CSC430/530 – Database Management Systems

Assignment #2 - EER to Relational Model Mapping

In this assignment, you are to map provided ER and EER diagrams into Relational Model schemas following steps described in "Lesson 5.1 - EER to Relational Model Mapping".

a) Consider following ER diagram for a database that can be used to keep track of transport ships and their locations for maritime authorities. <u>Note:</u> assume port names to be unique across all states/countries and seas/oceans/lakes. Map this diagram into a relational schema and specify all the primary & foreign keys. **Describe each step of the mapping process.** For example:

Step 1 - mapping regular entities: SHIP, SHIP_TYPE, STATE/COUNTRY, and SEA/OCEAN/LAKE.

- Regular entity SHIP mapped as SHIP relation. All simple attributes are included. Attribute "Sname" is chosen as a primary key.
- Regular entity SHIP_TYPE mapped as SHIP_TYPE relation. All simple attributes are included. Attribute "Type" is chosen as a primary key ...

...

Step 4 - mapping binary 1:N relationships: TYPE, ON, and HOME_PORT.

- 1:N relationship TYPE is mapped as a foreign key attribute "Type" in SHIP relation ("N" side) that corresponds to "Type" primary key attribute in SHIP_TYPE relation ("1" side) ...

Step 1 - mapping regular entities: SHIP, SHIP TYPE, STATE/COUNTRY, SEA/OCEAN/LAKE.

- Regular entity SHIP mapped as SHIP relation. All simple attributes are included. Attribute "Sname" is chosen as a primary key.
- Regular entity SHIP_TYPE mapped as SHIP_TYPE relation. All simple attributes are included. Attribute "Type" is chosen as a primary key.
- Regular entity STATE/COUNTRY mapped as STATE/COUNTRY relation. Attribute "Name" is chosen as a primary key.
- Regular entity SEA/OCEAN/LAKE mapped as SEA/OCEAN/LAKE relation. All simple attributes are included. Attribute "Name" is chosen as a primary key.

Step 2 - mapping weak entities: SHIP MOVEMENT, PORT VISIT, PORT

- Weak entity SHIP_MOVEMENT mapped as SHIP_MOVEMENT relation. All simple attributes are included. Attribute "Sname" is chosen as a foreign key attribute that corresponds to "Sname" primary key attribute in SHIP relation. Attributes "Date", "Time", and "Sname" are chosen as primary key attributes in SHIP MOVEMENT relation.
- Weak entity PORT_VISIT mapped as PORT_VISIT relation. All simple attributes are included. Attribute "Pname" is chosen as a foreign key attribute that corresponds to "Pname" primary key attribute in PORT relation. Attribute "Sname" is chosen as a foreign key attribute that corresponds to "Sname" primary key attribute in SHIP relation. Attributes "Start_date", "Pname", and "Sname" are chosen as primary key attributes in PORT_VISIT relation.
- Weak entity PORT mapped as PORT relation. Attribute "SC_Name" is chosen as a foreign key attribute that corresponds to "Name" primary key attribute in STATE/COUNTRY relation. Attributes "Pname" and "SC_Name" are chosen as primary key attribute in PORT relation.

Step 3 - mapping binary 1:1 relationships:

- N/A

Step 4 - mapping binary 1:N relationships: TYPE, ON, HOME PORT.

- 1:N relationship TYPE is mapped as a foreign key attribute "SType" in SHIP relation ("N" side) that corresponds to "Type" primary key attribute in SHIP_TYPE relation ("1" side).
- 1:N relationship ON is mapped as a foreign key attribute "SOL_Name" in PORT relation ("N side) that corresponds to "Name" primary key attribute in SEA/OCEAN/LAKE relation ("1" side).
- 1:N relationship HOME_PORT is mapped as a foreign key attribute "Pname" in SHIP relation ("N" side) that corresponds to "Pname" primary key attribute in PORT relation ("1" side).
- Step 5 mapping binary M:N relationships: SHIP_AT_PORT.
 - N/A
- Step 6 mapping multivalued attributes
 - N/A
- **Step 7 mapping n-ary relationships:**
 - N/A
- **Step 8 mapping specializations and generalizations:**
 - N/A
- Step 9 mapping unions:
 - N/A

b) Consider following EER diagram for a car dealer database. Map this diagram into a relational schema and specify all the primary & foreign keys. For the VEHICLE to CAR/TRUCK/SUV specialization, pick one of the options discussed in class (8A, 8B, 8C, 8D). Justify your choice.

Describe each step of the mapping process. For example:

Step 1 - mapping regular entities: VEHICLE, SALESPERSON, CUSTOMER.

- Regular entity type VEHICLE is mapped as a VEHICLE relation. All simple attributes are included. Attribute "Vin" is chosen as a primary key ..."

...

Step 7 – mapping n-ary relationships: SALE ...

Step 8 - mapping specializations and generalizations: CAR, TRUCK, SUV ...

Step 1 - mapping regular entities: VEHICLE, SALESPERSON, CUSTOMER.

- Regular entity type VEHICLE is mapped as a VEHICLE relation. All simple attributes are included. Attribute "Vin" is chosen as a primary key.
- Regular entity type SALESPERSON is mapped as SALESPERSON relation. All simple attributes are included. Attribute "Sid" is chosen as a primary key.
- Regular entity type CUSTOMER is mapped as a CUSTOMER relation. All simple and composite attributes are included. Attribute "Ssn" is chosen as a primary key.

Step 2 - mapping weak entities:

- N/A

Step 3 - mapping binary 1:1 relationships:

- N/A

Step 4 - mapping binary 1:N relationships:

- N/A

Step 5 - mapping binary M:N relationships:

- N/A

Step 6 - mapping multivalued attributes:

- N/A

Step 7 - mapping n-ary relationships: SALE

N-ary relationship SALE is mapped as a SALE relation. Simple attribute "Date" is included. Attribute "Vin" is chosen as a foreign key attribute that corresponds to "Vin" in VEHICLE relation ("N" side). Attribute "Sid" is chosen as a foreign key attribute that corresponds to "Sid" primary key attribute in SALESPERSON relation ("1" side). Attribute "Cssn" is chosen as a foreign key attribute that corresponds to "Ssn" primary key attribute in CUSTOMER relation ("1" side). Attributes "Vin", "Sid", and "Cssn" are chosen as primary key attribute in SALE relation.

Step 8A - mapping specializations and generalizations: CAR, TRUCK, SUV

- Due to being total and disjoint specializations and for database simplicity, CAR, TRUCK, and SUV subclasses of generalized VEHICLE will each represent a new relation using Option 8A. This prevents us from having redundant relations and needing more foreign keys when implementing a SALE relation because it already has a VEHICLE relation.
- Subclass CAR contains all simple attributes. "Vin" is chosen as a primary and foreign key. Subclass TRUCK contains all simple attributes. "Vin" is chosen as a primary and foreign key.
- Subclass SUV contains all simple attributes. "Vin" is chosen as a primary and foreign key.

Step 9 - mapping unions:

- N/A

