Social Network Analysis - Link Prediction

MSLab Wei-Ming 2014 tutorial

Schedule

00:00 ~ 00:45	Introduction to final practice Lecture Reviewing sample codes
00:45 ~ 02:15	Practice and Lecture
02:15 ~ 02:30	Discussion and QA

Outline

- What is Link Prediction problem.
- Introduction to final practice
- How to make link prediction
 - What is machine learning?
 - Workflow of data-driven approach
 - Feature Extraction

What is Link Prediction problem?

What is Link Prediction problem?

- Predict the information on edges.
- 1. Link existence prediction: to classify whether each edge is 0(not exist) or 1(exist)

- 2. Link type classification: to classify the type of edges (e.g. student-teacher, student-student ...)
- 3. **Link regression**: to predict the weight of link (importance, rating ...)

Outline

- What is Link Prediction problem.
- Introduction to final practice
- How to make link prediction
 - What is machine learning?
 - Workflow of data-driven approach
 - Feature Extraction

Data description(1)

Kiva (http://www.kiva.org/) is a non-profit organization which aims at providing a microloan crowding-sourcing platform to alleviate

poverty.

Data description(2)

 Task: to predict whether a lender will lend to certain loan or not

- 2014/01/08 - 2014/01/15

– #Lender: 15,870

– #Loan: 4,872

– #Transaction: 38026

• Training: 26617

 Testing: 11409 (+) and randomly sample 11409 (-)

train.csv test.csv

Data description(3)

- Lender's information:
 - lender_id
 - country_code
 - inviter_id
 - invitee_count
 - loan_count

lender.csv

- Loan's information:
 - loan id
 - Sector
 - Amount
 - Borrowers
 - Country
 - geo
- loan.csv

Evaluation

Accuracy

$$-Accuracy = \sum_{(u,i)\in Test} \frac{[y_{ui} = \hat{y}_{ui}]}{|Test|}$$

• Baseline: all positive / all negative: 0.5

-test.ans

Outline

- What is Link Prediction problem.
- Introduction to final practice
- How to make link prediction
 - What is machine learning?
 - Workflow of data-driven approach
 - Feature Extraction

How to make link prediction

Two different strategies:

- 1. **Knowledge-driven strategy**: produce some rules for prediction
 - E.g.: if degree <10, then predict it as a college node.
 - Cons: Need domain experts. Could miss patterns that were unknown.
- 2. Data-driven approach: Machine learning approach
 - Suppose you are given a social network, while some nodes have labels (professors, department, keywords... etc.) and some don't.
 - The goal is to predict the labels of some of them.

Outline

- What is Link Prediction problem.
- Introduction to final practice
- How to make link prediction
 - What is machine learning?
 - Workflow of data-driven approach
 - Feature Extraction

What is machine learning?

How can you distinguish apples / orange?

Color / shape ...

What is machine learning?

- But if we have 1 billion pictures with 200 types of fruit to be classified ?
- Let machine(computer) learn it automatically!

- y = f(x)
- X = { picture of fruit }
- Y = { type of fruit } e.g. 'apple', 'orange' ...
- Given lots of (x, y) pairs, learn y=f(x)

denotes -1

How can we classify this data?

denotes -1

denotes -1

Support Vector Machine

Package of SVM

- Liblinear
 - http://www.csie.ntu.edu.tw/~cjlin/liblinear/
- LibSVM
 - http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Outline

- What is Link Prediction problem.
- Introduction to final practice
- How to make link prediction
 - What is machine learning?
 - Workflow of data-driven approach
 - Feature Extraction

Workflow - Data-driven approach(1)

- 1. Determine what is considered to be the 'instance' for classification
 - Node or link?
 - Multi-class or single class?
- 2. Obtaining features for the instance
 - Topological features (e.g. degree, centrality)
 - Attributes of instances (e.g. time info, relation type of edges) Attributes of instances (e.g. time info, relation type of edges)
 - Social features (the information about neighbors)

Workflow - Data-driven approach(2)

- 3. Determine a classifier to use.
 - E.g. Liblinear, LibSVM, Weka ...

4. Train a classifier and evaluate the results
using held-out data (i.e. data not used for
training). If the performance is not satisfiable,
go back to (2) and (3).

Goal

Outline

- What is Link Prediction problem.
- Introduction to final practice
- How to make link prediction
 - What is machine learning?
 - Workflow of data-driven approach
 - Feature Extraction

Feature extraction(1)

- Topological feature
 - Shortes path length
 - Edge Embeddedness
 - Number of common neighbors of node u and v
 - Jaccard's coefficient
 - Adamic/Adar
 - Preferential attachment
 - Katz score
 - Hitting time
 - expected umber of steps of random walk from x to y.

Notation

- *G*: *graph*
- $\Gamma(x)$: the set of node x's neighbors
- $|\Gamma(x)|$: the degree of node x
- Length(p): length of path p

• score(x,y): the feature score of node x and node y

Shortest-Path

- The length of shortes path from node x to node y
- score(x, y) = $(-1) \times Length(shortest_path(x, y))$

Edge Embeddedness

The number of common neighbors of node x and y

$$score(x, y) = |\Gamma(x) \cap \Gamma(y)|$$

Jaccard's coefficient

$$score(x,y) = \frac{|\Gamma(x) \cap \Gamma(y)|}{|\Gamma(x) \cup \Gamma(y)|}$$

 Measure how likely a neighbor of x is to be a neighbor of y and vice versa to be a neighbor of y and vice versa

Adamic/Adar

$$score(x, y) = \sum_{z \in \Gamma(x) \cap \Gamma(y)} \frac{1}{\log |\Gamma(z)|}$$

• Assigns large weight to common neighbors z of x and y which themselves have few neighbors $|\Gamma(z)|$

Preferential Attachment

$$score(x, y) = |\Gamma(x)| \times |\Gamma(y)|$$

 Researchers found empirical evidence to suggest that co-authorship is correlated with the product of the neighborhood sizes

Feature extraction(2)

- Latent topological feature
 - Graph factorization

Feature extraction(3)

- Content-based feature
 - Totally depends on your DATA
 - There some small tips

- Dummy variable (indicator variable)
- Scaling

Dummy variable

node	Α	В	С
Type	'person'	'animal'	'Item'

- how about A=1, B=2, C=3 ?
 - But $y = w^T x$, the value of x matters
- A=> 1:1 2:0 3:0
- B=> 1:0 2:1 3:0
- C=> 1:0 2:0 3:1

Scaling

- Since $y = w^T x$...
- if $x = (10^{40}, 10^{20} \dots)$
 - $-w^Tx$ could be overfloat!!

$$-x_{1} = (10^{40} | 10^{20} | ...)$$

$$-x_{2} = (10^{39} | 10^{15} | ...)$$

$$-x_{3} = (10^{38} | 10^{10} | ...)$$

$$-...$$
[-1, 1] [-1, 1]

- Divided by MAX
- Sigmoid function

Coding Time!

 https://github.com/barry800414/samplecodes/archive/master.zip

- task1/extract_feature.py Line 22
- Please find shortest path from node x to node

Hint: Please browse networkx documents

- task2/extract_feature.py Line 40
- Please find the number of common neighbors of node x and node y

Hint: Please browse networkx documents

- task3/extract_feature.py Line 51
- Calculate jaccards_coefficients for node x and node y

- Hint: python has built-in type : set()
- There are "union" and "intersect" operation

- task4/extract_feature.py Line 62
- Complete adamic_adar_score function

- task5/convert_feature.py Line 17
- Normalize the column by the maximum of absolute value in a column

Hint: python has built in max function

- task6/convert_feature.py Line 36
- Convert categorical feature to dummy / indicator variable

- Using liblinear to train a model by training data, and predict the value on testing data
- See the accuracy value

QA & Discussion

