Dernière mise à jour	SLCI2	Denis DEFAUCHY
07/09/2022	Révisions	TD1 - Sujet

Systèmes Linéaires Continus Invariants

SLCI2 - Révisions

TD1

MCC

Dernière mise à jour	SLCI2	Denis DEFAUCHY
07/09/2022	Révisions	TD1 - Sujet

Exercice 1: Moteur à courant continu

L'objet de cette étude est un moteur à courant continu.

Lorsque l'on impose une tension continue aux bornes de ce moteur, celui-ci accélère jusqu'à une vitesse donnée.

Les équations physiques qui régissent le fonctionnement de ce moteur sont les suivantes :

(1)	$u(t) = e(t) + Ri(t) + L\frac{di(t)}{dt}$	Equations électriques du moteur à
(2)	$e(t) = K_e \omega(t)$	courant continu
(3)	$c_m(t) = K_c i(t)$	
(4)	$c_f(t) = f\omega(t)$	Couple de frottement proportionnel à la vitesse de rotation
(5)	$c_m(t) - c_f(t) - c_r(t) = J \frac{d\omega(t)}{dt}$	Equation issue du principe fondamental de la dynamique

Avec:

- u(t): Tension d'entrée aux bornes du moteur (V)
- e(t): Force contre électromotrice (V)
- i(t): Intensité (A)
- $\omega(t)$: Vitesse de rotation du moteur $(rad. s^{-1})$
- $c_m(t)$: Couple moteur (N.m)
- $c_f(t)$: Couple de frottement (N.m)
- $c_r(t)$: Couple résistant (N.m)
- L: Inductance de la bobine (H)
- f: coefficient de frottement visqueux ($N.m.s.rd^{-1}$)
- J: Inertie équivalente en rotation de l'arbre moteur $(Kg. m^2)$
- R: Résistance électrique du moteur (Ω)
- K_e : Constante de force électromotrice ($V.rad^{-1}.s$)
- K_c : Constante de couple ($N.m.A^{-1}$)

Remarque : En supposant l'absence de pertes dans la transformation de la puissance électromagnétique $(P_{em}=EI=K_e\Omega I)$ /mécanique $(P_m=c_m\Omega=K_cI\Omega)$, on a $P_{em}=P_m$, soit $K_e=K_c$!!!

Dernière mise à jour	SLCI2	Denis DEFAUCHY
07/09/2022	Révisions	TD1 - Sujet

Objectif

L'objectif de cet exercice est d'obtenir le schéma bloc du moteur et d'en déterminer la fonction de transfert.

Schéma bloc et fonction de transfert

On supposera toutes les conditions initiales nulles pour ce TD.

Question 1: Traduire ces équations dans le domaine de Laplace

Question 2: Représenter les équations (1)(2)(3)(4+5) par 4 schémas bloc et mettre en place le schéma bloc du moteur

Question 3: Le moteur à courant continu est-il un système asservi ?

Question 4: Donner l'expression des fonctions de transfert $H_U(p)$ et $H_{C_r}(p)$ telles que $\Omega(p)=H_U(p)U(p)+H_{C_r}(p)C_r(p)$

Question 5: Préciser l'ordre du moteur à courant continu en fonction des coefficients L et J

Oui, pour le même moteur, on peut avoir un modèle différent ! Tout dépend des caractéristiques. Par ailleurs, pour un même modèle (1° ou 2° ordre), les fonctions de transfert peuvent varier. En effet, selon les cas, il est possible de **simplifier les fonctions de transfert du MCC** en calculant les valeurs de K_eK_c , Rf, RJ et Lf afin de simplifier les sommes $K_eK_c + Rf$ ($Rf \ll K_eK_c$?) et RJ + Lf ($Lf \ll RJ$?). Attention, en aucun cas on peut se permettre de dire : $f \ll 1$ donc je fais comme si f = 0!!!!!!!

Question 6: Mettre les fonctions de transfert sous forme canonique en identifiant leurs coefficients caractéristiques

A ce stade, essayez de répondre à la question 8 sans lire ce qui est ci-dessous, c'est ce qui se passe aux concours... Lisez ensuite la question 7 et pensez à faire ce schéma par vous-même après tout théorème de superposition.

Question 7: Compléter le schéma bloc suivant, équivalent au schéma bloc du moteur

On met en entrée une tension constante U_0 et on suppose un couple résistant constant \mathcal{C}_0 :

$$U(t) = U_0 u(t)$$
 ; $C_r(t) = C_0 u(t)$

Question 8: Déterminer l'influence du couple résistant sur la vitesse de rotation finale $\pmb{\omega}_{\infty}$ du moteur

Dernière mise à jour	SLCI2	Denis DEFAUCHY
07/09/2022	Révisions	TD1 - Sujet

Simplification du modèle

On ne s'intéresse plus qu'à la réaction du moteur à une tension d'entrée, soit la fonction H_U . On note, dans le cas général :

Maxpid

те	0,0003
τm	0,391678
α	0,251753
τe/τm	0,000765
ате/тт	0.000193

-
$$au_e = rac{L}{R}$$
 la constante de temps électrique du moteur

-
$$au_m = rac{RJ}{k_e k_c + Rf}$$
 sa constante de temps électromécanique

$$- \alpha = \frac{Rf}{k_c k_c + Rf} < 1$$

Remarque : il arrive que $au_m = \frac{RJ}{k_e k_c}$ si $Rf \ll k_e k_c$, par exemple si les frottements sont très faibles

En général, $\tau_e \ll \tau_m$ (constante de temps électrique petite devant la constante de temps électro mécanique, autrement dit très souvent, quand $L \ll 1$), et comme $\alpha < 1$, on a aussi $\alpha \tau_e \ll \tau_m$. (cf exemple pour Maxpid)

Soit la fonction de transfert :

$$G_U(p) = \frac{K_U}{1 + (\tau_m + \alpha \tau_e)p + \tau_e \tau_m p^2}$$

Question 9: Montrer que $G_U(p) = H_U(p)$

On propose H'_U , forme simplifiée de H_U :

$$H_U'(p) = \frac{K_U}{(1+\tau_e p)(1+\tau_m p)}$$

Les deux questions suivantes on pour but de justifier de la pertinence de proposer cette fonction simplifiée H_U^\prime :

- Peut-on factoriser le dénominateur ?
- Est-elle presque égale à H_{II}

Question 10: Après avoir exprimé le coefficient d'amortissement du système en fonction de τ_e et τ_m en tenant compte de l'hypothèses $\tau_e \ll \tau_m$, justifier la forme de H'_U proposée

Question 11: Montrer que la fonction de transfert du moteur peut s'écrire $H_U(p)pprox H_U'(p)$

On s'arrête ici pour cette partie, mais cette fonction de transfert est très intéressante ! En effet, nous verrons plus tard (cours réduction de modèles) que le pôle dominant de cette fonction de transfert est le pôle de partie réelle la plus proche de 0, soit $-\frac{1}{\tau_m}$. La réponse d'un moteur à courant continu est généralement proche de la réponse du premier ordre $\frac{K_U}{1+\tau_m p}U(p)-\frac{K_{C_T}}{1+\tau_m p}\mathcal{C}_T(p)$, dont le temps de réponse à 5% vaut $3\tau_m$.

Dernière mise à jour	SLCI2	Denis DEFAUCHY
07/09/2022	Révisions	TD1 - Sujet

Pilotage d'un MCC - Hacheur

Les moteurs à courant continus sont très généralement pilotés à l'aide de hacheurs (je ne rentrerai pas dans tous les détails des types de hacheurs). Ci-dessous, un hacheur 4 cadrans.

Ceux-ci génèrent, à partir d'une tension continue de valeur fixe, une tension rectangulaire qui va directement alimenter le MCC. Un nombre, par exemple codé sur 9 bits (cf Maxpid – 1 bit de signe et 8 bits pour le nombre), permet de générer un signal de commande au hacheur. Celui-ci pilote le rapport cyclique qui va définir le temps où la tension est à sa valeur maximale, et le temps où elle est à sa valeur minimale. Ci-dessous un exemple de signal en sortie du hacheur.

Question 12: Justifier d'un point de vue fonctionnel le fait que le moteur se comporte comme s'il recevait la valeur moyenne du signal provenant du hacheur

Plaçons-nous dans le cadre du robot Maxpid. La position de sortie est mesurée par un capteur potentiométrique dont la mesure analogique est convertie en une donnée numérique comparée à l'image de la consigne, numérique elle aussi. Un correcteur numérique est implémenté, et le résultat de ce calcul, un nombre, est envoyé au hacheur via un convertisseur analogique/numérique (CNA) codé sur 9 bits. Le nombre transmis est codé de manière particulière, puisqu'il y a 1 bit de signe et 8 bits pour la valeur. Toutefois, ce codage est transparent pour nous puisqu'il est « décodé » par le hacheur. A ce nombre en entrée de la carte de puissance, est ainsi associé via le hacheur une tension de -24V à 24V.

Question 13: Proposer un modèle par schéma bloc du hacheur du robot Maxpid (on suppose évidemment que ce hacheur est suivi d'un MCC « voyant » la valeur moyenne du signal émis)