

Fundamentos de Machine Learning

Felipe Alonso Atienza

Data Scientist @BBVA

Índice

1. Introducción

- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Ciclo de vida de un proyecto en ML
- 6. Otras consideraciones

El arte y la ciencia de

- "Proporcionar a los ordenadores la capacidad de aprender a tomar decisiones a partir de los datos, sin ser programados explícitamente para ello" Arthur Samuel, 1959
- Útil cuando no se puede utilizar una fórmula que describa la realidad, pero sí dispones de datos para construir una solución empírica

https://medium.com/@karpathy/software-2-0-a64152b37c35

https://ai.google/research/teams/brain/healthcare-biosciences

Diferencias con Inteligencia Artificial

 Inteligencia Artificial: "Programa de computación diseñado para realizar determinadas operaciones que se consideran propias de la inteligencia humana"

Narrow

General

Superintelligence

https://bdtechtalks.com/2017/05/12/what-is-narrow-general-and-super-artificial-intelligence/

Diferencias con Deep Learning

- Redes neuronales (algoritmo de machine learning)
- Arquitecturas complejas (profundas)
- Caídas en el olvido y vuelta a la gloria gracias a GPUs y datos masivos (digitalización)
 - Grandes resultados (superior a humanos) en datos estructurados y algoritmos supervisados
 - Imagen médica
 - Gaming

■AI, ML y DL

Fuente:

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai

Relación entre ML y Estadística

Estadística

- Modelo
- Énfasis en inferencia

Machine Learning

- Datos
- Predicción

Relación entre ML y ciencia de datos

Índice

- Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Ciclo de vida de un proyecto en ML
- 6. Otras consideraciones

Tipos de machine learning

https://medium.com/marketing-and-entrepreneurship/10-companies-using-machine-learning-in-cool-ways-887c25f913c3

Aprendizaje supervisado

$$\{\mathbf{x}^{(i)}, y^{(i)}\} \propto p(x, y) \text{ i.i.d.},$$

$$\mathbf{x}^{(i)} \in \mathbb{R}^d,$$
 $y^{(i)} \in \mathbb{R},$
 $i = 1, \dots, N,$
 $f_{\boldsymbol{\omega}}(\mathbf{x}^{(i)}) \approx y^{(i)}$

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.8	2.8	5.1	2.4
1	6.0	2.2	4.0	1.0
2	5.5	4.2	1.4	0.2
3	7.3	2.9	6.3	1.8
4	5.0	3.4	1.5	0.2

	Species
0	virginica
1	versicolor
2	setosa
3	virginica
4	setosa

Iris data set: https://es.wikipedia.org/wiki/Iris flor conjunto de datos

Clasificación y regresión (supervisado)

Clasificación

- target y es discreta
- Ej: Apto / No apto
- Regresión logística

Regresión

- target y es continua
- Ej: Nota del examen
- Regresión lineal

Clasificación y regresión (supervisado)

Clasificación

Regresión

Aprendizaje no supervisado (ya estudiado)

$$\{\mathbf{x}^{(i)}\} \propto p(x)$$

aprender sobre p

Generalización

- No sólo buscamos que $f_{m{\omega}}(\mathbf{x}^{(i)}) pprox y^{(i)}$ (entrenamiento)
- Sino también $f_{\omega}(\mathbf{x}^{(\text{new})}) \approx y^{(\text{new})}$ (test)

Paramétricos vs no paramétricos

<u>Paramétricos</u>: el modelo tiene un conjunto limitado de parámetros

- Regresión lineal
- Regresión logística
- Naïve Bayes
- Redes neuronales
- Eficientes: sencillos de entrenar
- Menos complejos

No paramétricos: la complejidad aumenta con el número de muestras

- Vecinos más próximos K-NN
- Kernel SVM
- Árboles de decisión

- Más flexibles
- Computacionalmente costosos

Índice

- Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Ciclo de vida de un proyecto en ML
- 6. Otras consideraciones

■ Vecinos más próximos (K-NN)

- Del inglés, K-Nearest Neighbors
- Puede utilizarse en clasificación y en regresión (más adelante)

☐ Si k=3: Rojo

Si k=5: Azul

Matemáticamente:

$$f(\mathbf{x}_0) = y_i$$

 $i = \arg\min_{i} (||\mathbf{x}_j - \mathbf{x}_0||_2)$

Fuente: https://en.wikipedia.org/wiki/K-nearest-neighbors-algorithm

Hora de practicar

Índice

- Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Ciclo de vida de un proyecto en ML
- 6. Otras consideraciones

Train + test: sobreajuste

Limitaciones train + test

- Si las muestras de entrenamiento son escasas, el <u>error en test puede ser muy</u>
 <u>variable</u>, dependiendo de las muestras incluidas en el conjunto de entrenamiento y
 el conjunto de test.
- No permite seleccionar los parámetros del modelo

■ Entrenamiento + validación + test

- Rápido y sencillo
- Mucha varianza (mismas limitaciones que caso anterior)

■ Validación cruzada: k-fold *cross-validation*

■ Validación cruzada: Paso 1

Validación cruzada: Paso 2

for n = 1:Nyecinos

$$\begin{array}{c|c} \xrightarrow{\operatorname{Err}_{n,2}} & \operatorname{Err}_{n,3} \\ \xrightarrow{\operatorname{Err}_{n,4}} & \operatorname{Err}_{n} = \frac{1}{5} \sum_{i=1}^{5} \operatorname{Err}_{n,i} \end{array}$$

$$n_{opt} = \arg\min_{n} \left(\operatorname{Err}_{n} \right)$$

end

■ Validación cruzada: Paso 3

Consideraciones sobre k-fold CV

- Si K = N (número de muestras) se tiene leave-one out CV
 - N-1 muestras para entrenar, y 1 muestra para medir prestaciones
 - El conjunto de entrenamiento es muy parecido para cada fold ⇒ la estimación del error de tiene poco sesgo, pero mucha varianza.
 - Es computacionalmente costoso
- En la práctica K = 5, 10 proporciona buenos resultados, buen compromiso entre sesgo y varianza

CV en series temporales

No es un proceso i.i.d

Time series cross-validation

n.

Hora de practicar

Índice

- 1. Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Ciclo de vida de un proyecto en ML
- 6. ML en la vida real

■¿Cómo elegir el algoritmo adecuado?

- No free lunch, no hay un algoritmo mejor que otro para todos los problemas
- "All models are wrong, but some are useful", George Box

Algunas consideraciones

- Compromiso sesgo-varianza
- Ruido y número de muestras de entrenamiento
- Complejidad de la solución
- Dimensionalidad del conjunto de entrada

Otros factores

- Heterogeneidad de los datos
 - Árboles vs algoritmos basados distancia
- Redundancia
 - Métodos lineales
- Interacciones y relaciones complejas

Hora de practicar

Índice

- 1. Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Principios del aprendizaje
- 6. Ciclo de vida de un proyecto en ML
- 7. ML en la vida real

Principios del aprendizaje

- Navaja de Occam: el modelo más simple es el más plausible
- Sesgo en la población: el aprendizaje también estará sesgado
 - Manipulación en el conjunto de test
 - Normalización de variables
 - Selección de características

Índice

- 1. Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Principios del aprendizaje
- 6. Ciclo de vida de un proyecto en ML
- 7. ML en la vida real

ML pipeline: general

Correlación

dimensionalidad

 Combinación de variables

ML pipeline: específico

Errores muy distintos (overfitting):

- 1. Conseguir más muestras de entrenamiento
- 2. Reducir el número de variables
- 3. Aumentar el valor del parámetro de regularización

Errores similares, pero de valor elevado:

- 1. Añadir nuevas variables
- 2. Añadir variables polinómicas y/ointeracciones
- 3. Disminuir el valor del parámetro de regularización

Índice

- Introducción
- 2. Tipos de machine learning
- 3. Vecinos más próximos
 - a. Evaluación y selección del modelo
- 4. ¿Cómo elegir el algoritmo adecuado?
- 5. Principios del aprendizaje
- 6. Ciclo de vida de un proyecto en ML
- 7. ML en la vida real

Principios básicos

- Definición del problema: elegir la tarea de ML adecuada
 - Probabilidad de que un cliente deje de usar la aplicación: ¿regresión, clasificación, clustering?
- Recopila datos, análisis exploratorio, y después (si es necesario), aplica ML (no comenzar con deep learning)
- Mide el impacto:
 - ¿De verdad necesitas un algoritmo de ML? ¿y qué beneficios vas a obtener? ¿y cómo mides esos beneficios?
- Explicar los resultados
 - Interpretabilidad y comunicación
 - Sistemas de recomendación mejoran si se dicen causas de recomendación

Referencias

- An Introduction to Statistical Learning.
 - o Capítulos 2, 5.
- Machine Learning a Probabilistic Perspective.
 - o Capítulo 1

