# RSA-CRT et Signature RSA avec padding affine

Charles Duclos et Chunlong Zhu

24 octobre 2017

#### Plan

- RSA-CRT
  - RSA :  $m = c^d \mod n$  avec la clé privée d
  - Un cas particulier du théorème des restes chinois (CRT)
  - Le Théorème d'Euler
  - Algorithme
  - $(c^d \mod p, c^d \mod q)$ ?
  - Complexité
  - Exemple
- Signature RSA avec padding affine
  - Signature primitive RSA
  - Signature RSA sans fonction de padding
  - Signature RSA avec padding affine
  - Cryptanalyse sur signature RSA avec padding affine

# RSA : $m = c^d \mod n$ avec la clé privée d

- Déchiffrer le texte c en utilisant RSA, avec la clé privée d
- Plus efficace avec CRT (le théorème des restes chinois) pour calculer  $m = c^d \mod n$ .

# Un cas particulier du théorème des restes chinois (CRT)

- Théorème : Soit p et q des nombres premiers distincts et  $n = p \times q$ . Pour toute couple  $(x_1, x_2)$  où  $0 \le x_1 < p$  et  $0 \le x_2 < q$ , il existe un nombre unique x où  $0 \le x < n$  tel que  $x_1 = x \mod p$ , et  $x_2 = x \mod q$ .
- Donc tout entier x ( $0 \le x < n$ ) peut être exprimé uniquement dans sa représentation CRT  $(x_1, x_2)$ .

#### Le Théorème d'Euler

• Théorème : Si n est un entier positif et a est un nombre entier avec pgcd(a,n)=1, alors  $a^{\varphi(n)}\equiv 1 \mod n$  où  $\varphi(n)$  est l'indicatrice d'Euler.

### Algorithme

- 1.Précalculer les valeurs suivantes données p, q avec p > q,  $d_P = (1/e) \mod (p-1)$   $d_Q = (1/e) \mod (q-1)$   $q_{inv} = (1/q) \mod p$  La clé privée devient le quintuplet  $(p, q, d_P, d_Q, q_{inv})$ .
- 2. Calculer le message m ( étant donnée c)  $m_1 = c^{d_P} \mod p$   $m_2 = c^{d_Q} \mod q$   $h = q_{inv} \times (m_1 m_2) \mod p$   $m = m_2 + h \times q$

# $(c^d \mod p, c^d \mod q)$ ?

• Pour récupérer x de sa représentation CRT  $(x_1, x_2)$ , nous utilisons la formule de Garner.

$$x = x_2 + h \cdot q$$
, d'où  $h = ((x_1 - x_2))((1/q) \mod p)$  mod  $p$ 

• Après, on utilise le Théorème d'Euler pour réduire l'exposant d modulo (p-1):  $c^d \mod p = c^{d \mod \varphi(p)} \mod p = c^{d \mod (p-1)} \mod p$  et de même pour la valeur mod q.

# $(c^d \mod p, c^d \mod q)$ ?

- On pose d comme un multiple de  $\varphi(p)$  plus un reste,  $d = k \cdot \varphi(p) + d \mod \varphi(p)$ , où k est un nombre entier.
- Par conséquent  $c^d = c^{k \cdot \varphi(p) + d \mod \varphi(p)} = (c^{\varphi(p)})^k \cdot c^{d \mod \varphi(p)}$
- Par le théorème d'Euler,  $c^{\varphi(p)} \equiv 1 \mod p$
- Ainsi,  $c^d \equiv 1^k \cdot c^{d \mod \varphi(p)} \equiv c^{d \mod \varphi(p)} \mod p$ Finalement, puisque p est premier alors  $\varphi(p) = p - 1$ , et on a le résultat.

#### **Finalement**

- On sait que  $d=e^{-1} \mod (p-1)$ , et  $d=e^{-1} \mod (q-1)$ .
- Nous calculons la représentation CRT du message  $(m_1, m_2)$ :  $d_P = (1/e) = d \mod (p-1)$

$$d_Q = (1/e) = d \mod (q-1)$$

$$m_1 = c^{d_P} \mod p$$

$$m_2 = c^{d_Q} \mod q$$

• Donc :  $q_{inv} = (1/q) \mod p$   $h = q_{inv} \cdot (m_1 - m_2) \mod p$  $m = m_2 + h \cdot q$ 



#### Complexité

- On sait que la complexité de RSA classique est  $O(\log(n)^3)$ . Par le théorème de restes chinois, on peut réduire la clé n à p et q. On sait  $O(\log(n)) = O(\log(p \cdot q)) = O(\log(p) + \log(q))$  donc  $\log(p) = \log(q) = \frac{1}{2}\log(n)$
- Donc, la complexité de RSA-CRT est  $O((\log(p)^3 + (\log(q)^3) = O((\frac{1}{2}\log(n))^3 + (\frac{1}{2}\log(n))^3) = O(\frac{1}{4}\log(n))^3$ .
- Donc, le RSA-CRT est 4 fois plus rapide que RSA classique.

#### Exemple

- On sait que p = 137, q = 131, n = 137 \* 131 = 17947, e = 3, d = 11787.m = 513 on calcule  $c = 5133 \mod n = 8363$ .
- Par CRT :

$$\begin{aligned} d_P &= e^{-1} \mod (p-1) = d \mod (p-1) = 11787 \mod 136 = 91 \\ d_Q &= e^{-1} \mod (q-1) = d \mod (q-1) = 11787 \mod 130 = 87 \\ q_{inv} &= q^{-1} \mod p = 131^{-1} \mod 137 = 114 \\ m_1 &= c^{d_P} \mod p = 836391 \mod 137 = 102 \\ m_2 &= c^{d_Q} \mod q = 836387 \mod 131 = 120 \\ h &= q_{inv} \times (m_1 - m_2) \mod p = 114 \times (102 - 120 + 137) \mod 137 = 3 \\ m &= m_2 + h \times q = 120 + 3 \times 131 = 513. \end{aligned}$$

### Signature primitive RSA

- Alice souhaite envoyer à Bob un message M dont il puisse vérifier l'authenticité.
- ② On suppose qu'Alice et Bob ont procédé à la création de clés, d est la clé privée d'Alice, (n, e) est la clé publique.
- **3** Alice calcule  $S_M = M^d \mod n$  avec sa clé privée d:
- Alice envoie M et  $S_M$ .
- lacktriangle Bob déchiffre la signature avec la clé publique :  $S_M^e \mod n$  .
- **o** Si  $S_M^e = M \mod n$ , alors Alice est bien l'auteur du message.

#### Signature RSA

#### Signature



#### Vérification



Si les empreintes sont identiques, la signature est valide

# Signature RSA sans fonction de padding

- Cas où  $m=1 \mod n$  et  $m=0 \mod n$
- Alice envoie  $(M, S_M)$  où  $S_M = M^d \mod n$ . Soit  $\sigma \in (\mathbb{Z}/n\mathbb{Z})^*$ , on peut usurper l'identité d'Alice en posant  $M = \sigma^e$  et  $S_M = \sigma$ :  $S_M^e = \sigma^e = M$ .
  - On parle de falsification sélective.
- On peut également créer une signature à partir de deux messages  $M_1$ et  $M_2$  et leurs signatures : Soient  $S_{M_1} = M_1^d \mod n$  et  $S_{M_2} = M_2^d \mod n$ .
  - Dans ce cas,  $S_{M_1} \cdot S_{M_2} \mod n$  est une signature valide du message
  - $M_1 \cdot M_2 \mod n$ .

# Signature RSA avec padding affine

- Pour éviter de signer directement un message M on utilise une fonction de padding, ou remplissage,  $\mu(M)$
- On parle de padding affine lorsque  $\mu(M) = \omega \cdot M + \alpha$ , avec  $\alpha, \omega \in (\mathbb{Z}/n\mathbb{Z})^*$ .
- La signature d'un message M est donc :

$$\mu(M)^d \mod n = (\omega \cdot M + \alpha)^d \mod n$$

# Cryptanalyse sur signature RSA avec padding affine

On cherche  $m_1, m_2, m_3$  et  $m_4$  quatre messages distincts de tailles égales au tiers de la taille de n, et tels que :

$$\mu(m_1) \cdot \mu(m_2) = \mu(m_3) \cdot \mu(m_4) \mod n \tag{1}$$

Alors, en utilisant les signatures de  $m_2$ ,  $m_3$  et  $m_4$  on peut forger la signature de  $m_1$ :

$$\mu(m_1)^d = \frac{\mu(m_3)^d \cdot \mu(m_4)^d}{\mu(m_2)^d} \mod n$$

(1) nous donne:

$$(\omega \cdot m_1 + \alpha) \cdot (\omega \cdot m_2 + \alpha) = (\omega \cdot m_3 + \alpha) \cdot (\omega \cdot m_4 + \alpha) \mod n$$

En posant  $P = \alpha \cdot \omega^{-1} \mod n$ , on obtient :

$$(P+m_1)\cdot (P+m_2) = (P+m_3)\cdot (P+m_4) \mod n$$

# Cryptanalyse sur signature RSA avec padding affine

#### Soient:

- $t = m_3$
- $y = m_2 m_3$
- $x = m_1 m_3$
- $z = m_4 m_1 m_2 + m_3$

On peut simplifier l'équation précédente par :

$$x \cdot y = (P + t) \cdot z \mod n \tag{2}$$

On va chercher à déterminer les valeurs de x, y, z et t, tous de tailles égales au tiers de la taille de n.

On obtient deux entiers z et u tels que :

$$P \cdot z = u \mod n \text{ avec } \begin{cases} -n^{\frac{1}{3}} < z < n^{\frac{1}{3}} \\ 0 < u < 2n^{\frac{2}{3}} \end{cases}$$

On peut trouver une bonne approximation de la fraction  $\frac{P}{n}$  en la développant en fraction continue. On trouve une solution telle que |z| < Z et 0 < u < U si  $Z \cdot U > n$ , c'est le cas pour  $Z = n^{\frac{1}{3}}$  et  $U = 2 \cdot n^{\frac{2}{3}}$ . On choisit un entier y tel que  $n^{\frac{1}{3}} \le y \le 2n^{\frac{1}{3}}$  et pgcd(y,z)=1. On trouve un entier t < y tel que :

$$t \cdot z = -u \mod y$$

puis on prend

$$x = \frac{u + t \cdot z}{y} \le 4n^{\frac{1}{3}}$$

On obtient :

$$P \cdot z = u = x \cdot y - t \cdot z \mod n$$

qui correspond à l'équation (2)

Les quatre entiers x, y, z et t étant tous inférieur à  $4n^{\frac{1}{3}}$ . On retrouve les quatre messages chacun de la taille d'un tiers de la taille de n.

- $m_1 = x + t$
- $m_2 = y + t$
- $m_3 = t$
- $m_4 = x + y + z + t$

Comme  $-n^{\frac{1}{3}} < z < n^{\frac{1}{3}}$  et que  $y \ge n^{\frac{1}{3}}$  on a que x+y>0, et sachant que  $u \ge 0$  :

$$x+t=\frac{u+t\cdot(y+z)}{y}\geq 0$$

Ce qui montre que les quatre entiers  $m_1, m_2, m_3$  et  $m_4$  sont positifs, et on a bien :

$$\mu(m_1) \cdot \mu(m_2) = \mu(m_3) \cdot \mu(m_4) \mod n$$

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥Q♥

#### Conclusion

- L'attaque est en temps polynomial et permet une falsification existentielle.
- Il existe une attaque similaire qui permet une falsification sélective mais n'est pas en temps polynomial.
- Cette méthode de padding n'est pas utilisée.

Merci!