Comment on the narrow structure reported by Amaryan et al.

M. Anghinolfi, ¹⁸ J. Ball, ⁸ N.A. Baltzell, ^{1,29} M. Battaglieri, ¹⁸ I. Bedlinskiy, ²⁰ M. Bellis, ^{25,6} A.S. Biselli, ¹¹ C. Bookwalter, ¹³ S. Boiarinov, ^{30,20} P. Bosted, ³⁰ V.D. Burkert, ³⁰ D.S. Carman, ³⁰ A. Celentano, ¹⁸ S. Chandavar, ²⁴ P.L. Cole, ^{16,30} V. Crede, ¹³ R. De Vita, ¹⁸ E. De Sanctis, ¹⁷ B. Dey, ⁶ R. Dickson, ⁶ D. Doughty, ^{9,30} M. Dugger, ² R. Dupre, ¹ H. Egiyan, ^{30,35} A. El Alaoui, ¹ L. El Fassi, ¹ L. Elouadrhiri, ³⁰ P. Eugenio, ¹³ G. Fedotov, ²⁹ M.Y. Gabrielyan, ¹² M. Garcon, ⁸ G.P. Gilfoyle, ²⁷ K.L. Giovanetti, ²¹ F.X. Girod, ³⁰ J.T. Goetz, ³ E. Golovatch, ²⁸ M. Guidal, ¹⁹ L. Guo, ^{12,30} K. Hafidi, ¹ H. Hakobyan, ³² D. Heddle, ^{9,30} K. Hicks, ²⁴ M. Holtrop, ²³ D.G. Ireland, ³³ B.S. Ishkhanov, ²⁸ E.L. Isupov, ²⁸ H.S. Jo, ¹⁹ K. Joo, ^{10,30} P. Khetarpal, ¹² A. Kim, ²² W. Kim, ²² V. Kubarovsky, ³⁰ S.V. Kuleshov, ^{32,20} H.Y. Lu, ⁶ I.J.D. MacGregor, ³³ N. Markov, ¹⁰ M.E. McCracken, ^{34,6} B. McKinnon, ³³ M.D. Mestayer, ³⁰ C.A. Meyer, ⁶ M. Mirazita, ¹⁷ V. Mokeev, ^{30,28} K. Moriya, ^{6,*} B. Morrison, ² A. Ni, ²² S. Niccolai, ¹⁹ G. Niculescu, ^{21,24} I. Niculescu, ^{21,30,15} M. Osipenko, ¹⁸ A.I. Ostrovidov, ¹³ K. Park, ^{30,22} S. Park, ¹³ S. Anefalos Pereira, ¹⁷ S. Pisano, ¹⁷ O. Pogorelko, ²⁰ S. Pozdniakov, ²⁰ J.W. Price, ⁴ G. Ricco, ¹⁴ M. Ripani, ¹⁸ B.G. Ritchie, ² P. Rossi, ¹⁷ D. Schott, ¹² R.A. Schumacher, ⁶ E. Seder, ¹⁰ Y.G. Sharabian, ³⁰ E.S. Smith, ³⁰ D.I. Sober, ⁷ S.S. Stepanyan, ²² P. Stoler, ²⁶ W. Tang, ²⁴ M. Ungaro, ^{30,26,10} B. Vernarsky, ⁶ M.F. Vineyard, ^{31,27} D.P. Weygand, ³⁰ M.H. Wood, ^{5,29} N. Zachariou, ¹⁵ and B. Zhao³⁵

(The CLAS Collaboration)

¹Argonne National Laboratory, Argonne, Illinois 60439 ²Arizona State University, Tempe, Arizona 85287-1504 ³University of California at Los Angeles, Los Angeles, California 90095-1547 ⁴California State University, Dominguez Hills, Carson, CA 90747 ⁵Canisius College, Buffalo, NY ⁶Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 ⁷Catholic University of America, Washington, D.C. 20064 ⁸CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France ⁹Christopher Newport University, Newport News, Virginia 23606 ¹⁰University of Connecticut, Storrs, Connecticut 06269 ¹¹ Fairfield University, Fairfield, CT 06824 ¹²Florida International University, Miami, Florida 33199 ¹³Florida State University, Tallahassee, Florida 32306 ¹⁴ Università di Genova, 16146 Genova, Italy ¹⁵The George Washington University, Washington, DC 20052 ¹⁶Idaho State University, Pocatello, Idaho 83209 ¹⁷INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy ¹⁸INFN, Sezione di Genova, 16146 Genova, Italy ¹⁹Institut de Physique Nucléaire ORSAY, Orsay, France ²⁰Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia ²¹ James Madison University, Harrisonburg, Virginia 22807 ²²Kyungpook National University, Daegu 702-701, Republic of Korea ²³University of New Hampshire, Durham, New Hampshire 03824-3568 ²⁴Ohio University, Athens, Ohio 45701 ²⁵Northern Illinois University, Dekalb, IL 60115 ²⁶Rensselaer Polytechnic Institute, Troy, New York 12180-3590 ²⁷University of Richmond, Richmond, Virginia 23173 ²⁸Skobeltsyn Nuclear Physics Institute at Moscow State University, 119899 Moscow, Russia ²⁹University of South Carolina, Columbia, South Carolina 29208 ³⁰ Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606 ³¹Union College, Schenectady, NY 12308 ³²Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile ³³University of Glasgow, Glasgow G12 8QQ, United Kingdom ³⁴ Washington & Jefferson College, Washington, PA 15301 ³⁵College of William and Mary, Williamsburg, Virginia 23187-8795 (Dated: March 2, 2013)

PACS numbers: 13.40.Rj,14.40.Ak,24.85.+p,25.20.Lj

In Ref. [1], the authors claim to observe a narrow structure in the mass spectrum constructed from the (pK_L) system using data from the CLAS detector. The interpretation of this narrow structure given in Ref. [1]

is: "It may be due to the photoproduction of the Θ^+ pentaquark or some unknown Σ^* resonance." They go on to say that "it is unlikely for the observed structure to be due to a Σ^* resonance".

This analysis was reviewed by the CLAS Collaboration, following the established procedures for all CLAS papers, and did not receive approval. The purpose of this note is to explain the reasons why that analysis was not approved for publication.

An extensive review of the analysis in Ref. [1] was carried out by two separate committees of the Hadron Spectroscopy Physics Working Group in the CLAS Collaboration. In both cases, the committees came to the same conclusion: the physics claims of Ref. [1] could not be supported. The reasons for this conclusion are manyfold, but a primary concern is the lack of justification for the kinematic cuts used in that analysis.

The review committees reported that the narrow structure appears only within a specific range of values of the kinematic cuts. Here, the details are important (what cuts were varied and by how much) but this would require more space to document than a simple comment letter will allow. We give only one example below, but note that the CLAS committees conducted an extensive review of the sensitivity of the narrow structure to what they considered reasonable variations of the cuts [2].

As an example, the cut on the t_{Θ} variable (defined in Ref. [1]) was restricted to a small region of the total phase space ($-t_{\Theta} < 0.45 \text{ GeV}^2$). Without this cut, the narrow structure is not statistically significant. By examining Fig. 8 of Ref. [1], one can see that the structure is not really visible in the top spectrum (Fig. 8a), and only appears in Fig. 8c. When the cut value is increased by 20% ($-t_{\Theta} < 0.55$) as shown by Fig. 8b, or decreased by 10% ($t_{\Theta} < 0.4$) as shown by Fig. 8d, then the purported structure at a mass of 1.54 GeV is consistent in size with other fluctuations in those spectra.

While the authors of Ref. [1] make an argument about why the t_{Θ} cut was necessary, the CLAS Collaboration

was not convinced. For example, it is possible that an interference between the narrow structure and the background is dependent on the t_{Θ} variable, but this assumption is difficult to prove. The analysis of Ref. [1] did not provide any evidence of interference phases.

It is not uncommon to use kinematic cuts to reduce background and hence improve the signal-to-background ratio for known particles, but other studies [3] have shown that one must be careful to apply kinematic cuts which can create spurious fluctuations. We could argue whether the kinematic cuts used in Ref. [1] are justified, but the fact remains that the CLAS Collaboration as a whole was not convinced that the narrow structure of Ref. [1] corresponds to a real physical entity.

At the request of the lead author of Ref. [1], presentations were made at a CLAS Collaboration meeting by both the authors and the review committee, followed by discussions and a vote on whether to publish that result as a collaboration paper. The outcome of the vote was to not publish this analysis.

In the end, the validity of the narrow structure claimed by Ref. [1] will be determined by future experiments. If it is physical resonance, as suggested by Ref. [1], then it should be reproducible. The evidence presented in Ref. [1] was not sufficient to convince the CLAS Collaboration of the physics conclusions of that analysis.

- * Current address:Indiana University, Bloomington, IN 47405
- [1] M.J. Amarvan, et al., arXiv:1110.3325.
- [2] E. Smith, et al., Report of the committee to review the ODU analysis of meson-baryon interference, version 3, CLAS-NOTE 2011-021;
 - https://misportal.jlab.org/ul/Physics/Hall-B/clas/.
- [3] J. Klein and A. Roodman, Ann. Rev. Nucl. Part. Sci. 55, 141 (2005).