과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명
≻Intro	• 내 손안의 AI 눈, 이미지 분류의 마법	① 본 학습 내용으로 들 어가기 전, <mark>학습 주제</mark>
•학습열기	우리는 매일 수많은 이미지를 접하고, 그 안에서 의미 있는 정보를 찾아냅니다. 사람에게는 너	<mark>의 흥미를 이끌 만한</mark> 도입부의 내용이 있
•학습목표	무나 자연스러운 이 과정이, 컴퓨터에게는 엄청나게 복잡한 과제였습니다. 하지만 이제는 인	도립구의 대용이 있 다면 제시해주세요.
> 학습하기 1. CIFAR-10 데	공지능이 마치 사람처럼 이미지를 '보고' '이해'하고 '분류'할 수 있게 되었습니다.오늘 우리는 이러한 이미지 분류의 핵심 기술인 CNN(Convolutional Neural Network), 즉 합성곱 신경망에	② ex. 관련 뉴스기사, 실생활과 관련된 이 야기 등
이터 전처리 2. CNN 구현	대해 알아보는 시간을 가질 것입니다. 특히, 파이토치(PyTorch)라는 강력한 딥러닝 프레임워크 를 활용하여, 컴퓨터가 어떻게 수많은 컬러 이미지를 정확하게 분류할 수 있는지 그 원리와	③ 저작권 침해가 되지 않도록 내용을 구성
(전반부)	실제 구현 방법을 깊이 있게 탐구해 볼 예정입니다. 데이터를 어떻게 준비하고, 모델은 어떻게	해 주세요.
	설계하며, 학습 과정에서 발생할 수 있는 문제들을 어떻게 해결하는지 등, 마치 여러분이 인공지능 모델에게 '눈'을 만들어주는 과정이라고 생각하시면 흥미를 느끼실 겁니다. 여러분의 손끝에서 인공지능이 이미지를 인식하고 분류하는 마법 같은 경험을 직접 구현해 볼 준비가 되셨나요? 함께 그 비밀을 파헤쳐 봅시다!	④ 출처가 있을 경우 반 드시 작성해 주세요.
▶적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션	3	2

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	8		화면설명
≻Intro				(Î	학습내용과 학습목표 는 강의계획서와 일
•학습열기					지해야 하며, 필요시 강의계획서를 수정할
•학습목표	◈ 학습목표				수 있습니다.
▶학습하기	1. 데이터 증강 및 정규화 기법을 적용	할 수 있다.		-	<mark>학습목표</mark>
1. CIFAR-10 데 이터 전처리	2. 합성곱 층과 풀링 층을 활용하여 모델		- 있다.		각 레슨에 맞는 학습 목표를 2~3개 작성 해 주세요.
2. CNN 구현 (전반부)) <mark>학습내용</mark>
				✓	1회차 당 25분 분량 이 되도록 2~3개 레 슨으로 구성해주세요.
	◈ 학습내용			✓	학습내용과 레슨명은 일치해야 합니다.
	1. CIFAR-10 데이터 전처리				오시서대
▶적용하기	2. CNN 구현 (전반부)				용어설명
≻Outro					
•문제풀기					
내					
레 이			4		
션					
					4

PyTorch로 배우는 머신러닝	알고리즘	회차명	8		화면설명
	간지				
	CIFAF	R-10 데 C	이터 전처리		
	• • • • • • • • • • • • • • • • • • •	"			
					용어설명
				5	
					5
	PyTorch로 배우는 머신러닝	PyTorch로 배우는 머신러닝 알고리즘 간지 CIFAF	간지		간지 CIFAR-10 데이터 전처리

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	8	화면설명
≻Intro	• 데이터 전처리와 CNN 구현			
•학습열기	필요한 라이브러리 메모리 로드			
•학습목표				
▶학습하기	import torch			
1. CIFAR-10 데 이터 전처리	import torch.nn as nn			
2. CNN 구현 (전반부)	<pre>import torch.optim as opt import torchvision import torchvision.transf import matplotlib.pyplot import numpy as np from torchsummary import</pre>	forms as as plt		
▶ 적용하기				용어설명
≻Outro				
•문제풀기				
내 레 이 션			6	6

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명
≻Intro	• 데이터 전처리 구성 함수: transforms.Compose([])	
•학습열기	전처리 모듈에서 여러 개의 변환 작업(transforms)을 순서대로 묶어주는 함수	
•학습목표	전처리 파이프라인 전체를 구성: 여러 단계의 이미지 처리 로직이 순차적으로 수행	
▶학습하기	리스트 형태로 묶어서 하나의 통합 변환 함수처럼 작동하게 만드는 도구	
1. CIFAR-10 데 이터 전처리 2. CNN 구현	아직 데이터가 없어도, 앞으로 들어올 데이터를 어떻게 전처리할지 미리 정의해두는 전 처리 파이프라인을 만드는 방법으로, 일종의 설계도이자 가공기계 준비 작업	
(전반부)	실제 데이터는 나중에 DataLoader를 통해 들어와서 이 파이프라인을 거치게 됨	
	# 1. 데이터 전처리 transform train = transforms.Compose([
	transforms.RandomHorizontalFlip(), # 데이터 증강 transforms.RandomCrop(32, padding=4), # 데이터 증강 transforms.ToTensor(), # 데이터 스케일 조정	
▶적용하기	transforms.Normalize((0.4914, 0.4822, 0.4465), # 데이터 정규화 (0.2023, 0.1994, 0.2010))	용어설명
≻Outro])	
•문제풀기	<pre>trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform_train)</pre>	
내 레 이 션	7	7

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명
≽Intro ৯১০৫ন	• 이미지 데이터를 학습용(train)과 테스트용(test)으로 전처리 설계	
•학습열기 •학습목표	이미지를 모델이 잘 학습하도록 변환하는 표준 절차 transforms.Compose를 사용	
▷ 학습하기 1. CIFAR-10 데	학습용은 데이터 증강(data augmentation)을 수행 테스트용은 정규화만 수행	
이터 전처리 2. CNN 구현 (전반부)	# 1. 데이터 전처리 transform_train = transforms.Compose([transforms.RandomHorizontalFlip(), # 데이터 증강 transforms.RandomCrop(32, padding=4), # 데이터 증강 transforms.ToTensor(), # 데이터 스케일 조정 transforms.Normalize((0.4914, 0.4822, 0.4465), # 데이터 정규화	
≽적용하기	transform test = transforms.Compose([용어설명
➤ Outro •문제풀기	transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465),	
내 레 이 션	8	8

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	8	화면설명
≻Intro	• 데이터 전처리 설계 구현 1			
•학습열기	transform_train = transforms.Compo	se([])		
•학습목표	학습 데이터에 대해 순차적으로 적용	할 여러 전치	l리 작업을 설계	
▶학습하기	transforms.RandomHorizontalFl	ip(): 50% 확	률로 이미지를 좌우로 뒤집음	
1. CIFAR-10 데 이터 전처리	데이터 다양성 증가 →	· 과적합 방기	지에 도움	
2. CNN 구현 (전반부)	그 후 무작위로 32×32	크기로 잘	실래 이미지 주변에 4픽셀 패딩(0으로 채움) 추 라(crop) 냄 → 위치 변화에 대한 일반화 능력 향상	가
▶적용하기	# 1. 데이터 전처리 transform_train = transforms transforms.RandomHorizon transforms.RandomCrop(32	talFlip(),	# 데이터 증강	용어설명
≻Outro	transforms.ToTensor(),		# 네이더 스케럴 소경	
•문제풀기])			
내 레 이 션			9	<u>,</u>

과정명	PyTorch로 배우는 머신러닝 알고리즘	회차명	8		화면설명
≻Intro	• 데이터 전처리 설계 구현 2				
•학습열기	transform_train = transforms.Compo	se([])			
•학습목표	학습 데이터에 대해 순차적으로 적용학	할 여러 전치	l리 작업을 설계		
▷학습하기	transforms.ToTensor()				
1. CIFAR-10 데 이터 전처리	이미지나 NumPy 배열	을 PyTorch	Tensor로 변환		
2. CNN 구현 (전반부)	[0, 255] 범위의 픽셀 집	값을 [0.0, 1.0)] 범위로 스케일링		
	# 1. 데이터 전처리 transform_train = transforms transforms.RandomHorizor transforms.RandomCrop(32 transforms.ToTensor(),	ntalFlip()	, # 데이터 증강		
▶적용하기])				용어설명
≻Outro					
•문제풀기					
내 레 이 션				10	1

과정명	PyTorch로 배우는 머신러닝	알고리즘 회	차명 8		화면설명		
≻Intro	• 데이터 정규화: transfo						
•학습열기	각 채널(R, G, B)의 평균과 표준편차로 정규화(평균을 빼고 표준편차로 나눠서)						
•학습목표	CIFAR-10 데이터스	넨의 R, G, B 채널별	평균과 표준편차를	· 의미			
> 학습하기 1. CIFAR-10 데 이터 전처리	이는 데이터를 모' 진행되도록 돕는 학		돌화(normalization)	하여 학습이 더 안정되고 빠르게	41		
2. CNN 구현	채널	평균 (mean)	표준편차 (std)				
(전반부)	R	0.4914	0.2023				
	G	0.4822	0.1994				
	В	0.4465	0.2010				
▶적용하기	# 1. 데이터 전처리 transform_train = transforms.Compose([
➤Outro •문제풀기	transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))						
내 레 이 션				11	·		

과정명	PyTorch로 배우는 머신러닝	알고리즘	회차명	8		화면설명
≻Intro						
•학습열기						
•학습목표		-1-1				
▶학습하기		간지				
1. CIFAR-10 데 이터 전처리						
2. CNN 구현 (전반부)						
(==:/		CI	NN 구현	(전반부)		
► 저 유 ☆기	,					용어설명
▶적용하기						0 120
≻Outro						
•문제풀기						
내						
내 레 이 션					12	
션						1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명
≻Intro	• CNN을 구성하는 합성곱 층 이해	
•학습열기	첫 층을 합성곱 → 배치 정규화 → ReLU 활성화 → 풀링 순서로 작동하게 구성	
•학습목표	# 2. CNN 모델 정의 class SimpleCNN(nn.Module):	
➤ 학습하기 1. CIFAR-10 데 이터 전처리 2. CNN 구현 (전반부)	definit(self): super(SimpleCNN, self)init() self.layer1 = nn.Sequential(# 채널 수, 출력 필터인 feature map 수, 커널(필터)의 크기, 패딩 픽셀 수 # 내부적으로 (채널 수 × feature map 수) 만큼의 커널(필터)를 생성 # nn.Conv2d(3, 32, 3, padding=1), nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1),	
	# 학습 중에 각 채널(feature map)의 평균과 분산을 정규화 # 학습 안정화, 수렴 속도 증가, 과적합 방지 효과 nn.BatchNorm2d(32),	
≻적용하기	# 비선형 활성화 함수 (Rectified Linear Unit) # 음수는 0, 양수는 그대로 통과	용어설명
≻Outro	nn.ReLU(),	
•문제풀기	# 2×2 크기의 창(window)을 사용해, 그 안에서 최댓값만 추출 # 32×32 → 16×16로 줄어듦 nn.MaxPool2d(2))	
내 레 이 션		1

0|

션

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명
≻Intro	• 필터 하나의 가중치(패러미터) 수 이해	
•학습열기	Conv2d는 필터 하나당 (입력 채널 수 × 필터 크기 × 필터 크기)의 가중치를 가짐	
•학습목표	여기선 필터 하나는 3채널 입력 각각에 대해 3×3 커널을 가짐	
▶학습하기	3개의 3×3 커널 → 총 (3×3×3 = 27 + 1(bias)) 개의 가중치	
1. CIFAR-10 데 이터 전처리	필터 수만큼의 편향(bias) 값이 있음	
2. CNN 구현	이런 필터가 32개 있음 → 그래서 출력은 32채널로 구성됨	
(전반부)	• "입력의 R, G, B를 각각 3×3씩 보고, 그걸 하나의 숫자로 압축해서 피처 맵 하나를 만 드는 작업을 32번 반복"하는 것	
	컨볼루션 패라미터 수 = 커널사이즈² × 커널수 × 채널(색상) + 커널수(bias)	
▶적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션	16	1

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명	
≻Intro	• 패러미터 수		
•학습열기	nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1),		
•학습목표			
	· · · · · · · · 항목 · · · · · · · · · · ·		
⇒학습하기	커널 크기 3×3		
1. CIFAR-10 데 이터 전처리	입력 채널 수 3		
2. CNN 구현	출력 채널 수 32		
(전반부)	총 커널 수 3×32 = 96개		
	총 파라미터 수 96 × 3×3 + 32 (bias) = 864 + 32 = 896개		
▶ 적용하기 ▶Outro •문제풀기	컨볼루션 패라미터 수 = 커널사이즈 ² * 커널수 * 채널(색상) + 커널수(bias) = (3 × 3) × 32 * 3 + 32 = 896	용어설명	
내 레 이 션	17	1	

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명		
≻Intro	• 32개의 출력 채널(feature map)에 대해 각각 정규화(normalization)를 수행하는 계층			
•학습열기	nn.BatchNorm2d(32)			
•학습목표	학습 가능한 두 개의 파라미터(γ, β)를 각 채널마다 가지고 있어서, 학습 중 스케일과 이동을			
▶학습하기	조정 가능: 32*2 = 64개의 패러미터가 필요			
1. CIFAR-10 데 이터 전처리	즉, 단순 정규화가 아니라, 학습 가능한 정규화라고 보면 됨			
2. CNN 구현	신경망 학습 과정에서는 일반적으로 전체 데이터가 아닌 배치 단위로 학습이 진행			
(전반부)	각 배치의 분포가 다르면 내부 (공변량 변화) 문제 발생 가능성			
	즉, 학습 과정에서 데이터 분포가 바뀌어 네트워크의 다음 계층이 학습하기 어려워 짐			
	일괄 정규화는 데이터를 평균이 0이고 분산이 1인 정규 분포로 강제로 되돌임			
	배치 정규화에서는 데이터 분포를 일관되게 만들고 , 다른 한편으로는 기울기가 사라지			
≽적용하기	는 것을 방지	용어설명		
≻Outro	# 학습 중에 각 채널(feature map)의 평균과 분산을 정규화 # 학습 안정화, 수렴 속도 증가, 과적합 방지 효과			
•문제풀기	# 역합 한영화, 구함 역포 경기, 최역합 경제 효과 nn.BatchNorm2d(32),			
내				
이	18			
션		1		

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명	
≻Intro	• 풀링(pooling) 층 구성		
•학습열기	피처 맵(feature map)의 공간 크기를 줄이기 위해 사용		
•학습목표	최대 풀링(max pooling) 연산		
▶학습하기 1. CIFAR-10 데 이터 전처리	입력 피처 맵에서 일정한 크기의 창(window)을 이동시키며 그 영역 안의 최댓값만 뽑는 연산		
2. CNN 구현 (전반부)	대표적인 downsampling 기법 불필요한 정보(작은 값) 버리고, 가장 두드러진 특징만 남김		
▶적용하기	# 2×2 크기의 창(window)을 사용해, 그 안에서 최댓값만 추출 # 32×32 → 16×16로 줄어듦 nn.MaxPool2d(2))	용어설명	
➤ Outro •문제풀기			
내 레 이 션	19	1	

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명	
≻Intro	• CNN의 두 번째 합성곱 층: self.layer2		
•학습열기	32 채널 입력(feature map)을 받아 64 채널로 확장		
•학습목표	BatchNorm, ReLU, MaxPooling을 통해 정규화, 비선형 처리, 공간 축소를 수행		
▶학습하기	결과적으로 특징(feature)의 추상화 수준이 더 깊어지고, 크기는 또 절반으로 줄어듦		
1. CIFAR-10 데 이터 전처리	이미지 크기가 16×16에서 8×8로 줄어들고(풀링으로), 채널 수는 64개(Conv2D로)로 증가		
2. CNN 구현 (전반부)	# 2. CNN 모델 정의 class SimpleCNN(nn.Module): def init (self):		
	super(SimpleCNN, self)init() self.layer1 = nn.Sequential(# 채널 수, 출력 필터인 feature map 수, 커널(필터)의 크기, 패딩 픽셀 수 # 내부적으로 (채널 수 × feature map 수) 만큼의 커널(필터)를 생성 # nn.Conv2d(3, 32, 3, padding=1),		
≻적용하기	<pre>nn.Conv2d(in_channels=3, out_channels=32, kernel_size=3, padding=1),</pre>	용어설명	
≻Outro	<pre>self.layer2 = nn.Sequential(</pre>		
•문제풀기	<pre>nn.Conv2d(32, 64, 3, padding=1), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2))</pre>		
내 레 이 션	20	2	

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명
≻Intro	• CNN 모델에서 세 번째 합성곱 층: self.layer3	
•학습열기	64채널 입력을 받아 128채널로 확장	
•학습목표	ReLU, 배치 정규화, 최대 풀링(MaxPooling)을 통해 특징을 더 고차원적으로 추상화	
▶학습하기 1. CIFAR-10 데 이터 전처리	출력 공간 크기를 다시 절반(8×8 → 4×4)으로 줄이는 계층	
2. CNN 구현 (전반부)	self.layer3 = nn.Sequential(
▶ 적용하기		용어설명
≻Outro		
•문제풀기		
내 레 이 션	21	2

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명 8	화면설명			
≻Intro	• 마지막 완전 연결층(Fully Connected layer)				
•학습열기	self.fc = nn.Linear(128 * 4 * 4, 10)				
•학습목표	앞서 추출한 추상화된 특징들을 기반으로 분류 결정(score 계산)을 내리는 단계				
▶학습하기	CNN의 마지막 출력 feature map을 평탄화(flatten)한 후				
1. CIFAR-10 데 이터 전처리	4 × 4의 피처 맵이 128개이므로 입력이 128 × 4 × 4 = 2048				
2. CNN 구현	10개의 클래스(예: CIFAR-10)*에 대한 최종 분류를 수행				
(전반부)	출력 차원 10: 분류하고자 하는 클래스 수를 의미				
	CIFAR-10이라면 10개 (비행기, 자동차, 고양이, 개,)				
	결과적으로, 이 계층은 2048차원 → 10차원으로 변환하는 선형 연산을 수행				
▶적용하기	self.fc = nn.Linear(128 * 4 * 4, 10)				
≻Outro					
•문제풀기					
내					
레 이	22				
션		2			

과정명	PyTorch로 배우는 머신러닝 알고리즘 회차명	8	화면설명
● Intro ●학습열기 ●학습목표 ●학습하기 1. CIFAR-10 데 이터 전처리 2. CNN 구현 (전반부)	• 학습한 CNN 모델은 세 개의 합성곱 층과 된다. 이 모델을 이용하여 실제 의료 이미지(기존 CIFAR-10 모델 구조를 그대로 사용하다면 어떻게 구조를 수정해야 하는지 구체터 특성, 오버피팅/언더피팅 문제, 성능 개인 적절하지 않은 이유 1. CIFAR-10은 컬러(RGB) 이미지이며, 등 (1채널)이고 크기가 큽니다. 따라서 in	하나의 완전 연결층으로 구성되어 있습니 예: 흉부 X-ray)를 분류한다고 가정할 때, 는 것이 적절한지 분석하고, 적절하지 않 적으로 서술해 주십시오.(모델 구조, 데이	① 학습 내용과 관련하여 실제 적용력을 높일 수 있는 문제, 혹은 주제를 작성해 주세요. ② ex. 사례 제시 후 전문가 의견, 실습과제, 응용예시 시뮬레이션등 ③ 저작권 침해가 되지않도록 내용을 구성해 주세요. ④ 출처가 있을 경우 반드시 작성해 주세요.
▶적용하기 ▶Outro	1. in_channels=1로 수정하여 흑백 이미 2. 합성곱 층을 5~6개로 늘려 더 많은 특		용어설명
•문제풀기	3. Dropout, Regularization 등을 통해 고 4. 데이터 증강을 통해 훈련 데이터의 디		
내 레 이 션		24	2