# PROJET TRAFFIC RENNES

<u>Équipe</u>
Zaina TOIBIBOU
Khaly NIANG
Frédéric DUARTE

#### Sommaire

- Introduction
- Architecture de la solution finale
- Etape 1 : le transfert des données
- Etape 2 : la réalisation de dashboards
- Démo
- Amélioration
- Méthodologie de travail

#### Introduction

- Client : Transport Rennes
- Besoin : visualiser le trafic en temps réel de l'agglomération rennaise

- Limites:
  - Source de données : api rennesmetropole
    - Màj toutes les 3 minutes, 1000 exportations par appel, niveau de confiance >= 50%
  - Utilisation de la suite ELK + python

#### Introduction

#### Représentation applicative de la solution



#### Architecture de la solution finale



un fichier batch permettant d'exécuter le programme python

# Le transfert des données (1): fonctionnement

Outils: python (+ batch en complément)

3 sous-étapes :

- 1. appel à l'api et récupération des données en json
- nettoyage de ces données
  - filtrage de 1er niveau pour ne garder que le contenu du champ « records » ce champ contient les données de trafics
  - filtrage de 2nd niveau pour « traveltimereliability >= 50 »

- - connection à elasticsearch
- définition du mapping adéquat pour les champs géospatiales fields.geo\_point\_2d, fields.geo\_shape (routes), geometry.coordinates création d'un index vide sous elasticsearch

  - export des données vers elasticsearch

# Le transfert des données (2) : paramètrisation

Le fichier des paramètres : trafficrennes\_transfertdata\_parameters.txt

| Paramètre             | Définition                             | Туре           | Par défaut     |
|-----------------------|----------------------------------------|----------------|----------------|
| index_name            | nom de l'index                         | string         | traffic_rennes |
| index_init            | créer ou mettre-à-jour l'index         | boolean        | False          |
| traffic_nb_rows       | nombre de ligne par requête api        | integer        | 1000           |
| traffic_reliability   | niveau de confiance des données en %   | integer        | 50             |
| traffic_time_interval | durée d'attente entre chaque flux en s | integer / eval | 60*3           |
| traffic_time_max      | durée total du flux-continue en s      | integer / eval | 60*60*2        |

# Le transfert des données (3) : paramètrisation

• Le fichier de batch : .trafficrennes\_transfertdata\_run.bat

| Paramètre     | Définition                           | Туре | Par défaut                                 |  |
|---------------|--------------------------------------|------|--------------------------------------------|--|
| python_exe    | e chemin vers l'exécutable de python |      | python                                     |  |
| python_script | chemin vers le programme python      |      | trafficrennes_transfertdata.py             |  |
| params_file   | chemin vers le fichier des paramèt   |      | trafficrennes_transfertdata_parameters.txt |  |

- Autres fichiers :
  - trafficrennes\_transfertdata.py : programme python
  - o trafficrennes\_transfertdata\_utils.py: code python avec les fonctions personnalisés

# Le transfert des données (4) : suivi et test

- Log affiché dans le terminal, avec :
  - o Informations sure les paramètres
  - o Heure de début/fin de chaque étape importantes
- Tests:
  - o Si l'api répond
  - Si le serveur elastic est actif
  - Si tous les fichiers nécessaires existent
  - o Si le type des paramètres de configuration sont ok et si leurs valeurs sont cohérentes
  - o → unitest-v3.py: programme python qui réalise les test
  - Traitement d'erreurs du programme principale :
    - Si le serveur elastic n'est pas actif → arrêt
    - Si l'api ne répond pas → on retourne un json vide (et on passe au flux suivant)

# Démo

- Prérequis :
  - o server elasticsearch et kibana actifs
  - o Python3

### Amélioration (1): Evolution de la Solution



- 1. Réalisation d'un formulaire plus intuitif que l'édition d'un fichier texte
- 2. Les données sont sauvegardées au format json
- 3. l'avantage de JSON est qu'il est utilisé pour sérialiser et transmettre des données structurées.

#### Amélioration (2): Solution abandonnée



- 1. Fichier de configuration pour démarrer Logstash, de créer un pipeline et définir les paramètres
- 2. Le plugin HTTP Poller permet d'appeler une HTTP API, de décoder la sortie de celle-ci en événements et de les envoyer à ElasticSerarch
- 3. Le mappage des données ne nous a pas donné un résultat prévisionnel.

#### Installation ? Guide ? ou Demo

- 1. Libraire Elastisearch pour python
- 2. Scheduler de windows
- 3. lancement automatique du fichier batch
- 4. Ouvrir docker, port 9000
- 5. Accès au dashboard de kibana port 5600



DevOps :o Git



# Fin

• Des questions?