ENSIIE. Simulation methods: MC integration and Important Sampling

Abass SAGNA, abass.sagna@ensiie.fr

Maître de Conférences à l'ENSIIE, Laboratoire de Mathématiques et Modélisation d'Evry Université d'Evry Val-d'Essonne, UMR CNRS 8071

http://www.math-evry.cnrs.fr/members/asagna/

February 21, 2019

- Monte Carlo integration
 - The principle
 - Properties of the sample mean
 - Convergence rate confidence interval
- Variance reduction techniques
 - A toy example with a discrete r.v.
 - The general case: Important sampling

- Monte Carlo integration
 - The principle
 - Properties of the sample mean
 - Convergence rate confidence interval
- Variance reduction techniques
 - A toy example with a discrete r.v.
 - The general case: Important sampling

- Monte Carlo integration
 - The principle
 - Properties of the sample mean
 - Convergence rate confidence interval
- Variance reduction techniques
 - A toy example with a discrete r.v.
 - The general case: Important sampling

→ In usual practical problems in statistics, we are led to compute

$$\mathbb{E}[g(X)], \quad X \text{ r.v. valued in } \mathbb{R}^d, \qquad f: \mathbb{R}^d \to \mathbb{R}.$$
 (1)

- \rightsquigarrow When the distribution of X is known, we sometimes may have an analytical expression for (1). For example,
 - if $g: \mathbb{R} \mapsto \mathbb{R}$, with $g(x) = x^n$, $n \in \mathbb{N}$, and if $X \in \mathcal{N}(0; 1)$, then

$$\mathbb{E}[g(X)] = \mathbb{E}(X^n) = \frac{(2n)!}{2^n n!}.$$

• If $X=(X_1,X_2)$, $X_i\sim \operatorname{Exp}(\lambda_i)$, i=1,2, with $X_1\perp\!\!\!\!\perp X_2$, and if $g:\mathbb{R}^2\mapsto \mathbb{R}$, with $g(x_1,x_2)=x_1+x_2$, for any $x=(x_1,x_2)\in \mathbb{R}^2$, then

$$\mathbb{E}[g(X)] = \mathbb{E}(X_1 + X_2) = 1/\lambda_1 + 1/\lambda_2.$$

 \leadsto In general (1) has no analytical solution. We can use numerical integration methods to approximate it, keeping in mind that X has pdf f,

$$\mathbb{E}(g(X)) = \int_{\mathbb{R}^d} g(x) f(x) dx.$$

- → The Monte Carlo (MC) method is an alternative to these methods.
- \leadsto The numerical integration approximation methods depend on the dimension d of X and the quality of the approximation deface when d increases.
- \sim The MC integration method does not depend on d. This makes it the widely used numerical approximation method in high dimension.
- \leadsto The MC method may be used once we may simulate a sample from X even if the density of X is unknown or does not exist.
- → In general, the MC can be used in the following situations.
 - The Law of X is known but $\mathbb{E}[g(X)]$ has no analytical solution. Example: $\mathbb{E}[g(X)]$, $X \sim \mathcal{N}(0; 1)$ and $g(x) = \exp(x)$.
 - The Law of X is not explicit but may be simulated. Example: $\mathbb{E}(X_n)$, where X_n is obtained from the recursion (for $X_0 = 0$ and $(Z_k) \perp \!\!\! \perp X_0$):

$$X_{k+1} = \mu_k X_k + \sigma_k Z_{k+1}, \ k = 0, \dots, n-1, \quad Z_k \sim \mathcal{N}(0,1).$$

Now, how to approximate $\mathbb{E}[g(X)]$ by MC when a sample X_1, \ldots, X_N (a sequence of iid r.v.) from X of size N is available.

 $\triangleright X$ is a discrete r.v. valued in $\{x_1, \ldots, x_n, \ldots\}, x_i \in \mathbb{R}^d$. We have

$$\mathbb{E}[g(X)] = \sum_{i=1}^{+\infty} g(x_i) \mathbb{P}(X = x_i).$$

When N is large enough, $\mathbb{P}(X = x_i) \approx f_N(x_i)$, where $\forall i \in \{1, ..., N\}$,

$$f_N(x_i) = \operatorname{card}(\{\ell \in \{1, \dots, N\} : X_\ell = x_i\})/N := n_i/N.$$

Then,

$$\mathbb{E}[g(X)] \approx M_N(g(X)) := \sum_{i=1}^{+\infty} g(x_i) f_N(x_i)$$
$$= \frac{1}{N} \sum_{i=1}^{+\infty} n_i g(x_i) = \frac{1}{N} \sum_{k=1}^{N} g(X_k)$$

 $\triangleright X$ is a continuous r.v.. In this case:

$$\mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx.$$

Let $(X_1(\omega), \ldots, X_N(\omega)) = (x_1, \ldots, x_N)$ and suppose that $x_1 \le x_2 \le \ldots \le x_N$. Set (with $x_{0-} = -\infty, x_{N+} = +\infty$)

$$x_{k-} = \frac{x_i + x_{k-1}}{2}, \quad x_{k+} = \frac{x_k + x_{k+1}}{2}, k = 1, \dots, N.$$

We have

$$\mathbb{E}[g(X)] = \int_{-\infty}^{+\infty} g(x) \mathbb{P}_X(dx)$$

$$= \sum_{k=1}^{N} \int_{x_{k-}}^{x_{k+}} g(x) \mathbb{P}_X(dx)$$

$$\approx \sum_{k=1}^{N} g(x_k) \mathbb{P}(X \in]x_{k-}, x_{k+}]).$$

Since $]x_{k-}, x_{k+}]$ only contains x_k , we have $\mathbb{P}(X \in]x_{k-}, x_{k+}]) \approx f_N(x_k) = n_k/N$. It follows that

$$\mathbb{E}[g(X)] \approx \sum_{k=1}^{N} g(x_k) f_N(x_k) = \frac{1}{N} \sum_{k=1}^{N} g(X_k) = M_N(g(X)).$$

 \rightsquigarrow The same arguments apply to r.v. valued in \mathbb{R}^d .

 \leadsto So, in general, when X is a r.v. valued in \mathbb{R}^d and $g:\mathbb{R}^d\mapsto\mathbb{R}$, then, $\mathbb{E}[g(X)]$ may be approximated by

$$M_N(g(X)) = \frac{1}{N} \sum_{k=1}^N g(X_k),$$

for a sample X_1, \ldots, X_N from X of size N.

- Monte Carlo integration
 - The principle
 - Properties of the sample mean
 - Convergence rate confidence interval
- Variance reduction techniques
 - A toy example with a discrete r.v.
 - The general case: Important sampling

MC method: properties of the sample mean

 \leadsto Owing to the forgoing, for any r.v. X valued in \mathbb{R}^d and any Borel function $g: \mathbb{R}^d \mapsto \mathbb{R}$ we can approximate $\mathbb{E}[g(X)]$ by $M_{\mathbb{N}}(g(X))$.

What are the properties of $M_N(g(X))$?

Proposition. Let X_1, \ldots, X_N . We have the following results:

- **1** $M_N(g(X))$ is an unbiased and consistent estimator of $\mathbb{E}[g(X)]$.
- ② If Var(g(X)) exists, the mean square error of $M_N(g(X))$ is

$$\mathbb{E}\left[M_{N}(g(X))-\mathbb{E}(g(X))\right]^{2}=\operatorname{Var}(M_{N}(g(X)))=\frac{\operatorname{Var}(g(X))}{N}.$$

Remark. In general, Var(g(X)) is unknown and can be estimated by the (unbiased) sample variance (show that $\mathbb{E}S^2_{N,g(X)} = Var(g(X))$)

$$S_{N,g(X)}^2 = \frac{1}{N-1} \sum_{k=1}^N (g(X_k) - M_N(g(X)))^2.$$

MC method: properties of the sample mean

- 1. For the first statement it is clear that $\mathbb{E}M_N(g(X)) = \mathbb{E}(g(X))$, so that the estimator is unbiased. The consistency follows from the Law of Large Numbers which states that: if X_1, \ldots, X_N is a sequence of iid r.v. then
 - the sample mean $\bar{X}_N = (X_1 + \ldots + X_N)/N$ converges in probability towards $\mathbb{E}X$: for any $\varepsilon > 0$, $\lim_{N \to +\infty} \mathbb{P}(|\bar{X}_N \mathbb{E}X| > \varepsilon) = 0$.
 - If in addition $\mathbb{E}|X|<+\infty$, then \bar{X}_N converges almost surely towards $\mathbb{E}X$: $\mathbb{P}(\{\omega\in\Omega,\bar{X}_N(\omega)\not\to\mathbb{E}X\})=0$.
- 2. Since the X_k 's are independent we have

$$Var(M_N(g(X)) = Var[g(X_1) + ... + g(X_N)]/N^2$$

$$= Var(g(X_1)) + ... + Var(g(X_N))/N^2$$

$$= [N \times Var(g(X_1))]/N^2$$

$$= Var(g(X))/N.$$

- Monte Carlo integration
 - The principle
 - Properties of the sample mean
 - Convergence rate confidence interval
- Variance reduction techniques
 - A toy example with a discrete r.v.
 - The general case: Important sampling

MC method: convergence rate

The variance of Var(g(X)) is useful to deduce the convergence rate of $M_N(g(X))$ toward $\mathbb{E}g(X)$: the sample size N that we need to achieve a given level of accuracy.

→ In fact, it follows from Chebechev's inequality that

$$\mathbb{P}\Big(ig|M_{N}(g(X)) - \mathbb{E}g(X)ig| > rac{1}{\sqrt{N}}\Big) \leq N \operatorname{\sf Var}(M_{N}(g(X)) = \operatorname{\sf Var}(g(X))$$

→ From the Central Limit Theorem, we have:

$$\sqrt{N} \frac{M_N(g(X)) - \mathbb{E}g(X)}{\sqrt{\mathsf{Var}(g(X))}} \stackrel{d}{ o} \mathcal{N}(0,1).$$

Then, for large N (Φ is the cdf of the $\mathcal{N}(0,1)$),

$$\mathbb{P}\left(\left|M_{N}(g(X)) - \mathbb{E}g(X)\right| \ge c\sqrt{\frac{\mathsf{Var}(g(X))}{N}}\right) \approx 2(1 - \Phi(c)) \qquad (1)$$

MC method: convergence rate and confidence interval

We can use (1) to give a $(1-\alpha)100\%$ confidence interval for $\mathbb{E}g(X)$. In fact, choosing $c=c_{\alpha}$ s.t. $2(1-\Phi(c_{\alpha}))=\alpha$ we get the CI

$$\left(M_{N}(g(X)) - c_{\alpha} \sqrt{\frac{\mathsf{Var}(g(X))}{N}}, M_{N}(g(X)) + c_{\alpha} \sqrt{\frac{\mathsf{Var}(g(X))}{N}} \right)$$

$$\approx \left(M_{N}(g(X)) - c_{\alpha} \frac{S_{N,g(X)}}{\sqrt{N}}, M_{N}(g(X)) + c_{\alpha} \frac{S_{N,g(X)}}{\sqrt{N}} \right).$$

 \leadsto As a consequence, if we want to be $(1-\alpha)100\%$ confident that is $M_N(g(X))$ is within ε of the true value of $\mathbb{E}g(X)$ we may increase the sample size N until

$$c_{\alpha}S_{N,g(X)}/N<\varepsilon$$
.

- Monte Carlo integration
 - The principle
 - Properties of the sample mean
 - Convergence rate confidence interval
- Variance reduction techniques
 - A toy example with a discrete r.v.
 - The general case: Important sampling

- Monte Carlo integration
 - The principle
 - Properties of the sample mean
 - Convergence rate confidence interval
- Variance reduction techniques
 - A toy example with a discrete r.v.
 - The general case: Important sampling

variance reduction: a discrete r.v.

- $^{\sim}$ Let X be a r.v. taking values $\{-1,0,1\}$ with: $\mathbb{P}(X=-1)=1/3$, $\mathbb{P}(X=0)=1/6$, $\mathbb{P}(X=1)=1/2$: $\mathbb{E}(X)=1/6$ and Var(X)=29/36.
- \leadsto We can use the sample $\bar{X}_N = (X_1 + \ldots + X_N)/N$, where the X_k 's are iid r.v. with the same distribution as X, to estimate $\mathbb{E}(X)$.
- \leadsto Our aim: find another estimator of $\mathbb{E}(X)$ with smaller variance, means,
 - we find Y such that

$$\mathbb{E}(X) = \mathbb{E}(Y)$$
 and $Var(Y) < Var(X)$

- and use the sample mean \bar{Y}_N to estimate $\mathbb{E}(X)$.
- ightharpoonup Remark that 0 is closer to $\mathbb{E}(X)=1/6$ than 1 which, in turn, is closer to $\mathbb{E}(X)$ than -1.

variance reduction: a discrete r.v.

- \sim To keep the same expectation and reduce the variance we define a r.v. Y which puts the most weighting on 0 or the lowest weighting on -1.
- \leadsto Two examples of such r.v: Let Y_1 be s.t. $\mathbb{P}(Y_1 = 0) = 1/2$ and find the other weights to put for -1 and 1.
- ightharpoonup Let $p_{-1} = \mathbb{P}(Y_1 = -1)$, $p_0 = \mathbb{P}(Y_1 = 0)$ and $p_1 = \mathbb{P}(Y_1 = 1)$. We want $\mathbb{E}(Y_1) = -p_{-1} + p_1 = 1/6$.
- \sim Since $p_{-1} + p_0 + p_1 = 1$. We get $p_{-1} = 1/6$ and $p_1 = 1/3$. Then $Var(Y_1) = 17/36 < Var(X)$.
- ightharpoonup Choosing Y_2 s.t. $\mathbb{P}(Y_2=0)=4/5$ we get $\mathbb{P}(Y_2=-1)=1/60$, $\mathbb{P}(Y_2=1)=11/60$ and $Var(Y_2)=8/36$, so that
 - $\mathbb{E}(Y_2) = \mathbb{E}(Y_1) = \mathbb{E}(X)$ and $Var(Y_2) < Var(Y_1) < Var(X)$.

Figure: Abscissa: size N of the sample. Ordinate: $\bar{X}_N = M_N(X)$, $M_N(Y_2)$ and the line $y = 1/6 = \mathbb{E}(X) = \mathbb{E}(Y_2)$.

- Monte Carlo integration
 - The principle
 - Properties of the sample mean
 - Convergence rate confidence interval
- Variance reduction techniques
 - A toy example with a discrete r.v.
 - The general case: Important sampling

Important sampling: the principle

- \leadsto Let X be a r.v. with density $f \colon X \sim f$ and g a Borel function on \mathbb{R}^d .
- \leadsto Let Z be another r.v. with density h s.t. $\forall x \in \mathbb{R}^d$, h(x) = 0 only if f(x)g(x) = 0. Then, setting $\psi(z) = g(z)\frac{f(z)}{h(z)}$,

$$\mathbb{E}g(X) = \int_{\mathbb{R}^d} g(x)f(x)dx = \int_{\mathbb{R}^d} g(x)\frac{f(x)}{h(x)}h(x)dx = \mathbb{E}\left(\psi(Z)\right).$$

- $ightarrow \hat{ heta}_{\scriptscriptstyle N} = (g(X_1) + \ldots + g(X_N))/N$ is the MC estimator of $\mathbb{E}g(X)$,
- \leadsto The estimator $\hat{\theta}_N^{IS} = (\psi(Z_1) + \ldots + \psi(Z_N))/N$ is its IS estimator, where (X_i) and (Z_i) are samples of size N of X and Z, resp.
- → Recall that

$$\mathbb{E}\left[\hat{\theta}_{N} - \mathbb{E}(g(X))\right]^{2} = \operatorname{Var}(M_{N}(g(X))) = \frac{\operatorname{Var}(g(X))}{N}.$$

Important sampling: the principle

$$ightharpoonup \operatorname{We}$$
 have $\mathbb{E}\left[\hat{\theta}_{N}^{IS} - \mathbb{E}(g(X))\right]^{2} = \operatorname{Var}(M_{N}(\psi(Z))) = \frac{\operatorname{Var}(\psi(Z))}{N}$.

- \rightsquigarrow The estimator $\hat{\theta}_N^{IS}$ is preferable to $\hat{\theta}_N$ if $Var(\psi(Z)) < Var(g(Z))$.
- \leadsto Since $\mathbb{E} g(X) = \mathbb{E} \psi(Z)$, $\hat{\theta}_N^{ls}$ is preferable to $\hat{\theta}_N$ if $\mathbb{E} \psi^2(Z) < \mathbb{E} g^2(X)$.
- → Now.

$$\mathbb{E}\psi^2(Z) = \int_{\mathbb{R}^d} g^2(x) \frac{f^2(x)}{h(x)} dx = \int_{\mathbb{R}^d} g^2(x) f(x) \frac{f(x)}{h(x)} dx$$
and
$$\mathbb{E}g^2(X) = \int_{\mathbb{R}^d} g^2(x) f(x) dx$$

- \rightarrow Then, $\hat{\theta}_N^{ls}$ is preferable to $\hat{\theta}_N$ if $\frac{f(x)}{h(x)}$ is small where $g^2(x)f(x)$ is large.
- \rightsquigarrow h is chosen to satisfy the previous property.
- \rightarrow h may be a family of density and we can choose the parameter which minimise $\mathbb{E}(\psi^2(Z))$.

Important sampling: the Robbins-Monro algorithm

 \leadsto Suppose $h(\mu, z)$ is a family of density depending on $\mu \in A \subset \mathbb{R}^d$ s.t.

$$\mathbb{E}\psi^2(Z^\mu) = \mathbb{E}K(\mu,\xi)$$
, where ξ is another r.v.

- → Our aim is
 - **1** to find μ^* that minimizes $Q(\mu) = \mathbb{E}K(\mu, \xi)$: $Q(\mu^*) = \min_{\mu \in A} Q(\mu)$,
 - $m{@}$ to use $\hat{ heta}_{\scriptscriptstyle N}^{\scriptscriptstyle IS}=(\psi(Z_1^{\mu^*})+\ldots+\psi(Z_N^{\mu^*}))/N$ as the IS estimator of $\mathbb{E} g(X)$
- \leadsto We can use the Robbins-Monro algorithm to approximate μ^* .
- \leadsto It searches μ^* s.t. (with a formal interchange of the gradient and the expectation) $\nabla Q(\mu^*) = \mathbb{E} \nabla K(\mu^*, \xi) = 0$.
- \leadsto It states (under some assumptions on $h(\mu, z)$) that the following sequence (μ_n) converges a.s. towards μ^* (where $(\xi_n) \stackrel{iid}{\sim} \xi$):

$$\mu_{n+1} = \mu_n - \gamma_{n+1} \nabla K(\mu_n, \xi_{n+1})$$

where (γ_n) decreases to 0 and $\sum_{n\geq 1}\gamma_n=+\infty$, i.e., $\gamma_n=1/n$.

Important sampling: Example

Important Sampling for the Normal distribution. We want to estimate $\mathbb{E}(X\mathbb{1}_{\{X>c\}})$ where $X \sim \mathcal{N}(0, \sigma^2)$ and $c > 3\sigma$.

- The MC estimator $\hat{\theta}_N$ is poor because very few of the sample values will exceed c.
- ② We use IS to have more sample values of Z that exceed c.
- **3** We suppose $Z \sim \mathcal{N}(\mu, \sigma^2)$ with density

$$h_{\mu}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\Big(-\frac{(x-\mu)^2}{2\sigma^2}\Big).$$

 \rightsquigarrow If f denotes the density of X,

$$\frac{f(x)}{h_{\mu}(x)} = \exp\left(\frac{\mu(\mu - 2x)}{2\sigma^2}\right).$$

Important sampling: Example

- \rightsquigarrow We want to compute $\mathbb{E}(g(X))$, with $g(x) = x \mathbb{1}_{\{x > c\}}$.
- \leadsto We compare the MC estimator $\hat{ heta}_{\it N}$ and the IS estimator

$$\hat{\theta}_{N}^{IS} = (\psi(Z_{1}^{\mu^{*}}) + \ldots + \psi(Z_{N}^{\mu^{*}}))/N, \quad \psi(x) = g(x) \frac{f(x)}{h_{\mu^{*}}(x)},$$

where μ^* is s.t. $Q(\mu^*) = \min_{\mu \in A} Q(\mu)$, with A = [0, 6] and

$$Q(\mu) = \mathbb{E}(\psi^{2}(Z^{\mu})) = \mathbb{E}(\psi^{2}(\mu + \sigma\xi))$$

$$= \mathbb{E}\left(g^{2}(\mu + \sigma\xi) \exp\left(\frac{2\mu(\mu - 2(\mu + \sigma\xi))}{2\sigma^{2}}\right)\right)$$

$$:= \mathbb{E}K(\mu, \xi), \qquad \xi \sim \mathcal{N}(0, 1).$$

 \rightsquigarrow We approximate μ^* from the sequence (μ_n) defined by $(\mu_0 \in A)$

$$\mu_{n+1} = \mu_n - \gamma_{n+1} K'(\mu_n, \xi_{n+1}), \quad \xi_n \stackrel{\text{iid}}{\sim} \mathcal{N}(0, 1).$$

 \rightsquigarrow Make an application with $N=10^6$, c=3 and $\sigma=1$.