CAP 2. DADOS MULTIMÍDIA

AULA 5: CAPTURA DE IMAGENS DIGITAIS E SEUS TIPOS

Cap. 2 Dados Multimídia

Conteúdo

- Processo de captura de áudios, imagens e vídeos
- Representação digital de áudios, imagens e vídeos
- Representação de caracteres/textos
- Principais características e requisitos das informações multimídia

Nesta aula veremos...

- Captura e representação digital de imagens
- Tipos de imagens digitais

Imagens Digitais

Formatos de Imagens

- Imagens no computador são representadas por bitmaps
 - bitmap = matriz espacial bidimensional de elementos de imagem chamados de pixels

reticulado - cada elemento da matriz possui a informação referente à cor associada

aquele ponto

- pixel é o menor elemento de resolução da imagem
 - tem um valor numérico chamado amplitude
 - define ponto preto e branco, nível de cinza, ou atributo de cor (3 valores)
 - Expresso por um número de bits
 - 1 para imagens P&B, 2, 4, 8, 15, 16, 24, 48... bits
- "Resolução" da imagem é o número de elementos que a imagem possui na horizontal e na vertical

Imagens Digitais

Imagem (Bitmap)

Matriz de pontos ou pixels, com resolução horizontal (eixo X) e vertical (eixo Y), para cada ponto da matriz tem-se uma cor associada (obtida de forma direta ou através de uma tabela de acesso indireto – "paleta").

Imagens Digitais: Captura

Câmera fotográfica digital

- Funcionamento semelhante a uma câmera fotográfica tradicional
 - porém a imagem é armazenada de forma digital em memória
- Imagem é digitalizada através de um CCD e armazenada de forma compactada ou não em um dispositivo de memória
- Qualidade da imagem depende da qualidade e resolução do CCD e da compressão utilizada para armazenar a imagem digitalizada

Em vez de CCD podem ser usados sensores de CMOS (semicondutor de óxido de metal

complementar)

Imagens Digitais: Captura

Scanners

- Digitalizam imagens a partir de imagens em papel
- Funcionamento
 - Imagem é colocada sobre uma superfície transparente
 - Sensor (digitalizador por linha) se move em direção ortogonal ao documento
 - fonte de luz e de um sensor que mede a luz refletida linha por linha, em sincronismo com o deslocamento do sensor
 - Resolução definida em dpi (pontos por polegada)

Processo de digitalização

- Amostragem: é espacial, e não temporal como no áudio.
 - Taxa de amostragem é relacionada a resolução do sensor
- Quantificação: também produzir ruído de quantificação
 - Relacionada ao número de bits por píxel
- Codificação: representação digital da luz/cor (RGB)

Funcionamento do CCD

- Células especializadas em um dado componente de cor (Rede de Bayer)
- Após a exposição as cargas na primeira fileira são transferidas a um lugar no sensor chamado registro de leitura.
 - De lá, os sinais são alimentados a um amplificador e então a um conversor analógico-para-digital.
- Uma vez que a fileira foi lida, suas cargas na fileira do registro de leitura estão suprimidas, a fileira seguinte entra, e todas as fileiras acima do marcham uma fileira abaixo

Funcionamento do CCD: Rede de Bayer

- Captura 50% de verde, 25% vermelho e azul
 - Percepção humana da retina usa cones M e L combinados durante a luz do dia, que é mais responsivo à luz verde

Foveon X3 (CMOS)

- Usa 3 camadas sobrepostas de fotorreceptores
- Sensor capturará luz azul logo na superfície, a verde no meio e a vermelha no fundo
 - Diferentes comprimentos de ondas atravessam o silício com mais facilidade no extremo vermelho do espectro do que no "lado" correspondente aos tons de azul, com a luz verde ficando no meio do caminho

Tipos de imagens digitais

- Imagens binárias
- Imagens tons de cinza
- Imagens true color
- Imagens baseadas em paleta

Imagens Binárias

- São imagens com dois níveis (como preto e branco)
 - muito usadas por dispositivos de impressão e para representar imagens de documentos monocromáticos

Para representar um pixel de uma imagem binária é necessário

apenas 1 bit

 informação extra sobre a cor de cada informação, a cor para o bit com valor 0 (zero) e a cor para o bit de valor 1

 informação de cor é geralmente é representada em
24 bits/cor no padrão RGB

Imagens binárias

• Pixel é representado por 1 bit:

1	1	0	0
0	1	0	1
0	1	0	1
1	1	0	1

Cor é definido na paleta

0	
1	255,255,255

 muito usadas por dispositivos de impressão e para representar imagens de documentos monocromáticos

Imagens em Tons de Cinza

- Cada pixel define uma intensidade de luminosidade representada em um certo número de bits
- Imagem com resolução de cor de 8 bits, pode representar até 256 níveis de cinza (variando do preto ao branco)
- Padrões mais usados são de 16 (4 bits/pixel) e 256 (8 bits/pixel) tons-de-cinza
 - representações com mais que 256 tons-de-cinza não são percebidas pela vista humana

- Tipos de representação de imagens coloridas
 - Cores por componente (true color),
 - · cores indexadas, ou
 - cores fixas.
- Representação vai depender do propósito e dos dispositivos que vão ser usados para trabalhar com essas imagens

Imagens True Color

 Cada pixel da imagem é representado por um vetor de 3 componentes de cores (RGB) com um certo número de bits para representar cada componente de cor

Imagens True Color

- Geralmente o número de bits para cada componente RGB é igual
 - ex.: Hi-Color 15 bits (5-5-5)
- Existem padrões onde a quantidades de bits por componentes é diferente

Imagens True Color

- Número de bits por pixel fornece a quantidade de níveis que podem ser representados
 - se n é a resolução de cor então a quantidade de níveis possíveis é de 2ⁿ níveis

Bits/pixel	Padrão	Componentes de cor RGB	Máximo de Cores
15 bits/pixel	High Color (15 bits)	5 bits/pixel, 32 níveis por comp.	32.768 cores
16 bits/pixel	High Color (16 bits)	5/6 bits/pixel, 32/64 níveis por comp.	65.535 cores
24 bits/pixel	True Color (24 bits)	8 bits/pixel, 256 níveis por comp.	16.777.216 cores

Cores Indexadas

- Cada pixel é representado por um índice que aponta para uma tabela de cores (paleta)
 - paleta contem as informações sobre as cores

119

Cores Indexadas

- Paleta tem em geral 24 bits para representar cada cor no formato RGB
 - o pode representar n cores de um conjunto com mais de 16 milhões de cores

Cores Indexadas

• Paleta variável: cores são escolhidas para a imagem

Cores Indexadas

• Número de cores e a resolução de cor da paleta podem variar

Bits/pixel	Padrão	Resolução de cor da paleta
4 bits/pixel	16 cores indexadas	24 bits/cor
8 bits/pixel	256 cores indexadas	24 bits/cor

Cores Fixas

- Cada pixel é representado por um índice que aponta para uma tabela de cores fixa
 - usado quando o dispositivo n\u00e3o permite a representa\u00e7\u00e3o de muitas cores (placas de v\u00eddeos antigas ou padr\u00f3es de cores)

Pontos Importantes

Conceitos de base

- Bitmap: matriz de pixels
- Pixel: menor elemento da imagem e que tem diferentes números de bits e semântica (cor RGB, índice na paleta)

Digitalização de imagens

- Amostragem espacial (resolução do CCD/CMOS)
- Quantização: PCM
- Codificação: bits representando pixel

Tipos de imagens

• Binárias, tons de cinza e os diversos tipos de imagens coloridas