

Turno preliminare 2020

Losanna, Lugano, Zurigo 7 dicembre 2019

Durata: 3 ore

Difficoltà: Gli esercizi relativi ad ogni tema sono ordinati secondo un ordine crescente di difficoltà.

Punti: Ogni esercizio vale 7 punti.

Geometria

- G1) Sia k un cerchio avente centro O. Siano A, B, C e D quattro punti distinti su k in questo ordine, tali che AB sia un diametro di k. Il cerchio circoscritto al triangolo COD interseca ancora AC in P. Dimostrare che OP e BD risultano paralleli.
- **G2)** Sia ABC un triangolo con |AB| > |AC|. Le bisettrici degli angoli in $B \in C$ si intersecano in I all'interno del triangolo. Il cerchio circoscritto al triangolo BIC interseca ancora AB in X e ancora AC in Y. Mostrare che CX risulta parallelo a BY.

Calcolo combinatorio

- C1) Si consideri un quadrato di colore bianco 5×5 composto da 25 quadrati minori. In quanti modi possiamo colorare dei quadratini in nero (uno o più) in modo tale che l'area nera risultante formi un rettangolo?
- C2) Il villaggio Roche ha 2020 residenti. Un giorno, il famoso matematico Georges de Rham osserva quanto segue:
 - Ogni abitante conosce un altro abitante della stessa età.
 - In ogni gruppo di 192 persone (scelto tra gli abitanti del villaggio) ci sono almeno 3 persone che hanno la stessa età.

Mostrare che esiste un gruppo di 22 persone con la stessa età.

Teoria dei numeri

- **N1)** Se $p \ge 5$ è un numero primo, sia q il piu piccolo primo tale che q > p, sia inoltre n il numero di divisori positivi di p + q (inclusi i divisori 1 e q + p).
 - a) Mostrare che, indipendentemente da quale p si sceglie, vale $n \geq 4$.
 - b) Trovare il piu piccolo valore m che n può assumere tra tutte le possibile scelte di p. Cioè:
 - Trovare un p per il quale il valore di m è raggiunto.
 - Mostrare che non esistono primi p per cui n è strettamente minore di m.
- **N2)** Sia p un numero primo e siano a, b, c ed n interi strettamente positivi, con a, b, c strettamente minori di p, tali che valgano le seguenti tre condizioni

$$p^2 \mid a + (n-1) \cdot b,$$
 $p^2 \mid b + (n-1) \cdot c,$ $p^2 \mid c + (n-1) \cdot a.$

Mostrare che n non è primo.