0. 设 (X_1, X_2, X_3, X_4) 为零均值 4 维正态随机变量,证明

(1) $E(X_1X_2X_3X_4) = E(X_1X_2)E(X_3X_4) + E(X_1X_3)E(X_2X_4) + E(X_1X_4)E(X_2X_3)$;

(2) $E(X_1^2X_2^2) = E(X_1^2)E(X_2^2) + 2[E(X_1X_2)]^2$.

1. 二项分布 $X \sim B(n,p)$, $P\{X=k\} = C_n^k p^k (1-p)^{n-k}$, $k=0,1,\cdots,n$, 特征函数为 $\varphi(u)=(q+p\mathrm{e}^{\mathrm{j}\mathrm{u}})^n,u\in\mathbf{R}.$

2. 泊松分布 $X \sim P(\lambda)$, 则特征函数为 $\varphi(u) = e^{\lambda(e^{ju-1})}, t \in \mathbf{R}$.

3. **均匀分布**
$$X \sim U[-a,a]$$
. $f_X(x) = \begin{cases} \frac{1}{2a}, & -a < x < a, \\ 0, & \text{其他.} \end{cases}$ 特征函数为 $\varphi(u) = \frac{\sin a \, u}{a u}$. 4. **指数分布** $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$ 特征函数为 $\varphi(u) = \left(1 - \frac{\mathrm{i} u}{\lambda}\right)^{-1}, u \in \mathbf{R}$.

4. **指数分布**
$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \ \lambda > 0, \end{cases}$$
特征函数为 $\varphi(u) = \left(1 - \frac{\mathrm{i}u}{\lambda}\right)^{-1}, u \in \mathbf{R}$

5. 正态分布 $X \sim N(0,1)$, 则其特征函数为 $\varphi(u) = e^{-\frac{1}{2}u^2}$, $u \in \mathbf{R}$.

若 $X \sim N(a, \sigma^2)$, 则特征函数为 $\varphi(u) = e^{jau - \frac{1}{2}\sigma^2 u^2}, u \in \mathbf{R}$.

正交增量过程

6. (平稳过程的谱分解)设 $\{X_t,t\in T\}$ 是一个复值二阶矩过程,若对任意的 $t_1,t_2,t_3,t_4\in$ T, 且 $t_1 < t_2 < t_3 < t_4$, 有 $E[(X_{t_2} - X_{t_1})(\overline{X_{t_4} - X_{t_3}})] = 0$, 称过程 $\{X_t, t \in T\}$ 是**正交增** 量过程

- 7. 设 $\{X_t, t \in [0, +\infty)\}$ 是**平稳独立增量过程**,且 $X_0 = 0$ (或 $P\{X_0 = 0\} = 1$),则
- (1) 均值函数 m(t) = mt(m = m(1) 为常数);
- (2) 方差函数 $D(t) = \sigma^2 t (\sigma^2 = D(1))$ 为常数);
- (3) 协方差函数 $C(s,t) = \sigma^2 \min(s,t), s,t \in T$.

8. 若记
$$\mu = E\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, X = \begin{pmatrix} x \\ y \end{pmatrix}, f(x,y)$$
 的矩阵表示式为

$$f(x,y) = \frac{1}{2\pi(\det t)^{\frac{1}{2}}} \exp\left\{-\frac{1}{2}(\boldsymbol{X} - \boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{C}^{-1}(\boldsymbol{X} - \boldsymbol{\mu})\right\}$$

记为 $(X,Y) \sim N(\mu, C)$

9. n 维正态分布随机向量 $(X_1, X_2, \cdots, X_n)^T$ 的**特征函数**为 $\varphi(t) = \exp\left\{j\mu^T t - \frac{1}{2}t^T C t\right\}$

10. 若 n 维正态随机向量 $\pmb{X}=(X_1,X_2,\cdots,X_n)^{\mathrm{T}}$ 服从 $N(\pmb{\mu},\pmb{C}),\pmb{K}=\left(k_{ij}\right)_{m\times n}$ 是任意矩阵, 则线性变换 Y = KX 服从 m 维正态分布 $N(K\mu, KCK^T)$.

11. 设 $\{X_t, t \ge 0\}$ 是**正态过程**,记 $X_t = X(t), t \ge 0$,以下过 程仍为正态过程

- (1) 对任意 $\tau \ge 0$, $\{X(t+\tau) X(\tau), t \ge 0\}$;
- (2) 对常数 $\lambda > 0, \left\{ \frac{1}{\sqrt{\lambda}} X(\lambda t), t \ge 0 \right\}$

(3)
$$Y(t) = \begin{cases} tX\left(\frac{1}{t}\right), & t > 0, \\ 0, & t = 0; \end{cases}$$

(4)
$$\stackrel{\text{def}}{=} t_0 > 0, Z(s) = \begin{cases} X(t_0 + s) - X(s), & s > 0, \\ 0, & s = 0. \end{cases}$$

- 12. 若随机过程 $\{W_t, t \ge 0\}$ 满足
- (1) 是独立增量过程;
- (2) 对任意 $s, t \ge 0, W_t W_s \sim N(0, \sigma^2 | t s |) (\sigma > 0);$
- (3) $P\{W_0 = 0\} = 1$.

则称 $\{W_t,t\geqslant 0\}$ 是参数为 σ^2 的**维纳过程**,特别当 $\sigma=1$ 时,称 $\{W_t,t\geqslant 0\}$ 是标准维 纳过程

当 t > 0 时有: $W_t = W_t - W_0 \sim N(0, \sigma^2 t)(\sigma > 0)$,

维纳过程的均值函数与方差函数分别为

$$E(W_t) = 0$$
, $D(W_t) = E(W_t^2) = \sigma^2 t$, $t \ge 0$.

协方差函数为 $R(s,t) = C(s,t) = \sigma^2 \min(s,t), s,t \ge 0$

13. 维纳过程是正态过程,

14. 设 $\{W_t, t \ge 0\}$ 是正态过程,若 $W_0 = 0$,对任意 s, t > 0,有 $E(W_t) = 0, E(W_t, W_t) = 0$ $C^2\min(s,t),C>0$,且轨道连续,则 $\{W_t,t\geqslant 0\}$ 是**维纳过程**,反之亦然。轨道连续是指 随机过程的样本函数是连续函数.

15. 设 $\{W_t, t \ge 0\}$ 是参数为 σ^2 的**维纳过程**,记 $W_t = W(t), t \ge 0$,则

- (1) 对任意 $\tau \ge 0$, $\{W(t+\tau) W(\tau), t \ge 0\}$;
- (2) 对常数 $\lambda > 0$, $\left\{\frac{1}{\sqrt{\lambda}}W(\lambda t), t \ge 0\right\}$; (3) $\left\{tW\left(\frac{1}{t}\right), t \ge 0\right\}$, 其中 $tW\left(\frac{1}{t}\right)\Big|_{t=0} = 0$;

仍为维纳过程

16. 计数过程 $\{N(t), t \ge 0\}$ 是参数为 λ 的**齐次泊松过程**,当且 仅当满足下列条件:

- (1) N(0) = 0:
- (2) 具有独立增量;
- (3) 对任意 $0 \le s < t$, 随机变量 N(t) N(s) 服从参数为 $\lambda(t-s)$ 的泊松分布:

$$P\{N(t) - N(s) = k\} = \frac{[\lambda(t-s)]^k}{k!} e^{-\lambda(t-s)}, k, = 0, 1, 2, \dots$$

补充: $m(t) = EN(t) = \lambda t$, $D(t) = \lambda t$

相关函数: $R(s,t) = \lambda \min(s,t) + \lambda^2 st$.

协方差函数: $C(s,t) = \lambda \min(s,t), s,t \in T$.

条件概率公式:

a. $0 < k \le n, 0 < s < \tau$

$$\begin{split} P\{N(s) = k \mid N(\tau) = n\} &= \frac{P\{N(s) = k, N(\tau) = n\}}{P\{N(\tau) = n\}} \\ &= \frac{P\{N(s) = k, N(\tau) - N(s) = n - k\}}{P\{N(\tau) = n\}} \\ &= e^{-\lambda s} \frac{(\lambda s)^k}{k!} e^{-\lambda(\tau - s)} \frac{[\lambda(\tau - s)]^{n - k}}{(n - k)!} n! e^{\lambda \tau} (\lambda \tau)^{-n} \\ &= \frac{n!}{k!} \binom{s}{\tau}^k \left(1 - \frac{s}{\tau}\right)^{n - k} \\ &= C_n^k \left(\frac{s}{\tau}\right)^k \left(1 - \frac{s}{\tau}\right)^{n - k}, k = 0, 1, 2, \cdots, n. \end{split}$$

 $\mathsf{b.}\ P\{N_2(t)=k\mid N_1(t)+N_2(t)=n\}=\mathsf{C}_n^k\left(\frac{\lambda_2}{\lambda_1+\lambda_2}\right)^k\left(\frac{\lambda_1}{\lambda_1+\lambda_2}\right)^{n-k};$

c.
$$E\{N_2(t) = k \mid N_1(t) + N_2(t) = n\} = \frac{n\lambda_2}{\lambda_1 + \lambda_2}$$

相关分布: $T_n: F_n(t) = P\{T_n \le t\} = 1 - e^{-\lambda t}, t \ge 0$ (指数分布)

$$W_n: F_{W_n}(t) = P\{W_n \leqslant t\} = P\{N(t) \geqslant n\} = \sum_{k=n}^{\infty} \frac{(\lambda t)^k}{k!} e^{-\lambda t},$$

泊松分布的分解 参数为 λ 的泊松过程 $\{N(t),t\geqslant 0\}$, 全体事件可分为 r 类。第 i 类事件发生的概率为 $0< p_i<1,i=1,2,\cdots,r,\sum_{i=1}^rp_i=1$. 则 $\{N(t),\ t\geqslant 0\}$ 可分解为 r 个相互独立的泊松过程之和,各泊松过程的参数分别为 $\lambda p_i,i=1,2,\cdots,r$.

17. 设 $\{X(t)=\sum_{n=1}^{N(t)}Y_n,t\geqslant 0\}$ 是一个复合泊松过程,泊松过程 $\{N(t),t\geqslant 0\}$ 的强度为 λ, 则 {X(t),t≥0} 满足:

- (1) 是独立增量过程:
- (2) 一维特征函数为 $\varphi_X(u;t) = e^{\lambda t [\varphi_{Y_1}(u)-1]};$
- (3) $E[X(t)] = \lambda t E(Y_1) = E[N(t)] E(Y_1),$
- (4) $D[X(t)] = \lambda t E(Y_1^2) = E[N(t)]E(Y_1^2).$

补充: l.i. $m_{n\to\infty}X_n=X$ 的充要条件是 $\lim_{n\to\infty}E\{|X_n-X|^2\}=0$.

均方连续性 二阶矩过程 $\{X(t), t \in T\}$ 均方连续的充分必要条件是其相关函数 R(s,t) 在 对角线上连续. 如:泊松过程、维纳过程

均方连续过程的**样本函数可能不连续**:泊松过程。

18. 洛易夫准则 设随机变量序列 $\{X_n, n \ge 1\}$ 对 $n \ge 1$ 均有 $X_n \in H$,则其均方收敛的 充分必要条件是极限 $\lim_{m,n\to\infty} E(X_m \bar{X}_n)$ 存在.

补充: 称极限 $\lim_{\Delta s \to 0} \frac{f(s + \Delta s, t + \Delta t) - f(s + \Delta s, t) - f(s, t + \Delta t) + f(s, t)}{\Delta t \Delta s}$ 为二元函数 f(s, t) 在 (s, t) 处的广义 二阶导数,极限存在则**广义二阶可微**,

均方可微准则 实二阶矩过程 $\{X(t), t \in T\}$ 在 $t_0 \in T$ 处均方可微的充要条件是其相关函 数 R(s,t) 在 (t_0,t_0) 上广义二阶可微.

若R(s,t)在对角线上广义二阶可微,则 $R'_s(s,t)$, $R'_t(s,t)$, $R''_{st}(s,t)$, $R''_{st}(s,t)$ 均在 $T \times T$ 上存在.

19. 设二阶矩过程 $\{X(t), t \in T\}$ **均方可导**,其均值函数为 m(t),自相关函数为 R(s,t),

(1) 导数过程 $\{X'(t), t \in T\}$ 的**均值函数**为

$$m_{X'}(t) = E[X'(t)] = \frac{d}{dt}E[X(t)] = m'(t);$$

(2) 导数过程 $\{X'(t), t \in T\}$ 的**自相关函数**为

$$R_{X'}(s,t) = E[X'(s)\overline{X'(t)}] = R_{st}''(s,t) = R_{ts}''(s,t);$$

(3) 过程 $\{X(t), t \in T\}$ 与导数过程 $\{X'(t), t \in T\}$ 的**互相关函数**为

$$\begin{split} R_{X'X}(s,t) &= E\big[X'(s)\overline{X(t)}\big] = \frac{\partial}{\partial s}R(s,t) = R'_s(s,t), \\ R_{XX'}(s,t) &= E\big[X(s)\overline{X'(t)}\big] = \frac{\partial}{\partial t}R(s,t) = R'_t(s,t). \end{split}$$

20. 若 f(t)X(t) 在 [a,b] 上均方可积,则有

(1) $E\left[\int_a^b f(t)X(t)dt\right] = \int_a^b f(t)m_X(t)dt$, $\sharp \in m_X(t) = E[X(t)]$;

(2)
$$E\left[\left|\int_a^b f(t)X(t)dt\right|^2\right] = \int_a^b \int_a^b f(s)\overline{f(t)}R(s,t)ds dt$$

补充: 若随机过程 X(t) 在 [a,b] 上**均方连续**,则有

- (1) X(t) 在 [a,b] 上均方可积;
- (2) $\left\| \int_{a}^{b} X(t) dt \right\| \le \int_{a}^{b} \|X(t)\| dt$.

若随机过程 X(t) 在 [a,b] 上**均方连续**,则其均方不定积分 $\{Y(t),t\in [a,b]\}$ 在 [a,b] 上均方连续,均方可导,且 $Y'(t) = X(t), t \in (a,b)$.

- (1) $E[Y(t)] = \int_a^t E[X(s)] ds$;
- (2) $R_Y(s,t) = \int_a^s \int_a^t R_X(u,v) du dv$.

重要収分:
$$\int_{0}^{t} \int_{0}^{s} min\{u,v\}dudv = \begin{cases} \frac{s^{2}}{6}(3t-s), & 0 \leqslant s \leqslant t \\ \frac{t^{2}}{6}(3s-t), & 0 \leqslant t \leqslant s \end{cases}$$
重要収分:
$$\int_{t}^{t+L} \int_{s}^{s+L} min\{u,v\}dudv = \begin{cases} \frac{1}{2}L^{2}(2t+L), & s \geqslant t+L \\ \frac{L^{2}}{2}(2t+L) + \frac{L^{2}}{6L^{2}}(t+L-s)^{3}, & t \leqslant s \leqslant t+L \\ \frac{L^{2}}{2}(2s+L) + \frac{L^{2}}{6L^{2}}(s+L-t)^{3}, & s \leqslant t \leqslant s+L \\ \frac{L^{2}}{2}(L+2s), & t \geqslant s+L \end{cases}$$

补充: 定义 如果随机过程 $\{X(t), t \in T\}$ 是二阶矩过程,即 $E[X^2(t)] < +∞$,且满足

(1) 对任意 $t \in T$, 均值函数为常数 E[X(t)] = m;

(2) 对任意 $s,t\in T$, 自相关函数 R(s,t)=E[X(s)X(t)]=R(t-s). 则称随机过程 $\{X(t), t \in T\}$ 为宽平稳过程(或称为弱平稳过程或广义平稳过程).

严平稳过程:是宽平稳 → 二阶矩存在。

正态过程: 严平稳 ⊕ 宽平稳

 $\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$

$$\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]$$

 $\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$ $\sin \alpha \sin \beta = -\frac{1}{2}[\cos(\alpha + \beta) - \cos(\alpha - \beta)]$

实平稳过程 $\{X(t), t \in T\}$ 的**自相关函数**满足:

- (1) $R_X(0) \ge 0$;
- (2) $|R_X(\tau)| \le R_X(0)$, 亦即 $|C_X(\tau)| \le C_X(0)$; (3) $R_X(-\tau) = R_X(\tau)$, 即 $R_X(\tau)$ 是偶函数。

均方连续性 实平稳过程 $\{X(t), t \in T\}$ 均方连续的充要条件是其自相关函数 $R_{Y}(\tau)$ 在 $\tau = 0$ 处连续,且此时 $R_X(\tau)$ 处处连续.

若 $\{X(t), t \in T\}$ 是**均方连续的实平稳过程**,则有

(1)
$$E\left[\int_a^b X(t)dt\right] = m_X(b-a);$$

(2)
$$E\left[\int_{a}^{b} X(t) dt\right]^{2} = \int_{a}^{b} \int_{a}^{b} R(t-s) ds dt = 2 \int_{0}^{b-a} [(b-a) - |\tau|] R(\tau) d\tau$$

21. (**均方可导性**) 设 $X_T = \{X(t), t \in T\}$ 是**平稳过程**, 有如下结论成立:

- (1) X_T 均方可微的充要条件是其自相关函数 $R_X(\tau)$ 在 $\tau=0$ 处二次可微, 此时 $R''(\tau)$ **处处存在**:
- (2) 若 X_T 是均方可微的平稳过程,则其均方导数过程 $\{X'(t), t \in T\}$ 仍为平稳过程,其 均值函数为 $m_{x'}(t) = 0$; 自相关函数为 $R_{X'}(\tau) = -R_X''(\tau)$; $\{X(t), t \in T\}$ 与 $\{X'(t), t \in T\}$ 的互相关函数为

$$R_{XX'}(\tau)=R_X'(\tau), R_{X'X}(\tau)=-R_X'(\tau).$$

22. 设 $\{X(t), t \in \mathbb{R}\}$ 是实平稳过程,则 X(t) 的均值具有**均方遍历性的充要条件**是

$$\lim_{T\to\infty}\frac{1}{T}\int_0^{2T}\left(1-\frac{\tau}{2T}\right)C_X(\tau)\mathrm{d}\tau=0,$$

戓老

$$\lim_{\tau \to \infty} \frac{1}{T} \int_0^{2T} \left(1 - \frac{\tau}{2T} \right) (R_X(\tau) - m_X^2) d\tau = 0$$

23. 若 $\int_{-\infty}^{+\infty} |C_X(\tau)| d\tau < \infty$,则实平稳随机过程 $\{X(t), t \in \mathbf{R}\}$ 的均值具有**均方遍历性**

24. 若实平稳过程 $\{X(t), t \in \mathbf{R}\}$ 的相关函数满足 $\lim_{t \to \infty} R_X(\tau) = m_X^2$, 则该过程的均值具有**均** 方遍历性.

25 (**维纳 - 辛钦**) 设有平稳过程 $\{X(t), t \in \mathbf{R}\}$ 是均方连续. 若其自相关函数 $R(\tau)$ 满 足 $\int_{-\infty}^{+\infty} |R(\tau)| d\tau < +\infty$, 则此平稳过程的谱密度 $S(\omega)$ 满足

$$\begin{cases} S(\omega) = \int_{-\infty}^{+\infty} R(\tau) e^{-j\omega\tau} d\tau \\ R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} S(\omega) e^{j\omega\tau} d\omega \end{cases}$$

26. 若 $\{X(t), t \in \mathbb{R}\}$ 为实平稳过程,则

$$\begin{cases} S(\omega) = 2 \int_0^{+\infty} R(\tau) \cos \omega \tau d\tau, \\ R_X(\tau) = \frac{1}{\pi} \int_0^{+\infty} S(\omega) \cos \omega \tau d\tau. \end{cases}$$

<mark>补充:性质</mark>对于任意连续函数 f(x),有

$$\int_{-\infty}^{+\infty} \delta(x)f(x)dx = f(0), \int_{-\infty}^{+\infty} f(x)\delta(x - x_0)dx = f(x_0).$$

补充:独立过程、零初值的独立增量过程是马氏过程。

平稳独立增量过程是齐次马氏链。

定义 随机变量序列 $\{X_n, n = 0,1,2,\cdots\}$ 的状态空间为 $E = \{0,1,2,\cdots\}$. 若对任意非负整 数 m, 以及 $i_0, i_1, \cdots, i_m, i_{m+1} \in E$,有

$$P\{\,X_{m+1}=i_{m+1}\mid X_m=i_m,X_{m-1}=i_{m-1},\cdots,X_0=i_0\,\}=P\{\,X_{m+1}=i_{m+1}\mid X_m=i_m\,\}$$

成立,则 $\{X_n, n = 0,1,2,\cdots\}$ 是离散参数马氏链。

齐次马氏链(转移概率与起始点 m 无关) $\{X_n, n=0,1,2,\cdots\}$ 的转移概率 $p_{ii}^{(k)}$ 满足 CK 方 程: $p_{ii}^{(k+l)} = \sum_{r \in E} p_{ir}^{(k)} p_{ri}^{(l)}$.

遍历性定理: $\Pi = HP$, $\Pi 1 = 1$, $\Pi > 0$ (即向量 Π 的每个分量均为正数). 即有

$$\begin{split} \Pi P &= (\pi_1, \pi_2, \cdots, \pi_s) \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1s} \\ p_{21} & p_{22} & \cdots & p_{2s} \\ \vdots & \vdots & & \vdots \\ p_{s1} & p_{s2} & \cdots & p_{ss} \end{pmatrix} \\ &= \left(\sum_{i=1}^s \pi_i p_{i1}, \sum_{i=1}^s \pi_i p_{i2}, \cdots, \sum_{i=1}^s \pi_i p_{is} \right) = (\pi_1, \pi_2, \cdots, \pi_s) = \Pi. \end{split}$$

- $(1) v_i \geqslant 0, j \in E;$
- (2) $\sum_{j\in E} v_j = 1$;
- $(3) v_j = \sum_{i \in E} v_i p_{ij}$

则称此马氏链是平稳的,且称 $\{v_j, j \in E\}$ 为此马氏链的**平稳分布**

(1), (2), (3) 式等价于向量形式: $V \ge 0, V1 = 1, V = VP$.

 补充:
 定义若 $f_{ii} = 1$, 称状态 i 是常返状态; 若 $f_{ii} < 1$, 称状态 i 是非常返状态 (瞬)
 时状态). 若马氏链的全体状态都是常返态, 则其为常返马氏链.

27. (**常返状态判别准则**) 状态 i 常返的充分必要条件是 $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$.

28. 设 i 是常返状态,则 i 是零常返的充分必要条件是 $\lim_{n\to\infty}p_{ii}^{(n)}=0$.

29. 设 E 为齐次马氏链的**状态空间**, $i \in E$, 则

- (1) i 是非常返状态 $\Leftrightarrow \sum_{n=1}^{\infty} p_{ii}^{(n)} < +\infty$ (此时 $\lim p_{ii}^{(n)} = 0$);
- (2) i 是零常返状态 $\Leftrightarrow \sum_{n=1}^{\infty} p_{ii}^{(n)} = +\infty$. 且 $\lim_{n \to \infty} p_{ii}^{(n)} = 0$; (3) i 是正常返状态 $\Leftrightarrow \sum_{n=1}^{\infty} p_{ii}^{(n)} = +\infty$. 且 $\lim_{n \to \infty} p_{ii}^{(n)} = 0$.
- 30. **平均首达时间**与**平均返回时间**的计算式分别为

$$\mu_{ij} = E(T_{ij}) = \sum_{n=1}^{\infty} n f_{ij}^{(n)}, \mu_i = \mu_{ii} = E(T_{ii}) = \sum_{n=1}^{\infty} n f_{ii}^{(n)}.$$

- 31. **周期**: d = g. c. d $\{n: f_{ii}^{(n)} > 0\}$
- 32. i 为**追历状态** $\Leftrightarrow \sum_{n=1}^{\infty} p_{ii}^{(n)} = +\infty$, 且 $\lim_{n\to\infty} p_{ii}^{(n)} = \frac{1}{n}$.
- 33. 设 N 是非常返态集, $i \in N, j$ 是常返态, 则**最终概率** f_{ij} 满足 以下方程

$$f_{ij} = \sum_{k \in \mathbb{N}} p_{ik} f_{kj} + \sum_{k \in \mathbb{H}} p_{ik}, i \in \mathbb{N},$$

其中 $H = \{k \mid k \leftrightarrow j, k \in E\}$.

补充: 如果 $i \rightarrow j$ 且 $j \rightarrow i$, 则称状态 i 和 j 互通 (相通), 记为 $i \leftrightarrow j$.

分解定理 齐次马氏链的状态空间 E 可唯一地分解为

$$E = N + C_1 + C_2 + \dots + C_k + \dots,$$

其中 N 是全体非常返状态的集合, $C_1,C_2,\cdots,C_k,\cdots$ 是互不相交的不可约常返闭集。

若一个马氏链的状态空间是有限集合时,称其为**有限马氏链**。有限马氏链有如下性质:

- (1) 所有非常返状态所组成的集合不可能是闭集:
- (2) 没有零常返状态;
- (3) 必有正常返状态
- (4) 状态空间可分解为

$$E = N + C_1 + C_2 + \dots + C_k,$$

其中, N 为非常返状态集, C_1 , C_2 , \cdots , C_k 为互不相交的不可约正常返闭集.

34. (柯西 - 施瓦茨不等式) 若随机变量 X,Y 的有关数字特征存 在,则 $\{E[|X \cdot Y|]\}^2 \le E(X^2) \cdot E(Y^2).$

当且仅当 $P\{Y = aX\} = 1$ 时等式成立.