Introduktion till molntjänster

Vad och varför?

Dagens agenda

- Vad är molntjänster och cloud computing?
- Varför använder vi molntjänster?

Inte idag: Hur använder vi molntjänster?

Vad är molntjänster och cloud computing?

Vad är Cloud Computing?

NIST (National Institute of Standards and Technologies):

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction.

Driftmöjligheter

Traditionell IT

- Driftsättning på egna servrar
- Blir mindre och mindre vanligt
 - De flesta startups använder inte egen infrastruktur
 - De flesta företag mixar med molntjänster
- Fördelar
 - Full kontroll
- Nackdelar
 - Någon måste drifta servrarna och infrastrukturen
 - Svårt att växla upp och ner
 - Mycket jobb
 - Relativt dyrt

laaS – Infrastructure as a Service

- Driftsättning på virtuella servrar
 - Virtuella maskiner du kan använda samma mjukvara på din utvecklingsmaskin som i driftmiljön!
- Fördelar
 - Skalfördelar billigare än traditionell IT
 - Relativt hög kontroll fokus på OS, runtime och applikation
- Nackdelar
 - Fortfarande mycket arbete med att drifta OS och runtime

Exempel på laaS

Google Cloud

PaaS – Platform as a Service

- Driftsättning på en plattform som kontrolleras av en leverantör
 - Webbhotell
 - Container-baserad drift ← Det här jobbar vi med i kursen!
 - Specialiserade plattformar, exempelvis f

 ör loT
- Fördelar
 - Billigt
 - Enkelt
 - Snabbt
 - Standardiserat
- Nackdelar (?)
 - Mindre kontroll över underliggande infrastruktur

Exempel på PaaS

SaaS – Software as a Service

- Någon annan driftar mjukvaran som du använder
 - Applikationerna nås ofta via webbläsare eller remote desktop
 - Användarna vet i regel inget om hur applikationerna körs
- Fördelar
 - Jätteenkelt
 - Jättebilligt
- Nackdelar
 - Oflexibelt
 - Svårt att göra avancerade applikationer

Olika typer av moln

- Publika moln
- Privata moln
- Hybridmoln

Publika moln

- Ägs och drivs som regel av molnleverantörer som lever på att sälja molntjänster
- Gemensamma nämnare:
 - Homogen infrastruktur
 - Delade hårdvaruresurser även mellan kunder
 - Användaren äger inte infrastrukturen
 - Stordriftsfördelar
- Exempel:
 - AWS från Amazon
 - Azure från Microsoft
 - Google Cloud Platform

Privata moln

- Ägs och drivs som regel av en enskild organisation
- Kan ha heterogen infrastruktur
- Dedikerade resurser
- Full kontroll över miljön, då driften är egen

Hybridmoln

- Molnmiljöer som kompletterar driften i det privata molnet med resurser i publika moln (eller vice versa)
- Kan ge det bästa från två världar
- Kan även ge dig huvudvärk

Datacenter

- Dedikerade faciliteter för industriell drift av produktion av beräkningskraft och lagring.
- Bygger på stordriftsfördelar:
 - Billig, utbytbar hårdvara
 - Delade resurser
 - Energieffektivitet

Blade- och rackservrar

- Standardiserade, billiga och lätt utbytbara servrar
- Plats- och energieffektiva jämfört med en vanlig PC
- Kan konfigureras f\u00f6r hot swap: enheter kan bytas ut utan avbrott

Konnektivitet

- Flera typer av tjänster kan finnas inom korta avstånd → låga väntetider!
- Många betalande kunder →
 möjlighet för väldigt hög bandbredd
 in och ut ur datacentret

SAN och CDN

- Storage Area Network: nät som enbart är avsedda att hantera lagring:
 - Säkert!
 - Tillgängligt!
- Content Delivery Network: nät som enbart är avsedda att snabbt leverera innehåll:
 - Snabbt!
 - Relativt billigt!

Virtualisering

- Abstraktion av en dators fysiska resurser.
 - Flera virtuella maskiner kan dela på samma hårdvara
 - En hypervisor eller Virtual Machine Manager, VMM, ser till att de virtuella maskinerna får tillgång till hårdvaran
 - De virtuella datorernas operativsystem och applikationer ser inte någon skillnad på deras virtuella miljö jämfört med en dedikerad fysisk dator.

Två typer av virtualilsering

- Mjukvarubaserad (exemplevis KVM):
 - Hypervisorn kör på en Linux-maskin
 - Flera olika operativsystem kan sedan köra på samtidigt på samma dator
- Hårdvarubaserad (bare metal):
 - En hårdvarubaserad hypervisor fördelar resurserna direkt till de olika virtuella maskiner med olika operativsystem

Hosted Architecture

Bare-Metal Architecture

Containers

- En lite lättviktigare approach till virtualisering
 - Flera containers delar på en gemensam OS-kärna
 - Enklare att sätta upp och ta ner snabbare reaktionstid
- Deklarativ virtualisering beskriv VAD du behöver, inte HUR det ska realiseras

Containers

Docker

Den vanligaste varianten av container-miljö

- Beskrivs med en YAML-fil.
- Docker-containers kan "ärva" konfigurationer
- Körbar både på server och utvecklingsmaskin
- Plattformsoberoende och välstödd enkelt att flytta mellan molnleverantörer
- Kan provisioneras från exempelvis ett git-repository utmärkt för DevOps ← Det här ska vi jobba med i kursen!

Kubernetes

- Container ochestrator håller koll på grupper av containers
- Används ofta för att definiera hela applikationer (lagring, nätverk, maskiner, etc) för Docker-miljöer
- Öppen källkod utvecklad av Google

Spännande saker

- Serverless functions kör mjukvara utan konfiguration
- Gaming as a Service kör och rendera spel i molnet, strömma grafik + ljud
- Fog computing mixa cloud computing med små datorer för att sprida ut beräkningar
- Maskininlärning låt någon annans dator göra de tunga beräkningarna
- Kvantdator hos IBM precis vad det låter som: skithäftigt!

Varför använder vi molntjänster?

Specialisering

- Specialiserade maskintyper
 - Lagring/leverans
 - Beräkning
 - Webb
 - ...
- Specialiserade leverantörer
 - IoT
 - Databasdrift
 - ...

Skalfördelar

- Delad hårdvara någon annan kan ha hand om patchning osv
- Enklare att implementera exempelvis mircoservices

Elasticitet

- Undvik att köra servrar som inte gör något arbete
- Undvik att hamna i ett läge där serverkapaciteten inte räcker

Redundans

- Om en server går ner kan andra ta över
- Om ett helt datacenter går ner kan ett annat ta över

DevOps - The CI/CD Chain

DevOps – Enabling the CI/CD Chain

- DevOps: samkör utveckling och IT-drift
 - Definierat av Bass, Weber och Zhu som "[..] a set of practices intended to reduce the time between committing a change to a system and the change being placed into normal production, while ensuring high quality." [1]
- Pull requests/pushes k\u00f6r ig\u00e4ng tester, bygge, release och deployments

Ekonomiska vinster

- Förutsägbart
- Skalbart
- Låga uppstartskostnader

Förutsägbarhet

Traditionell IT kräver framförhållning och lång planering för att hålla nere kostnader.

Applikationer som drivs i molnet behöver inte samma framförhållning – men även här kan det betala sig.

Skalbarhet

- Högre användandegrad av hårdvaran gör att den kan användas effektivare
- Färre tekniker behövs för att drifta infrastrukturen.
- Skalbarhet innebär även elasticitet betala för vad du använder, inte mer

Jämförelse: en bilpool

Om du äger en bil vet du att:

- Den står mest still
- Den kostar pengar i inköp
- Den ska servas

En bil i en bilpool

- Har ingen inköpskostnad (för dig)
- Används av fler än dig
- Servas av någon annan

Jämförelse: en bilpool

D1_V2 Standard 🛨		D1 Standard		A1 Standard	
1	Core	1	Core	1	Core
3.5	GB	3.5	GB	1.75	GB
8	2 Data disks	8	2 Data disks	8	2 Data disks
<u></u>	2x500 Max IOPS	<u></u>	2x500 Max IOPS	<u></u>	2x500 Max IOPS
6	50 GB Local SSD	B	50 GB Local SSD	*	Load balancing
*	Load balancing	*	Load balancing		- Fr
	98.95 USD/MONTH (ESTIMATED)		104.16 USD/MONTH (ESTIMATED)		66.96 USD/MONTH (ESTIMATED)

Nackdelar med molndrift

- Lock-in
- Vem äger vad?
- Juridiska problem

