

Security Kernel

DSCI 519: Foundations and Policy for Information Security

Crisrael Lucero Shruti Krishna Kumar

Operating System Kernel

- Central component of an operating system that manages operations of computer and hardware.
- The major aim of kernel is to manage communication between software i.e. user-level applications and hardware i.e., CPU and disk memory.

Linux - Kernel Security

Security features provided by Kernels (Linux):

- Discretionary Access Control (DAC)
- Extended DAC
- Process isolation

Provides system admins ability to:

- Specify encryption algorithms
- Customize Linux authentication

Linux Kernel – Security Bugs

Linux kernel security bugs in recent years:

- CVE-2017-18017: Present in netfilter tcpmss_mangle_packet function; susceptible to overflow issues and DoS attacks
- CVE-2016-10229: allows a remote attacker to execute arbitrary code via UDP traffic
- CVE-2016-10150: use-after-free vulnerability
- CVE-2015-8812: enables a remote attacker to execute arbitrary code attack via crafted packets
- Several Wi-Fi vulnerabilities patched (CVE-2022-41674, 42719, 42720...)

Linux - Kernel Vulnerabilities & Mitigations

Vulnerabilities	Mitigation Options
Kernel pointer leaks	kernel ASLR
direct kernel overwrite	Executable memory cannot be writable (CONFIG_STRICT_KERNEL_RWX)
function pointer overwrite	read-only function tables (e.g. PAX_CONSTIFY_PLUGIN)
userspace execution	hardware segmentation emulated memory segmentation via page table swap

Linux - Kernel Security

Security features provided by Kernels (Linux):

- Extended DAC
- POSIX Access Control Lists: Allowing separate permissions for individual users and different groups. They're managed with the setfacl and getfacl commands.
- Linux Security Modules Allows different security models to be plugged into the kernel
- *SELinux*(Security Enhanced Linux) MAC implementation
- Secure computing mode (seccomp): Restricts access to system calls by processes.

Fuchsia OS and Zircon Kernel Overview

- Fuchsia OS is a general-purpose open source OS developed by Google.
- The OS was designed for the IoT ecosystem, so it has a very different security architecture than Linux/GNU.
- Fuchsia is based on the Zircon microkernel. Compared to Linux, a lot of functionality is moved outside of the Zircon microkernel, which decreases the kernel's attack surface.
- No concept of a **user**, but instead Fuchsia is **capability-based**, which means the kernel resources are exposed to processes (subjects) as objects that require corresponding capabilities.

Zircon Services vs Other Kernels

Sandboxing Applications

- Applications and system services outside of the kernel exist as components.
- Each component runs in isolated sandboxes, any IPC between components must be explicitly declared. There isn't even a global filesystem, instead each sandbox has a local namespace it

operates in.

Zircon Vulnerabilities

KASLR bypass

- Very similar to a Linux vulnerability (CVE-2021-26708)

• Planting a rootkit in userspace

- Allowed some kernelspace functionality to be called in userspace.

Fake vtables exploiting SMAP

- Supervisor Mode Access Prevention makes it so processes in kernelspace can't access userspace data.
- Fake vtables allow you to subvert this policy.

Vulnerability Trends

Vulnerability Trends Over Time

Year	# of Vulnerabilities	DoS	Code Execution	Overflow	Memory Corruption	Sql Injection	xss	Directory Traversal	Http Response Splitting	Bypass something	Gain Information	Gain Privileges	CSRF	File Inclusion	# of exploits
2022	4		1	1						1	1				
Total	4		1	1						1	1				
% Of All		0.0	25.0	25.0	0.0	0.0	0.0	0.0	0.0	25.0	25.0	0.0	0.0	0.0	

Fuchsia

Vulnerability Trends Over Time

Year	# of Vulnerabilities	DoS	Code Execution	Overflow	Memory Corruption	Sql Injection	xss	Directory Traversal	Http Response Splitting	Bypass something	Gain Information	Gain Privileges	CSRF	File Inclusion	# of exploits
2015	57	4	<u>19</u>	<u>6</u>	<u>6</u>					<u>10</u>	<u>5</u>	<u>26</u>			
2016	172	<u>6</u>	<u>47</u>	23	<u>Z</u>					<u>19</u>	31	<u>82</u>			
2017	262	32	<u>49</u>	<u>15</u>	2		1			<u>18</u>	103	<u>19</u>			
2018	258	21	<u>45</u>	<u>6</u>	1		1	1		<u>40</u>	30	1			
2019	448	<u>34</u>	142	<u>6</u>	<u>Z</u>		1	1		<u>17</u>	44	<u>3</u>			
2020	807	<u>29</u>	100	103	<u>20</u>		1	1		<u>18</u>	<u>97</u>	<u>74</u>			
2021	486	38	112	2	<u>6</u>					<u>31</u>	<u>26</u>				
2022	463	<u>35</u>	129							24					
Total	2953	199	643	<u>161</u>	<u>49</u>		4	<u>3</u>		177	336	205			
% Of All		6.7	21.8	5.5	1.7	0.0	0.1	0.1	0.0	6.0	11.4	6.9	0.0	0.0	

Windows 10

Proprietary Kernels

Both Windows and macOS use hybrid kernels

Hybrid kernels attempt to combine benefits of microkernel and monolithic kernel architectures.

- Microkernels are typically more stable
- Monolithic kernels provide better performance

Windows / macOS Vulnerabilities

Just because these kernels and operating systems are closed source doesn't mean they have less vulnerabilities than their open source counterparts.

Windows

https://www.cvedetails.com/vulnerability-list/vendor_id-26/product_id-32238/Microsoft-Windows-10.html

macOS

https://www.cvedetails.com/vulnerability-list/vendor_id-49/product_id-156/Apple-Mac-Os-X.html

References

- Slide 2: https://en.wikipedia.org/wiki/Kernel (operating system)
- Slide 3 : https://www.linux.com/training-tutorials/overview-linux-kernel-security-features/
- Slide 4: https://www.mend.io/resources/blog/top-10-linux-kernel-vulnerabilities/
- https://linuxsecurity.com/features/how-to-secure-the-linux-kernel
- Slide 4: https://www.zdnet.com/article/linux-dodges-serious-wi-fi-security-exploits/
- Slide 6 : https://docs.kernel.org/security/self-protection.html
- Slide 7, 8, 10: https://arxiv.org/pdf/2108.04183.pdf
- Slide 9, 10, 11: https://swarm.ptsecurity.com/a-kernel-hacker-meets-fuchsia-os/
- Slide 12: https://www.cvedetails.com/

