This listing of the claims replaces any and all prior versions and listings of claims in the application:

LISTING OF THE CLAIMS

1. (Previously presented) A copolymer prepared by copolymerization of: a first monomer having the structure of formula (I)

$$(I) \qquad \qquad \begin{matrix} R^{2a} \\ \\ R^{2b} \end{matrix}$$

wherein

R¹ is H, F, CN, CH₃, or C₁₋₆ fluoroalkyl,

R^{2a} and R^{2b} are independently H or F, and

 R^3 is CN or COOR, wherein R is selected from the group consisting of H, C_{1-12} alkyl and C_{1-12} fluoroalkyl, or is selected so as to render R^3 acid-cleavable; and

a second monomer having the structure of formula (II)

(II)
$$R^{6} \qquad R^{4}$$

wherein

R⁴ is H, C₁₋₁₂ alkyl, C₃₋₁₅ alicyclic, or fluorinated C₃₋₁₅ alicyclic,

 R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic, or R^4 and R^5 together form a five-, six-, or seven-membered ring,

 R^6 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or R^4 and R^6 together form a five-, six-, or seven-membered ring, and

 R^7 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or R^7 and R^5 together represent -X- $(CR^8R^9)_n$ -, in which case R^4 and R^6 are H, X is O or CH₂, n is 1 or 2, R^8 and R^9 are H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or together form an oxo moiety (=O), with the proviso that when R^8 and R^9 together form =O, n is 1,

wherein: (1) any of R^1 , R^3 , R^4 , R^5 , R^6 , and R^7 may be further substituted with an inert, nonhydrogen substituent; (2) when R^5 is C_{1-12} alkyl, at least one of R^4 , R^6 and R^7 is other than hydrogen; and (3) at least one of the first monomer and the second monomer contains one or more fluorine atoms.

- 2. (Previously presented) The copolymer of Claim 29, wherein R¹ is CF₃.
- 3. (Original) The copolymer of Claim 2, wherein R³ is COOR.
- 4. (Original) The copolymer of Claim 2, wherein R³ is CN.
- 5. (Original) The copolymer of Claim 1, wherein R¹ and R² are F and R³ is COOR.
- 6. (Original) The copolymer of Claim 1, wherein R¹ is CN and R² is H.
- 7. (Original) The copolymer of Claim 3, wherein R is C_{1-12} alkyl.
- 8. (Original) The copolymer of Claim 5, wherein R is C_{1-12} alkyl.
- 9. (Original) The copolymer of Claim 3, wherein R is selected to render R^3 acid-cleavable.
- 10. (Original) The copolymer of Claim 5, wherein R is selected to render R³ acid-cleavable.
 - 11. (Original) The copolymer of Claim 10, wherein R is a tertiary alkyl substituent.

- 12. (Original) The copolymer of Claim 11, wherein R is t-butyl.
- 13. (Original) The copolymer of Claim 11, wherein R is a C₅-C₁₂ cyclic or alicyclic substituent with a tertiary attachment point.
- 14. (Previously presented) The copolymer of Claim 13, wherein R is selected from the group consisting of 2-methyl-2-adamantyl, 2-methyl-2-isobornyl, 2-methyl-2-tetracyclododecenyl, 2-methyl-2-dihydrodicyclopentadienyl-cyclohexyl,1-methylcyclopentyl, and 1-methylcyclohexyl.
- 15. (Previously presented) The copolymer of Claim 1, wherein the second monomer has the structure of formula (III)

wherein:

 R^4 is $C_{1\text{--}12}$ alkyl, $C_{3\text{--}15}$ alicyclic, or fluorinated $C_{3\text{--}15}$ alicyclic; and

 R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic.

16. (Previously presented) The copolymer of Claim 1, wherein the second monomer has a structure selected from the group consisting of (IV), (V), and (VI)

(IV)
$$\chi$$
(CR⁸R⁹)_n (V) χ

$$(VI) \qquad \qquad \begin{array}{c} (CH_2)_m \\ \\ R^7 \\ \\ R^6 \end{array}$$

wherein:

 R^6 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl; R^7 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl; X is O or CH₂; m is an integer between 1 and 3; and R^8 and R^9 are H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl.

- 17. (Original) The copolymer of Claim 1, wherein the copolymer is substantially transparent to radiation having a wavelength of less than about 250 nm.
- 18. (Original) The copolymer of Claim 17, wherein the copolymer is substantially transparent to radiation having a wavelength of less than about 193 nm.
- 19. (Original) The copolymer of Claim 18, wherein the copolymer is substantially transparent to radiation having a wavelength of 157 nm.
- 20. (Original) The copolymer of Claim 1, further comprising at least one additional monomer having a structure that is different that the first and second monomers.
- 21. (Original) A lithographic photoresist composition comprising the copolymer of Claim 1 and a radiation-sensitive acid generator.
- 22. (Original) The lithographic photoresist composition of Claim 18, further comprising a second polymer.

- 23. (Previously presented) A process for generating a resist image on a substrate, comprising the steps of:
- (a) coating a substrate with a film of a photoresist comprised of a radiation-sensitive acid generator and a copolymer synthesized from a first monomer having the structure of formula (I)

wherein

R¹ is H, F, CN, CH₃, or C₁₋₆ fluoroalkyl,

R^{2a} and R^{2b} are independently H or F, and

 R^3 is CN or COOR, wherein R is selected from the group consisting of H, C_{1-12} alkyl and C_{1-12} fluoroalkyl, or is selected so as to render R^3 acid-cleavable, with the proviso that when R^3 is CN, then R^1 is CF_3 and R^{2a} and R^{2b} are H; and a second monomer having the structure of formula (II)

(II)
$$R^{6}$$

$$R^{7}$$

$$R^{5}$$

wherein

R⁴ is H, C₁₋₁₂ alkyl, C₃₋₁₅ alicyclic or fluorinated C₃₋₁₅ alicyclic,

 R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic, or R^4 and R^5 together form a five-, six-, or seven-membered ring,

 R^6 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or R^4 and R^6 together form a five-, six-, or seven-membered ring,

 R^7 is H, $C_{1\text{--}12}$ alkyl, or $C_{1\text{--}12}$ fluoroalkyl, or R^7 and R^5 together represent

-X-(CR^8R^9)_n-, in which case R^4 and R^6 are H, X is O or CH₂, n is 1 or 2, R^8 and R^9 are H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or together form an oxo moiety (=O), with the proviso that when R^8 and R^9 together form =O, n is 1,

wherein any of R^1 , R^3 , R^4 , R^5 , R^6 , and R^7 may be further substituted with an inert nonhydrogen substituent, and further wherein when R^5 is C_{1-12} alkyl, at least one of R^4 , R^6 and R^7 is other than hydrogen;

- (b) exposing the film selectively to a predetermined pattern of radiation so as to form a latent, patterned image in the film; and
 - (c) developing the latent image with a developer.
- 24. (Previously presented) In a lithographic photoresist composition comprised of a polymer transparent to deep ultraviolet radiation and a radiation-sensitive acid generator, the improvement comprising employing as the polymer a copolymer synthesized from a first monomer having the structure of formula (I)

(I)
$$R^{2a} \longrightarrow R^1$$

wherein

R¹ is H, F, CN, CH₃, or C₁₋₆ fluoroalkyl,

 R^{2a} and R^{2b} are independently H or F, and

 R^3 is CN or COOR, wherein R is selected from the group consisting of H, C_{1-12} alkyl and C_{1-12} fluoroalkyl, or is selected so as to render R^3 acid-cleavable, with the proviso that when R^3 is CN, then R^1 is CF_3 and R^2 is H, and

a second monomer having the structure of formula (II)

(II)
$$R^{6}$$

$$R^{7}$$

$$R^{5}$$

wherein

R⁴ is H, C₁₋₁₂ alkyl, C₃₋₁₅ alicyclic, or fluorinated C₃₋₁₅ alicyclic,

 R^5 is C_{1-12} alkyl, C_{1-12} alkyl substituted with 1-12 fluorine atoms and 0-2 hydroxyl groups, or C_{3-15} alicyclic, or R^4 and R^5 together form a five-, six-, or seven-membered ring,

 R^6 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or R^4 and R^6 together form a five-, six-, or seven-membered ring;

 R^7 is H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or R^7 and R^5 together represent -X- $(CR^8R^9)_n$ -, in which case R^4 and R^6 are H, X is O or CH₂, n is 1 or 2, R^8 and R^9 are H, C_{1-12} alkyl, or C_{1-12} fluoroalkyl, or together form an oxo moiety (=O), with the proviso that when R^8 and R^9 together form =O, n is 1,

wherein any of R^1 , R^3 , R^4 , R^5 , R^6 , and R^7 may be further substituted with an inert nonhydrogen substituent, and further wherein when R^5 is C_{1-12} alkyl, at least one of R^4 , R^6 and R^7 is other than hydrogen.

- 25. (Original) The lithographic photoresist composition of Claim 24, wherein the photoresist composition is a positive resist and further comprises a photoacid-cleavable monomeric or polymeric dissolution inhibitor.
- 26. (Original) The lithographic photoresist composition of Claim 24, wherein the photoresist composition is a negative resist and further comprises a crosslinking agent.
- 27. (Original) The lithographic photoresist composition of Claim 26, wherein the crosslinking agent is a glycoluril compound.
- 28. (Original) The lithographic photoresist composition of Claim 27, wherein the glycoluril compound is selected from the group consisting of tetramethoxymethyl glycoluril, methylpropyltetramethoxymethyl glycoluril, methylphenyltetramethoxymethyl glycoluril, and mixtures thereof.

- 29. (Previously Presented) The copolymer of claim 1, wherein R^1 is H, F, CN, CH_3 , CF_3 , CF_2H , or CFH_2 .
- 30. (Previously Presented) The copolymer of claim 29, wherein at least one of R^1 , R^3 , R^4 , R^5 , R^6 , or R^7 is further substituted with an inert nonhydrogen substituent.
- 31. (Previously Presented) The copolymer of claim 30, wherein the inert nonhydrogen substituent is selected from the group consisting of F, C_{1-12} alkyl, C_{1-12} alkoxy, C_{1-12} alkenyl, C_{1-12} alkenyl, C_{1-12} fluoroalkyl, C_{1-12} fluoroalkoxy, and C_{1-12} fluoroalkenyl.