ABG Interpretation

ABG analysis assesses acid-base status, oxygenation, and ventilation, guiding diagnosis and management in acute settings.

Basics of ABG

pH: 7.35-7.45 (acid-base balance).

PaCO2: 35-45 mmHg (respiratory component, CO2).

HCO3-: 22-26 mEq/L (metabolic component, bicarbonate).

PaO2: 75-100 mmHg (oxygenation).

SaO2: 95-100% (oxygen saturation).

Base Excess (BE): -2 to +2 mEq/L (metabolic derangement).

Anion Gap (AG): 8-12 mEq/L (calculated as Na+ - [Cl- + HCO3-]).

Normal ABG Values Table

Parameter	Normal Range	Notes	
рH	7.35-7.45	<7.35 = Acidosis; >7.45 = Alkalosis.	
PaCO2	35-45 mmHg	>45 = Respiratory acidosis; <35 = Respiratory alkalosis.	
HC03-	22-26 mEq/L	<22 = Metabolic acidosis; >26 = Metabolic alkalosis.	
Pa02	75-100 mmHg	<60 = Hypoxemia; adjust for age.	
Sa02	95-100%	<90% = Desaturation.	
Anion Gap	8-12 mEq/L	>12 = AG acidosis (e.g., DKA, lactate).	

Stepwise ABG Interpretation

1. Determine pH:

pH $< 7.35 \rightarrow$ Acidosis.

pH >7.45 \rightarrow Alkalosis.

pH 7.35-7.45 \rightarrow Normal or compensated.

2. Identify Primary Disorder:

Respiratory: PaCO2 drives pH (\uparrow PaCO2 $\rightarrow \downarrow$ pH, acidosis; \downarrow PaCO2 $\rightarrow \uparrow$ pH, alkalosis).

Metabolic: HCO3- drives pH (\downarrow HCO3- $\rightarrow \downarrow$ pH, acidosis; \uparrow HCO3- $\rightarrow \uparrow$ pH, alkalosis).

3. Check Compensation:

Respiratory Acidosis: HCO3- 1 (1 mEq/L per 10 mmHg PaCO2 1, chronic).

Respiratory Alkalosis: HCO3- ↓ (2 mEq/L per 10 mmHg PaCO2 ↓, acute).

Metabolic Acidosis: PaCO2 ↓, use Winter's Formula (see detailed explanation below).

Metabolic Alkalosis: PaCO2 ↑ (0.7 mmHg per 1 mEq/L HCO3- ↑).

4. Calculate Anion Gap (AG):

Formula: AG = Na + - (Cl - + HCO3 -).

Normal: 8-12 mEq/L.

AG >12 → Anion gap metabolic acidosis (AGMA).

 $AG \le 12 \rightarrow Non-anion gap metabolic acidosis (NAGMA).$

- **5.** <u>Assess Oxygenation:</u> PaO2 <60 mmHg → Hypoxemia; SaO2 <90% → Desaturation.
- **6. Look for Mixed Disorders:** If compensation doesn't match, suspect secondary disorder (e.g., COPD + DKA).

Winter's Formula: Detailed Explanation

What It Is:

Winter's formula (PaCO2 = $1.5 \times HCO3$ - + 8 ± 2) estimates the expected PaCO2 in primary metabolic acidosis, reflecting respiratory compensation (hyperventilation to "blow o" CO2). It helps confirm if the respiratory response is appropriate or if a secondary disorder exists.

When to Use It:

Use in primary metabolic acidosis (pH <7.35, HCO3- <22 mEq/L) to check respiratory compensation.

Use to identify mixed disorders: If measured PaCO2 doesn't match the expected PaCO2, a second disorder (e.g., respiratory acidosis or alkalosis) is present.

Example scenarios: Diabetic ketoacidosis (DKA), lactic acidosis, diarrhea.

How to Use It:

- 1. Confirm primary metabolic acidosis: pH <7.35, HCO3- <22 mEq/L.
- 2. Measure HCO3- from ABG (e.g., HCO3- = 15 mEg/L).
- 3. Calculate expected PaCO2:

$$PaCO2 = (1.5 \times HCO3-) + 8 \pm 2.$$

Example: $HCO3- = 15 \rightarrow PaCO2 = (1.5 \times 15) + 8 = 22.5 + 8 = 30.5 \pm 2$ (range: 28.5-32.5 mmHq).

4. Compare with measured PaCO2:

Matches range (e.g., PaCO2 32 mmHg) → Appropriate compensation.

Too high (e.g., PaCO2 40 mmHg) \rightarrow Secondary respiratory acidosis (e.g., hypoventilation).

Too low (e.g., PaCO2 20 mmHg) \rightarrow Secondary respiratory alkalosis (e.g., hyperventilation).

5. Interpret: Appropriate compensation suggests pure metabolic acidosis; mismatch indicates a mixed disorder.

Acid-Base Disorders Table

Disorder	Primary Change	Compensation	Causes
Respiratory Acidosis	↑ PaCO2	↑ HCO3- (1:10 chronic)	COPD, hypoventilation, opioid overdose.
Respiratory Alkalosis ↓ PaCO2		↓ HCO3- (2:10 acute)	Hyperventilation (anxiety, PE, sepsis).
Metabolic Acidosis	↓ HCO3-	↓ PaCO2 (Winter's: PaCO2 = 1.5 × HCO3- + 8 ± 2)	AG: DKA, lactate, methanol. Non-AG: Diarrhea, RTA.
Metabolic Alkalosis	↑ HCO3-	↑ PaCO2 (0.7:1)	Vomiting, diuretics, NG suction.
Mixed (e.g., COPD + DKA)	Multiple	Partial compensation	COPD (↑ PaCO2) + DKA (↓ HCO3-, ↑ AG).

Metabolic Acidosis: AGMA vs. NAGMA

Туре	AG	Causes	Key Features
AGMA	>12	 - DKA: Diabetic ketoacidosis (ketones). - Lactic Acidosis: Sepsis, shock, cocaine use. - Toxins: Methanol, ethylene glycol. - Renal Failure: Uremia (late). 	Kussmaul breathing, high lactate/ketones, substance use (cocaine).
NAGMA	≤12	 - Diarrhea: Bicarbonate loss. - RTA: Type 1 (distal), Type 2 (proximal). - Alcohol: Early alcoholic ketoacidosis. - IV Fluids: Hyperchloremic (0.9% NS excess). 	Normal AG, urine pH >5.5 in RTA Type 1, history of diarrhea.

Clinical Presentation

Respiratory Acidosis: Dyspnea, confusion (e.g., COPD).

Respiratory Alkalosis: Lightheadedness, tetany (e.g., anxiety).

Metabolic Acidosis: **AGMA:** Kussmaul breathing (e.g., DKA). **NAGMA:** Fatigue (e.g., diarrhea).

Metabolic Alkalosis: Muscle cramps (e.g., vomiting).

Hypoxemia: Cyanosis (PaO2 <60 mmHg).

Substance Use: Opioids (respiratory acidosis), cocaine (AGMA, lactate), alcohol (NAGMA).

Diagnostic Workup

ARC ·

pH, PaCO2, HCO3-, PaO2, SaO2.

Labs:

Electrolytes: Na+, Cl-, HCO3- for AG; K+.

Lactate: 1 in AGMA (sepsis, cocaine).

Glucose, Ketones: AGMA (DKA).

Creatinine: AGMA (renal failure); NAGMA (RTA).

Urine pH: NAGMA (RTA Type 1: pH >5.5).

Urine Drug Screen: Opioids, cocaine, alcohol.

Imaging:

CXR (COPD, PE).

Key Tip:

Use Winter's formula for metabolic acidosis; calculate AG to dierentiate AGMA vs. NAGMA.

Examples

1. Case 1: COPD Exacerbation (Respiratory Acidosis)

ABG: pH 7.30, PaCO2 60 mmHg, HCO3- 29 mEg/L, PaO2 55 mmHg.

Interpretation: Respiratory acidosis (↑ PaCO2, ↓ pH), partial compensation (HCO3- ↑), hypoxemia (PaO2 <60).

Management: BiPAP, bronchodilators, O2 (target SaO2 88-92%).

2. Case 2: DKA (AGMA)

ABG: pH 7.20, PaCO2 25 mmHg, HCO3- 10 mEq/L, PaO2 90 mmHg.

Labs: Na+ 140, Cl- 100, HCO3- 10 (AG = 140 - [100 + 10] = 30), glucose 600 mg/dL, ketones positive.

Interpretation: Metabolic acidosis (↓ HCO3-, ↓ pH). Apply Winter's Formula:

Expected PaCO2 = $(1.5 \times HCO3-) + 8 \pm 2 = (1.5 \times 10) + 8 = 15 + 8 = 23 \pm 2$ (range: 21-25 mmHg).

Measured PaCO2 = 25 mmHg, matches → Appropriate compensation.

 $AG 30 \rightarrow AGMA (DKA)$.

Management: IV fluids, insulin, monitor K+.

3. Case 3: Diarrhea (NAGMA)

ABG: pH 7.28, PaCO2 32 mmHg, HCO3- 15 mEq/L, PaO2 95 mmHg.

Labs: Na+ 138, Cl- 110, HCO3- 15 (AG = 138 - [110 + 15] = 13, adjusted for albumin ~12).

Interpretation: Metabolic acidosis (↓ HCO3-, ↓ pH). Apply Winter's Formula:

Expected PaCO2 = $(1.5 \times HCO3-) + 8 \pm 2 = (1.5 \times 15) + 8 = 22.5 + 8 = 30.5 \pm 2$ (range: 28.5-32.5 mmHg).

Measured PaCO2 = 32 mmHg, matches → Appropriate compensation.

 $AG \sim 12 \rightarrow NAGMA$ (diarrhea).

Management: IV fluids (NS), bicarbonate if pH <7.1, treat diarrhea.

4. Case 4: Anxiety Attack (Respiratory Alkalosis)

ABG: pH 7.50, PaCO2 28 mmHg, HCO3- 22 mEg/L, PaO2 98 mmHg.

Interpretation: Respiratory alkalosis (↓ PaCO2, ↑ pH), acute (HCO3- normal).

Management: Reassurance, breathing exercises.

Treatment

Respiratory Acidosis: Improve ventilation (BiPAP, reverse opioids with naloxone).

Respiratory Alkalosis: Treat cause (e.g., O2 for PE, anxiolytics).

Metabolic Acidosis: AGMA: Treat cause (insulin for DKA, fluids for lactate). **NAGMA:** Bicarbonate if pH <7.1 (e.g., 50-100 mEq IV), address cause (e.g., fluids for diarrhea).

Metabolic Alkalosis: Replace volume (NS for vomiting), stop diuretics.

Hypoxemia: Supplemental O2 (target SaO2 >90%, or 88-92% in COPD).

Key Pearls

pH first, then PaCO2/HCO3- to identify primary disorder.

Winter's formula (PaCO2 = $1.5 \times HCO3 + 8 \pm 2$) for metabolic acidosis compensation.

 $AG = Na + - (Cl - + HCO3 -); > 12 \rightarrow AGMA; \le 12 \rightarrow NAGMA.$

PaO2 <60 mmHg → Hypoxemia; address urgently.

References

UpToDate: "Arterial Blood Gas Interpretation" (2025).

AARC Guidelines: ABG Analysis (2023).

NEJM: "Acid-Base Disorders" (Adrogue, 2009).

Copyright Hospital medicine cheat sheets (medcheatsheets), do not sell or redistribute

Visit: medcheatsheets.com for more education, fun resources and 10 category 1 AAPA CME credit!

© Hospital Medicine Cheat Sheets (medcheatsheets.com). For educational purposes only. Do not redistribute or sell. Neither the author nor the company is liable for realworld implications. AI was used in development