CMIP6 Model Documentation

Institute: UA

Model: MCM-UA-1-0

Topic: ocean

Doc. Generated:2020-04-08Doc. Seeded From:Spreadsheet

Specialization Version: 1.0.4

Further Info: https://es-doc.org/cmip6

Note: * indicates a required property

Documentation Contents

1	Key Properties	3
2	Grid	10
3	Timestepping Framework	12
4	Advection	15
5	Lateral Physics	17
6	Vertical Physics	22
7	Uplow Boundaries	27
8	Boundary Forcing	29

1 Key Properties

 $Ocean\ key\ properties$

1.1.1 Top level properties

Ocean key properties

1.1.1.1 Name *

Name of ocean model code

MOM1 plus

1.1.1.2 Keywords *

Keywords associated with ocean model code

Rigid lid, virtual salt flux, Bryan-Cox, isopycnal mixing

1.1.1.3 Overview *

Overview of ocean model.

The component is a coupled version of MOM1 ocean model. See MOM1 documentation for complete details. Pacanowski R, Dixon K, Rosati A (1991) The GFDL ModularOcean Model users guide version 1, GFDL Ocean Group TechRep 2, pp. 44 [Available from NOAA/Geophysical Fluid Dynamics Laboratory, Princeton University, Rt. 1, Princeton, NJ 08542.

1.1.1.4	Model Family *
Type of oc	$ean\ model.$
\boxtimes	OGCM
	Slab ocean
	Mixed layer ocean
	Other - please specify:
1.1.1.5	Basic Approximations *
Basic appr	roximations made in the ocean.
\boxtimes	Primitive equations
	Non-hydrostatic
	Boussinesq
	Other - please specify:

1.1.1.6	Prognostic Variables *
List of pro	$ognostic\ variables\ in\ the\ ocean\ component.$
\boxtimes	Potential temperature
	Conservative temperature
\boxtimes	Salinity
\boxtimes	U-velocity
\boxtimes	V-velocity
	W-velocity
	SSH - Sea Surface Height
	Other - please specify:
1916	Sonwoton Proportios
	Seawater Properties
Physical	properties of seawater in ocean
1.2.1.1	Eos Type *
Type of E	OS for sea water
	Linear
	Wright, 1997
\boxtimes	Mc Dougall et al.
	Jackett et al. 2006
	TEOS 2010
	Other - please specify:
1010	n n ' 1m *
	Eos Functional Temp * ure used in EOS for sea water
\(\sigma\)	Potential temperature
	Conservative temperature
	Conservative temperature
1.2.1.3	Eos Functional Salt *
Salinity u	sed in EOS for sea water
\boxtimes	Practical salinity Sp
	Absolute salinity Sa

1.2.1.4 Eos Functional Depth *
Depth or pressure used in EOS for sea water?
Pressure (dbars)
Depth (meters)
1.2.1.5 Ocean Freezing Point *
Equation used to compute the freezing point (in deg C) of seawater, as a function of salinity and pressure
☐ TEOS 2010
Other - please specify:
1.2.1.6 Ocean Specific Heat *
Specific heat in ocean (cpocean) in $J/(kg K)$
Enter FLOAT value:
1.2.1.7 Ocean Reference Density *
Boussinesq reference density (rhozero) in kg $/$ m ³
Enter FLOAT value:
1.3.1 Bathymetry
Properties of bathymetry in ocean
1.3.1.1 Reference Dates *
Reference date of bathymetry
Present day
21000 years BP
6000 years BP
LGM - Last Glacial Maximum
Pliocene
Other - please specify:
1.3.1.2 Type *
Is the bathymetry fixed in time in the ocean?
☐ False

1.3.1.3 Ocean Smoothing *

Describe any smoothing or hand editing of bathymetry in ocean

Careful attention paid to overflows, important narrow channels, ridges and etc. 2 grid point basins on UV grid were eliminated. Shallow points were deepened to 4 vertical grid levels.

1.3.1.4 Source *

Describe source of bathymetry in ocean

US Navy 1990 (approx.)

1.4.1 Nonoceanic Waters

Non oceanic waters treatement in ocean

1.4.1.1 Isolated Seas

Describe if/how isolated seas is performed

Isolated inland seas on grid but not in reality are mixed using a cross land mixing code where boxes at the same grid level are mixed east-west near the location of the observed opening.

1.4.1.2 River Mouth

Describe if/how river mouth mixing or estuaries specific treatment is performed

River outflow is mixed over the top 4 grid boxes at river mouths.

1.5.1 Software Properties

 $Software\ properties\ of\ ocean\ code$

1.5.1.1 Repository

Location of code for this component.

Github.com/mom-ocean/MOM1

1.5.1.2 Code Version

Code version identifier.

1.1

1.5.1.3 Code Languages

 $Code\ language(s).$

FORTRAN 77

1.6.1 Resolution

Resolution in the ocean grid

1.6.1.1 Name *

This is a string usually used by the modelling group to describe the resolution of this grid, e.g. ORCA025, N512L180, T512L70 etc.

N40L18

1.6.1.2 Canonical Horizontal Resolution *

Expression quoted for gross comparisons of resolution, eg. 50km or 0.1 degrees etc.

 $2.3 \, \deg$

1.6.1.3 Range Horizontal Resolution *

Range of horizontal resolution with spatial details, eg. 50(Equator)-100km or 0.1-0.5 degrees etc.

1.875 deg all latitudes

1.6.1.4 Number Of Horizontal Gridpoints *

Total number of horizontal (XY) points (or degrees of freedom) on computational grid.

192

1.6.1.5 Number Of Vertical Levels *

Number of vertical levels resolved on computational grid.

18

1.6.1.6 Is Adaptive Grid *

Default is False. Set true if grid resolution changes during execution.

True False

1.6.1.7 Thickness Level 1 *

Thickness of first surface ocean level (in meters)

40

1.7.1 Tuning Applied

Tuning methodology for ocean component

1.7.1.1 Description *

General overview description of tuning: explain and motivate the main targets and metrics retained. Document the relative weight given to climate performance metrics versus process oriented metrics, and on the possible conflicts with parameterization level tuning. In particular describe any struggle with a parameter value that required pushing it to its limits to solve a particular model deficiency.

Used ocean only to tune model. Flux adjustments used in coupled model. Model tuned to yield good overall simulation.

1.7.1.2 Global Mean Metrics Used

List set of metrics of the global mean state used in tuning model/component

None

1.7.1.3 Regional Metrics Used

List of regional metrics of mean state (e.g THC, AABW, regional means etc) used in tuning model/component

AMOC, thermocline depth, SST, SSS

1.7.1.4 Trend Metrics Used

List observed trend metrics used in tuning model/component

None

1.8.1 Conservation

Conservation in the ocean component

1.8.1.1 Description *

Brief description of conservation methodology

Model conserves heat and water and salt. Online diagnostics perform checks several times per model year.

1.8.1.2 Scheme *

D	,		. 7			. 7		,
<i>Properties</i>	conserved	in	the	ocean	bu	the	numerical	schemes

\bowtie	Energy
	Enstrophy
\boxtimes	Salt
	Volume of ocean
	Momentum
П	Other - please specify:

1.8.1.3 Consistency Properties

Any additional consistency properties (energy conversion, pressure gradient discretisation, ...)?

Mechanical energy conversion

1.8.1.4 Corrected Conserved Prognostic Variables

Set of variables which are conserved by *more* than the numerical scheme alone.

None

1.8.1.5 Was Flux	Correction Used
Does conservation invo	olve flux correction ?
Select either TR	UE or FALSE:
True	☐ False

2 Grid

Ocean grid

2.1.1 Top level properties

 $Ocean\ grid$

2.1.1.1 Name

 $Name\ of\ grid\ in\ ocean\ model.$

MOM1 plus

2.1.1.2 Overview

Overview of grid in ocean model.

Regular lat-long "B" grid with 18 vertical levels. The model uses Fourier filtering to control grid noise near the poles.

2.1.2 Vertical

Properties of vertical discretisation in ocean

2.1.2.1 Coordinates *

 $Type\ of\ vertical\ coordinates\ in\ ocean$

\boxtimes	Z-coordinate
	Z*-coordinate
	S-coordinate
	Isopycnic - sigma 0 - Density referenced to the surface
	Isopycnic - sigma 2 - Density referenced to 2000 m $$
	Isopycnic - sigma 4 - Density referenced to 4000 m $$
	Isopycnic - other - Other density-based coordinate
	Hybrid / $Z+S$
	Hybrid / Z+isopycnic
	Hybrid / other
	Pressure referenced (P)
	p*
	Z**
	Other - please specify:

2.1.2.2	Partial Steps *
Using par	rtial steps with Z or Z^* vertical coordinate in ocean ?
Selec	et either TRUE or FALSE:
	True
2.1.3	Horizontal
Type of	horizontal discretisation scheme in ocean
2.1.3.1	Type *
Horizont	al grid type
\boxtimes	Lat-lon
	Rotated north pole
	Two north poles (ORCA-style)
	Other - please specify:
2.1.3.2	Staggering
Horizont	al grid staggering type
\boxtimes	Arakawa B-grid
	Arakawa C-grid
	Arakawa E-grid
	N/a
	Other - please specify:
2.1.3.3	Scheme *
Horizont	al discretisation scheme in ocean
Selec	et SINGLE option:
	Finite difference
	Finite volumes
	Finite elements
	Unstructured grid
	Other - please specify:

3 Timestepping Framework

Ocean Timestepping Framework

3.1.1 Top level properties

 $Ocean\ Timestepping\ Framework$

3.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ timestepping\ framework\ in\ ocean\ model.$

MOM1 plus

3.1.1.2 Overview

 $Overview\ of\ ocean\ time stepping\ framework\ in\ ocean\ model.$

Leapfrog with Euler backward step every 17 time steps to filter noise/control time step splitting.

3	.1	.1	.3	Diurnal	Cycle	*
---	----	----	----	---------	-------	---

Diurnal cycle type					
	None - No diurnal cycle in ocean				
	Via coupling - Diurnal cycle via coupling frequency				
	Specific treatment - Specific treament				
	Other - please specify:				

3.2.1 Tracers

Properties of tracers time stepping in ocean

3.2.1.1 Scheme *

 $Tracers\ time\ stepping\ scheme$

Ш	$\label{lem:leap-frog} \mbox{Leap-frog scheme with Asselin filter} \ \ \mbox{Leap-frog scheme with Asselin filter}$
	$\label{lem:leap-frog} \mbox{Leap-frog scheme with Periodic Euler} \mbox{ - Leap-frog scheme with Periodic Euler} \mbo$
	Predictor-corrector - Predictor-corrector scheme
	Runge-Kutta 2 - Runge-Kutta 2 scheme
	AM3-LF - AM3-LF such as used in ROMS
	Forward-backward - Forward-backward scheme
	Forward operator - Forward operator scheme
	Other - please specify:

Tracers tin	ne step (in seconds)			
1800				
3.3.1 B	Saroclinic Dynamics			
Baroclini	c dynamics in ocean			
3.3.1.1	Type *			
Baroclinic	dynamics type			
Select	SINGLE option:			
	Preconditioned conjugate gradient			
	Sub cyling - Sub cycling relative to tracers			
	Other - please specify:			
3.3.1.2 \$	Scheme *			
	dynamics scheme			
	$\label{lem:leap-frog} \mbox{Leap-frog + Asselin filter - Leap-frog scheme with Asselin filter}$			
	Leap-frog + Periodic Euler - Leap-frog scheme with Periodic Euler			
	Predictor-corrector - Predictor-corrector scheme			
	Runge-Kutta 2 - Runge-Kutta 2 scheme			
	AM3-LF - AM3-LF such as used in ROMS			
	Forward-backward - Forward-backward scheme			
	Forward operator - Forward operator scheme			
	Other - please specify:			
3.3.1.3	Γime Step			
Baroclinic	time step (in seconds)			
1800				
3.4.1 B	arotropic			
Barotropic time stepping in ocean				
3.4.1.1 \$	Splitting *			

3.2.1.2 Time Step *

 $Time\ splitting\ method$

None

 \boxtimes

	Split explicit
	Implicit
	Other - please specify:
31197	Гime Step
3.4.1.4	Time Step
Barotropio	e time step (in seconds)
1800	

3.5.1 Vertical Physics

Vertical physics time stepping in ocean

3.5.1.1 Method *

Details of vertical time stepping in ocean

Enter TEXT:

4 Advection

Ocean advection

4.1.1 Top level properties

 $Ocean\ advection$

4.1.1.1 Name

Commonly used name for the advection in ocean model.

MOM1 plus

4.1.1.2 Overview

Overview of ocean advection in ocean model.

Centered finite difference

4.2.1 Momentum

Properties of lateral momentum advection scheme in ocean

4.2.1.1 Type *

 $Type\ of\ lateral\ momentum\ advection\ scheme\ in\ ocean$

Flux form

Vector form

4.2.1.2 Scheme Name *

Name of ocean momentum advection scheme

Centered finite difference

4.2.1.3 ALE

Using ALE for vertical advection ? (if vertical coordinates are sigma)

True

4.3.1 Lateral Tracers

 $Properties\ of\ lateral\ tracer\ advection\ scheme\ in\ ocean$

4.3.1.1 Order *

 $Order\ of\ lateral\ tracer\ advection\ scheme\ in\ ocean$

 $\mathbf{2}$

4.3.1.2 1	Flux Limiter *
Monotonio	c flux limiter for lateral tracer advection scheme in ocean?
	True
4.3.1.3 l	Effective Order *
Effective o	order of limited lateral tracer advection scheme in ocean
2	
4.3.1.4 I	Name *
Descriptive	$\ \ \text{ we text for lateral tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,)}$
Cente	ered finite difference
4.3.1.5 l	Passive Tracers
Passive tre	acers advected
\boxtimes	Ideal age
	CFC 11
	CFC 12
	SF6
	Other - please specify:
4.3.1.6 l	Passive Tracers Advection
Is advection	on of passive tracers different than active? if so, describe.
No	
4.4.1 V	Vertical Tracers
Propertie	es of vertical tracer advection scheme in ocean
4.4.1.1 I	Name *
Descriptive	e text for vertical tracer advection scheme in ocean (e.g. MUSCL, PPM-H5, PRATHER,)
2nd o	order centered finite difference
4.4.1.2 I	Flux Limiter *
Monotonic	c flux limiter for vertical tracer advection scheme in ocean?
Select	t either TRUE or FALSE:
	True False

5 Lateral Physics

Ocean lateral physics

5.1.1 Top level properties

Ocean lateral physics

5.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ lateral\ physics\ in\ ocean\ model.$

MOM1 plus

5.1.1.2 Overview

 $Overview\ of\ ocean\ lateral\ physics\ in\ ocean\ model.$

Other - please specify:

No-slip sides (as per the B-grid), constant viscosity laplacian horizontal friction, isopyncal tracer diffusion (Cox MD (1987) Isopycnal diffusion in a Z-coordinate ocean model.Ocean Model 74: 15), does not use Gent-McWilliams eddy induced velocity.

5.1.1.3	Scheme *					
Type of tr	ansient eddy representation in ocean					
	None - No transient eddies in ocean					
	Eddy active - Full resolution of eddies					
	Eddy admitting - Some eddy activity permitted by resolution					
	Operator					
Рторени	es of lateral physics operator for momentum in ocean					
5.1.2.1	Direction *					
Direction	of lateral physics momentum scheme in the ocean					
\boxtimes	Horizontal					
	Isopycnal					
	Isoneutral					
	Geopotential					
	Iso-level					

5.1.2.2	Order *
Order of	lateral physics momentum scheme in the ocean
	Harmonic - Second order
	Bi-harmonic - Fourth order
	Other - please specify:
5.1.2.3	Discretisation *
Discretis	ation of lateral physics momentum scheme in the ocean
	Second order - Second order
	Higher order - Higher order
	Flux limiter
	Other - please specify:
	Eddy Viscosity Coeff ies of eddy viscosity coeff in lateral physics momentum scheme in the ocean
5.1.3.1	Type *
Lateral p	hysics momentum eddy viscosity coeff type in the ocean
\boxtimes	Constant
	Space varying
	Time + space varying (Smagorinsky)
	Other - please specify:
5.1.3.2	Constant Coefficient
If consta	nt, value of eddy viscosity coeff in lateral physics momentum scheme (in m2/s)
1200	00
5.1.3.3	Variable Coefficient
If space-v	varying, describe variations of eddy viscosity coeff in lateral physics momentum scheme
Ente	r TEXT:
5.1.3.4	Coeff Background *
Describe	$background\ eddy\ viscosity\ coeff\ in\ lateral\ physics\ momentum\ scheme\ (give\ values\ in\ m2/s)$
Ente	or TEXT:

5.1.3.5	Coeff Back	\mathbf{scat}	ter *
Is there b	ackscatter in ea	ddy vi	scosity coeff in lateral physics momentum scheme?
	True	\boxtimes	False
5.2.1	Tracers		
Properti	ies of lateral p	physi	cs for tracers in ocean
5.2.1.1	Mesoscale (Clos	ure *
Is there a	mesoscale clos	sure in	n the lateral physics tracers scheme?
\boxtimes	True		False
5.2.1.2	Submesosca	ale I	Mixing *
Is there a	submesoscale i	mixin	g parameterisation (i.e Fox-Kemper) in the lateral physics tracers scheme ?
	True	\boxtimes	False
5.2.2	Operator		
Properti	ies of lateral p	physi	cs operator for tracers in ocean
5.2.2.1	Direction *	:	
Direction	of lateral physic	ics tre	acers scheme in the ocean
	Horizontal		
\boxtimes	Isopycnal		
	Isoneutral		
	Geopotential		
	Iso-level		
	Other - please	e spec	ify:
5.2.2.2	Order *		
$Order\ of$	lateral physics	tracer	s scheme in the ocean
	Harmonic - Se	econd	order
	Bi-harmonic -	Four	th order
	Other - please	e snec	ify

5.2.2.3	Discretisation *					
Discretisa	tion of lateral physics tracers scheme in the ocean					
	Second order - Second order					
	Higher order - Higher order					
	Flux limiter					
	Other - please specify:					
5.2.3 E	Eddy Diffusity Coeff					
Propertie	es of eddy diffusity coeff in lateral physics tracers scheme in the ocean					
5.2.3.1	$\Gamma_{\rm ype} \ ^*$					
Lateral ph	ysics tracers eddy diffusity coeff type in the ocean					
\boxtimes	Constant					
	Space varying					
	Time + space varying (Smagorinsky)					
	Other - please specify:					
5.2.3.2	Constant Coefficient					
If constant	t, value of eddy diffusity coeff in lateral physics tracers scheme (in $m2/s$)					
Enter	INTEGER value:					
5.2.3.3	Variable Coefficient					
If space-ve	arying, describe variations of eddy diffusity coeff in lateral physics tracers scheme					
Enter	TEXT:					
5.2.3.4	Coeff Background *					
Describe b	ackground eddy diffusity coeff in lateral physics tracers scheme (give values in m2/s)					
400						
5.2.3.5	Coeff Backscatter *					
Is there bo	ckscatter in eddy diffusity coeff in lateral physics tracers scheme?					
	True					

5.2.4 Eddy Induced Velocity

 $Properties \ of \ eddy \ induced \ velocity \ (EIV) \ in \ lateral \ physics \ tracers \ scheme \ in \ the \ ocean$

5.2.4.1 Type *
Type of EIV in lateral physics tracers in the ocean
GM - Gent and McWilliams
Other - please specify:
5.2.4.2 Constant Val
If EIV scheme for tracers is constant, specify coefficient value $(M2/s)$
Enter INTEGER value:
5.2.4.3 Flux Type *
Type of EIV flux (advective or skew)
None
5.2.4.4 Added Diffusivity *
Type of EIV added diffusivity (constant, flow dependent or none)
Enter TEXT:

6 Vertical Physics

Ocean Vertical Physics

6.	1.	1 '	Toı	o l	lev	el 1	pro	per	\mathbf{ties}

 $Ocean\ Vertical\ Physics$

6.1.1.1 Name

Commonly used name for the vertical physics in ocean model.

MOM₁

6.1.1.2 Overview

 $Overview\ of\ ocean\ vertical\ physics\ in\ ocean\ model.$

Centered finite difference, $40\mathrm{m}$ deep top grid box simulates PBL, virtual salt flux top boundary condition.

6.1.2 Details

Properties of vertical physics in ocean

6.1.2.1 Langmuir Cells Mixing *

6.1.	3	Tracers	3

Properties of boundary layer (BL) mixing on tracers in the ocean

6.1.3.1 Type *

 ${\it Type~of~boundary~layer~mixing~for~tracers~in~ocean}$

Ш	Constant value
	Turbulent closure - TKE
	Turbulent closure - KPP
	Turbulent closure - Mellor-Yamada
	Turbulent closure - Bulk Mixed Layer
	Richardson number dependent - PP
	Richardson number dependent - KT
	Imbeded as isopycnic vertical coordinate

Other - please specify:
5.1.3.2 Closure Order f turbulent BL mixing of tracers, specific order of closure (0, 1, 2.5, 3) Enter FLOAT value:
5.1.3.3 Constant f constant BL mixing of tracers, specific coefficient (m2/s) Enter INTEGER value:
5.1.3.4 Background * Background BL mixing of tracers coefficient, (schema and value in m2/s - may by none Enter TEXT:
3.1.4 Momentum Properties of boundary layer (BL) mixing on momentum in the ocean 3.1.4.1 Type *
Type of boundary layer mixing for momentum in ocean
Select SINGLE option:
Constant value
Turbulent closure - TKE
Turbulent closure - KPP
Turbulent closure - Mellor-Yamada
Turbulent closure - Bulk Mixed Layer
Richardson number dependent - PP
Richardson number dependent - KT
Imbeded as isopycnic vertical coordinate
Other - please specify:
5.1.4.2 Closure Order f turbulent BL mixing of momentum, specific order of closure (0, 1, 2.5, 3)

Enter FLOAT value:

If constant BL mixing of momentum, specific coefficient $(m2/s)$
Enter INTEGER value:
6.1.4.4 Background * Background BL mixing of momentum coefficient, (schema and value in m2/s - may by none) Enter TEXT:
6.1.5 Details
Properties of interior mixing in the ocean
6.1.5.1 Convection Type *
Type of vertical convection in ocean
Non-penetrative convective adjustment
Enhanced vertical diffusion
Included in turbulence closure
Other - please specify:
6.1.5.2 Tide Induced Mixing *
Describe how tide induced mixing is modelled (barotropic, baroclinic, none)
None
6.1.5.3 Double Diffusion *
Is there double diffusion
☐ True ☐ False
6.1.5.4 Shear Mixing *
Is interior shear mixing explicitly parameterised?
☐ True ☐ False

6.1.6 Tracers

6.1.4.3 Constant

Properties of interior mixing on tracers in the ocean

3.1.6.1 Type *			
Type of in	nterior mixing for tracers in ocean		
	Constant value		
	Turbulent closure / TKE		
	Turbulent closure - Mellor-Yamada		
	Richardson number dependent - PP		
	Richardson number dependent - KT		
	Imbeded as isopycnic vertical coordinate		
	Other - please specify:		
6.1.6.2	Constant		
f constar	at interior mixing of tracers, specific coefficient $(m2/s)$		
Ente	r INTEGER value:		
6.1.6.3	Profile *		
s the bac	ekground interior mixing using a vertical profile for tracers (i.e is NOT constant)?		
\boxtimes	True False		
6.1.6.4	Background *		
Backgrou	nd interior mixing of tracers coefficient, (schema and value in $m2/s$ - may by none)		
Brya	n-Lewis (.3 at surface to 1 at bottom (cgs units))		
6.1.7 I	Momentum		
Properti	ies of interior mixing on momentum in the ocean		
6.1.7.1	Type *		
Type of in	nterior mixing for momentum in ocean		
Selec	et SINGLE option:		
	Constant value		
	Turbulent closure / TKE		
	Turbulent closure - Mellor-Yamada		
	Richardson number dependent - PP		
	Richardson number dependent - KT		

Imbeded as isopycnic vertical coordinate
Other - please specify:
6.1.7.2 Constant
If constant interior mixing of momentum, specific coefficient $(m2/s)$
Enter INTEGER value:
6.1.7.3 Profile *
${\it Is the background interior mixing using a vertical profile for momentum (i.e is NOT constant)?}$
Enter TEXT:
6.1.7.4 Background *
Background interior mixing of momentum coefficient, (schema and value in $m2/s$ - $may\ by\ none$)
Enter TEXT:

7 Uplow Boundaries

 $Ocean\ upper\ /\ lower\ boundaries$

7.1.1 Top level properties

Ocean upper / lower boundaries

7.1.1.1 Name

 $Commonly\ used\ name\ for\ the\ uplow\ boundaries\ in\ ocean\ model.$

MOM1 plus

7.1.1.2 Overview

Overview of ocean upper / lower boundaries in ocean model.

Rigid lid upper boundary, drag lower boundary

7.2.1 Free Surface

Properties of free surface in ocean

7.2.1.1 Scheme *

Free surfa	ce scheme in ocean
	Linear implicit
	Linear filtered
	Linear semi-explicit
	Non-linear implicit
	Non-linear filtered
	Non-linear semi-explicit
	Fully explicit
	Other - please specify:
	Embeded Seaice * ice embeded in the ocean model (instead of levitating) ?
	True Enless

7.3.1 Bottom Boundary Layer

Properties of bottom boundary layer in ocean

7.3.1.1 Overview *			
Overview of bottom boundary layer in ocean			
$\mathrm{Drag}\;(\mathrm{cd}=.001)$			
7.3.1.2 Type Of Bbl *			
Type of bottom boundary layer in ocean			
Diffusive			
☐ Acvective			
Other - please specify:			
7.3.1.3 Lateral Mixing Coef			
If bottom BL is diffusive, specify value of lateral mixing coefficient (in $m2/s$)			
Enter INTEGER value:			
7.3.1.4 Sill Overflow *			
Describe any specific treatment of sill overflows			
Enter TEXT:			

8 Boundary Forcing

Ocean boundary forcing

8.1.1 Top level properties

Ocean boundary forcing

8.1.1.1 Name

Commonly used name for the boundary forcing in ocean model.

MOM1 plus

8.1.1.2 Overview

Overview of ocean boundary forcing in ocean model.

Fluxes computed in atmosphere and passed to ocean/sea ice. Fluxes computed in sea ice passed to ocean. Ocean gives SST to sea ice code and atmosphere.

8.1.1.3 Surface Pressure *

Describe how surface pressure is transmitted to ocean (via sea-ice, nothing specific,...)

None

8.1.1.4 Momentum Flux Correction

Describe any type of ocean surface momentum flux correction and, if applicable, how it is applied and where.

None

8.1.1.5 Tracers Flux Correction

Describe any type of ocean surface tracers flux correction and, if applicable, how it is applied and where.

Heat and water flux adjustments are applied each time step. The adjustments are a function of I and j and month. They repeat exactly year to year and in all experiments.

8.1.1.6 Wave Effects *

Describe if/how wave effects are modelled at ocean surface.

None

8.1.1.7 River Runoff Budget *

Describe how river runoff from land surface is routed to ocean and any global adjustment done.

Manabe bucket on land points. When bucket overflows, water is routed to ocean using present day river network. Rain at ocean grid location plus river flow passed to ocean. For large rivers, water spread over top 4 grid boxes in ocean.

8.1.1.8 Geothermal Heating *

 $Describe\ if/how\ geothermal\ heating\ is\ present\ at\ ocean\ bottom.$

None

8.1.2 Bottom Friction

 $Properties\ of\ momentum\ bottom\ friction\ in\ ocean$

8.1.2.1	Type *
Type of m	nomentum bottom friction in ocean
	Linear
	Non-linear
	Non-linear (drag function of speed of tides)
\boxtimes	Constant drag coefficient
	None
	Other - please specify:
0 1 9 T	atanal Eviation
	Lateral Friction
Properti	es of momentum lateral friction in ocean
8.1.3.1	Type *
Type of m	nomentum lateral friction in ocean
	None
	Free-slip
\boxtimes	No-slip
	Other - please specify:
Q 1 / G	Sunlight Penetration
	o .
Properti	es of sunlight penetration scheme in ocean
8.1.4.1	Scheme *
Type of su	unlight penetration scheme in ocean
	1 extinction depth
	2 extinction depth
	3 extinction depth
	Other - please specify:

8.1.4.2 Ocean Colour *		
Is the ocean sunlight penetration scheme ocean colour dependent ?		
☐ True ☐ False		
8.1.4.3 Extinction Depth Description		
$Describe\ extinctions\ depths\ for\ sunlight\ penetration\ scheme\ (if\ applicable).$		
None		
8.1.4.4 Extinction Depths		
List extinctions depths for sunlight penetration scheme (if applicable).		
Enter COMMA SEPARATED list:		
8.1.5 Fresh Water Forcing		
Properties of surface fresh water forcing in ocean		
8.1.5.1 From Atmopshere *		
Type of surface fresh water forcing from atmos in ocean		
Freshwater flux		
☐ Virtual salt flux		
Other - please specify:		
8.1.5.2 From Sea Ice *		
Type of surface fresh water forcing from sea-ice in ocean		
Freshwater flux		
☐ Virtual salt flux		
Real salt flux		
Other - please specify:		
8.1.5.3 Forced Mode Restoring *		
Type of surface salinity restoring in forced mode (OMIP)		

Enter TEXT: