FAKE NEWS DETECTION USING MACHINE LEARNING

BY – PREETI RANJAN

AGENDA

- OBJECTIVE
- PROBLEM STATEMENT
- APPROACH TO SOLVING PROBLEM
 - REAL WORLD IMPACT OF FAKE NEWS
- MODEL SUMMARY
 - DATASET DESCRIPTION
 - DATA PRERROCESSING STEPS
 - FEATURE ENGINEERING (TF IDF)
 - MACHINE LEARNING APPROACH
 - MODEL SELECTION
 - DATA SPLITTING AND TRAINING
 - MODEL EVALUATION
- RESULTS
 - PERFORMACE METRICS
 - CONFUSION MATRIX AND GRAPHS
- KEY OBSERVATION, STRENTHS AND LIMITATIONS
- ☐ INFERENCE/CONCLUSION
- REFERENCES
- FUTURE SCOPE AND IMPROVEMENT

OBJECTIVE:

To build a model that can differentiate real news from fake news.

- Fake news has become a serious problem in the digital age.
- Misinformation spreads rapidly through social media and online platforms.
- Machine learning can help detect and classify fake news.

PROBLEM STATEMENT

What is the problem?

- Fake news misleads people and influences public opinion.
- Can impact elections, finance, and global stability.

Why is it important?

- Manual fact-checking is not scalable.
- Automated machine learning solutions can help.

APPROACH TO SOLVING THE PROBLEM

- Rise of social media has increased fake news circulation.
- Misinformation affects politics, public health, and businesses.
- Key Question: Can AI effectively detect fake news?
- Our goal: Develop a machine learning model for fake news classification.

Can AI effectively detect fake news?

Yes, Al can detect fake news

Al can analyze patterns and reduce misinformation spread

No, Al cannot detect fake news

Al may struggle with nuanced misinformation

Real-World Impact of Fake News

Real-World Impact of Fake News

Real-World Impact of Fake News

- Political Influence: Fake news can manipulate elections.
- Health Risks: Spreading misinformation about COVID-19 and vaccines.
- Economic Impact: Stock market fluctuations due to fake financial news.

MODEL SUMMARY

☐ Dataset Description

- Source: Kaggle Fake News Dataset.
- Number of Articles:
 - o Fake News: ~24,000 articles
 - o Real News: ~21,000 articles
- Attributes in Dataset:
 - o Title: The headline of the article.
 - o Text: The body content of the article.
 - o Subject: The category (Politics, World, etc.).
 - o Date: The publication date.

DATA PREPROCESSING STEPS

- Removing Unnecessary Elements: Punctuation, numbers, and special characters.
- Lowercasing: Standardizing text.
- Removing Stop words: Words that do not add meaning (e.g., "the", "is", "and").
- Tokenization: Splitting text into individual words.
- Lemmatization: Converting words to their base form (e.g., "running" → "run").

Data Preparation for Model Training

FEATURE ENGINEERING (TF - IDF)

TF-IDF (Term Frequency-Inverse Document Frequency)

- Assigns importance to words based on their frequency.
- Helps convert text into numerical features for machine learning.

MACHINE LEARNING APPROACH

Machine Learning Process

MODEL SELECTION

ALGORITHMS USED:

- LOGISTIC REGRESSION
- NAÏVE BAYES
- RANDOM FOREST

Which algorithm should be selected for the model?

Logistic Regression

Known for its simplicity and interpretability, suitable for binary classification tasks.

Naïve Bayes

Effective for large datasets and text classification, assuming feature independence.

Random Forest

Offers high accuracy and robustness by combining multiple decision trees.

DATA SPLITTING AND TRAINING

- Training Set (80%) Used for learning patterns in data.
- Testing Set (20%) Used to evaluate model performance.
- Cross-Validation: Used to ensure consistency in results.

Data Splitting and Model Evaluation

Cross-Validation

Ensures consistency and reliability in results.

Training Set

Essential for learning patterns in the data.

Testing Set

Evaluates model performance using unseen data.

MODEL EVALUATION

Model Evaluation Metrics

1

High Recall, Low Precision

Identifies most true cases but with many false positives.

Low Precision, Low Recall

Ineffective in both identifying true cases and minimizing false positives.

2

F1 Score Optimization

Balances precision and recall for optimal performance.

4

High Precision, Low Recall

Accurate predictions but misses many actual cases.

Metrics Used for Evaluation:

- Accuracy Correct predictions out of total cases.
- Precision Percentage of true fake news predictions.
- Recall Percentage of actual fake news correctly identified.
- F1 Score Balance between precision and recall.
- Confusion Matrix Breakdown of model's correct and incorrect classifications.

ACCURACY

Logistic Regression Accuracy: 0.9878619153674832

Naïve Bayes Accuracy: 0.9239420935412027

Random Forest Accuracy: 0.9973273942093541

Comparison of Models:

Conclusion:
 Random Forest performed the best!

CONFUSION MATRIX AND GRAPHS

- Confusion Matrix: Visual representation of model performance.
- True Positives (TP) Correctly identified real news.
- True Negatives (TN) Correctly identified fake news.
- False Positives (FP) Real news misclassified as fake.
- False Negatives (FN) Fake news misclassified as real.
- ROC Curve: Graph showing the trade-off between true positives and false positives.

Top Important Words for Fake News Detection

KEY OBSEVATIONS, STRENGHTS AND LIMITATIONS

Key Observations

- Random Forest outperformed other models.
- Feature importance analysis highlighted key words in fake news.
- TF-IDF played a crucial role in distinguishing fake vs. real news.

Strengths

- High accuracy achieved with Random Forest.
- **Effective** data preprocessing improved model performance.

Limitations

- ❖ Dataset is limited to English-language news.
- * Fake news evolves, requiring continuous model updates.

INFERENCE / CONCLUSION

Final Takeaways:

- Machine learning is effective in detecting fake news.
- Random Forest performed best in our experiments.
- Further improvements can enhance detection capabilities.

performance

REFERENCES

- ☐ Code And Dataset Link
- https://github.com/preeti2207ranjan/Fake-News-/blob/main/Fake News Detection.ipynb
- Dataset code
- https://www.kaggle.com/datasets/clmentbisaillon/fake-and-real-news-dataset/data
- ☐ Hands on Machine Learning with Scikit-Learn, Keras, and Tensorflow-Aurelien Geron

FUTURE SCOPE AND IMPROVEMENTS

Future Enhancements in Technology

1.Deep Learning Approaches:

• Implement LSTMs or BERT for better text understanding.

2. Hyperparameter Tuning:

Optimizing models to improve accuracy further.

3.Real-Time Fake News Detection:

Deploying the model as an API for live analysis.

4. Multilingual Analysis:

Expanding dataset to detect fake news in multiple languages.

THANK YOU

PREETI RANJAN

preeti.ranjan17@gmail.com