

Credit Card Approval Prediction

CS3244 PG7

Ang Lin Xuan Han Weihang Lim Tze Xin Manish Seal Teng Hao Earm Yune Thiri Khin

Overview of Problem

Purpose of the Model

Related Works

VINTAGE ANALYSIS

Graph on Vintage Analysis taken from Credit Risk: Vintage Analysis on listendata.com

AIM: Other approaches to predict credit risk?

Pipeline of Model

DATASETS MODELLING INSIGHTS

Credit Records Dataset

Credits Records Dataset

Rang	eIndex: 1048575	entries, 0 to 1048	574
Data	columns (total	3 columns):	
#	Column	Non-Null Count	Dtype
0	ID	1048575 non-null	int64
1	MONTHS_BALANCE	1048575 non-null	int64
2	STATUS	1048575 non-null	object

Overview of Dataset

	ID	MONTHS_BALANCE	STATUS
0	5001711	0	х
1	5001711	-1	0
2	5001711	-2	0
3	5001711	-3	0
4	5001712	0	С
5	5001712	-1	С
6	5001712	-2	С

PURPOSE: Target variable for model

Credits Records Dataset

	ID	MONTHS_BALANCE	STATUS
0	5001711	0	Х
1	5001711	-1	0
2	5001711	-2	0
3	5001711	-3	0
4	5001712	0	С
5	5001712	-1	С
6	5001712	-2	С

ID: Client Number

MONTHS_BALANCE: Record Month

STATUS:

X: No loans

C: Loan paid off

0-5: Number of months loan is overdue

Training Set and Testing Set

Overview of Code

```
# Split the data into training and testing sets, keeping customer IDs separate
train_ids, test_ids = train_test_split(df['ID'].unique(), test_size=0.2, random_state=42, stratify=None)
# Create the training and testing data subsets based on the selected customer IDs
train_data = df[df['ID'].isin(train_ids)]
test_data = df[df['ID'].isin(test_ids)]
```

Why? Data Leakage!


```
train_data.shape
(838506, 3)
test_data.shape
(210069, 3)
```

Resulting Datasets

Feature Engineering

PERCENTAGE:
STATUS == X / STATUS == C

SUM(MONTHS_BALANCE) - 1

AVERAGE: STATUS == 0/1/2/3/4/5

E.g. (0+1+1+1)/4 = 0.75

	ID	Account_Length	X_Percentage	C_Percentage	Avg_Months_Overdue
0	5001711	3	0.25000	0.000000	0.000000
1	5001713	21	1.00000	0.000000	-1.000000
2	5001714	14	1.00000	0.000000	-1.000000
3	5001717	21	0.00000	0.227273	0.000000
4	5001718	38	0.25641	0.076923	0.076923

Null Values:

-1 for Avg_Months_Overdue, 0 for X_Percentage & C_Percentage

Splitting into "Good" / "Bad" Credit Records

CRITERIA FOR BAD

- 1) C_Percentage == 0
- Never paid off loans

2) Avg_Months_Overdue > 95th percentile

```
c_percentage_low = 0.0 # never paid off
avg_months_overdue_high = 0.195 # 95% of Avg_Months_Overdue
```


Application Records Dataset

```
RangeIndex: 438557 entries, 0 to 438556
Data columns (total 18 columns):
     Column
                          Non-Null Count
                                           Dtype
     ID
                          438557 non-null
                                           int64
     CODE GENDER
                          438557 non-null
                                           object
     FLAG OWN CAR
                          438557 non-null
                                           object
     FLAG OWN REALTY
                          438557 non-null
                                           object
     CNT_CHILDREN
                                           int64
                          438557 non-null
     AMT_INCOME_TOTAL
                          438557 non-null float64
     NAME INCOME TYPE
                          438557 non-null
                                           object
     NAME_EDUCATION_TYPE
                          438557 non-null
                                           object
     NAME_FAMILY_STATUS
                          438557 non-null
                                           object
     NAME_HOUSING_TYPE
                          438557 non-null
                                           object
     DAYS_BIRTH
                          438557 non-null int64
     DAYS EMPLOYED
                          438557 non-null
                                           int64
     FLAG MOBIL
                          438557 non-null
                                           int64
     FLAG WORK PHONE
                          438557 non-null int64
     FLAG_PHONE
                          438557 non-null
                                           int64
     FLAG EMAIL
                          438557 non-null
                                           int64
     OCCUPATION TYPE
                          304354 non-null
                                           object
     CNT FAM MEMBERS
                          438557 non-null
                                           float64
```

Overview of Dataset

Reducing Dimensionality

```
df['FLAG_MOBIL'].describe()

count 438557.0
mean 1.0
std 0.0
min 1.0
25% 1.0
50% 1.0
75% 1.0
max 1.0
```

Removing Duplicates

```
df['ID'].duplicated().sum()
47
```

Abnormal values

```
df['DAYS EMPLOYED'].describe()
         438557.000000
count
          60563.675328
mean
std
         138767.799647
min
         -17531.000000
25%
          -3103.000000
50%
          -1467.000000
75%
           -371.000000
         365243.000000
max
```

Empty Values

```
df.isnull().sum()
ID
CODE GENDER
FLAG OWN CAR
FLAG_OWN_REALTY
CNT CHILDREN
AMT INCOME TOTAL
NAME INCOME TYPE
NAME_EDUCATION_TYPE
NAME FAMILY STATUS
NAME HOUSING TYPE
DAYS BIRTH
DAYS EMPLOYED
FLAG_WORK_PHONE
FLAG PHONE
FLAG EMAIL
OCCUPATION TYPE
                        58868
CNT_FAM_MEMBERS
```

Group1: Unemployed

Income Type

```
unemployed_df['NAME_INCOME_TYPE'].unique()
array(['Pensioner'], dtype=object)
```

Setting Occupation Type

```
unemployed_df = unemployed_df.fillna(value={'OCCUPATION_TYPE':'Pensioner'})
```

Group1: Unemployed

Age Distribution

```
df['DAYS_BIRTH'].describe()
         438510.000000
count
          15998.192778
mean
std
           4185.074780
min
           7489.000000
25%
          12514.000000
500
          15630 000000
75%
          19484.000000
max
          25201.000000
```

Employment Days Adjustment

Group1: Employed

Income Type

Setting Occupation Type

```
employed_df = employed_df.fillna(value={ 'OCCUPATION_TYPE':'Unknown'})
```

Application Dataset (Feature Engineering)

Numerical Data: StandardScalar

```
scaler = StandardScaler().fit(features.values)
features = scaler.transform(features.values)
```

Categorical Data: OneHotEncoder

```
encoder = OneHotEncoder(sparse=False, handle_unknown='ignore')
encoded_columns = encoder.fit_transform(X_train[categorical_col])
```

Logistic Regression

Logistic Regression


```
model = LogisticRegression(max_iter=1000)
model.fit(X_train_2label, y_train_2label)
y_pred = model.predict(X_test_2label)
```

Logistic Regression - Analysis of Features (Top 20)

```
Coefficient
                                Feature
             OCCUPATION_TYPE_Pensioners
                                            1.827710
             NAME INCOME TYPE Pensioner
                                            -1.357854
                        CNT FAM MEMBERS
                                           -1.291707
                           CNT CHILDREN
                                           1.123387
               OCCUPATION TYPE HR staff
                                           -0.970123
             NAME FAMILY STATUS Married
                                            0.901971
      NAME FAMILY STATUS Civil marriage
                                            0.804473
           NAME FAMILY STATUS Separated
                                            -0.767451
          OCCUPATION TYPE Realty agents
                                            0.717867
   OCCUPATION TYPE Waiters/barmen staff
                                            -0.692681
               OCCUPATION TYPE IT staff
                                            -0.677235
     NAME_HOUSING_TYPE_Office apartment
                                            -0.673166
          OCCUPATION TYPE Cooking staff
                                            -0.600913
NAME FAMILY STATUS Single / not married
                                            -0.583813
  NAME HOUSING TYPE Municipal apartment
                                             0.535924
      NAME HOUSING TYPE Co-op apartment
                                             0.484418
            OCCUPATION TYPE Accountants
                                             0.465875
  OCCUPATION TYPE Private service staff
                                             0.456994
               NAME INCOME TYPE Working
                                             0.426057
         NAME INCOME TYPE State servant
                                             0.374375
```

Neural Network

Neural Network

Using a Neural Network model for predictions

Neural Network - 1. Feature Selection

Selecting the 10 most useful features by information gain, and using them to train the neural network model

Neural Network - 2 Training the Model (2-label)

Tuning the Hidden Layer to avoid overfitting and long training time

Random Forest

PR Curve

The precision and recall at any thresholds are higher than if there was no skill involved.

If we take good credit as positive, ideally, we are looking to reduce the False Negative as much as possible.

This lowers the recall but comes at a high precision cost.

Model Evaluation

Positive Classes

Customers with **GOOD** credit status Approval for credit card application.

Negative Classes

Customers with **BAD** credit status Rejection for credit card application.

Evaluation Metrics

Accuracy

Precision

Accuracy

97.5%

97.5%

Confusion Matrix

Logistic Regression

Random Forest

Neural Network

Accuracy Paradox

Precision, Recall and F1-score

	Logistic Regression	Random Forest	Neural Network
Precision TP/(TP+FP)	0.98	0.98	0.98
Recall TP/(TP+FN)	1.00	1.00	1.00
F1-score	0.988	0.988	0.988

Rebalancing of Training Data

Training Data (After undersampling)

Good Bad

Logistic Regression

Logistic Regression

	With random undersampling	With random oversampling	With SMOTE
Precision TP/(TP + FP)	0.98	0.98	0.98
Recall TP/(TP + FN)	0.56	0.59	0.57
F1-score	0.714	0.737	0.720

Random Forest

Accuracy: 65%

Accuracy: 94%

Accuracy: 96%

Random Forest

	With random undersampling	With random oversampling	With SMOTE
Precision TP/(TP + FP)	0.99	0.98	0.98
Recall TP/(TP + FN)	0.66	0.95	0.98
F1-score	0.787	0.968	0.979

Conclusion

Future Improvements

Training neural network with the rebalanced data

Hyperparameter tuning for the models

Combining of random oversampling and random undersampling

- To prevent loss of information (undersampling) and overfitting (oversampling)

K-fold Cross Validation

Thank YOU