# Міністерство освіти і науки України

# Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 8 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження алгоритмів пошуку та сортування»

Варіант 10

Виконав студент <u>ІП-11, Друзенко Олександра Юріївна</u> (шифр, прізвище, ім'я, по батькові)

Перевірив <u>Мартинова Оксана Петрівна</u> (прізвище, ім'я, по батькові)

# Лабораторна робота 8

# Дослідження алгоритмів пошуку та сортування

**Мета** – дослідити алгоритми пошуку та сортування, набути практичних навичок використання цих алгоритмів під час складання програмних специфікацій.

| <b>D</b> | •     | 10 |
|----------|-------|----|
| Kai      | ріант |    |
| Da       | JIGHI | 10 |

| 10 | <b>10</b> 4 х 8 Лі |     | Із мінімальних значень елементів стовпців двовимірного масиву. Відсортувати методом |  |  |
|----|--------------------|-----|-------------------------------------------------------------------------------------|--|--|
| 10 | 4 X O              | 1 1 | Шела за спаданням.                                                                  |  |  |

## 1.Постановка задачі

Дано матрицю 4x8 заповнену дійсними числами. Створити масив заповнений мінімальними значеннями стовпців матриці. Відсортувати створений масив методом Шела за спаданням. Матрицю та масив вивести в консоль.

## 2.Математична модель

| Змінна                 | Тип      | Ім'я         | Призначення           |  |
|------------------------|----------|--------------|-----------------------|--|
| Кількість стовпців     | int      | n            | початкове дане        |  |
| Кількість рядків       | int      | m            | початкове дане        |  |
| Матриця                | matrix   | matrixA      | проміжне дане         |  |
|                        | of float |              |                       |  |
| Масив                  | array of | arrayB       | результат             |  |
|                        | float    |              |                       |  |
| Лічильник і для рядків | int      | i            | проміжне дане         |  |
| Лічильник ј для        | int      | j            | проміжне дане         |  |
| стовпців               |          |              |                       |  |
| Змінна для збереження  | float    | X            | проміжне дане         |  |
| тимчасових даних       |          |              |                       |  |
| Крок сортування        | int      | d            | проміжне дане         |  |
| Перевірка умови        | bool     | k            | проміжне дане         |  |
| сортування             |          |              |                       |  |
| Функція виведення      | function | outputMatrix | функція виведення     |  |
| матриці                |          |              |                       |  |
| Функція виведення      | function | outputArray  | функція виведення     |  |
| масиву                 |          |              |                       |  |
| Функція ініціалізації  | function | initArray    | функція ініціалізації |  |
| масиву                 |          |              |                       |  |
| Функція ініціалізації  | function | initMatrix   | функція ініціалізації |  |
| матриці                |          |              |                       |  |
| Функція сортування     | function | ShellSort    | функція сортування    |  |
| методом Шела           |          |              |                       |  |

Функція print() – виведення на екран

Функція rand(a,b) – генерація рандомних чисел від а до b

```
Кроки алгоритму
```

```
Крок 1. Визначимо основні дії
```

Крок 2. Деталізуємо підпрограму ініціалізації матриці

Крок 3. Деталізуємо підпрограму ініціалізації масиву

Крок 4. Деталізуємо підпрограму сортування масиву

Крок 5. Деталізуємо підпрограму виведення матриці в консоль

Крок 6. Деталізуємо підпрограму виведення масиву в консоль

## 3.Псевдокод

```
Крок 1. Основна програма
Початок
m=4; n=8;
initMatrix(matrixA);
outputMatrix(matrixA);
initArray(arrayB, matrixA);
```

ShellSort(arrayB);

outputArray(arrayB);

# Кінець

Крок 2. Підпрограма ініціалізації матриці

#### Початок

Функція initMatrix (matrixA):

Повторити для i від 0 до m Повторити для j від 0 до n

matrixA[i][j] = rand(-15,15);

Все повторити Все повторити

## Кінець

Крок 3. Підпрограма ініціалізації масиву

# Початок

```
Функція initArray (arrayB, matrixA):
```

Повторити для j від 0 до  $\mathbf{m}$ 

x = matrixA[0][j];

Повторити для i від 0 до  $\mathbf{n}$ 

Якщо x > matrix[i][j] то x = matrix[i][j];

все якшо

Все повторити

arrayB[j] = x;

Все повторити

#### Кінець

```
Крок 4. Підпрограма сортування масиву
Початок
      Функція ShellSort (arrayA):
       d = n;
       повторити
             d = d/2;
             k = 1;
             поки к
                   k=0:
                   Повторити для i від \theta до n-d
                         Якщо arrayA[i] < arr[i+d] то
                              x = arrayA[i];
                              arrayA[i] = arrayA[i+d];
                              arrayA[i+d] = x;
                              k = 1;
                         все якщо
                   все повторити
       повторити
       все повторити
       поки d>0
       все повторити
Кінець
Крок 5. Підпрограма виведення матриці в консоль
Початок
      Функція outputMatrix(matrixA):
             Повторити для і від 0 до 10
                   Повторити для ј від 0 до т
                        print(matrixA[i][j])
                   Все повторити
             Все повторити
Кінець
Крок 6. Підпрограма виведення масиву в консоль
Початок
      Функція outputArray(arrayB):
             Повторити для і від 0 до 10
                   print(arrayB[i])
             Все повторити
Кінець
```

## 4.Блок-схема

Крок 1



Крок 2. Підпрограма ініціалізації матриці





Крок 5. Підпрограма виведення матриці в консоль



Крок 6. Підпрограма виведення масиву в консоль



## 5. Код програми (С++)

```
#include <iostream>
#include <ctime>
#include <stdlib.h>
#include <iomanip>
using namespace std;
int const m=4, n=8;
typedef float Matrix[m][n];
typedef float Array[n];
Matrix matrixA;
Array arrayB;
void initMatrix(Matrix);
void outputMatrix(Matrix);
void initArray(Array, Matrix);
void ShellSort(Array);
void outputArray(Array);
int main()
    srand(time(NULL));
    initMatrix(matrixA);
    outputMatrix(matrixA);
    initArray(arrayB, matrixA);
    ShellSort(arrayB);
    outputArray(arrayB);
void initMatrix(Matrix matr) {
    for (int i = 0; i < m; i++) {</pre>
        for (int j = 0; j < n; j++) {</pre>
            matr[i][j] = rand() % 31 - 15 + (rand()%100/(float)100);
    }
void initArray(Array arr, Matrix matr) {
    float x;
    for (int j = 0; j < n; j++) {</pre>
        x = matr[0][j];
         for (int i = 0; i < m; i++) {</pre>
             if (x > matr[i][j]) x = matr[i][j];
        arr[j] = x;
void outputMatrix(Matrix matr) {
    for (int i = 0; i < m; i++) {</pre>
         for (int j = 0; j < n; j++) {</pre>
             cout<<setw(8)<<matr[i][j];</pre>
        cout << endl;
    cout << endl;</pre>
void outputArray(Array arr) {
    cout << "result:" << endl;</pre>
    for (int i = 0; i < n; i++) {</pre>
        cout<< setw(8)<<arr[i];</pre>
void ShellSort(Array arr) {
    int d=n; float x; bool k=1;
        do {
```

```
d /= 2;
k = 1;
while (k) {
    k = 0;
    for (int i = 0; i < (n - d); i++) {
        if (arr[i] < arr[i + d]) {
            x = arr[i];
            arr[i] = arr[i + d];
            arr[i + d] = x;
            k = 1;
        }
    }
} while (d>0);
```

## 6. Тестування програми

| Microsoft Visual S | tudio Debug Consol | e     |       |        |        |       |        |
|--------------------|--------------------|-------|-------|--------|--------|-------|--------|
| -0.12              | -0.53              | -0.61 | -8.23 | -10.13 | -13.41 | -7.51 | 11.08  |
| 3.82               | 14.35              | -7.9  | -8.31 | 12.03  | -5.54  | -8.52 | 4.93   |
| 7.04               | 3.89               | 4.39  | 3.66  | -12.1  | 4.65   | 0.18  | -10.39 |
| 5.63               | -6.53              | 1.06  | 8.43  | -12.83 | 8.22   | 15.09 | -13.3  |
|                    |                    |       |       |        |        |       |        |
| result:            |                    |       |       |        |        |       |        |
| -0.12              | -6.53              | -7.9  | -8.31 | -8.52  | -12.83 | -13.3 | -13.41 |

| крок | дія                                               |  |  |
|------|---------------------------------------------------|--|--|
|      | початок                                           |  |  |
| 1    | матриця А:                                        |  |  |
|      | -0.12 -0.53 -0.61 -8.23 -10.13 -13.41 -7.51 11.08 |  |  |
|      | 3.82 14.35 -7.9 -8.31 12.03 -5.54 -8.52 4.93      |  |  |
|      | 7.04 3.89 4.39 3.66 -12.1 4.65 0.18 -10.39        |  |  |
|      | 5.63 -6.53 1.06 8.43 -12.83 8.22 15.09 -13.3      |  |  |
| 2    | створення масиву з мінімальних значень            |  |  |
|      | -0.12 -6.53 -7.9 -8.31 -12.83 -13.41 -8.52 -10.39 |  |  |
| 3    | сортування масиву за спаданням                    |  |  |
|      | -0.12 -6.53 -7.9 -8.31 -8.52 -12.83 -13.3 -13.41  |  |  |
|      | кінець                                            |  |  |

#### 7. Висновок

Отже, сьогодні я дослідила алгоритм пошуку в матрицях та алгоритм сортування методом Шела.

В результаті лабораторної роботи я розробила алгоритм який заповнює матрицю, шукає найменші елементи в стовбцях і записує їх в масив, після чого методом Шела масив сортується від найбільшого до найменшого.

Метод Шела виконує декілька впорядкувань включенням, кожен раз порівнюючи і переставляючи елементи, що розташовані на різній відстані один від одного. Елементи порівнюються через  $d_1$  до dm = 1, де d- це довжина кроку (через скільки елементів порівнюємо; для кожної нової ітерації ділиться на 2; початкове значення — кількість елементів поділена на 2).