Ομολογική Άλγεβρα και Κατηγορίες 1η Ομάδα Ασκήσεων

Νούλας Δημήτριος 1112201800377

5 Απριλίου 2020

1. $i) \implies ii)$ Έστω $f:A \to B$ ισομορφισμός, δηλαδή ο f έχει αριστερό και δεξί αντίστροφο, τον $f^{-1}:B \to A$. Έχουμε ότι $ff^{-1}=1_B$ δηλαδή ο f είναι διασπώμενος επιμορφισμός. Για το μονομορφισμό θεωρούμε ένα παράλληλο ζεύγος μορφισμών $g,h:A'\to A$ με fg=fh τότε:

$$f^{-1}(fg) = f^{-1}(fh) \implies (f^{-1}f)g = (f^{-1}f)h \implies$$

 $1_A g = 1_A h \implies g = h : A' \to A$

 $ii) \implies iii) \ {\rm O} \ f$ είναι διασπώμενος επιμορφισμός, δηλαδή υπάρχει $g:B \to A:fg=1_B.$ Έστω ένα παράλληλο ζεύγος μορφισμών $a,b:B \to \Gamma$ με af=bf. Τότε:

$$(af)g = (bf)g \implies a(fg) = b(fg) \implies$$

 $a1_B = b1_B \implies a = b : B \to \Gamma$

άρα ο f είναι επιμορφισμός. Επιπλέον $f(gf)=(fg)f=1_Bf=f=f1_A$ και επειδή ο f είναι αριστερά διαγράψιμος έχουμε ότι $gf=1_A$, άρα ο f είναι διασπώμενος μονομορφισμός.

 $iii) \implies i$) Έστω f διασπώμενος μονομορφισμος, δηλαδή υπάρχει $g: B \to A$ με $gf = 1_A$. Τότε έχουμε $(fg)f = f(gf) = f1_A = f = 1_B f$ και f δεξιά διαγράψιμος, άρα $fg = 1_B$ και επειδή $gf = 1_A$ έχουμε ότι ο f είναι ισομορφισμός.

2. i) Έστω $x \in A + (B \cap C) \implies x = a + y$ για κάποια $a \in A, y \in B \cap C$. Έγουμε:

$$x = a + y$$
 $a \in A, y \in B \implies x \in A + B$
 $x = a + y$ $a \in A, y \in C \implies x \in A + C$

από τα οποία έπεται ότι $x\in (A+B)\cap (A+C)$ δηλαδή $A+(B\cap C)\subseteq (A+B)\cap (A+C).$

ii) Θεωρούμε ως διανυσματικό χώρο τον \mathbb{R}^2 και ως υποχώρους του τις ευθείες:

$$A = \{(x,y) : y = x, \quad x,y \in \mathbb{R}\}$$

$$B = \{(x,y) : y = -x, \quad x,y \in \mathbb{R}\}$$

$$C = \{(x,0) : x \in \mathbb{R}\}$$

Τότε $A+(B\cap C)=A+\{(0,0)\}=A$. Επιπλέον, αν $x\in\mathbb{R}$ τότε $(x,0)=(\frac{x}{2},\frac{x}{2})+(\frac{x}{2},-\frac{x}{2})\in A+B$, δηλαδή $C\subseteq A+B\implies A\cup B\cup C\subseteq A+B$. Ομοίως, $(x,-x)=(-x,-x)+(2x,0)\in A+C\implies A\cup B\cup C\subseteq A+C$. Έχουμε:

$$A + (B \cap C) = A \subseteq A \cup B \cup C \subseteq (A + B) \cap (A + C)$$

δηλαδή ο εγκλεισμός του i) είναι γνήσιος.

iii) Εφόσον $A\subseteq C$ έχουμε ότι A+C=C και το '⊆' έπεται από το i). Για το 'Ξ':

Έστω $x \in (A+B) \cap C$. Δηλαδή $x \in C$ και $x = a+b \in A+B$ για κάποια $a \in A, b \in B$. Έχουμε $a \in A \implies a \in C$ και άρα $x-a=b \in C$. Δηλαδή $b \in B \cap C$ και $x = a+b \in A+(B\cap C)$.

3. i) Έστω $c \in C$ και $f: M \to N$ γραμμική απεικόνιση. Έστω $x,y \in M, r \in R$, τότε:

$$(cf)(x+y) = cf(x+y) = c[f(x) + f(y)] = (cf)(x) + (cf)(y)$$

 $(cf)(rx) = c[f(rx)] = crf(x) = rcf(x) = r(cf)(x)$

άρα πράγματι η $cf:M\to N$ είναι γραμμική. Ορίζουμε:

$$K: C \to End(Hom_R(M, N), +)$$

$$K(c)(f) = cf \in Hom_R(M, N)$$

η οποία απεικόνιση είναι ομομορφισμός δακτυλίων και εφοδιάζει την αβελιανή ομάδα $Hom_R(M,N)$ με δομή C-προτύπου. Πράγματι, έστω $x\in M$:

$$[c(f+g)](x) = c[(f+g)(x)] = c[f(x) + g(x)] = cf(x) + cg(x)$$
$$[(c+c')f](x) = (c+c')f(x) = cf(x) + c'f(x)$$
$$[(cc')f](x) = (cc')f(x) = c(c'f(x))$$
$$[1_Cf](x) = 1_Cf(x) = f(x)$$

όπου οι παραπάνω ισότητες προχύπτουν επειδή το N είναι R-πρότυπο και $c,c'\in R, f(x), g(x)\in N.$

ii) Έστω $c\in C, f:M\to N, g:N\to L$ γραμμικές απεικονίσεις. Αν $x\in M$ τότε (cf)(x)=cf(x) και:

$$[g(cf)](x) = g[(cf)(x)] = g[cf(x)] = cg[f(x)] = c(gf)(x)$$

όπου η τρίτη ισότητα προχύπτει από το γεγονός ότι $cf(x) \in N$ και g γραμμική. Επιπλέον, με το ίδιο επιχείρημα:

$$[(cg)f](x) = (cg)[f(x)] = g[cf(x)] = \dots = c(gf)(x)$$

άρα πράγματι $g(cf) = c(gf) = (cg)f : M \to L$.

4. i) Έστω M,N δύο R-πρότυπα. Αρχεί να δείξουμε ότι το παραχάτω διάγραμμα είναι μεταθετιχό:

$$1_{\mathcal{K}}M = M \xrightarrow{\eta(c)_M = c1_M} M$$

$$1_{\mathcal{K}}f = f \downarrow \qquad \downarrow f$$

$$1_{\mathcal{K}}N = N \xrightarrow{\eta(c)_N = c1_N} N$$

Έστω $x\in M$. Ακολουθώντας το διάγραμμα δεξιά και κάτω έχουμε f(cx) ενώ κάτω και αριστερά έχουμε cf(x) τα οποία είναι ίσα λόγω της γραμμικότητας της f και επειδή $c\in R$.

ii) Ισχυρισμός: Κάθε ομομορφισμός $f:R\to R$ R-προτύπων είναι της μορφής f(x)=xb για κάποιο μοναδικό $b\in R$. Πράγματι, έχουμε f(rx)=rf(x) για κάθε $r\in R$. Επομένως:

$$f(r) = r f(1_R) = rb$$

όπου $b=f(1_R)$, το οποίο b από αυτήν την επιλογή για το που ϑ α στείλουμε το 1_R μέσω της f είναι μοναδικό.

Για την συνιστώσα $\eta_R:R\to R$ η οποία είναι γραμμική έχουμε επομένως ότι $\eta_R=xc$ για το μοναδικό $c=\eta_R(1_R)$. Επιπλέον για κάθε $r\in R$ ορίζουμε τις γραμμικές $f_r:R\to R$ με $f_r(x)=xr$. Τότε επειδή ο η είναι φυσικός μετασχηματισμός έχουμε ότι το παρακάτω διάγραμμα μετατίθεται:

$$R \xrightarrow{\eta_R} R \xrightarrow{f_r} R$$

$$R \xrightarrow{\eta_R} R$$

από το οποίο προκύπτει $xrc=xcr\implies rc=cr$ για κάθε $r\in R$, συνεπώς $c\in C$ και $\eta_R(x)=cx$. Αρκεί να δειχτεί ότι οι υπόλοιπες συνιστώσες του η έχουν την ίδια μορφή.

Πράγματι, έστω M ένα R-πρότυπο. Για κάθε $m\in M$ ορίζουμε τις γραμμικές $f_m:R\to M$ τέτοιες ώστε $f_m(1_R)=m$ και έστω $r\in R$, από την μεταθετικότητα του παρακάτω διαγράμματος έχουμε ότι:

$$\begin{array}{ccc}
R & \xrightarrow{\eta_R} & R \\
f_m \downarrow & & \downarrow f_m \\
M & \xrightarrow{\eta_M} & M
\end{array}$$

 $r\eta_M(m)=crm=rcm \implies \eta_M(m)=cm \quad \forall m\in M$ άρα πράγματι $\eta=\eta(c).$

5. i) Έστω $n \in N$. Έχουμε fs(n) = n και επιπλέον $s, ig \in Hom_R(N, M)$ όπου ορίζεται το κατά σημείο άθροισμα τους, επομένως (s+ig)(n) = s(n) + ig(n). Άρα ισχύει:

$$(fs')(n) = f[s'(n)] = f[(s+ig)(n)] = f[s(n) + ig(n)] = f[s(n)] + f[i(g(n))] = n + 0_N = n$$

όπου $n\in N\implies g(n)\in kerf$ και άρα $f\big[i(g(n))\big]=f(g(n))=0_N.$ Δηλα-δή $fs'=1_N.$

ii) Για την γραμμική $f:M\to N$ και το R-πρότυπο N από την καθολική ιδιότητα του πυρήνα γνωρίζουμε ότι υπάρχει απεικόνιση:

$$i_*: Hom_R(N, kerf) \to Hom_R(N, M)$$

η οποία είναι 1-1 και έχει εικόνα την υποομάδα $K\subseteq Hom_R(N,M)$ που περιέχει τις γραμμικές απεικονίσεις $h:N\to M$ τέτοιες ώστε $fh=0_N:N\to N$. Επιπέον $s,s'\in Hom_R(N,M)\implies s-s'\in Hom_R(N,M)$ και:

$$\big[f(s-s') \big](n) = f\big[(s-s')(n) \big] = f\big[s(n) - s'(n) \big] = fs(n) - fs'(n) = n - n = 0_N$$

για κάθε $n\in N$, άρα $s-s'\in K$. Συνεπώς, λόγω του ότι η i_* είναι 1-1 υπάρχει μοναδική $g\in Hom_R(N,kerf)$ τέτοια ώστε $i_*(g)=i(g)=s-s'\Longrightarrow s=s'+ig$.

6. i) Έστω $n \in N$. Έχουμε rf(n) = n και για $m \in M$ έχουμε όμοια με την προηγούμενη άσκηση ότι $(r+g\pi)(m) = r(m) + g\pi(m)$. Άρα:

$$(r'f)(n) = \left[(r+g\pi)f \right](n) = r \left[f(n) \right] + g \left[\pi(f(n)) \right] = n$$

διότι $f(n)\in imf\implies \pi(f(n))\in imf/imf\implies \pi(f(n))=0_{cokerf}$ και $g(0_{cokerf})=0_N$. Άρα πράγματι $r'f=1_N$.

ii) Για την γραμμική $f:N\to M$ και το R-πρότυπο N από την καθολική ιδιότητα του συνπυρήνα γνωρίζουμε ότι υπάρχει απεικόνιση:

$$\pi^*: Hom_R(cokerf, N) \to Hom_R(M, N)$$

η οποία είναι 1-1 και έχει εικόνα την υποομάδα $C\subseteq Hom_R(M,N)$ που περιέχει τις γραμμικές απεικονίσεις $h:M\to N$ τέτοιες ώστε $hf=0_N:N\to N.$ Επιπλέον $r,r'\in Hom_R(M,N)\implies r-r'\in Hom_R(M,N)$ και:

$$[(r-r')f](n) = (r-r')f(n) = rf(n) - r'f(n) = n - n = 0_N$$

επομένως $r-r'\in C$ και λόγω του ότι η π^* είναι 1-1, υπάρχει μοναδική $g\in Hom_R(cokerf,N)$ τέτοια ώστε $\pi^*(g)=g\pi=r-r'\implies r=r'+g\pi.$