

Preet Kanwal

Department of Computer Science & Engineering

Unit 3

Preet Kanwal

Department of Computer Science & Engineering

Unit 3 - Greibach Normal Form (GNF)

A context-free grammar is in **Greibach normal form** (GNF) if the right-hand sides of all production rules start with a terminal symbol, optionally followed by some variables.

All productions have form:

Unit 3 - Greibach Normal Form

Examples:

$$S \to cAB$$

$$A \to aA \mid bB \mid b$$

$$B \to b$$

$$S \rightarrow abSb$$
$$S \rightarrow aa$$

Greibach Normal Form Not Greibach Normal Form

Automata Formal Languages and Logic Unit 3 - Greibach Normal Form (GNF)

Steps to convert a CFG to Greibach normal form (GNF):

- Eliminate lambda, unit and useless productions (in the sequence mentioned).
- We attempt to show the conversion using basic examples in a brief manner (direct conversion).
- Conversion is a little tedious if we go by the algorithm (skipped)

Unit 3 - Greibach Normal Form (GNF)

Note: Conversion of a CFG to Greibach normal form (GNF):

If
$$G = (V, T, P, S)$$
 is a CFG then, we can construct another CFG $G_1 = (V_1, T, P_1, S)$ in GNF such that, $L(G_1) = L(G) - \{\lambda\}$

For every context-free grammar G where $\lambda \notin L(G)$, there exists an equivalent grammar in GNF.

However, a non-strict forms makes an exception to this format restriction for allowing the empty word (λ) to be a member of the described language ($S \rightarrow \lambda$).

Unit 3 - Greibach Normal Form

Conversion to Greibach Normal Form:

$$S \rightarrow abSb$$

$$S \rightarrow aa$$

$$S \rightarrow aA$$

$$S \rightarrow aA$$

$$A \rightarrow a$$

Not Greibach Normal Form

Greibach Normal Form

Unit 3 - CFG to GNF

Example 1:

$$G: S \rightarrow aSa \mid bSb \mid SS \mid \lambda$$

Solution:

We get
$$L(G_1) = L(G) - \{\lambda\}$$
 in a stricter Form
The grammar G_1 in GNF is

1) Eliminate Lambda Production:

$$G_1: S \rightarrow aSa \mid bSb \mid S \mid SS \mid aa \mid bb$$

2) Eliminate Unit Production (S → S)

$$G_1: S \rightarrow aSa \mid bSb \mid SS \mid aa \mid bb$$

3) No useless production

Unit 3 - CFG to GNF

Example 1 (continued):

 $G: S \rightarrow aSa \mid bSb \mid SS \mid \lambda$

Solution:

We get $L(G_1) = L(G) - \{\lambda\}$ in a stricter Form

4) Convert to GNF

Step 1 (Ensure RHS of each productions starts with a Terminal):

 $S \rightarrow aSa \mid bSb \mid aSaS \mid bSbS \mid aaS \mid bbS \mid aa \mid bb \lambda$

Step 2 (conversion to GNF):

 $S \rightarrow aSA \mid bSB \mid aSAS \mid bSBS \mid aAS \mid bBS \mid aA \mid bB \mid \lambda$

 $A \rightarrow a$

 $B \rightarrow b$

Unit 3 - Greibach Normal Form

Example 2:

$$S \rightarrow XY \mid Xn \mid p$$

$$X \rightarrow mX \mid m$$

Solution:

- There are no Lambda and Unit productions.
- Variable Y is useless as it doesn't derive a terminal, hence the grammar becomes :

$$S \rightarrow Xn \mid p$$

$$X \rightarrow mX \mid m$$

Unit 3 - Greibach Normal Form

Example 2:

 $S \rightarrow XY | Xn | p$

 $X \rightarrow mX \mid m$

Y → Wn| o

Solution:

The grammar in GNF is

Step 1:(Ensure RHS of each productions starts with a Terminal)

 $S \rightarrow mX_n \mid m_n \mid p$

 $X \rightarrow mX \mid m$

Step 2:(conversion to GNF):

 $S \rightarrow mXN \mid mN \mid p$

 $N \rightarrow n$

 $X \rightarrow mX \mid m$

Unit 3 - Greibach Normal Form

Example 3:

S->aA|bB

 $B->bB|\lambda$

 $A \rightarrow aA \lambda$

Solution:

Eliminate lambda Productions

S->aA|bB | a | b

B->bB|**b**

A->aA|a

No Unit and Useless Productions Above grammar is already in GNF.

Unit 3 - CFG(in GNF) to PDA conversion

- Convert given CFG to GNF
- From the Start state(let's say q0) without consuming any input symbol, push the Start Symbol to Stack and transit to next state (let's say q1).

$$\delta(q0, \lambda, Z_0) = (q1, SZ_0)$$

For every production of the form

$$A \rightarrow a\alpha$$

add the transition:

$$\delta(q1, a, A) = (q1, \alpha)$$

Finally add the following transition :

$$\delta(q1, \lambda, Z_0) = (qf, Z_0)$$

where, qf is the final state.

- **♦ PDA constructed using above method will always have only 3 states.**
- Stack contents are the Variables in the sentential form of corresponding string derivation by the grammar.

Unit 3 - CFG(in GNF) to PDA conversion

Example 1:

S -> aABC

A -> aB | a

B -> bA | b

C -> a

Solution:

Unit 3 - CFG(in GNF) to PDA conversion

Trace the string "aababa" on the above PDA.

Unit 3 - CFG to PDA conversion

Example 2:

$$A \rightarrow a$$

THANK YOU

Preet Kanwal

Department of Computer Science & Engineering

preetkanwal@pes.edu

+91 80 6666 3333 Extn 724