

MAXIMUM CONDITIONAL ESTIMATES

Why

We want to estimate a random vector $x : \Omega \to \mathbb{R}^d$ from a random vector $y : \Omega \to \mathbb{R}^n$.

Definition

Denote by $g: \mathbf{R}^d \times \mathbf{R}^n \to \mathbf{R}$ the joint density for (x,y).¹ Denote the conditional density for x given y by $g_{x|y}\mathbf{R}^d \times \mathbf{R}^n \to \mathbf{R}$ A maximum conditional estimate for $x: \Omega \to \mathbf{R}^n$ given that y has taken the value $\gamma \in \mathbf{R}^n$ is a maximizer $\xi \in \mathbf{R}^d$ of $g_{x|y}(\xi,\gamma)$. It is also called the maximum a posteriori estimate or MAP estimate.

Also maximizes joint

Notice that since $g(\xi, \gamma) = g_y(\gamma)g_{x|y}(\xi, \gamma)$, the MAP estimate also maximizes the joint pdf.

Proposition 1. The MAP estimate maximizes the joint pdf.²

¹Future editions will comment on the existence of such a density.

²Future editions will include an account.

