4 急減少関数の空間と Frechét 空間

4.1 急減少関数と Schwartz 空間

- 本節と次の節では Fourier 変換と相性がいい急減少関数の空間と Fourier 変換についての性質を述べる.
- $v \in C^{\infty}(\mathbb{R}^N)$ $\mathfrak{Z}^{\mathfrak{Z}}$

$$\forall l, \forall m \in \mathbb{N}; \sum_{|\alpha| \le l} \sup_{x \in \mathbb{R}^N} (1 + |x|^2)^m |D^{\alpha}v(x)| < \infty$$

を満たすとき、v を**急減少関数**といい、急減少関数全体を $\mathscr{S}(\mathbb{R}^N)$ (あるいは \mathscr{S}) とかき、Schwartz 空間という。

 $|| \mathbf{\overline{ll}} \mathbf{1} || v \in \mathscr{S}(\mathbb{R}^N)$ のとき次を示せ:

$$\forall \alpha : \text{multi-index} : D^{\alpha}v(x) \to 0 \ (|x| \to \infty)$$

例 $v \in \mathscr{D}(\mathbb{R}^N) \Rightarrow v \in \mathscr{S}(\mathbb{R}^N)$

otag $e^{-|x|^2} \in \mathscr{S}(\mathbb{R}^N)$ である(証明は各自).

定義

$$\forall l, \forall m \in \mathbb{N}; \sum_{|\alpha| < l} \sup_{x \in \mathbb{R}^N} (1 + |x|^2)^m |D^{\alpha} v_n(x) - v(x)| \to 0 \quad (n \to \infty)$$

が成り立つとき、 $\{v_n\}$ は v に $\mathscr S$ **の意味で収束する**といい、

$$v_n \to v$$
 in \mathscr{S} $(n \to \infty)$

とかく.

4.2 Frechét 空間

- 定義(セミノルム) -

X を \mathbb{K} 上のベクトル空間とする. $p: X \to \mathbb{R}$ が次の 2 つを満たすとき, p を X 上のセミノルムという:

(SN1) $p(\lambda x) = |\lambda| p(x) \ (\forall \lambda \in \mathbb{K}, \forall x \in X)$

(SN2)
$$p(x+y) \le p(x) + p(y) \ (\forall x \in X, \forall y \in X)$$

|注 セミノルムとはノルムの条件のうち「 $||x||=0 \Rightarrow x=o$ 」を仮定しないものである。 |例 |

- (1) ノルム空間におけるノルムは当然セミノルムである.
- (2) $\mathcal{S}(\mathbb{R}^N)$ において $l, m \in \mathbb{N}$ に対して

$$p_{l,m}(v) = \sum_{|\alpha| \le l} \sup_{x \in \mathbb{R}^N} (1 + |x|^2)^m |D^{\alpha}v(x)|$$

はセミノルムである.

命題 4.1 -

p を X 上のセミノルムとすると次が成り立つ:

- (1) p(o) = 0 (o は X の零ベクトル)
- (2) $|p(x) p(y)| \le p(x y) \ (\forall x, \forall y \in X)$
- $(3) \ p(x) \ge 0 \ (\forall x \in X)$

証明

- (1) p(o) = p(0o) = 0p(o) = 0
- (2) $p(x) = p(x-y+y) \le p(x-y) + p(y)$ であるから $p(x) p(y) \le p(x-y)$ が成り立つ. したがって $p(y) p(x) \le p(y-x)$ が成り立つ. (SN1) より p(x-y) = p(y-x) であるから

$$|p(x) - p(y)| \le p(x - y)$$

が成り立つ.

- (3) (2) で特に y = 0 として $0 \le |p(x)| \le p(x)$ である. \square
- |注 |X| 上に可算無限個のセミノルム $\{p_k\}$ が与えられたとき, $p_k \geq 0$ であるから

$$q_k(x) = \sum_{l=1}^k p_l(x)$$

とおくことにより、 q_k もセミノルムであり、k に関して単調増加である。しかも簡単に

$$\forall k \in \mathbb{N} : p_k(x_n - x) \to 0 \ (n \to \infty)$$

であることと

$$\forall k \in \mathbb{N} : q_k(x_n - x) \to 0 \ (n \to \infty)$$

は同値であることも示される. したがって最初からセミノルム系は単調増加であると仮 定してよい.

定理 4.2

 \mathbb{K} 上のベクトル空間 X に可算個のセミノルム $\{p_k\}$ $(k=1,\cdots)$ が定義されており、条件

$$\forall k \in \mathbb{N}; p_k(x) = 0 \quad \Rightarrow \quad x = o \tag{4.1}$$

を満たすとする。このとき

$$d(x,y) = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{p_k(x-y)}{1 + p_k(x-y)}$$
(4.2)

とするとdはX上の距離となる.

証明

• まず、任意の $k \in \mathbb{N}$ に対して

$$0 \le \frac{1}{2^k} \cdot \frac{p_k(x-y)}{1 + p_k(x-y)} \le \frac{1}{2^k}$$

で $\sum_{k=1}^{\infty} \frac{1}{2^k} = 1 < \infty$ より正項級数の比較判定法から d(x,y) は定義される.

- 距離の条件 (D1) 「 $d(x,y) \ge 0$, $d(x,y) = 0 \Leftrightarrow x = y$ 」を示そう.
- 前半は明らか. 後半についても $x=y\Rightarrow d(x,y)=0$ は明らか.
- d(x,y) = 0 とすると

$$\sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{p_k(x-y)}{1+p_k(x-y)} = 0$$

$$\therefore \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{p_k(x-y)}{1+p_k(x-y)} = 0$$

$$\therefore p_k(x-y) = 0 \quad (\forall k)$$

条件(4.1) より x - y = o つまり x = y である.

- (D2) 「d(x,y) = d(y,x) は明らか」
- (D3) 「 $d(x,y) \le d(x,z) + d(z,y)$ を示す」

• まず、関数 $f(t) = \frac{t}{1+t}$ は $f'(t) = \frac{1}{(1+t)^2} \ge 0$ $(t \ge 0)$ より単調増加である. したがって $p_k(x-y) \le p_k(x-z) + p_k(z-y)$ より

$$\begin{split} \frac{p_k(x-y)}{1+p_k(x-y)} &\leq \frac{p_k(x-z)+p_k(z-y)}{1+p_k(x-z)+p_k(z-y)} \\ &= \frac{p_k(x-z)}{1+p_k(x-z)+p_k(z-y)} + \frac{p_k(z-y)}{1+p_k(x-z)+p_k(z-y)} \\ &\leq \frac{p_k(x-z)}{1+p_k(x-z)} + \frac{p_k(z-y)}{1+p_k(z-y)} \end{split}$$

である。両辺に $\frac{1}{2^k}$ をかけ、和をとれば $d(x,y) \leq d(x,z) + d(z,y)$ を得る。 \square

Frechét 空間の定義

- (4.2) で定義された距離に対して距離空間 (X,d) が完備距離空間であるとき、X を Frechét 空間という.
- X に高々可算のセミノルム $\{p_k\}$ が定義されているとする. $\{x_n\}\subset X$ がセミノルム p_k について Cauchy **列**であるとは、任意の $\varepsilon>0$ に対し、ある $n_0\in\mathbb{N}$ が存在して

$$m, n \ge n_0 \implies p_k(x_m - x_n) < \varepsilon$$

を満たすことである.

• X の点列 $\{x_n\}$ が各セミノルムについて Cauchy 列ならば、ある $x \in X$ が存在して

$$\forall k \in \mathbb{N} \; ; \; p_k(x_n - x) \to 0 \; \; (n \to \infty)$$

が成り立つとき、セミノルム系 $\{p_k\}$ は完備性をもつということにしよう.

定理 4.3

 \mathbb{K} 上のベクトル空間 X に高々可算個のセミノルム $\{p_k\}$ $(k=1,\cdots)$ が定義されており、条件 (4.1) を満たし、完備性をもつとする。このとき X は Frechét 空間となる。

証明

- (X, d) の完備性のみ示せば十分である.
- $\{x_n\}$ を (X,d) において Cauchy 列とする.
- このとき、任意の $l \in \mathbb{N}$ に対して、 $\{x_n\}$ はセミノルム p_l に関して Cauchy 列であることを見よう.

• $l \in \mathbb{N}$ と $\varepsilon > 0$ を任意にとる. $\{x_n\}$ は Cauchy 列より、ある $n_0 = n_0(l, \varepsilon) > 0$ が 存在して

$$m, n \ge n_0 \implies \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{p_k(x_m - x_n)}{1 + p_k(x_m - x_n)} < \frac{1}{2^l} \cdot \frac{\varepsilon}{1 + \varepsilon}$$
 (4.3)

が成り立つ.

(4.3) より

$$m, n \ge n_0 \implies \frac{1}{2^l} \cdot \frac{p_l(x_m - x_n)}{1 + p_l(x_m - x_n)} < \frac{1}{2^l} \cdot \frac{\varepsilon}{1 + \varepsilon}$$

つまり

$$m, n \ge n_0 \quad \Rightarrow \quad p_l(x_m - x_n) < \varepsilon$$

を得る. よって $\{x_n\}$ は p_l に関して Cauchy 列である.

• $\{p_k\}$ は完備性をもつので、ある $x \in X$ が存在して

$$\forall k \in \mathbb{N} : p_k(x_n - x) \to 0 \ (n \to \infty)$$

が成り立つ.

- $d(x_n, x) \to 0 \ (n \to \infty)$ を示そう.
- ullet $\epsilon>0$ を任意にとる。ある $K\in\mathbb{N}$ が存在して $\sum\limits_{k=K+1}^{\infty}rac{1}{2^k}<rac{arepsilon}{2}$ が成り立つ。
- $k=1,\cdots,K$ に対して $p_k(x_n-x)\to 0$ $(n\to\infty)$ より、ある $n_0\in\mathbb{N}$ が存在して

$$n \ge n_0, \quad k = 1, \dots, K \quad \Rightarrow \quad p_k(x_n - x) < \frac{\varepsilon}{2}$$

が成り立つ.

• したがって $n \ge n_0$ ならば

$$\sum_{k=1}^{K} \frac{1}{2^k} \cdot \frac{p_k(x_n - x)}{1 + p_k(x_n - x)} < \sum_{k=1}^{K} \frac{1}{2^k} \frac{\frac{\varepsilon}{2}}{1 + \frac{\varepsilon}{2}} < \sum_{k=1}^{K} \frac{\varepsilon}{2^{k+1}} < \frac{\varepsilon}{2}$$

である.

• 以上より $n \ge n_0$ ならば

$$d(x_n, x) = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{p_k(x_n - x)}{1 + p_k(x_n - x)}$$

$$\leq \sum_{k=1}^{K} \frac{1}{2^k} \cdot \frac{p_k(x_n - x)}{1 + p_k(x_n - x)} + \sum_{k=K+1}^{\infty} \frac{1}{2^k}$$

$$< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

• これは $\lim_{n\to\infty} d(x_n,x)=0$ を意味する. \square

|**問2**| $\{p_k\}$ を (4.1) を満たし、完備性をもつ単調増加なセミノルム系、X をそれから導かれる Frechét 空間、 $\{x_n\} \subset X, x \in X$ とする。

$$x_n \to x$$
 in X

つまり $\lim_{n\to\infty} d(x_n,x)=0$ であることは

$$\forall k \in \mathbb{N} \; ; \; p_k(x_n - x) \to 0 \; \; (n \to \infty)$$

であることと同値であることを示せ、

 $oxedge \Omega$ Ω Ω の開集合とし, Ω の各点で連続な関数全体を $C(\Omega)$ とする.

$$K_n = \{x \in \Omega : |x| \le n, \operatorname{dist}(x, \partial \Omega) \ge 1/n\}$$

とすると K_n は有界閉集合で $K_n \subset \Omega$ である. $f \in C(\Omega)$ に対し、可算セミノルム系 $p_n(f)$ を次で定義する:

$$p_n(f) = \sup_{x \in K_n} |f(x)| = \max_{x \in K_n} |f(x)|$$

このセミノルム系は条件 (4.1) を満たす.さらに完備性をもつため $C(\Omega)$ は (4.2) により Freché 空間となる.

· 定理 4.4 -

 $\mathscr{S}(\mathbb{R}^N)$ は Frechét 空間である.

証明

• セミノルム系 $\{p_k\}$ を次で定義する:

$$p_k(v) = \sum_{|\alpha| \le k} \sup_{x \in \mathbb{R}^N} (1 + |x|^2)^k |D^{\alpha}v(x)|$$

- $\{p_k\}$ が完備性をもつことを示せばよい.
- $\{v_n\}\subset \mathscr{S}(\mathbb{R}^N)$ は各 p_k について Cauchy 列であるとする.

$$\sup_{x \in \mathbb{R}^N} |v_m(x) - v_n(x)| = p_0(v_m - v_n)$$

であるから $\{v_n\}$ は一様収束に関する Cauchy の条件を満たす。したがって、 $\{v_n\}$ はある $v \in C(\mathbb{R}^N)$ に一様収束する。

• α を任意の多重指数とする. $k > |\alpha|$ ならば

$$\sup_{x \in \mathbb{R}^N} |D^{\alpha} v_m(x) - D^{\alpha} v_n(x)|$$

$$\leq \sum_{|\beta| \leq k} \sup_{x \in \mathbb{R}^N} (1 + |x|^2)^k |D^{\beta} v_m(x) - D^{\beta} v(x)| = p_k(v_m - v_n)$$

であるから同様に $\{D^{\alpha}v_n\}$ は一様収束に関する Cauchy の条件を満たす.したがって, $\{D^{\alpha}v_n\}$ はある $v^{(\alpha)}\in C(\mathbb{R}^N)$ に一様収束する.

Claim 1: $v \in C^{\infty}(\mathbb{R}^N)$ で $D^{\alpha}v = v^{(\alpha)}$ が成り立つ.

• $|\alpha|=1, \alpha=(1,0,\cdots,0)$ の場合を考えよう. 微積分の基本定理より、 $a=(a_1,x'),x=(x_1,x')\in\mathbb{R}^N$ に対し

$$v_n(x) - v_n(a) = \int_{a_1}^{x_1} \frac{\partial v_n}{\partial x_1}(t, x') dt$$

である. v_n は v に $\frac{\partial v_n}{\partial x_1}$ は $v^{(\alpha)}$ に一様収束するから $n \to \infty$ として

$$v(x) - v(a) = \int_{a_1}^{x_1} v^{(\alpha)}(t, x') dt$$

• $v^{(\alpha)} \in C(\mathbb{R}^N)$ だから微積分の基本定理より

$$\frac{\partial v}{\partial x_1} = v^{(\alpha)}$$

である.この議論から $v\in C^1(\mathbb{R}^N)$ で, $|\alpha|=1$ のとき Claim が成立することが示された.

- $|\alpha| = 2$ で $\alpha = (1, 1, 0, \dots, 0)$ の場合を考えよう.
- 微積分の基本定理より、 $a=(a_1,x'), x=(x_1,x')\in\mathbb{R}^N$ に対し

$$\frac{\partial v_n}{\partial x_2}(x) - \frac{\partial v_n}{\partial x_2}(a) = \int_{a_1}^{x_1} \frac{\partial^2 v_n}{\partial x_2 \partial x_1}(t, x') dt$$

である. Claim 1 より $\frac{\partial v_n}{\partial x_2}$ は $\frac{\partial v}{\partial x_2}$ に $\frac{\partial^2 v_n}{\partial x_2 \partial x_1}$ は $v^{(\alpha)}$ に一様収束するから $n \to \infty$ として

$$\frac{\partial v}{\partial x_2}(x) - \frac{\partial v}{\partial x_2}(a) = \int_{a_1}^{x_1} v^{(\alpha)}(t, x') dt$$

• $v^{(\alpha)} \in C(\mathbb{R}^N)$ だから微積分の基本定理より

$$\frac{\partial^2 v}{\partial x_2 \partial x_1} = v^{(\alpha)}$$

を得る. この議論により $v \in C^2(\mathbb{R}^N)$ で $|\alpha|=2$ のとき Claim が示された.

• 以下同様にして Claim が示される.

Claim 2: 任意の $k \in \mathbb{N}$ に対して $p_k(v_n - v) \to 0 \ (n \to \infty)$ が成り立つ.

• 任意に $k \in \mathbb{N}$ と $\varepsilon > 0$ をとる. p_k について $\{v_n\}$ は Cauchy 列であるからある $n_0 \in \mathbb{N}$ が存在して

$$m, n \ge n_0 \implies p_k(v_m - v_n) < \frac{\varepsilon}{2}$$

つまり

$$m, n \ge n_0 \implies \sum_{|\alpha| \le k} \sup_{x \in \mathbb{R}^N} (1 + |x|^2)^k |D^{\alpha} v_m(x) - D^{\alpha} v_n(x)| < \frac{\varepsilon}{2}$$

が成り立つ.

• これより、任意の $x \in \mathbb{R}^N$ 、 $n \ge n_0$ なる任意の $m, n \in \mathbb{N}$ に対して

$$(1+|x|^2)^k \sum_{|\alpha| \le k} |D^{\alpha} v_m(x) - D^{\alpha} v_n(x)| < \frac{\varepsilon}{2}$$

が成り立つ.

• $m \to \infty$ として入れ替えることにより

$$(1+|x|^2)^k \sum_{|\alpha| \le k} |D^{\alpha}v_n(x) - D^{\alpha}v(x)| \le \frac{\varepsilon}{2}$$

• 以上より $n \ge n_0$ ならば

$$p_k(v_n - v) = \sum_{|\alpha| \le k} \sup_{x \in \mathbb{R}^N} (1 + |x|^2)^k |D^{\alpha} v_n(x) - D^{\alpha} v(x)| \le \frac{\varepsilon}{2} < \varepsilon$$

である. これは $\lim_{n\to\infty}p_k(v_n-v)=0$ を意味する. k は任意なので $\{p_k\}$ は完備性をもつことがわかった. \square

4.3 Baire の Category 定理と一様有界性原理

定理 4.5(Baire の category 定理) –

(X,d) を完備距離空間とする. X が可算個の閉集合 F_n により $X=\bigcup_{n=1}^\infty F_n$ と表されるならば、少なくとも 1 つの F_n は内点をもつ.

証明

- 結論を否定し、「いかなる F_n も内点を含まない」と仮定する.
- 仮定より F_1 は内点を含まないので $F_1 \neq X$ である.
- F_1^c は開集合で $F_1^c \neq \emptyset$ より、ある $x_1 \in X$ とある $\varepsilon_1 \in (0,1/2)$ が存在して $B_{\varepsilon_1}(x_1) \subset F_1^c$
- 仮定より F_2 は内点を含まないので $B_{\varepsilon_1/2}(x_1) \not\subset F_2$ である. よって開集合 $F_2^c \cap B_{\varepsilon_1/2}(x_1)$ は空でないため、ある $x_2 \in X$ とある $\varepsilon_2 \in (0,1/2^2)$ があって $B_{\varepsilon_2}(x_2) \subset B_{\varepsilon_1/2}(x_1) \cap F_2^c$ が成り立つ.
- 以下順に、 $0 < \varepsilon_n < 1/2^n, x_n \in X (n = 1, 2, \cdots)$ を

$$B_{\varepsilon_{n+1}}(x_{n+1}) \subset B_{\varepsilon_n/2}(x_n), \ B_{\varepsilon_n}(x_n) \cap F_n = \emptyset$$

となるようにとることができる.

• $\{x_n\}$ は Cauchy 列であることを示そう。任意に $\varepsilon>0$ をとり, $n_0\in\mathbb{N}$ を $(1/2^{n_0})<\varepsilon$ となるようにとる.このとき $m>n\geq n_0$ ならば

$$d(x_m, x_n) \le d(x_m, x_{m-1}) + \dots + d(x_{n+1}, x_n)$$

$$\le \frac{1}{2^m} + \dots + \frac{1}{2^{n+1}} < \frac{1}{2^n} \le \frac{1}{2^{n_0}} < \varepsilon$$

である. したがって $\{x_n\}$ は Cauchy 列である. したがってある x_∞ に収束する.

• ところで、任意の $n \in \mathbb{N}$ に対して m > n ならば

$$d(x_n, x_\infty) \le d(x_n, x_m) + d(x_m, x_\infty)$$

$$\le \frac{\varepsilon_n}{2} + d(x_m, x_\infty) \to \frac{\varepsilon_n}{2} \quad (m \to \infty)$$

- したがって $d(x_n, x_\infty) < \varepsilon_n$ つまり $x_\infty \in B_{\varepsilon_n}(x_n)$ である.一方, $B_{\varepsilon_n}(x_n) \cap F_n = \emptyset$ より $x_\infty \notin F_n$ である.
- n は任意より $x_{\infty} \notin \bigcup_{n=1}^{\infty} F_n$ となるがこれは $X = \bigcup_{n=1}^{\infty} F_n$ に矛盾する. \square
- X を Frechét 空間とするとき,X' を X 上の連続線形汎関数全体とする.

• $T: X \to \mathbb{K}$ が $x_0 \in X$ で連続であることの定義をもう一度確認すると、任意の $\varepsilon > 0$ に対し、ある $\delta > 0$ が存在して

$$d(x, x_0) < \delta \quad \Rightarrow \quad |T(x) - T(x_0)| < \varepsilon$$

が成り立つことであった。また、線形性から T が X の各点で連続であることは、 1 点 o で連続であることと同値である。

命題 4.6 -

 $\{p_k\}$ を (4.1) を満たし、完備性をもつ単調増加なセミノルム系、X をそれから導かれる Frechét 空間とする。線形汎関数 $T:X\to\mathbb{K}$ が連続であるための必要十分条件は、ある C>0 とある $k\in\mathbb{N}$ が存在して

$$|T(x)| \le Cp_k(x) \quad (x \in X)$$

が成り立つことである.

証明

- 十分性は明らかである。
- 必要性を示そう. もし結論が成り立たないとすると、任意の $n \in \mathbb{N}$ に対して、ある $x_n \in X$ が存在して

$$|T(x_n)| > np_n(x_n)$$

が成り立つ. $y_n = \frac{x_n}{|T(x_n)|}$ とおくと $|T(y_n)| = 1$ であるが、任意の $k \in \mathbb{N}$ に対して $n \ge k$ ならば $p_k(y_n) \le 1/n \to 0$ $(n \to \infty)$ である. したがって、任意の $k \in \mathbb{N}$ に対して $p_k(y_n) \to 0$ $(n \to \infty)$ である.

• | **問2**|より $d(y_n,o) \to 0 \ (n \to \infty)$ である.これは T の o での連続性に反する. \square

定理 4.7(一樣有界性原理 (Frechét 空間 version)) —

 $\{p_k\}$ を (4.1) を満たし、完備性をもつ単調増加なセミノルム系、X をそれから導かれる Frechét 空間とする。 $\{T_i\}\subset X'$ が

$$\sup_{j} |T_j(x)| < \infty^{\forall} x \in X$$

を満たすならば、ある C > 0 とある $k \in \mathbb{N}$ があって

$$|T_j(x)| \le Cp_k(x) \quad \forall j \in \mathbb{N}, \quad \forall x \in X$$

が成り立つ.

証明

• 任意の $n \in \mathbb{N}$ と 任意の $j \in \mathbb{N}$ に対して

$$A_{n,j} = \{x \in X : |T_j(x)| \le n\}, \quad A_n = \{x \in X : |T_j(x)| \le n \ (\forall j)\}$$

とおく. このとき T_i の連続性により $A_{n,j}$ は閉集合であり

$$A_n = \bigcap_{j=1}^{\infty} A_{n,j}$$

も閉集合である。さらに

$$X = \bigcup_{n=1}^{\infty} A_n$$

が満たされる。

- 定理 4.5(Baire の categoty 定理) より,ある $n_0 \in \mathbb{N}$, $x_0 \in X$, $\varepsilon_0 > 0$ が存在して $B_{\varepsilon_0}(x_0) \subset A_{n_0}$ が成り立つ. A_n の定義から $-x_0$ も A_{n_0} の内点である.したがって $\frac{1}{2}x_0 + \frac{1}{2}(-x_0) = o$ も A_{n_0} の内点である (**問3**参照).
- したがって、ある $r_1 > 0$ が存在して $B_{r_1}(o) \subset A_{n_0}$ が成り立つ。いいかえると、ある $r_1 > 0$ が存在して

$$d(x,o) < r_1 \quad \Rightarrow \quad |T_j(x)| \le n_0 \quad (\forall j \in \mathbb{N})$$

$$\tag{4.4}$$

が成り立つということである.

• 定理の主張が成り立たないとすると、任意の $n \in \mathbb{N}$ に対して、ある $j_n \in \mathbb{N}$ と $x_n \in X$ が存在して

$$|T_{j_n}(x_n)| > np_n(x_n)$$

が成り立つ.

• $y_n = \frac{(n_0+1)x_n}{|T_{j_n}(x_n)|}$ とおく、このとぎ

$$|T_{j_n}(y_n)| = n_0 + 1 (4.5)$$

である.

• 一方, 任意の $k \in \mathbb{N}$ に対して, $n \ge k$ ならば

$$p_k(y_n) = \frac{n_0 + 1}{|T_{i_n}(x_n)|} p_k(x_n) \le (n_0 + 1) \frac{p_k(x_n)}{n p_n(x_n)} \le \frac{n_0 + 1}{n} \to 0 \quad (n \to \infty)$$

つまり、任意の $k \in \mathbb{N}$ に対して、 $p_k(y_n) \to 0 \ (n \to \infty)$ である.これは **問2** より $d(y_n,o) \to 0 \ (n \to \infty)$ を意味する.

• したがって (4.4) よりある $n \in \mathbb{N}$ に対して $|T_{j_n}(y_n)| \leq n_0$ が成り立たなければならないが、これは (4.5) に反する. \square

|問3|| X を \mathbb{K} 上のベクトル空間で距離空間とする. $K \subset X$ を凸集合で $x_0, y_0 \in K$ を K の内点とする. このとき $tx_0 + (1-t)y_0$ は任意の $t \in [0,1]$ に対して K の内点であることを示せ.

- 系 4.8(Banach-Steinhaus <mark>の定理</mark>) -

 $\{p_k\}$ を (4.1) を満たし、完備性をもつ単調増加なセミノルム系、X をそれから導かれる Frechét 空間とする。 $\{T_i\}\subset X'$ が任意の $x\in X$ に対して

$$\lim_{j\to\infty} T_j(x)$$

が定まるならば

$$T(x) := \lim_{j \to \infty} T_j(x) \quad (x \in X)$$

で定義される T は $T \in X'$ である.

証明

• $\alpha, \beta \in \mathbb{K}, x, y \in X$ とすると

$$T(\alpha x + \beta y) = \lim_{j \to \infty} T_j(\alpha x + \beta y) = \lim_{j \to \infty} (\alpha T_j(x) + \beta T_j(y)) = \alpha T(x) + \beta T(y)$$

である. よって T は線形汎関数である.

• 次に T が連続であることを示す.任意の $x \in X$ に対して $\{T_j(x)\}$ は \mathbb{K} の収束 列はなので有界である.つまり任意の $x \in X$ に対して

$$\sup_{j} |T_j(x)| < \infty$$

が成り立つ.

• したがって定理 4.7 より、ある C > 0 とある $k \in \mathbb{N}$ が存在して

$$|T_j(x)| \le Cp_k(x) \ (\forall j \in \mathbb{N}, \ \forall x \in X)$$

が成り立つ. この式で $j \to \infty$ とすると

$$|T(x)| \le Cp_k(x) \ (\forall x \in X)$$

が成り立つ. 命題 4.6 より $T \in X'$ である. \square