SEMINARUL 8

Secțiuni conice

Problema 8.1. Stabiliți ecuația unei elipse ale cărei focare se află pe axa Oy și sunt simetrice față de origine în fiecare dintre următoarele situații:

- 1) semiaxele sunt egale, respectiv, cu 5 și 3;
- 2) distanța dintre focare este 2c = 6, iar axa mare este egală cu 10;
- 3) axa mare este egală cu 26, iar excentricitatea este $\varepsilon = \frac{12}{13}$.

Problema 8.2. Scrieți ecuațiile tangentelor la elipsa

$$\frac{x^2}{10} + \frac{y^2}{5} = 1$$

care sunt paralele cu dreapta

$$3x + 2y + 7 = 0.$$

Problema 8.3. Scrieți ecuațiile tangentelor la elipsa

$$x^2 + 4y^2 = 20$$

care sunt perpendiculare pe dreapta

$$(d): 2x - 2y - 13 = 0.$$

Problema 8.4. Scrieți ecuațiile tangentelor la elipsa

$$\frac{x^2}{30} + \frac{y^2}{24} = 1$$

care sunt paralele cu dreapta

$$4x - 2y + 23 = 0$$

și determinați distanța dintre ele.

Problema 8.5. Din punctul $A\left(\frac{10}{3},\frac{5}{3}\right)$ se duc tangente la elipsa

$$\frac{x^2}{10} + \frac{y^2}{5} = 1.$$

Scrieți ecuațiile lor.

Problema 8.6. Din punctul C(10, -8) se duc tangente la elipsa

$$\frac{x^2}{25} + \frac{y^2}{16} = 1.$$

Determinați ecuația coardei care unește punctele de contact.

Problema 8.7. O elipsă trece prin punctul A(4, -1) și este tangentă dreptei x+4y-10=0. Determinați ecuația elipsei, știind că axele sale coincid cu axele de coordonate.

Problema 8.8. Determinați ecuația unei elipse ale cărei axe coincid cu axele de coordonate și care este tangentă dreptelor 3x - 2y - 20 = 0 și x + 6y - 20 = 0.

Problema 8.9. Stabiliți ecuația unei hiperbole ale cărei focare sunt situate pe axa Ox, simetric față de origine și care satisface unul dintre următoarele seturi de condiții suplimentare:

- 1) axele sunt date de 2a = 10 şi 2b = 8;
- 2) distanța dintre focare este 2c=6, iar excentricitatea este $\varepsilon=\frac{3}{2}$;
- 3) ecuațiile asimptotelor sunt

$$y = \pm \frac{4}{3}x,$$

iar distanța dintre focare este 2c = 20;

Problema 8.10. Se dă hiperbola $16x^2 - 9y^2 = 144$. Să se determine:

- 1) semiaxele;
- 2) focarele;
- 3) ecuațiile asimptotelor;

Problema 8.11. Calculați aria triunghiului format de dreapta

$$9x + 2y - 24 = 0.$$

și de tangentele la hiperbola

$$\frac{x^2}{4} - \frac{y^2}{9} = 1$$

în punctele de intersecție cu dreapta.

Problema 8.12. Focarele unei hiperbole coincid cu cele ale elipsei

$$\frac{x^2}{25} + \frac{y^2}{9} = 1.$$

Stabiliți ecuația hiperbolei, știind că excentricitatea ei este egală cu 2.

Problema 8.13. Demonstrați că produsul distanțelor de la orice punct de pe hiperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

până la asimptote este constant, egal cu $\frac{a^2b^2}{a^2+b^2}$.

Problema 8.14. Demonstrați că aria paralelogramului format de asimptotele la hiperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

și de dreptele duse prin orice punct al hiperbolei, paralele cu asimptotele, este constantă, egală cu $\frac{ab}{2}$.

Problema 8.15. Stabiliți ecuațiile tangentelor la hiperbola

$$\frac{x^2}{20} - \frac{y^2}{5} = 1$$

care sunt perpendiculare pe dreapta

$$4x + 3y - 7 = 0$$
.

Problema 8.16. Stabiliți ecuațiile tangentelor la hiperbola

$$\frac{x^2}{16} - \frac{y^2}{64} = 1$$

care sunt paralele cu dreapta

$$10x - 3y + 9 = 0.$$

Problema 8.17. O hiperbolă trece prin punctul $M(\sqrt{6},3)$ și este tangentă dreptei 9x + 2y - 15 = 0. Stabiliți ecuația hiperbolei, știind că axele sale coincid cu axele de coordonate.

Problema 8.18. Determinați ecuația unei parabole cu vârful în origine dacă axa parabolei este axa Ox și parabola trece prin punctul A(9,6).

Problema 8.19. Să se afle locul geometric al punctelor din care se pot duce tangente perpendiculare la parabola $y^2 = 2px$.

Problema 8.20. Să se determine ecuația canonică a unei parabole, știind că ea este tangentă dreptei 3x - 2y + 4 = 0 și determinați punctul de tangentă.

Problema 8.21. Determinați ecuația canonică a unei parabole, știind că tangenta paralelă cu dreapta 5x - 4y - 2 = 0 trece prin punctul A(4,7).

Problema 8.22. Din punctul A(5,9) ducem tangente la parabola $y^2=5x$. Stabiliți ecuația coardei care unește punctele de tangență.

Problema 8.23. Determinați ecuația tangentei la parabola $y^2 = 20x$ care face un unghi de 45° cu direcția pozitivă a axei Ox.

Problema 8.24. Scrieți ecuația tangentei la parabola $y^2 = 4ax$ care taie pe axele de coordonate segmente de lungimi egale.