AD A 102306

SD-TR-81-32

HAZARDOUS WASTE INVENTORY AND DISPOSAL ASSESSMENT FOR THE SPACE SHUTTLE PROJECT

VOLUME I. INVENTORY FINAL REPORT

SCS ENGINEERS 4014 LONG BEACH BOULEVARD LONG BEACH, CALIFORNIA 90807

MARCH 1981

Approved for public release; distribution unlimited.

THE FILE CORING

PREPARED FOR

DEPARTMENT OF THE AIR FORCE HQ SPACE DIVISION (AFSC) (DEK) P.O. SX 92960, WORLDWAY POSTAL CENTER LOS ANGELES, CALIFORNIA 90009

81 8 03 018

PREFACE

This report was prepared by SCS Consulting Engineers, Inc., Long Beach, California 90807. This Hazardous Waste inventory and Disposal Assessment was initiated by the Air Force to meet the requirements of the Resource Conservation and Recovery act of 1976 as amended in 40 CFR 261 & 264 May 19, 1980, and the California Administrative Code, title 22 Division 4. The report will be used as a reference document to the 1978 Space Shuttle Supplement 1. It will also be used for hazardous waste reporting to EPA/California, for hazardous waste management planning, and for engineering design concepts for the STS.

The report is in three volumes. Volume I is an inventory of hazardous wastes likely to be generated by the West Coast STS project. Volume II is an analysis of recycle, treatment, and disposal options for managing the projected STS Wastes. Volume III is an appendix with reference material for Volume II.

This work was accomplished between September 1980 and June 1981. Mr. John R. Edwards, Headquarters Space Division was the Project Officer.

This report has been reviewed by the office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At the NTIS it will be available to the general public, including foreign nations.

This report has been reviewed and is approved for publication.

John R. Edwards

Environmental Protection Scientist

R.C. Wood N.

R.C. WOOTEN JR, Lt/Col, USAF, BS

STS Environmental Program Manage

RAPHAEL O. ROIG

Chief, Environmental Planning Division

JOHN D. PEARMAN, Colonel, USAF

Directorate of Civil Engineering

arma

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION NO. SD#TR-81-32 TITLE (and Subtitle) Hazardous Waste Inventory and Disposal Assessment Final Report fo for the Space Shuttle Project. Volume I. Hazard-13 Aug . 🖜 ous Waste Inventory 7. AUTHOR(s) FØ4 701-80-C-Ø106 9. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS SCS Engineers 4014 Long Beach Boulevard 64411F Long Beach, California 90807 11. CONTROLLING OFFICE NAME AND ADDPESS Marchalf 1981 Los Angeles AFS, P.O. Box 92960 WWPC 195 Los Angeles California 90009

ENGY HAME & ADDRESS(IL dillerent from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING SCHEDULE 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES Available in DDC 19. KEY WORDS (Cont ... on reverse side if necessary and identify by block number) Civil Enginee, inq Space Shuttla Environmenta lanning Hazardous Was Vandenberg Ai. everse side if necessary and identify by block number) The Space Shuitle Program (STS) at Vandenberg Air Force Base is expected to generate a variety of hazardous wastes during its years of operation, from 1985 The purpose of this study was to compile a projected inventory of the types a quantities of hazardous waste likely to be generated by shuttle-related ground operations. This inventory will be used to assess waste manage _ t options, to complete EPA hazardous waste forms, and for preparing the supplement to the Environmental Impact Statement. DD 1 JAN 73 1473 EDITION OF 1 NOV 55 IS OBSOLETE

SECURITY CLASSIFICATION OF

THE PROPERTY OF THE PARTY OF TH

20. (continued)

-The inventory lists waste types; chemical constituents; baseline and contingency mass and volume per launch, for each year of the project, and per month for each year; EPA and California hazardous waste numbers and hazardous properties; and California compatibility class.

Total baseline waste generation for the STS project is anticipated to be 130 million kg. The greatest quantities of wastes are expected to be generated by Station Sets V23 and V32 (72 million kg and 54 million kg, respectively). Estimated total project waste generated under contingency conditions is 1.4 million kg. The only station sets identified as potential generators of contingency wastes are V19, V21, and V23. Station Set V23 is expected to generate approximately 84 percent by weight of all contingency wastes.

99.6 percent by weight of all hazardous waste will be in liquid form, principally originating from flame bucket quenching (55.9 percent) and SRB washing and rinsing (41.9 percent). The remaining 0.4 percent by reight of all hazardous waste is expected to be in solid state. Most solid waste will be generated by Station Sets V31 and V32.

Further breakdown of wastes into hazardous and acutely hazardous categories reveales that only 1.8 percent by weight of total hazardous waste is expected to exhibit acutely hazardous properties. Primary generators of acutely hazardous waste will be Station Sets V19, V23, V21, and V17.

CONTENTS

Section	-	Page
Figures Tables		
1	Executive Summary	1
	 Introduction	2
2	Federal and State Regulations for Hazardous Waste Generators	9
3	Methodology and Assumptions	20
4	Hazardous Waste Inventory	23
5	Summary of Hazardous Waste Generation	.163
	 Introduction	.163
Referenc	:es	.179
Appendix	t	
A Ha	zardous Waste Generation by STS Ground Operations at VAFB, Listed by EPA Hazardous Waste Number	.182
Glossary	′	.189
Category	Codes	.194

Acce	ssion For					
DTIC Unan	GRANI TAB nounced ification					
	By					
Dist	Avail and/or Special					

ILLUSTRATIONS

Number	<u>Page</u>
1	Baseline Quantities of Hazardous Waste Generated by STS Ground Operations at VAFB (Reported for Each Year for the Period 1985 Through 1994)3
2	Baseline Quantities of Hazardous Waste Generated by STS Ground Operations at VAFB (Reported by Station Set)4
3	Contingency Waste Generated by STS Ground Operations at VAFB (Station Sets V19, V21 and V23)5
4	Physical State of Hazardous Waste Generated by STS Ground Operations at VAFB Under Baseline Conditions (Reported by Station Set)
5	Hazardous Waste Generated Under Baseline Conditions by Waste Type6
6	Hazardous and Acutely Hazardous Waste Generation Under Baseline Conditions7
7	Comparison of Hazardous and Acutely Hazardous Waste Generation Under Baseline Conditions (Reported by Station Set on a Per Launch Basis)
8	California Hazardous Waste Manifest Form14
9	EPA forms 8700-13 and 8700-13a
10	Baseline Quantities of Hazardous Waste Generated by STS Ground Operations at VAFB (Reported for Each Year for the Period 1985 Through 1994)168
11	Baseline Quantities of Hazardous Waste Generated by STS Ground Operations at VAFB (Reported by Station Set)
12	Contingency Waste Generated by STS Ground Operations at VAFB (Station Sets V19, V21, and V23)170
13	Physical State of Hazardous Waste Generated by STS Ground Operations at VAFB Under Baseline Conditions (Reported by Station Set)
14	Hazardous Waste Generated Under Baseline Conditions by Waste Type
15	Hazardous and Acutely Hazardous Waste Generation Under Baseline Conditions

ILLUSTRATIONS (continued)

Number	<u>Page</u>
16	Comparison of Hazardous and Acutely Hazardous Waste Generation Under Baseline Conditions (Reported by Station Set on a Per Launch Basis)

TABLES

Number	Page
1	Summary of Baseline Monthly Hazardous Waste Generation, 1985 - 19942
2	Summary of Baseline Yearly Hazardous Waste Generation, 1985 - 1994
3	Summary of Contingency Hazardous Waste Generation, 1985 - 1994
4	Summary of Hazardous and Acutely Hazardous Waste Generation per Month, 1985 - 1994
5	Summary of Hazardous and Acutely Hazardous Waste Generation per Year, 1985 - 19948
6	Comparison of Federal and California Regulations for Generators of Hazardous Wastes Shipping to an Off-Site Treatment, Storage, or Disposal Facility12
7	Hazardous Characteristics of Wastes Generated by the Shuttle Transport System at VAFB26
8	Unit Generation of Shuttle Transport System Hazardous Wastes at VAFB41
9	Hazardous Waste Generation for 198563
10	Hazardous Waste Generation for 198683
11	Hazardous Waste Generation for 1987103
12	Hazardous Waste Generation for Each Year 1988 - 1994123
13	Hazardous Waste Generation for Total Project143
1.4	Summary of Baseline Monthly Hazardous Waste Generation, 1985 - 1994, by Station Set164
15	Summary of Baseline Yearly Hazardous Waste Generation, 1985 - 1994, by Station Set
16	Summary of Contingency Hazardous Waste Generation, 1985 - 1994, by Station Set166
1 /	Summary of Hazardous and Acutely Hazardous Waste Generation per Month, 1985 - 1994177
18	Summary of Hazardous and Acutely Hazardous Waste Generation per Year, 1985 - 1994

SECTION 1

EXECUTIVE SUMMARY

1. INTRODUCTION

The space shuttle program at Vandenberg Air Force Base is expected to generate a variety of hazardous wastes during its years of operation, from 1985 to 1994. The purpose of this report is to present an inventory of the expected types and quantities of waste to be generated by shuttle-related ground operations. The inventory provides estimates for:

- Types of wastes generated.
- Chemical constituents in each waste stream.
- Mass and/or volume of waste generated during scheduled ground operations (per launch cycle, per month per year, and project total).
- Mass and/or volume of waste generated under contingency conditions (per contingency event, per year, and project total).
- EPA and California hazardous waste numbers for each waste.
- EPA and California hazardous properties for each waste.
- California compatibility class for each waste.

The inventory will be used to assess waste management options (Volume II of this report), to complete EPA hazardous waste forms, and for preparing the supplement to the Environmental Impact Statement required for the Space Transportation System (STS) project.

2. HAZARDOUS WASTE REGULATIONS FOR GENERATORS

The U.S. Environmental Protection Agency (EPA) has developed a nationwide program to regulate hazardous wastes from generation to final disposal, through directives in the Resource Conservation and Recovery Act (RCRA) of 1976 (PL94-580). Under RCRA rules, Vandenberg Air Force Base (VAFB) is considered a generator of hazardous waste, and depending on its final waste management

plan, may also be considered as a storage, treatment, and/or disposal facility.

Regulations for generation of hazardous wastes are discussed in Volume I of this report. The primary responsibilities of the generator include:

- Identifying all hazardous wastes generated by the base and its tenants.
- Notifying EPA of hazardous activities within 90 days from the time that waste-generating activities commence.
- Obtaining an EPA generator's identification number.
- Preparing a hazardous waste manifest (in California, the California Hazardous Waste Manifest must be used).
- Properly containerizing and labeling waste and placarding transport vehicles.
- Reporting to California Department of Health Services:
 - Monthly (copies of manifests from the previous month)
 - Annually (submittal of completed EPA Annual Report Forms 8700-13 and 8700-13a).

Other requirements for generators include obtaining special permits for each shipment of extremely or acutely hazardous waste; and obtaining a permit if waste is to be stored by the generator for more than 60 days.

It is anticipated that by April 1981, California will receive interim authorization to administer its own hazardous waste program. At that time, the generator will be subject to all rules under California Administrative Code, Title 22. Until California receives final authorization, the generator must also comply with federal regulations authorized under RCRA.

3. SOURCES OF WASTE

A summary of the hazardous wastes generated over the duration of the STS project at VAFB is given in Tables 1, 2, and 3, monthly, yearly, and total project quantities, respectively, are reported for normal operations and contingency conditions.

TABLE 1. SUMMARY OF BASELINE MONTHLY HAZARDOUS WASTE GENERATION, 1985 - 1994

Monthly 1	for 1985	Monthly 1	or 1986	Monthly (or 198/	Monthly for	1988-1994
Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds
346,656.8	764.251.5	519,985.3	1.146,377.5	866,642.5	1,910,629.8	1,299,963.8	2,865,944.5

TABLE 2. SUMMARY OF BASELINE YEARLY HAZARDOUS WASTE GENERATION, 1985-1994

1985 Kilograms Pound	1986 Kilograms Pounds	Kilograms Pounds	Yearly for 1908-1994 Kilograms Pounds	Project Total Kilograms Pounds
4,159,882,0 9,171,01	8.0 6,239,824.0 13,756,530.0	0 10,395,710.0 22,927,556.0		129,996,350.0 286,594,408.0

TABLE 3. SUMMARY OF CONTINGENCY HAZARDOUS WASTE GENERATION, 1985-1994

1985	1986	1987	Yearly for 1988-1994	Project Total
Kilograms Pounds	Kilograms Pounds	Kilograms Pounds	Kilograms Pounds	Kilograms Pounds
121,367.7 267,571,5	124,633.5 274,771.5	131,165.2 289,171.5	139,329.8 307,171.5	1,352,475.0 2,981,715.0

As shown in Table 2, total baseline waste generation for the STS project is anticipated to be 130 million kg (287 million lbs). Annual waste generation is estimated to range from 4.2 million kg/yr (9.2 million lbs/yr) for 1985, to 15.6 million kg/yr (34.5 million lbs/yr) for each of the years 1988 through 1994. This increase reflects changes in the number of launches per year from \triangle to 15. Baseline waste generation for each year of the project is graphically represented in Figure 1.

Figure 1. Baseline quantities of hazardous waste generated by STS ground operations at VAFB (reported for each year for the period 1985 through 1994).

The greatest quantities of wastes are expected to be generated by V23 (72 million kg; 160 million lbs for total project), followed by Station Set V32 (54 million kg; 120 million lbs for total project). This accounts for 97.5 percent by weight of all baseline hazardous waste generation. The combined waste generated by all other Station Sets is projected to be 2.5 orders of magnitude less by weight than waste generation at V23 and V32.

Expressed as percentages by weight (Figure 2), Station Set V23 is projected to generate 55.7 percent of the total under normal operating conditions; V32 approximately 41.8 percent; and V19 and V31, less than 1 percent each. The balance of these wastes (i.e., 0.9 percent) will be generated mainly by Station Sets V17 and V21.

Figure 2. Baseline quantities of hazardous waste generated by STS ground operations at VAFB (reported by station set).

According to Table 3, estimated total project waste generated under contingency conditions is 1.4 million kg (3.0 million lbs). The only station sets identified to date as potential generators of contingency wastes are V19, V21, and V23 (Figure 3). Station set V23 will produce approximately 84 percent by weight of all contingency waste.

Investigations into the physical state of the hazardous wastes generated during normal operations indicate that the majority of wastes are in a liquid state (Figure 4a). Major sources of liquid hazardous wastes, as shown in Figure 4c, are expected to be produced during normal ground operations at Station Sets V23 (55.9 percent) and V32 (41.9 percent). Other station sets each produce less than 1 percent of total liquid wastes. In summary, 99.6 percent by weight (1.0 million kg; 2.3 million lbs) of all the hazardous wastes will be in a liquid form (Figure 4a). This translates to 92.7 percent on a volumetric basis.

Figure 3. Contingency waste generated by STS ground operations at VAFB (Station Sets V19, V21 and V23).

Figure 4. Physical state of hazardous waste generated by STS ground operations at VAFB under baseline conditions (reported by station set).

Only 0.4 percent by weight (7.3 percent by volume) of all hazardous wastes are expected to be in a solid state (Figure 4a). Most solid waste will be produced by Station Set V31 (71.5 percent) and Station Set V32 (19.1 percent) as shown in Figure 4b. Solid waste generation by all other station sets is less than 10 percent of total solids.

4. MAJOR TYPES OF WASTES GENERATED

Waste categories generated in the largest quantities are expected to be:

• Quench water (QW).

- SRB wash water (SB).
- Insulation wastewater (or "suprawater") (IW).
- SRB initial rinse (SI).
- Contaminated seawater (CS).
- Nonaqueous solvent wastes (SO).
- EEW&S wastewater (EW).
- Fuel spill cleanup wastes (FS).
- Hydrazine scrubber effluent (HS).

These wastes are estimated to constitute 99.4 percent by weight of total waste generation (129 million kg; 284 million lbs). The QW is projected to be the most predominant waste type,

followed by SB and IW wastes. As shown in Figure 5a, these three waste types constitute 54.6, 20.4, and 17.8 percent by weight, respectively, of the total quantity of wastes generated by the major waste categories. Other major waste categories produce 7.2 percent of the total waste. The remaining 0.6 percent of waste is associated with the following minor categories (Figure 5b):

- Adhesive wastes (AW).
- Batteries (BA).
- Contaminated air filters (CA).
- Catalytic bed wash water (CB).
- Containers (CN).
- Contaminated rags (CR).
- Hydraulic fluids (HF).
- Hydrazine (HY).
- Insulation wastes, solid (IN).
- Monomethyl hydrazine (MH).
- Ammonia or ammonia wastewater (NH).
- Nitrogen tetroxide (NO).
- Oxidizer spill cleanup (OS).
- Paint wastes (PA).
- Paint wastewaters (PW).
- Solvent reducer wastes (SR).
- Solvent wastewaters (SW).
- Worn-out parts (WP).

Figure 5. Hazardous waste generated under baseline conditions, by waste type.

The first three minor categories are expected to jointly contribute over 60 percent by weight to the 0.6 percent of minor wastes.

5. HAZARDOUS AND ACUTELY HAZARDOUS WASTES

Further breakdown of wastes into hazardous and acutely hazardous categories reveals that only 1.8 percent by weight of total hazardous wastes are expected to exhibit acutely hazardous properties (Figure 6a). Primary generators of acutely hazardous waste will be Station Sets V19 (37.0 percent), V23 (25.8 percent), V21 (18.2 percent), and V17 (14.9 percent) (Figure 6b). The remaining 4.1 percent is expected to be generated by Station Sets V31 and V32 (3.3 and 0.8 percent, respectively) (Figure 15b). As shown in Figure 7, most of the hazardous wastes generated by Station Sets V17, V19 and V21 are expected to exhibit acutely hazardous properties.

Figure 6. Hazardous and acutely hazardous waste generation under baseline conditions.

Figure 7. Comparison of hazardous and acutely hazardous waste generation under baseline conditions (reported by station set on a per launch basis).

Generation rates for hazardous and acutely hazardous wastes are provided in Tables 4 and 5. Total projected baseline quantities of hazardous and acutely hazardous waste per launch are 1.0 million kg (2.2 million lb) and 0.02 million kg (0.04 million lb), respectively (Table 4). Consequently, the projected cumulative generation of these wastes for the period 1985 through 1994 is expected to be 128 million kg (282 million lb) and 2.3 million kg (5.1 million lb), respectively (Table 5).

TABLE 4. SUMMARY OF HAZARDOUS AND ACUTELY HAZARDOUS WASTE GENERATION PER MONTH, 1985-1994

	Per Launch		1985 Monthly		1986 Monthly		1987 Monthly		1988-1994 Monthly	
	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds
Acutely Hazardous										
Wastes	18,333.3	40,418.3	6,111.1	13,472.8	9,166.7	20,209.2	15,277.8	33,681.9	22,916.7	50,522.9
Hazardous										***************************************
Westes	1,021,637.3	2,252,336.7	340,545.7	750,778.7	510,818.6	1,126,168.3	851,365.7	1,876,947.9	1,277,047.1	2,815,421.6
TOTAL	1,039,970.6	2,292,755.0	346,656.8	764,251.5	519,985.3	1,146,377.5	866,642.5	1,910,629.8	1,299,963.8	2.865,944.5

TABLE 5. SUMMARY OF HAZARDOUS AND ACUTELY HAZARDOUS WASTE GENERATION PER YEAR, 1985-1994

	1	985	1	986	1	987	1988-1994	(per year)	Total for	Project
Acutely	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds
Hazardous Wastes	73,333.4	161,673.2	110,000.0	242,509.8	183,333.4	404,183.0	275,000.1	606,274.5	2,291,667.1	5,052,287.5
Hazardous Wastes	4,086,548.6	9,009,314.8	6,129,824.0	13,514,020.2	10,216,376.6	22,523,373.0	15,324,566.9	33,705,092.5	127,704,636.9	281,542,017.5
TOTAL	4,159,882.0	9,171,018.0	6,239,824.0	13,756,530.0	10,399,710.0	22,927,556.0	15,599,566.0	34,391,366.0	129,996,304.0	286,594,304.0

こうかん 大きない というとう かんしゅうしゅう

SECTION 2

FEDERAL AND STATE REGULATIONS FOR HAZARDOUS WASTE GENERATORS

The U.S. Environmental Protection Agency (EPA) has developed a nationwide program to regulate hazardous wastes from generation to final disposal, through directives in the Resource Conservation and Recovery Act (RCRA) of 1976 (PL94-580). These regulations are not industry-specific; all industries, including Department of Defense (DOD) facilities, which generate, store, transport, treat, or dispose of hazardous wastes, are affected by RCRA and must comply with the same set of rules. Vandenberg Air Force Base (VAFB) is considered a generator of hazardous waste, and, depending on its final waste management plan, may also be considered as a storage, treatment, and/or disposal facility.

This section provides a comparison between federal (RCRA) and California (Title 22) hazardous waste regulations. Responsibilities of the hazardous waste generator are also discussed, and include RCRA requirements as well as additional requirements imposed by Title 22. Requirements for transporters and for owners and operators of storage, treatment, and disposal facilities are presented in Volume II. It is important to note that the requirements discussed in this report reflect regulations on the record as of December 1980. Many changes in both state and federal hazardous waste regulations are anticipated for 1981.

The major provisions under RCRA for controlling hazardous wastes are:

ということには、これでは、これをなるとは、これには、

- 40 CFR Part 260: Definitions used in other parts corresponding to Sections 3001 through 3004 RCRA rules, and general provisions applicable to these parts (FR date 5/19/80, Part II).
- 40 CFR Part 261: Section 3001: Identification and listing of hazardous waste (FR date 5/19/80, Part III).
- 40 CFR Part 262: Section 3002: Standards applicable to generators of hazardous waste, including manifest system, recordkeeping, and reporting (FR date 5/19/80, Part V).
- 40 CFR Part 263: Section 3003: Standards applicable to transporters of hazardous waste, including manifest system, recordkeeping, and reporting (FR date 5/19/80, Part VI).

- 40 CFR Part 264: Section 3004: Standards applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities, including manifest system, recordkeeping, and reporting (FR date 5/19/80, Part VII).
- 40 CFR Part 265: Section 3004: Interim status standards applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities (FR date 5/19/80, Part VII).
- 40 CFR Parts 122 and 124: Section 3005: Permits for treatment, storage, and disposal of hazardous waste (FR date 5/19/80, Part X).
- 40 CFR Part 123: Section 3006: Guidelines for authorized state hazardous waste programs (FR date 5/19/80, Part X).
- Section 3010: Preliminary notification of hazardous waste activity (FR date 2/26/80).

Section 3006 of RCRA provides for individual states to operate their own hazardous waste programs (HWP) in lieu of the fed-Title 40 CFR, Part 123, establishes minimum reeral program. quirements which state HWP's must meet in order to receive EPA The State of California Department of Health Services (CDHS) and the State Water Resources Control Board have applied for interim authorization (Phase I) to administer a state HWP. It is anticipated that interim authorization will be granted by April 1981. With interim authorization, California can operate its own HWP for 2 years after the effective date of the federal regulations. Final or full authorization will be granted if California's HWP is determined by EPA to be equivalent to and consistent with the federal program. The California HWP could be fully authorized by the November 1983 deadline, 2 years prior to the first space shuttle launch at VAFB. For the present, California waste generators must meet both current California Title 22 and RCRA standards (by the time California is granted full authorization, all applicable RCRA regulations will have been incorporated into Title 22). DOD facilities operating in Califormia must, by executive order, comply with all California laws. Milestone events for implementing the California HWP are as follows (5):

Program interim authorization will be received; electronic data processing system will be operational; statewide surveys of hazardous waste production will be completed.

Hazardous waste recycling clearinghouse will match waste producers with potential markets for wastes; technical information center will provide rapid response to emergencies, and provide information

about waste characteristics, treatment, methods, etc.

- 1982 Full staff will be "on board," and the state HWP plan will be completed.
- 1983 All qualified hazardous waste facilities will be under permit.

Although federal requirements will not preempt California law, they will impose a second layer of control on California generators and handlers of hazardous waste who must comply with the most restrictive standard, whether federal or state. For example, states may not preempt federal regulations by imposing any requirement that might interfere with the free movement of hazardous wastes across state boundaries to treatment, storage, or disposal facilities holding an RCRA permit. An outline comparing the fundamental differences between EPA and CDHS regulations for generators of hazardous wastes is presented in Table 6.

Responsibilities of Generators

In order to comply with both EPA and California regulations, a California generator will have the following duties and obliquations:

Identifying Hazardous Wastes--It must first be determined if a waste meets the hazardous waste criteria as defined in the RCRA (40 CFR 261) and/or the California Administrative Code (CAC), Any solid waste (see glossary definition of a solid Title 22. waste) is considered hazardous if it is flammable, corrosive, toxic, reactive, irritating, a strong sensitizer, or exhibits EP toxicity. The definitions of these hazardous characteristics are found in 40 CFR 261, Subpart C, and in CAC Title 22. A detailed explanation of these characteristics is found in Appendices B and C. Federal regulations also identify specific wastes considered to be acutely hazardous (40 CFR 261, Subpart D). Similar, but not identical, to the EPA listing are the extremely hazardous wastes identified in CAC Title 22. Eventually, the California rules will include all of EPA's listed wastes, and perhaps additional wastes which the state considers hazardous. For the present, all wastes listed by EPA and the State of California must be manifested. However, EPA annual reports require only EPA-listed wastes.

If a waste is unlisted, a generator may choose to test the suspected waste to determine whether or not it is hazardous, or may declare the waste to be hazardous without testing, based on a knowledge of its hazardous properties (45 FR 262.11). Test protocols are published in Test Methods for Evaluating Solid Waste, USEPA Office of Water and Waste Management, SW-846, 1980.

The second secon

Small-Quantity Generator Exceptions--Under the EPA regulations, small waste generators (i.e., <1,000 kg/mo hazardous

TABLE 6. COMPARISON OF FEDERAL AND CALIFORNIA REGULATIONS FOR GENERATORS OF HAZARDOUS WASTES SHIPPING TO AN OFF-SITE TREATMENT, STORAGE, OR DISPOSAL FACILITY (41)

Federal

State

Determine if waste is hazardous as defined in 40 CRF, Part 261.

Obtain EPA Ideatification Number (ID#).

Obtain EPA Facility Permit if waste has accumulated on generators property for more than 90 days.

Use proper containers and label properly.

Prepare EPA-specified transport manifest (California Liquid Waste Haulers Manifest permissible for use during interim period).

Ship hazardous waste only by a transporter with an EPA identification number.

Make sure that waste arrives at designated facility.

Submit annual summary of waste disposal activities (Annual Report) and file 45-day Exception Reports for missing manifests to EPA Regional Administrator.

こうではないと からない こうしゅう かんしゅう ちょうしゅ

Must keep manifests, annual reports, exception reports, and test results for a period of 3 years.

Determine if waste is hazardous as defined in Cal. Ad., Title 22, Div. 4.

Obtain Facilities Permit from CDHS if waste has been stored on property for more than 60 days.

Same

Must use California Liquid Waste Haulers Manifest (EPA data will be included in future); manifest will eventually be consistent with EPA requirements.

Ship hazardous waste only with a transporter permitted by CDHS.

Same

Send copies of all Hazardous Waste Manifests to CDHS every 30 days. Must also report to EPA Region IX annually and make 45-day Exception Reports for missing manifests.

Reports on hazardous waste activities must be kept for a period of not less than 1 year.

waste; <1 kg/mo acutely hazardous waste) are exempt from record-keeping/manifest requirements (45 FR 261.5). California regulations are more stringent, allowing no exemptions. Even if the generator would qualify as a small generator under RCRA, no exemption would be allowed under California law. California does provide a variance for small quantities or low concentrations. Exact quantities and concentrations are not specified, but the general description states insignificance as a potential hazard to human health, domestic livestock, or wildlife. EPA plans to amend the small generator exceptions over the next 2 to 5 years, possibly reducing the present limit for hazardous wastes from 1,000 to 100 kg/mo. The limit for acutely hazardous waste is not expected to change.

Notification of Hazardous Activities—Within 90 days from the time that operations at the space shuttle facility commence, and before any waste can be transported, the generator will be required to notify the EPA Region IX Administrator and apply for an EPA identification number (45 FR, Part 262.12; 45 FR, Page 12746). If the generator also plans to own/operate facilities for treatment, storage, or disposal of hazardous waste, it may file a single form to cover all activities that occur on the base. There are stiff penalties for failing to notify EPA, including suspension of all operations.

Transportation of Hazardous Wastes—The generator has two options available if hazardous waste is to be transported off site. They may contract with a state—licensed commercial hauler, or transport waste themselves, in which case they must obtain an EPA Transporter's Identification Number (45 FR 263.11) and a California Registered Hazardous Waste Hauler's Permit (CAC Title 22). In addition, they must comply with all applicable EPA (40 CFR 263.11 and 263.31) and Department of Transportation (Hazardous Materials Transportation Act, 49 CFR Parts 171 through 179) regulations. A generator must insure that the hazardous waste is properly containerized and labeled, and that trucks are placarded in accordance with EPA (40 CFR Part 262.30) and DOT (49 CFR Parts 171 through 179) regulations controlling the transportation of hazardous materials.

Hazardous Waste Manifest--Before shipping any hazardous wastes, a generator must prepare the California Hazardous Waste Manifest. Figure 8 presents the new California Hazardous Waste Manifest, which has been developed to insure that California hazardous waste generators, transporters, and facility operators will be in conformance with both the requirements of the new federal hazardous waste regulations adopted pursuant to RCRA, and the requirements of state law. The new manifest will replace the current California Liquid Waste Hauler Record or hazardous waste manifest.

As has been the practice in the past, transporters are expected to print their own manifests. Each manifest will have a unique serial number, as described in Item 1 of "Instructions for

ANDOUS WASTE MANIFEST ANDOUS WASTE MANIFEST O MUNICES FILLS MANAGEMENTO. CA \$5614 SACHAMENTO. CA \$5614 O ALTERNATE TSD FACILITY ANTHOMIZED TO OPENATE UNDER AM APPROVED STATE ON FEDERAL PROGRAMM FOR A CHILLY O ALTERNATE TSD FACILITY ANDORESS O ALTERNATE TSD FACILITY O ALTERNATE TSD FACILITY O ALTERNATE TSD FACILITY O ALTERNATE TSD FACILITY O ALTERNATE ON FEDERAL PROGRAMM FOR A CHILLY TSD FACILITY O ALTERNATE ON FEDERAL PROGRAMM FOR A CHILLY TSD FACILITY O ALTERNATE ON FEDERAL PROGRAMM O ALTERNATE ON FEDERAL PROGRAMM FOR A CHILLY TSD FACILITY O ALTERNATE ON FEDERAL PROGRAMM FOR A CHILLY TSD FACILITY O ALTERNATE ON FEDERAL PROGRAMM FOR A CHILLY TSD FACILITY O ALTERNATE ON FEDERAL PROGRAMM O ALTERNATE TSD FACILITY O ALTERNATE TSD FACILITY	CONTABRERS NUMBER ORNAME INDEX OCENERATING PROCESS OCENERATING PROCESS OVER CONTRIBUTE OVER CONTRIBUTE	STANDARD OF SCHOOL OF PACKAGE D. MARKEE B. LABELED, AND ARE ANTIMENT OF TRANSPORTATION AND THE EPA. STANDARD OF CONTENTS DE ACTIVITY THE THE ANTIMED AND THE PACKAGE D. MARKEE B. LABELED, AND ARE	O HANDLING ON DISPOSAL METHOD SURFACE METHOD SURFACE METHOD THE ATMENT EDECETY OF THE TAMOSTIL THE ATMENT EDECETY OF THE THE ATMENT ACCOVERY OR REUSE BECOME THE ATMENT EDECETY OF THE THE ATMENT AUTHORNERS ACTIVE DATE ACCOUNTY
CALIFORNIA 110.2 STATE DEPARTI STATE DEPARTI 144 P STREET © DESIGNATE RAME RAME RAME RAME PROME 140	CONC. RANGE CONC.	GENERATOR CERTIFICATION: THIS IS TO CENTIFY THAT THE ABOVE NAME DIABETRIALS AND PROPERLY CLASSIFIED DESCRIBED, PACKAGED MARKEE & LABETUD, AND ARE IN THE EVENT OF A SPILL CONTACT THE RATIONAL BISSPORTER HAVER MUST COMPLETE! O HAME O HAME	SIGNATURE OF AUTHORIZE
SEE MEVERGE SIDES FORE UNSTRUCTIONS PLEASE TVEE ON PRINTEGEALY PRESS HARD GENERATOR GENERATOR MUST COMPLETE: © MAME FRA NO COMPANIE FRA NO PHONE NO ONDER PLACED BY COMPLETE: C	© U.S. DOT PROPER SHIPPING MAME WASTE WASTE WASTE O EASTE CATEGORY O LEST COMPONENTS: A B C C C C C O WASTE PROPERTIES O PITZACAL STATE O SPECIAL HANDLING INSTRUCTIONS: O SPECIAL HANDLING O SPECIA	-	TSD FACILITY NOTE NATION MUST COMPLETE! House NATITY

Figure 8. California hazardous waste manifest form,

1797 OR THEN CLAMP TO LICENS CONTROLLED AND TOWN THE STATE OF CLAMP TH	Mine 2. Sign in an analysis incomes to contain the sign of the sig
--	--

Figure 8 (continued),

<u> Albania da Amerika</u>

Completing Manifest" (see Figure 9). The instructions will be printed on the backs of each manifest and manifest copy. These instructions specify the requirements for using the manifest, for transferring waste, and for distributing manifest copies.

The new federal regulations, which became effective on November 19, 1980, require that certain information which was not previously required by California law now be provided on all hazardous waste manifests. That information includes the following:

- EPA I.D. number of the generator, transporter, and TSD (treatment, storage, and disposal) facilities.
- Hazardous materials descriptions as required by the U.S. Department of Transportation in 49 CFR.
- The name, address, and EPA I.D. of the TSD facility designated by the generator to receive the waste, and, if desired, an alternate facility.
- A generator's certification with the statement exactly as shown on the enclosed manifest.

The current Liquid Waste Hauler Record cannot be used after December 31, 1980. On January 1, 1981, the new manifest will be the only acceptable shipping document to accompany hazardous waste shipments in California. Questions regarding the new manifest or its use should be directed to one of the following Hazardous Materials Management Section offices:

Sacramento

Hazardous Materials Management Section 714 "P" Street Sacramento, California 95814 (916) 322-2337

Berkeley

Hazardous Materials Management Section 2151 Berkeley Way, Room 140 Berkeley, California 94704 (415) 540-2043

Los Angeles

Hazardous Materials Management Section 107 S. Broadway, Room 7012 Los Angeles, California 90012 (213) 620-2380

After completing the manifest and transferring the waste to the transporter, a designated person representing the generator signs the certification on the original manifest and all copies Fede.al Register / Vol. 45. No. 98 / Monday. May 19, 1960 / Rules and Regulations ******** 145 GENERATOR J. 8474 BCEEFFE SEPA LIV. WASTE INCINCATION IN. PACILITY NAME (SOUTH) 1114 3:145 C. BATE WORLD Bill second man in the team second second Federal Ragister / Vol. 16. No. 98 / Monday. May 19, 1900 / Rules on i Regulations A 1791 OF HAZAABOLE WADIE SCOOL! PART D. FACILITY ANNUAL REPORT ore. Cost Litterated ton factilities an fact mante person by the same first type it I the same per section ACTALLATION MAN, MIS ASSENTED KETALLATION CONTACT CHAINTEATION SEPA

Figure 9. EPA forms 8700-13 and 8700-13a.

(one for each person handling the waste). The transporter then signs and dates the manifest and returns one copy to the generator, who retains it until a copy is received from the designated permitted facility following delivery of the waste. A generator is required to initiate a trace if it does not receive a copy of the manifest from the disposal facility within 35 days after the waste has been shipped. All contacts made while tracing a delinquent manifest should be well documented. If the manifest has not been received within 45 days after shipment, the generator must report the incident to CDHS at (916) 322-2337. Supporting documentation may be required.

Reporting Requirements for Generators--The generator will be required to send copies of all manifests from the previous month to California Department of Health Services, Hazardous Materials Management Branch, 744 P Street, Sacramento, California 95814. In addition, federal regulations require an annual report from generators who ship hazardous waste off site (45 FR 262, Subpart D). The Annual Report is made on EPA Forms 8700-13 and 8700-13a (Figure 9), and sent to CDHS in Sacramento. (If, however, a generator decides to treat, store, or dispose of wastes on base, it must submit an Annual Report covering those wastes in accordance with the provisions of 40 CFR Parts 264, 265, and 266, and with 40 CFR Part 122. In addition to following requirements, generators must comply with reporting requirements for TSD facilities, and should make provisions to hold all records, manifests, and reports for 3 years.

Manifest requirements are somewhat different for rail shipment or bulk shipment of hazardous wastes by water. The generator should consult the regulations if such means are used to transport wastes to permitted handling facilities (45 FR 263, Subpart B).

Disposal of Extremely Hazardous Waste by Generators--Some of the wastes generated by the STS (e.g., monomethyl hydrazine) are defined as extremely hazardous (CAC Sections 66064 and 66680 to 66685). No extremely hazardous waste shall be handled or disposed of in California without an Extremely Hazardous Waste Disposal Permit issued by the state. The generator must apply for this permit at least 15 days prior to the intended date of disposal. It can be expected that TSD facilities will require generators to make arrangements prior to shipment of these special wastes to their sites. Unexpected shipments will be returned at the generator's expense.

Storage Treatment and Disposal of Hazardous Wastes by Generators--If a generator stores hazardous wastes on site for more than 60 days (the 90-day limit set by EPA is preempted by California law), or treats or disposes of hazardous wastes on site, they must apply for and receive a Hazardous Waste Facility Permit, and comply with all applicable regulations (45 FR 264, Subpart A).

An inventory of projected hazardous waste to be generated by the STS is presented in Section 3 of this report. Included with the inventory are many of the items required for the EPA Annual Report, such as hazardous waste identification numbers and waste characteristics. The following section describes the methodology and assumptions used in developing the inventory.

SECTION 3

METHODOLOGY AND ASSUMPTIONS

As of the date of the compilation of this inventory, there have been no space shuttle launches or landings, either at VAFB or KSC. Consequently, operational data regarding waste generation are not yet available. Waste types and quantities must be estimated based on design specifications and projections of materials used. In many cases, these estimates can be related to similar operations, such as aircraft maintenance and conventional rocket launches.

In compiling this inventory, SCS made as much use as possible of existing documentation relating to the proposed space shuttle operation at VAFB. This documentation is listed in the bibliography. In general, the most relevant documents were those concerned with occupational safety and air emissions, since both of these address chemical types and quantities. However, because their inherent purpose differs appreciably from the compilation of a hazardous waste inventory, many and often sizeable data gaps exist.

An attempt was made to bridge these gaps and to complete the data base through direct contact with contractors and Air Force personnel involved in the design of the space shuttle, and related ground operations, facilities, and procedures. Ultimately, a number of questions remain regarding quantities of waste generated and waste forms. Consequently, a number of assumptions and simplifications were necessary to make this inventory as complete as possible. These assumptions and simplifications are detailed below. There are still several areas of uncertainty, however, and in the inventory which follows, a number of wastes are listed without quantity data. This means that a potential hazardous waste was identified, but insufficient information was available at the time of this inventory to produce a reasonable estimate of quantities per launch cycle.

In addition, there were other potentially hazardous wastes identified which are not included in the inventory, i.e., orbiter self-destruct ordnance (SDO) and potential pollution control wastes. It has been established that SDO waste will be generated whenever the orbiter and SRB are deactivated. This waste is hazardous (reactive) under EPA regulatory definitions. However, there are existing military ordnance handling and disposal practices which may be applicable to the shuttle program, and there is an existing ordnance disposal facility at Pt. Mugu. Pollution

control wastes, other than those identified in the baseline inventory, would have to be considered contingency wastes. In particular, SCS believes it likely that some or all of the solvent vapor emissions projected to be vented may come under new regulatory restraints before or during the course of the shuttle program. If this does in fact occur, additional solvent and air pollution control wastes will be generated. The Air Force is aware of this potential. Detailed information on these and other toxic and hazardous STS-related air emissions is available in the Air Force air emissions inventory (23).

VAFB station sets group the various Shuttle Transport System ground operations processing activities into geographic and functional categories. A geographic station set is a site-specific accumulation of equipment, facilities, hardware, and related resources that constitutes a definitive phase of the ground operations. A functional station set is an aggregate of equipment and services, not limited to or readily identified by location, that provides or supports specific functions of system operations.

The inventory prepared for this draft report includes projections of hazardous wastes for eight geographical station sets (i.e., V18, V19, V21, V23, V31, V32, and V33). The potential for hazardous waste generation at Station Sets V27, V28, V30, V81, V84, V86, and V88 cannot be verified at this time. It is considered that these station sets either (1) generate no hazardous waste under baseline conditions, or (2) generate small quantities of hazardous waste which cannot be quantified based on available information.

Assumptions and simplifications were needed to both identify and quantify some of the hazardous waste streams. There are several general types of assumptions and simplifications that have affected the inventory compilation throughout. These are listed below.

Except where specified in existing STS/VAFB documents, it is assumed that there will be no reclamation or reuse of excess or waste products. This includes excess paint mixtures, used rags, protective clothing (except SCAPE suits), excess hypergols or hypergols removed from the orbiter after an abort or acquisition screen test, and process waters.

THE RESERVE THE PROPERTY OF TH

- STS data on procedures, materials, and quantities were used wherever they existed. If no STS data were available, an attempt was made to identify relevant KSC data.
- It is assumed that all materials which are not hazardous in and of themselves, but which come into contact with hazardous materials during use, become hazardous wastes when discarded. These include empty containers, rags, protective clothing, worn-out parts, process waters, etc.

This is in accordance with the RCRA hazardous waste regulations.

- Where the chemical composition of a commercial product used during ground operations was unknown and could not be defined, the composition of similar commercial products was used to determine whether the product contained any listed hazardous materials.
- In the case where waste-producing operations are performed at a given station set under one set of conditions, and at another station set under different conditions, one of these station sets was arbitrarily selected as the waste generator. This was done to avoid duplicate accounting when the waste quantities were totalled. For instance, wastes from external tank closeout operations, which could occur at either V23 or V33, were assigned to the pseudo Station Set 99.
- When similar waste-producing operations were identified at several station sets or at several locations within a single station set, and qualitative/quantitative data were available for only one locale, comparable data (the same or a simple multiple) were used for all of the other locales where the operation could occur.
- Where waste generation data from the literature were given as a range, the high value in the range was taken for this inventory.
- Unless otherwise specified in the documents or through personal communications, it is assumed that 10 percent of all paint, insulation, ablator, etc., used during the ground operations will be wasted.
- In converting from volume to mass units (or vice versa) for mixtures of wastes with uncertain compositions, densities were estimated based upon similar waste types of known density or upon densities of the predominant component of the mix.

では、一般のでは、10mm

SECTION 4

HAZARDOUS WASTE INVENTORY

The operation of the Space Shuttle Program at VAFB in the late 1980's and early 1990's will produce significant volumes and varieties of hazardous materials. An inventory of these wastes is necessary to help comply with recent EPA hazardous waste generator regulations and to assess alternative treatment/disposal options. In addition, a portion of the inventory will be used to prepare a supplement to the final Environmental Impact Statement (EIS) for the program.

The intent of this inventory is to identify and quantify all potentially hazardous solid and liquid wastes likely to be generated at YAFB during the STS ground operations. The basic inventory was compiled on a per launch basis, from which annual, monthly, and total project waste generation was calculated. Yalues are reported in mass and volume units. Estimates of pollutant concentrations, where applicable, are provided in Volume II of this report. The information in the following tables can be used to estimate the quantities needed for EPA reports, and to provide a supplement to the final EIS. Additionally, these tables will form the basis for the Volume II assessment of treatment/disposal alternatives.

Table 7 is a list of the STS hazardous wastes arranged by station set. From left to right, this table shows:

- STA SET the station set number. Note that Station Set V99 is a pseudo station set, referring to a combination of Station Sets V23 and V33 (see Section 3 for explanation). The wastes identified at V99 come from external tank closeout activities, which may occur at either V23 or V33.
- CAT category code. This is a sorting tool for grouping wastes with similar characteristics (see Glossary).
- WASTE MATERIAL descriptions of the projected hazardous wastes. These wastes may be individual chemicals, excess commercial formulations, or mixed wastes. Items which have been indented slightly in the tables represent the chemical constituents of mixed wastes or commercial products.

- SOL OR LIQ solid or liquid; the projected physical state of the waste material.
- OPERATION a brief description, where appropriate, of the particular operation producing the waste material.
- HAZ WST NO. EPA/CAL EPA and California hazardous waste numbers. Both EPA and the State of California have issued lists of wastes that they consider to be hazardous. These are presented in 45 FR 33084-33133 (40 CFR 261) and CAC, Title 22, Division 4, Chapter 30, Article 9, respectively (see Appendices B and C). The EPA numbers will be needed to complete all of the EPA hazardous waste notification, application, and reporting forms required of all hazardous waste generators under RCRA.
- HAZ PROP. EPA/CAL the hazardous properties of the wastes, according to EPA and California lists or definitions. This information is useful in determining waste compatibility and assessing treatment alternatives (see Glossary for the meanings of hazard codes).
- CAL COMP CLASS California compatibility class. Special precautions are needed when managing or treating chemically incompatible wastes. The California Department of Health (Law, Regulations, and Guidelines for Handling of Hazardous Waste, February 1975) developed a set of 12 groups to generally classify incompatible hazardous waste. These incompatibility groups are also listed in 45 FR 33257-33258.

Table 8 is a listing of unit factors for generation of STS hazardous wastes. Unit factors are expressed on a per launch (baseline) and per event (contingency) basis. They are grouped alphabetically by category code for each station set. Mass and volume values are given in both metric and English units. Under the volume column (English units), liquid wastes are given in gallons, and solid wastes in cubic feet. Missing numbers indicate insufficient information to quantify a particular waste.

Baseline wastes are those which can be routinely expected during every launch cycle, and are thus expressed on a per launch basis. In some cases, a particular operation does not occur during every launch cycle, but does occur at regular, launch-related intervals. For these operations, the wastes generated are divided by the launch frequency of the operations, and are presented on an average per launch basis.

Contingency wastes are those which will be generated only sporadically from unplanned events. These include aborts, spills, special tests, etc. Contingency values are expressed as estimated quantities per event; event frequency is denoted in the table footnotes.

Table 8 is the basis for all of the tables which follow. It can be used to estimate annual, monthly, or total project hazardous waste emissions for any launch schedule. Tables 9 and 10 present the annual and average monthly hazardous waste generation for each year of the STS Program, from 1985 through 1994. Table 9 presents the data for 1985, representing 4 launches; Table 10, the data for 1986, representing 6 launches; Table 11, the data for 1987, with 10 launches; and Table 12, the monthly and annual data for the period 1988 through 1994, representing 15 launches. Only one table (Table 12) is used to show the wastes generated in 1988 to 1994, as each year is projected to have the same number (i.e., 15) of launches. In each of these tables, the average monthly generation is equal to the annual quantity divided by 12 months.

The hazardous wastes shown in Tables 9 through 12 are listed in the same order as they appear in Table 8. In these tables, only mass values are listed, and a missing number indicates an identified waste for which insufficient information was available to estimate quantities. Subtotals are presented for each category, and harh year is totalled by station set.

A summary of the generation of hazardous wastes for the entire STS program is given in Table 13. Mass quantities of these wastes are presented alphabetically by category code for each station set. Both baseline and contingency quantities (monthly and annual) are given per station set. Subtotals for each station set are then added together, resulting in the total quantity of hazardous wastes generated by the STS program for the period 1985 through 1994. In addition, total quantities of all hazardous wastes are given for each category code.

HAZARDOUS CHARACIERISTICS OF WASTES GENERATED BY THE SHUTTLE TRANSPORT SYSTEM AT VAFB. TABLE 7.

STA		CAT ⁽¹⁾ WASTE MATERIAL	50L 0R L10	OPERATION	HAZ.I	HAZ.WST.NO. EPA/CAL.	HAZ EPA	HAZ.PROP. EPA /CAL.	CAL. COMP. CLASS
0	08(8)	CONTAMINATED FREON	د	WASHING OF SCAPESUITS	F002	HL ⁽⁴⁾	-	-	89
17	E	WASTEWATER FROM EEULS	_	RINSE OF SCAPESUITS & EMERGNCY	P 068	붉	I	11	34
17	5	DIESEL FUEL	J	POWERING OF COOLING TRAILER	D001	土	**	L	89
17	50	DIESEL FUEL & OIL	د	TOWING OF ORBITER BY TRACTOR	0001	불	₩	u	89
17	F.	CONTAMINATED DILUTION WATER MAN	ب	EMERGENCY DILUTION OF LEAKS	P 068 P 068	502	CH	‡	1A, 3A, 4A
<u>.</u>	S0	CONTAMINATED DILUTION WATER N204	٠.	EMERGENCY DILUTION OF LEAKS	P 080 P 080	548 548	Ŧ	ļes.	30,60
8	Ŧ	HYDRAULIC FLUIDS	۔	REPLACEMENT OF HYDRAULIC FLUID	0001	봊	<u>+</u>	TIF	89
ō.	3	TPS ADHESIVE, RTV 566/577 PHENYL METHYL POLYSILOXANE TIN OXIDE IRON OXIDE SILICON HARDENER	ø	TILE REPAIR	0001 0001 N. N. K	투독목독	uet	u.	89
ø	⊋	EA 911 EPOXY EPOXY ZINC CHROMATE ASBESTOS MERCAPTAN	ب	TILE BONDING TO ORBITER	D000 HL HL U013 U092	HL HL 75 HL 281	-	-	89
2	3	EA 934 EPOXY EPOXY RESIN ASBESTOS	ب	TILE BOYDING TO ORBITER	D000 NL U013	보보았	-	-	8 9
6.	2	EA 9309 EPOXY EPOXY RESIN GLABS FIBERS ACRYLONITRILE/BUTADIEN/STYRENE ASBESTOS POLYGLYCOL DIAMINE SILANE	٠	TILE BONDING TO ORBITER	P000 PF FF F	^국 목 국 국 당 국 국	-	-	89
6	Z.	SPRAYCANS OF TPS SEALER FLUORINATED SOLVENT FREON 113	, w	REWATERPROOFING OF ORBITER	D003 F002 F002	두로로	œ	a .	ē
19	5	KOROPON PRIMER CONTAM CANS BUTYL ACETATE METHYL ETHYL KETONE	o .	ORBITER TPS CAVITY PREPARATION	N. N. U139	NL 136 499			89

TABLE	LE 7	(CONT.) HAZARDOUS CHARACTERISTICS	ERISI	OF WASTES GENERATED BY THE	SHUTTLE TRANSPORT	PORTS	SYSTEM AT VAFB		PAGE
SET		CAT ⁽¹⁾ WASTE MATERIAL	SOL OR LIB	OPERATION	HAZ.9ST.HO. EPA/CAL.	l	НАZ.РROP ⁽²⁾ Ера /САL.	CAL. COMP. CLASS	
		TOLUENE TALC - Mg SILICATES EPOXY RESIN			אר אר אר _{ל ל} אר מככס 238				
6	Š	LACQUER SPRAY CANS PIGMENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROPELLANT PETROLEUM DISTILLATES	ω	TRACER PATTERN FABRICATION	HL HL HL HL NL MC U220 738 U239 776 HL HL			89	
61	C	ISP CONTAM CUPS & WOOD STICKS INSTANT SET POLYMER	ø	TRACER PATTERN FABRICATION	NL NL NL NL	•#	i.	89	
19	5	MARSHALL STENCIL INK SPRAYCANS XYLENE NAPTHA OTHER MATERIALS	ø	REFINISH ORBITER TILE SURFACES	NL NL U239 776 D001 NL NL NL			89	
6	CN	LACQUER SPRAYCANS PIGMENT SOLIDS VEHTCLE SOLIDS TOLUEME XYLENE HYDROCARBON PROPELLANT PETROLEUM DISTILLATES	ø	REFINISH ORBITER TILE SURFACES	NL N			8 9	
6	CN	ENAMEL SPRAYCANS	ø	REFINISH ORBITER TILE SURFACES	NL HL			89	
19	CS	ZINC CHROMATE PRIMER CANS	ဟ	REFINISH ORBITER TILE SURFACES	HL N			89	
6	చ	CONTAMINATED TARE CUPS EA 911 EPOXY EA 934 EPOXY EA 9309 EPOXY	w	TILE BONDING TO ORBITER	NL NL D000 HL D0000 NL			89	
13	8	RAGS WITH SOLVENTS, GREASES	ဟ	GEHERAL CLEANING	D001 HL	.	ı.	89	
61	8	SOLVENT-CONTAM CHEESECLOTH ISOPROFYL ALCOHOL METHYL ETHYL KETONE 1,1,1-TRICHLOROETHANE	w	ORBITER IPS CAVITY PREPARATION	D001 NL D001 396 U159 499 F002 NL	F1	F	89	
19	n R	MEK & IPA CONTAN CHEESECLOTH METHYL ETHYL KETONE ISOPROPYL ALCOHOL	ω	CHUCK FABRICATION FOR ORB TILE	D001 NL U159 499 D001 396	#	Ħ.	89	
<u>e</u>	S.	IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL	ဟ	DEMSIFICATION OF ORBITER TILES	D001 396 D001 396	T.	F-	8 9	

TAE	TABLE 7	(CONT.) HAZARDOUS CHARACTERISTICS	ER 1S	OF WASTES GENERATED BY THE	SHUTTL	SHUTTLE TRANSPORT		SYSTEM AT	VAFB, PAGE
STA	(CAT ⁽¹⁾ WASTE MATERIAL	SOL OR LIG	OPERATION	HAZ.	HAZ, WST, NO, EPA/CAL,	HAZ.	НАZ.FROP, ⁽²⁾ ЕРА /CAL,	CAL, COMP. CLASS
6	8	TCE CONTAMINATED CHEESECLOTH	σ	TILE REPAIR ON ORBITER	0001 D001	HL ⁽⁴⁾	13	Ŧ	89
6	2	MEK CONTANINATED CHEESECLOTH METHYL ETHYL KETONE	ø	ORBITER FILE REPAIR	0159	499 499	ŗ,	TF	89
19	ç	IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL	w	ORBITER TILE REPAIR	D001	396 396	Ţ	1 F	6 B
6	25	SOLID FILM LUBRIC CONT CHSCLTH	တ	TRACER PATTERN FABRICATION	D001	¥	-	L.	68
19	8	IPA CONTANINATED CHEESECLOTH ISOPROPYL ALCOHOL	တ	BOND TILE TO STRAIN ISOL PAD	0001	396	Ţ	14	6 B
5	8	DICHLORONETHANE CONT CHSECLTE	တ	PRESSURE PAD CLEANING	0800	292	11	FŢ	89
6	3	CONTAM CLOTHES, CLUTH & DEBRIS KOROPON BASE PRIMER KOROPON ACTIVATOR BERYLLIUM DUST	ဟ	SANDING OF ET DOORS	NL F017 F017 P015	구 로 보고 2.2	-	11	89
19	3	WASTEWATER FROM EEULS	ب	RINSE OF SCAPESUITS & EMERGHCY	P 068	¥	I	-	3A, 4A
19	F3	WASTEWATER FROM PAYLOAD/URB MMH	J	RTH SPICLS-HOSE CONNECTIONS	D002 P068	NL 502	5	11	18,38,48
2	8	WASTE FUEL AND PRINOL 355 ⁽⁵⁾ HYDRAZINE MMH		FUEL SPILL WASHDOWN SUMP	D002 U133 P068	ML 376 502	÷.	F	38
5	生	VACUUM PUMP OIL TEXACO REGAL OIL 068	_	DENSIFICATION OF ORBITER TILES	0001	ૠ	***	iL.	68
5	E.	FUEL ECRUBBER Hydrazine Mmh	_	REMOVAL OF FUEL VAPORS	9602 U133 P068	HL 376 502	5	11	18,38,48
6	Å	HYDRAZINE	٠.	DRAIN PAYLOADS	6133	376	F.	TIF	89
19	¥	HYDRAZINE	ر	DRAIN 3 APU's	0133	376	FR	TIF	89
19	Z	POLYUPETHANE FOAM	S	TILE REPAIR	1000	붚	*144	L.	68
19	X.	ALUMACAST A/B MIXTURE POLYOXPROPLENE PENTAERY THRITOL AROMATIC WHITE OIL INERT ALUMINIZED PARTICLES DIPHENYLMETHANE DIISOCYAMATE POLYMERS OF DPM DIISOCYAMATE	_	CHUCK FABRICATION FOR ORB TILE	D001 NL D001 NL ML	^부 독 독 목 목 로		Andrew Company	

STA		CAT ⁽¹⁾ WASTE MATERIAL	50L 0R L19	OPERATI3"	HHZ,	HHZ,WST,NO.	HAZ.	HAZ.PROP. EPA /CAL.	CAL. COMP. CLASS
<u>e</u>	E	INSTANT SET POLYMER SCRAPS (:PHENYL METHANF DIISOCYANATE POLYKONALKYLENE PPOLYETHER AROMATIC HYDROCARBONS	ហ	TRLCER PATTERH FABRICATION	5001 NL NL D001	F F F F	-pel	LL.	89
5	Z.	SILANE/ACETIC ACID RESIDUE METHYL TRIMETHOXYSILANE ACETIC ACID	'n	INITIAL WATERPROUFING OF TILE	0093 NL NL	2 K	C 1	t c	4
6	Ŧ	MONOMETHYL HYDRAZINE	ب	SPAIN-FURGE APS MANIFOLD & LHS	P 068	205	x	#	89
15	Ŧ	MONOMETHYL HYDRAZINE	٦	GRAIN-PURGE FRCS MANIFLD & LNS	P 068	502	I	1	89
6	Ŧ	MOHOMETHYL HYDRAZINE ⁽⁶⁾	اب	DRATH ! APS FUEL	P 068	502	I	TF.	6 B
<u>0</u> ,	H	MGWMWETHYL HYDRAZINE ⁽⁶⁾	۰	DRAIN RAPS FUEL	P 068	205	I	1	89
6	Ī	MONOMETHYL HYDRAZINE ⁽⁶⁾	ب	DRAIN FRCS FUEL	P 068	505	I	1F	89
61	Ŧ	MONOMETHYL HYDRAZINE ⁽⁶⁾	ب	DRAIN PBK FUEL	P 068	502	I	Ħ	89
19	Ī	WASTEWATER WITH ANNONIA	١	PMMONIA BOILER SERVICING	0002	34	ပ	101	<u>a</u>
6	Ş	HITROGEN TETROXIDE	ب	DRAIN-PURGE PBK MANIFOLDS	P 08 0	548	x	15	6.9
19	9	NITROGEN TETRO IDE	ب	DRAIN-PURGE APE, FRES MANIFOLD	P080	248	I	TF.	64
19	9	NITROGEN TETROXIDE	د	DRAIN LAPS OXIDIZER	P 08 0	548	I	# #	69
19	8	NITROGEH TETROXLDE	د	DRAIH RAPS OXIDIZER	P 08 0	548	I	16	6.0
5	9	HITROGEN TETROXIDE	ر	DRAIN FRCS OXIDIZER	P 080	348	x	TF	69
19	9	NITROGEN TETROXIDE	۔	DRAIN PBK OXIDIZER	P 08 0	548	I	16	64
19	2	HITROGEN TETROXIDE	د	DRAIH PAYLOADS OXIDIZER	P 08 0	548	I	Ŧ	6.9
19	SO	DECONTAMINATE FROM PAYLOAD/ORB N204	_	RTH SPILLS-HOSE COHNECTIONS	P080 P080	λί. 548	I	Ħ	38,68
19	SO	WASTE OXIDIZER AND PRIMOL 355 ⁽⁵⁾ N204	٠	OXIDIZER SPILL WASHDOWN SUMP	P 080 P 080	หเ 548	I	-	38
6	g.	KOROPOH PRMER CONT PNT BRUSHES BUTYL ACETATE TALC - Mg SIL:CATES EPOXY RESIN	ຫ	ORBITER TPS CAVITY PREPARATION	F017	NL 136 NL NL		u.	89
13	g.	LACQUER #626486	د	ORBITER TILE REPAIR	0001	볽	unt	u.	68

SET	CAT ⁽¹⁾ WASTE MATERIAL	SOL OR L19	OPERATION	HAZ.	HAZ.WST.NO. EPA/CAL.	HAZ. EPA	HAZ,PROP ⁽²⁾ Epa /cal.	CAL. COMP. CLASS
g.	COHTAMINATED BRUSHES ORGANIC ZINC PRIMER ZINC CHROMATE PRIMER	ဖ	REFINISH ORBITER TILE SURFACES	F017 NL D007	RL ⁽⁴⁾ NL NL	1	-	89
G	ORGANIC ZINC PRIMER ZINC DUST BARYTES HORYBDATE ORANGE SILICA HIGH MOLECULAR WEIGHT EPOXY CELLOSOLVE ACETATE TOLUENE HETHYL ETHYL KETONE	٠	REFINISH ORBITER TILE SURFACES	F017 NL NL NL NL NL U220 U159	NL 777 NL 519 RL NL NL NL 738 499	ti .	¥-	89
G	CONTANINATED PAINT BRUSHES EA 911 EPOXY EA 934 EPOXY EA 9309 EPOXY	w	TILE BONDING TO ORBITER	F017 F017 F017	^폿 독독목	je. 191	171	89
6	DOPE & LACQUER THINNER ALIPHATIC NAPTHA ESTER OR KETONE 150- OR N-BUTYL ACETATE 150- OR N-BUTYL ACCOUSL	J	ORBITER TILE REPAIR	D001 NL F005 NL F003	523 523 NL 136 137	-	Ħ	4
38	WASHWATER WITH MEK METHYL ETHYL KETONE	١	SURFACE PREP FOR TILE REPAIR	U159 U159	HL 499	11	7.	3.0
	NASTENATER FROM EEULS	ب	RINSE OF SCAPESUITS & EMERGNCY	P 068	爿	I	-	34,44
R	WASTEWATER WITH MAH	د	ROUTINE SPILLS CLEANUP	D002 P068	HL 502	E C	11	18,38,48
HS	FUEL SCRUBBER HMH	د	REMOVAL OF FUEL VAPORS	D002 P068	HL 502	£	II.	1A, 3A, 4A
H	TILE REPAIR FOAM POLYURETHANE	w	TILE REPAIR	D001	H H	·#4	u,	89
Ŧ	MONOMETHYL HYDRAZINE	ر	AQUISITION SCREEN TEST	P 068	502	I	16	89
2	HITROGEN TETROXIDE	د	AQUISITION SCREEN TEST	P 080	548	I	1F	69
CX.	HITROGEN TETROXIDE	ı	PBK LOAD/OFF LOAD	P 08 0	548	I	Ħ	8
웆	HITROGEN TETROXIDE	_	RSYZTANK BLOWDOWN	P 08 0	548	I	1F	6 9
£	HITROGEN TETROXIDE	_	PBK LOAD/OFFLOAD SPILL	P080	548	I	Ŧ	69
03	BASTEBATER WITH OXIDIZER	J	DECONTAMINATE MIXTURES RTH SPL	P.080	ž	3	11	34,69

TAE	TABLE 7	CONT.) HAZARDOUS CHARACTERISTICS	IER 1S	OF WASTES GENERATED BY THE	SHUTTLE TRANSPORT	TRANSP(JRT S'	SYSTEM AT	VAFB. PAGE	la l
SET		CAT ⁽¹⁾ VAST E M ATERIAL	SOL OR LIG	OPERATION	HAZ.WST.NO. EPA/CAL.	Z.WST.NO. EPA/CAL.	на2.	HAZ.PROP ⁽²⁾ EPA /CAL.	CAL. COHP. CLASS	
1		N204			P 080	548				
2	25	WASTEWATER WITH MEK METHYL ETHYL KETONE	ب	TILE REPAIR	U159 P	NL ⁽⁴⁾	Ţ.	16	36	
21	3	WASTE SEALS, FILTERS, ETC.	w	EQUIPMENT MAINTENANCE	1 1000	¥	•	u.	89	
23	3	MASTEWATER FROM EEURS	_	RINSE OF SCAPESUITS & EMERGHCY	P068 1	爿	3	11	38,48	
23	T.	HYDRAZINE-CONTAM, WASTEWATER HYDRAZINE	ب	WASHDOWN OF EXPECTED N2H4 SPL	U133 3 U133	376 376	F	116	8 9	
23	FS	HYDRAZINE-CONTAM. CLNUP WATER Hydrazine	_	FINAL CLEANUP OF LAUNCH MOUNT	U133 U133	376 376	5	TIF	6 B	
23	FS	WASTEWATER FROM PPR HYDRAZINE		WASHDOWN OF PPR SPILLS	U133 3 U133	376 376	¥	TIF	68	
23	FS	PRIMOL 355 ⁽⁵⁾ Hydrazine Mmh	ب	COVERS OXID, & FUEL SPILLS	D102 h U133 P068	HL 376 502	3	11	38	
23	Ŧ	HYDRAULIC FLUIDS TETRAORTHOCRESOL PHOSPHATE	ı	MAINT, OF HYDRAULIC DEVICES	D001 P	¥ K	11	TIF	68	
23	£	HYDRAZINE & MMH SCRUBBER HYDRAZINE MMH	ب	RECOVERY OF HYDRAZINE VAPOR	D002 h U133 P068	HL 376 502	£	11	18,28,48	
23	¥	HYDRAZINE	ب	FILL SRB TYC APUS & ORB TANK	U133 3	376	2	TIF	68	
23	¥	LBM PROPELLANT PARAHYDRAZINE UNSYM DIMETHYLHYDRAZINE	٦	CONTINGENCY FUEL OFFLOAD AT LP	U133 3 U133 U098	376 376 285	A	115	89	
23	¥	HYDRAZINE	_	CONTINGENCY FUEL OFFLOAD AT LP	0133	376	R	TIF	6B	
23	H	KSHA INBULATION BUTYL GLYCIDYL ETHER EPOXY RESINS, UNCURED	ø	CLOSEOUT OF SRBs	D301 D301 D001	^노 녹 냪	11	1	88	
23	Ē	MCHONETHYL HYDRAZINE	ب	FUELING OF ORBITER	P 068	205	æ	1F	68	
23	£	MONOMETHYL HYDRAZINE	_	CONTINGENCY FUEL OFFLOAD AT LP	P 068	502	Ŧ	1F	68	
23	Ŧ	АНИОИ ІА	_	CONTINGENCY UFFLOAD AT LP	D002	34	ပ	TCI	ā	
23	3	NITROGEN TETROXIDE		LOADING OF ORBITER OXIDIZER	P 080	548	I	15	6.9	
23	2	LBM OXIDIZER (CONT.)	_	CONTINGENCY OFFLOAD AT LP	P 080	548	I	Ŧ	69	

STA	CAT	CAT ⁽¹⁾ WASTE MATERIAL	SOL 08 1.19	OPERATION	HAZ.	HAZ.WST.NO. EPA/CAL.	HAZ.	НАZ.РROP ⁽²⁾ Ера /Cal.	CAL. COMP. CLASS
1		HITROGEN TETROXIDE			P 090	548			
_	£	NITROGEN TETROXIDE		CONTINGENCY OFFLOAD AT LP	P 08 0	548	I	F	6
	SO	N204 CONTAN, CLEANUP WATER NITROGEN TETROXIDE	_	FINAL CLEANUP OF LAUNCH MOUNT	P080 P080	548 548	I	1 F	3A, 6A
_	80	N204 CONTAM, WASTEWATER NITROGEN TETROXIDE	_	WASHDOWN OF EXPECTED N204 SPL.	P 08 0 P 08 0	548 548	I	1	3A,6A
	SO	PRINOL 355 H204		N204 SPILL CLEANUP	P 080 P 080	HL(4) 548	I	-	3A
	හ ර	SRB PROPELLANT SPILL AMMONIUM PERCHLORATE ALUMINUM POWDER PBAN BINDER HTPB BINDER IRON OXIDE	တ	ACCIDENT INVOLVING 1 SRB	D003 D003 D003 NL HL	37 22 7 7 7 8	# TR	1 PF	2A,6A
	3	DELUGE WATER ALUMINUM OXIDE AMMONIA HYDROCHLORIC ACID ORGANIC CARBON	ب	ACOUSTIC DAMPING/COOLING OF LP	0002 NL NL D002	ML ML 381 ML	ပ	ပ	æ
	08	SOLVENT MIXTURE FREON THC/MF/TF SYH, TETRACHLOROETHANE	~	CLEANUP OF PCR & PPR	D001 F002 F002	262 262 715	Ţį	TIF	4
	80	CONTAMINATED SOLVENTS	٦.	CLEANUP PROT COATING SPRAY EQU	D001	뒾	11	TIF	6 B
	78	SOLVENT WASTEWATER UNSPEC.	د	CLEANUP OF PCR & PPR	1000	¥	CT	5	89
	38	CONTAMINATED WASTEWATER SOLVENTS CHLORINATED RUBBER ZINC PRIMER	ب	REFURBISHMENT OF LP PROT COAT	D001 D001 NL	투독독로	1 3	Ħ	89
	9 F	SURFACTANT Nach Sodium tripolyphosphate	Ļ	SMALL PIPE CLEANING	5002	229	ပ	11	ē.
-	3	EA 934 EPOXY ADHESIVE EPOXY RESIN ASBESTOS FILLERS POLYANIDE DIETHYLENETRIAMINE	w	BUILDUP OF SRB FOR CORK APPL.	D001 D003 U013 NL NL	F 75 F 75 F 75 273	+	11	6

TABLE	LE 7	(CONT.) HAZARDOUS CHARACTERISTICS	ERIS	OF UASTES GENERATED BY THE	SHUTTL	E TRANSP	ORT S	SHUTTLE TRANSPORT SYSTEM AT	. VAFB., PAGE
STA		CAT ¹¹⁾ WASTE MATERIAL	SOL OR L19	OPERATION	HAZ. EP	HAZ.WST.NO. EPA/CAL.	HAZ, EPA	НА2.РR0Р. ⁽²⁾ Ера /САL.	CAL, COMP, CLASS
Ē	5	CHARCJAL FILTER WASTES	σ	FILTERING OF CURE ROOM AIR	F005	ML ⁽⁴⁾	11	7	6 B
33	e S	CONTAMINATED AIR FILTERS	ဟ	FILTERS ON ALL EXHAUST STACKS	000	≢	14	L	6 B
æ	Š	BOSTIK PRIMER PAINT CANS	တ	SRB PAINTING	¥	¥			6 B
æ	3	BOSTIK TOPCOAT PAINT CANS	ဟ	SRB PAINTING	井	爿			89
Ē	Ç	RUSTOLEUM PRIMER PAINT CANS	ø	SRB FUD SKT RINGS PAINTING	₹	뉥			68
æ	S	RUSTOLEUM TOPCOAT PAINT CANS	ဟ	SRB FUD SKT RINGS PAINTING	¥	뒾			6 B
ñ	3	MSA-1 EMPTY CONTAINERS	တ	SRB INSULATION	뀙	爿			6B
3	3	K5HA CONTAINERS	တ	KSHA CLOSEOUTS	봊	¥			6 B
3	¥3	KSNA & MTA-2 PACKING MATERIALS	တ	CONTAINERS OF INSUL FOR SRBs	0000	불	Ţ	11	89
3	85	SOLVENT CONTAMINATED RAGS	ဟ	CLEANING SRB WITH SOLVENTS	D001	Ħ		L	89
ñ	8	ALODINE CONTAMINATED RAGS	တ	APPLICATION OF ALODINE TO SRB	2000	물	ш	-	69
£	S S	RYMPLE CLOTHS	S	DEGREASING	F001	포	13	1F	89
æ	S.	PAINT DROP CLOTHS	တ	PROT OF FLOOR DURING PAINTING	F017	뉥	1.1	11	89
31	3	UASTEUATER FROM EEULS		RINSE OF SCAPESUITS & EMERGNCY	F017	뒱	-	-	3A
ñ	FO	FUEL AND OIL SPILLS	ب	RAIL TRANSPORT OF SRB	0001	뒱	44	is.	69
31	50	FUEL & OIL WASTES	ب	WASTES FROM IN-BUILDING OPS.	000	돭	•	u.	89
3	FS	PRIMOL 355 ⁽⁵⁾	ب	HYDRAZIHE SPILL CLEAN-UP	D002	376	8	11	68
Ë	Ŧ	SCRUBBER EFFLUENT	_	IVC HOT FIRE AREA SCRUBBER	D002	376	10	11	18,38
æ	¥	HYDRAZINE	J	SERVICING OF TVC APU	U133	376	¥	TIF	68
.	X.	H3A-1 (CURED) ⁽⁸⁾ EPICHLORHYDRIN/BGE GLASS ECOSPHERES PHENCLIC MICROSPHERES GLASS FIBERS BE-TONE 27 METHYLENE DIANILINE M-PHENYLENE DIAMINE	ø	SRB INSULMTION	D001 D003 RL RL NL D101	^복 폭폭폭폭폭	-	<u>.</u>	89
E	ž	MSA-1, PART A (UNMIXED) ⁽⁹⁾ METHYLENE CHLORIDE (CONT.)	_	SRB INSULATION	F002 F002	262 262	Z	T	89

SET		CAT ⁽¹⁾ WASTE MATERIAL	S0L 0R L10	OPERATION	HAZ.WST.NO, EPA/CAL,	HAZ.P	HAZ.PROP, ⁽²⁾ Epa /Cal.	CAL, COMP. CLASS
		EPICHLORHYDRIH/8GE			D003 NL ⁽⁴⁾			
E	ž.	MSA-1, PART B (UNMIXED) ⁽⁹⁾ METHYLENE CHLORIDE PERCHLOROETHYLENE METHYLENE DIAMILINE M-PHENYLENE DIAMINE ETHYL ALCOHOL PHENOLLIC MICROSPHERES GLASS ECOSPHERES GLASS FIBERS BENTONE 27	٠	SRB INSULATION	U210 576 F002 262 U210 576 D001 R NL R NL R NL R NL R NL R NL R NL R NL	Ë	<u> </u>	
E	Z	MTA-2 (CURED) ⁽⁸⁾ EPICHLORHYDRIM/BGE LP-3, POLYSULFIDE LIG POLYMER MDA & mPDA STAMMOUS OCTOATE PMENOLIC MICROSPHERES	6	SRB INSULATION	D001 NL D003 NL D001 NL NL NL	H	۴	8
ñ	#	MTA-2 (UMMIXED) ⁽⁹⁾ EPICHLORHYDRIN/BGE LP-3, POLYSULFIDE LIQ POLYHER MDA & mPDA STANNOUS OCTOATE PHENOLIC MICROSPHERES METHYLENE CHLOROETHOE	J	SRB INSULATION	D001 262 D003 NL D001 NL D003 NL NC NL NC NL NC NL VC NL	<u> </u>	4	89
31	×	KSHA Butyl Glycidyl Ether Epoxy Resins	o 5	CLOSEOUT OF SRB AFT SKT & SRM	D001 NL D001 NL D001 NL	<u>-</u>	TIF	8
31	X	INSULATION AND PAPER	60	PROT OF FLOOR DURING INSUL	DO01 NL	1	7	69
~	G	BOSTIK EPOXY PRIMER EPOXY RESIN AMINE CURING AGENT TITANIUM DIOXIDE CHROMATE PIGMENTS INERT PIGMENTS SUSPENSION & FLOW CONTROL ADDI SOLVENTS	_	SRB PAINTING	F017 ML D003 ML ML ML ML ML D007 202 ML ML ML ML	13	11F	89
£	g	BOSTIK EPOXY TOPCOAT EPICHLORHYDRIN/BISPHENOL A AMINE CURING AGENT COLOR PIGNENT SUSPENSION & FLOW CONTROL ADDI SOLYENTS PHOTOCHEM REACTIVE (CONT.)	٦	SRB PAINTING	F017 AL D001 ML NL NL NL NL HC NL F003 ML	<u> </u>	# I #	99

TABLE	m L-	(CONT.) HAZARDOUS CHARACTE	ısı	HAZARDOUS CHARACTERISTICS OF VASTES GENERATED BY THE SHUTTLE TRANSPORT SYSTEM AT	HUTTLE TRAN	SPORT SI	/STEM AT	VAFB. PAGE
STA	.es	CAT ⁽¹⁾ WASTE MATERIAL	50L 0R Lig	OPERATION	HAZ,UST,NO EPA/CAL,		HAZ.PROF. EPA /CAL.	CAL. COMP. CLASS
		SOLVENTS HONPHOTOCHEM REACTIVE			l m		ı	q
Ē	ā	RUSTOLEUM PRIMER SILICATES YELLOW IRON OXIDE TITANIUM DIOXIDE CALCIUM BOROSILICATE BENTONITE LINSEED PHENOLIC ALKYL RESIM AI IPHATIC MYDROCARBONS	J	SRB FUD SKIRT RINGS PAINTING	20 27 20 20 20 20 20 20 20 20 20 20 20 20 20	-1	•	B
Ē	ā.	PRIERS AND ADDITIVES RUSTOLEUM TOPCOAT SILICATES TITANIUM DIOXIDE BENTONITE CLAY	ب	SRB FUD SKIRT RINGS PAINTING	~	198	u.	89
			-	SNITH TO G GGG	5 4	-	TF1	89
ñ	₽	GACOFLEX CLAY CLAY CLAY HYPALON HYDROCARBON RESIN PERCHLOROETHYLENE 1,1,1-TRICHLOROETHY	ı		F F F F F F F F F F F F F F F F F F F			
;	3	EPOXIDIZED SOTBERM UIL	ر	CLEAN-UP OF PAINT SPILLS	FO17 HL	-	-	89
- F	2 2		.	RINSE OF CONTAMINATED RACS	D007 NL D007 198 P055 233 D002 345	T	108	18, 3A, 6A
F	8	•	ب	SURFACE CLEANING FOR K5NA	U210 576	-	11	89
5 5			٦	SURFACE CLEANING FOR KSHA	F002 743	-	=	89
, F	8		ب	SURFACE CLEANING FOR KSNA	F002 NL	-	-	9 :
m	80	HSA-1	ب	MSA-1 EQUIPMENT CLEANUP	F002 262	-	-	4 :
. F	80	HSA-1	د	HSA-1 EQUIPMENT CLEANUP	F002 576	-	-	e :
E	80) PERCHLOROETHYLENE	_	PARTS CLEANING ROOM OPERATIONS	F 0 0 2	-	-	G :
æ			_	PARTS CLEANING ROOM OPERATIONS	F002 743	-	-	Œ Ť

SET		CAT ⁽¹⁾ &: STE MATERIAL	30L 0R L19	OPERATION	HAZ.	HAZ.UST.NO. EPA/CAL.	HAZ EPA	HAZ.PROP ⁽²⁾ Epa /cal,	CAL. COMP. CLASS
Ŧ	80	METHYLENE CHLORIDE		PARTS CLEANING ROOM OPERATIONS	F002	262	-	-	4
Æ	90	MTA-2 CONTAMINATED SOLVENTS	ر	HTA-2 HIXING TANK CLEANUP	F005	499	Ţi	15	89
3	20	BOSTIK CONTANINATED SOLVENTS	ı	BOSTIK EQUIPHENT CLEANUP	0159	664	ij	1F	68
31	08	RUSTOLEUM CONTAMINATED SOLVENT	ı	RUSTOLEUM EQUIPMENT CLEANUP	U159	499	11	11	89
32	89	LITHIUM STORAGE BATTERIES	တ	SAFING OF SRB DESTRUCT ORD	D002	705	ပ	10	18,38,68
32	8	SILVER-ZINC STORAGE BATTERIES	80	SAFING OF SRB DESTRUCT ORD	D011	202	w	10	1A,68
32	Œ Œ	POTASSIUM HYDROXIDE SOLUTION	_	DRAINAGE OF AG-ZN BATTERIES	0002	621	U	10	19,38
32	63	HYDRAZINE-CONTAMINATED WATER	_	FLUSHING OF AFT SKT CAT BED	D002	F	v	11	36
32	S	CONTAMINATED SEAUATER ⁽¹⁰⁾	7	PARTIAL ONDECK PUMP OUT OF SRB	붚	불			34
35	S	CONTAMINATED SEABATER ⁽¹⁰⁾	-	DRAINAGE OF SRB INTERIOR	붚	돺			36
35	3	SRB FUD SKT CLEANING WASTES	J	CLEANING OF FUD SKT TP CAVITY	呈	¥			
35	E	HASTEUATER FROM EEULS	4	RINSE OF SCAPESUITS & EMERGNCY	P 068	불	S.	11	34,48
32	2	BILGE WASTES	د	BOAT RETRIEVAL OF SPENT SRBs	0001	뒾	=	#	9
35	FO	DIESEL FUEL & OIL SPILLS	_	TRANSPORT BY TRACTOR OF SRBs	0000	¥			89
35	FS	WASTE FUEL & PRIMOL 355 ⁽⁵⁾ Hydrazine	ب	FUEL SPILL WASHDOWN SUMP	D002 U133	HL 376	ပ	113	30
35	£	HYDRAZINE SCRUBBER EFFLUENT HYDRAZINE	_	DRAINACE OF TYC APUS ON SRBS	D002 U133	HL 376	ů	1	3A
32	<u>}</u>	HYDRAZINE	د	DRAINAGE OF TVC APUS ON SRBS	U133	376	T.	TIF	89
35	3	INSULATION WASTES, SOLID MSA-1 INSULATION HTA-2 INSULATION KSMA INSULATION PR-855 INSULATION	w	STRIPPING OFF SRB INSULATION	D001 D001 D001	투독독독북	194	u.	89
35	ž	INSULATION CONTAN FILTERS	ø	FILTER HIGH PRES WATER SPRAY	D001	爿			89
32	2	INSULATION-CONTAMINATED WATER MSA-1 INSULATION MTA-2 INSULATION KSNA INSULATION	ب	INSULATION STRIP W/WATER SPRAY	¥	붚			Æ

Ţ	TABLE	7 (CONT.) HAZARDOUS CHARAC	rer 15	ARDOUS CHARACTERISTICS OF WASTES GENERATED BY THE	SHUTTLE	TRANSP	ORT S	SHUTTLE TRANSPORT SYSTEM AT VAFB	VAFB. PI	
STA		CAT ⁽¹⁾ WASTE MATERIAL	30L OR LIB	OFERATION	HAZ.4	HAZ.WST.NO. EPA/CAL.	HAZ.	HAZ.PROP ⁽²⁾ Epa /cal.	CAL, COMP, CLASS	
32	9 8	PRESERVATIVE CHEMICALS PROTECTIVE LUBRICANTS	ب	PROTECTION OF SRB SEG JOINTS	D 0 0 3	(\$) ₹	υ	ပ	# #	•
32	&	SRB SOLID PROPELLANT AMMONIUM PERCHLORATE ALUNINUM POWDER FERRIC OXIDE POLYMER & EPOXY RESIN	w	ACCID. SPILL OF RESIDUAL FUEL	D693 D603 D603 NL NL	^국 K 2 로 로	α	u.	8	
32	88	DETERGENT WASHWATER ⁽¹¹⁾	_	WASHING OF SRB COMPONENTS	뒾	돭			34	
32	SB	POTABLE RINSE WATER	_	RINSING OF SRB COMPONENTS	뒾	¥			34	
32	SB	DEIONIZED RINSE WATER	ب	FINAL RINSE OF SRB COMPONENTS	¥	¥			36	
32	81	SRB RINSE WATER	۔	ONDECK RINSE OF SRB EXTERIOR	불	¥			3A	
32	S0	SOLVENTS FREON TNC/TM SOLVENTS, UMSPECIFIED	J.	PREPARATION OF SRB SEG JOINTS	D001 D002 D001	262 262 ML		Ħ	68 68	
33	S	AIR FILTERS	စာ	FILTERING PARTICULATES	1000	¥	#	ı.	89	
33	E	UASTEUATER FROM EEULS	_	ENERGENCY WASHWATER	D001	뢒	-	-	89	
33	Ħ	HYDRAULIC FLUIDS	_	CHANGING HYDRAULIC FLUID	1000	불	ī	TIF	89	
66	₹	CX-6300 ABLATOR ADHESIVE RESIN STR L 663 RESIN STR L 664 SILICA POWDER CARBON POWDER CURING AGENT L 663 CURING AGENT L 664 HEPTANE	o	PREP FOR ABLATOR CLOSEOUTS	D0001 NL NL NL NL D0001	% % % % % % % % % % % % %	=	7	Q	
66	3	ISOCHEM POLYESTER RESIN ADHESY STYREKE MEK PEROXIDE CATALYST DIMETHYL PHTHALATE	(i)	PREP FOR SPRAY-ON FOAM CLOSE	D003 D003 U160 U162	697 697 500 HL	a T	TFPI	a	
66	CA	FILTER	တ	FILTER PARTICULATE IN CLN AREA	0000	¥	+	u.	6 8	
66	2	SOLVENT CONTAMINATED CONTAINER SOLVENTS(12)	s	SURFACE PREP FOR ET CLOSEOUT	M.L. D000	걸로		-	69	
66	3	PRIMER CONTAMINATED CONTAINERS	s	PRINING FOR ET CLOSEOUTS	=	보		-	89	
66	3	ADHESIVE CONTAMINATED CONTAINR	တ	PREFARATION FOR ET CLOSEOUTS	₹	ÄL			89	

7.ABL	788LE 7	(CONT.) HAZE (DOUS CHARAC)	rer1s'	HAZA (DOUC CHARACTERISTICS OF WASTES GENERATED BY THE SHUTTLE TRANSPORT SYSTEM AT VAFB.	HUTTLE	TRANSPO	DRT SY	STEM AT		4
\$5.1		CAT ⁽¹⁾ WASTE MATERIAL	SOL OR L 19	OPERATION	HAZ.US EPA.	HAZ.UST.NO. EPA/CAL.	HAZ.P EPA /	HAZ.PROP. Epa /cal.	CAL. COMP. CLASS	
į		SILICA NICROSPHACES PHENOLIC MICROSPHERE CIDING OCENT STN L664, PT B	Ì		독목부	₹보				
99	E	- 897	•	FIGH TRIM BEFORE ADMES APPL	0001	^독 폭	4	L	69	
66	g.	EPOXY PRIMER METHYLENE XYLENE XYLENE CYCLOHEXAHONE CHROMATES INORGANIC PIGMENTS N-BUTANOL TOLUENE ANTHOUSILANE METHYLES	_	PRIMER FOR FOAH INSUL ET CLOSE	F017 U161 U239 U057 D007 NL F003 U220 U159	ML 504 776 ML ML HL HL 137 738 718 916	J pen en	A11	89	
9.	g.	₹ <u>5</u>	ų.	PRIMER FOR OR ET CLOSEOUT	F017 D001 NL	597 597 NL	T.	Ŧ	89	
ő	Ş			SURFACE PROP FOR ET CLOSEO!IT	F002	262	-	-	68	
, 6	S OS	1,1,1-TRICHLOROETHANE	_	SURFACE P OR ET CLOSTOUT	F002	¥	7.	Ŧ	89	
66	8	MEK # CELLOSOLVE	ب	SUBSTRATE GUIP CLEHHUP	U159	439	11	FT	8	
66	80	HEPTANE	ب	ABLATOR EQUIPMENT CLEANING	D001	366	Ţ	11	69	
66	80	SELLOSOLVE ACETATE	١	FOAM SONLS & PRIME? TOUTH CLNP	D 0 0 1	불	11	T	89	
66	80	METHYL ETHYL KETONE	٦	FOAM ADHES & PPINER EQUIP CLNF	0159	499	1	16	89	
66	8	SOLVENT REDUCER METHYL ETHYL KETONE CYCLONEXANONE	.1	SURFACE PKIP FOR ET ILGSEOUT	0155 0159 0057	499 7 1		L	89	
66	36	SOLVENT CONTAMINATED WATER	-4	RINSING OF CONTANINATED RAGS	F003	¥	-	-	36,68	

CAL. COMP. CLASS

OPERATION

50L C2 L10

STA CAT⁽¹⁾VASTE MATERIAL SET

DESCRIPTION OF THE PROPERTY OF

	89	89	4	8 9	0	89	€	89	89	68	89	9	89
			ų	<u>.</u> ;	1441	FTI	14P I	u.	u.	u.	U.	t	#
			!		iTR	11E	# I	npd.	 1	44	,-1	13	j ust
물	7	! <u>=</u>	ב ב	뉥	269	돺	50 K K K K K K K K K K K K K K K K K K K	폭	부목목록	목목록록	爿	336 RF RF RF	366 H F F F F
N(4)				1000	D003 6	1 1000	D003 (0001 U229 NL NL U160 NL U102	0001 0001	D001 D001 U229 ML	D001 U229 ML NL	D001	000 F F F F F F F F F F F F F F F F F F	2
Olinya iya ali	7	S CONTAINERS FOR PULTUL & NO.	S ET HARD-PACKED ABLATOR CLOSE	S SURFACE PREP FOR ET CLOSEOUT	S PREPARATION FOR ET CLOSEOUTS			S ET POUR FOAM CLOSEOUT	L ET POUR FOAM CLOSEOUTS	L ET POUR FOAM CLOSEOUTS	e ET POUR FOAM CLOSEOUTS	; L	S HAND-PACKED ABLATOR CLUSEOUT
	SOLVENT CONTAINERS	POUR FOAM CONTAINERS	ABLATOR CONTAMINATED CONTAINER	SOLVENT CONTAMINATED RAGS	SOOD COLONIAL TRANSPORT	ACHESIVE CONTRICTOR CONTRICTOR BOOKS	EPOXY PRIMER-CONTONINGLED KHUS BX-250 FOAM (SOFI) DIPHENYL METHANE DIISOCYANATE FREDN 11 AMINES POLYDLS SUPER NEK PEROXIDE POLYESTER RESIN	DIMETHYL PHTHALATE POUR FOAM (MIXED) ⁽⁸⁾	POLYURETH POUR FOAM DIPHENYL FREON 11	ā.	POLYETHER POLYOL BLEND	POUR FOAM CONTAMINATED PHYER SUPER LIGHT ABLATOR (1) RESIN L664, PT A SILICA FIBERS CORK PHENOLIC MICROSPHERES	vr
	S	3	3	9	5	3	es f	2	X	ĭ		H H	æ H
	66	66	8	. 6	<u>,</u>	66	6 6	9	66	66		6 6 6	66

FOOTHOTES

- . See Category Codes Glossary for definition of all abbreviations.
- 2. See Glossary for definitions of abbreviations.
- Station Set Zero is used for wastes from the space shuttle launches which are generated at a place other than a designated station set (e.g., SCAPE suit cleaning facility).
- . NL = not listed.
- Primol 355 is a high-viscosity mineral oil. Usage requires a design decision and Air Force approval. Either Primol 355, another oil, or a foam will be used to prevent vaporization of spilled hypergols.
- This waste could be off-loaded either at Station Set Y19 or Y21. Station Set Y19 has been arbitrarily chosen.
- This contingency could occur either at Station Set V23 or V31. Station Set V23 has been arbitrarily chosen.
- 8. Insulation is mixed, but not used.
-). Insulation is unmixed, but with shelf life exceeded.
- 10. Nature of contaminants not determined.
- i. Contains unidentified surfactants and/or detergents.
- Solvents include Freon TMC, trichloroethane, methyl ethyl ketone, and cellosolve (4).

TABLE 8. UNIT GENERATION OF SHUTTLE TRANSPORT SYSTEM HAZARDOUS WASTES AT VAFB

WASTE HATERIAL	SOL	76	QUANTITY PER LAUNCH BASELINE	. РИМСН		:	QUANTITY PER EVENT CORTINGENCY	ER EVENT ENCY	
		MASS KILOGRAMS	POUNDS	VOLUME LITERS(1) G	GAL OR CF	MASS KILOGRAMS	POUNDS	LITERS ⁽¹⁾ GAL	OR CF
STA, SET* 0 ⁽²⁾ CAT=SO CONTAMINATED FREON	د ا	2376.8	5240.0	1514.0(3)	400.0(3)	•	e .	e.	•
SUBTOTAL FOR STA. SET 0 SOLIDS LIQUIDS SUBTOTAL		2376.8 2376.8	.0 5240.0 5240.0	1514.0	400.0				
STA, SET#17 CAT#EW WASTEWATER FROM EEWLS	_	2725.4(4)	6008.4(4)	2725.2 ⁽⁴⁾	720.0(4)				
STA, SET*17 CAT*FO DIESEL FUEL	د					•	•	e.	•
STA, SET=17 CAT=FO DIESEL FUEL & OIL	ب					•	•	.	•
STA. SET=17 CA7=FS CONTAMINATED DILUTION WATER MMH	٠	ė.	· ·	ė.	e				
SIA, SET=17 CAT=08 CONTANINATED DILUTION WATER N204	ل ہ	e	e. e.	e.	ė.				
SUBTOTAL FOR STA. SET 17 SOLIDS LIGUIDS SUBTOTAL		.0 2725.4 2725.4	6008.4 6008.4	2725.2	720.0				1.7
STA, SET=18 CAT=HF Hydraulic fluids	۰	4,3(5)	9.8	9.5(5)	2.5(5)	٥.	ė.	ē,	•.
SUBTOTAL FOR STA, SET 18 SOLIDS LIQUIDS SUBTOTAL		4 4 9 W W	. ຍ ຍ ວ ເກ ເກ	. .	 				
SIA, SET=19 CAT=AU TPS ADMESIVE, RTV 366/577 THENYL METHYL POLYSILOXANE TIN OXIDE SILICON HARDEMER	6 0	÷	15 10	œ.	μ			e .	
STA, SET=19 CAT=AW EA 911 EPUXY (CONT.)						°.	•	.	•

VAFB	
Ā	
UASTES	
UNIT GEHERATION OF SHUTTLE TRAHSPORT SYSTEM HAZARDOUS WASTES AT VAFB	
SYSTEM	
TRAHSPORT	
SHUTTLE	
96	
GEHERATION	
UNIT	
(COMT.)	
TABLE 8 CCOMT.	

WAST ! MATERIAL	SOL	îô	OURNIITY PER LAUNCH BASELINE	. АИИСН		QUANTITY PER EVENT CONTINGENCY	R EVENT HCY	
	7.10	MASS KILDGR/HS	POCHOS	YOLUNE LITERS ⁽¹⁾ GAL OR CF	MASS KILOGRANS	POUNDS	YOLUME LITERS ⁽¹⁾ GAL	GAL OR CF
EPOXY ZINC CHPMATE ASBESTO MERCAPTHA DINETHYLAMINF					00000	00000		
STA, SE/=19 CAT=AW EA 934 EPOXY EPOXY RESIN ASBESTOS	_			÷		÷	0.	• • • •
SIA, PIT#19 CAT#AW EA 9309 EPOXY EPOXY PESIN GLASS FIBERS ACRYCHITRILE/BUTADIEN/STYREYT ASBESTOS POLYLYCOL DIGMINE SILANE	بن ب				e	,	ę	000000
STA, SET=19 CAT=CH SPRAYCANS OF TPS SEALER FLUORINATED SOLVENT FREON 113	w		,		5	ė. °.	e.	é
STA, SET-19 CAT-CH KOROPON PR.MER CONTAM CANS BUTYL ACETATE METHYL ETHYL KE.OME TOLUENE TALC - Mg SILICATES EPDXY RESIN	5	6.8 ⁶⁶	15,0(6)	56.6			•	ē
STA, SET=19 CAT=CM LACQUER SPRAY CAMS PIGMENT SOLIDS VEHICLE SOLIDS TOLUGE XYLENE HYDROCARBOH PROPELLANT PETROLEUM DISTILLATES	w	2.7 ⁽⁷⁾	6.0(7)	28.3			°.	
SIA, SET=19 CAT=CH ISP CONTAM CUPS & WOOD STICKS INSTANT SET POLYMER	v	(8)2'	1,5(8)	14.2 .5	. °	0.	e .	°.
STA, SET=19 CAT=CN MARSHALL STEHCIL INK SPRAYCAHS KYLENE HAPTHA (CONT.)	v	.3(7)	·é(7)	2.8		0.	e.	0.0

VOLUME LITERS⁽¹⁾ ė • • • • QUANTITY PER EVENT CONTINGENCY PAGE ٠<u>٠</u>٠ ÷. ÷. POWE MASS KILOGRAMS • • • • ٠. ÷. 0 UNIT GENERATION OF SHUTTLE TRANSPORT SYSTEM HAZARDOUS WASTES AT VAFB VOLUME LITERS(1) GAL OR CF 5. 2.0 22.7 42.5 56,6 QUANTITY PER LAUNCH BASELINE 9.0(7) 10.0(9) 9.0(7) POUNDS 2.2(7) 4.5(9) 4.1(7) 4.1(7) MASS KILOGRANS 30L 0R L10 STA. SET=19 CAT=CR 1PA CONTANINATED CHEESECLOTH ISOPROPYL ALCOHOL STA, SET=19 CAT=CR TCE CONTAMINATED CHEESECLOTH 1,1,1,1-TRICHLOROETHANE STA, SET=19 CAT=CR MEK CONTANINATED CHEESECLOTH METHYL ETHYL KETONE STA. SET=19 CAT=CR IPA CONTAMINATED CHEESECLUTH (CONT.) STA, SET=19 CAT=CR MEK & 1PA CONTAN CHEESECLOTH METHYL ETHYL KETONE ISOPROPYL ALCOHOL STA, SET-19 CAT—CR SCLVENT-CONTAN CHEESECLOTH ISOPROPYL ACCONC METHYL ETHYL KETONE 1,1,1-TRICHLORDETHANE STA, SET=19 CAT=CR RAGS WITH SOLVENTS, GREASES STA, SET=19 CAT=CN ZINC CHROMATE PRIMER CANS STA, SET=19 CAT=CN CONTANINATED TARE CUPS EA 911 EPOXY EA 934 EPOXY FA 9309 EPOXY HYDROCARBON PROPELLANT PETROLEUM DISTILLATES STA, SET=19 CAT=CH LAGQUER SPRAYCANS PIGMENT SOLIDS VEHICLE SOLIDS TOLUENE STA, SET=19 CAT=CN ENAMEL SPRAYCANS TABLE 8 (CONT.) OTHER MATERIALS **UASTE MATERIAL**

•

GAL OR CF

/AFB
4
UASTES !
HAZARDOUS
SYSTEM
TRANSPORT
SHUTTLE
4
GENERAT 10H
HIL
(CONT.) UNIT GENERATION OF SHUTTLE TRANSPORT SYSTEM HAZARDOUS WASTES AT VAFB
CCDNT
TABLE 8

HIGGRANGS POUNDS LITERS ¹¹⁾ Gal, OR CF KILOGRANGS POUNDS LITERS ⁹¹⁾ GAL 4.5 ¹¹⁰⁾ (10.0 ¹¹⁰⁾ (41.6 5.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	WASTE MATERIAL	SOL	OUF	QUANTITY PER LAUNCH	ноисн			AUGNTITY PER EVENT CONTINGENCY	EVENT	
SET-19 CAT-FEE CONT CHSCLTH STELL CONT CHSCLTH STELL CHAIR CHAIR CONT CHSCLTH STELL CHAIR C		R SI	MASS KILOGRAMS	POUNDS	VOLUME RS(1)	뒫	MASS KILOGRAMS	POUNDS	YOLUME S ⁽¹⁾	AL OR CF
SET-19 CATCAR STET-19 CATCAR STET-							0.	o.		ė.
Controlled Con	STA, SET=19 CAT=CR SOLID FILM LUBRIC CONT CHSCLTH						ē.	•	٥.	•
8 4.5 ^[10] 10.0 ^[10] 141.6 5.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	STA. SET=19 CAT=CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL	ø)					ė. •	o.	•	ė.
8 4.5 ^[10] 161.6 ^[10] 5.0 .0	STA, SET=19 CAT=CR DICHLORUMETHANE CONT CHSECLTH	80					•	•	•	•
LORD-ORB L 544.3 1200.0 567.8 150.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	STA, SET=19 CAT=CR CONTAN CLOTHES, CLOTH & DEBRIS KOROFON BASE PRIMER KOROFON ACTIVATOR BERYLLIUM DUST		4.5(10)	10.0(10)		o. o	0.00	Ć	•	
FROM PAYLORD/ORB L 544.3 1290.0 567.8 150.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	STA, SET=19 CAT=EW	٦	3028.2(4)	6676.0 ⁽⁴⁾	3028.0(4)	800.0(4)				
9 CATHES AND PRINCL 355(11) L 1.8 4.0 1.0 1.8 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	STA, SET=19 CAT=FS WASTEWATER FROM PAYLOAD/ORB MMH	J.	344.3 54,4	1296.0	567.8	150.0	ē. °	÷.	•	٠ <u>٠</u>
9 CAT-MF 19 CLL 10.0 4.5 1.2 .0 .0 .0 .0 10.0 1.0 .0 .0 10.0 1.0 .0 .0 10.0 1.0 .0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	STA, SET=19 CAT=FS UASTE FUEL AND PRIMOL 355 ⁽¹¹⁾ HYDRAZINE & MMH	_	36.3 1.8	80.08 0.4	37.8					
9 CAT=HS L 2540.1 5600.0 2649.5 700.0 .0 .0 .0 .0 14.0 .0	1 7	٠	4. ID	10.0	4 10		o. ·	•·	e .	÷.
9 CAT=HY	SET=19 SCRUBBER RAZINE &	ب	2540.1 50.8	5600.0	2649.5	700.0	• • •	p	o .	ë
SET=19 CAT=HY L 68.0 150.0 68.1 18.0 68.0(12) 150.0(12) 68.1(12) SET=19 CAT=IN S 4.5 10.0 416.2 14.7 .0 .0 .0 SET=19 CAT=IN L .1 .3 .0 .0 .0 .0 ALT.) MIXTURE L .1 .3 .0 .0 .0	•	۔	÷	Θ.	6.	÷	4989.5(12)	11000.0(12)	4969.7 ⁽¹²⁾	1313.0(12)
CATHIN S 4.5 10.0 416.2 14.7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	9ET=19 12INE	ر	68.0	130.0	68.1	18.0	68.0(12)	150.0(12)	68.1(12)	18.0(12)
0. 0. 0.		ø	Ą	10.0	416.2	14.7	•	•	o ,	•
	SIA, SET#19 CAT#IN ALUMACAST A/8 MIXTURE (CONT.)	_	- .	i.			•	.	e.	•

NRSTE MATERIAL	50L	8	QUANTITY PER LAUNCH BASELINE	Р ИЗИСН			QUANTITY PER EVENT CONTINGENCY	R EVENT	
	L10	MASS KILOGRAHS	POUNDS	VOLUME LITERS ⁽¹⁾	E GAL OR CF	MASS KILOGRAMS	Pounds	VOLUME	E GAL OR CF
POLYOXPROPLENE PENTAERYTHRITOL ARCHATIC UNLITE OIL INERT ALUMINIZED PARTICLES DIPHENYLMETHANE DIISOCYANATE POLYMERS OF DPM ÜLLGOCYANATE						00000	9,000		
STA. SET=19 CAT=IN INSTANT SET POLYMER SCRAPS DIPHENYL HETHANE DIISOCYANATE POLYCOXALKYLEHE POLYETHER ARDMATIC HYDROCARBONS	ن ه	1.8(13)	4.0(13)	22.7	æ		÷	.	
STA, SET=19 CAT=IN SILANE/ACETIC ACID RESIDUE HETHYL TRIMETHOXYSILANE ACETIC ACID	w	ń		 	ú	. · ·	÷	•	• • • • • • • • • • • • • • • • • • •
STA, SET=19 CAT=NN HONGMETHYL HYDRAZINE	۰	35.4	78.0	40.5	10.7	0.	•	e.	•
STA. SET=19 CAT=HH HONOMETHYL HYDRCZINE	ب	9.1	20.0	10.2	2.7	•	•.	•	€.
STA. SET=19 CAT=MH Monomethyl Hydrazine ⁽¹⁴⁾	_	18.8(15)	41.4(15)	21.6(15)	5.7(15)	214.5(12)	473.0(12)	246.0(12)	65.0(12)
STA, SET=19 CAT=NH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	ب	18.8(15)	41.4(15)	21.6(15)	5,7(15)	296.6(12)	654.0 ⁽¹²⁾	340.6(12)	90.0(12)
STA: SET=19 CAT=MH HONOMETHYL HYDRAZINE ⁽¹⁴⁾	ر	13.3(15)	29.4(15)	15.1(15)	4.0(15)	365.6(12)	806.0(12)	416.3(12)	110.0(12)
STA, SET=19 CAT=MH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	۔	41.6(15)	91.8(15)	47,7(15)	12.6(15)	.	•	•	•
STA. SET-19 CAT-NH UASTEUATER WITH AMMONIA	ب	36.3(15)	80.0(15)	37.8(15)	10.0(15)	•	•	•	•
STA: SET=19 CAT=NO HITRGGEH TETROXIDE	ب	iņ 4.	12.0	69 19	1.0	•	•	•	•.
STA. SET=19 CAT=NO HITROGEN TETROXIDE	ب	8.6	21.6	æ.	8:	9.	•	•	0.
STA. SET=19 CAT=NO HITROGEN TETROXIDE	ب	34.3(15)	75.6 ⁽¹⁵⁾	24.2 ⁽¹⁵⁾	6.4(15)	326.1	719.0,12)	227.1(12)	60.0(12)
STA, SET=19 CAT=NO HITROGEN TETROXIDE	ب	34.3(15)	75.6(15)	24.2(15)	6.4(15)	465.8 ⁽¹²⁾	1027.0(12)	325,5(12)	86.9 ⁽¹²⁾
STA, SET=19 CAT=NO NITROGEN TETROXIDE	_	23.9(15)	52.6(15)	16.7(15)	4.4(15)	572.4(12)	1262.0(12)	397,4 ⁽¹²⁾	105.0(12)

UNIT GENERATION OF SHUTTLE TRAHSPORT SYSTEM HAZARDOUS UNSTES AT VAFB

TABLE 8 (CONT.) UHIT (CENERA	GENERATION OF SHUTTL	E TRANSPORT S	SHUTTLE TRANSPORT SYSTEM HAZARDOUS WASTES AT VAFB	IS WASTES	AT VAFB	-	PAGE 6	
UASTE MATERIAL	SOL	O to	QUANTITY PER LAUNCH BASELINE	Р ВИСН			QUANTITY PER EVENT CONTINGENCY	R EVENT HCY	ı
	L 10	MASS Kilograms		VOLUME LITERS ⁽¹⁾ GAL	. OR CF	MASS KILOGRAMS	POUNDS	LITERS(1) G	GAL GAL
STA, SET=19 CAT*NO NITROGEN TETROXIDE	۰	79.5	175.2 ⁽¹⁵⁾	55,3 ⁽¹⁵⁾	14.6(15)	•	0.	•	
SIA, SET=19 CAT=NO HITROGEN TETROXIDE	د	•	0.	<u>,</u>	è	8164.6	18000.0(12)	5677.5(12)	50
STA, SET=19 CAT=06 DECONTANINATE FROM PAYLOAD/ORB L N204	89 L	290.3	640.0	302.8	80.08 .5	é.	• •	•	
STA, SET#19 CAT#OS WASTE OXIDIZER AND PRIMOL 355 N204	355 L	37.2	82.0 6.0	37.8	0. 0.	. ·	ē.	ė.	
SIA, SET=19 CAT=PA KOROPON PRMER CONT PNT BRUSHES BUTYL ACETATE TALC - Mg SILICATES EPOXY RESIN	ණ භ	18,1(16)	40.0(16)	141.6	٠ •	 		.	
STA, SET=19 CAT=PA LACGUER #626486	ب	, 6 ⁽¹¹⁾	1,3(17)	œ	ú	e.	•	•	
STA, SET=19 CAT=PA CONTABLINATED BRUSHES ORGANIC ZINC PRIMER ZINC CHROMATE PRIMER	w	1.8(16)	4.0(16)	14.2	n.	. · ·	9.	e.	
STA, SET=19 CAT=PA ORGANIC ZIMC PRIMER ZINC DUST BARYTES MOLYBBATE ORANGE SILICA HIGH MOLECULAR WEIGHT EPOXY CELLOSOLVE ACETATE TOLUENE METHYL ETHYL KETONE	_	5,7(18)	12.5 ⁽¹⁸⁾	N. 107	n,			ė	
STA, SET=19 CAT=PA CONTANINATED PAINT BRUSHES EA 911 EPOXY EA 934 EPOXY EA 9309 EPOXY	ဟ	1.8(16)	4.0(16)	1 5.	rú	 		ė	
STA, SET=19 CAT=50 DOPE & LACQUER THINNER ALIPHATIC MAPTHA ESTER OR KETONE	_	(71)8. 5.	1,8 ⁽¹⁷⁾	æ .	αi	o. · ·	 	•	

WASTE MATERIAL	SOL.	3	QUANTITY PER LAUNCH BASELINE	. АУИСН			QUANTITY PER EVENT CONTINGENCY	R EVENT	
	r I a	MASS KILOGRAMS	POUNDS	VOLUME LITERS ⁽¹⁾ G	GAL OR CF	MASS KILOGRAMS		VOLUME LITERS ⁽¹⁾ G	GAL OR
ISO- OR n-BUTYL ACETATE ISO- OR n-BUTYL ALCOHOL			i i			é é	o o		
STA, SET=19 CAT=SW WASHWATER WITH MEK NETHYL ETHYL KETONE	ب	42.4	93.5 13.5	45.4	12.0	ė.	ė.	ė	-,
SUBTOTAL FOR STA. SET 19 SOLIDS LIGUIDS SUBTOTAL		59.6 6959.0 7018.6	131.4 15342.0 15473.4	1030.7	36.4 1869.1				
SIA, SET=2! CAT=EU WASTEWATER FROM EEULS	ب	2725.4 ⁽⁴⁾	6008.4(4)	2725.2 ⁽⁴⁾	720.0(4)				
STA, SET=2! CATHFS Unsteunter with Man	ų	108. 10.0	238.0 22.0	113.6	30.0 3.0	ė.	÷.	•	•
87A, SET=2! CAT=HS Fuel Scrubber MMH	J	362.9 6.6	800.0 14.6	378.5	166.0	ö.	ė.	e.	•
STA, SET=21 CAT=IN TILE REPAIR FDAN POLYURETHANE	80	4. io .	10.0	416.2	14.7	ė.	é.	•	
STA. SET=21 CAT=NH MONONETHYL HYDRAZINE	ب	•	ė	•	ė				
STA, SET=2! CAT=NO NITROGEN TETROXIDE	٠	•	•	•	•	4898.8 ⁽¹⁹⁾	10800.0(19)	3406.5(19)	900.0
STA, SET-21 CAT-NO HITROGEN TETROXIDE	د	5.0	33.0	10.6	8.8	•	•	•	•
STA, 8ET=21 CAT=NO HITROGEN TETROXIDE	ب	51.3	113.0	35.6	4.6	•	•	•.	•
STA, SET=21 CAT=HO NITROGEN TETROXIDE	٠	ė	ė.	۴.	ė	4898.8(20)	10800,0(20)	3406.5(20)	900.0
STA, SET=2! CAT=0S WASTEWATER WITH OXIDIZER N204	ب	72.8	160.4	75.7	20.0	è,	ė,	e .	•
STA, 3ET=21 CAT=SU Unsteunter With Mek Methyl Ethyl Ketone		42.4	53.4	45.4	12.0	ė.		٠.	e

The state of the s

TABLE 8 (CONT.) UNIT GENERA	ENERAT	TION OF SHUTILE TRANSPORT SYSTEM MAZARDOUS WASTES AT VAFB	TRANSPORT	SYSTEM HAZAR	DOUS WASTES	AT VAFB	ğ	PAGE 8	
WASTE MATERIAL	SOL OR LIG	QUA HASS KILGGRAMS	QUANTITY PER LAUNCH BASELINE POUNDS LITE	NUNCH VOLUME LITERS ⁽¹⁾ G	GAL OR CF	HASS KILDGRAMS	QUANTITY PER EVENT CONTINGENCY POUNDS LITER	VOLUME S(1)	GAL OR CF
STA, SET=21 CAT=UP WASTE SEALS, FILTERS, ETC.	s	4.5(21)	10.0(21)	283.2	10.0	e .	e.	e.	.
SUBTOTAL FOR STA. SET 21 SOLIDS Liquids Subtotal		9,1 3377.5 3386.6	20.0 7446.2 7456.2	699.4 3384.5	24.7 894.2				
STA, SET=23 CAT=EW Hastewater From Eeurs	_	3028.2	6676.0(4)	3028.0	800.0(4)				
SIA, SET=23 CAT=FS Hydrazine-contam, Wastewater Hydrazine	_	567.9 28.1	1252.0 62.0	567.8	150.0				
SIA, SET=23 CAT=FS HYDRAZINE-CONTAM, CLNUP WATER HYDRAZINE	٦	189,1	417.0	189.3	0.08 8.				
STA, SET=23 CAT=FS WASTEWATER FROM PPR HYDRAZIME	ب	1.1222	5007.0	2271.0	600.0				
STA, SET=23 CAT=FS PRIMOL 355 ⁽¹¹⁾ Hydrazine Mmh	ب	340.6	751.0	378.5	106.0				
STA, SET=23 CAT=HF HYDRAULIC FLUIDS TETRAORTHOCRESOL PHOSPHATE	٠.	393.7	868.0 868.0	378.5	100.0	÷.	•··	e.	o. •
STA. SET=23 CAT=KS HYDRAZINE & MMH SCRUBBER HYDRAZINE	ب	757,0 ⁽¹⁸⁾ 16.8 13.2	1669.0 ⁽¹⁸⁾ 37.0 29.0	757.0	200.6	· · ·		e ,	0.00
STA, SET*23 CAT=HY Hydrazine	_	208.2	459.0	189.3	30.0	•.	0.	•	e.
SIG. SET=23 CGT=HY LBH PROPELLANT PARAHYDRAZINE UNSYM DIMETHYLHYDRAZINE	٠.	· · ·	ę	e .	ē. · ·	79378.3 39689.1 39689.1		79373.3 ⁽²²⁾	C4
STA, SET=23 CAT=NY Hydrazine	J	•	e .	•	•.	5425.4 ⁽²²⁾	11961.0	5425.0 ⁽²²⁾	1433.3 ⁽²²⁾
STA, SET=23 CAT=IN KSHA INSULATION (CONT.)	w	4.01	23.0	84.9	ю. Т	ë	•	e .	e .

The second of the second second the second s

TABLE 8 (CONT.) UNIT	GENERAT	UNIT GENERATION OF SHUTTLE TRANSPORT		SYSTEN HAZAF	SYSTEM HAZARDOUS WASTES AT VAFB	AT VAFB	•	PAGE 9	
WASTE MATERIAL	SOL OR LIG	PASS KILOGRAMS	QUANTITY PER LAUNCH BASELINE POUNDS LITE	AUNCH VOLUME LITERS ⁽¹⁾	GAL OR CF	MASS KILOGRAMS	CONTINGENCY CONTINGENCY POUNDS LITER	EVENT ICY YOUTHE LITERS ⁽¹⁾ G	GAL OR CF
BUTYL GLYCIDYL ETHER EPOXY RESINS, UNCURED							0.0		• •
STA, SET=23 CAT=TH MONOMETHYL HYDRAZINE	_	330.7	729.0	378.5	100.0	•	•	.	÷
STA, BET=23 CAT=MH MONOMETHYL HYDRAZINE	ر	•	e.	•.	•	12052.3 ⁽²²⁾	26571.0	13786.8	364 3.0 ⁽²²⁾
STA, SET=23 CAT=NH AMMONIA	_	0.	•	•	•	47.2(22)	104.0(22)	61.3 (22)	16.2 ⁽²²⁾
STA, SET=23 CAT=NO HITROGEN TETRUXIDE	_	183.4	404.3	123.0	32.5	•	•	0.	•
STA, SET=23 CAT=WO LBM OXIDIZER NITROGEN TETROXIDE	-	ø.	ė.	ė	÷.	79378.3 79378.3	175550.0 ⁽²²⁾ 175600.0	53254.9 ⁽²²⁾	14070.0 ⁽²²⁾
STA, SET=23 CAT=NO NITROGEN TETROXIDE	_	•	•.	•	•	28129.8 ⁽²²⁾	62016.0(22)	19398.9 ⁽²²⁾	5125.2 ⁽²²⁾
STA, SET=23 CAT=09 N204 CONTAM, CLEANUP WATER HITROGEN TETROXIDE	ų	113.4	256.0	113.6	30.0				
STA, BET=23 CAT=08 N204 CONTAM. WASTEWATER HITROGEN TETROXIDE	د	378.3 28.1	834.0 62.0	378.5	100.0				
STA, SET=23 CAT=08 PRIMOL 355 ⁽¹¹⁾ R204	ر	340.6	751.0	378,5	100.0				
STA, SET=23 CAT=PS SRB PROPELLANT SPILL ⁽²³⁾ AMMONIUM PERCHLORATE ALUMINUM POUDER PBAN BINDER HTPB BINDER IROM OXIDE	σ			•		504301.3 ⁽²⁴⁾ ; 351033.3 90648.3 70578.6 33.1	504301.3 ⁽²⁴⁾ 1111800.8 ⁽²⁴⁾ 351033.3 773900.0 80648.3 177800.0 70578.6 155600.0 33.1 73.0	261436.0 ⁽²⁴⁾	9232.8 ⁽²⁴⁾
STA. SET=23 CAT=0W DELUCE WATER ALUMINUR OXIDE AMMONIA HYDROCHLORIC ACID ORGANIC CARBON		367894.6 3.4 3.2 362.4 3.4	1252000.0 7.4 7.5 799.0 7.5	567730.0	130000.0	• • • • •		.	9.99
STA. SET=23 CAT=SO SOLVENT MIXTURE (CONT.)	J	291.5	642.6	208.2	55 , 0 ⁽²⁵⁾		e.	•	•.

UNIT GENERATION OF SHUTTLE TRANSPORT SYSTEM MAZARDOUS WASTES AT VAFB

MASTE MATERIAL	SOL	ine	QUANTITY PER LAUNCH	АЛИСИ			QUANTITY PER EVENT CONTINGENCY	R EVENT	
	2 3	MASS KILDGRAMS.	POUNDS	VOLUME LITERS ⁽¹⁾ G	GAL OR CF	MASS KILOGRAMS	POUNDS	VOL UME S ⁽¹⁾ S	GAL OR CF
FREON THC/MF/TF SYM, TETRACHLOROETHANE		0.6	0.6		0.0	e e	0.0		0.0
STA, SET*23 CAT=50 CONTAMINATED SOLVENTS	-1	264.9 ⁽²⁶⁾	584.0(26)	189.3	20.0	•	÷	ò	.
SIA, SET=23 CAT=SW SOLVENT WASTEWATER UNSPEC.	۰	416.4(18)	918.0(18)	416.3	110.0(25)	•	•	e .	•
STA, SET=23 CAT=SW CONTAMINATED WASTEWATER SOLVENTS CHLORINATED RUBBER ZINC PRIMER	٠	946.2 ⁽¹⁸⁾	2086.0 ⁽¹⁸⁾	946.3	256.0	9.05		•	
SUBTOTAL FOR STA. SET 23 SOLIDS LIQUIDS SUBTOTAL		10.4 578915.9 1 578926.3 1	23.0 1276297.8 1276320.8	84.9 578641.4	3.0				
SIG, SET=31 CAT=AL SURFACTANT N=OH SODIUM TRIPOLYPHOSPHATE	ب					ė	÷	e .	ė
SIA, SET=31 CAT=AW EA 934 EPOXY ADMESIVE EPOXY RESIN ASBESTOS FILLERS POLYAMIDE DIETHYLEWETRIAMINE	ø	18.9 6.9 6.9 8.4 8.4 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6	35.0(26) 15.0 15.0 7.0 7.0 1.0	80 6.	3.0(24)		0.000	•.	
STA, SET=31 CAT=CA CONTAMINATED AIR FILTERS	•	22.7	30.0	1415.8 ⁽²¹⁾	56.0(21)	0.	•	•	ė.
STA, SET=31 CAT=CA CHARCOAL FILTER WASTES	60					•	•	e .	e.
STA, SET=3! CAT=CA CONTAMINATED AIR FILTERS	80	22.7	36.0	1415.8(21)	50.0(21)	e.	ė	e .	ė
STA, SET=31 CAT=CN BOSTIK PRIMER PAINT CANS	ø	6.8(6)	(5,0 ⁽⁶⁾	56.6	2.0	•	e.	•	•
STA, SET=31 CAT*CN BOSTIK TOPCOAT PAINT CANS	•	20.4(6)	45.0(6)	169.9	6.9	•.	•	•.	•
STA, SET=31 CAT=CN RUSTOLEUM PRINER PAINT CANS	ø	(9)6'	2.0(6)	6	ņ	•	•	•	o .

ABLE 8 (CONT.) UNIT GE	ENERAT	GENERATION OF SHUTTLI	E TRANSPORT S	SHUTTLE TRANSPORT SYSTEM MAZARDOUS WASTES AT VAFB	US VASTES	AT VAFB		PAGE 11	
ASTE MATERIAL	SOL	200	OUANTITY PER LAUNCH BASELINE	SUNCH COLUME		MASS.	Œ	ER EVENT ENCY YOU, UME	
	L10	MASS Kilograms	POUNDS	LITERS(1) G	GAL OR CF	KILOGRAMS	POUNDS	LITERS	GAL OR
STA, SET-31 CAT-CH WSTOLEUM TOPCOAT PAINT CANS	w	(9)6.	2.0(6)	en en	ń	÷	œ,	•	•
37A, 9E7=3) CAT=CH 4SA-1 EMPTY CONTAINERS	ø	453,6(28)	1000.0(20)	8494.8	300.0	é	•	•	•
57A, SET=3) CAT=CN KSNA CONTAINERS	ø	ð, b	7.5	36.6	9.	•	÷	•	•
SIA, SET=31 CAT*CH KSNA & MIA-Z PACKING MATERIALS	•	2267,9(28)	5000.0(28)	42474.0	1500.0	°.	ė	ó	•
STA, SET=31 CAT+CR BOLVENT CONTAMINATED RAGS	40	4.5(9)	10.0(9)	56.6	9.0	ė.	ė	é	•
SIA, SET=31 CAT=CR ALODINE CONTANÍNATED RAGS	60	2,3 ⁽⁹⁾	5.0(9)	28.3	÷.	w.	ë	e,	7
STA, SET=3! CAT*CR RYMPLE CLOTHS	w	4,5(9)	10.0(8)	36.6	2.0	e,	e,	•	•
STA, SET=31 CAT=CR PAINT DROP CLOTHS	ø	(e) (8)	15.6(9)	84.9	m ,	•.	•	.	•
STA. SET#31 CAT=EU WASTEWATER FROM EEWES	ب	1211,3(4)	2670.4(4)	1211.2(4)	328.0(4)				
SIA, SET-31 CAT=FO FUEL AND UIL SPILLS	-4	ë.	ė	•	œ,				
STA, SET=3! CAT=FO FUEL & OIL WASTES	د	38.1	84.0	37.8	10.0	e.	÷	•	•
91A, SET=3) CAT=F8 PRIMOL 355 ⁽¹¹⁾	د	•	ė	•	ė				
STA, SET=31 CAT=HS SCRUBBER EFFLUENT	د	37.6(18)	83.6(18)	37.8	10.0	ė,	ė	e.	•
STA, SET=3! CAT=HY Hydrazine	د	109.5	241.3	109.0	28.8	÷	÷	•	
STA. SET=31 CAT=1M NSA-1 (CURED)(29) EPICHLORHYDRIH/BGE GLASS ECOSPHERES PHEWOLIC MICROSPHERES GLASS FIBERS BENTONE 27 (CONT.)	¢a.	7,000 W.30: W.30: W.4.	260.0 60.1 1.0.0 2.0.7 8.0 8.0 7.7	1248.7	44.1(25)			•	

JASTE MATERIAL	\$0r	ŏ	QUANTITY PER LAUNCH	геписи			QUAHIITY PER EVENT	R EVENT	
	L10	MASS KILOGRANS	POUNDS	VOLUME LITERS ⁽¹⁾ G	GAL OR CF	MASS KILOGRAMS	POUNDS	VOLUME 1 TERS(1)	E GAL OR CF
NETHYLENE DIGNILINE A-PHENYLENE DIGNINE		3,2	7.0			0.0	0.0		0.0
STA. SET=3! CAT=IN 13A-1, PART A (UNIXED) ⁽³⁰⁾ NETHYLENE CHLORIDE EPICHLORHYDRIN'BGE	J.	•				• • •	÷	.	
19. SET#31 CAT=IN 15A-1, PART B (UMMIXED)(30) METHYLEHE CHLORIDE PERCHLORGETHYLERE M-PHENYLENE DIAMINE M-PHENYLENE DIAMINE ETHYL ALCOMOL PHENOLIC MICROSPHERES GLASS ECOSPHERES GLASS ECOSPHERES GLASS FIBERS BENTONE 27	.							•	
TIA. SET=31 CAT=IN TIA-2 (CURED) ⁽²⁹⁾ EPICHLORHYDRIN/BGE LIP-3, POLYSULFIDE LIQ POLYMER HDA & #PDA STANNOUS OCTORTE PHENOLIC MICROSPHERES	S S	4.440 ±	100.0 30.9 30.9 12.3	4247.4	150.0			ę.	B
TIA, SET=31 CAT=1H TIA-2 (UNMIXED) ⁽³⁰⁾ EPICHLORHYDRIM/BGE LP-3, POLYSULFIDE LIQ POLYMER MDA & mPDA STAMMOUS OCTOATE PHENOLIC MICROSPHERES METHYLENE CHLORIDE PERCHLORGETHYLENE	L YMER		00 0000 0000 0000 0000	4.151			Ö. 6. 6. 6. 6. 6. 6.	e ,	
TA, SET=31 CAT=IN (SNA BUTYL GLYCIDYL ETHER EPOXY RESINS STA, SET=31 CAT=IN	v	7.3	16.0	36.6	2.0	• • •	ė. · ·	ب	e
INSULATION AND PAPER 310, SET=31 CAT=PA BOSTIK EPOXY PRIMER EPOXY RESIN AMINE CURING AGENT (CONT.)	.	1.2 1.6 3.1	27.0 3.5 6	.	9. 0.		.	• • ·	

WASTE MATERIAL SOL	õ	QUANTITY PER CAUNCH	AUNCH			o vertrono		
OR	NON	BASELINE				CONTINGENCY	EXCY	
	KILOGRAMS	POUNDS	VOLUME LITERS ⁽¹⁾ G	GAL OR CF	MASS KILOCPANS	POUNDS	YOLUME LITERS ⁽¹⁾ GAL	80
TITANIUM DIOXIDE	E.	9.			6			
NEED PICERNA	iù i	- .,			•			
SUSPENSION & FLOW CONTROL ADDI	`.	8, E			·	•		
SOLVENTS	7.3	16.2			ó	ó		
S10 SET-73 CA1-DA					•	₽.		•
BOSTIK EPOXY TOPCOAT	9	;	•					
HENOL A	2.0	37.0	13.1	₽.	•	0.	0.	4
	<u>.</u>	3 · ·			9.	•		•
COLOR PIGMENT	4.0	7.5			÷	÷.		•
SOLVENTS DENTION & FLOW CONTROL ADDI	ú,	ιú				. ·		•
SOLVENTS HOWPHOTOCHEM REACTIVE		es ii			•			
					•	•		
STAL SETAGE CATARA								
SILICATES	3.6	6	3.8	1.0	6.	•	•	•
YELLOW IRON OXIDE	ó,	۳·			•		•	. c
TITANIUM DIOXIDE	2 -	ė			0.	6.		
CALCIUM BOROS:LICATE	٠.				ė.	e i		•
SEMIONITE	;	3						•
ALIPHATIC HYDDOCODONS	٠.	9.1			•	• •		ė
DRIERS AND ADDITIVES		% 6 6			ė,	•		
		•			₽.			φ.
STA, SET=31 CAT=PA								
KUSIOLEUM TOPCOAT	3.6	8.0	89.E9	0.1	•	G	•	•
TITORISM OF OUTSE	7.5	5.6		•			P .	ė,
BENTONITE CLAY	ب. -	**			•	•		
TINTING COLORS	; -	; ;			••	9		•
ALKYL RESIX	v	**			. ·	•		9
DRIERS & ADDOTIVES		4.			. .	•		
STO. 951-7: CAT-0A	• •	•			e .	•		0
TITANIUM DIOXIDE	17.7	39.0	* :=	3.0	•	9.	•	4
CLAY	V 4	, 			e .	9.		
HYPALON		- D.			•	.		θ.
STORUCARBON RESIN	₹.				9.0	9.6		•
TENCHEUNGE MILERE	P) ·	18.3			•			•
EPOXIDIZED SOVBEAN OIL	į	D. →.			ė	ó		•
STA, SET=31 CAT=PA					•	•		e.
Œ	•	•.	•	0.				
31A, SET=31 CAT=PW								
	151.5(18)	334.0(18)	151.4	40.0	9.	•	c	•
)	.	?	•

UNIT GENERATION OF SHUTTLE TRANSPORT SYSTEM HAZARDOUS WASTES AT VAFB TABLE 8 (CONT.)

PASE 14

				,			OllowTITY PE	R EVENT	
WASTE MATERIAL	SOL	70 0	QUANTITY PER LAUNCH RASELINE	АЛИСН			CONTINGENCY	NCY COLUM	<u>u</u>
	ž į	MASS KILOGRAMS	PGUNDS	VOLUME RS ⁽¹⁾	GAL OR CF	MASS KILOGRAMS	POUNDS	LITERS(1) G	AL 0R
CHRONIC ACID FERRICYANIDE SALT COMPLEX FLUORIDE SALT		1.5	5,9(31) 3,3			000	999		
STA, SET=31 CAT=\$0 PERCHLORDETHYLENE	٦	Ą.	*:	*.	- .	•	•	ė.	•
STA, SET=31 CAT=SO TRICHLORDETHANE	ں	ń	.:	*	₹.	e .	•	e .	•
STA, SET=31 CAT=SO FREON 113	٦	w.	F.	*	- :	0,	ė.	°.	•
STA, SET=31 CAT=50 MSA-1 CONTAMINATED MECI	_	1505,5	3319.0	1135.5	300.0	e.	e.	e,	e.
STA, SET=31 CAT=50 MSA-1 CONTAM PERCHLOROETHYLENE	TI TI	1852.0	4083.0	1135.5	300.0	o.	e.	œ.	•.
STA, SET=31 CAT=SO PERCHLOROETHYLENE	ر	277.6	612.0	170.3	45.0	•	•	e ,	•
STA, SET=31 CAT=SO TRICHLOROETHANE	ب	91.6	180.0	60.6	16.0	•	ė	o.	9.
STA, SET#31 CAT#SO METHYLEME CHLORIDE	٦	255.8	564.0	193.0	51.0	•	•	.	•
SIA, SET=3! CAT=50 HTA-2 CONTAMINATED SOLVENTS		529.8(26)	1168.0 ⁽²⁶⁾	378.5	100.0	•	•	o,	•
STA, SET=31 CAT=SO BOSTIK CONTAMINATED SOLVENTS	٠	264.9(26)	584.0(26)	189.3	56.0	ę	•	e .	•
STA, SET#31 CAT#SD RUSTOLEUM CONTANINATED SOLVENT L	: :	264.9 ⁽²⁶⁾	584,0 ⁽²⁶⁾	189.3	30.0	e .	e.	e.	e .
SUBTOTAL FOR STA. SET 31 SOLIDS Liquids Subtotal		2976.7 6649.4 9626.1	6562.5 14659.5 21222.0	59964.8	2117.7				
STA, SET=32 CAT#89 LITHIUM STORAGE BATTERIES	w	24.5	34.0	42.5	8.	9.	•	•	0,
STA, SET=32 CAT=BA SILVER-ZINC STORAGE BATTERIES	s s	40.8	90.06	9. 10	1.8	e.	æ	•	•
STA, SET#32 CAT#BA POTASSIUM HYDROXIDE SOLUTION	ب	8,7(18)	19.2 ⁽¹⁸⁾	8.7	e e	•	ę	•	•

TABLE 8 (CONT.) UNIT GEH	GENERA	KERATION OF SKUTT	LE TRANSPORT	SYSTEM HAZ	SKUTTLE TRANSPORT SYSTEM HAZARDOUS WASTES AT VAFB	AT VAFB		PAGE 15	
WASTE MATERIAL	80L 08 L10	DI MASS KILOGRAMS	QUANTITY PER LAUNCH BASELINE POUNDS LITE	LAUNCH VOLUME LITERS ⁽¹⁾	E GAL OR CF	MASS Kilograms	QUANTITY PER EVENT CONTINGENCY POUNDS LITER	VOLUME S(1)	CPL OR CF
STA, SET=32 CAT=CB HYDRAZINE-CONTANINATED WATER	ر (168.9(18)	249.6(18)	113.6	30.0				
STA, SET=32 CAT=CS Contaminated Serbater ⁽³²⁾		e,			6	:	?	•	.
STA, SET#32 CAT#CS CONTAMINATED SERWATER ⁽³²⁾	ب	14514.9	32990.0	15140.0	4000.0	9	•	c	•
STA, SET=32 CAT=CW SRB FWD 8KT CLEANING WASTES	٠						. •	· •	P. (
97A, SET-32 CAT-EW WASTEWATER FROM EEWLS		6.05,6(4)	1335.2(4)	605.6(4)	160.0(4)	2	•		.
STA. SET=32 CAT=FO BILCE WASTES	ب					Ę	c	c	•
97A. SET-32 CAT-FO DIESEL FUEL & OIL SPILLS	_	ુ	•	•	•	:	?		? .
81A. SET=32 CAT=FS WASTE FUEL & PRIMOL 355 ⁽¹¹⁾ HYDRAZINE	٠		. ·	ė	6.				
STA, SET=32 CAT=HS Hydrazine Scrubber Effluent Hydrazine	ب	181,4 ⁽¹⁸⁾ 1.6	408.0 ⁽¹⁸⁾ 3.6	189.3	50.0	oʻ.	٥. °	•	ē. '
STA. SET=32 CAT=HY Hydrazine	~	47.0	90. 52.	40.9	6,02		· e	e	. .
STA. 8E1=32 CAT=IN IMSULATION WASTES, SOLID ⁽³³⁾ NSA-1 INSULATION NTA-2 IMSULATION KSHM IMSULATION PR-855 IMSULATION	ø	725.7	1600.0	11326, 4 ⁽³⁴⁾	400, p ⁽³⁴⁾			. .	
914. Set=32 Cat=in Insulation Contan Filters	40	4.5(21)	10.6(21)	283.2	10.0		ີ. ຜູ	٩.	. e
STA. SET=32 CAT=1W (33) INSULATIOH-CONTAMINATED WATER L HSA-1 INSULATION KSMA INSULATION KSMA INSULATION PR-855 INSULATION	e d	185291,5 ⁽¹⁸⁾ 4	408500.8 ⁽¹⁶⁾ 1	185313.6	48960.0		,	· •	
STA. SET#32 CAT#PR PRESERYATIVE CHEMICALS (CONT.)	ı					.		.	, ė

TABLE 8 (CONT.) UNI	7 GENERAI	TON OF SHUTT	LE TRANSPORT	SYSTEM HAZE	UNIT GENERATION OF SHUTTLE TRANSPORT SYSTEM HAZARDOUS GASTES AT YAFB	AT YAFB	-	PAGE 15	
WASTE MATERIAL	SOL OR Lig	MASS KILÜGRANS	QUANTITY PER LAUNCH BASELINE POUNDS LITE	-AUNCH VOLUME LITERS ⁽¹⁾ G	IE GAL OR CF	MASS KILOGRAHS	GUANTITY PER EVENT CONTINGENCY POUNDS LITER	VOLUME S ⁽¹⁾	במר סת כד
PROTECTIVE LUBRICANTS						0.	0.		0.
SIA, SET-32 CAT-PS SRB SOLID PROPELLANT AMMONIUM PERCHLORATE ALUMINUM POWDER FERRIC OXIDE POLYMER & EPOXY RESIN	ω		<u> </u>	Č		78.5(24) 54.4 12.7 10.9	173.0 ⁽²⁴⁾ 120.0 28.0 1.0 24.0	39.6(24)	1.4
SIA, SET=32 CAT=SB Detergent Washwater ⁽³⁵⁾	J	34835.7	76890.0	36336.0	9600.0	0.	•	0.	ò
STA, SET=32 CAT=58 POTABLE RINSE WATER	ų	120473.5	265688.0	125662.0	33200.0	ė.	æ.	9.	•
STA, SET=32 CAT=58 DEIGHIZED RINSE WATER	٦	56390.3	124320.0	58818.9	15540.0	ė	•	•	.
STA, SET=32 CAT=SI SRB RINSE WATER	۰	21772.3	48000.0	22710.0	6000.0	0,	0.	•	°.
SIA, SET=32 CAT=SO 90LVENTS FREON TMC/TH SOLVENTS, UNSPECIFIED	ų	10.6	23.4 ⁽²⁶⁾	ð. 6	2.0		ė	• <u>·</u>	
SUBTOTAL FOR STA. SET 32 SOLIDS Liquins Subtotal		795,6 434234,5 435030.1	1754,0 957328,3 959082,3	11703.0	413,3				
STA, SET=33 CAT=CA AIR FILTERS	v	4.5(21)	10.0(21)	283.2	10.0	6.	0.	•	•
STA, SET=33 CAT=EU WASTEUPTER FROM EEULS	-	1.89.1	417.0	189.3	50.0				
STA, SET=33 CAT=HF HYDRAULIC FLUIDS	7					0.	ė.	e.	e.
SUBTOTAL FOR STA, SET 33 SOLIDS Libuids Subtotal		4.5 189,1 193,7	10.0 417.0 427.0	263.2 189.3	10.0 00.0				
STA, SET-99 CAT-AU GX-6300 ABLATOR ADHESIVE RESIX STR L 663 (CONT.)	w	6, 9°	13.0			ø.	.	0.	6.

WASTE MATERIAL	SOL	ă	JAHTITY PER L	АЦИСН			DUANTITY P	EVENT	
	8	i	BASELINE				CONTINGENCY	ENCY EVEN	
	r18	MASS	POUNDS	VOLUME LITERS ⁽¹⁾ G	GAL OR CF	MASS KILOGRAMS	POUNDS	VOLUME LITERS ⁽¹⁾ GAL	E GAL OR CF
RESIN STM L 664		2.2	4.8				6		١
ш		ú	*.			•			•
		Ģ	Ť .			•	•		•
CURING AGENT L 663		ů,	i.			0.	0.		6.
J		1.0	. A			0,6	e, e		ė
XYLENE		-	in S						. e
SIA, SET#99 CAT#AW	4	1				•	•		
STYRENE		7.0	9.9			۶.	ສ. ໌	6.	ë,
HEK PEROXIDE CATALYST DINETHYL PHTHALATE						5.6.0			
STA, SET=99 CAT=CA FILTER	ø					0.	6.	6,	é
STA, SET=99 CAT=CN SOLVENT CONTAMINATED CONTAINER SOLVENTS ⁽³⁶⁾	တ	2.3(28)	5.0(28)	42.5	i.	, <u>.</u>	÷.	Ó	e. 0 .
STA. SET=99 CAT=CN PRIMER CONTAMINATED CONTAINERS	Ś	.3 ⁽²⁸⁾	,7(28)	5.5	øi	•.	9.	o .	•
STA. SET=99 CAT=CN ADHESIVE COHTANINATED CONTAINR	w	,3(28)	.7(28)	5.75	ú	e.	e.	e.	٠.
STA, SET=99 CAT=CH SOLVENT CONTAINERS	us					9.	•	•	•
STA, SET=99 CAT=CN POUR FOAM CONTAINERS	vs	12.7	50.0	379,4(28)	13,4(28)	e.	•	•	•
STA, SET=99 CAT=CH ABLATOR CONTAMINATED CONTAINER	80	,3(23)	(82)2.	۶. د.	ú	۰.	•	•	ė
STA, SET=99 CAT=CR SOLVENT CONTANINATED RAGS	85	4.5(9)	10.0(9)	36.6	2.0	•	۰.	۰.	•
STA, SET=99 CAT=CR ADHESIVE CONTANINATED RACS	ø	4.5(9)	10.0(6)	36.6	2.0	•.	€.	9.	ė
STA, SET=99 CAT=CR EPOXY PRIMER-CONTOMINATED RAGS	v	2.3(9)	5.0(9)	28.3	9.0	٥.	•	9.	e.
STA, SET=99 CAT=IN BX-250 FOAM (80F1) DIPHENYL METHANE DIISOCYANATE FREON 11 AMINES (COMT.)	6 0	29.3 29.3 19.1	260.0 65.0 42.0 23.0	3691.1	130.6	9.00	ė e e e e	ë.	• • • • •

VAFB
Ā
UKSTES
HAZARDOUS
SYSTEM
TRANSPORT
SHUTTLE
P
) UNIT GENERATION OF SHUTTLE TRANSPORT SYSTEM HAZARDOUS WASTES AT VAFB
UMIT
(CONT.
TABLE 8

WASTE MATERIAL	SOL	20	DUANTITY PER LAUNCH BASELINE	А ОИСН			QUANTITY PER EVENT CONTINGENCY	ER EVEHT ENCY	
	10	MASS Kilograms	POUNDS	VOLUME LITERS ⁽¹⁾ (GAL OR CF	MASS KILOGRAMS	POUMDS	VOLUME LITERS ⁽¹⁾ G	GAL OR CF
POLYOLS SUPER NEK PEROXIDE POLYESTER RESIN DIMETHYL PHTHALATE						0.0.0.0	0.000		9.000
STA, SET=99 CAT=IN Pour Foam (MIXED) ⁽²⁹⁾ Polyurethane	ഗ	124,7 ⁽³⁷⁾	275.0 ⁽³⁷⁾	2775.0	98.0	o. •	• ·	0	0.
STA. SET=99 CAT*IN POUR FOAM PART A (UNMIXED) ⁽³⁰⁾ DIPHENYL METHANE DIISOCYANATE FREON 11 POLYOLS, AMINES	ب	6. W. W	0.4 0.4 0.0 0.0	6.9 6.9	in e	0		Ð	ē
STA, SET=99 CAT=IN POUR FOAM PART B (UNMIXED) FREON 11 AMINE CATALYST POLYETHER POLYOL BLEMD	ب	A	9.7 8.0 9.0	18.9	e in	0	, o o o	•	
STA, SET#99 CATHIN POUR FOAM CONTAMINATED PAPER	ø	1.5(28)	3.3(28)	E .	11.0	Θ.	o .	•	•
SIG, SET=99 CAT=IN SUPER LIGHT ABLATOR (I) RESIN L664, PT A SILICA FIBERS CORK PHENOLIC MICROSPHERES SILICA MICROSPHERES CURING AGENT	ဖ	ลูง หม่อย่างกับ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	424.7 ⁽³⁸⁾	15,0			6 .	
SIG, SET=99 CAT=IN SUPER LIGHT ABLATOR (II) RESIN STN L664, PT A CARBON POWDER SILICA FIBERS CORK SILICA MICROSPHERES PHENDLIC MICROSPHERES CURING AGENT STM L664, PT 8	w	4. N. 4. 8	3.0	424.7 ⁽³⁸⁾	i 5 . 0 ⁽³⁸⁾			e.	
STA, SET=99 CAT=IN POUR FGAM "TRIMMINGS" POLYURETHANE	σ	4. 30	0.01	424.7(38)	15.0 (28)	0.	ė.	o .	ė. 6.
STA, SET=99 CAT=PA EPOXY PRIMER METHYLENE ISOBUTYL KETONE (CONT.)	ب	៊	.			0.	o. ·	e .	6.

TABLE 8 (CONT.) UNIT		GENERATION OF SHUTT	LE TRANSPORT	SYSTEM HAZ	SHUTTLE TRANSPORT SYSTEM HAZARDOUS WASTES AT VAFB	AT VAFB		PAGE 19	
WASTE MATERIAL	SOL OR LI9	O NASS KILDGRANS	QUANTITY PER LAUNCH BASELINE POUNDS LITE	LAUNCH VOLUME LITERS(1)	HE GAL OR CF	HASS KILOGRANS	QUANTITY PER EVENT CONTINGENCY POUNDS LITER	VOLUME S ⁽¹⁾ GAL	8
XYLEKE CYCLOHEXANONE CHROMATES INORGANIC PIGMENTS N-BUTANOL TOLUENE AMINO SILAME METHYL ETHYL KETONE									
STA, SET=99 CAT=PA D.C. 1200 VM AND P NAPTHA ORGANOMETALLIC SALTS	ب	(*21) <*1	<.1 ⁽²⁷⁾	ć. 1		. · ·	• • •	•	•
STA, SET=99 CAT=30 FREON THC	ı.	(72)1,	.3 ⁽²⁷⁾	;	. .1	•	•	9.	-
STA. SET=99 CAT=SO 1,1,1-TRICHLORDETHANE	ب	(72)	,3 ⁽²⁷⁾	;	 1	•	•	•	•
STA. SET=99 CAT=80 MEK & CELLOSOLVE	ر	12.2	26.9	13.1	4	•	•	•	
STA, SET=99 C4T=80 Heptane	د	75.1	165.5	113.2	29.9	•	•	e ,	•
STA, SET=99 CAT=80 CELLOSOLVE ACETATE	٦	107.0	236.0	113.2	29.9	•.	•	e.	-
STA, SET=99 CAT=80 METHYL ETHYL KETONE	٦	88.4	194.9	109.8	29.0	•.	•	•	
STA, SET=99 CAT=SR SGLVENT REDUCER HETHYL ETHYL KSTONE CYCLOHEXAMONE	ب	iù 4 vi	9.4.	•	.	6	e	e .	
STA, SET=99 CAT=SW SOLVENT CONTAMINATED WATER	۰	81.0	178.6	113.6	30.0	•	•	•.	
SUBTOTAL FOR STA. SET 99 SOLIDS Libuids Subtotal		306.8 377.3 684.1	676.4 831.9 1508.3	8622.2 503.0	304.5 132.9				
GRAND TOTAL, ALL STATION SETS SOLIDS Liguids Total	\$	4162.7 1035809.3 1039972.0	9177.3 2283580.5 2292758.0	82388.2 1044184.5	2909.6 275874.4				

Volume of solids and liquids is expressed in liters to maintain consistency in table format. Divide liters 1,000 to obtain cubic meters of solids.

- Station Set Zero is used for wastes from the space shuttle launches which are generated at a place other than designated station set (e.g., SCAPE suit cleaning facility).
- This assumes that cleaning the SCAPE suits will require approximately 2 gallons (7.6 liters) of freon per SCAPE
- Baseline amounts are based on the assumption that each SCAPE suit at a given station set is prerinsed with EEWAS water for 10 minutes at a rate of 4 gallons (15 liters) per minute once every launch cycle (20).
- Waste is not generated every launch cycle. Amount per launch used to calculate amount per year represents an aver-age for multiple launch cycles.
- Paint cans are assumed to weigh 7.5 pounds per cubic foot (120 kg/m 3), or 1 pound per gallon can
- 7. Spray cans are assumed to weigh 6 pounds per cubic foot (95 kg/m 3).
- Cups and wood sticks are assumed to weigh 3 pounds per cubic foot (48 kg/m 3).
- Contaminated rags are assumed to weigh 5 pounds per cubic foot (80 kg/m 3).
- Contaminated clothes, cloth, and debris are assumed to weigh 2 pounds per cubic foot (32 kg/m 3). <u>.</u>
- Either Primol 355 is a high-viscosity mineral oil. Usage requires a design decision and Air Force approval. Primol 355, another oil, or a foam will be used to prevent vaporization of spilled hypergols. 11:
- Contingency is a once-around abort. It is assumed that once every 2 years, independent of the number of launches. one before-launch abort and one once-around abort will occur. Values reported on a per year basis represent half the waste from an abort. 12.
- Density of Instant Set Polymer scraps is assumed to be 5 pounds per cubic foot (79 kg/m 3). 13.
- This waste could be off-loaded either at Station Set Y19 or Y21. Station Set V19 has been arbitrarily chosen. 14.
- The operation generating this waste occurs once every 5 launches. The unit factor per launch used to calculate annual quantities equals the total amount of waste generated per operation divided by 5. 15.
- 16. Paint brushes are assumed to weigh 8 pounds per cubic foot (128 kg/m 3).

17. This assumes a density of $0.8~\rm g/ml$ (6.7 lb/gal).

- 18. This assumes the density of water (1.0 g/ml; 8.3 lb/gal).
- This assumes that the acquisition screen test which produces the wastes occurs an average of once every three 19.
- This assummes that one payload bay kit is spilled per year, independent of the number of launches. 20.
- Contaminated filters are assumed to weigh I pound per cubic foot (16 kg/m 3). 21.
- Contingency is a before-launch abort. It is assumed that once every 2 years, independent of the number of launches, one before-launch abort and one once-around abort will occur (15). Values reported on a per year basis represent half the waste from an abort. 22.
- This contingency could occur either at Station Set V23 or V31. Station Set V23 has been arbitrarily chosen. 23.
- This contingency assumes one SRB per year is damaged and releases propellant, independent of the number of launches. Contingency amounts for an SRB propellant spill are not included in the total contingency amounts for the station set and for all wastes combined. Should this unlikely event occur, it is assumed that the propellant will spontaneously ignite and burn. 24.
- Volume given is amount based on number of 55-gallon drums required to hold the waste. 25.
- This assumes a density of 1.4 g/ml (11.7 lb/gal), based on the average density of solvents commonly used for STS 26.
- 27. This assumes that 10 percent of total amount used becomes waste (4).
- Containers and packing materials are assumed to weigh 0.3 pounds per cubic feet. 28.
- 19. Insulation is mixed, but not used.
- 30. Insulation is unmixed, but with the shelf life exceeded.
- 31. This assumes wastewater is 5 percent alodine by weight
- 12. Nature of contaminants not determined.

- This assumes that all insulations are removed with equal efficiency. Quantities ignore loss of material due to burnoff. 33.
- .4. This assumes a density of 4 pounds per cubic foot (64 kg/m 3).

- 35. Contains unidentified surfactants and/or detergents.
- Solvents include Freon TMC, trichloroethane, methyl ethyl ketone, and cellosolve (4). 36.
- Density of pour foam is assumed to be 2.8 pounds per cubic foot (45 kg/m 3). 37.
- Density of ablator is assumed to be 0.67 pounds per cubic foot (10.6 kg/ \mathfrak{m}^3). 38.

*
1985
FOR
GENERATION
VASTE
HAZARDOUS
φ.
TABLE

WASTE MATERIAL	BASEL INE KILOGRANS	MONTHLY POUNDS	BASELINE Kilograms	YEARLY Pounds	COHTINGEHCY PER YEAR KILOGRAMS POUND	PER YEAR Pounds
STA,SET= 0 ⁽²⁾ CAT= SO Contaminated freon	792.3	1746, 7 ⁽³⁾	9507,2	20960,0 ⁽³⁾	9.	
SUBTOTAL FOR SET 0	792.3	1746.7	9507.2		•	? •
STA,SET# 17 CAT# EW WASTEWATER FROM EEW&S STA,SET# 17 CAT# RO	(4)	2002.8(4)	10901,4(4)	24033,64)		
•					0.	•
STA.SET= 17 CATE FS CONTAMINATED DILUTION WATER	٠.	e.	G	•	0.	0
STA.SET= 17 CAT= 0S CONTAMINATED DILUTION WATER N204	e e.	0.		e. e		
SUBTOTAL FOR SET 17	908,5	2002.8	10901,4	24033.6	o .	e .
STA.SET= 18 CAT= HF HYDRAULIC FLUIDS	1.4(5)	3.2(5)	17.2	38,0(5)	e .	Q.
SUBTOTAL FOR SET 18	<u>*</u>	3.5	17.2	38,0	e.	? e
STA.SET= 19 CAT= AU TPS ADHESIVE, RTV 566/577 PMENYL METHYL POLYSILOXANE TIN OXIDE IRON OXIDE SILICON	*	œ.	a. su	10.0	•	ē.

STA.SET# 19 CAT# AU EA 911 EPOXY (CONT.)

TABLE 9 (CONT.)	HAZARDOUS WASTE GENERATION FOR 1985	GENE :	RATION FOR 19E	ī.			
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS POUNDS	SQH	BASELINE YEARLY KILOGRAMS	POUNDS	CONTINGENCY PER YEAR KILOGRAMS POUND	PER YEAR POUNDS	1
EPOXY ZINC CHROMATE ASBESTOS MERCAPTAN							
SIMETHYLAMINE STA.SET= 19 CAT= AW EA 934 EPOXY EPOXY RESIN					9 .	.	
STA.SET= 19 CAT= AU EA 9309 EPOXY EPOXY RESIN GLASS FIBERS ACRYLONITRILE/BUTADIEN/STYRENE ASBESTOS POLYGLYCOL DIAMINE SILANE					•	o .	
SIA.SET= 19 CAT= CN SPRAYCANS OF TPS SEALER FLUORINATED SOLVENT FREON 113					.	•	
STA.SET= 19 CAT= CN KOROPON PRIMER CONTAM CANS BUTYL ACETATE METHYL ETHYL KETONE TOLUENE TALC - M9 SILICATES EPOXY RESIN	2.3 ⁽⁶⁾ 5	5.0(6)	27.2 ⁽⁶⁾	60.0 ₍₆₎	e .	ë	
STA.SET= 19 CAT= CN LACQUER SPRAY CANS PIGNENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROPELLANT PETROLEUM DISTILLATES	2 (2) ⁵ .	2.0(7)	10.9(7)	24.0(1)	•	•	
STA.SET* 19 CAT* CN ISP CONTAH CUPS & WOOD STICKS INSTANT SET POLYMER	.2 ⁽⁸⁾	.5(8)	2.7	6, 0 ⁽⁸⁾	•	•	
STA.SET= 19 CAT= CN MARSHALL STENCIL INK SPRAYCANS XYLENE (CONT.)	E.	£.	1.1(7)	2.4(7)		•	

TABLE 9 (CONT.)	HAZARDOUS WASTE		GENERATION FOR 1985	985		PAGE 3	
WASTE MATERIAL	BASELINE M KILOGRAMS	MONTHLY POUNDS	BASELINE YE KILOGRAMS	YEARLY Pounds	CONTINGENCY PER KILOGRAMS	PER YEAR Pounds	
NAPTHA OTHER MATERIALS							
STA.SET= 19 CAT= CN LACQUER SPRAYCANS PIGMENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROPELLANT PETROLEUM DISTILLATES	(1)2'	1.67)	8.7 ⁽⁷⁾	19.2 ⁽⁷⁾	o .	e.	
STA, SET= 19 CAT= CH ENAMEL SPRAYCANS	1.4(7)	3.0(7)	16.3(7)	36.0(7)	0.	0,	
STA,SET= 19 CAT= CN ZINC CHROMATE PRIMER CANS	1.4(7)	3.0(7)	16.3(7)	36.0(7)	•	•	
STA.SET= 19 CAT= CH CONTAMINATED TARE CUPS EA 911 EPOXY EA 934 EPOXY EA 9309 EPOXY					9 .	•	
STA.SET= 19 CAT= CR RAGS WITH SOLVENTS, GREASES	1,5(9)	3.3(9)	18,1(9)	40.0(9)	•	•	
STA.SET= 19 CAT= CR SOLVENT-CONTAM CHEESECLOTH ISOPROPYL ALCOHOL METHYL ETHYL KETONE 1,1,1-TRICHLOROETHANE					<u>•</u>	é	
STA.SET= 19 CAT= CR MEX & IPA CONTAN CHEESECLOTH METHYL ETHYL KETONE ISOPROPYL ALCOHOL					e .	e ,	
STA.SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					0.	ė	
STA.SET= 19 CAT= CR TCE CONTAMINATED CHEESECLOTH),),1-TRICHLOROETHANE					0.	e,	
STA.SET= 19 CAT= CR MEK CONTAMINATED CHEESECLOTH METHYL ETHYL KETONE					.	e .	

TABLE 9 (CONT.)	HAZAKDO	HAZARDOUS WASTE GENERATION FOR 1985	ERATION FOR	1985		PAGE 4
WASTE MATERIAL	BASELINE P KILOGRAMS	MONTHLY	BASELINE Y KILOGRAMS	YEARLY Pounds	CONTINGENCY PER YEAR KILOGRAMS POUND	PER YEAR Pounds
STA.SET# 19 CAT# CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					0.	e,
STA.SET= 19 CAT= CR SOLID FILM LUBRIC CONT CHSCLTH					0.	0.
STA.SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					0.	•
STA.SET= 19 CAT= CR DICHLOROMETHANE CONT CHSECLTH					o ,	0.
STA.SET= 19 CAT= CR CONTAN CLOTHES, CLOTH & DEBRIS KOROPON BASE PRIMER KOROPON ACTIVATOR BERYLLIUM DUST	f, 13 ⁽¹⁰⁾	3,310)	18.1(10)	40.0(10)	0.	<u>.</u>
STA, SET= 19 CAT* EU HASTEWATER FROM EEUAS	1009.4(4)	2225.3 ⁽⁴⁾	12112.7(4)	26704.0(4)		
STA,SET= 19 CAT= FS WASTEWATER FROM PAYLOAD/ORB MMH	181,4	400.0	2177.2	4800.0 480.0	e .	0,
STA,SET= 19 CAT= FS WASTE FUEL AND PRIMOL 355 ⁽¹¹⁾ HYDRAZINE & MMH	12.1	26.7	145.1	320.0		
STA.SET= 19 CAT= HF VACUUM PUMP OIL TEXACO REGAL OIL 068	 8:	m m	18.1	40.0	.	•.
SIA.SET= 19 CAT= MS FUEL SCRUBBER HYDRAZINE & MMH	846.7	1866.7	10160,4	22400.0	e .	e.
SIA.SET= 19 CAT= HY HYDRAZINE	.	e.	0.	0.	2494.7	5500.0
STA,SET= 19 CAT= HY HYDRAZINE	22.7	50.0	272.2	600.0	34.0(12)	75.0
STA,SET= 19 CAT* IN POLYURETHANE FOAM	 R:	ю ю	18.1	40.0	•	е.

TABLE 9 (CONT.)	HAZARDO	HAZARDOUS VA STE GENI	GEHERATION FOR	1985		PAGE 5	
HPSTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE YI KILOGRAMS	YEARLY Pounds	Contingency Kilograms	PER YEAR Pounds	1
STA.SET= 19 CAT= IN ALUKACAST A/B MIXTURE POLYOXPROPLENE PENTAERYTHRITOL. AROMATIC WHITE OIL INERT ALUMINIZED PARTICLES DIPHENYLMETHANE DIISOCYANATE POLYMERS OF DPM DIISOCYANATE	1;		ស្	5. T	0 ,	.	
STA.SET= 19 CAT= IN INSTANT SET POLYMER SCRAPS DIPHENYL METHANE DIISOCYANATE POLYCOXALKYLENE >POLYETHER AROMATIC HYDROCARBONS	.6(13)	1,3 ⁽¹³⁾	7.3(13)	16.0(13)	e .	•	
STA.SE)= 19 CAT= IN SILANE/ACETIC ACID RESICUE METHYL TRIME/YOXYSILAME ACETIC ACID	Ġ.	i.	æ.	4	ຍ.	.	
STA,SET= 19 CAT= MH MONDMETHY', HYDRAZINE	8	26.6	141.5	312.0	٥.	e.	
STA,SET= 19 CAT= MM MONONETHYL HYDRAZINE	3.0	6.3	36.3	80.0	e.	0.	
STA.SET= 19 CAT= MH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	6,3(15)	13,8(15)	75.1(15)	165.6(15)	107.3(12)	236.5 ⁽¹²⁾	
STA.SET= 19 CAT= MH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	6.3(15)	13.8(15)	75.1(15)	165.6(15)	148.3(12)	327.0	
STA,SET. 19 CAT. MH MONOMETHYL HYDRAZINE(14)	4.4(15)	9.8(15)	53,3(15)	117.6(15)	182,8(12)	403.0(12)	
STA.SET= 19 CAT= MH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	13,9(15)	30.6(15)	166.6 ⁽¹⁵⁾	367.2(15)	0.	•	
STA.SET= 19 CAT= NH WASTEWATER WITH AMMONIA	12.1(15)	26.7(15)	145, 1 ⁽¹⁵⁾	320.0(15)	e .	.	
STA,SET= 19 CAT= NO NITROGEN TETROXIDE	£ ,8	4.0	21.8	48.0	•	•	
STA.SET= 19 CAT= NO MITROGEN TETROXIDE	ю	2.2	39.2	86.4	•	o .	
STA.SET# 19 CAT# NO NITROGEN TETROXIDE	11.4(15)	25.2 ⁽¹⁵⁾	137,2 ⁽¹⁵⁾	302.4(15)	163.1(12)	359,5(12)	

TABLE 9 (CONT.)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR 1985	1985		PAGE 6
WASTE MATERIAL	BASELINE N KILOGRANS	MONTHLY POUNDS	BASELINE Y	YEARLY Pounds	CONTINGENCY PER YEAR KILOGRAMS POUNDS	PER YEAR Pounds
STA,SET= 19 CAT= NO HITROGEN TETWOMIDE	11,4(15)	25,2 ⁽¹⁵⁾	137.2(15)	302,4(15)	232,9(12)	513.5(12)
STA.SET= 19 CAT= KD NITROGEN TETROXIDE	8,0(15)	17,5(15)	95.4(15)		286,2 ⁽¹²⁾	631.0(12)
STA,SET= 19 CAT= NO NITROGEN TETROXIDE	26.5(15)	58.4(15)	317,9(15)			· •
STA,SET= 19 CAT= NO NITROGEN TETROXIDE	e.	÷	0.	0.	4082,3(12)	9000,0(12)
STA,SET= 19 CAT= OS DECONTAMINATE FROM PAYLOAD/OR9 N204	96,8 9.	213.3	1161.2	2550.0 24.0	0.	
STA,SET= 19 CAT= OS WASTE OXIDIZER AND PRIMOL 355 ⁽³¹⁾ N204	12.4	27.3	148.8	328.0 24.0	0 .	6.
STA.SET= 19 CAT= PA KOROPON PRMER CONT PNT BRUSHES BUTYL ACETATE TALC - Mg SILICATES EPOXY RESIN	6.0 ⁽¹⁶⁾	13,3(16)	72.6(16)	160,0(16)	e.	.
STA.SET= 19 CAT* PA LACQUER #626486	.2(17)	(11,	2.4(17)	5,2(17)	Θ,	€.
STA.SET= 19 CAT= PA CONTAMINATED BRUSHES ORGANIC ZINC PRIMER ZINC CHROMATE PRIMER	,6(16)	1.3 ⁽¹⁶⁾	7.3 ^{:16)}	16.0 ⁽¹⁶⁾	? .	÷ e
STA.SET= 19 CAT= PA ORGANIC ZINC PRIMER ZINC DUST BORYBES BOLYBDATE ORANGE SILICA HIGH MOLECULAR WEIGHT EPOXY CELLOSOLYE ACETATE TOLUEME METHYL ETHYL KETOME	4.9(18)	4.2(18)	22.7(18)	50.0 ⁽¹⁸⁾	•	•
STA.SET= 19 CAT= PA CONT. THATED PAINT BRUSHES EA 911 EPOXY (CONT.)	,6(16)	1,3'16)	7.3(16)	16.0 ⁽¹⁶⁾	© ,	e ,

TABLE 9 (CONT.)	HAZARDO	HAZARDOUS WASTE GE!	GENERATION FOR 1985	1985		PAGE 7
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY	BASELINE	YEARLY Pounds	CONTINGENCY KILOGRAMS	/ PER YEAR Pounds
EA 934 EPOXY EA 9309 EPOXY						
STA.SET= 19 CAT= SO DOPE 4 LACQUER THINNER ALIPHATIC NAPTHA ESTER OR KETONE ISO- OR n-BUTYL ACETATE ISO- OR n-BUTYL ACETATE	κ. _{1.1.1} .	- 2 4 -	ນ ນີ້ ກັກເວັ4	2. E 8. 2. 2. 8. 8. 8.	e,	e,
STA.SET= 19 CAT= SW WASHWATER WITH MEK METHYL ETHYL KETONE	14.1	31.2	169.6 24.5	374.0 54.0	0,	o (
SUBTOTAL FOR SET 19	2339.5	5157.8	28074.3	61293.6	7731.7	17045.5
STA.SET# 21 UAT# EW WASTEWATER FROM EEULS	908,5 ⁽⁴⁾	2002.8 ⁽⁴⁾	10981, (4)	24033,6 ⁽⁴⁾		
STA.SET= 21 CAT= FS WASTEWATER VITH MMH MMH	36.0 3.3	79.3	431.8	\$~£.0 88.0	6.	Θ.
STA.SET= 21 CAT= M3 FUEL SCRUBBER MMH	121.0	266.7	1451,5	3209.0	6.	6.
STA.SET= 21 CAT= IN TILE REPAIR FOAM POLYURETHANE	, n, -	~ w.w.	18,1	40.0	o,	9
STA,SET= 21 CAT= MH Honomethyl Hydrazine	•	÷	0.	9.		
STA.SET= 21 CMT= NO HITROGEN TETROXIDE	0,	€.	.	6,	6531,7(19)	1<400.0(19)
STA,SET= 21 CAT= MO NITROGEN TETROXIDE	, ,	11.0	59,9	132.0	•	٥.
STA,SET= 21 CAT= NO Nitrogem tetroxide	17.1	37.7	205.0	452.0	•	9,
STA.SET= 2! CAT= NO HITAGGEN TETROXIDE	•	•	0.	0.	4898,8 ⁽²⁰⁾	10836,0 ⁽²⁰⁾
STA.SET= 21 CAT= 08 Wastewater with oxidizer (cont.)	24.3	53, 53	291.0	641,6	° .	o ,

TABLE 9 (CONT.)	HAZARDOU	S WASTE GENE	HAZARDOUS WASTE GENERATION FOR 1985	985		PRICE 8
UASTE MATERIAL	BASELINE M KILOGRAMS	HONTHLY Pounds	BASELINE YEARLY KILOGRAMS P	SONDO	CONTINGENCY PER YEAR KILOGRAMS POUMD	PER YEAR POUNDS
N204	5.	4.	2.2	.		
STA,SET= 21 CAT= 8W WASTEWATER WITH MEK METHYL ETHYL KETONE	14.1	31.1	169.5 24.3	373.6 53.6	œ.	e ,
STA.SET* 21 CAT* WP WASTE SEALS, FILTERS, ETC.	1,5(21)	3,3(21)	18.1(21)	4n.0(21)	9.	e .
SUBTOTAL FOR SET 21	1128.9	2488.7	13546.4	29864.8	11430.5	25200.0
STA, SET= 23 CAT= EW WASTEWATER FROM EEW&S	1003.4	2225.3	12112.7	26704.0		
STA,SET= 23 CAT= FS HYDRAZINE-CONJAM, WASTEWATER HYDRAZINE	169.3	417.3	2271.6	5093.0		
STA.SET# 23 CAT# FS HYDRAZINE-CONTAM. CLNUP WATER HYDRAZINE	43.0	139.0	756.6	1668.0		
STA, CET= 23 CAT= FS WASTEWATER FROM PPR HYDRAZINE	757.0	1669.0	9084.5	20028.0		
STA,SET= 23 CAT= FS PRIMOL 355 ⁽¹¹⁾ HYDRAZINE MMH	113.3	250.3	1362.6	3004.0		
STA,SET= 23 CA1= HF Hydraulic fluids Tetraorthockesol phosphate	131.2	289.3 289.3	1574.9	3472.9 3472.0	o .	e .
STA.SET= 23 CAT= HS HYDRAZINE & MMH SCRUBBER HYDRAZINE MMH	252.3 ⁽¹⁸⁾ 5.6 4.4	556,3 ⁽¹⁸⁾ 12.3 9.7	3028,2 ⁽¹⁸⁾ 67,1 52.6	6676.0 ⁽¹⁸⁾ 148.0 116.0	e .	ė.
STA,SET= 23 CAT= HY HYDRAZINE	69.4	153.0	832.8	1836.0	•	
STA.SET* 23 CAT* HY LBM PROPELLANT PARAHYDRAZINE (CONT.)	6.	•	• ·		39699.1	87500, 0 ⁽²²⁾

	TABLE S (CONT.)	HAZAF	HAZARDJUS WASTE GE	GENERATION FOR 1985	R 1985		PAGE 9	
	UNSTE MATERIAL	BASELINE KILDGRAMS	IE MONTHLY POUNDS	BASELINE KILOGRAM [®]	YEARLY Pounds	CONTINGENCY KILOGRAMS	Y PER YEAR Pounds	
	UNSYM DIMETHYLHYDRHZINE	0.	0.	0.	0.			1
	STA.SET= 23 CAT= HY HYDRAZINE	•	0.	•	0	2712,7 ⁽²²⁾	4980 £(22)	
	STA.SET* 23 CAT* IN KSNA INSULATION BUTYL CLYCIDYL ETHER EPOXY RESINS, UNCURED	en M	7.7	41.7	92.0	•		
	STA.SET* 23 CAT* NH NONOMETHYL HYDRAZINE	110.2	243.0	1322.7	2916,0	0.	5	
	STA,8ET= 23 CAT= MH Monomethyl hydrazine	0.	0.	0.	0.	6026.2 ⁽²²⁾	13285, 4(22)	
	STA,SET= 23 CAT= NH AMMONIA	e,	0,	•	0	47 2(22)	(22)	
71	STA.SET* 23 CAT* NO NITROGEN TETROXIDE	61.1	134.8	733.5	1617.2		• • • • • • • • • • • • • • • • • • •	
	STA.SET= 23 CAT= NO LBM OXIDIZEP MITROGEM TETROXIDE	6.		0.	ø.	39689, 1 ⁽²²⁾	87500, 0 ⁽²²⁾	
	STA.SET 23 CAT NO NITROGEN TETROXIDE	0.	0.	9		14064.4(22)	31000 a(22)	
	STA.SET= 23 CAT= 08 N204 CONTAM. CLEANUP WATER NITROGEN TETROXIDE	37.8	83,3	453.6	1000.0			
	STA.SET* 23 C9T* 08 N204 CONTAM. WASTEWATER NITROGEN TETROXIDE	126.1	278.0	1513.2	•			
	STA.SET= 23 CAT= 08 PRIHOL 355 ⁽¹¹⁾ N204	113.5	250,3	1362.6	3004.0			
	STA.SET= 23 CAT= PS SRB PROPELLANT SPILL ⁽²³⁾ AMMONIUM PERCHLORATE ALUMINUM POWDER PBAN BINDER HTPB BINDER IRON OXIDE	00000		5.000		504301,3 ⁽²⁴⁾ 1111800,0 ⁽²⁴⁾	11800, 0(24)	
i	STA.SET= 23 CAT= QV DELUGE WATER (CONT.)	189298.2	417333,3 22	2271578.5 5	5008000,0	0.	6	

	TABLE 9 (CONT,)	HAZAZDOUS WASTE		GENERATION FOR 1985	1985		PAGE 10	
	WASTE MATERIAL	BASFLIME MO KILOGRAMS	MONTHLY Pounds	BASELINE YI KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds	
	ALUMINUM OXIDE AMMONIA HYDROCHLORIC ACID ORGANIC CARBUN	1.1 .1 .120.8 1.1	2.3 266.3 2.5	13,4 1449,7 15,6	29.6 2.0 3196.0 30.0			
	STA.SET= 23 CAT= SO SOLVENT MIXTURE FREGN INC/NF/X; SYM, TETRACHLOROETHANE	97.2 ⁽²⁵⁾	214,2 ⁽²⁵⁾	1165,9 ⁽²⁵⁾	2570,4 ⁽²⁵⁾	•	e .	
	STA.SET= 23 CET= 80 CONTRTINATED SOLVENTS	88,3 ⁽²⁶⁾	194, 7 ⁽²⁶⁾	1059,6 ⁽²⁶⁾	2336,0 ⁽²⁶⁾	٥.	0.	
	STA.SET= 23 CAT* SW SOLVENT WASTEWATER UNSPEC.	138,8(18)(25)	306.0(18)(25)1:	⁵⁾ 1665,6 ^(18X25) 3672	5)3672,0(18)(25)	5) .0	0.	
72	STA.SET 23 CAT = SW CONTANINATED WASTEWATER SOLVENTS CHLORINATED RUBBER ZINC PRIMER	315.4(18)	695,3 ⁽¹⁸⁾	3784.8 ⁽¹⁸⁾	8344,0 ⁽¹⁸⁾	.	•	
	SUBTOTAL FOR SET 23	192975.4 42	425440.3 23	2315705.0 5	5105283.0	1 02229 . 2	225378.0	
	STA.SET= 31 CAT= AL SURFACTANT NaCH SODIUM TRIPOLYPHOSPHATE					e.	e .	
	STA.SET= 31 CAT= AW EA 934 EPOXY ADHESIVE EPOXY RESIN ASBESTOS FILLERS POLYANIDE DIETHYLENETRIAMINE	5,3 ⁽²⁶⁾⁽²⁷⁾ 2,3 ,6 1,1	11,7(26)(27) 5.0 1.3 2.3 2.7	7) 63,5 ⁽²⁶⁾⁽²⁷⁾ 27.2 7.3 12.7 14.5	27) 140,0 ^(26 X 27) 60.0 16.0 28.0 32.0 4.0	0. (2	.	
	STA.SET= 31 CAT= CA CONTAMINATED AIR FILTERS	7.6	16.7	2.06	200.0	ė	0.	
	STA.SET= 31 CAT= CA CHARCOAL FILTER WASTES					e .	0.	
	STA.SET= 31 CAT= CA CONTAMINATED AIR FILTERS	7.6	16.7	2.06	200.0	e.	•	
	STA.SET= 31 CAT= CN BOSTIK PRIMER PAINT CANS	2.3(6)	5.0(6)	27.2(6)	60.0(6)	0.	o .	

TABLE 9 (CONT.)	HAZARDOU	HAZARDOUS WASTE GENERATION FOR 1985	ERATION FOR	1985		PAGE 11	
WASTE MATERIAL	BASELINE M KILOGRAMS	MONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY Pounds	CONTINGENCY PER YEAR KILOGRAMS POUNDS	PER YEAR Pounds	į
STA.SET= 31 CAT CN BOSTIK TOPCOAT PAINT CANS	6,8(6)	15.0(6)	81.6(6)	180.0(6)	©.	e .	
STA,SET= 31 CAT= CN RUSTOLEUM PRIMER PAINT CANS	(9) [£] '	(9)4.	3,6(6)	8.0(6)	0.	•	
STA.SET= 31 CAT= CN RUSTOLEUM TOPCOAT PAINT CANS	.3(6)	(9)2.	3.6(6)	8.0(6)	0.	•	
STA.SET= 31 CAT= CN MSA-1 EMPTY CONTAINERS	151.2 ⁽²⁸⁾	333,3 ⁽²⁸⁾	1814,4(28)	4000.0(28)	0.	•	
STA, SET= 31 CAT= CN KSNA CONTAINERS	1.1	8.	13.6	30.0	e .	•	
STA, SET= 31 CAT= CN K5NA & MTA-2 PACKING MATERIALS	756,0 ⁽²⁸⁾	1666,7 ⁽²⁸⁾	9071,8 ⁽²⁸⁾	20000.0 ⁽²⁸⁾	٥.	•	
STA,SET= 31 CAT= CR SOLVENT CONTAMINATED RAGS	1,5(9)	3.3(9)	18,1(9)	40.0(6)	° .	•	
STA,SET= 31 CAT= CR ALODINE CONTAMINATED RAGS	(6)8.	1.7(9)	6. 1(9)	20.0(9)	•.	0.	
STA,SET= 31 CAT= CR RYMPLE CLOTHS	1.5(9)	3,3(9)	18, (9)	40.0(9)	0.	•	
STA.SET= 31 CAT= CR PAINT DROP CLOTHS	2.3(9)	5.0(9)	27,2 ⁽⁹⁾	60.0(6)	•	0.	
STA,SET= 31 CAT= EW WASTEWATER FROM EEWAS	403.8 ⁽⁴⁾	890.1(4)	4845, 1 ⁽⁴⁾	10681.6 ⁽⁴⁾			
STA,SET= 31 CAT= FO FUEL AND OIL SPILLS	•	9.	•	e.			
STA,SET= 31 CAT= FO FUEL & OIL WASTES	12.7	28.0	152.4	336.0	e .	•	
STA,SET= 31 CAT= FS PRIMOL 355(11)	0,	0.	•	e.	,		
STA.SET= 31 CAT= HS SCRUBBER EFFLUENT	12.5(18)	27,7(18)	150.6 ⁽¹⁸⁾	332,0(18)	•	9 .	
STA,SET= 31 CAT= HY HYDRAZINE	36.5	80.4	437.8	965.2	•	•	
STA.SET= 31 CAT= IN MSA-1 (CURED) ⁽²⁹⁾ (CONT.)	30.2 ⁽²⁵⁾	66.7 ⁽²⁵⁾	362,9 ⁽²⁵⁾	800.0(25)	° .	.	

TABLE 9 (CONT.)	HAZARDOUS WASTE		CENERATION FOR 1985	1985		PAGE 12
WASTE MATERIAL	BASELINE N KILOGRANS	MONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR Pounds
EPICHLORHYDRIN/BGE GLASS ECOSPHERES PHENOLIC MICROSPHERES GLASS FIBERS BENTONE 27 METHYLENE DIANILINE **-PHENYLENE DIANINE	1.22 2.00 2.00 2.00 4.00	7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	24 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.6 0.9 0.4 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		
STA.SET= 31 CAT= IN MSA-1, PART A (UNMIXED) METHYLENE CHLORIDE EPICHLORHYDRIN/BGE					e.	e
STA.SET= 3! CAT= IN MSA-1, PART B (UNMIXED)(30) METHYLENE CHLORIDE PERCHLOROETHYLENE METHYLENE DIANILINE M-PHENYLENE DIANINE ETHYL ALCOHOL PHENOLIC MICROSPHERES GLASS ECOSPHERES GLASS FIBERS BENTONE 27					e.	÷
STA.SET= 31 CAT= IN MTA-2 < CURED \$29) EPICHLORHYDRIN/BGE LP-3, POLYSULFIDE LIQ POLYMER MDA & mPDA STANHOUS OCTOATE PHENOLIC MICROSPHERES	1.2 7.4 7.4 8.5 7.5 7.5	ы ы ы ы ы ы ы ы ы ы	18 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	400.0 123.6 123.6 49.2 4.8 99.8	e .	e .
STA.SET= 31 CAT= IN MTA-2 (UNMIXED) ⁽³⁰⁾ . EPICHLORHYDRIN/BGE LP-3, POLYSULFIDE LIG POLYMER MDA & #PDA STANNOUS GCTOATE PHENDLIC MICROSPHERES METHYLENE CHLORIDE PERCHLOROETHYLENE	4 n 440	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0	2. 4.0. 4.0.0. E. 0.0.0.0.	120.0 37.2 37.2 14.8 14.8	e .	e .
STA.SET= 31 CAT= IN K5NA BUTYL GLYCIDYL ETHER EPOXY RESINS	, S	1 0	29.0	64.0	o .	•
STA.SET= 31 CAT# IN INSULATION AND PAPER					٠,	0.

TABLE 9 (CONT.)	HAZARDOU	HAZARDOUS WASTE GENERATION FOR 1985	IERATION FOR	1985		PAGE 13	
WASTE MATERIAL	BASELINE P KILOGRAMS	MONTHLY Pounds	BASELINE YEARLY KILOGRAMS	YEARLY Pounds	CONTINGENCY PER YEAR KILOGRAHS POUND	PER YEAR Pounds	
STA.SET= 31 CAT= PA		-					
RIMER	-:	9.6	49.0		0.	0.	
EPOXY RESIN	EQ.	- · ·	4.9	14.0			
AMINE CURING AGENT	-	vi a		4.			
TITANIUM DIOXIDE	<u> </u>	,	- (* 0			
CHROMATE PICHENIS	i a	÷ 14	7 6	4 to 12 to 1			
CHERT TERMENS	· ,)		•			
	2.4	4.0	29.4	64.8			
STA, SET= 31 CAT= PA							
BOSTIK EPOXY TOPCOAT	5,6	12.3	67.1		•	•	
EPICHLORHYDRIN/BISPHENOL A	- 4.	0. M	16.3	36.0			
AMINE CURING AGENT	Ņ.	, c	, t	9.6			
CULUR PIGNENI SUSPENSION & FLOW CONTROL ADDI	-	2 64	5	9 9			
SOLVENTS PHOTOCHEM REACTIVE	ιú	1.2	4.9	•			
SOLVENTS NONPHOTOCHEM REACTIVE	2.3	ŭ.	27.2	60.0			
STA.SET# 31 CAT# PA							
~	1.2	2.7	14.5	32.0	•	•	
SILICATES	ů.	Ą.	٠ د د د	5.2			
YELLOW IRON DAIDE	- ,	vi -	- `	•			
TITAMIUM DIOXIDE		— tr	• •	9			
	! ",	;	-				
LINSEED PHENOLIC ALKYL RESIN	ď	ın	2.9	6.4			
ALIPHATIC HYDROCARBONS	4.	o.	4.7	+.0			
DRIERS AND ADDITIVES	<.1	Ξ.	₹.	æ			
STA.SET= 31 CAT= PA							
RUSTOLEUM TOPCOAT	1.2	2.7	7.4.00	32.0	•	•	
SILICATES	. .	יים פיים	4. c	4.0			
BENTONIAR CLASS	y -	? •	?				
TINITING COLORS	;;;	; -	•	. 00			
OLKYL RESIN	C.	, and	2,5	3.6			
ALIPHATIC HYDROCARBONS	₹.	œ.	4.4	9,6			
DRIERS & ADDOTIVES	^. 1		si.	*			
STA.SET# 31 CAT# PA			į		•	•	
GACOFLEX	6,0	13.0	70.8		•	₹.	
TITANIUM DIOXIDE	á k	, -	4 R	20.0			
ער השלה האינה של השלה האינה של השלה האינה של השלה האינה האינ	. 46	P P P	7.7	9,5			
HYDROCARBON RESIN	: -	M	· -	3.5			
PERCHLOROETHYLENE	2.8	6.1	33.5	73.2			
1,1,1-TRICHLOROETHANE	t. 5	m M	17.8	39.5			
(CONT.)							

TABLE 9 (CONT.)	HAZARDOUS	VASTE	GENERATION FOR 1985	985		PAGE 14	
WASTE MATERIAL	BASELINE NO KILOGRAMS	MONTHLY Pounds	BASELINE YE KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR Pounds	ł
EPOXIDIZED SOVBEAN GIL	-	-	۲.	1.6			
STA.SET= 31 CAT= PA PAINT-SPILL ABSORBANT	œ.	•	•.	0.			
STA.BET= 31 CAT= PW ALODINE CONTAMINATED WASTEWATR CHRONIC ACID FERRICYANIDE SALT COMPLEX FLUORIDE SALT	50.5 ⁽¹⁶⁾ 9 ⁽³¹⁾ 5.1	111.3 ⁽¹⁸⁾ 2.0 ⁽³¹⁾ 1.1 <.1	606.0 ⁽¹⁸⁾ 10.7 ⁽³¹⁾ 6.0	1336.0 ⁽¹⁸⁾ 23.6 ⁽³¹⁾ 13.2	e.	© .	
STA.SET= 31 CAT* 80 PERCHLOROETHYLENE	ú	ιύ	2.5	5,6	0.	Θ.	
STA.SET= 31 CAT= SO TRICHLORDETHANE	ú	₹.	2.0	*	0.	0.	
STA.SET= 31 CAT= 80 FREON 113	ú	₹.	2.4	s. 9.	€.	٥.	
STA.SET= 31 CAT= 80 MSA-1 CONTAMINATED MECI	501.8	1106.3	6021.9	13276.0	0.	o,	
STA.SET* 31 CAT* 80 MSA-1 CONTAM PERCHLOROETHYLENE	617.3	1361.0	7408.0	16332.0	6.	•	
STA.SET= 31 CAT= 80 PERCHLORDETHYLENE	92.5	204.0	1110.4	2448.0	•	•	
STA,SET= 31 CAT= 80 TRICHLOROETHANE	27.2	60.0	326.6	720.0	0.	•	
STA,SET= 31 CAT= 90 METHYLENE CHLORIDE	85,3	188.0	1023.3	2256.0	e.	•	
STA, SET= 31 CAT= 80 MTA-2 CONTAMINATED SOLVENTS	176,6 ⁽²⁶⁾	389.3 ⁽²⁶⁾	2119.2 ⁽²⁶⁾	4672.0(26)	•	•	
STA.SET# 31 CAT# 80 BOSTIK CONTAMINATED SOLVENTS	88,3(26)	194.7 ⁽²⁶⁾	1059,6(26)	2336.0(26)	e,	6	
STA.SET* 31 CAT* 80 RUSTOLEUM CONTAMINATED SOLVENT	88.3 ⁽²⁶⁾	194.7(26)	1059,6 ⁽²⁶⁾	2336,0 ⁽²⁶⁾	e .	0.	
SUBTOTAL FOR SET 31	3208.7	7074.0	38504.4	84888.0	•	.	
STA,3ET# 32 CAT# BA LITHIUM STORAGE BATTERIES	8 .2	# 0.0	98.0	216.0	9.	e	

TABLE 9 (CONT.)	HAZARDOUS	WASTE	GENERATION FOR 1985	1985		PAGE 15
WASTE MATERIAL	BASELINE Kilograms	MONTHLY Pounds	BASELINE Y KILOGRAMS	YEARLY POUNDS	CONTINGENCY Kilograms	PER YEAR Pounds
STA.SET= 32 CAT= 8A SILYER-ZINC STORAGE BATTERIES	13.6	30.0	163,3	360,0	6.	0,
STA,SET= 32 CAT= 8A POTASSIUM HYDROXIDE SOLUTION	2.9(18)	6.4(18)	34.8(18)	76.8 ⁽¹⁸⁾	о.	6 .
STA,SET# 32 CAT# CB HYDRAZINE-CONTAMINATED WATER	36,3(19)	80.0(18)	435.4	966, 0 ⁽¹⁸⁾	6 ,	٥.
STA.SET= 32 CAT= CS CONTAMINATED SEAWATER ⁽³²⁾	0.	•	9.	e.		
STA.SET= 32 CAT= CS CONTAMINATED SEAWATER ⁽³²⁾	4838.3	10666.7	58059.3	128000.0	•	ė.
STA.SET= 32 CAT= CU SRB FWD SKT CLEANING WASTES					ο.	0,
STA.SE(= 32 CAT= EU WASTEWATER FROM EEU&S	201.9 ⁽⁴⁾	445.1(4)	2422.5(4)	5340,8 ⁽⁴⁾		
STA,SET= 32 CAT= FO BILGE WASTES					0.	0,
STA.SET= 32 CAT= FO DIESEL FUEL & OIL SPILLS	•	•	•	•		
STA,SET= 32 CAT= F8 WASTE FUEL & PRIMOL 355 ⁽¹¹⁾ HYDRAZINE		•	6.	6.		
STA,SET= 32 CAT= HS HYDRAZINE SCRUBBER EFFLUENT HYDRAZINE	66.5 ⁽¹⁸⁾	133,3 ⁽¹⁸⁾	725,7 ⁽¹⁸⁾	1600,0 ⁽¹⁸⁾ 14.4	•	.
STA.SET= 32 CAT= HY HYDRAZINE	13.7	30.2	164.2	362,6	•	6.
STA.SET= 32 CAT= IN INSULATION WASTES, COLID ⁽³³⁾ MSA-1 INSULATION MTA-2 INSULATION KSWA INSULATION PR-855 INSULATION	241.9 ⁽³⁴⁾	533,3 ⁽³⁴⁾	2903, 0 ⁽³⁴⁾	6400,0 ⁽³⁴⁾	ė	.
STA,SET= 32 CAT= IN INSULATION CONTAN FILTERS	1,5(21)	3,3(21)	18, 1(21)	40.0(21)	•.	e,
STA,SET= 32 CAT= IV Insulation-contaminated water ⁽³³⁾ (cont.)	61763.8 ⁽¹⁸⁾	136166,7 ⁽¹⁸⁾	741166,0 ⁽¹⁸⁾ 1634000,0 ⁽¹⁸⁾	634000.0 ⁽¹⁸⁾	0'	0.

TABLE 9 (CONT,)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR 1985	1985		PAGE 16
VASTE MATERIAL	BASELINE KILOGRANS	MONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR POUNDS
MSA-1 IMSULATION MTA-2 IMSULATION K5NA IMSULATION PR-855 IMSULATION						
STA.SET= 32 CAT= PR PRESERVATIVE CHEMICALS PROTECTIVE LUBRICANTS					o .	<u>•</u>
STA,SET= 32 CAT= PS SRB SOLID PROPELLANT AMMONIUM PERCHLORATE ALUMINUM POWDER FERRIC OXIDE POLYMER & EPOXY RESIN		0.000	e. e.e.e.e.	• • • • • • • • • • • • • • • • • • • •	78.5 ⁽²⁴⁾	173,0 ⁽²⁴⁾
STA.SET= 32 CAT= 58 DETERGENT WASHWATER ⁽³⁵⁾	11611.9	25600,0	139342,8	307200.0	e .	0.
STA.SET= 32 CAT= 8B POTABLE RINSE WATER	40157.8	88533,3	481894.0	1062400.0	e,	•
STA.SET= 32 CAT= SB DEIONIZED RIMSE WATER	18796.8	41440.0	225561,2	497280.0	0.	0.
STA.SET= 32 CAT= SI SRB RINSE WATER	7257.4	16000.0	87089.3	192000.0	0.	•
SIA,SET= 32 CAT= SO SOLVENTS FREON TMC/TM SOLVENTS, UNSPECIFIED	3,5(26)	7,8 ⁽²⁶⁾	42,5 ⁽²⁶⁾	93,6 ⁽²⁶⁾	e.	e .
SUBTOTAL FOR SET 32	145010,0	319694,1	1740120.5	3836329.0	o .	•
STA.SET* 33 CAT* CA AIR FILTERS	1,5(21)	3,3 ⁽²¹⁾	18.1(21)	40.0(21)	ē.	e.
STA.SET* 33 CAT* EU WASTEWATER FROM EEU&S	63.0	139.0	756,6	1668.0		
STA,SET= 33 CAT= MF AYDRAULIC FLUIDS					•	0.
SUBTOTAL FOR SET 33	64.6	142.3	7.4.7	1708.0	0.	0.

では、100mmので

TABLE 9 (CONT.)	HAZARDOU	HAZARDOUS WASTE GEN	GENERATION FOR 1985	1985		PAGE 17
WASTE MATERIAL	BASELINE M KILOGRAMS	MONTHLY Pounds	BASELINE Y	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
01 - 10 CAT- 00 CAT- AU						
4BL.A7	2.0	£.4	23.6	52.0	₽.	0.
RESIN STM L 663 RESIN STM L 664	ú v	. ~ 4. 9,	4 v.	19.2		
SILICA POWDER	<u>-</u> ;-		V. V.	9.4		
AGENT L		. 4	- 0° (2.0		
CURING AGEN! L 664 MEPTANE VOI FUE		1.7	 . 4 R	20.6		
CID SET 99 COT ON	;	:	2			
OLYESTER	2.0	4,3	23.6	52.0	e,	Φ.
NEK PEROXIDE CATALYST DIMETHYL PHTHALATE						
STA.SET= 99 CAT* CA					e.	•
STA.SET= 99 CAT* CN SOLVENT CONTANINATED CONTAINER SOLVENTS ⁽³⁶⁾	,8(28)	1,7(28)	9. 1(28)	20,0 ⁽²⁸⁾	o .	•
STA.SET= 99 CAT= CH PRINER CONTANINATED CONTAINERS	.1(28)	.2(28)	1.3(28)	2.8(28)	0.	0.
STA.SET= 99 CAT= CH ADMESIVE CONTAMINATED CONTAINR	, 1(28)	,2(28)	1, 3(28)	2.8(28)	•	0.
STA.SET= 99 CAT= CN SOLYENT CONTAINERS					0.	0.
STA,SET= 99 CAT CH POUR FOAM CONTAINERS	7.6(28)	16,7 ⁽²⁸⁾	90,7(28)	200.0(58)	9.	0.
STA,SET= 99 CAT= CN ABLATOR CONTAMINATED CONTAINER	(88)	.2(28)	1, 3 ⁽²⁸⁾	2.8(28)	e,	0,
STA.SET= 99 CAT= CR SOLYENT CONTANINATED RAGS	1.5(9)	3.3(9)	18, 1 ⁽⁹⁾	40.0(8)	0.	0.
STA,SET= 99 CAT= CR ADMESIVE CONTAMINATED RAGS	1.5(9)	3,3(9)	18, 1(9)	40.0(3)	0,	0
STA,SET= 99 CAT= CR EPOXY PRIMER-CONTAMINATED RAGS	(6) ⁸ .	1.7(9)	9.1(8)	20.0(8)	8.	•
STA.SET= 99 CAT= IN BK-250 FOAM (SOFI)	39.3	2.98	471.7	1040.0	0.	۰.

TABLE 9 (CONT.)	HAZARDOUS WASTE		GENERATION FOR 1985	1985		PAGE 18
WASTE MATERIAL	BASELINE M KILOGRAMS	MONTHLY POUNDS	BASELINE KILOGRANS	YEARL? POUNDS	COHTINGENCY PER YEAR KILOGRANS POUND	PER YEAR Pounds
DIPHENYL METHANE DIISOCVANATE FREON 11 AMINES POLYOLS SUPER MEK PEROXIDE POLYESTER RESIN DIMETHYL PHTHALATE	ቀ ሉ ይ ወ ፋ ኬ	21.7 14.0 7.7	117.9 76.2 41.7	269.0 169.0 92.0		
STA.SET# 99 CAT# IN FOUR FOAM (MIXED) ⁽²⁹⁾ POLYURETHANE	41.6 ⁽³⁷⁾	91,7 ⁽³⁷⁾	498,9 ⁽³⁷⁾	1100.0 ⁽³⁷⁾	e .	o .
STA.SET= 99 CAT= IN POUR FOAM PART A (UNMIXED) ⁽³⁰⁾ DIPHENYL METHANE DIISOCYANATE FREON 11 POLYOLS, AMINES	1.1	4, 6,4 6,8,6 6,8,6	25,4 12.7 8.2 8.2	56.0 28.0 18.0	e .	•
STA,SET= 99 CAT= IN POUR FOAM PART B <unmixed)<sup>(30) FREON 11 AMINE_CATALYST POLYETHER POLYOL BLEND</unmixed)<sup>	2. 1. 5. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1. 6. 1.	4. 6	25,4 5,1 19,8	36.0 11.2 43.6	•	.
STA,SET= 99 CAT* IN POUR FORM CONTAMINATED PAPER	,5(28)	1,1(28)	6.0(28)	13.2(28)	0.	•
STA.SET= 99 CAT= IN SUPER LIGHT ABLATOR (1) RESIN L664, PT A SILICA FIBERS CORK PHENOLIC MICROSPHERES SILICA MICROSPHERES	p	ມ ພິດ ວິທີ 4 – ກິທິ	2.00 7.1.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	o .	e,
STA.SET= 99 CAT= IN SUPER LIGHT ABLATOR (II) RESIN STH L664, PT A CARBON POWDER SILICA FIBERS CORK SILICA MICROSPHERES PHENOLIC MICROSPHERES CURING AGENT STM L664, PT B	. ກໍ ມໍ	ы ы о	7.8. 7.8. 4. 1.9.	40.0 12.0 6.8	Ċ.	ė
STA,SET= 99 CAT= IN POUR FOAM "TRIMMINGS" POLYURETHANE	<u>.</u> 10	m m	18,1	40.0	e .	0.

TABLE 9 (CONT.)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR 1985	1985		PAGE 19	
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE KILOGRANS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	FER YEAR POUNDS	
STA.SET= 99 CAT= PA EPOXY PRIMER HETHYLENE ISOBUTYL KETONE XYLENE CYCLOHEXANONE CWROMATES INORGANIC PIGNENTS N-BUTANOL TOLUENE AMINO SILANE HETHYL ETHYL KETONE	<.1 ⁽²⁷⁾	<.1 ⁽²⁷⁾	.2 (21)	(27)	e.	e .	
STA.SET= 99 CAT= PA D.C. 1200 VM AND P NAPTHA ORGANOMETALLIC SALTS	<.1 ⁽²⁷⁾	<.1 ⁽²⁷⁾	.2(27)	.4(27)	9.	9	
STA,SET= 99 CAT= 80 FREON IMC	(27)	(72)	,5(27)	1.2(27)	0.	e .	
STA,SET= 99 CAT= 30 1,1,1-TRICHLOROETHANE	<.1 ⁽²⁾)	(72),	,5(27)	1.2(27)	•	•	
STA,SET= 99 CAT= 80 MEK & CELLOSOLVE	4	9.6	48.8	107.6	0.	•	
STA,SET= 99 CAT= 80 HEPTANE	25.0	35,2	300,3	662.0	0	e ,	
STA,SET= 99 CAT= \$0 CELLOSOLVE ACETATE	35,7	78.7	428.2	944.0	3.	•	
STA.SET= 99 CAT= 30 METHYL ETHYL KETONE	29.5	. £9	353.6	3.622	0.	•.	
STA,SET= 99 CAT= 8R SOLVENT REDUCER METHYL ETHYL KETONE CYCLONEXANONE	Ġ.	4	2,2 2,1 5,7	4 8 w + 5i i	©	6.	
STA.SET= 99 CAT= 8W SOLVENT CONTAMINATED WATER	27.0	59,5	324.0	714.4	0.	é	
SUBTOTAL FOR SET 99	228.0	502.8	2736.6	6033.2	o .	ė	
TOTAL FOR ALL SETS	346657.3	764252.6	4159888.0	9171032.0	121391.3	267623,5	

PAGE 20	CONTINGENCY PER YEAR KILOGRAMS POUNDS	0. 0.	o.	0.	0.	•.	0.	0.	0.	0.	0.	44430.6 99055.5	0.	6464.6 14252.0	Ģ	65050.2 143412.0	•.	o .	•	504179.8 1111971.0	•.	• .	•.	• • • • • • • • • • • • • • • • • • • •	•	•	•	•	•		•	•	•.
	SQN	72854.0	119165.6	336 0	35781.0	10869.6	3550.0	254.0	74698.0	340.0	34208.0	3763.2	10402.4	4124.0	320.0	3651.6	724.0	13470.0	-	•	2008000.0	•	440.0	1336.0	632.0	9.0.0	128000.0	÷	1634000.0	₹.	104460.0	192000.0	• ' •
1985	BASELINE YEARLY KILOGRAMS POU	33047 8	54052.3	152.4	16229.4	4930.3	1610.2	115.2	11202.8	154.2	15516.4	1706.9	4718.4	1870.6	145.1	1747.6	328.4	6:13.5	1.9.	•	2271578.5	•	199.6	0.95	1.967	438.4	58059.5	•	741166.0	e.	84679B.0	87089.3	2.5
NERATION FOR	BASELINE NONTHLY GRAMS POUNDS	6971,2	9930,5	28.0	2981.7	905.8	295,8	21.2	2058,	28.3	2850.7	313.6	866.9	343.7	26.7	321.0	60.3	1123.2	3,3	•	417333.3	•	36.7	E.1	54.4	80.0	10666.7	•	136166.7	•	155573.3	16000.0	₹.
HAZARDOUS WASTE GENERATION FOR 1985	BASELIN KILOGRAMS	2753.8	4504.4	12.7	1352.5	410.9	134.2	9.6	933,6	12.9	1293.0	142.2	393.2	155.9	12.1	145.6	27.4	509.5	Đ. T	0.	189298.2	0.	16.6	50.5	24.7	36.3	4838.3	0.	61763.8	0.	70566.5	7257.4	ů.
TABLE 9 (CONT.)	CATEGORY	80	EC	FO	S.H.	SO	뚶	J. C.	3	CR.	£,	₩	XI.	.	Ŧ	KO	PA	35	<u>a</u>	Sd	20	Ą	Ca	34	BA	CB	83	ALC:	AI	88	88	SI	SR

*
1986
FOR
GENERATION
VASTE
HAZARDOUS
‡ 0 .
TABLE :

			MERCHITON FOR 1986	9861		PAGE 1
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS POU	MONTHLY POUNDS	BASELINE KILLGRANS	YEARLY POUNDS	CONTINGENCY PER YEAR KILOGRAMS POUNDS	PER YEAR Pounds
STA,SET= 0 ⁽²⁾ CAT= SO CONTAMINATED FREON	1188,4(3)	2620.0 ⁽³⁾	14260,9 ⁽³⁾	31440,0 ⁽³⁾	•	0.
SUBTOTAL FOR SET 0	1188.4	2620.0	14260.9	31440.0	5 .	e,
	1362,7 ⁽⁴⁾	3004.2(4)	16352, 1 ⁽⁴⁾	36030.4(4)		
STA.SET= 17 CAT= FO DIESEL FUEL					ć	
STA, SET= 17 CAT= FO DIESEL FUEL & SIL					• ·	o ,
STA,SET= 17 CAT= F3 CONTAMINATED DILUTION WATEP MMH	မ	0.	•	0.	.	o,
STA,SET= 17 CAT= 08 CONTAMINATED DILUTION WATER N204	0.			. 0.		
SUBTOTAL FOR SET 17	1362.7	3004.2	16352.1	36050.4	0.	•
STA.SET= 18 CHT= MF HYDRAULIC FLUIDS	2,2 ⁽⁵⁾	4,8 ⁽⁵⁾	25,9 ⁽⁵⁾	57,0(5)	<u>•</u>	0.
SUBTOTAL FOR SET 18	6:	₩.	25.9	57.0	e ,	÷
STA.SET= 19 CAT= AW TPS ADHESIVE, RTV 566/57? PHENYL METHYL POLYSILOXANE TIN OXIDE IRON OXIDE SILICON HARDENER	ŵ.	re -	æ •	ນ. ອ	e .	e.

STA.SET= 19 CAT= AW EA 911 EPOXY (CONT.)

TABLE 10 (CONT.)	HAZARDOU	HAZARDOUS WASTE CENERATION FOR 1986	ERATION FOR	1986		PAGE 2
WASTE MATERIAL	BASELINE M Kilograms	MONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY POUNDS	COHTINGENCY PER YEAR KILOGRAMS POUND	PER VEAR POUNDS
EPOXY ZINC CHROMATE ASBESTOS MERCAPTAN DIMETHYLAMINE						
STA.SET= 19 CAT= AW EA 934 EPOXY EPOXY RESIN ASBESTOS					o .	e .
STA.SET= 19 CAT= AW EA 9309 EPOXY EPOXY RESIN GLASS FIBERS ACRYLONITRILE/BUTADIEN/STYREHE 4SBESTOS POLYGLYCOL DIAMINE SILANE					•	•
STA.SET= 19 CAT= CN SPRAYCANS OF TPS SEALER FLUORINATED SOLVENT FREON 113					e .	•
STA.SET= 19 CAT= CN KOROPON PRIMER CONTAM CANS BUTYL ACETATE METHYL ETHYL KETONE TOLUENE TALC - Mg SILICATES EPOXY RESIN	3,4(6)	7,5(6)	40.8 ⁽⁶⁾	90'0 ₍₆₎	e .	ė.
STA.SET= 19 CAT= CN LACQUER SPRAY CANS PIGHENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROPELLANT PETROLEUM DISTILLATES	1. ♠(7)	3,0(7)	16.3(7)	36.0 ⁽⁷⁾	<u>e</u> .	e.
STA.SET= 19 CAT= CN ISP CONTAM CUPS & WOOD STICKS INSTANT SET POLYMER	, 3 ⁽⁸⁾	(8)8'	4. f ⁽⁸⁾	9.0(8)	é	0,
STA.SET= 19 CAT= CN MARSHALL STENCIL INK SPRAYCANS XYLENE (CONT.)	· (7)	.3(7)	1.6(7)	3,6 ⁽⁷⁾	•	•

	BASELINE MC KILOGRAMS	MONTHLY	BASELINE YE	YEARLY	CONTINGENCY	PER YEAR
ن		POUNDS	KILUGRAMS	POUNDS	KILOGRAMS POUND	POUNDS
S						
HYDROCARBON PROPELLANT PETROLEUN DISTILLATES	1.1(7)	2.4	13.1(7)	28.8	0	ē.
STA,SET= 19 CAT= CN ENAMEL SPRAYCANS	2.0(7)	4.5	24.5(7)	54.0(7)	0.	0.
STA,SET= 19 CAT= CN ZINC CHROMATE PRIMER CANS	2.0(7)	4,5(7)	24.5(7)	54,0(7)	0.	0.
STA.SET= 19 CAT= CN CONTANINATED TARE CUPS EA 911 EPOXY EA 934 EPOXY EA 9309 EPOXY					9.	0.
STA,SET= 19 CAT= CR RAGS WITH SOLVENTS, GREASES	2,3(9)	3, G ⁽⁹⁾	27.2(9)	60.0(6)	°.	ē.
STA.SET= 19 CAT= CR SOLVENT-CONTAM CHEESECLOTH ISOPROPYL ALCOHOL METHYL ETHYL KETONE 1,1,1-TRICHLOROETHANE					o .	ė.
STA,SET* 19 CAT* CR MEK & 1PA CONTAN CHEESECLOTH METHYL ETHYL KETONE ISOPROPYL ALCOHOL					.	•
STA.SET= 19 CAT= CR IPA CONTANINATED CHEESECLOTH ISOPROPYL ALCOHOL					0,	0,
STA,SET= 19 CAT= CR TCE CONTAMINATED CHEESECLOTH 1,1,1-TRICHLOROETHANE					0	0
STA,SET= 19 CAT= CR MEK CONTAMINATED CHEESECLOTH METHYL ETHYL KETONE	and the state of t	1			•	0.

TABLE 10 (CONT.)	HAZARDOUS	WASTE	GENERATION FOR 1986	1986		PAGE 4
WASTE MATERIAL	BASELINE ! KILOGRAMS	MONTHLY POUNDS	BASELINE Y Kilograms	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
STA.SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					ē	9
STA.SET= 19 CAT= CR SOLID FILM LUBRIC CONT CHSCLTH					0.	0.
STA.SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					0.	0.
STA, SET= 19 CAT= CR DICHLORUMETHANE CONT CHSECLTH					ο.	0.
STA.SET= 19 CAT= CR CONYAM CLOTHES, CLOTH & DEBRIS KOROPON BASE PRIMER KOROPON ACTIVATOR BERYLLIUM DUST	2,3(10)	5.0(10)	27.2 (10)	60,0(10)	0.	o ,
STA, SET = 19 CAT = EW WASTEWATER FROM EEW&S	1514,1 ⁽⁴⁾	3338,0 ⁽⁴⁾	18169.0(4)	40056.0(4)		
ST>,SET= 19 CAT= FS WASTEWATER FROM PAYLGAD/ORB MNH	272.2	600.0	3265,8 326.6	7200.0 720.0	0.	•
STA.SET= 19 CAT= FS WASTE FUEL AKD PRINOL 355 ⁽¹¹⁾ HYDRAZINE & MMH	18.1	40.0 2.0	217.7	480.0 24.0		
STA.SET= 19 CAT= HF YACUUM PUMP OIL TEXACO REGAL OIL 068	ei Ei	5,0	27.2	60.0	٥.	9 .
STA.SET= 19 CAT= MS FUEL SCRUBBER HYDRAZINE & MMH	1270.1	2800.0 56.0	15240,6 304,8	33600,0 672,0	o .	0.
STA.SET= 19 CAT= HY HYDRAZINE	0.	ø.	ő	0.	2494,7 ⁽¹²⁾	5500,0 ⁽¹²⁾
STA,SET= 19 CAT= HY HYDRAZINE	34.0	75.0	408.2	900.0	34.0(12)	75.0(12)
STA.SET= 19 CAT= IN POLYURETHANE FORM	2,3	0°0	27.2	60.0	0.	6.

TABLE 10 (CONT.)	HAZARDO	HAZARDOUS WASTE GENERATION FOR 1986	JERATION FOF	9861 2		PAGE 5
WASTE MATERIAL	BASELINE Kilograms	MONTHLY FOUNDS	BASELINE KILOGRAMS	YEARLY POUHDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
STA.SET= 19 CAT* IN F U	7.	ś	œ	-	0.	0.
STA.SET= 19 .AT= IN INSTANT SET POLYMER SCRAPS DIPHENYL METHANE DISOCYANATE POLYCOXALKYLENE >POLYETHER AROMATIC HYDROCARBONS	, 9(13)	2,0(13)	10,9(13)	24.0 ⁽¹³⁾	`-	o .
STA.SET= 19 CAT= IN SILANE/ACETIC ACID RESIDUE METHYL TRIMETHOXYSILANE ACETIC AC70	ú	ń	2.7	6.0	.	0.
SIA,SET= 19 CAT= MH Mohomethyl Hydrazine	17.7	39.0	212.3	0 9 9	•	1
STA.SET= 19 CAT= NH MONOMETHYL HYDRAZINE	4. IV	10.0	7		÷.	o.
STA,SET= 19 CAT= MH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	9,4(15)	20.7(15)	413 7(15)	(15)	, û (12)	0,
STA,SET= 19 CAT= MH(14) MONOMETHYL HYDRAZINE	9,4(15)	20,7 ⁽¹⁵⁾	112,7(15)	248.4	107,3	236.5(12)
STA.SET* 19 CAT* MH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	6.7(15)	14,7(15)	80.0(15)	(15)	148,3****	327.0(12)
STA,SET= 19 CAT= MH ₍₁₄₎ Monomethyl Hydrazine	20,8 ⁽¹⁵⁾	45,9(15)	249 A(15)	res.4	182.8	403.0(12)
STA,SET= 19 CAT= NH WASTEWATER WITH ANNONIA	18,1(15)	40.0(15)	217 2(15)	330.8	e ,	0.
STA.SET= 19 CAT= NO Nitrogen tetroxide	5.3	9.0	32.7	72.0	ė, e	• •
STA,SET# 19 CAT# NO HITROGEN TETROXIDE	4. o.	10.8	58,8	. 53.6	? 9	
STA.SET= 19 CAT= NO HITROGEN TETROXIDE	17, 1(15)	37,8 ⁽¹⁵⁾	205, 7 ⁽¹⁵⁾	453,6 ⁽¹⁵⁾	12)	.359,5 ⁽¹²⁾

TABLE 10 (CONT.)	HAZARDOUS WASTE		GENERATION FOR 1986	986		PAGE 6
WASTE MATERIAL	BASELINE M Kilograms	MONTHLY Pounds	BASELINE YE KILOGRAMS	ҮЕАРLҮ Роинбs	CONTINGENCY KILOGRAMS	PER YEAR POUNDS
STA.SET= 19 CAT= NO NITRCGEN TETRCXIDE	17.1(15)	37,8(15)	205.7(15)	453.6(15)	232.9(12)	513.5(12)
STA, SET= 19 CAT= NO HITROGEN TETROXIDE	11.9(15)	26.3 ⁽¹⁵⁾	143,2(15)	315.6(15)	286,2 ⁽¹²⁾	631.0(12)
STA.SET= 19 CAT= NO NITROGEN TETROXIDE	39,7(15)	87,6(15)	476.8 ⁽¹⁵⁾	1051,2 ⁽¹⁵⁾	٥.	0
STA.SET≈ 19 CAT≈ NO NITROGEN TETROXIDE	0.	o .	0.	0.	4082.3(12)	9000,0(12)
STA.SET= 19 CAT= 0S DECONTAMINATE FROM PAYLOAD/ORB N204	145.1	320,0	1741.8	3840.0 36.0	0.	Ó
STALTIFE (9 CRN = OS MASTE EXIDIZER BND PRIMOL 355 1) NEMA	18.6	41.0	223.2	492.0	0.	0.
STA CFT= 19 CATA PA CORF P.H PRHER CONT PAT BRUCH I DUTYL ACETATE (ALC - M9 ST. CATES)	9.1	20.0(16)	108,9(16)	240,0 ⁽¹⁵⁾	છ્	e.
ST: ,5 19 r47= P4 LACQUET #626486	.3(17)	.6 (17)	3,5(17)	7.8(17)	0	o.
STA, SET* 19 CLT* A CONTAMINATED BRUCHES ORGANIC ZING FRIMER ZING CHROMATE PRINER	,9(16)	2.0(16)	10.9(16)	24.0	g,	o.
STA.SET* 19 CAT* PA ORGANIC ZINC PRIMER ZINC DUST BARYTES MOLYBDATE ORANGE SILICA HIGH MOLECULAR WEIGHT EPOXY CELLOSGLYE ACETATE TOLUENE METHYL ETHYL KETONE	2.8	6.3	34.0(18)	75.0(18)	.	6 .
STA.SET= 19 CAT= PA CONTANINATED PAINT BRUSHES EA 911 EPOXY (CONT.)	, 9(16)	2,0(16)	10.9(16)	24.0	ë.	ů,

TABLE 10 (CONT,)	HAZARDO	HAZARDOUS WASTE GEN	CENERATION FOR 1986	1986		PAGE 7
WASTE MATERIAL	BASELINE Kilograms	MONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR POUNDS
EA 934 EPOXY EA 9309 EPOXY						
STA, SET= 19 CAT= SO DOPE & LACQUER THINNER ALIPHATIC NAPTHA ESTER OR KETOME ISO- OR n-BUTYL ACETATE ISO- OR n-BUTYL ACETATE	4. A.	ů ď 4 W ∸	4 0 4~ 8 4 4 10	8,01 8,14 8,14 9,00 5,00	•	e.
STA,SET= 19 CAT= SW WASHWATER WITH MEK METHYL ETHYL KETONE	21.2	8. 8 8. 8	254.5 36.7	561.0 81.0	.	e.
SUBTOTAL FOR SE; 19	3509.3	7736.7	42111.5	92840.4	7731.7	17045.5
STA.SET= 2! CAT= EW WASTEWATER FRON EEWLS	1362.7	3004.2 ⁽⁴⁾	16352.1(4)	36050.4 ⁽⁴⁾		
STA,SET= 21 CAT= FS WASTEUATER WITH MAH	u 4.0 ∞.0	119.0	647.7 59.9	1428.0	6 .	•
STA.SET= 21 CAT= H9 FUEL SCRUBBER MMH	181.4	400.0	2177.2	4800.0 87.6	o .	•
STA.SET= 21 CAT= IN TILE REPAIR FOAM POLYURETHANE	m m n	8.0 8.0	27.2	69.0	0.	•
STA, SET= 21 CAT= MH MONOMETHYL HYDRAZINE	5 .	0,	9.	•		
STA.SET= 21 CAT= NO NITROGEN TETROXIDE	0,	e,	0.	e .	9797.5	21600,0(19)
STA,SET= 21 CAT= NO Nitrogen tetroxide	7.50	16.5	8.68	198.0	0.	0.
STA,SET= 21 CAT= NO NITROGEN TETROXIDE	25.6	86. 30.	307,5	678.0	• .	•
STA.SET= 21 CAT= NO NITROGEW TETROXIDE	e.	°.	9.	0.	4898.8	10800,0 ⁽²⁰⁾
STA,SET= 21 CAT= 08 WASTEWATER WITH OXIDIZER (CONT.)	36.4	86.2	436,5	962.4	o.	Θ.

TABLE 10 (CONT,)	HAZARDOL	JS WASTE GEN	HAZARDOUS WASTE GENERATION FOR 1986	1986		PAGE 8	
WASTE MATERIAL	BASELINE P KILOGRAMS	MONTHLY POUNDS	BASELINE Y Kilograms	YEARLY Pounds	CONTINGENCY PER YEAR KILOGRAMS POUND	PER YEAR Pounds	
N204	i,	9.	£.5	7.2			
STA.SET= 2! CAT= SU WASTEWATER WITH MEK METHYL ETHYL KETONE	21.2	46.7	254.2 36.5	560.4 80.4	0.	0.	
STA.SET= 21 CAT= WP WASTE SEALS, FILTERS, ETC.	2.3(21)	5.0	27.2 ⁽²¹⁾	60.0(21)	0.	0	
SUBTOTAL FOR SET 21	1693.3	3733.1	20319.6	44797.2	14696,3	32400.0	
STA,SET= 23 CAT= 5W WASTEWATER FROM EEU&S	1314,1	3338.0	18169.0	40056.0			
STA.SET= 23 CAT= FS HYDRAZINE-CONTAN, WASTEWATER HYDRAZINE	283,9	626.0 31.0	3407.4 168.7	7512.0 372.0			
SIA.SET= 23 CNT= FS HYDRAZINE-CONTAM, CLNUP WATER HYDRAZINE	94,6	208,5	1134.9	2502.0			
STA,SET= 23 CAT= F8 WASTEWATER FROM PPR HYDRAZINE	1135.6	2503,5	13626.8	30042.0			
STA, SET= 23 CAT= FS PRIMOL 355 ⁽¹¹⁾ HYDRAZINE MMH	170 3	375,5	2043,9	4506.0			
STA.SET= 23 CAT= HF HYDRAULIC FLUIDS TETRADRIHOCRESOL PHOSPHATE	196,9 196.9	434,0 434,0	2362,3 2362,3	5208,0 5208,0	0 .	0.	
STA.SET= 23 CAT= NS HYDRAZINE & MMH SCRUBBER HYDRAZINE MMH	378,5 ⁽¹⁸⁾ 8,4 6,6	834.5 ⁽¹⁸⁾ 18.5 14.5	4542.3 ⁽¹⁸⁾ 100.7 78.9	10014.0 ⁽¹⁸⁾ 222.0 174.0	0.	0.	
STA.SET# 23 CAT# HY HYDRAZINE	104.1	229.5	1249.2	2754.0	6.	0.	
SIA,SET= 23 CAT* HY LBM PROPELLANT PARAHYDRAZINE (CONT.)	0. 0.	0.	9. 9.	0. 0.	39689. 1 ⁽²²⁾	87506.0 ⁽²²⁾	

TABLE 10 (COHT,)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR 1986	1986		PAGE 9
WASTE MATERIAL	BASELINE Kilograms	HONTHLY Pounds	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS F	PER YEAR POUNDS
UNSYM DINETHYLHYDRAZINE	0.	0.	0.	0.		
STA.SET= 23 CAT= HY HYDRAZINE	o,	0.	o .	e .	2712.7(22)	5980,5(22)
STA,SET= 23 CAT= IN KSNA INSULATION BUTYL GLYCIDYL ETHER EPOXY RESINS, UNCURED	ю. Сі	<u>.</u>	62,6	138.0	•	.
STA,SET= 23 CAT= MH MOHOMETH*L HYDRAZINE	165.3	364,5	1984.0	4374.0	Б.	0.
STA,SET= 23 CAT= MH MONOMETHYL HYDRAZINE	Θ.	0.		•	6026.2 ⁽²²⁾	13285.5(22)
STA, SET = 23 CAT = NH AMMONIA	Ö	•	9.	0.	47.2(22)	104.0
STA,SET= 23 CAT= NO NITROGEN TETROXIDE	5.16	292.1	1:00.3	2425.8	0.	9
STA.SET= 23 CAT= NO LBM OXIDIZER NITROGEN TETROXIDE	0.	0.	0.	e. a.	39689.1	87500.0 ^{,22)}
STA,SET= 23 CAT= NO VITROGEN TETROXIDE	9.	0.	0	o.	14064.9 ⁽²²⁾	31008.0(22)
STA.SET= 23 CAT= 08 H204 COLTAM, CLEANUP WATER HITROGEN TETROXIDE	56.7	125.0	680.4 6.8	1500.0		
STA,SET= 23 CAT= 08 N204 CONTAM, WASTEWATER NITROGEN TETROXIDE	189.1	417.0	2269.8 168.7	5094.0 372.0		
STA,SET= 23 CAT= 05 PRINOL 355 ⁽¹¹⁾ N204	170.3	375.5	2043.9	4506.0		•
STA.SET= 23 CAT= P3 SRB PROPELLANT SPILL ⁽²³⁾ AMMONIUM PERCHLORATE ALUMINUM POWDER PBAN BINDER HTPB BINDER IRON OXIDE		00000		0000	504301,3	1111800.0 ⁽²⁴⁾
STA, SET= 23 CAT= QU	283947.3	626000.0	3407368.0	7512000.0	Θ.	•

TABLE 10 (CONT.)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR	1986		PAGE 10
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
ALUMINUM OXIDE AMMONIA HYDROCHLORIC ACID ORGANIC CARBON	7 - 18 - 2:18	3.7 3.995 3.99,5	20.1 1.4 2174.5 20.4	44.4 3,0 4794,0 45,0		
STA,SET: 23 CAT= SO SOLVENT MIXTURE FREON INC/MF/IF SYM, TETRACHLOROETHANE	145,7 ⁽²⁵⁾	321,3 ⁽²⁵⁾	1748,9	3855,6	e.	o .
STA.SET= 23 CAT= SO CONTAMINATED SOLVENTS	132,4 ⁽²⁶⁾	292.0(26)	1589,4 ⁽²⁶⁾	3504.0(26)	٥.	Θ.
STA,SET= 23 CATA SW SOLVENT WASTEWATER UMSPEC.	208.2(18)(25)		459, 0 ⁽¹⁸⁾⁽²⁵⁾ 2498,4 ⁽¹⁸⁾⁽²⁵⁾ 5508	(25)5508,0 (18)(25)	0' (5;	О.
STA,SET= 23 CAT= SW CONTAMINATED WASTEWATER SOLVENTS CHLORINATED RUBBER ZINC PRIMER	473,1 ⁽¹⁸⁾	1043, 0 ⁽¹⁶⁾	5677,1 ⁽¹⁸⁾	12516.0 ⁽¹⁸⁾	.	e,
SUBTOTAL FOR SET 23	289463.2	638160.5 3	3473558,5	7657926.0	102229,2	225378.0
STA.SET= 31 CAT# AL SURFACTANT NaOH SODIUM TRIPOLYPHOSPHATE					о.	0.
STA, SET= 31 CAT= AW EA 934 EPOXY ADHESIVE EPOXY RESIN ASBESTOS FILLERS POLYAMIDE DIETHYLENETRIAMINE	7.9(26X27) 3.4 .9 1.6 1.8	7) 17.5(26)(27) 7,5 2.0 2.0 3.5 4.0 4.0	27) 95,3 ⁽²⁶⁾⁽²⁷⁾ 40.8 10.9 19.1 21.8	(27) 210.0(26)(27) 90.0 24.0 42.0 48.0 6.0	0. (2)	ē.
STA.SET= 31 CAT= CA CONTAMINATED AIR FILTERS	11.3	25.0	136.1	300,0	0.	0.
STA,SET= 31 CAT= CA CHARCDAL FILTER WASTES					0.	0.
STA.SET= 31 CAT= CA CONTAMINATED AIR FILTERS	19	25.0	136.1	300.0	0.	0.
STA,8ET= 3) CAT= CN BOSTIK PRIMER PAINT CANS	3,4(6)	7.5(6)	40.8(6)	90.06	ė.	٥.

TABLE 10 (CONT.)	HAZARDO	HAZARDOUS WASTE GEN	GEHERATION FOR 1986	1986		PAGE 11
WASTE MATERIAL	BASELINE ! KILOGRAMS	MONTHLY POUNDS	BASELINE Y KILGGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRANS	PER YEAR Pounds
STA.SET= 31 CAT= CN BOSTIK TOPCOAT PAINT CANS	10,2 ⁽⁶⁾	22,5(6)	122.5(6)	276.0 ⁽⁶⁾	•	0.
STA.SET# 31 CAT# CH RUSTOLEUM PRIMER PAINT CANS	,5 ⁽⁶⁾	4.0(6)	5,4 ⁽⁶⁾	12.0(6)	6,	0
STA.SET= 31 CAT= CN RUSTOLEUM TOPCOAT PAINT CANS	.5(6)	1.0(6)	5,4 ⁽⁶⁾	12,0(6)	0.	é
STR.SET= 31 CRT= CN MSA-1 EMPTY CONTAINERS	226.8	500,0 ⁽²⁸⁾	2721.5 ⁽²⁸⁾	6000.0(28)	0.	Ö
STA,SET= 31 CAT= CN KSNA CONTAINERS	1.7	œ, m	20.4	43.0	0.	e.
STA.SET = 31 CAT = CN K5NA & MTA-2 PACKING MATERIALS	1134.0(28)	2500,0 ⁽²⁸⁾	13607.7 ⁽²⁸⁾	30000,0(28)	•	é
STA.SET= 31 CAT= CR SOLVENT CONTAMINATED RAGS	2,3(9)	5 ,0 ⁽⁹⁾	27.2 ⁽⁹⁾	69.0(9)	V.	•
STA.SET# 31 CAT# CR ALODINE CONTAMINATED RAGS	1.1(9)	2,5(9)	13.6(9)	30.0(6)	0.	ó
STA.SET= 31 CAT= CR RYMPLE CLOTHS	2.3(9)	5, 0 ⁽⁹⁾	27.2(9)	60.0(6)	0.	<u>.</u>
STA.SET= 3! CAT= CR PAINT DROP CLOTHS	3,4 ⁽⁹⁾	7.5 ⁽⁹⁾	40.8	90.06	o .	•
STA.SET= 31 CAT= EW WASTEWATER FROM EEW&S	605,6(4)	1335,2 ⁽⁴⁾	7267.6 ⁽⁴⁾	16022.4(4)		
STA.SET= 31 CAT= FO FUEL AND 01L SPILLS	0.	Q.	0	0.		
STA.SET= 31 CAT= FO FUEL & 01L WASTES	1.61	42.0	228.6	504.0	0	ó
STA.SET# 31 CAT# FS PRINOL 355 ⁽¹¹⁾	9.	0.	0.	0.		
STA.SET= 31 CÁT= H8 SCRUBBER EFFLUENT	18.8	41.5(18)	225.9 ⁽¹⁸⁾	498.0(18)	0.	•
STA.SET= 31 CAT= HY HYDRAZINE	54.7	120.7	656.7	1447.8	6.	0.
STA.SET= 31 CAT= IN MSA-1 (CURED)(29)	45.4(25)	100.0(25)	544,3 ⁽²⁵⁾	1200,0(25)	0.	6,

TABLE 10 (CONT.)	HAZARDO	HAZARDOUS WASTE GE)	GENERATION FOR	1986		PAGE 12
WASTE MATERIAL	BASEL INE KILOGRAMS	MONTHLY Pounds	BASELINE '	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
EPICHLORHYDRIN/BGE GLASS ECOSPHERES PHENOLIC MICROSPHERES GLASS FIBERS BENTONE 27 METHYLENE DIANILINE A-PHENYLENE DIANINE	81 82 82 4	4	218.0 64.2 193.0 23.9 18.2 19.7	480.6 41.6 425.4 52.8 40.2 4.7.1		
STA.SET= 31 CAT= IN MSA-1, PART A (UNMIXED) METHYLENE CHLORIDE EPICHLORHYDRIN/BGE					o .	0.
STA.SET= 31 CAT= IN (30) MSA-1, PART B (UNMIXED) METHYLENE CHLORIDE PERCHLOROETHYLENE METHYLENE DIANILINE METHYLENE DIANILINE MTHYLENE DIANINE ETHYL ALCHOLOL PHENOLIC MICROSPHERES GLASS ECOSPHERES GLASS FIBERS BENTONE 27					e.	o.
SIA,SET= 31 CAT= IN MIA-2 (CURED)(29) EPICHLORHYDRIN/BGE LP-3, POLYSULFIDE LIQ POLYMER MDA L mPDA STANNOUS OCTOATE PHENOLIC MICROSPHERES	22.7 7.0 7.0 7.0 2.8 2.8 2.8	อ อ อ เชเ เก เช เ เก เห เ เก เ เก เ เก เ เก เ เก เ เก เ	272.2 34.1 84.1 33.5 3.3 67.2	609.0 185.4 185.4 73.8 7.2 148.2	e.	9.
STA,SET= 31 CAT= IN MTA-2 (UNMIXED) ⁽³⁰⁾ EPICHLORHYDRIN/BGE LP-3, POLYSULFIDE LIQ POLYMER MOA 4 mPDA STAMMOUS OCTOATE PHENOLIC MICROSPHERES METHYLENE CHLORIDE PERCHLOROETHYLENE	80 00 - 	0. 0.44− W 0.04√	8.22.25.3 1.0 + 0.1 - 1.0	0.081 0.08 8.53 8.22.24 4.44	e.	Ö
STA,SET* 31 CAT* IN KSNA BUTYL GLYCIDYL ETHER EPOXY RESINS	9,	8	43,5	96.0	0.	6 .
STA.SET= 31 CAT= IN INSULATION AND PAPER					0.	0,

TABLE 10 (CONT.)	HAZARDOUS	WASTE	GENERATION FOR	1986		PAGE 13
WASTE MATERIAL	BASELINE MC KILOGRAMS	MONTHLY	BASELINE Y KILOGPAMS	YEARLY Pounds	CONTINGENCY PER KILOGRAMS	PER YEAR Pounds
9TA.SET= 31 CAT= PA BOSTIK EPOXY PRIMER EPOXY RESIN ANINE CURING AGENT TITANIUM DIOXIDE CHROMATE PIGMENTS INERT PIGMENTS SUSPENSION & FLOW CONTROL ADDI SOLVENTS	6 6	μ Ν	8. 8. 4. 4. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	162.0 21.0 3.6 3.6 7.2 7.2 97.2 97.2	.	6
STA.SET= 31 CAT= PA BOSTIK EPOXY TOPCOAT EPICHLORHYDRIN/BISPHENOL A AMINE CURING AGENT COLOR PIGMENT SUSPENSION & FLOW CONTROL ADDI SOLVE'TS PHOTOCHEM REACTIVE SOLVENTS NOMPHOTOCHEM REACTIVE	0 40 - E	00 10 4 W	2.2.3 2.3.8 2.0.2 2.0.4 2.0.0 3.0.0 4.0.0 3.0.0 4.0.0	222 2.0 5.0 4.0 4.0 4.0 9.0 0.0	o .	o .
STA,SET= 31 CAT= PA RUSTOLEUM PRIMER SILICATES YELLOW IRON OXIDE TITANIUM DIOXIDE CALCIUM BOROSILICATE BENTONITE LINSEED PHENOLIC ALXYL RESIN ALIPHATIC HYDROCARBONS DRIERS AND ADDITIVES	6	6	8 W- 4 4 K	6 0 V W - Q Q Q V 8 3 4 6 6 6 6 6 6	e,	o.
STA.SET= 31 CAT= PA RUSTOLEUM TOPCOAT SILICATES TITANIUM DIGXIDE BENTONITE CLAY TINTING COLORS ALKYL RESIN ALIPHATIC HYDROCARBONS DRIERS 4. ADDOIIVES	\$ \\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	WV 11-17-51-	21 8 6 7 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	84 67.80 - 88.4 6.4.5.4.4.6	e.	e .
STA.SET= 31 CAT= PA GACOFLEX TITANIUM DIOXIDE CLAY HYPALDH HYDROCARBON RESIN PERCHLOROETHYLENE 1,1,1-TRICHLOROETHANE (CONT.)	8 8, 44 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	6 8 0 6 4 4 10 0 4 - 9	106.1 7 2 2 2 2 2 4 9 .8 7 6 .6 7 6 .7	234.0 16.2 18.6 23.4 23.4 4.8 109.8	6	<u>.</u>

The state of the s

TABLE 10 (CONT.)	HAZARDOL	HAZARDOUS WASTE GEN	GEHERATION FOR 1986	9861		PAGE 14
WASTE MATERIAL	BASELIME N KILOGRAMS	NONTHLY POUNDS	BASELINE Y KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR POUNDS
EPGXIDIZED SOYBEAN OIL	1.	Si.	1.1	2.4		
STA,SET= 31 CAT= PA PAINT-SPILL ABSORBANT	0.	0.	0,	Φ.		
STA, SET= 31 CAT= PW ALODINE CONTAMINATED WASTEWATR CHRONIC ACID FERRICYANIDE SALT COMPLEX FLUORIDE SALT	75.7 ⁽¹⁸⁾ 1.3 7 .7 .7) 167.0 ⁽¹⁸⁾ 3.0 ⁽³¹⁾ 1.7	909.0 (18) 16.1 ³¹⁾ 9.0	, 2004, 0 ⁽¹⁸⁾ 35, 4 ⁽³¹⁾ 19,8	0.	0.
STA,SET= 31 CAT= 80 PERCHLOROETHYLENE	'n	۲.	3,8	8 4.	0.	0.
STA,SET= 31 CAT= \$0 TRICHLOROETHANE	ú	หั	3.0	9.9	0.	ο.
STA, SET= 31 CAT= 80 FREON 113	ĸ	ń	ы. Э.	7.8	Φ,	e.
STA.SET* 31 CAT* SO MSA-1 CONTAMINATED MECI	752.7	1659.5	9032.8	19914.0	0.	0.
STA,SET= 31 CAT* 80 MSA-1 CONTAM PERCHLOROETHYLENE	926.0	2041,5	11112.0	24498.0	ø,	0.
STA,SET= 31 CAT= SO PERCHLOROETHYLENE	138.8	306.0	1665.6	3672.0	9	0.
STA,SET= 31 CAT= SO TRICHLORDETHANE	40.8	90.06	489.9	1080.0	o .	0.
STA.SET= 31 CAT= SO METHYLENE CHLORIDE	127.9	282.0	1534.9	3384.0	٥.	o .
STA.SET= 31 CAT= 80 MTA-2 CONTAMINATED SOLVENTS	264.9	584,0(26)	3178.8(26)	7008.0	0.	0.
STA,SET# 31 CAT# 80 BOSTIK CONTAMINATED SOLVENTS	132.4 ⁽²⁶⁾	292, 0 ⁽²⁶⁾	1589,4(26)	3504,9	e.	o .
STA,SET= 31 CAT= 80 Rustoleum Contaminated Solvent	132,4(26)	292,0(26)	1589,4 ⁽²⁶⁾	3504,0(26)	0.	Θ.
SUBTOTAL FOR SET 31	4813.0	10611.0	57756.5	127332.0	o.	o .
STA.SET= 32 CAT# BA LITHIUM STORAGE BATTERIES	12.2	27.0	147.0	324.0	0.	o,

TABLE 10 (CONT.)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR 1986	9861		PAGE 15
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE Y KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR POUNDS
STA.SET= 32 CAT= BA SILVER-ZINC STORAGE BATTERIES	20.4	45.0	244.9	540.0	o .	.
STA,SET= 32 CAT= BA POTASSIUM HYDROXIDE SCLUTION	4.4(18)	9.6(18)	52 , 3 ⁽¹⁸⁾	115.2 ⁽¹⁸⁾	0.	•
STA,SET= 32 CAT= CB HYDRAZINE-CONTAMINATED WATER	54.4(18)	120.0(18)	653.2(18)	1440.0(18)	o .	•
STA,SET= 32 CAT= CS (32) CONTAMINATED SEAWATER	0.	0.	0.	0.		
STA.SET= 32 CAT= C8 CONTAMINATED SEAWATER ⁽³²⁾	7257.4	16000.0	87099.3	192000.0	0.	0.
STA,SET= 32 CAT= CW SRB FWD SKT CLEANING WASTES					0.	e .
STA,SET* 32 CAT* EW WASTEWATER FROM EEWAS	302.8(4)	(4)	3633.8 ⁽⁴⁾	8011,2(4)		
STA,SET= 32 CAT= FO Bilge Wastes					0.	0.
STA,SET= 32 CAT= FO DIESEL FUEL & OIL SPILLS	0	0.	•	•		
STA,SET= 32 CAT= FS (11) WASTE FUEL & PRIMOL 35, HYDRAZINE	0 .	0.	0.	0. 0.		
STA,SET= 32 CAT= HS HYDRAZINE SCRUBBER EFFLUENT HYDRAZINE	90,7 ⁽¹⁸⁾	200.0 ⁽¹⁸⁾	1088,6 ⁽¹⁸⁾	2400,0 ⁽¹⁸⁾ 21.6	÷	6.
STA.SET= 32 CAT= HY HYDRAZINE	20.5	45,3	246.3	543.0	0.	0.
STA.SET= 32 CAT= IN INSULATION WASTES, SOLID MSA-1 INSULATION MTA-2 INSULATION KSHA INSULATION PR-855 INSULATION	362,9 ⁽³⁴⁾	800,0 ⁽³⁴⁾	4354.5 ⁽³⁴⁾	9600.0 ⁽³⁴⁾	e.	•
STA,SET= 32 CAT= IN INSULATION CONTAM FILTERS	2,3(21)	5.0(21)	27.2(21)	60.0(21)	Θ.	٠.
STA,SET= 32 CAT= IU INCHE ATION-CONTRIBUTED WATER	92645.8(18)	204250.0 (18)	204250.0 (18) 1111749.0 (18) 2451000.0 (18)	451000.0(18)	0.	0.

TABLE 10 (CONT.)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR 1986	1986		PAGE 16
WASTE MATERIAL	BASELINE KILOGRAND	MONTHLY Pounds	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER YEAR KILOGRAMS POUNDS	PER YEAR Pounds
MSA-1 INSULATION MTA-2 INSULATION KSHA INSULATION PR-855 INSULATION						
STA,SET= 32 CAT= PR PRESERVATIVE CHEMICALS PROTECTIVE LUBRICANTS					0.	e.
STA.SET= 32 CAT= PS SRB SOLID PROPELLANT ANNONIUM PERCHLORATE ALUMINUM POWDER FERRIC OXIDE POLYMER & EPOXY RESIN	6	6			78.5(24)	173,0 ⁽²⁴⁾
STA,SET= 32 CAT= SB DETERGENT WASHWATER ⁽³⁵⁾	17417,9	38400.0	209014,3	460800.0	e,	0.
STA, SET= 32 CAT= SB POTABLE RINSE WATER	60236.8	132800.0	722841.0	1593600.0	0.	0.
STA,SET = 32 CAT = SB DEIONIZED RINSE WATER	28195.2	62160.0	338341,8	745920.0	0.	9.
STA, SET# 32 CAT# SI SRB RINSE WATER	10886.2	24000.0	130633.9	288000.0	0.	e.
STA,SET= 32 CAT= SO SOLVENTS FREON TMC/TH SOLVENTS, UNSPECIFIED	5,3(26)	11,7(26)	63.7 ⁽²⁶⁾	140,4 ⁽²⁶⁾	e .	• ·
SUBTOTAL FOR SET 32	217515.1	479541.2	2610181.0	5754494.0	<u>.</u>	0.
STA.SET= 33 CAT= CA AIR FILTERS	2,3(21)	5.0(21)	27.2(21)	60.0(21)	0	ō,
STA.SET# 33 CAT# EW MASTEMATER FROM EEUSS	94.6	208.5	1134.9	2502.0		
STA.SET= 33 CAT= HF HYDRAULIC FLUIDS					ê,	9.
SUBTOTAL FOR SET 33	8,96	213,5	1162.1	2562.0	0.	0.

TABLE 10 (CONT.)	HAZARDOUS WASTE		GEHERATION FOR 1986	1986		PAGE 17
WASTE MATERIAL	BASELINE M KILOGRAMS	HONTHLY PGUNDS	BASELINE Y	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
STA,SET= 99 CATE AW						
GX-6300 ABLATOR ADHESIVE	2,9	6.3 E.	35,4	78.0	٥.	<u>.</u>
RESIN STR L 663	ý -	0	0 ←	0 00		
SILICA POWDER	-		-			
	-	ä	-	4.		
CURING AGENT L 663	-	Ŋ.	* !	3.0		
CURING AGENT L 664 uebtoue	- 6	- 4	5.0	9 C.		
XYLENE	· -		00			
STA.SET= 99 CAT= AU ISOCHEH POLYESTER RESIN ADHESY	2.9	10	35,4	78.0	0.	•
STYRENE Mek peroxide catalyst Dimethyl phthalate						
CaTe						
FILTER					e.	0.
STA,SET= 99 CAT= CN SOLVENT CONTAMINATED CONTAINER SOLVENTS(36)	1,1(28)	2,5(28)	13.6(28)	30.0	0.	0.
STA,SET= 99 CAT= CN PRIMER CONTANINATED CONTAINERS	, 2 ⁽²⁹⁾	, 4(28)	1.9(28)	4,2 ⁽²⁸⁾	0.	0.
STA.SET= 99 CAT= CN ADHESIVE CONTAMINATED CONTAINR	, 2 ⁽²⁸⁾	,4(28)	1.9(28)	4.2(28)	•	•
STA,SET= 99 CAT= CN SQLVENT CONTAINERS					0.	0.
STA,SET= 99 CAT= CN POUR FOAM CONTAINERS	11.3	25, 0 ⁽²⁸⁾	136.1	360,9 ⁽²⁸⁾	0.	0.
STA,SET= 99 CAT= CN ABLATOR CONTANINATED CONTAINER	, 2 (28)	.4(28)	1.9(28)	4.2(28)	٥.	0.
STA,SET= 99 CAT= CR SOLVENT CONTAMINATED RAGS	2.3(9)	5,0(9)	27.2(9)	60.09	0,	•
STA,SET* 99 CAT* CR ADHESIVE CONTAMINATED RAGS	2.3(9)	5.0(9)	27.2(9)	60.09	0.	•
STA.SET= 99 CAT= CR EPOXY PRIMER-CONTAMINATED RAGS	1.1(9)	2,5 ⁽⁹⁾	13.6(9)	30.06	0.	0.
STA,SET= 99 CAT= IN BX-250 FOAM (SOFI)	59.0	130.0	707.6	1560.0	•.	0.

TABLE 10 (CONT.)	HAZARDOUS	WASTE	GEHERATION FOR 1986	1986		PAGE 18
WASTE MATERIAL	BASELINE N	MONTHLY	BASELINE ' Kilograms	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
DIPHENYL METHANE DIISOCYANATE FREON 11 AMINES POLYOLS SUPER MEK PEROXIDE POLYESTER RESIN DIMETHYL FHTHALATE	4.0. to	25.24. 2.2.2 5.2.2 10.2.2	176.9 114.3 62.6	390.0 252.0 138.0		
STA,SET= 99 CAT= IN POUR FOAM <mixed>(29) POLYURETHAME</mixed>	62,4(37)	137,5 ⁽³⁷⁾	748, 4 ⁽³⁷⁾	1650,0 ⁽³⁷⁾	e .	e .
STA.SET= 99 CAT= IN POUR FOAM PART A (UNMIXED) DIPHEMYL HETHANE DIISOCYANATE FREDN 11 POLYOLS, AMINES	ы и.т. 6.6.6	7.00 W W +	38.1 19.1 12.2	84, 6 42.0 27, 0	.	ė.
STA.SET= 99 CAT= IN POUR FOAM PART B (UNMIXED) ⁽³⁰⁾ FREOM 11 AMINE CATALYST POLYETHER POLYOL BLEND	m G G G € E	0. 4.61.4	38.1 7.6 29.7	98 0.4. 8.5. No	e .	e .
STA.SET= 99 CAT= IN POUR FOAM CONTAMINATED PAPER	, 7(28)	1,7(28)	9.0	19.8	0.	•
STA.SET= 99 CAT= IN SUPER LIGHT ABLATOR (1) RESIN L664, PT A 31LICA FIBERS CORK PHENOLIC MICROSPHERES SILICA MICROSPHERES	04 W W W W W W	n o n o n o o r r n	2. 2.6- B. B - 6 B. B. B	00 0 00 0 00 00 00 00 0 00 00 00 00 00 0 00 0	<u>.</u>	é
STA.SET= 99 CAT= IN SUPER LIGHT ABLATOR (II) RESIN STM L664, PT A CARBON POWDER SILICA FIBERS CURR SILICA MICROSPHERES PHENOLIC MICROSPHERES CURING AGENT STM L664, PT B	N N	0. 0. 0.	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5	60.0 18.0 10.2	ë	•
STA, SET= 99 CAT= IN POUR FOAM "TRIMMINGS" POLYURETHANE	M, Ol	e in	27.2	60.0	•	0.

TABLE 10 (CONT.)	HAZARDO	HAZARDOUS WASTE GEH	GENERATION FOR 1986	1986		PAGE 19
WASTE HATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY Pounds	CONTINGENCY KILOGRAMS	Y PER YEAR POUNDS
STA.SET= 99 CAT= PA EPOXY PRIMER METHYLENE ISOBUTYL KETONE XYLENE CYCLOHEXANONE CHROMATES INORGANIC PIGNENTS H-BUTANOL TOLUENE AMINO SILANE METHYL ETHYL KETONE	<.1 ⁽²⁷⁾	. (27)	(2) °.	, 6 ⁽²⁷⁾	0,	o ,
STA,SET= 99 CAT= PA D.C. 1200 VM AND P NAPTHA ORGAMOMETALLIC SALTS	<.1 ⁽²⁷⁾	, 1(27)	.3 ⁽²⁷⁾	, 6 ⁽²⁷⁾	0.	9.
STA.SET# 99 CAT# 80 FREON THC	(72)	.2 ⁽²⁷⁾	. 8 ⁽²⁷⁾	1.8(27)	•	0.
STA.SET= 99 CAT= 80 1,1,1-TRICHLOROETHANE	(72)	.2(27)	, 8 (27)	1.8(27)	•	•
STA, SET # 99 CAT# SO MEK & CELLOSOLVE	6.1	13.5	73.2	161.4	•	€.
STA,SET= 99 CAT= SO HEPTANE	37.5	82.8	420.4	993.6	ė	0.
STA, SET= 99 CAT= <0 CELLUSOLVE ACETATE	93 93 93 93	118.0	642,3	1416.0	9.	•
STA.SET= 99 CAT= 80 METHYL ETHYL KETONE	44.2	4.76	530.4	1169.4	•	•
STA.8ET= 99 CAT= SR SOLVENT REDUCER METHYL ETHYL KETONE CYCLOHEXANONE	.α. ÷.	á.ú	3,3	у. 4 и 64	é	é
STA.SET= 99 CAT= SW SOLVENT CONTANINATED WATER	8.04	£,98	486.1	1071.6	•	•
SUBTOTAL FOR SET 99	342.1	754.2	4104.9	9049.8	° .	e,
TOTAL FOR ALL SETS	519986.1	1146379.3	6239833.0 1	13756550.0	124657,2	274823.5

SO	UNTHEY	1:::				
	POUNDS	BASELINE YEARLY KILOGRAMS POU	YEARLY Pounds	CONTINGENCY PER YEAR KILOGRAMS POUNDS	PER YEAR Pounds	
ฆ [ุ] พ.พ.พ.พ.ส.พ.พ.ศ.๓.๓	9106.8	49568.8	109281.0	0.	0.	
$- \nu \mu \mu a \mu \mu \mu \alpha a \alpha - a \alpha \mu \mu \alpha \mu \alpha \alpha \nu \alpha \alpha$	14895.7	81078.5	178748.4	0.	÷	
r u u d u u d u u d u u d u u d u	42.0	228.6	504.0	٥.	•	
$\dot{\mathbf{w}} \dot{\mathbf{w}} \mathbf{$	4472.5	24344.2	53670.0	٥.	•	
$\dot{\mathbf{u}}$ $\dot{\mathbf{u}$ $\dot{\mathbf{u}}$ $\mathbf{u$	1358.7	7395.5	16304.4	6.	•	
<u> </u>	443.8	2415,4	5325.0	٥.	•	
$\omega \omega \alpha \alpha \omega - 4 \sigma \omega \omega \omega \omega \omega \omega \omega \omega \omega$	31,8	172.8	381.0	•	•	
$\dot{\omega}_{\alpha}\dot{a}_{\alpha}\dot{\alpha}\dot{\alpha}\dot{-}\dot{a}_{\sigma}\dot{\alpha}\dot{\mu}\dot{\alpha}\dot{\mu}\dot{\alpha}\dot{\mu}\dot{\alpha}\dot{\nu}\dot{\alpha}\dot{\nu}\dot{\alpha}\dot{a}_{\sigma}\dot{\alpha}\dot{\alpha}\dot{\alpha}\dot{\alpha}\dot{\alpha}$	3087.3	16804.2	37047.0	•	•	
\[42,5	231.3	510.0	•	0.	
4 @ @ - 4 - U W - W - W - W - 4 4 - W - W	4276.0	23274.6	51312.0	•	o.	
@@-400W0W0W0V0440@0	470.4	2560.4	5644,8	44930.6	99055.5	
∞ -4-6и₩-₩-Фиг-44-0∞-«	1300.3	2077.6	15603,6	•	•	
-4-0440000000000	515.5	2805.9	6186.0	6464,6	14252.0	
4-04 W - W - W - 04 4 - 00 - 0	40.0	217.7	480.0	47.2	104.0	
oʻninowoʻnroʻ4 4 oʻnoʻn	481.5	2620.6	5777.4	65050,2	143412.0	
UW0W0WF044000	90.5	492.6	1086.0	•	0.	
W0W0Wr0440W0W	1684.8	9170.2	20217.0	٠.	0.	
0,000,000,000	3.0	27.2	60.0	•	٥.	
w = 0 / 0 4 4 0 0 0 0	٥.	•	٥.	504379,8 1:	1111973.0	
	626000.0	3407368.0	7512000.0	٥.	•	
	9	٠.	•	٠.	•	
	55.0	299.4	660.0	•	•	
	167.0	909.0	2004.0	٥.	0.	
	81,6	444.2	979.2	0.	•	
	120.0	653.2	1440.0	0.	e.	
	15000,0	87089.3	.92000,0	Θ.	•	
	•	•	•	٥.	•	
	204250,0	1111749.0	2451000,0	0	•	
	•	•	0.	٥.	•	
•	233360.0	1270197.0	2800320.0	٥.	0.	
10886.2	24000.0	130633,9	288000.0	0.	•	
m	9.	3,3	7.2	5 .	•	

For footnotes, see Table 8.

TABLE 11,		HAZARDOUS WASTE GEI	GENERATION FOR 1987	* 1987		PAGE 1
VASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY Pounds	BASELINE KILOGRANS	YEAPLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
STA,SET* of 2)caT* so Contaminated freon	1980,7 ⁽³⁾	4366,7 ⁽³⁾	23768,1	52400.0 ⁽³⁾	0,	Ö
SUBTOTAL FOR SET 0	1980.7	4366.7	23768.1	52400.0	6.	•
<u> </u>	2271.1 ⁽⁴⁾	5007.0(4)	27253.5 ⁽⁴⁾	60084,0		
CAT.					.	•
STA,SET= 17 CAT= FO DIESEL FUEL & OIL					0.	0.
STA,SET= 17 CAT= FS CONTANINATED DILUTION WATER MMH	6.	· ·	0. 0.	6.		
STA.SET= 17 CAT= 0S CONTAMINATED DILUTION WATER N204	0.	0. 0.	6.	0.		
SUBTOTAL FOR SET 17	2271.1	5007.0	27253.5	60084.0	0.	é
STA,SET= 18 CAT= HF Hydraulic fluids	3,6(5)	7.9(5)	43.1(5)	95.0(5)	•	e .
SUBTOTAL FOR SET 18	3,6	7.9	43.1	95.0	ø.	.
STA.SET= 19 CAT= AW TPS ADHESIVE, RTV 366/577 PHENYL WETHYL POLYSILOXANE TIN OXIDE STLICON HARDENER	<u>د</u>	,	£.	25.0	.	e .
STA.SET= 19 CAT= AW EA 911 EPOXY (CONT.)	- The state of the	The second control of the control of		and the second s	0.	0,

TABLE 11 (CONT.)	HAZARDOUS	WASTE GENI	HAZARDOUS WASTE GENERATION FOR 1987	1987		PAGE 2
WASTE MATERIAL	BASELINE HONTHLY KILOGRAMS POU	NTHLY POUNDS	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER YEAR KILOGRAMS POUND	PER YEAR POUNDS
EPOXY ZINC CHROMATE ASBESTOS MERCAPTAN DIMETHYLAMINE						
STA,SET= 19 CAT= AW EA 934 EPOXY EPOXY RESIN ASBESTOS					e.	e.
STA.SET= 19 CAT= AW EA 9309 EPOXY EPOXY RESIN GLASS FIBERS ACRYLONITRILE/BUTADIEN/STYREHE ASBESTOS POLYGLYCOL DIAMINE SILANE					e.	°.
STA, SET= 19 CAT= CM SPRAYCANS OF TPS SEALER FLUGRINATED SOLVENT FREOH 113					€.	ē.
STA, SET= 19 CAT= CN KOROPON PRIMER CONTAM CANS BUTYL ACETATE METHYL ETHYL KETONE TOLUENE TALC - M9 SILICATES EPOXY RESIN	5.7(6)	12.5(6)	68 . 0 ⁽⁶⁾	150.0 ⁽⁶⁾	e .	•
STA, SET= 19 CAT= CN LACQUER SPRAY CANS PIGMENT SOLIDS VEXICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROPELLANT PETROLEUM DISTILLATES	2,3(7)	S, 9 ⁽⁷⁾	27,2(7)	60.0(7)	6 .	÷.
STA.SET= 19 CAT= CN ISP CONTAM CUPS & WOOD STICKS INSTANT SET POLYMER	(8) ⁹ .	1,3(8)	6.8(8)	15. (⁽⁸⁾	•	ē.
STA,SET= 19 CAT= CM MARSHALL STENCIL INK SPRAYCANS XYLENE (CONT.)	, 2 (7)	(7) g .	2.2(1)	6.8 ⁽⁷⁾	°.	•

TABLE 11 (COMT.)	HAZARDOL	HAZARDOUS WASTE GEH	GENERATION FOR 1987	1987		PAGE 3
WASTE MATERIAL	BASELINE ! KILOGRAMS	MONTMLY POUNDS	BASELINE YE KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER YEAR KILOGRAMS POUND	PER YEAR Pounds
NAPTHA OTHER MATERIALS						
STA,SET= 19 CAT= CN LACQUER SPRAYCANS PIGMENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROPELLANT PETROLEUM DISTILLATES	1.8(7)	4,0(7)	21.8(7)	48,0(7)	e.	Ö
STA.SET# 19 CAT# CN ENAMEL SPRAYCANS	3,4(7)	7.5(7)	40.8(7)	90.0(1)	0.	e,
STA.SET= 19 CAT= CN ZINC CHRONATE PRIMER CANS	3,4(7)	7.5(7)	40.8(1)	90.06	e ,	•
SIA.8ET= 19 CATC CM CONTAMINATED TARE CUPS EA 911 EPOXY EA 934 EPOXY EA 9309 EPOXY					• <u>·</u>	.
SIA, SET = 19 CAT = CR RAGS WITH SOLVENTS, GREASES	3.8(9)	8,3(9)	45.4(9)	100.0(9)	0.	o,
STA.SET= 19 CAT= CR SOLVENT-CONTAN CHEESECLOTH ISOPROPYL ALCOHOL NETHYL ETHYL KETOHE 1,1,1-TRICHLOROETHANE					e.	ů,
STA.SET= 19 CAT= CR MEK & 1PA CONTAN CHZESECLOTH NETHYL ETHYL KETONE ISOPROPYL ALCGHOL					o .	ė,
STA,SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					0.	•
STA, SET = 19 CAT = CR TCE CONTAMINATED CHEESECLOTH 1,1,1-TRICHLOROETHANE					.	0,
STA.SET# 19 CAT# CR MEK CONTAMINATED CHEESECLOTH METHYL ETHYL KETONE					e .	.

TABLE 11 (CONT.)	HAZARDOUS WASTE		GENERATION FOR 1987	286		PAGE 4
WASTE MATERIAL	BASELINE M KILOGRAMS	MOHTHLY POUNDS	BASELINE YE KILOGRAMS	YEARLY POUNDS	COHTINGENCY PER KILDGRAMS	PER YEAR POUNDS
STA.SET* 19 CAT* CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					e .	6
STA.SET= 19 CAT= CR SOLID FILM LUBRIC CONT CHSCLTH					0.	0.
STA.SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					e	0,
STA.SET= 19 CAT= CR DICHLOROMETHANE CONT CHSECLTH					0.	ē.
STA.SET= 19 CAT= CR CONTAM CLOTHES, CLOTH & DEBRIS KOROPON BASE PRIMER KOROPON ACTIVATOR BERYLLIUM DUST	3,8(10)	8.3(10)	45,4(10)	100,0(10)	0.	°.
STA.SET= 19 CAT= EN UASTENATER FROM EEU4S	2523.5(4)	5563,3 ⁽⁴⁾	30281.7(4)	66760.0 ⁽⁴⁾		
SIA.8ET= 19 CAT= F8 WASTEWATER FROM PAYLOAD/ORB MMH	453.6	1000.0	5443.1	12000.0	o.	0.
STA.SET= 19 CAT= FS WASTE FUEL AND PRIMOL 355 HYDRAZINE & MMH	30.2	56.7	362.9	800.0		
STA.SET= 19 CAT= HF VACUUM PUMP OIL TEXACO REGAL OIL 068	3,8	ω	45,4	100.0	9.	0.
STA.SET# 19 CAT# HS FUEL SCRUBBER HYDRAZINE & MMH	2116.8	4566.7 93.3	25401.0 508.0	56000.0	e.	9 .
STA.SET= 19 CAT= HY HYDRAZINE	e.	0.	٥.	e.	2494,7(12)	5560.0 ⁽¹²⁾
STA,SET= 19 CAT- HY HYDRAZINE	56.7	125.0	686.4	1500.0	34.0(12)	75,0 ⁽¹²⁾
STA,SET= 19 CAT= IH POLYURETHANE FORM	8.	M 00	45,4	100.0	ů.	0,

TABLE 11 (CONT.)	HAZARDO	HAZARDOUS WASTE GEH	GENERATION FOR 1987	1987		PAGE 5
WASTE MATERIAL	BASEL INE KILOGRAMS	MONTHLY POUNDS	BASELINE Y	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
STA.SET= 19 CAT* IN ALUMACAST A/B MIXTURE POLYOXPROFLENE PENTAERYTHRITOL ARCHAILC WHITE OIL INERT ALUMINIZED PARTICLES DIPHENYLMETHANE DIISOCYAMATE POLYMERS OF DPM DIISOCYAMATE	~	r,	4.	0 ° E	0.	0
STA.SET= 19 CAT= IN INSTANT SET POLYMER SCRAPS DIPHENYL METHANE DIISOCYANATE POLYCOYALKYLENE PPOLYETHER AROMATIC HYDROCARBONS	f , 5 ¹³⁾	3,3 ⁽¹³⁾	18, 1(13)	40,0 ⁽¹³⁾	6 .	©
STA,SET= 19 CAT × 14 SILANE/ACETIC ACID RESIDUE METHYL TRIMETHOXYSILANE ACETIC ACID	4 .	œ.	4. #ù	10.0	.	e .
STA.SET= 19 CAT= MH MONOMETHYL HYDRAZINE	29.5	65. ი	353.8	780.0	0.	o,
STA.SET= 19 CAT* MH MONOMETHYL HYDRAZINE	9.2	16.7	2'06	200.0	0,	•
STA.SET= 19 CAT= MH(14)	15.6(15)	34.5(15)	187,8(15)	414,0(15)	107,3(12)	236.5(12)
STA.SET= 19 CAT= MK MONOMETHYL HYDRAZINE ⁽¹⁴⁾	15.6(15)	34,5(15)	187,8(15)	414.0(15)	148.3(12)	327.0(12)
STA.SET= 19 CAT= MH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	11,1(15)	24.5	133.4(15)	294.0(15)	182.8(12)	403.0(12)
STA,SET= 19 CAT= MH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	34,7(15)	76.5	416,4(15)	918,0(15)	0.	•
STA,SET= 19 CAT= NH WASTEWATER WITH AMMONIA	30.2(15)	(51)2'99	362.9(15)	800.0(15)	0.	0,
STA,SET= 19 CAT= NO NITROGEN TETROXIDE	in T	10.0	54.4	120.0	9.	0.
STA.SET = :9 CAT = NO HITROGEN TETROXIDE	8.5	18.0	98.0	216.0	•	•
STA,SET= 19 CAT= NO NITROGEN TETROXIDE	28,6(15)	63.0(15)	342.9(15)	756.0(15)	163. (12)	359.5

TABLE 11 (CONT.)	HAZARDO	US WASTE GENI	HAZARDOUS WASTE GENERATION FOR 1987	286		PAGE 6
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE YE KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR Pounds
STA, SET = 19 CAT = NO HITROGEN TETROXIDE	28.6	63,0(15)	342,9(15)	756,0(15)	232,9(12)	513.5(12)
STA.SET= 19 CAT* NO NITROGEN TETROXIDE	19.9(15)	43.8(15)	238.6 ⁽¹⁵⁾	526.0(15)	286.2 ⁽¹²⁾	631.8(12)
STA,SET= 19 CAT= MO MITROGEM TETROXIDE	65,2(15)	146,0(15)	794.7	1752.0(15)	0.	o,
SIA,SET= 19 CAT= NO HITROGEN TETROXIDE	ο.	₽,	0.	ó	4082,3(12)	9000,0 ⁽¹²⁾
STA.SET= 19 CAT= 08 DECONTAMINATE FROM PAYLOAD/ORB N204	241.9	533,3 5.0	2903.0	6400.0	Ö.	o.
STA,SET= 19 CAT* 08 WASTE OXIDIZER AND PRIMOL 355 ⁽¹¹⁾ N204	31.0	68,3 5,0	371.9	820.0	e,	0 .
STA,SET= 19 CAT= PA KOROPON PRMER CONT PNT BRUSHES BUTYL ACETATE TALC - Mg SILICATES EPOXY RESIN	15, f ⁽¹⁶⁾	33,3(16)	181,4(16)	400.0(26)	÷.	e.
STA, SET= 19 CAT= PA LACQUER #626486	(21)5,	1.1(17)	5,9(17)	13.0(17)	e.	æ.
STA,SET= 19 CAT= PA CONTAMINATED BRUSHES ORGAHIC ZINC PRIMER ZINC CHROMATE PRIMER	1.5(16)	3,3 ⁽¹⁶⁾	18,1(16)	40.0(16)	œ.	e `
STA,SET= 19 CAT= PA ORGANIC ZINC PRIMER ZINC DUST BARYTES MOLYBDATE ORANGE SILICA HIGH MOLECULAR WEIGHT EPOXY CELLOSOLVE ACETATE TOLUENE METHYL ETHYL KETONE	4.7(18)	10,4(18)	56,7(18)	125. (¹¹⁹⁾	a	e.
STA.SET= 19 CAT= PA CONTAMINATED PAINT BRUSHES EA 911 EPOXY (CDNT.)	1,5(16)	3,3'(5)	18.1(16)	40.0(16)	o .	o .

Page	TABLE 11 (CONT,)	HAZARD	HAZARDOUS WASTE GEI	GENERATION FOR 1987	1987		PAGE 7
PROXY EPDXY EPDXY EPDXY EPDXY EPDXY EPDXY EPDXY EPDXY EVEDNE 1. 1.5 8.2 18.0 1.6 8.0 1. 3 1.4 3.0 1. 3 3.0 1. 4 3.0 2. 0 2	WASTE MATERIAL	BASELINE Kilograms	MONT	BASELINE KILOGRAMS	YEARL	CONTINGENCY KILOGRAMS	
1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.5 1.5 1.5 1.4 1.5							
9 CAT = SW 35.3 77.9 424.1 935.0 .0 WITH MEKK 35.1 11.3 424.1 935.0 .0 ETHYL KETONE 5848.8 12994.5 70185.8 154734.0 7731.7 I CAT = EW 2271.1 4 5007.0 4 27253.5 4 60084.0 4 I CAT = EW 2271.1 4 5007.0 4 27253.5 4 60084.0 4 I CAT = HS 90.0 198.3 1079.5 2280.0 .0 I CAT = HS 302.4 666.7 3628.7 8600.0 .0 I CAT = HS 302.4 666.7 3628.7 146.0 .0 I CAT = HH 3.8 8.3 45.4 100.0 .0 I CAT = HH .0 .0 .0 .0 .0 I CAT = HH .0 .0 .0 .0 .0 I CAT = HO .12.5 27.5 149.7 330.0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0 .0 .0 .0 .0 I CAT = HO .0 .0 .0	G T	- 20 4 -	πύ		18.0 3.0 8.0 5.0		e
CAT = EW 12994.5 70185.9 154734.0 7731.7 CAT = EW 2271.1 ⁽⁴⁾ 5007.0 ⁽⁴⁾ 27253.5 ⁽⁴⁾ 60084.0 ⁽⁴⁾ CAT = FS 90.0 198.3 1079.5 2280.0 .0 CAT = HS 302.4 666.7 3628.7 8000.0 .0 CAT = HS 302.4 666.7 3628.7 146.0 .0 CAT = TH 3.8 8.3 45.4 100.0 .0 CAT = TH .0 .0 .0 .0 CAT = TH .0	A.SET= 19 CAT= SWISHWATER WITH MEK METHYL ETHYL KETONE	35.3 5.1	77.9	424.1	935,0 135,0		ů.
21 CAT= EV 2271.1 ⁽⁴⁾ 5007.0 ⁽⁴⁾ 27253.5 ⁽⁴⁾ 60084.0 ⁽⁴⁾ 21 CAT= FS 2271.1 ⁽⁴⁾ 5007.0 ⁽⁴⁾ 27253.5 ⁽⁴⁾ 60084.0 ⁽⁴⁾ 21 CAT= HS 302.4 666.7 3628.7 8000.0 .0 31 CAT= HY 31 CAT= HY 32 B B.3 45.4 100.0 .0 31 CAT= HY 32 B B.3 45.4 100.0 .0 33 CAT= HY 34 B B.3 45.4 100.0 .0 35 CAT= HY 36 CAT= HY 37 CAT= HY 38 B B.3 45.4 100.0 .0 39 CAT= HY 30 CAT= HY 30 CAT= HY 30 CAT= HY 31 CAT= HY 32 CAT= HY 33 CAT= HY 34 CAT= HY 35 CAT= HY 37 CAT= HY 38 B B.3 45.4 100.0 .0 39 CAT= HY 42.7 94.2 57.5 149.7 330.0 .0 42.7 94.2 57.5 1130.0 .0 61 CAT= HY 61 CAT= HY 62 CAT= HY 63 CAT= HY 64 CAT= HY 65 CAT= HY 66 CAT= HY 66 CAT= HY 67 CAT= HY 67 CAT= HY 67 CAT= HY 67 CAT= HY 67 CAT= HY 67 CAT= HY 68 CAT= HY 68 CAT= HY 69 CAT= HY 60 CAT= H	SET	5848.8	12894,5	70185.8	154734,0	7,131,7	17045.5
ETE 21 CATE FS AATER WITH MNH BATER WITH WARDIZER BATER WARDIZER BA	STA,SET# 21 CAT# EW UASTEWATER FROM EEW&S	2271,1 ⁽⁴⁾	5007.0(4)	27253,5	60084.0		
21 CAT= HS 302.4 666.7 3628.7 66.2 146.0 .0 22 CATE 5.5 12.2 66.2 146.0 .0 21 CAT= IH 3.8 8.3 45.4 100.0 .0 21 CAT= MH .0 .0 .0 21 CAT= NH .0 .0 .0 21 CAT= NO .0 .0 .0 21 CAT= NO .0 .0 .0 22 CATE NO .0 .0 .0 23 CAT= NO .0 .0 .0 24 CAT= NO .0 .0 .0 25 CATE .0 .0 .0 26 CAT= NO .0 .0 .0 27 CATE .0 .0 .0 28 CATE .0 .0 .0 29 CATE .0 .0 .0 21 CAT= NO .0 .0 .0 22 CATE .0 .0 .0 21 CAT= NO .0 .0 .0 22 CATE .0 .0 .0 23 CATE .0 .0 .0 24 CATE .0 .0	A,SET= 21 CAT= FS ISTEWATER WITH MMH MMH	ÓΦ	198.3	1079.5	2380.0 220.0	0.	ė.
R F C AT = IN 3.8 8.3 45.4 100.0 .0 R F C AT = IN 3.8 8.3 45.4 100.0 .0 I C AT = MH .0 .0 .0 .0 I C AT = MO .0 .0 .0 .0 I C AT = NO .1 .0 .0 .0 I C AT = NO .1 .0 .0 .0 I C AT = NO .1 .0 .0 .0 I C AT = NO .1 .0 .0 .0 I C AT = NO .1 .0 .0 .0 I C AT = NO .1 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 .0 .0 .0 I C AT = NO .0 .0 .0 .0 .0 .0 .0 .	A,SET= 21 CAT⇒ HS FEL SCRUBBER MMH	302,4 5,5	12.2	3628.7 66.2		6.	e.
21 CAT= NH 21 CAT= NG 22 CAT= NG 21 CAT= NG 22 CAT= NG 22 CAT= NG 23 CAT= NG 24 CAT= NG 24 CAT= NG 25 CAT= NG 27.5 149.7 336.6 .0 28 CAT= NG 29 CAT= NG 20	¥	& n & n	80 100 100	43.4 43.4	100.0	e .	•
CAT = NO	A.SET= 21 CAT= MH HOMETHYL HYDRAZINE	0.	9.	0.	0.		
21 CAT= NO 12.5 27.5 149.7 330.0 .0 21 CAT= NO 12.5 27.5 149.7 330.0 .0 21 CAT= NO 130.0 .0 130.0 .0 130.0 .0 130.0 .0 130.0 .0 130.0 .0 130.0 .0 130.0 .0	A,SET= 21 CAT= NO TROGEN TETROXIDE	0.	0.	0.	0.	16329.2(19)	36000, 0 ⁽¹⁹⁾
21 CAT= NO FETROXIDE 22 CAT= NO 23 CAT= NO 24.2 512.6 1130.0 .0 21 CAT= NO 21 CAT= OS 22 CAT= NO 23.7 727.6 1604.0 .0	21 TETF	12.5	27.5	149.7	330.0	o .	0.
.0 ,0 ,0 .0 4898.8 ⁽²⁰⁾	21 TE 74	42.7	94.2	512.6	1130.0	•	0.
60,6 133.7 727,6 1604.0 .0	21 TE1	0.	0.	0.	0.	4898.8 ⁽²⁰⁾	10800,0 ⁽²⁰⁾
	A.SET= 21 CAT= 0S STEWATER WITH OXIDIZER (CONT.)	9,09	133.7	727.6	1604.0	e.	°.

TABLE 11 (COHT.)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR 1987	1987		PAGE 8
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE Y	YEAR'Y POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR Pounds
N204	IP.	1.0	5.4	12.0		
STA.SET= 21 CAT= SW WASTEWATER WITH MEK METHYL ETHYL KETONE	35,3 5,1	77.8	423,7 60,8	934,0 134,0	0,	0.
STA.SET# 21 CAT# WP WASTE SEALS, FILTERS, ETC.	3,8 ⁽²¹⁾	8,3(21)	45,4(21)	100.0(21)	0.	0.
SUBTOTAL FOR SET 21	2822.2	6221.8	33865,9	74662.0	21228.0	46800.0
STA.SET= 23 CAT= EU MASTEWATER FROM EEURS	2523,5	5563,3	30281.7	66760,0		
STA,SET= 23 CAT= FS HYDRAZINE-CONTAM, WASTEWATER HYDRAZINE	473.2	1043.3	5678.9 281.2	12520.0		
STA,SET= 23 CAT= FS HYDRAZINE-CONTAM, CLHUP WATER HYDRAZINE	157.6	347.5	1891,5	4170.0		
STA,SET= 23 CAT= FS WASTEWATER FROM PPR HYDRAZINE	1892.6	4172.5	22711.3	50070.0		
STA,SET= 23 CAT= FS PRIMOL 355 ⁽¹¹⁾ HYDRAZINE MMH	283,9	625,8	3406,5	7510.0		
STA.SET= 23 CAT= HF HYDRAULIC FLUIDS TETRAORTHOCRESOL PHOSPHATE	328,1 328,1	723.3	3937.2 3937.2	8680.0 8680.0	o.	° .
STA.SET= 23 CAT⇒ HS HYDRAZINE & MMH SCRUBBER HYDRAZINE MMH	630,9 ⁽¹⁸⁾ 14.0	1390,8 ⁽¹⁸⁾ 30,8 24,2	7570,4 ⁽¹⁸⁾ 167.8 131.5	16690,0 ⁽¹⁸⁾ 370,0 290,0	0	6,
STA,SET= 23 CAT= HY HYDRAZINE	173,5	382,5	2082,0	4590.0	0.	°.
STA,SET= 23 CAT= HY LBM PROPELLANT PARAHYDRAZINE 'CONT.)	0 ` 0 `	ŷ` 0·	0.	0. 0.	39689,1(22)	87500,0 ⁽²²⁾

TABLE 11 (CONT,)	HAZARD	HAZARDOUS WASTE GE!	GEHERATION FOR 1987	1967		PAGE 9
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY Pounds	BASELINE KILOGRAMS	YEARLY Pounds	CONTINGENCY PER KILOGRAMS	PER YEAR Pounds
UBSVM DIMETHYLHYDFAZINE	0,	0,	0.	0'		
STA,SET= 23 CAT= HY HYDRAZINE	0.	0.	o,	ē.	2712.7 ⁽²²⁾	5980,5 ⁽²²⁾
STA.SET= 23 CAT= IN KSNA INSULATION BUTYL GLYCIDYL ETHER EPOXY RESINS, UNCURED	2.8	19.2	104.3	230.0	٠.	•
STA,SET= 23 CAT# NH MOHUMETHYL HYDRAZINE	275.6	607.5	3306.7	7290.0	0.	0.
STA,SET= 23 CAT= MM MONOMETHYL HYDRAZINE	0.	9	0.	0.	6026.2 ⁽²²⁾	13285,5 ⁽²²⁾
STA.SET= 23 CAT= NH AMMONIA	9.	0.	0.	0.	47.2 ⁽²²⁾	104.0(22)
STA,SET≈ 23 CAT≈ NO NITROGEN TETROXIDE	152.8	336.9	1833.9	4043.0	۰.	8.
STA,SET= 23 CAT= NO LBM OXIDIZER NITROGEN TETROXIDE	0.	0.		0.	39689.1 ⁽²²⁾	87500,0 ⁽²²⁾
STA,SET= 23 CAT= NO NITRCGEN TETROXIDE		0.	e .	Θ.	14064.9(22)	31008,0 ⁽²²⁾
STA,SET= 23 CAT= OS H204 CONTAM, CLEANUP WATER NITROGEN TETROXIDE	ν. 	208.3	1134.0	2500.0 25.0		
STA,SET= 23 CAT= 08 3204 CONTAM, WASTEWATER MITROGEN TETROXIDE	315.2	695.0	3782.9	8340.0		
STA.SET= 23 CAT= 0S PRIMOL 355 ⁽¹¹⁾ N204	283.9	625.8	3406.5	7510.0		
STA.SET= 23 CAT= P8. SRB PROPELLANT SPILL ⁽²³⁾ AMNONIUM PERCHLORATE ALUMINUM POWDER PBAN BINDER HTPB BINDER IRON OXIDE	5	6.0000	6	0.0000	504301.3 ⁽²⁴⁾ 1111800.0 ⁽²⁴⁾	111800.0 ⁽²⁴⁾
STA.SET= 23 CAT= QU DELUGE WATER (CONT.)	473245.6	1043333.4	5678946.0 1	12520000.0	0 ,	0,

TABLE 11 (COHT.)	HAZARDOUS	HASTE GEN	HAZARDOUS WASTE GENERATION FOR 1987	2861		PAGE 10	
WASTE MATERIAL	BASELINE MC KILOGRAMS	MONTHLY POUNDS	BASELINE YE KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRANS	/ PER YEAR POUNDS	
ALUMINUM OXIDE ANMONIA HYDROCHLORIC ACID GRGANIC CARBON	2.8 302.0 2.8	6.23 4, 28 6.33 8.33	33.6 2.3 3624.2 34.0	74.0 5.0 7990.0 75.0			
STA,SET= 23 CAT= SO SOLVENT MIXTURE FREON INC/MF/TF SYN, TETRACHLOROETHANE	242,9 ⁽²⁵⁾	535,5 ⁽²⁵⁾	2914.8 ⁽²⁵⁾	6426,0 ⁽²⁵⁾	0.	°.	
STA, SET= 23 CAT= SO CONTAMINATED SOLVENTS	220.7 ⁽²⁶⁾	486.7 ⁽²⁶⁾	2649.0 ⁽²⁶⁾	5840,0 ⁽²⁶⁾	9.	e .	
STA, SET = 23 CAT = SW SOLVENT WASTEWATER UNSPEC.	347,0 (18)(25)	765, (18125)	(5) 4164, († 18X2	4164, g ^{18 X 25)} 9180, g ⁽¹⁸⁾⁽²⁵⁾	5) (5)	0.	
SIG.SET= 23 CAT= SW CONTAMINATED WASTEWATER SOLVENTS CHLORINATED RUBBER ZINC PRINER	783,5 ⁽¹⁸⁾	1738,3 ⁽¹⁸⁾	9461,9 ⁽¹⁸⁾	20360.0 ⁽¹⁸⁾	Ö	°.	
SUBTOTAL FOR SET 23	482438.6 10	1063600.8 5	5789264.0 12	12763210.0	102229.2	225378.0	
STA,SET= 31 CAT= AL SURFACTANT NaOH SODIUM TRIPOLYPHOSPHATE					0 .	e.	
STA,SET= 31 CAT= AW EA 934 EPOXY ADHESIVE EPOXY RESIN ASBESTOS FILLERS POLYAMIDE DIETHYLENETRIAMINE	13.2 ⁽²⁶⁾⁽²⁷⁾ 5.7 1.5 1.5 3.0	7) 29.2 ^(26,127) 12.5 3.3 5.8 6.7	27) 158,8 (26X27) 68.9 18,1 31,8 36,3 4.5	(7) 350, (^{26,X27)} 150,0 40,0 70,0 80,0	0' (22	e .	
STA,SET= 31 CAT= CA CONTAMINATED AIR FILTERS	18.9	41.7	226.8	500.0	e.	0.	
SIA.SET= 31 CAT= CA CHARCOAL FILTER WASTES					0	0.	
STA.SET= 31 CAT= CA CONTANINATED AIR FILTERS	18.9	41.7	226.8	500.0	°.	0.	
STA, SET = 31 CAT = CN BOSTIK PRIMER PAINT CANS	5.7(6)	12,5(6)	68.0(6)	150.0(6)	٥.	0.	

WASTE MATERIAL BA							
	BASELINE M KILOGRAMS	MONTHLY POUNDS	BASELIHE Y KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR POUNDS	
STA,SET= 31 CAT CN BOSTIK TOPCOAT PAINT CANS	17.0(6)	37.5(6)	204.1(6)	450.0(6)	0.	0'	
STA.SET= 31 CAT= CN RUSTOLEUM PRIMER PAINT CANS	(9)8'	1,7 ⁽⁶⁾	9, 1 ⁽⁶⁾	20.0(6)	e,	ο.	
STA,SET= 3) CAT= CN RUSTOLEUM TOPCOAT PAINT CANS	(9) ⁸	1,7(6)	9, (6)	20.0(6)	0.	Θ,	
STA.SET= 31 CATA CN MSA-1 EMPTY CONTAINERS 33	378,0 ⁽²⁸⁾	833,3 ⁽²⁸⁾	4535,9 ⁽²⁸⁾	10000,0(28)	Ö	٥.	
STA.SET= 31 CAT= CN KSNA CONTAINERS	8.8	6.3	34.0	75.0	0.	•	
STA.SET= 31 CAT= CN KSNA & MTA-2 PACKING MATERIALS 189	1890,0(28)	4166,7 ⁽²⁸⁾	22679.5 ⁽²⁸⁾	50000.0(28)	0,	0.	
STA.SET= 31 CAT= CR SOLVENT CONTANINATED RAGS	3.8(9)	8,3 ⁽⁹⁾	45.4(9)	160.0(6)	6.	0.	
STA,SET= 31 CAT= CR ALODINE CONTANINATED RAGS	1.9(9)	4.2(9)	22.7(9)	50.0(9)	0,	0.	
STA.SET* 31 CAT* CR RYMPLE CLUTHS	3.8(9)	8.3(9)	45.4	100,0(9)	ο.	0.	
STA.SET* 31 CAT CR PAINT DROP CLOTHS	5,7 ⁽⁹⁾	12,5(9)	68.0(9)	150.0(9)	0,	0.	
STA.SET= 31 CAT= EW WASTEWATER FROM EEW&S 100	1009.4	2225,3 ⁽⁴⁾	12112.7(4)	26704,0 ⁽⁴⁾			
STA.SET= 31 CAT= FD FUEL AND OIL SPILLS	Θ.	ě,	•	0.			
STA,SET= 31 CAT= FO FUEL & OIL WASTES	31.8	70.0	381.0	840.0	o.	0.	
STA.SET= 3) CAT= FS PRIMOL 355(11)	é	0.	•	٥.			
STA.SET= 31 CAT= MS SCRUBBER EFFLUENT	31,4(18)	69.2(18)	376,5(18)	830.0(18)	e.	0.	
	91.2	201.1	1094.5	2413.6	0.	0,	
STA, SET= 31 CAT= IN MSA-1 (CURED) (29)	75.6 ⁽²⁵⁾	166,7 ⁽²⁵⁾	907,2 ⁽²⁵⁾	2000.0 ⁽²⁵⁾	0.	0'	1

TABLE 11 (CONT.)	HAZARDOUS	WASTE	GENERATION FOR	1987		PAGE 12
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY	BASELINE KILOGRAMS	YEARLY Pounds	CONTINGENCY KILOGRAMS	PER YEAR Pounds
EPICHLORHYDRIN/BGE GLASS ECOSPHERES PHENOLIC MICROSPHERES GLASS FIBERS BENTONE 27 METHYLENE DIANILINE M-PHENYLENE DIANINE	20 20 20 20 20 20 20 20 20 20 20 20 20 2	8.62 8.66 8.66 8.60 8.60 8.40	363,3 107,0 221,6 39,9 30,4 31,8	801.0 236.0 709.0 68.0 67.0 70.0		
STA.SET= 31 CAT= IN (30) MSA-1, PART A (UNMIXED) METHYLENE CHLORIDE EPICHLORHYDRIN/BGE					0.	0.
STA.SET= 31 CAT= IN MSA-1, PART B (UNMIXED) METHYLENE CHLORIDE PERCHLOROETHYLENE METHYLENE DIANILINE M-PHENE DIANILINE M-PHENE DIANINE ETHYL ALCOHOL PHENOLIC MICROSPHERES GLASS ECOSPHERES GLASS FIBERS BENTONE 27					o .	°.
STA,SET= 31 CAT= IN MTA-2 (CURED)(29) EPICHLORHYDRIN/BGE LP-3, POLYSULFIDE LIG POLYMER MDA & mPDA STANNOUS OCTOATE PHENOLIC MICROSPHERES	8.7. 8.1. 7.11 7.11 8.9.	83.3 25.8 25.8 16.3 1.0	453,6 140.2 140.2 153.8 55.8	1000,0 309.0 309.0 123.0 12.0	.	.
STA.SET= 31 CATE IN MTA-2 (UNMIXED)(30) EPICHLORHYDRIM/BGE LP-3, POLYSULFIDE LIQ POLYMER MDA & MPDA STANHQUS OCTOATE PHENOLIC MICROSPHERES METHYLENE CHLORIDE PERCHLOROETHYLENE	± พพพ – ′ ผ พพ 4 ผ ต	25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	136.1 42.2 42.2 16.8 33.6	300.0 93.0 93.0 37.0 4.0	Θ.	.
STA,SET= 31 CAT= IN K5NA BUTYL GLYCIDYL ETHER EPOXY RESINS	6.9	13,3	72.6	166.0	۰.	0.
STA,SET= 31 CAT# IN INSULATION AND PAPER					0.	0.

TABLE 11 (CONT.)	HAZARDOUS WASTE		GENERATION FOR 1987	1987		PAGE 13	
WASTE MATERIAL	BASELINE M KILOGRAMS	MONTHLY Pounds	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds	Ì
STO SET= 31 COT# P0							
BOSTIK EPOXY PRIMER	10.2	22.5	n	0	o,	0,	
EPOXY RESIN	ا ب	on où R	15.9	35.0			
HILLE CURING MGENT	i	, ro		9			
CHROMATE PIGNENTS	ĺĸ	0.1	ι 4	12.0			
	+ ·			38.0			
SUSPENSION & FLOW CONTROL ADDI SOLVENTS	6.1	13. 13.	73.5	162.0			
STA, SET= 31 CAT= PA							
			ω (٥.	0.	
EPICHLORHYDRIN/BISPHENOL A	W.	2,5	#0.4 8.4	90.0			
COLOR PIGNENT	2 8		34,0	75.0			
SUSPENSION & FLOW CONTROL ADDI	?	*	2.3	S. 0			
SOLVENTS PHOTOCHEM REACTIVE	10 t	6.6	13.9	0,000			
SOLVENIS NONPHOTOCHEM REACTIVE	9.0	6.31	-	-			
STA, SET= 31 CAT= PA				,	•	<	
RUSTOLEUM PRIMER	3.0 3.0	6.7 1.1	66.4 50.00	13.0	•	÷.	
YELLOW IRON OXIDE	ij	'n	2.7	9			
TITANIUM DIOXIDE	÷,	ú.	<u>ن</u> ،	0 i			
CALCIUM BURUSILICAIE RENTONITE	• - ·	 	9.9	•			
LINSEED PHENOLIC ALKYL RESIN	. v			16.0			
00 1	 	6.5	8.5	26.0			
DRIERS AND ADDITIVES	7.	i	•	•			
STA.SET= 31 CAT= PA					¢	¢	
RUSTOLEUM TOPCOAT	0.E	6.0	36.3	26.0	∍.	د.	
TITANIUM DIOXIDE	, in	- 1					
BENTONITE CLAY	;	. .	2.	∢.			
TINTING COLORS	-, I		σ	9.5			
ALKYL RESIN OFTBUGITC HYDDOLOBBONS	ָהַ סְּ	7 - 0	6,01	24.0			
DRIERS & ADDOTIVES	\.\ \.\	:-	.	4.0			
STA, SET# 31 CAT# PA							
GACOFLEX	14.7			390.0	•	Θ,	
TITANIUM DIOXIDE	> ~	, v	14.7	31.0			
HYPALON	, ,	6,6	17.7	39.0			
HYDROCARBON RESIN	ņ	٠. ا	10	8.0			
PERCHLOROETHYLENE	י פֿ	5.0 5.0	900	200			
(CONT.)		9.0	r				

TABLE 11 (CONT.)	HAZARDOUS WASTE		GENERATION FOR 1987	1987		PAGE 14	
WASTE MATERIAL	BASELINE MI KILOGRAMS	KONTHLY POUNDS	BASELINE Y KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR POUNDS	
EPOXIDIZED SOYBEAN OIL	2.	ю.	1.8	4.0			
STA,SET= 31 CAT= PA PAINT-SPILL ABSGRBANT	0.	0,	0.	0.			
STA.SET= 31 CAT* PW ALODINE CONTAMINATED WASTEWATR CHRUMIC ACID FERRICYANIDE SALT CONPLEX FLUORI: E SALT	126.2.2(31) 2.2.(31) 1.2 <.1	278.3 ⁽¹⁸⁾ 4,9 ⁽³¹⁾ 2.8 .1	1515, 0 ⁽¹⁸⁾ 26, 8 ⁽³¹⁾ 15, 0	1) 3346,0 (18) 59,0 (31) 33,0 1.0	•	e.	
STA.SET= 31 CAT= SO PERCHLOROETHYLENE	ñ	1,2	4.	14.0	0,	9	
STA.SET= 31 CAT= 80 TRICHLOROETHANE	4	٠.	5,0	11.0	0.	0.	
STA,SET= 31 CAT= SO FREON 113	ιć	 	65 67	13.0	6	6.	
STA.SET= 3) CAT= 80 MSA-1 CONTAMINATED MECI	1254.6	2765.8	15054.7	33190.0	6.	e,	
STA.SET= 31 CAT= SO MSA-1 CONTAM PERCHLOROETHYLENE	1543,3	3402,5	18520.1	40830.0	0.	0.	
STA,SET= 31 CAT= \$0 PERCHLOROETHYLENE	231.3	510.0	2776.0	6120.0	•	e.	
STA,SET= 31 CAT= SO TRICHLOROETHANE	68.0	150.0	816.5	1800.0	6.	0,	
STA,SET= 31 CAT= 80 METHYLENE CHLORIDE	213.2	470.0	2558.2	5640.0	•	0.	
STA,SET= 31 CAT= 80 MTA-2 CONTAMINATED SOLVENTS	441.5 ⁽²⁶⁾	973,3 ⁽²⁶⁾	5297.9	11680.0(26)	0 .	.	
STA.SET= 31 CAT= 80 BOSTIK CONTAMINATED SOLVENTS	220.7(56)	486,7(26)	2649.0 ⁽²⁶⁾	5840.0(26)	o .	0.	
STA.SET= 31 CAT* SO RUSTOLEUM CONTAMINATED SOLVENT	220,7 ⁽²⁶⁾	486.7 ⁽²⁶⁾	2649.0(26)	5840.0(26)	o .	o,	
SUBTOTAL FOR SET 31	8021.7	17685.0	96260.9	212220.0	0.	•	
STA.SET= 32 CAT= BA LITHIUN STORAGE BATTERIES	20,4	4. 0.	244.9	540.0	ė	•	

TABLE 11 (CONT,)	HAZARDOUS	WASTE	GENERATION FOR 1987	2861		PAGE 15
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY Kilograms	PER YEAR POUNDS
STA.SET* 32 CAT* BA SILVER-ZINC STORAGE BATTERIES	34.0	73,0	408.2	9,00,6	o .	e.
STA,SET= 32 CAT* BA POTASSIUM H;DROXIDE SOLUTION	7,3(18)	16,0(18)	87, 1(18)	192.0(18)	0.	e
STA.SET= 32 CAT= CB HYDRAZINE-CONTAMINATED WATER	90.7(18)	200.0(18)	1088.6(18)	2400.0(18)	•	.
STA.SET= 32 CAT* CS CONTAMINATED SEAWATER ⁽³²⁾	6.	0.	0.	Θ.		
SIA.SET= 32 CAT> C8 (32)	12095.7	26666.7	145149.8	320000.0	•	•
STA.SET= 32 CAT= CW SRB FWD SKT CLEANING WASTES					0,	٠.
STA,SET= 32 CAT= EU WASTEWATER FROM EEU&S	504.7(4)	1112,7 ⁽⁴⁾	605€.3 ⁽⁴⁾	13352.0 ⁽⁴⁾		
STA.SET= 32 CAT= F0 BILGE WASTES					e	ė.
SIA.SET= 32 CAT= FO DIESEL FUEL & OIL SPILLS	0.	0.	0.	0.		
SIA.SET= 32 CAT= FS (11) WASTE FUEL & PRIMOL 355 ⁽¹¹⁾ HYDRAZINE	, ,	0.	0.	0. 0.		
STA.8ET= 32 CAT= HS HYDRAZINE SCRUBBER EFFLUENT HYDRAZINE	151.2(18)	333,3 3,0	1814.4 16.3	4000.0 ⁽¹⁸⁾ 36.0	0.	0,
STA.SET= 32 CAT= HY HYDRAZINE	34.2	75.4	410.5	905.0	•	é
STA.SET= 32 CAT= IN INSULATION WASTES, SOLID WSA-1 INSULATION MTA-2 INSULATION KSHA INSULATION PR-855 INSULATION	604.8 ⁽³⁴⁾	1333, 3 ^{[34)}	7257.4	16,000,0 ⁽³⁴⁾	o .	e.
STA.SET= 32 CAT= IN INSULATION CONTAN FILTERS	3,8 ⁽²¹⁾	8.3(21)	45.4(21)	100.0(21)	.	•
STA.SET= 32 CAT= IW Insulation-contaminated water ⁽³³⁾ (CONT.)	154409.6	340416.7 ⁽¹⁸⁾ 11	1852915.0 ⁽¹⁸⁾	4085000.0 ⁽¹⁸⁾	•	0 '

TABLE 11 (COHT.)	HAZARDO	HAZARDOUS WASTE GEI	GENERATION FOR 1987	1987		PAGE 16
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR Pounds
MSA-1 INSULATION MTA-2 INSULATION K5NA IHSULATION PR-855 INSULATION						
STA.SET= 32 CAT= PR PRESERVATIVE CHEMICALS PROTECTIVE LUBRICANTS					0 .	0,
STA.SET= 32 CAT= PS SRB SOLID PROPELLANT AMMONIUM PERCHLORATE ALUMINUM POWDER FERRIC OXIDE POLYMER & EPOXY RESIN			0.000		78.5 ⁽²⁴⁾	173,0 ⁽²⁴⁾
STA.SET= 32 CAT= SB DETERGENT WASHWATER ⁽³⁵⁾	29029.8	64000.0	348357.1	769000.0	ē.	0 .
STA,SET= 32 CAT= SB POTABLE RINSE WATER	100394.6	221333.3	1204735.0	2656000.0	0.	۰.
STA, SET = 32 CAT = SB DEIONIZED RINSE WATER	46991.9	103600.0	563903.0	1243200.0	°.	•
STA,SET= 32 CAT* SI SRB RIMSE WATER	18143.6	40000.0	217723.2	480000.0	o .	•.
STA.SET= 32 CAT= SO SOLVENTS FREON TMC/IN SOLVENTS, UMSPECIFIED	8,8 ⁽²⁶⁾	19.5(26)	106.1 ⁽²⁶⁾	234,0 ⁽²⁶⁾	•	e,
SUBTOTAL FOR SET 32	362525,1	799235.4	4350302.0	9590824.0	.	e .
STA.SET= 33 CAT= CA AIR FILTERS	3.8 ⁽²¹⁾	8,3(21)	45.4	100,0(21)	0.	e .
STR.SET# 33 CAT# EW WASTEWATER FROM EEULS	157.6	347,5	1891.5	4170.9		
STA.SET= 33 CAT= HF HYDRAULIC FLUIDS					0.	e .
SUBTOTAL FOR SET 33	161,4	355.8	1936.8	4270.0	0,	ο.

TABLE 11 (CONT.)	HAZARD(HAZARDOUS WASTE GE	GENERATION FOR 1987	1987		PAGE 17
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
91A.9ET= 99 CAT= AU						
GX-6300 ASLATOR ADHESIVE	4.9	10.8	5	7	•	,
RESIN STAL 463	IC.		6.0	13.0		6.
STITE POWER	~ ∞.	4.0	21.8			
CARBON POWDER	vi v	ú,	.	9		
CURING AGENT L 663	i vi	? 4 .	- o	4 1		
AGENT L	1.5	-	, 10	 		
XYLENE	2.0	4 W W	23.6	52.0		
STA.SET# 99 CAT# AW			•	9		
J.YE	6.4	10,8	89.8	0 021	c	•
STYRENE Mek Peroxide Catalyst Dimethyl Phthalate					•	.
STA.SET= 99 CAT= CA						
					0.	c ,
STA.SET= 99 CAT= CN SOLVENT CONTANINATED CONTAINER SOLVENTS(36)	1,9(28)	4,2(28)	22.7 ⁽²⁸⁾	50,0 ⁽²⁸⁾	. 0.	? 9 .
STA.SET= 99 CAT= CN	100)					
FRINER CONTAINATED CONTAINERS	3,8	,67,9.	3.2(28)	7.0(28)	0.	0.
STA.SET= 99 CAT= CN ADHESIVE CONTAMINATED CONTAINR	, 3 ⁽²⁸⁾	,6 ⁽²⁸⁾	3,2 ⁽²⁸⁾	7,0(28)	0	G
STA, SET # 99 CAT CN SOLVENT CCHTAINERS					·	· ·
STA, SET= 99 CAT= CH						.
POUR FOAM CONTAINERS	18,9(28)	41.7(28)	226,8 ⁽²⁸⁾	500.0(28)	0.	.
STA.SET= 99 CAT= CN ABLATOR COHTAMINATED CONTAINER	,3 ⁽²⁸⁾	,6 ⁽²⁸⁾	3.2 ⁽²⁸⁾	7,0(28)	9.	•
STA,SET= 99 CAT= CR SOLVENT CONTAMINATED RAGS	3.8(9)	8.3	45,4(9)	100.0(9)	ē	
STA,SET= 99 CAT= CR ADHESIVE CONTAMINATED RAGS	3,8 ⁽⁵⁾	(6)E'8	45.4(9)	100.0(8)		
STA,SET= 99 CAT= CR EPOXY PRINER-CONTAMINATED RAGS	1.9(9)	4.2(9)	22, 7(9)	30 ,0(9)	· •	e e
STA, SET= 99 CAT= IN BX-250 FOAM (S0F1)	r 0	,	1		2	•
(CONT.)	5.00	216.7	1179.3	2600.0	0.	9.

TABLE 11 (CONT.)	HAZARDOL	HAZARDOUS WASTE GEN	GENERATION FOR	1987		PAGE 18	
WASTE MATERIAL	BASELINE P KILOGRAMS	MONTHLY POUNDS	BASELINE Y KILOGRAMS	YEARLY Pounds	CONTINGENCY	PER YEAR Pounds	
DIPHENYL METHANE DIISOCYAMATE FREON 11 ANINES POLYOLS SUPER MEK PEROXIDE POLYESTER RESIN DIMETHYL PHTHALATE	6.7.8 7.8	24.2 35.0 19.2	294.8 190.5 104.3	650,0 420,0 230,0			
STA.SET= 99 CAT= IN POUR FOAM (MIXED) ⁽²⁹⁾ POLYURETHANE	103.9 ⁽³⁷⁾	229.2 ⁽³⁷⁾	1247,4 ⁽³⁷⁾	2750,0 ⁽³⁷⁾	0.	e,	
STA.SET= 99 CAT= IN POUR FOAM PART A (UNMIXED) ⁽³⁰⁾ DIPHENYL METHANE DIISOCYANATE FREON 11 POLYOLS, AMINES	10 10 10 10 10 10 10 10 10 10 10 10 10 1	7.5 7.5 8.5 8.7 1.5	63.5 31.8 20.4	140.0 70.0 45.0 25.0	e .	e .	
STA.SET= 99 CAT# IN POUR FOAM PART B < UNMIXED > (30) FRECH 11 AMINE CATALYST POLYETHER POLYOL BLEND	N 4	7.7 7.0 8.0 8.0	63.5 12.7 4.1 4.6	140.0 28.0 3.0	.	0	
STA.SET= 99 CAT= IN POUR FOAM CONTAMINATED PAPER	1.2 ⁽²⁸⁾	2.8(28)	15.0(28)	33,0(28)	0	0.	
STA.SET= 99 CAT= IN SUPER LIGHT ABLATOR (I) RESIN L644, PT A SILICA FIBERS CORK PHENOLIC MICROSPHERES SILICA MICROSPHERES	w ∞ a a'ain' ∸rù a'	α ω4 ~ ~ αυομαυ	2 2 4 2 2 2 2 2 - 0 2 0 7 4 4 4 7	100.0 59.0 6.0 72.0 74.0	<u>.</u>	e .	
STA.SET= 99 CAT= IN SUPER LIGHT ABLATOR (II) RESIN STH L664, PT A CARSON POWDER SILICA FIBERS CORK 91LICA MICROSPHERES PHEHOLIC MICROSPHERES CURING AGENT STM L664, PT B	80. -	8,3 2,5 4,1	13.6	30.0	0.	e.	
STA.SET= 99 CAT= IN POUR FOAM "TRIMMINGS" POLYURETHANE	3,8	8,3	45.4	100.0	.	· ·	

TABLE 11 (CONT.)	назавр	HAZARDOUS WASTE GEN	GENERATION FOR 1987	8 1987		PAGE 19	
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE Kilograms	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	Y PER YEAR Pounds	
STA, SET= 99 CAT= FA EPOXY PRIMER METHYLENE ISOBUTYL KETONE XYLENE CYCLOHEXANONE CYCLOHEXANONE CHROMATES INRGANIC PIGMENTS N-BUTANOL TOLUENE AMINO SILANE METHYL ETHYL KETONE	<1	. (27)	.55(27)	1, 0 ⁽²⁷⁾	•.	e .	
STA,SET= 99 CAT= PA D,C, 1200 VM AND P NAPTHA ORGANOMETALLIC SALTS	(27)	, (27)	,5 ⁽²⁷⁾	1.0(27)	÷.	6.	
STA, SET# 99 CAT# 80 FREDN TMC	, 1(27)	,3(27)	1.4(27)	3.0(27)	o .	0 .	
STA,SET= 99 CAT* SO 1,1,1-TRICHLOROETHANE	, 1(27)	, 3 ⁽²⁷⁾	1.4(27)	3,0(27)	6.	•	
STA,SET= 99 CAT= 50 MEK & CELLOSOLVE	10.2	22.4	122.0	269.0	0 .	0.	
STA.SET= 99 CAT= 80 HEPTANE	62.6	137.9	750.7	1655,0	0.	e.	
STA,SET= 99 CAT= 80 CELLOSOLVE ACETATE	89.2	2'961	1070.5	2360.0	0.	Θ,	
STA.SET= 99 CAT= 80 METHYL ETHYL KETONE	73.7	162.4	884.0	1949.0	0.	0,	
STA, SET= 99 CAT= SR SOLVENT REDUCER METHYL ETHYL KETONE CYCLOHEXANONE	rò ผั <i>ด</i> ั	1.0 7.	λ. Α.Ε. — Α.Β. —	12.0	ė	.	
STA,SET= 99 CAT* SW SOLVENT CONTAMINATED WATER	67.5	148.8	810.1	1786.0	ē.	e .	
SUBTOTAL FOR SET 99	570.1	1256.9	6841.5	15083.0	o .	•	
TOTAL FOR ALL SETS	866643.6	1910632.3	10399724.0	22927588.0	131188.9	289223.5	

TABLE 11 (CONT.)	HAZARDOUS WASTE GENERATION FOR 1987	NERATION FOR	1961			PAGE 20	
SUNDART BY CHIECOXI	BASELIH	BASELINE MONTHLY	BASELINE	YEA	CONTINGENCY PER YEAR	PER YEAR	
	KILOGRAMS	POUNDS	KILOGRANS	POUNDS	KILOGRAMS	POUNDS	
SO	6884.6	15177.9	82614.6	182135.0	0.	0.	1
EU	11260.9	24826.2	135130.8	297914.1	e.	٥.	
F0	31.8	20.0	381.0	840.0	0.	٥.	
FS	3381,1	7454.2	40573,6	89450,0	0.	0.	
60	1027.2	2264,5	12325.9	27174.0	0.	٥,	
生	335,5	739.6	4025.6	8875.0	٥.	0.	
250	24.0	52,9	288.0	635.0	0.	0	
¥.	2333.9	5145,4	58006.9	61745.0	0.	•	
æ	32.1	8'02	385,6	850.0	œ.	0.	
E SE	3232.6	7126.7	38791.0	85520.0	0.	0.	
Ŧ	355,6	784.0	4267.4	9408.0	44930,6	99055,5	
Z	0.886	2167.2	11796.1	26006.0	0.	٥.	
Ŧ	389.7	859.2	4676.5	10310.0	6464.6	14252.0	
1	30.2	2.99	362.9	800.0	47.2	104.0	
2	364,0	802.4	4367.6	9629,0	65050.2	143412.0	
44	68.4	150.8	821.0	1810.0	٥.	٥.	
ns	1273.6	2807.9	15283.7	33695,0	0.	0.	
<u>a</u>	3.8	8,3	45.4	100.0	۰.	۰.	
Sal	0.	0.	0.	9.	504379.8	1111973.0	
330	473245,6	1043333.4	5678946.0	12520000.0	0,	0.	
₽.	0.	0.	0	٥.	ο.	6.	
CA	41.6	91.7	498.9	1100.0	٥.	0.	
34	126.2	278.3	1515.0	3340.0	٥.	0	
BA	2.19	136.0	740.3	1632.0	0.	0.	
83	2.06	200.0	1088.6	2400.0	0.	G	
ຮວ	12095.7	26666.7	145148.8	320000.0	0	0.	
30	0.	٥.	0.	0.	٥.	0.	
21	154409.6	340416.7	1852915.0	4082000.0	6	0.	
8	0.	٥.	0.	0.	Ö	0.	
88	176416.3	388933,3	2116995.0	4667200.0	0	<u>.</u>	
SI	18143.6	40000.0	217723.2	480000.0	0.	0.	
SR	Į,	1.0	J. 4.	12.0	Θ.	.	

* For footnotes, see Table 8.

PAG
1988-1994
EACH YEAR
EACH
FOR
110H
E CENERATION FOR E
UASTE
HAZARDOUS WASTE
12.
ABLE 12,

WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS POU	MOHTHLY POUNDS	BASELINE VEARLY KILOGRAMS P	FEARLY POUNDS	CONTINGENCY PER YEAR XILOGRAMS POUND	PER YEAR POUNDS
SIA,SET= 0 ⁽²⁾ CAT= SO CONTAMINATED FREGN	2971.0 ⁽³⁾	6550, d ³⁾	35652,2	78600,0 ⁽³⁾	0.	0.
SUBTOTAL FOR SET 9	2971.0	6550,0	35652,2	7860.,0	e .	ė.
STA,SET≈ 17 CAT≈ EW WASTEWATER FROM EEW&\$	3406,7	7510.5	40880.3	90126.0	o.	•
STA.SET= 17 CAT= F0 DIESEL FUEL					0.	0.
STA.SET= 17 CAT= F0 DIESEL FUEL & OIL					0.	0.
STA.SET= 17 CAT= FS CONTAMINATED DILUTION WATER	0.	0.	0.	G.		
STA,SET= 17 CAT= 0S CONTAMINATED DILUTION WATER N204	0.	0.	0.	9·		
SUBTOTAL FOR SET 17	3406,7	7510.5	40880.3	90126.0	e.	•
STA.SET= 18 CAT= HF HYDRAULIC FLUIDS	۶, 4,	11.9	64.6	142.5	°.	ο.
SUBTOTAL FOR SET 18	3. 4.	11.9	6. 8.	142.5	0.	
SIA.SET= 19 CAT= AW TPS ADMESIVE, RTV 566/577 PHENYL METHYL POLYSILOXANE TIN OXIDE SILICON HARDENER	*	, w	17.0	37.5	.	.
STA.SET= 19 CAT= AW EA 911 EPOXY (CONT.)					e.	0.

TABLE 12 (COMT,)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR EACH YEAR 1988-1994	EACH YEAR 1	988-1994	PAGE 2	
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE Y KILOGRAMS	YEARLY Pounds	CONTINGENCY FER YEAR KILOGRAMS POUND	FER YEAR Pounds	
EPDXY ZINC CHROMATE ASBESTOS MERCAPTAN DIMETHYLAMINE							1
STA.SET= 19 CAT* AU EA 934 EPOXY EPOXY RESIN ASBESTOS					0	o .	
STA.SET= 19 CAT= AW EA 9309 EPOXY EPOXY RESIN GLASS FIBERS ACRYLONITRILE/BUTACIEN/STYRENE ASBESTOS POLYGLYCOL DIAMINE SILANE					o.	°.	
STA.SET= 19 CAT= CN SPRAYCANS OF TPS SEALER FLUORINATED SOLVENT FREON 1:3					9 .	.	
STA,SET= 19 CAT= CN KOROPON PRIMER CONTAM CANS BUTYL ACETATE METHYL ETHYL KETONE TOLUENE TALC - M9 SILICATES EPOXY RESIN	8,5 ⁽⁶⁾	18.8 ⁽⁶⁾	102,1 ⁽⁶⁾	225,0 ⁽⁶⁾	0.	6	
STA.SET= 19 CAT= CM LACQUER SPRAY CANS PIGMENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROPELLANT PETROLEUM DISTILLATES	3,4(7)	7.5(7)	40.8(7)	90.0(7)	©	.	
SIA.SET= 19 CAT= CN ISP CONTAM CUPS & WOOD STICKS INSTANT SET POLYMER	(8)6'	1,9'8)	1 û . 2 ⁽⁸⁾	22.5(8)	0.	.	
91A,SET= 19 CAT= CN MARSHALL STENCIL INK SPRAYCANS XYLENE (CONT.)	(4)8'	, 8 ⁽⁷⁾	4. f ⁽⁷⁾	6.0(7)	0.	0.	

TABLE 12 (COHT.)	НАZARDO	US WASTE GEN	ERATION FOR	HAZARDOUS WASTE GENERATION FOR EACH YEAR 1988-1994	988-1994	PAGE 3
WASTE MATERIAL	BASELINE KILOGRAMS	HONTHLY POUNDS	BASELINE KILOGRAMS	YEARLY PCUNDS	CONTINGENCY PER YEAR KILOGRAMS POUND	PER YEAR POUNDS
NAPTHA OTHER MATERIALS						
STA.SET= 19 CAT= CH L)CQUER SPRAYCANS PIGMENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROPELLANT PETROLEUM DISTILLATES	2,7 ⁽⁷⁾	6,0 ⁽⁷⁾	32,7 ⁽⁷⁾	72.0 ⁽⁷⁾	o .	e.
STA, SET= 19 CAT= CN ENAMEL SPRAYCANS	5.1(7)	11.3(7)	61.2(7)	135.0(7)	0.	e.
STA,SET= 19 CAT= CN ZINC CHROMATE PRIMER CAMS	5.1(7)	11.3(7)	61.2 ⁽⁷⁾	135.0(7)	9.	0.
STA.SET= 19 CAT= CN CONTAMINATED TARE CUPS EA 911 TPOXY EA 934 EPOXY EA 9309 EPOXY					e .	e ,
STA.SET= 19 CAT= CR RAGS WITH SOLVENTS, GREASES	5,7(9)	12,5(9)	(63)	150.0(9)	5 .	0.
STA.SET# 19 CAT# CR SOLVENT-CONTAH CHEESECLOTH ISOPROPYL ALCOHOL METHYL ETHYL KETONE 1,1,1-TRICHLORDETHANE					o .	© ,
STA,SET* 19 CAT* CR MEK & IPA CONTAN CHEESECLOTH METHYL ETHYL KETONE ISOPROPYL ALCOHOL					e.	ě.
STA,SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					٥.	6.
STA.SET= 19 CAT= CR TCE CONTAMINATED CHEESECLOTH 1,1,1-TRICHLORDETHANE					0,	0.
STA.SET= 19 CAT= CR MEK CONTAMINATED CHEESECLOTH METHYL ETHYL KETONE					•.	o .

TABLE 12 (CGNT,)	HAZARDOI	HAZARDOUS WASTE GEN	ERATION FOR	GENERATION FOR EACH YEAR 1988-1994	88-1994	PAGE 4
WASTE MATERIAL	BASELINE I Kilograms	MONTHLY POUNDS	BASELINE Y KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER YEAR KILDGRAMS POUND	PER YEAR Pounds
STA.SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					٥.	٥.
STA.SET= 19 CAT= CR SOLID FILM LUBRIC CONT CHSCLTH					0.	0.
STA.SET* 19 CAT* CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					•	o .
STA, SET= 19 CAT CR DICHLOROMETHANE CONT CHSECLTH					Θ.	0.
STA.SET= 19 CAT= CR CONTAM CLOTHES, CLOTH & DEBRIS KOROPON BASE PRIMER KOROPON ACTIVATOR BERYLLIUM DUST	5.2(10)	12,5 ⁽¹⁰⁾	68,0 ⁽¹⁰⁾	150,0 ⁽¹⁰⁾	e.	e.
SIA,SET= 19 CAT= EW WASTEWATER FROM EEWAS	3785.2 ⁽⁴⁾	8345,0	45422.5(4)	100140.0 ⁽⁴⁾		
SIA.SET= 19 CAT= FS WASTEWATER FROM PAYLOAD/ORB MNH	630,4	1500.0 150.0	8164.6 815.5	18000.0	e.	٥.
STA.SET= 19 CAT= FS WASTE FUEL AND PRIMOL 355 ⁽¹¹⁾ HYDRAZINE C MMH	45.4	100.0	544.3	1200.6		
STA.SET= 19 CAT= HF VACUUM PUMP OIL TEXACO REGAL OIL 068	8.7	12.5	68.0	150.0	۰.	o .
STA.SET= 19 CAT* HS FUEL SCRUBBER HYDRAZINE 6 MMH	3175.1	7000,0	38:01.6 762.0	84000,0 1580,0	0.	.
STA.SET# 19 CAT# HY HYDRAZINE	0.	o,	o .	©	2494,7(12)	5500,0 ⁽¹²⁾
STA.SET= 19 CAT* HY HYDRAZINE	85.0	187,5	1020.6	2250,0	34,0 ⁽¹²⁾	75.0(12)
STA.SET= 19 CAT= IN POLYURETHANE FOAM	16	12,5	68.0	150.0	0	0.

TABLE 12 (CONT.)	HAZARDO	HAZARDOUS WASTE GEN	ERATION FOR	GENERATION FOR EACH YEAR 1988-1994	88-1994	PAGE 5
WASTE MATERIAL	BASELINE I Kilograms	MONTHLY Pounds	BASELINE Y Kilograms	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR Pounds
STA,SET= 19 CAT= IN ALUMACAST A/B MIXTURE POLYOXPROPLENE PENTAERYTHRITOL AROMATIC WHITE OIL INERT ALUMINIZED PARTICLES DIPHENYLMETHANE DIISOCYANATE POLYMERS OF DPM DIISOCYANATE	ų.	₩.	2,0	4. 10.	e.	9
STA.SET= 19 CAT= IN INSTANT SET POLYMER SCRAPS DIPHENYL METHANE DIISOCYANATE POLYCOXALKYLENE >POLYETHER AROMATIC HYDROCARBONS	2,3 ⁽¹³⁾	5, 0 ⁽¹³⁾	27.2 ⁽¹³⁾	60,0(13)	°.	e.
STA,SET= 19 CAT= IN SILANE/ACETIC ACID RESIDUE METHYL TRIMETHOXYSILANE ACETIC ACID	v.	m 	8,	15.0	٥.	9.
STA,SET= 19 CAT= MH MONOMETHYL HYDRAZINE	44.2	97.5	530,7	1170.0	0.	e .
STA,8ET= 19 CAT= MH MONOMETHYL HYDRAZINE	11.3	25.0	136.1	300.0	e	o .
STA.SET= 19 CAT= MH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	23.5(15)	51.8(15)	281.7(15)	621.0(15)	107.3(12)	236.5(12)
STA,SET= 19 CAT= MH HONOMETHYL HYDRAZINE ⁽¹⁴⁾	23.5(15)	51.0(15)	281.7(15)	621.0(15)	148.3(12)	327.0 2)
ST4,8ET= 19 CAT= MH MONDMETHYL HYDRAZINE ⁽¹⁴⁾	16.7(15)	36,8 ⁽¹⁵⁾	200,0(15)	441.0(15)	182.8(12)	403.0(12)
STA,SET= 19 CAT# NH MONOMETHYL HYDRAZINE ⁽¹⁴⁾	52.0(15)	114.8(15)	624.6(15)	1377,0(15)	•	€.
STA,SET# 19 CAT# NH WASTEWATER WITH AMMONIA	45.4(15)	160.0(15)	544, 3(15)	1200.0(15)	9.	0.
STA,SET= 19 CAT= NO NITROGEN TETROXIDE	6 9	15.0	81.6	180.0	• •	e .
STA,8ET= 19 CAT= NO HITROGEN TETROXIDE	12.2	27.0	147.0	324.0	0.	0,
STA,SE - 19 CAT NO NITROGE: TETROXIDE	42.9(15)	94.5(15)	514.4(15)	1134.0(15)	163.1(12)	359,5(12)
and the second s	and the second s	and the form of the state of th	The second second second second second		The state of the s	Service and a service of the service

THE PROPERTY OF THE PARTY OF TH

TABLE 12 (CONT,)	HAZARDOL	IS WASTE GEN	HAZARDOUS WASTE GENERATION FOR EACH YEAR 1988-1994	EACH YEAR 19	88-1994	PAGE 6
WASTE MATERIAL	BASELINE N KILOGRAMS	MONTHLY POUNDS	BASELINE Y	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR POUNDS
STA,SET= 19 CAT≈ NO NITROGEN TETROXIDE	42,9(15)	94,5(15)	514,4	1134,0(15)	232,9 ⁽¹²⁾	513.5(12)
STA.SET= 19 CAT= NO NITROGEN TETROXIDE	29.8(15)	65,8(15)	357.9(15)	789.0(15)	286.2 ⁽¹²⁾	631,0(12)
STA, SET= 19 CAT= NO NITROGEN TETROXIDE	99.3 ⁽¹⁵⁾	219.0(15)	1192.0(15)	2628.0(15)	0.	0.
SIA,SET= 19 CAT= NO NITROGEN TETROXIDE	0.	٥.	0.	0.	4082,3(12)	9000.0(12)
STA.SET= 19 CAT= OS DECONTAMINATE FROM PAYLOAD/ORB N204	362.9	800.0	4354.5	9600.0	0.	o .
STA.SET= 19 CAT= OS WASTE OXIDIZER AND PRIMOL 355 ⁽¹¹⁾ N204	46.5 3.4	102.5	557,9 40,8	1230.0	Θ.	0.
STA,SET* 19 CAT* PA KOROPON PRMER CONT PNT BRUSHES BUTYL ACETATE TALC - Mg SILICATES EPOXY RESIN	22.7 ⁽¹⁶⁾	50,0 ⁽¹⁶⁾	272,2 ⁽¹⁶⁾	600,0 ⁽¹⁶⁾	o .	.
STA,SET* 19 CAT* PA LACQUER #626486	(11)2.	1,6(17)	8.8(17)	19.5(17)	e.	0.
STA,SET= 19 CAT= PA CONTAMINATED BRUSHES ORGANIC ZINC PRIMER ZINC CHROMATE PRIMER	2,3(16)	5,0 ⁽¹⁶⁾	27.2(16)	60,0(16)	0.	0.
STA.SET= 19 CAT= PA ORGANIC ZINC PRIMER ZINC DUST BARYTES MOLYBDATE ORANGE SILICA HIGH MOLECULAR WEIGHT EPCXY CELLOSOLVE ACETATE TOLUENE METHYL ETHYL KETONE	7.1(18)	13,6(18)	85, 0 ⁽¹⁸⁾	187.5(18)	•.	e
STA.SET= 19 CAT= PA CONTAMINATED PAINT BRUSHES EA 911 EPOXY (COMT.)	2,3 ⁽¹⁶⁾	5, (16)	27.2 ⁽¹⁶⁾	60,0(16)	0.	0.

	TABLE 12 (CONT,)	HAZARDO	HAZARDOUS WASTE GE	GEMERATION FOR	EACH YEAR 1988-1994	988-1994	PAGE 7
	WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
	ЕА 934 ЕРОХУ ЕА 9309 ЕРОХҮ						
	STA,SET= 19 CAT= SO DOPE & LACQUER THINNER ALIPHATIC NAPTHA ESTER OR KETONE ISQ- OR n-BUTYL ACETATE ISO- OR n-BUTYL ALCOHOL		и и – 4 5 0 W	9.00 9.00 9.40 4.40	27.0 4.5 7.5 3.0	.	e .
	STA,SET* 19 CAT* SW WASHWATER WITH MEK METHYL ETHYL KETONE	53.0	116.9	636.2 91.9	1402,5	0.	o .
	SUBTOTAL FOR SET 19	8773.2	19341.8	105278.7	232101.0	7.1575	17045,5
129	STA.SET# 21 CAT# EU WASTEWATER FROM EEULS	3406.7(4)	7310,5 ⁽⁴⁾	40880,3 ⁽⁴⁾	90126.0 ⁽⁴⁾		
	STA,SET* 21 CAT* FS WASTEWATER WITH MMH	134.9	297,5	1619.3	3570.0 330.0	0.	•
	STA,SET= 21 CAT= HS FUEL SCRUBBER MMH	453.6 8.3	1000.0	5443.1 99.3	12000.0	e.	0.
	STA.SET= 21 CAT= IN TILE REPAIR FORM POLYURETHANE	N. V. N.	12.5	68,0 68.0	150.0	٥.	0.
	STA,8ET= 21 CAT= MH MONOMETHYL HYDRAZINE	0.	0.	0.	o .	0,	•
	STA.SET= 21 CAT= NO NITROGEN TETROXIDE	0.	0.	о.	e.	24493,9(19)	54000,0(19)
	STA.SET= 21 CAT= NO HITROGEN TETROXIDE	18.7	4.3	224.5	495.0	•	0.
	STA.SET= 21 CAT= NO NITROGEN TETROXIDE	64.1	141.3	768.8	1695.0	e.	0.
	STA,SET= 21 CAT= NO NITROGEN TETROXIDE	0.	•	0.	0.	4898,8 ⁽²⁰⁾	10800,0 ⁽²⁰⁾
	STA.SET= 21 CAT= 0S WASTEWATER WITH OXIDIZER	6'62	200,5	1691.3	2406.0	0.	O

TABLE 12 (CONT.)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR	EACH YEAR 1988-1994	188-1994	PAGE 8
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY	BASELINE Y KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR POUNDS
N204	۶.	1.5	8.2	18.0		
STA,SET= 2) CAT= SW WASTEWATER WITH MEK METHYL ETHYL KETONE	53.0	116.8 16.8	635.5 91.2	1401.0	o .	e.
STA,SET* 21 CAT* WP WASTE SEALS, FILTERS, ETC.	5.7(21)	12.5(21)	68,0(21)	150.9 ⁽²¹⁾	e .	0.
SUBTOTAL FOR SET 21	4233.2	9332.8	50798.9	111993.0	29392.6	64800.0
SIA, SET = 23 CAT= EW WASTEWATER FROM EEWLS	3785.2	8345.0	45422.5	100140.0		
STA.SET= 23 CAT= FS HYDRAZINE-CONTAM. WASTEWATER HYDRAZINE	709.9 35.2	1565.0	8518.4 421.8	18780,0 930.0		
STA,SET= 23 CAT= FS HYDRAZINE-CONTAM, CLNUP WATER HYDRAZINE	236.4	321.3 5.8	2837.2	6255.0 69.0		
STA, SET= 23 CAT= FS WASTEWATER FROM PPR HYDRAZINE	2838.9	6.258 .9	34066.9	75105.0		
STA.SET= 23 CAT= FS PRIMOL 355 ⁽¹¹⁾ HYDRAZINE MNH	425,8	938,8	5109.7	11265.0		
STA.SET= 23 CAT= MF HYDRAULIC FLUIDS TETRAORTHOCRESOL PHOSPHATE	492.1	1085,0 1085,0	5905.7 5905.7	13020.0	0.	0.
STA, SET= 23 CAT= HS HYDRAZINE & MMH SCRUBBER HYDRAZINE MMH	946.3 ⁽¹⁸⁾ 21.0 16.4	2086.3 ⁽¹⁸⁾ 46.3 36.3	11355,6 ⁽¹⁸⁾ 251,7 197,3	25035.0 ⁽¹⁸⁾ 555.0 435.0	e .	6 .
STA.SET= 23 CAT= HY HYDRAZINE	260.2	573.8	3123.0	6885.0	o .	e .
STA.SET= 23 CAT= HY LBM PROPELLANT PARAHYDRAZINE (CONT.)	e. •	0. 0.	0 .	0 .	39689,1 ⁽²²⁾	87500,0 ⁽²²⁾

TABLE 12 (CONT.)	HAZARD	HAZARDOUS WASTE GE!	GENERATION FOR EACH YEAR 1988-1994	EACH YEAR 19	188-1994	PAGE 9
WASTE MATERIAL	BASELINE Kilograms	NONTHLY Pounds	BASELINE Y	YEARLY POUNDS	CONTINGENCY Kilograms	PER YEAR Pounds
UNSYM DIMETHYLHYDRAZINE	0.	0.	0,	0.		
STA, SET= 23 CAT= HY HYDRAZINE	0.	•	•	٥.	2712.7 ⁽²²⁾	5980, 5 ⁽²²⁾
STA,SET= 23 CAT= IN KSHA INSULATION BUTYL GLYCIDYL ETHER EPOXY RESINS, UNCURED	6.51	28.8	156.5	345.0	ė	•
STA, SET= 23 CAT= MH MONOMETHYL HYDRAZINE	413.3	911.3	4960.0	10935.0	o .	0.
STA.SET= 23 CAT= MH MONOMETHYL HYDRAZINE	0.	0.	0,	•	6026.2 ⁽²²⁾	13285.5 ⁽²²⁾
STA.SET 23 CAT HH	0.	0.	•	Θ.	47.2(22)	104.0(22)
STA.SET= 23 CAT= NO NITROGEN TETROXIDE	229.2	503.4	2750.8	6064.5	•	•
STA.SET= 23 CAT= NO LBM OXIDIZER NITROGEN TETROXIDE	6 ,	6.	• •		39689, 1 ⁽²²⁾	87500,0 ⁽²²⁾
STA, SET= 23 CAT= NO HITROGEN TETROXIDE	0.	0.	е.	•.	14064.9 ⁽²²⁾	31008.0 ⁽²²⁾
STA.SET= 23 CAT= 08 N204 CONTAM. CLEANUP WATER HITROGEN TETROXIDE	141.7	312.5	1701.0	3750.0 37.5		
STA.SET= 23 CAT= 08 H204 CONTAM. WASTEWATER HITROGEN TETROXIDE	472.9	1042.5	5674.4	12516.0		
91A.SET= 23 CAT= 0S PRIMOL 355 ⁽¹¹⁾ N204	425.8	938,8	5109.7	11265.0		
STA.SET= 23 CAT= PS SRB PROPELLANT SPIL(23) AMMONIUM PERCHLORATE ALUNIMUM POWDER PBAN BINDER HTPB BINDER IRON OXIDE			00000	a a a a a a a a	\$04301.3 ⁽²⁴⁾ f111800.0 ⁽²⁴⁾	111800.0 ⁽²⁴⁾
STA.SET# 23 CAT# QW DELUGE WATER (CONT.)	709868.3	1565000.0	8518420.0 1	18780000.0	9.	6.

TABLE 12 (CONT.)	HAZARDOUS	WASTE	GENERATION FOR E	EACH YEAR 1988-1994	18-1994	PAGE 10	
WASTE MATERIAL	BASELINE MON KILOGRAMS	MONTHLY POUNDS	BASELINE YE KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR POUNDS	
ALUMINU OXIDE AMMONIA HYDROCHL TC ACID ORGANIC RON	4,2 3,0 4,3	6. 8. 8. 8. 8. 8.	50,3 3,4 51,0	111.0 7.5 11985.0			
STA.SET= 23 CAT= SO SOLVENT (* TTRE FREON T: FZTF SYN, TE1 LOROETHANE	364,3 ⁽²⁵⁾	803, 3 ⁽²⁵⁾	4 372,2 ⁽²⁵⁾	9639.0 ⁽²⁵⁾	•	0 .	
STA,SET= 23 CAT* SO COHTAMINATED SOLVENTS	331,1(26)	730,0 ⁽²⁶⁾	3973,4 ⁽²⁶⁾	87 6 0,0 ⁽²⁶⁾	0.	0.	
STA.SET= 23 CAT* SY SOLVENT WASTEWATER UNSPEC.	520,5(18)(25)1147	1147,5 (18)(25) 6245	6245,9 (18X25)	13770,0(18)(25)	•. :	6.	
STA.SET= 23 CAT= SW CONTAMINATED WASTEWATER SOLVENTS CHLORINATED RUBBER ZINC PRIMER	1182,7 ⁽¹⁸⁾	2607,5 ⁽¹⁸⁾	14192,8 ⁽¹⁸⁾	31290.0 ⁽¹⁸⁾	o	.	
SUBTOTAL FOR SET 23	723658.3 1595	1595401.8 866	8683898,0 1914	19144820.0 1	102229.2	225378.0	
STA.SET= 31 CAT= AL SURFACTANT NaOH SODIUM TRIPOLYPHOSPHATE					·	e .	
STA.SET= 31 CAT= AW EA 934 EPOXY ADHESIVE EPOXY RESIN ASBESTOS FILLERS POLYAMIDE DIETHYLEHETRIAMINE	19.8 ⁽²⁶⁾⁽²⁷⁾ 8.5 2.3 4.0	43,8(26)(27) 18,8 5,0 8,8 10,0	238, 1 ⁽²⁶⁾⁽²⁷⁾ 102, 1 27, 2 47, 6 54, 4) 525, 0 (26X27) 225, 0 60, 0 105, 0 120, 0 15, 0	6.	9	
STA, SET = 3) CAT = CA CONTAMINATED AIR FILTERS	28,3	62.5	340.2	750.0	6.	0,	
STA,SET= 31 CAT= CA CHARCOAL FILTER WASTES						e,	
STA,SET= 3: CAT= CA CONTAMINATED AIR FILTERS	28,3	62.5	340.2	750.0	ω.	0,	
STA.SET= 31 CAT= CN BOSTIK PRIMER PAINT SANS	8.5(6)	18.8(6)	102, 1 ⁽⁶⁾	225.0 ⁽⁶⁾	0.	•	

WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE Y KILDGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR POUNDS
STA,SET≈ 31 CAT≈ CN BOSTIK TOPCOAT PAINT CANS	25,5(6)	5 6,3 ⁽⁶⁾	306.2 ⁽⁶⁾	675,0(6)	0.	•
STA,SET= 31 CAT= CN RUSTOLEUM PRIMER PAINT CANS	1,1 ⁽⁶⁾	2.5(6)	13,6(6)	30,0(6)	0.	0.
STA,9ET= 31 CAT= CN Rustoleum topcoat paint cans	1.1(6)	2.5	13.6(6)	30.0(6)	•	0,
STA.SET= 31 CAT= CN MSA-1 EMPTY CONTAINERS	567.0(28)	1250.0(28)	6803.8 ⁽²⁸⁾	15000.0(28)	0.	0.
STA,SET= 31 CAT* CN KSNA CONTAINERS	4. is	* .	51.0	112.5	0.	0.
STA.SET= 31 CAT= CN K5HA & MTA-2 PACKING MATERIALS	2834.9 ⁽²⁸⁾	6259,0 ⁽²⁸⁾	34019.3 ⁽²⁸⁾	75000,0 ⁽²⁸⁾	0.	0.
STA.SET= 31 CAT= CR SOLVENT CONTANINATED RAGS	5.2(6)	12.5(9)	68.0 ⁽⁹⁾	150.0(9)	0	
STA.SET= 31 CAT= CR ALODINE CONTAMINATED RAGS	2.8	6,3(9)	34.0(9)	75.0(6)	•	0.
STA,SET= 31 CAT= CR RYMPLE CLOTHS	5.2(9)	12.5(9)	68.0(9)	150,0(9)	•	ó
STA,SET= 31 CAT= CR PAINT DROP CLOTHS	8.3(9)	18.8(9)	102.1(9)	225.0(9)	0.	•
STA, SET= 31 CAT= EW WASTEWATER FROM EEW&S	1514.1 ⁽⁴⁾	3338.0(4)	18169.0 ⁽⁴⁾	40056.0 ⁽⁴⁾		
STA.SET= 31 CAT= FO FUEL AND 01L SPILLS	ē.	6	•	0.		
STA.SET= 31 CAT= FO FUEL & OIL WASTES	47.6	105.0	571.5	1260.0	6.	•
STA.SET= 31 CAT= FS PRINOL 355(11)	•	0.	0.	0.		
STA.SET= 31 CAT= HS SCRUBBER EFFLUENT	47.1(18)	103,8(18)	564.7(18)	(245.0	0.	e.
STA.SET* 31 CAT* HY HYDRAZINE	136.8	301.6	1641.8	3619.5	o .	
STA.SET= 31 CAT= IN MSA-1 (CURED)(29)	113,4(25)	250.0(25)	1360.8(25)	3000.0(25)	0.	0.

TABLE 12 (CONT.)	HAZARDOUS	WASTE	GENERATION FOR	EACH YEAR	1988-1994	PAGE 12
WASTE HATSFIAL	BASELINE M KILOGRAMS	MONTHLY POUNDS	BASELINE '	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
CPICHLORINZGE CLASS ECOPPHENES PHEHOLIC MYCROSPHEES GLASS FIBERS BENTONE 27 METHYLENE DIGHTLINE	44.00 8 W 4	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.848 6.0.6 4.882 4.98.9 6.99.4 6.74	201.201.201.201.201.201.201.201.201.201.		
TA.SET= 31 CATW IN (32) MSA-1, PART A (UNHTMED) MT. LENE CHLORIDE E LUMLORHYDRIA/8GE					o .	÷.
STA.SET CATA IN MSA-1, PART 8 (UNNIXFO) (1) METHYLENE CHLORIDE PERCHLOROETHYLENE METHYLENE (IANILINE M-PHENYLENE DIAMINE FYPY ALCOHOL PHENOLIC MICROSPHERES GLASS ECOSPHERES GLASS FIBERS BENTONE 27					° .	o.
STA.SET= 31 CAT= IN MTA-2 (CURED) ⁽²⁹⁾ MTA-2 (CURED) ⁽²⁹⁾ EPICHLORHYDRIN/BGE LP-3, POLYSULFIDE LIQ POLYNER MDA 4 mPDA STANHOUS OCTOATE PHENOLIC MICROSPHERES	56.7 17.5 17.5 7.0	125.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	680.4 210.2 210.2 93.7.7 8 8 3:	1500.0 463.5 463.5 184.5 18.0 370.8	e ·	.
STA.SET= 31 CAT= IN MTA-2 (UNMIXED) ⁽³⁰⁾ EPICHLORHYDRIN/5GE LP-3, POLYSULFIDE LIG POLYMER MDA & mPDA STANNOUS OCTOATE PHENOLIC MICROSPHERES METHYLENE CHLORIDE PERCHLOROETHYLENE	5. 6.000 4 6.000 4	82-1-4 80-1-4	200 200 200 200 200 200 200 200 200 200	0.00 0.00 0.00 0.00 0.00 0.00 0.00	9.	o,
STA,SET= 31 CAT= 1N KSNA BUTYL GLYCIDYL ETHER EPOXY RESINS	e.	60	6 · cã •	240.0	0.	.
STA,SET 31 CAT IN Insulation and paper					9 .	o.

TABLE 12 (CONT.)	HAZARDOUS	WASTE	GENERATION FOR	EACH YEAR 19	1988-1994	PAGE 13
WASTE MATERIAL	BASELINE MO KILOGRAMS	MONTHLY POUNDS	BASELINE Y KILOGRAMS	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
STA.SET= 31 CAT= PA BOSTIK EPOXY PRIMER EPOXY RESIN AMINE CURING AGENT TITAMIUM DIOXIDE CHROMATE PIGNENTS INERT PIGNENTS SUSPENSION & FLOW CONTROL ADDI SOLVENTS	20 20 20 20 20 20 20 20 20 20 20 20 20 2	6.5. 6.4. 8 4. 8 4. 6. 0.2.	193.7 23.8 4.1 4.1 8.2 25.9 110.2	25.0 9.0 9.0 18.0 18.0	o .	e ·
STA.SET# 31 CAT# PA BOSTIK EPOXY TOPCOAT EPICHLORHYDRIN/BISPHENOL A AMINE CURING AGENT COLOR PIGMENT SUSPENSION & FLOW CONTROL ADDI SOLVENTS PHOTOCHEM REACTIVE SOLVENTS NOMPHOTOCHEM REACTIVE	2 6 N 4 4 9 8 6 8 6 6 9 6 8	4 W — — Q 4 8 W 8 4 0 4 8	251.7 61.2 9.9 8.53.8 1.201.	555.0 135.0 21.0 112.3 7.5 52.5	e .	.
STA.SET= 3! CAT= P RUSTOLEUM PRIMER SILICATES YELLOW IRON OXI. TITANIUM DIOXIDE CALCIUM BGROSILICATE BENTONITE LINSEED PHENOLIC ALKYL RESIN ALIPHATIC HYDROCARBOHS DRIERS AND ADDITIVES	4 N	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	48 4 ~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.02 0.02 0.02 0.02 0.00 0.00	ë.	•
STA, SET= 31 CAT= PA RUSTOLEUM TOPCOAT SILICETES TITANIUM DIOXIDE BENTONITE CLAY TINTING COLORS ALXYL RESIN ALIPHATIC HYDROCARBONS DRIERS & ADDOTIVES	4. 80 A	0.01 8.33 8.15 8.05 8.05	24 47.0 - 0.0 7.8 - 4.0 0	120, 0 39, 0 21, 0 21, 0 36, 0 1, 5	e.	.
STA.SET= 31 CAT= PA GACOFLEX TITANIUM DIOXIDE CLAY HYPALON HYDROCARBOH RESIM PERCHLOROETHYLENE 1,1,1-TRICHLOROETHANE	25 27 27 27 07 28 27 27 28	4 8 8 8 8 8 8 8 8 8 8 8 8 8	265.4 18.4 26.5 26.5 124.5 66.7	288.0 4 4 6.05 58.5 72.0 274.5 147.0	•	6 .

TABLE 12 (CONT.)	HAZARDO	HAZARDOUS WASTE GEN	ERATION FOR	GENERATION FOR EACH YEAR 1988-1994	18-1994	PAGE 14	
WASTE MATERIAL	BASELINE I KILOGRAMS	MONTHLY	BASELINE Y Kilograms	YEAPLY FOUNDS	CONTINGENCY KILOGRAMS	PER YEAR POUNDS	
EPOXIDIZED SOYBEAN DIL	2	, si	2.7	6.0			
SIA,SET= 3) CAT= PA PAINT-SPILL ABSORBANT	0.	9.	9.	0.			
SIA,SET= 31 CAT= PW ALODINE CONTANIHATED WASTEWATR CHROMIC ACID FERRICYANIDE SALT CCMPLEX FLUORIDE SALT	189.4 (18) 3,3(31) 1,9) 417.5 ⁽¹⁸⁾ 7.4 ⁽³¹⁾ 4.1	, 2272,5 ⁽¹⁸⁾ 40, ^{[31)} 22,5	5010, (18) 88,5 ⁽³¹⁾ 49,5 1.5	0.	.	
STA.SET= 31 CAT= 80 PERCHLOROETHYLENE	ø.	æ.	ē, 6	21.0	0.	0.	
SIA,SET= 31 CAT# SO TRICHLOROETHANE	á	4.	7.5	16.5	0.	e,	
STA,SET= 31 CAT= SO FREON 113	۲.	1.6	89 90	19.5	0 .	•	
STA.SET= 31 CAT# SO MSA-1 CONTAMINATED MECI	1881,8	4148.8	22582.0	49785.0	0.	.	
STA.SET= 31 CAT= 80 MSA-1 CONTAM PERCHLOROETHYLENE	2315.0	5103.8	27780.1	61245.0	0.	0.	
STA,SET= 31 CAT= SO PERCHLOROETHYLENE	347.0	765.0	4164.0	9180.0	0.	0.	
SIA.SET= 31 CAT= SO TRICHLORDETHANE	102.1	225.0	1224.7	2706.0	0.	0.	
STA,SET* 31 CAT* SO METHYLENE CHLORIDE	319,8	705.0	3837,4	8460.0	6	ō,	
STA,SET= 31 CAT= SO MTA-2 CONTAMINATED SOLVENTS	662.2(26)	1469.0 ⁽²⁶⁾	7946.9 ⁽²⁶⁾	17520.0(26)	o,	0.	
STA,SET= 31 CAT= SO BOSTIK CONTAMINATED SOLVENTS	331,1(26)	730.0(26)	3973,4(26)	87 6 0,0 ⁽²⁶⁾	e .	•	
STA,SET= 31 CAT= 80 RUSTOLEUM CONTAMINATED SOLVENT	331, {(26)	730.0(26)	3973, 4 ⁽²⁶⁾	8760.0(26)	o,	0.	
SUBTOTAL FOR SET 31	12032.6	26527.5	144391,3	318330.0	0.	0.	
STA,SET= 32 CAT= BA Lithium Storage batteries	30,6	67.5	367,4	0.018	e.	e,	

TABLE 12 (CONT.)	HAZARDO	HAZARDOUS WASTE GEI	HERATION FOR	GENERATION FOR EACH YEAR 1988-1994	188-1994	PAGE 15
WASTE MATERIAL	BASELINE KILOGRAMS	NONTHLY POUNDS	BASELINE Y KILOGRAMS	VEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
STA.SET= 32 CAT= BA SILVER-ZINC STORAGE BATTERIES	b 0 ' Ib	112.5	612.3	1350.0	0.	9.
SIA,SET= 32 CAT= BA POTASSIUM HYDROXIDE SOLUTION	10,9	24,0	130.6(18)	288,0(18)	0.	0.
STA,SET= 32 CAT= CB HYDRAZINE-CONTAMINATED WATER	136.1	300,0(18)	1632.9	3600,0(18)	0.	0.
STA, SET= 32 CAT= CS CONTAMINATED SEAWATER ⁽³²⁾	0,	0.	0.		.•	
STA, SET= 32 CAT= CS (32)	18143,6	40000,0	217723.2	480000,0	٥.	e,
STA.SET= 32 CAT= CW SRB FWD SKT CLEANING WASTES					0.	0
STA,SET= 32 CAT= EW WASTEWATER FROM EEW\$S	757,0 ⁽⁴⁾	1669.0 ⁽⁴⁾	9084.5	20028.0(4)		
STA.SET= 32 CAT= FO BILGE WASTES					0.	0.
STA.SET* 32 CAT# FO DIESEL FUEL & OIL SPILLS	0.	0,	0.	0.		
STA.SET= 32 CAT= FS WASTE FUEL & PRINOL 355 ⁽¹¹⁾ HYDRAZINE	6.	0.	6.	o. 0.		
STA.SET* 32 CAT* MS HYDRAZINE SCRUBBER EFFLUENT HYDRAZINE	226.8 ⁽¹⁸⁾	500,0(18)	2721.5 ⁽¹⁸⁾ 24.5	6000,0 ⁽¹⁸⁾ 54,0	0.	0.
STA,SET= 32 CAT= HY HYDRAZINE	51.3	113.1	615,7	1357.5	0.	0.
STA.SET= 32 CAT= IN INSULATION WASTES, SOLID MSA-1 INSULATION MTA-2 INSULATION KSHA INSULATION FR-855 INSULATION	907.2	2000,0 ⁽³⁴⁾	10886.2	24000.0 ⁽³⁴⁾	e	0 .
STA,SET= 32 CAT= IN INSULATION CONTAM FILTERS	5,7(21)	12.5(21)	68.0(21)	150,0(21)	0.	ē.
STA.SET= 32 CAT= IW INSIA.GIIOW-CONTONINATED WATER (33)	231614,4(18)	51062 5.0 ⁽¹⁸⁾	2779372.5	519625,0(18)2779372,5(18)6127589,8(18)	D	and the state of t

TABLE 12 (CONT.)	HAZARDO	HAZARDOUS WASTE GEI	NERATION FOR	GENERATION FOR EACH YEAR 1988-1994	1994	PAGE 16	
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUIDS	BASELINE KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS	PER YEAR Pounds	
MSA-1 INSULATION MTA-2 INSULATION KSNA INSULATION PR-855 INSULATION							
STA,SET= 32 CAT* PR PRESERVATIVE CHEMICALS PROTECTIVE LUBRICANTS					•	Ċ.	,
STA.SET= 32 CAT= PS SRB SOLID PROPELLANT AMONIUM PERCHLORATE ALUMINUM POWDER FERIC OXIDE POLYMER & EPOXY RESIN			0000	0,000	78.5 ⁽²⁴⁾	173,0 ⁽²⁴⁾	
STA.SET# 32 CAT# SB DETERGENT WASHWATER ⁽³⁵⁾	43544,6	96,000.0	522535,6	1152000.0	0.	0.	
STA.SET= 32 CAT= SB POTABLE RINSE WATER	150591.9	332000.0	1807102.5	3984000.0	o .	0.	
STA.SET* 32 CAT* SB DEIGNIZED RINSE WATER	70487.9	155400,0	845854,6	1864800.0	9.	Θ.	
STA.SET= 32 CATE SI SRE RINSE WATER	27215,4	60000.0	326584,8	720000,0	0.	e .	
STA.SET= 32 CAT= 80 SOLVENTS FREON TMC/TM SOLVENTS, UNSPECIFIED	13,3(26)	29.3 ⁽²⁶⁾	159.2 ⁽²⁶⁾	351,0 ⁽²⁶⁾	0 .	e.	
SUBTOTAL FOR SET 32	543787,8	1198853.0	6525452.0	14386236.0	0.	0.	
STA.SET= 33 CAT= CA AIR FILTERS	5.7(21)	12.5(21)	68. 0 ⁽²¹⁾	150.0 ⁽²¹⁾	0.	0.	
STA.SET= 33 CAT= EW MASTEWATER FROM EEWES	235.4	521.3	2837.2	6255.0			
STA.SET= 33 CAT= HF Hydraulic fluids					o .	0,	
SUBTOTAL FUR SET 33	242.1	533.8	2905.2	6405.0	6.	Θ,	

TABLE 12 (CONT.)	HAZARDOUS WASTE		GENERATION FOR E	EACH YEAR 1988-1994	38-1994	PAGE 17
WASTE MATERIAL	BASELINE M KILOGRAMS	MONTHLY POUNDS	BASELINE YE KILOGRAMS	YEARLY POUNDS	CONTINGENCY PER KILOGRAMS F	PER YEAR Pounds
STA, SET= 99 CAT= AW	•	7 7	80 00	195.0	0.	0.
GX-6300 ARLATOR ADMESIVE	۲.	-	8.8	6		
MENTA SITE 664	2.7	6.0	32,7	72.0		
SILICA POWDER	á	ທີ່ຄ	. · ·	9		
CARBOH POWDER	vî r	ů, 4	4 W) to		
CURING AGENT L 663		· -	~	10.		
CURING AGEN! L 664 HEPTANE XYLENE	6,0	ο 10.4	35.4	78.0 4.5		
STA.SET= 99 CATE AU	4	16.3	88,5	195.0	e.	0.
ISOCHEM POLYESIEK KESIN HUNEST	<u>:</u>)				
MEK PEROXIDE CATALYST						
STA.SET= 99 CAT= CA FILTER					0,	0.
STA.SET= 99 CAT= CN SOLVENT CONTAMINATED CONTAINER SOLVENTS ⁽³⁶⁾	2.8(28)	6,3(28)	34,0(28)	75,0 ⁽²⁸⁾	o .	•
STA.SET* 99 CAT* CN PRINER CONTAMINATED CONTAINERS	,4(28)	,9 ⁽²⁸⁾	4.8(28)	10,5(28)	0.	0,
STA, SET= 99 CAT= CN ADHESIVE CONTAMINATED CONTAIMS	,4(28)	, 9(28)	4.8(28)	10.5(28)	•	0.
STA, SET= 99 CAT= CN SOLVENT CONTAINERS					0.	Θ.
STA.SET= 99 CAT= CN POUR FOAM CONTAINERS	28.3(28)	62.5	340,2 ⁽²⁸⁾	; 750,0 ⁽²⁸⁾	0.	e.
STA,SET= 99 CAT= CN ABLATOR COHTANINATED CONTAINER	,4 ⁽²⁸⁾	(38)	4.8(28)	10.5(28)	9.	6.
STA, SET* 99 CAT* CR SOLVENT CONTAMINATED RAGS	5,7	12.5	68,0(8)	150,0(9)	0.	0.
STA,SET# 99 CAT# CR ADHESIVE CONTAMINATED RAGS	5.5(9)	12,5(9)	68,0(9)	150 0(9)	e,	Θ,
STA.SET= 99 CAT# CR EPOXY PRIMER-CONTAMINATED RAGS	2,8(9)	6.3(9)	34.0(9)	75.8(9)	e .	e.
STA SET= 99 CATE IN BX-250 FOAM (SOFI)	147.4	325.0	1769.0	3900.0	0.	0 ,

TABLE 12 (CONT,)	HAZARDO	HAZARDOUS WASTE GEN	GENERATION FOR EACH YEAR 1988-1994	EACH YEAR 19	188-1994	PAGE 18
WASTE MATERIAL	BASELINE KILOGRAMS	MONTHLY POUNDS	BASELINE Y Kilograms	YEARLY POUNDS	CONTINGENCY KILOGRAMS	PER YEAR Pounds
DIPHENYL METHANE DIISOCYANATE FREDH 1; AMINES POLYOLS SUPER MEK PEROXIDE POLYESTER RESIN DIMETHYL PHTHALATE	36.9 23.8 13.0	81.3 52.5 28.8	442,3 285.8 156.5	973.0 630.0 345.0		
STA.SET= 99 CAT= IN POUR FGAM (MIXED) ⁽²⁹⁾ POLYURETHANE	155,9 ⁽³⁷⁾	343,8	1871.1 ⁽³⁷⁾	4125,0 ⁽³⁷⁾	0.	e .
STA,SET* 99 CAT* IN POUR FGAM PART A CUMMIXED (30) DIPHENYL METHANE DIISOCYANATE FREON 1: POLYGLS, AMINES	6.44. 6.44.		95,3 47,6 30,6 17,0	210.0 105.0 67.5 37.5	6 .	ů.
STA,SET= 99 CAT= IN POUR FOAM PART 3 (UNMIXED) FKEON 11 AMINE CATALYST POLYETHER POLYGL BLEND	7 9- 8 5 5 5	17,5 3,5 4,51	95.3 19.1 2.0 74.2	210.0 42.0 4.5	o .	6.
SIA.SET= 99 CAT= IN POUR FOAM CONTANINATED PAPER	1.9 ⁽²⁸⁾	4.1(28)	22.5(28)	49.5	0.	0.
STA.SET= 99 CAT= IN SUPER LIGHT ABLATOR (I) RESIN L664, P1 A SILICA FIBERS CORK PHEHOLIC MICROSPHERES SILICA MICROSPHERES CURING AGENT	n v w w w ir 0 00 w	2, 2,	004 004 004 0004 0000	0.00 0.00 0.00 0.00 0.00 0.00 0.00	0 .	e.
STA.SET= 99 CAT= IN SUPER LIGHT ARLATOR (II) RESIN STN L664, PT A CARBON POWDER SILICA FIBERS CORK SILICA MICROSPHERES PHENOLIC MICROSPHERES CURING ACENT STM L664, PT B	7	ດ ວັນ ທີ	68.0 20.0 4.0 6.0	150.0 45.0	e.	e.
Z (S)	5.2	12,5	0'89	150.0	e.	

STATE STATE SASELINE FOUNDS STATE	TABLE 12 (CONT.)	HAZARDOL	HAZARDOUS WASTE GEN	ERATION FOR	GEHERATION FOR EACH YEAR 1988-1994	188-1994	PAGE 19
PA			10НТНСҮ РОИНОS	BASELINE Y KILOGRAMS	FEARLY POUNDS	CONTINGENC? KILOGRAMS	PER YEAR Pounds
SALTS	CAT= PA ISSBUTYL ONE PIGMENTS NE	, † (27)	(22)1,		_	·	e.
S S S S S S S S S S	STA.8ET= 99 CAT= PA D.C. 1200 VM AND P NAPTHA DRUÄMUNETALLIC SALTS	, (27)	,1(27)	(12)2.			e,
S		.2(27)	.4(27)				٥.
Solution 15.3 33.6 183.0 403.5 .0	STA.SET= 99 CAT= 80 1,8,1-TRICHLORUETHANE	.2 ⁽²⁷⁾	, 4 (27)			•	°,
SG	STA.SET= 99 CAT= \$0 MEK & CELLOSOLVE	15.3	33.6	183.0	403.5	0.	0.
THE STATE TO THE STATE TO THE STATE TO THE STATE TO THE STATE STATE TO THE STATE STATE TO THE STATE ST		93.8	206.9	1126.0	2482.5	0,	•
T= 80 T= 8R T= 5R T= 5R T= 5R T= 5R T= 5H T= 5U T=	STA, SET # 99 CAT # SO CELLOSOLVE ACETATE	133,8	295.0	1605.7	3546.0	0,	é
TE SR .7 1.5 8.2 18.0 .0 .5 1.0 5.4 12.0 .2 2.7 6.0 In SW AATED WATER 101.3 223.3 1215.2 2679.0 .0 F 99 855.2 1985.4 10262.2 22624.5 .0	STA,SET= 99 CAT= 80 METHYL ETHYL KETONE	110,5	243,6	1326.1	2923.5	٥.	e.
WATER 101.3 223.3 1215.2 2679.0 .0	STA,SET= 99 CAT= SR SOLVENT REDUCER METHYL ETHYL KETONE CYCLOHEXANONE	r. iv d	ri ~	•	0 0 0	9.	e.
99 855.2 1885.4 10262.2 22624.5 .0		101.3	223.3	1215.2	2679.0	•	0,
		855.2	1885.4	10262.2	22624.5	0.	0.

139353.5

2865948.5 15599588.0 34391384.0

LE 12 (CONT.)	HAZARDOUS WASTE GENERATION FOR EACH YEAR 1988-1994	NERATION FOR	EACH YEAR 1	988-1994		PAGE 20	
EGORY	BASELIN	BASELINE MONTHLY	BASELINE YEARLY	YEARLY	CONTINGENCY PER YEAR	PER YEAR	
	KILOGRAMS	POUNDS	KILOGRANS	POUNDS	KILOGRAMS	POUNDS	
SO	10326.9	22766.9	123921.9	273202.5	0.	0.	1
ΕV	16891.4	37239.3	202696.2	446871.0	0.	٥.	
FO	9.24	105.0	571.5	1260.0	٥.	٥.	
FS	5071.7	11181.3	60850.4	134175.0	0.	٥.	
80	1540.7	3396.8	13488.8	40761,0	٥.	٥.	
##	503,2	1109.4	6038.4	13312,5	٥.	٥.	
30	36.0	4.62	432.0	952,5	٥.	0.	
C.	3500,9	7718.1	42010.4	92617.5	0,	٥.	
CA	48.2	106.3	578.3	.275.0	٥.	•	
HS	4848,9	10690.0	59186.5	128280.0	0,	0.	
H.	533.4	1176.0	6401.1	14112.0	44930.6	99055.5	
H	1474.5	3250,8	17694.1	39009.0	٥.	0.	
I	584,6	1283.8	7014.8	15465.0	6464,6	14252.0	
IX	45.4	100,0	544.3	1200.0	47.2	104.0	
NO	546.0	1203.6	6551.4	14443.5	65050,2	143412.0	
PA	102.6	226.3	1231.5	2715,0	0.	0,	
28	1910.5	4211,9	22925.6	50542.5	•	٥.	
a n	5.7	12.5	68.0	150.0	0.	0.	
PS	0	0.	0.	٠.	504379.8	1111973.0	
	7 09869.3	1565000.0	8519420.0	18780000.0	0.	0.	
AL	0.	0.	0,	0.	Θ.	9.	
CA	62.4	137.5	748.4	1650,0	ō.	G.	
Pu	189.4	417.5	2272.5	5010.0	ο.	.	
BA	92.5	204.0	1110.4	2448.0	0.	0.	
83	136.1	300.0	1632.9	3600.0	æ.	٠.	
cs	13143.6	40000.0	217723.2	480000.0	0.	0.	
n c	0.	a.	0.	0,	0.	0.	
31	231614.4	510625.0	2779372.5	6127500.0	ο,	0.	
PR	0.	G.	0,	O,	e	ć	
88	264624.4	583400.0	3175492.5	7000800.0	0,	0.	
SI	27215.4	60000.0	326584,8	720000.0	۰.	G.	
SR	۲.	. T	8.2	18.0	œ.	0.	

* For footnotes, see Table 8.

71	TABLE 13. HAZARDO	US WASTE GE	NERATION FOR	HAZARDOUS WASTE GENERATION FOR TOTAL PROJECT	* !-	PAGE 1
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	LY (AVERAGE) POUNDS	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY FOR PROJEC KILOGRAMS POUNDS	FOR PROJEC POUNDS
STA,SET= 0 ⁽²⁾ CAT# SO CONTAMINATED FREDN	2475.8 ⁽³⁾	5458,3 ⁽³⁾	297101.4 ⁽³⁾	655000,0 ⁽³⁾	0.	0.
SUBTOTAL FOR SET 0	2475.8	5458,3	297101.4	655000.0	e .	e.
STA.SET= 17 CAT= EW WASTEWATER FROM EEW&S	2838,9 ⁽⁴⁾	6258.6 ⁽⁴⁾	340668.8 ⁽⁴⁾	751050.0 ⁽⁴⁾		
STA,SET= 17 CAT= FO DIESEL FUEL					0	0.
STA,SET= 17 CAT= FO DIESEL FUEL & OIL					۰.	•
STA,SET= 17 CAT= FS CONTAMINATED DILUTION WATER MMH	0.	0.	6. 0.	0.		
STA.SET= 17 CAT= 08 CCNTAMINATED DILUTION WATER N204	0. 0.	0. 6.	0.	0.		
SUBTOTAL FOR SET 17	2839.9	6258.8	340668.8	751050.0	e .	o.
STA,SET= 18 CAT= HF HYDRAULIC FLUIDS	4 ,5(5)	9,9(5)	538,6 ⁽⁵⁾	1187.5(5)	0 .	0.
SUBTOTAL FOR SET 18	Ą. Rū	6.6	538,6	1187.5	o .	o.
STA.SET# 19 CAT# AW TPS ADHESIVE, RTV 566/577 PHENYL METHYL POLYSILOXANE TIN OXIDE IRON OXIDE SILICON HARDENER	-	2,6	7.14	312.5 5	e .	e.

TABLE 13 (CONT.)	HAZARDOUS	WASTE GENE	HAZARDOUS WASTE GENERATION FOR TOTAL PROJECT	IOTAL PROJEC	L	PAGE 2
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) POUNDS	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY FOR PROJEC KILOGRAMS POUNDS	FOR PROJEC POUNDS
EPOXY ZINC CHROMATE ASBESTOS MERCAPTAN DIMETHYLAMINE						
SIA.SET= 19 CAT= AW EA 934 EPOXY EPOXY RESIN ASBESTOS					o.	e.
SIA,3ET= 19 CAT= AW EA 9309 EPOXY EPOXY RESIN GLASS FIBERS ACRYLONITRILE/BUTADIEN/STYRENE ASBESTOS POLYGLYCOL DIAMINE SILANE					.	o .
STA,SET= 19 CAT= CN SPRAYCANS OF TPS, SEALER FLUORINATED SOLVENT FREON 113					.	0.
STA, SET= 19 CAT= CN KOROPON PRIMER CONTAM CANS BUTYL ACETATE METHYL ETHYL KETONE TOLUENE TALC - Mg SILICATES EPOXY RESIN	7.1 ⁽⁶⁾	15,6 ⁽⁶⁾	850,5 ⁽⁶⁾	1875,0	e.	.
STA.SET= 19 CAT= CN LACQUER SPRAY CANS PIGMENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE HYDROCARBON PROPELLANT PETROLEUM DISTILLATES	2.8(7)	6.3(7)	340,2 ^[7]	750.0 ⁽⁷⁾	·	0.
STA.SET= 19 CAT= CN ISP CONTAM CUPS & WOOD STICKS INSTANT SET POLYMER	, 7 ⁽⁸⁾	1,6(8)	85,0	187,5 ⁽⁸⁾	0.	e.
STA.SET= 19 CAT= CN MARSHALL STENCIL INK SPRAYCANS MYLENE (CONT.)	.3(7)	(2)9'	34.0(7)	75.0(7)	•	÷

TABLE 13 (CONT.)	HAZARDOUS WASTE		GENERATION FOR TOTAL PROJECT	OTAL PROJEC	L	PAGE 3
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) Pounds	BASELINE FO KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	CONTINGENCY FOR PROJECT KILOGRAMS POUNDS
NAPTHA OTHER MATERIALS						
STA,SET= 19 CAT= CN LACQUER SPRAYCANS PIGMENT SOLIDS VEHICLE SOLIDS TOLUENE XYLENE	2.3(7)	5.0(7)	272.2 ⁽⁷⁾	600,0 ⁽⁷⁾	e.	e .
HYDROCARBON PROPELLANT PETROLEUM DISTILLATES						
STA.SET# 19 CAT# CN ENAMEL SPRAYCANS	4,3(7)	9.4(7)	510,3(7)	1125.0 ⁽⁷⁾	٥.	0.
STA, SET = 19 CAT = CN ZINC CHROMATE PRIMER CANS	4,3(1)	9.4	510.3 ⁽⁷⁾	1125.0(7)	e.	0,
STA.SET= 19 CAT= CN CONTANINATED TARE CUPS EA 911 EPUXY EA 934 EPOXY EA 9309 EPOXY					e .	0 .
STA,SET= 19 CAT= CR RAGS WITH SOLVENTS, GREASES	4.7.8)	10.4(9)	567,0 ⁽⁹⁾	1250.0(9)	o.	0
STA.SET= 19 CAT= CR SOLVENT-CONTAN CHEESECLOTH ISOPRGPYL ALCOHOL METHYL ETHYL KETONE 1,1,1-TRICHLOROETHANE					6.	e.
STA,SET= 19 CAT= CR MEK & IPA CONTAM CHEESECLOTH METHYL ETHYL KETONE ISOPROPYL ALCOHOL					•	•
STA.SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					ē.	e.
STA.SET= 19 CAT= CR TCE CONTAMINATED CHEESECLOTH 1,1,1-TRICHLOROETHANE					o,	e.
STA.SET= 19 CAT= CR MEK CONTAMINATED CHEESECLOTH METHYL ETHYL KETONE					e.	e.

TABLE 13 (CONT.)	HAZARDOUS	WASTE GEN	ERATION FOR	HAZARDOUS WASTE GENERATION FOR TOTAL PROJECT	H	PAGE 4	
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) Pounds	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	CONTINGENCY FOR PROJECT KILOGRAMS POUNDS	
STA,SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCOHOL					0.	o.	
STA,SET= 19 CAT= CR SOLID FILM LUBRIC CONT CHSCLTH					0.	0.	
STA.SET= 19 CAT= CR IPA CONTAMINATED CHEESECLOTH ISOPROPYL ALCONOL					0,	.	
STA, SET= 19 CAT= CR DICHLORONETHANE CONT CHSECLTH					۰.	0.	
STA.SET= 19 CAT= CR CONTAM CLOTHES, CLOTH & DEBRIS KOROPON BASE PRIMER KOROPON ACTIVATOR BERYLLIUM DUST	4.7(10)	10.4	567.0	1250.9	e .	0,	
STA, SET= 19 CAT= EW WASTEWATER FROM EEWAS	3154.3	6954.2	378520.8	834500,0			
STA,SET* 19 CAT* FS WASTEWATER FROM PAYLOAD/ORB MMH	567.0 56.7	1250,0 125,0	68038,5 6803.8	150000.0 15000.0	e.	9	
STA,SET# 19 CAT# FS (11) WASTE FUEL AND PRIMOL 355 HYDRAZINE E MMH	37.8	83.3 4.2	4535.9 226.8	10000.0			
STA.SET= 19 CAT= MF VACUUM PUMP OIL TEXACO REGAL OIL 068	٨.	10.4	567.0	1250.0	•	9.	
SIA,SET= 19 CAT* HS FUEL SCRUBBER HYDRAZINE & MMH	2645.9 52.9	5833,3 116,7	317513,0 6350,3	700000.0	o :	e .	
STA,SET= 19 CAT= MY HYDRAZINE	0,	0,	0.	0,	(12) 24947,4	(12) 55000,0	
STA.SET= 19 CAT= HY HYDRAZINE	6.02	136,3	8504.8	18750.0	340.2	(15)	
STA,SET* 19 CAT* IN POLYURETHANE FOAM	۴.4	10,4	567.0	1250.0	e,	9.	

TABLE 13 (CONT.)	HAZARDOUS	WASTE	GENERATION FOR TOTAL PROJECT	TOTAL PROJEC	-	PAGE 5
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) Pounds	BASELINE FI KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	FOR PROJECT POUNDS
SIA.SET= 19 CAT= IN ALUMACAST A/B MIXTURE POLYOXPROPLENE PENTAERYTHRITOL AROMATIC WHITE DIL INERT ALUMINIZED PARTICLES DIPHENYLMETHANE DIISOCYAMATE POLYMERS OF DPM DIISOCYAMATE	-	w.	17.0	۵. ۲۳ در	•	e.
STA, SET= 19 CAT= IN INSTANT SET POLYNER SCRAPS DIPHENYL HETHANE DIISOCYANATE POLYCOXALKYLENE >POLYETHER AROMATIC HYDROCARBONS	1.9	4,2	226.8	506.0	.	e.
STA.SET= 19 CAT= IN SILANE/RCETIC ACID RESIDUE NETHYL TRINETHOXYSILANE ACETIC ACID	ĸŹ	o . t	56.7	125.0	e.	.
SIA.SET= 19 CAT= MH MONOMETHYL HYDRAZINE	36,9	81.3	4422.5	9750.0	ø.	e.
STA.SET= 19 CAT= NH MONONETHYL HYDRAZINE	4.6	20.8	1134.0	2500.0	9.	5
STA.SET= 19 CAT= MH ₍₁₄₎ Honomethyl Hydrazine	19.6	43.1	(15)	5175.0	1072.7	2365.0
STA.SET= 19 CAT= NH MONOMETHYL HYDRAZIME ⁽¹⁴⁾	19.6	43, (15)	2347.3	5175.0	1483.2	3270.0
STA.SET= 19 CAT= MH NONOMETHYL HYDRAZIME ⁽¹⁴⁾	13.9	30.6	(15)	3675.0	1828.0	4030,0
STA.SET= 19 CAT= MH. (14) MONOMETHYL HYDRAZINE	(15)	(15) 95.6	5204,9	(11475.0	9.	6
STA.SET= 19 CAT= NH WASTEWATER WITH AMMONIA	37,8	(15) 83,3	4835.9	10000.0	0,	o.
STA.SET= 19 CAT= ND NIRRGEN TETROXIDE	7.0	12.5	4. 089	1506.0	0.	9.
STA,SET= 19 CAT= NO NITROGEN TETROXIDE	10.2	22.5	1224.7	2700.0	0.	•
STA,SET= 19 CAT= NO HITROGEN TETROXIDE	35,7	(15)	(15)	9450,0	1630,7	3595.0
					Management of the American Statement of	

TABLE 13 (CONT.)	HAZARDOUS	WASTE GENI	RATION FOR	HAZARDOUS WASTE GENERATION FOR TOTAL PROJECT	-	PAGE 6
WASTE MATERJAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) Pounds	BASELINE F KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	CONTINGENCY FOR PROJECT KILOGRAMS POUNDS
STA.SET= 19 CAT= NO NITROGEN TETROXIDE	35.7	78.8	4286.4	9450, (15)	2329.2	5135.0
STA.SET= 19 CAT= NO HITROGEN TETROXIDE	(15) 1 24.9	54.8	2982.4	(15)	(12)	6310.0
STA.SET= 19 CAT= NO NITROGEN TETROXIDE	(15) 82,8	(15)	9933,6	21900.0	0.	0.
STA,SET= 19 CAT= NO HITROGEN TETROXIDE	0.	0.	•	e.	40823,1	90000,0
STA.SET= 19 CAT= OS DECONTAMINATE FROM PAYLOAD/ORB N204	302,4	6.66.7	36287.2 340.2	80000.0 750.0	o .	0.
STA,SET= 15 CAT= OS (11) WASTE OXIDIZER AND PRINOL 355 N204	39.7 2.8	85.4 6.3	4649.3	10250.0	0.	•
STA.SET= 19 CAT= PA KOROPOH PRMER CONT PNT BRUSHES BUTYL ACETATE TALC - Mg SILICATES EPOXY RESIN	18.9	(16)	2267,9	5000.0	6.	ė
STA,SET= 19 CAT= PA LACQUER #626486	(11)	1.4	73.57	162,5	0.	٥.
STA,SET= 19 CAT= PA CONTAMINATED BRUSHES ORGANIC ZINC PRIMER ZINC CHROMATE PRIMER	(16) 1 , 9	(16)	226,8	500.0	0.	.
STA.SET= 19 CAT= PA ORGANIC ZINC PRIMER ZINC DUST BARYTES MOLYBDATE ORANGE SILICA HIGH MOLECULAR WEIGHT EPOXY CELLOSOLVE ACETATE TOLUENE METHYL ETHYL KETONE	(18) (18)	13,0	708.7	1562.5	° .	•
STA.SET= 19 CAT= PA CONTAMINATED PAINT BRUSHES EA 911 EPOXY (CONT.)	1.9	4,2	226,8	500,0 500,0	0.	Ö

CABLE 13 (CONT.)	HAZARDOUS	. WASTE GEN	ERATION FOR	HAZARDOUS WASTE GENERATION FOR TOTAL PROJECT		PAGE 7
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) Pounds	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	CONTINGENCY FOR PROJECT KILOGRAMS POUNDS
EA 934 EPOXY EA 9309 EPOXY						
STA,SET= 19 CAT= SO DOPE & LACQUER THINNER ALIPHATIC NAPTHA ESTER OR KETONE ISO- OR n-BUTYL ACETATE ISO- OR n-BUTYL ACETATE	ù 4.9.~	ب و ښ ه ټ <i>ن ډ</i> ز	102,1 17,0 45,4 28,3 11,3	225.0 37.5 100.0 62.5 25.0	0.	e.
STA,SET= 19 CAT= SW WASHWATER WITH MEK METHYL ETHYL KETONE	44.2 6.4	97.4	5301.3 765.4	11687.5 1687.5	e.	o .
SUBTOTAL FOR SET 19	7311.0	16118.1	877322,4	1934175.0	77316.7	170455.0
STA,SET= 21 T= EW WASTEWATER FR EEW&S	(4) 28 38.9	(₄) 6258,8	340668,8	751050,0		
STA, 3ET = 21 CAT = FS WASTEWATER WITH MMH NNH	112.5	247.9	13494,3	29750,0 2750.0	o .	0.
STA.SET= 21 CAT= MS FUEL SCRUBBER MMH	378.0 6,9	833,3 15,2	45359.0 827.8	100000.0	0.	0,
STA.SET= 21 CAT= IN TILE REPAIR FOAM POLYURETHANE	5.4	10.4	567.0 567.0	1250.0	6 .	ė,
STA.SET* 21 CAT* MH MONOMETHYL HYDRAZINE	o .	0.	€.	•.		
STA.SET= 21 CAT* NO HITROGEN TETROXIDE	o.	0,	0.	0,	(19) 2041154,8	4500000,0
STA.SET= 21 CAT= NO HITROGEN TETROXIDE	15.6	34.4	1871.1	4125.0	.	o.
STA.SET= 21 CAT= NO NITROGEN TETROXIDE	53.4	117.7	6407.0	14125.0	e.	0.
STA,SET= 21 CAT= NO NITROGEN TETROXIDE	0.	۰.	0.	0.	48987.7	(20) 108000.0
STA.SET= 21 CAT= 0S WASTEWATER WITH OXIDIZER (CONT.)	75.8	167.1	9094.5	20050.0	0.	0,

TABLE 13 (CONT.)	HAZARDOUS WASTE	UASTE GEN	ERATION FOR	GEHERATION FOR TOTAL PROJECT	-	PAGE 8
WASTE MATERIAL	BASELINE MONTHLY Kilograms	(AVERAGE) Pounds	BASELINE KILOGPAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	CONTINGENCY FOR PROJECT KILOGRAMS POUNDS
N204	9,	1.3	68.0	150.0		
STA,SET= 21 CAT= SU WASTEWATER WITH MEK METHYL ETHYL KETONE	44.1	97.3	5295.7 759.8	11675.0 1675.0	<u>.</u>	0.
STA.SET= 21 CAT= 4P WASTE SEALS, FILTERS, ETC.	4.7	10,4	567,0	1250,0	0,	0,
SUBTOTAL FOR SET 21	3527.7	5777.3	423324.2	933275,0	2090142.5	4608000,0
STA, SET# 23 CAT# EW	3154,3	6954,2	378520.8	834500.0		
STA,9ET* 23 CAT* FS HYDRAZIHE-CONTAM, WASTEWATER HYDRAZINE	591.6	1304.2	70986,8 3515,3	156500,0 7750,0		
STA,SET= 23 CAT= FS HYDRAZINE-CONTAM, CLNUP WATER HYDRAZINE	197.0	434.4	23643.4 260.8	52125,0		
STA.SET# 23 CAT# F8 WASTEWATER FROM PPR HYDRAZINE	2365,8	5215.6	283890.6	625875.0		
STA,SET= 23 CAT= FS PRIMOL 355 ⁽¹¹⁾ HYDRAZINE MMH	354,8	782.3	42580.8	93875,0		
STA.SET= 23 CAT= HF HYDRAULIC FLUIDS TETRAORTHOCRESOL PHOSPHATE	410.1	904,2	49214.5 49214.5	109500.0 108500.0	o,	e .
STA,SET# 23 CAT# MS HYDRAZINE & MMH SCRUBBER HYDRAZINE MMH	(18) 789,6 17.5 13.7	(18) 1738.5 38.5 30.2	(18) 94630.2 2097.9 1644.3	(18) 208625.0 4625.0 3625.0	e,	e.
STA.SET= 23 CAT= HY HYDRAZINE	216.9	478.1	26024.7	57375.0	•	ē.
STA.SET= 23 CAT= HY LBM PROPELLANT PARAHYDRAZINE (CONT.)	0. 0.	6,	0.	û.	(22) 396891,3	(22) 875000,0

TABLE 13 (CONT.)	HAZARDOUS WASTE	WASTE GENE	GENERATION FOR TOTAL PROJECT	TOTAL PROJEC	+ -	PAGE 9
WASTE MATERIAL	BASELINE MONTHLY Kilograms	(AVERAGE) Pounds	BASELINE FI KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	FOR PROJECT POUNDS
UNSYM DIMETHYLHYDRAZINE	0.	0.	6.	0,		
STA.SET= 23 CAT= HY HYDRAZINE	6	٥.	0.	0.	(22) 27126.9	59805,0
STA,SET= 23 CAT= IN K5NA INSULATION BUTYL GLYCIDYL ETHER EPOXY RESINS, UNCURED	10.9	24.0	1304.1	2875.0	° .	o .
STA,SET= 23 CAT= MH MONOMETHYL HYDRAZINE	344.4	759.4	41333.4	91125.0	0.	0.
STA,SET= 23 CAT= MH MONOMETHYL HYDRAZINE	0.	0.	o.	0.	(22) 60251 .7	(22) 132855.0
STA.SET= 23 CAT= NH AMMONIA	0.	۰.	0.	o .	471.7	1040.0
STA.SET= 23 CAT= NO NITROGEN TETROXIDE	191.0	421.1	22923.3	50537.5	o .	0.
STA.SET= 23 CAT= NO LBM OXIDIZER NITROGEM TETROXIDE	0. 0.	0.	0.	0·	396891.3	875006,
STA, SET= 23 CAT= NO HITROGEN TETROXIDE	0.	0.	0.	0.	140649.2	310080,0
STA.SET= 23 CAT= OS N204 CONTAM. CLEANUP WATER NITROGEN TETROXIDE	118.1	260.4	14174.7	31250.0 312.5	0 ,	ο,
STA,SET= 23 CAT= 08 N204 CONTAM. WASTEWATER NITROGEN TETROXIDE	394.1 29.3	868.8 64.6	47286,8 3515,3	104256.0 7750.0	0.	0.
STA,SET= 23 CAT= 08 PRIMOL 355 ⁽¹¹⁾ N204	354.8	782,3	8.080.4	93875.0	e .	0.
STA,SET= 23 CAT= PS SRB PROPELLANT SPILL ⁽²³⁾ AMMONIUM PERCHLORATE ALUMINUM POWDER PBAN BINDER HTPB BINDER IRON OXIDE	3000 6	0.000	00000	0.000	5043013.0	11;18000.0
\$18,9£1= 23 CAT= QV		9		9-BEBBB-8		And the second s

である。 日本のでは、100mmのでは

TABLE 13 (CONT.)	HAZARDOUS	UASTE	GENERATION FOR	TOTAL PROJECT	-	PAGE 10
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) POUNDS	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY FOR KILOGRAMS	FOR PROJECT FOUNDS
ALUMINUM OXIDE AMMOHIA HYDROCHLORIC ACID ORGANIC CARBON	37. 52 3. 52 53 3. 53 53	7.7 832.3 832.3	419.6 28.3 45302,3 425.2	925.0 62.5 99875.0 937.5		
STA,SET= 23 CAT= 80 SOLVENT MIXTURE FREON TMC/PF/TF SYM, TETRACHLOROETHANE	3(3,6	(25) 669,4	36434.6	(25) 80325,0	o .	.
STA.SET = 23 CAT = SO CONTAMINATED SOLVENTS	275,9	(26)	33112,1	(26)	0.	0.
STA,SET= 23 CAT= SW SOLVENT WASTEWATER UNSPEC.	(18X25) 433.7	(18X2) 9 5 6.3	(18X25) (18X25) 3 52049,5 11	ri, T	5)	0.
STA.SET= 23 CAT= SW CONTAMINATED WASTEWATER SOLVENTS CHLORINATED RUBBER ZINC PRIMER	985,6	(18)	(18)	260750.0	°,	°.
SUBTOTAL FOR SET 23	603048,3 1329	1329500.8 72	72365792.0 159540096.0		1022292.0 23	2253780.0
STA,SET= 31 CAT= AL SURFACTANT NaOH SODIUM TRIPOLYPHOSPHATE					0,	e .
STA.SET= 31 CAT= AW EA 934 EPOXY ADHESIVE EPOXY RESIN ASBESTOS FILLERS POLYAMIDE DIETHYLENETRIAMINE	16.5 16.5 7.4 1.9 3.3 3.8 3.8	36.5 15.6 4.2 7.3 7.3 1.0	(26X27) 1984.5 850.5 226.8 396.9 453.6 56.7	(26)(27) 4375.0 1875.0 500.0 875.0 1000.0	0.	.
STA,SET# 31 CAT# CA CONTAMINATED AIR FILTERS	23.6	52.1	2834.9	6250.0	•	0.
STA,SET= 31 CAT= CA CHARCOAL FILTER WASTES					0.	0.
STA.SET= 31 CAT= CA CONTAMINATED AIR FILTERS	23.6	52.1	2834,9	6250.0	e .	•
STA.SET= 31 CAT= CN BOSTIK PRINER PAINT CANS	7.1	15,6	(6) 850,5	(6) 1875.0	0.	0.

Second Processes Second Proc	TABLE 13 (CONT.)	HAZARDOUS	WASTE	IERATION FOR	GENERATION FOR TOTAL PROJECT	-	PAGE 11
HT CANS 16	WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	1	BASELINE KILOGRAMS			FOR PROJEC POUNDS
HT CAMS	_	21,3	(6) 46,9	•	(6) 5625, (ο.	9.
HATERIALS 2362.4 1041.7 5699.8 12500.0 28	TA.SET= 3! CAT= CN USTOLEUM PRIMER PAINT CANS	(9)	2,1	113,4	250,0	0.	ē.
RAGES 472.5 ⁽²⁸⁾ 1041.7 ⁽²⁸⁾ 56698.8 ⁽²⁸⁾ 125000.0 ⁽²⁸⁾ .0 3.5 7.8 425.2 937.5 .0 RAGES 4.7 ⁽⁹⁾ 10.4 ⁽⁹⁾ 56698.8 ⁽²⁸⁾ 625000.0 ⁽²⁸⁾ .0 RAGS 2.4 ⁽⁹⁾ 10.4 ⁽⁹⁾ 567.0 ⁽⁹⁾ 1250.0 ⁽⁹⁾ .0 7.1 ⁽⁹⁾ 15.6 ⁽⁹⁾ 15.6 ⁽⁹⁾ 1250.0 ⁽⁹⁾ .0 7.1 ⁽⁹⁾ 15.6 ⁽⁹⁾ 151408.3 ⁽⁴⁾ 333800.0 ⁽⁴⁾ 9.0 .0 .0 .0 .0 .0 .0 114.0 251.4 13681.4 30162.5 .0 94.5 ⁽²⁵⁾ 208.3 ⁽²⁵⁾ 11339.8 ⁽²⁵⁾ 25000.0 ⁽²⁵⁾ .0	TA.SET= 31 CAT= CN USTOLEUM TOPCOAT PAINT CANS	(9) 6.	2.1	113.4	250.0	0.	ė.
3.5 7.8 425.2 937.50 HATERIALS 2362.4 5208.3 283493.8 625000.6280 RAGS 2.4 5208.3 283493.8 625000.6280 RAGS 2.4 55.0 10.4 5567.0 1250.00 4.7 10.4 567.0 1250.00 7.1 15.6 850.5 11875.00 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .14.0 251.4 13681.4 30162.50 114.0 251.4 13881.4 30162.50 94.5 208.3 5 11339.8 25000.00	IA.SET≈ 31 CAT≈ CN SA-1 EMPTY CONTAINERS	(28)	(28) 1041.7	(28) 56698.8	(28)	0 .	0.
HATERIALS 2362.4 3208.3 283493.8 625000.0 28	IA.SET= 31 CAT= CN SHA CONTAINERS	Ιΰ	8.7	425.2	937.5	0.	0.
RAGS 4.7 10.4 567.0 1250.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_	(28)	(28)	(28) 283493.8	625000.0	0.	0.
RAGS 2.4 5.2 (9) 283.5 625.0 0 0 4.7 10.4 5.2 (9) 1250.0 0 0 7.1 15.6 850.5 1875.0 0 0 1261.7 2781.7 151408.3 333800.0 4 39.7 87.5 4762.7 10500.0 0 0 0 0 0 0 0 0 114.0 251.4 13681.4 30162.5 0 94.5 208.3 11339.8 25000.0 25		(6)	10.4	(6) 567.0	1250,0	0.	۰.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	5,2	283.5	(9) 625.0	0.	6.
S 7.1 15.6 850.5 1875.0 0 0 0 0 0 0 0 0 0	TA.SET= 31 CAT= CR YMPLE CLOTHS	(6)	10.4	-		0.	0.
\$\(\begin{array}{cccccccccccccccccccccccccccccccccccc	FA.SET= 31 CAT= CR AINT DROP CLOTHS	•	15,69	(9) 850,5	1875,0	0.	0.
33.7 87.5 4762.7 10500.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	IA.SET= 31 CAT= EW ASTEWATER FROM EEW&S	(4)	(4)	151408.3	333800,0		
39.7 87.5 4762.7 10500.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	FA.SET# 31 CAT# FO JEL AND OIL SPILLS		0,	0.	•		
114.0 251.4 13581.4 30162.5 .0 (25) (25) 208.3 11339.8 25000.0 .0	FA.SET= 31 CAT= FO JEL & OIL WASTES	39.7	87,3	4762.7	10500.0	0.	ø.
39.2 86.5 4706.0 10375.0 .0 .0 .14.0 251.4 13681.4 30162.5 .0 .0 .0 .94.5 208.3 11339.8 25000.0 .0	IA.SET= 31 CAT= FS RIMOL 355 ⁽¹¹⁾	0.	•	0	0.		
114.0 251.4 13681.4 30162.5 .0 (25) (25) (25) 1339,8 25000.0 .0	FA.SET= 31 CAT= HS SRUBBER EFFLUEHT			4706.0	10375	0.	в.
(25) (25) (25) (25) 94.5 208.3 11339,8 25000,0 ,0	33	114.0	251.4	13681.4	30162.5	0.	ē.
	A.SET= 3!	(25) 94.5	208,3	(25)	25000	0.	0.

PROJECT
PRO
TOTAL PRO
FOR
GEHERATION
HASTE
HAZARDOUS
(CONT.)

TABLE 13

WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) Pounds	BASELINE FO KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	FOR PROJECT POUNDS
EPICHLORHYDRIN/BGE GLASS ECOSPHERES PHENOLIC MICROSPHERES GLASS FIBERS BENTONE 27 METHYLENE DIAMILINE M-PHENYLENE DIAMINE	ы — ы - ы - ы - ы - ы - ы - ы - ы -	89.44.7 4.44.8.0 6.0.7.7.13	4541.6 1338.1 4019.9 498.9 379.9 396.9	10012.5 2950.0 8862.5 1100.0 875.5 362.5		
STA.SET= 31 CAT= IN (30) MSA-1, PART A (UNMIXED) METHYLEHE CHLORIDE EPICHLORHYDRIH/BGE					°.	6.
STA.SET= 31 CAT= IN (30) MSA-1, PART B (UNNIXED) METHYLENE CHLORIDE PERCHLOROETHYLENE METHYLENE DIANILINE M-PHENVLENE DIANINE ETHYL ALCOHOL PHENOLIC MICROSPHERES GLASS ECOSPHERES GLASS FIBERS BENTONE 27					e	o .
STA,SET= 31 CAT= IN MTA-2 (CURED) ²⁹⁾ EPICHLORHYDRIN/BGE LP-3, POLYSULFIDE LIQ POLYMER MDA & mPDA STANMOUS OCTOATE PHENOLIC MICROSPHERES	47.2 14.6 14.6 5.8 7.6	104.2 32.2 32.2 12.8 1.3	5669.9 1752.0 1752.0 697.4 68.0	12500.0 3862.5 3862.5 1537.5 150.0 3087.5	0 .	e ,
STA,SET= 31 CAT= IN MTA-2 (UNMIXED) ⁽³⁰⁾ EPICHLORHYDRIN/BGE LP-3, POLYSULFIDE LIG POLYMER MDA G. mPDA STANNOUS OCTOATE PHENC IC MICROSPHERES METHYLENE CHLORIDE PERCHLOROETHYLENE	MER 4.2 4.4 4.4 7.7 8.2 8.2	20 20 20 20 20 20 20 20 20 20 20 20 20 2	1701.0 527.3 527.3 209.8 22.7	3750.0 1162.5 1162.5 462.5 50.0	.	.
STA, SET= 31 CAT= IN K5MA BUTYL GLYCIDYL ETHER EPOXY RESINS STA, SET= 31 CAT= IN INSULATION AND PAPER	9 . 2	16.7	9 67,2	2000.0	0. 0.	ė ė

PA 12.6 28.1 1530.9 3375.0 5 150.0 5 1		
CATE PA Name		ENCY FOR PROJECT
12.6 28.1 1530.9 3375.0 28.1 1530.9 3375.0 28.1 157.5 3.6 198.4 477.5 28.1 28.1 1530.9 475.0 28.1 28.1 1530.9 475.0 28.1 28.1 28.1 28.1 28.1 28.2 28.2 28.2 28.2 28.2 28.3 28.2 28.2 28.3 28.3 28.2 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 28.3 38.4 38.5 38.5 38.5 38.5 38.5 38.		
RING AGENT RING A	•	•
RING CACEFIT		₹.
DIONITIDE		
PIGHENTS 1.8 1.3 1.8 1.9		
CAT = PA		
CAT = PA	_	
(** TOPCOAT (** TO	•	
CAT = PA		
(VTOPCDOAT		
TURG ACENT 175,0 1125,0 1125,0 1126,0 1126,0 1126,0 1126,0 1126,0 1126,0 1126,0 1126,0 1126,0 1126,0 1126,0 1126,0 1126,0 1126,0 1226,0		0,
TATION MACHINE MEMORY 1.7 1.5 79.4 175.0 1.425.2 28.3 627.5 1.7 2.6 198.4 437.5 1.7 2.6 198.4 437.5 1.7 3.6 198.4 437.5 1.8 437.5 1.9 425.2 38.6 1.7 3.6 198.4 437.5 1.0 0.0 0.0 1.1 1.2 2.7 1.1 2.5 100.0 1.2 2.7 147.4 325.0 1.2 2.7 147.4 325.0 1.3 8.3 453.6 1000.0 1.4 7.4 325.0 1.5 7.9 11.3 25.0 1.6 1.4 7.4 325.0 1.7 1.5 7.9 11.3 25.0 1.8 4.0 6.0 1.3 8.0 1.1 2.5 147.4 325.0 1.1 3 2.5 11.3 25.0 1.1 3 2.5 11.3 25.0 1.1 3 2.5 11.3 25.0 1.1 3 2.5 11.3 25.0 1.1 3 2.5 11.3 25.0 1.2 2.7 147.4 325.0 1.3 8.0 1.3 8.0 8.3 453.6 1000.0 1.4 7.4 325.0 1.5 7.9 4 175.0 1.6 7.9 4 175.0 1.7 1.5 79.4 175.0 1.8 4.0 6.2211.3 387.5 1.9 60001VEB 1.1 3 2.5 11.3 387.5 1.2 11.3 2.5 11.3 1.3 3.8 8.3 136.1 1.4 4.0 6.8 2211.3 387.5 1.5 75.8 387.5 1.6 7.5 175.8 387.5 1.7 87.5 175.8 387.5	25.0	
CAT = PA	5.0	
PHOTOCHEM REACTIVE 1.7 3.5 28.3 62.5 HONPHOTOCHEM REACTIVE 7.1 15.6 850.5 1877.5 HONPHOTOCHEM REACTIVE 7.1 15.6 850.5 1877.5 RAINER 3.8 8.3 453.6 1000.0 LOXIDE 1.2 2.7 147.4 325.0 LONGUELLICATE 7.1 1.2 2.5 1975.0 LONGUELLICATE 8.3 453.6 1000.0 LONGUELLICATE 8.3 11.3 2.5 175.0 LONGUELLICATE 8.3 136.1 300.0 MYDROCARBONS 1.1 2.5 136.1 300.0 MYDROCARBONS 1.1 2.5 136.1 300.0 MYDROCARBONS 1.1 2.5 175.8 387.5 11.8 32.1 175.0 LONGUELLICATE 8.4 4.1 2.21.1 487.5	37.5	
CATE PA	£. 0	
CATE PA S.8 8.3 453.6 1000.0 1000.0 1.4 73.7 162.5 162.5 1000.0 1.4 73.7 162.5 162.5 1000.0 1.5 1.6 1.5	17.5	
CATE PA 3.8 6.3 453.6 1000.0 1.4 73.7 162.5	•	
STATINGE		
Oct		•
DIOXIDE DIOXIDE DIOXIDE DIOXIDE CAT= PA HYDROCARBONS CAT= PA HYDROCARBONS CAT= PA DIOXIDE DI	ın.	•
DIOXIDE	6,0	
HYDROCARBONS	5.0	
HENOLIC ALKYL RESIN (*1) (*1) (*1) (*1) (*1) (*1) (*1) (*1)	7.5	
CAT= PA CATE PA CAT	5.0	
CAT= PA CAT= PA CAT= PA CAT= PA 3.8 8.3 453.6 1000.0 1,2 2.7 147.4 325.0 1000.0 1.7 1.5 1.5 1.7 1.5 1.3 2.0 1.1 2.5 1.1 3.7 1.1 3.7 1.1 3.7 1.1 3.7 1.1 487.5	0.0	
CAT= PA OPCOAT OPCOAT OPCOAT I,2 Z,7 I,5 I,5 I,3 CAT= PA ISA4 A0.6 I,3 CAT= PA ISA4 A0.6 I,1 CAT= PA ISA4 A0.6 I,1 CAT= PA ISA4 A0.7 I,1 I,2 I,3 I,3 I,1 I,3 I,3 I,1 I,3 I,1 I,3 I,1 I,3 I,1 I,3 I,1 I,3 I,1 I,3 I,3	ا ئة 0	
CAT= PA 3.8 8.3 453.6 1000.0 102 1.2 2.7 147.4 325.0 1.3 1.3 1.3 1.3 1.3 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5	•	
DIOXIDE		
DIOXIDE 1.2 2.7 147.4 325.0 1.2 2.7 147.4 325.0 1.2 1.5 79.4 175.0 1.3 1.3 25.0 1.1 1.3 25.0 1.1 1.3 25.0 1.1 1.3 25.0 1.1 1.3 25.0 1.1 1.1 2.5 1.3 25.0 1.1 1.1 2.5 1.3 25.0 1.1 1.1 2.5 1.3 25.0 1.1 1.1 2.5 1.3 25.0 1.1 2.5 1.2 2.5 1.3 3.3 2.5 3.3 2.5 3.3 3.3 2.5 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	•	o .
CLAY CLAY OLORS IN HYDROCARBONS IN HYDROCARBONS IN HYDROCARBONS IN HYDROCARBONS IN IN IN HYDROCARBONS IN	0,1	
OLORS OLORS IN HYDROCARBONS IN	0.0	
IH HYDROCARBONS 1,1 2,5 136,1 300,0 HYDROCARBONS 1,1 2,5 136,1 300,0 HYDROCARBONS 1,1 2,5 12,5 CAT= PA 18.4 40.6 2211,3 4875,0 Lis 2,8 153,1 337,5 Lis 4,1 221,1 487,5 Lis 4,1 221,1 487,5 Lis 4,1 221,1 487,5		
HYDROCARBONS 1.1 2.5 136.1 300.0 ADDOTIVES <.1 .1 5.7 12.5 CAT= PA 18.4 40.6 2211.3 4875.0 I.S 3.2 175.8 387.5 I.S 3.2 175.8 I.S 3.2 175.8 I.S 3.2 175.8 I.S 3.2 I.S 3	, e	
### ### ##############################		
CAT= PA 18.4 40.6 2211.3 4875.0 DIOXIDE 1.3 2.8 153.1 337.5 1.5 3.2 175.8 387.5 1.8 4.1 221.1 487.5	2,3	
DIOXIDE 18.4 40.6 2211.3 4975.0 1.3 2.8 153.1 337.5 1.5 3.2 175.8 387.5 1.8 4.1 221.1 487.5		
UM DIOXIDE 1.3 2.8 153,1 337.5		,
1,55 3,2 175,8		0,
1,15 4,1 221,1		
	0.4	
	n e	
E 6 (9.1 1037 A 2002	N.C.	
THANE 4.6 10.0 SEE A) (

TABLE 13 (CONT.)	HAZARDOUS	WASTE	GENERATION FOR	TOTAL PROJECT	L .	PAGE 14
WASTE MATERIAL	BASELIHE MOHTHLY KILOGRAMS	r (AVERAGE) Pounds	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	CONTINGENCY FOR PROJECT KILOGRAMS POUNDS
EPOXIDIZED SOYBEAN OIL	.2	4.	22.7	50,0		
STA.SET= 31 CAT PA PAINT-SPILL ABSORBANT	0.	٠.	0.	٥.		
STA.SET= 31 CAT= PW ALODINE CONTAMINATED WASTEWATR CHROMIC ACID FERRICYANIDE SALT COMPLEX FLUORIDE SALT	(18) 157.8 (31) 2.8 1.6	(18) 347,9 (31) 6,1 3,4	(18) 18937.4 (31) 4 334.5 187.1	(18) 1) 41750.0 (31) 737.5 412.5 12.5	6.	ė,
STA,SET= 31 CAT= 80 PERCHLOROETHYLENE	۲.	wo.	79.4	175.0	0.	0.
STA,SET= 31 CAT= SO TRICHLOROETHANE	າບຸ	Ξ	62.4	137.5	0.	0,
STA,SET= 31 CAT= SO FREOM 113	Ą.	4.	73.7	162,5	° .	0,
STA.SET= 31 CAT* SO MSA-1 CONTAMINATED MEC1	1568.2	3457.3	189183.2	414875.0	٥.	٥.
SIA.SET= 31 CAT# SO MSA-1 CONTAM PERCHLOROETHYLENE	1929.2	4253,1	231501.0	510375.0	٥.	0.
STA,SET= 31 CAT= SO PERCHLOROETHYLENE	289.2	637.5	34699.6	26500.0	٥.	0.
STA.SET= 31 CAT= SO TRICHLOROETHANE	85,0	187.5	10205.8	22500.0	٥,	0.
STA.SET= 31 CAT= 80 METHYLENE CHLORIDE	266.5	587.5	31978.1	70500.0	°.	0,
STA.SET= 31 CAT= SO MTA-2 CONTAMINATED SOLVENTS	(26) 551.9	1216.7	(26)	(26) 146000.0	•	٥.
STA.SET= 31 CAT= SO BOSTIK CONTAMINATED SOLVENTS	(26) 275,9	(26)	(26) 33112.1		٥.	Đ.
STA.SET= 31 CAT# SO RUSTOLEUM CONTAMINATED SOLVENT	275.9	(26) 608. 3	33112.1	(26)	6	0.
SUBTOTAL FOR SET 31	10027.2	22106.3 1	1203260.8	2652750.0	oʻ.	0.
STA,SET= 32 CAT= BA LITHIUM STORAGE BATTERIES	25,5	56,3	3061.7	0.0529	o.	•

TABLE 13 (CONT.)	HAZARDOUS WASTE		ERATION FOR	GENERATION FOR TOTAL PROJECT	Ħ	PAGE 15
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	Y (AVERAGE) POUNDS	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	FOR PROJECT POUNDS
STA.SET= 32 CAT= BA SILVER-ZINC STORAGE BATTERIES	42.35	93.8	5102.9	11250.0	e .	•
STA,SET= 32 CAT= BA POTASSIUM HYDROXIDE SOLUTION	9, 1(18)	20.0	1.088,6	2400.0(18)	0.	9.
STA.SET= 32 CAT= CB HYDRAZINE-CONTAMINATED WATER	113,4	250,0(18)	13607.7 ⁽¹⁸⁾	30000,0(18)	o .	0.
STA,SET= 32 CAT= CS ₍₃₂₎ Contaminated Seawater	0.	6	0.	0.		
STA,SET= 32 CAT= US (32) CONTAMINATED SERWATER	7,61151	33333.3	1814360.0	4000000.0	•	ē
STA,SET= 32 CAT= CW SRB FWD SKT CLEANING WASTES					0.	ė.
STA.SET= 32 CAT= EW WASTEWATER FROM EEULS	630,9 ⁽⁴⁾	1390,8(4)	75704.2 ⁽⁴⁾	166900.0 ⁽⁴⁾		
STA,SET= 32 CAT= FO Bilge Wastes					9.	0.
STA,SET= 32 CAT= FO DIESEL FUEL & DIL SPILLS	0.	0.	0.	0.		
STA,SET= 32 CAT= FS (11) WASTE FUEL & PRINOL 355 HYDRAZINE	°.	0 .	0.	0. 6.		
STA,SET= 32 CAT= MS HYDRAZINE SCRURBER EFFLUENT HYDRAZINE	189,0 ⁽¹⁸⁾	416,7 ⁽¹⁸⁾ 3,8	22679,5 ⁽¹⁸⁾ 204,1	50000,0 ⁽¹⁸⁾ 450,0	o .	e.
STA.SET= 32 CAT= HY HYDRAZINE	8,24	94.3	5131.2	11312.5	0.	•
STA,SET= 32 CAT= IN INSULATION WASTES, SOLID ⁽³³⁾ MSA-1 INSULATION MTA-2 INSULATION K5NA INSULATION PR-855 INSULATION	756 , 0 ⁽³⁴⁾	1666.7 ⁽³⁴⁾	90718,0 ⁽³⁴⁾	200000,0 ⁽³⁴⁾	<u>.</u>	e .
STA.SET= 32 CAT= IN INSULATION CONTAM FILTERS	4.7(21)	10,4(21)	567.0(21)	1250,0	9.	0,
SIG.SET= 32 CAT= IU small ation. Contaminated Haife (33)	193012.0(18)	425520.9 23161440.0 5	(18) 161440.0 51	51062504.0	0,	•
				and the second second control of the second	And the second of the second o	andre almost a filterment of the external of

TABLE 13 (CONT.)	HAZARDOUS	WASTE	GENERATION FOR TOTAL PROJECT	TOTAL PROJEC	F	PAGE 16
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	LY (AVERAGE) POUNDS	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	FOR PROJECT POUNDS
MSA-1 INSULATION MIG-2 INSULATION KSHA INSULATION PR-855 INSULATION						
STA,SET= 32 CAT* PR PRESERVATIVE CHEMICALS PROTECTIVE LUBRICANTS					0,	0 .
STA.SET= 32 CAT= PS SRB SOLID PROPELLANT AMMONIUM PERCHLORATE ALUMINUM POWDER FERRIC OXIDE POLYMER & EPOXY RESIN	ó	0.000		9 9 9 9	784.7 ⁽²⁴⁾	1730, 0 ⁽²⁴⁾
SIA,SET= 32 CAT= SB DETERGENT WASHWATER ⁽³⁵⁾	36287,2	80000.0	4354464,0 9	9600000.0	0.	0.
STA, SET= 32 CAT= SB POTABLE RINSE WATER	125493.2	276666.6 13	15059188.0 33	33200000.0	0.	0.
STA,SET= 32 CAT= SB DEJOHIZED RINSE WATER	58739.9	129500.0 7	7048788.0 15	15540000,0	0.	0.
STA, SET= 32 CAT= SI SRB RINSE WATER	22679.5	50000.0	2721540.0 6	6000000,0	0.	e .
STA.SET= 32 CAT= SO SOLVENTS FREON THC/TH SOLVENTS, UNSPECIFIED	11.1	24,4 ⁽²⁶⁾	1326.8 ⁽²⁶⁾	2 925.0 ⁽²⁶⁾	© .	o.
SUBTOTAL FOR SET 32	453156.4	999044,3 54	54378768.0 119885296.0	895296,0	0.	o .
STA, SET= 33 CAT= CA AIR FILTERS	4,7(21)	10,4(21)	567,0 ⁽²¹⁾	1250,0 ⁽²¹⁾	0.	0.
STA,SET= 33 CAT= EW UASTEWAIER FROM EEURS	0.791	434,4	23643,4	52125.0		
STA.SET= 33 CAT= HF HYDRAULIC FLUIDS					0.	0.
SUBTOTAL FOR SET 33	201.8	444.8	24210,4	53375.0	0.	.

TABLE 13 (CONT,)	HAZARDOUS	WASTE GENE	GENERATION FOR	TOTAL PROJECT	F.	PAGE 17
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) POUNDS	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	FOR PROJECT POUNDS
ATD AFTE 99 COTS OU						
ABLA1	6.1	13.5	737.1	1625.0	θ.	0.
RESIN STM L 663	ب ب ب		73,7	162.5		
MENTAL DIE I ONE	9 (C		2000	0.000		
SILICH POWER	i o	•	22.7	0.00		
		į	28.3	62,5		
CURING AGENT L 664	! -		2,2	12,5		
	10,	4,0	294.8	650.0		
XYLENE	-	m	17.0	37.5		
STA, SET= 99 CAT= AU ISOCHEM POLYESTER RESIN ADHESV STYRENE MEK PEROXIDE CATALYST DIMETHYL PHTHALATE	6.1	, M	737.1	1625.0	0 .	o .
STA, SET# 99 CAT# CA					•	•
FILTER					٥.	5 .
STA.SET* 99 CAT* CN SOLVENT CONTAMINATED CONTAINER SOLVENTS(36)	2.4(28)	5,2(28)	293,5(28)	625.0(28)	0.	0.
STA,SET= 99 CAT= CH PRIMER CONTAMINATED CONTAINERS	,3(28)	, 7(28)	39.7(58)	87.5(28)	0.	0.
STA, SET# 99 CAT# CN ADHESIVE CONTAMINATED CONTAINR	, 3(28)	,7(28)	39,7(28)	87.5(28)	0.	0,
STA, SET* 99 CAT* CN SOLVENT CONTAINERS					٥.	0,
STA, SET= 99 CAT= CN POUR FOAM CONTAINERS	23,6(28)	52, t ⁽²⁸⁾	2834.9 ⁽²⁸⁾	6250.0(23)	٥.	e.
STA.SET= 99 CAT= CN ABLATOR CONTAMINATED CONTAINER	, 3(28)	, 7(28)	39.7(28)	87.5(28)	0.	٥.
STA, SET= 99 CAT= CR SOLVENT CONTAMINATED RAGS	(6)2.4	16.4(9)	567.0(9)	1250,0(9)	0.	0.
STA, SET= 99 CAT= CR ADHESIVE CONTAMINATED RAGS	(6) ² ·•	10.4(9)	567.0(9)	1250.0(9)	0.	o .
STA.SET* 99 CAT* CR EPOXY PRINER-CONTAMINATED RAGS	2.4(9)	5,2 ^(^)	283,5(9)	625.0(9)	0.	٥.
- T	122,8	270.8	14741.7	32500.0	0,	0.
the second section of the second seco						

WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) POUNDS	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY FOR PROJECT KILOGRAMS POUNDS	FOR PROJECT POUNDS
DIPHENYL METHANE DIISOCYANATE FREON 11 ANIMES POLYOLS SUPER MEK PEROXIDE POLYESTER RESIN DIMETHYL PHTHALATE	39.7 19.8 10.9	67.7 43.8 24.0	3685.4 2381,3 1304.1	8125.0 5250.0 2875.0		
STA,SET= 99 CAT= IN POUR FORM <mixed)<sup>(29) POLYURETHANE</mixed)<sup>	(29,9 ⁽³⁷⁾	286.5 ⁽³⁷⁾	15592, 2 ⁽³⁷⁾	34375, 0 ⁽³⁷⁾	0.	o.
STA,SET= 99 CAT= IN POUR FOAM PART A (UNMIXED)(30) DIPHENYL METHANE DIISOCYANATE FREON 11 POLYOLS, AMINES	8,6 3,3 2	6,4 G	793.8 396.9 255.1 141.7	1750.0 875.0 562.5 312.5	e .	ē.
STA,SET= 99 CAT= IN POUR FOAM PART B (UNMIXED)(30) FREON 11 AMINE CATALYST POLYETHER POLYOL BLEND	6,6 1,3 5,2	6,6 2,9 6,1 1,3	793.8 158.8 17.0 618.0	1750.0 350.0 37.5 1362.5	e _.	ē.
STA,SET= 99 CAT= IN POUR FOAM CONTAMINATED PAPER	1.6(28)	3.4(28)	187.1	412.5(28)	e.	٥.
STA,SET= 99 CAT= IN SUPER LIGHT ABLATOR (I) RESIN L664, PT A SILICA FIBERS CORK PHENOLIC MICROSPHERES SILICA MICROSPHERES	4 7.0 8 1.0 - 1.12	4. 4. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	567.0 334.5 34.0 68.0 68.0 79.4 34.0	1250.0 737.5 75.0 150.0 37.5 175.0	e.	o .
STA,SET= 99 CAT= IN SUPER LIGHT ABLATOR (II) RESIN STM L664, PT A CARBOH POWDER SILICA FIBERS	۶ 4.	3.1	567.0 170.1	1250.0 375.0	ů.	© .
SILICA MICROSPHERES PHENOLIC MICROSPHERES CURING AGENT STM L664, PT B	œ.	8.	96.4	212,5		
STA.SET= 99 CAT= IN POUR FOAM "TRIMMINGS" POLYURETHANE	4,7	10.4	567.0	1250.0	e.	0.

TABLE 13 (CONT.)	HAZARDOUS WASTE		ERATION FOR	GENERATION FOR TOTAL PROJECT		PAGE 19
WASTE MATERIAL	BASELINE MONTHLY KILOGRAMS	(AVERAGE) POUNDS	BASELINE KILOGRAMS	FOR PROJECT POUNDS	CONTINGENCY KILOGRAMS	CY FOR PROJECT POUNDS
STA.SET= 99 CAT= PA EPOXY PRIMER METHYLENE ISOBUTYL KETOME XYLENE CYCLOHEXANONE CYCLOHEXANONE CHROMATES INDRGANIC PIGMENTS N-BUTANOL TOLUENE AMINO SILANE METHYL ETHYL KETONE	(27) <,1	. (27)	5. 2 ⁽²⁷⁾	12.8 ⁽²⁷⁾	0.	٥.
STA.SET= 99 CAT= PA D.C. 1200 VM AND P HAPTHA ORGAHOMETALLIC SALTS	<.1	(27)	5.7(27)	12.5(27)	Ö	ં
STA,SET= 99 CAT= 80 FREON TMC	, 1(27)	,3(27)	17.0(27)	37.5(27)	0.	0.
STA.SET= 99 CAT= SO 1,1,1-TRICHLOROETHANE	, 1(27)	,3(27)	17.0(27)	37.5	0.	ο.
STA.SET* 99 CAT* SO MEK & CELLOSOLVE	12.7	28.0	1525.2	3362.5	0.	e .
STA, SET= 99 CAT= 80 HEPTANE	78.2	172.4	9383.6	20687.5	o,	e .
STA.SET= 99 CAT= SO CELLOSOLVE ACETATE	111.5	245.8	13380.9	29500.0	9	6.
STA.SET= 99 CAT- SO METHYL FTHYL KETONE	92.1	203.0	11050.6	24362.5	0.	e.
STA.SET= 99 CAT= SR SOLVENT REDUCER METHYL ETHYL KETONE CYCLOHEKANONE	ά 4 ú	Ε. Θ. 4.	68.0 45.4 22.7	130.0 100.0 100.0	0.	0,
STA.SET= 99 CAT= SW SOLVENT CONTAMINATED WATER	84.48	186.0	10126.4	22325.0	0.	•
SUBTOTAL FOR ET 99	712.7	1571.1	85518,7	188537.5	0.	o.
TOTAL FOR ALL SETS	1687304.3 2386	2388289.5 1299	129996512.0 286594752.0		3189751.5	7032235.0

TABLE 13 (CONT.)	HAZARDOUS WASTE GENERATION FOR TOTAL PROJECT	NERATION FO	R TOTAL PROJE	CT		PAGE 20
SUMMAY BY CRIEGURY CATEGORY	BASELINE MONTHLY (AVERAGE) KILOGRAMS POUNDS KI	THLY (AVERA POUNDS		BASELINE FOR PROJECT OGRAMS POUNDS	CONTINGENCY KILDGRAMS	CONTINGENCY FOR PROJECT LOGRAMS POUNDS
90	5,5098	18972,4	1032682,6	2276587.5	0.	0 '
E	10076.1	31032.7	1689135.0	3723925.0	0.	0.
FO	39.7	87.3	4762.7	10500.0	0.	0.
FS	4226,4	9317.7	507170.3	1118125.0	0	0.
80	1283.9	2830.6	154073.2	339675.0	0.	0.
T	419.3	924.5	50320.1	110937.5	0.	٥.
no.	30.0	1,99	3600.4	7937.5	Θ.	Θ,
3	2917,4	6431.8	350086.4	771812.5	٥.	٥.
25	40,2	88,5	4819.4	10625.0	0.	0.
HS	4040,7	8906,3	484887.7	1069000.0	٥.	٥.
ΗY	444,5	980.0	53342,2	117600.0	449305.8	990555,0
NI	1228,8	2709.0	147450.8	325075.0	0.	0.
Ŧ	487.1	1074.0	58456,4	128875.0	64645,6	142520,0
H.	37.8	83.3	4535,9	10000.0	471.7	1040.0
ON.	455.0	1003.0	54595,2	120362.5	650502.5	1434120.0
e d	85.5	188.5	10262.5	22625.0	0.	0.
PIS.	1592.1	3509.9	191046,4	421187.5	0.	٥.
d.Pa	7.4	10.4	267.0	1250.0	۰.	٥.
PS	0.	٥.	9.	0.	5043797.7 11	11119730.0
AC	591556,9	1304166,5	70986832,0 1	156500000.0	ο.	٥.
독	0.	0.	9.	0,	٥.	0.
CA	52.0	114.6	6536,9	13750.0	0	٥.
3.4	157.8	347,9	18937,4	41750,0	٥.	e.
ВЭ	77.1	170.0	9253.2	20400.0	o .	0,
83	113,4	250,0	13607.7	300000	0.	٥.
CS	15119.7	33333,3	1814360.0	4000000.0	9.	٥.
***	0.	٥.	Θ.	٥.	0.	٥.
7.5	193012.0	425520.9	23161440.0	51062504.0	0.	٥.
ag.	0,	Θ,	٥.	0.	0.	٥.
88	220520.3	486166.7	0	58340000.0	0.	٥.
SI	22679.5	50000.0	2721540.0	6000000.0	9,	ο.
SR	9.	5,1	68.0	150.0	o.	0.

SECTION 5

SUMMARY OF HAZARDOUS WASTE GENERATION

1. INTRODUCTION

The space shuttle program at Vandenberg Air Force Base is expected to generate a variety of hazardous wastes during its years of operation, from 1985 to 1994. The purpose of this report is to present an inventory of the expected types and quantities of waste to be generated by shuttle-related ground operations. The inventory provides estimates for:

- Types of wastes generated.
- Chemical constituents in each waste stream.
- Mass and/or volume of waste generated during scheduled ground operations (per launch cycle, per month per year, and project total).
- Mass and/or volume of waste generated under contingency conditions (per contingency event, per year, and project total).
- EPA and California hazardous waste numbers for each waste.
- EPA and California hazardous properties for each waste.
- California compatibility class for each waste.

The inventory will be used to assess waste management options (Volume II of this report), to complete EPA hazardous waste forms, and for preparing the supplement to the Environmental Impact Statement required for the Space Transportation System (STS) project.

2. SOURCES OF WASTE

A summary of the hazardous wastes generated over the duration of the STS project at VAFB is given in Tables 14, 15, and 16; monthly, yearly, and total project quantities are reported, respectively, for normal operations and contingency conditions.

TABLE 14. SUMMARY OF BASELINE MONTHLY HAZARDOUS WASTE SINERATION, 1985-1994, BY STATION SET

	Monthly (for 1985	Monthly for 1986	For 1986	Monthly for 1987	for 1987	Monthly for	Monthly for 1988-1994
Station	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds
17	908.5	2,002.8	1,362.7	3,004.2	2,271.1	5,007.0	3,406.7	7,510.5
18	1.4	3.2	2.2	4.8	3.6	7.9	5.4	11.9
19	2,339.5	5,157.8	3,509.3	7,736.7	5,848.8	12,894.5	8,773.2	19,341.8
21	1,128.9	2,488.7	1,693.3	3,733.1	4,222,2	6,77,9	4,233.2	9,332.8
23	192,975.4	425,440.3	239,463.2	638,160.5	482,438.6	1,063,600.8	723,658.3	1,505,431.8
31	3,208.7	7,074.0	4,813.0	10,611.0	5,021.7	17,685.0	12,032.6	26,527.5
32	145,010.0	319,694.1	217,515.1	479,541.2	362,525.1	799,235.4	-43,787.8	1,198,653.0
33	64.6	142.3	8.96	213.5	161.4	355.8	242.1	533.8
66	227.6	501.7	341.3	752.5	568.9	1,254.2	853.3	1,881.3
Other	792.3	1,746.7	1,188.4	2,620.0	1,980.7	4,366.7	2,971.0	5,550.0
TGTAL	346,656.8	764,251.5	519,985.3	1,146,377.5	866,642.5	1,910,629.8	1,299,963.8	2,865,9.4.5

TABLE 15. SUMMARY OF BASELINE YEARLY HAZARDOUS WASTE GENERATION, 1985-1994, BY STATION SET

	1085		198	1986	1981	<i>L</i>	Yearly_for_1998-1994	1980-1994	Project Total	Total
Station			Kiloarems	Pounds	Kilograms	Lounds	Kilograms	Pounds	Kilograms	Louids
Ser	ALL TOTAL GITTS	51 651	1 535 31	36.050.4	27.253.5	60,084.0	40,880.3	90,126.0	340,668.8	751,050.0
_	10,901.4	24,033.6	10,334.1	0.13	43.1	95.0	64.6	142.5	538.6	1,187.5
8	17.2	0.88	6.63	D: 16		0 864 831	105 278 7	237,101.0	877,322.5	1,934,175.0
19	28,074.3	61,893.6	42,111.5	92,840.4	8.481.07	0.101,401		0 000 111	A23 32A 2	033,275,0
7.1	12 546 4	29.864.8	20,319.6	44,797.2	33 865.9	74,662.0	50,748.9	0.665,111	1.1.20,021	
<u>.</u> .	7 315 705 0	5 105 281 0	3.473,558.5	7,657,926.0	5,789,264.0	12,763,210.0	8,683,858.0	19,144,620.0	72,365,810.0	159,540,148.0
S	0.001,011,13	0 000 40	E7 756 E	127,332,0	96,260.9	217,220.0	144,391.3	313,330.0	1,203,260.8	2,652,750.0
31	38,504.4	84.888.0	0.001416			0 400 001	6 525 452 0	0.386.236.0	54,378,764.0	119,885,292.0
32	1,740,120.5	3,836,329.0	2,610,181.0	5,754,494.0	4,350,302.0	9,590,664.0	0.367,636,0			
: ::	1 174 7	1,708.0	1,162.1	2,562.0	1,936.8	4.270.0	2,905.2	6,405.0	24,210.3	53,375.0
.	2 720 6	6 020 0	4.095.9	9,030.0	6,876.5	15,050.0	10,239.8	22,575.0	A5,331.6	188,125.0
5) <u>.</u>	0.00.00	20 960 0	14,260.9	31,440.0	23,768.1	52,400.0	35,652.2	78,600.0	297, 101.5	655,000.0
Utner TOTAL	4,159,882.0	9,171,018.0	6,3	13,756,530.0	3,756,530.0 10,399,710.0	22,927,556.0 15,599,566.0	15,599,566.0	34,391,336.0	34,391,336.0 129,996,350.0	286,594,408.0

TABLE 16. SUMMARY OF CONTINGENCY HAZARDOUS WASTE GENERATION, 1985-1994. BY STATION SET

		1985	190	1986	1987	۲.	1988-1994 (per year)	er year)	Project Total	tal
Station	Kilograms	Pounds	Kilugrams	Pounds	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds
17	0	0	0	0	0	0	0	0	0	c
18	0	0	0	0	0	0	0	0	0	0
19	7,731.6	17,045.5	7,731.6	17,045.5	7,731.6	17,045.5	7,731.6	17,045.5	77,316.0	170,455.0
21	11,430.5	25,200.0	14,696.3	32,400.0	21,228.0	46,800.0	29,392.6	64,800.0	253,103.0	558,000.0
23	102,205.6	225,326.0	102,205.6	225,326.0	102,205.6	225,326.0	102,205.6	225,326.0	1,022,056.0	2,253,260.0
31	0	0	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0	0	0
33	Э	0	0	0	0	0	0	0	0	0
66	0	0	0	0	0	0	0	0	0	C
0ther	0	0	0	0	0	0	0	0	0	0
TOTAL	121,367.7	267,571.5	124,633.5	274,771.5	131,165.2	289,171.5	139,329.	307,171.5	1,352,475.0	2,981,715.0

As shown in Table 15, total baseline waste generation for the STS project is anticipated to be 130 million kg (287 million lbs). Annual waste generation is estimated to range from 4.2 million kg/yr (9.2 million lbs/yr) for 1985, to 15.6 million kg/yr (34.5 million lbs/yr) for each of the years 1988 through 1994. This increase reflects changes in the number of launches per year from 4 to 15. Baseline waste generation for each year of the project is graphically represented in Figure 10.

The greatest quantities of wastes are expected to be generated by V23 (72 million kg; 160 million lbs for total project), followed by Station Set V32 (54 million kg; 120 million lbs for total project). This accounts for 97.5 percent by weight of all baseline hazardous waste generation. The combined waste generated by all other Station Sets is projected to be 2.5 orders of magnitude less by weight than waste generation at V23 and V32.

Expressed as percentages by weight (Figure 11), Station Set V23 is projected to generate 55.7 percent of the total under normal operating conditions; V32 approximately 41.8 percent; and V19 and V31, less than 1 percent each. The balance of these wastes (i.e., 0.9 percent) will be generated mainly by Station Sets V17 and V21.

According to Table 16, estimated total project waste generated under contingency conditions is 1.4 million kg (3.0 million lbs). The only station sets identified to date as potential generators of contingency wastes are V19, V21, and V23 (Figure 12). Station set V23 will produce approximately 84 percent by weight of all contingency waste.

Investigations into the physical state of the hazardous wastes generated during normal operations indicate that the majority of wastes are in a liquid state (Figure 13a). Major sources of liquid hazardous wastes, as shown in Figure 13c, are expected to be produced during normal ground operations at Station Sets V23 (55.9 percent) and V32 (41.9 percent). Other station sets each produce less than 1 percent of total liquid wastes. In summary, 99.6 percent by weight (1.0 million kg; 2.3 million lbs) of all the hazardous wastes will be in a liquid form (Figure 13a). This translates to 92.7 percent on a volumetric basis.

Only 0.4 percent by weight (7.3 percent by volume) of all hazardous wastes are expected to be in a solid state (Figure 13a). Most solid waste will be produced by Station Set V31 (71.5 percent) and Station Set V32 (19.1 percent) as shown in Figure 13b. Solid waste generation by all other station sets is less than 10 percent of total solids.

Figure 10. Baseline quantities of hazardous waste generated by STS ground operations at VAFB (reported for each year for the period 1985 through 1994).

Figure 11. Baseline quantities of hazardous waste generated by STS ground operations at VAFB (reported by station set).

Figure 12. Contingency waste generated by STS ground operations at VAFB (Station Sets V19, V21, and V23).

Figure 13. Physical state of hazardous waste generated by STS ground operations at VAFB under baseline conditions (reported by station set).

はいるという。

3. MAJOR TYPES OF WASTES GENERATED

- Quench water (QW).
- SRB wash water (SB).
- Insulation wastewater (or "suprawater") (IW).
- SRB initial rinse (SI).
- Contaminated seawater (CS).
- Nonaqueous solvent wastes (SO).
- EEW&S wastewater (EW).
- Fuel spill cleanup wastes (FS).
- Hydraziane scrubber effluent (HS).

These wastes are estimated to constitute 99.4 percent by weight of total waste generation (129 million kg; 284 million lbs). The QW is projected to be the most predominant waste type, followed by SB and IW wastes. As shown in Figure 14a, these three waste types constitute 54.6, 20.4, and 17.8 percent by weight, respectively, of the total quantity of wastes generated by the major waste categories. Other major waste categories produce 7.2 percent of the total waste. The remaining 0.6 percent of waste is associated with the following minor categories (Figure 14b):

- Adhesive wastes (AW).
- Batteries (BA).
- Contaminated air filters (CA).
- Catalytic bed wash water (CB).
- Containers (CN).
- Contaminated rags (CR).
- Hydraulic fluids (HF).
- Hydrazine (HY).
- Insulation wastes, solid (IN).
- Monomethyl hydrazine (MH).
- Ammonia or ammonia wastewater (NH).
- Nitrogen tetroxide (NO).
- Oxidizer spill cleanup (OS).
- Paint wastes (PA).

このなったことをあるというないという。

- Paint wastewaters (PW).
- Solvent reducer wastes (SR).
- Solvent wastewaters (SW).
- Worn-out parts (WP).

The first three minor categories are expected to jointly contribute over 60 percent by weight to the 0.6 percent of minor wastes.

4. HAZARDOUS AND ACUTELY HAZARDOUS WASTES

Further breakdown of wastes into hazardous and acutely hazardous categories reveals that only 1.8 percent by weight of total hazardous wastes are expected to exhibit acutely hazardous properties (Figure 15a). Primary generators of acutely hazardous

Figure 14. Hazardous waste generated under baseline conditions, by waste type.

Figure 15. Hazardous and acutely hazardous waste generation under baseline conditions.

waste will be Station Sets V19 (37.0 percent), V23 (25.8 percent), V21 (18.2 percent), and V17 (14.9 percent) (Figure 15b). The remaining 4.1 percent is expected to be generated by Station Sets V31 and V32 (3.3 and 0.8 percent, respectively) (Figure 15b). As shown in Figure 16, most of the hazardous wastes generated by Station Sets V17, V19 and V21 are expected to exhibit

Generation rates for hazardous and acutely hazardous wastes are provided in Tables 17 and 18. Total projected baseline quantities of hazardous and acutely hazardous waste per launch are 1.0 million kg (2.2 million 1b) and 0.02 million kg (0.04 million lb), respectively (Table 14). Consequently, the projected cumulative generation of these wastes for the period 1985 through 1994 is expected to be 128 million kg (282 million lb) and 2.3 million kg (5.1 million lb), respectively (Table 18).

Figure 16. Comparison of hazardous and acutely hazardous waste generation under baseline conditions (reported by station set on a per launch basis).

SUMMARY OF HAZARDOUS AND ACUTELY HAZARDOUS WASTE GENERATION PER MONTH, 1985-1994. TABLE 17.

								•	•	
	Per 1	Per Launch	1985 Monthly	thly	1986	1986 Minthly	W /8+1	148/ Monthly	1988-199	1988-1994 Monthly
	K11 ograms	Pounds	Kilograms	Pounds	Kilograms	Pounds	ra togra	Pounds	ril ograns	Pounds
Acutely Hazardous Wastes	18,333.3	40,418.3	6,111.1	6,111.1 13,472.8 9,166.7	9,166.7	20,204.2	20,200.2 15,277 H	F. 188, 11	22,916.7	50,522.9
Hazardous Wastes	1,021,637.3	,021,637.3 2,252,336.7	340,545.7	750,778.7	510,818.6	340,545.7 750,778.7 510,818.5 1,126,168.1 841,164.7 1,876,947.9 1,277,047.1 2,815,421.6	MS1 , 166. 7	1,476,447.4	1.777,047.1	7,815,421.6
TOTAL	1,039,970.6	1,039,970.6 2,292,755.0	346,656.8	764,251.5	519,945.3	346,656.8 764,251.5 519,945.3 1,146,177.5 Mc6,642 5 1,910,679.8 1,799,941.8 2,R65,944.5	RC6,647 %	1,910,679.8	1,795,963.8	2,865,944.9

TABLE 18. SUMMARY OF HAZARDOUS AND ACUTELY HAZARDOUS WASTE GENERATION PER YEAR, 1985 - 1994

	1985		1986		1987	1988-1994	1988-1994 (per year)	Total for	Total for Project
(ilograms	Pounds	Kilograms	Pounds	Kilograms	Pounds	Kilograms	Pourds	Kilograms	Pounds
3,333.4	73,333.4 161,673.2	110,000.0	242,509.8	183,333.4	404,183.0	275,000.1	606,274.5	2,231,667,1	606.274.5 2.231.667.1 5.0-2.287 5
							•		2: 10:16:20:10
6,548.6	9,909,344.8	6,129,824.0	13,514,020.2	10,215,376.6	22,523,373.0	15,324,566.9	33,705,092.5	127,704,636,9	4,086,548.6 9,009,344.8 6,129,824.0 13,514,020.2 10,215,376.6 22,523,373.0 15,324,546.9 33,705,092.5 127,704,636.9 281 542 017 5
9,882.0	9,171,018.0	6,239,824.0	13,75,,530.0	10,399,710.0	22,927,556.0	15,599,566.0	34,391,366.0	129,996,304.0	4,159,882.0 9,171,018.0 6,239,824.0 13,75,530.0 10,399,710.0 22,927,556.0 15,599,566.0 34,391,366.0 129,996,304.0 286,594,304.0

REFERENCES

- 1. Allaway, H. The Space Shuttle at Work. NASA SP-432. National Aeronautics and Space Administration, 1979.
- 2. Analysis of Deluge Water. USAF Hospital, Vandenberg Air Force Base, April 23, 1980.
- 3. Bioenvironmental Hazards Control Group Conference Minutes. Vandenberg Air Force Base, February 13-14, 1980.
- 4. Biomedical Problems Data Report (Preliminary). DOD STS Ground Support Systems Integration. VCR-76-030, Revision A. Martin Marietta Corporation, July 31, 1980.
- 5. California Environmental Technology. Comparison of Federal and California Hazardous Waste Regulations. Point Richmont, California, July 1980.
- 6. Environmental Impact Analysis Process: Reference Document to Environmental Impact Statement. Space Shuttle Program. Volume I. Department of the Air Force, August 1977.
- 7. Environmental Impact Analysis Process. Reference Document to Environmental Impact Statement. Space Shuttle Program. Volume II. Department of the Air Force, August 1977.
- 8. Environmental Impact Statement. Space Shuttle Program. National Aeronautics and Space Administration, 1978.
- 9. Ground Operations Plan. DOD STS. Ground Support Systems Integration. Martin Marietta Corporation, September 18, 1979.
- 10. Hawley, G. G. The Condensed Chemical Dictionary. 9th Edition. Van Nostrand Reinhold Company, New York, 1977.
- 11. Material Safety Data Sheet/EA934. Dexter Corporation, Hysol Division, Pittsburg, California.
- 12. Personal Communication, Dr. R. E. Bernberg, Aerospace Corporation, October 9, 1980.
- 13. Personal Communication, Dr. R. E. Bernberg, Aerospace Corporation, October 24, 1980.
- 14. Personal Communication, Orville Bradford, Rockwell International, October 30, 1980.
- 15. Personal Communication, John R. Edwards, Department of the Air Force, SD/DEV, Environmental Division, October 14, 1980.

REFERENCES (continued)

- 16. Personal Communication, Mack Ferguson, Department of the Air Force, SD/DEE, Environmental Division, October 9, 1980.
- 17. Personal Communication, Mack Ferguson, Department of the Air Force, SD/DEE, Environmental Division, October 9, 1980.
- 18. Personal Communication, Lee Freeman, Ralph Parsons Company, October 7, 1980.
- 19. Personal Communication, Ron Gillette, Cape Canaveral Air Force Base, November 7, 1980.
- 20. Personal Communication, Robert Larsh, Martin Marietta Corporation, October 30, 1980.
- 21. Personal Communication, Lt. David G. London, Cape Canaveral Air Force Base, November 7, 1980.
- 22. Personal Communication, Michael Walhood, Department of the Air Force, SD/DEE, Environmental Division, October 2, 1980.
- 23. Revised Inventory of Air Pollutant Emissions for Space Shuttle Construction and Operation at Vandenberg Air Force Base and Port Hueneme. Tetra Tech. Inc., January 1980.
- 24. Rustoleum Manufacturer's Information, October 1980.
- 25. Schehl, T. A., H. D. Bennett, C. J. Bryan, and C. W. Bright. Analysis of Surface Tris (2,3-Dibromopropyl) Phosphate on Chlorobutyl Rubber SCAPE Suits. NASA Technical Memorandum 79731. National Aeronautics and Space Administration, 1978.
- 26. Spectra Research Systems. Traffic and Safety Impact of STS Consumables Delivery at Vandenberg Air Force Base. SRS VUR79-101. Department of the Air Force, Space and Missile Test Center, VAFB, September 7, 1979.
- 27. Station Set Specification for VAFB V17, Landing Facility. SSS 1700A, April 21, 1978.
- 28. Station Set Specification for VAFB V18, Couple/Decouple Facility. SSS 1800A, April 21, 1978.
- 29. Station Set Specification for VAFB V19, Orbiter Maintenance and Checkout Facility. SSS 1900A, February 22, 1980.
- 30. Station Set Specification for VAFB V19A, Safing and Deservicing Facility. SSS 19AO, March 9, 1978.
- 31. Station Set Specification for VAFB V21, Hypergolic Maintenance and Checkout Facility. SSS 2100, June 1, 1978.

REFERENCES (continued)

- 32. Station Set Specification for VAFB V23, Launch Pad. SSS 2300A, July 7, 1978.
- 33. Station Set Specification for VAFB V27, Flight Crew Systems Facility. SSS 2700, June 2, 1978.
- 34. Station Set Specification for VAFB V28, Launch Control Center. SSS 2800, December 30, 1977.
- 35. Station Set Specification for VAFB V30, Parachute Refurbishment Facility. SSS 3000, June 11, 1978.
- 36. Station Set Specification for VAFB V31, Solid Rocket Booster Refurbishment and Subassembly. SSS 3100, February 10, 1978.
- 37. Station Set Specification for VAFB V32, Solid Rocket Booster Refurbishment and Subassembly Facility. SSS 3200, March 24, 1978.
- 38. Station Set Specification for VAFB V33, External Tank Processing and Storage Facility. SSS 3300, March 24, 1978.
- 39. Station Set Specification for VAFB V80, Transportation. SSS 8000A, February 1, 1977.
- 40. Station Set Specification for VAFB V84, Launch Processing System. SSS 8400, May 14, 1979.
- 41. Station Set Specification for VAFR V86, Utilities. SSS-86/86A, March 4, 1977.
- 42. Station Set Specification for VAFB V88, Logistics Support Facilities. SSS-8800, June 9, 1978.
- 43. Titan Liquid Booster Module for Space Performance Augmentation (SAMSO 333). Space and Missile Systems Organization. December 20, 1979.
- 44. U.S Invironmental Protection Agency. Questions and Answers on Hazardous Waste Regulations. SW-853. Office of Water and ste Management, 1980.
- 45. U.S. ironmental Protection Agency. Environmental Regulation and Tachnology, the Electroplating Industry. EPA 25/1 20/001. Technology Transfer, 1980.
- 46. V2 Operations Emission Data. Supplemental Data Sheet No. 33 lc eout Toxics. Department of the Air Force, November 29 1/9.

APPENDIX A

HAZARDOUS WASTE GENERATION BY STS GROUND OPERATIONS AT VAFB, LISTED BY EPA HAZARDOUS WASTE NUMBER

APPENDIX A

The following tables were compiled to assist VAFB personnel in completing all pertinent EPA notification and application forms. Both tables are organized by EPA hazardous waste number, in much the same fashion as required by the Hazardous Waste Permit Application Form 3510-3. Estimated annual hazardous waste quantities are presented for each waste. These quantities are based on the numerical data available at the time that the information was developed. Those hazardous waste numbers described as "included with above" are components of the quantified waste number above; as components, they do not need to be quantified separately if the total mixed waste is quantified. Table A-1 further divides the wastes by station set. Table A-2 presents the hazardous waste numbers and annual quantities for the project as a whole.

TABLE A-1, EPA DESCRIPTION OF HAZARDOUS WASTE (by Station Set)

Station	EPA Hazardous Waste	Qua		Estimated A	Estimated Annual Quantity (kg)		
Set	No.	Launch	1985	1986	1987	1988-1994 (per year)	Project Total
V 17	*0001 *P068 *P080	2,725.4	10,901.6	16,352.4	27,254.0	40,881.0	340,675.0
V 18	0001	4.3	17.2	25.8	43.0	64.5	537.5
V 19	* 0000 0013 0092 0001 F002 F002 F003 F005	included with included with 17.9 facluded with included with included with included with	above above 71.6 above above	107.4	179.0	268.5	2,237.5
	0002 P068	3,1		18,942.0	31,570.0	47,355.0	394,625.0
	0133 D003 F002	included with 0.5 included with	3bove 2.0	3.0	5.0	7.5	62.5
	F017 D001 D007 U159	27.4 included with included with		164.4	274.0	411.0	3,425.0
	0220 P068 P030	included with 3,165.2 514.7	above 12,660.8 2,058.8	18,991.2 3,088.2	31,652.0	47,478.0 7,720.5	395,650.0 64,337.5
	U133 U159	68.0 42.4	272.0 169.6	408.0 254.4	680.0 424.0	1,020.0 636.0	8,500.0
V 21	0001 0002 P068	9.0 470.9 included with	36.0 1,883.6	54.0 2,825.4	90.0	135.0	1,125.0 58,862.5
		2,725.4 139.1 42.4	10,901.6 556.4 169.6	16,352.4 834.6 254.4	27,254.0 1,391.0 424.0	40,881.0 2,086.5 636.0	340,675.0 17,387.5 5,300.0

TABLE A-1 (continued)

Project Total	290,387.5 71,124,025.0 419,862.5 126,962.5 404,537.5	313,262.5 4,700.0 19,225.0 562.5 69,062.5 159,000.0 13,687.5 66,225.0 66,225.0
g) 1988-1994 (per year)	34,846.5 8,534,883.0 50,383.5 15,235.5 48,544.5	37,591.5 2,307.0 2,307.0 67.5 59,604.0 8,287.5 19,080.0
Estimated Annual Quantity (kg)	23,231.0 5,689,922.0 33,589.0 10,157.0 32,363.0	25,061.0 376.0 1,538.0 39,736.0 5,525.0 12,720.0 12,720.0 5,298.0 5,298.0
timated Annua	13,938.6 3,413,953.2 20,153.4 6,094.2 19,417.8	15,036.6 225.6 922.8 23,841.6 3,315.0 7,632.0 3,178.8 3,178.8
ES 1985	9,292.4 2,275,968.8 bove bove 13,435.6 4,062.8 12,945.2	10,024.4 above above above 150.4 above 15,894.4 2,210.0 5,088.0 above
s Quantity per Launch	2,323.1 568,92.2 included with above included with above 3,358.9 1,015.7 3,236.3	2,506.1 included with a includ
EPA Hazardous Waste No.	0001 0002 0002 0133 *0003 P068 P068	0001 0003 0013 0013 0002 0007 0007 0007 0003 0007 0007 000
Station Set	V 23	V 31

TABLE A-1 (continued)

Project Total	92,600.0 40,437.5 5,100.0 75,700.0 5,125.0	24,212.5	43,225.0 16,037.5 10,125.0 12,637.5	297,100.0
(kg) 1988-1994 (per year)	11,112.0 4,852.5 612.0 9,084.0 615.0	2,905.5	5,187.0 1,924.5 3.0 1,215.0 1,516.5	35,652.0
Estimated Annual Quantity (kg)	7,408.0 3,235.0 408.0 6,056.0	1,937.0	3,458.0 1,283.0 2.0 810.0 1.0	23,768.0
Estimated An	4,444.8 1,941.0 244.3 3,633.6 246.0	1,162.2	2,074.8 769.8 1.2 486.0 0.6	14,260.8
1985	2,963.2 above i,294.0 above 163.2 2,422.4 164.0	774.8	1,383.2 above	9,507.2
Quantity per Launch	001 740.8 2, 0002 included with above 002 323.5 1, 0133 included with above 003 40.8 40.8 133 41.0 2,	193.7	01 0229 included with 0239 included with 0301 included with 0102 included with 01229 included with 0229 included with 0230 included with 024057 included with 0250 included with 027 included with	2,376.8
EPA Hazardous Waste No.	D001 D002 U133 D003 D011 P068 U133	1000	0001 0229 0229 0003 0001 0102 01229 0022 0022 0001 0057 0057 0057	F002
Station	v 32	y 33	66 >	Other

* Data not presently available.

TABLE A-2. EPA DESCRIPTION OF HAZARDOUS WASTE (Overall)

Project Total		767,587.5	71,622,650.0	16,100.0	19,225.0
1988-1994 (per year)		92,110.5	8,594,718.0	1,932.0	2,307.0
ity (kg) 1987		61,407.0	5,729,812.0	1,288.0	1,538.0
Estimated Annual Quantity (kg) 1985 1986 19		36,844.2	3,437,887.2	772.8	922.8
Estimated 1985		24,562.8	2,291,924.8 ve ve	515.2	615.2
Quantity per Launch	included with above included with above	folded with above included with above	572,981.2 included with abor	128.8 included with above included with above included with above included with above	153.8 included with above included with above
EPA ardous aste No.	0000 0013 0092	D001 D002 D003 F003 F003 F005 U159 U210 U229	D002 P058 U133	0003 0001 F002 U102 U160	D007 D002 P055

TABLE A-2 (continued)

EPA Hazardous	Quantity	Estimated	Estimated Annual Quantity (kg)	tity (kg)	1988-1994	Project
Waste No.	per Launch	1985	1986	1987	(per year)	Total
0011	40.8	163.2	244.8	408.0	612.0	5,100.0
F001	4.5	18.0	27.0	45.0	67.5	562.5
F002	6,350.6	25,402.4	38,103.6	63,506.0	95,259.0	793,825.0
F005	633.5	2,534.0	3,801.0	6,335.0	9,502.5	79,187.5
F017 D001 D007 D007 F002 F003 F005 U159 U161 U210 U220	included with above	5,198.0	7,797.0	12,995.0	19,492.5	162,437.5
P068	12,580.5	50,322.0	75,483.0	125,805.0	188,707.5	1,572,562.5
P080	1,669.5	6,678.0	10,017.0	16,695.0	25,042.5	208,687.5
*u080						
U133	3,454.8	13,819.2	20,728.8	34,548.0	51,822.0	431,850.0
U159 U057	59 715.7 UO57 included with above	2,862.8	4,294.2	7,157.0	10,735.5	89,462.5
U210	9.0	2.4	3.6	0.9	9.0	75.0
	3					

* Data not presently available.

GLOSSARY

ADDI Additives AFB Air Force Base Ag Silver A1 **Aluminum** APPL **Application** APS Aft propulsion system APU Auxiliary power unit ARCS Aft reaction control subsystem AUX Auxiliary BGE Butyl glycidyl ether С Corrosive CAT Category CC Cubic centimeters CF Cubic feet CFM Cubic feet per minute CLNP Cleanup CM Centimeters CMP Corrugated metal pipe CMPNTS Components 002 Carbon dioxide COMP Compatibility Cr Chromium Cu Copper CY Cubic yards DOT Department of Transportation Ε EP toxic EEW&S Emergency eyewash and shower EIS Environmental Impact Statement EPA Environmental Protection Agency ΕT External tank F Flammable FRCS Forward reaction control system Ft² Square feet

```
ft^3
          Cubic feet
FWD
          Forward
Gal
          Gallons
GH2
          Gaseous hydrogen
GHe
          Gaseous helium
GN2
          Gaseous nitrogen
G02
          Gaseous oxygen
GPM
          Gallons per minute
Н
          EPA acutely hazardous
          Water
H<sub>2</sub>0
          Peroxide
H<sub>2</sub>0<sub>2</sub>
Ha
          Hectares
Не
          Helium
HP
          Horsepower
HYD
          Hydrazine
Ηz
          Hertz
i
          Ignitable
          Irritant
I
          Isopropyl alcohol
IPA
ISP
          Instant set polymer
          Insulation wastewater (suprawater)
IW
KSC
          Kennedy Space Center
k۷
          Kilovolts
kVA
          Kilovoltampere
kW
          Kilowatt
          Liters
L
LAPS
          Left aft propulsion system
          Liquid boost module
LBM
          Pounds
Lbs
          Liquid hydrogen
LH2
LIQ
          Liquid
          Liquid nitrogen
LN2
L02
          Liquid oxygen
```

LP Launch pad Meter М _M2 Square meters м3 Cubic meters MDA Methylene dianiline MDI Diphenyl methane diisocyanate MEC1 Methylene chloride MEK Methyl ethyl ketone Magnesium Mg MMH Monomethylhydrazine mPDA meta-Phenylene diamine MSA Marshall Sprayable Ablative ATM Marshall Trowlable Ablative N/A Not applicable N₂ Nitrogen Anhydrous hydrazine N2H4 N204 Nitrogen tetroxide NaOH Sodium hydroxide ND No data Neg Negligible NH_3 Ammonia NVAFB North Vandenberg Air Force Base 0&M Operation and Maintenance 0, 0xygen OPNS Operations ORB Orbiter ORD Ordnance OXID Oxidizer Р Pressure generating РЬ Lead PBK Payload bay kit Polychlorinated biphenyl PCB PCR Payload changeout room

PERC Perchloroethylene PH Port Hueneme Publicly owned treatment works POTW PPM Parts per million Payload preparation room PPR PRG Purge Protective or protection PROL PSI Pounds per square inch PVC Polyvinylchloride QW Quench water Reactive R RAPS Right aft propulsion system RCRA Resource Conservation and Recovery Act RSV Remote service vehicle RTN Routine R۷ Retrieval vessel S Strong sensitizer S&A Safe and arm SCAPE Self-contained atmospheric protective ensemble SEG Segment SF Square feet Skirt SKT Spray-on foam insulation SOFI SOL Solid SPL Spill(s) SRB Solid rocket booster SRM Solid rocket motor SS Station set Station set specification SSS STA Station STS Space transportation system South Vandenberg Air Force Base SVAFB Т Toxic

1,1,1-trichloroethane TCE ΤP Thrust post TPH Tons per hour Thermal Protection System TPS Treatment TRT Thrust vector control TVC Unsymmetrical dimethylhydrazine UDMH Vandenberg Air Force Base VAFB Zn Zinc

CATEGORY CODES

AL	Alkaline cleaning solutions
AW	Adhesive wastes, nonaqueous
ВА	Batt ries
BW	Bilge wastes
CA	Contaminated air filters
CB	Catalytic bed wash water
CC	Contaminated clothing
CN	Containers
CR	Contaminated rags
CS	Contaminated seawater
CW	Forward skirt cleaning wastes
EW	EEW&S wastewater
F0	Fuel, oil and grease spills and wastes
FS	Fuel spill cleanup
HF	Hydriulic fluids
HS	Hydrazine scrubber effluent
HY	Hydrazine
IN	Insulation wastes, solid
IW	Insulation wastewater (suprawater)
MH	Monomethylhydrazine
NH	Ammonia (NH_3), or water with ammonia
NO	Nitrogen tetroxide (N ₂ 0 ₄)
OR	Ordnance
0 S	Oxidizer spill cleanup
PA	Paint wastes, nonaqueous
PR	Preservative wastes, nonaqueous

CATEGORY CODES (continued)

PS	Propellants, solid
PW	Painting wastewater
QW	Quench water
SB	SRB wash water
SI	SRB initial rinse
S 0	Solvent wastes, nonaqueous
SR	Solvent reducer wastes
SW	Solvent wastewater
WP	Worn-out parts
WS	Wastewater treatment sludges