中山大学本科生期末考试 考试科目:《数学物理方法》(A卷)

学年学期: 2019 学年第 1 学期	姓 名:			
学 院: 物理学院				
	年级专业:	18 级	物理	
考试时长: 120 分钟	班 别:			
考试时长: 120 分钟 警示《中山大学授予学士学位工作细贝	川》第八条:"考试	作弊者, 不授	予学士学位."	
———以下为试题区域,共三道大题,总分 100 分,考生请在答题纸上作答———				
一、选择题 (请将正确答案的序号填写在答题纸上	. 共 8 小题, 每小	题 5 分, 共	10分.)	
已知一解析函数的实部为 $u(x,y) = 2x - y$, 则证	核解析函数可能是			
已知一解析函数的实部为 $u(x,y) = 2x - y$,则证 A) $(2+i)z+3i$ (B) $(2-i)z$	(C) $2z + i\bar{z} + i\bar{z}$	2i	(D) $2z - i\bar{z}$	
已知变上限积分 $\int_1^z d\zeta (a/\zeta - 1/\zeta^{2n+1}) \cos \zeta$ $(z \neq$	40 且积分路径不约	经过 $\zeta=0$, n	∈ N) 是 z 的单值函	9数,则
已知变上限积分 $\int_1^z d\zeta (a/\zeta - 1/\zeta^{2n+1}) \cos \zeta$ $(z \neq 0)$ $(z \neq 0)$ $(z \neq 0)$ $(z \neq 0)$	(C) $a = 1/(2n)!$	(D)	$a = (-)^n (2n)!$	
将函数 $1/\cosh(\pi z)$ 以 $a=0$ 为中心展开为 TaylA) 2 (B) 1	(C) 1/2	(D) +∞	
4. $z = 0$ 是函数 $1/\sin(1/z)$ 的什么奇点? (B) 可去奇点	(C) 首极占	(D)	非孤立奇占	
5. $x = 0$ 是方程 $x(1-x)y'' + [c - (a+b+1)x]y' -$ A) 单极点 (B) 本性奇点	aby = U(共中 a、	0, CX-1-4	市政) 113	
				~ 征估的
6. 对于本征值问题 $y'' + 2y'/x + (\lambda - 2/x^2)y = 0$ (-1正1月117
本征函数有正交关系 $(A) \int_0^a y_m(x) y_n(x) dx = 0 \qquad (B) \int_0^a x y_m(x) y_n(x) dx = 0$				
	$d_n(x) dx = 0$	(C) $\int_0^a x^2 y_n$	$_{n}(x)y_{n}(x)\mathrm{d}x=0$	
(D) $\int_0^a x^{-2} y_m(x) y_n(x) dx = 0$				
. 弹性均匀细杆,在纵振动过程中,其一端受到E A) 第一类边界条件 (B) 第二类边界条件	2知拉力 F(t) 的作 (C) 第三类边界	用,则 F(t) 社 条件 (D)	E定解问题中表现: 方程中的非齐次:	为 项
8. 上半平面的 Laplace 方程 $\partial^2 u/\partial x^2 + \partial^2 u/\partial y^2 =$ (A) $d^2 U/dy^2 - k^2 U = 0$ (B) $d^2 U/dy^2 + k^2 U = 0$	(C) d^2U/dk^2 -	$-k^2U=0 \qquad ($	$D) d^2U/dk^2 + k^2U$	T = 0
二、填空题 (共 2 小题,各小题分数依次为 10 分	、15 分, 共 25 分	1.)		
	的一般解是 (1)	$u(r,\theta) =$	考虑球内的定	解问题,
\bigcirc 及球面上 $u _{r=a}=u_0\cos 2\theta$, 其中 u_0 为常数,则球	内 (2) $u(r,\theta) =$;		
2. 考虑球内的定解问题 $\nabla^2 u = 0 \ (r < a)$, $u _{r=a}$	$= f(\theta, \phi)$. 相应的	Green 函数 G	$f(r,r_0)$ 满足的定解	印题是
2. 考虑球内的定解问题 $\nabla^2 u = 0 \ (r < a), u _{r=a} = 1$ 1) , 该 Green 函数为 (2)	<u> </u>			
三、计算题 (共 2 小题,各小题分数依次为 15 分		·)		
. 计算积分 $I = \int_0^\pi \frac{\cos n\varphi}{1 + 2p\cos\varphi + p^2} d\varphi$, 其中 0 <	$, n \in \mathbb{N}.$			
	度为零度, 右端語	且度为时间的E	已知函数 At, 其中	A 为常
2. 均匀导热细杆,长为 l ,侧面绝热,左端保持温度为零度,右端温度为时间的已知函数 At ,其中 A 为常 l ,初始时杆上各点温度均为零度,求以后的温度分布 $u(x,t)$.				