

# Università degli studi di Udine Docenti *Piazza Carla* e *Puppis Gabriele*

# Relazione di Laboratorio di Algoritmi e Strutture Dati



| 1. INTRODUZIONE                       | 3  |
|---------------------------------------|----|
| 1.1 Obiettivo                         | 3  |
| 1.2 Realizzazione                     | 3  |
| 2. ALGORITMO QUICKSELECT              | 4  |
| 2.1 Descrizione                       | 4  |
| 2.1.1 Quick Sort                      | 4  |
| 2.1.2 Quick Select                    | 4  |
| 2.2 Implementazione                   | 4  |
| 2.3 Tempi                             | 5  |
| 2.3.1 Tempi previsti                  | 5  |
| 2.3.2 Tempi analizzati                | 5  |
| 2.4 Grafici                           | 7  |
| 3. HEAPSELECT                         | 8  |
| 3.1 Descrizione                       | 8  |
| 3.1.1 Heap                            | 8  |
| 3.1.2 Heap Select                     | 8  |
| 3.2 Implementazione                   | 8  |
| 3.3 Tempi                             | 9  |
| 3.3.1 Tempi previsti                  | 9  |
| 3.3.2 Tempi analizzati                | 9  |
| 3.4 Grafici                           | 11 |
| 4. ALGORITMO MEDIAN-OF-MEDIANS SELECT | 12 |
| 4.0 Versione implementata             | 12 |
| 4.1 Descrizione                       | 12 |
| 4.2 Implementazione                   | 12 |
| 4.3 Tempi                             | 14 |
| 4.3.1 Tempi previsti                  | 14 |
| 4.3.2 Tempi analizzati                | 14 |
| 5. PROGRAMMA PER LA RACCOLTA DEI DATI | 16 |
| 5.1 Generazione dei numeri casuali    | 16 |
| 5.2 Rilevazione dei tempi             | 17 |
| 6.ANALISI DEI DATI RACCOLTI           | 18 |
| 6.1 Grafici comparativi               | 18 |
| 6.2 Analisi dei dati                  | 18 |
| 7. STRUMENTI UTILIZZATI               | 20 |
| 8. BIBLIOGRAFIA                       | 23 |



## 0. COMPONENTI DEL GRUPPO

| Carpi Giulia       | 153207 | 153207@spes.uniud.it |
|--------------------|--------|----------------------|
| Gerotto Alessandro | 153736 | 153736@spes.uniud.it |
| Marchiol Pietro    | 152488 | 152488@spes.uniud.it |
| Mazzega Gabriele   | 152937 | 152937@spes.uniud.it |



#### 1. INTRODUZIONE

#### 1.1 Obiettivo

In questo progetto ci poniamo come obiettivo l'implementazione, l'analisi e il confronto dei tempi di esecuzione medi di tre algoritmi di selezione (dove con il termine "selezione" si intende il calcolo del k-esimo più piccolo elemento del vettore, ovvero quello che finirebbe in posizione k se il vettore venisse ordinato). I tre algoritmi considerati sono: QuickSelect, HeapSelect e Medians-of-medians select.

#### 1.2 Realizzazione

I tre algoritmi verranno implementati utilizzando il linguaggio C (scelto perché rinomato per la sua efficienza e migliore gestione della memoria rispetto agli altri linguaggi, che consentirà di ottenere risultati svincolati da fattori che non siano l'algoritmo in sé) e, per il calcolo dei tempi medi, realizzeremo un programma apposito, anch'esso in linguaggio C. Per la raccolta dei dati sperimentali sono stati utilizzati in input vettori di dimensione variabile, più precisamente è stata calcolata una funzione esponenziale per 100 dimensioni diverse, comprese tra 100 e 5000000.

Successivamente, per ognuno degli algoritmi, verrà effettuata un'analisi dei tempi di esecuzione in due versioni: tabellare e grafica. La prima per poter leggere in dettaglio i risultati ottenuti; la seconda per osservare qualitativamente l'andamento generale dell'algoritmo preso in considerazione.

Le tabelle saranno costruite utilizzando 15 campioni casuali, sorteggiati tra le dimensioni disponibili dei vettori. Conterranno i seguenti campi:

- la dimensione del vettore;
- il tempo trascorso dall'inizio alla fine dell'esecuzione dell'algoritmo (in nanosecondi);
- il numero di iterazioni dell'algoritmo effettuate prima del raggiungimento del tempo minimo Tmin<sup>1</sup>, calcolato in precedenza;
- il tempo medio di esecuzione dell'algoritmo su un input della dimensione sorteggiata;

Questi ultimi tre valori vengono calcolati tramite la seguente formula:

$$x_{medio\ complessivo} = \frac{\sum_{i=1}^{1000} x_i}{1000},$$

 $\forall x \in \{tempo\ trascorso, n^{\circ}\ iterazioni, tempo\ esecuzione\ medio\}$ 

I grafici verranno realizzati con Excel, in scala lineare e logaritmica.

In conclusione, verranno analizzati i dati degli algoritmi singolarmente; successivamente verranno comparati tra loro evidenziando eventuali differenze nelle rispettive esecuzioni.

$$1. T_{min} = R \left( \frac{1}{E} + 1 \right)$$



#### 2. ALGORITMO QUICKSELECT

#### 2.1 Descrizione

Quick Select è un algoritmo di selezione, basato sull'algoritmo Quick Sort.

#### 2.1.1 Quick Sort

Basato sul paradigma "divide et impera", Quick Sort è un algoritmo di ordinamento il cui tempo di esecuzione nel caso peggiore è pari a  $\Theta(n^2)$ , con un array di input di n numeri. Nonostante la sua lentezza nel caso peggiore, è mediamente molto efficiente, infatti spesso è considerato tra le soluzioni migliori per effettuare un ordinamento, avendo caso migliore e medio pari a  $\Theta(n * \log(n))$ .

L'implementazione dell'algoritmo consiste nel considerare inizialmente l'ultimo elemento del vettore come primo pivot (chiamato anche perno), partizionando l'array intorno ad esso. Quest'ultima operazione viene effettuata confrontando il perno con gli altri elementi, posizionandoli alla sua sinistra se minori o alla sua destra se maggiori. A questo punto, avremo il perno nella sua posizione definitiva e si effettuerà una chiamata ricorsiva sulla parte del vettore alla sua sinistra e una sulla parte alla sua destra.

#### 2.1.2 Quick Select

Quick Select è un algoritmo di selezione che si basa su Quick Sort. Come in esso, l'idea di base è partizionare ricorsivamente l'array di input. Diversamente da Quick Sort però, Quick Select opera soltanto su un lato della partizione, in base alla posizione del perno: se la posizione cercata è minore di quella del perno, verrà effettuata la chiamata a sinistra, al contrario, se maggiore, verrà effettuata a destra.

#### 2.2 Implementazione

Il seguente codice per Quick Select restituisce il k-esimo elemento più piccolo dell'array array[i...j].

```
32 ☐ int quickSelect(int *array, int i, int j, int k) {
34 🖃
          if(k > 0 && k <= j-i+1){}
35
              int pivot = partition(array, i, j);
36
37
              if(pivot-i == k-1) {
38 🖃
39
                  return array[pivot];
40
41 🖃
              else if(pivot-i > k-1) {
                  quickSelect(array, i, pivot-1, k);
42
43
44
45
                  quickSelect(array, pivot+1, j, k-pivot+i-1);
46
47
48
         else {
              return INT MIN;
49
50
```

Dopo l'esecuzione di "partition", eseguito alla riga 36, la variabile "pivot" contiene la posizione che avrebbe il valore array[j] (l'ultimo elemento), se il vettore fosse ordinato; inoltre il vettore chiamato "array" è diviso in due sotto-vettori, array[i...pivot-1] ed



array[pivot+1...j], tali che ogni elemento di array[i...pivot-1] è minore o uguale ad array[pivot], che a sua volta è minore a array[pivot+1...j]

$$\forall x \in array[i \dots pivot - 1], \forall y \in array[pivot + 1 \dots j]$$
$$\{x \leq array[piuvot] < y\}$$

La riga 38 controlla se la posizione trovata è la stessa di quella cercata (ovvero k), terminando la ricerca e restituendo il valore salvato nella posizione trovata; altrimenti viene effettuata una chiamata ricorsiva a sinistra (riga 41) o a destra (riga 44) del vettore, in base al valore che ha assunto la variabile "pivot".

#### 2.3 Tempi

#### 2.3.1 Tempi previsti

L'equazione di complessità dell'algoritmo Quick Select risulta:

$$T(n) = \begin{cases} \Theta(1), & n \le 1, \\ T(n-m) + \Theta(n), & n > 1 \end{cases}$$

dove m dipende dalla posizione che assumerebbe il pivot se il vettore fosse ordinato e  $1 \le m \le n$ .

Il caso migliore e quello medio presentano una complessità pari a  $\Theta(n)$ , mentre quello peggiore risulta  $\Theta(n^2)$ 

#### 2.3.2 Tempi analizzati

Il programma è stato eseguito per un'ora; tempo che si è ritenuto garantisse una stima adeguata dell'andamento dei tempi di esecuzione.

Dai dati raccolti è possibile osservare come il numero di iterazioni effettuate in un lasso di tempo pari a  $\underline{T}_{min}$  si normalizzi a 1 dopo poche esecuzioni, considerando il numero totale di esse che il programma effettua.

Inoltre, come si può osservare dalle <u>tabelle</u> poste alla fine della relazione, in un'ora di tempo l'algoritmo itera attraverso poche dimensioni diverse del vettore (52/100 totali). Questo risultato soddisfa le aspettative, dato che la complessità dell'algoritmo Quick Select nel caso peggiore è pari a  $\Theta(n^2)$ , come sopra riportato.



| N°<br>elementi | Tempo<br>trascorso | N° di<br>iterazioni | Tempo medio di esecuzione |
|----------------|--------------------|---------------------|---------------------------|
| 100            | 64,361             | 3,914               | 15,620                    |
| 214            | 83,193             | 1                   | 83,193                    |
| 332            | 155,539            | 0,999               | 155,539                   |
| 414            | 237,046            | 1                   | 237,046                   |
| 641            | 544,085            | 1                   | 544,085                   |
| 992            | 1332,720           | 1                   | 1332,720                  |
| 1377           | 2560,563           | 1                   | 2560,563                  |
| 1912           | 4912,811           | 0,999               | 4912,811                  |
| 2960           | 11783,702          | 1                   | 11783,702                 |
| 6362           | 53771,236          | 1                   | 53771,236                 |
| 8831           | 102900,543         | 1                   | 102900,543                |
| 10989          | 158014,986         | 1                   | 158014,986                |
| 13673          | 245204,749         | 1                   | 245204,749                |
| 17014          | 377621,133         | 0,999               | 377621,133                |
| 23616          | 710896,852         | 1,022               | 710896,852                |



#### 2.4 Grafici

## QuickSelect (scala lineare)



# QuickSelect (scala logaritmica)





#### 3. HEAPSELECT

#### 3.1 Descrizione

#### 3.1.1 Heap

La heap è un albero binario quasi completo (ovvero tutti i livelli dell'albero sono completi a parte l'ultimo, che è riempito da sinistra verso destra), dove ogni nodo ha una priorità e il genitore ha sempre priorità maggiore o uguale al figlio (nel caso di max-heap), altrimenti ha priorità minore o uguale (nel caso di min-heap). Questa struttura dati viene memorizzata tramite un vettore V sovradimensionato, contenente le chiavi che la costituiscono. É caratterizzata inoltre due attributi: lunghezza[V] (che indica la dimensione del vettore) e heapsize[V](che indica il numero di elementi della heap effettivamente presenti nel vettore).

Infine, essendo un albero binario, ogni nodo costituente la heap ha:

- priorità o chiave
- puntatori al genitore, al figlio sinistro ed al figlio destro

#### 3.1.2 Heap Select

L'algoritmo Heap Select utilizza due min-heap denominate H1 e H2. La prima heap H1 è costruita usando il vettore dato in input e non viene mai modificata durante l'esecuzione dell'algoritmo; la seconda heap H2 all'inizio contiene solamente un nodo, che è la radice di H1. All'i-esima iterazione della procedura, con i che va da 1 a k-1, l'algoritmo estrae la radice di H2, che corrisponde a un nodo x-i in H1, e reinserisce in H2 i nodi figli (sinistro e destro) di x-i nella heap H1. Dopo k-1 iterazioni la radice di H2 corrisponderà al k-esimo più piccolo elemento del vettore che è stato fornito in input. L'algoritmo ha complessità  $\Theta(n + k * log(k))$  sia nel caso peggiore, che nel caso medio.

#### 3.2 Implementazione

Nell'implementazione dell'algoritmo sono state utilizzate procedure (oltre a quella principale spiegata di seguito) congruenti con quelle viste nella parte teorica del corso, quali:

- heapify: assume che il figlio sinistro e destro del nodo preso in considerazione siano radici di heap, scambiandole eventualmente con il nodo stesso, in modo da ristabilire la proprietà delle heap;
- buildHeap: dato un vettore, scambia i nodi in modo tale da avere una heap;
- extractMin: estrae e rimuove il minimo dalla heap (nel caso di minHeap si tratta della radice);
- heapInsert: inserisce un nodo nella heap, eventualmente scambiandolo con il genitore, per ristabilire la proprietà delle heap



```
172 int heapSelect(Node *h1, Node *h2, int size1, int k) {
            Node leftChild, rightChild;
175
            h2[size2] = h1[0];
177
            size2++;
179
180
181 <del>|</del>
            for(int i=0; i<k-1; i++) {
182
183
184
                Node min = extractMin(h2, &size2);
185
                 if(left(min.index) < size1){</pre>
186
187
                     leftChild = h1[left(min.index)];
heapInsert(h2, leftChild, &size2);
188
190
191
                 if(right(min.index) < size1){</pre>
193
                     rightChild = h1[right(min.index)];
194
195
                     heapInsert(h2, rightChild, &size2);
196
197
            }
198
199
            return h2[0].key;
```

Nella riga 177 si può notare come la radice di H2 sia la medesima di quella di H1, osservato che, essendo H1 una minHeap, la sua radice è il minimo valore fra quelli inseriti.

Per k-1 volte, alla riga 184 viene estratto il valore minimo della minHeap H2, che corrisponderà alla sua radice, inserendo successivamente, solo nel caso in cui esistano in H1, il figlio sinistro e quello destro del nodo appena estratto.

Questo garantisce che, dopo k-1 iterazioni, la radice di H2 contenga il k-esimo elemento più piccolo del vettore.

#### 3.3 Tempi

#### 3.3.1 Tempi previsti

L'equazione di complessità dell'algoritmo Heap Select risulta:

$$T(n,k) = \begin{cases} \Theta(1), & n \le 1, \\ k * \log(k) + \Theta(n), & n > 1 \end{cases}$$

La complessità, data dalla somma dei costi delle procedure utilizzate, risulta essere O(k \* log(k) + n) in tutti i casi, dove k rappresenta il k-esimo elemento più piccolo.

Il fattore  $k * \log(k)$  dipende dal fatto che le procedure di estrazione e inserimento vengano effettuate su H2, la quale avrà sempre dimensione pari a c \* k, dove c è una costante.

#### 3.3.2 Tempi analizzati

Il programma è stato eseguito per un'ora; tempo che si è ritenuto garantisse una stima adeguata dell'andamento dei tempi di esecuzione.

Dai dati raccolti è possibile osservare come il numero di iterazioni effettuate in un lasso di tempo pari a  $\underline{T_{min}}$  si normalizzi a 1 dopo poche esecuzioni, considerando il numero totale di esse che il programma effettua. Risulta però migliore di Quick Select, osservando che il numero di cambiamenti di dimensione, prima che il valore delle iterazioni si normalizzi a 1, sono circa 10 in più rispetto all'algoritmo sopracitato.

Inoltre, come si può osservare nelle <u>tabelle</u> poste sotto, in un'ora di tempo l'algoritmo itera attraverso 91/100 dimensioni diverse del vettore, che rappresentano la quasi totalità.



Questo risultato soddisfa le aspettative, dato che la complessità dell'algoritmo Heap Select è minore di quella di Quick Select; dunque, nello stesso tempo è riuscito a terminare quasi il doppio di cambiamenti di dimensione del vettore rispetto al precedente.

| N° elementi | Tempo trascorso | N° di iterazioni | Tempo medio di esecuzione |
|-------------|-----------------|------------------|---------------------------|
| 100         | 51,291          | 10,724           | 5,211                     |
| 214         | 57,153          | 4,959            | 11,286                    |
| 414         | 55,686          | 1,995            | 28,313                    |
| 641         | 50,477          | 1                | 50,477                    |
| 992         | 87,822          | 1                | 87,822                    |
| 1377        | 128,242         | 1                | 128,242                   |
| 1912        | 188,171         | 1                | 188,171                   |
| 2960        | 309,983         | 1                | 309,983                   |
| 6362        | 750,703         | 1                | 750,703                   |
| 15253       | 1907,830        | 1                | 1907,830                  |
| 32780       | 4466,715        | 1                | 4466,715                  |
| 63153       | 9151,311        | 1                | 9151,311                  |
| 325357      | 56936,162       | 1                | 56936,162                 |
| 1082602     | 228333,593      | 1                | 228333,593                |
| 1869781     | 276132,450      | 1                | 276132,450                |



### 3.4 Grafici

# HeapSelect (Scala lineare)



Dimensione

# HeapSelect (Scala logaritmica)





#### 4. ALGORITMO MEDIAN-OF-MEDIANS SELECT

#### 4.0 Versione implementata

La versione dell'algoritmo implementata è quella definita "quasi in-place", ovvero non viene istanziato un nuovo vettore in cui salvare i mediani, ma viene fatta la ricorsione sul vettore iniziale, spostando eventualmente gli elementi.

#### 4.1 Descrizione

Come per gli algoritmi precedenti, l'idea alla base di Median of Medians è quella di partizionare ricorsivamente l'array in input; la peculiarità di questo algoritmo è quella di garantire una buona ripartizione dell'array, in modo tale da non ricadere mai nel caso pessimo di Quick Sort.

- 1. inizialmente si divide l'array in blocchi di dimensione 5, ottenendo n/5 blocchi;
- 2. si trovano n/5 mediani dei blocchi, che vengono spostati nelle prime n/5 posizioni del vettore, continuando ad iterare ricorsivamente fino a quando rimane 1 solo blocco di valori:
- 3. trovato il mediano dei mediani, si calcola la posizione che avrebbe se il vettore fosse ordinato (pivot)
- 4. se il pivot corrisponde alla chiave k passata, si è trovato l'elemento cercato, altrimenti si continua con una ricorsione a sinistra o destra in base al valore di esso

N.B.: Dalle nozioni teoriche si è osservato che nel calcolo della complessità della procedura, con blocchi di dimensione  $dim \ge 5$ , la serie geometrica che si ricava è di ragione < 1, dunque eliminabile nel calcolo. Per questo si è scelto una dimensione effettivamente pari a 5.

#### 4.2 Implementazione

```
int medianOfMedians(int* arr, int l, int r, int k, int size)
299 🗏 {
300
301 📥
                  int n = r - 1 + 1, pos, i, median;
302
303
                  int medOfMeds;
304
                 for (i = 0; i < n / blockSize; i++) {
    median = findMedian(arr + l + i * blockSize, blockSize);
    swap(arr + l + i * blockSize + median, arr + i + l);</pre>
305 🗀
306
307
308
309
310
                  if (i * 5 < n) {
311
                      median = findMedian(arr + l + i * blockSize, n % blockSize);
312
                      swap(arr + l + i * blockSize + median, arr + i + l);
313
314
315
316
317
318
                 if (i == 1) {
319
                      medOfMeds = arr[1 + i - 1];
320
321
322
                  else {
323 🖃
                      return medOfMeds = medianOfMedians(arr, l, l + i - 1, k, size);
325
326
327
```



Dalla riga 305, possiamo osservare come venga effettuata la divisione del vettore in blocchetti da 5. Per ognuno, viene trovato l'indice del mediano (utilizzando la procedura "findMedian") e viene spostato nelle prime posizioni, in modo tale che quando verrà fatta la chiamata ricorsiva per trovare il mediano dei mediani, la si farà solo sulle prime n/5 posizioni.

La procedura findMedian viene implementata ordinando<sup>1</sup> il blocco da 5 elementi, trovando il mediano, e restituendo la posizione del mediano nel vettore totale passato (il quale non è ordinato).

La condizione alla riga 311 effettua il controllo e la ricerca del mediano nel caso in cui l'ultimo blocco non abbia effettivamente 5 valori, ma  $n \mod (5)$ .

La porzione di codice alla riga 318 controlla il caso base della ricorsione; infatti, se è stata eseguita una sola iterazione, allora è presente solo un blocco; questo significa che il suo mediano è il mediano dei mediani. Al contrario viene continuata la ricerca ricorsiva sulle prime i posizioni, dove i rappresenta il numero di mediani trovati fino a quel momento.

```
328
                  = partition(arr, 1, size, medOfMeds);
329 🗀
               if (pos - 1 == k - 1) {
330
                   return medOfMeds;
331
332
333
               else if (pos - 1 > k - 1) {
334
335
                   return medianOfMedians(arr, 1, pos - 1, k, pos);
336
337 🖃
              else {
                   return medianOfMedians(arr, pos + 1, size, k - pos + 1 - 1, size);
338
339
```

Alla riga 328 viene calcolata e salvata nella variabile "pos" la posizione che avrebbe il mediano dei mediani se il vettore fosse ordinato.

Successivamente, si confronta il valore di "pos" con la posizione cercata(k):

- i due valori combaciano: il mediano dei mediani calcolato è proprio il valore che cercavamo
- pos > k: viene effettuata la chiamata ricorsiva a sinistra, perché il valore cercato ha posizione minore di quella del mediano, risultando quindi più piccolo di esso
- pos < k: viene effettuata la chiamata ricorsiva a destra, perché il valore cercato ha
  posizione maggiore di quella del mediano, risultando quindi più grande di esso</li>

il blocco viene ordinato da una procedura esterna alla findMedian; dunque, risulterà ordinato solo localmente alla procedura. L'algoritmo di ordinamento scelto è Insertion Sort, poiché lavorando con blocchi di dimensione costante, il costo è trascurabile.



#### 4.3 Tempi

#### 4.3.1 Tempi previsti

L'equazione di complessità dell'algoritmo Median of Medians Select risulta:

$$T(n) = \begin{cases} \Theta(1), & n \le 1, \\ T\left(\frac{n}{5}\right) + T\left(\frac{3}{4}n\right) + \Theta(n), & n > 1 \end{cases}$$

La soluzione dell'equazione è pari a  $\Theta(n)$ , poiché  $\frac{1}{5} + \frac{3}{4} < 1$ , dunque la serie geometrica è eliminabile nel calcolo.

Secondo le stime della complessità, i tempi medi di esecuzione di Median of Medians dovrebbero essere i più bassi tra i tre algoritmi descritti.

#### 4.3.2 Tempi analizzati

Il programma è stato eseguito per un'ora; tempo che si è ritenuto garantisse una stima adeguata dell'andamento dei tempi di esecuzione. Come si può analizzare dalle <u>tabelle</u> sotto riportate (e dalla tabella sottostante), questo algoritmo risulta l'unico fra i tre ad avere completato le 100 esecuzioni di variazione della dimensione. È, inoltre, possibile osservare come il numero di iterazioni effettuate in un lasso di tempo pari a <u>T<sub>min</sub></u> si normalizzi a 1 dopo molte più esecuzioni rispetto agli algoritmi precedenti.

| N° elementi | Tempo<br>Trascorso | N° di iterazioni | Tempo medio di esecuzione |
|-------------|--------------------|------------------|---------------------------|
| 100         | 5,358              | 21,137           | 2,076                     |
| 214         | 55,202             | 3,959            | 14,239                    |
| 414         | 53,473             | 2,977            | 18,337                    |
| 889         | 54,460             | 1,045            | 52,165                    |
| 1714        | 105,377            | 1                | 105,377                   |
| 4109        | 351,762            | 1                | 351,762                   |
| 9851        | 571,815            | 1                | 571,815                   |
| 23616       | 2422,745           | 1                | 2422,745                  |
| 56615       | 4459,005           | 1                | 4459,005                  |
| 135720      | 8450,542           | 1                | 8450,542                  |
| 325357      | 28826,085          | 1                | 28826,085                 |
| 970520      | 52955,227          | 1                | 52955,227                 |
| 2085716     | 82873,885          | 1                | 82873,885                 |
| 4018290     | 259619,419         | 1                | 259619,419                |
| 5000000     | 269238,266         | 1                | 269238,266                |



#### 4.4 Grafici

### MediansOfMediansSelect (scala lineare)



## MediansOfMediansSelect (scala logaritmica)



L'andamento generale della curva è corretto, prendendo in considerazione la complessità dell'algoritmo, ma non risulta essere precisa, presentando alcuni punti con dei picchi anomali.



#### 5. PROGRAMMA PER LA RACCOLTA DEI DATI

#### 5.1 Generazione dei numeri casuali

Per la generazione dei numeri casuali sono state usate due procedure principali, che forniscono due metodi distinti per generare un numero.

```
uint64_t xoshiro256ss(struct xoshiro256ss_state* state)
{
    uint64_t* s = state->s;
    uint64_t const result = rol64(s[1] * 5, 7) * 9;
    uint64_t const t = s[1] << 17;

    s[2] ^= s[0];
    s[3] ^= s[1];
    s[1] ^= s[2];
    s[0] ^= s[3];

    s[2] ^= t;
    s[3] = rol64(s[3], 45);
    return result;
}</pre>
```

La procedura determina un numero, generato in base allo stato "s" fornito, in modo pseudo casuale. Una volta determinato il numero, viene modificato lo stato per la generazione dei numeri successivi.

Il generatore xoshiro256\*\* è stato scelto per due motivi:

- l'ottima velocità di generazione garantisce una rapida popolazione dell'array con conseguente riduzione dei tempi di esecuzione totali
- la solidità dei principali test di "fitness" per PRNG garantisce una generazione priva di errori.

Sono inoltre stati presi in considerazione due punti:

• La generazione di questo algoritmo presenta una zona chiamata "zeroland" abbastanza vasta ovvero un possibile cluster di risultati simili in cui la maggior parte dei bit è zero (come visto nel randogramma sotto). Questo problema è stato preso in considerazione ma è stato valutato non influente sul risultato in quanto improbabile e non un aumento di complessità per un algoritmo di ordinamento.



Il nostro generatore



Jenkins's JSF PRNG



 Inoltre, visto che tutti i PRNG sono periodici, è stata considerata la possibilità che la sequenza di numeri generati, o periodo, si ripeta. Per questo algoritmo il periodo è tuttavia sufficientemente grande, perché questa occorrenza si verifichi nelle nostre simulazioni.

```
uint64_t next(uint64_t x) {
    uint64_t z = (x += 0x9e3779b97f4a7c15);
    z = (z ^ (z >> 30)) * 0xbf58476d1ce4e5b9;
    z = (z ^ (z >> 27)) * 0x94d049bb133111eb;
    return z ^ (z >> 31);
}
```

Il generatore xoshiro256\*\* necessita di uno stato con tutti i campi non nulli. Per questo scopo utilizziamo il PRNG Splitmix64 come generatore, e questo perché l'inizializzazione deve essere effettuata con un generatore molto diverso da quello inizializzato, in modo da evitare correlazione nei semi di generazione simili.

#### 5.2 Rilevazione dei tempi

Per la rilevazione dei tempi sono state utilizzate le due funzioni fornite dal Professore, "duration" e "getResolution". Nel main, sono stati utilizzati due for: il primo itera tra tutte e 100 le dimensioni del vettore (calcolate con la seguente formula:  $size = A * 2^{B*i}$ , dove

A e B sono opportune costanti con valori iniziali pari a A=100,  $B=\frac{\log_2\frac{5000000}{A}}{99}$ , poiché la dimensione del vettore deve variare tra 100 e 5000000), il secondo serve ad eseguire l'algoritmo fino a quando il tempo di esecuzione non supera una certa soglia (Tmin), anch'essa calcolata con una formula.

```
73 🖨
          for (int i = 0; i < 100; ++i) {
              size = A * pow(2, B * i);
for (int j = 0; j < POOL_SIZE; j++) {
74 _
75 🖨
76
                   cur_time = 0;
77
                   iter = 0;
78 🗀
                   do {
                       setState(&state, key);
79
80
                       buildArray(&state, arr, size);
81
82
83
                       clock_gettime(CLOCK_MONOTONIC, &start);
84
85
                       quickSelect(arr, 0, size - 1, size / 2);
86
87
                       clock_gettime(CLOCK_MONOTONIC, &end);
88
                       cur time = cur time + duration(start, end);
90
91
                       iter++:
92
93
                    while (cur_time < tmin);
94
95
                   fprintf(file, "Size: %d, Cur time: %f, Iter: %f\n", size, cur_time, iter);
                   fprintf(file, "%f\n\n", cur_time / iter);
96
97
               fprintf(file, "\n\n");
98
```



#### 6.ANALISI DEI DATI RACCOLTI

#### 6.1 Grafici comparativi

#### Comparazione (scala lineare)



#### Comparazione (scala logaritmica)



#### 6.2 Analisi dei dati

Come si può osservare dai grafici e come appreso dall'analisi dei singoli, Quick Select risulta il peggiore tra i tre algoritmi di selezione. Pur avendoli eseguiti tutti e tre per lo stesso lasso di tempo, è quello che effettua meno esecuzioni, dato il fatto che impiega più tempo ad effettuarne una, rispetto agli altri. Inoltre, data la sua complessità dell'ordine n², si può evincere come la curva cresca molto velocemente, al contrario degli altri che presentano una curva meno pendente.



Per quanto riguarda Heap Select, risulta l'algoritmo medio fra i tre, riuscendo ad effettuare iterazioni con dimensione crescente del vettore fino ad un valore finale pari a 1869781, il quale rappresenta il 91/100 delle dimensioni totali disponibili.

Nel primo grafico si osserva una sua discesa inaspettata, poiché per l'ultimo campione, l'algoritmo non è riuscito ad effettuare le 1000 iterazioni dell'ultima dimensione, usate per calcolare con una buona stima il tempo medio.

L'ultimo algoritmo analizzato è Median of Medians Select, il quale si riscontra essere il migliore, come rilevato dall'analisi teorica delle complessità. Il suo andamento risulta il più preciso, avendo completato tutte le dimensioni del vettore disponibili. Inoltre, la sua curva non supera mai nessuna delle altre due, identificandolo come il migliore algoritmo su tutte le dimensioni analizzate.



#### 7. STRUMENTI UTILIZZATI

#### Ambiente per i codici:

• Virtual machine VMware Workstation 16 Player

• SO: Linux Ubuntu 20.04

• RAM: 4 GB

• CPU: Intel core I7 8550 @ 1.80 GHz

#### Ambiente di esecuzione dei codici:

• SO: Linux Ubuntu

• RAM: 16GB

• CPU: Intel core I5 10600kf

#### Ambiente di elaborazione dei dati:

Microsoft Word

• Microsoft Excel

Google docs

#### TABELLE CON I DATI DEI TEMPI MEDI

| QuickSelect |         | HeapSelect |         | MediansOfMediansSelect |        |
|-------------|---------|------------|---------|------------------------|--------|
| Size        | Tmedio  | Size       | T medio | Size                   | Tmedio |
| 100         | 15,62   | 100        | 5,211   | 100                    | 2,076  |
| 111         | 19,461  | 111        | 5,144   | 111                    | 4,719  |
| 124         | 23,51   | 124        | 6,199   | 124                    | 5,516  |
| 138         | 28,012  | 138        | 7,067   | 138                    | 9,029  |
| 154         | 34,77   | 154        | 8,066   | 154                    | 8,038  |
| 172         | 43,971  | 172        | 9,156   | 172                    | 10,2   |
| 192         | 53,553  | 192        | 10,201  | 192                    | 10,259 |
| 214         | 66,47   | 214        | 11,286  | 214                    | 14,239 |
| 239         | 83,193  | 239        | 13,354  | 239                    | 15,462 |
| 267         | 100,97  | 267        | 15,21   | 267                    | 12,443 |
| 298         | 126,246 | 298        | 18,288  | 298                    | 16,282 |
| 332         | 155,696 | 332        | 21,131  | 332                    | 29,608 |
| 371         | 190,643 | 371        | 24,319  | 371                    | 16,624 |
| 414         | 237,046 | 414        | 28,313  | 414                    | 18,337 |
| 461         | 283,078 | 461        | 32,45   | 461                    | 14,315 |
| 515         | 346,494 | 515        | 38,574  | 515                    | 18,203 |
| 574         | 436,488 | 574        | 44,416  | 574                    | 18,532 |
| 641         | 544,085 | 641        | 50,477  | 641                    | 30,174 |



| 715   | 697,329    | 715   | 58,687    | 715   | 43,19    |
|-------|------------|-------|-----------|-------|----------|
| 797   | 863,405    | 797   | 67,811    | 797   | 53,779   |
| 889   | 1072,805   | 889   | 77,27     | 889   | 52,165   |
| 992   | 1332,72    | 992   | 87,822    | 992   | 43,193   |
| 1107  | 1661,726   | 1107  | 100,835   | 1107  | 78,574   |
| 1235  | 2097,037   | 1235  | 114,225   | 1235  | 62,73    |
| 1377  | 2560,563   | 1377  | 128,242   | 1377  | 116,944  |
| 1536  | 3156,892   | 1536  | 146,751   | 1536  | 103,119  |
| 1714  | 3948,323   | 1714  | 165,314   | 1714  | 105,377  |
| 1912  | 4917,696   | 1912  | 188,171   | 1912  | 173,704  |
| 2133  | 6178,297   | 2133  | 211,548   | 2133  | 215,676  |
| 2379  | 7665,423   | 2379  | 242,341   | 2379  | 192,422  |
| 2654  | 9513,996   | 2654  | 274,229   | 2654  | 190,028  |
| 2960  | 11783,702  | 2960  | 309,983   | 2960  | 282,003  |
| 3302  | 14733,073  | 3302  | 351,105   | 3302  | 198,12   |
| 3684  | 18330,293  | 3684  | 397,144   | 3684  | 278,204  |
| 4109  | 22795,672  | 4109  | 452,534   | 4109  | 351,762  |
| 4584  | 28357,617  | 4584  | 509,802   | 4584  | 206,635  |
| 5113  | 35189,412  | 5113  | 581,258   | 5113  | 445,04   |
| 5704  | 43548,761  | 5704  | 664,676   | 5704  | 670,08   |
| 6362  | 53771,236  | 6362  | 750,703   | 6362  | 502,505  |
| 7097  | 66365,871  | 7097  | 836,051   | 7097  | 614,685  |
| 7917  | 82611,904  | 7917  | 929,483   | 7917  | 490,353  |
| 8831  | 102900,543 | 8831  | 1045,934  | 8831  | 835,905  |
| 9851  | 127248,93  | 9851  | 1189,155  | 9851  | 571,815  |
| 10989 | 158014,986 | 10989 | 1339,747  | 10989 | 725,851  |
| 12258 | 196780,977 | 12258 | 1499,468  | 12258 | 651,682  |
| 13673 | 245204,749 | 13673 | 1691,525  | 13673 | 909,309  |
| 15253 | 304122,92  | 15253 | 1907,83   | 15253 | 844,385  |
| 17014 | 377998,736 | 17014 | 2150,302  | 17014 | 1677,08  |
| 18979 | 470174,627 | 18979 | 2421,653  | 18979 | 2189,654 |
| 21171 | 585045,871 | 21171 | 2735,83   | 21171 | 1922,415 |
| 23616 | 710896,852 | 23616 | 3081,369  | 23616 | 2422,745 |
|       |            | 26343 | 3473,484  | 26343 | 1913,887 |
|       |            | 29386 | 3957,458  | 29386 | 2115,968 |
|       |            | 32780 | 4466,715  | 32780 | 2193,802 |
|       |            | 36565 | 5052,089  | 36565 | 2094,985 |
|       |            | 40788 | 5698,317  | 40788 | 2127,869 |
|       |            | 45499 | 6420,998  | 45499 | 2697,694 |
|       |            | 50753 | 7191,333  | 50753 | 4585,247 |
|       |            | 56615 | 8113,1    | 56615 | 4459,005 |
|       |            | 63153 | 9150,114  | 63153 | 7285,777 |
|       |            | 70446 | 10348,041 | 70446 | 5302,559 |



| 78582   | 11668,996  | 78582   | 7144,315   |
|---------|------------|---------|------------|
| 87657   | 13196,925  | 87657   | 4663,63    |
| 97780   | 14890,34   | 97780   | 4944,962   |
| 109073  | 16817,16   | 109073  | 7304,844   |
| 121669  | 18974,916  | 121669  | 5981,6     |
| 135720  | 21461,236  | 135720  | 8450,542   |
| 151394  | 24216,267  | 151394  | 9897,51    |
| 168878  | 27408,549  | 168878  | 12747,271  |
| 188382  | 30968,2    | 188382  | 15003,733  |
| 210137  | 34964,41   | 210137  | 16786,976  |
| 234405  | 39511,437  | 234405  | 21168,412  |
| 261476  | 44641,075  | 261476  | 30526,857  |
| 291673  | 50453,98   | 291673  | 23303,266  |
| 325357  | 56936,162  | 325357  | 28826,085  |
| 362932  | 64369,902  | 362932  | 35935,551  |
| 404846  | 72887,065  | 404846  | 32903,872  |
| 451600  | 82620,314  | 451600  | 33804,922  |
| 503754  | 93739,307  | 503754  | 31898,51   |
| 561931  | 106283,624 | 561931  | 43358,905  |
| 626826  | 120738,225 | 626826  | 36280,556  |
| 699216  | 137184,793 | 699216  | 53459,844  |
| 779966  | 155989,726 | 779966  | 47167,152  |
| 870042  | 177217,503 | 870042  | 68911,663  |
| 970520  | 201182,385 | 970520  | 52955,227  |
| 1082602 | 228333,593 | 1082602 | 52406,955  |
| 1207629 | 259115,231 | 1207629 | 118582,758 |
| 1347093 | 294325,98  | 1347093 | 109946,262 |
| 1502665 | 333743,293 | 1502665 | 97044,029  |
| 1676202 | 379088,115 | 1676202 | 214775,319 |
| 1869781 | 276132,45  | 1869781 | 157085,645 |
|         |            | 2085716 | 82873,885  |
|         |            | 2326588 | 249215,572 |
|         |            | 2595278 | 218285,612 |
|         |            | 2894998 | 235391,963 |
|         |            | 3229331 | 187688,2   |
|         |            | 3602275 | 187618,815 |
|         |            | 4018290 | 259619,419 |
|         |            | 4482348 | 255953,31  |
|         |            | 5000000 | 269238,266 |



#### 8. BIBLIOGRAFIA

- <a href="https://vigna.di.unimi.it/papers.php#BlVSLPNG">https://vigna.di.unimi.it/papers.php#BlVSLPNG</a>
- https://www.pcg-random.org/posts/xoshiro-repeat-flaws.html
- https://vigna.di.unimi.it/
- <a href="https://prng.di.unimi.it/">https://prng.di.unimi.it/</a>
- https://rosettacode.org/wiki/Pseudo-random\_numbers/Splitmix64
- Introduzione agli algoritmi e strutture dati (T. H. Cormin, C. E. Leiserson, R. L. Rivest, C. Stein) McGraw-Hill 3° edizione
- Appunti di teoria della Professoressa Carla Piazza
- https://www.geeksforgeeks.org/