

4-Bit Microcontroller with 8K-Byte ROM, 512 × 4 bits RAM and LCD

UnderDevelopment

Overview

The LC573718A is a CMOS 4-bit microcontroller that operates on low voltage and very low power consumption. It also contains 8K-byte ROM, 512×4 bits RAM, LCD drivers and 1/100sec. chronograph function.

Features

(1) ROM: 8192×8 bits

(2) RAM: 512×4 bits

(3) Cycle Time

 $122\mu s$: VDD = 2.4V to 3.6V

(4) Input / Output Terminals

- Input / Output ports: 6 terminals

- Input ports: 6 terminals (S-port : 4 terminals, M-port : 2 terminals)

- LCD common output ports: 4 terminals- LCD segment output ports: 32 terminals

(CMOS/P-ch OD can be switched by mask option.: 16 terminals (SEG17-SEG32))

- Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.
- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

(5) LCD driver

Display duty: 1/3, 1/4 duty
Display bias: 1/2, 1/3 bias
Built-in step-up / step-down circuit

- LCD driver

Segment output terminals: (32-N) terminals

(N: the number of output terminals specified by mask option)

Common output terminals: 4 terminals

- (6) Buzzer output
 - 2kHz/4kHz buzzer output is possible.
 - Modulation output is possible.
- (7) Base timer
 - Generates an overflow every 500ms for a clock application.
- (8) 1/100sec. chronograph function
 - Start/stop/lap: Handled by software program
- (9) HALT release
 - Five vectors
 - 1. 15-bit base timer (500ms overflow output)
 - 2. 15-bit base timer (output every 32ms)
 - 3. S-port
 - 4. M-port
 - 5. 1/10 sec. pulse
- (10) Stand-by mode
 - HALT mode

The program operation will be stopped in this mode. This mode is released by system reset or the triggering of any of the 5 vectors for HALT release mentioned above.

- (11) System reset
 - RES terminal
- (12) Oscillation
 - 32.768kHz crystal oscillation

Capacitor on output side (XT2) must be connected externally.

Capacitor in input side (XT1) must be connected externally.

- (13) Power supply
 - VDD2 = 2.4V to 3.6V
 - VDD1 = 1.2V to 1.8V, VDD3 = 3.6V to 5.4V (LCD power supply)
- (14) Shipping form
 - Chip
- (15) The development tool
 - Emulator: TB 573718 (Include EVA57)

Pad Assignment

Pad pitch: 110μm

Pad size: 80µm (Jacket open space)

Pin Name and Coordinates

Pad	Pad	Coord	linates	Pad	Pad	Coord	linates
No.	Name	Xμm	Yμm	No.	Name	Xμm	Yμm
1	SEG32	-987	-1365	33	VSS	1066	1365
2	SEG31	-877	-1365	34	VSSX	936	1365
3	SEG30	-767	-1365	35	XT1	826	1365
4	SEG29	-657	-1365	36	XT2	716	1365
5	SEG28	-547	-1365	37	VDDX	606	1365
6	SEG27	-437	-1365	38	VDD2	456	1365
7	SEG26	-327	-1365	39	HZ32	346	1365
8	SEG25	-217	-1365	40	TST	236	1365
9	SEG24	-107	-1365	41	Т3	126	1365
10	SEG23	3	-1365	42	RES	16	1365
11	SEG22	113	-1365	43	ALM	-114	1365
12	SEG21	223	-1365	44	S4	-224	1365
13	SEG20	333	-1365	45	S3	-334	1365
14	SEG19	443	-1365	46	S2	-444	1365
15	SEG18	553	-1365	47	S1	-554	1365
16	SEG17	663	-1365	48	M2	-664	1365
17	SEG16	773	-1365	49	M1	-774	1365
18	SEG15	883	-1365	50	P00	-1297	1228
19	SEG14	993	-1365	51	P01	-1297	997
20	SEG13	1103	-1365	52	P02	-1297	766
21	SEG12	1297	-1330	53	P03	-1297	535
22	SEG11	1297	-1098	54	P10	-1297	304
23	SEG10	1297	-867	55	P11	-1297	73
24	SEG09	1297	-635	56	VDC	-1297	-158
25	SEG08	1297	-404	57	VDD1	-1297	-390
26	SEG07	1297	-172	58	VDD3	-1297	-620
27	SEG06	1297	59	59	CUP1	-1255	-834
28	SEG05	1297	290	60	CUP2	-1255	-944
29	SEG04	1297	522	61	COM1	-1255	-1054
30	SEG03	1297	753	62	COM2	-1255	-1164
31	SEG02	1297	984	63	СОМ3	-1255	-1274
32	SEG01	1297	1216	64	COM4	-1255	-1384

The pad coordinates are such that the chip center is taken as the origin and the values for (X, Y) represent the coordinates of the center point of each pad.

System Block Diagram

LC573718A Terminal Description

Name	Pin No.	I/O	Function Description	Option
VSS,VSSX	33, 34	-	Power terminal (–)	-
VDDX,VDD2	37, 38	-	Power terminal (+)	-
CUP1	59	-	Capacitor connecting terminals for step-up/stop down	-
CUP2	60	-	Capacitor connecting terminals for step-up/stop down	
VDD1,VDD3	57, 58	-	Power supply for driving LCD	-
VDC	56	-	Power supply for internal logic circuit	-
P0	50-53	I/O	•4-bit I/O port	Output form
			•I/O programmable in port unit	CMOS/
P00 - P03			•In input mode, built-in pull-up resistor: ON	Pch-OD (Note 1)
			•While in output mode with P-ch OD selected, a built-	
			in circuit inhibits the input terminal from floating.	
P1	54,55	I/O	•2-bit I/O port	Output form
			•I/O programmable in port unit	CMOS/
P10 - P11			•In input mode, built-in pull-up resistor: ON	Pch-OD (Note 1)
			•While in output mode with P-ch OD selected, a built-	
			in circuit inhibits the input terminal from floating.	
S port	47 -	I	•4-bit input port	
	44		•Input for HALT release	
S1 - S4			Built-in programmable pull-down resistor	
M port	49, 48	I	•2-bit input port	
			•Input for HALT release	
M1 - M2			Built-in programmable pull-down resistor	
ALM	43	О	•Output port	
			•Alarm output only terminal	
			•4kHz and 2kHz signals output by instructions SAS	
			and TMEL	
COM1 -	61 -	О	LCD output terminals for common	-
COM4	64			
SEG1 – SEG32	32 - 1	О	LCD output terminals for segment	SEG1-SEG32:Segment PLA
				SEG17-SEG32
				Output from:Segment/CMOS/P-ch
				open drain
RES	42	I	•Reset	-
			Built-in pull-down resistor	
T3	41	О	•Test terminal	-
			•This terminal should be left unconnected.	
HZ32	39	-	•Test terminal	-
			•This terminal should be left unconnected.	
XT1	35	I	Input for 32.768kHz crystal oscillation	-
XT2	36	0	Output for 32.768kHz crystal oscillation	-

Note 1: P-ch OD: P channel open drain

Port's option is specified for each port individually.

* A state of port at initial

Name	Name I/O Pull-up / Pull-down Resistor Status			
P0, 1	I	Pull-up resistor		
S, M_PORT	I	Programmable pull-down resistor ON		

Name	Output Level
COM1-COM4	VSS (display OFF)
SEG1-SEG32	VSS (display OFF)

1. Absolute Maximum Ratings / Ta = 25°C, VSS = 0V

Parar	neter	Symbol	Pins	Conditions			Li	mits	
					VDD[V]	Min.	Typ.	Max.	Unit
Supply vo	ltage	VDDMAX	VDD2			-0.3	-	+4.0	V
Input volt	age	VI(1)	Ports S, M, RES			-0.3	-	VDD+0.3	
Output vo	ltage	VO(1)	C1-C4, S1-S32 CUP1 (1/3 bias)			-0.3	-	3/2VDD +0.3	
		VO(2)	C1-C4, S1-S32 CUP1 (1/2 bias) CUP2, ALM			-0.3	-	VDD+0.3	
I/O voltag	ge	VIO(1)	Ports 0, 1			-0.3	-	VDD+0.3	
High level output current	Peak output current	IOPH(1)	• Ports 0, 1 • S17-S32 (CMOS, P-ch OD) • ALM	For each pin		-1			mA
	Total output current	ΣΙΟΑΗ(1)	• Ports 0, 1 • C1-C4, S1-S32 • ALM	The total of all pins		-10			
Low level output current	Peak output current	IOPL(1)	• Ports 0, 1 • S17-S32 (CMOS) • ALM	For each pin				1	
	Total output current	ΣIOAL(1)	• Ports 0, 1 • C1-C4, S1-S32 • ALM	The total of all pins.				10	
Operating temperatu		Topg				-30	-	70	°C
Storage temperatu		Tstg				-40	-	125	

2. Recommended Operating Range / Ta=-30°C to + 70°C, VSS=0V

Parameter	Symbol	Pins	Conditions			Lin	nits	
				VDD[V]	Min.	Typ.	Max.	Unit
Operating supply voltage range	VDD(1)	VDD2			2.4		3.6	V
Hold voltage	VHD	VDC	RAM's and the register's data are kept in HOLD mode.		1.2		3.6	
Supply voltage for LCD	VSUP	VDD3	1/2 bias 1/3 bias	2.4 - 3.6 2.4 - 3.6	0		VDD 3/2VDD	
High level	VIH(1)	Ports 0, 1	Input mode	2.4 - 3.6	0.7VDD		VDD	
input voltage	VIH(2)	Ports S, M	•	2.4 - 3.6	0.7VDD		VDD	
	VIH(3)	RES (Schumitt)		2.4 - 3.6	0.7VDD		VDD	
Low level	VIL(1)	Ports 0, 1	Input mode	2.4 - 3.6	VSS		0.15VDD	
input voltage	VIL(2)	Ports S, M		2.4 - 3.6	VSS		0.15VDD	
	VIL(3)	RES (Schumitt)		2.4 - 3.6	VSS		0.15VDD	
Operation cycle time	Тсус			2.4 - 3.6		122		μs
Oscillation frequency range (Note 2)	FXtal	XT1, XT2	32.768kHz crystal oscillation Refer to Fig. 1	2.4 - 3.6	32	32.768	33	kHz

Note 2: Refer to Table 1 about oscillation constant.

3. Electrical Characteristics / Ta=-30°C to + 70°C, VSS=0V

Parameter	Symbol	Pins	Conditions			Lim	its	
	-			VDD[V]	Min.	Тур.	Max.	Unit
High level input current	IIH(1)	Ports S, M	Programmable pull-down Tr OFF, VIN=VDD	2.4 - 3.6			1	μΑ
Low level input current	IIL(1)	Ports S, M	Programmable pull-down Tr OFF, VIN=VSS	2.4 - 3.6	-1			V
High level output voltage	VOH(1)	Ports 0, 1, ALM	ΙΟΗ=-200μΑ	2.4 - 3.6	VDD-0.2			
	VOH(2)	CMOS, P-ch OD of SEG17- SEG32	IOH=-100μA	2.4 - 3.6	VDD-0.2			
	VOH(3)	SEG1-SEG32 (LCD driver)	IOH=-0.4μA 1/2 bias	2.4 - 3.6	VDD-0.2			
	VOH(4)	SEG1-SEG32 (LCD driver)	IOH=-0.4μA 1/3 bias	2.4 - 3.6	3/2VDD -0.2			
	VOH(5)	COM1-COM4	IOH=-4μA 1/2 bias	2.4 - 3.6	VDD-0.2			
	VOH(6)	COM1-COM4	IOH=-4μA 1/3 bias	2.4 - 3.6	3/2VDD -0.2			
Middle level output voltage	VOM(1)	SEG1-SEG32 (LCD driver)	IOL=0.4μA, IOH=-0.4μA 1/3 bias	2.4 - 3.6	VDD-0.2		VDD+0.2	
-	VOM(2)	SEG1-SEG32 (LCD driver)	IOL=0.4μA, IOH=-0.4μA 1/3 bias	2.4 - 3.6	1/2VDD -0.2		1/2VDD+ 0.2	
	VOM(3)	COM1-COM4	IOL=4μA, IOH=-4μA	2.4 - 3.6	1/2VDD -0.2		1/2VDD+ 0.2	
	VOM(4)	COM1-COM4	IOL=4μA, IOH=-4μA 1/3 bias	2.4 - 3.6	VDD-0.2		VDD+0.2	
Low level output voltage	VOL(1)	CMOS output of ports 0, 1, ALM	IOL=200μA	2.4 - 3.6			0.2	
	VOL(2)	CMOS output of SEG17- SEG32	IOL=100μA	2.4 - 3.6			0.2	
	VOL(3)	SEG1-SEG32 (LCD driver)	IOL=0.4μA	2.4 - 3.6			0.2	
	VOL(4)	COM1-COM4	IOL=4μA	2.4 - 3.6			0.2	
Pull-up resistor	Rpu	Ports 0, 1	VIN=0.9VDD	2.4 - 3.6	25	50	150	k
Pull-down resistor	Rpd	Ports S, M	VIN=0.1VDD	2.4 - 3.6	50	100	300	
Hysteresis voltage	VHIS	Ports 0, 1 RES	Output disable	2.4 - 3.6		0.1VDD		V
Pin capacitance	СР	All pins	f=1MHz All pins except the measured terminal: VIN=VSS Ta=25°C	2.4 - 3.6		10		pF

4. Pulse Input Condition / Ta=-30°C to + 70°C, VSS=0V

Parameter	Symbol	Pin	Condition		Limit			
				VDD[V]	Min.	Typ.	Max.	Unit
High/low level	tPIL(4)	RES	Reset acceptable	2.4 - 3.6	10			μs
pulse width								

5. Sample Current Dissipation Characteristics / Ta=-30°C to + 70°C, VSS=0V

The sample current dissipation characteristics are the measurement result of Sanyo provided evaluation board. The currents though the output transistor and the pull-up or pull-down MOS transistors are ignored.

Parameter	Symbol	Pins	Conditions		Limits			
				VDD[V]	Min.	Тур.	Max.	Unit
Current	IDDOP	VDD	Ta ≤ 50°C	2.4 - 3.6		1.5	5	μΑ
dissipation	(during normal operation)		32.768kHz crystal			0.1	2	1
	IDDHALT		oscillation			0.6	3	
	(in HALT mode)		Refer to Figure 2.					
			(typ=3.0V)					

6. LCD Power Voltage Characteristics / Ta=-30°C to + 70°C, VSS=0V

Parameter	Symbol	Pins and conditions			Limits		
			VDD[V]	Min.	Тур.	Max.	
VDD1 output voltage	VDD1	LCD ON	2.9	0.45VDD	0.50VDD	0.55VDD	V
VDD3 output voltage	VDD3	1/3 bias	2.9	1.45VDD	1.50VDD	1.55VDD	
		Refer to Figure 2.					

Table 1 Crystal Oscillation Recommended Constant

Frequency	Manufacturer	Oscillator	C1
32.768 kHz Xtal oscillation	CITIZEN	CFS-308	?pF
	SEIKO	DT-VT-200	?pF

(C1 must meet J level tolerances ($\pm 5\%$) or if high accuracy is not required, then C1 must meet K level tolerances ($\pm 10\%$) and SL characteristics.)

Notes:

- * Since the circuit pattern affects the oscillation frequency, place the oscillation-related parts as close to the oscillation pins as possible with the shortest possible pattern length.
- * If you use other oscillators herein, we provide no guarantee for the characteristics

Recommended Oscillation Circuit and Characteristics

The oscillation circuit characteristics in the table below are based on the following conditions:

- Recommended circuit parameters are verified by an oscillator manufacturer using a Sanyo provided oscillation evaluation board.
- The characteristics are the results of the evaluation with the recommended circuit parameters connected externally.

Recommended Oscillation Circuit Parameters and Characteristics (Ta = 0°C to +50°C)

Frequency	Manufacturer	Oscillator	Recommended circuit	Operating supply voltage	Oscillation stabilizing time (*)	
11			parameter	range	Typ.	Max.
	SII	DT-VT-200	C1=?pF	2.4V - 3.6V	TssX'tal	
	511	D1-V1-200	C1=:pr	2.4 V - 3.0 V	1.00s	3.00s
32.768kHz	CITIZEN WATCH CO., LTD.	CFS-308	C1=?pF	2.4V - 3.6V	TssX'tal	
	CITIZEN WATCH CO., LID.	CF3-306	C1=:pr	2.4 V - 3.0 V	1.00s	3.00s

(*) Note: The oscillation stabilizing time period is the time until the oscillation becomes stable after the VDD becomes higher than the minimum operating voltage.

The oscillation circuit characteristics may differ by applications. For further assistance, please contact with the oscillator manufacturer with the following notes in your mind.

• Since the oscillation frequency precision is affected by wiring capacity of the application board, etc., adjust the oscillation frequency on the production board.

Since the oscillation circuit characteristics are affected by the noise, wiring capacity, etc., refer to the following notices.

- The distance between the clock I/O terminal and external parts should be as short as possible.
- The capacitors' VSS should be allocated close to the microcontroller's GND terminal and be away from other GND.
- The signal lines with rapid state changes or the signal line with large amplitude such as middle withstand voltage port or LCD driver output should be allocated away from the clock oscillation circuit.
- The signal lines with large current should be allocated away from the oscillation circuit.

Figure 1 Crystal Oscillation Circuit

Figure 2 Current Dissipation Measurement Circuit/VDD1 and VDD3 Terminals Output Voltage Measurement Circuit (1/3 Bias)

Note:

The specification above indicates the operational characteristics of a die that has been packaged by SANYO into a QIC64 package. If you purchase this product in die form and use a third party to package the die, then please note that the operational characteristics may vary depending on the packaging techniques that are used.

- Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provies information as of Nothing, Nothing. Specifications and information herein are subject to change without notice