Errata e Soluções do Livro Geometria Analítica e Álgebra Linear de Elon Lages Lima Segunda Edição—Oitava Impressão

Gustavo de Oliveira

6 de maio de 2021

Sumário

Ι	Errata	1
1	Seção 4 – A Distância entre Dois Pontos	2
2	Seção 11 – Desigualdades Lineares	2
3	Seção 17 – Equação da Hipérbole	2
4	Seção 26 – Distância entre Dois Pontos no Espaço	2
5	Seção 34 – Operações com Matrizes	2
ΙΙ	Soluções	2
6	Seção 1 – Coordenadas na reta	3

Parte I

Errata

1 Seção 4 – A Distância entre Dois Pontos

 \bullet Página 28, linha 3: "...as reta..." em vez de "...os segmentos...".

2 Seção 11 – Desigualdades Lineares

- Página 70, linha -9: "...a idéia é justamente tomar..."
- $\bullet\,$ Página 71, Figura 11.6: Falta indicar o ponto Cna figura.
- Página 72, Exercício 6: "... conjunto das soluções de..."

3 Seção 17 – Equação da Hipérbole

• Página 110, linha 21: "... as assíntotas da hipérbole."

4 Seção 26 – Distância entre Dois Pontos no Espaço

• Página 172, linha 6: "...a um segmento como, por..."

5 Seção 34 – Operações com Matrizes

- Página 234, linha 4: "...3 × 3..." em vez de "...3 × 4..."
- Página 237, linha 1: Não seria "Consequentemente..." em vez de "Reciprocamente..."?

Parte II

Soluções

6 Seção 1 – Coordenadas na reta

Exercício (E1.S1). Sejam a < b respectivamente as coordenadas dos pontos A e B sobre o eixo E. Determine as coordenadas dos pontos X_1, \ldots, X_{n-1} que dividem o segmento AB em n partes iguais.

Solução. O comprimento de cada parte do intervalo é l=d(A,B)/n. Para $j \in \{1,\ldots,n-1\}$, observamos que $d(X_j,A)=jl$. Seja x_j a coordenada do ponto X_j . Então $|x_j-a|=j|a-b|/n$, ou seja, $x_j-a=j(b-a)/n$, pois $x_j>a$ e b>a. Portanto $x_j=a+j(b-a)/n$ ou ainda $x_j=(1-j/n)a+(j/n)b$ para $j \in \{1,\ldots,n-1\}$.

Exercício (E2.S1). Sejam a < x < b respectivamente as coordenadas dos pontos $A, X \in B$ do eixo E. Diz-se que o ponto X divide o segmento AB em $m\'edia~e~extrema~raz\~ao$ quando se tem

$$\frac{d(A,X)}{d(A,B)} = \frac{d(X,B)}{d(A,X)}.$$

(O quociente d(A, X)/d(A, B) é chamado razão áurea.) Supondo que X divide o segmento de reta AB em média e extrema razão, calcule x em função de a e b.

Solução. Em coordenadas, a condição dada corresponde a

$$\frac{|a-x|}{|a-b|} = \frac{|x-b|}{|a-x|}.$$

Como a < x < b, essa igualdade é equivalente a

$$\frac{x-a}{b-a} = \frac{b-x}{x-a},$$

ou seja,

$$x^{2} + (b - 3a)x + (a^{2} - b^{2} + ab) = 0.$$

O discriminante dessa equação é $\Delta = 5(b-a)^2$. Portanto as raízes são

$$x_{\pm} = \frac{1}{2}(3a - b \pm \sqrt{5}(b - a)).$$

Usando a condição a < x < b, obtemos que $a < x_+ < b$ e $x_- < a$. Logo a única raiz no intervalo [a,b] é x_+ . Portanto o ponto X procurado tem coordenada

 $x = \frac{1}{2}((3 - \sqrt{5})a + (\sqrt{5} - 1)b).$

Exercício (E3.S1). Se O é a origem do eixo E e A é o ponto desse eixo que tem coordenada 1, qual é a coordenada do ponto X que divide o segmento de reta OA em média e extrema razão? No Exercício 2, calcule a razão áurea d(O,X)/d(O,A).

Solução. O ponto X tem coordenada

$$x = \frac{1}{2}((3-\sqrt{5})0 + (\sqrt{5}-1)1) = \frac{\sqrt{5}-1}{2}.$$

Calculamos d(O, A) = |0 - 1| = 1. Portanto a razão áurea é

$$\frac{d(O,X)}{d(O,A)} = \frac{\sqrt{5}-1}{2}.$$

Exercício (E4.S1). Os pontos A, B e X sobre o eixo E têm coordenadas a, b e x respectivamente. Se X' é o simétrico de X em relação ao ponto A e X'' é o simétrico de X' em relação a B, quais são as coordenadas de X' e X''?

Solução. Sejam x' e x'' as coordenadas de X' e X''. Como A é o ponto médio de XX', temos a=(x+x')/2. Logo x'=2a-x. Como B é o ponto médio de X'X'', temos b=(x'+x'')/2. Portanto x''=2b-x'=2(b-a)+x. \square

Exercício (E5.S1). Dados os pontos A, B no eixo E, defina a distância orientada $\delta(A,B)$ entre eles pondo $\delta(A,B)=d(A,B)$ se A está à esquerda de B e $\delta(A,B)=-d(A,B)$ se A está à direita de B. Prove que para quaisquer A, B e C do eixo E tem-se $\delta(A,B)+\delta(B,C)+\delta(C,A)=0$.

Solução. Sem perda de generalidade podemos supor que A está à esquerda de B e que B está à esquerda de C. Logo

$$\delta(A, B) + \delta(B, C) + \delta(C, A) = d(A, B) + d(B, C) - d(C, A) = 0$$

pois d(A,B)+d(B,C)=d(C,A), já que o ponto B pertence ao segmento de reta AC.