La(s) hoja(s) de Chema

1. Espacios métricos

Definición 1.1 δ : $M \times M \rightarrow \mathbb{R}$ es una métrica o **distancia** si cumple que

- $\delta(x, y) > 0$ si $x \neq y$, o $\delta(x, x) = 0$
- $\bullet \ \delta(x,y) = \delta(y,x)$
- $\delta(x, z) \le \delta(x, y) + \delta(y, z)$

Ejercicio 1.1 Por inducción, la desigualdad triangular se puede generalizar a: $\delta(p^1, p^n) \leq \delta(p^1, p^2) + \cdots + \delta(p^{n-1}, p^n)$

Teorema 1.4 Si $M' \subset M$ y existe el espacio métrico (M, δ) , entonces también existe (M', δ) , y se llama **métrica inducida** por (M, δ) .

Definición 1.5 Sean $(M, \delta), (M', \delta')$ y $g: M \rightarrow M'$. Se dice que g conserva las distancias si $\delta'(g(x), g(y)) = \delta(x, y) \ \forall \ x, y \in M$. Si además g es biyectiva, entonces es una **isometría**.

Teorema 1.7 Si existen (M, δ) , (M', δ') , (M'', δ'') y $g: M \to M'$ y $h: M \to M'$ son isometrías, entonces $h \circ g$ y g^{-1} también son isometrías.

Definición 1.8 La composición de isometrías forma un **grupo** pues

- $(g \circ h) \circ i = g \circ (h \circ i)$
- Si $g \in \text{Isom}(M)$ entonces $g^{-1} \in \text{Isom}(M)$
- La isometría identidad, $id_M \in Isom(M)$

Definición 1.12 Si (M, δ) , para $a, b \in M$ se llama **segmento** de extremos a y b y se representa por [a, b] al conjunto $[a, b] = \{x \in M \mid \delta(a, x) + \delta(x, b) = \delta(a, b)\}$. Asimismo, $x, y, z \in M$ están alineados si (x < y < z) $y \in [x, z]$.

Ejercicio 1.5 Para $\sigma \in \{1, -1\}$ y $\tau \in \mathbb{R}$, la aplicación $f(x) = \sigma x + \tau$ es una isometría para $(\mathbb{R}, d_{\mathbb{R}})$

Page intentionally left in blank

Axiomas para la geometría euclidiana plana 2.

Axioma P1 Si tenemos el conjunto P, denominado **plano**, y la aplicación $d: \mathbb{P} \times \mathbb{P} \to \mathbb{R}$ llamada **distancia**, entonces(\mathbb{P} , d) es un espacio métrico.

Definición 2.2 Una **recta** $r \subset \mathbb{P}$ satisface

- r contiene al menos dos puntos.
- Para toda terna de puntos *A*, *B*, *C*, están alineados si están en r.

Axioma P2 P contiene al menos tres puntos no alineados; y por dos puntos distintos, A y B de \mathbb{P} pasa una recta, r_{AB} .

Definición 2.6 / Teorema 2.7 Dos rectas se cortan si sólo tienen un punto en común, y si no tienen ningún punto en común, entonces se denominan **paralelas**, y se denota por $a \parallel b$. Dos rectas, o se cortan o son paralelas.

 \land **Axioma P3** Para toda recta $r \subset \mathbb{P}$ existe una biyección $\gamma: r \to \mathbb{R}$ tal que $|\gamma(X) - \gamma(Y)| = |x - y| =$ $d(X,Y) \ \forall \ X,Y \in r$

Observación 2.8 Si $A, B \in r$ son distintos, entonces existe un punto $M \in r : d(A, M) = d(M, B)$ que denotamos por medio[A, B] y se llama **punto medio**. Asimismo sólo existe un punto $B \in r$ tal que B = medio[A, M].

Observación 2.9 Si r es una recta y $P \in r$, entonces r se puede dividir en dos **semirrectas**, que son los conjuntos $\{X \in r \mid \gamma(X) > \gamma(P)\}\ y \{X \in P\}$ $r \mid \gamma(X) < \gamma(P)$.

Axioma P4 Para toda recta $r \subset \mathbb{P}$ hay dos subconjuntos H^1 y H^2 , denominados **semiplanos** de r, que verifican:

- $\blacksquare H^1 \cup H^2 = \mathbb{P} r$
- Si $X, Y \in H^i$ entonces $[X, Y] \subset H^i$
- Si $X \in H^1$ y $Y \in H^2$ entonces $[X, Y] \cap r \neq \emptyset$.

Definición 2.15 Sean *P, Q, R* no alineados, entonces el triángulo $\triangle \{P, Q, R\}$, o $\triangle PQR$ está formado por los segmentos [P,Q], [Q,R], [P,R], llamados lados, y los vértices *P*, *Q*, *R*.

Teorema 2.16 [Axioma de Pasch]a Dado un triángulo $\triangle PQR$ y una recta r; si r corta a [P,Q], entonces o corta a [P, R] o a [Q, R].

una biyección $g: \mathbb{P} \to \mathbb{P}$ que cumple que $d(g(X), g(Y)) = d(X, Y) \ \forall \ X, Y \in \mathbb{P}.$

Teorema 2.18 Si $A, B \in \mathbb{P}$ y $g \in \text{Isom}(\mathbb{P})$ entonces $g([A, B]) = [g(A), g(B)] y g(r_{AB}) = r_{g(A)g(B)}$

Axioma P5 Si $A_1, A_2 \in \mathbb{P}$ y $B_1, B_2 \in \mathbb{P}$ son dos pares de puntos que cumplen $d(A_1, A_2) = d(B_1, B_2)$ entonces existe $g \in \text{Isom}(\mathbb{P})$ tal que $g(A_i) = B_i$. Se dice que esos pares de puntos son **congruentes**.

Axioma P6 Para toda recta *r* existe una isometría σ llamada **reflexión** tal que

- $\sigma(X) = X \iff X \in r$
- $\sigma \circ \sigma = Id$

Definición 2.23 / Teorema 2.25 / Corolario 2.30

Una recta l es **ortogonal** a r si para todo $S \in l$ y para todo par de puntos A, B que cumple que M =medio[A, B], de modo que $l \cap r = M$, entonces se da que d(A, S) = d(S, B). Se denota $l \perp_M r$. En estas condiciones, $l = \{X \in \mathbb{P} \mid d(S, A) = d(S, B)\}$, se denomina **mediatriz** de [A, B].

Lema 2.21 Si σ_r entonces, para todo X, $medio[X, \sigma_r(X)] \in r$.

Observación 2.24 Si $l \perp r$ y $g \in \text{Isom}(\mathbb{P})$ entonces $g(l) \perp g(r)$.

Teorema 2.26 Si $l, r \subset \mathbb{P}$ cortan en M y σ_l, σ_r son dos reflexiones de l y r, entonces se cumple que $l \perp_M r \iff r \perp_M l \iff \sigma_r(l) = l \iff$ $\sigma_1(r) = r$.

 \wedge **Teorema 2.27 / 2.29** Para toda recta r y todo punto $S \in \mathbb{P} - r$, existe una recta l ortogonal a r, que pasa por S. Si r es una recta, y $M \in r$, entonces existe *l* tal que $l \perp_M r$.

Axioma P7 Para toda recta *r* y todo punto *P* existe **Definición 2.17 = 1.5** Una **isometría** en \mathbb{P} es sólo una recta **paralela** a r que pase por P.

Teorema 2.31/2.33 Si $a \perp l$ y $b \perp l$ entonces $a \parallel b$. Sean $a \parallel b$. Entonces, para todo $A \in a$, la única recta $l \perp_A a$ también es ortogonal a b.

Teorema 2.32 Las rectas parallelas forman una relación de equivalencia.

- Reflexividad: $a \parallel a$
- Simetría: $a \parallel b \rightarrow b \parallel a$
- Transitividad $a \parallel b$ y $b \parallel c \rightarrow a \parallel c$

Ejercicio 2.6 Sean $A, B \in r$, $A \neq B$. Para todo t, existe un único $P_t \in r$ que cumple $d(P_t, A) = |t|$ y $d(P_t, B) = |t - d(A, B)|$. En definitiva, la posición de P_t está sólamente determinada por las distancias $d(A, P_t)$ y $d(P_t, B)$.

3. Isometrías del plano

Definición 3.1 Para una aplicación $\phi : \mathcal{M} \to \mathcal{M}$, $P \in \mathcal{M}$ es un **punto fijo** de ϕ si $\phi(P) = P$; y $\mathcal{D} \subset \mathcal{M}$ es un **subconjunto invariante** de ϕ si $\phi(\mathcal{D}) = \mathcal{M}$.

Lema 3.2 Si $g \in \text{Isom}(\mathbb{P})$ y $A \neq B$ son dos puntos fijos de g, entonces todo $X \in r_{AB}$ es punto fijo de g.

Definición 3.3 Si $g, g' \in \text{Isom}(\mathbb{P})$, g y g' son **conjugadas** si existe una isometría h tal que $gh = hg' \iff g = hg'h^{-1}$.

Teorema 3.4 Un punto P es fijo de g sii $h^{-1}(P)$ es un punto fijo de g'. Es decir

Demostración. Si $h^{-1}(P)$ es punto fijo de g', entonces $g'(h^{-1}(P)) = h^{-1}(P)$. Por tanto, $g(P) = hg'h^{-1}(P) = hh^{-1}(P) = P$, luego g(P) = P.

Ejemplo 3.5 Una reflexión sobre *r* cumple que

- $\sigma_r \circ \sigma_r = \mathrm{id}_{\mathbb{P}} \ \mathrm{y} \ \sigma_r(X) = X \iff X \in r \ (Axioma \ P6)$
- $\sigma_r(H^1) = H^2$ y viceversa.
- X y $\sigma_r(X)$ se encuentran en una recta ortogonal a r.

Teorema 3.6 Sea $g \in \text{Isom}(\mathbb{P})$ y sea r_{AB} . Si A, B son puntos fijos en g, entonces o bien $g = \sigma_r$ o bien $g = \text{id}_{\mathbb{P}}$.

Teorema 3.9 Llamamos ρ una **rotación** a una isometría que tiene un punto fijo C. Para toda recta a pasando por C existen dos rectas b, b' únicas tales que $\rho = \sigma_b \sigma_a = \sigma_a \sigma_{b'}$.

Ejercicio 3.1 Llamamos τ una **traslación** a una de un número par o impar de reflexiones σ :

isometría que no tiene puntos fijos y deja una recta c invariante, es decir, $\tau(c)=c$. entonces para toda recta $a\perp c$ existen dos rectas $b,b'\perp c$ que cumplen $\tau=\sigma_b\sigma_a=\sigma_a\sigma_{b'}$. Además, si $\tau(l)=l$, entonces $l\parallel c$.

Ejercicio 3.2 Si $\mathcal{R}_P(\mathbb{P}) = \{g \in \text{Isom}(\mathbb{P}) \mid g \text{ es rotación de centro } P\} \cup \{\text{id}_{\mathbb{P}}\} \text{ entonces}$

- Si a es una recta que pasa por P, entonces $g^{-1} = \sigma_a g \sigma_a$.
- gh = hg para todo $g, h \in \mathcal{R}_P(\mathbb{P})$.
- Para $X \in \mathbb{P} \{P\}$ y g(X) = h(X) entonces g = h.

Ejercicio 3.3 Si *h* es una isometría

- Si $g \in \mathcal{R}_P(\mathbb{P})$ entonces $hgh^{-1} \in \mathcal{R}_{h(P)}(\mathbb{P})$
- Si r es una recta entonces $h\sigma_r h^{-1} = \sigma_{h(r)}$

Ejercicio 3.3 Si a, b son rectas en \mathbb{P}

- \bullet $\sigma_a \sigma_b \sigma_a = \sigma_{a(b)}$
- \bullet $\sigma_a \sigma_b = \sigma_b \sigma_a \iff a \perp b$

Ejemplo 3.12 Sean a, b tales que $a \perp_P b$. Entonces la rotación es de 180° y se llama **reflexión central** si se denota como σ_P . Cumple las siguientes propiedades.

- $\bullet \ \sigma_P \sigma_P = \mathrm{id}_{\mathbb{P}}$
- Para todo X, $\sigma_P(X)$ es el único punto que cumple $P = \text{medio}[X, \sigma_P(X)]$.
- σ_P es independiente de la elección de rectas $a \perp b$.

Teorema 3.13 Las rectas r y $\sigma_P(r)$ son paralelas.

Ejemplo 3.14 Una **reflexión con deslizamiento** ϕ es una composición de una reflexión σ_c y una traslación τ : $\phi = \tau \sigma_c$. ϕ deja invariante sólo la recta c, y no tiene ningún punto invariante.

Teorema 3.15 Una isometría solo puede pertenecer a una de las de la tabla, y es una combinación de un número par o impar de reflexiones σ :

Con puntos fijos Sin puntos fijos par ho au impar σ ϕ

Teorema 3.16 Si g, g' son isometrías conjugadas, tienen la misma paridad.

4. Ángulos

Definición 4.1 Sean r, l dos rectas con un punto V en común. Sean \overline{r} y \overline{l} dos semirrectas determinadas por V en r y l. El par $\{\overline{l}, \overline{r}\}$ es un **ángulo**. V es el vértice del ángulo y \overline{l} y \overline{r} son los lados del ángulo. El ángulo se designa por $\angle\{\overline{l}, \overline{r}\}$ o, si no hay lugar a confusión, $\angle V$. Así, por ejemplo, dado un triángulo $\triangle PQR$, $\angle P$ es el ángulo formado por P con [P,Q] y [P,R].

Observación 4.4 Si r = l, y \overline{r}_1 y \overline{r}_2 son las semirrectas determinadas por V, entonces, en estas circunstancias, el ángulo $\angle \{\overline{r}_1, \overline{r}_2\}$ se denomina **ángulo llano** y $\angle \{\overline{r}_1, \overline{r}_1\}$ se denomina **ángulo nu-lo**.

Definición 4.5 Un ángulo $\angle\{\bar{l}, \bar{r}\}\$ y un ángulo $\angle\{\bar{l}', \bar{r}'\}\$ son **congruentes** si existe una isometría g tal que $g(\{\bar{l}, \bar{r}\}) = \{\bar{l}', \bar{r}'\}\$. Todos los ángulos que son congruentes forman una **clase de congruencia** de ángulos. Empleando la notación de vértices, la congruencia se denota como $\angle A = \angle B$.

Observación 4.6/4.8 Si $\angle\{\bar{l}, \bar{r}\}$ tiene vértice V y $\angle\{\bar{l}', \bar{r}'\}$ tiene vértice V', y g es una isometría tal que $g(\{\bar{l}, \bar{r}\}) = \{\bar{l}', \bar{r}'\}$, entonces g(V) = V'. Asimismo, si existe una isometría h que hace h(V) = V', entonces $h(\{\bar{l}, \bar{r}\}) = \{\bar{l}', \bar{r}'\}$.

Ejemplo 4.9 Consideramos las rectas $a \neq b$ que cortan en V, con sus respectivas semirrectas $\overline{a}_1, \overline{a}_2, \overline{b}_1, \overline{b}_2$. Consideramos $\angle \{\overline{a}_1, \overline{b}_1\}$ y elegimos los puntos $A \in \overline{a}_1, B \in \overline{b}_1$ a igual distancia, d(V, A) = d(V, B). Existe una recta $l \perp r_{AB}$ que pasa por V (**Teorema 2.25/2.29**, que denominamos **bisectriz**. La bisectriz l cumple que $\sigma_l(A) = B, \sigma_l(\overline{a}_1) = \overline{b}_1$ y viceversa. Además, si \overline{l} es la semirrecta que corta a [A, B], entonces $\angle \{\overline{a}_1, \overline{l}\} = \angle \{\overline{b}_1, \overline{l}\}$.

Teorema 4.11 Sean a, b que cortan en V. El ángulo $\angle \{\overline{a}_1, \overline{b}_1\}$ es congruente con $\angle \{\overline{a}_2, \overline{b}_2\}$ y se denominan **ángulos opuestos por el vértice**.

Teorema 4.13/Definición 4.23 Sean $l \perp_V r y l' \perp_{V'} r'$. Entonces $\angle \{\overline{l}, \overline{r}\} y \angle \{\overline{l}', \overline{r}'\}$ son congruentes. En este caso, los ángulos $\angle \{\overline{l}, \overline{r}\} y \angle \{\overline{l}', \overline{r}'\}$ son **ángulos rectos**. Un ángulo es **agudo** si es menor que un recto, y **obtuso** si es mayor.

Definición 4.15 Si $\angle\{\bar{l}, \bar{r}\}$ no es ni nulo ni llano, y H_l^1 es el semiplano que contiene a \bar{r} , y H_r^1 es el semiplano que contiene a \bar{l} , entonces el ángulo $\angle\{\bar{l}, \bar{r}\}$ y $\angle\{\bar{l}, \bar{r}\}$ viene determinado como el conjunto $H_l^1 \cap H_r^1$.

Teorema 4.18 [De la barra transversal] Sea $\angle \{\overline{l}, \overline{r}\}$ con vértice V y sean $L \in \overline{l}, R \in \overline{r}$. Una semirrecta $\overline{s}, V \in \overline{s}$ está dentro de $\angle \{\overline{l}, \overline{r}\}$ sii corta a $[L, R] - \{L, R\}$.

Definición 4.19 (Comparación de ángulos) Dados $\angle \{\overline{a}, \overline{b}\}$ y $\angle \{\overline{c}, \overline{d}\}$, se dice que $\angle \{\overline{a}, \overline{b}\}$ es menor que $\angle \{\overline{c}, \overline{d}\}$, $\angle \{\overline{a}, \overline{b}\} \prec \angle \{\overline{c}, \overline{d}\}$, si existe una isometría g tal que $g(\overline{a}) = \overline{c}$ y que $g(\overline{b})$ está en el interior de $\angle \{\overline{c}, \overline{d}\}$

Teorema 4.21 Si existen 4 ángulos tales que $\angle \{\overline{a}, \overline{b}\} = \angle \{\overline{a}', \overline{b}'\}$ y $\angle \{\overline{c}, \overline{d}\} = \angle \{\overline{c}', \overline{d}'\}$, y $\angle \{\overline{a}, \overline{b}\} < \angle \{\overline{c}, \overline{d}\}$, entonces $\angle \{\overline{a}', \overline{b}'\} < \angle \{\overline{c}', \overline{d}'\}$.

Teorema 4.22 Dados $\angle \{\overline{a}, \overline{b}\}$ y $\angle \{\overline{c}, \overline{d}\}$, entonces $\angle \{\overline{a}, \overline{b}\} \prec \angle \{\overline{c}, \overline{d}\}$, $\angle \{\overline{a}, \overline{b}\} = \angle \{\overline{c}, \overline{d}\}$, o $\angle \{\overline{a}, \overline{b}\} > \angle \{\overline{c}, \overline{d}\}$.

Definición 4.25 Sea $\angle \{\overline{a}, \overline{c}\}$ con vértice V y \overline{b} una semirrecta en el interior de $\angle \{\overline{a}, \overline{c}\}$. Entonces $\angle \{\overline{a}, \overline{c}\}$ es la **suma** de $\angle \{\overline{a}, \overline{c}\}$ y $\angle \{\overline{a}, \overline{b}\}$, o $\angle \{\overline{b}, \overline{c}\}$ = $\angle \{\overline{a}, \overline{b}\} + \angle \{\overline{b}, \overline{c}\}$

Definición 4.26 Para tres ángulos $\angle U$, $\angle V$, $\angle W$, decimos que $\angle V = \angle U + \angle W$ si existe una descomposición $\angle V = \angle \{\overline{a}, \overline{c}\}$, $\angle U = \angle \{\overline{a}, \overline{b}\}$, $\angle W = \angle \{\overline{b}, \overline{c}\}$.

Definición 4.28 Dado $\triangle PQR$, el lado [R,Q] y el

ángulo $\angle P$ son **opuestos**.

gruentes.

Definición 4.29 / Teorema 4.30 Un triángulo **isósceles** tiene dos lados congruentes. Si $\triangle PQR$ es isósceles y [P,Q] es congruente con [P,R], existe una reflexión σ tal que $\sigma(P) = P, \sigma(Q) = R, \sigma(R) = Q$, la bisectriz de $\angle P$. Esa isometría que deja invariante el triángulo se denomina **simetría**.

Definición 4.34 / Teorema 4.35 Un triángulo es **equilátero** si todos sus lados son congruentes. En este caso hay una rotación ρ tal que $\rho(P) = Q$, $\rho(Q) = R$, $\rho(R) = P$.

Definición 4.39 / **Teorema 4.40** Sean $a \parallel b$ y c una recta que corta a a en A y a b en B. El par de ángulos $\angle A$, $\angle B$ de la figura son ángulos **alternosinternos**. Los dos ángulos son congruentes.

Teorema 4.41 La suma de los ángulos de un triángulo es un ángulo llano.

Demostración. Si hacemos una recta p paralela a [Q,R] tenemos que (Q,Q') y (R,R') son pares de ángulos internos y la suma $\angle Q' + \angle P' + \angle R' = \angle Q + \angle P + \angle R$ es un ángulo llano.

Ejercicio 4.9 Sea ρ una rotación de centro C y sea $t = \Delta \{C, P, \rho(P)\}$. Entonces la clase de congruencia del ángulo $\angle_t C$ se denomina ángulo de rotación $\angle \rho$.

Ejercicio 4.11 Un ángulo orientado es un ángulo donde se fija un orden en sus lados. Dos ángulos orientados $\overrightarrow{Z}(\overline{r},\overline{l})$ y $\overrightarrow{Z}(\overline{r}',\overline{l}')$ son congruentes si existe una isometría donde $g(\overline{r}) = \overline{r}'$ y $g(\overline{l}) = \overline{l}'$ y se conserva la orientación del plano. Así $\overrightarrow{Z}(\overline{r},\overline{l})$ la clase de congruencia con todos los ángulos con-

Teorema de Tales 5.

Definición 5.0 Un cuadrilátero es una cuaterna ordenada de puntos [vértices] \mathbb{P} , (P,Q,R,S) formada por los segmentos [P,Q], [Q,R], [R,S], [S,P] [lados] si dos cualesquiera segmentos son disjuntos o tienen un extremo en común. Dos vértices extremos del mismo lado son adyacentes y, si no, son opuestos.

Definición 5.1 Un cuadrilátero $\Box PABC$ es un **paralelogramo** si medio[P,B] = medio[A,C] = M, donde los segmentos [P, B] y [A, C] son las diagonales, y M es el centro.

Observación 5.2 Sea $\Box PABC$ con centro M. Por las propiedades de las reflexiones centrales, se tiene que $\sigma_M(P) = B$ y $\sigma_M(A) = C$ [y viceversa]. Además, por tales propiedades, se tiene que $r_{PA} \parallel$ $r_{BC} \text{ y } r_{PC} \parallel r_{AB}; \text{ y } d(P,A) = d(B,C) \text{ y } d(P,C) =$ d(A,B).

Observación 5.3 Si existen tres puntos *P*, *A*, *C* no alineados, se puede construir un paralelogramo de varias maneras. Una forma es aplicar el axioma de las paralelas y proyectar r_{PA} en C, y r_{PC} en A. Otra forma es obtener M = medio[C, A], crear la recta r_{PM} y proyectar el punto B como el que PM = d(P, M) = d(M, B) = MB.

Teorema 5.5 [Tales] Sea $\triangle PAB$ y sean $A' \in$ $[P, A], B' \in [P, B]$ dos puntos tales que $r_{AB} \parallel r_{A'B'}$. En estas condiciones se tiene que $\frac{PA'}{PA} = \frac{PB'}{PB}$.

Demostración. Vamos a basar la demostración en la figura de arriba. Diseñamos el paralelogramo □PABC y dividimos el lado [P, A] en n segmentos con puntos de división A_1, A_2, \dots, A_n , de modo que $d(A_i, A_{i+1}) = \frac{d(P,A)}{n}$. El mismo proceso se realiza con el lado [P,C]. Además, introducimos las rectas $a_k \parallel r_{PC}$ y $c_k \parallel r_{PA}$, de modo que el punto P_{kl} es la intersección de a_k con c_l . Vemos con $\angle A$ recto, entonces se definen las relaciones

que $B_i = P_{ii}$. También observamos que existen los paralelogramos $\Box A_k A_{k+1} P_{k+1,l} P_{k,l}$ y $\Box C_l C_{l+1} P_{k,l+1} P_{k,l}$, de modo que $P_{kl}P_{k+1,l}=\frac{PA}{n}$ y $P_{kl}P_{k,l+1}=\frac{PC}{n}$. Ahora consideramos B_k . Sabemos que $\sigma_{B_k}(r) \parallel r$, $\sigma_{B_k}(c_k) = c_k \text{ y } \sigma_{B_k}(P_{k-1,k}) = P_{k+1,k}$. También, como $a_{k-1} \parallel a_{k+1}$, $\sigma_{B_k}(a_{k-1}) = a_{k+1}$, y por el mismo criterio, $\sigma_{B_k}(c_{k-1}) = c_{k+1}$. Con esto demostramos que

$$\sigma_{B_k}(B_{k-1}) = \sigma_{B_k}(P_{k-1,k-1}) = P_{k+1,k+1} = B_{k+1}$$

Por tanto, los puntos B_{k-1}, B_k, B_{k+1} están alineados y $B_{k-1}B_k = B_k B_{k+1}$. Por tanto, $B_k B_{k+1} = \frac{PB}{n}$. Es decir, hemos demostrado que

$$P_{kl}P_{k+1,l} = \frac{PA}{n}$$
 $P_{kl}P_{k,l+1} = \frac{PC}{n}$ $P_{kl}P_{k+1,l+1} = \frac{PB}{n}$

Si reordenamos, tenemos que

$$\frac{PA_k}{PA} = \frac{P_{0,0}P_{k,0}}{PA} = \frac{k}{n} = \frac{P_{0,0}P_{k,k}}{PB} = \frac{PB_k}{PB}$$

Y con esto demostramos el teorema para los puntos k. Si tenemos A' y B' en la figura tales que $A' \in [A_k, A_{k+1}]$, de modo que $a' = r_{A'B'}$ está entre a_k y a_{k+1} , y es paralelo a estas, haciendo que $B' \in [B_k, B_{k+1}]$. Por ser $A' \in [A_k, A_{k+1}]$ entonces $\frac{PA_k}{PA} \le \frac{PA'}{PA} \le \frac{PA_k}{PA} + \frac{1}{n}$ y, como $\frac{PA_k}{PA} = \frac{PB_k}{PB}$, entonces $\frac{PB_k}{PB} \le \frac{PA'}{PA} \le \frac{PB_k}{PB} + \frac{1}{n}$. Dado que $B' \in [B_k, B_{k+1}]$ entonces

$$\frac{PB'}{PB} - \frac{1}{n} \le \frac{PB_k}{PB} \le \frac{PA'}{PA} \le \frac{PB_k}{PB} + \frac{1}{n} \le \frac{PB'}{PB} + \frac{1}{n}$$

Si nos fijamos en los elementos de azul, vemos que n puede hacerse tan pequeño como queramos, de modo que, en el

$$\frac{PB'}{PB} \le \frac{PA'}{PA} \le \frac{PB'}{PB} \iff \frac{PB'}{PB} = \frac{PA'}{PA}$$

Corolario 5.6 En base al teorema de Tales, se tiene que

$$\frac{PA'}{PA} = \frac{PB'}{PB} = \frac{A'B'}{AB}$$

Definición 5.7 Dado un triángulo rectángulo $\triangle PAB$ con $\angle A$ recto, entonces la **hipotenusa** es el lado opuesto a $\angle A$, [P,B]. Los lados adyacentes, [*P*, *A*], [*B*, *A*], son los **catetos**.

Definición 5.8 Sea el triángulo rectángulo $\triangle PAB$

- seno: sen $\angle P = \frac{BA}{PB}$
- coseno: $\cos \angle P = \frac{PA}{PB}$
- tangente: $tan \angle P = \frac{BA}{PA}$
- cotangente: $\cot \angle P = \frac{PA}{BA}$

Teorema 5.10 Las razones trigonométricas para $\angle P$ no dependen del triángulo $\triangle PAB$, sólo de la clase de congruencia de $\angle P$.

Teorema 5.12 Dado un triángulo rectángulo $\triangle ABC$ con $\angle A$ recto, la medida de los catetos, AB, AC, es menor que la de la hipotenusa BC.

Demostración. Con la construcción anterior, vemos que los puntos B,C,C' no están alineados, pues $C \in r_{AC}$ y $r_{AB} \perp r_{AC}$. Por la desigualdad triangular tenemos que 2AC = CC' < BC + BC' = 2BC.

Definición 5.13 La **medida de un ángulo** agudo $\angle P$ es el número real:

$$\angle P = \arccos(\cos \angle P)$$

Teorema 5.14 / 5.19 Si $\angle P = \angle Q$ entonces $\angle P = \angle Q$, sean $\angle P$ y $\angle Q$ agudos y obtusos.

Definición 5.15 Dado un ángulo $\angle \overline{a}, \overline{b}_1 = \angle V$, un ángulo suplementario $\overline{\angle V} = \angle \overline{a}, \overline{b}_2$ es aquel donde \overline{b}_1 y \overline{b}_2 son las dos semirrectas de \underline{b} en \underline{V} , y $\underline{\angle V}$ y $\overline{\angle V}$ comparten \overline{a} . La suma de $\underline{\angle V}$ y $\overline{\angle V}$ es un ángulo llano.

Teorema 5.17 Si dos ángulos son congruentes, sus suplementarios lo son.

Definición 5.18 Para un ángulo obtuso $\angle P$ se tiene sen $\angle P$ = sen $\overline{\angle P}$ y cos $\angle P$ = $-\cos \overline{\angle P}$

6. Teorema de Pitágoras

Teorema 6.1 [Pitágoras] Para todo triángulo rectángulo $\angle ABC$ con $\angle A$ recto, se tiene que

$$BC^2 = AC^2 + AC^2$$

② Demostración. Consideramos el punto $S \in r_{BC}$ tal que $r_{SA} \perp r_{CB}$. Pese a que es evidente, hay que demostrar que $S \in [B,C]$. Observamos que SC < CA < BC, la primera igualdad por $\cos \angle C = \frac{SC}{CA} < 1 \iff SC < CA$. Del mismo modo, BS < BC. Entonces, $S \in [B,C]$. Ahora observamos que

$$\cos \angle C = \frac{CA}{CB} = \frac{CS}{CA}$$

Por otra parte, también vemos que

$$\cos \angle B = \frac{BS}{AB} = \frac{AB}{BC}$$

De ambas expresiones tenemos que (1) $CA^2 = CB \cdot CS$ y (2) $AB^2 = BS \cdot BC$. Así, $CB \cdot CS + CB \cdot BS = CB(CS + BS) = CB^2 = CA^2 + BA^2$.

Corolario 6.3 Sea $\angle C$, entonces

$$sen^2 \angle C + cos^2 \angle C = 1$$

Demostración. Si tenemos que BC = 1, entonces $\cos \angle C = \frac{CA}{CB} = CA$ y sen $\angle C = \frac{BA}{BC} = BC$. Aplicando el teorema de Pitágoras, entonces sen² $\angle C + \cos^2 \angle C = BA^2 + CA^2 = BC^2 = 1$

Teorema 6.4 Dado $x \in [0, \pi] \subset \mathbb{R}$, existe un ángulo $\angle V$ tal que $\angle V = x$.

Teorema 6.5
$$\angle P = \angle Q \sin \angle P = \angle Q$$

Definición 6.6 Sea $\triangle ABC$ y $h_B \perp r_{CA}$ y que pasa por B, y sea el punto $P_{h,b}$ el punto de corte de h_B y r_{CA} . Entonces, $P_{h,b}$ es el **pie de la altura de** B, y $[P_{h,b}, B]$ es la **altura** de $\triangle ABC$ desde B.

Teorema 6.7 En el triángulo de la **Definición 6.6**, si $\angle A$ y $\angle C$ son agudos, entonces $P_{h,b} \in [C,A]$. Si $\angle A$ o $\angle C$ es obtuso, entonces $P_{h,b} \not\in [C,A]$.

Teorema 6.8 [Fórmula del coseno] Sea $\triangle ABC$ un triángulo, entonces se cumple que

$$BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos \angle A$$

Demostración. Basándonos en la figura de la **Definición 6.6**, y por el **Teorema 6.7** [en el caso de \triangle acutángulo], entonces se forman dos triángulos rectángulos $\triangle P_{hB}BC$ y $\triangle P_{hB}BA$ donde se verifica que $CA = CP_{hB} + P_{hB}A$ Por el **Teorema de Pitágoras** tenemos que

$$AB^2 = P_{hB}A^2 + P_{hB}B^2$$
 $BC^2 = BP_{hB}^2 + P_{hB}C^2$

Si sustituimos una igualdad en otra tenemos que

$$BC^2 = CP_{hB}^2 + AB^2 - P_{hB}A^2$$

Como $CA = CP_{hB} + P_{hB}A$ entonces

$$BC^2 = (CA - P_{hB}A)^2 + AB^2 - P_{hB}A^2 =$$

$$CA^2 + P_{hB}A^2 - 2 \cdot CA \cdot P_{hB}A + AB^2 - P_{hB}A^2$$

Si quitamos las partes en azul, y consideramos que $P_{hB}A = AB\cos \angle A$, entonces queda el teorema demostrado.

Corolario 6.9 Dado un triángulo donde $BC^2 = AB^2 + AC^2$ entonces es un triángulo rectángulo, con $\angle A$ recto. Demostración. Si aplicamos el **Teorema del coseno**, entonces, el término $2 \cdot AB \cdot AC \cdot \cos \angle A = 0$, y como $AB \neq 0$, $AC \neq 0$, entonces $\cos \angle A = 0 \iff \angle A$ es recto (**Teorema 6.5**).

Teorema 6.10 [Fórmula de los senos] Sea $\triangle ABC$, entones se verifica

$$\frac{AB}{\sec \angle C} = \frac{AC}{\sec \angle B} = \frac{BC}{\sec \angle A}$$

Demostración. Seguimos con la figura de la **Definición 6.6**. Vemos que $BP_{hB} = BC \operatorname{sen} \angle C = BA \operatorname{sen} \angle A$. Si el triángulo es obtusángulo también se cumple porque los senos se mantienen. Simplemente, igualando BP_{hB} tenemos que $\frac{BC}{\operatorname{sen} \angle A} = \frac{BA}{\operatorname{sen} \angle C}$. El resto de igualdades se consiguen con las demás alturas.

Teorema 6.11 Para $\triangle ABC...$

■ Si se conoce $\angle A$ y AB, AC (advacentes), entonces se pueden hallar $\angle B$, $\angle C$, BC.

- Si se conocen AB, AC, BC entonces se pueden hallar $\angle A$, $\angle B$, $\angle C$.
- Si se conocen AB, $\angle A$, $\angle B$ entonces se pueden hallar BC, AC, $\angle C$.

Corolario 6.12 [Criterios de congruencia de \triangle]

Dados $\triangle ABC$ y $\triangle A'B'C'$ entonces

- $\angle A = \angle A'$, AB = A'B', AC = A'C' [LAL]
- AB = A'B', AC = A'C', BC = B'C' [LLL]
- $\angle A = \angle A', \angle B = \angle B', AB = A'B'$ [ALA]

Entonces existe una isometría η tal que $\eta(A) = A'$, etc. y $\triangle ABC = \triangle A'B'C'$. Hay que considerar que para emplear isometrías pares hay que definir la orientación de los triángulos.

Corolario 6.14 Sean $\angle P$ y $\angle Q$ no nulos, y sumables. Entonces

$$\operatorname{sen}(\angle P + \angle Q) = \operatorname{sen}(\angle P) \cos(\angle Q) + \operatorname{sen}(\angle Q) \cos(\angle P)$$

$$\cos(\angle P + \angle Q) = \cos(\angle P)\cos(\angle Q) - \sin(\angle P)\sin(\angle Q)$$

Corolario 6.15 Sean $\angle P$ y $\angle Q$ no nulos, y sumables. Entonces

$$\angle(\angle P + \angle Q) = \angle P + \angle Q$$

Demostración. Nota: en el punto final se demuestra que

$$\cos(\angle P + \angle Q) = \cos(\angle P + \angle Q)$$

Sabiendo que $\angle P = \arccos(\cos \angle P)$ entonces $\arccos(\cos(\angle P + \angle Q)) = \angle(\angle P + \angle Q)$ y, por tanto,

$$\angle(\angle P + \angle Q) = \arccos(\cos(\angle P + \angle Q)) = \angle P + \angle Q$$

Corolario 6.16 Si $\angle V$ es un ángulo y n es entero, entonces existe $n\angle V$ y $\angle (n\angle V) = n\angle V$.

7. Semejanzas

Definición 7.1 Sea C un punto de \mathbb{P} y k > 0. Una **homotecia** $\eta_{C,k} : \mathbb{P} \to \mathbb{P}$ es una aplicación tal que a cada punto $P \in r_{CP}$ le hace corresponder un punto $\eta_{C,k}(P) \in r_{CP}$ tal que $C\eta_{C,k}(P) = kCP$. k es la **razón de homotecia**.

Observación 7.2 Sea $X \in \mathbb{P}$, $\eta_{C,k}$ y γ una aplicación del **Axioma P3**. Entonces se cumple que $\gamma(\eta_{C,k}(X)) = \gamma(C) + k(\gamma(X) - \gamma(C))$

Observación 7.3 Toda homotecia es una biyección que tiene

Identidad: η_{C,1}
Inversa: η_{C,1/k}

Teorema 7.4/Corolario 7.5 Sean A, B y $\eta_{C,k}$, entonces $\eta_{C,k}(A)\eta_{C,k}(B) = kAB$. Además, $\eta_{C,k}[A,B] = [\eta_{C,k}(A),\eta_{C,k}(B)]$.

Teorema 7.7 Toda homotecia envía un ángulo a un ángulo congruente, y toda recta a una paralela.

Definición 7.8 Una **semejanza** es una combinación de homotecias e isometrías.

Corolario 7.10/7.11 / Teorema 7.19 Toda semejanza envía rectas a rectas, segmentos a segmentos, y conserva los ángulos. Toda biyección ψ que cumpla estas condiciones es una semejanza.

Teorema 7.12 / **Corolario 7.13** Toda semejanza δ cumple que $\delta(A)\delta(B)=kAB$, donde k es la razón de semejanza. Dados A,B,C,D, entonces se cumple que

$$\frac{AB}{CD} = \frac{\delta(A)\delta(B)}{\delta(C)\delta(D)}$$

Teorema 7.15 Si $\angle A = \angle B$, entonces existe δ tal que $\delta(\angle A) = \angle B$.

Teorema 7.18 Sean $\triangle ABC$ y $\triangle AB'C'$ que comparten $\angle A$ y A, B, B' están alineados, así como A, C, C'. Entonces si existe k tal que AB' = kAB y AC' = kAC entonces $\triangle ABC$ y $\triangle AB'C'$ son semejantes, $r_{BC} \parallel r_{B'C'}$ y B'C' = kBC.

Definición 7.20 Se llama **mediana** al segmento que une cada vértice con el punto medio del lado opuesto de un triángulo. Es decir, da-

do $\triangle ABC$, las medianas son [A, medio[B, C]], [B, medio[A, C]] y [C, medio[A, B]].

Teorema 7.21 Las tres medianas de un triángulo cortan en un punto *G*, llamado **baricentro**.

Demostración. Definimos X = medio[B, C], Y = medio[A, C], Z = medio[A, B] y sea $G[B, Y] \cap [C, Z]$. El punto existe porque, si definimos la recta r_{BY} , entonces C está en uno de los semiplanos de la recta (pongamos, H^2) y, si $A \in H^1$, entonces $Z \in H^1$, C y Z están en distintos semiplanos de $r_B C$. Si tomamos $\triangle ABC$ y $\triangle AZY$ entonces, por ser Y, Z puntos medios, entonces, por el **Teorema 7.18**, $r_{YZ} \parallel r_{BC}$ y BC = 2YZ. Además, por ser los ángulos entre [C, Z] y [B, Y] alternos internos, los triángulos $\triangle GYZ$ y $\triangle GBC$ son semejantes de razón 2. Por tanto, GB = 2GY y GC = 2GZ. Si repetimos esto con [A, X] y [B, Y], entonces existe un punto G' tal que G'A = 2G'X y G'B = 2G'Y. Como G'B = GG', entonces G = G' y las tres medianas cortan en G.

Teorema 7.23 Las tres mediatrices de un tríangulo cortan en un punto, el **circuncentro**.

② Demostración. Si $\triangle ABC$ es un triángulo, las mediatrices m_{AB} y m_{BC} cortan en un punto O. Si no cortaran, entonces $m_{AB} \parallel m_{BC}$, y como $r_{AB} \perp m_{AB}$ y $m_{BC} \perp r_{BC}$ entonces $r_{AB} \parallel r_{BC}$, lo cual es absurdo. Por ser m_{BC} mediatriz, entonces OB = OC, y OA = OB para m_{AB} . Entonces OA = OC y por tanto $O \in m_{AC}$, luego O corta las tres mediatrices.

Teorema 7.24 Las tres alturas de un triángulo se X, Y, Z están alineados se cumple que cortan en el **ortocentro**

● Demostración. Sea △ ABC el triángulo con baricentro G y sean h_A, h_B, h_C sus alturas. Consideramos la semejanza $\tau = \sigma_G \eta_{G,2}$, de modo que $\triangle ABC$ se transforma en $\triangle XYZ$, $\operatorname{con} \tau(A) = X, \tau(B) = Y, \tau(C) = Z$. Por las propiedades de las semejanzas, $r_{BC} \parallel r_{YZ}, r_{AC} = r_{XZ}, r_{AB} \parallel r_{XY}$, y se cumple que A = medio[Y, Z], B = medio[X, Z], C = medio[X, Y].Por tanto, ahora $h_A = m_{YZ}, h_B = m_{XZ}, h_C = m_{XY}$ y, por tanto, el ortocentro de $\triangle ABC$ es el circuncentro de $\triangle XYZ$.

Teorema 7.25 [Recta de Euler] Dado un triángulo, su baricentro G, ortocentro O y circuncentro H pertenecen a una misma recta (si el triángulo no es equilátero). Además, OH = 2OG.

Demostración. Si partimos del triánguo con baricentro G y aplicamos la semejanza $au=\sigma_G\eta_{G,2}$, como en el **Teorema 7.24**, entonces se cumple que $\tau(O) = H$. Por ser σ_G , entonces $H \in r_{OG}$ y por ser $\eta_{G,2}$, entonces OH = 2OG.

Corolario 7.26 El incentro del triángulo es el punto donde se cortan las tres bisectrices del triángu-

Ejercicio 7.7 [Teorema de Ceva] En $\triangle ABC$ sean $X \in [B, C], Y \in [C, A], Z \in [A, B].$ Si X, Y, Z no coinciden con ninguno de los vértices del triángulo, entonces los segmentos [A, X], [B, Y], [C, Z]se cortan en un punto sii

$$\frac{AZ}{ZB}\frac{BX}{XC}\frac{CY}{YA} = 1$$

Ejercicio 7.8 [Teorema de Menelao] Sea $\triangle ABC$ y sean $X \in r_{BC}, Y \in r_{CA}, Z \in r_{AB}$. Entonces, sii

8. Circunferencias

Definición 8.1 Sea $O \in \mathbb{P}$ y $\rho > 0$. Entonces una **circunferencia** \mathcal{C} es el conjunto de puntos a una distancia ρ de O. O es el **centro** y ρ el **radio**.

Teorema 8.3 Una circunferencia corta a una recta en a lo sumo dos puntos.

Definición 8.4 Dada C una recta que corta en dos puntos se llama **secante**, que corta en un punto se llama **tangente** y que no corta se llama **exterior**. Si para un punto $X \in \mathbb{P}$, $d(O, X) > d(O, \rho)$ el punto es exterior, y si $d(O, X) < d(O, \rho)$ entonces es interior.

Teorema 8.5 Sea C con centro O. Si t es tangente a C en P_t , entonces $t \perp r_{O,P_t}$.

Definición 8.6 Sean P, P' dos puntos tales que O = medio[P, P']. Entonces, si los puntos están en C, se denominan **diametralmente opuestos en** C, y [P, P'] es un diámetro de C.

Teorema 8.7/Definición 8.9 Dados tres puntos no alineados, entonces existe una única circunferencia que pase por estos puntos, la **circunferencia circunscrita**.

Corolario 8.8 Dos circunferencias tienen a lo sumo dos puntos en común. Si sólo tienen un punto en común se llaman tangentes.

Teorema 8.10 Sean C, C' con centros O, O' y radios ρ , ρ' respectivamente. Si las dos circunferencias cortan en dos puntos, entonces se cumplen las siguientes desigualdades:

$$OO' < \rho + \rho' \quad \rho < OO' + \rho' \quad \rho' < OO' + \rho$$

Y si las circunferencias son tangentes, entonces se verifica una de estas igualdades:

$$OO' = \rho + \rho'$$
 $\rho = OO' + \rho'$ $\rho' = OO' + \rho$

Teorema 8.11 Sea \mathcal{C} con centro O y sean $\triangle PXY$ y $\triangle P'XY$ dos triángulos con vértices en \mathcal{C} y P,P',O están en el mismo semiplano determinado por r_{XY} . Si X e Y no son diametralmente opuestos, entonces $\angle P = \angle P' = \frac{1}{2} \angle O$

② Demostración. Sea $\mathcal{T} = \triangle PXY$ y $\mathcal{T}_O = \triangle OXY$. Construimos también $\mathcal{T}_1 = \triangle POX$ y $\mathcal{T}_2 = \triangle POY$, isósceles, de modo que $\mathcal{L}_{\mathcal{T}_1}X = \mathcal{L}_{\mathcal{T}_1}P$ y $\mathcal{L}_{\mathcal{T}_2}Y = \mathcal{L}_{\mathcal{T}_2}P$. Como la suma de los ángulos de \mathcal{T}_1 y \mathcal{T}_2 es llano, entonces

$$2 \angle_{\mathcal{T}_1} P = \pi - \angle_{\mathcal{T}_1} O$$
 $2 \angle_{\mathcal{T}_2} P = \pi - \angle_{\mathcal{T}_2} O$

Vamos a suponer ahora que $\angle TP = \angle T_1P - \angle T_2P$. Para $2\angle TP$ entonces se cumple que

$$2 \angle_{\mathcal{T}} P = 2 \angle_{\mathcal{T}_1} P - 2 \angle_{\mathcal{T}_2} P = \angle_{\mathcal{T}_2} O - \angle_{\mathcal{T}_1} O = \angle_{\mathcal{T}_0} O = \angle O$$

La misma demostración sucede para $\angle TP = \angle T_1P + \angle T_2P$ y $\angle TP = \angle T_2P - \angle T_1P$

Definición 8.13 Sea \mathcal{C} con centro O y radio ρ . Se denomina **inversión** del plano con respecto a \mathcal{C} a una aplicación $\iota_{\mathcal{C}}: \mathbb{P} - \{O\} \to \mathbb{P} - \{O\}$ que a cada punto P le hace corresponder otro punto $\iota_{\mathcal{C}}(P)$ tal que $O, P, \iota_{\mathcal{C}}(P)$ están alineados, $O \not\in [P, \iota_{\mathcal{C}}(P)]$ y se verifica que

$$OP \cdot O_{\iota_{\mathcal{C}}}(P) = \rho^2$$

Esta aplicación verifica que

- $\iota_{\mathcal{C}} \circ \iota_{\mathcal{C}}(P) = P$ para todo $P \in \mathbb{P} O$.
- Para todo $P \in \mathcal{C}$ se cumple $\iota_{\mathcal{C}}(P) = P$. A todo punto fuera del circulo, $\iota_{\mathcal{C}}$ lo manda dentro, y viceversa.
- Si *r* pasa por O, $\iota_{\mathcal{C}}(r \{O\}) = r \{O\}$.

Teorema 8.16/8.17 Sea C y $P \in \mathbb{P}$. Sean a, b rectas que cortan a P y secantes a C. Sean A_1 y A_2 los puntos de corte de a con C y B_1 , B_2 los de b con C. Entonces se verifica que

$$PA_1 \cdot PA_2 = PB_1 \cdot PB_2$$

Si a es tangente, entonces

$$PA^2 = PB_1 \cdot PB_2$$

Ese producto, por tanto, es invariante de la recta, y se denomina **potencia de** P **con respecto a** C.

Teorema 8.18 Sea C de radio ρ y centro O.

- Sea \mathcal{C}' una circunferencia de centro O' que pasa por O, entonces $\iota_{\mathcal{C}}(\mathcal{C}' \{O\})$ es una recta ortogonal a $r_{O,O'}$. Sea r que no pasa por O, entonces $\iota_{\mathcal{C}}(r) = \mathcal{C}' \{O\}$, donde \mathcal{C}' es una circunferencia que pasa por O.
- Si \mathcal{C}' no pasa por O entonces $\iota_{\mathcal{C}}(\mathcal{C}')$ es otra circunferencia que no pasa por O. Si O es exterior a \mathcal{C}' entonces $\iota_{\mathcal{C}}(\mathcal{C}')$ es la imagen de \mathcal{C}' por la homotecia de centro O y razón ρ^2/t , donde t es la potencia de O con respecto a \mathcal{C}' . Si O es interior a \mathcal{C}' entonces $\iota_{\mathcal{C}}(\mathcal{C}') = \sigma_O \circ \eta_{O,O^2/t}(\mathcal{C})$.

Esta obra está bajo una licencia Creative Commons "Reconocimiento-NoCommercial-NoDerivs 3.0 España".

