Итоговый конспект стр. 1 из 67

1 Определения

1.1 Ступенчатая функция

 $f: X \to \mathbb{R}$ — ступенчатая, если:

$$\exists$$
 разбиение $X = \bigsqcup_{\scriptscriptstyle{ ext{KOH.}}} e_i : orall i \ f \Big|_{e_i} = ext{const}_i = c_i$

При этом разбиение называется допустимым для этой функции.

1.2 Разбиение, допустимое для ступенчатой функции

Дано выше. (1.1, стр. 1)

1.3 ! Измеримая функция

- (X,\mathfrak{A},μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$
- E ∈ A

f измерима на множестве E, если $\forall a \in \mathbb{R} \ E(f < a)$ измеримо, т.е. $\in \mathfrak{A}$

1.4 Свойство, выполняющееся почти везде

- (X,\mathfrak{A},μ)
- $E \in \mathfrak{A}$
- W(x) высказывание $(x \in X)$

W(x) — верно при почти всех x из E = почти всюду на E = почти везде на E = п.в. E, если:

 $\exists e \in E : \mu e = 0$ и W(x) истинно при $\forall x \in E \setminus e$

1.5 ! Сходимость почти везде

Если $f_n(x) \xrightarrow[n \to +\infty]{} f(x)$ при п.в. $x \in E$, тогда говорят, что f_n сходится на E почти везде.

1.6 Сходимость по мере

 $f_n, f: X \to \overline{\mathbb{R}}$ — почти везде конечны.

$$f_n$$
 сходится к f по мере μ , обозначается $f_n \xrightarrow[\mu]{} f: \forall \varepsilon > 0 \,\, \mu X(|f_n - f| \ge \varepsilon) \xrightarrow[n \to +\infty]{} 0$

Итоговый конспект стр. 2 из 67

1.7 Теорема Егорова о сходиомсти почти везде и почти равномерной сходиомсти

- (X,\mathfrak{A},μ) пространство с мерой
- $\mu X < +\infty$
- f_n, f почти везде конечно, измеримо
- $f_n \to f$ почти везде

Тогда

$$\forall \varepsilon > 0 \ \exists e \subset X : \mu e < \varepsilon \quad f_n \Longrightarrow_{X \setminus e} f$$

Доказательство.

Примечание. Кажется, доказательство знать не нужно, т.к. нам его не давали.

Зафиксируем $\varepsilon > 0$. Рассмотрим следующее семейство множеств:

$$E_{n,k} = \bigcup_{m > n} \left\{ x \in X \mid |f_m(x) - f(x)| \ge \frac{1}{k} \right\}$$

Т.к. $f_n \to f$ почти везде:

$$\mu\left(\bigcap_{n\in\mathbb{N}}E_{n,k}\right)=0$$

Т.к. $\mu X < +\infty$, то μ непрерывно сверху, т.е.

$$\lim_{n \to +\infty} \mu E_{n,k} = \mu \left(\bigcap_{n \in \mathbb{N}} E_{n,k} \right) = 0$$

Тогда по определению предела $\exists (n_k)$:

$$\mu E_{n_k,k} < \frac{\varepsilon}{2^k}$$

Пусть $e = \bigcup_{k \in \mathbb{N}} E_{n_k,k}$. По σ -аддитивности μ :

$$\mu(e) \le \sum_{k \in \mathbb{N}} \mu(E_{n_k,k}) < \sum_{k \in \mathbb{N}} \frac{\varepsilon}{2^k} = \varepsilon$$

Кроме того, $f_n \Longrightarrow_{X \setminus e} f$.

Итоговый конспект стр. 3 из 67

1.8 Интеграл ступенчатой функции

- $f = \sum \alpha_k \chi_{E_k}$
- E_k допустимое разбиение
- $\alpha_k \geq 0$

$$\int_X f d_{\mu(x)} := \sum \alpha_k \mu E_k$$

И пусть $0 \cdot \infty = 0$

1.9 ! Интеграл неотрицательной измеримой функции

- $f \ge 0$
- f измеримо

$$\int_X f d\mu := \sup_{\substack{g - \text{cryn.} \\ 0 \le g \le f}} \int g d\mu$$

1.10 ! Суммируемая функция

Если оказалось, что $\int_X f^+, \int_X f^-$ оба конечны, то f называется суммируемой.

1.11 Интеграл суммируемой функции

- \bullet f измеримо
- $\int f^+$ или $\int f^-$ конечен

$$\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$$

Требование о конечности необходимо для избегания неопределенностей.

1.12 Образ меры при отображении

 $\sphericalangle(X,\mathfrak{A},\mu)$ — пространство с мерой, $(Y,\mathfrak{B}, \square), \Phi: X \to Y$

Пусть Φ — измеримо в следующем смысле:

$$\Phi^{-1}(\mathfrak{B})\subset\mathfrak{A}$$

Упражнение. Проверить, что $\Phi^{-1} - \sigma$ -алгебра.

Итоговый конспект стр. 4 из 67

Для $E\in\mathfrak{B}$ положим $\nu(E)=\mu\Phi^{-1}(E)$. Тогда ν — мера:

$$\nu\left(\bigsqcup E_n\right) = \mu\left(\Phi^{-1}\left(\bigsqcup E_n\right)\right) = \mu\left(\bigsqcup \Phi^{-1}(E_n)\right) = \sum \mu \Phi^{-1}E_n = \sum \nu E_n$$

Мера ν называется образом μ при отображении Φ и $\nu E = \int_{\Phi^{-1}(E)} 1 d\mu$

1.13 Взвешенный образ меры

 $\omega:X\to\overline{\mathbb{R}},\omega\geq0$, измеримо на X.

$$\forall B \in \mathfrak{B} \ \nu(B) := \int_{\Phi^{-1}(B)} \omega(x) d\mu(x)$$

Тогда ν называется "взвешенный образ меры μ при отображении Φ ", ω называется весом.

1.14 Плотность одной меры по отношению к другой

Рассмотрим частный случай: $X=Y,\mathfrak{A}=\mathfrak{B},\Phi=\mathrm{id}$ - тождественное отображение. Кажется, что мы убили всю содержательность, но это не так — есть ещё ω .

$$\nu(B) = \int_{B} \omega(x) d\mu$$

В этой ситуации ω называется плотностью меры ν относительно меры μ и тогда по теореме Теорема о вычислении интеграла по взвешенному образу меры:

$$\int_X f d\nu = \int_X f(x)\omega(x)d\mu$$

1.15 Измеримое множество на простой двумерной поверхности в \mathbb{R}^3

- $M\subset\mathbb{R}^3$ простое двумерное гладкое многообразие
- $\, \varphi : G \subset \mathbb{R}^2 o \mathbb{R}^3$ параметризация M, т.е. $\varphi(G) = M$

 $E\subset M$ — измеримо по Лебегу, если $arphi^{-1}(E)$ измеримо в \mathbb{R}^2 по Лебегу.

Обозначение. $\mathfrak{A}_M=\{E\subset M: E$ изм. $\}=\{\varphi(A), A\in\mathfrak{M}^2, A\subset G\}$

1.16 Мера Лебега на простой двумерной поверхности в \mathbb{R}^3

$$S(E) := \iint_{\varphi^{-1}(E)} |\varphi'_u \times \varphi'_v| du dv$$

т.е. это взвешенный образ меры Лебега при отображении φ .

Итоговый конспект стр. 5 из 67

1.17 ! Поверхностный интеграл первого рода

- M- простое гладкое двумерное многообразие в \mathbb{R}^3
- φ параметризация M
- $f:M \to \overline{\mathbb{R}}$ суммируемо по мере S на M

Тогда $\iint_M f dS = \iint_M f(x,y,z) dS$ называется интегралом первого рода от f по многообразию M.

1.18 Произведение мер

- $\sphericalangle(X,\mathfrak{A},\mu), (Y,\mathfrak{B},\nu)$ пространства с мерой
- $\mu, \nu \sigma$ -конечны

Пусть m — лебеговское продолжение меры m_0 на σ -алгебру, которую будем обозначать $\mathfrak{A}\otimes\mathfrak{B}^{\scriptscriptstyle 1}$

Обозначение. $m = \mu \times \nu$

 $(X \times Y, \mathfrak{A} \otimes \mathfrak{B}, \mu \times \nu)$ — произведение пространств с мерой (X, \mathfrak{A}, μ) и (Y, \mathfrak{B}, ν)

1.19 ! Теорема Фубини

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\mu, \nu \sigma$ -конечные, полные
- $m = \mu \times \nu$
- f суммируемо на $X \times Y$

Тогда:

- 1. f_x суммируема на Y при почти всех x
- 2. $x\mapsto \varphi(x)=\int_{Y}f_{x}d\nu=\int_{Y}f(x,y)d\nu(y)$ суммируема на Y
- 3. $\int_{X\times Y}fdm=\int_X\varphi d\mu=\int_X\left(\int_Yf(x,y)d\nu(y)\right)d\mu(x)$

1.20 Сторона поверхности

Сторона поверхности есть непрерывное семейство единичных нормалей к этой поверхности.

 $^{^{\}scriptscriptstyle 1}\otimes$ — не тензорное произведение

Итоговый конспект стр. 6 из 67

Для поверхности $M\subset\mathbb{R}^3$ сторона есть отображение

$$W: M \to \mathbb{R}^3 \quad \forall x \ |W(x)| = 1, W(x) \perp \Phi'_u, \Phi'_v$$

1.21 Задание стороны поверхности с помощью касательных реперов

u,v — касательные непараллельные вектора к M. Тогда (u,v) будем называть касательным репе́ром. Нормаль в таком случае можно восстановить векторным произведением $u \times v$. После нормировки по полю реперов мы получаем поле единичных нормалей, т.е. сторону поверхности.

1.22 ! Интеграл II рода

- M простое двумерное гладкое многообразие
- n_0 сторона M
- $F:M \to \mathbb{R}^3$ непрерывное векторное поле

Тогда $\int_M \langle F, n_0 \rangle \, dS$ — интеграл II рода векторного поля F по поверхности M.

1.23 Ориентация контура, согласованная со стороной поверхности

- M поверхность в \mathbb{R}^3
- n₀ сторона
- γ контур (*петля*) в M, ориентированная
- $N_{\text{внутр.}}$ вектор нормали, направленный внутрь петли

Говорят, что сторона поверхности n_0 согласована с ориентацией γ , если:

$$(\gamma' \times N_{\text{внутр.}}) \parallel n_0$$

Т.е. если ориентация γ задаёт сторону n_0 .

1.24 Интегральные неравенства Гельдера и Минковского

Неравенство Гёльдера.

- $p, q > 1, \frac{1}{p} + \frac{1}{q} = 1$
- (X,\mathfrak{A},μ)
- E измеримо
- $f, q: E \to \mathbb{C}$

Итоговый конспект стр. 7 из 67

• f, g — измеримы

Тогда
$$\int_E |fg| d\mu \leq \left(\int_E |f|^p\right)^{\frac{1}{p}} \left(\int_E |g|^q\right)^{\frac{1}{q}}$$

Доказательство. Не будет, но общая идея следующая:

- 1. Для ступенчатых функций из неравенства Гёльдера для сумм 2
- 2. Для суммируемых функций по теореме! Теорема Леви.

Неравенство Минковского.

В тех же условиях $\left(\int_E|f+g|^p\right)^{\frac{1}{p}}\leq \left(\int_E|f|^p\right)^{\frac{1}{p}}+\left(\int_E|g|^p\right)^{\frac{1}{p}}$

Доказательство. Не будет, можно вывести аналогично выводу во втором семестре. \Box

Примечание. Для p = 1 тоже верно.

1.25 Интеграл комплекснозначной функции

- (X, \mathfrak{A}, μ) пространство с мерой
- $f: X \to \mathbb{C}$, r.e. x = f(x) = u(x) + iv(x), $u = \Re f, v = \Im f$

f измеримо, если u и v измеримы³.

f суммируемо, если u и v суммируемы.

Если f суммируемо, то $\int_E f = \int_E u + i \int_E v$

1.26 ! Пространство $L^p(E, \mu)$

Определение пространства $L^p, 1 \le p < +\infty$

- (X, \mathfrak{A}, μ) пространство с мерой.
- $E \subset X$ измеримо.

 $\mathcal{L}^p(E,\mu):=\{f:$ почти везде $E o\overline{\mathbb{R}}(\overline{\mathbb{C}}^4), f-$ изм. $^5,\int_E|f|^pd\mu<+\infty\}$ — это линейное пространство по неравенству Минковского.

Зададим отношение эквивалентности \sim на $\mathcal{L}^p(E,\mu)$: $f\sim g\Leftrightarrow f=g$ почти везде.

 $\mathcal{L}^p/_\sim = L^p(E,\mu)$ — линейное пространство.

² Мы его рассматривали во втором семестре.

³ Или измеримы почти везде.

 $^{{}^{4}\}overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$

⁵ Или измерима почти везде.

Итоговый конспект стр. 8 из 67

Задаём норму на L^p : $||f||_{L^p(E,\mu)} = \left(\int_E |f|^p\right)^{\frac{1}{p}}$, обозначается $||f||_p$

Эта функция корректно определена, т.к. для $f\sim g:||f||_p=||g||_p$. Кроме того, она является нормой, т.к.:

- 1. $||f||_p \ge 0$ очевидно, т.к. $\int |f|^p \ge 0$
- 2. $||f||_p = 0 \Rightarrow \int |f|^p = 0 \Rightarrow \int |f| = 0 \Rightarrow f = 0 \text{ n.b.} \Rightarrow f \sim 0.$
- 3. $||f \cdot \alpha||_p = \left(\int |f \cdot \alpha|^p\right)^{\frac{1}{p}} = \alpha \cdot ||f||_p$
- 4. $||f+g||_p = ||f||_p + ||g||_p$ по неравенству Минковского.

1.27 ! Пространство $L^{\infty}(E,\mu)$

 $L^\infty(E,\mu)=\{f:$ почти везде $E\to\overline{\mathbb{R}}(\overline{\mathbb{C}}),\ \text{изм.}, \text{ess sup}\,|f|<+\infty\}/_\sim-$ линейное пространство.

 $||f||_{L^{\infty}(E,\mu)}:=\operatorname{ess\ sup}_{E}|f|=||f||_{\infty}$

1.28 ! Существенный супремум

- (X, \mathfrak{A}, μ) пространство с мерой.
- $E \subset X$ измеримо.
- f : почти везде на $E o \overline{\mathbb{R}}$ измеримо

Определение (существенный супремум⁶).

$$\displaystyle \operatorname{ess\,sup} f = \inf\{A \in \overline{\mathbb{R}}, f \leq A$$
 почти везде}

При этом A называется существенной вещественной границей.

Свойства.

- ess sup $f \leq \sup f$ очевидно.
- $f \leq \operatorname{ess} \sup f$ почти везде пусть $B = \operatorname{ess} \sup f$, тогда $\forall n \ f \leq B + \frac{1}{n}$ почти везде.
- f суммируемо, f,g почти везде $E \to \overline{\mathbb{R}}(\mathbb{C})$, ess $\sup_E |g| < +\infty$. Тогда $|\int_E fg| \le \exp|g| \cdot \int_E |f|$

Доказательство.

$$\left| \int_E fg \right| \leq \int_E |fg| \leq \int_E \operatorname{ess\ sup} |g| \cdot |f| = \operatorname{ess\ sup} |g| \cdot \int_E |f|$$

⁶ Также называется истинным супремумом

Итоговый конспект стр. 9 из 67

1.29 Ротор, дивергенция векторного поля

Ротор (вихрь)

$$\operatorname{rot} V = \begin{pmatrix} \frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} & \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} & \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \end{pmatrix}$$

V — гладкое векторное поле. Тогда дивергенция div $V=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$

1.30 Соленоидальное векторное поле

Векторное поле $A=(A_1,A_2,A_3)$ соленоидально в области $\Omega\subset \mathbb{R}^3$, если \exists гладкое векторное поле B в Ω , такое что $A={\rm rot}\ B.$

1.31 Бескоординатное определение ротора и дивергенции

Наблюдение:

$$\operatorname{div} V(a) \stackrel{(1)}{=} \lim_{\varepsilon \to 0} \frac{1}{\frac{4}{3}\pi\varepsilon^3} \iiint_{B(a,\varepsilon)} \operatorname{div} V dx dy dz \stackrel{(2)}{=} \lim_{\varepsilon \to 0} \frac{1}{\frac{4}{3}\pi\varepsilon^3} \iint_{S(a,\varepsilon)} \langle V, n_0 \rangle \, dS$$

— не зависит от координат.

$$\operatorname{rot} F(a) = \lim_{\Omega \to x_0} \frac{1}{S(\Omega_{\varepsilon})} \int_{\Omega_{\varepsilon}} \left\langle \operatorname{rot} A, n_0 \right\rangle dS$$

1.32 ! Гильбертово пространство

 ${\cal H}-$ линейное пространство, в котором задано скалярное произведение и соответствующая норма. Если при этом ${\cal H}-$ полное, то оно называется Гильбертовым.

1.33 Ортогональный ряд

Ряд $\sum a_k$ ортогональный, если $\forall k, l \ a_k \perp a_l$.

1.34 Сходящийся ряд в гильбертовом пространстве

Сходящийся ряд: $\sum a_n, a_n \in \mathcal{H}$: $S_N := \sum_{1 \leq n \leq N} a_n$, если $\exists S \in \mathcal{H} : S_N \xrightarrow{\mathsf{B} \, \mathcal{H}} S$

1.35 Ортогональная система (семейство) векторов

 $\{e_k\}\subset \mathcal{H}$ — ортогональное семейство, если:

- 1. $\forall k, l \ e_k \perp e_l$
- 2. $\forall k \ e_k \neq 0$

Если потребовать $||e_k|| = 1$, то такое семейство называется **ортонормированным**.

- (1): по непрерывности div
- (2): по формуле Стокса

Итоговый конспект стр. 10 из 67

1.36 ! Ортонормированная система

Дано выше. (1.35, стр. 9)

1.37 Коэффициенты Фурье

- $\{e_k\}$ ортогональное семейство в $\mathcal H$
- $x \in \mathcal{H}$

 $c_k:=rac{\langle x,e_k
angle}{||e_k||^2}$ — называется коэффициентом Фурье по системе $\{e_k\}.$

 $\sum_{k=1}^{+\infty} c_k(x) e_k$ — ряд Фурье вектора x по системе $e_k.$

1.38 Ряд Фурье в Гильбертовом пространстве

Дано выше. (1.37, стр. 10)

1.39 Базис, полная, замкнутая ОС

Определение. Ортогональная система $\{e_k\}$ — базис \mathcal{H} , если $\forall x \in \mathcal{H} \;\; x = \sum c_k(x)e_k$

Определение. Ортогональная система полная (нечего добавить), если $\nexists z \neq 0: z \perp c_k \ \forall k.$

Определение. Ортогональная система замкнутая, если $\forall x \;\; \sum |c_k(x)|^2 ||e_k||^2 = ||x||^2$

1.40 Тригонометрический ряд

- $T_n(x) = \frac{a_0}{2} + \sum_{n=1}^n a_k \cos kx + b_k \sin kx$ тригонометрический полином степени не выше n.
- $\frac{a_0}{2} + \sum_{n=1}^{+\infty} a_k \cos kx + b_k \sin kx$ тригонометрический ряд, где a_k, b_k коэффициенты тригонометрического ряда.

$$\cos kx = \frac{e^{ikx} + e^{-ikx}}{2} \quad \sin kx = \frac{e^{ikx} - e^{-ikx}}{2i}$$

Тогда при подстановке этих формул в $T_n(x)$ получается $T_n(x) = \sum_{k=-n}^n c_k e^{ikx}$ — тригонометрический полином в комплексной записи.

• $\sum_{k\in\mathbb{Z}}c_ke^{ikx}$ — тригонометрический ряд в комплексной записи, понимается как $\lim_{n\to+\infty}T_n(x).$

Итоговый конспект стр. 11 из 67

1.41 Коэффициенты Фурье функции

 $f\in L^1[-\pi,\pi].\ a_k(f),b_k(f),c_k(f)$, заданные в лемме, называются коэффициентами Фурье функции f, а ряд $\frac{a_0}{2}+\sum\limits_{n=1}^{+\infty}a_k\cos kx+b_k\sin kx$ или $\sum_{k\in\mathbb{Z}}c_ke^{ikx}$ называется рядом Фурье этой функции.

1.42 Класс Липшица с константой М и показателем альфа

Определение. Класс Липшица для M>0, $\alpha\in\mathbb{R},\ \alpha\in(0,1]$:

$$\operatorname{Lip}_{M}\alpha(E) = \{ f : E \to \mathbb{R} : \forall x, y \ |f(x) - f(y)| \le M|x - y|^{\alpha} \}$$

1.43 Ядро Дирихле, ядро Фейера

1. Ядро Дирихле:

$$D_n(t) = \frac{1}{\pi} \left(\frac{1}{2}t + \sum_{k=1}^n \cos kt \right)$$

2. Ядро Фейера:

$$\Phi_n(t) = \frac{1}{n+1} \sum_{k=0}^{n} D_k(t)$$

1.44 ! Свертка

 $f,K\in L^1[-\pi,\pi].\,(f*K)(x)=\int_{-\pi}^\pi f(x-t)K(t)dt$ называется сверткой функций f,K.

1.45 ! Аппроксимативная единица

- $D \subset \mathbb{R}$
- h_0 предельная точка D в $\overline{\mathbb{R}}$

Семейство функций $\{K_h\}_{h\in D}$, удовлетворяющее нижеуказанным аксиомам, называется аппроксимативной единицей.

Аксиома 1.
$$\forall h \in D \;\; K_h \in L^1[-\pi,\pi], \int_{-\pi}^{\pi} K_h = 1$$

Аксиома 2. L_1 нормы функций K_h ограничены в совокупности:

$$\exists M \ \forall h \ \int_{[-\pi,\pi]} |K_h| \le M$$

Аксиома 3. $\forall \delta \in (0, \pi)$

$$\int_{E_s} |K_h| \, dx \xrightarrow[h \to h_0]{} 0$$

Итоговый конспект стр. 12 из 67

1.46 Усиленная аппроксимативная единица

Рассмотрим аксиому 3': $K_h \in L^{+\infty}[-\pi,\pi]$ и $\forall \delta \in (0,\pi)$ ess $\sup_{t \in E_\delta} |K_h(t)| \xrightarrow{h \to h_0} 0$

Утверждение. Аксиома 3' ⇒ аксиома 3.

Определение. Семейство функций, удовлетворяющее аксиомам 1, 2 и 3' называется усиленной аппроксимативной единицей.

1.47 Метод суммирования средними арифметическими

$$\sum a_n \quad S_n \coloneqq \sum_{k=0}^n a_k$$
 $\sigma_n \coloneqq rac{1}{n+1}(S_0 + S_1 + \dots + S_n)$ $\sum a_n \stackrel{ ext{cpeg. арифм.}}{=} S$

, если $\sigma_n \to S$

1.48 Суммы Фейера

 $f \in L^1[-\pi,\pi], S_n(f)$ — част. сумма ряда Фурье.

$$\sigma_n(f) = \frac{1}{n+1} \sum_{k=0}^{n} S_k(f)$$

2 Теоремы

2.1 Лемма "о структуре компактного оператора"

- $V: \mathbb{R}^m o \mathbb{R}^m$ линейный оператор
- $\det V \neq 0$

Тогда \exists ортонормированные базисы $g_1\dots g_m$ и $h_1\dots h_m$, а также $\exists s_1\dots s_m>0$, такие что:

$$\forall x \in \mathbb{R}^m \quad V(x) = \sum_{i=1}^m s_i \langle x, g_i \rangle h_i$$

 $\mathsf{U} \mid \det V \mid = s_1 s_2 \dots s_m.$

Доказательство. $W := V^*V -$ самосопряженный оператор (матрица симметрична относительно диагонали).

Из линейной алгебры мы знаем, что такой оператор имеет:

Итоговый конспект стр. 13 из 67

- Собственные числа: $c_1 \dots c_m$ вещественные (возможно с повторениями)
- Собственные векторы: $g_1 \dots g_m$ ортонормированные

Примечание. Пока мы в \mathbb{R}^m (а не в \mathbb{C}^m), * есть транспонирование. В комплексном случае ещё берется сопряжение.

$$c_i \langle g_i, g_i \rangle \stackrel{\text{(3)}}{=} \langle Wg_i, g_i \rangle \stackrel{\text{(4)}}{=} \langle Vg_i, Vg_i \rangle > 0$$

• (4): из линейной алгебры:

$$W_{kl} = \sum_{i=1}^{m} V_{ik} V_{il}$$
$$\langle Wg_i, g_i \rangle = \sum_{k,l,j} V_{jk} V_{jl} g_k^{(i)} g_l^{(i)} = \langle Vg_i, Vg_i \rangle$$

Таким образом, $c_i > 0$.

$$s_{i} := \sqrt{c_{i}}$$

$$h_{i} := \frac{1}{s_{i}} V g_{i}$$

$$\langle h_{i}, h_{j} \rangle \stackrel{\text{def } h_{i}}{=} \frac{1}{s_{i} s_{j}} \langle V g_{i}, V g_{j} \rangle \stackrel{(5)}{=} \frac{1}{s_{i} s_{j}} \langle W g_{i}, g_{j} \rangle \stackrel{(6)}{=} \frac{c_{i}}{s_{i} s_{j}} \langle g_{i}, g_{j} \rangle \stackrel{(7)}{=} \delta_{ij}$$

Примечание. $\delta_{ij} = egin{cases} 1, & i=j \\ 0, & i
eq j \end{cases}$ — символ Кронекера.

Таким образом, $\{h_i\}$ ортонормирован.

$$V(x) \stackrel{\text{def } x}{=} V \left(\sum_{i=1}^{m} \langle x, g_i \rangle g_i \right) \stackrel{(8)}{=} \sum_{i=1}^{m} \langle x, g_i \rangle V(g_i) \stackrel{\text{def } h_i}{=} \sum s_i \langle x, g_i \rangle h_i$$

$$(\det V)^2 \stackrel{(9)}{=} \det(V^*V) \stackrel{\text{def } W}{=} \det W \stackrel{(10)}{=} c_1 \dots c_m$$

^{(3):} т.к. g_i — собственный вектор для W с собственным значением c_i .

^{(5):} из линейной алгебры, аналогично предыдущему.

^{(6):} т.к. g_i — собственный вектор для W с собственным значением c_i .

^{(7):} при $i\neq j$ $\langle g_i,g_j\rangle=0$ в силу ортогональности, а при i=j $\langle g_i,g_j\rangle=1$ в силу ортонормированности и $\frac{c_i}{s_is_j}=\frac{c_i}{\sqrt{c_i}\sqrt{c_i}}=1$

^{(8):} в силу линейности V

Итоговый конспект стр. 14 из 67

$$|\det V| = \sqrt{c_1} \dots \sqrt{c_m} = s_1 \dots s_m$$

2.2 ! Теорема о преобразовании меры Лебега при линейном отображении

• $V: \mathbb{R}^m \to \mathbb{R}^m$ — линейное отображение

Тогда $\forall E \in \mathfrak{M}^m \ V(E) \in \mathfrak{M}^m$ и $\lambda(V(E)) = |\det V| \cdot \lambda E$

Доказательство.

- 1. Если $\det V=0$ $\operatorname{Im}(V)$ подпространство в $\mathbb{R}^m\Rightarrow \lambda(\operatorname{Im}(V))=0$ по следствию 6 лекции 15 третьего семестра. Тогда $\forall E\ V(E)\subset \operatorname{Im}(V)\Rightarrow \lambda(V(E))=0$
- 2. Если $\det V \neq 0$ $\mu E := \lambda(V(E))$ мера, инвариантная относительно сдвигов. Это было доказано в конце прошлого семестра:

$$\mu(E+a) = \lambda(V(E+a)) = \lambda(V(E) + V(a)) = \lambda(V(E)) = \mu E$$

 $\Rightarrow \exists k : \mu = k\lambda$ по недоказанной теореме из прошлого семестра.

Мы хотим найти k, для этого нужно что-нибудь померять. Померяем что-то очень простое, например $Q = \{ \sum \alpha_i g_i \mid \alpha_i \in [0,1] \}$ — единичный куб на векторах g_i .

По 2.1 $V(g_i) = s_i h_i$. Таким образом, $V(Q) = \{ \sum \alpha_i s_i h_i \mid \alpha_i \in [0,1] \}$.

$$\mu Q = \lambda(V(Q)) = s_1 \dots s_m = |\det V| = |\det V| \underbrace{\lambda Q}_{=1}$$

Таким образом, $k = |\det V|$

2.3 Теорема об измеримости пределов и супремумов

 f_n — измеримо на X. Тогда:

- 1. $\sup f_n$, $\inf f_n$ измеримо.
- 2. $\overline{\lim} f_n, \underline{\lim} f_n$ измеримо.
- 3. Если $\forall x \; \exists \lim_{n \to +\infty} f_n(x) = h(x)$, то h(x) измеримо.

^{(9):} в силу мультипликативности det и инвариантности относительно транспонирования.

^{(10):} т.к. det инвариантен по базису и в базисе собственных векторов det $W = c_1 \dots c_m$.

Итоговый конспект стр. 15 из 67

Доказательство.

1. $g = \sup f_n \quad X(g > a) \stackrel{(11)}{=} \bigcup_n X(f_n > a)$ и счётное объединение измеримых множеств измеримо.

(11):

•
$$X(g>a)\subset\bigcup_n X(f_n>a)$$
, т.к. если $x\in X(g>a)$, то $g(x)>a$.
$$\sup_x f_n(x)=g(x)\neq a\Rightarrow \exists n: f_n(x)>a$$

• $X(g>a)\supset\bigcup_n X(f_n>a)$, т.к. если $x\in X(f_n>a)$, то $f_n(x)>a$, следовательно g(x)>a.

- 2. $(\overline{\lim} f_n)(x)=\inf_n(s_n=\sup(f_n(x),f_{n+1}(x),\dots))$. Т.к. \sup и \inf измерим, $\overline{\lim} f_n$ тоже измерим.
- 3. Очевидно, т.к. если $\exists \lim$, то $\lim = \overline{\lim} = \lim$

2.4 ! Характеризация измеримых функций с помощью ступенчатых. Следствия

- $f: X \to \mathbb{R}$
- *f* ≥ 0
- ƒ измеримо

Тогда $\exists f_n$ — ступенчатые:

1.
$$0 \le f_1 \le f_2 \le f_3 \le \dots$$

2.
$$\forall x \ f(x) = \lim_{n \to +\infty} f_n(x)$$

$$e_k^{(n)} = X\left(\frac{k-1}{n} \le f < \frac{k}{n}\right) \quad k = 1 \dots n^2$$

$$e_{n^2+1}^{(n)} := X(n \le f)$$

$$g_n := \sum_{k=1}^{n^2+1} \frac{k-1}{n} \chi_{e_k^{(n)}}$$

$$g_n \ge 0$$

$$\lim_{n \to +\infty} g_n(x) = f(x) : g_n(x) \le f(x)$$

Итоговый конспект стр. 16 из 67

$$\lim_{n \to +\infty} g_n(x) = f(x) : \begin{cases} g_n(x) \le f(x) \\ f(x) = +\infty : \forall n \ x \in e_{n^2+1}^{(n)} \Rightarrow g_n(x) = n \\ f(x) < +\infty : |g_n(x) - f(x)| \le \frac{1}{n} \end{cases}$$

$$f_n = \max(g_1, ..., g_n)$$

$$g_n(x) \le f_n(x) \le f(x)$$

$$f_n(x) \xrightarrow[n \to +\infty]{} f(x)$$

Следствие 0.1.

• f — измеримо

Тогда $\exists f_n - \text{ступенчатыe}: f_n \xrightarrow[n \to +\infty]{} f$ всюду и $|f_n| \leq |f|$

Доказательство. Рассмотрим срезки f^+, f^- , дальше очевидно.

Следствие 0.2.

• f, g — измеримо

Итоговый конспект стр. 17 из 67

Тогда fg — измеримо (пусть $0 \cdot \infty = 0$).

Доказательство.

$$\underbrace{f_n}_{\text{ступ.}} o f, \underbrace{g_n}_{\text{ступ.}} o g$$
 $f_n g_n - \text{ступ.}$ $f_n g_n o f g$

Измеримость выполняется в силу измеримости предела.

Следствие 0.3.

• f, g — измеримо

Тогда f + g измеримо.

Примечание. Считаем, что $\forall x$ не может быть одновременно $f(x)=\pm\infty, g(x)=\pm\infty.$

Доказательство.

$$f_n + g_n \to f + g$$

2.5 Измеримость функции, непрерывной на множестве полной меры

Примечание. $A\subset X$ — полной меры, если $\mu(X\setminus A)=0$.

- $f: E \to \mathbb{R}, E \subset \mathbb{R}^m$
- $e \subset E$
- $\lambda_m e = 0$
- f непрерывно на $E' = E \setminus e$

Тогда f — измеримо.

Доказательство. f — измеримо на E', т.к. E'(f < a) открыто в E' по топологическому определению непрерывности.

 $e(f < a) \subset e, \lambda_m$ — полная в $\mathbb{R}^{m7} \Rightarrow e(f < a)$ — измеримо в E.

 $E(f < a) = E'(f < a) \cup e(f < a)$, объединение измеримых множеств измеримо. \qed

⁷ Любое подмножество множества нулевой меры измеримо.

Итоговый конспект стр. 18 из 67

2.6 Теорема Лебега о сходимости почти везде и сходимости по мере

- (X,\mathfrak{A},μ)
- μX конечно
- f_n, f измеримо, п.в. конечно
- $f_n \to f$ п.в.

Тогда $f_n \xrightarrow[\mu]{} f$

Доказательство. Переопределим f_n, f на множестве меры 0, чтобы сходимость была всюду.

Рассмотрим частный случай: $\forall x$ последовательность $f_n(x)$ монотонно убывает к 0, то есть $f\equiv 0$

$$X(|f_n| \ge \varepsilon) = X(f_n \ge \varepsilon) \supset X(f_{n+1} \ge \varepsilon)$$

$$\bigcap X(f_n \ge \varepsilon) = \emptyset$$

Таким образом, по теореме о непрерывности меры сверху, $\mu X(f_n \geq \varepsilon) \to 0$

Рассмотрим общий случай: $f_n \to f$, $\varphi_n(x) := \sup_{k \ge n} |f_k(x) - f(x)|$

Тогда $\varphi_n \to 0, \varphi_n \geq 0$ и монотонно, таким образом мы попали в частный случай.

$$X(|f_n - f| \ge \varepsilon) \subset X(\varphi_n \ge \varepsilon)$$

 $\mu X(|f_n - f| \ge \varepsilon) \le \mu X(\varphi_n \ge \varepsilon) \to 0$

2.7 Теорема Рисса о сходимости по мере и сходимости почти везде

- (X,\mathfrak{A},μ) пространство с мерой
- f_n, f измеримо, п.в. конечно
- $f_n \Longrightarrow f$.

Тогда $\exists n_k: f_{n_k} \to f$ почти везде.

Доказательство.

$$orall k \;\; \mu X\left(|f_n-f|\geq rac{1}{k}
ight) o 0$$

$$\exists n_k: \mathrm{при}\; n\geq n_k \;\; \mu X\left(|f_n-f|\geq rac{1}{k}
ight)<rac{1}{2^k}$$

Итоговый конспект стр. 19 из 67

Можно считать, что $n_1 < n_2 < n_3$

Проверим, что $f_{n_k} o f$ почти везде.

$$E_k := \bigcup_{j=k}^{+\infty} X\left(|f_{n_j} - f| \ge \frac{1}{j}\right) \quad E = \bigcap E_k$$

$$E_k \supset E_{k+1} \quad \mu E_k \stackrel{(12)}{\le} \sum_{j=k}^{+\infty} \mu X\left(|f_{n_j} - f| \ge \frac{1}{j}\right) < \sum_{j=k}^{+\infty} \frac{1}{2^j} \le \frac{2}{2^k} \to 0$$

$$\mu E_k \to \mu E \Rightarrow \mu E = 0$$

Покажем, что при $x \notin E$ $f_{n_k} \to f$.

$$x \notin E \; \exists N \; x \notin E_k \; \mathrm{при} \; k > N \; |f_{n_k}(x) - f(x)| < \frac{1}{k}$$

To есть $f_{n_k}(x) \to f(x)$.

Т.к. $\mu E = 0$, искомое выполнено.

2.8 Простейшие свойства интеграла Лебега

 (X,\mathfrak{A},μ) — пространство с мерой, $E\subset X$ — измеримо, g,f — измеримо.

1. Монотонность $f \leq g: \int_E f \leq \int_E g$

Доказательство.

- (a) При $f,g \ge 0$ очевидно из определения.
- (b) При произвольных f,g $f^+ \leq g^+$ и $f^- \geq g^-$ (очевидно из определения). Из предыдущего случая $\int_E f^+ \leq \int_E g^+, \int_E f^- \geq \int_E g^-$.

2. $\int_{E} 1 d\mu = \mu E, \int_{E} 0 d\mu = 0$

3.
$$\mu E = 0 \Rightarrow \int_E f = 0$$

Доказательство.

- (a) f ступ. Тривиально.
- (b) f измеримо, $f \ge 0$. $\sup 0 = 0$, поэтому искомое выполнено.
- (c) $\int f^+, \int f^- = 0 \Rightarrow \int f = 0$

^{(12):} по счётной полуаддитивности меры.

Итоговый конспект стр. 20 из 67

Примечание. f — измерима. Тогда f суммируема $\Leftrightarrow \int |f| < +\infty$

Доказательство.

- \Leftarrow следует из $f^+, f^- \leq |f|$
- ⇒ будет доказано позже на этой лекции.

4.
$$\int_{E} (-f) = -\int_{E} f, \forall c \in \mathbb{R} \quad \int_{E} cf = c \int_{E} f$$

Доказательство.

- (a) $(-f)^+ = f^-, (-f)^- = f^+$, тогда искомое очевидно.
- (b) Можно считать c>0 без потери общности, тогда для $f\geq 0$ тривиально.

5.
$$\exists \int_E f d\mu$$
. Тогда $|\int_E f d\mu| \le \int_E |f| d\mu$

Доказательство.

$$-|f| \le f \le |f|$$

$$-\int |f| \le \int f \le \int |f|$$

$$\left| \int f \right| \le \int |f|$$

6. $\mu E < +\infty, a \le f \le b$. Тогда

$$a\mu E \le \int_E f \le b\mu E$$

 $\it C$ ледствие 0.4. f — измеримо на $E,\,f$ — ограничено на $E,\,\mu E<+\infty.$ Тогда f суммируемо на E

7. f суммируема на E. Тогда f почти везде конечна.

Доказательство.

- (a) $f\geq 0$ и $f=+\infty$ на $A\subset E.$ Тогда $\int_E f\geq n\mu A \ \ \forall n\in\mathbb{N}\Rightarrow \mu A=0$
- (b) В произвольном случае аналогично со срезками.

2.9 Счетная аддитивность интеграла (по множеству)

Лемма 1.

• $A = \coprod_{i=1}^{+\infty} A_i$ — измеримо

• g — ступенчато

• $g \ge 0$

Тогда

$$\int_{A} g d\mu = \sum_{i=1}^{+\infty} \int_{A_{i}} g d\mu$$

Доказательство.

$$\int_{A} g d\mu = \sum_{\text{koh.}} \alpha_{k} \mu(E_{k} \cap A)$$

$$= \sum_{k} \sum_{i} \underbrace{\alpha_{k} \mu(E_{k} \cap A_{i})}_{\geq 0}$$

$$\stackrel{(13)}{=} \sum_{i} \sum_{k} \dots$$

$$= \sum_{i} \int_{A_{i}} g d\mu$$

Теорема 1.

• $A = \coprod A_i$ — измеримо

• $f:X o \overline{\mathbb{R}}$ — измеримо на A

• $f \ge 0$

Тогда

$$\int_A f d\mu = \sum_{i=1}^{+\infty} \int_{A_i} f d\mu$$

 $\leq \lhd$ ступенчатую $g:0\leq g\leq f$

$$\int_{A} g \stackrel{(14)}{=} \sum \int_{A_{i}} g \le \sum \int_{A_{i}} f$$

(13): переставлять можно, т.к. члены суммы ≥ 0 .

M3137y2019

Итоговый конспект стр. 22 из 67

$$\int_A f d = \sup_g \int_A g \le \sum \int_{A_i} f$$

 \geq 1. $A = A_1 \sqcup A_2$

 \lhd ступенчаты
е $g_1,g_2:0\leq g_1\leq f\cdot\chi_{A_1},0\leq g_2\leq f\cdot\chi_{A_2}.$ Пусть E_k — совместное разбиение, у
 g_1 коэффициенты $\alpha_k,$ у
 $g_2-\beta_k.$

$$0 \le g_1 + g_2 \le f \cdot \chi_A$$

$$\int_{A_1} g_1 + \int_{A_2} g_2 = \int_A (g_1 + g_2) \le \int_A f$$

$$\int_{A_1} f + \int_{A_2} g_2 \stackrel{\text{(15)}}{\le} \int_A f$$

$$\int_{A_1} f + \int_{A_2} f \stackrel{\text{(16)}}{\le} \int_A f$$

- 2. Для $n \in \mathbb{N}$: $A = \bigsqcup_{i=1}^n A_i$ тривиально по индукции.
- 3. $A=\coprod_{i=1}^n A_i\cup B_n$, где $B_n=\coprod_{i>n} A_i$ $\int_{B_n} f\geq 0$, т.к. $f\geq 0$. Таким образом:

$$\int_{A} f = \sum_{i=1}^{n} \int_{A_{i}} f + \int_{B_{n}} f \ge \sum_{i=1}^{n} \int_{A_{i}} f$$

 $\mathit{Следствие}$ 1.1 (Счётная аддитивность интеграла). f суммируема на $A = \bigsqcup A_i$ — измеримо. Тогда

$$\int_A f = \sum \int_{A_i} f$$

Доказательство. Очевидно, если рассмотреть срезки.

(14): по лемме 1.

(15) и (16): переход к sup

Итоговый конспект стр. 23 из 67

2.10 ! Теорема Леви

- (X,\mathfrak{A},μ) пространство с мерой
- f_n измеримо
- $\forall n \ 0 \le f_n \le f_{n+1}$ почти везде.
- $f(x):=\lim_{n\to +\infty}f_n(x)$ эта функция определена почти везде.

Тогда

$$\lim_{n \to +\infty} \int_X f_n d\mu = \int_X f d\mu$$

Примечание. f задано везде, кроме множества e меры 0. Считаем, что f=0 на e. Тогда f измеримо на X.

Доказательство.

 \leq очевидно, т.к. $f_n \leq f$ почти везде, таким образом:

$$\int_{X} f_n = \int_{X \setminus e} f_n + \underbrace{\int_{e} f_n}_{0} = \int_{X \setminus e} f_n \le \int_{X \setminus e} f \le \int_{X} f$$

 \geq достаточно проверить, что \forall ступенчатой $g:0\leq g\leq f$ выполняется следующее $\lim\int_X f_n\geq \int_X g$

Сильный трюк: достаточно проверить, что $\forall c \in (0,1) \; \lim \int_X f_n \geq c \int_X g$

$$E_n := X(f_n \ge cg) \quad E_1 \subset E_2 \subset \dots$$

 $\bigcup E_n = X$, т.к. c < 1

$$\int_X f_n \ge \int_{E_n} f_n \ge c \int_{E_n} g$$

Тогда $\lim \int_X f_n \geq c \cdot \lim \int_{E_n} g \stackrel{(17)}{=} c \int_X g$

2.11 Линейность интеграла Лебега

- $f, g \ge 0$
- f, g измеримо на E

Тогда
$$\int_E f + g = \int_E f + \int_E g$$

(17): по непрерывности снизу меры $\nu: E \mapsto \int_E g$

M3137y2019

Итоговый конспект стр. 24 из 67

Доказательство.

1. f,g — ступенчатые, т.е. $f=\sum \alpha_k \chi_{E_k}, g=\sum \beta_k \chi_{E_k}$

$$\int_{E} f + g = \sum (\alpha_k + \beta_k) \mu(E_k \cap E) = \sum \alpha_k \mu(E_k \cap E) + \sum \beta_k \mu(E_k \cap E) = \int_{E} f + \int_{E} g$$

2. $f \geq 0$, измеримо. \exists ступ. $f_n: 0 \leq f_n \leq f_{n+1} \leq \dots \lim f_n = f$ $g \geq 0$, измеримо. \exists ступ. $g_n: 0 \leq g_n \leq g_{n+1} \leq \dots \lim g_n = g$

$$\int_E f + \int_E g \xleftarrow{\text{т. Леви}} \int_E f_n + \int_E g_n \xrightarrow{\text{пункт 1}} \int_E f_n + g_n \xrightarrow{\text{т. Леви}} \int_E f + g$$

 $\it C$ ледствие 1.2. f,g суммируемы на E. Тогда f+g суммируемо и $\int_E f+g=\int_E f+\int_E g$. Таким образом, доказано 3.

Доказательство суммируемости. $|f+g| \leq |f| + |g|$. Пусть h=f+g. Тогда

$$h^{+} - h^{-} = f^{+} - f^{-} + g^{+} - g^{-}$$

$$h^{+} + f^{-} + g^{-} = f^{+} + g^{+} + h^{-}$$

$$\int_{E} h^{+} + \int_{E} f^{-} + \int_{E} g^{-} = \int_{E} f^{+} + \int_{E} g^{+} + \int_{E} h^{-}$$

$$\int_{E} h^{+} - \int_{E} h^{-} = \int_{E} f^{+} - \int_{E} f^{-} + \int_{E} g^{+} - \int_{E} g^{-}$$

2.12 Теорема об интегрировании положительных рядов. Следствие о рядах, сходящихся почти везде

- (X,\mathfrak{A},μ) пространство с мерой
- E ∈ A
- $u_n: X \to \overline{\mathbb{R}}$
- $u_n \ge 0$ почти везде
- *u_n* измеримо

Тогда

$$\int_{E} \left(\sum_{n=1}^{+\infty} u_n(x) \right) d\mu = \sum_{n=1}^{+\infty} \int_{E} u_n d\mu$$

Доказательство. По теореме Леви:

$$S_n := \sum_{k=1}^n u_k \quad 0 \le S_n \le S_{n+1} \le \dots$$

$$S_n o S = \sum\limits_{k=1}^{+\infty} u_k$$
, тогда $\int_E S_n o \int_E S_n$

$$\int_{E} \left(\sum_{n=1}^{+\infty} u_n(x) \right) = \int_{E} S \leftarrow \int_{E} S_n \xrightarrow{\text{ {\rm \tiny MИНЕЙНОСТЬ }} \int} \sum_{k=1}^{n} \int_{E} u_k$$

Следствие 1.3. u_n измеримо и $\sum_{n=1}^{+\infty} \int_E |u_n| < +\infty$. Тогда ряд $\sum u_n(x)$ абсолютно сходится при почти всех x.

Доказательство.

$$S(x) := \sum |u_n(x)|$$

$$\int_E S(X) = \sum \int_E |u_n| < +\infty \Rightarrow S$$
 суммируемо $\Rightarrow S$ почти везде конечно

2.13 Абсолютная непрерывность интеграла

- (X,\mathfrak{A},μ) пространство с мерой
- $f: X \to \overline{\mathbb{R}}$
- f суммируемо

Тогда $\forall \varepsilon>0 \;\; \exists \delta>0 \;\; \forall E-$ изм., $\mu E<\delta:\left|\int_{E}f\right|<\varepsilon$

Доказательство. ⁸

$$X_n := X(|f| \ge n)$$

$$X_n \supset X_{n+1} \supset \dots \Rightarrow \mu\left(\bigcap X_n\right) \stackrel{(18)}{=} 0$$

⁸ Теоремы, не следствия

Итоговый конспект стр. 26 из 67

$$\forall \varepsilon > 0 \ \exists n_{\varepsilon} \ \int_{X_{n_{\varepsilon}}} |f| < \frac{\varepsilon}{2}$$
 (19)

Пусть $\delta := \frac{\varepsilon}{2n_{\varepsilon}}$. Тогда при $\mu E < \delta$:

$$\left| \int_{E} f \right| \leq \int_{E} |f| = \int_{E \cap X_{n_{\varepsilon}}} |f| + \int_{E \cap X_{n_{\varepsilon}}^{c}} |f| \overset{(20)}{\leq} \int_{X_{n_{\varepsilon}}} |f| + \int_{E \cap X_{n_{\varepsilon}}^{c}} n_{\varepsilon} < \frac{\varepsilon}{2} + \underbrace{\mu E}_{\leq \delta} \cdot n_{\varepsilon} < \varepsilon$$

Следствие 1.4. f суммируемо на $X, E_n \subset X$, тогда $\mu E_n \to 0 \Rightarrow \int_{E_n} f \to 0$

2.14 ! Теорема Лебега о мажорированной сходимости для случая схо-

• (X,\mathfrak{A},μ) — пространство с мерой

димости по мере

- f_n, f измеримо и почти везде конечно
- $f_n \stackrel{\mu}{\Rightarrow} f$
- $\exists g$, называемое "суммируемая мажоранта":
 - 1. $\forall n \ |f_n| \overset{(21)}{\leq} g$ почти везде
 - 2. g суммируемо на X

Тогда: f_n, f — суммируемы и $\int_X |f_n-f| d\mu \xrightarrow{n \to +\infty} 0$, и тем более $\int_X f_n d\mu \to \int_X f d\mu$

Доказательство. f_n — суммируемы в силу неравенства (21), f суммируемо в силу следствия теоремы Рисса, тем более $|\int_X f_n - \int_X f| \le \int_X |f_n - f| \to 0$

1.
$$\mu X < +\infty$$

Зафиксируем ε . $X_n := X(|f_n - f| > \varepsilon)$

$$f_n \Rightarrow f$$
, r.e. $\mu X_n \to 0$

$$|f_n - f| \le |f_n| + |f| \le 2g \tag{22}$$

^{(18):} Т.к. f на $\bigcap X_n$ бесконечна и f почти везде конечна.

^{(19):} По непрерывности сверху меры $A\mapsto \int_A |f| d\mu$

^{(20):} Т.к. |f| на $E\cap X_{n_{arepsilon}}^c$ не превосходит $n_{arepsilon}$ по построению $X_{n_{arepsilon}}$

Итоговый конспект стр. 27 из 67

$$\int_{X} |f_{n} - f| = \int_{X_{n}} + \int_{X_{n}^{c}} \leq \underbrace{\int_{X_{n}} 2g}_{\underset{\text{C.I. t. of afc. hemp.}}{\longrightarrow} 0} + \int_{X_{n}^{c}} \varepsilon d\mu < \varepsilon + \varepsilon \mu X$$

2. $\mu X = +\infty$

Утверждение: $\forall \varepsilon>0 \;\; \exists A\subset X,$ изм., конечной меры : $\int_{X\backslash A}g<\varepsilon$. Докажем его.

$$\int_X g = \sup \left\{ \int g_n \mid 0 \le g_n \le g, g_n -$$
ступ. $ight\}$

Возьмём достаточно большое n и положим:

$$A := \{x : g_n(x) > 0\}$$

$$0 \le \int_X g - \int_X g_n < \varepsilon$$

$$\int_A g - g_n + \int_{X \setminus A} g = \int_X g - \int_X g_n < \varepsilon \implies \int_{X \setminus A} g < \varepsilon$$

Вернёмся к теореме. Зафиксируем $\varepsilon > 0$:

$$\int_{X} |f_n - f| d\mu = \int_{A} + \int_{X \setminus A} \le \underbrace{\int_{A} |f_n - f|}_{\text{fochyward 1}} + \underbrace{\int_{X \setminus A} 2g}_{<2\varepsilon} < 3\varepsilon$$

2.15 ! Теорема Лебега о мажорированной сходимости для случая сходимости почти везде

- (X,\mathfrak{A},μ) пространство с мерой
- f_n, f измеримо
- $f_n \stackrel{(23)}{\to} f$ почти везде
- $\exists g$, называемое "суммируемая мажоранта":
 - 1. $\forall n \mid f_n \mid \leq g$ почти везде
 - 2. g суммируемо на X

Тогда f_n, f — суммируемы, $\int_X |f_n - f| d\mu \to 0$, и тем более $\int_X f_n \to \int_X f$

Итоговый конспект стр. 28 из 67

Доказательство. Суммируемость f_n, f , а также утверждение "и тем более" доказываются так же, как в теореме! Теорема Лебега о мажорированной сходимости для случая сходимости по мере.

$$h_n := \sup(|f_n - f|, |f_{n+1} - f|, |f_{n+2} - f|, \dots)$$

$$0 \stackrel{(24)}{\leq} h_n \stackrel{(25)}{\leq} 2g$$

 h_n монотонно убывает, что очевидно по определению sup.

$$\lim h_n \stackrel{\mathrm{def}}{=} \overline{\lim} |f_n - f| \stackrel{(26)}{=} 0$$
 почти везде

 $2g-h_n \geq 0$ и возрастает как последовательность функций, $2g-h_n \to 2g$ почти везде. Тогда по теореме ! Теорема Леви:

$$\int_X 2g - h_n \to \int_X 2g \Rightarrow \int_X h_n \to 0$$
$$\int_X |f_n - f| \le \int_X h_n \to 0$$

2.16 Теорема Фату. Следствия

- X, \mathfrak{A}, μ пространство с мерой
- $f_n \geq 0$
- f_n измеримо
- $f_n \to f$ почти везде
- $\exists C > 0 \ \forall n \ \int_X f_n \le C$

Тогда $\int_X f \leq C$

Доказательство.

$$g_n := \inf(f_n, f_{n+1}, \dots)$$
 $0 \le g_n \le g_{n+1}$ $\lim g_n \stackrel{\mathrm{def}}{=} \underline{\lim} f_n = f$ п.в.

- (24): по построению
- (25): по (22)
- (26): по (23)

Итоговый конспект стр. 29 из 67

$$\int_{X} g_{n} \leq \int_{X} f_{n} \leq C$$

$$\int_{X} g_{n} \stackrel{(28)}{\to} \int_{X} f$$
(27)

Значит $\int_X f \leq C$ по предельному переходу в (27)

Следствие 1.5.

- $f_n, f \ge 0$
- f_n, f измеримы
- f_n, f почти везде конечны
- $f_n \stackrel{\mu}{\Longrightarrow} f$
- $\exists C > 0 \ \forall n \ \int_X f_n \le C$

Тогда $\int_X f \leq C$

Доказательство.

$$f_n \xrightarrow{\mu} f \xrightarrow{\mathsf{T.Pucca}} \exists (n_k) : f_{n_k} \to f \mathsf{ n.b.}$$

По теореме Теорема Фату. Следствия получим искомое.

Следствие 1.6.

- $f_n \geq 0$
- f_n измеримо

Тогда $\int_X \underline{\lim} f_n \leq \underline{\lim} \int_X f_n$

Доказательство. Возьмём g_n как в теореме, тогда выполняется неравенство $\int_X g_n \le \int_X f_n$. Выберем $(n_k): \int_X f_{n_k} \xrightarrow{n \to +\infty} \varliminf \int_X f_n$

$$\int_{X} g_{n_{k}} \leq \int_{X} f_{n_{k}}$$

$$\downarrow$$

$$\int_{X} \underline{\lim} f_{n} \leq \underline{\lim} \int_{X} f_{n}$$

(28): по теореме! Теорема Леви

Итоговый конспект стр. 30 из 67

2.17 Теорема о вычислении интеграла по взвешенному образу меры

Hаблюдение 1. $f:Y \to \overline{\mathbb{R}}$ — измеримо относительно \mathfrak{B} . Тогда $f\circ \Phi$ — измеримо относительно \mathfrak{A} .

- (X, \mathfrak{A}, μ) пространство с мерой
- (Y, \mathfrak{B}, ν) пространство с мерой
- $\Phi: X \to Y$
- $\omega > 0$
- ω измеримо на X
- $\, \nu \,$ взвешенный образ $\, \mu \,$ при отображении $\, \Phi \,$ с весом $\, \omega \,$

Тогда \forall измеримой относительно \mathfrak{B} f на $Y, f \geq 0$ выполнено следующее:

1. $f \circ \Phi$ измеримо на X относительно $\mathfrak A$

2.

$$\int_{Y} f(y)d\nu(y) = \int_{Y} f(\Phi(x)) \cdot \omega(x)d\mu(x) \tag{29}$$

То же самое верно для суммируемой f.

Доказательство. Измеримость $f \circ \Phi$ выполнена по наблюдению 1.

0. Пусть $f = \chi_B, B \in \mathfrak{B}$

$$(f \circ \Phi)(x) = f(\Phi(x)) = \begin{cases} 1, & \Phi(x) \in B \\ 0, & \Phi(x) \notin B \end{cases} = \chi_{\Phi^{-1}(B)}$$

Тогда (29) это:

$$\int_{Y} \chi_{B} d\nu = \int_{B} 1 \cdot d\nu = \nu B \stackrel{?}{=} \int_{X} \chi_{\Phi^{-1}(B)} \cdot \omega d\mu = \int_{\Phi^{-1}(B)} \omega d\mu$$

Это выполнено по определению νB

- 1. Пусть f ступенчатая
 - (29) следует из линейности интеграла.
- 2. Пусть $f \ge 0$, измеримая

По теореме! Характеризация измеримых функций с помощью ступенчатых. Следствия и теореме! Теорема Леви $\exists \{h_i\}: 0 \leq h_1 \leq h_2 \leq \ldots$ — ступенчатые, $h_i \leq f, h_i \to f$

$$\int_{Y} h_{i} d\nu = \int_{X} h_{i} \circ \Phi \cdot \omega d\mu \xrightarrow{i \to +\infty}$$
 (29)

Итоговый конспект стр. 31 из 67

3. Пусть f измерима.

Тогда для |f| выполнено (29); |f| и $|f \circ \Phi| \cdot \omega$ суммируемы одновременно.

$$(f \circ \Phi \cdot \omega)_+ = f_+ \circ \Phi \cdot \omega \quad (f \circ \Phi \cdot \omega)_- = f_- \circ \Phi \cdot \omega$$

Таким образом, искомое выполнено для f_+ и f_- , а следовательно и для f.

Следствие 1.7 (об интегрировании по подмножеству). В условиях теоремы пусть:

- $B \in \mathfrak{B}$
- f суммируемо на Y

Тогда

$$\int_B f d\nu = \int_{\Phi^{-1}(B)} f(\Phi(x))\omega(x) d\mu$$

Доказательство. В условие теоремы подставим $f \cdot \chi_B$

2.18 Критерий плотности

- X, \mathfrak{A}, μ пространство с мерой
- *v* − мера
- $\omega: X \to \overline{\mathbb{R}}$
- $\omega \geq 0$
- ω измеримо

Тогда ω — плотность ν относительно $\mu \Leftrightarrow$:

$$\forall A \in \mathfrak{A} \ \mu A \cdot \inf_{A} \omega \leq \nu(A) \leq \mu A \sup_{A} \omega$$

При этом $0 \cdot \infty$ считается = 0.

Доказательство теоремы Критерий плотности.

$$\nu(A) \stackrel{\mathrm{def}}{=} \int_A \omega(x) d\mu(x)$$

$$\inf \omega \cdot \mu A = \int_A \inf \omega d\mu \leq \int_A \omega(x) d\mu(x) \leq \int_A \sup \omega d\mu = \sup \omega \cdot \mu A$$

Итоговый конспект стр. 32 из 67

" \Leftarrow " Рассмотрим $\omega>0$. Общность не умаляется, т.к. пусть $e=X(\omega=0)$, тогда $\nu(e)\stackrel{\mathrm{def}}{=}\int_e\omega d\mu=0$, поэтому в случае $A\cap e\neq\varnothing$ всё ещё только лучше.

Фиксируем число $q \in (0,1)$.

$$A_{j} := A(q^{j} \leq \omega < q^{j-1}), j \in \mathbb{Z}$$

$$A = \bigsqcup_{j \in \mathbb{Z}} A_{j}$$

$$\mu A_{j} \cdot q^{j} \overset{(30)}{\leq} \nu A_{j} \overset{(31)}{\leq} \mu A_{j} \sup_{A_{j}} q^{j-1}$$

$$\mu A_{j} \cdot q^{j} \overset{(32)}{\leq} \int_{A_{j}} \omega d\mu \overset{(33)}{\leq} \mu A_{j} q^{j-1}$$

Тогда:

$$q \cdot \int_{A} \omega d\mu = q \cdot \sum \int_{A_{j}} \omega d\mu$$

$$\stackrel{(34)}{\leq} \sum q^{j} \mu A_{j}$$

$$\stackrel{(35)}{\leq} \sum_{\nu A_{j}} \nu A_{j}$$

$$\stackrel{(36)}{\leq} \frac{1}{q} \sum q^{j} \mu A_{j}$$

$$\stackrel{(37)}{\leq} \frac{1}{q} \sum \int_{A_{j}} \omega d\mu$$

$$= \frac{1}{q} \int_{A} \omega d\mu$$

То есть:

$$q \int_{A} \omega d\mu \le \nu A \le \frac{1}{q} \int_{A} \omega d\mu$$

Тогда предельный переход при $q \to 1-0$ дает искомое.

^{(34):} по (33)

^{(35):} по (30)

^{(36):} по (31)

^{(37):} по (32)

2.19 Лемма о единственности плотности

- f, g суммируемы
- (X,\mathfrak{A},μ) пространство с мерой
- $\forall A \in \mathfrak{A} \quad \int_A f = \int_A g$

Тогда f = g почти везде.

Доказательство. h:=f-g. Дано: $\forall A \ \int_A h=0$; доказать: h=0 почти везде.

$$A_+ := X(h \ge 0) \quad A_- := X(h < 0) \quad X = A_+ \sqcup A_-$$

$$\int_{A_+} |h| = \int_{A_+} h = 0 \quad \int_{A_-} |h| = -\int_{A_-} h = 0 \implies \int_{X} |h| = 0 \implies h = 0 \text{ п.в.}$$

2.20 Пемма об оценке мер образов малых кубов

- $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- О открыто
- a ∈ O
- $\Phi \in C^1$
- $c > |\det \Phi'(a)| \neq 0$

Тогда $\exists \delta>0 \ \ \forall$ куба $Q\subset B(a,\delta), a\in Q$ выполняется неравенство $\lambda\Phi(Q)< c\lambda Q$ Примечание. Здесь можно считать, что Q — замкнутые кубы.

Доказательство. $L := \Phi'(a) - \text{обратимо}^9$

$$\Phi(x) = \Phi(a) + L(x - a) + o(x - a)$$

$$\underbrace{a + L^{-1}(\Phi(x) - \Phi(a))}_{\Psi(x)} = x + o^{10}(x - a)$$

$$\underbrace{x + L^{-1}(\Phi(x) - \Phi(a))}_{\Psi(x)} = x + o^{10}(x - a)$$

$$\underbrace{x + L^{-1}(\Phi(x) - \Phi(a))}_{\Psi(x)} = x + o^{10}(x - a)$$

 $\forall \varepsilon > 0 \; \exists \; \mathrm{map} \; B_{\varepsilon^{11}}(a) \; \forall x \in B_{\varepsilon}(a) \; |\Psi(x) - x| < \frac{\varepsilon}{\sqrt{m}} |x - a|$

Пусть $Q \subset B_{\varepsilon}(a), a \in Q, Q$ — куб со стороной h.

⁹ Т.к. det $\Phi'(a) \neq 0$.

 $^{^{10}}$ Это не то же самое o, что строчкой выше.

¹¹Это не радиус шара, а параметр.

Итоговый конспект стр. 34 из 67

При $x \in Q$:

$$|x-a| \le \sqrt{m}h^{12}$$

$$|\Psi(x) - x| \stackrel{(38)}{<} \frac{\varepsilon}{\sqrt{m}} |x - a| \le \varepsilon h$$

Тогда $\Psi(Q)\subset$ куб со стороной $(1+2\varepsilon)h$, т.к. при $x,y\in Q$

$$|\Psi(x)_i - \Psi(y)_i| \le |\Psi(x)_i - x_i| + |x_i - y_i| + |\Psi(y)_i - y_i|$$

$$\le |\Psi(x) - x| + h + |\Psi(y) - y|$$

$$\le (1 + 2\varepsilon)h$$

$$\lambda(\Psi(Q)) \le (1 + 2\varepsilon)^m \cdot \lambda Q$$

 Ψ и Φ отличаются только сдвигом и линейным отображением.

$$\lambda\Phi(Q) = |\det L| \cdot \lambda\Psi(Q) \le |\det L|(1+2\varepsilon)^m \cdot \lambda Q$$

Выбираем ε такое, чтобы $|\det L|(1+2\varepsilon)^m < c$, потом берём $\delta =$ радиус $B_{\varepsilon}(a)$

2.21 Теорема о преобразовании меры при диффеоморфизме

Лемма 2.

- $f: O \subset \mathbb{R}^m \to \mathbb{R}$
- О открыто
- f непрерывна
- А измеримо
- $A \subset Q \subset \overline{Q} \subset O$
- Q кубическая ячейка

Тогда:

$$\inf_{\substack{G:A\subset G\\G \text{ oth } p,\ \subset O}} \lambda(G) \cdot \sup_G f = \lambda A \cdot \sup_A f$$

- $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- Ф диффеоморфизм

 $^{^{12}}$ Это диагональ куба со стороной h в $\mathbb{R}^m.$ (38): т.к. $x\in B_\varepsilon(a)$

Итоговый конспект стр. 35 из 67

Тогда

$$\forall A \in \mathfrak{M}^m, A \subset O \ \lambda \Phi(A) = \int_A |\det \Phi'(x)| d\lambda(x)$$

Доказательство.

Обозначение.

- $J_{\Phi}(x) = |\det \Phi'(x)|$
- $\nu A := \lambda \Phi(A) \text{Mepa}$

Надо доказать, что J_{Φ} — плотность ν относительно λ .

Достаточно проверить условие теоремы Критерий плотности, что \forall измеримого A:

$$\inf_{A} J_{\Phi} \cdot \lambda A \le \nu(A) \stackrel{(39)}{\le} \sup_{A} J_{\Phi} \cdot \lambda A$$

Достаточно проверить только правое неравенство, т.к. левое неравенство — правое неравенство для $\Phi(A)$ и отображения Φ^{-1}

$$\begin{split} \inf \frac{1}{|\det(\Phi')|} \cdot \lambda \Phi(A) &\leq \lambda A \\ \lambda \Phi(A) &\leq \lambda A \cdot \frac{1}{\inf \frac{1}{|\det \Phi'|}} \\ \lambda \Phi(A) &\leq \lambda A \cdot \sup |\det \Phi'| \end{split}$$

1. Проверяем (39) для случая A — кубическая ячейка, $A\subset \overline{A}\subset O$

От противного: $\lambda Q \cdot \sup_Q J_\Phi < \nu(Q)$

Возьмём $C > \sup_Q J_\Phi : C \cdot \lambda Q < \nu(Q)$.

Запускаем половинное деление: режем Q на 2^m более мелких кубических ячеек. Выберем "мелкую" ячейку $Q_1\subset Q:C\cdot\lambda Q_1<\nu Q_1$. Опять делим на 2^m частей, берём $Q_2\cdot\lambda Q_2<\nu Q_2$ и т.д.

 $a \in \bigcap \overline{Q}_i$

$$Q_1 \supset Q_2 \supset \dots \qquad \forall n \ C \cdot \lambda Q_n < \nu Q_n$$
 (40)

 $C>\sup_Q J_\Phi=\sup_{\overline{Q}} J_\Phi$, в частности $c>|\det\Phi'(a)|$. Мы получили противоречие с леммой Лемма об оценке мер образов малых кубов: в сколько угодно малой окрестности a имеются кубы \overline{Q}_n , где выполнено (40)

Итоговый конспект стр. 36 из 67

2. Проверяем (39) для случая A открыто.

Это очевидно, т.к. $A=\bigsqcup Q_j, Q_j$ — кубическая ячейка, $Q_j\subset \overline{Q}_j\subset A$

$$\nu A = \sum \lambda Q_j \le \sum \lambda Q_j \sup_{Q_j} J_{\Phi} \le \sup_{A} J_{\Phi} \cdot \sum \lambda Q_j = \sup_{A} J_{\Phi} \cdot \lambda A \tag{41}$$

3. По лемме 2 неравенство (39) выполнено для всех измеримых A:

$$O=\bigsqcup Q_j$$
— кубы $Q_j\subset \overline{Q}_j\subset O,$ $A=\bigsqcup \underbrace{A\cap Q_j}_{A_j}$

$$\nu A_j \leq \nu G \leq \sup_G J_\Phi \cdot \lambda G \Rightarrow \nu A_j \leq \inf_G (\sup J_\Phi \cdot \lambda G) = \sup_{A_j} J_\Phi \cdot \lambda A_j$$

Аналогично формуле (41) получаем $\nu A \leq \sup_A f \cdot \lambda A$

2.22 Теорема о гладкой замене переменной в интеграле Лебега

- $\Phi: O \subset \mathbb{R}^m \to \mathbb{R}^m$
- Ф диффеоморфизм

Тогда \forall измеримой $f \geq 0$, заданной на $O' = \Phi(O)$:

$$\int_{O'} f(y) d\lambda = \int_{O} f(\Phi(x)) \cdot J_{\Phi} \cdot d\lambda, J_{\Phi}(x) = |\det \Phi'(x)|$$

То же самое верно для суммируемой f.

Доказательство. Применяем теорему Теорема о вычислении интеграла по взвешенному образу меры при $X = Y = \mathbb{R}^m, \mathfrak{A} = \mathfrak{B} = \mathfrak{M}^m, \mu = \lambda, \nu(A) = \lambda(\Phi(A))$:

$$\int_B f d\nu = \int_{\Phi^{-1}B} f(\Phi(x))\omega(x) d\mu$$

По теореме 2.21 $\lambda(B)=\int_{\Phi^{-1}(B)}J_{\Phi}d\lambda$, т.е. λ — взвешенный образ исходной меры по отношению к Φ .

2.23 Теорема о произведении мер

- 1. m_0 мера на ${\cal P}$
- 2. $\mu, \nu \sigma$ -конечны $\Rightarrow m_0$ тоже σ -конечно¹³.

 $^{^{13}}$ Т.е. пространство можно представить в виде счётного объединения множеств конечной меры.

Итоговый конспект стр. 37 из 67

Доказательство.

1. Проверим счётную аддитивность m_0 , т.е. $m_0P = \sum_{k=1}^{+\infty} m_0 P_k^{-14}$, если $A \times B = P = |P_k|$, где $P_k = A_k \times B_k$

Заметим, что $\chi_{A\times B}(x,y)=\chi_A(x)\cdot\chi_B(y).$

Тогда
$$\chi_P=\sum\chi_{P_k}$$
, где $\forall x\in X,y\in Y\;\;\chi_A(x)\chi_B(y)=\sum\chi_{A_k}(x)\chi_{B_k}(y)$

Слева измеримая функция, справа — неотрицательный ряд \Rightarrow можем интегрировать.

Проинтегрируем по y по мере ν по пространству Y:

$$\chi_A(x)\nu B = \sum \chi_{A_k}(x) \cdot \nu B_k$$

Проинтегрируем по x по мере μ по пространству X:

$$\mu A \nu B = \sum \mu A_k \nu B_k$$

Это и есть искомое.

- 2. Очевидно, т.к.:
 - μ σ -конечно \Rightarrow $X = \bigcup X_k, \mu X_k$ конечно $\forall k$
 - ν σ -конечно \Rightarrow $Y = \bigcup Y_n, \nu Y_n$ конечно $\forall n$

Тогда $X\times Y=\bigcup X_k\times Y_n, m_0(X_k\times Y_n)=\mu X_k\nu Y_n.$ Конечное произведение конечных конечно, поэтому m_0 σ -конечно.

2.24 Принцип Кавальери

15

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\mu, \nu \sigma$ -конечны.
- μ, ν полные.
- $m = \mu \times \nu$
- $C \in \mathfrak{A} \otimes \mathfrak{B}$

 $^{^{14} \}Pi poчие суммы/объединения также счётны в рамках данного доказательства.$

¹⁵Кавальери имеет к этой теореме косвенное отношение, т.к. он жил за пару веков до появления теории меры.

Итоговый конспект стр. 38 из 67

Тогда:

1. $C_x \in \mathfrak{B}$ при почти всех x

2.
$$x\mapsto
u(C_x)$$
 — измеримая $^{\mbox{\tiny 16}}$ функция на X

3.
$$mC = \int_X \nu(C_x) d\mu(x)$$

Аналогичное верно для C^y .

Доказательство. Пусть \mathfrak{D} — система множеств, для которых выполнено 1.-3.

1. $C=A\times B$, где A и B измеримы в соответствующих пространствах $\Rightarrow C\in\mathfrak{D}$, так как:

(a)
$$C_x = egin{cases} \varnothing, x \notin A \\ B, x \in A \end{cases}$$
 и оба случая очевидно $\in \mathfrak{B}$

(b)
$$x \mapsto \nu(C_x)$$
 — функция $\nu B \cdot \chi_A$

(c)
$$\int \nu(C_x) d\mu = \int_X \nu B \cdot \chi_A d\mu = \nu B \cdot \mu A = mC$$

2. $E_i \in \mathfrak{D}$, дизъюнктны $\stackrel{?}{\Rightarrow} \bigsqcup E_i \in \mathfrak{D}$. Обозначим $E = \bigsqcup E_i$

 $E_i \in \mathfrak{D} \Rightarrow (E_i)_x$ измеримы почти везде \Rightarrow при почти всех x все $(E_i)_x$ измеримы.

Тогда при этих x $E_x = \bigsqcup (E_i)_x \in \mathfrak{B}$ по определению σ -алгебры — это 1.

$$u E_x = \sum_{\substack{\text{измеримая} \\ \text{функция}}}
u (E_i)_x \Rightarrow \Phi$$
ункция $x \mapsto \nu E_x$ измерима — это 2.

$$\int_X \nu E_x d\mu = \sum_i \int_X \nu(E_i) x = \sum_i m E_i = m E$$
 — это 3.

3. $E_i\in\mathfrak{D}, E_1\supset E_2\supset\ldots, E=\bigcap_i E_i, \mu E_i<+\infty$. Тогда $E\in\mathfrak{D}.$

$$\int_X
u(E_i)_x d\mu = mE_i < +\infty \Rightarrow
u(E_i)_x$$
 — конечно при почти всех x .

$$\forall x$$
 верно $(E_1)_x \supset (E_2)_x \supset \dots, E_x = \bigcap (E_i)_x$

Тогда E_x измеримо п.в. (это 1.) и $\lim_{i\to +\infty} \nu(E_i)_x = \nu E_x$ при п.в. x — непрерывность сверху ν .

Таким образом, $x\mapsto \nu E_x$ измерима — это 2.

$$\int_x \nu E_x d\mu = \lim \int_X \nu(E_i)_x d\mu = \lim m E_i = m E$$
 — это 3.

По теореме Лебега о предельном переходе под знаком интеграла $|\nu(E_i)x| \leq \nu(E_i)x$ суммируемо.

 $^{^{16}}$ Функция задана при почти всех X; она равна п.в. некоторой измеримой функции, заданной всюду.

Итоговый конспект стр. 39 из 67

Итого: Если $A_{ij} \in \mathcal{P} = \mathfrak{A} \times \mathfrak{B}$, то $\bigcap \bigcup A_{ij} \in \mathfrak{D}$. Строго говоря, мы это не доказали, т.к. ещё нужно упомянуть процесс дизъюнктнизации в полукольце и то, что пересечение множеств лежит в полукольце, следовательно любое пересечение можно свести к тому, которое мы рассматривали.

4. $E \subset X \times Y, mE = 0 \Rightarrow E \in \mathfrak{D}$

 $mE=\inf\left\{\sum m_0P_k:E\subset\bigcup P_k,P_k\in\mathcal{P}\right\}$ — из пункта 5 теоремы о лебеговском продолжении.

 \exists множество H вида $\bigcap_l\bigcup_k P_{kl}$, т.е. пересечение аппроксимаций. По пункту 3 $H\in\mathfrak{D}$. При этом $E\subset H, mH=mE=0$.

$$0=mH=\int_X\underbrace{
u H_x}_{>0}d\mu\Rightarrow
u H_x=0$$
 про почти всех $x.$

 $E_x\subset H_x, \nu$ — полная $\Rightarrow E_x$ — измеримо при почти всех x — это 1 и $\nu E_x=0$ почти везде, это 2.

$$\int \nu E_x d\mu = 0 = mE -$$
это 3.

5. C-m-измеримо, $mC<+\infty$. Тогда $C\in\mathfrak{D}$.

 $C=H\backslash e$, где H имеет вид $\bigcap\bigcup P_{kl}, me=0$. Почему? Из предыдущих соображений $C\subset H$, а нулевая мера $H\backslash C$ следует из того, что мера C конечна. Как оно следует?

$$mC = mH - 0 = mH$$

- (a) $C_x = H_x \setminus e_x$ оба "слагаемых" измеримы при почти всех x, т.к. H_x по третьему пункту $\in \mathfrak{B}$, а e_x измеримы по полноте ν . В силу замкнутости по вычитанию $C_x \in \mathfrak{B}$ п.в.
- (b) $\nu e_x=0$ при почти всех $x\Rightarrow \nu C_x=\nu H_x-\nu E_x=\nu H_x$ п.в. \Rightarrow измеримо.

(c)
$$\int_X \nu C_x d\mu = \int_X \nu H_x d\mu = mH = mC$$

6. C — произвольное измеримое множество в $X \times Y \Rightarrow C \in \mathfrak{D}$

$$X=\bigsqcup X_k, \mu X_k<+\infty, Y=\bigsqcup Y_j, \nu Y_j<+\infty$$
 по полноте обеих мер.

 $C=\bigsqcup(\underbrace{C\cap(X_k imes Y_j)}_{m(\dots)<+\infty})$, тогда по пункту 5 все элементы объединения $\in\mathfrak{D}$ и по

пункту 2 объединение лежит в \mathfrak{D} .

 $\mathit{Спедствие}$ 1.8. C измеримо в $X\times Y.$ Пусть $P_1(C)=\{x\in X, C_x\neq\varnothing\}$ — проекция C на X.

Итоговый конспект стр. 40 из 67

Если $P_1(C)$ измеримо, то:

$$mC = \int_{P_1(C)} \nu(C_x) d\mu$$

Аналогично для проекции на y.

Доказательство. При $x \notin P_1(C)$ $\nu(C_x) = 0$

2.25 Теорема Тонелли

- (X,\mathfrak{A},μ)
- (Y, \mathfrak{B}, ν)
- $\mu, \nu \sigma$ -конечные, полные
- $m = \mu \times \nu$
- $f: X \times Y \to \overline{\mathbb{R}}$
- $f \ge 0$
- f измеримо относительно $\mathfrak{A}\otimes\mathfrak{B}$

Тогда:

- 1. При почти всех $x f_x$ измерима на Y.
- 2. $x\mapsto \varphi(x)=\int_V f_x d\nu=\int_V f(x,y)d\nu(y)$ измерима 17 на X
- 3. $\int_{X\times Y} f dm = \int_X \varphi d\mu = \int_X \left(\int_Y f(x,y) d\nu(y) \right) d\mu(x)$

Аналогичные утверждения верны, если поменять местами X и Y:

- 1. f^{y} измеримо на X почти везде.
- 2. $y\mapsto \psi(y)=\int_X f^y d\mu$ измерима $^{\mbox{\tiny 18}}$ на Y
- 3. $\int_{X\times Y} f dm = \int_{Y} \psi d\mu = \int_{Y} \left(\int_{X} f(x,y) d\mu(x) \right) d\nu(y)$

Доказательство.

1. $f = \chi_{C_x}, C \subset X \times Y$, измеримо. Тогда $f_x(y) = \chi_{C_x}(y)$

 C_x измеримо при почти всех x по Принцип Кавальери $\Rightarrow f_x$ измеримо при почти всех x

 $arphi(x)=\int_Y f_x d
u=
u C_x$ — измеримая функция по Принцип Кавальери

¹⁷почти везде

¹⁸почти везде

¹⁹почти везде

Итоговый конспект стр. 41 из 67

$$\int_{X} \varphi(x) d\mu = \int_{X} \nu C_x d\mu \stackrel{\text{(42)}}{=} mC = \int_{X \times Y} f dm$$

2. f — ступенчатая, $f \geq 0, f = \sum_{\text{кон.}} \alpha_k \chi_{C_k}, f_x = \sum \alpha_k \chi_{(C_k)_x}$ — измеримо почти везде. $\varphi(x) = \int_Y f_x d\nu = \sum \alpha_k \nu(C_k)_x$ — измерима 20

$$\int_{X} \varphi(x) = \sum \int_{X} \alpha_k \nu(C_k)_x = \sum \alpha_k m C_k = \int_{X \times Y} f dm$$

3. $f \ge 0$, измеримо.

 $f = \lim g_n, g_n \uparrow f, g_n \ge 0$, ступенчатые

 $f_x = \lim_{n \to +\infty} (g_n)_x \Rightarrow f_x$ — измеримо на y по теореме об измеримости пределов.

$$\varphi(x) = \int_Y f_x d\nu \stackrel{(43)}{=} \lim \underbrace{\int_Y (g_n)_x d\nu}_{\varphi_n(x)} \implies \varphi - \text{измерима}^{21}$$

 $arphi_n(x)$ измерима почти везде по пункту 2, поэтому arphi измерима почти везде.

$$\int_{X} \varphi(x) \stackrel{(44)}{=} \lim \int_{X} \varphi_{n} = \lim \int_{X \times Y} g_{n} \stackrel{(45)}{=} \int_{X \times Y} f dm$$

2.26 Формула для Бета-функции

 $B(s,t) \stackrel{\text{def}}{=} \int_0^1 x^{s-1} (1-x)^{t-1} dx, \ s,t > 0.$

Тогда
$$B(s,t)=rac{\Gamma(s)\Gamma(t)}{\Gamma(s+t)}$$
, где $\Gamma(s)=\int_0^{+\infty}x^{s-1}e^{-x}dx$

Доказательство.

$$\Gamma(s)\Gamma(t) = \int_0^{+\infty} x^{s-1} e^{-x} \left(\int_0^{+\infty} y^{t-1} e^{-y} dy \right) dx$$
$$= \int_0^{+\infty} \left(\int_0^{+\infty} x^{s-1} y^{t-1} e^{-x} e^{-y} dy \right) dx$$

(42): по Принцип Кавальери

²⁰почти везде

(43), (44), (45): по теореме! Теорема Леви

M3137y2019

Итоговый конспект стр. 42 из 67

$$y := u - x$$

$$= \int_{0}^{+\infty} \left(\int_{x}^{+\infty} x^{s-1} (u - x)^{t-1} e^{-u} du \right) dx$$

$$= \int \dots d\lambda_{2}$$

$$= \int_{0}^{+\infty} \left(\int_{0}^{u} x^{s-1} (u - x)^{t-1} e^{-u} dx \right) du$$

$$x := u \cdot v$$

$$= \int_{0}^{+\infty} \left(\int_{0}^{1} (uv)^{s-1} (u - uv)^{t-1} e^{-u} \cdot u dv \right) du$$

$$= \int_{0}^{+\infty} u^{s+t-1} e^{-u} \left(\int_{0}^{1} v^{s-1} (1 - v)^{t-1} dv \right) du$$

$$= B(s, t) \Gamma(s + t)$$

$\mathbf{2.27}$ Объем шара в \mathbb{R}^m

 $\alpha_m:=\lambda_m(B(0,1)), \lambda_m(B(0,r))=r^m\cdot\alpha_m$ — получается заменой координат.

$$B(0,1) \stackrel{\text{def}}{=} \left\{ x \in \mathbb{R}^m : \sum_{i=1}^m x_i^2 \le 1 \right\}$$

$$B(0,1)_{x_m} = \left\{ x \in \mathbb{R}^{m-1} : \sum_{i=1}^{m-1} x_i^2 \le 1 - x_m^2 \right\}$$

$$\alpha_m = \int_{-1}^1 \lambda_{m-1} \left(B\left(0, \sqrt{1 - y^2}\right) \right) dy$$

$$= \int_{-1}^1 \alpha_{m-1} (1 - y^2)^{\frac{m-1}{2}} dy$$

$$= 2\alpha_{m-1} \int_0^1 (1 - t)^{\frac{m-1}{2}} \frac{1}{2} t^{-\frac{1}{2}} dt$$

$$= B\left(\frac{m+1}{2}, \frac{1}{2}\right) \alpha_{m-1}$$

$$= \frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m+2}{2}\right)} \alpha_{m-1}$$

$$\alpha_{m} = \frac{\Gamma\left(\frac{m+1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m+2}{2}\right)} \cdot \frac{\Gamma\left(\frac{m}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m+1}{2}\right)} \dots \frac{\Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{4}{2}\right)} \underbrace{\alpha_{1}}_{=2}$$

Итоговый конспект стр. 43 из 67

$$= \frac{\Gamma\left(\frac{3}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{m}{2}+1\right)^{m-1}} \cdot 2$$
$$= \frac{\pi^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}+1\right)}$$

В случае m=3 $\alpha_3=\frac{4}{3}\pi$

Примечание.

$$\Gamma\left(\frac{1}{2}\right) = \int_{0}^{+\infty} t^{-\frac{1}{2}} e^{-t} dt = 2 \underbrace{\int_{0}^{+\infty} e^{-x^{2}} dx}_{I}$$

$$I^{2} = \int_{0}^{+\infty} \left(\int_{0}^{+\infty} e^{-x^{2} - y^{2}} dy \right) dx$$
$$= \int_{0}^{+\infty} dr \int_{0}^{\frac{\pi}{2}} e^{-r^{2}} \cdot r dr$$
$$= \frac{\pi}{4} e^{-r^{2}} \Big|_{0}^{+\infty}$$
$$= \frac{\pi}{4}$$

Переход в полярные координаты:

$$\begin{aligned} x_1 &= r \cos \varphi_1 \\ x_2 &= r \sin \varphi_1 \cos \varphi_2 \\ &\vdots \\ x_{m-1} &= r \sin \varphi_1 \dots \sin \varphi_{m-1} \\ x_m &= r \sin \varphi_1 \dots \cos \varphi_{m-1} \end{aligned}$$

$$\begin{split} \lambda_m(B(0,R)) &= \int_{B(0,R)} 1 d\lambda_m \\ &= \int_0^R dr \int_0^\pi d\varphi_1 \int_0^\pi d\varphi_2 \cdot \cdot \cdot \int_0^\pi d\varphi_{m-2} \int_0^{2\pi} d\varphi_{m-1} \cdot r^{m-1} \cdot \sin^{m-2}\varphi_1 \dots \sin\varphi_{m-2} \\ &\stackrel{\text{\tiny TO}\ (47)}{=} 2\pi \frac{R^m}{m} \prod_{k=1}^{m-2} \frac{\Gamma\left(\frac{k+1}{2}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{k+2}{2}\right)} \end{split}$$

Итоговый конспект стр. 44 из 67

$$= \pi \frac{R^m}{m} \frac{\pi^{\frac{m-2}{2}}}{\Gamma(\frac{m-2}{2}+1)}$$

$$\stackrel{(46)}{=} \frac{\pi^{\frac{m}{2}R^m}}{\Gamma(\frac{m-2}{2}+1)}$$

$$\int_0^{\pi} \sin^k \alpha d\alpha = 2 \int_0^{\frac{\pi}{2}} = \begin{bmatrix} t = \sin^2 \alpha \\ dt = \frac{1}{2} t^{-\frac{1}{2}} (1 - t)^{-\frac{1}{2}} dt \end{bmatrix} = B \left(\frac{k}{2} + \frac{1}{2}, \frac{1}{2} \right)$$
(47)

2.28 Формула Грина

- $D \subset \mathbb{R}^2$ компактное, связное, односвязное 22 , ограниченное множество.
- D ограничено кусочно-гладкой кривой ∂D
- (P,Q) гладкое векторное поле в окрестности D

Пусть ∂D ориентирована согласованно с ориентацией D (против часовой стрелки) — обозначим ∂D^+ . Тогда:

$$\iint_{D} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dx dy = \int_{\partial D^{+}} P dx + Q dy$$

Доказательство. Ограничимся случаем D — "криволинейный четырёхугольник".

 ∂D состоит из путей $\gamma_1 \dots \gamma_4$, где γ_2 и γ_4 — вертикальные отрезки²³, γ_1 и γ_3 — гладкие кривые — можно считать, что это графики функций $\varphi_1(x), \varphi_3(x)$.

Аналогично можно описать ∂D по отрезкам, параллельным оси OY.

Проверим, что
$$-\iint_{D} \frac{\partial P}{\partial y} dx dy = \int_{\partial D^{+}} P dx + 0 dy$$

$$-\iint_{D} \frac{\partial P}{\partial y} dx dy = -\int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{3}(x)} \frac{\partial P}{\partial y} dy$$
$$= -\int_{a}^{b} P(x, \varphi_{3}(x)) - P(x, \varphi_{1}(x)) dx$$

Мы потеряли двойку в (46).

²²Любая петля стягиваема

²³Возможно, вырожденные

Итоговый конспект стр. 45 из 67

Рис. 1: Криволинейный четырёхугольник с ∂D

$$\int_{\partial D^+} Pdx + 0dy = \int_{\gamma_1} + \underbrace{\int_{\gamma_2}}_{0} + \int_{\gamma_3} + \underbrace{\int_{\gamma_4}}_{0}$$
$$= \int_a^b P(x, \gamma_1(x))dx - \int_a^b P(x, \gamma_3(x))dx$$

Таким образом, искомое доказано.

2.29 ! Формула Стокса

- Ω простое гладкое двумерное многообразие в \mathbb{R}^3 (двустороннее)
- $\Phi:G\subset\mathbb{R}^2 o\mathbb{R}^3$ параметризация Ω
- L^+ граница G
- n_0 сторона Ω
- $\partial\Omega$ кусочно-гладкая кривая

Итоговый конспект стр. 46 из 67

- $\partial\Omega^+$ кривая с согласованной ориентацией
- (P,Q,R) гладкое векторное поле в окрестности Ω

Тогда:

$$\int_{\partial\Omega^+} P dx + Q dy + R dz = \iint_{\Omega} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Доказательство. Ограничимся случаем $\Omega \in C^2$, т.е. параметризация Ω дважды гладко дифференцируема.

Достаточно показать, что:

$$\int_{\partial\Omega^{+}} P dx = \iint_{\Omega} \frac{\partial P}{\partial z} dz dx - \frac{\partial P}{\partial y} dx dy$$

Пусть $\Phi = (x(u, v), y(u, v), z(u, v)).$

Запараметризуем L^+ как $\gamma:[a,b]\to\mathbb{R}^2,t\mapsto (u(t),v(t)).$ Тогда $\Phi\circ\gamma-$ параметризация $\partial\Omega^+.$ Тогда $(\Phi\circ\gamma)'=\Phi'\cdot\gamma'$

$$\begin{split} \int_{\partial\Omega^{+}} P dx &= \int_{L^{+}} P\left(\frac{\partial x}{\partial u} u' + \frac{\partial x}{\partial v} v'\right) dt \\ &= \int_{L^{+}} P\left(\frac{\partial x}{\partial u} du + \frac{\partial x}{\partial v} dv\right) \\ &\stackrel{(48)}{=} \iint_{G} \frac{\partial}{\partial u} \left(P \frac{\partial x}{\partial v}\right) - \frac{\partial}{\partial v} \left(P \frac{\partial x}{\partial u}\right) du dv \\ &\stackrel{(49)}{=} \iint_{G} (P'_{x} x'_{u} + P'_{y} y'_{u} + P'_{z} z'_{u}) x'_{v} + P_{xuv} - (P'_{x} x'_{v} + P'_{y} y'_{v} + P'_{z} z'_{v}) x'_{u} - P x''_{uv} du dv \\ &= \iint_{G} \frac{\partial P}{\partial z} (z'_{u} x'_{v} - z'_{v} x'_{u}) - \frac{\partial P}{\partial y} (x'_{u} y'_{v} - x'_{v} y'_{u}) du dv \\ &= \iint_{G} \frac{\partial P}{\partial z} dz dx - \frac{\partial P}{\partial x} dx dy \end{split}$$

(48): по Формула Грина

(49): это дифференцирование произведения

Итоговый конспект стр. 47 из 67

2.30 ! Формула Гаусса-Остроградского

- $V = \{(x, y, z) : (x, y) \in G \subset \mathbb{R}^2 \mid f(x, y) \le z \le F(x, y)\}$
- G компакт
- ∂G кусочно-гладкая кривая в \mathbb{R}^2
- $f, F \in C^1$
- Фиксируем внешнюю сторону поверхности
- R : окрестность $V \to \mathbb{R}, R \in C^1$

Тогда

$$\iiint_{V} \frac{\partial R}{\partial z} dx dy dz = \iint_{\partial V_{\text{superposity}}} R dx dy = \iint_{\partial V} 0 dy dz + 0 dz dx + R dx dy$$

Доказательство.

$$\iiint_{V} \frac{\partial R}{\partial z} = \iint_{G} dx dy \int_{f(x,y)}^{F(x,y)} \frac{\partial R}{\partial z} dz$$

$$= \iint_{G} R(x, y, F(x, y)) dx dy - \iint_{G} R(x, y, f(x, y)) dx dy$$

$$= \iint_{\Omega_{F}} R(x, y, z) dx dy + \iint_{\Omega_{f}} R dx dy + \underbrace{\iint_{\Omega} R dx dy}_{0}$$

$$= \iint_{\partial V} R dx dy$$

(50): "-" спрятан в нормали, направленной вниз.

Итоговый конспект стр. 48 из 67

Следствие 1.9 (обощенная формула Остроградского).

$$\iiint_{V} \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} dx dy dz = \iint_{\partial V_{\text{numer}}} P dy dz + Q dz dx + R dx dy$$

2.31 Соленоидальность бездивергентного векторного поля

- Ω открытый параллелепипед
- A векторное поле в Ω
- $A \in C^1$

Тогда A — соленоидально \Leftrightarrow div A=0

Доказательство.

 \Rightarrow div rot $B\equiv 0$, что всегда выполнено.

← Дано:

$$A'_{1x} + A'_{2y} + A'_{3z} = 0 (51)$$

Найдём векторный потенциал $B=(B_1,B_2,B_3)$, где $A={
m rot}\ B.$

Пусть $B_3 \equiv 0$.

$$\begin{cases} B'_{3y} - B'_{2z} = A_1 \\ B'_{1z} - B'_{3x} = A_2 \\ B'_{2x} - B'_{1y} = A_3 \end{cases}$$

$$-B_{2z}' = A_1 (52)$$

$$-B_{1z}' = A_2 (53)$$

$$B_{2x}' - B_{2y}' = A_3 (54)$$

(53)
$$B_{1} = \int_{z_{0}}^{z} A_{2}dz$$
(52)
$$B_{2} = -\int_{z_{0}}^{z} A_{1}dz + \varphi(x, y)$$
(54)
$$A_{3} = -\int_{z_{0}}^{z} A'_{1x}dz + \varphi'_{x} - \int_{z_{0}}^{z} A'_{2y}dz$$

Итоговый конспект стр. 49 из 67

Πο (51):

$$\int_{z_0}^{z} A'_{3z} + \varphi'_x = A_3$$
$$A_3(x, y, z) - A_3(x, y, z_0) + \varphi'_x = A_3(x, y, z_0)$$
$$\varphi'_x = A_3(x, y, z_0)$$

Отсюда найдём $\varphi = \int_{x_0}^x A_3(x,y,z_0) dx$

2.32 Теорема о вложении пространств L^p

- $\mu E < +\infty$
- $1 < s < r < +\infty$

Тогда:

- 1. $L^r(E,\mu) \subset L^s(E,\mu)$
- 2. $||f||_s \le \mu E^{\frac{1}{s} \frac{1}{r}} \cdot ||f||_r$

Доказательство. 1 следует из 2, т.к. если $f \in L^r(E,\mu)$, то $||f||_s$ конечно. Докажем 2.

При $r=\infty$ очевидно:

$$\left(\int_{E} |f|^{S} d\mu\right)^{\frac{1}{s}} \le \operatorname{ess sup} |f| \cdot \mu E^{\frac{1}{s}}$$

При $r<+\infty$ $p:=rac{r}{s},q:=rac{r}{r-s}$

$$\begin{split} ||f||_s^s &= \int_E |f|^s d\mu \\ &= \int_E |f|^s \cdot 1 d\mu \\ &\leq \left(\int_E |f|^{s \cdot \frac{r}{s}} d\mu \right)^{\frac{s}{r}} \cdot \left(\int_E 1^{\frac{r}{r-s}} d\mu \right)^{\frac{r-s}{r}} \\ &\leq ||f||_r^s \mu E^{1-\frac{s}{r}} \end{split}$$

Итоговый конспект стр. 50 из 67

2.33 Теорема о сходимости в L_p и по мере

- $1 \le p < +\infty$
- $f_n \in L^p(X,\mu)$

Тогда

1.
$$f \in L^p, f_n \xrightarrow{L^p} f \Rightarrow f_n \xrightarrow{\mu} f$$

2. •
$$f_n \stackrel{\mu}{\Longrightarrow} f$$
 (либо $f_n \to f$ п.в.)

- $|f_n| \leq g$
- $g \in L^p$

Тогда $f \in L^p$ и $f_n \to f$ в L^p

Доказательство.

1. Пусть $X_n(\varepsilon) = X(|f_n - f| \ge \varepsilon)$

$$\mu X_n(\varepsilon) = \int_{X_n(\varepsilon)} 1 d\mu \le \frac{1}{\varepsilon^p} \int_{X_n(\varepsilon)} |f_n - f|^p d\mu \le \frac{1}{\varepsilon^p} ||f_n - f||_p^p \to 0$$

2. Пусть $f_n \Rightarrow f$. Тогда по теореме Рисса $\exists n_k: f_{n_k} \to f$ почти везде. $|f| \leq g$ почти везде. $|f_n - f|^p \leq (2g)^p$ — суммируема, т.к. $g \in L^p$.

$$||f_n - f||_p^p = \int_X |f_n - f|^p \xrightarrow{\text{r. Jlebera}} 0$$

2.34 Полнота L^p

 $L^{p}(X,\mu), 1 \leq p < +\infty$ — полное.

 \mathcal{A} оказательство. Рассмотрим f_n — фундаментальную. Куда бы она могла сходиться?

Пусть $\varepsilon=\frac{1}{2}$. Тогда $\exists N_1 \ \ \forall n_1,k>N_1 \ \ ||f_{n_1}-f_k||_p<\frac{1}{2}$. Зафиксируем какой-либо n_1 .

Аналогично для $\varepsilon = \frac{1}{4}$.

В общем случае $\sum_k ||f_{n_{k+1}} - f_{n_k}||_p \le \sum_k \frac{1}{2^k} = 1$. Рассмотрим ряд $S(x) = \sum |f_{n_{k+1}}(x) - f_{n_k}(x)|, S(x) \in [0, +\infty]$ и его частичные суммы S_N .

$$||S_N||_p \le \sum_{k=1}^N ||f_{n_{k+1}} - f_{n_k}||_p < 1$$

Итоговый конспект стр. 51 из 67

Таким образом, $\int_X S_N^p < 1.$ По теореме Фату $\int_X S^p d\mu < 1,$ т.е. S^p — суммируемо $\Rightarrow S$ почти везде конечно.

 $f(x) = f_{n_1}(x) + \sum_{k=1}^{+\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$ — его частичные суммы это $f_{n_{N+1}}(x)$, т.е. сходимость этого ряда почти везде означает, что $f_{n_k} \to f$ почти везде. Таким образом, кандидат — f. Проверим, что $||f_n - f||_p \to 0$:

$$\forall \varepsilon > 0 \ \exists N \ \forall m, n > N \ ||f_n - f_m||_p < \varepsilon$$

Берём $m = n_k > N$.

$$||f_n - f_{n_k}||_p^p = \int_X |f_n - f_{n_k}|^p d\mu < \varepsilon^p$$

Это выполнено при всех достаточно больших k. Тогда по теореме Фату $\int_X |f_n-f|^p d\mu < \varepsilon^p$, т.е. $||f_n-f||_p < \varepsilon$.

2.35 Плотность в L^p множества ступенчатых функций

- (X,\mathfrak{A},μ)
- $1 \le p \le +\infty$

Множество ступенчатых функций (из L^p) плотно в L^p .

Доказательство.

1. $p=\infty$

 ${\lhd} f\in L^{\infty}.$ Изменив f на множестве меры 0, считаем, что $|f|\leq ||f||_{\infty},$ т.к. f>A на множестве меры 0.

Тогда из доказательство теоремы о характеризации неотрицательных функций с помощью ступенчатых \exists ступенчатые функции φ_n , такие что $0 \le \varphi_n \rightrightarrows f^+$ и ψ_n , такие что $0 \le \psi_n \rightrightarrows f^-$

Тогда сколь угодно близко к f можно найти ступенчатую функцию вида $\varphi_n + \psi_n$, т.е. $|f - \varphi_n - \psi_n| \leq \frac{1}{n}$, что и требовалось показать.

2. $p < +\infty$. Пусть $f \ge 0$.

 $\exists \varphi_n \geq 0$ ступенчатые : $\varphi_n \uparrow f$

$$||arphi_n - f||_p^p = \int_X \underbrace{|arphi_n - f|^p}_{\leq |f|^p - ext{Maжopahta}} \xrightarrow{ ext{т. Лебега}} 0$$

Если f любого знака, то при рассмотрении срезок искомое очевидно.

Итоговый конспект стр. 52 из 67

2.36 Лемма Урысона

- Х нормальное
- $F_0, F_1 \subset X$ замкнутые
- $F_0 \cap F_1 = \emptyset$

Тогда $\exists f: X \to \mathbb{R}$ непрерывное, $0 \leq f \leq 1, f \Big|_{F_0} \equiv 0, f \Big|_{F_1} \equiv 1$

Доказательство. Переформулируем нормальность: если $F\subset G$, F замкнутое, G открытое, то $\exists U(F)$ — открытое, такое что $F\subset U(F)\subset \overline{U(F)}\subset G$. Почему это нормальность? Первое замкнутое множество — F, а второе замкнутое — G^c .

$$F \leftrightarrow F_0 \quad G \leftrightarrow (F_1)^c \quad F_0 \subset \underbrace{U(F_0)}_{G_0} \subset \underbrace{\overline{U(F_0)}}_{\overline{G_0}} \subset \underbrace{F_1^c}_{G_1}$$

Строим $G_{\frac{1}{2}}$:

$$G_0 \subset \overline{G_0} \subset \underbrace{U(\overline{G_0})}_{G_{\frac{1}{2}}} \subset \underbrace{\overline{U(\overline{G_0})}}_{\overline{G_{\frac{1}{2}}}}$$

Строим $G_{\frac{1}{4}}, G_{\frac{3}{4}}$:

$$\overline{G_{\frac{1}{2}}} \subset \underbrace{U(\overline{G_{\frac{1}{2}}})}_{G_{\frac{3}{2}}} \subset \overline{U(\overline{G_{\frac{1}{2}}})} \subset G_1$$

Таким образом, \forall двоично рациональной $\alpha \in [0,1]$ задаётся открытое множество G_{α} .

$$f(x) := \inf\{\alpha -$$
двоично рациональная $: x \in G_{\alpha}\}$

f — непрерывно $\stackrel{?}{\Leftrightarrow} f^{-1}(a,b)$ — всегда открыто.

Достаточно проверить:

- 1. $\forall b \ f^{-1}(-\infty, b) \text{открыто}$
- 2. $\forall a \ f^{-1}(-\infty, a]$ замкнуто

, так как:

$$f^{-1}(a,b) = f^{-1}(-\infty,b) \setminus f^{-1}(-\infty,a]$$

1. $f^{-1}(-\infty,b)=\bigcup\limits_{\substack{q< b\\ q \text{ дв. рац.}}}G_q$ — открыто. Почему это так?

$$f^{-1}(-\infty,b) \subset \bigcup$$
, т.к. $f(x)=b_0 < b$. Возьмём $q:b_0 < q < b$. Тогда $x \in G_q$

Итоговый конспект стр. 53 из 67

 $f^{-1}(-\infty,b) \supset \bigcup$ очевидно, т.к. при $x \in G_q \ f(x) \leq q < b.$

2.
$$f^{-1}(-\infty,a]=\bigcap_{q>a}G_q=\bigcap_{q>a}\overline{G_q}$$
 — замкнуто

- (\supset) тривиально
- (\subset) Для двоично рациональных q, r:

$$\bigcap_{\substack{q>a\\\text{BCEX}}} G_q\supset \bigcap_{\substack{r>a\\\text{HEKOTOPDIX}}} \overline{G_r}\supset \bigcap_{\substack{r>a\\\text{BCEX}}} \overline{G_r}$$

, так как $\forall \alpha < \beta : G_{\alpha} \subset \overline{G_{\alpha}} \subset G_{\beta}$ по построению.

2.37 Плотность в L^p непрерывных финитных функций

- $(\mathbb{R}^m, \mathfrak{M}, \lambda_m)$
- $E \subset \mathbb{R}^m$ измеримое

Тогда в $L^p(E,\lambda_m)$, $1\leq p<+\infty$ множество непрерывных финитных функция плотно.

Доказательство. По уже доказанной теореме множество ступенчатых функций плотно в $L^p(E,\lambda_m)$. Достаточно научиться приближать характеристические функции финитными, т.е.:

$$\forall A-$$
огр. $\exists f-$ финитная непрерывная : $||f-\chi_A||_p<\varepsilon$

Тогда можно будет приближать ступенчатые функции финитными, а следовательно искомое будет верно.

По регулярности меры лебега:

$$\forall \varepsilon > 0 \;\; \exists \underbrace{F}_{\text{3amkh.}} \subset A \subset \underbrace{G}_{\text{otkp.}} \;\; \lambda_m(G \setminus F) < \varepsilon$$

По лемме Урысона \exists непрерывное $f:\mathbb{R}^m \to \mathbb{R}$: $f\Big|_F \equiv 1, f\Big|_{G^c} \equiv 0$

$$||f - \chi_A||_p^p = \int_{\mathbb{R}^m} |f - \chi_A|^p d\lambda_m = \int_{G \setminus F} |f - \chi_A|^p \le 1 \cdot \lambda_m(G \setminus F) = \varepsilon$$

Итоговый конспект стр. 54 из 67

2.38 ! Теорема о непрерывности сдвига

1. f — равномерно непрерывно на \mathbb{R}^m . Тогда $||f_h - f||_{\infty} \xrightarrow[h \to 0]{} 0^{24}$

2.
$$f \in L^p(\mathbb{R}^m), 1 \leq p < +\infty$$
. Тогда $||f_h - f||_p \xrightarrow[h o 0]{}$

3.
$$f \in \widetilde{C}[0,T]$$
. Тогда $||f_h - f||_{\infty} \xrightarrow[h \to 0]{} 0^{25}$

4.
$$1 \le p < +\infty, f \in L^p[0,T] \Rightarrow ||f_h - f||_p \to 0$$

Доказательство. Пункты 1 и 3 очевидны по определению равномерной непрерывности.

Докажем пункты 2 и 4.

По плотности непрерывных функций в L^p :

$$\forall \varepsilon>0 \ \forall f\in L^p[0,T] \ \exists g-\text{непр.} \in \widetilde{C}[0,T] \ ||f-g||_p<\frac{\varepsilon}{3}$$

$$||f_h-f||_p\leq ||f-g||_p+||g-g_h||_p+||g_h-f_h||_p\leq \frac{\varepsilon}{3}+||g-g_h||_p+\frac{\varepsilon}{3}$$

Покажем, что $||g-g_h||_p \leq \frac{\varepsilon}{3}$

4:

$$||g_h - g||_p = \left(\int_0^T |g(x+h) - g(x)|^p dx\right)^{\frac{1}{p}}$$

$$\leq \left(||g_h - g||_{\infty}^p \cdot \int_0^T 1 dx\right)^{\frac{1}{p}}$$

$$= T^{\frac{1}{p}} ||g_h - g||_{\infty}$$

, что $< \frac{\varepsilon}{3}$ для достаточно малых h.

2: g — финитное, носитель²⁶ $g \subset B(0,R)$, пусть |h| < 1.

$$||g_h - g||_p = ||g_h - g||_{L^p(B(0,R+1),\lambda_m)} \le ||g_n - g||_{\infty} (\lambda_m(B))^{\frac{1}{p}}$$

²⁴T.e. $\sup_x |f(x+h) - f(x)| \to 0$

^{^25} Или $||f_n-f||_{\widetilde{C}} o 0$

 $^{^{26}}$ Множество точек, где $g \neq 0$

Итоговый конспект стр. 55 из 67

2.39 Теорема о свойствах сходимости в гильбертовом пространстве

1. $x_n \to x, y_n \to y$ в \mathcal{H} . Тогда $\langle x_n, y_n \rangle \to \langle x, y \rangle$, т.е. скалярное произведение непрерывно в $\mathcal{H} \times \mathcal{H}$.

2. $\sum x_k$ сходится. Тогда:

$$\forall y \in \mathcal{H} \left\langle \sum x_k, y \right\rangle = \sum \left\langle x_k, y \right\rangle \tag{55}$$

3. $\sum x_k$ — ортогональный ряд. Тогда $\sum x_k$ сходится $\Leftrightarrow \sum ||x_k||^2$ сходится.

Доказательство.

1.

$$|\langle x_n, y_n \rangle - \langle x, y \rangle| \le |\langle x_n, y_n \rangle - \langle x, y_n \rangle| + |\langle x, y_n \rangle - \langle x, y \rangle|$$

$$\le \underbrace{||x_n - x||}_{\text{бесконечно малое}} \cdot \underbrace{||y_n||}_{\text{огр.}} + \underbrace{||x||}_{\text{сопst}} \cdot \underbrace{||y_n - y||}_{\text{бесконечно малое}} \to 0$$

2.
$$S_N = \sum_{k=1}^N x_k \xrightarrow[N \to +\infty]{} S$$

$$\langle S_n, y \rangle \to \langle S, y \rangle = \left\langle \sum x_n, y \right\rangle$$

$$\langle S_n, y \rangle = \left\langle \sum_{k=1}^N x_k, y \right\rangle = \sum_{k=1}^N \langle x_k, y \rangle$$

Это член суммы ряда из правой части (55).

3.
$$S_N = \sum_{k=1}^N x_k$$

$$||S_N||^2 = \left\langle \sum_{k=1}^N x_k, \sum_{j=1}^N x_j \right\rangle = \sum_{k,j} \left\langle x_k, x_j \right\rangle = \sum_{k=1}^n ||x_k||^2 =: C_N$$

- ⇒ Очевидно
- \Leftarrow Аналогично формуле выше: $||S_M S_N||^2 = |C_M C_N|$. Таким образом, если C_N сходится, то C_N фундаментально $\Rightarrow S_N$ фундаментально в \mathcal{H} .

Теорема о коэффициентах разложения по ортогональной системе 2.40

- $\{e_k\}$ ортогональное семейство в ${\cal H}$
- $x \in \mathcal{H}$
- $x=\sum_{k=1}^{\infty}c_ke_k$, где $c_k\in\mathbb{R}$ или $\mathbb C$

Тогда:

- 1. $\{e_k\}$ ЛНЗ
- $2. c_k = \frac{\langle x, e_k \rangle}{||e_k||^2}$
- 3. $c_k e_k$ проекция x на прямую $\{te_k, t \in \mathbb{R}(\mathbb{C})\}$. $x = c_k e_k + z, z \perp e_k$.

Доказательство.

- 1. $\sum_{k=1}^{N} \alpha_k e_k = 0 \Rightarrow \alpha_n ||e_n||^2 = 0$
- 2. $\langle x, e_k \rangle = \langle \sum c_i e_i, e_k \rangle = c_k \cdot ||e_k||^2$
- 3. $\langle z, e_k \rangle = \langle x, e_k \rangle \langle c_k e_k, e_k \rangle = 0$

Теорема о свойствах частичных сумм ряда Фурье. Неравенство Бес-2.41 селя

- $\{e_k\}$ ортогональное семейство в $\mathcal H$
- $x \in \mathcal{H}$
- $n \in \mathbb{N}$
- $S_n = \sum_{k=1}^n c_k(x)e_k$
- $\mathcal{L}_n = \operatorname{Lin}(e_1 \dots e_n)$

Тогда:

- 1. S_n проекция x на \mathcal{L}_n , т.е. $x = S_n + z \Rightarrow z \perp \mathcal{L}_n$
- 2. S_n элемент наилучшего приближения дял x в \mathcal{L}_n :

$$||x - S_n|| = \min_{y \in \mathcal{L}_n} ||x - y||$$

3. $||S_n|| \le ||x||$

Доказательство.

1.
$$k = 1 \dots n$$

$$\langle z, e_k \rangle = \langle x - S_n, e_k \rangle = \langle x, e_k \rangle - c_k(x) ||e_k||^2 = 0$$

2.
$$x = S_n + z$$

$$||x-y||^2 = ||\underbrace{(S_n - y)}_{\in \mathcal{L}_n} + \underbrace{z}_{\perp \mathcal{L}_n}|| = ||S_n - y||^2 + ||z||^2 \ge ||z||^2 = ||x - S_n||^2$$

3.
$$||x||^2 = ||S_n||^2 + ||z||^2 \ge ||S_n||^2$$

2.42 Теорема Рисса – Фишера о сумме ряда Фурье. Равенство Парсеваля

- $\{e_k\}$ ортогональная система в ${\cal H}$
- $x \in \mathcal{H}$

Тогда:

1. Ряд Фурье вектора x сходится в \mathcal{H} .

2.
$$x = \sum_{k=1}^{+\infty} c_k(x)e_k + z, z \perp e_k \ \forall k$$

3.
$$x = \sum_{k=1}^{+\infty} c_k(x)e_k \Leftrightarrow \sum |c_k(x)|^2 \cdot ||e_k||^2 = ||x||^2$$

Доказательство.

1. Ряд Фурье ортогонален. Тогда по теореме о свойствах сходимости сходимость ряда Фурье \Leftrightarrow сходимость $\sum |c_k(x)|^2||e_k||^2$, что выполнено по неравенству Бесселя.

2.
$$z = x - \sum_{k=1}^{+\infty} c_k(x)e_k$$

$$\langle z, e_n \rangle = \langle x, e_n \rangle - \left\langle \sum_{k=1}^{+\infty} c_k(x) e_k, e_n \right\rangle = \langle x, e_n \rangle - \sum_{k=1}^{+\infty} \langle c_k(x) e_k, e_n \rangle = \langle x, e_n \rangle - c_n(x) ||e_n||^2 = 0$$

3. \Rightarrow по теореме о свойствах сходимости, пункт 3.

← из пункта 2:

$$||x||^2 = ||\sum c_k(x)e_k||^2 + ||z||^2 = \sum |c_k(x)|^2 ||e_k||^2 + ||z||^2$$

Дано:
$$||x||^2 = \sum |c_k(x)|^2 ||e_k||^2 \Rightarrow z = 0 \Rightarrow x = \sum c_k(x)e_k$$

M3137y2019

Итоговый конспект стр. 58 из 67

Равенство $\sum_k |c_k(x)|^2 ||e_k||^2 = ||x||^2$ называется уравнением замкнутости или равенством Персиваля.

2.43 Теорема о характеристике базиса

• $\{e_k\}$ — ортогональная система в \mathcal{H} .

Тогда эквивалентно следующее:

- 1. $\{e_k\}$ базис
- 2. $\forall x,y$ выполняется обобщенное уравнение замкнутости:

$$\langle x, y \rangle = \sum_{k=1}^{+\infty} c_k(x) \overline{c_k(y)} \cdot ||e_k||^2$$

- 3. $\{e_k\}$ замкнуто
- 4. $\{e_k\}$ полно
- 5. $Lin(e_1, e_2...)$ плотна в \mathcal{H} , т.е. $Cl(Lin(e_1, e_2...)) = \mathcal{H}$.

Доказательство.

1⇒2 Берём x, раскладываем его по базису и скалярно умножаем на y:

$$\langle e_k, y \rangle = \overline{\langle y, e_k \rangle} = \overline{c_k(y) \cdot ||e_k||^2} = \overline{c_k(y)} \cdot ||e_k||^2$$
$$\langle x, y \rangle = \sum_k c_k(x) \overline{c_k(y)} \cdot ||e_k||^2$$

- $2\Rightarrow 3$ Из обобщенного следует частное при подстановке y вместо x.
- 3⇒4 Если $\exists z: \forall n \ \langle z, e_n \rangle = 0$, то $c_n(z) = 0$, но тогда по уравнению замкнутости для z выполняется $||z||^2 = \sum |c_k(z)|^2 \cdot ||e_k||^2 = 0$, а следовательно z = 0.
- 4 \Rightarrow 1 По теореме Рисса-Фишера $x=\sum c_k(x)e_k+z$, где $z\perp$ всем e_k . По полноте z=0.
- $4\Rightarrow$ 5 $\mathcal{L}:=\mathrm{Cl}(\mathrm{Lin}(e_1,e_2\dots))$. Надо проверить, что $\mathcal{L}=\mathcal{H}$. Если $\exists x\in\mathcal{H}\setminus\mathcal{L}$, то по теореме Рисса-Фишера $\exists z:\forall k\ z\perp e_k$.
- 5 \Rightarrow 4 Если $z\perp e_k$ $\forall k$, то $z\perp \mathrm{Lin}(e_1,e_2\dots)\Rightarrow z\perp \mathcal{L}$, но $\mathcal{L}=\mathcal{H}\Rightarrow z\perp z$, т.е. $\langle z,z\rangle=0$, но тогда z=0.

Итоговый конспект стр. 59 из 67

2.44 Лемма о вычислении коэффициентов тригонометрического ряда

• Дан тригонометрический ряд (вещественный или комплексный)

• Пусть
$$S_n o f$$
 в $L^1[-\pi,\pi]$, т.е. $||S_n-f||_1 = \int_{-\pi,\pi} |S_n-f| o 0$

Тогда:

• $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos kt dt$, в том числе при k=0

•
$$b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin kt dt$$

•
$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt}dt$$

Доказательство. Докажем для a_k . Пусть $n \geq k$.

$$\int_{-\pi}^{\pi} S_n(t) \cos kt dt = 0 + \int_{-\pi}^{\pi} a_k \cos^2 kt = \pi a_k$$

$$\left| \pi a_k - \int_{-\pi}^{\pi} f(t) \cos kt dt \right| = \left| \int_{-\pi}^{\pi} (S_n(t) - f(t)) \cos kt \right| \le \int_{-\pi}^{\pi} |S_n(t) - f(t)| dt = ||S_n - f||_1 \to 0$$

2.45 Теорема Римана-Лебега

• $E \subset \mathbb{R}^1$

•
$$f \in L^1(E)$$

Тогда

$$\int_{E} f(t)e^{i\lambda t}dt \xrightarrow{\lambda \to 0} 0$$

$$\int_{E} f(t)\cos \lambda t dt \to 0$$

$$\int_{E} f(t)\sin \lambda t dt \to 0$$

В частности для $f\in L^1[-\pi,\pi]:a_k(f),b_k(f),c_k(f)\xrightarrow{k\to +\infty}0.$

Доказательство. Не умаляя общности $E=\mathbb{R}$, т.к. иначе дополним f до \mathbb{R} так, что f=0 вне E.

$$\begin{split} &\int_{\mathbb{R}} f(t)e^{i\lambda t}dt \stackrel{t:=\tau+\frac{\pi}{\lambda}}{=} \int_{\mathbb{R}} f\left(\tau+\frac{\pi}{\lambda}\right)e^{i\lambda\tau} \cdot e^{i\pi} = -\int_{\mathbb{R}} f\left(\tau+\frac{\pi}{\lambda}\right)e^{i\lambda\tau} \\ &\int_{\mathbb{R}} f(t)e^{i\lambda t}dt = \frac{1}{2}\left(\int+\int\right) = \frac{1}{2}\int_{\mathbb{R}} \left(f(t)-f\left(t+\frac{\pi}{\lambda}\right)\right)e^{i\lambda t}dt \end{split}$$

Итоговый конспект стр. 60 из 67

$$\left| \int_{\mathbb{R}} f(t)e^{i\lambda t} dt \right| = \frac{1}{2} \int_{\mathbb{R}} \left| f(t) - f\left(t + \frac{\pi}{\lambda}\right) \right| \underbrace{|e^{i\lambda t}|}_{-1} dt \to 0$$

, что выполнено по лемме о непрерывности сдвига.

2.46 Три следствия об оценке коэффициентов Фурье

Следствие 1.10. Пусть $\omega(f,h) = \sup_{\substack{x,y \in E \\ |x-y| \leq h}} |f(x)-f(y)|$ — модуль непрерывности. Если $f \in \widetilde{C}[-\pi,\pi]$, то $|a_k(f)|, |b_k(f)|, |2c_k(f)| \leq \omega\left(f,\frac{\pi}{k}\right)$ при $k \neq 0$.

Доказательство.

$$|2c_{-k}(f)| = \left| \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)e^{ikt}dt \right| \le \frac{1}{2\pi} \cdot \int_{-\pi}^{\pi} \left| f(t) - f\left(t + \frac{\pi}{k}\right) \right| dt \le$$

$$\le \frac{1}{2\pi} \int_{-\pi}^{\pi} \omega\left(f, \frac{\pi}{k}\right) dt = \omega\left(f, \frac{\pi}{k}\right)$$

 Π римечание. $\omega(f,h) \xrightarrow{h \to 0} 0$. Тогда f равномерно непрерывна.

Следствие 1.11. $E \subset \mathbb{R}, E = \langle a, b \rangle^{27}$

Определение. Класс Липшица для $M > 0, \alpha \in \mathbb{R}, \ \alpha \in (0, 1]$:

$$\operatorname{Lip}_{M}\alpha(E) = \{ f : E \to \mathbb{R} : \forall x, y \ |f(x) - f(y)| \le M|x - y|^{\alpha} \}$$

Пусть $f\in {
m Lip}_Mlpha$, тогда при k
eq 0 $|a_k(f)|, |b_k(f)|, |2c_k(f)| \leq \frac{M\pi^lpha}{|k|^lpha}$

Доказательство. Аналогично.

Примечание. $f \in \text{Lip}_M \alpha \Rightarrow \omega(f, h) \leq M \cdot h^{\alpha}$

Наблюдение 2. $f\in \widetilde{C}^1[-\pi,\pi]$. Тогда при $k\neq 0$ $a_k(f')=kb_k(f),b_k(f')=-ka_k(f),c_k(f')=ikc_k(f)$

Доказательство. Интегрирование по частям:

$$c_k(f') = \frac{1}{2\pi} \int_{-\pi}^{\pi} f'(t)e^{-ikt}dt = \frac{1}{2\pi} \left(\underbrace{f(t)e^{-ikt}\Big|_{-\pi}^{\pi}}_{0} + \int_{-\pi}^{\pi} f(t) \cdot ike^{-ikt}dt\right) = ikc_k(f)$$

M3137y2019

²⁷Промежуток с любым видом скобки, а не скалярное произведение.

Итоговый конспект стр. 61 из 67

Следствие 1.12.

1. $f \in \widetilde{C}^{(r)}[-\pi,\pi]$. Тогда $|a_k(f)|, |b_k(f)|, |c_k(f)| \leq \frac{\mathrm{const}}{|k|^r}$.

2.
$$f \in \widetilde{C}^{(r)}[-\pi,\pi], f^{(r)} \in \mathrm{Lip}_m \alpha, 0 < \alpha \leq 1$$
. Тогда $|a_k(f)|, |b_k(f)|, |2c_k(f)| \leq \frac{M\pi^\alpha}{|k|^{r+\alpha}}$.

Доказательство. Очевидно из наблюдения выше.

2.47 Принцип локализации Римана

- $f, g \in L^1[-\pi, \pi]$
- $x_0 \in \mathbb{R}$
- $\delta > 0$
- $\forall x \in (x_0 \delta, x_0 + \delta) \ f(x) = g(x)^{28}$

Тогда ряды Фурье f и g ведут себя одинаково в точке x_0 :

$$S_n(f, x_0) - S_n(g, x_0) \xrightarrow{n \to +\infty} 0$$

Переформулировка:

- $\bullet \ h:=f-g, h\in L^1[-\pi,\pi]$
- $h \equiv 0$ на $(x_0 \delta, x_0 + \delta)$

Тогда $S_n(h,x_0) \to 0$

Доказательство переформулировки.

$$S_n(h, x_0) = \frac{1}{2\pi} \int_{-\pi}^{\pi} h(x_0 + t) \left(\operatorname{ctg} \frac{t}{2} \sin nt + \cos nt \right) = b_n(h_1) + a_n(h_2)$$

, где:

$$h_1(t) = \frac{1}{2}h(x_0 + t) \cdot \operatorname{ctg} \frac{t}{2} \quad h_2(t) = \frac{1}{2}h(x_0 + t)$$

Так можно сказать, если $h_1, h_2 \in L^1[-\pi, \pi].$

- Для h_2 это очевидно.
- Для h_1 : $h_1 \equiv 0$ при $t \in (-\delta, \delta)$, поэтому:

$$|h_1(t)| \le |h(x_0+t)| \cdot \frac{1}{2} \cdot \operatorname{ctg} \frac{\delta}{2} \in L^1$$

Тогда $b_n(h_1) o 0, a_n(h_2) o 0$ по теореме Римана-Лебега.

 $^{^{28}}$ С оговоркой, что либо почти везде, либо существуют такие представители данного класса эквивалентности.

Итоговый конспект стр. 62 из 67

2.48 ! Признак Дини. Следствия

- $f \in L^1[-\pi, \pi]$
- $x_0 \in \mathbb{R}$
- $S \in \mathbb{R}$ или \mathbb{C}

$$\int_0^\pi \frac{|f(x_0+t) - 2s + f(x_0-t)|}{t} dt < +\infty \tag{56}$$

Тогда ряд Фурье f сходится к S в точке x_0 , т.е. $S_n(f,x_0) \to S$.

Доказательство. Пусть $\varphi(t) = f(x_0 + t) - 2s + f(x_0 - t)$.

$$S_n(f, x_0) - S \stackrel{(57)}{=} \int_{-\pi}^{\pi} (f(x_0 + t) - S) D_n(t) dt = \int_0^{\pi} + \int_{-\pi}^0 \dots =$$

$$= \int_0^{\pi} \varphi(t) D_n(t) = \frac{1}{\pi} \int_0^{\pi} \frac{1}{2} \varphi(t) \cdot \left(\operatorname{ctg} \frac{t}{2} \sin nt + \cos nt \right) = b_n(h_1) + a_n(h_2)$$

, где

$$h_1 = \begin{cases} 0, & t \in [-\pi, 0] \\ \frac{1}{2}\varphi(t) \operatorname{ctg} \frac{t}{2}, & t \in [0, \pi] \end{cases} \quad h_2 = \begin{cases} 0, & t \in [-\pi, 0] \\ \frac{1}{2}\varphi(t), & t \in [0, \pi] \end{cases}$$

Искомое следует из теоремы Римана-Лебега, если h_1 и $h_2 \in L^1[-\pi,\pi]$

- Для h_2 это очевидно.
- Для *h*₁: по формуле (56):

$$\operatorname{ctg} \frac{t}{2} = \frac{1}{\operatorname{tg} \frac{t}{2}} < \frac{1}{\frac{t}{2}} = \frac{2}{t}$$

при $\frac{t}{2} \in \left[0, \frac{\pi}{2}\right]$

$$\int_{-\pi}^{\pi} |h_1| = \int_{0}^{\pi} |h_1| = \frac{1}{2} \int_{0}^{\pi} |\varphi(t)| \cdot \operatorname{ctg} \frac{t}{2} < \int_{0}^{\pi} \frac{|\varphi(t)|}{t} \overset{(58)}{<} + \infty$$

Следствие 1.13.

- $f \in L^1$
- $x_0 \in [-\pi, \pi]$
- (57): т.к. $\int_{-\pi}^{\pi} D_n = 1$ (58): по условию дини

Итоговый конспект стр. 63 из 67

• Существуют четыре конечных предела: $f(x_0+0), f(x_0-0), \alpha_{\pm} := \lim_{t \to \pm 0} \frac{f(x_0+t)-f(x_0\pm 0)}{t}$

Тогда ряд Фурье в точке x_0 сходится к $S = \frac{1}{2}(f(x_0+0) + f(x_0-0))$

Доказательство.

$$\frac{\varphi(t)}{t} = \frac{f(x_0 + t) - f(x_0 + 0) + f(x_0 - t) - f(x_0 - 0)}{t} \xrightarrow[t \to +0]{} \alpha_+ - \alpha_-$$

, т.е. $\frac{\varphi(t)}{t}$ — ограничена вблизи 0 на $[0,\pi] \implies$ по замечанию 1, интеграл (56) сходится. \qed

Следствие 1.14.

- $f \in L^1[-\pi, \pi]$
- f непрерывно в точке x_0 .
- \exists конечные односторонние производные в точке x_0

Тогда $S_n(f,x_0) \to f(x_0)$.

Доказательство. Следует из следствия 1.

2.49 Корректность определения свертки

$$g(x,t) := f(x-t) \cdot k(t)$$

1. Проверим, что $\varphi(x,y):=f(x-t)$ измерима как функция $\mathbb{R}^2 \to \overline{\mathbb{R}}$. Если это так, то g тоже измерима как произведение измеримых.

Обозначим $\forall a \in \mathbb{R} \ E_a := \mathbb{R}(f(x) < a), v(x,t) = \langle x-t,t \rangle$. Тогда $V(\mathbb{R}^2(\varphi < a)) = E_a \times \mathbb{R}$ измеримо в \mathbb{R}^2 , т.к. это декартово произведение измеримых множеств. Следовательно $\mathbb{R}^2(\varphi < a)$ тоже измеримо в \mathbb{R}^2 .

2. Лежит ли $g \in L^1([-\pi, \pi] \times [-\pi, \pi])$?

$$\iint_{[-\pi,\pi]^2} |g(x,t)| = \int_{-\pi}^{\pi} dt |k(t)| \int_{-\pi}^{\pi} |f(x-t)| dx = ||f||_1 \cdot ||k||_1 < +\infty$$

Тогда по теореме Фубини для интеграла:

$$\int_{-\pi}^{\pi} dx \int_{-\pi}^{\pi} f(x-t)k(t)dt$$

— при почти всех $x\in[-\pi,\pi]$ этот интеграл сходится и задает по x функцию из $L^1[-\pi,\pi]$, т.е. f*k определен при почти всех x, и при этом $\in L^1[-\pi,\pi]$

Итоговый конспект стр. 64 из 67

2.50 Свойства свертки

Свойства.

1.
$$f * K = K * f$$

Доказательство. Очевидно после замены t на -t под интегралом.

2.
$$c_k(f * K) = 2\pi c_k(f) \cdot c_k(K)$$

Доказательство.

$$2\pi c_k(f * K) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} f(x - t)K(t) \cdot e^{-inx} dt dx =$$

$$= \int_{-\pi}^{\pi} K(t)e^{-int} \int_{-\pi}^{\pi} f(x - t)e^{-in(x - t)} dx dt = 2\pi c_n(f) \cdot 2\pi c_n(K)$$

3. • $f \in L^p[-\pi, \pi]$

•
$$K \in L^q[-\pi,\pi]$$

•
$$\frac{1}{p} + \frac{1}{q} = 1$$
 $1 \le p \le +\infty$

Тогда f*K — непрерывная функция и $\|f*K\|_{\infty} \leq \|K\|_q \cdot \|f\|_p$

Доказательство. Неравенство очевидно, т.к. это неравенство Гёльдера:

$$\left| \int_{-\pi}^{\pi} f(x-t)K(t) dt \right| \le \int_{-\pi}^{\pi} |f(x-t)| \cdot |K(t)| dt \le$$

$$\le \left(\int_{-\pi}^{\pi} |f(x-t)|^p \right)^{\frac{1}{p}} \cdot \left(\int_{-\pi}^{\pi} |K(t)|^q \right)^{\frac{1}{q}} = \|f\|_p \cdot \|K\|_q$$

Если p или $q=+\infty$, то это неравенство надо модифицировать.

Непрерывность:

$$|f*K(x+h)-f*K(x)| = \left|\int_{-\pi}^{\pi} \left(f(x+h-t)-f(x-t)\right)K(t)\,dt\right| \leq \|K\|_q \cdot \underbrace{\|f_h(x)-f(x)\|_p}_{\rightarrow 0 \text{ for to the first }}$$

Это всё верно, если $p<+\infty$. Если же $p=+\infty$, то поменяем местами f и K.

4. •
$$1$$

•
$$f \in L^p[-\pi,\pi]$$

•
$$K \in L^1[-\pi, \pi]$$

Тогда $f*K \in L^p[-\pi,\pi]$ и $\|f*K\|_p \leq \|K\|_1 \cdot \|f\|_p$

Итоговый конспект стр. 65 из 67

2.51 Теорема о свойствах аппроксимативной единицы

• K_h — аппроксимативная единица

Тогда:

1.
$$f \in \widetilde{C}[-\pi, \pi] \Rightarrow f * K_h \xrightarrow[h \to h_0]{[-\pi, \pi]} f$$

2.
$$f \in L^1[-\pi, \pi] \Rightarrow ||f * K_h - f||_1 \xrightarrow{h \to +\infty} 0$$

3. K — усиленная аппроксимативная единица, $f\in L^1[-\pi,\pi], f$ непрерывно в x . Тогда $f*K_h$ непрерывно в x и $f*K_h(x) \xrightarrow{h\to h_0} f(x)$

Доказательство.

$$f * K_h(x) - f(x) = \int_{-\pi}^{\pi} (f(x-t) - f(x)) K_h(t) dt$$

1. $\sphericalangle \varepsilon > 0, f$ — равномерно непрерывна, т.к. $[-\pi, \pi]$ — компакт.

$$\exists \delta > 0 \ \forall t : |t| < \delta \ \forall x \ |f(x-t) - f(x)| < \frac{\varepsilon}{2M}$$

M взято из аксиомы 2.

$$|f * K_h(x) - f(x)| \le \int_{-\pi}^{\pi} |f(x - t) - f(x)| |K_h(t)| dt = \int_{-\delta}^{\delta} + \int_{E_{\delta}} = I_1 + I_2 < \varepsilon?$$

$$I_1 \le \frac{\varepsilon}{2M} \cdot \int_{-\delta}^{\delta} |K_h| \le \frac{\varepsilon}{2M} \int_{-\pi}^{\pi} |K_h| \le \frac{\varepsilon}{2}$$

$$I_2 \le 2 \cdot ||f||_{\infty} \cdot \int_{E_{\delta}} |K_h| \xrightarrow{h \to h_0}_{\text{akc. 3}} 0$$

Тогда $\exists V(h_0) \ \forall h \in V(h_0) \ I_2 \leq \frac{\varepsilon}{2}.$

3. $f \in L^1$, $K_h \in L^\infty \Rightarrow f * K_h$ — непрерывна (в том числе и в x). Для данного x проверим утверждение $\varepsilon > 0$; $I_1 + I_2 < \varepsilon$; $\exists V(h_0) \ \forall h \in V(h_0)$ f непрерывна в x:

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall t : |t| < \delta \ |f(x-t) - f(x)| < \frac{\varepsilon}{2M}$$

Как в пункте 1:

$$I_1 \le \frac{\varepsilon}{2}$$

$$I_2 \le \int_{E_\delta} |f(x-t)| \cdot |K_h(t)| dt + |f(x)| \int_{E_\delta} |K_h(t)| dt$$

Итоговый конспект стр. 66 из 67

$$\leq \operatorname{ess \, sup}_{E_{\delta}} |K_h| \cdot (\|f\|_1 + 2\pi |f(x)|) \xrightarrow[h \to h_0]{\operatorname{arc. 3'}} 0$$

Тогда $\exists V(h_0) \ \forall h \in V(h_0) \ I_2 \leq \frac{\varepsilon}{2}$.

2.

$$||f * K_h - f||_1 = \int_{-\pi}^{\pi} \left| \int_{-\pi}^{\pi} (f(x - t) - f(x)) K_h dt \right| dx \le$$

$$\le \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |f(x - t) - f(x)| \cdot |K_h(t)| dx dt =$$

$$= ||K_h||_1 \cdot \int_{-\pi}^{\pi} g(-t) \frac{|K_h(t)|}{||K_h||_1} dt$$

, где $g(t) = \int_{-\pi}^{\pi} |f(x+t) - f(x)|$ — непрерывна (по теореме о непрерывности сдвига)

$$\stackrel{\text{def}}{=} \|K_h\|_1 \underbrace{\left(g * \frac{|K_h|}{\|K_h\|}\right)(0)}_{\to g(0) = 0 \text{ no n.1}}$$

2.52 Теорема о перманентности метода средних арифметических

$$\sum a_n = S \Rightarrow \sum a_n \xrightarrow{\text{сред. арифм.}} S$$

Доказательство теоремы.

$$|\sigma_n - S| = \left| \frac{1}{n+1} \sum_{k=0}^n (S_k - S) \right| \le \frac{1}{n+1} \sum_{k=0}^n |S_k - S| = \underbrace{\frac{\sum_{k=0}^{N_1} |S_k - S|}{n+1}}_{n \to +\infty} + \underbrace{\frac{\sum_{k=N_1+1}^n |S_k - S|}{n+1}}_{<\frac{\varepsilon}{2}}$$

2.53 Теорема Фейера

1.
$$f \in \widetilde{C}[-\pi,\pi]$$
. Тогда $\sigma_n(f) \stackrel{[-\pi,\pi]}{\Longrightarrow} f$

2.
$$f \in L^p[-\pi,\pi], 1 \leq p \leq +\infty$$
. Тогда $\|\sigma_n(f) - f\|_\infty \to 0$

3.
$$f \in L^1, f$$
 непрерывно в x . Тогда $\sigma_n(f,x) \xrightarrow{n \to +\infty} f(x)$

Итоговый конспект стр. 67 из 67

- 2.54 Следствия из теоремы Фейера
- 2.55 Теорема об интегрировании ряда Фурье
- 2.56 Лемма о слабой сходимости сумм Фурье