EGM0004

Sistemas Não Lineares

Prof. Josenalde Barbosa de Oliveira – UFRN

Programa de Pós-Graduação em Engenharia Mecatrônica

4T1234 (60h) (13:00-14.40/14.55-16:35h) — 28.02.2024 : 03.07.2024

- Conteúdo planejado (ementa):
 - Introdução à dinâmica de sistemas não-lineares;
 - Conceitos fundamentais de equações diferenciais ordinárias (ODE);
 - Análise de estabilidade de sistemas não-lineares através do plano de fase;
 - Estabilidade de sistemas autônomos (invariantes no tempo):
 - teoremas de Lyapunov, princípio de invariância, teoremas em instabilidade;
 - Estabilidade de sistemas não autônomos;
 - Aplicações em controle não linear: linearização por realimentação, controle por modos deslizantes, controle adaptativo.

- Datas chave propostas para deadline de instrumentos avaliativos
 - 03.04, 22.05, 26.06
 - Ferramentas simulação: Matlab/Simulink, Scilab, Octave (.m), Python, R, Julia etc.
 - https://github.com/josenalde/nonlinear_systems
 - https://octave.org/ (https://octave.sourceforge.io/control/)
 - pkg install –forge control; pkg load control
 - https://octave-online.net/

- Referências
 - Notas de aula / Playlist Richard Pates: https://www.richardpates.com/teaching/
 - J.-J. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991.
 - Aulas disponíveis: https://web.mit.edu/nsl/www/videos/lectures.html
 - H. K. Khalil, Nonlinear Systems, 3rd edition, Prentice Hall, 2001;
 - S. Sastry, Nonlinear Systems, Springer, 1999;
 - Strogatz, S.H. Nonlinear dynamics and chaos, 2nd ed, Taylor&Francis, 2015.

- Referências
 - Geromel, J.C.; Korogui, R.H. Controle linear de sistemas dinâmicos 2. ed., Blucher, 2019.
 - Oliveira, J.B. Estabilidade e Robustez de um Controlador Adaptativo Indireto por Modelo de Referência e Estrutura Variável. Tese de Doutorado, UFRN. 2007. Apêndice A https://repositorio.ufrn.br/jspui/bitstream/123456789/15112/1/JosenaldeBO.pdf

• Castrucci, Plinio. Sistemas Não Lineares, 1981. (4 na BCZM!)

	6.1	Introdução
	6.2	Equações Diferenciais Não Lineares
i)		6.2.1 Linearização
	6.3	Sistemas de Segunda Ordem
		6.3.1 Soluções Periódicas
aos	6.4	Estabilidade
m Savi	593/F4-10-bad	6.4.1 Linearização Harmônica
101.5364		6.4.2 Critério de Popov
17.		6.4.3 Critério de Persidiskii
	6.5	Notas Bibliográficas
Prof.	Josenalde Oli	Éxercícios

Sistemas Não Lineares

Blucher

221

- Sistemas lineares X Sistemas não lineares
 - Teoria de análise linear sólida (sistemas dinâmicos com comportamento linear)
 - Exemplo:

$$\dot{x} = f(x), f(x) = ax, \quad \text{com } x(0) = x_0$$

$$\implies x(t) = x_0 e^{at}$$

LINEAR

$$a_0y + a_1\dot{y} + a_2\ddot{y} + a_3\ddot{y} + \dots + a_ny^{(n)} = u(x), \quad \text{com } a_i, i = 0, 1, \dots, n \text{ constants}$$

$$y^{''} + 2y^{'} + y = 0$$
 $3y^{'} + 2y = 1$

Exemplos lineares:
$$y^{''}+2y^{'}+y=0 \quad 3y^{'}+2y=1$$
 Exemplos não lineares:
$$y^{'}+y^{2}=0 \quad yy^{''}+y^{'}=0$$

• Aplicações em áreas variadas, por exemplo, otimização (programação

linear), controle preditivo com restrições etc.

$$\max x_1 + x_2 \qquad \min x_1 + 2x_2$$
s.r.
$$2x_1 + 4x_2 \le 20 \qquad 2x_1 + 3x_2 \ge 20$$

$$180x_1 + 20x_2 \le 600 \qquad 180x_1 + 20x_2 = 600$$

$$x_1, x_2 \ge 0 \qquad x_1, x_2 \ge 0$$
Enalde Oliveira

• Sistemas lineares X Sistemas não lineares

Matemática computacional Física Bioinformática Engenharia

• • •

Exemplos de comportamento de trajetórias em relação a pontos fixos

Entrada

Entrada

 $r_1(t) + r_2(t)$

 $r_1(t)$

 $r_{2}(t)$

 $Ar_{1}(t)$

- Sistemas lineares X Sistemas não lineares
 - Os sistemas físicos são intrinsicamente não lineares.

Saída

Saída

 $c_1(t)$

 $c_2(t)$

 $Ac_1(t)$

 $c_1(t) + c_2(t)$

Sistema linear

• Sistemas lineares obedecem ao princípio da superposição e da homogeneidade

$$u_{1}(t) \to y_{1}(t) = Hu_{1}(t)$$

$$u_{2}(t) \to y_{2}(t) = Hu_{2}(t)$$

$$\alpha_{1}u_{1}(t) + \alpha_{2}u_{2}(t) \to y(t) = H[\alpha_{1}u_{1}(t) + \alpha_{2}u_{2}(t)]$$

$$\alpha_{1}Hu_{1}(t) + \alpha_{2}Hu_{2}(t) = \alpha_{1}y_{1}(t) + \alpha_{2}y_{2}(t), \quad \forall \alpha_{1}, \alpha_{2} \in \Re$$

f (x)

Saídas

Prof. Josepalde Oliveira

f(x)

Sepjes 1

1 2 3 4 x

Entradas

Linear

Não Linear

Fonte: [1]

- Sistemas lineares X Sistemas não lineares
 - A introdução de elementos não lineares pode melhorar e até mesmo otimizar sob alguns aspectos o desempenho de sistemas de controle

- Análise de equações diferenciais não lineares
- Análise de fenômenos que não podem ser explicados por modelos lineares
- Introdução de controladores não lineares (adaptativo, a relé etc.)
 - Estas não linearidades podem ser
 - INERENTES ou NATURAIS (presentes no sistema)
 - INTENCIONAIS ou ARTIFICIAIS (introduzidas por um controlador)

$$\dot{H_1} = \frac{1}{A_1} \left[Q_{i1} - \alpha_3 \sqrt{H_1 - H_2} sign(H_1 - H_2) - \alpha_1 \sqrt{H_1} \right]$$

$$\dot{H_2} = \frac{1}{A_2} \left[Q_{i2} + \alpha_3 \sqrt{H_1 - H_2} sign(H_1 - H_2) - \alpha_2 \sqrt{H_2} \right]$$
NATURAL

SAAD, M. Performance analysis of a **nonlinear** coupled tank system using PI controller. *Univ. J. of Control and Automation*, 5(4), p. 55-62, 2017.

$$\begin{split} \dot{H_1} &= \frac{1}{A_1} \left[Q_{i1} - \alpha_3 \sqrt{H_1 - H_2} sign(H_1 - H_2) - \alpha_1 \sqrt{H_1} \right] \\ \dot{H_2} &= \frac{1}{A_2} \left[Q_{i2} + \alpha_3 \sqrt{H_1 - H_2} sign(H_1 - H_2) - \alpha_2 \sqrt{H_2} \right] \end{split}$$

Detalhe Modelo não linear dos tanques

Detalhe Modelo linear bomba d'água

Resultados (gráfico + tabela de indicadores (KPI))

Performance Specifications	$K_p = 40$ $K_i = 5$	$K_p = 30$ $K_i = 1.5$	$K_p = 15.6$ $K_i = 1.3$
Overshoot %	59.55%	15.5%	5.77%
Peak Time (sec.)	9.57	9.1	13.86
Raise Time (sec.)	3.46	4.14	7.06
Settling Time (sec.)	56.47	43.90	32.88
Steady State Error	0	0	0
Dead Time (sec.)	3.53	4.6	6.52

Performance Specifications	$K_p = 40$ $K_i = 5$	$K_p = 30$ $K_i = 1.5$	$K_p = 15.6$ $K_i = 1.3$
ITAE	1782	1031	638.4

Parâmetros nominais para simulação do modelo

Name	Expression	Value 32 cm ²		
Cross section area of the couple tank reservoir	A ₁ & A ₂			
Proportionality constant that depends on discharge coefficient,	Subscript i denotes Which - tank it refers	α_1	α_2	α_3
orifice cross Sectional area and gravitational constant		14.3 cm ^{2/3} /sec	14.3 cm ^{2/3} /sec	20 cm ^{2/3} /sec
Pump motor time constant	T _c	1 sec rof. Josenalde 30ിo vair ³ /sec		
Maximum allowable volumetric flow rate pumped by motor	Qi _{max} Pr			

Análise de uma equação diferencial não linear

Exemplo 1: predizer posição futura da partícula P

$$\frac{dx}{dt} = \cos(x)$$
, Encontrar x para $t \to \infty$ para $x(0) = x_0$

Passos para analisar $\frac{dx}{dt} = f(x)$

- 1) Esboçar gráfico de f(x)
- 2) Achar pontos de equilíbrio graficamente ou resolver $\frac{dx}{dt}=0$
- 3) Determinar os fluxos (setas)
- 4) Determinar a estabilidade dos pontos de equilíbrio
- 5) Se aplicável determinar trajetória de qualquer condição inicial

Análise de uma equação diferencial não linear

Exemplo 2: predizer posição futura da partícula P

$$\frac{dx}{dt} = x^3 - sen(x)$$
, Encontrar x para $t \to \infty$ para $x(0) = \frac{\pi}{2}$

Análise de uma equação diferencial não linear

Definições:

- a) ESPAÇO DE FASE: conjunto de pontos que contém todos possíveis estados do sistema dinâmico. No caso 1-D em estudo até agora, o espaço de fase é o eixo x. No caso 2-D um plano...
- b) TRAJETÓRIA: caminho de uma solução no espaço de fase a partir de condição inicial
- c) RETRATO DE FASE (phase Portrait): gráfico que mostra trajetórias que um sistema/equação diferencial tende a seguir (exemplo pêndulo) d) PONTO DE EQUILÍBRIO (Fixo, Estacionário): é um ponto x_f onde $\frac{dx}{dt} = 0$
- d) PONTO DE EQUILÍBRIO (Fixo, Estacionário): é um ponto x_f onde $\frac{dx}{dt}=0$, com classificação geral:

ESTÁVEL: trajetórias na vizinhança convergem INSTÁVEL: trajetórias na vizinhança divergem

Referências

[1] Almeida, Tiago A.; Cavalcanti, A.L.O. Notas de aula. Curso Automação Industrial, Controle de Processos 1. ed. IMD, 2016. Disponível em: https://materialpublic.imd.ufrn.br/curso/disciplina/1/63/2/5