2023/9/14 11:59 111.svg

## Algorithm 1 Deep Deterministic Policy Gradient

- 1: Input: initial policy parameters  $\theta$ , Q-function parameters  $\phi$ , empty replay buffer  $\mathcal{D}$
- 2: Set target parameters equal to main parameters  $\theta_{\text{targ}} \leftarrow \theta$ ,  $\phi_{\text{targ}} \leftarrow \phi$
- 3: repeat
- 4: Observe state s and select action  $a = \text{clip}(\mu_{\theta}(s) + \epsilon, a_{Low}, a_{High})$ , where  $\epsilon \sim \mathcal{N}$
- 5: Execute a in the environment
- 6: Observe next state s', reward r, and done signal d to indicate whether s' is terminal
- 7: Store (s, a, r, s', d) in replay buffer  $\mathcal{D}$
- 8: If s' is terminal, reset environment state.
- 9: **if** it's time to update **then**
- 10: **for** however many updates **do**
- 11: Randomly sample a batch of transitions,  $B = \{(s, a, r, s', d)\}$  from  $\mathcal{D}$
- 12: Compute targets

$$y(r, s', d) = r + \gamma (1 - d) Q_{\phi_{\text{targ}}}(s', \mu_{\theta_{\text{targ}}}(s'))$$

13: Update Q-function by one step of gradient descent using

$$\nabla_{\phi} \frac{1}{|B|} \sum_{(s,a,r,s',d) \in B} (Q_{\phi}(s,a) - y(r,s',d))^2$$

14: Update policy by one step of gradient ascent using

$$\nabla_{\theta} \frac{1}{|B|} \sum_{s \in B} Q_{\phi}(s, \mu_{\theta}(s))$$

15: Update target networks with

$$\phi_{\text{targ}} \leftarrow \rho \phi_{\text{targ}} + (1 - \rho) \phi$$
$$\theta_{\text{targ}} \leftarrow \rho \theta_{\text{targ}} + (1 - \rho) \theta$$

- 16: end for
- 17: **end if**
- 18: **until** convergence