データ構造とアルゴリズム

第4回グラフ

小池 英樹 (koike@c.titech.ac.jp)

グラフ(GRAPH) (復習)

- ightharpoonup Graph G = (V, E)
 - ➤ V: 有限個の節点(node, vertex, 頂点)の集合
 - ➤ E: 有限個の節点対e=(vi, vj) (枝, 辺, edge, arc, branch)の 集合
 - ➤ vi, vj: 端点

V={v1, v2, v3, v4, v5, v6, v7, v8} E={(v1, v2), (v2, v3), ..., (v7, v8)}

GRAPHの例

GRAPH APPLICATION

graph	vertex	edge
communication	telephone, computer	cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	intersection	street
internet	class C network	connection
game	board position	legal move
social relationship	person	friendship
neural network	neuron	synapse
protein network	protein	protein-protein interaction
molecule	atom	boan

GRAPH-PROCESSING PROBLEMS

problem	description
s-t path	sとtの間にpathはあるか?
shortest s-t path	sとtの間の最小のpathは何か?
cycle	グラフの中に閉路はあるか?
Euler cycle	各エッジを1回しか使わない閉路はあるか?
Hamilton cycle	各ノードを1回しか使わない閉路はあるか?
connectivity	すべてのノード接続する方法はあるか?
biconnectivity	削除するとグラフが連結でなくなるノードはあるか?
planarity	エッジを交差させることなく2次元平面に描画できるか?
graph isomorphism	2つの隣接リストは同じグラフか?

無向グラフと有向グラフ

無向グラフ

有向グラフ

接続行列(INCIDENCE MATRIX)による表現

無向グラフ

	a	b	C	d	e	f
0	1	1	1	0	0	0
1 2 3 4	1	0	0	1	0	0 0 0
2	0	1	0	1	1	0
3	0	0	1	0	1	1
4	1 1 0 0	0	0	0	0	1

有向グラフ

節点数n, 枝数mに対し, O(mn)の領域を必要とする

隣接行列(ADJACENCY MATRIX)による表現

	0	1	2	3	4
0	0	1	1	1	0
1	1	0	1	0	0
 1 2 3 4 	1 1	1	0	1	0
3	1	0	1	0	1
4	0	0	0	1	0

	0	1	2	3	4
0	0 a b c	a	b	С	0
1	a	0	d	0	0
2 3	b	d	0	е	0
3	С	0	е	0	f
4	0	0	0	f	0

ラベル付きグラフの場合

有向グラフ $\begin{pmatrix} 0 & a & 1 \\ 0 & b & d \\ c & b & d \end{pmatrix}$

	0	1	2	3	4
0	0	1	0	1	0
1	0	0	1	0	0
2	1	0	0	0	0
3	0	0	1	0	1
4	0	0	0 1 0 1 0	0	0

	0	1	2	3	4
0	0	a	0	С	0
1	0	0	d	0	0
2	Ъ	0	0	0	0
3	0	0	е	0	f
4	0	0	0	0	0

ラベル付きグラフの場合

節点数nに対し、O(n²)の領域を必要とする

隣接リスト(ADJACENCY LIST)のポインタによる表現

必要な領域量はO(m+n)

隣接リストの別表現

15

隣接行列と隣接リストの利点・欠点

	利点	欠点
隣接行列	2頂点間に辺があるか否かをO(1) でチェック可能	O(n²)の記憶領域が必要 1つの頂点の隣接頂点を求めるのに O(n)時間必要
隣接リスト	O(m+n)の記憶領域ですむ 1つの頂点の隣接頂点を求めるのには、その隣接頂点数に比例した時間だけで可能	2 頂点間に辺があるか否かをチェックするのに、隣接頂点数に比例した時間が必要

現実世界のグラフは疎(sparse)なものが多いので、隣接リストが多く使われる.

グラフの探索

▶ グラフが与えられたとき、そのすべての頂点を訪問すること

➤ 応用:

➤ ゲーム (迷路, ボードゲーム), 画像処理, etc.

➤ 基本的探索法:

- ➤ 深さ優先探索(depth-first-search)
- ➤ 幅優先探索(breadth-first-search)

- ➤ 基本的な考え方
 - ➤ 出発点から始めて、長兄を調べ、次に長兄の長兄を調べ、 と縦方向を優先して調べる。
 - ➤ 木の走査(前順,中順,後順)と同じ.
 - ➤ ただし、閉路(cycle)があるので、一度調べた(visited)頂点 は再度訪問しない.

動作の概要

訪問の順番: 0->3->4->2->1

別なケース (データの定義に依存する)

訪問の順番: 0->1->2->3->4

アルゴリズムの概要 (再帰版)

```
dfs(v) {
 vをvisitedとマークする
 vに関する処理を行う
 for (vに接続しているすべての頂点 i)
 if (iがunvisited)
 dfs(i)
}
```

深さ優先探索:隣接行列によるプログラム例

```
void main() {
   int i;

for (i=0; i<8; i++) /* 初期化*/
   visited[i] == 0;

dfs(0);
}</pre>
```



```
int G[8][8] = {
    0, 1, 1, 1, 1, 0, 0, 0,
    1, 0, 0, 0, 0, 1, 0, 0,
    1, 0, 0, 0, 0, 1, 0,
    1, 0, 0, 0, 0, 0, 1, 0,
    1, 0, 0, 0, 0, 0, 1, 0,
    0, 1, 1, 0, 0, 0, 1,
    0, 0, 0, 0, 0, 1, 1,
    0, 0, 0, 0, 0, 1, 1,
    0, 0, 0, 0, 0, 1, 1,
    0, 0, 0, 0, 0, 1, 1,
};
int visited[8];
```

アルゴリズムの概要(非再帰版)

```
dfs(v) {
   S = 空のスタック
   vをvisitedとマークする
   vをSに追加(push)
   while (Sが空でない)
      v = Sから取り出す(pop)
      vに関する処理を行う
      for (vに接続しているすべての頂点 i)
          if (iがunvisited)
             iをvisitedとマークする
             iをSに追加(push)
```

幅優先探索

- ➤ 基本的な考え方
 - ➤ 出発点から始めて、子供をすべて調べる。子供を調べ終わってから、孫をすべて調べる。

動作の概略

幅優先探索

アルゴリズムの概要

```
bfs(v) {
   Q = 空のqueue
   vをvisitedとマークする
   vをQに追加(enqueue)
   while (Qが空でない)
      v = Qから取り出す(dequeue)
      vに関する処理
      for (vに接続する頂点i)
          if (iがunvisited)
             iをvisitedとマークする
             iをQに追加する
```

幅優先探索

アルゴリズムのstep数にともなうQの状態

step	visited	adjacent vertex	Q
0	-		<u>O</u>
1	0	1, 5, 6, 7	<u>1</u> , 5, 6, 7
2	1	3, 2, 5	<u>5</u> , 6, 7, 3 , 2
3	5	null	6, 7, 3, 2
4	6	null	<u>7</u> , 3, 2
5	7	6	<u>3</u> , 2
6	3	null	2
7	2	3, 4	4
8	4	null	-

^{*}下線は次に取り出される頂点、赤字は新たに追加された頂点

隣接リスト

vertex	adjacent vertex
0	1, 5, 6, 7
1	3, 2, 5
2	3, 4
3	null
4	null
5	null
6	null
7	6

レポート課題

- ➤ (1)1つ前のスライドのグラフを隣接リストで表すプログラムを書き、 これを、深さ優先探索(再帰)するプログラムを書き、実行しなさい。
- ➤ (2)上記グラフを, 待ち行列(queue)を用いた幅優先探索で探索するプログラムを書き, 実行しなさい.

- ➤ 締切: 1/26(金) 17:00
- ➤ 提出先:algo2017@vogue.c.titech.ac.jp

➤ 告知:2/6(火)は期末試験