Tegundir sannana:

Bein sönnun (direct prood):

Sönnun á $p \to q$ Gerum ráð fyrir p og sýnum að q gildi.

Dæmi:

Sönnum að ef n er oddatala þá er n^2 oddatala.

Notum að allar oddatölur n má rita sem: n = 2k + 1.

G.r.f að n
 sé oddatala svo n = 2k + 1. Þá fæst að:

$$n^2 = (2k+1)^2 = 4k^2 + 4k + 1$$

Skrifa má $4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$.

Látum $k' = 2k^2 + 2k$, svo: $n^2 = 2k' + 1$ sem sannar það sem sanna átti.

Mótskilyrðing (contraposition):

Sönnun á $p \to q$ Notar $p \to q \equiv \neg q \to \neg p$.

Gerum ráð fyrir $\neg q$ og sönnum $\neg p$.

Dæmi:

Sýnum að ef 3n + 2 er oddatala þá er n oddatala.

Látum p := 3n + 2 er oddatala, og q := n er oddatala.

G.r.f $\neg q$, svo: n er slétt tala, svo: n = 2k.

Pá fæst: $3n + 2 = 3 \cdot 2k + 2 = 2(3k + 1)$.

Látum k' = 3n + 1, svo: 3n + 2 = 2(3n + 1) = 2k', sem sýnir að þá sé 3n + 2 slétt tala.

Semsagt $\neg q \rightarrow \neg p \equiv p \rightarrow q$ sem sannar það sem sanna átti.

Sönnun með mótsögn (proof by contradiction):

Sönnun á p Gerum ráð fyrir $\neg p$ og leiðum út mótsögn, svo $p \equiv T$

Dæmi:

Sýnum að $\sqrt{2}$ sé ekki ræð tala.

Munum að ræða tölu má skrifa sem fullstytt brot $\frac{a}{b} \mid a, b \in \mathbb{Z}, \ b \neq 0$

Látum $p := \sqrt{2}$ er ekki ræð tala.

G.r.f $\neg p$ svo $\sqrt{2} = \frac{a}{b}$, þá fæst:

$$2 = \frac{a^2}{b^2} \Rightarrow a^2 = 2b^2$$

Svo: a^2 er slétt tala, svo: a=2k er slétt tala. Þá fæst:

$$(2k)^2 = 2b^2 \Rightarrow 4k^2 = 2b^2 \Rightarrow 2k^2 = b^2$$

Svober slétt tala sem gefur okkur mótsögn svo $\sqrt{2}$ er ekki ræð tala.

Sönnun á $p \to q$ G.r.f. $p \land \neg q$ og leiðum út mótsögn, sem sýnir að: $p \to q$ eða $\neg p \to q$

Sönnun á $p \leftrightarrow q$

Sýnum að $p \rightarrow q$ og $q \rightarrow p$

Sönnun með mótdæmi á $\neg \forall x(p(x))$

Finnum $y \text{ með } \neg p(y)$

Pigeonhole principle

Efnhlutir eru settir í m < n "geymslur", þá þurfa að vera 2 hlutir í a.m.k einni "geymslu".

Prepasannanir

Prepun

Grunnskref

Grunnskrefið felst í því að sanna að regla gildir fyrir einhverja tölu, t.d. n=1

Prepunarskref

Þrepunarforsenda Gerum ráð fyrir að reglan gildir fyrir einhverja tölu n=k. Köllum þetta þrepunarforsendu.

Prepun Sýnum að reglan gildi fyrir k + 1. (Ath! við erum að sanna að reglan gildi fyrir næstu tölu á eftir n = k svo við megum ekki draga þá ályktun að reglan gildri fyrir n = k + 1).

Dæmi um þrepun:

Sönnum að $1+2+3+\cdots+n=\frac{n(n+1)}{2}.$

Grunnskref: $1 = \frac{1 \cdot 2}{2} = \frac{2}{2} = 1$, sýnir að reglan gildir fyrir n = 1.

Prepunarforsenda: Gerum ráð fyrir að $1+2+3+\cdots+k=\frac{k(k+1)}{2}$.

Prepunarskref Sjáum að:

$$1 + 2 + 3 + \dots + k + (k+1) = \frac{k(k+1)}{2} + (k+1) = \frac{k(k+1) + 2(k+1)}{2} = \frac{(k+1)(k+2)}{2}$$

Sem sannar það sem sanna átti.

Sterk brepun

Ólíkt hefðbundnari þrepun: "n=k" \Longrightarrow "n=k+1", er nú gert ráð fyrir að regla gildir fyrir $n\leq k$ og sönnum að regla gildi fyrir n=k+1.

Dæmi:

Sérhverja tölu $n \geq 2$ má skrifa sem margfeldi prímtalna. Sönnum það með strekri þrepun:

Grunnskref: 2 = 2 (2 er prímtala)

Þrepunarskref: G.r.f að reglan gildir fyrir $n \le k$. Þá fáum við tvö tilvik:

- 1. n = k + 1 er prímtala p_1 . Þá þarf ekki að gera meir.
- 2. n=k+1 er samsett, svo: $n=a\cdot b$. Skv. þrepunarforsendu er $a=p_1\cdot p_2\cdot \cdots\cdot p_k$ og $b=q_1\cdot q_2\cdot \cdots\cdot q_l$, þar sem p_i og q_j eru prímtölur.

Þá er $n=q_1\cdot q_2\cdot \cdots \cdot q_l\cdot p_1\cdot p_2\cdot \cdots \cdot p_k$, Svo reglan gildir fyrir öll n