Cognome:	Nome:	Matricola:	
_			

Università degli Studi della Calabria

Corso di Laurea in Ingegneria Informatica

Prova scritta di <i>Algoritmi e Strutt</i> (durata della prov	
Esercizio 1	
Si consideri una classe <i>AlberoB</i> che rappresenta <i>albe</i> nodo è un numero intero. Si assuma che in tale class	<u> </u>
<pre>public interface AlberoB { /* restituisce il sottoalbero destro dell'albero corrent public AlberoB destro();</pre>	te, la complessità temporale è $ heta(1)*/$
/* restituisce il sottoalbero sinistro dell'albero correr public AlberoB sinistro();	nte, la complessità temporale è $\theta(1)^*/$
<pre>/* restituisce il valore memorizzato nella radice dell'o public int val(); }</pre>	albero, la complessità temporale è $ heta(1)^*/$
Si deve realizzare un metodo public static boolean eRipetuto (AlberoB a, a che restituisce true se e solo se vi è almeno un nodo sottoalbero sinistro che nel sottoalbero destro di n.	
Si caratterizzi la complessità temporale e spazia specificando anche quali siano il caso migliore ed spaziale.	
Caso Migliore:	Caso Peggiore:
1. Complessità temporale: $\theta(\underline{\hspace{1cm}})$	1. Complessità temporale: θ()
2. Complessità spaziale: θ()	2. Complessità spaziale: θ()
Commenti:	

Esercizio 2

Dire quali delle seguenti affermazioni sono vere e quali false.

	V	F	Affermazione
1			La complessità intrinseca del problema di calcolare la somma di un array di interi è
			$\Omega(n)$, dove n è il numero di interi presenti nel array.
2			La complessità temporale del problema dell'inserimento in una array ordinato di
			interi è $\Omega(\lg n)$.
3			La funzione $f(n) = 2n \lg n^2 \ e O(n \lg n)$.
4			Sia G un grafo non orientato che contiene almeno un ciclo. Il numero di componenti
			connesse massimali è minore o uguale a n - 2 , dove n è il numero di nodi di G
			Sia G un grafo pesato connesso, orientato, ed aciclico i cui pesi sono numeri
5			positivi. l'algoritmo di Floyd potrebbe non essere in grado di calcolare le distanze
			minimi fra tutte le coppie di nodi di G
6			La complessità dell'inserimento di un elemento in una tabella hash in cui sono
			presenti n elementi nel caso peggiore è $\theta(n)$.
7			La complessità spaziale della visita infissa di un albero è $\Omega(n^2)$, dove n è il numero
/			di nodi presenti nell'albero.
8			La complessità temporale dell'algoritmo di Dijkstra è $\theta(n^2)$, dove n è il numero di
			nodi presenti nel grafo, nel caso di rappresentazione con liste di adiacenza.
9			Per ogni coppia di nodi u,v appartenenti ad un grafo orientato debolmente connesso
			esiste sempre un cammino dal nodo u al nodo v e dal nodo v al nodo u .
10			Un grafo non orientato connesso e pesato (sugli archi) ammette sempre un unico
			albero ricoprenti di costo minimo.

Esercizio 3					
Fornire la definizione formale di componente connessa massimale di un grafo non orientato.					