Discrete Mathematics Week 8

Abeyah Calpatura

8.3

Exercises

Abeyah Calpatura #3,7, 15ab, 16a, 17,36, 37, 38

#3 Solution:

$$A = \{0, 1, 2, 3, 4\}$$

$$R = \{(0, 0), (0, 4), (1, 1), (1, 3), (2, 2), (3, 1), (3, 3), (4, 0), (4, 4)\}$$

equivalence classes: [0], [1], [2], [3]

$$[0] = \{x \in A \mid x R 0\} = \{0, 4\}$$

$$[1] = \{x \in A \mid x R 1\} = \{1, 3\}$$

$$[2] = \{x \in A \mid x R 2\} = \{2\}$$

$$[3] = \{x \in A \mid x R 3\} = \{1, 3\}$$

$$[4] = \{x \in A \mid x R 4\} = \{0, 4\}$$

The distinct equivalence classes of the relation R are $\{0,4\},\{2\},\{1,3\}$

#7 Solution: $A = \{(1,3), (2,4), (-4,-8), (3,9), (1,5), (3,6)\}$ R is defined on A as follows: For every $(a, b), (c, d) \in A$,

$$(a,b) R (c,d) \iff ad = bc$$

Find the distinct equivalence classes of the relation R.

$$[(1,3)] = \{(a,b) \in A : (a,b)R(1,3)\}$$

= \{(a,b) \in A : 3a = b\}
= \{(1,3),(3,9)\}

$$[(2,4)] = \{(a,b) \in A : (a,b)R(2,4)\}$$

= \{(a,b) \in A : 4a = 2b\}
= \{(2,4),(-4,-8),(3,6)\}

$$[(1,5)] = \{(a,b) \in A : (a,b)R(1,5)\}$$

= \{(a,b) \in A : 5a = b\}
= \{(1,5)\}

#15a Solution: $17 \equiv 2 \pmod{5}$

$$17 - 2 = 15 = 3 \cdot 5$$

True

#15b Solution: $4 \equiv -5 \pmod{7}$

$$4 - (-5) = 4 + 5 = 9$$

False

#16a Solution: Let R be the relation of congruence modulo 3. Which of the following equivalence classes are equal?

$$[7], [-4], [-6], [17], [4], [27], [19]$$

R =Relation of congruence modulo 3

Equivalence class	a - 7	3 divides a - 7	Equal to equivalence class [7]
[-4]	-4 - 7 = -11	No	No
[-6]	-6 - 7 = -13	No	No
[17]	17 - 7 = 10	No	No
[4]	4 - 7 = -3	Yes	Yes
[27]	27 - 7 = 20	No	No
[19]	19 - 7 = 12	Yes	Yes

Implies:
$$[7] = [4] = [19]$$

Equivalence class	a - (-4)	3 divides a - (-4)	Equal to equivalence class [-4]
[-6]	-6 - (-4) = -2	No	No
[17]	17 - (-4) = 21	Yes	Yes
[27]	27 - (-4) = 31	No	No

Implies:
$$[-4] = [17]$$

Equivalence class	a - (-6)	3 divides $a - (-6)$	Equal to equivalence class [-6]
[27]	27 - (-6) = -33	Yes	Yes

Implies:
$$[-6] = [27]$$

s#17a Solution: Prove that all integers m and n, $m \equiv n \pmod{3}$ if, and only if $m \mod 3 = n \mod 3$

Let m and n be integers

Let $m \mod 3 = n \mod 3$

Then, m = 3a + b and n = 3c + b, where a, b, c are integers and $0 \le b < 3$

Then, m - n = 3a + b - 3c - b

$$m - n = 3(a - c)$$

3 divides m - n

$$m \equiv n \pmod{3}$$

#17b Solution: Prove that for all integers m and n and any positive integer d, $m \equiv n \pmod{d}$ if, and only if, $m \mod d = n \mod d$

Let m and n be integers

Let $m \mod d = n \mod d$

Then, m = da + b and n = dc + b, where a, b, c are integers and $0 \le b < d$

Then, m - n = da + b - dc - b

m - n = d(a - c)

d divides m - n

 $m \equiv n \pmod{d}$

#36 Solution: For every a in A, $a \in A$

Let $a \in A$

Since R is an equivalence relation, R is reflexive, symmetric, and transitive

By definition of reflexive: $(a, a) \in R$ or equivalently a R a

a R a is true and since $a \in A$, we note that $a \in [a]$

#37 Solution: For every a and b in A, if $b \in [a]$ then a R b.

Let a and b be in A

Let $b \in [a]$

By definition of equivalence class: $b \in [a]$ if and only if $b \in A$ and a R b

Since $b \in [a]$, $b \in A$ and a R b

Therefore, if $b \in [a]$ then a R b by using that R is symmetric and definition of the equivalence class

#38 Solution: For every a, b, and c in A, if b R c and $c \in [a]$ then $b \in [a]$.

Let a, b, and c be in A

Let b R c and $c \in [a]$

By definition of equivalence class: $c \in [a]$ if and only if $c \in A$ and a R c

Since $c \in [a]$, $c \in A$ and a R c

Since b R c, b R c and a R c

Prove using that R is transitive and the definitino of equivalence class

8.4

Exercises

Abeyah Calpatura #1, 3, 7, 14, 15,19, 22, 26, 31, 36, 39

#1a Solution: WHERE SHALL WE MEET

 $23\ 08\ 05\ 18\ 05\ 19\ 08\ 01\ 12\ 12\ 23\ 05\ 13\ 05\ 05\ 20$

C = (M+3)

26 11 08 21 08 22 11 04 15 15 26 08 16 08 08 23

ZKHUH VKDOO ZH PHHW

#1b Solution: LQ WKH FDIHWHULD

12 17 23 11 08 06 04 09 08 23 08 21 12 04

C = (M - 3)

 $09\ 14\ 20\ 20\ 08\ 05\ 03\ 01\ 06\ 05\ 20\ 05\ 18\ 09\ 01$

IN THE CAFETERIA

#3 Let a = 25, b = 19, and n = 3

#3a Solution: Verify that $3 \mid (25-19)$

$$25 - 19 = 6 = 3 \cdot 2$$

#3b Solution: Explain why $25 \equiv 19 \pmod{3}$

Through part a, we determined that 3 divides 25 - 19

#3c Solution: What value of k has the proprety that 25 = 19 + 3k?

$$25 = 19 + 3k$$

6 = 3k

k = 2

#3d Solution: What is the (nonnegative) remainder when 25 is divided by 3? When 19 is divided by 3?

 $25 \div 3 = 8$ remainder 1

 $19 \div 3 = 6$ remainder 1

#3e Solution: Explain why 25 mod $3 = 19 \mod 3$

The remainder when 25 is divided by 3 is 1

The remainder when 19 is divided by 3 is 1

Both remainders are 1

#7a Solution: $128 \equiv 2 \pmod{7}$ and $61 \equiv 5 \pmod{7}$

$$7 \mid (128 - 2)$$

$$128 - 2 = 126 = 7 \cdot 18$$

$$7 \mid (61 - 5)$$

$$61 - 5 = 56 = 7 \cdot 8$$

#7b Solution:
$$(128+61) \equiv (2+5) \pmod{7}$$

$$128+61=189$$

$$2+5=7$$

$$7 \mid ((128+61)-(2+5))$$

$$7 \mid (189-7)$$

$$7 \mid 182$$

$$182=7 \cdot 26$$

#7c Solution:
$$(128-61) \equiv (2-5) \pmod{7}$$

$$128-61=67$$

$$2-5=-3$$

$$7 \mid ((128-61)-(2-5))$$

$$7 \mid (67+3)$$

$$7 \mid 70$$

$$70=7 \cdot 10$$

#7d Solution:
$$(128 \cdot 61) \equiv (2 \cdot 5) \pmod{7}$$

$$128 \cdot 61 = 7808$$

$$2 \cdot 5 = 10$$

$$7 \mid ((128 \cdot 61) - (2 \cdot 5))$$

$$7 \mid (7808 - 10)$$

$$7 \mid 7798$$

$$7798 = 7 \cdot 1114$$

#7e Solution:
$$128^2 \equiv 2^2 \pmod{7}$$

$$128^2 = 16384$$

$$2^2 = 4$$

$$7 \mid (16384 - 4)$$

$$7 \mid 16380$$

$$16380 = 7 \cdot 2340$$

#14 Solution: Use the technique of Example 8.4.4 to find $14^2 \mod 55$, $14^4 \mod 55$, $14^8 \mod 55$, $14^{16} \mod 55$ $14^2 \mod 55 = 196 \mod 55 = 31$ $14^4 \mod 55 = (14^2 \mod 55)^2 = (31)^2 \mod 55 = 26$

$$14^{8} \mod 55 = (14^{4} \mod 55)^{2} = (26)^{2} \mod 55 = 16$$

$$14^{8} \mod 55 = (14^{8} \mod 55)^{2} = (26)^{2} \mod 55 = 16$$

 $14^{16} \mod 55 = (14^8 \mod 55)^2 = (16)^2 \mod 55 = 36$

#15 Solution: Use the result of #14 to find $14^{27} \mod 55$

$$14^{27} \mod 55 = (14^{16} \cdot 14^8 \cdot 14^2 \cdot 14^1) \mod 55$$

 $14^{27} \mod 55 = (31 \cdot 16 \cdot 26 \cdot 36) \mod 55$
 $14^{27} \mod 55 = 249984 \mod 55 = 9$

#19 Solution: HELLO

$$C = M^e \mod pq \ e = 3 \text{ and } pq = 55$$

 $08\ 05\ 12\ 12\ 15$
 $C = 08^3\ mod55 = 512\ mod\ 55 = 17$
 $C = 05^3\ mod55 = 125\ mod\ 55 = 15$
 $C = 12^3\ mod55 = 1728\ mod\ 55 = 23$
 $C = 12^3\ mod55 = 1728\ mod\ 55 = 23$
 $C = 15^3\ mod55 = 3375\ mod\ 55 = 20$
 $17\ 15\ 23\ 23\ 20 = \text{QOWWT}$

#22 Solution: 13 20 20 09

$$M = C^{d} modpq \text{ with } d = 27 \text{ and } pq = 55$$

$$C = 13^{27} mod 55 = 7$$

$$C = 20^{27} mod 55 = 15$$

$$C = 20^{27} mod 55 = 15$$

$$C = 09^{27} mod 55 = 4$$

$$07 15 15 04 = GOOD$$

#26 Solution: Use Euclidean algorith to find greatest common divisor of 6664 and 765. Express as linear combination of two numbers.

$$6664 = 8 \cdot 765 + 544$$

$$765 = 1 \cdot 544 + 221$$

$$554 = 2 \cdot 221 + 102$$

$$221 = 2 \cdot 102 + 17$$

$$102 = 6 \cdot 17 + 0$$

$$\gcd(6664, 765) = 17$$

$$17 = 221 - 2 \cdot 102$$

$$17 = 221 - 2(544 - 2(221))$$

$$17 = 5(221) - 2(544)$$

$$17 = 5(765 - 544) - 2(544)$$

$$17 = 5(765) - 7(544)$$

$$17 = 5(765) - 7(6664 - 8(765))$$

$$17 = 61 \cdot 765 - 7 \cdot 6664$$

```
#31a Solution: Find an inverse for 210 modulo 13
```

$$210 = 16 \cdot 13 + 2$$

$$13 = 6 \cdot 2 + 1$$

$$2 = 2 \cdot 1 + 0$$

$$\gcd(210, 13) = 1$$

$$1 = 13 - 6 \cdot 2$$

$$1 = 13 - 6(210 - 16 \cdot 13)$$

$$1 = 97 \cdot 13 - 6 \cdot 210$$

$$((-6) \cdot 210) \mod 13 = (1 - 97 \cdot 13) \mod 13$$

$$((-6) \cdot 210) \mod 13 = 1$$
Therefore, the inverse of 210 modulo 13 is -6

#31b Solution: Find a positive inverse for 210 modulo 13

$$-6 \bmod 13 = (-6 + 0) \bmod 13$$

 $(-6 \bmod 13 + 13 \bmod 13) \bmod 13$; // $0 \bmod 13 = 0 = 13$
 $(-6 + 13) \bmod 13$
 $7 \bmod 13$

Therefore, the positive inverse of 210 modulo 13 is 7

#31c Solution: Find a positive solution for the congruence $210x \equiv 8 \pmod{13}$

 $a \equiv b \pmod{c}$ is equivalent with $a \bmod c = b \bmod c$ $210x \equiv 8 \pmod{13}$ $210x \bmod 13 = 8 \bmod 13$ $x \bmod 13 = 7 \cdot 8 \bmod 13$ $x \bmod 13 = 56 \bmod 13$ $x \bmod 13 = 4$

Therefore, the positive solution for the congruence $210x \equiv 8 \pmod{13}$ is 4

#36 Solution: HELP,
$$n = 713 = 23 \cdot 31$$
 and $e = 43$

$$C = M^e \mod pq$$

H is $8^4 3 \mod 713 = 233$
E is $5^4 3 \mod 713 = 129$
L is $12^4 3 \mod 713 = 048$
P is $16^4 3 \mod 713 = 128$

#39 Solution: $n = 713 = 23 \cdot 31$ and e = 43 and d = 307 the inverse of 43 where $d \equiv e^{-1} \pmod{\phi(n)}$ where n = pq and $\phi(n) = (p-1)(q-1)$

 $675\ 089\ 089\ 048$

 $675^{307} \ mod \ 713 = 3$

 $089^{307} \mod 713 = 15$

 $089^{307} \ mod \ 713 = 15$

 $048^{307} \ mod \ 713 = 12$

The message is COOL