Нижегородский государственный университет имени Н.И. Лобачевского Радиофизический факультет

Отчет по лабораторной работе \mathbb{N}^{0}

Выполнили студенты группы

Содержание

Ι	События и их вероятности	3
1	Элементы комбинаторики. Схемы шансов	4
2	События, операции над ними и σ -алгебры событий	4
3	Вероятность и её свойства	4
4	Способы задания и подсчёта вероятности	4
5	Независимые события	4
6	Условная вероятность	4
7	Формула полной вероятности и формулы Байеса	6
8	Биномиальное распределение	6
9	k-номинальное распределение	6
10	Гипергеометрическое распрделение	6
II	Теория случайных величин	6
11	Случайные величины	6
12	Абсолютно непрерывные случайные величины	6
13	Функции Хевисайда и Дирака	6
14	Функции одной случайной величины	6
15	Случайные векторы и их распределения	6
16	Функции от двух случайных величин	6
17	Математическое ожидание	6
18	Дисперсия	6

19 Числовые характеристики зависимости случайных величин	6
III Законы больших чисел	6
20 Неравенство Бьенеме-Чебышёва и неравенство Маркова	6
21 Последовательности случайных величин	6
22 Законы больших чисел	6
23 Предельные теоремы для биномиального распределения	6
24 Характеристические функции	6
25 Вычисление характеристических функций	6
26 Центральная предельная теорема	6
27 Сферическое, ξ^2 -распределение и распределение Стьюдента	6
28 Цепи Маркова	6

Исторические сведения

Возникновение теории вероятностей как науки относят к средним векам, когда появилась возможность и возникла необходимость изучения математическими методами азартных игр (таких как орлянка, кости, рулетка).

Самые ранние работы учёных в области теории вероятностей относятся к XVII веку. Первоначально её основные понятия не имели строго математического описания. Задачи, из которых позже выросла теория вероятностей представляли набор некоторых эмпирических фактов о свойствах реальных событий, которые формулировались с помощью наглядных описаний.

Исследуя прогнозирование выигрыша при бросании костей в письмах друг другу, Блез Паскаль и Пьер Ферма открыли первые вероятностные закономерности. Решением тех же задач занимался и Христиан Гюйгенс. При этом с перепиской Паскаля и Ферма он знаком не был и методику решения изобрёл самостоятельно.

Его статья, в которой он ввёл основные понятия теории вероятностей (понятие вероятности как величину шанса; математическое ожидание для дискретных случаев в виде цены шанса). В своей статье он использует (не сформулированные ещё в явном виде) теоремы сложения и умножения вероятностей. Статья была опубликована в печатном виде на двадцать лет раньше (1657 г.) издания писем Паскаля и Ферма (1679 г.).

Важный вклад в теорию вероятностей внёс Якоб Бернулли, он дал доказательство закона больших чисел в простейшем случае независимых испытаний. В первой половине XIX века теория вероятностей начинает применяться к анализу ошибок наблюдений; Лаплас и Пуассон доказали первые предельные теоремы.

Во второй половине XIX века основной вклад внесли русские учёные П. Л. Чебышёв, А. А. Марков и А. М. Ляпунов. В это время были доказаны закон больших чисел, центральная предельная теорема, а также разработана теория цепей Маркова.

Современный вид теория вероятностей получила благодаря аксиоматике, предложенной Андреем Николаевичем Колмогоровым. В результате теория вероятностей приобрела строгий математический вид и окончательно стала восприниматься как один из разделов математики. Википедия, Статья "Теория вероятностей".

Часть І

События и их вероятности

- 1. Элементы комбинаторики. Схемы шансов
- 2. События, операции над ними и σ -алгебры событий
- 3. Вероятность и её свойства
- 4. Способы задания и подсчёта вероятности
- 5. Независимые события
- 6. Условная вероятность

Пример. Игральную кость подбрасывают один раз. Известно, что выпало более трёх очков. Какова при этом вероятность того, что выпало чётное число очков?

Решение.
$$\Omega_1 = 4, 5, 6, A = 4, 6, P(A) = \mu(A)\mu(\Omega) = 3$$
.

Замечание 6.1. Пусть Ω – пространство элементарных событий и $B \subset \Omega$ – событие, отличное от невозможного, т.е. $B \neq \emptyset$. Пусть $A \subset \Omega$ – другое событие. Какова вероятность того, что произойдёт событие A, при условии, что событие B произошло? Слова событие B произошло означают, что новым пространством элементарных событий становится событие $\Omega_1 = B$ и его мера равна $\mu(\Omega_1) = \mu(B)$.

Слова произойдёт событие A, если событие B произошло означают ту часть события A, которая содержится в B, т.е. означают произойдёт событие $A \cap B$. Ясно, что $A \cap B \subset \Omega$ и $A \cap B \subset B = \Omega_1$.

Определение 6.2. Для того, чтобы подчеркнуть, что событие $A \cap B$ есть событие из нового пространства элементарных событий $\Omega_1 = B$ его обозначают A|B и называют событие A при условии, что событие B произошло.

Очевидно, что $P(A|B) = \frac{\mu(A|B)}{\mu(B)}$. Вероятность P(A|B) называется условной вероятностью.

Лемма 6.3. $P(A|B) = \frac{P(A \cap B)}{P(B)}$.

Доказательство.

$$P(A|B) = \frac{\mu(A|B)}{\mu(B)} = \frac{\mu(A \cap B)}{\mu(B)} = \frac{\frac{\mu(A \cap B)}{\mu(\Omega)}}{\frac{\mu(B)}{\mu(\Omega)}} = \frac{P(A \cap B)}{P(B)}.$$

Следующая формула непосредственно следует из леммы 6.3 и традиционно называется теоремой умножения.

Теорема 6.4 (Теорема умножения для двух событий). *Если* P(B) > 0, P(A) > 0, mo

$$P(A \cap B) = P(B)P(A|B) = P(A)P(B|A).$$

Teopema 6.5 (Теорема умножения для n событий).

 $P(A_1 \cap A_2 \cap ... \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1 \cap A_2) \cdot ... \cdot P(A_n|A_1 \cap A_2 \cap ... \cap A_{n-1}),$ если все условные вероятности определены.

Доказательство. Доказать методом математической индукции.

- 7. Формула полной вероятности и формулы Байеса
- 8. Биномиальное распределение
- 9. *k*-номинальное распределение
- 10. Гипергеометрическое распрделение

Часть II

Теория случайных величин

- 11. Случайные величины
- 12. Абсолютно непрерывные случайные величины
- 13. Функции Хевисайда и Дирака
- 14. Функции одной случайной величины
- 15. Случайные векторы и их распределения
- 16. Функции от двух случайных величин
- 17. Математическое ожидание
- 18. Дисперсия
- 19. Числовые характеристики зависимости случайных величин

Часть III