Continuidad

Definición 1. Sea $U \neq \emptyset$ un abierto de \mathbb{R}^n y $f: U \to \mathbb{R}$. Decimos que la función f es continua en un punto $q \in U$ si

$$\lim_{p \to q} f(p) = f(q).$$

Ejercicio. Sea $U \neq \emptyset$ un abierto de \mathbb{R}^{\ltimes} y $f: U \to \mathbb{R}$. Supón que $p_0 \in U$ satisface que existe una bola $B_r(p_0) \subset U$ y una constante k > 0 tal que:

$$|f(p) - f(p_0)| \le k||p - p_0||$$
, para toda $p \in B_r(p_0)$.

Demuestra que f es continua en p_0 .

Demostraci'on. Vamos a usar la definici\'on $\varepsilon-\delta$ de límite, para probar directamente que

$$\lim_{p \to p_0} f(p) = f(p_0).$$

Así pues, sea $\varepsilon > 0$. Debemos de encontrar una $\delta > 0$ que satisfaga:

si
$$p$$
 es un punto en $B_{\delta}(p_0)$ entonces $|f(p) - f(p_0)| < \varepsilon$.

Tomamos δ cualquier número positivo que satisfaga: $\delta \leq r$ y $\delta \leq \frac{\varepsilon}{k}$ (por ejemplo $\delta = \min\{r, \frac{\varepsilon}{k}\}$).

Tomemos $p \in B_{\delta}(p_0)$. Por demostrar $|f(p) - f(p_0)| < \varepsilon$.

Ya que $B_{\delta}(p_0) \subseteq B_r(p_0)$ (pues $\delta \le r$), la suposición del ejercicio implica que $|f(p)-f(p_0)| \le k\|p-p_0\|$.

Ya que $||p-p_0|| < \delta$ se sigue que $k||p-p_0|| \le k\delta$. Pero por definición de δ , $k\delta < \varepsilon$. Por lo tanto

$$|f(p) - f(p_0)| < k||p - p_0|| < k\delta \le \varepsilon.$$

Teorema 1. Sea $U \neq \emptyset$ un conjunto abierto de \mathbb{R}^n , $p_0 \in U$ y $f: U \to \mathbb{R}$ una función diferenciable en p_0 . Entonces f es continua en p_0 .

Demostración. Para probar el Teorema vamos a probar

$$\lim_{p \to p_0} f(p) = f(p_0)$$

y para lo anterior vamos a usar: (1) la fórmula de la aproximación lineal para calcular f(p) y (2) el ejercicio 6 de la tarea.

Ya que f es diferenciable en p_0 , existe una bola abierta $B_r(p_0)$ tal que, para todo $p \in B_r(p_0)$ se cumple

$$f(p) = f(p_0) + \langle \nabla_{p_0} f, p - p_0 \rangle + E(p) \tag{1}$$

donde $\lim_{p \to p_0} \frac{|E(p)|}{\|p-p_0\|} = 0.$

Ahora, notamos que $\lim_{p\to p_0}\|p-p_0\|=0,$ así que por las leyes de los límites

$$0 = \lim_{p \to p_0} \|p - p_0\| \lim_{p \to p_0} \frac{|E(p)|}{\|p - p_0\|} = \lim_{p \to p_0} |E(p)|$$
 (2)

Por otro lado, por el ejercicio $6\,$

$$\lim_{p \to p_0} \langle \nabla_{p_0} f, p - p_0 \rangle = \langle \nabla_{p_0} f, p_0 - p_0 \rangle = 0.$$
 (3)

Finalmente, si en (1), tomamos límite y usamos las ecuaciones (2) y (3) concluimos

$$\lim_{p \to p_0} f(p) = f(p_0) + \lim_{p \to p_0} \langle \nabla_{p_0} f, p - p_0 \rangle + \lim_{p \to p_0} E(p) = f(p_0)$$