Préparation à l'examen de NoSQL

Wéry Benoît

9 novembre 2017

Chapitre 1

Vrai ou Faux

- 1. Dans une entreprise, les données vivent souvent plus longtemps que les logiciels. Vrai blabla
- 2. Dans une entreprise, les logiciels vivent souvent plus longtemps que les données. Faux coucou
- 3. Le passage du relationnel au NoSQL se fait généralement au profit d'une diminution des garanties relatives à la consistence des données.
- 4. Le passage du relationnel au NoSQL se fait généralement au profit d'une diminution de la quantité de données stockables.
- 5. Le passage du relationnel au NoSQL se fait généralement au profit de l'abandon de la possibilité de lire des données de manière concurrente.
- 6. Le passage du relationnel au NoSQL se fait généralement au profit d'une diminution des garanties relatives à la persistance des données.
- 7. Tout comme pour le relationnel, l'organisation des données en NoSQL suit un modèle mathématique rigoureux.
- 8. Le NoSQL est particulièrement adapté à des traitements de données de type OLTP
- 9. Le NoSQL est particulièrement adapté à des traitements de données de type OLAP.

- 10. Toutes les bases de données de type NoSQL satisfont les propriétés ACID.
- 11. Un système distribué peut toujours garantir la consistence des données sur tous ses nœuds.
- 12. Le mouvement de l'Open Data consiste à fournir librement des données récoltées pour permettre à la communauté de les analyser.
- 13. Le mouvement de l'Open Data à créer des logiciels open source permettant d'analyser des données massives (big data).
- 14. Google File System (GFS) est un moteur de base de données NoSQL.
- 15. Apache Hadoop est une implémentation propriétaire de MapReduce, commercialisée par Oracle.
- 16. L'intégration des données dans une seule base pour les partager entre plusieurs applications permet d'obtenir les meilleures garanties en terme de préservation de l'intégrité des données.
- 17. Limiter l'accès aux bases de données d'une entreprise à une seule application qui offre une API aux autres permet de rendre un changement de leur structure plus facile.
- 18. Une base de données NoSQL (clé-valeur, document et colonne) stocke des agrégats que l'on peut comparer aux tables du modèle relationnel
- 19. Une collection de paires clé-valeur peut être assimilée à une table relationnelle à deux colonnes dont la colonne représentant les clés est la clé primaire de la table.
- 20. Supprimer la valeur associée à une clé est l'une des trois opérations de base que l'on peut réaliser sur une base de données clé-valeur.
- 21. Dans une base de données clé-valeur, il est généralement prévu de rechercher toutes les clés dont les valeurs satisfont une certaine propriété.

22.	Il est possible d'imposer de	s contraintes .	$sur\ les$	domaines	des	valeurs	des	paires	$cl\acute{e}$	-valeur	d'une
	base de données clé-valeur.										

- 23. Distribuer les données sur un cluster de machines fait partie des éléments mis en place dans le monde NoSQL.
- 24. Il est possible de faire du sharding de données pour une base de données se trouvant sur un machine unique.
- 25. Le sharding permet de récupérer les données en cas de corruption grâce à un stockage redondant de ces dernières sur plusieurs serveurs pouvant être physiquement à des endroits différents.
- 26. Réplication de données et sharding sont incompatibles.
- 27. La réplication master-slave offre la propriété de résilience à la lecture.
- 28. En utilisant une réplication master-slave, les données deviennent complètement inaccessibles une fois que le master tombe.
- 29. La consistence des données est plus compliquées à garantir avec une réplication master-slave qu'avec une réplication peer-to-peer.
- 30. La consistence des données est plus compliquées à garantir avec une réplication peer-to-peer qu'avec une réplication master-slave.
- 31. En utilisant une réplication master-slave, une lecture sur le master assurera toujours d'obtenir les données les plus récentes
- 32. Les buckets de Riak permettent de segmenter les données en plusieurs collections d'agrégats.
- 33. On ne peut pas stocker des arbres binaires comme valeurs avec Redis.

34.	Redis garantit la persistance de données.
35.	Les bases de données orientée colonnes optimisent le stockage disque pour des tables qui contiennent de nombreuses lignes.
36.	Une base de données orientée colonnes est très adaptée lorsqu'on a plus d'opérations d'écriture que de lecture.
37.	Une base de données orientée colonnes est très adaptée lorsqu'on a plus d'opérations de lecture que d'écriture.
38.	Une base de données orientée colonnes est un map à deux niveaux.
39.	Dans une base de données orientée colonnes, les familles de colonnes sont de préférence définies une fois pour toute lors de la création de la table.
40.	L'avantage de l'utilisation de colonnes plutôt que de lignes est d'offrir une vitesse d'écriture plus grande de nouveaux enregistrements.
41.	$L'avantage\ de\ l'utilisation\ de\ colonnes\ plutôt\ que\ de\ lignes\ est\ d'offrir\ un\ meilleur\ taux\ de\ compression\ des\ données\ stockées.$
42.	L'avantage de l'utilisation de colonnes plutôt que de lignes est d'offrir de meilleures performances lors de la lecture de tous les enregistrements d'une table.
43.	Une base HBase peut servir d'input/output de MapReduce (Hadoop)
44.	Une base HBase peut servir de fichiers avec GFS (Google File System)

 $45. \ Une \ base \ de \ donn\'ees \ orient\'ee \ graphe \ stocke \ deux \ collections \ d'agr\'egats \ appel\'es \ nœuds \ et \ ar\^etes.$

- 46. La suppression d'un nœud dans une base de données orientée graphe implique la suppression de toutes les relations partant et arrivant sur ce nœud.
- 47. Il est impossible de stocker une liste de personnes dans une base de données orientée graphe
- 48. SPARQL est un langage de requêtes générique permettant d'interroger n'importe quelle base de données NoSQL.
- 49. Gremlin est un langage de requêtes générique permettant de décrire des traversées de graphe.
- 50. Neo4j supporte les transactions ACID.
- 51. Les bases de données orientée graphe sont très adaptée pour le sharding.
- 52. OrientDB offre la possibilité d'utiliser le sharding de données.
- 53. Une approche pessimiste de la consistence des données consiste à se limiter à un serveur unique pour le stockage des données.
- 54. Garantir la consistence de lecture empêchera tout conflit de type write-write.
- 55. Garantir la consistence de mise à jour empêchera tout conflit de type read-write.
- 56. Garantir la consistence de réplication est impossible avec un système peer-to-peer.
- 57. Si mes données sont répliquées sur quatre nœuds, avec W = 2, il suffit de lire deux nœuds pour lire l'information la plus à jour.
- 58. Si mes données sont répliquées sur quatre nœuds, il suffit d'impliquer W=2 nœuds dans l'écriture pour assurer une consistence des données.

- 59. L'utilisation d'un timestamp comme version stamp est moins lourd à déployer que d'utiliser un GUID (Globally Unique Identifier).
- 60. L'utilisation d'un GUID (Globally Unique Identifier) comme version stamp est moins lourd à déployer que d'utiliser un timestamp.
- 61. L'utilisation d'un GUID (Globally Unique Identifier) comme version stamp permet de retrouver la version la plus récente d'une donnée.
- 62. Le write optimiste est très cher à implémenter dans un modèle clé-valeur.
- 63. Dans une base de données orientée colonnes, les données transitent par plusieurs espaces de stockage avant leur destination finale permanent.
- 64. Il est possible d'utiliser de la réplication master-slave avec une base de données orientée graphe pour rendre les lectures plus performantes.
- 65. Les bases de données orientée documents permettent d'effectuer des transactions atomiques au niveau d'un document.
- 66. Les bases de données orientée documents permettent d'effectuer des transactions atomiques au niveau d'une collection.
- 67. On peut changer le modèle d'une base de données NoSQL entre clés-valeurs, colonnes et documents, tout en garantissant exactement le même ensemble de propriétés.
- 68. Le passage vers le NoSQL permet de se passer des ORMs.
- 69. Le NoSQL est très adapté pour stocker des données très uniformes.
- 70. Le passage du relationnel au NoSQL rend les calculs à effectuer sur les données plus lents suite à un éventuel cout de transfert des données au sein du cluster.

71.	L'opération	Map	$s \'applique$	à un	$e\ collection$	de	documents	et r	envoie	un	collection	$modifi\'ee$	•
72.	L'opération	Redu	ce produit	un r	sultat unig	ue.							

- $73. \ Elastic Search\ est\ une\ base\ de\ donn\'ees\ NoSQL.$
- 74. ElasticSearch possède des caractéristiques similaires aux bases de données NoSQL.
- 75. Une migration de données en relationnel ou en NoSQL implique toujours un stockage physique de données redondantes.