Text Retrieval and Search Engines

Implementation of TR Systems

ChengXiang "Cheng" Zhai Department of Computer Science University of Illinois at Urbana-Champaign

Implementation of Text Retrieval Systems

Typical TR System Architecture

Tokenization

- Normalize lexical units: Words with similar meanings should be mapped to the same indexing term
- Stemming: Mapping all inflectional forms of words to the same root form, e.g.
 - computer -> compute
 - computation -> compute
 - computing -> compute
- Some languages (e.g., Chinese) pose challenges in word segmentation

Indexing

- Indexing = Convert documents to data structures that enable fast search (precomputing as much as we can)
- Inverted index is the dominating indexing method for supporting basic search algorithms
- Other indices (e.g., document index) may be needed for feedback

Inverted Index Example

doc 1

... news about

doc 2

... **news about** organic food **campaign**...

Dictionary (or lexicon)

Term	# docs	Total freq
news	3	3
campaign	2	2
presidential	1	2
food	1	1

Postings Freq Doc **Position** id **p1 p2** р3 p4 **p5** p6,p7 **p8**

doc 3

... news of presidential campaign ...

... **presidential** candidate ...

Inverted Index for Fast Search

- Single-term query?
- Multi-term Boolean query?
 - Must match term "A" AND term "B"
 - Must match term "A" OR term "B"
- Multi-term keyword query
 - Similar to disjunctive Boolean query ("A" OR "B")
 - Aggregate term weights
- More efficient than sequentially scanning docs (why?)

Empirical Distribution of Words

- There are stable language-independent patterns in how people use natural languages
- A few words occur very frequently; most occur rarely.
 E.g., in news articles,
 - Top 4 words: 10~15% word occurrences
 - Top 50 words: 35~40% word occurrences
- The most frequent word in one corpus may be rare in another

Zipf's Law

rank * frequency ≈ constant

$$F(w) = \frac{C}{r(w)^{\alpha}} \quad \alpha \approx 1, C \approx 0.1$$

Data Structures for Inverted Index

- Dictionary: modest size
 - Needs fast random access
 - Preferred to be in memory
 - Hash table, B-tree, trie, …
- Postings: huge
 - Sequential access is expected
 - Can stay on disk
 - May contain docID, term freq., term pos, etc
 - Compression is desirable