Лабораторная работа 1.3.3 ИЗМЕРЕНИЕ ВЯЗКОСТИ ВОЗДУХА ПО ТЕЧЕНИЮ В ТОНКИХ

Тимонин Андрей Б01-208

ТРУБКАХ

Содержание

1) Аннотация	2
2) Теоретические сведения	2
3) Используемое оборудование	3
4) Результаты измерений и обработка данных	5
5) Заключение	7

1) Аннотация

Цель работы: экспериментально исследовать свойства течения газов по тонким трубкам при различных числах Рейнольдса; выявить область применимости закона Пуазейля и с его помощью определить коэффициент вязкости воздуха.

В работе используются: система подачи воздуха (компрессор, поводящие трубки); газовый счетчик барабанного типа; спиртовой микроманометр с регулируемым наклоном; набор трубок различного диаметра с выходами для подсоединения микроманометра; секундомер.

2) Теоретические сведения

Работа посвящена изучению течения воздуха по прямой трубе круглого сечения. Движение жидкости или газа* вызывается перепадом внешнего давления на концах ΔPP трубы, чему в свою очередь препятствуют силы вязкого («внутреннего») трения, действующие между соседними слоями жидкости, а также со стороны стенок трубы.

Сила вязкого трения как в жидкостях, так и в газах описывается законом Ньютона: касательное напряжение между слоями пропорционально перепаду скорости течения в направлении, поперечном к потоку. В частности, если жидкость течёт вдоль оси xx, а скорость течения vvxx(yy) зависит от координаты yy, в каждом слое возникает направленное по xx касательное напряжение

$$\tau_{xy} = -\eta \frac{\partial v_x}{\partial y}.$$

Величину $\eta\eta$ называют коэффициентом динамической вязкости (или просто вязкостью) среды.

Объёмным расходом (или просто расходом) QQ называют объём жидкости, протекающий через сечение трубы в единицу времени. Величина QQ зависит от перепада давления ΔPP , а также от свойств газа (плотности $\rho\rho$ и вязкости $\eta\eta$) и от геометрических размеров (радиуса трубы RR и её длины LL). Основная задача данной работы — исследовать эту зависимость экспериментально.

Характер течения в трубе может быть ламинарным либо турбулентным. При ламинарном течении поле скоростей $\mathbf{u}(\mathbf{r})$ образует набор непрерывных линий тока, а слои жидкости не перемешиваются между собой. Турбулентное течение характеризуется образованием вихрей и активным перемешиванием слоев, при этом даже в стационарном течении в каждой точке имеют место существенные флуктуации скорости течения и давления.

Характер течения определяется безразмерным параметром задачи — числом Рейнольдса:

$$Re = \frac{\rho ua}{\eta},$$

где ρ — плотность среды, ρ — характерная скорость потока, $\eta\eta$ — коэффициент вязкости среды, ρ — характерный размер системы (размер, на котором существенно меняется скорость течения). Это число имеет смысл отношения кинетической энергии движения элемента объёма жидкости к потерям энергии из-за трения в нём $\mathrm{Re} \sim K/A\mathrm{Tp}$. При достаточно малых Re в потоке доминируют вязкие силы трения и течение, как правило, является ламинарным. С ростом числа Рейнольдса может быть достигнуто его критическое значение $\mathrm{Re}_{\mathrm{kp}}$, при котором характер течения сменяется с ламинарного на турбулентный. Из опыта известно, что переход к турбулентному течению по трубкам круглого сечения наблюдается при $\mathrm{Re}_{\mathrm{kp}} \approx 10^3$.

3) Используемое оборудование

Прибор	Цена деления	Погрешность

Схема установки

Параметры установки

Рис. 2: Подробная схема микроманометра

!Параметр установки L*0.2*9,80665 Па!

Газовый счётчик. В работе используется газовый счётчик барабанного типа, позволяющий измерять объём газа ΔV , прошедшего через систему. Измеряя время Δt при помощи секундомера, можно вычислить средний объёмный расход газа $Q = \Delta V/\Delta t$ (для получения массового расхода [кг/с] результат необходимо домножить на плотность газа ρ).

Работа счётчика основана на принципе вытеснения: на цилиндрической ёмкости жёстко укреплены лёгкие чаши (см. Рис. 6, где для упрощения изображены только две чаши), в которые поочередно поступает воздух из входной трубки расходомера. Когда чаша наполняется, она всплывает и её место занимает следующая и т.д. Вращение оси предаётся на счётно-суммирующее устройство.

Для корректной работы счётчика он должен быть заполнен водой и установлен горизонтально по уровню (подробнее см. техническое описание установки).

Рис. 6. Принцип работы барабанного газосчётчика

4) Результаты измерений и обработка данных

, ,	 	, ,						
Задание 7, пункт а								
Nº		1	2	3	4	5	6	7
Время расхода 1литра/с		25,42	18,98	15,17	12,15	10,82	9,8	9
Даление в микроманометр		30	40	50	60	70	80	105

Построим график зависимости давления от времени расхода 1 литра

Коэффициент наклона графика равен $k=1830,1~\Pi a*c/m^3$

Попробуем найти вязкость воздуха по формуле:

$$\eta = \frac{\pi r^4 k}{8l}$$

Получаем вязкость = $0.0000156 \, \text{Па} * \text{с}$.

Из графика видно, что режим переходит в турбулентный при Q = $90 * 10^{-6} \text{ m}^3/\text{c}$

Отсюда найдем число Рейнольдса по формуле

$$Re = \frac{vr\rho}{\eta} = \frac{Q\rho}{\pi r\eta}$$

Re = 1020 — что является достаточно точным значением Re критического, так как при критическом значение в течении начнутся переходные процессы.

Задание 7, пункт б									
Nº	1	2	3	4	5	6	7	8	9
Время расхода 1литра/с	7,95	7,58	7,54	7,3		6,81	6,4	6,23	5,95
Даление в микроманометря	160	170	180	190	205	217	240	260	280

Проделаем тоже самое для трубки в турбулентном режиме

Здесь уже угловой коэффициент равен $k = 5537~\Pi a * c/ m^3$

Отсюда снова найдем вязкость по формуле Пуазйеля:

$$\eta = \frac{\pi r^4 k}{8l}$$

Вязкость = $0.000047 \; \Pi a * c$

Найдем число Рейнольдса:

$$Re = \frac{vr\rho}{\eta} = \frac{Q\rho}{\pi r\eta}$$

Отсюда получаем Re = 2941 - это число и соответствует турбулентному режиму в трубке манометра. Значит граница (Re критическое) была определена нами правильно

Аналогические вычисления для трубки большего диаметра:

 $k = 2895,8 \; \Pi a * c/ M^3$

 $k = 405,88 \, \Pi a * c/ \, M^3$

!Тут чувствительности манометра не хватает на установленной длине! Поэтому и настолько большая погрешность и кучность точек возле крит. Значения.

5) Заключение

При выполнении работы необходимо учитывать точность измерительных приборов, так как их недостаточная чувствительность может привести к появлению больших погрешностей. В работе была экспериментально установлена динамическая вязкость воздуха - 0.0000156 Па * с, что является достаточно точной оценкой.