Specifications Project Manual

Notre Dame of Maryland University Knott Science Center - Renovation 4701 N. Charles St. Baltimore, MD 21210

Issue Date: 24 January 2022

EwingCole
Architects & Structural Engineers
810 Light Street, Suite 300
Baltimore, Maryland 21230
410-837-5040
www.ewingcole.com

RMF Engineering Mechanical, Plumbing & Electrical Engineers 5520 Research Park Drive, Suite 300 Baltimore, Maryland 21228 410-576-0505 www.rmf.com

Convergent Technologies Design Group, Inc. Audiovisual & Telecommunications 6501 York Road Baltimore, Maryland 21212 410-532-2396 www.ctdginc.com

Volume One

EwingCole
Baltimore, MD
EwingCole Project No. 20190846

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents – 24 January 2022

SECTION 000110

TABLE OF CONTENTS

Division Section Title

VOLUME ONE

DIVISION 00 - PROCUREMENT AND CONTRACTING REQUIREMENTS

000110 Table of Contents

DIVISION 01 - GENERAL REQUIREMENTS

011000	Summary
012100	Allowances
012300	Alternates
012500	Substitution Procedures
012900	Payment Procedures
013100	Project Management and Coordination
013300	Submittal Procedures
014000	Quality Requirements
016000	Product Requirements
017300	Execution
017419	Construction Waste Management and Disposal
017700	Closeout Procedures
017823	Operation and Maintenance Data
017839	Project Record Documents
017900	Demonstration and Training

DIVISION 02 - EXISTING CONDITIONS

024119 Selective Demolition

DIVISION 03 - CONCRETE

030131 Concrete Floor Flash Patching 033600 Concrete Floor Sealer

DIVISION 04 - MASONRY

042000 Unit Masonry

DIVISION 05 - METALS

051200 Structural Steel Framing 055000 Metal Fabrications

DIVISION 06 - WOOD, PLASTICS, AND COMPOSITES

061053	Miscellaneous Rough Carpentry
064023	Interior Architectural Woodwork
064116	Plastic-Laminate-Clad Architectural Cabinets
064214	Stile and Rail Wood Paneling
060660	Plastic Fabrications

DIVISION 07 - THERMAL AND MOISTURE PROTECTION

070151	Roof Repair
078413	Penetration Firestopping
078443	Joint Firestopping
079200	Joint Sealants

TABLE OF CONTENTS 000110-1

EwingCole
Baltimore, MD
EwingCole Project No. 20190846

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents – 24 January 2022

079219 Acoustical Joint Sealants

DIVIS	SION	08 –	OPEN	INGS

081113 Hollow Metal Doors and Frames
081416 Flush Wood Doors
083113 Access Doors and Frames
084113 Aluminum-Framed Storefronts
087100 Door Hardware
088000 Glazing

DIVISION 09 - FINISHES

092216	Non-Structural Metal Framing
092900	Gypsum Board
093013	Ceramic Tiling
095113	Acoustical Panel Ceilings
096513	Resilient Base and Accessories
096519	Resilient Tile Flooring
096813	Tile Carpeting
099123	Interior Painting

DIVISION 10 - SPECIALTIES

101100	Visual Display Units
101423.16	Room-Identification Panel Signage
102113	Plastic Toilet Compartments
102239	Folding Panel Partitions
102600	Wall and Door Protection
102800	Toilet, Bath and Laundry Accessories
104413	Fire Protection Cabinets
104416	Fire Extinguishers

DIVISION 11 – EQUIPMENT

115313	Laboratory Fume Hoods
115213	Projection Screens

DIVISION 12 - FURNISHINGS

122413	Roller Window Shades
123553.13	Metal Laboratory Casework
123661.16	Solid Surfacing Countertops
126100	Fixed Seminar Tables

DIVISION 13 - SPECIAL CONSTRUCTION - NOT USED

DIVISION 14 - CONVEYING EQUIPMENT - NOT USED

TABLE OF CONTENTS 000110-2

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents – 24 January 2022

VOLUME TWO

DIVISION 21 - FIRE SUPPRESSION 211313 Wet-Pipe Sprinkler System

DIVISION 22 – PLUMBING

220517	Sleeves and Sleeve Seals for Plumbing Piping
220518	Escutcheons for Plumbing Piping
220519	Meters and Gages for Plumbing Piping
220523.12	Ball Valves for Plumbing Piping
220523.14	Check Valves for Plumbing Piping
220529	Hangers and Supports for Plumbing Piping and Equipment
220553	Identification for Plumbing Piping and Equipment
220719	Plumbing Piping Insulation
221116	Domestic Water Piping
221119	Domestic Water Piping Specialties
221316	Sanitary Waste and Vent Piping
221319	Sanitary Waste Piping Specialties
221319.13	Sanitary Drains
224213.13	Commercial Water Closets
224213.16	Commercial Urinals
224216.13	Commercial Lavatories
224216.16	Commercial Sinks
224500	Emergency Plumbing Fixtures
226313	Gas Piping for Laboratory and Healthcare Facilities
226600	Chemical-Waste and Vent Systems for Laboratory Facilities

C)

DIVISION 23	- HEATING, VENTILATING, AND AIR CONDITIONING (HVAC
230130.52	Existing Hvac Air Distribution System Cleaning
230513	Common Motor Requirements for Hvac Equipment
230518	Escutcheons for Hvac Piping
230519	Meters And Gages for Hvac Piping
230523.11	Globe Valves for Hvac Piping
230523.12	Ball Valves for Hvac Piping
230523.13	Butterfly Valves for Hvac Piping
230523.14	Check Valves for Hvac Piping
230523.15	Gate Valves for Hvac Piping
230529	Hangers and Supports for Hvac Piping and Equipment
230548.13	Vibration Controls for Hvac
230553	Identification for Hvac Piping and Equipment
230593	Testing, Adjusting, and Balancing for Hvac
230713	Duct Insulation
230716	Hvac Equipment Insulation
230719	Hvac Piping Insulation
230800	Commissioning of HVAC
230923	Direct Digital Control (Ddc) System for Hvac
230923.11	Control Valves
230923.12	Control Dampers
230923.14	Flow Instruments
230923.19	Moisture Instruments
230923.22	Position Instruments
230923.23	Pressure Instruments
230923.27	Temperature Instruments
230923.43	Weather Stations

TABLE OF CONTENTS 000110-3

Construction Documents – 24 January 2022

231123 232113 232116 232123 233113 233300 233346 233416 233423 233600 233713.13 233713.23 237313.13 238219 238223	Facility Natural-Gas Piping Hydronic Piping Specialties Hydronic Pumps Metal Ducts Air Duct Accessories Flexible Ducts Centrifugal Hvac Fans Hvac Power Ventilators Air Terminal Units Air Diffusers Registers and Grilles Indoor, Basic Air-Handling Units Fan Coil Units Unit Ventilators
DIVISION 26	– ELECTRICAL
260500	Electrical General Provisions
260519	Low-Voltage Electrical Power Conductors and Cables
260526	Grounding and Bonding for Electrical Systems
260529	Hangers and Supports for Electrical Systems
260533	Raceways and Boxes for Electrical Systems
260544	Sleeves and Sleeve Seals for Electrical Raceways and Cabling
260553	Identification for Electrical Systems
260923	Lighting Control Devices
262726	Wiring Devices
262816	Enclosed Switches and Circuit Breakers
262913.03	Manual and Magnetic Motor Controllers
262923	Variable-Frequency Motor Controllers
265119	LED Interior Lighting
265213	Emergency Exit Lighting
268115	Emergency Responder Radio Antenna Repeater System
DIVISION 27	- COMMUNICATIONS
270528.36	Cable Trays for Communications Systems
270528.45	Telecommunications Flush Poke Thru
270528.48	Multimedia Connection Wall Box
271000	Telecommunications Structured Cabling
274100	Audiovisual Systems
DIVISION 20	ELECTRONIC CAFETY AND SECURITY
28 23 00	- ELECTRONIC SAFETY AND SECURITY Video Surveillance Systems
DIVISION 31	– EARTHWORK – NOT USED

DIVISION 32 - EXTERIOR IMPROVEMENTS - NOT USED

DIVISION 33 - UTILITIES - NOT USED

END OF TABLE OF CONTENTS

TABLE OF CONTENTS 000110-4

SECTION 260500 - ELECTRICAL GENERAL PROVISIONS

PART 1 - GENERAL

1.1 SUMMARY

- A. Provide complete, tested and fully functional electrical systems as shown on the Drawings and as specified herein.
- B. Electrical equipment and installed systems shall be suitable for the intended application, shall be safe for the intended use, shall be fully rated for the available fault current, and shall conform to local building codes and statutory requirements.

1.2 RELATED DOCUMENTS

- A. The Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.
- B. Electrical requirements specified in this Section apply to electrical equipment and materials described in other Sections of Division 26.
- C. Refer to Division 1 Section 019113 for Project Commissioning requirements

1.3 SCOPE OF WORK

- A. The work includes, but is not limited to, the following:
 - 1. Basic electrical materials and methods
 - 2. Grounding and bonding
 - 3. Electrical identification
 - 4. Wire and cable
 - 5. Raceways, boxes, and fittings
 - 6. Variable frequency controllers and harmonics analysis
 - 7. Enclosed switches and circuit breakers
 - 8. Enclosed controllers
 - 9. Interior lighting
 - 10. Field wiring for equipment provided under other Sections of the Specification
 - 11. Thorough cleaning of all equipment prior to energization
 - 12. Acceptance testing of all equipment installed under this Section
 - 13. Protection of all equipment under this Division until the final acceptance of the job
- B. Coordinate Division 26 requirements with work in other Divisions.
- C. Submit preconstruction submittals, shop drawings, product data, samples, design data, test reports, certificates, manufacturer's instructions, manufacturer's field reports, operation and maintenance data, closeout submittals and other specified documents to the Engineer for review and approval as described in Division 1, in this Section, and in other Sections of Division 26.

- D. Perform electrical acceptance tests described in other Division 26 Sections (Part 3).
- E. The following principal items of work will be performed under other Sections unless otherwise noted:
 - 1. Finish painting of all exposed raceways, boxes, hangers, apparatus, etc., except as otherwise specifically mentioned herein.
 - 2. Cutting and patching referred to in Division 1.
 - 3. Motors for mechanical equipment will be furnished under other Divisions.
 - 4. Automatic temperature control system design, installation, and raceways, boxes & fittings, and control wiring and signal cable, is included in Division 22 & 23.
 - 5. Variable frequency drives, disconnect switches, will be furnished and set in place under Division 22 & 23 or Division 26 as specified and shall be wired, tested, and commissioned in accordance with Division 26 requirements for similar equipment.

1.4 PROJECT CONDITIONS

- A. Ambient temperature, humidity, and elevation ranges: Equipment other than transformers shall be rated for continuous operation at full rated load without derating, under the following conditions:
 - 1. Ambient Temperature: 0 to 40 deg C.
 - 2. Humidity: Less than 90 percent (non-condensing).
 - 3. Altitude: Not exceeding 3300 feet (1000 m).
- B. Transformer output ratings shall be as specified in Division 26 Sections.
- C. Product Selection for Restricted Space: Drawings show allowable space to scale for anticipated equipment sizes. Comply with NEC requirements for working clearances and with manufacturer's recommendations for access for maintenance. Notify the Engineer if insufficient space is available for available products.

1.5 DEFINITIONS

- A. In addition to the Definitions in Specification Division 1, the following definitions apply to Division 26:
 - 1. AHJ: The statutory Authority Having Jurisdiction as defined in NEC Article 100 for enforcement of legally required compliance to local codes, standards, and ordinances.
 - 2. ANSI: American National Standards Institute
 - 3. AEIC: Association of Edison Illuminating Companies
 - 4. ASQ: American Society for Quality
 - 5. AWG: American Wire Gauge
 - 6. CFR: Code of Federal Regulations
 - 7. Cable: an assembly of insulated conductors
 - 8. Control panel: an electrical enclosure housing control logic devices and an operator control interface
 - 9. Commissioning: the process of testing system performance after the sequential steps of installation, testing, energization, startup (including initial adjustment and de-bugging) and functional testing of individual pieces of equipment have all been completed
 - 10. Contract: as used in the Electrical Specification, includes all Contract documents including Specifications and Appendices, Drawings, Addenda, and Change Orders
 - 11. ICEA: Insulated Cable Engineers Association

- 12. Equipment: a general term including materials, fittings, devices, appliances, fixtures, apparatus, and the like, used as part of, or in connection with, an electrical installation (OSHA Section 29 CFR 1910.399(46) definition)
- 13. FM: Factory Mutual, Inc.
- 14. Field wiring: on-site installation of raceways & conductors to connect equipment in accordance with approved drawings
- 15. Field test: electrical test carried out on-site
- 16. Fail-safe: selection of control devices and contacts in a manner which results in safe shutdown of the equipment whenever one of the following events occurs:
 - Loss of remote control RUN command (normal configuration: contacts close to run equipment)
 - b. Intentional and unintentional disconnection of device (normal configuration: contacts open to shut down equipment)
 - c. High contact resistance or high resistance connection
 - d. Loss of 4-20mADC signal
 - e. Definite-time sequence takes too long, e.g., reduced voltage motor starter fails to make transition from START mode to RUN mode after a reasonable time
 - f. Defined sequence does not occur, e.g., there is no flow from a motor driven pump within a reasonable time after the motor starter contactor is energized.
- 17. Furnish and install: same as "Provide" below.
- 18. Functional testing: verification of the satisfactory performance of control logic, with due attention to equipment protective devices, for example, overload relays, temperature switches, pressure switches, flow switches, and similar devices, under actual operating conditions
- 19. IEEE: Institute of Electrical and Electronics Engineers, Inc.
- 20. ISO: International Standards Organization
- 21. LV: low voltage, operating voltage under 600V (NEC definition)
- 22. Megger: insulation tester with megohm scale
- 23. NEC: NFPA 70, the National Electrical Code
- 24. NETA: National Electrical Testing Association, Inc.
- 25. NICET: National Institute for Certification in Engineering Technologies
- 26. NFPA: National Fire Protection Association
- 27. NRTL: Nationally recognized testing laboratory as defined in 29 CFR 1910.7 as it applies to testing and inspecting for safety in the workplace (OSHA definition)
- 28. Nonconformity: The nonfulfillment of a specified requirement (ASQ definition)
- 29. "Or approved equal": proposed "equal" product shall be in conformance with all specified requirements, shall be equivalent in materials of construction to specified manufacturers' products, shall have equal or superior performance in the conditions anticipated for use of the product in this project, and shall be approved by the Engineer
- 30. OSHA: Occupational Safety and Health Act
- 31. Panel: with respect to circuit breaker and fuse power distribution centers, panel is equivalent to "distribution board", e.g., lighting panel; with respect to control panels, refers either to the entire control panel itself or to a steel plate used for mounting devices inside the control panel
- 32. Provide: Throughout the Specification, use of this term includes project administration, quality assurance, human resources, tools & equipment, logistics and scheduling, submittals of shop drawings & samples for approval, managing suppliers, purchasing, manufacturing, factory testing, release for shipment, packing, delivery, storage, submittal of coordinated & dimensioned installation drawings for approval, installation, surface preparation & finishes, site testing, startup & commissioning, on-site supervision by equipment manufacturers' representatives, spare parts & tools, Operations and Maintenance (O&M) Manuals, training, guarantees and warrantees, other work described

- in individual Sections of the Specification, and the Contractor's duties, responsibilities, risks, and liabilities under the Contract.
- 33. Punch list: document containing detailed descriptions of non-conformities
- 34. Quality: conformance to specified requirements.
- 35. RMS: root mean square
- 36. Raceways: cable ladder and tray, conduit, duct, wireway, and associated boxes and fittings which enclose, support, and protect wires and cables
- 37. Shop drawings: a complete package of manufacturer's equipment drawings, bill of materials, catalog data sheets, performance curves, calculations, and other data provided to demonstrate conformance to the equipment specification
- 38. Substitution: an alternative, nonconforming product proposed by the Contractor in lieu of a specified, conforming product
- 39. Substantial Completion: an electrical system may be considered substantially complete when the equipment has passed the specified tests required prior to energization, has been energized, has passed the Electrical Acceptance Tests, and all related Specification requirements have been met except for well-defined minor items which, in the opinion of the Engineer, may be repaired or replaced prior to Final Acceptance without adversely affecting process performance.
- 40. Terminal box: an electrical enclosure containing labeled terminal blocks for connection of wiring
- 41. UL: Underwriters Laboratories, Inc.
- 42. VFC: variable frequency controller
- 43. VFD: variable frequency drive, the combination of VFC and inverter-duty motor that drive mechanical loads using the principle of variable frequency motor control
- 44. Wiring: conductors and connections to equipment terminals. 'Wiring' and 'cabling' shall be considered equivalent terms. Fiber optic cables shall be included in the scope of electrical wiring.

1.6 REFERENCE STANDARDS

A. Notwithstanding revision dates shown in this and other Sections of Division 26, the codes and standards applicable to this project shall be those in effect at the time of bid submittal, except for NFPA 70 NEC, which shall be the version acceptable to the AHJ.

1.7 QUALITY ASSURANCE

- A. In consultation with the equipment and materials Suppliers, the Contractor shall prepare and submit a Compliance Statement as described in "SUBMITTALS" below with each submittal requiring approval.
- B. The Engineer's approval of a submittal shall not relieve the Contractor of any Contractor responsibilities under the Contract. Approval of a submittal that is incomplete, or one that has nonconformities that are not described in the Compliance Statement that is specified to be included with each submittal, followed by the discovery of unapproved nonconformities, will result in replacement of the non-conforming items at no additional cost to the Owner. Substitutions require the approval of the Engineer.
- C. Manufacturers of electrical equipment shall have quality certification to ISO 9000:2000 or an equivalent Quality Management System acceptable to the Engineer.

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore. MD

Construction Documents – 1/24/2022

- D. Equipment, materials, and installation shall conform to NEC requirements and shall be NRTL-listed and labeled.
- E. On-site testing prior to energization and electrical acceptance testing shall be performed as specified in other Sections.
- F. Manufacturers, manufacturer's representatives, subcontractors, supervisors, installers, and testing agencies shall have qualifications and experience as described in other Sections of the Specification. Qualifications and experience submittals for firms and individuals shall be submitted, re-submitted, or updated whenever requested by the Owner's Representative.

1.8 SAFETY IN THE WORKPLACE

- A. Electrical equipment and materials, and the Contractor's installation practices, shall conform to the following:
 - 1. Current edition of OSHA sections of the Code of Federal Regulations (CFR): Part 29 CFR 1910 for General Industry and Part 19 CFR 1926 for Construction Activities
 - 2. NFPA 70, the National Electrical Code
 - 3. Current edition of NFPA 70E, Standard for Electrical Safety Requirements for Employee Workplaces
- B. These regulations and standards impose obligations on equipment manufacturers to obtain NRTL certification, listing, and labeling to comply with OSHA (Occupational Safety and Health Act) and Department of Labor regulations.
- C. All electrical equipment for which NRTL test procedures have been established shall be certified, listed, and labeled, or otherwise determined to be safe for its intended use, by a NRTL. The absence of a specific reference to NRTL-listing in other Sections shall not relieve the Contractor of the requirement to provide NRTL-listed equipment, and to obtain certification as required by the AHJ in cases where NRTL listing and labeling is not a manufacturer's standard offering for a particular product.
- D. Equipment shall not be modified in any manner adversely affecting safety for the intended use, nor shall any equipment be modified on-site without the approval of the manufacturer.
- E. Equipment sound levels shall not exceed limits established by reference standards and local regulations. In the absence of reference standards and local regulatory requirements, sound pressure levels shall not exceed 75 dB (A) measured three feet from the equipment.
- F. Equipment with moving parts shall be fully guarded in compliance with OSHA rules and regulations.

1.9 INSPECTIONS BY THE AHJ

A. The Contractor shall make arrangements for electrical inspection of the project by the AHJ. Upon completion of the work, final certificate of approval documents shall be submitted to the Engineer for forwarding to the Owner. This certificate shall be submitted prior to request for final payment. The Contractor shall pay all fees required for inspection.

1.10 WORKMANSHIP AND MATERIALS

- A. Materials and equipment shall be new and undamaged, shall be marked by the manufacturer, and shall be delivered to the construction site in the original factory packaging.
- B. Materials and equipment shall be installed in accordance with the Drawings, the Specification, and the manufacturer's installation, operation, and maintenance instructions. In the event of apparent conflicts or discrepancies, the Engineer shall be informed of the apparent conflict or discrepancy in writing and will instruct the Contractor how to proceed.

1.11 RESOURCES AND CONSTRUCTION SCHEDULE

- A. The Contractor shall provide sufficient resources, including qualified and experienced project managers, electrical engineers, superintendents, technicians, supervisors, electricians, tools and construction equipment to complete the electrical work in accordance with the activity durations and sequences shown on the Construction Schedule for this project.
- B. The construction schedule shall include the following activities and milestones, in realistic sequence, for each switchgear lineup, transformer, switchboard, generator set, and fuse or circuit breaker panelboard in each building:
 - 1. Review of shop drawings
 - 2. Approval of shop drawings (milestone)
 - 3. Factory testing
 - 4. Request for release of shipment documentation
 - 5. Shipping
 - 6. Delivery to site (milestone)
 - 7. Formwork ready for sleeves, openings, and inserts
 - 8. Room ceiling, wall, and floor finishing complete (ready for equipment installation)
 - 9. Equipment installation (including "remote" sites)
 - 10. Tests on completion of installation (prior to energization)
 - 11. Energization (milestone)
 - 12. Functional testing
 - 13. Acceptance testing
 - 14. Installation, testing, and commissioning complete (milestone)
- C. The construction schedule shall include the following activities and milestones, in the following sequence, for electrical raceways and wiring in each building and structure:
 - 1. Review of Contractor's dimensioned layout and coordination drawings
 - 2. Approval of Contractor's dimensioned layout and coordination drawings (milestone)
 - 3. Materials delivery to site (milestone)
 - 4. Foundations ready for grounding electrode installation
 - 5. Imbedded raceway installation
 - 6. Room ceiling, wall, and floor finishing complete (ready for exposed raceway installation)
 - 7. Surface raceway installation
 - 8. Wire & cable installation
 - 9. Tests on completion of installation (prior to energization)
 - 10. Wire and cable testing complete (milestone)

1.12 CONTRACT DRAWINGS

A. The Electrical Drawings provide scaled layouts of representative equipment and key building dimensions, for example, structural gridlines, but do not include "approved for construction" dimensions for equipment.

1.13 COORDINATION OF WORK

- A. Work under this Division shall be performed in conjunction with the work of other trades. Coordinate electrical installation work with the overall construction schedule. Examine the plans and specifications prior to commencement of work and become familiar with all phases of work involved prior to commencing installation work.
- B. The Contractor shall be responsible for coordinating dimensions of equipment and working clearances in accordance with NEC, and in all cases bring to the attention of the Engineer any discrepancies on the plans and in the specifications prior to installation. Any work that installed without proper coordination shall be removed and reinstalled at the Contractor's expense. The layout for sleeves, chases, openings, etc., must be arranged prior to construction in order to prevent unnecessary cutting. Examine Architectural drawings for doors swings, countertop heights, built-in furniture and casework, and other factors affecting electrical outlet locations prior to roughing-in raceways, boxes, fittings, and outlets.
- C. Control and signal wiring requirements shall be coordinated with Division 23.

1.14 COORDINATION DRAWINGS

A. Following approval of equipment shop drawings, the Contractor shall create dimensioned electrical equipment layout drawings, showing the relationships of approved electrical equipment with the building structural and architectural components, walls, floors, ceilings, doors, windows, louvers, access hatches, concrete equipment pads, and seismic anchors and bracing. One set of these Coordination Drawings shall be maintained at the construction site throughout the construction phase.

1.15 CODES AND STANDARDS

- A. All equipment and materials shall be manufactured, tested, and installed in accordance with the National Electrical Code (NEC) and all applicable portions of local codes, in accordance with the requirements of the AHJ.
- B. In addition, work shall be in accordance with the versions of the following referenced standards in effect at the time of bid opening:
 - 1. American Association for Laboratory Accreditation (A2LA)
 - 2. American Society for Testing and Materials (ASTM)
 - 3. American National Standards Institute (ANSI)
 - 4. Americans with Disabilities Act (ADA)
 - 5. Code of Federal Regulations (29 CFR 1903, 1910, and 1926)
 - 6. Factory Mutual Engineering & Research (FME&R)
 - 7. Illuminating Engineering Society of North America (IESNA)
 - 8. Insulated Cable Engineers Association (ICEA)

- 9. International Organization for Standardization (ISO)
- 10. National Electrical Manufacturers Associates (NEMA)
- 11. Institute of Electrical and Electronic Engineers (IEEE)
- 12. National Fire Protection Association (NFPA)
- 13. Occupational Safety and Health Act (OSHA)
- 14. Underwriters Laboratory, Inc. (UL) and other NRTL standards and test procedures

1.16 SUBMITTALS

- A. Submittals shall conform to requirements described in Division 1 Section "Submittal Procedures".
- B. Compliance Statement: with each submittal, include a Compliance Statement listing each Specification Section, and Part 1, 2, and 3 Sub-Sections, stating, paragraph-by-paragraph, compliance with the Specification, each minor nonconformity that is within the intent of the Specification, and proposed nonconformities. Provide short description of minor nonconformities, and detailed explanation of other nonconformities.

C. Submittal Format

- Each submittal shall be accompanied by a transmittal letter showing the submittal category and Specification Section reference number(s). Submittals shall be 3-hole punched and neatly bound.
- 2. Submittals shall have a complete Table of Contents with tabs corresponding to the Table of Contents headings.
- 3. Submittal transmittal letters shall clearly identify the reason for submittal, e.g., for approval, as manufactured, or as-built / record.
- 4. Each page of each submittal shall be numbered. Page numbers shall be listed on the Table of Contents. Content shall be printed on 8½ x 11 inch paper, or 11 x 17 paper (folded). Larger size drawings shall be folded and placed in labeled individual clear plastic pockets.
- 5. Product Data shall be clearly marked to show which items are proposed for this project. Information that does not apply to this project shall be crossed out.

D. Submittal Categories

- Preconstruction Submittals, including proposed substitutions, supplier and manufacturer qualifications and experience, construction scheduling, preliminary harmonics analysis for variable frequency controllers
- 2. Shop Drawings, including equipment drawings, seismic bracing details, and Coordination Drawings
- 3. Product Data, marked to indicate precisely which items are proposed for this project
- 4. Design Data, including manufacturer's design calculations
- 5. Test Reports, including prototype tests, factory tests, field tests, acceptance tests, and functional tests
- 6. Certificates, welding certificates, factory training certificates for manufacturer's representatives
- 7. Manufacturer's Instructions, including unloading, hoisting, rigging, short term storage, long term storage, method of field assembly, and installation instructions
- 8. Manufacturer's Field Reports, including inspections and training records
- 9. Operation and Maintenance Manuals, including manufacturer's standard published literature and specially prepared descriptions of operation
- 10. Closeout Submittals, including black line paper copy of Record Drawings marked in red illustrating changes during construction

- 11. Spare Parts and Special Tools List
- E. In the absence of contradictory instructions in Division 1 Section "Submittal Procedures", Shop Drawings and Coordination Drawings shall be marked with revision blocks to indicate status as follows:
 - FOR APPROVAL
 - 2. AS MANUFACTURED (incorporates Engineer's comments)
 - 3. AS BUILT / RECORD (incorporates on-site modifications)
- F. Coordination Drawings: Submit dimensioned layout and coordination drawings of electrical equipment room(s), and electrical equipment area(s) for approval sufficiently in advance to allow for review by the Engineer prior to starting related work, in accordance with the Construction Schedule.
- G. Product Data Sheets: Submit a list of manufacturers with catalog numbers and product data sheets for the following materials miscellaneous equipment and obtain approval before the items in guestion are ordered or installed.
 - 1. Raceways, Boxes, and Fittings
 - 2. Wire and Cable (600 V and less)
 - 3. Miscellaneous equipment including enclosed disconnect switches, enclosed circuit breakers, individually mounted combination motor starters, control and pushbutton stations.
- H. Record Drawings: Maintain a full size paper set of "black-line" working drawings throughout the project, and shall carefully record in red ink the actual locations including dimensions to locate each piece of electrical equipment, raceways, boxes, & fittings, and electrical outlets. Upon Substantial Completion of the work, deliver the marked-up set of prints to the Engineer. The Engineer reserves the right to withhold final payment until "As-Built" drawings are received.
- I. Operation and Maintenance Manuals: Prior to acceptance of the finished project, provide copies of electrical Operation and Maintenance Manuals in conformance with Division 1 Section "Operation and Maintenance Data". O&M Manuals shall be organized according to Division 26 Section numbers. Each copy shall be bound in a durable, 3-ring hardback binder, with data sheets individually punched and reinforced to prevent tearout. Data sheets shall be grouped, and binder dividers shall be provided to match the Table of Contents. Each Manual shall have an identifying label on the spine and front cover and shall include the following:
 - 1. List of all O&M Manuals in the front of each manual.
 - 2. Table of Contents for each manual and each binder
 - 3. Copy of each of the following:
 - a. Preconstruction Submittals
 - b. Shop Drawings
 - c. Product Data
 - d. Design Data
 - e. Test Reports
 - f. Certificates
 - g. Manufacturer's Instructions
 - h. Manufacturer's Field Reports
 - i. Operation and Maintenance Data
 - j. Closeout Submittals
 - k. Panelboard directories (as-built)
 - I. Copy of the Coordination Study

1.17 OUTAGES

- A. Electrical outages: Do not interrupt electrical service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electrical service.
 - Notify the Owner a minimum of 30 days in advance of proposed interruption of electrical service.
 - 2. Submit step-by-step sequence and schedule for proposed interruption, and if required, proposed method of providing temporary electrical service, to the Owner for approval.
 - 3. Confirm approved interruption of electrical service one week in advance of Owner-approved date.
 - 4. Do not proceed with interruption of electrical service without written permission from the Owner.

1.18 TEMPORARY LIGHTING AND POWER

- A. Refer to Division 1.
- B. The Contractor shall provide all temporary electric service for power and lighting including panels, feeders, lighting, outlets, branch circuits, etc.
- C. The Owner's electrical power shall not be used without permission of the Owner.
- D. All temporary work shall be in accordance with the NEC, OSHA, and NFPA safety requirements and shall be completely removed upon completion of the project.

1.19 EQUIPMENT AND MATERIALS

A. Provide equipment and materials in compliance with other Sections of Division 26. The requirements in this Section apply to all Sections in Division 26.

1.20 ELECTRICAL IDENTIFICATION

A. Electrical equipment, raceways, boxes, fittings, wires and cables shall be marked in the field in accordance with Division 26 Section "Electrical Identification".

1.21 ELECTRICAL ENCLOSURES

- A. In the absence of other specified NEMA enclosure ratings in other Sections of the Specification, electrical enclosures shall have degree of protection ratings suitable for the intended application (e.g., watertight, dust-tight, explosion-proof) and environmental conditions. Electrical equipment enclosures shall have the following NEMA 250 ratings:
 - 1. NEMA 1 or 1A: Enclosures located in clean, dry, indoor Control Rooms and Electrical Rooms shall be NEMA 1 painted steel, dry electrical rooms shall have foam gaskets on covers and doors (NEMA 1A) to reduce dust intrusion.
 - 2. NEMA 4X: Electrical enclosures located outdoors shall be NEMA 4X stainless steel.
 - 3. NEMA 12: Clean, dry process areas and mechanical equipment rooms

- 4. NEMA 13: Pushbutton stations in dry indoor process areas, and mechanical equipment rooms
- 5. Where different enclosure ratings and enclosure materials are specified in other Sections of the Specification, the Contractor shall submit a written request for clarification of the intent of the Specification to the Engineer.
- 6. For motor enclosure requirements, refer to Division 23.

1.22 ELECTROMAGNETIC INTERFERENCE

A. Power conversion equipment, including variable frequency controllers, battery-powered inverters, computer power supplies, shall be fitted with EMI (electromagnetic interference), RFI (radio frequency interference) and telephone interference filters to limit interference effects on other equipment in the area in accordance with IEEE standards and recommendations applicable to the equipment.

1.23 DISSIMILAR METALS

A. Dissimilar metals shall not be connected, spliced, or joined except where specifically approved in writing by the Engineer. Copper busbars connections shall be tin-plated at joints and at cable lugs. Bolted electrical conductor connections shall be made with silicone-bronze bolts, nuts, and washers.

PART 2 - WARRANTIES

- A. Warranties for equipment and materials shall conform to Division 2 "Product Requirements".
- B. Provide an on-site parts and labor warranty for a minimum period of one year after Substantial Completion for all equipment and materials. In cases where the manufacturer offers a longer warranty period, the longer warranty period shall apply as described by the manufacturer.
- C. All components of electrical systems that are not fully functional at the time of Substantial Completion shall have warranties extended to provide minimum one year coverage of fully operational equipment unless otherwise approved by the Owner's Representative.

PART 3 - EXECUTION

3.1 DELIVERY AND HANDLING

A. Equipment delivered to site shall be handled in accordance with manufacturer's recommendations by experienced riggers, crane operators, and fork lift truck operators.

3.2 STORAGE AND PROTECTION OF EQUIPMENT

A. All electrical equipment to be used in construction shall be properly stored and protected against the elements. General construction materials shall be stored in covered trailers. Switchgear, unit substations, motor controllers, panelboards, emergency lighting, solid state

equipment, engine generator shall be stored in a clean, dry, indoor location, under cover, until the building is weathertight and the area where the equipment is to be installed has been completed to the satisfaction of the Engineer, including completion of overhead work by other trades.

- B. Anti-condensation heaters shall be energized during storage. Long term storage instructions of the manufacturer shall be followed.
- C. Equipment with anti-condensation heaters shall have the 120VAC anti-condensation heaters energized from temporary 120VAC supplies as soon the factory packaging has been opened.
- D. Equipment enclosures exposed to construction damage such as paint spots, spackling, waterproofing, insulation etc. shall be covered and protected against damage.

3.3 INSPECTIONS PRIOR TO COVERING-UP

A. Raceways embedded in concrete or otherwise concealed shall be inspected in the presence of the Engineer's Representative prior to placement of concrete. Sufficient time shall be allowed to make corrections if required.

3.4 ON-SITE INSPECTIONS AND NONCONFORMITIES

- A. Equipment shall be inspected on delivery to site for physical damage and for compliance with the Specification and approved equipment shop drawings.
- B. Installed equipment, raceways, and wiring shall be inspected on completion of installation for compliance with the Specification and approved installation drawings.
- C. A Punch List will be prepared by the Owner's Representative during inspections and testing issued to the Contractor for corrective action.
- D. Conform to Division 1 Section "Contract Closeout".
- E. Repairs, replacement, and other corrective action that requires de-energizing any part of the Electrical Power Distribution and Control System shall be completed prior to the scheduled date for substantial completion of the project.

3.5 CUTTING AND PATCHING

A. Conform to Division 1 Section "Cutting and Patching".

3.6 PENETRATIONS AND SEALING

A. Sleeves and rectangular openings shall be provided for raceways provided under this Contract, and for raceways for future equipment where future equipment is shown on the Drawings. Sleeves and rectangular openings for the passage of raceways and conductors shall be sealed after the raceways and conductors have been installed. Spare sleeves and rectangular openings shall also be sealed.

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents - 1/24/2022

- B. Penetration of Waterproof Construction: Coordinate the work to minimize penetration of waterproof construction, including roofs and exterior walls. Where penetrations are necessary, provide sleeves and sealing fittings to make each penetration watertight. Conduit sleeves and openings shall be sealed watertight with mechanical seals. Water tightness shall not rely on caulking.
- C. Penetration of Fire-Rated Construction: Sleeves and openings in fire-resistant walls and floors for electrical raceways, wires, and cables shall be sealed after installation of the raceways, wires, and cables with NRTL-certified fire penetration seals, sealant, and fire-rated foam filler products to the same degree of fire resistance (e.g., 1, 2, or 4 hours) as the adjacent walls and floors, and to the satisfaction of the AHJ. Where both fire sealing and water sealing is required, mechanical seals with NRTL-listed fire-resistant properties shall be used. Fire sealants shall be compatible with the cable jacket and wire insulation materials. Manufacturer's certification of compatibility shall be provided at the request of the Engineer. For additional requirements, refer to Division 26 Section "Raceways, Boxes, and Fittings".

3.7 ELECTRICAL SAFETY AND TEST EQUIPMENT

- A. Maintain the following test instruments and calibration certificates less than 12 months old onsite as a minimum:
 - 1. True RMS digital volt-ohm meter with resistance scale
 - 2. Clip-on ammeter with range from 1 to 600 amps
 - 3. 500V DC battery-powered megger insulation tester
- B. Provide electrical safety equipment, including personal protective equipment, electrical blankets, test instruments, lighting, ventilation, and instructions in the use of safety equipment, and perform the work under this Contract in accordance with applicable safety rules and regulations. The Contractor's attention is directed to safety issues related to confined spaces as defined in OSHA regulations.
- C. One numbered safety lockout padlock with an 'unlawful-to-duplicate' unique key shall be provided for each motor controller. Safety lockouts shall be used during testing and commissioning and shall subsequently be handed over to the Owner in a lockable sheet metal key cabinet. The safety lockout padlock supplier shall be a specialist supplier with a registered key program.

3.8 CLEANING AND PAINTING

- A. Conform to Division 1 Section "Closeout Procedures".
- B. After installation and wiring work is completed, all dust and debris shall be removed from the interior and exterior of each electrical equipment enclosure and motor by vacuum-cleaning with circuits de-energized. Do not use compressed air for cleaning. Vacuum cleaner wands and brushes shall be non-conducting. Anti-static protection shall be provided for static-sensitive devices.
- C. Clean and remove all rust, scale, oil, grease, and dirt from panelboard enclosures, conduits, pull, junction and terminal boxes, fittings and hangers, leaving surfaces in condition for final surface preparation and painting under Division 9.

- D. All ferrous materials that are concealed, or exposed in unfinished areas, including fittings, hangers, junction, pull and terminal boxes, that are not plated or painted with a factory-applied finish, shall be painted under this Section with one coat of zinc-chromate primer and one (1) finish coat of enamel paint approved by the Engineer. Nonferrous materials shall be cleaned only and left unpainted.
- E. Equipment furnished with a factory finish coat shall have finish carefully touched-up where it is scratched or otherwise damaged. Touch-up work shall be match the color and type of the original finish.

3.9 INSPECTION AND TESTING ON-SITE

- A. The Contractor shall hire a NETA-certified or NICET-certified specialist electrical testing firm to perform on-site inspection and electrical testing.
- B. Perform Electrical Acceptance Tests in accordance with NETA Acceptance Testing Standards as described in individual Division 26 Sections, Part 3. The NETA testing contractor shall provide calibration certifications, dated calibration stickers, and serial numbers for all test equipment used.
- C. Submit manufacturer-endorsed field test data sheets & procedures for approval, test equipment and materials on-site prior to site visit by manufacturer's factory-trained representative, test equipment on-site under the supervision of the Engineer and the equipment manufacturer's factory-trained representative(s), and submit manufacturer's statement of acceptance of installation prior to energization of equipment. Invite the Engineer's and Owner's representatives to witness field testing.
- D. Electrical equipment shall not be energized without the approval of the Engineer.
- E. A complete certified electrical test report shall be compiled by the electrical testing firm, checked for completeness, and submitted for the record.
- F. The Contractor shall notify all parties whose presence is necessary for the test; and in all cases, the Engineer shall be notified at least one week prior to the actual test.

3.10 ELECTRICAL POWER DISTRIBUTION SYSTEM FUNCTIONAL TESTS

- A. Conform to Division 1 Section "General Commissioning Requirements".
- B. After testing and commissioning for equipment has been completed, the following functional tests of the electrical power distribution and control system shall be carried out by the Contractor's specialist electrical testing firm in the presence of the Engineer's or Owner's representative:
 - 1. Using a precision laboratory voltmeter with certified 0.1 % accuracy, record incoming supply voltages for each in the presence of the Engineer's Representative. Measurements shall be taken under no-load and normal load conditions. Readings which indicate more than 1% voltage difference between phases will require corrective action.
- C. Additional testing shall be carried out where recommended by equipment suppliers or requested by the Engineer.

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents – 1/24/2022

3.11 LOAD BALANCING

A. Single phase circuits in single and three-phase fuse and circuit breaker distribution boards and lighting panels shall be balanced initially based on the load calculations. Load currents shall be measured under actual operating conditions, and under conditions described by the Engineer. Circuiting shall be re-arranged as necessary to obtain current balancing within 10% on each busbar.

3.12 DISTURBING EXISTING PAVEMENT AND LANDSCAPING

A. Where cutting existing pavement and disturbing existing landscaping is necessary to perform work included in this Contract, the Contractor shall employ professional subcontractors to restore the appearance of disturbed areas to their original condition.

3.13 DEMONSTRATION AND TRAINING

- A. Conform to Division 1 Section "Demonstration and Training".
- B. Upon completion of all work furnished and installed under Division 26, instruct and train the Owner's representatives in the operation and maintenance of all the various apparatus and equipment to the complete satisfaction of the Engineer. Training shall be as specified in each Section of Division 26, and shall start when the completed systems have been put in operational condition and tested as specified. A complete Training Course syllabus together with copies of the training materials shall be submitted with the Contractor's proposed schedule for instruction and training.
- C. Provide classroom and on-site training of the Owner's staff by an authorized representative of the equipment manufacturer during commissioning of the following electrical equipment:
 - 1. Variable frequency controllers: 1 days each size and type.
- D. Submit qualifications and experience of manufacturer's proposed training personnel for approval.
- E. Additional requirements for training are described in other Sections of the Specification.

END OF SECTION 260500

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Copper building wire rated 600 V or less.
 - 2. Fire-alarm wire and cable.
 - 3. Connectors, splices, and terminations rated 600 V and less.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Product Schedule: Indicate type, use, location, and termination locations.

1.4 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Alpha Wire Company.
 - 2. American Bare Conductor.
 - 3. Belden Inc.
 - 4. <u>Cerro Wire LLC</u>.
 - 5. Encore Wire Corporation.

C. Standards:

- Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- 2. RoHS compliant.
- 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
- E. Conductor Insulation:
 - 1. Type TC-ER: Comply with NEMA WC 70/ICEA S-95-658 and UL 1277.
 - 2. Type THHN and Type THWN-2: Comply with UL 83.
 - 3. Type XHHW-2: Comply with UL 44.

F. Shield:

1. Type TC-ER: Cable designed for use with VFCs, with oversized crosslinked polyethylene insulation, spiral-wrapped foil plus 85 percent coverage braided shields and insulated full-size ground wire, and sunlight- and oil-resistant outer PVC jacket.

2.2 FIRE-ALARM WIRE AND CABLE

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Allied Wire & Cable Inc.
 - 2. CommScope, Inc.
 - 3. <u>Comtran Corporation</u>.
 - 4. <u>Draka Cableteq USA; a Prysmian Group company.</u>
 - 5. Genesis Cable Products; Honeywell International, Inc.
- B. General Wire and Cable Requirements: NRTL listed and labeled as complying with NFPA 70, Article 760.
- C. Signaling Line Circuits: Twisted, shielded pair, not less than No. 18 AWG.
 - 1. Circuit Integrity Cable: Twisted shielded pair, NFPA 70, Article 760, Classification CI, for power-limited fire-alarm signal service Type FPL. NRTL listed and labeled as complying with UL 1424 and UL 2196 for a two-hour rating.

3.

Construction Documents - 1/24/2022

- D. Non-Power-Limited Circuits: Solid-copper conductors with 600-V rated, 75 deg C, color-coded insulation, and complying with requirements in UL 2196 for a two-hour rating.
 - Low-Voltage Circuits: No. 16 AWG, minimum, in pathway.
 Line-Voltage Circuits: No. 12 AWG, minimum, in pathway.
 - Multiconductor Armored Cable: NFPA 70, Type MC, copper conductors, Type TFN/THHN conductor insulation, copper drain wire, copper armor with outer jacket with red identifier stripe, NTRL listed for fire-alarm and cable tray installation, plenum rated.

2.3 CONNECTORS AND SPLICES

- A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. 3M Electrical Products.
 - 2. AFC Cable Systems; a part of Atkore International.
 - 3. Gardner Bender.
 - 4. Hubbell Power Systems, Inc.
 - 5. Ideal Industries, Inc.
- C. Jacketed Cable Connectors: For steel and aluminum jacketed cables, zinc die-cast with set screws, designed to connect conductors specified in this Section.
- D. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
 - 1. Material: Copper.
 - 2. Type: One hole with standard barrels.
 - 3. Termination: Compression.

PART 3 - EXECUTION

- 3.1 CONDUCTOR MATERIAL APPLICATIONS
 - A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
 - B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
 - C. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.
- D. Power-Limited Fire Alarm and Control: Solid for No. 12 AWG and smaller.
 - E. Use of MC cable is not acceptable.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway.
- B. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- C. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- D. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Type THHN/THWN-2, single conductors in raceway.
- E. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway.
- F. VFC Output Circuits: Type TC-ER cable with braided shield.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips, that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members and follow surface contours where possible.
- F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 INSTALLATION OF FIRE-ALARM WIRING

- A. Comply with NECA 1 and NFPA 72.
- B. Wiring Method: Install wiring in metal pathway according to Section 270528.29 "Hangers and Supports for Communications Systems."
 - 1. Install plenum cable in environmental airspaces, including plenum ceilings.
 - 2. Fire-alarm circuits and equipment control wiring associated with fire-alarm system shall be installed in a dedicated pathway system. This system shall not be used for any other wire or cable.

C. Wiring Method:

- 1. Cables and pathways used for fire-alarm circuits, and equipment control wiring associated with fire-alarm system, may not contain any other wire or cable.
- 2. Fire-Rated Cables: Use of two-hour, fire-rated fire-alarm cables, NFPA 70, Types MI and CI. is not permitted.
- 3. Signaling Line Circuits: Power-limited fire-alarm cables shall not be installed in the same cable or pathway as signaling line circuits.
- D. Wiring within Enclosures: Separate power-limited and non-power-limited conductors as recommended by manufacturer. Install conductors parallel with or at right angles to sides and back of the enclosure. Bundle, lace, and train conductors to terminal points with no excess. Connect conductors that are terminated, spliced, or interrupted in any enclosure associated with fire-alarm system to terminal blocks. Mark each terminal according to system's wiring diagrams. Make all connections with approved crimp-on terminal spade lugs, pressure-type terminal blocks, or plug connectors.
- E. Cable Taps: Use numbered terminal strips in junction, pull, and outlet boxes; cabinets; or equipment enclosures where circuit connections are made.
- F. Color-Coding: Color-code fire-alarm conductors differently from the normal building power wiring. Use one color-code for alarm circuit wiring and another for supervisory circuits. Color-code audible alarm-indicating circuits differently from alarm-initiating circuits. Use different colors for visible alarm-indicating devices. Paint fire-alarm system junction boxes and covers red.
- G. Risers: Install at least two vertical cable risers to serve the fire-alarm system. Separate risers in close proximity to each other with a minimum one-hour-rated wall, so the loss of one riser does not prevent receipt or transmission of signals from other floors or zones.
- H. Wiring to Remote Alarm Transmitting Device: 1-inch conduit between the fire-alarm control panel and the transmitter. Install number of conductors and electrical supervision for connecting wiring as needed to suit monitoring function.

3.5 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material and that possess equivalent or better mechanical strength and insulation ratings than unspliced conductors.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inchesof slack.

3.6 IDENTIFICATION

A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."

B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.7 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.8 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Contractor will engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections with the assistance of a factory-authorized service representative.
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test feeder conductors for compliance with requirements.
 - 2. Perform each of the following visual and electrical tests:
 - a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 - b. Test bolted connections for high resistance using one of the following:
 - 1) A low-resistance ohmmeter.
 - 2) Calibrated torque wrench.
 - 3) Thermographic survey.
 - c. Inspect compression-applied connectors for correct cable match and indentation.
 - d. Inspect for correct identification.
 - e. Inspect cable jacket and condition.
 - f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
 - g. Continuity test on each conductor and cable.
 - h. Uniform resistance of parallel conductors.
 - 3. Initial Infrared Scanning: After Substantial Completion, but before Final Acceptance, perform an infrared scan of each splice in conductors No. 3 AWG and larger. Remove

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents - 1/24/2022

box and equipment covers so splices are accessible to portable scanner. Correct deficiencies determined during the scan.

- a. Instrument: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- b. Record of Infrared Scanning: Prepare a certified report that identifies switches checked and that describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.
- D. Cables will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes: Grounding systems and equipment.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Member company of NETA or an NRTL.
 - Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with UL 467 for grounding and bonding materials and equipment.

PART 2 - PRODUCTS

2.1 CONDUCTORS

- A. Insulated Conductors: Copper wire or cable insulated for 600 V unless otherwise required by applicable Code or authorities having jurisdiction.
- B. Bare Copper Conductors:
 - 1. Solid Conductors: ASTM B 3.
 - 2. Stranded Conductors: ASTM B 8.
 - 3. Tinned Conductors: ASTM B 33.
 - 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
 - 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
 - 6. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.

2.2 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Bolted Connectors for Conductors and Pipes: Copper or copper alloy, pressure type with at least two bolts.
 - 1. Pipe Connectors: Clamp type, sized for pipe.
- C. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- D. Bus-bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and larger unless otherwise indicated.
- B. Grounding conductors: Green-colored insulation.
- C. Conductor Terminations and Connections:
 - 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
 - 2. Connection to Structural Steel: Welded connectors.

3.2 EQUIPMENT GROUNDING

- A. Install insulated equipment grounding conductors with the following items, in addition to those required by NFPA 70:
 - 1. Feeders and branch circuits.
 - 2. Lighting circuits.
 - 3. Receptacle circuits.
 - 4. Single-phase motor and appliance branch circuits.
 - 5. Three-phase motor and appliance branch circuits.
 - 6. Flexible raceway runs.
 - 7. Armored and metal-clad cable runs.
- B. Air-Duct Equipment Circuits: Install insulated equipment grounding conductor to duct-mounted electrical devices operating at 120V and more, including air cleaners, heaters, dampers, humidifiers, and other duct electrical equipment. Bond conductor to each unit and to air duct and connected metallic piping.

3.3 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

C. Grounding and Bonding for Piping:

- Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.
- 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.

3.4 LABELING

- A. Comply with requirements in Section 260553 "Electrical Identification" for instruction signs. The label or its text shall be green.
- B. Install labels at the telecommunications bonding conductor and grounding equalizer and at the grounding electrode conductor where exposed.
 - Label Text: "If this connector or cable is loose or if it must be removed for any reason, notify the facility manager."

3.5 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

 After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements. Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents – 1/24/2022

- 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
- D. Grounding system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.
- F. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 5 ohms.
- G. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Steel slotted support systems.
- 2. Conduit and cable support devices.
- 3. Support for conductors in vertical conduit.
- 4. Structural steel for fabricated supports and restraints.
- 5. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
- 6. Fabricated metal equipment support assemblies.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for the following:
 - a. Slotted support systems, hardware, and accessories.
 - b. Clamps.
 - c. Hangers.
 - d. Sockets.
 - e. Eye nuts.
 - f. Fasteners.
 - g. Anchors.
 - h. Saddles.
 - i. Brackets.
 - 2. Include rated capacities and furnished specialties and accessories.
- B. Shop Drawings: For fabrication and installation details for electrical hangers and support systems.
 - 1. Hangers. Include product data for components.
 - 2. Slotted support systems.
 - 3. Equipment supports.

4. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Ductwork, piping, fittings, and supports.
 - 3. Structural members to which hangers and supports will be attached.
 - 4. Size and location of initial access modules for acoustical tile.
 - 5. Items penetrating finished ceiling, including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Projectors.
- B. Seismic Qualification Data: Certificates, for hangers and supports for electrical equipment and systems, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Welding certificates.

1.5 QUALITY ASSURANCE

A. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design hanger and support system.
- B. Surface-Burning Characteristics: Comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

- 1. Flame Rating: Class 1.
- 2. Self-extinguishing according to ASTM D 635.

2.2 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c. in at least one surface.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Allied Tube & Conduit; a part of Atkore International.
 - b. <u>B-line, an Eaton business</u>.
 - c. CADDY; a brand of nVent.
 - d. Flex-Strut Inc.
 - e. Gripple Inc.
 - 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 3. Material for Channel, Fittings, and Accessories: Galvanized steel.
 - 4. Channel Width: Selected for applicable load criteria.
 - 5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.
- B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Support for Conductors in Vertical Conduit: Factory-fabricated assembly consisting of threaded body and insulating wedging plug or plugs for nonarmored electrical conductors or cables in riser conduits. Plugs shall have number, size, and shape of conductor gripping pieces as required to suit individual conductors or cables supported. Body shall be made of malleable iron.
- D. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.
- E. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) Hilti, Inc.
 - 2) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 3) MKT Fastening, LLC.
 - 4) <u>Simpson Strong-Tie Co., Inc.</u>

- 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1) B-line, an Eaton business.
 - 2) Empire Tool and Manufacturing Co., Inc.
 - 3) Hilti, Inc.
 - 4) ITW Ramset/Red Head; Illinois Tool Works, Inc.
 - 5) MKT Fastening, LLC.
- 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
- 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
- 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM F 3125/F 3125M,Grade A325.
- 6. Toggle Bolts: All-steel springhead type.
- 7. Hanger Rods: Threaded steel.

2.3 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA 101
 - 3. NECA 102.
 - 4. NECA 105.
 - NECA 111.
- B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents – 1/24/2022

- D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inchin diameter.
- E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slotted support system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps.
- F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Raceway Support Methods: In addition to methods described in NECA 1, EMT IMC and RMC may be supported by openings through structure members, according to NFPA 70.
- C. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- D. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:
 - 1. To Wood: Fasten with lag screws or through bolts.
 - 2. To New Concrete: Bolt to concrete inserts.
 - 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
 - 4. To Existing Concrete: Expansion anchor fasteners.
 - 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
 - 6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69.
 - 7. To Light Steel: Sheet metal screws.
 - 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- E. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

Construction Documents - 1/24/2022

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide minimum dry film thickness of 2.0 mils.
- B. Touchup: Comply with requirements in Section 09900 "Painting" and for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Metal conduits and fittings.
 - 2. Metal wireways and auxiliary gutters.
 - 3. Surface raceways.
 - 4. Boxes, enclosures, and cabinets.
- B. Related Requirements:
 - 1. Section 078413 "Penetration Firestopping" for firestopping at conduit and box entrances.

1.3 DEFINITIONS

- A. GRC: Galvanized rigid steel conduit.
- B. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

- A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.
- B. Shop Drawings: For custom enclosures and cabinets. Include plans, elevations, sections, and attachment details.
- C. Samples: For wireways and for each color and texture specified, 12 inches long.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Conduit routing plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of items involved:
 - 1. Structural members in paths of conduit groups with common supports.

- 2. HVAC and plumbing items and architectural features in paths of conduit groups with common supports.
- B. Qualification Data: For professional engineer.
- C. Seismic Qualification Data: Certificates, for enclosures, cabinets, and conduit racks and their mounting provisions, including those for internal components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
 - 4. Detailed description of conduit support devices and interconnections on which the certification is based and their installation requirements.
- D. Source quality-control reports.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

- A. Metal Conduit:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. AFC Cable Systems; a part of Atkore International.
 - b. Allied Tube & Conduit; a part of Atkore International.
 - c. Anamet Electrical, Inc.
 - d. Calconduit.
 - e. Electri-Flex Company.
 - 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 3. GRC: Comply with ANSI C80.1 and UL 6.
 - 4. IMC: Comply with ANSI C80.6 and UL 1242.
 - 5. EMT: Comply with ANSI C80.3 and UL 797.
 - 6. FMC: Comply with UL 1; zinc-coated steel.
 - 7. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- B. Metal Fittings:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>AFC Cable Systems; a part of Atkore International.</u>
 - b. Allied Tube & Conduit; a part of Atkore International.

- c. Anamet Electrical, Inc.
- d. Calconduit.
- e. Electri-Flex Company.
- 2. Comply with NEMA FB 1 and UL 514B.
- 3. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 4. Fittings, General: Listed and labeled for type of conduit, location, and use.
- 5. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
- 6. Fittings for EMT:
 - a. Material: Steel.
 - b. Type: Compression.
- 7. Expansion Fittings: Steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
- C. Joint Compound for IMC, GRC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. B-line, an Eaton business.
 - 2. Hoffman; a brand of nVent.
 - 3. MonoSystems, Inc.
 - 4. Square D.
- B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Hinged type unless otherwise indicated.
- E. Finish: Manufacturer's standard enamel finish.

2.3 BOXES, ENCLOSURES, AND CABINETS

A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- 1. Adalet.
- 2. Crouse-Hinds, an Eaton business.
- 3. EGS/Appleton Electric.
- 4. Erickson Electrical Equipment Company.
- 5. FSR Inc.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.
- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover and threaded hubs.
- E. Metal Floor Boxes:
 - 1. Material: Cast metal or sheet metal.
 - 2. Type: Fully adjustable.
 - 3. Shape: Rectangular.
 - 4. Listing and Labeling: Metal floor boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- F. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lbs shall be listed and marked for the maximum allowable weight.
- G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.
- I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- J. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- K. Gangable boxes are allowed.
- L. Hinged-Cover Enclosures: Comply with UL 50 and NEMA 250, Type 1 with continuous-hinge cover with flush latch unless otherwise indicated.
 - 1. Metal Enclosures: Steel, finished inside and out with manufacturer's standard enamel.
 - 2. Interior Panels: Steel; all sides finished with manufacturer's standard enamel.

M. Cabinets:

- 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
- 2. Hinged door in front cover with flush latch and concealed hinge.
- 3. Key latch to match panelboards.
- 4. Metal barriers to separate wiring of different systems and voltage.
- 5. Accessory feet where required for freestanding equipment.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT identified for such use.
 - 3. Exposed and Subject to Severe Physical Damage: GRC. Raceway locations include the following:
 - a. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - b. Mechanical rooms.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations
 - 6. Damp or Wet Locations: GRC IMC.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 in institutional and damp or wet locations.
- B. Minimum Raceway Size: 3/4-inchtrade size.
- C. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. EMT: Use compression, steel fittings. Comply with NEMA FB 2.10.
 - 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- D. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.
- D. Do not fasten conduits onto the bottom side of a metal deck roof.
- E. Keep raceways at least 6 inchesaway from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- F. Complete raceway installation before starting conductor installation.

- G. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- H. Install no more than the equivalent of three 90-degree bends in any conduit run except for control wiring conduits, for which fewer bends are allowed. Support within 12 inchesof changes in direction.
- I. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
- J. Conceal conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- K. Support conduit within 12 inchesof enclosures to which attached.
- L. Stub-Ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- M. Threaded Conduit Joints, Exposed to Wet, Damp, Corrosive, or Outdoor Conditions: Apply listed compound to threads of raceway and fittings before making up joints. Follow compound manufacturer's written instructions.
- N. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- O. Terminate threaded conduits into threaded hubs. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inchtrade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- P. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- Q. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- R. Cut conduit perpendicular to the length. For conduits 2-inchtrade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.
- S. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lbtensile strength. Leave at least 12 inchesof slack at each end of pull wire.
- T. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inchradius control at bend points.
 - 2. Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inchesand with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.

Construction Documents – 1/24/2022

- U. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- V. Install devices to seal raceway interiors at accessible locations. Locate seals so no fittings or boxes are between the seal and the following changes of environments. Seal the interior of all raceways at the following points:
 - Where conduits pass from warm to cold locations, such as boundaries of refrigerated spaces.
 - 2. Conduit extending into pressurized duct and equipment.
 - 3. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.
 - 4. Where otherwise required by NFPA 70.
- W. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- X. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg Fand that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC conduit that is located where environmental temperature change may exceed 100 deg Fand that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg Ftemperature change.
 - b. Attics: 135 deg Ftemperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- Y. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 36 inchesof flexible conduit for recessed and semi-recessed luminaires, equipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC in damp or wet locations not subject to severe physical damage.
- Z. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- AA. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.

Construction Documents - 1/24/2022

- BB. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- CC. Locate boxes so that cover or plate will not span different building finishes.
- DD. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- EE. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.
- FF. Set metal floor boxes level and flush with finished floor surface.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install 0sleeves and sleeve seals at penetrations of exterior floor and wall assemblies. Comply with requirements in Section 260544 "Sleeves and Sleeve Seals for Electrical Raceways and Cabling."

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

SECTION 260544 - SLEEVES AND SLEEVE SEALS FOR ELECTRICAL RACEWAYS AND CABLING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Sleeves for raceway and cable penetration of non-fire-rated construction walls and floors.
- 2. Sleeve-seal systems.
- 3. Sleeve-seal fittings.
- 4. Grout.
- 5. Silicone sealants.

B. Related Requirements:

1. Section 078413 "Penetration Firestopping" for penetration firestopping installed in fireresistance-rated walls, horizontal assemblies, and smoke barriers, with and without penetrating items.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Wall Sleeves:

- 1. Steel Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, plain ends.
- 2. Cast-Iron Pipe Sleeves: Cast or fabricated "wall pipe," equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies: Galvanized-steel sheet; 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint, with tabs for screw-fastening the sleeve to the board.

Construction Documents – 1/24/2022

- C. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.
- D. Sleeves for Rectangular Openings:
 - 1. Material: Galvanized sheet steel.
 - 2. Minimum Metal Thickness:
 - a. For sleeve cross-section rectangle perimeter less than 50 inchesand with no side larger than 16 inches, thickness shall be 0.052 inch.
 - b. For sleeve cross-section rectangle perimeter 50 inchesor more and one or more sides larger than 16 inches, thickness shall be 0.138 inch.

2.2 SLEEVE-SEAL SYSTEMS

- A. Description: Modular sealing device, designed for field assembly, to fill annular space between sleeve and raceway or cable.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Advance Products & Systems, Inc.
 - b. CALPICO, Inc.
 - c. <u>Metraflex Company (The)</u>.
 - d. Pipeline Seal and Insulator, Inc.
 - e. Proco Products, Inc.
 - 2. Sealing Elements: EPDM rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 3. Pressure Plates: Carbon steel.
 - 4. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating, of length required to secure pressure plates to sealing elements.

2.3 SLEEVE-SEAL FITTINGS

- A. Description: Manufactured plastic, sleeve-type, waterstop assembly made for embedding in concrete slab or wall. Unit shall have plastic or rubber waterstop collar with center opening to match piping OD.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by the following:
 - a. HOLDRITE.

2.4 GROUT

- A. Description: Nonshrink; recommended for interior and exterior sealing openings in non-fire-rated walls or floors.
- B. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.

Construction Documents – 1/24/2022

- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

2.5 SILICONE SEALANTS

- A. Silicone Sealants: Single-component, silicone-based, neutral-curing elastomeric sealants of grade indicated below.
 - 1. Grade: Pourable (self-leveling) formulation for openings in floors and other horizontal surfaces that are not fire rated.
- B. Silicone Foams: Multicomponent, silicone-based liquid elastomers that, when mixed, expand and cure in place to produce a flexible, non-shrinking foam.

PART 3 - EXECUTION

- 3.1 SLEEVE INSTALLATION FOR NON-FIRE-RATED ELECTRICAL PENETRATIONS
 - A. Comply with NECA 1.
 - B. Comply with NEMA VE 2 for cable tray and cable penetrations.
 - C. Sleeves for Conduits Penetrating Above-Grade Non-Fire-Rated Concrete and Masonry-Unit Floors and Walls:
 - 1. Interior Penetrations of Non-Fire-Rated Walls and Floors:
 - a. Seal annular space between sleeve and raceway or cable, using joint sealant appropriate for size, depth, and location of joint. Comply with requirements in Section 079200 "Joint Sealants."
 - b. Seal space outside of sleeves with mortar or grout. Pack sealing material solidly between sleeve and wall so no voids remain. Tool exposed surfaces smooth; protect material while curing.
 - 2. Use pipe sleeves unless penetration arrangement requires rectangular sleeved opening.
 - 3. Size pipe sleeves to provide 1/4-inchannular clear space between sleeve and raceway or cable unless sleeve seal is to be installed.
 - 4. Install sleeves for wall penetrations unless core-drilled holes or formed openings are used. Install sleeves during erection of walls. Cut sleeves to length for mounting flush with both surfaces of walls. Deburr after cutting.
 - 5. Install sleeves for floor penetrations. Extend sleeves installed in floors 2 inchesabove finished floor level. Install sleeves during erection of floors.
 - D. Sleeves for Conduits Penetrating Non-Fire-Rated Gypsum Board Assemblies:
 - 1. Use circular metal sleeves unless penetration arrangement requires rectangular sleeved opening.

Construction Documents – 1/24/2022

- 2. Seal space outside of sleeves with approved joint compound for gypsum board assemblies.
- E. Roof-Penetration Sleeves: Seal penetration of individual raceways and cables with flexible boot-type flashing units applied in coordination with roofing work.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at raceway entries into building.
- B. Install type and number of sealing elements recommended by manufacturer for raceway or cable material and size. Position raceway or cable in center of sleeve. Assemble mechanical sleeve seals and install in annular space between raceway or cable and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal.

3.3 SLEEVE-SEAL-FITTING INSTALLATION

- A. Install sleeve-seal fittings in new walls and slabs as they are constructed.
- B. Assemble fitting components of length to be flush with both surfaces of concrete slabs and walls. Position waterstop flange to be centered in concrete slab or wall.
- C. Secure nailing flanges to concrete forms.
- D. Using grout, seal the space around outside of sleeve-seal fittings.

END OF SECTION 260544

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
- 2. Labels.
- 3. Bands and tubes.
- 4. Tapes and stencils.
- 5. Tags.
- 6. Signs.
- 7. Cable ties.
- 8. Paint for identification.
- 9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.
- B. Samples: For each type of label and sign to illustrate composition, size, colors, lettering style, mounting provisions, and graphic features of identification products.
- C. Identification Schedule: For each piece of electrical equipment and electrical system components to be an index of nomenclature for electrical equipment and system components used in identification signs and labels. Use same designations indicated on Drawings.
- D. Delegated-Design Submittal: For arc-flash hazard study.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Comply with ASME A13.1 and IEEE C2.

- B. Comply with NFPA 70.
- C. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- D. Comply with ANSI Z535.4 for safety signs and labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.
- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage and system or service type.
- B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded feeder and branch-circuit conductors.
 - 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - 4. Color for Neutral: White.
 - 5. Color for Equipment Grounds: Green.
 - 6. Colors for Isolated Grounds: Green with white stripe.
- C. Warning Label Colors:
 - 1. Identify system voltage with black letters on an orange background.
- D. Equipment Identification Labels:
 - 1. Black letters on a white field.

2.3 LABELS

- A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Champion America.
 - c. emedco.
 - d. Grafoplast Wire Markers.
 - e. HellermannTyton.
- B. Snap-around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters and that stay in place by gripping action.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Brady Corporation</u>.
 - b. HellermannTvton.
 - c. Marking Services, Inc.
 - d. Panduit Corp.
 - e. <u>Seton Identification Products</u>.
- C. Self-Adhesive Wraparound Labels: Preprinted, 3-mil-thick, polyester flexible label with acrylic pressure-sensitive adhesive.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. A'n D Cable Products.
 - b. <u>Brady Corporation</u>.
 - c. Brother International Corporation.
 - d. emedco.
 - e. Grafoplast Wire Markers.
 - 2. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
 - 3. Marker for Labels: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 - 4. Marker for Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.
- D. Self-Adhesive Labels: Polyester, thermal, transfer-printed, 3-mil-thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:

- a. A'n D Cable Products.
- b. Brady Corporation.
- c. Brother International Corporation.
- d. emedco.
- e. Grafoplast Wire Markers.
- 2. Minimum Nominal Size:
 - a. 1-1/2 by 6 inches for raceway and conductors.
 - b. 3-1/2 by 5 inches for equipment.
 - c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES

- A. Snap-around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters and that stay in place by gripping action.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. HellermannTyton.
 - c. Marking Services, Inc.
 - d. Panduit Corp.
- B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameter and shrunk to fit firmly. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Panduit Corp.

2.5 TAPES AND STENCILS

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Carlton Industries, LP.
 - b. Champion America.
 - c. HellermannTyton.
 - d. Ideal Industries, Inc.
 - e. Marking Services, Inc.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.

- 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Marking Services, Inc.
- C. Tape and Stencil: 4-inch-wide black stripes on 10-inch centers placed diagonally over orange background and are 12 inches wide. Stop stripes at legends.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. HellermannTyton.
 - b. LEM Products Inc.
 - c. Marking Services, Inc.
 - d. Seton Identification Products.
- D. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.6 TAGS

- A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Brady Corporation</u>.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Marking Services, Inc.
 - e. Seton Identification Products.
- B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory screened permanent designations; punched for use with self-locking cable tie fastener.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. <u>Brady Corporation</u>.
 - b. Carlton Industries, LP.
 - c. emedco.
 - d. Grafoplast Wire Markers.
 - e. <u>LEM Products Inc.</u>

2.7 SIGNS

- A. Metal-Backed Butyrate Signs:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Brady Corporation.
 - b. Champion America.
 - c. emedco.
 - d. Marking Services, Inc.
 - 2. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
 - 3. 1/4-inch grommets in corners for mounting.
 - 4. Nominal Size: 10 by 14 inches.

2.8 CABLE TIES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. HellermannTyton.
 - 2. Ideal Industries, Inc.
 - 3. Marking Services, Inc.
 - 4. Panduit Corp.
- B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg Faccording to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg Faccording to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).

B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
- G. System Identification for Raceways and Cables under 600 V: Identification shall completely encircle cable or conduit. Place identification of two-color markings in contact, side by side.
 - 1. Secure tight to surface of conductor, cable, or raceway.
- H. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.
- I. Elevated Components: Increase sizes of labels, signs, and letters to those appropriate for viewing from the floor.
- J. Accessible Fittings for Raceways: Identify the covers of each junction and pull box of the following systems with the wiring system legend and system voltage. System legends shall be as follows:
 - 1. "EMERGENCY POWER."
 - 2. "POWER."
- K. Vinyl Wraparound Labels:

- 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
- 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- L. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.
- M. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.
- N. Self-Adhesive Labels:
 - 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high label; where two lines of text are required, use labels 2 inches high.
- O. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.
- P. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.
- Q. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.
- R. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 - 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.
- S. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.
- T. Metal Tags:
 - 1. Place in a location with high visibility and accessibility.
 - 2. Secure using general-purpose cable ties.
- U. Nonmetallic Preprinted Tags:
 - 1. Place in a location with high visibility and accessibility.
 - 2. Secure using general-purpose cable ties.
- V. Metal-Backed Butyrate Signs:
 - 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
 - 2. Unless otherwise indicated, provide a single line of text with 1/2-inch-high letters on 1-1/2-inch-high sign; where two lines of text are required, use labels 2 incheshigh.

- W. Cable Ties: General purpose, for attaching tags, except as listed below:
 - 1. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
- C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive raceway labels.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at maximum intervals in straight runs, and at 25-footmaximum intervals in congested areas.
- D. Accessible Fittings for Raceways and Cables within Buildings: Identify the covers of each junction and pull box of the following systems with self-adhesive labels containing the wiring system legend and system voltage. System legends shall be as follows:
 - "EMERGENCY POWER."
 - 2. "POWER."
- E. Power-Circuit Conductor Identification, 600 V or Less: For conductors in vaults, pull and junction boxes, manholes, and handholes, use vinyl wraparound labels to identify the phase.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-footmaximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- F. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, manholes, and handholes, use write-on tags with the conductor or cable designation, origin, and destination.
- G. Control-Circuit Conductor Termination Identification: For identification at terminations, provide heat-shrink preprinted tubes with the conductor designation.
- H. Conductors to Be Extended in the Future: Attach write-on tags to conductors and list source.
- I. Auxiliary Electrical Systems Conductor Identification: Marker tape that is uniform and consistent with system used by manufacturer for factory-installed connections.
 - 1. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, and pull points. Identify by system and circuit designation.
- J. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.

Construction Documents - 1/24/2022

- K. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Baked-enamel warning signs.
 - 1. Apply to exterior of door, cover, or other access.
 - a. Controls with external control power connections.
- L. Arc Flash Warning Labeling: Self-adhesive labels.
- M. Operating Instruction Signs: Baked-enamel warning signs.
- N. Emergency Operating Instruction Signs: Baked-enamel warning signs with white legend on a red background with minimum 3/8-inch-high letters for emergency instructions at equipment used for power transfer.
- O. Equipment Identification Labels:
 - 1. Indoor Equipment: Baked-enamel signs.
 - 2. Equipment to Be Labeled:
 - a. Enclosures and electrical cabinets.
 - b. Access doors and panels for concealed electrical items.
 - c. Emergency system boxes and enclosures.
 - d. Enclosed switches.
 - e. Enclosed circuit breakers.
 - f. Enclosed controllers.
 - g. Variable-speed controllers.
 - h. Contactors.
 - i. Remote-controlled switches, dimmer modules, and control devices.
 - j. Monitoring and control equipment.

END OF SECTION 260553

SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Time switches.
 - 2. Indoor occupancy and vacancy sensors.
 - 3. Switchbox-mounted occupancy sensors.
 - 4. Digital timer light switches.
 - 5. Lighting contactors.
 - 6. Emergency shunt relays.

B. Related Requirements:

1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings:
 - 1. Show installation details for the following:
 - a. Occupancy sensors.
 - b. Vacancy sensors.
 - 2. Interconnection diagrams showing field-installed wiring.
 - 3. Include diagrams for power, signal, and control wiring.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and elevations, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.

- 2. Structural members to which equipment will be attached.
- 3. Items penetrating finished ceiling, including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Control modules.
- B. Field quality-control reports.
- C. Sample Warranty: For manufacturer's warranties.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.6 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Faulty operation of lighting control software.
 - b. Faulty operation of lighting control devices.
 - 2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Cooper Industries, Inc.
 - 2. Intermatic, Inc.
 - 3. <u>Invensys Controls</u>.
 - 4. Leviton Manufacturing Co., Inc.
 - 5. NSi Industries LLC.

2.2 INDOOR OCCUPANCYAND VACANCY SENSORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Bryant Electric.
 - 2. Cooper Industries, Inc.
 - 3. <u>Hubbell Building Automation, Inc.</u>
 - 4. Intermatic, Inc.
 - 5. Leviton Manufacturing Co., Inc.
- B. General Requirements for Sensors:
 - 1. Ceiling-mounted, solid-state indoor occupancy sensors.
 - 2. Dual technology.
 - 3. Integrated power pack.
 - 4. Hardwired connection to switch.
 - 5. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 6. Operation:
 - a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - b. Vacancy Sensor: Unless otherwise indicated, lights are manually turned on and sensor turns lights off when the room is unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - c. Combination Sensor: Unless otherwise indicated, sensor shall be programmed to turn lights on when coverage area is occupied and turn them off when unoccupied, or to turn off lights that have been manually turned on; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 7. Sensor Output: Contacts rated to operate the connected relay, complying with UL 773A.
 - 8. Power: Line voltage.
 - 9. Mounting:
 - a. Sensor: Suitable for mounting in any position on a standard outlet box.
 - b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
 - c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged
 - Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
 - 11. Bypass Switch: Override the "on" function in case of sensor failure.
 - 12. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.
- C. Dual-Technology Type: Ceiling mounted; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.

- 2. Detector Sensitivity: Detect occurrences of 6-inch-minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
- 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch-high ceiling.
- 4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180-degree pattern centered on the sensor over an area of 1000 square feet when mounted 48 inches above finished floor.

2.3 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Bryant Electric.
 - 2. Cooper Industries, Inc.
 - 3. Hubbell Building Automation, Inc.
 - 4. Intermatic, Inc.
 - 5. <u>Leviton Manufacturing Co., Inc.</u>
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual on-off switch, suitable for mounting in a single gang switchbox.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
 - Switch Rating: Not less than 800-VA or LED load at LED load at 277 V, and 800-W incandescent.

C. Wall-Switch Sensor:

- 1. Standard Range: 180-degree field of view, field adjustable from 180 to 40 degrees; with a minimum coverage area of 900 sq. ft..
- 2. Sensing Technology: Dual technology PIR and ultrasonic.
- 3. Switch Type: SP, field-selectable automatic "on," or manual "on," automatic "off."
- 4. Capable of controlling load in three-way application.
- 5. Voltage: Match the circuit voltage.
- 6. Ambient-Light Override: Concealed, field-adjustable, light-level sensor from 10 to 150 fc. The switch prevents the lights from turning on when the light level is higher than the set point of the sensor.
- 7. Concealed, field-adjustable, "off" time-delay selector at up to 30 minutes.
- 8. Concealed, "off" time-delay selector at 30 seconds and 5, 10, and 20 minutes.
- 9. Adaptive Technology: Self-adjusting circuitry detects and memorizes usage patterns of the space and helps eliminate false "off" switching.
- 10. Color: As selected by Architect.
- 11. Faceplate: Color matched to switch.

2.4 LIGHTING CONTACTORS

- A. Description: Electrically operated and mechanically held, complying with NEMA ICS 2 and UL 508.
 - 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less THD of normal load current).
 - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 - 3. Enclosure: Comply with NEMA 250.
 - 4. Provide with control and pilot devices as indicated on Drawings, matching the NEMA type specified for the enclosure.

2.5 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
- B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

- A. Comply with NECA 1.
- B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.

C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 CONTACTOR INSTALLATION

- A. Comply with NECA 1.
- B. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structureborne vibration unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.4 WIRING INSTALLATION

- A. Comply with NECA 1.
- B. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.
- C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.5 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate lighting control devices and perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:

Construction Documents – 1/24/2022

- 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
- 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Lighting control devices will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.7 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 - 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
 - 3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.8 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Standard-grade receptacles, 125 V, 20 A.
- 2. GFCI receptacles, 125 V, 20 A.
- 3. Cord and plug sets.
- 4. Toggle switches, 120/277 V, 20 A.
- 5. Occupancy sensors.
- 6. Wall-box dimmers.
- 7. Wall plates.
- 8. Prefabricated multioutlet assemblies.

1.3 DEFINITIONS

- A. AFCI: Arc-fault circuit interrupter.
- B. BAS: Building automation system.
- C. EMI: Electromagnetic interference.
- D. GFCI: Ground-fault circuit interrupter.
- E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- F. RFI: Radio-frequency interference.
- G. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Shop Drawings: List of legends and description of materials and process used for premarking wall plates.
- C. Samples: One for each type of device and wall plate specified, in each color specified.

1.5 INFORMATIONAL SUBMITTALS

Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Comply with NFPA 70.
- C. RoHS compliant.
- D. Comply with NEMA WD 1.
- E. Devices that are manufactured for use with modular plug-in connectors may be substituted under the following conditions:
 - 1. Connectors shall comply with UL 2459 and shall be made with stranding building wire.
 - 2. Devices shall comply with requirements in this Section.
- F. Devices for Owner-Furnished Equipment:
 - 1. Receptacles: Match plug configurations.
 - 2. Cord and Plug Sets: Match equipment requirements.
- G. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: As selected by Architect unless otherwise indicated or required by NFPA 70 or device listing.
 - 2. Wiring Devices Connected to Essential Electrical System: Red.
 - 3. SPD Devices: Blue.
 - 4. Isolated-Ground Receptacles: Orange.
- H. Wall Plate Color: For plastic covers, match device color.
- I. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STANDARD-GRADE RECEPTACLES, 125 V, 20 A

- A. Duplex Receptacles, 125 V, 20 A:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Eaton (Arrow Hart).
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. <u>Leviton Manufacturing Co., Inc.</u>
 - d. Pass & Seymour/Legrand (Pass & Seymour).
 - 2. Description: Two pole, three wire, and self-grounding.
 - 3. Configuration: NEMA WD 6, Configuration 5-20R.
 - 4. Standards: Comply with UL 498 and FS W-C-596.

2.3 TOGGLE SWITCHES, 120/277 V, 20 A

- A. Single-Pole Switches, 120/277 V, 20 A:
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Eaton (Arrow Hart).
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Leviton Manufacturing Co., Inc.
 - d. Pass & Seymour/Legrand (Pass & Seymour).
 - 2. Standards: Comply with UL 20 and FS W-S-896.

2.4 WALL PLATES

- A. Single Source: Obtain wall plates from same manufacturer of wiring devices.
- B. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: 0.035-inch-thick, satin-finished, Type 302 stainless steel.
 - 3. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.
- C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:

- 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
- Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
- 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
- 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

- Do not strip insulation from conductors until right before they are spliced or terminated on devices.
- 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
- 3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
- 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:

- 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.
- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

Construction Documents – 1/24/2022

- 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

- A. Comply with Section 260553 "Identification for Electrical Systems."
- B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.
- C. Essential Electrical System: Mark receptacles supplied from the essential electrical system to allow easy identification using a self-adhesive label.

3.4 FIELD QUALITY CONTROL

- A. Test Instruments: Use instruments that comply with UL 1436.
- B. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.
- C. Perform the following tests and inspections:
 - 1. Test Instruments: Use instruments that comply with UL 1436.
 - 2. Test Instrument for Receptacles: Digital wiring analyzer with digital readout or illuminated digital-display indicators of measurement.

D. Tests for Receptacles:

- 1. Line Voltage: Acceptable range is 105 to 132 V.
- 2. Percent Voltage Drop under 15-A Load: A value of 6 percent or higher is unacceptable.
- 3. Ground Impedance: Values of up to 2 ohms are acceptable.
- 4. GFCI Trip: Test for tripping values specified in UL 1436 and UL 943.
- 5. Using the test plug, verify that the device and its outlet box are securely mounted.

EwingCole
Baltimore, MD
EwingCole Project No. 20190846

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents - 1/24/2022

- 6. Tests shall be diagnostic, indicating damaged conductors, high resistance at the circuit breaker, poor connections, inadequate fault-current path, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- E. Wiring device will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

END OF SECTION 262726

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.
 - 3. Molded-case circuit breakers (MCCBs).
 - 4. Enclosures.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Include evidence of a nationally recognized testing laboratory (NRTL) listing for series rating of installed devices.
 - 5. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.
 - 6. Include time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF and electronic format.
- B. Shop Drawings: For enclosed switches and circuit breakers.

- 1. Include plans, elevations, sections, details, and attachments to other work.
- 2. Include wiring diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For qualified testing agency.
- B. Seismic Qualification Data: Certificates, for enclosed switches and circuit breakers, accessories, and components, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 - In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.
 - b. Time-current coordination curves (average melt) for each type and rating of overcurrent protective device; include selectable ranges for each type of overcurrent protective device. Provide in PDF and electronic format.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.8 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 FIELD CONDITIONS

- A. Environmental Limitations: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than minus 22 deg Fand not exceeding 104 deg F.
 - 2. Altitude: Not exceeding 6600 feet.

1.10 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for enclosed switches and circuit breakers, including clearances between enclosures, and adjacent surfaces and other items. Comply with indicated maximum dimensions.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- D. Comply with NFPA 70.

2.2 FUSIBLE SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. ABB Inc.
 - 2. Eaton.
 - 3. General Electric Company.
 - 4. Siemens Industry, Inc., Energy Management Division.
 - 5. Square D; by Schneider Electric.
- B. Type HD, Heavy Duty:
 - 1. Single throw.
 - 2. Three pole.
 - 3. 600-V ac.

- 4. 1200 A and smaller.
- 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate indicated fuses.
- 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
- 4. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating 120-V ac.
- 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
- 7. Lugs: Mechanical type, suitable for number, size, and conductor material.
- 8. Service-Rated Switches: Labeled for use as service equipment.

2.3 NONFUSIBLE SWITCHES

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. General Electric Company.
 - 3. Siemens Industry, Inc., Energy Management Division.
 - Square D; by Schneider Electric.
- B. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

- Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Isolated Ground Kit: Internally mounted; insulated, labeled for copper and aluminum neutral conductors.
- Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 5. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating 120-V ac.
- 6. Hookstick Handle: Allows use of a hookstick to operate the handle.
- 7. Lugs: Mechanical type, suitable for number, size, and conductor material.
- 8. Service-Rated Switches: Labeled for use as service equipment.

2.4 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
- B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1).
- C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.
- D. Operating Mechanism: The circuit-breaker operating handle shall be externally operable with the operating mechanism being an integral part of the box, not the cover. The cover interlock mechanism shall have an externally operated override. The override shall not permanently disable the interlock mechanism, which shall return to the locked position once the override is released. The tool used to override the cover interlock mechanism shall not be required to enter the enclosure in order to override the interlock.
- E. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.
- F. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 PREPARATION

- A. Interruption of Existing Electric Service: Do not interrupt electric service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary electric service according to requirements indicated:
 - 1. Notify Owner no fewer than seven days in advance of proposed interruption of electric service.
 - 2. Indicate method of providing temporary electric service.
 - 3. Do not proceed with interruption of electric service without Owner's written permission.

4. Comply with NFPA 70E.

3.3 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

- A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 - 3. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.4 INSTALLATION

- A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- C. Comply with mounting and anchoring requirements specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- D. Temporary Lifting Provisions: Remove temporary lifting of eyes, channels, and brackets and temporary blocking of moving parts from enclosures and components.
- E. Install fuses in fusible devices.
- F. Comply with NFPA 70 and NECA 1.
- G. Installation mounting height shall not exceed 6'-0" from finished floor the operating handle when at its highest position.

3.5 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.6 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.

C. Tests and Inspections for Switches:

- 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, grounding, and clearances.
 - c. Verify that the unit is clean.
 - d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 - e. Verify that fuse sizes and types match the Specifications and Drawings.
 - f. Verify that each fuse has adequate mechanical support and contact integrity.
 - g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - 1) Use a low-resistance ohmmeter.
 - a) Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - 2) Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method in accordance with manufacturer's published data or NETA ATS Table 100.12.
 - a) Bolt-torque levels shall be in accordance with manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
 - h. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 - i. Verify correct phase barrier installation.
 - j. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.

2. Electrical Tests:

- a. Perform resistance measurements through bolted connections with a low-resistance ohmmeter. Compare bolted connection resistance values to values of similar connections. Investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
- b. Measure contact resistance across each switchblade fuseholder. Drop values shall not exceed the high level of the manufacturer's published data. If manufacturer's published data are not available, investigate values that deviate from adjacent poles or similar switches by more than 50 percent of the lowest value.
- c. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Apply voltage in accordance with manufacturer's published data. In the absence of manufacturer's published data, use Table 100.1 from the NETA ATS. Investigate values of insulation resistance less than those published in Table 100.1 or as recommended in manufacturer's published data.
- d. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
- e. Perform ground fault test according to NETA ATS 7.14 "Ground Fault Protection Systems, Low-Voltage."

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents - 1/24/2022

- D. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.
 - 1. Test procedures used.
 - 2. Include identification of each enclosed switch and circuit breaker tested and describe test results.
 - 3. List deficiencies detected, remedial action taken, and observations after remedial action.

3.7 ADJUSTING

A. Adjust moving parts and operable components to function smoothly and lubricate as recommended by manufacturer.

END OF SECTION 262816

SECTION 262913.03 - MANUAL AND MAGNETIC MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Manual motor controllers.
- 2. Enclosed full-voltage magnetic motor controllers.
- 3. Combination full-voltage magnetic motor controllers.
- 4. Enclosed reduced-voltage magnetic motor controllers.
- 5. Combination reduced-voltage magnetic motor controllers.
- 6. Multispeed magnetic motor controllers.
- 7. Combination multispeed magnetic motor controllers.
- 8. Enclosures.
- 9. Accessories.
- 10. Identification.

1.3 DEFINITIONS

- A. CPT: Control power transformer.
- B. MCCB: Molded-case circuit breaker.
- C. MCP: Motor circuit protector.
- D. NC: Normally closed.
- E. OCPD: Overcurrent protective device.
- F. SCCR: Short-circuit current rating.
- G. SCPD: Short-circuit protective device.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

- B. Shop Drawings: For each type of magnetic controller.
 - 1. Include plans, elevations, sections, and mounting details.
 - 2. Indicate dimensions, weights, required clearances, and location and size of each field connection.
 - 3. Wire Termination Diagrams and Schedules: Include diagrams for signal, and control wiring. Identify terminals and wiring designations and color-codes to facilitate installation, operation, and maintenance. Indicate recommended types, wire sizes, and circuiting arrangements for field-installed wiring, and show circuit protection features. Differentiate between manufacturer-installed and field-installed wiring.
 - 4. Include features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- C. Product Schedule: List the following for each enclosed controller:
 - 1. Each installed magnetic controller type.
 - 2. NRTL listing.
 - 3. Factory-installed accessories.
 - 4. Nameplate legends.
 - 5. SCCR of integrated unit.
 - 6. For each combination magnetic controller include features, characteristics, ratings, and factory setting of the SCPD and OCPD.
 - a. Listing document proving Type 2 coordination.
 - 7. For each series-rated combination state the listed integrated short-circuit current (withstand) rating of SCPD and OCPDs by an NRTL acceptable to authorities having jurisdiction.

1.5 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For testing agency.
- B. Seismic Qualification Data: Certificates, for magnetic controllers, from manufacturer.
 - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements.
- C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For magnetic controllers to include in operation and maintenance manuals.

- 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Routine maintenance requirements for magnetic controllers and installed components.
 - b. Manufacturer's written instructions for testing and adjusting circuit breaker and MCP trip settings.
 - c. Manufacturer's written instructions for setting field-adjustable overload relays.
 - d. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate full-load currents.
 - e. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Indicating Lights: Two of each type and color installed.
 - 4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
 - 5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Store controllers indoors in clean, dry space with uniform temperature to prevent condensation. Protect controllers from exposure to dirt, fumes, water, corrosive substances, and physical damage.

1.10 FIELD CONDITIONS

- A. Ambient Environment Ratings: Rate equipment for continuous operation under the following conditions unless otherwise indicated:
 - 1. Ambient Temperature: Not less than 23 deg Fand not exceeding 104 deg F.

- 2. Altitude: Not exceeding 6600 feetfor electromagnetic and manual devices.
- 3. The effect of solar radiation is not significant.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. UL Compliance: Fabricate and label magnetic motor controllers to comply with UL 508 and UL 60947-4-1.
- C. NEMA Compliance: Fabricate motor controllers to comply with ICS 2.

2.2 MANUAL MOTOR CONTROLLERS

- A. Motor-Starting Switches (MSS): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off or on.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Eaton.
 - b. General Electric Company.
 - c. Rockwell Automation, Inc.
 - d. Siemens Industry, Inc., Energy Management Division.
 - e. Square D; by Schneider Electric.
 - 2. Standard: Comply with NEMA ICS 2, general purpose, Class A.
 - 3. Configuration: Nonreversing.
 - 4. Surface mounting.
 - 5. Red pilot light.
 - 6. Additional Nameplates: HIGH and LOW for two-speed switches.
- B. Fractional Horsepower Manual Controllers (FHPMC): "Quick-make, quick-break" toggle or push-button action; marked to show whether unit is off, on, or tripped.
 - 1. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - a. Eaton.
 - b. <u>General Electric Company</u>.
 - c. Rockwell Automation, Inc.
 - d. <u>Siemens Industry, Inc., Energy Management Division</u>.
 - e. Square D; by Schneider Electric.
 - 2. Configuration: Nonreversing.

- 3. Overload Relays: Inverse-time-current characteristics; NEMA ICS 2, Class 10 tripping characteristics; heaters matched to nameplate full-load current of actual protected motor; external reset push button; bimetallic type.
- 4. Overload Relays: NEMA ICS 2, bimetallic class.
- 5. Pilot Light: Red.

2.3 ENCLOSED FULL-VOLTAGE MAGNETIC MOTOR CONTROLLERS

- A. Description: Across-the-line start, electrically held, for nominal system voltage of 600-V ac and less
- B. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - 1. Eaton.
 - 2. General Electric Company.
 - 3. Rockwell Automation, Inc.
 - 4. Siemens Industry, Inc., Energy Management Division.
 - 5. Square D; by Schneider Electric.
- C. Standard: Comply with NEMA ICS 2, general purpose, Class A.
- D. Configuration: Nonreversing.
- E. Contactor Coils: Pressure-encapsulated type.
 - 1. Operating Voltage: Manufacturer's standard, unless indicated.
- F. Control Power:
 - 1. For on-board control power, obtain from line circuit or from integral CPT. The CPT shall have capacity to operate integral devices and remotely located pilot, indicating, and control devices.
- G. Overload Relays:
 - 1. Thermal Overload Relays:
 - a. Inverse-time-current characteristic.
 - b. Class 10 tripping characteristic.
 - c. Heaters in each phase shall be matched to nameplate full-load current of actual protected motor and with appropriate adjustment for duty cycle.
 - d. Ambient compensated.
 - e. Automatic resetting.

2.4 ENCLOSURES

A. Comply with NEMA 250, type designations as indicated on Drawings and specifications, complying with environmental conditions at installed location.

- B. The construction of the enclosures shall comply with NEMA ICS 6.
- C. Controllers in hazardous (classified) locations shall comply with UL 1203.

2.5 ACCESSORIES

- A. General Requirements for Control Circuit and Pilot Devices: NEMA ICS 5; factory installed in controller enclosure cover unless otherwise indicated.
 - 1. Push Buttons, Pilot Lights, and Selector Switches: Standard-duty, except as needed to match enclosure type. Heavy-duty or oil-tight where indicated in the controller schedule.
 - a. Push Buttons: As indicated in the controller schedule.
 - b. Pilot Lights: As indicated in the controller schedule.
- B. Breather assemblies, to maintain interior pressure and release condensation in Type 4 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.
- C. Space heaters, with NC auxiliary contacts, to mitigate condensation in Type 3R enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.
- D. Sun shields installed on fronts, sides, and tops of enclosures installed outdoors and subject to direct and extended sun exposure.

2.6 IDENTIFICATION

- A. Controller Nameplates: Baked enamel signs, as described in Section 260553 "Identification for Electrical Systems," for each compartment, mounted with corrosion-resistant screws.
- B. Arc-Flash Warning Labels:
 - Comply with requirements in Section 260553 "Identification for Electrical Systems."
 Produce a 3.5-by-5-inchself-adhesive equipment label for each work location included in
 the analysis. Labels shall be machine printed, with no field-applied markings.
 - a. Labels shall be machine printed, with no field-applied markings.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine areas and space conditions for compliance with requirements for motor controllers, their relationship with the motors, and other conditions affecting performance of the Work.

3.2 INSTALLATION

- A. Comply with NECA 1.
- B. Wall-Mounted Controllers: Install magnetic controllers on walls with tops at uniform height indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not at walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems" unless otherwise indicated.
- C. Floor-Mounted Controllers: Install controllers on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete."
- D. Comply with requirements for seismic control devices specified in Section 260548.16 "Seismic Controls for Electrical Systems."
- E. Maintain minimum clearances and workspace at equipment according to manufacturer's written instructions and NFPA 70.
- F. Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.
- G. Setting of Overload Relays: Select and set overloads on the basis of full-load current rating as shown on motor nameplate. Adjust setting value for special motors as required by NFPA 70 for motors that are high-torque, high-efficiency, and so on.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform tests and inspections.
- D. Tests and Inspections:
 - 1. Comply with the provisions of NFPA 70B, "Testing and Test Methods" Chapter.
 - 2. Visual and Mechanical Inspection:
 - a. Compare equipment nameplate data with drawings and specifications.
 - b. Inspect physical and mechanical condition.
 - c. Inspect anchorage, alignment, and grounding.
 - d. Verify the unit is clean.

- e. Inspect contactors:
 - 1) Verify mechanical operation.
 - 2) Verify contact gap, wipe, alignment, and pressure are according to manufacturer's published data.
- f. Motor-Running Protection:
 - 1) Verify overload element rating is correct for its application.
 - 2) If motor-running protection is provided by fuses, verify correct fuse rating.
- g. Inspect bolted electrical connections for high resistance using one of the two following methods:
 - Use a low-resistance ohmmeter. Compare bolted connection resistance values with values of similar connections. Investigate values that deviate from those of similar bolted connections by more than 50 percent of the lowest value.
 - Verify tightness of accessible bolted electrical connections by calibrated torque-wrench method according to manufacturer's published data or NETA ATS Table 100.12. Bolt-torque levels shall be according to manufacturer's published data. In the absence of manufacturer's published data, use NETA ATS Table 100.12.
- h. Verify appropriate lubrication on moving current-carrying parts and on moving and sliding surfaces.

Electrical Tests:

- a. Perform insulation-resistance tests for one minute on each pole, phase-to-phase and phase-to-ground with switch closed, and across each open pole. Insulationresistance values shall be according to manufacturer's published data or NETA ATS Table 100.1. In the absence of manufacturer's published data, use Table 100.5. Values of insulation resistance less than those of this table or manufacturer's recommendations shall be investigated and corrected.
- b. Measure fuse resistance. Investigate fuse-resistance values that deviate from each other by more than 15 percent.
- c. Test motor protection devices according to manufacturer's published data.
- d. Test circuit breakers as follows:
 - 1) Operate the circuit breaker to ensure smooth operation.
 - 2) For adjustable circuit breakers, adjust protective device settings according to the coordination study. Comply with coordination study recommendations.
- e. Perform operational tests by initiating control devices.
- 4. Infrared Inspection: Perform the survey during periods of maximum possible loading. Remove all necessary covers prior to the inspection.
 - a. Comply with the recommendations of NFPA 70B, "Testing and Test Methods" Chapter, "Infrared Inspection" Article.

- b. After Substantial Completion, but not more than 60 days after Final Acceptance, perform infrared inspection of the electrical power connections of each motor controller.
- c. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each motor controller 11 months after date of Substantial Completion.
- d. Report of Infrared Inspection: Prepare a certified report that identifies the testing technician and equipment used, and lists the following results:
 - 1) Description of equipment to be tested.
 - 2) Discrepancies.
 - Temperature difference between the area of concern and the reference area.
 - 4) Probable cause of temperature difference.
 - 5) Areas inspected. Identify inaccessible and unobservable areas and equipment.
 - 6) Load conditions at time of inspection.
 - 7) Photographs and thermograms of the deficient area.
 - 8) Recommended action.
- e. Equipment: Inspect distribution systems with imaging equipment capable of detecting a minimum temperature difference of 1C at 30C. The equipment shall detect emitted radiation and convert detected radiation to a visual signal.
- f. Act on inspection results and recommended action, and considering the recommendations of NETA ATS, Table 100.18. Correct possible and probable deficiencies as soon as Owner's operations permit. Retest until deficiencies are corrected.
- E. Motor controller will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports.

3.5 SYSTEM FUNCTION TESTS

- A. System function tests shall prove the correct interaction of sensing, processing, and action devices. Perform system function tests after field quality control tests have been completed and all components have passed specified tests.
 - 1. Develop test parameters and perform tests for the purpose of evaluating performance of integral components and their functioning as a complete unit within design requirements and manufacturer's published data.
 - 2. Verify the correct operation of interlock safety devices for fail-safe functions in addition to design function.
 - 3. Verify the correct operation of sensing devices, alarms, and indicating devices.
- B. Motor controller will be considered defective if it does not pass the system function tests and inspections.
- C. Prepare test and inspection reports.

EwingCole Baltimore, MD EwingCole Project No. 20190846 Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents - 1/24/2022

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain equipment.

END OF SECTION 262913.03

SECTION 262923 - VARIABLE-FREQUENCY MOTOR CONTROLLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes separately enclosed, preassembled, combination VFCs, rated 600 V and less, for speed control of three-phase, squirrel-cage induction motors.

1.3 DEFINITIONS

- A. CE: Conformite Europeene (European Compliance).
- B. CPT: Control power transformer.
- C. DDC: Direct digital control.
- D. EMI: Electromagnetic interference.
- E. LED: Light-emitting diode.
- F. NC: Normally closed.
- G. NO: Normally open.
- H. OCPD: Overcurrent protective device.
- I. PID: Control action, proportional plus integral plus derivative.
- J. RFI: Radio-frequency interference.
- K. VFC: Variable-frequency motor controller.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type and rating of VFC indicated.
 - 1. Include dimensions and finishes for VFCs.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

- B. Shop Drawings: For each VFC indicated.
 - 1. Include mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Floor plans, drawn to scale, showing dimensioned layout on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Required working clearances and required area above and around VFCs.
 - 2. Show VFC layout and relationships between electrical components and adjacent structural and mechanical elements.
 - 3. Show support locations, type of support, and weight on each support.
 - 4. Indicate field measurements.
- B. Qualification Data: For testing agency.
- C. Seismic Qualification Data: Certificates, for each VFC, accessories, and components, from manufacturer.
 - 1. Certificate of compliance.
 - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions.
 - 3. Detailed description of equipment anchorage devices on which the certification is based, and their installation requirements.
- D. Product Certificates: For each VFC from manufacturer.
- E. Harmonic Analysis Report: Provide Project-specific calculations and manufacturer's statement of compliance with IEEE 519.
- F. Source quality-control reports.
- G. Field quality-control reports.
- H. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For VFCs to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

- a. Manufacturer's written instructions for testing and adjusting thermal-magnetic circuit breaker and motor-circuit protector trip settings.
- b. Manufacturer's written instructions for setting field-adjustable overload relays.
- c. Manufacturer's written instructions for testing, adjusting, and reprogramming microprocessor control modules.
- d. Manufacturer's written instructions for setting field-adjustable timers, controls, and status and alarm points.
- e. Load-Current and Overload-Relay Heater List: Compile after motors have been installed, and arrange to demonstrate that selection of heaters suits actual motor nameplate, full-load currents.
- f. Load-Current and List of Settings of Adjustable Overload Relays: Compile after motors have been installed, and arrange to demonstrate that switch settings for motor-running overload protection suit actual motors to be protected.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Control Power Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than two of each size and type.
 - 3. Indicating Lights: Two of each type and color installed.
 - 4. Auxiliary Contacts: Furnish one spare(s) for each size and type of magnetic controller installed.
 - 5. Power Contacts: Furnish three spares for each size and type of magnetic contactor installed.

1.8 QUALITY ASSURANCE

- A. Testing Agency Qualifications: Accredited by NETA.
 - 1. Testing Agency's Field Supervisor: Currently certified by NETA to supervise on-site testing.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. If stored in space that is not permanently enclosed and air conditioned, remove loose packing and flammable materials from inside controllers.
- B. Product Selection for Restricted Space: Drawings indicate maximum dimensions for VFCs, including clearances between VFCs, and adjacent surfaces and other items.

1.10 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace VFCs that fail in materials or workmanship within specified warranty period.

1. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. <u>Manufacturers:</u> Subject to compliance with requirements, provide products by one of the following:
 - Baldor.
 - 2. Square D.
 - 3. Toshiba.
 - 4. ABB Low Voltage HVAC Drives.
 - 5. Cerus Industrial, Inc.
 - 6. Eaton.
 - 7. Yaskawa Electric America, Inc.

2.2 SYSTEM DESCRIPTION

- A. General Requirements for VFCs:
 - 1. VFCs and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Comply with NEMA ICS 7, NEMA ICS 61800-2, and UL 508A.
- B. Application: Constant torque and variable torque.
- C. VFC Description: Variable-frequency motor controller, consisting of power converter that employs pulse-width-modulated inverter, factory built and tested in an enclosure, with integral disconnecting means and overcurrent and overload protection; listed and labeled by an NRTL as a complete unit; arranged to provide self-protection, protection, and variable-speed control of one or more three-phase induction motors by adjusting output voltage and frequency.
 - 1. Units suitable for operation of NEMA MG 1, Design A and Design B motors, as defined by NEMA MG 1, Section IV, Part 30, "Application Considerations for Constant Speed Motors Used on a Sinusoidal Bus with Harmonic Content and General Purpose Motors Used with Adjustable-Voltage or Adjustable-Frequency Controls or Both."
 - 2. Units suitable for operation of inverter-duty motors as defined by NEMA MG 1, Section IV, Part 31, "Definite-Purpose Inverter-Fed Polyphase Motors."
 - 3. Listed and labeled for integrated short-circuit current (withstand) rating by an NRTL acceptable to authorities having jurisdiction.
- D. Design and Rating: Match load type, such as fans, blowers, and pumps; and type of connection used between motor and load such as direct or through a power-transmission connection.
- E. Output Rating: Three phase; 10 to 60 Hz, with voltage proportional to frequency throughout voltage range; maximum voltage equals input voltage.
- F. Unit Operating Requirements:

- 1. Input AC Voltage Tolerance: Plus 10 and minus 10 percent of VFC input voltage rating.
- 2. Input AC Voltage Unbalance: Not exceeding 3 percent.
- 3. Input Frequency Tolerance: Plus or minus 3 percent of VFC frequency rating.
- 4. Minimum Efficiency: 96 percent at 60 Hz, full load.
- 5. Minimum Displacement Primary-Side Power Factor: 96 percent under any load or speed condition.
- 6. Minimum Short-Circuit Current (Withstand) Rating: 65 kA.
- 7. Ambient Temperature Rating: Not less than 32 deg F and not exceeding 104 deg F.
- 8. Humidity Rating: Less than 95 percent (noncondensing).
- 9. Altitude Rating: Not exceeding 3300 feet.
- 10. Vibration Withstand: Comply with NEMA ICS 61800-2.
- 11. Overload Capability: 1.5 times the base load current for 60 seconds; minimum of 1.8 times the base load current for three seconds.
- 12. Starting Torque: Minimum 100 percent of rated torque from 3 to 60 Hz.
- 13. Speed Regulation: Plus or minus 5 percent.
- 14. Output Carrier Frequency: Selectable; 0.5 to 15 kHz.
- 15. Stop Modes: Programmable; includes fast, free-wheel, and dc injection braking.
- G. Inverter Logic: Microprocessor based, 16 bit, isolated from all power circuits.
- H. Isolated Control Interface: Allows VFCs to follow remote-control signal over a minimum 40:1 speed range.
 - 1. Signal: Electrical.
- I. Internal Adjustability Capabilities:
 - 1. Minimum Speed: 5 to 25 percent of maximum rpm.
 - 2. Maximum Speed: 80 to 100 percent of maximum rpm.
 - 3. Acceleration: 0.1 to 999.9 seconds.
 - 4. Deceleration: 0.1 to 999.9 seconds.
 - 5. Current Limit: 30 to minimum of 150 percent of maximum rating.
- J. Self-Protection and Reliability Features:
 - 1. Surge Suppression: Factory installed as an integral part of the VFC, complying with UL 1449 SPD, Type 1 or Type 2.
 - 2. Loss of Input Signal Protection: Selectable response strategy, including speed default to a percent of the most recent speed, a preset speed, or stop; with alarm.
 - 3. Under- and overvoltage trips.
 - 4. Inverter overcurrent trips.
 - VFC and Motor-Overload/Overtemperature Protection: Microprocessor-based thermal protection system for monitoring VFCs and motor thermal characteristics, and for providing VFC overtemperature and motor-overload alarm and trip; settings selectable via the keypad.
 - 6. Critical frequency rejection, with three selectable, adjustable deadbands.
 - 7. Instantaneous line-to-line and line-to-ground overcurrent trips.
 - 8. Loss-of-phase protection.
 - 9. Reverse-phase protection.
 - 10. Short-circuit protection.
 - 11. Motor-overtemperature fault.

- K. Automatic Reset/Restart: Attempt three restarts after drive fault or on return of power after an interruption and before shutting down for manual reset or fault correction; adjustable delay time between restart attempts.
- L. Power-Interruption Protection: To prevent motor from re-energizing after a power interruption until motor has stopped, unless "Bidirectional Autospeed Search" feature is available and engaged.
- M. Bidirectional Autospeed Search: Capable of starting VFC into rotating loads spinning in either direction and returning motor to set speed in proper direction, without causing damage to drive, motor, or load.
- N. Torque Boost: Automatically varies starting and continuous torque to at least 1.5 times the minimum torque to ensure high-starting torque and increased torque at slow speeds.
- O. Motor Temperature Compensation at Slow Speeds: Adjustable current fall-back based on output frequency for temperature protection of self-cooled, fan-ventilated motors at slow speeds.
- P. Integral Input Disconnecting Means and OCPD: UL 489, instantaneous-trip circuit breaker UL 489, thermal-magnetic circuit breaker NEMA KS 1, fusible switch with pad-lockable, doormounted handle mechanism.
 - 1. Disconnect Rating: Not less than 115 percent of VFC input current rating.
 - 2. Disconnect Rating: Not less than 115 percent of NFPA 70 motor full-load current rating or VFC input current rating, whichever is larger.
 - 3. Auxiliary Contacts: NO or NC, arranged to activate before switch blades open.
 - 4. Auxiliary contacts "a" and "b" arranged to activate with circuit-breaker handle.
 - 5. NO alarm contact that operates only when circuit breaker has tripped.

2.3 PERFORMANCE REQUIREMENTS

- A. Seismic Performance: VFCs shall withstand the effects of earthquake motions determined according to ASCE/SEI 7. The designated VFCs shall be tested and certified by an NRTL as meeting the ICC-ES AC 156 test procedure requirements.
 - 1. The term "withstand" means "the unit will remain in place without separation of any parts when subjected to the seismic forces specified."

2.4 CONTROLS AND INDICATION

- A. Status Lights: Door-mounted LED indicators displaying the following conditions:
 - 1. Power on.
 - 2. Run.
 - 3. Overvoltage.
 - 4. Line fault.
 - 5. Overcurrent.
 - 6. External fault.

- B. Panel-Mounted Operator Station: Manufacturer's standard front-accessible, sealed keypad and plain-English-language digital display; allows complete programming, program copying, operating, monitoring, and diagnostic capability.
 - Keypad: In addition to required programming and control keys, include keys for HAND, OFF, and AUTO modes.
 - 2. Security Access: Provide electronic security access to controls through identification and password with at least three levels of access: View only; view and operate; and view, operate, and service.
 - Control Authority: Supports at least four conditions: Off, local manual control at VFC, local automatic control at VFC, and automatic control through a remote source.
- C. Historical Logging Information and Displays:
 - 1. Real-time clock with current time and date.
 - 2. Running log of total power versus time.
 - 3. Total run time.
 - 4. Fault log, maintaining last four faults with time and date stamp for each.
- D. Indicating Devices: Digital display and additional readout devices as required, mounted flush in VFC door and connected to display VFC parameters including, but not limited to:
 - 1. Output frequency (Hz).
 - 2. Motor speed (rpm).
 - 3. Motor status (running, stop, fault).
 - 4. Motor current (amperes).
 - 5. Motor torque (percent).
 - 6. Fault or alarming status (code).
 - 7. PID feedback signal (percent).
 - 8. DC-link voltage (V dc).
 - 9. Set point frequency (Hz).
 - 10. Motor output voltage (V ac).
- E. Control Signal Interfaces:
 - 1. Electric Input Signal Interface:
 - a. A minimum of two programmable analog inputs: 4- to 20-mA dc.
 - b. A minimum of six multifunction programmable digital inputs.
 - 2. Pneumatic Input Signal Interface: 3 to 15 psig.
 - 3. Remote Signal Inputs: Capability to accept any of the following speed-setting input signals from the DDC system for HVAC or other control systems:
 - a. 0- to 10-V dc.
 - b. 4- to 20-mA dc.
 - c. Potentiometer using up/down digital inputs.
 - d. Fixed frequencies using digital inputs.

- 4. Output Signal Interface: A minimum of one programmable analog output signal(s) (4- to 20-mA dc), which can be configured for any of the following:
 - Output frequency (Hz).
 - b. Output current (load).
 - c. DC-link voltage (V dc).
 - d. Motor torque (percent).
 - e. Motor speed (rpm).
 - f. Set point frequency (Hz).
- 5. Remote Indication Interface: A minimum of two programmable dry-circuit relay outputs (120-V ac, 1 A) for remote indication of the following:
 - a. Motor running.
 - b. Set point speed reached.
 - c. Fault and warning indication (overtemperature or overcurrent).
 - d. PID high- or low-speed limits reached.
- F. PID Control Interface: Provides closed-loop set point, differential feedback control in response to dual feedback signals. Allows for closed-loop control of fans and pumps for pressure, flow, or temperature regulation.
 - 1. Number of Loops: One.
- G. Interface with DDC System for HVAC: Factory-installed hardware and software shall interface with DDC system for HVAC to monitor, control, display, and record data for use in processing reports. VFC settings shall be retained within VFC's nonvolatile memory.
 - 1. Hardwired Points:
 - a. Monitoring: On-off status.
 - b. Control: On-off operation.
 - Communication Interface: Comply with ASHRAE 135. Communication shall interface with DDC system for HVAC to remotely control and monitor lighting from a DDC system for HVAC operator workstation. Control features and monitoring points displayed locally at lighting panel shall be available through the DDC system for HVAC.

2.5 LINE CONDITIONING AND FILTERING

- A. Input Line Conditioning: Based on the manufacturer's harmonic analysis study and report, provide input filtering, as required, to limit total demand (harmonic current) distortion and total harmonic voltage demand at the defined point of common coupling to meet IEEE 519 recommendations.
- B. EMI/RFI Filtering: CE marked; certify compliance with IEC 61800-3 for Category C2.

2.6 BYPASS SYSTEMS

- A. Bypass Operation: Safely transfers motor between power converter output and bypass circuit, manually, automatically, or both. Selector switches set modes and indicator lights indicate mode selected. Unit is capable of stable operation (starting, stopping, and running) with motor completely disconnected from power converter.
- B. Bypass Mode: Manual operation only; requires local operator selection at VFC. Transfer between power converter and bypass contactor, and retransfer shall only be allowed with the motor at zero speed.
- C. Bypass Controller: Two-contactor-style bypass allows motor operation via the power converter or the bypass controller; with input isolating switch and barrier arranged to isolate the power converter and permit safe troubleshooting and testing, both energized and de-energized, while motor is operating in bypass mode.
 - 1. Bypass Contactor: Load-break, NEMA-rated contactor.
 - 2. Output Isolating Contactor: Non-load-break, NEMA-rated contactor.
 - Isolating Switch: Non-load-break switch arranged to isolate power converter and permit safe troubleshooting and testing of the power converter, both energized and deenergized, while motor is operating in bypass mode; pad-lockable, door-mounted handle mechanism.
- D. Bypass Contactor Configuration: Full-voltage (across-the-line) type.
 - 1. NORMAL/BYPASS selector switch.
 - 2. HAND/OFF/AUTO selector switch.
 - 3. NORMAL/TEST Selector Switch: Allows testing and adjusting of VFC while the motor is running in the bypass mode.
 - 4. Contactor Coils: Pressure-encapsulated type.
 - a. Operating Voltage: Depending on contactor NEMA size and line-voltage rating, manufacturer's standard matching control power or line voltage.
 - b. Power Contacts: Totally enclosed, double break, and silver-cadmium oxide; assembled to allow inspection and replacement without disturbing line or load wiring.
 - 5. Control Circuits: 120-V ac; obtained from integral CPT, with primary and secondary fuses, with of sufficient capacity to operate all integral devices and remotely located pilot, indicating, and control devices.
 - a. CPT Spare Capacity: 200 VA.
 - 6. Overload Relays: NEMA ICS 2.
 - a. Solid-State Overload Relays:
 - 1) Switch or dial selectable for motor-running overload protection.
 - 2) Sensors in each phase.
 - 3) Class 10/20 selectable tripping characteristic selected to protect motor against voltage and current unbalance and single phasing.

- 4) Class II ground-fault protection, with start and run delays to prevent nuisance trip on starting.
- 5) Analog communication module.
- b. NC and NO isolated overload alarm contact.
- c. External overload, reset push button.

2.7 OPTIONAL FEATURES

- A. Multiple-Motor Capability: VFC suitable for variable-speed service to multiple motors. Overload protection shuts down VFC and motors served by it, and generates fault indications when overload protection activates.
 - 1. Configure to allow two or more motors to operate simultaneously at the same speed; separate overload relay for each controlled motor.
 - 2. Configure to allow two motors to operate separately; operator selectable via local or remote switch or contact closures; single overload relay for both motors; separate output magnetic contactors for each motor.
 - 3. Configure to allow two motors to operate simultaneously and in a lead/lag mode, with one motor operated at variable speed via the power converter and the other at constant speed via the bypass controller; separate overload relay for each controlled motor.
- B. Remote Indicating Circuit Terminals: Mode selection, controller status, and controller fault.
- C. Remote digital operator kit.
- D. Communication Port: RS-232 port, USB 2.0 port, or equivalent connection capable of connecting a printer.

2.8 ENCLOSURES

- A. VFC Enclosures: NEMA 250, to comply with environmental conditions at installed location.
 - Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: Type 12.
- B. Plenum Rating: UL 1995; NRTL certification label on enclosure, clearly identifying VFC as "Plenum Rated."

2.9 ACCESSORIES

- A. General Requirements for Control-Circuit and Pilot Devices: NEMA ICS 5; factory installed in VFC enclosure cover unless otherwise indicated.
 - 1. Push Buttons: Covered.
 - 2. Pilot Lights: Push to test.
 - Selector Switches: Rotary type.
- B. Reversible NC/NO bypass contactor auxiliary contact(s).

- C. Control Relays: Auxiliary and adjustable solid-state time-delay relays.
- D. Phase-Failure, Phase-Reversal, and Undervoltage and Overvoltage Relays: Solid-state sensing circuit with isolated output contacts for hard-wired connections. Provide adjustable undervoltage, overvoltage, and time-delay settings.
 - 1. Current Transformers: Continuous current rating, basic impulse insulating level (BIL) rating, burden, and accuracy class suitable for connected circuitry. Comply with IEEE C57.13.
- E. Supplemental Digital Meters:
 - Elapsed-time meter.
- F. Breather and drain assemblies, to maintain interior pressure and release condensation in NEMA 250, Type 12 enclosures installed outdoors or in unconditioned interior spaces subject to humidity and temperature swings.
- G. Spare control-wiring terminal blocks; unwired.

2.10 SOURCE QUALITY CONTROL

- A. Testing: Test and inspect VFCs according to requirements in NEMA ICS 61800-2.
 - Test each VFC while connected to a motor that is comparable to that for which the VFC is rated
 - 2. Verification of Performance: Rate VFCs according to operation of functions and features specified.
- B. VFCs will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas, surfaces, and substrates to receive VFCs, with Installer present, for compliance with requirements for installation tolerances, and other conditions affecting performance of the Work.
- B. Examine VFC before installation. Reject VFCs that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for conduit systems to verify actual locations of conduit connections before VFC installation.
- D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work

E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Wall-Mounting Controllers: Install with tops at uniform height and with disconnect operating handles not higher than 79 inches above finished floor, unless otherwise indicated, and by bolting units to wall or mounting on lightweight structural-steel channels bolted to wall. For controllers not on walls, provide freestanding racks complying with Section 260529 "Hangers and Supports for Electrical Systems."
- B. Install fuses in each fusible-switch VFC.
- C. Install fuses in control circuits if not factory installed.
- D. Install, connect, and fuse thermal-protector monitoring relays furnished with motor-driven equipment.
- E. Comply with NECA 1.

3.3 CONTROL WIRING INSTALLATION

- A. Install wiring between VFCs and remote devices. Comply with requirements in Section 260523 "Control-Voltage Electrical Power Cables."
- B. Bundle, train, and support wiring in enclosures.
- C. Connect selector switches and other automatic-control devices where applicable.
 - 1. Connect selector switches to bypass only those manual- and automatic-control devices that have no safety functions when switches are in manual-control position.
 - 2. Connect selector switches with control circuit in both manual and automatic positions for safety-type control devices such as low- and high-pressure cutouts, high-temperature cutouts, and motor-overload protectors.

3.4 IDENTIFICATION

- A. Identify VFCs, components, and control wiring. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each VFC with engraved nameplate.
 - 3. Label each enclosure-mounted control and pilot device.
- B. Operating Instructions: Frame printed operating instructions for VFCs, including control sequences and emergency procedures. Fabricate frame of finished metal, and cover instructions with clear acrylic plastic. Mount on front of VFC units.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections with the assistance of a factory-authorized service representative.
- B. Acceptance Testing Preparation:
 - Test insulation resistance for each VFC element, bus, component, connecting supply, feeder, and control circuit.
 - 2. Test continuity of each circuit.

C. Tests and Inspections:

- 1. Inspect VFC, wiring, components, connections, and equipment installation. Test and adjust controllers, components, and equipment.
- 2. Test insulation resistance for each VFC element, component, connecting motor supply, feeder, and control circuits.
- 3. Test continuity of each circuit.
- 4. Verify that voltages at VFC locations are within 10 percent of motor nameplate rated voltages. If outside this range for any motor, notify Engineer before starting the motor(s).
- 5. Test each motor for proper phase rotation.
- 6. Perform tests according to the Inspection and Test Procedures for Adjustable Speed Drives stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
- 7. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- 8. Perform the following infrared (thermographic) scan tests and inspections, and prepare reports:
 - a. Initial Infrared Scanning: After Substantial Completion, but not more than 60 days after Final Acceptance, perform an infrared scan of each VFC. Remove front panels so joints and connections are accessible to portable scanner.
 - b. Follow-up Infrared Scanning: Perform an additional follow-up infrared scan of each VFC 11 months after date of Substantial Completion.
 - c. Instruments and Equipment: Use an infrared scanning device designed to measure temperature or to detect significant deviations from normal values. Provide calibration record for device.
- 9. Test and adjust controls, remote monitoring, and safeties. Replace damaged and malfunctioning controls and equipment.
- D. VFCs will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies the VFC and describes scanning results. Include notation of deficiencies detected, remedial action taken, and observations made after remedial action.

3.6 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents – 1/24/2022

3.7 ADJUSTING

- A. Program microprocessors for required operational sequences, status indications, alarms, event recording, and display features. Clear events memory after final acceptance testing and prior to Substantial Completion.
- B. Set field-adjustable switches, auxiliary relays, time-delay relays, timers, and overload-relay pickup and trip ranges.
- C. Adjust the trip settings of instantaneous-only circuit breakers and thermal-magnetic circuit breakers with adjustable, instantaneous trip elements. Initially adjust to 6 times the motor nameplate full-load amperes and attempt to start motors several times, allowing for motor cooldown between starts. If tripping occurs on motor inrush, adjust settings in increments until motors start without tripping. Do not exceed 8 times the motor full-load amperes (or 11 times for NEMA Premium Efficient motors if required). Where these maximum settings do not allow starting of a motor, notify Engineer before increasing settings.
- D. Set the taps on reduced-voltage autotransformer controllers.
- E. Set field-adjustable circuit-breaker trip ranges.
- F. Set field-adjustable pressure switches.

3.8 PROTECTION

- A. Temporary Heating: Apply temporary heat to maintain temperature according to manufacturer's written instructions until controllers are ready to be energized and placed into service.
- B. Replace VFCs whose interiors have been exposed to water or other liquids prior to Substantial Completion.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, reprogram, and maintain VFCs.

END OF SECTION 262923

SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes all types of LED luminaires.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. LED: Light-emitting diode.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaires.
 - 4. Include emergency lighting units, including batteries and chargers.
 - 5. Include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 - 6. Photometric data and adjustment factors based on laboratory tests, complying with IES "Lighting Measurements Testing and Calculation Guides" for each luminaire type. The adjustment factors shall be for lamps and accessories identical to those indicated for the luminaire as applied in this Project.
 - a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

- b. Testing Agency Certified Data: For indicated luminaires, photometric data certified by a qualified independent testing agency. Photometric data for remaining luminaires shall be certified by manufacturer.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of luminaire assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Samples: For each luminaire and for each color and texture with standard factory-applied finish.
- D. Product Schedule: For luminaires and lamps. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Luminaires.
 - 2. Suspended ceiling components.
 - 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inchesof the plane of the luminaires.
 - 4. Structural members to which or luminaires will be attached.
 - 5. Initial access modules for acoustical tile, including size and locations.
 - 6. Items penetrating finished ceiling, including the following:
 - a. Other luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Ceiling-mounted projectors.
- B. Qualification Data: For testing laboratory providing photometric data for luminaires.
- C. Product Certificates: For each type of luminaire.
- D. Product Test Reports: For each type of luminaire, for tests performed by manufacturer and witnessed by a qualified testing agency.
- E. Sample warranty.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: Ten for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Provide luminaires from a single manufacturer for each luminaire type.
- C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.
- D. Mockups: For interior luminaires in room or module mockups, complete with power and control connections.
 - 1. Obtain Architect's approval of luminaires in mockups before starting installations.
 - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: 10 year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Ambient Temperature: 41 to 104 deg F.
 - 1. Relative Humidity: Zero to 95 percent.
- B. Altitude: Sea level to 1000 feet.

2.2 LUMINAIRE REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.
 - 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter, shape, size, wattage, and coating.
 - c. CCT and CRI.
- C. Recessed luminaires shall comply with NEMA LE 4.
- D. NRTL Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by an NRTL.
- E. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- F. California Title 24 compliant.
- G. Provide compatible light fixture trims, flanges, etc as necessary for proper installation for ceiling types.

2.3 RECESSED, LINEAR.

- A. Nominal Operating Voltage: 277 V ac.
- B. Lamp:
 - 1. Minimum allowable efficacy of 85 lm/W.
 - 2. CRI of 80. CCT of.
 - 3. Rated lamp life of 50,000 hours to L70.
 - 4. Dimmable from 100 percent to 0 percent of maximum light output.
 - 5. Internal driver.
 - 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.

- b. Lamp base complying with ANSI C81.61.
- 7. Lens Thickness: At least 0.125-inchminimum unless otherwise indicated.

C. Housings:

- 1. Clear anodized powder-coat finish.
- 2. With integral mounting provisions.
- D. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- E. Diffusers and Globes:
 - 1. Prismatic acrylic.
 - 2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 3. Glass: Annealed crystal glass unless otherwise indicated.
 - 4. Lens Thickness: At least 0.125-inchminimum unless otherwise indicated.

F. Standards:

- 1. ENERGY STAR certified.
- 2. RoHS compliant.
- 3. UL Listing: Listed for damp location.
- 4. NEMA LE 4.

2.4 SURFACE MOUNT, LINEAR.

- A. As scheduled on drawings.
- B. Nominal Operating Voltage: As scheduled on drawings.
- C. Lamp:
 - 1. Minimum 750 lm.
 - 2. Minimum allowable efficacy of 80 lm/W.
 - 3. CRI of minimum 80. CCT of 3500K.
 - 4. Rated lamp life of 50,000 hours to L70.
 - 5. Dimmable from 100 percent to 0 percent of maximum light output.
 - Internal driver.
 - 7. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61.
 - 8. Lens Thickness: At least 0.125-inch minimum unless otherwise indicated.
- D. Housings:
 - 1. Extruded-aluminum housing and heat sink.
 - 2. powder-coat finish.
 - 3. With integral mounting provisions.
- E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are

designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.

2.5 SUSPENDED, LINEAR

- A. As scheduled on Drawings.
- B. Nominal Operating Voltage: 277 V ac.
- C. Lamp:
 - 1. Minimum allowable efficacy of 85 lm/W.
 - 2. CRI of 80. CCT of 3500 K.
 - 3. Rated lamp life of 50,000 hours to L70.
 - 4. Dimmable from 100 percent to 0 percent of maximum light output.
 - 5. Internal driver.
 - 6. User-Replaceable Lamps:
 - a. Bulb shape complying with ANSI C78.79.
 - b. Lamp base complying with ANSI C81.61.
 - 7. Lens Thickness: At least 0.125-inch minimum unless otherwise indicated.

D. Housings:

- 1. Extruded-aluminum housing and heat sink.
- 2. With integral mounting provisions.
- E. Doors, Frames, and Other Internal Access: Smooth operating, free of light leakage under operating conditions, and designed to permit relamping without use of tools. Components are designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- F. Diffusers and Globes:
 - Prismatic acrylic.
 - 2. Acrylic Diffusers: One hundred percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 3. Glass: Annealed crystal glass unless otherwise indicated.
 - 4. Lens Thickness: At least 0.125-inchminimum unless otherwise indicated.

2.6 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.7 LUMINAIRE SUPPORT

A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.

- B. Single-Stem Hangers: 1/2-inchsteel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage.
- D. Rod Hangers: 3/16-inchminimum diameter, cadmium-plated, threaded steel rod.
- E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.
- D. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position after cleaning and relamping.
 - 3. Provide support for luminaire without causing deflection of ceiling or wall.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaires:

- Secured to outlet box.
- 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
- 3. Trim ring flush with finished surface.

F. Wall-Mounted Luminaires:

- 1. Attached to structural members in walls.
- 2. Do not attach luminaires directly to gypsum board.

G. Suspended Luminaires:

- Ceiling Mount:
 - a. Two 5/32-inch-diameter aircraft cable supports adjustable to 10inch length.
 - b Hook mount
- 2. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
- 3. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
- 4. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and wire support for suspension for each unit length of luminaire chassis, including one at each end.
- 5. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

H. Ceiling-Grid-Mounted Luminaires:

- 1. Secure to any required outlet box.
- 2. Secure luminaire to the luminaire opening using approved fasteners in a minimum of four locations, spaced near corners of luminaire.
- 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.
- I. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

EwingCole
Baltimore, MD
EwingCole Project No. 20190846

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents - 1/24/2022

3.6 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.
 - 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
 - 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 - 3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265119

SECTION 265213 - EMERGENCY AND EXIT LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Exit signs.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Emergency Lighting Unit: A lighting unit with internal or external emergency battery powered supply and the means for controlling and charging the battery and unit operation.
- D. Fixture: See "Luminaire" Paragraph.
- E. Lumen: Measured output of lamp and luminaire, or both.
- F. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of emergency lighting unit, exit sign, and emergency lighting support.
 - 1. Include data on features, accessories, and finishes.
 - 2. Include physical description of the unit and dimensions.
 - 3. Battery and charger for light units.
 - 4. Include life, output of luminaire (lumens, CCT, and CRI), and energy-efficiency data.
 - 5. Include photometric data and adjustment factors based on laboratory tests, complying with IES LM-45, for each luminaire type.
 - a. Testing Agency Certified Data: For indicated signs, photometric data certified by a qualified independent testing agency. Photometric data for remaining signs shall be certified by manufacturer.

- b. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Shop Drawings: For nonstandard or custom luminaires.
 - 1. Include plans, elevations, sections, and mounting and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Include diagrams for power, signal, and control wiring.
- C. Samples: For each product and for each color and texture specified.
- D. Product Schedule:
 - 1. For exit signs. Use same designations indicated on Drawings.

1.5 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plan(s) and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Luminaires.
 - 2. Suspended ceiling components.
 - 3. Partitions and millwork that penetrate the ceiling or extend to within 12 inches of the plane of the luminaires.
 - 4. Structural members to which equipment will be attached.
 - 5. Size and location of initial access modules for acoustical tile.
 - 6. Items penetrating finished ceiling including the following:
 - a. Other luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Ceiling-mounted projectors.
 - e. Sprinklers.
 - f. Access panels.
- B. Qualification Data: For testing laboratory providing photometric data for luminaires.
- C. Product Certificates: For each type of luminaire.
- D. Seismic Qualification Data: For luminaires, accessories, and components, from manufacturer.
- E. Product Test Reports: For each luminaire for tests performed by a qualified testing agency.

1.6 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in emergency, operation, and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Lamps: 5 for every 100 of each type and rating installed. Furnish at least one of each type.
 - 2. Diffusers and Lenses: One for every 100 of each type and rating installed. Furnish at least one of each type.
 - 3. Globes and Guards: One for every 20 of each type and rating installed. Furnish at least one of each type.

1.8 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products.
- B. Luminaire Photometric Data Testing Laboratory Qualifications: Provided by an independent agency, with the experience and capability to conduct the testing indicated, that is an NRTL as defined by OSHA in 29 CFR 1910.7, accredited under the National Volunteer Laboratory Accreditation Program for Energy Efficient Lighting Products, and complying with the applicable IES testing standards.
- C. FM Global Compliance: Luminaires for hazardous locations shall be listed and labeled for indicated class and division of hazard by FM Global.
- D. Mockups: For interior luminaires in room or module mockups, complete with power and control connections.
 - 1. Obtain Architect's approval of luminaires and signs in mockups before starting installations.
 - 2. Maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 - 3. Approval of mockups does not constitute approval of deviations from the Contract Documents contained in mockups unless Architect specifically approves such deviations in writing.
 - 4. Subject to compliance with requirements, approved mockups may become part of the completed Work if undisturbed at time of Substantial Completion.

1.9 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.10 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR EMERGENCY LIGHTING

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. NRTL Compliance: Fabricate and label emergency lighting units, exit signs, and batteries to comply with UL 924.
- C. Comply with NFPA 70 and NFPA 101.
- D. Comply with NEMA LE 4 for recessed luminaires.
- E. Comply with UL 1598 for fluorescent luminaires.
- F. Lamp Base: Comply with ANSI C81.61.
- G. Bulb Shape: Complying with ANSI C79.1.

2.2 EMERGENCY LIGHTING

A. General Requirements for Emergency Lighting Units: Self-contained units.

2.3 EXIT SIGNS

- A. General Requirements for Exit Signs: Comply with UL 924; for sign colors, visibility, luminance, and lettering size, comply with authorities having jurisdiction.
- B. Internally Lighted Signs:
 - 1. As scheduled on Drawing.
 - 2. Operating at nominal voltage of 277 V ac.
 - 3. Lamps for AC Operation: Fluorescent, two for each luminaire; 20,000 hours of rated lamp life.

4. Lamps for AC Operation: LEDs; 50,000 hours minimum rated lamp life.

2.4 MATERIALS

A. Metal Parts:

- 1. Free of burrs and sharp corners and edges.
- 2. Sheet metal components shall be steel unless otherwise indicated.
- 3. Form and support to prevent warping and sagging.
- B. Doors, Frames, and Other Internal Access:
 - 1. Smooth operating, free of light leakage under operating conditions.
 - 2. Designed to permit relamping without use of tools.
 - 3. Designed to prevent doors, frames, lenses, diffusers, and other components from falling accidentally during relamping and when secured in operating position.
- C. Diffusers and Globes:
 - 1. Acrylic: 100 percent virgin acrylic plastic, with high resistance to yellowing and other changes due to aging, exposure to heat, and UV radiation.
 - 2. Lens Thickness: At least 0.125 inch minimum unless otherwise indicated.
- D. Housings:
 - 1. Extruded aluminum housing.
- E. Conduit: Rigid galvanized steel and Electrical metallic tubing, minimum 3/4 inch in diameter.

2.5 METAL FINISHES

A. Appearance of Finished Work: Noticeable variations in same piece are not acceptable. Variations in appearance of adjoining components are acceptable if they are within the range of approved Samples and are assembled or installed to minimize contrast.

2.6 LUMINAIRE SUPPORT COMPONENTS

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Support Wires: ASTM A 641/A 641M, Class 3, soft temper, zinc-coated steel, 12 gage.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for conditions affecting performance of luminaires.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
- C. Examine walls, floors, roofs, and ceilings for suitable conditions where emergency lighting luminaires will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.
- D. Supports:
 - 1. Sized and rated for luminaire weight.
 - 2. Able to maintain luminaire position when testing emergency power unit.
 - 3. Provide support for luminaire and emergency power unit without causing deflection of ceiling or wall.
 - 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire and emergency power unit weight and vertical force of 400 percent of luminaire weight.

E. Wall-Mounted Luminaire Support:

- 1. Attached to structural members in walls.
- 2. Do not attach luminaires directly to gypsum board.

F. Suspended Luminaire Support:

- 1. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
- 2. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
- 3. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of luminaire chassis, including one at each end.
- 4. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.
- G. Ceiling Grid Mounted Luminaires:

Knott Science Center – Notre Dame of Maryland University 4701 N. Charles St. Baltimore, MD

Construction Documents – 1/24/2022

- 1. Secure to any required outlet box.
- 2. Secure emergency power unit using approved fasteners in a minimum of four locations, spaced near corners of emergency power unit.
- 3. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.

3.3 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

3.5 STARTUP SERVICE

A. Perform startup service:

3.6 ADJUSTING

- A. Adjustments: Within 12 months of date of Substantial Completion, provide on-site visit to do the following:
 - 1. Inspect all luminaires. Replace lamps, signs, or luminaires that are defective.
 - a. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 - 2. Conduct short-duration tests on all emergency lighting.

END OF SECTION 265213

DIVISION 26 ELECTRICAL

SECTION 26 81 15 EMERGENCY RESPONDER RADIO ANTENNA/REPEATER SYSTEM

PART 1 GENERAL

1.01 SUMMARY

- A. Furnish, install, and test a complete and operating Emergency Responder Radio Antenna/Repeater System. The system will support only the Fire Department radio system and no others. Provisions for supporting other public safety systems (e.g. police); cell phone carriers; the Owners' private security and/or maintenance personnel radio systems, etc. now or in the future shall not be included.
- B. This Section includes the requirements for an Emergency Responder Radio Antenna/Repeater System for the purposes of amplifying Emergency Responder radio signals to achieve minimum signal strength in 95% of all areas on each floor of the building.
- C. Final acceptance and approval is required from the local Fire Department in writing prior to contract closeout.
- D. Section Includes
 - 1. Bi-directional amplifiers (BDA's)
 - 2. Distributed Antenna System
 - 3. Coaxial cables
 - 4. Splitters and direction couplers
 - 5. UPS
 - 6. All other equipment and components necessary for a complete and functioning Emergency Responder Radio Antenna/Repeater System.

1.02 REGULATIONS

- A. Codes, regulations and standards referenced in the Section are:
 - 1. NFPA 1 The National Fire Code (including Annex O from 2009)
 - 2. NFPA 70 The National Electrical Code
 - 3. Ohio Fire Code, Rule 1301:7-7-05 Fire Service Features, Paragraph J, Section 510 Emergency Responder Radio Coverage
 - 4. NFPA 101, Life Safety Code, the Ohio Basic Building Code, and Local Code and Building Authority requirements.
 - 5. NFPA 72-07 National Fire Alarm Code
 - 6. FCC 47 CFR Private Land Mobile Radio
 - 7. 90.219-2007 Services-Use of Signal Boosters
 - 8. ICC 2009 International Fire Code, Code and Commentary
 - 9. 2011 Ohio Fire Code
 - 10. ADA "Americans with Disabilities Act"
 - 11. FCC's OET 65 Standards "Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields".
 - 12. FCC Rules Part 22, Part 90 and Part 101.

1.03 DEFINITIONS

A. Definitions:

- 1. Bi-Directional Amplifier BDA: Device used to amplify band-selective or multi-band RF signals in the uplink, to the base station for enhanced signals and improved coverage.
- 2. Emergency Responder Radio Coverage System: A two-way radio communication system installed to assure the effective operation of radio communications systems for fire, emergency medical services or law enforcement agencies within a building or structure. A system used by firefighters, police, and other emergency services personnel.
- 3. Delivered Audio Quality Definitions (DAQ): This is a universal standard often cited in system designs and specifications.
 - a. DAQ 1: Unusable, speech present but unreadable.
 - b. DAQ 2: Understandable with considerable effort. Frequent repetition due to noise/distortion.
 - c. DAQ 3: Speech understandable with slight effort. Occasional repetition required due to noise/distortion.
 - d. DAQ 3.5: Speech understandable with repetition only rarely required. Some noise/distortion
 - e. DAQ 4: Speech easily understood. Occasional noise/distortion.
 - f. DAQ 4.5: Speech easily understood. Infrequent noise/distortion.
 - g. DAQ 5: Speech easily understood. Coupled Bonding Conductor (CBC) The term "Coupled Bonding Conductor" shall mean a bonding conductor placed, e.g. strapped, on the outside of any technology cable, used to suppress transient noise.
- 4. FCC: Federal Communications Commission
- 5. OET 65 Standards: FCC's Bulletin 65 provides Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.
- 6. Public Safety/First Responder: Public Safety or First Responder agencies which are charged with the responsibility of responding to emergency situations. These include, but are not limited to: law enforcement departments, fire departments, and emergency medical companies.

1.04 SUBMITTALS

A. Submit product data for each type of proposed system component specified, including dimensioned drawings showing minimum clearances and installed features.

B. Layout Drawings

- 1. Component specification sheets shall be 8.5 inch x 11 inch or greater, scaled or dimensioned, with dimensions or scale clearly noted.
- 2. Floor plan drawings shall be 24 inch x 36 inch minimum with drawings scaled to legible size.
- 3. Floor plan drawings may include elevation detail names for each elevation view. Sheet title shall include site name, address, sheet number, floor plan number and north arrow. Include site plan view of the subject buildings and surrounding property to clearly indicate the location and orientation of roof mounted outdoor antennas associated with the proposed system.
- 4. Include a minimum of (1) building elevation depicting the location of any outdoor antennas associated with the proposed system. Include height of antenna centerline above building, orientation, and location of all external grounding connections.

26 81 15-2 13-HC1-033

- 5. Include a detail plan view of all Telecommunications Spaces housing head-end and/or other consolidated equipment, showing the location of the rack(s) and/or enclosure(s) of the Emergency Responder Radio Antenna/Repeater System equipment.
- 6. Include a separate plan view of each interior floor where indoor antenna systems are proposed. Include antenna numbers, coaxial cable routes, and the locations of any other system components including splitters, couplers, filters, amplifiers, etc. All components shall be named or labeled for reference in power budget calculations tables. Overlay approximated coverage radii indicating –95 dBm downlink (base to mobile) signal strength around each proposed indoor coverage antenna. Include results of any previous coverage testing per grid, if available.
- 7. Include a minimum of one (1) detail elevation view(s) of all rack(s) and/or enclosure(s) housing the Emergency Responder Radio Antenna/Repeater System equipment. Identify each piece of equipment by brand, model number and equipment type (e.g. Acme BA123 RF amplifier).
- 8. Specify antenna grounding and surge protection in accordance with NEC Article 810.
- 9. Specify the backup power source (Life Safety), and include calculations to ensure the backup power requirements as specified in this standard are met.

C. Equipment Specification Sheets

- 1. Provide copies of manufacturer specification sheets of all system components, including:
 - a. Amplifiers
 - b. Antennas
 - c. Coaxial cable, couplers, splitters, combiners, or other passive components
- 2. Operation and maintenance data
- 3. Pass band curves in for the uplink and downlink portions of the NPSPAC band for any amplifiers, if not included in #1. Amplifiers may NOT amplify portions of other licensed services, including Nextel and Specialized Mobile Radio Licensee band, or Cellular A or B bands.
- 4. Backup battery and charging system.
- D. Submit wiring diagrams from manufacturer differentiating clearly between factory and field-installed wiring. Include diagrams for each component of the system with all terminals and interconnections identified. Make all diagrams specific to this Project.
- E. Submit product certificates signed by the manufacturer of radio system components certifying that their products comply with specified requirements.
- F. Submit agenda for training class and copies of all handouts for the class.
- G. Maintenance data for radio system shall be included in the operation and maintenance manual. Include data for each type of product, including all features and operating sequences, both automatic and manual. Provide the names, addresses, and telephone numbers of service organizations that carry stock of repair parts for the system to be furnished.
- H. Record of field tests of the radio system shall be included in the operation and maintenance manuals.

- I. Design Approval: Plans shall be submitted and approved prior to installation. The following information shall be provided to the local Fire Department unit representative by the system designer/Contractor:
 - 1. A minimum of three (3) copies of detailed drawings showing the location of the amplification equipment and associated antenna systems which includes a view showing building access to the equipment; and
 - 2. A minimum of three (3) copies of schematic drawings of the electrical system, backup power, antenna system and any other associated equipment relative to the amplification equipment including panel locations and labeling.
 - 3. A minimum of one (1) copy of the Manufacturer's data sheets on all equipment to be installed.

1.05 QUALITY ASSURANCE

- A. Installer Qualifications: Engage an experienced factory-authorized installer to perform work of this Section.
- B. Single-Source Responsibility: Obtain radio system components from a single source who assumes responsibility for compatibility of system components.
- C. All equipment shall be UL listed and labeled, and in accordance with applicable NEMA and ANSI Standards. Where copper cabling is routed to an area, either in another building, or with a separate electrical service, the Technology Contractor shall provide primary protective equipment.
- D. All racks and enclosures shall be either welded or assembled with paint piercing ground washers, grounding strip and bonding jumper as indicated on the Drawings.

1.06 MANUFACTURERS

- A. Subject to compliance with requirements, available Integrators offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. CommScope/Andrew
 - 2. Corning
 - 3. Times Microwave
 - 4. Tessco
 - 5. CCI (Communication Components Inc.)
 - 6. Solid Technologies

PART 2 PRODUCTS

2.01 GENERAL PERFORMANCE REQUIREMENTS

A. Compatibility: The equipment, including but not limited to repeaters, transmitters, receivers, signal boosters, cabling, fiber distributed antenna system, etc., shall not interfere with the existing communication systems utilized by the Public Safety and First Responder agencies.

26 81 15-4 13-HC1-033

B. Power Supplies: At least two (2) independent and reliable power supplies shall be provided, one primary and one secondary. The primary power source shall be supplied from a dedicated 20 ampere branch circuit and comply with 4.4.1.4 of NFPA 72. The secondary power source shall be a dedicated battery, capable of operating the in-building radio system for at least 12 hours of 100% system operation. The battery system shall automatically charge in the presence of external power input. The battery system shall be contained in one NEMA 4 or 4X type enclosures. Monitoring the integrity of power supplies shall be in accordance with 4.4.7.3 of NFPA 72.

C. Survivability

- 1. Physical Protection: All wiring and fiber optics shall be installed in conduit. Refer to Section 26 05 33, "Conduit and Fittings" for type, sizing and installation standards.
- 2. Fire Performance: All main risers or trunks of the antenna system shall be installed with resistance to attack from a fire using one of the following methods:
 - a. A 2-hour fire rated cable or cable system.
 - b. Routing the cable through a 2-hour fire rated enclosure(s) or shaft(s).
 - c. A system configured in a looped design, routed through 1-hour fire rated enclosure(s) or shaft(s). The circuit shall be capable of transmitting and receiving a signal during a single open or non-simultaneous single ground fault on a circuit conductor.
 - d. Performance alternative approved by the authority having jurisdiction.
- 3. Cabinet: The signal booster and all associated RF filters shall be housed in a single, NEMA 4 certified, painted steel weather tight box. The cabinet shall be large enough to dissipate internal heat without venting the inside of the cabinet to the outside atmosphere. Operating temperatures: -22 degrees F to +120 degrees F (-30 degrees C to +50 degrees C) minimum temperature range, including microprocessors. Equipment installed on the roof of structures shall be rated for the expected extreme temperatures associated with rooftop installations.
- 4. Passive Equipment: Passband shall be 700-900 MHz, IP rating of 2 GHz.
- 5. Cable: Passband shall be 700-900 MHz. Cable shall be rated for fire plenum and riser rating.

2.02 SYSTEM COMPONENTS

A. Signal Strength

- 1. Downlink: A minimum signal strength of -95 dBm shall be provided throughout the coverage area.
- 2. Uplink: Minimum signal strength of -95 dBm received at the local Fire Department Radio System from the coverage area.
- 3. A donor antenna must maintain isolation from the distributed antenna system. The donor antenna signal level shall be a minimum of 15 dB above the distributed antenna system under all operating conditions.

B. Permissible Systems

- 1. Buildings and structures shall be equipped with an FCC Certificated Class B Bi-Directional UHF Amplifier(s) as needed.
- 2. The distributed antenna system may utilize a radiating cable, fixed antennas or a combination of both.
- C. Supported Frequencies: The radio system shall support frequencies in the 700 and 800 MHz public safety bands as utilized by the local Fire Department.

- D. Reject Filters: Notch filter sections shall be incorporated to minimize adjacent channel cellular and SMR (Nextel) degradation of the signal booster performance. The minimum downlink band adjacent band rejection shall be 35 dB or greater at 865 MHz and 870 MHz.
- E. Band Migration Capability: The signal booster shall include re-tunable or replaceable filters to accommodate rapid and economic passband changes in the event of mandatory FCC changes within the NPSPAC band. The use of non-adjustable and non-replaceable RF input and output filters is prohibited.
- F. Output Level Control: An automatic output leveling circuit shall be included for both passbands with a minimum dynamic range of 60 dB, less any gain reduction setting, to maintain FCC out of band and spurious emission compliance.
- G. Degraded Performance in Emergencies: The system shall be designed to allow degraded performance in adverse conditions, such as abnormally high temperatures resulting from nearby fires, extreme voltage fluctuations or other abnormal conditions that may occur during an emergency. Circuits that intentionally disable the signal booster in such situations (i.e. under/over voltage, over/under current, over/under temperature, etc.) will not be implemented as the standard mode for public safety applications.
- H. Mode of Operation: The system shall be normally powered on and shall continuously provide passing of frequencies within the Public Safety and First Responder bands.
- I. All in-building radio systems shall be compatible with both analog and digital communications simultaneously at the time of installation.

2.03 SYSTEM MONITORING

- A. The distributed antenna system shall include a connection to the fire alarm system to monitor the integrity of the circuit of the signal booster(s) and power supplies and annunciate this malfunction on the fire alarm system shall comply with 4.4.7.1 of NFPA 72.
- B. A sign shall be located at the fire alarm panel with the name and telephone number of the local Fire Department indicating that they shall be notified of any failures that extend past the 2 hour time limit.

PART 3 EXECUTION

3.01 INSTALLATION

- A. Distribution System Signal Wires and Cables
 - 1. Wires and cables shall enter each equipment enclosure, console, cabinet or rack in such a manner that all doors or access panels can be opened and closed without removal or disruption of the cables.
 - 2. Routing and Interconnection
 - a. Wires or cables routed between consoles, cabinets, racks, and other equipment shall be installed in an approved conduit or cable tray that is secured to building structure.

26 81 15-6 13-HC1-033

- b. Completely test all of the cables after installation and replace any that are found to be defective.
- 3. Install cables without damaging conductors, shield, or jacket.
- 4. Do not bend cables, while handling or installing, to radii smaller than as recommended by manufacturer.
- 5. Pull cables without exceeding cable manufacturer's recommended pulling tensions.

B. Product Delivery, Storage, and Handling

- 1. Delivery: Deliver materials to the job site in OEM's original unopened containers, clearly labeled with the OEM's name and equipment model and serial identification numbers.
- 2. Store and protect equipment in a conditioned space until installation.

C. System Installation

- 1. Coaxial antenna cabling shall not be installed in the same conduit, raceway, or cable trays used for other systems.
- 2. All equipment shall be connected according to the OEM's specifications to insure correct installation and system performance.
- 3. Coordinate all roof penetrations with Owner and/or roofing contractor.

3.02 LICENSING

- A. All fees associated with the licensing shall be paid by the Owner.
- B. All testing must be done on frequencies authorized by the FCC.

3.03 GROUNDING

- A. Ground cable shields and equipment per Manufacturer's requirements.
- B. Antenna mast shall be grounded per NFPA 70 NEC requirements, Section 27 05 26, "Grounding and Bonding for Communications Systems" and antenna manufacturer's requirements. Provide grounding blocks and surge protection for outside coaxial cabling. Bond the antenna mast to the existing lightning protection system.

3.04 APPROVAL TESTING

- A. The local Fire Department will review plans and specifications. Upon acceptance, plans will be stamped to indicate approval. Stamped plans are required to be present at the acceptance test. Any field changes that occur during construction shall be incorporated into new As-Built plans, including any manufacturer's data sheets for any equipment changes not submitted in the original submittal. As-Built plans, if required due to system changes, shall be submitted to the local Fire Department for approval.
- B. Tests shall be made using frequencies close to the frequencies used by the Fire Department and appropriate emergency services. If testing is done on the actual frequencies, then this testing must be coordinated with the local Fire Department unit. All testing must be done on frequencies authorized by the FCC. A valid FCC license will be required if testing is done on frequencies different from the police, fire or emergency medical frequencies.

C. Testing Procedures

- 1. Minimum Signal Strength: For testing system signal strength and quality, the testing shall be based on the delivered audio quality (DAQ) system. A DAQ level below 3.0 shall be considered a failed test for a given grid cell.
- 2. Measurements shall be made with the antenna held in a vertical position at 3 to 4 feet above the floor to simulate a typical portable radio worn on the belt or turnout coat pocket.

D. Final Acceptance Testing

- 1. All acceptance testing shall be done in the presence of a local Fire Department representative or by the local Fire Department unit at no expense to the City.
- 2. Small scale drawings (11 inch x 17 inch maximum) of the structure shall be provided by the Contractor to the Owner. The plans shall show each floor divided into the grids as described above, and the results of the pre-testing. Each grid shall be labeled to indicate the DAQ result from the final acceptance testing.
- 3. The Contractor shall provide the latest approved plans for the system, including any manufacture's data sheets for any equipment changes not submitted in the original submittal to the Owner.
- 4. Include testing results of the repeater (output wattage, gain level, etc) and connection to the fire alarm.

3.05 MAINTENANCE AND ANNUAL TESTING

- A. Annual tests will be conducted by the local Fire Department unit or authorized company.
 - 1. The re-testing will be done at no expense to the City or the appropriate emergency services departments as required in the original testing procedures.

B. Maintenance Contract

- 1. Maintenance contract with a Radio Service Provider in place with name of authorized company, who will provide a 24 hour by 7 day emergency response within two (2) hours after notification. The system shall be maintained in accordance with FCC requirements. The contract shall be for 5 years.
- 2. All tests shall be conducted, documented, and signed by a person in possession of a current FCC General Radio telephone Operator License, or a technician certification issued by the Association of Public-Safety Communications Officials International (APCO) or equivalent as determined by the local Fire Department.
- 3. Maintain a list of contact personnel with phone numbers at the radio repeater system cabinet. The contact personnel shall have knowledge of the building and the repeater system and be available to respond to the building in the case of an emergency.
- 4. Radio Service Provider maintenance contract shall include but not limited to:
 - a. Annual Test
 - 1) All active components of the distributed antenna system, including but not limited to amplifier, power supplies, and back-up batteries, shall be tested a minimum of once every 12 months.
 - 2) Amplifiers shall be tested to insure that the gain is the same as it was upon initial installation and acceptance. The original gain shall be noted and any change in gain shall be documented.
 - 3) Back-up batteries and power supplies shall be tested under load for a period of 1 hour to verify that they will operate during an actual power outage.
 - 4) Active components shall be checked to determine that they are operating within the manufacturer's specifications for their intended purpose.

26 81 15-8 13-HC1-033

- 5) Documentation of the test shall be maintained on site and a copy forwarded to the local Fire Department Radio Supervisor upon completion of the test.
- 5. Fire Department Radio personnel, after providing reasonable notice to the Owner or their representative, shall have the right to enter onto the property to conduct field testing to be certain that the required level of radio coverage is present

END OF SECTION