Introduction to Digital Systems (21L)

ELab4: Static Random Access Memory (SRAM)

Please do not edit this report in Teams Files, download it locally on your computer.

Name:			Student Numbe	r: Da	Date:								
Questions (0.6 pts)													
Please ans	wer these	questions	as shortly as possible (pre	eferably one senten	ice)								
	happens tow state? (() a. Why Ans:).1p)	outs of set/reset flip-flop (built of NAND gates	s) when both inputs are in								
Ans:	is the diffe		ween a D-type latch and a	a D-type flip-flop? (0.2p)								
	L – I	ow state, H	tion of typical SRAM (basing – high state, X – don't care,	High-Z – high impedo	ance state								
CS	ŌĒ	WE	Mode Chin decalested	I/O Pin	Power								
L	Н	Н	Chip deselected		Standby								
	11	11		Data in	Active								
			Read										
			ate buffer (1 pt + 0.7 bon	us)									
Please <mark>fill</mark>	the underli	ned space	S.										
To write d	igits 0-9 in	SRAM I ne	ed bits of data.										
My Stude	nt Number	has	_ digits, so I need	address bits to sto	re its digits in SRAM.								
The memo	orv content	is shown	in Table 2.										

Table 2. My Student Number and the corresponding digits stored under specified addresses (fill as many columns as you need).

My Student number	SRAM address	0	1	2	3	 	 •••	•••
	SRAM data							

Falstad2. SRAM (read-only) and multiplex display

In Figure 1 I present my decoded message from task Falstad2.

the Introduction to Digital Systems course was completed on my own.

I declare that this piece of work which is the basis for recognition of achieving learning outcomes in