§10. Формула Грина

П.1. Вывод формулы Грина для односвязной области

Пусть на плоскости \mathbb{R}^2 задана односвязная область D такая, что любая прямая, параллельная осям координат, пересекает границу этой области не более, чем в двух точках. Обозначим как ∂D ее границу. Тогда область D можно определить двумя способами:

$$D = \{(x, y) | a \le x \le b; \varphi_1(x) \le y \le \varphi_2(x)\}$$

$$D = \{(x,y) | c \leq y \leq d; \psi_1(x) \leq y \leq \psi_2(x) \}$$
удем обходить контур в положительном направ-

Будем обходить контур в положительном направлении.

Теорема 7. Пусть D — элементарная область. Функции P(x,y), Q(x,y) непрерывны вместе со своими произ-

водными $\frac{\partial P}{\partial y}$, $\frac{\partial Q}{\partial x}$ на замыкании \overline{D} (область вместе с ее границей). Тогда выполняется равенство $\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \oint_{\partial D} P dx + Q dy$. Эта формула называется формулой

Грина. Она связывает криволинейный интеграл и двойной интеграл.

Доказательство. Рассмотрим
$$\iint_{D} \frac{\partial P}{\partial y} dx dy = \int_{a}^{b} dx \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} \frac{\partial P}{\partial y} dy = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{\cup NPM} P(x, y) dx - \int_{\cup NQM} P(x, y) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{\cup NPM} P(x, y) dx - \int_{\cup NQM} P(x, y) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{\cup NPM} P(x, y) dx - \int_{\cup NQM} P(x, y) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{2}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{1}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{1}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{1}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{1}(x) \right) - P \left(x, \varphi_{1}(x) \right) \right) dx = \int_{a}^{b} \left(P \left(x, \varphi_{1}(x) \right) - P \left(x, \varphi_{1}(x) \right) dx \right) dx$$

 $\int_{\cup NPM} P(x,y) dx + \int_{\cup MQN} P(x,y) dx = -\oint_{\partial D} P dx$. Аналогичным образом выводится и для функции Q.

<u>Замечание.</u> Если область односвязная, но не является элементарной, то ее всегда можно разбить на элементарные области.

П.2. Формула Грина для многосвязной области

<u>Теорема 8.</u> Пусть D-n-связная область. Функции P(x,y), Q(x,y) непрерывны вместе со своими производными $\frac{\partial P}{\partial y}, \frac{\partial Q}{\partial x}$ на замыкании \overline{D} . Тогда для этой области выполняется формула Грина на условии $\partial D = \Gamma^+ \cup \Gamma_1^- \cup \Gamma_2$

 $\Gamma_2^- \cup ... \cup \Gamma_n^-$.

Доказательство. Не умоляя общности, рассмотрим трехсвязную область. Сделаем разрезы AB,SE. Тогда $\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dx dy = \int_{\cup KNA} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) + \int_{\cup AB} (Pdx + Qdy) + \int_{\cup BIS} (Pdx + Qdy) + \int_{\cup SE} (Pdx + Qdy) + \int_{\cup SIB} (Pdx + Qdy) + \int_{\cup BA} (Pdx + Qdy) + \int_{\cup AMK} (Pdx + Qdy) = \int_{\Gamma^+} (Pdx + Qdy) + \int_{\Gamma^-_1} (Pdx + Qdy) + \int_{\Gamma^-_2} (Pdx + Qdy) = \oint_{\partial D} Pdx + Qdy$

П.3. Следствия формулы Грина

1) Пусть D — односвязная область, ∂D — ее граница. Пусть для нее справедлива формула Грина. Пусть $P=-y, Q=x, \frac{\partial P}{\partial y}=-1, \frac{\partial Q}{\partial x}=1.$ Тогда $\iint_D \ 2dxdy = \oint_{\partial D} -ydx + xdy.$ Тогда $S_D=\frac{1}{2}\oint_{\partial D} -ydx + xdy.$

- 2) Если в D выполняется $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y'}$ то $\oint_{\partial D} P dx + Q dy = 0$.
- 3) Пусть $Q=\frac{du}{dx}$, $P=-\frac{du}{dy}$. Тогда $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\frac{\partial^2 U}{\partial x^2}+\frac{\partial^2 U}{\partial y^2}=\Delta U$ оператор Лапласа (лапласиан). В этом случае формула Грина привет вид $\iint_D \left(\frac{\partial^2 U}{\partial x^2}+\frac{\partial^2 U}{\partial y^2}\right) dx dy = \oint_{\partial D} -\frac{du}{dy} dx + \frac{du}{dx} dy = \oint_{\partial D} -\frac{du}{dy} \cos(\vec{\tau};Ox) \, dS + \frac{du}{dx} \cos(\vec{\tau};Oy) \, dS = \oint_{\partial D} \frac{du}{dy} \sin(\vec{n};Ox) \, dS + \frac{du}{dx} \cos(\vec{n};Ox) \, dS = \oint_{\partial D} \frac{\partial U}{\partial n} dS$ производная по направлению, где \vec{n} нормаль, $\vec{\tau}$ касательная. Переходы косинусов к синусам сделаны с помощью $(\vec{\tau};Ox) = (\vec{n};Ox) + \frac{\pi}{2}$.

<u>Пример.</u> $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Тогда $S = \frac{1}{2} \oint_{\partial D} -y dx + x dy = \frac{1}{2} \int_0^{2\pi} (ab \sin^2 t + ab \cos^2 t) dt = \pi ab$.

§11. Несобственные двойные интегралы. Интеграл Пуассона

Пусть D — неограниченная область в \mathbb{R}^2 , пусть z=f(x,y) непрерывна в D. Рассмотри ограниченную область $B\in D$. Составим двойной интеграл по ней: $I(B)=\iint_B f(x,y)dxdy$. Будем произвольно расширять область B до области D.

Если существует $A = \lim_{B \to D} I(B)$, который не зависит от характера расширения, то этот предел и называется несобственным двойным интегралом. Если этот предел конечен, то говорят о сходимости несобственного двойного интеграла. Если не существует или бесконечен – о расходимости, или несуществовании.

Рассмотрим интеграл $\int_{-\infty}^{+\infty} e^{-x^2} dx$. Составим двойной несобственный интеграл $J = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-x^2} dx \, dy = \lim_{B \to \mathbb{R}^2} \iint_B e^{-x^2-y^2} dx dy$, где B – круг радиуса r. Получаем $\lim_{r \to \infty} \iint_{x^2+y^2 \le r^2} e^{-x^2-y^2} dx dy = \lim_{r \to \infty} \int_0^{2\pi} d\varphi \int_0^r e^{-\rho^2} \rho d\rho = \lim_{r \to \infty} -2\pi \frac{1}{2} e^{-\rho^2} \Big|_0^r = \lim_{r \to \infty} \pi \left(-e^{-r^2}+1\right) = \pi$. Отсюда $J = \left(\int_{-\infty}^{+\infty} e^{-x^2} dx\right)^2 = \pi$, значит $J = \sqrt{\pi}$.