1.

Na rede da figura anterior, qual o tipo de dispositivo pode ser usado como concentrador (A) de todas as conexões.

(selecione as opções que se aplicam)

- ☐ Computador
- ☐ Servidor
- ☐ Hub
- ☐ Router
- Switch
- ☐ Repetidor

2. Qual o serviço é invocado quando no browser colocamos um nome de domínio, por exemplo: http://www.gaia.unisla.pt para converter em IP.

- O DHCP
- O WEB
- O DNS
- O Windows Server

3. Analise a imagem. Que servidor se trata, para que o PC possa obter automaticamente as informações de rede.

- O DHCP
- O DNS
- O WEB
- O Windows Server

4. Analise a seguinte rede:

Indique o Default Gateway do PC:: 192.168.200.1

5. Considere o seguinte IP: 192.168.10.1

Endereço de rede: <u>192.168.10.0</u>

Endereço de broadcast: <u>192.168.10.255</u>

Classe:

Mascara de sub-rede: <u>255.255.255.0</u>

6.	Escolha as opções que se aplicam ao esquema de endereçamento do futuro IPv6?
	(selecione as opções que se aplicam) Tem 32 bits Tem 128 bits Tem 136 bits Tem 32 dígitos hexadecimais Tem 4 octetos Tem 8 hextetos Tem 17 octetos
7.	
	nesta rede?
	O Serviços de DHCP O FTPD O Servidor web O Tradução de endereços
	Tradução de endereços
8.	Qual combinação de ID de rede e máscara de sub-rede identifica corretamente todos os endereços IP de 172.16.32.0 a 172.16.63.255?
	 ○ 172.16.64.0 255.255.0.0 ○ 172.16.64.0 255.255.192.0 ○ 172.16.64.0 255.255.255.192 ○ 172.16.64.0 255.255.224.0 ○ 172.16.64.0 255.255.255.224
9.	Se um dispositivo de rede tiver uma máscara de /28, quantos endereços IP estarão disponíveis para os hosts nessa rede?
	 256 254 62 32 16 14
10	. Como administrador de rede, defina a máscara de sub-rede que permite que 600 hosts recebam endereço IP da rede 172.30.0.0?
	 ○ 255.255.0.0 ○ 255.255.248.0 ○ 255.255.252.0 (deixar 10 bits para host - 255.255.11111100.00000000) (10 zeros -> 2^10-2=1022) ○ 255.255.254.0 ○ 255.255.255.0 ○ 255.255.255.128

11. De	eterm	ine o número de redes e	hosts	que podem ser	utilizados para	o endereço IP 19	2.168.1.0/29
000	8 red 16 re 32 re 32 re 64 re	les / 8 hosts les / 30 hosts ides / 14 hosts ides / 4 hosts ides / 6 hosts ides / 2 hosts	111.11	111000			
		e C, portanto 5 bits de sub-re sub-redes: 2^5 = 32	ede e 3	bits de host			
	Nº d	e hosts: 2^3-2 = 6					
0	O 255.255.255.128 O 255.255.255.224						
	ndo o ertenc	IP 172.131.18.220 e a s e? Cálculos:	seguin	te mascara de s	ubrede 255.255	5.240.0, qual sub	rede (ID) a que o host
		172.131.18 .22	20 -	10101100.	10000011.	00010010.1	1011100
Al	ND	255.255.248.0	_	11111111.	. 11111111.	11110000.	0000000
			_	10101100.	.10000011.	.00010000.	0000000
		1	[D -	172.	131.	16.	0

14. Dado o IP 172.131.18.220 e a seguinte mascara de subrede 255.255.240.0, qual o broadcast a que o host pertence? Cálculos:
255.255.240.0 - 111111111.11111111.11110000.00000000
Temos 20 bits de sub-rede (uns binários)
172.131.18 .220 - 10101100.10000011.00010010.11011100
Agora, para obter o ID colocamos a parte do host a <u>zeros binários</u> e para obter o broadcast colocamos a parte do hosts a <u>uns binários</u>
-10101100.10000011.00010000.00000000 - 172.131.16.0
Broadcast- 10101100.10000011.00011111.1111111 - 172.131.31.255
15. Utilizando a lista a seguir, escolha a ordem correta do encapsulamento de dados quando um dispositivo envia informações.
 segmentos bits pacotes dados quadros (frames)
O 1-3-5-4-2 O 4-1-3-5-2 O 3-5-1-2-4 O 2-1-3-5-4 O 2-4-3-5-1
16. Qual é a ordem correta das camadas do modelo OSI, da camada mais superior para a camada mais inferior?
física, rede, aplicação, enlace de dados, apresentação, sessão, transporte aplicação, apresentação, sessão, transporte, rede, enlace de dados, física aplicação, física, sessão, transporte, rede, enlace de dados, apresentação aplicação, apresentação, física, sessão, enlace de dados, transporte, rede apresentação, enlace de dados, sessão, transporte, rede, física, aplicação
17. Qual das alternativas a seguir é o número de redes de classe C mundialmente.
O 16.384 O 2.097.152 O 16.777.216 O 4.294.967.298
Formula: <u>2^(24-3) = 2.097.152</u>

O endereço IP foi inserido incorretamente.

Analise o gráfico com as configurações atuais. O Host A falhou e foi substituído. Embora o ping para 127.0.0.1 tenha sido efetuado com êxito, o novo Host A não pode aceder à rede da empresa. Qual é a provável causa desse problema?

O Os	cabos de rede e	rede foi inserida estão desconecta a placa de rede.		te.					
19. Em	quais das ha as opções q	seguintes	situações	seria	utilizado	um	cabo	cruzado	(crossover)?
	PC para hub	,							
	PC para PC								
	Router para	PC							
	Router para S	Switch							
	Router para	router							
	Switch para	hub							
	Switch para F	PC							

1. Preencha a seguinte tabela

Endereço IP	Classe	Endereço Rede	Endereço host	Endereço broadcast	Mascara de sub-rede
10.0.239.100	A (1 a 126) R.H.H.H	10.0.0.0	0.239.100	10.255.255.255	255.0.0.0
210 .12.56.201	C (192 a 223) R.R.R.H	210.12.56.0	201	210.12.56.255	255.255.255.0
150.127.221.244	B (128 a 191) R.R.H.H	150.127.0.0	221.244	150.127.255.255	255.255.0.0

2. Preencha a seguinte tabela:

Regras para ser valido o IP:

- -Não pode ser endereço de rede
- -Não pode ser endereço de broadcast
- -Todos os octetos tem valores entre 0 e 255

Endereço IP	Endereço válido? (Sim/Não)	Justificação
175.100.255.18	B (128 a 191) R.R.H.H Endereço rede: 175.100.0.0 Endereço broadcast: 175.100.255.255 É valido	Classe B, Não é Endereço de rede nem Broadcast Cada octeto tem valores entre 0 e 255
195.234.253.0	C (R.R.R.H) Endereço rede: 195.234.253.0 Endereço broadcast: 195.234.253.255 Não é valido	Classe C, trata-se do endereço de rede
100.0.0.23	A (R.H.H.H) Endereço rede: 100.0.0.0 Endereço broadcast: 100.255.255.255 É valido	Classe A, Não é Endereço de rede nem Broadcast Cada octeto tem valores entre 0 e 255
127.34.25.189	Não é valido	127 é reservado – endereço de loopback
224.156.217.73	Não é valido	Classe D Reservada para multicast
192.168.10.0	C (R.R.R.H) Endereço rede: 192.168.10.0 Endereço broadcast: 195.234.253.255 Não é valido	Classe C, trata-se do endereço de rede

3. Calcule o nº de bits necessários para criar sub-redes. Complete o quadro

Classe	Nº bits de sub rede	№ Bits de Host	Nº sub redes válidas	Nº hosts válidos	Mascara de sub-rede
В	15	2400(Quantos bit: 15 1 emprestados 15 bit -> 2^1! 255.253.11111111		2^1-2 = 0	255.255.255.254
А	20 se tem 20 bits de sub-rede 255.1111111.11111111111110000	4	2^20 = 1048576	2^4-2 = 14	255.255.255.240
C 3		5	8 Quantos bits tomar emprestados do host 15 bit -> 2^15=32768 255.255.255.11100000	2^5-2 = 30	255.255.254

4. Usando as regras de abreviação de endereço IPv6, compacte ou descompacte os seguintes endereços:

4.1. 2002:0EC0:0200:0001:0000:04EB:44CE:08A2

Compactar

Regra 1: em um endereço IPv6, uma sequência de quatro zeros (0s) em um hexteto pode ser abreviada como um único zero.

2002:0EC0:0200:0001:0000:04EB:44CE:08A2 2002:0EC0:0200:0001:0:04EB:44CE:08A2

Regra 2: em um endereço IPv6, os zeros à esquerda em cada hexteto podem ser omitidos, os zero à direita não podem ser omitidos.

2002:0EC0:0200:0001:0:04EB:44CE:08A2

2002:EC0:200:1:0:4EB:44CE:8A2

Regra 3: em um endereço IPv6, uma única sequência contínua de quatro ou mais zeros pode ser abreviada como dois pontos em dobro (::). A abreviação de dois pontos em dobro pode ser usada somente uma vez em um endereço IP.

2002:EC0:200:1:0:4EB:44CE:8A2 2002:EC0:200:1::4EB:44CE:8A2

4.2. FE80::7042:B3D7:3DEC:84B8

Descompactar

FE80:0000:0000:0000:7042:B3D7:3DEC:84B8

4.3. FF00::

Descompactar

FF00:0000:0000:0000:0000:0000:0000

4.4. 2001:0030:0001:ACAD:0000:330E:10C2:32BF

Compactar

2001:30:1:ACAD::330E:10C2:32BF

4.5. ::

Descompactar

5. Analise o seguinte cenário:

Uma organização tem o seguinte IP: 192.168.XX.0 / 24 e pretende criar sub-redes que possam ter pelo menos 25 hosts.

Somos administradores do router Empresa

Endereço de rede local: 192.168.XX.0 / 24

O XX deve ser substituído pelos dois últimos algarismos do seu número de estudante

Ex: 216007**54** -> **54**

Endereço IP: <u>192.168.X.0</u> / 24

Pretendemos 25 hosts no mínimo

Classe C: mascara padrão /24 (255.255.255.000000000)

-se deixar 3 zeros -> $2^3 - 2 = 6$

-se deixar 4 zeros -> $2^4 - 2 = 14$

-se deixar 5 zeros -> $2^5 - 2 = 30$

Temos de deixar 5 zeros então temos **3 bits** de sub-rede Nova mascara: 255.255.255.11100000 (255.255.255.224)

- a) Quantos bits devem ser tomados emprestados do host: <u>Temos de deixar 5 "zeros" portanto são 3 bits de sub-</u>rede
- c) Máscara de sub-rede em decimal: 255.255.254
- d) Formato com barra: <u>192.168.x.0 / 27</u>
- e) Quantas sub-redes são criadas com o nº de bits tomados: 2^3 = 8
- f) Quantas sub-redes precisa para o cenário apresentado: 3
- g) Quantos hosts válidos por rede: 2⁵ -2 = 30
- h) Quantos hosts válidos no total: 8 x 30 = 240
- i) Percentagem utilizada tendo em conta o nº total de hosts sem sub-redes:

Classe C padrão: 2^8-2 = 254

Neste cenário:240

Percentagem: 240 / 256 x 100 = 93,75%

j) Especifique as sub-redes:

255.255.255.224

256 – 224 = **32** (4º octeto de 32 em 32)

Sub-rede	Endereço de rede	Espaço de endereçamento	Endereço de Broadcast
0	<u>192.168.XX.0</u>	de <u>192.168.XX.1</u> a <u>192.168.XX.30</u>	<u>192.168.XX.31</u>
1	192.168.XX.32	de <u>192.168.XX.33</u> a <u>192.168.XX.62</u>	<u>192.168.XX.63</u>
2	<u>192.168.XX.64</u>	de <u>192.168.XX.65</u> a <u>192.168.XX.94</u>	<u>192.168.XX.95</u>
3	<u>192.168.XX.96</u>	de <u>192.168.XX.97</u> a <u>192.168.XX.126</u>	<u>192.168.XX.127</u>
4	<u>192.168.XX.128</u>	de <u>192.168.XX.129</u> a <u>192.168.XX.158</u>	<u>192.168.XX.159</u>
5	<u>192.168.XX.160</u>	de <u>192.168.XX.161</u> a <u>192.168.XX.190</u>	<u>192.168.XX.191</u>
6	<u>192.168.XX.192</u>	de <u>192.168.XX.193</u> a <u>192.168.XX.222</u>	<u>192.168.XX.223</u>
7	<u>192.168.XX.224</u>	de <u>192.168.XX.225</u> a <u>192.168.XX.254</u>	<u>192.168.XX.255</u>

k) Analise a figura seguinte. Atribua endereços da tabela anterior aos seguintes dispositivos:

Obs: caso não tenha concluído o quadro anterior, pode usar as seguintes sub-redes:

Sub-rede 0:192.168.XX.0 / 27

Sub-rede 1:192.168.XX.32 / 27

Dispositivo	Interface	Endereço IP	Mascara de sub-rede
	Fa0/0 Ultimo endereço sub-rede 0	<u>192.168.XX.30</u>	255.255.255.224
Router Empresa	Fa0/1 Ultimo endereço sub-rede 1	<u>192.168.XX.62</u>	255.255.255.224
	Se0/0	200.200.200.2	255.255.255.0

l) Especifique qual a mascara de sub-rede se pretende criar apenas dois endereços de host para a ligação entre os dois Routers.

255.255.255.252

I

Cablagem

- 1. Ligar o Switch Subrede1 ao Switch de Distribuicao
- 2. Ligar os servidores ao Switch de Distribuicao
- 3. Ligar o Switch de Distribuicao ao Swicth do Piso 0
- 4. Ligar o Switch de Distribuicao ao Ponto de acesso
- 5. Ligar os PCs do piso o ao Switch do Piso 0

 \mathbf{II}

Router Empresa

IP f0/0 (Ultimo endereço sub-rede 0): <u>192.168.XX.30</u>

Mascara: <u>255.255.254</u>

IP f0/1 (Ultimo endereço sub-rede 1): <u>192.168.XX.62</u>

Mascara: <u>255.255.254</u>

III

Configuração dos 3 servidores

(usar os 3 primeiros IPs disponíveis na subrede)

Servidor DHCP

IP: <u>192.168.XX.33</u>

Mascara: <u>255.255.254</u>

Gateway padrão: <u>192.168.XX.62</u>

Configuração de DHCP:

Gateway padrão: <u>192.168.XX.62</u>

DNS server: <u>192.168.XX.35</u>

Start IP address (192.168.XX.40): <u>192.168.XX.40</u>

Numero máximo IPs: <u>20</u>

Servidor WEB interno

IP: <u>192.168.XX.34</u>

Mascara: <u>255.255.254</u>

Gateway padrão: <u>192.168.XX.62</u>

Adicionar à página index.html a seguinte linha depois de <html>:

<h1>Teste de nome <h1>

nome - substituir pelo nome

Servidor DNS

IP: <u>192.168.XX.35</u>

Mascara: <u>255.255.254</u>

Gateway padrão: 192.168.XX.62

Configuração do Servidor DNS

Definir as seguintes entradas na tabela:

www.testeRSI.pt ip do servidor Web

\mathbf{IV}

Configuração das estações de trabalho

■ PISO 0

Ativar DHCP nos PCS

IP impressora: R.R.R.61

IP: <u>192.168.XX.61</u>

Mascara: <u>255.255.254</u>

 \mathbf{V}

Configuração estações de trabalho (Bar)

LaptoXPTO e LaptopABC

Ativar DHCP

\mathbf{VI}

	Parabens
	Turubens
	~
	VII
	o Servidor Web em 195.160.172.254 através do nome de
domínio:	
www.rsi.com	
www.rsi.com	
	ada ao servidor DNS.
Adicione a entr	ada ao servidor DNS. avés do Browser – http://www.rsi.com.

POTÊNCIAS DE BASE 2

27	2 ⁶	2 ⁵	24	2 ³	2 ²	2 ¹	20
128	64	32	16	8	4	2	1

SISTEMAS DE NUMERAÇÃO

Decimal (10)	Binário (2)	Octal (8)	Hexadecimal (16)
0	0000 0000	0	0
1	0000 0001	1	1
2	0000 0010	2	2
3	0000 0011	3	3
4	0000 0100	4	4
5	0000 0101	5	5
6	0000 0110	6	6
7	0000 0111	7	7
8	0000 1000	10	8
9	0000 1001	11	9
10	0000 1010	12	А
11	0000 1011	13	В
12	0000 1100	14	С
13	0000 1101	15	D
14	0000 1110	16	E
15	0000 1111	17	F

Classes de Endereço IP

Classe de Endereço s	Faixa do primeiro octeto (decimal)	Bits do primeiro octeto (bits verdes não mudam)	Rede(N) e Host(H) partes do endereço	Máscara de sub-rede padrão (decimal e binário)	Número de redes possíveis e hosts por rede
Α	1-127**	00000000-01111111	N.H.H.H	255.0.0.0	128 redes (2^7) 16,777,214 hosts por rede (2^24-2)
В	128-191	10000000-10111111	N.N.H.H	255.255.0.0	16,384 redes (2^14) 65,534 hosts por rede (2^16-2)
С	192-223	11000000-11011111	N.N.N.H	255.255.255 <mark>.0</mark>	2,097,150 redes (2^21) 254 hosts por rede (2^8-2)
D	224-239	11100000-11101111	NA (multicast)		
E	240-255	11110000-11111111	NA (experimental)		