Practical - 3

Aim – Create a database and create the tables given below and execute the mentioned queries on this database.

Schema -

Tables -

Regions –

Query - CREATE TABLE regions(REGION_ID INT PRIMARY KEY, REGION_NAME VARCHAR(25));

Table schema

```
labwednesday=# select * from regions;
region_id | region_name

1 | Africa
2 | Antarctica
3 | Asia
4 | Europe
5 | North america
6 | South America
7 | Oceania
(7 rows)
```

Countries -

<u>Query – CREATE TABLE countries (COUNTRY_ID CHAR(2) primary key, COUNTRY_NAME VARCHAR(40), REGION_ID INT REFERENCES regions(REGION_ID));</u>

Table schema

Table data

· .	# select * from	
country_1a	country_name	
AL I		l 1
AL !	Algeria	! +
AN	Angola	1
BE	Benin	1
AF	Afghanistan	3
IN	India	3
GR	Germany	3
JP	Japan	3
GL	Greenland	2
PT	Portland	4
US	United states	4
(10 rows)		

Locations –

<u>Query - Create Table locations (LOCATION_ID INT PRIMARY KEY, STREET_ADDRESS VARCHAR(25), POSTAL_CODE VARCHAR(12), CITY VARCHAR(30), STATE_PROVINCE VARCHAR(12), COUNTRY_ID CHAR(2) REFERENCES countries(COUNTRY_ID));</u>

Table Schema

ocation_id	street_address	postal_code	city	state_province	country_id
	+	+	+	+	+
1	Oran-algeria	31000	0ran	Or-Province	AL
2	Shin-angola	11000	Shin	Sp-province	AN
	Delhi-India	110000	Delhi	Punjab	IN
4	Mysuru-India	570000	Mysuru	Karnataka	IN
5	Karnataka-India	560000	Bangaluru	Karnataka	IN
6	Mumbai-India	90000	Mumbai	Maharashtra	IN
7	Punjab-India	120000	Punjab	Punjab	IN
8	Jammu-India	150000	Jammu	Jammu	IN
9	Assam-India	980000	Assam	Assam	IN

• Departments -

<u>Query -</u> CREATE TABLE departments (DEPARTMENT_ID INT, DEPARTMENT_NAME VARCHAR(30), MANAGER_ID INT, LOCATION_ID INT REFERENCES locations(location_id), primary key(department_id));

Table schema

Table Data

labwednesday=# 9	select * from depar	tments;				
department_id department_name manager_id location_id						
	+		+			
1	Storage domain	1	1			
3	Network domain		1			
4	Wintel domain	4	3			
5	Technical domain		1			
6	Services domain		3			
7	Hardware domain		1			
8	Software domain	8	3			
9	Nightly domain		1			
10	Early domain	10	3			
2	IT domain	2	3			
11	Sh clerk	11	3			
(11 rows)						

Employees –

Query - CREATE TABLE employees(employee_id int, first_name varchar(20), last_name varchar(25), email varchar(25), phone_number varchar(20), hire_date date, job_id varchar(10) references jobs(job_id), salary int, commission_pct int, manager_id int, department_id int references departments(department_id), primary key(employee_id));

Table schema

loyee_id	first_name	last_name	ensil	phone_number	hire_date	job_id	salary	commission_pct	manager_id	department_lo
1	Ankit	Gupta	ankit@geail.com	1234	2020-12-23	2	10	10	2	
2	It	Gupta	ankit@gmil.com	1234	2020-12-23	3	10	10	3	
3	Kit	Gupta	ankit@mail.com	1234	2020-12-23	4	10	10	4 1	4
4	NEST	Gupta	ankit@gail.com	1234	2020-12-23	2	10	10	2.1	
5	Ank	Gupta	ankit@gmai.com	1234	2020-12-23	1	10	10	1	
6	An	Gupta	ankit@gil.com	1234	2020-12-23	5	10	10	5	
7		Gupta	ankit@gl.com	1234	2028-12-23	5	10	10	5.1	
8		Gupta	ankit@ail.com	1234	2020-12-23	6	10	10	6	
9	Nki	Gupto	ankit@il.com	1234	2020-12-23	8	10	10	8-1	
10	Kit	Ga	ankit@ai.com	1234	2020-12-23	9	10	10	9	
11	Sensex	Bull	bull@b.com	1234	2020-12-23	4	5	10	4	
12	Puca	Pu	popo@g.com	1234	2020-12-23	11	6	12	11	1

Jobs –

<u>Query-</u> CREATE TABLE jobs (job_id varchar(10) primary key, job_title varchar(35), min_salary int, max_salary int);

Table schema

```
labwednesday=# \d jobs;
                              Table "public.jobs"
                                          | Collation | Nullable | Default
   Column
                          Type
               character varying(10)
 job_id
                                                              not null
 job_title
                character varying(35)
 min_salary
                integer
 max_salary | integer
Indexes:
     "jobs_pkey" PRIMARY KEY, btree (job_id)
 eferenced by:
    TABLE "employees" CONSTRAINT "fk_employees_jobs" FOREIGN KEY (job_id) REFERENCES jobs(job_id)
TABLE "job_history" CONSTRAINT "job_history_job_id_fkey" FOREIGN KEY (job_id) REFERENCES jobs(job_id)
```

Table Data

labwednes	day=# select * fro	om jobs;	
job_id	job_title	min_salary	max_salary
+		+	+
1	Storage admin	1	10
3	Network admin	3	10
4	Wintel admin	4	30
5	Technical admin	5	10
6	Services admin	6	30
7	Hardware admin	7	10
8	Software admin	8	30
9	Nightly admin	9	10
10	Early admin	10	30
2	Backup admin	10	30
11	SH_clerk	10	10
(11 rows)			

Jobs history –

<u>Query -</u> CREATE TABLE job_history(employee_id int references employees(employee_id), start_date date, end_date date, job_id varchar(10) references jobs(job_id), department_id int references departments(department_id), primary key(employee_id, start_date));

Table schema

		om job_history end_date		department_id
2	2020-12-30	 2020-12-31	2	2
	2020-12-30	2020-12-31	4	4
4	2020-12-30	2020-12-31	2	2
	2020-12-30	2020-12-31	1	1
	2020-12-30	2020-12-31	1	1
	2020-12-30	2020-12-31	1	1
8	2020-12-30	2020-12-31	1	1
	2020-12-30	2020-12-31	1	1
10	2020-12-30	2020-12-31	1	1
9 rows)				

Queries -

1) Write a query to find the first_name, last_name and salaries of the employees who have a higher salary than the employee who's last_name is Bull.

Sol.

<u>Query</u> - select first_name, last_name, salary from employees where salary > (select salary from employees where last_name='Bull');

Output:

2) Write a SQL subquery to find the first_name and last_name of all employees who works in the IT department.

Sol.

<u>Query</u> - select first_name, last_name from employees where department_id in (select department_id from departments where department_name LIKE 'IT%');

Output:

3) Write a SQL subquery to find the first_name and last_name of the employees under a manager who works for a department based in the United States.

Sol.

<u>Query</u> - select first_name, last_name from employees where manager_id in (select manager_id from departments where location_id in (select location_id from locations where country_id='US'));

Output:

4) Write a SQL subquery to find the first_name and last_name of the employees who are working as a manager.

Sol.

Query-select first_name, last_name from employees where employee_id in (select manager_id from departments);

Output:

```
labwednesday=# select first_name, last_name
rom employees where employee_id in (select ma
nager_id from departments);
first_name | last_name
Ankit
              Gupta
              Gupta
              Gupta
Nkit
              Gupta
Ank
              Gupta
              Gupta
Α
              Gupta
              Gupta
Nki
              Gupta
              Ga
              Bull
Sensex
(11 rows)
```

5) Write a SQL subquery to find the first_name, last_name and salary, which is greater than the average salary of the employees.

Sol.

Query- select first name, last name, salary from employees where salary > (select avg(salary) from employees);

Output:

```
sday=# select first_name, last_nam
salary from employees where salary > (select
avg(salary) from employees);
first_name | last_name | salary
              Gupta
             Gupta
                               10
                              10
             Gupta
                              10
Nkit
             Gupta
Ank
                               10
             Gupta
                               10
              Gupta
             Gupta
                               10
             Gupta
                              10
Nki
             Gupta
                              10
             Ga
(10 rows)
```

6) Write a SQL subquery to find the first_name, last_name and salary, which is equal to the minimum salary for this post, he/she is working on.

Sol.

Query - select first name, salary from employees e where salary = (select min salary from jobs where job id=e.job id);

Output:

7) Write a SQL Subquery to find the first_name, last_name and salary of the employees who earn more than the average salary and works in any of the IT departments.

Sol.

<u>Query-</u> select first_name, last_name, salary from employees where salary > (select avg(salary) from employees) AND department_id = (select department_id from departments where department_name LIKE 'IT%');

Output:

8) Write a subquery to find the first_name, last_name, job_id and salary of the employees who draws a salary that is higher than the salary of all the Shipping Clerk (JOB_ID = 'SH_CLERK'). Sort the results on salary from the lowest to highest.

Sol.

Query - select first_name, last_name, job_id, salary from employees where salary > (select max(salary) from employees where job_id='11');

Output:

```
labwednesday=# select first_name, last_name,
job_id, salary from employees where salary >
(select max(salary) from employees where job_
id='11');
first_name | last_name | job id | salary
Ankit
                           2
              Gupta
                                         10
Ιt
                           3
              Gupta
                                         10
Kit
                                         10
                           4
              Gupta
Nkit
                           2
              Gupta
                                         10
Ank
                           1
                                         10
              Gupta
                           5
An
                                         10
              Gupta
                           5
Α
              Gupta
                                         10
Т
                           6
                                         10
              Gupta
Nki
                           8
                                         10
              Gupta
Kit
                           9
                                         10
              Ga
(10 rows)
```