

Midterm meeting: Bachelor thesis of Robin Ender

Date: 2025-06-12

Attendees: Robin Ender, Asis Hallab, Eric Schumbera

Current status of phase separation prediction

- Many Phase Separation Predictors have emerged, yet the performance is still not optimal
 - the best ones use scalar features (e.g. percentage of IDR)
- Problems are:
 - Lacking Training Data
 - Bias towards proteins containing IDRs
- Idea:
 - Using the sequence (block decomposition) to predict PS and try a newly published data set

Repetition - Block Decomposition

- The block decomposition algorithm takes a protein sequence and a mapping
- It outputs a list of blocks that all have a certain word balance ("uniformity")
- Steps to use it for neural networks:
 - Adjusting the output
 - Finding relevant mappings

Adjusting the output of the block decomposition algorithm

The block decomposition algorithm was modified to yield an output that can be used in a neural network:

Old Output:

[(5, 14), (15, 22)...]

New Output:

[0,0,0,0,1,1,1,...,2,2,2...]

- The list of tuples was converted to one list representing the sequence.
- Labels were created, representing the most common group(s).

Finding meaningful mappings

Seven Mappings were found (in literature) that relate to phase separation or are generally meaningful:

Aliphatic - Aromatic - Positive - Negative						
RG-Mappings (two separate)						
IDR-Mapping						
Most meaningful 5 mapping						
PiPi-Mapping (two separate)						

Those were used to generate one block decomposition for each mapping per protein.

Data sets I

For now two different data sets were used:

- PPMCLABs llps data set
 - created in an effort to create a dataset with an appropriate negative data set (many studies use RCSB Protein Data Bank, which are not guaranteed to be non phase separating)
 - contains 746 positive and 2077 negative entries

Data sets II

- PSPires data set
 - used to train PSPire, a recent well performing PS predictor addressing the difficulty of predicting phase separating proteins with no IDRs
 - contains 517 positive and around 10,000 negative entries

Test if a simple cnn model can learn from the data

To see if a cnn model was able to learn a basic 1 layer model was created and run on the PPMCLAB data set:

Testing different models

As the CNN2l model performed relatively good and was relatively quick in training it was used for further tests:

Performance of the initial models on PSPire data

Enhancing the CNN2L models

Performance of the new models

Performance on MLO data sets

PSPs	Dataset	Parameter	My model	PdPS	PSPire
noID-PSPs	G3BP1	ROCAUC	0.92	0.81	0.93
		PRAUC	0.36	0.18	0.66
	DACT1	ROCAUC	0.91	0.81	0.93
		PRAUC	0.43	0.18	0.60
	RNAGranule	ROCAUC	0.80	0.68	0.90
		PRAUC	0.11	0.08	0.28
	PhaSep	ROCAUC	0.87	0.65	0.80
	_	PRAUC	0.71	0.47	0.71
	DRLLPS	ROCAUC	0.87	0.68	0.85
		PRAUC	0.76	0.45	0.74

Performance on MLO data sets

PSPs	Dataset		My model	PdPS	PSPire
ID-PSPs	G3BP1	ROCAUC	0.76	0.86	0.91
		PRAUC	0.33	0.41	0.58
	DACT1	ROCAUC	0.72	0.85	0.88
		PRAUC	0.21	0.33	0.35
	RNAGranule	ROCAUC	0.82	0.82	0.84
		PRAUC	0.44	0.42	0.48
	PhaSep	ROCAUC	0.72	0.74	0.72
	_	PRAUC	0.72	0.80	0.79
	DRLLPS	ROCAUC	0.70	0.76	0.75
		PRAUC	0.72	0.77	0.78

Results in context of the initial idea of this work

- block decomposition can be used to predict phase separation
- but using the raw sequence yields better results
- therefore the focus has shifted to using the sequence and additional data to build a good phase separation predictor

Visualizing the results

- ROC AUC and PR AUC
- Confusion Matrix
- F1 Scores, Accuracy etc.
- bar plots / tables for comparison with other tools

What can / should be done in the remaining time?

- Add post translational modification data
- Cross validation of the final model
- Comparison of PSPire and my tool on the PPMCLAB data
- If there is time left, check for Driver and Client differences

Structure of the thesis

- Introduction
 - Block decomposition of protein sequences
 - Machine Learning in Bioinformatics
 - CNN
 - Liquid-Liquid Phase Separation
 - Current predictors and the difficulties
- Material
 - Data (explain and visualize data sets)
- Methods
 - ► Tools

Midterm meeting: Bachelor thesis of Robin Ender

- data preparation
- model architectures
- Results
- Discussion