If G is a finite group and HCG a subgroup, then we have a redriction functor

Resy: Rep(G) -> Rep(H). In the opposite direction, how do rep's of H give rep's of G?

Answer: induced representations = rep. of G built from | C/H| many copies of a rep. of H,

assembled into a G-rep. according to the manner in which left mult by gEG acts on cosets of H.

Del: | A representation V of G with a subspace WCV which is invariant under

Defs | A representation V of G, with a subspace $W \subset V$ which is invariant under the subgroup $H \subset G$ (i.e. a subsequence of $\operatorname{Res}_{H}^{G} V$), is said to be induced by $W \in \operatorname{Rep}(H)$ if, as a vector space, $V = \bigoplus_{G \in G/H} \sigma W$. With $V = \operatorname{Ind}_{H}^{G} W$. i.e. fixing one element in each coset, $\sigma_{1,\dots, G} \in G$, we can write each $v \in V$ uniquely as $v = \sigma_{1} w_{1} + \dots + \sigma_{k} w_{k}$ for $w_{1,\dots, k} v_{k} \in W$.

Thm: Given a reprosertation W of H, the induced reprosertation $V = \operatorname{Ind}_{\mathcal{U}}^{G} W$ exists and is unique up to isomorphism of G-rep.

Pf: Uniqueness: given $V \in Rep(G)$ and $W \subset V$ invariant under H less $V = \bigoplus \sigma_i W$, necessarily $g \in G$ acts by mapping $\sigma_i W$ to $\sigma_j W$, where $g \in G$ is such that $g \in G$ acts $g \in G$, i.e. $g \in G$ and necessarily $g \in G$, $g \in G$, $g \in G$. This determines the G-action uniquely.

• Existence: build $V = \bigoplus_{i=1}^{m} G_i W$ where the G_i are now formal symbols lie. The direct sum of k = |G/H| opins of W), and make $g \in G$ act as above.

(Note: by construction, $din V = |G/H| \cdot din W)$.

Examples: 1) The permutation rep. associated to the left action of G on G/H is induced by the trivial representation of H. Included V has a Gasis $\{e_G\}_{G\in G/H}$; the basis element e_H (for the coset H) is fixed by H, so $W = \text{span}(e_H)$ is invariant under H, and $gW = \text{span}(e_{gH})$, with $V = \bigoplus_{gH \in G/H} \text{span}(e_{gH}) = \bigoplus_{gH \in G/H} gW$.

- 2) The regular rep. of G is induced by the regular rep. of H: here $W = span \{e_h, LEU\} \subset V = span \{e_g, g \in G\}$.
- · Fact: Ind (WOW') = Ind (W) ⊕ Ind (W'), but Ind (WOW') & Ind (W) @ Ind (W').

```
On the other hand, if U is a rep. of G and W a rep. of H, then [2]

Ind(Res(U)@W) = U @ Ind(W).

(indeed: Ind(W) = \bigoplus oW, so U@ Ind(W) = \bigoplus(U@oW) = \bigoplus o(U@W), set G/H

where U@W \subset U@ Ind(W) is invariant under H and = Res(U)@W as H-rep. ).

in particular: Ind(Res(U)) = U@ Ind(trivial) = U@ (pernut. rep. G/H).
```

We can achally calculate the character of an induced representation!

Chack representatives $\sigma_1,...,\sigma_k$ of easets of H as nowal; $g \in G$ maps $\sigma_i \cup G$ to $\sigma_j \cup G$. If $i \neq j$ then this doesn't contribute to $\operatorname{tr}(g)$. If $i \neq j$ then $h = \sigma_i^{-1} g \sigma_i \in H$ and g maps $\sigma_i \cup G$ to itself by $g(\sigma_i \cup G) = \sigma_i \cap G$, so $\operatorname{tr}(g|\sigma_i \cup G) = \operatorname{tr}(h|U) = \chi_U(h)$. Summing over $\sigma_i' : X_{Ind} \cup G = \sum_{\sigma_i \in G/H} \chi_U(\sigma_i^{-1} g \sigma_i) = \frac{1}{|H|} \sum_{s \in G} \chi_U(s^{-1} g s)$. St. $\sigma_i^{-1} g \sigma_i \in H$

• A key paperly for understanding induced reproclations is $\frac{1}{2}$ is a reproclation of G, and W a reproduct W a reproduct W and $W \to W$. Here every $W \to W$ is a reproduction of W and $W \to W$ is a reproduction of W and W is a $W \to W$ in W in W is a reproduction of W in W in W in W in W is W in W is W in W

Proof: Choose representatives $\sigma_{i,...,\sigma_{i}} \in G$ of the cosets of H, and let $V = Ind(W) = \bigoplus \sigma_{i}W$:

given $\varphi: W \to Reo(U)$ H-equivariant, if $\widetilde{\varphi}: V \to U$ is G-equivariant and $\widetilde{\varphi}_{|W} = \varphi$, then necessarily we have a common degran $W \xrightarrow{\varphi} U$ i.e. $\widetilde{\psi}_{|\sigma_{i}W}$ is given by $\widetilde{\varphi}(\sigma_{i}W) = \sigma_{i} \cdot \varphi(w)$ This determines $\widetilde{\varphi}$ uniquely.

To the the $\widetilde{\varphi}$ is G-equivariant, recall $g \in G$ acts on V by magazing $\sigma_{i}W$ to

To check $\tilde{\varphi}$ is Gequiariat, recall $g \in G$ acts on V by mapping $\sigma_i W$ to $\sigma_j W$ st. $g = \sigma_j h \in \sigma_j H$, via $g(\sigma_i w) = \sigma_j \cdot hw$. Given $\sigma_i w \in \sigma_i W$, $\tilde{\varphi}(g(\sigma_i w)) = \tilde{\varphi}(\sigma_j \cdot hw) = \sigma_j \cdot \varphi(hw) = \sigma_j h \varphi(w) = g \sigma_i \cdot \varphi(w) = g(\tilde{\varphi}(\sigma_i w))$. acting on U $\Rightarrow \tilde{\varphi}g = g \tilde{\varphi}$ on $\sigma_i W$ $\forall i$, hence on V.

So: φ does have a unique Gequivariat extension φ.

Conversely, given φf Homo(V, U), φ is Hequivariat, and hence

its restriction to WCV is Hequivariat. □

```
Compains dimensions, din Homa (...) = din Homa (...) =>
             Corollary (Frobenius reciprocity); \langle \chi_{Id} \, W, \chi_{U} \rangle_{G} = \langle \chi_{U}, \chi_{Res} \, U \rangle_{H}.
       Thus: if U is an ined up of G and W an irred up of H, then the number of times W appears in Res(U) is equal to the number of times U appears in Ind(W).
      Example: G=S4 > H=S3: redictions of irrd reps of S4 are
               • hinal: Res(U_4) = U_3
              · alterating: Res(U') = U'3
               · standard: Res(V4) = V2 @ U3
                   (since penut rep. C4 redicts to penut & trivial: Res (V4 & U4) = V3 & U3 & U3).

    V'<sub>4</sub> = V<sub>4</sub> @ U'<sub>4</sub>; Res (V'<sub>4</sub>) = V<sub>3</sub> ⊕ U'<sub>3</sub> (wing V<sub>3</sub> ⊗ U'<sub>3</sub> ≃ V<sub>3</sub>).

                · W (factors through Sy/{(ij)(kl)} = S3) : Res(W) = V3.
            (or instead of arguing explicitly, one can just use character tables!).
           So by Probenius reciprity, \operatorname{Ind}(V_3) = \bigoplus \text{ of the irred. reps of } S_4
\operatorname{red}_{i}\operatorname{chions} \text{ contain } V_3
(\text{this has dim. } 8 = 4.2) = V_4 \bigoplus V_4' \bigoplus W.
   Another example. H= <(1234)>= 2/4 = G= S4:
          the irred reps of H are 1-dimensional, with (1234) acting by a power of i
               U = divial, U1, U2, U3; (1234) ach by i,i2=-1, i3=-i.
 To find the induced representations, look at invedor of S4:
                                                                              e (12) (123) (1234) (12)(34)
  and the eigenvalues of (1234) & (1234) =- (13)(24)
                                                                            1 -1 1 -1
   UIG
   U/ -> Uz
                                                                              3 1 0 -1
                                \chi((13)/24) = -1 = \lambda_{i=}^{2} -1, -1, +1
                                                                                   -1 0 1
   V -> U, OU, OU, C
                              (χ(1234) = -1 => λ; = i,-i,-1
                                                                        W 2 0 -1 0
   V' \mapsto U_3 \oplus U_0 \oplus U_1
                                       W - Ug @ Uz
trubenius aciprocity =>
```

Ind(U_0) = $U \oplus V' \oplus W$ (: the permutation up of S_4 on S_{H}). Ind(U_1) = Ind(U_3) = $V \oplus V'$ Ind(U_2) = $U' \oplus V \oplus W$ (= $U' \otimes Ind(U_0)$, consider with $U_2 = Reo(U')$).

* Some of the key motivation for studying induced representations come from two deep theorems of Artin & Braner Thm (Artin) | Every character of a reproduction of G is a linear contination with rational coefficients of characters of reproductations induced from cyclic subgroups of G. Thm (Brane) | Every character of a representation of G is a linear continuation with integer coefficients of characters of representations induced from "elementary" Subgroups of G. where elementary = isomorphic to a product C×H, H pigmap |H|=pk

C cyclic = Z/n, p+n. (won't prove. See eg. Serré's "Reps. of finite groups") Real reprostations: we've shalled actions of finite groups on complex vector spaces, now we want to be the same for real ones. Le have a map { real rep-s V} -> { complex rg-ns} V₆ 1 → V=V₆@_R C = V₆⊕iV₆. (G acts by g(v+iw) = gv + i gw). Def: A complex up. V of G is called real if there exists a up on R, Vo, st. V=VOOC Necessary condition: χ_V must take real values! This is also not a sufficient cond? Ex: the quaternion group $Q = \{\pm 1, \pm i, \pm j, \pm k\}$, $i^2 = j^2 = k^2 = ijk-1$ acks on \mathbb{C}^2 by $\pm 1 \mapsto \pm \pm 1$, $\pm i \mapsto \pm \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $\pm j \mapsto \pm \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\pm k \mapsto \pm \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ $\chi(\pm 1) = \pm 2$, all others have $\chi = 0$: so χ takes real values. However his dres not come from a 2-dimensional real representation: Q 45 GL (2, R). (this is because a real reproductation of a finite group has an invariant inner product, by the same overaging bick as in the complex case, so we'd get QC > O(2), with -1 acting by -Id, but only 2 elements of O(2) square to -Id (notations by ± 90°) while we need 6 such elements for +i, +j, +k.) If Vo is a exposition of G on R, then it has an invavant inner product <;->. Extending, this yields a nondegenerate symmetric bilinear form on V= 60 p.C. We'll see: Thui An irreducible complex reprostation V of a finite grap G is real iff V caries a G-irvariant nondegenerate symmetric bilinear form.