Osciladores Sinusoidales

- ☐ Ganancia de lazo y fase
- ☐ Tensión de inicio
- ☐ Decrecimiento del producto AB=1

Circuito de adelanto atraso

$$B = \frac{1}{\sqrt{9 - (X_C/R - R/X_C)^2}}$$
$$\ddot{o} = \arctan \frac{X_C/R - R/X_C}{3}$$

$$B_{max} \Rightarrow X_C = R \Rightarrow f = f_r$$

$$f_r = \frac{1}{2\Pi RC}$$

Oscilador Colpitts

$$f_{\Gamma} = \frac{1}{2\pi\sqrt{LC}}$$

$$C = \frac{C_1C_2}{C_1 + C_2}$$

$$B = \frac{C_1}{C_2}$$

$$A_{\min} = \frac{C_2}{C_1}$$

Oscilador Colpitts

☐ Frecuencia de resonancia

$$f_r = \frac{1}{2 \Phi \sqrt{LC}}$$

□Con carga acoplada de arranque

$$f_r = \frac{1}{2\Pi\sqrt{LC}}\sqrt{\frac{Q^2}{Q^2 + 1}}$$

□Condición de arranque

$$\boldsymbol{B} = \frac{\boldsymbol{C}_1}{\boldsymbol{C}_2}$$

$$B = \frac{C_1}{C_2}$$

$$A_{\min} = \frac{C_2}{C_1}$$

Oscilador Colpitts

Acoplamiento por capacitor

Oscilador Colpitts base común

$$f_{r} = \frac{1}{2\pi\sqrt{LC}}$$

$$C = \frac{C_{1}C_{2}}{C_{1}+C_{2}}$$

$$B = \frac{C_{1}}{C_{1}+C_{2}}$$

$$A_{min} = \frac{C_{1}+C_{2}}{C_{1}}$$

Oscilador Colpitts con fet

Oscilador Hartley

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

$$L = L_1 + L_2$$

$$B = \frac{L_2}{L_1}$$

$$A_{min} = \frac{L_1}{L_2}$$

Oscilador Clapp

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

$$C = \frac{1}{1/C_1 + 1/C_2 + 1/C_3}$$

$$B = \frac{C_1}{C_2}$$

$$A_{min} = \frac{C_2}{C_1}$$

Cristal de cuarzo

$$\frac{1}{2} \operatorname{CRYSTAL}_{SLAB} f = \frac{K}{t}$$

$$f_s = \frac{1}{2\Pi\sqrt{LC_s}}$$

$$C_p = \frac{C_m C_s}{C_m + C_s}$$

$$f_p = \frac{1}{2\Pi\sqrt{LC_p}}$$

El temporizador IC 555 – Operación monoestable

UTP =
$$\frac{2V_{CC}}{3}$$

LTP = $\frac{V_{CC}}{3}$
W = 1.1 RC

Modulación de ancho de pulso con el CI555

Modulación de posición de pulso con el CI555

Lazo de enganche de fase

- Es posible generar una señal de igual frecuencia que la de la entrada.
- Se puede remover ruido de una señal.
- Se puede demodular señales de FM.
- Se utilizan en la forma de CI como el NE565.