Álgebra Linear (LEI) Sistemas de equações lineares (SEL)

```
abento@1 ::: eamaral@1 ::: gsoares1
```

¹Departamento de Matemática ::: ECT ::: UTAD

Editor: abento@ ::::: Versão de outubro.2020

Sistemas de equações lineares (SEL)

Natureza de um SEL SEL hao homogéneo SEL em notação matricial Redução de um SEL à forma-de-escada e possibilidade Grau de indeterminação de um SEL possível Redução de um SEL à forma-escada-reduzida e SOLUÇÃO Resolução simultânea de dois SEL Equação matricial cuja incógnita tem mais do que uma coluna Num SEL quadrado AX = B, se existe A^{-1} , ... Coordenadas de um vetor de \mathbb{R}^n numa base de \mathbb{R}^n Discussão de um SEL em função de dois parâmetros

Bibliografia

Sistemas de equações lineares (SEL)

Definição (Equação linear)

Uma equação diz-se linear se é uma equação de grau 1.

Exemplos: (1)
$$x + 2y - 3z + 7w = 5$$
; (2) $x + 2y - 3z = 0$.

$$(2) x + 2y - 3z = 0.$$

Definição (Sistema de Equações Lineares (SEL))

Um sistema de equações lineares (SEL) é uma conjunção de várias equações lineares.

Exemplos: (S1)
$$\begin{cases} x + 2y - 3z + 7w = 5 \\ x + 2y - 3z = 0 \end{cases}$$
 (S2)
$$\begin{cases} x + 2y - 3z + 7w = 5 \\ x + 2y - 3z = 0 \\ -y + z - 3w = 1 \end{cases}$$
 (S3)
$$\begin{cases} x + 2y - 3z + 7w = 5 \\ x + 2y - 3z = 0 \\ -y + z - 3w = 1 \\ x - 3y + z - w = 1 \end{cases}$$

Definição (Solução de um SEL)

Consideremos que $SEL(x_1, x_2, ..., x_n)$ denota um SEL nas incógnitas $x_1, x_2, ..., x_n$.

Uma solução do $SEL(x_1, x_2, ..., x_n)$ é uma sequência de números $(a_1, a_2, ..., a_n)$ tais que todas as igualdades em SEL(a₁, a₂, ..., a_n) são proposições verdadeiras.

Exemplos. Consideremos que o sistema (S1) acima é
$$S1(x, y, z, w)$$
, isto é: $S1(x, y, z, w) \Leftrightarrow \begin{cases} x + 2y - 3z + 7w = 5 \\ x + 2y - 3z = 0 \end{cases}$

A sequência (1, 1, 1, 5/7) é uma solução dos sitema S1(x, y, z, w) porque cada uma das igualdades em S1(1, 1, 1, 5/7) é uma proposição verdadeira. Verifique.

Definição (Natureza de um SEL)

Um SEL diz-se: (a) possível, se tem uma solução: (b) possível e determinado, se tem uma única solução: (c) possível e indeterminado, se o número de soluções não é finito; (d) impossível, se não tem soluções.

Exemplos. O sistema (S1) é possível. Como tem mais incógnitas do que equações, diz-se que é possível e indeterminado. O sistema (S2), se for possível, também será indeterminado.

Três factos elementares

Proposição (Multiplicar uma equação por escalar não nulo)

Se $P(X) = \alpha$ é uma equação, na incógnita X, e k é um número não nulo, então $kP(X) = k\alpha \iff P(X) = \alpha$.

Editor: abento@: outubro.2020

Prova. Temos: $kP(X) = k\alpha \iff k(P(X) - \alpha) = 0 \iff k = 0 \lor P(X) - \alpha = 0 \iff (\cdot \cdot \cdot) \iff P(X) = \alpha$.

Proposição (Permuta de equações)

Num SEL, a permuta de duas equações entre si não altera o SEL.

Prova. Isto é verdade porque um SEL é uma conjunção de duas, ou mais, equações. ■

Proposição (Adição ordenada deixa invariante o SEL)

Num SEL, a adição ordenada de um múltiplo escalar de uma equação a outra resulta num SEL equivalente ao primeiro. Isto é: se $P(X) = \alpha$ e $Q(X) = \beta$ são duas equações, na incógnita X, então:

$$(*) \begin{cases} Q(X) = \beta \\ P(X) = \alpha \end{cases} \iff (**) \begin{cases} Q(X) = \beta \\ P(X) + kQ(X) = \alpha + k\beta \end{cases} (2)$$

 \Longrightarrow Usando da hipótese, o sistema (**) toma a forma $\left\{ \begin{array}{l} \beta=\beta\\ \alpha+k\beta=\alpha+k\beta \end{array} \right.$; que é uma tautologia. Fica, assim, Prova. mostrado que as soluções de (*) são soluções de (**).

No SEL (**), usando a equação (1) na equação (2) obtemos a forma $\left\{ \begin{array}{l} Q(X) = \beta \\ P(X) + k\beta = \alpha + k\beta \end{array} \right. ; \text{ que \'e o SEL (*)}. \quad \blacksquare$

Mais adiante, veremos que estas três propriedades correspondem às três operações elementares que estudámos.

SEL homogéneo: SEL não homogéneo

Função homogénea ::: Equação homogénea Seia $\Psi : \mathbb{R}^n \to \mathbb{R}, X \mapsto \Psi(X)$.

A função Ψ diz-se homogénea se, para cada $t \in \mathbb{R}$, $\Psi(tX) = t\Psi(X)$.

A equação $\Psi(X) = 0$ diz-se homogénea se a função Ψ for homogénea.

Exemplo Considere-se a função
$$\Psi: \mathbb{R}^4 \to \mathbb{R}, \ \Psi(x, y, z, w) = 2x + y - 3z - w.$$

 $Se \ t \in \mathbb{R}$, e considerando que X representa o vetor (x, v, z, w), temos:

$$\Psi(tX) = \Psi(t(x, y, z, w)) = \Psi(tx, ty, tz, tw) = 2(tx) + (ty) - 3(tz) - (tw) = t(2x + y - 3z - w) = t\Psi(x, y, z, w) = t\Psi(X)$$
; isto

é, vale a igualdade
$$\Psi(tX) = t\Psi(X)$$
. Portanto, Ψ é homogénea. Consequentemente, a equação $2x + y - 3z - w = 0$ é homogénea.

Contra-exemplo Considere-se a função
$$G: \mathbb{R}^4 \to \mathbb{R}, \quad G(x, y, z, w) = 2x + y - 3z - w + 1.$$

Notemos que $G(tX) = t\Psi(X) + 1$. A parcela 1 não permite obter a forma tG(X). Assim, G não é homogénea. E, portanto, a equação 2x + y - 3z - w + 1 = 0 não é homogénea.

Nota:
$$2x + y - 3z - w + 1 = 0 \Leftrightarrow 2x + y - 3z - w = -1$$

Definição (SEL homogéneo ::: SEL não homogéneo)

Um SEL diz-se homogéneo se todas as equações que o constituem forem homogéneas; caso contrário: não homogéneo.

São homgéneos, os SEL:
$$(S4) \begin{cases} x + 2y - 3z + 7w = 0 \\ x + 2y - 3z = 0 \end{cases}$$

$$(S5) \begin{cases} x + 2y - 3z + 7w = 0 \\ x + 2y - 3z = 0 \\ -y + z - 3w = 0 \end{cases}$$

$$(S6) \begin{cases} x + 2y - 3z + 7w = 0 \\ x + 2y - 3z = 0 \\ -y + z - 3w = 0 \end{cases}$$

E, não homogéneos, os SEL:

(S1)
$$\begin{cases} x + 2y - 3z + 7w = 5 \\ x + 2y - 3z = 0 \end{cases}$$
 (S2)
$$\begin{cases} x + 2y - 3z + 7w = 5 \\ x + 2y - 3z = 0 \\ -y + z - 3w = 1 \end{cases}$$
 (S3)
$$\begin{cases} x + 2y - 3z + 7w = 5 \\ x + 2y - 3z = 0 \\ -y + z - 3w = 1 \\ x - 3y + z - w = 1 \end{cases}$$

SEL em notação matricial

Consideremos o sistema de m equações lineares nas n incógnitas $x_1, x_2, ..., x_n$:

$$\begin{pmatrix}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{pmatrix}$$
(2)

em que $a_{ij} \in \mathbb{R}$, $b_i \in \mathbb{R}$, i = 1, 2, ..., m; j = 1, 2, ..., n. Do que sabemos sobre matrizes, podemos escrever as seguintes equivalências:

the does a before solve matrizes, podernos escrever as seguintes equivalent cias:
$$(*) \Longleftrightarrow \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \Longleftrightarrow \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix} \Longleftrightarrow AX = B,$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \qquad X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \qquad B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}.$$

A matriz A designa-se por matriz dos coeficientes; a matriz X é a matriz das incógnitas; e a matriz B é a matriz dos termos independentes.

A matriz [A|B] é a matriz do sistema AX = B:

$$[A|B] = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}.$$

Depois de fixada a equação matricial AX = B,

qualquer análise sobre este sistema é feita sobre a matriz [A|B] .

Possibilidade

Para sabermos se o sistema de equações lineares AX = B é possível, devemos começar por transformar a matriz [A|B] numa outra

SEL impossível Admitamos que X = (x, y, z, w).

Se uma linha da matriz $A_{(fe)}$ é nula e a correspondente entrada em C é não nula, então o sistema $A_{(fe)}X=C$ é impossível. Logo, o sistema AX = B é impossível.

Vejamos um caso: se $[A_{(fe)}|C] = \begin{bmatrix} 1 & 0 & 2 & 3 & | & 1 \\ 0 & 1 & 2 & 0 & | & 2 \\ 0 & 0 & 0 & 0 & | & 4 \end{bmatrix}$, então o sistema AX = B é impossível. Esta impossibilidade decorre da informação que a terceira linha da matriz $[A_{(fe)}|C]$ encerra: $\begin{bmatrix} 0x + 0y + 0z + 0w = 4 \end{bmatrix}$ (c. imp.).

Notemos que: car(A) < car(A|B).

SEL possível Admitamos que X = (x, y, z, w).

Se alguma linha da matriz $A_{(fe)}$ é nula e a correspondente entrada em C é nula, então o sistema $A_{(fe)}X = C$ é possível. Logo, o sistema AX = B é possível.

Vejamos um caso: se $[A_{(fe)}|C] = \begin{bmatrix} 1 & 0 & 2 & 3 & | & 1 \\ 0 & 1 & 2 & 0 & | & 2 \\ 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$, então o sistema AX = B é possível.

Neste caso, a linha nula da matriz $[A_{(fe)}|C]$ encerra uma condição universal, a saber: 0x + 0y + 0z + 0w = 0 (c. universal).

Notemos que: car(A) = car(A|B).

Teorema (Possibilidade de um SEL)

O sistema de equações lineares AX = B é possível se, e só se, car(A) = car(A|B).

Grau de indeterminação?

Definição (Grau de indeterminação de um SEL possível)

Seja AX = B um sistema de m equações lineares em n incógnitas.

Grau de indeterminação do SEL possível AX = B é o número de incógnitas livres na solução do sistema. Assim, é a diferença entre o número de incógnitas e a característica da matriz dos coefientes: n - car(A).

Notação: a entidade $\boxed{\text{grau de indeterminação do sistema} \quad AX = B} \text{ será denotada por } \boxed{\text{grauIndet}(AX = B)}$

Exemplos

então o grau de indeterminação deste sistema é: $4 - car(\bar{A}) = 4 - 3 = 1 = n$ úmero de incógnitas livres.

Podemos usar a notação compacta:

$$grauIndet(AX = B) = 4 - car(A) = 1.$$

então o grau de indeterminação deste sistema é: 5 - car(A) = 5 - 2 = 3 = número de incógnitas livres. Isto é:

$$grauIndet(AX = C) = 5 - car(A) = 3.$$

Extrair a solução ?

No caso do sistema de equações lineares AX = B ser possível, um modo de identificar a respetiva solução consiste em transformar a matriz [A|B] numa outra equivalente-por-linhas e na (f.e.r):

$$[A|B] \xrightarrow{Gauss} [A_{(fe)}|C] \xrightarrow{Jordan} [A_{(fer)}|D]. \qquad \textit{Assim}, \qquad \textit{AX} = B \iff A_{(fe)}X = C \iff A_{(fer)}X = D.$$

Extrair a solução: como proceder ?

Perante a matriz $[A_{(fer)}|D]$, a solução extrai-se do seguinte modo:

- na matriz A_(fer), as colunas sem pivôs correspondem às incógnitas livres (arbitrárias);
- na matriz A(fer), as colunas com pivôs identificam as incógnitas que dependem (eventualmente) das incógnitas livres.

Exemplo: extrair a solução de um SEL cuja matriz está na (fer)

Considere-se o sistema AX = B, em que

$$X = \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix}, \qquad [A|B] \xrightarrow{J}_{G} [A_{(fer)}|D] = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & | & 3 \\ 0 & 1 & 2 & 1 & 0 & | & 4 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}.$$

Pelo exposto, as incógnitas LIVRES são z, w, t.

A segunda linha da matriz $[A_{(fer)}|D]$ representa a equação: y + 2z + w = 4. Logo: y = 4 - 2z - w.

A primeira linha da matriz $[A_{(fer)}|D]$ representa a equação: x + z + t = 3. Logo: x = 3 - z - t.

Consequentemente, a solução é: $X = \begin{bmatrix} x \\ y \\ z \\ t \end{bmatrix} = \begin{bmatrix} 3-z-t \\ 4-2z-w \\ z \\ w \\ t \end{bmatrix}$, z, w, t livres.

Resolução simultânea de dois (ou mais) SEL

Querendo analisar a POSSIBILIDADE dos dois sistemas de equações lineares AX = B e AY = C, aplicamos o método de Gauss à matriz [A|B|C]. Assim,

$$[A|B|C] \xrightarrow{Gauss} [A_{(fe)}|B_1|C_1].$$

Nota: a execução do processo termina no instante em que surge a matriz $A_{(fe)}$.

Agora:

- a partir da matriz [A_(fe) | B₁], comparamos car(A) com car(A|B);
- a partir da matriz $[A_{(fe)}|C_1]$, comparamos car(A) com car(A|C).

Exemplo na página seguinte.

No caso de querermos a $\frac{\text{SOLUÇÃO}}{\text{OUSACE}}$ de cada um dos SEL, aplicamos o método de Gauss-Jordan à matriz [A|B|C].

A primeira etapa é: $[A|B|C] \xrightarrow{Gauss} [A_{(fe)}|B_1|C_1].$

Se car(A|B) = car(A) e car(A|C) = car(A), então continuamos a execução do método até obtermos a matriz $[A_{(fer)}|B_2|C_2]$. Neste caso, a execução do método é composto por duas etapas: a de Gauss; e a de Jordan.

$$[A|B|C] \xrightarrow[\textit{Gauss}]{} [A_{(\textit{fe})}|B_1|C_1] \xrightarrow[\textit{Jordan}]{} [A_{(\textit{fer})}|B_2|C_2].$$

Nota: a execução do processo termina no instante em que surge a matriz $A_{(fer)}$.

Agora:

- a partir da matriz [A_(fer) | B₂], extraímos a respetiva solução;
- a partir da matriz [A_(fer) | C₂], extraímos a respetiva solução.

Exemplo na página seguinte.

Álgebra Linear (LEI)

Sistemas de equações lineares (SEL) Resolução simultânea de dois SEL

Exemplo Consideremos as matrizes
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 6 \\ -2 & -3 & -4 \end{bmatrix}, B = \begin{bmatrix} -2 \\ -5 \\ 6 \end{bmatrix}, C = \begin{bmatrix} -3 \\ 0 \\ 5 \end{bmatrix}.$$
 Resolver, em simultâneo os sistemas $AX = B$, $AX = C$.

Observação. A incógnita nos dois SEL está denotada por X. Se for necessário explicitar a equação matricial cuja matriz é [A|B|C], devemos considerar notações diferentes para cada incógnita, para que não haja ambiguidade nas colunas da matriz das duas incógnitas (o exemplo da página seguinte ilustra este oprocedimento).

Resposta.

Resolver dois SEL em simultâneo é, como exposto acima, executar o método de Gauss-Jordan na matriz dos dois SEL (é possível porque o coeficiente da incógnita em cada equação é comum às duas equações). A matriz das duas equações é [A|B|C]. Assim:

$$[A|B|C] = \begin{bmatrix} 1 & 2 & 3 & | & -2 & | & -3 \\ 0 & 2 & 6 & | & -5 & | & 0 \\ -2 & -3 & -4 & | & 6 & | & 5 \end{bmatrix} \xrightarrow{L_3 + 2L_1} \begin{bmatrix} 1 & 2 & 3 & | & -2 & | & -3 \\ 0 & 2 & 6 & | & -5 & | & 0 \\ 0 & 1 & 2 & | & 2 & | & -1 \end{bmatrix}$$

$$\xrightarrow{L_3 - \frac{1}{2} L_2} \begin{bmatrix} 1 & 2 & 3 & | & -2 & | & -3 \\ 0 & 2 & 6 & | & -5 & | & 0 \\ 0 & 0 & -1 & | & 9/2 & | & -1 \end{bmatrix} = [A_{(fe)}|B_1|C_1].$$

Porque car(A|B) = car(A), o sistema AX = B é possível. Porque car(A|C) = car(A), o sistema AX = C é possível. Portanto, passamos à etapa de Jordan.

$$[A_{(fe)}|B_1|C_1] \xrightarrow{L_1+3L_3;\, L_2+6L_3} \begin{bmatrix} 1 & 2 & 0 & | & 23/2 & | & -6 \\ 0 & 2 & 0 & | & 22 & | & -6 \\ 0 & 0 & -1 & | & 9/2 & | & -1 \end{bmatrix} \xrightarrow{L_1-L_2} \begin{bmatrix} 1 & 0 & 0 & | & -21/2 & | & 0 \\ 0 & 2 & 0 & | & 22 & | & -6 \\ 0 & 0 & -1 & | & 9/2 & | & -1 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}L_2;\;-L_3} \begin{bmatrix} 1 & 0 & 0 & | & -21/2 & | & 0 \\ 0 & 1 & 0 & | & 11 & | & -3 \\ 0 & 0 & 1 & | & -9/2 & | & 1 \end{bmatrix} = [A_{(\text{fer})}|B_2|C_2].$$

Portanto: solução de
$$AX = B$$
 é: $X = \begin{bmatrix} -21/2 \\ 11 \\ -9/2 \end{bmatrix}$; solução de $AX = C$ é: $X = \begin{bmatrix} 0 \\ -3 \\ 1 \end{bmatrix}$.

Caro leitor, o exercício que aqui vamos resolver foi extraído do caderno para as aulas TP.

Considere os problemas: em cada caso, identificar todos os polinómios p(x), de grau 3, cujo gráfico em Oxy contém os pontos:

$$(0,3), (3,-1), (-1,3), (1,2).$$
 (*)

$$(0,3), (3,-1), (-1,3), (1,5).$$
 (**)

Para responder: depois de modelar cada questão, aplique o método de Gauss-Jordan em simultâneo.

Resposta A forma geral de um polinómio em $\mathbb{R}_3[x]$ é $p(x) = ax^3 + bx^2 + cx + d$, em que $a, b, c, d \in \mathbb{R}$.

A construção do modelo para cada um dos problemas usa o seguinte facto: o ponto (x, y) está no gráfico(P) se, e só se, p(x) = y. Assim:

- modelo para (*):
- modelo para (**):
- $\begin{cases} (0,3) \in Graf(P) \\ (3,-1) \in Graf(P) \\ (-1,3) \in Graf(P) \\ (1,2) \in Graf(P) \end{cases} \iff \begin{cases} p(0)=3 \\ p(3)=-1 \\ p(-1)=3 \\ p(1)=2 \end{cases} \Leftrightarrow \begin{cases} 0+0+0+d=3 \\ 27a+9b+3c+d=-1 \\ -a+b-c+d=3 \\ a+b+c+d=2 \end{cases} \Leftrightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 27 & 9 & 3 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ -1 \\ d \end{bmatrix}.$
- $\begin{cases} (0,3) \in \textit{Graf}(P) \\ (3,-1) \in \textit{Graf}(P) \\ (-1,3) \in \textit{Graf}(P) \\ (1,5) \in \textit{Graf}(P) \end{cases} \iff \begin{cases} p(0) = 3 \\ p(3) = -1 \\ p(-1) = 3 \\ p(1) = 5 \end{cases} \Leftrightarrow \begin{cases} 0+0+0+d=3 \\ 27a+9b+3c+d=-1 \\ -a+b-c+d=3 \\ a+b+c+d=5 \end{cases} \Leftrightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 27 & 9 & 3 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \\ -1 \\ d \end{bmatrix} = \begin{bmatrix} 5 \\ 3 \\ -1 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$$

Estas duas equações (os dois modelos) podem ser tratadas, de modo compacto, por intermédio da equação matricial:

$$\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ - \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 1 & -1 & 1 \\ 27 & 9 & 3 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & a_1 \\ b & b_1 \\ c & c_1 \\ d & d_1 \end{bmatrix} = \begin{bmatrix} 2 & 5 \\ 3 & 3 \\ -1 & -1 \\ 3 & 3 \end{bmatrix} \Longleftrightarrow AX = E.$$

Nesta equação matricial, a solução de (*) é a primeira coluna da matriz X; e. a de (**) é a segunda coluna de X.

(na página seguinte, aplicamos o método de Gauss-Jordan à matriz desta equação)

Resolução simultânea de dois SEL

$$[A|E] = \begin{bmatrix} 1 & 1 & 1 & 1 & | & 2 & 5 \\ -1 & 1 & -1 & 1 & | & 3 & 3 \\ 27 & 9 & 3 & 1 & | & -1 & -1 \\ 0 & 0 & 0 & 1 & | & 3 & 3 \end{bmatrix}$$

Apliguemos o método de Gauss-Jordan à matriz [A|E].

$$\xrightarrow[]{L_1 - L_3} \begin{cases} 1 & 1 & 0 & 0 & | & 15/2 & 15/4 \\ 0 & 1 & 0 & 0 & | & -1/2 & 1 \\ 0 & 0 & 1 & 0 & | & -17/2 & -7/4 \\ 0 & 0 & 0 & 1 & | & 3 & 3 \end{cases} \xrightarrow{L_1 - L_2} \begin{bmatrix} 1 & 0 & 0 & 0 & | & 8 & 11/4 \\ 0 & 1 & 0 & 0 & | & -1/2 & 1 \\ 0 & 0 & 1 & 0 & | & -17/2 & -7/4 \\ 0 & 0 & 0 & 1 & | & 3 & 3 \end{bmatrix} = [A_{(fer)}|E_2].$$

A primeira coluna da matriz E_2 é a solução de (*). A segunda coluna da matriz E_2 é a solução de (**). Portanto:

resposta ao problema (*):
$$p(x) = 8x^3 - \frac{1}{2}x^2 - \frac{17}{2}x + 3;$$

resposta ao problema (**):
$$p(x) = \frac{11}{4}x^3 + x^2 - \frac{7}{4}x + 3$$
.

Observação: a solução da equação AX = E é a matriz E_2 .

Equação AX = B tal que nColunas(X) > 1

Sendo A e B matrizes fixadas, a forma AX = B é uma equação matricial, na incógnita X. Esta equação é possível se existir uma matriz X_0 tal que $AX_0 = B$ é uma tautologia; e impossível, caso contrário.

Consideremos as matrizes:
$$A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & -1 \\ 1 & 1 & -1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & 2 \\ -7 & 5 & 2 \end{bmatrix}.$$

Pretendemos resolver a equação $\mid AX=B$ (*) \mid Assim, queremos conhecer as matrizes X que satisfazem a igualdade AX=B.

A construção da resposta desenrola-se por intermédio do método de Gauss-Jordan.

- 1 | É fundamental que, antes de inicar tal método, identifiquemos a tipo da matriz X que queremos explicitar. Ora:
- opor A ter 4 colunas, a matriz X deve ter 4 linhas:
- por B ter 3 colunas, a matriz X deve ter 3 colunas.

Portanto, o tipo da matriz X está identificado. Podemos, explicitar a forma de tal matriz: $X = \begin{bmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_4 \end{bmatrix}$

Devemos ter presente o seguinte facto: a equação AX = B é possível se, e só se, cada uma das equações

$$AC_1^X = C_1^B, \qquad AC_2^X = C_2^B, \qquad AC_3^X = C_3^B$$

é possível. Logo, se alguma destas equações for impossível, a resposta à questão inicial é: não existe X tal que AX = B; isto é, a equação AX = B é impossível.

Usar o método de Gauss-Jordan para encontrar a solução da equação matricial AX = B é aplicar à matriz AB o referido método; isto é, transformar esta matriz numa matriz equivalente-por-linhas e tal que no lugar de A está a sua matriz equivalente-por-linhas e na (fer). Salientemos o seguinte: quando encontramos a (fe) equivalente-por-linhas da matriz [A|B] ficamos a saber se existe solução do sistema AX = B; se tal solução existir, devemos continuar no método até identificarmos a (fer) da matriz A na resultante da matriz

[A|B]. Formalmente, devemos adotar o seguinte esquema. que faz parte da resposta

 $[A|B] \xrightarrow{Gauss} [A_{(fe)}|B_1] \xrightarrow{Jordan} [A_{(fer)}|B_2].$

Equação AX = B tal que nColuns(X) > 1

3 Execução do método.

$$[A|B] = \begin{bmatrix} 1 & 2 & 3 & 0 & | & 1 & 2 & 1 \\ 0 & 1 & 2 & -1 & | & 0 & -1 & 2 \\ 1 & 1 & -1 & 0 & | & -7 & 5 & 2 \end{bmatrix}$$

$$\xrightarrow[L_3-L_1]{} \begin{bmatrix} 1 & 2 & 3 & 0 & | & 1 & 2 & 1 \\ 0 & 1 & 2 & -1 & | & 0 & -1 & 2 \\ 0 & -1 & -4 & 0 & | & -8 & 3 & 1 \end{bmatrix}$$

$$\xrightarrow{L_3 + L_2} \begin{bmatrix} 1 & 2 & 3 & 0 & | & 1 & 2 & 1 \\ 0 & 1 & 2 & -1 & | & 0 & -1 & 2 \\ 0 & 0 & -2 & -1 & | & -8 & 2 & 3 \end{bmatrix} = [A_{(fe)}|B_1]. \boxed{3.1} \text{ Por } car(A) = nLin(A), \text{ a equação } AX = B \text{ é possível.}$$

$$\xrightarrow{-\frac{1}{2} L_3} \begin{bmatrix} 1 & 2 & 3 & 0 & | & 1 & 2 & 1 \\ 0 & 1 & 2 & -1 & | & 0 & -1 & 2 \\ 0 & 0 & 1 & 1/2 & | & 4 & -1 & -3/2 \end{bmatrix}$$

$$\xrightarrow{L_1 - 3L_3: L_2 - 2L_3} \begin{bmatrix} 1 & 2 & 0 & -3/2 & | & -11 & 5 & 11/2 \\ 0 & 1 & 0 & -2 & | & -8 & 1 & 5 \\ 0 & 0 & 1 & 1/2 & | & 4 & -1 & -3/2 \end{bmatrix}$$

matriz X, as incógnitas x_4 , y_4 , z_4 ficam livres

Num SEL quadrado AX = B, se existe A^{-1} , ...

Teorema (Quando existe inversa da matriz dos coeficientes)

Seja AX = B um SEL de n equações em n incógnitas.

Se a matriz A é invertível, então a solução é: $X = A^{-1}B$.

Prova. Temos:
$$AX = B \iff A^{-1}(AX) = A^{-1}B \iff (A^{-1}A)X = A^{-1}B \iff (I_n)X = A^{-1}B \iff X = A^{-1}B$$
.

Exemplo Considere o
$$SEL(x, y, z, w)$$
: (*)
$$\begin{cases} x - y - z = 2 \\ y + z - w = 1 \\ -x - y + z - w = 0 \\ x + z - w = 2 \end{cases}$$

Matricialmente:
$$(*) \iff \begin{bmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ -1 & -1 & 1 & -1 \\ 1 & 0 & 1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 2 \end{bmatrix} \iff AX = B.$$

Temos:
$$A^{-1} = -\frac{1}{3} \begin{bmatrix} 0 & 1 & 1 & -2 \\ 0 & -2 & 1 & 1 \\ 3 & 3 & 0 & -3 \\ 3 & 4 & 1 & -2 \end{bmatrix}$$
, pois: $-\frac{1}{3} \begin{bmatrix} 0 & 1 & 1 & -2 \\ 0 & -2 & 1 & 1 \\ 3 & 3 & 0 & -3 \\ 3 & 4 & 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ -1 & -1 & 1 & -1 \\ 1 & 0 & 1 & -1 \end{bmatrix} = \dots = I_4$.

Usando a matriz A^{-1} , explicite a solução do sistema (*).

Notação Consideremos a sequência de n vetores de \mathbb{R}^n : $B = (b_1, b_2, \dots, b_n)$. A matriz cujas colunas são os vetores desta sequência denota-se por [B]. Portanto,

- A sequência de *n* vetores, de \mathbb{R}^n , $B = (b_1, b_2, ..., b_n)$ é uma base para \mathbb{R}^n se car([B]) = n.
- Recordemos: a sequência das colunas da matriz I_n é uma base de \mathbb{R}^n ; a base canónica. Denota-se por B_c se não houver ambiguidade contextual.

Definição (Coordenadas de um vetor de \mathbb{R}^n numa base de \mathbb{R}^n)

Seja $B=(b_1,\ b_2,\ \ldots,\ b_n)$ uma base de \mathbb{R}^n ; e U um vetor de \mathbb{R}^n , $U=[u_1\ u_2\ \cdots\ u_n]^T$. Coordenadas de U na base B são as entradas do vetor $[\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n]^T$ tal que

$$[B] \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} . \qquad (*)$$

Notação O vetor $[\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n]^T$ denota-se por $[U]_B$.

Notemos o seguinte facto: $I_DU = U$. Esta igualdade tem a forma da igualdade (*). Assim, o vetor U e o vetor das suas coordenadas na base B_c são uma e a mesma coisa; isto é $U = [U]_{B_c}$. Por conseguinte, a fórmula (*) reescreve-se:

$$[B][U]_B = [U]_{B_C}.$$

Teorema

Se B é uma base de \mathbb{R}^n e U é um vetor de \mathbb{R}^n , então $[U]_B = [B]^{-1}[U]_{B_0}$.

Prova. Basta notar que $[B][U]_B = [U]_{B_C}$ é um SEL quadrado e que a matriz [B] é invertível.

Notemos que as equações matriciais $[B][U]_B = [U]_{B_C}$ e $[B]X = I_n$ têm igual matriz de coeficientes. Assim, podemos resolver em simultâneo estas duas equações. Para tal, devemos aplicar o método de Gauss-Jordan à matriz $[B] \mid [U]_{B_C} \mid I_n]$:

$$\left[[B] \mid [U]_{B_C} \mid I_n \right] \xrightarrow{Gauss-Jordan} \left[I_n \mid [U]_B \mid [B]^{-1} \right].$$

Exemplo Considere a sequência de vetores: F = (1, 2, 3, 4), (0, -2, -3, -4), (0, 0, 3, -4), (0, 0, 0, 4)

- Seja U = (x y, y, x y + z, y w) um vetor de \mathbb{R}^4 .
- Verifique que F é uma base para \mathbb{R}^4 .
 - Explicite as coordenadas do vetor U na base F.
 - Explicite a inversa da matriz [F].
- Verifique que as coordenadas de U na base F podem obter-se pela fórmula $[U]_F = [F]^{-1}[U]_{B_C}$.

Para responder à proposta 1: F é uma base para \mathbb{R}^4 se, e só se, car([F]) = 4.

Modelo para encontrar a resposta à proposta 2. Resolver a equação $F[U]_F = [U]_{\mathcal{B}_{\mathcal{C}}}$, cuja incógnita está denotada por $[U]_F$. Modelo para encontra a resposta à proposta 3. Resolver a equação $[F]Y = I_4$, cuja incógnita está denotada por Y.

Devemos notar que as equações $[F][U]_F = [U]_{B_C}$, $[F]Y = I_4$, têm igual coeficiente. Logo, podemos executar o método de

Gauss-Jordan na matriz destas duas equações, a matriz $|F||[U]_{B_c}|I_4|$. Assim:

Coordenadas de um vetor de \mathbb{R}^n numa base de \mathbb{R}^n Sistemas de equações lineares (SEL)

$$\frac{1}{L_3 - L_2; L_4 - L_2} = \begin{bmatrix}
1 & 0 & 0 & 0 & | & x - y & | & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & | & -x + 3y/2 & | & -1 & 1/2 & 0 & 0 \\
0 & 0 & 1 & 0 & | & 2x/3 + 5y/6 + z/3 & | & 0 & -1/2 & 1/3 & 0 \\
0 & 0 & -1 & 1 & | & 2x - y/4 - w/4 & | & 0 & -1/2 & 0 & 1/4
\end{bmatrix}$$

Resposta ao item | 1 |: car([F]) = ordem([F]); logo, F é uma base de \mathbb{R}^4 .

Resposta ao item 2:
$$[U]_F = \begin{bmatrix} x - y \\ x - \frac{3}{2}y \\ \frac{2}{3}x + \frac{5}{6}y + \frac{1}{3}z \\ \frac{8}{2}x + \frac{7}{12}y + \frac{1}{2}z - \frac{1}{4}w \end{bmatrix}$$
. Resposta ao item 3: $[F]^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & -1/2 & 0 & 0 \\ 0 & -1/2 & 1/3 & 0 \\ 0 & -1 & 1/3 & 1/4 \end{bmatrix}$.

Resposta ao item 4: (...)

Caro leitor, o sistema que aqui nos propomos discutir foi extraído do caderno para as aulas TP.

Consideremos, então, o sistema de quatro equações nas quatro incógnitas x, y, z, w, e condicionado pelos parâmetros (reais) k e

$$\begin{cases} x + ky + \lambda z - w = k \\ x - \lambda z - 2w = k \\ 2x + ky + \lambda z - 4w = 3k \\ x + 2\lambda y + 2w = 0 \end{cases}$$
 (*)

Discutir este sistema é averiguar, em função dos parâmetros k e λ , as circunstâncias nas quais o sistema (*) é possível; ou, impossível. Relativamente à primeira circunstância, acrescenta-se, geralmente, um dos complementos: determinado; ou, indeterminado. Sobre este último complemento, veremos que será relevante identificar o grau de indeterminação do referido sistema, isto é, identificar o número de incógnitas livres.

Perante o SEL na forma (*), a primeira etapa consiste em apresentá-lo por intermédio de uma equação matricial e equivalente. Para tal, é necessário fixar, à partida, a matriz das incógnitas. Fixemos tal matriz na seguinte forma $\begin{bmatrix} x & y & z & w \end{bmatrix}^T$. Tendo isto presente, (*) transforma-se:

$$(*) \Longleftrightarrow \begin{bmatrix} x+ky+\lambda z-w \\ x+0y-\lambda z-2w \\ 2x+ky+\lambda z-4w \\ x+2\lambda y+0z+2w \end{bmatrix} = \begin{bmatrix} k \\ 3k \\ 0 \end{bmatrix} \Longleftrightarrow \begin{bmatrix} 1 & k & \lambda & -1 \\ 1 & 0 & -\lambda & -2 \\ 2 & k & \lambda & -4 \\ 1 & 2\lambda & 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} = \begin{bmatrix} k \\ k \\ 3k \\ 0 \end{bmatrix}.$$

Peço ao leitor que preste atenção à igualdade precedente: a quarta coluna da matriz dos coeficientes não tem qualquer parâmetro. Sendo assim, é conveniente permutá-la com uma coluna que possua parâmetros. Tal permuta reduzirá a entropia que devemos enfrentar quando estivermos a transformar a matriz do sistema numa outra equivalente e na forma de escada. Vamos permutar a coluna 4 com a coluna 2; o leitor deve estar ciente de que tal permuta impõe uma permuta idêntica na sequência das incógnitas. Com tudo isto presente, o SEL (*) é equivalente à equação matricial

Mais à frente, este SEL será referido pela forma AX = B.

A matriz do SEL (**) tem a forma

$$\begin{bmatrix} 1 & -1 & \lambda & k & | & k \\ 1 & -2 & -\lambda & 0 & | & k \\ 2 & -4 & \lambda & k & | & 3k \\ 1 & 2 & 0 & 2\lambda & | & 0 \end{bmatrix}$$

Agora, devemos trasformar esta matriz numa equivalente-por-linhas e na forma de escada. A discussão referida acima acontece perante a dita forma de escada. Assim, temos:

$$[A|B] = \begin{bmatrix} 1 & -1 & \lambda & k & | & k \\ 1 & -2 & -\lambda & 0 & | & k \\ 2 & -4 & \lambda & k & | & 3k \\ 1 & 2 & 0 & 2\lambda & | & 0 \end{bmatrix}$$
 (†)
$$\frac{OE \, linhas}{L_3 - 2L_1} \leftarrow \begin{bmatrix} 1 & -1 & \lambda & k & | & k \\ 0 & -1 & -2\lambda & -k & | & 0 \\ 0 & 4 & -2\lambda & 2\lambda - 2k & | & -2k \end{bmatrix}$$

$$\frac{OE \, linhas}{L_4 + L_1} \leftarrow \begin{bmatrix} 1 & -1 & \lambda & k & | & k \\ 0 & 4 & -2\lambda & 2\lambda - 2k & | & -2k \end{bmatrix}$$

$$\frac{OE \, linhas}{13 \, L_3} \leftarrow \begin{bmatrix} 1 & -1 & \lambda & k & | & k \\ 0 & -1 & -2\lambda & -k & | & 0 \\ 0 & 0 & 3\lambda & k & | & k \\ 0 & 0 & -10\lambda & 2\lambda - 6k & | & -2k \end{bmatrix}$$

$$\frac{OE \, linhas}{13 \, L_3} \rightarrow \begin{bmatrix} 1 & -1 & \lambda & k & | & k \\ 0 & -1 & -2\lambda & -k & | & 0 \\ 0 & 0 & 3\lambda & k/3 & | & k/3 \\ 0 & 0 & -10\lambda & 2\lambda - 6k & | & -2k \end{bmatrix}$$

$$\frac{OE \, linhas}{L_4 + 10L_3} \rightarrow \begin{bmatrix} 1 & -1 & \lambda & k & | & k \\ 0 & -1 & -2\lambda & -k & | & 0 \\ 0 & 0 & \lambda & k/3 & | & k/3 \\ 0 & 0 & -10\lambda & 2\lambda - 6k & | & -2k \end{bmatrix} = \left[A_{(fe)}|B_1\right].$$

O leitor notará que as entradas que têm influência na característica da matriz dos coeficientes são duas: a entrada (3, 3) e a entrada (4, 4). A primeira está representada pelo parâmetro λ ; a outra está representadas pela expressão $(2\lambda - \frac{9}{8}k)$.

Consequentemente, os casos que temos de analisar em separado são, pelo menos, quatro. A saber: $\frac{1}{1}(\lambda \neq 0) \wedge (2\lambda - \frac{8}{3}k) \neq 0; \quad \frac{2}{1}(\lambda = 0) \wedge (2\lambda - \frac{8}{3}k = 0); \quad \frac{3}{1}(\lambda = 0) \wedge (2\lambda - \frac{8}{3}k \neq 0); \quad \frac{4}{1}(\lambda \neq 0) \wedge (2\lambda - \frac{8}{3}k = 0).$

Alerta! O processo que transforma a matriz (†) na matriz (‡) NÃO deve ter gralhas. Cuidado com a escrita!

caso 1
$$(\lambda \neq 0) \wedge (2\lambda - \frac{8}{3}k) \neq 0$$
.

Neste caso, temos: car(A = car(A|B) = número de incógnitas (=número de coluna de A).

A primeira igualdade permite concluir que o SEL (**) e, portanto: o SEL (*) é possível. Perante esta conclusão, a segunda igualdade permite concluir que o referido SEL é determinado; isto é, tem uma única solução.

Esta solução será, se pedida, uma matriz coluna com a forma
$$\begin{bmatrix} x(k,\lambda) & w(k,\lambda) & z(k,\lambda) & y(k,\lambda) \end{bmatrix}^T$$
.

$$(\lambda = 0) \wedge (2\lambda - \frac{8}{3}k = 0).$$

Neste caso, os dois parâmetros estão fixados. Em tais circunstâncias, devemos reescrever a matriz (†), substituindo os parâmetros pelos valores respetivos; no caso: $\lambda=0$ e k=0. Assim:

Conclusão: car(A) = car(A|B) < número de incógnitas.

Pela igualdade precdente, concluímos que o SEL é possível; e, pela desigualdade entre *car* e o número de incógnitas, concluímos que o SEL é indeterminado. Mais: tem grau de indeterminação 2, por ter duas incógnitas livres (as correspondentes às colunas da matriz dos coeficientes que não têm pivô).

caso 3
$$(\lambda = 0) \wedge (2\lambda - \frac{8}{3}k \neq 0)$$
.

Neste caso, há um parâmetro fixado. Reescrevendo a matriz (†), com o valor do parâmetro fixado, resulta:

$$(\dagger) = \begin{bmatrix} 1 & -1 & 0 & -k & 0 & 0 \\ 0 & -1 & 0 & -k & 0 & 0 \\ 0 & 0 & 0 & k/3 & k/3 \\ 0 & 0 & 0 & -\frac{8}{3}k & k & \frac{4}{3}k \end{bmatrix}.$$

O leitor deve constatar que a matriz precedente ainda não está na (fe). Logo:

$$\begin{bmatrix} 1 & -1 & 0 & k & | & k \\ 0 & -1 & 0 & -k & | & 0 \\ 0 & 0 & 0 & k/3 & | & k/3 \\ 0 & 0 & 0 & -\frac{8}{3}k & | & \frac{4}{3}k \end{bmatrix} \xrightarrow{L_4+8L_3} \begin{bmatrix} 1 & -1 & 0 & k & | & k \\ 0 & -1 & 0 & -k & | & 0 \\ 0 & 0 & 0 & k/3 & | & k/3 \\ 0 & 0 & 0 & 0 & | & 4k \end{bmatrix}.$$

Conclusão: car(A) < car(A|B). Consequentemente, o SEL (**) é impossível.

Observação. Este caso mostra que: depois de concretizarmos alguns parâmetros, por vezes, é necessário executar uma OET3 para que a (fe) fique explicitada.

caso 4
$$(\lambda \neq 0) \wedge (2\lambda - \frac{8}{3}k = 0)$$
.

Neste caso, há um parâmetro fixado como função do outro. Reescrevendo a matriz (†), com o valor do parâmetro fixado, resulta:

$$(\dagger) = \frac{k = \frac{3}{4}\lambda}{\lambda \neq 0} \begin{bmatrix} 1 & -1 & \lambda & \frac{3}{4}\lambda & | & \frac{3}{4}\lambda \\ 0 & -1 & -2\lambda & -\frac{3}{4}\lambda & | & 0 \\ 0 & 0 & \lambda & \frac{1}{4}\lambda & | & \frac{1}{4}\lambda \\ 0 & 0 & 0 & 0 & | & \lambda \end{bmatrix}.$$

Conclusão: car(A) < car(A|B). Consequentemente, o SEL (**) é impossível.

Observação Caro leitor, há SEL cuja (fe) da matriz do SEL tem, também, duas únicas entradas que influenciam a car(.) mas, no entanto, a discussão do SEL impõe mais do que quatro casos. Há exemplos destes no caderno de exercícios.

Bibliografia

- 1 Álgebra Linear; Isabel Cabral & Cecília Perdigão & Carlos Saiago; Escolar Editora, Lisboa; ISBN: 978-972-592-2309-2.
- Introdução à Álgebra Linear; Santana, A. P. & Queiró, J. F.; Coleção: Trajetos Ciências, Publicações Gradiva, Lisboa; ISBN: 978-989-616-372-3.
- Álgebra Linear e Geometria Analítica; Emília Giraldes & Vitor Hugo Fernandes & Maria Helena Santos; Editora McGraw-Hill de Portugal, Lisboa; ISBN: 972-9241-73-2.
- 4 Elementary Linear Algebra; Howard Anton & Chris Rorres; Wiley; ISBN: 978-1-118-43441-3.
- Matrix Analysis; Roger A. Horn & Charles R. Johnson; Cambridge University Press; ISBN: 0-521-38632-2.