## **Vertex of the Quadratic**

Given a quadratic  $r(d) = a d^2 + b d + c$  compute its value at  $d_1 = -\frac{b}{2a}$  namely  $r(d_1) = c - \frac{b^2}{4a}$ 

Now compute the same quadratic at  $\mathsf{d}_{1^+}\mathsf{h}$ , namely  $r\,(\,d_1\!+\!h\,)\,=\!-\,\frac{{_b}^2}{4\,a}\,+\,a\,\,h^2\,+\,c$ 

Compute  $\triangle = r(d_1+h) - r(d_1) = a h^2$ Since  $h^2 > 0$ , therefore if a > 0 then  $\triangle > 0$  or vertex is the

global minimum! Example 1.



However if a < 0 then riangle < 0 or vertex is the global maximum!

-500

