

PRACA KOŃCOWA

zmiana klimatu (temperatury) vs emisja CO₂

Big Data - Inżynieria danych 2021/2022

grupa projektowa #3

Piotr Barczak
Przemysław Becella
Maciej Hercka
Tomasz Kieliszak

spis treści

- 1) założenia pracy końcowej
- 2) temat pracy
- 3) źródła danych
- 4) środowisko pracy
- 5) proces ETL opis
- 6) dashboard wizualizacja danych
- 7) trudności/problemy
- 8) wnioski końcowe

założenia pracy końcowej

- ☐ przedstawienie holistyczne procesu przetwarzania danych:
 - o uzasadnienie doboru narzędzi do postawionych celów przetwarzania danych, zarówno w warstwie prezentacji, jak i sposobu składowania i agregowania danych źródłowych
 - o uzasadnienia dobranych mechanizmów normalizacji i agregacji danych
 - prezentacja zagadnień w formie dynamicznego panelu, który umożliwi zmianę kryteriów dla danych wejściowych
- ☐ zadania szczegółowe:
 - pobranie danych źródłowych (min. 2 źródła) i załadowanie do własnej bazy (hurtowni)
 - przygotowanie możliwości przeglądania danych źródłowych (MS Excel lub inne proste narzędzie)
 - o przygotowanie panelu prezentującego zaproponowane zagadnienia

temat pracy

- praca koncentrowała się na kwestii zmian klimatu reprezentowanych przez dane o wahaniach temperatury rok do roku na świecie
 dane dotyczące zmian temperatury stanowiły punkt wyjścia do dyskusji na temat potencjalnych czynników wpływających na m.in. ich występowanie, dynamikę, intensywność czy zróżnicowanie geograficzne i czasowe
 dane o zmianach klimatu zestawiono zatem z danymi o takich potencjalnych czynnikach wpływu, jak: emisja zanieczyszczeń, liczebność populacji, rozwój gospodarki światowej
- dobór źródeł danych, ich wzajemne powiązanie, przedstawienie graficzne i obliczenia statystyczne miały w założeniach doprowadzić do wyciągnięcia trafnych wniosków na temat tego, co, w jaki sposób, gdzie i w jakiej skali wpływało na zmiany klimatu na świecie w ostatnich kilkudziesięciu latach

źródła danych

zagadnienie	nazwa danych	źródło	typ pliku źródłowego
zmiany temperatury	wahania temperatury na świecie rok do roku (<i>Temperature change</i>)	fao.org/faostat/en/#data/ET	.CSV
emisja CO ₂	skumulowana emisja CO2 na świecie (Annual CO₂ emissions)	ourworldindata.org/grapher/annual-co2-emissions-per- country	.CSV
	emisja CO2 według sektorów na świecie (Annual CO2 emissions by sector)	ourworldindata.org/emissions-by-sector	.CSV
РКВ	skumulowane PKB na świecie (G <i>DP (constant 2015 US\$)</i>)	data.worldbank.org/indicator/NY.GDP.MKTP.KD	.CSV
PND	PKB <i>per capita</i> na świecie (<i>GDP per capita (constant 2015 US\$)</i>)	data.worldbank.org/indicator/NY.GDP.PCAP.KD	.CSV
populacja	skumulowana populacja na świecie (Population, 10,000 BCE to 2021)	ourworldindata.org/grapher/population	.CSV
emisja gazów cieplarnianych, ślad węglowy	environment transport, energy use, emmissions intensities	fao.org/faostat/en/#data/ET	.CSV

środowisko pracy

u	Microsoft Excel (Power Query)		
	Serwer NAS (Synology DS718+)		
		stworzenie współdzielonej przestrzeni dyskowej (Synology Drive) dla całego zespołu + utworzenie kont użytkowników z odpowiednimi uprawnieniami	
		instalacja serwera MariaDB w kontenerze Docker (https://hub.docker.com/ /mariadb)	
	Power BI		
	GitHub		
	Ba	Backup	
		codzienny zrzut kontenerów za pomocą Hyper Backup i synchronizacja za pomocą Cloud Sync	
		eksport bazy danych do pliku .sql	

proces ETL - opis

- ☐ Microsoft Excel, Power Query
- ☐ SQL model danych w bazie/hurtowni
- ☐ GitHub https://github.com/Hercka/WSB BigData
- ☐ model danych w Power BI, dodanie dodatkowych tabel i miar

dashboard – wizualizacja danych

☐ PowerBI

Trudności / Problemy

1. Połączenie z serwerem MariaDB (docker)

"(conn=617) Access denied for user 'root'@'172.17.0.1' (using password: NO)"

Rozwiązaniem było edycja pliku *custom.cnf* za pomocą komendy **vi** i ,odkomentowanie' pozycji pozwalającej koncie root (SQL) na dostęp z

każdego IP.

vi command cheat sheet


```
# 192,168,1,10 - PuTTy
relay_log_info_file = /config/log/mysql/relay-bin.info
 If applications support it, this stricter sql_mode prevents some
 mistakes like inserting invalid dates etc.
               = NO ENGINE SUBSTITUTION, TRADITIONAL
  nnoDB is enabled by default with a 10MB datafile in /var/lib/mysql/
  Read the manual for more InnoDB related options. There are many!
  fault storage engine = InnoDB
  you can't just change log file size, requires special procedure
 nodb open files = 400
 nodb io capacity = 400
  odb flush method = O DIRECT
   Security Features
  Read the manual, too, if you want chroot!
  or generating SSL certificates I recommend the OpenSSL GUI "tinyca"
 ssl-cert=/etc/mysql/server-cert.pem
 ssl-key=/etc/mysql/server-key.pem
  Galera-related settings
 Mandatory settings
 srep cluster address=
       format=row
default storage engine=InnoDB
 nnodb autoinc lock mode=2
 nd-address=0.0.0.0
  srep slave threads=1
innodb flush log at trx commit=0
ax allowed packet = 16M
 no-auto-rehash # faster start of mysql but no tab completion
 ey buffer size
```


Trudności / Problemy

1. Połączenie PowerBi do MariaDB

Rozwiązanie:

Instalacja "connector'a": https://mariadb.com/downloads/connectors/connectors-data-access/odbc-connector/