(12) DEMANDE INTERNATIONALE PUBLIÉE EN VERTU DU TRAITÉ DE COOPÉRATION EN MATIÈRE DE BREVETS (PCT)

(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 20 octobre 2005 (20.10.2005)

PCT

(10) Numéro de publication internationale WO 2005/097999 A1

- (51) Classification internationale des brevets⁷:

 C12N 15/29, 15/82, 15/54,
 9/10, A01H 5/10, 5/00, C12N 5/10, 5/04
- (21) Numéro de la demande internationale :

PCT/FR2005/000753

- (22) Date de dépôt international : 29 mars 2005 (29.03.2005)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

- (30) Données relatives à la priorité : 04 03242 29 mars 2004 (29.03.2004) FR
- (71) **Déposant** (pour tous les États désignés sauf US): **GENO-PLANTE-VALOR** [FR/FR]; 93, rue Henri Rochefort, F-91025 Evry Cedex (FR).
- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement): D'HULST, Christophe [FR/FR]; 69, rue de la Belle Promenade, F-59150 Wattrelos (FR). PLANCHOT, Véronique [FR/FR]; 19, rue JM de Heredia, F-44300 Nantes (FR). CHATERJEE, Manash [GB/GB]; 12 Kemmann Lane, Great Cambourne, Cambridge CB36AT (GB).

- (74) Mandataires: COLOMBET, Alain etc.; Cabinet Lavoix, 2, place d'Estienne d'Orves, F-75441 PARIS CEDEX 09 (FR).
- (81) États désignés (sauf indication contraire, pour tout titre de protection nationale disponible): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) États désignés (sauf indication contraire, pour tout titre de protection régionale disponible): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), européen (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Suite sur la page suivante]

(54) Title: METHOD FOR IMPROVING PLANTS

(54) Titre: PROCEDE D'AMELIORATION DES PLANTES

1,5 mg Amidon WS (sauvage)

1,5 mg Amidon AtPHO-1

- (57) Abstract: The invention relates to a method for improving the size of starchy grains and/or the content of starch in a plant or a part of a plant, whereby the gene of a starch phosphorylase in the cells of the plant is inactivated.
- (57) Abrégé: L'invention concerne un procédé pour un procédé pour augmenter la taille des grains d'amidon et/ou la teneur en amidon d'une plante ou d'une partie de plante, dans lequel on inactive le gène d'une amidon phosphorylase dans les cellules de la plante.

WO 2005/097999 A1

Publiée:

— avec rapport de recherche internationale

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

5

10

20

25

30

1

Procédé d'amélioration des plantes

La présente invention concerne un procédé pour augmenter la taille des grains d'amidon produits dans les plantes et/ou pour augmenter la teneur des plantes en amidon.

L'amidon est le polyoside de stockage énergétique chez les végétaux. Il constitue le principal apport calorique de l'alimentation animale et humaine et est également une source majeure de matière première végétale pour des utilisations non alimentaires. L'amidon est composé de deux fractions polysaccharidiques distinctes : l'amylose et l'amylopectine. L'amylose, qui représente la fraction minoritaire de l'amidon, est constitué de résidus glucose unis par des liaisons α -1,4, et présente moins de 1% de ramifications. L'amylopectine, qui représente la fraction majoritaire de l'amidon, est constituée de résidus glucose unis par des liaisons α -1,4, et présente environ 5% de ramifications, constituées par des résidus de glucose liés au polymère principal par une liaison α -1,6. La distribution asymétrique de la ramification de l'amylopectine est responsable de la croissance illimitée des molécules d'amidon et par conséquent des grains d'amidon, et rend également compte de la plupart des propriétés physico-chimiques de l'amidon.

La biosynthèse de l'amidon dépend d'une voie métabolique dont les étapes biochimiques principales sont la synthèse d'ADP-glucose suivie par le transfert de ce précurseur en position α -1,4 sur un glucane par des (ADP-glucose :1,4- α -D-glucane 4- α -D-glucosyl)transférases, le polymère formé étant ramifié par l'action des enzymes dites de ramification ou de « branchement » : les 1,4- α -D-glucane 6- α -D-(1,4- α -D-glucano)-transférases.

La dégradation de l'amidon implique plusieurs enzymes, dont l' α -amylase (endoamylase), la β -amylase (exoamylase), l'amyloglucosidase, et l'alpha-glucane phosphorylase (amidon phosphorylase).

Le rôle de ces diverses enzymes de dégradation de l'amidon n'est pas clairement établi. Par exemple, il a été rapporté qu'une expression réduite d'une phosphorylase dans les feuilles, par répression par antisens, n'avait pas

5

10

15

20

25

30

d'influence significative sur l'accumulation d'amidon, chez la pomme de terre (Sonnewald et al., 1995).

2

Puisque la répression par antisens de l'activité α -glucane phosphorylase n'avait pas d'influence significative sur l'accumulation d'amidon dans les feuilles de pommes de terre transgéniques, les auteurs en ont conclu que la rupture de l'amidon n'était pas catalysée par les phosphorylases.

Le brevet US 5,998,701 divulgue que la réduction de la teneur en phosphorylase dans les tubercules de pomme de terre a pour conséquence une diminution substantielle de l'accumulation des sucres, ce qui peut être mis à profit pour allonger les durées de stockage des tubercules.

Le brevet US 6,353,154 propose, quant à lui, de modifier les activités de l'amidon phosphorylase chez les plantes, en particulier le maïs, dans le but d'obtenir une synthèse d'amidon qui serait modifié dans sa structure.

Les inventeurs ont maintenant mis en évidence que l'inactivation du gène codant pour une amidon phosphorylase induit une augmentation significative de la taille des grains d'amidon produits dans les plantes, ainsi que de la quantité d'amidon accumulé.

Sur cette base, la présente invention fournit un procédé pour augmenter la taille des grains d'amidon d'une plante ou d'une partie de plante, dans lequel on inactive le gène d'une amidon phosphorylase dans les cellules de la plante.

Ce procédé est particulièrement avantageux pour augmenter les rendements lors de l'extraction et de la purification de l'amidon à l'échelle industrielle. En effet, les grains d'amidon les plus petits sont généralement perdus au cours des lavages lors des processus d'extraction et de purification. Une augmentation de la taille des grains permet d'éviter la perte d'une partie des grains d'amidon.

La présente invention fournit également un procédé pour augmenter la teneur en amidon d'une plante ou partie de plante, dans lequel on inactive le gène d'une amidon phosphorylase dans les cellules de la plante.

Il faut comprendre que l'augmentation de la taille des grains d'amidon et l'augmentation de la teneur en amidon ne sont pas nécessairement liées, à

3

savoir qu'a priori l'augmentation de la teneur en amidon n'implique pas obligatoirement une augmentation de la taille des grains d'amidon, et vice versa.

La présente demande montre l'existence d'une interaction entre l'amidon phosphorylase, l'amidon synthase, et les enzymes de branchement. La phosphorylase, le cas échéant en interaction avec une glycogénine (WO 03/014365), amorcerait l'initiation de l'amidon en fournissant l'amorce appropriée vis à vis des enzymes de branchement et de l'amidon synthase.

10

15

20

25

30

Sans pour autant être liés par cette théorie, on peut émettre une hypothèse pour expliquer l'augmentation de la taille moyenne des grains d'amidon dans les plantes dans lesquelles l'amidon phosphorylase est inactivée. Selon cette théorie, du fait de l'inactivation de la phosphorylase, seule l'amidon synthase (notamment SS 5 chez Arabidopis, SS I chez le maïs) pourrait interagir avec la glycogénine et initier la synthèse d'amidon. L'interaction plus faible avec la glycogénine, voire également une expression plus tardive, résulterait en un retard dans l'initiation de la synthèse de l'amidon, et donc du nombre de granules produits (initiés). Comme le nombre de molécules d'amidon initiées est moins important mais que les substrats nécessaires à la synthèse de l'amidon sont présents au même niveau, on obtient des grains plus gros car utilisant la même quantité de substrat pour un nombre réduit de granules.

L'invention fournit également un procédé pour l'obtention de plantes ou parties de plante produisant des grains d'amidon de taille accrue, ledit procédé comprenant l'inactivation du gène d'une amidon phosphorylase dans les cellules de la plante.

L'invention fournit par ailleurs un procédé pour l'obtention de plantes, de tissus de plante ou parties de plante à teneur élevée en amidon, ledit procédé comprenant l'inactivation du gène d'une amidon phosphorylase dans les cellules de la plante.

Le terme "tissu de plante" fait référence à n'importe quel tissu d'une plante, dans une plante ou dans une culture. Ce terme inclut des plantes entières, des cellules de plantes, des organes de plantes, des graines de

4

plantes, des protoplastes, des cals, des cultures de cellules et toutes autres cellules de plantes organisées en tant qu'unité fonctionnelle et/ou structurelle.

L'invention concerne aussi tout tissu de plante susceptible d'être obtenu par le procédé selon l'invention ainsi que les plantes transgéniques le comprenant.

5

10

15

20

25

30

De plus, les graines issues des plantes obtenues selon l'un des procédés mentionnés selon l'invention caractérisées en ce qu'elles ont une taille accrue, et/ou une teneur en amidon modifiée rentrent dans le cadre de la présente invention.

Les « amidon phosphorylases », également connues sous le nom de « alpha-glucane phosphorylases », ont été décrites dans de nombreuses plantes, par exemple la fève, la pomme de terre (Swissprot P04045), la betterave, l'épinard, le maïs (WO 98/40503), le petit pois ainsi que le riz (EMBL n° d'accès D23280 ou Q9AUV8), et le blé (EMBL AAQ73181).

La séquence génomique (locus désigné AtPHO-1) codant pour l'amidon phosphorylase d'*Arabidopsis thaliana* est présentée en annexe (SEQ ID N° 1).

L'amidon phosphorylase est soumise à un adressage vers le plaste de la cellule.

L'homme du métier sait comment identifier les phosphorylases à inactiver par exemple par comparaison de séquences entre SEQ ID N°1 avec des séquences d'autres espèces en utilisant un programme informatique de comparaison de séquence tel que Blast (www.ncbi.nlm.nih.gov) et le programme FastDB avec les paramètres par défauts. Ces algorithmes sont présentés dans Current Methods in Sequencing and synthesis Methods and Applications, pages 127-149, 1988, Ala. R. Liss, Inc, incorporé dans la description par référence. Une autre méthode possible repose par exemple sur l'hybridation sélective dans des conditions de fortes stringence telles que définies dans Sambrook et al. Molecular Cloning A Laboratory Manual (Cold Spring Harbor Press, 1989) aux paragraphes 11.1 à 11.61. En particulier il peut s'agir plus particulièrement de formes alléliques des enzymes citées cidessus. Les phosphorylases à inactiver sont de préférence adressées au plaste, c'est-à-dire dirigées vers le plaste. L'homme du métier est capable

5

d'identifier sur la séquence le motif correspondant au peptide d'adressage au plaste. Pour ce faire, il peut utiliser par exemple le logiciel Génoplante[©]Predotar (Small I. et al., 2004, Proteomics, vol 4.(6) 1581-1590 et accessible sur le site http://www.genoplante.com).

L'expression « teneur élevée en amidon » signifie que la plante transgénique obtenue fournit une quantité d'amidon supérieure à une plante de même espèce, non transformée.

5

10

15

20

25

30

« L'inactivation du gène de l'amidon phosphorylase » signifie que le gène est rendu non fonctionnel, c'est-à-dire qu'il ne permet plus ou pratiquement plus l'expression d'une protéine amidon phosphorylase active, la protéine n'étant plus ou pratiquement plus exprimée, ou alors sous une forme mutée non fonctionnelle, incapable d'exercer ses propriétés enzymatiques.

L'inactivation du gène peut être réalisée par tout moyen de l'homme du métier (voir Torneycroft et al., 2001), en particulier par interruption du gène, ou extinction de l'expression génique (« gene silencing »).

Selon un mode de réalisation préféré, on introduit une mutation dans le gène codant pour l'amidon phosphorylase, qui rend ce gène non fonctionnel, à savoir qu'il devient incapable d'exprimer l'enzyme, ou que l'enzyme produite est inactive.

En particulier, la mutation peut consister en une insertion de nucléotide(s), par exemple entre l'exon 6 et l'intron 6 du gène de l'amidon phosphorylase.

L'extinction du gène peut ainsi être réalisée par insertion d'ADN-T.

La séquence SEQ ID N° 2 montre ainsi le gène de l'amidon phosphorylase d'Arabidopsis thaliana dans lequel une séquence ADN-T est insérée.

L'invention se rapporte également à l'utilisation de la séquence polynucléotidique SEQ ID N°2 pour la fabrication d'une plante avec une taille des grains d'amidon et/ou la teneur en amidon modifié. La plante obtenue selon l'invention est choisie parmi la pomme de terre, la fève, la betterave, l'épinard, le petit pois, le blé, le maïs ou le riz.

6

L'ADN-T a été utilisé comme mutagène dès la fin des années 80. Chez Arabidopsis, qui ne possède pas de transposons endogènes ayant une activité permettant de faire de la mutagenèse insertionnelle, il a été utilisé préférentiellement aux transposons. La bactérie du sol Agrobacterium a la capacité de transférer un morceau de son ADN, l'ADN-T, dans le génome nucléaire des cellules de plantes. Cette propriété est très utile pour inactiver des gènes par mutagenèse d'insertion. Les seuls éléments nécessaires sont des répétitions de 24 paires de base, les séquences bordures, qui délimitent la région à transférer. L'accroissement de l'efficacité des méthodes de transformation a facilité le développement de la génétique inverse.

5

10

15

20

25

30

L'infiltration sous vide de plantes entières a permis d'augmenter l'efficacité de transformation (4 à 5 transformants par plante traitée) de même que la reproductibilité. Récemment, la méthode a encore été simplifiée avec l'apparition du « floral dip ». Les inflorescences sont simplement trempées dans une suspension d'Agrobacterium en présence d'un surfactant, le Silwet L-77 et de saccharose. Avec ces différentes méthodes, tous les transformants obtenus sont hémizygotes pour l'ADN-T, ce qui suggère une transformation tardive au cours du développement floral. La cible de transformation a été identifiée comme étant l'ovule en développement. Les mutations létales à l'état homozygote sont maintenues dans la population sous forme de plantes hétérozygotes. On obtient en moyenne une à deux insertions par plante. Les analyses de ségrégation montrent que 57 % des transformants contiennent 1 locus d'insertion, 25 % 2 locus, 8 % 3 locus et 2 % plus de 3. Une analyse moléculaire des mutants étiquetés montrent que ces insertions se font au hasard, sont stables, maintenues dans la descendance et qu'il y a peu de biais d'insertions.

L'inactivation du gène de l'amidon phosphorylase endogène peut également être obtenue par mutagenèse des cellules de plante, par exemple par irradiation U.V, par un agent mutagène chimique, ou par insertion de transposons.

Les éléments transposables ont la capacité de perturber l'expression de gènes dans lesquels ils sont insérés et de générer des délétions,

réarrangements, et mutations au locus cible.

5

10

15

20

25

30

7

Les transposons ont été les premiers agents insertionnels mutagènes utilisés chez le maïs puis chez le pétunia et Anthirrhinum. Contrairement à l'ADN-T, le transposon peut être excisé du gène disrupté en présence d'une transposase. La haute fréquence de réversion de la mutation qui en résulte permet de confirmer qu'elle est induite par le transposon. La remobilisation des transposons permet aussi de générer des mosaïques : un mutant homozygote qui porte une transposase active aura des secteurs somatiques qui ont perdu le transposon Ds et restauré la fonction du gène. Ceci permet de déterminer le site d'action d'un gène en combinaison avec son patron d'expression. D'autre part, pour les transposons de type Ac/Ds, la plupart des événements de transposition se produisent à des sites génétiquement liés. S'il existe un élément transposable près d'un gène d'intérêt, il pourra donc être remobilisé pour se réinsérer dans le gène ou à proximité (Ito et al, 1999). Il est ainsi possible de faire de la mutagenèse locale dans une région d'intérêt particulier.

Une technique de mutagenèse par transposons qui peut être avantageusement utilisée est la mutagenèse par transposon Mutator confirmée par un criblage en génétique inverse (Bensen et al., 1995; Das et al., 1995). Cette technique met en œuvre les étapes consistant à croiser une lignée "Mutator" avec des hybrides des plantes d'intérêt puis à cribler les plantes F1 obtenues par PCR avec une amorce spécifique des transposons et une amorce spécifique de la séquence nucléotidique codant pour l'amidon phosphorylase. Les graines F2 obtenues à partir des plantes criblées F1 permettent d'obtenir des plantes dont le phénotype est alors analysé.

Une autre méthode pour inactiver le gène de l'amidon phosphorylase est l'injection locale d'ARN double brin (RNA interference : RNAi) (Fire, 1999). Les ARN double-brin sont clivés en petits ARN sens et antisens de 22 nucléotides environ qui vont cibler la dégradation des ARNm endogènes homologues (Zamore et al., 2000). L'expression constitutive d'ARN double brin par un transgène mettant en jeu des séquences inversées répétées placées sous le

5

10

15

20

25

30

contrôle du promoteur 35S permet d'obtenir une inactivation efficace dans l'ensemble de la plante, y compris dans le méristème (Waterhouse et al., 1998). Cette stratégie est très efficace tout au long du développement des plantes.

8

L'inactivation du gène d'une amidon phosphorylase endogène peut être par ailleurs réalisée selon le procédé comprenant les étapes consistant à :

- a) fournir un vecteur d'expression comprenant une séquence nucléotidique antisens du gène codant pour ladite amidon phosphorylase endogène;
 - b) transformer une cellule de plante avec ledit vecteur d'expression ;
- c) régénérer la plante à partir de la cellule transformée à l'étape b, ladite plante transgénique ainsi obtenue présentant des grains d'amidon de taille accrue, d'une teneur en amidon élevée.

Une autre possibilité pour réduire l'activité de l'amidon phosphorylase dans les cellules des plantes est d'exprimer des ribozymes qui sont des molécules d'ARN qui agissent comme des enzymes catalysant spécifiquement le clivage des transcrits codant pour l'amidon phosphorylase, par des techniques connues de l'homme du métier (EP 321 021).

Il est également possible d'obtenir une plante présentant une altération de l'expression d'amidon phosphorylase par le procédé dit "transwitch" décrit dans WO90/12084.

L'inactivation du gène de l'amidon phosphorylase peut également être obtenue en infectant les plantes par des virus recombinants dans lesquels une partie de la séquence codante ou du promoteur du gène à inactiver a été introduite (virus-induced gene silencing ou VIGS) (Ratcliff et al., 2001). Pour expliquer ce phénomène, on pense que les molécules virales de polarités positives et négatives produites au cours du cycle de réplication du virus sont reconnus comme des ARN double brin et dégradées en petits ARN sens et antisens de 22 nucléotides qui vont à leur tour déclencher la dégradation des ARNm endogènes homologues. Toutefois, seuls les ARNm endogènes sont totalement dégradés alors que les ARN viraux restent détectables. La présence de petits ARN de 22 nucléotides dérivés des ARN viraux, suggère que les virus qui induisent le VIGS sont également capables d'y résister. Les avantages de

WO 2005/097999

PCT/FR2005/000753

9

cette méthode sont avant tout sa simplicité et la rapidité de sa mise en oeuvre. De plus, il suffit de cloner 23 paires de base d'un gène dans le virus pour cibler spécifiquement son inactivation.

La construction des vecteurs d'expression utilisés (portant par exemple 5

une séquence antisens du gène de l'amidon phosphorylase endogène) ou des ARNi est à la portée de l'homme du métier suivant les techniques standard.

La transformation de cellules végétales peut être réalisée par transfert des vecteurs ou des acides nucléiques dans les protoplastes, notamment

après incubation de ces derniers dans une solution de polyéthylèneglycol en présence de cations divalents (Ca²⁺).

La transformation des cellules végétales peut également être réalisée par électroporation notamment selon la méthode décrite dans l'article de

Fromm et *al.*, 1986.

La transformation des cellules végétales peut également être réalisée par utilisation d'un canon à gène permettant la projection, à très grande vitesse, de particules métalliques recouvertes des séquences d'ADN d'intérêt, délivrant ainsi des gènes à l'intérieur du noyau cellulaire, notamment selon la technique décrite dans l'article de Sanford, (1988).

20

10

15

Une autre méthode de transformation des cellules végétales, est celle de la micro-injection cytoplasmique ou nucléaire.

Selon un mode de réalisation particulièrement préféré du procédé de l'invention, les cellules végétales sont transformées par biolistique, c'est-à-dire par projection, au moyen d'un canon à particules, de microparticules recouvertes des séquences nucléotidiques à transférer (J. Finner, 1992).

25

Selon un autre mode de réalisation du procédé de l'invention, les cellules végétales sont transformées par un vecteur selon l'invention, ledit hôte cellulaire étant susceptible d'infecter lesdites cellules végétales en permettant l'intégration dans le génome de ces dernières, des séquences d'ADN d'intérêt initialement contenues dans le génome du vecteur susmentionné.

30

cellulaire susmentionné utilisé l'hôte Avantageusement, est Agrobacterium tumefaciens, notamment selon la méthode décrite dans l'article

10

d'An et al., 1986, ou encore *Agrobacterium rhizogenes*, notamment selon la méthode décrite dans l'article de Jouanin et al., 1987.

De manière préférentielle, la transformation des cellules végétales est réalisée par le transfert de la région T du plasmide circulaire extrachromosomique inducteur de tumeurs Ti d'Agrobacterium tumefaciens, en utilisant un système binaire (Watson et al.).

5

10

15

20

25

30

Pour ce faire, deux vecteurs sont construits. Dans un de ces vecteurs, la région d'ADN-T a été éliminée par délétion, à l'exception des bords droit et gauche, un gène marqueur étant inséré entre eux pour permettre la sélection dans les cellules de plantes. L'autre partenaire du système binaire est un plasmide Ti auxiliaire, plasmide modifié qui n'a plus d'ADN-T mais contient toujours les gènes de virulence *vir*, nécessaires à la transformation de la cellule végétale. Ce plasmide est maintenu dans *Agrobacterium*.

Parmi les terminateurs de transcription pouvant être utilisés, on peut citer le terminateur polyA 35S du virus de la mosaïque du chou-fleur (CaMV), décrit dans l'article de Franck et al., (1980), ou le terminateur polyA NOS, qui correspond à la région en 3' non codante du gène de la nopaline synthase du plasmide Ti d'Agrobacterium tumefaciens souche à nopaline (Depicker et al., 1982).

Parmi les promoteurs de transcription pouvant être utilisés, on peut citer notamment :

- le promoteur 35S, ou avantageusement le promoteur constitutif double 35S (pd35S) du CaMV, décrits dans l'article de Kay et al., 1987 ;
- le promoteur PCRU du gène de la cruciférine de radis permettant l'expression des séquences associées uniquement dans les semences (ou graines) de la plante transgénique obtenue ;
- les promoteurs PGEA1 et PGEA6 correspondant à la région 5' non codante des gènes de la protéine de réserve de graines, GEA1 et GEA6, respectivement, d'*Arabidopsis thaliana* (Gaubier et al., 1993) et permettant une expression spécifique dans les graines ;
- le promoteur chimérique super-promoteur PSP (Ni M et al., 1995), constitué de la fusion d'une triple répétition d'un élément activateur transcriptionnel du promoteur du gène de l'octopine synthase d'*Agrobacterium*

tumefaciens, d'un élément activateur transcriptionnel du promoteur du gène de mannopine synthase et du promoteur mannopine synthase d'Agrobacterium tumefaciens;

11

- le promoteur actine du riz suivi de l'intron actine de riz (PAR-IAR) contenu dans le plasmide pAct1-F4 décrit par Mc Elroy et al., 1991;
 - le promoteur HMGW (High Molecular Weight Glutenine) d'orge;
- le promoteur du gène de γ zéine de maïs (P γ zéine) contenu dans le plasmide p γ 63, et permettant l'expression dans l'albumen des semences de maïs.

10

15

20

25

30

5

Parmi les cellules végétales susceptibles d'être transformées conformément à la présente invention, on peut citer celles de la pomme de terre, la fève, la betterave, l'épinard, le petit pois, le blé, le maïs ou le riz.

La présente invention permet aussi d'obtenir une plante ou partie de plante telle que notamment la pomme de terre, le blé, le maïs ou le riz, produisant des grains d'amidons de taille accrue, ou une teneur élevée en amidon.

Par « partie de plante », on entend notamment les organes de réserve naturellement riches en amidon, tels que les graines ou les tubercules. Par « partie de plante », on entend également les cellules de ladite plante.

L'extraction de l'amidon produit peut être réalisée selon les techniques standard connues de l'homme du métier. La solubilisation de l'amidon est également connue de l'homme du métier et peut être réalisée par trempage et fractionnement du grain d'amidon, ou par exemple par chauffage. De manière alternative, on peut utiliser des enzymes déstructurent l'amidon, telles que les amylases.

L'amidon produit peut également être utilisé dans de nombreuses industries : industrie du papier et du carton, industrie des adhésifs, industrie textile, industrie pharmaceutique (pour la formulation des médicaments), etc.

L'amidon produit peut également subir d'autres modifications, en particulier des modifications chimiques telles qu'un traitement acide, une oxydation, une estérification, etc avant son utilisation.

12

Cet amidon peut être utilisé pour la préparation de produits dérivés, notamment de produits alimentaires.

Les figures et exemples suivants illustrent l'invention sans en limiter la portée.

LEGENDE DES FIGURES:

La <u>figure 1</u> est un schéma représentant le génome d'*Arabidopsis* 10 thaliana.

La <u>figure 2</u> est un graphe montrant les niveaux relatifs d'accumulation d'amidon dans la lignée mutante par rapport à la lignée sauvage de référence (WS).

La <u>figure 3</u> est une comparaison de profils d'analyse spectrophotométrique d'amidon des lignées sauvage et mutante après chromatographie d'exclusion stérique sur matrice de sépharose CL-2B.

La <u>figure 4</u> est une comparaison de photographies de vues au microscope électronique à transmission, de grains d'amidon (agrandissement x3000).

20

25

30

15

EXEMPLES:

1. Description de la lignée mutante:

Les inventeurs ont étudié les phénotypes d'une lignée mutante d'*Arabidopsis thaliana*, produit par interruption d'un gène de l'amidon phosphorylase (locus désigné AtPHO-1).

Cette lignée (DDS72) est l'une des 50 000 lignées mutantes produites par insertion aléatoire d'ADN-T, comme décrit par Balzuergue et al., 2001.

La lignée mutante DDS72 d'*Arabidopsis thaliana* étudiée présente une insertion d'ADN-T à la jonction de l'exon 6 et de l'intron 6 (cf <u>figure 1</u> et SEQ ID N° 2).

13

2. Analyse enzymologique de la lignée mutante :

Afin de déterminer l'impact de l'insertion de l'ADN-T au locus AtPHO-1 sur l'activité des amidon-phosphorylases, les inventeurs ont effectué des zymogrammes à partir d'extraits cellulaires de diverses lignées mutantes et sauvages (WS). Les zymogrammes ont été réalisés dans deux conditions différentes.

- Extraction des protéines des feuilles

5

10

15

20

25

30

Les feuilles sont broyées à 4°C à l'aide du Polytron Blender dans le tampon suivant : 50 mM NaH₂PO₄, 0,5 M NaCl. Le broyat est centrifugé 5 minutes à 13000 rpm à 4°C et on récupère le surnageant contenant les protéines solubles.

- Electrophorèse en gel de polyacrylamide

Les gels sont réalisés avec les chambres d'électrophorèse MiniProtean II commercialisés par BioRAD (Richmond, CA, USA). Les gels ont une épaisseur de 1,5 mm. La concentration finale en monomère est de 7,5% (p/v) pour le gel de séparation, il contient également 0,45% de glycogène de foie de lapin ou 0,2% d'amidon de pomme de terre. Il est tamponné par le Tris/HCI 110mM pH 7,2. Le gel de concentration à 2,5% final en monomère est tamponné par le Tris/H₃PO₄ 60mM pH 7,3. Le tampon de migration utilisé pour l'électrophorèse est le Glycine/Tris 40mM pH 8,5.

A 100 μ g d'extrait protéique, sont ajoutés 10 μ l de Tris/H₃PO₄ 60mM pH 7,3 et 20 μ l de tampon de chargement : saccharose 25% (p/v), bleu de bromophénol 0,001%.

La migration se déroule à 4°C durant 2h30 à 15mA et 250V. A l'issue de celle-ci, le gel est équilibré dans le Citrate/NaOH 100mM pH 7,0 pendant 10 minutes avant d'être incubé toute la nuit à température ambiante dans le citrate/NaOH 100mM pH 7,0, Glucose-1-phosphate 50 mM.

A cette concentration, les phosphorylase fonctionnent dans le sens de la synthèse des polysaccharides en ajoutant un résidu de glucose en extrémité non-réductrice des glycanes disponibles par l'intermédiaire d'une liaison α -1,4. L'activité est ensuite révélée par coloration du gel à l'iode.

C'est la forme de migration rapide (sur glycogène ou amidon) qui disparaît totalement dans le mutant au locus AtPHO-1.

3. Impact de la mutation sur le polysaccharide de réserve :

- Extraction d'amidon des feuilles d'Arabidopsis thaliana

Les feuilles d'A. thaliana sont prélevées en fin de photopériode puis rincées deux fois dans un grand volume d'eau désionisée (afin de retirer les débris non désirés). Dans la glace, on broie le matériel dans 15-25 ml de tampon d'extraction (MOPS 100 mM pH 7.2, EDTA 5 mM, Ethylène glycol 10%) à l'aide du Polytron Blender (broyeur de tissus) jusqu'à obtenir un extrait bien homogène sans aucun tissu intact. On passe l'extrait 4 x 15 secondes au sonicateur « continu » et entre chaque sonication, on plonge le tube dans la glace. Centrifuger 15 minutes à 3200 g à 4°C. Le culot est repris dans 20 ml de Percoll (Amersham Biosciences) à 90% et centrifugé 40 minutes à 10000 g dans un tube en verre de type Corex. On retire les débris en surface et le surnageant. Le culot d'amidon est rincé cinq fois par de l'eau désionisée avant son analyse.

- Dosage de l'amidon

L'amidon est dosé à l'aide du kit Enzytec commercialisé par Diffchamb (Lyon, France). Les glucanes sont digérés par une amyloglucosidase qui hydrolyse les liaisons O-glycosidiques α -1,4 et α -1,6. Les molécules de glucose ainsi libérées sont ensuite phosphorylées en position 6 par une hexokinase. Le glucose-6-phosphate produit est ensuite oxydé en gluconate-6-P par une G6P déshydrogénase en réduisant le NADP en NADPH. Cette dernière réaction est suivie au spectrophotomètre à 365 nm.

La quantité d'amidon dosée est présente au tableau 1 :

Tableau 1:

30

25

5

10

15

20

Lignée	Quantité d'amidon (en mg/g de feuilles)
WS (lignée sauvage)	1,16
AtPHO-1 (lignée DDS72)	2,78

5

10

15

20

25

La <u>figure 2</u> présente les niveaux relatifs d'accumulation d'amidon dans les différentes lignées par rapport à la lignée sauvage de référence (WS).

La structure de l'amidon est ensuite analysée par chromatographie d'exclusion stérique sur matrice de sépharose CL-2B.

- Fractionnement de l'amidon

Le fractionnement est réalisé par chromatographie d'exclusion stérique sur matrice de sépharose CL-2B (Amersham-Biosciences, Suède).

La colonne possède un diamètre interne de 0,5 cm et une hauteur de 65 cm. Equilibrée dans la soude 10 mM, son débit est de 12 ml/heure. La préparation de l'échantillon d'amidon est effectuée comme suit : on dissout 1,5mg d'amidon natif dans 200 µl de DMSO 100% à 100°C pendant 10 minutes. Le polysaccharide est ensuite précipité par 4 volumes d'éthanol pur à -20°C pendant 30 min. Après centrifugation à 5000 g pendant 5 minutes, le culot d'amidon est dissous dans 500 µl de soude 10 mM puis déposé sur la colonne. Les fractions de 300 µl sont analysées par spectrophotométrie à l'iode.

- <u>Détermination de la λ_{max} du complexe iode-polysaccharide</u> :

La longueur du maximum d'absorbance du complexe formé par l'iode avec les polysaccharides est déterminée par spectrophotométrie. 100 µg d'amidon sont dissous dans le DiMéthylSulfOxyde (DMSO) 100% durant 10 minutes à 100°C. Cette solution est ensuite ramenée à 10% en DMSO. A 400 µl de cette solution, sont rajoutés 100 µl d'une solution d'iode 0,02% l₂ et 0,2% Kl. Le spectre d'absorption est réalisé entre 400 et 700 nm.

On peut également déterminer les quantités de polysaccharides présentes dans chaque fraction à l'aide du kit de dosage Enzytec.

Il ne semble pas y avoir de modification particulière de la structure de l'amidon de la lignée mutante AtPHO-1 si on fait la comparaison entre les deux profils présentés à la <u>figure 3</u>.

4. Analyse de la structure de l'amidon accumulé par la lignée AtPHO-1 par microscopie électronique :

- Préparation des échantillons pour la microscopie électronique à transmission

Les échantillons sont inclus dans l'agar à 3% dans l'eau. Ils sont ensuite traités au PATAg : acide périodique-thiosemicarbazide-argent avec un temps d'incubation de 20 minutes dans l'acide périodique. On réalise ensuite une inclusion dans une résine hydrophile (nanoplast) pendant 10 jours avant de consolider la préparation par une inclusion dans une résine LR-White Hard grade. Les coupes sont effectuées à l'ultramicrotome (microme MT-7000) avec une épaisseur de 60 à 100 nm. Les observations sont effectuées au MET (Jeol 100S) à 80keV (figure 4).

Les images obtenues ont été analysées en repérant les paramètres suivants :

15

20

25

30

5

10

- surface totale,
- diamètre équivalent,
- rapport des différentes longueurs.

Les valeurs sont traitées grain par grain.

S'agissant de la lignée sauvage, les tailles sont très variées : on note la présence importante d'assez gros grains mais aussi de quelques très petits. Sur 556 grains analysés, le diamètre équivalent moyen est de 1.27 µm. Les grains de forme allongée semblent majoritaires.

S'agissant de la lignée mutante, les grains sont de grosse taille et de formes plus arrondies (convexes) avec une présence de grains anguleux. 256 grains ont été analysés.

L'analyse statistique montre que les grains d'amidon de la lignée mutante au locus AtPHO-1 sont en moyenne plus gros que ceux de la lignée sauvage.

Ainsi, deux modifications majeures sont observées en ce qui concerne l'amidon dans la lignée mutante au locus AtPHO-1 chez *A. thaliana* :

1) une augmentation de la taille moyenne des grains d'amidon dans la lignée mutante,

5

10

15

20

25

30

PCT/FR2005/000753

2) une augmentation significative de la quantité d'amidon accumulée dans les feuilles.

5. Interaction entre l'amidon phosphorylase, l'amidon synthase, et les enzymes de branchement :

La phosphorylase est l'une des premières enzymes impliquées dans la biosynthèse de l'amidon ; qui apparaît dans les amyloplastes de l'endosperme du maïs. L'enzyme continue à présente tout au long du processus de biosynthèse de l'amidon et est la seconde enzyme la plus abondante dans ce processus (après l'enzyme Ilb de branchement). Des études de zymogrammes sur gels natifs ont permis d'identifier une zone où trois activités différentes sont présentes (amidon synthase soluble SSS ou SS; enzymes de branchement SBE, et phosphorylase), suggérant l'existence d'un complexe incluant les enzymes responsables de ces activités. De plus le fractionnement enzymatique couplé à des zymogrammes a montré une interaction entre l'amidon phosphorylase et les enzymes de branchement.

Ces zymogrammes ont fait appel aux conditions suivantes :

Le principe des zymogrammes est de soumettre les enzymes à une séparation par électrophorèse, les gels d'électrophorèse étant ensuite trempés dans une solution déclenchant la réaction enzymatique là où l'enzyme a migré.

Pour révéler l'amidon phosphorylase, la solution mise en contact avec le gel contient du glucose 1-phosphate, substrat de l'enzyme. La réaction enzymatique produit la génération et l'élongation de glucane linéaire. Les bandes bleues apparaissent là où l'enzyme a migré.

Pour révéler l'amidon synthase, la solution mise en contact avec le gel contient de l'amylopectine et de l'ADP-glucose, substrats de l'enzyme. La réaction enzymatique produit l'élongation des chaînes d'amylopectine avec l'ADP-glucose. Les bandes bleues apparaissent là où l'enzyme a migré.

Pour révéler les enzymes de branchement (SBE), la solution mise en contact avec le gel contient du glucose 1-phosphate, substrat de l'enzyme, et une phosphorylase b exogène (de lapin). La réaction enzymatique produit la génération et l'élongation de glucanes linéaires avec le glucose 1-phosphate,

glucanes qui sont branchés par les SBE. Des bandes brunes apparaissent là où l'enzyme a migré.

D'autres études chez des mutants du maïs et des maïs doubles transgéniques (a/aSBE2b et a/s SSI) ont montré que le domaine des activités enzymatiques multiples observé sur les gels natifs était composé d'au moins la SSI, SBE2b et la phosphorylase. Sans être liés par cette théorie, il est probable au vu de l'interaction de la phosphorylase avec les enzymes directement impliquées dans la biosynthèse d'amidon, que l'amidon phosphorylase est impliquée également dans la biosynthèse de l'amidon.

5

10

15

20

25

30

En raison de l'existence de ce complexe et parce que la phosphorylase apparaît de manière précoce par rapport à l'AGPase ou la SSI dans l'endosperme de maïs, on peut émettre l'hypothèse que l'amidon phosphorylase, en utilisant la glucose 1-phosphate, génère une chaîne naissante de polymère de glucose qui agirait comme amorce pour les activités des enzymes SBE2b et SSI dans l'amyloplaste du maïs.

6. Vérification de la compartimentation subcellulaire de PHO1 :

Il existe, outre PHO1, une deuxième phosphorylase chez *Arabidopsis* thaliana: PHO2.

D'après les prédictions bioinformatiques, la localisation subcellulaire de PHO2 serait restreinte au cytosol de la cellule, tandis que PHO1 serait dirigée vers le chloroplaste. Pour confirmer la localisation subcellulaire de PHO1, les inventeurs ont procédé à une purification des chloroplastes, suivie d'un zymogramme des activités phosphorolytiques, c'est-à-dire en suivant l'activité d'une forme cytosolique de β-amylase (Zeeman et al., 1998) correspondant au gène At4g15210 (gène *ram-1* décrit dans Laby et al., 2001).

a) purification des chloroplastes :

La purification des chloroplastes a été réalisée en suivant un protocole standard :

Des plantes âgées de trois à quatre semaines ont été laissées dans le noir complet à 4°C pendant 48 heures. Les feuilles (10 g) ont été recueillies à

19

4°C et homogénéisées dans 200 ml de sorbitol 330 mM, MES 25 mM, pH 6,5, MgCl₂ 5 mM, isoascorbate 2 mM (tampon de purification). L'homogénat a été filtré à travers trois couches de Miracloth et centrifugé 3 minutes à 2500 g à 4°C. Le supernageant correspond à la fraction enrichie en cytosol (CytoEF). Le culot (contenant les chloroplastes) a été resuspendu dans 500 μl du même tampon et chargé sur un gradient discontinu de Percoll : 2 ml de Percoll 65% (fond du tube), 2 ml de Percoll 45%, 2 ml de Percoll 20% (haut du tube). L'échantillon a été centrifugé pendant 30 minutes à 4200 g et 4°C. Le culot formé à l'interface entre les couches de Percoll à 45% et 65% a été recueilli et dilué dans deux volumes du tampon de purification puis centrifugé à 1800 g à 4°C pendant 2 minutes. Le culot a ensuite été lavé deux fois dans le même tampon et resuspendu dans 200 μl du tampon de purification.

b) Zymogramme:

15

10

5

Le gel de polyacrylamide (7,5%) contient du glycogène de foie de lapin (0,6%). Les puits ont été chargés avec 100 µg de protéines et l'extrait a été soumis à une migration à 4°C en conditions natives à raison de 15 mA/gel pendant 2 heures. Le gel a ensuite été incubé pendant une nuit à température ambiante dans un milieu tamponné (Citrate de sodium 100 mM pH 7,0 + Glucose 1-phosphate 20 mM). Le gel a enfin été immergé dans une solution d'iode qui permet de révéler les zones où des activités enzymatiques ont modifié la structure de l'amidon (les zones non soumises à l'action d'enzymes de modification se colorent en orange).

25

20

Les résultats confirment que PHO1 est localisée dans le stroma du chloroplaste tandis que PHO2 est une protéine exclusivement cytosolique.

10

20

30

BIBLIOGRAPHIE

- An G. (1986), Plant Physiol. 81: 86-91
- 5 Balzergue et al. (2001) Bio Techniques, Vol 30, 496-504
 - Bensen et al. (1995), The Plant Cell, Vol. 7, 75-84
 - Das et al. (March 1995), The Plant Cell, Vol. 7, 287-294
 - Depicker et al. (1982) J. Mol. Appl. Genet., 1, 561-573
 - Finner J. et al. (1992), Plant Cell Reports, 11, 323-328
- 15 Fire et al. (1998) Nature 391, 806-811
 - Franck et al. (1980) Cell. 21,285-294
 - Fromm et al. (1986) Nature, vol. 319, 791-793
 - Gaubier et al. (1993) Mol. Gen., 238, 409-418
 - Ito et al. (1999) Plant J., Vol 17, 433-44.
- 25 Jouanin (1987) Plant. Sci., 53, 53-63
 - Kay (1987) Science, 236, 1299-1302
 - Laby et al., (2001) Plant Physiol., 127(4) :1798-807
 - Mc Elroy (1991) Mol. Gen. Genet. 231 : 150-160
 - Ni et al. (1995) Plant J., 7, 661-676

5

- Ratcliff et al. (2001) Plant J. 25, 237-245
- Ruiz et al. (1998) Plant Cell 10, 937-946
- Sanford J.C., (1988) Trends in Biotechnology, 6, 299-302
- Sonnewald et al., (1995) Plant. Mol. Biol. 27, 567-576
- Thorneycroft et al., (2001) Journal of Experimental Botany, 52, 361:1593-1601
 - Waterhouse et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 13959-13964
- Watson et al. ADN recombinant, Ed. De Boeck Université, p 273-292
 - Zamore et al., (2000) Cell 101, 25-33 Ecole thématique Biologie végétale 2001
- 20 Zeeman et al., (1998) Plant. Cell., 10(10):1699-712

WO 2005/097999

5

10

25

30

22

REVENDICATIONS

PCT/FR2005/000753

- 1. Procédé pour augmenter la taille des grains d'amidon et/ou la teneur en amidon d'une plante ou d'une partie de plante, dans lequel on inactive le gène d'une amidon phosphorylase dans les cellules de la plante.
- 2. Procédé pour l'obtention de plantes ou parties de plante produisant des grains d'amidon de taille accrue ou à teneur élevée en amidon, ledit procédé comprenant l'inactivation du gène d'une amidon phosphorylase dans les cellules de la plante.
- 3. Procédé selon la revendication 2, comprenant les étapes consistant à inactiver, par insertion de nucléotide(s), le gène codant pour ladite amidon phosphorylase endogène dans une cellule de plante, et régénérer la plante à partir de la cellule transformée, ladite plante transgénique ainsi obtenue présentant des grains d'amidon de taille accrue, et/ou une teneur en amidon élevée.
 - 4. Procédé selon l'une des revendications 1 à 3, dans lequel la plante est la pomme de terre, la fève, la betterave, l'épinard, le petit pois, le blé, le maïs ou le riz.
 - 5. Cellule végétale susceptible d'être obtenue par le procédé selon l'une quelconque des revendication 2 à 4.
 - 6. Plante transgénique comprenant une cellule végétale selon la revendication 5.

- 7. Graine issue de la plante selon la revendication 6, caractérisée en ce qu'elle a sa taille accrue, et/ou une teneur en amidon modifiée.
- 5 8. Utilisation de la séquence polynucléotidique SEQ ID N°2 pour la fabrication d'une plante avec une taille des grains d'amidon et/ou la teneur en amidon modifiée.
- 9. Utilisation selon la revendication 8 caractérisée en ce que la plante obtenue est choisie parmi la pomme de terre, la fève, la betterave, l'épinard, le petit pois, le blé, le maïs ou le riz.

1/3

FIG.1

FIG.2

FIG.3

3/3

SEQUENCE LISTING

<110> GENOPLANTE-VALOR-SAS <120> Procédé d'amélioration des plantes <130> BET 05P0304 <160> 2 PatentIn version 3.1 <170> <210> 4717 <211> <212> ADN<213> Arabidopsis thaliana <400> 60 atggatacga tgcgaatctc cggtgtatca accggagctg aggttttaat acaatgcaat 120 tccttatcaa gcctcgtttc tcgtcgttgc gacgacggaa aatggcgaac gagaatgttt 180 ccggcgagaa acagagactt gcgtccatcg ccgacgagaa gatccttttt gtcggtgaaa 240 tctatctcta gcgaaccgaa agccaaagta accgacgcag ttctcgattc cgaacaaggt 300 ctcattctaa tacttgcttt ctaataagaa ttagggtacg gaatttgaat tttatagtga atgttgtgaa gtaactgatt cgtattcctt gggattttgt ttttgtgttg attgattttc 360 agaagtgttt attagctcga tgaatccgtt tgcgccagat gctgcttcgg tagcttcgag 420 tatcaagtac cacgcggagt ttacgccatt gttttcaccg gagaagtttg agttgccaaa 480 540 ggcgttcttt gcgactgcgc aaagtgttag agatgctttg atcatgaatt ggaatgcaac 600 ttatgagtat tacaacagag tgaatgtgaa acaagcgtat tatttgtcaa tggagttttt 660 gcaggttttg gtttttactc atttctttga gtgattttgt tcttggttgt tatctaacta 720 ttttacattg tagggtagag ccttatcgaa tgccgtgggt aaccttgggc ttaatagcgc 780 ttatggtgat gctttgaaga ggcttggttt tgatttggaa agcgtggcta gtcaggtgag 840 ttgttaacca tgttgattat tatgcattaa ccgatgttta ttactaacag acgtcttaga 900 gatgatcgtc tttgcgagtc tattgtttgg ttttacagag ctgttatctt ctttatatgt 960 actgagatgc tagatacttc acttccattt tgtaggagcc agatcctgca cttgggaatg gtggactcgg gagacttgcc tcgtgttttt tggattccat ggcaactttg aattatccgg 1020 cttggggtta tggacttaga tacaagtatg gcttgttcaa acagagaatt acaaaagatg 1080 gacaggagga agctgcagaa gattggcttg aggtcttatt ctcttattct tttctcatac 1140 agcgtttgct attgaacagt atttcctaat ttgtactctc ttgtagcaat gctgagcagt 1200 1260 ggacatgttt attggcttac ctgtttcttt cagctaagca atccttggga aatagtcaga 1320 aatgatgtct catatcctat taagttctat gggaaagtgg tttttggatc agatggtaag

aaacggtgga	ttggtggaga	agacattgtt	gctgttgctt	atgatgttcc	tatacctggt	1380
tataaaacta	agacaactat	caatctgcgg	ctctggtcaa	caaaagctcc	ttccgaagat	1440
tttgatttat	cttcatataa	ctctgggaag	catactgagg	cagcagaagc	tctattcaac	1500
gctgaaaagg	tttgtatctt	cattaagttt	catttaaagt	tgctttcaca	attttgtttt	1560
ttcgaccatg	atctatttac	aagatccttc	tagtaattgg	aatagtgcat	atatctttaa	1620
aattgagtga	gaaccagcag	aaatgaatat	gttatcacag	agagattagt	cttgcgtcac	1680
ttgtgcttgt	ttatataacg	agcttttgat	gtgtatatac	tgaaaagtgg	ttgttttctt	1740
cccttccctc	ctgatggaat	tagatttgct	tcgtgcttta	ccccggagat	gagtcaactg	1800
aaggaaaggc	tcttcgtctg	aagcaacaat	acactctgtg	ctcagcctcg	ctacaagata	1860
tcgtagcacg	ttttgagaca	aggtctggag	gaaacgtcaa	ctgggaagaa	tttccagaga	1920
aggttgcagt	gcagatgaat	gacactcacc	ctaccctatg	cattcctgag	ctaatgagga	1980
ttctaatgga	tttaaaagga	ctaagctggg	aagacgcttg	gaaaatcaca	caaaggtact	2040
aaaaatgact	gaactaattg	tcgggcatgc	tacatatgtg	tctatttgtt	cctatattta	2100
gtctctggtg	cttgtcccaa	ataaaagata	gtttacaaga	atgaaacctg	caacgtgttt	2160
ctcaaaagtt	aataatttt	ttaggactgt	ggcatacaca	aaccatacag	tcttgcctga	2220
ggcactggag	aagtggagtt	tagaactcat	ggagaaattg	cttcctcgtc	atgtggagat	2280
tatcgaaaag	attgatgagg	aggtcatccc	tgaacaacat	atcaaatgtc	tcttctattt	2340
ttttcatatc	gggtctaatt	tgtactttca	tgtattgcag	ctagttcgca	caattgtttc	2400
agagtatggc	accgcggatc	ctgacttact	tgaagaaaaa	ctgaaggcaa	tgaggatctt	2460
ggaaaatgtc	gagttgcctt	ctgcctttgc	agatgtgatc	gtgaagccgg	tgaacaaacc	2520
agttactgca	aaagatgctc	aaaatggcgt	gaaaacggaa	caagaagagg	aaaaaactgc	2580
tggagaggaa	gaggaagacg	aagttatccc	agaaccaaca	gtagaacccc	ccaagatggt	2640
ccgtatggcc	aaccttgctg	ttgtgggtgg	tcatgctgta	aatggcgttg	cagagataca	2700
cagtgaaata	gtgaagcagg	acgtgtttaa	tgatttcgta	caggtaaaca	ttctaactag	2760
tgaagcatga	tgctataaaa	tgctctacag	ggaagaacac	aactctcatc	gttcaatatt	2820
ctatatttt	tgcagttgtg	gccagaaaaa	tttcagaaca	aaacaaatgg	agtaacacca	2880
aggcgatgga	ttcgtttttg	caacccatat	ttaagtgata	ttataactaa	ctggataggc	2940
acagaagact	gggtcttaaa	taccgaaaag	gttgcggaac	taagaaaggt	atgtacttta	3000
tcagattcaa	tgttgtttca	catgctgtta	tctttattgg	gcgacattgg	ttatcattgt	3060
ttggtctttc	tccagtttgc	agataatgaa	gatctccaat	ctgagtggag	ggcagcaaag	3120

aagaagaaca	agttgaaggt	tgtatcactt	atcaaggaaa	gaactggata	tactgtcagc	3180
cccgatgcaa	tgttcgacat	tcaggtcagt	tccaatggat	cttggttact	tttagattga	3240
tgagttgttt	gcttgggttt	ttcggtttga	gaagtccttt	acgcaactct	gagtagctta	3300
tgtagattct	tttctttttg	cattgaaaac	tttttgcaga	tcaagcgtat	acatgagtac	3360
aagcgacaac	tgctaaatat	cttgggaatt	gtttaccgct	acaaaaagat	gaaggaaatg	3420
agtgctagtg	agagagagaa	agcatttgtt	ccaagagttt	gcatatttgg	gggaaaagca	3480
tttgccacat	atgtgcaagc	taagagaatt	gttaaattta	tcacagatgt	tgcgtctaca	3540
attaaccatg	atccagaaat	aggtgacctc	cttaaggtat	atatctactt	acgttcttgt	3600
attagtcgta	ttctcaagcg	tataacggaa	aatctgcaat	aattatctgg	tttttgcatc	3660
tgtggagatt	ggcacttact	aattagaagt	gttaactaaa	catgtaggtt	atctttgttc	3720
ctgattacaa	tgtcagtgtt	gctgaattgc	tcattccagc	aagtgagctt	tctcagcaca	3780
tcaggtaaaa	acttctttgg	cttagtcaca	ttatagtttt	tggtcacaac	tccatgaagt	3840
taaaatattg	aaattgagat	aaccggtaaa	ccatgaactg	gactagtttc	tcttttttc	3900
ataagaactt	tagaaacaaa	tcctgacaca	aggaacaata	tgtttcggtt	acatttatga	3960
aaggttataa	tcaatggcac	tcatactttt	tgctggagac	taagagtttc	tctctgcagt	4020
actgctggga	tggaagctag	tgggacaagc	aacatgaaat	tttcgatgaa	cggttgcgtt	4080
ttgattggaa	ccttggatgg	ggcgaatgtc	gagattagag	aagaagttgg	agaagaaaat	4140
ttcttcctct	ttggtgccaa	agctgatcag	attgtgaacc	tcaggaagga	gagagcagag	4200
ggaaaggtat	atactatttg	aagagttaac	cttaccatgc	ttctgtttta	gcatcaacaa	4260
gaatttgatt	tttgacctgg	ctcttggcat	tccagtttgt	tcccgatcct	acttttgaag	4320
aagtcaagaa	gttcgttgga	agcggcgtct	ttggctcaaa	tagctatgat	gaactaatcg	4380
gctctttgga	aggaaacgaa	ggctttggac	gagcggatta	cttcctagtt	ggcaaagact	4440
ttcctagtta	catcgaatgc	caagaaaaag	tcgacgaggc	ataccgagac	cagaaagtaa	4500
gtactaatgc	attttctttg	aacatcaagc	taataatgtt	gactaaaata	tgaaacttac	4560
tcaaatatca	aaccttgaaa	ttgctgttaa	atgattacag	agatggacga	gaatgtcaat	4620
aatgaacaca	gcaggttcat	tcaagtttag	cagtgaccgg	acgatccacg	aatacgccaa	4680
agacatatgg	aatattaagc	aagtggaact	tccatga			4717

<210> 2

<211> 10870

<212> ADN

<213> Arabidopsis thaliana

PCT/FR2005/000753

<221> misc_feature
<222> (2040)..(8192)
<223> séquence ADN-T

<400> 2 60 atggatacga tgcgaatctc cggtgtatca accggagctg aggttttaat acaatgcaat 120 tccttatcaa gcctcgtttc tcgtcgttgc gacgacggaa aatggcgaac gagaatgttt 180 ccggcgagaa acagagactt gcgtccatcg ccgacgagaa gatccttttt gtcggtgaaa tctatctcta gcgaaccgaa agccaaagta accgacgcag ttctcgattc cgaacaaggt 240 300 ctcattctaa tacttgcttt ctaataagaa ttagggtacg gaatttgaat tttatagtga atgttgtgaa gtaactgatt cgtattcctt gggattttgt ttttgtgttg attgattttc 360 420 agaagtgttt attagctcga tgaatccgtt tgcgccagat gctgcttcgg tagcttcgag 480 tatcaagtac cacgcggagt ttacgccatt gttttcaccg gagaagtttg agttgccaaa ggcgttcttt gcgactgcgc aaagtgttag agatgctttg atcatgaatt ggaatgcaac 540 600 ttatgagtat tacaacagag tgaatgtgaa acaagcgtat tatttgtcaa tggagttttt gcaggttttg gtttttactc atttctttga gtgattttgt tcttggttgt tatctaacta 660 720 ttttacattg tagggtagag ccttatcgaa tgccgtgggt aaccttgggc ttaatagcgc 780 ttatggtgat gctttgaaga ggcttggttt tgatttggaa agcgtggcta gtcaggtgag ttgttaacca tgttgattat tatgcattaa ccgatgttta ttactaacag acgtcttaga 840 gatgatcgtc tttgcgagtc tattgtttgg ttttacagag ctgttatctt ctttatatgt 900 960 actgagatgc tagatacttc acttccattt tgtaggagcc agatcctgca cttgggaatg 1020 gtggactcgg gagacttgcc tcgtgttttt tggattccat ggcaactttg aattatccgg 1080 cttggggtta tggacttaga tacaagtatg gcttgttcaa acagagaatt acaaaagatg gacaggagga agctgcagaa gattggcttg aggtcttatt ctcttattct tttctcatac 1140 1200 agcgtttgct attgaacagt atttcctaat ttgtactctc ttgtagcaat gctgagcagt ggacatgttt attggcttac ctgtttcttt cagctaagca atccttggga aatagtcaga 1260 1320 aatgatgtct catatcctat taagttctat gggaaagtgg tttttggatc agatggtaag aaacggtgga ttggtggaga agacattgtt gctgttgctt atgatgttcc tatacctggt 1380 1440 tataaaacta agacaactat caatctgcgg ctctggtcaa caaaagctcc ttccgaagat tttgatttat cttcatataa ctctgggaag catactgagg cagcagaagc tctattcaac 1500 gctgaaaagg tttgtatctt cattaagttt catttaaagt tgctttcaca attttgtttt 1560 1620 ttcgaccatg atctatttac aagatccttc tagtaattgg aatagtgcat atatctttaa aattgagtga gaaccagcag aaatgaatat gttatcacag agagattagt cttgcgtcac 1680

ttgtgcttgt	ttatataacg	agcttttgat	gtgtatatac	tgaaaagtgg	ttgttttctt	1740
cccttccctc	ctgatggaat	tagatttgct	tcgtgcttta	ccccggagat	gagtcaactg	1800
aaggaaaggc	tcttcgtctg	aagcaacaat	acactctgtg	ctcagcctcg	ctacaagata	1860
tcgtagcacg	ttttgagaca	aggtctggag	gaaacgtcaa	ctgggaagaa	tttccagaga	1920
aggttgcagt	gcagatgaat	gacactcacc	ctaccctatg	cattcctgag	ctaatgagga	1980
ttctaatgga	tttaaaagga	ctaagctggg	aagacgcttg	gaaaatcaca	caaaggtact	2040
ggcaggatat	atgccaacgt	aaaaatgagg	gcaatcgatt	gtactgaatc	ggattttcaa	2100
gggtctggcc	aaaactattc	cgtgggcacc	tggcacacgc	cctggagtcc	ggcccgtttc	2160
cagttgaggg	ttgtctacgc	ttagatgaga	aggaaagttg	tccaagacga	atcccagtgt	2220
cctattacca	atagccgacg	gtatcgataa	gcttgatgta	catggtcgat	aagaaaaggc	2280
aatttgtaga	tgttaattcc	catcttgaaa	gaaatatagt	ttaaatattt	attgataaaa	2340
taacaagtca	ggtattatag	tccaagcaaa	aacataaatt	tattgatgca	agtttaaatt	2400
cagaaatatt	tcaataactg	attatatcag	ctggtacatt	gccgtagatg	aaagactgag	2460
tgcgatatta	tgtgtaatac	ataaattgat	gatatagcta	gcttagctca	tcgggggatc	2520
catcggatcc	tagacgcgtg	agatcagatc	tcggtgacgg	gcaggaccgg	acggggcggt	2580
accggcaggc	tgaagtccag	ctgccagaaa	cccacgtcat	gccagttccc	gtgcttgaag	2640
ccggccgccc	gcagcatgcc	gcggggggca	tatccgagcg	cctcgtgcat	gcgcacgctc	2700
gggtcgttgg	gcagcccgat	gacagcgacc	acgctcttga	agccctgtgc	ctccagggac	2760
ttcagcaggt	gggtgtagag	cgtggagccc	agtcccgtcc	gctggtggcg	gggggagacg	2820
tacacggtcg	actcggccgt	ccagtcgtag	gcgttgcgtg	ccttccaggg	gcccgcgtag	2880
gcgatgccgg	cgacctcgcc	gtccacctcg	gcgacgagcc	agggatagcg	ctcccgcaga	2940
cggacgaggt	cgtccgtcca	ctcctgcggt	tcctgcggct	cggtacggaa	gttgaccgtg	3000
cttgtctcga	tgtagtggtt	gacgatggtg	cagaccgccg	gcatgtccgc	ctcggtggca	3060
cggcggatgt	cggccgggcg	tcgttctggg	ctcatggatc	cgatttgtag	agagagactg	3120
gtgatttcag	cgtgtcctct	ccaaatgaaa	tgaacttcct	tatatagagg	aagggtcttg	3180
cgaaggatag	tgggattgtg	cgtcatccct	tacgtcagtg	gagatatcac	atcaatccac	3240
ttgctttgaa	gacgtggttg	gaacgtcttc	tttttccacg	atgctcctcg	tgggtggggg	3300
tccatctttg	ggaccactgt	cggcagaggc	atcttgaacg	atagcctttc	ctttatcgca	3360
atgatggcat	ttgtaggtgc	caccttcctt	ttctactgtc	cttttgatga	agtgacagat	3420
agctgggcaa	tggaatccga	ggaggtttcc	cgatattacc	ctttgttgaa	aagtctcaat	3480

					•		
	agccctttgg	tcttctgaga	ctgtatcttt	gatattcttg	gagtagacga	gagtgtcgtg	3540
	ctccaccatg	ttgacgaaga	ttttcttctt	gtcattgagt	cgtaaaagac	tctgtatgaa	3600
	ctgttcgcca	gtcttcacgg	cgagttctgt	tagatcctcg	atctgaattt	ttgactccat	3660
	ggcctttgat	tcagtaggaa	ctactttctt	agagactcca	atctctatta	cttgccttgg	3720
	tttatgaagc	aagccttgaa	tcgtccatac	tggaatagta	cttctgatct	tgagaaatat	3780
	atctttctct	gtgttcttga	tgcagttagt	cctgaatctt	ttgactgcat	ctttaacctt	3840
	cttgggaagg	tatttgatct	cctggagatt	attactcggg	tagatcgtct	tgatgagacc	3900
	tgccgcgtag	gcctctctaa	ccatctgtgg	gtcagcattc	tttctgaaat	tgaagaggct	3960
	aatcttctca	ttatcggtgg	tgaacatggt	atcgtcacct	tctccgtcga	actttcttcc	4020
	tagatcgtag	agatagagaa	agtcgtccat	ggtgatctcc	ggggcaaagg	agatccgtca	4080
	attccgattc	attaatgcag	ctggcacgac	aggtttcccg	actggaaagc	gggcagtgag	4140
	cgcaacgcaa	ttaatgtgag	ttagctcact	cattaggcac	cccaggcttt	acactttatg	4200
	cttccggctc	gtataatgtg	tggaattgtg	agcggataac	aatttcacac	aggaaacagg	4260
	atcatgagcg	gagaattaag	ggagtcacgt	tatgaccccc	gccgatgacg	cgggacaagc	4320
	cgttttacgt	ttggaactga	cagaaccgca	acgattgaag	gagccactca	gccgcgggtt	4380
	tctggagttt	aatgagctaa	gcacatacgt	cagaaaccat	tattgcgcgt	tcaaaagtcg	4440
	cctaaggtca	ctatcagcta	gcaaatattt	cttgtcaaaa	atgctccact	gacgttccat	4500
	aaattcccct	cggtatccaa	ttagagtctc	atattcactc	tcaatcaaag	atccggccca	4560
	tgatcatgtg	gattgaacaa	gatggattgc	acgcaggttc	tccggccgct	tgggtggaga	4620
	ggctattcgg	ctatgactgg	gcacaacaga	caatcggctg	ctctgatgcc	gccgtgttcc	4680
	ggctgtcagc	gcaggggcgc	ccggttcttt	ttgtcaagac	cgacctgtcc	ggtgccctga	4740
	atgaactgca	ggacgaggca	gcgcggctat	cgtggctggc	cacgacgggc	gttccttgcg	4800
	cagctgtgct	cgacgttgtc	actgaagcgg	gaagggactg	gctgctattg	ggcgaagtgc	4860
	cggggcagga	tctcctgtca	tctcaccttg	ctcctgccga	gaaagtatcc	atcatggctg	4920
	atgcaatgcg	gcggctgcat	acgcttgatc	cggctacctg	cccattcgac	caccaagcga	4980
	aacatcgcat	cgagcgagca	cgtactcgga	tggaagccgg	tcttgtcgat	caggatgatc	5040
	tggacgaaga	gcatcagggg	ctcgcgccag	ccgaactgtt	cgccaggctc	aaggcgcgca	5100
	tgcccgacgg	cgaggatctc	gtcgtgaccc	atggcgatgc	ctgcttgccg	aatatcatgg	5160
	tggaaaatgg	ccgcttttct	ggattcatcg	actgtggccg	gctgggtgtg	gcggaccgct	5220
٠	atcaggacat	agcgttggct	acccgtgata	ttgctgaaga	gcttggcggc	gaatgggctg	5280
	accgcttcct	cgtgctttac	ggtatcgccg	ctcccgattc	gcagcgcatc	gccttctatc	5340

gccttcttga	cgagttcttc	tgagcgggac	tctggggttc	gaaatgaccg	accaagcgac	5400
gcccaacctg	ccatcacgag	atttcgattc	caccgccgcc	ttctatgaaa	ggttgggctt	5460
cggaatcgtt	ttccgggacg	ccggctggat	gatcctccag	cgcggggatc	tcatgctgga	5520
gttcttcgcc	caccccctgc	tttaatgaga	tatgcgagac	gcctatgatc	gcatgatatt	5580
tgctttcaat	tctgttgtgc	acgttgtaaa	aaacctgagc	atgtgtagct	cagatcctta	5640
ccgccggttt	cggttcattc	taatgaatat	atcacccgtt	actatcgtat	ttttatgaat	5700
aatattctcc	gttcaattta	ctgattgtac	cctactactt	atatgtacaa	tattaaaatg	5760
aaaacaatat	attgtgctga	ataggtttat	agcgacatct	atgatagagc	gccacaataa	5820
caaacaattg	cgttttatta	ttacaaatcc	aattttaaaa	aaagcggcag	aaccggtcaa	5880
acctaaaaga	ctgattacat	aaatcttatt	caaatttcaa	aaggccccag	gggctagtat	5940
ctacgacaca	ccgagcggcg	aactaataac	gttcactgaa	gggaactccg	gttccccgcc	6000
ggcgcgcatg	ggtgagattc	cttgaagttg	agtattggcc	gtccgctcta	ccgaaagtta	6060
cgggcaccat	tcaacccggt	ccagcacggc	ggccgggtaa	ccgacttgct	gccccgagaa	6120
ttatgcagca	tttttttggt	gtatgtgggc	cccaaatgaa	gtgcaggtca	aaccttgaca	6180
gtgacgacaa	atcgttgggc	gggtccaggg	cgaattttgc	gacaacatgt	cgaggctcag	6240
caggggctcg	atcccctcga	tcgaattcga	tctagtaaca	tagatgacac	cgcgcgcgat	6300
aatttatcct	agtttgcgcg	ctatattttg	ttttctatcg	cgtattaaat	gtataattgc	6360
gggactctaa	tcataaaaac	ccatctcata	aataacgtca	tgcattacat	gttaattatt	6420
acatgcttaa	cgtaattcaa	cagaaattat	atgataatca	tcgcaagacc	ggcaacagga	6480
ttcaatctta	agaaacttta	ttgccaaatg	tttgaacgat	cgagctcaat	tccccaccga	6540
ggctgtagcc	gacgatggtg	cgccaggaga	gttgttgatt	cattgtttgc	ctccctgctg	6600
cggtttttca	ccgaagttca	tgccagtcca	gcgtttttgc	agcagaaaag	ccgccgactt	6660
cggtttgcgg	tcgcgagtga	agatcccttt	cttgttaccg	ccaacgcgca	atatgccttg	6720
cgaggtcgca	aaatcggcga	aattccatac	ctgttcaccg	acgacggcgc	tgacgcgatc	6780
aaagacgcgg	tgatacatat	ccagccatgc	acactgatac	tcttcactcc	acatgtcggt	6840
gtacattgag	tgcagcccgg	ctaacgtatc	cacgccgtat	tcggtgatga	taatcggctg	6900
atgcagtttc	tcctgccagg	ccagaagttc	tttttccagt	accttctctg	ccgtttccaa	6960
atcgccgctt	tggacatacc	atccgtaata	acggttcagg	cacagcacat	caaagagatc	7020
gctgatggta	tcggtgtgag	cgtcgcagaa	cattacattg	acgcaggtga	tcggacgcgt	7080
cgggtcgagt	ttacgcgttg	cttccgccag	tggcgaaata	ttcccgtgca	cttgcggacg	7140

ggtatccggt	tcgttggcaa	tactccacat	caccacgctt	gggtggtttt	tgtcacgcgc	7200
tatcagctct	ttaatcgcct	gtaagtgcgc	ttgctgagtt	tccccgttga	ctgcctcttc	7260
gctgtacagt	tctttcggct	tgttgcccgc	ttcgaaacca	atgcctaaag	agaggttaaa	7320
gccgacagca	gcagtttcat	caatcaccac	gatgccatgt	tcatctgccc	agtcgagcat	7380
ctcttcagcg	taagggtaat	gcgaggtacg	gtaggagttg	gccccaatcc	agtccattaa	7440
tgcgtggtcg	tgcaccatca	gcacgttatc	gaatcctttg	ccacgtaagt	ccgcatcttc	7500
atgacgacca	aagccagtaa	agtagaacgg	tttgtggtta	atcaggaact	gttggccctt	7560
cactgccact	gaccggatgc	cgacgcgaag	cgggtagata	tcacactctg	tctggctttt	7620
ggctgtgacg	cacagttcat	agagataacc	ttcacccggt	tgccagaggt	gcggattcac	7680
cacttgcaaa	gtcccgctag	tgccttgtcc	agttgcaacc	acctgttgat	ccgcatcacg	7740
cagttcaacg	ctgacatcac	cattggccac	cacctgccag	tcaacagacg	cgtggttaca	7800
gtcttgcgcg	acatgcgtca	ccacggtgat	atcgtccacc	caggtgttcg	gcgtggtgta	7860
gagcattacg	ctgcgatgga	ttccggcata	gttaaagaaa	tcatggaagt	aagactgctt	7920
tttcttgccg	ttttcgtcgg	taatcaccat	tcccggcggg	atagtctgcc	agttcagttc	7980
gttgttcaca	caaacggtga	tacgtacact	tttcccggca	ataacatacg	gcgtgacatc	8040
ggcttcaaat	ggcgtatagc	cgccctgatg	ctccatcact	tcctgattat	tgacccacac	8100
tttgccgtaa	tgagtgaccg	catcgaaacg	cagcacgata	cgctggcctg	cccaaccttt	8160
cggtataaag	acttcgcgct	gataccagac	gttaaaaatg	actgaactaa	ttgtcgggca	8220
tgctacatat	gtgtctattt	gttcctatat	ttagtctctg	gtgcttgtcc	caaataaaag	8280
atagtttaca	agaatgaaac	ctgcaacgtg	tttctcaaaa	gttaataatt	tttttaggac	8340
tgtggcatac	acaaaccata	cagtcttgcc	tgaggcactg	gagaagtgga	gtttagaact	8400
catggagaaa	ttgcttcctc	gtcatgtgga	gattatcgaa	aagattgatg	aggaggtcat	8460
ccctgaacaa	catatcaaat	gtctcttcta	tttttttcat	atcgggtcta	atttgtactt	8520
tcatgtattg	cagctagttc	gcacaattgt	ttcagagtat	ggcaccgcgg	atcctgactt	8580
acttgaagaa	aaactgaagg	caatgaggat	cttggaaaat	gtcgagttgc	cttctgcctt	8640
tgcagatgtg	atcgtgaagc	cggtgaacaa	accagttact	gcaaaagatg	ctcaaaatgg	8700
cgtgaaaacg	gaacaagaag	aggaaaaaac	tgctggagag	gaagaggaag	acgaagttat	8760
cccagaacca	acagtagaac	ccccaagat	ggtccgtatg	gccaaccttg	ctgttgtggg	8820
tggtcatgct	gtaaatggcg	ttgcagagat	acacagtgaa	atagtgaagc	aggacgtgtt	8880
taatgatttc	gtacaggtaa	acattctaac	tagtgaagca	tgatgctata	aaatgctcta	8940
cagggaagaa	cacaactctc	atcgttcaat	attctatatt	ttttgcagtt	gtggccagaa	9000

aaatttcaga	acaaaacaaa	tggagtaaca	ccaaggcgat	ggattcgttt	ttgcaaccca	9060
		taactggata				9120
aaggttgcgg	aactaagaaa	ggtatgtact	ttatcagatt	caatgttgtt	tcacatgctg	9180
ttatctttat	tgggcgacat	tggttatcat	tgtttggtct	ttctccagtt	tgcagataat	9240
gaagatctcc	aatctgagtg	gagggcagca	aagaagaaga	acaagttgaa	ggttgtatca	9300
cttatcaagg	aaagaactgg	atatactgtc	agccccgatg	caatgttcga	cattcaggtc	9360
agttccaatg	gatcttggtt	acttttagat	tgatgagttg	tttgcttggg	tttttcggtt	9420
tgagaagtcc	tttacgcaac	tctgagtagc	ttatgtagat	tcttttcttt	ttgcattgaa	9480
aactttttgc	agatcaagcg	tatacatgag	tacaagcgac	aactgctaaa	tatcttggga	9540
attgtttacc	gctacaaaaa	gatgaaggaa	atgagtgcta	gtgagagaga	gaaagcattt	9600
gttccaagag	tttgcatatt	tgggggaaaa	gcatttgcca	catatgtgca	agctaagaga	9660
attgttaaat	ttatcacaga	tgttgcgtct	acaattaacc	atgatccaga	aataggtgac	9720
ctccttaagg	tatatatcta	cttacgttct	tgtattagtc	gtattctcaa	gcgtataacg	9780
gaaaatctgc	aataattatc	tggtttttgc	atctgtggag	attggcactt	actaattaga	9840
agtgttaact	aaacatgtag	gttatctttg	ttcctgatta	caatgtcagt	gttgctgaat	9900
tgctcattcc	agcaagtgag	ctttctcagc	acatcaggta	aaaacttctt	tggcttagtc	9960
acattatagt	ttttggtcac	aactccatga	agttaaaata	ttgaaattga	gataaccggt	10020
aaaccatgaa	ctggactagt	ttctcttttt	ttcataagaa	ctttagaaac	aaatcctgac	10080
acaaggaaca	atatgtttcg	gttacattta	tgaaaggtta	taatcaatgg	cactcatact	10140
ttttgctgga	gactaagagt	ttctctctgc	agtactgctg	ggatggaagc	tagtgggaca	10200
agcaacatga	aattttcgat	gaacggttgc	gttttgattg	gaaccttgga	tggggcgaat	10260
gtcgagatta	gagaagaagt	tggagaagaa	aatttcttcc	tctttggtgc	caaagctgat	10320
cagattgtga	acctcaggaa	ggagagagca	gagggaaagg	tatatactat	ttgaagagtt	10380
aaccttacca	tgcttctgtt	ttagcatcaa	caagaatttg	atttttgacc	tggctcttgg	10440
cattccagtt	tgttcccgat	cctacttttg	aagaagtcaa	gaagttcgtt	ggaagcggcg	10500
tctttggctc	aaatagctat	gatgaactaa	tcggctcttt	ggaaggaaac	gaaggctttg	10560
gacgagcgga	ttacttccta	gttggcaaag	actttcctag	ttacatcgaa	tgccaagaaa	10620
aagtcgacga	ggcataccga	gaccagaaag	taagtactaa	tgcattttct	ttgaacatca	10680
agctaataat	gttgactaaa	atatgaaact	tactcaaata	tcaaaccttg	aaattgctgt	10740
taaatgatta	cagagatgga	cgagaatgtc	aataatgaac	acagcaggtt	cattcaagtt	10800

WO 2005/097999		PCT/FR2005/000753
	10/10	

tagcagtgac	cggacgatcc	acgaatacgc	caaagacata	tggaatatta	agcaagtgga	10860
acttccatga						10870

INTERNATIONAL SEARCH REPORT

nal Application No Intern PCT/FR2005/000753

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/29 C12N15/82 A01H5/00 C12N5/10

C12N5/10

C12N15/54 C12N5/04

C12N9/10

A01H5/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N IPC 7

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, BIOSIS

SMITH ALISON M ET AL: "Starch mobilization in leaves." January 2003 (2003-01), JOURNAL OF EXPERIMENTAL BOTANY, VOL. 54, NR. 382, PAGE(S) 577-583, XP002289668 ISSN: 0022-0957 Page 580, paragraphe intitulé "Starch phosphorylase".	1-9
WO 98/40503 A (KOSSMANN JENS; FROHBERG CLAUS (DE); PLANTTEC BIOTECHNOLOGIE GMBH (DE)) 17 September 1998 (1998-09-17) cited in the application page 14, line 30 - page 17, line 24; figure 1; example 3	1-9
	January 2003 (2003-01), JOURNAL OF EXPERIMENTAL BOTANY, VOL. 54, NR. 382, PAGE(S) 577-583, XP002289668 ISSN: 0022-0957 Page 580, paragraphe intitulé "Starch phosphorylase" WO 98/40503 A (KOSSMANN JENS; FROHBERG CLAUS (DE); PLANTTEC BIOTECHNOLOGIE GMBH (DE)) 17 September 1998 (1998-09-17) cited in the application page 14, line 30 - page 17, line 24;

X Further documents are listed in the continuation of box C.	X Patent family members are listed in annex.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed 	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family
Date of the actual completion of the international search 29 July 2005	Date of mailing of the international search report 05/08/2005
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31–70) 340–2040, Tx. 31 651 epo nl, Fax: (+31–70) 340–3016	Authorized officer Loubradou, G

INTERNATIONAL SEARCH REPORT

	Citation of document, with indication, where appropriate of the relevant pages 300	Delay-ratio states Ma
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	SONNEWALD U ET AL: "A SECOND L-TYPE ISOZYME OF POTATO GLUCAN PHOSPHORYLASE: CLONING, ANTISENSE INHIBITION AND EXPRESSION ANALYSIS" PLANT MOLECULAR BIOLOGY, NIJHOFF PUBLISHERS, DORDRECHT, NL, vol. 27, 1995, pages 567-576, XP002044528 ISSN: 0167-4412 cited in the application abstract	_5-7
X	WO 98/35051 A (LYNCH DERMOT ROBORG; ARMSTRONG JOHN DAVID (CA); CANADA AGRICULTURE (C) 13 August 1998 (1998-08-13) abstract; claim 1; example 1	5-7
X	DUWENIG E ET AL: "Antisense inhibition of cytosolic phosphorylase in potato plant (Solanum tuberosum L.) affects tuber sprouting and flower formation with only little impact on carbohydrate metabolism" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, vol. 12, no. 2, 1 August 1997 (1997-08-01), pages 323-333, XP002093023 ISSN: 0960-7412 abstract	5-7
Χ	WO 97/44471 A (MAX PLANCK GESELLSCHAFT; KOSSMANN JENS (DE); DUWENIG ELKE (DE); STEUP) 27 November 1997 (1997-11-27) abstract; examples 1-3	5-7
X .	DUWENIG E ET AL: "THE ROLE OF STARCH PHOSPHORYLASE IN POTATO: THE FUNCTIONAL ANALYSIS OF AN ENIGMATIC ENZYME" PLANT PHYSIOLOGY, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, US, vol. 111, no. 2, 1 June 1996 (1996-06-01), page 48, XP002070972 ISSN: 0032-0889 the whole document	5-7
Α	WO 01/00833 A (AGRONOMIQUE INST NAT RECH; PELLETIER GEORGES (FR); HOFFMANN BEATE (FR) 4 January 2001 (2001-01-04) abstract; figure 9	8,9
Α	US 2003/135883 A1 (SINGLETARY GEORGE W ET AL) 17 July 2003 (2003-07-17) page 2 '0019! et '0021!, et page 3 '0052! et '0053!	

INTERNATIONAL SEARCH REPORT

importantion on patent family members

Internal Application No
PCT/FR2005/000753

Patent document cited in search report		Publication date		Patent family member(s)	Publication date
WO 9840503	A	17-09-1998	DE AU CA WO EP JP US	19709775 A1 730569 B2 6727298 A 2283632 A1 9840503 A1 0972059 A1 2001514514 T 2002133849 A1 6353154 B1	17-09-1998 08-03-2001 29-09-1998 17-09-1998 17-09-1998 19-01-2000 11-09-2001 19-09-2002 05-03-2002
WO 9835051	A	13-08-1998	US AU AU BR CA WO CN EP HU JP NZ PL	5998701 A 724942 B2 5849398 A 9807214 A 2275885 A1 9835051 A1 1246894 A 1113143 C 1009839 A1 0000542 A2 2001511007 T 336766 A 334962 A1	07-12-1999 05-10-2000 26-08-1998 25-04-2000 13-08-1998 13-08-1998 08-03-2000 02-07-2003 21-06-2000 28-06-2000 07-08-2001 25-08-2000 27-03-2000
WO 9744471	A	27-11-1997	DE AU WO - EP	19619917 A1 2899297 A 9744471 A2 0906438 A2	20-11-1997 09-12-1997 27-11-1997 07-04-1999
WO 0100833	A	04-01-2001	FR AT AU CA DE EP WO US	2795424 A1 286129 T 780425 B2 5991000 A 2377521 A1 60017139 D1 1196581 A1 0100833 A1 2003106105 A1	29-12-2000 15-01-2005 17-03-2005 31-01-2001 04-01-2001 03-02-2005 17-04-2002 04-01-2001 05-06-2003
US 2003135883	 -	17-07-2003	 US	6423886 B1	23-07-2002

Internationale No Dema PCT/FR2005/000753

A. CLASSEMENT DE L'OBJET DE LA DEMANDE CIB 7 C12N15/29 C12N15/82

A01H5/00

C12N5/10

C12N15/54 C12N5/04

C12N9/10

A01H5/10

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement) CIB 7 C12N

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés) EPO-Internal, WPI Data, BIOSIS

C. DOCUMENTS CONSIDERES COMME PERTINENTS no. des revendications visées Catégorie ° Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents SMITH ALISON M ET AL: "Starch mobilization 1 - 9in leaves." janvier 2003 (2003-01), JOURNAL OF EXPERIMENTAL BOTANY, VOL. 54, NR. 382, PAGE(S) 577-583 , XP002289668 ISSN: 0022-0957 Page 580, paragraphe intitulé "Starch phosphorylase" WO 98/40503 A (KOSSMANN JENS; FROHBERG 1-9CLAUS (DE); PLANTTEC BIOTECHNOLOGIE GMBH (DE)) 17 septembre 1998 (1998-09-17) cité dans la demande page 14, ligne 30 - page 17, ligne 24; figure 1; exemple 3

	· · · · · · · · · · · · · · · · · · ·	
 Catégories spéc 	iales de documents	s cités:

- "A" document définissant l'état général de la technique, non considéré comme particulièrement pertinent
- "E" document antérieur, mais publié à la date de dépôt international ou après cette date

Voir la suite du cadre C pour la fin de la liste des documents

- *L* document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens
- document publié avant la date de dépôt international, mais postérieurement à la date de priorité revendiquée
- "T" document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention

Les documents de familles de brevets sont indiqués en annexe

- "X" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "Y" document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinaison étant évidente pour une personne du métier
- "&" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée Date d'expédition du présent rapport de recherche internationale

29 juillet 2005 Nom et adresse postale de l'administration chargée de la recherche internationale

Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk

Loubradou, G

Fonctionnaire autorisé

05/08/2005

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Formulaire PCT/ISA/210 (deuxième feuille) (Janvier 2004)

PCT/FR2005/000753

Cadı	re N° I	Séquence(s) de nucléotides ou d'acides aminés (suite du point 1.b de la première feuille)
1.	En ce qui la recher	i concerne la ou les séquences de nucléotides ou d'acides aminés divulguées dans la demande internationale, le cas échéant, che internationale a été effectuée sur la base des éléments suivants:
	a. Nat	ure de l'élément
	X	un listage de la ou des séquences
		un ou des tableaux relatifs au listage de la ou des séquences
	b. Typ	e de support
	X	sur papier sous forme écrite
	X	sur support électronique sous forme déchiffrable par ordinateur
	c. Mor	ment du dépôt ou de la remise
	X	
	X	
	<u></u>	remis ultérieurement à la présente administration aux fins de la recherche
2.	dép son	plus, lorsque plus d'une version ou d'une copie d'un listage des séquences ou d'un ou plusieurs tableaux y relatifs a été osée, la déclarations requises selon lesquelles les informations fournies ultérieurement ou au titre de copies supplémentaires tidentiques à celles initialement fournies et ne vont pas au-delà de la divulgation faite dans la demande internationale telle déposée initialement, selon le cas, ont été remises.
3.	Commen	taire complémentaires:
		~·
	-	
		·
		The stope of
		-
		· •••
i		

PCT/FR2005/000753

	DCUMENTS CONSIDERES COMME PERTINENTS Identification des documents cités avec le cas éabéant l'indication des nassages partinents	no dos royandiasticos de
Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
X	SONNEWALD U ET AL: "A SECOND L-TYPE ISOZYME OF POTATO GLUCAN PHOSPHORYLASE: CLONING, ANTISENSE INHIBITION AND EXPRESSION ANALYSIS" PLANT MOLECULAR BIOLOGY, NIJHOFF PUBLISHERS, DORDRECHT, NL, vol. 27, 1995, pages 567-576, XP002044528 ISSN: 0167-4412 cité dans la demande abrégé	5-7
X	WO 98/35051 A (LYNCH DERMOT ROBORG; ARMSTRONG JOHN DAVID (CA); CANADA AGRICULTURE (C) 13 août 1998 (1998-08-13) abrégé; revendication 1; exemple 1	5-7
X	DUWENIG E ET AL: "Antisense inhibition of cytosolic phosphorylase in potato plant (Solanum tuberosum L.) affects tuber sprouting and flower formation with only little impact on carbohydrate metabolism" PLANT JOURNAL, BLACKWELL SCIENTIFIC PUBLICATIONS, OXFORD, GB, vol. 12, no. 2, 1 août 1997 (1997-08-01), pages 323-333, XP002093023 ISSN: 0960-7412 abrégé	5-7
X	WO 97/44471 A (MAX PLANCK GESELLSCHAFT; KOSSMANN JENS (DE); DUWENIG ELKE (DE); STEUP) 27 novembre 1997 (1997-11-27) abrégé; exemples 1-3	5-7
X	DUWENIG E ET AL: "THE ROLE OF STARCH PHOSPHORYLASE IN POTATO: THE FUNCTIONAL ANALYSIS OF AN ENIGMATIC ENZYME" PLANT PHYSIOLOGY, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, US, vol. 111, no. 2, 1 juin 1996 (1996-06-01), page 48, XP002070972 ISSN:-0032-0889 le document en entier	5-7
A	WO 01/00833 A (AGRONOMIQUE INST NAT RECH; PELLETIER GEORGES (FR); HOFFMANN BEATE (FR) 4 janvier 2001 (2001-01-04) abrégé; figure 9	8,9
A	US 2003/135883 A1 (SINGLETARY GEORGE W ET AL) 17 juillet 2003 (2003-07-17) page 2 '0019! et '0021!, et page 3 '0052! et '0053!	

Renseignements relatifs

embres de familles de brevets

Dema Internationale No PCT/FR2005/000753

Document brevet cité au rapport de recherche		Date de publication		Membre(s) de la famille de brevet(s)		Date de publication
WO 9840503	A	17-09-1998	DE AU CA WO EP JP US US	19709775 A 730569 E 6727298 A 2283632 A 9840503 A 0972059 A 2001514514 T 2002133849 A 6353154 E	32 A A1 A1 A1 T	17-09-1998 08-03-2001 29-09-1998 17-09-1998 17-09-1998 19-01-2000 11-09-2001 19-09-2002 05-03-2002
WO 9835051	A	13-08-1998	US AU BR CO CN EP HU JP NZ PL	5998701 A 724942 B 5849398 A 9807214 A 2275885 A 9835051 A 1246894 A 1113143 C 1009839 A 0000542 A 2001511007 T 336766 A 334962 A	 A B2 A A A A A A A A A A A A A A A A A	07-12-1999 05-10-2000 26-08-1998 25-04-2000 13-08-1998 13-08-1998 08-03-2000 02-07-2003 21-06-2000 28-06-2000 07-08-2001 25-08-2000 27-03-2000
WO 9744471	A	27-11-1997	DE AU WO EP	19619917 A 2899297 A 9744471 A 0906438 A	4 42	20-11-1997 09-12-1997 27-11-1997 07-04-1999
WO 0100833	Α	04-01-2001	FR AU AU CA DE EP WO US	2795424 A 286129 T 780425 B 5991000 A 2377521 A 60017139 D 1196581 A 0100833 A 2003106105 A	T 32 A A1 D1 A1 A1	29-12-2000 15-01-2005 17-03-2005 31-01-2001 04-01-2001 03-02-2005 17-04-2002 04-01-2001 05-06-2003
US 2003135883	A1	17-07-2003	US	6423886 B	 31	23-07-2002