1. Wymienić parametry przyrządów pomiarowych:

- wartość maksymalna X_{max}
- czułość przyrządu pomiarowego S
- stała przyrządu pomiarowego
- rezystancja wejściowa (pobór energii z układu pomiarowego)
- błąd pomiaru

2. Przedstawić klasyfikację błędów pomiaru ze względu na przyczynę ich powstawania:

- błąd systematyczny
- błąd gruby
- błąd przypadkowy

3. Przedstawić sposób wyznaczania wartości błędu systematycznego wielkości mierzonej pośrednio.

- przyjąć wartości średnie zmierzonego napięcia i prądu
- policzyć błędy bezwzględne wyznaczenia napięcia, prądu i rezystancji wewnętrznej amperomierza
- podstawić wyliczone wartości do wzoru na różniczkę zupełną
- obliczyć wartość błędu systematycznego pomiaru mocy
- obliczyć wartość mocy wydzielanej na rezystorze

4. Przedstawić sposób wyznaczania wartości błędu przypadkowego wielkości mierzonej pośrednio.

- wyznaczenie wartości średnich prądu i napięcia
- obliczyć wartość średnią mocy
- obliczyć błąd średni kwadratowy wyznaczenia napięcia
- obliczyć błąd średni kwadratowy wyznaczenia prądu
- zasosować rozkład t-studenta

5. Przedstawić sposób wyznaczania niepewności rozszerzonej.

Określa się ją na podstawie wzoru:

$$U = k_p \cdot u_{\tau}(y) \qquad u_{\Lambda} = \sqrt{\frac{\sum_{i=1}^{n} (X_i - X_{fr})^2}{(n-1) \cdot n}}$$

$$\mathbf{u}_{+} = \mathbf{u}_{\Delta} \quad \mathbf{k}_{n} - \text{stała}$$

 $\mathbf{u_t} = \mathbf{u_A} \quad \mathbf{k_p} - \text{stała}$ $\mathbf{X_{\acute{s}r}} - \text{warto\acute{s}\acute{c}}$ średnia mierzonej wielkości

X_i - wielkość mierzona metodą bezpośrednią

Jeżeli rozkład wyników pomiarów nie jest opisany ani przez rozkład normalny ani przez rozkład t-Studenta należy arbitralnie przyjąć wartość k_p=2 dla poziomu ufności 0,95 bądź k_p=3 dla poziomu ufności 0,99.

- 6. Jaki rozkład wyników pomiarów należy przyjąć przy wyznaczaniu błędu przypadkowego, wiedząc, że wykonano n pomiarów.
 - <20 rozkład t- studenta
 - >20 rozkład normalny

7. Wyjaśnić pojęcia poziom ufności i przedział ufności.

- <u>Przedział ufności</u> przedział wartości mierzonej, w którym z prawdopodobieństwem równym poziomowi ufności znajduje się rzeczywista wartość mierzonej wielkości
- <u>Poziom ufności</u> prawdopodobieństwo, że wynik pomiaru znajduje się w przedziale ufności
- 8. Przedstawić budowę miernika magnetoelektrycznego.

- 1. Magnes trwały*
- 2. Nabiegunniki*
- 3. Rdzeń*
- 4. Cewka*
- 5. Wskazówka*
- 6. Sprężynki zwrotne
- 7. Ośka*
- 8. Łożyska

9. Obliczyć wartość bocznika umożliwiającą m-krotne rozszerzenie zakresu pomiarowego amperomierza o rezystancji wewnętrznej $R_{\rm A}$.

Obliczenia na podstawie wzoru:

 $R_b=R_a/(m-1)$

Miernictwo elektroniczne

Pierwsze koło

10. Obliczyć wartość posobnika umożliwiającą m-krotne rozszerzenie zakresu pomiarowego woltomierza o rezystancji wewnętrznej $R_{\rm V}$.

Obliczenia na podstawie wzoru:

$$R_{p}=R_{v}*(m-1)$$

11. Przedstawić układ omomierza szeregowego.

E_z – Źródło napięciowe

R_z - Rezystancja wewnętrzna

R_x – Rezystancja mierzonego rezystora

Ra – Rezystancja amperomierza

12. W jakiej części zakresu pomiarowego omomierza błąd pomiaru jest najmniejszy.

Przy wychyleniu wskazówki do połowy skali

13. Do jakiej wielkości elektrycznej proporcjonalne jest wskazanie miernika magnetoelektrycznego?

Do mierzonego prądu.

14. Ile wynosi rezystancja wewnętrzna idealnego woltomierza?

Nieskończoność

15. Ile wynosi rezystancja wewnętrzna idealnego amperomierza?

0

16. Podaj definicję wartości skutecznej napięcia.

Wartość skuteczna napięcia (U_{RMS}) – wartość napięcia stałego, które w tym samym obwodzie wydziela taką samą moc jak sygnał badany.

17. Przedstawić schemat woltomierza prostownikowego jednopołówkowego.

D - dioda

R_p - rezystancja posobnika

 \mathbf{R}_{a} — rezystancja amperomierza

Miernictwo elektroniczne

Pierwsze koło

18. Przedstawić schemat woltomierza prostownikowego szeregowego szczytowego.

C - kondensator

D - dioda

 $\mathbf{R_p}$ - rezystancja posobnika

Ra - rezystancja amperomierza

19. Przedstawić schemat woltomierza prostownikowego równoległego szczytowego.

C - kondensator

R_p - rezystancja posobnika

Ra - rezystancja amperomierza

Icrozł - prąd rozładowania kondensatora

Ictad - prąd ładowania kondensatora

Uc - napięcie na kondensatorze

20. Podać definicję współczynnika szczytu i współczynnika kształtu.

Wszpółczynnik szczytu:

$$k_s = \frac{u_m}{U_{RMS_1}}$$

 \mathbf{u}_{m} – wartość maksymalna napięcia w danym przebiegu \mathbf{U}_{RMS} – wartość napięcia szczytowego w danym przebiegu

Współczynnik kształtu:

$$k_k = \frac{U_{RMS}}{\left|\overline{U}\right|}$$

U_{RMS} – wartość napięcia szczytowego dla danego przebiegu|U| - wartość średnia z modułu dla danego przebiegu

21. Obliczyć błąd pomiaru wartości skutecznej napięcia wynikający z nieuwzględnienia kształtu mierzonego napięcia za pomocą przyrządu mierzącego wartość średnią z modułu. Współczynnik kształtu sygnału mierzonego i harmonicznego są dane.

Tabelka slajd 101 i przykład slajd 102

22. Obliczyć błąd pomiaru wartości skutecznej napięcia wynikający z nieuwzględnienia kształtu mierzonego napięcia za pomocą przyrządu mierzącego wartość szczytową. Współczynnik szczytu sygnału mierzonego i harmonicznego są dane.

Tabelka slajd 101 i przykład slajd 102

23. Przedstawić schemat i warunek równowagi mostka Wheatstone'a.

Mostek jest w stanie równowagi, gdy R₁*R₄=R₂*R₃

24. Przedstawić schemat i warunek równowagi mostka Thomsona.

$$\frac{R_1 + R'_1}{R_3} = \frac{R_2 + R'_2}{R_4}$$

- 25. Wymienić czynniki wpływające na błąd nieczułości mostka rezystancyjnego.
 - Mostek Wheastone'a: rezystancja wewnętrzna i czułość galwanometru oraz wartość napięcia zasilania mostka
 - Mostek Thompson'a: czułość układu i błędu systematycznego

26. Przedstawić nazwę, schemat i warunek równowagi wybranego mostka prądu zmiennego.

mostek Maxwell'a

L_w – indukcyjność wzorcowa

L_x – indukcyjność mierzona

R_x – rezystancja mierzona

R_w – rezystancja wzorcowa

Warunek równowagi:

$$\frac{L_x}{R_x + r} = \frac{L_w}{R_w}$$

mostek Wiena

C_x – pojemność kondensatora mierzona

C_w – wzorcowa pojemność kondensatora

 $\mathbf{R}_{\mathbf{x}}-$ straty kondensatora mierzonego

 R_w – straty kondensatora wzorcowego

Warunki równowagi:

$$C_x = C_w \frac{R_4}{R_3}$$
 $R_x = (R_c + R_2) \frac{R_3}{R \cdot r_4}$

27. * Wyjaśnić sposób równoważenia wybranego mostka prądu zmiennego.

- * Mostek Maxwell'a osiąga stan równowagi tylko w przypadku równości stałych czasowych elementu mierzonego i wzorca indukcyjności. Równość taka zachodzi bardzo rzadko. Wprowadza się więc w mostku dodatkowy regulowany rezystor r, który włącza się przełącznikiem P w ramię Rx (położenie 1) lub Rw (położenie 2) zależnie od tego, które z ramion ma większą stałą czasową. Jeżeli Lx/Rx>Lw/Rw, to po ustawieniu przełącznika w pozycji l przez regulację rezystora r osiąga się równowagę mostka.
- * Mostek Wiena poprzez regulowanie potencjometrów.

28. *Wyjaśnić zasade działania półautomatycznego mostka pradu zmiennego. Rezystorem dekadowym R₄ w mostku równoważy się ręcznie składową reaktancyjną elementu mierzonego, natomiast składową rezystancyjną równoważy automatycznie rezystancja sterowana R_A połączona z kondensatorem wzorcowym. Rezystancję sterowaną stanowi fotorezystor oświetlany diodą elektroluminescencyjną. Fotorezystor nieoświetlony ma bardzo dużą rezystancje, natomiast w miarę zwiększania natężenia oświetlenia rezystancja maleje. Intensywność oświetlenia zależy od pradu diody ta elektroluminescencyjnej.

29. Wyjaśnić zasadę działania automatycznego mostka prądu zmiennego.

Napięcie z generatora idzie w dwie gałęzie gałąź idealną i gałąź, w której znajduje się mierzony element. W gałęzi idealnej znajdują się dwa przetworniki i kondensator mające na celu równoważenie mostka. Warunkiem równowagi jest żeby obie gałęzie się równoważyły. Kontroluje to układ równoważenia działający automatycznie. Wynik pomiaru odczytujemy w polu odczytu.

30. Do czego stosowana jest metoda najmniejszych kwadratów?

Metoda najmniejszych kwadratów – standardowa metoda przybliżania rozwiązań zestawu równań, w którym jest ich więcej niż zmiennych