Functional Programming in Typed Racket

Florian Biermann fbie@itu.dk

IT University of Copenhagen & UCAS

2016-05-26

Just call me Florian!

▶ I am from Germany and live in Denmark.

- ▶ I am from Germany and live in Denmark.
- Second year PhD student at IT University of Copenhagen and UCAS.

- ▶ I am from Germany and live in Denmark.
- Second year PhD student at IT University of Copenhagen and UCAS.
- My Chinese is really bad (but I am trying to learn!)

- ▶ I am from Germany and live in Denmark.
- Second year PhD student at IT University of Copenhagen and UCAS.
- My Chinese is really bad (but I am trying to learn!)
- If you do not understand what I say or if I speak too fast, please tell me right away!

GitHub Course Page

All slides and course materials are available on:

https://github.com/fbie/parallel-functional-lectures

Functional programming is old but recently it has become very popular!

▶ Makes it easier to think about what a program does.

- Makes it easier to think about what a program does.
- ► Parallel in its nature → easy to parallelize (next lecture).

- ▶ Makes it easier to think about what a program does.
- Parallel in its nature → easy to parallelize (next lecture).
- Used in financial industry, modern compilers and more.

- Makes it easier to think about what a program does.
- ► Parallel in its nature → easy to parallelize (next lecture).
- Used in financial industry, modern compilers and more.
- Jobs in functional programming pay better!

Racket and its sister-language **Typed Racket** are Scheme-dialects.

Racket and its sister-language **Typed Racket** are Scheme-dialects.

Racket is dynamically typed, Typed Racket has a static, strong type system.

Racket and its sister-language **Typed Racket** are Scheme-dialects.

- Racket is dynamically typed, Typed Racket has a static, strong type system.
- Functional language, no side-effects (mostly).

Racket and its sister-language **Typed Racket** are Scheme-dialects.

- Racket is dynamically typed, Typed Racket has a static, strong type system.
- ► Functional language, no side-effects (mostly).
- Good for meta-programming (we won't look at that).

Hello World in Typed Racket

```
;; This is a comment!
;; Tell the run-time, which language to use.
#lang typed/racket

;; Now, print something.
(print "Nihao!")
```

A More Interesting Program

```
#lang typed/racket
;; Define x as the result of the computation.
(define x (* (+ 2 4) (+ 42 9)))
```

A More Interesting Program

```
#lang typed/racket
;; Define x as the result of the computation.
(define x (* (+ 2 4) (+ 42 9)))
We can check its value in the interactive mode:
> x
59
```

Do You Think This Looks Strange?

In Racket, all expressions are written like this:

```
(function arg1 arg2 ... argN)
```

Do You Think This Looks Strange?

In Racket, all expressions are written like this:

```
(function arg1 arg2 ... argN)
```

Operators are also just functions:

$$\begin{array}{cccc} (+ & x & y) & \Rightarrow & x + y \\ (> & x & y) & \Rightarrow & x > y \\ (/ & x & y) & \Rightarrow & \frac{x}{y} \\ (f & x & y) & \Rightarrow & f(x, y) \end{array}$$

Do You Think This Looks Strange?

In Racket, all expressions are written like this:

Operators are also just functions:

$$\begin{array}{cccc} (+ & x & y) & \Rightarrow & x + y \\ (> & x & y) & \Rightarrow & x > y \\ (/ & x & y) & \Rightarrow & \frac{x}{y} \\ (f & x & y) & \Rightarrow & f(x, y) \end{array}$$

Some functions are variadic:

$$(+ x y z) \Rightarrow x + y + z$$

Local Bindings

Just like local variables in Java, but you can never change them!

What does this program do?

Note: You cannot reference x and y after the last closing parenthesis of the let expression!

The Same Program in Java

```
public static void main(String[] args) {
  int x = 2 * 16;
  int y = 3 * 17;
  System.out.println(x + y);
}
```

```
#lang typed/racket
(: times-two (-> Number Number))
(define (times-two x)
  (* 2 x))
```

```
#lang typed/racket
(: times-two (-> Number Number))
(define (times-two x)
  (* 2 x))
```

Several new things on this slide:

```
#lang typed/racket
(: times-two (-> Number Number))
(define (times-two x)
  (* 2 x))
```

Several new things on this slide:

► Functions need no return statement. Their return value is the last executed statement!

```
#lang typed/racket
(: times-two (-> Number Number))
(define (times-two x)
  (* 2 x))
```

Several new things on this slide:

- ► Functions need no return statement. Their return value is the last executed statement!
- Type annotations start with : and describe the type of a symbol.

```
#lang typed/racket
(: times-two (-> Number Number))
(define (times-two x)
  (* 2 x))
```

Several new things on this slide:

- ► Functions need no return statement. Their return value is the last executed statement!
- Type annotations start with : and describe the type of a symbol.
- ► The type of times-two is Number → Number.

Types in Typed Racket

We write the function type $A \rightarrow B$ as:

$$(-> A B)$$

where A is the parameter type and B is the return type.

Types in Typed Racket

We write the function type $A \rightarrow B$ as:

$$(-> A B)$$

where A is the parameter type and B is the return type.

Which types are parameter types, which ones are return types?

A Second Function

A Second Function

Conditionals have the form (if B E1 E2).

Polymorphic Types

Polymorphic types in Typed Racket are very explicit:

```
(: twice (All (A) (-> A (Pairof A A))))
(define (twice a)
  (cons a a))
```

Polymorphic Types

Polymorphic types in Typed Racket are very explicit:

```
(: twice (All (A) (-> A (Pairof A A))))
(define (twice a)
  (cons a a))
```

"For all types A, the type of twice is such that iff you pass it a value of some type A it will return a pair of type A \times A."

Polymorphic Types

Polymorphic types in Typed Racket are very explicit:

```
(: twice (All (A) (-> A (Pairof A A))))
(define (twice a)
  (cons a a))
```

"For all types A, the type of twice is such that iff you pass it a value of some type A it will return a pair of type A \times A."

It's just like generic types in Java!

The Same Program in Java

```
public static Pairof <A, A> twice(A a) {
  return new Pairof <A, A>(a);
}
```

Note: There is no build-in pair type in Java :(

State is Immutable!

You cannot change a variable's value. Instead, use **recursion**:

```
(: is-even? (-> Integer Boolean))
(define (is-even? n)
  (if (< 1 n)
        (is-even? (- n 2))
        (= n 0)))</pre>
```

State is Immutable!

You cannot change a variable's value. Instead, use **recursion**:

Now, we can call the function:

```
> (is-even? 1)
#f
```

State is Immutable!

You cannot change a variable's value. Instead, use **recursion**:

Now, we can call the function:

```
> (is-even? 1)
#f
> (is-even? 2048)
#t
```

The Same Program in Java

```
public static bool isEven(int n) {
  while (1 < n)
    n = n - 2;
  return n == 0;
}</pre>
```

Pattern Matching

In functional languages, you can **decompose** values and structs using the match construct. This is called **pattern matching**.

```
(: is-even? (-> Integer Boolean))
(define (is-even? n)
  (match n
      [0 #t]
      [1 #f]
      [_ (is-even? (- n 2))]))
```

_ means "any other value". It must always come last!

Anonymous Functions

You can define functions without giving them a name. Such functions are called **lambda expressions**:

```
> ((lambda (x) x) 2)
2
```

Anonymous Functions

You can define functions without giving them a name. Such functions are called **lambda expressions**:

```
> ((lambda (x) x) 2)
2
```

Here, we have defined a lambda expression and applied it to the value 2. We call this function the **identity function**. The line above is equal to

$$((\lambda x.x)2)$$

Anonymous Functions

You can define functions without giving them a name. Such functions are called **lambda expressions**:

```
> ((lambda (x) x) 2)
2
```

Here, we have defined a lambda expression and applied it to the value 2. We call this function the **identity function**. The line above is equal to

$$((\lambda x.x)2)$$

We will often come across lambda expressions in functional programming!

Structs in Typed Racket

Structs are containers for values.

Structs in Typed Racket

Structs are containers for values.

Next, we will do a live coding session!

► I code on the big screen and show you how to do functional programming in Racket.

- ► I code on the big screen and show you how to do functional programming in Racket.
- You help with ideas and suggestions and experiment yourselves!

- ► I code on the big screen and show you how to do functional programming in Racket.
- You help with ideas and suggestions and experiment yourselves!
- All code we write will be available on
 - ► github.com/fbie/parallel-functional-programming

- ► I code on the big screen and show you how to do functional programming in Racket.
- You help with ideas and suggestions and experiment yourselves!
- All code we write will be available on
 - ► github.com/fbie/parallel-functional-programming
- You can download Racket from
 - ► racket-lang.org

Java Equivalent to Maybe

```
public abstract class Maybe<A> {}
public class None < A > extends Maybe < A > {
  public None() {}
}
public class Some < A > extends Maybe < A > {
  public final A a;
  public Some(A a) {
    this.a = a;
```

Singly-Linked Cons List 1/2

Singly-Linked Cons List 1/2

```
(define xs (cons 'a (cons 'b
          (cons 'c (cons 'd (cons 'e '()))))))
Get the first element of xs, the "head":
> (first xs)
'a
> (cdr xs)
'a
```

Singly-Linked Cons List 1/2

```
(define xs (cons 'a (cons 'b
     (cons 'c (cons 'd (cons 'e '()))))))
Get the first element of xs, the "head":
> (first xs)
, a
> (cdr xs)
, a
Get the remaining part of xs, the "tail":
> (rest xs)
'('b 'c 'd 'e)
> (cdr xs)
'('b'c'd'e)
```

Singly-Linked Cons List 2/2

References to tail **cannot be changed**, because all **references are immutable**:

Singly-Linked Cons List 2/2

References to tail **cannot be changed**, because all **references are immutable**:

If we want to remove an element, we must build a new list, but we can re-use the tail of the element that we have deleted:

(remove xs 'c)
$$(a_0 \rightarrow b_0 \rightarrow c_0 \rightarrow d_0 \rightarrow e_0 \emptyset$$

Singly-Linked Cons List 2/2

References to tail **cannot be changed**, because all **references are immutable**:

If we want to remove an element, we must build a new list, but we can re-use the tail of the element that we have deleted:

Java Equivalent to Cons List

```
public abstract class LinkedList <A> {}
public class Nil<A> extends LinkedList<A> {
  public Nil() {}
}
public class Cons<A> extends LinkedList<A> {
  public final A a;
  public final LinkedList <A> tail;
  public Cons(A a, LinkedList <A> tail) {
    this.a = a;
    this.tail = tail;
```

Java Equivalent to Binary Tree

```
public abstract class BinaryTree <A> {}
public class Leaf <A> extends BinaryTree <A> {
  public final A a;
  public Leaf(A a) {
    this.a = a;
public class Node<A> extends BinaryTree<A> {
  public final BinaryTree <A> left, right;
  public Node(BinaryTree < A > left,
              BinaryTree < A > right) {
    this.left = left; this.right = right;
```