CV Assignment-2

COVID19 Classification Challenge Report

Experiments conducted:

- The numpy array was given had images of size 512x512 and local ram as well as RAM on Kaggle was unable to process due to lack of resources.
- We resized the images to 256x256.
- While trying to implement custom model with 10 layers the output accuracy was low.
- There is a huge imbalance in dataset. We have very few images in covid19 class.
- · We performed augmentation for better results.
- After performing augmentation, we got an accuracy of 92%.
- But when we visualized the output through grad cam visualization. We figured that our model was detecting the alphabets R ,B1 etc.
- Reading the literature of covid19 we came to a conclusion that the heatmap or features should be concentrated more on chest of the x-ray image.
- So, we chose to use transfer learning. VGG19 was used for training.
- Imagenet weights were used.
- The output of the grad cam showed that the model detecting from the chest region of the image.

Results:

Model: Transfer Learning on VGG

VGG19 pretrained model was used in the experiment.

Loss: categorical_crossentropy

Optimizer: Adam

Model weights with best validation accuracy was saved

Epochs =40

Base Weights are taken from imagenet

Figure 1: A visualization of the VGG architecture (source).

Performance

Accuracy - 0.97198

	precision	recall	f1-score	support
Covid-19	0. 94286	0.97059	0.95652	34
Normal	0. 97642	0.96279	0. 96956	215
Pneumonia	0. 97235	0. 98140	0. 97685	215
Macro Avg	0. 96387	0. 97159	0. 96764	464
Weighted Avg	0. 97207	0. 97198	0. 97198	464

Screenshot of Results

>		precision	recall	f1-score	support
	0	0.94286	0.97059	0.95652	34
	1	0.97642	0.96279	0.96956	215
	2	0.97235	0.98140	0.97685	215
	accuracy			0.97198	464
	macro avg	0.96387	0.97159	0.96764	464
	weighted avg	0.97207	0.97198	0.97198	464

Confusion Matrix

report = metrics.ciassification_report(true_ciasses, predicted_ciasses, target_names=ciass_iabels)
print(matrix)

^{[[33 1 0]} [2 207 6] [0 4 211]]

ROC value:

{0: 0.98296853625171, 1: 0.9713551881946391, 2: 0.9786494816475203}

Output Visualization with GradCam (GradCAM-with-keras)

Heatmap of Covid

```
[49] f, ax = plt.subplots(**subprot_args)
    for i in range(len(cam)):
        heatmap = np.uint8(cm.jet(cam[i])[..., :3] * 255)
        # ax[i].imshow(images[i])
        ax[i].imshow(heatmap, cmap='jet', alpha=0.5)
    plt.tight_layout()
    plt.show()
```


Heatmap of Normal

Heatmap of pneumonia

Training Loss

Libraries

All necessary installs are written in the jupyter notebook.

Tensorflow 2.0.2

Other requirements:

RAM>= 13GB

(if there is collision please contact us at sohampatil798@gmail.com)

Observations:

- Augmentation of covid class images is needed to get good accuracy.
- Images in the Dataset contains letters.
- Smaller models learn these letters instead.
- Through gradCam we can stop treating deep learning model like a black box. GradCam visualization helps in identifying if the features vector extracted at fully connected layer contains features which we need to analyze.
- Grad Cam source link given in the readme doesn't work with tensorflow >2.0.
- We need to use this library.