BITS PILANI, DUBAI CAMPUS DUBAI INTERNATIONAL ACADEMIC CITY, DUBAI

FIRST SEMESTER 2023 – 2024

COURSE: BITS F464 (Machine Learning)

COMPONENT: Practice Tutorial 5 **DATE:** 22 December 2023

Q1.

Calculate the Q-learning table for following listed state, rewards, and actions sequences for two states and two action system.

i. Current state: S_2 , Reward (R) = +20, Action (a₁): $S_2 \rightarrow S_1$

ii. Current state: S_1 , Reward (R) = -10, Action (a₂): $S_1 \rightarrow S_2$

The learning rate (α) is 0.5 and a discount factor (γ) is 0.5 for each step. The initial O-table is as follows,

Q-values	S1	S2
a1	-5	0
a2	-5	0

Q2.

Consider the following Bayesian network and corresponding conditional probability tables (as shown in Figure 3). Calculate the below probabilities considering the given Bayesian network,

a.
$$P(-e, -s, -m, -b)$$

b.
$$P(+m|+b)$$

P(E)
+e	0.4
-e	0.6

	P(S E	E, M)	
+e	+m	+s	1.0
+e	+m	-s	0.0
+e	-m	+s	0.8
+e	-m	-s	0.2
-e	+m	+s	0.3
-e	+m	-s	0.7
-e	- m	+s	0.1
- е	- m	-s	0.9

P(M)	
+m	0.1
-m	0.9

P(B M)		
+m	+b	1.0
+m	- b	0.0
-m	+b	0.1
-m	-b	0.9

(a)
$$P(-e, -s, -m, -b) = P(-e)P(-m)P(-s/-e, -m)$$

$$P(-b/-m) = (0.6)(0.9)(0.9)(0.9) = 0.4374.$$

$$CAccording to chain rule of conditional probability).$$
(b) $P(+m/+b) = \frac{P(+b/+m)P(+m)}{P(+b)} = \frac{(0.1)(0.1)}{0.19}$

0.5263

Q3. Suppose Mr. X purchased share A on first day, on next day there is 60% chance of purchasing share A, a 30 % chance of purchasing share B, and a 10% chance of purchasing share C. On a day when Mr. X purchased share B, the next day's he will purchase share A is 40%, a 30% chance of purchasing share B, and a 30% chance of purchasing share C. Lastly, on any specific day when Mr. X purchased share C, there is a 20% chance of purchasing share A, a 50% chance of purchasing share B, and a 30% chance of purchasing share C on a following day. So, by considering Mr. X purchased share A today, calculate the probability that Mr. X will purchase share A two days from now.

8.37 Transition Matrix according to given probabilities is,

$$P = \begin{bmatrix} 0.6 & 6.4 & 0.2 \\ 0.3 & 0.3 & 0.5 \\ 0.1 & 0.3 & 0.3 \end{bmatrix}$$

State vector, X = [XA]

For given example
$$\Rightarrow \chi(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\chi^{(1)} = \rho_{\chi}^{(0)} = \begin{bmatrix} 0.6 & 0.4 & 0.2 \\ 0.3 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0.6 \\ 6.3 \\ 0.1 \end{bmatrix}$$

$$X^{(2)} = P_{X}^{(1)} = \begin{bmatrix} 0.6 & 0.4 & 0.2 \\ 0.3 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.5 \end{bmatrix} \begin{bmatrix} 0.6 \\ 6.3 \\ 0.1 \end{bmatrix} = \begin{bmatrix} 0.5 \\ 0.32 \\ 0.18 \end{bmatrix}$$

... Probability of purchasing share A after 2 days is 0.5 or 50%.