CORRIGÉ: NORMES MATRICIELLES – CCP PC 2002

Partie I

- a) Soit $M \in M_{n+1}(\mathbb{C})$. Notons $\chi_M = \det(M XI_{n+1})$ le polynôme caractéristique de M. χ_M est de degré **I.1** $n+1 \ge 1$, donc admet au moins une racine dans $\mathbb C$, donc M admet au moins une valeur propre λ .
 - **b**) Soit u l'endomorphisme de \mathbb{C}^{n+1} canoniquement associé à M. Soit V_1 un vecteur propre associé à λ . D'après le théorème de la base incomplète , il existe $V_2,...,V_{n+1}$ tels que B' = $(V_1, V_2, ..., V_{n+1})$ soit une base de \mathbb{C}^{n+1} . Soit Q la matrice de passage de la base canonique

à la base B' et M' =
$$mat_{B'}(u)$$
. On a : $u(V_1) = \lambda V_1$ donc M' =
$$\begin{pmatrix} \lambda & m'_{1,2} & \cdots & m'_{1,n+1} \\ 0 & m'_{2,2} & \cdots & m'_{2,n+1} \\ \vdots & \vdots & & \vdots \\ 0 & m'_{n+1,2} & \cdots & m'_{n+1,n+1} \end{pmatrix}$$

it is que B =
$$(V_1, V_2, ..., V_{n+1})$$
 soft the base de \mathbb{C}^{\times} . Soft \mathbb{Q} is matrice the passage that base canonique \mathbb{C}^{\times} is a label base B' et $\mathbb{M}' = mat_{\mathbb{B}'}(u)$. On a : $u(V_1) = \lambda V_1$ donc $\mathbb{M}' = \begin{pmatrix} \lambda & m'_{1,2} & \cdots & m'_{1,n+1} \\ 0 & m'_{2,2} & \cdots & m'_{2,n+1} \\ \vdots & \vdots & & \vdots \\ 0 & m'_{n+1,2} & \cdots & m'_{n+1,n+1} \end{pmatrix}$ Notons $\mathbb{N} = \begin{pmatrix} m'_{2,2} & \cdots & m'_{2,n+1} \\ \vdots & & \vdots & & \vdots \\ 0 & m'_{n+1,2} & \cdots & m'_{n+1,n+1} \end{pmatrix}$, $\mathbb{N} \in \mathbb{M}_n(\mathbb{C})$ et $\mathbb{L} = (m'_{1,2}, ..., m'_{1,n+1})$, $\mathbb{L} \in \mathbb{M}_{1,n}(\mathbb{C})$: $\mathbb{M}' = \mathbb{Q}^{-1}\mathbb{M}\mathbb{Q} = \begin{pmatrix} \lambda & \mathbb{L} \\ 0_{n,1} & \mathbb{N} \end{pmatrix}$

- c) D'après l'hypothèse faite au début de la question , N est trigonalisable , donc : $\exists H \in GL_n(\mathbb{C})$ tq $S = H^{-1}NH$ soit triangulaire supérieure. On a : $N = HSH^{-1}$ et $S \in T_n(\mathbb{C})$
- **d**) On pose $R' = \begin{pmatrix} 1 & 0_{1,n} \\ 0_{n,1} & H^{-1} \end{pmatrix}$: $R'R = I_{n+1}$, donc: $R \in GL_{n+1}(\mathbb{C})$ et $R^{-1} = R'$
- e) Soit $M''=R^{-1}M'R$. Posons $P=QR:M''=P^{-1}MP=\left(\begin{array}{cc}\lambda & LH\\ 0_{n,1} & S\end{array}\right)$; S est triangulaire supérieure donc M" aussi . En conclusion : M est trigonalisable
- **I.2** Si n = 1: toute matrice $M \in M_1(\mathbb{C})$ est triangulaire, donc trigonalisable.

D'après 1), si toute matrice $M \in M_n(\mathbb{C})$ est trigonalisable, alors toute matrice $M \in M_{n+1}(\mathbb{C})$ est trigonalisable. On peut conclure à l'aide du principe de récurrence que :

toute matrice carrée complexe est trigonalisable

- a) $\chi_G = det(G XI_3) = (1 X)^3$; 1 est valeur propre d'ordre 3 et $G \neq I_3 \Rightarrow dim\left[ker(G I_3)\right] \neq 3$ donc **I.3** G n'est pas diagonalisable.
 - **b)** $rg(G-I_3)=2$ donc dim $[\ker(G-I_3)]=1$, $u=e_1-e_3$ engendre $\ker(G-I_3)$ et tout autre vecteur propre est de la forme αu donc de première composante $\alpha \neq 1$. $\det(u, e_2, e_3) = 1$ donc B' = (u, e_2, e_3) est une base de \mathbb{C}^3 .

c)
$$Q = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$
 et $Q^{-1}GQ = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -4 & 3 \end{pmatrix}$. $L = (1,0)$ et $N = \begin{pmatrix} -1 & 1 \\ -4 & 3 \end{pmatrix}$. 1 est valeur propre double de N et $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ est vecteur propre associé. Soit $H = \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$; $S = H^{-1}NH = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$; $LH = (1,0)$; $P = QR = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$; $P^{-1}GP = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

- I.4 2 matrices semblables ont le même polynôme caractéristique; les valeurs propres d'une matrice triangulaire sont les termes de la diagonale . Donc si $A \in M_n(\mathbb{C})$ est semblable à $T \in T_n(\mathbb{C})$, alors les termes diagonaux de T sont les valeurs propres de A
- a) Par hypothèse : $j < i \Rightarrow s_{i,j} = t_{i,j} = 0$. Soit $U = ST = (u_{i,j}) : u_{i,j} = \sum_{k=1}^{n} s_{i,k} t_{k,j}$. Si i > j alors pour **I.5** $k < i : s_{i,k} = 0$ et pour $k \ge i$, $k > j \Rightarrow t_{k,j} = 0$ donc $u_{i,j} = 0$. Donc ST \in T_n(**C**). Enfin si i = j seul k = i donne un terme non nul: $u_{i,i} = s_{i,i} t_{i,i}$

- **b)** On prend $S = T : T^2 \in T_n(\mathbb{C})$, de t. diagonaux $(t_{i,i})^2$. Par récurrence : si $T^p \in T_n(\mathbb{C})$, de t. diagonaux $(t_{i,i})^p$, on prend $S = T^p$ d'où $T^{p+1} \in T_n(\mathbb{C})$, de t. diagonaux $(t_{i,i})^{p+1}$.
- **I.6** Soit $A \in \mathbb{M}_n(\mathbb{C})$. D'après 2), $\exists T \in T_n(\mathbb{C})$, $\exists P \in GL_n(\mathbb{C})$ tq $T = P^{-1}AP$. D'après 4), les termes diagonaux $t_{1,1},...,t_{n,n}$ de T sont les valeurs propres $\lambda_1,...,\lambda_n$ de A. D'après 5), les termes diagonaux de T^k sont $(\lambda_1)^k,...,(\lambda_n)^k$; d'après 4) et $T^k = P^{-1}A^kP$, ce sont les valeurs propres de A^k . Donc $\rho(A^k) = \max\left\{\left|(\lambda_i)^k\right|, 1 \le i \le n\right\} = (\max\{|\lambda_i|, 1 \le i \le n\})^k$ Conclusion: $\rho(A^k) = [\rho(A)]^k$
- **I.7** $\forall A \in M_n(\mathbf{C})$, $\overline{\psi}(A)$ existe et $\overline{\psi}(A) \geqslant 0$; $\psi(A) = 0 \Leftrightarrow A = 0_n$; $\forall A \in M_n(\mathbf{C})$, $\forall \lambda \in \mathbf{C}$, $\psi(\lambda A) = |\lambda| \psi(A)$ $\forall A, B \in M_n(\mathbf{C})$, $\psi(A + B) \leqslant \psi(A) + \psi(B)$: $\underline{\psi}$ est une norme sur $M_n(\mathbf{C})$ Soit $U \in M_n(\mathbf{C})$ tq $\forall i, j, u_{i,j} = 1$: $\overline{\psi}(U) = 1$, $U^2 = nU$ donc $\psi(U^2) = n$ et $\underline{\text{si } n \geqslant 2}$ l'inégalité : $\psi(U \times U) \leqslant \psi(U) \times \psi(U)$ n'est pas vérifiée , donc ψ n'est pas une norme matricielle
- **I.8** La norme N et une norme matricielle φ sont équivalentes car $M_n(\mathbf{C})$ est un EV de dim finie . Par définition : $\exists \alpha, \beta > 0 \ t \ q \ \forall A \in M_n(\mathbf{C}), \ \alpha \varphi(A) \leqslant N(A) \leqslant \beta \varphi(A)$ Alors $\forall A, B \in M_n(\mathbf{C}), \ N(AB) \leqslant \beta \varphi(AB) \leqslant \beta \varphi(A) \varphi(B) \leqslant \frac{\beta}{\sigma^2} N(A) N(B)$
- **I.10 a)** $\forall k \in \mathbb{N}^*, T^k = \begin{pmatrix} \lambda^k & k\lambda^{k-1}\mu \\ 0 & \lambda^k \end{pmatrix}$. A_k de terme général $a_{i,j}^{(k)}$ CV vers A si et seulement si $\forall i,j$, $a_{i,j}^{(k)} \rightarrow a_{i,j}$ qd $k \rightarrow +\infty$. Donc la suite $\left(T^k\right)$ CV ssi les suites complexes $\left(\lambda^k\right)$ et $\left(k\lambda^{k-1}\mu\right)$ CV; ssi $\left[|\lambda| < 1$ (la limite est alors 0_2)] ou $\left[\lambda = 1$ et $\mu = 0$ ($\forall k$, $T^k = I_2$) $\right]$
 - $\begin{array}{l} \textbf{b)} \ \exists \mathbf{P} \in \mathrm{GL}_2(\mathbf{C}) \ \mathrm{tq} \ \mathbf{P}^{-1} \mathbf{A} \mathbf{P} = \mathbf{D} = \left(\begin{array}{c} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right) \ . \ \mathrm{Alors} \ \mathbf{D}^k = \left(\begin{array}{c} (\lambda_1)^k & 0 \\ 0 & (\lambda_2)^k \end{array} \right) \ . \ \mathrm{D'après} \ 9) \ \left(\mathbf{A}^k \right) \ \mathrm{CV} \ \mathrm{ssi} \\ \left(\mathbf{D}^k \right) \ \mathrm{CV} \ . \ \mathrm{Les} \ \mathrm{cas} \ \mathrm{de} \ \mathrm{CV} \ \mathrm{sont} \ : \left\{ \begin{array}{c} |\lambda_i| < 1 \ \mathrm{pour} \ i = 1 \ \mathrm{et} \ 2 \ (\mathrm{limite} \ 0_2) \\ \lambda_i = 1 \ \mathrm{et} \ \left| \lambda_j \right| < 1 \ \mathrm{pour} \ i \neq j \\ \lambda_1 = \lambda_2 = 1 \end{array} \right.$
 - c) Si A n'est pas diagonalisable , nécéssairement ses valeurs propres sont égales . D'après 2) elle est trigonalisable : $\exists P \in GL_2(\mathbf{C})$ tq $P^{-1}AP = T = \begin{pmatrix} \lambda & \mu \\ 0 & \lambda \end{pmatrix}$ et $\mu \neq 0$ (sinon A serait diagonalisable) . Donc d'après a) , la suite $\begin{pmatrix} T^k \end{pmatrix}$ CV ssi $|\lambda| < 1$ et d'après 9) , $\begin{pmatrix} A^k \end{pmatrix}$ CV ssi $\begin{pmatrix} T^k \end{pmatrix}$ CV . Ici $\rho(A) = |\lambda|$. Donc $\begin{pmatrix} A^k \end{pmatrix}$ CV ssi $\rho(A) < 1$ et la limite est 0_2
 - **d)** D'après b) , si A est diagonalisable : $\left(A^k\right)$ CV vers 0_2 ssi $(|\lambda_1|<1)$ et $|\lambda_1|<1)$, ssi $\rho(A)<1$. En conclusion de b) et c) : $\left(A^k\right)$ CV vers 0_2 ssi $\rho(A)<1$

Partie II

- II.1 a) Posons $Y = AX : \forall i, y_i = \sum_{j=1}^n a_{i,j} x_j$. $\forall j, \left| x_j \right| \leq N_{\infty}(X) \Rightarrow \left| y_i \right| \leq \left(\sum_{j=1}^n \left| a_{i,j} \right| \right) N_{\infty}(X) \leq M_A N_{\infty}(X)$ donc $N_{\infty}(AX) \leq M_A N_{\infty}(X)$
 - $\begin{array}{l} \textbf{b)} \quad \textbf{C}^n \text{ est un EV de dim finie donc toute norme N sur } \textbf{C}^n \text{ est \'equivalente \`a la norme N}_\infty : \\ \exists \alpha\,,\, \beta>0 \text{ } t\, q \text{ } \forall X\in \textbf{C}^n\,,\, \alpha N_\infty(X)\leqslant N(X)\leqslant \beta N_\infty(X) \\ N(AX)\leqslant \beta N_\infty(AX)\leqslant \beta M_A N_\infty(X)\leqslant \beta M_A \frac{1}{\alpha}N(X)\leqslant C_A N(X) \text{ en posant } C_A=\frac{\beta}{\alpha}M_A \\ \end{array}$
 - c) $\forall X \neq 0$, $\frac{N(AX)}{N(X)} \leqslant C_A$. L'ensemble $\left\{\frac{N(AX)}{N(X)}, X \in \mathbf{C}^n \{0\}\right\}$ est une partie non vide et majorée de \mathbf{R} donc admet une borne supérieure.
 - **d)** Cette borne sup est le plus petit majorant et C_A est un majorant donc $\widetilde{N}(A) \leqslant C_A$. Dans le cas de la norme N_∞ , on peut prendre $C_A = M_A$ donc : $\widetilde{N}_\infty(A) \leqslant M_A$.

$$\mathbf{e)} \quad \mathbf{X}_0 = \left(\begin{array}{c} 1 \\ -1 \\ 1 \end{array} \right) \Rightarrow \mathbf{G} \mathbf{X}_0 = \left(\begin{array}{c} 0 \\ 3 \\ 10 \end{array} \right) \text{ . On a: } \mathbf{N}_\infty(\mathbf{X}_0) = 1 \text{ , } \mathbf{N}_\infty(\mathbf{G} \mathbf{X}_0) = 10 \text{ d'où } \frac{\mathbf{N}_\infty(\mathbf{G} \mathbf{X}_0)}{\mathbf{N}_\infty(\mathbf{X}_0)} = 10 \Rightarrow \widetilde{\mathbf{N}}_\infty(\mathbf{G}) \geqslant 10 \text{ .}$$

De plus $M_G=10$ donc $\widetilde{N}_{\infty}(G)\,{\leqslant}\,10$. Conclusion : $\boxed{\widetilde{N}_{\infty}(G)\,{=}\,M_G\,{=}\,10}$

II.2
$$\forall j$$
, $|y_j| = 1 \Rightarrow N_{\infty}(Y) = 1$. Soit $Z = AY$. $\forall i$, $|z_i| = \left|\sum_{j=1}^n a_{i,j}y_j\right| \leqslant \sum_{j=1}^n \left|a_{i,j}\right| \leqslant M_A$
Si $a_{i_0j} = 0$ alors $a_{i_0,j}y_j = 0 = \left|a_{i_0,j}\right|$, sinon $a_{i_0,j}y_j = \left|a_{i_0,j}\right|$ car $\forall u \in \mathbb{C}^*$, $u\frac{\overline{u}}{|u|} = |u|$. Donc $z_{i_0} = \sum_{j=1}^n \left|a_{i_0,j}\right| = M_A$
. $N_{\infty}(Z) = M_A \Rightarrow \frac{N_{\infty}(AY)}{N_{\infty}(Y)} = M_A \Rightarrow \left[\widetilde{N}_{\infty}(A) \geqslant M_A\right]$. En utilisant 1)d) on peut conclure: $\left[\widetilde{N}_{\infty}(A) = M_A\right]$

- **II.3** a) $\widetilde{N}(A) = 0 \Leftrightarrow \forall X \neq 0$, $N(AX) = 0 \Leftrightarrow \forall X \neq 0$, $AX = 0 \Leftrightarrow \forall X$, $AX = 0 \Leftrightarrow A = 0$
 - **b)** $\forall X \neq 0$, $\frac{N(\lambda AX)}{N(X)} = \frac{|\lambda|N(AX)}{N(X)} \leq |\lambda| \widetilde{N}(A) \text{ donc } \widetilde{N}(\lambda A) \leq |\lambda| \widetilde{N}(A)$
 - c) Si $\lambda \neq 0$: $\widetilde{N}(A) = \widetilde{N}(\frac{1}{\lambda}\lambda A) \leqslant \left|\frac{1}{\lambda}\right| \widetilde{N}(\lambda A) \Rightarrow |\lambda| \widetilde{N}(A) \leqslant \widetilde{N}(\lambda A)$ d'où $|\lambda| \widetilde{N}(A) = \widetilde{N}(\lambda A)$ Si $\lambda = 0$ on a égalité car les 2 membres sont nuls .
 - **d)** $\forall X \neq 0$, $N[(A+B)X] = N(AX+BX) \leqslant N(AX) + N(BX) \Rightarrow \frac{N[(A+B)X]}{N(X)} \leqslant \frac{N(AX)}{N(X)} + \frac{N(BX)}{N(X)} \leqslant \widetilde{N}(A) + \widetilde{N}(B)$ donc $\widetilde{N}(A+B) \leqslant \widetilde{N}(A) + \widetilde{N}(B)$
 - $\textbf{e)} \ \ \forall X \neq 0 \text{ , } \frac{N(AX)}{N(X)} \leqslant \widetilde{N}(A) \Rightarrow N(AX) \leqslant \ \widetilde{N}(A)N(X) \text{ et si } X = 0 \text{ les 2 membres sont nuls }.$
 - **f)** On déduit de a),c),d) que \widetilde{N} est une norme sur $M_n(\mathbb{C})$. De plus : $\forall A, B \in M_n(\mathbb{C})$, $\forall X \in \mathbb{C}^n$, $N(ABX) \leq \widetilde{N}(A)N(BX) \leq \widetilde{N}(A)\widetilde{N}(B)N(X)$ d'où : $\widetilde{N}(AB) \leq \widetilde{N}(A)\widetilde{N}(B)$ Conclusion : \widetilde{N} est une norme matricielle sur $M_n(\mathbb{C})$ (ce qui en prouve l'existence)
- **II.4 a)** Soit $\lambda \in Sp(A)$ et X un vecteur propre associé : $X \neq 0$ et $AX = \lambda X \Rightarrow \frac{N(AX)}{N(X)} = |\lambda|$ donc $|\lambda| \leq \widetilde{N}(A)$. En particulier pour λ telle que $|\lambda| = \rho(A)$. Donc $\rho(A) \leq \widetilde{N}(A)$
 - **b)** Si $A = I_n : \rho(A) = 1$ et $\forall X$, AX = X donc $\widetilde{N}(A) = 1$: on a égalité.
 - c) Si $A \neq 0_n$ alors $\widetilde{N}(A) \neq 0$ d'après 3)a) . Si de plus A est nilpotente , sa seule valeur propre est 0 donc $\rho(A) = 0$ et : $\rho(A) < \widetilde{N}(A)$
- **II.5** Si (A^k) converge vers 0_n alors $\widetilde{N}(A^k) \to 0$ qd $k \to +\infty$. $[\rho(A)]^k = \rho(A^k) \leqslant \widetilde{N}(A^k)$ donc $[\rho(A)]^k \to 0$ qd $k \to +\infty$. D'où: $\rho(A) < 1$. (Réciproque admise)
- **II.6** a) De l'inégalité vue en 5) on déduit pour $k \in \mathbb{N}^* : \rho(A) \leq \left[\widetilde{N}(A^k)\right]^{\frac{1}{k}}$
 - **b)** $\lambda \in Sp(A) \iff \alpha \lambda \in Sp(\alpha A) \text{ donc } \rho(\alpha A) = |\alpha| \rho(A)$

 - **d**) $\forall k \ge k_{\varepsilon}$, $\rho(A) \le \left[\widetilde{N}(A^k)\right]^{\frac{1}{k}} \le \rho(A) + \varepsilon$: c'est la définition de : $\lim_{k \to +\infty} \left[\widetilde{N}(A^k)\right]^{\frac{1}{k}} = \rho(A)$

Partie III

III.1
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 vérifie $A \geqslant 0$, $A \neq 0$ mais pas $A > 0$

- **III.2 a)** Soit U = AA'; V = BB'. $\forall i, j$, $u_{i,j} = \sum_{k=1}^{n} a_{i,k} a'_{k,j}$; $v_{i,j} = \sum_{k=1}^{n} b_{i,k} b'_{k,j}$. Par hyp: $\forall i, j$, $0 \le a_{i,j} \le b_{i,j}$ et $0 \le a'_{i,j} \le b'_{i,j}$ donc $\forall i, j$, $0 \le u_{i,j} \le v_{i,j}$: $0 \le AA' \le BB'$
 - **b)** On prend A' = A et B' = B et on procède par récurrence.
 - c) Rappelons que $\widetilde{\mathrm{N}}_{\infty}(\mathrm{A}) = \mathrm{M}_{\mathrm{A}}$. Or $\forall i$, $\sum_{j=1}^{n} \left| a_{i,j} \right| = \sum_{j=1}^{n} a_{i,j} \leqslant \sum_{j=1}^{n} b_{i,j}$ d'où en passant au sup : $\mathrm{M}_{\mathrm{A}} \leqslant \mathrm{M}_{\mathrm{B}}$ donc $\widetilde{\mathrm{N}}_{\infty}(\mathrm{A}) \leqslant \widetilde{\mathrm{N}}_{\infty}(\mathrm{B})$
 - **d)** D'après b) et c): $\forall k$, $0 \le A^k \le B^k \Rightarrow \widetilde{N}_{\infty}(A^k) \le \widetilde{N}_{\infty}(B^k) \Rightarrow \left[\widetilde{N}_{\infty}(A^k)\right]^{\frac{1}{k}} \le \left[\widetilde{N}_{\infty}(B^k)\right]^{\frac{1}{k}}$ d'où en passant àla limite: $\rho(A) \le \rho(B)$

- e) Par hyp: $\forall i,j$, $0 \le a_{i,j} < b_{i,j}$. Si $A \ne 0_n$, soit $c = \sup_{i,j} \{ \frac{a_{i,j}}{b_{i,j}} \}$. On a un nombre fini de termes tous strictement inférieurs à 1 et non tous nuls donc c < 1 et c > 0. Si $A = 0_n$ tout $c \in]0,1[$ convient. $\forall i$, $a_{i,j} \le cb_{i,j}$ donc $A \le cB$
 - D'après d) et II 6)b) : $\rho(A) \le c\rho(B)$. Enfin B admet au moins une valeur propre non nulle car $Tr(B) = \sum_{i=1}^n b_{i,i} > 0$ et Tr(B) est la somme des valeurs propres de B . Donc $\rho(B) > 0$ et c < 1 donc $c\rho(B) < \rho(B)$ et en conclusion : $\rho(A) < \rho(B)$
- III.3 Soit $V \in \mathbf{C}^n$ tq $\forall i$, $v_i = 1$. $AV = \alpha V$ donc $\boxed{\alpha \in Sp(A)}$ (et $\alpha \geqslant 0$). On en déduit que : $\alpha \leqslant \rho(A)$. Pour cette matrice on a : $M_A = \alpha$ et d'après II 2) : $\widetilde{N}_{\infty}(A) = M_A = \alpha$; d'après II 4)a) $\rho(A) \leqslant \widetilde{N}_{\infty}(A)$ donc : $\boxed{\widetilde{N}_{\infty}(A) = \rho(A) = \alpha}$
- **III.4** Si $\alpha=0$ l'inégalité $\alpha\leqslant \rho(A)$ est évidente . Si $\alpha>0$, on a $\forall i$, $\sum_{j=1}^n b_{i,j}=\frac{\alpha}{\alpha_i}\sum_{j=1}^n a_{i,j}=\alpha$ B vérifie les hypothèses de 3) donc $\rho(B)=\alpha$. De plus $\forall i,j$, $0\leqslant b_{i,j}\leqslant a_{i,j}$ donc $0\leqslant B\leqslant A$ et d'après 2)d) : $\rho(B)\leqslant \rho(A)$. Donc $\alpha\leqslant \rho(A)$ et $\alpha=\min_{1\leqslant i\leqslant n}\sum_{j=1}^n a_{i,j}$

On a déjà vu que $\rho(A) \leq M_A$ et $M_A = \max_{1 \leq i \leq n} \sum_{j=1}^n |a_{i,j}| = \max_{1 \leq i \leq n} \sum_{j=1}^n a_{i,j}$

- III.5 Soit $U = AD_x : \forall i, j$, $u_{i,j} = x_j a_{i,j}$. Soit $V = D_x^{-1}U : \forall i, j$, $v_{i,j} = \frac{1}{x_i} u_{i,j} = \frac{x_j}{x_i} a_{i,j}$. A et V sont semblables donc $\rho(A) = \rho(V)$. Notons $Y = AX : \sum_{j=1}^n v_{i,j} = \frac{1}{x_i} \sum_{j=1}^n x_j a_{i,j} = \frac{y_i}{x_i}$ donc d'après 4) : $\min_i \frac{y_i}{x_i} \le \rho(V) \le \max_i \frac{y_i}{x_i}$ d'où : $\min_i \frac{(AX)_i}{x_i} \le \rho(A) \le \max_i \frac{(AX)_i}{x_i}$
- **III.6** Si X est vecteur propre strictement positif de A : $AX = \lambda X$ et on peut appliquer 5) : $\forall i$, $\frac{(AX)_i}{x_i} = \lambda$ donc $\lambda \leq \rho(A) \leq \lambda$ donc $\lambda = \rho(A)$; les ensembles $\left\{\min_i \frac{(AX)_i}{x_i}, X > 0\right\}$ et $\left\{\max_i \frac{(AX)_i}{x_i}, X > 0\right\}$ admettent $\rho(A)$ pour respectivement maximum et minimum .