# Computer Vision for HCI

Classification Intro

1

# Objective

• To which class does this image belong?











### **Supervised** Learning

- Given: training data
  - Set of data with corresponding class labels
  - Needs to be representative of entire space of data
- Objective: build a classifier to predict output labels (classes) of data in unseen test set
  - Need to infer a function that separates the data into desirable classes
  - No single algorithm works best on all datasets
  - Need to tune algorithm parameters
  - Feature representation is important

3

# **Supervised Learning Process**

- Split data into training and testing sets
- Determine features to employ
- Select a classifier
- Train the classifier using the training set
- Classify the <u>test set</u>
- Evaluate the classification results

No "data leakage"!

### **Training Classifiers**

- Most algorithms have parameters to tune
- Want to avoid over-fitting training data
  - Fitting to noise, not generalizing
- How to tune?
  - Use "<u>validation</u>" data (hypothesized test data)
    - Train classifier on a subset of the training data
    - Evaluate the classifier on the **remaining** data
      - Called the validation set
    - Tune the classifier to minimize the error on the validation set

5

#### Training Classifiers (continued)

- How to tune? (continued)
  - *m*-Fold "Cross-Validation"
    - Pick/Set classifier options
      - e.g., parameters, model form, training time, or input features
    - Estimate **generalized** classifier performance
      - Randomly divide training set into m disjoint sets of equal size
      - Train using (m-1) subsets and validate on the remaining subset
      - Repeat m times, using different validation set each time
      - Average results
    - Repeat entire process for different classifier options and choose the options which maximize the average results

"Cross-validation is used to estimate the <u>skill</u> of a model"
"The purpose of cross-validation is <u>model checking</u>, not model building"



#### Evaluation

- Accuracy =  $\frac{\text{Number of correct classifications}}{\text{Number of classifications}}$
- Consider the <u>binary classifier</u> situation where we are trying to detect instances of class X within a dataset containing instances of X (positive class) and Y (negative class)
  - True Positive (TP) Correctly classifying an instance of  $\boldsymbol{X}$  as  $\boldsymbol{X}$
  - False Positive (FP) Incorrectly classifying an instance of Y as X
    - False alarm or Type I error
  - True Negative (TN) Correctly classifying an instance of Y as Y
  - False Negative (FN) Incorrectly classifying an instance of X as Y
    - · Misdetection or Type II error

## Evaluation

- Precision =  $\frac{\text{Number of correctly detected events}}{\text{Number of detected events}} = \frac{\text{TP}}{\text{TP} + \text{FP}}$
- Recall =  $\frac{\text{Number of correctly detected events}}{\text{True number of events}} = \frac{\text{TP}}{\text{TP} + \text{FN}}$
- $F_{\beta}$  Measure =  $(1+\beta^2) \cdot \frac{\text{Precision} \cdot \text{Recall}}{\beta^2 \cdot \text{Precision} + \text{Recall}}$

Common to use  $\beta = 1 \rightarrow$  Harmonic mean between precision and recall

9

# **Classification Approaches**

- k-Nearest Neighbors (kNN)
- Decision Trees

## *k*-Nearest Neighbor

- One of the simplest classification strategies
- Algorithm:
  - Compute distance from test sample to labeled training samples
  - Assign test sample the label most common across
     the first k nearest neighbors from the training data
    - k typically small and odd numbered (no ties)

11

K=1 yields X is class o

K=3 yields X is class +

K=5 yields X is class o

# Example

- Training data (two Gaussians):

   Class 1 667 points sampled from  $N\begin{bmatrix} 0 \\ 2.25 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$ 
  - Class 2 333 points sampled from  $N\begin{bmatrix} 0 \\ -2.25 \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 4 & 4 \end{bmatrix}$





13

# Example

Testing dataset consists of 2000 points sampled from same distributions with same priors (2/3 vs. 1/3)



# Example -k-NN

Classify each <u>testing</u> point using nearest neighbors from training data (known classes)







15

# **Classification Approaches**

- k-Nearest Neighbors (kNN)
- Decision Trees

## **Decision Tree**

- Classify pattern through sequence of questions
- Easy to interpret



17

## **CART**

- Classification and Regression Trees (CART)
  - General framework for creating decision trees

## How many splits?

• Every non-binary numeric decision can be represented as combination of binary decisions



19

## Which property to test?

- Prefer decisions that lead to simplest tree (Occam's Razor)
  - Want property to split data into "purest" groups possible
  - Use impurity (randomness) measures Proportion of patterns at node





Choose decision at node N that <u>decreases</u> impurity the most



### When to stop?

- Methods to determine when to stop splitting may declare a node a leaf too early
- Alternative: grow tree out entirely (each leaf perfectly pure) and then prune
- Pruning:
  - Work bottom-up
  - Compute the increase in impurity if two child nodes linked to common parent node are eliminated
  - Merge if increase is negligible

21

### How to assign categories to leaf nodes?

- Simplest approach is to take majority vote of class labels at leaf node
  - Ideally there will be one dominant class
- Potential options when tie occurs:
  - Random assignment
  - Take into account priors
  - Take into account classification risks
    - · Cost of misdetections or false alarms of categories











## Extra: **UN**supervised Learning

- Given: training data
  - Set of data WITHOUT corresponding class labels
  - Still needs to be representative of possible space of data
- Primary objective: Group the data into "clusters"
  - Need to measure of closeness/proximity to determine which examples are closer than others
  - Feature representation is still important
- Example: K-means clustering

## K-means Clustering

- Each "point" is a 3-D vector of color (RGB)
- Initialization:
  - Choose *k* cluster center points (how pick *k*?)
- Repeat:
  - Assignment step:
    - For every point, find its closest center point
  - Update step:
    - Update every center point as the mean of its assigned points
- Until:
  - The maximum number of iterations is reached, or
  - No changes during the assignment step, or
  - The average distortion per point drops very little

29

29

# Previous Segmentation Example





30

# Summary

- Supervised training concepts
  - Train/Val/Test
  - Cross Validation
- *k*NN
  - Majority vote of nearest neighbors in training data
- Decision Trees
  - CART