REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

FORM TO THE ABOVE ADDRESS.		
1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
January 2012	Viewgraph	January 2012- March 2012
4. TITLE AND SUBTITLE	·	5a. CONTRACT NUMBER
EMIIM Wetting Properties & Their I	Effect on Electrospray Thruster Design	In-House
		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S)		5d. PROJECT NUMBER
Garrett D. Reed		
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
		33SP0706
7. PERFORMING ORGANIZATION NAM	E(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION
ALE DOLLI (AEN	(C)	REPORT NO.
Air Force Research Laboratory (AFN	AC)	
AFRL/RQRS		
1 Ara Drive.		
Edwards AFB CA 93524-7013		
9. SPONSORING / MONITORING AGEN	CY NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
Air Force Research Laboratory (AFM	MC)	
AFRL/RQR		
5 Pollux Drive		11. SPONSOR/MONITOR'S REPORT
Edwards AFB CA 93524-7048		NUMBER(S)
		AFRL-RZ-ED-VG-2012-108

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution A: Approved for Public Release; Distribution Unlimited. PA#12264

13. SUPPLEMENTARY NOTES

Conference paper for California State University Northridge, Northridge, California in 28 March 2012.

14. ABSTRACT

Recent advances in the development of highly conductive ionic liquids have made them of interest for use as propellant in spacecraft propulsion systems. Electrospray thrusters apply strong electrostatic fields to an ionic liquid in order to extract and accelerate charged particles/droplets, producing thrust. The behavior of these ionic liquids as they pass through the components of an electrospray system can have a significant effect on thruster operation. The wetting and adhesion behavior between the ionic liquid propellant and solid materials can be characterized using the surface tension and contact or 'wetting' angle formed when a liquid droplet comes in contact with a solid surface. Ideally this angle is a function of the interactions between the solids surface energy, the surface tension of the liquid and the interactions of both with the surrounding medium. Deviation from ideal contact angle behavior can indicate surface inconsistencies, environmental effects or contamination of the solid and liquid. Contact angle and surface tension measurements are presented for the ionic liquid propellant 1-Ethyl-3- methylimidazolium bis(triuoromethylsulfonyl)imide, called EMIIm or EtMeImTf2N, with respect to various substrate materials and environmental conditions. Analysis of these measurements determines optimum materials and operating conditions for current and future electrospray thruster designs.

15. SUBJECT TERMS

16. SECURITY CLAS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON William Hargus
a. REPORT	b. ABSTRACT	c. THIS PAGE	SAR	19	19b. TELEPHONE NO (include area code)
Unclassified	Unclassified	Unclassified	SAIX		661-275-6799

EMIIM WETTING PROPERTIES

&

THEIR EFFECT ON ELECTROSPRAY THRUSTER DESIGN

March 2012

Garrett D. Reed
Professor Timothy Fox
Professor Sydney Schwartz
Dr. Michael Holmes

California State University Northridge: Mechanical Engineering Department

Air Force Research Laboratory: AFRL/RZSS

Introduction

Motivation & Objective

- Electrospray thruster for LISA Pathfinder DRS Payload
 - Thruster failure mechanisms identified as dependant on wetting characteristics of propellant & component materials
 - Wetting data needed to model these mechanisms & possible mitigation techniques

- Develop ideal method for measurement
- > Determine uncertainties in measurement
- Test other ionic liquid (IL) propellants
 (BMIBG4, Air Force formulations...)

Determine amount of wetting between thruster / propellant & relationship with failure mechanisms

Electrosprays

Emitter

- Internally / externally wetted, porous
- Allow propellant transport to tip

Extraction Grid

- Apply Lorentz force to propellant
- Extract ions / droplets depending on polarity

Acceleration Grid

Increase velocity of particles

Failure Mechanisms

Grid Obstruction

Grid Wetting Angle

ing between ond & Limite

Emitter Tip Wetting

Failure Mechanism

Possible Wetting Solution

EMIIm

Electrospray Propellant

- > High conductivity / charge to mass ratio
- Neglible vapor pressure
- Low Viscosity

$$F_3C - S - N - S - CF_3$$

Property	Value	Units
Density (~20°C)	1523.6	kg·m⁻³
Surface Tension	38.1	J·m⁻²
Expansion Coefficient (α _p)	6.47·10 ⁻⁶	K ⁻¹
Critical Temperature	1127	K
Vapor Pressure	Negligible	-

- **Test Fluid**
 - > Supplied by Strem Chemicals Inc. (CAS# 174899-82-2)
 - > Factory sealed with dry nitrogen

 CH_3

- Water content (Karl-Fischer Titration)
 - Factory Sealed Container: 2411±41 ppm
 - Waste EMIIm exposed to ambient conditions for ~8 months: 2825 ±16 ppm
 - Hygroscopic & Hydrophobic

Wetting Theory

Idealized System:

- Smooth (Ra = 0) $|Cos(\theta)| = r_s Cos(\theta)$
- No chemical Reaction, inert components
- No impurities present $|\theta| = kt^n$
- Chemically homogeneous components

Liquid Droplet (l)

Constant temperature/pressure

Eotvos

No gravitational effects

Medium (v)

Spherical droplet profile

Young's Equation

 $Cos(\theta) = \frac{\gamma_s - \gamma_{sl}}{1 - \gamma_{sl}} = \frac{\pi_{sl}}{1 - \gamma_{sl}}$

Apparatus

• FTA32 analysis software, time resolved measurements: $\theta(t) \& \gamma(t)$

Methodology

- Simulate On-Orbit Electrospray Environment
- Determine Optimal Materials & Conditions

Surface Tension Verify System Surface Tension **Temperature** Surface Tension **Pressure Contact Angle Equilibrium Contact Angle Temperature Contact Angle Pressure Contact Angle**

Advancing/Receding

Substrates

Material	Thickness (mm)	Ra (μm)
SS316	4.7	0.634/1.20/2.52
Fused Silica	0.5	< 0.144
Glass	1	< 0.144
Kapton	0.05	0.144
PTFE Teflon	1.38	1.47
Pyrex	13	< 0.144
Tungsten	1	0.351
Silicon	0.5	< 0.144
Titanium	13	0.600

Surface Tension I

 $\gamma_l = 38.1 \pm 1.09$ (~25°C, 1 ATM)

Surface Tension (y_i) Results

- 20 measurements taken at each temperature (T)
- Reasonable agreement with contemporary research / Model
- Decreasing y_i as T increases » θ should decrease as well

Surface Tension II

Surface Tension (y₁) Results

- 8 measurements taken at each temperature (T) / Pressure (P)
- · No meaningful trend measured
- Likely that properties change:
 - Very small change with (P)
 - ➤ Near transition state (high-T / low-P)
- Change not measurable with this apparatus

Two pressures tested:

Ambient 760 Torr Vaccum 40 mTorr

Northridge Equilibrium Contact Angles I

Dynamic Angle Behavior over Time

- Indicative of chemical reaction between componentcontaminants (Marmur et. al. / Kwok) $\theta' = kt^n$
- Unstable angle follows power law over time
- Coefficients recorded for each substrate, varying T & P
 - No measurable change in k(T, P) or n(T, P)

California State University

Northridge Equilibrium Contact Angles II

Material	k	n
SS316	57.2 / 60.9 / 55.1	-0.0055/-0.0104/-0.0285
Fused Silica	57.9	-0.0281
Glass	45.6	-0.0014
Kapton	59.3	-0.0079
Pyrex	45.8	-0.0336
Tungsten	39.1	-0.0015
Silicon	56.4	-0.0106
Titanium	63.2	-0.0547

Material	т	b
PTFE Teflon	2·10 ⁻⁵	75.9

Equilibrium Contact Angle Results

- Reaction affected each substrate except PTFE
- k appears to indicate initial contact angle
- *n* indicates rate of spreading
 - > Uncertainty between data sets: ± 4°
- Surface roughness appears to increase wetting

Northridge Advancing / Receding Angles I

Contact Angles (EMIIm - Silica)[Ambient TemperaturePressure]

Material	Advancing	Receding
SS316	52.1 / 58.2 / 55.9	0
Fused Silica	51.6	0
Glass	55.2	0
Kapton	52.3	0
Pyrex	49.6	0
Tungsten	43.8	0
Silicon	48.0	0
Titanium	52.3	0
PTFE	68.3	56.6

Temperature Effect

$$Cos(\theta) = \frac{\gamma_s - \gamma_{sl}}{\gamma_l} = \frac{\pi_{sl}}{\gamma_l}$$

$$\gamma_l V^{\frac{2}{3}} = K(T_C - T)$$

Contact Angles (EMIIm - Glass)[Vacuum]

- Noticed over long equilibrium tests; drift in $\theta(T)$
- Substrate temperature ramp, static equilibrium droplet
 - \triangleright Variation in $\theta(T)$, counter-intuitive
 - > Temperature rises / Surface tension drops / Contact 40 angle increases, greater change in adhesion tension

Northridge Conclusions and Future Work

Conclusion

Wetting properties measured on multiple EMIIm / solid material combinations

- >PTFE alone exhibits high resistance to wetting / adhesion / chemical reaction
- >Pyrex / Tungsten easily wetted by EMIIm
- >Increase in surface roughness appears to increase rate of wetting
- >Temperature decreases surface tension, ambiguous effect on wetting due to adhesion tension of the solid

Future Work

- > Repeat with other IL electrospray propellants
- >Test more substrates, find a conductive solid with wetting properties similar to PTFE
- >Include acid wash to clean substrate surface
- > Reduce water content of EMIIm via titration process, increase accuracy
- >Test EMIIm in electrospray at AFRL

<u>Acknowledgements</u>

- > Professor Timothy Fox, California State University Northridge
- >Dr. William Hargus, AFRL / RZSS Edwards AFB CA

Northrid State University Northrid State University Sackup Slides: Surface Roughness

Northridge Backup Slides: 8 Hour Test

