Social Interactions in the Demand for Private Health Insurance: Evidence from Linked Employer-Employee Data

Ali Furkan Kalay¹² Alicia N. Rambaldi² Christiern Rose²

¹Macquarie University Centre for Health Economy ²The University of Queensland

19 March 2024

Workshop on Economics of Health and Wellbeing Macquarie University

Motivation

- 1. Does peers' health shocks affect the PHI demand?
- 2. If so, why?

Introduction

- ➤ This study investigates the effects of **coworkers' health shocks** on the private health insurance (**PHI**) demand using Australian linked employee-employer data.
- Coworkers as "free consultants" in many decisions.
- Peer effects in transitional probabilities:

Data

- ► The newly available linked administrative data are of high quality, similar to those used in Scandinavian countries.
- Population-based administrative records.
 - ► Individual tax records + health records + other
- Advantages:
 - Australia is larger and culturally distinct from countries in which such data are typically available.
 - Small firms!
 - ▶ De Giorgi et al. (2020) investigates peer effects in consumption using Danish data, where the average firm size is 260-330.

▶ Australia has a universal healthcare system called Medicare.

- Australia has a universal healthcare system called Medicare.
- Pharmaceutical Benefits Scheme (PBS): The PBS is a government-funded program that provides subsidized prescription medicines to Medicare cardholders.

- Australia has a universal healthcare system called Medicare.
- Pharmaceutical Benefits Scheme (PBS): The PBS is a government-funded program that provides subsidized prescription medicines to Medicare cardholders.
- ► **Filter:** Patients need a prescription from a physician to utilize the PBS benefits.
 - "Expenditure and prescriptions twelve months to 30 june 2016" (Thomas & Marlton, 2016)

- Australia has a universal healthcare system called Medicare.
- Pharmaceutical Benefits Scheme (PBS): The PBS is a government-funded program that provides subsidized prescription medicines to Medicare cardholders.
- ► Filter: Patients need a prescription from a physician to utilize the PBS benefits.
 - "Expenditure and prescriptions twelve months to 30 june 2016" (Thomas & Marlton, 2016)
- ▶ Variable: The total number of PBS Transactions in the financial year 2015-2016 (PTC)

Descriptive Plots: Age & Gender

Figure: PTC by Age, Gender and PHI Ownerhsip

Figure: PHI Ownership by Age and Gender

Econometric Specification

- Linear probability model (Boucher & Bramoullé, 2020).
- ▶ Transition probabilities are conditioned on $y_{i,t} = Y \in \{0,1\}$

$$\mathbb{P}\left[y_{i,t+1}=1|\mathbf{y}_{i,t}=\mathbf{Y},a_{j,Y},h_{i,t},\overline{h}_{-i,t},\mathbf{z}_{i,t},\mathbf{x}_{i,t+1}\right]$$
(1)

where

 \triangleright $a_{j,Y}$: The firm j fixed effects conditional on Y at time t.

Econometric Specification

- Linear probability model (Boucher & Bramoullé, 2020).
- ▶ Transition probabilities are conditioned on $y_{i,t} = Y \in \{0,1\}$

$$\mathbb{P}\left[y_{i,t+1} = 1 | \mathbf{y}_{i,t} = \mathbf{Y}, a_{j,Y}, h_{i,t}, \overline{h}_{-i,t}, \mathbf{z}_{i,t}, \mathbf{x}_{i,t+1}\right]$$
(1)

where

- \triangleright $a_{j,Y}$: The firm j fixed effects conditional on Y at time t.
- h_i: The health shock variable at time t.

Econometric Specification

- Linear probability model (Boucher & Bramoullé, 2020).
- ▶ Transition probabilities are conditioned on $y_{i,t} = Y \in \{0,1\}$

$$\mathbb{P}\left[y_{i,t+1}=1|y_{i,t}=Y,a_{j,Y},h_{i,t},\overline{h}_{-i,t},\boldsymbol{z}_{i,t},\boldsymbol{x}_{i,t+1}\right]$$
(1)

where

- \triangleright $a_{j,Y}$: The firm j fixed effects conditional on Y at time t.
- ▶ h_i: The health shock variable at time t.
- $ightharpoonup \overline{h}_{-i}$: Co-workers' average h, excluding i at time t.
 - ► Main interest!!

Identification (1): Measuring Health Shocks

$$h_{i,t} = \ln(PTC_{i,t}) - \mathbb{E}\left[\ln(PTC_{i,t})|PHI_{i,t} = y, j, \mathbf{z}_{i,t}\right]$$
(2)

- **Health shock**: Deviations from the gender-age norms $(z_{i,t})$.
- ▶ We assume Equation 2 linear in $z_{i,t}$.
 - In practice, it is a non-linearized linear model.
- Plugging linearized Equation (2) to the main model, we show that own health shocks and co-worker's health shocks are identified from PTC coefficients ($p_{i,t} = ln(PTC_{i,t})$),

$$\mathbb{P}[y_{i,t+1} = 1 | y_{i,t} = Y, \dots]$$

$$= c_{j,y} + \frac{\alpha_y \rho_{i,t}}{\beta_y \overline{\rho}_{-i,t}} + z'_{i,t} \theta_y + \overline{z}'_{-i,t} \lambda_y + x'_{i,t+1} \delta_y.$$

Identification (2): Endogenous Peer Effects

$$\mathbb{P}[y_{i,t+1} = 1 | y_{i,t} = Y, \dots]$$

$$= \mathbf{c}_{j,y} + \alpha_y p_{i,t} + \beta_y \overline{p}_{-i,t} + \mathbf{z}'_{i,t} \theta_y + \overline{\mathbf{z}}'_{-i,t} \lambda_y + \mathbf{x}'_{i,t+1} \delta_y.$$
(3)

- **Firm fixed effects** $(c_{j,Y})$: Allowed to vary with the transitional direction, i.e., $y_{i,t}$.
 - 1. Sample Sorting: Firm-level correlated effects.
 - 2. Endogenous Peer Effects: Co-workers average PHI ownership excluding *i* in the firm.
 - Main identification challenge in peer effects estimations (Manski, 1993; Bramoullé et al., 2009).
 - ▶ We exploit the fact that the outcome variable is binary and \overline{y}_{-i} can only take two values within the firm conditional on $y_{i,t-1} \in \{0,1\}$. Example
- Source of Identification: Variation in firm sizes.

Results

	PHI Uptake	PHI Continuation
Specifications		
$\frac{1}{\ln(PTC_{i,t})}$	0.0053***	0.0017***
	(0.0002)	(0.0002)
Co-worker average	0.0029*	0.0007
	(0.0017)	(8000.0)
Obs.	3,791,887	5,893,954
R2	0.080	0.038

Results: By Gender

	PHI u _l	otake	PHI continuation			
Gender	Female	Male	Female	Male		
$-\ln(PTC_{i,t})$	0.0067***	0.0035***	0.0016***	0.0016***		
	(0.0003)	(0.0004)	(0.0002)	(0.0003)		
Co-worker average	0.0136***	-0.0029	-0.0003	0.0002		
-	(0.0044)	(0.0030)	(0.0018)	(0.0020)		
Obs.	1,737,497	2,054,390	3,024,033	2,869,921		
R^2	0.079	0.082	0.034	0.040		

Results: Nonlinearity

	PHI uptake							
Gender		Fer	male			М	1ale	
PTC threshold	10	20	30	40	10	20	30	40
Prop. co-workers exceeding threshold	0.0220* (0.0115)	0.0344** (0.0171)	0.0659*** (0.0246)	0.0653** (0.0307)	-0.0023 (0.0089)	-0.0022 (0.0121)	-0.0096 (0.0155)	0.0006 (0.0205)
Obs. R ²	1,737,497 0.079	1,737,497 0.079	1,737,497 0.079	1,737,497 0.079	2,054,390 0.082	2,054,390 0.082	2,054,390 0.082	2,054,390 0.082
	PHI continuation							
Gender		Fer	male		Male			
PTC threshold	10	20	30	40	10	20	30	40
Prop. co-workers exceeding threshold	0.0065 (0.0045)	-0.0004 (0.0057)	-0.0039 (0.0075)	-0.0057 (0.0102)	0.0095* (0.0053)	0.0102 (0.0068)	0.0132 (0.0082)	0.0218** (0.0099)
Obs. R ²	3,024,033 0.034	3,024,033 0.034	3,024,033 0.034	3,024,033 0.034	2,869,921 0.040	2,869,921 0.040	2,869,921 0.040	2,869,92

Results: Summary

- Co-workers' health shocks increase PHI demand only for females if they did not own PHI in the past.
 - Alternative Measures
- We find that effects are stronger for singles and older females.
 - By Family Structure By Age
- Exclusion of large firms increases efficiency and the magnitude of coefficient.
 - Firm Size Restrictions
- Extreme health shocks have stronger effects.

Conclusion

- We estimate contextual peer effects (Manski, 1993) without instrumental variables by exploiting the availability of consumers' decisions in two consecutive periods.
- We find significant heterogeneity, which is often difficult to disentangle due to data limitations.
- ► Implies Flexible Utility Function unlike the conventional linear-in-mean specifications.
 - Microfoundations

Thank You!

Ali Furkan Kalay

Email: alifurkan.kalay@mq.edu.au

Web: alfurka.github.io

Additional Slides

- Microfoundation
- Literature
- Graphs
- ► Why People Purchase PHI?
- Other Estimations

Microfoundations

- ► The linear-in-means model implies a quadratic utility function that is very restrictive.
- Boucher et al. (2024) proposes a new approach that implies a more flexible microfoundation for peer effects models. (CES Utility function)
- Our empirical strategy does not impose any restriction of the consumers' utility function (regarding the endogenous peer effects),

$$y = f(\bar{y}) + \beta X + \epsilon.$$

Conclusion

Literature

- Peer effects in health insurance:
 - Lieber & Skimmyhorn (2018) investigate the peer effects in financial decisions such as retirement savings, life insurance, and charitable giving.
 - Peers affect charitable giving decision, but do not affect retirement savings or insurance purchase.
 - Observability of the decision could be critical.
 - ► Handel et al. (2020) investigate the determinants of choice quality in the Netherlands.
 - People tend to choose similar plans as their peers.
- ▶ Our econometric results also relate to the discussions on heterogeneity in peer effects estimations (Lin et al., 2021).

Firm Sizes

Figure: Firm Size Distribution

Patient Contribution Distribution

Appendix

Patient Contribution Distribution

Appendix

Patient Contribution by Age

A Simple Example for Identification

A simple example: Consider a firm, j with four employees. Assume $PHI_{1,t} = PHI_{2,t} = 1$ and $PHI_{3,t} = PHI_{4,t} = 0$. The average PHI ownership excluding the focal individual is computed as $\overline{PHI}_{-i,t} = 1/3$, i = 1,2 and $\overline{PHI}_{-i,t} = 2/3$, i = 3,4. These terms are captured by $c_{j,1}$ and $c_{j,0}$, respectively.

Appendix Identification (2)

Why do People Purchase PHI in Australia?

1. Financial Reasons

- Reduced tax liabilities
- Lifetime health cover

2. Health Reasons

- Access to private hospitals
- ► Choice of doctor and flexibility in selecting treatment options
- Coverage for extras such as dental and physiotherapy
- Shorter waiting times for elective surgeries

Results: Alternative Measure

Decision		PHI uptake			PHI continuation			
Gender	All	Female	Male	All	Female	Male		
$ln(PPC_{i,t}+1)$	0.0029***	0.0038***	0.0019***	0.0015***	0.0017***	0.0012***		
	(0.0001)	(0.0002)	(0.0002)	(0.0001)	(0.0001)	(0.0002)		
Co-worker average	0.0016*	0.0067***	-0.0012	0.0006	0.0000	-0.0003		
	(8000.0)	(0.0023)	(0.0014)	(0.0004)	(0.0010)	(0.0011)		
Obs.	3,791,887	1,737,497	2,054,390	5,893,954	3,024,033	2,869,921		
R^2	0.080	0.079	0.082	0.038	0.034	0.040		

Results: Relationship

	PHI uptake						
Spouse?	Yes No						
Gender	All	Female	Male	All	Female	Male	
$\ln(PTC_{i,t}+1)$	0.0025***	0.0043***	0.0009**	0.0073***	0.0085***	0.0057***	
	(0.0003)	(0.0004)	(0.0004)	(0.0002)	(0.0003)	(0.0004)	
Co-worker average	0.0007	0.0016	-0.0035	0.0037	0.0133**	-0.0005	
	(0.0020)	(0.0091)	(0.0056)	(0.0031)	(0.0067)	(0.0044)	
Obs.	1,536,854	693,895	842,959	2,255,033	1,043,602	1,211,431	
R ²	0.014	0.014	0.013	0.144	0.138	0.152	

			PHI con	tinuation		
Spouse?		Yes			No	
Gender	All	Female	Male	All	Female	Male
$ln(PTC_{i,t}+1)$	0.0010***	0.0011***	0.0009***	0.0032***	0.0031***	0.0032***
	(0.0002)	(0.0002)	(0.0003)	(0.0003)	(0.0003)	(0.0004)
Co-worker average	0.0011*	0.0019	0.0010	0.0000	0.0021	-0.0018
	(0.0007)	(0.0019)	(0.0023)	(0.0031)	(0.0056)	(0.0053)
Obs.	3,613,842	1,797,295	1,816,547	2,280,112	1,226,738	1,053,374
R ²	0.023	0.022	0.023	0.037	0.033	0.040
		100				

Results: By Age

	PHI uptake						
Age	Less than 35						
Gender	All	Female	Male	All	Female	Male	
$ln(PTC_{i,t}+1)$	0.0086***	0.0106***	0.0067***	0.0033***	0.0044***	0.0023***	
	(0.0003)	(0.0005)	(0.0005)	(0.0003)	(0.0003)	(0.0005)	
Co-worker average	-0.0015	0.0103	-0.0053	0.0041**	0.0154***	-0.0003	
	(0.0048)	(0.0101)	(0.0064)	(0.0019)	(0.0058)	(0.0042)	
Obs.	1,895,073	859,243	1,035,830	1,896,814	878,254	1,018,560	
R ²	0.062	0.061	0.064	0.104	0.097	0.109	

	PHI continuation							
Age		Less than 35			35 or Older			
Gender	All	Female	Male	All	Female	Male		
$ln(PTC_{i,t}+1)$	0.0059***	0.0063***	0.0050***	0.0004**	0.0001	0.0007***		
	(0.0004)	(0.0004)	(0.0005)	(0.0002)	(0.0001)	(0.0002)		
Co-worker average	-0.0004	0.0065	-0.0045	0.0009	0.0001	0.0030		
	(0.0043)	(0.0088)	(0.0075)	(0.0006)	(0.0016)	(0.0020)		
Obs.	1,914,289	1,004,482	909,807	3,979,665	2,019,551	1,960,114		
R ²	0.029	0.027	0.031	0.017	0.016	0.019		
		Δ 11						

Results: Firm Size Restrictions

	PHI uptake						
Gender		Female		Male			
Maximum firm size	50	200	1000	50	200	1000	
${\ln(PTC_{i,t}+1)}$	0.0079***	0.0073***	0.0072***	0.0045***	0.0040***	0.0037***	
	(8000.0)	(0.0005)	(0.0004)	(0.0005)	(0.0004)	(0.0003)	
Co-worker average	0.0206***	0.0176***	0.0169***	0.0020	0.0005	-0.0010	
	(0.0053)	(0.0048)	(0.0045)	(0.0032)	(0.0029)	(0.0028)	
Obs.	457,083	714,344	991,399	658,552	1,016,928	1,376,536	
R^2	0.098	0.095	0.088	0.096	0.097	0.092	

	PHI continuation					
Gender	Female			Male		
Maximum firm size	50	200	1000	50	200	1000
$ln(PTC_{i,t}+1)$	0.0015***	0.0019***	0.0019***	0.0012***	0.0016***	0.0017***
	(0.0004)	(0.0003)	(0.0002)	(0.0004)	(0.0002)	(0.0002)
Co-worker average	-0.0006	0.0006	0.0010	-0.0007	0.0004	0.0004
	(0.0021)	(0.0019)	(0.0018)	(0.0021)	(0.0019)	(0.0018)
Obs.	748,841	1,101,305	1,555,456	793,805	1,203,204	1,730,320
R^2	0.043	0.040	0.037	0.049	0.046	0.043

Summary

Appendix

References I

- Boucher, V., & Bramoullé, Y. (2020). *Binary outcomes and linear interactions*. CEPR Discussion Paper No. DP15505.
- Boucher, V., Rendall, M., Ushchev, P., & Zenou, Y. (2024). Toward a general theory of peer effects. *Econometrica*. (Forthcoming)
- Bramoullé, Y., Djebbari, H., & Fortin, B. (2009). Identification of peer effects through social networks. *Journal of econometrics*, 150(1), 41–55.
- De Giorgi, G., Frederiksen, A., & Pistaferri, L. (2020). Consumption network effects. *The Review of Economic Studies*, 87(1), 130–163.
- Handel, B. R., Kolstad, J. T., Minten, T., & Spinnewijn, J. (2020). The social determinants of choice quality: evidence from health insurance in the netherlands.
- Lieber, E. M., & Skimmyhorn, W. (2018). Peer effects in financial decision-making. *Journal of Public Economics*, 163, 37–59.

References II

- Lin, Z., Tang, X., & Yu, N. N. (2021). Uncovering heterogeneous social effects in binary choices. *Journal of Econometrics*, 222(2), 959–973.
- Manski, C. F. (1993). Identification of endogenous social effects: The reflection problem. *The review of economic studies*, 60(3), 531–542.
- Thomas, G., & Marlton, P. (2016, 12). Expenditure and prescriptions twelve months to 30 june 2016 (Tech. Rep.). Australian Department of Health. Retrieved from https://www.pbs.gov.au/info/statistics/pbs-expenditure-prescriptions-30-june-2016