Logistische Regression

Prof. Dr. Karsten Lübke

SoSe 2017

Modellierung

$$y = f(x) + \epsilon$$

Hier nur für eine unabhängige Variable:

- ▶ Lineare Regression: abhängige Variable *y* numerisch:
 - $y_i = \beta_0 + \beta_1 \cdot x_i + \epsilon_i$
- ▶ Logistische Regression: abhängige Variable y binär, d. h., kategorial mit zwei Merkmalsausprägungen $y_i \in \{0,1\}$. p_i sei die Wahrscheinlichkeit, dass $y_i = 1$, dann:

$$logit(p_i) = ln(\frac{p_i}{1-p_i}) = \beta_0 + \beta_1 \cdot x_i$$

- Kunde/ kein Kunde
- Abwanderung Ja/ Nein
- Raucher/ Nichtraucher
- Kreditausfall Ja/ Nein

Analyse Extraversion

Extraversionstest nach Dr. Satow, angepasst von Prof. Dr. Sebastian Sauer.

Fragebogen: http://bit.ly/1HBhKWU

Analyse Extraversionsdaten: Alternative Einlesen

Menü RStudio:

File -> Import Dataset-> From Excel ...

Datei "Extraversion.xlsx" auswählen (Browse) -> Import

Analyse Extraversionsdaten: Einlesen

```
# Gqqfs. Einmaliq vorab installieren
# install.packages("readxl")
# Paket zum Einlesen von Excel Dateien laden
library(readxl)
# Daten einlesen
# Daten "Extraversion.xls" einlesen
# und als Datensatz "Extraversion" in R speichern
# Achtung: Pfad zur Datei anpassen
Extraversion <- read_excel("Extraversion.xlsx")</pre>
```

Bereitschaft sich freiwillig zur Messe zu melden

Modellierung durch die Anzahl Facebook-Freunde.

Modellierung Logit

$$p(y=1) = \frac{e^{\eta}}{1 + e^{\eta}} = \frac{e^{\beta_0 + \beta_1 \cdot x_i}}{1 + e^{\beta_0 + \beta_1 \cdot x_i}} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 \cdot x_i)}}$$

Schätze β anhand der Daten: $\hat{\beta}$:

- $\beta > 0$: Wahrscheinlichkeit steigt
- \triangleright β < 0: Wahrscheinlichkeit fällt

Vorbereitung: Modellierung Messebesuch

R modelliert y anhand der Faktorstufen: In der logistischen Regression ist die erste Ausprägung die 0, alle weiteren 1

```
## [1] "nein" "ja"
```

Logistische Regression: Messebesuch

Ergebnis Logistische Regression

```
summary(ergglm)
```

##

##

```
## Call:
## glm(formula = F18_Messe ~ F12_Facebook, family = binomis
## data = Extraversion)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.259 -1.071 -1.028 1.274 1.334
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
```

---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.3

(Intercept) -0.3616264 0.1719854 -2.103 0.0355 * ## F12 Facebook 0.0004245 0.0004381 0.969 0.3326

Regressionskoeffizienten

				Pr(>
(Intercept) -	0.3616264	0.1719854	-2.1026571	0.03549
F12_Facebook	0.0004245	0.0004381	0.9689802	0.33255

Übung 1: Regressionskoeffizienten

Welche der folgenden Aussagen stimmt?

- A: In der Stichprobe steigt die Bereitschaft sich freiwillig zur Messe zu melden mit der Anzahl der Facebook-Freunde
- ▶ B: In der Stichprobe sinkt die Bereitschaft sich freiwillig zur Messe zu melden mit der Anzahl der Facebook-Freunde
- ➤ C: In der Stichprobe ist die Bereitschaft sich freiwillig zur Messe zu melden unverändert mit der Anzahl der Facebook-Freunde

Bootstrap Regressionkoeffizient (I/II)

Bootstrap Regressionkoeffizient (II/II)

histogram(~ F12_Facebook, data = Bootvtlg)


```
## 2.5% 97.5%
## -0.0004170976 0.0013528616
```

Übung 2: Inferenz: Nullhypothese

Wie lautet die Nullhypothese, wenn die Variable x keinen Einfluss auf p(y=1) in der Population hat:

- A: $H_0: \beta_1 = 0$
- ▶ B: H_0 : $\beta_1 = 1$
- C: $H_0: \hat{\beta}_1 = 0$
- ▶ D: H_0 : $\hat{\beta}_1 = 1$

Permutationstest Regressionskoeffizient (I/II)

Permutationstest Regressionskoeffizient (II/II)

```
histogram( ~ F12_Facebook, data = Nullvtlg)
```



```
## TRUE
## 0.3298
```

Übung 3: Inferenz Anzahl Facebook Freunde

Liefern die Daten Belege dafür, einen Zusammenhang zwischen der Anzahl Facebook-Freunde und der Bereitschaft sich freiwillig zur Messe zu melden in der Population zu zeigen (Forschungsthese)?

- Ja.
- Nein.

Modellierung Messebesuch durch Alter

```
ergglm2 <- glm(F18_Messe ~ F14_Alter,
              data = Extraversion,
              family = binomial("logit"))
summary(ergglm2)
##
## Call:
```

Max

Estimate Std. Error z value Pr(>|z|)

```
## glm(formula = F18 Messe ~ F14 Alter, family = binomial(
      data = Extraversion)
##
```

-1.199 -1.071 -1.035 1.278 1.336

Min 10 Median 30

##

##

##

Deviance Residuals:

Coefficients:

Koeffizienten Modellierung Messebesuch durch Alter

	Estimate	Std. Error	z value	Pr(> z
(Intercept) F14_Alter	-0.7827803 0.0219464	0.6752712 0.0266934	-1.1592087 0.8221656	0.246371 0.410982

Übung 4: Ergebnis Modellierung Messebesuch durch Alter

Wer hat im Modell die höchste Wahrscheinlichkeit sich freiwillig zur Messe zu melden?

- ► A: Max, 20 Jahre
- ▶ B: Tina, 24 Jahre
- C: Susi, 30 Jahre

Übung 5: Inferenz Modellierung Messebesuch durch Alter

Ist in dem Modell der Einfluss der Variable F14_Alter signifikant?

- ► Ja.
- ► Nein.

Vorhersagen Logistische Regression

Für Susi, 30 Jahre:

```
## 1
## 0.4689432
```

Modellierung Messebesuch durch Geschlecht

10 Median

-1.2392 -0.9809 -0.9809 1.1168 1.3875

30

Estimate Std. Error z value Pr(>|z|)

-0 4815 0 1459 -3 300 0 000968

Max

```
##
## Call:
## glm(formula = F18_Messe ~ F15_Geschlecht, family = binor
```

data = Extraversion)

Deviance Residuals:

Min

Coefficients:

(Intercent)

##

##

##

##

Koeffizienten Modellierung Messebesuch durch Geschlecht

Estimate	Std. Error	z value	
-0.4814510	0.1459040	-3.299780	(
0.6257006	0.2312028	2.706285	(
	-0.4814510	-0.4814510 0.1459040	-0.4814510

Übung 6: Ergebnis Modellierung Messebesuch durch Geschlecht

Wer hat im Modell die höchste Wahrscheinlichkeit sich freiwillig zur Messe zu melden?

► A: Max

▶ B: Tina

▶ C: Beide gleich

Übung 7: Inferenz Modellierung Messebesuch durch Geschlecht

Kann im Modell die Nullhypothese $\beta_{\rm F15_Geschlecht}=0$ verworfen werden?

- ► Ja.
- ► Nein.

Odds Ratio

$$\mathit{OR} = rac{rac{\mathit{p}_{\mathsf{Mann}}}{1 - \mathit{p}_{\mathsf{Mann}}}}{rac{\mathit{p}_{\mathsf{Frau}}}{1 - \mathit{p}_{\mathsf{Frau}}}}$$

```
exp(coef(ergglm3))
```

```
## (Intercept) F15_GeschlechtMann
## 0.6178862 1.8695554
```

Die Chance, dass sich ein Mann freiwillig meldet ist 1.87 mal so groß wie die einer Frau.

Multiple Logistische Regression

Coefficients:

```
ergglm4 <- glm(F18_Messe ~ F14_Alter
               + F15_Geschlecht
               + F12_Facebook,
              data = Extraversion,
              family = binomial("logit"))
summary(ergglm4)
##
## Call:
```

```
family = binomial("logit"), data = Extraversion)
##
##
## Deviance Residuals:
##
      Min
               10 Median
                                30
                                        Max
```

```
## glm(formula = F18 Messe ~ F14 Alter + F15 Geschlecht + 1
```

-1.3645 -1.0245 -0.9356 1.1868 1.4687

Koeffizienten Multiple Logistische Regression

	Estimate	Std. Error	z value	
(Intercept)	-1.1901749	0.7730309	-1.5396214	
F14_Alter	0.0234367	0.0287012	0.8165753	
F15_GeschlechtMann	0.5879846	0.2340288	2.5124453	
F12_Facebook	0.0004693	0.0004675	1.0040207	

Übung 8: Ergebnis Multiple Logistische Regression

Welche Variablen erhöhen die Wahrscheinlichkeit im Modell, dass sich die Person freiwillig zur Messe meldet?

- A: Nur steigendes Alter
- ▶ B: Nur Geschlecht Mann
- C: Nur steigende Anzahl Facebook-Freunde
- D: Alle Variablen
- ► E: Keine der Variablen

Übung 9: Inferenz Multiple Logistische Regression

Welche Variablen sind signifikant?

- A: Nur Alter
- B: Nur Geschlecht
- C: Nur Anzahl Facebook-Freunde
- D: Alle Variablen
- E: Keine der Variablen

Offene Übung: Modellierung Geschlecht

Modellieren Sie die Wahrscheinlichkeit, dass es sich bei einer Person um eine Frau handelt als Funktion der Variablen F12_Facebook, F13_Kater, F19_Partybesuche.