Lecture 4.1: Norms

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Introduction: the Euclidean norm

Definition

We define the Euclidean norm of $x=(x_1,\ldots,x_n)\in\mathbb{R}^n$ as:

$$||x||_2 = \sqrt{x_1^2 + \dots + x_n^2}.$$

General norms

Let V be a vector space.

Definition

A norm $\|\cdot\|$ on V is a function from V to $\mathbb{R}_{\geq 0}$ that verifies the following points:

- 1. Homogeneity: $\|\alpha v\| = |\alpha| \times \|v\|$ for all $\alpha \in \mathbb{R}$ and $v \in V$.
- 2. Triangular inequality: $||u+v|| \le ||u|| + ||v||$ for all $u, v \in V$.
- 3. Positive definiteness: if ||v|| = 0 for some $v \in V$, then v = 0.

Other examples

ightharpoonup The ℓ_1 norm

$$||x||_1 \stackrel{\text{def}}{=} \sum_{i=1}^n |x_i| = |x_1| + \dots + |x_n|.$$

Other examples

 $\qquad \qquad \textbf{The } \ell_p \text{ norm, for } p \geq 1$

$$||x||_p \stackrel{\text{def}}{=} (|x_1|^p + \dots + |x_n|^p)^{1/p}.$$

The infinity-norm

$$||x||_{\infty} \stackrel{\text{def}}{=} \max(|x_1|,\ldots,|x_n|).$$

Balls

For each of the norms $\|\cdot\|_2$, $\|\cdot\|_1$ and $\|\cdot\|_\infty$, draw the «ball»:

$$B = \{ x \in \mathbb{R}^2 \, | \, ||x|| \le 1 \}.$$