

🧲 Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No:CCIS15110087101

FCC REPORT

(Bluetooth)

Applicant: SHENZHEN HUAQIANG KUXIN COMMUNICATION

TECHNOLOGY CO., LTD.

Address of Applicant:

No. 1-1Meixiu Road, MeiLin, Futian, Shenzhen, Guangdong,

P.R.China

Equipment Under Test (EUT)

Product Name: Tablet

Model No.: W10,IC-T01,IC-T02,IC-T03,IC-T04,IC-

T05,M701,M901,M101,M116

FCC ID: 2AGLD-W10

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 11 Nov., 2015

Date of Test: 12 Nov., to 04 Dec., 2015

Date of report issued: 07 Dec., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCISproduct certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Report No: CCIS15110087101

2 Version

Version No.	Date	Description
00	07 Dec., 2015	Original

Tested by: 07 Dec., 2015

Test Engineer

Reviewed by: One Date: 07 Dec., 2015

Project Engineer

3 Contents

		F	⊃age
1	C	OVER PAGE	1
2	V	/ERSION	2
3		CONTENTS	
J			
4	Т	EST SUMMARY	4
5	C	GENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	7
	5.6	TEST INSTRUMENTS LIST	8
6	Т	EST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement	9
	6.2	CONDUCTED EMISSIONS	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	20dB Occupy Bandwidth	
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	Hopping Channel Number	
	6.7	DWELL TIME	
	6.8	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.9	BAND EDGE	
	-	5.9.1 Conducted Emission Method	
		5.9.2 Radiated Emission Method	
	6.10	SPURIOUS EMISSION	
	•	5.10.2 Radiated Emission Method	
_	_		
7	Т	EST SETUP PHOTO	62
8	E	EUT CONSTRUCTIONAL DETAILS	64

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Page 4 of 80

5 General Information

5.1 Client Information

Applicant:	SHENZHEN HUAQIANG KUXIN COMMUNICATION TECHNOLOGY CO., LTD.
Address of Applicant:	No. 1-1Meixiu Road, MeiLin, Futian, Shenzhen, Guangdong, P.R.China
Manufacturer/Factory:	SHENZHEN HUAQIANG KUXIN COMMUNICATION TECHNOLOGY CO., LTD.
Address of Manufacturer/ Factory:	No. 1-1Meixiu Road, MeiLin, Futian, Shenzhen, Guangdong, P.R.China

5.2 General Description of E.U.T.

<u> </u>	
Product Name:	Tablet
Model No.:	W10,IC-T01,IC-T02,IC-T03,IC-T04,IC-T05,M701,M901,M101,M116
Operation Frequency:	2402MHz~2480MHz
Transfer rate:	1/2/3 Mbits/s
Number of channel:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Modulation technology:	FHSS
Antenna Type:	Internal Antenna
Antenna gain:	2.0dBi
Power supply:	Rechargeable Li-ion Battery DC3.7V-7800mAh
AC adapter:	Model: MX12X8-0502000UX
	Input:100-240V AC,50/60Hz 0.35A
	Output:5V DC MAX 2A
Remark:	Item No.: W10,IC-T01,IC-T02,IC-T03,IC-T04,IC-T05, M701, M901, M101, M116 are electrically identical, only model name and exterior color is different.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		

Report No: CCIS15110087101

5.3 Test mode

Transmitting mode:	Keep the EUT in transmitting mode with worst case data rate.
Remark:	GFSK (1 Mbps) is the worst case mode.

The sample was placed 0.8m above the ground plane of 3m chamber*. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working with a fresh battery, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered andfully described a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

●IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

● CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Page 7 of 80

Project No.: CCIS151100871RF

5.6 Test Instruments list

Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4 Pre-amplifier (10kHz-1.3GHz)		HP 8447D		CCIS0003	04-01-2015	03-31-2016			
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
8	8 Spectrum analyzer 8 Rohde & Schwarz		FSP30	CCIS0023	03-28-2015	03-28-2016			
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016			
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			

Conducted Emission:										
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetoothantenna is anintegral antenna which permanently attached, and the best case gain of the antenna is 2.0dBi.

6.2 Conducted Emissions

0.2	Conducted Emissions	iducted Emissions								
	Test Requirement:	FCC Part15 C Section 15.207								
	Test Method:	ANSI C63.4:2009								
	Test Frequency Range:	150kHz to 30MHz								
	Class / Severity:	Class B								
	Receiver setup:	RBW=9kHz, VBW=30kHz, Sweep time=auto								
	Limit:	Frequency range (MHz)								
		Prequency range (MHZ) Quasi-peak Average								
		0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50								
		* Decreases with the logarithn	n of the frequency.							
	Test setup:	Reference Plane								
	T	AUX Filter AC power Equipment E.U.T Remark E.U.T: Equipment Under Test LISN Filter AC power EMI Receiver								
	Test procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 								
	Test Uncertainty:			±3.28 dB						
	Test Instruments:	Refer to section 5.7 for details								
	Test mode:	Bluetooth (Continuous transm	itting) mode							
	Test results:	Pass								
		L								

Measurement Data

: CCIS Shielding Room : EN 301489-QP LISN LINE : Tablet Site Condition

EUT Model : W10 Test Mode : BT mode
Power Rating : AC 230/50Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki

Re

Remark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu₹	<u>dB</u>	dB	dBu₹	—dBu∇	<u>ab</u>	
1	0.154	18.43	0.27	10.78	29.48	55.78	-26.30	Average
2	0.158	37.16	0.27	10.78	48.21	65.56	-17.35	QP
3	0.230	31.50	0.27	10.75	42.52	62.44	-19.92	QP
4	0.230	14.83	0.27	10.75	25.85	52.44	-26.59	Average
5	0.302	28.79	0.26	10.74	39.79	60.19	-20.40	QP
1 2 3 4 5 6 7 8 9	0.307	14.32	0.26	10.74	25.32	50.06	-24.74	Average
7	0.668	11.17	0.23	10.77	22.17			Average
8	0.751	26.47	0.23	10.79	37.49	56.00	-18.51	QP
9	1.255	7.40	0.25	10.90	18.55	46.00	-27.45	Average
10	2.121	9.61	0.26	10.95	20.82	46.00	-25.18	Average
11	2.213	28.81	0.26	10.95	40.02	56.00	-15.98	QP
12	23.018	44.77	0.45	10.89	56.11	60.00	-3.89	QP

Neutral:

Trace: 3

Site Condition

: CCIS Shielding Room : EN 301489-QP LISN NEUTRAL

EUT Tablet Model : W10

Test Mode : BT mode Power Rating : AC 230/50Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Viki

: Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
MHz	dBu∜	<u>dB</u>	<u>ab</u>	dBu∇	dBu∜	<u>ab</u>	
0.150	31.56	0.25	10.78	42.59	66.00	-23.41	QP
0.154	16.45	0.25	10.78	27.48	55.78	-28.30	Average
0.230	31.52	0.25	10.75	42.52	62.44	-19.92	QP
0.230	12.85	0.25	10.75	23.85	52.44	-28.59	Average
0.302	27.79	0.26	10.74	38.79	60.19	-21.40	QP
0.307	12.32	0.26	10.74	23.32	50.06	-26.74	Average
0.661	23.40	0.20	10.77	34.37	56.00	-21.63	QP
0.751	11.16	0.19	10.79	22.14	46.00	-23.86	Average
1.184	8.95	0.24	10.89	20.08	46.00	-25.92	Average
2.213	25.78	0.29	10.95	37.02	56.00	-18.98	QP
2.213	9.02	0.29	10.95	20.26	46.00	-25.74	Average
23.018	40.82	0.40	10.89	52.11	60.00	-7.89	QP
	MHz 0. 150 0. 154 0. 230 0. 230 0. 302 0. 307 0. 661 0. 751 1. 184 2. 213 2. 213	Freq Level MHz dBuW 0.150 31.56 0.154 16.45 0.230 31.52 0.230 12.85 0.302 27.79 0.307 12.32 0.661 23.40 0.751 11.16 1.184 8.95 2.213 25.78 2.213 9.02	Freq Level Factor MHz dBuV dB 0.150 31.56 0.25 0.154 16.45 0.25 0.230 31.52 0.25 0.230 12.85 0.25 0.302 27.79 0.26 0.307 12.32 0.26 0.661 23.40 0.20 0.751 11.16 0.19 1.184 8.95 0.24 2.213 25.78 0.29 2.213 9.02 0.29	Freq Level Factor Loss MHz dBuV dB dB 0.150 31.56 0.25 10.78 0.154 16.45 0.25 10.78 0.230 31.52 0.25 10.75 0.230 12.85 0.25 10.75 0.302 27.79 0.26 10.74 0.307 12.32 0.26 10.74 0.661 23.40 0.20 10.77 0.751 11.16 0.19 10.79 1.184 8.95 0.24 10.89 2.213 25.78 0.29 10.95 2.213 9.02 0.29 10.95	MHz dBuV dB dB dBuV 0.150 31.56 0.25 10.78 42.59 0.154 16.45 0.25 10.78 27.48 0.230 31.52 0.25 10.75 42.52 0.230 12.85 0.25 10.75 23.85 0.302 27.79 0.26 10.74 38.79 0.307 12.32 0.26 10.74 23.32 0.661 23.40 0.20 10.77 34.37 0.751 11.16 0.19 10.79 22.14 1.184 8.95 0.24 10.89 20.08 2.213 25.78 0.29 10.95 37.02 2.213 9.02 0.29 10.95 20.26	MHz dBuV dB dB dBuV dBuV 0.150 31.56 0.25 10.78 42.59 66.00 0.154 16.45 0.25 10.78 27.48 55.78 0.230 31.52 0.25 10.75 42.52 62.44 0.230 12.85 0.25 10.75 23.85 52.44 0.302 27.79 0.26 10.74 38.79 60.19 0.307 12.32 0.26 10.74 23.32 50.06 0.661 23.40 0.20 10.77 34.37 56.00 0.751 11.16 0.19 10.79 22.14 46.00 1.184 8.95 0.24 10.89 20.08 46.00 2.213 25.78 0.29 10.95 37.02 56.00 2.213 9.02 0.29 10.95 20.26 46.00	MHz dBuV dB dB dBuV dBuV dB 0.150 31.56 0.25 10.78 42.59 66.00 -23.41 0.154 16.45 0.25 10.78 27.48 55.78 -28.30 0.230 31.52 0.25 10.75 42.52 62.44 -19.92 0.230 12.85 0.25 10.75 23.85 52.44 -28.59 0.302 27.79 0.26 10.74 38.79 60.19 -21.40 0.307 12.32 0.26 10.74 23.32 50.06 -26.74 0.661 23.40 0.20 10.77 34.37 56.00 -21.63 0.751 11.16 0.19 10.79 22.14 46.00 -23.86 1.184 8.95 0.24 10.89 20.08 46.00 -25.92 2.213 25.78 0.29 10.95 37.02 56.00 -18.98 2.213 9.02 0.29

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=1MHz, VBW=3MHz, Detector=Peak (If 20dB BW ≤1 MHz) RBW=3MHz, VBW=10MHz, Detector=Peak (If 20dB BW > 1 MHz and < 3MHz)	
Limit:	125 mW(21 dBm)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

	GFSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	1.45	21.00	Pass	
Middle	1.15	21.00	Pass	
Highest	0.97	21.00	Pass	
	π/4-DQPSK ι	mode		
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	2.77	21.00	Pass	
Middle	2.71	21.00	Pass	
Highest	2.52	21.00	Pass	
	8DPSK mode			
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	2.92	21.00	Pass	
Middle	2.98 21.00 Pass		Pass	
Highest	2.86 21.00 Pass		Pass	

Test plot as follows:

Modulation mode: GFSK

Date: 14.NOV.2015 06:12:05

Lowest channel

Date: 14.NOV.2015 06:12:30

Middle channel

Date: 14.NOV.2015 06:12:46

Highest channel

Modulation mode:π/4-DQPSK

Date: 14.NOV.2015 06:14:07

Lowest channel

Date: 14.NOV.2015 06:13:49

Middle channel

Date: 14.NOV.2015 06:13:26

Highest channel

Modulation mode:8DPSK

Date: 14.NOV.2015 06:14:22

Lowest channel

Date: 14.NOV.2015 06:14:43

Middle channel

Date: 14.NOV.2015 06:15:00

Highest channel

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=30kHz, VBW=100kHz, detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Non-hopping mode	
Test results:	Pass	

Measurement Data

Toot shannel	20dB Occupy Bandwidth (kHz)		
Test channel	GFSK	π/4-DQPSK	8DPSK
Lowest	1048	1344	1372
Middle	1048	1348	1376
Highest	1044	1356	1376

Test plot as follows:

Modulation mode: GFSK

Date: 14.NOV.2015 06:24:28

Lowest channel

Date: 14.NOV.2015 06:23:40

Middle channel

Date: 14.NOV.2015 06:22:57

Highest channel

Modulation mode:π/4-DQPSK

Date: 14.NOV.2015 06:19:54

Lowest channel

Date: 14.NOV.2015 06:20:55

Middle channel

Date: 14.NOV.2015 06:21:42

Highest channel

Modulation mode:8DPSK

Date: 14.NOV.2015 06:18:48

Lowest channel

Date: 14.NOV.2015 06:17:57

Middle channel

Date: 14.NOV.2015 06:16:59

Highest channel

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100kHz, VBW=300kHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data

GFSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1000	698.67	Pass
Middle	1000	698.67	Pass
Highest	1004	698.67	Pass
	π/4-DQPSK mo	de	
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1008	904.00	Pass
Middle	1008	904.00	Pass
Highest	1000	904.00	Pass
8DPSK mode			
Test channel	Carrier Frequencies Separation (kHz)	Limit (kHz)	Result
Lowest	1004	917.33	Pass
Middle	1000 917.33 Pass		Pass
Highest	1000 917.33 Pass		Pass

Note: According to section 6.4

Note: According to section 6.4			
Mode	20dB bandwidth (kHz)	Limit (kHz)	
Wode	(worse case)	(Carrier Frequencies Separation)	
GFSK	1048	698.67	
π/4-DQPSK	1356	904.00	
8DPSK	1376	917.33	

Test plot as follows:

Modulation mode: GFSK

Date: 14.NOV.2015 06:26:34

Lowest channel

Date: 14.NOV.2015 06:31:00

Middle channel

Date: 14.NOV.2015 06:31:47

Highest channel

Modulation mode:π/4-DQPSK

Date: 14.NOV.2015 06:28:00

Lowest channel

Date: 14.NOV.2015 06:30:33

Middle channel

Date: 14.NOV.2015 06:32:20

Highest channel

Modulation mode:8DPSK

Date: 14.NOV.2015 06:29:00

Lowest channel

Date: 14.NOV.2015 06:29:52

Middle channel

Date: 14.NOV.2015 06:32:52

Highest channel

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and DA00-705	
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15 channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK, π/4-DQPSK, 8DPSK	79	15	Pass

GFSK

Date: 14.NOV.2015 06:35:41

π/4-DQPSK

Date: 14.NOV.2015 06:36:43

8DPSK

Date: 14.NOV.2015 06:37:38

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.10:2009 and KDB DA00-705	
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak	
Limit:	0.4 Second	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Hopping mode	
Test results:	Pass	

Measurement Data (Worse case)

Mode	Packet	Dwell time (second)	Limit (second)	Result
	DH1	0.13216	(******)	
GFSK	DH3	0.27024	0.4	Pass
	DH5	0.31275		
	2-DH1	0.13472		
π/4-DQPSK	2-DH3	0.27216	0.4	Pass
	2-DH5	0.31360		
	3-DH1	0.13472		
8DPSK	3-DH3	0.27024	0.4	Pass
	3-DH5	0.31381		

For GFSK, $\pi/4$ -DQPSK and 8DPSK:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

DH1 time slot=0.413*(1600/ (2*79))*31.6=132.16ms DH3 time slot=1.689*(1600/ (4*79))*31.6=270.24ms DH5 time slot=2.932*(1600/ (6*79))*31.6=312.75ms

2-DH1 time slot=0.421*(1600/ (2*79))*31.6=134.72ms 2-DH3 time slot=1.701*(1600/ (4*79))*31.6=272.16ms 2-DH5 time slot=2.940*(1600/ (6*79))*31.6=313.60ms

3-DH1 time slot=0.421*(1600/ (2*79))*31.6=134.72ms 3-DH3 time slot=1.689*(1600/ (4*79))*31.6=270.24ms 3-DH5 time slot=2.942*(1600/ (6*79))*31.6=313.81ms

Test plot as follows:

Modulation mode:π/4-DQPSK

2-DH1

2-DH3

2-DH5

Modulation mode:8DPSK

3-DH1

3-DH3

3-DH5

Report No: CCIS15110087101

6.8 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

6.9 Band Edge

6.9.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2009 and DA00-705		
Receiver setup:	RBW=100kHz, VBW=300kHz, Detector=Peak		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Non-hopping mode and hopping mode		
Test results:	Pass		

Test plot as follows:

GFSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

$\pi/4$ -DQPSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

8DPSK

Lowest Channel

No-hopping mode

Hopping mode

Highest Channel

No-hopping mode

Hopping mode

6.9.2 Radiated Emission Method

Test Requirement:	FCC Part15 C S	Section 15.209	9 and 15.205					
Test Method:	ANSI C63.4: 20	09						
Test Frequency Range:	2.3GHz to 2.5G	Hz						
Test site:	Measurement D	istance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Remark			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
Limit:	Freque	RMS	1MHz Limit (dBuV/	3MHz	Average Value Remark			
Littiit.		•	54.0		Average Value			
	Above 1	Above 1GHz 74.00 P						
Test setup:	AE EUT	Ground Reference Plane Test Receiver	forn Antenna Tower Controller	NWWWWW S				
Test Procedure:	groundat a 3 todetermine to determine to determine to antenna, whi tower. 3. The antenna ground to determine the rotatable maximum reasonable to the emission of the emission o	meter camber the position of set 3 meters chwas mount the set of the meters and the set of the set	er. The table were the highest research to highest research to he top ed from one neaximum value arizations of the tuned to height om 0 degrees was set to Pearlaximum Hold EUT in peak in could be stop therwise the earland to he top he top he top he top he top the top he top	vas rotated adiation. The interferer of a variable of a variable of the field one antenna was arrangents from 1 m to 360 degrated by the mode was apped and the missions the one using processing the adiation of the mode was a poped and the missions the one using processing the adiation.	nce-receiving e-height antenna r meters above the d strength. Both are set to make the ed to its worst case neter to 4 meters and rees to find the unction and 10dB lower than the e peak values of the nat did not have beak, quasi-peak or			
Test Instruments:	Refer to section			·				
Test mode:	Non-hopping me	ode						
Test results:	Passed							

Remark:

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK, and all data were shown in report.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No.B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

GFSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT Tablet Model : W10 Test mode : DH1-L mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Viki

			Antenna Factor				Limit Line		Remark
-	MHz	—dBu∇	— <u>d</u> B/π	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2390.000 2390.000				0.00 0.00				

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : Tablet Model : W10 Test mode : DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

Freq		ReadAntenna Level Factor						Remark
MHz	—dBuV	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
2390.000 2390.000				0.00 0.00				

Test channel:Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: Tablet : W10 EUT Model Test mode : DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
Remark

			Antenna Factor						
-	MHz	dBu∜	dB/m	dB	dB	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500								

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet EUT Model

: DH1-H mode Test mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki

emar	K :								
		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∇	dB/m	d <u>B</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1	2483.500	20.11	27.52	6.85	0.00	54.48	74.00	-19.52	Peak
2	2483, 500	7.88	27, 52	6.85	0.00	42.25	54,00	-11.75	Average

π/4-DQPSK mode

Test channel: Lowest

Horizontal:

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet Condition

EUT : w1U
Test mode : 2DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
Remark :

Cincar		Read	Ant enna	Cable	Preamp		Limit	Over	
	Freq		Factor						
	MHz	dBu∜	dB/m	dB	d <u>B</u>	dBuV/m	dBuV/m	<u>d</u> B	
1	2390.000	17.43	27.58	6.63	0.00	51.64	74.00	-22.36	Peak
2	2390,000	7, 23	27.58	6, 63	0.00	41.44	54.00	-12.56	Average

Site Condition EUT Model : W10 Test mode : 2DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
Remarb

	Freq		Antenna Factor				Limit Line		
	MHz	dBu∜		<u>d</u> B	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	 -
1 2	2390.000 2390.000					53.21 41.47			

Test channel:Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : Tablet

EUT Model : W10 Test mode : 2DH1-H mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki

		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
	MHz	dBu₹	$\overline{dB}/\overline{m}$	dB	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>		
L	2483.500	20.74	27.52	6.85	0.00	55.11	74.00	-18.89	Peak	
2	2483.500	7.94	27.52	6.85	0.00	42.31	54.00	-11.69	Average	

Site

3m chamber FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Tablet

Condition EUT Model W10 Test mode : 2DH1-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

CMALI		Read	Antenna	Cable	Preamp		Limit	Over		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark	
2	MHz	−−dBuV	dB/m	<u>ab</u>	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
	2483.500									
2	2483.500	7.89	27.52	6.85	0.00	42.26	54.00	-11.74	Average	

8DPSK mode

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

Tablet EUT W10 Model

Test mode : 3DH1-L mode Power Rating : AC 120V/60Hz

Tower mating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Viki
Remark:

emar.			Antenna						
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
9	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
	2390.000 2390.000					53.81 41.42			

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: Tablet EUT Model : W10
Test mode : 3DH1-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

Freq		Antenna Factor						
 MHz	—dBu∇	dB/m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
390.000				0.00				Peak Average

Test channel:Highest

Horizontal:

Site Condition : 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT Tablet Model : W10 Test mode : 3DH1-H mode Power Rating: AC 120V/60Hz Environment: Temp:25.5°C Huni:55% Test Engineer: Viki

	3860		Antenna Factor						
	MHz	dBu₹	$\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	$\overline{\tt dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	2483.500 2483.500								

Site

Condition

EUT

Model Test mode: 3DH1-H mode
Power Rating: AC 120V/60Hz
Environment: Temp:25.5°C Huni:55%
Test Engineer: Viki
Remarb

	Freq		Antenna Factor						
	MHz	dBu₹	$^{}\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	dBu√/m	$\overline{dBuV/m}$	<u>d</u> B	
1 2	2483.500 2483.500								

6.10 Spurious Emission

6.10.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and DA00-705						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Non-hopping mode						
Test results:	Pass						

GFSK

Lowest channel

Date: 20.NOV.2015 02:42:00

30MHz~25GHz

Date: 20.NOV.2015 02:43:31

Highest channel

Date: 20.NOV.2015 02:44:31

π/4-DQPSK

Lowest channel

Date: 20.NOV.2015 02:47:37

30MHz~25GHz Middle channel

Date: 20.NOV.2015 02:46:26

Highest channel

Date: 20.NOV.2015 02:45:22

8DPSK

Lowest channel

Date: 20.NOV.2015 02:48:39

30MHz~25GHz Middle channel

Date: 20.NOV.2015 02:49:57

Highest channel

Date: 20.NOV.2015 02:51:33

6.10.2 Radiated Emission Method

Test Requirement:										
Test Method:	ANSI C63.4: 2009									
Test Frequency Range:		9kHz to 25GHz								
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency Detector RBW VBW Remark									
receiver setup.	30MHz-1GHz	Quasi-peak		300kHz	Quasi-peak Value					
	30WH 12-10H2	Peak	1MHz	3MHz	Peak Value					
	Above 1GHz	RMS	1MHz	3MHz	Average Value					
Limit:	Frequen		Limit (dBuV		Remark					
	30MHz-88I	-	40.0		Quasi-peak Value					
	88MHz-216		43.5		Quasi-peak Value					
	216MHz-960	OMHz	46.0)	Quasi-peak Value					
	960MHz-1	GHz	54.0)	Quasi-peak Value					
			54.0)	Average Value					
	Above 1G	iHz	74.0)	Peak Value					
Test setup:	Tum Table 0.8 Ground Plane — Above 1GHz	EUT 3m		Antenna Tower						

Test Procedure:	The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter chamber. The table was rotated 360 degrees todetermine the position of the highest radiation.
	The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
	 The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test Uncertainty:	±4.88 dB
Test Instruments:	Refer to section 5.7 for details
Test mode:	Non-hopping mode
Test results:	Pass

- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8DPSK modulation, and found the GFSK modulation is the worst case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis is the worst case.
- 3. 9 kHz to 30 MHz is noise floor, so only shows the data of above 30MHz in this report.

Measurement data:

Below 1GHz

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: Tablet EUT : W10
Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki
Remark

540	Read	Antenna	Cable	Preamp		Limit	Over		
Freq								Remark	
MHz	dBu∜			<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>		
60.704	53.78	12.43	0.70	29.77	37.14	40.00	-2.86	QP	
119.856	53.66	10.48	1.12	29.39	35.87	43.50	-7.63	QP	
261.975	43.02	12.13	1.66	28.52	28.29	46.00	-17.71	QP	
426.521	45.18	15.50	2.19	28.83	34.04	46.00	-11.96	QP	
480.528	49.93	16.07	2.35	28.92	39.43	46.00	-6.57	QP	
640.611	40.11	18.60	2.76	28.81	32.66	46.00	-13.34	QP	
	MHz 60, 704 119, 856 261, 975 426, 521 480, 528	MHz dBuV 60.704 53.78 119.856 53.66 261.975 43.02 426.521 45.18 480.528 49.93	MHz dBuV dB/m 60.704 53.78 12.43 119.856 53.66 10.48 261.975 43.02 12.13 426.521 45.18 15.50 480.528 49.93 16.07	MHz dBuV dB/m dB 60.704 53.78 12.43 0.70 119.856 53.66 10.48 1.12 261.975 43.02 12.13 1.66 426.521 45.18 15.50 2.19 480.528 49.93 16.07 2.35	MHz dBuV dB/m dB dB 60.704 53.78 12.43 0.70 29.77 119.856 53.66 10.48 1.12 29.39 261.975 43.02 12.13 1.66 28.52 426.521 45.18 15.50 2.19 28.83 480.528 49.93 16.07 2.35 28.92	MHz dBuV dB/m dB dB dBuV/m 60.704 53.78 12.43 0.70 29.77 37.14 119.856 53.66 10.48 1.12 29.39 35.87 261.975 43.02 12.13 1.66 28.52 28.29 426.521 45.18 15.50 2.19 28.83 34.04 480.528 49.93 16.07 2.35 28.92 39.43	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m 60.704 53.78 12.43 0.70 29.77 37.14 40.00 119.856 53.66 10.48 1.12 29.39 35.87 43.50 261.975 43.02 12.13 1.66 28.52 28.29 46.00 426.521 45.18 15.50 2.19 28.83 34.04 46.00 480.528 49.93 16.07 2.35 28.92 39.43 46.00	Freq Level Factor Loss Factor Level Line Limit MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 60.704 53.78 12.43 0.70 29.77 37.14 40.00 -2.86 119.856 53.66 10.48 1.12 29.39 35.87 43.50 -7.63 261.975 43.02 12.13 1.66 28.52 28.29 46.00 -17.71 426.521 45.18 15.50 2.19 28.83 34.04 46.00 -11.96 480.528 49.93 16.07 2.35 28.92 39.43 46.00 -6.57	Freq Level Factor Loss Factor Level Line Limit Remark MHz dBuV dB/m dB dB dBuV/m dBuV/m dB 60.704 53.78 12.43 0.70 29.77 37.14 40.00 -2.86 QP 119.856 53.66 10.48 1.12 29.39 35.87 43.50 -7.63 QP 261.975 43.02 12.13 1.66 28.52 28.29 46.00 -17.71 QP 426.521 45.18 15.50 2.19 28.83 34.04 46.00 -11.96 QP 480.528 49.93 16.07 2.35 28.92 39.43 46.00 -6.57 QP

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : Tablet Condition

EUT : W10 Model Test mode : BT mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Viki

emark	:			202020					
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
	MHz	dBu∜	dB/m	<u>d</u> B	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B	
1	60.704	51.12	12.43	0.70	29.77	34.48	40.00	-5.52	QP
2	113.714	53.86	11.63	1.07	29.43	37.13	43.50	-6.37	QP
3	239.987	58.39	12.09	1.58	28.59	43.47	46.00	-2.53	QP
4	426.521	46.18	15.50	2.19	28.83	35.04	46.00	-10.96	QP
5	480.528	44.28	16.07	2.35	28.92	33.78	46.00	-12.22	QP
4 5 6	782.345	40.08	19.82	3.13	28.29	34.74	46.00	-11.26	QP

Above 1GHz:

Te	st channel:		Lowest		Le	vel:	Peak				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	47.50	31.53	10.57	40.24	49.36	74.00	-24.64	Vertical			
4804.00	47.22	31.53	10.57	40.24	49.08	74.00	-24.92	Horizontal			
Te	st channel:		Lowest		Level:		Average				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization			
4804.00	37.11	31.53	10.57	40.24	38.97	54.00	-15.03	Vertical			
4804.00	37.61	31.53	10.57	40.24	39.47	54.00	-14.53	Horizontal			

Te	st channel		Middle		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	47.65	31.58	10.66	40.15	49.74	74.00	-24.26	Vertical
4882.00	46.72	31.58	10.66	40.15	48.81	74.00	-25.19	Horizontal
Te	st channel		Middle		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4882.00	37.81	31.58	10.66	40.15	39.90	54.00	-14.10	Vertical
4882.00	36.74	31.58	10.66	40.15	38.83	54.00	-15.17	Horizontal

Te	st channel:		Highest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.63	31.69	10.73	40.03	50.02	74.00	-23.98	Vertical
4960.00	46.67	31.69	10.73	40.03	49.06	74.00	-24.94	Horizontal
Te	st channel:		Highest		Level:		Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.82	31.69	10.73	40.03	40.21	54.00	-13.79	Vertical
4960.00	36.79	31.69	10.73	40.03	39.18	54.00	-14.82	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.