

1º Teste de Introdução aos Sistemas Eletromagnéticos - Parte I

Eng. Biomédica		3°Ano	o/1°Semestre		Duração: 45 min
Nome			Nº Aluno		
O teste é constit		ões de escolha r			senvolvimento. tas efetivamente
1	2	3	4.1	4.2	4.3

Escolha múltipla

- Para cada questão há uma única hipótese correta.
- Assinale a resposta correta no enunciado com um círculo.
- Se pretende anular uma resposta escreva "Anulado" na respetiva caixa.
- Cotação: Resposta correta = 0,75; Resposta errada = -0,25
- 1. Considere a distribuição linear de carga, uniformemente distribuída, representada na figura. No quarto de circunferência à esquerda do ponto P encontra-se uma carga total positiva Q_+ e no quarto de circunferência à direita do ponto P encontra-se uma carga total negativa $Q_- = -Q_+$. Considere que o potencial elétrico é nulo no infinito e escolha a hipótese correta.

- A: O campo elétrico e o potencial elétrico são nulos no ponto O.
- B: O plano XOY é uma superfície equipotencial e o campo elétrico, no ponto O, tem a direção e sentido negativo do eixo dos YY.
- C: O plano YOZ é uma superfície equipotencial e o campo elétrico, no ponto O, tem a direção e sentido positivo do eixo dos XX.
- D: O plano ZOX é uma superfície equipotencial e o campo elétrico, no ponto O, tem a direção e sentido positivo do eixo dos ZZ.

2. Um condensador plano de capacidade C é carregado aplicando aos seus terminais uma diferença de potencial V. Se a distância entre as placas paralelas diminuir para metade, mantendo a diferença de potencial aplicada,...

A: ... a carga aumenta para o quádruplo e a energia armazenada aumenta para o dobro.

B: ... a carga e a energia armazenada aumentam para o dobro.

C: ... a carga aumenta para o dobro e a energia armazenada aumenta para o quádruplo.

D: ... a carga e a energia armazenada aumentam para o quádruplo.

3. Um electrão $(q_e = -1, 6 \times 10^{-19} \ C; \quad m_e = 9, 1 \times 10^{-31} \ kg)$ é lançado paralelamente a um campo eléctrico uniforme $\vec{E} = 2, 0 \ \hat{x} \quad kV/m$. Com que velocidade deve ser lançado para que a sua velocidade se anule após percorrer 5 cm?

A: $\vec{v} = 5.0 \times 10^3 \ \hat{x} \ m/s$	B: $\vec{v} = 7.3 \times 10^6 \ \hat{x} \ m/s$
C: $\vec{v} = 2.0 \times 10^3 \ \hat{x} \ m/s$	D: $\vec{v} = 5.9 \times 10^6 \ \hat{x} \ m/s$

Desenvolvimento

- Apresente todos os passos de resolução e justifique convenientemente todos os cálculos.
- Indique as unidades dos resultados obtidos.
- Cada questão tem a cotação de 0,75 valores.
- **4.** Três cargas pontuais, $Q_1 = 3 nC$, $Q_2 = -2 nC$ e $Q_3 = 3 nC$, encontram-se sobre o eixo dos XX, respetivamente nas posições, $X_1 = -3 cm$, $X_2 = 0 cm$ e $X_3 = 3 cm$. Considere que o potencial elétrico é nulo no infinito.
- **4.1** Calcule o vetor campo elétrico no ponto P que se situa sobre o eixo dos YY, no ponto $Y_P = -4$ cm.
- **4.2** Calcule o potencial elétrico no ponto P que situa sobre o eixo dos YY, no ponto $Y_P = -4$ cm.
- **4.3** Calcule a energia eletrostática das 3 cargas.

Soluções:

1	2	3
С	В	D

4.1
$$\vec{E} = -6.0 \ \hat{y} \ kV/m$$

4.2
$$V = 630 V$$

4.3
$$U = -2,25 \mu J$$