# Cybersecurity with Statistical Programming

By: Camilla Ma, Haiman Wong, and Chen Zhang April 29th, 2021

# TABLE OF CONTENTS

 $\frac{1}{2}$  PROBLEM + MOTIVATION  $\frac{1}{2}$  RESULTS

2. THE DATA 5. DISCUSSION

3. STATISTICAL METHODOLOGY



# PROBLEM + MOTIVATION

Employ statistical methodology and programming techniques to identify observable trends and vulnerabilities that organizations and nation-states face during cyber-attacks



| Cuborinaidontours | Dundania | ChokeA | CtotoD | Name                                                   | international autobas | internationanddata | intercetiontune |        | ADT |            |           | aubay abiaatiya |
|-------------------|----------|--------|--------|--------------------------------------------------------|-----------------------|--------------------|-----------------|--------|-----|------------|-----------|-----------------|
| Cyberincidentnum  |          |        | StateB | Name                                                   |                       | interactionenddate | interactiontype | metnoa | API | targettype | initiator | cyber_objective |
| 1                 | 2365     | US     | Russia | Regin malware campaign                                 | 2/1/08                | 3/1/11             | 3               | 3      | 1   | 2          | 2         | 3               |
| 2                 | 2365     | US     | Russia | QWERTY keystroke log                                   | 2/1/08                | 3/11/11            | 3               | 4.4    | 1   | 2          | 2         | 2               |
| 3                 | 2365     | US     | Russia | Duke Series                                            | 4/8/08                | 9/17/15            | 3               | 4.2    | 1   | 2          | 365       | 3               |
| 4                 | 2365     | US     | Russia | US govt employee in Georgia hacked                     | 8/6/2008              | 8/12/2008          | 1               | 4.2    | 0   | 2          | 365       | 1               |
| 5                 | 2365     | US     | Russia | Agent.bz/CENTCOM (linked to APT 28)                    | 10/1/08               | 10/15/08           | 3               | 3      | 0   | 3          | 365       | 3               |
| 6                 | 2365     | US     | Russia | Buckshot Yankee                                        | 11/26/08              | 11/28/08           | 2               | 4.2    | 0   | 2          | 2         | 4               |
| 7                 | 2365     | US     | Russia | Sandworm                                               | 1/1/09                | 10/14/14           | 3               | 3      | 0   | 2          | 365       | 3               |
| 8                 | 2365     | US     | Russia | Power grid hacked, traced to Russia                    | 8/24/2009             | 8/24/2009          | 1               | 4.2    | 0   | 1          | 365       | 4               |
| 9                 | 2365     | US     | Russia | Energetic Bear/Dragonfly/Crouching Yeti                | 1/1/11                | 7/1/14             | 3               | 3      | 1   | 1          | 365       | 2               |
| 10                | 2365     | US     | Russia | Yahoo breach 2                                         | 8/1/13                | 12/15/16           | 1               | 3      | 0   | 1          | 365       | 3               |
| 11                | 2365     | US     | Russia | Operation Pawn Storm/World Doping Agency               | 9/30/13               | 10/22/14           | 1               | 3      | 1   | 2          | 365       | 2               |
| 12                | 2365     | US     | Russia | CyberBerkut NATO Websites                              | 3/15/14               | 3/26/14            | 1               | 2      | 1   | 3          | 365       | 1               |
| 13                | 2365     | US     | Russia | Operation Pawn Storm: military networks (fake OWA)     | 6/2/14                | 2/1/15             | 3               | 3      | 1   | 3          | 365       | 2               |
| 14                | 2365     | US     | Russia | Operation Pawn Storm: Nuclear power plants, newspapers | 6/3/14                | 12/1/14            | 3               | 3      | 1   | 1          | 365       | 2               |
| 15                | 2365     | US     | Russia | US Banks hacked                                        | 6/4/14                | 7/8/14             | 1               | 3      | 1   | 1          | 365       | 1               |
| 16                | 2365     | US     | Russia | White House hack                                       | 10/26/14              | 10/28/14           | 1               | 3      | 0   | 2          | 365       | 2               |
| 17                | 2365     | US     | Russia | State Dept hack                                        | 11/15/14              | 11/17/14           | 1               | 3      | 0   | 2          | 365       | 2               |
| 18                | 2365     | US     | Russia | Yahoo breach 1                                         | 11/22/14              | 9/22/16            | 1               | 3      | 0   | 1          | 365       | 3               |
| 19                | 2365     | US     | Russia | DoD breach                                             | 3/1/15                | 3/15/15            | 1               | 3      | 0   | 3          | 365       | 3               |
| 20                | 2365     | US     | Russia | 2016 Presidential Election/FSB/APT29                   | 6/15/15               | 11/8/16            | 3               | 3      | 1   | 1          | 365       | 2               |
| 21                | 2365     | US     | Russia | JCS network breach                                     | 6/26/15               | 6/28/15            | 1               | 3      | 0   | 3          | 365       | 3               |
| 22                | 2365     | US     | Russia | ProjectSauron                                          | 9/2/15                | 8/9/16             | 3               | 3      | 1   | 1          | 2         | 3               |
| 23                | 2365     | US     | Russia | ProjectSauron                                          | 9/2/15                | 8/9/16             | 3               | 3      | 1   | 3          | 2         | 3               |
| 24                | 2365     | US     | Russia | 2016 Presidential Election/GRU/APT28/Guccifer 2.0      | 4/3/16                | 11/8/16            | 3               | 3      | 1   | 1          | 365       | 2               |
|                   |          |        |        |                                                        |                       |                    |                 | 0.000  |     |            |           |                 |

# 02. THE DATA

Chihack. onse dda backdo

#### 03. STATISTICAL METHODOLOGY





#### DATA VISUALIZATION

Bar Graphs, Pie Charts, Facet Plots, and Scatter Plots



#### REGRESSION

Multiple and Linear Regression



#### **ANOVA**

Check whether there are differences between two models























04. RESULTS







#### Simple Linear Regression Model 1:

Y(hat) = 104 5+94 5(China)+5 5(France)+8 5(Germany)+152(India)

104.5+94.5(China)+5.5(France)+8.5(Germany)+152(India)+62.5(Iran)+77.5(Lebanon)+122.5(NKorea) +11.5(Poland)+31(Russia)+138(SKorea)+76.5(Syria)+2.5(UK)+(-52.5)(US)

| Coefficients | Estimate | Std. Error | P-Value  |
|--------------|----------|------------|----------|
| Intercept    | 104.50   | 14.18      | 2.42e-12 |
| N Korea      | 122.50   | 14.78      | 6.90e-15 |
| China        | 94.50    | 14.60      | 4.99e-10 |
| S Korea      | 138.00   | 15.85      | 4.19e-16 |
| Iran         | 62.50    | 14.69      | 2.96e-05 |

#### Simple Linear Regression Model 2:

Y(hat) = 1.0775 + 0.1568(severity)

| Coefficients | Estimate | Std. Error | P-Value  |
|--------------|----------|------------|----------|
| Intercept    | 1.07746  | 0.10734    | <2e-16   |
| Severity     | 0.15684  | 0.03497    | 1.09e-05 |

#### Simple Linear Regression Model 3:

 $Y(hat) = 730.06 + (-77.32)(cyber_objective)$ 

| Coefficients | Estimate | Std. Error | P-Value  |
|--------------|----------|------------|----------|
| Intercept    | 730.06   | 29.83      | <2e-16   |
| Severity     | -77.32   | 12.35      | 1.56e-09 |

#### Multiple Linear Regression Model 1:

 $Y(hat) = 45.8066 + 0.1868(initiator) + 0.5992(cyber_objective) + (-12.4713)(damagetype) + 0.2406(severity)$ 

| Coefficients    | Estimate | Std. Error | P-Value |
|-----------------|----------|------------|---------|
| Intercept       | 45.8066  | 21.2165    | 0.0318  |
| Initiator       | 0.1868   | 0.0192     | <2e-16  |
| Cyber_Objective | 0.5992   | 4.8096     | 0.9010  |
| DamageType      | -12.4713 | 7.4133     | 0.0937  |
| Severity        | 0.2406   | 4.7666     | 0.9598  |

#### Multiple Linear Regression Model 2:

Y(hat) = 808.92 + (-121.00)(military) + (-49.67)(private) + (-42.42)(damagetype) + (-49.67)(severity)

| Coefficients | Estimate | Std. Error | P-Value  |
|--------------|----------|------------|----------|
| Intercept    | 808.92   | 48.52      | <2e-16   |
| Military     | -121.00  | 35.48      | 0.000751 |
| Private      | -49.67   | 29.00      | 0.087940 |
| DamageType   | -42.42   | 23.30      | 0.069815 |
| Severity     | -49.67   | 13.63      | 0.000322 |

#### Multiple Linear Regression Model 3:

Y(hat) = 1.6340954 + (-0.0008396)(initiator) + 0.4420261(method) + 0.2355995(interactiontype)

| Coefficients | Estimate   | Std. Error | P-Value   |
|--------------|------------|------------|-----------|
| Intercept    | 1.6340954  | 0.2214429  | <2.11e-12 |
| Military     | -0.0008396 | 0.0002196  | 0.000164  |
| Private      | 0.4420261  | 0.0560545  | 8.47e-14  |
| DamageType   | 0.2355995  | 0.0525453  | 1.10e-05  |

Suppose APT (Whether or not the incident is considered an advanced persistent threat) is Y variable (The dependent variable of logistic regression model is the variable of yes or no)

```
Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
                                1.27984 -4.884 1.04e-06 ***
(Intercept)
                    -6.25025
interactiontype
                     0.67807
                                0.21076 3.217 0.00129 **
severity
                     1.41664
                                0.26682 5.309 1.10e-07 ***
                                        -1.351 0.17673
targettype
                    -0.35124
                                0.26001
cyber_objective
                   -0.08567
                                0.24162
                                        -0.355 0.72290
information_operation 1.10474
                                0.53991 2.046 0.04074 *
objective_achievement
                     0.02789
                                0.69673 0.040
                                                0.96807
Concession
                    -2.36964
                                0.94667
                                         -2.503 0.01231 *
X3rdpartyinitator
                    -1.59790
                                0.69667
                                        -2.294 0.02181 *
X3rdparty.target
                     2.29770
                                0.47835 4.803 1.56e-06 ***
                    -0.77826
                                0.28797
                                        -2.703
                                                0.00688 **
govtstatement
                                0.38523 2.776
damage.type
                     1.06950
                                                0.00550 **
```

#### Optimization this model

```
Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
                                 1.0846 -6.237 4.46e-10 ***
(Intercept)
                      -6.7645
interactiontype
                       0.6284
                                 0.2006 3.132 0.00174 **
                                 0.2503 5.544 2.95e-08 ***
severity
                       1.3876
information_operation
                       1.0855
                                 0.5052 2.149 0.03166 *
Concession
                      -2.5646
                                 0.9245
                                         -2.774 0.00554 **
X3rdpartyinitator
                      -1.7259
                                 0.6936
                                         -2.488 0.01283 *
X3rdparty.target
                       2.1866
                                 0.4637 4.716 2.41e-06 ***
govtstatement
                      -0.7582
                                 0.2845
                                         -2.665 0.00769 **
                       1.0164
                                 0.3812 2.667
                                                 0.00766 **
damage.type
```

#### Using the anova test: Check whether there are differences between the two models

The anova test of the two models before and after optimization, to see whether there is a difference between the two models before and after optimization, because P = 0.5918 > 0.05, so the two models are still different(Chi sq test for logistic regression)

#### anova(cs.ful, cs.reduced, test = "Chisq")

-> testdata2\$prob

#### Test possibility with control variable method

| severity<br><dbl></dbl> | <b>prob</b><br><dbl></dbl> |
|-------------------------|----------------------------|
| 0                       | 0.02080161                 |
| 1                       | 0.07841111                 |
| 2                       | 0.25415696                 |
| 3                       | 0.57713111                 |
| 4                       | 0.84534889                 |
| 5                       | 0.95631774                 |
| 6                       | 0.98872378                 |
| 7                       | 0.99716051                 |
| 8                       | 0.99928952                 |
| 9                       | 0.99982251                 |

predict(cs.reduced,newdata=cs,type="response")

data.frame(interactiontype=mean(cs\$interactiontype), severity=seq(0,10,1),information\_operation=mean(cs\$infor mation\_operation),Concession=mean(cs\$Concession), X3rdpartyinitator=mean(cs\$X3rdpartyinitator), X3rdparty.target=mean(cs\$X3rdparty.target), govtstatement=mean(cs\$govtstatement), damage.type=mean(cs\$damage.type)) -> testdata2 predict(cs.reduced,newdata=testdata2,type="response")

#### 05. DISCUSSION



When the severity level of network attack increases, the probability that the incident is considered an advanced

persistent threat also increases.

- Simple Linear Regression Model 1 was the strongest due to its high R-squared values and low p-value
- Results from our data visualization also indicate that the Americas were the greatest victim to cyber-attacks, while China and Russia were the top two initiators.



#### **FUTURE WORK**

- Develop our own original dataset from scratch or through synthesis across existing datasets
- Conduct an independent research and statistical study on why nation-state initiators prefer certain cyber-attack methods over others
- Connect the observable trends and vulnerabilities that organizations and nation-states face identified here to existing studies that can be leveraged to develop original research aimed at proposing new mitigation strategies

# THANKS! DO YOU HAVE ANY QUESTION?

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, infographics & images by Freepik.

Please keep this slide for attribution.

```
Model 2: Bar Graph of Interaction Types Against Method Type**

```{r}

ggplot(data = cyberincidentsdata) +

geom_bar(mapping = aes(x = interactiontypename, y = methodname, fill = interactiontypename),

stat = "identity")
```

```
Model 3: Bar Graph of Interaction Types**
   ```{r}
ggplot(data = cyberincidentsdata) +
   geom_bar(mapping = aes(x = interactiontypename, fill = interactiontypename))
```

```
Model 4: Bar Graph of Method Types**
   ```{r}
ggplot(data = cyberincidentsdata) +
   geom_bar(mapping = aes(x = methodname, fill = methodname))
   ```
```

```
Model 8: Scatter Plot of Interaction Start Date vs Cyber Incident Num**
```{r}
gaplot(data=cyberincidentsdata) +
  geom\_point(mapping = aes(x = interactionstartdate, y = Cyberincidentnum))
Model 9: Scatter Plot of Interaction End Date vs Cyber Incident Num**
```{r}
agplot(data=cyberincidentsdata) +
  geom\_point(mapping = aes(x = interactionenddate, y = Cyberincidentnum))
Simple Linear Regression
```{r}
                                                                             lm(Cyberincidentnum~StateA. data = cyberincidentsdata) -> lm1
lm1
                                                                             € × ×
Call:
lm(formula = Cyberincidentnum ~ StateA, data = cyberincidentsdata)
 Coefficients:
  (Intercept)
               StateAChina
                           StateAFrance StateAGermany
                                                       StateAIndia
                                                                     StateATran
                      94.5
                                                                          62.5
        104.5
                                    5.5
                                                 8.5
                                                            152.0
StateALebanon StateAN Korea
                           StateAPoland
                                        StateARussia StateAS Korea
                                                                    StateASvria
        77.5
                     122.5
                                  11.5
                                                31.0
                                                            138.0
                                                                          76.5
     StateAUK
                  StateAUS
         2.5
                     -52.5
```

```
summary(lm1)
Call:
lm(formula = Cyberincidentnum ~ StateA. data = cyberincidentsdata)
Residuals:
   Min
           10 Median
   -51
                               51
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                104.50
                            14.18 7.371 2.42e-12 ***
                 94.50
                                   6.473 4.99e-10 ***
StateAChina
                            14.60
StateAFrance
                  5.50
                           18.30
                                   0.301 0.764035
StateAGermany
                 8.50
                           18.30
                                   0.464 0.642743
StateAIndia
                152.00
                            14.87 10.223 < 2e-16 ***
StateAIran
                 62.50
                            14.69 4.254 2.96e-05 ***
StateAl ebanon
                77.50
                            24.55 3.156 0.001793 **
StateAN Korea
                122.50
                                   8.288 6.90e-15 ***
                            14.78
StateAPoland
                11.50
                            18.30
                                   0.628 0.530349
StateARussia
                 31.00
                            14.56
                                   2.128 0.034278 *
StateAS Korea
                138.00
                            15.85
                                   8.707 4.19e-16 ***
StateASyria
                76.50
                            24.55 3.115 0.002049 **
StateAUK
                 2.50
                                  0.137 0.891459
                            18.30
StateAUS
                -52.50
                            14.31 -3.668 0.000298 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' '1
Residual standard error: 20.05 on 252 degrees of freedom
Multiple R-squared: 0.9354. Adjusted R-squared: 0.9321
F-statistic: 280.8 on 13 and 252 DF. n-value: < 2.2e-16
```

```
#wordcloud
wordc<-cyberstop %>%
    count(word)%>%
    filter(n>5)

wordcloud2(data=wordc,size = 1.5,color = 'random-light',backgroundColor = 'Black')
```

```
Multiple Linear Regression
```{r}
lm(Cyberincidentnum~initiator+cyber_objective+damagetype+severity, data = cyberincidentsdata) ->
mlr1
mlr1
                                                                                      Call:
 lm(formula = Cyberincidentnum ~ initiator + cyber_objective +
    damagetype + severity, data = cyberincidentsdata)
 Coefficients:
    (Intercept)
                       initiator cyber_objective
                                                        damagetype
                                                                          severity
         45.8066
                          0.1868
                                           0.5992
                                                         -12.4713
                                                                            0.2406
```

```
```{r}
summary(mlr1)
Call:
lm(formula = Cyberincidentnum ~ initiator + cyber_objective +
    damagetype + severity, data = cyberincidentsdata)
Residuals:
            10 Median
    Min
 -121.08 -72.16 21.29
                        47.84 92.80
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
 (Intercept)
                45.8066
                           21.2165 2.159
                                            0.0318 *
initiator
                 0.1868
                            0.0192 9.727
                                            <2e-16 ***
                           4.8096
                                   0.125
cyber_objective 0.5992
                                            0.9010
damagetype
                -12.4713
                            7.4133 -1.682
                                            0.0937
                 0.2406
                            4.7666
severity
                                   0.050
                                           0.9598
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 64.19 on 261 degrees of freedom
Multiple R-squared: 0.3142, Adjusted R-squared: 0.3037
F-statistic: 29.9 on 4 and 261 DF, p-value: < 2.2e-16
```

```
cyber %>%
  group_by(targettypename)%>%
  count(victimname)%>%
  arrange(desc(n))%>%
  ggplot(aes(victimname,n))+
  geom_point(aes(fill=targettypename,color=targettypename))+
  theme(axis.text.x = element_text(angle = 90))+
  scale_color_brewer(palette="Dark2")+
  labs(x='victim name', y= 'count', title='Countries and Targets Attacked')

cyber%>%
  select(targettypename,severity)%>%
  group_by(targettypename)%>%
  ggplot(aes(targettypename,severity))+
  geom_boxplot(aes(group=targettypename,fill=targettypename),show.legend = F)+
  theme_classic()+
```

#target type, victim, and number of times

```
#damagetypename and severity
#there is only one indirect and delayed
ggplot(cyber,(aes(damagetypename,severity)))+
  geom_boxplot(aes(fill=damagetypename))+
  scale_fill_brewer(palette="Dark2")+
  labs(x='damage type',y='severity',title='Damage Type and Severity')+
  coord_flip()
```

labs(x='type of target',title='Severity and Target Type')

```
cyberregion<-cyber %>%
    group_by(victimregion)%>%
    count()
cyberregion
cd<- ggplot(cyberregion, aes(x="", y = n, fill=victimregion))+
    geom_bar(width = .5, stat = "identity")
cd

pie <- cd + coord_polar("y", start=0)
pie+scale_fill_brewer(palette="Dark2")+
    labs(title='Which Region Had the Most Victims?')</pre>
```

```
#who initiated the most attacks?
cyber %>%
  group_by(methodname)%>%
  count(initiatorname)%>%
  arrange(desc(n))%>%
  filter(n>1)%>%
  ggplot(aes(initiatorname,n))+
  geom_col(aes(fill=methodname))+
  scale_fill_brewer(palette="Dark2")+
  coord_flip()+
  labs(x='count',y='country',title='What attack methods do initiators prefer?')
```