Math Sec 3.3

Rex McArthur Math 344

October 9, 2015

Exercise. 3.12

The Gram Schmidt would yield zero vectors, because they are linearly dependent, and are just linear combinations of one another.

Exercise. 3.13 Let
$$x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
, and $x_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Thus, the normalized x_1 is $v_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ Now applying the Gram-Schmidt, we find that

$$\mathbf{p}_1 = \operatorname{proj}_{v_1}(x_2) = \langle \mathbf{v_1}, \mathbf{x_2} \rangle \mathbf{v_1} = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$$
 (1)

Thus,

$$q_2 = \frac{\mathbf{x_2} - \mathbf{p_1}}{\|\mathbf{x_2} - \mathbf{p_1}\|} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix}$$

The set of orothonomral vectors are $\left\{ \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} \end{bmatrix} \right\}$

Exercise. 3.14

consider the set $\{1, x, x^2, x^3\}$. Using the Chebyshev inner product, we have that $u_1 = \frac{1}{\sqrt{\pi}}$. Note, 1, x are orthogonal to eachoter, because their inner product is zero, thus we can just normalize x to find

 $u_2 = \frac{x}{\sqrt{\pi/2}}$ By applying the Gram-Shmidt process on u_2 and x^2 we find that

 $v_3 = x^2 - \frac{1}{2}$, and we can normalize that to get $u_3 = \frac{x^2 - \frac{1}{2}}{\sqrt{\frac{\pi}{8}}}$ By applying the Gram-

Shmidt process on u_3 and x^3 we find that, $v_4 = x^3 - \frac{3}{4}x$, and by normalizing we obtain $u_4 = \frac{x^3 - \frac{3}{4}x}{\sqrt{\frac{7\pi}{8}}}.$

Thus, the set of orthonormal basis vectors for this set is $(\frac{1}{\sqrt{\pi}}, \frac{x}{\sqrt{\pi/2}}, \frac{x^2 - \frac{1}{2}}{\sqrt{\pi/8}}, \frac{x^3 - \frac{3}{4}x}{\sqrt{\frac{7\pi}{8}}})$

$$\left(\frac{1}{\sqrt{\pi}}, \frac{x}{\sqrt{\pi/2}}, \frac{x^2 - \frac{1}{2}}{\sqrt{\pi/8}}, \frac{x^3 - \frac{3}{4}x}{\sqrt{\frac{7\pi}{8}}}\right)$$