Towards Domain Adaptation for Dutch Social Media Text Through Normalization

Rob van der Goot, Gertjan van noord University of Groningen r.van.der.goot@rug.nl

10-02-2017

Lexical normalization

- Lexical normalization
- No word reordering

- Lexical normalization
- No word reordering
- But includes multi-word replacements

Why?

- De Clerq, O., Schulz, S., Desmet, B. & Hoste V. (2014).
 Towards shared datasets for normalization research. Proceedings of LREC 2014
- 962 Tweets
- 578 train / 192 dev / 192 test
- Includes multi-word normalization
- Flemish

Sentences	962
Words	12,900
% Words normed	4.80
% Words split	1.07

Example:

```
Maria is deze week veeeel beter amai ! Goeie
Maria is deze week veel beter amai ! Goede
songkeuze ook ! Goe gezonge ze maske _ #tvvv
songkeuze ook ! Goed gezongen ze meisje _ #tvvv
```

lap , bijna mijnen Duvel de grond op . Azo ne rug lap , bijna mijn Duvel de grond op . Zo een rug

kindj kindje

Unigram ranking:

	Normalization	Twitter	Google
1	#tvvv	USERNAME	de
2	de	ik	van
3	een	je	en
4	is	de	in
5	ik	een	een
6	dat	en	het
7	het	het	ор
8	in	is	is
9	niet	niet	voor

Tokenization:

• Rule based

Tokenization:

- Rule based
- Split (sequences of) special characters attached to words

Tokenization:

- Rule based
- Split (sequences of) special characters attached to words
- Does it work?

Lookup

- Static lookup dictionary
- Learned from training data
- Only multi-word generation module

word2vec

- Trained on 1,545,871,819 tweets
- Vocab size: 5,673,372
- Settings: -cbow 0 -size 400 -window 1 -negative 5 -sample 1e-4 -iter 5

Generation performance (accuracy)

Not found normalizations:

harreej hoorray of wat

koenwauters koen wauters

h h

hahahahahaha haha

15 cases in train + dev data

Ranking

Additional features

- Dictionary lookup (aspell)
- Order of characters: s.*r.*c.* ⇒ source
- N-grams

Ranking

N-grams

- 1. trained on 1,545,871,819 tweets
- 2. Dutch google N-grams
- Unigram and Bigram probabilities

Ranking

Random Forest Classifier

- Ranger
- Binary classification: task is to predict which word belongs to the corect class.
- Use confidence score to rank.
- 500 trees

Which evaluation metric?

- F1
- WER/accuracy (sometimes with gold error detection)
- bleu

English

- F1
- WER/accuracy (sometimes with gold error detection)
- bleu

Dutch

- F1
- WER/accuracy (sometimes with gold error detection)
- bleu

BLEU

Accuracy

Bleu vs. Accuracy

Feature importance compared to English

Wrongly ranked:

orig	mine	gold
ok	ok	ok
da	dat	de
heul	heul	heel
gister	gister	gisteren
cava	cava	ça va

Conclusion

- N-grams are an important feature for ranking
- A random forest classifier works well for ranking
- Word embeddings are not very useful for normalization, a simple lookup list is
- Bleu vs accuracy (tokenization)

Conclusion

• https://bitbucket.org/robvanderg/monoise