Timoshenko Linear Distributed Load

Wednesday, November 15, 2023 10:28 AM

$$H = c \cdot \omega_1 + \frac{1}{2} c \left(\omega_2 - \omega_1 \right)$$
$$= \frac{1}{2} c \left(\omega_2 + \omega_1 \right)$$

$$R_{j} = -\frac{V(a+\delta)}{L}$$

LOND FUNCTION!

$$\omega(x) = 0$$

$$\omega(x) = \omega_1 + \left(\frac{x-\alpha}{c}\right) \left(\omega_2 - \omega_1\right)$$

$$\omega(x) = 0$$

0 xx ea

SHEAR :

$$a < x \le k$$

MOMENT:

$$M(x) = C_1 \times + C_4$$

APRICATION OF TIMOSHEUKO RELATION SHIP

O V(x) = KAG (B(x) - dv/dx)

12 UNKOUNIS

EQ.

- 1) x=0 V= R;
- 7 x=a M compat.
- Ox=L V=-Rj
- (8) X=6 M COMPAT.
- 3 x=0 M=0
- @x=L M=0
- 9 x=a & = Conjust

U = Conex.

- 6 x=0 V=0
- (D) X=L &= CONTRAT.
- (6) x= 1 U=0
- 1) X= a U = COMPAT

x = 6

(12)

- Oc, = Ri
- 2 C7 = -Ri
- 3 4= 0
- (9) C3L+C6=0
- (3) C10 = 0
- (2) c1a + c4 = 16A 2 128 2 + C2a + C5 ac1 - ac2 + C4 - C5 = 16A 2 - 1282
- 8 16Abs 2862+C26+C3 = C36+C6 6C2-6C3+C3-C6 = -16A63+2862
- $\frac{AL^{\alpha}}{ZHEI} \frac{RL^{5}}{GRI} + \frac{L^{\alpha}}{ZRI} C_{Z} + \frac{L}{RI} C_{5} + C_{8} = \frac{L^{\alpha}}{ZEI} C_{3} + \frac{L}{RI} C_{6} + C_{9}$ $\frac{L^{2}}{ZEI} C_{2} \frac{L^{\alpha}}{ZEI} C_{3} + \frac{L}{EI} C_{5} \frac{L}{EI} C_{6} + C_{8} C_{7} = \frac{-AL^{\alpha}}{ZEI} + \frac{RL^{3}}{GEI}$
- $\frac{1}{10} \frac{-a}{kA6} \frac{a^{3}}{C_{1}} + \frac{a^{2}}{6EE} \frac{a^{2}}{C_{1}} + \frac{a^{2}}{2EE} \frac{c_{1}}{C_{2}} + a \frac{c_{2}}{C_{1}} + C_{10} = \frac{-Aa^{3}}{6kA6} + \frac{Ba^{3}}{2kA6} \frac{a}{kA6} \frac{Aa^{5}}{C_{2}} + \frac{Ba^{3}}{2EE} + \frac{a^{3}}{6EE} \frac{a^{3}}{C_{2}} + a \frac{c_{8}}{2EE} \frac{c_{1}}{C_{2}} + a \frac{c_{8}}{2EE} \frac{c_{1}}{C_{2}} + a \frac{c_{8}}{2EE} \frac{c_{1}}{C_{2}} + a \frac{c_{1}}{2EE} \frac{c_{2}}{C_{2}} + a \frac{c_{1}}{2EE} \frac{c_{2}}{C_{2}} + a \frac{c_{2}}{2EE} \frac{c_{1}}{C_{2}} + a \frac{c_{2}}{2EE} \frac{c_{2}}{C_{2}} + a \frac{c_{2}}{2EE} \frac{c_{2}}{2E$
- $\frac{(7)}{6kA6} + \frac{b^{2}}{2kA6} \frac{b}{kA6} + \frac{1}{2kA6} \frac{b^{2}}{kA6} + \frac{b^{2}}{2kA6} + \frac{b^{2}}{2kA6}$

*	SYMBOZIC	SOLUTION	of THE	INTEGE ATTOM	CONSTANTS
	15 NOT PN	KTICK FOR	ENTRY		

IS NOT PRACTICAL TIME ENTRY.

BUILD AND SOLVE FOR THE COSPFICIENTS WITH M THE

LOAD CLASS

	1	0	0	0	0	0	0	0	0	0	0	0
H	0	0	1	0	0	0	0	0	0	0	0	0
H	0	0	0	1	0	0	0	0	0	0	0	0
	0	0	L	0	0	1	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	1	0	0
	0	0	$\frac{L^3}{6EI} - \frac{L}{A_sG}$	0	0	2 E I	0	0	L	0	0	1
	a	- a	0	1		0	0	0	0	0	0	0
+	0	ь	-b	0	1	-1	0	0	0	0	0	0
	2 E I	$-\left(\frac{a^2}{2 E I}\right)$	0	<u>a</u> E I	-(<u>a</u>)	0	1	-1	0	0	0	0
	0	2 E I	$-\left(\frac{b^2}{2EI}\right)$	0	EI	$-\left(\begin{array}{c} b \\ \hline E I \end{array}\right)$	0	1	-1	0	0	0
	$\frac{\frac{3}{6EI} - \frac{a}{A_sG}}{\frac{A_sG}{s}}$	$\frac{a}{A_s G} - \frac{a^3}{6 E I}$	0	a ² 2 E I	$-\left(\begin{array}{c}2\\a\\\hline2EI\end{array}\right)$	0	а	-a	0	1	-1	0
	0	$\frac{b^3}{6EI} - \frac{b}{A_sG}$	$\frac{b}{A_s G} - \frac{b^3}{6 E I}$	0	2 E I	$-\left(\frac{b^2}{2EI}\right)$	0	b	-b	0	1	-1

*4-KA

FIXED END MOMENTS

$$\begin{bmatrix} -C_{7} \\ -\frac{C_{3}L^{2}}{LEI} - \frac{C_{6}L}{EI} - C_{7} \end{bmatrix} \begin{bmatrix} k_{5,i}, & k_{5,i,j} \end{bmatrix} \begin{bmatrix} M_{i} \\ M_{i} \end{bmatrix}$$