Handwritten Digit Recognition

Developed by: Junaid Ul Hassan, Muzamil Ashraf

Project Overview

The Handwritten Digit Recognition project utilizes deep learning techniques to classify handwritten digits from the MNIST dataset. This AI model is built using TensorFlow and Keras, employing a Convolutional Neural Network (CNN) to achieve high accuracy in recognizing digits from 0 to 9.

Project Workflow

1. Dataset Loading & Preprocessing

- o The MNIST dataset, consisting of 60,000 training images and 10,000 test images, is loaded.
- Images are reshaped to fit the CNN model and normalized for improved training efficiency.

2. Model Architecture

- A CNN model is constructed with multiple convolutional layers, max-pooling layers, and dense layers.
- The architecture includes ReLU activation for non-linearity and Softmax activation for multi-class classification.
- The model is compiled using the Adam optimizer and Sparse Categorical Crossentropy loss function.

3. Training & Evaluation

- o The model is trained for 10 epochs using the training dataset.
- o Accuracy and loss metrics are plotted to visualize the model's performance.

4. Prediction & Testing

- The trained model is tested on individual images to validate its ability to recognize handwritten digits.
- o Predictions are displayed alongside the input images.

5. Model Saving & Loading

- o The trained model is saved as "tf-cnn-model.h5" for future use.
- The saved model is reloaded and tested on new inputs to confirm its effectiveness.

Technologies Used

- Python
- TensorFlow & Keras
- Matplotlib
- NumPy

This project demonstrates the practical implementation of deep learning in optical character recognition (OCR) and serves as a foundation for more advanced AI-driven handwriting recognition applications.