概率论笔记

崔嘉祺 华东师范大学 20 级数学强基拔尖班 2023 年 10 月 18 日

摘要

这是华东师范大学数学专业研究生的基础课"概率论"的课程笔记。 每周三交作业。

-1	

目录

1	测度与概率空间	2
2	独立性	17
3	随机变量	25

2

1 测度与概率空间

定义 1.0.1. 对集合 Ω , 子集族 $F \subset 2^{\Omega}$ 称为 Ω 上的一个 σ -代数, 若

- (1) $\Omega \in \mathcal{F}$.
- (2) 若 $A \in \mathcal{F}$, 则 $A^c \in \mathcal{F}$. (补封闭性)
- (3) 若 $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, 则 $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$. (可列并封闭)

注记 1.0.2. 由定义可推出:

- 1. $\varnothing \in \mathcal{F}$.
- 2. 若 $A, B \in \mathcal{F}$, 则 $A \cap B \in \mathcal{F}$. (交封闭性)
- 3. 若 $A, B \in \mathcal{F}$, 则 $A \cup B \in \mathcal{F}$. (有限并封闭性)

注记 1.0.3. 若把定义中的 (3) 改为有限并,则称其为一个 Borel 代数。

定义 1.0.4. 对集合 Ω , 子集族 $\mathcal{F} \subset 2^{\Omega}$ 是 Ω 上的一个 σ -代数, $\mu: \mathcal{F} \to [0, +\infty]$, 满足

- (1) $\mu(\emptyset) = 0$.
- (2) 若 $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}, A_i \cap A_j = \emptyset, i \neq j, 则有$

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

(σ 可加性/可数可加性)

则称三元组 $(\Omega, \mathcal{F}, \mu)$ 是一个测度空间。

3

例 1.0.5. \mathbb{R} 上的 Lebesgue 测度: $\Omega = \mathbb{R}$, \mathcal{F} 是 Lebesgue 可测集, μ 是 Lebesgue 测度。

定义 1.0.6. 称一个测度空间 $(\Omega, \mathcal{F}, \mathbb{P})$ 是一个概率空间,若 $\mathbb{P}: \mathcal{F} \to [0,1]$, 且 $\mathbb{P}(\Omega) = 1$. 其中称 Ω 是样本空间, $\omega \in \Omega$ 是基本事件, \mathcal{F} 是事件, $\mathbb{P}(A)$ 是 A 的概率。

定理 1.0.7. 若 $(\Omega, \mathcal{F}, \mathbb{P})$ 是一个概率空间,则有

- (1) 若 $A, B \in \mathcal{F}, A \subset B, 则 <math>\mathbb{P}(A) \leq \mathbb{P}(B)$. (单调性)
- (2) 若 $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, 则有

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

(次可加性)

- (3) 设 $\{A_i\}_{i=1}^{\infty} \subset \mathcal{F}$, 若
 - $A_1 \supset A_2 \supset A_3 \supset \cdots$,则记 $\lim_{i \to \infty} A_i = \bigcap_{i=1}^{\infty} A_i = A$,记为 $A_i \setminus A$.
 - $A_1 \subset A_2 \subset A_3 \subset \cdots$,则记 $\lim_{i \to \infty} A_i = \bigcup_{i=1}^{\infty} A_i = A$,记为 $A_i \nearrow A$.

 $\mathbb{N} A \in \mathcal{F}, \mathbb{L} \mathbb{P}(A) = \lim_{i \to \infty} \mathbb{P}(A_i).$

- (4) $\forall A \in \mathcal{F}, \ \mathbb{P}(A) + \mathbb{P}(A^c) = 1.$
- 证明. (1) 由 $B = A \cup (B \cap A^c)$, 则 $A \cap (B \cap A^c) = \emptyset$. 由可加性即得。
- (2) 记 $B_i = A_i \cap (A_1 \cup \cdots \cup A_{i-1})^c$, 则 $\{B_i\}$ 两两不交,从而由可数可加性与单调性,

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) = \mathbb{P}\left(\bigcup_{i=1}^{\infty} B_i\right) = \sum_{i=1}^{\infty} \mathbb{P}(B_i) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i).$$

4

(3) 只证 $A_i \nearrow A$. 由 $A = \bigcup_{i=1}^{\infty} A_i$, 由 σ -代数的可数并封闭性, $A \in \mathcal{F}$. 记 $B_1 = A_1$, $B_n = A_n \cap A_{n-1}^c$. 则

$$A_n = B_1 \cup B_2 \cup \cdots \cup B_n,$$

且 $\{B_i\}$ 两两不交,

$$A = B_1 \cup B_2 \cup \cdots$$
.

由可数可加性,

$$\mathbb{P}(A) = \sum_{i=1}^{\infty} \mathbb{P}(B_i) = \lim_{n \to \infty} \sum_{i=1}^{n} \mathbb{P}(B_i) = \lim_{n \to \infty} \mathbb{P}(A_n).$$

(4) $A \cap A^c = \emptyset$, 从而由可加性,

$$\mathbb{P}(A) + \mathbb{P}(A^c) = \mathbb{P}(A \cup A^c) = \mathbb{P}(\Omega) = 1.$$

例 1.0.8. $\Omega = [0,1]$, \mathcal{F} 是 Lebesgue 可测集, \mathbb{P} 是 Lebesgue 测度。

$$\mathbb{P}\left(x \in [0, \frac{1}{3}]\right) = \mathbb{P}\left([0, \frac{1}{3}]\right) = \frac{1}{3}.$$

例 1.0.9 (古典概型). Ω 是有限集, $\mathcal{F} = 2^{\Omega}$, $A \in \mathcal{F}$,

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|}.$$

例 1.0.10 (离散概率模型). Ω 是可数集, $\mathcal{F} = 2^{\Omega}$, $p: \Omega \to [0, +\infty]$, 满足 $\sum_{\omega \in \Omega} p(w) = 1$. 对 $A \in \mathcal{F}$, 令 $\mathbb{P}(A) = \sum_{\omega \in A} p(w)$. 则 $(\Omega, \mathcal{F}, \mathbb{P})$ 是 概率空间。

例 1.0.11 (投均匀硬币). 记 H 是正, T 是反。

• $\mathcal{L} - \chi : \Omega = \{H, T\}, \mathbb{P}(\{H\}) = \mathbb{P}(\{T\}) = \frac{1}{2}.$

5

- - $-A_1$ 是第一次投正面, $\mathbb{P}(A_1) = \frac{|A_1|}{|\Omega|} = \frac{2^{n-1}}{2^n} = \frac{1}{2}$. A_1^c 是第一次投正面, $\mathbb{P}(A_1^c) = \frac{1}{2}$.
 - $-A_i$ 是第 i 次投正面, $\mathbb{P}(A_i) = \frac{1}{2}$. 若 $1 \leq i_1 \leq i_2 \leq \cdots \leq i_k \leq n$, $B = B_{i_1} \cap \cdots \cap B_{i_k}$, 其中 $B_{i_j} \in \{A_{i_j}, A_{i,j}^c\}$, 则有 $\mathbb{P}(B) = \frac{1}{2^k}$.

例 1.0.12 (Ramsey 数的应用).

定理 1.0.13. 任意六个人中必有三个人互相认识或互相不认识。

证明. 任取一个人 A,考察与其余五个人的关系。有三个人与 A 认识或不认识,不妨设 B,C,D 与 A 认识(不认识的情况类似)。若 B,C,D 中有两人认识(如 B,C),则 A,B,C 互相认识;若 B,C,D 没有两人认识,则三者满足互相不认识。

注记 1.0.14. 图论形式: 6 阶完全图, 边用红蓝染色, 则必有一个红色或蓝色三角形。

问题 1.0.15 (一般的 Ramsey 问题). 给定正整数 k,l, 是否存在 n, 满足将 n 阶完全图 K_n 的边红蓝染色后,一定有一个红的 K_k 或蓝的 K_l . 满足这样的条件的最小的 n 记为 R(k,l).

命题 1.0.16. 一些结论:

- R(3,3) = 6.
- R(2, l) = l.
- R(k, l) = R(l, k)

定理 1.0.17. 对 $k, l \geq 3$, 有

$$R(k, l) \le R(k - 1, l) + R(k, l - 1).$$

归纳可证 R(k,l) 是有限数。

6

证明. 取出一个点 A, 剩下的图记为 W. 记 n = R(k-1,l) + R(k,l-1). 由

$$|W| = n - 1 = R(k - 1, l) + R(k, l - 1) - 1 \ge R(k - 1, l),$$

从而

- 要么有 k-1 个点组成红色完全图,此时再把它们与 A 用红色相连即得。
- 要么有 *l* 个点组成蓝色完全图,

定理 1.0.18. 对 $k \ge 3$, 有

$$R(k,k) \ge \left\lfloor 2^{\frac{k}{2}} \right\rfloor$$
.

证明. 对 K_n 的边随机染色,所有可能的染色方案是样本空间 Ω , $|\Omega|=2^{C_n^2}$. 对指定的 k 个顶点 v_1,v_2,\cdots,v_k ,

$$\mathbb{P}(v_1,\cdots,v_k$$
 之间的是红边) = $\frac{1}{2^{C_k^2}}$.

从而

$$\mathbb{P}($$
存在 k 个点之间的是红边 $)=\mathbb{P}(\bigcup_{v_1,\cdots,v_k}v_1,\cdots,v_k$ 之间的是红边 $)$
$$\leq \sum_{v_1,\cdots,v_k}\mathbb{P}(v_1,\cdots,v_k \text{ 之间的是红边})=\frac{C_n^k}{2^{C_k^2}}.$$

同理,

$$\mathbb{P}($$
存在 k 个点之间的是蓝边 $) \leq \frac{C_n^k}{2^{C_k^2}}.$

7

从而

 \mathbb{P} (存在 k 个点之间的是红边或 k 个点之间的是蓝边) $\leq \mathbb{P}$ (存在 k 个点之间的是红边) $+ \mathbb{P}$ (存在 k 个点之间的是蓝边) $\leq C_n^k \cdot 2^{1-C_k^2}$.

而其中,

$$C_n^k \cdot 2^{1 - C_k^2} = \frac{n!}{k!(n-k)!} \cdot 2^{1 + \frac{k}{2}} \cdot 2^{-\frac{k^2}{2}} < \frac{2^{1 + \frac{k}{2}}}{k!} \cdot \frac{n^k}{2^{\frac{k^2}{2}}}.$$

易知对 n > 3, 有 $2^{1+\frac{k}{2}} < k!$, 故

$$C_n^k \cdot 2^{1-C_k^2} < \frac{2^{1+\frac{k}{2}}}{k!} \cdot \frac{n^k}{2^{\frac{k^2}{2}}} < \frac{n^k}{2^{\frac{k^2}{2}}} = \left(\frac{n}{2^{\frac{k}{2}}}\right)^k.$$

故只要 $n = \left\lfloor 2^{\frac{k}{2}} \right\rfloor$ 时,就有

 \mathbb{P} (存在 k 个点之间的是红边或 k 个点之间的是蓝边) $\leq C_n^k \cdot 2^{1-C_k^2} < \left(\frac{n}{2^{\frac{k}{2}}}\right)^k \leq 1$.

此时,存在一种染色方案,使得不存在 k 个点之间的是红边,也不存在 k 个点之间的是蓝边。

例 1.0.19 (投掷硬币无穷多次). $\Omega = \{H, T\}^{\mathbb{N}} = \{(x_1, x_2, \cdots) \mid x_i \in \{H, T\}, i = 1, 2, \cdots\}$. 记 A_i 是第 i 次是 H. 定义

$$\sigma(A_1) = \mathcal{F}_1 = \{\varnothing, A_1, A_1^c, \Omega\},\$$

它只能分辨第一次的结果。

定义 1.0.20. 设 Ω 是集合,A 是它的一些子集,记 $\sigma(A)$ 是由 A 生成的 σ -代数,是包含 A 的最小 σ -代数。 定义

$$\sigma(A_1,\cdots,A_n)=\mathcal{F}_n, |\mathcal{F}_n|=2^{2^n}.$$

它只能分辨前n次结果。

8

问题 1.0.21. 无法处理无穷次的情况。怎么办?

最初的想法:

$$\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{F}_n.$$

但 A 不是 σ-代数,它只对有限并封闭。

目标 1.0.22. 找到一个 σ -代数 \mathcal{B} 包含 \mathcal{A} , $\mathbb{P}: \mathcal{B} \to [0,1]$, 使得 $\mathbb{P}|_{\mathcal{F}_n} = \mu_n$.

注意到有

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots \subset \mathcal{F}_n \subset \cdots$$

对 i > j, $\mu_i : \mathcal{F}_i \to [0, 1]$, $\mu_i|_{\mathcal{F}_i} = \mu_j$, 拼起来得到 $\mu : \mathcal{A} \to [0, 1]$.

定义 1.0.23. 若 A 是集合 Ω 的子集族,满足

- 1. $\Omega \in \mathcal{A}$.
- 2. 补封闭。
- 3. 有限并封闭。

则称 A 是一个 Boole 代数。

定义 1.0.24. 对 Boole 代数 A, 函数 $m: A \to \mathbb{R}$ 满足

- 1. $\forall A \in \mathcal{A}$, 有 $m(A) \geq 0$.
- $2. \ \forall A, B \in \mathcal{A}, \ 满足 \ A \cap B = \emptyset, \ 则有 \ m(A \cup B) = m(A) + m(B).$
- $3. \ \forall \{A_n\} \subset \mathcal{A},$ 满足 $A_n \setminus \emptyset$, 则 $m(A_n) \to 0.$ (连续性)

9

则称 m 是 Boole 代数 A 上的测度。

定义 1.0.25. 对 Boole 代数 A 以及它上面的测度 $m. \forall A \subset \Omega$,

$$m^*(A) = \inf \left\{ \sum_i m(S_i) \mid S_i \in \mathcal{A}, A \subset \bigcup_i S_i \right\}$$

称为 A 的外测度。

注记 1.0.26. 1. 在外测度的定义中可以假设 S_i 互不相交: 令 $T_1 = S_1, T_i = S_i - (S_1 \cup \cdots \cup S_{i-1})$, 有 $T_i \in \mathcal{A}$, $A \subset \bigcup_i T_i$, $m(T_i) \leq m(S_i)$, 从而 $\sum m(T_i) \leq \sum m(S_i)$.

2. 若 $A \in \mathcal{A}$, 则 $m^*(A) = m(A)$.

定义 1.0.27. 对 $A \subset \Omega$, 称 $A \in m^*$ -可测的, 若 $\forall E \subset \Omega$, 有

$$m^*(A \cap E) + m^*(A^c \cap E) = m^*(E).$$
 (1)

其中(1)式称为可测性条件。

定理 1.0.28 $(m^*$ 的次可加性). $\forall A, A_1, A_2, \dots \subset \Omega$, 满足 $A \subset \bigcup_i A_i$, 则 $m^*(A) \leq \sum_i m^*(A_i)$.

证明. $\forall \varepsilon > 0$, 由 inf 的定义,可取 $\{A_{ij}\}_j \subset \mathcal{A}$, 满足 $A_i \subset \bigcup_j A_{ij}$, 且 $\sum_j m(A_{ij}) \leq m^*(A_i) + \frac{\varepsilon}{2^i}$, 从而有 $A \subset \bigcup_i \bigcup_j A_{ij}$. 此时,

$$m^*(A) \le \sum_i \sum_j m(A_{ij}) \le \sum_i \left(m^*(A_i) + \frac{\varepsilon}{2^i} \right) = (m^*(A_i)) + \varepsilon.$$

 $\Leftrightarrow \varepsilon \to 0$ 即得 $m^*(A) \leq \sum_i m^*(A_i)$.

注记 1.0.29. 由 m^* 次可加性, $\forall E \subset \Omega$,

$$m^*(E) = m^*((A \cap E) \cup (A^c \cap E)) \le m^*(A \cap E) + m^*(A^c \cap E).$$

故可测性条件只需要验证

$$m^*(A \cap E) + m^*(A^c \cap E) \le m^*(E).$$

定理 1.0.30 (Caratheodory 测度扩张定理). 设 $A \in \Omega$ 上的 Boole 代数, $m \in A$ 上的测度, m^* 是外测度。记 $\mathcal{M}(m^*)$ 是所有 m^* -可测集构成的子集族。则 $\mathcal{M}(m^*)$ 是包含 A 的一个 σ -代数, $m^* : \mathcal{M}(m^*) \to \mathbb{R}$ 是一个测度,且 $m^*|_A = m$.

证明. 先证包含关系

引理 1.0.31. $\mathcal{A} \subset \mathcal{M}(m^*)$.

证明. $\forall A \in \mathcal{A}, \forall E \subset \Omega, \forall \varepsilon > 0$, 由 inf 的定义,可以选取一组 $\{A_i\} \subset \mathcal{A}$, 使得 $E \subset \bigcup_i A_i$, 且

$$\sum_{i} m(A_i) \le m^*(E) + \varepsilon.$$

注意到有

$$A \cap E \subset \bigcup_{i} (A \cap A_i), \ A^c \cap E \subset \bigcup_{i} (A^c \cap A_i).$$

由 Boole 代数的交封闭,有 $\{A \cap A_i\}$, $\{A^c \cap A_i\} \subset A$, 从而由 m^* 的定义,

$$m^*(A \cap E) \le \sum_i m(A \cap A_i), \ m^*(A^c \cap E) \le \sum_i m(A^c \cap A_i).$$

从而,由于 $(A \cap E) \cap (A^c \cap E) = \emptyset$,有

$$m^*(A \cap E) + m^*(A^c \cap E) \le \sum_i (m(A \cap A_i) + m(A^c \cap A_i))$$
$$= \sum_i m((A \cap A_i) \cup (A^c \cap A_i))$$
$$= \sum_i m(A_i)$$
$$\le m^*(E) + \varepsilon.$$

由 ε 的任意性,得

$$m^*(A \cap E) + m^*(A^c \cap E) \le m^*(E).$$

从而 A 满足可测性条件, 故 $A \in \mathcal{M}(m^*)$. 最后再由 A 的任意性, 即得 $A \subset \mathcal{M}(m^*)$.

11

再验证 $\mathcal{M}(m^*)$ 是一个 σ -代数

引理 1.0.32. $\mathcal{M}(m^*)$ 是一个 σ -代数。

证明. (1) $\forall E \subset \Omega$,

$$m^*(\Omega \cap E) + m^*(\Omega^c \cap E) = m^*(E) + m^*(\varnothing) = m^*(E \cup \varnothing) = m^*(E).$$

即 Ω 满足可测性条件, 有 $\Omega \in \mathcal{M}(m^*)$.

(2) $\forall A \in \mathcal{M}(m^*)$, 由 $(A^c)^c = A$, 在可测性条件式中交换 $A = A^c$ 的位置,即知 A^c 也满足可测性条件。事实上, $\forall E \subset \Omega$,

$$m^*(A^c \cap E) + m^*((A^c)^c \cap E) = m^*(A^c \cap E) + m^*(A \cap E) = m^*(E).$$

故 $A^c \in \mathcal{M}(m^*)$. $\mathcal{M}(m^*)$ 满足补封闭性。

(3) \cent{id} \cent{d} \ce

$$\begin{split} m^*(E) &= m^*(A \cap E) + m^*(A^c \cap E) \\ &= m^*(B \cap A \cap E) + m^*(B^c \cap A \cap E) + m^*(A^c \cap E) \\ &= m^*(B \cap A \cap E) + m^*(A \cap (A \cap B)^c \cap E) + m^*(A^c \cap (A \cap B)^c \cap E) \\ &= m^*((A \cap B) \cap E) + m^*((A \cap B)^c \cap E). \end{split}$$

这说明 $A \cap B \in \mathcal{M}(m^*)$. 即 $\mathcal{M}(m^*)$ 对交封闭。再由对补封闭,

$$A \cup B = (A^c \cap B^c)^c \in \mathcal{M}(m^*).$$

从而 $\mathcal{M}(m^*)$ 对有限并封闭。此时知 $\mathcal{M}(m^*)$ 是一个 Boole 代数。

设 $\{A_i\}_{i=1}^{\infty} \subset \mathcal{M}(m^*)$. 令 $B_1 = A_1, B_i = A_i - (A_1 \cup \cdots \cup A_{i-1})$,由补封闭性与有限并封闭性,得到 $\{B_i\}_{i=1}^{\infty} \subset \mathcal{M}(m^*)$,且 $\{B_i\}_{i=1}^{\infty}$ 两两不交,记 $\bigcup_i A_i = \bigcup_i B_i = A$.

 $\forall E \subset \Omega, \, \forall n,$

$$m^{*}(E) = m^{*} \left(E \cap \left(\bigcup_{i=1}^{n} B_{i} \right) \right) + m^{*} \left(E \cap \left(\bigcup_{i=1}^{n} B_{i} \right)^{c} \right)$$

$$= m^{*} \left(E \cap \left(\bigcup_{i=1}^{n} B_{i} \right) \cap B_{n} \right) + m^{*} \left(E \cap \left(\bigcup_{i=1}^{n} B_{i} \right) \cap B_{n}^{c} \right) + m^{*} \left(E \cap \left(\bigcup_{i=1}^{n} B_{i} \right)^{c} \right)$$

$$= m^{*} (E \cap B_{n}) + m^{*} \left(E \cap \left(\bigcup_{i=1}^{n-1} B_{i} \right) \right) + m^{*} \left(E \cap \left(\bigcup_{i=1}^{n} B_{i} \right)^{c} \right)$$

$$= m^{*} (E \cap B_{n}) + m^{*} (E \cap B_{n-1}) + m^{*} \left(E \cap \left(\bigcup_{i=1}^{n} B_{i} \right) \right) + m^{*} \left(E \cap \left(\bigcup_{i=1}^{n} B_{i} \right)^{c} \right)$$

$$= \cdots$$

$$= \sum_{i=1}^{n} m^{*} (E \cap B_{i}) + m^{*} \left(E \cap \left(\bigcup_{i=1}^{n} B_{i} \right)^{c} \right).$$

因为

所以

于是

$$\bigcup_{i=1}^{n} B_i \subset \bigcup_{i=1}^{\infty} B_i = A,$$

$$A^c \subset \left(\bigcup_{i=1}^n B_i\right)^c$$
.

$$m^{*}(E) = \sum_{i=1}^{n} m^{*}(E \cap B_{i}) + m^{*} \left(E \cap \left(\bigcup_{i=1}^{n} B_{i} \right)^{c} \right)$$
$$\geq \sum_{i=1}^{n} m^{*}(E \cap B_{i}) + m^{*}(E \cap A^{c}).$$

13

$$m^*(E) \ge \sum_{i=1}^{\infty} m^*(E \cap B_i) + m^*(E \cap A^c)$$
$$\ge m^* \left(\bigcup_{i=1}^{\infty} (E \cap B_i)\right) + m^*(E \cap A^c)$$
$$= m^*(E \cap A) + m^*(E \cap A^c).$$

即 A 满足可测性条件,是 m^* -可测的,即 $A \in \mathcal{M}(m^*)$. 从而 $\mathcal{M}(m^*)$ 对可列并封闭。 综上, $\mathcal{M}(m^*)$ 是一个 σ -代数。

最后验证** 是一个测度

引理 1.0.33. m^* 是 σ -代数 $\mathcal{M}(m^*)$ 上的一个测度。

证明. (1) 由定义显然有 $m^* \ge 0$, $m^*(\emptyset) = 0$.

 $(2) \forall A, B \in \mathcal{M}(m^*), A \cap B = \emptyset, 取 E = A \cup B, 对 A 使用可测性条件,$

$$m^*(A \cup B) = m^*(A \cap (A \cup B)) + m^*(A^c \cap (A \cup B)) = m^*(A) + m^*(B).$$

即 m* 有有限可加性。

 $\forall \{A_n\} \subset \mathcal{M}(m^*), \{A_n\}$ 两两不交。由次可加性,单调性与有限可加性,

$$\sum_{n=1}^{\infty} m^*(A_n) \ge m^* \left(\bigcup_{n=1}^{\infty} A_n \right) \ge m^* \left(\bigcup_{n=1}^{N} A_n \right) = \sum_{n=1}^{N} m^*(A_n).$$

$$\sum_{n=1}^{\infty} m^*(A_n) = m^* \left(\bigcup_{n=1}^{\infty} A_n \right).$$

14

这就证明了 m* 的可数可加性。

综上, m^* 是 σ -代数 $\mathcal{M}(m^*)$ 上的一个测度。

定义 1.0.34. 设 C 是集合 Ω 的子集族。若 $\forall \{A_n\} \subset C$, 满足 $A_n \nearrow A$ 或 $A_n \searrow A$, 则有 $A \in C$, 则称 C 是单调类。

定理 1.0.35 (单调类定理). 设 A 是集合 Ω 上的 Boole 代数, M^* 是包含 A 的最小单调类,则 $M^* = \sigma(A)$.

证明. 由定义, σ -代数是单调类, 从而 $\sigma(A) \supseteq M^*$. 只要证 $\sigma(A) \subseteq M^*$.

(1) $\forall A \in \mathcal{A}$, 考虑

$$\mathcal{M}_A = \{ B \in \mathcal{M}^* \mid A \cap B, A - B, B - A \in \mathcal{M}^* \} \subseteq \mathcal{M}^*.$$

由于 $A \in Boole$ 代数,从而若 $B \in \mathcal{M}_A$,则 $A \subset \mathcal{M}_A$.

由于 \mathcal{M}_A 是单调类, $\forall \{B_n\} \subset \mathcal{M}_A$, $B_n \nearrow B$ (或 $B_n \setminus B$), 则有

- $A \cap B_n \nearrow (\searrow) A \cap B$.
- $A B_n \setminus (\nearrow)A B$.
- $B_n A \nearrow (\searrow)B A$.

由 \mathcal{M}^* 是单调类,从而 $A \cap B$, A - B, $B - A \in \mathcal{M}^*$. 于是 $B \in \mathcal{A}$. 这说明 \mathcal{M}_A 是单调类。由 \mathcal{M}^* 的最小性, $\mathcal{M}_A = \mathcal{M}^*$.

(2) $\forall A \in \mathcal{M}^*$, 定义

$$\mathcal{M}_A = \{ B \in \mathcal{M}^* \mid A \cap B, A - B, B - A \in \mathcal{M}^* \} \subseteq \mathcal{M}^*.$$

由 (1), 有 $A \subseteq \mathcal{M}_A$. 类似 (1) 的证明,有 \mathcal{M}_A 是单调类,从而 $\mathcal{M}_A = \mathcal{M}^*$. 于是 $\forall A, B \in \mathcal{M}^*$, 有 $A \cap B, A - B, B - A \in \mathcal{M}^*$, 即 \mathcal{M}^* 是 Boole 代数。从而 \mathcal{M}^* 既是 Boole 代数又是单调类,从而它是 σ -代数(习题)。从而 $\sigma(A) \subseteq \mathcal{M}^*$.

15

定理 1.0.36 (扩张的唯一性定理). 设 $A \in \Omega$ 上的 Boole 代数, $m \in A$ 上的测度, $m^*, \mu \in \sigma(A)$ 上的两个测度, 且 $m^*|_A = \mu|_A = m$, 则 $m^* = \mu$.

证明. 考虑 $\mathcal{M} = \{A \in \sigma(\mathcal{A}) \mid \mu(A) = m^*(A)\} \subset \sigma(\mathcal{A})$,则 $A \subseteq \mathcal{M}$. 由测度的连续性,若 $\{A_n\} \subset \mathcal{M}$, $A_n \nearrow A$ (或 $A_n \searrow A$),由单调类定理(定理 1.0.35), $A \in \sigma(\mathcal{A})$.则

$$\mu(A) = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} m^*(A_n) = m^*(A),$$

从而 $A \in \mathcal{M}$. 这说明 $\sigma(A) \subseteq \mathcal{M}$. 从而 $\sigma(A) = \mathcal{M}$. 即 $\forall A \in \mathcal{M} = \sigma(A), m^*(A) = \mu(A)$.

回到无穷次投硬币。 $\Omega = \{H, T\}^{\mathbb{N}} = \{(x_1, x_2, \cdots) \mid x_i \in \{H, T\}, i = 1, 2, \cdots\}$. 记 A_i 是第 i 次是 H. 定义

$$\sigma(A_1) = \mathcal{F}_1 = \{ \varnothing, A_1, A_1^c, \Omega \},\$$

$$\sigma(A_1, \cdots, A_n) = \mathcal{F}_n, |\mathcal{F}_n| = 2^n.$$

有

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \cdots$$
.

$$\mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{F}_n$$

是 Boole 代数。定义 $\mu: \mathcal{A} \to [0,1]$. 设 $A \in \mathcal{A}$, 则 $\exists n$, 使得 $A \in \mathcal{F}_n$. 令 $\mu(A) = \mu_n(A)$, 其中 μ_n 就是投掷有限次时古典概型中的测度。

$$\mu_n: \mathcal{F}_n \to [0,1]$$

对 $m < n, \mu_n|_{\mathcal{F}_m} = \mu_m$. μ 符合 Boole 代数上测度的定义:

- (1) $\mu(A) \ge 0$.
- (2) $\forall A \cap B = \emptyset$, $\mu(A \cup B) = \mu(A) + \mu(B)$.
- (3) 若 $A_n \setminus \emptyset$, 则 $\mu(A_n) \to 0$.

验证 (3): 设有 $\{A_n\} \subset \mathcal{A} = \bigcup_{n=1}^{\infty} \mathcal{F}_n, A_n \setminus \emptyset$. 事实上,对充分大的 n, 有 $A_n = \emptyset$.

引理 1.0.37 (Tychonoff 定理). 任意紧拓扑空间的乘积空间是紧空间。

由引理, $\Omega=\{H,T\}^{\mathbb{N}}=\prod_{i=1}^{\infty}\{H,T\}$ 是紧空间,开集与闭集就是 $\mathcal{A}=\bigcup_{n=1}^{\infty}\mathcal{F}_n$. 从而由 $A_n\searrow\varnothing$,就有 $\exists N,\,\forall n\geq N,\,A_n=\varnothing$. 从而我们得到了包含 \mathcal{A} 的 σ -代数 $\sigma(\mathcal{A})$ 上的概率测度 $\mathbb{P}=\mu$,使得 $\mathbb{P}|_{\mathcal{F}_n}=\mu_n$,就达成了目标 1.0.22,解决了问题 1.0.21.

2 独立性

定义 2.0.1. 设 $(\Omega, \mathcal{F}, \mathbb{P})$ 是概率空间, $C \in \mathcal{F}, \mathbb{P}(C) > 0. \forall A \in \mathcal{F},$

$$\mathbb{P}(A \mid C) = \frac{\mathbb{P}(A \cap C)}{\mathbb{P}(C)} = \mathbb{P}_C(A)$$

称为在条件 C 下事件 A 的概率。

注记 2.0.2. • $\mathbb{P}_C(A)$ 也满足概率条件, $(\Omega, \mathcal{F}, \mathbb{P}_C)$ 也是一个概率空间。

- 乘法公式: $\mathbb{P}(A \cap C) = \mathbb{P}(A \mid C) \cdot \mathbb{P}(C)$.
- 若 $\{C_i\}$ 是两两不相交的事件, $\mathbb{P}(C_i) > 0$, $A \subset \bigcup_i C_i$,则有如下的全概率公式:

$$\mathbb{P}(A) = \mathbb{P}\left(A \cap \left(\bigcup_{i} C_{i}\right)\right) = \mathbb{P}\left(\bigcup_{i} (A \cap C_{i})\right) = \sum_{i} \mathbb{P}\left(A \cap C_{i}\right) = \sum_{i} \mathbb{P}(A \mid C_{i}) \cdot \mathbb{P}(C_{i}).$$

定义 2.0.3 (独立性). $A, B \in \mathcal{F}$, 若

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B),$$

则称事件 A, B 独立。若有 $A_1, \dots, A_n \in \mathcal{F}, \forall \{i_1, \dots, i_k\} \subset \{1, \dots, n\},$ 都有

$$\mathbb{P}(A_{i_1}\cdots A_{i_k})=\mathbb{P}(A_{i_1})\cdots \mathbb{P}(A_{i_k}),$$

则称事件 A_1, \dots, A_n 互相独立。

注记 2.0.4. n 个事件独立强于两个事件独立,取 k=2 即得。但反之不一定对: $\Omega = \{a,b,c,d\}$, $A_1 = \{a,b\}$, $A_2 = \{a,c\}$, $A_3 = \{a,d\}$. 它们两两独立但三者不独立。

定义 2.0.5. 设 $A, B \subset F$, 称事件集 A, B 独立, 若 $\forall A \in A, B \in \mathcal{B}$, 有 A, B 独立。

注记 2.0.6. 若 A, B 独立,则 $\sigma(A) = \{\emptyset, \Omega, A, A^c\}$ 与 $\sigma(B) = \{\emptyset, \Omega, B, B^c\}$ 事件集独立,从而 A, B^c 独立。

问题 2.0.7. 事件集的独立性能否得出它们生成的 σ-代数的独立性?

定义 2.0.8 (π-系). A 是一个集族, 满足

- (1) $\varnothing \in \mathcal{A}$.
- (2) 若 $A, B \in \mathcal{A}$, 则 $A \cap B \in \mathcal{A}$.

则称 A 是一个 π -系。

定义 2.0.9 (λ -系). A 是一个集族,满足

- (1) $\Omega \in \mathcal{A}$.
- (2) 若 $A, B \in \mathcal{A}, A \subset B, 则 B A \in \mathcal{A}.$
- (3) 若 $\{A_n\} \subset \mathcal{A}$, $A_n \nearrow A$, 则 $A \in \mathcal{A}$.

则称 A 是一个 λ -系。

注记 2.0.10. 任意多个 π -系 (λ -系) 的交仍然是 π -系 (λ -系)。

定理 2.0.11 $(\pi-\lambda)$ 定理). 若 \mathcal{P} 是一个 $\pi-\mathfrak{K}$, \mathcal{L} 是包含 \mathcal{P} 的 $\lambda-\mathfrak{K}$, 则 $\sigma(\mathcal{P}) \subset \mathcal{L}$.

证明. 可以不妨设 $\mathcal{L} = \lambda(\mathcal{P})$.

1. 首先证明 \mathcal{L} 是 Boole 代数。由定义,Ø,Ω ∈ \mathcal{L} ,且对补封闭。只要证关于交封闭。∀A ∈ \mathcal{P} ,定义

$$\mathcal{L}_A = \{ B \in \mathcal{L} \mid A \cap B \in \mathcal{L} \} \subset \mathcal{L}.$$

• 由于 \mathcal{P} 是 π -系, $\forall B \in \mathcal{P}, A \cap B \in \mathcal{P}$. 从而 $\mathcal{P} \subset \mathcal{L}_A$.

2 独立性

19

П

- $\forall B \in \mathcal{L}_A, B \subset C$. 则 $A \cap B, A \cap C \in \mathcal{L}, A \cap C \subset A \cap C$. 由于 \mathcal{L} 是 λ -系,有 $(A \cap C) (A \cap B) \in \mathcal{L}$. 又 $A \cap (C B) = (A \cap C) (A \cap B) \in \mathcal{L}$, 从而 $C B \in \mathcal{L}_A$.
- 设 $\{B_n\} \subset \mathcal{L}_A, B_n \nearrow B$. 有 $A \cap B_n \in \mathcal{L}, A \cap B_n \nearrow A \cap B$. 由于 \mathcal{L} 是 λ -系, $A \cap B \in \mathcal{L}$,从而 $B \in \mathcal{L}_A$.

这说明 $\mathcal{L}_A \subset \mathcal{L}$ 也是 λ -系。由 $\mathcal{L} = \lambda(\mathcal{P})$ 的极小性,必须有 $\mathcal{L}_A = \mathcal{L}$. 即 $\forall A \in \mathcal{P}, B \in \mathcal{L}$, 有 $A \cap B \in \mathcal{L}$. 从而 \mathcal{L} 对交封闭,是一个 Boole 代数。

2. $\forall \{A_i\} \subset \mathcal{L}$, 令 $B_i = \bigcup_{i=1}^i$. 有 $B_i \nearrow \bigcup_{i=1}^\infty A_i$. 由于 $\mathcal{L} = \lambda(\mathcal{P})$ 是一个 λ -系, $\bigcup_{i=1}^\infty A_i \in \mathcal{L}$.

综上, \mathcal{L} 是一个 σ -代数。最后,由于 $\sigma(\mathcal{P})$ 是包含 \mathcal{P} 的最小 σ -代数,有 $\sigma(\mathcal{P}) \subset \mathcal{L}$.

推论 2.0.12. 若 \mathcal{P} 是一个 π -系,则 $\lambda(\mathcal{P}) = \sigma(\mathcal{P})$.

定理 2.0.13. $(\Omega, \mathcal{F}, \mathbb{P})$ 是一个概率空间, $\mathcal{B} \subset \mathcal{F}$ 是一个 π -系, $A \in \mathcal{F}$. 若 $A 与 \mathcal{B}$ 独立。则 $A 与 \sigma(\mathcal{B})$ 独立。

证明. 考虑

$$\mathcal{L} = \{ B \in \mathcal{F} \mid \mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B) \}.$$

是与 A 独立的事件的集合。

下面证明 \mathcal{L} 是一个 λ -系。

- 1. 全空间与任何事件独立, 即 $\Omega \in \mathcal{L}$.
- 2. 若 $B, C \in \mathcal{L}, B \subset C$.

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B), \ \mathbb{P}(A \cap C) = \mathbb{P}(A)\mathbb{P}(C).$$

从而

$$\mathbb{P}(A\cap(C-B))=\mathbb{P}((A\cap C)-(A\cap B))=\mathbb{P}(A\cap C)-\mathbb{P}(A\cap B)=\mathbb{P}(A)\mathbb{P}(C)-\mathbb{P}(A)\mathbb{P}(B)=\mathbb{P}(A)\left(\mathbb{P}(C)-\mathbb{P}(B)\right)=\mathbb{P}(A)\mathbb{P}(C-B).$$

$$\mathbb{H} \ C-B\in\mathcal{L}.$$

2 独立性

20

3. 若在 \mathcal{L} 中有 $B_n \nearrow B$.

$$\mathbb{P}(A \cap B_n) = \mathbb{P}(A)\mathbb{P}(B_n), \forall n.$$

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B).$$

从而 $B \in \mathcal{L}$.

综上, \mathcal{L} 是一个 λ -系。由 π - λ 定理(定理 2.0.11), $\sigma(\mathcal{B}) \subset \mathcal{L}$. 即 A 与 $\sigma(\mathcal{B})$ 独立。

推论 2.0.14. $A, B \subset F$ 是两个 π -系, $A \subseteq B$ 独立。则 $\sigma(A) \subseteq \sigma(B)$ 独立。

证明. 习题

定义 2.0.15. 设 $\{A_n\}_{n=1}^{\infty} \subset \mathcal{F}$. 令

$$B_n = \bigcup_{i=n}^{\infty} A_i, \ C_n = \bigcap_{i=n}^{\infty} A_i.$$

则记 $B_n \setminus B = \limsup_{n \to \infty} A_n, C_n \nearrow C = \liminf_{n \to \infty} A_n.$ 则有

$$\limsup_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{i=n}^{\infty} A_i \right), \ \liminf_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{i=n}^{\infty} A_i \right).$$

 $\omega \in \limsup_{n \to \infty} A_n$ 当且仅当 ω 属于无穷多个 A_n , $\omega \in \liminf_{n \to \infty} A_n$ 当且仅当不含 ω 的 A_n 只有有限个。

由

$$\mathbb{P}\left(\liminf_{n\to\infty}A_n\right) = \mathbb{P}\left(\bigcup_{n=1}^{\infty}\left(\bigcap_{i=n}^{\infty}A_i\right)\right) = \lim_{n\to\infty}\mathbb{P}\left(\bigcap_{i=n}^{\infty}A_i\right) \le \liminf_{n\to\infty}\mathbb{P}(A_n),$$

由 de Morgan 律,

$$\left(\limsup_{n\to\infty}A_n\right)^c=\left[\bigcap_{n=1}^\infty\left(\bigcup_{i=n}^\infty A_i\right)\right]^c=\bigcup_{n=1}^\infty\left(\bigcap_{i=n}^\infty A_i^c\right)=\liminf_{n\to\infty}A_n^c.$$

从而

$$1 - \mathbb{P}\left(\limsup_{n \to \infty} A_n\right) = \mathbb{P}\left(\liminf_{n \to \infty} A_n^c\right) \le \liminf_{n \to \infty} \left(1 - \mathbb{P}(A_n)\right) = 1 - \limsup_{n \to \infty} \mathbb{P}(A_n).$$

即

$$\limsup_{n \to \infty} \mathbb{P}(A_n) \le \mathbb{P}\left(\limsup_{n \to \infty} A_n\right).$$

定理 2.0.16 (Borel-Cantelli). 设 $\{A_n\}_{n=1}^{\infty} \subset \mathcal{F}$.

- 1. 若 $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$, 则 $\mathbb{P}(\limsup_{n \to \infty} A_n) = 0$.
- 2. 若 $\{A_n\}_{n=1}^{\infty}$ 独立,且 $\sum_{n=1}^{\infty} \mathbb{P}(A_n) = \infty$,则 $\mathbb{P}(\limsup_{n \to \infty} A_n) = 1$.

证明. $1. \forall n$,

$$\mathbb{P}\left(\limsup_{n\to\infty} A_n\right) \le \mathbb{P}\left(\bigcup_{i=n}^{\infty} A_i\right) \le \sum_{i=n}^{\infty} \mathbb{P}(A_i).$$

由于 $\sum_{n=1}^{\infty} \mathbb{P}(A_n) < \infty$ 收敛,从而 $\sum_{i=n}^{\infty} \mathbb{P}(A_i) \to 0$. 令 $n \to \infty$, 得 $\mathbb{P}(\limsup_{n \to \infty} A_n) \le 0$, 从而 $\mathbb{P}(\limsup_{n \to \infty} A_n) = 0$.

2. 只要证 $\mathbb{P}\left((\limsup_{n\to\infty}A_n)^c\right)=0$. 由 de Morgan 律, $(\limsup_{n\to\infty}A_n)^c=\left[\bigcap_{n=1}^{\infty}\left(\bigcup_{i=n}^{\infty}A_i\right)\right]^c=\bigcup_{n=1}^{\infty}\left(\bigcap_{i=n}^{\infty}A_i^c\right)$,故只要证 $\mathbb{P}\left(\bigcup_{n=1}^{\infty}\left(\bigcap_{i=n}^{\infty}A_i^c\right)\right)=0$. 而这只要证 $\forall n, \mathbb{P}\left(\bigcap_{i=n}^{\infty}A_i^c\right)=0$,从而由次可加性,

$$\mathbb{P}\left(\bigcup_{n=1}^{\infty} \left(\bigcap_{i=n}^{\infty} A_i^c\right)\right) \le \sum_{n=1}^{\infty} \mathbb{P}\left(\bigcap_{i=n}^{\infty} A_i^c\right) = \sum_{n=1}^{\infty} 0 = 0.$$

由于 $\{A_n\}_{n=1}^{\infty}$ 独立,它们的补也独立(注记 2.0.6)。从而 $\forall m > n$

$$\mathbb{P}\left(\bigcap_{i=n}^{m} A_{i}^{c}\right) = \prod_{i=n}^{m} \mathbb{P}\left(A_{i}^{c}\right) = \prod_{i=n}^{m} \left(1 - \mathbb{P}\left(A_{i}\right)\right) \le e^{-\sum_{i=n}^{m} \mathbb{P}\left(A_{i}\right)}.$$

其中用到了 $\forall x \geq 0, 1-x \leq \mathrm{e}^{-x}$. 由于 $\sum_{i=1}^{\infty} \mathbb{P}(A_i) = \infty$, 故当 $m \to \infty$ 时, $\sum_{i=n}^{m} \mathbb{P}(A_i) \to \infty$. 此时,由概率的连续性,

$$\mathbb{P}\left(\bigcap_{i=n}^{\infty} A_i^c\right) = \lim_{m \to \infty} \mathbb{P}\left(\bigcap_{i=n}^m A_i^c\right) \le \lim_{m \to \infty} e^{-\sum_{i=n}^m \mathbb{P}(A_i)} = e^{-\infty} = 0.$$

22

即有 $\mathbb{P}\left(\bigcap_{i=n}^{\infty} A_i^c\right) = 0.$

推论 2.0.17 (Borel 0-1 律). 设 $\{A_n\}_{n=1}^{\infty} \subset \mathcal{F}$. 则 $\mathbb{P}(\limsup_{n\to\infty} A_n) \in \{0,1\}$.

注记 2.0.18. 在概率论中,有很多某事件的概率是 0 或 1 的定理,这说明该事件要么必然发生,要么不可能发生,称为 0-1 律。

应用 2.0.19. 回到无穷次投硬币的情况。 $\Omega = \{H, T\}^{\mathbb{N}}$. A_n 是第 n 次为 T. $\mathbb{P}(A_n) = \frac{1}{2}$. $\{A_n\}_{n=1}^{\infty}$ 独立。由 Borel-Cantelli 定理(定理 2.0.16), $\mathbb{P}(\limsup_{n\to\infty} A_n) = 1$. 这说明投无穷次硬币出现 T 的概率为 1,它必然发生。

令 $\varphi:(0,1] \to \Omega = \{H,T\}^{\mathbb{N}}$. $\forall x \in (0,1]$, 将 x 写成二进制小数: $x = 0.a_1a_2a_3\cdots$. 该表示不唯一,因为有限小数也可以写成以 1 循环小数。例如

$$0.10011 = 0.10010\dot{1}$$

规定此时用以1循环来表示。

$$x \mapsto \varphi(x) = (a_1, a_2, a_3, \cdots)$$

将 0 换成 H, 1 换成 T. 则 φ 是单射。 $\varphi((0,1]) = \limsup_{n \to \infty} A_n$.

$$\varphi^{-1}(A_1) = \left(\frac{1}{2}, 1\right], \ \varphi^{-1}(A_2) = \left(\frac{1}{4}, \frac{1}{2}\right] \cup \left(\frac{3}{4}, 1\right], \dots, \varphi^{-1}(A_n) = \bigcup_{j=1}^{2^{n-1}} \left(\frac{2j-1}{2^n}, \frac{2j}{2^n}\right], \dots$$

设 μ 是 (0,1] 上的 Lebesgue 测度, $\mathbb{P}(A_n) = \frac{1}{2} = \mu(\varphi^{-1}(A_n))$,即在 Ω 上取均匀概率就是 (0,1] 上的 Lebesgue 测度。

$$\Omega = \{H, T\}^{\mathbb{N}} \supset \Omega' = \limsup_{n \to \infty} \rightleftharpoons (0, 1].$$

$$\mathbb{P}(\Omega - \Omega') = 0, \ \mathbb{P}(\Omega') = 1.$$

$$\mathbb{P}(A_n \cap \Omega') = \mu(\varphi^{-1}(A_n)).$$

$$\mathcal{F} = \sigma(A_1, A_2, \dots) \leftrightarrow Borel \ \mathcal{K} ...$$

即 $\{A_n\}_{n=1}^{\infty}$ 生成的 σ-代数 $\mathcal{F} = \sigma(A_1, A_2, \cdots)$ 就是 (0,1] 上的 Borel 代数。

定理 2.0.20 (Kolmogorov 0-1 律). 设 $\{A_n\}_{n=1}^{\infty} \subset \mathcal{F}$. 令 $\mathcal{T}_n = \sigma(A_{n+1}, A_{n+2}, \cdots)$. 有 $\mathcal{T}_1 \supset \mathcal{T}_2 \supset \cdots$. 记 $\mathcal{T} = \bigcap_{n=1}^{\infty} \mathcal{T}_n$. \mathcal{T} 中的事件称为尾事件。 若 $\{A_n\}_{n=1}^{\infty}$ 独立。则 $\forall T \in \mathcal{T}$,有 $\mathbb{P}(T) \in \{0,1\}$.

证明. 记 $\mathcal{F}_n = \sigma(A_1, \dots, A_n), \mathcal{F} = \sigma(A_1, A_2, \dots), \mathcal{B}_{n,k} = \sigma(A_{n+1}, \dots, A_{n+k}).$

 $\forall n, \bigcup_{k=1}^{\infty} \mathcal{B}_{n,k}$ 是 Boole 代数,是 π -系, \mathcal{T}_n 是 $\bigcup_{k=1}^{\infty} \mathcal{B}_{n,k}$ 生成的 σ -代数。由条件, \mathcal{F}_n 与 $\mathcal{B}_{n,k}$ 独立,从而与 $\bigcup_{k=1}^{\infty} \mathcal{B}_{n,k}$ 独立。由 π - λ 定理 (定理 2.0.11), \mathcal{F}_n 与 $\sigma(\bigcup_{k=1}^{\infty} \mathcal{B}_{n,k}) = \mathcal{T}_n$ 独立。从而 \mathcal{F}_n 与 $\mathcal{T} = \bigcap_{k=1}^{\infty} \mathcal{T}_n$ 独立,从而 $\bigcup_{k=1}^{\infty} \mathcal{F}_n$ 与 $\mathcal{T} = \bigcap_{k=1}^{\infty} \mathcal{T}_n$ 独立。由于 $\bigcup_{k=1}^{\infty} \mathcal{F}_n$ 是 Boole 代数,是 π -系,从而 $\mathcal{F} = \sigma(\bigcup_{k=1}^{\infty} \mathcal{F}_n)$ 与 \mathcal{T} 独立。

特别地, $\forall T \in \mathcal{T}, T 与 T 独立$,

$$\mathbb{P}(T) = \mathbb{P}(T \cap T) = \mathbb{P}(T)\mathbb{P}(T),$$

从而 $\mathbb{P}(T) \in \{0,1\}.$

注记 2.0.21. 有另一种形式的 *Kolmogorov* 0-1 律: $\{A_n\}_{n=1}^{\infty}$ 是一列独立的 σ-代数, $\mathcal{T} = \bigcap_{n=1}^{\infty} \sigma(A_{n+1}, A_{n+2}, \cdots)$, 则 $\forall T \in \mathcal{T}$, 有 $\mathbb{P}(T) \in \{0, 1\}$. 证明是完全类似的: 把 A 换成 A 即可。

应用 2.0.22 (边渗流模型). 考虑平面上的格 $L = \mathbb{Z}^2$. 每一条边随机地,相互独立地,以概率 p 染成红色,以概率 1-p 染成蓝色。L 的边是可数的。记红边构成的图是 G_r ,蓝边构成的图是 G_b . 我们称一个连通分支是巨连通分支,如果它有无穷多个顶点。记事件 $T_{r,p}$ 是 G_r 中有一个巨连通分支,它是一个尾事件:改变有限条边不会影响是否含有巨连通分支的情况, $T_{r,p} \in \bigcap_{n=1}^{\infty} \sigma(A_{n+1}, A_{n+2}, \cdots)$. 由 Kolmogorov 0-1 律 (定理 2.0.20), $\mathbb{P}(T_{r,p}) \in \{0,1\}$.

具体地,考虑 L 的对偶图 L^* .则 L 上的边渗流模型与 L^* 上的边渗流模型有一一对应:

断言: 若 L 上无红色巨连通分支,则 L^* 上有蓝色巨连通分支。即 $T^c_{r,p}\subset T_{b,1-p}$. 从而有

$$1 - \mathbb{P}(T_{r,p}) = \mathbb{P}(T_{r,p}^c) \le \mathbb{P}(T_{b,1-p}) = \mathbb{P}(T_{r,1-p}).$$

这说明

- 1. 若 $\mathbb{P}(T_{r,p}) = 0$, 则 $\mathbb{P}(T_{b,1-p}) \ge 1 0 = 1$, 即 $\mathbb{P}(T_{b,1-p}) = 1$.
- 2. 当 $p=\frac{1}{2}$ 时,有 $1-\mathbb{P}(T_{r,\frac{1}{2}})\leq \mathbb{P}(T_{r,\frac{1}{2}})$,即 $\mathbb{P}(T_{r,\frac{1}{2}})\geq \frac{1}{2}$. 由 $Kolmogorov\ 0$ -1 律(定理 2.0.20),只能有 $\mathbb{P}(T_{r,\frac{1}{2}})=1$. 且直观上有 $\mathbb{P}(T_{r,p})$ 关于 p 递增,从而 $\forall p\geq \frac{1}{2}$, $\mathbb{P}(T_{r,p})=1$.

定义 3.0.1. 设两个可测空间 (Ω, \mathcal{F}) 与 (Γ, \mathcal{G}) ,映射 $f:\Omega\to\Gamma$ 称为可测映射,若 $\forall A\in\mathcal{G}$,有 $f^{-1}(A)\in\mathcal{F}$. 特别地,若 $(\Gamma,\mathcal{G})=(\mathbb{R},Borel$ 可测集 $\mathcal{B}(\mathbb{R})$),则称 f 是 Ω 上的可测函数。

性质 3.0.2. • 可测映射的复合还是可测映射。

- $\{f^{-1}(A) \mid A \in \mathcal{G}\}$ 是 \mathcal{F} 的 σ -子代数:
 - $-f^{-1}(\varnothing)=\varnothing, f^{-1}(\Gamma)=\Omega.$
 - $f^{-1}(\Gamma A) = \Omega f^{-1}(A).$
 - $f^{-1}(\bigcup_{n=1}^{\infty} A_n) = \bigcup_{n=1}^{\infty} f^{-1}(A).$

记为 $f^{-1}G$, 称为 f 在 Γ 上的拉回。它是使 f 可测的最小 σ -代数。

- $f_*\mathcal{F} = \{A \subset \Gamma \mid f^{-1}(A) \in \mathcal{F}\}$ 是 σ -代数, 称为 f 在 Ω 上的推出。它是使 f 可测的最大 σ -代数。
- $f:(\Omega,\mathcal{F})\to(\Gamma,\mathcal{G})$ 可测, 当且仅当 $f^{-1}\mathcal{G}\subset\mathcal{F}$, 当且仅当 $f_*\mathcal{F}\supset\mathcal{G}$.
- $f:(\Omega,\mathcal{F})\to(\Gamma,\mathcal{G})$. 如果 $\mathcal{G}=\sigma(\{A_{\alpha}\mid \alpha\in\Lambda\})$, 则 f 可测当且仅当 $f^{-1}(A_{\alpha})\in\mathcal{F}$, $\forall \alpha\in\Lambda$.
- 可测函数的四则运算保持可测性。

定义 3.0.3. 可测函数的极限:

- 点点收敛: $f_n \xrightarrow{p.w.} f: \forall \omega \in \Omega, f_n(\omega) \to f(\omega).$
- 依测度收敛: $f_n \stackrel{m}{\to} f: \forall \sigma > 0, m(\{\omega \mid |f_n f| \geq \sigma\}) \to 0.$

定理 3.0.4. 假设 $\mu(\Omega) < \infty$. 若 $f_n \xrightarrow{p.w.} f$, 则 $f_n \xrightarrow{m} f$; 反之,若 $f_n \xrightarrow{m} f$, 则存在子列 $f_{n_k} \xrightarrow{p.w.} f$.

26

定义 3.0.5. 若一个可测函数只取有限个值,则称它是简单函数: $\Omega = \bigsqcup_{i=1}^n A_i, A_i \in \mathcal{F}, f = \sum_{i=1}^n a_i \chi_{A_i}$.

定理 3.0.6. (Ω, \mathcal{F}) 上的函数 f 是可测的,当且仅当存在一列 (Ω, \mathcal{F}) 上的简单函数 $\{f_n\}_{n=1}^{\infty}$, 使得 $f_n \stackrel{p.w.}{\longrightarrow} f$.

定义 3.0.7. (Ω, \mathcal{F}) 是一个概率空间, Ω 上的随机变量 X 就是可测函数 $X:(\Omega, \mathcal{F}, \mathbb{P}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R}))$. 由 X 的拉回确定了一个 σ -子代数 $X^{-1}(\mathcal{B}(\mathbb{R})) \subset \mathcal{F}$, 记为 $\sigma(X)$.

例 3.0.8. $A \subset \Omega$ 是一个事件,特征函数 χ_A 是一个随机变量。 $\mathbb{P}(\chi_A = 1) = \mathbb{P}(A)$, $\mathbb{P}(\chi_A = 0) = \mathbb{P}(A^c) = 1 - \mathbb{P}(A)$. $\sigma(\chi_A) = \{\emptyset, A, A^c, \Omega\}$.

定义 3.0.9. $X:(\Omega,\mathcal{F},\mathbb{P})\to(\mathbb{R},\mathcal{B}(\mathbb{R}))$ 是一个随机变量。由 X 可以在 $(\mathbb{R},\mathcal{B}(\mathbb{R}))$ 上定义一个测度 $\mu_X:\forall A\in\mathcal{B}(\mathbb{R})$,

$$\mu_X(A) = \mathbb{P}(x \in A) = \mathbb{P}(X^{-1}(A)).$$

容易验证 $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mu_X)$ 是一个概率空间。 μ_X 称为 X 的分布。

$$\Phi_X(x) = \mu_X((\infty, x]) = \mathbb{P}(X \le x)$$

称为X的分布函数。

性质 3.0.10. 分布函数的性质:

- 单调递增。
- $\lim_{x\to-\infty} \Phi_X(x) = 0$, $\lim_{x\to+\infty} \Phi_X(x) = 1$.
- 右连续性:

$$\lim_{x \to x_0^+} \Phi_X(x) = \Phi_X(x_0).$$

定理 3.0.11. 若 \mathbb{R} 上的函数 F(x) 满足性质 3.0.10的全部三条,则存在 $((0,1],\mathcal{L}=Lebesgue$ 可测集, $d\omega)$) 上的随机变量 X, 使得 $\Phi_X=F$.

27

证明. 简单情形: F 连续且严格单调递增。此时可以将 F 看成同胚 $\mathbb{R} \to (0,1)$. 定义

$$X:(0,1)\to\mathbb{R}$$

$$\omega\mapsto F^{-1}(\omega).$$

则 $X(\omega) \le x$ 当且仅当 $\omega \le F(x)$.

从而

$$\Phi_X(x) = \mathbb{P}(X(\omega) \le x) = d\omega(0, F(x)] = F(x).$$

而 X(1) 可以任意定义,不影响分布。

一般情形: $\forall \omega \in (0,1)$, 定义广义逆元

$$F^{-1}(\omega) = \inf\{x \mid F(x) \ge \omega\}.$$

由 F 的右连续性,

$$F^{-1}(\omega) = \inf\{x \mid F(x) \ge \omega\} = \min\{x \mid F(x) \ge \omega\}.$$

定义

$$X:(0,1)\to\mathbb{R}$$

$$\omega\mapsto F^{-1}(\omega).$$

28

则仍有 $X(\omega) \le x$ 当且仅当 $\omega \le F(x)$.

而 $X(\omega) \le x$ 能得到 $F(X(\omega)) \le F(x)$. 由 $X(\omega) = \min\{x \mid F(x) \ge \omega\}$ 的定义, $X(\omega) \in \{x \mid F(x) \ge \omega\}$. 从而有 $\omega \le F(X(\omega)) \le F(x)$. 反之,若 $F(x) \ge \omega$,仍由定义, $x \in \{x \mid F(x) \ge \omega\}$. 故 $x \ge \min\{x \mid F(x) \ge \omega\} = X(\omega)$. 从而

$$\Phi_X(x) = \mathbb{P}(X(\omega) \le x) = d\omega(0, F(x)] = F(x).$$

总结: 若 F 满足性质 3.0.10的全部三条,在 $((0,1],\mathcal{L},d\omega))$ 上,X 是均匀分布的随机变量。 $A \in \mathcal{L}, \mathbb{P}(x \in A) = d\omega(A)$.

$$\mathbb{P}(X \le x) = \begin{cases} 0, & x \le 0; \\ x, & x \in (0, 1); \\ 1, & x \ge 1. \end{cases}$$

 $F^{-1}(X) \le x$ 当且仅当 $X \le F(x)$,从而 $\Phi_{F^{-1}(X)}(x) = \mathbb{P}(F^{-1}(X) \le x) = \mathbb{P}(X \le F(x)) = F(x)$. 故 $F^{-1}(X)$ 的分布函数就是 F: $\Phi_{F^{-1}(X)} = F$.

例 3.0.12. $\Omega = \{H, T\}^{\mathbb{N}}, \Omega' \subset \Omega.$

$$\Omega' \leftrightarrow ((0,1], \mathcal{L}, d\omega)$$

$$A_n \leftrightarrow B_n = \bigcup_{i=1}^{2^{n-1}} \left(\frac{2i-1}{2^n}, \frac{2i}{2^n} \right].$$

定义 $R_n = \chi_{B_n}$. 记

$$R(t) = \begin{cases} 1, & t \in (\frac{1}{2}, 1) \cup \{0\}; \\ 0, & t \in (0, \frac{1}{2}]. \end{cases}$$

称为 Rademacher 函数。 $\omega \in (0,1]$.

$$\chi_{B_1}(\omega) = R(\omega), \ \chi_{B_n} = R(2^{n-1}\omega).$$

定义随机变量

$$X = \sum_{i=1}^{\infty} \frac{\chi_{A_n}}{2^i}.$$

它是 (0,1] 上的均匀分布。

$$\mathbb{P}\left(x \in \left(\frac{i}{2^n}, \frac{i+1}{2^n}\right]\right) = \frac{1}{2^n}.$$

 $\left(\frac{l_j}{2^{n_j}}, \frac{k_j}{2^{m_j}}\right) \nearrow (a, b], \frac{l_j}{2^{n_j}} \searrow a, \frac{k_j}{2^{m_j}} \nearrow b.$ 例如: $X \in \left(\frac{3}{8}, \frac{4}{8}\right]$ 当且仅当 $x \in \overline{A_1} \cap A_2 \cap A_3$. 任取分布函数 F,

$$\Omega \stackrel{X}{\to} (0,1] \stackrel{F^{-1}}{\to} \mathbb{R}.$$

 F^{-1} 服从 (0,1] 上的均匀分布, $F^{-1}(X)$ 服从 F 分布。 $F^{-1}(X)$ 看作是 ω 上的随机变量。

定义 3.0.13. 称两个随机变量 X,Y 依分布相等,若从而 $\mu_X = \mu_Y$ 能得到 $\Phi_X = \Phi_Y$. 记为 $X \stackrel{d}{=} Y$.

注记 3.0.14. 依分布相等不要求 X,Y 定义在同一个概率空间上。

定义 3.0.15. $X, \{X_n\}_{n=1}^{\infty}$ 是随机变量。称 $\{X_n\}_{n=1}^{\infty}$ 依分布收敛到 X, 若对任意 Φ_X 的连续点 a, 有 $\Phi_{X_n}(a) \to \Phi_X(a)$. 记为 $X_n \overset{d}{\to} X$. **定理 3.0.16.** 若 $X_n \overset{m}{\to} X$, 则 $X_n \overset{d}{\to} X$.

证明. $\forall \varepsilon > 0$,

$$\mathbb{P}(X_n \le a) \le \mathbb{P}(X \le a + \varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon).$$

30

$$\mathbb{P}(X_n \le a - \varepsilon) \le \mathbb{P}(X \le a) + \mathbb{P}(|X_n - X| > \varepsilon).$$

$$\Phi_X(a - \varepsilon) - \mathbb{P}(|X_n - X| > \varepsilon) \le \Phi_{X_n}(a) \le \Phi_X(a + \varepsilon) + \mathbb{P}(|X_n - X| > \varepsilon).$$

$$\Phi_X(a-\varepsilon) \le \liminf_{n \to \infty} \Phi_{X_n}(a) \le \limsup_{n \to \infty} \Phi_{X_n}(a) \le \Phi_X(a+\varepsilon).$$

 $\Leftrightarrow \varepsilon \to 0^+$, 在 Φ_X 的连续点 a 处, $\Phi_X(a) = \Phi_X(a^-) = \Phi_X(a^+)$,故上式等号同时成立,即有

$$\lim_{n \to \infty} \Phi_{X_n}(a) = \Phi_X(a).$$

 $\mathbb{P} X_n \stackrel{d}{\to} X.$

应用 3.0.17. 回到上例。

$$X = \sum_{i=1}^{\infty} \frac{\chi_{A_n}}{2^i}.$$

选取有限子列 $n_1 < n_2 < \cdots < n_k < \cdots$.

$$Y_k = \sum_{i=1}^k \frac{\chi_{A_{n_i}}}{2^i}.$$

将 $A_{n_1}, A_{n_2}, \cdots, A_{n_k}$ 的投掷结果重排到第 $a, 2, \cdots, k$ 位上看。

$$\Phi_{Y_k}(x) = \begin{cases} 0, & x \le 0; \\ 2^{-k} \left(1 + \lfloor 2^k x \rfloor \right), & 0 < x \le 1; \\ 1, & x > 1. \end{cases}$$

 $Y_k \to Y$ 服从 (0,1] 上的均匀分布。

定义 3.0.18. 称随机变量 X 是 (绝对) 连续的, 若它的分布函数 Φ_X 是 (绝对) 连续的。

我们从实分析中知道,绝对连续函数几乎处处可以求导。于是有定义

定义 3.0.19. 对一个绝对连续型随机变量 X, 存在几乎处处连续函数 f, 使得

$$\Phi_X(x) = \int_{-\infty}^x f(x) \, \mathrm{d} \, x.$$

f(x) 称为 X 的密度函数。

由于 $\mathbb{P}(X=x) = \Phi_X(x) - \Phi_X(x^-) = f(x)$ 几乎处处成立, 所以 $D = \{x \mid \mathbb{P}(X=x) > 0\}$ 至多是可数集。于是有定义:

定义 3.0.20. $\forall x \in \mathbb{R}$,

$$\Phi_X(x) = \sum_{y \le x, y \in D} \mathbb{P}(X = y)$$

称为离散型随机变量。

例 3.0.21. $X \in \{0,1\}$, $\mathbb{P}(X=0) = p$, $\mathbb{P}(X=1) = 1 - p$. 称为 Bernoulli 随机变量。

定义 3.0.22. 设 X_1, X_2, \dots, X_n 是 n 个随机变量。 $X = (X_1, X_2, \dots, X_n)$ 称为一个随机向量。

$$X:(\Omega,\mathcal{D},\mathbb{P})\to(\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n))$$

是可测映射, 成为联合分布。定义

$$\Phi_X(x_1, x_2, \cdots, x_n) = \mathbb{P}(X_1 \le x_1, X_2 \le x_2, \cdots, X_n \le x_n)$$

称为 X 的联合分布函数。

性质 3.0.23. 对联合分布 Φ_X ,

- 1. 对每个变量连续。
- $2. \Phi_X(\infty,\infty,\cdots,\infty)=1$; 只要某个 $x_i=-\infty$, 就有 $\Phi_X(x_1,x_2,\cdots,x_n)=0$.

32

- 3. 右连续性: $y_1 \to x_1^+, y_1 \to x_1^+, \dots, y_n \to x_n^+$, 则 $\Phi_X(y_1, y_2, \dots, y_n) \to \Phi_X(x_1, x_2, \dots, x_n)$.
- 4. 对任意 $a_1 < b_1, a_2 < b_2, \cdots, a_n < b_n$, 要有 $\mathrm{D}^1_{a_1,b_1} \cdots \mathrm{D}^{n-1}_{a_{n-1},b_{n-1}} \mathrm{D}^n_{a_n,b_n} \, \Phi_X \geq 0$. 其中 $\mathrm{D}^i_{a_i,b_i}$ 是差分:

$$D_{a_i,b_i}^i \Phi_X = \Phi_X(x_1, \dots, x_{i-1}, b_i, x_{i+1}, \dots, x_n) = \Phi_X(x_1, \dots, x_{i-1}, a_i, x_{i+1}, \dots, x_n).$$

注记 3.0.24.

$$D_{a_1,b_1}^1 \cdots D_{a_{n-1},b_{n-1}}^{n-1} D_{a_n,b_n}^n \Phi_X = \mathbb{P}(X_1 \in (a_1,b_1], X_2 \in (a_2,b_2], \cdots, X_n \in (a_n,b_n]).$$

定理 3.0.25. 若 \mathbb{R}^n 上的函数 Φ 满足性质 3.0.23的全部四条,则存在 $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), d\omega)$) 上的随机变量 X, 使得 $\Phi_X = \Phi$. 事实上,记 $X_i \in X$ 在第 i 个分量上的投影,则 $X = (X_1, \dots, X_n)$ 即为所求。

证明. $\mathcal{B}(\mathbb{R}^n)$ 是由 $\prod_{i=1}^n (a_i, b_i]$ 生成的 σ -代数。由长方体生成的 Boole 代数,是所有由有限个这样的长方体的并构成的集合。定义 $m: \mathcal{B}(\mathbb{R}^n) \to \mathbb{R}^+$: $\forall A = \prod_{i=1}^n (a_i, b_i]$,

$$m(A) = m\left(\prod_{i=1}^{n} (a_i, b_i)\right) = D_{a_1, b_1}^1 \cdots D_{a_{n-1}, b_{n-1}}^{n-1} D_{a_n, b_n}^n \Phi_X.$$

由性质 4, $m(A) \ge 0$. 对长方体不同的细分(将长方体分解成不交的小长方体有许多种方式): $A = A_1 \sqcup \cdots A_k$,要验证定义合理: $m(A) = m(A_1) + \cdots + m(A_k)$.

要验证 $m \in \mathcal{B}(\mathbb{R}^n)$ 上的测度: 若 $A_n \setminus \emptyset$, 则 $m(A_n) \to 0$. 由测度扩张定理, 在 $\mathcal{B}(\mathbb{R}^n)$ 上的测度 $m^* = \mathbb{P}$.

$$\mathbb{P}(X_1 \le a_1, X_2 \le a_2, \dots, X_n \le a_n) = m\left(\prod_{i=1}^n (-\infty, a_i]\right) = \Phi_X(a_1, a_2, \dots, a_n).$$

从而 $\Phi_X = \Phi$.

有时候我们要研究定义在两个不同的空间上的随即变量 X,Y。此时我们无法讨论它们的独立性。我们希望找到 \mathbb{R} 上的两个随即变量 \hat{X},\hat{Y} ,使得 $\Phi_{\hat{X}}=\Phi_{X}$, $\Phi_{\hat{Y}}=\Phi_{Y}$,这样我们就可以通过研究 \hat{X},\hat{Y} 的独立性得到 X,Y 的独立性。

定理 3.0.26. 设 $\{F_n\}_{n=1}^{\infty}$ 是一列分布函数。则在 $((0,1],\mathcal{B}((0,1]),\mathrm{d}\,\omega)$ 上,存在独立的随机变量序列 X_1,X_2,\cdots ,满足 $\Phi_{X_n}=F_n,\,n=1,2,\cdots$.

33

证明. 把自然数集 \mathbb{N} 做分化: $\Diamond N_i = \{(2j-1) \cdot 2^k \mid k=1,2,\cdots\}, \ \mathbb{N} = N_1 \sqcup N_2 \sqcup \cdots. \ \Diamond$

$$Y_j = \sum_{k=1}^{\infty} \frac{\chi_{A_{(2j-1)2^k}}}{2^k},$$

则 Y_1, Y_2, \cdots 相互独立,都是 (0,1] 上的均匀分布。令 $X_n = F_n^{-1}(Y_n)$,则 X_1, X_2, \cdots 也是相互独立的,且有 $\Phi_{X_n} = F_n$.

注记 3.0.27. 证明的灵感来自于无穷次投硬币的模型。

例 3.0.28 (二项分布). 设 X_1, \dots, X_n 是独立同分布的 Bernoulli 随机变量, $\mathbb{P}(X_n = 0) = 1 - p$, $\mathbb{P}(X_n = 1) = p$, $n = 1, \dots, n$. 令 $X = X_1 + \dots + X_n$. $\forall 0 \le k \le n$,

称 X 服从二项分布, 记为 $X \sim B(n, p)$.

例 3.0.29 (Poisson 分布). 设 $\lambda > 0$ 是参数,定义随机变量 X:

$$\mathbb{P}(X=k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}, \ k = 0, 1, 2, \cdots.$$

则称 X 服从 Poisson 分布, 记为 $X \sim P(\lambda)$.

若两个独立的 Poisson 分布 $X = P(\lambda_1), Y = P(\lambda_2)$. 则 $Z = X + Y \sim P(\lambda_1 + \lambda_2)$:

$$\mathbb{P}(Z = k) = \sum_{i=0}^{k} \mathbb{P}(X = i, Y = k = i) = \sum_{i=0}^{k} \mathbb{P}(X = i) \cdot \mathbb{P}(Y = k - i)$$

$$= \sum_{i=0}^{k} e^{-\lambda_{1}} \cdot \frac{\lambda_{1}^{i}}{i!} \cdot e^{-\lambda_{2}} \cdot \frac{\lambda_{1}^{k-i}}{(k-i)!} = \frac{e^{-\lambda_{1}-\lambda_{2}}}{k!} \sum_{i=0}^{k} \frac{k!}{i!(k-i)!} \lambda_{1}^{i} \lambda_{1}^{k-i} = \frac{e^{-\lambda_{1}-\lambda_{2}}}{k!} \sum_{i=0}^{k} C_{k}^{i} \lambda_{1}^{i} \lambda_{1}^{k-i} = e^{-(\lambda_{1}+\lambda_{2})} \cdot \frac{(\lambda_{1} + \lambda_{2})^{k}}{k!}.$$

例 3.0.30 (Bernoulli 分布与 Poisson 分布的比较). 设 $Y \sim P(\lambda)$.

$$F_{\lambda}(x) = \mathbb{P}(Y \le x) = e^{-\lambda} \sum_{i \le x} \frac{\lambda^{i}}{i!}$$

是 Y 的分布函数。设 $X \sim (0,1]$ 是均匀分布。

$$Y(\omega) = F_{\lambda}^{-1}(X)(\omega) = \begin{cases} 0, & \omega \le e^{-\lambda} \\ 1, & \omega \in [e^{-\lambda}, e^{-\lambda}(1+\lambda)) \\ 2, & \omega \in [e^{-\lambda}(1+\lambda), e^{-\lambda}(2+\lambda)) \\ \cdots \end{cases}$$

 $\diamondsuit G_{\lambda} = \chi_{[e^{-\lambda}, e^{-\lambda} + \lambda)}, \diamondsuit Z = G_{\lambda}(X).$ 则 $Z \sim B(1, \lambda).$ 此时,

$$\mathbb{P}(Y \neq Z) = \mathbb{P}\left(\omega \in [e^{-\lambda}(1+\lambda), 1]\right) = 1 - e^{-\lambda} - \lambda e^{-\lambda} \le \lambda^{2}$$

一般地,设 $T_1, \dots, T_n \sim P\left(\frac{\lambda}{n}\right)$ 互相独立,则 $T = T_1 + \dots + T_n \sim P(\lambda)$. 设 $W_1, \dots, W_n \sim B\left(1, \frac{\lambda}{n}\right)$ 互相独立,则 $W = W_1 + \dots + W_n \sim B\left(n, \frac{\lambda}{n}\right)$. 设 X_1, \dots, X_n 是互相独立的 (0,1] 上的均匀分布。

$$T = T_1 + \dots + T_n = F_{\frac{\lambda}{n}}^{-1}(X_1) + \dots + F_{\frac{\lambda}{n}}^{-1}(X_n) \sim P(\lambda).$$

$$W = W_1 + \dots + W_n = G_{\frac{\lambda}{n}}(X_1) + \dots + G_{\frac{\lambda}{n}}(X_n) \sim B\left(n, \frac{\lambda}{n}\right).$$

由于 $\{T \neq W\} \subset \bigcup_{i=1}^n \{T_i \neq W_i\},$

$$\mathbb{P}(T \neq W) = \mathbb{P}(\exists i, T_i \neq W_i) \le \sum_{i=1}^n \mathbb{P}(T_i \neq W_i) \le n \cdot \left(\frac{\lambda}{n}\right)^2 = \frac{\lambda^2}{n}.$$

从而

$$|\mathbb{P}(T \le x) - \mathbb{P}(W \le x)| = |\Phi_T(x) - \Phi_W(x)| \le \mathbb{P}(T \ne W) \le \frac{\lambda^2}{n}.$$

将 W 记为 S_n , 是 n 个独立服从 $B(1,\frac{\lambda}{n})$ 的独立随机变量的和, 就有 $\forall x, \Phi_{S_n}(x) \to \Phi_T(x)$, 即 $S_n \overset{d}{\to} T$.

注记 3.0.31. 我们用 $B(n,\frac{\lambda}{n})$ 逼近了 $P(\lambda)$. 这种方法成为耦合。

定义 3.0.32. 设 X,Y 是两个随机变量,若存在某个概率空间 $(\Omega,\mathcal{F},\mathbb{P})$ 上存在随机变量 \widehat{X},\widehat{Y} ,使得 $\Phi_{\widehat{X}} = \Phi_{X},\Phi_{\widehat{Y}} = \Phi_{Y}$. 则称 $(\widehat{X},\widehat{Y})$ 是 (X,Y) 的耦合。

定义 3.0.33. 设 X,Y 是两个随机变量,称 X 随机小于 Y,若存在 (X,Y) 的耦合 $(\widehat{X},\widehat{Y})$,使得 $\mathbb{P}((\widehat{X} \leq \widehat{Y})) = 1$,记为 $X \preceq Y$.

定理 3.0.34. $X \leq Y$, 当且仅当 $\forall x$, $\Phi_Y(x) \leq \Phi_X(x)$.