Am25S07·Am25S08

Hex/Quad Parallel D Registers With Register Enable

Distinctive Characteristics

- 4-bit and 6-bit high-speed parallel registers
- Common clock and common enable

- Positive edge triggered D flip-flops
- 100% reliability assurance testing in compliance with MIL-STD-883.

FUNCTIONAL DESCRIPTION

The Am25S07 is a 6-bit, high-speed Schottky register with a buffered common register enable. The Am25S08 is a 4-bit register with a buffered common register enable. The devices are similiar to the Am54S/74S174 and Am54S/74S175 but feature the common register enable rather than common clear.

Both registers will find application in digital systems where information is associated with a logic gating signal. When the enable is LOW, data on the D inputs is stored in the register on the positive going edge of the clock pulse. When the enable is HIGH, the register will not change state regardless of the clock or data input transitions.

LOGIC DIAGRAMS

Am25S08

ORDERING INFORMATION

Package Type	Temperature Range	Am25S07 Order Number	Am25S08 Order Number
Molded DIP	0°C to +70°C	AM25S07PC	AM25S08PC
Hermetic DIP	0°C to +70°C	AM25S07DC	AM25S08DC
Dice	0° C to $+70^{\circ}$ C	AM25S07XC	AM25S08XC
Hermetic DIP	-55°C to +125°C	AM25S07DM	AM25S08DM
Hermetic Flat Pak	-55°C to +125°C	AM25S07FM	AM25S08FM
Dice	-55°C to +125°C	AM25S07XM	AM25S08XM

CONNECTION DIAGRAMS Top Views

Note: Pin 1 is marked for orientation.

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	–65°C to +150°C
Temperature (Ambient) Under Bias	–55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5 V to +7 V
DC Voltage Applied to Outputs for HIGH Output State	-0.5 V to +V _{CC} max.
DC Input Voltage	-0.5 V to +5.5 V
DC Output Current, Into Outputs	30mA
DC Input Current	-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

Am25S07XC, Am25S08XC m25S07XM. Am25S08XM

 $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$ $V_{CC} = 5.0 \text{ V } \pm 5\% \text{ (COM'L)}$

MIN. = 4.75 V

MAX. = 5.25 V

m25S07XM,	Am25S08XM $T_A = -55^{\circ}C$ to +125°C	CC = 5.0	V ±10% (MIL	.)	MIN. = 4.5	V MAX. = 5	.5 V	
arameters	Description	Test Condit	tions (Note	1)	Min.	Typ.(Note 2)	Max.	Units
V 0		V _{CC} = MIN., I _{OH} = -1 mA XC		2.7	3.4		Vala	
v oH	Output HIGH Voltage	V _{IN} = V _{IH} or V _{IL} XM		2.5	3.4		Volts	
v _{OL}	Output LOW Voltage	V _{CC} = MIN., I _{OL} = 20mA V _{IN} = V _{IH} or V _{II}				0.5	Volts	
V _{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs		2.0			Volt	
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs				0.8	Volt	
V _I	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -18mA				-1.2	Volt	
I _{IL} (Note 3)	Unit Load Input LOW Current	V _{CC} = MAX., V _{IN} = 0.5 V				-2	mA	
I _{IH} (Note 3)	Unit Load Input HIGH Current	V _{CC} = MAX., V _{IN} = 2.7 V				50	μА	
I _I	Input HIGH Current	V _{CC} = MAX., V _{IN} = 5.5 V				1.0	mA	
I _{SC}	Output Short Circuit Current (Note 4)	V _{CC} = MAX., V _{OUT} = 0.0 V		-40		-100	mA	
	Boundary Son	S07			90	144	mA	
'CC	ICC Power Supply Current		V _{CC} = MAX. S08			60	96	"

Notes: 1. For conditions shown as MIN. or MAX., use the appropriate value specified under Electrical Characteristics for the applicable device type.
 Typical limits are at V_{CC} = 5.0 V, 25° C ambient and maximum loading.
 Actual input currents = Unit Load Current x Input Load Factor (See Loading Rules).
 Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.
 Outputs open; enable grounded; data inputs at 4.5 V, measured after a momentary ground, then 4.5 V applied to the clock input.

Switching Characteristics ($T_A = +25^{\circ}C$)

Parameters	Description	Test Conditions	Min.	Typ.	Max.	Units
tPLH	Clock to Output		4	8	12	ns
tpHL	Clock to Output		4	11.5	17	ns
t _{pw}	Clock Pulse Width	-	7			ns
t _s	Data	V_{CC} = 5.0 V, C_L = 15 pF, R_L = 280 Ω	5.5			ns
t _S	Enable			7		ns
th	Data		3	0		ns
th	Enable		3	0		ns

Am25S07 LOADING RULES (In STTL Unit Loads)

			Fan-out	
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output LOW
Ē	1	1		
\mathbf{o}_0	2	_	20	10
D ₀	3	1	_	
D ₁	4	1	_	
Ω ₁	5	_	20	10
D ₂	6	1		
\mathbf{Q}_2	7	. –	20	10
GND	8	_	_	
СР	9	1	_	
\mathbf{o}_3	10	_	20	10
D ₃	11	1	_	_
Ω ₄	12	_	20	10
D ₄	13	1	_	_
D ₅	14	1		_
Q 5	15	-	20	10
V _{CC}	16			

A Schottky TTL Unit Load is defined as $50\mu A$ measured at 2.7V HIGH and -2.0mA measured at 0.5V LOW.

Am25S08 LOADING RULES (In STTL Unit Loads)

			Fan-out	
Input/Output	Pin No.'s	Input Unit Load	Output HIGH	Output LOW
Ē	1	1	-	
a_0	2	-	20	10
\bar{a}_0	3	_	20	10
D ₀	4	1	~	
D ₁	5	1	~	
$\bar{\mathbf{a}}_1$	6	-	20	10
α ₁	7	-	20	10
GND	8	-	_	_
CP	9	1		_
\mathbf{Q}_2	10	_	20	10
$\overline{\overline{a}}_2$	11	_	20	10
D ₂	12	1	~	_
D ₃	13	1	-	_
\overline{a}_3	14	_	20	10
a ₃	15	-	20	10
V _{CC}	16		; -	

DEFINITION OF FUNCTIONAL TERMS

D_i The D flip-flop data inputs.

 \boldsymbol{E} Enable. When the enable is LOW, data on the D_i inputs is transferred to the Q_i outputs on the LOW-to-HIGH clock transition. When the enable is HIGH, the Q_i outputs do not change regardless of the data or clock input transitions.

CP Clock Pulse for the register. Enters data on the LOW-to-HIGH transition.

 Q_i The TRUE register outputs.

 $\overline{\mathbf{Q}}_i$ The complement register outputs

FUNCTION TABLE

Inputs			Outputs		
Ē	Di	СР	Qi	$\bar{\mathbf{Q}}_{i}$	
Н	×	Х	NC	NC	
L	X	н	NC	NC	
L	x	L	NC	NC	
L	L	1	L	н	
L	Н	†	Н	L	

H = HIGH

NC = No Change

L = LOW

X = Don't Care

↑ = LOW-to-HIGH Transition

 $\overline{\Omega}_i$ on Am25S08 Only

SCHOTTKY INPUT/OUTPUT CURRENT INTERFACE CONDITIONS

Note: Actual current flow direction shown.

DEFINITION OF SWITCHING TERMS

(All switching times are measured at the 1.5 V logic level unless otherwise noted.)

 $f_{\mbox{MAX}}$ The highest operating clock frequency.

tpLH The propagation delay time from an input change to an output LOW-to-HIGH transition.

tphL The propagation delay time from an input change to an output HIGH-to-LOW transition.

tpw Pulse width. The time between the leading and trailing edges of a pulse.

 t_r Rise time. The time required for a signal to change from 10% to 90% of its measured values.

t_f Fall time. The time required for a signal to change from 90% to 10% of its measured values.

ts Set-up time. The time interval for which a signal must be applied and maintained at one input terminal before an active transition occurs at another input terminal.

th Hold time. The time interval for which a signal must be retained at one input after an active transition occurs at another input terminal.

the Release time. The time interval for which a signal may be indeterminant at one input terminal before an active transition occurs at another input terminal. (The release time falls within the set-up time interval and is specified by some manufacturers as a negative hold time).

UNIT LOAD DEFINITIONS

	HI	GH	LOW		
SERIES	Current	Measure Voltage	Current	Measure Voltage	
Am25/26/2700	40μA	2.4 V	-1.6mA	0.4 V	
Am25S/26S/27S	50μA	2.7 V	-2.0mA	0.5 V	
Am25L/26L/27L	20μΑ	2.4 V	-0.4 mA	0.3V	
Am25LS/26LS/27LS	20μΑ	2.7 V	-0.36mA	0.4 V	
Am54/74	40µA	2.4 V	-1.6mA	0.4 V	
54H/74H	50μA	2.4 V	-2.0mA	0.4 V	
Am54S/74S	50μA	2.7 V	_2.0mA	0.5 V	
54L/74L (Note 1)	20μΑ	2.4 V	-0.8mA	0.4 V	
54L/74L (Note 1)	10μΑ	2.4 V	-0.18mA	0.3V	
Am54LS/74LS	20μΑ	2.7V	-0.36 mA	0.4 V	
Am9300	40μA	2.4 V	-1.6mA	0.4 V	
Am93L00	20μΑ	2.4 V	-0.4mA	0.3V	
Am93S00	50μA	2.7V	-2.0mA	0.5 V	
Am75/85	40μΑ	2.4 V	-1.6mA	0.4 V	
Am8200	40μA	4.5 V	-1.6mA	0.4 V	

Note: 1. 54L/74L has two different types of standard inputs.

SCHOTTKY PARAMETER MEASUREMENTS FOR STANDARD ACTIVE-PULLUP TOTEM-POLE OUTPUTS

SET-UP, HOLD, AND RELEASE TIMES

Notes: 1. Diagram shown for HIGH data only. Output transition may be opposite sense.

2. Cross-hatched area is don't care condition.

PROPAGATION DELAY

LOAD TEST CIRCUIT

PULSE WIDTH

Note: 1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; Z_0 = 50 Ω , $t_f \leq$ 2.5 ns; $t_f \leq$ 2.5 ns.

SCHOTTKY INPUT/OUTPUT VOLTAGE INTERFACE CONDITIONS

Note: Refer to Electrical Characteristics for measure currents.

 v_{IH_2}

DRIVEN

CHOTTKY DEVICE

VOH₁

V_{OL1}

DRIVING

DEVICE

DEFINITION OF STANDARD TERMS

- H HIGH, applying to a HIGH voltage level.
- L LOW, applying to a LOW voltage level.
- I Input.
- O Output.

Negative Current Current flowing out of the device.

Positive Current Current flowing into the device.

 \mathbf{I}_{1L} LOW-level input current with a specified LOW-level voltage applied.

 \mathbf{I}_{IH} HIGH-level input current with a specified HIGH-level voltage applied.

IOL LOW-level output current.

IOH HIGH-level output current.

Isc Output short-circuit source current.

 I_{CC} The supply current drawn by the device from the V_{CC} power supply.

VIL Logic LOW input voltage.

VIH Logic HIGH input voltage.

 $\textbf{V}_{\text{OL}}~\text{LOW-level output voltage with } \textbf{I}_{\text{OL}}~\text{applied.}$

VOH HIGH-level output voltage with IOH applied.

PHYSICAL DIMENSIONS Dual-In-Line

