

BUNDESREPUBLIK DEUTSCHLAND

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

RECEIVED	
01 NOV 2004	
WIPO	PCT

DE04/1836

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen: 103 38 445.6

Anmeldetag: 19. August 2003

Anmelder/Inhaber: Impress Group B.V., Luchthaven Schiphol/NL

Erstanmelder: Impress GmbH & Co oHG,
38723 Seesen/DE

Bezeichnung: Deckelring mit geneigtem Flachsteg

IPC: B 65 D 8/00

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 27. September 2004
Deutsches Patent- und Markenamt
Der Präsident
Im Auftrag

Deckelring mit geneigtem Flachsteg

Die Erfindung befasst sich mit einer besonderen Formgestaltung eines Deckelrings zur Optimierung der Krafteinwirkung der als aufwölbbare Membran wirkenden Verschlusslage, wobei die Krafteinwirkung in einen Haftstreifen, insbesondere ~~keine~~ Siegelnah, zwecks Erhöhung der Belastbarkeit der Naht durch einen anstehenden Innendruck bei einer geschlossenen Verpackung optimiert wird. Auch andere Krafteinwirkungen können besser aufgefangen werden.

Ausgehend von der üblichen Gestaltung eines Deckelrings, vgl. beispielsweise **EP-A-408 268** (CMB) oder **WO-A 97/49510** (Impress), dort Figur 4, oder **GB-A-2 022 474** (Swiss Aluminium), welcher eine Deckelbordierung außenseitig und innenseitig einen horizontal ausgerichteten Flachsteg aufweist, soll der Halt (das Haften) einer auf diesem Flachsteg aufgesiegelten membranartigen Verschlussfolie verbessert werden. Im Normalzustand wird der Deckelring innen zunächst mit der Siegelfolie verschlossen. Dadurch entsteht eine umlaufende Siegelnah von einer gewissen Breite, die sich deutlich auf dem Flachsteg erstreckt. Hier werden die Haltekkräfte für die Verschlusslage aufgebracht, welche durch einen entstehenden Innendruck leicht aufgewölbt wird, was die Siegelnah an der Haftstelle von der Innenseite beginnend kerbartig belastet, bevorzugt aber nicht so hoch oder stark, dass eine Kohäsionskräftekgrenze überschritten wird.

Die Erfindung geht von der technischen Problemstellung aus, diese Haltekraft auf dem Flachsteg zu vergrößern, ohne zusätzliche Änderungen in der Konsistenz oder Stärke oder Breite der Siegelnah vornehmen zu müssen.

Die Erfindung schlägt vor, den Flachsteg nicht im wesentlichen horizontal auszurichten, sondern in seiner Erstreckung geneigt in einem Winkel verlaufen zu lassen, wobei als Bezugsebene diejenige Ebene herangezogen wird, welche sich bei einer aufgesiegelten Verschlusslage ergibt. Dadurch wird der Flachsteg nach aufwärts abgewinkelt, wobei ein großer Bereich von Winkeln

zunächst möglich ist, zwischen oberhalb von 10° und bis zu im wesentlichen 90° , bezogen auf die angesprochene Ebene. Dabei muß die Verschlusslage nicht bereits aufgesiegelt sein, sondern der Deckelring ist auch so umschrieben und beansprucht, dass die 5 Verschlusslage als solches noch nicht aufgesiegelt ist (Anspruch 1), aber hypothetisch als Maß dafür dient, welche Ebene als Vergleichsebene herangezogen wird. Diese Ebene kann auch (Anspruch 2) als "Horizontale" angesehen werden, wenn man den Deckelring auf eine Fläche auflegt.

10

Bevorzugt sind Bereiche der winkligen Erstreckung (der geneigten Erstreckung) des Flachstegs oberhalb von 10° , im Bereich zwischen 25° und 35° sowie zwischen 40° und 60° oder aber im wesentlichen senkrecht oder zwischen 80° und 90° (Ansprüche 3 15 bis 7).

Bei Neigung des Flachstegs ergibt sich eine keilförmige Nut zwischen einer umlaufenden Wand, welche als Kernwand zur Behälterbordierung führt, und dem geneigten Flachsteg. Diese 20 keilförmige Gestaltung hat zwei nicht parallel verlaufende Wände und einen abgerundeten Bodenbereich, der als Nut umläuft und die tiefste Stelle des Deckelrings - in axialer Richtung betrachtet - bildet.

25 Die Behälterbordierung ist eine umfänglich verlaufende, nach außen und unten sich wölbende Struktur, die zum Anfalzen des Deckelrings an einen Rumpfhaken eines Rumpfes geeignet ist. Als Falz kann ein Doppelfalz Anwendung finden. Meist wird der Deckelring zunächst mit der Verschlusslage versiegelt, in dieser 30 vorgefertigten Form ausgeliefert und beim Abfüller der Rumpf mit dem Füllgut aufgefüllt, um ihn anschließend mit dem Deckelring und der Verschlusslage gemeinsam zu bedecken und dann den Doppelfalz randseitig auszubilden. An einer geeigneten Stelle am Rand der Verschlusslage kann zumindest eine oder mehrere Laschen 35 vorgesehen sein, welche zum Abschälen dienen und die Siegelnahrt an dieser Stelle beginnen aufzutrennen. Die gesamte Siegelnahrt wird umfänglich fortlaufend aufgetrennt und öffnet den Innenraum, um Zugang zu dem Füllgut zu geben.

Eine Randeinrollung kann an der Innenseite des geneigt ausgerichteten Flachstegs vorgesehen sein (Anspruch 9). Sie bildet eine Umlenkstelle für die Verschlusslage, die ab dieser 5 Inneneinrollung in einer planen Lage (ohne Innendruckbelastung) ausgerichtet ist, während sich der Rand dieser Verschlusslage entsprechend der Ausrichtung des Flachstegs geneigt und darauf über die Siegelnah (den Haftstreifen) abschälbar befestigt erstreckt. Durch die Umlenkung werden Druckkräfte innerhalb des 10 verschlossenen Behälters, welche auf die Verschlusslage wirken, zumindest teilweise in solche Kräfte umgesetzt, welche sich in Erstreckungsrichtung der Siegelnah als Zugkräfte ausbilden. Hierbei kann eine wesentlich höhere Kraft in dieser Richtung 15 aufgebracht werden, nachdem die gesamte Breite der Siegelnah dieser Zugkraft widersteht. Reine senkrecht zur Siegelnah ausgebildete Zugkräfte, welche beispielsweise beim Abschälen oder Öffnen des Verschlusses anstehen, können für den verschlossenen Zustand herabgesetzt werden. Dadurch kann der Zeitpunkt verzögert werden, zu dem die Kohäsionswirkung der 20 Siegelnah bricht, dem sogenannten Kohäsionsbruch, welcher statt bei 25 N in höhere Bereiche verlagert werden kann, bis hin zu 40 N.

Als Verschlusslage können metallische Folien Anwendung finden, ebenso aber Kunststofffolien, welche im Randbereich gesiegelt 25 werden. Als Siegelfläche bietet sich ein extra aufgebrachter Siegelstreifen auf dem Flachsteg an, wenn eine metallische Verschlusslage als Folie verwendet wird. Sie hat eine wesentliche Breite, ~~und~~ mehr als die Hälfte, bevorzugt im 30 wesentlichen die gesamte Erstreckung des Flachstegs ~~und~~ (Anspruch 12).

Wird ein im wesentlichen senkrecht (zur horizontalen Ebene der Verschlusslage) ausgerichteter Flachsteg eingesetzt, kann die 35 innenliegende Randeinrollung sogar oberhalb der Oberseite der Randbordierung für die Falznaht hinaus axial herüberreichen (Anspruch 13).

Ausführungsbeispiele erläutern und ergänzen die Erfindung.

Figur 1 veranschaulicht einen Ausschnitt aus einem Deckelring, welcher in einem axialen Schnitt gezeigt ist.

Figur 2 veranschaulicht eine alternative Ausführungsform mit einem anders geneigten Flachsteg.

Figur 3 veranschaulicht eine dritte Ausführungsform mit einem nochmals anders, hier nochmals flacher geneigt verlaufenden Flachsteg.

Figur 4a

Figur 4b veranschaulichen Unterschiede zwischen Zugkräften und Scherkräften bei einer Druckbelastung aus dem Innenraum auf die Innenseite der Verschlusslage 1, wobei die Druckbelastung mit F_i bezeichnet ist.

In **Figur 1** ist ein Ausschnitt eines Deckelrings gezeigt, der in verschlossenem Zustand mit einer Folie 1 verschlossen ist, welche viele alternative Gestaltungen annehmen kann, so aus Kunststoff oder Metall gestaltet sein kann. Im Randbereich des mit Folie verschlossenen Deckels ist eine Randbordierung 2 vorgesehen, welche im wesentlichen U-förmige Gestalt aufweist. Eine anders gerichtete U-förmige Gestalt findet sich in einer Nut N1, die zwischen der Innenwand der Randbordierung als Kernwand und einem aufragend aufgestellten Flachsteg 3a ausgebildet ist. Auf der axialen Außenseite des Flachstegs ist der Randbereich der Verschlusslage 1 mit einer hier nicht gesondert dargestellten Siegellage verschlossen. Zur Ausbildung der Siegellage wird exemplarisch auf die **Figur 4b** verwiesen, welche diese Siegellage 30 als Adhäsionslage zeigt, beispielsweise aus Klebstoff oder einem anderen geeigneten, haftenden und lebensmittel-verträglichen Werkstoff.

Symbolisch ist der Rumpf als Wanne 20 gezeigt, welcher einen geneigt abstehenden Rand 21 aufweist, der beim Verschließen von der Deckelbordierung 2 überstülpt wird, um anschließend mit

einer Verschließmaschine und einer Falzrolle in einen Doppelfalz überführt zu werden und den Rumpf 20 zu verschließen. Vertikal aufragend ist die Behälterwand 22 des Rumpfes gezeigt, die die Höhe des aufnehmenden Volumens des Rumpfes 20 definiert.

5 An der Innenseite des Flachstegs 3a ist eine Inneneinrollung 4 vorgesehen, deren genaue Gestaltung auch aus den Figuren 4a, 4b entnommen werden kann. Sie vermeidet Schnittgefahren und sorgt für eine Umlenkung u der Verschlusslage 1, zwischen einem
10 Siegelabschnitt in deren Randbereich 1b und einem Planabschnitt, welcher frei tragend über den gesamten Innenraum, innerhalb der Rандбordierung 4 herübereicht und diesen verschließt.

15 Die Neigung des Flachstegs 3a ist mit ca. 90° als Winkel $\alpha 1$ in dem Ausführungsbeispiel der Figur 1 angegeben. Die Ausrichtung des Flachstegs erfolgt damit im wesentlichen senkrecht zur Ebene, welche durch den Innenbereich der Verschlusslage 1 vorgegeben wird. Die Innenbordierung 4 ragt in diesem Beispiel axial leicht über die Oberseite der außenseitigen
20 Rандбордierung 2 herüber, so dass die Verschlusslage 1 über diese Außenseite nach oben hervorsteht.

25 Eine alternative Neigung $\alpha 2$ ist in Figur 2 für den Flachsteg 3b gezeigt. Dieser Winkel liegt im Bereich zwischen 40° und 60° , orientiert an der beschriebenen Ebene der Membran 1, die hier mit der Dicke d als sehr dünn eingezeichnet ist. Gegenüber der Dicke dieser Verschlusslage 1 ist das Blech im Deckelring stärker ausgebildet, so dass die eingeförmten Geometrien im normalen Gebrauch erhalten bleiben, mit Ausnahme der Umformung
30 des Deckelrandes 2 bei der Ausbildung der Falznaht mit dem Rumpfhaken 21 des Rumpfes 20.

35 Die in **Figur 2** eingezeichnete schwächere Neigung $\alpha 2$ gegenüber der Figur 1 bezogen auf den Flachsteg 3b bringt eine andere Querschnittsgestalt der im wesentlichen keilförmig verlaufenden Umfangsnut N2, die einen abgerundeten Nutgrund aufweist. Dieser Nutgrund bildet die tiefste Stelle des Deckelrings, der als solches rund ausgebildet sein kann, oval, langoval oder in

Rechteckform, mit leichten abgerundeten Innenecken, bei Ermöglichung der Ausbildung einer Inneneinrollung 4 auch in diesen inneren Eckbereichen.

5 Eine noch weitere Gestaltung zeigt die **Figur 3**, bei der eine flachere Ausrichtung α_3 des Flachstegs 3c im Bereich zwischen 25° und 35° gewählt ist. Alle übrigen Maßgaben der vorhergehenden Beschreibung der Figur 2 sind ebenso erfüllt. Auch hier dient die Inneneinrollung 4 als Umlenkstelle für die 10 Membran im Bereich zwischen der umfänglich verlaufenen Siegelstelle 30,1b und der Innenfläche 1 zur Abdeckung der Öffnung innerhalb der Inneneinrollung 4.

15 Der Winkel α_3 kann in weiteren Beispielen, die nicht gesondert dargestellt sind, weiter reduziert werden, bis etwa 10° , sollte aber oberhalb von 0° liegen und damit eine schräge (geneigte) Ausbildung gegenüber der beschriebenen Ebene der Verschlussmembran 1 bilden.

20 Durch die unterschiedliche Orientierung des Flachstegs, der aufgrund seines Namens nicht horizontal ausgerichtet ist, sondern auf einer deutlichen Breite flach ausgebildet ist, um eine flache Siegelnahrt zu erzeugen, auf der die Membran hinreichend gut und dicht befestigt werden kann, gibt es 25 unterschiedliche Gestaltungen für die Form der Umfangsnut N2, N3, mit einer jeweils flacher nach innen verlaufenden Wand, aber im wesentlichen gleichbleibender Steigung der Kernwand zur Deckelbordierung 2.

30 Durch die Neigung des Flachstegs, exemplarisch an Beispielen α_1 , α_2 und α_3 gezeigt, wird ein System nach der **Figur 4b** erhalten. Ein Innendruck auf die frei tragende Innenfläche der Membran 1 wird durch die Innenbordierung 4 umgelenkt und sorgt für eine Zugkraft im Siegelbereich 30. Die gesamte Breite der 35 Siegelnahrt 30, hier im Querschnitt der Figur 4b dargestellt, kann dieser Zugkraft z widerstehen, und zwar besser widerstehen, als wenn eine horizontale Ausrichtung des Flachstegs nach **Figur 4a** gewählt wird. Hier wirkt die Druckkraft F_i auf die

Membran 1 so, dass eine Kerbwirkung x an der Stelle 31 der Siegelnah 30 durch eine senkrechte Zugkraft X entsteht, welche durch die im wesentlichen senkrecht zur Erstreckung des Siegelstreifens 30 anstehenden Kräfte leichter zu einem Verlust 5 der Kohäsionswirkung und damit zu einem Kohäsionsbruch führt, als das bei Figur 4b beschrieben war.

Je stärker die Neigung des Flachstegs 3, desto stärker die Umwandlung der senkrecht zur Siegelnah 30 verlaufenden Kräfte 10 nach Figur 4a in solche, die an sich als "Scherkräfte" zu bezeichnen sind. Es werden Peelkräfte (senkrechte Zugkräfte) in solche parallel zu 30 verlaufenden Kräfte umgesetzt, die nach Figur 4b besser aufgenommen werden können, von der gesamten Breite des Siegelstreifens 30, als die eine Kerbwirkung habenden 15 Zugkräfte X nach Figur 4a.

Ansprüche:

1. **Deckelring** für ein Anfalzen an einem Rumpf (20) und zur Aufnahme einer randseitig aufgesiegelten Verschlusslage (1), welche einen Innenraum des Deckelrings überbrückt und – in angefalztem Zustand – den Rumpf (20) verschließt, wobei
 - 5 (i) der Deckelring einen umlaufenden Flachsteg (3a,3b,3c) aufweist, welcher radial nach außen in eine Randbordierung (2) des Deckelrings übergeht, wobei zwischen der Randbordierung und dem Flachsteg eine umlaufende Nut (N1,N2,N3) verläuft;
 - 10 (ii) der Flachsteg zum Aufsiegeln des Randes der Verschlusslage geeignet ist und gegenüber der Ebene einer so aufgesiegelten Verschlusslage (1) in einem von Null verschiedenen Winkel ($\alpha_1, \alpha_2, \alpha_3$) verläuft.
2. **Deckelring** für ein Anfalzen an einem Rumpf (20) und zur Aufnahme einer randseitig aufgesiegelten Verschlusslage (1), welche einen Innenraum des Deckelrings überbrückt und – in angefalztem Zustand – den Rumpf (20) verschließt, wobei
 - 20 (i) der Deckelring einen umlaufenden Flachsteg (3a,3b,3c) aufweist, welcher radial nach außen in eine Randbordierung (2) des Deckelrings übergeht, wobei zwischen der Randbordierung und dem Flachsteg eine umlaufende Nut (N1,N2,N3) verläuft;
 - 25 (ii) der Flachsteg so aus einer Horizontalen aufwärts geneigt verläuft, und mit einer Inneneinrollung (4) an seinem radial inneren Ende versehen ist, dass eine auf ihm aufgesiegelte (30) Verschlusflächen (1) bei einer Druckkraft (F_i) senkrecht zu ihrer Erstreckungsebene eine wesentliche Kraftkomponente (z) in die Siegelnahrt (30) so einleitet, dass sie in der Erstreckungsrichtung der Siegelnahrt verläuft.
3. Deckelring nach einem voriger Ansprüche, wobei der von Null verschiedene Winkel zwischen im wesentlichen 10° und im wesentlichen 90° liegt.

4. Deckelring nach einem der Ansprüche 1 oder 2, wobei der Winkel (α_2) zwischen im wesentlichen 40° und 60° liegt.
5. 5. Deckelring nach einem der Ansprüche 1 oder 2, wobei der Winkel (α_2) zwischen im wesentlichen 25° und 35° liegt.
6. Deckelring nach einem der Ansprüche 1 oder 2, wobei der Winkel (α_2) zwischen im wesentlichen 80° und 90° liegt.
- 10 7. Deckelring nach Anspruch 1 oder 2, wobei der von Null verschiedene Winkel im wesentlichen senkrecht zur Erstreckung der Ebene der Verschlusslage (1) verläuft.
- 15 8. Deckelring nach einem voriger Ansprüche, wobei die Aufnahme der Verschlusslage ein Aufsiegeln eines Randes der Verschlusslage über einen umfänglich verlaufenden Siegelstreifen (30) auf dem Flachsteg (3a,3b,3c) ist.
- 20 9. Deckelring nach einem voriger Ansprüche, wobei der Flachsteg radial innen eine Inneneinrollung (4) aufweist.
10. Deckelring nach einem voriger Ansprüche, wobei die Verschlusslage über die Inneneinrollung (4) verläuft und dabei umgelenkt wird (u), so dass sich ein Randstreifen (1b) bildet, der in einem von Null verschiedenen Winkel gegenüber der Ebene der Verschlusslage (1) im Innenbereich des Deckelrings verläuft.
- 30 11. Deckelring nach einem voriger Ansprüche, wobei die Verschlusslage als Folie oder Membran, insbesondere aus Kunststoff oder Metallblech oder Metallfolie gebildet ist.
12. Deckelring nach einem voriger Ansprüche, wobei die Siegelnah (30) als ein umfänglicher verlaufender Streifen eine wesentliche Breite auf der Erstreckung des Flachstegs (3) aufweist, welche Breite mehr als die Hälfte der Breite des Flachstegs ist.

13. Deckelring nach einem voriger Ansprüche, wobei die
Inneneinrollung über eine Oberseite der Deckelbordierung (2)
axial herübersteht, bei einer steil aufragenden Ausrichtung
5 des Flachstegs (3a).

14. Deckelring nach einem voriger Ansprüche, wobei die
Nut (N1,N2,N3) eine keilförmige Ausgestaltung mit einem
abgerundeten Boden aufweist und zwischen einer Kernwand zur
10 Deckelbordierung (2) und dem geneigt ausgerichteten
Flachsteg (3a,3b,3c) ausgebildet ist.

* * *

Fig. 3

Fig. 2

Fig. 1

Fig. 4a

Fig. 4b

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.