LAPORAN PRAKTIKUM Machine Learning (Praktikum)

Nama : Aditya Pratama

NIM : 434231006

Kelas : C2

D4 Teknik Informatika

Universitas Airlangga

1. Seleksi Fitur (Feature Selection)

```
import pandas as pd
    from scipy.stats import chi2_contingency
    df =pd.read_csv('StressLevelDatasetFreeOutlier.csv')
   # target dan fitur yg ingin saya test
target_variable = 'stress_level'
feature_to_test ='anxiety_level'
11 print("menguji hubungan antara '{feature_to_test}' dan '{target_variable}'....")
contingency_table =pd.crosstab(df[feature_to_test],df[target_variable])
15 print("table kontigensi:\n")
16 print(contingency_table)
   print("-" *50)
20 chi2, p ,dof, expected = chi2_contingency(contingency_table)
23 print(f"Nilai Chi-Square: {chi2}")
24 print(f"P-Value: {p}")
28 alpha = 0.05
29 if p < alpha:
        print(f"\nHasil: Terdapat hubungan yang signifikan antara {feature_to_test} dan {target_variable}.")
        print(f"\\ \ nHasil: Tidak \ terdapat \ hubungan \ yang \ signifikan \ antara \ \{feature\_to\_test\} \ dan \ \{target\_variable\}.")
34 contingency_table.to_csv('hasil_seleksi_Chi_Square.csv')
35 print("File 'hasil_kontingensi.csv' berhasil disimpan!")
```

Dari hasil uji Chi-Square, didapatkan nilai P-value yang sangat kecil (mendekati 0). Ini menunjukkan bahwa terdapat hubungan yang sangat signifikan secara statistik antara fitur yang diuji (misalnya, anxiety level) dengan stress level. Fitur ini dianggap penting.

2. Uji ANOVA

```
import pandas as pd
    from scipy.stats import f_oneway
    df = pd.read_csv('StressLevelDatasetFreeOutlier.csv')
 6 # memisahkan fitur dari target
    X = df.drop('stress_level', axis=1)
    y = df['stress_level']
10 significant_features = []
11 alpha =0.05
14 for feature in X.columns:
        groups =[df[feature][y==level] for level in y.unique()]
        f_stats, p_value = f_oneway(*groups)
        print(f"menguji {feature}...P-value : {p_value:.4f}")
        if p_value < alpha :</pre>
            significant_features.append(feature)
            print(f"-> '{feature}' adalah fitur yang signifikan.\n")
print("\n" + "="*50)
print("Fitur signifikan berdasarkan ANOVA:")
30 print(significant_features)
32 df_anova_selection = df[significant_features + ['stress_level']]
    df_anova_selection.to_csv('hasil_seleksi_anova.csv', index=False)
    print("\nFile 'hasil_seleksi_anova.csv' berhasil disimpan!")
```

```
C:\Python312\Lib\site-packages\scipy\stats\axis_nam_policy.py:579: ConstantInputNarring: Each of the input arrays is constant; the F statistic is not defined or infinite
res = hypotest_fum_out(*samples, **kads)
menguil blood_pressure...P-value : nam
menguil plood_pressure...P-value : o.0000
>> sleep_quality...P-value : o.0000
>> sleep_quality...P-value : o.0000
>> breathing_proble...P-value : 0.0000
>> breathing_proble...P-value : 0.0000
>> horse_level...P-value : 0.0000
>> 'breathing_proble...P-value : 0.0000
>> 'sbasic_needs' adalah fitur yang signifikan.
menguil safety...P-value : 0.0000
>> 'study_load'...P-value : 0.0000
>> 'study_load'...P-value : 0.0000
>> 'study_load'...P-value : 0.0000
>> 'study_load'...P-value : 0.0000
>> 'pressure...P-value : 0.0000
>> 'pressure
```

Membandingkan rata-rata setiap fitur numerik pada setiap kategori stress_level (0, 1, dan 2). Hasil uji **ANOVA** menunjukkan bahwa semua fitur memiliki P-value mendekati 0. Artinya, rata-rata dari setiap fitur berbeda secara signifikan di antara ketiga level stres. Berdasarkan uji ini, semua fitur dianggap penting dan disimpan dalam file hasil seleksi anova.csv.

3. Ekstraksi Fitur (Feature Extraction

```
import pandas as pd

from sklaam-Accomposition import StandardScaler

from sklaam-Accomposition import PCA

import mathelation-poly as plt

import mathelation-poly as plt

import mathelation-poly as plt

import mathelation-poly

import mathelatio
```


Hasil PCA dengan 2 komponen berhasil menangkap 65.54% dari total informasi (varians) data asli. Visualisasi menunjukkan adanya pembentukan cluster atau kelompok data, di mana kelompok stres level 0 (biru) dan 2 (merah) dapat dipisahkan dengan cukup baik oleh komponen utama pertama

4. PCA dengan Komponen Optimal (95% Varians)

```
import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.preprocessing import StandardScaler

from sklearn.decomposition import PCA

df = pd.read_csv('StresslevelDataset.csv')

x = df.drop('stress_level', axis=1)

y-df['stress_level']

# standarisasi data

scaler-standardScaler()

x_scaled = scaler.fit_transform(x)

# Buat objek PCA dengan target varians 95%

# Ini akan secara otomatis memilih jumlah komponen yang diperlukan

pca_optimal =PCA(n_components=0.95)

# Buat objek PCA dengan target varians 95%

# menerapkan PCA

x_pca_optimal =PCA(n_components=0.95)

# melihat banyak components yg di pilih

num_components-pca_optimal.fit_transform(x_scaled)

# melihat banyak components yg di pilih

num_components-pca_optimal.nemlih (num_components)

print(f*PCA Optimal memilih (num_components)

df_pca_optimal =pd.DataFrame(data-X_pca_optimal, columns=[f*PC_(i*1)' for i in range(num_components)])

df_pca_optimal['target']=y.values

df_pca_optimal.to_csv('hasil_PCA.csv', index=False)

print('File 'hasil_ekstraksi_pca_2_komponen.csv' berhasil disimpan!')
```

```
self.tk.mainloop(n)

KeyboardInterrupt

PS C:\APP KULIAH\MATKUL KULIAH\SEMESTER 5\Machine Learning Prak\modul-4> python main2v2.py

PCA Optimal memilih 16 komponen untuk menangkap 95% varians.

PS C:\APP KULIAH\MATKUL KULIAH\SEMESTER 5\Machine Learning Prak\modul-4>

v3.6.0 → Regional pricing! Note: A Reconnect to Discord

C Ln 5, Col 37 Spaces: 4 UTF-8 CRLF {}
```

Hasilnya menunjukkan bahwa PCA Optimal memilih [Isi jumlah komponen di sini] komponen untuk dapat menjelaskan 95% varians dari data asli. Hasil dari transformasi ini disimpan dalam file hasil_PCA.csv.