Chapter 7 Computing Techniques Sec 7.1 Inero.

In GILM, the first important step is to find the point estimator of B and or, then clerive a test statistic or confidence interval. The basic information contained in the data matrix x and y vector are very important for our estimation process, whether we use maximum likelihood estimation or least squares estimation.

Some methods already exist for the computing required in GLMs, which method to use depends on several factors.

- () the amount it data (the values of n and p),
 - (2) how "ill-conditioned" the manix X is;
 - (3) what statistics are needed?
- Concern nowadays as computer technologie after about a lot lately).

The problem if computing for GLAI is not a statistical problem, but a numerical analysis problem in applied math Statisticians still need to know important aspects of computing in GLM

In wormal equations or OL estimation process, we need to some \hat{\beta} from:

XXB = XY S, p.d.

(7.1.1)

 $\Rightarrow \qquad S\hat{\mathcal{B}} = X'\hat{\mathcal{Y}} = S$

In seeral of wing 5" (may be ill-conditioned) to solve for B, its very popular to use upper-That is: S=AB (factorization)

That is: S=AB upper eringular of full rank

50 ABB = S BB = A'S => B=B-1A-15

Three Popular factorization neededs for S:

- 1. Genessian étimination
- 2. Dovkttle;
- 3. square nort (cholesky)

If not computing the normal equations, to get & is obtained through X-, and two comparing procedures are popular:

- 1. Gram-Schmidt orthogonalization, 2. orthogonal Howeholder transformation.

We will talk about the square nout method for factoring s

Sec 7.2 Square Root Method of Factoring a Positive Defirite Munix.

Thm 7.2.1 Let S=XX be a pap positive definier interix. There exists an upper eriangular matrix T of rank 12 s.t.

 $S = T'T \tag{7.2.1}$

and such that to 70 for i=1,..., 12. Also, T is arrique.

swelent read

Proof: By mathematical inclustion.

First, let P=1; then S=[Si, 1, (learly tin=1511)0 and is unique. Then is true for p=1.

Next, assume that the theorem is true for p=k That is for any to RXR p.d. Sir - there exists a unique upper entengular creal) means Tu, with tic >0 for i=1, -, k s.t.

 $S_{ii} = T_{ii} T_{ii}$

Now let S be any known (kti)x(kti) pd. mooning Since S is pol, we can write S as.

$$S = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix}$$

$$\int_{Scalar}$$

where Si is kxk p.d. and Szzzo_ Siz = Szz. Using the incluction hypothesis, we can writ Si = Ti Ti, where Ti is a unique kxk Therefore, S becames:

$$S = \begin{bmatrix} T_{11} & T_{11} & S_{12} \\ S_{22} & S_{22} \end{bmatrix}$$

$$= \begin{bmatrix} T_{11} & 0 \\ S_{12} & T_{11} \end{bmatrix} \begin{bmatrix} T_{11} & T_{11} & S_{12} \\ 0 \end{bmatrix} = T/T$$

$$S_{21} & T' & T$$
where
$$S_{22} = S_{21} T_{11} T_{11} T_{12} S_{12} + B^2 = S_{21} (T_{11} T_{11})^{-1} S_{12} + B^2$$

$$= S_{21} (S_{11} T_{11})^{-1} S_{12} + B^2 > 0$$

$$\Rightarrow B_{11} S_{12} T_{12} S_{12} S_$$

=> TB= 7/18 = t

=> easy w some without usy Tol

Sec 7.3 Computing Point Estimates, Test Statistics and Conficience Intervals

For optimal computing purpose, we establish some computational server serategies for obtaining the point estimates, B, l'B, Q= - 1-p[y'y-Bx'y] liß, li(x/x)-li, i=1,--2. HB-B [H(x/x)-H],
ess etc.

proof: x/x = T/T

proof: x/x = T/T

1. $\hat{\beta}$ is obtained using $7\hat{\beta} = \pm \Rightarrow \hat{\beta} = 7$ as in sec 7.2 =TE

 $2 \quad \hat{\beta}^2 = \frac{1}{n-p} \left[2' \dot{B} - \dot{t}' \dot{t} \right], \quad \dot{t} = T'' \dot{S},$ [This way, it means 22 en can be computed without B].

payl

Proof: From the normal equations [5/5], we reduce move to SS to the enangular mains T.

[T/t] = T'- [T'T | T't] move to next page = 714[S[2] = T'-1 [X'X | X'8] · · · · ·

Note that.

tt = (T(-15) (T(-15) = 3'T-1T(-15 = (X'\(\frac{1}{2}\)'(\(\tau'\))'(\(\tau'\)) = 4x(s)x'y = 4x(x'x)-'x'y = y'xx'y = y'xB = x'x'y B scalar

=> 2= = = [y y - Bx1]

= 1-10 [2/2 - +/+]

3. Bt liß and li'(X'X) 'li, i=1, ... 2 can be compared by. liß = ait, ai = T'-'li, $l_i(X'X)^T l_i = a_i a_i$ Proof: From the normal equations. [S13] we In provide reduce S to the enangular matrix T as: [T/t] = T''[T'T]T't] $\underline{s} = 7$ Wind with 5 = T't = x'8 connot wit. = T/7 [S [2] t = T(-15 the grence = T'[XXX | X' &] Apply the above process to [SIS [li le la] > T'-[S|3|l. l2 - 12] = T'-1 [T'T|T't|l1 l2 ... la] =[T|=|T'-12, T'-12, T'-12] = [T | t | a a a ... ag] with a: = T'li i=1, 2, t=T's=T'x/8 => & B = & X-4 = & (X/X)-1X/4 = & (S)-1X/4 $= \ell(T'T)''X' = \ell T'T'' X' = ai +$ > li(X'X)'li = li(S)'li = li(T'T)'lo $= \underbrace{lititli = aiai}_{ai}$ So, finding T and T-1 is the key in the computational

approaches presented here

where G'= T'-1H' or G= HT-1 Proof stor Note: GG = HT-T-H'=H(TT)-H' = H(S)-H'=H(X(X)-H' 2x2 p.d. => 3 To, Ex & nonsingular upper triangular matrix S.t. GG'= H(X'X)" H' = To To Let 9 = Gt - f, then: HB=H(X/X)-X/= H(T/T)-1X/= $=HT^{-1}T^{-1}X^{-1}y=HT^{-1}t$ = Gt = g+ g (i) proved. also, g=HB-A For to=To'-19, we have: せんせの= タイプーナータ = タ (でんし) タ = g'[H(X'X)-H']-g = 8'(GG')-19 = 9'G'-19 = (HB-b) (GG) (HB-b) = (HB-B)'[H(X'X)-1H']'(HB-B) (2) proved Note that: $W = \frac{(H\vec{\beta} - \vec{\beta})' [H(X'X)'' H'J'' (H\vec{\beta} - \vec{\beta})}{Y'Y - \vec{\beta}X'Y} \cdot \frac{(n-p)}{2}$ $= \frac{-t_0 t_0}{Y'Y - \beta X'y} \left(\frac{n-p}{q}\right)$

Computing the inverse of X'X rectacts computing T and T'-1

eg 7.3.1 We have

GLM: Y: = BIX: 1+B2X12+B3X13 + B4X14 +E1. 20 i'd N(0-02), i=1, -- 36.

Find point estimates of B1, Bz, B3 and B4, find point estimuse of a and 95% individual CI for 2Bi+Bz+3B3-B4 and for 2Bi+2Bz+B3.

507

With y'y = 581, x'x = 7422212234

See book

4. 0 HB = Gt = g+h G=HT-1 g=HB-B

where G'= T'-1H', t=T'-1X'y (as before (HB-B) (H(XX)-H)-(HB-B) = g'(GG')-8 = 9' To To g = to to with to = To 12, To is the Chelosky factorization of H(X'X)"H' (*x2 pd), and $\frac{g}{g} = H \hat{\beta} - \frac{h}{h} = \frac{t_0' \pm 0}{g' + t' \pm 1} \left(\frac{h - p}{2} \right).$

Proof: Consider the augmented maen'x: [X'X|X'# |H']: [XX[X'&[H'] = [S|X'&]H']=[T'T|X'&]H']. => T' [X'X |X'D|H']=T'TT'T|X'D|H'] = [T| TX'y | T'H']

=[T|t|G]

Sec 7.4 Analysis of Variance For GLMs, a convinient procedure is called the "analysis of variance" or ANOVA. The idea of ANOVA ames from partitioning the total sum of squares of the observations. Y'y, into a sum of k quadratic forms (hope all are independent and one corresponding to the specified sub-models)

If the data matrix X is partioned in X = [X1 X2]

nxp nx(p-2) Tnxq

Then, we can write 3'4 as:

y'y = y'y + y'(x,x,) & - y'(x,x,) & + 3xx 3 - yxx 3 = y'(x,x,-) y + y'(xx-x,x,-) y + y'(z-xx-) y

quadratic forms

As For example, for GLM: Y=XB+E, E~N(0,02) to test Ho: HB=0 vs H1: HB +0 (Case 1 in Chapter 6)

We haveve had: full model Y= XB+E, => x1XB=X'3 Y=GB reduced model = Br + E => B'BF=BE G (10-4) xp

> y'y = y'BB-y + y'(XX--BB-) & + y'(I-XX-)y F'B'# = B'X'Y - F'B'# = Y'Y - B'X'Y 1100 8139 32 2 (XX -BB-72+121CIXX 22)

STA PO

some eins Interesting interpretation of above:

If β is not in the model, the model is just $\beta = \epsilon$. then $\frac{1}{\alpha^2} y' y'$ is a Chi-square random variable, and $\frac{1}{\alpha} y' y'$ is an unbiased estimator for α^2 .

If B is in the model, that is, Y = XB + 2, then $\frac{1}{n-p}(Y'Y - B'X'Y)$ is an unbiased estimator for α^2 The recluction in the sum of equares for estimating α^2 due to B is the model is BX'Y, in short, we say: "reduction due to B" is BX'Y = R(B)If Y'' is in the model that is. Y = BX' + E

If Σ is in the model, that is, $Y = BY + \Sigma$ then the "reduction due to Σ " is $\widehat{S}B'Y \stackrel{\triangle}{=} R(\Sigma)$.

If HB = 0 is the variance in the recluded parameter space is estimated by $\widehat{\Delta}_{ab}^2 = Z'(1-BB^-)Z$ $\Omega^2 W = \widehat{\Delta}_2^2 + \frac{1}{h}(H\widehat{\beta})'[H(X'X)^{-1}H'J''H\widehat{\beta}]$

in the R(B) and R(D) or say:

reduction due to H: is $R(H_0) = R(B) - R(\sigma) = \hat{\beta} x' - \hat{\tau} B' Y$

becomes y'y = R(x)SST SSR SSH_0 SSE

 $\Rightarrow SST = SSR + SSH_0 + SSE$ R(I) R(B|I)

where we define RIBITI = RIBITI = RIBITI = RIBITI

=> reduction due to B after reduction in I has been accounted for.

Then, we have the following ANOVA table for GLM = Y=XB+E under Ho: HB=0:

Source of Variation Sum of Squares of f. MSE

total y'y = SST n

Reduction due to B B'x'y = R(B) p

Reduction due to B B'y = B'y = B'y = R(B) p-q

Reduction due to Ho. R(B) - R(Y) = R(B|Y) = R(B

an a side note.

 $W = \frac{R(B|E)/2}{SSE/(n-p)}$

In general, we have the following two theorems.

7hm 7.4.1 For GLM Y = XB + E, if we write it as $Y = X_1B_1 + X_2B_2 + X_3B_3 + E$ then $R(B_2, B_3 | B_1) = R(B_2 | B_1) = R(B_3 | B_1, B_2)$ or $R(B_2, B_3 | B_1) = R(B_1 | B_1) + R(B_3 | B_1, B_2)$

Proof: Note that $R(B^2, G^3|G^1)$ is for testing the full model $Y = X_1 G_1 + X_2 G^2 + X_3 G_3 + E = 0$ against the reduced model: $Y = X_1 G_1 + E$

That is. to test Ho: B2=0 and B3=0 => R(B2, B3 | B1) = R(B1, B2, B3) - R(B1). also as RIB) Similarly, R(B3/B1,B2) is for testing the full model @ against the reduced model Y = X1B1 + X2B2 + E That is, to test Ho: B3 =0 => R(B3 | B1, B2) = R(B1, B2, B3) - R(B1, B2 Again similarly, R(B2 (B1) = R(B1, B2) - R(B1) => R(B2, B3 | B1) - R(B2 | B1) = R(B3 | B1, B2) Thm 7.4.2 Consider GLM Y=XB+E which is written as Y = X, B, + X2 Bz + E. Then: R(B1/B2)=R(B1) iff X1'x2=0 Proof: What Note that R(B1 (B2) = R(B1; B2) - BORNA R(B2) $= R(\underline{\beta}) - R(\underline{\beta}^2)$ $= \underline{\hat{\beta}}' \underline{x}' \underline{y} - \underline{\hat{\beta}}_2' \underline{x}' \underline{y}$ where $\underline{\hat{\beta}} = (\underline{x}' \underline{x})^{-1} \underline{x}' \underline{y}$ and $\underline{\hat{\beta}}_2 = (\underline{x}_2' \underline{x}_2)^{-1} \underline{x}' \underline{y}$ $R(B) = \theta' X(X'X) - |X'| \theta$ $= y' [X_1 X_2] [X_1' X_1 X_1' X_2]^{-1} [X_1'] y$ $X_2' X_1 X_2' X_2 [X_2']^{-1}$

When $X_1'X_2=0 \implies X_2'X_1=0$
$\Rightarrow R(\underline{\beta}) = y'[x_1 \ x_2][x_1'x_1 \ 0] = [x_1']y$
$= y' \left[X_1 X_2 \right] \left[\begin{array}{c} (X_1'X_1)^{-1} & O \\ O & (X_2'X_2)^{-1} \end{array} \right] \left[\begin{array}{c} X_1' \\ X_2' \end{array} \right] $
$= y' \left[\chi_1 \ \chi_2 \right] \left(\chi_1' \chi_1' \right)^{-1} \chi_1' \right] y$ $= \left(\chi_2' \chi_2 \right)^{-1} \chi_2' \right]$
$= y'\left(x_1(x_1'x_1)''x_1' + x_2(x_2'x_2)''x_2'\right) = \frac{2}{3!}(x_1'y + 3x_2'y = R(31) + R(32)) \Leftrightarrow R(31)(32) = \frac{2}{3!}(x_1'y = R(31)).$
When R(B)B2)=R(B)
$= R(\underline{\beta}_1 \underline{\beta}_2) + R(\underline{\beta}_2) = R(\underline{\beta}_1) + R(\underline{\beta}_2)$ (*) can be reversed all the way up
$\Rightarrow X_1'X_2 = 0$

Sec 7.5 The Normal Equations Using Deviations from Means

When B in the GLM has a constant term Bo, the GLM can be written as:

$$Y = [1 \ X_2] \begin{bmatrix} B_0 \\ B_2 \end{bmatrix} + \underline{\varepsilon} = B_0 \underline{1} + X_2 B_2 + \underline{\varepsilon}$$

where B==[B1, B2, Bp-1] and X2 is an nx(p-1) me

In this case, the normal equations X'X = x'y bearnes

$$\begin{bmatrix} 1 \\ x_2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix}$$

$$\begin{bmatrix} n & 1'X_2 \\ X_2' 1 & X_2'X_2 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_2 \end{bmatrix} = \begin{bmatrix} 1'\frac{y}{2} \\ X_2'\frac{y}{2} \end{bmatrix}$$

(7.5.1)

X2 = [x1 x2 - xp.,]

multiplying [- x]

$$= \left\{ \begin{array}{c} n\hat{\beta}_0 + n\bar{x}'\hat{\beta}_2 \\ (x_2'x_2 - n\bar{x}\bar{x}')\hat{\beta}_2 \end{array} \right\} = \left[\begin{array}{c} n\bar{y} \\ x_2'\bar{y} - n\bar{y} \end{array} \right]$$

	Letting $(X_2'X_2 - n\overline{X}\overline{X}')\hat{\beta}_2 = X_2'Y - n\overline{Y}\overline{X}$
	Letting $(X_2'X_2 - n\overline{X}\overline{X}')\beta_2 = X_2'Y - n\overline{Y}\overline{X}$ $X_0'X_0$ $X_0'Y_0$
	$\Rightarrow \chi_0 \chi_0 \beta_2 = \chi_0' \chi_0$
	where $X_D = (I - \frac{1}{h}J)X_2$, $Y_0 = (I - \frac{1}{h}J)Y$
	are called matrices with deviations from the means.
	Let $S_0 = X_0 X_0$,
	$\Longrightarrow S_{\mathcal{D}}\hat{\beta}_{2} = S_{\mathcal{D}} \tag{7.5.4}$
In fact,	
T	\(\(\ti \times \times \) \(\times
S _D =	
	$\sum (\chi_{i,p-1} - \chi_{p-1})(\chi_{i1} - \chi_{i}) - \sum (\chi_{i,p-1} - \chi_{p-1})^2$
	$\int \sum (x_i - \bar{x_i})(\bar{y_i} - \bar{y}) $
	$S_{0} = \sum_{i} (\chi_{i1} - \bar{\chi}_{i})(\lambda_{i} - \bar{\lambda}_{i}) \qquad (7.5.5)$
	$\sum (\chi_{i,p-i} - \bar{\chi}_{p-i})(y_i - \bar{y})$
	After solving for Be from 17.5.41, weeget from
	$n\beta_0 + n\overline{x}'\beta_2 = n\overline{y}$
	$n\beta_0 + n\overline{x}'\beta_2 = n\overline{y}$ $\Rightarrow \beta_0 = \overline{y} - \overline{x}'\beta_2 = \overline{y} - \beta_2'\overline{x}'$
	Note: 17.5.4) are called the deviation normal
	equations and Yo Yo are needed to test Ho: H2B2 = h:
	or finding confidence incervals on liBz.

Thm 7.5.1. In the GLM: Y = 1 Bo + X2 B2 + E, with 9 ~ NIO, 021), to test Ho: He B2 = Az VS Hi: He Be + where Hz is a 2x(p-1) known main'x of rank 2,002<p, the test statistic is: $\frac{(H_2 \hat{\beta_2} - h_2)'(H_2 S_0' + l_2')^{-1}(H_2 \hat{\beta_2} - h_2)}{Y_0'Y_0 - \hat{\beta_2}' X_0' Y_0} \frac{(H_2 \hat{\beta_2} - h_2)}{(2.5.7)}$ (7.5.71 where Be is obtained from the deviation normal equations in 17.5.4). Proof: The problem is equivalent to the testing problem in I=XB+E for Ho; HB= & with specifically, H=[] H=], B==B and $3 = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_z \end{bmatrix} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_z \end{bmatrix} = \begin{bmatrix} \hat{\beta}_0 \\ \hat{\beta}_0 \\ \hat{\beta}_z \end{bmatrix}$ So, we just need to find the given by (6.3.9) with the specifics in this case. Now- HB- 1 = [0 H2] [B0] - h2 = H2 B2- h2 $H(X'X)^{-1}H' = [QH_2] \begin{bmatrix} n & m & n & 2 \\ n & m & n & 2 \end{bmatrix} \begin{bmatrix} Q' \\ H' & 1 \end{bmatrix}$ $= [0 H_2]$ $= [NX(t_1)NX']^{-1}$ $= [NX(t_2)NX']^{-1}$ $= [NX(t_1)NX']^{-1}$ $= [NX(t_2)NX']^{-1}$ $= [NX(t_1)NX']^{-1}$ $= [NX(t_2)NX']^{-1}$ $= [NX(t_1)NX']^{-1}$ $= [NX(t_2)NX']^{-1}$ = H2 (X2 X2 - n X X) H2 = H, Số H2

(7-17).

	Further	ち=(1-カランド
	$\hat{\alpha}^2 = \frac{1}{n-p} (Y'Y - \hat{\beta}'X'Y)$	とがどの= ど(ノーカラ)(ノーか
		= Y'(1-六丁-六丁+六丁ケ
	= mp (b' bo + ny 2 - 3 x'Y)	= XX 6 X 7 7 7 7 7 7
		- YY - Y'9 - 9Y
and	$\hat{\beta}'X'Y = [\hat{\beta}_0 \hat{\beta}_2'] \begin{bmatrix} 1' \\ X_2' \end{bmatrix} Y$	= Y'(I-デナナカア)Y
		$= Y'(Z - h \tau)Y$
	$= \begin{bmatrix} \hat{\beta}_0 & \hat{\beta}_2' \end{bmatrix} \begin{bmatrix} 1'Y \\ \chi_2'Y \end{bmatrix} $	= Y'Y- 六 Y' 丁 Y
	$\left\{\begin{array}{c} \chi_{2}' \Upsilon \end{array}\right\}$	= Y'Y - 1 Y'N 1
	$= [\hat{\beta}_0 \hat{\beta}_1'] [n\bar{g}]$	= YY-カタカラ
	(,4-	
	$= n\beta_0 \vec{y} + \beta_2 X_2 Y \qquad (*)$)
	=n(y-132/X)y+B2X2/Y	
	= ng2 - nB2 x y + B2 x2 Y	
	$= ny^2 + \beta_2 (\chi_2 Y - n\bar{\chi} \bar{q})$	
	= ng2 + B2X2YD	(**)
	$\hat{a}^{2} = \frac{1}{n-p} \left(Y_{0} Y_{0} + n \bar{g}^{2} - n \bar{g}^{2} - B_{2}^{2} \right)$	(XD YD)
	= 1-B (Yo - Bixo Yo)	
	W = (HB-h)'(H(X'X)-H')-1	HB-6) n-p
\Rightarrow	$W = \frac{1}{2}$	2
	- (+12 /22 - hz) (Hz 55' Hz) - (1	4-32-6-1
		12/2c KIS) N-B
	Yo Yo - B2 X0 Y0	9.
		//
		6

	7hm 7-5.2 (read).
	To use the R() notation for this GILM, we have
	the following:
Vi V	7hm 7.5.3
90	Consider the aLM Y=1Bo+X2B2+E, ENN(0, NI,
1	To test Ho: Bz = 0 vs H1: Bz + 0, the quantity RIB=
	the numeratur in W statistic can be written as.
	R(B2 (B0) = R(B0, B2) - R(B0) = R(B) - R(B0)
	$= Y_0' X_0 X_0' Y_0 \text{where } R(\beta_0) \triangleq n \overline{y}^2$
	10 10 10 , where R((30) - 10)
	Proof: R(B2 (B0) = R(B) - R(B0)
	$=\hat{\beta}\hat{\chi}'\hat{y}-\hat{\beta}_0\hat{1}'\hat{y}$
,	
	$= \hat{\beta}' \chi' y - \hat{\beta}_0 \Xi y$ $= \hat{\beta}' \chi' y - n y^2$
	7- 12th in G-12
	R(B2/B0) = MB B2 Kg' LD
	=[(10/0)-16/10/16/10
	= Ko/ko (Ko/ko) - Ko/ Ko
	= Yo Xo Xo Yo