BLG411E-SOFTWARE ENGINEERING Makeup Midterm Exam Solutions 7/12/2004

Answer 1a) Estimated Counts:

<u>User inputs</u> (Each distinct data is counted):

Customer info: Customer name, address, phone number.

Magazine info: Magazine title, unit price.

Subscription info: Subscription date, subscription duration, payment amount.

(Total=8)

User outputs:

i) Reports:

Renewal notices for expiring subscriptions.

Address labels for all current subscribers.

ii) On-line result screens:

A given customer's all current subscriptions.

iii) Error messages:

Warning message if payment amount is not in full.

(Total=4)

<u>User inquiries (On-line commands and inquiry inputs):</u>

Getting user commands from menu.

Getting a customer's name for a transaction (New subscription, Inquiry).

(Total=2)

Files (database tables):

Customers.

Magazines.

Subscriptions.

(Total=3)

We will use the average empirical weights:

Measurement parameter	Estimated Count	Average Weight	FP_count
Number of user inputs	8	4	32
Number of user outputs	4	5	20
Number of user inquiries	2	4	8
Number of files	3	10	30
Number of external interfaces	0	7	0
COUNT_TOTAL =			90

Complexity Adjustment Factors (CAF): Factor **Our Estimation** 1.Backup and recovery 5 2.Data communications 0 3.Distributed processing 0 4.Performance critical 2 5.Existing operating environment 6.On-line data entry 5 7.Input transaction over multiple screens 1 8.Master files updated on-line 9.Information domain values complex 1 10.Internal processing complex 11.Code designed for reuse 1 12. Conversion/installation in design 13. Multiple installations 14. Application designed for change 1 $Factor_total = 23$

Scales:

0=No influence	3=Average
1=Incidental	4=Significant
2=Moderate	5=Essential

Function Points formula:

LOC =
$$80_{FP} * 30_{LOC/FP} = 2400_{Innes}$$
 lines of code in C++ language.
KLOC $\cong 2.4$

Answer 1b)

Effort Adjustment Factors (EAF):

Effort Aujustment Factors (EAF):	D 45	
Factor	Range of Factor	Our Estimation
Product Attributes		
1.Required reliability	0.75 - 1.40	1.40
2.Database size	0.94 - 1.16	0.98
3.Product complexity	0.70 - 1.65	0.95
Computer Attributes		
4.Execution time constraint	1.00 - 1.66	1.00
5.Main storage constraint	1.00 - 1.56	1.20
6. Virtual machine volatility	0.87 - 1.30	0.87
7.Computer turnaround time	0.87 - 1.15	0.87
Personnel Attributes		
8. Analyst capability	1.46 - 0.71	1.46
9.Programmer capability	1.42 - 0.70	0.75
10.Application experience	1.29 - 0.82	0.85
11.Virtual machine experience	1.21 - 0.90	1.00
12.Programming language experience	1.14 - 0.95	0.95
Project Attributes		
13.Use of modern programming practices	1.24 - 0.82	0.82
14.Use of SW tools	1.24 - 0.83	0.90
15.Required development schedule	1.23 - 1.10	1.10
		X
		EAF = 0.85

Intermediate COCOMO formulas:

$$PM = a * (KLOC)^b * EAF$$

$$T_{dev} = c * (PM)^d$$

We will consider the type of this project as semi-detached. Therefore, the following empirical weights will be used:

SW Category	a	b	c	d
Semi-detached	3.0	1.12	2.5	0.35

$PM = a * (KLOC)^b * EAF$	$T_{dev} = c * (PM)^d$	Number of people = PM / T_{dev}
$=3.0*(2.4)^{1.12}*0.85$	$=2.5*(7.1)^{0.35}$	= 7 / 5
≅ 7 person-months	$\cong 5$ months	= 1.4
		≅ 2

Answer 2) A risk table consists of the following columns:

- 1. Definition of the risk.
- 2. Category of the risk: Team related; Customer related; Product specific; Business specific.
- 3. Probability of the risk: Estimated percentage of likelihood.
- 4. Impact of the risk: Catastrophic; Critical; Marginal; Negligible.
- 5. RMMM Plan: It is considered in the initial phase as part of the Software Project Plan.
 - Mitigation: How to avoid the risk.
 - Monitoring: What to track to determine whether the risk becoming more or less likely.
 - Management: What contingency plan should be applied if the risk becomes a reality.