Let Σ be some alphabet and R be the set of regular expressions on Σ .

Theorem 1

$$\forall L_1, L_2 \in \mathcal{P}(\Sigma^*), (L_1 \cdot L_2^*)^+ = L_1 \cdot (L_1 \cup L_2)^*$$

Theorem 2

$$\forall L_1, L_2 \in \mathcal{P}(\Sigma^*), (L_1 \cdot L_2^*)^* = L_1 \cdot (L_1 \cup L_2)^* \cup \{\varepsilon\}$$

Corollary 1

$$\forall r_1, r_2 \in R, L[(r_1 \cdot r_2^*)^+] = L[r_1 \cdot (r_1 + r_2)^*]$$

Corollary 2

$$\forall r_1, r_2 \in R, L[(r_1 \cdot r_2^*)^*] = L[r_1 \cdot (r_1 + r_2)^* + \varepsilon]$$

Proof of *Theorem 1*

Let $L_1, L_2 \in \mathcal{P}(\Sigma^*)$, we must show that $L_1 \cdot (L_1 \cup L_2)^* = (L_1 \cdot L_2^*)^+$:

First we will prove that $L_1 \cdot (L_1 \cup L_2)^* \subseteq (L_1 \cdot L_2^*)^+$ by proving the following proposition by induction on $n : \forall n \in \mathbb{N}, L_1 \cdot (L_1 \cup L_2)^n \subseteq \bigcup_{i=1}^{n+1} (L_1 \cdot L_2^*)^i$

(**Note**: \mathbb{N} is the set of **non-negative** integers).

Basis:

For n=0 we must show that $L_1\cdot (L_1\cup L_2)^0\subseteq \bigcup_{i=1}^1 (L_1\cdot L_2^*)^i$:

Since $\{\varepsilon\}\subseteq L_2^*$ we get that $L_1\cdot\{\varepsilon\}\subseteq L_1\cdot L_2^*$, But since $(L_1\cup L_2)^0=\{\varepsilon\}$ we get that $L_1\cdot (L_1\cup L_2)^0\subseteq L_1\cdot L_2^*$, Now since $\bigcup_{i=1}^1(L_1\cdot L_2^*)^i=(L_1\cdot L_2^*)^1=L_1\cdot L_2^*$ we

get $L_1 \cdot (L_1 \cup L_2)^0 \subseteq \bigcup_{i=1}^1 (L_1 \cdot L_2^*)^i$ as was to be shown.

Induction Hypothesis

Suppose that for some $n=k\in\mathbb{N}$ we have $L_1\cdot (L_1\cup L_2)^k\subseteq\bigcup_{i=1}^{k+1}(L_1\cdot L_2^*)^i$.

Induction Step

We must show that $L_{\bf l}\cdot (L_{\bf l}\cup L_{\bf 2})^{k+1}\subseteq\bigcup_{i=1}^{k+2}(L_{\bf l}\cdot L_{\bf 2}^*)^i$:

Let $w \in L_1 \cdot (L_1 \cup L_2)^{k+1}$, Since $L_1 \cdot (L_1 \cup L_2)^{k+1} = L_1 \cdot (L_1 \cup L_2)^k \cdot (L_1 \cup L_2)$ we get that $\exists u \in L_1 \cdot (L_1 \cup L_2)^k, v \in L_1 \cup L_2, w = u \cdot v$, Now since $u \in L_1 \cdot (L_1 \cup L_2)^k$ we get by the induction hypothesis that $u \in \bigcup^i (L_1 \cdot L_2^*)^i$,

And so $\exists i \in \{1,...,k+1\}, u \in (L_1 \cdot L_2^*)^i$.

Now since $v \in L_1 \cup L_2$ there are two cases: $v \in L_1 \lor v \in L_2$

(1) If $v \in L_1$ then since $L_1 \subseteq L_1 \cdot L_2^*$ we get that $v \in L_1 \cdot L_2^*$ and so $w = u \cdot v \in (L_1 \cdot L_2^*)^i \cdot (L_1 \cdot L_2^*)^1 = (L_1 \cdot L_2^*)^{i+1}$, Since $i \in \{1, ..., k+1\}$ we get that $i+1 \in \{2,...,k+2\}$. Now if we denote j=i+1 we get that $j \in \{2,...,k+2\} \subseteq \{1,...,k+2\}$, Thus we've shown that

$$\exists j \in \{1, ..., k+2\}, w \in (L_1 \cdot L_2^*)^j \text{ and so } w \in \bigcup_{i=1}^{k+2} (L_1 \cdot L_2^*)^i.$$

(2) If $v \in L_2$, Since $1 \le i$ we get that $(L_1 \cdot L_2^*)^i = (L_1 \cdot L_2^*)^{i-1} \cdot (L_1 \cdot L_2^*)^1$, Now because $u \in (L_1 \cdot L_2^*)^i = (L_1 \cdot L_2^*)^{i-1} \cdot (L_1 \cdot L_2^*)^1$ we get that $\exists x \in (L_1 \cdot L_2^*)^{i-1}, y \in (L_1 \cdot L_2^*)^1, u = x \cdot y$, Now since $y \in L_1 \cdot L_2^*$ and $v \in L_2$ we get that $y \cdot v \in (L_1 \cdot L_2^*) \cdot L_2 = L_1 \cdot (L_2^* \cdot L_2) = L_1 \cdot L_2^* \subseteq L_1 \cdot L_2^*$ and so $w = u \cdot v = x \cdot y \cdot v \in (L_1 \cdot L_2^*)^{i-1} \cdot (L_1 \cdot L_2^*) = (L_1 \cdot L_2^*)^i$, Now since $i \in \{1, ..., k+1\}$ and since $\{1,...,k+1\} \subseteq \{1,...,k+2\}$ we get that $i \in \{1,...,k+2\}$, Thus, we've shown that $\exists i \in \{1,...,k+2\}, w \in (L_1 \cdot L_2^*)^i$ and we can conclude that $w \in \bigcup^{k+2} (L_1 \cdot L_2^*)^i.$

From cases (1) and (2) we can conclude that it is always the case $w \in \bigcup_{i=1}^{n-1} (L_1 \cdot L_2^*)^i$ as was to be shown.

Now we can prove that $L_1 \cdot (L_1 \cup L_2)^* \subseteq (L_1 \cdot L_2^*)^+$:

Let $w \in L_1 \cdot (L_1 \cup L_2)^*$, Therefore, we get that $\exists n \in \mathbb{N}, w \in L_1 \cdot (L_1 \cup L_2)^n$, Now by the proposition we've just shown we get that

 $L_1 \cdot (L_1 \cup L_2)^n \subseteq \bigcup_{i=1}^{n+1} (L_1 \cdot L_2^*)^i \subseteq \bigcup_{i=1}^{\infty} (L_1 \cdot L_2^*)^i = (L_1 \cdot L_2^*)^+ \text{ , and so } w \in (L_1 \cdot L_2^*)^+ \text{ as was to be shown.}$

Now we will prove that $(L_1 \cdot L_2^*)^+ \subseteq L_1 \cdot (L_1 \cup L_2)^*$ by proving the following proposition by induction on $n : \forall n \in \mathbb{Z}^+, (L_1 \cdot L_2^*)^n \subseteq L_1 \cdot (L_1 \cup L_2)^*$

(**Note**: \mathbb{Z}^+ is the set of **positive** integers).

Basis:

For n=1 we must show that $(L_1 \cdot L_2^*)^1 \subseteq L_1 \cdot (L_1 \cup L_2)^*$:

Since $L_2 \subseteq L_1 \cup L_2$ we get that $L_2^* \subseteq (L_1 \cup L_2)^*$ and so $L_1 \cdot L_2^* \subseteq L_1 \cdot (L_1 \cup L_2)^*$.

Induction Hypothesis

Suppose that for some $n = k \in \mathbb{Z}^+$ we have $(L_1 \cdot L_2^*)^k \subseteq L_1 \cdot (L_1 \cup L_2)^*$.

Induction Step

We must show that $(L_1 \cdot L_2^*)^{k+1} \subseteq L_1 \cdot (L_1 \cup L_2)^*$:

Since in the basis case we've shown that $L_1 \cdot L_2^* \subseteq L_1 \cdot (L_1 \cup L_2)^*$, And in the induction hypothesis we supposed that $(L_1 \cdot L_2^*)^k \subseteq L_1 \cdot (L_1 \cup L_2)^*$,

We can conclude that:

$$\begin{split} &(L_{1} \cdot L_{2}^{*})^{k+1} = (L_{1} \cdot L_{2}^{*}) \cdot (L_{1} \cdot L_{2}^{*})^{k} \subseteq L_{1} \cdot (L_{1} \cup L_{2})^{*} \cdot L_{1} \cdot (L_{1} \cup L_{2})^{*} \subseteq \\ &\subseteq L_{1} \cdot (L_{1} \cup L_{2})^{*} \cdot (L_{1} \cup L_{2}) \cdot (L_{1} \cup L_{2})^{*} = L_{1} \cdot (L_{1} \cup L_{2})^{+} \subseteq L_{1} \cdot (L_{1} \cup L_{2})^{*} \\ &\text{as was to be shown.} \end{split}$$

Now we will show that $(L_1 \cdot L_2^*)^+ \subseteq L_1 \cdot (L_1 \cup L_2)^*$:

Let $w \in (L_1 \cdot L_2^*)^+$, Therefore $\exists n \in \mathbb{Z}^+, w \in (L_1 \cdot L_2^*)^n$, and by the proposition we've just shown we get $w \in L_1 \cdot (L_1 \cup L_2)^*$ as was to be shown.

From the two set inclusions we've just shown we can conclude that $L_1 \cdot (L_1 \cup L_2)^* = (L_1 \cdot L_2^*)^+$ as was to be shown.

Q.E.D.

Proof of Theorem 2

Let $L_1, L_2 \in \mathcal{P}(\Sigma^*)$, we must show that $L_1 \cdot (L_1 \cup L_2)^* \cup \{\varepsilon\} = (L_1 \cdot L_2^*)^*$:

Since $(L_1 \cdot L_2^*)^* = (L_1 \cdot L_2^*)^0 \cup (L_1 \cdot L_2^*)^+ = \{\varepsilon\} \cup (L_1 \cdot L_2^*)^+$ and since $L_1 \cdot (L_1 \cup L_2)^* = (L_1 \cdot L_2^*)^+$ by *Theorem 1*, we can conclude that $(L_1 \cdot L_2^*)^* = (L_1 \cdot L_2^*)^+ \cup \{\varepsilon\} = L_1 \cdot (L_1 \cup L_2)^* \cup \{\varepsilon\}$ as was to be shown.

Q.E.D.

Proof of Corollary 1

Let $r_1, r_2 \in R$ be some regular expressions, we must show that $L[(r_1 \cdot r_2^*)^+] = L[r_1 \cdot (r_1 + r_2)^*]$:

Since $L[(r_1 \cdot r_2^*)^+] = L[r_1 \cdot r_2^*]^+ = (L[r_1] \cdot L[r_2^*])^+ = (L[r_1] \cdot L[r_2]^*)^+$ and $L[r_1 \cdot (r_1 + r_2)^*] = L[r_1] \cdot L[(r_1 + r_2)^*] = L[r_1] \cdot L[r_1 + r_2]^* = L[r_1] \cdot (L[r_1] \cup L[r_2])^*$, And since by $\underline{\textit{Theorem 1}}$ we get $(L[r_1] \cdot L[r_2]^*)^+ = L[r_1] \cdot (L[r_1] \cup L[r_2])^*$, we can conclude that $L[(r_1 \cdot r_2^*)^+] = L[r_1 \cdot (r_1 + r_2)^*]$ as was to be shown.

Q.E.D.

Proof of Corollary 2

Let $r_1, r_2 \in R$ be some regular expressions, we must show that $L[(r_1 \cdot r_2^*)^*] = L[r_1 \cdot (r_1 + r_2)^* + \varepsilon]$:

Since
$$L[(r_1 \cdot r_2^*)^*] = L[r_1 \cdot r_2^*]^* = (L[r_1] \cdot L[r_2^*])^* = (L[r_1] \cdot L[r_2]^*)^*$$
 and $L[r_1 \cdot (r_1 + r_2)^* + \varepsilon] = L[r_1 \cdot (r_1 + r_2)^*] \cup L[\varepsilon] = L[r_1] \cdot L[(r_1 + r_2)^*] \cup \{\varepsilon\} = L[r_1] \cdot L[r_1 + r_2]^* \cup \{\varepsilon\} = L[r_1] \cdot (L[r_1] \cup L[r_2])^* \cup \{\varepsilon\},$ And since by $\underline{\textbf{Theorem 2}}$ we get $(L[r_1] \cdot L[r_2]^*)^* = L[r_1] \cdot (L[r_1] \cup L[r_2])^* \cup \{\varepsilon\}$, we can conclude that $L[(r_1 \cdot r_2^*)^*] = L[r_1 \cdot (r_1 + r_2)^* + \varepsilon]$ as was to be shown.

Q.E.D.