

Data Structures

Ching-Fang Hsu

Department of Computer Science and Information Engineering

National Cheng Kung University

An Abstract Data Type

ADT Array is

objects: A set of pairs < *index*, *value*> where for each value of *index* there is a value from the set *item*. *Index* is a finite ordered set of one or more dimensions, for example, $\{0,...,n-1\}$ for one dimension, $\{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)\}$ for two dimensions, etc.

functions:

for all $A \in Array$, $i \in index$, $x \in item$, j, $size \in integer$

```
Array Create(j, list)::= return an array of j dimensions where list is a j-tuple whose ith element is the size of the ith dimension. Items are undefined \circ

Item Retrieve(A, i) ::= if (i \in index) return the item associated with index value i in array A else return error

Array Store (A, i, x)::= if (i in index) return an array that is identical to array A except the new pair < i, x > has been inserted else return error.
```

end Array

An Abstract Data Type (contd.)

- The implementation of one-dimensional arrays in C
 - When the compiler encounters an array declaration with type t and size n, it allocates n consecutive memory locations, where each one is large enough to hold a type t value.
 - □ The base address α -- the address of the first element of an array
 - ▶ The address of the *i*-th element = α + (*i*-1) * sizeof (t)
 - ▶ In C, we do not multiply the offset *i* and size of (t) to get the appropriate element of the array.

An Abstract Data Type (contd.)

- ightharpoonup list[i] \equiv * (list + i)
- Dereferencing -- the pointer is interpreted as an indirect reference
 - p. 54, Program 2.2

```
void print1( int *ptr, int rows)
{
   int i;
   printf("Address Contents\n");
   for( i = 0; i < rows; i++ )
      printf("%8u%5d\n", ptr+i, *(ptr+i);
   printf("\n");
}</pre>
```

→dereferencing

The Polynomial Abstract Data

Type

- Ordered / linear lists
 - \square ($item_0$, $item_1$, ..., $item_{n-1}$)
 - Operations on lists (p. 65)

- Length determination
- Scanning from left to right
- Item value retrival/setting
- Item insertion
- Item deletion
- Representing an ordered list as an array
 - \square Associate *item*_i with the array index i.
 - ⇒ A sequential mapping
 - □ Sequential mapping works well for most operations listed in page 65 in constant time, except insertion and deletion.
 - A motivation that leads us to consider nonsequential mappings

```
ADT Polynomial is
  objects: p(x) = a_1 x^{e_1} + a_n x^{e_n}; a set of ordered pairs of \langle e_i, a_i \rangle where a_i in
  Coefficients and e_i in Exponents, e_i are integers \geq 0
  functions:
    for all poly, poly1, poly2 \in Polynomial, coef \in Coefficients, expon \in Exponents
    Polynomial Zero() ::= return the polynomial, p(x) = 0
    Boolean IsZero(poly)
                             ::= if (poly) return FALSE
                                   else return TRUE
    Coefficient Coef(poly, expon) := if (expon \in poly) return its coefficient
                                        else return 0
    Exponent LeadExp(poly) ::= return the largest exponent in poly
    Polynomial Attach(poly, coef, expon) := if (expon \in poly) return error
                                                  else return the polynomial poly
                                                  with the term <coef, expon> inserted
    Polynomial Remove(poly, expon) ::= if (expon \in poly) return the polynomial
                                             poly with the term whose exponent is expon
                                             deleted else return error
    Polynomial SingleMult(poly, coef, expon)
                                                 := return the polynomial poly ·
                                                       coef \cdot x^{expon}
     Polynomial Add(poly1, poly2) ::= return the polynomial poly1 + poly2
    Polynomial Mult(poly1, poly2) ::= return the polynomial poly1 \cdot poly2
end Polynomial
```

```
/* d = a+b, where a, b, and d are polynomials */
                                          Two non-zero polynomials
d = Zero();
while (!IsZero(a) && !IsZero(b)
                                     do {
   switch COMPARE (LeadExp(a), LeadExp(b))
       case -1:
          Attach (d, Coef(b, LeadExp(b)), LeadExp(b))
          b = Remove(b, LeadExp(b));
          break:
                     →Output and remove b's leading term
       case 0:
          sum = Coef(a, LeadExp(a)) + Coef(b, LeadExp(b));
          if (sum) {
              Attach (d, sum, LeadExp(a));
              a = Remove(a, LeadExp(a));
              b = Remove(b, LeadExp(b));
          break;
       case 1:
          Attach(d, Coef(a, LeadExp(a)), LeadExp(a));
          a = Remove(a, LeadExp(a));
insert any remaining terms of a or b into d
```

The Polynomial Abstract Data Type -- Representation

- Option 1 (p. 66~68)
 - Maximum degree is restricted by MAX DEGREE.

```
#define MAX_DEGREE 101
typedef struct {
    int degree;
    float coef[MAX_DEGREE];
    } polynomial;
```

If a is of type polynomial and n < MAX_DEGREE, $A(x) = \sum_{i=0}^{n} a_i x^i$ can be represented as

```
a.degree = n
a.coef[i] = a_{n-i}, 0 \le i \le n
```

The Polynomial Abstract Data Type – Representation (contd.)

- □ The main drawback : lower flexibility on space requirement
 - ► Wasting a lot of space when the degree of the polynomial is much less than MAX_DEGREE or the polynomial is sparse

The Polynomial Abstract Data Type – Representation (contd.)

- Option 2 (p. 68~69)
 - Representing $a_i x^i$ as a structure and using only one global array of this structure to store all polynomials (p. 68~69)

```
#define MAX_TERMS 100
typedef struct {
    float coef;
    int expon;
    } polynomial;
polynomial
terms[MAX_TERMS];
int avail = 0;
```

The Polynomial Abstract Data Type Representation (contd.)

coef expon

The Polynomial Abstract Data Type -- Representation (contd.)

若矩陣之間較為稀疏,使用第二種方法紀錄矩陣較省空間。然而若矩陣本身若太為密集,例如為x^1000+x^999+x^998+....此時要花費太多exponent的空間儲存此係數對應到的次

- No limit on the number of polynomials stored in the global array
- □ The index of the first (last) term of polynomial A is given by starta (finisha).
 - \square finisha = starta + n 1, if A has n nonzero terms
- □ The index of the next free location in the array is given by avail.
- □ The main drawback: About twice as much space as option 1 is needed when all the terms are nonzero.
- □ The revised function padd (p. 70, Program 2.6)

```
void padd(int startA, int finishA, int startB, int finishB,
                             int *startD, int *finishD)
                                                            Two non-zero polynomials
        { /* add A(x) and B(x) to obtain D(x) */
           float coefficient:
           *startD = avail;
           while (startA <= finishA && startB <= finishB)
              switch (COMPARE(terms[startA].expon, terms[startB].expon))
                 case -1: /* a expon < b expon
                      attach(terms[startB].coef, terms[startB].expon);
                     startB++;
                                                       Comparison between two leading terms
Output and remove b's leading term exponents */
                      coefficient = terms[startA].coef + terms[startB].coef;
                     if (coefficient)
                          attach(coefficient, terms[startA].expon);
                      startA++;
                     startB++;
                     break:
                 case 1: /* a expon > b expon */
                     attach(terms[startA].coef, terms[startA].expon);
                     startA++;
                                                          Append remaining terms to
                     break;
                                                          the resulting polynomial
               /* add in remaining terms of A(x)
              for( ; startA <= finishA; startA++)</pre>
                 attach(terms[startA].coef,terms[startA].expon);
              /* add in remaining terms of B(x) */
              for( ; startB <= finishB; startB++)</pre>
                 attach(terms[startB].coef,terms[startB].expon);
               *finishD = avail - 1;
```

The Polynomial Abstract Data Type -- Representation (contd.)

- Analysis of Program 2.6
 - □ Each iteration of the while-loop: O(1)
 - □ The number of iterations: bounded by $m + n 1 \Rightarrow O(n + m)$
 - \square m (n): # of nonzero terms in A (B)
 - □ The worst case (p. 71)
 - □ The time for two for-loops: bounded by O(n + m)
 - \Rightarrow The asymptotic time of the algorithm for operation Add is O(n + m).

The Sparse Matrix Abstract Data Type

- A matrix containing many zero entries is called a sparse matrix.
 - Difficult to determine exactly whether a matrix is sparse or not
- ► The standard representation of a matrix is a two-dimensional array, but not appropriate for a sparse matrix due to a waste of space.
 - Storing only non-zero elements is a feasible solution for a sparse matrix.

ADT SparseMatrix is

objects: a set of triples, <*row*, *column*, *value*>, where *row* and *column* are integers and form a unique combination, and *value* comes from the set *item*.

functions:

for all $a, b \in SparseMatrix, x \in item, i, j, maxCol, maxRow \in index$

SparseMatrix Create(maxRow, maxCol)::=

return a SparseMatrix that can hold up to maxItems = $maxRow \times maxCol$ and whose maximum row size is maxRow and whose maximum column size is maxCol.

SparseMatrix Transpose(a)

return the matrix produced by interchanging the row and column value of every triple.

SparseMatrix Add(a, b) ::=

if the dimensions of a and b are the same **return** the matrix produced by adding corresponding items, namely those identical row and column values. **else return** error.

SparseMatrix Multiply(a, b) ::=

if number of columns in a equals number of rows in b according to the formula: $d[i][j] = \Sigma(a[i][k] \cdot b[k][j])$ where d(i, j) is the (i, j) element **else return** error.

The Sparse Matrix Abstract Data Type (contd.)

- ► For efficient transpose operation, the triples are ordered by rows and within rows by columns.
- ▶ With the triple definition, the number of rows and columns, and the number of nonzero elements, the Create operation can be derived (p. 75).

```
#define MAX_TERMS 101  /* maximum number of terms+1 */
typedef struct {
   int col;
   int row;
   int value;
   } term;
term a[MAX_TERMS];
```

The Sparse Matrix Abstra row1 row2 Data Type (contd.) row3

Global information: row dimension, Figure 2.5 column dimension, and # of non-

col

value

zero entries

row1	0 (11)	3	0	0	0
row2	0	0	0	<u>-6</u>	0	0
row3	0	0	0 0	0	0	0
row4	91	0		0	0	0
row5	0	0	28	0	0	0

value

coll col2 col3 col4 col5

a[0]	6	6	8
[1]	0	0	15
[2]	0	3	22
[3]	0	5	-15
[4]	1	1	11
[5]	1	2	3
[6]	2	3	-6
[7]	4	0	91
[8]	5	2	28
	(a)		

row

b[0]	6	6	8
[1]	0	0	15
[2]	0	4	91
[3]	1	1	11
[4]	2	1	3
[5]	2	5	28
[6]	3	0	22
[7]	3	2	-6
[8]	5	0	-15
	(b))	

row0

row

col

```
void transpose (term a[], term b[])
        { /* b is set to the transpose of a */
           int n,i,j,currentb;
           n = a[0].value; /* total number of elements */
          b[0].row = a[0].col; /* rows in b= columns in a */
           b[0].col = a[0].row;
                                 /* columns in b= rows in a */
           b[0].value = n;
                                     Global information setting
           if (n > 0) { /* non zero matrix
              currentb = 1;
              for (i = 0; i < a[0].col; i++)
                  transpose by the columns in a */
The index of the term
                 for (j = 1; j \le n; j++) \longrightarrow Scanning all non zero terms
to be set in b
                      find elements from the current column
                     if (a[j].col == i) {
                     /* element is in current column, add it to b */
                         b[currentb].row = a[j].col;
                                                             Fill in
                         b[currentb].col = a[j].row;
                                                          → b[current]
                         b[currentb].value = a[j].value;
                                                             with a [j]
                         currentb++;
                                          →Proceed to the next
                                           vacant location in b
```

```
void fastTranspose(term a[], term b[])
                                                     Starting position
  { /* the transpose of a is placed in b */_
                                                    of each row of b
    int(rowTerms)MAX COL] startingPos MAX COL];
             numCols = a[0].col, numTerms = a[0].value;
# of terms per *
             = numCols;
row of b
    \sim 10].cow;
    b[0].value = numTerms;
    if (numTerms > 0) { /* nonzero matrix */
      for (i = 0; i < numCols; i++)
                                       The initialization of rowTerms
       rowTerms[i] = 0;
      for (i = 1; i <= numTerms; i++)</pre>
                                        The calculation of # of terms per
       rowTerms[a[i].col]++;
                                        row of b
      startingPos[0] = 1;
      for (i = 1; i < numCols; i++)
                                                  Determination of
       startingPos[i] =
                                                  startPos per
             startingPos[i-1] + rowTerms[i-1];
                                                  row
      for (i = 1; i <= numTerms; i++) {
       j = startingPos[a[i].col]++;
       b[j].row = a[i].col;
       b[j].col = a[i].row;
       b[j].value = a[i].value;
```

The Sparse Matrix Abstract Data Type -- Transposing a Matrix (contd.)

- Analysis of Program 2.9
 - □ The 1st for-loop: O(columns)
 - ► row_terms initialization
 - □ The 2nd for-loop: O(*elements*)
 - calculating # of non-zero elements within each column
 - □ The 3rd for-loop: O(columns)
 - starting positions calculations
 - ☐ The 4th for-loop: O(elements)
 - value setting for array b
- \Rightarrow The time complexity of fast_transpose is O(columns + elem)

$$A = \begin{bmatrix} 15 & X & X & 22 & X & -15 \\ X & 11 & 3 & X & X & X \\ X & X & X & -6 & X & X \\ X & X & X & X & X & X \\ 91 & X & X & X & X & X \\ X & X & 28 & X & X & X \end{bmatrix}$$

	row	col	value		row	col	value
a[0]	6	6	8	b[0]	6	6	8
[1]	0	0 -	15	\bigcirc	r 0	0	15
[2]	0	3	22	[2]	\mathcal{I}_{0}	4	91
[3]	0	5	-15	[3]	1	1	11
[4]	1	1 🛶	11	[4]	5 2	1	3
[5]	1	2	3	[5]	\ 2	5	28
[6]	2	3	- 6	<u>(6)</u>	$\int 3$	0	22
[7]	4	0	91	[7]	3	2	-6
[8]	5	2	28	[8]	5	0	-15
					[0] [1]	[2] [3]	[4] [5]

rowTerms = 2 1 2 2 startingPos = 1 3 4

21

The Sparse Matrix Abstract Data Type -- Matrix Multiplication

▶ Definition: Given A and B where A is $m \times n$ and B is $n \times p$, the $\langle i, j \rangle$ element of the product matrix D is

 $d_{ij} = \sum_{k=0}^{n-1} a_{ik} b_{kj}$

- Step 1: Compute the transpose of B.
- ▶ Step 2: Do a merge operation similar to that used in the polynomial addition.
- p. 81~82, Program 2.10, 2.11

```
void mmult(term a[], term b[], term d[])
         /* Multiply two sparse matrices */
           int i, j, column, totalB = b[0].value, totalD = 0;
           int rowsA = a[0].row, colsA = a[0].col,
                                                           ►The starting index of
           totalA = a[0].value, colsB = b[0].col;
                                                           the currently
           int rowBegin = 1, (row) = a[1] \cdot (row), sum = 0;
                                                            processed row of A
           int newB[MAX TERMS][3];
           if (colsA != b[0].row)
               fprintf(stderr, "Incompatible matrices \n"); The index of the currently
                                                       processed row of A
               exit(EXIT FAILURE);
 Step 1: Matrix transposing
           fastTranspose(b,newB) +
                                                  \rightarrow O(colsB + totalB)
           /* set boundary condition */
           a[totalA+1].row = rowsA;
           newB[totalB+1].row = colsB;
           newB[totalB+1].col = 0;
           for (i = 1; i <= totalA; ) {
Step 2:
               column = newB[1].row;
Merging
               for (j = 1; j \le totalB+1; ) {
operation
               /* multiply row of a by column of b */
                   if (a[i].row != row) {
                        storeSum(d, &totalD, row, column, &sum);
                       i = rowBegin;
                       for (;newB[j].row == column; j++)
                        column = newB[j].row;
```

```
else if (newB[i].row != column) {
           storeSum(d, &totalD, row, column, &sum);
           i = rowBegin;
           column = newB[j].row;
       else switch (COMPARE(a[i].col, newB[j].col)) {
           case -1: /* go to next term in a */
                   i++; break:
           case 0: /* add terms, go to next term in a and b */
                   sum += (a[i++].value * newB[j++].value);
                  break:
           case 1: /* go to next term in b */
                   j++;
   /* end of for j <= totalB+1 */
   for (; a[i].row ==row; i++)
   rowBegin = i, row = a[i].row;
} /* end of for i <= totalA */</pre>
d[0].row = rowsA;
d[0].col = colsB;
d[0].value = totalD;
```

The Sparse Matrix Abstract Data Type -- Matrix Multiplication (contel)

```
□ The for-loop: O(\sum_{row} (colsB \bullet termsRow + totalB))
=O(colsB * totalA + rowsA * totalB)
```


Representation of Multidimensional Arrays

- Two common ways
 - □ Row major order
 - Storing multidimensional arrays by rows
 - Column major order
- Assume that α is the starting address of a n-dimensional array $A[upper_0][upper_1]...[upper_{n-1}].$
 - □ The address for $A[i_0][i_1]...[i_{n-1}]$ is:

$$\alpha + \sum_{j=0}^{n-1} i_j a_j$$
 where $a_j = \begin{cases} \prod_{k=j+1}^{n-1} upper_k & 0 \le j < n-1 \\ 1 & j = n-1 \end{cases}$

 $A[i_0][i_1][i_2] \rightarrow \alpha + i_0 * upper_1 * upper_2 + i_1 * upper_2 + i_2 * 1$ $upper_2$ $upper_1$ α $upper_0$

Representation of Multidimensional Arrays (contd.)

- A compiler will initially take the declared bounds (i.e., $upper_k$, $0 \le k \le n-1$) and use them to compute the constants a_j , $0 \le j \le n-2$.
- The computation of the address of $A[i_0][i_1]...[i_{n-1}]$ requires n-1 more multiplications and n additions.