Homework 6 Solution

Spring 2018

1

Suppose we want to make change for n cents and the only denominations allowed are 1, 10, and 25 cents (infinite amount).

 \mathbf{a}

Find an example such that the greedy algorithm does not find the minimum number of coins required to make change for n cents (give a concrete counterexample).

Using the greedy algorithm to make change for n = 30 cents does not yield the smallest amount of coins. The greedy algorithm suggests that we take one quarter and five pennies, however, the minimum amount is actually three dimes.

b

Is it possible to design a coin system (a set of possible denominations) such that a greedy algorithm yields an optimal solution? If so, find such an example with at least 3 denominations.

The coin set $\{25, 10, 5, 1\}$ always yields an optimal solution. Other working coin systems include sets that all numbers are a multiple of all smaller numbers in the same set, such as $\{1, 2, 4, 8\}$, $\{1, 2, 6, 12\}$ etc.

 $\mathbf{2}$

What is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers?

a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

Can you generate your answer to find the optimal code when the frequencies are the first n Fibonacci numbers?

An optimal Huffman code for the first 8 Fibonacci numbers are as follows:

h: 0

g: 10

f: 110

e: 1110

d: 11110

c: 111110

b: 1111110

a: 1111111

Let 1^i here indicate there are i amount of repeating 1 bits. An optimal code when the frequencies are the first n Fibonacci numbers follow this pattern:

nth character: 0

*i*th character: $1^{n-i}0$

1st character: 1^{n-1}

3

For the given graph below, show the three representations of the graph according to how we discussed in class.

Adjacency Matrix:

	a	b	c	d	e	f	g	h	i	j
a	0	1	0	0	1	1	0	0	0	0
b	1	0	1	0	0	0	1	0	0	0
c	0	1	0	1	0	0	0	1	0	0
d	0	0	1	0	1	0	0	0	1	0
e	1	0	0	1	0	0	0	0	0	1
f	1	0	0	0	0	0	0	1	1	0
g	0	1	0	0	0	0	0	0	1	1
h	0	0	1	0	0	1	0	0	0	1
i	0	0	0	1	0	1	1	0	0	0
j	0	0	0	0	1	0	1	1	0	0

Adjacency List:

$$A \to B \to E \to F$$

$$B \to A \to C \to G$$

$$C \to B \to D \to H$$

$$\mathrm{D} \to \mathrm{C} \to \mathrm{E} \to \mathrm{I}$$

$$E \to A \to D \to J$$

$$F \to A \to H \to I$$

$$G \to B \to I \to J$$

$$H \to C \to F \to J$$

$$I \to D \to F \to G$$

$$J \to E \to G \to H$$

Incidence Matrix:

	ab	bc	cd	de	ea	af	bg	ch	di	ej	gj	jh	hf	fi	ig
a	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
b	1	1	0	0	0	0	1	0	0	0	0	0	0	0	0
c	0	1	1	0	0	0	0	1	0	0	0	0	0	0	0
d	0	0	1	1	0	0	0	0	1	0	0	0	0	0	0
е	0	0	0	1	1	0	0	0	0	1	0	0	0	0	0
f	0	0	0	0	0	1	0	0	0	0	0	0	1	1	0
g	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1
h	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0
i	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
j	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0

Would you consider this graph sparse? If so, why? Justify your answer.

This graph is sparse. There are 10 vertices with only 15 edges. A dense matrix would have much closer to the maximum amount of edges, which for this graph would be: $\frac{10*9}{2} = 45$ edges.

4

Suppose we have n students in a class and a list of r student pairs to indicate the two people have dated before. A date only involves two people here. Give an $\mathcal{O}(n+r)$ -time algorithm that determines whether it is possible to group students into two groups such that no one has ever dated someone from the same group.

This is a test of whether or not a graph is bipartite:

Start from any vertex v_1 and color it red.

Color neighbors of v_1 blue.

Proceed by coloring all neighbors of an already colored vertex the opposite color.

If a contradiction occurs, then it is not bipartite, and it is not possible to make this grouping.

Otherwise, this will complete in $\mathcal{O}(n+r)$.

One can use DFS to determine whether or not a given undirected graph G = (V, E) contains a cycle. Does the DFS here run in $\mathcal{O}(|V| + |E|)$ time or just $\mathcal{O}(|V|)$, independent of |E| time?

A graph is acyclic if a DFS yields no back edges. In an acyclic forest, there are at most |V|-1 edges. Therefore, $|E| \leq |V|-1$ and if we encounter |V| edges, then we know to stop, since we have encountered a cycle. Thus, this runs in $\mathcal{O}(|V|)$.