Time Serjes: Theory and Methods

Reter J. Brockwell & Richard A. Davis

April 23, 2020

Contents

1	Stationary Time Series	3
	1.1 Stochastic Processes	3

1 Stationary Time Series

1.1 Stochastic Processes

Definition 1.1. A **stochastic process** is a family of random variables $\{X_t, t \in T\}$ defined on a probability space (Ω, \mathcal{F}, P)

A probability space or a probability triple (Ω, \mathcal{F}, P) consists of three elements

- 1. The sample space Ω an arbitrary non-empty set
- 2. The σ -algebra $\mathcal{F} \in 2^{\Omega}$ called events, s.t.
 - \mathcal{F} contains the sample space: $\Omega \in \mathcal{F}$
 - ullet $\mathcal F$ is closed under complements
 - \bullet \mathcal{F} is closed under countable unions
- 3. The probability measure $P: \mathcal{F} \to [0,1]$ a function on \mathcal{F} s.t.
 - P is countably additive: if $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{F}$ is a countable collection of pairwise disjoint sets, then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$
 - the measure of entire sample space is equal to one

A **random variable** is a measurable function $X:\Omega\to E$ from a set of possible outcomes Ω to a measurable space E. The probability that X takes on a value in a measurable set $S\subseteq E$ is written as

$$P(X \in S) = P(\omega \in \Omega \mid X(\omega) \in S)$$

Remark. In time series analysis, the index set T is a set of time points, very often $\{0, \pm 1, \pm 2, \dots\}, \{1, 2, 3, \dots\}, [0, \infty)$ or $(-\infty, \infty)$

Definition 1.2 (Realizations of a Stochastic Process). The functions $\{X(\omega), \omega \in \Omega\}$ on T are known as the **realizations** or **sample-paths** of the process $\{X_t, t \in T\}$

Example 1.1 (Sinusoid with Random Phase and Amplitude). Let A and Θ be independent random variable with $A \geq 0$ and Θ distributed uniformly on $[0,2\pi)$. A stochastic process $\{X(t),t\in\mathbb{R}\}$ can then be defined in terms of A and Θ for any given $\nu\geq 0$ and r>0 by

$$X_t = r^{-1}A\cos(\nu t + \Theta)$$

or more explicitly

$$X_t(\omega) = r^{-1}A(\omega)\cos(\nu t + \Theta(\omega))$$