SEQUENCE LISTING

<110> University of Texas Health Science Center at San Antonio Baseman, Joel Kannan, Thirumalai

<120> METHODS AND COMPOSITIONS FOR MYCOPLASMA PNEUMONIAE EXOTOXINS

<130> 9237.10WO

<150> US 60/508,607

<151> 2003-10-03

<160> 76

<170> PatentIn version 3.2

<210> 1

<211> 591

<212> PRT

<213> Mycoplasma pneumoniae

<400> 1

Met Pro Asn Pro Val Arg Phe Val Tyr Arg Val Asp Leu Arg Ser Pro 1 5 10 15

Glu Glu Ile Phe Glu His Gly Phe Ser Thr Leu Gly Asp Val Arg Asn 20 25 30

Phe Phe Glu His Ile Leu Ser Thr Asn Phe Gly Arg Ser Tyr Phe Ile 35 40 45

Ser Thr Ser Glu Thr Pro Thr Ala Ala Ile Arg Phe Phe Gly Ser Trp 50 55 60

Leu Arg Glu Tyr Val Pro Glu His Pro Arg Arg Ala Tyr Leu Tyr Glu 65 70 75 80

Ile Arg Ala Asp Gln His Phe Tyr Asn Ala Arg Ala Thr Gly Glu Asn 85 90 95

Leu Leu Asp Leu Met Arg Gln Arg Gln Val Val Phe Asp Ser Gly Asp

Arg Glu Met Ala Gln Met Gly Ile Arg Ala Leu Arg Thr Ser Phe Ala 115 120 125

Tyr Gln Arg Glu Trp Phe Thr Asp Gly Pro Ile Ala Ala Asn Val 130 135 140

Arg Ser Ala Trp Leu Val Asp Ala Val Pro Val Glu Pro Gly His Ala

145					150					155					160
His	His	Pro	Ala	Gly 165	Arg	Val	Val	Glu	Thr 170	Thr	Arg	Ile	Asn	Glu 175	Pro
Glu	Met	His	Asn 180	Pro	His	Tyr	Gln	Glu 185	Leu	Gln	Thr	Gln	Ala 190	Asn	Asp
Gln	Pro	Trp 195	Leu	Pro	Thr	Pro	Gly 200	Ile	Ala	Thr	Pro	Val 205	His	Leu	Ser
Ile	Pro 210	Gln	Ala	Ala	Ser	Val 215	Ala	Asp	Val	Ser	Glu 220	Gly	Thr	Ser	Ala
Ser 225	Leu	Ser	Phe	Ala	Cys 230	Pro	Asp	Trp	Ser	Pro 235	Pro	Ser	Ser	Asn	Gly 240
Glu	Asn	Pro	Leu	Asp 245	Lys	Cys	Ile	Ala	Glu 250	Lys	Ile	Asp	Asn	Tyr 255	Asn
Leu	Gln	Ser	Leu 260	Pro	Gln	Tyr	Ala	Ser 265	Ser	Val	Lys	Glu	Leu 270	Glu	Asp
Thr	Pro	Val 275	Tyr	Leu	Arg	Gly	Ile 280	-	Thr	Gln	Lys	Thr 285	Phe	Met	Leu
Gln	Ala 290	_	Pro	Gln	Asn	Asn 295	Asn	Val	Phe	Leu	Val 300	Glu	Val	Asn	Pro
Lys 305		Lys	Ser	Ser	Phe 310	Pro	Gln	Thr	Ile	Phe 315	Phe	Trp	Asp	Val	Tyr 320
Gln	Arg	Ile	Cys	Leu 325	Lys	Asp	Leu	Thr	Gly 330		Gln	Ile	Ser	Leu 335	Ser
Leu	. Thr	Ala	Phe 340		Thr	Gln	Tyr	Ala 345	-	Gln	Leu	Lys	Val 350	His	Leu
Ser	Val	Ser 355		Val	Asn	Ala	Val 360		Gln	Lys	Trp	Lys 365		Thr	Pro
Gln	Asp 370		Ala	Ile	Thr	Gln 375		Arg	Val	Ser	Ser 380		Leu	Leu	Gly
Gln 385		Glu	Asn	Gly	Leu 390		Trp	Asn	Thr	Lys 395		Gly	Gly	Ser	Gln 400

His Asp Leu Tyr Val Cys Pro Leu Lys Asn Pro Pro Ser Asp Leu Glu

405 410 Glu Leu Gln Ile Ile Val Asp Glu Cys Thr Thr His Ala Gln Phe Val 425 Thr Met Arg Ala Ala Ser Thr Phe Phe Val Asp Val Gln Leu Gly Trp 435 440 Tyr Trp Arg Gly Tyr Tyr Tyr Thr Pro Gln Leu Ser Gly Trp Ser Tyr 455 Gln Met Lys Thr Pro Asp Gly Gln Ile Phe Tyr Asp Leu Lys Thr Ser 465 470 475 Lys Ile Phe Phe Val Gln Asp Asn Gln Asn Val Phe Phe Leu His Asn 485 490 Lys Leu Asn Lys Gln Thr Gly Tyr Ser Trp Asp Trp Val Glu Trp Leu 505 500 Lys His Asp Met Asn Glu Asp Lys Asp Glu Asn Phe Lys Trp Tyr Phe 515 520 Ser Arg Asp Asp Leu Thr Ile Pro Ser Val Glu Gly Leu Asn Phe Arg

His Ile Arg Cys Tyr Ala Asp Asn Gln Gln Leu Lys Val Ile Ile Ser 555

540

535

550

Gly Ser Arg Trp Gly Gly Trp Tyr Ser Thr Tyr Asp Lys Val Glu Ser 570 565

Asn Val Glu Asp Lys Ile Leu Val Lys Asp Gly Phe Asp Arg Phe 580 585

<210> 2

<211> 591

530

545

<212> PRT

<213> Mycoplasma pneumoniae

<400> 2

Met Pro Asn Pro Val Arg Phe Val Tyr Arg Val Asp Leu Arg Ser Pro

Glu Glu Ile Phe Glu His Gly Phe Ser Thr Leu Gly Asp Val Arg Asn 20 25 30

- Phe Phe Glu His Ile Pro Ser Thr Asn Phe Gly Arg Ser Tyr Phe Ile 35 40 45
- Ser Thr Ser Glu Thr Pro Thr Ala Ala Ile Arg Phe Phe Gly Ser Trp 50 55 60
- Leu Arg Glu Tyr Val Pro Glu His Pro Arg Arg Ala Tyr Leu Tyr Glu 65 70 75 80
- Ile Arg Ala Asp Gln His Phe Tyr Asn Ala Arg Ala Thr Gly Glu Asn 85 90 95
- Leu Leu Asp Leu Met Arg Gln Arg Gln Val Val Phe Asp Ser Gly Asp
 100 105 110
- Arg Glu Met Ala Gln Met Gly Ile Arg Ala Leu Arg Thr Ser Phe Ala 115 120 125
- Tyr Gln Arg Glu Trp Phe Thr Asp Gly Pro Ile Ala Ala Asn Val 130 135 140
- Arg Ser Ala Trp Leu Val Asp Ala Val Pro Val Glu Pro Gly His Ala 145 150 155 160
- His His Pro Ala Gly Arg Val Val Glu Thr Thr Arg Ile Asn Glu Pro 165 170 175
- Glu Met His Asn Pro His Tyr Gln Glu Leu Gln Thr Gln Ala Asn Asp 180 185 190
- Gln Pro Trp Leu Pro Thr Pro Gly Ile Ala Thr Pro Val His Leu Ser 195 200 205
- Ile Pro Gln Ala Ala Ser Val Ala Asp Val Ser Glu Gly Thr Ser Ala 210 215 220
- Ser Leu Ser Phe Ala Cys Pro Asp Trp Ser Pro Pro Ser Ser Asn Gly 225 230 235 240
- Glu Asn Pro Leu Asp Lys Cys Ile Ala Glu Lys Ile Asp Asn Tyr Asn
 245 250 255
- Leu Gln Ser Leu Pro Gln Tyr Ala Ser Ser Val Lys Glu Leu Glu Asp

260 265 270

WO 2005/032491

Thr Pro Val Tyr Leu Arg Gly Ile Lys Thr Gln Lys Thr Phe Met Leu 275 280 285

PCT/US2004/033037

Gln Ala Asp Pro Gln Asn Asn Val Phe Leu Val Glu Val Asn Pro 290 295 300

Lys Gln Lys Ser Pro Phe Pro Gln Thr Ile Phe Phe Trp Asp Val Tyr 305 310 315 320

Gln Arg Ile Cys Leu Lys Asp Leu Thr Gly Ala Gln Ile Ser Leu Ser 325 330 335

Leu Thr Ala Phe Thr Thr Gln Tyr Ala Gly Gln Leu Lys Val His Leu 340 345 350

Ser Val Ser Ala Val Asn Ala Val Asn Gln Lys Trp Lys Met Thr Pro 355 360 365

Gln Asp Ser Ala Ile Thr Gln Phe Arg Val Ser Ser Glu Leu Leu Gly 370 375 380

Gln Thr Glu Asn Gly Leu Ser Trp Asn Thr Lys Ser Gly Gly Ser Gln 385 390 395 400

His Asp Leu Tyr Val Cys Pro Leu Lys Asn Pro Pro Ser Asp Leu Glu 405 410 415

Glu Leu Gln Ile Ile Val Asp Glu Cys Thr Thr His Ala Gln Phe Val 420 425 430

Thr Met Arg Ala Ala Ser Thr Phe Phe Val Asp Val Gln Leu Gly Trp
435 440 445

Tyr Trp Arg Gly Tyr Tyr Tyr Thr Pro Gln Leu Ser Gly Trp Ser Tyr 450 455 460

Gln Met Lys Thr Pro Asp Gly Gln Ile Phe Tyr Asp Leu Lys Thr Ser 465 470 475 480

Lys Ile Phe Phe Val Gln Asp Asn Gln Asn Val Phe Phe Leu His Asn 485 490 495

Lys Leu Asn Lys Gln Thr Gly Tyr Ser Trp Asp Trp Val Glu Trp Leu
500 505 510

Lys His Asp Met Asn Glu Asp Lys Asp Glu Asn Phe Lys Trp Tyr Phe 515 520 525

Ser Arg Asp Asp Leu Thr Ile Pro Ser Val Glu Gly Leu Asn Phe Arg 530 535 540

His Ile Arg Cys Tyr Ala Asp Asn Gln Gln Leu Lys Val Ile Ile Ser 545 550 555 560

Gly Ser Arg Trp Gly Gly Trp Tyr Ser Thr Tyr Asp Lys Val Glu Ser 565 570 575

Asn Val Glu Asp Lys Ile Leu Val Lys Asp Gly Phe Asp Arg Phe 580 580 590

<210> 3

<211> 591

<212> PRT

<213> Mycoplasma pneumoniae

<400> 3

Met Pro Asn Pro Val Arg Phe Val Tyr Arg Val Asp Leu Arg Ser Pro 1 5 10 15

Glu Glu Ile Phe Glu His Gly Phe Ser Thr Leu Gly Asp Val Arg Asn 20 25 30

Phe Phe Glu His Ile Leu Ser Thr Asn Phe Gly Arg Ser Tyr Phe Ile 35 40 45

Ser Thr Ser Glu Thr Pro Thr Ala Ala Ile Arg Phe Phe Gly Ser Trp 50 55 60

Leu Arg Glu Tyr Val Pro Glu His Pro Arg Arg Ala Tyr Leu Tyr Glu 65 70 75 80

Ile Arg Ala Asp Gln His Phe Tyr Asn Ala Arg Ala Thr Gly Glu Asn 85 90 95

Leu Leu Asp Leu Met Arg Gln Arg Gln Val Val Phe Asp Ser Gly Asp 100 105 110

Arg Glu Met Ala Gln Met Gly Ile Arg Ala Leu Arg Thr Ser Phe Ala 115 120 125

Tyr Gln Arg Glu Trp Phe Thr Asp Gly Pro Ile Ala Ala Asn Val 130 135 140

Arg Ser Ala Trp Leu Val Asp Ala Val Pro Val Glu Pro Gly His Ala 145 150 155 160

His His Pro Ala Gly Arg Val Val Glu Thr Thr Arg Ile Asn Glu Pro 165 170 175

Glu Met His Asn Pro His Tyr Gln Glu Leu Gln Thr Gln Ala Asn Asp 180 185 190

Gln Pro Trp Leu Pro Thr Pro Gly Ile Ala Thr Pro Val His Leu Ser 195 200 205

Ile Pro Gln Ala Ala Ser Val Ala Asp Val Ser Glu Gly Thr Ser Ala 210 215 220

Ser Leu Ser Phe Ala Cys Pro Asp Trp Ser Pro Pro Ser Ser Asn Gly 225 230 235 240

Glu Asn Pro Leu Asp Lys Cys Ile Ala Glu Lys Ile Asp Asn Tyr Asn 245 250 255

Leu Gln Ser Leu Pro Gln Tyr Ala Ser Ser Val Lys Glu Leu Glu Asp 260 265 270

Thr Pro Val Tyr Leu Arg Gly Ile Lys Thr Gln Lys Thr Phe Met Leu 275 280 285

Gln Ala Asp Pro Gln Asn Asn Val Phe Leu Val Glu Val Asn Pro 290 295 300

Lys Gln Lys Ser Ser Phe Pro Gln Thr Ile Phe Phe Trp Asp Val Tyr 305 310 315 320

Gln Arg Ile Cys Leu Lys Asp Leu Thr Gly Ala Gln Ile Ser Leu Ser 325 330 335

Leu Thr Ala Phe Thr Thr Gln Tyr Ala Gly Gln Leu Lys Val His Leu 340 345 350

Ser Val Ser Ala Val Asn Ala Val Asn Gln Lys Trp Lys Met Thr Pro 355 360 365

Gln Asp Ser Ala Ile Thr Gln Phe Arg Val Ser Ser Glu Leu Leu Gly

380 375 370

Gln Thr Glu Asn Gly Leu Phe Trp Asn Thr Lys Ser Gly Gly Ser Gln 395 390

His Asp Leu Tyr Val Cys Pro Leu Lys Asn Pro Pro Ser Asp Leu Glu 405

Glu Leu Gln Ile Ile Val Asp Glu Cys Thr Thr His Ala Gln Phe Val

Thr Met Arg Ala Ala Ser Thr Phe Phe Val Asp Val Gln Leu Gly Trp

Tyr Trp Arg Gly Tyr Tyr Tyr Thr Pro Gln Leu Ser Gly Trp Ser Tyr 455

Gln Met Lys Thr Pro Asp Gly Gln Ile Phe Tyr Asp Leu Lys Thr Ser 470 475

Lys Ile Phe Phe Val Gln Asp Asn Gln Asn Val Phe Phe Leu His Asn 485 490

Lys Leu Asn Lys Gln Thr Gly Tyr Ser Trp Asp Trp Val Glu Trp Leu 505

Lys His Asp Met Asn Glu Asp Lys Asp Glu Asn Phe Lys Trp Tyr Phe 520

Ser Arg Asp Asp Leu Thr Ile Pro Ser Val Glu Gly Leu Asn Phe Arg 535

His Ile Arg Cys Tyr Ala Asp Asn Gln Gln Leu Lys Val Ile Ile Ser 550 555

Gly Ser Arg Trp Gly Gly Trp Tyr Ser Thr Tyr Asp Lys Val Glu Ser 565 570

Asn Val Glu Asp Lys Ile Leu Val Lys Asp Gly Phe Asp Arg Phe 580 585

<210> 4

<211> 591 <212> PRT

<213> Mycoplasma pneumoniae

<400> 4

Met Pro Asn Pro Val Arg Phe Val Tyr Arg Val Asp Leu Arg Ser Pro 1 5 10 15

- Glu Glu Ile Phe Glu His Gly Phe Ser Thr Leu Gly Asp Val Arg Asn 20 25 30
- Phe Phe Glu His Ile Leu Ser Thr Asn Phe Gly Arg Ser Tyr Phe Ile 35 40 45
- Ser Thr Ser Glu Thr Pro Thr Ala Ala Ile Arg Phe Phe Gly Ser Trp 50 55 60
- Leu Arg Glu Tyr Val Pro Glu His Pro Arg Arg Ala Tyr Leu Tyr Glu 65 70 75 80
- Ile Arg Ala Asp Gln His Phe Tyr Asn Ala Arg Ala Thr Gly Glu Asn 85 90 95
- Leu Leu Asp Leu Met Arg Gln Arg Gln Val Val Phe Asp Ser Gly Asp
 100 105 110
- Arg Glu Met Ala Gln Met Gly Ile Arg Ala Leu Arg Thr Ser Phe Ala 115 120 125
- Tyr Gln Arg Glu Trp Phe Thr Asp Gly Pro Ile Ala Ala Ala Asn Val 130 135 140
- Arg Ser Ala Trp Leu Val Asp Ala Val Pro Val Glu Pro Gly His Ala 145 150 155 160
- His His Pro Ala Gly Arg Val Val Glu Thr Thr Arg Ile Asn Glu Pro 165 170 175
- Glu Met His Asn Pro His Tyr Gln Glu Leu Gln Thr Gln Ala Asn Asp 180 185 190
- Gln Pro Trp Leu Pro Thr Pro Gly Ile Ala Thr Pro Val His Leu Ser 195 200 205
- Ile Pro Gln Ala Ala Ser Val Ala Asp Val Ser Glu Gly Thr Ser Ala 210 215 220
- Ser Leu Ser Phe Ala Cys Pro Asp Trp Ser Pro Pro Ser Ser Asn Gly 225 230 235 240

Glu Asn Pro Leu Asp Lys Cys Ile Ala Glu Lys Ile Asp Asn Tyr Asn 245 250 255

Leu Gln Ser Leu Pro Gln Tyr Ala Ser Ser Val Lys Glu Leu Glu Asp 260 265 270

Thr Pro Val Tyr Leu Arg Gly Ile Lys Thr Gln Lys Thr Phe Met Leu 275 280 285

Gln Ala Asp Pro Gln Asn Asn Val Phe Leu Val Glu Val Asn Pro 290 295 300

Lys Gln Lys Ser Ser Phe Pro Gln Thr Ile Phe Phe Trp Asp Val Tyr 305 310 315 320

Gln Arg Ile Cys Leu Lys Asp Leu Thr Gly Ala Gln Ile Ser Leu Ser 325 330 335

Leu Thr Ala Phe Thr Thr Gln Tyr Ala Gly Gln Leu Lys Val His Leu 340 345 350

Ser Val Ser Ala Val Asn Ala Val Asn Gln Lys Trp Lys Met Thr Pro 355 360 365

Gln Asp Ser Ala Ile Thr Gln Phe Arg Val Ser Ser Glu Leu Leu Gly 370 375 380

Gln Thr Glu Asn Gly Leu Phe Arg Asn Thr Lys Ser Gly Gly Ser Gln 385 390 395 400

His Asp Leu Tyr Val Cys Pro Leu Lys Asn Pro Pro Ser Asp Leu Glu 405 410 415

Glu Leu Gln Ile Ile Val Asp Glu Cys Thr Thr His Ala Gln Phe Val 420 425 430

Thr Met Arg Ala Ala Ser Thr Phe Phe Val Asp Val Gln Leu Gly Trp
435 440 445

Tyr Trp Arg Gly Tyr Tyr Tyr Thr Pro Gln Leu Ser Gly Trp Ser Tyr 450 460

Gln Met Lys Thr Pro Asp Gly Gln Ile Phe Tyr Asp Leu Lys Thr Ser 465 470 475 480

Lys Ile Phe Phe Val Gln Asp Asn Gln Asn Val Phe Phe Leu His Asn

> 490 · 485 495

Lys Leu Asn Lys Gln Thr Gly Tyr Ser Trp Asp Trp Val Glu Trp Leu

Lys His Asp Met Asn Glu Asp Lys Asp Glu Asn Phe Lys Trp Tyr Phe 520

Ser Arg Asp Asp Leu Thr Ile Pro Ser Val Glu Gly Leu Asn Phe Arg 535

His Ile Arg Cys Tyr Ala Asp Asn Gln Gln Leu Lys Val Ile Ile Ser 550

Gly Ser Arg Trp Gly Gly Trp Tyr Ser Thr Tyr Asp Lys Val Glu Ser 565 570

Asn Val Glu Asp Lys Ile Leu Val Lys Asp Gly Phe Asp Arg Phe 580 585

<210> 5

<400> 5

Met Pro Asn Pro Val Arg Phe Val Tyr Arg Val Asp Leu Arg Ser Pro 5 10

Glu Glu Ile Phe Glu His Gly Phe Ser Thr Leu Gly Asp Val Arg Asn 20 25 30

Phe Phe Glu His Ile Leu Ser Thr Asn Phe Gly Arg Ser Tyr Phe Ile 35 40 45

Ser Thr Ser Glu Thr Pro Thr Ala Ala Ile Arg Phe Phe Gly Ser Trp 50 55

Leu Arg Glu Tyr Val Pro Glu His Pro Arg Arg Ala Tyr Leu Tyr Glu 75 65

Ile Arg Ala Asp Gln His Phe Tyr Asn Ala Arg Ala Thr Gly Glu Asn 85

Leu Leu Asp Leu Met Arg Gln Arg Gln Val Val Phe Asp Ser Gly Asp 100 105

Arg Glu Met Ala Gln Met Gly Ile Arg Ala Leu Arg Thr Ser Phe Ala 115 120 125

- Tyr Gln Arg Glu Trp Phe Thr Asp Gly Pro Ile Ala Ala Asn Val 130 135 140
- Arg Ser Ala Trp Leu Val Asp Ala Val Pro Val Glu Pro Gly His Ala 145 150 155 160
- His His Pro Ala Gly Arg Val Val Glu Thr Thr Arg Ile Asn Glu Pro 165 170 175
- Glu Met His Asn Pro His Tyr Gln Glu Leu Gln Thr Gln Ala Asn Asp 180 185 190
- Gln Pro Trp Leu Pro Thr Pro Gly Ile Ala Thr Pro Val His Leu Ser 195 200 205
- Ile Pro Gln Ala Ala Ser Val Ala Asp Val Ser Glu Gly Thr Ser Ala 210 215 220
- Ser Leu Ser Phe Ala Cys Pro Asp Trp Ser Pro Pro Ser Ser Asn Gly 225 230 235 240
- Glu Asn Pro Leu Gly Lys Cys Ile Ala Glu Lys Ile Asp Asn Tyr Asn 245 250 255
- Leu Gln Ser Leu Pro Gln Tyr Ala Ser Ser Val Lys Glu Leu Glu Asp 260 265 270
- Thr Pro Val Tyr Leu Arg Gly Ile Lys Thr Gln Lys Thr Phe Met Leu 275 280 285
- Gln Ala Asp Pro Gln Asn Asn Asn Val Phe Leu Val Glu Val Asn Pro 290 295 300
- Lys Gln Lys Ser Ser Phe Pro Gln Thr Ile Phe Phe Trp Asp Val Tyr 305 310 315 320
- Gln Arg Ile Cys Leu Lys Asp Leu Thr Gly Ala Gln Ile Ser Leu Ser 325 330 335
- Leu Thr Ala Phe Thr Thr Gln Tyr Ala Gly Gln Leu Lys Val His Leu 340 345 350

Ser Val Ser Ala Val Asn Ala Val Asn Gln Lys Trp Lys Met Thr Pro 355 360 365

Gln Asp Ser Ala Ile Thr Gln Phe Arg Val Ser Ser Glu Leu Leu Gly 370 380

Gln Thr Glu Asn Gly Leu Phe Trp Asn Thr Lys Ser Gly Gly Ser Gln 385 390 395 400

His Asp Leu Tyr Val Cys Pro Leu Lys Asn Pro Pro Ser Asp Leu Glu 405 410 415

Glu Leu Gln Ile Ile Val Asp Glu Cys Thr Thr His Ala Gln Phe Val 420 425 430

Thr Met Arg Ala Ala Ser Thr Phe Phe Val Asp Val Gln Leu Gly Trp
435 440 445

Tyr Trp Arg Gly Tyr Tyr Tyr Thr Pro Gln Leu Ser Gly Trp Ser Tyr 450 455 460

Gln Met Lys Thr Pro Asp Gly Gln Ile Phe Tyr Asp Leu Lys Thr Ser 465 470 475 480

Lys Ile Phe Phe Val Gln Asp Asn Gln Asn Val Phe Phe Leu His Asn 485 490 495

Lys Leu Asn Lys Gln Thr Gly Tyr Ser Trp Asp Trp Val Glu Trp Leu 500 505 510

Lys His Asp Met Asn Glu Asp Lys Asp Glu Asn Phe Lys Trp Tyr Phe 515 520 525

Ser Arg Asp Asp Leu Thr Ile Pro Ser Val Glu Gly Leu Asn Phe Arg 530 540

His Ile Arg Cys Tyr Ala Asp Asn Gln Gln Leu Lys Val Ile Ile Ser 545 550 555 560

Gly Ser Arg Trp Gly Gly Trp Tyr Ser Thr Tyr Asp Lys Val Glu Ser 565 570 575

13

Asn Val Glu Asp Lys Ile Leu Val Lys Asp Gly Phe Asp Arg Phe 580 585 590

<210> 6

<211> 591

<212> PRT <213> Artificial

<220>

<223> Composite amino acid sequence

Met Pro Asn Pro Val Arg Phe Val Tyr Arg Val Asp Leu Arg Ser Pro 5 10

Glu Glu Ile Phe Glu His Gly Phe Ser Thr Leu Gly Asp Val Arg Asn

Phe Phe Glu His Ile Pro Ser Thr Asn Phe Gly Arg Ser Tyr Phe Ile 40

Ser Thr Ser Glu Thr Pro Thr Ala Ala Ile Arg Phe Phe Gly Ser Trp 50 55

Leu Arg Glu Tyr Val Pro Glu His Pro Arg Arg Ala Tyr Leu Tyr Glu 70 75

Ile Arg Ala Asp Gln His Phe Tyr Asn Ala Arg Ala Thr Gly Glu Asn 85

Leu Leu Asp Leu Met Arg Gln Arg Gln Val Val Phe Asp Ser Gly Asp 100

Arg Glu Met Ala Gln Met Gly Ile Arg Ala Leu Arg Thr Ser Phe Ala

Tyr Gln Arg Glu Trp Phe Thr Asp Gly Pro Ile Ala Ala Ala Asn Val

Arg Ser Ala Trp Leu Val Asp Ala Val Pro Val Glu Pro Gly His Ala 155

His His Pro Ala Gly Arg Val Val Glu Thr Thr Arg Ile Asn Glu Pro 165 170

Glu Met His Asn Pro His Tyr Gln Glu Leu Gln Thr Gln Ala Asn Asp 185

Gln Pro Trp Leu Pro Thr Pro Gly Ile Ala Thr Pro Val His Leu Ser 195 200 205

Ile Pro Gln Ala Ala Ser Val Ala Asp Val Ser Glu Gly Thr Ser Ala
210 215 220

Ser Leu Ser Phe Ala Cys Pro Asp Trp Ser Pro Pro Ser Ser Asn Gly 225 230 235 240

Glu Asn Pro Leu Gly Lys Cys Ile Ala Glu Lys Ile Asp Asn Tyr Asn 245 250 255

Leu Gln Ser Leu Pro Gln Tyr Ala Ser Ser Val Lys Glu Leu Glu Asp 260 265 270

Thr Pro Val Tyr Leu Arg Gly Ile Lys Thr Gln Lys Thr Phe Met Leu 275 280 285

Gln Ala Asp Pro Gln Asn Asn Val Phe Leu Val Glu Val Asn Pro 290 295 300

Lys Gln Lys Pro Ser Phe Pro Gln Thr Ile Phe Phe Trp Asp Val Tyr 305 310 315 320

Gln Arg Ile Cys Leu Lys Asp Leu Thr Gly Ala Gln Ile Ser Leu Ser 325 330 335

Leu Thr Ala Phe Thr Thr Gln Tyr Ala Gly Gln Leu Lys Val His Leu 340 345 350

Ser Val Ser Ala Val Asn Ala Val Asn Gln Lys Trp Lys Met Thr Pro 355 360 365

Gln Asp Ser Ala Ile Thr Gln Phe Arg Val Ser Ser Glu Leu Leu Gly 370 375 380

Gln Thr Glu Asn Gly Leu Ser Arg Asn Thr Lys Ser Gly Gly Ser Gln 385 390 395 400

His Asp Leu Tyr Val Cys Pro Leu Lys Asn Pro Pro Ser Asp Leu Glu

Glu Leu Gln Ile Ile Val Asp Glu Cys Thr Thr His Ala Gln Phe Val 420 425 430

Thr Met Arg Ala Ala Ser Thr Phe Phe Val Asp Val Gln Leu Gly Trp
435 440 445

Tyr Trp Arg Gly Tyr Tyr Tyr Thr Pro Gln Leu Ser Gly Trp Ser Tyr

WO 2005/032491	PCT/US2004/033037

	450					455					460						
Gl: 46!	n Met	Lys	Thr	Pro	Asp 470	Gly	Gln	Ile	Phe	Tyr 475	Asp	Leu	Lys	Thr	Ser 480		
Lys	3 Ile	Phe	Phe	Val 485	Gln	Asp	Asn	Gln	Asn 490	Val	Phe	Phe	Leu	His 495	Asn		
Ly	s Leu	Asn	Lys 500	Gln	Thr	Gly	Tyr	Ser 505	Trp	Asp	Trp	Val	Glu 510	Trp	Leu		
Ly	s His	Asp 515	Met	Asn	Glu	Asp	Lys 520	Asp	Glu	Asn	Phe	Lys 525	Trp	Туг	Phe		
Se.	r Arg 530		Asp	Leu	Thr	Ile 535	Pro	Ser	Val	Glu	Gly 540	Leu	Asn	Phe	Arg		
Ні 54	s Ile 5	Arg	Cys	Туг	Ala 550	Asp	Asn	Gln	Gln	Leu 555	Lys	Val	Ile	Ile	Ser 560		
Gl	y Ser	Arg	Trp	Gly 565	Gly	Trp	Tyr	Ser	Thr 570	Tyr	Asp	Lys	Val	Glu 575	Ser		
As	n Val	Glu	Asp 580	_	Ile	Leu	Val	Lys 585	Asp	Gly	Phe	Asp	Arg 590				
<2 <2		7 1860 DNA Myco		ma p	neum	onia	e										
	00>	7															
tt	tttaa	ttt	gtaa	aatt	tc a	tttt	ttaa	a aa	tgcc	aaat	cct	gtta	gat	ttgt	ttaccg	(60
tg	ttgat	ttg	agaa	gccc	tg a	agaa	attt	t tg	aaca	tggc	ttt	tcaa	ctt	tagg	tgatgt	1:	20
ga	gaaat	ttc	tttg	aaca	ca t	tctc	tcca	c ta	attt	tggt	aga	agct	att	ttat	ttccac	1:	80

tgttgatttg agaagccctg aagaaatttt tgaacatggc ttttcaactt taggtgatgt 120 gagaaatttc tttgaacaca ttctcccac taattttggt agaagctatt ttatttccac 180 ttcagaaaca cccacagcag ctattcgctt ctttggtagc tggttacggg aatatgtacc 240 agagcacccc agaagggctt acttatatga aattcgtgcc gaccaacact tttacaatgc 300 ccgcgccact ggggagaact tgttagattt aatggctcaa agacaagtag tatttgactc 360 tggtgatcga gaaatggcac aaatgggaat tagagcttta cgcacttcct ttgcgtatca 420 acgtgaatgg tttaccgatg gtccaattgc agcagctaat gtccgtagtg cttgactagt 480 agatgctgtt cccgttgaac ctggtcatgc tcaccacccg gctggtcgtg ttgtagagac 540 tactagaatt aatgaaccgg aaatgcacaa ccctcattat caagagctgc aaacccaagc 600

caatgatcaa	ccatgattgc	caacaccagg	aatagctact	cctgtacatt	tatcaattcc	660
ccaagcagct	tccgttgctg	atgtttcgga	aggtacttcc	gcttcgctat	cgtttgcgtg	720
ccctgattga	agtccacctt	ctagtaatgg	tgaaaatccg	ctagacaaat	gcattgcgga	780
aaagattgat	aactataacc	tacaatcctt	accacagtac	gctagcagtg	taaaggaact	840
ggaagataca	ccagtatacc	taaggggaat	taaaacgcaa	aaaaccttta	tgttacaagc	900
agatccgcaa	aataacaatg	tctttttggt	cgaagtaaac	cccaaacaaa	agtccagctt	960
tccccaaacc	atcttcttt	gggatgttta	tcaacgaatt	tgtctcaagg	atttaactgg	1020
tgcacaaatc	agtctttcgc	ttactgcctt	tactactcag	tatgctggtc	agctcaaagt	1080
gcaccttagt	gttagcgcgg	ttaatgccgt	gaaccaaaag	tgaaaaatga	caccgcaaga	1140
cattgcaata	actcagtttc	gggtctcctc	tgaactgtta	ggtcaaactg	aaaatggctt	1200
gttctgaaat	accaagagtg	gtggttcaca	acacgatttg	tatgtatgtc	ctttgaaaaa	1260
tccacctagt	gatttggaag	aattacaaat	aattgttgat	gaatgtacta	cccatgcgca	1320
gtttgttact	atgcgtgcag	ctagcacctt	ctttgttgat	gttcagctag	gctggtattg	1380
aaggggttat	tactataccc	cacaattaag	tggttgatct	tatcagatga	aaacaccaga	1440
tggacagata	ttctatgatc	taaaaacttc	gaaaatcttc	tttgtccagg	acaaccaaaa	1500
cgtgttcttt	ctccataata	aactcaacaa	acaaactggt	tacagctggg	attgagtaga	1560
atggctaaaa	catgacatga	atgaggacaa	agacgaaaac	tttaaatggt	acttttcgcg	1620
tgatgacctt	accattcctt	ccgttgaagg	gcttaacttc	cgccacattc	gctgttacgc	1680
tgacaaccag	cagttaaagg	tgatcataag	cggttcacgt	tggggcggtt	ggtactccac	1740
ttacgataaa	gttgaaagta	atgtcgaaga	taagattttg	gtcaaagatg	gttttgatcg	1800
cttttagcga	ttaagcttta	acgtcactgt	tttgctctaa	tgttagaagc	aaagatcttg	1860

<210> 8

<220>

<400> 8 atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60 gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tccctccact 120 aattttggta gaagctattt tatttccact tcagaaacac ccacagcagc tattcgcttc 180 tttggtagct ggttacggga atatgtacca gagcaccca gaagggctta cttatatgaa 240

<211> 1773 <212> DNA

<213> Artificial

<223> S1 nucleotide sequence with tga codons changed to tgg for expression in E. coli

attcgtgccg accaaca	ctt ttacaatgcc	cgcgccactg	gggagaactt	gttagattta	300
atgcgtcaaa gacaagt	agt atttgactct	ggtgatcgag	aaatggcaca	aatgggaatt	360
agagetttae geaette	ctt tgcgtatcaa	cgtgaatggt	ttaccgatgg	tccaattgca	420
gcagctaatg tccgtag	ıtgc ttggctagta	gatgctgttc	ccgttgaacc	tggtcatgct	480
caccacccgg ctggtcg	gtgt tgtagagact	actagaatta	atgaaccgga	aatgcacaac	540
cctcattatc aagagct	gca aacccaagcc	aatgatcaac	catggttgcc	aacaccagga	600
atagctactc ctgtaca	attt atcaattccc	caagcagctt	ccgttgctga	tgtttcggaa	660
ggtacttccg cttcgct	atc gtttgcgtgc	cctgattgga	gtccaccttc	tagtaatggt	720
gaaaatccgc tagacaa	aatg cattgcggaa	aagattgata	actataacct	acaatcctta	780
ccacagtacg ctagcag	gtgt aaaggaactg	gaagatacac	cagtatacct	aaggggaatt	840
aaaacgcaaa aaacct	ttat gttacaagca	gatccgcaaa	ataacaatgt	ctttttggtc	900
gaagtaaacc ccaaaca	aaaa gcccagcttt	ccccaaacca	tettettttg	ggatgtttat	960
caacgaattt gtctca	agga tttaactggt	gcacaaatca	gtctttcgct	tactgccttt	1020
actactcagt atgctg	gtca gctcaaagtg	caccttagtg	ttagcgcggt	taatgccgtg	1080
aaccaaaagt ggaaaa	tgac accgcaagac	agtgcaataa	ctcagtttcg	ggtctcctct	1140
gaactgttag gtcaaa	ctga aaatggcttg	tcctggaata	ccaagagtgg	tggttcacaa	1200
cacgatttgt atgtat	gtcc tttgaaaaat	ccacctagtg	atttggaaga	attacaaata	1260
attgttgatg aatgta	ctac ccatgcgcag	tttgttacta	tgcgtgcagc	tagcaccttc	1320
tttgttgatg ttcagc	tagg ctggtattgg	aggggttatt	actatacccc	acaattaagt	1380
ggttggtctt atcaga	tgaa aacaccagat	ggacagatat	tctatgatct	aaaaacttcg	1440
aaaatcttct ttgtcc	agga caaccaaaa	gtgttctttc	tccataataa	actcaacaaa	1500
caaactggtt acagct	ggga ttgggtagaa	tggctaaaac	atgacatgaa	tgaggacaaa	1560
gacgaaaact ttaaat	ggta cttttcgcgt	gatgacctta	ccattccttc	cgttgaaggg	1620
cttaacttcc gccaca	tteg ctgttaeget	gacaaccagc	agttaaaggt	gatcataagc	1680
ggttcacgtt ggggcg	gttg gtactccact	tacgataaag	ttgaaagtaa	tgtcgaagat	1740
aagattttgg tcaaag	atgg ttttgatcgo	ttt			1773

<210> 9

<211> 1773 <212> DNA <213> Artificial

<220>

<223> L2 nucleotide sequence with tga codons changed to tgg for expression in E. Coli

<400> atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60. gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tctctccact 120 aattttggta gaagetattt tattteeact teagaaacae eeacageage tattegette 180 tttggtaget ggttaeggga atatgtaeca gageaececa gaagggetta ettatatgaa 240 attogtgccg accaacactt ttacaatgcc cgcgccactg gggagaactt gttagattta 300 atgcgtcaaa gacaagtagt atttgactct ggtgatcgag aaatggcaca aatgggaatt 360 agagetttae geaetteett tgegtateaa egtgaatggt ttacegatgg teeaattgea 420 480 gcagetaatg teegtagtge ttggetagta gatgetgtte eegttgaace tggteatget caccaccegg ctggtegtgt tgtagagaet actagaatta atgaacegga aatgeacaae 540 cctcattatc aagagctgca aacccaagcc aatgatcaac catggttgcc aacaccagga 600 atagetacte etgtacattt ateaatteee caageagett eegttgetga tgttteggaa 660 ggtacttccg cttcgctatc gtttgcgtgc cctgattgga gtccaccttc tagtaatggt 720 gaaaatccgc taggcaaatg cattgcggaa aagattgata actataacct acaatcctta 780 840 ccacagtacg ctagcagtgt aaaggaactg gaagatacac cagtatacct aaggggaatt 900 aaaacgcaaa aaacctttat gttacaagca gatccgcaaa ataacaatgt ctttttggtc gaagtaaacc ccaaacaaaa gtccagcttt ccccaaacca tcttcttttg ggatgtttat 960 caacgaattt gtctcaagga tttaactggt gcacaaatca gtctttcgct tactgccttt 1020 actactcagt atgctggtca gctcaaagtg caccttagtg ttagcgcggt taatgccgtg 1080 aaccaaaagt ggaaaatgac accgcaagac agtgcaataa ctcagtttcg ggtctcctct 1140 qaactqttag gtcaaactga aaatggcttg ttctggaata ccaagagtgg tggttcacaa 1200 cacgatttgt atgtatgtcc tttgaaaaat ccacctagtg atttggaaga attacaaata 1260 attgttgatg aatgtactac ccatgegcag tttgttacta tgcgtgcagc tagcaccttc 1320 tttgttgatg ttcagctagg ctggtattgg aggggttatt actatacccc acaattaagt 1380 ggttggtctt atcagatgaa aacaccagat ggacagatat tctatgatct aaaaacttcg 1440 aaaatettet ttgteeagga caaceaaaac gtgttettte teeataataa aeteaacaaa 1500 caaactggtt acagctggga ttgggtagaa tggctaaaac atgacatgaa tgaggacaaa 1560 gacgaaaact ttaaatggta cttttcgcgt gatgacctta ccattccttc cgttgaaggg 1620 cttaacttcc gccacattcg ctgttacgct gacaaccagc agttaaaggt gatcataagc 1680 ggttcacgtt ggggcggttg gtactccact tacgataaag ttgaaagtaa tgtcgaagat 1740 1773 aagattttgg tcaaagatgg ttttgatcgc ttt

<210> 10

<211> 1773

<212> DNA

<213> Artificial

<220>

<223> JL nucleotide sequence with tga codons changed to tgg for expression in E. coli

<400> 10 atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60 gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tctctccact 120 aattttggta gaagctattt tatttccact tcagaaacac ccacagcagc tattcgcttc 180 tttggtagct ggttacggga atatgtacca gagcacccca gaagggctta cttatatgaa 240 attegtgeeg accaacactt ttacaatgee egegeeactg gggagaactt gttagattta 300 atgcgtcaaa gacaagtagt atttgactct ggtgatcgag aaatggcaca aatgggaatt 360 agagetttac geactteett tgegtateaa egtgaatggt ttacegatgg tecaattgea 420 gcagetaatg teegtagtge ttggetagta gatgetgtte eegttgaace tggteatget 480 caccacccgg ctggtcgtgt tgtagagact actagaatta atgaaccgga aatgcacaac 540 cctcattatc aagagctgca aacccaagcc aatgatcaac catggttgcc aacaccagga 600 atagetacte etgtacattt ateaatteee caageagett eegttgetga tgttteggaa 660 ggtacttccg cttcgctatc gtttgcgtgc cctgattgga gtccaccttc tagtaatggt 720 gaaaatccgc tagacaaatg cattgcggaa aagattgata actataacct acaatcctta 780 ccacagtacg ctagcagtgt aaaggaactg gaagatacac cagtatacct aaggggaatt 840 aaaacgcaaa aaacctttat gttacaagca gatccgcaaa ataacaatgt ctttttggtc 900 gaagtaaacc ccaaacaaa gtccagcttt ccccaaacca tcttcttttg ggatgtttat 960 caacgaattt gtctcaagga tttaactggt gcacaaatca gtctttcgct tactgccttt 1020 actactcagt atgctggtca gctcaaagtg caccttagtg ttagcgcggt taatgccgtg 1080 aaccaaaagt ggaaaatgac accgcaagac agtgcaataa ctcagtttcg ggtctcctct 1140 gaactgttag gtcaaactga aaatggcttg ttctggaata ccaagagtgg tggttcacaa 1200 cacqatttgt atgtatgtcc tttgaaaaat ccacctagtg atttggaaga attacaaata 1260 attgttgatg aatgtactac ccatgcgcag tttgttacta tgcgtgcagc tagcaccttc 1320 tttgttgatg ttcagctagg ctggtattgg aggggttatt actatacccc acaattaagt 1380 ggttggtctt atcagatgaa aacaccagat ggacagatat tctatgatct aaaaacttcg 1440 aaaatcttct ttgtccagga caaccaaaac gtgttctttc tccataataa actcaacaaa 1500

caaactggtt acagctggga ttgggtagaa tggctaaaac atgacatgaa tgaggacaaa 1560
gacgaaaact ttaaatggta cttttcgcgt gatgacctta ccattccttc cgttgaaggg 1620
cttaacttcc gccacattcg ctgttacgct gacaaccagc agttaaaggt gatcataagc 1680
ggttcacgtt ggggcggttg gtactccact tacgataaag ttgaaagtaa tgtcgaagat 1740
aagattttgg tcaaagatgg ttttgatcgc ttt 1773

<210> 11

<211> 1773

<212> DNA

<213> Artificial

<220>

<223> RJL1 nucleotide sequence with tga codons changed to tgg for expression in E. coli

<400> 11 atgecaaate etgttagatt tgtttacegt gttgatttga gaageeetga agaaattttt 60 gaacatgget tttcaacttt aggtgatgtg agaaatttct ttgaacacat tetetecact 120 aattttggta gaagetattt tatttecaet teagaaacae eeacageage tattegette 180 tttggtagct ggttacggga atatgtacca gagcacccca gaagggctta cttatatgaa 240 attegtgeeg accaacactt ttacaatgee egegeeactg gggagaactt gttagattta 300 atgegteaaa gacaagtagt atttgaetet ggtgategag aaatggeaca aatgggaatt 360 agagetttae geaetteett tgegtateaa egtgaatggt ttaeegatgg teeaattgea 420 gcagctaatg tccgtagtgc ttggctagta gatgctgttc ccgttgaacc tggtcatgct 480 caccaccegg ctggtcgtgt tgtagagact actagaatta atgaacegga aatgcacaac 540 cctcattatc aagagctgca aacccaagcc aatgatcaac catggttgcc aacaccagga 600 atagetaete etgtaeattt ateaatteee caageagett eegttgetga tgttteggaa 660 ggtaetteeg ettegetate gtttgegtge eetgattgga gteeacette tagtaatggt 720 gaaaatccgc tagacaaatg cattgcggaa aagattgata actataacct acaatcctta 780 ccacagtacg ctagcagtgt aaaggaactg gaagatacac cagtatacct aaggggaatt 840 aaaacgcaaa aaacctttat gttacaagca gatccgcaaa ataacaatgt ctttttggtc 900 gaagtaaacc ccaaacaaaa gtccagcttt ccccaaacca tcttcttttg ggatgtttat 960 caacgaattt gtctcaagga tttaactggt gcacaaatca gtctttcgct tactgccttt 1020 actactcagt atgctggtca gctcaaagtg caccttagtg ttagcgcggt taatgccgtg 1080 aaccaaaagt ggaaaatgac accgcaagac agtgcaataa ctcagtttcg ggtctcctct 1140 gaactgttag gtcaaactga aaatggcttg ttccggaata ccaagagtgg tggttcacaa 1200

cacgatt	tgt	atgtatgtcc	tttgaaaaat	ccacctagtg	atttggaaga.	attacaaata	1260
attgttg	atg	aatgtactac	ccatgcgcag	tttgttacta	tgcgtgcagc	tagcaccttc	1320
tttgttg	atg	ttcagctagg	ctggtattgg	aggggttatt	actatacccc	acaattaagt	1380
ggttggt	ctt	atcagatgaa	aacaccagat	ggacagatat	tctatgatct	aaaaacttcg	1440
aaaatct	tct	ttgtccagga	caaccaaaac	gtgttctttc	tccataataa	actcaacaaa	1500
caaactg	gtt	acagctggga	ttgggtagaa	tggctaaaac	atgacatgaa	tgaggacaaa	1560
gacgaaa	act	ttaaatggta	cttttcgcgt	gatgacctta	ccattccttc	cgttgaaggg	1620
cttaact	tec	gccacattcg	ctgttacgct	gacaaccagc	agttaaaggt	gatcataagc	1680
ggttcac	gtt	ggggcggttg	gtactccact	tacgataaag	ttgaaagtaa	tgtcgaagat	1740
aagattt	tgg	tcaaagatgg	ttttgatcgc	ttt			1773
<210>	12						
	24						
	DNA						
<213>	Art:	ificial					
<220>							
<223>	Olig	gonucleotid	e primer				
<400>	12						
		*****	t-a++				24
ttttac	ata	tgccaaatcc	tgtt			•	24
<210>	13						
<211>	28						
	DNA						
		ificial					
(213)	ALC.	IIICIAI					
<220> <223>	0110	gonucleotid	e primer				
		30	o p-1o2				
<400>	13						20
cgttaaa	agga	tcctcgctaa	aagcgatc				28
<210>	14						
<211>	25						
<211>	DNA						
<213>		ificial					
<220>							
<223>	Oli	gonucleotid	e primer				
<400>	14						
		actacggaca	ttage				25
	J C	2012033404	· · · · · · · · · · · · · · · · · · ·				
<210>	15	•					
<211>	27						
<212>							

<213>	Artificial	
~22As	·	
<220>	Oligonucleotide primer	
\2237	Origonacieotide primer	
<400>	15	
cgtagt	gctt ggctagtaga tgctgtt	27
-		
<210>		
<211>		
<212>	DNA Artificial	
(213)	Arciliciai	
<220>		
	Oligonucleotide primer	
	-	
<400>		
cctggt	gttg gcaaccatgg ttg	23
<210>	17	
<211>		
<212>		
	Artificial	
<220>		
<223>	Oligonucleotide primer	
-400:	17	
<400>	17	23
yaccaa	ccat ggttgccaac acc	23
<210>	18	
<211>	24	
<212>		
<213>	Artificial	
-000-		
<220>	Oligonucleotide primer	
<443>	Oligonacisocide brimer	
<400>	18	
	gact ccaatcaggg cacg	24
<210>	19	
<211>	24	
<212>		
<213>	Artificial	
<220>		
	Oligonucleotide primer	
	•	
<400>	19	
cgtgcc	etga ttggagteca eett	24
-03 A	20	
<210> <211>	20	
	DNA	
	Artificial	

<220>		
<223>	Oligonucleotide primer	
	•	
<400>	20	
	cat tttccacttt tgg	23
3-33-3		
.210.	21	
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer	
	-	
<400>	21	
	gtgg aaaatgacac cgc	23
ccaaaa	jegg addeegdede ege	
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer	
12.00		
<400>	22	
		22
ggtatt	ccag aacaagccat tt	22
<210>	23	
<211>	24	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer	
\223/	Oligonacicoliae primer	
-400-	22	
<400>	23	24
gcttgt	tctg gaataccaag agtg	24
<210>		
<211>	21	
<212>		
	Artificial	
<220>		
	Oligonucleotide primer	
44437	OTTACHEOUTER PITMOT	
4.0.0	0.4	
<400>		0.0
ataacc	ecta taccagecta g	21
<210>	25	
<211>	59	•
<212>		

<220> <223>	Oligonucleotide primer	
<400>	25	
gctggta	attg gaggggttat tactataccc cacaattaag tggttggtct tatcagatg	59
3 - 33		
<210>	26	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer	
<400>	26	
ccattc	tacc caatcccagc tgta	24
<210>		
<211> <212>		
	Artificial	
(213)	ACCITICAL	
<220>		
<223>	Oligonucleotide primer	
<400>	27	
tacagc	tggg attgggtaga atgg	24
<210>	28	
<211>	24	
<212>	DNA	
<213>	Mycoplasma pneumoniae	
<400>	28	
ttttta	aaaa tgccaaatcc tgtt	24
<210>	29	
<211>	20	
<212>		
<213>	Mycoplasma pneumoniae	
<400>		
aatgtc	egta gtgettgaet	20
<210>	30	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Modified M129/B9 sequence	
<400>	30	
	egta gtgcttggct	20

<210>	31	
<211>	20 .	
<212>	DNA	
	Artificial	
<220>		
	Oligonucleotide primer	
(223)	Oligonacieotide primer	
4400.	21	
<400>		20
agccaa	gcac tacggacatt	20
<210>		
<211>		
<212>		
<213>	Mycoplasma pneumoniae	
<400>	32	
tgcttg	acta gtagatgetg tt	22
<210>	33	
<211>		
<212>		
	Artificial	
<220>		
	Oligonucleotide primer	
(223)	Oligonacieolide primer	
-400-	22	
<400>	33	~ ~
tgcttg	gcta gtagatgctg tt	22
	•	
<210>		
<211>		
<212>		
<213>	Mycoplasma pneumoniae	
<400>	34	
atgatt	gcca acaccagg	18
_		
<210>	35	
<211>		
<212>		
	Artificial	
~413	W CTITATUL	
-2205		
<220>	Modified M100/RO gomenso	
<223>	Modified M129/B9 sequence	
<400>		
atggtt	gcca acaccagg	18
<210>	36	
<211>	18	
<212>		
	Artificial	
<220>		
	Oligonucleotide primer	

<400> cctggtg	36 gttg gcaaccat	18
<210>	37	
<210> <211>		
<212>		
<213>	Mycoplasma pneumoniae	
<400>	37	
accatg	attg ccaacacc	18
<210>	38	
<211>	18	
<212>	DNA	
<213>	Artificial	
<220>		
	Oligonucleotide primer	
<400>	38	
		18
accatg	gttg ccaacacc	10
<210>		
<211>		
<212>		
<213>	Mycoplasma pneumoniae	
<400>	39	
cctgat	tgaa gtccacctt	19
<210>	40	
<211>	19	
<212>	DNA	
	Artificial	
<220>		
<223>	Modified M129/B9 sequence	
<400>	40	
cctgat	tgga gtccacctt	19
<210>	41	
<211>	19	
<212>		
	Artificial	
<220>		
<223>	Oligonucleotide primer	
<400>	41	
	gact ccaatcagg	19
33.3		
<210>	42	
<211>	18	

<212>	DNA	
<213>	Mycoplasma pneumoniae	
<400>		
cgtgcc	ctga ttgaagtc	18
<210>	43	
<211>		
<212>		
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer	
<400>	43	
cgtgcc	ctga ttggagtc	18
<210>	44	
<211>		
<212>		
<213>	Mycoplasma pneumoniae	
<400>	44	
aaagtg	aaaa atgacaccgc	20
<210>	45	
<211>	20	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Modified M129/B9 sequence	
400		
<400>		20
aaagtg	gaaa atgacaccgc	20
<210>		
<211>	20	
<212>		
<213>	Aftificial	
<220>		
<223>	Oligonucleotide primer	
<400>	46	
gcggtg	tcat tttccacttt	20
<210>	47	
<211>		
<212>	DNA	
<213>	Mycoplasma pneumoniae	
<400>	47	
	tgaa aaatgacacc	20

<210>	48	
<211>	20	
<212>		
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer	
<400>	48	
caaaag	tgga aaatgacacc	20
<210>	49	
<211>	22	
<212>		
	Mycoplasma pneumoniae	
1220	,coptas pc	
<400>	49	
		22
aaacgg	cttg ttctgaaata cc	24
	50	
<211>		
<212>		
<213>	Artificial	
	1	
<220>		
<223>	Modified M129/B9 sequence	
<400>	50	
aaatgo	cttg ttctggaata cc	22
<210>	51	
	23	
<212>	DNA	
<213>	Mycoplasma pneumoniae	
400		
<400>	51	
gettgt	tctg aaataccaag agt	23
	·	
<210>	52	
<211>	23	
<212>		
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer	
	-	
<400>	52	
	tctg gaataccaag agt	23
50005	seeds Sandaready age	
201 A-	E2	
<210>		
<211>		
<212>		
<213>	Mycoplasma pneumoniae	
<400>	53	
	ggta ttgaaggggt	20

<210>	54	
<211>	20	
<212>	AND	
<213>	Artificial	
<220>		
<223>	Modified M129/B9 sequence	
	-	
<400>	54	
tagget	ggta ttggaggggt	20
<210>	55	
<211>	17	
<212>	DNA .	
<213>	Artificial	
<220>		
<223>	Oligonucleotide primer	
	-	
<400>	55	
	atac cagccta	17
		- '
<210>	56	
<211>		
<212>		
	Mycoplasma pneumoniae	
12202	Mooplasiid pilediisiilde	
<400>	56	
<400>	56	56
	56 gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg	56
		56
ggtatt	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg	56
<pre>ggtatt <210></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57	56
<pre>ggtatt <210> <211></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56	56
<pre><210> <211> <212></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA	56
<pre><210> <211> <212></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56	56
<210> <211> <212> <213>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA	56
<pre><210> <211> <212> <213> <220></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial	56
<pre><210> <211> <212> <213> <220></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA	56
<210> <211> <212> <213> <223>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer	56
<pre><210> <211> <212> <213> <223> <400></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57	
<pre><210> <211> <212> <213> <223> <400></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer	56
<pre><210> <211> <212> <213> <223> <400></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57	
<pre><210> <211> <212> <213> <223> <400> ggtatte</pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg	
<pre><210> <211> <212> <213> <223> <400> ggtatte</pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58	
<pre><210> <211> <212> <213> <223> <400> ggtatte <210> <211></pre>	gaag gggttattac tatacccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58 21	
<pre><gtatt <210=""> <211> <212> <213> <220> <223> <400> ggtatte <210> <211> <212></gtatt></pre>	gaag gggttattac tatacccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58 21 DNA	
<pre><gtatt <210=""> <211> <212> <213> <220> <223> <400> ggtatte <210> <211> <212></gtatt></pre>	gaag gggttattac tatacccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58 21	
<pre><gtate <210=""> <211> <212> <213> <223> <400> ggtate <210> <211> <212> <213></gtate></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58 21 DNA Mycoplasma pneumoniae	
<pre> <gtate <210=""> <211> <212> <213> <220> <223> <400> ggtate <210> <211> <212> <213> <400> </gtate></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58 21 DNA Mycoplasma pneumoniae 58	56
<pre> <gtate <210=""> <211> <212> <213> <220> <223> <400> ggtate <210> <211> <212> <213> <400> </gtate></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58 21 DNA Mycoplasma pneumoniae	
<pre> <gtate <210=""> <211> <212> <213> <220> <223> <400> ggtate <210> <211> <212> <213> <400> </gtate></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58 21 DNA Mycoplasma pneumoniae 58	56
<pre><210> <211> <212> <213> <223> <400> ggtatts <220> <223> <400> tacage</pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58 21 DNA Mycoplasma pneumoniae 58 tggg attgagtaga a	56
<pre> <gtate <210=""> <211> <212> <213> <223> <400> ggtate <210> <211> <212> <213> <400> tacage <210> <210> </gtate></pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56. DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58 21 DNA Mycoplasma pneumoniae 58 tggg attgagtaga a	56
<pre><210> <211> <212> <213> <223> <400> ggtatts <220> <223> <400> tacage</pre>	gaag gggttattac tataccccac aattaagtgg ttgatcttat cagatg 57 56 DNA Artificial Oligonucleotide primer 57 ggag gggttattac tataccccac aattaagtgg ttggtcttat cagatg 58 21 DNA Mycoplasma pneumoniae 58 tggg attgagtaga a	56

<220>		
<223>	Modified M129/B9 sequence	
	59	21
Lacage	tggg attgggtaga a	21
<210>	60	
<211>	21	
<212>		
<213>	Artificial	
<220>	01/1	
<223>	Oligonucleotide primer	
<400>	60	
	ccaa tcccagctgt a	21
<210>		
<211>		
<212>		
<213>	Mycoplasma pneumoniae	
<400>	61	
	etggg attgagtaga a	21
-		
<210>		
<211>		
<212>		
<213>	Artificial	
<220>		
	Oligonucleotide primer	
<400>	62	
tacago	etggg attgggtaga a	21
<210>	63	
<211>		
<212>		
	Mycoplasma pneumoniae	
	• •	
<400>		
gatcgo	etttt agegattaag etttaaeg	28
<210>	6.4	
<211>		
<212>		
	Artificial	
<220>		
<223>	Modified M129/B9 sequence	
<400>		28
gatcgc	ctttt agcgaggatc ctttaacg	20

<210>	65							
<211>	28							
<212>	DNA							
<213>	Artificial							
<220>								
	Oligonucleotide primer							
\2237	origonacieociae primer							
-400-	65							
<400>		28						
ggateet	tcta cgcaatgcat ttgtctag	20						
<210>	66							
<211>								
<212>								
<213>	Artificial							
<220>								
	Oligonucleotide primer							
	engonacione promot							
<400>	66							
	ccaa caccaggaat agctactc	28						
Cataty	scaa caccaggaac agctacco							
	67							
<211>								
<212>								
<213>	Artificial							
<220>								
<223>	Oligonucleotide primer							
<400>	67							
	acta ccagcctagc tgaac	25						
55	uoca congectuge comm							
<210>	68							
<211>								
<212>								
<213>	Artificial							
<220>								
<223>	Oligonucleotide primer							
<400>	68							
catatg	ggtc agctcaaagt gcaccttag	29						
_								
<210>	69							
<211>								
<212>								
<213>	Mycoplasma pneumoniae							
<400>	69							
Met Pr	to Asn Pro Val Arg Phe Val Tyr Arg Val Asp Leu Arg Ser Pro							
1	5 10 15							
Glu Gl	u Ile Phe Glu His Gly Phe Ser Thr Leu Gly Asp Val Arg Asn							
	20 25 30							

Phe	Phe	Glu	His	Ile	Leu	Ser	Thr	Asn	Phe	Gly	Arg	Ser	Tyr	Phe	Ile
		35					40					45			

- Ser Thr Ser Glu Thr Pro Thr Ala Ala Ile Arg Phe Phe Gly Ser Trp 50 60
- Leu Arg Glu Tyr Val Pro Glu His Pro Arg Arg Ala Tyr Leu Tyr Glu 65 70 75 80
- Ile Arg Ala Asp Gln His Phe Tyr Asn Ala Arg Ala Thr Gly Glu Asn 85 90 95
- Leu Leu Asp Leu Met Arg Gln Arg Gln Val Val Phe Asp Ser Gly Asp
 100 105 110
- Arg Glu Met Ala Gln Met Gly Ile Arg Ala Leu Arg Thr Ser Phe Ala 115 120 125
- Tyr Gln Arg Glu Trp Phe Thr Asp Gly Pro Ile Ala Ala Asn Val 130 135 140
- Arg Ser Ala Trp Leu Val Asp Ala Val Pro Val Glu Pro Gly His Ala 145 150 155 160
- His His Pro Ala Gly Arg Val Val Glu Thr Thr Arg Ile Asn Glu Pro 165 170 175
- Glu Met His Asn Pro His Tyr Gln Glu Leu Gln Thr Gln Ala Asn Asp 180 185 190
- Gln Pro Trp Leu Pro Thr Pro Gly Ile Ala Thr Pro Val His Leu Ser 195 200 205
- Ile Pro Gln Ala Ala Ser Val Ala Asp Val Ser Glu Gly Thr Ser Ala 210 215 220
- Ser Leu Ser Phe Ala Cys Pro Asp Trp Ser Pro Pro Ser Ser Asn Gly 225 230 235 . 240
- Glu Asn Pro Leu Asp Lys Cys Ile Ala 245
- <210> 70
- <211> 256
- <212> PRT

<213> Mycoplasma pneumoniae

<400> 70

Pro Trp Leu Pro Thr Pro Gly Ile Ala Thr Pro Val His Leu Ser Ile 1 5 10 15

Pro Gln Ala Ala Ser Val Ala Asp Val Ser Glu Gly Thr Ser Ala Ser 20 25 30

Leu Ser Phe Ala Cys Pro Asp Trp Ser Pro Pro Ser Ser Asn Gly Glu

Asn Pro Leu Asp Lys Cys Ile Ala Glu Lys Ile Asp Asn Tyr Asn Leu 50 55 60

Gln Ser Leu Pro Gln Tyr Ala Ser Ser Val Lys Glu Leu Glu Asp Thr 65 70 75 80

Pro Val Tyr Leu Arg Gly Ile Lys Thr Gln Lys Thr Phe Met Leu Gln 85 90 95

Ala Asp Pro Gln Asn Asn Val Phe Leu Val Glu Val Asn Pro Lys
100 105 110

Gln Lys Ser Ser Phe Pro Gln Thr Ile Phe Phe Trp Asp Val Tyr Gln
115 120 125

Arg Ile Cys Leu Lys Asp Leu Thr Gly Ala Gln Ile Ser Leu Ser Leu 130 135 140

Thr Ala Phe Thr Thr Gln Tyr Ala Gly Gln Leu Lys Val His Leu Ser 145 150 155 160

Val Ser Ala Val Asn Ala Val Asn Gln Lys Trp Lys Met Thr Pro Gln
165 170 175

Asp Ile Ala Ile Thr Gln Phe Arg Val Ser Ser Glu Leu Leu Gly Gln 180 · 185 190

Thr Glu Asn Gly Leu Phe Trp Asn Thr Lys Ser Gly Gly Ser Gln His 195 200 205

Asp Leu Tyr Val Cys Pro Leu Lys Asn Pro Pro Ser Asp Leu Glu Glu 210 225 220

Leu Gln Ile Ile Val Asp Glu Cys Thr Thr His Ala Gln Phe Val Thr

225 230 235 240

Met Arg Ala Ala Ser Thr Phe Phe Val Asp Val Gln Leu Gly Trp Tyr 245 250 255

<210> 71

<211> 247

<212> PRT

<213> Mycoplasma pneumoniae

<400> 71

Ala Gly Gln Leu Lys Val His Leu Ser Val Ser Ala Val Asn Ala Val

5 10 15

Asn Gln Lys Trp Lys Met Thr Pro Gln Asp Ile Ala Ile Thr Gln Phe 20 25 30

Arg Val Ser Ser Glu Leu Leu Gly Gln Thr Glu Asn Gly Leu Phe Trp 35 40 45

Asn Thr Lys Ser Gly Gly Ser Gln His Asp Leu Tyr Val Cys Pro Leu 50 55 60

Lys Asn Pro Pro Ser Asp Leu Glu Glu Leu Gln Ile Ile Val Asp Glu 65 70 75 80

Cys Thr Thr His Ala Gln Phe Val Thr Met Arg Ala Ala Ser Thr Phe 85 90 95

Phe Val Asp Val Gln Leu Gly Trp Tyr Trp Arg Gly Tyr Tyr Thr
100 105 110

Pro Gln Leu Ser Gly Trp Ser Tyr Gln Met Lys Thr Pro Asp Gly Gln
115 120 125

Ile Phe Tyr Asp Leu Lys Thr Ser Lys Ile Phe Phe Val Gln Asp Asn 130 135 140

Gln Asn Val Phe Phe Leu His Asn Lys Leu Asn Lys Gln Thr Gly Tyr 145 150 155 160

Ser Trp Asp Trp Val Glu Trp Leu Lys His Asp Met Asn Glu Asp Lys 165 170 175

Asp Glu Asn Phe Lys Trp Tyr Phe Ser Arg Asp Asp Leu Thr Ile Pro 180 185 190

Ser Val Glu Gly Leu Asn Phe Arg His Ile Arg Cys Tyr Ala Asp Asn 195 200 Gln Gln Leu Lys Val Ile Ile Ser Gly Ser Arg Trp Gly Gly Trp Tyr 215 220 Ser Thr Tyr Asp Lys Val Glu Ser Asn Val Glu Asp Lys Ile Leu Val 230 235 Lys Asp Gly Phe Asp Arg Phe 245 <210> 72 <211> <212> DNA <213> Artificial <220> <223> Oligonucleotide primer <400> 72 tttttacata tgccaaatcc tgttag 26 <210> 73 <211> 24 <212> DNA <213> Artificial <220> <223> Oligonucleotide primer <400> 73 ataacccctc caataccagc ctag 24 <210> 74 <211> 747 <212> DNA <213> Artificial <220> <223> Amplified region of MNP372-D1 <400> 74 atgccaaatc ctgttagatt tgtttaccgt gttgatttga gaagccctga agaaattttt 60 gaacatggct tttcaacttt aggtgatgtg agaaatttct ttgaacacat tctctccact 120 aattttggta gaagctattt tatttccact tcagaaacac ccacagcagc tattcgcttc 180 tttggtaget ggttacggga atatgtacca gagcacecca gaagggetta ettatatgaa 240 attegtgccg accaacactt ttacaatgcc cgcgccactg gggagaactt gttagattta 300 atgcgtcaaa gacaagtagt atttgactct ggtgatcgag aaatggcaca aatgggaatt 360

agagetttae geactteett tgegtateaa egtgaatggt ttaeegatgg tecaattgea 420
geagetaatg teegtagtge ttggetagta gatgetgtte eegttgaace tggteatget 480
caccaceegg etggtegtgt tgtagagaet actagaatta atgaacegga aatgeacaac 540
ceteattate aagagetgea aacceaagee aatgateaae eatggttgee aacaceagga 600
atagetaete etgtacattt ateaatteee eaageagett eegttgetga tgttteggaa 660
ggtaetteeg ettegetate gtttgegtge eetgattgga gteeacette tagtaatggt 720
gaaaateege tagacaaatg eattgeg

<210> 75

<211> 272

<212> PRT

<213> Artificial

<220>

<223> MPN372-D1 with His tag

<400> 75

Met Gly His His His His His His His His His Ser Ser Gly His

1 10 15

Ile Asp Asp Asp Lys His Met Pro Asn Pro Val Arg Phe Val Tyr
20 25 30

Arg Val Asp Leu Arg Ser Pro Glu Glu Ile Phe Glu His Gly Phe Ser 35 40 45

Thr Leu Gly Asp Val Arg Asn Phe Phe Glu His Ile Leu Ser Thr Asn 50 55 60

Phe Gly Arg Ser Tyr Phe Ile Ser Thr Ser Glu Thr Pro Thr Ala Ala 65 70 75 80

Ile Arg Phe Phe Gly Ser Trp Leu Arg Glu Tyr Val Pro Glu His Pro 85 90 95

Arg Arg Ala Tyr Leu Tyr Glu Ile Arg Ala Asp Gln His Phe Tyr Asn 100 105 110

Ala Arg Ala Thr Gly Glu Asn Leu Leu Asp Leu Met Arg Gln Arg Gln
115 120 125

Val Val Phe Asp Ser Gly Asp Arg Glu Met Ala Gln Met Gly Ile Arg 130 135 140

37

Ala Leu Arg Thr Ser Phe Ala Tyr Gln Arg Glu Trp Phe Thr Asp Gly 150 155 160 Pro Ile Ala Ala Ala Asn Val Arg Ser Ala Trp Leu Val Asp Ala Val 165 170 Pro Val Glu Pro Gly His Ala His His Pro Ala Gly Arg Val Val Glu 185 Thr Thr Arg Ile Asn Glu Pro Glu Met His Asn Pro His Tyr Gln Glu 200 Leu Gln Thr Gln Ala Asn Asp Gln Pro Trp Leu Pro Thr Pro Gly Ile Ala Thr Pro Val His Leu Ser Ile Pro Gln Ala Ala Ser Val Ala Asp 230 Val Ser Glu Gly Thr Ser Ala Ser Leu Ser Phe Ala Cys Pro Asp Trp Ser Pro Pro Ser Ser Asn Gly Glu Asn Pro Leu Asp Lys Cys Ile Ala 265 <210> 76 <211> 1773 <212> DNA <213> Artificial <220> <223> Degenerate DNA coding sequence to SEQ ID NO:6 <220> <221> misc feature <222> (6)..(6) <223> n is a, c, g, or t <220> <221> misc_feature <222> (12)..(12) <223> n is a, c, g, or t <220> <221> misc_feature <222> (15)..(15) <223> n is a, c, g, or t <220> <221> misc feature <222> (18)..(18) <223> n is a, c, g, or t

```
<220>
<221> misc_feature
<222> (24)..(24)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (30)..(30)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (33)..(33)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (39)..(39)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (42)..(42)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (45)..(45)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (48)..(48)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (69)..(69)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (75)..(75)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (78) ... (78)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (81)..(81)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (84)..(84)
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (90)..(90)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (93)..(93)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (114)..(114)
<223> n is a, c, g, or t
<220>
<221> misc_feature <222> (117)..(117)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (120)..(120)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (129)..(129)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (132)..(132)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (135)..(135)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (147)..(147)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (150)..(150)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (153)..(153)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (159)..(159)
<223> n is a, c, g, or t
<220>
```

```
<221> misc feature
<222> (162)..(162)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (165)..(165)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (168)..(168)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (171)..(171)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (177)..(177)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (186)..(186)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (189)..(189)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (195)..(195)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (198)..(198)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (207)..(207)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (210)..(210)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (219)..(219)
<223> n is a, c, g, or t
<220>
<221> misc_feature
```

```
<222> (222)..(222)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (225)..(225)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (228)..(228)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (234)..(234)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (246)..(246)
<223> n is a, c, g, or t
<220>
<221> misc_feature
\langle 222 \rangle (249) \dots (249)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (270)..(270)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (273)..(273)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (276)..(276)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (279)..(279)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (282)..(282)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (291)..(291)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (294)..(294)
```

```
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (300)..(300)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (306)..(306)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (312)..(312)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (318)..(318)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (321)..(321)
<223> n is a, c, g, or t
<220>
<221> misc_feature
 <222> (330)..(330)
 <223> n is a, c, g, or t
 <220>
 <221> misc_feature
 <222> (333)..(333)
 <223> n is a, c, g, or t
<220>
<221> misc_feature
 <222> (339)..(339)
 <223> n is a, c, g, or t
 <220>
 <221> misc_feature
 <222> (348)..(348)
 <223> n is a, c, g, or t
 <220>
 <221> misc_feature
 <222> (357)..(357)
 <223> n is a, c, g, or t
 <220>
 <221> misc_feature
 <222> (363)..(363)
 <223> n is a, c, g, or t
· <220>
 <221> misc_feature
 <222> (366)..(366)
 <223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (369)..(369)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (372)..(372)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (375)..(375)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (378)..(378)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (384)..(384)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (393)..(393)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (405)..(405)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (411)..(411)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (414)..(414)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (420)..(420)
<223> n is a, c, g, or t
<220>
<221> misc feature
 <222> (423)..(423)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (426)..(426)
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (432)..(432)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (435)..(435)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (438)..(438)
<223> n is a, c, g, or t
<220>
<221> misc_feature <222> (441)..(441)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (447)..(447)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (450)..(450)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (456)..(456)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (459)..(459)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (462)..(462)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (465)..(465)
<223> n is a, c, g, or t
<220>
<221> misc feature
 <222> (471)..(471)
<223> n is a, c, g, or t
<220>
 <221> misc feature
 <222> (474)..(474)
 <223> n is a, c, g, or t
 <220>
```

```
<221> misc feature
<222> (480)..(480)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (489)..(489)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (492)..(492)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (495)..(495)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (498)..(498)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (501)..(501)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (504)..(504)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (510)..(510)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (513)..(513)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (516)..(516)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (528)..(528)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (543)..(543)
<223> n is a, c, g, or t
<220>
<221> misc_feature
```

```
<222> (558)..(558)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (564)..(564)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (570)..(570)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (582)..(582)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (588)..(588)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (591)..(591)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (594)..(594)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (597)..(597)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (600)..(600)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (606)..(606)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (609)..(609)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (612)..(612)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (615)..(615)
```

```
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (621)..(621)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (624)..(624)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (630)..(630)
<223> n is a, c, g, or t
<220>
<221> misc_feature <222> (636)..(636)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (639)..(639)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (642)..(642)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (645)..(645)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (648)..(648)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (654)..(654)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (657)..(657)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (663)..(663)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (666)..(666)
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (669)..(669)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (672)..(672)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (675)..(675)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (678)..(678)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (681)..(681)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (687)..(687)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (693)..(693)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (702)..(702)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (705)..(705)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (708)..(708)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (711)..(711)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (714)..(714)
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (720)..(720)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (729)..(729)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (732)..(732)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (735)..(735)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (747)..(747)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (771)..(771)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (777)..(777)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (780)..(780)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (783)..(783)
<223> n is a, c, g, or t
<220>
<221> misc_feature
 <222> (792)..(792)
 <223> n is a, c, g, or t
<220>
 <221> misc feature
 <222> (795)..(795)
 <223> n is a, c, g, or t
 <220>
 <221> misc feature
 <222> (798)..(798)
 <223> n is a, c, g, or t
 <220>
```

```
<221> misc_feature
<222> (801)..(801)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (810)..(810)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (819)..(819)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (822)..(822)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (825)..(825)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (831)..(831)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (834)..(834)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (837)..(837)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (846)..(846)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (855)..(855)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (864)..(864)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (870)..(870)
<223> n is a, c, g, or t
<220>
<221> misc_feature
```

```
<222> (876)..(876)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (891)..(891)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (897)..(897)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (900)..(900)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (906)..(906)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (912)..(912)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (924)..(924)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (927)..(927)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (933)..(933)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (939)..(939)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (957)..(957)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (966)..(966)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (975)..(975)
```

```
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (984)..(984)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (987)..(987)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (990)..(990)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (993)..(993)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1002)..(1002)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1005)..(1005)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1008)..(1008)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1011)..(1011)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1014)..(1014)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1017)..(1017)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1023)..(1023)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1026)..(1026)
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (103<del>5</del>)..(1035)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1038)..(1038)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1044)..(1044)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1050)..(1050)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1056)..(1056)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1059)..(1059)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1062)..(1062)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1065)..(1065)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1068)..(1068)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1071)..(1071)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1077)..(1077)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1080)..(1080)
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (1101)..(1101)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1104)..(1104)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1113)..(1113)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1116)..(1116)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1122)..(1122)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (113<del>1</del>)..(1131)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1134)..(1134)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1137) .. (1137)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1140)..(1140)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1146)..(1146)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1149)..(1149)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1152)..(1152)
<223> n is a, c, g, or t
<220>
```

```
<221> misc_feature
<222> (1158)..(1158)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1167)..(1167)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1170)..(1170)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1173)..(1173)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1176)..(1176)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1182)..(1182)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1188) .. (1188)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1191)..(1191)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1194)..(1194)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1197)..(1197)
<223> n is a, c, g, or t
·<220>
<221> misc_feature
 <222> (1209)..(1209)
 <223> n is a, c, g, or t
 <220>
 <221> misc feature
 <222> (1215)..(1215)
 <223> n is a, c, g, or t
 <220>
 <221> misc_feature
```

```
<222> (1221)..(1221)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1224)..(1224)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1233)..(1233)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1236)..(1236)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1239)..(1239)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1245)..(1245)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1254)..(1254)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1266)..(1266)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1278)..(1278)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1281)..(1281)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1287)..(1287)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1296)..(1296)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (129<del>9</del>)..(1299)
```

```
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1305)..(1305)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1308)..(1308)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1311)..(1311)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1314)..(1314)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1317)..(1317)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1326)..(1326)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1332)..(1332)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1338)..(1338)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1341)..(1341)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1353)..(1353)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (135<del>6</del>)..(1356)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1368)..(1368)
<223> n is a, c, g, or t
```

```
<220>
<221> misc feature
<222> (1371)..(1371)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1377)..(1377)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1380)..(1380)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1383)..(1383)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1389)..(1389)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1404)..(1404)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1407)..(1407)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1413)..(1413)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1431)..(1431)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1437)..(1437)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1440)..(1440)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1455)..(1455)
<223> n is a, c, g, or t
```

```
<220>
<221> misc_feature
<222> (1473)..(1473)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1482)..(1482)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1494)..(1494)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1506)..(1506)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1509)..(1509)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1515)..(1515)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (152<del>7</del>)..(1527)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1536)..(1536)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (158<del>7</del>)..(1587)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1590)..(1590)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1599)..(1599)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1602)..(1602)
<223> n is a, c, g, or t
<220>
```

```
<221> misc_feature
<222> (1608)..(1608)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1611)..(1611)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1614)..(1614)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1620)..(1620)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1623)..(1623)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1632)..(1632)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1641)..(1641)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1650)..(1650)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1665)..(1665)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1671)..(1671)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1680)..(1680)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1683)..(1683)
<223> n is a, c, g, or t
<220>
<221> misc_feature
```

```
<222> (1686)..(1686)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1689)..(1689)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1695)..(1695)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1698)..(1698)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1707)..(1707)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1710)..(1710)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1722)..(1722)
<223> n is a, c, g, or t
<220>
<221> misc feature
<222> (1728)..(1728)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1734)..(1734)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1749)..(1749)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1752)..(1752)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1761)..(1761)
<223> n is a, c, g, or t
<220>
<221> misc_feature
<222> (1770)..(1770)
```

<223> n is a, c, g, or t

<400> 76 atgccnaayc cngtnmgntt ygtntaymgn gtngayytnm gnwsnccnga rgarathtty 60 garcayggnt tywsnacnyt nggngaygtn mgnaayttyt tygarcayat heenwsnacn 120 aayttyggnm gnwsntaytt yathwsnacn wsngaracnc cnacngcngc nathmgntty 180 ttyggnwsnt ggytnmgnga rtaygtnccn garcayccnm gnmgngcnta yytntaygar 240 athmgngcng aycarcaytt ytayaaygcn mgngcnacng gngaraayyt nytngayytn 300 atgmgncarm gncargtngt nttygaywsn ggngaymgng aratggcnca ratgggnath 360 mgngcnytnm gnacnwsntt ygcntaycar mgngartggt tyacngaygg nccnathgen 420 gengenaayg tnmgnwsnge ntggytngtn gaygengtne engtngaree nggneaygen 480 caycaycong enggnmgngt ngtngaracn acnmgnatha aygarconga ratgcayaay 540 ccncaytayc argarytnca racncargen aaygaycare entggytnee nacncenggn 600 athgenaene engtneayyt nwsnatheen eargengenw sngtngenga ygtnwsngar 660 ggnacnwsng cnwsnytnws nttygcntgy ccngaytggw snccnccnws nwsnaayggn 720 garaayccny tnggnaartg yathgcngar aarathgaya aytayaayyt ncarwsnytn 780 ceneartayg enwsnwsngt naargarytn gargayaene engthtayyt nmgnggnath 840 aaracncara aracnttyat gytncargcn gayccncara ayaayaaygt nttyytngtn 900 gargtnaayc cnaarcaraa rccnwsntty ccncaracna thttyttytg ggaygtntay 960 carmgnatht gyytnaarga yytnacnggn genearathw snytnwsnyt nacngentty 1020 acnachcart aygenggnea rytnaargth cayythwsng thwsngengt naaygength 1080 aaycaraart ggaaratgac nccncargay wsngcnatha cncarttymg ngtnwsnwsn 1140 garytnytng gncaracnga raayggnytn wsnmgnaaya cnaarwsngg nggnwsncar 1200 caygayytnt aygtntgycc nytnaaraay cencenwsng ayytngarga rytnearath 1260 athgtngayg artgyacnac ncaygenear ttygtnaena tgmgngenge nwsnaentty 1320 ttygtngayg tncarytngg ntggtaytgg mgnggntayt aytayacncc ncarytnwsn 1380 ggntggwsnt aycaratgaa racnccngay ggncaratht tytaygayyt naaracnwsn 1440 aarathttyt tygtncarga yaaycaraay gtnttyttyy tncayaayaa rytnaayaar 1500 caracnggnt aywsntggga ytgggtngar tggytnaarc aygayatgaa ygargayaar 1560 gaygaraayt tyaartggta yttywsnmgn gaygayytna cnathccnws ngtngargqn 1620 ytnaayttym gncayathmg ntgytaygcn gayaaycarc arytnaargt nathathwsn 1680 ggnwsnmgnt ggggnggntg gtaywsnacn taygayaarg tngarwsnaa ygtngargay 1740

aarathytng tnaargaygg nttygaymgn tty

1773