MATH3423 Statistical Inference - Final Examination (Fall 11/12)

Time allowed: Two hours	
There are four questions in the	nis paper, each with 15 marks.
Answer all questions.	
	Name:
	Student ID:

- 1. Let $X_1, ..., X_n$ be a random sample from a Poisson distribution with mean parameter θ .
 - (a) (2 marks) Find the complete and sufficient statistic for θ . What is its distribution?
 - (b) (3 marks) Find the UMVUE of θ^3 . Is its variance equal to CRLB of all unbiased estimators for θ^3 ? Explain.
 - (c) (5 marks) Find the UMVUE of $P(X_1 = 0)$. Find the CRLB of all unbiased estimators for $P(X_1 = 0)$.
 - (d) (3 marks) Find the UMVUE of $P(X_1 = 1)$.
 - (e) (2 marks) Hence or otherwise, find the UMVUE of $P(X_1 > 1)$.
- 2. Let $X_1, ..., X_n$ be a random sample from the exponential distribution with parameter θ , where the probability density function is $f(x) = \theta e^{-\theta x}$
 - (a) (2 marks) Find the complete and sufficient statistic for θ . What is its distribution?
 - (b) (3 marks) Find the UMVUE of θ .
 - (c) (5 marks) Find the MLE and UMVUE of $P(X_1 > a)$.
 - (d) (3 marks) Find the CRLB of all unbiased estimators for $P(X_1 > a)$. Is the variance of the UMVUE in (c) equal to CRLB of all unbiased estimators for $P(X_1 > a)$? Explain.
 - (e) (2 marks) What is the UMVUE of $P(X_1 > b|X_1 > a)$ where b > a?

- 3. Let $X_1, ..., X_n$ be a random sample from the $N(\mu, \sigma^2)$. Assume $\mu = 0$ for parts (a) and (b).
 - (a) (3 marks) Find the UMP test for $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 < \sigma_0^2$ at significant level α .
 - (b) (4 marks) For the UMP test in part (a), find the power function $Q(\sigma^2)$. Express it in terms of $P(\chi_a^2 \leq b)$ for some constants of a and b. Hence or otherwise, show that the UMP test in part (a) is also the UMP test for $H_0: \sigma^2 \geq \sigma_0^2$ versus $H_1: \sigma^2 < \sigma_0^2$ at the level of significance α .
 - (c) Consider another hypothesis testing problem with $H_0: \sigma^2 = \sigma_0^2$ versus $H_1: \sigma^2 \neq \sigma_0^2$ at the level of significance α . (Remark: $\mu \neq 0$ in this part.)
 - i. (3 marks) Find the expression of the likelihood ratio statistic.
 - ii. (5 marks) Show that the critical region of this likelihood ratio test can be written as $\{T(X_1, X_2, \ldots, X_n) : T(X_1, X_2, \ldots, X_n) \leq K_1 \text{ or } T(X_1, X_2, \ldots, X_n) \geq K_2\}$ where $T(X_1, X_2, \ldots, X_n)$ is a function of data and K_1 and K_2 are constants which depend on the size of the critical region. Then, find the constants K_1 and K_2 by setting $P(T(X_1, X_2, \ldots, X_n) \leq K_1 | H_0) = P(T(X_1, X_2, \ldots, X_n) \geq K_2 | H_0)$.
- 4. (a) Let $Y_1, ..., Y_n$ be a random sample from the $Bin(1, \theta)$. Consider the hypothesis $H_0: \theta = 0.5$ versus $H_1: \theta \neq 0.5$ at the level of significance α .
 - i. (1 mark) Find an expression of the likelihood ratio statistic.
 - ii. (2 marks) Show that the critical region of this likelihood ratio test can be written as $\{T(X_1, X_2, \dots, X_n) : |T(X_1, X_2, \dots, X_n) 0.5| > C\}.$
 - iii. (3 marks) Using central limit theorem, find the constant C and state the critical region for this test.
 - (b) Let $X = (X_1, X_2)$, where X_i denoted as the number of occurrences, have multinomial distribution with parameters n, p_1, p_2 . Consider the hypothesis $H_0: p_1 = p_2$ versus $H_1: p_1 \neq p_2$ at the level of significance α .
 - i. (4 marks) Find the likelihood ratio statistic and then derive the approximate large sample likelihood ratio test.
 - ii. (2 marks) Write down the Pearson's goodness of fit test statistic and state the critical region for this test.
 - (c) (3 marks) Suppose there are 55 males and 45 females in a sample. Using the three tests derived above to test the hypothesis that the proportions of males and females are equal at $\alpha = 0.05$.
 - (d) (Bonus: 4 marks) Show that the tests from part (a) and part (b)(ii) are equivalent.