част	ф. номер	група	поток	курс	специалност
2					
Име:					

Писмен изпит по "Логическо програмиране" спец. "Информатика" и "Комп. науки" 28 09 2012 г.

Да няма лист, на който е писано по повече от една задача!

Зад. 1. Изпълнимо ли е множеството от следващите три формули?

$$\forall x \forall y (p(x, y) \Longrightarrow \exists z (q(y, z) \& q(z, x)))$$

$$\exists x \exists y (\neg q(y, x) \& \neg p(x, y))$$

$$\forall z \exists x (\neg q(x, z) \Longrightarrow p(z, x))$$

(Тук p и q са двуместни предикатни символи.)

(10 точки)

Зад. 2. Нека $\mathcal L$ е езикът на предикатното смятане с формално равенство, имащ единствен нелогически символ — триместният предикатен символ E. Нека $\mathcal A$ е структурата за $\mathcal L$ с универсум множеството на положителните цели числа и

$$\langle n, k, \ell \rangle \in E^{\mathcal{A}} \longleftrightarrow n^k = \ell.$$

Да се докаже, че всяко от следните множества е определимо с формула от \mathcal{L} :

Зад. 3. С метода на резолюцията да се докаже, че формулата $(\exists x \forall y p(x,y) \Longrightarrow \forall x \exists y p(y,x))$ е предикатна тавтология. (p е двуместен предикатен символ.)

(10 точки)

част	ф. номер	група	поток	курс	специалност
2					
Име:					

Писмен изпит по "Логическо програмиране" спец. "Информатика" и "Комп. науки" $28.09.2012~\mathrm{r.}$

Да няма лист, на който е писано по повече от една залача!

 ${\bf 3ад.}\ {\bf 1}.$ Изпълнимо ли е множеството от следващите три формули?

$$\forall x \forall y (p(x,y) \Longrightarrow \exists z (q(y,z) \& q(z,x)))$$
 $\exists x \exists y (\neg q(y,x) \& \neg p(x,y))$ $\forall z \exists x (\neg q(x,z) \Longrightarrow p(z,x))$ (Тук p и q са двуместни предикатни символи.)

(10 точки)

Зад. 2. Нека \mathcal{L} е езикът на предикатното смятане с формално равенство, имащ единствен нелогически символ — триместният предикатен символ E. Нека \mathcal{A} е структурата за \mathcal{L} с универсум множеството на положителните цели числа и

$$\langle n, k, \ell \rangle \in E^{\mathcal{A}} \longleftrightarrow n^k = \ell.$$

Да се докаже, че всяко от следните множества е определимо с формула от \mathcal{L} :

a) {1},
6) {
$$\langle p,q,r\rangle \mid p.q=r$$
},
b) { $\langle p,q,r\rangle \mid p+q=r$ },
r) { $\langle p,q\rangle \mid p}.$

$$(2+4+4+2\ moч \kappa u)$$

Зад. 3. С метода на резолюцията да се докаже, че формулата $(\exists x \forall y p(x,y) \Longrightarrow \forall x \exists y p(y,x))$ е предикатна тавтология. (p е двуместен предикатен символ.)

(10 точки)

част	ф. номер	група	поток	курс	специалност
2					
Име:					

Писмен изпит по "Логическо програмиране" спец. "Информатика" и "Комп. науки" 28 09 2012 г.

Да няма лист, на който е писано по повече от една задача!

Зад. 1. Изпълнимо ли е множеството от следващите три формули?

Зад. 2. Нека $\mathcal L$ е езикът на предикатното смятане с формално равенство, имащ единствен нелогически символ — триместният предикатен символ E. Нека $\mathcal A$ е структурата за $\mathcal L$ с универсум множеството на положителните цели числа и

$$\langle n, k, \ell \rangle \in E^{\mathcal{A}} \longleftrightarrow n^k = \ell.$$

Да се докаже, че всяко от следните множества е определимо с формула от \mathcal{L} :

а) {1},
б)
$$\{\langle p,q,r\rangle\mid p.q=r\}$$
,
г) $\{\langle p,q\rangle\mid p< q\}$.
$$(2+4+4+2\ moчки)$$

Зад. 3. С метода на резолюцията да се докаже, че формулата $(\exists x \forall y p(x,y) \Longrightarrow \forall x \exists y p(y,x))$ е предикатна тавтология. (p е двуместен предикатен символ.)

(10 точки)

част	ф. номер	група	поток	курс	специалност
2					
Име:					

Писмен изпит по "Логическо програмиране" спец. "Информатика" и "Комп. науки" 28.09.2012 г.

Да няма лист, на който е писано по повече от една залача!

Зад. 1. Изпълнимо ли е множеството от следващите три формули?

```
формули. \forall x \forall y (p(x,y) \Longrightarrow \exists z (q(y,z) \& q(z,x))) \exists x \exists y (\neg q(y,x) \& \neg p(x,y)) \forall z \exists x (\neg q(x,z) \Longrightarrow p(z,x)) (Тук p и q са двуместни предикатни символи.)
```

(10 точки)

Зад. 2. Нека $\mathcal L$ е езикът на предикатното смятане с формално равенство, имащ единствен нелогически символ — триместният предикатен символ E. Нека $\mathcal A$ е структурата за $\mathcal L$ с универсум множеството на положителните цели числа и

$$\langle n, k, \ell \rangle \in E^{\mathcal{A}} \longleftrightarrow n^k = \ell.$$

Да се докаже, че всяко от следните множества е определимо с формула от \mathcal{L} :

a) {1},
6) {
$$\langle p,q,r\rangle \mid p.q=r$$
},
B) { $\langle p,q,r\rangle \mid p+q=r$ },
F) { $\langle p,q\rangle \mid p}.
(2 + 4 + 4 + 2 mounu)$

Зад. 3. С метода на резолюцията да се докаже, че формулата $(\exists x \forall y p(x,y) \Longrightarrow \forall x \exists y p(y,x))$ е предикатна тавтология. (p е двуместен предикатен символ.)

(10 точки)