この講義の目標

- 工学的視点から医療行為をとらえる
- 医療機器の仕組みや安全についての理解

具体的な課題

臨床検査技師の国家試験のME関連問題は 毎年4題程度出題される、これらの問題を解 けるようになること

医用工学とは

医用工学

生体物性、生体計測、生体情報、生体制御などの 物理的な法則性から得られた手法・技術を 医療に応用する

経験的にではなく、数式や理論に基づいて、理解する。 → 医療機器への応用

工学的な考え方 物事を「 」として考え、記述する 個々の要素が関わり合い、全体として秩序 ある働きをするもの カーナビゲーション システム タッチパネル GPS 渋滞情報 地図情報 目的地 案内音声 液晶画面 音声合成 システムは、入力、出力、(状態)を持つ。

人体は「生体システム」である

検査は「システム同定」である

入力と出力の関係からシステムの中身を推定する

医用工学

非破壊•非侵襲的 であることが望ましい

入力

「不均一性」 「非線形性」 の理解 出力 生体情報を 電気信号に変換

「周波数依存性」

「時間依存性」 「環境依存性」 「異方性」

(トランスデューサ)

医用工学の何が難しいのか?

生体が無生物と異なる点

- ・物性的特異性
- 生体活動に起因する生理学的特性
- ・エネルギー照射時の生体反応の特異性
- → 生体からの情報入手が困難な場合が少なく無い

生体計測のもつ難しさは

- 経時変化・個体差の考慮
- の困難さ

生体計測システム(ME機器)

に変換 な信号を精密に検出

トランスデューサ(センサ): 生体信号を 增幅•変調

講義資料

講義資料、お知らせ、その他の資料

https://naoki-sh.github.io/documents/ME/2020/

質問用メールアドレス shirakura.naoki.se8@is.naist.jp

連絡の際のお願い(できれば)

- ・件名は、「医用工学概論1 質問」にしてください
- 所属、(氏名)を明らかにしてください

予習1

 R_1 =1.9, R_2 =3, R_3 =7 $[\Omega]$, E=19[V] となる以下のような回路を作製したときの

- (1)合成抵抗值
- (2)消費電力

予習4

次の式を計算しなさい

$$(1) \qquad \frac{1}{\frac{1}{10} + \frac{1}{90}}$$

- (5) log₁₀ 100
- (6) log₁₀ 1000

(2) 2^2

(7) log₁₀ 1

(3) 2^0

(8) $\log_{10} \frac{1}{10}$

(4) 2^{-1}

受講に際して

- わからないことがあればいつでも質問してください
 - ・ 授業中、授業後、いつでも構いません
 - メールでも構いません
 - 質問だけでなく、授業に関する要望等でも構いません
 - 質問したことが授業評価に関わることはありません。

1

復習1

医用工学では((1))の観点から医療行為を理解する。

- (①)では、物事を(②)として考える。人体を1つの
- (②)として考えると、医療行為は人体を理想的な状態にする(③)であり、検査は人体の内部状態を推定する
- (④)であると言える。

医療行為は、人体からの生体信号を出力として捉え、それらを生体への入力に(⑤) することで行われる。

語群: システム制御、理学、工学、フィードバック、 システム、システム同定、数学

11

予習2

Roに流れる電流Ioを求めよ。

予習3

抵抗Roに流れる電流が0[A]になるとき、抵抗Rの値を求めよ

14