Fundamentals of optimization

Mixed Integer Linear Programming

Pham Quang Dung

dungpq@soict.hust.edu.vn
Department of Computer Science

Content

- Relaxation and Bound
- Branch and Bound
- Cutting plan
- Gomory Cut
- Branch and Cut

Given an Integer Program (IP)

$$z = \max\{cx: x \in X \subseteq Z^n\}$$

Find decreasing sequence of upper bounds

$$\overline{z_1} > \overline{z_1} > \ldots > \overline{z_s} \geq Z$$

Find increasing sequence of lower bounds

$$\underline{z_1} < \underline{z_1} < \ldots < \underline{z_t} \le Z$$

• Algorithm stop when $\overline{z}_s - \underline{z}_t \le \varepsilon$

- Primal bounds
 - Every feasible solution x* ∈ X provides a lower bound z
 =cx* ≤ z
 - Example: in TSP, every close tour is a lower bound of the objective

- Dual bounds
 - Finding upper bounds for a maximization problem (or lower bounds for a minimization problem) gives dual bounds of the objective
- **Definition** A problem (RP) $z^R = \max\{f(x): x \in T \subseteq R^n\}$ is a relaxation of (IP) $z = \max\{cx: x \in X \subseteq Z^n\}$ if:
 - *X* ⊆ *T*
 - $f(x) \ge cx$, $\forall x \in X$
- **Proposition** RP is a relaxation of IP, $z^R \ge z$

- Linear Relaxation
 - $Z^{LP} = \max\{cx: x \in P\}$ with $P = \{x \in R^n: Ax \le b\}$ is a linear relaxation program of the IP max $\{cx: x \in P \cap Z^n\}$

Branch and Bound

• Feasible region of P_0 is divided into feasible regions of P_1 and P_2 : $X(P_0) = X(P_1) \cup X(P_2)$

Branch and Bound

Branch and Bound

LP-based Branch and Bound

```
Initial problem S with formulation P on a list L
Incumbent x^* is initialized with primal bound z = -INF
while L not empty do{
  Select a problem S^i with formulation P^i from L
  Solve LP relaxation over P^i got dual bound \bar{z}^i and solution x^i(LP)
  if \overline{z}^i \leq z then continue; // prune by dual bound
  if x^i(LP) integer then{
      z = \overline{z}^i
      x^* = x^i(LP)
  }else{
      select a component x_i of x^i(LP) whose value \lambda_i is fractional
      P_1^i = P^i \cup (x_i \leq \lfloor \lambda_i \rfloor), P_2^i = P^i \cup (x_i \geq \lceil \lambda_i \rceil)
      add P_1^i and P_2^i to L
Return x*
```

Cutting Plane

- Given a MIP max{cz: z ∈ X}
- Inequality $\pi z \le \pi_0$ is called a valid inequality if $\pi z \le \pi_0$ is true for all $z \in X$
- Finding valid inequalities allows us to narrow the search space, transform MIP to corresponding LP in which an optimal solution to LP is an optimal solution to the original MIP

Cutting Plane

- Example, consider a MIP with $X = \{(x_1, x_2): x_1 \le 10x_2, 0 \le x_1 \le 14, x_2 \in Z^1_+\}$
- Red lines represent X
- $x_1 \le 6 + 4x_2$ is a valid inequality (dashed line)

Example Integer Rounding

- Consider feasible region $X = P \cap Z^3$ where $P = \{x \in \mathbb{R}^3_+ : 5x_1 + 9x_2 + 13x_3 \ge 19\}$
- From $5x_1 + 9x_2 + 13x_3 \ge 19$ we have $x_1 + \frac{9}{5}x_2 + \frac{13}{5}x_3 \ge \frac{19}{5}$

$$\rightarrow x_1 + 2x_2 + 3x_3 \ge \frac{19}{5}$$

As x₁, x₂, x₃ are integers, so we have

$$x_1 + 2x_2 + 3x_3 \ge \lceil \frac{19}{5} \rceil = 4$$
 (this is a valid inequality for X)

Gomory Cut

- (IP) max $\{cx: Ax = b, x \ge 0 \text{ and integer}\}$
- Solve corresponding linear programming relaxation
 (LP) max {cx: Ax = b, x ≥ 0}
- Suppose with an optimal basis, the LP is rewritten in the form

$$\overline{a_{00}} + \sum_{j \in J_N} \overline{a_{0j}} x_j \rightarrow \max$$

$$x_{B_u} + \sum_{j \in J_N} \overline{a_{uj}} x_j = \overline{a_{u0}}, u = 1, 2, ..., m$$

$$x \ge 0 \text{ and integer}$$

with $\overline{a_{0j}} \le 0$ (as these coefficients corresponds to a maximizer), and $\overline{a_{u0}} \ge 0$

Gomory Cut

- If the basic optimal solution x^* is not integer, then there exists some row u with $\overline{a_{u0}}$ is not integer
- \rightarrow Create a Gomory cut $x_{B_u} + \sum_{j \in J_N} \lfloor \overline{a_{uj}} \rfloor x_j \leq \lfloor \overline{a_{u0}} \rfloor$ (1)
- \rightarrow Rewriting this inequality (as x_{B_n} is integer)

$$\sum_{j \in J_N} (\overline{a_{uj}} - \lfloor \overline{a_{uj}} \rfloor) x_j \ge \overline{a_{u0}} - \lfloor \overline{a_{u0}} \rfloor$$

or

$$\sum_{j \in J_N} f_{u,j} x_j \ge f_{u,0}$$
with $f_{u,j} = \overline{a_{uj}} - \lfloor \overline{a_{uj}} \rfloor$ and $f_{u,0} = \overline{a_{u0}} - \lfloor \overline{a_{u0}} \rfloor$

• As $0 \le f_{u,j} < 1$ and $0 < f_{u,0} < 1$ and $x_j^* = 0$, $\forall j \in J_N \rightarrow (2)$ cuts off x^* .

Gomory Cut

Difference between the left-hand side (LHS) and right-hand side (RHS) of (1) is integral (as x is integral) →
the difference between LHS and RHS of (2) is also integral

 \rightarrow rewrite (2) in the form s = $\sum_{j \in JN} f_{u_j} x_j - f_{u_j} 0$ where the slack variable s is nonnegative integer

Branch and Cut [Wolsey, 98]

