

SPECIFICATIONS FOR HANGKE LAMPLED

Model: HK L-572SSWCW-1901A00

L-572SSWCW-1901A00

HangZhou HangKe Optoelectronics Co.,LTD.

Http://www.hkled.com 杭科光電

1. OUTLINE DIMENSIONS AND MATERIALS

尺寸和材料

◆ Lens Color : Water Clear

• Emitting Color: Super Bright White

◆ Chip material: InGaN

Resin(Mold): Epoxy ResinLeadframe: Ag plating Iron

Notes:

- 1. All dimensions are in millimeters.
- 2. Tolerance is ± 0.25 mm unless otherwise noted.
- 3. Protruded resin under flange is 1.0mm max.
- 4. Lead spacing is measured where the leads emerge from the package.

2. SPECIFICATIONS

Absolute Maximum Ratings

绝对最大额定值

Item 项目	Symbol 符号	Absolute Maximum Rating 绝对最大值	Unit 单位
Forward Current 正向电流	IF	20	mA
Pulse Forward Current 正向脉冲电流 ^四	IFP	100	mA
Reverse Voltage 反向电压	$V_{\scriptscriptstyle R}$	5	V
Power Dissipation 耗散功率	PD	70	mW
Junction Temperature c 结温	Tj	120	$^{\circ}$
Operating Temperature 操作温度	Topr	-40 ~ +85	$^{\circ}$
Storage Temperature 存储温度	Tstg	-40 ~ +100	$^{\circ}$
Soldering Temperature 焊接温度	Tsld	Manual:260°C for 2sec.(max) 手工焊:最大260°C for 2sec.	

[1] IFP conditions: pluse width 10msec. and duty 0.1 IFP 条件: 脉冲宽度 10msec., 占空比 0.1.

Initial Electrical/Optical Characteristics

初始光电特性

Item 项目	Symbol 符号	Condition 测试条件	Min. 最小值	Typ. 典型值	Max. 最大值	Unit 单位
Forward Voltage 正向电压	VF		2.9	/	3.5	V
Luminous Flux 光通量	Фу	IF=20mA	6.0	/	8.0	lm
Viewing Angle 发光角度	201/2		/	70/30	/	Deg.
Reverse Current 反向漏电流	IR	VR=5V	/	/	10	uA

3. BIN CODE

Bin code form: $X_1X_2X_3X_4$

(1) X₁: Luminous Flux (If=20mA)

X ₁	Luminous Flux	Unit
F	4.5-5.5	
G	5.5-6.5	lm
Н	6.5-8.0	

(2) X2 X3 : Correlated Color Temperature (If=20mA)

X2X3	X	Y	CCT	X2X3	Х	Y	CCT
	0.5357	0.4573		GD -	0.5057	0.4736	
GA	0.5024	0.4679	<u> </u>		0.4772	0.4669	
UA.	0.4813	0.4319			0.4562	0.4260	
	0.5179	0.4319			0.4813	0.4319	
	0.5179	0.4319			0.4813	0.4319	
	0.4813 0.4319	2580K		0.4562	0.4260	2700K (2580-	
RA	0.4593	0.3944	(2300K	RD	0.4373	0.3893	2870K)
	0.4915	0.3944			0.4593	0.3944	3
	0.4915	0.3944			0.4593	0.3944	
	0.4593	0.3944			0.4373	0.3893	
PA	0.4349	0.3528	- I P	PD	0.4163	0.3485	
	0.4622	0.3528		0.4349	0.3528		
	0.4772	0.4669			0.4468	0.4559	
	0.4468	0.4559			0.4118	0.4386	
GN	0.4299	0.4165		GB	0.3996	0.4015	
	0.4562	0.4260	(0)		0.4299	0.4165	
	0.4562	0.4260			0.4299	0.4165	
	0.4299	0.4165	3000K		0.3996	0.4015	3500K
RN	0.4148	0.3814	(2870- 3220K)	RB	0.3889	0.3690	(3220- 3710K)
)	0.4373	0.3893			0.4148	0.3814	3
	0.4373 0.3893			0.4148	0.3814		
	0.4148	0.3814	1		0.3889	0.3690	
PN	0.3978	0.3420		PB	0.3767	0.3319	
	0.4163	0.3485	1		0.3978	0.3420	

X_2X_3	X	Y	CCT	X2X3	X	Y	CCT
	0.4118	0.4386			0.3806	0.4189	
GL	0.3806	0.4189		GC	0.3586	0.4028	
GL	0.3736	0.3874			0.3548	0.3736	
	0.4006	0.4044	(0)		0.3736	0.3874	
	0.4006	0.4044		0.3736	0.3874		
	0.3736	0.3874	4000K (3710-		0.3548	0.3736	4500K (4260- 4745K)
RL	0.3670	0.3578	4260K)	RC	0.3512	0.3465	
	0.3898	0.3716			0.3670	0.3578	
	0.3898	0.3716			0,3670	0.3578	
	0.3670	0.3578			0.3512	0.3465	
PL	0.3588	0.3211		PC	0.3467	0.3124	
	0.3767	0.3319			0.3588	0.3211	
	0.3592	0.4070			0.3387	0.3902	
	0.3387	0.3902			0.3189	0.3721	
GZ	0.3376	0.3616		GM	0.3207	0.3462	
	0.3551	0.3760			0.3376	0.3616	
	0.3551	0.3760	1		0.3376	0.3616	
	0.3376	0.3616	5000K		0.3207	0.3462	5700K
RZ	0.3366	0.3369	5310K)	(4745- 5310K) RM	0.3222	0.3243	(5310- 6020K)
	0.3515	0.3487			0.3366	0.3369	
	0.3515	0.3487			0.3366	0.3369	
	0.3366	0.3369		1	0.3222	0.3243	
PZ	PZ 0.3352 0.3033 PM	0.3033		PM	0.3243	0.2938	
			0.3352	0.3033			

X,X,	X	Y	CCT	X,X,	X	Y	CCT	
	0.3189	0.3721		GS -	0.2979	0.3537		
	0.2986	0.3506			0.2743	0.3243		
GR	0.3028	0.3304			0.2830	0.3050		
	0.3205	0.3491			0.3029	0.3299		
	0.3205	0.3491	Z(V)		0.3029	0.3299		
	0.3028	0.3304	6500K (6020-		0.2830	0.3050	8000K (7040-	
RR	0.3068	0.3113	7040K)	RS	0.2906	0.2880	9000K)	
	0.3221	0.3261			0.3073	0.3089		
	0.3221	0.3261	P:			0.3073	0,3089	
	0.3068	0.3113		PS	0.2906	0.2880		
PR	0.3128	0.2826			0.2991	0.2690		
	0.3243	0.2938			0.3128	0.2826		
	0.2743	0.3243			0.2458	0.2882		
GT	0.2458	0.2882		GU	0.2159	0.2459		
GI	0.2582	0.2737			0.2315	0.2358		
	0.2830	0.3050	(0)		0.2582	0.2737		
	0.2830	0.3050			0.2582	0.2737		
	0.2582	0.2737	12000K (9000-		0.2315	0.2358	>15000K	
RT	0,2707	0.2589	15000K)	RU	0.2472	0.2257		
	0:2917	0.2584			0.2707	0.2589		
	0.2917	0.2854]		0.2707	0.2589		
	0.2707	0.2589			0.2472	0.2257		
PT	0.2849	0.2429	1	PU	0.2647	0.2144		
	0.3015	0.2638			0.2849	0.2429		

(3) X₄: CRI Rank (If=20mA)

X_4	CRI
В	<60
С	60-80
F	80-90
H	90-100

4. RELIABLITY TESTS

可靠性测试

Item	Applicable Standards			Ac/Re
Temperature Cycle 冷热循环	JEITA ED-4701 100 105	-40°C →25°C →100°C →25°C; 30min 5min 30min 5min 100cycle	50	0/1
High Temperature Storage 高温存储	JEITA ED-4701 200 201	100°C; 1000h	50	0/1
Temperature Humidity Storage 高温高湿	JEITA ED-4701 100 103	60°C; RH=90%; 1000h	50	0/1
Low Temperature Storage 低温存储	JEITA ED-4701 200 202	-40°C; 1000h	50	0/1
Life Test 寿命测试	_	25°C; I₅=20mA; 1000h	50	0/1
High Temperature Operating 高温工作	_	85°C; I₅=20mA; 1000h	50	0/1
Low Temperature Operating 低温工作	_	-40°C; I _F =20mA; 1000h	50	0/1

5. TYPICAL INITIAL OPTICAL/ELECTRICAL CHARACTERISTICS

典型光电特性

Spectrum 光谱 (Ta=25℃ IF=20mA)

Directivity 配光曲线

Forward Current & Forward Voltage 伏安特性曲线 (Ta=25℃)

Relative Luminous Flux & Forward Current 相对光通量与正向电流关系特性

Allowable Forward Current & Ambient Temperature 最大允许正向电流和环境温度关系特性

Forward Voltage & Ambient Temperature 正向电压和环境温度关系特性

Relative Luminous Flux & Ambient Temperature 相对光通量和环境温度关系特性

Luminous Flux Attenuation 光衰特性 (IF=20mA Ta=25°C)

6. CAUTIONS

(1)Lead Forming

When forming leads, the leads should be bent at a point at least 2.0mm from the base of the epoxy blb. Do not use the base of the lead frame as a fulcrum during lead forming.

When forming leads, hold the lead frames tightly not to give stress to the inside of the resin and the lead frame before soldering.

Do not apply any bending stress to the base of the lead. The stress to the base may damage the LEDs characteristics or it may break the LEDs.

When mounting the LEDs onto a printed circuit board, theholes on the circuit board should be exactly aligned with the leads of the LEDs. If the LEDs are mounted with stress at the leads, it causes deterioration of the poxy resin and this will degrade the LEDs.

(2) Storage

The LEDs should be stored at 30°C or less and 70%RH or the storage life limits are 3 months. If the LEDs are stored for 3 months or more, they can be stored for a year in a sealed container with moisture absorbent material.

HangKe LED lead frames are comprised of a silver plated Iron. The silversurface may be affected by environments which contain corrosive gases and so on. Please avoid conditions which may cause the LED to corrode, tarrish or discolor. This corrosion or discoloration may cause difficulty during soldering operations. It is recommended that LEDs be used as soon as possible.

Please avoid rapid transitions in ambient temperature, especially, in high humidity environments.

(3) Static Electricity

Static electricity or surge voltage damages the LEDs. It is recommended that a wrist band or an anit-electrostatic glove be used when handling the LEDs.

All devices, equipment and machinery must be properly grounded. It is recommended that measures beatken against surge voltage to the equipment that mounts the LEDs.

When inspecting the final products in which LEDs were assembled, it is recommended to check whethethe assembled LEDs are damaged by static electricity or not. It is easy to find static-damaged LEDs by a light-onest or a VF test at a lower current (below 1mA is recommended).

Damaged LEDs will show some unusual characteristics such as the leak current remarkably increases, the forward voltage becomes lower, or the LEDs do not light at the low current.

(4) Soldering Conditions

Solder the LED no closer than 2.0mm from the base of the epoxy bulb .

Recommended soldering conditions 260°C for 2 seconds Max.

Recommended through-hole diameter is 1.1mm.

Do not apply any stress to the lead particularly when heated.

The LEDs must not be repositioned after soldering.

After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature.

It is possible to solder LEDs directly to the PC board. Take enough care not to damage the resin beasuse of the stress of the bowed PC board.

When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize themechanical stress on the LEDs.

Cut the LED leadframes at room temperature. Cutting the leadframes at high temperatures may cause failure of the LEDs.

(5) Cleaning

It is recommended that isopropyl alcohol be used as a solvent for cleaning the LEDs. When using other solvents, it should be confirmed beforehand whether the solvents will dissolve the resin or not. Freon solvents should not be used to clean the LEDs because of worldwide regulations.

Do not clean the LEDs by the ultrasonic. When it is absolutely necessary, the influence of ultrasonic cleaning on the LEDs depends on factors such as ultrasonic power and the assembled condition. Before cleaning, a pre-tes should be done to confirm whether any damage to the LEDs will occur.

Note:

The appearance and specifications of the product may be modified for improvement without notice.