Krzysztof Pszeniczny

nr albumu: 347208 str. 1/3 Seria: 6

Zadanie 1

Rozpatrzmy V — n-wymiarową przestrzeń nad ciałem GF(4). Niech $\alpha_1, \ldots, \alpha_n$ będą wektorami bazy tej przestrzeni. Widać teraz, że każdy wektor V jest jednoznacznie zapisany jako $a_1 \alpha_1 + a_2 \alpha_2 + \ldots + a_n \alpha_n$, gdzie $a_i \in GF(4)$. Stąd istnieje bijekcja między wektorami V a ciągami (a_1, \ldots, a_n) , tych zaś jest 4^n .

Teraz policzmy, na ile sposobów z przestrzeni n wymiarowej nad tym ciałem można wybrać k wektorów liniowo niezależnych, z uwzględnieniem kolejności. Pierwszy wektor można wybrać na 4^n-1 sposobów — może być nim każdy wektor niebędący wektorem zerowym. Drugi zaś już na 4^n-4 — nie może być on wielokrotnością pierwszego wektora. Ogólnie wybierając (s+1)-szy wektor ξ_{s+1} możemy wybrać go dowolnie pod warunkiem, że $\xi_{s+1} \not\in \text{lin}(\xi_1, \xi_2, \dots, \xi_s)$. Jednak $\text{lin}(\xi_1, \xi_2, \dots, \xi_s)$ jest przestrzenią s-wymiarową (gdyż ξ_1, \dots, ξ_s są liniowo niezależne), a więc (s+1)-szy wektor można wybrać na 4^n-4^s sposobów (dowolny wektor z danej przestrzeni n-wymiarowej, nienależący do zapisanej przed chwilą przestrzeni s-wymiarowej). Stąd k wektorów liniowo niezależnych można wyznaczyć na $\prod_{s=0}^{k-1} (4^n-4^s)$ sposobów. Aby policzyć liczbę podprzestrzeni k-wymiarowych przestrzeni V, zauważmy, że gdy policzyliśmy liczbę

Aby policzyć liczbę podprzestrzeni k-wymiarowych przestrzeni V, zauważmy, że gdy policzyliśmy liczbę liniowo niezależnych k-tek wektorów, to każda taka k-tka rozpinała jakąś przestrzeń k-wymiarową. Jednak wiele k-tek mogło wyznaczać tę samą przestrzeń. Ustalmy więc jakąś przestrzeń k-wymiarową U i policzmy, ile k-tek ją wyznacza. Są to jednak dokładnie k-tki liniowo niezależne w tej przestrzeni. Jest ich więc $\prod_{i=1}^{k-1} (4^k - 4^s)$.

ją wyznacza. Są to jednak dokładnie k-tki liniowo niezależne w tej przestrzeni. Jest ich więc $\prod_{s=1}^{k-1} (4^k - 4^s)$. Każdą podprzestrzeń k-wymiarową policzyliśmy więc $\prod_{s=1}^{k-1} (4^k - 4^s)$ razy i uzyskaliśmy $\prod_{s=0}^{k-1} (4^n - 4^s)$, a więc ich liczba wynosi

$$\prod_{\substack{s=0\\k-1}}^{k-1} (4^n - 4^s)$$

Zadanie 2

Dowód. Łatwo widać, z tw. Steiniza o wymianie, że $n \leq m$, a ponadto można dobrać takie wektory (wymierne, ale można przemnożyć przez wspólny mianownik) $\alpha_{n+1}, \ldots, \alpha_m$, żeby układ $\alpha_1, \alpha_2, \ldots, \alpha_m$ był liniowo niezależny w \mathbb{Q}^m . Odtąd możemy więc zakładać, że n=m.

Zapiszmy macierz A o wyrazach $a_{i,j}$, której kolejne wiersze będą wektorami $\alpha_1, \ldots, \alpha_n$. Wykonajmy na macierzy A nad $\mathbb Q$ proces eliminacji Gaussa-Jordana (tzw. schodkowanie), w wyniku czego otrzymamy macierz jednostkową (bo operacje elementarne nie zmieniają liniowej niezależności wektorów, a jedynym możliwym wynikiem eliminacji Gaussa-Jordana dla macierzy o liniowo niezależnych rzędach jest macierz jednostkowa).

Jednak zapisujmy wszystkie liczby wymierne $\frac{u_i}{t_i}$ ($u_i, t_i \in \mathbb{Z} \setminus \{0\}$) przez jakie przemnażaliśmy wiersze macierzy w trakcie wykonywania eliminacji Gaussa-Jordana. Niech $T \in \mathbb{Z} \setminus \{0\}$ będzie równe iloczynowi wszystkich liczb $u_i \cdot t_i$.

Weźmy dowolną liczbę pierwszą p, która nie dzieli T. Wtedy nie dzieli ona żadnej z liczb t_i , u_i . Stąd gdy zaczniemy wykonywać proces eliminacji Gaussa-Jordana na macierzy A nad cialem \mathbb{Z}_p , możemy wykonywać dokładnie takie same operacje elementarne w dokładnie tej samej kolejności jak wykonywaliśmy nad \mathbb{Q} . Nigdy nie będziemy wtedy wykonywać mnożenia przez zerowy skalar (gdyż $p \nmid u_i$) oraz zawsze dzielenie będzie wykonalne, gdyż $p \nmid t_i$. To zaś oznacza, że w każdej chwili eliminacji Gaussa-Jordana jeśli nad \mathbb{Q} było $a_{i,j} = \frac{x}{y}$, to nad \mathbb{Z}_p będzie $a_{i,j} = xy^{-1} \pmod{p}$. Można to łatwo zobaczyć indukcyjnie, po liczbie zrobionych operacji elementarnych.

Stąd niezmiennik ten zachodzi także po zakończeniu eliminacji Gaussa-Jordana, gdzie daje on, że i nad \mathbb{Z}_p macierz A jest schodkowalna do macierzy jednostkowej, co zaś oznacza, że nad \mathbb{Z}_p układ $\alpha_1, \alpha_2, \ldots, \alpha_n$ jest liniowo niezależny (co było na ćwiczeniach).

Jednak zauważmy, że jedynym warunkiem na p było to, żeby p \nmid T, gdzie T zależy jedynie od wektorów $\alpha_1, \ldots, \alpha_n$. Jednak T \neq 0, więc ma jedynie skończenie wiele dzielników pierwszych, czyli prawie wszystkie liczby pierwsze go nie dzielą, czyli dla prawie wszystkich liczb pierwszych p układ $\alpha_1, \ldots, \alpha_n$ jest liniowo niezależny nad \mathbb{Z}_p .

Krzysztof Pszeniczny

nr albumu: 347208 str. 2/3Seria: 6

Zadanie 4

Dowód. Zauważmy, że skoro W_1,\ldots,W_n są podprzestrzeniami właściwymi, to istnieją wektory $\xi_i\in V$, że $\xi_i \notin W_i$. Niech $U = \text{lin}(\xi_1, \xi_2, \dots, \xi_n)$. Wtedy skoro $V = W_1 \cup W_2 \cup \dots \cup W_n$, to $V \cap U = (W_1 \cup \dots \cup W_n) \cap U = (W_1 \cup$ $(W_1 \cap U) \cup (W_2 \cap U) \cup \ldots \cup (W_n \cap U)$, jednakże $V \cap U$ oraz $W_i \cap U$ są skończeniewymiaarowe, więc jeśli udowodnimy tezę dla przestrzeni skończeniewymiarowych, udowodnimy ją też dla przestrzeni nieskończeniewymia-

Od teraz więc wszystkie przestrzenie są skończeniewymiarowe. Niech $d = \dim V$. Skoro $\dim W_i < \dim V$ (na mocy zadania 5a, gdyby $\dim V \leqslant \dim W_i$, a przecież $W_i \subset V$, to $W_i = V$ — sprzeczność), to $\dim W_i \leqslant d-1$. Na mocy zadania 1a, $|W_i| \leq |k|^{d-1}$.

Załóżmy, że $n \leq |\mathbf{k}|$ i zauważmy, że możemy oszacować z góry |V| przez $|W_1|+\ldots+|W_n|-(n-1)$. Ten odjęty wyraz n-1 pochodzi stąd, że na pewno wektor zerowy należy do każdej z przestrzeni W_i , więc go policzyliśmy n-krotnie.

Stąd $|\mathbf{k}|^d = |\mathbf{V}| \leq |W_1| + |W_2| + \ldots + |W_n| - (n-1) \leq n|\mathbf{k}|^{d-1} - (n-1) \leq |\mathbf{k}|^d - (n-1)$. Gdyby n = 1, to $V=W_1$, czyli W_1 byłoby podprzestrzenią niewłaściwą. A więc n>1 i oczywiście prawa strona jest mniejsza od lewej, co jest sprzecznością.

Stad mamy, że $n > |\mathbf{k}|$.

Zadanie 5

Część a

Dowód. Niech $\sigma_1, \ldots, \sigma_{\dim B}$ będzie bazą przestrzeni B. Skoro B $\subseteq A$, to $\sigma_i \in A$ i są to wektory liniowo niezależne. To zaś na mocy tw. Steiniza daje, że $\dim A \geqslant \dim B$, co wraz z warunkiem zadania daje, że $\dim A =$ $\dim B$, a więc $\sigma_1, \ldots, \sigma_{\dim B}$ jest bazą A, czyli A = B.

Część b

Dowód. Niech $d = \dim(A \cap B)$. Oczywiście (używając twierdzenia Steiniza) $d = \dim(A \cap B) \leq \dim A \leq$ $\dim B \leq \dim(A+B) = d+1$. Stąd mamy trzy możliwości: 1) $\dim A = \dim B = d$, 2) $\dim A = \dim B = d+1$, 3) $\dim A = d, \dim B = d + 1$.

Pierwsza z nich daje sprzeczność, gdyż wtedy $\dim(A \cap B) = \dim A = \dim B$, $A \cap B \subseteq A$, B, a więc A = B = $A \cap B$, a wtedy A + B = A, co się nie zgadza z tym, że $\dim(A + B) = 1 + \dim(A \cap B)$.

Druga z nich daje sprzeczność, gdyż wtedy $\dim(A+B) = \dim A = \dim B$, $A, B \subseteq (A+B)$, a więc A=B=A + B, ale wtedy $A \cap B = A$, co znów nie zgadza się z warunkiem zadania.

Tak więc $\dim A = d$, $\dim B = d + 1$. Jednak $\dim B = \dim(A + B)$ oraz $B \subseteq A + B$, a więc B = A + B. Z drugiej strony dim $A = \dim(A \cap B)$, $A \cap B \subseteq A$, a więc $A = A \cap B$.

Część c

Dowód. Niech $d = \dim(B \cap C)$. Oczywiście $d = \dim(B \cap C) \le \dim B < \dim C \le \dim(B + C) = d + 2$. Stąd mamy trzy możliwości: 1) dim B = d, dim C = d + 1, 2) dim B = d + 1, dim C = d + 2, 3) dim B = d, dim C = d + 2.

Pierwsza z nich daje, że $\dim(B+C) = \dim B + \dim C - \dim(B\cap C) = d + d + 1 - d = d + 1 \neq d + 2 = \dim(B+C)$ sprzeczność.

Druga z nich daje, że $\dim(B+C) = \dim B + \dim C - \dim(B\cap C) = d+1+d+2-d = d+3 \neq d+2 = \dim(B+C)$ sprzeczność.

Stąd dim B=d, dim C=d+2. Jednak wtedy dim $B=\dim(B\cap C)$ i $B\cap C\subseteq B$, więc $B\cap C=B$. Ponadto $\dim C = \dim(B+C)$, jednak $C \subseteq B+C$, więc C = B+C.

Zadanie 6

Dowód. Załóżmy, że istnieje algorytm Alg uruchamiany na liczbie n, mogący wykonywać zapytania o porównania pewnych dwóch rozłącznych podzbiorów monet o nieznanych mu masach a_1, \ldots, a_n , który po wykonaniu zawsze mniej niż n-1 ważeń odpowiada prawidłowo czy wszystkie monety mają parami równą masę. Dla Krzysztof Pszeniczny

nr albumu: 347208 str. 3/3 Seria: 6

uproszcznia będę mówił o uruchomieniu algorytmu \mathfrak{Alg} na wejściu a_1, \ldots, a_n , mimo że algorytm ten nie poznaje tego wejścia.

Można założyć, że algorytm ten wykona zawsze n-2 ważenia: jeśli w pewnym momencie zna już wynik, może i tak wykonać pewną ilość bezsensownych pomiarów, tak, żeby łącznie wykonał n-2 porównania.

Przygotujmy wejście $A=(a_1,\ldots,a_n)$, w którym $a_i=1$ i uruchommy algorytm \mathfrak{Alg} . Oczywiście powinien on wykonać n-2 ważenia i zwrócić odpowiedź twierdzącą.

Niech i-te pytanie będzie postaci: "Czy zbiór $(a_{l_{i,1}},\ldots,a_{l_{i,p_i}})$ jest lżejszy, cięższy czy ma równą masę ze zbiorem $(a_{r_{i,1}},\ldots,a_{r_{i,q_i}})$?". Ułóżmy równanie ξ_i brzmiące: $f_{l_{i,1}}+f_{l_{i,2}}+\ldots+f_{l_{i,p_i}}=f_{r_{i,1}}+f_{r_{i,2}}+\ldots+f_{r_{i,q_i}}$.

Zauważmy, że układ równań $\xi_1, \xi_2, \ldots, \xi_{n-2}$ jest jednorodny, a więc przestrzeń jego rozwiązań jest liniowa. Jednak łatwo widać, że wymiar tej przestrzeni wynosi conajmniej 2 (np. wynika to z rank-nullity theorem). Można to też zobaczyć, dokonując eliminacji Gaussa na macierzy tego układu, i łatwo widać, że będzie conajwyżej n-2 schodków (gdyż w każdym wierszu może być conajwyżej jeden schodek), a więc przynajmniej 2 kolumny nie będą miały schodków, będą więc one odpowiadały zmiennym, które czynimy parametrami (być może będą też jakieś inne, gdy rząd macierzy jest mniejszy niż n-2, ale na pewno będą conajmniej dwa parametry). Łatwo więc widać (było na ćwiczeniach), że przestrzeń rozwiązań będzie przynajmniej wymiaru 2.

Niech więc α, β będą dwoma elementami bazy tej przestrzeni rozwiązań. Zauważmy, że conajwyżej jeden z nich może być wielokrotnością wektora $(1,1,1,\ldots,1)$. Załóżmy więc, że wektor $\alpha=(f_1,f_2,\ldots,f_n)$ nie jest wielokrotnością $(1,1,1,\ldots,1)$.

Teraz ustalmy ciąg wag monet $B=(b_1,\ldots,b_n):=(f_1+M,f_2+M,\ldots,f_n+M),$ gdzie $M=2013+\max(|f_1|,\ldots,|f_n|).$ Oczywiście $f_i+M>0.$

Uruchommy algorytm \mathfrak{Alg} dla wejścia B. Jeśli algorytm ten jest randomiowany, niech generator liczb losowych zwraca dokładnie te same wartości, co dla naszego pierwotnego wywołania $\mathfrak{Alg}(A)$.

Wtedy zauważmy, że odpowiedzi na zapytania:

- "Czy zbiór $(a_{l_{i,1}},\ldots,a_{l_{i,p_i}})$ jest lżejszy, cięższy czy ma równą masę ze zbiorem $(a_{r_{i,1}},\ldots,a_{r_{i,q_i}})$?"
- "Czy zbiór $(b_{l_{i,1}}, \ldots, b_{l_{i,p_i}})$ jest lżejszy, cięższy czy ma równą masę ze zbiorem $(b_{r_{i,1}}, \ldots, b_{r_{i,q_i}})$?"

są identyczne. Istotnie:

$$\begin{split} \left(a_{l_{\mathfrak{i},1}} + \ldots + a_{l_{\mathfrak{i},\mathfrak{p}_{\mathfrak{i}}}}\right) - \left(a_{r_{\mathfrak{i},1}} + \ldots + a_{r_{\mathfrak{i},\mathfrak{q}_{\mathfrak{i}}}}\right) &= \mathfrak{p}_{\mathfrak{i}} - \mathfrak{q}_{\mathfrak{i}} \\ \left(b_{l_{\mathfrak{i},1}} + \ldots + b_{l_{\mathfrak{i},\mathfrak{p}_{\mathfrak{i}}}}\right) - \left(b_{r_{\mathfrak{i},1}} + \ldots + b_{r_{\mathfrak{i},\mathfrak{q}_{\mathfrak{i}}}}\right) &= \left(f_{l_{\mathfrak{i},1}} + \ldots + f_{l_{\mathfrak{i},\mathfrak{p}_{\mathfrak{i}}}} + M\mathfrak{p}_{\mathfrak{i}}\right) - \left(f_{r_{\mathfrak{i},1}} + \ldots + f_{r_{\mathfrak{i},\mathfrak{q}_{\mathfrak{i}}}} + M\mathfrak{q}_{\mathfrak{i}}\right) \\ &= M(\mathfrak{p}_{\mathfrak{i}} - \mathfrak{q}_{\mathfrak{i}}) + \left(f_{l_{\mathfrak{i},1}} + \ldots + f_{l_{\mathfrak{i},\mathfrak{p}_{\mathfrak{i}}}}\right) - \left(f_{r_{\mathfrak{i},1}} + \ldots + f_{r_{\mathfrak{i},\mathfrak{q}_{\mathfrak{i}}}}\right) \\ &= M(\mathfrak{p}_{\mathfrak{i}} - \mathfrak{q}_{\mathfrak{i}}) \end{split}$$

Jednak M > 0, więc wielkości te mają jednakowy znak.

Stąd indukcyjnie (po liczbie zapytań) widzimy, że algorytm \mathfrak{Alg} uruchomiony na wejściu A i na wejściu B zadaje dokładnie takie same pytania i uzyskuje dokładnie takie same odpowiedzi.

Stąd musi on dla wejścia B odpowiedzieć tak jak dla wejścia A, czyli stwierdzić, że wszystkie monety z B mają równą masę. Ale jednak tak nie jest, gdyż $(b_1,\ldots,b_n)=(\varpi,\varpi,\ldots,\varpi) \implies (f_1,\ldots,f_n)=(\varpi-M,\ldots,\varpi-M)=(\varpi-M)(1,1,1,\ldots,1)$, a jednak tak wybraliśmy f_i , żeby to nie było prawdą.

Stąd algorytm Alg odpowiedział błędnie dla wejścia B, czyli nie jest poprawny.