ЛАБОРАТОРНАЯ РАБОТА №3 ИССЛЕДОВАНИЕ УСИЛИТЕЛЬНОГО КАСКАДА С ЁМКОСТНОЙ СВЯЗЬЮ

Цель работы

Исследование уличительного RC-каскада на биполярном транзисторе с эмиттерной стабилизацией.

Учебные задания и методические указания к их выполнению

Рисунок 11

Назначение элементов схемы

- XFG-1 функциональный генератор;
- резисторы R_1 и R_2 задают выходное сопротивление генератора и дают возможность определить входное сопротивление усилителя (r_{BX});

- ёмкости C₁,C₃ и C₄ разделительные ёмкости, которые не пропускают постоянную составляющую от генератора на вход и нагрузку усилителя;
- резисторы R_3 , R_4 и R_5 задают начальный режим транзистора по постоянному току;
- резистор $R_6 = R_{\kappa}$ задает коэффициент усиления усилителя;
- резистор R₇ осуществляет эмиттерную стабилизацию;
- ёмкость C₂ исключает ООС по переменному току;
- резисторы R_8 , R_9 активные сопротивления нагрузки каскада ($r_{Bых}$);
- ёмкость C₅ ёмкостная нагрузка усилителя;
- мультиметр XMM1 измеряет действующее значение генератора (e_{Γ});
- мультиметр XMM2 изменяет постоянное ($U_{\text{Б}}$) и переменное (U_{BX}) напряжение на базе транзистора;
- мультиметр XMM3 измеряет эмиттерный ток покоя ($I_3 \sim I_K$);
- мультиметр XMM4 измеряет постоянное напряжение на эмиттере транзистора (U_3);
- мультиметр XMM5 измеряет выходное напряжения (U_{BLIX});
- ключи $J_1 J_4$ позволяют изменять номиналы элементов схемы;
- XSC1 двухканальный осциллограф;
- XBP1 плоттер Боде, позволяет исследовать амплитудно-частотную характеристику.

Задание 1 Определение режима каскада по постоянному току

Задать напряжение источника V_1 $E=5+\sqrt[4]{N}$ (в вольтах), где N — номер по списку.

В нечетных вариантах использовать транзистор имеющий маркировку 2N2102.

В четных вариантах использовать транзистор имеющий маркировку 2N2218.

Установить мультиметры XMM2 и XMM4 в режим измерения постоянного напряжения, а мультиметр XMM3 в режим постоянного тока.

Запустить моделирование и измерить значения I_K , $U_{\text{Б}}$ и $U_{\text{Э}}$. Рассчитать режим работы биполярного транзистора:

$$U_{E\ni}=U_E-U_{\ni}$$
,

$$U_{K9} = E_{V1} - I_K R_6 - U_9$$
.

Снять и построить нагрузочную линию I_K = $f(E_\Pi)$, где E_Π = $(E_{V1}$ - $U_9)$. Для этого изменять величину сопротивления R_5 от 20% до 100% и измерять значения I_k и U_9 по мультиметрам XMM3 и XMM4.

На графике отметить рабочую точку транзистора (приблизительно середина графика) и с помощью R_5 выставить соответствующий ток I_K .

Задание 2 Исследование усилительного каскада с ёмкостной связью по переменному току

Установить на мультиметрах XMM1, XMM2 и XMM5 режим измерения переменного напряжения.

Снять и построить амплитудную характеристику $U_{\rm Bыx} = f(e_{\Gamma})$ для двух значений сопротивления нагрузки $R_{\rm H} = R_8 = 1$ КОм и $R_{\rm H} = R_9 = 10$ КОм при значениях $F_{\Gamma} = 1$ К Γ ц и $R_{\Gamma} = R_1 = 1$ КОм. Резисторы R_8 и R_9 переключаются ключом J_3 .

Таблица 11

\mathbf{E}_{Γ} (амп.), м \mathbf{B}	2	5	10	15	20	30	50	80	100
ег (действ.), мВ									
U _{вых} (1КОм), мВ									
U _{вых} (10КОм), мВ									

На осциллографе XSC1 отображаются входной и выходной сигналы.

Рассчитать коэффициент усиления каскада:

$$K_{\nu} = \frac{U_{\text{вых}}}{e_{\rho}}$$
 при $E_{\Gamma} = 10$ мВ, $R_{H} = 1$ КОм и $R_{H} = 10$ КОм.

Определить входное сопротивление усилителя ($r_{\text{вх}}$) при $R_{\text{г}}$ = R_{1} = 1КОм и $E_{\text{г}}$ = 15мB:

$$r_{\rm BX} = rac{R_{
m \Gamma}}{rac{e_{
m \Gamma}}{U_{
m BX}} - 1}$$
 , ${
m U_{
m BX}}$ – напряжение на базе транзистора, на мультиметре

XMM2.

Определите выходное сопротивление усилителя при напряжении генератора равном $E_{\Gamma} = 10 \text{MB}$:

$$r_{{\scriptscriptstyle BbIX}} = rac{U_{{\scriptscriptstyle BbIX}\,2} - U_{{\scriptscriptstyle BbIX}\,1}}{U_{{\scriptscriptstyle BbIX}\,1}} - rac{U_{{\scriptscriptstyle BbIX}\,1}}{R_{\scriptscriptstyle 9}} \,$$
 , $U_{{\scriptscriptstyle BbIX}\,1}$ при включенном $R_{\scriptscriptstyle 8}$, $U_{{\scriptscriptstyle BbIX}\,2}$ при включенном $R_{\scriptscriptstyle 9}$.

Исследуйте влияние значения величин элементов схемы на частотные свойства усилителя, т.е. $F_{\rm H}$ -нижнюю и $F_{\rm B}$ — верхнюю (на уровне -ЗдБ) граничную частоту, при $E_{\rm \Gamma}$ = 10 мВ и заполните таблицу 12.

Таблица 12

	\mathbf{J}_2	\mathbf{R}_{Γ}	\mathbf{R}_{H}	$C_H = C_5$	$\mathbf{F}_{\mathbf{H}}$	F _B	\mathbf{K}_{V}
1	5мкФ	1КОм	1КОм	-			
2	1мкФ	1КОм	1КОм	-			
3	5мкФ	10КОм	1КОм	-			

4	5мкФ	1КОм	10КОм	-		
5	5мкФ	1КОм	1КОм	4нФ		

где J_2-C_3 или C_4 , $R_{\scriptscriptstyle \Gamma}-R_1$ или R_2 , $R_{\scriptscriptstyle H}-R_8$ или R_9 .

Откройте плоттер Боде (XBP1). Выставьте величины указанные в таблице. Включите источник питания схемы. Определите коэффициент усиления K_V на частоте 1 КГц (рисунок 12).

Рисунок 12

Перемещая курсор влево и вправо на величину уменьшения $K_V(дE)$ на -3 дE зафиксируйте значения E_H и E_H (рисунок 13,14).

Рисунок 13

Рисунок 14

Повторите измерения для других номиналов элементов из таблицы 2.

Проанализируйте результаты.

Содержание отчёта

- 1. Наименование и цель работы.
- 2. Электрические расчётные схемы и схемы цепи, собранные в Multisim.
- 3. Расчётные формулы.
- 4. Графики рабочей точки и амплитудной характеристики.
- 5. Таблицы с расчётными и экспериментальными данными.
- 6. Выводы по работе.