Boost.Units 1.0.0

Matthias C. Schabel

Steven Watanabe

Copyright © 2003 -2008 Matthias Christian Schabel, 2007-2008 Steven Watanabe

Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

Table of Contents

Introduction	
Quick Start	
Dimensional Analysis	4
Units	
Quantities	
Examples	
Utilities	
Reference	
Installation	
FAQ	
Acknowledgements	493
Help Wanted	494
Release Notes	494
TODO	

Introduction

The Boost.Units library is a C++ implementation of dimensional analysis in a general and extensible manner, treating it as a generic compile-time metaprogramming problem. With appropriate compiler optimization, no runtime execution cost is introduced, facilitating the use of this library to provide dimension checking in performance-critical code. Support for units and quantities (defined as a unit and associated value) for arbitrary unit system models and arbitrary value types is provided, as is a fine-grained general facility for unit conversions. Complete SI and CGS unit systems are provided, along with systems for angles measured in degrees, radians, gradians, and revolutions and systems for temperatures measured in Kelvin, degrees Celsius and degrees Fahrenheit. The library architecture has been designed with flexibility and extensibility in mind; demonstrations of the ease of adding new units and unit conversions are provided in the examples.

In order to enable complex compile-time dimensional analysis calculations with no runtime overhead, Boost.Units relies heavily on the <u>Boost Metaprogramming Library</u> (MPL) and on template metaprogramming techniques, and is, as a consequence, fairly demanding of compiler compliance to ISO standards. At present, it has been successfully compiled and tested on the following compilers/platforms:

- 1. g++ 4.0.1 on Mac OSX 10.4
- 2. Intel CC 9.1, 10.0, and 10.1 on Mac OSX 10.4
- 3. g++ 3.4.4, 4.2.3, and 4.3.0 on Windows XP
- 4. Microsoft Visual C++ 7.1, 8.0, and 9.0 on Windows XP
- 5. Comeau 4.3.10.1 beta2 on Windows XP
- 6. Metrowerks CodeWarrior 9.2 on Windows XP.

7. Sun CC 5.9 on Solaris and Linux

The following compilers/platforms are known **not** to work :

- 1. g++3.3.x
- 2. Microsoft Visual C++ 6.0 on Windows XP
- 3. Microsoft Visual C++ 7.0 on Windows XP
- 4. Metrowerks CodeWarrior 8.0 on Windows XP.
- 5. All versions of Borland.

Quick Start

Before discussing the basics of the library, we first define a few terms that will be used frequently in the following:

- Base dimension: A base dimension is loosely defined as a measurable entity of interest; in conventional dimensional analysis, base dimensions include length ([L]), mass ([M]), time ([T]), etc... but there is no specific restriction on what base dimensions can be used. Base dimensions are essentially a tag type and provide no dimensional analysis functionality themselves.
- **Dimension**: A collection of zero or more base dimensions, each potentially raised to a different rational power. For example, area = [L]^2, velocity = [L]^1/[T]^1, and energy = [M]^1 [L]^2/[T]^2 are all dimensions.
- Base unit: A base unit represents a specific measure of a dimension. For example, while length is an abstract measure of distance, the meter is a concrete base unit of distance. Conversions are defined using base units. Much like base dimensions, base units are a tag type used solely to define units and do not support dimensional analysis algebra.
- Unit: A set of base units raised to rational exponents, e.g. kg^1 m^1/s^2.
- System: A unit system is a collection of base units representing all the measurable entities of interest for a specific problem. For example, the SI unit system defines seven base units: length ([L]) in meters, mass ([M]) in kilograms, time ([T]) in seconds, current ([I]) in amperes, temperature ([theta]) in kelvin, amount ([N]) in moles, and luminous intensity ([J]) in candelas. All measurable entities within the SI system can be represented as products of various integer or rational powers of these seven base units.
- **Quantity**: A quantity represents a concrete amount of a unit. Thus, while the meter is the base unit of length in the SI system, 5.5 meters is a quantity of length in that system.

To begin, we present two short tutorials. Tutorial1 demonstrates the use of SI units. After including the appropriate system headers and the headers for the various SI units we will need (all SI units can be included with boost/units/systems/si.hpp) and for quantity I/O (boost/units/io.hpp), we define a function that computes the work, in joules, done by exerting a force in newtons over a specified distance in meters and outputs the result to std::cout. The quantity class accepts a second template parameter as its value type; this parameter defaults to double if not otherwise specified. To demonstrate the ease of using user-defined types in dimensional calculations, we also present code for computing the complex impedance using std::complex<double> as the value type:


```
#include <complex>
#include <iostream>
#include <boost/typeof/std/complex.hpp>
#include <boost/units/systems/si/energy.hpp>
#include <boost/units/systems/si/force.hpp>
#include <boost/units/systems/si/length.hpp>
#include <boost/units/systems/si/electric_potential.hpp>
#include <boost/units/systems/si/current.hpp>
#include <boost/units/systems/si/resistance.hpp>
#include <boost/units/systems/si/io.hpp>
using namespace boost::units;
using namespace boost::units::si;
quantity<energy>
work(const quantity<force>& F,const quantity<length>& dx)
    return F*dx;
int main()
    /// test calcuation of work
    quantity<force>
                      F(2.0*newton);
    quantity<length>
                       dx(2.0*meter);
                     E(work(F,dx));
    quantity<energy>
    std::cout << "F = " << F << std::endl
              << "dx = " << dx << std::endl
              << "E = " << E << std::endl
              << std::endl;
    /// check complex quantities
    typedef std::complex<double>
                                   complex_type;
    quantity<electric_potential,complex_type> v = complex_type(12.5,0.0)*volts;
    quantity<current,complex_type>
                                             i = complex_type(3.0,4.0)*amperes;
    quantity<resistance,complex_type>
                                              z = complex\_type(1.5, -2.0)*ohms;
    std::cout << "V = " << v << std::endl
              << "I = " << i << std::endl
              << "Z = " << z << std::endl
              << "I*Z = " << i*z << std::endl
              << "I*Z == V? " << std::boolalpha << (i*z == v) << std::endl
              << std::endl;
    return 0;
```

The intent and function of the above code should be obvious; the output produced is :


```
F = 2 N

dx = 2 m

E = 4 J

V = (12.5,0) V

I = (3,4) A

Z = (1.5,-2) Ohm

I*Z = (12.5,0) V

I*Z == V? true
```

While this library attempts to make simple dimensional computations easy to code, it is in no way tied to any particular unit system (SI or otherwise). Instead, it provides a highly flexible compile-time system for dimensional analysis, supporting arbitrary collections of base dimensions, rational powers of units, and explicit quantity conversions. It accomplishes all of this via template metaprogramming techniques. With modern optimizing compilers, this results in zero runtime overhead for quantity computations relative to the same code without unit checking.

Dimensional Analysis

The concept of dimensional analysis is normally presented early on in introductory physics and engineering classes as a means of determining the correctness of an equation or computation by propagating the physical measurement units of various quantities through the equation along with their numerical values. There are a number of standard unit systems in common use, the most prominent of which is the Systeme International (also known as SI or MKS (meter-kilogram-second), which was a metric predecessor to the SI system named for three of the base units on which the system is based). The SI is the only official international standard unit system and is widely utilized in science and engineering. Other common systems include the CGS (centimeter-gram-second) system and the English system still in use in some problem domains in the United States and elsewhere. In physics, there also exist a number of other systems that are in common use in specialized subdisciplines. These are collectively referred to as natural units. When quantities representing different measurables are combined, dimensional analysis provides the means of assessing the consistency of the resulting calculation. For example, the sum of two lengths is also a length, while the product of two lengths is an area, and the sum of a length and an area is undefined. The fact that the arguments to many functions (such as exp, log, etc...) must be dimensionless quantities can be easily demonstrated by examining their series expansions in the context of dimensional analysis. This library facilitates the enforcement of this type of restriction in code involving dimensioned quantities where appropriate.

In the following discussion we view dimensional analysis as an abstraction in which an arbitrary set of units obey the rules of a specific algebra. We will refer to a pair of a base dimension and a rational exponent as a **fundamental dimension**, and a list composed of an arbitrary number of fundamental dimensions as a **composite dimension** or, simply, **dimension**. In particular, given a set of p fundamental dimensions denoted by $\{D_1, D_2, \dots, D_p\}$ and a set of p rational exponents $\{R_1, R_2, \dots, R_p\}$, any possible (composite) dimension can be written as $D = \{D_1^{R_1}, D_2^{R_2}, \dots, D_p^{R_p}\}$.

Composite dimensions obey the algebraic rules for dimensional analysis. In particular, for any scalar value, S, and composite dimensions $D_x = \{\langle D_1, R_1 \rangle, \langle D_2, R_2 \rangle, ..., \langle D_n, R_n \rangle\}$ and $D_y = \{\langle D_1, R_1' \rangle, \langle D_2, R_2' \rangle, ..., \langle D_m, R_m' \rangle\}$, where $n \le m \le m$, we have:

```
\begin{split} D_x + D_y &= D_x \quad \text{iff} \quad D_x = D_y \\ D_x - D_y &= D_x \quad \text{iff} \quad D_x = D_y \\ D_x \cdot D_y &= \{\langle D_1, R_1 + R_1' \rangle, \langle D_2, R_2 + R_2' \rangle, ..., \langle D_n, R_n + R_n' \rangle, \langle D_{n+1}, R_{n+1}' \rangle, ..., \langle D_m, R_m' \rangle\} \\ D_x / D_y &= \{\langle D_1, R_1 - R_1' \rangle, \langle D_2, R_2 - R_2' \rangle, ..., \langle D_n, R_n - R_n' \rangle, \langle D_{n+1}, -R_{n+1}' \rangle, ..., \langle D_m, -R_m' \rangle\} \\ D_x^S &= \{\langle D_1, S \cdot R_1 \rangle, \langle D_2, S \cdot R_2 \rangle, ..., \langle D_n, S \cdot R_n \rangle\} \end{split}
```

Users of a dimensional analysis library should be able to specify an arbitrary list of base dimensions to produce a composite dimension. This potentially includes repeated tags. For example, it should be possible to express energy as $M \cdot L^2/T^2$, $M \cdot L/T \cdot L/T$, $L/T \cdot M \cdot L/T$, or any other permutation of mass, length, and time having aggregate exponents of 1, 2, and -2, respectively. In order to be able to perform computations on arbitrary sets of dimensions, all composite dimensions must be reducible to an unambiguous final composite dimension, which we will refer to as a **reduced dimension**, for which

1. fundamental dimensions are consistently ordered

2. dimensions with zero exponent are elided. Note that reduced dimensions never have more than *p* base dimensions, one for each distinct fundamental dimension, but may have fewer.

In our implementation, base dimensions are associated with tag types. As we will ultimately represent composite dimensions as typelists, we must provide some mechanism for sorting base dimension tags in order to make it possible to convert an arbitrary composite dimension into a reduced dimension. For this purpose, we assign a unique integer to each base dimension. The base_dimension the curiously recurring template pattern (CRTP) technique to ensure that ordinals specified for base dimensions are unique:

```
template<class Derived, long N> struct base_dimension { ... };
```

With this, we can define the base dimensions for length, mass, and time as:

```
/// base dimension of length
struct length_base_dimension : base_dimension<length_base_dimension,1> { };
/// base dimension of mass
struct mass_base_dimension : base_dimension<mass_base_dimension,2> { };
/// base dimension of time
struct time_base_dimension : base_dimension<time_base_dimension,3> { };
```

It is important to note that the choice of order is completely arbitrary as long as each tag has a unique enumerable value; non-unique ordinals are flagged as errors at compile-time. Negative ordinals are reserved for use by the library. To define composite dimensions corresponding to the base dimensions, we simply create MPL-conformant typelists of fundamental dimensions by using the dim class to encapsulate pairs of base dimensions and static rational exponents. The make dimension list class acts as a wrapper to ensure that the resulting type is in the form of a reduced dimension:

```
typedef make_dimension_list<
    boost::mpl::list< dim< length_base_dimension,static_rational<1> > >
>::type length_dimension;

typedef make_dimension_list<
    boost::mpl::list< dim< mass_base_dimension,static_rational<1> > >
>::type mass_dimension;

typedef make_dimension_list<
    boost::mpl::list< dim< time_base_dimension,static_rational<1> > >
>::type time_dimension;
```

This can also be easily accomplished using a convenience typedef provided by base dimension:

```
typedef length_base_dimension::dimension_type
typedef mass_base_dimension::dimension_type
typedef time_base_dimension::dimension_type
typedef time_base_dimension::dimension_type
length_dimension;

mass_dimension;
typedef time_base_dimension::dimension_type
```

so that the above code is identical to the full typelist definition. Composite dimensions are similarly defined via a typelist:

A convenience class for composite dimensions with integer powers is also provided:

Units

We define a **unit** as a set of base units each of which can be raised to an arbitrary rational exponent. Thus, the SI unit corresponding to the dimension of force is kg m s^-2, where kg, m, and s are base units. We use the notion of a **unit system** such as SI to specify the mapping from a dimension to a particular unit so that instead of specifying the base units explicitly, we can just ask for the representation of a dimension in a particular system.

Units are, like dimensions, purely compile-time variables with no associated value. Units obey the same algebra as dimensions do; the presence of the unit system serves to ensure that units having identical reduced dimension in different systems (like feet and meters) cannot be inadvertently mixed in computations.

There are two distinct types of systems that can be envisioned:

- **Homogeneous systems**: Systems which hold a linearly independent set of base units which can be used to represent many different dimensions. For example, the SI system has seven base dimensions and seven base units corresponding to them. It can represent any unit which uses only those seven base dimensions. Thus it is a homogeneous_system.
- Heterogeneous systems: Systems which store the exponents of every base unit involved are termed heterogeneous. Some units can only be represented in this way. For example, area in m ft is intrinsically heterogeneous, because the base units of meters and feet have identical dimensions. As a result, simply storing a dimension and a set of base units does not yield a unique solution. A practical example of the need for heterogeneous units, is an empirical equation used in aviation: H = (r/C)^2 where H is the radar beam height in feet and r is the radar range in nautical miles. In order to enforce dimensional correctness of this equation, the constant, C, must be expressed in nautical miles per foot^(1/2), mixing two distinct base units of length.

Units are implemented by the <u>unit</u> template class defined in <u>boost/units/unit.hpp</u>:

```
template<class Dim,class System> class unit;
```

In addition to supporting the compile-time dimensional analysis operations, the +, -, *, and / runtime operators are provided for unit variables. Because the dimension associated with powers and roots must be computed at compile-time, it is not possible to provide overloads for std::pow that function correctly for units. These operations are supported through free functions pow and root that are templated on integer and static rational values and can take as an argument any type for which the utility classes power typeof helper and root typeof helper have been defined.

Base Units

Base units are defined much like base dimensions.


```
template<class Derived, class Dimensions, long N> struct base_unit { ... };
```

Again negative ordinals are reserved.

As an example, in the following we will implement a subset of the SI unit system based on the fundamental dimensions given above, demonstrating all steps necessary for a completely functional system. First, we simply define a unit system that includes type definitions for commonly used units:

```
struct meter_base_unit : base_unit<meter_base_unit, length_dimension, 1> { };
struct kilogram_base_unit : base_unit<kilogram_base_unit, mass_dimension, 2> { };
struct second_base_unit : base_unit<second_base_unit, time_dimension, 3> { };
typedef make_system<
    meter_base_unit,
    kilogram_base_unit,
    second_base_unit>::type mks_system;
/// unit typedefs
typedef unit<dimensionless_type,mks_system>
                                                  dimensionless;
typedef unit<length_dimension,mks_system>
                                                  length;
typedef unit<mass_dimension,mks_system>
                                                  mass;
typedef unit<time_dimension,mks_system>
                                                  time;
typedef unit<area_dimension,mks_system>
                                                  area;
typedef unit<energy_dimension,mks_system>
                                                  energy;
```

The macro <u>BOOST UNITS STATIC CONSTANT</u> is provided in <u>boost/units/static_constant.hpp</u> to facilitate ODR- and thread-safe constant definition in header files. We then define some constants for the supported units to simplify variable definitions:

```
/// unit constants
BOOST_UNITS_STATIC_CONSTANT(meter,length);
BOOST_UNITS_STATIC_CONSTANT(meters,length);
BOOST_UNITS_STATIC_CONSTANT(kilogram,mass);
BOOST_UNITS_STATIC_CONSTANT(kilograms,mass);
BOOST_UNITS_STATIC_CONSTANT(second,time);
BOOST_UNITS_STATIC_CONSTANT(seconds,time);

BOOST_UNITS_STATIC_CONSTANT(square_meter,area);
BOOST_UNITS_STATIC_CONSTANT(square_meters,area);
BOOST_UNITS_STATIC_CONSTANT(joule,energy);
BOOST_UNITS_STATIC_CONSTANT(joule,energy);
```

If support for textual output of units is desired, we can also specialize the <u>base unit info</u> class for each fundamental dimension tag:

```
template<> struct base_unit_info<test::meter_base_unit>
{
    static std::string name() { return "meter"; }
    static std::string symbol() { return "m"; }
};
```

and similarly for kilogram_base_unit and second_base_unit. A future version of the library will provide a more flexible system allowing for internationalization through a facet/locale-type mechanism. The name() and symbol() methods of base unit info provide full and short names for the base unit. With these definitions, we have the rudimentary beginnings of our unit system, which can be used to determine reduced dimensions for arbitrary unit calculations.

Scaled Base Units

Now, it is also possible to define a base unit as being a multiple of another base unit. For example, the way that kilogram_base_unit is actually defined by the library is along the following lines

```
struct gram_base_unit : boost::units::base_unit<gram_base_unit, mass_dimension, 1> {};
typedef scaled_base_unit<gram_base_unit, scale<10, static_rational<3> > > kilogram_base_unit;
```

This basically defines a kilogram as being 10³ times a gram.

There are several advantages to this approach.

- It reflects the real meaning of these units better than treating them as independent units.
- If a conversion is defined between grams or kilograms and some other units, it will automatically work for both kilograms and grams, with only one specialization.
- Similarly, if the symbol for grams is defined as "g", then the symbol for kilograms will be "kg" without any extra effort.

Scaled Units

We can also scale a <u>unit</u> as a whole, rather than scaling the individual base units which comprise it. For this purpose, we use the metafunction <u>make scaled unit</u>. The main motivation for this feature is the metric prefixes defined in <u>boost/units/systems/si/prefixes.hpp</u>.

A simple example of its usage would be.

```
typedef make_scaled_unit<si::time, scale<10, static_rational<-9> > >::type nanosecond;
```

nanosecond is a specialization of unit, and can be used in a quantity normally.

Quantities

A **quantity** is defined as a value of an arbitrary value type that is associated with a specific unit. For example, while meter is a unit, 3.0 meters is a quantity. Quantities obey two separate algebras: the native algebra for their value type, and the dimensional analysis algebra for the associated unit. In addition, algebraic operations are defined between units and quantities to simplify the definition of quantities; it is effectively equivalent to algebra with a unit-valued quantity.

Quantities are implemented by the quantity template class defined in boost/units/quantity.hpp:

```
template<class Unit,class Y = double> class quantity;
```

This class is templated on both unit type (Unit) and value type (Y), with the latter defaulting to double-precision floating point if not otherwise specified. The value type must have a normal copy constructor and copy assignment operator. Operators +, -, *, and / are provided for algebraic operations between scalars and units, scalars and quantities, units and quantities, and between quantities. In addition, integral and rational powers and roots can be computed using the <u>pow</u><R> and <u>root</u><R> functions. Finally, the standard set of boolean comparison operators (== , != , <, <= , >, and >=) are provided to allow comparison of quantities from the same unit system. All operators simply delegate to the corresponding operator of the value type if the units permit.

Heterogeneous Operators

For most common value types, the result type of arithmetic operators is the same as the value type itself. For example, the sum of two double precision floating point numbers is another double precision floating point number. However, there are instances where this is not the case. A simple example is given by the natural numbers where the operator arithmetic obeys the following rules (using the standard notation for number systems):

- N + N → N
- N − N → Z
- $\mathbb{N} \cdot \mathbb{N} \to \mathbb{N}$
- N/N → Q

This library is designed to support arbitrary value type algebra for addition, subtraction, multiplication, division, and rational powers and roots. It uses Boost. Typeof to deduce the result of these operators. For compilers that support typeof, the appropriate value type will be automatically deduced. For compilers that do not provide language support for typeof it is necessary to register all the types used. For the case of natural numbers, this would amount to something like the following:

```
BOOST_TYPEOF_REGISTER_TYPE(natural);
BOOST_TYPEOF_REGISTER_TYPE(integer);
BOOST_TYPEOF_REGISTER_TYPE(rational);
```

Conversions

Conversion is only meaningful for quantities as it implies the presence of at least a multiplicative scale factor and, possibly, and affine linear offset. Macros for simplifying the definition of conversions between units can be found in boost/units/conversion.hpp and boost/units/absolute.hpp (for affine conversions with offsets).

The macro <u>BOOST UNITS DEFINE CONVERSION FACTOR</u> specifies a scale factor for conversion from the first unit type to the second. The first argument must be a <u>base unit</u>. The second argument can be either a <u>base unit</u> or a <u>unit</u>.

Let's declare a simple base unit:

```
struct foot_base_unit : base_unit<foot_base_unit, length_dimension, 10> { };
```

Now, we want to be able to convert feet to meters and vice versa. The foot is defined as exactly 0.3048 meters, so we can write the following

```
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(foot_base_unit, meter_base_unit, double, 0.3048);
```

Alternately, we could use the SI length typedef:

```
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(foot_base_unit, SI::length, double, 0.3048);
```

Since the SI unit of length is the meter, these two definitions are equivalent. If these conversions have been defined, then converting between scaled forms of these units will also automatically work.

The macro <u>BOOST UNITS DEFAULT CONVERSION</u> specifies a conversion that will be applied to a base unit when no direct conversion is possible. This can be used to make arbitrary conversions work with a single specialization:


```
struct my_unit_tag : boost::units::base_unit<my_unit_tag, boost::units::force_type, 1> {};
// define the conversion factor
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(my_unit_tag, SI::force, double, 3.14159265358979323846);
// make conversion to SI the default.
BOOST_UNITS_DEFAULT_CONVERSION(my_unit_tag, SI::force);
```

Construction and Conversion of Quantities

This library is designed to emphasize safety above convenience when performing operations with dimensioned quantities. Specifically, construction of quantities is required to fully specify both value and unit. Direct construction from a scalar value is prohibited (though the static member function from_value is provided to enable this functionality where it is necessary. In addition, a quantity cast to a reference allows direct access to the underlying value of a quantity variable. An explicit constructor is provided to enable conversion between dimensionally compatible quantities in different unit systems. Implicit conversions between unit systems are allowed only when the reduced units are identical, allowing, for example, trivial conversions between equivalent units in different systems (such as SI seconds and CGS seconds) while simultaneously enabling unintentional unit system mismatches to be caught at compile time and preventing potential loss of precision and performance overhead from unintended conversions. Assignment follows the same rules. An exception is made for quantities for which the unit reduces to dimensionless; in this case, implicit conversion to the underlying value type is allowed via class template specialization. Quantities of different value types are implicitly convertible only if the value types are themselves implicitly convertible. The quantity class also defines a value(") member for directly accessing the underlying value.

To summarize, conversions are allowed under the following conditions:

- implicit conversion of quantity<Unit, Y> to quantity<Unit, Z> is allowed if Y and Z are implicitly convertible.
- assignment between quantity<Unit, Y> and quantity<Unit, Z> is allowed if Y and Z are implicitly convertible.
- explicit conversion between quantity<Unit1,Y> and quantity<Unit2,Z> is allowed if Unit1 and Unit2 have the same dimensions and if Y and Z are implicitly convertible.
- implicit conversion between quantity<Unit1,Y> and quantity<Unit2,Z> is allowed if Unit1 reduces to exactly the same combination of base units as Unit2 and if Y and Z are convertible.
- assignment between quantity<Unit1,Y> and quantity<Unit2,Z> is allowed under the same conditions as implicit conversion.
- quantity<Unit, Y> can be directly constructed from a value of type Y using the static member function <u>from value</u>. Doing so, naturally, bypasses any type-checking of the newly assigned value, so this method should be used only when absolutely necessary.

Of course, any time implicit conversion is allowed, an explicit conversion is also legal.

Because dimensionless quantities have no associated units, they behave as normal scalars, and allow implicit conversion to and from the underlying value type or types that are convertible to/from that value type.

Examples

Dimension Example

(dimension.cpp)

By using MPL metafunctions and the template specializations for operations on composite dimensions (defined in boost/units/dimension.hpp) it is possible to perform compile time arithmetic according to the dimensional analysis rules described above to produce new composite dimensions:


```
typedef mpl::times<length_dimension,mass_dimension>::type    LM_type;
typedef mpl::divides<length_dimension,time_dimension>::type    L_T_type;
typedef static_root<
    mpl::divides<energy_dimension,mass_dimension>::type,
    static_rational<2>
>::type    V_type;
```

outputting (with symbol demangling, implemented in boost/units/detail/utility.hpp)

```
length_dimension = list<dim<length_base_dimension, static_rational<11, 11> >, dimensionless_type>
mass_dimension = list<dim<mass_base_dimension, static_rational<11, 11> >, dimensionless_type>
time_dimension = list<dim<time_base_dimension, static_rational<11, 11> >, dimensionless_type>
energy_dimension = list<dim<length_base_dimension, static_rational<11, 11> >, list<dim<time_base_dimension, static_rational<21, 11> >, list<dim<time_base_dimension, static_rational<11, 11> >, list<dim<time_base_dimension, static_rational<21, 11> >, dimensionless_type> >

LM_type = list<dim<length_base_dimension, static_rational<11, 11> >, list<dim<time_base_did</ti>
lmension, static_rational<11, 11> >, dimensionless_type> >

L_T_type = list<dim<length_base_dimension, static_rational<11, 11> >, list<dim<time_base_did</li>
lmension, static_rational<-11, 11> >, dimensionless_type> >

V_type = list<dim<length_base_dimension, static_rational<11, 11> >, list<dim<time_base_did</li>
lmension, static_rational<-11, 11> >, dimensionless_type> >
```

Unit Example

(unit.cpp)

This example demonstrates the use of the simple but functional unit system implemented in libs/units/example/test_system.hpp:

We can perform various algebraic operations on these units, resulting in the following output:

```
L
_{\rm L+L}
                = m
T_1 - T_1
                = m
                = dimensionless
L/L
meter*meter
                = m^2
M*(L/T)*(L/T) = m^2 kg s^-2
M*(L/T)^2
                = m^2 kg s^-2
L^3
                = m^3
                = m^{(3/2)}
L^(3/2)
                = kg^{(1/2)}
2 \times M
                = kg^{(2/3)}
(3/2)vM
```

Quantity Example

(quantity.cpp)

This example demonstrates how to use quantities of our toy unit system:

giving us the basic quantity functionality:

```
L
                                          = 2 m
                                          = 4 m
L+L
L-L
                                          = 0 m
L*L
                                          = 4 m^2
L/L
                                          = 1 dimensionless
                                          = 2 m^2
L*meter
kilograms*(L/seconds)*(L/seconds) = 4 m^2 kg s^-2
kilograms*(L/seconds)^2
                                          = 4 \text{ m}^2 \text{ kg s}^2
L^(3/2)
                                          = 2.82843 \text{ m}^{(3/2)}
                                          = 1.41421 \text{ m}^{(1/2)}
2vL
(3/2)vL
                                          = 1.5874 \text{ m}^{(2/3)}
```

As a further demonstration of the flexibility of the system, we replace the double value type with a std::complex<double>value type (ignoring the question of the meaningfulness of complex lengths and energies):

```
quantity<length,std::complex<double> > L(std::complex<double>(3.0,4.0)*meters);
quantity<energy,std::complex<double> > E(kilograms*pow<2>(L/seconds));
```

and find that the code functions exactly as expected with no additional work, delegating operations to std::complex<double> and performing the appropriate dimensional analysis:

```
L
                                        = (3,4) m
L+L
                                        = (6,8) m
L-L
                                        = (0,0) m
L*L
                                        = (-7, 24) \text{ m}^2
L/L
                                        = (1,0) dimensionless
L*meter
                                        = (3,4) m^2
kilograms*(L/seconds)*(L/seconds) = (-7,24) m^2 kg s^-2
kilograms*(L/seconds)^2
                                        = (-7,24) \text{ m}^2 \text{ kg s}^2
L^3
                                        = (-117,44) \text{ m}^3
L^(3/2)
                                        = (2,11) m^{(3/2)}
2vL
                                        = (2,1) m^{(1/2)}
(3/2)vL
                                        = (2.38285, 1.69466) \text{ m}^{(2/3)}
```

Kitchen Sink Example

(kitchen_sink.cpp)

This example provides a fairly extensive set of tests covering most of the <u>quantity</u> functionality. It uses the SI unit system defined in boost/units/systems/si.hpp.

If we define a few units and associated quantities,

the various algebraic operations between scalars, units, and quantities give

```
S1: 2
X1: 2
X2: (4/3)
U1: N
U2: J
Q1: 1 N
Q2: 2 J
```

Scalar/unit operations:

```
U1*S1 : 2 N
S1*U1 : 2 N
U1/S1 : 0.5 N
S1/U1 : 2 m^-1 kg^-1 s^2
```

Unit/unit operations and integral/rational powers of units:

```
U1+U1 : N

U1-U1 : N

U1*U1 : m^2 kg^2 s^-4

U1/U1 : dimensionless

U1*U2 : m^3 kg^2 s^-4

U1/U2 : m^-1

U1^X : m^2 kg^2 s^-4

X1vU1 : m^(1/2) kg^(1/2) s^-1

U1^X2 : m^(4/3) kg^(4/3) s^(-8/3)

X2vU1 : m^(3/4) kg^(3/4) s^(-3/2)
```

Scalar/quantity operations:

```
Q1*S1 : 2 N
S1*Q1 : 2 N
Q1/S1 : 0.5 N
S1/Q1 : 2 m^-1 kg^-1 s^2
```

Unit/quantity operations:


```
U1*Q1 : 1 m^2 kg^2 s^-4
Q1*U1 : 1 m^2 kg^2 s^-4
U1/Q1 : 1 dimensionless
Q1/U1 : 1 dimensionless
```

Quantity/quantity operations and integral/rational powers of quantities :

```
+Q1 : 1 N

-Q1 : -1 N

Q1+Q1 : 2 N

Q1-Q1 : 0 N

Q1*Q1 : 1 m^2 kg^2 s^-4

Q1/Q1 : 1 dimensionless

Q1*Q2 : 2 m^3 kg^2 s^-4

Q1/Q2 : 0.5 m^-1

Q1^X1 : 1 m^2 kg^2 s^-4

X1vQ1 : 1 m^(1/2) kg^(1/2) s^-1

Q1^X2 : 1 m^(4/3) kg^(4/3) s^(-8/3)

X2vQ1 : 1 m^(3/4) kg^(3/4) s^(-3/2)
```

Logical comparison operators are also defined between quantities:

giving

```
11 == 12    false
11 != 12    true
11 <= 12    true
11 < 12    true
11 >= 12    false
11 >= 12    false
```

Implicit conversion is allowed between dimensionless quantities and their corresponding value types :

```
/// check implicit unit conversion from dimensionless to value_type const double dimless = (q1/q1);
```

A generic function for computing mechanical work can be defined that takes force and distance arguments in an arbitrary unit system and returns energy in the same system:


```
/// the physical definition of work - computed for an arbitrary unit system
template<class System,class Y>
quantity<unit<energy_dimension,System>,Y>
work(quantity<unit<force_dimension,System>,Y> F,
    quantity<unit<length_dimension,System>,Y> dx)
{
    return F*dx;
}
```

```
/// test calcuation of work
quantity<force> F(1.0*newton);
quantity<length> dx(1.0*meter);
quantity<energy> E(work(F,dx));
```

which functions as expected for SI quantities:

```
F = 1 N
dx = 1 m
E = 1 J
```

The ideal gas law can also be implemented in SI units:

```
/// test ideal gas law
quantity<temperature>    T = (273.+37.)*kelvin;
quantity<pressure>    P = 1.01325e5*pascals;
quantity<length>    r = 0.5e-6*meters;
quantity<volume>    V = (4.0/3.0)*3.141592*pow<3>(r);
quantity<amount>    n(idealGasLaw(P,V,T));
```

with the resulting output:

```
r = 5e-07 m

P = 101325 Pa

V = 5.23599e-19 m^3

T = 310 K

n = 2.05835e-17 mol

R = 8.314472 m^2 kg s^-2 K^-1 mol^-1 (rel. unc. = 1.8e-06)
```

Trigonometric and inverse trigonometric functions can be implemented for any unit system that provides an angular base dimension. For radians, these functions are found in boost/units/cmath.hpp These behave as one expects, with trigonometric functions taking an angular quantity and returning a dimensionless quantity, while the inverse trigonometric functions take a dimensionless quantity and return an angular quantity:

Defining a few angular quantities,

yields

```
theta = 0.375 rd
sin(theta) = 0.366273 dimensionless
asin(sin(theta)) = 0.375 rd
```

Dealing with complex quantities is trivial. Here is the calculation of complex impedance:

```
quantity<electric_potential,complex_type> v = complex_type(12.5,0.0)*volts;
quantity<current,complex_type> i = complex_type(3.0,4.0)*amperes;
quantity<resistance,complex_type> z = complex_type(1.5,-2.0)*ohms;
```

giving

```
V = (12.5,0) V

I = (3,4) A

Z = (1.5,-2) Ohm

I*Z = (12.5,0) V
```

User-defined value types

User-defined value types that support the appropriate arithmetic operations are automatically supported as quantity value types. The operators that are supported by default for quantity value types are unary plus, unary minus, addition, subtraction, multiplication, division, equal-to, not-equal-to, less-than, less-or-equal-to, greater-than, and greater-or-equal-to. Support for rational powers and roots can be added by overloading the power_typeof_helper and root_typeof_helper classes. Here we implement a user-defined measurement class that models a numerical measurement with an associated measurement error and the appropriate algebra and demonstrates its use as a quantity value type; the full code is found in measurement.hpp.

Then, defining some measurement quantity variables

```
quantity<length,measurement<double> >
    u(measurement<double>(1.0,0.0)*meters),
    w(measurement<double>(4.52,0.02)*meters),
    x(measurement<double>(2.0,0.2)*meters),
    y(measurement<double>(3.0,0.6)*meters);
```

gives

```
x+y-w = 0.48(+/-0.632772) m

w*x = 9.04(+/-0.904885) m^2

x/y = 0.666667(+/-0.149071) dimensionless
```

If we implement the overloaded helper classes for rational powers and roots then we can also compute rational powers of measurement quantities:


```
w*y^2/(u*x)^2 = 10.17(+/-3.52328) m^-1

w/(u*x)^(1/2) = 3.19612(+/-0.160431) dimensionless
```

Conversion Example

(conversion.cpp)

This example demonstrates the various allowed conversions between SI and CGS units. Defining some quantities

```
quantity<si::length> L1 = quantity<si::length,int>(int(2.5)*si::meters);
quantity<si::length,int> L2(quantity<si::length,double>(2.5*si::meters));
```

illustrates implicit conversion of quantities of different value types where implicit conversion of the value types themselves is allowed. N.B. The conversion from double to int is treated as an explicit conversion because there is no way to emulate the exact behavior of the built-in conversion. Explicit constructors allow conversions for two cases:

• explicit casting of a quantity to a different value_type:

```
quantity<si::length,int> L3 = static_cast<quantity<si::length,int> >(L1);
```

• and explicit casting of a quantity to a different unit :

```
quantity<cgs::length> L4 = static_cast<quantity<cgs::length> >(L1);
```

giving the following output:

```
L1 = 2 m

L2 = 2 m

L3 = 2 m

L4 = 200 cm

L5 = 5 m

L6 = 4 m

L7 = 200 cm
```

A few more explicit unit system conversions:

which produces the following output:


```
volume (m^3) = 1 m^3
volume (cm^3) = 1e+06 cm^3
volume (m^3) = 1 m^3

energy (joules) = 1 J
energy (ergs) = 1e+07 erg
energy (joules) = 1 J

velocity (2 m/s) = 2 m s^-1
velocity (2 cm/s) = 0.02 m s^-1
```

User Defined Types

(quaternion.cpp)

This example demonstrates the use of boost::math::quaternion as a value type for <u>quantity</u> and the converse. For the first case, we first define specializations of <u>power_typeof_helper</u> and <u>root_typeof_helper</u> for powers and roots, respectively:

```
/// specialize power typeof helper
template<class Y,long N,long D>
struct power_typeof_helper<boost::math::quaternion<Y>,static_rational<N,D> >
{
    // boost::math::quaternion only supports integer powers
    BOOST_STATIC_ASSERT(D==1);

    typedef boost::math::quaternion<
        typename power_typeof_helper<Y,static_rational<N,D> >::type
    > type;

    static type value(const boost::math::quaternion<Y>& x)
    {
        return boost::math::pow(x,static_cast<int>(N));
    }
};
```

```
/// specialize root typeof helper
template<class Y,long N,long D>
struct root_typeof_helper<boost::math::quaternion<Y>,static_rational<N,D> >
{
    // boost::math::quaternion only supports integer powers
    BOOST_STATIC_ASSERT(N==1);

    typedef boost::math::quaternion<
        typename root_typeof_helper<Y,static_rational<N,D> >::type
    > type;

    static type value(const boost::math::quaternion<Y>& x)
    {
        return boost::math::pow(x,static_cast<int>(D));
    }
};
```

We can now declare a quantity of a quaternion:


```
typedef quantity<length,quaternion<double> > length_dimension;
length_dimension L(quaternion<double>(4.0,3.0,2.0,1.0)*meters);
```

so that all operations that are defined in the quaternion class behave correctly. If rational powers were defined for this class, it would be possible to compute rational powers and roots with no additional changes.

```
+L = (4,3,2,1) m

-L = (-4,-3,-2,-1) m

L+L = (8,6,4,2) m

L-L = (0,0,0,0) m

L*L = (2,24,16,8) m<sup>2</sup>

L/L = (1,0,0,0) dimensionless

L^3 = (-104,102,68,34) m<sup>3</sup>
```

Now, if for some reason we preferred the quantity to be the value type of the quaternion class we would have :

```
typedef quaternion<quantity<length> > length_dimension;
length_dimension L(4.0*meters,3.0*meters,2.0*meters,1.0*meters);
```

Here, the unary plus and minus and addition and subtraction operators function correctly. Unfortunately, the multiplication and division operations fail because quaternion implements them in terms of the *= and /= operators, respectively, which are incapable of representing the heterogeneous unit algebra needed for quantities (an identical problem occurs with std::complex<T>, for the same reason). In order to compute rational powers and roots, we need to specialize power typeof helper and root typeof helper as follows:


```
/// specialize power typeof helper for quaternion<quantity<Unit,Y> >
template<class Unit,long N,long D,class Y>
struct power_typeof_helper<</pre>
    boost::math::quaternion<quantity<Unit,Y> >,
    static_rational<N,D> >
{
    typedef typename power_typeof_helper<
        Υ,
        static_rational<N,D>
               value_type;
    >::type
    typedef typename power_typeof_helper<
        static_rational<N,D>
    >::type unit_type;
    typedef quantity<unit_type,value_type>
                                                    quantity_type;
    typedef boost::math::quaternion<quantity_type> type;
    \verb|static| type value(const boost::math::quaternion<quantity<Unit,Y>>&x)|
        const boost::math::quaternion<value_type>
                                                     tmp =
            pow<static_rational<N,D> >(boost::math::quaternion<Y>(
                x.R_component_1().value(),
                x.R_component_2().value(),
                x.R_component_3().value(),
                x.R_component_4().value());
        return type(quantity_type::from_value(tmp.R_component_1())),
                    quantity_type::from_value(tmp.R_component_2()),
                    quantity_type::from_value(tmp.R_component_3()),
                    quantity_type::from_value(tmp.R_component_4()));
};
```

```
/// specialize root typeof helper for quaternion<quantity<Unit,Y> >
template < class Unit, long N, long D, class Y>
struct root_typeof_helper<</pre>
    boost::math::quaternion<quantity<Unit,Y> >,
    static_rational<N,D> >
{
    typedef typename root_typeof_helper<</pre>
        Υ,
        static_rational<N,D>
    >::type
                value_type;
    typedef typename root_typeof_helper<
        Unit.
        static_rational<N,D>
    >::type unit_type;
    typedef quantity<unit_type,value_type>
                                                    quantity_type;
    typedef boost::math::quaternion<quantity_type> type;
    static type value(const boost::math::quaternion<quantity<Unit,Y> >& x)
        const boost::math::quaternion<value_type>
            root<static_rational<N,D> >(boost::math::quaternion<Y>(
                x.R_component_1().value(),
                x.R_component_2().value(),
                x.R_component_3().value(),
                x.R_component_4().value());
```


giving:

```
+L = (4 m,3 m,2 m,1 m)

-L = (-4 m,-3 m,-2 m,-1 m)

L+L = (8 m,6 m,4 m,2 m)

L-L = (0 m,0 m,0 m,0 m)

L^3 = (-104 m^3,102 m^3,68 m^3,34 m^3)
```

Complex Example

(complex.cpp)

This example demonstrates how to implement a replacement complex class that functions correctly both as a quantity value type and as a quantity container class, including heterogeneous multiplication and division operations and rational powers and roots. Naturally, heterogeneous operations are only supported on compilers that implement typeof. The primary differences are that binary operations are not implemented using the op= operators and use the utility classes add typeof helper, subtract typeof helper, multiply typeof helper, and divide typeof helper. In addition, power typeof helper and root typeof helper are defined for both cases:


```
namespace boost {
namespace units {
/// replacement complex class
template<class T>
class complex
   public:
       typedef complex<T> this_type;
        complex(const T& r = 0,const T& i = 0) : r_{(r)},i_{(i)} { }
        complex(const this_type& source) : r_(source.r_),i_(source.i_) { }
        this_type& operator=(const this_type& source)
            if (this == &source) return *this;
           r_ = source.r_;
            i_ = source.i_;
           return *this;
                                     { return r_; }
        T& real()
                                     { return i_; }
        T& imag()
        const T& real() const
                                    { return r_; }
        const T& imag() const
                                    { return i_; }
        this_type& operator+=(const T& val)
           r_ += val;
           return *this;
        this_type& operator-=(const T& val)
           r_ -= val;
           return *this;
        this_type& operator*=(const T& val)
           r_ *= val;
           i_ *= val;
           return *this;
        this_type& operator/=(const T& val)
           r_ /= val;
            i_ /= val;
           return *this;
        this_type& operator+=(const this_type& source)
           r_ += source.r_;
           i_ += source.i_;
           return *this;
```



```
this_type& operator-=(const this_type& source)
            r_ -= source.r_;
            i_ -= source.i_;
            return *this;
        this_type& operator*=(const this_type& source)
            *this = *this * source;
           return *this;
        this_type& operator/=(const this_type& source)
            *this = *this / source;
            return *this;
   private:
       T r_,i_;
};
#if BOOST_UNITS_HAS_BOOST_TYPEOF
#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()
BOOST_TYPEOF_REGISTER_TEMPLATE(boost::units::complex, 1)
#endif
namespace boost {
namespace units {
template<class X>
complex<typename unary_plus_typeof_helper<X>::type>
operator+(const complex<X>\& x)
    typedef typename unary_plus_typeof_helper<X>::type type;
   return complex<type>(x.real(),x.imag());
template<class X>
complex<typename unary_minus_typeof_helper<X>::type>
operator-(const complex<X>& x)
    typedef typename unary_minus_typeof_helper<X>::type type;
    return complex<type>(-x.real(),-x.imag());
}
template < class X, class Y>
complex<typename add_typeof_helper<X,Y>::type>
operator+(const complex<X>& x,const complex<Y>& y)
    typedef typename boost::units::add_typeof_helper<X,Y>::type type;
```



```
return complex<type>(x.real()+y.real(),x.imag()+y.imag());
template < class X, class Y>
complex<typename boost::units::subtract_typeof_helper<X,Y>::type>
operator-(const complex<X>& x,const complex<Y>& y)
    typedef typename boost::units::subtract_typeof_helper<X,Y>::type
                                                                          type;
    return complex<type>(x.real()-y.real(),x.imag()-y.imag());
template<class X,class Y>
complex<typename boost::units::multiply_typeof_helper<X,Y>::type>
operator^*(const\ complex< X>\&\ x, const\ complex< Y>\&\ y)
    typedef typename boost::units::multiply_typeof_helper<X,Y>::type
                                                                          type;
    return complex<type>(x.real()*y.real() - x.imag()*y.imag(),
                         x.real()*y.imag() + x.imag()*y.real());
//
   fully correct implementation has more complex return type
11
//
      typedef typename boost::units::multiply_typeof_helper<X,Y>::type xy_type;
//
//
      typedef typename boost::units::add_typeof_helper<</pre>
//
        xy_type,xy_type>::type
                                       xy_plus_xy_type;
//
      typedef typename
11
          boost::units::subtract_typeof_helper<xy_type,xy_type>::type
11
          xy_minus_xy_type;
//
11
      BOOST_STATIC_ASSERT((boost::is_same<xy_plus_xy_type,
//
                                          xy_minus_xy_type>::value == true));
//
//
      return complex<xy_plus_xy_type>(x.real()*y.real()-x.imag()*y.imag(),
//
                                      x.real()*y.imag()+x.imag()*y.real());
template<class X,class Y>
complex<typename boost::units::divide_typeof_helper<X,Y>::type>
operator/(const complex<X>& x,const complex<Y>& y)
    // naive implementation of complex division
    typedef typename boost::units::divide_typeof_helper<X,Y>::type type;
    return complex<type>((x.real()*y.real()+x.imag()*y.imag())/
                             (y.real()*y.real()+y.imag()*y.imag()),
                          (x.imag()*y.real()-x.real()*y.imag())/
                            (y.real()*y.real()+y.imag()*y.imag());
//
   fully correct implementation has more complex return type
11
//
    typedef typename boost::units::multiply_typeof_helper<X,Y>::type xy_type;
//
    typedef typename boost::units::multiply_typeof_helper<Y,Y>::type yy_type;
//
   typedef typename boost::units::add_typeof_helper<xy_type, xy_type>::type
//
11
        xy_plus_xy_type;
//
    typedef typename boost::units::subtract_typeof_helper<</pre>
//
        xy_type,xy_type>::type xy_minus_xy_type;
//
//
   typedef typename boost::units::divide_typeof_helper<</pre>
11
        xy_plus_xy_type,yy_type>::type
                                           xy_plus_xy_over_yy_type;
//
    typedef typename boost::units::divide_typeof_helper<</pre>
```



```
//
        xy_minus_xy_type,yy_type>::type
                                            xy_minus_xy_over_yy_type;
//
//
   BOOST_STATIC_ASSERT((boost::is_same<xy_plus_xy_over_yy_type,
11
                                    xy_minus_xy_over_yy_type>::value == true));
11
//
   return complex<xy_plus_xy_over_yy_type>(
//
        (x.real()*y.real()+x.imag()*y.imag())/
//
            (y.real()*y.real()+y.imag()*y.imag()),
//
        (x.imag()*y.real()-x.real()*y.imag())/
//
            (y.real()*y.real()+y.imag()*y.imag()));
template<class Y>
complex<Y>
pow(const complex<Y>& x,const Y& y)
    std::complex<Y> tmp(x.real(),x.imag());
    tmp = std::pow(tmp,y);
    return complex<Y>(tmp.real(),tmp.imag());
template<class Y>
std::ostream& operator<<(std::ostream& os,const complex<Y>& val)
    os << val.real() << " + " << val.imag() << " i";
    return os;
/// specialize power typeof helper for complex<Y>
template<class Y,long N,long D>
struct power_typeof_helper<complex<Y>,static_rational<N,D> >
    typedef complex<
        typename power_typeof_helper<Y,static_rational<N,D> >::type
    > type;
    static type value(const complex<Y>& x)
        const static_rational<N,D> rat;
        const Y
                  m = Y(rat.numerator())/Y(rat.denominator());
        return boost::units::pow(x,m);
};
/// specialize root typeof helper for complex<Y>
template < class Y, long N, long D>
struct root_typeof_helper<complex<Y>,static_rational<N,D> >
    typedef complex<
        typename root_typeof_helper<Y,static_rational<N,D> >::type
    > type;
    static type value(const complex<Y>& x)
        const static_rational<N,D> rat;
                m = Y(rat.denominator())/Y(rat.numerator());
        const Y
```



```
return boost::units::pow(x,m);
};
/// specialize power typeof helper for complex<quantity<Unit,Y> >
template<class Y,class Unit,long N,long D>
struct power_typeof_helper<complex<quantity<Unit,Y> >,static_rational<N,D> >
    typedef typename
        power_typeof_helper<Y,static_rational<N,D> >::type
                                                                  value_type;
    typedef typename
       power_typeof_helper<Unit,static_rational<N,D> >::type
                                                                  unit_type;
    typedef quantity<unit_type,value_type>
                                                                  quantity_type;
    typedef complex<quantity_type>
                                                                  type;
    static type value(const complex<quantity<Unit,Y> >& x)
        const complex<value_type>
                                    tmp =
            \verb"pow's tatic_rational < N", D> > ( complex < Y > ( x.real( ).value( ) ,
                                                   x.imag().value());
        return type(quantity_type::from_value(tmp.real()),
                    quantity_type::from_value(tmp.imag());
};
/// specialize root typeof helper for complex<quantity<Unit,Y> >
template < class Y, class Unit, long N, long D>
struct root_typeof_helper<complex<quantity<Unit,Y> >,static_rational<N.D> >
    typedef typename
       root_typeof_helper<Y,static_rational<N,D> >::type
                                                                 value_type;
    typedef typename
       root_typeof_helper<Unit,static_rational<N,D> >::type
                                                                 unit_type;
    typedef quantity<unit_type,value_type>
                                                                  quantity_type;
    typedef complex<quantity_type>
                                                                  type;
    static type value(const complex<quantity<Unit,Y> >& x)
        const complex<value_type>
                                    tmp =
            root<static_rational<N,D> >(complex<Y>(x.real().value(),
                                                    x.imag().value());
        return type(quantity_type::from_value(tmp.real()),
                   quantity_type::from_value(tmp.imag());
};
} // namespace units
} // namespace boost
```

With this replacement complex class, we can declare a complex variable:

```
typedef quantity<length,complex<double> > length_dimension;
length_dimension L(complex<double>(2.0,1.0)*meters);
```

to get the correct behavior for all cases supported by quantity with a complex value type:


```
+L
        = 2 + 1 i m
        = -2 + -1 i m
-L
        = 4 + 2 i m
L+L
L-L
        = 0 + 0 i m
        = 3 + 4 i m^2
L*L
L/L
        = 1 + 0 i dimensionless
L^3
        = 2 + 11 i m^3
L^{(3/2)} = 2.56713 + 2.14247 i m^{(3/2)}
       = 1.29207 + 0.201294 i m^{(1/3)}
(3/2)vL = 1.62894 + 0.520175 i m^{(2/3)}
```

and, similarly, complex with a quantity value type

```
typedef complex<quantity<length> > length_dimension;
length_dimension L(2.0*meters,1.0*meters);
```

gives

```
+L
         = 2 m + 1 m i
         = -2 m + -1 m i
-L
        = 4 m + 2 m i
_{\rm L+L}
        = 0 m + 0 m i
L-L
L*L
        = 3 m^2 + 4 m^2 i
L/L
        = 1 dimensionless + 0 dimensionless i
        = 2 m^3 + 11 m^3 i
T.^3
L^{(3/2)} = 2.56713 m^{(3/2)} + 2.14247 m^{(3/2)} i
       = 1.29207 \text{ m}^{(1/3)} + 0.201294 \text{ m}^{(1/3)} i
(3/2)vL = 1.62894 m^{(2/3)} + 0.520175 m^{(2/3)} i
```

Performance Example

(performance.cpp)

This example provides an ad hoc performance test to verify that zero runtime overhead is incurred when using <u>quantity</u> in place of double. Note that performance optimization and testing is not trivial, so some care must be taken in profiling. It is also critical to have a compiler capable of optimizing the many template instantiations and inline calls effectively to achieve maximal performance. Zero overhead for this test has been verified using gcc 4.0.1, and icc 9.0, 10.0, and 10.1 on Mac OS 10.4 and 10.5, and using msvc 8.0 on Windows XP.

Radar Beam Height

(radar_beam_height.cpp)

This example demonstrates the implementation of two non-SI units of length, the nautical mile:


```
namespace nautical {
struct length_base_unit :
    boost::units::base_unit<length_base_unit, length_dimension, 1>
    static std::string name()
                                       { return "nautical mile"; }
    static std::string symbol()
                                       { return "nmi"; }
};
typedef boost::units::make_system<length_base_unit>::type system;
/// unit typedefs
typedef unit<length_dimension,system>
                                            length;
static const length mile, miles;
} // namespace nautical
// helper for conversions between nautical length and si length
{\tt BOOST\_UNITS\_DEFINE\_CONVERSION\_FACTOR(nautical::length\_base\_unit, or all of the conversion).}
                                        boost::units::si::meter_base_unit,
                                        double, 1.852e3);
```

and the imperial foot:

```
namespace imperial {
struct length_base_unit :
   boost::units::base_unit<length_base_unit, length_dimension, 2>
    static std::string name()
                                     { return "foot"; }
                                     { return "ft"; }
    static std::string symbol()
};
typedef boost::units::make_system<length_base_unit>::type system;
/// unit typedefs
typedef unit<length_dimension,system>
                                         length;
static const length foot, feet;
} // imperial
// helper for conversions between imperial length and si length
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(imperial::length_base_unit,
                                     boost::units::si::meter_base_unit,
                                     double, 1.0/3.28083989501312);
```

These units include conversions between themselves and the meter. Three functions for computing radar beam height from radar range and the local earth radius are defined. The first takes arguments in one system and returns a value in the same system:

The second is similar, but is templated on return type, so that the arguments are converted to the return unit system internally:

Finally, the third function is an empirical approximation that is only valid for radar ranges specified in nautical miles, returning beam height in feet. This function uses the heterogeneous unit of nautical miles per square root of feet to ensure dimensional correctness .

With these, we can compute radar beam height in various unit systems:

```
const quantity<nautical::length> radar_range(300.0*miles);
const quantity<si::length> earth_radius(6371.0087714*kilo*meters);

const quantity<si::length> beam_height_1(radar_beam_height(quant_)
ity<si::length>(radar_range),earth_radius));
const quantity<nautical::length> beam_height_2(radar_beam_height(radar_range,quantity<nautic_)
al::length>(earth_radius)));
const quantity<si::length> beam_height_3(radar_beam_height< quant_)
ity<si::length> > (radar_range,earth_radius));
const quantity<nautical::length> beam_height_4(radar_beam_height< quantity<nautic_)
al::length> > (radar_range,earth_radius));
```

giving


```
radar range : 300 nmi
earth radius : 6.37101e+06 m
beam height 1 : 18169.7 m
beam height 2 : 9.81085 nmi
beam height 3 : 18169.7 m
beam height 4 : 9.81085 nmi
beam height approx : 59488.4 ft
beam height approx : 18132.1 m
```

Heterogeneous Unit Example

(heterogeneous_unit.cpp)

Mixed units and mixed unit conversions.

This code:

gives

```
1.5 m

1 g

1.5 m g

1.5 m g^-1

1 N

1 kg s^-2

1 cm kg s^-2

1 cm m^-1 kg s^-2
```

Arbitrary conversions also work:

yielding


```
1.5 cm m
0.015 m<sup>2</sup>
```

Absolute and Relative Temperature Example

(temperature.cpp)

This example demonstrates using of absolute temperatures and relative temperature differences in Fahrenheit and converting between these and the Kelvin temperature scale. This issue touches on some surprisingly deep mathematical concepts (see Wikipedia for a basic review), but for our purposes here, we will simply observe that it is important to be able to differentiate between an absolute temperature measurement and a measurement of temperature difference. This is accomplished by using the absolute wrapper class.

First we define a system using the predefined fahrenheit base unit:

```
typedef temperature::fahrenheit_base_unit::unit_type temperature;
typedef get_system<temperature>::type system;

BOOST_UNITS_STATIC_CONSTANT(degree,temperature);
BOOST_UNITS_STATIC_CONSTANT(degrees,temperature);
```

Now we can create some quantities:

Note the use of absolute to wrap a unit. The resulting output is:

```
{ 32 } F
{ 273.15 } K
{ 273.15 } K
[ 32 ] F
[ 17.7778 ] K
[ 17.7778 ] K
```

Runtime Conversion Factor Example

(runtime_conversion_factor.cpp)

The Boost.Units library does not require that the conversion factors be compile time constants, as is demonstrated in this example:


```
using boost::units::base_dimension;
using boost::units::base_unit;
static const long currency_base = 1;
struct currency_base_dimension : base_dimensioncurrency_base_dimension, 1> {};
typedef currency_base_dimension::dimension_type currency_type;
template<long N>
struct currency_base_unit :
   base_unit<currency_base_unit<N>, currency_type, currency_base + N> {};
typedef currency_base_unit<0> us_dollar_base_unit;
typedef currency_base_unit<1> euro_base_unit;
typedef us_dollar_base_unit::unit_type us_dollar;
typedef euro_base_unit::unit_type euro;
// an array of all possible conversions
double conversion_factors[2][2] = {
    \{1.0, 1.0\},\
    \{1.0, 1.0\}
double get_conversion_factor(long from, long to) {
    return(conversion_factors[from][to]);
void set_conversion_factor(long from, long to, double value) {
    conversion_factors[from][to] = value;
    conversion_factors[to][from] = 1.0 / value;
BOOST_UNITS_DEFINE_CONVERSION_FACTOR_TEMPLATE((long N1)(long N2),
   currency_base_unit<N1>,
    currency_base_unit<N2>,
    double, get_conversion_factor(N1, N2));
```

Units with Non-base Dimensions

(non_base_dimension.cpp)

It is also possible to define base units that have derived rather than base dimensions:


```
struct imperial_gallon_tag :
    base_unit<imperial_gallon_tag, volume_dimension, 1> { };

typedef make_system<imperial_gallon_tag>::type imperial;

typedef unit<volume_dimension,imperial> imperial_gallon;

struct us_gallon_tag : base_unit<us_gallon_tag, volume_dimension, 2> { };

typedef make_system<us_gallon_tag>::type us;

typedef unit<volume_dimension,us> us_gallon;
```

Output for Composite Units

(composite_output.cpp)

If a unit has a special name and/or symbol, the free functions name_string and symbol_string can be overloaded directly.

```
std::string name_string(const cgs::force&)
{
    return "dyne";
}
std::string symbol_string(const cgs::force&)
{
    return "dyn";
}
```

In this case, any unit that reduces to the overloaded unit will be output with the replacement symbol.

Special names and symbols for the SI and CGS unit systems are found in boost/units/systems/si/io.hpp and boost/units/systems/cgs/io.hpp, respectively. If these headers are not included, the output will simply follow default rules using the appropriate fundamental dimensions. Note that neither of these functions is defined for quantities because doing so would require making assumptions on how the corresponding value type should be formatted.

Three ostream formatters, symbol_format, name_format, and typename_format are provided for convenience. These select the textual representation of units provided by symbol_string or name_string in the first two cases, while the latter returns a demangled typename for debugging purposes. Formatting of scaled unit is also done correctly.

Conversion Factor

This code demonstrates the use of the conversion_factor free function to determine the scale factor between two units.

(conversion_factor.cpp)

Produces

```
1e-005
100
1e-005
100
0.01
```

Runtime Units

(runtime_unit.cpp)

This example shows how to implement an interface that allow different units at runtime while still maintaining type safety for internal calculations.


```
namespace {
using namespace boost::units;
using imperial::foot_base_unit;
std::map<std::string, quantity<si::length> > known_units;
quantity<si::length> calculate(const quantity<si::length>& t)
    return(boost::units::hypot(t, 2.0 * si::meters));
int main()
    known_units["meter"] = 1.0 * si::meters;
    known_units["centimeter"] = .01 * si::meters;
    known_units["foot"] =
        conversion_factor(foot_base_unit::unit_type(), si::meter) * si::meter;
    std::string output_type("meter");
    std::string input;
    while((std::cout << "> ") && (std::cin >> input))
        if(!input.empty() && input[0] == '#')
            std::getline(std::cin, input);
        else if(input == "exit")
            break;
        else if(input == "help")
            std::cout << "type \"exit\" to exit\n"</pre>
                "type \"return 'unit'\" to set the return units\n"
                "type \"'number' 'unit'\" to do a simple calculation"
                << std::endl;
        else if(input == "return")
            if(std::cin >> input)
                if(known_units.find(input) != known_units.end())
                    output_type = input;
                    std::cout << "Done." << std::endl;</pre>
                else
                    std::cout << "Unknown unit \"" << input << "\""
                         << std::endl;
            else
                break;
        else
```



```
try
                double value = boost::lexical_cast<double>(input);
                if(std::cin >> input)
                    if(known_units.find(input) != known_units.end())
                        std::cout << static_cast<double>(
                            calculate(value * known_units[input]) /
                            known_units[output_type])
                             << ' ' << output_type << std::endl;
                    else
                        std::cout << "Unknown unit \"" << input << "\""
                            << std::endl;
                else
                    break;
            catch(...)
                std::cout << "Input error" << std::endl;</pre>
        }
    }
}
```

Interoperability with Boost.Lambda

(lambda.cpp)

The header boost/units/lambda.hpp provides overloads and specializations needed to make Boost.Units usable with the Boost.Lambda library.


```
int main(int argc, char **argv) {
  using namespace std;
  namespace bl = boost::lambda;
  namespace bu = boost::units;
  namespace si = boost::units::si;
  // Mechanical example: linear accelerated movement
  // Initial condition variables for acceleration, speed, and displacement
  bu::quantity<si::acceleration> a = 2.0 * si::meters_per_second_squared;
  bu::quantity<si::velocity> v = 1.0 * si::meters_per_second;
  bu::quantity<si::length> s0 = 0.5 * si::meter;
  // Displacement over time
  boost::function<bu::quantity<si::length> (bu::quantity<si::time>) >
      s = 0.5 * bl::var(a) * bl::_1 * bl::_1
         + bl::var(v) * bl::_1
         + bl::var(s0);
  cout << "Linear accelerated movement:" << endl</pre>
          "a = " << a << ", v = " << v << ", s0 = " << s0 << endl
       << "s(1.0 * si::second) = " << s(1.0 * si::second) << endl
       << endl;
  // Change initial conditions
  a = 1.0 * si::meters_per_second_squared;
  v = 2.0 * si::meters_per_second;
  s0 = -1.5 * si::meter;
  cout << "a = " << a << ", v = " << v << ", s0 = " << s0 << endl
       << "s(1.0 * si::second) = " << s(1.0 * si::second) << endl
       << endl;
  // Electrical example: oscillating current
  // Constants for the current amplitude, frequency, and offset current
  const bu::quantity<si::current> iamp = 1.5 * si::ampere;
  const bu::quantity<si::frequency> f = 1.0e3 * si::hertz;
  const bu::quantity<si::current> i0 = 0.5 * si::ampere;
  // The invocation of the sin function needs to be postponed using
  // bind to specify the oscillation function. A lengthy static_cast
  // to the function pointer referencing boost::units::sin() is needed
  // to avoid an "unresolved overloaded function type" error.
  boost::function<br/><br/>:quantity<si::current> (bu::quantity<si::time>) >
          * bl::bind(static_cast<bu::dimensionless_quantity<si::sys-
tem, double>::type (*)(const bu::quantity<si::plane_angle>&)>(bu::sin),
                   2.0 * pi * si::radian * f * bl::_1)
         + i0;
  cout << "Oscillating current:" << endl</pre>
       << "iamp = " << iamp << ", f = " << f << ", i0 = " << i0 << endl
       << "i(1.25e-3 * si::second) = " << i(1.25e-3 * si::second) << endl</pre>
       << endl;
```



```
// Geometric example: area calculation for a square
  // Length constant
  const bu::quantity<si::length> l = 1.5 * si::meter;
  // Again an ugly static_cast is needed to bind pow<2> to the first
  // function argument.
  boost::function<bu::quantity<si::area> (bu::quantity<si::length>) >
     A = bl::bind(static_cast<bu::quantity<si::area> (*)(const bu::quantd
ity < si::length > \&) > (bu::pow < 2 >),
                bl::_1);
  cout << "Area of a square:" << endl</pre>
      << "A(" << l <<") = " << A(l) << endl << endl;
  // Thermal example: temperature difference of two absolute temperatures
  // Absolute temperature constants
  const bu::quantity<bu::absolute<si::temperature> >
     Tref = 273.15 * bu::absolute<si::temperature>();
  const bu::quantity<bu::absolute<si::temperature> >
     Tamb = 300.00 * bu::absolute<si::temperature>();
  boost::function<bu::quantity<si::temperature> (bu::quantity<bu::absolute<si::temperature> >,
                                        bu::quantity<bu::absolute<si::temperature> >)>
     dT = bl::_2 - bl::_1;
  cout << "Temperature difference of two absolute temperatures:" << endl</pre>
      << \ "dT(" \ << \ Tref \ << \ ", \ " \ << \ Tamb \ << \ ") \ = \ " \ << \ dT(Tref, \ Tamb) \ << \ endl
      << endl;
  return 0;
```

Utilities

Relatively complete SI and CGS unit systems are provided in boost/units/systems/si.hpp and boost/units/systems/cgs.hpp, respectively.

Metaprogramming Classes

```
template<long N> struct ordinal<N>;
template<typename T,typename V> struct get_tag< dim<T,V> >;
template<typename T,typename V> struct get_value< dim<T,V> >;
template<class S,class DT> struct get_system_tag_of_dim<S,DT>;
template<typename Seq> struct make_dimension_list<Seq>;
template<class DT> struct fundamental_dimension<DT>;
template<class DT1,int E1,...> struct composite_dimension<DT1,E1,...>;
template<class Dim,class System> struct get_dimension< unit<Dim,System> >;
template<class Unit,class Y> struct get_dimension< quantity<Unit,Y> >;
template<class Dim,class System> struct get_system< unit<Dim,System> >;
template<class Unit,class Y> struct get_system quantity<Unit,Y> >;
struct dimensionless_type;
template<class System> struct dimensionless_unit<System>;
template<class System, class Y> struct dimensionless_quantity<System, Y>;
struct implicitly_convertible;
struct trivial_conversion;
template<class T,class S1,class S2> struct base_unit_converter<T,S1,S2>;
template<class Q1,class Q2> class conversion_helper<Q1,Q2>;
```

Metaprogramming Predicates

```
template<typename T, typename V> struct is_dim< dim<T, V> >;
template<typename T,typename V> struct is_empty_dim< dim<T,V> >;
template<typename Seq> struct is_dimension_list<Seq>;
template<class S> struct is_system< homogeneous_system<S> >;
template<class S> struct is_system< heterogeneous_system<S> >;
template<class S> struct is_homogeneous_system< homogeneous_system<S> >;
template<class S> struct is_heterogeneous_system< heterogeneous_system<S> >;
template<class Dim,class System> struct is_unit< unit<Dim,System> >;
template<class Dim,class System> struct is_unit_of_system< unit<Dim,System>; System >;
template<class Dim,class System> struct is_unit_of_dimension< unit<Dim,System>,Dim >;
template<class Unit,class Y> struct is_quantity< quantity<Unit,Y> >;
template<class Dim,class System,class Y> struct is_quantity_of_system< quantity<unit<Dim,Sys↓
tem>,Y>,System >;
template<class Dim,class System,class Y> struct is_quantity_of_dimension< quantity<unit<Dim,SysJ
tem>,Y>,Dim >;
template<class System> struct is_dimensionless< unit<dimensionless_type,System> >;
template < class System> struct is_dimensionless_unit < unit < dimensionless_type, System> >;
template<class System,class Y> struct is_dimensionless< quantity<unit<dimensionless_type,Sys+
tem>,Y> >;
template < class System, class Y> struct is_dimensionless_quantity < quantity < unit < dimension →
less_type,System>,Y> >;
```

Reference

Units Reference

Header <boost/units/absolute.hpp>

```
BOOST_UNITS_DEFINE_CONVERSION_OFFSET(From, To, type_, value_)
```

```
namespace boost {
 namespace units {
    template<typename Y> class absolute;
    // add a relative value to an absolute one
    template<typename Y>
      absolute< Y > operator+(const absolute< Y > & aval, const Y & rval);
    // add a relative value to an absolute one
    template<typename Y>
      absolute< Y > operator+(const Y & rval, const absolute< Y > & aval);
    // subtract a relative value from an absolute one
    template<typename Y>
      absolute< Y > operator-(const absolute< Y > & aval, const Y & rval);
    // subtracting two absolutes gives a difference
    template<typename Y>
      Y operator-(const absolute< Y > & avall, const absolute< Y > & aval2);
    // creates a quantity from an absolute unit and a raw value
    template<typename D, typename S, typename T>
      quantity< absolute< unit< D, S > >, T >
      operator*(const T & t, const absolute< unit< D, S > > &);
    // creates a quantity from an absolute unit and a raw value
    template<typename D, typename S, typename T>
      quantity< absolute< unit< D, S > >, T >
      operator*(const absolute< unit< D, S > > &, const T & t);
    // Print an absolute unit.
    template<typename Char, typename Traits, typename Y>
      std::basic_ostream< Char, Traits > &
      operator<<(std::basic_ostream< Char, Traits > & os,
                 const absolute< Y > & aval);
}
```


Class template absolute

boost::units::absolute

Synopsis

```
// In header: <boost/units/absolute.hpp>
template<typename Y>
class absolute {
public:
  // types
 typedef absolute< Y > this_type;
 typedef Y
                        value_type;
 // construct/copy/destruct
 absolute();
 absolute(const value_type &);
 absolute(const this_type &);
 absolute& operator=(const this_type &);
 // public member functions
 const value_type & value() const;
 const this_type & operator+=(const value_type &) ;
  const this_type & operator-=(const value_type &) ;
};
```

Description

A wrapper to represent absolute units (points rather than vectors). Intended originally for temperatures, this class implements operators for absolute units so that addition of a relative unit to an absolute unit results in another absolute unit: absolute<T> +/- T-> absolute<T> - and subtraction of one absolute unit from another results in a relative unit: absolute<T> - absolute<T> -> T

absolute public construct/copy/destruct

```
    absolute();
    absolute(const value_type & val);
    absolute(const this_type & source);
    absolute& operator=(const this_type & source);
```

absolute public member functions

```
1. const value_type & value() const;
```

```
const this_type & operator+=(const value_type & val) ;
```


3. const this_type & operator-=(const value_type & val);

Macro BOOST_UNITS_DEFINE_CONVERSION_OFFSET

BOOST_UNITS_DEFINE_CONVERSION_OFFSET

Synopsis

```
// In header: <boost/units/absolute.hpp>
BOOST_UNITS_DEFINE_CONVERSION_OFFSET(From, To, type_, value_)
```

Description

Macro to define the offset between two absolute units. Requires the value to be in the destination units e.g

```
BOOST_UNITS_DEFINE_CONVERSION_OFFSET(celsius_base_unit, fahrenheit_base_unit, double, 32.0);
```

BOOST_UNITS_DEFINE_CONVERSION_FACTOR is also necessary to specify the conversion factor. Like BOOST_UNITS_DEFINE_CONVERSION_FACTOR this macro defines both forward and reverse conversions so defining, e.g., the conversion from celsius to fahrenheit as above will also define the inverse conversion from fahrenheit to celsius.

Header <boost/units/base_dimension.hpp>

```
namespace boost {
  namespace units {
    template<typename Derived, long N> class base_dimension;
  }
}
```


Class template base_dimension

boost::units::base_dimension

Synopsis

```
// In header: <boost/units/base_dimension.hpp>

template<typename Derived, long N>
class base_dimension {
  public:
    // types
    typedef unspecified dimension_type; // A convenience typedef. Equivalent to boost::units::de.J
  rived_dimension<Derived,1>::type.
    typedef Derived type; // Provided for mpl compatability.
};
```

Description

Defines a base dimension. To define a dimension you need to provide the derived class (CRTP) and a unique integer.

```
struct my_dimension : boost::units::base_dimension<my_dimension, 1> {};
```

It is designed so that you will get an error message if you try to use the same value in multiple definitions.

Header <boost/units/base_unit.hpp>

```
namespace boost {
  namespace units {
    template<typename Derived, typename Dim, long N> class base_unit;
  }
}
```


Class template base_unit

boost::units::base_unit

Synopsis

Description

Defines a base unit. To define a unit you need to provide the derived class (CRTP), a dimension list and a unique integer.

```
struct my_unit : boost::units::base_unit<my_unit, length_dimension, 1> {};
```

It is designed so that you will get an error message if you try to use the same value in multiple definitions.

Header <boost/units/cmath.hpp>

Overloads of functions in <cmath> for quantities.

Only functions for which a dimensionally-correct result type can be determined are overloaded. All functions work with dimensionless quantities.


```
namespace boost {
 namespace units {
    template<typename Unit, typename Y>
      bool isfinite(const quantity< Unit, Y > & q);
    template<typename Unit, typename Y>
     bool isinf(const quantity< Unit, Y > & q);
    template<typename Unit, typename Y>
     bool isnan(const quantity< Unit, Y > & q);
    template<typename Unit, typename Y>
     bool isnormal(const quantity< Unit, Y > & q);
    template<typename Unit, typename Y>
      bool isgreater(const quantity< Unit, Y > & q1,
                     const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      bool isgreaterequal(const quantity< Unit, Y > & q1,
                          const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      bool isless(const quantity< Unit, Y > & q1,
                  const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      bool islessequal(const quantity< Unit, Y > & q1,
                       const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      bool islessgreater(const quantity< Unit, Y > & q1,
                         const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      bool isunordered(const quantity< Unit, Y > & q1,
                       const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      quantity< Unit, Y > abs(const quantity< Unit, Y > & q);
    template<typename Unit, typename Y>
      quantity< Unit, Y > ceil(const quantity< Unit, Y > & q);
    template<typename Unit, typename Y>
      quantity< Unit, Y >
      copysign(const quantity< Unit, Y > & q1, const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      quantity< Unit, Y > fabs(const quantity< Unit, Y > & q);
    template<typename Unit, typename Y>
      quantity< Unit, Y > floor(const quantity< Unit, Y > & q);
    template<typename Unit, typename Y>
      quantity< Unit, Y >
      fdim(const quantity< Unit, Y > & q1, const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      quantity< Unit, Y >
      fmax(const quantity< Unit, Y > & q1, const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      quantity< Unit, Y >
      fmin(const quantity< Unit, Y > & q1, const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      int fpclassify(const quantity< Unit, Y > & q);
    template<typename Unit, typename Y>
      root_typeof_helper< typename add_typeof_helper< typename power_typeof_helper< quantJ
ity< Unit, Y >, static_rational< 2 > >::type, typename power_typeof_helper< quantity< Unit, Y \
>, static_rational< 2 > >::type >::type, static_rational< 2 > >::type
      hypot(const quantity< Unit, Y > & q1, const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      quantity< Unit, Y >
      nextafter(const quantity< Unit, Y > & q1,
                const quantity< Unit, Y > & q2);
    template<typename Unit, typename Y>
      quantity< Unit, Y >
      nexttoward(const quantity< Unit, Y > & q1,
                 const quantity< Unit, Y > & q2);
```



```
template<typename Unit, typename Y>
 quantity< Unit, Y > round(const quantity< Unit, Y > & q);
template<typename Unit, typename Y>
 int signbit(const quantity< Unit, Y > & q);
template<typename Unit, typename Y>
 quantity< Unit, Y > trunc(const quantity< Unit, Y > & q);
template<typename Unit, typename Y>
 quantity< Unit, Y >
 \label{eq:const_quantity} \texttt{fmod}(\textbf{const} \ \text{quantity} < \ \text{Unit}, \ Y \ > \ \& \ q1, \ \textbf{const} \ \text{quantity} < \ \text{Unit}, \ Y \ > \ \& \ q2);
template<typename Unit, typename Y>
  quantity< Unit, Y >
 modf(const quantity< Unit, Y > & q1, quantity< Unit, Y > * q2);
template<typename Unit, typename Y, typename Int>
 quantity< Unit, Y > frexp(const quantity< Unit, Y > & q, Int * ex);
template<typename S, typename Y>
  quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y >
 pow(const quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y > &,
      const quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y > &);
template<typename S, typename Y>
 quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y >
  exp(const quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y > & q);
template<typename Unit, typename Y, typename Int>
  quantity< Unit, Y > ldexp(const quantity< Unit, Y > & q, const Int & ex);
template<typename S, typename Y>
  quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y >
  log(const quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y > & q);
template<typename S, typename Y>
  quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y >
  log10(const quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y > & q);
template<typename Unit, typename Y>
 root_typeof_helper< quantity< Unit, Y >, static_rational< 2 > >::type
 sqrt(const quantity< Unit, Y > & q);
// cos of theta in radians
template<typename Y>
 dimensionless_quantity< si::system, Y >::type
 cos(const quantity< si::plane_angle, Y > & theta);
// sin of theta in radians
template<typename Y>
 dimensionless_quantity< si::system, Y >::type
 sin(const quantity< si::plane_angle, Y > & theta);
// tan of theta in radians
template<typename Y>
 dimensionless_quantity< si::system, Y >::type
  tan(const quantity< si::plane_angle, Y > & theta);
// cos of theta in other angular units
template<typename System, typename Y>
 dimensionless_quantity< System, Y >::type
 cos(const quantity< unit< plane_angle_dimension, System >, Y > & theta);
// sin of theta in other angular units
template<typename System, typename Y>
 dimensionless\_quantity< System, Y >::type
 sin(const quantity< unit< plane_angle_dimension, System >, Y > & theta);
// tan of theta in other angular units
template<typename System, typename Y>
 dimensionless_quantity< System, Y >::type
  tan(const quantity< unit< plane_angle_dimension, System >, Y > & theta);
```



```
// acos of dimensionless quantity returning angle in same system
    template<typename Y, typename System>
      quantity< unit< plane_angle_dimension, homogeneous_system< System > >, Y >
     acos(const quantity< unit< dimensionless_type, homogeneous_system< System > >, Y > & val);
    // asin of dimensionless quantity returning angle in same system
    template<typename Y, typename System>
      quantity< unit< plane_angle_dimension, homogeneous_system< System > >, Y >
     asin(const quantity< unit< dimensionless_type, homogeneous_system</pre> System > >, Y > & val);
    // atan of dimensionless quantity returning angle in same system
    template<typename Y, typename System>
      quantity< unit< plane_angle_dimension, homogeneous_system< System > >, Y >
     atan(const quantity< unit< dimensionless_type, homogeneous_system< System > >, Y > & val);
    // atan2 of value_type returning angle in radians
    template<typename Y, typename Dimension, typename System>
      quantity< unit< plane_angle_dimension, homogeneous_system< System > >, Y >
      atan2(const\ quantity<\ unit<\ Dimension,\ homogeneous\_system<\ System>>,\ Y>\&\ Y,
            const quantity< unit< Dimension, homogeneous_system< System > >, Y > & x);
  }
}
```


Function template pow

boost::units::pow

Synopsis

```
// In header: <boost/units/cmath.hpp>

template<typename S, typename Y>
   quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y >
   pow(const quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y > & q1,
        const quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(S), Y > & q2);
```

Description

For non-dimensionless quantities, integral and rational powers and roots can be computed by pow<Ex> and root<Rt> respectively.

Header <boost/units/config.hpp>

```
BOOST_UNITS_REQUIRE_LAYOUT_COMPATIBILITY
BOOST_UNITS_NO_COMPILER_CHECK
BOOST_UNITS_CHECK_HOMOGENEOUS_UNITS
```


Macro BOOST_UNITS_REQUIRE_LAYOUT_COMPATIBILITY

 $BOOST_UNITS_REQUIRE_LAYOUT_COMPATIBILITY$

Synopsis

```
// In header: <boost/units/config.hpp>
BOOST_UNITS_REQUIRE_LAYOUT_COMPATIBILITY
```

Description

If defined will trigger a static assertion if quantity<Unit, T> is not layout compatible with T

Macro BOOST_UNITS_NO_COMPILER_CHECK

BOOST_UNITS_NO_COMPILER_CHECK

Synopsis

```
// In header: <boost/units/config.hpp>
BOOST_UNITS_NO_COMPILER_CHECK
```

Description

If defined will diasable a preprocessor check that the compiler is able to handle the library.

Macro BOOST_UNITS_CHECK_HOMOGENEOUS_UNITS

BOOST_UNITS_CHECK_HOMOGENEOUS_UNITS

Synopsis

```
// In header: <boost/units/config.hpp>
BOOST_UNITS_CHECK_HOMOGENEOUS_UNITS
```

Description

Enable checking to verify that a homogeneous system is actually capable of representing all the dimensions that it is used with. Off by default.

Header <boost/units/conversion.hpp>

```
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(Source, Destination, type_, value_)
BOOST_UNITS_DEFINE_CONVERSION_FACTOR_TEMPLATE(Params, Source, Destination, type_, value_)
BOOST_UNITS_DEFAULT_CONVERSION(Source, Dest)
BOOST_UNITS_DEFAULT_CONVERSION_TEMPLATE(Params, Source, Dest)
```

```
namespace boost {
  namespace units {
    template<typename From, typename To> struct conversion_helper;

    // Find the conversion factor between two units.
    template<typename FromUnit, typename ToUnit>
        unspecified conversion_factor(const FromUnit &, const ToUnit &);
    }
}
```


Struct template conversion_helper

boost::units::conversion_helper

Synopsis

```
// In header: <boost/units/conversion.hpp>

template<typename From, typename To>
struct conversion_helper {

   // public static functions
   static To convert(const From &) ;
};
```

Description

Template for defining conversions between quantities. This template should be specialized for every quantity that allows conversions. For example, if you have a two units called pair and dozen you would write

```
namespace boost {
namespace units {
template<class T0, class T1>
struct conversion_helper<quantity<dozen, T0>, quantity<pair, T1> >
{
    static quantity<pair, T1> convert(const quantity<dozen, T0>& source)
    {
        return(quantity<pair, T1>::from_value(6 * source.value()));
    }
};
}
```

In most cases, the predefined specializations for unit and absolute should be sufficient, so users should rarely need to use this.

conversion_helper public static functions

```
1. static To convert(const From &) ;
```


Macro BOOST_UNITS_DEFINE_CONVERSION_FACTOR

BOOST_UNITS_DEFINE_CONVERSION_FACTOR

Synopsis

```
// In header: <boost/units/conversion.hpp>
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(Source, Destination, type_, value_)
```

Description

Defines the conversion factor from a base unit to any unit or to another base unit with the correct dimensions. Uses of this macro must appear at global scope. If the destination unit is a base unit or a unit that contains only one base unit which is raised to the first power (e.g. feet->meters) the reverse (meters->feet in this example) need not be defined explicitly.

Macro BOOST_UNITS_DEFINE_CONVERSION_FACTOR_TEMPLATE

BOOST_UNITS_DEFINE_CONVERSION_FACTOR_TEMPLATE

Synopsis

```
// In header: <boost/units/conversion.hpp>
BOOST_UNITS_DEFINE_CONVERSION_FACTOR_TEMPLATE(Params, Source, Destination, type_, value_)
```

Description

Defines the conversion factor from a base unit to any other base unit with the same dimensions. Params should be a Boost.Preprocessor Seq of template parameters, such as (class T1)(class T2) All uses of must appear at global scope. The reverse conversion will be defined automatically. This macro is a little dangerous, because, unlike the non-template form, it will silently fail if either base unit is scaled. This is probably not an issue if both the source and destination types depend on the template parameters, but be aware that a generic conversion to kilograms is not going to work.

Macro BOOST_UNITS_DEFAULT_CONVERSION

BOOST_UNITS_DEFAULT_CONVERSION

Synopsis

```
// In header: <boost/units/conversion.hpp>
BOOST_UNITS_DEFAULT_CONVERSION(Source, Dest)
```

Description

Specifies the default conversion to be applied when no direct conversion is available. Source is a base unit. Dest is any unit with the same dimensions.

Macro BOOST_UNITS_DEFAULT_CONVERSION_TEMPLATE

BOOST_UNITS_DEFAULT_CONVERSION_TEMPLATE

Synopsis

```
// In header: <boost/units/conversion.hpp>
BOOST_UNITS_DEFAULT_CONVERSION_TEMPLATE(Params, Source, Dest)
```

Description

Specifies the default conversion to be applied when no direct conversion is available. Params is a PP Sequence of template arguments. Source is a base unit. Dest is any unit with the same dimensions. The source must not be a scaled base unit.

Header <boost/units/derived_dimension.hpp>

Struct template derived_dimension

boost::units::derived_dimension — A utility class for defining composite dimensions with integer powers.

Synopsis

Header <boost/units/dim.hpp>

Handling of fundamental dimension/exponent pairs.

```
namespace boost {
  namespace units {
    template<typename T, typename V> struct dim;
  }
}
```


Struct template dim

boost::units::dim — Dimension tag/exponent pair for a single fundamental dimension.

Synopsis

Description

The dim class represents a single dimension tag/dimension exponent pair. That is, dim<tag_type, value_type> is a pair where tag_type represents the fundamental dimension being represented and value_type represents the exponent of that fundamental dimension as a static_rational. tag_type must be a derived from a specialization of base_dimension. Specialization of the following Boost.MPL metafunctions are provided

- mpl::plus for two dims
- mpl::minus for two dims
- mpl::negate for a dim

These metafunctions all operate on the exponent, and require that the dim operands have the same base dimension tag. In addition, multiplication and division by static_rational is supported.

- mpl::times for a static_rational and a dim in either order
- mpl::divides for a static_rational and a dim in either order

These metafunctions likewise operate on the exponent only.

Header <boost/units/dimension.hpp>

Core metaprogramming utilities for compile-time dimensional analysis.

```
namespace boost {
  namespace units {
    template<typename Seq> struct make_dimension_list;
    template<typename DL, typename Ex> struct static_power;
    template<typename DL, typename Rt> struct static_root;
}
```


Struct template make_dimension_list

boost::units::make_dimension_list

Synopsis

```
// In header: <boost/units/dimension.hpp>

template<typename Seq>
struct make_dimension_list {
   // types
   typedef unspecified type;
};
```

Description

Reduce dimension list to cardinal form. This algorithm collapses duplicate base dimension tags and sorts the resulting list by the tag ordinal value. Dimension lists that resolve to the same dimension are guaranteed to be represented by an identical type.

The argument should be an MPL forward sequence containing instances of the dim template.

The result is also an MPL forward sequence. It also supports the following metafunctions to allow use as a dimension.

- mpl::plus is defined only on two equal dimensions and returns the argument unchanged.
- mpl::minus is defined only for two equal dimensions and returns the argument unchanged.
- mpl::negate will return its argument unchanged.
- mpl::times is defined for any dimensions and adds corresponding exponents.
- mpl::divides is defined for any dimensions and subtracts the exponents of the right had argument from the corresponding exponents of the left had argument. Missing base dimension tags are assumed to have an exponent of zero.
- static_power takes a dimension and a static_rational and multiplies all the exponents of the dimension by the static_rational.
- static_root takes a dimension and a static_rational and divides all the exponents of the dimension by the static_rational.

Struct template static_power

 $boost::units::static_power --- Raise\ a\ dimension\ list\ to\ a\ scalar\ power.$

```
// In header: <boost/units/dimension.hpp>

template<typename DL, typename Ex>
struct static_power {
   // types
   typedef unspecified type;
};
```


Struct template static_root

boost::units::static_root — Take a scalar root of a dimension list.

Synopsis

```
// In header: <boost/units/dimension.hpp>

template<typename DL, typename Rt>
struct static_root {
   // types
   typedef unspecified type;
};
```

Header <boost/units/dimensionless_quantity.hpp>

```
namespace boost {
  namespace units {
    template<typename System, typename Y> struct dimensionless_quantity;
  }
}
```


Struct template dimensionless_quantity

boost::units::dimensionless_quantity — utility class to simplify construction of dimensionless quantities

Synopsis

```
// In header: <boost/units/dimensionless_quantity.hpp>

template<typename System, typename Y>
struct dimensionless_quantity {
   // types
   typedef quantity< typename dimensionless_unit< System >::type, Y > type;
};
```

Header <boost/units/dimensionless_type.hpp>

```
namespace boost {
  namespace units {
    struct dimensionless_type;
  }
}
```


Struct dimensionless_type

boost::units::dimensionless_type — Dimension lists in which all exponents resolve to zero reduce to dimensionless_type.

Synopsis

```
// In header: <boost/units/dimensionless_type.hpp>
struct dimensionless_type {
   // types
   typedef dimensionless_type type;
   typedef unspecified tag;
   typedef mpl::long_< 0 > size;
};
```

Header <boost/units/dimensionless_unit.hpp>

```
namespace boost {
  namespace units {
    template<typename System> struct dimensionless_unit;
  }
}
```


Struct template dimensionless_unit

boost::units::dimensionless_unit — utility class to simplify construction of dimensionless units in a system

Synopsis

```
// In header: <boost/units/dimensionless_unit.hpp>
template<typename System>
struct dimensionless_unit {
   // types
   typedef unit< dimensionless_type, System > type;
};
```

Header <boost/units/get_dimension.hpp>

```
namespace boost {
  namespace units {
    template<typename T> struct get_dimension;

    template<typename Dim, typename System>
        struct get_dimension<unit< Dim, System >>;
    template<typename Unit> struct get_dimension<absolute< Unit >>;
    template<typename Unit, typename Y>
        struct get_dimension<quantity< Unit, Y >>;
}
```


Struct template get_dimension

boost::units::get_dimension

```
// In header: <boost/units/get_dimension.hpp>
template<typename T>
struct get_dimension {
};
```


Struct template get_dimension<unit< Dim, System >>

boost::units::get_dimension<unit< Dim, System >> — get the dimension of a unit

```
// In header: <boost/units/get_dimension.hpp>

template<typename Dim, typename System>
struct get_dimension<unit< Dim, System >> {
    // types
    typedef Dim type;
};
```


Struct template get_dimension<absolute< Unit >>

boost::units::get_dimension<absolute< Unit >> — get the dimension of an absolute unit

```
// In header: <boost/units/get_dimension.hpp>

template<typename Unit>
struct get_dimension<absolute< Unit >> {
    // types
    typedef get_dimension< Unit >::type type;
};
```


Struct template get_dimension<quantity< Unit, Y >>

boost::units::get_dimension<quantity< Unit, Y >> — get the dimension of a quantity

Synopsis

```
// In header: <boost/units/get_dimension.hpp>

template<typename Unit, typename Y>
struct get_dimension<quantity< Unit, Y >> {
    // types
    typedef get_dimension< Unit >::type type;
};
```

Header <boost/units/get_system.hpp>

```
namespace boost {
  namespace units {
    template<typename T> struct get_system;

  template<typename Dim, typename System>
    struct get_system<unit< Dim, System >>;
  template<typename Unit> struct get_system<absolute< Unit >>;
  template<typename Unit, typename Y> struct get_system<quantity< Unit, Y >>;
}
}
```


Struct template get_system

boost::units::get_system

```
// In header: <boost/units/get_system.hpp>
template<typename T>
struct get_system {
};
```


Struct template get_system<unit< Dim, System >>

boost::units::get_system<unit< Dim, System >> — get the system of a unit

```
// In header: <boost/units/get_system.hpp>

template<typename Dim, typename System>
struct get_system<unit< Dim, System >> {
    // types
    typedef System type;
};
```


Struct template get_system<absolute< Unit >>

 $boost::units::get_system < absolute < Unit >> --- get \ the \ system \ of \ an \ absolute \ unit$

```
// In header: <boost/units/get_system.hpp>

template<typename Unit>
struct get_system<absolute< Unit >> {
    // types
    typedef get_system< Unit >::type type;
};
```


Struct template get_system<quantity< Unit, Y >>

boost::units::get_system<quantity< Unit, Y >> — get the system of a quantity

Synopsis

```
// In header: <boost/units/get_system.hpp>

template<typename Unit, typename Y>
struct get_system<quantity< Unit, Y >> {
    // types
    typedef get_system< Unit >::type type;
};
```

Header <boost/units/heterogeneous_system.hpp>

```
namespace boost {
  namespace mpl {
  }
  namespace units {
    template<typename T> struct heterogeneous_system;
  }
}
```


Struct template heterogeneous_system

boost::units::heterogeneous_system

Synopsis

```
// In header: <boost/units/heterogeneous_system.hpp>
template<typename T>
struct heterogeneous_system {
};
```

Description

A system that can represent any possible combination of units at the expense of not preserving information about how it was created. Do not create specializations of this template directly. Instead use reduce_unit and base_unit<...>unit_type.

Header <boost/units/homogeneous_system.hpp>

```
namespace boost {
  namespace units {
    template<typename L> struct homogeneous_system;
  }
}
```


Struct template homogeneous_system

boost::units::homogeneous_system

Synopsis

```
// In header: <boost/units/homogeneous_system.hpp>
template<typename L>
struct homogeneous_system {
};
```

Description

A system that can uniquely represent any unit which can be composed from a linearly independent set of base units. It is safe to rebind a unit with such a system to different dimensions.

Do not construct this template directly. Use make_system instead.

Header <boost/units/io.hpp>

```
namespace boost {
 namespace serialization {
    // Boost Serialization library support for units.
    template<typename Archive, typename System, typename Dim>
      void serialize(Archive & ar, boost::units::unit< Dim, System > &,
                     const unsigned int);
    // Boost Serialization library support for quantities.
    template<typename Archive, typename Unit, typename Y>
      void serialize(Archive & ar, boost::units::quantity< Unit, Y > & q,
                     const unsigned int);
 namespace units {
    template<typename BaseUnit> struct base_unit_info;
    enum format_mode { symbol_fmt = 0, name_fmt, raw_fmt, typename_fmt };
    template<typename T> std::string to_string(const T & t);
    template<integer_type N>
      std::string to_string(const static_rational< N > &);
    template<integer_type N, integer_type D>
      std::string to_string(const static_rational< N, D > &);
    // Write static_rational to std::basic_ostream.
    template<typename Char, typename Traits, integer_type N, integer_type D>
      std::basic_ostream< Char, Traits > &
      operator<<(std::basic_ostream< Char, Traits > & os,
                 const static_rational< N, D > & r);
    format_mode get_format(std::ios_base & ios);
    void set_format(std::ios_base & ios, format_mode new_mode);
    std::ios_base & typename_format(std::ios_base & ios);
    std::ios_base & raw_format(std::ios_base & ios);
    std::ios_base & symbol_format(std::ios_base & ios);
    std::ios_base & name_format(std::ios_base & ios);
    template<typename Dimension, typename System>
      std::string typename_string(const unit< Dimension, System > &);
    template<typename Dimension, typename System>
      std::string symbol_string(const unit< Dimension, System > &);
    template<typename Dimension, typename System>
      std::string name_string(const unit< Dimension, System > &);
    template<typename Char, typename Traits, typename Dimension,
             typename System>
      std::basic_ostream< Char, Traits > &
      operator<<(std::basic_ostream< Char, Traits > &,
                 const unit< Dimension, System > &);
 }
}
```


Struct template base_unit_info

boost::units::base_unit_info — traits template for unit names

Synopsis

```
// In header: <boost/units/io.hpp>

template<typename BaseUnit>
struct base_unit_info {

   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

base_unit_info public static functions

```
1. static std::string name();
```

The full name of the unit (returns BaseUnit::name() by default).

```
2. static std::string symbol();
```

The symbol for the base unit (Returns BaseUnit::symbol() by default).

Function template operator<<

boost::units::operator<<

Synopsis

```
// In header: <boost/units/io.hpp>

template<typename Char, typename Traits, typename Dimension, typename System>
    std::basic_ostream< Char, Traits > &
    operator<<(std::basic_ostream< Char, Traits > & os,
        const unit< Dimension, System > & u);
```

Description

Print an unit as a list of base units and exponents

for symbol_format this gives e.g. "m s^-1" or "J" for name_format this gives e.g. "meter second^-1" or "joule" for raw_format this gives e.g. "m s^-1" or "meter kilogram^2 second^-2" for typename_format this gives the typename itself (currently demangled only on GCC)

Header <boost/units/is_dim.hpp>

```
namespace boost {
  namespace units {
    template<typename T> struct is_dim;

    template<typename T, typename V> struct is_dim<dim< T, V >>;
  }
}
```


Struct template is_dim

 $boost::units:: is_dim --- Check \ that \ a \ type \ is \ a \ valid \ \mathtt{dim}.$

```
// In header: <boost/units/is_dim.hpp>
template<typename T>
struct is_dim {
};
```


Struct template is_dim<dim< T, V >>

boost::units::is_dim<dim< T, V >>

Synopsis

```
// In header: <boost/units/is_dim.hpp>
template<typename T, typename V>
struct is_dim<dim< T, V >> {
};
```

Header <boost/units/is_dimension_list.hpp>

```
namespace boost {
  namespace units {
    template<typename Seq> struct is_dimension_list;

  template<typename Item, typename Next>
    struct is_dimension_list<list< Item, Next >>;
    template<> struct is_dimension_list<dimensionless_type>;
}
```


Struct template is_dimension_list

boost::units::is_dimension_list — Check that a type is a valid dimension list.

```
// In header: <boost/units/is_dimension_list.hpp>
template<typename Seq>
struct is_dimension_list {
};
```


Struct template is_dimension_list<list< Item, Next >>

boost::units::is_dimension_list<list< Item, Next >>

```
// In header: <boost/units/is_dimension_list.hpp>
template<typename Item, typename Next>
struct is_dimension_list<list< Item, Next >> {
};
```


Struct is_dimension_list<dimensionless_type>

boost::units::is_dimension_list<dimensionless_type>

Synopsis

```
// In header: <boost/units/is_dimension_list.hpp>
struct is_dimension_list<dimensionless_type> {
};
```

Header <boost/units/is_dimensionless.hpp>

```
namespace boost {
  namespace units {
    template<typename T> struct is_dimensionless;

    template<typename System>
        struct is_dimensionless<unit< dimensionless_type, System >>;
    template<typename Unit, typename Y>
        struct is_dimensionless<quantity< Unit, Y >>;
  }
}
```


Struct template is_dimensionless

boost::units::is_dimensionless

```
// In header: <boost/units/is_dimensionless.hpp>
template<typename T>
struct is_dimensionless {
};
```


Struct template is_dimensionless<unit< dimensionless_type, System >>

boost::units::is_dimensionless<unit< dimensionless_type, System >> — check if a unit is dimensionless

```
// In header: <boost/units/is_dimensionless.hpp>
template<typename System>
struct is_dimensionless<unit< dimensionless_type, System >> {
};
```


Struct template is_dimensionless<quantity< Unit, Y >>

boost::units::is_dimensionless<quantity< Unit, Y >> — check if a quantity is dimensionless

Synopsis

```
// In header: <boost/units/is_dimensionless.hpp>
template<typename Unit, typename Y>
struct is_dimensionless<quantity< Unit, Y >> : public boost::units::is_dimensionless< Unit > {
};
```

Header <boost/units/is_dimensionless_quantity.hpp>

```
namespace boost {
  namespace units {
    template<typename T> struct is_dimensionless_quantity;
  }
}
```


Struct template is_dimensionless_quantity

boost::units::is_dimensionless_quantity — check that a type is a dimensionless quantity

Synopsis

```
// In header: <boost/units/is_dimensionless_quantity.hpp>

template<typename T>
struct is_dimensionless_quantity :
   public boost::units::is_quantity_of_dimension< T, dimensionless_type >
{
};
```

Header <boost/units/is_dimensionless_unit.hpp>

```
namespace boost {
  namespace units {
    template<typename T> struct is_dimensionless_unit;
  }
}
```


Struct template is_dimensionless_unit

boost::units::is_dimensionless_unit — check that a type is a dimensionless unit

Synopsis

```
// In header: <boost/units/is_dimensionless_unit.hpp>

template<typename T>
struct is_dimensionless_unit :
   public boost::units::is_unit_of_dimension< T, dimensionless_type >
{
};
```

Header <boost/units/is_quantity.hpp>

```
namespace boost {
  namespace units {
    template<typename T> struct is_quantity;

    template<typename Unit, typename Y> struct is_quantity<quantity< Unit, Y >>;
  }
}
```


Struct template is_quantity

boost::units::is_quantity — check that a type is a quantity

```
// In header: <boost/units/is_quantity.hpp>
template<typename T>
struct is_quantity {
};
```


Struct template is_quantity<quantity< Unit, Y >>

 $boost::units::is_quantity < quantity < Unit, Y>>$

Synopsis

```
// In header: <boost/units/is_quantity.hpp>
template<typename Unit, typename Y>
struct is_quantity<quantity< Unit, Y >> {
};
```

Header <boost/units/is_quantity_of_dimension.hpp>

```
namespace boost {
  namespace units {
    template<typename T, typename Dim> struct is_quantity_of_dimension;

  template<typename Unit, typename Y, typename Dim>
    struct is_quantity_of_dimension<quantity< Unit, Y >, Dim>;
  }
}
```


Struct template is_quantity_of_dimension

boost::units::is_quantity_of_dimension — check that a type is a quantity of the specified dimension

```
// In header: <boost/units/is_quantity_of_dimension.hpp>
template<typename T, typename Dim>
struct is_quantity_of_dimension {
};
```


Struct template is_quantity_of_dimension<quantity< Unit, Y >, Dim>

boost::units::is_quantity_of_dimension<quantity< Unit, Y >, Dim>

Synopsis

```
// In header: <boost/units/is_quantity_of_dimension.hpp>

template<typename Unit, typename Y, typename Dim>
struct is_quantity_of_dimension<quantity< Unit, Y >, Dim> :
    public boost::units::is_unit_of_dimension< Unit, Dim >
{
};
```

Header <boost/units/is_quantity_of_system.hpp>

```
namespace boost {
  namespace units {
    template<typename T, typename System> struct is_quantity_of_system;

  template<typename Unit, typename Y, typename System>
    struct is_quantity_of_system<quantity< Unit, Y >, System>;
  }
}
```


Struct template is_quantity_of_system

boost::units::is_quantity_of_system — check that a type is a quantity in a specified system

```
// In header: <boost/units/is_quantity_of_system.hpp>
template<typename T, typename System>
struct is_quantity_of_system {
};
```


Struct template is_quantity_of_system<quantity< Unit, Y >, System>

boost::units::is_quantity_of_system<quantity< Unit, Y >, System>

Synopsis

```
// In header: <boost/units/is_quantity_of_system.hpp>

template<typename Unit, typename Y, typename System>
struct is_quantity_of_system<quantity< Unit, Y >, System>:
    public boost::units::is_unit_of_system< Unit, System >
{
};
```

Header <boost/units/is_unit.hpp>

```
namespace boost {
  namespace units {
    template<typename T> struct is_unit;

    template<typename Dim, typename System> struct is_unit<unit< Dim, System >>;
  }
}
```


Struct template is_unit

boost::units::is_unit — check that a type is a unit

```
// In header: <boost/units/is_unit.hpp>
template<typename T>
struct is_unit {
};
```


Struct template is_unit<unit< Dim, System >>

boost::units::is_unit<unit< Dim, System >>

Synopsis

```
// In header: <boost/units/is_unit.hpp>
template<typename Dim, typename System>
struct is_unit<unit< Dim, System >> {
};
```

Header <boost/units/is_unit_of_dimension.hpp>

```
namespace boost {
  namespace units {
    template<typename T, typename Dim> struct is_unit_of_dimension;

  template<typename Dim, typename System>
    struct is_unit_of_dimension<unit< Dim, System >, Dim>;
  template<typename Dim, typename System>
    struct is_unit_of_dimension<absolute< unit< Dim, System > >, Dim>;
}
```


Struct template is_unit_of_dimension

boost::units::is_unit_of_dimension — check that a type is a unit of the specified dimension

```
// In header: <boost/units/is_unit_of_dimension.hpp>
template<typename T, typename Dim>
struct is_unit_of_dimension {
};
```


Struct template is_unit_of_dimension<unit< Dim, System >, Dim>

boost::units::is_unit_of_dimension<unit< Dim, System >, Dim>

```
// In header: <boost/units/is_unit_of_dimension.hpp>
template<typename Dim, typename System>
struct is_unit_of_dimension<unit< Dim, System >, Dim> {
};
```


Struct template is_unit_of_dimension<absolute< unit< Dim, System > >, Dim>

boost::units::is_unit_of_dimension<absolute< unit< Dim, System > >, Dim>

Synopsis

```
// In header: <boost/units/is_unit_of_dimension.hpp>

template<typename Dim, typename System>
struct is_unit_of_dimension<absolute< unit< Dim, System > >, Dim> {
};
```

Header <boost/units/is_unit_of_system.hpp>

```
namespace boost {
  namespace units {
    template<typename T, typename System> struct is_unit_of_system;

    template<typename Dim, typename System>
        struct is_unit_of_system<unit< Dim, System >, System>;
    template<typename Dim, typename System>
        struct is_unit_of_system<absolute< unit< Dim, System > >, System>;
    }
}
```


Struct template is_unit_of_system

boost::units::is_unit_of_system — check that a type is a unit in a specified system

```
// In header: <boost/units/is_unit_of_system.hpp>
template<typename T, typename System>
struct is_unit_of_system {
};
```


Struct template is_unit_of_system<unit< Dim, System >, System>

boost::units::is_unit_of_system<unit< Dim, System>, System>

```
// In header: <boost/units/is_unit_of_system.hpp>
template<typename Dim, typename System>
struct is_unit_of_system<unit< Dim, System >, System> {
};
```


Struct template is_unit_of_system<absolute< unit< Dim, System > >, System>

boost::units::is_unit_of_system<absolute< unit< Dim, System >>, System>

Synopsis

```
// In header: <boost/units/is_unit_of_system.hpp>
template<typename Dim, typename System>
struct is_unit_of_system<absolute< unit< Dim, System > >, System> {
};
```

Header <boost/units/lambda.hpp>

Definitions to ease the usage of Boost.Units' quantity, unit, and absolute types in functors created with the Boost.Lambda library.

Torsten Maehne

2008-06-16

Boost.Lambda's return type deduction system is extented to make use of Boost.Units' typeof_helper trait classes for Boost.Units' quantity, absolute, and unit template classes.


```
namespace boost {
  namespace lambda {
    template<typename System, typename Dim, typename Y>
     struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim, ↓</pre>
    template<typename System, typename Dim, typename Y>
     struct plain_return_type_2<arithmetic_action< divide_action >, boost::units::unit< Dim, →</pre>
System >, Y>;
    template<typename System, typename Dim, typename Y>
     struct plain_return_type_2<arithmetic_action< multiply_action >, Y, boost::units::unit< →</pre>
Dim, System >>;
    template<typename System, typename Dim, typename Y>
     struct plain_return_type_2<arithmetic_action< divide_action >, Y, boost::units::unit< Dim, ↓
System >>;
    template<typename Unit, typename X>
     struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::quantity< ↓</pre>
Unit, X > X > i
    template<typename Unit, typename X>
      struct plain_return_type_2<arithmetic_action< multiply_action >, X, boost::units::quant.
ity< Unit, X >>;
    template<typename Unit, typename X>
      struct plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< ↓</pre>
Unit, X >, X>;
    template<typename Unit, typename X>
     struct plain_return_type_2<arithmetic_action< divide_action >, X, boost::units::quantity< ↓
Unit, X >>;
    template<typename System1, typename Dim1, typename Unit2, typename Y>
     struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim1, ↓</pre>
System1 >, boost::units::quantity< Unit2, Y >>;
    template<typename System1, typename Dim1, typename Unit2, typename Y>
     struct plain_return_type_2<arithmetic_action< divide_action >, boost::units::unit< Dim1, ↓</pre>
System1 >, boost::units::quantity< Unit2, Y >>;
    template<typename Unit1, typename Y, typename System2, typename Dim2>
     struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::quantity< ↓</pre>
Unit1, Y >, boost::units::unit< Dim2, System2 >>;
    template<typename Unit1, typename Y, typename System2, typename Dim2>
      struct plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< ↓</pre>
Unit1, Y >, boost::units::unit< Dim2, System2 >>;
    template<typename Unit, typename Y>
     struct plain_return_type_1<unary_arithmetic_action< plus_action >, boost::units::quantity< ↓
Unit, Y >>;
    template<typename Unit, typename Y>
      struct plain_return_type_1<unary_arithmetic_action< minus_action >, boost::units::quant↓
ity< Unit, Y >>;
    template<typename Unit1, typename X, typename Unit2, typename Y>
     struct plain_return_type_2<arithmetic_action< plus_action >, boost::units::quantity< Unit1, ↓</pre>
X >, boost::units::quantity< Unit2, Y >>;
    template<typename System, typename X, typename Y>
      struct plain_return_type_2<arithmetic_action< plus_action >, boost::units::quantity< ↓</pre>
BOOST_UNITS_DIMENSIONLESS_UNIT(System), X >, Y>;
    template<typename System, typename X, typename Y>
      struct plain_return_type_2<arithmetic_action< plus_action >, X, boost::units::quantity< ↓
BOOST_UNITS_DIMENSIONLESS_UNIT(System), Y >>;
    template<typename Unit1, typename X, typename Unit2, typename Y>
      struct plain_return_type_2<arithmetic_action< minus_action >, boost::units::quantity< ↓</pre>
Unit1, X >, boost::units::quantity< Unit2, Y >>;
    template<typename System, typename X, typename Y>
      struct plain_return_type_2<arithmetic_action< minus_action >, boost::units::quantity< ↓</pre>
BOOST_UNITS_DIMENSIONLESS_UNIT(System), X >, Y>;
    template<typename System, typename X, typename Y>
     struct plain_return_type_2<arithmetic_action< minus_action >, X, boost::units::quantity< ↓
BOOST_UNITS_DIMENSIONLESS_UNIT(System), Y >>;
    template<typename Unit1, typename X, typename Unit2, typename Y>
```



```
struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::quantity< ↓</pre>
Unit1, X >, boost::units::quantity< Unit2, Y >>;
    template<typename Unit1, typename X, typename Unit2, typename Y>
      struct plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< ↓</pre>
Unit1, X >, boost::units::quantity< Unit2, Y >>;
    template<typename Dim, typename System>
      struct plain_return_type_1<unary_arithmetic_action< plus_action >, boost::units::unit< ↓</pre>
Dim, System >>;
    template<typename Dim, typename System>
     struct plain_return_type_1<unary_arithmetic_action< minus_action >, boost::units::unit< ↓</pre>
Dim, System >>;
    template<typename Dim1, typename Dim2, typename System1, typename System2>
     struct plain_return_type_2<arithmetic_action< plus_action >, boost::units::unit< Dim1, SysJ</pre>
tem1 >, boost::units::unit< Dim2, System2 >>;
    template<typename Dim1, typename Dim2, typename System1, typename System2>
      struct plain_return_type_2<arithmetic_action< minus_action >, boost::units::unit< Dim1, \downarrow
System1 >, boost::units::unit< Dim2, System2 >>;
    template<typename Dim1, typename Dim2, typename System1, typename System2>
     struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim1, ↓</pre>
System1 >, boost::units::unit< Dim2, System2 >>;
    template<typename Dim1, typename Dim2, typename System1, typename System2>
     struct plain_return_type_2<arithmetic_action< divide_action >, boost::units::unit< Dim1, ↓</pre>
System1 >, boost::units::unit< Dim2, System2 >>;
    template<typename Y>
     struct plain_return_type_2<arithmetic_action< plus_action >, boost::units::absolute< Y >, Y>;
    template<typename Y>
     struct plain_return_type_2<arithmetic_action< plus_action >, Y, boost::units::absolute< →</pre>
Y >>;
    template<typename Y>
     struct plain_return_type_2<arithmetic_action< minus_action >, boost::units::absolute< Y →</pre>
>, Y>;
    template<typename Y>
     struct plain_return_type_2<arithmetic_action< minus_action >, boost::units::absolute< Y →
>, boost::units::absolute< Y >>;
    template<typename D, typename S, typename T>
      struct plain_return_type_2<arithmetic_action< multiply_action >, T, boost::units::absoJ
lute< boost::units::unit< D, S > >>;
    template<typename D, typename S, typename T>
     struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::absolute< ↓
boost::units::unit< D, S > >, T>;
  namespace units {
    template<typename System, typename Dim, typename Arg>
     struct multiply_typeof_helper<boost::units::unit< Dim, System >, boost::lambda::lambda_funcJ
tor< Arg >>;
    template<typename System, typename Dim, typename Arg>
     struct divide_typeof_helper<boost::units::unit< Dim, System >, boost::lambda::lambda_funcJ
tor< Arg >>;
    template<typename System, typename Dim, typename Arg>
     \textbf{struct} \ \texttt{multiply\_typeof\_helper} < \texttt{boost::lambda} = \texttt{functor} < \texttt{Arg} > , \ \texttt{boost::units::unit} < \bot 
Dim, System >>;
    template<typename System, typename Dim, typename Arg>
     struct divide_typeof_helper<boost::lambda::lambda_functor< Arg >, boost::units::unit< Dim, ↓
System >>;
    template<typename System, typename Dim, typename Arg>
      struct multiply_typeof_helper<boost::lambda::lambda_functor< Arg >, boost::units::absoJ
lute< boost::units::unit< Dim, System > >>;
    template<typename System, typename Dim, typename Arg>
     struct multiply_typeof_helper<boost::units::absolute< boost::units::unit< Dim, System > →
>, boost::lambda::lambda_functor< Arg >>;
    template<typename System, typename Dim, typename Arg>
     const multiply_typeof_helper< boost::units::unit< Dim, System >, boost::lambda::lambda_funcJ
tor< Arg > >::type
```



```
operator*(const boost::units::unit< Dim, System > &,
                const boost::lambda::lambda_functor< Arg > &);
    template<typename System, typename Dim, typename Arg>
     const divide_typeof_helper< boost::units::unit< Dim, System >, boost::lambda::lambda_funcJ
tor< Arg > >::type
      operator/(const boost::units::unit< Dim, System > &,
                const boost::lambda::lambda_functor< Arg > &);
    template<typename System, typename Dim, typename Arg>
     const multiply_typeof_helper< boost::lambda::lambda_functor< Arg >, boost::units::unit< Dim, ↓</pre>
System > >::type
     operator*(const boost::lambda::lambda_functor< Arg > &,
                const boost::units::unit< Dim, System > &);
    template<typename System, typename Dim, typename Arg>
     const divide_typeof_helper< boost::lambda::lambda_functor< Arg >, boost::units::unit< Dim, ↓</pre>
System > >::type
      operator/(const boost::lambda::lambda_functor< Arg > &,
                const boost::units::unit< Dim, System > &);
    template<typename System, typename Dim, typename Arg>
      const multiply_typeof_helper< boost::lambda::lambda_functor< Arg >, boost::units::absoJ
lute< boost::units::unit< Dim, System > > ::type
      operator*(const boost::lambda::lambda_functor< Arg > &,
                const boost::units::absolute< boost::units::unit< Dim, System > > &);
    template<typename System, typename Dim, typename Arg>
     const multiply_typeof_helper< boost::units::absolute< boost::units::unit< Dim, System > →
>, boost::lambda::lambda_functor< Arg > >::type
      operator*(const boost::units::absolute< boost::units::unit< Dim, System > > &,
                const boost::lambda::lambda_functor< Arg > &);
}
```


Struct template plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim, System >, Y>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < multiply_action >, boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost:: unit < Dim, System >, Y > to boost$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename Dim, typename Y>
struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim, SysJ
tem >, Y> {
    // types
    typedef boost::units::multiply_typeof_helper< boost::units::unit< Dim, System >, Y >::type type;
};
```

Description

Partial specialization of return type trait for action unit<Dim, System> * Y.

Struct template plain_return_type_2<arithmetic_action< divide_action >, boost::units::unit< Dim, System >, Y>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < divide_action >, boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: unit < Dim, System >, Y > to boost:: units:: units::$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename Dim, typename Y>
struct plain_return_type_2<arithmetic_action< divide_action >, boost::units::unit< Dim, System J
>, Y> {
    // types
    typedef boost::units::divide_typeof_helper< boost::units::unit< Dim, System >, Y >::type type;
};
```

Description

Partial specialization of return type trait for action unit<Dim, System>/Y.

Struct template plain_return_type_2<arithmetic_action< multiply_action >, Y, boost::units::unit< Dim, System >>

boost::lambda::plain_return_type_2<arithmetic_action< multiply_action >, Y, boost::units::unit< Dim, System >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename Dim, typename Y>
struct plain_return_type_2<arithmetic_action< multiply_action >, Y, boost::units::unit< Dim, SysJ
tem >> {
    // types
    typedef boost::units::multiply_typeof_helper< Y, boost::units::unit< Dim, System > >::type type;
};
```

Description

Partial specialization of return type trait for action Y * unit<Dim, System>.

Struct template plain_return_type_2<arithmetic_action< divide_action >, Y, boost::units::unit< Dim, System >>

boost::lambda::plain_return_type_2<arithmetic_action< divide_action >, Y, boost::units::unit< Dim, System >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename Dim, typename Y>
struct plain_return_type_2<arithmetic_action< divide_action >, Y, boost::units::unit< Dim, SysJ
tem >> {
    // types
    typedef boost::units::divide_typeof_helper< Y, boost::units::unit< Dim, System > >::type type;
};
```

Description

Partial specialization of return type trait for action Y / unit<Dim, System>.

Struct template plain_return_type_2<arithmetic_action< multiply_action >, boost::units::quantity< Unit, X >, X>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < multiply_action >, boost:: units:: quantity < Unit, X >, X > to some substitution of the property of the property$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit, typename X>
struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::quantity< Unit, \( \J \)
X >, X> {
    // types
    typedef boost::units::multiply_typeof_helper< boost::units::quantity< Unit, X >, X >::type type;
};
```

Description

Partial specialization of return type trait for action quantity<Unit, X> * X.

Struct template plain_return_type_2<arithmetic_action< multiply_action >, X, boost::units::quantity< Unit, X >>

boost::lambda::plain_return_type_2<arithmetic_action< multiply_action >, X, boost::units::quantity< Unit, X >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit, typename X>
struct plain_return_type_2<arithmetic_action< multiply_action >, X, boost::units::quantity< J
Unit, X >> {
    // types
    typedef boost::units::multiply_typeof_helper< X, boost::units::quantity< Unit, X >>::type type;
};
```

Description

Partial specialization of return type trait for action X * quantity<Unit, X>.

Struct template plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< Unit, X >, X>

boost::lambda::plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< Unit, X >, X>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit, typename X>
struct plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< Unit, X \( \)
>, X> {
    // types
    typedef boost::units::divide_typeof_helper< boost::units::quantity< Unit, X >, X >::type type;
};
```

Description

Partial specialization of return type trait for action quantity<Unit, X>/X.

Struct template plain_return_type_2<arithmetic_action< divide_action >, X, boost::units::quantity< Unit, X >>

boost::lambda::plain_return_type_2<arithmetic_action< divide_action >, X, boost::units::quantity< Unit, X >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit, typename X>
struct plain_return_type_2<arithmetic_action< divide_action >, X, boost::units::quantity< Unit, J
X >> {
    // types
    typedef boost::units::divide_typeof_helper< X, boost::units::quantity< Unit, X >>::type type;
};
```

Description

Partial specialization of return type trait for action X / quantity<Unit, X>.

Struct template plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim1, System1 >, boost::units::quantity< Unit2, Y >>

boost::lambda::plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim1, System1 >, boost::units::quantity< Unit2, Y >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename System1, typename Dim1, typename Unit2, typename Y>
struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim1, SysJ
tem1 >, boost::units::quantity< Unit2, Y >> {
    // types
    typedef boost::units::multiply_typeof_helper< boost::units::unit< Dim1, System1 J
>, boost::units::quantity< Unit2, Y > >::type type;
};
```

Description

Partial specialization of return type trait for action unit<Dim1, System1> * quantity<Unit2, Y>.

Struct template plain_return_type_2<arithmetic_action< divide_action >, boost::units::unit< Dim1, System1 >, boost::units::quantity< Unit2, Y >>

boost::lambda::plain_return_type_2<arithmetic_action< divide_action>, boost::units::unit< Dim1, System1>, boost::units::quantity< Unit2, Y>>

Synopsis

Description

Partial specialization of return type trait for action unit<Dim1, System1> / quantity<Unit2, Y>.

Struct template plain_return_type_2<arithmetic_action< multiply_action >, boost::units::quantity< Unit1, Y >, boost::units::unit< Dim2, System2 >>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < multiply_action >, boost:: units:: quantity < Unit1, Y >, boost:: units:: unit < Dim2, System2 >>$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit1, typename Y, typename System2, typename Dim2>
struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::quantity< Unit1, J
Y >, boost::units::unit< Dim2, System2 >> {
    // types
    typedef boost::units::multiply_typeof_helper< boost::units::quantity< Unit1, Y J
>, boost::units::unit< Dim2, System2 > >::type type;
};
```

Description

Partial specialization of return type trait for action quantity<Unit1, Y> * unit<Dim2, System2>.

Struct template plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< Unit1, Y >, boost::units::unit< Dim2, System2 >>

boost::lambda::plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< Unit1, Y >, boost::units::unit< Dim2, System2 >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit1, typename Y, typename System2, typename Dim2>
struct plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< Unit1, ↓
Y >, boost::units::unit< Dim2, System2 >> {
    // types
    typedef boost::units::divide_typeof_helper< boost::units::quantity< Unit1, Y ↓
>, boost::units::unit< Dim2, System2 > >::type type;
};
```

Description

Partial specialization of return type trait for action quantity<Unit1, Y> / unit<Dim2, System2>.

Struct template plain_return_type_1<unary_arithmetic_action< plus_action >, boost::units::quantity< Unit, Y >>

 $boost:: lambda:: plain_return_type_1 < unary_arithmetic_action < plus_action >, boost:: units:: quantity < Unit, Y >> to still the plus_action > to still$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit, typename Y>
struct plain_return_type_1<unary_arithmetic_action< plus_action >, boost::units::quantity< Unit, J
Y >> {
    // types
    typedef boost::units::unary_plus_typeof_helper< boost::units::quantity< Unit, Y > >::type type;
};
```

Description

Partial specialization of return type trait for action +quantity<Unit, Y>.

Struct template plain_return_type_1<unary_arithmetic_action< minus_action >, boost::units::quantity< Unit, Y >>

boost::lambda::plain_return_type_1<unary_arithmetic_action< minus_action >, boost::units::quantity< Unit, Y >>

Synopsis

Description

Partial specialization of return type trait for action -quantity<Unit, Y>.

Struct template plain_return_type_2<arithmetic_action< plus_action >, boost::units::quantity< Unit1, X >, boost::units::quantity< Unit2, Y >>

 $boost::lambda::plain_return_type_2 < arithmetic_action < plus_action >, boost::units::quantity < Unit1, X >, boost::units::quantity < Unit2, Y >>$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit1, typename X, typename Unit2, typename Y>
struct plain_return_type_2<arithmetic_action< plus_action >, boost::units::quantity< Unit1, X \( \) >, boost::units::quantity< Unit2, Y >> {
    // types
    typedef boost::units::add_typeof_helper< boost::units::quantity< Unit1, X >, boost::units::quant\( \) ity< Unit2, Y > >::type type;
};
```

Description

Partial specialization of return type trait for action quantity<Unit1, X> + quantity<Unit2, Y>.

Struct template plain_return_type_2<arithmetic_action< plus_action >, boost::units::quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(System), X >, Y>

 $boost::lambda::plain_return_type_2 < arithmetic_action < plus_action >, boost::units::quantity < BOOST_UNITS_DIMENSION-LESS_UNIT(System), X >, Y >$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename X, typename Y>
struct plain_return_type_2<arithmetic_action< plus_action >, boost::units::quantity< BOOST_UNITS_DIJ
MENSIONLESS_UNIT(System), X >, Y> {
    // types
    typedef boost::units::add_typeof_helper< boost::units::quantity< BOOST_UNITS_DIMENSION_J
LESS_UNIT(System), X >, Y >::type type;
};
```

Description

Partial specialization of return type trait for action quantity<dimensionless, X> + Y.

Struct template plain_return_type_2<arithmetic_action< plus_action >, X, boost::units::quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(System), Y >>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < plus_action >, X, boost:: units:: quantity < BOOST_UNITS_DIMENSION-LESS_UNIT(System), Y >>$

Synopsis

Description

Partial specialization of return type trait for action X + quantity < dimensionless, Y >.

Struct template plain_return_type_2<arithmetic_action< minus_action >, boost::units::quantity< Unit1, X >, boost::units::quantity< Unit2, Y >>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < minus_action >, boost:: units:: quantity < Unit1, X >, boost:: units:: quantity < Unit2, Y >>$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit1, typename X, typename Unit2, typename Y>
struct plain_return_type_2<arithmetic_action< minus_action >, boost::units::quantity< Unit1, X \( \) >, boost::units::quantity< Unit2, Y >> {
    // types
    typedef boost::units::subtract_typeof_helper< boost::units::quantity< Unit1, X \( \) >, boost::units::quantity< Unit2, Y > >::type type;
};
```

Description

Partial specialization of return type trait for action quantity<Unit1, X> - quantity<Unit2, Y>.

Struct template plain_return_type_2<arithmetic_action< minus_action >, boost::units::quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(System), X >, Y>

 $boost::lambda::plain_return_type_2 < arithmetic_action < minus_action >, boost::units::quantity < BOOST_UNITS_DIMENSION-LESS_UNIT(System), X >, Y >$

Synopsis

Description

Partial specialization of return type trait for action quantity<dimensionless, X> - Y.

Struct template plain_return_type_2<arithmetic_action< minus_action >, X, boost::units::quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(System), Y >>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < minus_action >, X, boost:: units:: quantity < BOOST_UNITS_DIMENSION-LESS_UNIT(System), Y >>$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename X, typename Y>
struct plain_return_type_2<arithmetic_action< minus_action >, X, boost::units::quantity< J
BOOST_UNITS_DIMENSIONLESS_UNIT(System), Y >> {
    // types
    typedef boost::units::subtract_typeof_helper< X, boost::units::quantity< BOOST_UNITS_DIMENSION_J
LESS_UNIT(System), Y > >::type type;
};
```

Description

Partial specialization of return type trait for action X - quantity<dimensionless, Y>.

Struct template plain_return_type_2<arithmetic_action< multiply_action >, boost::units::quantity< Unit1, X >, boost::units::quantity< Unit2, Y >>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < multiply_action >, boost:: units:: quantity < Unit1, X >, boost:: units:: quantity < Unit2, Y >>$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit1, typename X, typename Unit2, typename Y>
struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::quantity< Unit1, \( \J \)
X >, boost::units::quantity< Unit2, Y >> {
    // types
    typedef boost::units::multiply_typeof_helper< boost::units::quantity< Unit1, X \( \J \)
>, boost::units::quantity< Unit2, Y > >::type type;
};
```

Description

Partial specialization of return type trait for action quantity<Unit1, X> * quantity<Unit2, Y>.

Struct template plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< Unit1, X >, boost::units::quantity< Unit2, Y >>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < divide_action >, boost:: units:: quantity < Unit1, X >, boost:: units:: quantity < Unit2, Y >>$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Unit1, typename X, typename Unit2, typename Y>
struct plain_return_type_2<arithmetic_action< divide_action >, boost::units::quantity< Unit1, \( \J \)
X >, boost::units::quantity< Unit2, Y >> {
    // types
    typedef boost::units::divide_typeof_helper< boost::units::quantity< Unit1, X \( \J \)
>, boost::units::quantity< Unit2, Y > >::type type;
};
```

Description

Partial specialization of return type trait for action quantity<Unit1, X> / quantity<Unit2, Y>.

Struct template plain_return_type_1<unary_arithmetic_action< plus_action >, boost::unit<: Dim, System >>

boost::lambda::plain_return_type_1<unary_arithmetic_action< plus_action >, boost::units::unit< Dim, System >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Dim, typename System>
struct plain_return_type_1<unary_arithmetic_action< plus_action >, boost::units::unit< Dim, SysJ
tem >> {
    // types
    typedef boost::units::unary_plus_typeof_helper< boost::units::unit< Dim, System > >::type type;
};
```

Description

Partial specialization of return type trait for action +unit<Dim, System>.

boost::lambda::plain_return_type_1<unary_arithmetic_action< minus_action >, boost::units::unit< Dim, System >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Dim, typename System>
struct plain_return_type_1<unary_arithmetic_action< minus_action >, boost::units::unit< Dim, SysJ
tem >> {
    // types
    typedef boost::units::unary_minus_typeof_helper< boost::units::unit< Dim, System > >::type type;
};
```

Description

Partial specialization of return type trait for action -unit<Dim, System>.

Struct template plain_return_type_2<arithmetic_action< plus_action >, boost::units::unit< Dim1, System1 >, boost::units::unit< Dim2, System2 >>

boost::lambda::plain_return_type_2<arithmetic_action< plus_action >, boost::units::unit< Dim1, System1 >, boost::units::unit< Dim2, System2 >>

Synopsis

Description

Partial specialization of return type trait for action unit<Dim1, System1> + unit<Dim2, System2>.

Struct template plain_return_type_2<arithmetic_action< minus_action >, boost::units::unit< Dim1, System1 >, boost::units::unit< Dim2, System2 >>

boost::lambda::plain_return_type_2<arithmetic_action< minus_action >, boost::units::unit< Dim1, System1 >, boost::units::unit< Dim2, System2 >>

Synopsis

Description

Partial specialization of return type trait for action unit<Dim1, System1> - unit<Dim2, System2>.

Struct template plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim1, System1 >, boost::units::unit< Dim2, System2 >>

boost::lambda::plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim1, System1 >, boost::units::unit< Dim2, System2 >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Dim1, typename Dim2, typename System1, typename System2>
struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::unit< Dim1, SysJ
tem1 >, boost::units::unit< Dim2, System2 >> {
    // types
    typedef boost::units::multiply_typeof_helper< boost::units::unit< Dim1, System1 J
>, boost::units::unit< Dim2, System2 > >::type type;
};
```

Description

Partial specialization of return type trait for action unit<Dim1, System1> * unit<Dim2, System2>.

Struct template plain_return_type_2<arithmetic_action< divide_action >, boost::units::unit< Dim1, System1 >, boost::units::unit< Dim2, System2 >>

boost::lambda::plain_return_type_2<arithmetic_action< divide_action >, boost::units::unit< Dim1, System1 >, boost::units::unit< Dim2, System2 >>

Synopsis

Description

Partial specialization of return type trait for action unit<Dim1, System1>/unit<Dim2, System2>.

$Struct\ template\ plain_return_type_2 < arithmetic_action < plus_action >, boost::units::absolute < Y >, Y >$

boost::lambda::plain_return_type_2<arithmetic_action< plus_action >, boost::units::absolute< Y >, Y>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Y>
struct plain_return_type_2<arithmetic_action< plus_action >, boost::units::absolute< Y >, Y> {
   // types
   typedef boost::units::absolute< Y > type;
};
```

Description

Partial specialization of return type trait for action absolute<Y> + Y.

Struct template plain_return_type_2<arithmetic_action< plus_action >, Y, boost::units::absolute<Y>>

boost::lambda::plain_return_type_2<arithmetic_action< plus_action >, Y, boost::units::absolute< Y >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Y>
struct plain_return_type_2<arithmetic_action< plus_action >, Y, boost::units::absolute< Y >> {
   // types
   typedef boost::units::absolute< Y > type;
};
```

Description

Partial specialization of return type trait for action Y + absolute < Y >.

Struct template plain_return_type_2<arithmetic_action< minus_action >, boost::units::absolute<Y>,Y>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < minus_action >, boost:: units:: absolute < Y >, Y > minus_action > minus_action$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Y>
struct plain_return_type_2<arithmetic_action< minus_action >, boost::units::absolute< Y >, Y> {
   // types
   typedef boost::units::absolute< Y > type;
};
```

Description

Partial specialization of return type trait for action absolute<Y> - Y.

Struct template plain_return_type_2<arithmetic_action< minus_action >, boost::units::absolute<Y>, boost::units::absolute<Y>>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < minus_action >, boost:: units:: absolute < Y >, boost:: units:: absolute < Y >> to a content of the content of$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename Y>
struct plain_return_type_2<arithmetic_action< minus_action >, boost::units::absolute< Y >, J
boost::units::absolute< Y >> {
    // types
    typedef Y type;
};
```

Description

Partial specialization of return type trait for action absolute<Y> - absolute<Y>.

Struct template plain_return_type_2<arithmetic_action< multiply_action >, T, boost::units::absolute< boost::units::unit< D, S > >>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < multiply_action >, T, boost:: units:: absolute < boost:: units:: unit < D, S >>> arithmetic_action < multiply_action >, T, boost:: units:: absolute < boost:: units:: unit < D, S >>> arithmetic_action < multiply_action >, T, boost:: units:: absolute < boost:: units:: unit < D, S >>> arithmetic_action < multiply_action > arithmetic_action < multiply_a$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename D, typename S, typename T>
struct plain_return_type_2<arithmetic_action< multiply_action >, T, boost::units::absolute< J
boost::units::unit< D, S > >> {
    // types
    typedef boost::units::quantity< boost::units::absolute< boost::units::unit< D, S > >, T > type;
};
```

Description

Partial specialization of return type trait for action T * absolute<unit<D, S>>.

Struct template plain_return_type_2<arithmetic_action< multiply_action >, boost::units::absolute< boost::units::unit< D, S > >, T>

 $boost:: lambda:: plain_return_type_2 < arithmetic_action < multiply_action >, boost:: units:: absolute < boost:: units:: unit < D, S >>, T > (arithmetic_action < multiply_action >), boost:: units:: absolute < boost:: units:: unit < D, S >>, T > (arithmetic_action < multiply_action >), boost:: units:: absolute < boost:: units:: unit < D, S >>, T > (arithmetic_action < multiply_action >), boost:: units:: unit < D, S >>, T > (arithmetic_action < multiply_action >), boost:: units:: units:: unit < D, S >>, T > (arithmetic_action < multiply_action >), boost:: units:: units:: unit < D, S >>, T > (arithmetic_action < multiply_action >), boost:: units:: units::$

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename D, typename S, typename T>
struct plain_return_type_2<arithmetic_action< multiply_action >, boost::units::absolute< J
boost::units::unit< D, S > >, T> {
    // types
    typedef boost::units::quantity< boost::units::absolute< boost::units::unit< D, S > >, T > type;
};
```

Description

Partial specialization of return type trait for action absolute<unit<D, S>> * T.

Struct template multiply_typeof_helper<boost::units::unit< Dim, System >, boost::lambda::lambda_functor< Arg >>

boost::units::multiply_typeof_helper<boost::units::unit< Dim, System >, boost::lambda::lambda_functor< Arg >>

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename Dim, typename Arg>
struct multiply_typeof_helper<boost::units::unit< Dim, System >, boost::lambda::lambda_functor< \lambda Arg >> {
    // types
    typedef boost::lambda::lambda_functor< boost::lambda::lambda_functor_base< boost::lambda::arith\lambda metic_action< boost::lambda::multiply_action >, tuple< typename boost::lambda::const_copy_argu\lambda ment< const boost::units::unit< Dim, System > >::type, boost::lambda::lambda_functor< Arg > > \lambda >> type;
};
```


Struct template divide_typeof_helper<boost::units::unit< Dim, System >, boost::lambda::lambda_functor< Arg >>

boost::units::divide_typeof_helper<boost::units::unit< Dim, System >, boost::lambda::lambda_functor< Arg >>

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename Dim, typename Arg>
struct divide_typeof_helper<boost::units::unit< Dim, System >, boost::lambda::lambda_functor< \dagger
Arg >> {
    // types
    typedef boost::lambda::lambda_functor< boost::lambda::lambda_functor_base< boost::lambda::arith_)
metic_action< boost::lambda::divide_action >, tuple< typename boost::lambda::const_copy_argu_)
ment< const boost::units::unit< Dim, System > >::type, boost::lambda::lambda_functor< Arg > > _]
> > type;
};
```


Struct template multiply_typeof_helper<boost::lambda::lambda_functor< Arg >, boost::unit<: Dim, System >>

boost::units::multiply_typeof_helper<boost::lambda::lambda_functor< Arg >, boost::units::unit< Dim, System >>

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename Dim, typename Arg>
struct multiply_typeof_helper<boost::lambda::lambda_functor< Arg >, boost::units::unit< Dim, SysJ
tem >> {
    // types
    typedef boost::lambda::lambda_functor< boost::lambda::lambda_functor_base< boost::lambda::arithJ
metic_action< boost::lambda::multiply_action >, tuple< boost::lambda::lambda_functor< Arg >, typeJ
name boost::lambda::const_copy_argument< const boost::units::unit< Dim, System > >::type > > J
> type;
};
```


Struct template divide_typeof_helper<boost::lambda::lambda_functor< Arg >, boost::unit<: Dim, System >>

boost::units::divide_typeof_helper<boost::lambda::lambda_functor< Arg >, boost::units::unit< Dim, System >>

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename Dim, typename Arg>
struct divide_typeof_helper<boost::lambda::lambda_functor< Arg >, boost::units::unit< Dim, SysJ
tem >> {
    // types
    typedef boost::lambda::lambda_functor< boost::lambda::lambda_functor_base< boost::lambda::arithJ
metic_action< boost::lambda::divide_action >, tuple< boost::lambda::lambda_functor< Arg >, typeJ
name boost::lambda::const_copy_argument< const boost::units::unit< Dim, System > >::type > > J
> type;
};
```


Struct template multiply_typeof_helper<boost::lambda::lambda_functor< Arg >, boost::units::absolute< boost::units::unit< Dim, System > >>

 $boost::units::multiply_typeof_helper < boost::lambda::lambda_functor < Arg >, boost::units::absolute < boost::units::unit < Dim, System >>>$

Struct template multiply_typeof_helper<boost::units::absolute< boost::units::unit< Dim, System > >, boost::lambda::lambda_functor< Arg >>

boost::units::multiply_typeof_helper<boost::units::absolute< boost::units::unit< Dim, System >>, boost::lambda::lambda_functor< Arg >>

Synopsis

```
// In header: <boost/units/lambda.hpp>

template<typename System, typename Dim, typename Arg>
struct multiply_typeof_helper<boost::units::absolute< boost::units::unit< Dim, System > >, J
boost::lambda::lambda_functor< Arg >> {
    // types
    typedef boost::lambda::lambda_functor< boost::lambda::lambda_functor_base< boost::lambda::arith_
metic_action< boost::lambda::multiply_action >, tuple< typename boost::lambda::const_copy_argu_
ment< const boost::units::absolute< boost::units::unit< Dim, System > > >::type, __
boost::lambda::lambda_functor< Arg > > > type;
};
```


Function template operator*

boost::units::operator*

Synopsis

Description

 $Disambiguating\ overload\ for\ action\ unit < Dim,\ System>*\ lambda_functor < Arg>\ based\ on\ < boost/lambda/detail/operators.hpp>.$

Function template operator/

boost::units::operator/

Synopsis

Description

 $Disambiguating\ overload\ for\ action\ unit < Dim,\ System > /\ lambda_functor < Arg > based\ on\ < boost/lambda/detail/operators.hpp >.$

Function template operator*

boost::units::operator*

Synopsis

Description

Disambiguating overload for action lambda_functor<Arg> * unit<Dim, System> based on <boost/lambda/detail/operators.hpp>.

Function template operator/

boost::units::operator/

Synopsis

Description

 $Disambiguating\ overload\ for\ action\ lambda_functor < Arg > /\ unit < Dim,\ System >\ based\ on\ < boost/lambda/detail/operators.hpp >.$

Function template operator*

boost::units::operator*

Synopsis

Description

 $Disambiguating\ overload\ for\ action\ lambda_functor < Arg > *\ absolute < unit < Dim,\ System > >\ based\ on\ < boost/lambda/detail/operators.hpp >.$

Function template operator*

boost::units::operator*

Synopsis

Description

Disambiguating overload for action absolute<unit<Dim, System> > * lambda_functor<Arg> based on <boost/lambda/detail/operators.hpp>.

Header <boost/units/limits.hpp>

```
namespace std {
  template<typename Unit, typename T>
    class numeric_limits<::boost::units::quantity< Unit, T >>;
}
```


Class template numeric_limits<::boost::units::quantity< Unit, T >>

std::numeric_limits<::boost::units::quantity< Unit, T >>

Synopsis

```
// In header: <boost/units/limits.hpp>
template<typename Unit, typename T>
class numeric_limits<::boost::units::quantity< Unit, T >> {
public:
  // types
 typedef ::boost::units::quantity< Unit, T > quantity_type;
 // public static functions
 static quantity_type() min();
 static quantity_type() max();
 static quantity_type epsilon() ;
 static quantity_type round_error() ;
 static quantity_type infinity();
 static quantity_type quiet_NaN();
 static quantity_type signaling_NaN();
 static quantity_type denorm_min() ;
 static const bool is_specialized;
 static const int digits;
 static const int digits10;
 static const bool is_signed;
 static const bool is_integer;
 static const bool is_exact;
 static const int radix;
 static const int min_exponent;
 static const int min_exponent10;
 static const int max_exponent;
 static const int max_exponent10;
 static const bool has_infinity;
 static const bool has_quiet_NaN;
 static const bool has_signaling_NaN;
 static const bool has_denorm_loss;
 static const bool is_iec559;
 static const bool is_bounded;
 static const bool is_modulo;
 static const bool traps;
 static const bool tinyness_before;
 static const float_denorm_style has_denorm;
 static const float_round_style round_style;
};
```

Description

numeric_limits public static functions

```
1. static quantity_type() min();
2. static quantity_type() max();
3. static quantity_type epsilon();
```



```
4. static quantity_type round_error();
5. static quantity_type infinity();
6. static quantity_type quiet_NaN();
7. static quantity_type signaling_NaN();
8. static quantity_type denorm_min();
```

Header <boost/units/make_scaled_unit.hpp>

Struct template make_scaled_unit

boost::units::make_scaled_unit

Synopsis

```
// In header: <boost/units/make_scaled_unit.hpp>

template<typename Unit, typename Scale>
struct make_scaled_unit {
    // types
    typedef make_scaled_unit< typename reduce_unit< Unit >::type, Scale >::type type;
};
```


Struct template make_scaled_unit<unit< Dimension, heterogeneous_system<heterogeneous_system_impl< UnitList, Dimension, OldScale > > >, Scale>

boost::units::make_scaled_unit<unit< Dimension, heterogeneous_system< heterogeneous_system_impl< UnitList, Dimension, OldScale >>>, Scale>

Synopsis

Header <boost/units/make_system.hpp>

Struct template make_system

boost::units::make_system

Synopsis

Description

Metafunction returning a homogeneous system that can represent any combination of the base units. There must be no way to represent any of the base units in terms of the others. make_system<foot_base_unit, meter_base_unit>::type is not allowed, for example.

Header <boost/units/operators.hpp>

Compile time operators and typeof helper classes.

These operators declare the compile-time operators needed to support dimensional analysis algebra. They require the use of Boost. Typeof. Typeof helper classes define result type for heterogeneous operators on value types. These must be defined through specialization for powers and roots.

```
namespace boost {
  namespace units {
    template<typename X> struct unary_plus_typeof_helper;
    template<typename X> struct unary_minus_typeof_helper;
    template<typename X, typename Y> struct add_typeof_helper;
    template<typename X, typename Y> struct subtract_typeof_helper;
    template<typename X, typename Y> struct multiply_typeof_helper;
    template<typename X, typename Y> struct divide_typeof_helper;
    template<typename BaseType, typename Exponent> struct power_typeof_helper;
    template<typename Radicand, typename Index> struct root_typeof_helper;
}
```


Struct template unary_plus_typeof_helper

boost::units::unary_plus_typeof_helper

Synopsis

```
// In header: <boost/units/operators.hpp>

template<typename X>
struct unary_plus_typeof_helper {

   // public member functions
   typedef typeof((+typeof_::make< X >())) ;
};
```

Description

unary_plus_typeof_helper public member functions

```
1. typedef typeof((+typeof_::make< X >())) ;
```


Struct template unary_minus_typeof_helper

boost::units::unary_minus_typeof_helper

Synopsis

```
// In header: <boost/units/operators.hpp>

template<typename X>
struct unary_minus_typeof_helper {

   // public member functions
   typedef typeof((-typeof_::make< X >())) ;
};
```

Description

unary_minus_typeof_helper public member functions

```
1. typedef typeof((-typeof_::make< X >())) ;
```


Struct template add_typeof_helper

 $boost::units::add_typeof_helper$

Synopsis

```
// In header: <boost/units/operators.hpp>

template<typename X, typename Y>
struct add_typeof_helper {

   // public member functions
   typedef typeof((typeof_::make< X >()+typeof_::make< Y >())) ;
};
```

Description

add_typeof_helper public member functions

```
1. typedef typeof((typeof_::make< X >()+typeof_::make< Y >())) ;
```


Struct template subtract_typeof_helper

boost::units::subtract_typeof_helper

Synopsis

```
// In header: <boost/units/operators.hpp>

template<typename X, typename Y>
struct subtract_typeof_helper {

   // public member functions
   typedef typeof((typeof_::make< X >()-typeof_::make< Y >())) ;
};
```

Description

subtract_typeof_helper public member functions

```
1. typedef typeof((typeof_::make< X >()-typeof_::make< Y >())) ;
```


Struct template multiply_typeof_helper

boost::units::multiply_typeof_helper

Synopsis

```
// In header: <boost/units/operators.hpp>

template<typename X, typename Y>
struct multiply_typeof_helper {

   // public member functions
   typedef typeof((typeof_::make< X >()*typeof_::make< Y >())) ;
};
```

Description

multiply_typeof_helper public member functions

```
1. typedef typeof((typeof_::make< X >()*typeof_::make< Y >())) ;
```


Struct template divide_typeof_helper

boost::units::divide_typeof_helper

Synopsis

```
// In header: <boost/units/operators.hpp>

template<typename X, typename Y>
struct divide_typeof_helper {

   // public member functions
   typedef typeof((typeof_::make< X >()/typeof_::make< Y >())) ;
};
```

Description

divide_typeof_helper public member functions

```
1. typedef typeof((typeof_::make< X >()/typeof_::make< Y >())) ;
```


Struct template power_typeof_helper

boost::units::power_typeof_helper

Synopsis

```
// In header: <boost/units/operators.hpp>

template<typename BaseType, typename Exponent>
struct power_typeof_helper {
   // types
   typedef unspecified type; // specifies the result type

   // public static functions
   static type value(const BaseType &);
};
```

Description

A helper used by pow to raise a runtime object to a compile time known exponent. This template is intended to be specialized. All specializations must conform to the interface shown here. Exponent will be either the exponent passed to pow or static_ration-al<N> for and integer argument, N.

power_typeof_helper public static functions

```
1. static type value(const BaseType & base) ;
```

Carries out the runtime calculation.

Struct template root_typeof_helper

boost::units::root_typeof_helper

Synopsis

```
// In header: <boost/units/operators.hpp>

template<typename Radicand, typename Index>
struct root_typeof_helper {
   // types
   typedef unspecified type; // specifies the result type

   // public static functions
   static type value(const Radicand &);
};
```

Description

A helper used by root to take a root of a runtime object using a compile time known index. This template is intended to be specialized. All specializations must conform to the interface shown here. Index will be either the type passed to pow or static_rational<N> for and integer argument, N.

root_typeof_helper public static functions

```
1. static type value(const Radicand & base) ;
```

Carries out the runtime calculation.

Header <boost/units/pow.hpp>

Raise values to exponents known at compile-time.

```
namespace boost {
  namespace units {
    template<typename Rat, typename Y>
        power_typeof_helper< Y, Rat >::type pow(const Y &);
    template<typename Rat, typename Y>
        root_typeof_helper< Y, Rat >::type root(const Y &);
}
```


Function template pow

 $boost::units::pow -- raise\ a\ value\ to\ a\ {\tt static_rational}\ power$

Synopsis

```
// In header: <boost/units/pow.hpp>
template<typename Rat, typename Y>
   power_typeof_helper< Y, Rat >::type pow(const Y & x);
```

Description

raise a value to an integer power

Function template root

boost::units::root — take the static_rational root of a value

Synopsis

```
// In header: <boost/units/pow.hpp>

template<typename Rat, typename Y>
  root_typeof_helper< Y, Rat >::type root(const Y & x);
```

Description

take the integer root of a value

Header <boost/units/quantity.hpp>

```
namespace boost {
 namespace units {
    template<typename Unit, typename Y = double> class quantity;
    template<typename System, typename Y>
      class quantity<BOOST_UNITS_DIMENSIONLESS_UNIT(System), Y>;
    template<typename Dim1, typename System1, typename Dim2, typename System2,
             typename X, typename Y>
     struct add_typeof_helper<quantity< unit< Dim1, System1 >, X >, quantity< unit< Dim2, SysJ</pre>
tem2 >, Y >>;
    template<typename Dim, typename System, typename X, typename Y>
     struct add_typeof_helper<quantity< unit< Dim, System >, X >, quantity< unit< Dim, System →
>, Y >>;
    template<typename Dim1, typename System1, typename Dim2, typename System2,
             typename X, typename Y>
     struct subtract_typeof_helper<quantity< unit< Dim1, System1 >, X >, quantity< unit< Dim2, →
System2 >, Y >>;
    template<typename Dim, typename System, typename X, typename Y>
     struct subtract_typeof_helper<quantity< unit< Dim, System >, X >, quantity< unit< Dim, Sys I</pre>
tem >, Y >>;
    // quantity_cast provides mutating access to underlying quantity value_type
    template<typename X, typename Y> X quantity_cast(Y & source);
    template<typename X, typename Y> X quantity_cast(const Y & source);
    // swap quantities
    template<typename Unit, typename Y>
      void swap(quantity< Unit, Y > & lhs, quantity< Unit, Y > & rhs);
    // runtime unit divided by scalar
    template<typename System, typename Dim, typename Y>
      divide_typeof_helper< unit< Dim, System >, Y >::type
      operator/(const unit< Dim, System > &, const Y & rhs);
    // runtime scalar times unit
    template<typename System, typename Dim, typename Y>
      multiply_typeof_helper< Y, unit< Dim, System > >::type
      operator*(const Y & lhs, const unit< Dim, System > &);
    // runtime scalar divided by unit
    template<typename System, typename Dim, typename Y>
```



```
divide_typeof_helper< Y, unit< Dim, System > >::type
 operator/(const Y & lhs, const unit< Dim, System > &);
// runtime quantity times scalar
template<typename Unit, typename X>
 multiply_typeof_helper< quantity< Unit, X >, X >::type
 operator*(const quantity< Unit, X > & lhs, const X & rhs);
// runtime scalar times quantity
template<typename Unit, typename X>
 multiply_typeof_helper< X, quantity< Unit, X > >::type
 operator*(const X & lhs, const quantity< Unit, X > & rhs);
// runtime quantity divided by scalar
template<typename Unit, typename X>
 divide_typeof_helper< quantity< Unit, X >, X >::type
 operator/(const quantity< Unit, X > & lhs, const X & rhs);
// runtime scalar divided by quantity
template<typename Unit, typename X>
 divide_typeof_helper< X, quantity< Unit, X > >::type
 operator/(const X & lhs, const quantity< Unit, X > & rhs);
// runtime unit times quantity
template<typename System1, typename Dim1, typename Unit2, typename Y>
 multiply_typeof_helper< unit< Dim1, System1 >, quantity< Unit2, Y > >::type
 operator*(const unit< Dim1, System1 > &,
           const quantity< Unit2, Y > & rhs);
// runtime unit divided by quantity
template<typename System1, typename Dim1, typename Unit2, typename Y>
 divide_typeof_helper< unit< Dim1, System1 >, quantity< Unit2, Y > >::type
 operator/(const unit< Dim1, System1 > &,
           const quantity< Unit2, Y > & rhs);
// runtime quantity times unit
template<typename Unit1, typename System2, typename Dim2, typename Y>
 multiply_typeof_helper< quantity< Unit1, Y >, unit< Dim2, System2 > >::type
 operator*(const quantity< Unit1, Y > & lhs,
           const unit< Dim2, System2 > &);
// runtime quantity divided by unit
template<typename Unit1, typename System2, typename Dim2, typename Y>
 divide_typeof_helper< quantity< Unit1, Y >, unit< Dim2, System2 > >::type
 operator/(const quantity< Unit1, Y > & lhs,
           const unit< Dim2, System2 > &);
// runtime unary plus quantity
template<typename Unit, typename Y>
 unary_plus_typeof_helper< quantity< Unit, Y > >::type
 operator+(const quantity< Unit, Y > & val);
// runtime unary minus quantity
template<typename Unit, typename Y>
 unary_minus_typeof_helper< quantity< Unit, Y > >::type
 operator-(const quantity< Unit, Y > & val);
// runtime quantity plus quantity
template<typename Unit1, typename Unit2, typename X, typename Y>
 add_typeof_helper< quantity< Unit1, X >, quantity< Unit2, Y > >::type
 operator+(const quantity< Unit1, X > & lhs,
           const quantity< Unit2, Y > & rhs);
```



```
// runtime quantity minus quantity
  template<typename Unit1, typename Unit2, typename X, typename Y>
   subtract_typeof_helper< quantity< Unit1, X >, quantity< Unit2, Y > >::type
   operator-(const quantity< Unit1, X > & lhs,
              const quantity< Unit2, Y > & rhs);
  // runtime quantity times quantity
  template<typename Unit1, typename Unit2, typename X, typename Y>
   multiply_typeof_helper< quantity< Unit1, X >, quantity< Unit2, Y > >::type
   operator*(const quantity< Unit1, X > & lhs,
              const quantity< Unit2, Y > & rhs);
  // runtime quantity divided by quantity
  template<typename Unit1, typename Unit2, typename X, typename Y>
   divide_typeof_helper< quantity< Unit1, X >, quantity< Unit2, Y > >::type
   operator/(const quantity< Unit1, X > & lhs,
              const quantity< Unit2, Y > & rhs);
  // runtime operator==
  template<typename Unit, typename X, typename Y>
   bool operator==(const quantity< Unit, X > & val1,
                    const quantity< Unit, Y > & val2);
  // runtime operator!=
  template<typename Unit, typename X, typename Y>
   bool operator!=(const quantity< Unit, X > & val1,
                    const quantity< Unit, Y > & val2);
  // runtime operator<
  template<typename Unit, typename X, typename Y>
   bool operator<(const quantity< Unit, X > & val1,
                   const quantity< Unit, Y > & val2);
  // runtime operator<=</pre>
  template<typename Unit, typename X, typename Y>
   bool operator<=(const quantity< Unit, X > & val1,
                    const quantity< Unit, Y > & val2);
  // runtime operator>
  template<typename Unit, typename X, typename Y>
   bool operator>(const quantity< Unit, X > & val1,
                   const quantity< Unit, Y > & val2);
  // runtime operator>=
  template<typename Unit, typename X, typename Y>
   bool operator>=(const quantity< Unit, X > & val1,
                    const quantity< Unit, Y > & val2);
}
```


}

Class template quantity

boost::units::quantity — class declaration

Synopsis

```
// In header: <boost/units/quantity.hpp>
template<typename Unit, typename Y = double>
class quantity {
public:
  // types
 typedef quantity< Unit, Y > this_type;
  typedef Y
                              value_type;
 typedef Unit
                              unit_type;
 // construct/copy/destruct
 quantity();
 quantity(unspecified_null_pointer_constant_type);
 quantity(const this_type &);
  template<typename YY>
    quantity(const quantity< Unit, YY > &, unspecified = 0);
 template<typename YY>
    quantity(const quantity< Unit, YY > &, unspecified = 0);
  template<typename Unit2, typename YY>
    quantity(const quantity< Unit2, YY > &, unspecified = 0);
 template<typename Unit2, typename YY>
    quantity(const quantity< Unit2, YY > &, unspecified = 0);
 quantity(const value_type &, int);
 quantity& operator=(const this_type &);
 template<typename YY> quantity& operator=(const quantity< Unit, YY > &);
 template<typename Unit2, typename YY>
    quantity& operator=(const quantity< Unit2, YY > &);
  // private member functions
   BOOST_MPL_ASSERT_NOT(unspecified) ;
  // public member functions
 const value_type & value() const;
 template<typename Unit2, typename YY>
    this_type & operator+=(const quantity< Unit2, YY > &) ;
 template<typename Unit2, typename YY>
    this_type & operator-=(const quantity< Unit2, YY > &) ;
  template<typename Unit2, typename YY>
    this_type & operator*=(const quantity< Unit2, YY > &) ;
  template<typename Unit2, typename YY>
    this_type & operator/=(const quantity< Unit2, YY > &) ;
 this_type & operator*=(const value_type &) ;
 this_type & operator/=(const value_type &) ;
  // public static functions
 static this_type from_value(const value_type &) ;
};
```

Description

quantity public construct/copy/destruct

```
1. quantity();
```



```
2.
   quantity(unspecified_null_pointer_constant_type);
3.
   quantity(const this_type & source);
4.
   template<typename YY>
      quantity(const quantity< Unit, YY > & source, unspecified = 0);
  implicit conversion between value types is allowed if allowed for value types themselves
5.
    template<typename YY>
      quantity(const quantity< Unit, YY > & source, unspecified = 0);
  implicit conversion between value types is not allowed if not allowed for value types themselves
6.
   template<typename Unit2, typename YY>
      quantity(const quantity< Unit2, YY > & source, unspecified = 0);
  explicit conversion between different unit systems is allowed if implicit conversion is disallowed
7.
   template<typename Unit2, typename YY>
      quantity(const quantity< Unit2, YY > & source, unspecified = 0);
  implicit conversion between different unit systems is allowed if each fundamental dimension is implicitly convertible
8.
   quantity(const value_type & val, int);
   quantity& operator=(const this_type & source);
   template<typename YY> quantity& operator=(const quantity< Unit, YY > & source);
  implicit assignment between value types is allowed if allowed for value types themselves
11.
   template<typename Unit2, typename YY>
      quantity& operator=(const quantity< Unit2, YY > & source);
  implicit assignment between different unit systems is allowed if each fundamental dimension is implicitly convertible
quantity private member functions
1.
     BOOST_MPL_ASSERT_NOT(unspecified) ;
quantity public member functions
   const value_type & value() const;
  constant accessor to value
```


can add a quantity of the same type if add_typeof_helper<value_type,value_type>::type is convertible to value_type

```
2. template<typename Unit2, typename YY>
    this_type & operator+=(const quantity< Unit2, YY > & source);
```

can subtract a quantity of the same type if subtract_typeof_helper<value_type,value_type>::type is convertible to value_type

```
3. template<typename Unit2, typename YY>
    this_type & operator-=(const quantity< Unit2, YY > & source);
```

```
4.
template<typename Unit2, typename YY>
this_type & operator*=(const quantity< Unit2, YY > & source);
```

```
5. template<typename Unit2, typename YY>
    this_type & operator/=(const quantity< Unit2, YY > & source);
```

can multiply a quantity by a scalar value_type if multiply_typeof_helper<value_type,value_type>::type is convertible to value_type

```
6. this_type & operator*=(const value_type & source) ;
```

can divide a quantity by a scalar value_type if divide_typeof_helper<value_type,value_type>::type is convertible to value_type

```
7. this_type & operator/=(const value_type & source) ;
```

quantity public static functions

```
1. static this_type from_value(const value_type & val) ;
```

Construct quantity directly from value_type (potentially dangerous).

Specializations

• Class template quantity<BOOST_UNITS_DIMENSIONLESS_UNIT(System), Y>

Class template quantity<BOOST_UNITS_DIMENSIONLESS_UNIT(System), Y>

boost::units::quantity<BOOST_UNITS_DIMENSIONLESS_UNIT(System), Y>

Synopsis

```
// In header: <boost/units/quantity.hpp>
template<typename System, typename Y>
class quantity<BOOST_UNITS_DIMENSIONLESS_UNIT(System), Y> {
public:
  // types
 typedef quantity< unit< dimensionless_type, System >, Y > this_type;
  typedef Y
                                                             value_type;
 typedef System
                                                             system_type;
  typedef dimensionless_type
                                                             dimension_type;
  typedef unit< dimension_type, system_type >
                                                             unit_type;
  // construct/copy/destruct
 quantity& operator=(const this_type &);
  template<typename YY>
    quantity& operator=(const quantity< unit< dimension_type, system_type >, YY > &);
  template<typename System2>
    quantity& operator=(const quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(System2), Y > &);
  // public member functions
   quantity();
   quantity(value_type) ;
   quantity(const this_type &) ;
  template<typename YY>
    quantity(const quantity< unit< dimension_type, system_type >, YY > &,
             unspecified = 0);
  template<typename YY>
    quantity(const quantity< unit< dimension_type, system_type >, YY > &,
             unspecified = 0);
  template<typename System2, typename Y2>
     quantity(const quantity< unit< dimensionless_type, System2 >, Y2 > &,
              unspecified = 0, unspecified = 0, unspecified = 0);
  template<typename System2, typename Y2>
    quantity(const quantity< unit< dimensionless_type, System2 >, Y2 > &,
             unspecified = 0, unspecified = 0, unspecified = 0);
  template<typename System2, typename Y2>
    quantity(const quantity< unit< dimensionless_type, System2 >, Y2 > &,
              unspecified = 0);
 operator value_type() const;
  const value_type & value() const;
  this_type & operator+=(const this_type &) ;
 this_type & operator-=(const this_type &) ;
  this_type & operator*=(const value_type &) ;
  this_type & operator/=(const value_type &) ;
  // public static functions
  static this_type from_value(const value_type &) ;
};
```

Description

Specialization for dimensionless quantities. Implicit conversions between unit systems are allowed because all dimensionless quantities are equivalent. Implicit construction and assignment from and conversion to value_type is also allowed.

quantity public construct/copy/destruct

```
1. quantity& operator=(const this_type & source);
```

```
2. template<typename YY>
    quantity& operator=(const quantity< unit< dimension_type, system_type >, YY > & source);
```

implicit assignment between value types is allowed if allowed for value types themselves

```
template<typename System2>
   quantity& operator=(const quantity< BOOST_UNITS_DIMENSIONLESS_UNIT(System2), Y > & source);
```

implicit assignment between different unit systems is allowed

quantity public member functions

```
1. quantity();
```

```
2. quantity(value_type val) ;
```

construction from raw value_type is allowed

```
3. quantity(const this_type & source);
```

implicit conversion between value types is allowed if allowed for value types themselves

```
5. template<typename YY>
    quantity(const quantity< unit< dimension_type, system_type >, YY > & source,
    unspecified = 0);
```

implicit conversion between value types is not allowed if not allowed for value types themselves

```
6. template<typename System2, typename Y2>
   quantity(const quantity< unit< dimensionless_type, System2 >, Y2 > & source,
        unspecified = 0, unspecified = 0, unspecified = 0);
```

implicit conversion between different unit systems is allowed

```
7. template<typename System2, typename Y2>
    quantity(const quantity< unit< dimensionless_type, System2 >, Y2 > & source,
    unspecified = 0, unspecified = 0, unspecified = 0);
```

implicit conversion between different unit systems is allowed


```
8. template<typename System2, typename Y2>
    quantity(const quantity< unit< dimensionless_type, System2 >, Y2 > & source,
    unspecified = 0);
```

conversion between different unit systems is explicit when the units are not equivalent.

```
9. operator value_type() const;
```

implicit conversion to value_type is allowed

```
const value_type & value() const;
```

constant accessor to value

can add a quantity of the same type if add_typeof_helper<value_type,value_type>::type is convertible to value_type

```
11. this_type & operator+=(const this_type & source) ;
```

can subtract a quantity of the same type if subtract_typeof_helper<value_type,value_type>::type is convertible to value_type

```
this_type & operator-=(const this_type & source) ;
```

can multiply a quantity by a scalar value_type if multiply_typeof_helper<value_type,value_type>::type is convertible to value_type

```
13. this_type & operator*=(const value_type & val) ;
```

can divide a quantity by a scalar value_type if divide_typeof_helper<value_type,value_type>::type is convertible to value_type

```
14. this_type & operator/=(const value_type & val) ;
```

quantity public static functions

```
1. static this_type from_value(const value_type & val) ;
```

Construct quantity directly from value_type.

Struct template add_typeof_helper<quantity< unit< Dim1, System1 >, X >, quantity< unit< Dim2, System2 >, Y >>

boost::units::add_typeof_helper<quantity< unit< Dim1, System1 >, X >, quantity< unit< Dim2, System2 >, Y >>

Synopsis

Description

for sun CC we need to invoke SFINAE at the top level, otherwise it will silently return int.

Struct template add_typeof_helper<quantity< unit< Dim, System >, X >, quantity< unit< Dim, System >, Y >>

 $boost::units::add_typeof_helper < quantity < unit < Dim, System >, X >, quantity < unit < Dim, System >, Y >> \\$

Synopsis

Struct template subtract_typeof_helper<quantity< unit< Dim1, System1 >, X >, quantity< unit< Dim2, System2 >, Y >>

boost::units::subtract_typeof_helper<quantity< unit< Dim1, System1 >, X >, quantity< unit< Dim2, System2 >, Y >>

Synopsis

Struct template subtract_typeof_helper<quantity< unit< Dim, System >, X >, quantity< unit< Dim, System >, Y >>

 $boost::units::subtract_typeof_helper< quantity< unit< Dim, System>, X>, quantity< unit< Dim, System>, Y>> \\$

Synopsis

Header <boost/units/reduce_unit.hpp>

```
namespace boost {
  namespace units {
    template<typename Unit> struct reduce_unit;
  }
}
```


Struct template reduce_unit

boost::units::reduce_unit — Returns a unique type for every unit.

Synopsis

```
// In header: <boost/units/reduce_unit.hpp>

template<typename Unit>
struct reduce_unit {
   // types
   typedef unspecified type;
};
```

Header <boost/units/scale.hpp>

```
namespace boost {
  namespace units {
    template<long Base, typename Exponent> struct scale;
    template<long Base, typename Exponent>
        std::string symbol_string(const scale< Base, Exponent > &);
    template<long Base, typename Exponent>
        std::string name_string(const scale< Base, Exponent > &);
}
```


Struct template scale

boost::units::scale

Synopsis

```
// In header: <boost/units/scale.hpp>

template<long Base, typename Exponent>
struct scale {
    // types
    typedef Exponent exponent;
    typedef double value_type;

    // public static functions
    static value_type value();
    static std::string name();
    static std::string symbol();
    static const long base;
};
```

Description

class representing a scaling factor such as 10³ The exponent should be a static rational.

scale public static functions

```
1. static value_type value();
2. static std::string name();
3. static std::string symbol();
```

Header <boost/units/scaled_base_unit.hpp>

```
namespace boost {
  namespace units {
    template<typename S, typename Scale> struct scaled_base_unit;
  }
}
```


Struct template scaled_base_unit

boost::units::scaled_base_unit

Synopsis

```
// In header: <boost/units/scaled_base_unit.hpp>
template<typename S, typename Scale>
struct scaled_base_unit {
 // types
 typedef scaled_base_unit
 typedef scaled_base_unit_tag tag;
 typedef S
                              system_type;
 typedef Scale
                              scale_type;
 typedef S::dimension_type dimension_type;
 typedef unspecified
                             unit_type;
 // public static functions
 static std::string symbol();
 static std::string name() ;
};
```

Description

scaled_base_unit public static functions

```
1. static std::string symbol() ;
2. static std::string name() ;
```

Header <boost/units/static_constant.hpp>

```
BOOST_UNITS_STATIC_CONSTANT(name, type)
```


Macro BOOST_UNITS_STATIC_CONSTANT

BOOST_UNITS_STATIC_CONSTANT

Synopsis

```
// In header: <boost/units/static_constant.hpp>
BOOST_UNITS_STATIC_CONSTANT(name, type)
```

Description

A convenience macro that allows definition of static constants in headers in an ODR-safe way.

Header <boost/units/static_rational.hpp>

Compile-time rational numbers and operators.

```
namespace boost {
  namespace units {
    template<integer_type Value> struct static_abs;

    template<integer_type N, integer_type D = 1> class static_rational;

    typedef long integer_type;

    // get decimal value of static_rational
    template<typename T, integer_type N, integer_type D>
        divide_typeof_helper< T, T >::type
        value(const static_rational< N, D > &);
    }
}
```


Struct template static_abs

boost::units::static_abs — Compile time absolute value.

Synopsis

```
// In header: <boost/units/static_rational.hpp>

template<integer_type Value>
struct static_abs {

   // public member functions
   BOOST_STATIC_CONSTANT(integer_type) ;
};
```

Description

static_abs public member functions

```
1. BOOST_STATIC_CONSTANT(integer_type) ;
```


Class template static_rational

boost::units::static_rational — Compile time rational number.

Synopsis

Description

This is an implementation of a compile time rational number, where static_rational<N,D> represents a rational number with numerator N and denominator D. Because of the potential for ambiguity arising from multiple equivalent values of static_rational (e.g. static_rational<6, 2>==static_rational<3>), static rationals should always be accessed through static_rational<N,D>::type. Template specialization prevents instantiation of zero denominators (i.e. static_rational<N,O>). The following compile-time arithmetic operators are provided for static_rational variables only (no operators are defined between long and static_rational):

- mpl::negate
- mpl::plus
- mpl::minus
- mpl::times
- mpl::divides

Neither static_power nor static_root are defined for static_rational. This is because template types may not be floating point values, while powers and roots of rational numbers can produce floating point values.

static_rational public construct/copy/destruct

```
1. static_rational();
```

static_rational public static functions

```
1. static integer_type numerator();
```

```
2. static integer_type denominator();
```


Header <boost/units/unit.hpp>

```
namespace boost {
 namespace units {
    template<typename Dim, typename System, typename Enable> class unit;
    template<typename Dim, typename System>
      struct reduce_unit<unit< Dim, System >>;
    template<typename Dim, typename System, long N, long D>
      struct power_typeof_helper<unit< Dim, System >, static_rational< N, D >>;
    template<typename Dim, typename System, long N, long D>
      struct root_typeof_helper<unit< Dim, System >, static_rational< N, D >>;
    // unit runtime unary plus
    template<typename Dim, typename System>
      unary_plus_typeof_helper< unit< Dim, System > >::type
      operator+(const unit< Dim, System > &);
    // unit runtime unary minus
    template<typename Dim, typename System>
      unary_minus_typeof_helper< unit< Dim, System > >::type
      operator-(const unit< Dim, System > &);
    // runtime add two units
    template<typename Dim1, typename Dim2, typename System1, typename System2>
      add_typeof_helper< unit< Dim1, System1 >, unit< Dim2, System2 > >::type
      operator+(const unit< Dim1, System1 > &, const unit< Dim2, System2 > &);
    // runtime subtract two units
    template<typename Dim1, typename Dim2, typename System1, typename System2>
      subtract_typeof_helper< unit< Dim1, System1 >, unit< Dim2, System2 > >::type
      operator-(const unit< Dim1, System1 > &, const unit< Dim2, System2 > &);
    // runtime multiply two units
    template<typename Dim1, typename Dim2, typename System1, typename System2>
      multiply_typeof_helper< unit< Dim1, System1 >, unit< Dim2, System2 > >::type
      operator*(const unit< Dim1, System1 > &, const unit< Dim2, System2 > &);
    // runtime divide two units
    template<typename Dim1, typename Dim2, typename System1, typename System2>
      divide_typeof_helper< unit< Dim1, System1 >, unit< Dim2, System2 > >::type
      operator/(const unit< Dim1, System1 > &, const unit< Dim2, System2 > &);
    // unit runtime operator==
    template<typename Dim1, typename Dim2, typename System1, typename System2>
     bool operator==(const unit< Dim1, System1 > &,
                      const unit < Dim2, System2 > &);
    // unit runtime operator!=
    template<typename Dim1, typename Dim2, typename System1, typename System2>
      bool operator!=(const unit< Dim1, System1 > &,
                      const unit< Dim2, System2 > &);
  }
}
```


Class template unit

boost::units::unit — class representing a model-dependent unit with no associated value

Synopsis

```
// In header: <boost/units/unit.hpp>
template<typename Dim, typename System, typename Enable>
class unit {
public:
  // types
 typedef unit< Dim, System > unit_type;
 typedef unit< Dim, System > this_type;
 typedef Dim
                              dimension_type;
 typedef System
                              system_type;
 // construct/copy/destruct
 unit();
 unit(const this_type &);
 unit& operator=(const this_type &);
 // private member functions
  BOOST_MPL_ASSERT(unspecified) ;
   BOOST_MPL_ASSERT((is_dimension_list< Dim >)) ;
};
```

Description

(e.g. meters, Kelvin, feet, etc...)

unit public construct/copy/destruct

```
1. unit();
```

```
2. unit(const this_type &);
```

```
3. unit& operator=(const this_type &);
```

unit private member functions

```
1. BOOST_MPL_ASSERT(unspecified) ;
```

```
2. BOOST_MPL_ASSERT((is_dimension_list< Dim >)) ;
```


Struct template reduce_unit<unit< Dim, System >>

boost::units::reduce_unit<unit< Dim, System >> — Returns a unique type for every unit.

Synopsis

```
// In header: <boost/units/unit.hpp>

template<typename Dim, typename System>
struct reduce_unit<unit< Dim, System >> {
    // types
    typedef unspecified type;
};
```


Struct template power_typeof_helper<unit< Dim, System >, static_rational< N, D >>

boost::units::power_typeof_helper<unit< Dim, System >, static_rational< N, D >> — raise unit to a static_rational power

Synopsis

```
// In header: <boost/units/unit.hpp>

template<typename Dim, typename System, long N, long D>
struct power_typeof_helper<unit< Dim, System >, static_rational< N, D >> {
    // types
    typedef unit< typename static_power< Dim, static_rational< N, D > >::type, typename static_power<</pre>
ic_power< System, static_rational< N, D > >::type > type;

// public static functions
static type value(const unit< Dim, System > &) ;
};
```

Description

power_typeof_helper public static functions

```
1. static type value(const unit< Dim, System > &) ;
```


Struct template root_typeof_helper<unit< Dim, System >, static_rational< N, D >>

boost::units::root_typeof_helper<unit< Dim, System >, static_rational< N, D >> — take the static_rational root of a unit

Synopsis

```
// In header: <boost/units/unit.hpp>

template<typename Dim, typename System, long N, long D>
struct root_typeof_helper<unit< Dim, System >, static_rational< N, D >> {
    // types
    typedef unit< typename static_root< Dim, static_rational< N, D > >::type, typename static_root<</pre>
ic_root< System, static_rational< N, D > >::type > type;

// public static functions
static type value(const unit< Dim, System > &) ;
};
```

Description

root_typeof_helper public static functions

```
1. static type value(const unit< Dim, System > &) ;
```

Header <boost/units/units_fwd.hpp>

Forward declarations of library components.

Dimensions Reference

Header <boost/units/physical_dimensions/absorbed_dose.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2, time_base_dimension,-2 >::type abJ
sorbed_dose_dimension; // derived dimension for absorbed dose : L^2 T^-2
}
}
```

Header <boost/units/physical_dimensions/acceleration.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 1, time_base_dimension, -2 >::type acceler_dation_dimension; // derived dimension for acceleration : L T^-2
  }
}
```


Header <boost/units/physical_dimensions/action.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2, mass_base_dimension, 1, time_base_dimension, -1 >::type action_dimension; // derived dimension for action : L^2 M T^-1
  }
}
```

Header <boost/units/physical_dimensions/activity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension time_base_dimension,-1 >::type activity_dimension; // derived J
dimension for activity: T^-1
  }
}
```

Header <boost/units/physical_dimensions/amount.hpp>

```
namespace boost {
  namespace units {
    struct amount_base_dimension;

    typedef amount_base_dimension::dimension_type amount_dimension; // dimension of amount of 
    substance (N)
    }
}
```


Struct amount_base_dimension

boost::units::amount_base_dimension — base dimension of amount

Synopsis

```
// In header: <boost/units/physical_dimensions/amount.hpp>
struct amount_base_dimension {
};
```

Header <boost/units/physical_dimensions/angular_acceleration.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< time_base_dimension, -2, plane_angle_base_dimension, 1 >::type and
  gular_acceleration_dimension; // derived dimension for angular acceleration : T^-2 QP
  }
}
```

Header <boost/units/physical_dimensions/angular_momentum.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 2, mass_base_dimension, 1, time_base_dimension, -1, plane_angle_base_dimension, -1 >::type angular_momentum_dimension; // derived dimension 
    for angular momentum : L^2 M T^-1 QP^-1
    }
}
```

Header <boost/units/physical_dimensions/angular_velocity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< time_base_dimension, -1, plane_angle_base_dimension, 1 >::type an J
  gular_velocity_dimension; // derived dimension for angular velocity: T^-1 QP
  }
}
```

Header <boost/units/physical_dimensions/area.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2 >::type area_dimension; // derived di

mension for area : L^2
  }
}
```


Header <boost/units/physical_dimensions/capacitance.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension,-2, mass_base_dimension,-1, time_base_dimension, 4, current_base_dimension, 2 >::type capacitance_dimension; // derived dimension for call pacitance : L^-2 M^-1 T^4 I^2
  }
}
```

Header <boost/units/physical_dimensions/conductance.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension,-2, mass_base_dimension,-1, time_base_dimension, 3, current_base_dimension, 2 >::type conductance_dimension; // derived dimension for con_J
ductance : L^-2 M^-1 T^3 I^2
  }
}
```

Header <boost/units/physical_dimensions/conductivity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension,-3, mass_base_dimension,-1, time_base_dimension, 3, current_base_dimension, 2 >::type conductivity_dimension; // derived dimension for con_ductivity : L^-3 M^-1 T^3 I^2
  }
}
```

Header <boost/units/physical_dimensions/current.hpp>

```
namespace boost {
  namespace units {
    struct current_base_dimension;

    typedef current_base_dimension::dimension_type current_dimension; // dimension of electric 
    current (I)
    }
}
```


Struct current_base_dimension

boost::units::current_base_dimension — base dimension of current

Synopsis

```
// In header: <boost/units/physical_dimensions/current.hpp>
struct current_base_dimension {
};
```

Header <boost/units/physical_dimensions/dose_equivalent.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 2, time_base_dimension, -2 >::type dose_equid
valent_dimension; // derived dimension for dose equivalent : L^2 T^-2
  }
}
```

Header <boost/units/physical_dimensions/dynamic_viscosity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension mass_base_dimension, 1, length_base_dimension,-1, time_base_dimension,-1 >::type dynamic_viscosity_dimension; // derived dimension for dynamic viscosity : M L^-
1 T^-1
  }
}
```

Header <boost/units/physical_dimensions/electric_charge.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< time_base_dimension, 1, current_base_dimension, 1 >::type elec_J
tric_charge_dimension; // derived dimension for electric charge : T^1 I^1
  }
}
```

Header <boost/units/physical_dimensions/electric_potential.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2, mass_base_dimension, 1, time_base_dimension, -3, current_base_dimension, -1 >::type electric_potential_dimension; // derived dimension 
for electric potential : L^2 M T^-3 I^-1
  }
}
```


Header <boost/units/physical_dimensions/energy.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 2, mass_base_dimension, 1, time_base_dimension, -2 >::type energy_dimension; // derived dimension for energy : L^2 M T^-2
  }
}
```

Header <boost/units/physical_dimensions/energy_density.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, -1, mass_base_dimension, 1, time_base_dimen.
sion, -2 >::type energy_density_dimension; // derived dimension for energy density : L^-1 M^1 T^-2
  }
}
```

Header <boost/units/physical_dimensions/force.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 1, mass_base_dimension, 1, time_base_dimension, -2 >::type force_dimension; // derived dimension for force : L M T^-2
  }
}
```

Header <boost/units/physical_dimensions/frequency.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension time_base_dimension,-1 >::type frequency_dimension; // derived ↓
  dimension for frequency : T^-1
  }
}
```

Header <boost/units/physical_dimensions/heat_capacity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 2, mass_base_dimension, 1, time_base_dimen.
sion,-2, temperature_base_dimension,-1 >::type heat_capacity_dimension; // derived dimension J
for heat capacity : L^2 M T^-2 Theta^-1
  }
}
```


Header <boost/units/physical_dimensions/illuminance.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, -2, luminous_intensity_base_dimension, 1, sol_J
id_angle_base_dimension, 1 >::type illuminance_dimension; // derived dimension for illuminance _J
: L^-2 I QS
  }
}
```

Header <boost/units/physical_dimensions/impedance.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2, mass_base_dimension, 1, time_base_dimension, -3, current_base_dimension, -2 >::type impedance_dimension; // derived dimension for imped_J
ance : L^2 M T^-3 I^-2
  }
}
```

Header <boost/units/physical_dimensions/inductance.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2, mass_base_dimension, 1, time_base_dimension, -2, current_base_dimension, -2 >::type inductance_dimension; // derived dimension for inductance : L^2 M T^-2 I^-2
  }
}
```

Header <boost/units/physical_dimensions/kinematic_viscosity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 2, time_base_dimension, -1 >::type kinemat.]
ic_viscosity_dimension; // derived dimension for kinematic viscosity : L^2 T^-1
  }
}
```

Header <boost/units/physical_dimensions/length.hpp>

```
namespace boost {
  namespace units {
    struct length_base_dimension;

    typedef length_base_dimension::dimension_type length_dimension; // dimension of length (L)
  }
}
```


Struct length_base_dimension

boost::units::length_base_dimension — base dimension of length

Synopsis

```
// In header: <boost/units/physical_dimensions/length.hpp>
struct length_base_dimension {
};
```

Header <boost/units/physical_dimensions/luminance.hpp>

Header <boost/units/physical_dimensions/luminous_flux.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< luminous_intensity_base_dimension, 1, solid_angle_base_dimension, 1 >::type luminous_flux_dimension; // derived dimension for luminous flux : I QS
  }
}
```

Header <boost/units/physical_dimensions/luminous_intensity.hpp>

```
namespace boost {
  namespace units {
    struct luminous_intensity_base_dimension;

    typedef luminous_intensity_base_dimension::dimension_type luminous_intensity_dimension; // J
    dimension of luminous intensity (J)
    }
}
```


Struct luminous_intensity_base_dimension

boost::units::luminous_intensity_base_dimension — base dimension of luminous intensity

Synopsis

```
// In header: <boost/units/physical_dimensions/luminous_intensity.hpp>
struct luminous_intensity_base_dimension {
};
```

Header <boost/units/physical_dimensions/magnetic_field_intensity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, -1, current_base_dimension, 1 >::type mag_l
netic_field_intensity_dimension; // derived dimension for magnetic field intensity : L^-1 I
  }
}
```

Header <boost/units/physical_dimensions/magnetic_flux.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 2, mass_base_dimension, 1, time_base_dimension, -2, current_base_dimension, -1 >::type magnetic_flux_dimension; // derived dimension for 
    magnetic flux : L^2 M T^-2 I^-1
    }
}
```

Header <boost/units/physical_dimensions/magnetic_flux_density.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< mass_base_dimension, 1, time_base_dimension, -2, current_base_di
  mension, -1 >::type magnetic_flux_density_dimension; // derived dimension for magnetic flux dens.
ity : M T^-2 I^-1
  }
}
```

Header <boost/units/physical_dimensions/mass.hpp>

```
namespace boost {
  namespace units {
    struct mass_base_dimension;

    typedef mass_base_dimension::dimension_type mass_dimension; // dimension of mass (M)
  }
}
```


Struct mass_base_dimension

boost::units::mass_base_dimension — base dimension of mass

Synopsis

```
// In header: <boost/units/physical_dimensions/mass.hpp>
struct mass_base_dimension {
};
```

Header <boost/units/physical_dimensions/mass_density.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, -3, mass_base_dimension, 1 >::type mass_dens.]
ity_dimension; // derived dimension for mass density : L^-3 M
  }
}
```

Header <boost/units/physical_dimensions/molar_energy.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 2, mass_base_dimension, 1, time_base_dimension, -2, amount_base_dimension, -1 >::type molar_energy_dimension; // derived dimension for mol_J ar energy : L^2 M T^-2 N^-1
    }
}
```

Header <boost/units/physical_dimensions/molar_heat_capacity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2, mass_base_dimension, 1, time_base_dimen.
sion,-2, temperature_base_dimension,-1, amount_base_dimension,-1 >::type molar_heat_capacity_di.
mension; // derived dimension for molar heat capacity : L^2 M T^-2 Theta^-1 N^-1
  }
}
```

Header <boost/units/physical_dimensions/moment_of_inertia.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2, mass_base_dimen
sion, 1, plane_angle_base_dimension, -2 >::type moment_of_inertia_dimension; // derived dimen
sion for moment of inertia : L^2 M QP^-2
  }
}
```


Header <boost/units/physical_dimensions/momentum.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 1, mass_base_dimension, 1, time_base_dimension, -1 >::type momentum_dimension; // derived dimension for linear momentum : L M T^-1
  }
}
```

Header <boost/units/physical_dimensions/permeability.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 1, mass_base_dimension, 1, time_base_dimension, -2, current_base_dimension, -2 >::type permeability_dimension; // derived dimension for per_J
meability : L M T^-2 I^-2
  }
}
```

Header <boost/units/physical_dimensions/permittivity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension,-3, mass_base_dimension,-1, time_base_dimension, 4, current_base_dimension, 2 >::type permittivity_dimension; // derived dimension for per_J
mittivity : L^-3 M^-1 T^4 I^2
  }
}
```

Header <boost/units/physical_dimensions/plane_angle.hpp>

```
namespace boost {
  namespace units {
    struct plane_angle_base_dimension;

    typedef plane_angle_base_dimension::dimension_type plane_angle_dimension; // base dimension 
    of plane angle (QP)
    }
}
```


Struct plane_angle_base_dimension

boost::units::plane_angle_base_dimension — base dimension of plane angle

Synopsis

```
// In header: <boost/units/physical_dimensions/plane_angle.hpp>
struct plane_angle_base_dimension {
};
```

Header <boost/units/physical_dimensions/power.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2, mass_base_dimension, 1, time_base_dimension, -3 >::type power_dimension; // derived dimension for power: L^2 M T^-3
  }
}
```

Header <boost/units/physical_dimensions/pressure.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, -1, mass_base_dimension, 1, time_base_dimension, -2 >::type pressure_dimension; // derived dimension for pressure : L^-1 M T^-2
  }
}
```

Header <boost/units/physical_dimensions/reluctance.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension,-2, mass_base_dimension,-1, time_base_dimension, 2, current_base_dimension, 2 >::type reluctance_dimension; // derived dimension for reJ
luctance : L^-2 M^-1 T^2 I^2
  }
}
```

Header <boost/units/physical_dimensions/resistance.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2, mass_base_dimension, 1, time_base_dimen.
sion,-3, current_base_dimension,-2 >::type resistance_dimension; // derived dimension for res.
istance : L^2 M T^-3 I^-2
  }
}
```


Header <boost/units/physical_dimensions/resistivity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 3, mass_base_dimension, 1, time_base_dimension, -3, current_base_dimension, -2 >::type resistivity_dimension; // derived dimension for res_J
  istivity: L^3 M T^-3 I^-2
  }
}
```

Header <boost/units/physical_dimensions/solid_angle.hpp>

```
namespace boost {
  namespace units {
    struct solid_angle_base_dimension;

    typedef solid_angle_base_dimension::dimension_type solid_angle_dimension; // base dimension 
    of solid angle (QS)
    }
}
```


Struct solid_angle_base_dimension

boost::units::solid_angle_base_dimension — base dimension of solid angle

Synopsis

```
// In header: <boost/units/physical_dimensions/solid_angle.hpp>
struct solid_angle_base_dimension {
};
```

Header <boost/units/physical_dimensions/specific_energy.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 2, time_base_dimension, -2 >::type specif.
ic_energy_dimension; // derived dimension for specific energy: L^2 T^-2
  }
}
```

Header <boost/units/physical_dimensions/specific_heat_capacity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 2, time_base_dimension, -2, temperatJ
    ure_base_dimension, -1 >::type specific_heat_capacity_dimension; // derived dimension for specifJ
    ic heat capacity : L^2 T^-2 Theta^-1
    }
}
```

Header <boost/units/physical_dimensions/specific_volume.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 3, mass_base_dimension, -1 >::type specif.
ic_volume_dimension; // derived dimension for specific volume : L^3 M^-1
  }
}
```

Header <boost/units/physical_dimensions/stress.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, -1, mass_base_dimension, 1, time_base_dimension, -2 >::type stress_dimension; // derived dimension for stress : L^-1 M T^-2
  }
}
```


Header <boost/units/physical_dimensions/surface_density.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, -2, mass_base_dimension, 1 >::type surJ
face_density_dimension; // derived dimension for surface density : L^-2 M
  }
}
```

Header <boost/units/physical_dimensions/surface_tension.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension mass_base_dimension, 1, time_base_dimension, -2 >::type surface_tendsion_dimension; // derived dimension for surface tension: M T^-2
  }
}
```

Header <boost/units/physical_dimensions/temperature.hpp>

```
namespace boost {
  namespace units {
    struct temperature_base_dimension;

    typedef temperature_base_dimension::dimension_type temperature_dimension; // dimension of J
temperature (Theta)
  }
}
```


Struct temperature_base_dimension

boost::units::temperature_base_dimension — base dimension of temperature

Synopsis

```
// In header: <boost/units/physical_dimensions/temperature.hpp>
struct temperature_base_dimension {
};
```

Header <boost/units/physical_dimensions/thermal_conductivity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 1, mass_base_dimension, 1, time_base_dimen.
sion,-3, temperature_base_dimension,-1 >::type thermal_conductivity_dimension; // derived dimen.
sion for thermal_conductivity : L^1 M^1 T^-3 Theta^-1
  }
}
```

Header <boost/units/physical_dimensions/time.hpp>

```
namespace boost {
  namespace units {
    struct time_base_dimension;

    typedef time_base_dimension::dimension_type time_dimension; // dimension of time (T)
  }
}
```


Struct time_base_dimension

boost::units::time_base_dimension — base dimension of time

Synopsis

```
// In header: <boost/units/physical_dimensions/time.hpp>
struct time_base_dimension {
};
```

Header <boost/units/physical_dimensions/torque.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 2, mass_base_dimension, 1, time_base_dimension, -2, plane_angle_base_dimension, -1 >::type torque_dimension; // derived dimension for torque 
    : L^2 M T^-2 QP^-1
    }
}
```

Header <boost/units/physical_dimensions/velocity.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension, 1, time_base_dimension, -1 >::type velo_J
  city_dimension; // derived dimension for velocity : L T^-1
  }
}
```

Header <boost/units/physical_dimensions/volume.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension length_base_dimension, 3 >::type volume_dimension; // derived J
  dimension for volume : 1^3
  }
}
```

Header <boost/units/physical_dimensions/wavenumber.hpp>

```
namespace boost {
  namespace units {
    typedef derived_dimension< length_base_dimension,-1 >::type wavenumber_dimension; // deJ
  rived dimension for wavenumber : L^-1
  }
}
```

SI System Reference

Header <boost/units/systems/si.hpp>

Includes all the si unit headers

Header <boost/units/systems/si/absorbed_dose.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< absorbed_dose_dimension, si::system > absorbed_dose;

    static const absorbed_dose gray;
    static const absorbed_dose grays;
  }
}
```


Global gray

boost::units::si::gray

Synopsis

// In header: <boost/units/systems/si/absorbed_dose.hpp>
static const absorbed_dose gray;

Global grays

boost::units::si::grays

Synopsis

```
// In header: <boost/units/systems/si/absorbed_dose.hpp>
static const absorbed_dose grays;
```

Header <boost/units/systems/si/acceleration.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< acceleration_dimension, si::system > acceleration;

   static const acceleration meter_per_second_squared;
   static const acceleration meters_per_second_squared;
   static const acceleration metre_per_second_squared;
   static const acceleration metre_per_second_squared;
   static const acceleration metres_per_second_squared;
}
}
```


${\bf Global\ meter_per_second_squared}$

 $boost::units::si::meter_per_second_squared$

Synopsis

// In header: <boost/units/systems/si/acceleration.hpp>

static const acceleration meter_per_second_squared;

Global meters_per_second_squared

 $boost::units::si::meters_per_second_squared$

Synopsis

// In header: <boost/units/systems/si/acceleration.hpp>

static const acceleration meters_per_second_squared;

Global metre_per_second_squared

 $boost::units::si::metre_per_second_squared$

Synopsis

// In header: <boost/units/systems/si/acceleration.hpp>

static const acceleration metre_per_second_squared;

Global metres_per_second_squared

boost::units::si::metres_per_second_squared

Synopsis

```
// In header: <boost/units/systems/si/acceleration.hpp>
static const acceleration metres_per_second_squared;
```

Header <boost/units/systems/si/action.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit < action_dimension, si::system > action;
    }
  }
}
```

Header <boost/units/systems/si/activity.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< activity_dimension, si::system > activity;

   static const activity becquerel;
   static const activity becquerels;
  }
}
```


Global becquerel

boost::units::si::becquerel

Synopsis

// In header: <boost/units/systems/si/activity.hpp>
static const activity becquerel;

Global becquerels

boost::units::si::becquerels

Synopsis

```
// In header: <boost/units/systems/si/activity.hpp>
static const activity becquerels;
```

Header <boost/units/systems/si/amount.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< amount_dimension, si::system > amount;

     static const amount mole;
     static const amount moles;
     }
}
```


Global mole

boost::units::si::mole

Synopsis

// In header: <boost/units/systems/si/amount.hpp>

static const amount mole;

Global moles

boost::units::si::moles

Synopsis

```
// In header: <boost/units/systems/si/amount.hpp>
static const amount moles;
```

Header <boost/units/systems/si/angular_acceleration.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< angular_acceleration_dimension, si::system > angular_acceleration;
     }
  }
}
```

Header <boost/units/systems/si/angular_momentum.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< angular_momentum_dimension, si::system > angular_momentum;
     }
  }
}
```

Header <boost/units/systems/si/angular_velocity.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit< angular_velocity_dimension, si::system > angular_velocity;

      static const angular_velocity radian_per_second;
      static const angular_velocity radians_per_second;
    }
}
```


Global radian_per_second

boost::units::si::radian_per_second

Synopsis

// In header: <boost/units/systems/si/angular_velocity.hpp>

static const angular_velocity radian_per_second;

Global radians_per_second

boost::units::si::radians_per_second

Synopsis

```
// In header: <boost/units/systems/si/angular_velocity.hpp>
static const angular_velocity radians_per_second;
```

Header <boost/units/systems/si/area.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< area_dimension, si::system > area;

    static const area square_meter;
    static const area square_meters;
    static const area square_metre;
    static const area square_metre;
    static const area square_metres;
}
```


Global square_meter

boost::units::si::square_meter

Synopsis

// In header: <boost/units/systems/si/area.hpp>
static const area square_meter;

Global square_meters

 $boost::units::si::square_meters$

Synopsis

// In header: <boost/units/systems/si/area.hpp>

static const area square_meters;

Global square_metre

 $boost::units::si::square_metre$

Synopsis

// In header: <boost/units/systems/si/area.hpp>
static const area square_metre;

Global square_metres

boost::units::si::square_metres

Synopsis

```
// In header: <boost/units/systems/si/area.hpp>
static const area square_metres;
```

Header <boost/units/systems/si/base.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef make_system< meter_base_unit, kilogram_base_unit, second_base_unit, J
    ampere_base_unit, kelvin_base_unit, mole_base_unit, candela_base_unit, angle::radian_base_unit, J
    angle::steradian_base_unit >::type system; // placeholder class defining si unit system
        typedef unit< dimensionless_type, system > dimensionless; // dimensionless si unit
    }
}
```

Header <boost/units/systems/si/capacitance.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit < capacitance_dimension, si::system > capacitance;

      static const capacitance farad;
      static const capacitance farads;
      }
  }
}
```


Global farad

boost::units::si::farad

Synopsis

// In header: <boost/units/systems/si/capacitance.hpp>

static const capacitance farad;

Global farads

boost::units::si::farads

Synopsis

```
// In header: <boost/units/systems/si/capacitance.hpp>
static const capacitance farads;
```

Header <boost/units/systems/si/catalytic_activity.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef derived_dimension< time_base_dimension, -1, amount_base_dimension, 1 >::type cataJ
lytic_activity_dim; // catalytic activity : T^-1 A^1
    typedef unit< si::catalytic_activity_dim, si::system > catalytic_activity;

   static const catalytic_activity katal;
   static const catalytic_activity katals;
}
}
}
```


Global katal

boost::units::si::katal

Synopsis

// In header: <boost/units/systems/si/catalytic_activity.hpp>

static const catalytic_activity katal;

Global katals

boost::units::si::katals

Synopsis

```
// In header: <boost/units/systems/si/catalytic_activity.hpp>
static const catalytic_activity katals;
```

Header <boost/units/systems/si/codata/alpha_constants.hpp>

```
namespace boost {
 namespace units {
   namespace si {
     namespace constants {
       namespace codata {
          BOOST_UNITS_PHYSICAL_CONSTANT(m_alpha, quantity< mass >,
                                         6.64465620e-27 *, 3.3e-34 *);
          // alpha-electron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_alpha_over_m_e,
                                         quantity< dimensionless >,
                                         7294.2995365 * dimensionless,
                                         3.1e-6 * dimensionless);
          // alpha-proton mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_alpha_over_m_p,
                                         quantity< dimensionless >,
                                         3.97259968951 * dimensionless,
                                         4.1e-10 * dimensionless);
          // alpha molar mass
           BOOST_UNITS_PHYSICAL_CONSTANT(M_alpha,
                                         quantity< mass_over_amount >,
                                         4.001506179127e-3 *kilograms/ mole,
                                         6.2e-14 *kilograms/ mole);
    }
   }
 }
}
```


boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

alpha particle mass

Header <boost/units/systems/si/codata/atomic-nuclear_constants.hpp>

```
namespace boost {
  namespace units {
   namespace si {
     namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(alpha, quantity< dimensionless >,
                                         7.2973525376e-3 *, 5.0e-12 *);
          // Rydberg constant.
           BOOST_UNITS_PHYSICAL_CONSTANT(R_infinity, quantity< wavenumber >,
                                         10973731.568527/ meter,
                                         7.3e-5/meter);
          // Bohr radius.
           BOOST_UNITS_PHYSICAL_CONSTANT(a_0, quantity< length >,
                                         0.52917720859e-10 * meters,
                                         3.6e-20 * meters);
          // Hartree energy.
           BOOST_UNITS_PHYSICAL_CONSTANT(E_h, quantity< energy >,
                                         4.35974394e-18 * joules,
                                         2.2e-25 * joules);
     }
   }
 }
}
```


boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

fine structure constant

Header <boost/units/systems/si/codata/deuteron_constants.hpp>


```
namespace boost {
  namespace units {
    namespace si {
      namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(m_d, quantity< mass >,
                                          3.34358320e-27 *, 1.7e-34 *);
          // deuteron-electron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_d_over_m_e,
                                          quantity< dimensionless >,
                                          3670.4829654 * dimensionless,
                                          1.6e-6 * dimensionless);
          // deuteron-proton mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_d_over_m_p,
                                          quantity< dimensionless >,
                                          1.99900750108 * dimensionless,
                                          2.2e-10 * dimensionless);
          // deuteron molar mass
           BOOST_UNITS_PHYSICAL_CONSTANT(M_d, quantity< mass_over_amount >,
                                          2.013553212724e-3 *kilograms/ mole,
                                          7.8e-14 *kilograms/ mole);
          // deuteron rms charge radius
           BOOST_UNITS_PHYSICAL_CONSTANT(R_d, quantity< length >,
                                          2.1402e-15 * meters,
                                          2.8e-18 * meters);
          // deuteron magnetic moment
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_d,
                                          quantity< energy_over_magnetic_flux_density >,
                                          0.433073465e-26 *joules/ tesla,
                                          1.1e-34 *joules/ tesla);
          // deuteron-Bohr magneton ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_d_over_mu_B,
                                          quantity< dimensionless >,
                                          0.4669754556e-3 * dimensionless,
                                          3.9e-12 * dimensionless);
          // deuteron-nuclear magneton ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_d_over_mu_N,
                                          quantity< dimensionless >,
                                          0.8574382308 * dimensionless,
                                          7.2e-9 * dimensionless);
          // deuteron g-factor
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(g\_d,\ quantity<\ dimensionless>,}
                                          0.8574382308 * dimensionless,
                                          7.2e-9 * dimensionless);
          // deuteron-electron magnetic moment ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_d_over_mu_e,
                                          quantity< dimensionless >,
                                          -4.664345537e-4 * dimensionless,
                                          3.9e-12 * dimensionless);
          // deuteron-proton magnetic moment ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_d_over_mu_p,
                                          quantity< dimensionless >,
                                          0.3070122070 * dimensionless,
```


boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

deuteron mass

Header <boost/units/systems/si/codata/electromagnetic_constants.hpp>

CODATA recommended values of fundamental electromagnetic constants CODATA 2006 values as of 2007/03/30


```
namespace boost {
  namespace units {
    namespace si {
      namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(e, quantity< electric_charge >,
                                          1.602176487e-19 *, 4.0e-27 *);
          // elementary charge to Planck constant ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(e_over_h,
                                          quantity< current_over_energy >,
                                          2.417989454e14 *amperes/ joule,
                                          6.0e6 *amperes/ joule);
          // magnetic flux quantum
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(Phi\_0, quantity< magnetic\_flux >,}
                                          2.067833667e-15 * webers,
                                          5.2e-23 * webers);
          // conductance quantum
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(G\_0, quantity< conductance >,}
                                          7.7480917004e-5 * siemens,
                                          5.3e-14 * siemens);
          // Josephson constant.
           BOOST_UNITS_PHYSICAL_CONSTANT(K_J,
                                          quantity< frequency_over_electric_potential >,
                                          483597.891e9 *hertz/ volt,
                                          1.2e7 *hertz/ volt);
          // von Klitzing constant
           BOOST_UNITS_PHYSICAL_CONSTANT(R_K, quantity< resistance >,
                                          25812.807557 * ohms, 1.77e-5 * ohms);
          // Bohr magneton.
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_B,
                                          quantity< energy_over_magnetic_flux_density >,
                                          927.400915e-26 *joules/ tesla,
                                          2.3e-31 *joules/ tesla);
          // nuclear magneton
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_N,
                                          quantity< energy_over_magnetic_flux_density >,
                                          5.05078324e-27 *joules/ tesla,
                                          1.3e-34 *joules/ tesla);
       }
     }
   }
 }
}
```


boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

elementary charge

Header <boost/units/systems/si/codata/electron_constants.hpp>


```
namespace boost {
  namespace units {
    namespace si {
      namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(m_e, quantity< mass >,
                                          9.10938215e-31 *, 4.5e-38 *);
          // electron-muon mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_mu,
                                          quantity< dimensionless >,
                                          4.83633171e-3 * dimensionless,
                                          1.2e-10 * dimensionless);
          // electron-tau mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_tau,
                                          quantity< dimensionless >,
                                          2.87564e-4 * dimensionless,
                                          4.7e-8 * dimensionless);
          // electron-proton mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_p,
                                          quantity< dimensionless >,
                                          5.4461702177e-4 * dimensionless,
                                          2.4e-13 * dimensionless);
          // electron-neutron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_n,
                                          quantity< dimensionless >,
                                          5.4386734459e-4 * dimensionless,
                                          3.3e-13 * dimensionless);
          // electron-deuteron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_d,
                                          quantity< dimensionless >,
                                          2.7244371093e-4 * dimensionless,
                                          1.2e-13 * dimensionless);
          // electron-alpha particle mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_e_over_m_alpha,
                                          quantity< dimensionless >,
                                          1.37093355570e-4 * dimensionless,
                                          5.8e-14 * dimensionless);
          // electron charge to mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(e_over_m_e,
                                          quantity< electric_charge_over_mass >,
                                          1.758820150ell *coulombs/ kilogram,
                                          4.4e3 *coulombs/ kilogram);
          // electron molar mass
           BOOST_UNITS_PHYSICAL_CONSTANT(M_e, quantity< mass_over_amount >,
                                          5.4857990943e-7 *kilograms/ mole,
                                          2.3e-16 *kilograms/ mole);
          // Compton wavelength.
           BOOST_UNITS_PHYSICAL_CONSTANT(lambda_C, quantity< length >,
                                          2.4263102175e-12 * meters,
                                          3.3e-21 * meters);
          // classical electron radius
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(r\_e,\ quantity<\ length}\ >,
                                          2.8179402894e-15 * meters,
```



```
5.8e-24 * meters);
// Thompson cross section.
 BOOST_UNITS_PHYSICAL_CONSTANT(sigma_e, quantity< area >,
                                0.6652458558e-28 * square_meters,
                                2.7e-37 * square_meters);
// electron magnetic moment
BOOST_UNITS_PHYSICAL_CONSTANT(mu_e,
                               quantity< energy_over_magnetic_flux_density >,
                                -928.476377e-26 *joules/ tesla,
                               2.3e-31 *joules/ tesla);
// electron-Bohr magenton moment ratio
BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_B,
                               quantity< dimensionless >,
                               -1.00115965218111 * dimensionless,
                               7.4e-13 * dimensionless);
// electron-nuclear magneton moment ratio
BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_N,
                               quantity< dimensionless >,
                                -183.28197092 * dimensionless,
                               8.0e-7 * dimensionless);
// electron magnetic moment anomaly
BOOST_UNITS_PHYSICAL_CONSTANT(a_e, quantity< dimensionless >,
                               1.15965218111e-3 * dimensionless,
                               7.4e-13 * dimensionless);
// electron g-factor
BOOST_UNITS_PHYSICAL_CONSTANT(g_e, quantity< dimensionless >,
                               -2.0023193043622 * dimensionless,
                               1.5e-12 * dimensionless);
// electron-muon magnetic moment ratio
BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_mu,
                               quantity< dimensionless >,
                                206.7669877 * dimensionless,
                               5.2e-6 * dimensionless);
// electron-proton magnetic moment ratio
 BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_p,
                               quantity< dimensionless >,
                                -658.2106848 * dimensionless,
                               5.4e-6 * dimensionless);
// electron-shielded proton magnetic moment ratio
{\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(mu\_e\_over\_mu\_p\_prime,}
                               quantity< dimensionless >,
                                -658.2275971 * dimensionless,
                                7.2e-6 * dimensionless);
// electron-neutron magnetic moment ratio
 BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_n,
                               quantity< dimensionless >,
                               960.92050 * dimensionless,
                                2.3e-4 * dimensionless);
// electron-deuteron magnetic moment ratio
BOOST_UNITS_PHYSICAL_CONSTANT(mu_e_over_mu_d,
                               quantity< dimensionless >,
                                -2143.923498 * dimensionless,
```


boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

electron mass

Header <boost/units/systems/si/codata/helion_constants.hpp>


```
namespace boost {
 namespace units {
   namespace si {
     namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(m_h, quantity< mass >,
                                         5.00641192e-27 *, 2.5e-34 *);
          // helion-electron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_h_over_m_e,
                                         quantity< dimensionless >,
                                          5495.8852765 * dimensionless,
                                         5.2e-6 * dimensionless);
          // helion-proton mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_h_over_m_p,
                                         quantity< dimensionless >,
                                         2.9931526713 * dimensionless,
                                         2.6e-9 * dimensionless);
          // helion molar mass
           BOOST_UNITS_PHYSICAL_CONSTANT(M_h, quantity< mass_over_amount >,
                                         3.0149322473e-3 *kilograms/ mole,
                                         2.6e-12 *kilograms/ mole);
          // helion shielded magnetic moment
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_h_prime,
                                         quantity< energy_over_magnetic_flux_density >,
                                          -1.074552982e-26 *joules/ tesla,
                                         3.0e-34 *joules/ tesla);
          // shielded helion-Bohr magneton ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_h_prime_over_mu_B,
                                         quantity< dimensionless >,
                                          -1.158671471e-3 * dimensionless,
                                         1.4e-11 * dimensionless);
          // shielded helion-nuclear magneton ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_h_prime_over_mu_N,
                                         quantity< dimensionless >,
                                          -2.127497718 * dimensionless,
                                         2.5e-8 * dimensionless);
          // shielded helion-proton magnetic moment ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_h_prime_over_mu_p,
                                         quantity< dimensionless >,
                                         -0.761766558 * dimensionless,
                                         1.1e-8 * dimensionless);
          // shielded helion-shielded proton magnetic moment ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_h_prime_over_mu_p_prime,
                                         quantity< dimensionless >,
                                          -0.7617861313 * dimensionless,
                                          3.3e-8 * dimensionless);
          // shielded helion gyromagnetic ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(gamma_h_prime,
                                         quantity< frequency_over_magnetic_flux_density >,
                                          2.037894730e8/second/ tesla,
```



```
5.6e-0/second/ tesla);
}
}
}
```


boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

helion mass

Header <boost/units/systems/si/codata/muon_constants.hpp>


```
namespace boost {
  namespace units {
    namespace si {
      namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(m_mu, quantity< mass >,
                                          1.88353130e-28 *, 1.1e-35 *);
          // muon-electron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_mu_over_m_e,
                                          quantity< dimensionless >,
                                          206.7682823 * dimensionless,
                                          5.2e-6 * dimensionless);
          // muon-tau mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_mu_over_m_tau,
                                          quantity< dimensionless >,
                                          5.94592e-2 * dimensionless,
                                          9.7e-6 * dimensionless);
          // muon-proton mass ratio
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(m\_mu\_over\_m\_p,}
                                          quantity< dimensionless >,
                                          0.1126095261 * dimensionless,
                                          2.9e-9 * dimensionless);
          // muon-neutron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_mu_over_m_n,
                                          quantity< dimensionless >,
                                          0.1124545167 * dimensionless,
                                          2.9e-9 * dimensionless);
          // muon molar mass
           BOOST_UNITS_PHYSICAL_CONSTANT(M_mu, quantity< mass_over_amount >,
                                          0.1134289256e-3 *kilograms/ mole,
                                          2.9e-12 *kilograms/ mole);
          // muon Compton wavelength
           BOOST_UNITS_PHYSICAL_CONSTANT(lambda_C_mu, quantity< length >,
                                          11.73444104e-15 * meters,
                                          3.0e-22 * meters);
          // muon magnetic moment
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_mu,
                                          quantity< energy_over_magnetic_flux_density >,
                                          -4.49044786e-26 *joules/ tesla,
                                          1.6e-33 *joules/ tesla);
          // muon-Bohr magneton ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_mu_over_mu_B,
                                          quantity< dimensionless >,
                                          -4.84197049e-3 * dimensionless,
                                          1.2e-10 * dimensionless);
          // muon-nuclear magneton ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_mu_over_mu_N,
                                          quantity< dimensionless >,
                                          -8.89059705 * dimensionless,
                                          2.3e-7 * dimensionless);
          // muon magnetic moment anomaly
           BOOST_UNITS_PHYSICAL_CONSTANT(a_mu, quantity< dimensionless >,
                                          1.16592069e-3 * dimensionless,
```


boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

muon mass

Header <boost/units/systems/si/codata/neutron_constants.hpp>


```
namespace boost {
 namespace units {
   namespace si {
     namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(m_n, quantity< mass >,
                                         1.674927211e-27 *, 8.4e-35 *);
          // neutron-electron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_n_over_m_e,
                                         quantity< dimensionless >,
                                          1838.6836605 * dimensionless,
                                          1.1e-6 * dimensionless);
          // neutron-muon mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_n_over_m_mu,
                                         quantity< dimensionless >.
                                          8.89248409 * dimensionless,
                                          2.3e-7 * dimensionless);
          // neutron-tau mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_n_over_m_tau,
                                          quantity< dimensionless >,
                                          0.528740 * dimensionless,
                                          8.6e-5 * dimensionless);
          // neutron-proton mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_n_over_m_p,
                                          quantity< dimensionless >,
                                          1.00137841918 * dimensionless,
                                          4.6e-10 * dimensionless);
          // neutron molar mass
           BOOST_UNITS_PHYSICAL_CONSTANT(M_n, quantity< mass_over_amount >,
                                          1.00866491597e-3 *kilograms/ mole,
                                          4.3e-13 *kilograms/ mole);
          // neutron Compton wavelength
           BOOST_UNITS_PHYSICAL_CONSTANT(lambda_C_n, quantity< length >,
                                          1.3195908951e-15 * meters,
                                          2.0e-24 * meters);
          // neutron magnetic moment
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_n,
                                         quantity< energy_over_magnetic_flux_density >,
                                          -0.96623641e-26 *joules/ tesla,
                                          2.3e-33 *joules/ tesla);
          // neutron g-factor
           BOOST_UNITS_PHYSICAL_CONSTANT(g_n, quantity< dimensionless >,
                                          -3.82608545 * dimensionless,
                                          9.0e-7 * dimensionless);
          // neutron-electron magnetic moment ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_n_over_mu_e,
                                          quantity< dimensionless >,
                                          1.04066882e-3 * dimensionless,
                                          2.5e-10 * dimensionless);
          // neutron-proton magnetic moment ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_n_over_mu_p,
                                         quantity< dimensionless >,
                                          -0.68497934 * dimensionless,
```


boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

neutron mass

Header <boost/units/systems/si/codata/physico-chemical_constants.hpp>

CODATA recommended values of fundamental physico-chemical constants CODATA 2006 values as of 2007/03/30


```
namespace boost {
 namespace units {
   namespace si {
      namespace constants {
        namespace codata {
          // Avogadro constant.
           BOOST_UNITS_PHYSICAL_CONSTANT(N_A, quantity< inverse_amount >,
                                          6.02214179e23/ mole, 3.0e16/ mole);
          // atomic mass constant
           BOOST_UNITS_PHYSICAL_CONSTANT(m_u, quantity< mass >,
                                          1.660538782e-27 * kilograms,
                                          8.3e-35 * kilograms);
          // Faraday constant.
           BOOST_UNITS_PHYSICAL_CONSTANT(F,
                                          quantity< electric_charge_over_amount >,
                                          96485.3399 *coulombs/ mole,
                                          2.4e-3 *coulombs/ mole);
          // molar gas constant
           BOOST_UNITS_PHYSICAL_CONSTANT(R,
                                          quantity< energy_over_temperature_amount >,
                                          8.314472 *joules/kelvin/ mole,
                                          1.5e-5 *joules/kelvin/ mole);
          // Boltzmann constant.
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(k\_B,}
                                          quantity< energy_over_temperature >,
                                          1.3806504e-23 *joules/ kelvin,
                                          2.4e-29 *joules/ kelvin);
          // Stefan-Boltzmann constant.
           BOOST_UNITS_PHYSICAL_CONSTANT(sigma_SB,
                                          quantity< power_over_area_temperature_4 >,
                                          5.670400e-8 *watts/square_meter/pow< 4 >,
                                          4.0e-13 *watts/square_meter/pow< 4 >);
          // first radiation constant
           BOOST_UNITS_PHYSICAL_CONSTANT(c_1, quantity< power_area >,
                                          3.74177118e-16 *watt * square_meters,
                                          1.9e-23 *watt * square_meters);
          // first radiation constant for spectral radiance
           BOOST_UNITS_PHYSICAL_CONSTANT(c_1L,
                                          quantity< power_area_over_solid_angle >,
                                          1.191042759e-16 *watt *square_meters/ steradian,
                                          5.9e-24 *watt *square_meters/ steradian);
          // second radiation constant
           BOOST_UNITS_PHYSICAL_CONSTANT(c_2, quantity< length_temperature >,
                                          1.4387752e-2 *meter * kelvin,
                                          2.5e-8 *meter * kelvin);
          // Wien displacement law constant : lambda_max T.
           BOOST_UNITS_PHYSICAL_CONSTANT(b, quantity< length_temperature >,
                                          2.8977685e-3 *meter * kelvin,
                                          5.1e-9 *meter * kelvin);
          // Wien displacement law constant : nu_max/T.
           BOOST_UNITS_PHYSICAL_CONSTANT(b_prime,
                                          quantity< frequency_over_temperature >,
```



```
5.878933e10 *hertz/ kelvin,
1.0e15 *hertz/ kelvin);
}
}
}
```

Header <boost/units/systems/si/codata/proton_constants.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(m_p, quantity< mass >,
                                          1.672621637e-27 *, 8.3e-35 *);
          // proton-electron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_p_over_m_e,
                                          quantity< dimensionless >,
                                          1836.15267247 * dimensionless,
                                          8.0e-7 * dimensionless);
          // proton-muon mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_p_over_m_mu,
                                          quantity< dimensionless >,
                                          8.88024339 * dimensionless,
                                          2.3e-7 * dimensionless);
          // proton-tau mass ratio
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(m\_p\_over\_m\_tau,}
                                          quantity< dimensionless >,
                                          0.528012 * dimensionless,
                                          8.6e-5 * dimensionless);
          // proton-neutron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_p_over_m_n,
                                          quantity< dimensionless >,
                                          0.99862347824 * dimensionless,
                                          4.6e-10 * dimensionless);
          // proton charge to mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(e_over_m_p,
                                          quantity< electric_charge_over_mass >,
                                          9.57883392e7 *coulombs/ kilogram,
                                          2.4e0 *coulombs/ kilogram);
          // proton molar mass
           BOOST_UNITS_PHYSICAL_CONSTANT(M_p, quantity< mass_over_amount >,
                                          1.00727646677e-3 *kilograms/ mole,
                                          1.0e-13 *kilograms/ mole);
          // proton Compton wavelength
           BOOST_UNITS_PHYSICAL_CONSTANT(lambda_C_p, quantity< length >,
                                          1.3214098446e-15 * meters,
                                          1.9e-24 * meters);
          // proton rms charge radius
```



```
BOOST_UNITS_PHYSICAL_CONSTANT(R_p, quantity< length >,
                               0.8768e-15 * meters,
                               6.9e-18 * meters);
// proton magnetic moment
BOOST_UNITS_PHYSICAL_CONSTANT(mu_p,
                               quantity< energy_over_magnetic_flux_density >,
                               1.410606662e-26 *joules/ tesla,
                               3.7e-34 *joules/ tesla);
// proton-Bohr magneton ratio
 BOOST_UNITS_PHYSICAL_CONSTANT(mu_p_over_mu_B,
                               quantity< dimensionless >,
                               1.521032209e-3 * dimensionless,
                               1.2e-11 * dimensionless);
// proton-nuclear magneton ratio
BOOST_UNITS_PHYSICAL_CONSTANT(mu_p_over_mu_N,
                               quantity< dimensionless >,
                               2.792847356 * dimensionless,
                               2.3e-8 * dimensionless);
// proton g-factor
BOOST_UNITS_PHYSICAL_CONSTANT(g_p, quantity< dimensionless >,
                                5.585694713 * dimensionless,
                               4.6e-8 * dimensionless);
// proton-neutron magnetic moment ratio
 BOOST_UNITS_PHYSICAL_CONSTANT(mu_p_over_mu_n,
                               quantity< dimensionless >,
                                -1.45989806 * dimensionless,
                               3.4e-7 * dimensionless);
// shielded proton magnetic moment
BOOST_UNITS_PHYSICAL_CONSTANT(mu_p_prime,
                               quantity< energy_over_magnetic_flux_density >,
                                1.410570419e-26 *joules/ tesla,
                                3.8e-34 *joules/ tesla);
// shielded proton-Bohr magneton ratio
BOOST_UNITS_PHYSICAL_CONSTANT(mu_p_prime_over_mu_B,
                               quantity< dimensionless >,
                               1.520993128e-3 * dimensionless,
                               1.7e-11 * dimensionless);
// shielded proton-nuclear magneton ratio
{\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(mu\_p\_prime\_over\_mu\_N,}
                               quantity< dimensionless >,
                                2.792775598 * dimensionless,
                               3.0e-8 * dimensionless);
// proton magnetic shielding correction
 BOOST_UNITS_PHYSICAL_CONSTANT(sigma_p_prime,
                               quantity< dimensionless >,
                               25.694e-6 * dimensionless,
                               1.4e-8 * dimensionless);
// proton gyromagnetic ratio
BOOST_UNITS_PHYSICAL_CONSTANT(gamma_p,
                               quantity< frequency_over_magnetic_flux_density >,
                                2.675222099e8/second/ tesla,
                                7.0e0/second/ tesla);
```


boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

proton mass

Header <boost/units/systems/si/codata/tau_constants.hpp>


```
namespace boost {
 namespace units {
   namespace si {
      namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(m_tau, quantity< mass >,
                                          3.16777e-27 *, 5.2e-31 *);
          // tau-electron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_tau_over_m_e,
                                          quantity< dimensionless >,
                                          3477.48 * dimensionless,
                                          5.7e-1 * dimensionless);
          // tau-muon mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_tau_over_m_mu,
                                          quantity< dimensionless >,
                                          16.8183 * dimensionless,
                                          2.7e-3 * dimensionless);
          // tau-proton mass ratio
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(m\_tau\_over\_m\_p,}
                                          quantity< dimensionless >,
                                          1.89390 * dimensionless,
                                          3.1e-4 * dimensionless);
          // tau-neutron mass ratio
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(m\_tau\_over\_m\_n\,,}
                                          quantity< dimensionless >,
                                          1.89129 * dimensionless,
                                          3.1e-4 * dimensionless);
          // tau molar mass
           BOOST_UNITS_PHYSICAL_CONSTANT(M_tau, quantity< mass_over_amount >,
                                          1.90768e-3 *kilograms/ mole,
                                          3.1e-7 *kilograms/ mole);
          // tau Compton wavelength
           BOOST_UNITS_PHYSICAL_CONSTANT(lambda_C_tau, quantity< length >,
                                          0.69772e-15 * meters,
                                          1.1e-19 * meters);
    }
   }
 }
}
```


Function BOOST_UNITS_PHYSICAL_CONSTANT

 $boost:: units:: si:: constants:: codata:: BOOST_UNITS_PHYSICAL_CONSTANT \\ --- CODATA \ recommended \ values \ of \ the \ fundamental \ physical \ constants: \ NIST\ SP\ 961.$

Synopsis

Description

tau mass

Header <boost/units/systems/si/codata/triton_constants.hpp>

CODATA recommended values of fundamental atomic and nuclear constants CODATA 2006 values as of 2007/03/30


```
namespace boost {
  namespace units {
    namespace si {
      namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(m_t, quantity< mass >,
                                          5.00735588e-27 *, 2.5e-34 *);
          // triton-electron mass ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(m_t_over_m_e,
                                          quantity< dimensionless >,
                                          5496.9215269 * dimensionless,
                                          5.1e-6 * dimensionless);
          // triton-proton mass ratio
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(m\_t\_over\_m\_p,}
                                          quantity< dimensionless >,
                                          2.9937170309 * dimensionless,
                                          2.5e-9 * dimensionless);
          // triton molar mass
           BOOST_UNITS_PHYSICAL_CONSTANT(M_t, quantity< mass_over_amount >,
                                          3.0155007134e-3 *kilograms/ mole,
                                          2.5e-12 *kilograms/ mole);
          // triton magnetic moment
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_t,
                                          quantity< energy_over_magnetic_flux_density >,
                                          1.504609361e-26 *joules/ tesla,
                                          4.2e-34 *joules/ tesla);
          // triton-Bohr magneton ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_t_over_mu_B,
                                          quantity< dimensionless >,
                                          1.622393657e-3 * dimensionless,
                                          2.1e-11 * dimensionless);
          // triton-nuclear magneton ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_t_over_mu_N,
                                          quantity< dimensionless >,
                                          2.978962448 * dimensionless,
                                          3.8e-8 * dimensionless);
          // triton g-factor
           BOOST_UNITS_PHYSICAL_CONSTANT(g_t, quantity< dimensionless >,
                                          5.957924896 * dimensionless,
                                          7.6e-8 * dimensionless);
          // triton-electron magnetic moment ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_t_over_mu_e,
                                          quantity< dimensionless >,
                                          -1.620514423e-3 * dimensionless,
                                          2.1e-11 * dimensionless);
          // triton-proton magnetic moment ratio
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_t_over_mu_p,
                                          quantity< dimensionless >,
                                          1.066639908 * dimensionless,
                                          1.0e-8 * dimensionless);
          // triton-neutron magnetic moment ratio
           {\tt BOOST\_UNITS\_PHYSICAL\_CONSTANT(mu\_t\_over\_mu\_n\,,}
                                          quantity< dimensionless >,
```



```
-1.55718553 * dimensionless,
3.7e-7 * dimensionless);
}
}
}
```


Function BOOST_UNITS_PHYSICAL_CONSTANT

boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

triton mass

Header <boost/units/systems/si/codata/typedefs.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      namespace constants {
        namespace codata {
        typedef divide_typeof_helper< frequency, electric_potential >::type frequency_over_elec_l
tric_potential;
         typedef divide_typeof_helper< electric_charge, mass >::type electric_charge_over_mass;
          typedef divide_typeof_helper< mass, amount >::type mass_over_amount;
         typedef divide_typeof_helper< energy, magnetic_flux_density >::type energy_over_magnet↓
ic_flux_density;
        typedef divide_typeof_helper< frequency, magnetic_flux_density >::type frequency_over_mag-
netic_flux_density;
          typedef divide_typeof_helper< current, energy >::type current_over_energy;
          typedef divide_typeof_helper< dimensionless, amount >::type inverse_amount;
          typedef divide_typeof_helper< energy, temperature >::type energy_over_temperature;
         typedef divide_typeof_helper< energy_over_temperature, amount >::type energy_over_temJ
perature_amount;
          typedef divide_typeof_helper< divide_typeof_helper< power, area >::type, J
power_typeof_helper< temperature, static_rational< 4 > >::type >::type power_over_area_temperat →
ure 4;
          typedef multiply_typeof_helper< power, area >::type power_area;
          typedef divide_typeof_helper< power_area, solid_angle >::type power_area_over_sol-
id angle;
          typedef multiply_typeof_helper< length, temperature >::type length_temperature;
         typedef divide_typeof_helper< frequency, temperature >::type frequency_over_temperature;
         typedef divide_typeof_helper< divide_typeof_helper< force, current >::type, current →
>::type force_over_current_squared;
          typedef divide_typeof_helper< capacitance, length >::type capacitance_over_length;
         typedef divide_typeof_helper< divide_typeof_helper< divide_typeof_helper< volume, mass →
>::type, time >::type, time >::type volume_over_mass_time_squared;
          typedef multiply_typeof_helper< energy, time >::type energy_time;
          typedef divide_typeof_helper< electric_charge, amount >::type elec l
tric_charge_over_amount;
      }
    }
  }
}
```


Header <boost/units/systems/si/codata/universal_constants.hpp>

CODATA recommended values of fundamental universal constants using CODATA 2006 values as of 2007/03/30

```
namespace boost {
 namespace units {
   namespace si {
      namespace constants {
        namespace codata {
           BOOST_UNITS_PHYSICAL_CONSTANT(c, quantity< velocity >,
                                          299792458.0 *meters/, 0.0 *meters/);
         // magnetic constant (exactly 4 pi x 10^(-7) - error is due to finite precision of pi)
           BOOST_UNITS_PHYSICAL_CONSTANT(mu_0,
                                          quantity< force_over_current_squared >,
                                          12.56637061435917295385057353311801153679e-7 *new-
tons/ampere/ ampere,
                                          0.0 *newtons/ampere/ ampere);
          // electric constant
           BOOST_UNITS_PHYSICAL_CONSTANT(epsilon_0,
                                          quantity< capacitance_over_length >,
                                        8.854187817620389850536563031710750260608e-12 *farad/ 4
meter,
                                          0.0 *farad/ meter);
          // characteristic impedance of vacuum
           BOOST_UNITS_PHYSICAL_CONSTANT(Z_0, quantity< resistance >,
                                          376.7303134617706554681984004203193082686 * ohm,
                                          0.0 * ohm);
          // Newtonian constant of gravitation.
           BOOST_UNITS_PHYSICAL_CONSTANT(G,
                                          quantity< volume_over_mass_time_squared >,
                                          6.67428e-11 *cubic_meters/kilogram/second/ second,
                                          6.7e-15 *cubic_meters/kilogram/second/ second);
          // Planck constant.
           BOOST_UNITS_PHYSICAL_CONSTANT(h, quantity< energy_time >,
                                          6.62606896e-34 *joule * seconds,
                                          3.3e-41 *joule * seconds);
          // Dirac constant.
           BOOST_UNITS_PHYSICAL_CONSTANT(hbar, quantity< energy_time >,
                                          1.054571628e-34 *joule * seconds,
                                          5.3e-42 *joule * seconds);
          // Planck mass.
           BOOST_UNITS_PHYSICAL_CONSTANT(m_P, quantity< mass >,
                                          2.17644e-8 * kilograms,
                                          1.1e-12 * kilograms);
          // Planck temperature.
           BOOST_UNITS_PHYSICAL_CONSTANT(T_P, quantity< temperature >,
                                          1.416785e32 * kelvin,
                                          7.1e27 * kelvin);
          // Planck length.
           BOOST_UNITS_PHYSICAL_CONSTANT(l_P, quantity< length >,
                                          1.616252e-35 * meters,
                                          8.1e-40 * meters);
```


Function BOOST_UNITS_PHYSICAL_CONSTANT

boost::units::si::constants::codata::BOOST_UNITS_PHYSICAL_CONSTANT — CODATA recommended values of the fundamental physical constants: NIST SP 961.

Synopsis

Description

speed of light

Header <boost/units/systems/si/conductance.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< conductance_dimension, si::system > conductance;

   static const conductance siemen;
   static const conductance siemens;
   static const conductance mho;
   static const conductance mho;
   static const conductance mhos;
}
}
```


Global siemen

boost::units::si::siemen

Synopsis

// In header: <boost/units/systems/si/conductance.hpp>

static const conductance siemen;

Global siemens

boost::units::si::siemens

Synopsis

// In header: <boost/units/systems/si/conductance.hpp>

static const conductance siemens;

Global mho

boost::units::si::mho

Synopsis

// In header: <boost/units/systems/si/conductance.hpp>

static const conductance mho;

Global mhos

boost::units::si::mhos

Synopsis

```
// In header: <boost/units/systems/si/conductance.hpp>
static const conductance mhos;
```

Header <boost/units/systems/si/conductivity.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit < conductivity_dimension, si::system > conductivity;
     }
  }
}
```

Header <boost/units/systems/si/current.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit < current_dimension, si::system > current;

    static const current ampere;
    static const current amperes;
  }
}
```


Global ampere

boost::units::si::ampere

Synopsis

// In header: <boost/units/systems/si/current.hpp>

static const current ampere;

Global amperes

boost::units::si::amperes

Synopsis

```
// In header: <boost/units/systems/si/current.hpp>
static const current amperes;
```

Header <boost/units/systems/si/dimensionless.hpp>

Global si_dimensionless

boost::units::si::si_dimensionless

Synopsis

```
// In header: <boost/units/systems/si/dimensionless.hpp>
static const dimensionless si_dimensionless;
```

Header <boost/units/systems/si/dose_equivalent.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit < dose_equivalent_dimension, si::system > dose_equivalent;

    static const dose_equivalent sievert;
    static const dose_equivalent sieverts;
  }
}
```


Global sievert

boost::units::si::sievert

Synopsis

// In header: <boost/units/systems/si/dose_equivalent.hpp>
static const dose_equivalent sievert;

Global sieverts

boost::units::si::sieverts

Synopsis

```
// In header: <boost/units/systems/si/dose_equivalent.hpp>
static const dose_equivalent sieverts;
```

Header <boost/units/systems/si/dynamic_viscosity.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< dynamic_viscosity_dimension, si::system > dynamic_viscosity;
     }
  }
}
```

Header <boost/units/systems/si/electric_charge.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< electric_charge_dimension, si::system > electric_charge;

   static const electric_charge coulomb;
   static const electric_charge coulombs;
  }
}
```


Global coulomb

boost::units::si::coulomb

Synopsis

// In header: <boost/units/systems/si/electric_charge.hpp>
static const electric_charge coulomb;

Global coulombs

boost::units::si::coulombs

Synopsis

```
// In header: <boost/units/systems/si/electric_charge.hpp>
static const electric_charge coulombs;
```

Header <boost/units/systems/si/electric_potential.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit< electric_potential_dimension, si::system > electric_potential;

      static const electric_potential volt;
      static const electric_potential volts;
    }
}
```


Global volt

boost::units::si::volt

Synopsis

// In header: <boost/units/systems/si/electric_potential.hpp>
static const electric_potential volt;

Global volts

boost::units::si::volts

Synopsis

```
// In header: <boost/units/systems/si/electric_potential.hpp>
static const electric_potential volts;
```

Header <boost/units/systems/si/energy.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< energy_dimension, si::system > energy;

     static const energy joule;
     static const energy joules;
    }
}
```


Global joule

boost::units::si::joule

Synopsis

// In header: <boost/units/systems/si/energy.hpp>
static const energy joule;

Global joules

boost::units::si::joules

Synopsis

```
// In header: <boost/units/systems/si/energy.hpp>
static const energy joules;
```

Header <boost/units/systems/si/force.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< force_dimension, si::system > force;

   static const force newton;
   static const force newtons;
  }
}
```


Global newton

boost::units::si::newton

Synopsis

// In header: <boost/units/systems/si/force.hpp>

static const force newton;

Global newtons

boost::units::si::newtons

Synopsis

```
// In header: <boost/units/systems/si/force.hpp>
static const force newtons;
```

Header <boost/units/systems/si/frequency.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< frequency_dimension, si::system > frequency;

    static const frequency hertz;
    }
}
```


Global hertz

boost::units::si::hertz

Synopsis

```
// In header: <boost/units/systems/si/frequency.hpp>
static const frequency hertz;
```

Header <boost/units/systems/si/illuminance.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< illuminance_dimension, si::system > illuminance;

    static const illuminance lux;
    }
}
```


Global lux

boost::units::si::lux

Synopsis

```
// In header: <boost/units/systems/si/illuminance.hpp>
static const illuminance lux;
```

Header <boost/units/systems/si/impedance.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< impedance_dimension, si::system > impedance;
    }
  }
}
```

Header <boost/units/systems/si/inductance.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit< inductance_dimension, si::system > inductance;

      static const inductance henry;
      static const inductance henrys;
    }
}
```


Global henry

boost::units::si::henry

Synopsis

// In header: <boost/units/systems/si/inductance.hpp>

static const inductance henry;

Global henrys

boost::units::si::henrys

Synopsis

```
// In header: <boost/units/systems/si/inductance.hpp>
static const inductance henrys;
```

Header <boost/units/systems/si/io.hpp>

```
namespace boost {
  namespace units {
    std::string name_string(const reduce_unit< si::absorbed_dose >::type &);
    std::string symbol_string(const reduce_unit< si::absorbed_dose >::type &);
    std::string name_string(const reduce_unit< si::capacitance >::type &);
    std::string symbol_string(const reduce_unit< si::capacitance >::type &);
    std::string name_string(const reduce_unit< si::catalytic_activity >::type &);
    std::string symbol_string(const reduce_unit< si::catalytic_activity >::type &);
    std::string name_string(const reduce_unit< si::conductance >::type &);
    std::string symbol_string(const reduce_unit< si::conductance >::type &);
    std::string name_string(const reduce_unit< si::electric_charge >::type &);
    std::string symbol_string(const reduce_unit< si::electric_charge >::type &);
    std::string name_string(const reduce_unit< si::electric_potential >::type &);
    std::string symbol_string(const reduce_unit< si::electric_potential >::type &);
    std::string name_string(const reduce_unit< si::energy >::type &);
    std::string symbol_string(const reduce_unit< si::energy >::type &);
    std::string name_string(const reduce_unit< si::force >::type &);
    std::string symbol_string(const reduce_unit< si::force >::type &);
    std::string name_string(const reduce_unit< si::frequency >::type &);
    std::string symbol_string(const reduce_unit< si::frequency >::type &);
    std::string name_string(const reduce_unit< si::illuminance >::type &);
    std::string symbol_string(const reduce_unit< si::illuminance >::type &);
    std::string name_string(const reduce_unit< si::inductance >::type &);
    std::string symbol_string(const reduce_unit< si::inductance >::type &);
    std::string name_string(const reduce_unit< si::luminous_flux >::type &);
    std::string symbol_string(const reduce_unit< si::luminous_flux >::type &);
    std::string name_string(const reduce_unit< si::magnetic_flux >::type &);
    std::string symbol_string(const reduce_unit< si::magnetic_flux >::type &);
    std::string name_string(const reduce_unit< si::magnetic_flux_density >::type &);
    std::string symbol_string(const reduce_unit< si::magnetic_flux_density >::type &);
    std::string name_string(const reduce_unit< si::power >::type &);
    std::string symbol_string(const reduce_unit< si::power >::type &);
    std::string name_string(const reduce_unit< si::pressure >::type &);
    std::string symbol_string(const reduce_unit< si::pressure >::type &);
    std::string name_string(const reduce_unit< si::resistance >::type &);
    std::string symbol_string(const reduce_unit< si::resistance >::type &);
}
```


Header <boost/units/systems/si/kinematic_viscosity.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< kinematic_viscosity_dimension, si::system > kinematic_viscosity;
     }
  }
}
```

Header <boost/units/systems/si/length.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit < length_dimension, si::system > length;

      static const length meter;
      static const length meters;
      static const length metre;
      static const length metre;
      static const length metres;
    }
}
```


Global meter

boost::units::si::meter

Synopsis

// In header: <boost/units/systems/si/length.hpp>
static const length meter;

Global meters

boost::units::si::meters

Synopsis

// In header: <boost/units/systems/si/length.hpp>
static const length meters;

Global metre

boost::units::si::metre

Synopsis

// In header: <boost/units/systems/si/length.hpp>
static const length metre;

Global metres

boost::units::si::metres

Synopsis

```
// In header: <boost/units/systems/si/length.hpp>
static const length metres;
```

Header <boost/units/systems/si/luminous_flux.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< luminous_flux_dimension, si::system > luminous_flux;

   static const luminous_flux lumen;
   static const luminous_flux lumens;
  }
}
```


Global lumen

boost::units::si::lumen

Synopsis

// In header: <boost/units/systems/si/luminous_flux.hpp>
static const luminous_flux lumen;

Global lumens

boost::units::si::lumens

Synopsis

```
// In header: <boost/units/systems/si/luminous_flux.hpp>
static const luminous_flux lumens;
```

Header <boost/units/systems/si/luminous_intensity.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit< luminous_intensity_dimension, si::system > luminous_intensity;

      static const luminous_intensity candela;
      static const luminous_intensity candelas;
    }
}
```


Global candela

boost::units::si::candela

Synopsis

// In header: <boost/units/systems/si/luminous_intensity.hpp>

static const luminous_intensity candela;

Global candelas

boost::units::si::candelas

Synopsis

```
// In header: <boost/units/systems/si/luminous_intensity.hpp>
static const luminous_intensity candelas;
```

Header <boost/units/systems/si/magnetic_field_intensity.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< magnetic_field_intensity_dimension, si::system > magnetic_field_intensity;
     }
  }
}
```

Header <boost/units/systems/si/magnetic_flux.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< magnetic_flux_dimension, si::system > magnetic_flux;

     static const magnetic_flux weber;
     static const magnetic_flux webers;
     }
}
```


Global weber

boost::units::si::weber

Synopsis

// In header: <boost/units/systems/si/magnetic_flux.hpp>
static const magnetic_flux weber;

Global webers

boost::units::si::webers

Synopsis

```
// In header: <boost/units/systems/si/magnetic_flux.hpp>
static const magnetic_flux webers;
```

Header <boost/units/systems/si/magnetic_flux_density.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit< magnetic_flux_density_dimension, si::system > magnetic_flux_density;

      static const magnetic_flux_density tesla;
      static const magnetic_flux_density teslas;
    }
}
```


Global tesla

boost::units::si::tesla

Synopsis

// In header: <boost/units/systems/si/magnetic_flux_density.hpp>

static const magnetic_flux_density tesla;

Global teslas

boost::units::si::teslas

Synopsis

```
// In header: <boost/units/systems/si/magnetic_flux_density.hpp>
static const magnetic_flux_density teslas;
```

Header <boost/units/systems/si/mass.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< mass_dimension, si::system > mass;

    static const mass kilogram;
    static const mass kilograms;
    static const mass kilogramme;
    static const mass kilogramme;
    static const mass kilogrammes;
    static const mass kilogrammes;
    }
}
```


Global kilogram

boost::units::si::kilogram

Synopsis

// In header: <boost/units/systems/si/mass.hpp>

static const mass kilogram;

Global kilograms

boost::units::si::kilograms

Synopsis

// In header: <boost/units/systems/si/mass.hpp>
static const mass kilograms;

Global kilogramme

boost::units::si::kilogramme

Synopsis

// In header: <boost/units/systems/si/mass.hpp>

static const mass kilogramme;

Global kilogrammes

boost::units::si::kilogrammes

Synopsis

```
// In header: <boost/units/systems/si/mass.hpp>
static const mass kilogrammes;
```

Header <boost/units/systems/si/mass_density.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< mass_density_dimension, si::system > mass_density;

    static const mass_density kilogram_per_cubic_meter;
    static const mass_density kilograms_per_cubic_meter;
    static const mass_density kilogramme_per_cubic_metre;
    static const mass_density kilogrammes_per_cubic_metre;
    static const mass_density kilogrammes_per_cubic_metre;
}
```


Global kilogram_per_cubic_meter

 $boost::units::si::kilogram_per_cubic_meter$

Synopsis

// In header: <boost/units/systems/si/mass_density.hpp>
static const mass_density kilogram_per_cubic_meter;

Global kilograms_per_cubic_meter

boost::units::si::kilograms_per_cubic_meter

Synopsis

// In header: <boost/units/systems/si/mass_density.hpp>

static const mass_density kilograms_per_cubic_meter;

Global kilogramme_per_cubic_metre

 $boost::units::si::kilogramme_per_cubic_metre$

Synopsis

// In header: <boost/units/systems/si/mass_density.hpp>

static const mass_density kilogramme_per_cubic_metre;

Global kilogrammes_per_cubic_metre

boost::units::si::kilogrammes_per_cubic_metre

Synopsis

```
// In header: <boost/units/systems/si/mass_density.hpp>
static const mass_density kilogrammes_per_cubic_metre;
```

Header <boost/units/systems/si/moment_of_inertia.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit < moment_of_inertia_dimension, si::system > moment_of_inertia;
      }
  }
}
```

Header <boost/units/systems/si/momentum.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit < momentum_dimension, si::system > momentum;
      }
  }
}
```

Header <boost/units/systems/si/permeability.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit < permeability_dimension, si::system > permeability;
      }
  }
}
```

Header <boost/units/systems/si/permittivity.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit< permittivity_dimension, si::system > permittivity;
      }
  }
}
```


Header <boost/units/systems/si/plane_angle.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< plane_angle_dimension, si::system > plane_angle;

    static const plane_angle radian;
    static const plane_angle radians;
  }
}
```


Global radian

boost::units::si::radian

Synopsis

// In header: <boost/units/systems/si/plane_angle.hpp>

static const plane_angle radian;

Global radians

boost::units::si::radians

Synopsis

```
// In header: <boost/units/systems/si/plane_angle.hpp>
static const plane_angle radians;
```

Header <boost/units/systems/si/power.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< power_dimension, si::system > power;

    static const power watt;
    static const power watts;
  }
}
```


Global watt

boost::units::si::watt

Synopsis

// In header: <boost/units/systems/si/power.hpp>
static const power watt;

Global watts

boost::units::si::watts

Synopsis

```
// In header: <boost/units/systems/si/power.hpp>
static const power watts;
```

Header <boost/units/systems/si/prefixes.hpp>

```
BOOST_UNITS_METRIC_PREFIX(exponent, name)
```

```
namespace boost {
 namespace units {
   namespace si {
       BOOST_UNITS_METRIC_PREFIX(- 24, yocto);
       BOOST_UNITS_METRIC_PREFIX(- 21, zepto);
       BOOST_UNITS_METRIC_PREFIX(- 18, atto);
       BOOST_UNITS_METRIC_PREFIX(- 15, femto);
       BOOST_UNITS_METRIC_PREFIX(- 12, pico);
       BOOST_UNITS_METRIC_PREFIX(- 9, nano);
       BOOST_UNITS_METRIC_PREFIX(- 6, micro);
       BOOST_UNITS_METRIC_PREFIX(- 3, milli);
       BOOST_UNITS_METRIC_PREFIX(- 2, centi);
       BOOST_UNITS_METRIC_PREFIX(- 1, deci);
       BOOST_UNITS_METRIC_PREFIX(1, deka);
       BOOST_UNITS_METRIC_PREFIX(2, hecto);
       BOOST_UNITS_METRIC_PREFIX(3, kilo);
       BOOST_UNITS_METRIC_PREFIX(6, mega);
       BOOST_UNITS_METRIC_PREFIX(9, giga);
       BOOST_UNITS_METRIC_PREFIX(12, tera);
       BOOST_UNITS_METRIC_PREFIX(15, peta);
       BOOST_UNITS_METRIC_PREFIX(18, exa);
       BOOST_UNITS_METRIC_PREFIX(21, zetta);
       BOOST_UNITS_METRIC_PREFIX(24, yotta);
  }
}
```


Macro BOOST_UNITS_METRIC_PREFIX

BOOST_UNITS_METRIC_PREFIX

Synopsis

```
// In header: <boost/units/systems/si/prefixes.hpp>
BOOST_UNITS_METRIC_PREFIX(exponent, name)
```

Header <boost/units/systems/si/pressure.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< pressure_dimension, si::system > pressure;

   static const pressure pascal;
   static const pressure pascals;
  }
}
```


Global pascal

boost::units::si::pascal

Synopsis

// In header: <boost/units/systems/si/pressure.hpp>
static const pressure pascal;

Global pascals

boost::units::si::pascals

Synopsis

```
// In header: <boost/units/systems/si/pressure.hpp>
static const pressure pascals;
```

Header <boost/units/systems/si/reluctance.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< reluctance_dimension, si::system > reluctance;
    }
}
```

Header <boost/units/systems/si/resistance.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< resistance_dimension, si::system > resistance;

   static const resistance ohm;
   static const resistance ohms;
  }
}
```


Global ohm

boost::units::si::ohm

Synopsis

// In header: <boost/units/systems/si/resistance.hpp>

static const resistance ohm;

Global ohms

boost::units::si::ohms

Synopsis

```
// In header: <boost/units/systems/si/resistance.hpp>
static const resistance ohms;
```

Header <boost/units/systems/si/resistivity.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit< resistivity_dimension, si::system > resistivity;
    }
  }
}
```

Header <boost/units/systems/si/solid_angle.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     typedef unit< solid_angle_dimension, si::system > solid_angle;

    static const solid_angle steradian;
    static const solid_angle steradians;
  }
}
```


Global steradian

boost::units::si::steradian

Synopsis

// In header: <boost/units/systems/si/solid_angle.hpp>

static const solid_angle steradian;

Global steradians

boost::units::si::steradians

Synopsis

```
// In header: <boost/units/systems/si/solid_angle.hpp>
static const solid_angle steradians;
```

Header <boost/units/systems/si/surface_density.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< surface_density_dimension, si::system > surface_density;

   static const surface_density kilogram_per_square_meter;
   static const surface_density kilograms_per_square_meter;
   static const surface_density kilogramme_per_square_metre;
   static const surface_density kilogrammes_per_square_metre;
   static const surface_density kilogrammes_per_square_metre;
}
```


Global kilogram_per_square_meter

 $boost::units::si::kilogram_per_square_meter$

Synopsis

// In header: <boost/units/systems/si/surface_density.hpp>

static const surface_density kilogram_per_square_meter;

${\bf Global\ kilograms_per_square_meter}$

 $boost::units::si::kilograms_per_square_meter$

Synopsis

// In header: <boost/units/systems/si/surface_density.hpp>
static const surface_density kilograms_per_square_meter;

${\bf Global\ kilogramme_per_square_metre}$

 $boost::units::si::kilogramme_per_square_metre$

Synopsis

// In header: <boost/units/systems/si/surface_density.hpp>

static const surface_density kilogramme_per_square_metre;

Global kilogrammes_per_square_metre

boost::units::si::kilogrammes_per_square_metre

Synopsis

```
// In header: <boost/units/systems/si/surface_density.hpp>
static const surface_density kilogrammes_per_square_metre;
```

Header <boost/units/systems/si/surface_tension.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< surface_tension_dimension, si::system > surface_tension;

   static const surface_tension newton_per_meter;
   static const surface_tension newtons_per_meter;
  }
}
}
```


Global newton_per_meter

 $boost::units::si::newton_per_meter$

Synopsis

// In header: <boost/units/systems/si/surface_tension.hpp>

static const surface_tension newton_per_meter;

Global newtons_per_meter

boost::units::si::newtons_per_meter

Synopsis

```
// In header: <boost/units/systems/si/surface_tension.hpp>
static const surface_tension newtons_per_meter;
```

Header <boost/units/systems/si/temperature.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< temperature_dimension, si::system > temperature;

   static const temperature kelvin;
   static const temperature kelvins;
  }
}
```


Global kelvin

boost::units::si::kelvin

Synopsis

// In header: <boost/units/systems/si/temperature.hpp>

static const temperature kelvin;

Global kelvins

boost::units::si::kelvins

Synopsis

```
// In header: <boost/units/systems/si/temperature.hpp>
static const temperature kelvins;
```

Header <boost/units/systems/si/time.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      typedef unit< time_dimension, si::system > time;

      static const time second;
      static const time seconds;
    }
}
```


Global second

boost::units::si::second

Synopsis

// In header: <boost/units/systems/si/time.hpp>

static const time second;

Global seconds

boost::units::si::seconds

Synopsis

```
// In header: <boost/units/systems/si/time.hpp>
static const time seconds;
```

Header <boost/units/systems/si/torque.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< torque_dimension, si::system > torque;

    static const torque newton_meter;
    static const torque newton_meters;
  }
}
```


Global newton_meter

 $boost::units::si::newton_meter$

Synopsis

// In header: <boost/units/systems/si/torque.hpp>

static const torque newton_meter;

Global newton_meters

boost::units::si::newton_meters

Synopsis

```
// In header: <boost/units/systems/si/torque.hpp>
static const torque newton_meters;
```

Header <boost/units/systems/si/velocity.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< velocity_dimension, si::system > velocity;

    static const velocity meter_per_second;
    static const velocity meters_per_second;
    static const velocity metre_per_second;
    static const velocity metre_per_second;
    static const velocity metres_per_second;
}
}
```


Global meter_per_second

 $boost::units::si::meter_per_second$

Synopsis

// In header: <boost/units/systems/si/velocity.hpp>

static const velocity meter_per_second;

Global meters_per_second

boost::units::si::meters_per_second

Synopsis

// In header: <boost/units/systems/si/velocity.hpp>

static const velocity meters_per_second;

Global metre_per_second

 $boost::units::si::metre_per_second$

Synopsis

// In header: <boost/units/systems/si/velocity.hpp>

static const velocity metre_per_second;

Global metres_per_second

 $boost::units::si::metres_per_second$

Synopsis

```
// In header: <boost/units/systems/si/velocity.hpp>
static const velocity metres_per_second;
```

Header <boost/units/systems/si/volume.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< volume_dimension, si::system > volume;

    static const volume cubic_meter;
    static const volume cubic_meters;
    static const volume cubic_metre;
    static const volume cubic_metre;
    static const volume cubic_metres;
}
```


Global cubic_meter

boost::units::si::cubic_meter

Synopsis

// In header: <boost/units/systems/si/volume.hpp>

static const volume cubic_meter;

Global cubic_meters

 $boost::units::si::cubic_meters$

Synopsis

// In header: <boost/units/systems/si/volume.hpp>

static const volume cubic_meters;

Global cubic_metre

boost::units::si::cubic_metre

Synopsis

// In header: <boost/units/systems/si/volume.hpp>

static const volume cubic_metre;

Global cubic_metres

boost::units::si::cubic_metres

Synopsis

```
// In header: <boost/units/systems/si/volume.hpp>
static const volume cubic_metres;
```

Header <boost/units/systems/si/wavenumber.hpp>

```
namespace boost {
  namespace units {
   namespace si {
    typedef unit< wavenumber_dimension, si::system > wavenumber;

   static const wavenumber reciprocal_meter;
   static const wavenumber reciprocal_meters;
   static const wavenumber reciprocal_metre;
   static const wavenumber reciprocal_metre;
   static const wavenumber reciprocal_metres;
}
}
```


Global reciprocal_meter

 $boost::units::si::reciprocal_meter$

Synopsis

// In header: <boost/units/systems/si/wavenumber.hpp>

static const wavenumber reciprocal_meter;

Global reciprocal_meters

 $boost::units::si::reciprocal_meters$

Synopsis

// In header: <boost/units/systems/si/wavenumber.hpp>
static const wavenumber reciprocal_meters;

Global reciprocal_metre

boost::units::si::reciprocal_metre

Synopsis

// In header: <boost/units/systems/si/wavenumber.hpp>
static const wavenumber reciprocal_metre;

Global reciprocal_metres

boost::units::si::reciprocal_metres

Synopsis

```
// In header: <boost/units/systems/si/wavenumber.hpp>
static const wavenumber reciprocal_metres;
```

CGS System Reference

Header <boost/units/systems/cgs.hpp>

Includes all the cgs unit headers

Header <boost/units/systems/cgs/acceleration.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
     typedef unit< acceleration_dimension, cgs::system > acceleration;

     static const acceleration gal;
     static const acceleration gals;
     }
  }
}
```


Global gal

boost::units::cgs::gal

Synopsis

// In header: <boost/units/systems/cgs/acceleration.hpp>

static const acceleration gal;

Global gals

boost::units::cgs::gals

Synopsis

```
// In header: <boost/units/systems/cgs/acceleration.hpp>
static const acceleration gals;
```

Header <boost/units/systems/cgs/area.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
    typedef unit< area_dimension, cgs::system > area;

    static const area square_centimeter;
    static const area square_centimeters;
    static const area square_centimetre;
    static const area square_centimetre;
    static const area square_centimetres;
}
```


Global square_centimeter

 $boost::units::cgs::square_centimeter$

Synopsis

// In header: <boost/units/systems/cgs/area.hpp>

static const area square_centimeter;

Global square_centimeters

boost::units::cgs::square_centimeters

Synopsis

// In header: <boost/units/systems/cgs/area.hpp>

static const area square_centimeters;

Global square_centimetre

boost::units::cgs::square_centimetre

Synopsis

// In header: <boost/units/systems/cgs/area.hpp>

static const area square_centimetre;

Global square_centimetres

boost::units::cgs::square_centimetres

Synopsis

```
// In header: <boost/units/systems/cgs/area.hpp>
static const area square_centimetres;
```

Header <boost/units/systems/cgs/base.hpp>

```
namespace boost {
  namespace units {
    namespace cgs {
      typedef make_system< centimeter_base_unit, gram_base_unit, ↓
  boost::units::si::second_base_unit, biot_base_unit >::type system; // placeholder class defin↓
  ing cgs unit system
      typedef unit< dimensionless_type, system > dimensionless; // various unit typedefs for ↓
  convenience
    }
  }
}
```

Header <boost/units/systems/cgs/current.hpp>

```
namespace boost {
  namespace units {
    namespace cgs {
       typedef unit < current_dimension, cgs::system > current;

      static const current biot;
      static const current biots;
    }
}
```


Global biot

boost::units::cgs::biot

Synopsis

// In header: <boost/units/systems/cgs/current.hpp>
static const current biot;

Global biots

boost::units::cgs::biots

Synopsis

```
// In header: <boost/units/systems/cgs/current.hpp>
static const current biots;
```

Header <boost/units/systems/cgs/dimensionless.hpp>

Global cgs_dimensionless

boost::units::cgs::cgs_dimensionless

Synopsis

```
// In header: <boost/units/systems/cgs/dimensionless.hpp>
static const dimensionless cgs_dimensionless;
```

Header <boost/units/systems/cgs/dynamic_viscosity.hpp>

```
namespace boost {
  namespace units {
    namespace cgs {
      typedef unit < dynamic_viscosity_dimension, cgs::system > dynamic_viscosity;

      static const dynamic_viscosity poise;
    }
}
```


Global poise

boost::units::cgs::poise

Synopsis

```
// In header: <boost/units/systems/cgs/dynamic_viscosity.hpp>
static const dynamic_viscosity poise;
```

Header <boost/units/systems/cgs/energy.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
     typedef unit < energy_dimension, cgs::system > energy;

     static const energy erg;
     static const energy ergs;
    }
}
```


Global erg

boost::units::cgs::erg

Synopsis

// In header: <boost/units/systems/cgs/energy.hpp>
static const energy erg;

Global ergs

boost::units::cgs::ergs

Synopsis

```
// In header: <boost/units/systems/cgs/energy.hpp>
static const energy ergs;
```

Header <boost/units/systems/cgs/force.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
     typedef unit< force_dimension, cgs::system > force;

     static const force dyne;
     static const force dynes;
   }
}
```


Global dyne

boost::units::cgs::dyne

Synopsis

// In header: <boost/units/systems/cgs/force.hpp>
static const force dyne;

Global dynes

boost::units::cgs::dynes

Synopsis

```
// In header: <boost/units/systems/cgs/force.hpp>
static const force dynes;
```

Header <boost/units/systems/cgs/frequency.hpp>

```
namespace boost {
  namespace units {
    namespace cgs {
       typedef unit < frequency_dimension, cgs::system > frequency;
    }
  }
}
```

Header <boost/units/systems/cgs/io.hpp>

```
namespace boost {
 namespace units {
    std::string name_string(const reduce_unit< cgs::acceleration >::type &);
    std::string symbol_string(const reduce_unit< cgs::acceleration >::type &);
    std::string name_string(const reduce_unit< cgs::current >::type &);
    std::string symbol_string(const reduce_unit< cgs::current >::type &);
    std::string name_string(const reduce_unit< cgs::dynamic_viscosity >::type &);
    std::string symbol_string(const reduce_unit< cgs::dynamic_viscosity >::type &);
    std::string name_string(const reduce_unit< cgs::energy >::type &);
    std::string symbol_string(const reduce_unit< cgs::energy >::type &);
    std::string name_string(const reduce_unit< cgs::force >::type &);
    std::string symbol_string(const reduce_unit< cgs::force >::type &);
    std::string name_string(const reduce_unit< cgs::kinematic_viscosity >::type &);
    std::string symbol_string(const reduce_unit< cgs::kinematic_viscosity >::type &);
    std::string name_string(const reduce_unit< cgs::pressure >::type &);
    std::string symbol_string(const reduce_unit< cgs::pressure >::type &);
    std::string name_string(const reduce_unit< cgs::wavenumber >::type &);
    std::string symbol_string(const reduce_unit< cgs::wavenumber >::type &);
}
```

Header <boost/units/systems/cgs/kinematic_viscosity.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
     typedef unit< kinematic_viscosity_dimension, cgs::system > kinematic_viscosity;

     static const kinematic_viscosity stoke;
     static const kinematic_viscosity stokes;
   }
}
```


Global stoke

boost::units::cgs::stoke

Synopsis

// In header: <boost/units/systems/cgs/kinematic_viscosity.hpp>

static const kinematic_viscosity stoke;

Global stokes

boost::units::cgs::stokes

Synopsis

```
// In header: <boost/units/systems/cgs/kinematic_viscosity.hpp>
static const kinematic_viscosity stokes;
```

Header <boost/units/systems/cgs/length.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
    typedef unit< length_dimension, cgs::system > length;

    static const length centimeter;
    static const length centimeters;
    static const length centimetre;
    static const length centimetre;
    static const length centimetres;
}
```


Global centimeter

boost::units::cgs::centimeter

Synopsis

// In header: <boost/units/systems/cgs/length.hpp>

static const length centimeter;

Global centimeters

boost::units::cgs::centimeters

Synopsis

// In header: <boost/units/systems/cgs/length.hpp>

static const length centimeters;

Global centimetre

boost::units::cgs::centimetre

Synopsis

// In header: <boost/units/systems/cgs/length.hpp>

static const length centimetre;

Global centimetres

boost::units::cgs::centimetres

Synopsis

```
// In header: <boost/units/systems/cgs/length.hpp>
static const length centimetres;
```

Header <boost/units/systems/cgs/mass.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
    typedef unit< mass_dimension, cgs::system > mass;

    static const mass gram;
    static const mass grams;
    static const mass gramme;
    static const mass gramme;
    static const mass gramme;
    static const mass grammes;
}
```


Global gram

boost::units::cgs::gram

Synopsis

// In header: <boost/units/systems/cgs/mass.hpp>

static const mass gram;

Global grams

boost::units::cgs::grams

Synopsis

// In header: <boost/units/systems/cgs/mass.hpp>
static const mass grams;

Global gramme

boost::units::cgs::gramme

Synopsis

// In header: <boost/units/systems/cgs/mass.hpp>

static const mass gramme;

Global grammes

boost::units::cgs::grammes

Synopsis

```
// In header: <boost/units/systems/cgs/mass.hpp>
static const mass grammes;
```

Header <boost/units/systems/cgs/mass_density.hpp>

```
namespace boost {
  namespace units {
    namespace cgs {
       typedef unit< mass_density_dimension, cgs::system > mass_density;
    }
  }
}
```

Header <boost/units/systems/cgs/momentum.hpp>

```
namespace boost {
  namespace units {
    namespace cgs {
       typedef unit < momentum_dimension, cgs::system > momentum;
    }
  }
}
```

Header <boost/units/systems/cgs/power.hpp>

```
namespace boost {
  namespace units {
    namespace cgs {
       typedef unit < power_dimension, cgs::system > power;
     }
  }
}
```

Header <boost/units/systems/cgs/pressure.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
     typedef unit< pressure_dimension, cgs::system > pressure;

     static const pressure barye;
     static const pressure baryes;
     }
  }
}
```


Global barye

boost::units::cgs::barye

Synopsis

// In header: <boost/units/systems/cgs/pressure.hpp>

static const pressure barye;

Global baryes

boost::units::cgs::baryes

Synopsis

```
// In header: <boost/units/systems/cgs/pressure.hpp>
static const pressure baryes;
```

Header <boost/units/systems/cgs/time.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
    typedef unit< time_dimension, cgs::system > time;

    static const time second;
    static const time seconds;
  }
}
```


Global second

boost::units::cgs::second

Synopsis

// In header: <boost/units/systems/cgs/time.hpp>

static const time second;

Global seconds

boost::units::cgs::seconds

Synopsis

```
// In header: <boost/units/systems/cgs/time.hpp>
static const time seconds;
```

Header <boost/units/systems/cgs/velocity.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
    typedef unit< velocity_dimension, cgs::system > velocity;

    static const velocity centimeter_per_second;
    static const velocity centimeters_per_second;
    static const velocity centimetre_per_second;
    static const velocity centimetre_per_second;
    static const velocity centimetres_per_second;
}
```


Global centimeter_per_second

 $boost::units::cgs::centimeter_per_second$

Synopsis

// In header: <boost/units/systems/cgs/velocity.hpp>

static const velocity centimeter_per_second;

Global centimeters_per_second

 $boost::units::cgs::centimeters_per_second$

Synopsis

// In header: <boost/units/systems/cgs/velocity.hpp>

static const velocity centimeters_per_second;

Global centimetre_per_second

 $boost::units::cgs::centimetre_per_second$

Synopsis

// In header: <boost/units/systems/cgs/velocity.hpp>

static const velocity centimetre_per_second;

Global centimetres_per_second

boost::units::cgs::centimetres_per_second

Synopsis

```
// In header: <boost/units/systems/cgs/velocity.hpp>
static const velocity centimetres_per_second;
```

Header <boost/units/systems/cgs/volume.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
    typedef unit< volume_dimension, cgs::system > volume;

    static const volume cubic_centimeter;
    static const volume cubic_centimeters;
    static const volume cubic_centimetre;
    static const volume cubic_centimetre;
    static const volume cubic_centimetres;
}
```


Global cubic_centimeter

boost::units::cgs::cubic_centimeter

Synopsis

// In header: <boost/units/systems/cgs/volume.hpp>

static const volume cubic_centimeter;

Global cubic_centimeters

boost::units::cgs::cubic_centimeters

Synopsis

// In header: <boost/units/systems/cgs/volume.hpp>

static const volume cubic_centimeters;

Global cubic_centimetre

boost::units::cgs::cubic_centimetre

Synopsis

// In header: <boost/units/systems/cgs/volume.hpp>

static const volume cubic_centimetre;

Global cubic_centimetres

boost::units::cgs::cubic_centimetres

Synopsis

```
// In header: <boost/units/systems/cgs/volume.hpp>
static const volume cubic_centimetres;
```

Header <boost/units/systems/cgs/wavenumber.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
     typedef unit< wavenumber_dimension, cgs::system > wavenumber;

     static const wavenumber kayser;
     static const wavenumber reciprocal_centimeter;
     static const wavenumber reciprocal_centimeters;
     static const wavenumber reciprocal_centimeters;
     static const wavenumber reciprocal_centimetre;
     static const wavenumber reciprocal_centimetre;
}
```


Global kayser

boost::units::cgs::kayser

Synopsis

// In header: <boost/units/systems/cgs/wavenumber.hpp>

static const wavenumber kayser;

Global kaysers

boost::units::cgs::kaysers

Synopsis

// In header: <boost/units/systems/cgs/wavenumber.hpp>

static const wavenumber kaysers;

Global reciprocal_centimeter

boost::units::cgs::reciprocal_centimeter

Synopsis

// In header: <boost/units/systems/cgs/wavenumber.hpp>

static const wavenumber reciprocal_centimeter;

Global reciprocal_centimeters

boost::units::cgs::reciprocal_centimeters

Synopsis

// In header: <boost/units/systems/cgs/wavenumber.hpp>

static const wavenumber reciprocal_centimeters;

Global reciprocal_centimetre

boost::units::cgs::reciprocal_centimetre

Synopsis

// In header: <boost/units/systems/cgs/wavenumber.hpp>

static const wavenumber reciprocal_centimetre;

Global reciprocal_centimetres

boost::units::cgs::reciprocal_centimetres

Synopsis

```
// In header: <boost/units/systems/cgs/wavenumber.hpp>
static const wavenumber reciprocal_centimetres;
```

Trigonometry and Angle System Reference

Header <boost/units/systems/angle/degrees.hpp>

```
namespace boost {
  namespace units {
    namespace degree {
       typedef make_system< boost::units::angle::degree_base_unit >::type system;
       typedef unit< dimensionless_type, system > dimensionless;
       typedef unit< plane_angle_dimension, system > plane_angle; // angle degree unit constant

      static const plane_angle degree;
       static const plane_angle degrees;
    }
}
```


Global degree

boost::units::degree::degree

Synopsis

// In header: <boost/units/systems/angle/degrees.hpp>

static const plane_angle degree;

Global degrees

boost::units::degree::degrees

Synopsis

```
// In header: <boost/units/systems/angle/degrees.hpp>
static const plane_angle degrees;
```

Header <boost/units/systems/angle/gradians.hpp>

```
namespace boost {
  namespace units {
    namespace gradian {
      typedef make_system< boost::units::angle::gradian_base_unit >::type system;
      typedef unit< dimensionless_type, system > dimensionless;
      typedef unit< plane_angle_dimension, system > plane_angle; // angle gradian unit constant
      static const plane_angle gradian;
      static const plane_angle gradians;
    }
}
```


Global gradian

boost::units::gradian::gradian

Synopsis

// In header: <boost/units/systems/angle/gradians.hpp>

static const plane_angle gradian;

Global gradians

boost::units::gradian::gradians

Synopsis

```
// In header: <boost/units/systems/angle/gradians.hpp>
static const plane_angle gradians;
```

Header <boost/units/systems/angle/revolutions.hpp>

```
namespace boost {
  namespace units {
   namespace revolution {
     typedef make_system< boost::units::angle::revolution_base_unit >::type system;
     typedef unit< dimensionless_type, system > dimensionless;
     typedef unit< plane_angle_dimension, system > plane_angle; // angle revolution unit condstant

     static const plane_angle revolution;
     static const plane_angle revolutions;
    }
}
```


Global revolution

boost::units::revolution::revolution

Synopsis

// In header: <boost/units/systems/angle/revolutions.hpp>

static const plane_angle revolution;

Global revolutions

boost::units::revolution::revolutions

Synopsis

```
// In header: <boost/units/systems/angle/revolutions.hpp>
static const plane_angle revolutions;
```

Temperature System Reference

Header <boost/units/systems/temperature/celsius.hpp>

```
namespace boost {
  namespace units {
   namespace celsius {
    typedef make_system< boost::units::temperature::celsius_base_unit >::type system;
    typedef unit< temperature_dimension, system > temperature;

   static const temperature degree;
   static const temperature degrees;
  }
}
```


Global degree

boost::units::celsius::degree

Synopsis

// In header: <boost/units/systems/temperature/celsius.hpp>

static const temperature degree;

Global degrees

boost::units::celsius::degrees

Synopsis

```
// In header: <boost/units/systems/temperature/celsius.hpp>
static const temperature degrees;
```

Header <boost/units/systems/temperature/fahrenheit.hpp>

```
namespace boost {
  namespace units {
    namespace fahrenheit {
      typedef make_system< boost::units::temperature::fahrenheit_base_unit >::type system;
      typedef unit< temperature_dimension, system > temperature;

    static const temperature degree;
    static const temperature degrees;
    }
}
```


Global degree

boost::units::fahrenheit::degree

Synopsis

// In header: <boost/units/systems/temperature/fahrenheit.hpp>

static const temperature degree;

Global degrees

boost::units::fahrenheit::degrees

Synopsis

```
// In header: <boost/units/systems/temperature/fahrenheit.hpp>
static const temperature degrees;
```

Abstract System Reference

Header <boost/units/systems/abstract.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<abstract::length_unit_tag>;
    template<> struct base_unit_info<abstract::mass_unit_tag>;
    template<> struct base_unit_info<abstract::time_unit_tag>;
    template<> struct base_unit_info<abstract::current_unit_tag>;
    template<> struct base_unit_info<abstract::temperature_unit_tag>;
    template<> struct base_unit_info<abstract::amount_unit_tag>;
    template<> struct base_unit_info<abstract::luminous_intensity_unit_tag>;
    template<> struct base_unit_info<abstract::plane_angle_unit_tag>;
    template<> struct base_unit_info<abstract::solid_angle_unit_tag>;
    namespace abstract {
      struct length_unit_tag;
      struct mass_unit_tag;
      struct time_unit_tag;
      struct current_unit_tag;
      struct temperature_unit_tag;
      struct amount_unit_tag;
      struct luminous_intensity_unit_tag;
      struct plane_angle_unit_tag;
      struct solid_angle_unit_tag;
     typedef make_system< length_unit_tag, mass_unit_tag, time_unit_tag, current_unit_tag, temJ
perature_unit_tag, amount_unit_tag, luminous_intensity_unit_tag, plane_angle_unit_tag, sol↓
id_angle_unit_tag >::type system;
      typedef unit< length_dimension, system > length; // abstract unit of length
      typedef unit< mass_dimension, system > mass: // abstract unit of mass
      typedef unit< time_dimension, system > time; // abstract unit of time
      typedef unit< current_dimension, system > current; // abstract unit of current
     typedef unit< temperature_dimension, system > temperature; // abstract unit of temperature
      typedef unit< amount_dimension, system > amount; // abstract unit of amount
     typedef unit < luminous_intensity_dimension, system > luminous_intensity; // abstract unit 4
of luminous intensity
     typedef unit< plane_angle_dimension, system > plane_angle; // abstract unit of plane angle
     typedef unit < solid_angle_dimension, system > solid_angle; // abstract unit of solid angle
  }
}
```


Struct length_unit_tag

 $boost::units::abstract::length_unit_tag$

```
// In header: <boost/units/systems/abstract.hpp>
struct length_unit_tag {
};
```


Struct mass_unit_tag

boost::units::abstract::mass_unit_tag

```
// In header: <boost/units/systems/abstract.hpp>
struct mass_unit_tag {
};
```


Struct time_unit_tag

boost::units::abstract::time_unit_tag

```
// In header: <boost/units/systems/abstract.hpp>
struct time_unit_tag {
};
```


Struct current_unit_tag

 $boost::units::abstract::current_unit_tag$

```
// In header: <boost/units/systems/abstract.hpp>
struct current_unit_tag {
};
```


Struct temperature_unit_tag

 $boost::units::abstract::temperature_unit_tag$

```
// In header: <boost/units/systems/abstract.hpp>
struct temperature_unit_tag {
};
```


Struct amount_unit_tag

 $boost::units::abstract::amount_unit_tag$

```
// In header: <boost/units/systems/abstract.hpp>
struct amount_unit_tag {
};
```


Struct luminous_intensity_unit_tag

 $boost::units::abstract::luminous_intensity_unit_tag$

```
// In header: <boost/units/systems/abstract.hpp>
struct luminous_intensity_unit_tag {
};
```


Struct plane_angle_unit_tag

 $boost::units::abstract::plane_angle_unit_tag$

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct plane_angle_unit_tag {
};
```


Struct solid_angle_unit_tag

boost::units::abstract::solid_angle_unit_tag

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct solid_angle_unit_tag {
};
```


Struct base_unit_info<abstract::length_unit_tag>

boost::units::base_unit_info<abstract::length_unit_tag>

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct base_unit_info<abstract::length_unit_tag> {
    // public static functions
    static std::string name();
    static std::string symbol();
};
```

Description

```
1. static std::string name();
```

```
2. static std::string symbol() ;
```


Struct base_unit_info<abstract::mass_unit_tag>

boost::units::base_unit_info<abstract::mass_unit_tag>

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct base_unit_info<abstract::mass_unit_tag> {
    // public static functions
    static std::string name();
    static std::string symbol();
};
```

Description

```
1. static std::string name() ;
```

```
2. static std::string symbol() ;
```


Struct base_unit_info<abstract::time_unit_tag>

boost::units::base_unit_info<abstract::time_unit_tag>

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct base_unit_info<abstract::time_unit_tag> {
    // public static functions
    static std::string name();
    static std::string symbol();
};
```

Description

```
1. static std::string name();
```

```
2. static std::string symbol() ;
```


Struct base_unit_info<abstract::current_unit_tag>

boost::units::base_unit_info<abstract::current_unit_tag>

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct base_unit_info<abstract::current_unit_tag> {
    // public static functions
    static std::string name();
    static std::string symbol();
};
```

Description

```
1. static std::string name();
```

```
2. static std::string symbol() ;
```


Struct base_unit_info<abstract::temperature_unit_tag>

boost::units::base_unit_info<abstract::temperature_unit_tag>

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct base_unit_info<abstract::temperature_unit_tag> {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

```
1. static std::string name();
```

```
2. static std::string symbol() ;
```


Struct base_unit_info<abstract::amount_unit_tag>

boost::units::base_unit_info<abstract::amount_unit_tag>

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct base_unit_info<abstract::amount_unit_tag> {
    // public static functions
    static std::string name();
    static std::string symbol();
};
```

Description

```
1. static std::string name();
```

```
2. static std::string symbol() ;
```


Struct base_unit_info<abstract::luminous_intensity_unit_tag>

boost::units::base_unit_info<abstract::luminous_intensity_unit_tag>

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct base_unit_info<abstract::luminous_intensity_unit_tag> {
    // public static functions
    static std::string name();
    static std::string symbol();
};
```

Description

```
1. static std::string name();
```

```
2. static std::string symbol() ;
```


Struct base_unit_info<abstract::plane_angle_unit_tag>

boost::units::base_unit_info<abstract::plane_angle_unit_tag>

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct base_unit_info<abstract::plane_angle_unit_tag> {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

```
1. static std::string name();
```

```
2. static std::string symbol();
```


Struct base_unit_info<abstract::solid_angle_unit_tag>

boost::units::base_unit_info<abstract::solid_angle_unit_tag>

Synopsis

```
// In header: <boost/units/systems/abstract.hpp>
struct base_unit_info<abstract::solid_angle_unit_tag> {
    // public static functions
    static std::string name();
    static std::string symbol();
};
```

Description

base_unit_info public static functions

```
1. static std::string name();
```

```
2. static std::string symbol();
```

Base Units by Category

Angle Base Units Reference

Header <boost/units/base_units/angle/arcminute.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<angle::arcminute_base_unit>;
    namespace angle {
      typedef scaled_base_unit< degree_base_unit, scale< 60, static_rational<-1 > > > arJ
cminute_base_unit;
    }
}
```


Struct base_unit_info<angle::arcminute_base_unit>

boost::units::base_unit_info<angle::arcminute_base_unit>

Synopsis

```
// In header: <boost/units/base_units/angle/arcminute.hpp>
struct base_unit_info<angle::arcminute_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/angle/arcsecond.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<angle::arcsecond_base_unit>;
    namespace angle {
       typedef scaled_base_unit< degree_base_unit, scale< 3600, static_rational<-1 > > arcJ
second_base_unit;
    }
}
```


Struct base_unit_info<angle::arcsecond_base_unit>

boost::units::base_unit_info<angle::arcsecond_base_unit>

Synopsis

```
// In header: <boost/units/base_units/angle/arcsecond.hpp>
struct base_unit_info<angle::arcsecond_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/angle/degree.hpp>

```
namespace boost {
  namespace units {
    namespace angle {
     struct degree_base_unit;
     }
  }
}
```


Struct degree_base_unit

boost::units::angle::degree_base_unit

Synopsis

```
// In header: <boost/units/base_units/angle/degree.hpp>
struct degree_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

degree_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/angle/gradian.hpp>

```
namespace boost {
  namespace units {
    namespace angle {
      struct gradian_base_unit;
     }
  }
}
```


Struct gradian_base_unit

boost::units::angle::gradian_base_unit

Synopsis

```
// In header: <boost/units/base_units/angle/gradian.hpp>
struct gradian_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

gradian_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/angle/radian.hpp>

```
namespace boost {
  namespace units {
    namespace angle {
     struct radian_base_unit;
     }
  }
}
```


Struct radian_base_unit

boost::units::angle::radian_base_unit

Synopsis

```
// In header: <boost/units/base_units/angle/radian.hpp>
struct radian_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

radian_base_unit public static functions

```
1. static std::string name() ;
2. static std::string symbol() ;
```

Header <boost/units/base_units/angle/revolution.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<angle::revolution_base_unit>;
    namespace angle {
       typedef scaled_base_unit< degree_base_unit, scale< 360, static_rational< 1 > > revoludion_base_unit;
    }
}
}
```


Struct base_unit_info<angle::revolution_base_unit>

boost::units::base_unit_info<angle::revolution_base_unit>

Synopsis

```
// In header: <boost/units/base_units/angle/revolution.hpp>

struct base_unit_info<angle::revolution_base_unit> {

   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/angle/steradian.hpp>

```
namespace boost {
  namespace units {
    namespace angle {
     struct steradian_base_unit;
     }
  }
}
```


Struct steradian_base_unit

boost::units::angle::steradian_base_unit

Synopsis

```
// In header: <boost/units/base_units/angle/steradian.hpp>
struct steradian_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

steradian_base_unit public static functions

```
1. static std::string name();
2. static std::string symbol();
```

Astronomical Base Units Reference

Header <boost/units/base_units/astronomical/astronomical_unit.hpp>

```
namespace boost {
  namespace units {
    namespace astronomical {
      struct astronomical_unit_base_unit;
    }
  }
}
```


Struct astronomical_unit_base_unit

boost::units::astronomical::astronomical_unit_base_unit

Synopsis

```
// In header: <boost/units/base_units/astronomical/astronomical_unit.hpp>
struct astronomical_unit_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

astronomical_unit_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/astronomical/light_day.hpp>

Struct base_unit_info<astronomical::light_day_base_unit>

boost::units::base_unit_info<astronomical::light_day_base_unit>

Synopsis

```
// In header: <boost/units/base_units/astronomical/light_day.hpp>
struct base_unit_info<astronomical::light_day_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/astronomical/light_hour.hpp>

Struct base_unit_info<astronomical::light_hour_base_unit>

boost::units::base_unit_info<astronomical::light_hour_base_unit>

Synopsis

```
// In header: <boost/units/base_units/astronomical/light_hour.hpp>
struct base_unit_info<astronomical::light_hour_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/astronomical/light_minute.hpp>

Struct base_unit_info<astronomical::light_minute_base_unit>

boost::units::base_unit_info<astronomical::light_minute_base_unit>

Synopsis

```
// In header: <boost/units/base_units/astronomical/light_minute.hpp>
struct base_unit_info<astronomical::light_minute_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/astronomical/light_second.hpp>

```
namespace boost {
  namespace units {
    namespace astronomical {
     struct light_second_base_unit;
     }
  }
}
```


Struct light_second_base_unit

boost::units::astronomical::light_second_base_unit

Synopsis

```
// In header: <boost/units/base_units/astronomical/light_second.hpp>
struct light_second_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

light_second_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/astronomical/light_year.hpp>

Struct base_unit_info<astronomical::light_year_base_unit>

boost::units::base_unit_info<astronomical::light_year_base_unit>

Synopsis

```
// In header: <boost/units/base_units/astronomical/light_year.hpp>
struct base_unit_info<astronomical::light_year_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/astronomical/parsec.hpp>

```
namespace boost {
  namespace units {
    namespace astronomical {
     struct parsec_base_unit;
    }
}
```


Struct parsec_base_unit

boost::units::astronomical::parsec_base_unit

Synopsis

```
// In header: <boost/units/base_units/astronomical/parsec.hpp>
struct parsec_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

parsec_base_unit public static functions

```
1. static const char * name();
2. static const char * symbol();
```

CGS Base Units Reference

Header <boost/units/base_units/cgs/biot.hpp>

```
namespace boost {
   namespace units {
      namespace cgs {
        typedef scaled_base_unit< boost::units::si::ampere_base_unit, scale< 10, static_rational<-
1 > > biot_base_unit;
      }
   }
}
```

Header <boost/units/base_units/cgs/centimeter.hpp>

```
namespace boost {
  namespace units {
    namespace cgs {
       typedef scaled_base_unit< boost::units::si::meter_base_unit, scale< 10, static_rational<-2 > > > centimeter_base_unit;
       }
  }
}
```


Header <boost/units/base_units/cgs/gram.hpp>

```
namespace boost {
  namespace units {
   namespace cgs {
    struct gram_base_unit;
   }
}
```


Struct gram_base_unit

boost::units::cgs::gram_base_unit

Synopsis

```
// In header: <boost/units/base_units/cgs/gram.hpp>
struct gram_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

gram_base_unit public static functions

```
1. static std::string name();
2. static std::string symbol();
```

Imperial Base Units Reference

Header <boost/units/base_units/imperial/drachm.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::drachm_base_unit>;
    namespace imperial {
       typedef scaled_base_unit< pound_base_unit, scale< 16, static_rational<-2 > > \darksquare drachm_base_unit;
    }
} drachm_base_unit;
}
```


Struct base_unit_info<imperial::drachm_base_unit>

boost::units::base_unit_info<imperial::drachm_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/drachm.hpp>
struct base_unit_info<imperial::drachm_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/fluid_ounce.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::fluid_ounce_base_unit>;
    namespace imperial {
       typedef scaled_base_unit< pint_base_unit, scale< 20, static_rational<-1 > > fluid_ounce_base_unit;
    }
}
```


Struct base_unit_info<imperial::fluid_ounce_base_unit>

boost::units::base_unit_info<imperial::fluid_ounce_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/fluid_ounce.hpp>
struct base_unit_info<imperial::fluid_ounce_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/foot.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::foot_base_unit>;
    namespace imperial {
     typedef scaled_base_unit< yard_base_unit, scale< 3, static_rational<-1 > > > foot_base_unit;
    }
}
```


Struct base_unit_info<imperial::foot_base_unit>

boost::units::base_unit_info<imperial::foot_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/foot.hpp>
struct base_unit_info<imperial::foot_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/furlong.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::furlong_base_unit>;
    namespace imperial {
       typedef scaled_base_unit< yard_base_unit, scale< 220, static_rational< 1 > > fur.d
long_base_unit;
    }
}
```


Struct base_unit_info<imperial::furlong_base_unit>

boost::units::base_unit_info<imperial::furlong_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/furlong.hpp>
struct base_unit_info<imperial::furlong_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/imperial/gallon.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::gallon_base_unit>;
    namespace imperial {
       typedef scaled_base_unit< pint_base_unit, scale< 8, static_rational< 1 > > gal_lon_base_unit;
    }
}
}
```


Struct base_unit_info<imperial::gallon_base_unit>

boost::units::base_unit_info<imperial::gallon_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/gallon.hpp>

struct base_unit_info<imperial::gallon_base_unit> {

   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/gill.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::gill_base_unit>;
    namespace imperial {
     typedef scaled_base_unit< pint_base_unit, scale< 4, static_rational<-1 > >  gill_base_unit;
    }
}
```


Struct base_unit_info<imperial::gill_base_unit>

boost::units::base_unit_info<imperial::gill_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/gill.hpp>
struct base_unit_info<imperial::gill_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/grain.hpp>

Struct base_unit_info<imperial::grain_base_unit>

boost::units::base_unit_info<imperial::grain_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/grain.hpp>
struct base_unit_info<imperial::grain_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/hundredweight.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::hundredweight_base_unit>;
    namespace imperial {
        typedef scaled_base_unit< pound_base_unit, scale< 112, static_rational< 1 > > > hundred,
    weight_base_unit;
    }
}
```


Struct base_unit_info<imperial::hundredweight_base_unit>

boost::units::base_unit_info<imperial::hundredweight_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/hundredweight.hpp>
struct base_unit_info<imperial::hundredweight_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/inch.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::inch_base_unit>;
    namespace imperial {
     typedef scaled_base_unit< yard_base_unit, scale< 36, static_rational<-1 > > inch_base_unit;
    }
}
```


Struct base_unit_info<imperial::inch_base_unit>

boost::units::base_unit_info<imperial::inch_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/inch.hpp>
struct base_unit_info<imperial::inch_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/league.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::league_base_unit>;
    namespace imperial {
       typedef scaled_base_unit< yard_base_unit, scale< 5280, static_rational< 1 >> ↓
    }
  }
}
```


Struct base_unit_info<imperial::league_base_unit>

boost::units::base_unit_info<imperial::league_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/league.hpp>
struct base_unit_info<imperial::league_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/mile.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::mile_base_unit>;
    namespace imperial {
       typedef scaled_base_unit< yard_base_unit, scale< 1760, static_rational< 1 >> ↓
       mile_base_unit;
       }
   }
}
```


Struct base_unit_info<imperial::mile_base_unit>

boost::units::base_unit_info<imperial::mile_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/mile.hpp>
struct base_unit_info<imperial::mile_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/ounce.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::ounce_base_unit>;
    namespace imperial {
        typedef scaled_base_unit< pound_base_unit, scale< 2, static_rational<-4 > > ↓
        ounce_base_unit;
        }
    }
}
```


Struct base_unit_info<imperial::ounce_base_unit>

boost::units::base_unit_info<imperial::ounce_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/ounce.hpp>
struct base_unit_info<imperial::ounce_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/pint.hpp>

```
namespace boost {
  namespace units {
    namespace imperial {
    struct pint_base_unit;
    }
}
```


Struct pint_base_unit

boost::units::imperial::pint_base_unit

Synopsis

```
// In header: <boost/units/base_units/imperial/pint.hpp>
struct pint_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

pint_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/pound.hpp>

```
namespace boost {
  namespace units {
    namespace imperial {
    struct pound_base_unit;
    }
}
```


Struct pound_base_unit

boost::units::imperial::pound_base_unit

Synopsis

```
// In header: <boost/units/base_units/imperial/pound.hpp>
struct pound_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

pound_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/quart.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::quart_base_unit>;
    namespace imperial {
     typedef scaled_base_unit< pint_base_unit, scale< 2, static_rational< 1 > > quart_base_unit;
    }
}
```


Struct base_unit_info<imperial::quart_base_unit>

boost::units::base_unit_info<imperial::quart_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/quart.hpp>
struct base_unit_info<imperial::quart_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/quarter.hpp>

Struct base_unit_info<imperial::quarter_base_unit>

boost::units::base_unit_info<imperial::quarter_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/quarter.hpp>
struct base_unit_info<imperial::quarter_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/imperial/stone.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::stone_base_unit>;
    namespace imperial {
       typedef scaled_base_unit< pound_base_unit, scale< 14, static_rational< 1 > > ↓
       stone_base_unit;
       }
    }
}
```


Struct base_unit_info<imperial::stone_base_unit>

boost::units::base_unit_info<imperial::stone_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/stone.hpp>
struct base_unit_info<imperial::stone_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/imperial/thou.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::thou_base_unit>;
    namespace imperial {
       typedef scaled_base_unit< yard_base_unit, scale< 36000, static_rational<-1 >> \darksquare >> thou_base_unit;
    }
}
}
```


Struct base_unit_info<imperial::thou_base_unit>

boost::units::base_unit_info<imperial::thou_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/thou.hpp>
struct base_unit_info<imperial::thou_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/imperial/ton.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<imperial::ton_base_unit>;
    namespace imperial {
       typedef scaled_base_unit< pound_base_unit, scale< 2240, static_rational< 1 > > \d>
       ton_base_unit;
       }
    }
}
```


Struct base_unit_info<imperial::ton_base_unit>

boost::units::base_unit_info<imperial::ton_base_unit>

Synopsis

```
// In header: <boost/units/base_units/imperial/ton.hpp>
struct base_unit_info<imperial::ton_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/imperial/yard.hpp>

```
namespace boost {
  namespace units {
    namespace imperial {
     struct yard_base_unit;
     }
  }
}
```


Struct yard_base_unit

boost::units::imperial::yard_base_unit

Synopsis

```
// In header: <boost/units/base_units/imperial/yard.hpp>
struct yard_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

yard_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Metric Base Units Reference

Header <boost/units/base_units/metric/angstrom.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<metric::angstrom_base_unit>;
    namespace metric {
      typedef scaled_base_unit< boost::units::si::meter_base_unit, scale< 10, static_rational<-10 >> > angstrom_base_unit;
    }
  }
}
```


Struct base_unit_info<metric::angstrom_base_unit>

boost::units::base_unit_info<metric::angstrom_base_unit>

Synopsis

```
// In header: <boost/units/base_units/metric/angstrom.hpp>
struct base_unit_info<metric::angstrom_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/are.hpp>

```
namespace boost {
  namespace units {
    namespace metric {
     struct are_base_unit;
    }
}
```


Struct are_base_unit

boost::units::metric::are_base_unit

Synopsis

```
// In header: <boost/units/base_units/metric/are.hpp>
struct are_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

are_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/atmosphere.hpp>

```
namespace boost {
  namespace units {
    namespace metric {
     struct atmosphere_base_unit;
    }
}
```


Struct atmosphere_base_unit

boost::units::metric::atmosphere_base_unit

Synopsis

```
// In header: <boost/units/base_units/metric/atmosphere.hpp>
struct atmosphere_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

atmosphere_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/bar.hpp>

```
namespace boost {
  namespace units {
    namespace metric {
     struct bar_base_unit;
    }
}
```


Struct bar_base_unit

boost::units::metric::bar_base_unit

Synopsis

```
// In header: <boost/units/base_units/metric/bar.hpp>
struct bar_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

bar_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/barn.hpp>

```
namespace boost {
  namespace units {
    namespace metric {
     struct barn_base_unit;
    }
}
```


Struct barn_base_unit

boost::units::metric::barn_base_unit

Synopsis

```
// In header: <boost/units/base_units/metric/barn.hpp>
struct barn_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

barn_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/day.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<metric::day_base_unit>;
    namespace metric {
       typedef scaled_base_unit< boost::units::si::second_base_unit, scale< 86400, static_ration_lal< 1 > > > day_base_unit;
    }
  }
}
```


Struct base_unit_info<metric::day_base_unit>

boost::units::base_unit_info<metric::day_base_unit>

Synopsis

```
// In header: <boost/units/base_units/metric/day.hpp>
struct base_unit_info<metric::day_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/fermi.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<metric::fermi_base_unit>;
    namespace metric {
       typedef scaled_base_unit< boost::units::si::meter_base_unit, scale< 10, static_rational<-
15 > > fermi_base_unit;
    }
  }
}
```


Struct base_unit_info<metric::fermi_base_unit>

boost::units::base_unit_info<metric::fermi_base_unit>

Synopsis

```
// In header: <boost/units/base_units/metric/fermi.hpp>
struct base_unit_info<metric::fermi_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/metric/hectare.hpp>

```
namespace boost {
  namespace units {
    namespace metric {
     struct hectare_base_unit;
    }
}
```


Struct hectare_base_unit

boost::units::metric::hectare_base_unit

Synopsis

```
// In header: <boost/units/base_units/metric/hectare.hpp>
struct hectare_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

hectare_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/hour.hpp>

Struct base_unit_info<metric::hour_base_unit>

boost::units::base_unit_info<metric::hour_base_unit>

Synopsis

```
// In header: <boost/units/base_units/metric/hour.hpp>
struct base_unit_info<metric::hour_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/knot.hpp>

```
namespace boost {
  namespace units {
    namespace metric {
     struct knot_base_unit;
    }
}
```


Struct knot_base_unit

boost::units::metric::knot_base_unit

Synopsis

```
// In header: <boost/units/base_units/metric/knot.hpp>
struct knot_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

knot_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/liter.hpp>

```
namespace boost {
  namespace units {
    namespace metric {
     struct liter_base_unit;
     }
  }
}
```


Struct liter_base_unit

boost::units::metric::liter_base_unit

Synopsis

```
// In header: <boost/units/base_units/metric/liter.hpp>
struct liter_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

liter_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/micron.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<metric::micron_base_unit>;
    namespace metric {
       typedef scaled_base_unit< boost::units::si::meter_base_unit, scale< 10, static_rational<-6 > > micron_base_unit;
    }
  }
}
```


Struct base_unit_info<metric::micron_base_unit>

boost::units::base_unit_info<metric::micron_base_unit>

Synopsis

```
// In header: <boost/units/base_units/metric/micron.hpp>
struct base_unit_info<metric::micron_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/minute.hpp>

Struct base_unit_info<metric::minute_base_unit>

boost::units::base_unit_info<metric::minute_base_unit>

Synopsis

```
// In header: <boost/units/base_units/metric/minute.hpp>
struct base_unit_info<metric::minute_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/mmHg.hpp>

```
namespace boost {
  namespace units {
    namespace metric {
     struct mmHg_base_unit;
    }
}
```


Struct mmHg_base_unit

boost::units::metric::mmHg_base_unit

Synopsis

```
// In header: <boost/units/base_units/metric/mmHg.hpp>
struct mmHg_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

mmHg_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/nautical_mile.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<metric::nautical_mile_base_unit>;
    namespace metric {
       typedef scaled_base_unit< boost::units::si::meter_base_unit, scale< 1852, static_ration_J
al< 1 > > nautical_mile_base_unit;
    }
}
```


Struct base_unit_info<metric::nautical_mile_base_unit>

boost::units::base_unit_info<metric::nautical_mile_base_unit>

Synopsis

```
// In header: <boost/units/base_units/metric/nautical_mile.hpp>
struct base_unit_info<metric::nautical_mile_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/ton.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<metric::ton_base_unit>;
    namespace metric {
      typedef scaled_base_unit< boost::units::si::kilogram_base_unit, scale< 1000, static_ration_d
al< 1 > > > ton_base_unit;
    }
}
```


Struct base_unit_info<metric::ton_base_unit>

boost::units::base_unit_info<metric::ton_base_unit>

Synopsis

```
// In header: <boost/units/base_units/metric/ton.hpp>
struct base_unit_info<metric::ton_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/torr.hpp>

```
namespace boost {
  namespace units {
    namespace metric {
     struct torr_base_unit;
    }
}
```


Struct torr_base_unit

boost::units::metric::torr_base_unit

Synopsis

```
// In header: <boost/units/base_units/metric/torr.hpp>
struct torr_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

torr_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/metric/year.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<metric::year_base_unit>;
    namespace metric {
       typedef scaled_base_unit< boost::units::si::second_base_unit, scale< 31557600, static_raJ
tional< 1 >> > year_base_unit;
    }
}
```


Struct base_unit_info<metric::year_base_unit>

boost::units::base_unit_info<metric::year_base_unit>

Synopsis

```
// In header: <boost/units/base_units/metric/year.hpp>
struct base_unit_info<metric::year_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

SI Base Units Reference

Header <boost/units/base_units/si/ampere.hpp>

```
namespace boost {
  namespace units {
    namespace si {
    struct ampere_base_unit;
    }
}
```


Struct ampere_base_unit

boost::units::si::ampere_base_unit

Synopsis

```
// In header: <boost/units/base_units/si/ampere.hpp>
struct ampere_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

ampere_base_unit public static functions

```
1. static std::string name();
2. static std::string symbol();
```

Header <boost/units/base_units/si/candela.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     struct candela_base_unit;
     }
  }
}
```


Struct candela_base_unit

boost::units::si::candela_base_unit

Synopsis

```
// In header: <boost/units/base_units/si/candela.hpp>
struct candela_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

candela_base_unit public static functions

```
1. static std::string name() ;
2. static std::string symbol() ;
```

Header <boost/units/base_units/si/kelvin.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     struct kelvin_base_unit;
     }
  }
}
```


Struct kelvin_base_unit

boost::units::si::kelvin_base_unit

Synopsis

```
// In header: <boost/units/base_units/si/kelvin.hpp>
struct kelvin_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

kelvin_base_unit public static functions

```
1. static std::string name();
2. static std::string symbol();
```

Header <boost/units/base_units/si/kilogram.hpp>

Header <boost/units/base_units/si/meter.hpp>

```
namespace boost {
  namespace units {
    namespace si {
      struct meter_base_unit;
      }
  }
}
```


Struct meter_base_unit

boost::units::si::meter_base_unit

Synopsis

```
// In header: <boost/units/base_units/si/meter.hpp>
struct meter_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

meter_base_unit public static functions

```
1. static std::string name();
2. static std::string symbol();
```

Header <boost/units/base_units/si/mole.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     struct mole_base_unit;
     }
  }
}
```


Struct mole_base_unit

boost::units::si::mole_base_unit

Synopsis

```
// In header: <boost/units/base_units/si/mole.hpp>
struct mole_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

mole_base_unit public static functions

```
1. static std::string name() ;
2. static std::string symbol() ;
```

Header <boost/units/base_units/si/second.hpp>

```
namespace boost {
  namespace units {
    namespace si {
     struct second_base_unit;
     }
  }
}
```


Struct second_base_unit

boost::units::si::second_base_unit

Synopsis

```
// In header: <boost/units/base_units/si/second.hpp>
struct second_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

second_base_unit public static functions

```
1. static std::string name();
2. static std::string symbol();
```

Temperature Base Units Reference

Header <boost/units/base_units/temperature/celsius.hpp>

```
namespace boost {
  namespace units {
    namespace temperature {
     struct celsius_base_unit;
    }
  }
}
```


Struct celsius_base_unit

boost::units::temperature::celsius_base_unit

Synopsis

```
// In header: <boost/units/base_units/temperature/celsius.hpp>
struct celsius_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

celsius_base_unit public static functions

```
1. static std::string name() ;
2. static std::string symbol() ;
```

Header <boost/units/base_units/temperature/fahrenheit.hpp>

```
namespace boost {
  namespace units {
    namespace temperature {
     struct fahrenheit_base_unit;
     }
}
```


Struct fahrenheit_base_unit

boost::units::temperature::fahrenheit_base_unit

Synopsis

```
// In header: <boost/units/base_units/temperature/fahrenheit.hpp>
struct fahrenheit_base_unit {
   // public static functions
   static std::string name();
   static std::string symbol();
};
```

Description

fahrenheit_base_unit public static functions

```
1. static std::string name();
2. static std::string symbol();
```

US Base Units Reference

Header <boost/units/base_units/us/cup.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::cup_base_unit>;
    namespace us {
    typedef scaled_base_unit< pint_base_unit, scale< 2, static_rational<-1 > > cup_base_unit;
    }
}
```


Struct base_unit_info<us::cup_base_unit>

boost::units::base_unit_info<us::cup_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/cup.hpp>
struct base_unit_info<us::cup_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/us/dram.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::dram_base_unit>;
    namespace us {
      typedef scaled_base_unit< pound_base_unit, scale< 16, static_rational<-2 > > \dram_base_unit;
    }
} dram_base_unit;
}
```


Struct base_unit_info<us::dram_base_unit>

boost::units::base_unit_info<us::dram_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/dram.hpp>
struct base_unit_info<us::dram_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/fluid_dram.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::fluid_dram_base_unit>;
    namespace us {
       typedef scaled_base_unit< pint_base_unit, scale< 2, static_rational<-7 > > fluid_id_dram_base_unit;
    }
  }
}
```


Struct base_unit_info<us::fluid_dram_base_unit>

boost::units::base_unit_info<us::fluid_dram_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/fluid_dram.hpp>
struct base_unit_info<us::fluid_dram_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/us/fluid_ounce.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::fluid_ounce_base_unit>;
    namespace us {
       typedef scaled_base_unit< pint_base_unit, scale< 16, static_rational<-1 > > > fluid_ounce_base_unit;
    }
}
```


Struct base_unit_info<us::fluid_ounce_base_unit>

boost::units::base_unit_info<us::fluid_ounce_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/fluid_ounce.hpp>
struct base_unit_info<us::fluid_ounce_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/foot.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::foot_base_unit>;
    namespace us {
    typedef scaled_base_unit< yard_base_unit, scale< 3, static_rational<-1 > > > foot_base_unit;
    }
}
```


Struct base_unit_info<us::foot_base_unit>

boost::units::base_unit_info<us::foot_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/foot.hpp>
struct base_unit_info<us::foot_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/us/gallon.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::gallon_base_unit>;
    namespace us {
     typedef scaled_base_unit< pint_base_unit, scale< 2, static_rational< 3 > > galdlon_base_unit;
     }
}
}
```


Struct base_unit_info<us::gallon_base_unit>

boost::units::base_unit_info<us::gallon_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/gallon.hpp>
struct base_unit_info<us::gallon_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/gill.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::gill_base_unit>;
    namespace us {
     typedef scaled_base_unit< pint_base_unit, scale< 2, static_rational<-2 > > > gill_base_unit;
    }
}
```


Struct base_unit_info<us::gill_base_unit>

boost::units::base_unit_info<us::gill_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/gill.hpp>
struct base_unit_info<us::gill_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/us/grain.hpp>

Struct base_unit_info<us::grain_base_unit>

boost::units::base_unit_info<us::grain_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/grain.hpp>
struct base_unit_info<us::grain_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/hundredweight.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::hundredweight_base_unit>;
    namespace us {
       typedef scaled_base_unit< pound_base_unit, scale< 100, static_rational< 1 > > hundred,
    weight_base_unit;
    }
  }
}
```


Struct base_unit_info<us::hundredweight_base_unit>

boost::units::base_unit_info<us::hundredweight_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/hundredweight.hpp>
struct base_unit_info<us::hundredweight_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/inch.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::inch_base_unit>;
    namespace us {
    typedef scaled_base_unit< yard_base_unit, scale< 36, static_rational<-1 > > inch_base_unit;
    }
}
```


Struct base_unit_info<us::inch_base_unit>

boost::units::base_unit_info<us::inch_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/inch.hpp>
struct base_unit_info<us::inch_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/us/mil.hpp>

Struct base_unit_info<us::mil_base_unit>

boost::units::base_unit_info<us::mil_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/mil.hpp>
struct base_unit_info<us::mil_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/us/mile.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::mile_base_unit>;
    namespace us {
      typedef scaled_base_unit< yard_base_unit, scale< 1760, static_rational< 1 > > ↓
      mile_base_unit;
      }
  }
}
```


Struct base_unit_info<us::mile_base_unit>

boost::units::base_unit_info<us::mile_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/mile.hpp>
struct base_unit_info<us::mile_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/us/minim.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::minim_base_unit>;
    namespace us {
     typedef scaled_base_unit< pint_base_unit, scale< 7680, static_rational<-1 > > min_J
im_base_unit;
    }
  }
}
```


Struct base_unit_info<us::minim_base_unit>

boost::units::base_unit_info<us::minim_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/minim.hpp>
struct base_unit_info<us::minim_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/ounce.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::ounce_base_unit>;
    namespace us {
      typedef scaled_base_unit< pound_base_unit, scale< 2, static_rational<-4 > > ↓
      ounce_base_unit;
      }
  }
}
```


Struct base_unit_info<us::ounce_base_unit>

boost::units::base_unit_info<us::ounce_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/ounce.hpp>
struct base_unit_info<us::ounce_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/pint.hpp>

```
namespace boost {
  namespace units {
    namespace us {
     struct pint_base_unit;
     }
  }
}
```


Struct pint_base_unit

boost::units::us::pint_base_unit

Synopsis

```
// In header: <boost/units/base_units/us/pint.hpp>
struct pint_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

pint_base_unit public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/pound.hpp>

```
namespace boost {
  namespace units {
    namespace us {
     struct pound_base_unit;
     }
  }
}
```


Struct pound_base_unit

boost::units::us::pound_base_unit

Synopsis

```
// In header: <boost/units/base_units/us/pound.hpp>
struct pound_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

pound_base_unit public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/us/quart.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::quart_base_unit>;
    namespace us {
    typedef scaled_base_unit< pint_base_unit, scale< 2, static_rational< 1 > > quart_base_unit;
    }
}
```


Struct base_unit_info<us::quart_base_unit>

boost::units::base_unit_info<us::quart_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/quart.hpp>
struct base_unit_info<us::quart_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/tablespoon.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::tablespoon_base_unit>;
    namespace us {
       typedef scaled_base_unit< pint_base_unit, scale< 2, static_rational<-5 >> > table_I
spoon_base_unit;
    }
  }
}
```


Struct base_unit_info<us::tablespoon_base_unit>

boost::units::base_unit_info<us::tablespoon_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/tablespoon.hpp>
struct base_unit_info<us::tablespoon_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/teaspoon.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::teaspoon_base_unit>;
    namespace us {
       typedef scaled_base_unit< pint_base_unit, scale< 96, static_rational<-1 > > tead
    spoon_base_unit;
    }
  }
}
```


Struct base_unit_info<us::teaspoon_base_unit>

boost::units::base_unit_info<us::teaspoon_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/teaspoon.hpp>
struct base_unit_info<us::teaspoon_base_unit> {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name() ;
2. static const char * symbol() ;
```

Header <boost/units/base_units/us/ton.hpp>

```
namespace boost {
  namespace units {
    template<> struct base_unit_info<us::ton_base_unit>;
    namespace us {
      typedef scaled_base_unit< pound_base_unit, scale< 2000, static_rational< 1 > > ↓
    }
  }
}
```


Struct base_unit_info<us::ton_base_unit>

boost::units::base_unit_info<us::ton_base_unit>

Synopsis

```
// In header: <boost/units/base_units/us/ton.hpp>
struct base_unit_info<us::ton_base_unit> {
    // public static functions
    static const char * name();
    static const char * symbol();
};
```

Description

base_unit_info public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Header <boost/units/base_units/us/yard.hpp>

```
namespace boost {
  namespace units {
    namespace us {
     struct yard_base_unit;
     }
  }
}
```


Struct yard_base_unit

boost::units::us::yard_base_unit

Synopsis

```
// In header: <boost/units/base_units/us/yard.hpp>
struct yard_base_unit {
   // public static functions
   static const char * name();
   static const char * symbol();
};
```

Description

yard_base_unit public static functions

```
1. static const char * name();
2. static const char * symbol();
```

Alphabetical Listing of Base Units

```
boost/units/base_units/si/ampere.hpp
boost/units/base_units/metric/angstrom.hpp
boost/units/base_units/angle/arcminute.hpp
boost/units/base_units/angle/arcsecond.hpp
boost/units/base_units/metric/are.hpp
boost/units/base_units/astronomical/astronomical_unit.hpp
boost/units/base_units/metric/atmosphere.hpp
boost/units/base_units/metric/bar.hpp
boost/units/base_units/metric/barn.hpp
boost/units/base_units/cgs/biot.hpp
boost/units/base_units/si/candela.hpp
boost/units/base_units/temperature/celsius.hpp
boost/units/base_units/cgs/centimeter.hpp
boost/units/base_units/us/cup.hpp
boost/units/base_units/metric/day.hpp
boost/units/base_units/angle/degree.hpp
boost/units/base_units/imperial/drachm.hpp
boost/units/base_units/us/dram.hpp
boost/units/base_units/temperature/fahrenheit.hpp
boost/units/base_units/metric/fermi.hpp
boost/units/base_units/us/fluid_dram.hpp
boost/units/base_units/us/fluid_ounce.hpp
boost/units/base_units/imperial/fluid_ounce.hpp
boost/units/base_units/us/foot.hpp
boost/units/base_units/imperial/foot.hpp
boost/units/base_units/imperial/furlong.hpp
boost/units/base_units/us/gallon.hpp
boost/units/base_units/imperial/gallon.hpp
```



```
boost/units/base_units/us/gill.hpp
boost/units/base_units/imperial/gill.hpp
boost/units/base_units/angle/gradian.hpp
boost/units/base_units/us/grain.hpp
boost/units/base_units/imperial/grain.hpp
boost/units/base_units/cgs/gram.hpp
boost/units/base_units/metric/hectare.hpp
boost/units/base_units/metric/hour.hpp
boost/units/base_units/us/hundredweight.hpp
boost/units/base_units/imperial/hundredweight.hpp
boost/units/base_units/us/inch.hpp
boost/units/base_units/imperial/inch.hpp
boost/units/base_units/si/kelvin.hpp
boost/units/base_units/si/kilogram.hpp
boost/units/base_units/metric/knot.hpp
boost/units/base_units/imperial/league.hpp
boost/units/base units/astronomical/light day.hpp
boost/units/base_units/astronomical/light_hour.hpp
boost/units/base_units/astronomical/light_minute.hpp
boost/units/base_units/astronomical/light_second.hpp
boost/units/base_units/astronomical/light_year.hpp
boost/units/base_units/metric/liter.hpp
boost/units/base_units/si/meter.hpp
boost/units/base_units/metric/micron.hpp
boost/units/base_units/us/mil.hpp
boost/units/base_units/us/mile.hpp
boost/units/base_units/imperial/mile.hpp
boost/units/base units/us/minim.hpp
boost/units/base_units/metric/minute.hpp
boost/units/base_units/metric/mmHg.hpp
boost/units/base_units/si/mole.hpp
boost/units/base_units/metric/nautical_mile.hpp
boost/units/base_units/us/ounce.hpp
boost/units/base_units/imperial/ounce.hpp
boost/units/base_units/astronomical/parsec.hpp
boost/units/base_units/us/pint.hpp
boost/units/base_units/imperial/pint.hpp
boost/units/base_units/us/pound.hpp
boost/units/base_units/imperial/pound.hpp
boost/units/base_units/us/quart.hpp
boost/units/base_units/imperial/quart.hpp
boost/units/base_units/imperial/quarter.hpp
boost/units/base_units/angle/radian.hpp
boost/units/base_units/angle/revolution.hpp
boost/units/base_units/si/second.hpp
boost/units/base_units/angle/steradian.hpp
boost/units/base_units/imperial/stone.hpp
boost/units/base_units/us/tablespoon.hpp
boost/units/base_units/us/teaspoon.hpp
boost/units/base units/imperial/thou.hpp
boost/units/base_units/us/ton.hpp
boost/units/base_units/metric/ton.hpp
boost/units/base_units/imperial/ton.hpp
boost/units/base_units/metric/torr.hpp
boost/units/base_units/us/yard.hpp
boost/units/base_units/imperial/yard.hpp
boost/units/base_units/metric/year.hpp
```


Installation

The core header files are located in boost/units. Unit system headers are located in <bookfoothunits/systems>. There are no source files for the library itself - the library is header-only. Example programs demonstrating various aspects of the library can be found in boost/libs/units/example. Programs for unit testing are provided in boost/libs/units/test.

FAQ

How does one distinguish between quantities that are physically different but have the same units (such as energy and torque)?

Because Boost.Units includes plane and solid angle units in the SI system, torque and energy are, in fact, distinguishable (see torque). In addition, energy is a true scalar quantity, while torque, despite having the same units as energy if plane angle is not included, is in fact a pseudovector. Thus, a value type representing pseudovectors and encapsulating their algebra could also be implemented.

There are, however, a few SI units that are dimensionally indistinguishable within the SI system. These include the becquerel, which has units identical to frequency (Hz), and the sievert, which is degenerate with the gray. In cases such as this, the proper way to treat this difference is to recognize that expanding the set of base dimensions can provide disambiguation. For example, adding a base dimension for radioactive decays would allow the becquerel to be written as decays/second, differentiating it from the signature of hertz, which is simply 1/second.

Angles are treated as units

If you don't like this, you can just ignore the angle units and go on your merry way (periodically screwing up when a routine wants degrees and you give it radians instead...)

Why are there homogeneous systems? Aren't heterogeneous systems sufficient?

Consider the following code:

```
cout << sin(asin(180.0 * degrees));</pre>
```

What should this print? If only heterogeneous systems are available it would print 3.14159+ rad Why? Well, asin would return a quantity<dimensionless> effectively losing the information that degrees are being used. In order to propagate this extra information we need homogeneous systems.

Why can't I construct a quantity directly from the value type?

This only breaks generic code--which ought to break anyway. The only literal value that ought to be converted to a quantity by generic code is zero, which should be handled by the default constructor. In addition, consider the search and replace problem allowing this poses:

```
quantity<si::length> q(1.0);
```

Here, the intent is clear - we want a length of one in the SI system, which is one meter. However, imagine some well-intentioned coder attempting to reuse this code, but to have it perform the calculations in the CGS unit system instead. After searching for si:: and replacing it with cgs::, we have:


```
quantity<cgs::length> q(1.0);
```

Unfortunately, the meaning of this statement has suddenly changed from one meter to one centimeter. In contrast, as implemented, we begin with:

```
quantity<si::length> q(1.0*si::meter);
```

and, after search and replace:

```
quantity<cgs::length> q(1.0*cgs::meter);
```

which gives us an error. Even if the code has a @using namespace boost::units::si; declaration, the latter is still safe, with:

```
using namespace boost::units::si;
quantity<length> q(1.0*meter);
```

going to

```
using namespace boost::units::cgs;
quantity<length> q(1.0*meter);
```

The latter will involve an explicit conversion from meters to centimeters, but the value remains correct.

Why are conversions explicit by default?

Safety and the potential for unintended conversions leading to precision loss and hidden performance costs. Options are provided for forcing implicit conversions between specific units to be allowed.

Acknowledgements

Matthias C. Schabel would like to acknowledge the Department of Defense for its support of this work under the Prostate Cancer Research Program New Investigator Award W81XWH-04-1-0042 and the National Institutes of Health for their support of this work under the NIBIB Mentored Quantitative Research Development Award K25EB005077.

Thanks to David Walthall for his assistance in debugging and testing on a variety of platforms and Torsten Maehne for his work on interfacing the Boost Units and Boost Lambda libraries.

Thanks to:

- · Paul Bristow,
- · Michael Fawcett,
- Ben FrantzDale,
- · Ron Garcia,
- · David Greene,
- · Peder Holt,
- · Janek Kozicki,
- · Andy Little,
- · Kevin Lynch,

- · Torsten Maehne
- · Noah Roberts,
- · Andrey Semashev,
- · David Walthall,
- · Deane Yang,

and all the members of the Boost mailing list who provided their input into the design and implementation of this library.

Help Wanted

Any help in the following areas would be much appreciated:

- · testing on other compilers and operating systems
- · performance testing on various architectures
- tutorials

Release Notes

1.0.0 (August 1, 2008):

• Initial release with Boost 1.36

0.7.1 (March 14, 2007):

- · Boost.Typeof emulation support
- attempting to rebind a heterogeneous_system to a different set of dimensions now fails.
- cmath.hpp now works with como-win32
- minor changes to the tests and examples to make msvc 7.1 happy

0.7.0 (March 13, 2007):

- · heterogeneous and mixed system functionality added
- · added fine-grained implicit unit conversion on a per fundamental dimension basis
- added a number of utility metafunction classes and predicates
- boost/units/operators.hpp now uses BOOST_TYPEOF when possible
- angular units added in boost/units/systems/trig.hpp implicit conversion of radians between trigonometric, SI, and CGS systems allowed
- a variety of unit and quantity tests added
- · examples now provide self-tests

0.6.2 (February 22, 2007):

• changed template order in unit so dimension precedes unit system

- added homogeneous_system<S> for unit systems
- incorporated changes to boost/units/dimension.hpp (compile-time sorting by predicate), boost/units/conversion.hpp (thread-safe implementation of quantity conversions), and boost/units/io.hpp (now works with any std::basic_ostream) by SW
- added abstract units in boost/units/systems/abstract.hpp to allow abstract dimensional analysis
- new example demonstrating implementation of code based on requirements from Michael Fawcett (radar_beam_height.cpp)

0.6.1 (February 13, 2007):

- added metafunctions to test if a type is
 - a valid dimension list (is_dimension_list<D>)
 - a unit (is_unit<T> and is_unit_of_system<U,System>)
 - a quantity (is_quantity<T> and is_quantity_of_system<Q,System>)
- quantity conversion factor is now computed at compile time
- · static constants now avoid ODR problems
- unit_example_14.cpp now uses Boost.Timer
- · numerous minor fixes suggested by SW

0.6.0 (February 8, 2007):

• incorporated Steven Watanabe's optimized code for dimension.hpp, leading to **dramatic** decreases in compilation time (nearly a factor of 10 for unit_example_4.cpp in my tests).

0.5.8 (February 7, 2007):

- fixed #include in boost/units/systems/si/base.hpp (thanks to Michael Fawcett and Steven Watanabe)
- removed references to obsolete base_type in <u>unit info</u> (thanks to Michael Fawcett)
- moved functions in boost/units/cmath.hpp into boost::units namespace (thanks to Steven Watanabe)
- fixed #include guards to be consistently named BOOST_UNITS_XXX (thanks to Steven Watanabe)

0.5.7 (February 5, 2007):

- · changed quantity conversion helper to increase flexibility
- · minor documentation changes
- · submitted for formal review as a Boost library

0.5.6 (January 22, 2007):

- added IEEE 1541 standard binary prefixes along with SI prefixes to and extended algebra of scale and scaled_value classes (thanks to Kevin Lynch)
- split SI units into separate header files to minimize the "kitchen sink" include problem (thanks to Janek Kozicki)
- added convenience classes for declaring fundamental dimensions and composite dimensions with integral powers (fundamental_dimension and composite_dimension respectively)

0.5.5 (January 18, 2007):

- template parameter order in quantity switched and default value_type of double added (thanks to Andrey Semashev and Paul Bristow)
- added implicit value_type conversion where allowed (thanks to Andrey Semashev)
- added quantity_cast for three cases (thanks to Andrey Semashev):
 - constructing quantity from raw value_type
 - casting from one value_type to another
 - casting from one unit to another (where conversion is allowed)
- added metre and metres and related constants to the SI system for the convenience of our Commonwealth friends...

0.5.4 (January 12, 2007):

- · completely reimplemented unit conversion to allow for arbitrary unit conversions between systems
- strict quantity construction is default; quantities can be constructed from bare values by using static member from_value

0.5.3 (December 12, 2006):

- added Boost.Serialization support to unit and quantity classes
- added option to enforce strict construction of quantities (only constructible by multiplication of scalar by unit or quantity by unit) by preprocessor MCS_STRICT_QUANTITY_CONSTRUCTION switch

0.5.2 (December 4, 2006):

• added <cmath> wrappers in the std namespace for functions that can support quantities

0.5.1 (November 3, 2006):

- converted to Boost Software License
- · boostified directory structure and file paths

0.5 (November 2, 2006):

- · completely reimplemented SI and CGS unit systems and changed syntax for quantities
- significantly streamlined pow and root so for most applications it is only necessary to define power_typeof_helper and root_typeof_helper to gain this functionality
- · added a selection of physical constants from the CODATA tables
- added a skeleton complex class that correctly supports both complex<quantity<Y,Unit> > and quantity<complex<Y>,Unit> as an example
- investigate using Boost. Typeof for compilers that do not support typeof

0.4 (October 13, 2006):

- pow<R> and root<R> improved for user-defined types
- added unary + and unary operators
- added new example of interfacing with boost::math::quaternion
- added optional preprocessor switch to enable implicit unit conversions (BOOST_UNITS_ENABLE_IMPLICIT_UNIT_CONVERSIONS)

0.3 (September 6, 2006):

- Support for op(X x,Y y) for g++ added. This is automatically active when compiling with gcc and can be optionally enabled by defining the preprocessor constant BOOST_UNITS_HAS_TYPEOF
- 0.2 (September 4, 2006): Second alpha release based on slightly modified code from 0.1 release
- 0.1 (December 13, 2003): written as a Boost demonstration of MPL-based dimensional analysis in 2003.

TODO

- Document concepts
- Implementation of I/O is rudimentary; consider methods of i18n using facets
- Consider runtime variant, perhaps using overload like quantity<runtime, Y>

