Bayesian Linear Regression Guest lecture at KTH 2020

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Lecture overview

- Bayesian inference
- The normal model with known variance
- Linear regression
- Regularization priors

Slides at: https://mattiasvillani.com/news

Likelihood function - normal data regression

■ Normal data with known variance:

$$X_1, ..., X_n | \theta \stackrel{\text{iid}}{\sim} N(\theta, \sigma^2).$$

Likelihood from independent observations: $x_1, ..., x_n$

$$p(x_1, ..., x_n | \theta) = \prod_{i=1}^n p(x_i | \theta) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \theta)^2\right)$$

$$\propto \exp\left(-\frac{1}{2(\sigma^2/n)} (\theta - \bar{x})^2\right)$$

- Maximum likelihood: $\hat{\theta} = \bar{x}$ maximizes $p(x_1, ..., x_n | \theta)$.
- Given the data $x_1, ..., x_n$, plot $p(x_1, ..., x_n | \theta)$ as a function of θ .

Am I really getting my 50Mbit/sec?

- My broadband provider promises me at least 50Mbit/sec.
- Data: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.
- Measurement errors: $\sigma = 5 \ (\pm 10 \text{Mbit with } 95\% \text{ probability})$
- The likelihood function is proportional to $N(\bar{x}, \sigma^2/n)$ density.

The likelihood function

■ The mantra:

The likelihood function is the probability of the observed data considered as a function of the parameter.

- Likelihood function is **NOT** a probability distribution for θ .
- Statements like $Pr(\theta \ge 50|data)$ makes no sense.
- Unless ...

Uncertainty and subjective probability

- Pr($\theta \ge 50 | data$) only makes sense if θ is random.
- But θ may be a fixed natural constant?
- Bayesian: doesn't matter if θ is fixed or random.
- **Do You** know the value of θ or not?
- $p(\theta)$ reflects Your knowledge/uncertainty about θ .
- Subjective probability.
- The statement $\Pr(10\text{th decimal of }\pi=9)=0.1$ makes sense.

Bayesian learning

- **Bayesian learning** about a model parameter θ :
 - \triangleright state your **prior** knowledge as a probability distribution $p(\theta)$.
 - \triangleright collect data x and form the likelihood function $p(x|\theta)$.
 - **combine** prior knowledge $p(\theta)$ with data information $p(\mathbf{x}|\theta)$.
- How to combine the two sources of information?

Bayes' theorem

Learning from data - Bayes' theorem

- How to update from prior $p(\theta)$ to posterior $p(\theta|Data)$?
- Bayes' theorem for events A and B

$$p(A|B) = \frac{p(B|A)p(A)}{p(B)}.$$

Bayes' Theorem for a model parameter θ

$$p(\theta|Data) = \frac{p(Data|\theta)p(\theta)}{p(Data)}.$$

- It is the prior $p(\theta)$ that takes us from $p(Data|\theta)$ to $p(\theta|Data)$.
- \blacksquare A probability distribution for θ is extremely useful:
 - Predictions
 - Decision making
 - ► Regularization

Great theorems make great tattoos

Bayes theorem

$$p(\theta|Data) = \frac{p(Data|\theta)p(\theta)}{p(Data)}$$

All you need to know:

$$p(\theta|Data) \propto p(Data|\theta)p(\theta)$$

or

Posterior ∝ Likelihood · Prior

Normal data, known variance - uniform prior

Model

$$x_1, ..., x_n | \theta, \sigma^2 \stackrel{iid}{\sim} N(\theta, \sigma^2).$$

Prior

$$p(\theta) \propto c$$
 (a constant)

Likelihood

$$p(x_1, ..., x_n | \theta, \sigma^2) = \exp \left[-\frac{1}{2(\sigma^2/n)} (\theta - \bar{x})^2 \right]$$

Posterior

$$\theta | x_1, ..., x_n \sim N(\bar{x}, \sigma^2/n)$$

Normal data, known variance - normal prior

Prior

$$\theta \sim N(\mu_0, \tau_0^2)$$

Posterior

$$p(\theta|x_1,...,x_n) \propto p(x_1,...,x_n|\theta,\sigma^2)p(\theta)$$

$$\propto N(\theta|\mu_n,\tau_n^2),$$

where

$$\frac{1}{\tau_n^2} = \frac{n}{\sigma^2} + \frac{1}{\tau_0^2},$$

$$\mu_n = w\bar{x} + (1 - w)\mu_0,$$

and

$$W = \frac{\frac{n}{\sigma^2}}{\frac{n}{\sigma^2} + \frac{1}{\tau_0^2}}.$$

Proof: complete the squares in the exponential.

- Data: x = (22.42, 34.01, 35.04, 38.74, 25.15) Mbit/sec.
- Model: $X_1, ..., X_5 \sim N(\theta, \sigma^2)$.
- Assume $\sigma = 5$ (measurements can vary ± 10 MBit with 95% probability)
- My prior: $\theta \sim N(50, 5^2)$.

Download speed data: x=(22.42)

Download speed data: x=(22.42, 34.01, 35.04)

Linear regression

■ The linear regression model in matrix form

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}_{(\mathbf{n} \times \mathbf{1})} + \boldsymbol{\varepsilon}_{(\mathbf{n} \times \mathbf{1})}$$

- Usually first column of **X** is the unit vector and β_1 is the intercept.
- Normal errors: $\varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$, so $\varepsilon \sim N(0, \sigma^2 I_n)$.
- Likelihood

$$\mathbf{y}|\beta,\sigma^2,\mathbf{X}\sim N(\mathbf{X}\beta,\sigma^2I_n)$$

Linear regression - uniform prior

Standard non-informative prior: uniform on $(\beta, \log \sigma^2)$

$$p(\beta, \sigma^2) \propto \sigma^{-2}$$

Joint posterior of β and σ^2 :

$$\beta | \sigma^2, \mathbf{y} \sim N \left[\hat{\beta}, \sigma^2 (\mathbf{X}' \mathbf{X})^{-1} \right]$$

 $\sigma^2 | \mathbf{y} \sim Inv \cdot \chi^2 (n - k, s^2)$

where
$$\hat{\beta}=(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$
 and $s^2=\frac{1}{n-k}(\mathbf{y}-\mathbf{X}\hat{\beta})'(\mathbf{y}-\mathbf{X}\hat{\beta}).$

- Simulate from the joint posterior by simulating from
 - $ightharpoonup p(\sigma^2|\mathbf{y})$
 - $ightharpoonup p(\beta|\sigma^2,\mathbf{y})$
- Marginal posterior of β :

$$\beta | \mathbf{y} \sim t_{n-k} \left[\hat{\beta}, s^2 (X'X)^{-1} \right]$$

Scaled inverse χ^2 distribution

■ Inverse gamma distribution.

Linear regression - conjugate prior

Joint prior for β and σ^2

$$\begin{split} \beta | \sigma^2 &\sim \textit{N}\left(\mu_0, \sigma^2 \Omega_0^{-1}\right) \\ \sigma^2 &\sim \textit{Inv} - \chi^2\left(\nu_0, \sigma_0^2\right) \end{split}$$

Posterior

$$\begin{split} \beta | \sigma^2, \mathbf{y} &\sim \textit{N}\left[\mu_{\textit{n}}, \sigma^2 \Omega_{\textit{n}}^{-1}\right] \\ \sigma^2 | \mathbf{y} &\sim \textit{Inv} - \chi^2\left(\nu_{\textit{n}}, \sigma_{\textit{n}}^2\right) \end{split}$$

$$\mu_{n} = (\mathbf{X}'\mathbf{X} + \Omega_{0})^{-1} (\mathbf{X}'\mathbf{X}\hat{\beta} + \Omega_{0}\mu_{0})$$

$$\Omega_{n} = \mathbf{X}'\mathbf{X} + \Omega_{0}$$

$$\nu_{n} = \nu_{0} + n$$

$$\nu_{n}\sigma_{n}^{2} = \nu_{0}\sigma_{0}^{2} + (\mathbf{y}'\mathbf{y} + \mu'_{0}\Omega_{0}\mu_{0} - \mu'_{n}\Omega_{n}\mu_{n})$$

Ridge regression = normal prior

- Problem: too many covariates leads to over-fitting.
- Smoothness/shrinkage/regularization prior

$$\beta_i | \sigma^2 \stackrel{iid}{\sim} N\left(0, \frac{\sigma^2}{\lambda}\right)$$

- Larger λ gives smoother fit. Note: $\Omega_0 = \lambda I$.
- Equivalent to penalized likelihood:

$$-2 \cdot \log p(\boldsymbol{\beta}|\sigma^2, \mathbf{y}, \mathbf{X}) \propto (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}' \boldsymbol{\beta}$$

Posterior mean gives ridge regression estimator

$$\tilde{\beta} = (\mathbf{X}'\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}'\mathbf{y}$$

Shrinkage toward zero

As
$$\lambda o \infty$$
, $ilde{eta} o 0$

 \blacksquare When X'X = I

$$\tilde{\beta} = \frac{1}{1+\lambda}\hat{\beta}$$

Lasso regression = Laplace prior

Lasso is equivalent to posterior mode under Laplace prior

$$\beta_i | \sigma^2 \stackrel{iid}{\sim} \text{Laplace} \left(0, \frac{\sigma^2}{\lambda} \right)$$

- Laplace prior:
 - heavy tails
 - ▶ many β_i close to zero, but some β_i can be very large.
- Normal prior
 - light tails
 - ▶ all β_i 's are similar in magnitude and no β_i very large.

Estimating the shrinkage

- Cross-validation is often used to determine the degree of smoothness, λ .
- Bayesian: λ is unknown \Rightarrow use a prior for λ .
- $\lambda \sim Inv-\chi^2(\eta_0,\lambda_0)$. The user specifies η_0 and λ_0 .
- Hierarchical setup:

$$\begin{aligned} \mathbf{y}|\beta, \mathbf{X} &\sim \textit{N}(\mathbf{X}\beta, \sigma^{2}\textit{I}_{n}) \\ \beta|\sigma^{2}, \lambda &\sim \textit{N}\left(0, \sigma^{2}\lambda^{-1}\textit{I}_{m}\right) \\ \sigma^{2} &\sim \textit{Inv} - \chi^{2}(\nu_{0}, \sigma_{0}^{2}) \\ \lambda &\sim \textit{Inv-}\chi^{2}(\eta_{0}, \lambda_{0}) \end{aligned}$$

Regression with estimated shrinkage

The joint posterior of β , σ^2 and λ is

$$\beta | \sigma^2, \lambda, \mathbf{y} \sim N(\mu_n, \Omega_n^{-1})$$

$$\sigma^2 | \lambda, \mathbf{y} \sim Inv - \chi^2 \left(\nu_n, \sigma_n^2 \right)$$

$$p(\lambda|\mathbf{y}) \propto \sqrt{\frac{|\Omega_0(\lambda)|}{|\mathbf{X}^T\mathbf{X} + \Omega_0(\lambda)|}} \left(\frac{\nu_n \sigma_n^2(\lambda)}{2}\right)^{-\nu_n/2} \cdot p(\lambda)$$

 $\square \Omega_0(\lambda) = \lambda I_m$, and $p(\lambda)$ is the prior for λ .

Polynomial regression

■ Polynomial regression

$$f(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_k x_i^k.$$

$$\mathbf{y} = \mathbf{X}\beta + \varepsilon,$$

where

$$X = (1, x, x^2, ..., x^k).$$

- Problem: higher order polynomials can overfit the data.
- Solution: shrink higher order coefficients harder:

$$\beta|\sigma^2 \sim \textit{N} \left[0, \left(\begin{array}{cccc} 100 & 0 & 0 & \cdots & 0 \\ 0 & \frac{1}{\lambda} & 0 & \cdots & 0 \\ 0 & 0 & \frac{1}{2\lambda} & & & \\ \vdots & \vdots & & \ddots & \\ 0 & 0 & 0 & \cdots & \frac{1}{k\lambda} \end{array} \right) \right]$$

Finding the time for maximum

 \blacksquare Quadratic relationship between pain relief (y) and time (x)

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon.$$

At what time x_{max} is there maximal pain relief?

$$x_{max} = -\beta_1/2\beta_2$$

- Posterior distribution of x_{max} can be obtained by change of variable. Cauchy-like.
- **E**asy to obtain marginal posterior $p(x_{max}|\mathbf{y}, \mathbf{X})$ by simulation:
 - ▶ Simulate *N* coefficient vectors from the posterior β , $\sigma^2 | \mathbf{y}$, \mathbf{X}
 - For each simulated β , compute $x_{max} = -\beta_1/2\beta_2$.
 - ▶ Plot a histogram. Converges to $p(x_{max}|\mathbf{y}, \mathbf{X})$ as $N \to \infty$.

Finding the time for maximum

Bayes is easy to use

- Substantially more complex models can be analyzed by
 - Markov Chain Monte Carlo (MCMC) simulation
 - ► Hamiltonian Monte Carlo (HMC) simulation
 - Variational inference optimization
- Ongoing research on making Bayes more scalable to large data.
 My own contributions: https://mattiasvillani.com/research
- Probabilistic programming languages (Stan) makes Bayes easy.
- Bayesian Learning course at SU: https://github.com/mattiasvillani/BayesLearnCourse