8.11

Un conduttore cilindrico cavo di raggi a e b è percorso da una corrente distribuita uniformemente.

Calcolare il campo magnetico B(r) in funzione della distanza r dall'asse. Ricavare i risultati relativi ad un conduttore cilindrico pieno.

Formule utilizzate

Soluzione punto a

Dato che questa è una simmetria cilindrica posso semplificare la formula di Ampere.

$$B(r)2\pi r = \mu_0 i_{conc}$$

se $r < a$: $B(r) = 0$
se $a < r < b$: $B(r)2\pi r = \mu_0 i_{conc}$ con $i_{conc} = \frac{\pi(r^2 - a^2)}{\pi(b^2 - a^2)} i$
se $r > b$: $B(r) = \frac{\mu_0 i}{2\pi r}$

Soluzione punto b

Naso del cilindro pieno: ovvero quando a=0. Posso utilizzare le funzioni trovate precedentemente con a=0.