

Automatic computation of F

Objective Compute the fundamental matrix between two images.

Algorithm

- (i) Interest points: Compute interest points in each image.
- (ii) Putative correspondences: Compute a set of interest point matches based on proximity and similarity of their intensity neighbourhood.
- (iii) RANSAC robust estimation: Repeat for N samples, where N is determined adaptively as in algorithm 4.5(p121):
 - (a) Select a random sample of 7 correspondences and compute the fundamental matrix F as described in section 11.1.2. There will be one or three real solutions.
 - (b) Calculate the distance d_{\perp} for each putative correspondence.
 - (c) Compute the number of inliers consistent with F by the number of correspondences for which $d_{\perp} < t$ pixels.
 - (d) If there are three real solutions for F the number of inliers is computed for each solution, and the solution with most inliers retained.

Choose the F with the largest number of inliers. In the case of ties choose the solution that has the lowest standard deviation of inliers.

- (iv) Non-linear estimation: re-estimate F from all correspondences classified as inliers by minimizing a cost function, e.g. (11.6), using the Levenberg-Marquardt algorithm of section A6.2(p600).
- (v) Guided matching: Further interest point correspondences are now determined using the estimated F to define a search strip about the epipolar line.

The last two steps can be iterated until the number of correspondences is stable.

Feature points

- Extract feature points to relate images
- Required properties:
 - Well-defined

(i.e. neigboring points should all be different)

Stable across views

(i.e. same 3D point should be extracted as feature for neighboring viewpoints)

Harris Feature points

(e.g.Harris&Stephens´88; Shi&Tomasi´94)

Step 1. Find points that differ as much as possible from all neighboring points

Feature points


```
I1 = rgb2gray(imread("C:\Users\admin\Desktop\imR.png"));
I2 = rgb2gray(imread("C:\Users\admin\Desktop\imL.png"));
points1 = detectHarrisFeatures(I1);
points2 = detectHarrisFeatures(I2);

figure
imshow(I1);
hold on
plot(points1.Location(:,1),points1.Location(:,2),'r+');
figure
imshow(I2);
hold on
plot(points2.Location(:,1),points2.Location(:,2),'r+');
```


Feature matching

Step 2. Match the feature points


```
[features1, valid_points1] = extractFeatures(I1, points1);
[features2, valid_points2] = extractFeatures(I2, points2);
indexPairs = matchFeatures(features1, features2);
matchedPoints1 = valid_points1(indexPairs(:,1),:);
matchedPoints2 = valid_points2(indexPairs(:,2),:);
figure;
showMatchedFeatures(I1, I2, matchedPoints1, matchedPoints2);
```


RANSAC

Step 3. RANSAC: Purpose of RANSAC is to find out and discard the outliers

Do

select minimal sample (e.g. 7 matches) compute solution(s) for F determine inliers until $\Gamma(\#inliers, \#samples) > 95\%$

#inliers	90%	80%	70%	60%	50%
#samples	5	13	35	106	382

Step 4. Compute F based on all inliers

Finding more matches

Step 5. Find more mathes: restrict search range to neighborhood of epipolar line (e.g. ±1.5 pixels) and find more matches, using all matches calculate F.

Repeat step 5 till the number of matches become stable.

Degenerate cases:

- Planar scene
- Pure rotation

