

The maximum allowable value of each of the reactions is 360 N. Neglecting the weight of the beam, determine the range of values of the distance d for which the beam is safe.

SOLUTION

From f.b.d. of beam

$$\Sigma F_x = 0$$
: $B_x = 0$ so that $B = B_y$
+ $\Delta F_y = 0$: $A + B - (100 + 200 + 300) N = 0$
 $A + B = 600 N$

Therefore, if either **A** or **B** has a magnitude of the maximum of 360 N, the other support reaction will be < 360 N (600 N - 360 N = 240 N).

$$+\sum \Sigma M_A = 0: \quad (100 \text{ N})(d) - (200 \text{ N})(0.9 - d) - (300 \text{ N})(1.8 - d)$$
$$+ B(1.8 - d) = 0$$
or
$$d = \frac{720 - 1.8B}{600 - B}$$

Since $B \le 360 \text{ N}$,

$$d = \frac{720 - 1.8(360)}{600 - 360} = 0.300 \text{ m} \qquad \text{or} \qquad d \ge 300 \text{ mm}$$

$$+ \sum M_B = 0: \quad (100 \text{ N})(1.8) - A(1.8 - d) + (200 \text{ N})(0.9) = 0$$
or
$$d = \frac{1.8A - 360}{A}$$

Since $A \leq 360 \text{ N}$,

$$d = \frac{1.8(360) - 360}{360} = 0.800 \,\text{m} \qquad \text{or} \qquad d \le 800 \,\text{mm}$$

or $300 \text{ mm} \le d \le 800 \text{ mm} \blacktriangleleft$

Solve Problem 4.11 assuming that the 100-N load is replaced by a 160-N load.

P4.11 The maximum allowable value of each of the reactions is 360 N. Neglecting the weight of the beam, determine the range of values of the distance *d* for which the beam is safe.

SOLUTION

From f.b.d of beam

$$F_x = 0$$
: $F_x = 0$ so that $F_y = 0$. $F_y = 0$: $F_$

Therefore, if either **A** or **B** has a magnitude of the maximum of 360 N, the other support reaction will be < 360 N (660 - 360 = 300 N).

$$+ \sum \Sigma M_A = 0: \quad 160 \text{ N}(d) - 200 \text{ N}(0.9 - d) - 300 \text{ N}(1.8 - d)$$
$$+ B(1.8 - d) = 0$$
$$d = \frac{720 - 1.8B}{660 - B}$$

or

Since $B \le 360 \text{ N}$,

$$d = \frac{720 - 1.8(360)}{660 - 360} = 0.240 \text{ m} \quad \text{or} \quad d \ge 240 \text{ mm}$$

$$+ \sum M_B = 0: \quad 160 \text{ N}(1.8) - A(1.8 - d) + 200 \text{ N}(0.9) = 0$$

or

$$d = \frac{1.8A - 468}{A}$$

Since $A \leq 360 \text{ N}$,

$$d = \frac{1.8(360) - 468}{360} = 0.500 \text{ m} \qquad \text{or} \qquad d \ge 500 \text{ mm}$$

or 240 mm $\leq d \leq$ 500 mm \triangleleft

For the beam of Sample Problem 4.2, determine the range of values of *P* for which the beam will be safe knowing that the maximum allowable value of each of the reactions is 45 kips and that the reaction at *A* must be directed upward.

SOLUTION

For the force of **P** to be a minimum, A = 0.

With A = 0,

+)
$$\Sigma M_B = 0$$
: $P_{\min}(6 \text{ ft}) - (6 \text{ kips})(2 \text{ ft}) - (6 \text{ kips})(4 \text{ ft}) = 0$
 $\therefore P_{\min} = 6.00 \text{ kips}$

For the force **P** to be a maximum, $\mathbf{A} = \mathbf{A}_{\text{max}} = 45 \text{ kips}$

With A = 45 kips,

+)
$$\Sigma M_B = 0$$
: $-(45 \text{ kips})(9 \text{ ft}) + P_{\text{max}}(6 \text{ ft}) - (6 \text{ kips})(2 \text{ ft}) - (6 \text{ kips})(4 \text{ ft}) = 0$
 $\therefore P_{\text{max}} = 73.5 \text{ kips}$

A check must be made to verify the assumption that the maximum value of $\bf P$ is based on the reaction force at $\bf A$. This is done by making sure the corresponding value of $\bf B$ is $\bf < 45$ kips.

+ ↑
$$\Sigma F_y = 0$$
: 45 kips - 73.5 kips + B - 6 kips - 6 kips = 0
∴ B = 40.5 kips < 45 kips ∴ ok or P_{max} = 73.5 kips

and 6.00 kips $\leq P \leq 73.5$ kips

For the beam and loading shown, determine the range of values of the distance a for which the reaction at B does not exceed 50 lb downward or 100 lb upward.

SOLUTION

25 lb

1501b 1501b

To determine a_{max} the two 150-lb forces need to be as close to B without having the vertical upward force at B exceed 100 lb.

From f.b.d. of beam with $\mathbf{B} = 100 \text{ lb}$

+)
$$\Sigma M_D = 0$$
: $-(150 \text{ lb})(a_{\text{max}} - 4 \text{ in.}) - (150 \text{ lb})(a_{\text{max}} - 1 \text{ in.})$
 $-(25 \text{ lb})(2 \text{ in.}) + (100 \text{ lb})(8 \text{ in.}) = 0$

r

$$a_{\text{max}} = 5.00 \text{ in.}$$

To determine a_{\min} the two 150-lb forces need to be as close to A without having the vertical downward force at B exceed 50 lb.

From f.b.d. of beam with $\mathbf{B} = 50 \text{ lb}$

+)
$$\Sigma M_D = 0$$
: $(150 \text{ lb})(4 \text{ in.} - a_{\min}) - (150 \text{ lb})(a_{\min} - 1 \text{ in.})$
 $-(25 \text{ lb})(2 \text{ in.}) - (50 \text{ lb})(8 \text{ in.}) = 0$

or

B=501b

$$a_{\min} = 1.00 \text{ in.}$$

Therefore,

or 1.00 in. $\leq a \leq 5.00$ in. \triangleleft

A follower ABCD is held against a circular cam by a stretched spring, which exerts a force of 21 N for the position shown. Knowing that the tension in rod BE is 14 N, determine (a) the force exerted on the roller at A, (b) the reaction at bearing C.

SOLUTION

Note: From f.b.d. of ABCD

$$A_x = A\cos 60^\circ = \frac{A}{2}$$

$$A_y = A\sin 60^\circ = A\frac{\sqrt{3}}{2}$$

(a) From f.b.d. of ABCD

+) ΣM_C = 0:
$$\left(\frac{A}{2}\right)$$
 (40 mm) − 21 N (40 mm)
+ 14 N (20 mm) = 0
∴ A = 28 N

or **A** = 28.0 N
$$\angle$$
 60°

(b) From f.b.d. of ABCD

$$^+$$
 $\Sigma F_x = 0$: $C_x + 14 \text{ N} + (28 \text{ N})\cos 60^\circ = 0$

$$\therefore C_x = -28 \text{ N}$$
 or $C_x = 28.0 \text{ N}$

$$C_{x} = 28.0 \text{ N} -$$

$$+ \sum F_{v} = 0$$
:

$$+\uparrow \Sigma F_y = 0$$
: $C_y - 21 \text{ N} + (28 \text{ N})\sin 60^\circ = 0$

:.
$$C_y = -3.2487 \text{ N}$$
 or $C_y = 3.25 \text{ N}$

$$C_{y} = 3.25 \text{ N} \downarrow$$

Then

$$C = \sqrt{C_x^2 + C_y^2} = \sqrt{(28)^2 + (3.2487)^2} = 28.188 \text{ N}$$

and

$$\theta = \tan^{-1} \left(\frac{C_y}{C_x} \right) = \tan^{-1} \left(\frac{-3.2487}{-28} \right) = 6.6182^{\circ}$$

or
$$C = 28.2 \text{ N} \ \text{\mathbb{Z}} 6.62^{\circ} \text{\triangleleft}$$

A 6-m-long pole AB is placed in a hole and is guyed by three cables. Knowing that the tensions in cables BD and BE are 442 N and 322 N, respectively, determine (a) the tension in cable CD, (b) the reaction at A.

SOLUTION

2.10 m

Note:

$$\overline{DB} = \sqrt{(2.8)^2 + (5.25)^2} = 5.95 \text{ m}$$

$$\overline{DC} = \sqrt{(2.8)^2 + (2.10)^2} = 3.50 \text{ m}$$

(a) From f.b.d. of pole

+
$$\sum M_A = 0$$
: - (322 N)(6 m) + $\left[\left(\frac{2.8 \text{ m}}{5.95 \text{ m}} \right) (442 \text{ N}) \right] (6 \text{ m})$
+ $\left[\left(\frac{2.8 \text{ m}}{3.50 \text{ m}} \right) T_{CD} \right] (2.85 \text{ m}) = 0$
∴ $T_{CD} = 300 \text{ N}$

or $T_{CD} = 300 \text{ N}$

or **A** = 584 N \angle 77.5°

(b) From f.b.d. of pole

$$\stackrel{+}{\longrightarrow} \Sigma F_x = 0: \quad 322 \text{ N} - \left(\frac{2.8 \text{ m}}{5.95 \text{ m}}\right) (442 \text{ N})$$

$$- \left(\frac{2.8 \text{ m}}{3.50 \text{ m}}\right) (300 \text{ N}) + A_x = 0$$

$$\therefore A_x = 126 \text{ N} \quad \text{or} \quad \mathbf{A}_x = 126 \text{ N} \longrightarrow$$

$$+ \uparrow \Sigma F_y = 0: \quad A_y - \left(\frac{5.25 \text{ m}}{5.95 \text{ m}}\right) (442 \text{ N}) - \left(\frac{2.10 \text{ m}}{3.50 \text{ m}}\right) (300 \text{ N}) = 0$$

$$\therefore A_y = 570 \text{ N} \quad \text{or} \quad \mathbf{A}_y = 570 \text{ N} \uparrow$$
Then
$$A = \sqrt{A_x^2 + A_y^2} = \sqrt{(126)^2 + (570)^2} = 583.76 \text{ N}$$
and
$$\theta = \tan^{-1} \left(\frac{570 \text{ N}}{126 \text{ N}}\right) = 77.535^\circ$$

Determine the reactions at A and C when (a) $\alpha = 0$, (b) $\alpha = 30^{\circ}$.

SOLUTION

(a)

(a)
$$\alpha = 0^{\circ}$$

From f.b.d. of member ABC

+)
$$\Sigma M_C = 0$$
: $(80 \text{ lb})(10 \text{ in.}) + (80 \text{ lb})(20 \text{ in.}) - A(40 \text{ in.}) = 0$
 $\therefore A = 60 \text{ lb}$

or
$$\mathbf{A} = 60.0 \text{ lb} \uparrow \blacktriangleleft$$

$$+ \sum F_y = 0$$
: $C_y + 60 \text{ lb} = 0$

$$\therefore C_y = -60 \text{ lb}$$
 or $C_y = 60 \text{ lb}$

$$+ \Sigma F_x = 0$$
: 80 lb + 80 lb + $C_x = 0$

$$\therefore C_x = -160 \text{ lb} \qquad \text{or} \qquad \mathbf{C}_x = 160 \text{ lb} \blacktriangleleft$$

Then
$$C = \sqrt{C_x^2 + C_y^2} = \sqrt{(160)^2 + (60)^2} = 170.880 \text{ lb}$$

and
$$\theta = \tan^{-1} \left(\frac{C_y}{C_x} \right) = \tan^{-1} \left(\frac{-60}{-160} \right) = 20.556^{\circ}$$

or
$$C = 170.9 \text{ lb } \cancel{\times} 20.6^{\circ} \blacktriangleleft$$

(*b*)

(b)
$$\alpha = 30^{\circ}$$

From f.b.d. of member ABC

+)
$$\Sigma M_C = 0$$
: $(80 \text{ lb})(10 \text{ in.}) + (80 \text{ lb})(20 \text{ in.}) - (A\cos 30^\circ)(40 \text{ in.})$
+ $(A\sin 30^\circ)(20 \text{ in.}) = 0$
 $\therefore A = 97.399 \text{ lb}$

or **A** =
$$97.4 \text{ lb} \angle 60^{\circ} \blacktriangleleft$$

PROBLEM 4.17 CONTINUED

$$\stackrel{+}{\longrightarrow} \Sigma F_x = 0$$
: 80 lb + 80 lb + (97.399 lb)sin 30° + $C_x = 0$

:.
$$C_x = -208.70 \text{ lb}$$
 or $C_x = 209 \text{ lb}$

$$+ \int \Sigma F_y = 0$$
: $C_y + (97.399 \text{ lb})\cos 30^\circ = 0$

:.
$$C_y = -84.350 \text{ lb}$$
 or $C_y = 84.4 \text{ lb}$

Then
$$C = \sqrt{C_x^2 + C_y^2} = \sqrt{(208.70)^2 + (84.350)^2} = 225.10 \text{ lb}$$

and
$$\theta = \tan^{-1} \left(\frac{C_y}{C_x} \right) = \tan^{-1} \left(\frac{-84.350}{-208.70} \right) = 22.007^{\circ}$$

or
$$\mathbf{C} = 225 \text{ lb } \mathbb{Z} 22.0^{\circ} \blacktriangleleft$$

Determine the reactions at A and B when (a) h = 0, (b) h = 8 in.

SOLUTION

(a)

(a) h = 0

From f.b.d. of plate

+)
$$\Sigma M_A = 0$$
: $(B \sin 30^\circ)(20 \text{ in.}) - (40 \text{ lb})(10 \text{ in.}) = 0$
 $\therefore B = 40 \text{ lb}$

or **B** =
$$40.0 \text{ lb} \ge 30^{\circ} \blacktriangleleft$$

$$+\Sigma F_x = 0$$
: $A_x - (40 \text{ lb})\cos 30^\circ = 0$

$$\therefore A_x = 34.641 \text{ lb}$$
 or $\mathbf{A}_x = 34.6 \text{ lb}$

$$+ \uparrow \Sigma F_y = 0$$
: $A_y - 40 \text{ lb} + (40 \text{ lb}) \sin 30^\circ = 0$

$$\therefore A_{y} = 20 \text{ lb}$$

$$\therefore A_y = 20 \text{ lb}$$
 or $\mathbf{A}_y = 20.0 \text{ lb}$

Then

$$A = \sqrt{A_x^2 + A_y^2} = \sqrt{(34.641)^2 + (20)^2} = 39.999 \text{ lb}$$

and

$$\theta = \tan^{-1} \left(\frac{A_y}{A_x} \right) = \tan^{-1} \left(\frac{20}{34.641} \right) = 30.001^{\circ}$$

or **A** = $40.0 \text{ lb} \angle 30^{\circ} \blacktriangleleft$

(b)

(b) h = 8 in.

From f.b.d. of plate

+)
$$\Sigma M_A = 0$$
: $(B \sin 30^\circ)(20 \text{ in.}) - (B \cos 30^\circ)(8 \text{ in.})$
- $(40 \text{ lb})(10 \text{ in.}) = 0$
 $\therefore B = 130.217 \text{ lb}$

or **B** =
$$130.2 \text{ lb} \ge 30.0^{\circ} \blacktriangleleft$$

PROBLEM 4.18 CONTINUED

$$+ \Sigma F_x = 0$$
: $A_x - (130.217 \text{ lb})\cos 30^\circ = 0$

:.
$$A_x = 112.771 \text{ lb}$$
 or $A_x = 112.8 \text{ lb}$

$$+ \uparrow \Sigma F_y = 0$$
: $A_y - 40 \text{ lb} + (130.217 \text{ lb}) \sin 30^\circ = 0$

:.
$$A_y = -25.108 \text{ lb}$$
 or $A_y = 25.1 \text{ lb}$

Then
$$A = \sqrt{A_x^2 + A_y^2} = \sqrt{(112.771)^2 + (25.108)^2} = 115.532 \text{ lb}$$

and
$$\theta = \tan^{-1} \left(\frac{A_y}{A_x} \right) = \tan^{-1} \left(\frac{-25.108}{112.771} \right) = -12.5519^{\circ}$$