Analysis 2 S2

Raphael Nambiar

Version: 19. Juni 2022

f(x)	f'(x)	f(x)	F(x)
$\mathbf{x}^{lpha} \ mit \ lpha \in \mathbb{R}$	$\alpha x^{\alpha-1}$	x^a mit $a \neq -1$	$\frac{1}{a+1}x^{a+1}+C$
sin(x)	cos(X)	sin(x)	$-\cos(x)+C$
cos(x)	- sin(<i>x</i>)	cos(x)	$\sin(x) + C$
tan(x)	$1 + \tan^2(x) = \frac{1}{\cos^2(x)}$	· /	. ,
cot(x)	$-1-\cot^2(x)=-\frac{1}{\sin^2(x)}$	$1 + \tan^2(x)$	tan(x) + C
e ^x	e ^x	e^{x}	$e^x + C$
a ^x	$ln(a) \cdot a^x$	a ^x	$\frac{1}{\ln(a)} \cdot a^{x} + C$
ln(x)	$\frac{1}{x}$	1 x	ln(x) + C
$\log_a(x)$	$\frac{1}{\ln(a)x}$	<u> 1</u>	arcsin(x) + C
arcsin(x)	1	$\sqrt{1-x^2}$	arcsin(x) O
arccos(x)	$-\frac{\sqrt{1-x^2}}{\sqrt{1-x^2}}$	$-\frac{1}{\sqrt{1-x^2}}$	arccos(x) + C
arctan(x)	$\frac{1}{1+x^2}$	$\frac{1}{1+x^2}$	arctan(x) + C

Ableiten

$$f(x) = x^n \rightarrow f'(x) = n \cdot x^{n-1}$$

$$f(x) = c \cdot g(x) \rightarrow f'(x) = c \cdot g'(x)$$

$$f(x) = q(x) \cdot h(x) \rightarrow f'(x) = q'(x) \cdot h(x) + q(x) \cdot h'(x)$$

$$f(x) = \frac{g(x)}{h(x)} \quad \rightarrow \quad f'(x) = \frac{h(x) \cdot g'(x) - g(x) \cdot h'(x)}{[h(x)]^2}$$

$$f(x) = g(h(x)) \rightarrow f'(x) = g'(h(x)) \cdot h'(x)$$

Logarithmen:

$$f(x) = \ln(x+a) \rightarrow f'(x) = \frac{1}{x+a}$$

Integrieren

$$\int x^n dx = \frac{1}{n+1} x^{n+1} + c$$

$$\frac{1}{x^5} \to -\frac{1}{4x^4} + C$$

$$\sqrt{x} = x^{\frac{1}{2}} \to \frac{2}{3} \cdot x^{\frac{3}{2} + C}$$

Grenzwerte

Zählergrad > Nennergrad :

$$\lim_{n\to\infty} \frac{g(n)}{h(n)} = \text{keinen Grenzwert}$$

Zählergrad < Nennergrad :

$$\lim_{n\to\infty} \frac{g(n)}{h(n)} = 0$$

 $Z\ddot{a}hlergrad = Nennergrad$:

$$\lim_{n \to 8} \frac{2n^3 + 7n \dots}{5n^3 - 7n^2 \dots} = \frac{2}{5}$$

$$n \to \infty : \\ \frac{1}{n} = \frac{1}{\infty} = 0$$

Wahl der Methode

Methode	Muster	Beispiel
Substitution	$\int g(f'(x)) \cdot f(x) \mathrm{d}x$	$\int e^{\cos(x)} \cdot \sin(x)$
partielle Integration	$\int \underset{\text{nach Ableiten einfacher}}{\underbrace{\mathbf{v}}} \cdot \underset{\text{nach Integration nicht komplizierter}}{\underbrace{\mathbf{v}}}$	$\int \frac{\mathbf{x} \cdot e^x \mathrm{d}x}{}$
Partialbruchzerlegung	Polynom Polynom	$\int \frac{4x^2 + x + 17}{4x^3 + 6x + 3} \mathrm{d}x$

Uneigentliche Integrale

Ein uneigentliches Integral hat die Eigenschaft, dass der Integrationsbereich unendlich gross ist oder eine Polstelle enthält.

(a)
$$\int_{1}^{\infty} \frac{1}{x^5} dx$$
 (b) $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$ (c) $\int_{3}^{5} 2(x-3)^{-\frac{1}{4}} dx$

(a)
$$\int_{-1}^{t} \frac{1}{x^5} dx = \left[-\frac{1}{4} x^{-4} \right]_{1}^{t} = -\frac{1}{4} \cdot \frac{1}{t^4} + \frac{1}{4} \xrightarrow[t \to \infty]{} 0 + \frac{1}{4} = \frac{1}{4}$$

(b)
$$\int_{1}^{t} \frac{1}{\sqrt{x}} dx = \left[2x^{\frac{1}{2}}\right]_{1}^{t} = 2\sqrt{t} - 2 \xrightarrow[t \to \infty]{} \infty$$
. Das Integral existiert also nicht.

(c)
$$\int_{t}^{5} 2(x-3)^{-\frac{1}{4}} dx = 2 \cdot \int_{t-3}^{2} u^{-\frac{1}{4}} du = 2 \cdot \frac{4}{3} \cdot \left[u^{\frac{3}{4}} \right]_{t-3}^{2} = \frac{8}{3} \cdot \left(2^{\frac{3}{4}} - (t-3)^{\frac{3}{4}} \right) \xrightarrow[t \to 3]{} \frac{8}{3} \cdot 2^{\frac{3}{4}}$$
 (verwendete Substitution: $u = x - 3$)

Integration durch Substitution

- (1) Substitutionsgleichung für x: u = q(x)
- ② Substitutionsgleichung für dx: $\frac{du}{dx} = g'(x)_{(Ableitung)} \rightarrow dx = \frac{du}{g'(x)}$
- (3) Integralsubstitution: Einsetzen von u und dx aus 1. und 2 in Ursprung
- (4) Integration von 3.
- (5) Rücksubstitution (nur unbestimmte Integrale)

Beispiel:
$$\int e^{2x}$$

$$\begin{array}{c}
1 \ u = 2x \\
2 \ dx = \frac{du}{2} \\
3 \ \int e^u \cdot \frac{du}{2}
\end{array}$$

$$3 \int e^u \frac{du}{2}$$

$$(5) \frac{1}{2}e^{u} + C \rightarrow \frac{1}{2}e^{2x} + C$$

Partielle Integration

$$u(x) \cdot v(x) - \int u'(x) \cdot v(x) dx$$

Beispiel:
$$u(x) = x; \ v'(x) = e^x$$

$$u'(x) = 1; \ v(x) = e^x$$

$$\int x \cdot e^x = x \cdot e^x - \int \cdot e^x dx = x \cdot e^x - e^x + C$$

Integration durch Partialbruchzerlegung

- (1) Polynomdivision (falls Funktion unecht gebrochen!): Zählergrad > Nennergrad
- (2) Nullstellen des Nenners bestimmen (raaten, 2Klammeransatz, Horner, lösen)
- (3) Jeder Nullstelle ihren Partialbruch zuordnen:

$$x_1$$
 ist einfache Nullstelle $\rightarrow \frac{A}{x-x_1}$

$$x_1 \text{ ist doppelte Nullstelle} \rightarrow \frac{A_1}{x-x_1} + \frac{A_2}{(x-x_1)^2}$$

$$x_1 \text{ ist } r - \text{fache Nullstelle} \rightarrow \frac{A_1}{x-x_1} + \frac{A_2}{(x-x_1)^2} + \dots + \frac{A_r}{(x-x_1)^r}$$

- (4) Ansatz zur Partialbruchzerlegung aufstellen $\rightarrow f(x)$ wird mit der Summe aller Partialbrüche gleichgesetzt
- (5) Bestimmung der Konstanten $A, A_1, A_2, ..., A_r$
 - 1. Brüche gleichnamig machen
 - 2. Einsetzen von x-Werten (Nullstellen) → LGS
 - 3. LGS lösen \rightarrow man erhält die Konstanten $A, A_1, B, ...$
- (6) Integration der Partialbrüche

$$\int \frac{1}{x - x_0} dx = \ln|x - x_0| + C \left| \int \frac{1}{(x - x_0)^r} dx = \frac{1}{(1 - r)(x - x_0)^{r-1}} + C \right|$$

Beispiel:
$$\int \frac{5x+11}{x^2+3x-10} dx$$

- 1. ist echt gebrochen: ok
- 2. Nullstellen Nenner: $(x-2)(x+5) \Rightarrow x_0 = 2; x_1 = -5$
- 3. $\frac{A}{x-2} + \frac{B}{x+5}$
- 4. $\int \frac{5x+11}{x^2+3x-10} dx = \frac{A}{x-2} + \frac{B}{x+5}$
- 5. (a) $\int \frac{5x+11}{x^2+3x-10} dx = \frac{A(x+5)+B(x-2)}{(x-2)+(x+5)}$ (b) 5x+11 = A(x+5)+B(x-2)(c) einsetzen: $x=2 \rightarrow A=3$; $x=-5 \rightarrow B=2$;
- 6. $\int \frac{5x+11}{x^2+3x-10} dx = \int \frac{3}{x-2} + \frac{2}{x+5} dx$ $= 3 \cdot \ln(|x-2|) + 2 \cdot \ln(|x+5|) + C$

Differentialgleichungen (DGL)

Begriffe

Ordnung: Ordnung = höchste Ableitung in der DGL

Linearität: Funktion und Ableitung sind linear $\rightarrow x^1$

Separierbare Differentialgleichungen

Eine Differentialgleichung 1. Ordnung heisst separierbar wenn:

$$y' = f(x) \cdot g(y)$$

How To:

$$(1)y' = \frac{dy}{dx} = f(x) \cdot g(y)$$

(2) Trennung der Variablen: $\frac{dy}{g(y)} = f(x) \cdot dx$

(3) Integration auf beiden Seiten der Gleichung (if possible):

Differentialgleichungen

$$\int \frac{dy}{g(y)} = \int f(x)dx$$

4 Auflösen nach y (falls möglich!)

Beispiel:

sind

$$y' = y^2 = \sin(x)$$

$$(2) y^2 \cdot dy = \sin(x) \cdot dx$$

Autonome Differentialgleichungen

Definition: y' = f(y) \Rightarrow Diese Dif

Gleichung	autonom?
$y' = y^2 + 6$	Ja
y' = x + y	Vein
$y' = \frac{y}{x}$	Ven
$y' = y^2 \cdot \sqrt{1 - \sin(y)} - \ln(y)$	3 e

Lineare Differentialgleichungen

Form: $y' + f(x) \cdot y = g(x)$

 $g(x) \rightarrow Störglied / Störfunktion$

"linear" $\rightarrow y$ und y' in der ersten Potenz

 $homogen \rightarrow \text{wenn das St\"{o}rglied } g(x) = 0$

ansonsten $\rightarrow inhomogen$

Variation der Konstanten für lineare Differentialgleichungen

 $\widehat{\mbox{\em 1}}$ Bestimmung von f(x) und g(x) basierend auf:

$$y' + f(x) \cdot y = g(x)$$

2 Bestimmung der Stammfunktion F(x) von f(x)

 $\stackrel{\circ}{\text{3}}$ Einsetzen in die Formel $y_0 = K(x) \cdot e^{-F(x)}$

(4) K berechnen: $K(x) = \int g(x) \cdot e^{F(x)} dx$

5 K in Ansatz aus 3 einsetzten \rightarrow allgemeine Lösung Beispiel:

$$y' = \cos(x) \cdot (1+2y) \quad \Leftrightarrow \quad y' - 2 \cdot \cos(x) \cdot y = \cos(x)$$

• Variation der Konstanten mit $f(x) = -2 \cdot \cos(x)$, $g(x) = \cos(x)$

- $F(x) = -2 \cdot \sin(x)$
- $y_0 = C \cdot e^{2\sin(x)}$
- Ansatz: $y = K(x) \cdot e^{2\sin(x)}$
- $K(x) = \int e^{-2\sin(x)} \cdot \cos(x) dx = \int e^{-2u} du = -\frac{1}{2}e^{-2u} + C_2 = -\frac{1}{2}e^{-2\sin(x)} + C_2$ (Substitution $u = \sin(x)$)
- Einsetzen: $y = (\frac{1}{2}e^{-2\sin(x)} + C_2) \cdot e^{2\sin(x)} = -\frac{1}{2} + C_2 \cdot e^{2\sin(x)}$

Richtungsfelder

 $\widehat{\ \ }$ DGL in die Form y'=f(x,y) bringen.

② Bereich wählen, welcher zur veranschaulichung optimal ist. (Bspw: -2 - 2)

separierbar! ② Nun setzt man in diesem Bereich x und y Werte ein und Liest die resultierende Steigung ab. Diese Steigung wird dann am Punkt eingetragen.

Eulerschritte

Anwendungen der Intergralrechnung

$$V = \pi \cdot \int_{a}^{b} (f(x))^{2} dx$$

Schwerpunkt Fläche zwischen zwei Kurven

$$c_s = \frac{1}{A} \cdot \int_a^b x \cdot (f_o(x) - f_u(x)) dx$$

$$y_s = \frac{1}{2A} \cdot \int_{a}^{b} (f_o^2(x) - f_u^2(x)) dx$$

Schwerpunkt eines Rotationskörpers

Rotation um die y-Achse

$$V = \pi \cdot \int_{c}^{d} (g(y))^{2} dy$$

 $\rightarrow g(y)$ die nach x aufgelöste Funktionsgleichung.

Bogenlänge einer ebenen Kurve (Graph)

$$s = \int_a^b \sqrt{1 + (y')^2} dx$$

Mantelfläche eines Rotationskörpers

$$M = 2\pi \int_a^b y \cdot \sqrt{1 + (y')^2} dx$$

$$x_s = \frac{1}{V} \cdot \int_a^b x \cdot f^2(x) dx$$

$$y_s = 0, z_s = 0$$

Taylor-Reihen

Definition

Eine Funktion f(x) entspricht einer Taylorreihe mit unendlich vielen Gliedern. Die Stelle x_0 ist die Entwicklungsstelle. Die Entwicklungsstelle ist die Stelle, in deren Umgebung uns das Verhalten der Funktion interessiert.

Verfahren / Formel

Grad: anzahl Ableitungen / Schritte

- 1 Ableitungen bilden (Grad)
- (2) x_0 in Ableitungen einsetzen
- 3 Ableitungen in Formel einsetzen
- 4 ausrechnen/kürzen/vereinfachen

Beispiel:

die Funktion $f(x) = (1 + e^x)^2$ vom Grad 3 um $x_0 = 0$.

$$\begin{array}{ll} f(x) = (1+e^x)^2 & \Rightarrow & f(0) = 4 \\ f'(x) = 2(1+e^x) \cdot e^x = 2e^x(1+e^x) & \Rightarrow & f'(0) = 2 \cdot 2 = 4 \\ f''(x) = 2(e^x)' \cdot (1+e^x) + 2e^x \cdot (1+e^x)' = 2e^x(1+e^x) + 2e^x \cdot e^x = 2e^x + 4e^{2x} & \Rightarrow & f'''(0) = 6 \\ f'''(x) = 2e^x + 8e^{2x} & \Rightarrow & f'''(0) = 10 \end{array}$$

gesuchtes Taylor-Polynom:

$$p_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3 = 4 + 4x + 3x^2 + \frac{5}{3}x^3$$

Bekannte Taylorreihen

Funktion	Taylorreihe	Defbereich
sin(x)	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	R
\mathbf{c} os (x)	$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$	R
e ^x	$\sum_{n=0}^{\infty} \frac{x^n}{n!}$	R
$\frac{1}{1-x}$	$\sum_{n=0}^{\infty} x^n$	(-1,1)
	.35(2i+1)	

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - + \dots + (-1)^i \frac{x^{(2i+1)}}{(2i+1)!} + - \dots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{(2i+1)}}{(2i+1)!}$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - + \dots + (-1)^i \frac{x^{2i}}{(2i)!} + - \dots = \sum_{i=0}^{\infty} (-1)^i \frac{x^{2i}}{(2i)!}$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^i}{i!} + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

Konvergenzen

Konvergenzradius bei Taylor

$$P(x) = \sum_{k=0}^{\infty} a_k \cdot (x - x_0)^k$$

$$r := \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|$$

r: Konvergenzradius

Berechnung:

$$\sum_{k=1}^{\infty} \frac{1}{k^2} \cdot x^k$$

In r Formel einsetzen \rightarrow (ohne den x Teil)

$$\lim_{k \to \infty} \frac{\frac{1}{k^2}}{\frac{1}{(k+1)^2}} = \frac{(k+1)^2}{k^2} = (\frac{k+1}{k})^2 = (\frac{k+1}{k}) \cdot (\frac{k+1}{k})$$

$$\implies k \to \infty \implies (\frac{\infty+1}{\infty}) \cdot (\frac{\infty+1}{\infty}) = 1 \cdot 1 = 1 = r$$

Bestimmung Intervall konvergiert:

ightarrow Einsetzen von x_0 und r in folgende Definition: (x_0) aus P(x) ablesen. Wenn nicht vorhanden: unendlichen Konvergenzradius und konvergiert für ganz R alle $x \in (x_0-r,x_0+r)$ zum Konvergenzbereich gehören alle $x \in (-\infty,x_0-r)$ NICHT zum Konvergenzbereich gehören

Regel von Bernoulli-Hopital

$$\lim_{x \to x_0} \frac{g(x)}{h(x)} = \lim_{x \to x_0} \frac{g'(x)}{h'(x)}$$

- $\begin{picture}(1)\line Z\"{a}hlerfunktion <math>g(x)$ und Nennerfunktion f(x) getrennt voneinander ableiten
- \bigcirc Grenzewert von $\frac{g'(x)}{h'(x)}$ brechnen

BEM: Die Regel von L'HOSPITAL kann auch mehrfach hintereinander angewendet werden. (Wenn Lösung nacht 1x ableiten nicht ersichtlich)