Formale Sprachen // Alphabete

 $L_1 = \{0^i \mid i \in \mathbb{N}_0\}$ und $L_2 = \{1^i \mid i \in \mathbb{N}_0\}$ seien formale Sprachen über dem Alphabet $\Sigma = \{0, 1\}$, Berechnen Sie:

(a)
$$L_1 \cup L_2 = \{\epsilon, 0, 00, \dots, 1, 11, \dots\} = \{w \mid w = 0^i \lor w = 1^i \text{ mit } i \in \mathbb{N}_0\}$$

(b)
$$L_1 \cap L_2 = \{\epsilon\}$$

(c)
$$L_1 \setminus L_2 = \{0, 00, 000, \ldots\} = \{0^i \mid i \in \mathbb{N}\}$$

(e)
$$(L_1 \cup L_2) \cap \Sigma^3 = \{000, 111\}$$

Anzahl Worte

Sei Σ ein Alphabet aus n Zeichen, $n \in \mathbb{N}$.

(a)
$$n^n$$

(b) Wie viele Wörter enthält
$$\bigcup_{i=1}^{m} \Sigma^{i}$$
, $m \in \mathbb{N}_{0}$?

(b)
$$\sum_{i=0}^{m} n^i = \frac{n^{m+1}-1}{n-1}$$

NEA->DEA // Teilmengenkonstruktion a la Chat.

Man hält im DEA fest in welchen Zuständen sich der Automat nach Lesen (oder bei Epsilon: Nicht-Lesen) eines Zeichens befinden könnte. Das macht man für iedes Zeichen des Alphabets. Am Ende markiert man alle neuen Zustände als Endzustände die zumindest einen Endzustand des NEAs aufweisen.

ACHTUNG: Immer gucken ob ein Epsilon an dem betrachteten Zustand hängt, dann gehört nämlich der nächste Zustand zur Liste dazu!

Beispiel Teilmengenkonstruktion mit Tabellen

Gegeben sei der nichtdeterministische endliche Automat $N = (\{1, 2, 3\}, \{a, b\}, \delta, 1, \{2\})$ mit

δ :			a	\boldsymbol{b}	ϵ
	\rightarrow	1	{3}	Ø	{2}
	*	2	{1} {2}	Ø	Ø
		3	{2}	$\{2, 3\}$	Ø

I. Ohne Berücksichtigung von ϵ -Überführungen: II. Unter Berücksichtigung von ϵ -Überführungen:

	a	b
Ø	Ø	Ø
{1}	{3}	Ø
{2}	{1}	Ø
{3}	{2}	$\{2, 3\}$
$\{1, 2\}$	$\{1, 3\}$	Ø
$\{1, 3\}$	$\{2, 3\}$	$\{2, 3\}$
$\{2, 3\}$	$\{1, 2\}$	$\{2, 3\}$
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2, 3\}$

		$\delta'(R,x)$:	
R	E(R)	a	b
Ø	Ø	Ø	Ø
{1}	$\{1, 2\}$	{3}	Ø
{2}	{2}	$\{1, 2\}$	Ø
{3}	{3}	{2}	$\{2, 3\}$
$\{1, 2\}$	$\{1, 2\}$	$\{1, 2, 3\}$	Ø
$\{1, 3\}$	$\{1, 2, 3\}$	$\{2, 3\}$	$\{2, 3\}$
$\{2, 3\}$	$\{2, 3\}$	$\{1, 2\}$	$\{2, 3\}$
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2, 3\}$

Reguläre Sprachen // Reguläre Ausdrücke

Stellen Sie die nachfolgenden Sprachen als reguläre Ausdrücke dar:

(a)
$$L = \{ w \mid w \in \{0,1\}^* \text{ und } w \text{ beginnt mit 0 und endet mit 1} \}$$

(b)
$$L = \{ w \mid w \in \{0,1\}^* \text{ und } w \text{ enthält } 11 \text{ mindestens einmal } \}$$

(b)
$$L = \{w \mid w \in \{0,1\}^s \text{ und } w \text{ entitiat 11 mindestens einmai}\}$$

(c)
$$L = \{\, w \mid w \in \{0,1\}^* \text{ und } w \text{ enthält } 11 \text{ genau einmal} \,\}$$

(d)
$$L = \{ w \mid w \in \{0,1\}^* \text{ und } w \text{ enthält } 11 \text{ höchstens einmal } \}$$

Betrachte die Sprache $L = \{a^i b^i \mid i \in \mathbb{N}_0\}.$

Annahme: L sei regulär.

Dann muss es eine Konstante $n \in \mathbb{N}$ geben, so dass jedes Wort $w \in L$ mit |w| > n in drei Teilwörter w = xuz zerlegt werden kann, für die die Bedingungen des Pumping Lemmas erfüllt sind.

Betrachte das Wort $w = a^m b^m$ mit m > n:

Es gilt $|w| = |a^m b^m| = 2m > m \ge n$. Wegen $|xy| \le n \le m$, besteht dann xyausschließlich aus a's. Daraus ergibt sich die folgende Zerlegung von w = xuz:

I.
$$x = a^r \text{ mit } r < n, \text{ da } y \neq \epsilon, \text{ d. h. } |y| > 0.$$

II.
$$y = a^s \text{ mit } s > 0 \text{ und } r + s < n.$$

III.
$$z = a^t b^m \text{ mit } r + s + t = m.$$

Nach dem Pumping Lemma muss nun für jedes $k \in \mathbb{N}_0$ $xy^kz \in L$ sein.

Mit
$$k = 0$$
 gilt

$$xy^0z = a^r(a^s)^0a^tb^m = a^ra^tb^m = a^{r+t}b^m.$$

Da aber r+t < m, ist $xy^0z \notin L$. Es ergibt sich also ein Widerspruch zum Pumping

Die Annahme, L sei regulär, muss also falsch sein.

Kontextfreie Sprachen // Kontextfreie Grammatiken

(a)
$$L_1 = \{a^n b^n c^m \mid m, n \in \mathbb{N}_0\}$$

(a)
$$G_1 = (\{S, A, B\}, \{a, b, c\}, R_1, S)$$

$$R_1:$$
 $S \rightarrow AB$
 $A \rightarrow aAb \mid \epsilon$
 $B \rightarrow cB \mid \epsilon$

(b)
$$L_2 = \{a^m b^n c^n \mid m, n \in \mathbb{N}_0\}$$

(b)
$$G_2 = (\{S, A, B\}, \{a, b, c\}, R_2, S)$$

$$R_2:$$
 $S \rightarrow AB$
 $A \rightarrow aA \mid \epsilon$
 $B \rightarrow bBc \mid \epsilon$

Kellerautomat // Beispiel

Es sei der Kellerautomat $K = (\{1,2,3,4,5,6,7\},\{a,b,c\},\{a,\$\},\delta,1,\{4,7\})$ gegeben, der die kontextfreie Sprache

$$L = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ und } i = j \text{ oder } i = k\}$$

erkennt. Die Überführungsfunktion δ ist wie folgt definiert:

Q	Σ_{ϵ}	Γ_{ϵ}	$P(Q \times \Gamma_{\epsilon})$
1	ϵ	ϵ	$\{(2,\$)\}$
2	\boldsymbol{a}	ϵ	$\{(2, a)\}$
2	ϵ	ϵ	$\{(3,\epsilon),(5,\epsilon)\}$
3	b	\boldsymbol{a}	$\{(3,\epsilon)\}$
3	ϵ	\$	$\{(4,\epsilon)\}$
4	c	ϵ	$\{(4,\epsilon)\}$
5	b	ϵ	$\{(5,\epsilon)\}$
5	ϵ	ϵ	$\{(6,\epsilon)\}$
6	c	\boldsymbol{a}	$\{(6,\epsilon)\}$
6	ϵ	\$	$\{(7,\epsilon)\}$

Überführungsgraph

Kein Wort $abbcc = y_1y_2...y_m, y_i \in \Sigma_{\epsilon}$ wird nach Abarbeitung der Eingabe in einem akzeptierenden Zustand enden. Also wird abbcc nicht akzeptiert.

Turingmaschinen

Beispiel

Hierarchie der Sprachfamilien

