OÉlements de géométrie

Objectifs

- Reconnaître un segment, une demie-droite, une droite et savoir les tracer;
- Tracer avec l'équerre la droite perpendiculaire à une droite donnée passant par un point donné;
- Tracer avec la règle et l'équerre la droite parallèle à une droite donnée passant par un point donné;
- Déterminer la distance entre deux points, entre un point et une droite;
- Savoir coder et lire une figure.

Compétences

- Modéliser
- Représenter
- Raisonner
- Communiquer

I. Droites

Définitions

- Une droite est un objet géométrique formé de points alignés.
- Une droite est illimitée des deux cotés.
- Une droite qui passe par deux points A et B, se note (AB) ou (BA);
- Si un point C appartient à la droite (AB), on note $C \in (AB)$.
- Si il n'appartient pas à la droite (AB), on note $C \notin (AB)$.

Exemple:

Les points M, R et A sont alignés.

- La droite (d) passant par les points M et R se note (MR) ou (RM).
- Le point A appartient à la droite (MR), on note : $A \in (MR)$.
- Le point S n'appartient pas à la droite (MR), on note : $S \notin (MR)$.

Définition

- Une **demi-droite** est une portion de droite limitée d'un seul côté par un point, son **origine**.
- La demi-droite d'origine A et passant par B se note

Exemple:

La demi-droite [FT).

Définition

- Un **segment** est une portion de droite limitée par deux points : ses **extré- mités**.
- Le segment d'extrémités A et B se note [AB] ou [BA].

Exemple:

Le segment [RH] ou [HR].

II. Sécantes, perpendiculaires et parallèles

Définition

Deux droites sont **sécantes** si elles n'ont qu'un seul point commun : leur **point d'intersection**.

Exemple:

Les droites (d) et (d') sont sécantes en O, leur point d'intersection.1

Définition

Deux droites (d_1) et (d_2) sont **perpendiculaires** si elles se coupent en formant **quatre angles droits**. On note $(d_1) \perp (d_2)$.

Exemple:

Les droites (d_1) et (d_2) sont perpendiculaires en A.

Définition

Deux droites (d_3) et (d_4) qui ne sont pas sécantes sont **parallèles**. On note $(d_3)//(d_4)$.

Exemple:

Les droites (d_3) et (d_4) sont parallèles. Même en les prolongeant à l'infini elles ne se rencontreront jamais.

(d₃)

III. Longueurs et codages

Définitions

La mesure d'un segment (distance entre ses deux extrémités) est sa **longueur**. La longueur d'un segment [AB], se note AB ou BA.

Exemple:

La longueur du segment [AB] est de 3,5 cm, on note AB = 3,5 cm.

Définition

Le **milieu** d'un segment est le point qui appartient au segment **et** qui est à égale distance de ses extrémités.

Remarque

Des segments de même longueur sont codés de façon identique.

Exemple:

On a : $M \in [AB]$ et AM = MB, donc le point M est le milieu du segment [AB]. On a ainsi $AM = AB \div 2$.

Définition

La distance d'un point à une droite est la longueur du plus court chemin entre ce point et la droite.

Propriété

La distance d'un point A à une droite (d) est la longueur du segment [AH], avec H le pied de la perpendiculaire à (d) passant par A.

IV. Utiliser les propriétés des droites

Propriété

Si deux droites sont perpendiculaires à une même troisième droite, alors ces deux droites sont parallèles.

Exemple:

On sait que (d_1) et (d_2) sont toutes deux perpendiculaires à (D).

Donc (d_1) et (d_2) sont parallèles.

Propriété

Si deux droites sont parallèles, alors toute perpendiculaire à l'une est perpendiculaire à l'autre

Exemple:

On sait que (d_1) est parallèle à (d_2) et (d_1) est perpendiculaire à (D)

Donc (d_2) est perpendiculaire à (D).

Propriété

Si deux droites sont parallèles à une même troisième, alors ces deux droites sont parallèles entre elles.

Exemple:

On sait que (d_1) et (d_2) sont toutes les deux parallèles à (d)

Donc (d_1) est parallèle à (d_2) .

(d₁)
(D)
(d₂)