

מערכות ספרתיות 4

- •מבוא
- •משתנים בוליאניים
 - •ייצוג מספרים
- אריתמטיקה בינארית•
 - •קודים בינאריים

ד"ר רון שמואלי rons@afeka.ac.il

כללי

- ספר הקורס
- האוניברסיטה הפתוחה מערכות ספרתיות תרגום פרקים 1-7 מן הספר של 1-7 (קיים גם מדריך למידה בספריה.) של 1988 M. Mano
 - ספרים נוספים
- M. Morris Mano, <u>Computer Engineering Hardware Design</u>, Prentice Hall, 1997

- M. Morris Mano, <u>Digital Design</u>, Prentice Hall, 1991
 - אתר למידה מרחוק
 - שקפים
 - דפי נוסחאות -
 - סיכומי הרצאות
 - מבנה ציון
 - מבחן 80% בוחן 10% תרגילים 10% –

הקדמה

- מערכות ספרתיות אבני הבניין של המחשב הספרתי.
 - אות אנלוגי ביחס לספרתי

ייצוג מספרים בעזרת שני ערכים מנוגדים •

"0" לוגי	"1" לוגי
False	True
Low	High
Off	On
טוק	גע
(c) Dr. Ron Sh	nmueli

3

(המשך) הקדמה • המשתנים הלוגיים יכולים לקבל שני ערכים { "0", "1"} • מערכת לוגית F where x_i , y_i are $\{0,1\}$. • תאור הפונקציונליות הלוגית unique Truth Table not • טבלת אמת unique gate Boolean Expression representation טבלה המתארת את הקשר unique (schematic) בין כל הצרופים האפשריים [convenient for [close to manipulation] של ערכי הכניסה ביחס implementaton] לתוצאת הפעולה (c) Dr. Ron Shmueli

ייצוג מספרים בבסיסים שונים

• ייצוג משוקלל

:b=10 בסיס עשרוני

$$(23.7)_{10} = 2 \cdot 10^1 + 3 \cdot 10^0 + 7 \cdot 10^{-1}$$

 ± 2 (אוקטלי): בסיס

$$(370.5)_8 = 3 \cdot 8^2 + 7 \cdot 8^1 + 0 \cdot 8^0 + 5 \cdot 8^{-1} = (248.625)_{10}$$

b=5 בסיס

$$(124.3)_5 = 1 \cdot 5^2 + 2 \cdot 5^1 + 4 \cdot 5^0 + 3 \cdot 5^{-1} = (39.6)_{10}$$

b=2 בסיס b=2

$$(1010.01)_2 = 1 \cdot 2^3 + 1 \cdot 2^1 + 1 \cdot 2^{-2} = (10.25)_{10}$$

b=16 בסיס b=16

$$(A31.C)_{16} = 10 \cdot 16^2 + 3 \cdot 16^1 + \text{to} bright 0 + 12 \cdot 16^{-1} = (2609.75)_{10}$$

	_	_	~ .		
()	I)r	Dan	Shr	\mathbf{n}	li
16.7	DI.	NULL	JULL	IUC	П

מעבר מבסיס כלשהוא לבסיס 10.

- הצורה הקנונית
- מספר בבסיס r המורכב מ n ספרות לפני הנקודה ו m ספרות אחרי הנקודה מהצורה :

$$a_{n-1} a_{n-2} \cdots a_0 \cdot a_{-1} a_{-2} \cdots a_{-m}$$

:ערכו של המספר בבסיס 10 יהיה

$$(N)_{10} = a_{n-1} r^{n-1} + a_{n-2} r^{n-2} + \dots + a_0 r^0 + a_{-1} r^{-1} + a_{-2} r^{-2} \dots + a_{-m} r^{-m}$$

$$(N)_{10} = \sum_{i=-m}^{n-1} a_i r^i$$

מעבר מבסיס 10 לבסיס כלשהוא

• מפרידים בין החלק השלם לשבר

<u>- החלק השלם</u>

- r סיסב במחלקים בבסיס •
- השארית מהווה ספרה במספר החדש
 - המנה מועברת לשלב הבא
 - דוגמא:

$$\frac{300}{133}$$
 $\frac{300}{1=d_0}$ $\frac{300}{1=d_0}$ $(133)_{10}=(?)_3$ $\frac{44}{14}$ $\frac{2=d_1}{2=d_2}$ $\frac{1}{14}$ $\frac{1=d_3}{1=d_4}$ $\frac{1=d_4}{0}$

מעבר מבסיס 10 לבסיס כלשהוא (המשך)

- חלק השבר –
- r בכל שלב מכפילים בבסיס
- החלק השלם הוא ספרה במספר החדש
 - השבר שנישאר מועבר לשלב הבא

<u>לדוגמא:</u> –

$$0.43 \times 5 = 2.15$$
 $0.43)_{10} = (?)_5$ $0.43 \times 5 = 2.15$ $0.15 \times 5 = 0.75$ $0 = d_{-2}$ $0.75 \times 5 = 3.75$ $0.75 \times 5 = 3.75$

 $0.43 = (0.20333...)_5$

c) Dr. Ron Shmueli

בסיס 2	בסיס 16
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	8
1001	9
1010	Α
1011	В
1100	С
1101	D
1110	E
120111	F

מעבר מהיר בין בסיסים שהן חזקות של 2

 $(2^1,2^2,2^3,2^4)$ 2,4,8,16 הבסיסים •

	(2
בסיס 2	בסיס 8
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

2 בסיס	בסיס 4
00	0
01	1
10	2
11	3

:דוגמא

$$\begin{vmatrix} (101101101.101)_2 = \\ = (01 \ 01 \ 10 \ 11 \ 01.10 \ 10)_2 = (\\ = (101 \ 101 \ 101.101)_2 = (\\ = (0001 \ 0110^{\text{pr.}})^{-1} \text{ of } \text{$$

/_\	Ο	D	Cl	1:
(C)	Dr.	Kon	Shm	uell

		(זרית (קבוצה	ה בינא	מטיקו	גריתו
(x-y)	בינארי	חיסור	(x+	y) ארי	ור בינ	חיב •
ху	D= Difference	B= Borrow		ху	S= Sum	C= Carry
00				00		
01				01		
10				10		
11				11		
	ק בינאר	חילוי		רי	בינא '	י כפז
	ху	×/y		x y	ху	
	00			00		
	01			01		
	10			10		
	11			11		

(c)) Dr	Ron	Shm	uueli
(\mathbf{c})	, וטו	NOH	31111	lucii

דוגמא •

במחשב הפועל בשיטת משלים ל 2, בגודל מילה של 8 סיביות. נתון המספר הבינארי 10010110 מה ערכו הדצימלי של המספר? מה היה ערכו בשיטת גודל +סימן?

קודים בינאריים משוקללים **•** קודים משקלים BCD – קוד 2 4 2 1 8 4 2 1 ספרה – משקלים שונים 0 0 0 0 0 0 0 0 0 $0\ 0\ 0\ 1$ 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 0 0 1 1 0 1 0 0 $0\ 1\ 0\ 0$ 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 8 1111 1 0 0 1 9

קודים בינאריים לא משוקללים BCD+3 = Ex-3 • Excess-3 BCD ספרה 0 0 1 1 0 0 0 0 $0\ 1\ 0\ 0$ 0 0 0 1 1 0 1 0 1 $0\ 0\ 1\ 0$ 2 $0\ 1\ 1\ 0$ $0\ 0\ 1\ 1$ 0 1 0 0 0 1 1 1 $1 \ 0 \ 0 \ 0$ $0\ 1\ 0\ 1$ 1 0 0 1 $0\ 1\ 1\ 0$ 0 1 1 1 1 0 1 0 1011 $1 \ 0 \ 0 \ 0$ 8 $1 \ 0 \ 0 \ 1$ 9 $1\ 1\ 0\ 0$ (c) Dr. Ron Shmueli 15

קודים לא משוקללים gray – קוד גריי • • מספרים עוקבים נבדלים בסיבית אחת n=3 קוד באורך מילת קוד ספרה

