GCURS 2024

Numerical Analysis of Discrete-time Networked Competitive Bivirus SIS Models

Authors: Yifan Xu, Sebin J. Gracy, Cesar A. Uribe

Presenter: **Yifan Xu** • Rice University

GCURS 2024 2

Motivation

 Goal: understanding virus spread using mathematical modeling and computational simulations. GCURS 2024 3

Problem Statement

- Goal: understanding virus spread using mathematical modeling and computational simulations.
- Traditional focus on single-virus models
 - We focus on competitive bivirus processes in a population.

Image from: https://news.asu.edu/20210812-sars-cov-2-theme-and-variations

Real-world Simulations

Problem Statement

- Traditional focus on continuous-time models
 - We highlight the discrete-time approach used to match real-world virus data collection.

SIS Framework - Individual Setting

- How will people behave when they recover?
- We adopt the susceptible-infected-susceptible model: Individuals become susceptible again after recovery.
- Infection and healing rates are properties measured from the virus itself.

Real-world Simulations

SIS Framework - Individual Setting

- How will people behave when they recover?
- We adopt the susceptible-infected-susceptible model: Individuals become susceptible again after recovery.
- Infection and healing rates are properties measured from the virus itself.

Real-world Simulations

SIS Framework - Individual Setting

- What if there are two (competitive) viruses involved?
- An individual can only be infected with up to one virus.
 - e.g., dengue virus VS zika virus
- Infection and healing rates specific to virus

Real-world Simulations

SIS Framework - Network Setting

- Node represent the group of people in cities
- Edges
 represent
 Strength of
 connectivity
 between nodes

SIS Framework - Network Setting

- For each node (population), a portion is susceptible, the rest are infected
- Each portion of infected population will try to 'infect' its neighbors in with their respective virus the next time-step!

Green: Susceptible

Orange: Infected with virus 1 Purple: Infected with virus 2

> Real-world Simulations

SIS Framework - Network Setting

Model Setup

Real-world Simulations

GCURS 2024 11

Model Setup

Real-world Simulations

The Single Virus case

- $\beta_{i,} \delta_{i}$ denote the infection and healing rates of node i, respectively
- The model captures $x_i[t] \in [0, 1]$, the portion of the population that's infected at node i, at time t.

Introduction Model Setup Real-world Simulations Conclusion

Conclusion

Introduction

The Competitive **Bi**virus case

Model Setup

• In the Bivirus case, we consider the portion infected with virus 1, 2 denoted $x_i^1[t]$, $x_i^2[t]$, respectively. β_i^1 , δ_i^1 , β_i^2 , δ_i^2 defined similarly.

Simulations

What happens "in the end"? $(t \rightarrow \infty)$

Image from: https://www.pngegg.com/en/search?g=guestion+mark

Introduction

Model Setup

Real-world Simulations

- Three possible outcomes (equilibria):
 - Disease Free Equilibrium: p(I hD^k + hB^k) ≤ 1 for both viruses

spectral radius: largest absolute value among its eigenvalues

"Both viruses die"

Real-world Simulations

- Three possible outcomes (equilibria):
 - Disease Free Equilibrium: p(I hD^k + hB^k) ≤ 1 for both viruses

spectral radius: largest absolute value among its eigenvalues

Average Infection levels across 20 pop. nodes VS Time

"Both viruses die"

Introduction

Model Setup

Real-world Simulations

- Three possible outcomes (equilibria):
 - Endemic Equilibrium: $\rho(I h\dot{D}^k + hB^k) > 1$ for dominant virus, $\rho(I hD^k + hB^k) \le 1$ for diminishing virus

Real-world Simulations

- Three possible outcomes (equilibria):
 - Endemic Equilibrium: $\rho(I h\dot{D}^k + hB^k) > 1$ for dominant virus, $\rho(I hD^k + hB^k) \le 1$ for diminishing virus

Average Infection levels across 20 pop. nodes VS Time

"One virus survives, the other one dies."

Introduction

Model Setup

Real-world Simulations

Introduction

Theoretical Outcomes

- Three possible outcomes (equilibria):
 - Coexistence Equilibrium: $p(I hD^k + hB^k) > 1$ for both viruses

"Both viruses survive"

Model Setup Real-world Simulations Conclusion

- Three possible outcomes (equilibria):
 - Coexistence Equilibrium: p(I hD^k + hB^k) > 1 for both viruses

Average Infection levels across 20 pop. nodes VS Time

"Both viruses survive"

Introduction Model Setup

Real-world Simulations

Real-world Simulations

Real-world Network Simulations

- Two real-world datasets were used
- 1. The Massachusetts County Travel Graph
- 2. The New York City Taxi Graph

Real-world Simulations

Massachusetts County Travel Graph(Demo)

Massachusetts County Travel Graph(Demo)

Massachusetts County Travel Graph(Demo)

Massachusetts County Travel Graph

Disease-free Equilibrium

Average Infection levels across 20 pop. nodes VS Time

Endemic Equilibrium

Average Infection levels across 20 pop. nodes VS Time

Coexistence Equilibrium

Average Infection levels across 20 pop. nodes VS Time

Introduction Model Setup

Real-world Simulations

The New York City Taxi Graph(Partial)

Image from: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

The New York City Taxi Graph(Partial)

Image from: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Model Setup

The New York City Taxi Graph(Partial)

Image from: https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

Model Setup

The New York City Taxi Graph

Disease-free Equilibrium

Average Infection levels across 20 pop. nodes VS Time

Endemic Equilibrium

Average Infection levels across 20 pop. nodes VS Time

Coexistence Equilibrium

Average Infection levels across 20 pop. nodes VS Time

Real-world Simulations

Conclusion & Future Work

 We verified the theoretical predictions regarding the various outcomes, under their respective conditions.

In the future, we can...

- Incorporate time-varying network dynamics for even more realistic predictions.
- Performing numerical simulations on larger, more complex datasets can yield more convincing results.

Real-world Simulations

Numerical Analysis of Discrete-time Networked Competitive Bivirus SIS Models

Authors: Yifan Xu, Sebin J. Gracy, Cesar A. Uribe

Presenter: **Yifan Xu** • Rice University