Nombres binaires et hexadécimaux

Introduction à la numération binaire

La numération binaire est un système qui utilise seulement deux symboles : 0 et 1. Contrairement à notre système habituel en base 10 (décimal), qui utilise dix chiffres allant de 0 à 9, la base 2 est le langage fondamental des ordinateurs. Dans ce système, chaque chiffre correspond à une puissance de deux, ce qui permet de représenter n'importe quel nombre avec des suites de 0 et de 1.

Histoire

L'idée du binaire remonte au XVII siècle grâce au philosophe et mathématicien Gottfried Wilhelm Leibniz, qui a montré que tous les nombres pouvaient être exprimés avec seulement deux symboles. Aujourd'hui, le binaire est indispensable en informatique : les circuits électroniques ne reconnaissent que deux états, « allumé » (1) ou « éteint » (0).

Définition

Base : La base d'un système de numération est le nombre de symboles différents qu'il utilise pour écrire les nombres.

Autres bases utilisées

Base 60 – Temps: héritage babylonien (60 minutes, 60 secondes).

Base 12 – Douzaines : usage ancien lié au comptage avec les phalanges.

Base 10 : notre système courant, chaque chiffre représente une puissance de 10.

Exemple en base 10

Le nombre 347 peut être décomposé ainsi : $347_{10} = 3 \times 10^2 + 4 \times 10^1 + 7 \times 10^0$.

Base 2

La base 2 est composée de deux chiffres : $B_2 = \{0,1\}$. Le principe d'incrémentation est identique à la base 10 mais en binaire. Par exemple, après 1_2 vient 10_2 , puis 11_2 , puis 100_2 .

Passage de la base 2 à la base 10

Exemple: $1011_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 11_{10}$

Passage de la base 10 à la base 2

Méthode des divisions successives. Exemple : $22_{10} = 10110_2$.

Base 16

La base hexadécimale (hex) utilise 16 symboles : $B_{16} = \{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F\}$. Très utilisée en informatique (adresses mémoire, représentation des couleurs).

Passage de la base 10 à la base 16

Exemple : $356_{10} \rightarrow 164_{16}$ (méthode des divisions successives).

Passage de la base 16 à la base 10

Exemple : $2F_{16} = 2 \times 16^1 + 15 \times 16^0 = 47_{10}$.

Exercices

Décomposez les nombres suivants en base 10 : 1235, 1002, 0001.

Écrire les nombres de 0 à 15 en base 2.

Donner le nombre qui suit : 1011₂, 1111₂, 1110₂, 1011111₂.

 ${\rm D\'{e}composer\ en\ base\ 10:1010}_2,\ 11011_2,\ 0011_2,\ 1001001101_2.$

Convertir en base 2 : 6₁₀, 16₁₀, 31₁₀, 42₁₀.

Compléter les fonctions bin_to_dec et dec_to_bin (Python).

Convertir en base 16 : 12₁₀, 25₁₀, 31₁₀, 42₁₀.

Convertir en base 10 : A_{16} , $1C_{16}$, $3F_{16}$, $7B_{16}$, FF_{16} .

Table de correspondance Hexadécimal ↔ Décimal

Hex	Dec	Hex	Dec
0	0	8	8
1	1	9	9
2	2	Α	10
3	3	В	11
4	4	С	12
5	5	D	13
6	6	Е	14
7	7	F	15