Periodic Table of Elements

 $R_{\mathsf{gas\text{-}law}} = 0.0821 \frac{\mathsf{L} \cdot \mathsf{atm}}{\mathsf{mol} \cdot \mathsf{K}} = 62.4 \frac{\mathsf{L} \cdot \mathsf{mmHg}}{\mathsf{mol} \cdot \mathsf{K}} = 8.314 \frac{\mathsf{L} \cdot \mathsf{kPa} \vee \mathsf{J}}{\mathsf{mol} \cdot \mathsf{K}}$ $\frac{453.6 \text{ g}}{1 \text{ lb}} = \frac{2.54 \text{ cm}}{1 \text{ in}} = \frac{0.946 \text{ L}}{1 \text{ qt}} = \frac{6.022 \times 10^{23} \text{ units}}{\text{mol}} = \frac{22.4 \text{ L}}{\text{mol}}$ $\frac{1~\mathrm{g}_{\mathrm{water}}}{1~\mathrm{mL}_{\mathrm{water}}} = \frac{P_{\mathrm{sea}}}{101325~\mathrm{Pa}} = \frac{1~\mathrm{atm}}{760~\mathrm{mmHg}} = \frac{1~\mathrm{atm}}{14.7~\mathrm{psi}}$ $^{\circ}\mathsf{C} = \frac{5}{9} (^{\circ}\mathsf{F} - 32) \text{ and } ^{\circ}\mathsf{F} = \frac{9}{5} ^{\circ}\mathsf{C} + 32$

H₂S HCl

PV=nRT and $\left[P+rac{an^2}{V^2}
ight][V-nb]=nRT$ $PV\propto 1$ and $VT\propto 1$ (Boyle and Charle). $M = \frac{\text{moles solute}}{\text{L solution}} \text{ and } m = \frac{\text{moles solute}}{\text{kg solvent}} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 - kt \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ \begin{bmatrix} A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ A \end{bmatrix}_0 e^{-kt} \\ A \end{bmatrix}_t = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\ A \end{bmatrix}_0 = \begin{bmatrix} A \end{bmatrix}_0 e^{-kt} \\$

	$h = 6.626 \times 10^{-1}$	$^{-34}Js \lor kgm^2s^{-1}$	and $c=3.00 imes 1$	$10^8~\mathrm{ms}^{-1}$	$X_{\text{mol fraction}} = \frac{\text{m}}{2}$	n Kg ol component mol total	solvent $[A]$	$t = \frac{1}{kt + \frac{1}{[A]_0}}$										
1	1 IA 1 2.20 H ₂ Hydrogen 1.01	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													17.1/114	18 VIIIA 2 He Helium 4.00		
2	3 0.98	Be Beryllium 9.01 $\begin{vmatrix} R_{H_{\text{Rydberg}}} = 2.18 \times 10^{-18} \text{ J} \\ \triangle E = R_H \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right) \\ \begin{vmatrix} A_H = A_H - A$											13 IIIA 5 2.04 Boron 10.81	14 IVA 6 2.55 C Carbon 12.01	15 VA 7 3.14 N ₂ Nitrogen 14.01	16 VIA 8 3.44 O ₂ Oxygen 116.00	17 VIIA 9 3.98 F ₂ Fluorine 19.00	10 Ne Neon 20.18
3	11 0.93 Na Sodium 22.99	12 1.31 Mg Magnesium 24.31		$0.512, 1.86)^{\circ} { m C/m}$ and $\Delta T_b = K_b n$ and $S_g = k P_g$		$S = k \ln \left(\frac{W_{\text{final}}}{W_{\text{initial}}} \right)$ $T \triangle S_{\text{universe}} = \triangle$ $G := -T \triangle S_{\text{unive}}$ 6 VIB	and $\triangle S_{ m surr.} = - H_{ m system} - T \triangle S_{ m system}$	rstem	9 VIIIB	9 VIIIB 10 VIIIB 11 IB 12 IIB				14 1.90 Si Silicon 28.09	15 2.19 P Phosphorus 30.97	16 2.38 S Sulphur 32.10	17 3.16 Cl ₂ Chlorine 35.45	Ar Argon 39.95
4	19 0.82 K Potassium 39.10	20 1.00 Ca Calcium 40.08	21 1.36 Sc Scandium 44.96	22 1.54 Ti Titanium 47.87	23 1.63 V Vanadium 50.94	24 1.66 Cr★ Chromium 52.00	25 1.55 Mn Manganese 54.94	26 1.83 Fe Iron 55.85	27 1.88 Co Cobalt 58.93	28 1.91 Ni Nickel 58.69	29 1.90 Cu★ Copper 63.55	30 1.65 Zn Zinc ⁽²⁺⁾ 65.39	31 1.81 Ga Gallium 69.72	32 2.01 Ge Germanium 72.64	33 2.18 As Arsenic 74.92	34 2.55 Se Selenium 78.96	35 2.96 Br ₂ Bromine 79.90	36 3.00 Kr Krypton 83.80
5	Rb Rubidium 85.47	38 0.95 Sr Strontium 87.62	39 1.22 Y Yttrium 88.91	40 1.33 Zr Zirconium 91.22	Nb ★ Niobium 92.91	Mo★ Molybdenum 95.94	Tc Technetium (98)	Ru* Ruthenium 101.07	Rh ★ Rhodium 102.91	Pd★ Palladium 106.42	Ag Silver ⁽¹⁺⁾ 107.87	48 1.69 Cd Cadmium 112.41	49 1.78 In Indium 114.82	50 1.96 Sn★ Tin 118.71	51 2.05 Sb Antimony 121.76	Te Tellurium 127.60	53 2.86 12 lodine 126.90	Xe Xenon 131.29
6	Cs Caesium 132.91	56 0.89 Ba Barium 137.33	57-71 La-Lu Lanthanide	72 1.3 Hf Hafnium 178.49	73 1.5 Ta Tantalum 180.95	74 2.36 W Tungsten 183.84	75 1.9 Re Rhenium 186.21	76 2.2 Os Osmium 190.23	77 2.20 Fr Iridium 192.22	78 2.28 Pt Platinum 195.08	79 2.54 Au★ Gold 196.97	80 2.00 Hg Mercury 200.59	81 1.62 TI Thallium 204.38	82 1.87 Pb Lead 207.2	83 2.02 Bi Bismuth 208.98	Po Polonium (209)	At Astatine (210)	86 2.2 Rn Radon (222)
7	87 0.7 Fr Francium (223)	Ra Radium (226)	89-103 Ac-Lr Actinide	104 Ruther- fordium Rf (267)	105 Dubnium Db (268)	106 Seaborgium Sg (269)	107 Bohrium Bh (270)	108 Hassium HS (277)	109 Meitnerium Mt (278)	110 Darmstadtium DS (281)	111 Roent- genium Rg (282)	112 Copernicium Cn (285)	113 Nihonium Nh (286)	114 Flerovium Fl (289)	Moscovium MC (290)	116 Liver- morium Lv (293)	Ts (294)	118 Ogannesson Og (294)
	Super ⁷ Gas HI CO HBr CO ₂ HCI CH ₄ HNO ₃	Alkali Metal Alkaline-Earth Metal Metalloid Non-metal Halogen	Z E.N. Sym Name mass	57 1.1 La Lanthanum 138.91	58 1.12 Ce Cerium 140.12	Pr Praseodymium 140.91	60 1.14 Nd Neodymium 144.24	Pm Promethium (145)	62 1.17 Sm Samarium 150.36	63 1.2 Eu Europium 151.96	Gd 1.2 Gadolinium 157.25	65 1.1 Tb Terbium 158.93	Dy Dysprosium 162.50	67 1.23 Ho Holmium 164.93	68 1.24 Er Erbium 167.26	Tm Thulium 168.93	70 1.1 Yb Ytterbium 173.05	71 1.27 Lu Lutetium 174.97
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Ac Actinium (227)	90 1.3 Th Thorium 232.04	91 1.5 Pa Protactinium 231.04	92 1.38 U Uranium 238.03	93 1.36 Np Neptunium (237)	94 1.28 Pu Plutonium (244)	95 1.13 Am Americium (243)	96 1.28 Cm Curium (247)	97 1.3 Bk Berkelium (247)	98 1.3 Cf Californium (251)	99 1.3 Es Einsteinium (252)	100 1.3 Fm Fermium (257)	101 1.3 Md Mendelevium (258)	102 1.3 No Nobelium (259)	103 1.3 Lr Lawrencium (266)