广州大学学生实验报告

开课学院及实验室: 计算机科学与工程实验室

2019年5月8日

学院	计算机科学与 网络工程学院	年级/专 业/班	软件 171	姓名	谢金宏	学号	1706300001
实验课 程名称	计算	算机组成-	成绩				
实验项 目名称	运算器实验					指导老师	古鹏

实验一 运算器实验

一、实验目的

- 1. 掌握简单运算器的数据传输方式。
- 2. 验证运算功能发生器(74LS181)及进位控制的组合功能。

二、实验要求

完成不带进位及带进位算术运算实验、逻辑运算实验、了解算术逻辑运算单元的运用。

三、实验原理

实验中所用的运算器数据通路如图 1 所示。ALU 运算器由 CPLD 描述。运算器的输出 经过 2 片 74LS245 三态门与数据总线相连, 2 个运算寄存器 AX、BX 的数据输入端分别由 4 个 74LS574 锁存器锁存, 锁存器的输入端与数据总线相连, 准双向 I/O 输入输出端口用来给 出参与运算的数据, 经 2 片 74LS245 三态门与数据总线相连。

图 1 运算器数据通路

图 1 中,AXW、BXW 在"搭接态"由实验连接对应的二进制开关控制,"0"有效,通过【单拍】按钮产生的负脉冲把总线上的数据打入,实现AXW、BXW 写入操作。

四、实验连线

K23~K0 置"1", 灭 M23~M0 控位显示灯。然后按下表要求"搭接"部件控制电路。

连线	信号孔	接入孔	作用	有效电平
1	DRCK	CLOCK	单元手动实验状态的时钟来源	下降沿打入
2	W	K6(M6)	总线字长: 0=16 位字操作,1=8 位字节操作	
3	XP	K7(M7)	源部件奇偶标志: 0=偶寻址,1=奇寻址	
4	X2	K10(M10)	源部件定义译码端 X2	三八译码
5	X1	K9(M9)	源部件定义译码端 X1	八中选一
6	X0	K8(M8)	源部件定义译码端 X0	低电平有效
7	M	K15(M15)	运算控制位: 0=算术运算,1=逻辑运算	
8	S2	K13(M13)	运算状态位 S 2	
9	S1	K12(M12)	运算状态位 S1	
10	S 0	K11(M11)	运算状态位 S 0	
11	OP	K16(M16)	目标部件奇偶标志: 0=偶寻址, 1=奇寻址	
12	AXW	K17(M17)	AX 运算寄存器写使能,本例定义到 M17 位	低电平有效
13	BXW	K18(M18)	BX 运算寄存器写使能,本例定义到 M18 位	低电平有效

五、实验内容

AX 减 1

A-1

在给定 AX=6655h、BX=AA77h 的情况下,改变运算器的功能设置,观察运算器的输出,填入下页表格中,并和理论分析进行比较、验证。

运算控制 运算表达式 M S2 S1 S0 ΑX BX 运算结果 AA77 FUN= (10CC) 带进位算术加 A+B+C 0 0 0 0 6655 A-B-C FUN= (BBDE) 带借位算术减 0 0 0 1 6655 AA77 带进位左移 RLC A 0 0 1 0 6655 AA77 FUN= (CCAA) AA77 带进位右移 RRC A 0 0 6655 FUN=(332A) 1 1 6655 AA77 FUN= (10CC) 算术加 FUN= (BBDE) A-B 0 1 0 1 6655 AA77 算术减 AA77 FUN= (CCAA) RL A 1 1 6655 左移 右移 RR A 0 6655 AA77 FUN=(332A) AA77 0 6655 FUN=(AA77) 取 BX 值 В 1 0 0 AX 取反 NOT A 1 0 0 6655 AA77 FUN=(99AA)

0

1

1

0

6655

AA77

FUN= (6654)

表 1 ALU 运算器真值表

清零	0	1	0	1	1	6655	AA77	FUN=(0000)
逻辑或	A OR B	1	1	0	0	6655	AA77	FUN=(EE77)
逻辑与	A AND B	1	1	0	1	6655	AA77	FUN=(2255)
AX 加 1	A+1	1	1	1	0	6655	AA77	FUN=(6656)
取 AX 值	А	1	1	1	1	6655	AA77	FUN=(6655)

六、实验思考

计算机组成原理并不是停留在书本上的知识,而是与计算机实践息息相关的。本实验是对组成原理课程前几章所学知识的一次检验。本次实验我学习了不带进位及带进位算术运算、逻辑运算的操作方法,对 ALU 有了第一手操作的知识,加深了对它的了解。

七、问题及体会

由于初次进行实验,对实验仪器不熟悉导致实验前花费了较多时间在熟悉仪器上。同时实验室的实验指导书数量不足,实验前应该准备好电子版本的实验指导书。并且应当携带纸质版本的编程手册以备快速翻阅。