דו"ח עבודה 1 -למידה עמוקה

Dog breed שבחרנו Dataset - בדו"ח זה נציג את המחקר שלנו שנערך בשלושה שלבים על ה- identification.

שלב א'- ניתוח והבנת ה-Dataset

ה-Data מורכב משתי תיקיות המכילות תמונות מגוונות של גזעים של כלבים. תיקייה אחת שייכת ל-Data שבעזרתה אימנו את המודלים שיצרנו, ותיקייה נוספת ששייכת ל-test set עליה נפעיל את המודלים הטובים ביותר על מנת לקבל את התוצאות מאתר kaggle. המידע מגיע כתיקיית תמונות וקובץ csv שנותן לייבל לכל תמונה לפי שם התמונה.

המטרה היא לזהות את סוג הכלב מתוך 120 כלבים.

<u>:Data -גודל ה</u>

- מספר התמונות בתיקיית ה-train set
- מספר התמונות בתיקיית ה-test set הוא: 10357
- מספר ה-labels (סיווגי סוגי הכלבים) הוא: 120.

מבנה התמונות:

- כל תמונה מורכבת משלושה ערוצים (RGB).
- התמונות לא מורכבות מאותם ממדים (מצורף גרף).
- לפי 100 התמונות בעלי הממדים הנפוצים ביותר, הממד הנפוץ ביותר הוא (375,500).

בעקבות נתונים אלו אנו מבינים כי אנו צריכים להמיר את התמונות לממד אחד משותף לכולם על מנת שנוכל להשתמש בהם במודל, בחרנו להשתמש בגודל של 3*128*128.

<u>:Data-אופן האיזון ב</u>

מהגרף המצורף ניתן לראות שאומנם קיימים labels 120 אך הם מחולקים בצורה לא מאוזנת, כלומר אין מספר קרוב של תמונות עבור כל גזע של כלב ביחס לכלב אחר ולכן ישנה התפלגות שונה בכמות התמונות עבור כל סוג. סוג הכלב עם מספר התמונות הנפוץ ביותר מופיע למעלה מ-120 פעמים ואילו הכלב עם מספר התמונות הנמוך ביותר מופיע בערך 60-70 פעמים.

<u>: benchmark – קבלת אומדן לתוצאות</u>

לאחר חיפושים באינטרנט של אתרים ומאמרים שעוסקים במחקרים ומודלים בנושא breed identification ראינו שימוש במודלים שונים ומוכרים שהגיעו לתוצאות דיוק מרשימות של למעלה מ-90 אחוז.

10

.Dog Breed Identification Using Deep Learning לקוח מתוך מאמר:

https://www.researchgate.net/publication/328834665 Dog Br eed Identification Using Deep Learning

Table 1. Experimental Results of different Pre-trained Models

Model	Accuracy	Loss
VGG-16	91%	0.3
Inception V3	94%	0.06
Xception	93%	0.08

Dog Breed Identification with Fine tuning of :לקוח מתוך המאמר Pre-trained models

> https://www.ijrte.org/wp- :קישור content/uploads/papers/v8i2S11/B14640982S1119.pdf

:Data-דוגמאות לתמונות מה

מחלק התמונות שמוצגות ניתן לראות שיש תמונות שיחסית קל להבדיל בין סוגי הכלבים ויש כאלה שקשה יותר.

לדוגמא בין כלב מסוג boxer (שורה ראשונה תמונה רביעית משמאל) לבין לכלב מסוג (שורה שנייה תמונה שישית משמאל) קל יחסית לזהות ולהבחין בהבדלים, אך לעומת זאת בין כלב מסוג carim (שורה שנייה תמונה שישית משמאל) לבין כלב מסוג affenpinscher (שורה שנייה תמונה שנייה מימין) קשה יותר לזהות את ההבדלים והם נראים די דומים.

Model: "model"

חלק ב׳- בניית מודל התחלתי:

בשלב הראשון בנינו מודל התחלתי שמורכב כך:

	MaxPool2D(pool_size=(2, 2))(x)
	BatchNormalization()(x)
	Dropout(0.15)(x)
	MaxPool2D(pool_size=(2, 2))(x)
	BatchNormalization()(x)
x =	Dropout(0.15)(x)

מבנה בלוק במודל- בלוק 1,2 64 מאפיינים, בלוק 3 128 מאפיינים.

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 128, 128, 3	======================================
		<u> </u>
conv2d (Conv2D)	(None, 125, 125, 6	4) 3136
conv2d_1 (Conv2D)	(None, 122, 122, 6	54) 65600
max_pooling2d (MaxP	ooling2D) (None, 61, 6	1, 64) 0
batch_normalization (E	BatchNo (None, 61, 61,	64) 256
dropout (Dropout)	(None, 61, 61, 64)	0
conv2d_2 (Conv2D)	(None, 58, 58, 64)	65600
conv2d_3 (Conv2D)	(None, 55, 55, 64)	65600
max_pooling2d_1 (Ma	xPooling2 (None, 27, 2	7, 64) 0
batch_normalization_1	(Batch (None, 27, 27, 6	(4) 256
dropout_1 (Dropout)	(None, 27, 27, 64) 0
conv2d_4 (Conv2D)	(None, 24, 24, 128	3) 131200
conv2d_5 (Conv2D)	(None, 21, 21, 128	3) 262272
max_pooling2d_2 (Ma	xPooling2 (None, 10, 1	0, 128) 0
batch_normalization_2	(Batch (None, 10, 10, 1	28) 512
dropout_2 (Dropout)	(None, 10, 10, 12	8) 0
flatten (Flatten)	(None, 12800)	0
dense (Dense)	(None, 512)	6554112
dropout_3 (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 256)	131328
dropout_4 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 120)	30840
Total params: 7 210 71		=======================================

Total params: 7,310,712 Trainable params: 7,310,200 Non-trainable params: 512

: תוצאות המודל

בשלב זה אימנו את המודל עד 25 אופקים ללא שימוש באוגמנטציה כלל רק כדי לקבל הערכה ראשונית של יכולות המודל שלנו, החלטנו להוסיף אלמנט של עצירה מוקדמת של המודל כדי לחסוך בזמן ריצה, אך עם מדד סבלנות יחסית גבוה של 5 אפוקים. בנוסף בחרנו להשתמש בגודל תמונה של 128*128 כדי להוריד את כמות המשקולות שיש למצוא וכך שוב לקצר את זמן הריצה. בחרנו להשתמש ב-3 חזרות של בלוקים שמורכבים מ-2 שכבות קונבולוציה, מקס פולינג, נרמול ו-

ניתן לראות כי המודל שלנו נכנס למצב של התאמת יתר, המודל שלנו התחיל לאחר 7 אפוקים להשתפר משמעותית יותר טוב בנתוני האימון לעומת נתוני המבחן ולכן הגענו למסכנה שהוא נכנס להתאמת יתר לנתוני האימון. ניתן לראות שלמרות שהמודל כולל אלמנטים להורדת התאמת יתר כמו נרמול ו-dropout המודל נכנס להתאמת יתר משמעותית.

מניתוח הסיווגים ראינו כי המודל טועה גם בסיווגים בהן ההסתברות המתקבלת היא גבוה וגם בסיווגים בהן ההסתברות המתקבלת היא נמוכה.

בשלב הבא החלטנו להוסיף למודל שיטות אוגמנטציה שונות, מניתוח התמונות שביצענו ניתן לראות כי לרוב הכלב נמצא במרכז התמונה ולכן בחרנו לבצע הזזות והיפוכים לתמונה. נשתמש באוגמנטציה על התמונות על מנת שהמודל שלנו יוכל לזהות את הסיווג של התמונה גם בצורות שונות בהם תהיה התמונה וכך ננסה למנוע overfitting. מדובר ב- dataset המורכב מתמונות של כלבים לכן בעזרת אוגמנטציה נוכל להשתמש במספר אפשרויות על התמונות כגון: סיבוב של

התמונה לפי מעלות, הזזה של התמונה לאורך או לרוחב, זום אין/ אווט ועוד. יש אפשרויות באוגמנטציה שלא נשתמש בהם על תמונות אלו כמו למשל סיבוב אנכי כי כך התמונה תאבד את המשמעות שלה לעומת תמונות אחרות ואז הסיכוי לסיווג לא נכון יגדל.

שיטות האומנגטציה אותן בחרנו להוסיף בשלב זה:

- Horizontal flip
- Rotation range
 - Width shift •
 - Channel shift
 - Height shift
 - zoom •

בנוסף לאלמנט של אוגמנטציה בחרנו להשתמש גם באלמנט של רגולריצזיה עבור השכבות הצפופות של הרשת, בחרנו להשתמש ברגולריצזיה מסוג l2 מכיוון שהיא מורידה את משקלי המשקולות ולא מאפסת אותם כמו ב-l1 ואחרי שקראנו שלרוב היא יותר פופולארית.

בחרנו להתשמש במקדם של 0.01.

אלמנט נוסף שחשבנו להשתמש בו אבל בשלב זה החלטנו לוותר עליו הוא העלאת ה-dropout. בחרנו לא להוריד את מורכבות המודל על ידי שינוי הארכיטקטורה מכיוון שהמודל שלנו לא הצליח לעלות את רמת הדיוק על נתוני האימון ביותר מכמה אחוזים בודדים.

מודל מספר 2- הוספת אוגמנטציה ורגולריזציה

: תוצאות המודל

ניתן לראות כי מודל זה לא נכנס להתאמת יתר במהלך כל שלב האימון והצליח להגיע לדיוק של כמעט 8% בנתוני המבחן. אנחנו רואים שאוגמנטציה ורגולריזציה עזרו לנו לצמצם משמעותית את ההתאמת יתר. חשוב להוסיף כי זה המודל הטוב ביותר שיצא מבין חמש ההרצות שביצענו בעזרת Stratified k-fold (על מנת לשמור על יחס זהה בין המחלקות בנתוני האימון ונתוני המבחן) ויתר התוצאות היו נמוכות יותר והיה נראה כי המודל לרוב מתקשה לעבור את האחוזים הבודדים (5%-3%).

מניתוח תוצאות המודלים ראינו כי הכלבים שהמודל צודק בהם הם הכלבים שנבחרים הכי הרבה פעמים על ידו, בנוסף ראינו כי הגיוון בתוצאות של הסיווגים הוא גם כן איננו גבוה ולרוב הוא מסתכם בכך שהמודל תמיד בוחר רק שליש מסוגי כלבים בלבד מתוך 120 ויש חלוקה מאוד לא מאוזנת בבחירות שלו. מכאן הסקנו שאנחנו צריכים לייצר עוד תמונות של כלבים שלהם יש מספר נמוך של תמונות, לאמן את המודל לאורך יותר זמן על מנת לראות אם הוא ממשיך להשתפר ואם זה לא יעזור אז נצטרך לעלות את מורכבות המודל.

הכלבים שעבורם המודל מדייק (עמודה ערך 1), הם הכלבים שהמודל בוחר הכי הרבה פעמים (עמודה H) . עמודה I,H מסמנות לייבל וכמה פעמים הוא נבחר וניתן לראות שזה תואם לכלבים שהמודל חזה נכון.

1	H	G	F	E	D	C	В
predictions	repeat	accuracy	real_predic	predictions	prediction	true_label	id
whippet	6	1	- 0	whippet	0.014282	whippet	9513287b
scottish_deerhound	228	1	0	scottish_deerhound	0.014877	scottish_d	430d1dd6
newfoundland	97	1	0	scottish deerhound	0.015883	scottish d	657c6ab8
maltese dog	110	1	0	scottish deerhound	0.017149	scottish d	669d0c28
irish water spaniel	260	1	0	newfoundland	0.021769	newfoundl	2eb4b684
cairn	248	1	0	newfoundland	0.021894	newfoundl	befc8bac9
bouvier des flandres	184	1	0	maltese dog	0.017697	maltese d	fa5054c5
black-and-tan coonhound	170	1	0	irish water spaniel	0.093717	irish wate	52e4bb5c
bernese mountain dog	188	1	0	irish water spaniel	0.043529	irish wate	c37f52e1a
australian terrier	355	1	0	irish water spaniel	0.053091	irish wate	c9c0e4d1
blenheim spaniel	10	1	0	cairn	0.016843	caim	b83be4ce
leonberg	34	1	0	bouvier des flandres	0.024885	bouvier de	b8536d60
schipperke	15	1	0	black-and-tan coonhound	0.035883	black-and-	3e2f22667
groenendael	41	1	0	black-and-tan coonhound	0.043235	black-and-	633c2b66
beagle	3	1	0	black-and-tan coonhound	0.034888	black-and-	71c10b10
basenii	8	1	0	bernese mountain dog	0.13549	bernese n	1241cd8d
samoyed	4	1	0	bernese mountain dog	0.028892	bernese n	52fc29c92
pomeranian	3	1	0	bernese mountain dog	0.085224	bernese n	a064e199
airedale	11	1	0	australian terrier	0.014174	australian	2ea0a5df9
iapanese spaniel	9	1	0	australian terrier	0.014174	australian	6aae9f70d
irish wolfhound	7	1	0	australian terrier	0.014174	australian	94134ebe
shih-tzu	5	1	0	australian terrier	0.014174	australian	aad0ede6
sealyham terrier	8	0	77	australian terrier	0.014174	pekinese	001cdf01b
tibetan mastiff	10	0	61	bernese mountain dog	0.034291	bluetick	00214f31
curly-coated retriever	5	0	69	caim	0.024975	walker ho	0067dc3e
labrador retriever	2	0	73	australian terrier	0.014174	bluetick	006cc3dd
irish setter	1	0	59	australian terrier	0.014174	otterhound	009509be
boston bull	2	0	96	black-and-tan coonhound	0.023224	dingo	00a338a9
tibetan terrier	2	0	28	irish water spaniel	0.073028	standard :	00a86239
bedlington terrier	3	0	36	australian terrier	0.013753	weimarane	00fa6413
afghan hound	7	0	10	australian terrier	0.014318	groenenda	010e87fdf
norwegian elkhound	4	0	107	irish water spaniel	0.067321	dhole	011e0676
scotch terrier	- 1	0		australian terrier		german s	016bcdb0
toy terrier	- 1	0		blenheim spaniel		greater sv	
wire-haired fox terrier	1	0		bernese_mountain_dog		miniature	
miniature pinscher	- 1	0		bouvier des flandres		brittany sp	

המודל הטוב ביותר שהגענו אליו היה כאשר השתמשנו בגודל תמונה של 64*64 והגענו לדיוק של 15% אבל עם התאמת יתר גבוה ולאורך מספר אפוקים גבוה יותר.

השתמשנו ב- stratified cross validation כדי שהחלוקה תהיה שווה בין אימון למבחן.

: טבלת השוואה בין מודלים

model	Time per epoc h	Accurac y	Loss	Hyper paramete rs	metrics	conclusions	Features add	Cross validation
1	44 דק	3%	4.8	שכבות ה – 64 קונבולוצי פילטרים בשתי השכבות 1281 בשכבת קונולוציה קונולוציה של חרונה. של %15, מקס	Dropout, early stoping, batch normalizatio n	המודל נכנס להתאמת יתר,		
2	44דק	8%	4.1	0.01	אוגמנטציה, רגולריצזיה L2 וסעיף קודם.	המודל צודק בכלבים שהוא בוחר הכי הרבה.	אוגמנטציה, רגולריצזיה	דיוק – 4.2% בממוצע, הפסד – 4.8 בממוצע

המלצות לשיפור המודל:

- ריצה עם מספר אפוקים גדול יותר כי המודל המשיך לטפס בדיוק האימון והמבחן.
 - הוספת מורכבות למודל.
- הוספת אוגמנטציה לסוגי כלבים עם מעט תמונות על מנת להגדיל את נתוני המבחן ולגרום לאיזון בבחירת סוגי הכלבים.

: Transfer Learning שלב ג' – ביצוע

בשלב זה התבקשנו לבחור מודל קיים מאומן כדי להשתמש בו ולהפעיל אותו למשימת החיזוי שלנו.

בחרנו לקחת את ארכיטקטורת inception v3 לאחר שקראנו במאמרים כי היא ארכיטקטורה יעילה לסיווג תמונות ומביאה תוצאות דיוק גבוהות מאוד.

Layer (type)	Output Shape	Param #
inception_v3 (Functional)	(None, 5, 5, 2048)	21802784
flatten (Flatten)	(None, 51200)	0
dense (Dense)	(None, 512)	26214912
dropout (Dropout)	(None, 512)	0
dense_1 (Dense)	(None, 256)	131328
dropout_1 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 120)	30840

Total params: 48,179,864 Trainable params: 26,377,080 Non-trainable params: 21,802,784

הוספנו 6 שכבות למודל ה-inception v3 המקורי כדי שלבסוף המודל שלנו יגיע לסיווג של 120 לייבלים.

בחרנו לקחת את השכבה האחרונה מהמודל כיוון שזה סוף הבלוק במודל, למדנו שמודל זה בנוי מבלוקים שחוזרים על עצמם ורצינו לקחת את השכבה האחרונה שמהווה את סוף הבלוק שלה עם מבלוקים שחוזרים על עצמם ורצינו לקחת האחרונה היא (5,5,2048), ביצענו לאחר מכן Flatten כדי להביא את המידע למימד אחד ולאחר מכן הוספנו שכבות Dense ו-DropOut

ביצענו data augmentation (כדי למנוע overfitting כדי למנוע) את סט האימון) עם הפרמטרים ביצענו

- רוטציה של תמונה סיבוב לשני הכיוונים ב-18 מעלות
- הקטנת/הגדלת התמונה כדי שהתמונות יהיו באותו גודל
- דיסטורציה לתמונה כדי לשנות את הזווית של התמונה כולה
 - הפעלת זום למרכז התמונה
 - הפיכת הכיוון של התמונה בכיוון האופקי
 - השלמת מסגרת תמונה בצבעים הכי קרובים
 - הזזת תמונה לרוחב
 - הזזת תמונה לאורך

rotation_range=18, rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest', width_shift_range=0.1, height_shift_range=0.1,

ואימנו את סט האימון על 80% מהרשומות והשארנו 20% לסט הוולידציה.

תוצאות המודל:

[[13 0] 0 0] 0 0 0] 11 14 0] 0 0 7 0] 0 0

מדגם של סיווג כלבים של המודל:

0

0

0

2]]

ניתן לשים לב שהמודל לא הצליח לסווג כמו שצריך את הכלב מסוג Silky_terrier והתבלבל עם Tibetan_terrier – שני הכלבים הם סוג של גזע הטרייר ולכן אפשר להבין את אי ההצלחה בקטגוריה זו.

בעזרת המודל הנייל feature extractor בהמשך, ביצענו
(מודל ה- transfer learning) - הורדנו מהמודל את
השכבה האחרונה וביצענו בעזרתו פרדיקציה לסט
האימון.

לאחר ביצוע חיזוי על סט הוולידציה קיבלנו דיוק של יותר ביצוע חיזוי על סט מוולידציה של יותר ממודל של 3% של של 65.8% \bullet

[[1	L2	0	0		0	0	0]
[0	16	0		0	0	0]
[0	0	11	• • •	0	0	0]
	•						
[0	0	0		15	0	0]
[0	0	0		0	6	0]
[0	0	0		0	0	11]]

model accuracy on validation set is: 65.8023483365949%

tranfer learning הביא לשיפור משמעותי בסט הבדיקה, שהרי ידוע כי רשתות קונבולוציה מחזיקות בייצוג רחב של הפיצ'רים בקלט מה שעוזר להגיע לתוצאות דיוק טובות יותר, מודלי למידת המכונה הקלאסיים כדוגמת רגרסיה המשתמשים במשקולות שנלמדו ע"י רשת קונבולוציה יכולות לשפר את התוצאות כמו במקרה זה.

Ü	דיוכ על ס הווליד	מטריקות בהן השתמשנו	היפר-פרמטרים התחלתיים	loss	זמן ריצ ה	מודל
62	.87%	מחבילת Sklearn.metrics השתמשנו ב: accuracy_score, log_loss, confusion_matrix	ביצירת המודל – include_top = False, weights = 'imagenet', input_shape = (224,224) — שכבות שנוספו Flatten(), Dense(512,activation = 'relu'), Dropout(0.3), Dense(256,activation = 'relu'), Dropout(0.3), Dense(120,activation = 'softmax') — קמפול המודל – loss = 'categorical_crossentropy', optimizer = Adam(), metrics = ['accuracy']	1.549	205 דקי	Inception v3
6!	5.8%		multi_class='multinomial', solver='lbfgs', n_jobs=8		32 דקי	Logistic regression

סעיף ד-סיכום ומסקנות:

- ראינו שאוגמנטציה עוזר להוריד את ההתאמת יתר בורה משמעותית.
- .transfer learning- מודל שנבנה על ידנו הוא הרבה יותר קשה לשיפור מאשר שימוש ב
- הבנת איפה המודל טועה ואיזה סוגי טעויות הוא מבצע, עוזר לשפר את המודל בצורה טובה מאשר שינוי של הארכיטקטורה של המודל.
- יכולת המחשב שלנו לא מסוגלות להריץ מודל מורכב מדי ולכן נאלצנו להסתפק במודלים יחסית קלים.
 - היה כיף להתנסות בפעם הראשונה בבעיה אמיתית זיהוי תמונה ולהתמודד עם כל הקשיים כמו הבנת הבעיה, שיפור מודלים והתנסות בלמידה עמוקה.