

PART 1 COMBINATORIAL THEORY

(Lý thuyết tổ hợp)

PART 2 GRAPH THEORY

(Lý thuyết đồ thị)

Contents

- 1. Problem description and applications
- 2. Cut (Lát cắt)
- 3. Residual graph and Augmenting path
- 4. Ford-Fulkerson algorithm
- 5. Edmond-Karp algorithm
- 6. Some applications

Network (Mang)

Network is a directed graph G = (V, E):

- There is only one vertex s without any incoming arcs, called source vertex (đỉnh phát/nguồn) and only vertex t without any outgoing arcs called target vertex (đỉnh thu/đích).
- Each edge e of G is assigned a nonnegative value c(e) which is called capacity of e.

Example:

Flow in network (Luồng trong mạng)

Definition. Flow f in network G=(V,E) is to assign value f(e) on each edge e(f(e)) is flow on edge e) so that following conditions are satisfied:

1) Capacity rule:

For each edge e, $0 \le f(e) \le c(e)$

2) Conservation Rule (Điều kiện cân bằng luồng): Each $v \neq s$, t

$$\sum_{e \in E^{-}(v)} f(e) = \sum_{e \in E^{+}(v)} f(e)$$

 $E^{-}(v)$ and $E^{+}(v)$ are sets of arcs entering and leaving vertex v, respectively.

Conditions 1) and 2) are satisfied => f is flow in network

e.g. oil flowing through pipes, internet routing

Flow in network: Example

Example:

- 2 values on each edge: value of flow on edge is in red, the other is capacity of edge.
- Conditions 1) and 2) are satisfied \Rightarrow f is flow on the network.
- Value of flow:

$$8 = f(s,v) + f(s,u) + f(s,w) = f(v,t) + f(w,t) + f(z,t)$$

$$val(f) = \sum_{e \in E^{+}(s)} f(e) = \sum_{e \in E^{-}(t)} f(e)$$

Flow in network (Luồng trong mạng)

Definition. Flow f in network G=(V,E) is to assign value f(e) on each edge e (f(e)) is flow on edge e) so that following conditions are satisfied:

1) Capacity rule:

For each edge e, $0 \le f(e) \le c(e)$

2) Conservation Rule (Điều kiện cân bằng luồng): Each $v \neq s$, t

$$\sum_{e \in E^{-}(v)} f(e) = \sum_{e \in E^{+}(v)} f(e)$$

Definition. Value of flow f is

Edges going out of s

Edges going into t

(Equation (*) is obtained by summing up all the conservation rules.)

Flow in network (Luồng trong mạng)

Definition. Flow f in network G=(V,E) is to assign value f(e) on each edge e (f(e)) is flow on edge e) so that following conditions are satisfied:

1) Capacity rule:

For each edge e, $0 \le f(e) \le c(e)$

2) Conservation Rule (Điều kiện cân bằng luồng): Each $v \neq s$, t

$$\sum_{e \in E^{-}(v)} f(e) = \sum_{e \in E^{+}(v)} f(e)$$

Definition. Value of flow f is

$$val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e)$$

Edges going out of s

Edges going into t

(Equation (*) is obtained by summing up all the conservation rules.)

Maximum Flow problem

A flow in network G is called maximum flow (luong cuc đại) if among all flows in G, it is the one having maximum value.

Maximum flow problem is the problem aiming to determine a feasible flow through the network with maximum value

Some applications

Network	Vertex	Arc	Flow
Network	transaction stations, computers, satellites	cables	voice, video, packets
Electrical network	gates, registers, processors	conductors	Power circuit
Mechanical	joints	rods, beams, springs	heat, energy
Irrigation	pumping stations, water source	pipelines	Liquid, water
Finance	bank	transitions	money
Traffic	airport, station	highways, flights	Goods, customers
Chemistry	sites	bonds	energy
THE R			

Applications

- Some general flow problems:
 - The problem with multiple sources and sinks
 - The problem with limited capacities at nodes
- Airline scheduling
- Image segmentation
- Bipartite matching
- Data mining
- Project selection
- Network connectivity

•

Contents

- 1. Problem description and applications
- 2. Cut (Lát cắt)
- 3. Residual graph and Augmenting path
- 4. Ford-Fulkerson algorithm
- 5. Edmond-Karp algorithm
- 6. Some applications

Flow through the cut (Luồng chảy qua lát cắt) Definition. Assume f is a flow in network and (S,T) is a cut. We call value of flow through the cut (S,T) is the value 10+8+10 4 where: $S \rightarrow T = \{(v, w) \in E: v \in S, w \in T\}$ $S = \{s,3,4,7\}$ $T \rightarrow S = \{(v, w) \in E : v \in T, w \in S\}$ $T = \{2,5,6,t\}$ Flow through the cut (S, T) = ???Example 2 •(5) 15 15 ⁰ 10 (10) 150

Flow and cut

Lemma 1. Assume f is flow, and (S, T) is a cut. Then flow through this cut is equal to the value of flow f:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e) = val(f)$$

Flow and cut

Lemma 2. Assume f is a flow, (S, T) is a cut. Then $val(f) \le cap(S, T)$.

Proof

$$val(f) = \sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$

$$\leq \sum_{e \in S \to T} f(e)$$

$$\leq \sum_{e \in S \to T} c(e)$$

$$= cap(S,T)$$

Flow and cut

Lemma 1. Assume f is flow, and (S, T) is a cut. Then flow through this cut is equal to the value of flow f:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^+(s)} f(e) = val(f)$$

Proof: Sum of all flow conservation condition for all vertex v∈S:

Max Flow and Min Cut (Luồng cực đại và lát cắt nhỏ nhất)

Corollary. Assume f is a flow, (S, T) is a cut. If val(f) = cap(S, T), then f is maximum flow and (S, T) is minimum cut.

The flow in network G is called maximum flow if among all flows in G, its value is maximum

Minimum cut: the cut of minimum capacity

Proof: Consider f' is arbitrary flow and (S',T') is arbitrary cut.

Using Lemma 2, we have: Assumption 1 cmma 2 $\operatorname{val}(f') \le \operatorname{cap}(S,T) = \operatorname{val}(f) \le \operatorname{cap}(S',T')$

Lenima 2. Assume flow, and flow is a cut. Then $val(f) \le val(f)$ $val(f) \le cap(S, T)$

(S', T') is arbitrary cut $\operatorname{cap}(S,T) \le \operatorname{cap}(S',T')$

(S,T) is min cut

Value of flow f is $val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e)$ val(f) = 10+4+14 = 9+9+10=28 $S = \{s, 3, 4, 7\}$ $T = \{t, 2, 5, 6\}$ Cut is a partition vertex set into 2 disjoint sets S and T with $s \in S$, $t \in T$.

- Capacity cap(S, T) of cut (S, T) is value: cap(S, T) = 10+8+10 = 28 $cap(S, T) = \sum_{e \in S \to T} c(e),$ where $S \to T := \{(v, w) \in E : v \in S, w \in T\}$ - Flow through the cut (S, T) is the value $\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$ where: $S \to T = \{(v, w) \in E : v \in S, w \in T\}$ $T \to S = \{(v, w) \in E : v \in T, w \in S\}$ Lemma 1. Amount of low through the cut is equal to value of flow: $\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^+(s)} f(e) = val(f)$

(S, T) is min cut.

If val(f) = cap(S, T), then f is max flow and

Lemma 2. Value of flow is less than or equal to capacity of cut: $val(f) \le cap(S, T)$.

Value of flow
$$f$$
 is $val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e)$ val $(f) = 10+4+14 = 9+9+10=28$

Cut is a partition vertex set into 2 disjoint sets S and T with $S \in S$, $t \in T$.

- Capacity $Cap(S,T)$ of cut (S,T) is value:

$$cap(S,T) = \sum_{e \in S \to T} c(e),$$

Where $S \to T := \{(v,w) \in E : v \in S, w \in T\}$
- Flow through the cut (S,T) is the value

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$
where: $S \to T = \{(v,w) \in E : v \in S, w \in T\}$

$$T \to S = \{(v,w) \in E : v \in T, w \in S\}$$
Lemma 1. Amount of low through the cut is equal to value of flow:

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e) = \sum_{e \in E^+(s)} f(e) = val(f)$$
Lemma 2. Value of flow is less than or equal to capacity of cut:
$$val(f) \le cap(S,T).$$
If $val(f) = cap(S,T)$, then f is max flow and

(S, T) is min cut.

Value of flow f is

$$val(f) = \sum_{e \in E^+(s)} f(e) = \sum_{e \in E^-(t)} f(e)$$

$$val(f) = 10 + 4 + 10 = 6 + 8 + 10 = 24$$

Cut is a partition vertex set into 2 disjoint sets S and T with $s \in S$, $t \in T$.

- Capacity cap(S,T) of cut (S,T) is value: Min cut is the cut with min capacity. $cap(S,T) = \sum_{e \in S \to T} c(e),$

where $S \rightarrow T := \{(v, w) \in E : v \in S, w \in T\}$

- Flow through the cut (S, T) is the value

$$\sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$

where: $S \to T = \{(v, w) \in E: v \in S, w \in T\}$ $T \to S = \{(v, w) \in E: v \in T, w \in S\}$

Lemma 1. Amount of low through the cut is equal to value of flow:

$$\sum_{e \in S \rightarrow T} f(e) - \sum_{e \in T \rightarrow S} f(e) = \sum_{e \in E^+(s)} f(e) = val(f)$$

Lemma 2. Value of flow is less than or equal to capacity of cut:

 $\operatorname{val}(f) \leq \operatorname{cap}(S, T)$.

If val(f) = cap(S, T), then f is max flow and (S, T) is min cut.

Contents

- 1. Problem description and applications
- 2. Cut
- 3. Residual graph and Augmenting path
- 4. Ford-Fulkerson algorithm
- 5. Edmond-Karp algorithm
- 6. Some applications

Find path P from s to t such that each edge e satisfies f(e) < c(e)

Augument flow along P.

Repeat until can not find P

s->4->3->t ??? s->2->5->t ???

Value of flow = 10

Theorem about maximum flow and minimum cut

Augmenting path Theorem (Ford-Fulkerson, 1956): Flow is maximum if and only if there does not exist augmenting path on network.

Max flow and min cut Theorem (Ford-Fulkerson, 1956): the maximum possible flow in a network (from source to sink) is exactly equal to the minimum capacity of all possible cuts.

We will prove the following Theorem:

Theorem. Assume f is a flow in network. The following three statements are equivalent

- (i) Can find the cut (S, T) such that val(f) = cap(S, T).
- (ii) f is maximum flow.
- (iii) Could not find augmenting path to augment value flow f.

Prove theorem

Prove.

- (i) Can find the cut (S, T) such that val(f) = cap(S, T).
- $(i) \Rightarrow (ii)$
- (ii) f is max flow.
- Proved by using Lemma 2.

Lemma 2. Assume f is a flow, and (S, T) is a cut. Then $val(f) \le cap(S, T)$

- (ii) ⇒ (iii)
- (iii) Can not find any augmenting path to augment value of *f*.
- Proof by Contrapositive: If can find an augmenting path, then f is not the maximum flow.
- Indeed, if we could find a augmenting path P, then we augment value of flow f along P to obtain the flow f' with a greater value.

Prove theorem

- $(iii) \Rightarrow (i)$
- (iii) Can not find any augmenting path to augment value of *f*.
- (i) Can find cut (S, T) such that val(f) = cap(S, T).
- Assume (iii) \rightarrow f is flow and G_f does not contain any path from s to t.
- Let S the set of vertices reached from s in G_f
- − From this definition about $s \in S$, and assumption (iii) $\Rightarrow t \notin S$
- Therefore, network flow f on each each e∈G must be

$$f(e) = 0, e \in T \rightarrow S,$$

$$f(e) = c(e), e \in S \rightarrow T$$

Ihen

$$val(f) = \sum_{e \in S \to T} f(e) - \sum_{e \in T \to S} f(e)$$
$$= \sum_{e \in S \to T} c(e)$$
$$= cap(S, T)$$

Given network G

Contents

- 1. Problem description and applications
- 2. Cut
- 3. Residual graph and Augmenting path
- 4. Ford-Fulkerson algorithm
- 5. Edmond-Karp algorithm
- 6. Some applications

Computation time

Question: Is the Ford-Fulkerson algorithm a polynomial algorithm? (algorithm with computation time is bounded by a fixed degree polynomial of the input length)

• Answer: Not at all. If the maximum capacity is C then the algorithm may have to do C iterations.

The following example shows how the algorithm can take a lot of iteration

Ford – Fulkerson algorithm Augmenting flow f along path P float Augment(f,P) $b \leftarrow c_f(P)$ FOR e ∈ P IF (e ∈ E) // cạnh thuận $f(e) \leftarrow f(e) + b$ // cạnh nghịch $f(e^R) \leftarrow f(e) - b$ Ford-Fulkerson algorithm FOR $e \in E$ // initialize flow f to 0 f(e) ← 0 $G_f \leftarrow residual graph for f$ WHILE (there exists an augmenting path P) $f \leftarrow Augment(f, P)$ Update residual graph G, RETURN f

Computation time

Question: Is the Ford-Fulekerson algorithm a polynomial algorithm? (algorithm with computation time is bounded by a fixed degree polynomial of the input length)

• Answer: Not at all. If the maximum capacity is C then the algorithm may have to do C iterations.

If the capacities of arcs on network is real, there is an example that the Ford-Fulkerson algorithm does not stop.

Zwick constructs examples showing that the algorithm may not stop, if the capacity of arcs is irrational

Assumption: All capacities on arcs are integers in the range [0, C].

Immutability: Each value of flow value f(e) and capacity $c_f(e)$ are always integer during algorithm execution.

Theorem: F-F algorithm stops after not more than val(f^*) $\leq nC$ iterations.

Proof.

After each augmenting flow, value of flow is augmented by at least 1

Corollary. Computation time of Ford-Fulkerson algorithm is O(m.n.C)

Corollary. If C = 1, then the computation time of algorithm is O(mn).

Example: Ford – Fulkerson algorithm does not terminate

Zwick constructs examples showing that the algorithm may not stop, if the capacity of arcs is irrational

There are 6 arcs with capacity = X, 2 arcs with capacity = 1 and one arc with capacity = $\phi = (\sqrt{5}-1)/2 \approx 0.618034...$

Contents

- 1. Problem description and applications
- 2. Cut
- 3. Residual graph and Augmenting path
- 4. Ford-Fulkerson algorithm
- 5. Edmond-Karp algorithm
- 6. Some applications

How to select the augmenting path?

Be careful when select augmenting path, because

- Several options may lead to an exponential algorithm.
- Smart choice leads to polynomial algorithm.
- If capacity is irrational number, the algorithm may not stop

The goal: select augmenting path such that:

- Can find the augmenting path effectively.
- The algorithm requires as few iterations as possible..

Select augmenting path with

- Maximum capacity. (fat path đường béo)
- Capacity is large enough. (capacity scaling)
- → The number of edges along the way is the least. (shortest path)

Edmond-Karp algorithm

Applying BFS

5. Edmonds – Karp Algorithm Edmonds and Karp, *JACM* 1972 If the augmenting path is the shortest path from *s* to *t*, then the computation time of the algorithm is O(|E|² |V|).

Applications

- Some general flow problems:
 - The problem with multiple sources and sinks
 - The problem with limited capacities at nodes
- Airline scheduling
- · Image segmentation
- · Bipartite matching
- Data mining
- Project selection
- Network connectivity
- ٠...

Network with multi-sources and multi-sinks

- \square Network G has p sources $s_1, s_2, ..., s_p$ with capacities of $a_1, a_2, ..., a_p$ and q sinks $t_1, t_2, ..., t_q$ with capacities of $b_1, b_2, ..., b_q$
- ☐ Assume that flow can go from any source to all sinks
- □Find the max flow from sources to sinks in this network

Network with multi-sources and multi-sinks

- Add a supersource s and a supersink t and edges connecting s to all sources, edges connecting all sinks to t
- Capacity of arc (s, s_i) is equal to capacity of s_i
- Capacity of arc (t_i, t) is equal to capacity of t_i

The problem reduces to the single source single sink network

The problem with limited capacities at nodes

Network G, besides capacity on each arc c(u, v), at each vertex $v \in V$: there is a capacity of vertex, denoted as d(v), and require that sum of ingoing flow in each vertex v is not exceed the value d(v):

$$\sum_{w \in V} f(w, v) \leq d(v)$$

Find max flow from s to t in network G

The problem with limited capacities at nodes

Contruct network G' such that:

each vertex v of G corresponds to 2 vertices v^+ and v^- of G',

each arc (u,v) of G corresponds to arc (u^-, v^+) of G',

each arc (v^+, v^-) of G' has capacity of d(v), which is equal to capacity of vertex v in G.

(s,u) (s,v) (u,t) (v,t) (u,v)

The original problem reduces to the maximum flow problem in G'

The delivery problem

Is there a way to delivery goods from the warehouses that meet the requirements of the retailers?

Airline scheduling

- Desire to serve m specific flights:
 - Each flight i (i=1,...,m) specified by 4 parameters: origin airport O_p, destination airpot D_p departure time, arrival time.
 HAN SGN
- V is the set of airport: t(v, w) is time to fly from airport v to airport w 15:00 17:20
- We can use a single plane for flight *i* and later for flight *j* if:
 - $D_i = O_j$ and there is enough time to perform maintenance on the plane between the two flights, or
 - We can add a flight that take plane from D_i to O_i if there is enough time for maintenance
- \rightarrow Flight j is called reachable from flight i if these two flights can use the same plane and one of two constraints above is satisfied.

Input: graph with directed arc (i, j) if flight j is reachable from flight i

→ Directed Acyclic graph

Goal: schedule all m flights using at most k planes

Reduces to maximum flow problem

There exists a 1-1 correspondence flow from s to t with a value of 24 with a delivery schedule that meets the requirements of the retailers.

Image segmentation

In the image segmentation problem, the input is an image, and we would like to partition it into background and foreground.

Example:

The (i) input image, and (ii) a possible segmentation of the image.

Image segmentation

The input is a bitmap on a grid where every grid node represents a pixel.
 We covert this grid into a directed graph G, by interpreting every edge of the grid as two directed edges. See the figure below to see how the resulting graph looks like.

Image segmentation

Input: Pixel graphs G(V, E), likelihood functions f, b : $V \to R^+$, penalty function $p: E \to R^+$

Output: Optimum labelling: partition V (the set of the pixels) into two sets F and B that maximize

$$q(F,B) = \sum_{i \in F} f_i + \sum_{i \in B} b_i - \sum_{(i,j) \in E, |F \cap \{i,j\}| = 1} p_{ij}.$$

Image segmentation

The input for the problem is as follows:

- A bitmap of size $N \times N$, with an associated directed graph G = (V, E).
- For every pixel i, we have a value $f_i \ge 0$, which is an estimate of the likelihood of this pixel to be in foreground (i.e., the larger f_i is the more probable that it is in the foreground)
- For every pixel i, we have (similarly) an estimate b_i of the likelihood of pixel i
 to be in background.
- We want the foreground/background boundary to be smooth:
 - For every two adjacent pixels i and j we have a separation penalty p_{ij} , which is the "price" of separating i from j (for placing one of them in the foreground and the other in the background). This quantity is defined only for adjacent pixels in the bitmap.

Image segmentation

Let
$$Q = \sum_{i \in F \cup B} (f_i + b_i)$$
 $\rightarrow \sum_{i \in F} f_i - \sum_{i \in B} b_i = Q - \sum_{i \in F} b_i - \sum_{i \in B} f_i$

Therefore, maximizing

$$q(F,B) = \sum_{i \in F} f_i + \sum_{i \in B} b_i - \sum_{(i,j) \in E, |F \cap \{i,j\}| = 1} p_{ij}.$$

$$= Q - \sum_{i \in F} b_i - \sum_{i \in B} f_i - \sum_{(i,j) \in E, |F \cap \{i,j\}| = 1} p_{ij}$$

is identical to minimizing

$$q'(F,B) = \sum_{i \in F} b_i + \sum_{i \in B} f_i + \sum_{(i,j) \in E, |F \cap \{i,j\}| = 1} p_{ij}$$

