多元函数积分学

Didnelpsun

目录

1	二重	积分		1
	1.1	积分转	专换	1
		1.1.1	交换积分次序	1
			1.1.1.1 直角坐标系	1
			1.1.1.2 极坐标系	1
		1.1.2	极直互化	2
	1.2	二重积	R分计算	2
		1.2.1	交换积分次序	2
		1.2.2	积分性质	2
			1.2.2.1 直角坐标系	2
			1.2.2.2 极坐标系	3
		1.2.3	切分区域	3
		1.2.4	坐标轴移动	3
		1.2.5	极限化为二重积分	4
		1.2.6	二重积分极限	5
		1.2.7	广义极坐标系	5
	1.3	二重积	只分等式	6
		1.3.1	函数	6
		1.3.2	极限	6
		1.3.3	求导	6
	1.4	二重积	只分不等式	6
		1.4.1	同积分域	6
		1 4 9	同和分函数	7

	1.5	一重积	分化二	重移	分											7
		1.5.1	乘积化	上不等	拿式											7
		1.5.2	乘积简	的化计	算											8
	1.6	二重积	分应用	١												8
		1.6.1	体积													8
		1.6.2	形心公	大式												8
2	弧长	曲线积金	分													9
2 3		曲线积的曲线积分														9
			分									•		·	•	
	坐标 3.1	曲线积	分 法													9
	坐标 3.1	曲线积 : 定积分 二重积	分 法				٠		 •							9

1 二重积分

1.1 积分转换

1.1.1 交换积分次序

1.1.1.1 直角坐标系

例题:交换积分次序 $\int_0^1 \mathrm{d}x \int_0^{x^2} f(x,y) \, \mathrm{d}y + \int_1^3 \mathrm{d}x \int_0^{\frac{1}{2}(3-x)} f(x,y) \, \mathrm{d}y$ 。解:已知积分区域分为两个部分。将 X 型变为 Y 型。画出图形可以知道 $y \in (0,1)$,x 的上下限由 $y = x^2$ 和 $y = \frac{1}{2}(3-x)$ 转化为 \sqrt{y} 和 3-2y。所以转换为 $\int_0^1 \mathrm{d}y \int_{\sqrt{y}}^{3-2y} f(x,y) \, \mathrm{d}x$ 。

1.1.1.2 极坐标系

例题: 对 $\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr$ 交换积分次序。

解:对于极坐标的积分次序交换需要利用直角坐标系来画图了解,特别是对于r的上下限。

对
$$\theta = \frac{\pi}{2}$$
 变为 y 轴, $\theta = -\frac{\pi}{4}$ 变为 $y = -x$ 。

对 $r=2\cos\theta$ 变为 xy 的表达式, $r^2=2\cos\theta$,即 $x^2+y^2=2x$, $(x-1)^2+y^2=1$ 。 所以所得到的 σ 为一个圆割去一个扇形。

交换积分次序后就需要以一个长度以极点为圆心

做圆,切割 σ 。

由 σ 可知取长度 $\sqrt{2}$ 可以切分。

所以 σ 可以分为左边的 σ_1 和右边的 σ_2 。

$$\sigma_1$$
 的 $r \in [0, \sqrt{2}]$, σ_2 的 $r \in [\sqrt{2}, 2]$.

 σ_1 的 θ 下限是 y=-x 这条边,即 $\theta=-\frac{\pi}{4}$,上限是 $r=2\cos\theta$ 这个圆,则 $\theta=\arccos\frac{r}{2}$ 。

 σ_2 的 θ 界限都是是 $r=2\cos\theta$ 这个圆,此时 r>0 恒成立,但是上限是上半部分 $\theta>0$,而下限是下半部分 $\theta<0$,即上限 $\theta=\arccos\frac{r}{2}$,所以下限为 $\theta=-\arccos\frac{r}{2}$ 。

综上交换积分次序结果为:

$$\int_0^{\sqrt{2}} r \, \mathrm{d}r \int_{-\frac{\pi}{4}}^{\arccos \frac{r}{2}} f(r\cos\theta, r\sin\theta) \mathrm{d}\theta + \int_{\sqrt{2}}^2 r \, \mathrm{d}r \int_{-\arccos \frac{r}{2}}^{\arccos \frac{r}{2}} f(r\cos\theta, r\sin\theta) \mathrm{d}\theta \, .$$

1.1.2 极直互化

例题:将 $I = \int_0^{\frac{\sqrt{2}}{2}R} e^{-y^2} dy \int_0^y e^{-x^2} dx + \int_{\frac{\sqrt{2}}{2}R}^R e^{-y^2} dy \int_0^{\sqrt{R^2-y^2}} e^{-x^2} dx$ 转换为极坐标系并计算结果。

放坐体系升计算結果。
解: 首先根据积分上下限得到积分区域
$$D = \left\{0 \leqslant y \leqslant \frac{\sqrt{2}}{2}R, 0 \leqslant x \leqslant y\right\} \cup \left\{\frac{\sqrt{2}}{2}R \leqslant y \leqslant R, 0 \leqslant x \leqslant \sqrt{R^2 - y^2}\right\}, \ D 为一个八分之一圆的扇形。根据 $x = r\cos\theta, \ y = r\sin\theta$ 替换得到 $D = \left\{(x,y)\middle| 0 \leqslant r \leqslant R, \frac{\pi}{4} \leqslant \theta \leqslant \frac{\pi}{2}\right\}$ 。
又 $e^{-y^2} \cdot e^{-x^2} = e^{-(x^2 + y^2)} = e^{-r^2}$ 。
∴ $I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \mathrm{d}\theta \int_0^R e^{-r^2} r \, \mathrm{d}r$ 。$$

1.2 二重积分计算

二重积分若是累次积分形式出现,则计算可以使用上面两种方法简便运算。

1.2.1 交换积分次序

主要用于直角坐标系。

当按照当前的积分次序无法算出时需要更换积分次序。主要是看 f(x,y) 是对 x 先积分更简单还是对 y 先积分更简单。

例题: 求
$$\int_0^1 \mathrm{d}y \int_{\arcsin y}^{\pi - \arcsin y} \cos^2 x \, \mathrm{d}x$$
。

解: 首先直接对这个式子直接计算, $\cos^2 x=\frac{1}{2}(1+\cos 2x)$,原式 $=\frac{1}{2}\int_0^1(\pi-2y-\arcsin y)\mathrm{d}y$ 。根本无法解出。

考虑交换积分次序,首先求 σ , $y \in [0,1]$, $x \in [\arcsin y, \pi - \arcsin y]$, 则 $\sin x = y$, $y = \sin(\pi - x) = \sin x$ 即 $x \in [0, \sin x]$ 。

将积分区域换成
$$X$$
 型: $x \in [0, \pi]$, $y \in [0, \sin x]$ 。
$$\int_0^\pi \cos^2 x \, \mathrm{d}x \int_0^{\sin x} \mathrm{d}y = \int_0^\pi \cos^2 x \sin x \, \mathrm{d}x = -\int_0^\pi \cos^2 x \, \mathrm{d}(\cos x) = -\frac{\cos^3 x}{3} \bigg|_0^\pi = \frac{2}{3} \, .$$

1.2.2 积分性质

直角坐标系和极坐标系都可以使用。

1.2.2.1 直角坐标系

主要是一般对称性(积分区域关于 x 轴对称若 y 奇则为 0,关于 y 轴对称 若 x 奇则为 0)和轮换对称性(积分区域关于 y=x 对称则 xy 可以互换)。

1.2.2.2 极坐标系

主要就是指一般对称性 (画图可知)。

例题: 求曲线 $r^2 = 2ax^2\cos 2\theta$ (a > 0) 所围图形面积。

解:即求 $\iint\limits_{D} \mathrm{d}x\mathrm{d}y$ 。重点就是求 D,已知 r 的表达式,要求 θ 的取值范围。

又
$$r^2 > 0$$
, $x^2 > 0$, $a > 0$, 所以 $\cos 2\theta \geqslant 0$, $-\frac{\pi}{4} \leqslant \theta \leqslant \frac{\pi}{4}$, $\frac{3\pi}{4} \leqslant \theta \leqslant \frac{5\pi}{4}$ 。
由对称性,所以 = $4\int_0^{\frac{\pi}{4}} d\theta \int_0^{a\sqrt{2\cos 2\theta}} r dr = 4a^2 \int_0^{\frac{\pi}{4}} \cos 2\theta d\theta = 2a^2$ 。

1.2.3 切分区域

主要用于直角坐标系转为极坐标系。

将不规则的区域划分为圆域。

例题: 设
$$D = \{(x,y) | 0 \le x \le 1, 0 \le y \le 1\}$$
,求 $\iint_D \frac{\mathrm{d}x\mathrm{d}y}{\sqrt{x^2 + y^2}}$ 。

解:由 $f(x,y) = \frac{1}{\sqrt{x^2 + y^2}}$,知道可以使用极坐标系来表示,但是 D 是一个正方形,无法用圆来简单表示。

又 D 可以从 y=x 切割为两个部分,所以令下三角形为 D_1 , $\iint_D \frac{\mathrm{d}x\mathrm{d}y}{\sqrt{x^2+y^2}}=2\iint_D \frac{\mathrm{d}x\mathrm{d}y}{\sqrt{x^2+y^2}}$ 。

所以
$$0 \le y$$
 和 $y = x$ 可以确定 $\theta \in \left[0, \frac{\pi}{4}\right]$, $0 \le x \le 1$ 可以确定 r 上界为 $x = 1$, 即 $r \cos \theta = 1$, 即 $r = \frac{1}{\cos \theta}$, 确定 $r \in \left[0, \frac{1}{\cos \theta}\right]$.

所以 = $2\int_0^{\frac{\pi}{4}} d\theta \int_0^{\frac{1}{\cos\theta}} dr = 2\int_0^{\frac{\pi}{4}} \frac{d\theta}{\cos\theta} = 2\ln(\sec\theta + \tan\theta)|_0^{\frac{\pi}{4}} = 2\ln(1+\sqrt{2})$ 。即对二重积分求导,需要将二重积分化为一重积分。

1.2.4 坐标轴移动

主要用于直角坐标系转为极坐标系。

面对 *D* 为一个圆的部分区域,而圆心不在原点,则可以坐标轴移动让圆心到原点上,从而方便积分,本质就是换元。

例题: 设积分区域 $D = \{(x,y)|x^2 + y^2 \leq 2x + 2y\}$,求 $\iint_D (x^2 + xy + y^2) d\sigma$ 。

解: D 为 $(x-1)^2 + (y-1)^2 \le \sqrt{2}$,即圆心在 (1,1) 的圆,极坐标系无法表示,所以必须平移坐标轴。

令 x-1=u, y-1=v, x=u+1, y=v+1,此时 $D'=\{(u,v)|u^2+v^2\leqslant 2\}$ 。 $\iint\limits_{D}(x^2+xy+y^2)\mathrm{d}\sigma=\iint\limits_{D'}[(u+1)^2+(u+1)(v+1)+(v+1)^2]\mathrm{d}u\mathrm{d}v=\iint\limits_{D'}[u^2+uv+v^2+3(u+v)+3]\mathrm{d}u\mathrm{d}v=\iint\limits_{D'}(u^2+v^2)\mathrm{d}u\mathrm{d}v+\iint\limits_{D'}[uv+3(u+v)]\mathrm{d}u\mathrm{d}v+3\iint\limits_{D'}\mathrm{d}u\mathrm{d}v$ 。由于 uv+3(u+v) 是关于 u 或 v 的奇函数,且 D' 关于 uv 轴都对称,所以积分值为 0。且根据二重积分的几何意义 $\iint\limits_{D}\mathrm{d}u\mathrm{d}v=S_{D'}=2\pi$ 。

所以
$$\iint_D (x^2 + xy + y^2) d\sigma = \iint_{D'} (u^2 + v^2) du dv + 6\pi$$
。

转换为极坐标系, $u=r\cos\theta$, $v=r\sin\theta$,则 $D'=\{(r,\theta)|0\leqslant\theta\leqslant2\pi,0\leqslant r\leqslant\sqrt{2}\}$ 。

$$\iint\limits_{D'} (u^2 + v^2) \mathrm{d} u \mathrm{d} v = \int_0^{2\pi} \mathrm{d} \theta \int_0^{\sqrt{2}} r^3 \, \mathrm{d} r = 2\pi \int_0^{\sqrt{2}} r^3 \, \mathrm{d} r = \frac{\pi}{2} (\sqrt{2})^4 = 2\pi \, .$$
 所以原式 = $2\pi + 6\pi = 8\pi \, .$

若积分区域 σ 关于 $x=k_1$ 或 $y=k_2$ 对称,则当 f(x,y) 含有 $x-k_1$ 或 $y-k_2$ 因式时重积分值为 0。

例题: 设
$$D: x^2 + y^2 \leqslant 2x + 2y$$
,求 $\iint_D xy \, dx dy$ 。

解:本题目使用直角坐标系和极坐标系都不好做。所以需要利用积分性质,对 D 进行平移等操作。

利用平移,由于 $D: (x-1)^2 + (y-1)^2 = 2$,令 $x = 1 + r\cos\theta$, $y = 1 + r\sin\theta$,则利用极坐标, $r \in [0,\sqrt{2}]$, $\theta \in [0,2\pi]$, $= \int_0^{2\pi} \mathrm{d}\theta \int_0^{\sqrt{2}} ((1+r\cos\theta)(1+r\sin\theta)r) \mathrm{d}r = \int_0^{2\pi} \mathrm{d}\theta \int_0^{\sqrt{2}} (1+r\sin\theta+r\cos\theta+r^2\sin\theta\cos\theta)r\,\mathrm{d}r$,又将 $\sin\theta$ 和 $\cos\theta$ 对 θ 在 $[0,2\pi]$ 进行积分全部为 0,所以直接把后面的全消掉,变为 $\int_0^{2\pi} \mathrm{d}\theta \int_0^{\sqrt{2}} r\,\mathrm{d}r = 2\pi$ 。

1.2.5 极限化为二重积分

类似极限转换为定积分,有 $\lim_{n\to\infty} \frac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n f\left(\frac{i}{n}, \frac{j}{n}\right) = \int_0^1 dx \int_0^1 f(x, y) dy$:

- 1. 先提出 $\frac{1}{n^2}$ 。
- 2. 凑出 $\frac{i}{n}$ 和 $\frac{j}{n}$ 。
- 3. 写出 $\int_0^1 dx$ 、 $\int_0^1 f(x,y) dy$,其中 $\frac{1}{n^2}$ 没有了,将所有 $\frac{i}{n}$ 换为 x, $\frac{j}{n}$ 换为 y。

例题: 求
$$I = \lim_{n \to \infty} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{1}{\left(1 + \frac{i}{n}\right)(n^2 + j^2)}$$

解:首先提出
$$\frac{1}{n^2}$$
,正好在分母右边等式中 $=\lim_{n\to\infty}\sum_{i=1}^n\sum_{j=1}^n\frac{1}{\left(1+\frac{i}{n}\right)\left(1+\frac{j^2}{n^2}\right)}\frac{1}{n^2}$ 。
已完全化为 $\frac{i}{n}$ 和 $\frac{j}{n}$,所以 $=\int_0^1\frac{1}{1+x}\mathrm{d}x\int_0^1\frac{1}{1+y^2}\mathrm{d}y$ 。
 $=\ln(1+x)|_0^1\arctan y|_0^1=\frac{\pi}{4}\ln 2$ 。

1.2.6 二重积分极限

即对存在二重积分的式子求极限。当对二重积分求极限时基本上都需要使用洛必达法则对积分求导。

令中间的定积分为 g(x),并记住 $(\int_{f(x)}^{g(x)}h(t)\,\mathrm{d}t)'=(g'(x)-f'(x))h(x)$ 。上下限最好换为 x 和 0。

例题: 求
$$\lim_{t\to 0+} \frac{1}{t^6} \int_0^t \mathrm{d}x \int_x^t \sin(xy)^2 \mathrm{d}y$$
。

解:这个式子求极限必然使用洛必达法则,而 $\int_0^t \mathrm{d}x \int_x^t \sin(xy)^2 \mathrm{d}y$ 里面那层定积分的上下限不规整,所以更换积分次序变成 $\int_0^t \mathrm{d}y \int_0^x \sin(xy)^2 \mathrm{d}x$ 。

对其求导 $\int_0^t \left[\int_0^x \sin(xy)^2 dx \right] dy$,由于该层积分变量为 y,令 $\int_0^x \sin(xy)^2 dx = g(y)$,所以 $= \int_0^t g(y) dy$,对其求导得 g(t),里面的 y 全部用 t 替换 $= \int_0^x \sin(xt)^2 dx$ 。 $= \lim_{t \to 0^+} \frac{\int_0^t dx \int_x^t \sin(xy)^2 dy}{t^6} = \lim_{t \to 0^+} \frac{\int_0^t \sin(xt)^2 dx}{6t^5} = \lim_{t \to 0^+} \frac{\int_0^t \sin(xt)^2 d(xt)}{6t^6}$ 。
由于 x 和 t 都是变量,所以令 xt = u, $x = \frac{u}{t}$, $u \in (0, t^2)$, $= \lim_{t \to 0^+} \frac{\int_0^{t^2} \sin u^2 du}{6t^6} = \lim_{t \to 0^+} \frac{2t \sin t^4}{36t^5} = \lim_{t \to 0^+} \frac{t^5}{18t^5} = \frac{1}{18}$ 。

1.2.7 广义极坐标系

广义极坐标系是对极坐标系的延伸,极坐标系是广义坐标系的特例。极坐标 系是基于直线和圆周进行积分,而广义极坐标系可以对圆锥曲线进行积分。

当对面积为非圆形进行积分时可以使用广义极坐标系。

例题: 设
$$D: \frac{x^2}{a} + \frac{y^2}{b} \leqslant 1$$
, 求 $\iint_D y^2 \, dx dy$ 。

解: 令 $x = ar \cos \theta$, $y = br \sin \theta$, 所以 D' 为 $0 \leqslant r \leqslant 1$, $0 \leqslant \theta \leqslant 2\pi$ 。

变换雅可比行列式 $J = \frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix} = \begin{vmatrix} a\cos \theta & -ar\sin \theta \\ b\sin \theta & br\cos \theta \end{vmatrix} = abr$ 。

所以 $I = \iint_D (br\sin \theta)^2 |J| \, dr d\theta = \int_0^{2\pi} d\theta \int_0^1 b^2 r^2 \sin^2 \theta \cdot abr \, dr = \frac{\pi ab^3}{4}$ 。

1.3 二重积分等式

1.3.1函数

例题:设 f(x,y) 为连续函数,且 $f(x,y) = \frac{1}{\pi} \sqrt{x^2 + y^2} \iint_{x^2 + y^2 < 1} f(x,y) d\sigma + y^2$, 求 f(x,y)。

 $\mathbf{M}: : f(x,y)$ 为连续函数,所以其在区间上可积且是一个常数。

令
$$\iint_{x^2+y^2\leqslant 1} f(x,y) \,\mathrm{d}\sigma = A$$
。 对 $f(x,y) = \frac{A}{\pi} \sqrt{x^2+y^2} + y^2$ 两边积分:
$$A = \frac{A}{\pi} \iint_{x^2+y^2\leqslant 1} \sqrt{x^2+y^2} \,\mathrm{d}\sigma + \iint_{x^2+y^2\leqslant 1} y^2 \,\mathrm{d}\sigma, \ \ \diamondsuit \ x = r\cos\theta, \ \ y = r\sin\theta \text{:}$$

$$A = \frac{A}{\pi} \int_0^{2\pi} \mathrm{d}\theta \int_0^1 r^2 \,\mathrm{d}r + \int_0^{2\pi} \sin^2\theta \,\mathrm{d}\theta \int_0^1 r^3 \,\mathrm{d}r = \frac{2A}{3} + \frac{\pi}{4} \circ A = \frac{3}{4}\pi \circ$$
 则代入原式 $f(x,y) = \frac{3}{4} \sqrt{x^2+y^2} + y^2 \circ$

1.3.2 极限

例题: 设 g(x) 有连续的导数,且 g(0) = 0, $g'(0) = a \neq 0$, f(x,y) 在 (0,0)

的某邻域内连续,求 $\lim_{r\to 0^+} \frac{\iint\limits_{r\to 0^+} f(x,y)\,\mathrm{d}x\mathrm{d}y}{g(r^2)}$ 。

解:已知对于这个积分式子中 f(x) 和 g(x) 都是未定式,不可能求出具体的 值,所以不能再用二重积分直接计算。

面对这种未定式我们希望把这个式子变成我们已知的式子,也应该与r相 关。此时我们可以想到二重积分中值定理。

根据二重积分中值定理 $\iint_{x^2+y^2 \le r^2} f(x,y) \, \mathrm{d}x \mathrm{d}y = \pi r^2 f(\xi,\eta)$,其中 (ξ,η) 为圆域

$$\begin{split} x^2 + y^2 &\leqslant r^2 \text{ 上的点,所以} \lim_{r \to 0^+} f(\xi, \eta) = f(0, 0) \circ \\ &= \lim_{r \to 0^+} \frac{\pi r^2 f(\xi, \eta)}{g(r^2)} = \lim_{r \to 0^+} \frac{\pi f(0, 0) 2r}{2r g'(r^2)} = \lim_{r \to 0^+} \frac{\pi f(0, 0)}{g'(r^2)} = \frac{\pi f(0, 0)}{g'(0)} = \frac{\pi f(0, 0)}{a} \circ \end{split}$$

1.3.3 求导

1.4 二重积分不等式

即对二重积分进行对比。

1.4.1 同积分域

同一积分域上二重积分大小的比较,只要比较在该区间被积函数值的大小。

1.4.2 同积分函数

同一积分函数上二重积分大小的比较,要比较函数域的大小,也要注意在函数域上被积函数的符号。

例题: 设积分区域
$$D_1 = \{(x,y)|x^2+y^2 \leqslant 1\}$$
、 $D_2 = \{(x,y)|x^2+y^2 \leqslant 2\}$ 、 $D_3 = \left\{(x,y)|\frac{1}{2}x^2+y^2 \leqslant 1\right\}$ 、 $D_4 = \left\{(x,y)|x^2+\frac{1}{2}y^2 \leqslant 1\right\}$ 。 记 $I_i = \iint\limits_{D_i} \left[1-\left(x^2+\frac{1}{2}y^2\right)\right] \mathrm{d}\sigma$ $(i=1,2,3,4)$,求 $\max\{I_1,I_2,I_3,I_4\}$ 。

解:已知 D_1 、 D_2 分别为半径 1 和 $\sqrt{2}$ 的圆,而 D_3 、 D_4 分别为横着和竖着的椭圆。可以画出图像。

被积函数 $f(x,y) = 1 - \left(x^2 + \frac{1}{2}y^2\right)$ 为连续函数,只有在 D_4 上才能保证完全为正,以外的地方为负值。

所以 $D_1 \subset D_4$,所以 $I_1 < D_4$ 。对于 D_2 更大, $D_4 \subset D_2$,但是多余的左右 部分是负值,积分值会在 D_4 的基础上减去这部分的值,同理 D_3 和 D_4 一个是 横的椭圆一个是竖的椭圆,其积分值只有中间交叉的部分,还要减去两边多余的 部分。

所以 I_4 最大。

1.5 一重积分化二重积分

对于一重积分的计算或证明可能比较有难度,如两个关于 x 的函数的一重积分乘积计算,可以将其中一个 x 当作 y,从而将一重积分的乘积变为二重积分。

1.5.1 乘积化不等式

例题: f(x) 为恒大于 0 的连续函数,证明 $\int_a^b f(x) dx \cdot \int_a^b \frac{1}{f(x)} dx \ge (b-a)^2$ 。解:首先观察这个式子,右边是积分上下限的差的乘积,左边是两个积分的乘积,看上去貌似没什么关系,而且积分式子给出的是一个未定式 f(x),所以不能直接求左边值再比较大小,他们之间一定存在着某种关系。

式子左边的两个函数互为倒数,所以应该要尝试将这两个式子乘在一起来 利用基本不等式计算,即将一重积分乘积变为二重积分。

对于一重积分而言只是一个自变量,对于二重积分而言就变成了两个自变量,需要令其中一个 f(x) 变为 y,所以 xy 的积分区域都是一样的 [a,b],所以设 $D=\{(x,y)|a\leq x\leq b,a\leq y\leq b\}$ 。

$$I = \int_{a}^{b} f(x) \, \mathrm{d}x \cdot \int_{a}^{b} \frac{1}{f(x)} \, \mathrm{d}x = \int_{a}^{b} f(x) \, \mathrm{d}x \cdot \int_{a}^{b} \frac{1}{f(y)} \, \mathrm{d}y = \iint_{D} \frac{f(x)}{f(y)} \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{$$

1.5.2 乘积简化计算

例题: 求 $\int_0^{+\infty} e^{-x^2} dx$ 。

解:对于这个一重积分首先看到 e^{x^2} ,肯定会想到将其幂次降低。使用分部积分法对 e^{e^2} 求导这个幂次不会降低,使用换元法 $x=\sqrt{t}$ 会得到 $\frac{1}{\sqrt{t}}$ 从而无法处理,所以这些都不能计算,那么该怎么办?

看到 x^2 就能想到 $x^2 + y^2$ 的形式,这样就是一个极坐标系的二重积分,所以尝试将一重积分变成二重积分,即再乘一个以 y 为自变量的原式。

设
$$I = \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x$$
,显然 $I > 0$,将 x 换成 y :
$$I^2 = \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x \cdot \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x = \int_0^{+\infty} e^{-x^2} \, \mathrm{d}x \cdot \int_0^{+\infty} e^{-y^2} \, \mathrm{d}y$$

$$= \iint_{\substack{0 \le x \le +\infty \\ 0 \le y \le +\infty}} e^{-(x^2 + y^2)} \, \mathrm{d}x \, \mathrm{d}y, \quad \diamondsuit \quad x = r \cos \theta, \quad y = r \sin \theta$$
:
$$= \int_0^{\frac{\pi}{2}} \, \mathrm{d}\theta \int_0^{+\infty} e^{-r^2} r \, \mathrm{d}r = \frac{\pi}{2} \left(-\frac{1}{2} \right) \int_0^{+\infty} e^{-r^2} \, \mathrm{d}(-r^2) = -\frac{\pi}{4} e^{-r^2} \bigg|_0^{+\infty} = \frac{\pi}{4}.$$

$$\therefore I = \frac{\sqrt{\pi}}{2}.$$

1.6 二重积分应用

1.6.1 体积

1.6.2 形心公式

直角坐标系和极坐标系的形心公式都是一样的, 使用极坐标系可以转换。

例题: 求曲线 $ay = x^2$ 与 x + y = 2a 所围平面区域 D 的形心坐标。

解:根据表达式可知有两个交点 (-2a,4a)、(a,a),形心公式:

$$\overline{x} = \frac{\iint\limits_{D} x \, d\sigma}{\iint\limits_{D} d\sigma} = \frac{\int_{-2a}^{a} x \, dx \int_{\frac{x^{2}}{a}}^{-x+2a} \, dy}{\int_{-2a}^{a} dx \int_{\frac{x^{2}}{a}}^{-x+2a} \, dy} = \frac{\int_{-2a}^{a} (-\frac{x^{3}}{a} - x^{2} + 2ax) dx}{\int_{-2a}^{a} (-\frac{x^{2}}{a} - x + 2a) dx} = -\frac{1}{2}a$$

$$\overline{y} = \frac{\iint\limits_{D} y \, d\sigma}{\iint\limits_{D} d\sigma} = \frac{\int_{-2a}^{a} dx \int_{\frac{x^{2}}{a}}^{-x+2a} y \, dy}{\int_{-2a}^{a} dx \int_{\frac{x^{2}}{a}}^{-x+2a} dy} = \frac{\frac{1}{2} \int_{-2a}^{a} (-\frac{x^{4}}{4} + x^{2} - 4ax + 4a^{2})}{\int_{-2a}^{a} (-\frac{x^{2}}{a} - x + 2a) \, dx} = \frac{8}{5}a$$

2 弧长曲线积分

坐标曲线积分 3

定积分法 3.1

二重积分法 3.2

3.2.1 补全区域

即 L 不能构成一个完整的域,就需要按照路径对区域进行补全,然后减去 这个曲线积分值。

3.2.2 不可导点

即 D 中存在不可导的点,需要以不可导点为圆心做圆对 D 进行切割。

例题:
$$I = \oint_{L} \frac{x dy - y d}{x^2 + y^2}$$
, L 为不过原点的闭曲线。

解:
$$P = -\frac{y}{x^2 + y^2}$$
, $Q = \frac{x}{x^2 + y^2}$ 。 $\frac{\partial Q}{\partial x} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$, $\frac{\partial P}{\partial y} = \frac{y^2 - x^2}{(x^2 + y^2)^2}$,从 而 $\frac{\partial Q}{\partial x} \equiv \frac{\partial P}{\partial y}$ 。 但是此时 $(x,y) \neq (0,0)$, 所以格林公式无法使用。 若 $(0,0) \notin D$,则可以使用格林公式, $I = \iint_D 0 \, \mathrm{d}\sigma = 0$ 。

若 $(0,0) \in D$,不可以使用格林公式,所以重新对 D 进行划分,令 L_0 : $x^2 + y^2 = r^2$, 其中 r > 0 且 L_0 不超过 D, L_0 为逆时针。中间的环为 D_1 , 最里 侧的圆为 D_2 。

所以对中间的环
$$D_1$$
 使用格林公式: $\oint_{L+L_0^-} = \iint_{D_1} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) d\sigma = 0$ 。
$$\therefore \oint_L + \oint_{L_0^-} = \oint_L - \oint_{L_0} = 0, \quad \oint_L = \oint_{L_0} \circ$$

$$I = \oint_{L_0} \frac{x dy - y dx}{x^2 + y^2} = \frac{1}{r^2} \oint_{L_0} x dy - y dx = \frac{2}{r^2} \iint_{D_2} d\sigma = 2\pi \circ$$

例题: 计算曲线积分 $\oint_{r} \frac{x dy - y dx}{4^{x}2 + y^{2}}$,其中 L 是以点 (1,0) 为圆心, $R \geqslant 1$ 为 半径的圆,取逆时针方向。

解:由于是逆时针在 L 上,所以是正向: $=\oint_{L^+}\left(\frac{-y}{4x^2+y^2}\mathrm{d}x+\frac{x}{4x^2+y^2}\mathrm{d}y\right)$ 。 又对于 L 所围成的圆面 D,因为 $4x^2+y^2\neq 0$,所以 (0,0) 应该被挖去。

因为逆时针的方向下挖去这个点做的运动顺时针是负方向的,所以令其为 C^- 。

又因为格林公式
$$\oint_{L^++C^-} P \, \mathrm{d}x + Q \, \mathrm{d}y = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \mathrm{d}\sigma =$$

$$\iint_D \left(\frac{4x^2 + y^2 - 3x^2}{(4x^2 + y^2)^2} - \frac{-(4x^2 + y^2) + 2y^2}{(4x^2 + y^2)^2} \right) \mathrm{d}\sigma = 0 \, \text{。 旋度为 } 0 \, \text{.}$$

$$= \oint_{L^++C^-} \oint_{C^-} = 0 - \oint_{C^-} = \oint_{C^+} \otimes \mathbb{R} \ C : 4x^2 + y^2 = \delta^2, \ \delta \ \text{为-个足够小的常}$$
数。 (分母取 δ^2)
$$= \oint_{C^+} \left(\frac{-y}{4x^2 + y^2} \mathrm{d}x + \frac{x}{4x^2 + y^2} \mathrm{d}y \right) = \oint_{C^+} \left(\frac{-y}{\delta^2} \mathrm{d}x + \frac{x}{\delta^2} \mathrm{d}y \right)$$

$$= \frac{1}{\delta^2} \oint_{C^+} -y \, \mathrm{d}x + x \, \mathrm{d}y, \, \text{利用格林公式}, \, C^+ \, \text{所成区域为} \ D' : \frac{1}{\delta^2} \oint_{D'} (1 - (-1)) \, \mathrm{d}\sigma =$$

$$\frac{2}{\delta^2} D' = \frac{2}{\delta^2} \pi \frac{\delta}{2} \delta = \pi \, \text{.}$$