8.0 2, 3, 4, 5, 6, 7.

Find the characteristic polynomial and the minimal polynomial of the operator N in Example 8.54.

The minimal polynomial is plat= 23.

Suppose $N \in \mathcal{L}(V)$ is nilpotent. Prove that the minimal polynomial of N is z^{m+1} , where m is the length of the longest consecutive string of 1's that appears on the line directly above the diagonal in the matrix of N with respect to any Jordan basis for N.

 $J = \begin{pmatrix} J_{1}(u) & & & \\ J_{2}(0) & & & \\ & &$

Jk=0 台 Jku)=0 台 kァmH ie. Jk=の 抽象が動とっかけ

so the minimal polynomial of N is ZMH

Suppose $T \in \mathcal{L}(V)$ and v_1, \ldots, v_n is a basis of V that is a Jordan basis for T. Describe the matrix of T with respect to the basis v_n, \ldots, v_1 obtained by reversing the order of the v's.

$$\mathcal{U}(T; V_1, \dots, V_n) = \begin{pmatrix} 2n & 1 & 1 \\ & 2n & \\ & & 2n & \\ & & & 2n & \\ & & & & 2n & \\ & & & & & 2n & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

Suppose $T \in \mathcal{L}(V)$ and v_1, \dots, v_n is a basis of V that is a Jordan basis for T. Describe the matrix of T^2 with respect to this basis.

$$\mathcal{M}(T; V_1, \dots, V_n) = \begin{pmatrix} J(2n) \\ J(2n) \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_3 \end{pmatrix} = \begin{pmatrix}$$

Suppose $N \in \mathcal{L}(V)$ is nilpotent and v_1, \ldots, v_n and m_1, \ldots, m_n are as in 8.55. Prove that $N^{m_1}v_1, \ldots, N^{m_n}v_n$ is a basis of null N. [The exercise above implies that n, which equals dim null N, depends only on N and not on the specific Jordan basis chosen for N.]

Suppose $p, q \in \mathcal{P}(\mathbb{C})$ are monic polynomials with the same zeros and q is a polynomial multiple of p. Prove that there exists $T \in \mathcal{L}(C^{\deg q})$ such that the characteristic polynomial of T is q and the minimal polynomial of T is p.

Suppose $P(z)=(z-\lambda_1)^{d_1}\cdots(z-\lambda_m)^{d_m}$, $Q(z)=(z-\lambda_1)^{k_1}\cdots(z-\lambda_m)^{k_m}$ $k \in \mathbb{Z}$, $k \in \mathbb{Z}$, $k \in \mathbb{Z}$, $k \in \mathbb{Z}$

There with a basis of V sit.

$$MCT_{2}V_{1},...,V_{n}) = \begin{pmatrix} J(\alpha_{1}) \\ & \ddots \\ & & \end{pmatrix}$$

 $T(\lambda_{1}) = \begin{pmatrix} \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \lambda_{4} & \lambda_{4} & \lambda_{4} \end{pmatrix}$ whose 1 appears de-

J(Air) = () Air () where 1 appears did times.

minimal polyonimal: (2-22) dz -> =1 dz P1j Jordan tak