Cognome, nome e firma:

Codice Persona:

DOMANDE A RISPOSTA MULTIPLA

Una e una sola delle cinque affermazioni è corretta. Indicarla con una croce.

Per annullare una risposta già data, racchiudere la croce in un cerchio.

1. (2 punti) Siano a_n, b_n due successioni asintotiche: $a_n \sim b_n$ per $n \to +\infty$. Quali fra le seguenti affermazioni **NON È** necessariamente vera?

- a) $a_n b_n \to 0$;
- b) $b_n^4 \sim a_n^4$;
- c) $7a_n \sim 7b_n$;
- d) $\frac{a_n}{b_n} \to 1$;
- e) $a_n = b_n + o(b_n)$

2. (2 punti) La funzione $F(x) = \int_0^x \sqrt[3]{e^{2t} - 1} dt$

- a) non è derivabile in x = 0;
- b) ha un flesso in x = 0;
- c) ha un minimo locale in x = 0;
- d) ha un massimo locale in x = 0;
- e) nessuna delle altre risposte è corretta.

3. (2 punti) Quale tra le funzioni seguenti ha un grafico compatibile con il grafico in figura vicino a (cioè in un intorno di) x = 0?

- a) $x \sin x^{\frac{2}{3}}$;
- b) $x \log(x+1)$;
- c) $x^{-\frac{1}{5}} \arctan x$
- d) $(e^x 1)^{\frac{1}{5}} x^{\frac{2}{5}};$
- e) nessuna delle funzioni assegnate.

4. (2 punti) Sia $\alpha \in \mathbb{R}$ e

$$\lambda = \lim_{x \to 0} \frac{2\cos x + e^{x^2} - 3}{x^{\alpha}}$$

Allora λ esiste finito ed è diverso da 0 se e solo se

- a) $\alpha = 1$;
- b) $\alpha = 2;$
- c) $\alpha = 3$;
- d) $\alpha = 4$;
- e) nessuna delle altre risposte è corretta.

5. (1 punto) Di seguito sono riportati i termini generali di diverse successioni. Quale di esse tende a e per $n \to \infty$?

- a) $e^{\frac{\log n}{n}}$;
- b) $e^{n \log(1 + \frac{1}{n})}$;
- c) $e^{\sqrt{n}}$;
- $d) \left(1 + \frac{1}{n^2}\right)^n;$
- e) nessuna.

6. (1 punto) L'insieme $\{z \in \mathbb{C} : |z| = \bar{z}\}$ e'

- a) una circonferenza;
- b) una retta;
- c) una semiretta;
- d) una parabola;
- e) nessuna delle altre risposte è corretta.

 ${\bf 7}$ (1 punto) Sia f una funzione strettamente monotona su un insieme I. È vero che

- (a) se $I = \mathbb{R}$, f è sempre illimitata;
- (b) se $I = [a, b), f(a) = \min f$ oppure $f(a) = \max f$;
- (c) f e' necessariamente continua su I;
- (d) se I = [a, b), allora $f(a) = \min f$;
- (e) nessuna delle altre risposte è corretta.

8. (1 punto) Sia

$$A = \left\{ \frac{1}{e} \right\} \cup \left\{ \frac{1}{n} \, : \, n \in \mathbb{N}, n \ge 1 \right\}.$$

Allora

- a) inf A non esiste in $\mathbb{R}^* = \mathbb{R} \cup \{\pm \infty\}$;
- b) $\inf A = \min A$;
- c) $\inf A = 0$;
- d) inf $A = \frac{1}{e}$;
- e) inf $A = -\infty$.
- 9. (1 punto) Il numero complesso $(-1+i)^{18}$ è uguale a
 - a) -2^9i ;
 - b) 2^9 ;
 - c) -2^9 ;
 - d) $2^8\sqrt{2} 2^8\sqrt{2}i$;
 - e) $-2^8\sqrt{2} + 2^8\sqrt{2}i$.
- **10** (1 punto) Dato $\alpha \in \mathbb{R}$ sia

$$\sum_{n=1}^{\infty} \frac{\arctan n}{n^{\alpha} \sin \frac{1}{n}}.$$

La serie converge se e solo se

- a) $\alpha > -1$;
- b) $\alpha > 0$;
- c) $\alpha > 1$;
- d) $\alpha > 2$;
- e) nessuna delle altre risposte è corretta..

TEORIA

T1. (1 punti) Data una funzione $f:(a,b)\to\mathbb{R}$ e $x_0\in(a,b)$, dare la definizione di $\lim_{x\to x_0^+}f(x)=-\infty$.

T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	na del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	na del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	na del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	na del Test di M	onotonia (solo ne	l caso di funzion	i monotone
T3. (3 punti) crescenti).	Enunciare e din	nostrare il Teorei	ma del Test di M	onotonia (solo ne	l caso di funzion	i monotone

ESERCIZI

E1. (5 punti) Sia f la funzione definita da

$$f(x) = |x| \sqrt[3]{\frac{x}{x-2}},$$

- \bullet Determinare il dominio e studiare la continuità di f. Determinare gli zeri e il segno di f.
- Calcolare i limiti di f al bordo del dominio e determinare eventuali asintoti orizzontali e verticali (non si richiede di determinare eventuali asintoti obliqui).
- ullet Studiare la derivabilità di f e calcolare la derivata dove possibile.
- \bullet Studiare la monotonia di f, discutendo la presenza di estremi locali e globali.
- Tracciare un grafico qualitativo della funzione f (non è richiesto lo studio della derivata seconda).

$$\int_{e^2}^{e^3} \frac{dx}{x(1 - \log x)(\log x)^2}.$$

E3. (3 punti) Stabilire se il seguente integrale generalizzato esista finito

$$\int_{1}^{\infty} \frac{(\log x)^{\frac{1}{2}}}{e^x - e} \, dx.$$