ML Handbook

Сергей Полянских

Оглавление

1	Математика		
	1.1	Случайная величина	4
	1.2	Распределение случайной величины	4
	1.3	Выборка	5
	1.4	Закон больших чисел	5
	1.5	Классический и байесовский подход	5

Предисловие

В данной книге описаны основные понятия, методы и подходы, широко используемые в современном DS и ML. Обычно, свободное владение этими понятиями необходимо для правильного понимания как основных, так и продвинутых методов ML и по умолчанию предполагается от DS специалиста.

Здесь собраны разные определения, встречавшиеся автору в научных статьях по ML и на собеседованиях. Охвачены: теория вероятностей, классическая и байесовская статистика, некоторые вопросы мат. анализа.

Освещение вопросов ни в коем случае не претендует на полноту. Основная цель книги - составить расширенный глоссарий основных понятий и подходов, встретившихся автору в процессе работы в области ML.

Обозначения

DS- дата саенс

ML - машинное обучение

RV - случайная величина CDF - функция распределения случайной величины

Глава 1

Математика

В этой главе описаны основные математические понятия, необходимые для правильного понимания как основных, так и продвинутых методов ML. Охвачены: теория вероятностей, классическая и байесовская статистика, некоторые вопросы мат. анализа. Освещение вопросов ни в коем случае не претендует на полноту и в некоторых случаях на строгость. Основная цель - составить расширенный глоссарий основных понятий и подходов, встретившихся автору в процессе работы в области ML.

1.1 Случайная величина

Случайной величиной (RV) называется числовая функция X, определенная на некотором множестве элементарных исходов Ω (обычно подмножество $\mathbb R$ или $\mathbb R^n$),

$$X:\Omega\to\mathbb{R}.$$

С прикладной точки зрения на RV часто смотрят как на генераторы случайных чисел с заданным распределением.

Примеры:

- Рост людей, взятых из некоторой группы.
- Цвет фиксированного пикселя изображения, взятого из некоторого множества изображений.
- Некоторый признак из датасета ML задачи.

1.2 Распределение случайной величины

Если RV принимает дискретное множество значений $x_1, x_2, ...,$ то она полностью определяется значениями их вероятностей: $p_k = \mathbb{P}(X = x_k)$.

Если множество значений RV не дискретно, то RV может быть описана своей функцией распределения (CDF, Cumulative distribution function): $F(x) = \mathbb{P}(X < x)$.

В большинстве прикладных случаев CDF оказывается дифференцируемой функцией. Производная от CDF называется плотностью распределения случайной величины (PDF, Probability density function): f(x) = F'(x). Таким образом, по определению

$$\mathbb{P}(a < X < b) = \int_{a}^{b} f(x)dx.$$

1.3 Выборка

Выборкой называется последовательность RV: $X_1, X_2, ..., X_n$. Предполагается, что все X_k попарно независимы и имеют одно и то же распределение: $X_k \sim X$. В этом случае говорят о выборке из генеральной совокупности X.

На практике выборкой являются конкретные реализации величин X_k , то есть последовательность чисел $x_1, x_2, ..., x_n$.

1.4 Закон больших чисел

1.5 Статистики

1.6 Bootstrap

1.7 Классический и байесовский подход