Matemática B - ONG em Ação

Gustavo Henrique Silva Sarturi
Bacharelado em Matemática Industrial - UFPR
gustavo.sarturi@ufpr.br

1 Operações Aritméticas e Algébricas Elementares

1.1 Conjuntos Numéricos

Os conjuntos numéricos é algo de extrema importância na Matemática, é uma das partes mais fundamentais da Matemática e com notórias aplicações em todas em grande parte das áreas de estudo da Matemática. Atualmente, os conjuntos englobam os Naturais, Inteiros, Racionais, Irracionais, Reais e Complexos, que são denotados respectivamente por \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{I} , \mathbb{R} e \mathbb{C} . À princípio, iremos trabalhar até o corpo dos Reais (seja lá o que for corpo, no momento). Vamos ilustrar como são tais conjuntos citados.

- **Naturais** \mathbb{N} : $\{1, 2, 3, 4, 5, \cdots\}$
- Inteiros \mathbb{Z} : $\{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$
- Racionais \mathbb{Q} : $\{\frac{p}{q}|p,q\in\mathbb{Z} \text{ e } q\neq 0\}$
- Irracionais I : É o subconjunto dos números reais que não podem ser obtidos através da divisão de dois números inteiros.
- **Reais** \mathbb{R} : Engloba todos os subconjuntos anteriores.
- Complexos \mathbb{C} : Engloba todos os subconjuntos anteriores e os números imaginários 1, i, -1, -i. A ênfase neles será dada brevemente.

2 Operações Aritméticas:

Definição 2.1. Dados dois números racionais $r = \frac{m}{n}$ e $s = \frac{p}{q}$, definimos:

1.

$$r+s = \frac{m}{n} + \frac{p}{q} = \frac{mq + np}{nq}$$

2.

$$r \cdot s = \frac{m}{n} \cdot \frac{p}{q} = \frac{mp}{nq}$$

Observação 2.1. Para o conjunto dos reais, sejam $a,b,c \in \mathbb{R}$, são válidos as seguintes operações:

- 1. a+b=b+a (Associatividade da adição);
- 2. a + (b + c) = (a + b) + c (Comutatividade da adição);
- 3. a+0=a (Existência do Elemento Neutro da Adição);
- *4.* $\exists (-a) \in \mathbb{R} | a + (-a) = 0$ (*Elemento Simétrico*)
- 5. $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (Associatividade do produto);
- 6. $a \cdot b = b \cdot a$ (Comutatividade do produto);
- 7. $a \cdot 1 = a$ (Existência do Elemento Neutro do Produto);
- 8. $\exists a^{-1} \in \mathbb{R} | a \cdot a^{-1} = 1$ (Elemento Inverso);
- 9. $a \cdot (b+c) = ab + ac$ (Distributividade);

2.1 Potências e Radiciação

2.1.1 Potenciação

Definição 2.2. Seja $a, n \in \mathbb{R}$ definimos potência de base a e expoente n o número a^n ta que:

$$\begin{cases} a^0 = 1, \forall a \in \mathbb{R}^* \\ a^n = a^{n-1} \cdot a \end{cases} \Gamma$$

Decorre imediatamente da definição que: Sendo $n \in \mathbb{N}$ e $n \ge 2$ temos no entanto que a^n é o produto de n fatores iguais a a, no caso:

Propriedades:

- $a^m \cdot a^n = a^{m+n}$
- $\frac{a^m}{a^n} = a^{m-n}, \forall a \neq 0$
- $(a \cdot b)^n = a^n \cdot b^n \text{ com } b \neq 0 \text{ ou } n \neq 0$
- $(\frac{a}{b})^n = \frac{a^n}{b^n}, b \neq 0$
- $(a^m)^n = a^{m \cdot n}$

Definição 2.3. Dado um número real a, não nulo, e um número n natural, define-se a potência a^{-n} pela relação:

$$a^{-n} = \frac{1}{a^n}$$

ONG EM AÇÃO

2.1.2 Radiciação

Dados um número real $a \ge 0$ e um número natural $n, n \ge 1$, é demonstrável que existe sempre um número real positivo ou nulo b tal que $b^n = a$. Ao número b chamaremos de raíz enérsima aritmética de a e indicamos pelo símbolo $\sqrt[n]{a}$, onde a é o radicando e n é o índice (ou radical). Assim, temos a seguinte definição:

Definição 2.4. A **Potência de Expoente Racional** de $a \in \mathbb{R}_+^*$ e $\frac{p}{q} \in \mathbb{Q}$ com $p \in \mathbb{Z}$ e $q \in \mathbb{N}$, define-se como potência de base a e expoente $\frac{p}{q}$ pela relação:

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}$$

Uma observação muito importantíssima, $\sqrt{36} = 6$ e não ± 6 , porém, $\pm \sqrt{36} = \pm 6$, pois note que o radical não é o culpado pelo sinal que antecede. Isso é muito importante por definimos $a \ge 0$.

Propriedades

Decorre imediatamente da definição e propriedades da potenciação que, se $a \in \mathbb{R}_+$, $b \in \mathbb{R}_+$, $m \in \mathbb{Z}$, $n \in \mathbb{N}^*$ e $p \in \mathbb{N}^*$,temos:

- $\sqrt[n]{a^m} = \sqrt[n \cdot p]{a^{m \cdot p}}$ para $a \neq 0$ ou $m \neq 0$
- $\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$
- $\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ para $b \neq 0$
- $(\sqrt[n]{a})^m = \sqrt[n]{a^m}$ para $a \neq 0$ ou $m \neq 0$
- $\sqrt[p]{\sqrt[n]{a}} = \sqrt[p \cdot n]{a}$

2.2 Exercícios

- 1. Utilizando as propriedades apresentadas, mostre que $a^0 = 1$, $\forall a \in \mathbb{R}^*$.
- 2. Calcule

(a)
$$(-3)^3$$
 (b) $(-2)^1$ (c) $(-\frac{1}{3})^4$ (d) $(-\frac{1}{3})^4$ (e) $(\frac{2}{3})^3$ (f) $(-\frac{1}{3})^4$ (g) $(\frac{1}{2})^3$ (g) $(\frac{1}{2})^3$ (g) $(\frac{1}{2})^3$ (e) $(\frac{1}{3})^4$ (f) $(-\frac{1}{3})^4$ (g) $(-\frac{1}{3})^4$ (g) $(-\frac{1}{3})^4$ (g) $(-\frac{1}{3})^4$ (e) $(-\frac{1}{3})^4$ (f) $(-\frac{1}{3})^4$ (g) $(-\frac{1$

3. Classifique em verdadeiro (V) ou falso (F) cada uma das sentenças abaixo:

(a)
$$5^3 \cdot 5^2 = 5^6$$
 (d) $(2+3)^4 = 2^4 + 3^4$ (h) $5^2 - 4^2 = 3^2$ (k) $\pi^1 + \pi^{-1} = 1$
(b) $\frac{3^6}{3^2} = 3^3$ (e) $(5^3)^2 = 5^6$ (i) $(5^3)^{-2} = 5^{-6}$ (l) $\frac{5^2}{5^{-6}} = 5^8$ (c) $2^3 \cdot 3 = 6^3$ (g) $\frac{2^7}{2^5} = (-2)^2$ (m) $(2^{-3})^{-6} = 2^6$

4. Simplifique as expressões, supondo $a \cdot b \neq 0$

(a)
$$(a^2 \cdot b^3)^2 \cdot (a^3 \cdot b^2)^3 \qquad \frac{(a^4 \cdot b^2)^3}{(a \cdot b^2)^2}$$

ONG EM AÇÃO

(c)
$$[(a^3 \cdot b^2)^2]^3 \qquad \qquad \frac{(a^2 \cdot b^3)^4 \cdot (a^3 \cdot b^4)^2}{(a^3 \cdot b^2)^3}$$
 (d)
$$\left(\frac{a^4 \cdot b^3}{a^2 \cdot b}\right)^5 \qquad \qquad \frac{(a^3 \cdot b^{-2})^{-2} \cdot (a \cdot b^{-2})^3}{(a^{-1} \cdot b^2)^{-3}}$$

- 5. Se a e b são números reais, então, em que condições $(a+b)^2 = a^2 + b^2$?
- 6. Determine o menor número inteiro positivo x para que $2940 \cdot x = M^3$, em que M é um número inteiro.
- 7. Simplifique os radicais:

(a)
$$\sqrt[3]{64}$$
 (d) $\sqrt[3]{2^7}$ (g) $\sqrt{324}$ (j) $\sqrt{18}$ (m) $\sqrt[4]{512}$ (b) $\sqrt{576}$ (e) $\sqrt{144}$ (h) $\sqrt{196}$ (k) $\sqrt{128}$ (c) $\sqrt{12}$ (f) $\sqrt[3]{729}$ (i) $\sqrt[4]{625}$ (l) $\sqrt[3]{72}$

8. Simplifique as expressões:

(a)
$$\sqrt{8} + \sqrt{32} + \sqrt{72} - \sqrt{50}$$

(b) $5\sqrt{108} + 2\sqrt{243} - \sqrt{27} + 2\sqrt{12}$
(c) $\sqrt{20} - \sqrt{24} + \sqrt{125} - \sqrt{54}$

(d)
$$\sqrt{2000} + \sqrt{200} + \sqrt{20} + \sqrt{2}$$

(e)
$$\sqrt[3]{128} - \sqrt[3]{250} + \sqrt[3]{54} - \sqrt[3]{16}$$

(f)
$$\sqrt[3]{375} - \sqrt[3]{24} + \sqrt[3]{81} - \sqrt[3]{192}$$

(g)
$$a\sqrt[3]{ab^4} + b\sqrt[3]{a^4b} + \sqrt[3]{a^4b^4} - 3ab\sqrt[3]{ab}$$

9. Simplifique:

(a)
$$\sqrt{81x^3}$$
 (b) $\sqrt{45x^3y^2}$ (c) $\sqrt{12x^4y^5}$ (d) $\sqrt{8x^2}$

10. Reduza ao mesmo índice:

(a)
$$\sqrt{3}$$
, $\sqrt[3]{2}$ e $\sqrt[4]{5}$ (c) $\sqrt{3}$, $\sqrt[3]{4}$, $\sqrt[4]{2}$, $\sqrt[6]{5}$ (e) $\sqrt[3]{3^2}$, $\sqrt{2^3}$, $\sqrt[5]{5^4}$, $\sqrt[6]{2^5}$ (b) $\sqrt{2}$, $\sqrt[3]{5}$ e $\sqrt[5]{3}$ (d) $\sqrt[3]{2^2}$, $\sqrt{3}$, $\sqrt[4]{5^3}$

[11-50] Efetue as operações indicadas com as raízes:

11.
$$\sqrt{3} \cdot \sqrt{12}$$

12. $\sqrt[3]{24} : \sqrt[3]{3}$
13. $\sqrt{\frac{3}{2}} : \sqrt{\frac{1}{2}}$
14. $\sqrt{3} \cdot \sqrt[3]{2}$
17. $\sqrt{2} \cdot \sqrt{18}$
18. $\sqrt{2} \cdot \sqrt{15} \cdot \sqrt{30}$
19. $\sqrt[3]{2} \cdot \sqrt[3]{6} \cdot \sqrt[3]{18}$
20. $\sqrt{2} \cdot \sqrt{6}$

15.
$$\sqrt[3]{4} : \sqrt[4]{2}$$
 21. $\sqrt{6} \cdot \sqrt{12}$

16.
$$\sqrt[3]{\frac{5}{2}} : \sqrt[5]{\frac{1}{2}}$$
 22. $\sqrt[3]{4} \cdot \sqrt[3]{6}$

23.
$$\sqrt{\frac{6}{3}}$$

24.
$$\sqrt{24}$$
: $\sqrt{6}$

25.
$$\sqrt[3]{10}$$
: $\sqrt[3]{2}$

26.
$$\sqrt{2} \cdot \sqrt[3]{2}$$

27.
$$\sqrt[3]{3} \cdot \sqrt[4]{2} \cdot \sqrt{5}$$

28.
$$\sqrt[3]{3}$$
: $\sqrt{2}$

29.
$$\sqrt{2}:\sqrt[3]{2}$$

30.
$$\frac{\sqrt{2} \cdot \sqrt[3]{2}}{\sqrt[4]{2}}$$

31.
$$\frac{\sqrt[4]{5} \cdot \sqrt[3]{6}}{\sqrt{15}}$$

32.
$$(\sqrt{12} - 2\sqrt{27} + 3\sqrt{75}) \cdot \sqrt{3}$$

33.
$$(3+\sqrt{2})\cdot(5-3\sqrt{2})$$

34.
$$(5-2\sqrt{3})^2$$

35.
$$2\sqrt{3} \cdot (3\sqrt{5} - 2\sqrt{20} - \sqrt{45})$$

36.
$$(\sqrt{20} - \sqrt{45} + 3\sqrt{125}) : 2\sqrt{5}$$

37.
$$(6+\sqrt{2})\cdot(5-\sqrt{2})$$

38.
$$(3+\sqrt{5})\cdot(7-\sqrt{5})$$

39.
$$(\sqrt{2}+3)\cdot(\sqrt{2}-4)$$

40.
$$(2\sqrt{3}+3\sqrt{2})\cdot(5\sqrt{3}-2\sqrt{2})$$

41.
$$(2\sqrt{3}+3\sqrt{2})\cdot(5\sqrt{3}-2\sqrt{2})$$

42.
$$(1-\sqrt{2})^4$$

43.
$$(4-\sqrt{5})^2$$

44.
$$(2\sqrt{5} - 4\sqrt{7}) \cdot (\sqrt{5} + 2\sqrt{7})$$

45.
$$(3+\sqrt{2})^2$$

46.
$$(4\sqrt{8}-2\sqrt{18}:\sqrt[3]{2})$$

47.
$$(3\sqrt{12} + 2\sqrt{48}) : \sqrt[4]{3}$$

48.
$$\sqrt{\sqrt{2}-1} \cdot \sqrt{\sqrt{2}+1}$$

49.
$$\sqrt{7+\sqrt{24}} \cdot \sqrt{7-\sqrt{24}}$$

50.
$$\sqrt{2} \cdot \sqrt{2 + \sqrt{2}} \cdot \sqrt{2 + \sqrt{2 + \sqrt{2}}} \cdot \sqrt{2 - \sqrt{2 + \sqrt{2}}}$$

Funções Polinomiais do 1° e 2° grau 3

1. Construa o gráfico cartesiao das funções de \mathbb{R} em \mathbb{R} .

(a)
$$y = 2x - 1$$

(b)
$$y = x + 2$$

(c)
$$y = 3x + 2$$

(d)
$$y = \frac{2x-3}{2}$$

(e)
$$y = -3x - 4$$

(f)
$$y = -x + 1$$

(g)
$$y = -2x + 3$$

(h)
$$y = \frac{4-3x}{2}$$

2. Resolva analitcamente e graficamente o sistema de equações:

(a)

$$\begin{cases} x - y = -3 \\ 2x + 3y = 4 \end{cases}$$

(d)
$$\begin{cases} 2x - 5y = 9 \\ 7x + 4y = 10 \end{cases}$$

(e)
$$\begin{cases} 4x + 5y = 2 \\ 6x + 7y = 4 \end{cases}$$
(f)
$$\begin{cases} x + 2y = 1 \\ 2x + 4y = 3 \end{cases}$$

(b)
$$\begin{cases} x+y=5\\ x-y=1 \end{cases}$$

(f)
$$\begin{cases} x + 2y = 1 \\ 2x + 4y = 1 \end{cases}$$

(c)
$$\begin{cases} 3x - 2y = -14 \\ 2x + 3y = 8 \end{cases}$$

$$(g) \begin{cases} 2x + 5y = 0 \\ 3x - 2y = 0 \end{cases}$$

3. Resolva os sistemas de equações:

(a)
$$\begin{cases} \frac{1}{x-y} + \frac{1}{x+y} = \frac{3}{4} \\ \frac{1}{x-y} - \frac{1}{x+y} = -\frac{1}{4} \end{cases}$$

$$\begin{cases} \frac{3}{x+y+1} - \frac{2}{2x-y+3} = \frac{5}{12} \\ \frac{2}{x+y+1} + \frac{3}{2x-y+3} = 1 \end{cases}$$

- 4. Obtenha a equação da reta que passa pelos pontos:
 - (a) (2,3) e (3,5)
 - (b) (1,-1) e (-1,2)
 - (c) (3,-2) e (2,-3)
 - (d) (1,2) e (2,2)

Mais exercícios serão atualizados em breve...

4

Referências