Welcome to the CSE 20: Discrete Math for Computer Science

Themes for CSE 20

- Technical skepticism
- Multiple representations

Why are we here?

- ... for discrete math
- ... in Galbraith Hall
- ... together

Introductions

Class website: http://cseweb.ucsd.edu/classes/fa21/cse20-a

Notice: URL structure

Instructor: Prof. Mia Minnes "Minnes" rhymes with Guinness

Recurring applications in CSE 20

- Clustering and recommendation systems (machine learning, Netflix)
- Genomics and bioinformatics (DNA and RNA)
- Codes and information (secret message sharing and error correction)
- "Under the hood" of computers (circuits, pixel color representation, data structures)

Friday September 24

$\begin{array}{c} n\text{-tuple} & (x_1, x_2, x_3) \\ (3, 4) & \text{The } 2\text{-tuple of } \mathbf{cy}_1, x_2, \text{ and } x_3 \\ x_1, \dots, x_n & \text{where } n = 0 \\ x_1, \dots, x_n & \text{where } n = 1 \\ x_1, \dots, x_n & \text{where } n =$	Term	Notation Example(s)	We say in English
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<i>n</i> -tuple		
$ \begin{array}{c} x_1, \dots, x_n \text{ where } n = 0 \\ x_1, \dots, x_n \text{ where } n = 1 \\ x_1, \dots, x_n \text{ where } n = 1 \\ x_1, \dots, x_n \text{ where } n = 2 \\ x_1, \dots, x_n \text{ where } $			
	sequence		- · · · · · · · · · · · · · · · · · · ·
			- v
$x_1,x_2 \qquad \qquad \text{A sequence containing just } x_1 \text{ and } x_2 \text{ in order}$ set		x_1, \ldots, x_n where $n = 1$	A sequence containing just x_1
set Unordered collection of objects. The set of all integers		x_1, \ldots, x_n where $n = 2$	A sequence containing just x_1 and x_2 in order
all integers \mathbb{Z} The (set of all) integers (whole numbers including negatives, zero, and positives) The (set of all) strictly positive integers all natural numbers \mathbb{N} The (set of all) natural numbers. Note: we use the convention that 0 is a natural number. The set whose elements are 43, 7, and 9 and \mathbb{N} The set whose elements are 9 and \mathbb{N} The set builder notation $\{x \in \mathbb{Z} \mid x > 0\}$ The set of all x from the integers such that x is greater than 0 are to each other means multiplication. The set of all integer multiples of 3 Note: we use the convention that writing two numbers next to each other means multiplication. The set of all x for x or x applied to x or x the image of x under x for x or x applied to x or x applied to the result of x applied to x or x applied to the result of x applied to x or x applied to x ap		x_1, x_2	A sequence containing just x_1 and x_2 in order
all positive integers all natural numbers \mathbb{Z}^+ The (set of all) strictly positive integers all natural numbers \mathbb{N} The (set of all) natural numbers. Note: we use the convention that 0 is a natural number. The set whose elements are 43, 7, and 9 The set whose elements are 43, 7, and 9 The set whose elements are 9 and \mathbb{N} The set builder notation $\{x \in \mathbb{Z} \mid x > 0\}$ The set of all x from the integers such that x is greater than 0 The set of all integer multiples of 3 Note: we use the convention that writing two numbers next to each other means multiplication. The set of all integer multiples of 3 Note: we use the convention that writing two numbers next to each other means multiplication. The set of all integer multiples of 3 Note: we use the convention that writing two numbers next to each other means multiplication. The set of all x from the integers such that x is greater than 0 The set of all x from the integers such that x is greater than 0 The set of all x from the integers such that x is greater than 0 The set of all x from the integers such that x is greater than 0 The set of all x from the integers such that x is greater than 0 The set of all x from the integers such that x is greater than 0 The set of all x from the integer of x note: we use the convention that x is greater than 0 The set whose elements are 43, 7, and 9 The set whose elements are 43, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 43, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set whose elements are 40, 7, and 9 The set of all netwers are	set		Unordered collection of objects. The set of
all positive integers all natural numbers \mathbb{N} The (set of all) strictly positive integers all natural numbers \mathbb{N} The (set of all) natural numbers. Note: we use the convention that 0 is a natural number. The set whose elements are 43, 7, and 9 The set whose elements are 9 and \mathbb{N} set builder notation $\{x \in \mathbb{Z} \mid x > 0\}$ The set of all x from the integers such that x is greater than 0 $\{3x \mid x \in \mathbb{Z}\}$ The set of all integer multiples of 3 Note: we use the convention that writing two numbers next to each other means multiplication. function definition $f(x) = x + 4$ Define f of x to be $x + 4$ function application $f(x) = x + 4$ for f of f or f applied to f or the image of f under f for f or f applied to f or the image of f under f for f or f applied to f or f applied to the result of f applied to f or f applied	all integers	\mathbb{Z}	, , ,
all natural numbers \mathbb{N} The (set of all) natural numbers. Note: we use the convention that 0 is a natural number. The set whose elements are 43, 7, and 9 $\{9,\mathbb{N}\}$ The set whose elements are 9 and \mathbb{N} Set builder notation $\{x \in \mathbb{Z} \mid x > 0\}$ The set of all x from the integers such that x is greater than 0 The set of all integer multiples of 3 Note: we use the convention that writing two numbers next to each other means multiplication. The set of all integer multiples of 3 Note: we use the convention that writing two numbers next to each other means multiplication. The set of all integer multiples of 3 Note: we use the convention that writing two numbers next to each other means multiplication. The set of all integer multiples of 3 Note: we use the convention that writing two numbers next to each other means multiplication. The set of all x from the integers for 3 Note: we use the convention that x is greater than 0 The set of all x from the integers for 3 Note: we use the convention that x is greater than 0 The set of all x from the integers for 3 Note: we use the convention that x is greater than 0 The set of all x from the integers for 3 Note: we use the convention that x is greater than 0 The set of all x from the integers for 3 Note: we use the convention that x is greater than 0 The set of all x from the integers such that x is greater than 0 The set of all x from the integers for 3 Note: we use the convention that x is greater than 0 The set of all x from the integers for 3 Note: we use the convention that x is greater than 0 The set of all x from the integers such that x is greater than 0 The set of all x from the integers for 3 Note: we use the convention that x is greater than 0 The set of all x from the integers such that x is greater than 0 The set of all x from the integer x of x or x is greater than 0 The set of all x from the integer x of x or x is greater than 0 The set of all x from the integer x or x or		F77	- ,
the convention that 0 is a natural number. The set whose elements are 43, 7, and 9 The set whose elements are 9 and N set builder notation	_		(, , , , , , , , , , , , , , , , , , ,
roster method	all natural numbers	N	,
		(42 = 2)	
set builder notation	roster method		·
		$\{9,\mathbb{N}\}$	The set whose elements are 9 and \mathbb{N}
The set of all integer multiples of 3 Note: we use the convention that writing two numbers next to each other means multiplication. $f(x) = x + 4$ Function definition $f(x) = x + 4$ Function application $f(7)$ $f(7)$ $f(2)$ $f(2)$ $f(3x)$ $f(7)$	set builder notation	$\{x \in \mathbb{Z} \mid x > 0\}$	The set of all x from the integers such that x is
the convention that writing two numbers next to each other means multiplication. $f(x) = x + 4$ Define f of x to be $x + 4$ function application $f(x) = x + 4$ Define f of x to be $x + 4$ function application $f(z) = x + 4$			greater than 0
function definition $f(x) = x + 4$ Define f of x to be $x + 4$ function application $f(7) = f$ of f or f applied to f or the image of f under f for f or f applied to f or f applied to f or the image of f under f for f or f applied to the result of f applied to f or f applied to the result of f applied to f or f applied to the result of f applied to f or f applied to the result of f applied to f or f applied to the result of f applied to f or f applied to the result of f applied to f or f applied to the result of f applied to f or f app		$\{3x \mid x \in \mathbb{Z}\}$	The set of all integer multiples of 3 Note : we use
function definition $f(x) = x + 4$ Define f of x to be $x + 4$ function application $f(7)$ f of f or f applied to f or the image of f under f for f or f applied to f or f applied to f or f applied to f of f or f applied to f or f applied to the result of f applied to f of f or f applied to the result of f applied to f or f applied to the result of f applied to f or f applied to the result of f applied to f or f applied to the result of f applied to f or f applied to the result of f applied to f or f applied to f a			the convention that writing two numbers next to
function application $f(7)$ f of 7 or f applied to 7 or the image of 7 under f $f(z)$ f of z or f applied to z or the image of z under z or z applied to z or z applied to the result of z applied to z or z applied to z applied to z or z applied to z a			each other means multiplication.
function application $f(7)$ f of 7 or f applied to 7 or the image of 7 under f $f(z)$ f of z or f applied to z or the image of z under z or z applied to z or z applied to the result of z applied to z or z applied to z applied to z or z applied to z a	function definition	f(x) = x + 4	Define f of x to be $x + 4$
$f(z) \qquad \qquad f \text{ of } z \text{ or } f \text{ applied to } z \text{ or the image of } z \text{ under } f$ $f \text{ of } g \text{ of } z \text{ or } f \text{ applied to the result of } g \text{ applied to } z$ $\text{absolute value} \qquad -3 \qquad \qquad \text{The absolute value of } -3$ $\text{Square root} \qquad \sqrt{9} \qquad \qquad \text{The non-negative square root of } 9$ $\text{Summation notation} \qquad \sum_{i=1}^n i$ $\sum_{i=1}^n i^2 - 1 \qquad \qquad \text{The sum of } i^2 - 1 \text{ (i squared minus 1) for each i from 1 to n, inclusive}$ $\text{quotient, integer division} \qquad n \text{ div } m \qquad \qquad \text{The (integer) quotient upon dividing n by m; informally: divide and then drop the fractional part}$	function application		· ·
$f(g(z)) \qquad \qquad f \text{ of } g \text{ of } z \text{ or } f \text{ applied to the result of } g \text{ applied to } z$ absolute value		* * /	• • • • • • • • • • • • • • • • • • • •
absolute value $ -3 $ The absolute value of -3 The non-negative square root of 9 summation notation $\sum_{i=1}^{n} i$ The sum of the integers from 1 to n , inclusive $\sum_{i=1}^{n} i^2 - 1$ The sum of $i^2 - 1$ (i squared minus 1) for each i from 1 to n , inclusive quotient, integer division n div m The (integer) quotient upon dividing n by m ; informally: divide and then drop the fractional part		* ()	
square root $\sqrt{9}$ The non-negative square root of 9 summation notation $\sum_{i=1}^{n} i$ The sum of the integers from 1 to n , inclusive $\sum_{i=1}^{n} i^2 - 1$ The sum of $i^2 - 1$ (i squared minus 1) for each i from 1 to n , inclusive quotient, integer division n div m The (integer) quotient upon dividing n by m ; informally: divide and then drop the fractional part			
square root $\sqrt{9}$ The non-negative square root of 9 summation notation $\sum_{i=1}^{n} i$ The sum of the integers from 1 to n , inclusive $\sum_{i=1}^{n} i^2 - 1$ The sum of $i^2 - 1$ (i squared minus 1) for each i from 1 to n , inclusive quotient, integer division n div m The (integer) quotient upon dividing n by m ; informally: divide and then drop the fractional part	absolute value	-3	The absolute value of -3
summation notation $\sum_{i=1}^{n} i$ The sum of the integers from 1 to n , inclusive $\sum_{i=1}^{n} i^2 - 1$ The sum of $i^2 - 1$ (i squared minus 1) for each i from 1 to n , inclusive $n \text{ div } m$ The (integer) quotient upon dividing n by m ; informally: divide and then drop the fractional part		$\sqrt{9}$	
quotient, integer division n div m The (integer) quotient upon dividing n by m ; informally: divide and then drop the fractional part	_		.O
quotient, integer division n div m The (integer) quotient upon dividing n by m ; informally: divide and then drop the fractional part	summation notation	$\sum_{i=1}^{n} i$	The sum of the integers from 1 to n , inclusive
quotient, integer division n div m The (integer) quotient upon dividing n by m ; informally: divide and then drop the fractional part		i=1 n	G , , , , , , , , , , , , , , , , , , ,
quotient, integer division n div m The (integer) quotient upon dividing n by m ; informally: divide and then drop the fractional part		$\sum i^2 - 1$	The sum of $i^2 - 1$ (<i>i</i> squared minus 1) for each <i>i</i>
formally: divide and then drop the fractional part		i=1	
formally: divide and then drop the fractional part	quotient, integer division	$n \operatorname{\mathbf{div}} m$	The (integer) quotient upon dividing n by m : in-
· · · · · · · · · · · · · · · · · · ·	, 181		
modulo, remainder to mod the line line remainder mod dividing the dy the	modulo, remainder	$n \bmod m$	The remainder upon dividing n by m

What data should we encode about each Netflix account holder to help us make effective recommendations?

In machine learning, clustering can be used to group similar data for prediction and recommendation. For example, each Netflix user's viewing history can be represented as a n-tuple indicating their preferences about movies in the database, where n is the number of movies in the database. People with similar tastes in movies can then be clustered to provide recommendations of movies for one another. Mathematically, clustering is based on a notion of distance between pairs of n-tuples.

In the table below, each row represents a user's ratings of movies: \checkmark (check) indicates the person liked the movie, \checkmark (x) that they didn't, and \bullet (dot) that they didn't rate it one way or another (neutral rating or didn't watch).

Person	Fyre	Frozen II	Picard	Ratings written as a 3-tuple
$\overline{P_1}$	Х	•	✓	(-1,0,1)
P_2	1	✓	X	(1, 1, -1)
P_3	1	✓	✓	(1, 1, 1)
P_4	•	X	✓	

Which of P_1 , P_2 , P_3 has movie preferences most similar to P_4 ?

One approach to answer this question: use **functions** to define distance between user preferences.

Define the following functions whose inputs are ordered pairs of 3-tuples each of whose components comes from the set $\{-1,0,1\}$

$$d_1((x_1, x_2, x_3), (y_1, y_2, y_3)) = \sum_{i=1}^{3} ((|x_i - y_i| + 1) \operatorname{\mathbf{div}} 2) d_2((x_1, x_2, x_3), (y_1, y_2, y_3)) = \sqrt{\sum_{i=1}^{3} (x_i - y_i)^2}$$

$d_1(P_4, P_1)$	$d_1(P_4, P_2)$	$d_1(P_4, P_3)$
$d_2(P_4, P_1)$	$d_2(P_4, P_2)$	$d_2(P_4, P_3)$

Extra example: A new movie is released, and P_1 and P_2 watch it before P_3 , and give it ratings; P_1 gives \checkmark and P_2 gives \checkmark . Should this movie be recommended to P_3 ? Why or why not?

Extra example: Define the new functions that would be used to compare the 4-tuples of ratings encoding movie preferences now that there are four movies in the database.

Monday September 27

Term Examples:

(add additional examples from class)

 $2 \notin \{43, 7, 9\}$

set $7 \in \{43, 7, 9\}$

unordered collection of elements

 $Equal\ means\ agree\ on\ membership\ of\ all\ elements$

n-tuple

ordered sequence of elements with n "slots" $Equal\ means\ corresponding\ components\ equal$

string

ordered finite sequence of elements each from specified set $Equal\ means\ same\ length\ and\ corresponding\ characters\ equal$

 $\{-1,1\} \qquad \{0,0\} \qquad \{-1,0,1\} \qquad \mathbb{Z} \qquad \mathbb{N} = \{x \in \mathbb{Z} \mid x \geq 0\} \qquad \emptyset \qquad \mathbb{Z}^+ = \{x \in \mathbb{Z} \mid x > 0\}$

Which of the sets above are defined using the roster method? Which are defined using set builder notation?

Which of the sets above have 0 as an element?

Can you write any of the sets above more simply?

RNA is made up of strands of four different bases that match up in specific ways. The bases are elements of the set $B = \{A, C, G, U\}$.

Definition The set of RNA strands S is defined (recursively) by:

Basis Step: $\mathtt{A} \in S, \mathtt{C} \in S, \mathtt{U} \in S, \mathtt{G} \in S$

Recursive Step: If $s \in S$ and $b \in B$, then $sb \in S$

where sb is string concatenation.

Examples:

To define a set we can use the **roster method**, the **set builder notation**, and also ...

New! Recursive Definitions of Sets: The set S (pick a name) is defined by:

Basis Step: Specify finitely many elements of S

Recursive Step: Give a rule for creating a new element of S from known values existing in S,

and potentially other values.

The set S then consists of all and only elements that are put in S by finitely many (a nonnegative integer number) of applications of the recursive step after the basis step.

Wednesday	September 29		
		CC BV NC SA 2.0 Vergies	2 Cantambar 12 2021 (5)