CÁLCULO EFICIENTE DE DERIVADAS VIA COLORAÇÃO DE GRAFOS

Robert Mansel Gower

Bolsista – FAPESP/PIBIC

Profa. Dra. Margarida P. Mello Orientadora

Departamento de Matemática Aplicada IMECC – UNICAMP

Que cor é a sua Jacobiana?

Estimativa numérica

$$F: R^n \to R^m$$

$$J_F \cdot e_k \approx \frac{F(x + he_k) - F(x)}{h}$$

Diminuindo esforço computacional

$$\begin{vmatrix} 0 \\ j_{54} \end{vmatrix} c_1 + c_4 = \frac{F(x + h(e_1 + e_4)) - F(x)}{h}$$

Partição estruturalmente ortogonal

[0 0 0 j₅₄ j₅₅]
A partição representada por cores

Versão compacta

Testes computacionais

- Banco de matrizes: UF sparse matrix collection, http://www.cise.ufl.edu/research/sparse/matrices/
- Dimensões: Colunas: 7.000 a 150.000; Linhas: 25 a 130.000
- Número de não nulos: 18.000 a 2.000.000

Grafos que representam a estrutura de esparsidade de duas matrizes

bfwa62.mtx compactada

Modelagem por grafos

Grafo coluna interseção (GCI) = (V_c, E)

 $V_c = \mathsf{colunas} = \{c_1, c_2, \dots, c_n\}$

 $(c_i, c_j) \in E \Leftrightarrow c_i \in c_j$ são estruturalmente não-ortogonais.

Grafo bipartido (GB) = (V_c, V_ℓ, E)

$$V_{\ell} = \mathsf{linhas} = \{\ell_1, \ell_2, \dots, \ell_m\}$$

 $(c_i, \ell_k) \in E \Leftrightarrow \mathsf{se}\ j_{ik} \neq 0$

GB associado a J_F e coloração distância-2

Coloração distância-1 do GCI: $\Phi_1: V_c \rightarrow \{1, 2, 3, \cdots, p\}$

$$(c_i, c_j) \in E \Rightarrow \Phi_1(c_i) \neq \Phi_1(c_j)$$

Coloração parcial distância-2 do GB: $\Phi_2: V_c \to \{1, 2, 3, \cdots, p\}$

 $\exists \ell_k \text{ tal que } (c_i, \ell_k) \in E \text{ e } (c_i, \ell_k) \in E \Rightarrow \Phi_2(c_i) \neq \Phi_2(c_i)$

A hessiana e Coloração estrela

$$\nabla^2 F e_i = \frac{\partial}{\partial x_i} \nabla F \approx \frac{\nabla F(x + he_i) - \nabla F(x)}{h}$$

Partição simetricamente ortogonal: para cada $a_{ij} \neq 0$ ou

- (1) o grupo que contém c_j não contém nenhum outro não nulo na linha i ou
- (2) o grupo que contém c_i não contém nenhum outro não nulo na linha j.

O grafo de adjacência: G(A) = (V, E)

$$V = \{c_1, c_2, \dots, c_n\}$$
 e $(c_i, c_j) \in E$ se $i \neq j$ e $a_{ij} \neq 0$

Coloração estrela: $\Phi_s: V_c \to \{1, 2, 3, \cdots, p\}$

 $(c_i,c_j)\in E\Rightarrow \Phi_s(c_i)\neq \Phi_s(c_j)$ e todo caminho com quatro nós usa, pelo menos, três cores.

Grafo de adjacência associado à matriz à esquerda

Conclusões

- Superioridade da abordagem via grafos bipartidos na coloração de matrizes jacobianas
- ullet Redução típica no número de avaliações de F(x): 99%
- Eficácia da modelagem via grafo de adjacência na partição simetricamente ortogonal de matrizes simétricas.

Principal referência

A.H. Gebremedhin, F. Manne, A. Pothen, "What color is your Jacobian? Graph coloring for computing derivatives", *SIAM Review*, 47 (2005), 629–705.