

Архитектура компьютера и операционные системы

Лекция 11. Цифровой логический уровень

Андреева Евгения Михайловна доцент кафедры информатики и вычислительного эксперимента

План лекции

- Вентили
- Интегральные схемы
 - комбинационные (комбинаторные) схемы
 - арифметические схемы
- Домашнее задание

Многоуровневая архитектура

5. ЯВУ

• Компиляторы, Библиотеки

4. Язык ассемблера

• Ассемблер, Линкер (компоновщик), Отладчик

3. Уровень ОС

• Этот уровень и ниже — системное программирование

2. Машинный код (Instruction Set Arch, ISA)

•ОЗУ, Системная шина, ЦП

1. Микрокод процессора (микроархитектура)

• Внутренняя шина, Тракт данных, АЛУ

0. Схемы цифровой логики

• Логические вентили и схемы

-1. Уровень физических устройств

• Сфера электронной техники и радиофизики

Терминология

- Транзисторы
- Вентили

Интегральные схемы

Схемы логических вентилей (logic gates)

Инвертор, вентиль NOT

Α	Х
0	1
1	0

Схемы логических вентилей (logic gates)

■ Вентиль NAND

Α	В	Х	
0	0	1	
0	1	1	
1	0	1	
1	1	0	

Схемы логических вентилей (logic gates)

■ Вентиль NOR

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

Логические вентили (ANSI)

Α	Х
0	1
1	0

Α	В	Х
0	0	1
0	1	1
1	0	1
1	1	0

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	0

Α	В	Х
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	Х
0	0	0
0	1	1
1	0	1
1	1	1

Функция 3-большинства

Α	В	С	М
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

 $M = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC.$

Алгоритм построения схемы 3-большинства

- Составить таблицу истинности, выписать СДНФ или СКНФ
- Включить в схему инверторы (NOT)
- Нарисовать вентиль И для каждой строки таблицы истинности с результатом 1.
- Соединить вентили И с соответствующими входными сигналами
- Вывести выходы всех вентилей И, направить их на вход вентиля ИЛИ

Базисные функции

NOT, AND, OR

через

NAND и NOR

Эквивалентность схем

Α	В	С	AB	AC	AB + AC
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1

Α	В	С	Α	B + C	A(B + C)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

ИСКЛЮЧАЮЩЕЕ ИЛИ

Α	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

а

Реализация Міс-1

- Комбинаторные схемы
 - АЛУ
 - схема сдвига
 - декодер

- Схемы памяти ("последовательностные")
 - регистры (параллельные, синхронные)
 - память на 512*36 (бит) ≈2Kb
 - регистр сдвига (Mic-2)

Тактовый генератор (УУ)

Полная диаграмма микроархитектуры Mic-1

Сигналы управления памятью (rd, wr, fetch) 3 Декодер с 4 входами MAR и 9 выходами **MDR MPC** PC MBR → Управляющая память объемом 512 × 36 битов для хранения SP 9 микропрограммы LV **JMPC** MIR CPP АЛУ МВ Addr J С TOS JAMN/JAMZ OPC Старший Шина В бит Сигналы 1-разрядный управления триггер Управление АЛУ АЛУ Ζ Разрешающий сигнал Схема сдвига ◄ на шину В 2 Шина С Сигнал записи с шины С в регистр

Декодер

п входов

2ⁿ выходов

пример:

3 входа

8 выходов

Мультиплексор

2ⁿ входов n упр. линий один выход

пример: 8-мультиплексор

Реализация функции 3-большинства

Α	В	С	М
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Компаратор

2ⁿ входоводин выходпример:4-компаратор

Арифметические схемы Схема сдвига

Сумматоры (полусумматор)

Α	В	Сумма	Перенос	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Α

В

Полный сумматор

Вход переноса	Сумма	Выход переноса
0	0	0
1	1	0
0	1	0

Одноразрядное АЛУ

Код команд:

- 0 A **AND** B
- 1 A **OR** B
- 2 **NOT** B
- 3 A + B

Управляющие входы АЛУ

Код команд:

0 A AND B

1 A **OR** B

2 **NOT** B

3 A + B

F _o	F,	ENA	ENB	INVA	INC	Функция
0	1	1	0	0	0	A
0	1	0	1	0	0	В
0	1	1	0	1	0	Ā
1	0	1	1	0	0	B
1	1	1	1	0	0	A + B
1	1	1	1	0	1	A + B + 1
1	1	1	0	0	1	A + 1
1	1	0	1	0	1	B + 1
1	1	1	1	1	1	B - A
1	1	0	1	1	0	B - 1
1	1	1	0	1	1	-A
0	0	1	1	0	0	АИВ
0	1	1	1	0	0	А ИЛИ В
0	1	0	0	0	0	0
0	1	0	0	0	1	1
0	1	0	0	1	0	-1

Интегральные схемы

- МИС (малая интегральная схема) от 1 до 10 вентилей;
- СИС (средняя интегральная схема) от 1 до 100 вентилей;
- БИС (большая интегральная схема) от 100 до 100 000 вентилей;
- СБИС (сверхбольшая интегральная схема) более 100 000 вентилей.

Интегральные схемы

- **DIP** (Dual Inline Package) корпус с двумя рядами контактов для впайки в отверстия в печатной плате.
- QFP (Quad Flat Package) плоский корпус с четырьмя рядами контактов для поверхностного монтажа.
- **PGA** (Pin Grid Array) корпус с матрицей выводов. Представляет собой квадратный или прямоугольный корпус с расположенными в нижней части штыревыми контактами.
- **LGA** (Land Grid Array) представляет собой корпус PGA, в котором штырьковые контакты заменены на контактные площадки.

Программируемая логическая матрица

Домашнее задание

■ Подготовка к тесту по лекции

- раздел книги Таненбаума и Остина оптимизация Mic1 (стр. 313-357)
- раздел книги Таненбаума и Остина цифровой уровень (стр. 172-193).