| Cognome   |  |
|-----------|--|
| Nome      |  |
| Matricola |  |

## Domanda 1

- 1. Descrivere i passi dell'algoritmo *Double Tree* per il problema del Commesso Viaggiatore.
- 2. Che tipo di bound è possibile determinare con tale algoritmo?
- 3. Dimostrare che l'algoritmo *Double Tree* è 2-approssimato per il problema del Commesso Viaggiatore.

## Esercizio 1

1. Dato il grafo in figura *G*, a partire dal matching corrente M = {12, 34, 68, 1011}, determinare il valore del massimo matching e del minimo trasversale spiegando nel dettaglio i passi dell'algoritmo utilizzato.



- 2. A partire dalla soluzione trovata al punto 1. determinare il valore del massimo insieme stabile su G.
- 3. Sul grafo in esame, qual è il valore del minimo edge cover? Come può essere calcolato?

## Esercizio 2

Dato un grafo G = (V, E) definiamo l'insieme universo U = V e la famiglia di insiemi ammissibili  $\Im = \{X \subset V : \text{ ogni vertice in } V - X \text{ è adiacente ad almeno un vertice in } X\}$ .

Dire se la coppia  $(U, \Im)$  è subclusiva e se soddisfa la proprietà di scambio.

Come si comporta l'algoritmo Greedy sulla coppia in esame?

| Prova Parziale di | Ottimizzazione | Combinatoria |
|-------------------|----------------|--------------|
| 04 Maggio 2010    |                |              |

| Cognome   |  |
|-----------|--|
| Nome      |  |
| Matricola |  |

## Esercizio 3

La tabella che segue contiene una lista di oggetti che volete inserire in uno zaino di capacità pari a 100Kg. Ogni oggetto ha un peso  $a_i$  e un profitto (atteso)  $p_i$ . Dopo aver formulato il problema di scegliere gli oggetti da inserire nello zaino massimizzando il profitto finale e rispettando il vincolo di capacità, determinare un upper bound ed un lower bound per il profitto massimo ottenibile.

| Oggetto  | 1  | 2  | 3   | 4  | 5   | 6   | 7   | 8   |
|----------|----|----|-----|----|-----|-----|-----|-----|
| Peso     | 10 | 8  | 19  | 10 | 28  | 22  | 38  | 33  |
| Profitto | 85 | 34 | 161 | 64 | 358 | 198 | 248 | 228 |

2 A