Teoremas de Papus y Desargues

J. A. Rodríguez-Velázquez

URV

Teorema de Pappus en geometría afín

En un plano afín, sean a,b,c tres puntos de una recta \mathbb{L}_1 y a',b'c' tres puntos de una recta \mathbb{L}_2 distinta de \mathbb{L}_1 . Si $\mathbb{L}_{ab'}//\mathbb{L}_{ba'}$ y $\mathbb{L}_{bc'}//\mathbb{L}_{cb'}$, entonces $\mathbb{L}_{ac'}//\mathbb{L}_{ca'}$.

Teorema de Papus en geometría proyectiva

Sean \mathcal{L}_1 y \mathcal{L}_2 dos rectas diferentes en un plano proyectivo. Dados 6 puntos $a,b,c\in\mathcal{L}_1$ y $a',b',c'\in\mathcal{L}_2$, los puntos x,y,z de intersección de las rectas $\mathcal{L}_{bc'}$ y $\mathcal{L}_{cb'}$, $\mathcal{L}_{ac'}$ y $\mathcal{L}_{ca'}$, y $\mathcal{L}_{ab'}$ y $\mathcal{L}_{ba'}$, respectivamente, son colineales.

Teorema de Papus en geometría proyectiva

Sean \mathcal{L}_1 y \mathcal{L}_2 dos rectas diferentes en un plano proyectivo. Dados 6 puntos $a,b,c\in\mathcal{L}_1$ y $a',b',c'\in\mathcal{L}_2$, los puntos x,y,z de intersección de las rectas $\mathcal{L}_{bc'}$ y $\mathcal{L}_{cb'}$, $\mathcal{L}_{ac'}$ y $\mathcal{L}_{ca'}$, y $\mathcal{L}_{ab'}$ y $\mathcal{L}_{ba'}$, respectivamente, son colineales.

Teorema de Papus en geometría proyectiva

Sean \mathcal{L}_1 y \mathcal{L}_2 dos rectas diferentes en un plano proyectivo. Dados 6 puntos $a,b,c\in\mathcal{L}_1$ y $a',b',c'\in\mathcal{L}_2$, los puntos x,y,z de intersección de las rectas $\mathcal{L}_{bc'}$ y $\mathcal{L}_{cb'}$, $\mathcal{L}_{ac'}$ y $\mathcal{L}_{ca'}$, y $\mathcal{L}_{ab'}$ y $\mathcal{L}_{ba'}$, respectivamente, son colineales.

Demostración

Sea \mathcal{L}_{xz} la recta proyectiva del infinito. En el plano afín que se obtiene de eliminar esta recta tenemos que $\mathcal{L}_{bc'}//\mathcal{L}_{cb'}$ y $\mathcal{L}_{ab'}//\mathcal{L}_{ba'}$, ya que estas rectas se cortan en el infinito. Por el teorema de Papus de la geometría afín, $\mathcal{L}_{ac'}//\mathcal{L}_{ca'}$. De ahí que $\mathcal{L}_{ac'}$ y $\mathcal{L}_{ca'}$ se cortan en el infinito. Es decir, x,y,z son colineales.

Teorema de Desargues en geometría afín

Sea $\mathcal P$ un plano afín. Si abc y a'b'c' son dos triángulos en $\mathcal P$, sin vértices comunes, cuyos lados son respectivamente paralelos, entonces las rectas $\mathbb L_{aa'}$, $\mathbb L_{bb'}$ y $\mathbb L_{cc'}$ son paralelas o concurrentes.

Teorema de Desargues en geometría proyectiva

Sean a,b,c y a',b',c' dos triángulos en un plano proyectivo. Sean x,y,z los puntos de intersección de las rectas \mathcal{L}_{bc} y $\mathcal{L}_{b'c'}$, \mathcal{L}_{ab} y $\mathcal{L}_{a'b'}$, y \mathcal{L}_{ac} y $\mathcal{L}_{a'c'}$, respectivamente. Entonces las siguientes afirmaciones son equivalentes.

- (a) Los puntos x, y, z son colineales.
- (b) Las rectas $\mathcal{L}_{aa'}$, $\mathcal{L}_{bb'}$ y $\mathcal{L}_{cc'}$ son concurrentes.

Teorema de Desargues en geometría proyectiva

Sean a,b,c y a',b',c' dos triángulos en un plano proyectivo. Sean x,y,z los puntos de intersección de las rectas \mathcal{L}_{bc} y $\mathcal{L}_{b'c'}$, \mathcal{L}_{ab} y $\mathcal{L}_{a'b'}$, y \mathcal{L}_{ac} y $\mathcal{L}_{a'c'}$, respectivamente. Entonces las siguientes afirmaciones son equivalentes.

- (a) Los puntos x, y, z son colineales.
- (b) Las rectas $\mathcal{L}_{aa'}$, $\mathcal{L}_{bb'}$ y $\mathcal{L}_{cc'}$ son concurrentes.

Demostración: (a) implica (b)

Asumiremos que x,y,z son colineales y están en la recta del infinito. En el plano afín obtenido eliminando esta recta, $\mathcal{L}_{bc}//\mathcal{L}_{b'c'}$, $\mathcal{L}_{ac}//\mathcal{L}_{a'c'}$, y $\mathcal{L}_{ab}//\mathcal{L}_{a'b'}$. Por la versión afín de este teorema concluimos que las rectas $\mathcal{L}_{aa'}$, $\mathcal{L}_{bb'}$ y $\mathcal{L}_{cc'}$ son concurrentes en el plano proyectivo.

Demostración: (b) implica (a)

Vamos a asumir que o es el punto de intersección de las rectas $\mathcal{L}_{aa'}$, $\mathcal{L}_{bb'}$ y $\mathcal{L}_{cc'}$ (figura de la izquierda). Supongamos que el punto y no pertenece a la recta \mathcal{L}_{xz} .

Demostración: (b) implica (a)

Vamos a asumir que o es el punto de intersección de las rectas $\mathcal{L}_{aa'}$, $\mathcal{L}_{bb'}$ y $\mathcal{L}_{cc'}$ (figura de la izquierda). Supongamos que el punto y no pertenece a la recta \mathcal{L}_{xz} .

Sea y' el punto de intersección de \mathcal{L}_{xz} y $\mathcal{L}_{a'b'}$. Sea b'' el punto de intersección de $\mathcal{L}_{ay'}$ y \mathcal{L}_{cx} (figura de la derecha). Nótese que $b'' \neq b$.

Demostración: (b) implica (a)

Vamos a asumir que o es el punto de intersección de las rectas $\mathcal{L}_{aa'}$, $\mathcal{L}_{bb'}$ y $\mathcal{L}_{cc'}$ (figura de la izquierda). Supongamos que el punto y no pertenece a la recta \mathcal{L}_{xz} .

Sea y' el punto de intersección de \mathcal{L}_{xz} y $\mathcal{L}_{a'b'}$. Sea b'' el punto de intersección de $\mathcal{L}_{ay'}$ y \mathcal{L}_{cx} (figura de la derecha). Nótese que $b'' \neq b$.

Por la primera parte de este teorema, la recta $\mathcal{L}_{b'b''}$ pasa por o, y por eso b y b'' son los puntos de intersección de las rectas $\mathcal{L}_{ob'}$ y \mathcal{L}_{cx} , lo que es una contradicción. Por lo tanto, x, y y z son colineales.