Автоматическая настройка параметров BigARTM под широкий класс задач

Гришанов А. В.

Московский физико-технический институт Факультет управления и прикладной математики Кафедра «Интеллектуальные системы»

Задачу поставил д.ф.-м.н., К. В. Воронцов Консультант Виктор Булатов

> Москва, 2019 г.

Цель работы

Проблема

Настройка параметров BigARTM требует работы аналитика (эксперта). Требуется автоматизировать этот процесс.

Цель работы

Проверить гипотезу о существовании конфигураций, хорошо работающих на широком классе задач.

Метод решения

Предлагается использовать относительные коэффициенты регуляризации и автоматический подбор n-граммм.

Относительные коэффициенты регуляризации

Обозначения

- ullet $d \in D$ текстовые документы
- $w \in W$ слова
- t ∈ T темы

Распределение термов в документах

$$p(w|d) = \sum_{t \in T} p(w|t)p(t|d) = \sum_{t \in T} \varphi_{wt}\theta_{td}.$$
 (1)

Задача тематического моделирования

Ставится задача разложения матрицы F в произведение двух матриц Φ и Θ меньшего размера

Поставленная задача ($F \approx \Phi\Theta$) эквивалентна поиску матриц Φ и Θ , максимизирующих следующий функционал:

Задача

$$L(\Phi,\Theta) = \sum_{d \in D} \sum_{w \in d} n_{dw} \sum_{t \in T} \phi_{wt} \theta_{td} \to \max_{\Phi,\Theta}$$
 (2)

Постановка задачи ARTM

Разложение матрицы F в произведение матриц Φ и Θ не единственно. В частности, для любой невырожденной матрицы S размера $T \times T$ верно, что $F = (\Phi S)(S^{-1}\Theta)$.

Аддитивная регуляризация

Тематическая модель аддитивной регуляризации (additive regularization of topic models, ARTM) получается при наложении на модель дополнительных требований (регуляризаторов).

$$L(\Phi,\Theta) + \sum_{i=1}^{n} \tau_{i} R_{i}(\Phi,\Theta) \to \max_{\Phi,\Theta}$$
 (3)

Решение

- Рассмотрим набор датасетов $\{\mathfrak{D}_{\rm ex},\mathfrak{D}_{\it in}\}$, где $\mathfrak{D}_{\rm ex}$ имеют внешний критерий качества, а $\mathfrak{D}_{\it in}$ только внутренние.
- Необходимо проверить гипотезу о том, что существуют общие коэффициенты регуляризации $au_{general}$, для которых метрики качества отличаются от лучших на том же датасете не более чем на 5%.
- Для каждого из первых найдём лучшие параметры, затем будем искать общие.
- В конце проверим выполнение гипотезы на всех данных.

Критерий — построить модель, которая не хуже чем PLSA и $_{
m ЛУЧШ}{e}$ PLSA по нескольким критериям.

Результаты эксперимента

20news groups
 Best f1_score: 0.9155
 General params f1 score: 0.9148

Victorian Era Best f1_score: 0.9777 General params f1 score: 0.9777

Toxic comments Best f1_score: 0.9539 General params f1_score: 0.9582