

机器学习作业 #5

XXX:202XX80XXXXXXXX

2023年4月18日

第一题

- a. $p(x_1, x_2, x_3, x_4, x_5, x_6) = p(x_1)p(x_2)p(x_3|x_1, x_2)p(x_5|x_2)p(x_4|x_3)p(x_6|x_3, x_5)$
- b. 随机变量 x_1 和 x_6 之间存在路径 (x_1, x_3, x_6) ,根据 D-Seperation 定理,顶点 x_3 为 head-to-tail 节点,需要出现在已观测集合中, x_1 和 x_6 才独立。也就是说, x_1 和 x_6 不独立,但是在给定 x_3 的条件下,两者独立。
- c. 随机变量 x_1 和 x_5 之间存在路径 (x_1, x_3, x_2, x_5) 和 (x_1, x_3, x_6, x_5) 。由于 x_3 和 x_6 为 head-to-head 节点, x_2 为 tail-to-tail 节点。故 x_1 和 x_5 不独立。若要 x_1 和 x_5 独立,则须满足如下条件之一:
 - $-x_3$ 或其后代节点不在观测的集合 C 中
 - x₆ 或其后代节点不在观测的集合 C 中
 - $-x_2$ 在已观测的集合 C 中
- d. 根据 c. 中的分析知,给定 x_3 的后代节点 x_4 的条件下, x_1 和 x_5 独立。

第二题

- 1 最大团为 AB 和 BC
- 2 联合概率分布函数

记 A,B,C 中的随机变量为 x_A, x_B, x_C 。 $p(A, B, C) = \frac{1}{2} \psi_{AB}(x_A, x_B) \psi_{BC}(x_B, x_C)$

3 证明

$$p(A,C|B) = \frac{p(A,B,C)}{p(B)} = \frac{p(A,B,C)}{\sum_{x_A'} \sum_{x_C'} \frac{1}{Z} \psi_{AB}(x_A',x_B) \psi_{BC}(x_B,x_C')}$$

$$= \frac{\frac{1}{Z} \psi_{AB}(x_A,x_B) \psi_{BC}(x_B,x_C)}{\sum_{x_A'} \sum_{x_C'} \frac{1}{Z} \psi_{AB}(x_A',x_B) \psi_{BC}(x_B,x_C')}$$

$$= \frac{\psi_{AB}(x_A,x_B)}{\sum_{x_A'} \psi_{AB}(x_A',x_B)} \frac{\psi_{BC}(x_B,x_C)}{\sum_{x_C'} \psi_{BC}(x_B,x_C')}$$

$$p(A|B) = \frac{p(A,B)}{p(B)} = \frac{\sum_{x_C'} p(x_A,x_B,x_C')}{\sum_{x_A'} \sum_{x_C'} p(x_A',x_B,x_C')}$$

$$= \frac{\sum_{x_C'} \frac{1}{Z} \psi_{AB}(x_A,x_B) \psi_{BC}(x_B,x_C')}{\sum_{x_A'} \sum_{x_C'} \frac{1}{Z} \psi_{AB}(x_A',x_B) \psi_{BC}(x_B,x_C')}$$

$$= \frac{\psi_{AB}(x_A,x_B) \sum_{x_C'} \psi_{BC}(x_B,x_C')}{\sum_{x_A'} \psi_{AB}(x_A',x_B) \sum_{x_C'} \psi_{BC}(x_B,x_C')}$$

$$= \frac{\psi_{AB}(x_A,x_B)}{\sum_{x_A'} \psi_{AB}(x_A',x_B)}$$

同理可得: $p(C|B) = \frac{\psi_{BC}(x_B, x_C)}{\sum_{x'_C} \psi_{BC}(x_B, x'_C)}$ 故有 p(A, C|B) = p(A|B)p(C|B)