

East West University Department of Computer Science and Engineering Course Outline of CSE303

Course: CSE303 Statistics for Data Science

Credits and Teaching Scheme

	Theory	Laboratory	Total
Credits	3	1	4
	3 Hours/Week for 14-15		5 Hours/Week for 14-15
Contact	Weeks	2 Hours/Week for	
Hours	+ Final Exam in the 16 th	14-15 Weeks	+ Final Exam in the 16 th
	Week		Week

Prerequisite

STA102 – Statistics and Probability

Instructor Information

Instructor: Md. Israt Rayhan, PhD (DMIR)

Professor, Institute of Statistical Research and Training (ISRT),

Office: University of Dhaka

Tel. No.: Room # TBA E-mail: israt@du.ac.bd

Course Objective

The objective of the course is to introduce the statistical methods, techniques, and tools that are essential for the Data science domain. The course focuses on examining descriptive and inferential statistics and analyzing the output of these methods. The course also focuses on relevant linear algebra methods which are necessary for understanding Data Science. The course also emphasizes techniques for result estimation and anomaly detection. Statistical machine learning methods that "learn" from data will be also introduced such as Linear Regression, Logistic Regression, Support Vector Machine, and so on.

Office Hours

To be announced later

Course Outcomes (COs) with Mappings

After completion of this course students will be able to:

CO1	Apply various techniques of exploratory data analysis and inferential statistics for
	understanding the dataset and analyze the outcomes to explore interesting
	characteristics of the dataset.
CO2	Apply Linear Algebra, Regression, and other statistical methods to determine
	outliers for smoothing and cleaning the dataset as well as to understand the
	correlation among attributes.

- CO3 Apply different statistical learning models for the classification of datasets to solve real-life problems and also analyze and compare their performance.
- CO4 Choose and justify appropriate algorithms and tools for exploratory data analysis; perform and demonstrate skills and write reports to design and implement statistical learning models using real datasets.

Course Topics, Teaching-Learning Method, and Assessment Scheme

Course Topic	Teaching-	CO	Mark	Mark of Cognitive			Assessment
_	Learning		Learning Levels		Mark	(Mark)	
	Method		C3	C4	C5		
Introduction to Data	Lectures	CO1					Midterm
Science and Basic	and						Exam
Statistical Concepts	discussions						(25)
	inside and						
	outside the						
	class						
Exploratory Data	Do						
Analysis							
Different Data	Do						
Distributions and							
Sampling Methods							
Inferential Statistics	Do						
and Hypothesis							
Testing		000					
Linear Algebra	Do	CO2					
Basics, Different							
Matrix and Vector							
Operation	D						
Linear Regression	Do						
and its variants	D.	CO2					
Gradient Descent	Do	CO3					
Algorithm and Weight Update							
Predictive analysis	Do						
with Logistic	Do						
Regression							
Concepts of Bias	Do	ļ		-			Final
and Variance,	100						Exam
Support Vector							(30)
Machine							
Model Validation	Do						
and Evaluation							
Metrics							
Dimensionality	Do						
Reduction using							

Course Topic	Teaching- Learning	СО	Mark of Cognitive Learning Levels			CO Mark	Assessment (Mark)
	Method		C3	C4	C5		
Principal							
Component Analysis							

Laboratory Experiments and Assessment Scheme

Laboratory Experiments and Assessment Scheme								
Experiment	Teaching- Learning Method	СО	Mark of Cognitive Learning Levels		Mark of Psychomotor Learning Levels		CO Mark	
			C3	C4	C6	P2	P3	
Introduction to Python Programming	Lab Experiment and Result Analysis	CO4						
Intermediate Python Programming	Do	CO4						
Pandas for Data Analysis	Do	CO4						
Exploratory Data Analysis and Data Visualization using Pandas	Do	CO4						
Introducing Numpy and Matplotlib Libraries for Data Wrangling and Visualization	Do	CO4						
Intermediate Data Visualization using Matplotlib Libraries	Do	CO4						
Linear Algebra in Numpy	Do	C04						
Linear Regression using Python	Do	CO4						
Logistic Regression and Support Vector Machine using Python								

N	Aini Projects and	l Presentations					
	Item	Teaching-	CO	Mark of	Mark of	Mark of	CO
		Learning		Cognitive	Psychomotor	Affective	Mark
		Method		Learning	Learning	Learning	
				Level	Levels	Level	

			C3	C4	Р3	P4	A2	
Presentations	Group-based, Relevant topics on Regression Analysis	CO4	2	1			2	5
Lab-based Mini Project including Report and Presentation	Group-based moderately complex design project with report writing and oral/poster presentation	CO4	2	3	2	2	1	10

Overall Assessment Scheme					
		C	0	Assessment Area Mark	
Assessment Area	CO1	CO2	CO3	CO4	
Class Test/Quizzes	5	5	5		15
Midterm Exam	10	15			25
Final Exam			30		30
Lab Performance, Lab Assignments				15	15
and Lab Exam					
Presentations, Mini Project			·	15	15
Total Mark	15	20	35	30	100

Teaching Materials/Equipment

Books:

- Probability and Statistics for Engineers and Scientists by Anthony Hayter
- Data Science from Scratch (DSS) by Joel Grus
- Python for Data Analysis (PDA) by Wes McKinney
- Think Stats (TS) by Allen B. Downey.
- Optional: Python Data Science Handbook (PDSH) by Jake VanderPlas

Software/Tools:

- Anaconda Distribution https://www.anaconda.com/products/individual
- Google Colab https://colab.research.google.com/
- Other appropriate tools for data wrangling

Grading System

Marks (%)	Letter Grade	Grade Point	Marks (%)	Letter Grade	Grade Point
97-100	A+	4.00	73-76	C+	2.30
90-96	A	4.00	70-72	С	2.00
87-89	A-	3.70	67-69	C-	1.70
83-86	B+	3.30	63-66	D+	1.30
80-82	В	3.00	60-62	D	1.00
77-79	B-	2.70	Below 60	F	0.00

^{*} Lecture Slides and Lab Manuals will be made available to the students during the class in electronic form

Exam Dates

Mid Term Date: will be announced later.

Final Date: As per the schedule of the university.

Academic Code of Conduct

Academic Integrity:

Any form of cheating (physical/online), plagiarism, personification, falsification of a document as well as any other form of dishonest behavior related to obtaining academic gain or the avoidance of evaluative exercises committed by a student is an academic offence under the Academic Code of Conduct and may lead to severe penalties as decided by the Disciplinary Committee of the university.

Special Instructions:

- Students are expected to attend all classes and examinations. A student MUST have at least 80% class attendance to sit for the final exam.
- Students will not be allowed to enter into the classroom after 10 minutes of the starting time.
- For plagiarism, the grade will automatically become zero for that exam/assignment.
- Normally there will be **NO make-up exam**. However, in case of **severe illness, death of any family member, any family emergency, or any humanitarian ground**, if a student miss any exam, the student MUST get approval of makeup exam by written application to the Chairperson through the Course Instructor **within 48 hours** of the exam time. Proper supporting documents in favor of the reason of missing the exam have to be presented with the application.
- For final exam, there will be NO makeup exam. However, in case of severe illness, death of any family member, any family emergency, or any humanitarian ground, if a student miss the final exam, the student MUST get approval of Incomplete Grade by written application to the Chairperson through the Course Instructor within 48 hours of the final exam time. Proper supporting documents in favor of the reason of missing the final exam have to be presented with the application. It is the responsibility of the student to arrange an Incomplete Exam within the deadline mentioned in the Academic Calendar in consultation with the Course Instructor.
- All mobile phones MUST be turned to silent mode during class and exam period.
- There is zero tolerance for cheating in exam. Students caught with cheat sheets in their possession, whether used or not; writing on the palm of hand, back of calculators, chairs or nearby walls; copying from cheat sheets or other cheat sources; copying from other examinee, etc. would be treated as cheating in the exam hall. The only penalty for cheating is expulsion for several semesters as decided by the Disciplinary Committee of the university.