Bioinformatics Analysis of Two-Component Singal Transduction Systems of *Xanthomonas*

Fen Hu, Xia Zou, Han Mei, Oing Tang, Jin He*

State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan Email: *hejin@mail.hzau.edu.cn

Received: Jun. 10th, 2012; revised: Jun. 24th, 2012; accepted: Jun. 27th, 2012

Abstract: Two-component signal transduction systems (TCSs) represent the dominant sense-response mechanisms to regulate a wide array of physiological pathways in prokaryotes. TCSs can regulate the majority of physiological processes, including bacterial growth, chemotaxis, osmoregulation, sporulation, biosynthesis of secondary metabolites, virulence of pathogens, biofilm formation, etc. In this paper, we predicted all the TCS genes and comprehensively analyzed their biological functions in the whole genomes of 8 *Xanthomonas* strains. We depicted a systematic classification of these proteins, then analyzed their structures and putative biological functions by sequence alignment, multiple sequence alignment, phylogenetic tree analysis, Hidden Markov Model (HMM), secondary structure prediction etc, and finally constructed the regulatory networks in which some TCSs involved. Our research revealed the relationship between TCS genes and the pathogenicity of *Xanthomonas*, as well as the possible evolutionary relationship; furthermore, our results could lay the foundation for exploring new drug targets.

Keywords: Xanthomonas; Two-Component System (TCS); Regulatory Network; Pathogenicity; Bioinformatics

黄单胞菌双组分信号转导系统的生物信息学分析

胡 芬、邹 霞、梅 寒、唐 清、何 进*

华中农业大学生命科学技术学院,农业微生物学国家重点实验室,武汉 Email: *hejin@mail.hzau.edu.cn

收稿日期: 2012年6月10日; 修回日期: 2012年6月24日; 录用日期: 2012年6月27日

摘 要: 双组分信号转导系统是原核生物感知与响应刺激的重要代谢调节机制,广泛参与细菌的各种生理生化反应。本文采用生物信息学手段,利用多序列对比、系统进化树分析、跨膜区分析、二级结构预测等,对已完成全基因组测序的 8 株黄单胞菌中的双组分进行系统分类、结构分析和功能预测,初步构建了部分双组分信号转导系统的调控网络关系图,揭示了黄单胞菌致病性与双组份之间的联系,并初步阐明了黄单胞菌种间的进化关系,同时也为寻找新的药物靶标奠定了基础。

关键词: 黄单胞菌; 双组分系统; 调控网络; 致病性; 生物信息学

1. 引言

黄单胞菌属(Xanthomonas)属于变形菌门,黄单胞菌科,革兰氏阴性菌。菌体呈短杆状,多单生,少双生,单端极生鞭毛,专性好氧^[1]。黄单胞菌属种类繁^{*}通讯作者。

多,《伯杰氏系统细菌学手册》(第二版)收录了 20 个 黄单胞菌种,70 个分类地位已经确定的和 70 个分类地位已经确定的和 70 个分类地位尚不确定的致病变种^[2]。

黄单胞菌属大部分成员为致病菌,且致病性非常 多样,引起的植物病害遍布全世界,病害症状多为叶

11

Copyright © 2012 Hanspub

斑、叶枯、萎蔫、溃疡等。目前,由黄单胞菌引起的水稻白叶枯病、禾谷黑径病、柑橘溃疡病、辣椒斑点病、十字花科植物黑腐病和棉花角斑病等对农业生产造成了巨大的危害。因此,深入了解其致病机理对黄单胞菌的防治有深远的意义。

双组分信号转导系统(two-component signal transduction system, TCS)是广泛存在于原核生物和真核生 物中的一种信号调节系统。在细菌中, 该系统可以对 环境的变化做出相应的反应, 直接或间接地接收且传 递生物信号,以调节相关基因的表达。典型的 TCS 由组氨酸蛋白激酶(histidine protein kinase, HK)和响 应调节蛋白(response regulator protein, RR)组成。HK 的输入结构域感应外界条件刺激, 使其传递结构域的 组氨酸(His)残基自磷酸化, 随后, 再将磷酸基团转移 到 RR 接受结构域的天冬氨酸(Asp)残基上,磷酸化的 RR 抑制或激活下游基因的转录^[3]。原核生物中的 TCS 常以简单的"HK-RR"形式存在。但是,某些组氨酸 激酶除了含有输入结构域和传递结构域外,其 C 端还 融合了一个含有 Asp 残基的接受域,这种组氨酸激酶 被称为杂合型组氨酸激酶(hybrid histidine kinase, HY), 真核生物大多拥有 HY 参与的多步骤磷酸传递 的双组分信号系统[4]。在细菌中, TCS 参与调节许多 的生理生化过程,包括细菌的趋化性、蛋白质合成、 营养物质同化、细胞运动、渗透压、群体感应、感受 性和致病性、生物膜和群体感应等[5]。

目前,全基因组序列被测通的 Xanthomonas 属菌株共有 8 种,分别是水稻白叶枯病菌(Xanthomonas oryzae pv. oryzae, Xoo)MAFF311018 菌株^[6]、KACC10331 菌株^[7]和 PXO99A 菌株^[8],野油菜黄单胞菌野油菜致病 变 种 (Xanthomonas campestris pv. campestris, Xcc)8004 菌株^[9]、B100 菌株^[10]和 ATCC33913 菌株^[11],柑橘溃疡黄单胞菌(Xanthomonas axonopodis pv. citri, Xac) 306 菌 株 ^[11] 以 及 番 茄 疮 痂 病 菌 (Xanthomonas campes- tris pv. vesicatoria, Xcv)85-10 菌株^[12]。本文采用生物信息学手段,从这 8 株菌中鉴定 HK、RR 和 HY,对这些 TCS 组分进行系统分类、结构分析和功能预测,并初步构建了部分 TCS 的调控网络关系图。该研究为进一步揭示 TCS 的作用机制和开发药物靶标提供了重要的理论指导。

2. 材料与方法

2.1. 序列来源

Xoo KACC10331(GenBank accession

NC006834.1), Xoo MAFF311018(GenBank accession

NC007705.1), Xoo PXO99A(GenBank accession

NC010717.1), Xcc 8004(GenBank accession

NC007086.1), Xcc ATCC33913(GenBank accession

NC003902.1), Xcc B100(GenBank accession

NC010688.1), Xcv 85-10(GenBank accession

NC007508.1)和 Xac 306(GenBank accession

NC005240.1)全基因组序列来自 GenBank

(www.ncbi.nih.gov/genomes/Bacteria); 其基因组注释来自华中农业大学 DIGAP

(http://ibi.hzau.edu.cn/digap/phytopathogens.php)。

2.2. TCS 预测、多重序列比对及进化树构建

根据上述 8 株菌的基因组注释搜寻可能的 HK、RR 和 HY,利用 Pfam 中 HK 和 RR 的保守结构域 HATPase_c(Pfam02518)和 Response_reg(Pfam00072)对结果进行筛选,最后通过 NCBI 的 BLASTp 程序确认 TCS 的各组分;蛋白质序列比对采用 ClustalW 软件进行;进化树利用同源基因非同义突变的相邻 - 连接分析,采用 ClustalW 和 Mega(Molecular Evolutionary Genetics Analysis)Vision 4.1 软件进行构建,分析结果进行 boot- strap 验证,重复次数设置为 1000。

2.3. 序列相似性分析和功能域分析

利用 Pfam 和 BLASTp 进行保守结构域分析,用 ClustalW 分析序列的相似性,TMHMM Server 2.0 (http://www.cbs.dtu.dk/services/TMHMM-2.0)对 TCS 跨膜结构域进行预测,结合文献报道,预测 TCS 各组分的功能,并在此基础上构建黄单胞菌 TCS 信号转导网络。

3. 结果

3.1. 黄单胞菌双组分系统各组分的鉴定

对黄单胞菌株全基因组序列进行生物信息学分析,我们一共预测出671个编码TCS各组分(包括HK、RR和HY)的基因,分布特征如表1所示,详细信息见附表1~8。可见,TCS基因均匀地分布于这8株Xanthomonas基因组中,且在不同菌株中TCS的排列顺序和相对位置也相似,如图1。

Table 1. General features of TCSs in the 8 genomes of *Xanthomonas* 表 1. 黄单胞菌中双组分信号转导系统的特征

		General feature					
Gene fa	amily	No. of genes	Average length (bp)	Genome (%)	No. of HK/RR		
	НК	29	1304.4	0.76			
Xoo 10331	RR	35	835.8	0.59	20		
A00 10551	Hybrid	12	2536.5	0.62	20		
	Total	76	-	1.97			
	HK	21	1372.7	0.58			
<i>Xoo</i> 311018	RR	33	888.2	0.59	21		
311016	Hybrid	11	2886.9	0.64	21		
	Total	66	-	1.81			
	HK	22	1221.2	0.51			
<i>Xoo</i> 99A	RR	28	958.4	0.51	12		
A00 99A	Hybrid	8	2585.4	0.34	12		
	Total	58	-	1.36			
	HK	31	1492.8	1.57			
V 22012	RR	41	779.1	0.63	27		
Xcc 33913	Hybrid	17	2653.1	0.89			
	Total	89	-	3.09			
	HK	31	1404.1	0.85			
V 0004	RR	42	777	0.63	27		
Xcc 8004	Hybrid	18	2677.7	0.94	27		
	Total	91	-	2.42			
	HK	31	1500.3	1.54			
W D100	RR	36	838.8	0.59	22		
Xcc B100	Hybrid	18	2705.5	0.96	23		
	Total	85	-	3.09			
	HK	37	1509.8	1.08			
V 05. 10	RR	57	795.3	0.88	21		
Xcv 85-10	Hybrid	20	2894.6	1.12	31		
	Total	114	-	3.02			
	НК	30	1361.9	0.82			
V 200	RR	44	799.9	0.68	2.5		
Xac 306	Hybrid	18	2584.2	0.89	26		
	Total	92	_	2.39			

Figure 1. Distributions of TCSs in the chromosomes of the 8 Xanthomonas strains

图 1. 双组分系统在八株黄单胞菌基因组中的分布

在这 8 株菌的 671 个 TCS 基因中,每株菌 HK 的数量在 21~37 之间、RR 的数量在 28~57 之间、HY 的数量在 8~20 之间,可见各个菌株中的 TCS 组分的数量波动范围并不大。另外一方面,成对的 HK/RR 的数量也相差不大,平均为 23 对。虽然 TCS 基因在基因组中所占的比例非常小,最高的仅为 3.09%,但 TCS 在细菌的整个生理生化过程中却起着重要的作用,因此,进一步深入了解 TCS 的调控机制是十分必要的。

3.2. 黄单胞菌属双组分系统各组分进化图

为了更好地了解 TCS 编码基因之间的相互联系,我们分别构建了各组分(HK、RR、HY)在不同菌中的进化树,如图 2~4。根据氨基酸序列相似性程度,结合功能预测(见表 2),我们将具有高相似性的一类蛋白归于一个群(cluster)。分析结果显示黄单胞菌的 TCS大致可以分为 16 个群,每一个群代表一对同源的TCS,它们分别是: ExsG/ExsF、RpfC/RpfG、AlgZ/AlgR、ColS/ColR、PhoQ/PhoP、TctD/TctE、KdpD/KdpE、YgiY/YgiX、LytS/LytT、CreC/CreB、NtrB/NtrC、CvgS/CvgY、RegS/RegR、PilS/PilR、BaeS/BaeR、PhoR/PhoB。

HY 进化树主要包含 4 个类群: StyS、FixL、TorS、RpfC。其中,RpfC 主要参与对细胞毒力的和第二信使的调控,部分是经过 HY 蛋白多步磷酸传递发挥作用的,此调节方式为信号转导调节提供了多个调控位点,提高了对信号感应的精确性,是细菌不断适应环境变化的体现。

3.3. 黄单胞菌属双组分系统功能预测

根据黄单胞菌 TCS 各组分的保守结构域和在基 因组中的相对位置,我们发现了 36 对不同的 TCS。 根据序列相似性分析和相关文献的报道,我们预测了 黄单胞菌中一些双组分调节系统的功能。表 2 是 8 株 黄单胞菌(编号 A 到 H)双组分功能预测结果,序列比对结果是以 8 株菌中氨基酸水平最小 id%(Identities)为基准。结果显示,在功能上,TCS 对细菌的生理调节涉及多个方面,主要包括细胞壁的合成和调节(如 LiaS/LiaR、VraS/VraR、LiaS/LiaR、LytS/LytT)、金属离子的调节(如 ZarS/ZarR、CusS/CusR)、物质的代谢(AtoS/AtoR、GlnL/GlnG、CreC/CreB)、细菌的运动性(QseC/QseB)等。另外,调控碱性磷酸酶合成的PhoQ/PhoP、鞭毛运动的QseC/QseB、锌离子代谢的

ZarS/ZarR 等双组分系统都存在于这 8 株菌中,且数量较其他双组分系统多,说明这几对双组分可能是黄单胞菌所必须的调节系统。另外,TCS 在分布上也存在着差异,例如,PhoQ/PhoP、QseC/QseB、ZarS/ZarR、RpfC/RpfG、KdpE/KdpD、GlnL/GlnG 等基本存在于每一株黄单胞菌中;而 PdtaS/PdtaR、EnvZ/OmpR、DesK/DesR、VraS/VraR 这几对 TCS 在 Xoo 10331、Xoo 311018、Xoo 99A 中均不存在,ArlS/ArlR、NarQ/NarP只存在于 Xcc 100 菌株中。这些结果为 TCS基因在黄单胞菌不同菌株间水平转移提供了证据。

Figure 2. Phylogenetic trees of HYs from Xoo 10331, Xoo 311018, Xoo 99A, Xcc 33913, Xcc 8004, Xcc B100, Xcv and Xac 图 2. 八株黄单胞菌中杂合蛋白(HY)的进化树

Figure 3. Phylogenetic trees of HKs from Xoo 10331, Xoo 311018, Xoo 99A, Xcc 33913, Xcc 8004, Xcc B100, Xcv and Xac 图 3. 八株黄单胞菌中组氨酸蛋白激酶(HK)的进化树

3.4. 黄单胞菌属双组分系统信号调控网络

我们在预测 8 株 Xanthomonas 菌 TCS 功能的基础上,结合相应的数据库和软件^[37,38],构建出黄单胞菌中部分 TCS 的调控网络(图 5)。从网络图中可以看到,当 HK 和 RR 相互作用时,存在"一对多,多对一"的信号交谈(cross-talk)现象,形成了更复杂的 TCS 调控网络,从而能快速、准确地对细胞内外的各种信号刺激做出响应。

一方面,一个 HK 可以使多个 RR 发生磷酸化;同时,一个 RR 也可被多个 HK 磷酸化。例如,当黄单胞菌在低 Ca²⁺和 Mg²⁺离子的条件下,PhoR 诱导PhoP 的表达,从而调控下游基因 *phoPR* 的表达;而PhoP 又可以被 RaxH/RaxR 这对双组分负调控,从而响应外界低金属离子浓度^[39]。又如,黄单胞菌在感受到群体感应信号(DSF)时,会促使双组分 RpfC/RpfF调控下游基因的表达,而 RpfC 受另一双组分 RpfG

Copyright © 2012 Hanspub

Figure 4. Phylogenetic trees of RRs from Xoo 10331, Xoo 311018, Xoo 99A, Xcc 33913, Xcc 8004, Xcc B100, Xcv and Xac 图 4. 八株黄单胞菌中响应调节蛋白(RR)的进化树

的调控;同时,RpfG 又会受到双组分 RavS/RavR 的负调控 $^{[40]}$ 。

另一方面,同一生理活动可以被多对 TCS 同时调控;同时,一对 TCS 也可以同时调控多种生理活动。例如,细菌在应对 DSF 情况下,感应激酶蛋白 RpfC 使对应的响应调节蛋白 RpfG 磷酸化从而调节下游基因;同时细胞内另一双组分 NtrB/NtrC 也会对这一外界

刺激进行响应^[40]。又如,有报道指出,在野油菜黄单胞菌 ATCC33913 中,响应调节蛋白 VgrR 是一个全局调节因子,将 vgrR 突变后,细菌的致病性、渗透性、细胞生长和耐盐性等多种生命调节活动均会受到影响。

另外,在 HY 参与的 TCS 信号转导系统中,细胞可以响应多步磷酸传递的信号,从而应对外界环境的变化^[41]。

Table 2. The similarity and function prediction of TCSs of the 8 Xanthomonas strains 表 2. Xanthomonas 八株菌中的 TCS 相似性分析和功能预测

N.	. N		No. of HK/RR						序列比对	고두 신문 조런 기계	A # 1.4h	
No.	Name	A	В	С	D	Е	F	G	Н	id%HK/id%RR	功能预测	参考文献
1	PhoQ/PhoP	1	1	1	1	1	1	1	1	35/42, Ec	调控镁离子及毒力	[13]
2	TorS/TorR	3	1		1		1	1		27/33, Ec	厌氧环境下调控细菌生长	[14]
3	QseC/QseB	3	4	1	1	4	4	6	4	30/40, Ec	调控鞭毛的运动	[15]
4	ZarS/ZarR	2	2	1	2	1	1	2	1	27/37, Ko	调控锌离子代谢	[16]
5	PhoR/PhoB	1	1		1	1	1	1		41/61, Pa	未知	
6	ArcB/ArcA	1			1					34/25, Ec	厌氧环境下调控细菌生长	[17]
7	YxjM/YxjL	1			2	2	1	2	2	30/40, Bs	未知	
8	MprB/MprA	2	1	1			1		1	31/39, Mt	调控细菌的抗逆性	[18]
9	KdpE/KdpD	1	1		1	1	1	1	1	36/48, Ec	调控渗透压	[19]
10	AtoS/AtoR	1	2							24/33, Ec	调控乙酰乙酸的代谢	[20]
11	YehT/YehU	1	1		1	1	1	1	1	33/33, Sf	未知	
12	BaeS/BaeR	1	1	2				2	2	34/40, Ec	未知	
13	GlnL/GlnG	1	1		1	2	1	1	1	27/32, Ec	调控氮元素的代谢	[21]
14	PilS/PilR		1		2	2		1	1	37/62, Pa	sigma-54 的调控	[22]
15	RpfC/ RpfG		1	1	2	3	3	2	2	30/34, <i>Xcc</i>	毒力调节,细胞膜的维持	[23]
16	YfiJ/YfiK		1	1						28/42, Bs	未知	
17	CusS/CusR		1		1			1		29/39, Ec	调控铜、银离子代谢	[24]
18	CreC/CreB		1			1	1	1	1	46/52, Ec	调控分解代谢	[25]
19	PleC/PleD			1	1	1	1	1	1	37/37, Cc	第二信使的调控	[26]
20	TcrY/TcrA				2					29/38, Mt	未知	
21	RegB/RegA			1	1	1	1	1	1	26/42, Rs	调控蛋白的合成	[27]
22	YdfH/YdfI				1					29/35, Bs	未知	
23	PdtaS/PdtaR				1	1				27/30, Mt	未知	
24	EnvZ/OmpR				1	1		1		32/44, St	渗透调节	[28]
25	DesK/DesR				1	1	1		1	27/49, Bs	调控细菌对低温环境的应答	[29]
26	Cph1/Rcp1					1		1	1	30/34, St	光调节	[30]
27	LiaS/LiaR					1				27/40, Bs	细胞壁压力,抗菌肽的调节	[31]
28	KinB/AlgB					1				22/37, Pa	藻酸盐的生物形成调控	[32]
29	LytS/LytT			1				1	1	29/30, Ef	细胞壁的调节	[33]
30	NreB/NreE							1		29/35, Sf	调控硝酸/亚硝酸盐的合成	[34]
31	VraS/VraR							1	1	31/39, Sa	细胞壁肽聚糖的生物合成	[35]
32	YkoH/YkoG								1	28/38, Bs	未知	
33	ArlS/ArlR						1			23/34, Sf	未知	
34	NarQ/NarP						1			32/37, Ec	硝酸还原酶的生物合成	[36]

A-H represent 8 different Xanthomonas strains, respectively. A, Xoo 10331; B, Xoo 311018; C, Xoo 99A; D, Xcc 33913; E, Xcc 8004; F, Xcc B100; G, Xcv; H, Xac. id% HK/id% RR represents HK identities/RR identities. Species name abbreviations: Ec, Escherichia coli; Ko, Klebsiella oxytoca; Pa, Pseudomonas aeruginosa; Bs, Bacillus subtilis; Sf, Shigella flexneri; Cc, Caulobacter crescentus; Mt, Mycobacterium tuberculosis; Rs, Rhodobacter sphaeroides; St, Salmonella typhimurium; Ef, Enterococcus faecalis; Sa, Staphylococcus aureus. Columns 3-10 contains the amount of HK/RRs in 8 strains of Xanthomonas, respectively.

The arrows and T-formed lines show positive and negative transcriptional regulation, respectively. Green letters indicate environmental stimuli. The red and black letters represent HKs and RRs, respectively. Circles represent genes induced under anaerobic conditions. Blue represent genes involved in TCSs, purple represent proteins involved in TCS.

Figure 5. TCS regulatory network in *Xanthomonas* 图 5. 黄单胞菌 TCS 调控网络

4. 讨论

通过对已完成测序的 8 株黄单胞菌的 TCS 进行的生物信息学分析,我们发现这些 TCS 基因在基因组中均匀分布。水稻黄单胞菌属的三株菌较其他菌株有着较小的基因组^[42],其所包含的 TCS 数目也明显少于其他菌株(表 1),特别是 Xoo PXO99A。说明缺少的 TCS 组分对水稻黄单胞菌是非必需的,这可能是由于水稻被长期养殖并得到驯化而对其产生的进化选择。

典型的 HK 包含四个保守的 N、D、F 和 G-Box 的结构域^[43],但是并非所有的 HK 包含所有的保守结构域。HK 结构域的相对多变可能是由于其感知不断变化的外界刺激而发生的进化,由于黄单胞菌不同亚种之间所侵染的寄主植物不同,因此其感知的外界刺激也有所差别。至于 RR,大部分 RR 在 N-末端的结构域是非常保守的。结合图 5 中 HK 和 RR 的相互成对现象,我们认为在进化过程中,磷酸传递这种不同

基因之间的作用形式被保留下来了。

研究表明,TCS 也涉及一些致病菌毒力因子的表达调控^[44],但是大多数 TCS 的生理功能并没有被完全揭示。作用机制相似的 TCS 广泛存在于各类微生物中并调控多种重要生物学功能,因此被认为是潜在的药物靶标。有研究者已经针对 TCS 找到一类与 ATP 竞争以阻断 HK 激酶活性的抑制物^[45,46]。

本文全局性地概括了黄单胞菌 TCS 的种类、功能、及其在基因组的分布,并构建了其调控网络,为深入研究 TCS 对黄单胞菌的生长、代谢以及毒力因子的表达调控奠定了基础;同时揭示了黄单胞菌致病性与 TCS 之间的联系,并初步阐明了黄单胞菌种间的进化关系。为寻找药物靶标以及防治黄单胞菌引起的病害提供了新的研究思路。

5. 致谢

本文由 973 项目(2010CB126105)、国家自然科学基金(31070065)和湖北省自然科学基金(2010CDB10003)资助。感谢王阶平博士对本文提出的建设性意见,硕士研究生王燕也对本文给予帮助。

参考文献 (References)

- [1] 郭亚辉. 黄单胞菌属的分类研究进展[J]. 微生物学杂志, 1997, 17(4): 50-51.
- [2] 龙海,李一农,李芳荣. 四种黄单胞菌的基因芯片检测方法的建立[J]. 生物技术通报, 2011, 1: 186-190.
- [3] A. H. West, A. M. Stock. Histidine kinases and response regulator proteins in two-component signaling systems. Trends in Biochemical Sciences, 2001, 26(6): 369-376.
- [4] 程钢,喻子牛.阿维链霉菌双组分信号系统的生物信息学分析[J].华中农业大学学报,2006,25(6):630-635.
- [5] M. T. Laub, M. Goulian. Specificity in two-components signal transduction pathways. Annual Review of Genetics, 2007, 41: 121-145.
- [6] H. Ochiai, Y. Inoue, M. Takeya, et al. Genome sequence of Xanthomonas oryzae pv. oryzae suggests contribution of large numbers of effector genes and insertion sequence to its race diversity. Japan Agricultural Research Quarterly, 2005, 39: 275-287
- [7] B. M. Lee, Y. J. Park, D. S. Park, et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 2005, 33(2): 577-586.
- [8] S. L. Salzberg, D. D. Sommer, M. C. Schatz, et al. Genome sequence and rapid evolution of the rice pathogen *Xanthomonas* oryzae pv. Oryzae PXO99A. BMC Genomics, 2008, 9: 204.
- [9] W. Qian, Y. Jia, S. X. Ren, et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen *Xan-thomonas campestris* pv. *campestris*. Genome Research, 2005, 15(6): 757-767.
- [10] F. J. Vorhölter, S. Schneiker, A. Goesmann, et al. The genome of Xanthomonas campestris pv. campestris B100 and its use for the

- reconstruction of metabolic pathways involved in Xanthan biosynthesis. Journal of Biotechnology, 2008, 134(1-2): 33-45.
- [11] A. C. da Silva, J. A. Ferro, F. C. Reinach, et al. Comparison of the genome of two *Xanthomonas* pathogens with differing host specificities. Nature, 2002, 417(6887): 459-463.
- [12] F. Thieme, R. Koebnik, T. Bekel, et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium *Xanthomonas campestris* pv. *vesicatoria* revealed by the complete genome sequence. Journal of Bacteriology, 2005, 187(21): 7254-7266.
- [13] A. Kato, H. Tanabe and R. Utsumi. Molecular characterization of the PhoP-PhoQ two-component system in *Escherichia coli* K-12: Identification of extracellular Mg²⁺-responsive promoters. Journal of Bacteriology, 1999, 181(17): 5516-5520.
- [14] C. Jourlin, A. Bengrine, M. Chippaux, et al. An unorthodox sensor protein (TorS) mediates the induction of the *tor* structural genes in response to trimethylamine N-oxide in *Escherichia coli*. Molecular Microbiology, 1996, 20(6): 1297-1306.
- [15] V. Sperandio, A. G. Torres and J. B. Kaper. Quorum sensing Escherichia coli regulators B and C (QseBC): A novel twocomponent regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli. Molecular Microbiology, 2002, 43(3): 809-821.
- [16] S. Leonhartsberger, A. Huber, F. Lottspeich, et al. The hydH/G genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. Journal of Molecular Biology, 2001, 307(1): 93-105.
- [17] S. Iuchi, Z. Matsuda, T. Fujiwara, et al. The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Molecular Microbiology, 1990, 4(5): 715-727.
- [18] S. Gallien, E. Perrodou, C. Carapito, et al. Ortho-proteogenomics: Multiple proteomes investigation through orthology and a new MS-based protocol. Genome Research, 2009, 19(1): 128-135.
- [19] M. O. Walderhaug, J. W. Polarek, P. Voelkner, et al. KdpD and KdpE, proteins that control expression of the kdpABC operon, are members of the two-component sensor-effector class of regulators. Journal of Bacteriology, 1992, 174(7): 2152-2159.
- [20] E. S. Canellakis, A. A. Paterakis, S. C. Huang, et al. Identification, cloning, and nucleotide sequencing of the ornithine decarboxylase antizyme gene of *Escherichia coli*. Proceedings of the National Academy of Sciences USA, 1993, 90(15): 7129-7133.
- [21] S. Ueno-Nishio, S. Mango, L. J. Reitzer, et al. Identification and regulation of the *glnL* operator-promoter of the complex *glnALG* operon of *Escherichia coli*. Journal of Bacteriology, 1984, 160(1): 379-384.
- [22] M. Hobbs, E. S. Collie, P. D. Free, et al. PilS and PilR, a two-component transcriptional regulatory system controlling expression of type 4 fimbriae in *Pseudomonas aeruginosa*. Molecular Microbiology, 1993, 7(5): 669-682.
- [23] H. Slater, A. Alvarez-Morales, C. E. Barber, et al. A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in *Xanthomonas campestris*. Molecular Microbiology, 2000, 38(5): 986-1003.
- [24] R. A. Welch, V. Burland, G. Plunkett 3rd, et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic *Escherichia coli*. Proceedings of the National Academy of Sciences USA, 2002, 99(26): 17020-17024.
- [25] K. Yamamoto, K. Hirao, T. Oshima, et al. Functional characterization in vitro of all two-component signal transduction systems from *Escherichia coli*. The Journal of Biological Chemistry, 2005, 280(2): 1448-1456.
- [26] S. P. Wang, P. L. Sharma, P. V. Schoenlein, et al. A histidine protein kinase is involved in polar organelle development in *Caulobacter crescentus*. Proceedings of the National Academy of Sciences USA, 1993, 90(2): 630-634.
- [27] M. K. Phillips-Jones, C. N. Hunter. Cloning and nucleotide sequence of *regA*, a putative response regulator gene of *Rhodo-bacter sphaeroides*. FEMS Microbiology Letters, 1994, 116(3):

- 269-275.
- [28] P. Liljeström, I. Laamanen and E. T. Palva. Structure and expression of the *ompB* operon, the regulatory locus for the outer membrane porin regulon in *Salmonella typhimurium* LT-2. The Journal of Biological Chemistry, 1988, 201(4): 663-673.
- [29] P. S. Aguilar, A. M. Hernandez-Arriaga and L. E. Cybulski, Molecular basis of thermosensing: A two-component signal transduction thermometer in *Bacillus subtilis*. The EMBO Journal, 2001, 20(7): 1681-1691.
- [30] K. C. Yeh, S. H. Wu, J. T. Murphy, et al. A cyanobacterial phytochrome two-component light sensory system. Science, 1997, 277(5331): 1505-1508.
- [31] T. Mascher, S. L. Zimmer, T. A. Smith, et al. Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of *Bacillus subtilis*. Antimicrobial Agents and Chemotherapy, 2004, 48(8): 2888-2896.
- [32] S. Ma, D. J. Wozniak and D. E. Ohman. Identification of the histidine protein kinase KinB in *Pseudomonas aeruginosa* and its phosphorylation of the alginate regulator *algB*. The Journal of Biological Chemistry, 1997, 272(29): 17952-17960.
- [33] I. T. Paulsen, L. Banerjei, G. S. Myers, et al. Role of mobile DNA in the evolution of vancomycin-resistant *Enterococcus faecalis*. Science, 2003, 299(5615): 2071-2074.
- [34] F. Reinhart, A. Huber, R. Thiele, et al. Response of the oxygen sensor NreB to air in vivo: Fe-S-containing NreB and apo-NreB in aerobically and anaerobically growing *Staphylococcus car-nosus*. Journal of Bacteriology, 2010, 192(1): 86-93.
- [35] T. Baba, F. Takeuchi, M. Kuroda, et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet, 2002, 359(9320): 1819-1827.
- [36] R. S. Rabin, V. Stewart. Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in *Escherichia coli* K-12. Journal of Bacteriology, 1993, 175(11): 3259-3268.
- [37] M. Kanehisa, S. Goto, Y. Sato, et al. KEGG for integration and interpretation of large-scale molecular datasets. Nucleic Acids Research, 2012, 40: D109-D114.

- [38] M. E. Smoot, K. Ono, J. Ruscheinski, et al. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics, 2011, 27(3): 431-432.
- [39] S. W. Lee, K. S. Jeong, S. W. Han, et al. The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. Journal of Bacteriology, 2008, 190(6): 2183-2197.
- [40] Y. W. He, C. Boon, L. Zhou, et al. Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel twocomponent regulatory system RavS/RavR. Molecular Microbiology, 2009, 71(6): 1464-1476.
- [41] W. Qian, Z. J. Han and C. Z. He. Two-component signal transduction systems of *Xanthomonas* spp: A lesson from genomics. Molecular Plant-Microbe Interactions. 2008, 21(2): 151-161.
- [42] M. O. Andrade, M. C. Alegria, C. R. Guzzo, et al. The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen *Xanthomonas axonopodis* pv. citri. Molecular Microbiology, 2006, 62(2): 537-551.
- [43] G. M. Pao, M. H. Saier Jr. Response regulators of bacterial signal transduction systems: Selective domain shuffling during evolution. Journal of Molecular Evolution, 1995, 40(2): 136-154.
- [44] Y. W. He, C. Wang, L. Zhou, et al. Dual signaling functions of the hybrid sensor kinase RpfC of *Xanthomonas campestris* involve either phosphorelay or receiver domain-protein interaction. The Journal of Biological Chemistry, 2006, 281(44): 33414-33421.
- [45] K. Stephenson, Y. Yamaguchi and J. A. Hoch. The mechanism of action of inhibitors of bacterial two-component signal transduction systems. The Journal of Biological Chemistry, 2000, 275(49): 38900-38904.
- [46] J. J. Hilliard, R. M. Goldschmidt, L. Licata, et al. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrobial Agents and Chemotherapy, 1999, 43(7): 1693-1699.

Copyright © 2012 Hanspub

附录

Supplemental Table 1. Classification of two-component systems in *Xanthomonas oryzae* pv. *oryzae* KACC10331 附表 1. *Xanthomonas oryzae* pv. *oryzae* KACC10331 双组分系统分类

Н	K	HY	R	LR.
XOO0057(ygiY)	XOO3534(colS)	XOO0336	XOO0423(phoP)	XOO2871(rpfG)
XOO0240	XOO3667(phoR)	XOO0519	XOO0520	XOO3030
XOO0424(phoQ)	XOO3762(colS)	XOO1115	XOO0683	XOO3101(nasT)
XOO0682(cvgSY)	<i>XOO</i> 3843(kdpD)	XOO1467	XOO0698	XOO3527
<i>XOO</i> 0737(styS)	XOO3871	XOO1827	XOO0951	XOO3535(colR)
<i>XOO</i> 1106(tctE)	XOO3875	XOO1828	XOO1105(tctD)	<i>XOO</i> 3666(phoB)
XOO1189	XOO3936	XOO1829	XOO1188	XOO3710
XOO1207(colS)	<i>XOO</i> 4009(algZ)	XOO1831	XOO1208(colR)	XOO3763(colR)
XOO1470(cheA)	XOO4201	XOO2323	XOO1559(baeR)	XOO3842
XOO1477(creC)	XOO4341(smeR)	XOO2797	XOO1591(pilR)	XOO3870(kdpE)
XOO1558(baeS)	XOO4484(ntrB)	<i>XOO</i> 3709(torS)	XOO1721	XOO3935
XOO1592(pilS)		XOO3934	<i>XOO</i> 2227(regR)	<i>XOO</i> 4008(algR)
XOO1829			XOO2322	XOO4202(ntrC)
<i>XOO</i> 2228(regS)			XOO2563(pdeA)	XOO4298
XOO2564			XOO2586	XOO4341(smeR)
<i>XOO</i> 3147(fixL)			XOO2588	XOO4483(ntrC)
XOO3405			XOO2798	XOO4543(tcsR)
XOO3528			XOO2835(cheY)	

Supplemental Table 2. Classification of two-component systems in *Xanthomonas oryzae* pv. *oryzae* MAFF311018 附表 2. *Xanthomonas oryzae* pv. *oryzae* MAFF311018 双组分系统分类

Н	K	HY	R	R
XOO_0219	XOO_3714	XOO_0308	XOO_0385	XOO_2692
XOO_0386	XOO_3780	XOO_0482	XOO_0483	XOO_2725
XOO_1004	<i>XOO</i> _3970	XOO_0635	XOO_0592	XOO_2882
XOO_1101	XOO_4090	XOO_1012	XOO_0871	XOO_3333
XOO_1371		XOO_1725	XOO_1003	XOO_3501
<i>XOO</i> _1446		<i>XOO</i> _1726	XOO_1102	XOO_3552
<i>XOO</i> _1475		XOO_1727	XOO_1368	XOO_3620
XOO_2094		XOO_2200	XOO_1447	XOO_3651
XOO_2423		XOO_2639	XOO_1474	XOO_3713
XOO_3205		XOO_2988	XOO_1620	XOO_3779
XOO_3334		XOO_3712	XOO_2093	XOO_3971
XOO_3340			XOO_2199	XOO_4052
XOO_3464			XOO_2422	XOO_4091
XOO_3551			XOO_2444	XOO_4224
XOO_3621			XOO_2446	XOO_4279
XOO_3652			XOO_2640	

Supplemental Table 3. Classification of two-component systems in *Xanthomonas oryzae* pv. *oryzae* PXO99A 附表 3. *Xanthomonas oryzae* pv. *oryzae* PXO99A 双组分系统分类

I	łK	HY	RR	
PXO_03623	PXO_04835	PXO_04605	PXO_03764	PXO_00070(rpfG)
PXO_03565	PXO_04880	PXO_00475	PXO_03713	PXO_00057
PXO_03763(baeS)	PXO_00798	PXO_00620	PXO_03965	PXO_00476
PXO_03762(baeS)	PXO_02127	PXO_01426	PXO_04138	PXO_00466
PXO_03966	PXO_02305	PXO_02398	PXO_04305	PXO_00619
PXO_04139	PXO_02406	PXO_03078	PXO_04421	PXO_00797
PXO_04304	PXO_02493	PXO_02943	PXO_04383	PXO_02303
PXO_04427	PXO_02837 (raxH2)	PXO_02752	PXO_04659	PXO_02407
PXO_04422			PXO_04606	PXO_02492
PXO_04384(kdpD)			PXO_04469(raxR)	PXO_02602
PXO_04658			PXO_04459	PXO_02637(pilH)
PXO_04467(raxH)			PXO_04755	PXO_02944
PXO_04460			PXO_04836	PXO_02836(raxR2)
PXO_04742(creC)			PXO_04881	PXO_03258

Supplemental Table 4. Classification of two-component systems in Xanthomonas campestris pv. campestris str. ATCC 33913 附表 4. Xanthomonas campestris pv. campestris str. ATCC 33913 双组分系统分类

Н	HK		RR		
XCC0108	XCC3106 (colS)	XCC0825 (torS)	XCC0109	XCC2152	
<i>XCC</i> 0188(ntrB)	XCC3178	<i>XCC</i> 1176 (cvgSY)	<i>XCC</i> 0189(ntrC)	XCC2180	
XCC0562	XCC3351 (tctE)	XCC1182	XCC0484	XCC2361	
XCC0705(kdpD)	XCC3395	XCC1185	<i>XCC</i> 0563(ntrC)	XCC2590(pilR)	
<i>XCC</i> 0780(colS)	XCC3436	XCC1652	XCC0706(kdpE)	XCC2695(creB)	
XCC0962(phoR)	<i>XCC</i> 3513 (algZ)	<i>XCC</i> 1655 (cvgSY)	<i>XCC</i> 0779(colR)	XCC2703(vieA)	
<i>XCC</i> 1121(colS)	<i>XCC</i> 3894 (ygiY)	XCC2153	XCC0824	XCC2949	
XCC1127	XCC3910	XCC2360	XCC0963(phoB)	XCC2958(exsF)	
XCC1174	XCC3942 (phoQ)	<i>XCC</i> 2421 (fixL)	<i>XCC</i> 1049(pilH)	<i>XCC</i> 3096(pilR)	
XCC1175	XCC4144	XCC2846	<i>XCC</i> 1120(colR)	XCC3107(colR)	
XCC1186		XCC2847	XCC1128	XCC3315	
<i>XCC</i> 1780(regS)		XCC2848	<i>XCC</i> 1187	<i>XCC</i> 3352(tctD)	
<i>XCC</i> 1957		XCC3348	XCC1653	XCC3394	
XCC2030		XCC3434	<i>XCC</i> 1779(regR)	XCC3512(algR)	
XCC2054(cvgSY)		XCC3643	XCC1854(rpfG	XCC3687(exsF)	
XCC2179		XCC4076	<i>XCC</i> 1886(cheY)	XCC3773	
XCC2426		XCC0483	XCC1934	XCC3893(ygiX)	
XCC2592			XCC1936	XCC3909	
<i>XCC</i> 2694(creC)			XCC1958(pdeA)	<i>XCC</i> 3943(phoP)	
<i>XCC</i> 2959(exsG)			XCC2004(nasT)	XCC4061(tcsR)	
<i>XCC</i> 3095(pilS)			XCC2053(cheY)		

Supplemental Table 5. Classification of two-component systems in Xanthomonas campestris pv. campestris str. 8004 附表 5. Xanthomonas campestris pv. campestris str. 8004 双组分系统分类

H	IK	HY	R	R
XC_0113	XC_3118	XC_0495	XC_0114	XC_2250
XC_0197	XC_3125	XC_0730	XC_0198	XC_2252
XC_0647	XC_3273	XC_0818	XC_0496	XC_2302
XC_0728	XC_3451	XC_1260	XC_0648	XC_2335
XC_0769	XC_3529	XC_1261	XC_0729	XC_2457
XC_0813	XC_3670	XC_1262	XC_0770	XC_2578
XC_0987	XC_3982	XC_1686	XC_0812	XC_3055
XC_1050	XC_3998	XC_1691	XC_0850	XC_3117
XC_1062	XC_4030	XC_1756	XC_1049	XC_3126
XC_1149	XC_4236	XC_1965	XC_1061	XC_3197
XC_1382		XC_2576	XC_1150	XC_3272
XC_1421		XC_2579	XC_1160	XC_3406
XC_1526		XC_3057	XC_1411	XC_3452
XC_1939		XC_3060	XC_1419	XC_3528
XC_2129		XC_3067	XC_1528	XC_3669
XC_2153		XC_3405	XC_1755	XC_3758
XC_2229		XC_3714	XC_1938	XC_3845
XC_2456		XC_4167	XC_1966	XC_3981
XC_3056			XC_2130	XC_3997
XC_3068			XC_2180	XC_4031
XC_3069			XC_2228	XC_4150

Supplemental Table 6. Classification of two-component systems in Xanthomonas campestris pv. campestris str. B100 附表 6. Xanthomonas campestris pv. campestris str. B100 双组分系统分类

	НК	НҮ]	RR
xccb100_0208(ntrB)	xccb100_3153	xccb100_0511	xccb100_0209(ntrC)	xccb100_2142(rpfG)
xccb100_0683	xccb100_3163	xccb100_0850	xccb100_0512	xccb100_2256
xccb100_0761	xccb100_3214	xccb100_1307	xccb100_0684	xccb100_2485(regR)
xccb100_0802	xccb100_3220	xccb100_1308	xccb100_0762	xccb100_3152
xccb100_0846(tctE)	xccb100_3389	xccb100_1309	xccb100_0763	xccb100_3213
xccb100_0998	xccb100_3572	xccb100_1740	xccb100_0803	xccb100_3221
xccb100_1082(colS)	xccb100_3650(kdpD)	xccb100_1744	xccb100_0845(tctD)	xccb100_3295
xccb100_1095(pilS)	xccb100_3788	xccb100_1812	xccb100_0884	xccb100_3388
xccb100_1188	xccb100_3863	xccb100_2028	xccb100_1081(colR)	xccb100_3528
xccb100_1430	xccb100_4084	xccb100_2144(rpfC)	xccb100_1094	xccb100_3573
xccb100_1468(creC)	xccb100_4098	xccb100_2604	xccb100_1189	xccb100_3649(kdpE)
xccb100_1570	xccb100_4129	xccb100_2607	xccb100_1202	xccb100_3787
xccb100_2002	xccb100_4361	xccb100_3154	xccb100_1429	xccb100_3873
xccb100_2255		xccb100_3157	xccb100_1458	xccb100_3955
xccb100_2257		xccb100_3162	xccb100_1466(creB)	xccb100_4083
xccb100_2332		xccb100_3527	xccb100_1811	xccb100_4097
xccb100_2361		xccb100_3829	xccb100_2001	xccb100_4130
xccb100_2484 (regS)		xccb100_4277	xccb100_2029	xccb100_4262

Supplemental Table 7. Classification of two-component systems in *Xanthomonas campestris* pv. vesicatoria str. 85-10 附表 7. *Xanthomonas campestris* pv. vesicatoria str. 85-10 双组分系统分类

H	IK	HY	R	R
XCV0114	XCV3364(colS)	XCV0528	XCV0115	XCV2112(lytT)
XCV019(ntrB)	XCV3453	XCV0746	<i>XCV</i> 0192(ntrC)	XCV2147(virG)
XCV0231	<i>XCV</i> 3610(tctE)	XCV0934	XCV0232	XCV2153
XCV0335	XCV3761	XCV1324	XCV0334	XCV2187
XCV0677	XCV3840	XCV1329	XCV0529	XCV2216
XCV0744	XCV4069	XCV1332	<i>XCV</i> 0678(algR)	XCV2309(qseB)
XCV0783	XCV4087	XCV1705	XCV0745	XCV2422
<i>XCV</i> 0811(kdpD)	XCV4115(phoQ)	XCV1708(cvgSY)	XCV0784	XCV2660
XCV0888	XCV4386	XCV2215	<i>XCV</i> 0812(kdpE)	XCV2672
XCV1071(phoR)		XCV2671	XCV0887	XCV2964
XCV1079		XCV2754	XCV0933	<i>XCV</i> 3015(creB)
XCV1254		XCV3165	XCV1072(phoB)	XCV3023
XCV1260		XCV3166	<i>XCV</i> 1174	XCV3233(pilG)
XCV1323		<i>XCV</i> 3167	XCV1253	XCV3257
XCV1333		XCV3168	XCV1261	XCV3351(pilR)
<i>XCV</i> 1828(regS)		<i>XCV</i> 3229(pilL)	XCV1334	<i>XCV</i> 3365(colR)
XCV2038		XCV3601	XCV1380	XCV3571
XCV2040		XCV3793	<i>XCV</i> 1827(regR)	XCV3608
XCV2105		XCV3804	XCV1654	<i>XCV</i> 3611(tctD)
<i>XCV</i> 2111(lytS)		XCV4292	XCV1706	XCV3760
XCV2145(virA)			<i>XCV</i> 1827(regR)	XCV3839
XCV2152			<i>XCV</i> 1917(rpfG)	XCV3850
XCV2155			<i>XCV</i> 1957(cheY)	XCV3852
XCV2188			<i>XCV</i> 1976(cheY)	XCV3951
XCV2310(qseC)			XCV2015	XCV4068
XCV2965			XCV2017	XCV4086
XCV3014(creC)			XCV2039	<i>XCV</i> 4116(phoP)
<i>XCV</i> 3350(pilS)			XCV2090(nasT)	XCV4276

Supplemental Table 8. Classification of two-component systems in *Xanthomonas axonopodis* pv. citri str. 306 附表 8. *Xanthomonas axonopodis* pv. citri str. 306 双组分系统分类

I	IK	НҮ	R	R
XAC0135	XAC3237(pilS)	XAC0494	XAC0136	<i>XAC</i> 1992
<i>XAC</i> 0207(ntrB)	<i>XAC</i> 3249(colS)	<i>XAC</i> 0685(torS)	<i>XAC</i> 0208(ntrC)	XAC2055
XAC0225	XAC3273	XAC0897	<i>XAC</i> 0226(ntrC)	<i>XAC</i> 2141(lytT)
<i>XAC</i> 0326(smeS)	XAC3292(cvgSY)	XAC1274(cvgSY)	<i>XAC</i> 0325(smeR)	XAC2158
<i>XAC</i> 0620(algZ)	XAC3335	XAC1279	XAC0495	XAC2168
XAC0644	<i>XAC</i> 3482(tctE)	XAC1283	<i>XAC</i> 0621(algR)	XAC2493
XAC0683	<i>XAC</i> 3975(ygiY)	XAC1399	XAC0684	<i>XAC</i> 2803(baeR)
XAC0729	<i>XAC</i> 3994	XAC1672(cvgSY)	XAC0730	<i>XAC</i> 2855(creB)
<i>XAC</i> 0759(kdpD)	XAC4022(phoQ)	XAC2054	<i>XAC</i> 0760(kdpE)	<i>XAC</i> 2868(vieA)
<i>XAC</i> 0835(colS)		XAC2492	XAC0834(colR)	XAC3126

Continued

<i>XAC</i> 1041(phoR)	XAC2555(fixL)	XAC0896	<i>XAC</i> 3135(exsF)
XAC1074	XAC3028	XAC1042(phoB)	XAC3238(pilR)
<i>XAC</i> 1222(colS)	XAC3029	XAC1154(pilH)	<i>XAC</i> 3250(colR)
XAC1228	<i>XAC</i> 3031	<i>XAC</i> 1221(colR)	<i>XAC</i> 3274(cheY)
XAC1273	<i>XAC</i> 3473	XAC1229	XAC3443
XAC1282	<i>XAC</i> 3643(styS)	XAC1284	<i>XAC</i> 3483(tctD)
<i>XAC</i> 1798(regS)	<i>XAC</i> 3683	<i>XAC</i> 1670	<i>XAC</i> 3731(exsF)
<i>XAC</i> 2142(lytS)	<i>XAC</i> 4193	<i>XAC</i> 1797(regR)	XAC3826
XAC4283		<i>XAC</i> 1877(rpfG)	<i>XAC</i> 3974(ygiX)
<i>XAC</i> 2167		<i>XAC</i> 1904(cheY)	XAC3993
XAC2804(baeS)		<i>XAC</i> 1968	XAC4023(phoP)
<i>XAC</i> 2854(creC)		<i>XAC</i> 1970	<i>XAC</i> 4180(tcsR)