Relational Algebra

Assignment Project Exam Help

https://powtadecom

Add WeChat powcoder
Professor Alex Brodsky
Database Systems

Relational Query Languages

- Query languages: Allow manipulation and retrieval of data from a database.
- * Relational model supports simple, powerful QLs:
 - Strong formal fottpstatpowbasedercoologic.
 - Allows for much optimization. Add WeChat powcoder
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for Assignment Project Exam Help implementation:
- Relational Altabid powered executional, very useful for representing execution plans.
- <u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Non-operational, <u>declarative</u>.)
- Understanding Algebra is key to understanding SQL,
- and query processing!

Algebra Preliminaries

- ❖ A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the *result* of a given query is also fixed! Determined by Genth power derivery language constructs.

Example Instances

eserves S1	sid	sname	rating	age
examples. S1 signment Project	22 _{x a}	dustin ₁ n	7	45.0
	31	lubber	8	55.5
https://powcod	é ⁸ cc	msty	10	35.0

	<u>bid</u>		Power		
22	101	10/10/96	WeChat p	owc	oder
58	103	11/12/96	S2	<u>sid</u>	snam

sid	sname	rating	age
28	yuppy	9	35.0
31	lubber	8	55.5
44	guppy	5	35.0
58	rusty	10	35.0

Algebra Operations

Look what we want to get from the following table:

Assignment Project Exam Help

<u>S</u>	sid 1	nstrasmépo	vacinder.	agen
	28	yuppy	Shot nov	35.0
3	31	Add We(lubber	Chất pov	vcoder 55.5
4	14	guppy	5	35.0
4	58	rusty	10	35.0

Projection

 Deletes attributes that are not in projection list.

sname	rating
yuppy	9
lubber	8
guppy	5
rusty	10

* Schema of result gontein Projectiv Exam Help the fields in the projection list. with the same nattpes: Apawagder.com sname, rating (S2) had in the (only) input relation.

Add WeChat powcoder

Projection operator has to

eliminate *duplicates*! (Why??)

- Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)

age
35.0
55.5

 $\pi_{age}(SZ)$

(A A TIA ?)

https://powcoder.com

* Schema of result identical to schemadd WeChat powegdes (S2)= (only) input relation.

sid	sname	rating	age
28	yuppy	9	35.0
58	rusty	10	35.0

rating

age

		28	yuppy	9	35.0
*	Selects rows that satisfy	31	lubber	8	55.5
	selection condition.	44	guppy	5	35.0
*	No duplicates si gament	Eggje	rusty	Help	35.0
	$(W/h_{\rm W}^2)$			•	•

*S*2

sid

sname

Composition of Operations

* Result relation can be the *input* for another relational algebra operation! (Operator composition.)

Assignment Project Exam Help

 $\pi_{sname,rating}(\sigma_{rating>8}(S2)) =$

sname	rating
yuppy	9
rusty	10

What do we want to get from two relations?

Assignment Project **R1** rating age sid sname sid bid 45.0 22 101 VeCBat poundbooter 8 55.5 58 103 rusty 10 35.0

What about: Who reserved boat 101?

Or: Find the name of the sailor who reserved boat 101.

Cross-Product

- ❖ Each row of S1 is paired with each row of R1.
- * Result schema has one field per field of S1 and R1, with field names inherited.

	A 001	<u>~~~~</u>	+ Dunie	ot Ewe	LL car	ala
sid1	sname	gainen Fating	age	sid2	bid	day
22	dustin	https://	powco	oder.co	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	Adel W	es.hat	powc	qder	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

▼ *Renaming operator (because naming conflict)*:

$$\rho(sid \rightarrow sid1, S1) \times \rho(sid \rightarrow sid2, R1)$$

Why does this cross product help

Query: Find the name of the sailor who reserved boat 101.

Assignment Project Exam Help

$$CP = \rho(sid \rightarrow sid1_pS1)_p \times \rho(sid \rightarrow sid2, R1)$$

Result=
$$\pi_{Sname}$$
 (CP))

* Note my use of "temporary" relation CP.

Another example

Find the name of the sailor having the highest rating.

Assignment Project Exam Help

$$\begin{array}{c} \text{AllR} = \pi & \text{https:/ingwsorlatingM}, S2) \\ ratingA & \text{Add WeChat powcoder} \\ \text{Result?} = \pi & (\sigma \\ Sname & rating < ratingA \\ \end{array} (S2 \times \text{AllR})) \end{array}$$

What's in "Result?"?

Does it answer our query?

Union, Intersection, Set-Difference

- * All of these operations take two input relations, which must be union soignment Pro
 - Same number of fields. https://pow
 - `Corresponding' fields 28 yuppy have the same Ayde.WeChat powcoder
- * What is the *schema* of result?

sid	sname	rating	age
22	dustin	7	45.0

sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
ject F	ExamyHel	P 10	35.0
44 coder	.guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

 $S1 \cap S2$

S1-S2

Back to our query

Find the name of the sailor having the highest rating.

AllR=
$$\pi$$
 $rating$

Assignment Project Exam Help

 $rating$
 $rati$

$$\text{Tmp} = \pi_{Sid,Sname} \text{ WeChat powcoder rating } (S2 \times A11R))$$

Result=
$$\pi_{Sname}$$
 ($\pi_{Sid,Sname}$ (S2)-Tmp)

* Why not project on Sid **only** for Tmp?

Relational Algebra (Summary)

- * Basic operations:
 - <u>Selection</u> (σ) Selects a subset of rows from relation.
 - Projection (A) spetereent who decoleman in the leplation.
 - <u>Cross-product</u> (×) Allows us to combine two relations.
 - Set-difference (-) https://powcoder.com reln. 2.

 - <u>Union</u> (∪) Tuples in reln. 1 and in reln. 2.
 <u>Add WeChat powcoder</u>
 <u>Rename</u> (ρ) Changes names of the attributes
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)
- Use of temporary relations recommended.

Natural Join

* Natural-Join:

S1 ⊳⊲ R1 Assignment Project Exam Help

sid	sname	rating s://powco	age.co	hid	day
22	dustin	7 LWeChat	45.0	101	10/10/96
58	rusty	10 eChai	35.0°C	103	11/12/96

- * Result schema similar to cross-product, but only one copy of each field which appears in both relations.
- Natural Join = Cross Product + Selection on common fields
 + drop duplicate fields.

Query revisited using natural join

Query: Find the name of the sailor who reserved boat 101.

Assignment Project Exam Help

Result=
$$\pi_{https://powcoderodom} > Result=\pi_{https://powcoderodom} > Resu$$

Or Add WeChat powcoder

Result=
$$\pi_{Sname}(S1 \bowtie \sigma_{bid=101}(R1))$$

Consider yet another query

Find the sailor(s) who reserved all the red boats.

Assignment Project Exam Help

sid	<u>bid</u>	day https://	//powc	oder.c bid	om color
22	101	10/10/196	VeCha	t1 p qw	crder
22	103	10/11/96		102	Green
58	102	11/12/96		103	Red

R1

Start an attempt

All the red boats:

$$S2 = \pi_{bid}(\sigma_{color=red}(B)) = \begin{bmatrix} \underline{bid} \\ 101 \\ 103 \end{bmatrix}$$

Division

Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have preserved all red boats.

- * Let S1 have 2 fields, x and y; S2 have only field y: $-S1/S2 = \{\langle x | fortali: \langle y \rangle \text{ on } R2 \text{ exists } \langle x, y \rangle \text{ in } R1\}$

 - i.e., S1/S2 contains all xell the Psyifors such that for every y tuple (redboat) in S2, there is an xy tuple in S1 (i.e, xreserved y).
- ❖ In general, *x* and *y* can be any lists of fields; *y* is the list of fields in S2, and $x \cup y$ is the list of fields of S1.

Examples of Division A/B

sno	pno	pno	nno	nno
s1	p1		pno	pno
s1	p2 As	ssignment Project Ex	am He lp	p1 p2
s1	p3		1	<u>p2</u>
s1	p4	https://powcoder.d		$\frac{p_4}{B_3}$
s2	p1	Add WeChat pow	coder	DS
s2	p2	s1		C12 C
s3	p2	s2	sno	sno
s4	p2	s3	s1	$\lfloor s1 \rfloor$
s4	p4	s4	s4	
	À	A/B1	A/B2	<i>A/B3</i>

Find names of sailors who've reserved boat #103

* Solution 1: $\pi_{sname}((\sigma_{bid=103}(\text{Reserves})) \bowtie Sailors)$ Assignment Project Exam Help

* Solution 3: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \times Sailors))$

Find names of sailors who've reserved a red boat

Information about boat color only available in Boats; Assignment Pxojecio Exam Help

solution:

$$\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats) \times Res) \times Sailors)$$

A query optimizer can find this given the first solution!

Find sailors who've reserved a red or a green boat

Can identify all red or green boats, then find sailors who've reserved one of these boats:

Assignment Project Exam Help

Tempboats = \sigma_{\text{httpsol/prw/rede}} \text{Contor} = 'green' (Boats)

Result= π_{sname} (Temperature Sailors)

- Can also define Tempboats using union! (How?)
- ❖ What happens if ∨ is replaced by ∧ in this query?

Find sailors who've reserved a red <u>and</u> a green boat

* Previous approach won't work! Must identify sailors who've reserved red boats, sailors intersection (potential sailors) and the sailors of the s

$$Tempred = \pi \underset{sid}{\text{A(1)}} \text{WeChat pow(Botats)}) \bowtie Reserves)$$

$$Tempgreen = \pi_{sid}((\sigma_{color = 'green'}(Boats)) \bowtie Reserves)$$

$$Result = \pi_{Sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Find the names of sailors who've reserved all boats

* Uses division; schemas of the input relations to / must be carefully thosen: Exam Help

Tempsids =
$$(\pi \text{Sid-bid}(\text{Reserves}))/(\pi_{\text{bid}}(\text{Boats}))$$
Add WeChat powcoder

Result = $\pi_{sname}(\text{Tempsids} \bowtie \text{Sailors})$

* To find sailors who've reserved all 'Interlake' boats:

$$min / \pi_{bid}(\sigma_{bname='Interlake'}(Boats))$$

Summary

- * The relational model has rigorously defined query languagest that jete simple and powerful.
- * Relational attender operational; useful as internal representation for query evaluation plans.
- Several ways of expressing a given query; a query optimizer should choose the most efficient version.