Wykład 4

Definicja 4.1 Przekształcenie liniowe $f: V \to W$ nazywamy izomorfizmem gdy jest różnowartościowe i "na".

Przestrzenie liniowe V i W nad ciałem K nazywamy izomorficznymi gdy istnieje izomorfizm $f: V \to W$.

Wniosek 4.2 Przestrzenie liniowe V i W nad ciałem K są izomorficzne wtedy i tylko wtedy gdy dim $V = \dim W$.

Przykład 4.3 Przykładami przekształceń liniowych są:

- 1) Homotetie: $f_r(\alpha) = r\alpha$.
- 2) Obrót płaszczyzny R^2 o kąt ϕ wokół zera :

 $f(x,y) = (x\cos\phi - y\sin\phi, x\sin\phi + y\cos\phi).$

Stwierdzenie 4.4 Niech $f: V \to W$ będzie izomorfizmem. Wówczas $f^{-1}: W \to V$ też jest izomorfizmem.

Twierdzenie 4.5 Każde przekształcenie liniowe jest jednoznacznie określone na bazie. To znaczy: jeżeli $\{\alpha_i\}_{i\in I}$ jest bazą V zaś $\{\beta_i\}_{i\in I}$ jest zbiorem wektorów z przestrzeni W to istnieje dokładnie jedno przekształcenie liniowe $f:V\to W$ spełniające warunek $\forall_{i\in I} f(\alpha_i)=\beta_i$.

Twierdzenie 4.6 Przestrzenie liniowe V i W nad ciałem K są izomorficzne wtedy i tylko wtedy gdy $\dim V = \dim W$.

Wniosek 4.7 Niech V będzie przestrzenią nad ciałem K. Wówczas przestrzenie V i K^n są izomorficzne wtedy i tylko wtedy gdy przestrzeń V ma baze n- elementową.

Definicja 4.8 Niech $f: V \to W$ będzie przekształceniem liniowym.

- 1) $Zbi\acute{o}r$ im $f = \{f(\alpha) ; \alpha \in V\}$ nazywamy obrazem f.
- 2) Zbiór ker $f = \{\alpha \in V : f(\alpha) = \theta\}$ nazywamy jądrem f.

Twierdzenie 4.9

im f jest podprzestrzenią W zaś ker f jest podprzestrzenią V.

Twierdzenie 4.10 Przekształcenie liniowe f jest różnowartościowe wtedy i tylko wtedy $gdy \ker f = \{\theta\}.$

Twierdzenie 4.11 Niech $f: V \to W$ będzie przekształceniem liniowym. Wówczas dim $V = \dim \ker f + \dim \inf f$.

Definicja 4.12

 $Przekształcenie\ liniowe\ f:V\to W\ nazywamy\ monomorfizmem\ gdy\ jest\ różnowartościowe.$

 $Przekształcenie\ liniowe\ f:V\to W\ nazywamy\ epimorfizmem\ gdy\ jest\ "na".$

Przekształcenie liniowe $f:V\to W$ nazywamy izomorfizmem gdy jest równocześnie monomorfizmem i epimorfizmem, czyli różnowartościowe i "na".

Przestrzenie liniowe V i W nad ciałem K nazywamy izomorficznymi gdy istnieje izomorfizm $f: V \to W$.

Definicja 4.13 Niech A i B będą podprzestrzeniami V nad ciałem K. Sumą (algebraiczną) przestrzeni A i B nazywamy zbiór:

$$A + B = \{ \alpha + \beta; \ \alpha \in A, \beta \in B \}.$$

Twierdzenie 4.14 Niech A i B będą podprzestrzeniami V nad ciałem K. $W ówczas <math>A + B = lin (A \cup B)$.

Definicja 4.15 Niech A i B będą podprzestrzeniami przestrzeni liniowej V. Powiemy, że V jest sumą prostą podprzestrzeni A i B, co oznaczamy $V = A \oplus B$, jeżeli każdy wektor z V można jednoznacznie zapisać w postaci sumy $\gamma = \alpha + \beta$, gdzie $\alpha \in A$ oraz $\beta \in B$.

Twierdzenie 4.16 $V = A \oplus B$ wtedy i tylko wtedy gdy spełnione są warunki:

- 1) V = A + B,
- 2) $A \cap B = \{\theta\}.$

Przykład 4.17 Niech $V = A \oplus B$. Przykładami przekształceń liniowych są:

- 1) Symetria względem podprzestrzeni A wzdłuż podprzestrzeni B określona jako: $S(\alpha + \beta) = \alpha \beta$, gdzie $\alpha \in A$ oraz $\beta \in B$.
- 2) Rzut na podprzestrzeń A wzdłuż podprzestrzeni B określony jako: $\pi(\alpha + \beta) = \alpha$, gdzie $\alpha \in A$ oraz $\beta \in B$.

Twierdzenie 4.18 Niech $f: V \to V$ będzie przekształceniem liniowym przestrzeni nad ciałem R. Wówczas:

- 1) f jest symetria wtedy i tylko wtedy gdy $f \circ f = id$.
- 2) f jest rzutem wtedy i tylko wtedy gdy $f \circ f = f$.
- 3) f jest rzutem wtedy i tylko wtedy gdy id 2f jest symetriq.

Lemat 4.19 Niech V, U i W będą przestrzeniami nad tym samym ciałem K zaś $f: V \to U$ i $g: U \to W$ będą przekształceniami liniowymi. Wówczas przekształcenie $g \circ f: V \to W$ też jest liniowe.

Lemat 4.20 Niech V i W będą przestrzeniami nad tym samym ciałem K zaś f i g będą przekształceniami liniowymi z V w W. Wówczas przekształcenia f+g oraz $r \cdot f$ też są liniowe.

Definicja 4.21 Niech V i W będą przestrzeniami nad tym samym ciałem K. Symbolem L(V;W) oznaczać będziemy przestrzeń wszystkich funkcji liniowych z V w W z naturalnymi działaniami.

Stwierdzenie 4.22 Niech

 $e_1 = (1, 0, 0, ..., 0), \ e_2 = (0, 1, 0, ..., 0), \cdots, \ e_n = (0, 0, 0, ..., 0, 1)$ będzie bazą standardową przestrzeni R^n . Niech $f: R^n \to R^s$ będzie przekształceniem liniowym spełniającym warunki:

$$f(e_1) = (a_{1,1}, a_{2,1}, ..., a_{s,1}),$$

$$f(e_2) = (a_{1,2}, a_{2,2}, ..., a_{s,2}),$$

$$\vdots$$

$$f(e_n) = (a_{1,n}, a_{2,n}, ..., a_{s,n}).$$

$$W\acute{o}wczas\ f(x_1,x_2,...,x_n) = (a_{1,1}x_1 + a_{1,2}x_2 + ... + a_{1,n}x_n,\ a_{2,1}x_1 + a_{2,2}x_2 + ... + a_{2,n}x_n,\ ...,\ a_{s,1}x_1 + a_{s,2}x_2 + ... + a_{s,n}x_n).$$

Zapis ten nazywamy wzorem analitycznym przekształcenia f.

Definicja 4.23 Niech $f: \mathbb{R}^n \to \mathbb{R}^s$ będzie określone wzorem $f(x_1, x_2, ..., x_n) = (a_{1,1}x_1 + a_{1,2}x_2 + ... + a_{1,n}x_n, \ a_{2,1}x_1 + a_{2,2}x_2 + ... + a_{2,n}x_n, \ ..., \ a_{s,1}x_1 + a_{s,2}x_2 + ... + a_{s,n}x_n)$. Macierzą f w bazach standardowych nazywamy

$$M(f) = \begin{bmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s,1} & a_{s,2} & \cdots & a_{s,n} \end{bmatrix}.$$