Mathematical Finance Exercise Sheet 10

Please hand in until Wednesday, November 26th, 12:00 in your assistant's box in HG G 52.1

Exercise 10-1

Consider a financial market model with $\mathbb{P}_{\sigma} \neq \emptyset$.

a) Fix $Q \in \mathbb{P}_{\sigma}$ and let

$$\mathcal{Z}_t := \left\{ \text{RCLL martingale } Z : Z = \frac{dR}{dQ} \Big|_{\mathbb{F}} \text{ for some } R \in \mathbb{P}_{\sigma} \text{ with } R = Q \text{ on } \mathcal{F}_t \right\}.$$

Prove that if $Z^1, Z^2 \in \mathcal{Z}_t$ and $A \in \mathcal{F}_t$, then $Z := Z^1 1_A + Z^2 1_{A^c} \in \mathcal{Z}_t$.

- **b)** Prove, using only the definition of π_s , that $\rho := -\pi_s : L^{\infty} \to \mathbb{R}$ is a coherent risk measure. That is, for all $H, H' \in L^{\infty}$,
 - i) $\pi_s(H) \leq \pi_s(H')$ if $H \leq H'$ P-a.s. (monotonicity),
 - ii) $\pi_s(H+c) = \pi_s(H) + c$ for all $c \in \mathbb{R}$ (cash invariance),
 - iii) $\pi_s(\lambda H) = \lambda \pi_s(H)$ for all $\lambda \geq 0$ (positive homogeneity),
 - iv) $\pi_s(H+H') \leq \pi_s(H) + \pi_s(H')$ (subadditivity).
- c) Let $H \in L^0_+(\mathcal{F}_T)$. Show that the following are equivalent:
 - (i) $H = c + G_T(\vartheta)$ for some $c \in \mathbb{R}$ and $\vartheta \in \Theta_{adm}$ such that $G(\vartheta)$ is a martingale under some $Q^* \in \mathbb{P}_{\sigma}$, i.e., H is attainable.
 - (ii) $E_{Q^*}[H] = \sup_{Q \in \mathbb{P}_{\sigma}} E_Q[H] < \infty$ for some $Q^* \in \mathbb{P}_{\sigma}$.

Exercise 10-2

Consider the one-period trinomial model. This means T=1, a constant bank account B=1, and price process $(S_t)_{t\in\{0,1\}}$ has a constant $S_0>0$ and $S_1=S_0Z$ with Z taking three possible values 1+u>1+m>1+d under a given measure P. Moreover, assume $\Omega=\{\omega_u,\omega_m,\omega_d\}$, where $\omega_u=\{S_1=S_0(1+u)\},\ \omega_m=\{S_1=S_0(1+m)\}$ and $\omega_d=\{S_1=S_0(1+d)\}$. Furthermore, let $\mathcal{F}_0=\{\emptyset,\Omega\}$ and $\mathcal{F}_1=\sigma(S_1)$. For a probability measure Q, write $q_i=Q[\{\omega_i\}], i=u,m,d$. Assume that $P[\{\omega\}]>0$ for all $\omega\in\Omega$.

- a) For which u > m > d is there arbitrage? In the case where (NA) holds true, characterize all equivalent local martingale measures in terms of q_u , q_m , q_d .
- b) Let $H = (S_1 K)^+$ be a call option with strike K > 0 satisfying $S_0(1+m) > K > S_0(1+d)$ and $S_0 \neq K$. Show that H is not attainable.
- c) From now on, assume that u > 0 > d. Let $H = (S_1 K)^+$ be a call option with strike K > 0. Compute its superreplication price $\pi_s(H)$. Moreover, prove that there exists a martingale measure Q_a absolutely continuous with respect to P such that $\pi_s(H) = E^{Q_a}[H]$.
- d) Now consider any finite discrete-time market with \mathcal{F}_0 being trivial. Prove or disprove:
 - i) (S, \mathbb{F}) is complete implies that $\#(\mathbb{P}_e) \leq 1$.
 - ii) $\#(\mathbb{P}_e) \leq 1$ implies that (S, \mathbb{F}) is complete.

Exercise 10-3

Let (Ω, \mathcal{F}, P) be a probability space supporting a Poisson process $N = (N_t)_{t \in [0,T]}$ with rate $\lambda > 0$. Denote by $(\mathcal{F}_t^N)_{t \in [0,T]}$ the natural (completed) filtration of N. Define the process $S = (S_t)_{t \in [0,T]}$ by $dS_t = S_{t-}(\mu dt + \frac{\sigma}{\sqrt{\lambda}} d\widetilde{N}_t)$, $S_0 = s_0 > 0$, where $\mu \in \mathbb{R}$, $\sigma > 0$ and $\widetilde{N}_t = N_t - \lambda t$, $t \geq 0$, denotes the compensated Poisson process.

a) Show that S satisfies NFLVR if and only if $\mu < \sigma \sqrt{\lambda}$, and find an equivalent martingale measure Q^{λ} for S in that case.

Hint: Use Exercises 8-2 and 9-3.

Assume for the rest of the question that S satisfies NFLVR. Moreover, use without proof that the equivalent martingale measure Q^{λ} from part (a) is unique. For $\rho > 0$ denote by $\overline{\Psi}_{\rho}$ the tail distribution function of a Poisson random variable with parameter ρ , i.e., $\overline{\Psi}_{\rho}(x) := P[X_{\rho} > x]$, where X_{ρ} has a Poisson distribution with parameter ρ .

b) Show that the risk-neutral price of a cash-or-nothing call option with payoff $H = 1_{\{S_T > K\}}$ with maturity T and strike K > 0 is given by

$$\overline{\Psi}_{\left(\lambda - \frac{\mu}{\sigma}\sqrt{\lambda}\right)T} \left(\frac{\log \frac{K}{S_0} + \left(\sigma\sqrt{\lambda} - \mu\right)T}{\log\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right)} \right).$$

Hint: Use that for a Lévy process R with triplet (a, σ^2, ν) , the stochastic exponential of R is given by

 $\mathcal{E}(R)_t := \exp\left(R_t - \frac{1}{2}\sigma^2 t\right) \prod_{0 < s < t} (1 + \Delta R_s) \exp(-\Delta R_s).$

•

c) Show that the risk-neutral price of a stock-or-nothing call option with payoff $H = S_T 1_{\{S_T > K\}}$ with maturity T and strike K > 0 is given by

$$S_0 \overline{\Psi}_{\left(1 + \frac{\sigma}{\sqrt{\lambda}}\right) \left(\lambda - \frac{\mu}{\sigma} \sqrt{\lambda}\right) T} \left(\frac{\log \frac{K}{S_0} + \left(\sigma \sqrt{\lambda} - \mu\right) T}{\log \left(1 + \frac{\sigma}{\sqrt{\lambda}}\right)} \right).$$

Hint: Define the measure $\widetilde{Q}^{\lambda} \approx Q^{\lambda}$ on \mathcal{F}_T by $\frac{d\widetilde{Q}^{\lambda}}{dQ^{\lambda}} := S_T/S_0$, and work under this measure.

d) Derive the risk-neutral price C_0^{λ} of a call option with payoff $H = (S_T - K)^+$ with maturity T and strike K. Moreover, show that

$$\lim_{\lambda \to \infty} C_0^{\lambda} = S_0 \Phi \left(\frac{\log \frac{S_0}{K} + \frac{\sigma^2}{2} T}{\sigma \sqrt{T}} \right) - K \Phi \left(\frac{\log \frac{S_0}{K} - \frac{\sigma^2}{2} T}{\sigma \sqrt{T}} \right), \tag{1}$$

where Φ denotes the distribution function of a standard normal random variable. This means that for large λ , the arbitrage-free price in the Poisson model is very close to the Black–Scholes price with the same parameter σ .

Hint: Use that if X_{ρ} has a Poisson distribution with parameter ρ , then $\frac{X_{\rho}-\rho}{\sqrt{\rho}}$ converges weakly to a standard normal random variable for $\rho \to \infty$. Moreover, use the fact that if $(F_n)_{n \in \mathbb{N}}$ is a sequence of distribution functions converging *pointwise* to a *continuous* distribution function F, then the convergence is also *uniform*.