Scalable Gaussian Processes with Quasiseparable Matrices¹

Daniel Foreman-Mackey²

Center for Computational Astrophysics, Flatiron Institute, New York, NY, USA

Final author list and order TBD

Affiliations

More affiliations

Abstract: An abstract. (Foreman-Mackey et al., 2017; Foreman-Mackey, 2018)

1 Quasiseparable matrices

There exist a range of definitions for quasiseparable matrices in the literature, so to be explicit, let's select the one that we will consider in all that follows. The most suitable definition for our purposes is nearly identical to the one used by Eidelman & Gohberg (1999), with some small modifications that will become clear as we go.

Let's start by considering an $N \times N$ square quasiseparable matrix \mathbf{M} with lower quasiseparable order m_l and upper quasiseparable order m_u . In this note, we represent this matrix \mathbf{M} as:³

$$M_{ij} = \begin{cases} d_i &, & \text{if } i = j \\ \boldsymbol{p}_i^{\mathrm{T}} \left(\prod_{k=i-1}^{j+1} \boldsymbol{A}_k \right) \boldsymbol{q}_j &, & \text{if } i > j \\ \boldsymbol{h}_i^{\mathrm{T}} \left(\prod_{k=i+1}^{j-1} \boldsymbol{B}_k^{\mathrm{T}} \right) \boldsymbol{g}_j &, & \text{if } i < j \end{cases}$$
(1)

where

- i and j both range from 1 to N,
- d_i is a scalar,
- p_i and q_j are both vectors with m_l elements,
- A_k is an $m_l \times m_l$ matrix,
- \mathbf{g}_i and \mathbf{h}_i are both vectors with m_u elements, and
- B_k is an $m_u \times m_u$ matrix.

In Equation 1, the product notation is a little sloppy so, to be more explicit, this is how the products expand:

$$\prod_{k=i-1}^{j+1} \mathbf{A}_k \equiv \mathbf{A}_{i-1} \mathbf{A}_{i-2} \cdots \mathbf{A}_{j+2} \mathbf{A}_{j+1} , \text{ and}$$

$$\prod_{k=i+1}^{j-1} \mathbf{B}_k^{\mathrm{T}} \equiv \mathbf{B}_{i+1}^{\mathrm{T}} \mathbf{B}_{i+2}^{\mathrm{T}} \cdots \mathbf{B}_{j-2}^{\mathrm{T}} \mathbf{B}_{j-1}^{\mathrm{T}} .$$
(2)

$$M = \begin{pmatrix} d_1 & h_1^{\mathrm{T}} g_2 & h_1^{\mathrm{T}} B_2^{\mathrm{T}} g_3 & h_1^{\mathrm{T}} B_2^{\mathrm{T}} B_3^{\mathrm{T}} g_4 \\ p_2^{\mathrm{T}} q_1 & d_2 & h_2^{\mathrm{T}} g_3 & h_2^{\mathrm{T}} B_3^{\mathrm{T}} g_4 \\ p_3^{\mathrm{T}} A_2 q_1 & p_3^{\mathrm{T}} q_2 & d_3 & h_3^{\mathrm{T}} g_4 \\ p_4^{\mathrm{T}} A_3 A_2 q_1 & p_4^{\mathrm{T}} A_3 q_2 & p_4^{\mathrm{T}} q_3 & d_4 \end{pmatrix} (3)$$

¹This manuscript was prepared using the **show your work!** workflow (Luger, 2021). The source code used to generate this version can be found at dfm/quasisep-gps on GitHub.

²The authors would like to thank the Astronomical Data Group at Flatiron for listening to every iteration of this project and for providing great feedback every step of the way. We would also like to thank Suzanne Aigrain (Oxford), Gregory Guida (Etsy), Christopher Stumm (Etsy), and others... for insightful conversations and other contributions.

³Comparing this definition to the one from Eidelman & Gohberg (1999), you may notice that we have swapped the labels of g_j and h_i , and that we've added an explicit transpose to $B_k^{\rm T}$. These changes simplify the notation and implementation for symmetric matrices where, with our definition, g = p, h = q, and B = A.

Figure 1: Face.

References

Eidelman, Y., & Gohberg, I. 1999, Integral Equations and Operator Theory, 34, 293, doi: 10.1007/BF01300581

Foreman-Mackey, D. 2018, Research Notes of the American Astronomical Society, 2, 31, doi: 10.3847/2515-5172/aaaf6c

Foreman-Mackey, D., Agol, E., Ambikasaran, S., & Angus, R. 2017, AJ, 154, 220, doi: 10.3847/1538-3881/aa9332

Luger, R. 2021, showyourwork,

https://github.com/rodluger/showyourwork, GitHub