Color and Perception

SSEP 2022 Afternoon Day 5

Dr. Ab Mosca (they/them)

Perception

Recall

Principle 2: Effectiveness

Most effective channels should be used for most important data

Effectiveness = Based on a compilation of research, how well a channel supports:

- Perceptual accuracy
- Discriminability
- Separability
- Visual popout
- Grouping

Recall

Principle 2: Effectiveness

Most effective channels should be used for most important data

Effectiveness = Based on a compilation of research, how well a channel supports:

- Accuracy
- Discriminability
- Separability
- Visual popout
- Grouping

Perception

Perception

Definition: the (sometimes imperfect) process by which we detect and interpret visual signals

- Understanding human perception helps us anticipate how people are likely to understand our visualizations
- We can leverage perception to make better visualization tools

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

Accuracy

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much longer is the second bar?

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much longer is the second bar? 2X

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much bigger is the second square?

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much bigger is the second square? 4X

Definition: how close human perceptual judgement is to an objective measurement of

the stimulus

How much bigger is the second box?

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

How much bigger is the second box? 27X

Definition: how close human perceptual judgement is to an objective measurement of the stimulus

Definition: how differentiable different objects are

Discriminability

Separability

Definition: whether channels exist independently or integrally with others

+ Hue (Color)

Position

Fully separable

Some interference

Width + Height

Some/significant interference

Red

Major interference

Definition: how well a distinct item stands out from others

Color is a good channel for this

Shape is not as helpful

Definition: how well a distinct item stands out from others

Combining color and shape causes "competition" – color is processed first

Definition: how likely people are to infer differences as representing distinct groups

Circles and +'s

C's and D's

Definition: how likely people are to infer differences as representing distinct groups

Which of these channels are best for grouping?

Definition: how likely people are to infer differences as representing distinct groups

Which of these channels are best for ordering?

Definition: how likely people are to infer differences as representing distinct groups

Definition: how likely people are to infer differences as representing distinct groups

Bang Wong, "Gestalt principles (Part 1)" (Nature Methods)

Based on Slide by M. Meyer

Definition: how likely people are to infer differences as representing distinct groups

Bang Wong, "Gestalt principles (Part 1)" (Nature Methods)

Based on Slide by M. Meyer

Color (and perception)

Color results from different wavelengths of light.

Your eye takes in light waves and translates them to lightness/darkness and color.

Your eye takes in light waves and translates them to lightness/darkness and color.

This is why lightness/darkness is an effective encoding channel!

Rods: 120 million

Cones: 5-6 million

Cones:

This is why we are so sensitive to red!

64% red-sensitive

32% green-sensitive

2% blue-sensitive.

• For categorical attribute-color mapping, aim to maximize discriminability

VS.

- When possible, use semantically meaningful colors (ex. red=hot, blue=cold)
 - Be aware of cultural differences
 (ex. red in Chinese Culture vs Red in US culture)

Use colorblind safe pallets.

Saturation can cause illusions

HIGH SATURATION

→ Participants reported more red than green

Figure 1. Stimulus From the High-Saturation Group

Figure 2. Stimulus From the Low-Saturation Group

LOW SATURATION

→ Participants
reported equal
proportions
(which is correct)

Mark type and size effects how we perceive color

HOW MANY CATEGORIES?

Is the smaller rectangle a solid color or gradient?

- SIMULTANEOUS CONTRAST using a gradient as a background can distort how we see the foreground
 - → Avoid using gradients as backgrounds

Are the smaller rectangles the same color or different colors?

Are the smaller rectangles the same color or different colors?

Different!

Are the smaller rectangles the same color or different colors?

 VON BEZOLD SPREADING EFFECT – borders can change the appearance of shape's colors

Colormaps

Help us choose the correct colors to represent different data types

Categorical

Sequential

Divergent

Categorical

- Different color = different category
- Protip #1: choose colors that are perceptually distant
- Protip #2: choose colors that are roughly the same saturation and value
- Work with the person next to you to find an example of a visualization with a categorical color scheme
- You can look anywhere you want, but here are some potential sources: <u>FiveThirtyEight</u>, <u>New York Times</u>, <u>Wall Street Journal</u>, <u>Tableau Viz of the Day</u>
- Add your example to the appropriate page of the Jamboard here: <u>Colormap Examples</u>

Sequential

- Saturation indicates difference in the amount of the phenomenon
- Protip #1: no more than 5-6 levels
- Protip #2: people interpret darker as meaning more
 - Work with the person next to you to find an example of a visualization with a sequential color scheme
 - You can look anywhere you want, but here are some potential sources: <u>FiveThirtyEight</u>, <u>New York Times</u>, <u>Wall Street Journal</u>, <u>Tableau Viz of the Day</u>
 - Add your example to the appropriate page of the Jamboard here: <u>Colormap Examples</u>

Divergent

- Two colors used to indicate extremes of a range
- Protip #1: neutral color in the middle
- Protip #2: differentiate between "average" or midpoint and "no data"
 - Work with the person next to you to find an example of a visualization with a divergent color scheme
 - You can look anywhere you want, but here are some potential sources: <u>FiveThirtyEight</u>, <u>New York Times</u>, <u>Wall Street Journal</u>, <u>Tableau Viz of the Day</u>
 - Add your example to the appropriate page of the Jamboard here: <u>Colormap Examples</u>