Building Oscillating Circuits (multivibrators) Using Transistors

Introduction

- What is a multivibrator?
- Different types (bistable, monostable, astable)
- Walk through of the circuits
- Build the circuits

What's a multivibrator?

- Circuit that has two states, and changes (vibrates, oscillates) between them
- Bistable Stable in both states (Bi: 2)
 - Moves between states only when forced externally
- Monostable Stable in just one state (Mono: 1)
 - Moves from state A to B by external force
 - Moves from state B to A after a time delay
- Astable Stable in neither state (A: Not)
 - Autonomously oscillates between the states

LED Circuit

(Bipolar) Transistors

- A transistor can be a switch, or electronically controlled variable resistor
- Transistors generally have 3 pins
- For Bipolar transistors, these are named:
 - Collector
 - Base
 - Emitter
- Base voltage controls whether (how much) the Collector and Emitter are connected

Transistor – Pictures and Symbols

PNP (**P**ointing i**N P**roudly)

NPN (Not Pointing iN)

Transistors - Operation

- Base-Emitter current determines
 Collector-Emitter current
- Transistors often characterized as amplifying current:
 The more Base current flows,
 the more Collector-Emitter current can flow.
- A Base voltage is required to cause a Base current to flow
- NPN: Turns on when Base is high (cf. Emitter)
- PNP: Turns on when Base is low (cf. Emitter)

Transistor Circuit

Bistable Animation

http://www.falstad.com/circuit/e-multivib-bi.html

Let's Build The Circuit!

Breadboards

- Used for quick circuit prototyping
- Holes to plug components' wires into
- Internal wires connect some of the holes

Placing components

- Polarity
 - Some components don't work backwards
- Don't bend pins
 - Slight angling OK, no need for kinks
- Don't burn out LEDs
 - By connecting to power with no resistor
- Don't connect power until circuit is complete

Transistor Packages

Kit contains: ZVP2110A (we won't use this)

TO-92 package

Kit contains: BC547 (use this; has pink dot on back) BS170 (we won't use this)

Bistable - Final

Bistable – Test

Monostable Circuit

Monostable Circuit

Monostable Circuit – Stable State

Monostable Circuit – Unstable State

Monostable Circuit – Unstable State

Monostable Circuit – Unstable State

Monostable Animation

http://www.falstad.com/circuit/e-multivib-mono.html

Monostable – Step 1

Monostable – Step 2

10kΩ resistor Brown, black, black, red 220µF capacitor Negative pin (stripe) on left

Monostable - Final

Monostable – Test

Astable Circuit

Astable Circuit

Astable Circuit – Unstable state 1

Astable Circuit – Unstable state 2

Astable Animation

http://www.falstad.com/circuit/e-multivib-a.html

Astable – Step 1

Astable – Step 2

Astable – Final

Astable – Test

Observe circuit switching back and forth between two states automatically

Questions

(and congratulations for getting through nearly 50 slides!)

