Skolornas Matematiktävling

Svenska Dagbladet Svenska Matematikersamfundet

Kvalificeringstävling den 10 oktober 1974

- 1. Bestäm alla x > 0 som satisfierar $(x\sqrt{x})^x = x^{x\sqrt{x}}$.
- 2. Bestäm alla primtal p sådana att $\sqrt{5p+49}$ är ett heltal.
- 3. En vinkel α har spetsen i punkten P. Man har $0<\alpha<90^\circ$. Från en punkt A på ena vinkelbenet dras en linje vinkelrätt mot det andra vinkelbenet. Låt skärningspunkten vara B. På linjen genom A parallell med PB väljs en punkt C så att linjen genom P och C skär sträckan AB i en punkt D. Antag att C valts så att sträckan CD är dubbelt så lång som sträckan PA. Visa att då är vinkeln β mellan PB och PC lika med $\frac{\alpha}{3}$.
- 4. Betrakta i ett rätvinkligt koordinatsystem alla rektanglar ABCD med följande egenskaper:
 - a) A ligger i origo, B på positiva x-axeln och D på positiva y-axeln.
 - b) Sidan AB är en längdenhet längre än sidan AD. Visa att normalen från C mot diagonalen BD för alla sådana rektanglar går genom en fix punkt.
- 5. Låt p vara ett reellt tal. Visa att om ekvationen $x^3 + px 2 = 0$ har en reell rot utanför intervallet [0, 2] så har ekvationen tre reella rötter.
- 6. En talföljd a_0, a_1, a_2, \ldots är given genom att $a_0 = 0$ och

$$a_{n+1} = 5a_n + \sqrt{24a_n^2 + 1}$$
 $(n \ge 0)$.

Visa att alla tal i följden är heltal.