HW5

Jinhong Du, 15338039

Content

lmonary Disease
12.6
12.7
12.8
$\operatorname{stroenterology}$
12.42
12.43

Pulmonary Disease

Twenty-two young asthmatic volunteers were studied to assess the short-term effects of sulfur dioxide (SO_2) exposure under various conditions [12]. The baseline data in Table 12.30 were presented regarding bronchial reactivity to SO_2 stratified by lung function (as defined by forced expiratory volume / forced vital capacity $[FEV_1/FVC]$) at screening.

Lung-function group						
Group B FEV 1 /FVC $\leq 74\%$	Group A FEV 1 /FVC $75-84\%$	Group C FEV 1 /FVC $\geq 85\%$				
20.8	7.5	9.2				
4.1	7.5	2.0				
30.0	11.9	2.5				
24.7	4.5	6.1				
13.8	3.1	7.5				
	8.0					
	4.7					
	28.1					
	10.3					
	10.0					
	5.1					
	2.2					

Table 12.30 Relationship of bronchial reactivity to SO_2 (cm H_2O/s) grouped by lung function at screening among 22 asthmatic volunteers

12.6 Test the hypothesis that there is an overall mean difference in bronchial reactivity among the three lung-function groups.

Suppose that

$$y_{ij} = \mu + \alpha_i + e_{ij}, \qquad e_{ij} \sim N(0, \sigma^2)$$

To test

$$H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0$$
 $H_1: \exists i \in \{1, 2, 3\} \ s.t. \alpha_i \neq 0$

```
Y1 <- c(20.8,4.1,30.0,24.7,13.8)

Y2 <- c(7.5,7.5,11.9,4.5,3.1,8.0,4.7,28.1,10.3,10.0,5.1,2.2)

Y3 <- c(9.2,2.0,2.5,6.1,7.5)

n1 <- length(Y1)
```

```
n2 <- length(Y2)
n3 <- length(Y3)
df1 <- 3 - 1
df2 < - n1 + n2 + n3 -3
Y_{mean} \leftarrow (sum(Y1) + sum(Y2) + sum(Y3))/(n1+n2+n3)
Y1_mean <- mean(Y1)
Y2_{mean} \leftarrow mean(Y2)
Y3_mean <- mean(Y3)
# F test
MSB \leftarrow (n1*(Y1_mean - Y_mean)^2 + n2*(Y2_mean - Y_mean)^2 + n3*(Y3_mean - Y_mean)^2) / df1
MSW \leftarrow (sum((Y1 - Y1_mean)^2) + sum((Y2 - Y2_mean)^2) + sum((Y3 - Y3_mean)^2)) / df2
F_ <- MSB / MSW
cat('The value of the F statistics is ', F_, '\n',
    F(0.95, , 3-1, , n1 + n2 + n3 - 3, ) is qf(0.95, df1, df2), , n',
    'p-value is ', 1 - pf(F_{, df1, df2}), '\n')
## The value of the F statistics is 4.989255
## F(0.95, 2 , 19 ) is 3.521893
## p-value is 0.01813163
# With build-in function
data=rbind(
data.frame(name="Y1" ,value=Y1),
data.frame(name="Y2" ,value=Y2),
data.frame(name="Y3" ,value=Y3)
);
fit <- aov(value~name,data=data);</pre>
summary(fit)
##
               Df Sum Sq Mean Sq F value Pr(>F)
## name
                2 503.5 251.77
                                    4.989 0.0181 *
## Residuals
               19 958.8
                            50.46
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Since p-value is less than 0.05, we reject H_0 , i.e., there is an overall mean difference in bronchial reactivity among the three lung-function groups.

12.7 Compare the means of each pair of groups using the LSD method.

```
data <- data.frame(</pre>
   value= c(Y1,Y2,Y3),
   name=factor(c(rep(1,n1),rep(2,n2),rep(3,n3)))
   )
t_value <- c()
p_value <- c()</pre>
for (i in 1:2){
    for (j in (i+1):3){
        y1 <- data[data$name==i,1]
        y2 <- data[data$name==j,1]
        t_< (mean(y1) - mean(y2))/sqrt(MSW*(1/length(y1)+1/length(y2)))
        t_value <- c(t_value, t_)</pre>
        p_value \leftarrow c(p_value, 2 * (1 - pt(abs(t_), df2)))
    }
}
# With build-in function for computing p-value
pairwise.t.test(data$value, data$name, p.adjust.method = "none")
##
   Pairwise comparisons using t tests with pooled SD
##
## data: data$value and data$name
##
##
     1
            2
## 2 0.0151 -
## 3 0.0084 0.4203
##
## P value adjustment method: none
```

The result is shown in Table 2 Result. Only the p-value for the t test between group 2 and 3 is not significant.

12.8 Compare the means of each pair of groups using the Bonferroni method.

```
alpha_star <- 0.05 / choose(3,2)
cat('t(',df2,',',1 - alpha_star/2,') = ', qt(1-alpha_star/2,df2))</pre>
```

```
## t( 19 , 0.9916667 ) = 2.625106
```

Compare the absolute values of t-values with $t(19, 1 - \frac{1}{2}\alpha^*)$, we have

Groups	t-value	p-value	LSD	Bonferroni
1,2	2.6723892	0.0150588	H_1	H_1
1,3	2.9424811	0.0083594	H_1	H_1
2,3	0.8237993	0.4202747	H_0	H_0

Table 2: Result

Gastroenterology

In Table 12.39, we present data relating protein concentration to pancreatic function as measured by trypsin secretion among patients with cystic fibrosis [16].

	Trypsin secretion $[U/(kg/hr)]$					
	≤ 50	51 - 1000		>	10000	
Subject	Protein	Subject	Protein	Subject	Protein	
number	concentration	number	concentration	number	concentration	
1	17	1	1.4	1	1.7	
2	2.0	2	2.4	2	2.0	
3	2.0	3	2.4	3	2.0	
4	2.2	4	3.3	4	2.2	
5	4.0	5	4.4	5	4.0	
6	4.0	6	4.7	6	4.0	
7	5.0	7	6.7	7	5.0	
8	6.7	8	7.6	8	6.7	
9	7.8	9	9.5	9	7.8	
		10	11.7			

Trypsin secretion [U/(kg/hr)]					
	≤ 50	51 - 1000		> 10000	
Subject	Protein	Subject	Protein	Subject	Protein
number	concentration	number	concentration	number	concentration

Table 12.39 Relationship between protein concentration (mg/mL) of duodenal secretions to pancreatic function as measured by trypsin secretion [U/(kg/hr)]

12.42 If we do not want to assume normality for these distributions, then what statistical procedure can be used to compare the three groups?

We can use non-parameteric test - the Kruskal-Wallis test.

12.43 Perform the test mentioned in Problem 12.42, and report a p-value. How do your results compare with a parametric analysis of the data?

```
Y1 <- c(1.7,2.0,2.0,2.2,4.0,4.0,5.0,6.7,7.8)

Y2 <- c(1.4,2.4,2.4,3.3,4.4,4.7,6.7,7.6,9.5,11.7)

Y3 <- c(2.9,3.8,4.4,4.7,5.0,5.6,7.4,9.4,10.3)

n1 <- length(Y1)

n2 <- length(Y2)

n3 <- length(Y3)

data <- data.frame(
    value= c(Y1,Y2,Y3),
    name=factor(c(rep(1,n1),rep(2,n2),rep(3,n3)))
    )

kruskal.test(data$value, data$name)
```

```
## Kruskal-Wallis rank sum test
##
## data: data$value and data$name
```

##

```
## Kruskal-Wallis chi-squared = 2.8618, df = 2, p-value = 0.2391
```

```
fit <- aov(value~name,data=data)
summary(fit)</pre>
```

The p-value of the Kruskal-Wallis test is less significant than the one of one-way ANOVA. Both tests accept H_0 .