Getting Started in C

CSC 230 : C and Software Tools

NC State Department of Computer

Science

Topics for Today

- C Overview
- Software Tools
- Building a program
- The common platform
- The C you already know

You Want to Learn C

- It's a lower-level language than Java
 - Can offer much better performance (often not that important)
 - Exposes more of what's going on underneath
 - this can make us more effective developers (even if we never program in C again)
- It will help prepare us for:
 - Operating Systems (CSC 246)
 - Assembly Language (CSC 236)

You Want to Learn C

- Someone has to be able to program in C
 - That operating system you like to use, what do you think it's written in?
 - Linux : Assembly and C
 - MS Windows : Assembly, C and C++
 - How about that JVM that lets you run your fancy, high-level programs?
 - Assembly, C and C++
 - Lots of other examples
 - Embedded systems (cars, calculators, appliances, etc.)
 - High performance applications (science/engineering)

Thinking in C

- C: Programming in a different Type of language
 - Like Java, it's an imperative language, focused on how a computation should be performed
 - C is procedural
 - A program is a collection of procedures (functions)
 - Focus on actions performed by these procedures
 - Instead of object-oriented
 - Where program is a collection of objects, each with state and operations
 - Focus on the **state** of these objects
- Of course, there are other ways we could go ...
 - Declarative Languages: focus on what the program should compute rather than how it should compute it
 - Functional Languages: Lisp, Scheme, Haskell
 - Dataflow Languages
 - Logic or Constraint-Based: Prolog
 - Markup Languages: HTML

C Family Tree

How We Got Here

- Developed along with the Unix operating system
 - An alternative to developing the OS in assembly
 - More portable
 - More readable/maintainable
- What's C
 - Informal standard for 10 years
 - C89 standard in 1989/1990
 - C99 standard in 1999
 - C11 standard in ... well 2011

C Strengths and Weaknesses

- Think of C as a thin veneer over the underlying assembly language
 - Lets us do some things we couldn't do in a higher level language ☺
 - Standard leaves some details implementation-defined, to better exploit the hardware ⊕ and ⊕
 - C has an int type, what's its range?
 - What will memory contain if your forget to initialize it?
- C programs and the compiler can be tiny and fast ©
 - Example trivial C and Java programs
 - Example matrix multiplication

C Performance vs Java

C is faster at nothing:

```
$ time java Nothing
real 0m0.138s
```

```
$ time ./nothing
real 0m0.002s
```

About 70 times faster.

Also, faster at sorting 60,000 words

```
$ time java SortWords words.txt
real     0m1.529s
```

```
$ time ./sortWords words.txt
real 0m0.063s
```

About 24 times faster.

C Performance vs Java

Or, multiplying 400 X 400 matrices.

```
$ time java Matrix ab.txt
real 0m3.458s
```

```
$ time ./matrix
real   0m0.601s
```

About 6 times faster.

- Why so much faster?
 - Well, C is compiled down to the hardware's native machine language.
 - And, there are a lot of things Java does that C doesn't

C Strengths and Weaknesses

- C offers very little in protection and security
- C lacks some constructs for managing very large projects ⁽²⁾

It's Not Just About C

- Software tools
 - To help write, build, analyze and maintain software
 - Coordinate contributions from a team
- Examples:
 - Editors, pretty printers
 - Compilers, linkers
 - Debuggers
 - Code generators
 - Performance analyzers
- Often, these are integrated into the IDE
 - But, there's some value in being able to run them directly

The Common Platform

- Different systems have different processors, line termination rules, compilers, language versions, etc.
- We need to agree on what system to target
- We call this is our common platform
 - 64-bit Intel PC
 - Linux OS
 - gcc compiler suite
- Readily available on campus and from home

Choice in Where you Develop

Environment	GUI Interface?	Access to AFS Files?
Unity Computer Lab (e.g., EB3 2108)	Yes	Yes
ssh to remote-linux.eos.ncsu.edu	No Well, Yes with X11	Yes
ssh to VCL reservation	No Well, Yes with X11	No (via sftp)
Use Mac OS X with developer tools	Yes	Via sftp
Use MS Windows with cygwin	Yes	Via sftp or ExpandDrive
Use Linux on your PC or Mac (Dual boot or virtual machine)	Yes	Via sftp, etc.
Try our ready-made Centos7.0 VM image	Yes	Via sftp, ExpandDrive, etc.

Choice in Where you Develop

Environment	GUI Interface?	Access to AFS Files?
Unity Computer Lab (e.g., EB3 2108)	Yes	Yes
ssh to remote-linux.eos.ncsu.edu	No Well, Yes with X11	Yes
ssh to VCL reservation	No Well, Yes with X11	No (via sftp)
Use Mac OS X with developer tools	Yes	Via sftp
Use MS Windows with cygwin	Yes	Via sftp or ExpandDrive
Use Linux on your PC or Mac (Dual boot or virtual machine)	Yes	Via sftp, etc.
Use our ready-made Centos6.6 VM image	Yes	Via sftp, ExpandDrive, etc.

It's fine to develop here

Choice in Where you Develop

Environment	GUI Interface?	Access to AFS Files?
Unity Computer Lab (e.g., EB3 2108)	Yes	Yes
ssh to remote-linux.eos.ncsu.edu	No Well, Yes with X11	Yes
ssh to VCL reservation	No Well, Yes with X11	No (via sftp)
Use Mac OS X with developer tools	Yes	Via sftp
Use MS Windows with cygwin	Yes	Via sftp or ExpandDrive
Use Linux on your PC or Mac (Dual boot or virtual machine)	Yes	Via sftp, etc.
Use our ready-made Centos6.6 VM image	Yes	Via sftp, ExpandDrive, etc.

But, you should test here before you submit

Meet C

```
/**
 @file hello.c
 @author David Sturgill (dbsturgi)
 A program that prints: Hello World
 */
#include <stdio.h>
/**
  Starting point for the program.
 @return exit status
 */
int main()
{
 printf( "Hello World\n" );
 return 0;
```

Meet C

```
/**
  Ofile hello.c
  @author David Sturgill (dbsturgi)
  A program that prints: Hello World
 */
#include <stdio.h>
/**
  Starting point for the program.
  @return exit status
 */
int main()
{
 printf( "Hello World\n" );
  return 0;
                                                    Compile like this
}
```

```
$ gcc -Wall -std=c99 hello.c -o hello
$ ./hello Execute like this
```

What are You Looking At?

```
A Comment, part of our
/**
                                                   style requirements
  Ofile hello.c
  @author David Sturgill (dbsturgi)
  A program that prints: Hello World
 */
                                                 Telling the compiler about
#include <stdio.h>
                                                 library components we use
                                                     below (just printf).
/**
  Starting point for the program.
  @return exit status
                                                  A main function, where
 */
                                                  your program starts (see,
int main()
                                                   it's not inside a class).
{
  printf( "Hello World\n"
  return 0;
                                             A call to the printf function to,
              We're all done. Fxit with
                                               well, print something out.
                     success.
```

Building C Programs

Here's a recipe for building any simple C program:

- Some parts of the C language look a lot like Java
 - Variable declarations look the same

```
int main()
{
   int a = 25;
   double x = 3.14;
   char c = '*';
   .
   .
}
Before the C99 standard, local
variables had to be declared at
the top of a function or block.
Some people still code that way.
```

- We have most of the same built-in types, including char, short, int, long, float and double
- No byte and boolean types, though.

We use char instead.

We have **bool** (sort of)

 C has many of the operators you remember from Java ... and they mostly work the same.

Arithmetic	+, -, *, /, %
Logical	!, &&,
Pre-increment, etc.	++,
Relational	==, !=, <, >, <=, >=
Assignment	=, +=, *=, etc.

Looks just like good old Java.

But, C has some operators Java doesn't have.

```
int a = 25;
double x = a * 1.5;

a++;
x = x / 2;
x += a % 3;

int *p = &a;
```

- Flow of control
 - C has an if statement that looks a lot like Java:

```
if ( a > 25 ) {
    a /= 2;
}
```

— ... and a for loop (that looks a lot like Java):

```
for ( int i = 0; i < 25; i++ ) {
    x += i;
}</pre>
```

— ... and a while statement (that looks a lot like Java):

```
while ( x < 100.0 ) {
    x *= 1.05;
}</pre>
```

- ... and a do/while:(that's basically the same as Java)

```
do {
    x = getchar();
} while ( x != '\n' );
```

- ... and a switch statement:(that's more restrictive than Java's switch)

This has to be an integer.

```
switch ( i ) {
    case 0:
        print( "it's zero!\n" );
        break;
    case 1:
        ...;
    default:
        ...;
}
```

- Flow of control
 - And C has break and continue statements

.. that you should avoid using when you can.

— ... and one other thing Java doesn't have.

.. that will help you appreciate why you should avoid break & continue.

- Functions
 - C has functions, with parameters and return types

```
double power( double x, int p )
{
    double result = 1;
    for ( int i = 0; i < p; i++ )
        result *= x;
    return result;
}

y = power( 3.25, j + 1 );

Here's a
function call.</pre>
```

Like static methods in Java

- Some things are different.
 - C functions aren't part of a class, they are defined at *file scope*

```
double power( double x, int p )
{
   double result = 1;
   for ( int i = 0; i < p; i++ )
      result *= x;
   return result;
}

And, C99 wants to see the function definition (or declaration) before you try to call it.</pre>
y = power( 3.25, j + 1 );
```

Not Quite Java

- C doesn't force you to initialize your local variables.
- ... and, it doesn't initialize them for you.

```
double power( double x, int p )
{
    double result;
    double result;
    for ( int i = 0; i < p; i++ )
        result *= x;
    return result;
}

What value will this
    variable have?
Whatever was in that
    region of memory.

What will this return?
Probably garbage.</pre>
```