LIX

École Polytechnique

The Realm of Cut-Elimination

Incorporating Tables into Proofs

by Vivek Nigam & Dale Miller

14th of May, 2007

Agenda

■ Motivational Examples

- Focusing
- Finite Successes and Finite Failures
- Applications
- Conclusions and Future Works

 $\forall x (path \ x \ x)$ $\forall x \forall y \forall z (arr \ x \ z \land path \ z \ y \supset path \ x \ y)$

 $path \ a_1 \ a_4 \wedge path \ a_2 \ a_4$

 $\forall x (path \ x \ x)$ $\forall x \forall y \forall z (arr \ x \ z \land path \ z \ y \supset path \ x \ y)$

 $path \ a_1 \ a_4 \wedge path \ a_2 \ a_4$

Common Subgoal

 $path a_3 a_4$

 The common subgoal is computed twice.

Cuts are not that bad

 Introduce with a cut the common subgoal

$$\frac{\mathcal{P} \vdash A \quad \mathcal{P}, A \vdash A \land G}{\mathcal{P} \vdash A \land G} \ cut$$

Cuts are not that bad

 Introduce with a cut the common subgoal

$$\frac{\mathcal{P} \vdash A \quad \mathcal{P}, A \vdash A \land G}{\mathcal{P} \vdash A \land G} \ cut$$

Another example (without cuts)

Change to an equivalent goal:

$$A \wedge G \equiv A \wedge (A \supset G)$$

Cuts are not that bad

 Introduce with a cut the common subgoal

$$\frac{\mathcal{P} \vdash A \quad \mathcal{P}, A \vdash A \land G}{\mathcal{P} \vdash A \land G} \ cut$$

Another example (without cuts)

Change to an equivalent goal:

$$A \wedge G \equiv A \wedge (A \supset G)$$

But we are only increasing non-determinism:

- The are now more proofs for the goal;
- How to give a purely **proof theoretic solution** where common subgoals aren't reproven.

Agenda

■ Motivational Examples

■ Focusing

- Finite Successes and Finite Failures
- Applications
- Conclusions and Future Works

LJF system [Liang & Miller]

$$\begin{split} \frac{[N,\Gamma] \xrightarrow{N} [R]}{[N,\Gamma] \to [R]} D_l &\quad \frac{[\Gamma] - P \to}{[\Gamma] \to [P]} D_r &\quad \frac{[\Gamma],P \to [R]}{[\Gamma] \xrightarrow{P} [R]} R_l \quad \frac{[\Gamma] \to N}{[\Gamma] - N \to} R_r \\ &\quad \frac{[\Gamma,N_a],\theta \to \mathcal{R}}{[\Gamma],\theta,N_a \to \mathcal{R}} \quad \|_l \quad \frac{[\Gamma],\theta \to [P_a]}{[\Gamma],\theta \to P_a} \quad \|_r \\ &\quad \overline{[\Gamma] \xrightarrow{A_n} [A_n]} \quad I_l \quad \overline{[\Gamma],A_p] - A_p \to} \quad I_r \\ &\quad \overline{[\Gamma],\theta,\bot \to \mathcal{R}} \quad false_l \quad \frac{[\Gamma],\theta \to \mathcal{R}}{[\Gamma],\theta,true \to \mathcal{R}} \quad true_l \quad \overline{[\Gamma] - true \to} \quad true_r \\ &\quad \overline{[\Gamma],\theta,A,B \to \mathcal{R}} \quad \wedge_l \quad \frac{[\Gamma] - A \to \quad [\Gamma] - B \to}{[\Gamma] - A \wedge B \to} \quad \wedge_r \quad \overline{[\Gamma] \xrightarrow{A \to B} [R]} \quad \supset_l \quad \overline{[\Gamma],\theta,A \to B} \quad \supset_r \\ &\quad \overline{[\Gamma],\theta,A \to \mathcal{R}} \quad \exists_l \quad \overline{[\Gamma] - A_l(t/x] \to} \quad \exists_r \quad \overline{[\Gamma] \xrightarrow{A[t/x]} [R]} \quad \forall_l \quad \overline{[\Gamma],\theta \to A} \quad \forall_r \\ &\quad \overline{[\Gamma],\theta,\exists yA \to \mathcal{R}} \quad \exists_l \quad \overline{[\Gamma] - A_l(t/x] \to} \quad \exists_r \quad \overline{[\Gamma] \xrightarrow{A[t/x]} [R]} \quad \forall_l \quad \overline{[\Gamma],\theta \to A} \quad \forall_r \\ \hline \end{split}$$

Playing with polarities

$$\{a,a\supset b,b\supset c\}$$

Playing with polarities

Playing with polarities

Changing polarities doesn't affect provability:

$$LJF^t$$

$$\mathcal{P}; \Gamma \longrightarrow G$$

$$\frac{\mathcal{P}; [\Gamma] \longrightarrow [L_1] \qquad \cdots \qquad \mathcal{P}; [\Gamma] \longrightarrow [L_n] \qquad \mathcal{P} \cup \Delta_P; [\Gamma \cup \Delta_L] \longrightarrow [R]}{\mathcal{P}; [\Gamma] \longrightarrow [R]} mc$$

Changing polarities doesn't affect provability:

$$LJF^t$$

$$\mathcal{P}; \Gamma \longrightarrow G$$

$$\frac{\mathcal{P}; [\Gamma] \longrightarrow [L_1] \qquad \cdots \qquad \mathcal{P}; [\Gamma] \longrightarrow [L_n] \qquad \mathcal{P} \cup \Delta_P; [\Gamma \cup \Delta_L] \longrightarrow [R]}{\mathcal{P}; [\Gamma] \longrightarrow [R]} mc$$

Proposition: *LJF^t* is sound and complete w.r.t. *LJF*

Agenda

- Motivational Examples
- Focusing
- **■** Finite Successes and Finite Failures
- Applications
- Conclusions and Future Works

Tables are a partially ordered set of lemmas

$\mathcal{T} = \langle \mathcal{A}, \prec angle$

Multi Cut Derivation

$$\frac{\Gamma \longrightarrow A_1 \quad \cdots \quad \Gamma \longrightarrow A_n \quad \Gamma, A_1, \dots, A_n \longrightarrow G}{\Gamma \longrightarrow G} mc$$

Tables are a partially ordered set of lemmas

$$\mathcal{T} = \langle \mathcal{A}, \prec
angle$$

Multi Cut Derivation

$$\frac{\Gamma \longrightarrow A_1 \quad \cdots \quad \Gamma \longrightarrow A_n \quad \Gamma, A_1, \dots, A_n \longrightarrow G}{\Gamma \longrightarrow G} mc$$

Where do tables come from:

- Interactive theorem proving Boyer & Moore;
- Logic Programming *Memoization*;
- In *Proof Carrying Code*, can be extracted from an known proof (e.g. depth first traversal);

Consider: Horn Theory and Tables composed only of atoms

Proposition 1. Let Γ be a set of Horn clauses, $A \in \mathcal{P} \cap \Gamma$, and Ξ be an arbitrary LJF^t proof tree for \mathcal{P} ; $[\Gamma]_{-G} \rightarrow$. Then every occurrence of a sequent with right-hand side the atom A is the conclusion of an $I_r^t(A)$ rule.

Consider: Horn Theory and Tables composed only of atoms

Proposition 1. Let Γ be a set of Horn clauses, $A \in \mathcal{P} \cap \Gamma$, and Ξ be an arbitrary LJF^t proof tree for \mathcal{P} ; $[\Gamma]_{-G} \rightarrow$. Then every occurrence of a sequent with right-hand side the atom A is the conclusion of an $I_r^t(A)$ rule.

Coming back to the Example

$$\frac{ \frac{\{ \operatorname{path} \ a_3 \ a_4 \}; [\varGamma, \operatorname{path} \ a_3 \ a_4] \overset{\operatorname{arr} \ a_1 \ a_3}{\longrightarrow} [\operatorname{arr} \ a_1 \ a_3]}{\{ \operatorname{path} \ a_3 \ a_4 \}; [\varGamma, \operatorname{path} \ a_3 \ a_4] \longrightarrow [\operatorname{arr} \ a_1 \ a_3]}}{\{ \operatorname{path} \ a_3 \ a_4 \}; [\varGamma, \operatorname{path} \ a_3 \ a_4] - \operatorname{arr} \ a_1 \ a_3} \longrightarrow \frac{\{ \operatorname{path} \ a_3 \ a_4 \}; [\varGamma, \operatorname{path} \ a_3 \ a_4] - \operatorname{path} \ a_3 \ a_4 \}}{\{ \operatorname{path} \ a_3 \ a_4 \}; [\varGamma, \operatorname{path} \ a_3 \ a_4] - \operatorname{arr} \ a_1 \ a_3 \wedge \operatorname{path} \ a_3 \ a_4 \}} I_r^t} \frac{\{ \operatorname{path} \ a_3 \ a_4 \}; [\varGamma, \operatorname{path} \ a_3 \ a_4] - \operatorname{arr} \ a_1 \ a_3 \wedge \operatorname{path} \ a_3 \ a_4 \}}{\{ \operatorname{path} \ a_3 \ a_4 \}; [\varGamma, \operatorname{path} \ a_3 \ a_4] \longrightarrow [\operatorname{path} \ a_1 \ a_4]} D_l^t, \forall_l^t, \forall_l^t, \forall_l^t, \downarrow_l^t \}}{\{ \operatorname{path} \ a_3 \ a_4 \}; [\varGamma, \operatorname{path} \ a_3 \ a_4] \longrightarrow [\operatorname{path} \ a_1 \ a_4]} D_l^t, \forall_l^t, \forall_l^t, \forall_l^t, \forall_l^t, \forall_l^t, \forall_l^t, \exists_l^t \}}$$

Consider: Horn Theory and Tables composed by atoms

Proposition 1. Let Γ be a set of Horn clauses, $A \in \mathcal{P} \cap \Gamma$, and Ξ be an arbitrary LJF^t proof tree for \mathcal{P} ; $[\Gamma]_{-G} \rightarrow$. Then every occurrence of a sequent with right-hand side the atom A is the conclusion of an $I_r^t(A)$ rule.

Coming back to the Example

$$\frac{\varGamma \longrightarrow A \qquad \varGamma \longrightarrow G}{\varGamma \longrightarrow A \land G} \Longrightarrow \frac{\mathcal{P}; [\varGamma] \longrightarrow [A] \qquad \mathcal{P} \cup \{A\}; [\varGamma, A] \longrightarrow [A \land G]}{\mathcal{P}; [\varGamma] \longrightarrow [A \land G]} mc$$

Consider: Horn Theory and Tables composed by literals

Use definitions (FOLD – McDowell & Miller):

$$\frac{\{\mathcal{P}; [\varGamma\theta], \Theta\theta \longrightarrow \mathcal{R}\theta \mid \theta = mgu(H, A) \text{ for some clause } H \stackrel{\Delta}{=} B\}}{\mathcal{P}; [\varGamma], \Theta, A \longrightarrow \mathcal{R}} \ \mathrm{Def}_l, A \notin \mathcal{P}$$

$$\frac{\mathcal{P}; [\Gamma]_{-B\theta} \to}{\mathcal{P}; [\Gamma]_{-A} \to} Def_r, A \notin \mathcal{P}, \text{ where } H \stackrel{\Delta}{=} B, \text{ and} H\theta = A$$

Consider: Horn Theory and Tables composed by literals

Use definitions (FOLD – McDowell & Miller):

$$\frac{\{\mathcal{P}; [\Gamma\theta], \Theta\theta \longrightarrow \mathcal{R}\theta \mid \theta = mgu(H, A) \text{ for some clause } H \stackrel{\Delta}{=} B\}}{\mathcal{P}; [\Gamma], \Theta, A \longrightarrow \mathcal{R}} Def_l, A \notin \mathcal{P}$$

$$\frac{\mathcal{P}; [\Gamma]_{-B\theta} \to}{\mathcal{P}; [\Gamma]_{-A} \to} \operatorname{Def}_r, A \notin \mathcal{P}, \text{ where } H \stackrel{\Delta}{=} B, \text{ and} H\theta = A$$

Theorem 1. Let \mathcal{D} be a set of definitions, Γ be a set of literals with positive polarity, and $L \in \Gamma$. Let Ξ be an arbitrary proof tree of \mathcal{P} ; $[\Gamma]_{-G} \to in FO\lambda^{\Delta t}$, then all subproofs Ξ' of Ξ , that prove the literal L, are trivial.

Agenda

- Motivational Examples
- Focusing
- Finite Successes and Finite Failures

Applications

■ Conclusions and Future Works

Declarative Interpretation for Memoization

Both finite successes and finite failures are stored in a table, and if:

- There is another attempt to prove a **finite success**, the proof search ends with success;
 - Follows from the previous result;

Declarative Interpretation for *Memoization*

Both finite successes and finite failures are stored in a table, and if:

- There is another attempt to prove a finite success, the proof search ends with success;
 - Follows from the previous result;
- There is another attempt to prove a **finite failure**, this proof search fails immediately
 - Follows from the following result:

Proposition 1. Let A be an atom such that $\Gamma \longrightarrow A$ is not provable in $FO\lambda^{\Delta}$, and $A \in \mathcal{P}$. Let Ξ be an arbitrary $FO\lambda^{\Delta t}$ derivation for \mathcal{P} ; $[\Gamma]_{-G} \longrightarrow$. Then all sequents in Ξ , with right-hand side A, are open leafs.

Proof Carrying Code – Table as Proof Objects

If tables are used as proof objects they seem to enjoy the following crucial properties:

- Small
- Easy to Check,
- Flexible

Proposition 1. Let Ξ be a LJF proof of $\Gamma \longrightarrow G$, and let \mathcal{T} be a table obtained from Ξ . There exists a proof for $mcd(\mathcal{T}, \Gamma \longrightarrow G)$ such that all of its branches have trivial proofs.

Agenda

- Motivational Examples
- Focusing
- Finite Successes and Finite Failures
- Applications
- **Conclusions and Future Works**

Conclusions and Future Works

- Extend these results to stronger logics
 - Hereditary Harrop Formulas;
 - mu-Mall (Sequent calculus with Induction and Co-induction).
- Investigate connections with Interactive Theorem Proving
 - Use a sequence of lemmas to prove a theorem in such a way that the gaps between them are "easy" to be found.