Stochastic Gradient Methods

Master 2 Data Science, Univ. Paris Saclay

Robert M. Gower

Solving the Finite Sum Training Problem

Recap

Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w) =: f(w)$$

L(w)

General methods

 $\min f(w)$

- Gradient Descent
- Quasi-Newton
- Conjugate Gradients

Two parts

$$\min L(w) + \lambda R(w)$$

- ISTA
- FISTA

Optimization Sum of Terms

A Datum Function

$$f_i(w) := \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

$$\frac{1}{n} \sum_{i=1}^{n} \ell\left(h_w(x^i), y^i\right) + \lambda R(w) = \frac{1}{n} \sum_{i=1}^{n} \left(\ell\left(h_w(x^i), y^i\right) + \lambda R(w)\right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} f_i(w)$$

Finite Sum Training Problem

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^{n} f_i(w) =: f(w)$$

Can we use this sum structure?

The Training Problem

Solving the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Reference method: Gradient descent

$$\nabla \left(\frac{1}{n} \sum_{i=1}^{n} f_i(w) \right) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(w)$$

Gradient Descent Algorithm

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 0, 1, 2, ..., T - 1$

$$w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$$
Output w^T

The Training Problem

Solving the training problem:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(w)$$

Problem with Gradient Descent:

Each iteration requires computing a gradient $\nabla f_i(w)$ for each data point. One gradient for each cat on the internet!

Gradient Descent Algorithm

Set
$$w^0 = 0$$
, choose $\alpha > 0$.
for $t = 0, 1, 2, ..., T$
 $w^{t+1} = w^t - \frac{\alpha}{n} \sum_{i=1}^n \nabla f_i(w^t)$
Output w^T

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_{j}[\nabla f_{j}(w)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w) = \nabla f(w)$$

Is it possible to design a method that uses only the gradient of a **single** data function $f_i(w)$ at each iteration?

Unbiased Estimate

Let j be a random index sampled from $\{1, ..., n\}$ selected uniformly at random. Then

$$\mathbb{E}_{j}[\nabla f_{j}(w)] = \frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(w) = \nabla f(w)$$

Use
$$\nabla f_j(w) \approx \nabla f(w)$$

SGD 0.0 Constant stepsize Set $w^0 = 0$, choose $\alpha > 0$ for t = 0, 1, 2, ..., T - 1 sample $j \in \{1, ..., n\}$ $w^{t+1} = w^t - \alpha \nabla f_j(w^t)$ Output w^T

Strong Convexity

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

EXE: Using that

$$\frac{\sigma_{\min}(A)^2}{2}||w-y||_2^2 \le \frac{1}{2}||A(w-y)||_2^2$$

Show that

$$\frac{1}{2}||Aw - b||_2^2 \ge \frac{1}{2}||Ay - b||_2^2 + \langle A^{\top}(Ay - b), w - y \rangle + \frac{\sigma_{\min}(A)^2}{2}||w - y||_2^2$$

Often the same as the regularization parameter

Strong Convexity

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

EXE: Using that

$$\frac{\sigma_{\min}(A)^2}{2}||w-y||_2^2 \le \frac{1}{2}||A(w-y)||_2^2$$

Show that

$$\frac{1}{2}||Aw - b||_2^2 \ge \frac{1}{2}||Ay - b||_2^2 + \langle A^{\top}(Ay - b), w - y \rangle + \frac{\sigma_{\min}(A)^2}{2}||w - y||_2^2$$

Strong Convexity

Often the same as the regularization parameter

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

EXE: Using that

$$\frac{\sigma_{\min}(A)^2}{2}||w-y||_2^2 \le \frac{1}{2}||A(w-y)||_2^2$$

Show that

$$\frac{1}{2}||Aw - b||_2^2 \ge \frac{1}{2}||Ay - b||_2^2 + \langle A^{\top}(Ay - b), w - y \rangle + \frac{\sigma_{\min}(A)^2}{2}||w - y||_2^2$$

Strong convexity parameter!

Strong Convexity

Often the same as the regularization parameter

Strong convexity

parameter!

$$f(w) \ge f(y) + \langle \nabla f(y), w - y \rangle + \frac{\lambda}{2} ||w - y||_2^2$$
$$2\langle \nabla f(w), w - w^* \rangle \ge \lambda ||w - w^*||_2^2$$

EXE: Using that

$$\frac{\sigma_{\min}(A)^2}{2}||w-y||_2^2 \le \frac{1}{2}||A(w-y)||_2^2$$

Show that

$$\frac{1}{2}||Aw - b||_2^2 \ge \frac{1}{2}||Ay - b||_2^2 + \langle A^{\top}(Ay - b), w - y \rangle + \frac{\sigma_{\min}(A)^2}{2}||w - y||_2^2$$

Expected Bounded Stochastic Gradients

$$\mathbb{E}_j[||\nabla f_j(w)||_2^2] \leq B^2$$
, for all iterates w^t of SGD

Complexity / Convergence

Theorem

If $\frac{1}{\lambda} \geq \alpha > 0$ then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le (1 - \alpha\lambda)^t \mathbb{E}\left[||w^0 - w^*||_2^2\right] + \frac{\alpha}{\lambda}B^2$$

Complexity / Convergence

Theorem

If $\frac{1}{\lambda} \geq \alpha > 0$ then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le (1 - \alpha \lambda)^t \mathbb{E}\left[||w^0 - w^*||_2^2\right] + \frac{\alpha}{\lambda} B^2$$

Shows that $\alpha \approx \frac{1}{\lambda}$

Complexity / Convergence

Theorem

If $\frac{1}{\lambda} \geq \alpha > 0$ then the iterates of the SGD method satisfy

$$\mathbb{E}\left[||w^t - w^*||_2^2\right] \le (1 - \alpha\lambda)^t \mathbb{E}\left[||w^0 - w^*||_2^2\right] + \frac{\alpha}{\lambda}B^2$$

Shows that $\alpha \approx \frac{1}{\lambda}$

Shows that $\alpha \approx 0$

Proof:

$$||w^{t+1} - w^*||_2^2 = ||w^t - w^* - \alpha \nabla f_j(w^t)||_2^2$$
$$= ||w^t - w^*||_2^2 - 2\alpha \langle \nabla f_j(w^t), w^t - w^* \rangle + \alpha^2 ||\nabla f_j(w^t)||_2^2.$$

Taking expectation with respect to j

Unbiased estimator

Bounded

$$\mathbb{E}_{j} \left[||w^{t+1} - w^{*}||_{2}^{2} \right] = ||w^{t} - w^{*}||_{2}^{2} - 2\alpha \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle + \alpha^{2} \mathbb{E}_{j} \left[||\nabla f_{j}(w^{t})||_{2}^{2} \right]$$

$$\leq ||w^{t} - w^{*}||_{2}^{2} - 2\alpha \langle \nabla f(w^{t}), w^{t} - w^{*} \rangle + \alpha^{2} B^{2}$$

Taking total expectation

Stoch grad
$$\mathbb{E}\left[||w^{t+1} - w^*||_2^2\right] \leq (1 - \alpha\lambda)\mathbb{E}\left[||w^t - w^*||_2^2\right] + \alpha^2 B^2$$

$$= (1 - \alpha\lambda)^{t+1}||w^0 - w^*||_2^2 + \sum_{i=0}^t (1 - \alpha\lambda)^i \alpha^2 B^2$$

Using the geometric series sum $\sum_{i=0}^{\infty} (1 - \alpha \lambda)^{i} = \frac{1 - (1 - \alpha \mu)^{t+1}}{\alpha^{\lambda}} \le \frac{1}{\alpha^{\lambda}}$

$$\mathbb{E}\left[||w^{t+1} - w^*||_2^2\right] \le (1 - \alpha\lambda)^{t+1}||w^0 - w^*||_2^2 + \frac{\alpha}{\lambda}B^2$$

SGD shrinking stepsize

```
SGD 1.0: Descreasing stepsize Set w^0 = 0, choose \alpha > 0, \alpha_t = \frac{\alpha}{\sqrt{t+1}}, for t = 0, 1, 2, \dots, T-1 sample j \in \{1, \dots, n\} w^{t+1} = w^t - \alpha_t \nabla f_j(w^t) Stepsize Output w^T
```

why take root square

SGD shrinking stepsize

SGD 1.0: Descreasing stepsize Set $w^0 = 0$, choose $\alpha > 0$, $\alpha_t = \frac{\alpha}{\sqrt{t+1}}$, for $t = 0, 1, 2, \dots, T-1$ sample $j \in \{1, \dots, n\}$ where $t = w^t - \alpha_t \nabla f_j(w^t)$ Stepsize Stepsize Output $t = w^t - \alpha_t \nabla f_j(w^t)$

Shrinking Stepsize

SGD shrinking stepsize

How should we sample j?

Shrinking Stepsize

Why is
$$\alpha_t \sim \frac{1}{\sqrt{t}}$$
?

Does this converge?

SGD Theoretical Properties

Convergence for Convex

- f(w) is convex
- Subgradients bounded

$$\alpha_t = O\left(\frac{1}{\sqrt{t}}\right) \quad \Rightarrow \quad \mathbb{E}[f(w^T)] - f(w^*) \le O\left(\frac{1}{\sqrt{T}}\right)$$

Convergence for Strongly Convex

- f(w) is λ strongly convex
- Subgradients bounded

$$\alpha_t = O\left(\frac{1}{\lambda t}\right) \quad \Rightarrow \quad \mathbb{E}[f(w^T)] - f(w^*) \le O\left(\frac{1}{\lambda T}\right)$$

Complexity for Convex

Theorem for SGD 1.1 (Shrinking stepsize)

Let
$$D = \{x : ||x|| \le r\}$$
 and $r \in \mathbb{R}_+$
such that $||w^*||_2 \le r$. If $\alpha_t = \frac{\alpha}{\sqrt{t+1}}$ for $\alpha > 0$ then
$$\mathbb{E}[f(w^T)] - f(w^*) \le O\left(\frac{1}{\sqrt{T}}\right)$$

SGD 1.1 for Convex Set $w^0 = 0$, $\alpha > 0$, $\alpha_t = \frac{\alpha}{\sqrt{t+1}}$, for $t = 0, 1, 2, \dots, T-1$ $\text{sample } j \in \{1, \dots, n\}$ $w^{t+1} = \text{proj}_D \left(w^t - \alpha_t \nabla f_j(w^t) \right)$ Output w^T

Complexity for Convex

Theorem for SGD 1.1 (Shrinking stepsize)

Let
$$D = \{x : ||x|| \le r\}$$
 and $r \in \mathbb{R}_+$
such that $||w^*||_2 \le r$. If $\alpha_t = \frac{\alpha}{\sqrt{t+1}}$ for $\alpha > 0$ then
$$\mathbb{E}[f(w^T)] - f(w^*) \le O\left(\frac{1}{\sqrt{T}}\right)^{\text{Sublinear convergence}}$$

SGD 1.1 for Convex
$$Set \ w^0 = 0, \ \alpha > 0, \ \alpha_t = \frac{\alpha}{\sqrt{t+1}},$$

$$for \ t = 0, 1, 2, \dots, T-1$$

$$sample \ j \in \{1, \dots, n\}$$

$$w^{t+1} = \operatorname{proj}_D (w^t - \alpha_t \nabla f_j(w^t))$$
Output w^T

Complexity for Strong. Convex

Theorem (Shrinking stepsize)

If f(w) is λ -strongly convex,

and
$$\alpha_t = \frac{\alpha}{\lambda(t+1)}$$
 then SGD1.1 satisfies

$$\mathbb{E}[f(w^T)] - f(w^*) \le O\left(\frac{1}{\lambda(T+1)}\right)$$

Ohad Shamir and Tong Zhang (2013)
International Conference on Machine Learning
Stochastic Gradient Descent for Nonsmooth Optimization: Convergence Results
and Optimal Averaging Schemes.

Complexity for Strong. Convex

Theorem (Shrinking stepsize)

If f(w) is λ -strongly convex,

and
$$\alpha_t = \frac{\alpha}{\lambda(t+1)}$$
 then SGD1.1 satisfies

and
$$\alpha_t = \frac{\alpha}{\lambda(t+1)}$$
 then SGD1.1 satisfies
$$\mathbb{E}[f(w^T)] - f(w^*) \leq O\left(\frac{1}{\lambda(T+1)}\right)$$
Faster Sublinear convergence

Ohad Shamir and Tong Zhang (2013) International Conference on Machine Learning Stochastic Gradient Descent for Nonsmooth Optimization: Convergence Results and Optimal Averaging Schemes.

Comparison GD and SGD for strongly convex

Approximate solution

$$\mathbb{E}[f(w^T)] - f(w^*) \le \epsilon$$

SGD with averaging

$$O\left(\frac{1}{\lambda\epsilon}\right)$$

Gradient descent

$$O\left(\frac{n}{\lambda}\log\left(\frac{1}{\epsilon}\right)\right)$$

What happens if ϵ is small?

What happens if n is big?

Why Machine Learners like SGD

Though we solve:

$$\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \ell\left(h_w(x^i), y^i\right) + \lambda R(w)$$

We want to solve:

The statistical learning problem:

Minimize the expected loss over an *unknown* expectation

$$\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$$

SGD can solve the statistical learning problem!

Why Machine Learners like SGD

The statistical learning problem:

Minimize the expected loss over an unknown expectation

$$\min_{w \in \mathbf{R}^d} \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[\ell \left(h_w(x), y \right) \right]$$

SGD $\infty.0$ for learning

Set
$$w^0 = 0$$
, $\alpha > 0$
for $t = 0, 1, 2, ..., T - 1$
sample $(x, y) \sim \mathcal{D}$
calculate $v_t \in \partial \ell(h_{w^t}(x), y)$
 $w^{t+1} = w^t - \alpha v_t$
Output $\overline{w}^T = \frac{1}{T} \sum_{t=1}^T w^t$

Coding time!

Theorem for SGD 1.1 (Shrinking stepsize)

Let
$$\overline{w}^T = \frac{1}{T} \sum_{t=0}^{T-1} w^t, D = \{x : ||x|| \le r\} \text{ and } r \in \mathbb{R}_+$$

such that $||w^*||_2 \le r$. If $\alpha_t = \frac{2r}{B\sqrt{t+1}}$ then
$$\mathbb{E}[f(\overline{w}^T)] - f(w^*) \le \frac{3rB}{\sqrt{T+1}}$$

Theorem for SGD 1.1 (Shrinking stepsize)

Let
$$\overline{w}^T = \frac{1}{T} \sum_{t=0}^{T-1} w^t$$
, $D = \{x : ||x|| \le r\}$ and $r \in \mathbb{R}_+$
such that $||w^*||_2 \le r$. If $\alpha_t = \frac{2r}{B\sqrt{t+1}}$ then
$$\mathbb{E}[f(\overline{w}^T)] - f(w^*) \le \frac{3rB}{\sqrt{T+1}}$$
Sublinear convergence

SGD 1.1 for Convex Set
$$w^0 = 0$$
, $\alpha_t = \frac{2r}{B\sqrt{t+1}}$, for $t = 0, 1, 2, \dots, T-1$ sample $j \in \{1, \dots, n\}$ $w^{t+1} = \operatorname{proj}_D(w^t - \alpha_t \nabla f_j(w^t))$ Output \overline{w}^T

Theorem (Shrinking stepsize)

If
$$f(w)$$
 is λ -strongly convex, $\overline{w}^T = \frac{2}{T(T+1)} \sum_{t=0}^{T-1} tw^t$ and $\alpha_t = \frac{2}{\lambda(t+1)}$ then SGD1.2 satisfies
$$\mathbb{E}[f(\overline{w}^T)] - f(w^*) \leq \frac{2B^2}{\lambda(T+1)}$$

SGD 1.2 for Strongly Convex $Set \ w^0 = 0, \ \alpha_t = \frac{2}{\lambda(t+1)},$ $for \ t = 0, 1, 2, \dots, T-1$ $sample \ j \in \{1, \dots, n\}$ $w^{t+1} = \operatorname{proj}_D (w^t - \alpha_t \nabla f_j(w^t))$ Output \overline{w}^T

Theorem (Shrinking stepsize)

If
$$f(w)$$
 is λ -strongly convex, $\overline{w}^T = \frac{2}{T(T+1)} \sum_{t=0}^{T-1} tw^t$ and $\alpha_t = \frac{2}{\lambda(t+1)}$ then SGD1.2 satisfies
$$\mathbb{E}[f(\overline{w}^T)] - f(w^*) \leq \frac{2B^2}{\lambda(T+1)}$$
 Faster Sublinear convergence

SGD 1.2 for Strongly Convex Set $w^0 = 0$, $\alpha_t = \frac{2}{\lambda(t+1)}$, for $t = 0, 1, 2, \dots, T-1$ sample $j \in \{1, \dots, n\}$ $w^{t+1} = \operatorname{proj}_D(w^t - \alpha_t \nabla f_j(w^t))$ Output \overline{w}^T