- 1. Implement the Householder QR algorithm on a thin rectangular matrix $A \in \mathbb{R}^{m \times n}$ (where $m \ge n$). As part of this, implement a routine for computing Qb and Q^Tb where Q is the unitary matrix obtained using Householder QR algorithm and $b \in \mathbb{R}^{m \times 1}$ is any vector. Perform the detailed complexity analysis for obtaining the QR decomposition. Recall that in the case of Householder QR, we never explicitly construct the matrix Q; We only store the reflectors of appropriate size.
- 2. Using the above implementaion, write a program to compute the least square solution x_{LS} such that $||Ax b||_2$ is minimized, where $A \in \mathbb{R}^{m \times n}$ with $m \ge n$ and $b \in \mathbb{R}^{m \times n}$.
- 3. Using the above implementaion, write a program to compute the least norm solution x_{LN} such that Ax = b and $||x||_1$ is minimized, where $A \in \mathbb{R}^{m \times n}$ with $m \le n$ and $b \in \mathbb{R}^{m \times n}$.
- 4. Problem 1 from Chapter 11 of Trefethen and Bau.

Let $A \in \mathbb{R}^{m \times n}$, where $m \geq n$. The pseudo inverse of A is defined as $A^+ = (A^T A)^{-1} A^T$. If $A = \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$, where A_1 is a square matrix, prove that

$$||A^+||_2 \le ||A_1^{-1}||_2$$

- 5. Problem 2 from Chapter 11 of Trefethen and Bau.
- 6. Problem 3 from Chapter 11 of Trefethen and Bau.