halfspace depth, 320
Ellipsoid, 23	Hat matrix, 148
Empirical distribution function (edf), xxi	Helmert contrasts, 146
Empirical moments, xxi	Hessian matrix, xxii
Entropy index, 321	Heteroscedasticity, 126
Error of misclassification, 245	Hexagon plot, 3
Estimator, xxi	hexbin, viii
minimum variance unbiased, 97	Hierarchical clustering, 225
Euclidean distance, 227, 234, 239, 289, 290	Histogram, 3, 7, 12
Expected value, xxi, 43	Horizontal profiles, 132, 134, 135
conditional, xvi	Hotelling distribution, xviii, 72, 108, 112, 126
Exploratory projection pursuit, 320, 327	quantile, xviii
Exponential distribution, 69	Hypothesis testing, 103
	Trypothesis testing, 105
Factor, 167, 181, 301	Idamonatant matrix muii 22 74
analysis, 206	Idempotent matrix, xxii, 23, 74
estimation, 206	Impurity measure, 322
factor scores, 207	Independence, 29, 88, 260, 266
oblique rotation, 206	Indicator, xv
promax rotation, 206	Inertia, 167, 168, 171, 173, 179, 181, 226, 227
rotation, 206	229
strategy, 207	Intercluster distance, 226
testing, 213	Inverse matrix, 22, 24
varimax rotation, 206	Iso-distance curve, 50
loadings, 205	
scores, 207	Jacobian, xxii, 47, 61, 70
estimation, 216	Joint distribution, 75, 79
Factorial axis, 169	Jones-Sibson index, 321
Factorial representation, 171	
Factorial technique, 167	k-means inverse regression (KIR), 322
Factorial variable, 168, 171, 172	Kernel density estimator, 3, 7, 12, 320, 327
<i>F</i> -distribution, xviii	kernlab, viii
quantile, xviii	KernSmooth, viii
Feature space, 324	Kronecker product, xv
Fisher information matrix, 90, 96, 99	Rioneeker product, xv
Fisher's LDA, 245, 246, 255–257, 327	
Fisher's Z-transformation, 29, 34	L_1 -distance, 233, 235
Fitted values, 142, 148, 157	L_2 -distance, 239
Five number summary, 6	Lasso, 158, 159
Flury-Chernoff faces, 3, 7	p-value, 163
Friedman–Tukey index, 320, 327	lasso2, viii, 161
, , , , , , ,	Least squares, 31, 40
	constrained, 41
Gaussian distribution, xviii, xxiii	criterion, 323
Generalized cross-validation, 161	Leverage, 149

Likelihood, xxii	Jacobian, xxii
function, 89	orthogonal, xxiii, 211
ratio test, 103, 104, 145	partitioned, xxiii, 24, 26
Linear approximation, 85	projection, 23
Linear constraint, 41, 132, 144	rank of, xviii
Linear dependence, xxii	rotation, 211
Linear discrimination analysis. See Fisher's	scatterplot, 3, 15
LDA	trace, xviii
Linear hypothesis, 126	variance, 42
Linear model, 40, 41, 45, 130, 131, 141, 301, 303	Maximum likelihood estimator (MLE), 89, 90, 95, 97
Linear predictor, 145	MDS. See Multidimensional scaling (MDS)
Linear regression, 130, 131, 142	Mean, xvi, xxi, xxii
Linear space, xviii	Mean squared error (MSE), xxii, 69, 142
Linear transformation, 45, 50, 52, 70, 72,	Mean-variance efficient portfolio, 310
79–81, 83, 87	Mean-variance optimization, 309
Link function, 145	Median, xxii, 324
Liters per 100 km, 51	multivariate, 319
Liu depth, 320	linkage, 226
locpol, viii Log odds, 144	Miles per gallon, 51 Minimum variance unbiased estimator, 97
Log-likelihood function, xxii, 89, 104, 108	Minor. See Cofactor
Log-linear model, 144	Misclassification rate, 258
Logistic regression, 144	ML discrimination rule, 245–247, 249, 251,
Logit, 145	255, 256
L_r -distance, 234	MLE. See Maximum likelihood estimator
	(MLE)
Mahalanobis distance, 247	Moments, xvi, xxii empirical, xxi
Mahalanobis transformation, 44, 192, 247,	marginal, xxii
320, 327	MSE. See Mean squared error (MSE)
Manhattan distance, 234	Multicollinearity, 157
Marginal distribution, xxii, 46, 69, 75	Multidimensional scaling (MDS), 289
Marginal moments, xxii	metric, 289, 291
Marginal pdf, 62	nonmetric, 289, 290, 293
Marketing, 301	Multinomial distribution, 105
MASS, vii, 158, 263	Multinormal distribution, xxiii
MATLAB, viii	Multivariate median, 320
Matrix	Multivariate normal distribution, 71
adjoint, xix, 22	mvpart, viii
centering, xvii, 36, 74	
cofactor, xx	
contrast, 132	Nonlinear transformation, 51, 60, 94
correlation, 29, 36	Normal distribution, xviii, xxiii
covariance, xvi, 37, 42, 43, 55, 72 diagonal, 98	Normalized principal component analysis (NCPA), 192, 197, 200, 201
determinant of, xviii	Null deviance, 155
diagonal of, xviii	•
distance, 289	
Fisher information, 90, 96, 99	Observation, xvii
gradient, xxi	Odds, 144
Hessian, xxii	Order statistic, xvii
idempotent, xxii, 23, 74	Orthogonal complement, xxiii
inverse, 22	oranogonal complement, axin

Orthogonal factor model, 207 Orthogonal matrix, xxiii Orthogonal polynomials, 146	Quantitative finance, 309 Quantlet download center, viii, 343
Outlier, 3, 33	R, vii, 263
Parallel coordinate plot, 11, 12 Parallel profiles, 132, 135 Part-worth, 301, 303, 305, 307, 308 Partitioned countings matrix, 71	Random sample, 89 Random variable, xv, xxiii Random vector, xv, xxiii, 43 Rank, xviii
Partitioned covariance matrix, 71 Partitioned matrix, xxiii, 24, 26	Regression diagnostics, 151
PAV algorithm. See Pool-adjacent-violators (PAV) algorithm	line, 30, 33, 34, 37 tree (see CART)
PC. See Principal component (PC)	Rejection region, 104
pdf. See Probability density function (pdf)	Residuals, 148
PhD. <i>See</i> Principal Hessian directions (PhD) Polynomial contrasts, 146	deviance, 155
Pool-adjacent-violators (PAV) algorithm, 301	standardized, 149 Response, 145
Population, 245	rggobi, viii
Portfolio optimization, 309	Ridge regression, 158
Prediction interval, 143	Risk management, 309
Preference, 301, 302	Rotation matrix, 211
Principal component (PC), 183, 191, 192, 243,	Row coordinates, 263
259, 278, 325	Row factor, 263, 264
correlation, 184 expected value, 184	contributions to variance, 264 Row frequency, 259
explained variance, 187	Row frequency, 239
normalized, 192, 197, 200, 201, 278	
screeplot, 185	Sample, xvii
testing, 187	Scatterplot, xxiii, 16, 28, 32
variance, 184	matrix, 3, 15
Principal component analysis, 184	3D, 16
Principal factors, 206–208	scatterplot3d, viii
Principal Hessian directions (PhD), 322	Score function, 89, 97, 99–101
Prior probability, 246	Screeplot, 185, 191
Probability density function (pdf), xvi, 43, 48	Semi-invariants, xvi
conditional, xvi, 62 joint, xvi	Separating hyperplane, 323, 337 Shepard–Kruskal algorithm, 290, 294
marginal, xvi, 62	Shrinkage, 158
Probability of misclassification, 257	Simplicial depth, 319, 320, 324
Profile analysis, 132, 135	Simultaneous testing, 144
Profile method, 301, 307	Single linkage, 226, 230, 233
Projection, 169	Singular value decomposition (SVD), xxiv,
Fisher's LDA, 246	169, 260, 263, 281, 284, 285
matrix, 23	Sliced inverse regression (SIR) algorithm, 158,
pursuit, 319, 320, 327	319, 321, 322, 329, 331 Sliced inverse regression II (SIR II) algorithm,
vector, 321 Promax rotation, 206	322, 331
Proximity, 229	SMSdata, viii, 343
p-value, xxiii	Specific factors, 205
•	Specific variance, 206
	Spectral decomposition, xxiv, 22, 42, 44, 74,
quadprog, viii	170, 181, 183, 191, 290
Quantile, xxiii	Spiral, 338

Standard error, 142	Two-factor method, 301
Standardization, 36	Twoing criterion, 323
Statistical learning theory, 323	Type I error, 120
Stepwise regression, 159	
Stimulus, 301	
STRESS, 290, 303	Unbiased estimator, 90
Subspace, xxiv	Uniform distribution, 55, 90, 197, 200
Sum of squares, 30, 32	Utility, 306
Support vector machine (SVM), 323	Utility attribute, 301
SVD. See Singular value decomposition (SVD)	•
	Variable selection, 158
Taylor expansion, xxiv, 125	Variance, xvi, 54
<i>t</i> -distribution quantile, xviii	conditional, xvi, 47
Test	efficient portfolio, 310
covariance matrix, 118, 120, 129	empirical, xvii
equality of means, 111	matrix, 42
expected value, 118	Variance inflation factor (VIF), 157, 161
independence, 123, 127	Varimax rotation, 206
likelihood ratio, 104, 145	Vector
linear model, 130	gradient, xxi, 23
mean vector, 113–116, 121, 123, 127	VIF(), 161
number of factors, 213	,
principal component, 187	
two-sample, 123	Ward method, 226, 227, 229, 230, 235
Theorem	White noise analysis, 321
binomial inverse, 25	Wilks' theorem, 104
central limit (see CLT)	Wishart distribution, 72, 74, 133
Cramer–Rao, 90	Within variance, 246
Wilks', 104	Within-group sum of squares, 246, 252
Trace, xviii, 36	5 1 1 , 1,
Transformation of statistics, 51, 94	
tseries, viii	zoo, viii
Tukey depth, 320	•