Алгебра и геометрия

Лисид Лаконский

October 2022

Содержание

1	Алі	ебра и геометрия - 04.10.2022	3			
		1.0.1 Ранг матрицы	3			
	1.1	Действия над матрицами	3			
	1.2	Теорема Кронекера-Капелли	4			
	1.3	Метод Гаусса	4			
2	Алгебра и геометрия - 07.10.2022					
	2.1	Собственные значения и собственные векторы матрицы	6			
		2.1.1 Примеры	6			
	2.2	Векторная алгебра. Операции над векторами	8			
		2.2.1 Пример	8			
3	Алі	ребра и геометрия - 14.10.2022	10			
	3.1	Центр масс	10			
		3.1.1 Пример	10			
		3.1.2 Некоторые нюансы	10			
	3.2	Направляющие косинусы	10			
	_	3.2.1 Пример	11			
	3.3	Решение практической работы, вариант 21	11			
	0.0	3.3.1 Задание 5, нахождение центра тяжести системы	11			
		3.3.2 Задание 6, нахождение длины и направляющих коси-				
		нусов	11			
4	Алі	Алгебра и геометрия - 15.10.2022				
	4.1	Ранг матрицы	12			
		4.1.1 Теорема об окаймляющих минорах	12			
		4.1.2 Другой способ подсчета ранга	12			
	4.2	Теорема Кронекера - Капелли	12			
		4.2.1 Фундаментальная система решений	12			
		422 Примеры	13			

5	Алгебра и геометрия - 21.10.2022						
	5.1	Скаля	арное произведение	16			
			Примеры				
	5.2		лрная проекция				
		5.2.1					
	5.3	-	орное произведение				
		5.3.1	Основные задачи на векторное произведение	17			
		5.3.2	Свойства векторного произведения	17			
		5.3.3	Примеры	17			
	5.4		аанное произведение	18			
	0.1	5.4.1	Примеры	18			
		0.1.1	11/200721				
6	Алгебра и геометрия - 24.10.2022						
	6.1	Прям	ая на плоскости	20			
		6.1.1	Уравнения прямой на плоскости	20			
		6.1.2	Угол между двумя прямыми	20			
		6.1.3	Примеры	20			
7	Алгебра и геометрия - 29.10.2022						
	7.1	_	йные пространства	22			
		7.1.1	Аксиомы линейного пространства				
		7.1.2	Примеры линейных пространств				
		7.1.3	Следствия из аксиом линейного пространства				
		7.1.4	Линейная комбинация элементов				
		7.1.5	Размерность линейного пространства				
		7.1.6	Базис линейного пространства				
	7.2	Векто	ррная алгебра				
		7.2.1	Скалярное произведение векторов				
		722	Скалярная проекция вектора	25			

1 Алгебра и геометрия - 04.10.2022

1.0.1 Ранг матрицы

Пусть дана матрица A размера m*n.

Возьмем любые $k \ (k \leq min(n; m))$ строк и k столбцов матрицы A.

На их пересечении стоят элементы, образующие определитель k-того порядка, который и называется минором k-го порядка.

Под минором 1-го порядка матрицы A понимается любой элемент.

Рангом r матрицы A называется наивысший порядок минора матрицы A, отличный от нуля.

Следовательно, если у нас матрица из четырех строк и трех столбцов, максимальный минор может быть три на три. Но если все они равны нулю, то мы не можем сказать, что ранг матрицы равен нулю.

Из определения следует:

- 1. r целое число $(0 \le r \le min(m; n))$
- 2. Все миноры (r+1) порядка либо нулевые, либо не существуют.

$$A = \begin{pmatrix} 2 & 1 & 3 & 7 \\ 0 & 4 & -1 & 0 \\ 0 & 0 & 8 & 1 \end{pmatrix}, r(A) = 3$$

Миноры 1-го порядка: любой элемент матрицы.

Миноры второго порядка: любой определитель этой матрицы 2x2: $\begin{pmatrix} 2 & 1 \\ 0 & 4 \end{pmatrix}$, $\begin{pmatrix} 1 & 3 \\ 4 & -1 \end{pmatrix}$

Миноры третьего порядка:
$$\begin{pmatrix} 2 & 1 & 3 \\ 0 & 4 & -1 \\ 0 & 0 & 8 \end{pmatrix}, \det A = 64 \neq 0$$

Минора четвертого порядка у данной матрицы не существует.

1.1 Действия над матрицами

- 1. Умножение строки или столбца на число, отличное от нуля.
- 2. Сложение: прибавление к одной строке (столбцу) другой, умноженной на число.
- 3. Перемещение (замена местами) двух строк или двух столбцов.
- 4. Вычеркивание нулевой строки или столбца.

$$A = \begin{pmatrix} 2 & 3 & 4 & 5 \\ 3 & 5 & 2 & 4 \\ 5 & 9 & -2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -2 & -1 \\ 3 & 5 & 2 & 4 \\ 5 & 9 & -2 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -2 & -1 \\ 0 & -1 & 8 & 7 \\ 0 & -1 & 8 & 7 \end{pmatrix} = \begin{pmatrix} 1 & 2 & -2 & -1 \\ 0 & -1 & 8 & 7 \end{pmatrix}$$

1.2 Теорема Кронекера-Капелли

Рассмотрим систему m линейных уравнений с n неизвестными:

$$\begin{cases}
a_{11} * x_1 + a_{12} * x_2 + \dots + a_{1n} * x_n = b_1 \\
\dots \\
a_{m1} * x_1 + a_{m2} * x_2 + \dots + a_{mn} * x_n = b_m
\end{cases}$$
(1)

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{m1} & \dots & a_{mn} \end{pmatrix}, B = \begin{pmatrix} b_1 \\ \dots \\ b_m \end{pmatrix}, X = \begin{pmatrix} ? \end{pmatrix}, (A|B) = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

Система называется совместной, если она имеет решение. (*) Операции только над строками.

$$r(A) = r(A|B) \equiv r$$

Если r=n, то система имеет единственное решение. Если r< n, то система имеет бесконечное множество решений, зависящих от (n-r) свободных неизвестных.

1.3 Метод Гаусса

Если столбец $B = \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix}$ свободных членов - нулевой, то система называется однородной.

Однородная система всегда имеет решение, и она всегда совместна, так как имеет тривиальное (нулевое) решение: $x_1 = 0, x_2 = 0, ..., x_n = 0$.

Если в однородной системе число неизвестных n равно числу уравнений m, то она имеет ненулевое решение тогда и только тогда, когда определитель системы равен нулю.

$$\begin{cases} x_1 + 5x_2 + 4x_3 - x_4 = 2\\ 2x_1 - x_2 - x_3 + 2x_4 = 3\\ 3x_1 + 4x_2 + 3x_3 + x_4 = 5 \end{cases}$$
 (2)

$$A = \begin{pmatrix} 1 & 5 & 4 & -1 \\ 2 & -1 & -1 & 2 \\ 3 & 4 & 3 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 \\ 3 \\ 5 \end{pmatrix}, (A|B) = \begin{pmatrix} 1 & 5 & 4 & -1 & 2 \\ 2 & -1 & -1 & 2 & 3 \\ 3 & 4 & 3 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 4 & -1 & 2 \\ 0 & -11 & -9 & 4 & -1 \\ 0 & -11 & -9 & 4 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 4 & -1 & 2 \\ 0 & -11 & -9 & 4 & -1 \end{pmatrix}, \begin{vmatrix} 1 & -5 \\ 0 & -11 \end{vmatrix} = -11 \neq 0, r(A|B) = 2 = r(A)$$

 $r < n \to$ система имеет бесконечное кол-во решений, зависящих от (4 - 2) = 2 свободных неизвестных.

Пусть $\begin{vmatrix} 1 & 5 \\ 0 & -11 \end{vmatrix}$ - базисный минор, тогда x_1 и x_2 - базисные члены, а x_3

и
$$x_4$$
 - свободные.
$$\begin{pmatrix}
1 & 5 & 4 & -1 & 2 \\
0 & -11 & -9 & 4 & -1
\end{pmatrix}$$

Преобразуем данную матрицу, делая по главной диагонали базисного

минора единицы, а по побочной нули.
$$\begin{pmatrix} 1 & 5 & 4 & -1 & 2 \\ 0 & 1 & \frac{9}{11} & -\frac{4}{11} & \frac{1}{11} \end{pmatrix} = \begin{pmatrix} 10 & -\frac{-1}{11} & \frac{9}{11} & \frac{17}{11} \\ 0 & 1 & \frac{9}{11} & -\frac{4}{11} & \frac{1}{11} \end{pmatrix}$$
 Выпишем в виде системы уравнений:

$$\begin{cases} 1x_1 + 0x_2 - \frac{1}{11}x_3 + \frac{9}{11}x_4 = \frac{17}{11} \\ 0x_1 + 1_x 2 + \frac{9}{11}x_3 - \frac{4}{11}x_4 = \frac{1}{11} \end{cases}$$
 (3)

$$\begin{cases} x_1 = \frac{1}{11}x_3 - \frac{9}{11}x_4 + \frac{17}{11} \\ x_2 = -\frac{9}{11}x_3 + \frac{4}{11}x_4 + \frac{1}{11} \end{cases}$$
 (4)

Пусть $x_3 = c_1$, а $x_4 = c_2$ $(c_1, c_2 \in R)$, тогда наша система приобретает вид:

$$\begin{cases}
x_1 = \frac{1}{11}c_1 - \frac{9}{11}c_2 + \frac{17}{11} \\
x_3 = -\frac{9}{11}c_1 + \frac{4}{11}c_2 + \frac{1}{11} \\
x_3 = c_1 \\
c_4 = c_2
\end{cases}$$
(5)

Исследуем на совместность систему

$$\begin{cases}
2x_1 + 2x_2 + x_3 = 6 \\
x_1 + 2x_2 + 4x_3 = 4 \\
3x_1 + 4x_2 + 5x_3 = 9
\end{cases}$$
(6)

$$(A|B) = \begin{pmatrix} 2 & 2 & 1 & 6 \\ 1 & 2 & 4 & 4 \\ 3 & 4 & 5 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 4 \\ 2 & 2 & 1 & 6 \\ 3 & 4 & 5 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 4 \\ 0 & -2 & -7 & -2 \\ 0 & -2 & -7 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 4 & 4 \\ 0 & -2 & -7 & -2 \\ 0 & 0 & 0 & 0 & -1 \end{pmatrix}, r(A|B)$$

Следовательно, система несовместна и решений не имеет.

2 Алгебра и геометрия - 07.10.2022

2.1 Собственные значения и собственные векторы матрицы

Матрицы могут представляться на плоскости - для этого нужны собственные значения и собственные векторы.

Пусть дана квадратная матрица A n-ого порядка. Ненулевой вектор $X = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}$ называется собственным вектором матрицы A, если под действием этой матрицы он переходит в коллинеарный ему:

$$A * X = \lambda X, \lambda \in R$$

Где λ - собственное значение соответствующего ему вектора матрицы A. Для нахождения λ составляют характеристическое уравнение:

$$|A - \lambda E| = 0$$

Если λ_0 - сосбтвенное значение матрицы A, то соответствующие собственные векторы находим из системы однородных линейных уравнений.

(*) Однородными называются системы, где матрица-столбец свободных членов B полностью состоит из нулей

$$(A - \lambda_0 E) * X = 0$$

2.1.1 Примеры

$$A = \begin{pmatrix} 4 & -2 & -1 \\ -1 & 3 & -1 \\ 1 & -2 & 2 \end{pmatrix}$$

Составим характеристическое уравнение $|A - \lambda E| = 0$:

$$\begin{vmatrix} 4 - \lambda & -2 & -1 \\ -1 & 3 - \lambda & -1 \\ 1 & -2 & 2 - \lambda \end{vmatrix}$$

 $(4-\lambda)(3-\lambda)(2-\lambda)-2+2+3-\lambda-8+2\lambda-4+2\lambda=(12-7\lambda+\lambda^2)(2-\lambda)+3\lambda-9=24-12\lambda-14\lambda+7\lambda^2+2\lambda^2-\lambda^3+3\lambda-9=-\lambda^3-6\lambda^2-23\lambda+15=0$ $\lambda_1=1$, вынесем общий множитель:

$$\frac{-\lambda^3 + 9\lambda^2 - 23\lambda + 15}{\lambda - 1} = (\lambda - 1)(-\lambda^2 + 8\lambda - 15)$$

Решаем через дискриминант или через теорему Виета: что угодно.

Итого имеем:

$$\lambda_1 = 1, \lambda_2 = 3, \lambda_3 = 5$$

Найдем теперь собственные векторы.

Пусть
$$\lambda = \lambda_1 = 1$$
, тогда $(A - \lambda E) * X = 0$:

$$\begin{cases} (4-1)x_1 - 2x_2 - x_3 = 0\\ -x_1 + (3-1)x_2 - x_3 = 0\\ x_1 - 2x_2 + (2-1)x_3 = 0 \end{cases}$$
(7)

В матричном виде:

$$\begin{pmatrix} 3 & -2 & -1 \\ -1 & 2 & -1 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -2 & -1 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 4 & -4 \end{pmatrix} = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

Преобразуем обратно в систему:

$$\begin{cases} x_1 - x_3 = 0 \\ x_2 - x_3 = 0 \end{cases}$$
 (8)

Отсюда видим, что $x_1 = x_3, x_2 = x_3$

Пусть
$$x_1=1$$
, тогда $x_1=\begin{pmatrix}1\\1\\1\end{pmatrix}$, видим что $X_1=C_1\begin{pmatrix}1\\1\\1\end{pmatrix}$

Последовательно найдем теперь второй и третий собственный векторы: X_2 и X_3 .

Пусть $\lambda = \lambda_2 = 3$, тогда $(A - \lambda E) * X = 0$

$$\begin{cases} (4-3)x_1 - 2x_2 - x_3 = 0\\ -x_1 + (3-3)x_2 - x_3 = 0\\ x_1 - 2x_2 + (2-3)x_3 = 0 \end{cases}$$
(9)

Преобразуем в матричный вид: $\begin{pmatrix} 1 & -2 & -1 \\ -1 & 0 & 1 \\ 1 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -2 & -1 \\ 1 & 0 & 1 \end{pmatrix} =$

$$\begin{pmatrix} 2 & -2 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 Из этого видно, что $x_1=x_2, x_1=-x_3$

$$X_2 = C_2 \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$

Найдем третий собственный вектор.

Пусть $\lambda = \lambda_3 = 5$, тогда $(A - \lambda E) * X = 0$

$$\begin{cases} (4-5)x_1 - 2x_2 - x_3 = 0\\ -x_1 + (3-5)x_2 - x_3 = 0\\ x_1 - 2x_2 + (2-5)x_3 = 0 \end{cases}$$
 (10)

Запишем данную систему уравнений в матричном виде:
$$\begin{pmatrix} -1 & -2 & -1 \\ -1 & -2 & -1 \\ 1 & -2 & -3 \end{pmatrix} =$$

$$\begin{pmatrix} -1 & -2 & -1 \\ 1 & -2 & -3 \end{pmatrix} = \begin{pmatrix} -1 & -2 & -1 \\ 0 & -4 & -4 \end{pmatrix}$$

у соответствует следующая система уравнений:

$$\begin{cases}
-x_1 - 2x_2 - x_3 = 0 \\
-4x_2 - 4x_3 = 0
\end{cases}$$
(11)

Я зашел в какую-то фигню, где-то ошибся, но, в общем, ответ должен получиться следующий: $X_3 = C_3 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

Векторная алгебра. Операции над векторами 2.2

Вектором \overrightarrow{AB} называется направленный отрезок AB, заданный своим началом A и концом B.

Длиной (модулем) $|\overline{AB}|$ вектора \overline{AB} называется длина отрезка AB.

Два вектора называются коллинеарными, если они параллельны одной прямой (параллельны друг другу).

Три вектора называются компланарными, если они парадлельны одной плоскости.

Координаты x, y, z вектора \overrightarrow{a} это коэффициенты разложения вектора по базису, то есть по трем некомпланарным векторам, обозначаемым как $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$.

$$\overrightarrow{e_1} = \{1,0,0\}, \overrightarrow{e_2} = \{0,1,0\}, \overrightarrow{e_2} = \{0,0,1\}, \overrightarrow{a} = x * \overrightarrow{e_1} + y * \overrightarrow{e_2} + z * \overrightarrow{e_3}$$

Если $\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}$ взаимно перпендикулярны и единичные векторы: $\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k}$,

то такой базис называется ортонормированным.

2.2.1Пример

Разложить вектор $\overrightarrow{a}=\{4;2;0\},$ если возможно, по векторам $\overrightarrow{p}=\{1;-1;2\},$ $\overrightarrow{q}=\{1;-1;2\}$ $\{2; 2; -1\}, \overrightarrow{r} = \{3; 7; -7\}$

Для того, чтобы это было возможно, должно соблюдаться следующее для того, чтооы это оыло возможно, должно соолюдаться следующее выражение: $(\overrightarrow{p}*\overrightarrow{q})*\overrightarrow{r}\neq 0$ - достаточное условие некомпланарности. $(\overrightarrow{p}*\overrightarrow{q})*\overrightarrow{r}=\begin{vmatrix} 1 & -1 & 2 \\ 2 & 2 & -1 \\ 3 & 7 & -7 \end{vmatrix}\neq 0$ det $X=-14+28+3-12+7-14=2\neq 0$, следовательно, мы можем

$$(\overrightarrow{p}*\overrightarrow{q})*\overrightarrow{r} = \begin{vmatrix} 1 & -1 & 2 \\ 2 & 2 & -1 \\ 3 & 7 & -7 \end{vmatrix} \neq 0$$

разложить данный вектор по трем некомпланарным векторам.

разложить данный вектор по трем некомпланарным векторам.
$$\overrightarrow{q} = x * \overrightarrow{p} + y * \overrightarrow{q} + z * \overrightarrow{r}$$

$$\overrightarrow{p} = 1 * \overrightarrow{i} - 1 * \overrightarrow{j} + 2 * \overrightarrow{k}, \overrightarrow{q} = 2 * \overrightarrow{i} + 2 * \overrightarrow{j} - \overrightarrow{k}, \overrightarrow{r} = 3 * \overrightarrow{i} + 7 * \overrightarrow{j} - 7 * \overrightarrow{k}$$

$$\underbrace{x * \overrightarrow{p} + y * \overrightarrow{q} + z * \overrightarrow{r}}_{} = x * \overrightarrow{i} - x * \overrightarrow{j} + 2x \overrightarrow{k} + 2y \overrightarrow{i} + 2y \overrightarrow{i} + 2y \overrightarrow{j} - y \overrightarrow{k} + 3z \overrightarrow{i} + 7z \overrightarrow{j} - 7z \overrightarrow{k}$$

Далее для разложения по базису нам необходимо вынести \overrightarrow{i} , \overrightarrow{j} , \overrightarrow{k} ... = $(x+2y+3z)+\overrightarrow{j}(-x+2y+7z)+\overrightarrow{k}(2x-y-7z)$ $\overrightarrow{a}=x\overrightarrow{p}+y\overrightarrow{q}+z\overrightarrow{r}$

$$\begin{cases} x + 2y + 3z = 4 \\ -x + 2y + 7z = 2 \\ 2x - y - 7z = 0 \end{cases}$$
 (12)

Решим данную систему уравнений каким угодно способом, сначала составив расширенную матрицу системы:

выв расширенную матрипу системы:
$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ -1 & 2 & 7 & 2 \\ 2 & -1 & -7 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & -2 & -7 & -2 \\ 1 & 1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 1 & 0 & 2 \\ 0 & -3 & -7 & -4 \end{pmatrix} = \begin{pmatrix} 1 & -1 & -4 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & -3 & -7 & -4 \end{pmatrix}$$

$$\begin{cases} x_1 = -x_2 + 2 \\ x_3 = \frac{4}{7} - \frac{3}{7}x_2 \\ x_1 = -x_2 - 4x_3 = 0 \end{cases}$$
 (13)

$$\begin{cases} x_2 = -1 \\ x_1 = 3 \\ x_3 = 1 \end{cases}$$
 (14)

Тогда $\overrightarrow{a} = 3\overrightarrow{p} - \overrightarrow{q} + \overrightarrow{r}$

3 Алгебра и геометрия - 14.10.2022

3.1 Центр масс

Если точки A и B заданы координатами $A(x_1; y_1; z_1), B(x_2; y_2; z_2)$, то координаты вектора $\overrightarrow{AB}: \{x_2-x_1; y_2-y_1; z_2-z_1\}.$

Разделить отрезок в соотношении $\lambda \neq -1$ это значит на прямой AB найти такую точку M, что вектор $\overrightarrow{AM} = \lambda \overrightarrow{MB}$.

Если заданы координаты точек $A(x_1;y_1;z_1), B(x_2;y_2;z_2),$ то координаты делящей точки $M(x_m;y_m;z_m)$ находят по формулам: $x_m=\frac{x_1=\lambda x_2}{1+\lambda}, y_m=\frac{y_1+\lambda y_2}{1+\lambda}, z_m=\frac{z_1+\lambda z_2}{1+\lambda}$

Если M - середина AB, то $\lambda=1$, а формулы $x_m=\frac{x_1+x_2}{2},y_m=\frac{y_1+y_2}{2},z_m=\frac{z_1+z_2}{2}$

3.1.1 Пример

Дано: $A_1(1;3), m_1 = 10; A_2(7;8), m_2 = 30; A_3(0;4), m_3 = 5$. Определить S - центр масс системы.

Пусть C_1 делит A_1A_2 в соотношении $\lambda=\frac{m_2}{m_1}=3$, тогда $x_c=\frac{1+3*7}{4}=\frac{22}{4},y_c=\frac{27}{4}$ Пусть S делит CA_3 в соотношении $\lambda=\frac{m_3}{m_1+m_2}=\frac{1}{8}$, тогда

 $x_s = \frac{11}{2} * \frac{8}{9} = \frac{44}{9}, y_s = \frac{\frac{27}{4} + \frac{11}{8} * 4 + \frac{1}{8}}{\frac{9}{8}} = \frac{29}{4} * \frac{8}{9} = \frac{58}{9}.$ Other: $S(\frac{44}{9}; \frac{58}{9})$

3.1.2 Некоторые нюансы

- 1) Можно доказать, что центр масс $S(x_s;y_s;z_s)$ материальной системы точек $A_1(x_1;y_1;z_1),A_2(x_2;y_2;z_2),...,A_n(x_n;y_n;z_n)$, в которых сосредоточены массы $m_1,m_2,...,m_n$ имеет следующие координаты: $x_s = \frac{x_1*m_1+x_2*m_2+...+x_n*m_n}{m_1+m_2+...+m_n},y_s = \frac{y_1*m_1+...+y_n*m_n}{m_1+...+m_n},z_s = \frac{z_1*m_1+...+z_n*m_n}{m_1+...+m_n}$
- 2) Центры масс треугольника с координатами $A_1(x_1;y_1;z_1),A_2(x_2;y_2;z_2),A_3(x_3;y_3;z_3) \ (\text{то есть, центр масс однородной треугольной пластины})$ находится в точке пересечения медиан. Если предпложить, что $n=3,m_1=m_2=m_3$, то $S(\frac{x_1+x_2+x_3}{3};\frac{y_1+y_2+y_3}{3};\frac{z_1+z_2+z_3}{3})$

3.2 Направляющие косинусы

Пусть α, β, γ - углы, которые образуют $\overrightarrow{a} = \{x, z, z\}$ с осями O_x, O_y, O_z . Тогда направляющие косинусы $\cos \alpha, \cos \beta, \cos \gamma$ вектора \overrightarrow{a} связаны соотношением $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ и определяются формулами: $\cos \alpha = \frac{x}{|\overrightarrow{a}|} = \frac{x}{\sqrt{x_2 + y_2 + z_2}}, \cos \beta = \frac{y}{|\overrightarrow{a}|}, \cos \gamma = \frac{z}{|\overrightarrow{a}|}$

3.2.1 Пример

Найти длину и направляющие косинусы \overrightarrow{AM} , если т. M делит AB в соотношении $\lambda = -2$, где A(5; 6; -1), B(0; -3; 2).

Найдем координаты точки M: $x_m = -5, y_m = -12, z_m = 5$. Таким образом, M(-5;-12;5).

$$\overrightarrow{AM} = \{-10; -18; -6\}, |\overrightarrow{AM}| = \sqrt{100 + 324 + 36} = \sqrt{460} = 2\sqrt{115}$$

Найдем направляющие косинусы:
$$\cos\alpha = \frac{-10}{2\sqrt{115}} \approx -0.466, \cos\beta = \frac{-18}{2\sqrt{115}} \approx -0.839, \cos\gamma = \frac{-6}{2\sqrt{115}} \approx 0.28.$$
 Выполним проверку:
$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = \frac{100}{460} + \frac{324}{460} + \frac{36}{460} = 1$$

3.3 Решение практической работы, вариант 21

Задание 5, нахождение центра тяжести системы

Дано:
$$A_1(5;-4), A_2(0;2), A_3(6;6), m_1=25, m_2=45, m_3=15.$$
 Согласно формуле, $S_x=\frac{5*25+0*45+6*15}{25+45+15}=\frac{215}{85}=\frac{43}{17},$ $S_y=\frac{-4*25+2*45+6*15}{25+45+15}=\frac{80}{85}=\frac{16}{17}.$ Ответ: $S(\frac{43}{17};\frac{16}{17})$

Согласно формуле,
$$S_x = \frac{3*20+0*45+0*10}{25+45+15} = \frac{215}{85} =$$

 $C_x = -4*25+2*45+6*15 = 80 = 16$

Задание 6, нахождение длины и направляющих косинусов

Дано: $A(-2; -5), B(4; 1), \lambda = \frac{2}{7}$.

Найдем координаты точки
$$M$$
: $M_x=\frac{-2+4}{1+\frac{2}{7}}=\frac{2}{\frac{9}{7}}=\frac{14}{9}, M_y=\frac{-5+1}{1+\frac{2}{7}}=\frac{-4}{\frac{9}{7}}=\frac{-4*7}{9}=-\frac{28}{9}$, таким образом $M(\frac{14}{9};-\frac{28}{9})$

$$\overrightarrow{AM} = \{\frac{14}{9} + 2; -\frac{28}{9} + 5\} = \{\frac{32}{9}; \frac{17}{9}\}, |\overrightarrow{AM}| = \sqrt{\frac{1024}{81} + \frac{289}{81}} = \sqrt{\frac{1313}{81}}$$
 Найдем направляющие косинусы: $\cos \alpha = \frac{\frac{32}{9}}{\sqrt{\frac{1313}{81}}} \approx 0.883, \cos \beta = \frac{\frac{17}{9}}{\sqrt{\frac{1313}{81}}} \approx 0.469.$ Ответ: сами выпишите из того, что написано выше.

$$\cos \alpha = \frac{\frac{32}{9}}{\sqrt{\frac{1313}{81}}} \approx 0.883, \cos \beta = \frac{\frac{17}{9}}{\sqrt{\frac{1313}{81}}} \approx 0.469.$$

Алгебра и геометрия - 15.10.2022

4.1 Ранг матрицы

Рангом матрицы называется порядок наибольшего минора, отличного от нуля, который можно из этой матрицы получить.

$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 0 & 1 & 1 \\ 0 & 1 & 2 & -1 \\ 1 & 2 & -1 & 5 \end{pmatrix}$$
 - миноров первого порядка полно, второго - тоже,

третьего - тоже имеется, четвертого - лишь один.

Если определитель четвертого порядка не равен нулю, то r(A) = 4, но это нужно считать.

Теорема об окаймляющих минорах 4.1.1

Если матрица A имеет ненулевой минор $\Delta \neq 0$ к-ого порядка, а все миноры, содержащие $\Delta k + 1$ -го порядка равны нулю, то ранг матрицы Aравен k.

Другой способ подсчета ранга 4.1.2

Ранг матрицы равен количеству не полностью нулевых строк, если данная матрица приведена к ступенчатому виду.

Например, ранг матрицы
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & -2 & 1 \\ 0 & 0 & 3 & 1 & 7 \end{pmatrix}$$
 равен трем.

Если матрица не приведена к ступенчатому виду - ее надо к ней привести.

Теорема Кронекера - Капелли 4.2

Система линейных уравнений имеет решение (является совместной), если ранг расширенной матрицы совпадает с рангом матрицы системы.

Если ранг расширенной матрицы не совпадает с рангом матрицы системы, то решений нет.

Если r(A) = r(A*) = n - то будет единственное решение.

Если r(A) = r(A*) < n - решений бесконечно много - система

неопределена, r неизвестных назовем **базисными**, а n-r неизвестных назовем свободными (через них все будем выражать).

В случае однородной системы всегда имеется хотя бы нулевое решение.

4.2.1 Фундаментальная система решений

$$r(A*) = r(A) = r < n$$

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1r}x_r = b_1 - a_{1r+1}x_{r+1} - a_{1r+2}x_{r+2} - \dots \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2r}x_r = b_2 - a_{2r+1}x_{r+1} - a_{2r+2}x_{r+2} - \dots \\
\dots \\
a_{r1}x_1 + a_{r2}x_2 + \dots + a_{rr}x_r = b_r - a_{rr+1}x_{r+1} - \dots
\end{cases} (15)$$

$$x_1(c_1c_2...c_{n-r}), x_2(c_1c_2...c_{n-r}), c_r(c_1c_2...c_{n-r})$$

4.2.2 Примеры

Пример 1.

$$\begin{cases} x + y + z = 1 \\ x + y + 2z = 1 \\ 2x + 2y + 4z = 3 \end{cases}$$
 (16)

Составим матрицу расширенную системы:

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 2 & 2 & 4 & 3 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, r(A) \neq r(A*)$$

Система несовместна, решений нет

Пример 2.

$$\begin{cases} x + y + z = 1 \\ x + y + 2z = 1 \\ 2x + 2y + 4z = 2 \end{cases}$$
 (17)

Составим расширенную матрицу системы:

Составим расширенную матрипу системы:
$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 2 & 2 & 4 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, r(A) = r(A*) < n -$$
 бесконечное множество решений.

Решение:
$$\begin{pmatrix} 1-a\\a\\0 \end{pmatrix}$$

Пример 3.

$$\begin{cases} x + y + z = 1\\ 2x + 2y + 2z = 2\\ -4x - 4y - 4z = -4 \end{cases}$$
 (18)

Составим расширенную матрицу системы:

$$\begin{pmatrix}1&1&1&1\\2&2&2&2\\-4&-4&-4&-4\end{pmatrix}\sim\begin{pmatrix}1&1&1&1\\0&0&0&0\\0&0&0&0\end{pmatrix}, r(A)=r(A*)=1$$
 Имеем решение:
$$\begin{pmatrix}1-a-b\\a\\b\end{pmatrix}$$

Пример 4.

$$\begin{cases}
x_1 - 5x_2 + 2x_3 - 16x_4 + 3x_5 = 0 \\
x_1 + 11x_2 - 12x_3 + 34x_4 - 5x_5 = 0 \\
2x_1 - 2x_3 - 3x_3 - 7x_4 + 2x_5 = 0 \\
3x_1 + x_2 - 8x_3 + 2x_4 + x_5 = 0
\end{cases}$$
(19)

Запишем в виде матрицы:

$$\begin{pmatrix} 1 & -5 & 2 & -16 & 3 \\ 1 & 11 & -12 & 34 & -5 \\ 2 & -2 & -3 & -7 & 2 \\ 3 & 1 & -8 & 2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -5 & 2 & -16 & 3 \\ 0 & 16 & -14 & 50 & -8 \\ 0 & 8 & -7 & 25 & -4 \\ 0 & 16 & -14 & 50 & -8 \end{pmatrix} \sim \begin{pmatrix} 1 & -5 & 2 & -16 & 3 \\ 0 & 16 & -14 & 50 & -8 \end{pmatrix} \sim \begin{pmatrix} 1 & -5 & 2 & -16 & 3 \\ 0 & 16 & -14 & 50 & -8 \end{pmatrix}$$

$$\begin{cases} x_1 - 5x_2 = -3x_5 + 16x_4 - 2x_3 \\ 8x_2 = 4x_5 - 25x_4 + 7x_3 \end{cases}$$
 (20)

Ступенчатая матрица содержит две ненулевые строки, значит количество базисных переменных равно двум, а количество свободных - трем.

$$x_2 = \frac{x_5}{2} - \frac{25x_4}{8} + \frac{7x_3}{8}, x_1 = 5x_2 - 3x_5 + 16x_4 - 2x_3 = \frac{5}{2}x_5 - \frac{125}{8}x_4 + \frac{35}{8}x_3 - 3x_5 + 16x_4 - 2x_3 = \frac{1}{2}x_5 + \frac{3}{8}x_4 + \frac{19}{8}x_3$$

Итоговый ответ:
$$\begin{pmatrix} -\frac{1}{2}x_5 + \frac{3}{8}x_4 + \frac{19}{8}x_3 \\ \frac{1}{2}x_5 - \frac{25}{8}x_4 + \frac{7}{8}x_3 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \sim C_1 \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ 0 \\ 0 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} \frac{3}{8} \\ -\frac{25}{8} \\ 0 \\ 1 \\ 0 \end{pmatrix} + C_3 \begin{pmatrix} \frac{19}{8} \\ \frac{7}{8} \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

$$X_{\text{общ}} = C_1 E_1 + C_2 E_2 + C_3 E_3$$

Пример 5.

Имеем следующую расширенную матрицу системы:

$$\begin{pmatrix} 2 & 1 & -1 & 3 & 2 \\ -4 & 0 & 1 & -7 & 3 \\ 0 & 2 & -3 & 1 & 1 \\ 2 & 3 & -4 & -2 & 3 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & -1 & 3 & 2 \\ 0 & -2 & 3 & -1 & -1 \\ 0 & 2 & -3 & 1 & 1 \\ 0 & 2 & -3 & 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & -1 & 3 & 2 \\ 0 & -2 & 3 & -1 & -1 \\ 0 & 2 & -3 & 1 & 1 \end{pmatrix}$$

$$\begin{cases} 2x_1 + x_2 - x_3 - 3x_4 = 2\\ -2x_2 + 3x_3 - x_4 = -1 \end{cases}$$
 (21)

Имеем:

$$\begin{cases} 2x_1 + x_2 = 2 + x_3 + 3x_4 \\ -2x_2 = -1 - 3x_3 + x_4 \end{cases}$$
 (22)

$$\begin{array}{l} x_2 = \frac{1}{2} + \frac{3}{2}x_3 - \frac{1}{2}x_4, 2x_1 = 2 + x_3 + +3x_4 - x_2 = \\ 2 + x_3 + 3x_4 - \frac{1}{2} - \frac{3}{2}x_3 + \frac{1}{2}x_4 = \frac{3}{2} - \frac{1}{2}x_3 + \frac{7}{2}x_4 \end{array}$$

$$\begin{pmatrix} \frac{3}{4} - \frac{1}{4}x_3 + \frac{7}{4}x_4 \\ \frac{1}{2} + \frac{3}{2}x_3 - \frac{1}{2}x_4 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} \frac{3}{4} \\ \frac{1}{2} \\ 0 \\ 0 \end{pmatrix} + C_1 \begin{pmatrix} -x_1 \\ \frac{3}{2} \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} \frac{7}{4} \\ -\frac{1}{2} \\ 0 \\ 1 \end{pmatrix}$$

 $X=X_{
m \tiny q.p}+X_{
m odh}, X_{
m odh}=C_1E_1+C_2E_2,\, X_{
m q.p}$ - наш столбик из циферок.

Алгебра и геометрия - 21.10.2022 5

Скалярное произведение

$$\overrightarrow{a} * \overrightarrow{b} = |\overrightarrow{a}| * |\overrightarrow{b}| * \cos(\overrightarrow{a}; \overrightarrow{b})$$

 $\overrightarrow{a}*\overrightarrow{b}=|\overrightarrow{a}|*|\overrightarrow{b}|*\cos(\overrightarrow{a};\overrightarrow{b})$ Если или $\overrightarrow{a}=\overrightarrow{0}$ или $\overrightarrow{b}=\overrightarrow{0}$, то скалярное произведение будет равно

Два ненулевых вектора перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю. $\overrightarrow{a} \perp \overrightarrow{b} \iff \overrightarrow{a} * \overrightarrow{b} = 0 (\overrightarrow{a} \neq 0, \overrightarrow{b} \neq 0)$

$$\overrightarrow{a} \perp \overrightarrow{b} \iff \overrightarrow{a} * \overrightarrow{b} = 0 (\overrightarrow{a} \neq 0, \overrightarrow{b} \neq 0)$$

5.1.1 Примеры

Пример 1.

Найти
$$\cos \angle NMP$$
, если $M(1;2;-4), N(4;2;0), P(-3;2;-1)$ $\overrightarrow{MN} = \{3;0;4\}, \overrightarrow{MP} = \{-4;0;3\}$ $\cos \angle NMP = \frac{\overrightarrow{MN}*\overrightarrow{MP}}{|\overrightarrow{MN}|*|\overrightarrow{MP}|} = 0, \cos \angle NMP = 90^\circ$

5.2 Скалярная проекция

Скалярная проекция: $\Pi P_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} * \overrightarrow{b}}{|\overrightarrow{b}|}$

Векторая проекция: $\overrightarrow{\Pi P}_{\overrightarrow{b}}\overrightarrow{a}=\Pi \overrightarrow{P}_{\overrightarrow{b}}\overrightarrow{a}*\frac{\overrightarrow{b}}{|\overrightarrow{b}|}$

5.2.1 Примеры

Пример 1.

$$\Pi P_{\overrightarrow{b}} \overrightarrow{a} -?, \overrightarrow{\Pi P}_{\overrightarrow{b}} \overrightarrow{a} -?$$

$$\overrightarrow{d} = 2\overrightarrow{AB} - \overrightarrow{CD}, \overrightarrow{b} =$$

$$\overrightarrow{a} = 2\overrightarrow{AB} - \overrightarrow{CD}, \overrightarrow{b} = \\ \overrightarrow{OC} \times \overrightarrow{AD}, A(1;0;-1), B(1;-1;-2), C(4;1;0), D(0;4;3), O(0;0;0)$$

$$\overrightarrow{AB} = \{0; -1; -1\}, 2\overrightarrow{AB} = \{0; -2; -2\}, \overrightarrow{CD} = \{-4; 3; 3\}, \overrightarrow{OC} = \{4; 1; 0\}, \overrightarrow{AD} = \{-1; 4; 4\}$$

$$\overrightarrow{a} = 4; -5; -5, \overrightarrow{b} = \overrightarrow{OC} \times \overrightarrow{AD} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 4 & 1 & 0 \\ -1 & 4 & 4 \end{vmatrix} = 4 \overrightarrow{i} - 16 \overrightarrow{j} + 17 \overrightarrow{k}$$

$$\PiP_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} * \overrightarrow{b}}{|\overrightarrow{b}|} = \frac{4*4 + (-5)*(-16) + (-5)*17}{\sqrt{4^2 + (-16)^2 + 17^2}} = \frac{11}{\sqrt{561}}$$

$$\overrightarrow{\PiP}_{\overrightarrow{b}} \overrightarrow{a} = \PiP_{\overrightarrow{b}} \overrightarrow{a} * \frac{\overrightarrow{b}}{|\overrightarrow{b}|} = \frac{11}{\sqrt{561}} * \frac{\overrightarrow{b}}{\sqrt{561}} = \frac{11}{561} \{4; -16; 16\} = \{\frac{4}{51}; -\frac{16}{51}; \frac{1}{3}\}$$

$$\Pi P_{\overrightarrow{b}} \overrightarrow{a} = \frac{\overrightarrow{a} * \overrightarrow{b}}{|\overrightarrow{b}|} = \frac{4*4+(-5)*(-16)+(-5)*17}{\sqrt{4^2+(-16)^2+17^2}} = \frac{11}{\sqrt{561}}$$

$$\overrightarrow{\PiP}_{\overrightarrow{b}} \overrightarrow{a} = \PiP_{\overrightarrow{b}} \overrightarrow{a} * \frac{\overrightarrow{b}}{|\overrightarrow{b}|} = \frac{11}{\sqrt{561}} * \frac{\overrightarrow{b}}{\sqrt{561}} = \frac{11}{561} \{4; -16; 16\} = \{\frac{4}{51}; -\frac{16}{51}; \frac{1}{3}\}$$

5.3 Векторное произведение

Вектороное прозведение $\overrightarrow{a} \times \overrightarrow{b} = c$ \overrightarrow{c} должен соответствовать следующим требованиям:

1.
$$|\overrightarrow{c}| = |\overrightarrow{a} \times \overrightarrow{b}| = |\overrightarrow{a}| * |\overrightarrow{b}| * \sin(\overrightarrow{a} \overrightarrow{b})$$

2.
$$\overrightarrow{c} \perp \overrightarrow{a}, \overrightarrow{c} \perp \overrightarrow{b}$$

3. Тройка векторов $(\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c})$ правая

5.3.1 Основные задачи на векторное произведение

1) Нахождение площади параллелограмма или треугольника, построенного на плоскости.

$$S_{\text{nap}} = 2S_{\triangle} = |\overrightarrow{a} \times \overrightarrow{b}|$$

2) Нахождение \overrightarrow{N} , перпендикулярного двум неколлинеарным векторам: $\overrightarrow{a} \mid\mid \overrightarrow{b}$, то $\overrightarrow{N} = \lambda(\overrightarrow{a} \times \overrightarrow{b}), \lambda \in R, \lambda \neq 0$

5.3.2 Свойства векторного произведения

1.
$$\overrightarrow{a} \times \overrightarrow{b} = -\overrightarrow{b} \times \overrightarrow{a}$$

2.
$$\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{0} \iff \lambda \overrightarrow{a} = \overrightarrow{b} \vee \overrightarrow{a} = \overrightarrow{0}, \overrightarrow{b} = \overrightarrow{0}$$

3.
$$\overrightarrow{a} \times (\overrightarrow{b} + \overrightarrow{c}) = \overrightarrow{a} \times \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{c}$$

4.
$$\lambda \overrightarrow{a} \times \overrightarrow{b} = \lambda (\overrightarrow{a} \times \overrightarrow{b}) = \overrightarrow{a} \times (\lambda \overrightarrow{b})$$

$$\overrightarrow{d} = \{x_1; y_1; z_1\}, \overrightarrow{b} = \{x_2; y_2; z_2\}, \overrightarrow{d} \times \overrightarrow{b} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix} = \overrightarrow{i} (y_1 z_1 - z_1 y_2) - \overrightarrow{j} (z_2 z_2 - z_1 x_2) + \overrightarrow{k} (x_1 y_2 - x_2 y_1)$$

5.3.3 Примеры

Пример 1.

$$S_{\triangle}-?, \overrightarrow{a}=5\overrightarrow{m}-8\overrightarrow{n}, \overrightarrow{b}=-\overrightarrow{m}+2\overrightarrow{n}, |\overrightarrow{m}|=1, |\overrightarrow{n}|=2, \angle(\overrightarrow{m}; \overrightarrow{n})=\frac{3}{4}\pi$$

$$\begin{split} S_{\triangle} &= \tfrac{1}{2} S_{\text{nap}} = \tfrac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}| \\ \overrightarrow{a} \times \overrightarrow{b} &= (5\overrightarrow{m} - 8\overrightarrow{n}) \times (-\overrightarrow{m} + 2\overrightarrow{n}) = 5\overrightarrow{m} \times (-\overrightarrow{m}) + 5\overrightarrow{m} \times 2\overrightarrow{n} + (-8\overrightarrow{n}) \times \\ (-\overrightarrow{m}) + (-8\overrightarrow{n}) \times 2\overrightarrow{n} &= 10\overrightarrow{m} \times \overrightarrow{n} + 8\overrightarrow{n} \times \overrightarrow{m} = 10\overrightarrow{m} \times \overrightarrow{n} - 8\overrightarrow{n} \times \overrightarrow{n} = 2\overrightarrow{m} \times \overrightarrow{n} \end{split}$$

$$|\overrightarrow{a}\times\overrightarrow{b}|=|2\overrightarrow{m}\times\overrightarrow{n}|=2*|\overrightarrow{m}|*|\overrightarrow{n}|*\sin\angle(\overrightarrow{m};\overrightarrow{n})=2*1*2*\frac{\sqrt{2}}{2}=2\sqrt{2}$$

$$S_{\triangle} = \frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{2} * 2 * \sqrt{2} = \sqrt{2}$$

Пример 2.

$$S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{BA} \times \overrightarrow{BC}|$$

$$S_{\triangle ABC} = \frac{1}{2} |\overrightarrow{BA} \times \overrightarrow{BC}|$$

$$\overrightarrow{BA} = \{1; 4; 8\}, \overrightarrow{BC} = \{4; 3; 0\}$$

$$\overrightarrow{BA} \times \overrightarrow{BC} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 1 & 4 & 8 \\ 4 & 3 & 0 \end{vmatrix} = -24\overrightarrow{i} + 32\overrightarrow{j} - 13\overrightarrow{k} =$$

$$\{-24; 32; -13\}, |\overrightarrow{BA} \times \overrightarrow{BC}| = \sqrt{(-24)^2 + 32^2 + (-13)^2} = \sqrt{1769}$$

$$S_{\triangle ABC} = \frac{1}{2} * \sqrt{1769} \approx 21.03$$

$$S_{\triangle ABC} = \frac{1}{2} * h * BC, |\overrightarrow{BC}| = 5, h = \frac{21*2}{5} \approx 8.4$$

Пример 3.

$$\overrightarrow{N} \perp M_1 M_2 M_3, M_1(1;3;0), M_2(-2;1;-1), M_3(0;1;-1), \overrightarrow{N} - ?$$

$$\overrightarrow{N} \perp \overrightarrow{M_1 M_2}, \overrightarrow{N} \perp \overrightarrow{M_1 M_3}$$

$$\overrightarrow{N} = \lambda (\overrightarrow{M_1 M_2} \times \overrightarrow{M_1 M_3}), \overrightarrow{M_1 M_2} = \{-3; -2; -1\}, \overrightarrow{M_1 M_3} = \{-1; -2; -1\}, \overrightarrow{M_1 M_2} \text{ not parallel to } \overrightarrow{M_1 M_3}$$

$$\overrightarrow{N} = \lambda \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ -3 & -2 & -1 \\ -1 & -2 & -1 \end{vmatrix} = \lambda (0 \overrightarrow{i} - 2 \overrightarrow{j} + 4 \overrightarrow{k}) = \frac{1}{2} \{0; -2; 4\} = \{0; -1; 2\}$$

5.4 Смешанное произведение

Смешанным произведением трех векторов $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ называют число:

$$(\overrightarrow{a} \times \overrightarrow{b}) * \overrightarrow{c} = \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix}$$

$$V_{\text{параллелепипеда}} = |(\overrightarrow{a} \times \overrightarrow{b}) * \overrightarrow{c}|, V_{\text{тр. пир.}} = \frac{1}{6}V_{\text{ПАРАЛ}} = \frac{1}{6}|(\overrightarrow{a} \times \overrightarrow{b}) * \overrightarrow{c}|$$

5.4.1 Примеры

Пример 1.

$$\begin{array}{l} V_{ABCD}-?,AH-?,A(2;-4;5),B(-1;-3;4),C(5;5;-1),D(1;-2;2)\\ \overrightarrow{BA}=\{3;-1;1\},\overrightarrow{BC}=\{6;8;-5\},\overrightarrow{BD}=\{2;1;-2\} \end{array}$$

$$\begin{split} (\overrightarrow{a} \times b) * \overrightarrow{c} &= \begin{vmatrix} 3 & -1 & 1 \\ 6 & 8 & -5 \\ 2 & 1 & -2 \end{vmatrix} = -48 + 6 + 10 - 16 + 15 - 12 = -45 \\ V_{\text{TP. ΠUP}} &= \frac{1}{3} S_{\text{och}} * h = \frac{1}{6} |(\overrightarrow{BA} \times \overrightarrow{BC}) * \overrightarrow{BD}| = \frac{45}{6} \\ S_{\triangle} &= \frac{1}{2} |\overrightarrow{a} \times \overrightarrow{b}| = \frac{1}{2} |\overrightarrow{BC} \times \overrightarrow{BD}| = \frac{1}{2} \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ 6 & 8 & -5 \\ 2 & 1 & -2 \end{vmatrix} = \frac{1}{2} * |\{-11; 2; -16\}| = \frac{1}{2} \sqrt{(-11)^2 + 2^2 + (-10)^2} = \frac{15}{2} \\ h &= \frac{3V_{\text{TP. $\Pi \text{UP.}$}}}{S_{\text{OCH.}}} = \frac{45}{15} = 3 \end{split}$$

6 Алгебра и геометрия - 24.10.2022

6.1 Прямая на плоскости

Ненулевой вектор \overrightarrow{S} , параллельный прямой l, называется направляющим вектором прямой.

Ненулевой вектор \overrightarrow{N} , перпендикулярный прямой l, называется вектором нормали прямой l.

6.1.1 Уравнения прямой на плоскости

- 1. y = kx + b, где $k = \operatorname{tg} \alpha$
- 2. $y-y_0=k(x-x_0)$, где $k=\lg\alpha$ уравнение прямой, проходящей через точку $M(x_0;y_0)$ с заданным угловым коэффициентом k
- 3. $Ax+By+C=0, A^2+B^2\neq 0$ общее уравнение прямой (вектор нормали прямой: $\overrightarrow{N}=\{A;B\})$
- 4. $A(x-x_0)+B(y-y_0)=0, A^2+B^2\neq 0$ уравнение прямой, проходящей через точку $M(x_0;y_0)$ с заданным вектором нормали $\overrightarrow{N}=\{A;B\}$
- 5. $\frac{x-x_0}{m}=\frac{y-y_0}{n}, m^2+n^2\neq 0$ каноническое уравнение прямой (направляющий вектор $\overrightarrow{S}=\{m;n\},\,M(x_0;y_0)$
- 6. $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$ уравнение прямой, проходящей через заданные точки $M_1(x_1;y_1)$ и $M_2(x_2;y_2)$

6.1.2 Угол между двумя прямыми

$$\begin{aligned} l_1 : y &= k_1 x + b, \ l_2 : y = k_2 x + b_2 \\ \operatorname{tg} \alpha &= \pm \frac{k_2 - k_1}{1 + k_1 * k_2} \geq 0 \end{aligned}$$

- 1. $l_1 \perp l_2 \iff k_2 = -\frac{1}{k_1}$
- $2. \ l_1 \parallel l_2 \Longleftrightarrow k_1 = k_2$

6.1.3 Примеры

Пример 1. Найти координаты центра описанной около треугольника ABC, где A(0,3), B(2;5), C(-2;7).

Пусть точка D - середина AB, ее координаты - D(1;4), точка P - середина BC, ее координаты - P(0;6)

$$\overrightarrow{N} = \overrightarrow{AB} = \{2; 2\}, 2(x-1) + 2(y-4) = 0 \iff 2x + 2y - 10 = 0$$

$$\overrightarrow{BC} = \{-4; 2\}, -4(x-0) + 2(y-6) = 0 \iff -4x + 2y - 12 = 0$$

$$\begin{cases} 2x + 2y - 10 = 0\\ -4x + 2y - 12 = 0 \end{cases}$$
 (23)

Ответ: $S(-\frac{1}{3}; \frac{16}{3})$

Пример 2. Даны две вершины $A_1(2;4), A_2(3;1), \triangle A_1A_2A_3, N(4;0)$ - точка пересечения медиан.

Составить уравнение сторон этого треугольника и найти точку третьей вершины.

 $X_N=rac{x_1+x_2+x_3}{3},y_N=rac{y_1+y_2+y_3}{3}$ - координаты точки пересечения медиан. $x_3=3X_N-x_1-x_2=12-2-3=7,\ y_3=3Y_N-y_1-y_2=-5$ $A_3(7;-5)$ - координаты третьей вершины

$$(A_1A_2): \frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} \Longleftrightarrow \frac{x-2}{3-2} = \frac{y-4}{1-4} \Longleftrightarrow -3x+y = y-4 \Longleftrightarrow -3x-y+10 = 0$$

$$(A_2A_3): 3x + 2y - 11 = 0$$

$$(A_1A_3): 9x + 5y - 38 = 0$$

Пример 3. Даны вершины $A_1(1;0)$, $A_2(3;5)$ треугольника $\triangle A_1A_2A_3$, N(-1;3) - точка пересечения высот данного треугольника. Определить координаты A_3 .

$$\overrightarrow{A_1N} = \{-2; 3\}, \ -2(x-3) + 3(y-5) = 0 \longleftrightarrow -2x + 3x - 9 = 0$$

 $\overrightarrow{A_2N} = \{-4; -2\}, \ A_2N \perp (A_1A_3)$

Уравнение прямой A_1A_3 :

$$-4(x-1) - 2y \iff -4x - 2y + 4 = 0 \iff 2x + y - 2 = 0$$

$$\begin{cases}
-2x + 3y - 9 = 0 \\
2x + y - 2 = 0
\end{cases}$$
(24)

Точка пересечения - $A_3(-\frac{3}{8};\frac{11}{4})$

$$y=\tfrac{2x+9}{3}, -2=-\tfrac{1}{k}, k=\tfrac{1}{2}, \overrightarrow{n}=-\tfrac{1}{2}\overrightarrow{A_2N}=\overrightarrow{A_3N}=\{2;1\}$$

Пример 4.

7 Алгебра и геометрия - 29.10.2022

7.1 Линейные пространства

Линейным пространством называется множество элементов произвольной природы, на котором определены операции **сложения** и **умножения на число**, согласованные друг с другом и **замкнутые в этом множестве**.

Замкнутость в множестве означает то, что результаты выполнения операций над его элементами остаются элементами множества.

7.1.1 Аксиомы линейного пространства

Сложением (обобщенным сложением) называется операция, которая любым двум элементам данного множества ставит в соответствие элемент этого же множества, называемый их суммой: $x,y\in D\to z\in D, z=x+y$ Причем данная операция удовлетворяет следующим условиям:

1. ассоциативности: $x \bigoplus (y \bigoplus z) = (x \bigoplus y) \bigoplus z$

2. коммутативности: $x \oplus y = y \oplus x$

3. нулевого элемента: $x \oplus \theta = x$

4. обратного элемента: $x \oplus \overline{x} = \theta$

Множества с операциями такого типа называются абелевыми группами.

Умножением на число называется операция, которая любому элементу данного множества и любому действительному числу α ставит в соответствие элемент того же множества, называемый их произведением: $x \in D; \alpha \in R \to z \in D, z = \alpha \bigodot x$

Причем данная операция удовлетворяет следующим условиям:

1.
$$\alpha \bigcirc (\beta \bigcirc x) = (\alpha \bigcirc \beta) \bigcirc x$$

2.
$$1 \bigcirc x = x$$

Условия согласования операций сложения и умножения:

1.
$$(\alpha + \beta) \bigcirc x = \alpha \bigcirc x \bigoplus \beta \bigcirc x$$

2.
$$\alpha \bigcirc (x \bigoplus y) = \alpha \bigcirc x + \alpha \bigcirc y$$

7.1.2 Примеры линейных пространств

Пример 1. Множество действительных чисел является линейным пространством.

Пример 2. Множество матриц также является линейным пространством.

Пример 3. Рассмотрим множество (A) многочленов второго порядка (вида $ax^2 + bx + c$).

Оно не является линейным пространством: при сложении элементов этого множества мы можем получить элемент, не принадлежащий множеству. Например, $(2x^2+3x+1)+(-2x^2-5x)=-2x+1\notin A$

Пример 4. Множество векторов является линейным пространством.

Пример 5. Множество векторов, выходящих из данной точки и заканчивающихся в конце прямой линии, на которой лежит данная точка. Данное пространство не является линейным.

7.1.3 Следствия из аксиом линейного пространства

- 1. В линейном пространстве существует единственный нулевой элемент
- 2. В линейном пространстве у каждого элемента должен существовать обратный элемент
- 3. Если выполняется $\alpha \odot x = 0$, то либо α равно нулю, либо x является нулевым элементом
- 4. Разностью элементов называют операцию, обратную сложению

7.1.4 Линейная комбинация элементов

Линейной комбинацией элементов называют элемент $\alpha_1 \bigodot x_1 \bigoplus \alpha_2 \bigodot x_2 + ... + \alpha_n \bigodot x_n = \theta$ (*), где α_i - действительные числа

Если равенство (*) выполняется только при всех a_i равных нулю, то все элементы x_i являются **линейно независимыми**. Иначе эти элементы называются **линейно зависимыми**

Для того, чтобы система векторов **была линейно зависимой**, необходимо и достаточно, чтобы хотя бы один вектор являлся линейной комбинацией остальных.

Доказательство необходимости. Предполагаем, что наши системы векторов являются линейно зависимыми. Не нарушим общность, если предположим, что первый элемент отличен от нуля. Тогда мы можем записать:

$$lpha_1x_1=-lpha_2x_2-lpha_3x_3-...-lpha_nx_n\Longleftrightarrow x_1=-rac{lpha_2}{lpha_1}x_2-rac{lpha_3}{lpha_1}x_3-...-rac{lpha_n}{lpha_1}x_n$$
 Что и требовалось доказать

Доказательство достаточности тоже легко сочинить.

7.1.5 Размерность линейного пространства

Если существует натуральное число n такое, что наше пространство содержит n линейно независимых векторов, а прибавление любого лишнего вектора делает эти вектора линейно зависимыми, тогда мы говорим, что линейное пространство **имеет размерность** n

7.1.6 Базис линейного пространства

Упорядоченная система векторов $e_1, e_2, ..., e_n$ называется базисом линейного пространства, если

- 1. Эти вектора являются линейно независимыми
- 2. Любой вектор линейного пространства можно выразить как линейную комбинацию из этих векторов: $x=\xi_1e_1+\xi_2e_2+...+\xi_ne_n$, где ξ_i координаты вектора e в базисе $e_1,e_2,...,e_n$

Замечание 1. Координаты в разложении по конкретному базису определяются однозначно.

Замечание 2. В линейном пространстве существует бесконечное множество базисов. Если линейное пространство имеет размерность n, то базис будет состоять из n векторов.

Замечание 3. На плоскости в качестве базиса могут использоваться любых два неколлинеарных вектора

Пример 1.

Например, если мы работаем на плоскости, то имеем ортонормированный $(\overrightarrow{i},\overrightarrow{j})$ базис. Дано $e_1=2\overrightarrow{i}+\overrightarrow{j},e_2=-1\overrightarrow{i}+2\overrightarrow{j},p=3\overrightarrow{i}+5\overrightarrow{j}$. Запишем вектор p в новом базисе e_1,e_2 : $\overline{p}=\xi_1\overline{e_1}+\xi_2\overline{e_2}$

$$\begin{pmatrix} 3 \\ 5 \end{pmatrix} = \xi_1 \begin{pmatrix} 2 \\ 1 \end{pmatrix} + \xi_2 \begin{pmatrix} -1 \\ 2 \end{pmatrix}
\begin{cases} 3 = 2x - y \\ 5 = x + 2y \end{cases}$$
(25)

Решая систему уравнений, получим: x = 2.2, y = 1.4

Ответ: $\overline{p} = 2.2\overline{e_1} + 1.4\overline{e_2}$

Свойства базиса линейного пространства

Пусть мы рассматриваем любое n-мерное линейное пространство, и $e_1, e_2, ..., e_n$ - базис в n-мерном линейном пространстве.

1.
$$\alpha = \xi_1 e_1 + \xi_2 e_2 + \dots + \xi_n e_n, b = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n$$
, то $\overline{a} + \overline{b} = (\xi_1 + \lambda_1)e_1 + (\xi_2 + \lambda_2)e_2 + \dots + (\xi_n + \lambda_n)e_n$

2.
$$\alpha \overrightarrow{a} = \alpha \xi_1 \overline{e_1} + \dots + \alpha \xi_n \overline{e_n}$$

7.2 Векторная алгебра

7.2.1 Скалярное произведение векторов

Скалярное произведение векторов - число.

 $a*b=|\overrightarrow{a}|*|\overrightarrow{b}|\cos \alpha$, где α - угол между данными векторами.

Обладает следующими свойствами:

1.
$$a * b = b * a$$

2.
$$(\alpha a) * b$$

$$3. (a+b) * e = ac + bc$$

4.
$$a * a > 0$$

Допустим, имеем $\alpha = \{x_a; y_a; z_a\}, b = \{x_b; y_b; z_b\},$ то $ab = x_a x_b + y_a y_b + z_a z_b$

$$\cos \alpha = \frac{ab}{|a||b|} = \frac{x_a x_b + y_a y_b + z_a z_b}{\sqrt{x_a^2 + y_a^2 + z_a^2} \sqrt{x_b^2 + y_b^2 + z_b^2}}$$

Необходимым и достаточным условием перпендикулярности векторов a и b является равенство нулю их скалярного произведения, a*b>0 - угол острый, a*b<0 - угол тупой

7.2.2 Скалярная проекция вектора

 $\Pi \mathrm{p}_b \overline{a} = X_{\cos \alpha} + Y_{\cos \beta} + Z_{\cos \gamma}, \Pi \mathrm{p}_x \overrightarrow{a} = a*i, \Pi \mathrm{p}_y a = a*j,$ где α,β,γ - углы, которые в сост. с коор. осями.

 $e = \{\cos \alpha, \cos \beta, \cos \gamma\}$ - вектор в направлении b

$$\Pi \mathbf{p}_b a = |a| \cos \alpha = |a| \frac{ab}{|a||b|} = \frac{a*b}{|b|}$$