





# The 3rd International Conference on Intelligence of Things 2024 (ICITconf'2024)

# ADDRESSING DATA IMBALANCE IN INSURANCE FRAUD PREDICTION USING SAMPLING TECHNIQUES AND ROBUST LOSSES

Tai Do Nhu, Loc Dinh Tan, Di Khanh Le, Huy Nguyen Quoc

donhutai@gmail.com, locdinh.31221020226@st.ueh.edu.vn, khanhle.31211022918@st.ueh.edu.vn, nqhuy@sgu.edu.vn



- 1. Introduction
- 2. Motivation
- 3. Related works
- 4. Proposed method
- 5. Experiment and Results
- 6. Conclusion

#### The situation:





#### The problem:

#### Input:

Features in contracts

#### Output:

Probabilities off binary classes



PROPOSED METHOD

**EXPERIMENTS** 

 Fraudsters often provide false information to claim insurance money.

The provided data often has a range of hidden issues.

**RELATED WORKS** 





Claimants often fail to provide or are slow to supply sufficient information.

Fraudsters inflate claims using fake documents or insurance employee connections.

- Fraudsters often provide false information to claim insurance money.
- The provided data often has a range of hidden issues.





Car insurance claims fluctuate due to delays in information and procedures.

**EXPERIMENTS** AND RESULTS

PROPOSED METHOD





How can deep learning models be improved to effectively handle imbalanced data?

PROPOSED METHOD

**EXPERIMENTS** 

**Dataset** 

Source: Kaggle [1]

Months\_as\_customer Age Policy\_number Policy\_deductable Policy\_annual\_premium Umbrella\_limit Insured\_zip Capital\_gains

Incident\_hour\_of\_the day

Number\_of\_vehicles\_involve

Capital\_loss

Bodily\_injuries Witnesses Total\_claim\_amount Injury\_claim Property\_claim Vehicle\_claim Auto\_year c39\_

40 variables & 1000 samples

753 VALID cases 247 FRAUD cases



**IMBALANCE** 

**Uncorrelated** variables

Distribution variability

**Small** dataset



Require careful analysis and preprocessing

[1] Jhamtani, A. (n.d.). Automobile insurance. (2018, December 27). Kaggle.

# 2. MOTIVATION





#### Propose deep learning models:

- Address data imbalance.
- Enhance performance with robust sampling and loss functions.

PROPOSED METHOD

#### Dablainet al1

SMOTE can be used to address is sue scaused by imbalanced data by generating new observation points from the original data, which helps the model learn and classify more effectively



[1] Dablain, D., Krawczyk, B., & Chawla, N. V. (2004) SMOTE: Fusing deep learning and SMOTE for imbalanced letate. Transactions on Neural Networks and Learning Systems, 34(9), 634904.

RELATED WORKS

#### Azizjon et al1

The ConvolutionalNeural Network (CNN) model, renowned for image processingtasks, leveragesits convolutional architecture allowing it to effectively extractinformation from input data. The application of CNN architectures to tabular data problems has demonstrated significant efficiency, extending its effectivenes beyond just image-related fields.



[1] Azizjon,M., Jumabek,A., & Kim,W. (2020, February.) 1D CNN based network intrusion detection with normalization on imbalanced data. In 2020 internation aconference nartificial ntelligence information and communication (ICAIIC) pp. 218-224). IEEE

PROPOSED METHOD

#### Arik et al1





TabNetis a deep learning architecture specifically designed for tabular data. It utilizes a **sequential** attention mechanism enabling the model to selectrelevantfeaturesdynamicallyat each decision step, leading to high accuracy and robust classification performance in various tabular data tasks

[1] Arik, S. Ö., & Pfister, T. (2021, May) Tabnet Attentive interpretabletabular learning. In Proceedings of the AAAI conference on artificial intelligence (Vol 35, No. 8, pp. 6679-6687).

#### Losses

F1 loss=
$$1 - \frac{2 \times (Precision \times Recall)}{Precision + Recall}$$

where  $h = (h1,...,hm) \in \{0,1\}$  is a prediction of an m-dimensional binary label vector y=(y1,...,ym) (e.g., the class labels of a test set of size m in binary)

Focal loss= 
$$-(1-p_t)^{\gamma} \log(p_t)$$

where pt is the predicted probability for the target class is and ocusing parameter.

Dice loss= 
$$1 - \frac{2 \times |X \cap Y|}{|X| + |Y|}$$

PROPOSED METHOD

where X and Y are the predicted and ground truth sets.

- Build a model using tabular models for this problem (Assess model stability on small datasets).
- Use Sampling Dataset and Imbalance Loss approach on our proposed model.



INTRODUCTION MOTIVATION RELATED WORKS **PROPOSED METHOD**AND RESULTS

CONCLUSION

#### **Explanation Detailed: Dataset preprocesing**

Cleaning data (null, outliers)

Scale and Normalize data **INPUT** 

Imbalanced method

- Using Standard scaler for numeric feature
- Using Label encoder for categorical feature
- White balncing
- SMOTE

PROPOSED METHOD

#### Explanation Detailed: Build and evaluate base model

- Use feature selection techniques corresponding to each model to optimize performance.
- Choose best tabular models and improve models performance.



PROPOSED METHOD

#### Models:

built an MLP with an input layer, shallow Dense layers using ReLU & SoftMax classification output.

using TabNet to assess how data imbalance impacts its specialized capabilities.

redesign CNN architectures with 1D convolution and pooling to evaluate models like VGG16, ResNet, and Inception.

PROPOSED METHOD

#### Models:



**Fig. 2**: Model architecture designed based on VGG16 for tabular data.

**EXPERIMENTS** PROPOSED METHOD

#### Loss functions:

F1 LOSS

FOCAL LOSS

DICE LOSS

MULTI LOSS

$$F1 Loss = 1 - \frac{2 \times (Precision \times Recall)}{Precision + Recall}$$

Focal Loss = 
$$-(1 - p_t)^{\gamma} \log(p_t)$$
 Dice Loss =  $1 - \frac{2 \times |X \cap Y|}{|X| + |Y|}$ 

Multi Loss =  $\alpha \times \text{Loss}_1 + \beta \times \text{Loss}_2 + \gamma \times \text{Loss}_3$ 

Balances precision and recall for imbalanced data, suitable for detecting positive and negative instances.

Addresses data imbalance by focusing on harder samples, mitigating bias towards dominant classes.

Originally used in medical imaging, applied to imbalanced tabular data to optimize the Dice coefficient.

Combines multiple loss functions to leverage their unique advantages and minimize individual weaknesses.

#### Loss functions:



#### FOCAL LOSS

#### DICE LOSS

F1 Loss = 
$$1 - \frac{2 \times (Precision \times Recall)}{Precision + Recall}$$

Focal Loss = 
$$-(1 - p_t)^{\gamma} \log(p_t)$$

Focal Loss = 
$$-(1 - p_t)^{\gamma} \log(p_t)$$
 Dice Loss =  $1 - \frac{2 \times |X \cap Y|}{|X| + |Y|}$ 

Multi Loss = 
$$\alpha \times \text{Loss}_1 + \beta \times \text{Loss}_2 + \gamma \times \text{Loss}_3$$

Balances precision and recall for imbalanced data, suitable for detecting positive and negative instances.

Addresses data imbalance by focusing on harder samples, mitigating bias towards dominant classes.

Originally used in medical imaging, applied to imbalanced tabular data to optimize the Dice coefficient.

PROPOSED METHOD

Combines multiple loss functions to leverage their unique advantages and minimize individual weaknesses.

#### 5.1. Traditional models



#### 5.2. DEEP LEARNING models

|            | Base training <sup>1</sup> |      | Base training $+$ class weight $+$ SMOTE <sup>2</sup> |      |
|------------|----------------------------|------|-------------------------------------------------------|------|
| Model      | Acc                        | AUC  | Acc                                                   | AUC  |
| MLPs model | 73.7%                      | 0.5  | 67.28                                                 | 0.65 |
| Tabnet 6   | 64.19%                     | 0.60 | 79.32%                                                | 0.75 |
| VGG16      | 70.16%                     | 0.65 | 73.77%                                                | 0.69 |

#### 5.3. CNN models applying imbalance handling strategies

|                  | Base training <sup>1</sup> |      | Base training <sup>1</sup> + SMOTE |      |
|------------------|----------------------------|------|------------------------------------|------|
| Model            | $\mathbf{Acc}$             | AUC  | Acc                                | AUC  |
| VGG16            | 72.22%                     | 0.68 | 73.77%                             | 0.69 |
| ResNet34         | 69.75%                     | 0.65 | 71.91%                             | 0.68 |
| ResNet50         | 69.44%                     | 0.65 | 70.67%                             | 0.65 |
| Inception $V2^2$ | 69.14%                     | 0.64 | 74.07%                             | 0.65 |
| Inception V3     | 74.07%                     | 0.68 | 74.38%                             | 0.64 |

This experiment applies class weights to train model. <sup>2</sup> InceptionV2 + ResNet50

RELATED WORKS

# 5.4. Accuracy and AUC of VGG16 models through situationsies

| Model                                                                 | Loss                     | SMOTE        | Acc    | AUC  |
|-----------------------------------------------------------------------|--------------------------|--------------|--------|------|
| VGG16                                                                 |                          |              | 72.22% | 0.68 |
| VGG16                                                                 |                          | $\mathbf{x}$ | 73.77% | 0.69 |
| VGG16                                                                 | focal loss               | $\mathbf{x}$ | 70.06% | 0.69 |
| VGG16                                                                 | f1 loss                  | $\mathbf{x}$ | 77.16% | 0.71 |
| VGG16                                                                 | dice loss                | $\mathbf{x}$ | 79.32% | 0.75 |
| VGG16                                                                 | $\mathrm{multi\ loss^1}$ | $\mathbf{x}$ | 74.69% | 0.73 |
| VGG16                                                                 | $multi loss^2$           | $\mathbf{x}$ | 75%    | 0.61 |
| <sup>1</sup> F1, dice losses. <sup>2</sup> F1, Focal and Dice losses. |                          |              |        |      |

**EXPERIMENTS** PROPOSED METHOD AND RESULTS

#### 5.5. Evaluation metrics of all experiment models

| Model                     | Loss        | Acc    | AUC  |
|---------------------------|-------------|--------|------|
| Decision Tree             |             | 81.3%  | 0.83 |
| Random Forest             |             | 80.8%  | 0.77 |
| SVM                       |             | 75%    | 0.71 |
| Tabnet                    | categorical | 80.12% | 0.76 |
|                           | $loss^1$    |        |      |
| MLPs                      | dice loss   | 72.53% | 0.71 |
| VGG16                     | dice loss   | 79.32% | 0.75 |
| ResNet34                  | dice loss   | 75.93% | 0.73 |
| ResNet50                  | dice loss   | 75.93% | 0.7  |
| Inception V3              | dice loss   | 70.37% | 0.7  |
| Inception $V2 + ResNet50$ | dice loss   | 70.67% | 0.71 |

PROPOSED METHOD

EXPERIMENTS

AND RESULTS

#### 6. CONCLUSION

- DL models show potential to overcome limitations of traditional ML
- Stable, accurate results through data sampling, modern loss functions
- CNN models feasible for fraud prediction with proper techniques
- Proves viability of DL in this domain

#### **Future Work:**

Explore advanced DL techniques to further improve performance

PROPOSED METHOD

Expand range of datasets to increase objectivity of research

# THANKYOU