2019 级导航工程《机器学习》课后习题(全)

第1章《机器学习概论》习题

一、名词解释

特征空间 *

特征向量 *

假设空间 *

奥卡姆剃刀

- * 二、如下图是通过 GDP 来对幸福度进行回归,蓝色点为已知样本,蓝色线表示回归曲线,请回答
 - (1) 该模型是"欠拟合"还是"过拟合"?
- (2)分别解释"欠拟合"、"过拟合"的定义,以及模型在欠拟合、或过拟合下对未知样本进行预测,会导致什么结果?
 - (3) 简单说明如何解决过拟合和欠拟合问题。

三、请说明监督学习和非监督学习的不同,并判断"聚类分析和降维算法"属于监督学习还是非监督学习,说明为什么。

四、论述回归和分类的差异

第2章《模型评估与选择》习题

一、名词解释

VC 维、经验误差*、泛化误差*、训练集*、测试集*、验证集*、查准率*、查全率*、偏差和方差*、平衡点、假正例率*、真正例率*、分层采样*、交叉验证法*、自助采样*

- 二、如数据集包含 1000 个样本,其中 500 个正例、500 个反例,将其划分为包含 70% 样本的训练集和 30%样本的测试集,请给出"留出法"评估中训练集和测试集所包含的正例和反例个数,并简要说明留出法评估需要遵循哪些原则
- 三、请根据下表的学习器对 10 个样本的预测结果,给出前五个为正例时的查准率和查全率,绘制出 10 个样本预测结果的 P-R 曲线,并分析平衡点与学习器性能的关系。

编号	Label	预测指标
1	正	0.98
2	正	0.95
3	正	0.91
4	负	0.87
5	正	0.85
6	负	0.70
7	负	0.55
8	负	0.22
9	负	0.13
10	负	0.07

*四、现在用已经训练好的学习器对 8 个测试样本(4 个正例, 4 个反例)进行预测, 假设预测结果为:

(s1, 0.77, +), (s2, 0.65, -), (s3, 0.56, +), (s4, 0.56, -),

(s5, 0.50, +), (s6, 0.30, +), (s7, 0.20, -), (s8, 0.15, -)

请画出8个测试样本的ROC曲线,并给出AUC的值。

五、请简要说明泛化误差可拆解为哪些因素?解释什么叫偏差-方差窘境?

第3章《贝叶斯分类器》习题

一、名称解释

后验概率*

损失函数*

朴素贝叶斯分类器*

贝叶斯估计

最大似然估计 (MLE)

- 二、贝叶斯估计和最大似然估计是估计类条件概率的两种策略,请简述它们的差异?
- 三、基于最小风险的 Bayes 决策里面条件风险和期望风险各是什么含义?简单阐述最小风险的 Bayes 决策和最小错误 Bayes 决策的差异?什么情况下两者是等价的?

四、请简要说说 EM 算法的思想。在贝叶斯分类中什么情况需要使用 EM 方法?

五、若已知先验概率 $p(\omega_1)$, $p(\omega_2)$,类条件概率密度 $p(x|\omega_1)$, $p(x|\omega_2)$,写出至少一种贝叶斯判别函数及其决策规则。

*六、假定对某一类人群进行疾病筛查,正常人群为 ω_1 ,患者为 ω_2 ,设正常和患者的先验概率为:

 $P(\omega_1)=0.9$, $P(\omega_2)=0.1$;现有一位被检查者,其观测值为x,从类条件概率密度曲线上查得 $P(x|\omega_1)=0.2$, $P(x|\omega_2)=0.4$,同时已知风险损失函数为

$$\begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix} = \begin{bmatrix} 0 & 6 \\ 1 & 0 \end{bmatrix}$$

试对该被检查者用以下两种方式进行分类:

用最小错误率的贝叶斯决策,并写出判别函数和决策方程;

用最小风险的贝叶斯决策,并写出判别函数和决策方程。

第4章 《线性模型》 习题

一、名词解释

线性回归*

广义线性模型*

逻辑斯谛回归 (Logistic Regression) *

线性判别分析(LDA)*

支持向量(SV)*

加权空间

梯度下降法*

非线性分割

二、对于线性回归,假设函数表示为 $h_w(x_0,x_1,...,x_n) = w_0x_0 + w_1x_1 + \cdots + w_nx_n + w_{n+1}$,其中 $w_i(i=0,1,...,n+1)$ 为模型参数。 $x_i(i=0,1,...,n)$ 为每个样本的n+1个特征值,共有m个样本。则对于该假设函数,损失函数可表示为:

$$J(w_0, w_1, \dots, w_n, w_{n+1}) = \frac{1}{2m} \sum_{j=1}^m (h_w(x_0^j, x_1^j, \dots, x_n^j) - y^j)^2$$

请给出使用梯度下降法优化该损失函数的算法过程。

*三、假设三个 $\omega_1, \omega_1, \omega_1$ 判别函数为:

$$\begin{cases} g_1(x) = -x_1 - x_2 + 5 \\ g_2(x) = -x_1 + 3 \\ g_3(x) = -x_1 + x_2 \end{cases}$$

请画图给出一对多情况下的判别边界,以及三个类别的判别区域,并判断样本(1,3) 及(4,5)的类别,如果不能确定其类别,请说明原因

四、计算题:假设现有二分类数据集X,根据类别可将其划分为两个子集 X_0 , $X_1 \in X$,请分别写出 LDA(Fisher 线性判别分析)求投影方向w的计算步骤和公式。

五、简述逻辑斯谛回归(Logistic Regression)中损失函数设计的思想,比较其与 线性回归基于均方误差最小化设计的损失函数有什么不同

第5章 《决策树》习题

一、名词解释

熵和条件熵*

信息增益*

信息增益率

基尼指数*

决策树剪枝

叶结点

- 二、简要说明一个决策树的生成过程?在决策树中为什么要进行特征选择?
- 三、请简述 ID3、C4.5、CART(分类)算法在最优属性划分方面的主要差异。
- 四、简要说明分类树和回归树的区别和联系。

*五、计算题

对下表分别用 ID3 和 CART 算法生成决策树 (要求写出详细的计算步骤)。

1 青年 否 否 一般 2 青年 否 否 好 3 青年 是 否 好 4 青年 是 好	况 类别
3 青年 是 否 好	否
	否
4 青年 是 是 好	是
	是
5 青年 是 非常好	是 是
6 青年 是 是 一般	是
7 青年 否 一般	否
8 中年 否 否 一般	否
9 中年 否 否 好	否
10 中年 是 是 好	是
11 中年 否 是 非常好	子 是
12 中年 否 是 非常好	是 是
13 中年 是 是 好	是
14 老年 否 是 非常好	是 是
15 老年 否 是 好	是
16 老年 是 否 好	是
17 老年 是 否 非常好	是 是
	否

第6章《集成学习和随机森林》习题

一、名词解释

同质集成

异质集成

基学习器*

平均法 (averaging) *

投票法 (Voting) *

堆叠法 (Stacking)

二、集成学习把多个学习器结合起来,如何能获得比最好的单一学习器更好的性能?请从准确性和多样性的角度进行分析。

三、在训练阶段,堆叠法中次级训练集是利用初级学习器产生的,若直接用初级学习器的训练集来产生次级训练集,存在过拟合风险,请简要阐述可采用什么策略避免堆叠法中的过拟合风险?

四*、给定如图表所示的训练样本,弱学习器采用平行于坐标轴的直线 h_1 、 h_2 和 h_3 ,请用 Adaboost 算法的实现强分类过程。

$$h_1 = \begin{cases} 1 & , X_1 < 2.5 \\ -1 & , X_1 > 2.5 \end{cases} , h_2 = \begin{cases} 1 & , X_1 < 8.5 \\ -1 & , X_1 > 8.5 \end{cases} , h_3 = \begin{cases} 1 & , X_2 > 6.5 \\ -1 & , X_2 < 6.5 \end{cases}$$

样本序号	1	2	3	4	5	6	7	8	9	10
样本点 X	(1,5)	(2,2)	(3,1)	(4,6)	(6,8)	(6,5)	(7,9)	(8,7)	(9,8)	(10,2)
类别 Y	1	1	-1	-1	1	-1	1	1	-1	-1

六、请从偏差-方差的角度分析 Boosting 和 Bagging 方法对泛化性能的影响?

第7章《维度归约》习题

一、名词解释

维数灾难*

欧氏距离

马氏距离

测地线(geodesic)距离

向量的内积*

特征值*

特征向量*

流形学习

- 二、简要说明"特征选择"与"特征提取"的区别和联系
- 三、线性降维和非线性降维的"线性"和"非线性"分别体现在哪里?

四、降维分析中涉及的投影矩阵通常要求是正交的。请问(1)正交投影矩阵相对于非正交投影矩阵用于降维的优点是什么? (2) 为什么在 PCA 中投影矩阵一定是正交的?

五*、参照教材图 6-11,绘制一个数据集示例,让 PCA 和 LDA 找到相同的好方向,另绘制一个数据集,让 PCA 和 LDA 都找不到一个好的投影方向

六*、计算题: 用 PCA 方法计算这 5 个二维样本数据 $\begin{pmatrix} -1 & -1 & 0 & 0 & 2 \\ -2 & 0 & 0 & 1 & 1 \end{pmatrix}$ 在一维主分量上的投影值

第8章《聚类》习题

一、名词解释

Jaccard 系数* 内部指标 外部指标 DB 指数核心对象* 密度直达 密度可达* 密度相连

- 二、k-means 算法与 kNN 方法的 k 分别指什么?这两个方法的主要区别是什么
- 三、距离是一种常用的数据相似度的度量函数,请写出四种距离计算的度量函数。
- 四、在聚类算法中,什么是性能度量?如何衡量聚类性能的优劣?

五*、对于下图的数据分类,宜采用什么类聚类算法? 其基本原理是什么? 该算法中有哪两个重要参数? 这两个参数的取值对聚类的结果有什么影响?

六、层次聚类法中如何计算两个类簇的相似度?

第9章、第10章《神经网络》、《深度学习》习题

一*、请根据 Tensorflow 提供的一个神经网络学习网页,解释下列名词的含义

- ① Ratio of training to test data (训练/测试集比例)
- ② Batch size (批数据大小)
- ③ Epoch (步数)
- ④ Learning rate (学习率)
- ⑤ Activation (激活函数)
- ⑥ Regularization (正则化)
- ⑦ Test loss 和 Training loss (测试损失和训练损失)
- 二、试回答感知器里的激活函数为什么要选用非线性函数?
- 三、试说明 PCA 降维方法与感知器的关联

四、 试说明 logistic 回归与感知器的关联

五*、根据下图 BP 神经网络,选择 sigmoid 函数作为激活函数,可知 v_{ih} 的梯度下降更新公式如下,试推导一下(sigmoid 函数具有以下性质: f'(x) = f(x)(1-f(x)))

$$\Delta v_{ih} = \eta e_h x_i$$

其中, $e_h = b_h (1 - b_h) \sum_{j=1}^l w_{hj} g_j$ $g_j = \hat{y}_j^k (1 - \hat{y}_j^k) (y_j^k - \hat{y}_j^k)$

 η 是学习率, \hat{y}_{i}^{k} 是第 k 个样本在第 j 个输出神经元上的输出值

六*、一个卷积神经网络的输入为 32x32x3 的图像,第一个隐藏层卷积核大小为 5x5,共 10 个卷积核。请问这一层总共含有多少参数(含偏置参数)?

七、CNN 中下采样(池化)的目的是什么,常见的池化策略有哪些?