```
In [15]: import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
data = pd.read_csv("Mall_Customers.csv")
data
```

Out[15]:		CustomerID	Genre	Age	Annual Income (k\$)	Spending Score (1-100)
	0	1	Male	19	15	39
	1	2	Male	21	15	81
	2	3	Female	20	16	6
	3	4	Female	23	16	77
	4	5	Female	31	17	40
	195	196	Female	35	120	79
	196	197	Female	45	126	28
	197	198	Male	32	126	74
	198	199	Male	32	137	18
	199	200	Male	30	137	83

200 rows × 5 columns

```
In [16]: data.shape
Out[16]: (200, 5)
```

In [17]: # checking for NULL data in the dataset
data.isnull().sum()

Out[17]: CustomerID 0
Genre 0
Age 0
Annual Income (k\$) 0
Spending Score (1-100) 0
dtype: int64

In [19]: x.shape

Out[19]: (200, 2)

Before we apply the DBSCAN model, first, we need to obtain its two parameters.

1.MinPoints: We can obtain the minimum number of Points to be used to recognize a cluster 2.Epsilon (Eps)

In [20]: from sklearn.neighbors import NearestNeighbors # importing the libr neighb = NearestNeighbors(n_neighbors=2) # creating an object of th nbrs=neighb.fit(x) # fitting the data to the object distances,indices=nbrs.kneighbors(x) # finding the nearest neighbou

Sorting and plot the distances between the data points

In [21]: distances = np.sort(distances, axis = 0) # sorting the distances
distances = distances[:, 1] # taking the second column of the sorte
plt.rcParams['figure.figsize'] = (5,3) # setting the figure size
plt.plot(distances) # plotting the distances
plt.show() # showing the plot

From the above plot, we note the maximum curvature of the curve is about eight, and thus we picked our Eps as 8.

We now have our two parameters as: MinPoints = 4 Eps = 8

```
In [22]: from sklearn.cluster import DBSCAN
# cluster the data into five clusters
dbscan = DBSCAN(eps = 8, min_samples = 4).fit(x) # fitting the mode
labels = dbscan.labels_ # getting the labels
```

```
In [23]: plt.scatter(x[:, 0], x[:,1], c = labels, cmap= "plasma") # plotting
plt.xlabel("Income") # X-axis label
plt.ylabel("Spending Score") # Y-axis label
plt.show() # showing the plot
```

