딥러닝(인공지능)의 역사

2024254012 배인호

1. 딥러닝의 역사

- 가. 인공신경망 (Artificial Neural Networks)
 - 1) 인공신경망(artificial neural network, ANN)은 인간의 두뇌에서 영감을 받은 컴퓨터 모델입니다. 이 모델은 다수의 연결된 뉴런으로 구성되어 있습니다. 각 뉴런은 입력을 받아들이고, 이 입력에 대해 가중치를 곱한 후에 활성화 함수를 통과시킵니다. 그 결과 는 다음 계층의 뉴런으로 전달됩니다. 이러한 네트워크는 데이터를 학습하고 패턴을 발견하기 위해 가중치를 조정합니다.
 - 2) 인공신경망은 여러 층으로 구성된 다층 퍼셉트론(MLP, Multilayer Perceptron)의 형 태로 가장 널리 사용됩니다. 다층 퍼셉트론은 입력층, 은닉층(하나 이상), 출력층으로 구성되어 있습니다. 이러한 구조는 복잡한 비선형 문제를 해결할 수 있습니다.
 - 3) 인공신경망은 기계 학습과 인공지능 분야에서 널리 사용되며, 이미지 인식, 음성 인식, 자연어 처리, 예측 분석 등 다양한 작업에 적용됩니다. 최근의 딥러닝의 발전은 인공신 경망을 특히 커다란 규모와 깊은 구조로 확장시켜 많은 성과를 이끌어 냈습니다.

"딥러닝," IT위키, (https://www.itwiki.kr/w/딥러닝)

2. 인공 신경망의 초기

가. 매컬럭-피츠 뉴런

1) 1943년에 워런 매컬럭(Warren McCulloch)과 월터 피츠(Walter Pitts)는 매컬럭-피츠 뉴런 모델을 소개했습니다. 이 모델은 간단한 이진 출력을 생성하는 뇌의 뉴런을 모방한 것으로, 이후 인공 신경망 모델의 기초가 되었습니다.

나. 퍼셉트론

1) 1957년, 프랭크 로젠블라트(Frank Rosenblatt)가 퍼셉트론 개념을 제안했습니다. 퍼셉트론은 여러 입력을 받아 하나의 출력을 생성하는 간단한 형태의 인공 신경망 구조 였습니다. 하지만 당시에는 선형 분류 문제만을 해결할 수 있었고, 복잡한 문제에는 적합하지 않았습니다.

다. 인공 신경망의 한계

1) 1960년대 후반부터 1970년대, 퍼셉트론의 한계가 드러나면서 인공 신경망 연구는 침체기를 겪었습니다. 마빈 민스키(Marvin Minsky)와 시모어 페퍼트(Seymour Papert)는 퍼셉트론의 한계를 보여주는 책 "퍼셉트론"을 출판했는데, 이는 인공 신경망 연구에 큰 타격을 주었습니다.

3. 인공지능의 암흑기

가. 퍼셉트론의 한계

1) 1969년에 마빈 민스키와 시모어 페퍼트가 출간한 "퍼셉트론" 책은 퍼셉트론의 한계를 강조했습니다. 이 책에서는 단일 퍼셉트론이 XOR 문제와 같은 비선형 문제를 해결할 수 없다는 것이 밝혀졌습니다. 이로 인해 많은 사람들이 인공지능의 한계를 두고 의심하게 되었습니다.

나. 데이터와 하드웨어의 제한

1) 1970년대와 1980년대, 현재와는 달리 컴퓨터의 성능과 저장 용량이 매우 제한적이었습니다. 또한 큰 규모의 데이터셋을 수집하고 저장하는 것이 어려웠습니다. 이로 인해 딥러닝 모델을 학습시키는 데 필요한 많은 계산과 데이터 처리가 어려웠습니다.

다. 자금과 관심의 감소

1) 인공지능 연구에 대한 관심이 줄어들고, 이에 따라 연구에 대한 자금도 줄어들었습니다. 이러한 상황은 신경망 및 딥러닝과 같은 새로운 기술에 대한 연구와 개발을 억제했습니다.

4. 역전파 알고리즘의 발명

- 가. 1986년에 런던 대학교(London University)의 제프리 힌튼(Geoffrey Hinton)과 다른 연구자들이 역전파 알고리즘을 발명했습니다.
- 나. 순전파(Forward Propagation)
 - 1) 먼저 입력 데이터가 네트워크를 통해 전달되어 출력을 생성합니다. 이때 출력과 실제 정답(원하는 출력) 간의 오차를 계산합니다.
- 다. 오차 역전파(Backpropagation)
 - 1) 오차를 역으로 전파하여 각 층의 가중치를 조정합니다. 오차를 각 가중치에 대해 미분 하여 각 층의 가중치에 대한 오차의 기여도를 계산하고, 이를 사용하여 경사 하강법 (Gradient Descent)을 이용해 가중치를 업데이트합니다.
- 라. 경사 하강법을 통한 최적화(Optimization with Gradient Descent)
 - 1) 역전파 알고리즘은 가중치를 조정하여 출력과 실제 값 간의 오차를 최소화하도록 합니다. 이를 위해 주로 경사 하강법과 같은 최적화 알고리즘이 사용됩니다.

그림 8-1 단일 퍼셉트론에서의 오자 수정

그림 8-2 다층 퍼셉트폰에서의 오차 수정

5. 지식 표현의 발전

- 가. 1990년대에는 컴퓨터의 성능이 향상되면서 더 깊은 신경망 구조를 탐구할 수 있었습니다. 또한 컴퓨터 비전과 음성 인식 분야에서 딥러닝의 초기 응용이 나타났습니다.
- 나. 피쳐 추출과 피쳐 엔지니어링
 - 1) 초기의 기계 학습과 인공 신경망 접근 방식은 전문가가 선정한 피쳐(특징)를 사용하는 것이 일반적이었습니다. 이는 이미지 분류에서는 가장자리 검출과 같은 간단한 기능이고, 자연어 처리에서는 단어의 빈도수와 같은 것이었습니다.

다. 자동 특징 학습의 부상

1) 2006년 이후 딥러닝의 부상과 함께, 피쳐를 자동으로 추출하고 학습하는 능력을 갖춘 모델인 심층 신경망이 부상했습니다. 이것은 피쳐 엔지니어링의 필요성을 줄여주었고, 더 많은 데이터와 더 깊은 신경망을 사용하여 더 나은 성능을 얻을 수 있게 해주었습 니다.

라. 계층적 특징 학습

1) 심층 신경망은 데이터의 다양한 추상적인 특징을 계층적으로 학습할 수 있습니다. 예를 들어, 이미지에서 낮은 수준의 기능(가장자리, 색상)은 첫 번째 은닉층에서 학습되고, 높은 수준의 추상적인 개념(물체, 얼굴)은 이후의 층에서 학습될 수 있습니다.

6. 딥러닝의 부활

- 가. 제프리 힌튼의 신경 네트워크 연구
 - 1) 2006년, 제프리 힌튼과 그의 팀이 심층 신경망을 사용하여 이미지 인식 작업에서 획기적인 성과를 이끌어냈습니다. 이러한 연구는 기존의 신경망 모델을 깊게 쌓음으로써 더 나은 성능을 달성할 수 있다는 가능성을 보여 주었습니다.
- 나. 딥러닝 소프트웨어 및 하드웨어 발전
 - 1) 2000년대 후반에는 GPU와 같은 고성능 하드웨어의 발전이 딥러닝 연구에 큰 영향을 미쳤습니다. 이에 따라 대규모 데이터셋과 깊은 신경망을 학습하는 것이 가능해졌습니다. 또한 딥러닝을 지원하는 소프트웨어 프레임워크(예: TensorFlow, PyTorch)의 등 장도 부활에 기여했습니다.

7. 딥러닝의 폭발적인 성장

- 가. 대규모 데이터셋의 이용 가능성
 - 1) 딥러닝 모델은 대규모 데이터셋에서 훈련됩니다. 인터넷의 발전과 디지털 데이터 생성의 폭증으로부터, 엄청난 양의 데이터가 이용 가능해졌습니다. 이는 딥러닝 모델의 성능을 향상시키고 더 정교한 모델을 만들 수 있게 했습니다.
- 나. 컴퓨터 하드웨어의 발전
 - 1) GPU(그래픽 처리 장치)의 발전은 딥러닝 훈련 속도를 크게 향상시켰습니다. GPU는 병렬 처리 능력이 뛰어나며, 대규모 행렬 연산과 같은 딥러닝 작업에 이상적입니다. 또한, 클라우드 컴퓨팅 및 특수한 딥러닝 하드웨어(예: TPU)의 등장도 딥러닝 모델을 더욱 효율적으로 훈련시키는 데 기여했습니다.
- 다. 딥러닝 소프트웨어 프레임워크의 발전
 - 1) TensorFlow, PyTorch, Keras 등의 딥러닝 소프트웨어 프레임워크의 등장은 딥러닝 모델을 빠르고 효율적으로 구축하고 실험할 수 있는 환경을 제공했습니다. 이는 딥러 닝 연구와 개발의 진입 장벽을 낮추고, 보다 많은 사람들이 딥러닝 기술을 사용하고 발전시킬 수 있게 했습니다.
- 라. 연구와 산업의 관심 증대
 - 1) 딥러닝의 성과는 연구 및 산업에서 큰 관심을 불러일으켰습니다. 다양한 분야에서 딥러닝 기술의 적용 가능성이 탐구되고 있으며, 이에 따라 산업계에서는 딥러닝 엔지니어와 연구자들에 대한 수요가 계속해서 증가하고 있습니다.

8. 이미지넷 챌린지와 인공지능의 발전

- 가. 딥러닝의 부상
 - 1) 이미지넷 챌린지는 2010년대 초반 딥러닝의 부상과 함께 등장했습니다. 2012년에는 제프리 힌튼과 알렉스 크리겐이 개발한 AlexNet이 이 챌린지에서 압도적인 성과를 거두었습니다. 이는 딥러닝이 이미지 분류 작업에서 기존 기술을 능가하는 데 큰 역할을 했습니다.
- 나. 대규모 데이터셋과 딥러닝의 결합
 - 1) 이미지넷은 수백만 개의 이미지와 수백 개의 범주로 구성된 대규모 데이터셋입니다. 이는 딥러닝 모델을 학습시키는 데 필요한 대규모 데이터셋이 제공되었음을 의미합니다. 딥러닝은 대규모 데이터셋에서 훈련할 때 가장 뛰어난 성능을 발휘하므로, 이미지넷과 같은 대규모 데이터셋은 딥러닝의 발전을 촉진했습니다.
- 다. 연구와 경쟁의 촉진
 - 1) 이미지넷 챌린지는 연구자들 간의 경쟁을 촉진하고, 최신 기술을 발전시키는 데 중요한 역할을 했습니다. 이 챌린지에 참가한 다양한 연구 그룹이 새로운 딥러닝 아키텍처와 기술을 개발하고 최적화하여 모델의 정확도를 향상시켰습니다.

9. 딥러닝의 확산과 발전

- 가. 2010년대 후반부터 2020년대 초반까지 딥러닝 기술은 산업과 학계 모두에 큰 영향을 미치며, 자율 주행 자동차, 의료 진단, 자연어 처리 기술 등 다양한 분야에 적용되었습니다.
- 나. 대규모 데이터셋과 컴퓨팅 자원의 이용 가능성
 - 1) 딥러닝 모델은 대규모 데이터셋에서 학습되며, 이러한 데이터셋의 이용 가능성이 증가 함에 따라 딥러닝 모델의 성능도 향상되었습니다. 또한, GPU와 같은 고성능 컴퓨팅 자원의 발전은 딥러닝 모델을 효율적으로 학습하고 실행할 수 있는 환경을 제공했습니 다.
- 다. 딥러닝 소프트웨어 프레임워크의 발전
 - 1) TensorFlow, PyTorch, Keras 등의 딥러닝 소프트웨어 프레임워크의 등장은 딥러닝 모델을 쉽게 구축하고 실험할 수 있는 환경을 제공했습니다. 이러한 프레임워크는 딥 러닝 모델을 빠르고 효율적으로 개발하고 배포할 수 있게 해 주었습니다.
- 라. 전이 학습과 사전 훈련된 모델의 활용
 - 1) 전이 학습(Transfer Learning)은 사전에 훈련된 모델을 새로운 작업에 활용하는 기술 입니다. 이 기술은 작은 데이터셋이나 특정 작업에 대해 딥러닝 모델을 효율적으로 학 습시킬 수 있도록 도와주었습니다.
- 마. 다양한 응용 분야에서의 성공 사례
 - 1) 딥러닝은 이미지 인식, 음성 인식, 자연어 처리, 의료 진단, 자율 주행 등 다양한 분야에서 성공적으로 적용되었습니다. 이러한 성공 사례들은 딥러닝 기술의 가능성을 보여주었고, 더 많은 연구와 개발을 촉진했습니다.

