

Kubernetes

Ondřej Smola 21.04.2022 | CTC

Z monolitu k mikroslužbám

- Snaha rozdělit velké aplikace na více nezávislých komponent komunikujících pomocí API
- Problémy monolitu
 - Nasazení
 - Nároky na HW
 - Škálování
 - Rychlost vývoje
 - Aktualizace
 - Měsíční release

Motivace

Mikroslužby

- Rozložení monolitu na menší komponenty
- Výhody
 - Snížení komplexity uvnitř
 - Možnost využití specifických technologií/jazyků
 - Snížení HW nároků
 - Jednodušší škálování a aktualizace
- Nevýhody
 - Zvýšení vnější komplexity definice API
 - Nutnost automatizace
 - Latence
 - Náročnější na celkovou operativu
 - Rolling update
 - Blue-green deployment

Kotejnarizace a orchestrace

- Kontejnarizace
 - Zabalení aplikace do obrazu
 - Spuštění kontejneru v běhovém prostředí
 - Pracuje v rámci jednoho stroje
- Orchestrace
 - Spravuje kontejnery v rámci více strojů (clusteru)
 - Spuštění
 - Škálování
 - Plánování
 - Poskytuje podpůrnou infrastrukturu
 - Směrování
 - Datová uložiště
 - Monitoring

Požadavky na orchestrátor

- Odolnost vůči výpadku
- Škálovatelnost
- Optimální využití výpočetních prostředků
- Zajištění komunikace
 - mezi kontejnery v rámci strojů
 - z vnějšku
- Automatizovaná správa kontejnerů

Orchestrátory

- Kubernetes
- Apache Mesos
- Amazon Elastic Container Service
- Azure Service Fabric
- Docker Swarm (deprecated)
- Nomad

Cloud native computing foundation (CNCF)

Cloud native

- Umožňující využití výhod unikátních vlastností cloudu
 - Samo-obslužný
 - Řízený API
 - Elastický/Škálovatelný
- Koncepty
 - DevOps
 - CI/CD
 - Mikroslužby
 - Kontejnery

Hlavní projekty

Container Runtime

Coordination & Service Discovery

Service Proxy

Coordination & Service Discovery

Security & Compliance

Monitoring

Cloud Native Storage

Security & Compliance

Database

Inkubované projekty

Delivery

Application Definition & Image Build

Chaos Engineering

Cloud Native Network

Streaming & Messaging

Service Proxy

Monitoring

Framework

API Gateway

Continuous Integration & Delivery

Installable Platform

Vztah ke Kubernetes

- Neutrální půda pro vývoj
- Propagace
- Kurzy
- Konference a meetupy
- Pracovní skupiny (WG)

Kubernetes

Definice

- "Kubernetes je open-source systém pro automatizaci nasazení, škálování a správu kontejnerizovaných aplikací"
- Zkráceně k8s
- Inspirován systémem Borg (Google) využívaného pro provoz infrastruktury Google více než deset let
- Open source nástroj (Apache 2.0) implementovaný v jazyce
 Go
- Od roku 2015 převeden pod Cloud Native Computing Foundation (CNCF)

Verze

- Aktuální verze je 1.23 (04/2022)
- Nová minor verze vychází cca každých 15 týdnů
- Každá minor verze je podporová 1 rok, patch verze vychází dle potřeby
- Přehled verzí na https://kubernetes.io/releases/
- Z výše uvedeného plyne, že je potřeba provést aktualizaci clusteru minimálně 1 za rok, ideálně 2-3x

Borg

- Paper: https://research.google/pubs/pub43438/
- Orchestrátor používaný např. pro
 - Gmail
 - Drive
 - Mapy
- Příklad konceptů převzaných z Borgu
 - Pody
 - API sever
 - IP per Pod
 - Služby
 - Značky

Vlastnosti kubernetes

- Automatické plánování kontejnerů dle konfigurace k zajištění co nejefektivnějšího využití výpočetní kapacity a zajištění vysoké dostupnosti (bin packing)
- Automatizovaná obnova
 - nahrazení selhaných kontejnerů
 - změna v plánování
 - rekonfigurace plánování
- Horizontální škálování
 - Dle zatížení CPU, počtu požadavků ...
- Service discovery a load balancing
 - Konfigurace směrovacích tabulek
 - DNS

Vlastnosti Kubernetes 2

- Rollout a rollback
 - Automatizovaná aktualizace a návrat k předchozí konfiguraci během výpadku
- Správa utajených hodnot (Secret) a konfigurací
 - Rekonfigurace za běhu
 - Předávání pomocí souborů, proměnných prostředí
- Orchestrace úložiště
 - Připojování sdílených síťových blokových/souborových systému
 - Přímá integrace s cloudovými poskytovately
- Dávkové zpracování, cron job

Architektura

Master

- Zajišťuje běhové prostředí pro řídící prvky, které udržují stav Kubernetes clusteru
- Mozek celého clusteru, vždy jeden master zvolen jako leader
- Musí být aktivní alespoň většina masterů, jinak se přepíná cluster do módu pouze pro čtení
- V případě pádu všech masterů dochází k úplné nedostupnosti clusteru
 - Ostatní node i kontejnery na nich běží, ale již neprovádí žádné další akce
- Všechna data jsou ukládána do etcd clusteru
 - Interní (stacked mód)
 - Externí

Komponenty na masteru

- Controller manager
- Scheduler
- Etcd
- Api server
- Node agent
- Container runtime
- Proxy

Api server

- Probíhá přes něj veškerá API komunikace
 - Příkazová řádku (kubectl)
 - REST
 - Agenti
- Autentizace a autorizace
- Ukládá a čte data z Etcd (jako jediný)
 - Protobuf
- Horizontálně škálovatelný

Plánovač

- Cílem je přiřadit skupiny kontejnerů (pod) k nodům (agent) na základě aktuálního stavu clusteru
- Cílem plánovací logiky je neustále konvergovat k ideálnímu stavu
 - Není závislá na detekci změn ale na rozdílu mezi aktuálním a požadovaným stavem
- Během plánování bere v úvahu
 - Label (disk==ssd)
 - Affinity a anti-affinity
 - Taints a tolerations
 - Lokalitu dat
 - Kvalitu služeb (QoS)

Algoritmus plánovače

- QueueSort: Sort the pods in the queue
- PreFilter: Check the preconditions of the pods for scheduling cycle
- Filter: Filter the nodes that are not suitable for the pod
- PostFilter: Run if there are no feasible nodes found for the pod
- PreScore: Run prescoring tasks to generate shareable state for scoring plugins
- Score: Rank the filtered nodes by calling each scoring plugins

- NormalizeScore: Combine the scores and compute a final ranking of the nodes
- Reserve: Choose the node as reserved before the binding cycle
- Permit: Approve or deny the scheduling cycle result
- PreBind: Perform any prerequisite work, such as provisioning a network volume

Extensible API

- . Bind: Assign the pods to the nodes in Kubernetes API
- PostBind: Inform the result of the binding cycle

Správce kontrolérů

- Kontrolér
 - Sledovací cyklus pomocí API (etcd-watch)
 - Porovnáná aktuální stav s požadovaným
 - V případě odchýlení stavu provádí kompenzační akce

- Kube-controller-manager
 - Nody, služby, API klíče
- Cloud-controller-manager
 - Interakce s konkrétní infrastrukturou cloudového poskytovatele

Etcd

Node

- Poskytuje prostředí pro aplikace zapouzdřené jako skupiny kontejnerů == pody
- Které pody poběží na nodu rozhoduje plánovač
- Komponenty
 - Běhové prostředí kontejnerů (containerd, cri-o)
 - Agent (kubelet)
 - Proxy (kube-proxy)
 - Volitelná rozšíření
 - Monitoring (cadvisor)
 - Připojení síťových disků (CSI agent)
 - Logování (promtail, fluentD)

Kubelet

- Komunikuje s mastery
- Konfiguruje a spravuje lokální kontejnery pomocí CRI
- Zajišťuje kontrolu spuštěných podů (healt-check)

 Pause kontejner – viz další slide (https://www.ianlewis.org/en/almighty-pause-container)

Cri-o

Kube-proxy

- Konfiguruje síťová pravidla (iptables)
- Směrování a load-balancing (round-robin)
 - Protokoly UDP, TCP a SCTP
- Implemetuje síťová pravidla definovaná pomocí Service

```
ubuntu@node-10:~$ sudo iptables -L KUBE-SERVICES -t nat
Chain KUBE-SERVICES (2 references)
CUBE-SVC-JUR5XFG4VGG55PUT
                                                         10.20.32.174
                                                                               /* ng-data/harbor-redis-master:tcp-redis cluster IP */ tcp dpt:6379
                                                         10.20.20.61
                                                                               /* ng-core/dashboard:http cluster IP */ tcp dpt:http
KUBE-SVC-TQJOHOK73DR5YTJH
                                                         10.20.132.200
UBE-SVC-DMQT7TLM3UQHHGZG
                                                                               /* ng-data/s3-browser:default cluster IP */ tcp dpt:9000
KUBE-SVC-PFPKFILTA2SRHNTY
                                                         10.20.129.149
                                                                               /* ng-mon/thanos-compactor:http cluster IP */ tcp dpt:9090
                                                         10.20.68.147
                                                                               /* ng-data/harbor-portal:http cluster IP */ tcp dpt:http
KUBE-SVC-HS5GLWXG2NY52BK2
KUBE-SVC-HNJ23SQTQPWOSVSX
                                                         10.20.9.151
                                                                               /* ng-data/rook-ceph-mon-b:tcp-msgrl cluster IP */ tcp dpt:6789
                                                         10.20.129.157
                                                                               /* ng-mon/prometheus-stack-kube-prom-prometheus:http-web cluster IP */ tcp dpt:9090
                                                         10.20.47.251
KUBE-SVC-5ULUYRJXD4NEPNF3
                                                                               /* ng-data/csi-cephfsplugin-metrics:csi-http-metrics cluster IP */ tcp dpt:http-alt
                                                                               /* kube-system/kube-dns:metrics cluster IP */ tcp dpt:9153
KUBE-SVC-JD5MR3NA4I4DYORP
                                                         10.20.0.10
                                                         10.20.249.84
                                                                               /* ng-data/rook-ceph-mon-e:tcp-msgrl cluster IP */ tcp dpt:6789
KUBE-SVC-AAWX7D473I5RLGUP
KUBE-SVC-KJXJJUWH2WBSDFHR
                                                         10.20.110.220
                                                                               /* ng-net/cert-manager-webhook:https cluster IP */ tcp dpt:https
                                                         10.20.224.200
KUBE-SVC-UNQUVM6RTYSKI27N
                                                                               /* ng-data/harbor-jobservice:http cluster IP */ tcp dpt:http
                                                         10.20.1.66
                                                                               /* ng-mon/thanos-query:grpc cluster IP */ tcp dpt:10901
KUBE-SVC-KSNAN6HM2F36IRDQ
KUBE-SVC-7VIPZJT3R2NATTRJ
                                                         10.20.139.85
                                                                               /* ng-data/harbor:http cluster IP */ tcp dpt:http
KUBE-SVC-XXUPMH5RDSDIBXYO
                                                         10.20.9.151
                                                                               /* ng-data/rook-ceph-mon-b:tcp-msgr2 cluster IP */ tcp dpt:3300
KUBE-SVC-BAMAEYO7BYRLA7JM
                                                         10.20.235.77
                                                                               /* ng-data/harbor-registry:registry cluster IP */ tcp dpt:5000
KUBE-SVC-TCOU7JCQXEZGVUNU
                                                         10.20.0.10
                                                                               /* kube-system/kube-dns:dns cluster IP */ udp dpt:domain
                                                         10.20.143.188
                                                                               /* ng-net/traefik-nodeport:https cluster IP */ tcp dpt:8443
                                                         10.20.47.251
KUBE-SVC-SGM4KNBXDJWBQKP3
                                                                               /* nq-data/csi-cephfspluqin-metrics:csi-grpc-metrics cluster IP */ tcp dpt:tproxy
                                                         10.20.161.17
KUBE-SVC-KMSVMKKLPNHVGD3A
                                                                               /* ng-mon/thanos-storegateway:http cluster IP */ tcp dpt:9090
                                   anywhere
```