(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-350732 (P2000 - 350732A)

(43)公開日 平成12年12月19日(2000.12.19)

(51) Int.Cl.7

識別記号

F1

テーマコード(参考)

A 6 1 B 18/12

A 6 1 B 17/39

310

審査請求 未請求 請求項の数31 OL (全 10 頁)

特願2000-147958(P2000-147958) (21)出顯番号

(22)出旗日

平成12年5月19日(2000.5.19)

(31)優先権主張番号 9911954:7

(32)優先日

平成11年5月21日(1999.5.21)

(33)優先権主張国 イギリス (GB) (71)出題人 500227451

ジャイラス・メディカル・リミテッド GYRUS MEDICAL LIMIT ED イギリス、シィ・エフ・3 0・エル・テ ィーウェールズ、カーディフ、セント・メ ロンズ、フォートラン・ロード(番地な

L)

(74)代理人 100064746

护理士 深見 久郎 (外5名)

最終頁に続く

(54) 【発明の名称】 電気外科手術システム、電気外科手術用ジェネレータ、および電気外科手術で組織を切断または

(57)【要約】

切除するための方法

【課題】 高周波ジェネレータと処置電極を備える器具 とを有する電気外科手術システムにおいて、電極からの 熱電子放出を感知するための回路を高周波電力の電極へ の供給を制御する手段として含む、ジェネレータ (1 0)を提供する。

【解決手段】 然電子放出は、分離された出力を有する 検出器を用いてジェネレータ (10) の出力における直 流電圧を検出することによって感知され、ジェネレーク の出力は直流電圧を予め定められたしきい値に制限する ように制御される。したがって、電極(30、36)の 温度は電極破壊を回避するように制限され得る。本発明 は、電気外科手術の処置によって生じる神経の刺激を減 じるためにも有効である。

【特許請求の範囲】

【請求項1】 電気外科手術用器具の処置電極に供給するための高周波エネルギ源を含むジェネレータを含み、前記ジェネレータは電極からの熱電子放出を感知するための回路を含む、電気外科手術システム。

【請求項2】 感知回路からの出力信号に応答して処置 電極に供給された高周波エネルギを制御するように動作 可能な制御回路を含み、前記感知回路および制御回路 は、電極からの熱電子放出が増加すると与えられた高周 波エネルギが減少するように構成される、請求項1に記 載のシステム。

【請求項3】 感知回路が、ジェネレータの動作周波数で実質上高周波信号を取除いてジェネレータの高周波出力の平均化された表示を生じるように構成された入力ステージと、前記平均化された表示を受けるように入力ステージに結合された検出ステージとを有する、請求項1または請求項2に記載のシステム。

【請求項4】 前記ジェネレータが、処置電極に接続するための出力端子を有し、感知回路が、2ボルトより高い予め定められた電圧範囲内の出力端子直流電圧を検出するように構成される、請求項1から請求項3のいずれかに記載のシステム。

【請求項5】 前記感知回路が、検出された直流電圧が 予め定められたしきい値を超えるとしきい値信号を発生 するように構成される、請求項4に記載のシステム。

【請求項6】 しきい値が10Vから100Vの範囲にある、請求項5に記載のシステム。

【請求項7】 前記ジェネレータが、電気外科手術用器 具の処置電極に供給するための変調高周波出力を発生するように構成され、前記感知回路が、ジェネレータ動作 周波数での高周波信号を実質的に取り除くことにより、 平均化された信号が平均化信号の振幅の測定値として感 知回路信号を生成する検出ステージに供給されるように 構成される、請求項3に記載のシステム。

【請求項8】 感知回路の入力ステージが、変調の周波数を含みジェネレータの動作周波数は含まない通過域を有するフィルタを含み、平均信号が変調周波数と同等の周波数を有する交流信号である、請求項7に記載のシステム。

【請求項9】 前記ジェネレータが、それぞれのジェネレータ出力端子に結合された1対の出力線を有する出力ステージを有し、各出力線は直列接続された分離キャパシタと、それぞれの分離キャパシタと出力端子との間の出力線の1つに直列インダクタンスとを有し、このインダクタンスが感知回路の入力ステージに結合されている、請求項8に記載のシステム。

【請求項10】 前記入力ステージが、変調周波数に同 調され、かつ前記直列インダクタンスに帰納的に結合さ れたインダクタンスを有する平衡共振回路を含み、前記 検出回路が、共振回路にわたって結合されて共振回路に わたって発達した信号の振幅を検出する、請求項9に記載のシステム。

【請求項11】 高周波エネルギ顔を含むジェネレータと、ジェネレータに結合されて、処置電極を有する電気外科手術用器具とを含む、電気外科手術システムであって、前記システムは、処置電極において2ボルトを超える直流オフセットを検出するように構成される直流電圧検出器と、この検出器に結合されて、直流オフセットに応答して前記器具に与えられる高周波エネルギを制御するための制御回路とを含む、電気外科手術システム。

【請求項12】 前記制御回路および検出器は、直流オフセットを予め定められた直流電圧レベルに制限するように動作可能である、請求項11に記載のシステム。

【請求項13】 前記制御回路および検出器は、直流オフセットを50Vから100Vの範囲の予め設定された 位に制限するように動作可能である、請求項11に記載のシステム。

【請求項14】 前記ジェネレータは、処置電極に接続可能な出力端子を有し、前記検出器は、出力端子に結合された検出入力と、検出器を制御回路に接続するアイソレーション装置とを有する、請求項11から請求項13のいずれかに記載のシステム。

【請求項15】 前記検出器は、ジェネレータの高周波 出力エネルギから電力を与えられ、この検出器は、前記 出力端子に結合された電源回路と、出力端子に与えられ る高周波電気外科手術信号を整流するための整流器とを 含む、請求項14に記載のシステム。

【請求項16】 前記検出器が、直流オフセットを表わす交互に変わる測定信号を発生するための発振器を含み、前記アイソレーション装置が、交互に変わる測定信号を受けるために、また制御回路にそれを供給するために結合されたオプトアイソレータを含む、請求項14または請求項15に記載のシステム。

【請求項17】 前記検出器が、(a) 予め定められた 電圧値より大きい正の直流オフセットおよび(b) 負の 直流オフセットの両方の検出を可能にする反転直流オフ セット検出回路を含む、請求項11から請求項16のい ずれかに記載のシステム。

【請求項18】 前記検出器が、ジェネレータの出力端子に結合された入力回路を有し、その入力回路が高周波チョークおよび少なくとも2MQの直列抵抗を含む、請求項14から請求項16のいずれかに記載のシステム。

【請求項19】 高周波エネルギ源と、

活動出力端子と、

リターン出力端子と、

エネルギ源と活動出力端子との間の直流分離キャパシタ と、

2ボルトを超える直流オフセット電圧を検出するために 分離キャパシタの出力端子側に接続された分路入力を有 する直流オフセット検出器と、 前記分路入力における直流オフセット電圧に応答して活動出力端子に与えられた高周波エネルギを制御するためにエネルギ源に結合された制御回路とを含む、電気外科手術用ジェネレータ。

【 請求項20】 前記制御回路および検出器は、直流オフセットを予め定められた直流電圧レベルに制限するように動作可能である、請求項19に記載のジェネレータ。

【請求項21】 直流オフセットを50Vから100Vの傾域の予め設定された値に制限するように動作可能である、請求項20に記載のジェネレータ。

【請求項22】 前記検出器が、前記検出器を制御回路 に接続するアイソレーション装置を有する、請求項19 から請求項21のいずれかに記載のジェネレータ。

【請求項23】 前記検出器が、前記活動端子とリターン端子との間に接続された電源回路と、出力端子にわたって与えられる高周波電気外科手術用信号を整流するための整流器とを含む、請求項22に記載のジェネレータ。

【請求項24】 前記検出器が、直流オフセットを表わす交互に変わる測定信号を発生するための発振器を含み、前記アイソレーション装置が、交互に変わる測定信号を受けてそれを制御回路に供給するように結合されるオプトアイソレータを含む、請求項22または請求項23に記載のジェネレータ。

【請求項25】 前記検出器が、(a) 予め定められた 電圧値より大きい正の直流オフセットおよび(b) 活動 出力端子における負の直流オフセットの両方の検出を可 能にする反転直流オフセット検出回路を含む、請求項1 9から請求項24のいずれかに記載のジェネレーク。

【請求項26】 前記検出器が、ジェネレータ出力端子に結合された入力回路を有し、この入力回路が、高周波チョークおよび少なくとも2MQの直列抵抗を含む、請求項22から請求項24のいずれかに記載のジェネレータ。

【請求項27】 電気外科手術で組織の切断または切除を行なうための方法であって、電気外科手術用器具に高周被エネルギが与えられることによりこの器具の処置電極におけるアーク放電を促進し、そのようなエネルギのレベルが電極からの熱電子放出のレベルに従って調節されている、方法。

【請求項28】 高周波エネルギが、実質的な電極の燃 焼を伴わずに電極の温度を最大にするように調節され る、請求項27に記載の方法。

【請求項29】 高周波エネルギが、直流電圧を100 V未満のしきい値に制限するように調節される、請求項 27に記載の方法。

【請求項30】 ジェネレータ動作周波数で動作可能な 高周波電源と、1対の高周波電力出力端子を含む出力ス テージとを含む電気外科手術用ジェネレータであって、 前記出力ステージは電源からDC分離されている出力ステージであり、前記ジェネレータはさらに、電源によって発生された高周波電力信号を変調するための手段と、出力ステージにAC結合され出力ステージからDC分離されて、出力端子に伝達される電力信号におけるDCシフトを表わす変調成分を含む平均化されたAC信号を発生するように動作可能である感知回路とを含む、電気外科手術用ジェネレータ。

【請求項31】 前記変調手段は、予め定められた変調 周波数で高周波電力信号における振幅変調を生成し、前記ジェネレータはさらに、入力から感知回路への動作周波数で高周波成分を実質的に取除いて平均化されたAC信号をもたらすための感知回路に関連づけられるフィルクリング要素を含む、請求項30に記載のジェネレーク。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、電気外科手術システム、電気外科手術用器具、および電気外科手術を行なうための方法に関する。

[0002]

【従来の技術】高周波電圧が供給される1つ以上の活動 電極を備える先端を有する器具を用いて電気外科的な組 織を切断または除去することは、通常、活動電極と処置 中の組織との間、または水中電気外科手術の場合は活動 電極と処置中の組織を覆っている導電性の液体との間に 生じるアークにより、細胞の裂傷を伴う。EP-A-O 754437号に記載のように、電極を燃焼または溶融 させるのに十分な高周波電力が電極に供給されると電極 の破壊が起こり得るが、これは、電極のピーク電圧を感 知し、かつフィードバックを与えて印加電力を減じるこ とにより最大ピーク電圧を設定することによって回避で きる。所与の電力設定に関して、電極の温度は、熱が放 散され得る速度に依存し、この速度は、組織の係わり程 度、電極構造、および電極まわりの流体フローなどの変 数に依存する、ということがわかるであろう。結果とし て、電極の破壊を回避するためには、最悪の放散状態 (すなわち冷却液がなく、かつ/または組織が電極を取 り囲んでいる場合) における損傷を防ぐように、ピーク 電圧の限界を十分低いレベルに設定しなければならな

【0003】電極におけるアーク放電が神経刺激を引き起こし得ることは公知である。これは、電極が加熱されるときの熱電子効果によるものである。ジェネレータの高周波源と電極との間に結合キャパシタを用いることは不可欠であるので、電極は分離され、キャパシタ上に電荷を構築することが可能になり、これにより、電極が組織または組織を覆う導電性の流体に触れると神経刺激が起こる。

[0004]

【発明の概要】本発明は、熱電子効果が温度依存性であ り、したがって電極温度の表示として用いられ得るとい う認識に基づくものである。

【0005】したがって、本発明は、電気外科手術用器 具の処置電極に供給するための高周波エネルギ顔を含む ジェネレータを含み、このジェネレータは、電極からの 熱電子放出を感知するための回路を含む。

【0006】本発明はまた、高周波エネルギ源を含むジ ェネレータと、このジェネレータに結合されて、処置電 極を有する電気外科手術用器具とを含む、電気外科手術 システムも含み、このシステムは、処置電極において2 ボルトを超える直流オフセットを検出するように構成さ れる直流電圧検出器と、この検出器に結合されて、直流 オフセットに応答して器具に与えられる高周波エネルギ を制御するための制御回路とを含む。この飯様で、熱電 子効果による処置電極における直流電圧のレベルは、た とえば電極温度を制御する手段として、制限され得る。 実際には、熱電子効果のアーク放電(特に、処置電極が 非常に熱くなるようなレベルおよび環境におけるアーク 放電) との関連性が、電極のオーバヒートを保護するた めに本発明に従って用いられ得る。これにより、最悪の 場合以外の熱放散を有する環境において用いられる電極 を、先行技術の電圧感知技術を用いた場合に可能である とされるよりも高温で動作させることが可能になり、結 果的に、組織が切断または除去され得る速度が増す。

【0007】 典型的には、オーバヒートの保護のためには、制御回路および検出器は、直流オフセットを50Vから100Vの範囲の予め定められた直流電圧レベルに制限するように動作可能である。実際には、実際の電圧レベルは電極の構成および電極の材料に依存する。したがって、白金の電極を用いると、電圧の限界は電極電圧が1600℃(白金の融点)に近くなると生じる限界と同じものに設定される。

【0008】これに代えて、最大直流オフセット電圧 は、たとえば神経外科(脊椎領域における外科手術)お よび筋肉組織などの敏感な部位での神経刺激を減じるた めに、かなり低い値に設定してもよい。

【0009】本発明の好ましい実施例では、ジェネレー クは処置電極に接続可能な出力端子を有し、検出器は、

(i) 出力端子に接続される検出入力と (ii) 検出器を制御回路に接続するアイソレーション装置とを有する。検出器は、ジェネレータ出力端子に結合された電源回路を有することにより、かつ出力端子に与えられた高周波電気外科手術信号を整流するための整流器を含むことにより、ジェネレータの高周波出力エネルギから電力を与えられ得る。これは、高周波出力電圧がアーク放電と一致するレベルに到達するまで起こらないので可能である。検出器がより低い電圧では機能しないという事実は、結果的に不利にはならない。典型的には、検出器の出力でアイソレーションを達成するために、それは直流

オフセットを表わす交互に変わる測定信号を発生する発 振器とを含み、アイソレーション装置は、交互に変わる 測定信号を受け、かつそれを制御回路へ送るように結合 されたオプトアイソレータを含む。好ましい検出器はま た、たとえば導電性の流体フィールドにおいてバイポー ラ電極アセンブリを使用する際に流体の欠如が直流の極 性を反転させると高周波源を使用不能にするために用い られ得る、故障状態インジケータとしての逆極性直流オ フセット検出器も含む。

【0010】本発明の第2の局面に従うと、高周波エネルギ源と、活動出力端子と、リターン出力端子と、エネルギ源と活動出力端子との間に直流分離キャパシタとを含む電気外科手術用ジェネレータは、2ボルトを超える直流電圧を検出するための分離キャパシタの出力端子側に接続された分路入力と、分路入力における直流オフセット電圧に応答して活動出力端子に与えられた高周波エネルギを制御するためにエネルギ源に結合された制御回路とを有する、直流オフセット検出器を有する。

【0011】本発明の第3の局面に従って、電気外科手術で組織を切断または切除するための方法は、電気外科手術用器具に高周波エネルギを与えることによりその器具の処置電極におけるアーク放電を促進するステップと、電極からの熱電子放出によって電極で得られた直流電圧に従って与えられたエネルギのレベルを調節するステップとを含む。高周波エネルギは、電極に実質的な損傷を与えることなく電極の温度を最大にするように調節することができ、これは典型的には直流電圧を100V未満のしきい低に制限することによって行なわれる。

【0012】上記の好ましい実施例では、熱電子効果の 検出は、ジェネレータの出力ステージにおいてキャパシ タが高い値の抵抗を介して放電し続けることによって生 じ、この電極にわたって検出されたDC電圧が、この効 果を表わすものとなる。この検出技術は、出力ステージ におけるキャパシタの放電に対する時定数によって制限 されるので、これは応答時間が比較的遅いという欠点を 有する。この時定数は、回路内の容量と抵抗との積であ る。キャパシタは、出力インピーダンスを減じるために 必然的に大きくなり、出力端子にわたって接続される分 路抵抗は、強い直流が患者に流れないように大きくされ ている。

【0013】さらなる実施例は、熱電子放出によって影響を受ける交流現象が検出される活動端子からの熱電子放出を検出するための代替的な技術を提供し、ジェネレータの出力端子にわたるDC導電経路の必要性をなくす。したがって、本発明のさらなる局面は、変調ジェネレータ出力と、DC導電経路を全く含まない結合によってジェネレークの出力に結合される検出回路とを提供し、この検出同路は、ジェネレータの出力の変調周波数に同調されており、活動電極からの熱電子放出により、検出回路のジェネレータ出力における変調が不可欠なも

のとなる。

【0014】好ましい実施例では、ジェネレータ出力の 振幅は、熱電子効果が存在しない場合、ジェネレータ出 力の単一サイクルにわたって測定されたジェネレータ出 力の平均値が一定に保たれるような態様で変調され、熱 電子放出が存在する場合、単一サイクルにわたって測定 されたジェネレータ出力の平均値はジェネレータの振幅 変調の周波数で変化し、この平均値における変化の振幅 は熱電子効果の程度に対応する。この検出回路は、適切 に同調された共振回路、およびジェネレータの出力ステ ージに帰納的に結合されて熱電子効果により生じる共振 回路内の電圧を検出する検出器によってもたらされ得 る。

【0015】ここで、例示のために図面を参照して本発明を説明する。

[0016]

【発明の実施の形態】本発明は、水分を含む場および乾 燥した場の両方における電気外科手術に適用可能であ る。図1を参照して、このシステムは、接続コード14 を介してハンドピース12の形態の電気外科手術用器具 に髙周波出力を与える出力ソケット10Sを有する、ジ ェネレータ10を含む。ジェネレータは、ハンドピース 12からコード14の制御接続を介して、または図示す るようにフットスイッチ接続コード18によってジェネ レータ10の後部に分離可能に接続されたフットスイッ チユニット16を用いて、作動され得る。図示した実施 例では、フットスイッチユニット16は、ジェネレータ のそれぞれ脱水モードおよび気化モードを選択するため の2つのフットスイッチ16Aおよび16Bを有する。 ジェネレータのフロントパネルにはそれぞれ脱水および 気化の電力レベルを設定するためのプッシュボタン20 および22があり、電力レベルはディスプレイ24に示 される。モード選択の代替手段としてプッシュボタン2 6が設けられる。

【0017】ハンドピース12は、図2の部分図に示すように、二重電極構造を有する着脱可能な電極アセンブリ28を装着する。

【0018】図2は、電極アセンブリ28の末端の拡大図である。このアセンブリは末端に活動電極30を有し、これはこの実施例では、中心の導体32に接続されるコイル状に巻がれたワイヤとして形成される。このコイル状ワイヤは自金から作製され得る。活動電極30の近傍にリターン電極36が位置付けられ、それは長手および軸方向に延びるセラミックの絶縁体34によって活動電極から分離されている。リターン電極36は、管状のシャフト40としてアセンブリ28(図1参照)の近接端(ハンドピース12内でアセンブリが接続コード14内の導体に接続されるところ)に延びるスリーブとして、内部導体32のまわりに同軸上に配置される。同様に、内部導体32はハンドピース12に延び、コード1

4内の別の導体に接続される。内部導体32とリターン 電極36との間には、リターン電極の内部に延びてリタ ーン電極36から活動電極30の内部伸張部(図示せ ず)を絶縁するスリーブとして構築された絶縁体34に よって絶縁がもたらされる。リターン電極よりも活動電 極においてより大きな電力密度を促進するために、リタ ーン電極の表面領域は活動電極のものよりかなり大きく される。電極アセンブリの末端における典型的な寸法に 関しては、リターン電極の直径は典型的には1mmから 3mmの領域であり、リターン電極の露出部分の長手方 向の伸張は典型的には1mmから5mmの間であり、活 動電極からの長手方向の開隔は1mmから5mmの間で ある。電極アセンブリ28は、シャフト40を覆いセラ ミックの絶縁体34の近傍で終結する絶縁シース42を 有し、シャフト40の末端をリターン電極36として露 出したままにする。

【0019】動作にあたっては、導電性の流体フィールドで組織の切断または除去を行なうための器具として、図2に示すように、処置すべき組織44に電極アセンブリ28が与えられ、手術部位は、活動電極30とリターン電極36との両方を浸漬する通常の食塩水(0.9%w/v)の溶液46に浸漬される。

【0020】電極アセンブリは、一方の電極(括動電極30)のみがユニットの末端に軸方向に延びる、バイポーラであるのが効果的である。つまり、リターン電極は、水分を含む場における通常の状況では処置中の組織から間隔を保って位置付けられ、組織とリターン電極との間にはリターン電極と接触する導電性の液体を介して電流経路が存在する。導電性の液体46は、バイポーラ電気外科手術エネルギの伝递に関するかぎり、組織の低インピーダンス伸張としてみなされ得る。

【0021】電極30と電極36との間に十分な高周波 電圧が与えられると、導電性の液体46中での電力の放 散により液体は気化し、最初に活動電極30の表面上に 小さな気泡を形成し、これが最終的には、電極が蒸気ポケット50に完全に包囲されるまで凝集する。蒸気ポケット50は、活動電極30と蒸気一食塩水界面との間の 蒸気ポケットにわたる放電52によって支持される。電 力放散の大部分が、ここでは活動電極の結果的に生じた 熱とともにこのポケット内で起こり、放散されるエネルギの量は伝えられる電力の関数である。図2に示すよう に、活動電極30を組織44の表面近傍に保持して蒸気ポケットが組織表面を遮るようにすることにより、電極 と組織との間に生じるアーク放電による細胞の裂傷によって組織が除去される。

【0022】この動作モードは比較的広範囲の電力レベルにわたって維持され得るが、伝えられる電力をこの範囲を超えて増加させると、電極の温度が急速に上昇し、電極に損傷を与える可能性がある。これが起こる点は、熱が電極から取り除かれる速度に依存し、この速度は、

電極30、電極30が組織に近接しているところ、および最悪の場合は電極30が組織に埋まったところを通過する流体のフロー46による対流の影響を受けるということがわかるであろう。したがって、ピーク電圧が電極における無側御の温度上昇を防ぐように確立され得る一方、このような限界は、効を奏するためには、最悪の場合の熱放散状態におけるそのような上昇を防ぐとされるレベルに設定されなければならない。

【0023】本発明に従って、電極への高周波電力の伝達は電極の温度を感知することによって制御される。これは、以下に図3のAおよびBを参照して説明するように、熱電子効果を監視することにより間接的に行なわれる。

【0024】図3Aを参照して、本発明に従ったシステ ムは、電気外科手術用器具の活動電極およびリターン電 極がそれぞれ接続される第1の出力端子64と第2の出 力端子66との間に結合キャパシタ62および63を介 して電気外科手術電圧を伝達する、高周波電圧源60を 含む。図2に示すように、活動電極においてアーク放電 が起こると、電極の温度に依存して、組織44から間隔 をあけて電極を位置付けている間に電極から熱電子放出 が起こり、これが活動出力端子64に正の電位を構築す ることにつながる。実際には、加熱された活動電極3 0、組織、導電性の流体、およびリターン電極はともに 整流器として動作し、導電性の溶液はアノードとして、 また活動電極は整流器のカソードとしてそれぞれ作用す る。活動電極がより熱くなると、整流はより大きくな り、またジェネレータの出力端子64における直流オフ セット電圧もより大きくなる。

【0025】温度依存性の正の電位(直流オフセット電 圧)は、出力端子64に結合された直列高周波チョーク 68を備える入力回路と、リターン端子66に接続され た共通レール71に結合された平滑キャパシタ70とを 有する、検出器を用いて監視される。活動出力端子64 における電圧の直流成分は、したがって、チョーク68 と平滑キャパシタ70との接合において累積され、ここ でその成分は少なくとも2MQであり、典型的には50 MΩから100MΩの間の入力抵抗を提示する電位分割 器72および74に与えられる。電位分割器72および 74の出力は高インピーダンスパッファ76に与えら れ、そのバッファの出力は、駆動信号を電圧制御発振器 (VCO) 78に与える。50MQから100MQの領 域の人力インピーダンスを与えることにより、50Vか ら100Vの領域における直流オフセットに対する1µ Aの領域の検出電流が生じる。検出電流を低く維持する ことは、目標の組織とリターン電極との間の直流による 神経の刺激が回避されるという利点を有する。

【0026】 直流オフセット電圧をVCO78において 交互に変わる信号に変換することにより、オプトアイソ レーク82を介して検出器の出力80に接続された分離 制御回路(図示せず)にオフセット電圧レベルを示す信号を伝達することが可能になる。直流オフセットの表示は、ジェネレータの出力端子と電力生成および制御回路との間の安全分離障壁にわたってこの態様で通信される。この制御回路では、交互に変わる信号を、単安定およびローパスフィルタを用いて変換して直流レベルまで戻すこともでき、またはゲート式カウンタでカウントしてデジタル形式で挽送してもよい。いずれの場合も、制御回路は、直流オフセット電圧が予め定められた値(典型的には50Vから100Vの範囲内)に到達すると、電源60の電圧を被じるように構成される。このように、活動電極の最大安全動作沮度に対するしきい値直流オフセット電圧を選択することによって、活動電極に伝えられる高周波電力は種々の熱放散状態で最大化され得る。

【0027】図2に示すバイポーラ電極アセンブリが不 正確に用いられると、たとえばアセンブリのまわりに十 分な食塩水がない場合などは、リターン電極36でアー ク放電が起こってしまう可能性もある。このような状況 においては、直流オフセットの極性は反転するので、活 動端子64はリターン電極に対して負になる。図3Aに 示される検出器は、VCO78をバイパスし、かつたと えばORゲート86の一方の入力に結合された出力(こ の他方の入力はVCO78からの交互に変わる出力を受 ける)を有する、比較器84の形態の逆極性検出回路を 含む。比較器84の他方の入力は負電圧基準に結合され る。通常、比較器84の出力は低く、すなわちVCOに よって発達した交互に変わる信号はORゲート86を通 過してオプトアイソレータ82へ伝えられる。しかしな がら、ジェネレータの出力端子64における直流オフセ ット電圧が比較器84に与えられた負の基準電圧に依存 してある量以上が負に変わると、比較器84の出力はハ イになり、ORゲート86はVCO78からの交互に変 わる信号を遮断し、検出器の出力80から制御回路に与 えられた交互に変わる信号の欠如が、高周波電源60を 切るための故障表示として用いられ得る。

【0028】この実施例では、バッファ76、VCO78、比較器84、およびORゲート86のための電力はジェネレータの出力端子64および66に伝えられる高周波電圧自体から引出されるので、さらなる分離障壁の必要性が回避される。この目的のために適切な電源を図3Bに示す。ジェネレータの出力端子64と66との間に結合された降圧変圧器90は、ブリッジ整流器92を駆動し、平滑キャパシク96にわたって電源出力端子に直流電圧を伝達する。変圧器90の二次巻線の中間ターン出力端子66に接続し、よって検出器の共通レールに接続することにより、バッファ76は正および負の直流オフセット電圧に適合できるように両極性の電源を設けることが可能になる。このように高周波出力から電力を引出すことにより検出器が低電圧で動作不可

能になるという事実は、全く不利にならない。なぜな ら、熱電子効果は、ジェネレータの高周波出力電圧が活 動電極のアーク放電と一致するレベルに達するまで制御 刺激は起こらないということに依存するからである。

【0029】次に図4を参照して、活動電極130およびリターン電極136を有する電気外科手術用器具に接続される本発明に従ったジェネレータ110の代替例の概略図で示される。このジェネレータの出力ステージは、ジェネレータ出力端子164および166を介して高周波源と電極130および136との間をDC電流が通過するのを防ぐ、1対の結合キャパシタ162および163を含む。さらに、ジェネレータの出力ステージは、それぞれ活動電極130およびリターン電極136と直列するインジケータ168を含む。

【0030】図5を参照して、ジェネレークの出力振幅(すなわち出力端子164および166におけるピークピーク出力電圧)は変調され、この例では、500kHzの出力周波数および25kHzの周波数で変調された振幅を有するジェネレータ出力信号が与えられる。当然、この他のジェネレータ出力信号が与えられる。当然、この他のジェネレータ出力信号が与えられる。当然、この他のジェネレータ出力信号が与えられる。当然に関して対称となり、すなわち、ジェネレータ出力の単一の期間にわたって、ゼロの基準電圧に対して正の最大出力電圧の値の増加は対応する負の最大出力電圧の増加と一致するので、ジェネレータ出力の単一変調サイクルにわたって測定されたジェネレータ出力信号の平均値は一定となる。

【0031】しかしながら、一旦活動電極で十分な加熱 が起こり活動電極からの電子の熱電子放出が起こると、 活動電極からリターン電極へ正味の電子の流れが生じ る。したがって、リターン電極(アノードとして作用す る) から活動電極へ流れる正味の電流フローが生じる (これは、電流フローの検出が正の電荷のフローとして 規定されるからである)。次に図6を参照して、このよ うに変調されたジェネレータ出力電圧の波形を一方向 (ここでは正の方向) にシフトさせることによって、単 一サイクルにわたる出力電圧の平均は非線形の態様でゼ ロボルトで一定になるのではなく、電極における熱電子 効果によりジェネレータ出力は部分的に整流され、単一 サイクルにわたって測定された平均出力電圧はゼロでな い電圧になる、という効果が得られる。この電圧の大き さは振幅変調の周波数(この例では25kHz)で変化 する。この平均田力電圧における変化は、図6に線VAV で示される。さらに、この平均出力電圧における変化の 振幅Aは、ジェネレータの出力における正方向への位相 ずれの程度に依存しており、最大振幅25kHzの信号 は振幅変調の深さの2倍になっている。この振幅Aは、 リターン電極から活動電極への正味電流フロー度の測定 値であり、したがって、活動電極における熱電子効果の

測定値であり、これはまた活動電極温度の測定値でもある。

【0032】図4を再び参照して、熱電子効果の結果と して起こる平均出力電圧の25kHzの変化を検出する ために、ジェネレータは、変調周波数(ここでは25k Hz)に同調された共振回路172および174を有 し、かつ交互に変わる電圧感知ステージ176を含む、 感知回路170を含む。この共振回路は並列共振回路で あり、そのインダクタ174は出力ステージの直列イン ダクタ168に帰納的に結合され、このインダクタは出 力端子164および166からのDCで感知回路を分離 する分離変圧器を形成する。活動電極130に熱電子効 果が全くない場合、ジェネレータ出力への正味25kH 2の成分は存在しない。なぜなら、基本的なジェネレー 夕出力はジェネレータ動作周波数500kHzで正弦波 形であり、その動作周波数での単一サイクルにわたって 測定された平均値はゼロボルトで一定に保たれるからで ある。熱電子放出が一旦起こると、ジェネレータ出力に おける正方向の位相ずれは平均ジェネレータ出力に25 kHzの成分を導入し、この平均値における25kHz の変化の大きさはAC電圧感知ステージ176で検出さ れ、その出力は、上述したように、活動電極130にお ける熱電子効果の程度を直接示すものであり、したがっ て活動電極130の温度を示している。

【0033】ある変形例(図示せず)では、共振回路は、たとえばイングクタ168およびそれと平行して接続されるキャパシタを含む直列接続された並列共振回路として、ジェネレータ出力回路自体に含まれてもよい。 電圧感知ステージは、共振回路にわたって変調電圧を検出するために、インダクタ168を介して共振回路に掃納的に結合され得る。

【0034】電圧感知ステージ176の出力は、活動電極で所与の予め設定された温度を維持するために、ジェネレータ出力の絶対振幅(すなわち、振幅変調の程度または深さではなくジェネレータ出力の最大または最小振幅)を変化させるフィードバック回路(図示せず)に結合される。

【0035】理想的には、変調周波数は、活動電極からの熱電子放出における変化の速度が、単一変調期間またはサイクルと比較して遅くなるように選択される。25kHzの変調周波数では、変調期間は40ミリ秒であり、これは図3AおよびBを参照して上述した実施例のDC結合された検出回路の応答時間よりかなり短い。

【0036】ジェネレータの出力電圧における変調の深さ(すなわち振幅または程度)は、検出すべき熱電子放出の大きさに従って選択されるのが理想的である。ジェネレータ出力における振幅変調の深さが比較的大きければ、結果として、ジェネレータ出力における小さな位相ずれまたはオフセットさえも、動作周波数で単一サイクルにわたって測定されたジェネレータ出力の平均値にか

なりの変化を生じることになり、よって比較的小さな熱電子放出も容易に検出できるようになるであろう。実際には、熱電子効果によって引き起こされた平均電圧のシフトは50V領域、動作周波数でのピークピーク出力電圧は典型的には1000Vである。

【0037】例示されるジェネレータ出力ステージは、 共振周波数が電極130および136における負荷のイ ンピーダンスとともに変化する共振回路であると効果的 である。ジェネレータ出力ステージの共振周波数が動作 周波数に対して、振幅変調の深さよりかなり大きく、か つジェネレータ出力の単一変調サイクルの持続時間と比 べると短い期間にわたって起こる、ジェネレータ出力電 圧の降下が生じる程度までシフトすると、振幅変調は変 化する共振の結果として起こる振幅における比較的大き な変化によってかなり変化する。上述のように、熱電子 放出の所与のレベルについて交流電圧計ステージ176 によって検出された電圧の大きさは、ジェネレータ出力 の変調の深さの関数であるので、出力ステージの共振に おける変化が引き起こしたそのような変調の深さにおけ る変化に有効に関連しないものにより、電圧計176に よる熱電子放出の測定において不正確さが生じる。言い 換えれば、単一サイクルにわたって測定されたジェネレ ータ出力の平均値における変化が熱電子放出の存在を表 わすとされていても、このような変化の大きさがそのよ うな放出の程度を表わすとは限らない。なぜなら、ジェ ネレータの出力ステージで変化する共振の結果として変 調の深さにおける変化が生じる可能性もあるからであ

【0038】出力回路の共振周波数は負荷インピーダン スとともに変化するので、前もって共振における変化を 単純に判断することは不可能である。というのは、い つ、またはどの周波数で、それらの変化が生じるかとい うことを前もって知るのは不可能だからである。したが って、図4のシステムにおけるジェネレータは補償構成 を含み、ここに電圧計176からの出力を正常にするた めの変調基準を含む。再び図4を参照して、この補償構 成はジェネレータ出力変圧器182の主な巻線にわたっ て接続される検出回路180を有する。この変調検出回 路180は抵抗196およびキャパシタ188と直列に ダイオード184を含む。電圧計190およびさらなる 抵抗191は、キャパシタ188と並列に接続され、電 圧計190はジェネレータ出力における変調の瞬時深さ を検出し、これを用いて変調基準を与えることもでき、 それによって感知回路の電圧計176からの出力は電極 130における熱電子放出の効果のみを反映するよう に、効果的に正常化され得る。

【0039】本発明の使用は、水分を含む場(水中)の 電気外科手術に制限されるものではない。アーク放電 は、乾燥した場の手術におけるモノボーラまたはバイボ ーラの電気外科手術用器具でも起こり、電力は上記と同 じ態様で熱電子効果を用いて制御することができる。また、活動電極が断続的に組織と接触する状況における神経の刺激を実質的に回避するために、直流オフセットしきい値電圧を比較的低いレベルに設定することも可能である。

【0040】モノポーラの適用例においては、アーク放電の強度はアーク部位とリターン電極との間の導電経路のインピーダンスに依存しており、インピーダンスが低いとピークアーク電流は増加し、したがって温度および切断速度も増加し、さらに神経刺激に関しても向上する。その結果、熱電子効果の感知を用いる電極温度に従って(電極温度における変化を滅じるために)電力を制御すると、より一貫した組織の処置が達成できるようになる。これにより、切断の質は向上し、電圧制御のみに頼った電気外科手術の動作と比較すると、たとえば切断部位近傍の組織の損傷および焦げ目の形成が減じられる。

【0041】電気外科手術用ジェネレータにおける熱電 子フィードバックは、組織の切除および切断速度の向 上、近傍組織の損傷および焦げめ形成の減少の可能性、 および神経刺激の減少を含む、多くの利点を提供する。 【0042】電極にアーク放電が存在することにより生 じる熱電子効果をフィードバック機構の刺激としてこの 明細書に記載のように用いると、実質的な電極の損傷な しに比較的高電力の密度で電気外科手術を行なうことが 可能になる。したがって、白金などの高融点材料を用い ると、非常に高い組織切断および組織除去の電力密度が 達成され、または電力密度が与えられている場合は、比 較的安価な、低い融点の金属または合金(たとえばステ ンレス纲など)を安全に用いることもできる。ここに記 載のシステムはまた、電極の誤使用の可能性およびその 結果生じる電極の損傷を減じるために用いられ得る。大 きなアーク放電を維持する能力により、活動電極が組織 と接触する可能性は減少し、したがって神経刺激の可能 性も減少する。

【0043】本発明の好ましい実施例は、電気外科手術用ジェネレータユニット内(すなわちそのようなユニットのケーシング内)の回路を用いて熱電子効果を感知するというシステムであるが、ジェネレータの出力端子と電気外科手術用器具との間の導電経路内で結合されたアドオン(add-on)モジュールにおいて本発明を具体化することも可能である。このモジュールは、ジェネレータユニットのソケット10S内に適合するそれ自身のコネクタと、図1に示す接続コード14上のプラグアセンブリを受けるためのリケットとを有し得る。オフセット電圧を検出するための回路はモジュール内に含まれ、ジェネレータユニットと器具との間の導電経路を形成する線に接続され、器具への電気外科手術用電力の伝達は、モジュール内の可変インピーダンス素子によって、またはジュール内の可変インピーダンス素子によって、またはジェネレータユニットの制御ユニットに制御信号を与える

ことによって、制御される。信頼性を高めるために、ここに記載のアドオンモジュールと別のジェネレータユニットとの組合せが、請求の範囲に記載される本発明の範囲内の電気外科手術用ジェネレータを構成するために考慮される。

【0044】ここに記載の実施例は、感知された熱電子効果に応答してジェネレータ出力が制御および調節されるという制御機能を果たすが、本発明はその範囲内に、熱電子放出を感知するための手段が、たとえば外科医によって読み出されるための温度を提供するために、電極温度の単なるインジケータとして用いられるシステムも含む。

【図面の簡単な説明】

【図1】 本発明に従った電気外科手術システムを示す 図である。

【図2】 導電性の液体に浸漬されて用いられるところを示す、組織切除のための電極アセンブリの部分図であ

る。

【図3】 AおよびBは、直流オフセット検出器を含む 電気外科手術システムの回路図である。

【図4】 本発明に従った代替的な電気外科手術システムの回路図である。

【図5】 図4のシステムの一部を形成するジェネレー タの変調された出力電圧波形を示す波形図である。

【図6】 図4に示すシステムの活動電極における熱電子効果の存在下でのジェネレーク出力の波形、および出力電圧の単一高周波サイクルにわたって平均される平均出力電圧を示す、波形図である。

【符号の説明】

60 高周波電源、62,63 キャパシタ、64 作 動電極、66 リターン電極、76 インピーダンスバッファ、82 オプトアイソレータ、84 比較器、8 6 ORゲート、90 降圧変圧器、92 ブリッジ整 流器。

【図1】

【図2】

フロントページの続き

(72) 発明者 コリン・チャールズ・オーウェン・ゴーブル ル イギリス、シィ・エフ・64 1・エイ・ティーウェールズ、サウス・グラモーガン、ビナース、クリブ・クレセント、オズボーン・ハウス、5