MobileNet

Пигасин Д. А. 18-АС

История

MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications

Дата публикации: 17 апреля 2017

Исследователи из Google:

<u>Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, Hartwig Adam</u>

Цель

При помощи mobilenet задачи вроде идентификации объектов на изображениях можно выполнять на маломощных устройствах.

Например, на мобильных телефонах.

Использование данной сети позволяет уменьшить количество обращений к серверу, что обеспечивает возможность автономной работы, более быстрый отклик, меньшее потребление памяти и аккумулятора, а также повышает конфиденциальность пользователей.

		Type / Stride	Filter Shape	Input Size
		Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
CTDVUCTVDO		Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$
Структура		Conv / s1	$1 \times 1 \times 32 \times 64$	$112\times112\times32$
		Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$
		Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$
3x3 Conv BN	3x3 Depthwise Conv BN	Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
		Conv / s1	$1 \times 1 \times 128 \times 128$	$56 \times 56 \times 128$
		Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
		Conv / s1	$1 \times 1 \times 128 \times 256$	$28 \times 28 \times 128$
	Dalli I	Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
ReLU	ReLU	Conv / s1	$1 \times 1 \times 256 \times 256$	$28 \times 28 \times 256$
38		Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
	1x1 Conv	Conv / s1	$1 \times 1 \times 256 \times 512$	$14 \times 14 \times 256$
		$5 \times \frac{\text{Conv dw / s1}}{5}$	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
	BN	Conv/s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
		Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
	ReLU	Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
		Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
		Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
		Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$
		FC/s1	1024×1000	$1 \times 1 \times 1024$
		Softmax / s1	Classifier	$1 \times 1 \times 1000$

Как это работает?

Стандартная свертка

Пример

Пусть мы сворачиваем изображение с 16 каналами свёрточным слоем с 32 фильтрами. Суммарно этот слой будет иметь 16 * 32 * 3 * 3 = 4608 весов, так как у нас будет 16 * 32 свёрток 3х3.

Сколько же весов будет в аналогичном depthwise separable convolution блоке?

Во-первых, у нас будет 32 * 3 * 3 = 288 весов у depthwise convolution.

Во-вторых, 16 * 32 * 1 * 1 = 512 весов у pointwise convolution .

В сумме получим 800 весов, что намного меньше, чем у обычного свёрточного слоя.

Особенности

- Использование **Depthwise separable convolutions**
- Отсутствие pooling-слоев. Для снижения пространственной размерности используется свертка с параметром stride, равным 2.
- Гиперпараметры *а* (множитель ширины) и *р* (множитель глубины или множитель разрешения).

Гиперпараметры

- Width multiplier (множитель ширины а): это уменьшает количество каналов. Если множитель ширины равен 1, сеть начинается с 32 каналов и заканчивается 1024.
- Resolution multiplier (множитель разрешения р): это уменьшает размеры входного изображения. Размер входного сигнала по умолчанию составляет 224×224 пикселя.

Эти настройки можно использовать, чтобы сделать сеть меньше — и, следовательно, быстрее — но за счет точности предсказания.

Сравнение

MobileNetV2 (alpha=1.4, rho=1)

MobileNetV2 (alpha=1, rho=1)

MobileNetV2 (alpha=0.35, rho=0.43)

Архитектура сети	Количество параметров	Top-1 accuracy	Top-5 accuracy
Xception	22.91M	0.790	0.945
VGG16	138.35M	0.715	0.901
MobileNetV1 (alpha=1, rho=1)	4.20M	0.709	0.899
MobileNetV1 (alpha=0.75, rho=0.85)	2.59M	0.672	0.873
MobileNetV1 (alpha=0.25, rho=0.57)	0.47M	0.415	0.663

0.750

0.718

0.455

0.925

0.910

0.704

6.06M

3.47M

1.66M

Источники

- https://arxiv.org/abs/1704.04861
- https://machinethink.net/blog/googles-mobile-net-architecture-on-iphone/
- https://habr.com/ru/post/352804/
- https://habr.com/ru/post/347564/