Trabajo 1. Teoría de la Decisión. Enunciados y soluciones

Grupo 3. Lucía García Infante, Rosa Fernández López, Sergio Pacheco Márquez, Víctor Silva Nieves

Tabla de contenidos Problema 3.1 22

```
# Cargar librerías necesarias
library(tinytable)
# Cargar script con funciones
source("teoriadecision funciones incertidumbre.R")
# Preparar tema propio para tablas
colores <- hcl.colors(5, palette = "Berlin")</pre>
crea vector posiciones tabla <- function(numero columnas) {</pre>
 posiciones <- ""
 for(i in 1:numero columnas) {
    posiciones <- paste0(posiciones, "c")</pre>
 }
 return(posiciones)
}
crea_tabla_estilo <- function(tabla, nombresfila = TRUE) {</pre>
 if (nombresfila == TRUE) {
    rn <- rownames(tabla)</pre>
    if (is.null(rn)) rn <- rep("", nrow(tabla))</pre>
    tabla <- cbind(rn = rn, tabla, stringsAsFactors = FALSE)</pre>
    colnames(tabla)[1] <- ""</pre>
    rownames(tabla) <- NULL</pre>
 t <- tt(tabla, theme = "empty", width=1) |>
    format tt(quarto=TRUE) |>
    style tt(j = 1:ncol(tabla), align =
crea_vector_posiciones_tabla(ncol(tabla)), alignv = "m") |>
    style_tt(i = 0, line = "b", line_color = colores[2], line_width = 0.2,
    background = colores[5], color = colores[3]) |>
    style_tt(i = 0, line = "t", line_color = colores[1], line_width = 0.1) |>
    style_tt(i = 1:nrow(tabla), line = "b", line_color = colores[1],
line width = 0.1) |> style tt(j = 1:(ncol(tabla)-1), line = "r", line color =
colores[1], line_width = 0.1)
return(t)
}
```

EJERCICIO 1. Lucía García Infante.

Problema 1.1

Aplicar los criterios de decisión bajo incertidumbre al siguiente problema considerando una situación favorable (beneficios) y desfavorable (costos)

	e1	e2	e3	e4	e5	e6
d1	100	200	130	150	240	100
d2	300	145	230	345	200	280
d3	120	300	260	400	100	330
d4	180	130	300	370	280	190
d5	200	140	135	280	190	100

Apartado a. Tabla correspondiente a beneficios.

1. Método de Wald

Para cada alternativa se supone que va a pasar lo peor, y elige aquella alternativa que dé mejor valor.

```
b1 = criterio.Wald(tb01a,favorable=TRUE)
names(b1$AlternativaOptima)
```

```
[1] "d2"
```

2. Método Optimista

Para cada alternativa se supone que pasará lo mejor, y se elige laa que dé mejor valor.

```
b2 = criterio.Optimista(tb01a,favorable = TRUE)
names(b2$AlternativaOptima)
```

```
[1] "d3"
```

3. Método Hurwicz

Combina optimismo y pesimismo usando un coeficiente de optimismo α :

```
Valor Hurwicz = \alpha \cdot \max + (1 - \alpha) \cdot \min
```

Resolvemos considerando α = 0.5.

```
b3 = criterio.Hurwicz(tb01a,alfa=0.5,favorable=TRUE)
names(b3$AlternativaOptima)
```

```
[1] "d3" "d4"
```

Ahora vamos a hacer un análisis de la decisiones en función del α . Para ello disponemos de dos funciones, una que te hace la gráfica, y otra que además te da los intervalos. Usamos la completa:

```
dibuja.criterio.Hurwicz_Intervalos(tb01a,T)
```

Criterio de Hurwicz (favorable - línea discontinua)

🗘 Interpretación:

Para valores de α entre 0 y 0.375, se elegirá la alternativa 2. Para valores entre 0.375 y 0.5 se elegirá la alternativa 4. Para valores entre 0.5 1, elegiremos la 3.

Vemos que efectivamente tenemos el mismo resultado que el obtenido al principio. Justo el α = 0.5 es el punto de corte entre las rectas. Por eso nos salen dos alternativas.

4. Método Savage

Minimiza el arrepentimiento máximo comparando lo que se pudo ganar y lo que se ganó.

```
b4 = criterio.Savage(tb01a,favorable=TRUE)
names(b4$AlternativaOptima)
```

```
[1] "d2"
```

5. Método Laplace

Asume que todos los estados son igualmente probables y elige la alternativa con mayor promedio.

```
b5 = criterio.Laplace(tb01a,favorable=TRUE)
names(b5$AlternativaOptima)
```

```
[1] "d3"
```

6. Método Punto Ideal

Considera un resultado perfecto y mide la distancia de cada alternativa a ese ideal, eligiendo la más cercana.

```
b6 = criterio.PuntoIdeal(tb01a,favorable=TRUE)
names(b6$AlternativaOptima)
```

[1] "d2"

Occidentation Conclusiones:

Tomando los datos de la tabla como beneficios, los resultados que obtenemos son: La decisión 1 y la 5 no se eligen en ningún método. La 2 y la 3 empatan siendo elegidas por 3 métodos. Y la decisión 4 sólo aparece en 1. Por tanto, las mejores decisiones en este caso son la 2 y la 3.

Apartado b. Tabla correspondiente a costes.

1. Método de Wald

Para cada alternativa se supone que va a pasar lo peor, y elige aquella alternativa que dé mejor valor.

```
c1 = criterio.Wald(tb01a,favorable=FALSE)
names(c1$AlternativaOptima)
```

```
[1] "d1"
```

2. Método Optimista

Para cada alternativa se supone que pasará lo mejor, y se elige laa que dé mejor valor.

```
c2 = criterio.Optimista(tb01a,favorable = FALSE)
names(c2$AlternativaOptima)
```

```
[1] "d1" "d3" "d5"
```

3. Método Hurwicz

Combina optimismo y pesimismo usando un coeficiente de optimismo α :

$$\text{Valor Hurwicz} = \alpha \cdot \max + (1 - \alpha) \cdot \min$$

```
c3 = criterio.Hurwicz(tb01a,alfa=0.5,favorable=FALSE)
names(c3$AlternativaOptima)
```

```
[1] "d1"
```

```
dibuja.criterio.Hurwicz(tb01a, FALSE)
```

Criterio de Hurwicz (desfavorable - línea discontinua)

¶ Interpretación:

En este caso, por estar en el caso de costes, debemos mirar la línea más baja. Vemos que para cualquier nivel de alpha, la decisión elegida es la d1. Vemos que efectivamente tenemos el mismo resultado que el obtenido al principio.

4. Método Savage

Minimiza el arrepentimiento máximo, que se calcula a partir del coste extra que se podría haber evitado.

```
c4 = criterio.Savage(tb0la,favorable=FALSE)
names(c4$AlternativaOptima)
```

[1] "d5"

5. Método Laplace

Calcula el promedio de costes suponiendo igual probabilidad para cada estado.

```
c5 = criterio.Laplace(tb01a,favorable=FALSE)
names(c5$AlternativaOptima)
```

[1] "d1"

6. Método Punto Ideal

Compara la distancia a un coste ideal mínimo, eligiendo el más cercano al ideal (menor coste).

c6 = criterio.PuntoIdeal(tb01a,favorable=FALSE)
names(c6\$AlternativaOptima)

[1] "d1"

? Conclusiones:

Tomando los datos de la tabla como costes, los resultados que obtenemos son: La decisión 2 y la 4 no se eligen en ningún método. La 3 es elegida una única vez y la 5, dos veces. La decisión 1 es la que más veces es elegida por 5 métodos.

Por tanto, la mejor decisión en este caso es la 1.

Problema 1.2

Marina es una alumna del grado en Estadística que acaba este año. El próximo año quiere realizar un máster para mejorar sus oportunidades laborales, pero solo puede escoger uno. Todavía no sabe en qué sitio empezará a trabajar aunque considera tres posibilidades:

- Una empresa privada en el extranjero.
- Una institución pública.
- Una empresa privada española.

Para decidir, Marina ha mirado tres másteres que le interesan y ha estimado cuál podría ser su primer sueldo anual según el tipo de empresa, junto con el coste de cada máster:

- Máster en Análisis de Datos. Espera ganar unos 26.000 € en una empresa extranjera, 18.000
 € en una institución pública y 20.000 € en una empresa española. Este máster tiene un coste de 10.000 €.
- Máster en Programación y Modelos Estadístico. Estima que su sueldo inicial sería de 20.000 € en una empresa extranjera, 12.000 € en una institución pública y 20.000 € en una empresa privada española. El coste de este máster asciende a 6.500 €.
- Máster en Comunicación y Gestión de Proyectos. Espera un sueldo de 10.000 € en una empresa extranjera, 12.000 € en una institución pública y 20.000 € en una empresa privada española. Este máster tiene un coste de 3.000 €.

Planteamiento del problema

- Un decisor: Marina.
- Modelo de beneficios (favorable).
- Alternativas:
 - ► A1 = Máster en Análisis de Datos
 - ► A2 = Máster en Programación y Modelos Estadísticos
 - ► A3 = Máster en Comunicación y Gestión de Proyectos
- Estados de la naturaleza:
 - ► E1 = Empresa extranjera
 - ► E2 = Institución pública
 - ► E3 = Empresa privada española
- Matriz de decisión: Beneficios = Sueldo esperado Coste máster

Solución del problema

```
# Máster en Análisis de Datos
m11 = 26000 - 10000  # Empresa extranjera
m12 = 18000 - 10000  # Institución pública
m13 = 20000 - 10000  # Empresa española

# Máster en Programación y Modelos Estadísticos
m21 = 20000 - 6500  # Empresa extranjera
m22 = 12000 - 6500  # Institución pública
m23 = 20000 - 6500  # Empresa españolaA
```

```
# Máster en Comunicación y Gestión de Proyectos
m31 = 10000 - 3000 # Empresa extranjera
m32 = 12000 - 3000 # Institución pública
m33 = 20000 - 3000 # Empresa española
```

Inserto los datos en la tabla:

```
E1 E2 E3
A1 16000 8000 10000
A2 13500 5500 13500
A3 7000 9000 17000
```

Aplico la función que devuelve todos los métodos en una única tabla:

```
sol02 = criterio.Todos(tb02, alfa=0.5, favorable=TRUE)
crea_tabla_estilo(sol02, TRUE)
```

	E1	E2	E3	Wald	Opti- mista	Hur- wicz	Sava- ge	La- place	Punto Ideal	Veces Opti- ma
A1	16000	8000	10000	8000	16000	12000	7000	11333	7071	3
A2	13500	5500	13500	5500	13500	9500	3500	10833	5545	2
A3	7000	9000	17000	7000	17000	12000	9000	11000	9000	2
iAlt.Opt (fav.)	_	_	_	A1	A3	A1,A3	A2	A1	A2	A1

? Conclusiones:

La alternativa A1 es la opción más recomendada, ya que resulta óptima en la mayoría de los criterios (3 veces).

Por tanto, Marina debería estudiar el próximo año el Máster en Análisis de Datos.

EJERCICIO 2. Rosa Fernández López.

Problema 2.1

Aplicar los criterios de decisión bajo incertidumbre (tanto en situación favorable como desfavorable) a los problemas cuya matriz de valores numéricos viene dada en la tabla siguiente:

```
#Creamos la matriz
matriz_enunciado <- matrix(c(</pre>
 12, 8, 5,
  10, 11, 4,
 7, 13, 6
),
nrow = 3,
byrow = TRUE)
#La convertimos en un data.frame
tabla_enunciado <- as.data.frame(matriz_enunciado)</pre>
#Asignamos nombres de columnas (estados de la naturaleza) y filas
(alternativas)
colnames(tabla enunciado) <- c("e1", "e2", "e3")</pre>
rownames(tabla_enunciado) <- c("d1", "d2", "d3")</pre>
#Mostramos la tabla con estilo
crea tabla estilo(tabla enunciado, TRUE)
```

	e1	e2	e3
d1	12	8	5
d2	10	11	4
d3	7	13	6

Apartado a. Tabla correspondiente a beneficios.

Matriz de datos

```
el e2 e3
dl 12 8 5
```

```
d2 10 11 4
d3 7 13 6
```

Aplicar criterios en situaciones favorables

La decisión óptima en el Criterio de Wald (pesimista) es: 3

La decisión óptima en el Criterio Optimista (Maximax) es: 3

La decisión óptima en el Criterio de Hurwicz es: 3

La decisión óptima en el Criterio de Savage (Minimax) es: 2

La decisión óptima en el Criterio de Laplace es: 3

La decisión óptima en el Criterio de Punto Ideal es: 2

```
# Todos los criterios juntos
sol_T <- criterio.Todos(m1, favorable = TRUE, alfa = 0.5)
crea_tabla_estilo(sol_T, TRUE)</pre>
```

	e1	e2	e3	Wald	Opti- mista	Hur- wicz	Sava- ge	La- place	Punto Ideal	Veces Opti- ma
d1	12	8	5	5	12	8.5	5	8.333	5.099	0
d2	10	11	4	4	11	7.5	2	8.333	3.464	2
d3	7	13	6	6	13	9.5	5	8.667	5.000	4
iAlt.Opt (fav.)	_	_	_	d3	d3	d3	d2	d3	d2	d3

Resultados en situación favorable

```
dibuja.criterio.Hurwicz(m1, favorable = TRUE)
```

Criterio de Hurwicz (favorable - línea discontinua)


```
# Extraer la fila "iAlt.Opt" de la tabla
optimas <- sol_T["iAlt.Opt", ]

# Contar cuántas veces aparece cada alternativa
conteo <- table(as.character(optimas))

# Identificar la más frecuente
mayoria <- names(which.max(conteo))

# Mostrar el resultado
cat("Según la mayoría de criterios en situación favorable, la alternativa
óptima es:", mayoria, "\n")</pre>
```

Según la mayoría de criterios en situación favorable, la alternativa óptima es: d3

Apartado b. Tabla correspondiente a costes.

Aplicar criterios en situación desfavorable

La decisión óptima en el Criterio de Wald (pesimista) es: 2

La decisión óptima en el Criterio Optimista es: 2

La decisión óptima en el Criterio de Hurwicz es: 2

La decisión óptima en el Criterio de Savage es: 2

La decisión óptima en el Criterio de Laplace es: 12

La decisión óptima en el Criterio de Punto Ideal es: 2

```
# Todos los criterios juntos
sol_T_d <- criterio.Todos(m1, favorable = FALSE, alfa = 0.5)
crea_tabla_estilo(sol_T_d, TRUE)</pre>
```

	e1	e2	e3	Wald	Opti- mista	Hur- wicz	Sava- ge	La- place	Punto Ideal	Veces Opti- ma
d1	12	8	5	12	5	8.5	5	8.333	5.099	1
d2	10	11	4	11	4	7.5	3	8.333	4.243	6
d3	7	13	6	13	6	9.5	5	8.667	5.385	0
iAlt.Opt (Des- fav.)	-	-	_	d2	d2	d2	d2	d1,d2	d2	d2

Resultados en situación desfavorable

```
dibuja.criterio.Hurwicz(m1, favorable = FALSE)
```

Criterio de Hurwicz (desfavorable - línea discontinua)


```
# Extraer la fila "iAlt.Opt (Desfav.)" de la tabla
optimasdesf <- sol_T_d["iAlt.Opt (Desfav.)", ]

# Contar cuántas veces aparece cada alternativa
conteodesf <- table(as.character(optimasdesf))

# Identificar la más frecuente
mayoriadesf <- names(which.max(conteodesf))

# Mostrar el resultado
cat("Según la mayoría de criterios en situación desfavorable, la alternativa
óptima es:", mayoriadesf, "\n")</pre>
```

Según la mayoría de criterios en situación desfavorable, la alternativa óptima es: d2

Prolema 2.2

Elección de tarifa eléctrica para un nuevo piso

Carlos se ha mudado recientemente a un nuevo piso y necesita contratar una tarifa de electricidad. Tras comparar varias compañías, ha identificado tres opciones con condiciones distintas:

- ElectroPlus ofrece una tarifa fija de 45€ al mes, independientemente del consumo eléctrico.
- LuzFlex aplica una tarifa variable de 0,20€/kWh, con una cuota base mensual de 15€.
- EcoVolt propone una tarifa variable de 0,15€/kWh sin cuota fija, pero incluye una penalización de 10€ si el consumo mensual supera los 300kWh.

Carlos no tiene certeza sobre su consumo mensual, pero considera dos escenarios posibles durante el primer año:

- Consumo moderado: 250kWh al mes.
- Consumo elevado: 350kWh al mes.

Determinar cuál sería la mejor opción para Carlos según cada criterio.

Planteamiento del problema

- Un decisor: Carlos
- Modelo de costes (desfavorable).
- Alternativas:
 - A1 = ElectroPlus (tarifa fija mensual de 45€).
 - ► A2 = LuzFlex (tarifa variable de 0,20€/kWh + cuota fija de 15€).
 - A3 = EcoVolt (tarifa variable de 0,15€/kWh + penalización de 10€ si se supera el umbral de 300kWh).
- Estados de la naturaleza:
 - ► E1 = Consumo moderado (250kWh/mes).
 - ► E2 = Consumo elevado (350kWh/mes).
- Matriz de decisión: Costes anuales calculados según cada alternativa y escenario de consumo.

Solución del problema

Cálculo de costes anuales por alternativa y escenario

```
# ElectroPlus: tarifa fija
electroplus_moderado <- 45 * 12
electroplus_elevado <- 45 * 12

# LuzFlex: tarifa variable + cuota fija
luzflex_moderado <- (250 * 0.20 + 15) * 12
luzflex_elevado <- (350 * 0.20 + 15) * 12

# EcoVolt: tarifa variable + penalización si > 300kWh
ecovolt_moderado <- 250 * 0.15 * 12
ecovolt_elevado <- (350 * 0.15 + 10) * 12</pre>
```

Crear la matriz de costes

```
Consumo moderado Consumo elevado
ElectroPlus 540 540
LuzFlex 780 1020
EcoVolt 450 750
```

Aplicar criterios en situación desfavorable (costes)

```
sol_carlos <- criterio.Todos(m_carlos, favorable = FALSE, alfa = 0.5)

# Mostrar tabla de resultados
crea_tabla_estilo(sol_carlos, TRUE)</pre>
```

	Con- sumo mode- rado	Consumo elevado	Wald	Opti- mista	Hur- wicz	Sava- ge	Lapla- ce	Punto Ideal	Veces Opti- ma
Elec- tro- Plus	540	540	540	540	540	90	540	90.0	5
Luz- Flex	780	1020	1020	780	900	480	900	582.5	0
Eco- Volt	450	750	750	450	600	210	600	210.0	1
iAlt.Opt (Des- fav.)	-	-	Elec- tro- Plus	Eco- Volt	Elec- tro- Plus	Elec- tro- Plus	Elec- tro- Plus	Elec- tro- Plus	Elec- tro- Plus

Resultados en situación desfavorable

```
# Extraer la fila de alternativas óptimas
optimas <- sol_carlos["iAlt.Opt", ]
mayoria <- names(which.max(table(as.character(optimas))))

cat("Según la mayoría de criterios, la mejor tarifa para Carlos sería:",
mayoria, "\n")</pre>
```

Según la mayoría de criterios, la mejor tarifa para Carlos sería: ElectroPlus

```
dibuja.criterio.Hurwicz(m_carlos, favorable = FALSE)
```

Criterio de Hurwicz (desfavorable - línea discontinua)

dibuja.criterio.Hurwicz_Intervalos(m_carlos, favorable = FALSE)

Criterio de Hurwicz (desfavorable - línea discontinua)

Occident Conclusion

Observando el gráfico, vemos que:

- ElectroPlus (línea roja) mantiene un coste constante para cualquier valor de alpha.
- LuzFlex (línea verde) tiene un coste intermedio, que disminuye ligeramente al aumentar alpha.
- EcoVolt (línea azul) es la más sensible al valor de alpha: si alpha es bajo (más pesimista), su coste es alto; si alpha es alto (más optimista), su coste baja considerablemente.

Esto indica que EcoVolt solo sería recomendable si Carlos adopta una actitud muy optimista respecto al consumo.

El punto de corte entre las alternativas ElectroPlus y EcoVolt es 0.7

EJERCICIO 3. Sergio Pacheco Márquez.

Problema 3.1

Una empresa de tecnología debe escoger la estrategia de lanzamiento de un nuevo dispositivo. Las alternativas son:

- E1: Lanzamiento enfocado en publicidad en redes sociales.
- E2: Lanzamiento con campaña televisiva nacional.
- E3: Lanzamiento mixto (online + medios tradicionales).

El resultado económico (beneficio en miles de euros) depende del estado del mercado:

S1 (Alta demanda), S2 (Demanda media) y S3 (Baja demanda).

Se dispone de la siguiente tabla de pagos (beneficios en miles de euros):

```
# Creamos la matriz de pagos (en miles de euros)
matriz pagos <- matrix(c(</pre>
 80, 40, 10, # E1
  100, 50, -20, # E2
 70, 60, 30 # E3
),
nrow = 3,
byrow = TRUE)
# Convertimos la matriz en un data frame
tabla pagos <- as.data.frame(matriz pagos)</pre>
# Asignamos nombres de columnas (estados de la naturaleza)
colnames(tabla_pagos) <- c("S1", "S2", "S3")</pre>
# Asignamos nombres de filas (estrategias)
rownames(tabla_pagos) <- c("E1", "E2", "E3")</pre>
# Mostramos la tabla con estilo
crea tabla estilo(tabla pagos, TRUE)
```

	S1	S2	S3
E1	80	40	10
E2	100	50	-20
Е3	70	60	30

1.Definimos la tabla de pagos (beneficios en miles de euros)

```
tablaX <- crea.tablaX(
  vector_matporfilas = vector_pagos,
  numalternativas = 3,
  numestados = 3,
  nb_alternativas = c("E1_Redes", "E2_TV", "E3_Mixta"),
  nb_estados = c("Alta", "Media", "Baja")
)
tablaX</pre>
```

```
Alta Media Baja
E1_Redes 80 40 10
E2_TV 100 50 -20
E3_Mixta 70 60 30
```

Situación favorable

Mostrar resultados

```
cat("### Resultados (Situación Favorable)\n")
```

```
### Resultados (Situación Favorable)
```

```
cat("Wald: ", wald_fav$AlternativaOptima, "\n")
```

```
Wald: 3
```

```
cat("Optimista: ", optimista_fav$AlternativaOptima, "\n")
```

```
Optimista: 2
```

```
cat("Hurwicz: ", hurwicz_fav$AlternativaOptima, "\n")
```

```
Hurwicz: 3
 cat("Laplace: ", laplace_fav$AlternativaOptima, "\n")
 Laplace: 3
 cat("Savage: ", savage_fav$AlternativaOptima, "\n")
 Savage: 1
 cat("Punto Ideal: ", puntoideal_fav$AlternativaOptima, "\n")
 Punto Ideal: 3
Situacion desfavorable
 wald desf <- criterio.Wald(tablaX, favorable = FALSE)</pre>
 optimista_desf <- criterio.Optimista(tablaX, favorable = FALSE)</pre>
 hurwicz_desf <- criterio.Hurwicz(tablaX, alfa = 0.6, favorable = FALSE)</pre>
 laplace_desf <- criterio.Laplace(tablaX, favorable = FALSE)</pre>
 savage_desf <- criterio.Savage(tablaX, favorable = FALSE)</pre>
 puntoideal_desf <- criterio.PuntoIdeal(tablaX, favorable = FALSE)</pre>
Mostrar resultados
 cat("### Resultados (Situación Desfavorable)\n")
 ### Resultados (Situación Desfavorable)
 cat("Wald: ", wald_desf$AlternativaOptima, "\n")
 Wald: 3
 cat("Optimista: ", optimista_desf$AlternativaOptima, "\n")
 Optimista: 2
```

```
cat("Hurwicz: ", hurwicz_desf$AlternativaOptima, "\n")
 Hurwicz: 2
 cat("Laplace: ", laplace_desf$AlternativaOptima, "\n")
 Laplace: 12
 cat("Savage: ", savage_desf$AlternativaOptima, "\n")
 Savage: 1 2
 cat("Punto Ideal: ", puntoideal_desf$AlternativaOptima, "\n")
 Punto Ideal: 1 2
Aplicamos la función global
 resultado fav <- criterio.Todos(tablaX, alfa = 0.6, favorable = TRUE)
 resultado_desf <- criterio.Todos(tablaX, alfa = 0.6, favorable = FALSE)
 print("### Resumen global situación favorable")
 [1] "### Resumen global situación favorable"
 print(resultado_fav)
               Alta Media Baja Wald Optimista Hurwicz Savage Laplace
               80 40 10
 E1_Redes
                                 10 80 52 20 43.33
                                  -20
                100
                      50 -20
                                                    52
                                                                 43.33
 E2 TV
                                           100
                                                            50
               70 60 30
 E3_Mixta
                                  30
                                           70
                                                    54
                                                           30
                                                                 53.33
 iAlt.Opt (fav.) -- -- E3_Mixta E2_TV E3_Mixta E1_Redes E3_Mixta
            Punto Ideal Veces Optima
 E1 Redes
                    34.64
 E2_TV
E3_Mixta
                    50.99
                                   1
                   30.00
                                    4
 iAlt.Opt (fav.) E3_Mixta E3_Mixta
```

```
print("### Resumen global situación desfavorable")
```

[1] "### Resumen global situación desfavorable"

print(resultado_desf)

	Alta	Media	Baja	Wald	Optimista	Hurwicz	Savage
E1_Redes	80	40	10	80	10	38	30
E2_TV	100	50	- 20	100	-20	28	30
E3_Mixta	70	60	30	70	30	46	50
<pre>iAlt.Opt (Desfav.)</pre>				E3_Mixta	E2_TV	E2_TV	E1_Redes,E2_TV
		Lap	lace	Punto 1	Ideal Veces	Optima	
E1_Redes		43	3.33	3	31.62	3	
E2_TV		43	3.33	3	31.62	5	
E3_Mixta		53	3.33		3.85	1	
iAlt.Opt (Desfav.)	E1_Re	edes,E2	2_TV	E1_Redes,E	E2_TV	E2_TV	

Conclusión

- En la situación favorable, los criterios Maximax y Hurwicz recomiendan la alternativa E2 (Publicidad en TV),
 - mientras que **Laplace** y **Punto Ideal** se inclinan por **E3** (Publicidad mixta), que ofrece un equilibrio entre riesgo y beneficio.
- En la situación desfavorable, los criterios **Wald**, **Laplace** y **Savage** recomiendan **E3**, ya que presenta la menor pérdida posible.
- Por tanto, la decisión final recomendada es E3 (Publicidad mixta), por ser la más robusta frente a la incertidumbre.

Problema 3.2

Una empresa de energías renovables debe decidir la localización de una nueva planta solar fotovoltaica.

Las alternativas de localización son:

- L1: Andalucía
- L2: Castilla-La Mancha
- L3: Aragón

El beneficio proyectado (en millones de euros) depende del nivel de radiación solar anual, que se puede clasificar en tres escenarios posibles:

S1 (Alta), **S2** (Media) y **S3** (Baja).

Los beneficios estimados son los siguientes:

```
# Creamos la matriz de pagos (beneficios en miles de euros)
matriz_localizacion <- matrix(c(</pre>
 12, 8, 3, # L1 (Andalucía)
 10, 9, 6, # L2 (Castilla-La Mancha)
 11, 7, 4 # L3 (Aragón)
),
nrow = 3,
byrow = TRUE)
# Convertimos la matriz en un data frame
tabla_localizacion <- as.data.frame(matriz_localizacion)</pre>
# Asignamos nombres de columnas (estados de la naturaleza)
colnames(tabla_localizacion) <- c("S1 (Alta)", "S2 (Media)", "S3 (Baja)")</pre>
# Asignamos nombres de filas (localizaciones)
rownames(tabla_localizacion) <- c("L1 (Andalucía)",</pre>
                                   "L2 (Castilla-La Mancha)",
                                   "L3 (Aragón)")
# Mostramos la tabla con estilo
crea_tabla_estilo(tabla_localizacion, TRUE)
```

	S1 (Alta)	S2 (Media)	S3 (Baja)
L1 (Andalucía)	12	8	3
L2 (Castilla-La Man- cha)	10	9	6
L3 (Aragón)	11	7	4

1.Definimos la tabla de pagos (beneficios en millones de euros)

```
Alta Media Baja
L1_Andalucía 12 8 3
L2_CastillaLaMancha 10 9 6
L3_Aragón 11 7 4
```

Aplicamos la función global

```
resultado_total <- criterio.Todos(tablaX2, alfa = 0.6, favorable = TRUE)
print("### Resumen global Problema 2")</pre>
```

```
[1] "### Resumen global Problema 2"
```

```
print(resultado_total)
```

	Alta	Media	Baja	Wald	d Optimi	ista
L1_Andalucía	12	8	3	3	3	12
L2_CastillaLaMancha	10	9	6	(õ	10
L3_Aragón	11	7	4	4	1	11
iAlt.Opt (fav.)			L	2_CastillaLaMancha	a L1_Andalı	ıcía
			Hurwi	CZ	Sa	avage
L1_Andalucía			8	. 4		3
L2_CastillaLaMancha			8	. 4		2
L3_Aragón			8	.2		2
iAlt.Opt (fav.)	L2_Ca	astilla	aLaMand	ha L2_CastillaLaMa	ancha,L3_Ar	ragón
			Lapla	ce Punto :	[deal	Veces
Optima						
L1_Andalucía			7.6	67	3.162	
1						
L2_CastillaLaMancha			8.3	33	2.000	
5						
L3_Aragón			7.3	33	3.000	
1						
iAlt.Opt (fav.)	L2_Ca	astilla	aLaMand	ha L2_CastillaLaMa	ancha	
L2_CastillaLaMancha						

Conclusión

- La tabla resumen obtenida muestra las decisiones recomendadas por cada método.
 - ► En este caso, la mayoría de los criterios coinciden en que la mejor alternativa es L2 (Castilla-La Mancha).
 - Esta localización presenta el mejor equilibrio entre rendimiento medio y riesgo bajo ante la incertidumbre del nivel de radiación solar.
- Por tanto, la decisión final recomendada es L2: Castilla-La Mancha como ubicación óptima para la nueva planta solar.

EJERCICIO 4. Víctor Silva Nieves.

Problema 4.1

Se deben implementar todos los métodos de decisión bajo incertidumbre, tanto para el caso favorable como para el caso desfavorable (pesimista, optimista, Hurwicz, Savage, Laplace y punto ideal) para la siguiente tabla de decisión:

	ω1	ω2	ω3	ω4
a1	5	15	8	18
a2	7	13	14	20
a3	6	17	11	17
a4	4	14	16	16
a5	10	10	13	15

Caso favorable

Método pesimista

```
alternativa_pesimista <- criterio.Wald(tabla_decision, favorable = TRUE)
```

Para el criterio de Wald, en el caso favorable, la alternativa 5 es la mejor y el valor óptimo es 10.

Método optimista

```
alternativa_optimista <- criterio.Optimista(tabla_decision, favorable = TRUE)
```

Para el criterio Optimista, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 20.

Método Hurwicz

Para el criterio de Hurwicz, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 13.5. Con un valor de $\alpha = 0.5$.

Se muestra a continuación una tabla con las alternativas óptimas y los valores óptimos para diferentes valores de alfa, que van desde 0 hasta 1 con incrementos de 0.1:

Alfa	Alternativa óptima	Valor óptimo
0.0	5	10.0
0.1	5	10.5
0.2	5	11.0
0.3	5	11.5
0.4	2	12.2
0.5	2	13.5
0.6	2	14.8
0.7	2	16.1
0.8	2	17.4
0.9	2	18.7
1.0	2	20.0

Y gráficamente:

```
gráfico_Hurwicz <- dibuja.criterio.Hurwicz(tabla_decision, favorable = TRUE)</pre>
```

Criterio de Hurwicz (favorable - línea discontinua)

Además, se muestra un gráfico donde se pueden apreciar los intervalos de las alternativas óptimas para diferentes valores de alfa:

```
intervalos_Hurwicz <- dibuja.criterio.Hurwicz_Intervalos(tabla_decision,
favorable = TRUE)</pre>
```

Criterio de Hurwicz (favorable - línea discontinua)

Método Savage

```
alternativa_Savage <- criterio.Savage(tabla_decision, favorable = TRUE)
```

Para el criterio de Savage, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 4.

Método Laplace

```
alternativa_Laplace <- criterio.Laplace(tabla_decision, favorable = TRUE)
```

Para el criterio de Laplace, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 13.5.

Método punto ideal

```
alternativa_puntoideal <- criterio.PuntoIdeal(tabla_decision, favorable =
TRUE)</pre>
```

Para el criterio de Punto Ideal, en el caso favorable, la alternativa 2 es la mejor y el valor óptimo es 5.39.

Resumen caso favorable

```
matriz_resumen_favorable <- matrix(c(</pre>
              alternativa_pesimista$criterio,
               alternativa optimista$criterio,
               alternativa_Hurwicz$criterio,
               alternativa_Savage$criterio,
               alternativa_Laplace$criterio,
alternativa_puntoideal$criterio,alternativa_pesimista$AlternativaOpt,
               alternativa_optimista$AlternativaOpt,
               alternativa Hurwicz$AlternativaOpt,
               alternativa_Savage$AlternativaOpt,
               alternativa_Laplace$AlternativaOpt,
               alternativa_puntoideal$AlternativaOpt),
               nrow = 6, byrow = FALSE)
resumen_favorable <- as.data.frame(matriz_resumen_favorable)</pre>
colnames(resumen_favorable) <- c("Criterio", "Alternativa óptima")</pre>
crea_tabla_estilo(resumen_favorable, FALSE)
```

Criterio	Alternativa óptima			
Wald	5			
Optimista	2			
Hurwicz	2			
Savage	2			
Laplace	2			
Punto Ideal	2			

Vemos que las alternativas óptimas son diferentes según el criterio utilizado, siendo la alternativa a_2 la que más veces aparece como óptima (5 veces). Ya alternativa a_5 aparece una sola vez como óptima para el criterio pesimista y es la mejor alternativa también para el criterio de Hurwicz con valores de α menores que 0.375.

O Decisión final

En este caso se va a optar por la alternativa a_2 dado que es la que mayor número de veces aparece como óptima. En todos los criterios excepto en el persimista.

Caso desfavorable

Método pesimista

```
alternativa_pesimista_desfavorable <- criterio.Wald(tabla_decision, favorable
= FALSE)</pre>
```

Para el criterio de Wald, en el caso desfavorable, la alternativa 5 es la mejor y el valor óptimo es 15.

Método optimista

```
alternativa_optimista_desfavorable <- criterio.Optimista(tabla_decision,
favorable = FALSE)</pre>
```

Para el criterio Optimista, en el caso desfavorable, la alternativa 4 es la mejor y el valor óptimo es 4.

Método Hurwicz

Para el criterio de Hurwicz, en el caso desfavorable, la alternativa 4 es la mejor y el valor óptimo es 10. Con un valor de $\alpha=0.5$.

Se muestra a continuación una tabla con las alternativas óptimas y los valores óptimos para diferentes valores de alfa, que van desde 0 hasta 1 con incrementos de 0.1:

Alfa	Alternativa óptima	Valor óptimo	
0.0	5	15.0	
0.1	5	14.5	
0.2	4	13.6	
0.3	4	12.4	
0.4	4	11.2	
0.5	4	10.0	
0.6	4	8.8	
0.7	4	7.6	
0.8	4	6.4	
0.9	4	5.2	
1.0	4	4.0	

Y gráficamente:

```
gráfico_Hurwicz_desfavorable <- dibuja.criterio.Hurwicz(tabla_decision,
favorable = FALSE)</pre>
```

Criterio de Hurwicz (desfavorable - línea discontinua)

Además, se muestra un gráfico donde se pueden apreciar los intervalos de las alternativas óptimas para diferentes valores de alfa:

```
intervalos_Hurwicz_desfavorable <-
dibuja.criterio.Hurwicz_Intervalos(tabla_decision, favorable = FALSE)</pre>
```

Criterio de Hurwicz (desfavorable - línea discontinua)

Método Savage

```
alternativa_Savage_desfavorable <- criterio.Savage(tabla_decision, favorable =
FALSE)</pre>
```

Para el criterio de Savage, en el caso desfavorable, la alternativa 1 es la mejor y el valor óptimo es 5.

Método Laplace

```
alternativa_Laplace_desfavorable <- criterio.Laplace(tabla_decision, favorable
= FALSE)</pre>
```

Para el criterio de Laplace, en el caso desfavorable, la alternativa 1 es la mejor y el valor óptimo es 11.5.

Método punto ideal

```
alternativa_puntoideal_desfavorable <- criterio.PuntoIdeal(tabla_decision,
favorable = FALSE)</pre>
```

Para el criterio de Punto Ideal, en el caso desfavorable, la alternativa 1 es la mejor y el valor óptimo es 5.92.

Resumen caso desfavorable

```
alternativa_optimista_desfavorable$criterio,
    alternativa_Hurwicz_desfavorable$criterio,
    alternativa_Savage_desfavorable$criterio,
    alternativa_Laplace_desfavorable$criterio,
    alternativa_puntoideal_desfavorable$criterio,
    alternativa_pesimista_desfavorable$AlternativaOpt,
    alternativa_optimista_desfavorable$AlternativaOpt,
    alternativa_Hurwicz_desfavorable$AlternativaOpt,
    alternativa_Savage_desfavorable$AlternativaOpt,
    alternativa_Laplace_desfavorable$AlternativaOpt,
    alternativa_puntoideal_desfavorable$AlternativaOpt,
    nrow = 6, byrow = FALSE)
resumen_desfavorable <- as.data.frame(matriz_resumen_desfavorable)
colnames(resumen_desfavorable) <- c("Criterio", "Alternativa óptima")
crea_tabla_estilo(resumen_desfavorable, FALSE)</pre>
```

Criterio	Alternativa óptima
Wald	5
Optimista	4
Hurwicz	4
Savage	1
Laplace	1
Punto Ideal	1

Vemos que las alternativas óptimas son diferentes según el criterio utilizado, siendo la alternativa a_1 la que más veces aparece como óptima (3 veces). La alternativa a_4 aparece en dos ocasiones como óptima, por último para el criterio pesimista la mejor alternativa es a_5 y es la mejor alternativa también para el criterio de Hurwicz con valores de α menores que 0.143 .

O Decisión final

En este caso se va a optar por la alternativa a_1 dado que es la que mayor número de veces aparece como óptima y en el criterio de Hurwicz el gráfico nos muestra que es bastante equilibrada para todos los valores de alfa, aunque nunca sea la mejor.

Problema 4.2

Una persona recibe una herencia de 200.000 euros y se le presentan diferentes opciones de inversión para los próximos 10 años.

Puede terminar de pagar su hipoteca actual, ahorrando 40.000 euros de intereses y le sobrarían 30.000 euros que pondría en una cuenta remunerada al 2% anual

Puede seguir pagando su hipoteca y elegir una de las siguientes opciones

- Adquirir un piso por esa cantidad y si los alquileres turísticos siguen siendo posibles podrá generar un 6% anual. Si por el contrario se regularan pasaría a perder un 1% anual.
- Invertir en un fondo indexado que le puede generar un 7% anual pero si la bolsa baja perderá un 8%.
- Invertir en una franquicia de una cadena de comida rápida. Si acierta con el sitio podrá generar un 10% anual pero si se equivoca al seleccionar el sitio incurrirá en unas pérdidas anuales del 10%

Planteamiento del problema

Alternativas

- a1: Pagar hipoteca
- a2: Adquirir piso
- a3: Invertir en un fondo
- a4: Invertir en una franquicia

Estados de la naturaleza

- e1: Regulación alquileres
- e2: No regulación alquileres
- e3: Bolsa sube
- e4: Bolsa baja
- e5: Acierta con la ubicación
- e6: Se equivoca con la ubicación

Ahora vamos a construir la matriz de decisión para un año. Puesto que los estados de la naturaleza afectan por parejas (e1-e2, e3-e4, e5-e6) a las alternativas (a2, a3, a4). Se van a reducir a que la inversión de cada alternativa salga bien o mal ese año.

- e1 red: Inversión exitosa
- e2_red: Inversión fallida

Puesto que la alternativa 1 no se ve afectada por los estados de la naturaleza esta alternativa tendrá valores fijos en todos ellos y no se ve alterada por esta reducción.

Vamos a hacer una tabla para un año y luego aplicaremos los criterios de decisión bajo incertidumbre para ver qué alternativa es la mejor.

```
m11 <- 4000 + 30000 * 0.02
m12 <- 4000 + 30000 * 0.02
```

```
m21 <- 200000 * 0.06 - 4000
m22 < -200000 * 0.01 - 4000
m31 <- 200000 * 0.07 - 4000
m32 < - -200000 * 0.08 - 4000
m41 <- 200000 * 0.1 - 4000
m42 < -200000 * 0.1 - 4000
matriz_datos_2 <- matrix(c(m11, m12,</pre>
                       m21, m22,
                       m31, m32,
                       m41, m42),
                     nrow = 4,
                     byrow = TRUE)
tabla_datos_2 <- as.data.frame(matriz_datos_2)</pre>
colnames(tabla_datos_2) <- c("Inversión exitosa", "Inversión fallida")</pre>
rownames(tabla_datos_2) <- c("Pagar hipoteca",</pre>
                               "Aquirir piso",
                               "Invertir fondo",
                               "Invertir franquicia")
crea_tabla_estilo(tabla_datos_2, TRUE)
```

	Inversión exitosa	Inversión fallida		
Pagar hipoteca	4600	4600		
Aquirir piso	8000	-6000		
Invertir fondo	10000	-20000		
Invertir franquicia	16000	-24000		

Resolución del problema

En la siguiente tabla se muestran los resultados de aplicar todos los criterios de decisión bajo incertidumbre para el caso favorable.

```
resultado2 <- criterio.Todos(tabla_decision2, alfa = 0.5, favorable = TRUE)
res <- as.data.frame(resultado2)

crea_tabla_estilo(res, nombresfila = TRUE)</pre>
```

	Inver- sión exito- sa	Inver- sión fallida	Wald	Opti- mista	Hur- wicz	Sava- ge	Lapla- ce	Punto Ideal	Veces Opti- ma
Pagar hipo- teca	4600	4600	4600	4600	4600	11400	4600	11400	4
Aqui- rir pi- so	8000	-6000	-6000	8000	1000	10600	1000	13280	1
Inver- tir fon- do	10000	-20000	-20000	10000	-5000	24600	-5000	25321	0
In- vertir fran- quicia	16000	-24000	-24000	16000	-4000	28600	-4000	28600	1
iAlt.Opt (fav.)	-	-	Pagar hipo- teca	In- vertir fran- quicia	Pagar hipo- teca	Aqui- rir pi- so	Pagar hipo- teca	Pagar hipo- teca	Pagar hipo- teca

Observamos que para 4 de los 6 criterios la alternativa óptima es "Pagar hipoteca", siendo las otras dos alternativas óptimas "Invertir en una franquicia" para el criterio optimista y "Adquirir un piso" para el criterio de Hurwicz.

O Decisión final

Se va a optar por la alternativa "Pagar hipoteca" ya que es la que más veces aparece como óptima y además es la opción más segura, ya que las demás alternativas conllevan un riesgo mayor de pérdida económica.