Lab 2

Sophie Samuels 10/14/2023

CDA3203 Computer Logic Design Fall 2023

Dr. Maria Petrie Florida Atlantic University

Part 1: A 1-bit Half Adder to add 2 binary bits (A, B) and results in a 1-bit Sum and 1-bit Carry-out (Cout) with only NAND gates.

Truth Table

K-maps and Simplest Sum of Products

Drawing Simplest NAND Circuit equivalent the Simplest Sum of Products

Successful Compilation

Part 2: A 1-bit Full Adder to add 2 binary bits (A, B) and a 1-bit Carry-in (Cin) and results in a 1-bit Sum and 1-bit Carry-out (Cout) with only NAND gates.

Truth Table

Inputs			Calculate sum of A, B, Cin	Outputs in binary	
Α	В	Cin	in decimal	Cout4	Sum4
0	0	0	D	0	0
0	0	1		0	l
0	1	0	l	δ	1
0	1	1	2	1	O
1	0	0		0	1
1	0	1	2	١	0
1	1	0	2	1	O
1	1	1	3	1	

K-maps and Simplest Sum of Products

Drawing Simplest NAND Circuit equivalent the Simplest Sum of Products

Successful Compilation

Part 3: A 4-bit Adder to add 2 4 bit binary numbers (A3,A2,A1,A0 and B3,B2,B1,B0 with A0 and B0 being least significant bits) and a 1-bit Carry-in (Cin), and results in a 4-bit Sum (S3,S2,S1,S0) and 1-bit Carry-out (Cout) with the 1-bit Full Adder component you built.

Project Settings Snip

Draw of your circuit

VHDL Code

Successful Compilation

Timing Diagram

Use Cases

Base	Base	Base
2	10	16
101 + 100 /Old	1 14	E

Part 4: A 8-bit Adder to add 2 8-bit binary numbers (A7,A6,A5,A4,A3,A2,A1,A0 and B7,B6,B5,B4,B3,B2,B1,B0 with A0 and B0 being least significant bits) and a 1-bit Carry-in (Cin), and results in a 4-bit Sum (S7,S6,S5,S4,S3,S2,S1,S0) and 1-bit Carry-out (Cout) with the 1-bit Full Adder component you built.

Project Settings Snip

Draw your circuit HERE

VHDL Code

Successful Compilation

Part 5: A 16-bit Adder to add 2 16-bit binary numbers (A15,A14,A13,A12,A11,A10,A9,A8,A7,A6,A5,A4,A3,A2,A1,A0 and B15,B14,B13,B12,B11,B10,B9,B8,B7,B6,B5,B4,B3,B2,B1,B0 with A0 and B0 being least significant bits) and a 1-bit Carry-in (Cin), and results in a 16-bit Sum (S15,S14,S13,S12,S11,S10,S9,S8,S7,S6,S5,S4,S3,S2,S1,S0) and 1-bit Carry-out (Cout) with component you built.

^{**}Amended project settings after completing initial project settings to allow greater number of pins

VHDL Code

Received Assistance from: TA: Omair, Chelsea, Harry