Daten- und Prozessanalyse für Fachinformatiker*innen Lösungen der Mathematik- und Textaufgaben

In diesem Dokument finden Sie die Lösungen zu denjenigen Aufgaben aus dem Buch, die nicht durch Programmierung gelöst werden.

Kapitel 2: Mathematische Grundlagen

Aufgabe 2.1

Überprüfen Sie, ob die folgenden mathematischen Aussagen (Gleichungen) wahr sind oder nicht.

- $2 + 2 = 2 \cdot 2$ wahre Aussage: 4 = 4
- 23 + (42 + 9) = (23 + 42) + 9 wahre Aussage:

$$23 + 51 = 65 + 9 \Leftrightarrow$$

$$74 = 74$$

• $5 \cdot 4 + 5 = 5 \cdot (4 + 5) - \text{falsche Aussage:}$

$$20 + 5 = 5 \cdot 9 \Leftrightarrow$$

$$25 = 45 - \text{Widerspruch!}$$

$$3 \cdot 25 - 16 \cdot 5 + 5 = 0 \Leftrightarrow$$

$$75 - 80 + 5 = 0$$

• $3 \cdot 5^2 - 16 \cdot 5 + 5 = 0$ - wahre Aussage: Original of Buch: $3 * 5^2 - 7 * 5 + 5 -> Falsch$

Aufgabe 2.2

Überprüfen Sie bei den folgenden Ungleichungen, ob sie wahr sind oder nicht.

 $3 + 5 \cdot 4 > 3 \cdot 5 + 4$ – wahre Aussage:

$$3 + 20 > 15 + 4 \Leftrightarrow$$

• $9 \cdot 7 \le 3 \cdot 18 + 9$ – wahre Aussage:

$$63 \le 54 + 9 \Leftrightarrow$$

 $63 \le 63$, genauer gesagt 63 = 63

$$3^2 + 7 \cdot 3 + 4 < 2^3 + 9 \cdot 2 + 8$$

$$9 + 21 + 4 < 8 + 18 + 8 \Leftrightarrow$$

$$34 < 34 -$$
Widerspruch!

• $9 \cdot 6 \cdot (23 - 36 + 13) + 1 \ge 2 - \text{falsche Aussage}$:

$$9 \cdot 6 \cdot 0 + 1 \ge 2 \Leftrightarrow$$

 $1 \ge 2 - \text{Widerspruch!}$

Aufgabe 2.3

Lösen Sie die folgenden Gleichungen und Ungleichungen:

• $7x - 40 = 9 \mid +40$

$$7x = 49 \mid \div 7$$

$$x = 7$$

 $3x + 5 > -10 \mid -5$

$$3x > -15 \mid \div 3$$

$$x > -5$$

Lösungsmenge: $\{x \mid x \ge -5\}$

■ $4x - 10 \le 2x \mid -2x$

 $2x - 10 \le 0 \mid +10$

 $2x \le 10 \mid \div 2$

 $x \le 5$

Lösungsmenge: $\{x \mid x \le 5\}$

Aufgabe 2.4

Überprüfen Sie für die folgenden Quantorenaussagen, ob sie wahr oder falsch sind:

 $\exists x: x \div 0 = 0$

Da die Division durch 0 nicht definiert ist, gibt es kein x, das durch 0 dividiert 0 (oder irgendeinen anderen Wert) ergibt. Die Aussage ist somit falsch.

• $\forall x: x \div 1 = x$

Die Gleichung $x \div 1 = x$ lässt sich zu $x = x \cdot 1$ umformen. 1 ist das sogenannte neutrale Element der Multiplikation (und damit auch der Division). Das bedeutet: Egal welchen Wert Sie mit 1 multiplizieren oder durch 1 teilen, erhalten Sie immer den ursprünglichen Wert als Ergebnis. Die Aussage ist also wahr.

• $\forall x: x^2 - x < x^2$

Die Verneinung von $\forall x$: Aussage ist $\exists x$: \neg Aussage (es gibt mindestens ein x, für das die Aussage nicht gilt). Die Verneinung von < ist \ge , also brauchen Sie ein x, für das $x^2 - x = x^2$ oder $x^2 - x > x^2$ gilt. Wenn Sie $x = x^2$

0 setzen, erhalten Sie $0^2 - 0 = 0^2$, was zweifellos wahr ist. Damit ist bereits bewiesen, dass die ursprüngliche Aussage falsch ist. (Wenn Sie möchten, können Sie das Ganze noch mit negativen Werten für x ausprobieren und werden feststellen, dass es unendlich viele x gibt, für die die obige Aussage nicht gilt.)

 $\exists x: 2x < x$

Diese Ungleichung lässt sich umformen, indem Sie auf beiden Seiten x abziehen. Damit erhalten Sie x < 0 und somit eine beliebige Anzahl von Werten für x, für die die Aussage gilt. Damit ist diese Aussage wahr.

Aufgabe 2.5

Es gibt vier mögliche Konstrukte logischer Schlussfolgerungen:

- $A \Rightarrow B Umkehrschluss \neg B \Rightarrow \neg A$
- $\neg A \Rightarrow B Umkehrschluss \neg B \Rightarrow A$
- $A \Rightarrow \neg B$ Umkehrschluss $B \Rightarrow \neg A$
- $\neg A \Rightarrow \neg B$ Umkehrschluss $B \Rightarrow A$

Suchen Sie je ein sprachliches Beispiel und bilden Sie den passenden Umkehrschluss.

Hier gibt es natürlich beliebig viele Beispiele; diese hier sind nur ein Vorschlag:

• $A \Rightarrow B - Umkehrschluss \neg B \Rightarrow \neg A$

Wenn die Sonne untergeht, wird es dunkel. – Wenn es *nicht* dunkel wird, geht die Sonne *nicht* unter.

■ $\neg A \Rightarrow B - Umkehrschluss \neg B \Rightarrow A$

Wenn ich *nicht* frei habe, muss ich arbeiten. – Wenn ich *nicht* arbeiten muss, habe ich frei.

• $A \Rightarrow \neg B - Umkehrschluss B \Rightarrow \neg A$

Wenn es regnet, ist die Straße *nicht* trocken. – Wenn die Straße trocken ist, regnet es *nicht*.

■ $\neg A \Rightarrow \neg B - Umkehrschluss B \Rightarrow A$

Wenn ich *nicht* den Führerschein habe, darf ich *nicht* Auto fahren. – Wenn ich Auto fahren darf, habe ich den Führerschein.

Aufgabe 2.6

Zeigen Sie, dass die Kommutativgesetze, die Assoziativgesetze, die Distributivgesetze und die De Morganschen Gesetze für die logischen

Kommutativgesetze:	Α	В	A ^ B	B ^ A	ΑVΒ	BVA
$A \wedge B = B \wedge A$	0	0	0	0	0	0
$A \lor B = B \lor A$	0	1	0	0	1	1
	1	0	0	0	1	1
	1	1	1	1	1	1

Operatoren \land und \lor zutreffen, indem Sie sie auf alle denkbaren Wertekombinationen aus 0 und 1 anwenden.

a						
Gesetz			a	b	c	Werte eingesetzt
Kommutati	vgesetz		0	0	-	$0 \wedge 0 = 0$
$a \wedge b = b \wedge$	-					(trivial)
			1	0	_	$1 \wedge 0 = 0$
						$0 \wedge 1 = 0$
			0	1	_	$0 \wedge 1 = 0$
						$1 \wedge 0 = 0$
			1	1	-	1 \(\cdot 1 = 1 \)
						(trivial)
Kommutati	vgesetz		0	0	_	$0 \lor 0 = 0$
$a \lor b = b \lor$	-					(trivial)
			1	0	_	$1 \lor 0 = 1$
						$0 \lor 1 = 1$
			0	1	_	$0 \lor 1 = 1$
						$1 \lor 0 = 1$
			1	1	-	1 ∨ 1 = 1
						(trivial)
Assoziative	esetz		0	0	0	$(0 \wedge 0) \wedge 0 = 0 \wedge 0 = 0$
$(a \wedge b) \wedge c$		√ c)				$0 \wedge (0 \wedge 0) = 0 \wedge 0 = 0$
АВС		A ^ (B ^ C)	(A V B) V C	A V	(B ^v C)	$(1 \wedge 0) \wedge 0 = 0 \wedge 0 = 0$
0 0 0		0	0 1		0	1 (0 0) 1 0 0
0 1 0					1	$1 \wedge (0 \wedge 0) = 1 \wedge 0 = 0$
		0	1 1		1	` ′
0 1 1 1 1 0 0	0 0	0 0 0	1 1 1		1 1 1	$(0 \wedge 1) \wedge 0 = 0 \wedge 0 = 0$
0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0	0 0 0 0	1 1 1 1 1		1 1 1 1	$(0 \land 1) \land 0 = 0 \land 0 = 0$ $0 \land (1 \land 0) = 0 \land 0 = 0$
0 1 1 1 0 0 1 0 1	0 0 0 0 0	0 0 0	1 1 1		1 1 1	$(0 \land 1) \land 0 = 0 \land 0 = 0 0 \land (1 \land 0) = 0 \land 0 = 0 (1 \land 1) \land 0 = 1 \land 0 = 0$
0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0	0 0 0 0	1 1 1 1 1	0	1 1 1 1	$(0 \land 1) \land 0 = 0 \land 0 = 0$ $0 \land (1 \land 0) = 0 \land 0 = 0$ $(1 \land 1) \land 0 = 1 \land 0 = 0$ $1 \land (1 \land 0) = 1 \land 0 = 0$
0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0	0 0 0 0	1 1 1 1 1 1	0	1 1 1 1 1	$(0 \land 1) \land 0 = 0 \land 0 = 0$ $0 \land (1 \land 0) = 0 \land 0 = 0$ $(1 \land 1) \land 0 = 1 \land 0 = 0$ $1 \land (1 \land 0) = 1 \land 0 = 0$ $(0 \land 0) \land 1 = 0 \land 1 = 0$
0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0	0 0 0 0	1 1 1 1 1 1	0	1 1 1 1 1	$(0 \land 1) \land 0 = 0 \land 0 = 0$ $0 \land (1 \land 0) = 0 \land 0 = 0$ $(1 \land 1) \land 0 = 1 \land 0 = 0$ $1 \land (1 \land 0) = 1 \land 0 = 0$
0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0	0 0 0 0	1 1 1 1 1 1 1 1 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$(0 \land 1) \land 0 = 0 \land 0 = 0$ $0 \land (1 \land 0) = 0 \land 0 = 0$ $(1 \land 1) \land 0 = 1 \land 0 = 0$ $1 \land (1 \land 0) = 1 \land 0 = 0$ $(0 \land 0) \land 1 = 0 \land 1 = 0$ $0 \land (0 \land 1) = 0 \land 0 = 0$
0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0	0 0 0 0	1 1 1 1 1 1 1 1 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$(0 \land 1) \land 0 = 0 \land 0 = 0$ $0 \land (1 \land 0) = 0 \land 0 = 0$ $(1 \land 1) \land 0 = 1 \land 0 = 0$ $1 \land (1 \land 0) = 1 \land 0 = 0$ $(0 \land 0) \land 1 = 0 \land 1 = 0$ $0 \land (0 \land 1) = 0 \land 0 = 0$ $(1 \land 0) \land 1 = 0 \land 1 = 0$
0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0	0 0 0 0	1 1 1 1 1 1 1	0	1 1 1 1	$(0 \land 1) \land 0 = 0 \land 0 = 0$ $0 \land (1 \land 0) = 0 \land 0 = 0$ $(1 \land 1) \land 0 = 1 \land 0 = 0$ $1 \land (1 \land 0) = 1 \land 0 = 0$ $(0 \land 0) \land 1 = 0 \land 1 = 0$ $0 \land (0 \land 1) = 0 \land 0 = 0$ $(1 \land 0) \land 1 = 0 \land 1 = 0$ $1 \land (0 \land 1) = 1 \land 0 = 0$
0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0	0 0 0 0	1 1 1 1 1 1 1	0	1 1 1 1	$(0 \land 1) \land 0 = 0 \land 0 = 0$ $0 \land (1 \land 0) = 0 \land 0 = 0$ $(1 \land 1) \land 0 = 1 \land 0 = 0$ $1 \land (1 \land 0) = 1 \land 0 = 0$ $(0 \land 0) \land 1 = 0 \land 1 = 0$ $0 \land (0 \land 1) = 0 \land 0 = 0$ $(1 \land 0) \land 1 = 0 \land 1 = 0$ $1 \land (0 \land 1) = 1 \land 0 = 0$ $(0 \land 1) \land 1 = 0 \land 1 = 0$
0 1 1 1 0 0 1 0 1 1 1 0	0 0 0 0 0	0 0 0 0	0	0	1 1 1 1	$(0 \land 1) \land 0 = 0 \land 0 = 0$ $0 \land (1 \land 0) = 0 \land 0 = 0$ $(1 \land 1) \land 0 = 1 \land 0 = 0$ $1 \land (1 \land 0) = 1 \land 0 = 0$ $(0 \land 0) \land 1 = 0 \land 1 = 0$ $0 \land (0 \land 1) = 0 \land 0 = 0$ $(1 \land 0) \land 1 = 0 \land 1 = 0$ $1 \land (0 \land 1) = 1 \land 0 = 0$ $(0 \land 1) \land 1 = 0 \land 1 = 0$ $0 \land (1 \land 1) = 0 \land 1 = 0$ $0 \land (1 \land 1) = 0 \land 1 = 0$

Assoziativgesetze: (A ^ B) ^ C = A ^ (B ^ C) (A ^ B) ^ C = A ^ (B ^ C)

	Assoziativgesetz $(a \lor b) \lor c = a \lor (b \lor c)$	0	0	0	$(0 \lor 0) \lor 0 = 0 \lor 0 = 0$ $0 \lor (0 \lor 0) = 0 \lor 0 = 0$
		1	0	0	$(1 \lor 0) \lor 0 = 1 \lor 0 = 1$ $1 \lor (0 \lor 0) = 1 \lor 0 = 1$
		0	1	0	$(0 \lor 1) \lor 0 = 1 \lor 0 = 1$ $0 \lor (1 \lor 0) = 0 \land 1 = 1$
		1	1	0	$(1 \lor 1) \lor 0 = 1 \lor 0 = 1$ $1 \lor (1 \lor 0) = 1 \lor 1 = 1$
		0	0	1	$(0 \lor 0) \lor 1 = 0 \lor 1 = 1$ $0 \lor (0 \lor 1) = 0 \lor 1 = 1$
		1	0	1	$(1 \lor 0) \lor 1 = 1 \lor 1 = 1$ $1 \lor (0 \lor 1) = 1 \lor 1 = 1$
		0	1	1	$(0 \lor 1) \lor 1 = 1 \lor 1 = 1$ $0 \lor (1 \lor 1) = 0 \lor 1 = 1$
		1	1	1	$(1 \lor 1) \lor 1 = 1 \lor 1 = 1$ $1 \lor (1 \lor 1) = 1 \lor 1 = 1$
	Distributivgesetz $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$	0	0	0	$0 \wedge (0 \vee 0) = 0 \wedge 0 = 0$ $(0 \wedge 0) \vee (0 \wedge 0)$
					$= 0 \lor 0 = 0$
Distributivgesetze: A ^ (B ^ C) = (A ^ B) ^ (A ^ C) A ^ (B ^ C) = (A ^ B) ^ (A ^ C)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)	A Y B) 0 0	$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & $
	0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0	0 1 1 1 1 1 1 1		1 1 1 1 1 1 1	$ \begin{array}{c ccccc} & & & & & & & & & \\ & & & & & & & & &$
	1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1	0 1 1 1		1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1	0 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1	$ \begin{array}{c cccc} & & & & & & & & \\ \hline & & & & & & & \\ & & & & & & \\ \hline & & & & & & \\ & & & & & \\ \hline & & & & & \\ & & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline &$
	1 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	0	$ \begin{array}{c c} & 1 & 1 \\ \hline 1 & 1 & 1 \\ \hline 1 & 1 & 1 \end{array} = 0 \land 1 = 0 $ $ \begin{array}{c} (0 \land 1) \lor (0 \land 0) \\ = 0 \lor 0 = 0 \end{array} $ $ \begin{array}{c} 1 \land (1 \lor 0) = 1 \land 1 = 1 \\ (1 \land 1) \lor (1 \land 0) \\ = 1 \lor 0 = 1 \end{array} $ $ \begin{array}{c} 0 \land (0 \lor 1) = 0 \land 1 = 0 \\ (0 \land 0) \lor (0 \land 1) \end{array} $

	1	1	1	$1 \wedge (1 \vee 1) = 1 \wedge 1 = 1$ $(1 \wedge 1) \vee (1 \wedge 1)$
Distributivgesetz $a \lor (b \land c) = (a \lor b) \land (a \lor c)$	0	0	0	
	1	0	0	$1 \lor (0 \land 0) = 1 \lor 0 = 1$ (1 \lor 0) \land (1 \lor 0) = 1 \land 1 = 1
	0	1	0	$0 \lor (1 \land 0) = 0 \lor 0 = 0$ (0 \lor 1) \land (0 \lor 0) = 1 \land 0 = 0
	1	1	0	$ 1 \lor (1 \land 0) = 1 \lor 0 = 1 (1 \lor 1) \land (1 \lor 0) = 1 \land 1 = 1 $
	0	0	1	$0 \lor (0 \land 1) = 0 \lor 0 = 0$ (0 \lor 0) \land (0 \lor 1) = 0 \land 1 = 0
	1	0	1	$ 1 \lor (0 \land 1) = 0 \lor 0 = 0 (1 \lor 0) \land (0 \lor 1) = 0 \land 1 = 0 $
	0	1	1	$0 \lor (1 \land 1) = 0 \lor 1 = 1$ (0 \lor 1) \land (0 \lor 1) = 1 \land 1 = 1
	1	1	1	$1 \lor (0 \land 1) = 1 \lor 1 = 1$ (1 \lor 1) \land (0 \lor 1) = 1 \land 1 = 1
De Morgansches Gesetz $\neg(a \land b) = \neg a \lor \neg b$	0	0	-	$\neg (0 \land 0) = \neg 0 = 1$ $\neg 0 \lor \neg 0 = 1 \lor 1 = 1$
A B	-(A V B) 1 0 0 0	-A	^¬B 1 0 0 0	$\neg (1 \land 0) = \neg 0 = 1$ $\neg 1 \lor \neg 0 = 0 \lor 1 = 1$ $\neg (0 \land 1) = \neg 0 = 1$
	1	1	-	$-0 \lor -1 = 1 \lor 0 = 1$ $-(1 \land 1) = -1 = 0$ $-1 \lor -1 = 0 \lor 0 = 0$
De Morgansches Gesetz $\neg (a \lor b) = \neg a \land \neg b$	0	0	-	$\neg (0 \lor 0) = \neg 0 = 1$ $\neg 0 \land \neg 0 = 1 \land 1 = 1$

De Morgansche Gesetze: $\neg(A \land B) = \neg A \lor \neg B$ $\neg(A \lor B) = \neg A \land \neg B$

1	0	-	$\neg (1 \lor 0) = \neg 1 = 0$ $\neg 1 \land \neg 0 = 0 \land 1 = 0$
0	1	-	$\neg (0 \lor 1) = \neg 1 = 0$ $\neg 0 \land \neg 1 = 1 \land 0 = 0$
1	1	-	$\neg (1 \lor 1) = \neg 1 = 0$ $\neg 1 \land \neg 1 = 0 \land 0 = 0$

Überprüfen Sie, ob die Beziehung

a XOR b
$$\Leftrightarrow$$
 $(\neg a \land b) \lor (a \land \neg b)$

für alle denkbaren Wertekombinationen aus 0 und 1 gilt.

	a	b		a XOR	l b	(¬a ∧	$(\neg a \wedge b) \vee (a \wedge \neg b)$			
	0	0		0		(¬0∧	0) ∨ (0 ∧	. ¬0)		
						=(1 ^	$(0) \lor (0 \land$	(1)		
						= 0 \	0 = 0			
Exkulsiv ODER	4	^		4		/ 1	A) /1	¬ 0)		
A XOR B = $(\neg A \land B)$	∨ (A ^ ¬B)		A B	(¬A ^ B)	(A ^ ¬B)	() ^ ()	A XOR B	. 1)		
			0 0	0	0	0	0	-)		
			0 1	1	0	1	1			
			1 0	0	1	1	1	¬1)		
		•	1 1	0	0	0	0	/		
						$=(1 \land$	$(1) \lor (0 \land$	(0)		
						= 1 \	0 = 1	·		
	1	1		0			1) ∨ (1 ∧			
						$=(0 \land$	1) \((1 \)	(0)		
						= 0 \	0 = 0			

Aufgabe 2.8

a) Wie müssen die beiden Eingänge vor einem logischen Und jeweils verneint werden, um die verschiedenen Minterme zu erhalten?

Minterm	a = 0 $b = 0$	a = 0 $b = 1$	a = 1 $b = 0$	a = 1 $b = 1$	Und-Variante
f1	1	0	0	0	$\neg a \wedge \neg b$
f2	0	1	0	0	$\neg a \wedge b$
f4	0	0	1	0	a ∧ ¬b
f8	0	0	0	1	$a \wedge b$

b) Wie müssen die beiden Eingänge vor einem logischen Oder jeweils verneint werden, um die verschiedenen Maxterme zu erhalten?

						f7:	0 0	1
						¬A ∨ ¬B	0 1	1
	т .	т	т .		т		1 0	1
Maxterm	a = 0	a = 0	a = 1	a = 1	Oder-Variante		1 1 A B	0 f11
ļ	b = 0	b = 1	b = 0	b = 1		f11	A B 0 0	1
	+	+	+	-		-A V B	0 1	1
f7	1	1	1	0	$\neg a \lor \neg b$		1 0	0
£1.1	1	1		1	- > / 1=		АВ	f13
f11	1	1	0	1	$\neg a \lor b$	f13	0 0	1
f13	1	1	1	1	av. h	A V -B	0 1	0
113	1	0	1	1	$a \lor \neg b$		1 0	1
f14	0	1	1	1	a∨b	\neg	1 1 A B	1 f14
114	10	1	1	1	a v u	f14	0 0	0
	-	•			•	A Y B	0 1	1
Aufgabe 2.9	.						1 0	1
Aulyane 2.5							1 1	1

2.8 b)

АВ

f7

Betrachten Sie die Menge $N = \{1, 2, 3, 4\}$. Finden Sie je mindestens ein Beispiel für die Beziehungen $x \in N$, $x \notin N$, $M \subset N$, $M \subseteq N$, $P \supset N$ und $P \supseteq$ N.

- 2 ∈ N
- 5 ∉ N
- $\{1, 2, 3\} \subset N$
- $\{1, 2, 3\} \subseteq \mathbb{N}$
- $\{1, 2, 3, 4\} \subseteq N$
- $\{1, 2, 3, 4, 5\} \supset N$
- $\{1, 2, 3, 4, 5\} \supseteq N$
- $\{1, 2, 3, 4\} \supseteq N$

Aufgabe 2.10

Probieren Sie die Neutralitäts-, Kommutativ-, Assoziativund Distributivgesetze für Mengen an geeigneten Beispielen aus.

- Neutralitätsgesetze:
 - $M \cup \emptyset = M$
 - $M \cap G = M$

$$M = \{3, 4, 5, 6\}$$

 $M \cup \emptyset = \{3, 4, 5, 6\}$ – zur Menge M kommen keine weiteren Elemente

 $M \cap \mathbb{N} = \{3, 4, 5, 6\} - da M \subset \mathbb{N}$ gilt, fallen keine Elemente weg.

- Kommutativgesetze:
 - $M \cup N = N \cup M$
 - $M \cap N = N \cap M$

Gilt trivial, weil die Reihenfolge, in der die Elemente einer Menge angegeben werden, keine Rolle spielt:

$$\begin{split} M &= \{1,2,3,4\} \\ N &= \{3,4,5,6\} \\ \{1,2,3,4\} \cup \{3,4,5,6\} = \{1,2,3,4,5,6\} \\ \{3,4,5,6\} \cup \{1,2,3,4\} = \{3,4,5,6,1,2\} \\ \{1,2,3,4\} \cap \{3,4,5,6\} = \{3,4\} \\ \{6,5,4,3\} \cap \{1,2,3,4\} = \{4,3\} - \text{Reihenfolge geändert zur Verdeutlichung} \end{split}$$

Assoziativgesetze:

-
$$(M \cup N) \cup P = M \cup (N \cup P)$$

-
$$(M \cap N) \cap P = M \cap (N \cap P)$$

$$M = \{1, 2, 3, 4\}$$

$$N = \{3, 4, 5, 6\}$$

$$P = \{2, 4, 6, 8\}$$

$$(\{1, 2, 3, 4\} \cup \{3, 4, 5, 6\}) \cup \{2, 4, 6, 8\}$$

$$= \{1, 2, 3, 4, 5, 6\} \cup \{2, 4, 6, 8\}$$

$$= \{1, 2, 3, 4, 5, 6, 8\}$$

$$\{1, 2, 3, 4\} \cup (\{3, 4, 5, 6\} \cup \{2, 4, 6, 8\})$$

$$= \{1, 2, 3, 4\} \cup \{2, 3, 4, 5, 6, 8\}$$

$$= \{1, 2, 3, 4, 5, 6, 8\}$$

$$(\{1, 2, 3, 4\} \cap \{3, 4, 5, 6\}) \cap \{2, 4, 6, 8\}$$

$$= \{3, 4\} \cap \{2, 4, 6, 8\} = \{4\}$$

$$\{1, 2, 3, 4\} \cap (\{3, 4, 5, 6\} \cap \{2, 4, 6, 8\})$$

$$= \{1, 2, 3, 4\} \cap \{4, 6\} = \{4\}$$

• *Distributivgesetze*:

-
$$M \cup (N \cap P) = (M \cup N) \cap (M \cup P)$$

-
$$M \cap (N \cup P) = (M \cap N) \cup (M \cap P)$$

$$M = \{1, 2, 3, 4\}$$

$$N = \{3, 4, 5, 6\}$$

$$P = \{2, 4, 6, 8\}$$

$$\{1, 2, 3, 4\} \cup (\{3, 4, 5, 6\} \cap \{2, 4, 6, 8\})$$

$$= \{1, 2, 3, 4\} \cup \{4, 6\}$$

$$= \{1, 2, 3, 4, 6\}$$

$$(\{1, 2, 3, 4\} \cup \{3, 4, 5, 6\}) \cap (\{1, 2, 3, 4\} \cup \{2, 4, 6, 8\})$$

$$= \{1, 2, 3, 4, 5, 6\} \cap \{1, 2, 3, 4, 6, 8\}$$

$$= \{1, 2, 3, 4, 6\}$$

$$\{1, 2, 3, 4\} \cap (\{3, 4, 5, 6\} \cup \{2, 4, 6, 8\})$$

$$= \{1, 2, 3, 4\} \cap \{2, 3, 4, 5, 6, 8\}$$

$$= \{2, 3, 4\}$$

$$(\{1, 2, 3, 4\} \cap \{3, 4, 5, 6\}) \cup (\{1, 2, 3, 4\} \cap \{2, 4, 6, 8\})$$

$$= \{3, 4\} \cup \{2, 4\}$$

$$= \{2, 3, 4\}$$

Überprüfen Sie für Folgen mit den nachfolgenden Bildungsvorschriften, ob sie

- monoton steigend/fallend,
- streng monoton steigend/fallend,
- konstant,
- alternierend,
- beschränkt und/oder
- konvergent sind.

Falls sie beschränkt sind, geben Sie die untere und obere Schranke an, und falls sie konvergent sind, den Grenzwert.

- a) $a_1 = 1$, $a_{n+1} = a_n$: konstant, da $a_n = 1$ für alle n
- b) $a_n = n$ für gerade n, -n für ungerade n: alternierend, da -1, 2, -3, 4, -5...
- c) $a_n = \cos n$: beschränkt mit s = -1 und S = 1
- d) $a_n = \sqrt{n}$: streng monoton steigend, da $\sqrt{n+1} > \sqrt{n}$ für alle n gilt
- e) $a_n = \frac{1}{\sqrt{n}}$: streng monoton fallend sowie konvergent mit $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$

Aufgabe 2.12

Führen Sie die folgenden Vektorberechnungen durch:

a)
$$\left| {\binom{-6}{7}} \right| = \sqrt{-6^2 + 7^2} = \sqrt{36 + 49} = \sqrt{85} \approx 9,219544$$

b)
$$\begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} + \begin{pmatrix} -4 \\ 5 \\ -7 \end{pmatrix} = \begin{pmatrix} 2-4 \\ 3+5 \\ 4-7 \end{pmatrix} = \begin{pmatrix} -2 \\ 8 \\ -3 \end{pmatrix}$$

c)
$$5 \cdot \begin{pmatrix} 6 \\ -7 \\ 8 \end{pmatrix} = \begin{pmatrix} 5 \cdot 6 \\ 5 \cdot -7 \\ 5 \cdot 8 \end{pmatrix} = \begin{pmatrix} 30 \\ -35 \\ 40 \end{pmatrix}$$

d)
$$\binom{2}{3} \cdot \binom{8}{-1} = 2 \cdot 8 + 3 \cdot -1 + 4 \cdot 4 = 16 - 3 + 16 = 29$$

Gegeben seien die folgenden Matrizen:

$$A = \begin{pmatrix} 3 & -4 & 5 \\ -5 & 4 & 3 \end{pmatrix}, B = \begin{pmatrix} 2 & 1,5 \\ -1,5 & 2 \\ 0 & -1 \end{pmatrix}, C = \begin{pmatrix} -3 & 1 \\ 2 & -4 \end{pmatrix}$$

Führen Sie folgende Matrixberechnungen durch:

a) $A+B^T$

$$\begin{pmatrix} 3 & -4 & 5 \\ -5 & 4 & 3 \end{pmatrix} + \begin{pmatrix} 2 & -1.5 & 0 \\ 1.5 & 2 & -1 \end{pmatrix} = \begin{pmatrix} 5 & -5.5 & 5 \\ -3.5 & 6 & 2 \end{pmatrix}$$

b) A · B

$$\begin{pmatrix} 3 & -4 & 5 \\ -5 & 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1,5 \\ -1,5 & 2 \\ 0 & -1 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \cdot 2 + (-4) \cdot (-1,5) + 5 \cdot 0 & 3 \cdot 1,5 + (-4) \cdot 2 + 5 \cdot (-1) \\ -5 \cdot 2 + 4 \cdot (-1,5) + 3 \cdot 0 & -5 \cdot 1,5 + 4 \cdot 2 + 3 \cdot (-1) \end{pmatrix}$$

$$= \begin{pmatrix} 6 + 6 & 4,5 - 8 - 5 \\ -10 - 6 & -7,5 + 8 - 3 \end{pmatrix} = \begin{pmatrix} 12 & -8,5 \\ -16 & -2,5 \end{pmatrix}$$

c) B · A

$$\begin{pmatrix} 2 & 1,5 \\ -1,5 & 2 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 3 & -4 & 5 \\ -5 & 4 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 2 \cdot 3 + 1,5 \cdot (-5) & 2 \cdot (-4) + 1,5 \cdot 4 & 2 \cdot 5 + 1,5 \cdot 3 \\ -1,5 \cdot 3 + 2 \cdot (-5) & -1,5 \cdot (-4) + 2 \cdot 4 & -1,5 \cdot 5 + 2 \cdot 3 \\ 0 \cdot 3 + (-1) \cdot (-5) & 0 \cdot (-4) + (-1) \cdot 4 & 0 \cdot 5 + (-1) \cdot 3 \end{pmatrix}$$

$$= \begin{pmatrix} 6 - 7,5 & -8 + 6 & 10 + 4,5 \\ -4,5 - 10 & 6 + 8 & -7,5 + 6 \\ 5 & -4 & -3 \end{pmatrix} = \begin{pmatrix} -1,5 & -2 & 14,5 \\ -14,5 & 14 & -1,5 \\ 5 & -4 & -3 \end{pmatrix}$$

d) Die Determinante von C, det(C)

$$\det(C) = (-3) \cdot (-4) - 1 \cdot 2 = 12 - 2 = 10$$

e) Die inverse Matrix C⁻¹ von C

$$\begin{pmatrix} -3 & 1 \\ 2 & -4 \end{pmatrix} \cdot \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} I. -3x_{11} + x_{21} = 1 & II. -3x_{12} + x_{22} = 0 \\ III. 2x_{11} - 4x_{21} = 0 & IV. 2x_{12} - 4x_{22} = 1 \end{pmatrix}$$

$$I. x_{21} = 3x_{11} + 1$$

$$I. in III. 2x_{11} - 4(3x_{11} + 1) = 0 \Leftrightarrow$$

 $2x_{11} - 12x_{11} - 4 = 0 \Leftrightarrow$

$$C = \begin{pmatrix} -3 & 1 \\ 2 & -4 \end{pmatrix}$$

$$-10x_{11} = 4 \Leftrightarrow x_{11} = -\frac{2}{5}$$

$$I. -3\left(-\frac{2}{5}\right) + x_{21} = 1 \Leftrightarrow x_{21} = -\frac{1}{5}$$

$$II. x_{22} = 3x_{12}$$

$$II. in IV. 2x_{12} - 4(3x_{12}) = 1 \Leftrightarrow$$

$$2x_{12} - 12x_{12} = 1 \Leftrightarrow -10x_{12} = 1 \Leftrightarrow x_{12} = -\frac{1}{10}$$

$$II. -3\left(-\frac{1}{10}\right) + x_{22} = 0 \Leftrightarrow \frac{3}{10} = -x_{22} \Leftrightarrow x_{22} = -\frac{3}{10}$$

$$C^{-1} = \begin{pmatrix} -\frac{2}{5} & -\frac{1}{10} \\ -\frac{1}{5} & -\frac{3}{10} \end{pmatrix}$$

f) Lösen Sie mithilfe von C⁻¹ die folgenden beiden Gleichungssysteme:

$$\begin{array}{l}
-3x + y = 0, 2x - 4y = -20 \\
-3x + y = -2, 2x - 4y = 16
\end{array}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{2}{5} & -\frac{1}{10} \\ -\frac{1}{5} & -\frac{3}{10} \end{pmatrix} \begin{pmatrix} 0 \\ -20 \end{pmatrix} = \begin{pmatrix} -\frac{2}{5} \cdot 0 + \left(-\frac{1}{10}\right) \cdot (-20) \\ -\frac{1}{5} \cdot 0 + \left(-\frac{3}{10}\right) \cdot (-20) \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$

$$\begin{pmatrix} -3 & 1 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -\frac{2}{5} & -\frac{1}{10} \\ -\frac{1}{5} & -\frac{3}{10} \end{pmatrix} \begin{pmatrix} -2 \\ 16 \end{pmatrix} = \begin{pmatrix} -\frac{2}{5} \cdot (-2) + \left(-\frac{1}{10}\right) \cdot 16 \\ -\frac{1}{5} \cdot (-2) + \left(-\frac{3}{10}\right) \cdot 16 \end{pmatrix}$$

$$= \begin{pmatrix} 4 & -\frac{16}{5} \\ \frac{2}{5} & \frac{48}{5} \\ \frac{2}{5} & \frac{48}{10} \end{pmatrix} = \begin{pmatrix} -\frac{4}{5} \\ -\frac{22}{5} \end{pmatrix}$$

Aufgabe 2.14

Aus einem gut gemischten Standardkartenspiel mit 32 Karten werden zwei Karten gezogen (ohne die erste Karte wieder zurückzustecken und neu zu mischen). Berechnen Sie folgende Wahrscheinlichkeiten:

a) Beide Karten sind Pik.

Das Kartenspiel enthält acht Karten pro Farbe, so dass die Wahrscheinlichkeit für Pik beim ersten Zug $\frac{1}{4}$ beträgt. Danach enthält das Kartenspiel noch 31 Karten, von denen sieben Pik sind, also muss die erste Wahrscheinlichkeit mit $\frac{7}{31}$ multipliziert werden. $\frac{1}{4} \cdot \frac{7}{31} = \frac{7}{124} \approx 0,056$

b) Beide Karten sind Asse.

Es gibt vier Asse, also beträgt die Wahrscheinlichkeit beim ersten Zug $\frac{1}{8}$. Danach sind noch 31 Karten mit drei Assen übrig, was $\frac{3}{31}$ entspricht. Die Wahrscheinlichkeit für zwei Asse beträgt somit $\frac{1}{8} \cdot \frac{3}{31} = \frac{3}{248} \approx 0,012$.

c) Beide Karten haben dieselbe Farbe.

Die Farbe der ersten gezogenen Karte ist vollkommen unerheblich; die Wahrscheinlichkeit beträgt also 1. Danach haben noch 7 von 31 Karten diese Farbe, also beträgt die Wahrscheinlichkeit, eine von diesen zu erwischen, $\frac{7}{31} \approx 0,226$.

Alternativ können Sie einen Wahrscheinlichkeitsbaum für dieses Experiment zeichnen. Für den ersten Zug gibt es vier Verzweigungen mit einer Wahrscheinlichkeit von je $\frac{1}{4}$. Von jedem der Punkte wird wieder verzweigt, wobei es vereinfachend genügt, je zwei Möglichkeiten wie "Herz" und "Nicht-Herz" mit den Wahrscheinlichkeiten $\frac{7}{31}$ beziehungsweise $\frac{24}{31}$ einzuzeichnen. Wenn Sie sich die vier günstigen Pfade aus diesem Baum heraussuchen, stellen Sie fest, dass Sie viermal die Wahrscheinlichkeit $\frac{1}{4} \cdot \frac{7}{31}$ haben, was zusammenaddiert wiederum $\frac{7}{31}$ ergibt.

d) Beide Karten haben unterschiedliche Farben.

Hier ist es am einfachsten, die bereits berechnete Gegenwahrscheinlichkeit für zwei gleiche Karten, also $\frac{7}{31}$, von 1 abzuziehen: $1 - \frac{7}{31} = \frac{24}{31} \approx 0,774$.

e) Mindestens eine der Karten ist eine Sieben.

Hier gibt es zwei mögliche Pfade zu günstigen Ereignissen, die zusammenaddiert werden müssen (auch das können Sie sich an einem vereinfachten Wahrscheinlichkeitsbaum verdeutlichen, in den jeweils die Zweige 7 und −7 (Nicht-Sieben) eingezeichnet werden):

Wird beim ersten Zug mit einer Wahrscheinlichkeit von ¹/₈ eine Sieben gezogen, ist die zweite Karte auf diesem Pfad egal (1), so dass die Gesamtwahrscheinlichkeit für diesen Pfad ¹/₈ bleibt.

Wird beim ersten Zug dagegen keine Sieben gezogen (Wahrscheinlichkeit $\frac{7}{8}$), dann muss beim zweiten eine gezogen werden, was mit einer Wahrscheinlichkeit von $\frac{8}{31}$ der Fall ist. Die Gesamtwahrscheinlichkeit $\frac{4}{31}$ dieses Pfades beträgt also $\frac{7}{8} \cdot \frac{8}{31} = \frac{7}{31}$.

Die Summe der Wahrscheinlichkeiten beider Pfade beträgt $\frac{1}{8} + \frac{7}{31} = \frac{87}{248} \approx \frac{59}{248}$ 0,351. 0,238

Alternativ: 1 - (28/32 * 27/31) = 59/248

Aufgabe 2.15

Gegeben ist folgende Zahlenmenge, die die Körpergrößen einer Gruppe von Personen in Zentimetern angibt:

 $X=\{194, 189, 188, 182, 180, 176, 173, 167, 164, 159\}$

Ermitteln Sie

a) das Maximum:

$$x_{max} = 194$$

b) das Minimum:

$$x_{min} = 159$$

c) die Spannweite:

$$x_{max} - x_{min} = 194 - 159 = 35$$

d) das arithmetische Mittel \bar{x} :

$$\bar{x} = \frac{1}{10} \cdot (194 + 189 + 188 + 182 + 180 + 176 + 173 + 167 + 164 + 159)$$

$$= \frac{1772}{10} = 177.2 \quad \boxed{1944/11 = 176,73}$$

e) den Median:

Da zehn Werte vorliegen und es kein mittleres Element gibt, ist der Median das arithmetische Mittel aus den beiden um die Mitte herum liegenden Elementen 180 und 176:

$$\tilde{x} = \frac{180 + 176}{2} = 178 \quad \boxed{176}$$

f) die Varianz:

$$Var(X) = \frac{1}{9}((194 - 177,2)^2 + \dots + (159 - 177,2)^2) = \frac{1197,6}{9} = 133,0\overline{6}$$
 111,11

g) die Standardabweichung:

$$\sigma = \sqrt{133,0\overline{6}} \approx 11,54 \quad \boxed{10,54}$$

Berechnen Sie die Nullstellen und Ableitungen der folgenden Funktionen:

a)
$$f(x) = 2x - 4$$

Da es sich um eine lineare Funktion handelt, gibt es genau eine Nullstelle:

$$2x - 4 = 0 \Leftrightarrow 2x = 4 \Leftrightarrow x = 2$$

Die Ableitung einer linearen Funktion ist konstant, nämlich der Faktor, mit dem x multipliziert wird, also hier

$$f'(x) = 2$$

Lineare Funktionen haben keine Extrempunkte.

b)
$$f(x) = 6x^2 + 4x - 8$$

Nullstellenberechnung mit der pq-Formel

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

aus der Normalform:

$$x^{2} + \frac{2}{3}x - \frac{4}{3} = 0$$

$$x_{1,2} = -\frac{1}{3} \pm \sqrt{\left(\frac{1}{3}\right)^{2} + \frac{4}{3}} = -\frac{1}{3} \pm \sqrt{\frac{13}{9}}$$

$$x_{1} \approx 0,8685, x_{2} \approx -1,5352$$

Ableitung:

$$f'(x) = 12x + 4$$

Extrempunkt (Nullstelle der Ableitung):

$$12x + 4 = 0 \Leftrightarrow 12x = 4 \Leftrightarrow x = \frac{1}{3}$$

$$12x = -4 \iff -1/3$$

c)
$$f(x) = -2x^2 + 4x - 4$$

Nullstellenberechnung mit der pq-Formel aus der Normalform:

$$x^{2} - 2x + 2 = 0$$

$$x_{1,2} = -\left(\frac{-2}{2}\right) \pm \sqrt{\left(\frac{-2}{2}\right)^{2} - 2} = 1 \pm \sqrt{1 - 2}$$

Da eine negative Zahl unter der Wurzel steht, ist die Gleichung nicht in \mathbb{R} lösbar. Es gibt also keine Nullstellen.

Ableitung:

$$f'(x) = -4x + 4$$

Extrempunkt (Nullstelle der Ableitung):

$$-4x + 4 = 0 \Leftrightarrow -4x = -4 \Leftrightarrow x = 1$$

Kapitel 5: Algorithmen und Datenstrukturen

Aufgabe 5.3

Warum kann die A*-Suche nicht auf klassische Graphen angewendet werden und noch nicht einmal ohne Weiteres auf gewichtete?

Auf klassische Graphen kann die A*-Suche nicht angewendet werden, weil alle Kanten als gleich lang gelten und keine bestimmte Richtung begründen, so dass sich durch keine offensichtliche Heuristik vorhersagen lässt, wie das Ziel am günstigsten zu erreichen wäre. Bei gewichteten Graphen werden zwar die Kosten durch das Kantengewicht angegeben, aber das Problem der Richtung besteht weiterhin. Die A*-Suche braucht über die in einem klassischen Graphen verfügbaren Informationen hinaus zusätzliche Merkmale, nach denen eine Heuristik Kosten schätzen kann.