

Sri Chaitanya IIT Academy.,India.

□ A.P □ T.S □ KARNATAKA □ TAMILNADU □ MAHARASTRA □ DELHI □ RANCHI

A right Choice for the Real Aspirant

ICON Central Office - Madhapur - Hyderabad

SEC: Sr.S60_Elite, Target & LIIT-BTs Time: 03.00Pm to 06.00Pm

JEE-MAIN GTM-18/13 Date: 17-01-2025 Max. Marks: 300

KEY SHEET

MATHEMATICS

1	3	2	3	3	2	4	4	5	2
6	2	7	2	8	2	9	3	10	2
11	2	12	2	13	4	14	3	15	3
16	2	17	4	18	3	19	3	20	4
21	400	22	4	23	54	24	9	25	11

PHYSICS

26	4	27	2	28	4	29	2	30	1
31	2	32	4	33	3	34	4	35	1
36	1	37	2	38	2	39	2	40	2
41	3	42	2	43	2	44	4	45	4
46	750	47	6	48	10	49	9	50	2

CHEMISTRY

51	3	52	2	53	1	54	3	55	2
56	2	57	3	58	3	59	2	60	1
61	3	62	4	63	3	64	1	65	3
66	4	67	//1	68	1	69	4	70	1
71	25	72	3	73	3	74	4	75	15

SOLUTION MATHEMATICS

- 1. 1^{∞} form
- 2. $4_{C_3} \cdot 4_{C_3} + (4_{C_2} \cdot 3_{C_1})^2 + (4_{C_1} \cdot 3_{C_2})^2 + 3_{C_2} \cdot 3_{C_2}$
- 3. $\begin{aligned}
 \vec{r} \times \vec{a} &= \vec{b} \times \vec{r} \\
 \vec{r} \times (\vec{a} + \vec{b}) &= 0, \vec{r} = \lambda (\vec{a} + \vec{b}) = \lambda (3\hat{i} 3\hat{j}) \\
 |\vec{r}| &= 1 \Rightarrow \lambda \sqrt{18} = 1, \qquad \lambda = \frac{1}{3\sqrt{2}}, \vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 0
 \end{aligned}$
- 4. $0 \le x \le 1 \implies 0 \le \frac{1-x}{1+x} \le 1$
- 5. Point of intersection is (2, -4, 7) k = 69
- 6. g(x) = f(x) + f(1-x) $g^{1}(x) = f^{1}(x) f^{1}(1-x), x = \frac{1}{2}, g^{1}(\frac{1}{2}) = f^{1}(\frac{1}{2}) f^{1}(\frac{1}{2}) = 0, g^{1}(\frac{1}{2}) = 0$ $g^{11}(x) = f^{11}(x) + f^{11}(1-x) > 0$ $Concave \ upwards, \therefore \alpha = \frac{1}{2}$
- 7. $a_i \times b_i$ is a multiple of 3 if at least one of a_i or b_i is a multiple of 3 If $a_i = 3$ then $b_i = 1, 2, 3, 4, 5, 6, 7$ If $b_i = 3$ or 6 then $a_i = 1, 2, 3, 4$
 - $\therefore \text{ total possibilities} = 7 + 4 + 4 2 = 13 \qquad \therefore \text{ probability} = \frac{13}{4C_1 \times 7C_1} = \frac{13}{28}$
- 8. $y^2 \le 8x$ $4x - 3y + 4 \le 0$ Area of shaded portion is equal to $\frac{1}{n} \int_{1/2}^{2} \sqrt{8x}$ - area of trapezium ABCD

$$2\sqrt{2}\int_{1/2}^{2}\sqrt{x} - \frac{9}{2} = 2\sqrt{2}\frac{x^{\frac{3}{2}}}{\frac{3}{2}}^{\frac{1}{2}} - \frac{9}{2}$$

$$=\frac{4\sqrt{2}}{3}\left(2\sqrt{2}-\frac{1}{2\sqrt{2}}\right)-\frac{9}{2} \qquad =\frac{4\sqrt{2}}{3}\left(\frac{8-1}{2\sqrt{2}}\right)-\frac{9}{2} \qquad =\frac{14}{3}-\frac{9}{2}=\frac{28-27}{6}=\frac{1}{6}$$

- 9. sub: t = x + y
- 10. X must have 1,2 remaining 3 elements can be selected in 2.2.2=8
- 11. Conceptual
- 12. $\int \left(\frac{x}{2}\sec^2\frac{x}{2} + \tan\frac{x}{2}\right) dx, \qquad \int \left(x f^1(x) + f(x)\right) dx = x f(x) + c$
- 13. Conceptual

- 14. $1 = \alpha \left(\frac{\sqrt{3}}{2} \frac{i}{2} \right) + \beta (1+i)$ equate real and imaginary parts $\alpha 2\beta = 0$
- 15. Conceptual
- 16. Term independent of x is ${}^8c_3a^3 = 448$ coefficient of x^4 $x^4 = {}^8c_5.2^5 = 1792$ $f'(x) = 3x^2 + 2x$ f'(1) + f''(2)

17. I:
$$f''(x) = 6x + 2f'(1)$$

 $f'''(x) = 6$ then $f(0) = 6$
II:
 $f(g(x)) = x$ $f'(x) = 3x^2 + 6x - 33$, $f'(g(x),g'(x)) = 1$

$$g'(2) = \frac{1}{f'(g(25))}$$
 $g(2) = -1, = \frac{1}{f'(-1)} = \frac{1}{-36}, k = -36$

- 18. AB = I $T_r(C_r) = r + (r-1) = (2r-1)$
- 19. $x \neq 0, y \neq 0, z \neq 0$ $\Delta = 0, a + b + c = 1$
- 20. $I = -I \Rightarrow 2I = 0$ I = 0
- 21. Conceptual
- 22. Let $x_i 10 = y_i$ for i = 1, 2, 3, 4, 5 $6y = \sqrt{\frac{25}{5} - \left(\frac{5}{5}\right)^2} = 2$

$$S.D = 1 - 21.6y = 4$$

23. Foci of ellipse =
$$(1\pm 3, 1\pm 0)$$
 = $(4,1)(-2,1)$

$$e_E = \sqrt{1 - \frac{16}{25}} = \frac{3}{5}, e_H = \frac{5}{3} = \sqrt{1 + \frac{b^2}{a^2}}, \quad \frac{b^2}{a^2} = \frac{16}{9}$$

And
$$2al = 6 \Rightarrow ae = 3 \Rightarrow a^2 + b^2 = 9, a^2 \cdot \frac{25}{9} = 9, a^2 = \frac{81}{25}b^2 = \frac{144}{25}$$

Hyperbola:
$$\frac{25x^2}{81} - \frac{25y^2}{144} = 1$$

$$\frac{2a}{e} = \frac{54}{25}$$

24.
$$f(x) = \left(3\left(\frac{3-x^2}{3}\right)\left(3+x^2\right)\right)^{\frac{1}{4}}$$

$$= (9 - x^4)^{\frac{1}{4}}, f(f(x)) = (9 - ((9 - x^4)^{1/4})^4)^{\frac{1}{4}}$$

$$f(f(x)) = (x)$$

$$f^{2n+1}(x) = (9-x^4)^{\frac{1}{4}}$$
 $f^{2n}(x) = x$

$$f^{2025}(\sqrt{2}) = 5^{\frac{1}{4}}$$
 $f^{2024}(\sqrt{2}) = \sqrt{2}$

25. By using graph

PHYSICS

$$26. U = \frac{3}{2}PV$$
$$= \frac{3}{2} \times 3 \times 10^6 \times 2$$
$$= 9 \times 10^6 J$$

27.
$$p_{c} = p_{0} - \frac{2S}{r_{1}}, p_{D} = p_{0} - \frac{2S}{r_{2}}$$

$$p_{C} + \rho g h_{1} = p_{D} + \rho g h_{2}$$

$$p_{C} - p_{D} = \rho g (h_{2} - h_{1})$$

$$h_{2} - h_{1} = \frac{2S}{\rho g} \left(\frac{1}{r_{2}} - \frac{1}{r_{1}} \right)$$

$$= \frac{2S(r_{1} - r_{2})}{\rho g r_{1} r_{2}}$$

28.

$$N_1 = 30 N$$

 $f = \mu N_1 = 0.5 \times 30 = 15 N$

Contact surface

$$R = \sqrt{N_1^2 + f^2}$$

$$= \sqrt{(30)^2 + (15)^2}$$

$$= 15\sqrt{5} N$$

29.
$$\frac{1}{\lambda} \infty Z^2 \Rightarrow \lambda \infty \frac{1}{Z^2}$$

$$\lambda_{He^+} : \lambda_{Li^{++}} : \lambda_{Be^{+++}} = \frac{1}{2^2} : \frac{1}{3^2} : \frac{1}{4^2}$$

$$= 36 : 16 : 9$$

30.
$$\vec{\tau} = \vec{p} \times \vec{E} = (\alpha \hat{i} - \beta \hat{j}) \times (2\beta \hat{i} + 3\alpha \hat{j})$$

= $3\alpha^2 \hat{k} + 2\beta^2 \hat{k} = (3\alpha^2 + 2\beta^2) \hat{k}$

31.
$$\vec{\tau} = \overrightarrow{M} \times \overrightarrow{B}$$

32. [Pressure] =
$$\left[\frac{Force}{Area}\right] = ML^{-1}T^{-2}$$

33.
$$K = K_0 \cos^2 \omega = \frac{K_0}{2} [1 + \cos 2\omega t]$$

For maximum value of $K = \cos 2\omega t = 1$

$$K_{\rm max} = K_0 = U_{\rm max} = E$$

34.

Magnetic fields due to long wire

$$B = \frac{\mu_0 I}{2\pi x}, dA = ldx$$

$$d\Phi = BdA$$

$$\Phi = \frac{\mu_0 Il}{2\pi} \int_a^{a+l} \frac{dx}{x}$$

$$= \frac{\mu_0 Il}{2\pi} \ln\left(1 + \frac{l}{a}\right) = MI$$

$$M = \frac{\mu_0 l}{2\pi} \ln\left(1 + \frac{l}{a}\right)$$

- 35. Conceptual (gauss theorem)
- 36. $R_{eq} = R_1 + R_2$ $R = \frac{l}{KA}$
- 37. $\vec{\tau} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 7 & 3 & -5 \end{vmatrix}$

$$=\hat{i}(5-3) - \hat{j}(-5-7) + \hat{k}(3+7) = 2\hat{i} + 12\hat{j} + 10\hat{k}$$

- 38. Planet's follow law of conservation of angular momentum
- 39. V = E IrWhen I = 0, E = 2.0VWhen I = 5 A, 0 = 2 - 5r $r = 0.4\Omega$
- **40.** $\omega < \omega_0$ i.e. $X_C > X_L$, Current Leads $\omega > \omega_0$ i.e. $X_L > X_C$, Voltage Leads $\omega = \omega_0$ i.e. $X_L > X_C$, Same phase $\omega = \sqrt{2}\omega_0$, $\omega^2 = 2\omega_0^2 = \frac{2}{LC}$, $\omega L = \frac{2}{\omega C} \Rightarrow X_L = 2X_C$.
- **41.** First law of thermodynamics is based on law of conversation of energy and it can be written as dQ = dU dW. Where dW is work done on the system.
- **42.** $\left(\frac{\Delta R}{R} \times 100\right)_{\text{max}} = \frac{\Delta V}{V} \times 100 + \frac{\Delta I}{I} \times 100$ $T^2 = \rho^a r^b \sigma^c, a = 1, b = 3, c = -1$

43.
$$I = \frac{P}{A}$$

44.

$$0 \xrightarrow{v} M$$

Energy loss will be maximum when collision will be perfectly elastic

$$\stackrel{\mathbf{M}}{\longrightarrow} \mathbf{v}'$$

(By momentum)

Maximum energy loss = $K_i - K_f$

$$=\frac{1}{2}m\upsilon^{2}-\frac{1}{2}(m-M)\upsilon'=\frac{1}{2}m\upsilon^{2}-1(m+M)\frac{m^{2}\upsilon^{2}}{(m+M)^{2}}=\frac{1}{2}m\upsilon^{2}\left[1-\frac{m}{3+M}\right]=\left(\frac{M}{m+M}\right)\frac{1}{2}m\upsilon^{2}$$

Statement 1 is false

- **45.** work done on an object doesn't depend on the initial velocity of the object, Work done by a force is frame-dependent.
- **46.** $n_1\lambda_1=n_2\lambda_2$
- 47. E = cB

48.
$$x = 2t + 4t^2 \Rightarrow \frac{dx}{dt} = V_x = 2 + 8t \Rightarrow \frac{d^2x}{dt^2} = a_x = 8m/s^2$$

&
$$y = 3t^2 \Rightarrow \frac{dy}{dt} = V_y = 6t \Rightarrow \frac{d^2x}{dt^2} = a_y = 6m / s^2$$

$$\therefore a = \sqrt{a^2x + a_y^2} = \sqrt{8^2 + 6^2} = 10m/s$$

49.
$$\frac{hc}{\lambda} = \phi + eV \quad \dots (i)$$

$$\frac{hc}{\lambda} = \phi + \frac{eV}{4} \dots (ii)$$

$$(i)-4(ii) \Rightarrow -\frac{hc}{3\lambda} = -3\phi \Rightarrow \phi = \frac{hc}{9\lambda} = \frac{hc}{n\lambda}$$

$$n = 9$$

50.
$$y = 2\sin(100 \pi t - 2\pi x)$$

$$= A \sin(\omega t - kx)$$

$$\omega = 10\pi, k = 2\pi$$

wave velocity
$$v = \frac{\omega}{k} = 50m/s$$

$$\mu = \frac{M}{L} = \frac{20 \times 10^{-3}}{50 \times 10^{-2}} = 0.04 kg / m$$

$$v = \sqrt{\frac{T}{\mu}}$$

$$T = \mu v^2 = (0.04)(50)^2 = 100N = 50\lambda$$

$$\lambda = 2$$

CHEMISTRY

51. Key: 3

Sol: Bhor's model did not consider wave nature of electron.

52. Key: 2

$$E_{cell} = E_{cell}^{0} - \frac{0.0591}{2} \log \frac{\left[Zn^{2+}\right]}{\left[Cu^{2+}\right]}$$
Sol:
$$1.1591 = 1.1 - \left(\frac{0.0591}{2}\right) \log \left(10^{-2}\right)$$

- 53. Aldol condensation
- **54.** Key: 3

Reaction is second order with respect to A and zero order with respect to B

- **55.** Key: 2
 - i) BF_3 trigonal planar $\mu = 0$
 - ii) SO_3 trigonal planar $\mu = 0$
 - iii) CCl_4 tetrahedral μ = 0
 - iv) $H_2O bent \mu \neq 0$
- **56.** Key: 2

$$W = 0.5 \times 20 = 10 \ atm.ltr$$

57.

$$CH_3$$
— CH_3 CH_3

58. KEY:3

$$K_c' = \sqrt{\frac{1}{K_c}} = 12.5$$
.

59. Key: 2

Sol: Greater the stability of conjugate base, more will be acidic strength Equivalent resonance structures give more stability

60. Key: 1

Sol:

61. KEY: 3

Sol: For ideal behaviour

$$P_{total} = 0.25 \times 512 + 0.75 \times 344$$

=386mm Hg < 600mm Hg

Hence, the solution shows positive deviation

$$\Rightarrow \Delta H_{mix} = positive$$

62. Key:4

Sol: acetic acid is less acid than benzoic acid.

63. Key: 3 Sol:

64. Key: 1

$$CH_3 - C \equiv CH + H_2O \xrightarrow{Hg^{+2}/H^{\oplus}} CH_3 - CO - CH_3$$

65. Key:3

$$H_2N - CH - COOH \Longrightarrow H_3N^+ - CH - COO^-$$

Sol:

66. KEY: 4

$$\Delta H = [435 + 240] - [2 \times 430] = -185$$

67. KEY: 1

68. Key: 1

(i)
$$Cl_2 > Br_2 > F_2 > I_2$$
: BDE

(ii)
$$(H-O) > (H-S) > (H-Se)$$
:BDE

(iii)
$$(H-F) > (H-Cl) > (H-Br)$$
 :BDE

(iv)
$$(N-H) > (P-H) > (As-H)$$
: BDE

69. Key: 4

Sol:
$$[Al^{3+}]^1[OH^{-}]^3 = 3 \times 10^{-34}$$

$$\lceil OH^- \rceil = 10^{-11}$$

 \therefore minimum pH required to precipitate

$$Al(OH)_3$$
 is 3

$$\left[Mg^{2+}\right)\left[OH^{-}\right)^{2} = 3 \times 10^{-12}$$
$$\left[OH^{-}\right) = 10^{-6}$$

:. Minimum pH required to precipitate

$$Mg(OH)$$
, is 8

70. Key:1

- (i) In group 14, the stability of +2 oxidation state increases down the group due to inert pair effect
- (ii) Stable oxidation state of Thallium is +1 due to inert pair effect

71. Key: 25

In first row of transition series, highest O.S is +7. (exhibited by Mn, Z= 25)

72. Key: 3

Sol:
$$2KIO_3 + 5H_2C_2O_4 + H_2SO_4 \rightarrow K_2SO_4 + I_2 + 10CO_2 + 6H_2O_3 + 10CO_2 + 1$$

73. Key: 3

Sol: (i)
$$\left[Co(NH_3)_6 \right]^{3+} : d^6; d^2sp^3; dia : t_{2g}^6 e_g^0$$

(ii)
$$\left[CoF_6\right]^{3-}$$
: d^6 ; sp^3d^2 ; $para$ (4 unpaired electrons): $t_{2g}^4e_g^2$

(iii)
$$\left[Cu(NH_3)_4 \right]^{2+} : d^9 : para : square planar : (one unpaired electron)$$

(iv)
$$\left[Zn(OH_2)_6 \right]^{2+} : d^{10} : dia : sp^3 d^2 : t_{2g}^6 e_g^4$$

(v)
$$\left[Cr(CN)_6\right]^{3-}$$
: d^3 : $Para$: d^2sp^3 : $t_{2g}^3e_g^0$ (three unpaired electrons)

74. II, III, IV, VIII gives tollen's test

75. KEY: 15

Sol: Eqivalent weight of metal= 15 g.eq⁻¹