Master 1 Informatique 2023–2024 Compléments de maths Interro. 5

NOM :	Prénom :	Num. Étu. : 2

Question 1

Soit la v.a. X_1 , Uniforme(0,2), et soit X_2 la v.a. définie sur $E_2=\{1,3\}$ et de fonction de densité $f_2:f_2(1)=2/5$ et $f_2(3) = 3/5$.

Soit X la v.a. définie par : $X = \max(X_1, X_2)$.

Pour la v.a. X, donner son espace d'état, sa fonction de densité et sa moyenne.

Réponse :

- ullet Précisons d'abord l'énoncé : par définition de la loi uniforme, la v.a. X_1 a comme espace d'état $E_1=\{0,1,2\}$ et comme fonction de densité $\forall n \in E_1$, $f_1(n) = \frac{1}{3}$.
 - Nous supposerons l'indépendance des v.a. X_1 et X_2 .
- Nous allons calculer l'espace d'état E et la fonction de densité f de la v.a. X en listant tous les cas possibles. Il y en a six qui correspondent à tous les couples de valeurs de X_1 et X_2 :

<u>Cas 1</u>: X_1 vaut 0 et X_2 vaut 1, donc $X = \max(X_1, X_2) = \max(0, 1) = 1$ et $\mathbb{P}(X_1 = 0 \text{ ET } X_2 = 1) = 1$ $\mathbb{P}\left(X_{1}=0\right)\times\mathbb{P}\left(X_{2}=1\right) \text{ car les deux v.a. sont indépendantes et donc } \mathbb{P}\left(X_{1}=0 \text{ ET } X_{2}=1\right)=\mathbb{P}\left(X_{1}=0\right)\times\mathbb{P}\left(X_{1}=0\right)$ $\mathbb{P}(X_2=1) = f_1(0) \times f_2(1) = \frac{1}{3} \times \frac{2}{5} = \frac{2}{15}$.

Tous les Cas : Pour tous les cas, on a le même raisonnement que pour le Cas 1, que l'on résume dans le tableau suivant :

	Valeur de X_1	Valeur de X_2	Valeur de X	Proba de X_1	Proba de X_2	Proba de X
Cas 1	0	1	$\max(0,1) = 1$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{3} \times \frac{2}{5} = \frac{2}{15}$
Cas 2	0	3	$\max(0,3) = 3$	$\frac{1}{3}$	$\frac{3}{5}$	$\frac{1}{3} \times \frac{3}{5} = \frac{3}{15}$
Cas 3	1	1	$\max(1,1) = 1$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{3} \times \frac{2}{5} = \frac{2}{15}$
Cas 4	1	3	$\max(1,3) = 3$	$\frac{1}{3}$	$\frac{3}{5}$	$\frac{1}{3} \times \frac{3}{5} = \frac{3}{15}$
Cas 5	2	1	$\max(2,1) = 2$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{3} \times \frac{2}{5} = \frac{2}{15}$
Cas 6	2	3	$\max(2,3) = 3$	$\frac{1}{3}$	$\frac{3}{5}$	$\frac{1}{3} \times \frac{3}{5} = \frac{3}{15}$

La colonne "Valeur de X" nous donne les différentes valeurs que peut prendre X, donc son espace d'état E: $E = \{1, 2, 3\}$

- X prend la valeur 1, dans les Cas 1 et 3, donc $\mathbb{P}(X=1)=\frac{2}{15}+\frac{2}{15}=\frac{4}{15}$ qui sont les probas de la colonne "Proba de X".
- $\begin{array}{ll} --- X \text{ prend la valeur 2, dans le Cas 5, donc } \mathbb{P}\left(X=2\right) = \frac{2}{15}. \\ --- X \text{ prend la valeur 3, dans les Cas 2, t4 et 6, donc } \mathbb{P}\left(X=3\right) = \frac{3}{15} + \frac{3}{15} + \frac{3}{15} = \frac{9}{15}. \end{array}$

Donc:

$$f(1) = \frac{4}{15}$$
, $f(2) = \frac{2}{15}$ et $f(3) = \frac{9}{15}$

ullet La moyenne de X, notée m se calcule par :

$$m = \sum_{n=1}^{3} n \times f(n) = 1 \times \frac{4}{15} + 2 \times \frac{2}{15} + 3 \times \frac{9}{15} = \frac{35}{15}$$

Réponse pour $X = \min(X_1, X_2)$:

Si $X=\min(X_1,X_2)$, la rédaction est la même, sauf que le tableau change :

	Valeur de X_1	Valeur de X_2	Valeur de X	Proba de X_1	Proba de X_2	Proba de X
Cas 1	0	1	$\min(0,1) = 0$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{3} \times \frac{2}{5} = \frac{2}{15}$
Cas 2	0	3	$\min(0,3) = 0$	$\frac{1}{3}$	$\frac{3}{5}$	$\frac{1}{3} \times \frac{3}{5} = \frac{3}{15}$
Cas 3	1	1	$\min(1,1) = 1$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{3} \times \frac{2}{5} = \frac{2}{15}$
Cas 4	1	3	$\min(1,3) = 1$	$\frac{1}{3}$	$\frac{3}{5}$	$\frac{1}{3} \times \frac{3}{5} = \frac{3}{15}$
Cas 5	2	1	$\min(2,1) = 1$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{3} \times \frac{2}{5} = \frac{2}{15}$
Cas 6	2	3	$\min(2,3)=2$	$\frac{1}{3}$	$\frac{3}{5}$	$\frac{1}{3} \times \frac{3}{5} = \frac{3}{15}$

ce qui donne

$$E = \{0, 1, 2\}$$

$$f(0) = \frac{5}{15}, f(1) = \frac{7}{15} \text{ et } f(2) = \frac{3}{15}$$

$$m = \sum_{n=0}^{2} n \times f(n) = 0 \times \frac{5}{15} + 1 \times \frac{7}{15} + 2 \times \frac{3}{15} = \frac{13}{15}$$

Réponse pour $X = X_1 \times X_2$:

Si $X=X_1 imes X_2$, la rédaction est la même, sauf que le tableau change :

	Valeur de X_1	Valeur de X_2	$Valeur\;de\;X$	Proba de X_1	Proba de X_2	Proba de X
Cas 1	0	1	$0 \times 1 = 0$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{3} \times \frac{2}{5} = \frac{2}{15}$
Cas 2	0	3	$0 \times 3 = 0$	$\frac{1}{3}$	$\frac{3}{5}$	$\frac{1}{3} \times \frac{3}{5} = \frac{3}{15}$
Cas 3	1	1	$1 \times 1 = 1$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{3} \times \frac{2}{5} = \frac{2}{15}$
Cas 4	1	3	$1 \times 3 = 3$	$\frac{1}{3}$	$\frac{3}{5}$	$\frac{1}{3} \times \frac{3}{5} = \frac{3}{15}$
Cas 5	2	1	$2 \times 1 = 2$	$\frac{1}{3}$	$\frac{2}{5}$	$\frac{1}{3} \times \frac{2}{5} = \frac{2}{15}$
Cas 6	2	3	$2 \times 3 = 6$	$\frac{1}{3}$	$\frac{3}{5}$	$\frac{1}{3} \times \frac{3}{5} = \frac{3}{15}$

ce qui donne

$$E = \{0, 1, 2, 3, 6\}$$

$$f(0) = \frac{5}{15}, f(1) = \frac{2}{15}, f(2) = \frac{2}{15}, f(3) = \frac{3}{15} \text{ et } f(6) = \frac{3}{15}$$

$$m = \sum_{n \in E} n \times f(n) = 0 \times \frac{5}{15} + 1 \times \frac{2}{15} + 2 \times \frac{2}{15} + 3 \times \frac{3}{15} + 6 \times \frac{3}{15} = \frac{33}{15}$$