Measurement of Power in R-L-C series circuit

Name: Adwait S Purao

UID: 2021300101

Branch: Computer Engineering

Batch: B2

CIRCUIT DIAGRAM:

1-Phase 230V / 50 Hz Mains

OBSERVATION TABLE:

Sr. No.	V _S (V)	I _S (A)	V _R (V)	Vcoil(V)	V _C (V)	Active Power (P) (Watts)	No. of ON bulbs
1	230.2	2.99	219	12.1	4.8	658	4
2	230.2	5.80	204	22.76	93.2	1220	8
3	230.2	4.42	213	17.67	70.7	960	6

	Vs	Is	VR	Voil	Ve	P	
1	230.2V	2.99A	2194	12.17	484	628M	4 laces
2	230.2V	5.80 A	204V	22.76V	93.2	1220W	selluel 8
27571	230.2	4.42A	213	17.67	70.7V	260W	6 loulles
				No	9		
				417	122		

CALCULATIONS:

Useful formulae:

Apparent power $S = V_S * I_S$

Power Factor=P/S

Total circuit impedance $Z_S=V_S/I_S$

Coil impedance $Z_{coil}=V_{coil}/I_S$

Resistance of Lamp load R=V_R/I_S

DATE: 04 / 07 / 2022

Capacitive reactance X_C=V_C/I_S

The parameters of the circuit can be obtained by solving following two equations:

$$Z_{S2}=(R+r)_2+(X_L-X_C)_2$$
 and $Z_{coil2}=r_2+X_{L2}$

Impedance Triangle (For X_L>X_C)

EXPERIMENT No: 5

Measurement of power in R-L-C series circuit

AIM: 1) To obtain different types of power in R-L-C series circuit.

2) To verify the parameters used in the circuit with the help of the readings taken and vector diagram.

APPARATUS AND COMPONENTS REQIRED:

Single phase auto-transformer (10A), Ammeter (0-10A), Wattmeter (10A/300V), Voltmeter (0-300V), Lamp-load, Inductors (12mH/10A), Capacitors (200 μ F), connecting wires.

THEORY: Write theory related with following questions:

- 1) Explain the behavior of series R-L-C circuit when single phase ac supplied is passed through it. Draw vector diagram for the same.
- 2) What is true, imaginary, and apparent power? Explain its significance.

PROCEDURE:

- 1) Connect the circuit as shown in the circuit diagram.
- 2) Adjust V_S =230 V using auto transformer. Note down readings of ammeter (I_S) and wattmeter (P). Also measure V_R , V_L and V_C using multimeter.
- 3) Calculate apparent power S.
- 4) Obtain power factor from S and P.
- 5) Calculate resistance of lamp load R, resistance of coil r, reactance X_L and X_C .
- 6) Obtain L and C from X_L and X_C respectively.

- 7) Vary the load (Change the number of on bulbs).
- 8) Repeat steps 3) to 6).
- 9) Draw phasor diagram.

Behavior of series R-L-C circuit when single phase ac supplied is passed:

Resistance, *Inductance*, and *Capacitance* have very different phase relationships to each other when connected to a sinusoidal alternating supply.

In a pure ohmic resistor the voltage waveforms are "in-phase" with the current. In a pure inductance the voltage waveform "leads" the current by 90^{0} , giving us the expression of: ELI. In a pure capacitance the voltage waveform "lags" the current by 90^{0} , giving us the expression of: ICE.

This Phase Difference, Φ depends upon the reactive value of the components being used and hopefully by now we know that reactance, (X) is zero if the circuit element is resistive, positive if the circuit element is inductive and negative if it is capacitive thus giving their resulting impedances as:

Circuit Element	Resistance, (R)	Reactance, (X)	Impedance, (Z)
Resistor	R	0	$Z_{R} = R$ $= R \angle 0^{0}$
Inductor	0	ωL	$Z_{L} = j_{\infty}L$ $= \infty L \angle + 90^{\circ}$
Capacitor	0	<u>1</u> ωC	$Z_{c} = \frac{1}{j\omega C}$ $= \frac{1}{\omega C} \angle -90^{\circ}$

Impedances of R, L and C components

Phasor Diagram

True Power: In an AC circuit, true power is the actual power consumed by the equipment to do useful work. It is distinguished from apparent power by eliminating the reactive power component that may be present.

The true power is measured in watts and signifies the power drawn by the circuit's resistance to do useful work. In a single phase system, the true power;

$$P = VI \cos \Phi$$

Other names that refer to True Power are, real power, actual power Useful power, or Watt-full power.

Imaginary Power: We know that reactive loads such as inductors and capacitors dissipate zero power, yet the fact that they drop voltage and draw current gives the deceptive impression that they actually do dissipate power.

This "phantom power" is called reactive power, and it is measured in a unit called Volt-Amps-Reactive (VAR), rather than watts.

The mathematical symbol for reactive power is the capital letter Q.

Apparent Power: The combination of reactive power and true power is called apparent power, and it is the product of a circuit's voltage and current, without reference to phase angle.

Apparent power is measured in the unit of Volt-Amps (VA) and is symbolized by the capital letter S.

CALCULATIONS:

	classmate
	Date Page
	5927.46 = 5364.1 + 16.4 - x + 146.48 516.4 - x2
	+ x - 32.1x + 257.6
	$(289.36 + 32.1 \times 1)^{2} = (146.48 \cdot 16.4 - \times 1)^{2}$ $(289.36 + 32.1 \times 1)^{2} = (146.48 \cdot 16.4 - \times 1)^{2}$ $(289.36 + 32.1 \times 1)^{2} = (146.48 \cdot 16.4 - \times 1)^{2}$
	83729.21 + 18576.91 X, + 1030.41 X,2
	$= 21450.53 (16.4 - \chi^2)$
as V	- 268059 . 48 + 18 .576 . 91 X + 22480 . 94 X =0
	X = 3.06 A _ 2
	1 45120 - 250 - 29
	120m (1) & (2)
	$\gamma = \sqrt{16.4 - (3.06)^2}$
	3 = 2.65 \(\text{.} \)
-	ASSESS TOTAL VALUE OF THE PARTY
	$Q = S \sin \phi = 688.298 \int 1 - (0.956)^2$
	= 201.924 VAR
	2 + c r 1 2 c 1 2
	$x_1 = \omega L$
А	$L = \frac{\chi_L}{\omega} = \frac{\chi_L}{2\pi \sqrt{50}} = 9.74 \times 10^{-3} H$
No. of the last	× - 1
	$\times_{c} = \frac{1}{\omega c}$
	Y W > 271)
	$C = \frac{1}{\chi_c \omega} = \frac{1}{\chi_c 2\pi \nu} = \frac{1}{16.05 \times 2\pi \times 50}$
	$C = 1.98 \times 10^{-4} F$
	A CONTRACTOR OF THE PROPERTY O

	classmate. Date Page
2)	Vs = 230.2 V (8 bwbx ON)
	Is = 5.80 A
	Ve = 204V
	Vcoit = 22.76V
	V. = 93.2V
	Active power (P) = 1220 W
	$S = V_s \times I_s = 230.2 \times 5.80 = 1335.16 \text{ V/}$
	$\rho.c = \rho = 1220 - 0.9137$
	p.f = P = 1220 = 0.9137
	$7s = V_s/T_s = 230.2/5.80 = 39.6896 \Omega$
	$Z_{coil} = V_{coil} = 22.76 = 3.924 \Omega$ $Z_{coil} = V_{coil} = 5.80$
	3A 40 2 100 13
	$R = \frac{V_R}{T_S} = \frac{204}{580} = 3517245$
1864	ARR - WE - X
	$\chi_c = V_c = 93.2 = 16.0689 \Lambda$
	Is 5.80
	2 2
	$Z_{coil} = \gamma^2 + \chi^2$
	$(3.924)^2 = x^2 + x_1^2$
	$X_{i} = \sqrt{15.397 - \chi^{2}} - 0$
	$-2 - (0.1)^{2} + (2.1)^{2}$
	$Z_{s}^{2} = (R+s)^{2} + (X_{c}-X_{c})^{2}$
	$(39.6896)^2 = (35.1724 + 1)^2 + (x_1 - 16.0689)^2$
	1575.264 = 1237.097 + 70.3448 + 15.397 - 32.1378 15.397 - 32.209
	- Prom (1)

	Date Page
	64.501 = 70.3448 x - 32.1378 515.397 - 42
	32.1378 J15.397 -32 = 70.3448 x - 64,561
	15902.609 - 1032.838 8 = 4948.390 x2
	- 9083.061 x + 4168.1227
	5981.228 22 - 9083.0618-11734.4863=0
	v = 2.35 — (2)
	A V & Reversion =
	rom (v) & (2)
	$x_{1} = \sqrt{15.397 - (2.35)^{2}}$
	X = 3.14 S
	$Q = 5 \times in \phi = 1335.16 \sqrt{1-(0.9137)^2}$
-32	Q = 542.595 VAR
	$\chi_{i} = m u L$
	$L = X_{L} = X_{L} = 3.14$ $\omega = 2\pi \nu = 2 \times \pi \times 50$
	L = 9.99 ×10-3 H
	$X_c = \frac{1}{wc}$
	$C = 1 = 1$ $\times_{c} \omega \qquad \times_{c} 2\pi \omega$
	3
	16.0689 × 27 × 50
	$C = 1.98 \times 10^{-4} F$
	1.38 × 10 +

	elassmate Date Page
3	V _s = 1230.2 V 7 P P P P P P P P P P P P P P P P P P
1	Is = 4.42 A
	2 Ve = 213V
	Very = 17.67V
	200Vc = 70.7V
	Active power (P) = 960 W
	5771. 529 3 + 9093 - 623 - 11334-4863
	S= V5 x Is = 230.2 x 4,42
	= 1017.484 VA
	(3) 2 (3) (4) (4)
	$\rho.c = \rho = 960 = 0.9435$
	5 1017.484
	$Z_s = V_s/I_s = 230.2/4.42 = 52.08 \text{ S}$
	HAM BREEFER D
	$\frac{Z_{coil} = V_{coil}}{I_S} = \frac{17.67}{4.42} = \frac{3.997}{4.42}$
	Is 4.42
	ALE TO A TO
	$\rho = \frac{\sqrt{\rho}}{I_s} = \frac{213}{4.42} = 48.19 \text{ s.}$
	Is 4.42
	$\chi_c = V_c = \frac{70.7}{15.995} = 15.995 \Omega$
	Ts 4.42
-	$-2^{2} = 1^{2} + 1^{2}$
-	$(2.9971^2 = 3^2 + x_1^2)$
-	$\frac{Z_{(\alpha)}^{2} = \lambda^{2} + \chi_{1}^{2}}{(3.997)^{2} = \lambda^{2} + \chi_{2}^{2}}$ $8 = \sqrt{15.976 - \chi_{1}^{2}} \qquad \boxed{)}$
-	$Z_s^2 = (R+3)^2 + (X_L - X_c)^2$ $(52.08)^2 = (48.19+3)^2 + (X_L - 15.995)^2$
	23
	$(50.00)^2 = (48.19 + 3)^2 + (X_1 - 15.995)^2$

RESULT:

Parameter	R	r	L	С	P	Q	S	Power Factor
Is=2.99A	73.24	2.65	9.74*10 ⁻³	1.98*10 ⁻⁴	658	201.924	688.298	0.956
Is=5.80A	35.1724	2.35	9.99*10 ⁻³	1.98*10 ⁻⁴	1220	542.595	1335.16	0.9137
Is=4.42A	48.19	2.31	10.37*10 ⁻³	1.99*10 ⁻⁴	960	337.166	1017.484	0.94

CONCLUSION:

In this enperiment we learnt allow
the various components of R-1-C seccust
mainly resistance, Inductance & capacitance. We studied their behaviour & Empact
when sengle phase At & supporter wo
learnt that hower factor depends un smpedance & from that we studied
tand Emarinasii a annere y
We also semulated the cercuit.