Relatório da	Experiência de Óp	itica Geométrica	1		
Turno:	Grupo:	Data:			
	Nome: _				
	Nome: _				
	Nome: _				
1. Descre					de Laboratório: irá realizar na sessão
1.0.1 Equa	ações				
Escreva no s como as sua	-	odas as equaçõe	es necessárias	para calcula	ar as grandezas, bem

2 Relatório

2.1 Montagem Experimental

enhe um diagrai squemas de trac		ous que rous.	222 0320

2.2 Cálculo do índice de refracção de um vidro acrílico

Preencha as seguintes tabelas indicando apenas os algarismos significativos. Terá que verificar as contas com auxílio da calculadora, para um dos ensaios e na presença do docente. Todos os ângulos deverão ser indicados em graus.

2.2.1 Face plana

$$\epsilon_{\theta_i} = \underline{\hspace{1cm}} ^{\circ}; \, \epsilon_{\theta_t} = \underline{\hspace{1cm}} ^{\circ}; \, \epsilon_{\theta_r} = \underline{\hspace{1cm}} ^{\circ}$$

Ensaio	θ_i	$\sin \theta_i$	$\theta_r \text{ esq.}$	θ_t esq.	θ_r dir.	θ_t dir.	$\overline{ heta_t}$	$\sin \overline{\theta_t}$
1		土					±	土
2		土					土	土
3		土					土	土
4		土					土	土
5		土					土	土
6		土					土	土
7		+					土	土
8		±					土	土
9		±					±	±

Valor obtido pelo gráfico: $\overline{n}_{vidro} = \underline{\qquad} \pm \underline{\qquad}$

2.2.2 Face cilíndrica

$$\epsilon_{\theta_i} = \underline{\hspace{1cm}} \circ; \epsilon_{\theta_t} = \underline{\hspace{1cm}} \circ; \epsilon_{\theta_r} = \underline{\hspace{1cm}} \circ$$

Ensaio	θ_i	$\sin \theta_i$	θ_r esq.	θ_t esq.	θ_r dir.	θ_t dir.	$\overline{ heta_t}$	$\sin \overline{\theta_t}$
1		土					±	±
2		土					土	土
3		土					土	土
4		+					土	土
5		土					土	土
6		土					土	土
7		土					土	土
8		土					土	士
9		±					土	土

Valor obtido pelo gráfico: $\overline{n}_{vidro} = \underline{\qquad} \pm \underline{\qquad}$

2.2.3 Ângulo-limite

Ensaio	θ_{lim} esq.	θ_{lim} dir.	$\overline{ heta}_{lim}$
1			土
2			土
3			土

Ângulo limite: $\bar{\theta}_{lim} = \underline{\qquad} \pm \underline{\qquad}$

Valor obtido pelo ângulo limite: $\overline{n}_{vidro} = \underline{\qquad} \pm \underline{\qquad}$

2.3 Polarização da luz – ângulo de Brewster

Para o cálculo do desvio à exatidão, considere como exato o valor n=1,50.

Ângulo de Brewster calculado: $\theta_B =$ _____

Ensaio	θ_{Bmin}	θ_{Bmax}	$\overline{ heta_B}$	Desv. Exatidão
1			土	
2			土	
3			土	

2.4 Distância focal de uma lente convergente

2.4.1 Método direto

Distância entre lente colimadora e fonte luminosa: _____ mm

Ensaio	$f_{min} \text{ (mm)}$	$f_{max} (mm)$	\overline{f} (mm)
1			
2			土
3			

2.4.2 Método da equação dos focos conjugados e ampliação

1) Distância entre lente convergente e objecto: $D_O = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} mm$

Ensaio	D_I^{min} (mm)	D_I^{max} (mm)	$\overline{D_I} \pm \epsilon_{D_i} \; (\text{mm})$	$A = \overline{D_I}/D_O$	f (mm)
1			土	土	±
2			土	土	土
3			土	土	土

$$\overline{f} = \underline{\qquad} \pm \underline{\qquad} (mm); \overline{A} = \underline{\qquad} \pm \underline{\qquad}$$

Ensaio	$h_O \text{ (mm)}$	$\epsilon_{h_O} \; (\mathrm{mm})$	$h_I \text{ (mm)}$	$\epsilon_{h_I} \; (\mathrm{mm})$	Ampliação A	\overline{A}
1					±	
2					土	土
3					土	

2) Distância entre lente convergente e objecto: $D_O = \underline{\hspace{1cm}} \pm \underline{\hspace{1cm}} mm$

Ensaio	D_I^{min} (mm)	D_I^{max} (mm)	$\overline{D_I} \pm \epsilon_{D_i} \; (\mathrm{mm})$	$A = \overline{D_I}/D_O$	f (mm)
1			土	土	±
2			土	土	士
3			土	土	土

$$\overline{f} = \underline{\qquad} \pm \underline{\qquad} (mm); \overline{A} = \underline{\qquad} \pm \underline{\qquad}$$

Ensaio	$h_O \text{ (mm)}$	$\epsilon_{h_O} \; (\mathrm{mm})$	$h_I \text{ (mm)}$	$\epsilon_{h_I} \; (\mathrm{mm})$	Ampliação A	\overline{A}
1					土	
2					土	土
3					土	

Analise e comente os resultados	s que obteve	usando c	metodo	directo	e o metodo	dos i	ocos
conjugados.							

2.5 Distância focal de uma lente divergente

Distância entre lentes e objecto: $D_O = _{----} \pm _{----}$ mm

Ensaio	$D_I^{min} \text{ (mm)}$	D_I^{max} (mm)	$\overline{D_I} \pm \epsilon_{D_i} \; (\text{mm})$	$f \pm \epsilon_f \; (\text{mm})$
1		土	土	土
2		土	土	土

$$\overline{f} = \underline{\qquad} \pm \underline{\qquad} (mm);$$

2.6 Análise, Conclusões e Comentários
