Computer Graphics Assignment 4

* Name:Yongxi Huang Student ID:119033910011 Email: huangyongxi@sjtu.edu.cn

Code will be uploaded to

https://github.com/Riften/SJTU-Computer-Graphics-2020-Assignments after deadline.

1 Question 1

Describe the difference in appearance you would expect between a Phnog illumination model that used $(\bar{N} \cdot \bar{H})^n$ and one that used $(\bar{R} \cdot \bar{V})^n$.

Figure 1.1: Vectors for calculating Phong shading

Solution. The definitions of these vectors are as following

 \bar{L} : Direction to the light source.

 \bar{R} : Direction of reflection.

 \bar{V} : Direction to the viewpoint.

 \bar{N} : Surface normal.

$$\bar{H} = \frac{\bar{L} + \bar{V}}{||\bar{L} + \bar{V}||}$$

Halfway vector between the viewer and light-source vectors

The intuitive way to calculate specular hightlights is $(\bar{R} \cdot \bar{V})^n$. It gets the maximum when $\bar{R} = \bar{V}$, which is in line with common sence. However, $(\bar{N} \cdot \bar{H})^n$ also gets maximum when $\bar{R} = \bar{V}$. That means the brightest position of the specular hightlights is exactly the same when using these two formulas.

But the size and intensity of hightlights would be different. Note that

$$\begin{split} \bar{R} \cdot \bar{V} &= \cos \alpha \\ \bar{N} \cdot \bar{H} &= \cos \beta \\ \beta &= \frac{\alpha + 2\theta}{2} - \theta = \frac{\alpha}{2} \end{split}$$

So there are $\bar{R} \cdot \bar{V} \leq \bar{N} \cdot \bar{H}$, and $\bar{R} \cdot \bar{V} = \bar{N} \cdot \bar{H}$ when $\bar{R} = \bar{V}$. In that case, with the same specular exponent n, Phong illumination model used $(\bar{N} \cdot \bar{H})^n$ would have a larger hightlight area than the one used $(\bar{R} \cdot \bar{V})^n$ as shown in Fig.1.2.

Figure 1.2: Phong illumination model used $(\bar{N} \cdot \bar{H})^n$ and $(\bar{R} \cdot \bar{V})^n$ [1]

In fact, Phong shading using $(\bar{N} \cdot \bar{H})^n$ to calculate specular hightlights is called **Blinn-Phong Shading**[1].

Another appearance difference between Blinn-Phong and Phong shading model occurs when $\alpha > \pi/2$. In that case, $\bar{R} \cdot \bar{V} < 0$ and the specular hightlight would be 0 for Phong shading model. That would generate a sharp border of hightlights when specular exponent n is small as shown in Fig.1.3. In that case, Blinn-Phong is more similar with real sence.

Figure 1.3: Difference between Blinn Phong and Phong shading when n = 1.[2]

2 Question 2

a. Prove that $\alpha = 2\beta$ when all vectors of Fig.1.1 are coplanar.

Solution. That has been shown in Question 1.

When \bar{V} is lower than \bar{R} , there is

$$\beta = \frac{\alpha + 2\theta}{2} - \theta = \frac{\alpha}{2}$$

When \bar{V} is between \bar{L} and \bar{R} , there is

$$\beta = \theta - \frac{2\theta - \alpha}{2} = \frac{\alpha}{2}$$

When \bar{V} is lower than \bar{L} , there is

$$\beta = \theta + \frac{\alpha - 2\theta}{2} = \frac{\alpha}{2}$$

So that $\alpha=2\beta$ when all vectors are coplanar.

b. Prove that this relationship is not true in general.

Figure 2.1: Calculate reflected vector

Solution. The basic idea is that \bar{V} can be seen as the reflected vector of \bar{L} about \bar{H} . First, there is a simple method to calculate reflected vector. As shown in Fig.2.1, there is

$$\begin{split} \bar{X} &= 2(\bar{L} \cdot \bar{N}) \bar{N} \\ \bar{R} &= \bar{X} - \bar{L} \\ &= 2(\bar{L} \cdot \bar{N}) \bar{N} - \bar{L} \end{split}$$

If we see \bar{V} as the reflected vector of \bar{L} about \bar{H} , there is

$$\bar{V} = 2(\bar{L} \cdot \bar{H})\bar{H} - \bar{L}$$

So that

$$\bar{R} \cdot \bar{V} = 2(\bar{L} \cdot \bar{H})(\bar{H} \cdot \bar{R}) - \bar{L} \cdot \bar{R}
= 4(\bar{L} \cdot \bar{N})(\bar{L} \cdot \bar{H})(\bar{N} \cdot \bar{H}) - 2(\bar{L} \cdot \bar{N})^2 - 2(\bar{L} \cdot \bar{H})^2 + \bar{L}^2$$
(2.1)

Define

$$a = -2$$

$$b = 4(\bar{L} \cdot \bar{N})(\bar{N} \cdot \bar{H})$$

$$c = \bar{L}^2 - 2(\bar{L} \cdot \bar{N})^2$$

$$x = \bar{L} \cdot \bar{H}$$

Then equation 2.2 would be

$$\bar{R} \cdot \bar{V} = \cos \alpha = ax^2 + bx + c \tag{2.3}$$

Assume that \bar{H}' is a halfway vector that is not coplanar with $\{L, N, H\}$. It can be seen from a coplanar vector \bar{H} rotating around \bar{N} . Note that when \bar{H} rotating around \bar{N} , $(\bar{N} \cdot \bar{H})$ will remain unchanged.

In that case, when \bar{H} is rotating around \bar{N} , both $\{a,b,c\}$ would be unchanged constant. Only x is changing unless $\bar{L} = \bar{N}$.

So when \bar{H} is rotating around \bar{N} , β will remain unchanged, while α is changed according to equation 2.3. So $\alpha \neq 2\beta$ when \bar{V} is not conplanar with $\{L, N, H\}$.

References

- [1] "Blinn–phong reflection model wikipedia," https://en.wikipedia.org/wiki/Blinn%E2%80% 93Phong_reflection_model.
- [2] "Blog: Blinn-phong," https://www.jianshu.com/p/2294cce3db2c.