

Operating Systems

Processes-Part4

Seyyed Ahmad Javadi

sajavadi@aut.ac.ir

Fall 2021

Course logistics

- You have only few days to complete
 - Phase 1 of the project
 - Your first homework

- We will have an extra session on fork
 - The session is handled by TAs
 - It covers both theoretical aspects and how use fork in practice
 - What time is best for you?

Producer-Consumer Problem

- Paradigm for cooperating processes:
 - Producer process produces information that is consumed by a consumer process.

Producer-Consumer Problem-Variations

- Unbounded-buffer places no practical limit on the size of the buffer:
 - Producer never waits
 - Consumer waits if there is no buffer to consumer.
- Bounded-buffer assumes that there is a fixed buffer size
 - Producer must wait if all buffers are full
 - Consumer waits if there is no buffer to consume

IPC – Shared Memory

- An area of memory shared among the processes that wish to communicate.
- The communication is under the control of the users processes not the operating system.
- Major issues is to provide mechanism that will allow the user processes to synchronize their actions when they access shared memory.
- Synchronization is discussed in great details in Chapters 6 & 7.

Bounded-Buffer – Shared-Memory Solution

Shared data

```
#define BUFFER_SIZE 10
typedef struct {
    . . .
} item;
item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;
```

Solution is correct but can only use BUFFER_SIZE - 1 elements.

Circular Bounded-Buffer

Source: https://pages.mtu.edu/~shene/NSF-3/e-Book/SEMA/TM-example-buffer.html

Producer Process – Shared Memory

```
item next produced;
while (true) {
  /* produce an item in next produced */
 while (((in + 1) % BUFFER SIZE) == out)
     ; /* do nothing */
 buffer[in] = next produced;
  in = (in + 1) % BUFFER SIZE;
```


Consumer Process – Shared Memory

```
item next consumed;
while (true) {
     while (in == out)
          ; /* do nothing */
     next consumed = buffer[out];
     out = (out + 1) % BUFFER SIZE;
     /* consume the item in next consumed */
```


What about Filling all the Buffers?

 Suppose that we wanted to provide a solution to the consumerproducer problem that fills all the buffers.

How can we do it?

What about Filling all the Buffers? (ont.)

- We can do so by having an integer counter that keeps track of the number of full buffers.
- Initially, counter is set to 0.
- The integer counter is incremented by the producer after it produces a new buffer.
- The integer counter is decremented by the consumer after it consumes a buffer.

Producer

```
while (true) {
     /* produce an item in next produced */
     while (counter == BUFFER SIZE)
          ; /* do nothing */
     buffer[in] = next produced;
     in = (in + 1) % BUFFER SIZE;
     counter++;
```


Consumer

```
while (true) {
     while (counter == 0)
          ; /* do nothing */
     next consumed = buffer[out];
     out = (out + 1) % BUFFER SIZE;
        counter--;
     /* consume the item in next
consumed */
```

Race Condition

counter++ could be implemented as

```
register1 = counter
register1 = register1 + 1
counter = register1
```

counter -- could be implemented as

```
register2 = counter
register2 = register2 - 1
counter = register2
```


Race Condition (cont.)

Consider this execution interleaving with "count = 5" initially:

```
S0: producer execute register1 = counter {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}

S2: consumer execute register2 = counter {register2 = 5}

S3: consumer execute register2 = register2 - 1 {register2 = 4}

S4: producer execute counter = register1 {counter = 6}

S5: consumer execute counter = register2 {counter = 4}
```


Race Condition (cont.)

Question – why was there no race condition in the first solution

(where at most N-1) buffers can be filled?

More in Chapter 6.