ML basics + classification

Classical ML

- Can be broken down into two main categories
 - Supervised ML
 - Regression Predict value based on past
 - Classification Predict group based on past
 - Unsupervised ML
 - Clustering Break into groups
 - Dimensionality Reduction "Important" components
 - Anomaly Detection "Weirdness"

The process

- Let there be some **feature(s)** x
- Let there be some outcome y
- Then, there exist some **hypothesis** h of the relationship between x and y
- This hypothesis relies on parameters K
- Using some $\log L$ that we try to minimize, we estimate the best parameters for the given hypothesis

Parameters vs Hyperparameters

• **Parameters** - Parameters are the internal variables of a model that are learned from data during training.

• **Hyperparameters** - Hyperparameters are external settings chosen before training that control the learning process.

Underlying pattern vs sticking to points

Bias Variance tradeoff

overfitting and underfitting

Ways to Combat

Testing training split

Cross validation split

Training vs Test Training on everything

Training vs TestTraining vs testing 80-20

Cross Validation

Training on everything

Classification!

Logistic Regression

Yes or No?

What will we predict?

```
19
20 * ```{r}
21 health %>%
22 pull(coverage) %>%
23 table()
...
...
0 1
13691 61114
```

Yes or No?

Figure 8.1: Separability can be easily seen in the distributions of a continuous variable when separated into two classes. These kernel density diagrams illustrate three scenarios: (A) Low Separability, (B) High Separability, (C) Perfect Separability.

Yes or No?

Yes or No?

Yes or No?

Logistic Regression!

```
57
58 - ```{r}
                                                                                                                 € ₹
59
    log_reg_fit <- logistic_reg() %>%
      fit(formula = coverage ~ age, data = health)
61
62
63
    log_reg_fit %>%
64
      tidy()
65 ^ ```
                                                                                                                A tibble: 2 \times 5
                                                                    std.error
                                                                                        statistic
                                           estimate
                                                                                                                 p.value
       term
                                                                       <dbl>
                                                                                          <dbl>
        <chr>
                                              <dbl>
                                                                                                                   <dbl>
                                                                                                           3.612551e-12
                                        -0.17773347
                                                               0.0255674024
                                                                                      -6.951565
       (Intercept)
                                         0.03981371
                                                               0.0006140727
                                                                                      64.835498
                                                                                                           0.000000e+00
       age
       2 rows
```

- Coefficient "Average Change in Log Odds"
- e^coef "Average Change in Odds"
- Probability of event -
 - Find y
 - $p = e^y / (1 + e^y)$

exp(x)

```
67 · ```{r}
68 health %>% mutate(pred_y = (age * 0.03981371) - 0.17773347) %>%
69 ggplot(data = .) + geom_point(aes(x = age, y = pred_y))
70 * ```
       bred_y
                                                     50
```

```
72 * ```{r}

73  health %>% mutate(pred_y = (age * 0.03981371) - 0.17773347) %>%

74  mutate(pred_p = exp(pred_y) / (1 + exp(pred_y))) %>%

75  ggplot(data = .) + geom_point(aes(x = age, y = pred_p))

76 * ```
```


What is this logistic?

- Sigmoid function "S curve"
- Bounds the values between 0 and 1

A tibble: 17 × 5				<i>□</i>
term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.val ı <db< th=""></db<>
(Intercept)	1.17292366	0.2037067703	5.7579022	8.516568e-0
age	0.02987467	0.0008197871	36.4419831	9.215897e-29
raceAsian	0.22997884	0.1966444685	1.1695160	2.421958e-
raceBlack	-0.07784148	0.1885716443	-0.4127952	6.797566e-
raceNat. Hawaiian/Pac. Isl.	0.74787580	0.5266612659	1.4200319	1.555984e-
raceOther	-0.72486863	0.1986325033	-3.6492951	2.629609e-
raceTwo or More	0.26995172	0.2072153424	1.3027593	1.926569e-
raceWhite	0.27370557	0.1881632136	1.4546179	1.457751e-
sexMale	-0.30052090	0.0210534758	-14.2741703	3.170386e-
citNon-citizen	-1.73990375	0.0416013990	-41.8232030	0.000000e+

0 1 3162 71643

Confusion Matrix

Table 8.3: Structure of confusion matrix.

	Predicted (F)	Predicted (T)
Actual (F) Actual (T)	True Negative (TN) False Negative (FN)	False Positive (FP) True Positive (TP)

Table 8.4: A selection of classifier accuracy metrics derived from a confusion matrix.

Measure	Formula	Significance
True Positive Rate (TPR), Sensitivity, or Recall	$TPR = \frac{TP}{TP + FN}$	What proportion positive cases are correctly identified?
True Negative Rate (TNR) or Speci- ficity	$TNR = \frac{TN}{TN + FP}$	What proportion negative cases are correctly identified?
False Positive Rate (FPR)	$FPR = \frac{FP}{FP + TN}$	What proportion of negative cases are incorrectly predicted as positive? Also known as Type I error rate.
False Negative Rate (FNR)	$FNR = \frac{FN}{TP + FN}$	Proportion of positive cases that are incorrectly predicted negative. Also known as the false alarm rate or Type II error rate.
Positive Predictive Value (PPV) or Precision	$PPV = \frac{TP}{TP + FP}$	The proportion of predicted positives will actually be positive? This measure is influenced by the prevalence of the outcome.

Mea	asure	Formula	Significance
	Score (F1)	$ACC = \frac{TP + TN}{n}$ $F1 = \frac{2}{\frac{1}{TPR} \times \frac{1}{PPV}}$	The proportion of that records are correctly classified. Alternative method of calculating accuracy using a harmonic mean. It balances the TPR with the PPV.
34 cbir 35 sele	eg_fit %>% predict(nd(health) %>% ect(.pred_class, co		<pre>event_level = "second")</pre>
		stimator chr>	.estimate <dbl></dbl>
.me <ch< td=""><td>etric .e</td><td></td><td></td></ch<>	etric .e		
26 log_r 127 cbi 128 sel	reg_fit %>% predict(hind(health) %>% lect(.pred_class, cov	inary ealth) %>%	<dbl><a 10.1001="" doi.org="" href="https://doi.org/10.1001/j.j.nep-10.1001/j.j.</td></tr><tr><td>126 log_r
127 cbi
128 sel
129 f_r
130 -</td><td>reg_fit %>% predict(hind(health) %>% lect(.pred_class, cov</td><td>chr> inary ealth) %>% erage) %>%</td><td><dbl><a href=" https:="" j.j.<="" j.j.nep-10.1001="" td=""></dbl>
.me <ch *="" 1="" 126="" 127="" 128="" 129="" 130="" ```<="" acc="" cbi="" f_r="" log_r="" rov="" sel="" td=""><td>etric nr> curacy bit reg_fit %>% predict(h ind(health) %>% lect(.pred_class, cov meas(truth = coverage tibble: 1 × 3</td><td><pre>chr> inary ealth) %>% erage) %>% , estimate = .pred_class, event_ mator</pre></td><td><pre></pre></td></ch>	etric nr> curacy bit reg_fit %>% predict(h ind(health) %>% lect(.pred_class, cov meas(truth = coverage tibble: 1 × 3	<pre>chr> inary ealth) %>% erage) %>% , estimate = .pred_class, event_ mator</pre>	<pre></pre>

About tidymodels

- Relies on 3 things
 - Workflows
 - Models
 - Recipes

Recipe

• For data preprocessing - getting it ready for a model

```
model_recipe <- recipe(sale.price ~ gross.square.feet + age + sale.year + borough,
data = home_sales_nyc) %>%

step_center(all_numeric_predictors()) %>%

step_interact(terms = ~ gross.square.feet:age) %>%

step_poly(gross.square.feet, degree = 2) %>%

step_dummy(borough) %>%

step_normalize()
```

Models

Choosing the model, and setting it up

```
model_spec <- rand_forest(mtry = 4, trees = 100) %>%

set_mode("classification")

180
```

Workflow

- Combination of models and recipes into one flow
 - Makes it easy to swap one or the other out
 - workflow() %>%
 - add_recipe(my_recipe) %>%
 - add_model(my_model)

```
141 ~ ```{r}
142
143 # Split data
144 set.seed(123)
     data_split <- initial_split(health, prop = 0.8)</pre>
145
146 train_data <- training(data_split)
     test_data <- testing(data_split)</pre>
147
148
    # Define logistic regression model
149
    log_spec <- logistic_reg() %>%
150
151
       set_engine("glm")
152
153 # Create workflow
154 log_wf <- workflow() %>%
       add_model(log_spec) %>%
155
       add_formula(coverage ~ age + race + sex+ cit + mar + schl)
156
157
158
    # Fit model
     fit <- fit(log_wf, data = train_data)
159
160
161 # Evaluate model
     preds <- predict(fit, test_data) %>%
162
163
       bind_cols(test_data)
164
sensitivity(preds, truth = coverage, estimate = .pred_class, event_level = "second")
166
167 - ```
```

What do we generally do in the ML process?

- Preprocess (clean, transform etc.) data, select features
- Choose a model
- Check quality of model fit based on error metrics, cross-validation, and generalization checks
- Iterate by tuning hyperparameters, adjusting features, and trying different models

- Can be made easier by tuning hyper-parameters automatically
 - Next class

Two more models

Random forest

K nearest neighbors

Decision Tree

Random Forest

- A Random Forest is an ML model used for classification and regression tasks.
- It is an <u>ensemble</u> method that combines multiple decision trees to improve accuracy and reduce overfitting.
- Think of it as a "forest" where each tree makes a prediction, and the final decision is based on a majority vote (classification) or an average prediction (regression).

- For classification: Each tree votes on a class, and the most common class is chosen.
- For regression: The average prediction across all trees is taken as the final result.

K-nearest neighbors

• KNN is a lazy learning algorithm, meaning it does not learn a model in advance but makes predictions by comparing new data points to stored examples.

- Find the K nearest data points to the new input based on a distance metric (e.g., Euclidean distance).
- For classification: Assign the most common class among the neighbors.
- For regression: Take the average value of the neighbors.

What is distance?

