Il teorema fondamentale della PL

- rappresentazione di poliedri
- caso dei poliedri limitati: ottimalità dei punti estremi
- caso generale: teorema fondamentale della PL

rif. Fi 3.1 (solo caso di poliedri limitati); BT 2.5

Cono di recessione

Definizione

Un vettore $\mathbf{d} \in \mathbb{R}^n$ si dice *direzione* di un poliedro P se per ogni $\mathbf{x} \in P$ la semiretta $\mathbf{x} + \lambda \mathbf{d}, \lambda \geq 0$ è contenuta in P.

Teorema

Un vettore $d \in \mathbb{R}^n$ è una direzione di un poliedro $P = \{\mathbf{x} \in \mathbb{R}^n : \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ se e solo se è soluzione del sistema omogeneo $\mathbf{A}\mathbf{x} \geq \mathbf{0}$

Definizione

L'insieme $rec(P)=\{\mathbf{x}\in\mathbb{R}^n \text{ di tutte le direzioni di un poliedro } P$ si dice *cono di recessione* di P

Esempio

$$P = \{ \mathbf{x} \in \mathbb{R}^2 : x_1 - x_2 \ge -1, x_1, x_2 \ge 0 \}$$

$$rec(P) = \{ \mathbf{x} \in \mathbb{R}^2 : x_1 - x_2 \ge 0, x_1, x_2 \ge 0 \}$$

Rappresentazione di poliedri

Teorema

Sia un poliedro P per cui $Ext(P) \neq \emptyset$. Allora P può essere scritto nella forma

$$P = conv(Ext(P)) + rec(P)$$

Teorema fondamentale della PL

Dato il problema $\max\{\mathbf{c}^T\mathbf{x}:\mathbf{x}\in P\}$, con $P=\{\mathbf{x}\in\mathbb{R}^n:\mathbf{A}\mathbf{x}\geq\mathbf{b}\}$ non vuoto e $Ext(P)\neq\emptyset$ si ha:

- (i) se $\mathbf{c}^T \mathbf{y} < 0$ per qualche vettore $\mathbf{y} \in rec(P)$ il problema è illimitato
- (ii) se $\mathbf{c}^T \mathbf{y} \geq 0$ per ogni vettore $\mathbf{y} \in rec(P)$ il problema ammette una soluzione ottima nell'insieme Ext(P)

Dimostrazione (i) Supponiamo che esista $\mathbf{y} \in rec(P)$ tale che $\mathbf{c}^T\mathbf{y} < 0$.

- ▶ per definizione di cono di recessione, per ogni $\mathbf{x} \in P$ ed ogni $\lambda \geq 0$, $\mathbf{x} + \lambda \mathbf{y} \in P$
- ▶ essendo $\mathbf{c}^T \mathbf{y} < 0$, si ha che $\mathbf{c}^T (\mathbf{x} + \lambda \mathbf{y}) \to -\infty$ per $\lambda \to \infty$, quindi il problema è illimitato

Esempio

$$\min -x_1 - x_2$$
, $P = \{ \mathbf{x} \in \mathbb{R}^2 : x_1 - x_2 \ge -1, x_1, x_2 \ge 0 \}$

Dimostrazione (cont.)

(ii) $\mathbf{c}^T \mathbf{y} \geq 0$ per ogni $\mathbf{y} \in rec(P)$ e $Ext(P) = \{v^1, \dots, v^q\}$ non vuoto; poniamo $z^* = \mathbf{c}^T v^* = \min\{\mathbf{c}^T v^i | i = 1, \dots, k\}.$

Per il teorema di rappresentazione ogni punto $\mathbf{x} \in P$ può essere espresso nella forma $\mathbf{x} = \mathbf{w} + \mathbf{y}$, con $\mathbf{w} \in conv(Ext(P))$ e $\mathbf{y} \in rec(P)$, quindi esistono moltiplicatori $\lambda_1, \ldots, \lambda_k \geq 0$, $\sum_{i=1}^k \lambda_i = 1$ tali che $\mathbf{w} = \sum_{i=1}^q \lambda_i v^i$ da cui:

$$\mathbf{c}^T \mathbf{x} = \mathbf{c}^T (\mathbf{w} + \mathbf{y}) = \mathbf{c}^T (\sum_{i=1}^q \lambda_i v^i) + \mathbf{c}^T \mathbf{y}$$

essendo $\mathbf{c}^T \mathbf{y} \geq 0$ si ha:

$$\mathbf{c}^T \mathbf{x} \ge \mathbf{c}^T (\sum_{i=1}^q \lambda_i v^i) = \sum_{i=1}^q \lambda_i (\mathbf{c}^T v^i) \ge \sum_{i=1}^q \lambda_i \mathbf{c}^T v^* = \mathbf{c}^T v^*$$

Essendo x un generico punto di P, il punto estremo v^{\ast} è soluzione ottima del problema

Ottimalità dei punti estremi: caso limitato

Un politopo P non può contenere una semiretta, quindi $rec(P)=\emptyset$ e P=conv(Ext(P)). Ciò implica il seguente

Corollario

Sia P è un politopo. Esiste almeno una soluzione ottima del problema $\max\{\mathbf{c}^T\mathbf{x}:\mathbf{x}\in P\}$ corrispondente ad un vertice di P

Primi algoritmi?

- Se il problema di PL definito su un politopo, allora esiste una soluzione ottima su un vertice, quindi "basta" enumerare tutti i vertici.
- Algoritmo di "ricerca locale":
 - 1. Scegli un vertice \mathbf{x}^i e valuta la f.o.
 - 2. Se esiste un vertice vicino migliore, spostati sul nuovo vertice.
 - 3. Continua finché esistono vertici che migliorano la f.o.

L'algoritmo si arresta (Ext(P) è finito) in un punto di minimo locale, che è anche di minimo globale (PL è programmazione convessa!)