Math 297 Discussion 10 Notes

Annie Xu

March 27, 2019

Group

A group is a set G with a binary operation $\cdot: G \times G \to G$ s.t.

- i) · is associative $x(yz) = (xy)z \ \forall x, y, z \in G$
- ii) \exists identity element $1 \in G$, $1 \cdot x = x \cdot 1 = x \ \forall x \in G$
- iii) Every element x has an inverse, i.e. an element y s.t. xy = yx = 1

Note: Commutativity not required. Commutative groups are also called **abelian groups**.

Note: Condition ii) ensures that a group is always nonempty.

Note: G is a finite group if in addition G is a finite set.

Examples

- 1) Zero group: $G = \{1\} \# G = 1$. # is called the **order** of G
- 2) $G = \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \quad \cdot = +$
- 3) $G = \mathbb{Q} \{0\}, \mathbb{R} \{0\}, \mathbb{C} \{0\}, \mathbb{Q}^+, \mathbb{R}^+, \quad \cdot = \times$
- 4) Non-example: $\mathbb Z$ with multiplication: only ± 1 have inverses
- 5) A vector space V along with vector addition is an abelian group. Thus any vector space such as \mathbb{R}^n is, in particular, an additive group.
- 6) For $n \in \mathbb{Z}^+$, $\mathbb{Z}/n\mathbb{Z}$ is an abelian group under the operation + of addition of residue classes. We might be able to prove later that + is well-defined and associative. For now take it for granted.
- 7) For $n \in \mathbb{Z}^+$, the set $(\mathbb{Z}/n\mathbb{Z})^{\times}$ of equivalence classes \bar{a} which have multiplicative inverses mod n is an abelian group under multiplication of residue classes. Again, take for granted that this operation is well-defined and associative.
- 8) S_n symmetric group on n letters

 $S_n = \{f | f \text{ is a bijection from } \{1, \dots, n\} \text{ to itself} \}$

 $\cdot =$ composition of functions

$$\#S_n = n!$$

Cycle notation: i_1, \ldots, i_k are distinct #'s in $\{1, 2, \ldots, n\}$

 $(i_1,\ldots,i_k)\in S_n$ is a map s.t. $i_1\to i_2,\ldots,i_k\to i_1$ everything else fixed.

- $(1\ 2\ 3)(1\ 2\ 3) = (1\ 3\ 2)$
- 9) F_2 free groups in a, b

elements are formall words in letters a, b, a^{-1}, b^{-1}

multiplication: concatenation of words

$$(a \ b \ a^{-1})(a \ a \ b \ b) = a \ b \ a \ b \ b$$

10) If (A, \star) , (B, \diamond) are groups, their **direct product** is defined to be $A \times B = \{(a, b) | a \in A, b \in B\}$. Operation is defined componentwise: $(a_1, b_1)(a_2, b_2) = (a_1 \star a_2, b_1 \diamond b_2)$

Basic Properties

You can prove some general facts about group, using the same techniques from 297: the identity is unique.

the inverse of each element is unique.

$$(a^{-1})^{-1} = a \ \forall a \in G$$

 $(a \cdot b)^{-1} = (b^{-1})(a^{-1})$

generalized associative law holds.

cancellation rule: if au = av, then u = v; and if ub = vb, u = v.

Order

For G a group and $x \in G$, define the **order** of x to be the smallest positive integer n s.t. $x^n = 1$, and denote the integer by |x|. Also say x is of order n. If no positive power of x is the identity, the order of x is defined to be infinity.

Examples

- 1) $x \in G$ has order 1 if and only if x is the identity.
- 2) In the additive groups $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, every nonzero (nonidentity) element has infinite order.
- 3) In the multiplicative group $\mathbb{R} \{0\}$ or $\mathbb{Q} \{0\}$ the element -1 has order 2 and all other nonidentity elements have infinite order.
- 4) In the additive group $\mathbb{Z}/9\mathbb{Z}$, $\bar{6}$ has order 3 (Why?); the order of $\bar{5}$ is 9.
- 5) In the multiplicative group $(\mathbb{Z}/7\mathbb{Z})^{\times}$, $\bar{2}$ has order 3 (Why?); $\bar{3}$ has order 6.
- 6) S_n : using cycle notation, (1 2 3) has order 3.