问题 1. (Rudin) Suppose μ is a complex Borel measure on $[0, 2\pi)$ (or on the unit circle T), and define

$$\widehat{\mu}(n) = \int e^{-int} d\mu(t)$$
 $(n = 0, \pm 1, \pm 2, \cdots).$

Assume that $\widehat{\mu}(n) \to 0$ as $n \to +\infty$ and prove that then $\widehat{\mu}(n) \to 0$ as $n \to -\infty$. Hint: The assumption also holds with $f d\mu$ in place of $d\mu$ if f is any trigonometric polynomial, hence if f is continuous, hence if f is any bounded Borel function, hence if $d\mu$ is replaced by $d|\mu|$.

问题 2. (Rudin) Suppose μ is a positive measure on X, $\mu(X) < \infty$, $f_n \in L^1(\mu)$ for $n = 1, 2, 3, \cdots$, $f_n(x) \to f(x)$ a.e., and there exists p > 1 and $C < \infty$ such that $\int_X |f_n|^p d\mu < C$ for all n. Prove that

$$\lim_{n \to \infty} \int_{X} |f_n - f| \, \mathrm{d}\mu = 0.$$

问题 3. (Folland) we have proved that:

Let ν be a finite signed measure and μ a positive measure on (X, \mathscr{A}) , Then $\nu \ll \mu$ iff for every $\varepsilon > 0$ there exists $\delta > 0$ such that $|\nu(E)| < \varepsilon$ whenever $\mu(E) < \delta$.

Show that, the above theorem may fail when ν is not finite.

问题 4. (Folland) Suppose that ν is a signed measure on (X, \mathcal{A}) and $E \in \mathcal{A}$. Then

a.
$$\nu^{+}(E) = \sup \{ \nu(F) : E \in \mathcal{A}, F \subset E \}$$
 and $\nu^{-}(E) = -\inf \{ \nu(F) : F \in \mathcal{A}, F \subset E \}.$

b.
$$|\nu|(E) = \sup \left\{ \sum_{j=1}^{n} |\nu(E_j)| : n \in \mathbb{N}, E_1, \dots, E_n \text{ are disjoint, and } \bigcup_{j=1}^{n} E_j = E \right\}.$$

问题 5. (Folland) A measure μ on (X, \mathscr{A}) is called decomposable if there is a family $\mathcal{F} \subset \mathscr{A}$ with the following properties:

- 1. $\mu(F) < \infty$ for all $F \in \mathcal{F}$;
- 2. the members of \mathcal{F} are disjoint and their union is X;
- 3. if $\mu(E) < \infty$ then $\mu(E) = \sum_{F \in \mathcal{F}} \mu(E \cap F)$;
- 4. if $E \subset X$ and $E \cap F \in \mathscr{A}$ for all $F \in \mathcal{F}$ then $E \in \mathscr{A}$.

Show that every σ -finite measure is decomposable.