Task 3

Gr 5: Mandl, Ankele, Jeran Gr 12: Pöllitsch, Prünster, Sommer, Vierthaler Gr 18: Fröhlich, Spitzer, Herrgesell

ECA group C (5, 12, 18)

July 2013

Initial plan

- 1. GROUP 5: create at all λ matrices for a specific n, k
 - **possible** λ matrices
 - ightharpoonup and impossible λ matrices
 - dead simple
- 2. GROUP 12: check if given λ -matrices can be realized
 - discard invalid λ-matrices
 - realise valid ones as pointset
 - must be fast
- 3. GROUP 18: count empty polygons(3,4,5-gons) for given pointsets

checking λ -matrices for validity

core idea: prolog program

- should be easy to implement with simple rules
- should be fast because of logic approach (backtracking & forwardchecking)
- non-deterministic

prolog rules derived from orientation (determinant-calculation):

- ▶ isLeft(p1,p2,px)
- ▶ isColl(p1,p2,px)

checking λ -matrices for validity

core idea: prolog program

- should be easy to implement with simple rules
- should be fast because of logic approach (backtracking & forwardchecking)
- non-deterministic

prolog rules derived from orientation (determinant-calculation):

- ▶ isLeft(p1,p2,px)
- ▶ isColl(p1,p2,px)

problems occured:

performance

- ok for 4 points (< 1 secs)
- ▶ not feasible for n > 4
- ▶ example n = 5:
 - ▶ 50 clauses 3 points each $\binom{5}{2}$ · 5
 - every point-coordinate (2 coordinates each) can take values from 0..5
 - \rightarrow worstcase: $6^{10} \cdot 50 \cdot 12 (= 36.279.705.600)$ operations
- naive approach does not work

ways of improvement

- ▶ randomize choice of coordinates → no gain
- lacktriangle mathematical approach (screw prolog!) ightarrow no gain

problems occured:

performance

- ▶ ok for 4 points (< 1 secs)</p>
- ▶ not feasible for n > 4
- ightharpoonup example n = 5:
 - ▶ 50 clauses 3 points each $\binom{5}{2}$ · 5
 - every point-coordinate (2 coordinates each) can take values from 0..5
 - \rightarrow worstcase: $6^{10} \cdot 50 \cdot 12 (= 36.279.705.600)$ operations
- naive approach does not work

ways of improvement

- ▶ randomize choice of coordinates → no gain
- lacktriangle mathematical approach (screw prolog!) ightarrow no gain

no problem because ...

group 5 can generate all possible pointsets and check for duplicates \rightarrow new plan

New plan

- 1. GROUP 5: create all pointsets for a specific n, k
 - lacktriangle only pointsets with valid λ matrices
- 2. GROUP 12: parse output from group 5 and transform to correct input for group 18
- 3. GROUP 18: count empty polygons(3,4,5-gons) for given pointsets

create λ - matrices

- K = Number of points
- N = Gridsize

Procedure to create all λ - matrices for a given point set

- Create all possible pointsets for a fix K and N
- For each pointset calculate minimal λ matrix (Task 2 Matlab script)
- Save all unique minimal λ matrices and one pointset
- Store the resulting unique pointsets in file for further processing

Fingerprint(min. λ matrix)

Changes to cope with collinear points Get convex hull for given pointset For each point on the hull

- Calculate difference vector to all other points
- Get angle between these vectors and first difference vector on convex hull
- Sort points in ascending order according to the distance
- Sort points again according to the angle (clockwise)
- Calculate λ matrix for this labeling

Filter collinear and non-collinear point sets

Collinearity can be checked during calculation of λ matrix. For each point pair:

- Create triangle with every other point
- Check if point is left or right using the determinant
- ▶ If determinant is zero the three points lie on the same line
- Count points on left and right side
- \blacktriangleright Set entries in the λ matrix

Return λ matrix and number of collinear points.

Take point sets with/without collinear points or both.

Overview group 18

- ► Classification, *n* < 5
- ightharpoonup Statistical analysis of classification on a 5 imes 5 grid
- Algorithm for counting empty polygons
- ► Idea!
- executive summary

Classification n = 5

5 point sets in a 5×5 grid

class 5 (5-convex)	11628	21,89 %
class 6 (5-convex, 1x collconvex)	13668	25,73 %
class 7 (5-convex, 2x collconvex)	1436	2,7 %
class 8 (5-convex, >2x collconvex)	1284	2,42 %
class 9 (4-convex)	12800	24,1 %
class 10 (4-convex, 1xcollconvex)	2336	4,4 %
class 11 (4-convex, 1xcollinear)	6420	12,09 %
class 12 (4-convex, 2xcollinear)	578	1,09 %
class 13 (4-convex, 1xcollinear, 1x collconvex)	1060	2 %
class 14 (3-convex)	624	1,17 %
class 15 (3-convex, 1xcollconvex)	1284	2,42 %

Algorithm for counting

- first approach: for triangles brute force
- ightharpoonup tetragons: recursive: deleting one point, inside-out test, count tetragon in n-1-gon
- problem: what if point is a collinear middlepoint?

 Idea: our classification leads to number of polygons without calculating them

Webinterface

- ▶ PHP-Webservice for other groups
- ▶ input: $n \le 5$ Pointset on a 5×5 Grid
- output: classification and number of n-gons

Webdemo for 5×5 Grid

executive summary - group 18

- Java tool for generating all pointsets for arbitrary grid size
- Java classification tool for classifying and counting n-gons for a given pointset (arbitrary grid size)
- JUnit tests for proof of concept
- ► PHP-Webservice for classifying and counting n-gons for a given 5-pointset (5 × 5 grid)
- ▶ Demo website for 5-pointsets on a 5×5 grid

thank you!

