nu: 347208 str. 1/2 Seria: 9

Zadanie 1

 $\text{Mamy } \left(\frac{1}{e^x+1}\right)' = -\frac{e^x}{(e^x+1)^2}, \ \int \frac{dx}{x^2+1} = \arctan x. \ \text{Zatem całkując przez części mamy } \int\limits_{-1}^1 \frac{dx}{(e^x+1)(x^2+1)} = \left[\frac{\arctan x}{e^x+1}\right]_{-1}^1 + \int\limits_{-1}^1 \frac{e^x \arctan x}{(e^x+1)^2} dx.$

Policzmy więc tę drugą całkę kładąc y=-x, otrzymując $\int\limits_{-1}^{1} \frac{e^x \arctan x}{(e^x+1)^2} dx=\int\limits_{1}^{-1} \frac{e^{-y}\arctan(-y)}{(e^{-y}+1)^2}(-dy)=\int\limits_{1}^{-1} \frac{(e^y)^2 e^{-y}(-\arctan y)}{(e^y)^2 (e^{-y}+1)^2}(-dy)=-\int\limits_{-1}^{1} \frac{e^y\arctan y}{(e^y+1)^2} dy$ zatem całka ta jest równa zeru.

Zatem całka z zadania jest równa $\frac{\arctan 1}{e+1} - \frac{\arctan (-1)}{e^{-1}+1} = \frac{\pi}{4} \left(\frac{1}{e+1} + \frac{e}{e+1} \right) = \frac{\pi}{4}$.

Zadanie 2

Oznaczmy $f,g:[\alpha,\beta]\to\mathbb{R}$ jako $f(x)=\sqrt{\frac{\cos x}{1-\sin x}},\ g(x)=\sqrt{\frac{\cos x}{1+\sin x}}.$ Na przedziale z zadania obie te funkcje są dobrze określone, gdyż $\cos x\in (0,1),\ \sin x\in (-1,1).$

Forma dwuliniowa $(p,q)\mapsto\int\limits_{\alpha}^{\beta}p(x)q(x)dx$, gdzie $p,q\in C([\alpha,\beta])$ jest dodatnio określona, zatem spełniona jest nierówność Cauchy'ego-Schwartza. Stosując ją dla funkcji f, g mamy:

$$\left(\int\limits_{\alpha}^{\beta}f(x)^2dx\right)\left(\int\limits_{\alpha}^{\beta}g(x)^2dx\right)\geqslant \left(\int\limits_{\alpha}^{\beta}f(x)g(x)dx\right)^2$$

Jednakże $f(x)g(x) = \sqrt{\frac{\cos x \cdot \cos x}{(1-\sin x)(1+\sin x)}} = 1$. Zatem mamy

$$\left(\int_{\alpha}^{\beta} \frac{\cos x}{1 - \sin x} dx\right) \left(\int_{\alpha}^{\beta} \frac{\cos x}{1 + \sin x} dx\right) \geqslant (\beta - \alpha)^{2}$$

Jednak $\int \frac{\cos x}{1-\sin x} dx = -\ln(1-\sin x) + C$, $\int \frac{\cos x}{1+\sin x} dx = \ln(1+\sin x) + C$. Zatem na mocy zasadniczego twierdzenia rachunku różniczkowego mamy:

$$(\ln(1-\sin\alpha) - \ln(1-\sin\beta)) (\ln(1+\sin\beta) - \ln(1+\sin\alpha)) \geqslant (\beta-\alpha)^2$$

co przez proste własności logarytmu jest równoważne:

$$\ln\left(\frac{1-\sin\alpha}{1-\sin\beta}\right)\cdot\ln\left(\frac{1+\sin\beta}{1+\sin\alpha}\right)\geqslant (\beta-\alpha)^2$$

czyli tezie zadania.

Zadanie 3

Twierdzę, że $\int\limits_0^1 x^n (1-x)^m dx = \frac{n!m!}{(n+m+1)!}$ dla $n,m \in \mathbb{N}.$

Ustalmy bowiem wartość s=n+m, i udowodnijmy tezę przez indukcję po m, przy ustalonym s. Dla m=0 mamy n=s i do policzenia całkę $\int\limits_0^1 x^n \, dx = \left[\frac{x^{n+1}}{n+1}\right]_0^1 = \frac{n!m!}{(n+m+1)!}$, zatem postulowana teza zachodzi.

Teraz weźmy m > 0 i policzmy całkując przez części: $\int_{0}^{1} x^{n} (1-x)^{m} dx = \left[\frac{x^{n+1}}{n+1} \cdot (1-x)^{m}\right]_{0}^{1} - \int_{0}^{1} \frac{x^{n+1}}{n+1} (-m) (1-x)^{m-1} dx.$ Ta druga całka jest równa $\frac{-m}{n+1} \frac{(n+1)!(m-1)!}{(n+m+1)!} = -\frac{n!m!}{(n+m+1)!}.$ Jednakże mamy $\left[\frac{x^{n+1}}{n+1} \cdot (1-x)^{m}\right]_{0}^{1} = \frac{1^{n+1} \cdot 0^{m}}{n+1} - \frac{0^{n+1} \cdot 1^{m}}{n+1} = 0,$ gdyż m, n + 1 > 0. Zatem istotnie $\int_{0}^{1} x^{n} (1-x)^{m} dx = \frac{n!m!}{(n+m+1)!}.$

Zatem całka z zadania jest równa $\frac{(n!)^2}{(2n+1)!}$.

str. 2/2 Seria: 9

Zadanie 5

Mamy $\frac{x-1}{x} < \ln x < x-1$, zatem dla $x \in (1,\infty)$ mamy $\frac{x}{x-1} < \frac{1}{\ln x} < \frac{1}{x-1}$, zaś dla $x \in (0,1)$ mamy $\frac{x}{x-1} > \frac{1}{\ln x} > \frac{1}{x-1}$.

W obu przypadkach mamy, że $\int\limits_{x}^{x^2} \frac{dt}{\ln t}$ znajduje się pomiędzy $\int\limits_{x}^{x^2} \frac{dt}{t-1}$ a $\int\limits_{x}^{x^2} \frac{tdt}{t-1}$. Ta pierwsza całka jest równa $\left[\ln |t-1|\right]_{x}^{x^2} = \ln \left|x^2-1\right| - \ln |x-1| = \ln \left|\frac{x^2-1}{x-1}\right| = \ln (x+1)$ (bo x>0). Druga zaś: zauważmy, że $\int\limits_{x}^{x^2} \frac{tdt}{t-1} - \int\limits_{x}^{x^2} \frac{dt}{t-1} = \int\limits_{x}^{x^2} dt = x^2-x$, zatem $\int\limits_{x}^{x^2} \frac{tdt}{t-1} = x^2-x + \ln (x+1)$.

Jednakże stąd uzyskujemy, że $\lim_{x\to 1}\int\limits_x^{x^2}\frac{dt}{t-1}=\ln 2$ jak i $\lim_{x\to 1}\int\limits_x^{x^2}\frac{tdt}{t-1}=\ln 2$, skąd z twierdzenia o trzech ciągach $\lim_{x\to 1}\int\limits_x^{x^2}\frac{dt}{\ln t}=\ln 2$.

Teraz kładąc $f(1) = \ln 2$ uzyskujemy, że f jest ciągła na $(0, +\infty)$. Ustalmy dowolne $c \in (0, 1)$. Wtedy dla $x \in (0, 1)$ mamy $f(x) = \int_{c}^{x^2} \frac{dt}{\ln t} - \int_{c}^{x} \frac{dt}{\ln t}$, co na mocy lematu z ćwiczeń jest różniczkowalne i ma pochodną $f'(x) = (x^2)' \frac{1}{\ln x^2} - \frac{1}{\ln x} = \frac{x-1}{\ln x}$ Analogicznie możemy postąpić dla $x \in (1, +\infty)$, uzyskując ostatecznie, że f jest różniczkowalna na $(0, 1) \cup (1, +\infty)$ i zachodzi tam $f'(x) = \frac{x-1}{\ln x}$.

Pochodna ta jest funkcją dodatnią (na $(0,1) \cup (1,+\infty)$), zatem f jest rosnąca na (0,1] oraz $[1,+\infty)$, więc f jest rosnąca na $(0,+\infty)$.

Policzmy $\lim_{x\to 1}f'(x)=\lim_{x\to 1}\frac{x-1}{\ln x}\stackrel{H}{=}\lim_{x\to 1}\frac{1}{\frac{1}{x}}=1$. Niech $g(x)=\begin{cases} f'(x)&x\ne 1\\ 1&x=1 \end{cases}$. Wtedy $g\in C((0,+\infty))$, zatem posiada na dowolnym podprzedziałe domkniętym tego przedziału funkcję pierwotną. Zatem ustalając przedział $[\frac{1}{n},n]$ dostajemy, że G'(x)=g(x). Jednak na $(\frac{1}{n},1)$ mamy f'(x)=g(x), zatem $G(x)-f(x)=C_1$, tak samo mamy na (1,n), że f'(x)=g(x), zatem $G(x)-f(x)=C_2$. Jednak zarówno G jak i f są ciągłe, stąd licząc granicę w f0 mamy f1 mamy f2 mamy f3 mamy f4 mamy f5 mamy f6 posiada zatem pokazać, że f6 jest wypukła, do czego wystarcza, żeby f6 posiada zatem pokazać.

Jednak g ma pochodną na zbiorze $(0,1) \cup (1,+\infty)$ i wynosi ona $\frac{1 \cdot \ln x - (x-1) \cdot \frac{1}{x}}{(\ln x)^2}$, lecz $\ln x > \frac{x-1}{x}$, zatem g jest rosnąca zarówno na (0,1] jak i na $[1,+\infty)$, zatem jest rosnąca na $(0,+\infty)$, zatem G jest wypukła na $(0,+\infty)$, co implikuje już tezę.