Machine Learning (BITS F464)

Assignment-3 (Naive Bayes Classifier)

Submitted on-> 23/11/2016

Submitted to -> Dr. N.L.Bhanu Murthy

Submitted by->

JVN Swetha	2014A7PS128H
Wajeeha Fathima	2014A7PS131H
Ayushi Behl	2014A7PS145H
Soamya Agrawal	2014A7PS185H

Training of faces ->

Our naive Bayes model has several parameters to estimate. One parameter is the prior distribution over labels (face/not-face represented in binary, 1 being face and 0 being non-face in "facedatatrainlabels" file) **P(Y)**.

We can estimate **P(Y)** directly from the training data:

$$\hat{P}(y) = \frac{c(y)}{n}$$

Where **c(y)** is the number of training instances with label y and n is the total number of training instances.

The other parameters to estimate are the conditional probabilities of our features given each label y: $P(F_i \mid Y=y)$. We do this for each possible feature value (fi \in '#',' ').

$$\hat{P}(F_i = f_i | Y = y) = \frac{c(f_i, y)}{\sum_{f_i} c(f_i, y)}$$

Where $\mathbf{c}(\mathbf{f}_i, \mathbf{y})$ is the number of times pixel \mathbf{F}_i took value \mathbf{f}_i in the training examples of class y.

Experimental Settings (Smoothing Constant) ->

Our current parameter estimates are unsmoothed, that is, we are using the empirical estimates for the parameters $P(f_i \mid y)$ These estimates are rarely adequate in real systems. Minimally, we need to make sure that no parameter ever receives an estimate of zero, but good smoothing can boost accuracy quite a bit by reducing overfitting.

The basic smoothing method we'll use here is *Laplace Smoothing* which essentially adds k counts to every possible observation value:

$$P(F_i = f_i | Y = y) = \frac{c(F_i = f_i, Y = y) + k}{\sum_{f_i} c(F_i = f_i, Y = y) + k}$$

If k=0 the probabilities are unsmoothed, as k grows larger the probabilities are smoothed more and more.

Accuracy ->

Smoothing Constant Value	Accuracy
0.001	88.67%
0.01	88.67%
0.05	88%
0.1	88%
0.5	89.34%
1	90.67%
5	86.67%
10	85.34%
50	78%
100	86%

We are getting maximum accuracy when smoothing constant is 1. So value of smoothing constant is set to be 1.

Confusion Matrix ->

For smoothing constant = 1

n=150	Predicted No	Predicted Yes	
Actual No	TN= 68	FP= 9	77
Actual Yes	FN= 5	TP= 68	73
	73	77	

Examples of False Positives (non-faces classified as faces) ->

Non Face Number 15

		##				
		# #				
		#	##			
		#	##			
	#######			##		
	#	###	#	####		
	#	#	#	#		
	#	#	#	#		
	#	# #	#			
	#	#	# #	#		
	#	#	##	#		
	#	#	#	#		
	#	#	#	#		
	#	#	#	#		
	#	#	#	#	###	
	#	#	#	#	#	
	#	#	#	#	#	į
	#	#	#	#	#	į
	#	#	#	#	#	į
	#	#	#	#	#	ė
	#	#	#	#	#	ė
	#	#	#	#	#	į
	# #	#	#		#	
	# #	#	#		#	
	# #	#	#		#	
	# #	#	#		#	
	# #	#	#		#	
	#	#	#	# ##	#	É
	#	#	#	# #	#	4
	#	#	#	##	#	É
	#	#	#	#	#	É
#	#	#	#		#	
#	#	#		#		
#	#	#		#		
#	#	##		#		
#	# #	##		#		
	#	##	# #		#	
	#	#	#	#	#	
	#	 # #	 ##	"	#	
	#	#	##		#	
	#	 # ###	##		#	
			###		#	
	#	# #	###		##### #	L
	**	##	## #	#	""""" "	•
	π#####	#######		#		
		####		#		
			#######	**		
		### ### ##	######################################	+		
		### ##	ш			
			##			

```
Non Face Number 20
      ###
                     #
                       #
                     #
                     # ##
             #
             #
                     #
             #
                     #
             #
                     #
             #
                     #
             #
                     #
             #
                     #
                       ##
                     # #
```

##

##

#

#

#

#

##

###

#

#

#

#

#

#

##

##

#

> # ### # # ## ######## #### ###

Examples of False Negatives -> (faces classified as non-faces) ->

Face Number 20

# #	##	#####	#	#		
	# # # ;		##	#	### ##	
	# # # :	#	#	#	##	#####
	#	## #	#	#####	######	
#	## ##	#	##	#	#	
#	####	#	#	#		
#	# # ##	#	#			
#	#	#	#	#		
#	#	#	#	#		
#	####	#	####	##		
#	#	###	######	#### #		
#	#	###	##		#	
#	#	# ##	#		#	
#	# #	#	#	#	#	
#	#	#	#	#	#	#
#	# #	#	#	#	#	
#	#	#	# #		#	#
#	# #	# #		#	#	
#	#	#	# #		#	#
#	# #	# #		#	#	
#	# #	# #		#	#	
#	# #	# #		#	#	
#### #		# #		#	#	
	# #	#	#		#	#
		==	#		#	#
# # #		#		#	#	
#	# #	###		#######		# #
	# # ###		#		#	
###	#		#	#	#	#
	#	# #	# #		#	#
	#	# #	# #		#	#
	#		##	ш	#	######
	#	#	#	#	#	
	#	#	#	# #	# ######	
	#	####### ##	#	#	####### #	
	#	##	#	#	#	
	#	#	#	#	#	
	#	#	#	#	#	
	#	###	#	#	#	#
####	#	## ####		###		π
ππππ	###### :		ਜਜ	###		
	## ##	пп п		# # #	••	###
	गम ##			π	π	<i>п</i> п п

		#	##		# #	#			
		##	## # #	#		##	#		
##	####	###	##			##	##		
		#	#		#				
		#	#		#				
		#	#		# ##				
		#		####		#	#####		
#	##	#		#		#			
#	#	#		#	#	#			
#	#	#		#	##	#			
#	#	#		#	# #	#			
		#		#####	#	#	#		
		#		#	#	#	#		
		#		##	#	#	#		
		#		# #	## ###		#	##	
		#		# #	## ###		#	##	
		#	#	# #	#	#	#		
		#		#	#	####		#	#
		#		#	#	#	#	#	
		#		#	#	#	#	##	
		#		#	#	#	#		
		#		#	#	#	#		
#	#	#		#	##		#		
#		#		#	# #		#		
#		#		# #	# #		#		

Face Number 28

```
###
       ##
       ##
       #
               ######
       #
       #
               ##
                       #####
#
       #
               ##
                       ##
##
       #
               #
                       #
               #
                       #
                                       #
       #
               ######
                                       #
       #
               ##
                               #
       #
               ##
                               ##
                                       #
       #
               ##
                       ##
                               #
       #
               #
                       # #
                               #
       #
               #
                       #
                               #
                                       #
       #
               #
                       #
                               #
                                       #
                                         ###
###
               #
                       #
                               #
                                       #
                                               ##
       # #
               #
                       # #
                               #
                                       #
                                               #
                                                       ###
       # #
               #
                       ## #
                               #
                                       #
                                                       #
       # #
               #
                       # #
                               #
                                       #
                                               #
                                                       #
       ###
               # # #
                       #
                               #
                                       #
                                               ##
       # #
           #
               # # #
                       #
                               #
                                       #
               # # #
       # #
           #
                       #
                               #
                                       #
       # # #
                       ###
                               #
                                       #
                                               #
       # # #
                       # # #
                               #
                                       ##
                                               ########
       # # #
               #
                       #
                               #
                                 ## #
                       #
                               #
####
               ##
                                       #
                               # ##
                                       #
                       #
               #
                       #
                               #
                                       #
                                               #
                                                       #
# ## #
               # #
                       #
                               #
                                       #
                                               #
####
               # ### #
                               ####
               #
                       ##
                                       #
####
               #
                               #
               #
                               #
                                       #######
               #
                               #
       #
                                       #
                               #
                                       #
####
               #
       ##
               #
                               #
                                       #
       #
               #
                               #
                                       #
#
               #
                               #
                                       #
       #
#
       #
               #
                               #
                                       #
       #
               #
                               #
                                       #
       #
               #
                                       #
                                               # #
       ##
               #
                                       #
                                               ###
       #
               #
                       #
                                       #
                                               #
 # #
       #
               #
                               #
               #
                       #
                                       #
                                               ####
       ##
               #
       #
                       #
                                       #
                                               #
##
       #
               #
                               #
                                       #
                                               #
 #
       #
               #
                       #
                               #
                                       #
 #
       ##
               #
                               #
                                       #
                       #
#
       #
               #
                               #
                                       ##
                       #
#
       #
               ####
                                       # # # ## #
#
       ## #
               #
                               ##
                                       ##
                                               #
               ##
       ##
                               ##
                                       #
       #
               ##
                                       ##
```

#	#		#	#
#	#		#	##
#####			#	#
#######	#		#	#
#			#	#
#			# ##	
# ####			# #	
###	##			###
###		#		
###		####		

Code ->

```
import java.io.*;
public class NaiveBayesClassifier
  public static void main(String[] args) throws IOException
        // reading training data file
        int i = 0, j = 0;
        int face = 0, f = 0;
        // declaring array containing information about pixels of each face
        char ft[][] = new char[451][4200];
        String sCurrentLine;
BufferedReader br = new BufferedReader(new FileReader("E:/3-1/machine learning/ML
Assignment/facedatatrain"));
        while ((sCurrentLine = br.readLine()) != null) {
                if (f == 4200) {
                       f = 0;
                       face++;
                for (j = 0; j < sCurrentLine.length(); j++) {
                       ft[face][f] = sCurrentLine.charAt(j);
                       f++;
               }
        }
        br.close();
        // reading label file to calculate probability of being a face and not
        BufferedReader br1 = new BufferedReader(
                       new FileReader("E:/3-1/machine learning/ML
Assignment/facedatatrainlabels"));
        int train[] = new int[451];
        int facecount = 0, nonfacecount = 0;
        float pf, pnf;
        // setting of smoothconstant
        float smoothk = 1f;
        for (i = 0; i < 451; i++) {
                if (br1.read() == '0') {
                       train[i] = 0;
```

```
nonfacecount++;
                } else {
                       train[i] = 1;
                       facecount++;
                br1.readLine();
        br1.close();
        pf = (float) facecount / (facecount + nonfacecount);
        pnf = (float) nonfacecount / (facecount + nonfacecount);
        // now calculating conditional probabilities
        float condhashfaceprob[] = new float[4200];
        float condspacefaceprob[] = new float[4200];
        int hashcount = 0, spacecount = 0;
        for (i = 0; i < 4200; i++) {
                hashcount = 0;
                spacecount = 0;
                for (j = 0; j < 451; j++) {
                       if (ft[j][i] == '#' && train[j] == 1) {
                               hashcount++;
                       } else if (ft[j][i] == ' ' && train[j] == 1)
                               spacecount++;
               condhashfaceprob[i] = (hashcount + smoothk) / (hashcount + smoothk +
spacecount + smoothk);
                condspacefaceprob[i] = (spacecount + smoothk) / (hashcount + smoothk +
spacecount + smoothk);
        }
        float condhashnonprob[] = new float[4200];
        float condspacenonprob[] = new float[4200];
        for (i = 0; i < 4200; i++) {
                hashcount = 0;
                spacecount = 0;
                for (j = 0; j < 451; j++) {
                       if (ft[j][i] == '#' && train[j] == 0) {
                               hashcount++;
                       } else if (ft[j][i] == ' ' && train[j] == 0)
                               spacecount++;
               }
```

```
condhashnonprob[i] = (float) (hashcount + smoothk) / (hashcount + smoothk +
spacecount + smoothk);
               condspacenonprob[i] = (float) (spacecount + smoothk) / (hashcount + smoothk +
spacecount + smoothk);
        }
        // for testing data
        // reading data from testing file
        i = 0;
       j = 0;
        face = 0;
        f = 0;
        char ftest[][] = new char[150][4200];
        BufferedReader br2 = new BufferedReader(new FileReader("E:/3-1/machine
learning/ML Assignment/facedatatest"));
        while ((sCurrentLine = br2.readLine()) != null) {
               if (f == 4200) {
                       f = 0;
                       face++;
               }
               // System.out.println(f);
               for (j = 0; j < sCurrentLine.length(); j++) {
                       ftest[face][f] = sCurrentLine.charAt(j);
                       f++;
               }
        br2.close();
        // test labels
        BufferedReader br3 = new BufferedReader(
                       new FileReader("E:/3-1/machine learning/ML
Assignment/facedatatestlabels"));
        int actualOutput[] = new int[150];
        int predictedOutput[] = new int[150];
        int tn = 0, fp = 0, fn = 0, tp = 0;
        for (i = 0; i < 150; i++) {
               if (br3.read() == '0') {
                       actualOutput[i] = 0;
               } else {
                       actualOutput[i] = 1;
```

```
br3.readLine();
}
br3.close();
// printing of test labels
        // confusion matrix
double max1[] = new double[150];
double max2[] = new double[150];
for (i = 0; i < 150; i++) {
        max1[i] = Math.log(pf);
        for (j = 0; j < 4200; j++) {
                if (ftest[i][j] == ' ') {
                        max1[i] = max1[i] + Math.log(condspacefaceprob[j]);
                } else if (ftest[i][j] == '#') {
                        max1[i] = max1[i] + Math.log(condhashfaceprob[j]);
                }
        }
}
for (i = 0; i < 150; i++) {
        max2[i] = Math.log(pnf);
        for (j = 0; j < 4200; j++) {
                if (ftest[i][j] == ' ') {
                        max2[i] = max2[i] + Math.log(condspacenonprob[j]);
                } else if (ftest[i][j] == '#') {
                        max2[i] = max2[i] + Math.log(condhashnonprob[j]);
                }
        }
for (i = 0; i < 150; i++) {
        if (max2[i] > max1[i]) {
                predictedOutput[i] = 0;
        } else
                predictedOutput[i] = 1;
}
for (i = 0; i < 150; i++) {
        if (actualOutput[i] == 0 && predictedOutput[i] == 0) {
        } else if (actualOutput[i] == 0 && predictedOutput[i] == 1) {
                fp++;
                System.out.println("false positive occuring at i= " + i);
        } else if (actualOutput[i] == 1 && predictedOutput[i] == 0) {
```