1 Определения

1.1 Упорядоченная пара

Для некоторого множества X и I - множество "индексов", тогда $(x_{\alpha})_{\alpha \in I}$ - семейство элементов X. ($\forall \alpha \in I \ x_{\alpha} \in X$)

Упорядоченная пара — семейство из двух элементов, построенная при $I = \{1, 2\}$. Обозначается (a, b).

1.2 Декартово произведение

Декартово произведение двух множеств — множество всех упорядоченных пар элементов этих множеств. $A \times B = \{(a,b) : a \in A, b \in B\}$

Кроме того, декартово произведение можно обобщить для произвольного числа множеств. $A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2 \ldots a_n) : a_1 \in A_1, a_2 \in A_2 \ldots a_n \in A_n\}$

1.3 Аксиомы вещественных чисел

1.3.1 Аксиомы поля

В множестве \mathbb{R} определены две операции, называемые сложением и умножением, действующие из $\mathbb{R} \times \mathbb{R}$ в \mathbb{R} ($+, \cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$), удовлетворяющие следующим свойствам: Аксоимы сложения (здесь и далее $\forall a \in \mathbb{R}, b \in \mathbb{R}$):

1. a + b = b + a — коммутативность

2.
$$(a + b) + c = a + (b + c)$$
 — ассоциативность

3. \exists **0** : **0** + a = a

4. $\exists a' : a + a' = \mathbf{0}$

Аксиомы умножения:

1. ab = ba — коммутативность

2. (ab)c = a(bc) — ассоциативность

3. $\exists \mathbf{1} \neq \mathbf{0} : \forall a \in \mathbb{R} : a \cdot \mathbf{1} = a$

4. $\forall a \neq \mathbf{0} : \exists \tilde{a} : a \cdot \tilde{a} = \mathbf{1}$

Аксоима комбинации сложения и умножения:

1. (a + b)c = ac + bc - дистрибутивность

Поле — множество, в котором определены операции $+,\cdot$, удовлетворяющие группе аксиом І. Например, $\mathbb{R},\mathbb{Q},\mathbb{F}_3$

Конспект к опросу

1.3.2 Аксиомы порядка

- 1. $\forall x, y \in \mathbb{R} : x \leq y$ или $y \leq x$
- 2. $x \le y; y \le x \Rightarrow x = y$
- 3. $x \leq y; y \leq z \Rightarrow x \leq z$ транзитивность
- 4. $x \le y \Rightarrow \forall z \in \mathbb{R} : x + z \le y + z$
- 5. 0 < x; $0 < y \Rightarrow 0 < xy$

Упорядоченное поле — множество, для которого выполняются аксиомы групп I и II.

 \mathbb{F}_3 , \mathbb{C} - не упорядоченные поля

 $\mathbb{R}, \mathbb{Q}, \mathcal{R}$ - упорядоченные поля

1.4 Аксиома Кантора, аксиома Архимеда

1.4.1 Аксиома Архимеда

$$\forall x, y > 0 : \exists n \in \mathbb{R} : nx > y$$

Следствие: существуют сколько угодно большие натуральные числа:

$$\forall y \in \mathbb{R} : \exists n \in \mathbb{N} : n > y$$

Архимедовы поля — упорядоченные поля, в которых выполняется Аксиома Архимеда.

 \mathcal{R} - не архимедово поле

 \mathbb{R},\mathbb{Q} - архимедовы поля

1.4.2 Аксиома Кантора

Для последовательности вложенных отрезков $\{[a_n,b_n]\}_{n=1}^{\infty}$ ($\forall n\in\mathbb{N}\ a_n\leq a_{n+1}\leq b_{n+1}\leq b_n$)

$$\bigcap_{n=1}^{\infty} [a_n, b_n] \neq \emptyset$$

 \mathbb{Q} не удволетворяет этой аксиоме, в отличие от \mathbb{R} .

1.5 Пополненное множество вещественных чисел, операции и порядок в нем

Это дополнение?

1.6 Максимальный элемент множества

 $M \in A$ называется максимальным элементом множества A, если $\forall a \in A \ a \leq M$

1.7 Последовательность

 $x: \mathbb{N} \to Y$ — последовательность

Конспект к опросу

1.8 Образ и прообраз множества при отображении

Для $A\subset X, f:X\to Y$ образ — множество $\{f(x),x\in A\}\subset Y$ — обозначается f(A) Для $B\subset Y$ прообраз — $\{x\in X:f(x)\in B\}$ — обозначается $f^{-1}(B)$

1.9 Инъекция, сюръекция, биекция

Сюръекция — такое отображение $f: X \to Y$, что f(X) = Y, т.е. $\forall y \in Y \ f(x) = y$ имеет решение относительно x.

Инъекция — такое отображение $f: X \to Y$, что $\forall x_1, x_2 \in X, x_1 \neq x_2$ $f(x_1) \neq f(x_2)$, т.е. $\forall y \in Y \ f(x) = y$ имеет не более одного решения относительно x.

Биекция — отображение, являющееся одновременно сюръекцией и инъекцией, т.е. $\forall y \in Y \ f(x) = y$ имеет ровно одно решение относительно x.

1.10 Векторнозначаная функция, ее координатные функции

Если $F:X\to \mathbb{R}^m;x\mapsto F(x)=(F_1(x),...,F_m(x)),$ то F — векторнозначная функция (значения функции - вектора)

 $F_1(x)..F_m(x)$ - координатные функции отображения F

1.11 График отображения

$$\Gamma_f = \{(x, y) \in X \times Y : y = f(x)\}$$

1.12 Композиция отображений

 $f:X \to Y, g:Y \to Z$, тогда композиция f и g (обозначается $g\circ f$) — такое отображение, что $g\circ f:X \to Z, x\mapsto g(f(x)).$

Также возможно определение, которое допускает $g: Y_1 \to Z, Y_1 \supset Y$

1.13 Сужение и продолжение отображений

Для $g: X \to Y$ f — сужение g на множество A, если $f: A \to Y, A \subset X$. g называется продолжением f.

1.14 Предел последовательности (эпсилон-дельта определение)

Если для $(x_n), a \in \mathbb{R}$ выполняется $\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |x_n - a| < \varepsilon$, то a — предел последовательности (x_n) , обозначается $x_n \to a$ или $\lim_{n \to \infty} x_n = a$

1.15 Окрестность точки, проколотая окрестность

Окрестность точки $a=\{x\in\mathbb{R}:|x-a|<\varepsilon\}$, обозначается $U_{\varepsilon}(a)$ Проколотая окрестность точки $a=U_{\varepsilon}(a)\setminus\{a\}$, обозначается $\dot{U}_{\varepsilon}(a)$

1.16 Предел последовательности (определение на языке окрестностей)

$$\forall U(a) \ \exists N \ \forall n > N \ x_n \in U(a)$$

1.17 Метрика, метрическое пространство, подпространство

На множестве X отображение $\rho: X \times X \to \mathbb{R}$ называется **метрикой**, если выполняются свойства 1-3:

- 1. $\forall x, y \ \rho(x, y) \ge 0; \rho(x, y) = 0 \Leftrightarrow x = y$
- 2. $\forall x, y \ \rho(x, y) = \rho(y, x)$
- 3. Неравенство треугольника: $\forall x,y,z\in X \ \rho(x,y)\leq \rho(x,z)+\rho(z,y)$

Метрическое пространство — упорядоченная пара (X, ρ) , где X — множество, ρ — метрика на X.

Подпространством метрического пространства (X, ρ) называется $(A, \rho|_{A \times A})$, если $A \subset X$

1.18 Шар, замкнутый шар, окрестность точки в метрическом пространстве

Шар (открытый шар) $B(a,r) = \{x \in X : \rho(a,x) < r\}$

Замкнутый шар $B(a,r) = \{x \in X : \rho(a,x) \le r\}$

Окрестность точки a в метрическом пространстве: $B(a, \varepsilon) \Leftrightarrow U(a)$.

1.19 Линейное пространство

Если K — поле ($K = \mathbb{R}$ $unu\mathbb{C}$), X — множество, то X называется линейным пространством над полем K (и тогда K называется полем скаляр), если определены следующие две операции:

- 1. $+: X \times X \to X$ сложение векторов
- 2. $\,\cdot:K\times X\to X$ умножение векторов на скаляры

Для этих операций выполняются соответствующие аксиомы (здесь $A, B, C \in X$; $a, b \in K$):

1.19.1 Аксиомы сложения векторов

- 1. A + B = B + A
- 2. A + (B + C) = (A + B) + C
- 3. $\exists 0 \in X : A + 0 = A$
- 4. $\exists -A \in X : A + (-A) = 0$ обратный элемент

1.19.2 Аксиомы умножения векторов на скаляры

- 1. $(A+B) \cdot a = A \cdot a + B \cdot a$
- 2. $A \cdot (a+b) = A \cdot a + A \cdot b$
- 3. $(ab) \cdot A = a(b \cdot A)$
- 4. $\exists 1 \in K : 1 \cdot A = A$

Конспект к опросу 5

1.20 Норма, нормированное пространство

Норма - отображение $X \to \mathbb{R}, x \mapsto ||x||$, если X - линейное пространство (над \mathbb{R} или \mathbb{C}) и выполняется следующее:

- 1. $\forall x \ ||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$
- 2. $\forall x \in X \ \forall \lambda \in \mathbb{R}(\mathbb{C}) \ ||\lambda x|| = |\lambda| \cdot ||x||$
- 3. Неравенство треугольника: $\forall x, y \in X \ ||x + y|| \le ||x|| + ||y||$

Нормированное пространство — упорядоченная пара $(X, ||\cdot||)$, где |||| - норма

1.21 Ограниченное множество в метрическом пространстве

 $A \subset X$ — ограничено, если $\exists x_0 \in X \ \exists R > 0 \ A \subset B(x_0, R)$, т.е. если A содержится в некотором шаре в X.

1.22 Внутренняя точка множества, открытое множество, внутренность

a — внутренняя точка множества D,если $\exists U(a):U(a)\subset D,$ т.е. $\exists r>0:B(a,r)\subset D$ — открытое множество, если $\forall a\in D:a$ — внутренняя точка D Внутренностью множества D называется $Int(D)=\{x\in D:x$ — внутр. точка $D\}$

1.23 Предельная точка множества

a — предельная точка множества D, если $\forall \dot{U}(a) \; \dot{U}(a) \cap D \neq \emptyset$

1.24 Замкнутое множество, замыкание, граница

D — замкнутое множество, если оно содержит все свои предельные точки. Замыканием множества D называется $\overline{D} = D \cup$ (множество предельных точек D) Граница множества — множество его граничных точек. Обозначается $\partial D = \overline{D} \; Int D$

1.25 Изолированная точка, граничная точка

a — изолированная точка D, если $a \in D$ и a — не предельная.

a — граничная точка D, если $\forall U(a) \ U(a)$ содержит точки как из D, так и из D^c

1.26 Описание внутренности множества

- 1. IntD открыто
- 2. $IntD = \bigcup_{\substack{D\supset G\\G-\text{открыт}}}$ максимальное открытое множество, содержащееся в D
- 3. D открыто в $X \Leftrightarrow D = IntD$

1.27 Описание замыкания множества в терминах пересечений

 $\overline{D}=\bigcap_{\substack{F\supset D\\F-3\text{амкн.}}}F$ – минимальное (по включению) замкнутое множество, содержащее D. Если D замкнуто, $\overline{D}=D.$

1.28 Верхняя, нижняя границы; супремум, инфимум

 $E \subset \mathbb{R}$. E — огр. сверху, если $\exists M \in \mathbb{R} \ \forall x \in E \ x \leq M$. Кроме того, всякие такие M называются верхними границами E.

Аналогично ограничение снизу.

Для E — огр. сверху **супремум** (sup E)— наименьшая из верхних границ E.

Для E — огр. снизу **инфинум** (sup E) — наибольшая из нижних границ E.

1.29 Техническое описание супремума

$$b = \sup E \Leftrightarrow \begin{cases} \forall x \in E \ x \le b \\ \forall \varepsilon > 0 \ \exists x \in E \ b - \varepsilon < x \end{cases}$$

1.30 Последовательность, стремящаяся к бесконечности

$$x_n \to +\infty$$
 $\forall E > 0 \; \exists N \; \forall n > N \; x_n > E$
 $x_n \to -\infty$ $\forall E \; \exists N \; \forall n > N \; x_n < E$
 $x_n \to \infty \Leftrightarrow |x_n| \to +\infty$

1.31 Компактное множество

 $K\subset X$ — компактное, если для любого открытого покрытия \exists конечное подпокрытие $\Leftrightarrow \exists \alpha_1\dots\alpha_n \quad K\subset \bigcup_{i=1}^n G_{\alpha_i}$

1.32 Секвенциальная компактность

Секвенциально компактным называется множество $A \subset X : \forall$ посл. (x_n) точек $A \equiv \text{подпосл. } x_{n_k}$, которая сходится к точке из A

1.33 Определения предела отображения (3 шт)

1.33.1 По Коши

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D \ 0 < \rho^X(a, x) < \delta \quad \rho^Y(f(x), A) < \varepsilon$$

1.33.2 На языке окрестностей

$$\forall U(A) \ \exists V(a) \ \forall x \in \dot{V}(a) \ f(x) \in U(A)$$

1.33.3 По Гейне

 $\forall (x_n)$ — посл. в X:

- 1. $x_n \to a$
- 2. $x_n \in D$
- 3. $x_n \neq a$

$$f(x_n) \to A$$

7

1.34 Определения пределов в $\overline{\mathbb{R}}$

2 Теоремы

2.1 Законы де Моргана

Пусть $(X_{\alpha})_{\alpha \in A}$ - семейство множеств, Y - множество. Тогда:

1.
$$Y \setminus (\bigcup_{\alpha \in A} X_{\alpha}) = \bigcap_{\alpha \in A} (Y \setminus X_{\alpha})$$

2.
$$Y \setminus (\bigcap_{\alpha \in A} X_{\alpha}) = \bigcup_{\alpha \in A} (Y \setminus X_{\alpha})$$

2.2 Неравенство Коши-Буняковского, евклидова норма в \mathbb{R}^m

2.2.1 Неравенство Коши-Буняковского

$$(\sum a_i b_i)^2 \le (\sum a_i^2)(\sum b_k^2)$$

 $\mathbf{2.2.2}$ Евклидова норма в \mathbb{R}^m

$$||x|| = \sqrt{\sum_{i}^{m} x_i^2}$$

2.3 Аксиома Архимеда. Плотность множества $\mathbb Q$ в $\mathbb R$

2.3.1 Аксиома Архимеда

$$\forall x, y > 0 : \exists n \in \mathbb{R} : nx > y$$

2.3.2 Плотность множества $\mathbb Q$ в $\mathbb R$

$$\mathbb Q\,$$
плотно в $\mathbb R \ensuremath{\iff} def \ensuremath{\forall} a,b \in \mathbb R, a < b \ (a,b) \cap \mathbb Q \neq \mathcal O$

В любом интервале в \mathbb{R} содержится число $\in \mathbb{Q}$.

2.4 Неравенство Бернулли

$$(1+x)^n \ge 1 + nx$$
 $x > -1, n \in \mathbb{N}$

2.5 Единственность предела и ограниченность сходящейся последовательности

2.5.1 Единственность предела

$$(X,\rho)$$
— метрическое пр-во, $a,b\in X$, (x_n) — послед. в X , $x_n\xrightarrow[n\to+\infty]{}a,x_n\to b$, тогда $a=b$

2.5.2 Ограниченность сходящейся последовательности

Если (x, ρ) — метрическое пр-во, (x_n) — послед. в X, x_n сходится, тогда x_n — ограничена.

2.6 Теорема о предельном переходе в неравенствах для последовательностей и для функций

8

Если $(x_n), (y_n)$ — вещественные последовательности $x_n \to a, y_n \to b, \forall n \ x_n \le y_n$, тогда $a \le b$.

Надо ли $\exists N \ \forall n > N$?

Если $f,g:X\to\mathbb{R},$ a — предельная точка X, и $\forall x\in Xf(x)\leq g(x).$ Тогда $\lim_{x\to a}f(x)\leq \lim_{x\to a}g(x)$

2.7 Теорема о двух городовых

Если $(x_n),(y_n),(z_n)$ - вещ. посл., $\forall n \ x_n \leq y_n \leq z_n, \lim x_n = \lim z_n = a,$ тогда $\exists \lim y_n = a$

2.8 Бесконечно малая последовательность

 (x_n) — вещ. посл. называется бесконечно малой, если $x_n o 0$

2.9 Теорема об арифметических свойствах предела последовательности в нормированном пространстве и в $\mathbb R$

Если $(X,||\cdot||)$ — норм. пр-во, $(x_n),(y_n)$ — посл. в X,λ_n — посл. скаляров, и $x_n\to x_0,y_n\to y_0,\lambda_n\to\lambda_0$, тогда:

- 1. $x_n \pm y_n \rightarrow x_0 \pm y_0$
- 2. $\lambda_n x_n \to \lambda x_0$
- 3. $||x_n|| \to ||x_0||$

Для $(x_n), (y_n)$ — вещ.посл., $\forall n \ y_n \neq 0, y_0 \neq 0$:

4.
$$\frac{x_n}{y_n} \rightarrow \frac{x_0}{y_0}$$