University of Pisa - Computational Health Lab 2023

Project presentation:
A Single Cell data analysis for Chron's Disease with COTAN

Ninniri Matteo (student ID: 543873)

Piras Andrea (student ID: 619640)

Outline

- Introduction to Chron's Disease
- Datasets summary
- Data preprocessing with COTAN
- Clustering & making sense of it
- Gene set enrichment analysis
- Finding new markers
- Single patient analysis

Introduction to Chron's disease

- Healthy
- Not inflamed
- Inflamed

- Chronic gastrointestinal autoimmune disease
- Understand the causes is very complex
- Single-cell RNA sequencing

Datasets summary

- 71 donors
- 25 Healthy
- 46 With the disease
- ~720.000 cells total
- Only samples with > 1000 cells

Data preprocessing with COTAN- Cells and genes. Original After cut Cell count Gene count Patient: TI Immune I104689

Data preprocessing - Cluster B

Data preprocessing - Mitochondrial and UDE

UDE (UMI efficiency detection)

Making sense of the cell clusters

Two approaches:

- Literature search
- Use well known cell types

Stromal

- Activated fibroblast.CCL19+.ADAMDEC1+
- Endothelial cells CA4+ CD36+
- Endothelial cells CD36+
- Endothelial cells DARC+
- Endothelial cells LTC4S+ SEMA3G+
- Fibroblast ADAMDEC1++
- Fibroblast KCNN3+ LY6H+
- Fibroblast NPY+ SLITRK6+
- Fibroblast SFRP2+ SLPI+
- Fibroblast SMOC2+ PTGIS+
- Glial cell
- Inflammatory fibroblasts IL11+ CHI3L1+
- Lymphatics
- Myofibroblast GREM1+ GREM2+
- Myofibroblast HHIP+ NPNT+
- Péricyte HIGD1B+ STEAP4+
- Pericytes RERGL+ NTRK2+
- Stromal Cycling Cells

Immune

- B cell
- B cells AICDA+ LRMP+
- DC1
- DC2 CDID+
- DC2 CDID-
- IELs ID3+ ENTPD1+
- ILCs
- Immune Cycling cells
- Macrophages
- Macrophages CCL3+ CCL4+
- Macrophages CXCL9+ CXCL10+
- Macrophages LYVE1+
- Macrophages Metallothionein
- Macrophages PLA2G2D+
- Mast cells

- Mature DCs
- Monocytes CHI3L1+ CYP27A1+Monocytes S100A8+ S100A9+
- NK cells KLRF1+ CD3G-
- Neutrophils S100A8+ S100A9+
- NK-like cells ID3+ ENTPD1+
- Plasma cells
- T cells CD4+ FOSB+
- T cells CD4+ IL17A+
- T cells CD8+
- T cells CD8+ KLRG1+
- T cells Naive CD4+
- T cells OGT+
- Tregs

Gene Enrichment

Gene Enrichment

How to spot new disease markers?

- 1. Get multiple patients
- 2. Clusterize their enrichment
- 3. For each cell type:
 - a. Intersect the cluster where they appear

To obtain the genes exclusive to a condition, just subtract the union of the other sets from it

- Healthy markers = Healthy / (Not infl. U Infl.)
- Not infl. markers = Not infl. / (Healthy. U Infl.)

• Infl. markers = Infl. / (Healthy U Infl.)

Results

Terminal Ileum Immune dataset: Inflamed samples

- IELs ID3+ ENTPD1+
 - o ANXA2R
- Monocytes S100A8+ S100A9+
 - o THBD
- Neutrophils S100A8+ S100A9+
 - o TCF7L2
- Plasma cells
 - o CD38, COMMD3
- T cells CD4+ FOSB+ & T cells OGT+
 - SOCS1;SLFN5;RARRES3

Results

Terminal Ileum Immune dataset: Non-inflamed samples

- B cells
 - o MX1, HSH2D, AIM2, STAP1
- B cells AICDA+ LRMP+
 - o MX1, HSH2D, AIM2
- DC1
 - o LAMP3
- DC2 CD1D- & DC2 CD1D+
 - o PLSCR1

Results

Terminal Ileum Immune dataset: healthy controls

- B cells & B cells AICDA+ LRMP+
 - o NCF1, PXK
- Macrophages CCL3+ CCL4+
 - LIPA
- Macrophages CXCL9+ CXCL10+
 - o CASP7
- Macrophages LYVE1+
 - o FCGR1A
- Monocytes CHI3L1+ CYP27A1+
 - NDC80, HELZ2, IL15RA STARD5, SLC16A1, PI4K2B

- T cells CD8+ & T cells CD8+ KLRG1+:
 - CCL5, GZMBCCL5, GZMB
- T cells Naive CD4+
 - SUN2, SOCS1, SLFN5, FAM134B, ANXA2R
- Tregs
 - o SUN2, SOCS1, SLFN5, FAM134B
- T cells CD4+ IL17A+
 - o DDX58

Patient-specific markers

Future developments

- Better metrics for clustering
- More K-means iterations for the enrichment (column_km_repeats)

How to determine the optimal number of clusters?

- 1. Enumerate all the cluster combinations
- 2. For each combination:
 - 2.1. For each cell type:
 - 2.1.1. Get the clusters where the cell appears (one for each patient)
 - 2.1.2. Jaccard
 - 2.2. Average the scores
- 3. Optimal combination: the one with the highest average Jaccard