Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)» кафедра физики

ОТЧЕТ по лабораторной работе № 3

«Исследование динамики колебательного и вращательного движения»

Автор: Стукен В.А.

Группа: 2307

Факультет: ФКТИ

Преподаватель: Харитонский П.В.

Санкт-Петербург, 2022 І₄ТЕХ

Работа №3 "Исследование динамики колебательного и вращательного движения"

Цель работы: Исследование динамики колебательного движения на примере крутильного маятника, определение момента инерции маятника, модуля сдвига материала его подвеса и характеристик колебательнои системы с затуханием (логарифмического декремента затухания и добротности колебательнои системы). *Приборы и принадлежности:* физический маятник; секундомер; масштабная линейка, чертежный треугольник.

Применяемыи в работе крутильныи маятник представляет собои диск 1, закреплен- ныи на упругои стальнои проволоке 2, свободныи конец которои зажат в неподвижном кронштеине 3. На кронштеине расположено кольцо 4, масса которого известна. Кольцо 4 можно положить сверху на диск 1, изменив тем самым момент инерции ма- ятника. Для отсчета значении угла поворота маятника служит градуированная шкала 5, помещенная на панели прибора снизу от диска 1.

Исследуемые закономерности

Момент инерции крутильного маятника

Момент инерции (аналог инертнои массы тела при его поступательном движении) - физическая величина, характеризующая инертные своиства твердого тела при его вращении.

Если твердое тело вращается вокруг неподвижнои оси, то момент инерции относительно этои оси вычисляется как сумма произведении элементарных масс Δm_i , составляющих тело, на квадраты их расстоянии r_i до оси вращения. В случае сплошного тела сумма в определении момента инерции переходит в интеграл .

Крутильный маятник совершает вращательное колебательное движение вокруг оси, совпадающей с направлением стальной проволоки. Используя основное уравнение динамики вращательного движения, можно определить момент инерции маятника, а также физические величины, описывающием вращательное движение.

Уравнение движения крутильного маятника

При повороте тела, закрепленного на упругом подвесе, в результате деформации сдвига возникает вращающии момент упругих сил. Трение в подвесе создает тормозящии момент, пропорциональныи скорости движения маятника. Исследуемыи в работе крутильныи маятник представляет собои сложную систему (диск с различными креплениями, прикреплен-

ныи к проволочному подвесу) с неизвестным моментом инерции I_d , которыи представляет собои постоянную часть исследуемои системы. Если на диск маятника положить тело с известным моментом инерции - кольцо с моментом инерции I_k , то момент инерции маятника станет равным I_d+I_k .

Крутильный маятник как диссипативная система

Полная энергия колебании маятника убывает со временем. Убывание энергии происходит за счет совершения работы против сил трения. Энергия при этом превращается в тепло. Помимо коэффициента затухания β (или времени затухания τ) и мощности потерь P_d колебательная диссипативная система характеризуется также добротностью Q, позволяющей судить о способности системы сохранять энергию. Добротность численно равна числу колебании за время $t=\tau\pi$. За это время амплитуда колебании уменьшается в $e^\pi\approx 23$ раза, а энергия колебании в $e^{2\pi}\approx 535$ раз, иными словами за это время колебания практически затухают. Часто также используется параметр $N_e=\frac{\tau}{T}$ - число колебании, за которое амплитуда колебании уменьшается в e раз.

Определение модуля сдвига

Методом крутильных колебании пользуются для косвенного измерения модуля сдвига G материала подвеса. Модуль сдвига характеризует упругие своиства материала и в случае малых деформации равен силе, деиствующеи на единицу площади S при единичном угле сдвига γ касательно сдвигу слоев вещества в месте определения модуля G. Модуль сдвига G связан с модулем Юнга,

характеризующим сопротивление материала сжатию или растяжению. Коэффициент Пуассона - отношение поперечное и продольной относительнои деформации образца материала и для металлов близок к 0.3.

Протокол измерений

l	d	D_{ex}	D_{in}	D_0	h_0	$\mid m \mid$	ρ

$N_{\overline{0}}$	$\int \mathrm{t}_d$	t_{0d}	t_k	t_{0k}
1				
2				
3				
$\boxed{4}$				
5				

Ответы на вопросы

- Вопрос №9: "Физический смысл коэффициента затухания β ?" Коэффициент затухания β характеризует скорость затухания колебаний. $\beta = \frac{1}{\tau}$
- Вопрос №40: "Выведите формулу:"

$$I_d = \frac{I_k}{(\frac{T_{dk}}{T_d})^2 - 1}$$

$$\omega_0 = \frac{2\pi}{T} = \sqrt{\frac{D}{I_d}}$$

Отсюда:

$$T = 2\pi \sqrt{\frac{D}{I_d}}$$

Обработка результатов измерений

Найдем $t_d = \bar{t_d} \pm \Delta \bar{t_d}$

 $N=5,~U_{PN}=0.64,~V_{PN}=1.67,~eta_{PN}=0.51,~t_{PN}=2.8$ Промахов нет.

$$\bar{t} = \frac{15.66 + 15.66 + 15.72 + 15.76 + 15.91}{5} = 15.742s$$

$$S_t = \sqrt{\frac{(\bar{t} - t_1)^2 + (\bar{t} - t_2)^2 + (\bar{t} - t_3)^2 + (\bar{t} - t_4)^2 + (\bar{t} - t_5)^2}{N - 1}} = 0.103$$

$$\bar{S}_t = \frac{S_t}{\sqrt{t}} = \frac{0.103}{\sqrt{5}} = 0.046$$

$$\Delta t_{(R)} = R \cdot B_{PN} = 0.25 \cdot 0.51 = 0.128 \, s$$

$$\Delta t_{(\bar{S}_t)} = \bar{S}_t \cdot t_{PN} = 0.046 \cdot 2.8 = 0.129 \, s$$

$$\Delta \bar{t} = \sqrt{\Delta t^2 + \theta^2} = \sqrt{0.129^2 + 0.01^2} = 0.129 \, s$$

$$t_d = \bar{t}_d \pm \Delta \bar{t}_d = 15.74 \pm 0.12 \, s$$

Найдем $t_{0d}=ar{t_{0d}}\pm\Deltaar{t_{0d}}$

 $N=5,~U_{PN}=0.64,~V_{PN}=1.67,~\beta_{PN}=0.51,~t_{PN}=2.8$ Промахов нет.

$$\bar{t} = \frac{18.9 + 18.93 + 19.06 + 20.34 + 20.4}{5} = 19.526 s$$

$$S_t = \sqrt{\frac{(\bar{t} - t_1)^2 + (\bar{t} - t_2)^2 + (\bar{t} - t_3)^2 + (\bar{t} - t_4)^2 + (\bar{t} - t_5)^2}{N - 1}} = 0.773$$

$$\bar{S}_t = \frac{S_t}{\sqrt{N}} = \frac{0.773}{\sqrt{5}} = 0.346$$

$$\Delta t_{(R)} = R \cdot B_{PN} = 1.5 \cdot 0.51 = 0.765$$

$$\Delta t_{(\bar{S}_t)} = \bar{S}_t \cdot t_{PN} = 0.346 \cdot 2.8 = 0.969$$

$$\Delta \bar{t} = \sqrt{\Delta t^2 + \theta^2} = \sqrt{0.969^2 + 0.01^2} = 0.969 s$$

$$t_{0d} = \bar{t}_{0d} \pm \Delta \bar{t}_{0d} = 19.5 \pm 0.9 s$$

Найдем $t_k = \bar{t_k} \pm \Delta \bar{t_k}$

 $N=5,~U_{PN}=0.64,~V_{PN}=1.67,~\beta_{PN}=0.51,~t_{PN}=2.8$ Промахов нет.

$$\bar{t} = \frac{21.71 + 21.81 + 21.84 + 22 + 22.13}{5} = 21.898$$

$$S_t = \sqrt{\frac{(\bar{t} - t_1)^2 + (\bar{t} - t_2)^2 + (\bar{t} - t_3)^2 + (\bar{t} - t_4)^2 + (\bar{t} - t_5)^2}{N - 1}} = 0.166$$

$$\bar{S}_t = \frac{S_t}{\sqrt{N}} = \frac{0.166}{\sqrt{5}} = 0.074$$

$$\Delta t_{(R)} = R \cdot B_{PN} = 0.42 \cdot 0.51 = 0.214$$

$$\Delta t_{(\bar{S}_t)} = \bar{S}_t \cdot t_{PN} = 0.074 \cdot 2.8 = 0.207$$

$$\Delta \bar{t} = \sqrt{\Delta t^2 + \theta^2} = \sqrt{0.207^2 + 0.01^2} = 0.207$$

$$t_k = \bar{t}_k \pm \Delta \bar{t}_k = 21.9 \pm 0.2 s$$

Найдем $t_{0k}=ar{t_{0k}}\pm\Deltaar{t_{0k}}$

 $N=5,~U_{PN}=0.64,~V_{PN}=1.67,~eta_{PN}=0.51,~t_{PN}=2.8$ Промахов нет.

$$\bar{t} = \frac{17.65 + 17.66 + 17.69 + 17.79 + 17.82}{5} = 17.722 \, s$$

$$S_t = \sqrt{\frac{(\overline{t} - t_1)^2 + (\overline{t} - t_2)^2 + (\overline{t} - t_3)^2 + (\overline{t} - t_4)^2 + (\overline{t} - t_5)^2}{N - 1}} = 0,078$$

$$\bar{S}_t = \frac{S_t}{\sqrt{N}} = \frac{0.078}{\sqrt{5}} = 0.035$$

$$\Delta t_{(R)} = R \cdot B_{PN} = 0.17 \cdot 0.51 = 0.087$$

$$\Delta t_{(\bar{S}_t)} = \bar{S}_t \cdot t_{PN} = 0.035 \cdot 2.8 = 0.098$$

$$\Delta \bar{t} = \sqrt{\Delta t^2 + \theta^2} = \sqrt{0.098^2 + 0.01^2} = 0.099$$

$$t_{ok} = \bar{t_{0k}} \pm \Delta \bar{t_{0k}} = 17.72 \pm 0.09 \, s$$

Рассчитаем $T_d = \bar{T}_d \pm \Delta \bar{T}_d$

$$\bar{T}_d = \frac{\bar{t}_d}{n} = 15.742/10 = 1,57 \, s$$

$$\Delta \bar{T}_d = \frac{\Delta \bar{t}_d}{n} = 0.129/10 = 0.013$$

$$T_d = \bar{T}_d \pm \Delta \bar{T}_d = 1.570 \pm 0,013 \, s$$

Рассчитаем $T_k = \bar{T}_k \pm \Delta \bar{T}_k$

$$ar{T}_k = rac{ar{t}_k}{n} = 21.9/10 = 2.2 \, s$$

$$\Delta ar{T}_d = rac{\Delta ar{t}_d}{n} = 0.207/10 = 0.02$$

$$T_k = ar{T}_k \pm \Delta ar{T}_k = 2.20 \pm 0.02 \, s$$

Рассчитаем время затухания

$$\tau = \frac{t_0}{\ln 2}$$

$$\bar{t_d} = \frac{\bar{t_{0d}}}{\ln 2} = 19.526/0.693 = 28.18 \, s$$

$$\bar{t_k} = \frac{\bar{t_{0k}}}{\ln 2} = 17.722/0.693 = 25.57 \, s$$

$$\tau_d = 28.18 \pm 1.4 \, s$$

$$\tau_k = 25.57 \pm 0.14 \, s$$

Найдем собственную частоту колебаний маятника без кольца и с кольцом

$$\bar{\omega_{0d}} = \frac{2\pi}{\bar{T_d}} = 4 \, s^{-1}$$

$$\bar{\omega_{0k}} = \frac{2\pi}{\bar{T_k}} = 2.85 \, s^{-1}$$

$$\Delta \bar{\omega_{0d}} = 0.033 \, s^{-1}$$

$$\Delta \bar{\omega_{0k}} = 0.026 \, s^{-1}$$

$$\omega_{0d} = 4.00 \pm 0.03 \, s^{-1}$$

$$\omega_{0k} = 2.85 \pm 0.03 \, s^{-1}$$

Рассчитаем момент инерции кольца

$$I_k = \frac{m}{8} \left(D_{ex}^2 + D_{in}^2 \right) = \frac{1.832}{8} \cdot (0.247^2 + 0.0585^2) = 0.015 \, kg \cdot m^2$$

Рассчитаем момент инерции диска

$$I_d = \bar{I}_d \pm \Delta \bar{I}_d$$

$$\bar{I}_d = \frac{I_k \omega_{0k}^2}{\overline{\omega_{0d}^2} - \overline{\omega_{0k}^2}} = 0.015$$

Прологарифмировав данное выражение получим:

$$\ln I_k + 2 \ln \omega_{0k} = \ln I_d \cdot (\ln(\omega_{0d} + \omega_{0k}) + \ln(\omega_{0d} - \omega_{0k}))$$

$$\Delta \bar{I}_d = \sqrt{\left(\frac{dI_d}{d\omega_{0d}}\Big|_{\omega_{\bar{0}d},\omega_{\bar{0}k}} \cdot \Delta\omega_{\bar{0}d}\right)^2 + \left(\frac{dI_d}{d\omega_{ok}}\Big|_{\omega_{\bar{0}d},\omega_{\bar{0}k}} \cdot \Delta\omega_{\bar{0}k}\right)^2} = 0.004$$

$$\frac{dI_d}{d\omega_{0d}}\Big|_{\omega_{\bar{0}d},\omega_{\bar{0}k}} = -1$$

$$\frac{dI_d}{d\omega_{0k}}\Big|_{\omega_{\bar{0}d},\omega_{\bar{0}k}} = 1.42$$

$$I_d = \Delta I_d \pm \Delta \bar{I}_d = 0.015 \pm 0.004 \, kg \cdot m^2$$