Lezione 28/09/2022

Calcolo combinatorio

Il Calcolo Combinatorio, in Matematica, è la branca del Calcolo della Probabilità che si occupa dello studio dei metodi per raggruppare un numero finito di elementi, e che si pone l'obiettivo di contare il numero di possibili raggruppamenti degli elementi per ciascun metodo.

Possibili ragruppamenti:

Sequenze di un prodotto cartesiano;

Disposizioni semplici;

Disposizioni con ripetizioni;

Combinazioni semplici;

Combinazioni con ripetizioni;

Permutazioni semplici;

Permutazioni con ripetizione.

Alcuni preliminari

Definizione (Prodotto cartesiano di due insiemi). Siano A e B insiemi finiti, il prodotto cartesiano di A e B, si indica con $A \times B$, ed è dato dalla sequente formula:

$$A \times B = \{(a, b) \ tc \ a \in A \ e \ b \in B\}.$$

Definizione (Prodotto cartesiano di n insiemi). Siano A_1, \ldots, A_n insiemi finiti, il prodotto cartesiano di A_1, \ldots, A_n , si indica con $A_1 \times \ldots \times A_n$, ed è dato dalla seguente formula:

$$A_1 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \ tc \ a_i \in A_i\}.$$

Esempio. Se $A = \{a, b\}$, $B = \{1, 2\}$ e $C = \{x, y, z\}$, allora $A \times B \times C = \{(a, 1, x), (a, 1, y), (a, 1, z), (a, 2, x), (a, 2, y), (a, 2, z), (b, 1, x), (b, 1, y), (b, 1, z), (b, 2, x), (b, 2, y), (b, 2, z)\}.$

Definizione (Fattoriale).

$$0! = 1;$$

$$1! = 1;$$

se
$$n \ge 1$$
, allora $n! = n \cdot (n-1) \cdot \ldots \cdot 1$.

Definizione (Coefficiente binomiale).

$$\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

Prodotto cartesiano e Principio di Moltiplicazione

Teorema (Principio di moltiplicazione). Siano A_1, \ldots, A_n insiemi finiti, allora

$$\#(A_1 \times \ldots \times A_n) = \#A_1 \cdot \ldots \cdot \#A_n.$$

Esercizio 1. Un ristorante propone 2 antipasti, 3 primi e 2 secondi. In quanti modi diversi è possibile comporre una cena con un antipasto, un primo e un secondo?

Svolgimento. Considero

l'insieme dei due antipasti: $A = \{A_1, A_2\}$;

l'insieme dei due primi: $P = \{P_1, P_2, P_3\};$

l'insieme dei due secondi: $S = \{S_1, S_2\}.$

Osservo che l'insieme delle possibili cene è il prodotto cartesiano $A \times P \times S$; infatti, $A \times P \times S = \{(A_1, P_3, S_1), (A_2, P_2, S_2), \ldots\}.$

Per il principio di moltiplicazione $\#(A \times P \times S) = \#A \cdot \#P \cdot \#S = 2 \cdot 3 \cdot 2$.

Esercizio 2. Quante parole di 8 lettere si possono formare con l'alfabeto binario?

Svolgimento. L'insieme Ω delle parole di 8 lettere dell'insieme $\{0,1\}$ è

$$\{(x_1,\ldots,x_8) \ tc \ x_i \in \{0,1\}\} = \{(1,0,0,0,0,0,0,1), (1,1,1,1,1,1,1,1,1), \ldots\},\$$

cioè è il prodotto cartesiano $\{0,1\} \times \{0,1\} \times \{0,1\} \times \{0,1\} \times \{0,1\} \times \{0,1\} \times \{0,1\} \times \{0,1\}$.

Per i principio di moltiplicazione, la cardinalità di Ω è

$$\#\{0,1\} \cdot \#\{0,1\} = 2 \cdot 2 = 2^8.$$

Disposizioni semplici

Definizione. Dati n oggetti, si chiama disposizione semplice di classe k degli n oggetti, dove $k \leq n$, ogni sequenza ordinata di k oggetti scelti tra gli n iniziali, con il vincolo di non ripetere gli oggetti.

Teorema. Il numero di disposizioni semplici di n oggetti di classe k, indicato con $D_{n,k}$, è dato dalla formula

$$D_{n,k} = \frac{n!}{(n-k)!} = n \cdot (n-1) \cdot \dots \cdot (n-k+1).$$

Regola per riconoscere le disposizioni semplici nei problemi

- 1. Faccio qualche esempio di raggruppamento proposto dal problema;
- 2. Individuo n (numero degli oggetti iniziali) e k (numero degli oggetti in un raggruppamento)
- 3. Se l'ordine conta (cambiando l'ordine degli oggetti di un raggruppamento si ottiene un nuovo raggruppamento) e non ci sono ripetizioni (in ogni raggruppamento un oggetto è presente solo una volta), allora i raggruppamenti considerati sono DISPOSIZIONI SEMPLICI di n oggetti di classe k.

Esempio. In quali e quanti modi è possibile disporre 4 palline di colore diverso (bianco, rosso, blu e verde) in due caselle?

Svolgimento. Chiamo Bi, R, Bl e V le palline che hanno rispettivamente colori bianco, rosso, blu e verde.

- 1. Esempi di raggruppamenti sono Bi R, Bi Bl, R V, ecc.
- 2. n=4 perchè le palline iniziali con cui formo i gruppetti sono 4. k=2 perchè i raggruppamenti sono composti da 2 palline.
- 3. L'ordine conta? SI, perchè il raggruppamento R V e V R possono considerarsi diversi (R V vuol dire inserire la pallina rossa nella prima casella e la verde nella seconda casella, mentre V R vuol dire inserire la pallina verde nella prima casella e la rossa nella seconda). Ci sono ripetizioni? NO, perchè non posso riempire le due caselle con la stessa pallina.

Posso concludere che i raggruppamenti, in questo problema, sono disposizioni semplici di 4 oggetti di classe 2, quindi $D_{4,2} = 4 \cdot 3 = 12$.

Esercizio 3. A una corsa di cavalli ci sono 15 cavalli in gara. Quante classifiche possibili dei primi 3 ci possono essere?

Svolgimento. 1. Oggetti con cui formo i raggruppamenti: C_1, \ldots, C_{15} ;

- 2. Esempi di raggruppamenti: $C_1C_2C_3$, $C_{10}C_9C_2$, ecc;
- 3. n = 15 e k = 3;
- 4. L'ordine conta? SI, perchè se cambio l'ordine in $C_1C_2C_3$ ottengo una classifica diversa. Ci sono ripetizioni? NO, perchè non è possibile una classifica del tipo $C_1C_1C_2$ (un cavallo non può occupare due o più posizioni della classifica).

I raggruppamenti considerati sono disposizioni semplici di 15 oggetti e di classe 3. Concludiamo che il numero di classifiche è $D_{15,3} = 15 \cdot 14 \cdot 13$.

Disposizioni con ripetizione

Definizione. Dati n oggetti, si chiama disposizione con ripetizione di classe k degli n oggetti, ogni sequenza ordinata di k oggetti scelti tra gli n iniziali, ammettendo che sia possibile ripetere gli oggetti.

Teorema. Il numero di disposizioni di n oggetti di classe k, indicato con $D_{k,k}^*$, è dato dalla formula

$$D_{n,k}^* = n^k$$

Regola per riconoscere le disposizioni semplici nei problemi

- 1. Faccio qualche esempio di raggruppamento proposto dal problema;
- 2. Individuo n (numero degli oggetti iniziali) e k (numero degli oggetti in un raggruppamento)
- 3. Se l'ordine conta (cambiando l'ordine degli oggetti di un raggruppamento si ottiene un nuovo raggruppamento) e ci sono ripetizioni (esistono raggruppamenti dove alcuni oggetti si ripetono), allora i raggruppamenti considerati sono DISPOSIZIONI CON RIPETIZIONE di n oggetti e di classe k.

Esempio. In quali e quanti modi è possibile disporre 4 palline di colore diverso (bianco, rosso, blu e verde) in due caselle, supponendo che una volta inserita una pallina in una casella venga ripresa per poter essere inserita anche nelle altre caselle?

Svolgimento. Chiamo Bi, R, Bl e V le palline che hanno rispettivamente colori bianco, rosso, blue e verde.

- 1. Esempi di raggruppamenti sono Bi R, Bi Bl, R V, ecc. Poichè la stessa pallina può essere inserita in più caselle, altri esempi sono Bi Bi, R R, ecc.
- 2. n=4 perchè le palline iniziali con cui formo i gruppetti sono 4. k=2 perchè i raggruppamenti sono composti da 2 palline.
- 3. L'ordine conta? SI, perchè il raggruppamento R V e V R possono considerarsi diversi (R V vuol dire inserire la pallina rossa nella prima casella e la verde nella seconda casella, mentre V R vuol dire inserire la pallina verde nella prima casella e la rossa nella seconda). Ci sono ripetizioni? Si, la stessa pallina può essere inserita in più caselle, infatti un esempio di raggruppamento è RR.

Posso concludere che i raggruppamenti, in questo problema, sono disposizioni con ripetizione di 4 oggetti di classe 2, quindi $D_{4,2}^* = 4^2 = 16$.

Esercizio 4. Un numero di telefono di cellulare di 10 cifre inizia con 347. Quanti numeri di telefono di questo tipo ci possono essere?

Svolgimento. 1. Oggetti con cui formo i raggruppamenti: $0, \ldots, 9$;

2. Esempi di raggruppamenti: 1111111, 1234567, 7654321, ecc;

3.
$$n = 10 e k = 7$$
;

4. L'ordine conta? SI, perchè 1234567 ≠ 7654321. Ci sono ripetizioni? SI, un esempio è 1111111.

I raggruppamenti considerati sono disposizioni con ripetizione di 10 oggetti e di classe 7. Concludiamo che il numero di tutti i numeri di telefono, di 10 cifre e che iniziano con 347, è $D_{0,7}^{*} = 10^{7}$.

Combinazioni semplici

Definizione. Dati n oggetti, si chiama combinazione semplice di classe k degli n oggetti, dove $k \leq n$, ogni raggruppamento non ordinato di k oggetti scelti tra gli n iniziali, con il vincolo di non ripetere gli oggetti.

Teorema. Il numero di combinazioni semplici di n oggetti di classe k, indicato con $C_{n,k}$, è dato dalla formula

$$C_{n,k} = \binom{n}{k}$$

Regola per riconoscere le combinazioni semplici nei problemi

- 1. Faccio qualche esempio di raggruppamento proposto dal problema;
- 2. Individuo n (numero degli oggetti iniziali) e k (numero degli oggetti in un raggruppamento)
- 3. Se l'ordine NON conta (cambiando l'ordine degli oggetti di un raggruppamento si ottiene sempre lo stesso raggruppamento) e non ci sono ripetizioni (in ogni raggruppamento un oggetto è presente solo una volta), allora i raggruppamenti considerati sono COMBINAZIONI SEMPLICI di n oggetti di classe k.

Esempio. In quali e quanti modi è possibile per riempire un sacchetto con due palline scelte tra 4 palline di colore diverso (bianco, rosso, blu e verde)?

Svolgimento. Chiamo Bi, R, Bl e V le palline che hanno rispettivamente colori bianco, rosso, blue e verde.

- 1. Esempi di raggruppamenti sono Bi R, Bi Bl, R V, ecc.
- 2. n=4 perchè le palline iniziali con cui formo i gruppetti sono 4. k=2 perchè i raggruppamenti sono composti da 2 palline.
- 3. L'ordine conta? NO, perchè ci interessa solo sapere quali sono le palline che riempiono il sacchetto e non l'ordine con cui sono disposte. Ci sono ripetizioni? NO, perchè devo riempire il sacchetto con esattamente due delle 4 palline.

Posso concludere che i raggruppamenti, in questo problema, sono combinazioni semplici di 4 oggetti di classe 2, quindi $C_{4,2} = \binom{4}{2} \equiv \frac{4!}{2!2!} = 6.$

Esercizio 5. Una grossa azienza deve inviare 2 dei suoi 8 ispettori a controllare una filiare lontana. In quanti modi possibili il capo dell'ufficio può determinare la delegazione dei due ispettori?

Svolgimento. Uso I_1, \ldots, I_8 per indicare gli ispettori dell'azienda.

- 1. Esempi di raggruppamenti sono I_1I_2 , I_2I_8 , ecc.
- 2. n = 8 e k = 2.
- 3. L'ordine conta? NO, perchè I_1I_2 e I_2I_1 rappresentano la stessa delegazione. Ci sono ripetizioni? NO, perchè il raggruppamento I_1I_1 significa che si sta delegando solo un ispettore (I_1) e non due.

Posso concludere che i raggruppamenti, in questo problema, sono combinazioni semplici di 8 oggetti di classe 2, quindi $C_{8,2} = \binom{8}{2} \equiv \frac{8!}{2!6!} = 117480$.

Combinazioni con ripetizione

Definizione. Dati n oggetti, si chiama combinazione con ripetizione di classe k degli n oggetti ogni raggruppamento non ordinato di k oggetti scelti tra gli n iniziali, ammettendo che sia possibile ripetere gli oggetti.

Teorema. Il numero di combinazioni con ripetizione di n oggetti di classe k, indicato con $C_{n,k}^*$, è dato dalla formula

$$C_{n,k}^* = \binom{n+k-1}{k}.$$

Regola per riconoscere le combinazioni con ripetizione nei problemi

- 1. Faccio qualche esempio di raggruppamento proposto dal problema;
- 2. Individuo n (numero degli oggetti iniziali) e k (numero degli oggetti in un raggruppamento)
- 3. Se l'ordine NON conta (cambiando l'ordine degli oggetti di un raggruppamento si ottiene sempre lo stesso raggruppamento) e ci sono ripetizioni (in ogni raggruppamento un oggetto può essere presente più volte), allora i raggruppamenti considerati sono COMBINAZIONI CON RIPETIZIONE di n oggetti di classe k.

Esempio. In quali e quanti modi è possibile per riempire un sacchetto con due palline scelte tra 4 palline di colore diverso (bianco, rosso, blu e verde), ammettendo che una volta inserita una pallina la si riprenda dal sacchetto per poterla inserire per la seconda volta?

Svolgimento. Chiamo Bi, R, Bl e V le palline che hanno rispettivamente colori bianco, rosso, blue e verde.

- 1. Esempi di raggruppamenti sono Bi R, Bi Bl, R V, RR ecc.
- 2. n = 4 perchè le palline iniziali con cui formo i gruppetti sono 4. k = 2 perchè i raggruppamenti sono composti da 2 palline.
- 3. L'ordine conta? NO, perchè ci interessa solo sapere quali sono le palline che riempiono il sacchetto e non l'ordine con cui sono disposte. Ci sono ripetizioni? SI, perchè potenzialmente posso riempire il sacchetto utilizzando due volte la pallina rossa.

Posso concludere che i raggruppamenti, in questo problema, sono combinazioni con ripetizione di 4 oggetti di classe 2, quindi $C_{4,2}^* = \binom{4+2-1}{2} \equiv \frac{5!}{2!3!} = 20.$

Esercizio 6. Quanti possibili tipi di confezioni diverse di 10 caramelle ai qusti di menta, fragola e limone si possono confezionare?

Svolgimento. Uso M, R, L per indicare i gusti Menta, Fragola e Limone.

- 1. Esempi di raggruppamenti sono MMMFFFLLLL, MMMMMMMMMMM, ecc.
- 2. n = 3 e k = 10.
- 3. L'ordine conta? NO, perchè MMMFFFLLLL = LLLLMMMFFF. Ci sono ripetizioni? SI (ad esempio in MMMFFFLLLL).

Posso concludere che i raggruppamenti, in questo problema, sono combinazioni con ripetizione di 3 oggetti di classe 10, quindi $C_{3,10} = \binom{3+10-1}{10} \equiv \frac{12!}{10!2!} = 66.$

Permutazioni semplici

Definizione. Dati n oggetti distinti, si chiama permutazione semplice ogni possibile ordinamento degli n oggetti.

Teorema. Il numero di permutazioni semplici di n oggetti, indicato con $D_{n,k}$, è dato dalla formula

$$P_n = n!$$

Osservazione

Le permutazioni semplici sono disposizioni semplici dove n = k.

Esempio. In quali e quanti modi è possibile disporre 4 palline di colore diverso (bianco, rosso, blu e verde) in 4 caselle?

Svolgimento. Chiamo Bi, R, Bl e V le palline che hanno rispettivamente colori bianco, rosso, blue e verde.

Esempi di raggruppamenti sono Bi R Bl V, V Bi Bl R, R V Bi Bl, ecc. I raggruppamenti considerati sono permutazioni semplici di 4 oggetti e $P_4 = 4!$.

Esercizio 7. Quanti anagrammi si possono formare con la parola CIELO? Esempi di anagrammi sono IELOC, COEIL, OLECI, ecc... Sto considerando tutte le permutazioni delle lettere C, I, E, L e O. Il numero di anagrammi è quindi uguale a $P_5 = 5!$.

Permutazioni con ripetizione

Definizione. Dati n oggetti non tutti distinti tra loro, si chiama permutazione con ripetizione ogni possibile ordinamento degli n oggetti.

Teorema. Dati n oggetti di cui a_1 uguali tra loro, ..., a_k uguali tra loro. Il numero di permutazioni con ripetizione di questi oggetti, indicato con P_n^* , è dato dalla formula

$$P_n^* = \frac{n!}{a_1! \cdot \dots \cdot a_k!}.$$

Esercizio 8. Quanti anagrammi si possono formare con la parola MATEM-ATICA?

Esempi di anagrammi sono MATEMAACIT, MMMAATTCIE, ecc... Sto considerando tutte le permutazioni di 10 lettere dove M si ripete 3 volte, ed A e T due volte.

Il numero di anagrammi è quindi uguale a $P_{10}^* = \frac{10!}{3!2!2!}$.