Question 1 (a)

Consider the following collection of five documents and a query:

- Doc 1: we wish efficiency in the implementation for a particular application
- Doc 2: the classification methods are an application of Li's ideas
- Doc 3: the classification has not followed any implementation pattern
- Doc 4: we have to take care of the implementation time and implementation efficiency
- Doc 5: the efficiency is in terms of implementation methods and application methods
- Query1: application of classification methods
- Query2: efficiency in implementation of applications

Now consider that the vocabulary is:

{efficiency, implementation, application, classification, methods, ideas, pattern, time}.

Represent each document and the query using unit normal vectors following the "lnc.ltc" scheme. Rank the 5 documents based on their relevance with the query (most to least) measured via the cosine similarity metric. Consider the following collection of five documents and a query:

Doc 1: we wish efficiency in the implementation for a particular application

Doc 2: the classification methods are an application of Li's ideas

Doc 3: the classification has not followed any implementation pattern

Doc 4: we have to take care of the implementation time and implementation efficiency

Doc 5: the efficiency is in terms of implementation methods and application methods

Query1: application of classification methods

Query2: efficiency in implementation of applications

Now consider that the vocabulary is:

{efficiency, implementation, application, classification, methods, ideas, pattern, time}.

1.(a) Represent each document and the query using unit normal vectors following the "lnc.ltc" scheme. Rank the 5 documents based on their relevance with the query (most to least) measured via the cosine similarity metric.

Solution:-

Reference for what do in the Inc/Itc scheme.

Term frequency		Docum	ent frequency	Normalization		
n (natural)	tf _{t,d}	n (no)	1	n (none)	1	
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df_t}}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{\mathit{N}-\mathrm{d} f_t}{\mathrm{d} f_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$egin{cases} 1 & ext{if } \operatorname{tf}_{t,d} > 0 \ 0 & ext{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

At first, creating the term frequency matrix

Consider the number of occurrences of a term in a document for the terms in the vocabulary and make the matrix where columns represent the documents $(D1 \rightarrow D5)$, query (Q1) and the rows represent the words in the vocabulary

	D1	D2	D3	D4	D5	Q1
efficiency	1	0	0	1	1	0
implementation	1	О	1	2	1	0
application	1	1	0	0	1	1
classification	0	1	1	0	0	1
methods	0	1	0	0	2	1
ideas	0	1	0	0	0	0
pattern	0	0	1	0	0	0
time	0	0	0	1	0	О

Second, creating the log frequency weight matrix using the term frequency matrix - Use the formula mentioned below to convert the term frequency matrix to the log frequency weight matrix (consider base 10)

The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0\\ 0, & \text{otherwise} \end{cases}$$

	D1	D2	D3	D4	D5	Q1
efficiency	1	0	0	1	1	0
implementation	1	0	1	1.301	1	0
application	1	1	0	0	1	1
classification	0	1	1	0	0	1
methods	0	1	0	0	1.301	1
ideas	О	1	О	О	0	0
pattern	0	0	1	0	0	0
time	0	0	0	1	0	0

Calculating the weighted IDF (Considering base 10) -

$$idf_t = \log_{10} (N/df_t)$$

	IDF
efficiency	log(5/3) = 0.222
implementation	log(5/4) = 0.097
application	log(5/3) = 0.222
classification	log(5/2) = 0.398

methods	log(5/2) = 0.398
ideas	log(5/1) = 0.699
pattern	log(5/1) = 0.699
time	log(5/1) =0.699

TF-IDF - This shows the calculation the weight using the tfidf. We only need to calculate this for the query vector because documents are following the lnc rule.

$$TF$$
- $IDF(t, d) = TF(t, d) * $IDF(t)$$

	D1	D2	D3	D4	D5	Q1
efficiency	1	0	0	1	1	0
implementation	1	0	1	1.301	1	0
application	1	1	0	0	1	0.222
classification	0	1	1	0	0	0.398
methods	0	1	0	0	1.301	0.398
ideas	0	1	0	0	0	0
pattern	0	0	1	0	0	0
time	0	0	0	1	О	0
	1.732	2	1.732	1.922	2.166	0.605

TF-IDF normalized - Now we normalise using the cosine part in the first table.

$$norm(v) = sqrt(v_1^2 + v_2^2 + ... + v_{|v|}^2)$$

	D1	D2	D3	D4	D5	Q1
efficiency	0.577	0	0	0.520	0.462	0
implementation	0.577	0	0.577	0.677	0.462	0
application	0.577	0.5	0	0	0.462	0.367
classification	0	0.5	0.577	0	0	0.658
methods	0	0.5	0	0	0.601	0.658
ideas	0	0.5	0	0	0	0
pattern	0	0	0.577	0	0	0
time	0	0	0	0.520	0	0

Dot product - Finally calculate the cosine similarity.1

	D1	D2	D3	D4	D5
efficiency	0	0	0	0	0
implementation	0	0	0	0	0
application	0.212	0.184	0	0	0.170
classification	0	0.329	0.380	0	0
methods	0	0.329	0	0	0.395
ideas	0	0	0	0	0
pattern	0	0	0	0	0
time	0	0	0	0	0
sum	0.212	0.842	0.380	0	0.565

Final ranks -- D2 > D5 > D3 > D1 > D4

Question 1(b)

Following the same process as Q1(a) to calculate the initial ranks.

TF matrix

	D1	D2	D3	D4	D5	Q2
eff	1	0	0	1	1	1
imp	1	0	1	2	1	1
app	1	1	0	0	1	1
class	О	1	1	0	О	0
meth	0	1	0	0	2	0
idea	0	1	0	0	0	0
pat	О	О	1	О	О	0
time	0	0	0	1	О	0

Weighted TF matrix

	D1	D2	D3	D4	D5	Q2
eff	1	0	0	1	1	1
imp	1	0	1	1.301	1	1
арр	1	1	О	О	1	1
class	0	1	1	0	0	0
meth	0	1	0	0	1.301	0
idea	О	1	О	О	О	0
pat	О	О	1	О	О	О

time	0	0	0	1	0	0

Weighted IDF (Considering base 10)

0 , 0 ,	
	IDF
eff	log(5/3) = 0.222
imp	log(5/4) = 0.097
app	log(5/3) = 0.222
class	log(5/2) = 0.398
meth	log(5/2) = 0.398
idea	log(5/1) = 0.699
pat	log(5/1) = 0.699
time	log(5/1) =0.699

TF-IDF

	D1	D2	D3	D4	D5	Q2
eff	1	0	0	1	1	0.222
imp	1	0	1	1.301	1	0.097
арр	1	1	0	0	1	0.222
class	0	1	1	0	0	0
meth	О	1	0	0	1.301	0
idea	0	1	0	0	0	0
pat	О	0	1	0	0	0
time	0	0	0	1	О	0
norm	1.732	2	1.732	1.922	2.166	0.329

TF-IDF normalized

	D1	D2	D3	D4	D5	Q2
eff	0.577	0	0	0.520	0.462	0.675
imp	0.577	0	0.577	0.677	0.462	0.295
арр	0.577	0.5	0	0	0.462	0.675
class	0	0.5	0.577	0	0	0
meth	0	0.5	0	0	0.601	0
idea	О	0.5	О	О	О	О
pat	0	0	0.577	0	0	0
time	0	0	0	0.520	0	0

Cosine Similarity with Q2

With Q2	D1	D2	D3	D4	D5
eff	0.389	0	0	0.351	0.312
imp	0.170	0	0.170	0.200	0.136
арр	0.389	0.338	0	0	0.312
class	0	0	0	0	0
meth	0	0	0	0	0
idea	0	0	0	0	0
pat	0	0	0	0	0
time	0	0	0	0	0
sum	0.948	0.338	0.170	0.551	0.760

D1 > D5 > D4 > D2 > D3

Relevance Feedback

$$\vec{q}_{m} = \alpha \vec{q}_{0} + \beta \mu(D_{r}) - \gamma \mu(D_{nr})$$

$$= \alpha \vec{q}_{0} + \beta \frac{1}{|D_{r}|} \sum_{\vec{d}_{j} \in D_{r}} \vec{d}_{j} - \gamma \frac{1}{|D_{nr}|} \sum_{\vec{d}_{j} \in D_{nr}} \vec{d}_{j}$$

Alpha = 1

Beta = 0.75

Gamma = 0.25

Mult represents the part in front of the vector summation operations (1.0 for query, 0.75/2 for relevant docs, -0.25/3 for non-relevant docs)

	D1	D2	D3	D4	D5	Q2
Mult (RF)	-0.083	-0.083	-0.083	0.375	0.375	1
Mult (PRF)	0.375	-0.083	-0.083	-0.083	0.375	1

Recalculate Q2 based on RF, and then normalize

	D1	D2	D3	D4	D5	Q2	Q2_RF	Q2_RF (norm)
eff	-0.048	0	0	0.195	0.173	0.675	0.995	0.696
imp	-0.048	0	-0.048	0.253	0.173	0.295	0.625	0.437
app	-0.048	-0.042	0	0	0.173	0.675	0.758	0.530
class	0	-0.042	-0.048	0	0	0	-0.09	-0.063
meth	0	-0.042	0	0	0.225	0	0.183	0.128
idea	0	-0.042	0	0	0	0	-0.042	0.029

pat	0	0	-0.048	0	0	0	-0.048	0.033
time	0	0	0	0.195	0	0	0.195	0.136
mult	-0.083	-0.083	-0.083	0.375	0.375	1.0		
norm							1.428	

Cosine similarity with Q2 (modified by RF)

	D1	D2	D3	D4	D5
eff	-0.033	0	0	0.136	0.120
imp	-0.021	0	-0.021	0.110	0.075
app	-0.025	-0.022	0	0	0.092
class	0	0.003	0.003	0	0
meth	0	-0.005	0	0	0.029
idea	О	-0.001	О	0	0
pat	0	0	-0.001	0	0
time	0	0	0	0.026	0
sum	-0.079	-0.025	-0.019	0.272	0.316

D5 > D4 > D3 > D2 > D1

<u>Pseudo-relevance Feedback</u>

Mult calculated as before (set of relevant and non-relevant docs are different), Recalculate Q2 based on PRF, and then normalize

	D1	D2	D3	D4	D5	Q2	Q2_PR F	Q2_PR F (norm)
eff	0.216	0	0	-0.043	0.173	0.675	1.021	0.649
imp	0.216	0	-0.048	-0.056	0.173	0.295	0.580	0.369
app	0.216	-0.042	0	0	0.173	0.675	1.022	0.650
class	0	-0.042	-0.048	0	0	0	-0.09	-0.057
meth	0	-0.042	0	0	0.225	0	0.183	0.116
idea	0	-0.042	0	0	0	0	-0.042	-0.026
pat	0	0	-0.048	0	0	0	-0.048	-0.030
time	0	0	0	-0.043	0	0	-0.043	-0.027
mult	0.375	-0.083	-0.083	-0.083	0.375	1.0		
norm							1.572	

Cosine similarity with Q2 (modified by PRF)

	D1	D2	D3	D4	D5
eff	0.140	0	0	-0.028	0.112
imp	0.080	0	-0.018	-0.021	0.064
app	0.140	-0.027	0	0	0.112
class	0	0.002	0.003	0	0
meth	0	-0.005	0	0	0.026
idea	0	-0.001	0	0	0
pat	0	0	0.001	0	0
time	0	0	0	0.001	0

sum 0.360 -0.031 -0.014 -0.048 0.314	
--------------------------------------	--

D5 > D1 > D3 > D2 > D4

Solution to Question 2

GT	1(4)	3(4)	2(3)	4(2)	8(1)	9(1)	5(0)	6(0)	7(0)	10(0)
S1	1	2	3	4	5	6	7	8	9	10
S2	3	2	4	1	6	10	9	7	5	8

NDCG Calculation

For different lists (GT, S1, S2), keep the docs in the same order as in the lists. For each rank, compare with the gold standard relevance score.

$$DCG@i = R^{GT}(i) / log_2 i$$

Sum up to get the DCG of the system

GT	1(4)	3(4)	2(3)	4(2)	8(1)	9(1)	5(0)	6(0)	7(0)	10(0)	Sum
$\mathbf{R}^{ ext{GT}}$	4	4	3	2	1	1	0	0	0	0	
DCG ^{GT}	4	4	1.893	1	0.431	0.387	0	0	0	0	11.711
S1	1	2	3	4	5	6	7	8	9	10	
$\mathbf{R}^{ ext{GT}}$	4	3	4	2	0	0	0	1	1	0	
DCG ^{S1}	4	3	2.52 4	1	0	0	0	0.333	0.315	0	11.172
S2	3	2	4	1	6	10	9	7	5	8	
$\mathbf{R}^{ ext{GT}}$	4	3	2	4	0	0	1	0	0	1	
DCG ^{S2}	4	3	1.262	2	0	0	0.35 6	0	0	0.301	10.919

Calculate NDCG by dividing DCG of system by DCG of GT

 $NDCG^{S1} = 0.954$

 $NDCG^{S2} = 0.932$

Average Precision Calculation

Calculate precision at each rank as

P@i = No. of relevant docs upto rank i / i

Calculate AP by summing up *P@i* values (only for positions of relevant docs)

GT	1(4)	3(4)	2(3)	4(2)	8(1)	9(1)	5(0)	6(0)	7(0)	10(0)
S1	1	2	3	4	5	6	7	8	9	10
Rel	1	1	1	1	0	0	0	1	1	0
P@	1	1	1	1	_	_	-	0.625	0.667	-
S2	3	2	4	1	6	10	9	7	5	8
Rel	1	1	1	1	0	0	1	0	0	1
P@	1	1	1	1	_	_	0.714	ı	_	0.6

 $AP^{S1} = 0.882$

 $AP^{S2} = 0.886$