	UZUPEŁNIA ZDAJĄCY		
KOD	PESEL	miejsce na naklejkę	

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

Część I

MIN-R1 1P-152

DATA: 19 maja 2015 r. GODZINA ROZPOCZECIA: 9:00

CZAS PRACY: **60 minut**

LICZBA PUNKTÓW DO UZYSKANIA: 15

UZUPEŁNIA ZDAJĄCY	WYBRANE:	
	(środowisko)	
	(kompilator)	
	(program użytkowy)	

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków lub języka programowania, który wybrałaś/eś na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MIN 2015

Zadanie 1. Problem telewidza

W *Problemie telewidza* mamy program telewizyjny, zawierający listę filmów emitowanych w różnych stacjach telewizyjnych jednego dnia. Telewidz zamierza obejrzeć jak najwięcej filmów w całości. Jedyne ograniczenie jest takie, że telewidz może oglądać co najwyżej jeden film (stację telewizyjną) jednocześnie. Zakładamy, że jednego dnia wszystkie filmy są różne.

Program telewizyjny emisji filmów w 4 stacjach telewizyjnych:

Telewizja / stacja	Film i godziny jego emisji	Czas trwania emisji filmu
TV1	film 1: od 9:00 do 12:00	3 godziny
1 1 1	film 2: od 15:00 do 17:00	2 godziny
TV2	film 3: od 11:00 do 16:00	5 godzin
TV3	film 4: od 12:00 do 14:00	2 godziny
TV4	film 5: od 11:30 do 12:30	1 godzina

Dla programu podanego powyżej telewidz jest w stanie obejrzeć aż trzy filmy, np.: film 1, film 4, film 2. **Przyjmujemy, że telewidz nie traci w ogóle czasu na przełączanie pomiędzy stacjami** (np. o godz. 12:00 z TV1 na TV3). Innymi słowy, czasy emisji filmów 1 i 4 nie kolidują ze sobą.

Rozważ następujący algorytm wyboru filmów do obejrzenia przez telewidza, w którym w kroku 2. stosuje się jedną z czterech strategii opisanych w tabeli 1.

Specyfikacja:

Dane:

T – zbiór filmów z programu telewizyjnego z godzinami emisji i czasami ich trwania,

S – strategia z tabeli 1.

Wynik:

P − zbiór filmów, które obejrzy telewidz.

Algorytm:

- Krok 1. Zainicjuj *P* jako zbiór pusty.
- Krok 2. Dopóki *T* zawiera jakieś filmy, wykonuj:
 - . stosując strategię S, wybierz ze zbioru T film x i usuń go z T
 - . $\operatorname{dodaj} \operatorname{film} x \operatorname{do} \operatorname{zbioru} P$
 - . usuń ze zbioru *T* wszystkie filmy, których czasy emisji kolidują z czasem emisji filmu *x*.
- Krok 3. Zakończ wykonywanie algorytmu i wypisz wszystkie filmy ze zbioru *P*.

Tabela 1. Cztery strategie (S) w Problemie telewidza:

Strategia A	Wybierz film, który trwa najdłużej , a jeśli jest takich więcej, to wybierz z nich ten, który się najwcześniej kończy . Jeśli jest więcej takich filmów, wybierz dowolny z nich.
Strategia B	Wybierz film, który trwa najkrócej , a jeśli jest takich więcej, to wybierz z nich ten, który się najwcześniej kończy . Jeśli jest więcej takich filmów, wybierz dowolny z nich.
Strategia C	Wybierz film, który się najwcześniej zaczyna , a jeśli jest takich więcej, to wybierz z nich ten, który się najwcześniej kończy . Jeśli jest więcej takich filmów, wybierz dowolny z nich.
Strategia D	Wybierz film, który się najwcześniej kończy , a jeśli jest takich więcej, to wybierz z nich ten, który się najpóźniej zaczyna . Jeśli jest więcej takich filmów, wybierz dowolny z nich.

Przykład:

Dla podanego programu telewizyjnego zastosowanie w kroku 2. strategii A daje wynik $P = \{\text{film 3}\}, \text{ czyli telewidz obejrzy tylko jeden film.}$

Zadanie 1.1. (0–2)

Dla podanego programu telewizyjnego podaj wyniki wykonywania algorytmu po zastosowaniu strategii *B*, *C* i *D*:

Strategia S	Zawartość zbioru P po zakończeniu wykonywania algorytmu
В	
С	
D	

Miejsce na obliczenia.		

	Nr zadania	1.1.
Wypełnia	Maks. liczba pkt.	2
egzaminator	Uzyskana liczba pkt.	

Zadanie 1.2. (0–3)

Zastosowana strategia S w algorytmie **jest optymalna**, jeśli dla **każdego** programu telewizyjnego wynik algorytmu (zbiór P) zawiera największą możliwą liczbę filmów, które może obejrzeć telewidz.

Uwaga:

Strategia A nie jest optymalna, ponieważ telewidz może obejrzeć trzy filmy: film 1, film 4 oraz film 2.

Dla strategii A, B i C podaj w przygotowanych tabelach przykłady programów telewizyjnych, z emisją **czterech** filmów w dwóch stacjach, będące dowodami, że żadna z tych strategii **nie jest optymalna**.

Dla każdej strategii i podanego dla niej programu telewizyjnego podaj wynik działania algorytmu oraz przykład ilustrujący, że telewidz może obejrzeć więcej filmów, jeżeli nie używa tej strategii.

Wskazówka. Podaj takie godziny emisji **czterech** filmów, aby telewidz był w stanie obejrzeć np. **trzy** lub więcej filmów, podczas gdy zastosowanie algorytmu z odpowiednią strategią daje rozwiązanie zawierające co najwyżej **dwa** filmy.

Dowód dla **strategii** *A*:

Telewizja / stacja	Film i godziny jego emisji	Czas trwania emisji filmu
TV1	film 1 (oddo), film 2 (oddo)	
TV2	film 3 (od), film 4 (od	

Wynik działania algorytmu przy zastosowaniu str	ategii <i>A</i>	strategii <i>A</i>	4.
---	-----------------	--------------------	----

	P	
Liczniejs	zv zb:	iór filmów, które może obejrzeć widz:

, , ,

Dowód dla **strategii B**:

Telewizja / stacja	Film i godziny jego emisji	Czas trwania emisji filmu
TV1	film 1 (od), film 2 (od	
TV2	film 3 (oddo), film 4 (oddo)	

Wynik działania algorytmu przy zastosowaniu **strategii** *B*:

Р

Liczniejszy zbiór filmów, które może obejrzeć widz:

Dowód dla **strategii** C:

Telewizja / stacja	Film i godziny jego emisji	Czas trwania emisji filmu
TV1	film 1 (od), film 2 (od	
TV2	film 3 (oddo), film 4 (oddo)	

Wynik działania algorytmu przy zastosowaniu **strategii** *C*:

P		

Liczniejszy zbiór filmów, które może obejrzeć widz:

Zadanie 2. Test

Oceń, czy poniższe zdania są prawdziwe. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli zdanie jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 2.1. (0-1)

Po wymnożeniu dwóch liczb 10324 oraz 1314 zapisanych w systemie czwórkowym otrzymamy

1.	78 ₁₀	P	F
2.	8D6 ₁₆	P	F
3.	4326 ₈	P	F
4.	100110101102	P	F

Zadanie 2.2. (0-1)

Kompresja stratna w grafice

1.	ma związek z plikami graficznymi w formacie BMP.		F
2.	ma związek z plikami graficznymi w formacie JPG.	P	F
3.	jest metodą zmniejszania rozmiaru pliku graficznego bez utraty szczegółów w obrazie.	P	F
4.	wykorzystuje algorytm szyfrowania RSA.	P	F

	Nr zadania	1.2.	2.1.	2.2.
Wypełnia	Maks. liczba pkt.	3	1	1
egzaminator	Uzyskana liczba pkt.			

Zadanie 2.3. (0-1)

Filtrowanie tabeli w bazie danych

1.	polega na wyborze wierszy spełniających określone kryterium.	P	F
2.	polega na wyborze niektórych kolumn z tabeli.	P	F
3.	zmienia jej zawartość.	P	F
4.	wymaga podania warunku dla jednej lub kilku kolumn tabeli.	P	F

Zadanie 2.4. (0-1)

Na licencji ADWARE jest rozpowszechniane oprogramowanie, które

1.	jest rozpowszechniane za darmo, ale zawiera funkcje wyświetlające reklamy.	P	F
2.	ma otwarty kod źródłowy.	P	F
3.	jest opłacane przez użytkownika.	P	F
4.	może być używane tylko przez z góry ustalony czas.	P	F

Zadanie 2.5. (0-1)

W komórkach arkusza kalkulacyjnego umieszczone zostały poniższe wartości i formuły:

	A	В	С
1	1	2	3
2	2	=A\$2*B1	
3	3		
4	4		

Następnie zawartość komórki B2 została skopiowana do komórki C2 oraz do komórek B3, B4,..., B10. Ustal, które z poniższych stwierdzeń są poprawne.

1.	W komórce C2 umieszczona zostanie formuła =A\$2*C1.	P	F
2.	W komórce B3 umieszczona zostanie formuła =A\$2*B2.	P	F
3.	Wartość w komórce B10 wyniesie 1024.	P	F
4.	Wartość w komórce C2 wyniesie 4.	P	F

Zadanie 3. Rozszerzony algorytm Euklidesa

Algorytm Euklidesa to algorytm wyznaczania największego wspólnego dzielnika (NWD) dwóch liczb całkowitych a > 0 i $b \ge 0$.

Specyfikacja:

Dane:

liczby całkowite, a > 0 i $b \ge 0$,

Wynik:

największy wspólny dzielnik liczb a i b.

Algorytm NWD:

Krok 1. Jeżeli b = 0, to NWD jest równy a i zakończ wykonywanie algorytmu.

Krok 2. Oblicz *r* jako resztę z dzielenia *a* przez *b*.

Krok 3. Zastąp *a* przez *b*, natomiast *b* przez *r*.

Krok 4. Przejdź do kroku 1.

W niektórych zastosowaniach informatycznych potrzebujemy wyrazić największy wspólny dzielnik dwóch liczb całkowitych *a*, *b* w następujący sposób:

$$NWD(a,b) = a \cdot x + b \cdot y,$$

gdzie x i y są liczbami całkowitymi.

Do wyznaczenia wartości x i y wykorzystywana jest następująca zależność:

dla $r = a \mod b$ różnego od zera oraz liczb całkowitych x', y' takich, że

$$NWD(b,r) = b \cdot x' + r \cdot y',$$

parę liczb (x, y) można wyrazić wzorami:

$$x = v'$$

$$y = x' - (a \operatorname{div} b) \cdot y'$$

Uwaga:

a mod b, a div b oznaczają odpowiednio resztę i iloraz z dzielenia całkowitego a przez b.

	Nr zadania	2.3.	2.4.	2.5.
Wypełnia	Maks. liczba pkt.	1	1	1
egzaminator	Uzyskana liczba pkt.			

Opisana zależność pozwala na rekurencyjne obliczenie pary liczb (x, y). Niech RozszerzonyEuklides(a, b) będzie rekurencyjną funkcją realizującą ten pomysł. Działanie funkcji zilustrujmy przykładem.

Przykład dla a = 231, b = 30

i – nr wywołania	NWD Wartość a w i-tym wywołaniu	(a, b) Wartość b w i-tym wywołaniu	Zagnieżdżanie rekurencji ←	Powrót z rekurencji →	Wynik x	Wynik y
1	231	30	\	1	3	-23
2	30	21	\	1	-2	3
3	21	9	\	1	1	-2
4	9	3	\	1	0	1
5	3	0	\	1	1	0

Zatem $NWD(231, 30) = 3 \cdot 231 + (-23) \cdot 30$.

Zadanie 3.1. (0-2)

Uzupełnij poniższą tabelę ilustrującą wykonanie funkcji RozszerzonyEuklides(a, b) dla danych a = 188, b = 12.

i – nr wywołania	Wartość a w <i>i</i> -tym wywołaniu	Wartość b w <i>i</i> -tym wywołaniu	Wynik x	Wynik y
1	188	12		
2				
3				
4		0	1	0

Miejsce na obliczenia.			

Zadanie	2 2	10	2)
Ladanie	3.2.	W-	-3

Uzupełnij poniższą rekurencyjną funkcję obliczania pary liczb (x, y) dla danych liczb a, b.

Specyfikacja:

Dane:

liczby całkowite a > 0 i $b \ge 0$

Wynik:

para liczb całkowitych (x, y), dla których $NWD(a, b) = a \cdot x + b \cdot y$

RozszerzonyEuklides(a, b):

Krok 1. Jeśli b = 0, podaj jako wynik funkcji parę (1, 0) i zakończ jej wykonywanie.

Krok 2. $r \leftarrow a \mod b$

Krok 3. $(x, y) \leftarrow RozszerzonyEuklides(_______,____)$

Miejsce na obliczenia.

Wypełnia	Nr zadania	3.1.	3.2.
	Maks. liczba pkt.	2	3
	Uzyskana liczba pkt.		

BRUDNOPIS (nie podlega ocenie)

Strona 10 z 10