CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 1 of 92

Recognized by the Federal Communications Commission

Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: IC 3463A-1

TCB ID: DE 0001

Accredited by the German Accreditation Council DAR–Registration Number DAT-P-176/94-D1

Independent ETSI compliance test house

Accredited Bluetooth® Test Facility (BQTF)

Test report no.: 2-4506-01-02/06

FCC Part 15.247
CANADA RSS-210 Issue 6
DISCUS DUAL PHONE
FCC ID: U2K151060001

IC: 6930A-1510600

The Bluetooth word mark and logos are owned by the Bluetooth SIG, Inc. and any use of such marks by Cetecom ICT is under license

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 2 of 92

Table of contents

1. ADMINISTRATIVE DATA	3
1.1. ADMINISTRATIVE DATA OF THE TEST FACILITY	3
1.1.1 Identification of the testing laboratory	
1.1.2 Organizational items	
1.1.3 Applicant's details	
1.2 ADMINISTRATIVE DATA OF MANUFACTURER / MEMBER	3
1.3 DESCRIPTION OF THE EQUIPMENT UNDER TEST (EUT)	3
1.3.1 EUT: Type, S/N etc	
1.3.2 ADDITIONAL EUT INFORMATION	
1.3.3 Additional EUT information For IC Canada (appendix 2)	
1.3.4 EUT operating modes	
1.3.5 Extreme conditions testing values	
2 TEST STANDARD & SUMMARY LIST OF ALL PERFORMED T	EST CASES 3
	201 0/10/20
3 RF MEASUREMENT TESTING	3
2.1 Programmer of more up	2
3.1 DESCRIPTION OF TEST SET-UP	
3.1.1 Radiated measurements	
3.1.3 AC-conducted measurements	
3.2 REFERENCED DOCUMENTS	
3.3 PEAK POWER SPECTRAL DENSITY (DSSS) §15.247(D)	
3.4 PEAK POWER SPECTRAL DENSITY (OFDM) §15.247(D)	
3.5 SPECTRUM BANDWIDTH OF A DSSS SYSTEM / 6 DB BANDWITH §15.2	
3.6 SPECTRUM BANDWIDTH OF A OFDM SYSTEM / 6 DB BANDWITH §15.2	
3.7 MAXIMUM OUTPUT POWER (CONDUCTED) (DSSS) §15.247 (B) (1)	
3.8 MAXIMUM OUTPUT POWER (CONDUCTED) (OFDM) §15.247 (B) (1)	
3.9 MAX. PEAK OUTPUT POWER (RADIATED) §15.247 (B) (1)	
3.10 BAND-EDGE COMPLIANCE OF CONDUCTED EMISSIONS §15.247 (C)	
3.11 BAND-EDGE COMPLIANCE OF RADIATED EMISSIONS (DSSS) §15.20:	5
3.12 BAND-EDGE COMPLIANCE OF RADIATED EMISSIONS (OFDM) §15.	
3.13 Spurious Emissions - conducted (Transmitter) §15.247 (c)	
3.14 Spurious Emissions - Radiated (Transmitter) DSSS §15.209	
3.15 Spurious Emissions - Radiated Receiver §15.109/209	
3.16 Spurious Emissions - radiated < 30 MHz §15.109	
3.17 CONDUCTED EMISSIONS < 30 MHz §15.107/207	
A PHOTOCRAPHS	2

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 3 of 92

1. Administrative data

1.1. Administrative data of the test facility

1.1.1 Identification of the testing laboratory

Company name: Cetecom ICT Services GmbH

Address: Untertürkheimerstr. 6-10 D-66117 Saarbruecken

Germany

Laboratory accreditation: DAR-Registration No. DAT-P-176/94-D1

Bluetooth Qualification Test Facility (BQTF)

Responsible for testing laboratory: Harro Ames, Michael Berg

Phone: +49 681 598 0 Fax: +49 681 598 9075 email: info@ict.cetecom.de

Responsible for testing laboratory
(Harro Ames, Michael Berg)

1.1.2 Organizational items

Reference No.: 2-4506-01-02/06

Order No.:

Responsible for test report and Harro Ames, Michael Berg

project leader:

Receipt of EUT: 2006-12-12

Date(s) of test: 2006-12-12 to 2007-02-05

Date of report: 2007-02-05

Number of report pages: 306 Number of diagram pages (annex): 92

Version of template: 1.6

Responsible for test report (Harro Ames, Michael Berg)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 4 of 92

Note:

The test results of this test report relate exclusively to the item tested as specified in this report. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

During the test no hardware and software changes are allowed to be performed at the EUT.

1.1.3 Applicant's details

Name : Pirelli Broadband Solutions S.p.A.

Address : Viale Sarca 222 City : 20126 Milan

Country : Italy

Phone : +39 02 6442 9378

Fax : +39 02 6442 3455

Contact : M. Massimo Lo Iacono

Phone : +39 02 6442 9378

Fax : +39 02 6442 3455

e-mail : massimo.loiacono@pirelli.com

1.2 Administrative data of manufacturer / member

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 5 of 92

1.3 Description of the Equipment under test (EUT)

1.3.1 EUT: Type, S/N etc.

Product name	Product ID	Description	S/N serial number	HW hardware status	SW software status
DISCUS DUAL PHONE		GSM phone with VoIP via WLAN	IMEI: 352789010251223	715_02	3.98
Frequency Band [MHz]	Type of Modulation	Number of channels	Antenna	Power Supply	Temperature Range
ISM 2.400 - 2.483,5	DSSS / OFDM	11	Build-in	Via battery	-20°C - +55°C

1.3.2 Additional EUT information

The sample is a PCS1900 / VoIP over WLAN mobile phone.

In this report we test only the WLAN part, the PCS 1900 part was also tested in our house, see report no. 2-4506-01-03/06.

The measurements were performed according the guidelines:

We used the "Option 1 method", as our analyzer has a RBW/VBW greater than the 6 db BW of the signal.

[&]quot;Measurement of digital transmission systems operating under section 15.247. (March 23, 2005)"

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 6 of 92

1.3.3 Additional EUT information For IC Canada (appendix 2)

Certification Number:	6930A-1510600
Model Name:	DISCUS DUAL PHONE
Manufacturer:	Pirelli Broadband Solutions S.p.A.
	Viale Sarca 222
	20126 Milan
	Italy
Tested to Radio Standards Specification (RSS) No.:	RSS-210 Issue 6
Open Area Test Site Industry Canada Number:	IC 3463A-1
Frequency Range (or fixed frequency) [MHz]:	2412 – 2462 MHz
RF: Power [mW] (max):	Rad. EIRP: 89,13 (DSSS)
	Conducted: 133,66 (OFDM)
Antenna Type:	Build-in
Occupied Bandwidth (99% BW) [kHz]:	DSSS: 16 MHz, OFDM: 17 MHz
Type of Modulation:	DSSS / OFDM
Emission Designator (TRC-43):	17M0G7D (OFDM)
Transmitter Spurious (worst case) [µV/m in 3m]:	No peaks found / Noise floor
Receiver Spurious (worst case) [µV/m in 3m]:	No peaks found / Noise floor

ATTESTATION:

DECLARATION OF COMPLIANCE: I declare that the testing was performed or supervised by me; that the test

measurements were made in accordance with the above-mentioned Industry Canada standard(s); and that the equipment identified in this application has been subjected to all the applicable test conditions specified in the Industry Canada standards and all of the requirements of the standard have been met.

Signature:

Date: 2007-02-05

Test engineer: Harro Ames

H. Jus

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 7 of 92

1.3.4 EUT operating modes

EUT operating mode no.*)	Description of operating modes	Additional information
Op. 0	Normal mode	Normal temperature and power source conditions
Op. 1		low temperature, low power source conditions
Op. 3		low temperature, high power source conditions
Op. 4		high temperature, low power source conditions
Op. 5		high temperature, high power source conditions

^{*)} EUT operating mode no. is used to simplify the test report.

1.3.5 Extreme conditions testing values

Description	Shortcut	Unit	Value
Nominal Temperature / humidity	T_{nom}	°C / %	22°C / 33%
Low Temperature	T_{low}	°C	-20°C
High Temperature	T_{high}	°C	+55°C
Nominal Power Source	V_{nom}	V	3.7V DC

Type of powersource: internal battery

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 8 of 92

2 Test standard & summary list of all performed test cases

TC identifier	Description v		date	Remark
RF-Testing	FCC Part 15 §15.247 - CANADA RSS-210	pass	2007-02-05	-

Test Specification Clause	Test Case		Fail	Not applicable	Not performed
Clause					
§15.247 (d)	Peak power spectral density	Yes			
§15.247(a2)	Spectrum Bandwidth of a DSSS /OFDMSystem 6dB BW	Yes			
§ 15.247 (b) (3)	Maximum output power (conducted)	Yes			
§ 15.247 (b) (3)	Max. peak output power (radiated)	Yes			
§15.247 (c)	Band-edge compliance of conducted emissions	Yes			
§15.205	Band-edge compliance of radiated emissions	Yes			
§15.247 (c)	Spurious Emission - conducted (Transmitter)	Yes			
§ 15.209	Spurious Emission -radiated (Transmitter)	Yes			
§ 15.247 (c)	Spurious Emissions-radiated (Receiver)	Yes			
§ 15.109	Spurious Emissions-radiated <30 MHz	Yes			
§ 15.107/207	Conducted Emissions <30 MHz	Yes			

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 9 of 92

3 RF measurement testing

3.1 Description of test set-up

3.1.1 Radiated measurements

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 25 GHz in semi-anechoic and fully-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform with specifications ANSI C63.2-1996 clause 15 and ANSI C63.4-2003 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-2003 clause 4.2.

Antennas are conform with ANSI C63.2-1996 item 15.

150 kHz - 30 MHz: Quasi Peak measurement, 9kHz Bandwidth, passive loop antenna. 30 MHz - 200 MHz: Quasi Peak measurement, 120KHz Bandwidth, biconical antenna 200MHz - 1GHz: Quasi Peak measurement, 120KHz Bandwidth, log periodic antenna >1GHz: Average, RBW 1MHz, VBW 10 MHz, waveguide horn with lownoise preamp

3.1.2 Conducted measurements

The EUT's RF signal is coupled out by the antenna connector which is supplied by the manufacturer. The signal is connected to the spectrum analyzer. The specific losses for signal paths are first checked within a calibration. The measurement readings on the spectrum analyzer is corrected by the specific test set-up loss. The attenuator, power divider, signaling unit and the spectrum analyzer are impedance matched on 50 Ohm.

3.1.3 AC-conducted measurements

We used a power supply delivered by the customer.

3.2 Referenced Documents

none

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 10 of 92

3.3 Peak Power Spectral density (DSSS)

§15.247(d)

Plot 1: (result calculated by the Signal analyzer FSU50 from Rohde & Schwarz)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 11 of 92

Plot 2: (result calculated by the Signal analyzer FSU50 from Rohde & Schwarz)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 12 of 92

Plot 3: (result calculated by the Signal analyzer FSU50 from Rohde & Schwarz)

Results: Plot 1: Power density: -64.21 dBm/Hz = -29.41 dBm / 3 KHz

Plot 2: Power density : -65.03 dBm/Hz = -30.23 dBm / 3 KHzPlot 3: Power density : -64.06 dBm/Hz = -29.26 dBm / 3 KHz

Correction factor from dBm/Hz to dBm/3KHz is +34,8 dB

Limits:

Under normal test conditions only	For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 KHz band during any time interval of continuous transmission
-----------------------------------	---

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 13 of 92

3.4 Peak Power Spectral density (OFDM)

§15.247(d)

Plot 1: (result calculated by the Signal analyzer FSU50 from Rohde & Schwarz)

Date: 1.FEB.2007 11:34:08

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 14 of 92

Plot 2: (result calculated by the Signal analyzer FSU50 from Rohde & Schwarz)

Date: 2.FEB.2007 06:21:49

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 15 of 92

Plot 3: (result calculated by the Signal analyzer FSU50 from Rohde & Schwarz)

Results: Plot 1: Power density: -45.33 dBm/Hz = -10.53 dBm / 3 KHz

Plot 2: Power density : -49.55 dBm/Hz = -14.75 dBm / 3 KHzPlot 3: Power density : -55.63 dBm/Hz = -20.83 dBm / 3 KHz

Correction factor from dBm/Hz to dBm/3KHz is +34,8 dB

Limits:

Under normal test conditions only	For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 KHz band during any time interval of continuous transmission
-----------------------------------	---

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 16 of 92

3.5 Spectrum Bandwidth of a DSSS System / 6 dB Bandwith §15.247(a2)

Plot 1:

Date: 29.JAN.2007 09:14:07

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 17 of 92

Plot 2: 20 dB BW

Date: 29.JAN.2007 09:13:15

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 18 of 92

Plot 3: 6 dB BW

Date: 29.JAN.2007 09:06:55

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 19 of 92

Plot 4: 20 dB BW

Date: 29.JAN.2007 09:11:38

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 20 of 92

Plot 5: 6 dB BW

Date: 29.JAN.2007 09:08:47

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 21 of 92

Plot 6: 20 dB BW

Date: 29.JAN.2007 09:09:47

Results:

Test conditions		BANDWIDTH [MHz]		1
Frequenc	cy [MHz]	2412	2437	2462
	6 dB	9.856	10.376	10.330
	20 dB	15.825	15.945	16.145
Measuremer	Measurement uncertainty ±1kHz			

RBW: 100 kHz / VBW 100 kHz

Limits:

Under normal test conditions only	> 500 KHz
-----------------------------------	-----------

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 22 of 92

3.6 Spectrum Bandwidth of a OFDM System / 6 dB Bandwith §15.247(a2)

Plot 1:6 dB BW

Date: 2.FEB.2007 07:50:58

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 23 of 92

Plot 2: 20 dB BW

Date: 1.FEB.2007 13:31:45

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 24 of 92

Plot 3: 6 dB BW

Date: 2.FEB.2007 06:28:56

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 25 of 92

Plot 4: 20 dB BW

Date: 2.FEB.2007 06:29:57

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 26 of 92

Plot 5: 6 dB BW

Date: 2.FEB.2007 07:24:46

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 27 of 92

Plot 6: 20 dB BW

Plot 1:

Date: 1.FEB.2007 09:18:13

Results:

Test conditions		6 dB BANDWIDTH [MHz]		
Frequency [MHz]		2412	2437	2462
	6 dB	16.306	16.306	16.266
	20 dB	17.067	17.107	16.827
Measurement uncertainty		±1kHz		

RBW: 100 kHz / VBW 100 kHz

Limits:

Under normal test conditions only > 500 KHz	Under normal test conditions only	> 500 KHz
---	-----------------------------------	-----------

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 28 of 92

3.7 Maximum output power (conducted) (DSSS)

§15.247 (b) (1)

Date: 29.JAN.2007 10:50:34

RBW / VBW: 20 MHz

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 29 of 92

Date: 29.JAN.2007 10:51:13

RBW / VBW : 20 MHz

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 30 of 92

Date: 29.JAN.2007 11:21:05

RBW / VBW: 20 MHz

Test conditions		Max. peak output power [dBm]			
Frequency [MHz]		2412		2437	2462
T _{nom}	V _{nom}	PK	19.03	18.71	18.95
Measurement uncertainty		±3dB			

Limits:

Under normal test conditions only, for frequency	Max. 1.0 Watt / 30 dBm
range 2400-2483.5 MHz	

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 31 of 92

3.8 Maximum output power (conducted) (OFDM)

§15.247 (b) (1)

Date: 1.FEB.2007 13:34:32

RBW / VBW : 20 MHz

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 32 of 92

Date: 2.FEB.2007 06:35:13

RBW / VBW : 20 MHz

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 33 of 92

Date: 1.FEB.2007 09:21:04

RBW / VBW: 20 MHz

Test conditions		Max. peak output power [dBm]			
Frequency [MHz]		2412		2437	2462
T _{nom}	V _{nom}	PK	21.26	20.51	20.06
Measurement uncertainty		±3dB			

Limits:

Under normal test conditions only, for frequency	Max. 1.0 Watt / 30 dBm
range 2400-2483.5 MHz	

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 34 of 92

MPE calculation

These equations are generally accurate in the far field of an antenna but will over predict power density in the near field, where they could be used for making a "worst case" prediction.

$S = PG/4\pi R^2$

where S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units e.g. mW)

G = power gain of the antenna in the direction of interest relative to the isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units e.g. cm)

Or

$S = EIRP/4\pi R^2$

where EIRP = equivalent isotropically radiated power

Calculation:

(Calculated for max. EIRP)

EIRP: 19.5 dBm = 89.1 mW

calculated at distance of 20 cm:

power density = $89.1 / 4\pi 20^2 = 0.018 \text{ mW/cm}^2$

Limit:

1mW/ cm² is the reference level for general public exposure according to the OET Bulletin 65, Edition 97-01 Table 1.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 35 of 92

3.9 Max. peak output power (radiated) §15.247 (b) (1)

Results:

Test conditions		Max. peak output power EIRP [dBm]		
Frequency [MHz]		2412	2437	2462
T _{nom} DSSS	V _{nom}	18.3	18.9	19.5
T _{nom} OFDM	V _{nom}	16.7	17.2	17.5
Measurement uncertainty		±3dB		

RBW / VBW : 20 MHz

Limits:

Under normal test conditions only, for frequency range 2400-2483.5 MHz	Max. 1.0 Watt / 30 dBm
--	------------------------

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 36 of 92

3.10 Band-edge compliance of conducted emissions §15.247 (c)

Date: 1.FEB.2007 13:36:47

We used OFDM modulation as this is the worst case regarding occupied BW.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 37 of 92

Plot 2, highest channel

Date: 1.FEB.2007 09:23:33

We used OFDM modulation as this is the worst case regarding occupied BW.

Limits:

Under normal	test
conditions of	nly

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 38 of 92

3.11 Band-edge compliance of radiated emissions (DSSS) §15.205

Plot 1: Low channel 2412 MHz,

Max value > 20 dBc.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 39 of 92

Plot 2: Max field strength in 3m distance (single frequency) peak

Result:

Frequency	Cable loss	Antenna factor	Results
2462 MHz	22.8 dB	-6.8	110.5 dBµV/m at 3m

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 40 of 92

Plot 3: Max field strength in 3m distance (single frequency) average

Result:

Frequency	Meter reading	Cable loss	Antenna factor	Results
2462 MHz		22.8 dB	-6.8	72.0 dBµV/m at 3m

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 41 of 92

Plot 4: Marker-Delta Method RBW/VBW = 1% of span, measured with antenna 2

Result:

Marker-Delta-Value: 45.9 dB

This measurement was made to show that the behavior of the system is conform to FCC 15.205 (restricted bands)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 42 of 92

Here the complete restricted band 2483,5 to 2500 MHz

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 43 of 92

Results & Limits:

Radiated field strength

The field strength was measured with an EMI measuring receiver and 1 MHz RBW / VBW for peak and with 1MHz RBW / 10Hz VBW for average at a distance of 3m.

high channel	setup	measured value (3m)	correction factor (3m)	calculated value (3m)
Max. peak value	1 MHz RBW 1 MHz VBW	94.5 dBμV/m	+16 dB	110.5 dBμV/m
Max. average value	1 MHz RBW 10 Hz VBW	56.0 dBμV/m	+16 dB	72.0 dBµV/m
Delta value	Peak 100 kHz RBW/VBW	45.9 dBμV/m		
Value at band edge	limit 54 dBμV/m			26.1 dBμV/m
Statement:				Complies

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 44 of 92

3.12 Band-edge compliance of radiated emissions (OFDM)

§15.205

Plot 1: Low channel 2412 MHz, measured with antenna 2

Max value > 20 dBc.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 45 of 92

Plot 2: Max field strength in 3m distance (single frequency) peak

Result:

Frequency	Cable loss	Antenna factor	Results
2462 MHz	22.8 dB	-6.8	111.6 dBµV/m at 3m

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 46 of 92

Plot 3: Max field strength in 3m distance (single frequency) average

Result:

Frequency	Meter reading	Cable loss	Antenna factor	Results
2462 MHz		22.8 dB	-6.8	72.0 dBµV/m at 3m

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 47 of 92

Plot 4: Marker-Delta Method RBW/VBW = 1% of span, measured with antenna 2

Result:

Marker-Delta-Value: 47.9 dB

This measurement was made to show that the behavior of the system is conform to FCC 15.205 (restricted bands)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 48 of 92

Here the complete restricted band 2483.5 to 2500 MHz

hp	REF 127.0 dBuV		ATTEN () dB		М	KR 2.480 00 64.00 0	
٠.٦								
10 dB/								
POS PK								
OFFSET 30.0 dB								
	Q							
	START 2.480 0 GHz				STOP 2.500 0 GHz			L GHz
	RES BW 1 MHz		VBW 10	Hz		SWP 6.00 sec		

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 49 of 92

Results & Limits:

Radiated field strength

The field strength was measured with an EMI measuring receiver and 1 MHz RBW / VBW for peak and with 1MHz RBW / 10Hz VBW for average at a distance of 3m.

high channel	setup	measured value (3m)	correction factor (3m)	calculated value (3m)
Max. peak value	1 MHz RBW 1 MHz VBW	95.6 dBμV/m	+16 dB	111.6 dBμV/m
Max. average value	1 MHz RBW 10 Hz VBW	56.0 dBμV/m	+16 dB	72.0 dBµV/m
Delta value	Peak 100 kHz RBW/VBW	47.9 dB		
Value at band edge	limit 54 dBμV/m			24.1 dBμV/m
Statement:				Complies

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 50 of 92

3.13 Spurious Emissions - conducted (Transmitter)

§15.247 (c)

Result & Limits for OFDM (worst case)

f [MHz]		amplitude of	limit	actual attenuation	results
		emission	max. allowed	below frequency of	
		[dBm]	emmision power	operation [dB]	
2412		21.26	30 dBm	-	Operating frequency
250.5	No peaks	found			
2104.2			-20 dBc		
2655.3					
4809.6					
2437		20.51	30 dBm		Operating frequency
2163.4					
2655.3			-20 dBc		
4859.7					
2462		20.06	30 dBm		Operating frequency
2213.5					
2655.3			-20 dBc		
4909.8					
Measurem	ent uncertainty	± 3dB	•		

RBW: 100 kHz VBW: 100 kHz

Under normal test	In any 100 kHz bandwidth outside the frequency band at least 20dB below the highest
conditions only	level of the desired power. In addition, radiated emissions which fall in the restricted
conditions only	bands, as defined in §15.205(a), must also comply with the radiated emission limits
	specified in §15.209(a) (see §15.205(c)).

Note: For emissions that fall into restricted bands you find the radiated emissions later in the report.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 51 of 92

2412 MHz OFDM (worst case)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 52 of 92

2437 MHz OFDM (worst case)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 53 of 92

2462 MHz OFDM (worst case)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 54 of 92

3.14 Spurious Emissions - radiated (Transmitter) DSSS §15.209

Plot 1: 0.03 - 4 GHz vertical / horizontal (lowest channel)

Carrier suppressed with a tunable filter to avoid overload of the preamp.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 55 of 92

Plot 2: 4- 12 GHz (lowest channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 56 of 92

Plot 3: 12 – 25 GHz horizontal / vertical (valid for all three channels)

RBW 1 MHz

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 57 of 92

Plot 4: 0.03 - 4 GHz vertical / horizontal (middle channel)

Carrier suppressed with a tunable filter to avoid overload of the preamp.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 58 of 92

Plot 5: 4- 12 GHz (middle channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 59 of 92

Plot 6: 0.03 - 4 GHz vertical / horizontal (highest channel)

Carrier suppressed with a tunable filter to avoid overload of the preamp.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 60 of 92

Plot 7: 4- 12 GHz (highest channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 61 of 92

Results: (black line on the plots)

SPURIOUS	EMISSIONS	S LEVEL §1	5.209					
2412 MHz			2437 MHz			2462 MHz		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]
no	peaks	found	< 20dB	below	Limit line			
Measureme	nt uncertainty	7	±3 dB					

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{GHz}: \text{RBW/VBW}: 1 \text{ MHz}$

Limits: § 15.247 (c)

In any 100 kHz bandwidth outside the frequency band at least 20dB below the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Limits: § 15.209

Frequency [MHz]	Field strength [µV/m]	Measurement distance (m)
30 - 88	100 (40 dBμV/m)	3
88 - 216	150 (43.5 dBμV/m)	3
216 - 960	200 (46 dBμV/m)	3
above 960	500 (54 dBμV/m)	3

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 62 of 92

OFDM-Mode

Plot 1: 0.03 - 4 GHz vertical / horizontal (lowest channel)

Carrier suppressed with a tunable filter to avoid overload of the preamp.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 63 of 92

Plot 2: 4- 12 GHz (lowest channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 64 of 92

Plot 3: 12 – 25 GHz horizontal / vertical (valid for all three channels)

RBW 1 MHz

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 65 of 92

Plot 4: 0.03 - 4 GHz vertical / horizontal (middle channel)

Carrier suppressed with a tunable filter to avoid overload of the preamp.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 66 of 92

Plot 5: 4- 12 GHz (middle channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 67 of 92

Plot 6: 0.03 - 4 GHz vertical / horizontal (highest channel)

Carrier suppressed with a tunable filter to avoid overload of the preamp.

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 68 of 92

Plot 7: 4- 12 GHz (highest channel)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 69 of 92

Results: (black line on the plots)

SPURIOUS EMISSIONS LEVEL §15.209									
2412 MHz			2437 MHz			2462 MHz			
F [MHz]	Detector	Level	F [MHz]	Detector	Level	F	Detector	Level	
		[dBµV/m]			[dBµV/m]	[MHz]		[dBµV/m]	
no	peaks	found	< 20dB	below	limitline				
Measurement uncertainty			±3 dB						

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{GHz}$: RBW/VBW: 1 MHz

Limits: § 15.247 (c)

In any 100 kHz bandwidth outside the frequency band at least 20dB below the highest level of the desired power. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Limits: § 15.209

Frequency [MHz]	Field strength [µV/m]	Measurement distance (m)
30 - 88	100 (40 dBμV/m)	3
88 - 216	150 (43.5 dBμV/m)	3
216 - 960	200 (46 dBμV/m)	3
above 960	500 (54 dBμV/m)	3

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 70 of 92

3.15 Spurious Emissions - radiated Receiver

§15.109 / 209

DSSS and OFDM mode, no difference in result

Plot 1: 0.03 - 4 GHz vertical / horizontal (receiver)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 71 of 92

Plot 2: 4- 12 GHz (receiver)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 72 of 92

Plot 3: 12-25 GHz (receiver)

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 73 of 92

Results:

Spurious	Emissisons lev	vel [µV/m]						
CH 1 / 2 /								
f[MHz]	Detector	Level [µV/m]	f[MHz]	Detector	Level [µV/m]	f[MHz]	Detector	Level [µV/m]
no	peaks	found	< 20dB	below	limitline			
Measuren	nent uncertaint	ty	±3 dB	•	-	•	•	•

f < 1 GHz : RBW/VBW: 100 kHz $f \ge 1GHz: RBW/VBW: 1 \text{ MHz}$

see above plots

Measurement distance see table

Limits: § 15.109 / 209

Frequency (MHz)	Field strength (µV/m)	Measurement distance (m)	
30 - 88	100 (40 dBμV/m)	3	
88 - 216	150 (43.5 dBμV/m)	3	
216 - 960	200 (46 dBμV/m)	3	
above 960	500 (54 dBμV/m)	3	

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 74 of 92

3.16 Spurious Emissions - radiated <30 MHz

§15.109

Valid for OFDM and DSSS mode, no difference

Measured at 3 m distance.

Values recalculated with 40 dB/decade according to FCC rules.

Plot 1:

Limits:

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30 / 29.5 dBµV/m	30
30 - 88	100 / 40 dBμV/m	3
88 - 216	150 / 43.5 dBμV/m	3
216 - 960	200 / 46 dBμV/m	3
above 960	54 dBμV/m	3

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 75 of 92

3.17 Conducted Emissions <30 MHz

§15.107/207

(measured with the dedicated power supply from the customer)

Plot 1: CISPR 22

All remeasured peaks > 15 dB below limit

We measured in TX and RX mode, L1 and N floating and grounded, max value was hold.

Limits:

Under normal test conditions only	See plots
-----------------------------------	-----------

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 76 of 92

3.16 Used Testequipment

Anechoic chamber C:

Device	Manufacturer	Туре	S/N Number	Inv. No. Cetecom
Spektrum Analyser	HP	8566B	2747A05306	300001000
Spektrum Analyser Display	HP	85662A	2816A16541	300002297
Quasi-Peak-Adapter	HP	85650A	2811A01131	300000999
Power Dupply	HP	6032A	2818A03450	300001040
Power Attenuator	Byrd	8325	1530	300001595
Bikonical Antenna	EMCO	3104	3758	300001602
Log. Period. Antenna	EMCO	3146	2130	300001603
Double Ridged Antenna	EMCO	HP 3115P	3088	300001032
Active Loop Antenna	EMCO	6502	2210	300001015
Antenna VDE/FCC		HP11965B		300002298
SRM-Drive	HP	9144A	2823e46556	300001044
Software	HP	EMI		300000983
Busisolator	Kontron			300001056
Absorberhalle	MWB		87400/02	300000996
Salzsäule	Kontron			300001055
Antenna	R&S	HMO20	832211/003	300002243
Indukt.Tast Antenna	R&S	HFH 2 Z4	881468/026	300001464
System-Rack	HP I.V.	85900	*	300000222
Spectrum Analyzer	HP	8566B	2747A05275	300000219
Quasi-Peak-Adapter	HP	85650A	2811A01135	300000216
RF-Preselector	HP	85685A	2837A00779	300000218
Rahmen Antenne	R&S	HFH2-Z2	891847-35	300001169
Leitungsteiler	HP	11850C		300000997
Breitband-Hornantenne EMI	HP	35155P		300002300
PC	HP	Vectra VL		300001688
VHF Meßantenne	Schwarzbeck	VHA 9103		300001778
Spectrum Analyzer Display	HP	85662A	2816A16497	300001690
VHF Meßantenna	Schwarzbeck	VHA 9103		300001780
Biconical Antenna	EMCO	3104 C	9909-4868	300002590

SRD Laboratory:

	300001207	Type	S/N Number	Inv. No. Cetecom
Device				
Spectrum Analyzer	300001208	494AP	B010241	300000863
Spectrum Analyzer	HP	71210A (70000)	2731A02347	300000321
Spectrum Analyzer Display	HP	70206A	2840A01553	300002017
Reference Frequency	HP	70310A	2736A00707	300002018
Local Oscillator	HP	70900A	2842A02221	300002019
ZF-Modul 10Hz-300 kHz	HP	70902A	2840A02145	300002020
ZF-Modul 100 kHz-3 MHz	HP	70903A	2835A01069	300002021
HF-Teil für 71210A 100Hz- 22GHz	HP	70908A		300002022
Spectrum Analyzer 2	HP	85660B	3138A07614	
Spectrum Analyzer Display 2	HP	85662A	3144A20627	

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 77 of 92

Signal Computer DC 600 VII-	IID	10004A	2022 4 01212	200001157
Signal Generator DC-600 KHz	HP	8904A	2822A01213	300001157
Signal Generator DC-600 KHz	HP	8904A	2822A01214	300001158
Powersupply	HP	6038A	3122A11097	300001204
Netznachbildung	R&S	ESH3-Z5	828576/020	300001210
Amplituden Controller	R&S	SMDU-Z2	871829/051	300002309
Trenntrafo	Erfi	913501		300001205
Trenntrafo	Grundig	RT5A	9242	300001627
Relais Matrix	HP	3488A	2719A15013	300001156
Multimeter	Siemens	Multizet		300001102
Peak Power Calibrator	HP	8900B		300001084
Schallgeber	Schomandl	SG 1	10159	300001209
Schallgeber	Schomandl	SG 2	10176	300002473
Filter	FSY Microwave			300001206
Attenuatorer	Pro Nova			300002476
Klimaschrank	Heraeus Voetsch	VUK04/500		300001012
Spectrum Analyzer 3	HP	8566A	1925A00257	300001098
Spectrum Analyzer Display 3	HP	85662	1925A00860	300002306
Oszilloscope	Tektronix	2432	110261	300001165
Radiocom. Analyzer	R&S	CMTA 54	894043/010	300001175
Powersupply	HP	6038A	2848A07027	300001174
Signal Generator 0.01-1280 MHz	HP	8662A	2224A01012	300001110
Signal Generator (Funktions)	R&S	AFGU	862490/032	300001201
Trenntrafo	Erfi	MPL	91350	300001155
Relais Matrix	R&S	PSU	893285/020	300001173
Power Meter	HP	436A	2101A12378	300001136
Powersensor	HP	8484A	2237A10156	300001140
Powersensor	HP	8482A	2237A06016	300001139
Relais Matrix	R&S	PSU	282628/004	300001214
Powersupply	Zentro		2007	300001109
Oszilloscope	Tektronix	7633		300001111
Klimaschrank	Heraeus Voetsch	VUK04/500	32926	300001500
Quasi-Peak Adapter	HP	85650A	2811A01204	300002308
Radiocom. Analyzer	R&S	CMTA 84	894199/012	300001176
Oszilloscope	HP	54510A	3022A02062	300001202
Funkmeßplatz	Schomandl	FD1000	34982	300001115
Signal Generator	R&S	SMPC	882416/019	300001162
Frequency counter	HP	5340A	2116A08138	300001104
Power Meter	HP	436A	2031U01461	300001105
Powersensor	HP	8482A		300001106
Powersensor	HP	8484A		300001107
Powersensor	HP	8485A		300001108
Powersupply	HP	6038A	2752A04866	300001161
Reflectionsmeter	R&S	NAP	879191	300001132
Signal Generator NF	R&S	SPN	880139/068	300001142
Trenntrafo	Erfi	MPL	91350	300001151
Attenuator	JFW	30 db	1350h/104	300001703
Attenuator	JFW	10 db	1350h/103	300001704
Attenuator	JFW	20 db	1350h/106	300001704
Attenuator	JFW	20 db	1350h/105	300001766
Filter	Spinner	153755	155011/105	300001700
1 11101	Spinner	133133		500001771

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 78 of 92

Powersensor	HP	8484A	2237A10494	300001666
Powersupply	HP	6038A	3122A11097	300001000
Netznachbildung	R&S	ESH3-Z5	828576/020	300001204
Amplituden Controller	R&S	SMDU-Z2	871829/051	300001210
Trenntrafo	Erfi	913501	8/1829/031	300002309
			0242	
Trenntrafo	Grundig	RT5A	9242	300001627
Relais Matrix	HP	3488A	2719A15013	300001156
Multimeter	Siemens	Multizet		300001102
Peak Power Calibrator	HP	8900B	10150	300001084
Schallgeber	Schomandl	SG 1	10159	300001209
Schallgeber	Schomandl	SG 2	10176	300002473
Filter	FSY Microwave			300001206
Attenuatorer	Pro Nova			300002476
Klimaschrank	Heraeus Voetsch	VUK04/500		300001012
Spectrum Analyzer 3	HP	8566A	1925A00257	300001098
Spectrum Analyzer Display 3	HP	85662	1925A00860	300002306
Oszilloscope	Tektronix	2432	110261	300001165
Radiocom. Analyzer	R&S	CMTA 54	894043/010	300001175
Powersupply	HP	6038A	2848A07027	300001174
Signal Generator 0.01-1280 MHz	HP	8662A	2224A01012	300001110
Signal Generator (Funktions)	R&S	AFGU	862490/032	300001201
Trenntrafo	Erfi	MPL	91350	300001155
Relais Matrix	R&S	PSU	893285/020	300001173
Power Meter	HP	436A	2101A12378	300001136
Powersensor	HP	8484A	2237A10156	300001140
Powersensor	HP	8482A	2237A06016	300001139
Relais Matrix	R&S	PSU	282628/004	300001214
Powersupply	Zentro		2007	300001109
Oszilloscope	Tektronix	7633		300001111
Klimaschrank	Heraeus Voetsch	VUK04/500	32926	300001500
Quasi-Peak Adapter	HP	85650A	2811A01204	300002308
Radiocom. Analyzer	R&S	CMTA 84	894199/012	300001176
Oszilloscope	HP	54510A	3022A02062	300001202
Funkmeßplatz	Schomandl	FD1000	34982	300001115
Signal Generator	R&S	SMPC	882416/019	300001162
Frequency counter	HP	5340A	2116A08138	300001104
Power Meter	HP	436A	2031U01461	300001105
Powersensor	HP	8482A	2001001.01	300001106
Powersensor	HP	8484A		300001107
Powersensor	HP	8485A		300001107
Powersupply	HP	6038A	2752A04866	300001100
Reflectionsmeter	R&S	NAP	879191	300001101
Signal Generator NF	R&S	SPN	880139/068	300001132
Trenntrafo	Erfi	MPL	91350	300001142
Attenuator	JFW	30 db	1350h/104	300001131
	JFW	10 db	1350h/104 1350h/103	300001703
Attenuator	JFW	20 db		
Attenuator			1350h/106	300001705
Attenuator	JFW	20 db	1350h/105	300001766
Filter	Spinner	153755	2227 4 10 40 4	300001791
Powersensor	HP	8484A	2237A10494	300001666

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 79 of 92

Powersensor	HP	8485A	2238A00849	300001668
Bandfilter	Telonic	TTF7255EE	20293-11	300001300
Bandfilter	Telonic	TTF12555EE	20293-11	300001300
Bandfilter	Telonic	TTF25055EE	20292-0	300001302
Bandfilter	Telonic	TTF50055EE	20291-8	300001304
Bandfilter	Telonic	TTF100055EE	20290-7	300001303
Bandfilter	Telonic	TTA300055EESN	20289-7	300001307
	Telonic	TTR3753EE3N	30013-1	300001312
Bandstop			20417-2	300001314
Bandstop	Telonic Telonic	TTR723EE TTR95-3EE	20417-2	300001316
Bandstop				
Bandstop	Telonic	TTR1903EE	30036-4	300001320
Bandstop	Telonic	TTR3753EE	20369-5	300001321
Bandstop	Telonic	TTR750-3EE1	90177-1	300002387
Highpass	Pro Nova	HDP120-6GG	ohne	300001348
Highpass	Pro Nova	HMC500-6AA	HJ67-01?	300001350
Highpass	Narda	NHP 9000	0004	300001362
Highpass	Narda	HDP16-6GH	JV70-01	300001364
Highpass	RSD	HDP50-6GH,		300001371
TY: 1	D G D	HDP200-6GG		200000270
Highpass	RSD	2099-02-01	20207700526	300000370
Signal Generator 0.1-2060 MHz	HP	8657A	2838U00736	300001009
Radio Code Analyzer	Schlumberger	SL4922		300001038
Signal Analyzer	B&K	2033		300001047
Frequency counter	HP	5386A	2704A01243	300000998
Laufzeitelement	WR-Elektronik			300001036
Powersupply Stromversorgung	Systron	M5P 40/15A	828233	300001291
Powersupply	Heiden	1108-32	1701	300001392
Powersupply	Heiden	1108-32	1802	300001383
Powersupply	Heiden	1108-32	003202	300001187
Powersupply	Zentro	LA 2x30/5GB1	2011	300001276
Powersupply	Zentro	LA 2x30/5GB2	2012	300001275
Powersupply	Zentro	LA 30/5GA	2041,2042	300001287
Trenntrafo	Grundig	RT5A	8781	300001277
Trenntrafo	Grundig	RT5A	9242	300001263
Multimeter	Goerz Elektro	Unigor 6e P	911 355	300001625
Multimeter	Goerz Elektro	Unigor 6e P	911 391	300001281
Climatic Box	Heraeus Voetsch	VUK04/500	32679	300000299
Powersensor + Att.	HP	8482B	2703A02586	300001492
Attenuator 30 dB	HP	8498A	1801A02445	300001475
Signal Generator NF	HP		2822A01203	300001004
Attenuator	Spinner	BN 534171 D	51881	300001516
Attenuator coaxial	Bird	8325	2429	300001513
Impulsbegrenzer	R&S	ESH 3 Z2		300001460
4Port Box	R&S	4Port Box	860457/005	300001472
Signal Generator 0.1-4200 MHz	HP	8665A	2833A0011	300002299
NF-Spektrumanalyzer	B&K	2033A		300002301
Swissphone Freifeld-Messbox	Swissphone Schweiz			300002302
Trenntrafo regelbar	Grundig	RT5H	9242	300001628
Signal Generator	HP	8111A	2215G00867	300001117

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 80 of 92

4 Photographs

Test site:

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 81 of 92

Test site:

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 82 of 92

AC-conducted

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 83 of 92

Test sample:

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 84 of 92

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 85 of 92

internal photographs

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 86 of 92

SRD-TestreportCETECOM ICT Services GmbH Saarbruecken, Germany

Page 87 of 92 Test report No.: 2-4506-01-02/06 Date: 2007-02-05

SRD-TestreportCETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Page 88 of 92 Date: 2007-02-05

SRD-TestreportCETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Page 89 of 92 Date: 2007-02-05

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 90 of 92

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 91 of 92

CETECOM ICT Services GmbH Saarbruecken, Germany

Test report No.: 2-4506-01-02/06 Date: 2007-02-05 Page 92 of 92

