# Einführung in die Analysis

5. Ausgewählte Funktionen und deren Eigenschaften: Vorlesungsinput

Joana Portmann — Fachhochschule Nordwestschweiz

Frühjahrsemester 2021

# 5. Ausgewählte Funktionen und deren Eigenschaften

#### Inhaltsverzeichnis

- Kurzinput: Umkehrfunktionen
- Potenz- und Wurzelfunktion
- Exponential und Logarithmusfunktion
- Trigonometrische Funktionen und Arcusfunktionen





## Definition (Umkehrfunktion)

■ Eine Funktion

$$f: \mathbb{D} \to \mathbb{W}$$
  $x \mapsto f(x) = y$ 

heißt umkehrbar, wenn aus  $x_1 \neq x_2$  stets folgt  $f(x_1) \neq f(x_2)$ .

■ Ist die Funktion umkehrbar, dann gibt es zu jedem  $y \in \mathbb{W}$  genau ein  $x \in \mathbb{D}$ . Diese eindeutige Zuordnung

$$f^{-1}: \mathbb{W} \to \mathbb{D}$$
 
$$y \mapsto f^{-1}(y) = f^{-1}(f(x)) = x$$

wird Umkehrfunktion genannt.

## Anmerkung: Eindeutigkeit (!)



## Beispiel:



## Potenz- und Wurzelfunktionen

## Definition (Potenzfunktionen)

Polynomfunktionen der Form

$$p: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto x^n, \text{ für } n \in \mathbb{N}$$

#### heißen Potenzfunktionen.





## Potenz- und Wurzelfunktionen

## Definition (Wurzelfunktion)

Die Funktion

$$p^{-1}: \mathbb{R} \to \mathbb{R} \text{ für } n \text{ ungerade}$$
 
$$p^{-1}: \mathbb{R}^+ \to \mathbb{R}^+ \text{ für } n \text{ gerade}$$
 
$$x \mapsto \sqrt[n]{x}$$

heißt n-te Wurzelfunktion ( $n \in \mathbb{N}$ ).

## Beispiel:

■ Die Funktion  $p: \mathbb{R}^+ \to \mathbb{R}^+$  mit  $x \mapsto x^2$  hat als Umkehrfunktion

$$p^{-1}: \mathbb{R}^+ \to \mathbb{R}^+ \quad \text{mit} \quad x \mapsto \sqrt{x} = x^{\frac{1}{2}}$$

■ Die Funktion  $p: \mathbb{R} \to \mathbb{R}$  mit  $x \mapsto x^3$  hat als Umkehrfunktion

$$p^{-1}: \mathbb{R} \to \mathbb{R} \quad \text{mit} \quad x \mapsto \sqrt[3]{x} = x^{\frac{1}{3}}$$

## Potenz- und Wurzelfunktionen

Approximation von beliebigen Funktionen:

Taylorpolynome

# Exponential- und Logarithmusfunktion

## Definition (Exponentialfunktion)

Die Funktion

$$f: \mathbb{R} \; o \; \mathbb{R}$$
  $x \; \mapsto \; e^x \; ext{mit} \; e = 2.718281828 \ldots \; ext{Eulersche Zahl}$ 

#### heißt Exponentialfunktion



# Exponential- und Logarithmusfunktion

# Satz (Rechenregeln der Exponentialfunktion)

- $e^0 = 1$
- $e^{x+y} = e^x \cdot e^y$
- $e^{-x} = (e^x)^{-1} = \frac{1}{e^x}$
- $e^{nx} = (e^x)^n$
- $\bullet^{\frac{1}{n}} = \sqrt[n]{e}$

# Exponentialfunktion

#### Schnelles Wachstum:

- Schachparabel
- 2 Papierfalten
- 3 Der unmögliche Hamster
- 4 Exponentielles vs. lineares Wachstum
- 5 Fibonacchizahlen

# Exponential- und Logarithmusfunktion

## Definition (Logarithmusfunktion)

Die Umkehrfunktion zur Exponentialfunktion wird **natürliche Logarithmusfunktion** genannt:

$$f: \mathbb{R}^+ \to \mathbb{R}$$

$$x \mapsto \ln x$$



# Exponential- und Logarithmusfunktion

## Satz (Rechenregeln der Logarithmusfunktion)

- $\ln(1) = 0$

# Logarithmusfunktion

#### Anwendungen:

- 1 Darstellen von Wertebereiche über viele Grössenordnungen
- 2 Kryptologie
- 3 Informationstheorie
- $\Rightarrow$  Wikipedia

## Winkel

- Positive Winkel werden immer im Gegenuhrzeigersinn gemessen.
- Die Angabe des Winkels im Bogenmaß (Radiant) entspricht der Länge des Kreisbogens, den die Schenkel aus dem Einheitskreis ausschneiden.



#### Umrechnungstabelle:

| Gradmaß : $\alpha$   | 0° | 30°             | 45°             | 60°             | 90°             | 180°  | 270°             | 360°   |
|----------------------|----|-----------------|-----------------|-----------------|-----------------|-------|------------------|--------|
| Bogenmaß : $s$ (rad) | 0  | $\frac{\pi}{6}$ | $\frac{\pi}{4}$ | $\frac{\pi}{3}$ | $\frac{\pi}{2}$ | $\pi$ | $\frac{3\pi}{2}$ | $2\pi$ |

# Trigonometrische Funktionen im rechtwinkligen Dreieck

## Definition (Trigonometrische Funktionen im rechtwinkligen Dreieck)



- Sinus:  $\sin(\alpha) = \frac{\text{Gegenkathete}}{\text{Hypothenuse}} = \frac{a}{c}$
- Cosinus:  $cos(\alpha) = \frac{Ankathete}{Hypothenuse} = \frac{b}{c}$
- Tangens:  $tan(\alpha) = \frac{\text{Gegenkathete}}{\text{Ankathete}} = \frac{a}{b}$
- Cotangens:

$$\cot(\alpha) = \frac{1}{\tan(\alpha)} = \frac{\text{Ankathete}}{\text{Gegenkathete}} = \frac{b}{a}$$

# Tringonometrische Funktionen

Zwischen den trigonometrischen Funktionen gelten die Folgenden, für Berechnungen sehr oft nützlichen Zusammenhänge:

 $\sin^2(\alpha) + \cos^2(\alpha) = 1$  (trigonometrischer Pythagoras)

# Trigonometrische Funktionen

# Definition (Trigonometrische Funktionen im beliebigen Dreieck) A cos α C x

## Sinus- und Cosinusfunktion

## Definition (Sinus- und Cosinusfunktion)

$$\sin : \mathbb{R} \to [-1, 1], \qquad \cos : \mathbb{R} \to [-1, 1],$$
  
 $x \mapsto \sin(x) \qquad x \mapsto \cos(x)$ 



# Sinus- und Cosinusfunktion — Funktionsgraph

#### Anmerkungen:

Sinus- und Cosinusfunktion sind beschränkt:

$$-1 \le \sin(x), \cos(x) \le 1$$

- $\blacksquare$  Die Werte für x im Argument der Funktionen  $\sin(x)$  bzw.  $\cos(x)$  werden im Bogenmaß angegeben
- Sinus- und Cosinusfunktion sind **periodisch** mit der Periode  $2\pi$ , d.h. es gilt  $f(x) = f(x + k \cdot 2\pi), \quad k \in \mathbb{Z}$
- Die Funktionsgraphen von Sinus- und Cosinusfunktion sind **kongruent**. Durch Verschiebung um  $\frac{\pi}{2}$  nach links, geht die Cosinus-Kurve aus der Sinus-Kurve hervor.

# Eigenschaften der Sinusfunktion

#### Anwendungen:

- Periodische Vorgänge
- 2 The most unexpected answer to a counting puzzle