Question Number	Answer		Mark
17(a)	(The mass meets the conditions for simple harmonic motion as)		
	There is a (resultant) <u>force</u> acting on the mass which is proportional to its displacement from its equilibrium position.	(1)	
	The <u>force</u> is always directed towards the equilibrium position	(1)	2
	(An equation with symbols defined, and the negative sign justified, may be a valid response for both marks		
	For equilibrium position accept: undisplaced point/position or fixed point/position or central point/position)		
17(b)(i)	Use of $\Delta F = k\Delta x$	(1)	
	$k = 26.2 \text{ (N m}^{-1})$	(1)	2
	Example of calculation		
	$k = \frac{0.2 \text{ kg} \times 9.81 \text{ N kg}^{-1}}{7.5 \times 10^{-2} \text{ m}} = 26.16 \text{ N m}^{-1}$		
17(b)(ii)	Combine $T = 2\pi \sqrt{\frac{m}{k}}$ with $f = \frac{1}{T}$ to obtain $f^2 = \frac{k}{4\pi^2} m^{-1}$	(1)	
	Compare with $y = mx + c$ to identify gradient as $\frac{k}{4\pi^2}$	(1)	
	Gradient of graph calculated	(1)	
	Large triangle used for gradient calculation	(1)	
	$k = 26.7 \text{ N m}^{-1}$	(1)	
	A conclusion consistent with the value calculated in (i) (accept comparison with "show that" value from (i))	(1)	6
	Example of calculation		
	$T^2 = \frac{4\pi^2 m}{k} : f^2 = \frac{k}{4\pi^2} m$		
	So gradient = $\frac{k}{4\pi^2}$		
	Gradient= $\frac{(3.25 - 0.00) \text{ s}^{-2}}{(5.00 - 0.20) \text{ kg}^{-1}} = 0.677 \text{ kg s}^{-2}$		
	$k=4\pi^2 \times 0.677 \text{ kg s}^{-2}=26.7 \text{ N m}^{-1}$		
	Total for question 17		10