送

採

镪

第四届全国大学生数学竞赛决赛试卷 (数学类, 2013)

考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分.

题	号	_	1 1	111	四	五.	六	总分
满	分	15	15	15	15	20	20	100
得	分							

注意: 1、所有答题都须写在此试卷纸密封线右边,写在其它纸上一律无效.

2、密封线左边请勿答题,密封线外不得有姓名及相关标记.

3、如当题空白不够,可写在当页背面,并标明题号.

得 分	
评阅人	

一、(本题 15 分)设A为正常数,直线L与双曲线 $x^2 - y^2 = 2(x > 0)$ 所围的有限部分的面积为A. 证明:

(i) 上述 L 被双曲线 $x^2 - y^2 = 2$ (x > 0) 所截线段的中点的轨

迹为双曲线.

(ii) L总是(i)中轨迹曲线的切线.

得 分	
评阅人	

存在,且 f(x) = x.

- 二、(本题 15 分)设函数 f(x)满足条件: 1) $-\infty < a \le f(x) \le b < +\infty, a \le x \le b;$
- 2) 对任意不同的 x, y \in [a, b] 有 |f(x) f(y)| < L |x y|, 其中L 是大于 0 小于 1 的常 数.设 $x_1 \in [a, b]$,令 $x_{n+1} = \frac{1}{2}[x_n + f(x_n)]$, $n = 1, 2, \ldots$ 证明 $\lim_{n \to \infty} x_n = x$

鉄

拉

椡

得 分	
评阅人	

三、(本题 15 分)设实 n 阶方阵 A 的每个元素的绝对值为 2. 证明: 当 $n \ge 3$ 时, $|A| \le \frac{1}{3} 2^{n+1} n!$.

得 分	
评阅人	

四、(本题 15 分)设 f(x) 为区间(a,b)上的可导函数. 对 $x_0 \in (a,b)$,若存在 x_0 的邻域U 使得任意的 $x \in U \setminus \{x_0\}$ 有

 $f(x) > f(x_0) + f'(x_0)(x - x_0)$,则称 x_0 为 f(x) 的凹点. 类似地,若存在 x_0 的邻域 U 使得任意的 $x \in U \setminus \{x_0\}$ 有 $f(x) < f(x_0) + f'(x_0)(x - x_0)$,则称 x_0 为 f(x) 的凸点.

求证: 若 f(x) 是区间(a,b)上的可导函数且不是一次函数,则 f(x) 一定存在凹点或凸点.

.

考生编号:	
所在院校:	
准考证号:	
姓名:	

得 分	五 (木町 20 公) 汎 4	1	<i>a</i> ₁₂	I
评阅人	五、(本题 20 分)设A =		$a_{22}^{}$ $a_{32}^{}$	

矩阵, A^* 为A的伴随矩阵.记 $f(x_1, x_2, x_3, x_4) = \begin{vmatrix} x_1^2 & x_2 & x_3 & x_4 \\ -x_2 & a_{11} & a_{12} & a_{13} \\ -x_3 & a_{21} & a_{22} & a_{23} \\ -x_4 & a_{31} & a_{32} & a_{33} \end{vmatrix}$.若A的行

列式为-12, A的所有特征值的和为1, 且 $(1,0,-2)^T$ 为 $(A^*-4I)x=0$ 一个解.

试给出一正交变换 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = Q \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix}$ 使得 $f(x_1, x_2, x_3, x_4)$ 化为标准型.

災

本

例

得 分	
评阅人	

六、(本题 20 分)令R 为实数域, n为给定的正整数, A表示所有n次首一实系数多项式组成的集合.

证明:
$$\inf_{b \in \mathbf{R}, c > 0, P(x) \in A} \frac{\int_{b}^{b+c} |P(x)| dx}{C^{n+1}} > 0$$