Fairwalk: Towards Fair Graph Embedding

Tahleen Rahman, Bartlomiej Surma, Michael Backes and Yang Zhang CISPA Helmholtz Center for Information Security Conference: IJCAl' 19. **CrossWalk: Fairness-Enhanced Node Representation Learning**

Ahmad Khajehnejad, Moein Khajehnejad, Mahmoudreza Babaei, Krishna P. Gummadi, Adrian Weller, Baharan Mirzasoleiman

Conference: WWW' 23

CAU Junseo, Yu

DMAIS Lab Meeting 09.20.2024

Contents

- **01** Fairness Notion
 - Why do we need?
 - How can we measure?
 - Examples
- **02** Related Work
 - Existing methods
 - Implementation category on graph
 - random walk based methods (deep walk, random walk)

- **03** Fair Walk
 - implementation
 - experiment
 - contribution & limitation
- **04** Cross Walk
 - implementation
 - experiment
 - contribution & limitation

1. Fairness Notion

- Why do we need?
- How can we measure?
- Examples

1. Fairness Notion

Why do we need?

- Fairness: the quality of treating people equally or in a way that is right or reasonable
- ML could unreasonably discriminate people
 - Learned from data
 - may have captured undesired sensitive information
 - Can not distinguish between correlation and causality
- Even, this can reinforce the social bias(discrimination) into undesired way
- It is directly related with human centered task
 - Job recommender systems
 - Disaster response
 - Criminal justice
 - Loan approval

1. Fairness Notion

Existing Methods

Taxonomy of algorithmic fairness notions in graph mining algorithms.

Yushun Dong, Fairness in Graph Mining: A Survey, TKD 2023

1. Fairness Notion

Examples

Statistical Parity Statistical Parity(a.k.a. Demographic Parity)

 all groups, regardless of sensitive attributes like gender or race, should have an equal probability of receiving a positive outcome.

$$P(\hat{Y} = 1|S = 0) = P(\hat{Y} = 1|S = 1).$$

For easy understanding

$$P(G_{ij}^{\mathcal{S}}) = \left| \{ (u, v) : v \in \rho(u) \land (u, v) \in G_{ij}^{\mathcal{S}} \} \right| / \left| G_{ij}^{\mathcal{S}} \right|$$

$$\mathsf{bias}^{\mathtt{SI}}(\mathcal{G}^{\mathcal{S}}) = \mathsf{Var}(\{P(G_{ij}^{\mathcal{S}})\} : G_{ij}^{\mathcal{S}} \in \mathcal{G}^{\mathcal{S}})$$

In the fair walk paper

$$G_{ij}^{\mathcal{S}} = \{(u,v) : \zeta(u) = i \wedge \zeta(v) = j \wedge u, v \in U\}.$$

1. Fairness Notion

Examples

Equality of Representation

all groups should be evenly distributed across the predicted outcomes.

$$\mathsf{bias}^{\mathsf{ERg}}(\mathcal{G}^{\mathcal{S}}) = \mathrm{Var}(\{N(G_{ij}^{\mathcal{S}})\}: G_{ij}^{\mathcal{S}} \in \mathcal{G}^{\mathcal{S}})$$

$$ext{bias}^{ ext{ERu}}(z) = rac{1}{|\mathcal{Z}^{\mathcal{S}}|} - rac{\sum_{u \in U} z\text{-share}(u)}{|U|} \qquad z\text{-share}(u) = rac{|
ho_z(u)|}{|
ho(u)|}$$

Beware, thins fairness notion is not suitable for all situations

Disparity

Differences in specific metrics (e.g., positive prediction rate, error rate) across different groups.

$$disparity(A) = Var(\{Q_i\} : i \in [C])$$

Q : fraction of positive decisions

i : specific group e.g., male and female

2. Related Work

- Existing methods
- Implementation category on graph
- random walk based methods (deep walk, random walk)

2. Related Work

Existing Methods

- Fairness in machine learning notions have been significantly developed since 2014.
- However, unlike i.i.d. data mining algorithms Most of graph mining algorithms lack fairness

consideration due to non-i.i.d. characteristc (non-iid features)

- Why fulfilling fairness in graph mining is non-trivial?
 - Graph structure
 - Relational information (topology)
 - Need to prevent the graph mining algorithms
 from inheriting the bias exhibited in the input relational info

Yushun Dong, Fairness in Graph Mining: A Survey, TKD 2023

2. Related Work

Implementation category on graph

- Pre-process
 Manipulate biased graph data
 e.g., edge rewiring
 - In-trainingControl in model learning processe.g., optimization with constraint(s)
- Post-process
 Regulate prediction output
 e.g., orthogonal projection

2. Related Work

FairWalk & CrossWalk

Random walk based methods

Random walk

- Goal
 Capture graph structure information
- Method
 Visit neighbor node "randomly"
 and record the visting order.
 Iterate!

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

2. Related Work

FairWalk & CrossWalk

Random walk based methods

Deep walk

- Goal : Generate node embeddings that incorporate structural information by using output of random walk
- Methods: use the skip-gram model of Word2Vec (NLP field methods)
 This model enables to generate the node embeddings that will be input of the downstream tasks such as link prediction
- Key point: The visiting nodes and their order during the random walk process directly influence the resulting node embeddings.

2. Related Work

Random walk based methods

node2vec

- Goal : Capture local and global neighborhood information properly
- Methods: Same with Deep walk except for random walk process.
 - The Node2vec does biased random walk.
- Output: More concisely capture the structure information by modifying random walk process

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

3. Fair Walk

- implementation
- experiment
- contribution & limitation

3. Fair Walk

implementations

Why?

- Even if it reduces the performance, Why do we need to adjust the learning process instead of training on the origin graph as it is.
- Experimentally, this method has shown improvements across multiple fairness criteria.
- Think about random walk process in the biased graph like right one.

(b) Biased graph topology

3. Fair Walk

FairWalk & CrossWalk

implementations

Why?

- Thin about some specific tasks. For example in friendship recommender system, the system may sugesst same group. Perhaps, this is a deprivation of opportunity.
- Figure 1 shows that bias are similar with origin network and output of node2vec
 -> mirrors the gap between minorities and majorities

Figure 1: z-share distributions of node2vec and original network. The vertical line shows the *fair fraction* (0.5 and 0.3)

3. Fair Walk

implementations

How?

- Change random walk procedure from random to biased way
- Detail
 - 1. Partition neighbors into groups
 - Give each group the same probability of being chosen (regardless of their size)

VERY SIMPLE!

Probability of next walk

- Red : 5/8 -> 1/2

- Blue : 3/8 -> 1/2

3. Fair Walk

FairWalk & CrossWalk

Experiments

Ratio

Figure 2: Ratio of each gender and race in the original network and regular and fair random walk traces in Los Angeles dataset

Setup

- Data : Instagram API
- Sensitive attributes: race and gender
- How classify? : Face++ (Face recognition)
 - -> Pick with highest confidence at least 20 percentage points higher than the second
- Task: Friendship recommendation

3. Fair Walk

Experiments

	•	LA		London		
		gender	race	gender	race	
ERg	regular fair	$1.3e^{10}$ $0.8e^{10}$	$\begin{array}{c} 2.5\mathrm{e}^7 \\ 1.9\mathrm{e}^7 \end{array}$	$6.5e^9$ $4.8e^9$	$2.4e^{7}$ $1.9e^{7}$	
SI	regular fair	$4.7e^{-9}$ $1.7e^{-9}$	$\begin{array}{c c} 1.4e^{-12} \\ 0.4e^{-12} \end{array}$	$1.1\mathrm{e}^{-8}\ 0.2\mathrm{e}^{-8}$	$7.1e^{-11} 2.8e^{-11}$	

Table 3: bias^{SI} and bias^{ERg} for both cities (lower, the better)

3. Fair Walk

Experiments

		gender		race		
		0	1	0	1	2
LA	network	0.104	0.104	0.117	0.392	0.275
	node2vec	0.103	0.103	0.115	0.387	0.272
	fairwalk	0.068	0.068	0.054	0.288	0.234
London	network	0.097	0.097	0.183	0.481	0.298
	node2vec	0.112	0.112	0.176	0.474	0.298
	fairwalk	0.095	0.095	0.135	0.417	0.282

Table 4: Bias by *Equality of Representation* at user level for both genders and all three races (lower, the better).

3. Fair Walk

Experiments

3. Fair Walk

contribution & limitation

Contribution

- First study of fairness in the grping embedding methods
- Can generalize if the methods is based on random walk

Limitations

Fail to caputre the neighborhoods located in more than one-hop away information

4. Cross Walk

- implementation
- experiment
- contribution & limitation

4. Cross Walk

implementations

Goal

manipulate random walk process in more detail

How?

- Upweighting edges
 - Closer the groups' peripheries
 - Connecting different groups

(b) Synthetic Layered Dataset CrossWalk ($\alpha = 0.5, p = 2$)

4. Cross Walk

implementations

Bias towards Group Boundaries

$$m(v) = \frac{\sum_{j \in [r]} \sum_{u \in \mathcal{W}_v^j} \mathbb{I}[l_v \neq l_u]}{r \times d}.$$

m(v) : measure of proximity

W_u: The path of random walk

W_v : The group to which v belongs

r : Number of random walk

d : length of random walk

- Every node have m(v)
- Intuitively, this indicated the fraction of nodes from other groups in v's close proximity.
 - -> How close to other groups (The higher, the closer)
- Can capture more distant neighborhood information due to considering random walk path

implementations

Bias towards Other Groups

$$w_{vu}' = \begin{cases} w_{vu}(1-\alpha) \times \frac{m(u)^p}{\sum_{z \in N_v} w_{vz} m(z)^p} & \text{if } l_v = l_u \\ \\ w_{vu} \alpha \times \frac{m(u)^p}{|R_v| \sum_{z \in N_v^c} w_{vz} m(z)^p} & \text{if } l_v \neq l_u = c. \end{cases}$$

- If same group -> upper case
- If different group -> lower case
- α: manipulate strengths to the other group (The higher, the powerful)
- p: manipulate strengths to the group boundaries (The higher, the powerful)

FairWalk & CrossWalk

implementations

Which things are better than fair walk

- · Can consider one-hop away nodes
 - -> Cross walk consider few steps away nodes
- This pulls the final embeddings of the nodes
- Can consider carefully the degree of inner and outer reweights values.

(correspond to α and p respectively.)

$$w_{vu}' = \begin{cases} w_{vu}(1-\alpha) \times \frac{m(u)^p}{\sum_{z \in N_v} w_{vz} m(z)^p} & \text{if } l_v = l_u \\ w_{vu} \alpha \times \frac{m(u)^p}{|R_v| \sum_{z \in N_v^c} w_{vz} m(z)^p} & \text{if } l_v \neq l_u = c. \end{cases}$$

Experiments

Setup

- Use Deep Walk embeddings
- Also compare with Adversarial Embedding (Khajehnejad et al. 2020).

(only applicable to network of 2 groups.)

FairWalk & CrossWalk

- (a) Rice-Facebook, $\alpha = 0.5, p = 4, k = 40.$
- (b) 2-grouped synthetic dataset, $\alpha = 0.7$, p = 4.

- (c) Twitter dataset, $\alpha = 0.5, p = 2.$
- (d) 3-grouped synthetic dataset, $\alpha = 0.7$, p = 4.

Figure 4: Influence Maximization

4. Cross Walk

Experiments

Setup

Figure 5: Influence Maximization - CrossWalk and FairWalk on Node2vec

Figure 6: Node Classification - Rice-Facebook dataset. $\alpha = 0.5$, p = 1.

Use Node2vec (p=0.5, q=0.5)

Experiments

Setup

- (a) Rice-Facebook Dataset, $\alpha = 0.5, p = 2.$
- (b) Twitter Dataset, $\alpha = 0.5, p = 2$

Figure 7: Link Prediction

4. Cross Walk

contribution & limitation

Contribution

More precise calculation about fair random walk process

Limitations

Is the result output truly surprising?