ICE- Institutos de Ciências Exatas DEMAT - Departamento de Matemática

CÁLCULO 1 - SEMANA 7 - APLICAÇÕES

Componente Curricular:

IC241 - CÁLCULO I (90h) - Turma: 02 (2020.1)

IC241 - CÁLCULO I (90h) - Turma: 07 (2020.1)

Prof. Roseli Alves de Moura

INTERPRETAÇÃO GEOMÉTRICA DA DERIVADA

Como comentado nas aulas anteriores a derivada tem como uma de suas origens a geometria (com Leibniz), no problema de se traçar retas tangentes a uma curva. Abaixo está esquematizado o problema das tangentes. O número $f'(x_0)$ é o coeficiente angular da reta tangente ao gráfico de f no ponto $P=(x_0,f(x_0))$.

A reta perpendicular a reta tangente no ponto $(x_0,f(x_0))$ chama-se reta normal e tem a

seguinte equação:
$$y - f(x_o) = -\frac{1}{f'(x_o)}(x - x_o).$$

Exemplo: Escreva a equação da reta t que tangência a curva $f(x) = x^{\frac{1}{3}} = \sqrt[3]{x}$ no ponto de abscissa a = 1. Resposta: $y - 1 = \frac{1}{3}(x - 1)$

1. RETAS TANGENTE E NORMAL- Equações:

RT:
$$y = f(x_0) + f'(x_0).(x - x_0).$$

RN;
$$y = f(x_0) - \frac{1}{f'(x_0)} (x - x_0)$$

Notas:

- (1) Se $f'(x_0) \neq 0$ as retas RT e RN são inclinadas em relação aos eixos.
- (2) Se $f'(x_0) = 0$ a reta RT é paralela ao eixo X e a reta RN é perpendicular ao eixo X.
- (3) Se $f'(x_0)$ não existir, a função NÃO tem RT no ponto considerado (tem um "bico" nesse ponto).
- (4) Se $f'(x) \to \pm \infty$, $para x \to x_0^{\pm}$, a função pode não ter RT ou ter RT "vertical" nesse ponto.

EXERCÍCIOS:

- 1) Escreva as equações das retas RT e RN, quando existirem, para as funções abaixo nos pontos indicados.
- a) Seja $f(x) = \sqrt[3]{x}$ pontos: a) (-1, f(-1)) b) (0, f(0)).
- b) Seja $f(x) = \sqrt[3]{x^2}$ pontos: a) (-1, f(-1)) b) (0, f(0)).
- 2) Num jogo de videogame, os aviões (ícones) voam da esquerda para a direita segundo a trajetória $y=15+\frac{3}{x^2}$ e, podem disparar seus mísseis na direção das tangentes de sua trajetória contra alvos localizados sobre o eixo x nas posições x=1,2,3,4 e 5. Verificar se algum alvo será atingido no caso do avião disparar um míssil quando se encontrar sobre o ponto de coordenadas (1,18).

Resolução: O ponto de tangência é P=(1,18) daí vem que $x_0 = 1$ e $f(x_0) = 18$.

Derivando a função trajetória f teremos: $f'(x) = \frac{-6}{x^3}$

Assim, o coeficiente da reta tangente a f será: f'(1) = -6

Portanto a equação da RT é: y = 18 - 6(x - 1) = -6x + 24

Agora determinando a interseção de RT com x obtém-se: -6x+24=0 ⇒ x = 4.

Logo o alvo número 4 será o atingido.

3) Determinar a equação da reta tangente à curva $y=1-x^2$, que seja paralela à reta y=1-x .

Resolução: Duas retas paralelas possuem o mesmo coeficiente angular: $m_t = m_r$.

$$m_t = -2x_0 = -1 = m_r \Rightarrow x_0 = \frac{1}{2} \Rightarrow f(x_0) = \frac{3}{4}$$

RT: $y - \frac{3}{4} = -(x - \frac{1}{2}) \Rightarrow y = -x + \frac{5}{4}$

4) Encontrar a equação da reta tangente à curva $y=x^2-x$, que seja perpendicular à reta y=-x .

Resolução: Condição de perpendicularismo:
$$m_t.m_r = -1 \Rightarrow m_t = -\frac{1}{-1} = 1$$

Por outro lado $m_t = 2x_0 - 1 \Rightarrow 2x_0 - 1 = 1 \Rightarrow x_0 = 1 \Rightarrow f(0) = 0$

Equação da RT: $y = x - 1$

5) Determinar as coordenadas do ponto P do gráfico de $y=x^3$, sabendo que a tangente em P intercepta o eixo x em (4,0).

Resolução
$$RT: y - x_0^3 = 3x_0^2(x - x_0) \Rightarrow y = 3x_0^2.x - 2x_0^3$$

RT passa pelo ponto $(4,0) \Rightarrow 12x_0^2 - 2x_0^3 = 0 \Rightarrow x_0^2(12 - 2x_0) = 0 \Rightarrow x_0 = 0 \text{ ou } x_0 = 6$

Equações de RT: $y = 0$ ou $y = 108x - 432$

- 6) Numa batalha naval de um videogame, pequenas naus de guerra (ícones)navegam da esquerda para a direita segundo a trajetória $y = x^2 3x + 5$. Todas as vezes que ultrapassam a reta determinada pelos pontos A(1,3) e B(4,6) podem ser atingidas por disparos efetuados por tanques localizados numa praia representada pelo eixo x. Uma nau só é abatida por disparos que a acerte na tangente de sua trajetória . Num certo instante um tanque efetua um disparo com ângulo igual a da reta AB e abate uma nau. Determinar:
- (a) as coordenadas do ponto de impacto (b) a posição do tanque sobre o eixo. Resolução:

a) coeficiente angular da reta AB : $m_r=\frac{6-3}{4-1}=1$ coeficiente da tangente: $m_t=2x_0-3$. As retas r e t são paralelas, logo

As coordenadas do ponto de impacto será $(x_0, f(x_0)) = (2,3)$

b) A equação de RT é $y-3=1(x-2) \Longrightarrow y=x+1$. A posição do tanque é $y=x+1=0 \Longrightarrow x=-1$

 $m_t = 2x_0 - 3 = 1 \Longrightarrow x_0 = 2$

7) Achar as equações das retas que passam por P=(1,-1) e são tangentes à curva $y=x^2-3x+5 \ .$

Resolução: RT: $y-x_0^2+3x_0-5=(2x_0-3)(x-x_0)$.

Como
$$P \in RT \Rightarrow x_0^2 - 2x_0 - 3 = 0 \Rightarrow x_0 = -1 \ e \ x_0 = 3$$

$$_{RT_1}$$
: $y-9=-5(x+1)$ $_{RT_2}$: $y-5=3(x-3)$