HEPS 工程工作笔记

HEPS Technical Note

标题(Title)	CRL 器件 – XRT 和 SRW 波动计算比对		
作者 (Author)/	杨福桂	日期 (Date)	2020-2-7
系统 (System)	1997年1年	⊔ ≫ ј (Date)	2020-2-7
编号 (Serial No.)		页数 (Pages)	共 页 (含附件)

摘要 (abstract):

复合折射率透镜(CRL)是高能同步辐射光源 HEPS 的重要器件。为了保证仿真计算的正确性,需要对不同软件下 CRL 聚焦性能的评估。这里考虑 B3 和 B8 两条束线,在单色光情况下的聚焦情况。

需要考虑口径、焦距(组数)等因素的影响。

会 签			
Concurred by			
有效性	填表人	审 核	批准
Validation	Prepared by	Reviewed by	Approved by
签名	XX		
Signature	71/1		

1 束线光学设计综述

HEPS-B3 和 B8 分别处于低和高 beta 直线节。储存环和光源参数如表格 11 所示。

	HEPS-B3	HEPS-B8		
	储存环	•		
电子能量 (GeV)	6	6		
电流强度 (GeV)	0.2	0.2		
能散	0.00111	0.00111		
电子尺寸 (μm)	8.8*2.3	16.7*5.1		
电子束团发散角 (μrad)	3.1*1.2	1.65*0.53		
Beta function	2.84*1.92	10.12*9.64		
发射度 (pm*rad)	27.28*2.76	27.55*2.70		
插入件				
能量点@谐波级次	23keV@1st	10keV@3st		
λ/2π (pm.rad)	19.74	19.74		
周期 (mm)	12	35		
周期数	180	142		

表格 1-1 光源参数列表

2 仿真束线布局

由于光源处发光点的位置非确定,因此这里需要从波动计算结果分析光源尺寸。仿真束 线布局图如图 2-1 所示。

图 2-1 仿真布局图

在 XRT、SRW 使用的折射率参数不同, $\delta = 1 - n_{real}$ 。

	Attenuation length (m)		δ	
	XRT	SRW	XRT	SRW
10keV	0.0088357	0.0083543	3.40239e-06	3.413595e-06
23keV	0.0270313	0.0265456	6.427981e-07	6.43869e-07

图 2-2 Be 透镜参数,考虑不同的软件

透镜焦距为 $f = \frac{2R}{\delta}$,基于 XRT 的折射率数据计算的透镜光焦度如表格 2-1。折射率差异 0.32%@10keV,0.16%@23keV。考虑到系统的接收口径,B8 束线使用两个 300 μ m 曲率 半径的 Be CRL 组,焦距为 22.045 μ m。在口径上,CRL 前放置了一个 1 μ m 直径的光阑,对应的系统接受角约为 4 μ 0。

R(µm)	$oldsymbol{arphi}$ (m $^{ extsf{-1}}$)@ 10 keV	φ (m ⁻¹)@23keV	D(mm)
50	0.13610	0.02571	0.504
100	0.0	0.0	0.716
200	0.0	0.0	1.008
300	0.02268	0.004285	1.236
500	0.0	0.0	1.588
1000	0.0	0.0	2.256
2000	0.0	0.0	3.188

表格 2-1 CRL 特性参数表

由于本工作的主要目的是 XRT 软件和 SRW 软件中 CRL 组件计算结果的比对。这里主要考虑单电子发光。

3 SRW 波动仿真计算

为了观察光源的光斑尺寸, SRW 提供了两种方法, 如图 3-1 所示。一种是通过 Back Propagation 组件, 把波前逆向传播至光源处; 第二种方式是使用理想透镜成像, 缩放比为 1:1。第三种方式是使用真实的 CRL。 由于长焦距和短焦距 CRL 的性能有所差异, 包括吸收和光程差的变化, 这里我们还要评估不同焦距透镜组的聚焦情况。在每一种计算中, 需要精确计算透镜焦距和像点位置。

图 3-1 SRW 仿真程序

3.1 长焦距情况 (22m)

第三种方式是使用真实的 CRL,两个曲率半径为 300 μ m 的 Be 透镜。样品点位置在 88.18m 处,构成 1: 1 成像。仿真结果如图 3-2 所示,光源点的单光子发光尺寸为 12.5 μ m×12.5 μ m FWHM,12.23 μ m×12.49 μ m FWHM 和 12.36 μ m×12.36 μ m。结果一致说明,此时 CRL 接近理想成像。

图 3-2 SRW 三种不同方式计算的单光子发光尺寸,(a)backpropagation; (b)理想 CRL 和(c)真实 CRL 成像

图 3-3 理想透镜和真实 CRL 的 xy 截面图

3.2 短焦距情况(1m)

考虑使用 40 组 300µm 的 Be 透镜,可以计算焦距为 1.103m,像距为 1.131m。理想透镜的焦距设置成 1.103m,对应像距为 1.131m。SRW 中真实透镜的焦距为 1.1002638279413,对应的像距为 1.128m。考虑到像平面位置可能存在移动,这里计算了不同位置的光斑尺寸,如表格 3-1 所示,可以看到 1.130m 处的光斑符合缩放比的,且处于局部最小。注意,在计算中,推荐使用 Quadratic Term Special,该方法可以在比较小的采样数下获得正确结果。图 3-5 更直观地给出了焦点位置的变化(纠错,SRW 结果的纵坐标需要减小 10 倍)。红线理想成像位置点。

位置	理想透镜成像	真实 CRL
1.135	1.2289*1.2672	1.5837*1.6292
1.133	0.5107*0.5219	1.0619*1.0857
1.131	0.3254*0.3298	0.5191*0.5236
1.130	0.3152*0.3152	0.3046*0.3001
1.129	0.2372*0.2349	0.3093*0.3093
1.128	0.6360*0.6427	0.3082*0.3082
1.127	0.9945*1.0162	0.2951*0.2906
1.126	1.3243*1.3639	0.5235*0.5325
1.125	1.5995*1.6525	0.8031*0.8150

表格 3-1 不同位置处的光斑尺寸变化

1.130m 处的追迹结果见图 3-4,相比于理想透镜成像,很明显大角度位置的光场匀滑。

图 3-4 理想透镜聚焦(a)和真实 CRL 聚焦(b)的分布图, (c)一维曲线对比; (d)是理想透镜成像 1.129m 处的分布

图 3-5 理想透镜聚焦(a)和真实 CRL 聚焦(b)的分布图 xy 截面图, y 为光线传播方向

4 XRT 波动仿真计算

4.1 长焦距情况 (22m)

在 XRT 中将系统的发射度和能散设置为 0,可以模拟单电子发光的情况。图 4-1 给出了典型位置的追迹结果。可以看出在透镜的焦点位置,光斑并不是最小位置。对比图 b 和图 c,可以看出离焦位置峰值强度增加,但是分布偏离高斯分布,拖尾问题增加。

图 4-1 长焦距透镜的单电子波动传播结果

4.1 短焦距情况 (1m)

在 XRT 中,透镜的模型是具有一定厚度和间距的薄板,因此透镜成像位置并不是从最后一片透镜算起,需要寻找焦平面位置。在 XRT 中,可以使用光线几何追迹计算焦点位置,图 4-2 给出了光斑尺寸在不同位置处的分布曲线(a),样品处的光场分布(b)以及xy 截面的分布(c)。偏置 80mm,总 CRL 长度为 120mm。由于光线追迹数的限制,xy 截

面图存在一定的毛刺,但这不影响焦点位置的判断。

图 4-2 短焦距透镜的 XRT 几何追迹

接下来, 开展单电子波动追迹, 结果如图 4-3 所示。

图 4-3 短焦距透镜的单电子波动传播结果

5 50 微米 CRL 聚焦仿真

改变透镜曲率半径,观察聚焦情况。这里考虑到透镜口径为 $0.5 \,\mathrm{mm}$,所以 SRW 和 XRT 中均对口径光阑限制为 $0.5 \,\mathrm{mm}$ 圆形。SRW 中的 15 组透镜焦距 $0.489 \,\mathrm{m}$,对应的像距为 $0.4945 \,\mathrm{m}$ 。

6总结

为了方便观察曲线的差异,将中心线的分布画在同一幅图里,如**错误!未找到引用源。**所示。很明显,对于长焦距,SRW 和 XRT 能获得完全一致的结果,包括 xy 截面分布也是一致的。而对于短焦距透镜,三者存在差异,与理想透镜的差异,可以认为是光学透镜的哑铃作用。

图 6-1 XRT、SRW 波动计算一维曲线对比,(a)长焦距,(b)短焦距,其中图(b)中 SRW-理想透镜和真实透镜的焦点位置分别位于 1.130m, 1.1285m,

修改透镜数为80片,焦距为0.505m,从计算结果来看SRW和XRT计算结果一致,说明二者的仿真方法是一致的,存在的微小差别应该来自于材料参数不完全一致。SRW中理想透镜和真实透镜的成像位置与理论计算值一致,这比XRT要方便很多。

图 6-2 XRT、SRW 波动计算结果,f=550mm,分别对应 XRT、SRW 理想透镜、 SRW 真实 CRL,以及三个一维曲线(d)

7工作中的问题

(1) CRL 的有限厚度给焦点位置的确定带来了困难。