GR31

Manuel Pérez Vélez, Julia Sánchez Márquez

WEKA

The workbench for machine learning

¿Qué es?

Es un **software** desarrollado por la Universidad de Waikato, en Nueva Zelanda, que se utiliza para realizar **minería de datos** y **aprendizaje automático**.

Está diseñado para facilitar el análisis de datos y la construcción de modelos predictivos de forma **sencilla**, incluso para personas que no son expertas en programación

Su nombre proviene de **Waikato Environment for Knowledge Analysis**

¿Qué ofrece?

Una interfaz gráfica que permite aplicar algoritmos de machine learning directamente a conjuntos de datos, sin necesidad de escribir código.

También incluye herramientas para preprocesamiento de datos, selección de atributos, visualización, y evaluación de modelos.

Por ser **de código abierto** y **gratuito**, es muy popular en ambientes académicos, investigaciones y proyectos de ciencia de datos

¿Qué archivos soporta?

- > ARFF (.arff)
- Es el formato nativo de Weka (Attribute-Relation File Format).
- Es un archivo de texto que contiene:
 - OUna sección para **definir los atributos** (nombre y tipo de dato).
 - OY otra sección para listar los datos

Es el ideal para que Weka entienda claramente los datos y los tipos

```
@relation filtrado-weka.filters.unsupervised.instance.RemoveWithValues-S0.0-C24-L2
@attribute Marital status numeric
@attribute Application_mode numeric
@attribute Application order numeric
@attribute Course numeric
@attribute Daytime/evening_attendance numeric
@attribute Previous_qualification numeric
@attribute Previous qualification (grade) numeric
@attribute Nacionality numeric
@attribute Mother s qualification numeric
@attribute Father s qualification numeric
@attribute Mother s occupation numeric
@attribute Father s occupation numeric
@attribute Admission grade numeric
@attribute Displaced numeric
@attribute Educational special needs numeric
@attribute Debtor numeric
@attribute Gender numeric
@attribute Scholarship holder numeric
@attribute Age at enrollment numeric
@attribute International numeric
@attribute Unemployment rate numeric
@attribute Inflation rate numeric
@attribute GDP numeric
@attribute TARGET {Dropout, Graduate}
1,17,5,171,1,1,122,1,19,12,5,9,127.3,1,0,0,1,0,20,0,10.8,1.4,1.74,Dropout
1,15,1,9254,1,1,160,1,1,3,3,3,142.5,1,0,0,1,0,19,0,13.9,-0.3,0.79,Graduate
1,1,5,9070,1,1,122,1,37,37,9,9,124.8,1,0,0,1,0,19,0,10.8,1.4,1.74,Dropout
1,17,2,9773,1,1,122,1,38,37,5,3,119.6,1,0,0,0,0,20,0,9.4,-0.8,-3.12,Graduate
```

WFKA

> ARFF (.arff)

@relation filtrado-weka.filters.unsupervised.instance.RemoveWithValues-S0.0-C24-L2 bute-@attribute Marital status numeric @attribute Application mode numeric @attribute Application order numeric @attribute Course numeric @attribute Daytime/evening attendance numeric ributos @attribute Previous qualification numeric @attribute Previous qualification (grade) numeric @attribute Nacionality numeric @attribute Mother s qualification numeric @attribute Father s qualification numeric itos @attribute Mother s occupation numeric @attribute Father s occupation numeric @attribute Admission grade numeric y los tipos @attribute Displaced numeric @attribute Educational special needs numeric @attribute Debtor numeric @attribute Gender numeric @attribute Scholarship holder numeric @attribute Age at enrollment numeric @attribute International numeric @attribute Unemployment rate numeric @attribute Inflation rate numeric @attribute GDP numeric @attribute TARGET {Dropout,Graduate} @data 1,17,5,171,1,1,122,1,19,12,5,9,127.3,1,0,0,1,0,20,0,10.8,1.4,1.74,Dropout 1,15,1,9254,1,1,160,1,1,3,3,3,142.5,1,0,0,1,0,19,0,13.9,-0.3,0.79,Graduate 1,1,5,9070,1,1,122,1,37,37,9,9,124.8,1,0,0,1,0,19,0,10.8,1.4,1.74,Dropout 1,17,2,9773,1,1,122,1,38,37,5,3,119.6,1,0,0,0,0,20,0,9.4,-0.8,-3.12,Graduate

¿Qué archivos soporta?

- > CSV (.csv)
- Comma-Separated Values: los datos están separados por comas o puntos y comas.
- No tiene una sección especial para definir tipos de datos, pero Weka puede adivinarlos automáticamente o tú puedes especificarlo al importar.

Muy usado porque es fácil de exportar desde Excel

Marital status; Application mode; Application order; Course; "Daytime/evening attendance"; Previous qualification; Previous qu

¿Qué formato hemos usado?

@ATTRIBUTE TARGET {Dropout,Enrolled,Graduate}

```
@ATTRIBUTE Curricular_units_2nd_sem_(approved) NUMERIC
@ATTRIBUTE Curricular_units_2nd_sem_(grade) NUMERIC
@ATTRIBUTE Curricular_units_2nd_sem_(without_evaluations) NUMERIC
```

```
def infer arff type(series):
    """Determina si una columna es numérica o de texto."""
    if pd.api.types.is numeric dtype(series):
        return 'NUMERIC'
    else:
        return 'STRING'
def generate arff(df_input, output_path, relation_name):
    arff lines = []
    arff_lines.append(f"@RELATION {relation_name}\n")
    # 1) Definición de atributos
    for col in df input.columns:
        if col.upper() == 'TARGET':
            unique_values = sorted(df_input[col].dropna().unique())
            # Los valores no llevan comillas
            values_str = ",".join(str(v) for v in unique_values)
            arff_lines.append(f"@ATTRIBUTE TARGET {{{values_str}}}")
        else:
            col name = sanitize attribute name(col)
            arff type = infer arff type(df input[col])
            arff_lines.append(f"@ATTRIBUTE {col_name} {arff_type}")
    arff_lines.append("") # linea en blanco antes de @DATA
    arff lines.append("@DATA")
```

Principales tareas

- > Clasificación (predecir categorías).
- > Regresión (predecir valores numéricos).
- > Agrupamiento (clustering).
- > Reducción de características (selección y extracción de atributos).
- > Minería de reglas de asociación (descubrir relaciones entre variables).

En nuestro caso de la que más hemos hecho uso es de la clasificación

Algoritmos que tiene implementados

En nuestro caso solo nos centraremos en los algoritmos de **clasificación**

Estos sirven para predecir una categoría o clase.

- Árboles de decisión:
 - •J48
 - •Random Tree
 - •Random Forest (muchos árboles juntos)
- > Redes bayesianas:
 - Naive Bayes
 - BayesNet
- ➤ Máquinas de soporte vectorial (SVM):
 - •SMO (Sequential Minimal Optimization)
- >k-Vecinos más cercanos:
 - •IBk (implementa k-NN)
- > Reglas de decisión:
 - •JRip
 - PART
- > Redes neuronales:
 - Multilayer Perceptron
- >Meta-classifier:
 - LogitBoost (mejores resultados y el usado)

Algoritmo usado en nuestro caso

LogitBoost + REPTree
LogitBoost + DecisionStump

LogitBoost

LogitBoost mejora la precisión de los modelos de predicción a lo largo de las iteraciones.

Cada **modelo** corregirá los errores de los modelos anteriores.

Forman un **clasificador final** que tiene una mayor precisión que cualquier modelo individual.

Algoritmo usado en nuestro caso

LogitBoost + REPTree

LogitBoost + DecisionStump

Es un árbol con una sola decisión. Hace una partición en base a un único atributo con un umbral o valor categórico

Decision Stump

Modelo **extremadamente simple**. Con más atributos útiles, se necesita **menos** "complejidad interna" en cada árbol y **más** "cooperación" entre muchos modelos simples

Por sí solo es poco efectivo para clasificaciones complejas

Algoritmo usado en nuestro caso

LogitBoost + REPTree

LogitBoost + REPTree

REPTree (Reduced Error Pruning Tree) es un algoritmo de árbol de decisión rápido y eficiente que se utiliza tanto para clasificación como para regresión. Se usa mucho en Weka y es conocido por su velocidad y capacidad de generalización.

Incorpora **poda** para evitar el sobreajuste, eliminando ramas que no aportan a la predicción final.

Destaca en tareas pequeñas y directas

Algoritmo usado en nuestro caso

LogitBoost + REPTree

REPTree vs DecisionStump

Archivo_completo_sin_enrolled.arff

8 expertos, cada uno muy inteligente, pero si se equivocan un poco, pueden insistir demasiado en su opinión.

Archivo_completo_sin_enrolled.arff

100 personas con una idea muy **simple**, que poco a poco, corrigen los errores y se van acercando juntas a la mejor solución.

¿Métricas usadas?

¿Qué archivos hemos usado?

Archivo_filtrado_sin_enrolled.arff Archivo_completo_sin_enrolled.arff Archivo_filtrado_con_enrolled.arff Archivo_completo_con_enrolled.arff

@ATTRIBUTES DROP Nacionalidad Internacional NO INFO GAIN ciales **Desempleo** Inflación

¿Qué archivo hemos usado?

Archivo_filtrado_sin _enrolled.arff

Archivo_completo_sin _enrolled.arff

Conjunto entrenamiento

Archivo_filtrado_solo _enrolled.arff

Archivo_completo_so lo_enrolled.arff

Conjunto prueba

Resultados Modelo Final

Archivo Filtrado Sin Enrolled

Archivo Completo Sin Enrolled

REPTree vs DecisionStump

Archivo completo sin enrolled.arff

Algoritmo usado en nuestro caso

LogitBoost + REPTree

Métrica

LogitBoost + REPTree (8 iter.)

LogitBoost +
DecisionStump
(100 iter.)

nuy uivocan un masiado en

Precisión Global

89.31%

90.58%

VICHTAO COMPTECO STH EHITOTIEM GITT

100 personas con una idea muy **simple**, que poco a poco, corrigen los errores y se van acercando juntas a la mejor solución.

REPTree vs DecisionStump

LogitBoost + REPTree (8 iter.)

LogitBoost +
DecisionStump
(100 iter.)

Archivo completo sin enrolled.arff

nuy uivocan un masiado en

usado en nuestro caso

Algoritmo

LogitBoost + REPTree

Métrica

Precisión Global

89.31%

87.1%

90.58%

100 personas con una idea muy **simple**, que poco a poco, corrigen los errores y se van acercando juntas a la mejor solución.

Conjunto de prueba

Archivo_filtrado_solo_enrolled.arff

Conclusiones

Predicciones **muy** cercanas a 1

-	Fredict	ions on te	est set	
	insté	actual	predicted	erro/ prediction
	1	117	3:Graduate	0.903
	2	1:7	3:Graduate	0.73
	3	1:7	1:Dropout	0.511
	4	117	3:Graduate	1
	5	117	3:Graduate	0.99
	6	117	1:Dropout	0.694
	7	117	3:Graduate	0.929
	8.7	117	1:Dropout	0.691
	. 9	1:7	3:Graduate	0.629
	10	1:7	3:Graduate	0.938
	- 11	2:7	3:Graduate	0.012
	12	117	1:Dropout	0.€25
	13	117	3:Graduate	0.913
	14	117	3:Graduate	0.708
	15	117	1:Deopout	0.965
	16	117	1:Dropout	0.998
	17	1:7		0.909
	18	117	1:Dropout	0.994
	19	117		0.640
	20	117	1:Dropout	1
	21	117	liBropout	0.62
	22	217		0.93
	23		1:Dropout	0.919
	24	117		0.995
	25	117		0.993
	26	117		0.996
	27	117	3:Graduate	0.986
	28	117	Which had been strong	0.938
	29	10000	3:Graduate	0,994
	30	117		0.769
	31	1:7		0.977
	32		3:Graduate	0.808
	33	117	1:Dropous	0.972
	34	117		0.857
	35		3:Graduate	0.867
	36		3:Graduate	0.941
	37	117		0.638
	35		3:Graduate	0.599
	29	117	3:Graduate	0.991
	40	117	3:Graduate	0.999

Conclusiones

Perfiles Estudiantiles

Buenas notas de admisión
Padres con mayor nivel de
cualificación
Edad ingreso en rangos moderados
Becarios
No desplazamiento
No necesidades especiales

Deudas

Entornos socioeconómicos desfavorecidos Mayores al ingresar

No reciben becas

Historial académico débil

Técnicas de prevención

Conclusiones

