+91 7411019255 contact@decibelslab.co

Course name	Numerical Modeling & Simulation in MATLAB-Simulink			
Lesson name	Numerical Modelling of Nissan Leaf using Artemis			
	Rural			
	Drive Cycle data in MATLAB-Simulink			
Lesson objective	Practice blocks & acquaint to use GUI of MATLAB-			
	Simulink			
Created by	VIVEK RATHOD			

Problem statement: Model Nissan Leaf for Artemis Rural Drive Cycle in MATLAB Simulink to plot the Wheel Torque, Wheel Speed, Motor Torque, Motor Speed and Battery Current in Matlab Simulink.

Artemis Urban Drive Cycle Graph:

+91 7411019255 contact@decibelslab.co

Model Inputs:

SI No	Parai	neter	Value	Units	
1.	Chas	sis			
2.	I.	Coefficient of rolling resistance	0.015		
3.	II.	Mass of Vehicle	1630.665	Kg	
4.	III.	Mass of Driver	80	Kg	
5.	IV.	Gravity constant	9.81	m/s	
6.	V.	Grade Angle	0	degree	
7.	VI.	Velocity	From The Artemis rural drive cycle	Kmph	
8.	VII.	Area	3.8056	m^2	
9.	VIII.	Air Density	1.225	Kg/m^3	
10.	IX.	Drag Coefficient	0.28		
11.	X.	Radius of wheel	0.2032	m	
12.	Trans	Transmission			
13.	I.	Gear Ratio	7.9377		
14.	II.	Transmission Efficiency	89	%	
15.	Batte	Battery			
16.	I.	Battery Capacity	24000	Wh	
17.	II.	Battery Voltage	364.8	V	
18.	III.	Artemis Rural drive cycle distance	14.68	Km	
19.	IV.	Battery Initial SOC	100	%	
20.	V.	Drive Cycle time or Simulation time	1082	S	
21.	Cell				
22.	I.	Cell Voltage	3.8	V	
23.	II.	Cell Capacity	33.1	Ah	

Decibels Lab Private Limited CIN:

#2362, 24th main road 1st sector, HSR layout Bangalore, +91 7411019255 contact@decibelslab.co

Program:

Separately imported the file using import data.

```
M=1630.665; %Mass of vehicle
           %Mass of driver
Md = 80;
                                  (kg)
           %Gross vehicle mass (kg)
GVM=M+Md;
g=9.81;
           %Gravity contant
                                  (m/s^2)
GVW=GVM*g; %Gross vehicle weight
A=3.8065;
           % frontal area
                                  (m^2)
rho=1.2250; %Air Density
                                  (kg/m^3)
Rw=0.2032; %Radius of wheel
                                  (m)
cd=0.28; %coefficient of drag
crf=0.015; %coefficient of rolling re sistance
GR=7.9377; %Gear Ratio
Teff=0.89; %transmission efficiency
ARDC=ArtemisRuralDriveCycle;
%Motor
ME=NissanLeafMotorEfficiency; %motor efficiency
MRE=NissanLeafMotorRegenerativeefficiency; %motor regenrative efficiency
%Motoring efficiency
ME Speed=ME(:,1);
ME Torque=ME(:,17);
ME Eff=ME(:,2:16);
%surface plot of the efficiency
figure('Name','Motor Motering Efficiency')
surf(ME Speed,ME Torque,ME Eff)
xlabel('motor speed (rpm)')
ylabel('motor torque (Nm)')
zlabel('motor efficiency(%)')
%regenerative efficiency
MRE Speed=MRE(:,1);
MRE Torque=MRE(:,17);
MRE Eff=MRE(:,2:16);
%surface plot of the Regenerative efficiency
figure('Name','Motor Regenerative Efficiency')
surf(MRE Speed, MRE Torque, MRE Eff)
xlabel('motor speed (rpm)')
ylabel('motor torque (Nm)')
zlabel('motor efficiency(%)')
%Motor Controller Efficiency
MCE=NissanLeafMotorControllerEfficiency;
%Motoring efficiency
MCE Speed=MCE(:,1);
MCE Torque=MCE(:,17);
MCE Eff=MCE(:,2:16);
%surface plot of the efficiency
figure('Name','Motor Controller Efficiency')
```


Decibels Lab Private Limited CIN:

#2362, 24th main road 1st sector, HSR layout Bangalore, +91 7411019255 contact@decibelslab.co

```
surf(MCE Speed, MCE Torque, MCE Eff)
xlabel('motor speed (rpm)')
ylabel('motor torque (Nm)')
zlabel('motor efficiency(%)')
%Motor Controller Regenrative Efficiency
MCRE=Nissanleafmotorcontrollerregenerativeefficiency;
%Motoring Regenerative efficiency
MCRE Speed=MCRE(:,1);
MCRE Torque=MCRE(:,17);
MCRE Eff=MCRE(:,2:16);
%surface plot of the efficiency
figure ('Name', 'Motor Controller Regenerative Efficiency')
surf(MCRE Speed,MCRE Torque,MCRE Eff)
xlabel('motor speed (rpm)')
ylabel('motor torque (Nm)')
zlabel('motor efficiency(%)')
%Intial state of charge
ISOC=1;
```

Result:

+91 7411019255 contact@decibelslab.co

+91 7411019255 contact@decibelslab.co

+91 7411019255 contact@decibelslab.co

Conclusion:

SI No	Parameters	Values	Units
1.	Chassis		
2.	Rolling Force	250	N
3.	Gradeability Force	0	N
4.	Maximum Aerodynamic Force	452.4520	N
5.	Maximum Acceleration Force	3433.2	N
6.	Maximum Wheel Speed	1237.2	Rpm
7.	Maximum Wheel Torque	750.3766	Nm
8.	Motor		
9.	Maximum Motor Speed	9820.5	Rpm
10.	Motor Torque		-
11.	Nominal Motor Torque	32.1853	Nm
12.	Motor Power		
13.	Nominal Motor Power	8549.7	W
14.	Battery		
15.	Power per Km	249.9	Wh/Km
16.	Vehicle Range	96.04	Km
17.	Battery Capacity in Ah	65.79	Ah
18.	Cell		
19.	Cell Voltage	3.8	V
20.	Cell Capacity	33.1	Ah
21.	No of cells	192	
22.	Battery Power		
23.	Nominal Battery Power	12251	W
24.	Battery Current		
25.	Nominal Battery Current	33.5831	Α
26.	Battery C-rate		
27.	Nominal Battery Discharge C-rate	0.4798	С
28.	State of Charge	85.3178	%
29.	Regenerative		
30.	Battery Power		
31.	Nominal Battery Power	-1136.1	W
32.	Battery Current		
33.	Nominal Battery Current	.3.1143	Α
34.	Battery C-rate		
35.	Nominal Battery Discharge C-rate	-0.0445	С
36.	State of Charge	86.7097 (1.3919 % of increase)	%