Part 1

Behavior Description

The program reads and an 8 bit unsigned value input from port 0x9A. It then divides it by 3, and then outputs the quotient to port 0x42 and the remainder to port 0x43.

Flow Chart

Figure 1: Software flowchart for RAT MCU

Verification

Table 1 shows 7 test cases that can prove the proper operation of the code. The test cases covers an input that is divided by 3 including upper limit 0xFF and lower limit 0x00

Value	Output	Remainder	Explanation	
0x00	0x00	0x00	Lower edge case	
0x03	0x01	0x00	Divided by itself	
0x05	0x01	0x02	Divided by a value that will give a remainder	
0x09	0x03	0x00	Divided by a value that will not give a remainder	
0x11	0x05	0x02	Divided by a value that will give a remainder	
0x12	0x06	0x00	Divided by a value that will not give a remainder	
0xFF	0x55	0x00	Higher edge case	

Table 1: Test Cases

Assembly Source Code

.______

; Software Assignment 4

; Author: Matt Bailey and Luis Gomez

; Date: 02/04/19

; Description : Reads a value in from 0x9A and divides it by 3, and outputs the quotient to

; 0x42 and the remainder to 0x43

._____

.EQU COUNTER = 0x00

.CSEG

.ORG 0x01

start: IN R1, 0x9A

MOV R3, COUNTER

MOV R2, R1

loop: MOV R2, R1

MOV R4, R3

ADD R3, 0x01

SUB R1, 0x03

BRCC loop

OUT R2, 0x43

OUT R4, 0x42

Part 2

Behavior Description

The program reads and an 8 bit unsigned value input from port 0x30. If the input is a multiple of 4, invert all bits, otherwise if input value is is odd, add 17 and divide the result by 2, otherwise subtract 1 from the value. Output the result to port 0x42.

Flow Chart

Figure 2: Software flowchart for RAT MCU

Verification

Table 2 shows 6 test cases that can prove the proper operation of the code. The test cases cover inputs that are divided by each other including upper limit 0xFF and lower limit 0x00

Value #1 Hex	Value #2 Hex	Out Hex	Remainder Hex	Explanation
0x00	0x01	0x00	0x00	Lower Edge Case
0x14	0x05	0x04	0x00	Testing no remainder
0x35	0x06	0x08	0x05	Testing with remainder
0x2A	0x0F	0x02	0x0C	Testing high remainder
0x78	0x05	0x18	0x00	Testing with high quotient
0xFF	0x11	0x0F	0x00	High Edge Case

Table 2: Test Cases

Assembly Source Code

```
_____
; Software Assignment 4
; Author: Matt Bailey and Luis Gomez
; Date: 02/04/19
; Description : Read two 8-bit unsigned values from port_id 0x9A. Divide the first value by the
2nd; and output the quotient (result) to port_id 0x42 and the remainder to port_id 0x43.
_______
.EQU COUNTER = 0x00
.CSEG
.ORG 0x01
start:
      IN R1, 0x9A; first input
      IN R2, 0x9A; second input
      CMP R2, 0x00
      BREQ start
      MOV R3, COUNTER; initializing counter
loop:
      MOV R4, R2; save the incoming first value
      MOV R5, R1; save the incoming second value
      SUB R1, R2; subtract first value from the second
      BREQ zero_output
      BRCS output
      ADD R3, 0x01; add one to the counter
      BRCC loop
zero_output:
      ADD R3, 0x01; add one to the counter
      MOV R5, COUNTER ; clears remainder
output:
      OUT R3, 0x42
      OUT R5, 0x43
```