VECTEURS 3 – COLINÉARITÉ

I) COLINÉARITÉ DE DEUX VECTEURS

1) Intuitivement

Exprimer \vec{u} en fonction de \vec{v} dans les cas suivants :

Ces exemples permettent de sentir intuitivement que :

- si \vec{u} et \vec{v} ont la même direction,
- si \vec{u} et \vec{v} n'ont pas la même direction,

2) Définition

On dit que \vec{u} est colinéaire à \vec{v} lorsqu'il existe un réel k tel que $\vec{u} = k \vec{v}$.

- \vec{u} a alors la même direction que \vec{v} .
- Les coordonnées de \vec{u} sont proportionnelles à celles de \vec{v} .

Remarques:

- Le vecteur nul est colinéaire à tout vecteur \vec{v} : car quelque soit \vec{v} , il suffit de choisir k = En revanche, aucun vecteur non nul n'est colinéaire au vecteur nul :
- Dans le cas où \vec{u} et \vec{v} sont non nuls et où \vec{u} est colinéaire à \vec{v} : Le réel k tel que $\vec{u} = k \vec{v}$ est alors non-nul, on peut donc écrire $\vec{v} =$

On dit alors que « \vec{u} et \vec{v} sont colinéaires » (l'un à l'autre)

p149: 120, 121, 122

p154:163

p178:88

II) DANS LES EXERCICES

1) Application

A, B, C et D étant distincts, on a :

- AB et CD sont colinéaires ⇔
- AB et AC sont colinéaires ⇔

2) Exemple

Dans un repère $(O; \vec{i}; \vec{j})$, on considère les points :

A(1; 2), B(4; 1), C(6; -1), D(0; 1) et E(3; 4/3).

- 1) Montrer que (AB) et (CD) sont parallèles.
- 2) Les points A, B et E sont-ils alignés ?

Rédaction:

1) Montrer que : (AB) // (CD).

Par hypothèse, A(1; 2) et B(4; 1) donc \overrightarrow{AB}

Par hypothèse, C(6;-1) et D(0;1) donc \overrightarrow{CD}

On remarque que

donc est colinéaire à donc (AB) // (CD).

2) A, B et E sont-ils alignés ?

On a \overrightarrow{AB} et par hypothèse, A(1; 2) et E(3; 4/3) donc \overrightarrow{AE}

On remarque que

donc est colinéaire à donc A, B et E sont bien alignés.

p151: 137, 144, 145

p152:150,151

p153:153

III) DÉTERMINANT DE 2 VECTEURS

Parfois, il n'est pas très facile de mettre en évidence le fait que deux vecteurs sont colinéaires. On peut alors calculer leur « déterminant ».

1) Définition

On appelle « déterminant des vecteurs $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ » le réel noté : $\det(\vec{u}; \vec{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = x \ y' - x' \ y$

2) Critère de colinéarité

Soit \vec{v} un vecteur non nul :

$$\vec{u}$$
 est colinéaire à $\vec{v} \Leftrightarrow \det(\vec{u}; \vec{v}) = 0$

Démonstration:

Soit \vec{v} un vecteur non nul:

$$\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
 colinéaire à $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ \Leftrightarrow les coordonnées de \vec{u} sont proportionnelles à celles de \vec{v} $\Leftrightarrow \frac{x \mid x'}{y \mid y'}$ est un tableau de proportionnalité

p173: 42, 44, 48, 49

p176:67,68,69,71,76

p177:78,79,81,82

p178:86

p179:91

algo

p177:77