ESO 208: Computational Methods in Engineering

Programming Assignment->1

Submitted by: Pranjal Singh

Roll no: 210743 Section : J8

Question 1:

(i). Bisection method:-

Test case 1:

f(x) = x - cos(x) Initial bracket = (0,1) Maximum iteration = 50 Maximum error% = 0.01%

Result:-

The root of the function = 0.739075

F(x) vs x graph :-

Test case 2:-

f(x) = exp(-x) - x Initial bracket = (0,1) Maximum iteration = 50 Maximum error% = 0.01%

Result:-

The root is 0.567169

f(x) vs x graph:-

Comment on convergence and stability:-

<u>Convergence:</u> It has a linear rate of convergence, we can predict the number of iterations required. $\left|e^{(i+1)}\right|_{-1}$

This implies linear rate convergence and having an error constant 0.5

<u>Stability:-</u> This method can be a bit slow sometimes, but this method is very stable. Whatever the initial guess, it always converges to a solution.

(ii). False position method:-

Test case 1:-

f(x) = x - cos(x) Initial bracket = (0,1) Maximum iteration = 50 Maximum error% = 0.01%

Result:-

The root is 0.739085

F(x) vs x graph:-

Test case 2:

f(x) = exp(-x) - x Initial bracket = (0,1) Maximum iteration = 50 Maximum error% = 0.01%

Result:-

The root is 0.567150

f(x) vs x graph:-

Comment on convergence and stability:-

<u>Convergence:</u> It has approximately 1.618. But for some problems it takes Less time than bisection. This implies that for some problems, the convergence rate is faster than the bisection method.

<u>Stability:-</u> False position method is a very stable method, it always converges to a solution. It has an error less than the bisection method. (error = 8.997e-4)

(iii). Fixed point method:-

Test case 1:-

f(x) = x - cos(x)Initial guess = 0 Maximum iteration = 50 Maximum error% = 0.01% phi(x) = cos(x)

Result:-

The root is 0.739106

F(x) vs x graph:-

Test case 2:

f(x) = exp(-x) - x Initial guess = 0 Maximum iteration = 50 Maximum error% = 0.01% Phi (x) = exp(-x)

Result:-

The root is 0.567157

f(x) vs x graph:-

Comment on convergence and stability:-

<u>Convergence:</u> It has a linear rate of convergence. But it does not guarantee that it will converge to a solution. When |g'(x)| < 1, then the method definitely converges to a solution.

Stability:-

This method is not much stable as it guarantees convergence only when |g'(x)| < 1. In other cases, it does not guarantee, but it may or may not converge.

(iv). Newton Raphson:-

Test case 1:-

$$f(x) = x - cos(x)$$

Initial guess = 0
Maximum iteration = 50
Maximum error% = 0.01%
 $f'(x) = 1 + sin(x)$

Result:-

The root is 0.739085

F(x) vs x graph:-

Test case 2:-

 $f(x) = \exp(-x) - x$ Initial guess = 0 Maximum iteration = 50 Maximum error% = 0.01% $f'(x) = -\exp(-x) - 1$

Result:-

The root is 0.567143

F(x) vs x graph:-

Comment on convergence and stability:-

<u>Convergence:</u> It has a quadratic rate of convergence, It is one of the fastest method.

<u>Stability:-</u> This method converges to a solution in a very less number of iterations. This method converges to a solution if the first differential of f(x) is not zero. This means newton raphson is unstable in some cases.

(v) Secant method:-

Test case 1:-

f(x) = x - cos(x) Initial bracket = (0,1) Maximum iteration = 50 Maximum error% = 0.01%

Result:-

The root is 0.739085

F(x) vs x graph:-

Test case 2:-

f(x) = exp(-x) - xInitial bracket = (0,1) Maximum iteration = 50 Maximum error% = 0.01%

Result:-

The root is 0.567143

F(x) vs x graph:-

Comment on convergence and stability:-

<u>Convergence:</u> It has a rate of convergence between 1 and 2. (approx 1.62). This method is less accurate than newton raphson.

<u>Stability:-</u> In this method, The root may not remain bracketed and there is always a possibility of instability, so the method can fall. The secant method works well when we choose the initial guess near the root.

Question 2:-

(i) Muller method:-

Test case 1:-

$$f(x) = x^4 - 7.4x^3 + 20.44x^2 - 24.184x + 9.6448 = 0$$

Initial guesses = $(-1,0,1)$
Maximum iterations = 50
Maximum relative approximate error = 0.01%

Result:-

The root is 0.800019.

f(x) vs x graph:-

Test case 2:-

$$f(x) = x^4 - 7.4x^3 + 20.44x^2 - 24.184x + 9.6448 = 0$$

Initial guesses = $(0,1,2)$
Maximum iterations = 50
Maximum relative approximate error = 0.01%

Result:-

The root is 2.199999

f(x) vs x graph:-

Comment on convergence and stability:-

<u>Convergence:</u> It has a rate of convergence 1.82, It is faster than secant but Slower than newton raphson.

Stability:- It may or may not converge to a solution and therefore unstable.

(ii). Bairstow method:-

Test case 1:-

$$f(x) = x^4 - 7.4x^3 + 20.44x^2 - 24.184x + 9.6448 = 0$$

Start with $\alpha_0 = -5$, $\alpha_1 = 4$

Maximum iterations = 50

Maximum relative approximate error = 0.01%

Result:-

f(x) vs x graph:-

Test case 2:-

$$f(x) = x^4 - 7.4x^3 + 20.44x^2 - 24.184x + 9.6448 = 0$$

Start with $\alpha_0 = -2$, $\alpha_1 = 2$
Maximum iterations = 50
Maximum relative approximate error = 0.01%

Result:-

The roots are
$$2.200000$$
, 0.800000 , $(2.200000 + 0.800000i)$, $(2.200000 - 0.800000i)$

f(x) vs x graph:-

Comment on convergence and stability:-

<u>Convergence:</u> It gets the local quadratic convergence of newton's method. So it has a quadratic rate of convergence.

<u>Stability:-</u> Generally this method is stable, but it is unstable for odd degree polynomials and has only one real root.