Problem Set 8

Due Friday, October 11th by 5pm

(20 points per question. Please scan and upload to Canvas as a PDF)

Collaborators: Filipe Abrau

Note: Complete the following steps for two of the following three problems given below:

- (I) Regiment the argument in \mathcal{L}^{FOL} . (5pts)
- (II) State whether the argument is valid or invalid. (5pts)
- (III) If the argument is invalid, provide a countermodel along with a semantic argument that proves that the argument is invalid. If the argument is valid, provide a semantic argument that proves that it is valid. (10pts)
 - 1. Laura is in love with the sun. Who loves the sun doesn't have a broken heart. It follows that Laura doesn't have a broken heart.

Proof

(I)

Lx: x is in love with the sun

Bx: x has a broken heart

laura = l

Ll

 $(\forall x)(Lx \to \neg Bx)$

 $\neg Bl$

- (II) Argument is valid
- (III) Proof:
 - 1. Assume a \mathcal{L}^{fol} model $M = \{\mathbb{D}, I\}$ where $V_I(Ll) = 1$.
 - 2. It follows that $\{l\} \in I(L)$ and $\{l\} \in \mathbb{D}^1$ and $l \in \mathbb{D}$
 - 3. Considering some v.a. \hat{a} where $\hat{a}(x) = l$ then $Ll \to \neg Bl$ and therefore $V_I(Ll) \to V_I(\neg Bl)$.
 - 4. Knowing that $V_I(Ll) = 1$ in our model, we know that $1 \to V_I(\neg Bl)$
 - 5. Based on the semantics of \rightarrow we then know that the previous expression equates to $V_I(\neg Bl)$
 - 6. Therefore we can conclude that $\neg Bl$ is proven by the premises \square

2. All who exalted, was converted by a believer. Thus some believer converted someone who exalted.

Proof

(I)

Ex: xextalted

Cxy: x converted y Bx: x is a believer

 $(\forall x)(Ex \to (\exists y)(By \land Cyx))$

$$(\exists x)((\exists y)(By \land Ex \land Cyx))$$

- (II) Argument is invalid in case when no one exalted
- (III) Proof:
 - 1. Assume a \mathcal{L}^{FOL} model $M = \{\mathbb{D}, I\}$ such that $V_I((\forall x)(\neg Ex)) = 1$.
 - 2. It follows that $V_I^{\hat{a}}((\forall x)(\neg Ex)) = 1$ for all v.a. including \hat{a} defined over \mathbb{D} .
 - 3. Accordingly, $V_I^{\hat{a}}(\neg Ea)=1$ and from the semantics, $V_I^{\hat{a}}(Ea)=0$.
 - 4. Using the semantics for \rightarrow we can conclude that $0 \rightarrow \dots = 1$
 - 5. Therefore $V_I^{\hat{a}}(Ea \to (\exists y)(By \land Cya)) = 1$
 - 6. Assuming \hat{c} where $V_I^{\hat{a}}(Bc \wedge Ea \wedge Cca) = 1$.
 - 7. Using the semantics of \wedge , $V_I^{\hat{a}}(Ea)=1$
 - 8. However, previously, $V_I^{\hat{a}}(Ea) = 0$.
 - 9. Therefore argument fails this model and is invalid \square
- 3. Hesperus is rising. Hesperus is Phosphorus. Therefore Phosphorus is rising.