Нелинейные фильтры Калмана и их гибриды

Программная документация

1 Нелинейные фильтры Калмана и их гибриды (Nonlinear Kalman filters and their hybrids)	1
2 Алфавитный указатель групп	9
2.1 Группы	9
3 Алфавитный указатель пространств имен	11
3.1 Пространства имен	11
4 Иерархический список классов	13
4.1 Иерархия классов	13
5 Алфавитный указатель классов	15
5.1 Классы	15
6 Группы	17
6.1 Kalman_filters	17
6.1.1 Подробное описание	17
7 Пространства имен	19
7.1 Пространство имен KalmanFilters	19
7.1.1 Подробное описание	20
7.1.2 Функции	20
8 Классы	21
8.1 Шаблон класса KalmanFilters::CKalmanCKF< SizeX, SizeY >	21
8.1.1 Подробное описание	23
8.1.2 Конструктор(ы)	23
8.1.3 Методы	23
8.1.4 Данные класса	25
8.2 Шаблон класса KalmanFilters::CKalmanECKF< SizeX, SizeY >	27
8.2.1 Подробное описание	28
8.2.2 Конструктор(ы)	29
8.2.3 Методы	29
8.3 Шаблон класса KalmanFilters::CKalmanEKF< SizeX, SizeY >	30
8.3.1 Подробное описание	31
8.3.2 Конструктор(ы)	32
8.3.3 Методы	32
8.3.4 Данные класса	34
8.4 Шаблон класса KalmanFilters::CKalmanEUKF< SizeX, SizeY >	35
8.4.1 Подробное описание	37
8.4.2 Конструктор(ы)	37
8.4.3 Методы	38
8.5 Шаблон класса KalmanFilters::CKalmanLKF< SizeX, SizeY >	39
8.5.1 Подробное описание	42
8.5.2 Конструктор(ы)	42
8.5.3 Методы	42
отого 110104ш	72

8.5.4 Данные класса	50
8.6 Шаблон класса Kalman Filters::C Kalman SRCKF < SizeX, SizeY > $\ \ldots \ \ldots \ \ldots$	53
8.6.1 Подробное описание	54
8.6.2 Конструктор(ы)	55
8.6.3 Методы	55
8.7 Шаблон класса KalmanFilters::CKalmanSRCKFB< SizeX, SizeY >	56
8.7.1 Подробное описание	58
8.7.2 Конструктор(ы)	59
8.7.3 Методы	59
8.8 Шаблон класса KalmanFilters::CKalmanSRECKF< SizeX, SizeY >	59
8.8.1 Подробное описание	60
8.8.2 Конструктор(ы)	60
8.8.3 Методы	60
8.9 Шаблон класса KalmanFilters::CKalmanSRECKFB< SizeX, SizeY >	61
8.9.1 Подробное описание	62
8.9.2 Конструктор(ы)	62
8.9.3 Методы	62
8.10 Шаблон класса KalmanFilters::CKalmanSREKF< SizeX, SizeY >	62
8.10.1 Подробное описание	63
8.10.2 Конструктор(ы)	64
8.10.3 Методы	64
8.11 Шаблон класса KalmanFilters::CKalmanSREUKF< SizeX, SizeY >	65
8.11.1 Подробное описание	66
8.11.2 Конструктор(ы)	66
8.11.3 Методы	66
8.11.4 Данные класса	67
8.12 Шаблон класса Kalman Filters::C Kalman SREUK FB 	67
8.12.1 Подробное описание	68
8.12.2 Конструктор(ы)	68
8.12.3 Методы	69
8.12.4 Данные класса	69
8.13 Шаблон класса Kalman Filters::C Kalman SRUK F 	69
8.13.1 Подробное описание	71
8.13.2 Конструктор(ы)	71
8.13.3 Методы	71
8.13.4 Данные класса	74
8.14 Шаблон класса Kalman Filters::C Kalman SRUK FB 	74
8.14.1 Подробное описание	76
8.14.2 Конструктор(ы)	77
8.14.3 Методы	77
8.14.4 Данные класса	77
8.15 Шаблон класса Kalman Filters::C Kalman UKF SizeX, SizeY > $\ \ldots \ \ldots \ \ldots$	78
8.15.1 Подробное описание	80

8.15.2 Конструктор(ы)	80
8.15.3 Методы	80
8.15.4 Данные класса	83
редметный указатель	87

Нелинейные фильтры Калмана и их гибриды (Nonlinear Kalman filters and their hybrids)

- 1) ЛФК Линейный Фильтр Калмана (LKF Linear Kalman Filter);
- 2) РФК Расширенный Фильтр Калмана (EKF Extended Kalman Filter);
- 3) ККРФК Квадратно-Корневой Расширенный Фильтр Калмана (SREKF Square Root Extended Kalman Filter);
- 4) СТФК Сигма-точечный (ансцентный) Фильтр Калмана (UKF Unscented Kalman Filter);
- 5) КК-СТФК Квадратно-Корневой Сигма-точечный Фильтр Калмана (SRUKF Square Root Unscented Kalman Filter);
- 6) КК-СТФКБ Блочная реализация КК-СТФК (SRUKFB Square Root Unscented Kalman Filter Block);
- 7) КФК Кубатурный Фильтр Калмана (СКF Cubature Kalman Filter);
- 8) КК-КФК Квадратно-Корневой Кубатурный Фильтр Калмана (SRCKF Square Root Cubature Kalman Filter);
- 9) КК-К Φ КБ Блочная реализация КК-К Φ К (SRCKFB Square Root Cubature Kalman Filter Block);
- 10) РСТФК - Расширенно-Сигма-точечный Фильтр Калмана (EUKF - Extended Unscented Kalman Filter);
- 11) КК-РСТФК Квадратно-Корневой Расширенно-Сигма-точечный Фильтр Калмана (SREUKF Square Root Extended Unscented Kalman Filter);
- 12) КК-РСТФКБ Блочная реализация КК-РСТФК (SREUKFB Square Root Extended Unscented Kalman Filter Block);
- 13) РКФК Расширенно-Кубатурный Фильтр Калмана (ЕСКF Extended Cubature Kalman Filter);
- 14) КК-РКФК Квадратно-Корневой Расширенно-Кубатурный Фильтр Калмана (SRECKF Square Root Extended Cubature Kalman Filter);
- 15) КК-РК Φ КБ Блочная реализация КК-РК Φ К (SRECKFB Square Root Extended Cubature Kalman Filter Block).

Выбранная система координат:

$$X = \{ X, Y, V, K, dK/dt \}, Y = \{ R, Az, Vr \},$$

где пространство состояния:

- Х, У плоскостные декартовы кооринаты, км;
- V полная скорость, м/с;
- К курс, град;
- dK/dt скорость изменения курса, град/с;

пространство измерений:

- R дальность, км;
- Аz азимут, град;
- Vr радиальная скорость, м/с;

 $\Pi\Phi K$ не может быть применен при выбранной системе координат напрямую, поэтому не приводится далее.

Начальное состояние объекта:

- X = 100 km;
- Y = 100 km;
- V = 100 m/c;
- K = 45 град;
- dK/dt = 0 град/с;

СКО измерений:

- $RMS_R = 0.048 \text{ km};$
- RMS Az = 0.008 град;
- RMS_Vr = 0.016 m/c;

Рис.1 - RMSE вектора состояния при изменении параметра разброса сигма-точек alpha=1.0...0.35 (от светлого к темному), beta=2, kappa=-2

Рис. 1.2 ?>

Рис.2 - Сравнение RMSE вектора состояния

1 MC. 1.1 :/

Puc.3 - Время выполнения относительно EKF при JQR разложении в SRUKF фильтрах

Рис.4 - Время выполнения относительно ЕКГ при QR разложении в SRUKF фильтрах

8	Нелинейные фильтры	Калмана и их гибриды	(Nonlinear	Kalman filters and	their hybrids)

Алфавитный указатель групп

Z.1	т руппы		
Полны	ый список групп.		

Алфавитный	икаратапь	групп
Алфавитныи	указатель	труши

Алфавитный указатель пространств имен

3.1	Пространства имен	
Полн	ный список пространств имен.	
Ka	almanFilters	
	Фильтры Калмана	10

Алфавитный указатель пространств имен

12

Иерархический список классов

4.1 Иерархия классов

Иерархия классов.	
$KalmanFilters::CKalmanLKF < SizeX, SizeY > \dots $	39
$KalmanFilters::CKalmanEKF < SizeX, SizeY > \dots $	30
KalmanFilters::CKalmanCKF < SizeX, SizeY >	21
$KalmanFilters::CKalmanECKF < SizeX, SizeY > \dots $	27
$KalmanFilters::CKalmanSRCKF < SizeX, SizeY > \dots \dots \dots \dots \dots \dots$	53
$KalmanFilters::CKalmanSRCKFB < SizeX, SizeY > \dots \dots \dots \dots \dots$	56
$KalmanFilters::CKalmanSRECKF < SizeX, SizeY > \dots \dots \dots \dots \dots$	59
KalmanFilters::CKalmanSRECKFB< SizeX, SizeY >	61
$KalmanFilters::CKalmanSREKF < SizeX, SizeY > \dots $	62
$Kalman Filters:: CKalman SRECKF < Size X, Size Y > \dots \dots$	59
$KalmanFilters::CKalmanSREUKF < SizeX, SizeY > \dots $	65
$KalmanFilters::CKalmanSREUKFB < SizeX, SizeY > \dots \dots \dots \dots \dots$	67
KalmanFilters::CKalmanUKF < SizeX, SizeY >	78
KalmanFilters::CKalmanEUKF< SizeX, SizeY >	35
$KalmanFilters::CKalmanSRUKF < SizeX, SizeY > \dots \dots \dots \dots \dots \dots$	69
$KalmanFilters::CKalmanSREUKF < SizeX, SizeY > \dots \dots \dots \dots \dots$	65
KalmanFiltars: CKalmanSRIKFR SizaY SizaY SizaV S	7/

14	Иерархический список классов

Алфавитный указатель классов

5.1 Классы

лассы с их кратким описанием.	
KalmanFilters::CKalmanCKF < SizeX, SizeY >	
Шаблонный класс кубатурного фильтра Калмана, КФК (Cubature Kalman Filter,	0.1
CKF)	21
KalmanFilters::CKalmanECKF < SizeX, SizeY >	
Шаблонный класс расширенного кубатурного фильтра Калмана, РКФК (Extended	0.5
Cubature Kalman Filter, ECKF)	27
Класс расширенного фильтра Калмана, РФК (Extended Kalman Filter, EKF)	30
KalmanFilters::CKalmanEUKF < SizeX, SizeY >	3(
Шаблонный класс расширенного сигма-точечного (ансцентного) фильтра Калма-	
на, РСТФК (Extended Unscented Kalman Filter, EUKF)	35
KalmanFilters::CKalmanLKF < SizeX, SizeY >	00
Шаблонный класс линейного фильтра Калмана, ЛФК (Linear Kalman Filter, LKF)	39
KalmanFilters::CKalmanSRCKF< SizeX, SizeY >	00
Шаблонный класс квадратно-корневого кубатурного фильтра Калмана, КК-КФК	
(Square Root Cubature Kalman Filter, SR-CKF)	53
KalmanFilters::CKalmanSRCKFB< SizeX, SizeY >	
Шаблонный класс квадратно-корневого кубатурного фильтра Калмана (блочная	
фильтрация), KK-К Φ KБ (Square Root Cubature Kalman Filter Block, SR-CKFB) .	56
${\it KalmanFilters::} CKalmanSRECKF < SizeX, SizeY >$	
Шаблонный класс квадратно-корневого расширенного кубатурного фильтра Кал-	
мана, KK-PK Φ K (Square Root Extended Cubature Kalman Filter, SR-ECKF)	59
KalmanFilters::CKalmanSRECKFB< SizeX, SizeY >	
Шаблонный класс квадратно-корневого расширенного кубатурного фильтра Кал-	
мана (блочная фильтрация), КК-РКФКБ (Square Root Extended Cubature Kalman	
Filter Block, SR-ECKFB)	61
KalmanFilters::CKalmanSREKF < SizeX, SizeY >	
Класс квадратно-корневого расширенного фильтра Калмана, КК-РФК (Square	00
Root Extended Kalman Filter, EKF)	62
KalmanFilters::CKalmanSREUKF< SizeX, SizeY >	
Шаблонный класс квадратно-корневого расширенного сигма-точечного (ансцентного) фильтра Калмана, КК-РСТФК (Square Root Extended Unscented Kalman	
Filter, SR-EUKF)	65
KalmanFilters::CKalmanSREUKFB < SizeX, SizeY >	Üe
Шаблонный класс квадратно-корневого расширенного сигма-точечного (анс-	
центного) фильтра Калмана (блочная фильтрация), КК-РСТФК (Square Root	
Extended Unscented Kalman Filter Block, SR-EUKFB)	67
KalmanFilters::CKalmanSRUKF< SizeX, SizeY >	
Шаблонный класс квадратно-корневого сигма-точечного (ансцентного) фильтра	
Калмана, KK-СТФК (KK-АФК) (Square Root Unscented Kalman Filter, SR-UKF)	69

KalmanFilters::CKalmanSRUKFB< SizeX, SizeY >	
Шаблонный класс квадратно-корневого сигма-точечного (ансцентного) фильтра	
Калмана (блочная фильтрация), КК-СТФКБ (КК-АФКБ) (Square Root Unscented	
Kalman Filter Block, SR-UKFB)	74
KalmanFilters::CKalmanUKF < SizeX, SizeY >	
Шаблонный класс сигма-точечного (ансцентного) фильтра Калмана, СТФК	
(AΦK) (Unscented Kalman Filter, UKF)	78

Группы

6.1 Kalman_filters

Пространства имен

- namespace Kalman Filters $\Phi_{\rm Ильтры} \ {\rm Kалманa}$
- 6.1.1 Подробное описание

Группы 18

Пространства имен

7.1 Пространство имен KalmanFilters

Фильтры Калмана

Классы

• class CKalmanCKF

Шаблонный класс кубатурного фильтра Калмана, КФК (Cubature Kalman Filter, CKF)

• class CKalmanECKF

Шаблонный класс расширенного кубатурного фильтра Калмана, $PK\Phi K$ (Extended Cubature Kalman Filter, ECKF)

• class CKalmanEKF

Класс расширенного фильтра Калмана, РФК (Extended Kalman Filter, EKF)

• class CKalmanEUKF

Шаблонный класс расширенного сигма-точечного (ансцентного) фильтра Калмана, РСТФК (Extended Unscented Kalman Filter, EUKF)

• class CKalmanLKF

Шаблонный класс линейного фильтра Калмана, ЛФК (Linear Kalman Filter, LKF)

• class CKalmanSRCKF

Шаблонный класс квадратно-корневого кубатурного фильтра Калмана, KK-K Φ K (Square Root Cubature Kalman Filter, SR-CKF)

• class CKalmanSRCKFB

Шаблонный класс квадратно-корневого кубатурного фильтра Калмана (блочная фильтрация), КК-КФКБ (Square Root Cubature Kalman Filter Block, SR-CKFB)

• class CKalmanSRECKF

Шаблонный класс квадратно-корневого расширенного кубатурного фильтра Калмана, KK-PK Φ K (Square Root Extended Cubature Kalman Filter, SR-ECKF)

• class CKalmanSRECKFB

Шаблонный класс квадратно-корневого расширенного кубатурного фильтра Калмана (блочная фильтрация), KK-PK Φ KB (Square Root Extended Cubature Kalman Filter Block, SR-ECKFB)

• class CKalmanSREKF

Класс квадратно-корневого расширенного фильтра Калмана, KK-P Φ K (Square Root Extended Kalman Filter, EKF)

• class CKalmanSREUKF

Шаблонный класс квадратно-корневого расширенного сигма-точечного (ансцентного) фильтра Калмана, KK-PCTФК (Square Root Extended Unscented Kalman Filter, SR-EUKF)

• class CKalmanSREUKFB

Шаблонный класс квадратно-корневого расширенного сигма-точечного (ансцентного) фильтра Калмана (блочная фильтрация), KK-PCT Φ K (Square Root Extended Unscented Kalman Filter Block, SR-EUKFB)

20 Пространства имен

• class CKalmanSRUKF

Шаблонный класс квадратно-корневого сигма-точечного (ансцентного) фильтра Калмана, КК- $CT\Phi K$ (KK- $A\Phi K$) (Square Root Unscented Kalman Filter, SR-UKF)

• class CKalmanSRUKFB

Шаблонный класс квадратно-корневого сигма-точечного (ансцентного) фильтра Калмана (блочная фильтрация), КК-СТФКБ (КК-АФКБ) (Square Root Unscented Kalman Filter Block, SR-UKFB)

• class CKalmanUKF

Шаблонный класс сигма-точечного (ансцентного) фильтра Калмана, $CT\Phi K$ ($A\Phi K$) (Unscented Kalman Filter, UKF)

Функции

• std::string GetVersion ()

Возвращает строку, содержащую информацию о версии

7.1.1 Подробное описание

Фильтры Калмана

7.1.2 Функции

7.1.2.1 GetVersion()

std::string KalmanFilters::GetVersion ()

Возвращает строку, содержащую информацию о версии

Возвращает

Строка версии в формате DD-MM-YY-VV_COMMENTS, где DD - день, MM - месяц, YY - год, VV - версия, COMMENTS - комментарий(опционально)

Классы

8.1 Шаблон класса KalmanFilters::CKalmanCKF< SizeX, SizeY >

Шаблонный класс кубатурного фильтра Калмана, КФК (Cubature Kalman Filter, CKF) #include <kalman filter cubature.h>

Граф наследования:KalmanFilters::CKalmanCKF< SizeX, SizeY >:

Граф связей класса KalmanFilters::CKalmanCKF< SizeX, SizeY >:

Открытые члены

• CKalmanCKF ()

Конструктор по умолчанию

22 Классы

Установка функции вычисления взвешенной суммы сигма-точек пространства X

• void SetWeightedSumMeasurementSigmas (std::function< arma::vec(const arma::vec &weights, const arma::mat &sigmaPoints)> weightedSumMeasurementSigmas)

Установка функции вычисления взвешенной суммы сигма-точек пространства Ү.

• virtual void Prediction (double dt)

Прогноз

• virtual void Correction (const arma::vec &Y msd)

Коррекция

Защищенные члены

• void PredictionCKF (double dt)

Прогноз СКF.

• void CorrectionCKF (const arma::vec &Y msd)

Коррекция СКF.

• void SetupDesignParametersCubatureBaseSet ()

Установка кубатурных весов (базовый вариант ансцентного преобразования)

• void SetStateTransitionJacobianF ()

Запрет доступа

• void SetObservationJacobianH ()

Запрет доступа

Защищенные данные

• int k_sigma_points_

Число сигма-точек

• arma::vec weights mean

Веса среднего

arma::vec weights_covariance_

Веса ковариации

• arma::mat x_est_sigma_points_

Матрица сигма-точек (сигма-точки - столбцы) в пространстве X на текущем такте, размерность [SizeX,k sigma_points_].

• arma::mat x_pred_sigma_points_

Матрица сигма-точек (сигма-точки - столбцы) в пространстве X, экстраполированный на текущий такт, размерность [SizeX,k_sigma_points_].

• arma::mat y_pred_sigma_points_

Матрица сигма-точек (сигма-точки - столбцы) в пространстве Y, экстраполированный на текущий такт, размерность [SizeX,k sigma points].

• arma::mat dXcal

Матрица Х-каллиграфическое (матрица сигма-точек - столбцов)

• arma::mat dYcal_

Матрица У-каллиграфическое (матрица сигма-точек - столбцов)

• arma::mat P_xy_

Матрица кросс-коварации векторов X и Y, размерность [SizeX * SizeY].

• arma::mat sqrt P chol

Корень из матрицы Р.

• double gamma

Автоматически вычисляемый (в методах SetDesignParameters*) параметр (множитель при корне из Р при создании сигма-точек)

• std::function< arma::vec(const arma::vec &weights, const arma::mat &sigmaPoints)> weightedSumStateSigmas

Вычисление взвешенной суммы сигма-точек пространства Х

• std::function< arma::vec(const arma::vec &weights, const arma::mat &sigmaPoints)> weightedSumMeasurementSig Вычисление взвешенной суммы сигма-точек пространства Y.

8.1.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanCKF< SizeX, SizeY >
```

Шаблонный класс кубатурного фильтра Калмана, КФК (Cubature Kalman Filter, CKF)

Частный случай сигма-точечного фильтра Калмана при параметрах разброса сигма-точек выбранных по рекомендации Merwe alpha=1.0, beta=0.0, kappa=0.0. Источники:

- [1] Cubature Kalman Filters, Ienkaran Arasaratnam and Simon Haykin, Life Fellow, IEEE
- $\hbox{\cite{thm:com/sbitzer/UKF-exposed/blob/master/\leftarrow} Uhlight In the properties of the properties of$

Внимание

Фильтр построен по классическому его варианту НИЖНЕтреугольного разложения Холецкоro!

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.1.2 Конструктор(ы)

8.1.2.1 CKalmanCKF()

```
template<size_t SizeX, size_t SizeY> KalmanFilters::CKalmanCKF < SizeX, SizeY >::CKalmanCKF ( ) [inline] Конструктор по умолчанию
```

8.1.3 Методы

8.1.3.1 Correction()

Аргументы

```
Y_msd | - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка KalmanFilters::CKalmanEKF< SizeX, SizeY >.
Переопределяется в KalmanFilters::CKalmanSRCKF</br>
SizeX, SizeY >, KalmanFilters::CKalmanSRCKFB</br>
SizeX, SizeY >, KalmanFilters::CKalmanSRCKFB</br>

Переопределяется в KalmanFilters::CKalmanSRCKF < SizeX, SizeY >, KalmanFilters::CKalmanSRCKF KalmanFilters::CKalmanSRCKF < SizeX, SizeY >, и KalmanFilters::CKalmanSRECKF < SizeX, SizeY >, и KalmanFilters::CKalmanSRECKF < SizeX, SizeY >.

8.1.3.2 CorrectionCKF()

24 Классы

Коррекция СКГ.

Аргументы

```
Y_msd - вектор измерений, по которым производится коррекция
```

```
8.1.3.3 Prediction()
```

Прогноз

Аргументы

```
dt | - Время прогноза, [c]
```

Переопределяет метод предка Kalman Filters::CKalman
EKF
 SizeX, SizeY >.

Переопределяется в KalmanFilters::CKalmanSRCKF< SizeX, SizeY >, KalmanFilters::CKalmanECKF< SizeX, SizeY и KalmanFilters::CKalmanSRECKF< SizeX, SizeY >.

8.1.3.4 PredictionCKF()

Прогноз СКГ.

Аргументы

```
dt - Время прогноза, [c]
```

8.1.3.5 SetObservationJacobianH()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanCKF< SizeX, SizeY>::SetObservationJacobianH ( ) [inline], [protected] Запрет доступа
```

8.1.3.6 SetStateTransitionJacobianF()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanCKF< SizeX, SizeY>::SetStateTransitionJacobianF ( ) [inline], [protected] Запрет доступа
```

8.1.3.7 SetupDesignParametersCubatureBaseSet()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanCKF< SizeX, SizeY>::SetupDesignParametersCubatureBaseSet ( ) [inline], [protected] Установка кубатурных весов (базовый вариант ансцентного преобразования) Смотри [1] и [2]
```

8.1.3.8 SetWeightedSumMeasurementSigmas()

Установка функции вычисления взвешенной суммы сигма-точек пространства Ү.

Аргументы

weightedSumMeasurementSigmas	- Функция вычисления взвешенной суммы сигма-точек
	пространства Ү

8.1.3.9 SetWeightedSumStateSigmas()

Аргументы

weightedSumStateSigmas | - Функция вычисления взвешенной суммы сигма-точек пространства X

8.1.4 Данные класса

```
8.1.4.1 dXcal_
template<size_t SizeX, size_t SizeY>
arma::mat KalmanFilters::CKalmanCKF< SizeX, SizeY>::dXcal_ [protected]
Maтрица X-каллиграфическое (матрица сигма-точек - столбцов)

8.1.4.2 dYcal_
template<size_t SizeX, size_t SizeY>
arma::mat KalmanFilters::CKalmanCKF< SizeX, SizeY>::dYcal_ [protected]
Maтрица Y-каллиграфическое (матрица сигма-точек - столбцов)

8.1.4.3 gamma_
template<size_t SizeX, size_t SizeY>
double KalmanFilters::CKalmanCKF< SizeX, SizeY>::gamma_ [protected]
Abtomatuчески вычисляемый (в методах SetDesignParameters*) параметр (множитель при корне из Р при создании сигма-точек)
```

int KalmanFilters::CKalmanCKF< SizeX, SizeY >::k sigma points [protected]

8.1.4.4 k_sigma_points_

Число сигма-точек

 $template{<}size \quad t \; SizeX, \; size \quad t \; SizeY{>}$

26 Классы

```
8.1.4.5 P xy
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanCKF < SizeX, SizeY >::P xy [protected]
Матрица кросс-коварации векторов X и Y, размерность [SizeX * SizeY].
8.1.4.6 sqrt_P_chol_
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanCKF < SizeX, SizeY >::sqrt P_chol_ [protected]
Корень из матрицы Р.
8.1.4.7 weightedSumMeasurementSigmas
template<size_t SizeX, size_t SizeY>
std::function<arma::vec( const arma::vec &weights, const arma::mat &sigmaPoints )> KalmanFilters::CKalmanCKF<
SizeX, SizeY > :: weightedSumMeasurementSigmas\_ \quad [protected] \\
Вычисление взвешенной суммы сигма-точек пространства Ү.
8.1.4.8 weightedSumStateSigmas
template<size t SizeX, size t SizeY>
std::function<arma::vec( const arma::vec &weights, const arma::mat &sigmaPoints )> KalmanFilters::CKalmanCKF<
SizeX, SizeY >::weightedSumStateSigmas [protected]
Вычисление взвешенной суммы сигма-точек пространства Х
8.1.4.9 weights covariance
template{<}size\_t~SizeX,~size\_t~SizeY{>}
arma::vec KalmanFilters::CKalmanCKF< SizeX, SizeY >::weights_covariance_ [protected]
Веса ковариации
8.1.4.10 weights mean
template<size t SizeX, size t SizeY>
arma::vec KalmanFilters::CKalmanCKF < SizeX, SizeY >::weights mean [protected]
Веса среднего
8.1.4.11 x_est_sigma_points_
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanCKF< SizeX, SizeY >::x est sigma points [protected]
Матрица сигма-точек (сигма-точки - столбцы) в пространстве X на текущем такте, размерность
|SizeX,k sigma points |.
8.1.4.12 x pred sigma points
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanCKF < SizeX, SizeY >::x pred sigma points [protected]
Матрица сигма-точек (сигма-точки - столбцы) в пространстве X, экстраполированный на текущий
такт, размерность [SizeX,k sigma points].
```

8.1.4.13 y_pred_sigma_points_

 $template{<}size_t~SizeX,~size_t~SizeY{>}$

arma::mat KalmanFilters::CKalmanCKF< SizeX, SizeY >::y_pred_sigma_points_ [protected]

Матрица сигма-точек (сигма-точки - столбцы) в пространстве Y, экстраполированный на текущий такт, размерность [SizeX,k_sigma_points_].

Объявления и описания членов класса находятся в файле:

• kalman filter cubature.h

8.2 Шаблон класса KalmanFilters::CKalmanECKF< SizeX, SizeY >

Шаблонный класс расширенного кубатурного фильтра Калмана, $PK\Phi K$ (Extended Cubature Kalman Filter, ECKF)

#include <kalman filter extended cubature.h>

Граф наследования:KalmanFilters::CKalmanECKF< SizeX, SizeY >:

28 Классы

Граф связей класса KalmanFilters::CKalmanECKF< SizeX, SizeY >:

Открытые члены

• CKalmanECKF ()

Конструктор по умолчанию

• void SetStateTransitionJacobianF (std::function< arma::mat(const arma::vec &X, double dt)> stateTransitionJacobianF)

Установка функции вычисления матрицы перехода состояния F (makeMatrixF)

• void SetObservationJacobianH (std::function< arma::mat(const arma::vec &X)> observation \leftarrow JacobianH)

Установка функции вычисления матрицы перехода измерений Н (makeMatrixH)

• virtual void Prediction (double dt)

Прогноз расширенного кубатурного фильтра Калмана (РКФК, ЕСКГ)

• virtual void Correction (const arma::vec &Y msd)

Коррекция расширенного кубатурного фильтра Калмана (РКФК, ЕСКF)

Дополнительные унаследованные члены

8.2.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanECKF< SizeX, SizeY >
```

Шаблонный класс расширенного кубатурного фильтра Калмана, РК Φ К (Extended Cubature Kalman Filter, ECKF)

Источники:

[1] Cubature Kalman Filters, Ienkaran Arasaratnam and Simon Haykin, Life Fellow, IEEE

Внимание

Фильтр построен по классическому его варианту НИЖНЕтреугольного разложения Холецкого!

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.2.2 Конструктор(ы)

8.2.2.1 CKalmanECKF()

```
template<size_t SizeX, size_t SizeY>
KalmanFilters::CKalmanECKF< SizeX, SizeY>::CKalmanECKF ( ) [inline]
Конструктор по умолчанию
```

8.2.3 Методы

8.2.3.1 Correction()

Коррекция расширенного кубатурного фильтра Калмана (РК Φ K, ECKF)

Аргументы

```
Y_msd - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка KalmanFilters::CKalmanCKF < SizeX , SizeY >.

8.2.3.2 Prediction()

Прогноз расширенного кубатурного фильтра Калмана (РКФК, ЕСКГ)

Аргументы

```
dt - Время прогноза, [c]
```

Переопределяет метод предка KalmanFilters::CKalmanCKF < SizeX , SizeY >.

8.2.3.3 SetObservationJacobianH()

30 Классы

Установка функции вычисления матрицы перехода измерений Н (makeMatrixH)

См. также

observationJacobianH

8.2.3.4 SetStateTransitionJacobianF()

См. также

 $stateTransitionJacobianF_{_}$

Объявления и описания членов класса находятся в файле:

• kalman filter extended cubature.h

8.3 Шаблон класса KalmanFilters::CKalmanEKF < SizeX, SizeY >

Класс расширенного фильтра Калмана, РФК (Extended Kalman Filter, EKF) #include <kalman_filter_extended.h> Граф наследования:KalmanFilters::CKalmanEKF< SizeX, SizeY >:

Граф связей класса KalmanFilters::CKalmanEKF< SizeX, SizeY >:

Открытые члены

• CKalmanEKF ()

Конструктор по умолчанию

- virtual ~CKalmanEKF ()=default
- void SetStateTransitionModel (std::function< arma::vec(const arma::vec &X, double dt)> state \leftarrow TransitionModel)

Установка функции прогноза состояния (predictState)

 $\bullet \ \ void \ \underline{SetObservationModel} \ (std::function{< arma::vec(const \ arma::vec \ \&X)> observationModel)}\\$

Установка функции перевода состояния в измерение (XtoY)

• void SetStateTransitionJacobianF (std::function< arma::mat(const arma::vec &X, double dt)> stateTransitionJacobianF)

Установка функции вычисления матрицы перехода состояния F (makeMatrixF)

• void SetObservationJacobianH (std::function< arma::mat(const arma::vec &X)> observation ← JacobianH)

Установка функции вычисления матрицы перехода измерений Н (makeMatrixH)

• virtual void Prediction (double dt)

Прогноз

• virtual void Correction (const arma::vec &Y msd)

Коррекция

Защищенные члены

• void PredictionEKF (double dt)

Прогноз ЕКГ.

Защищенные данные

- std::function< arma::vec(const arma::vec &X, double dt)> stateTransitionModel_ Функция прогноза состояния (predictState)
- std::function< arma::vec(const arma::vec &X)> observationModel

Функция перевода состояния в измерения (XtoY)

• std::function< arma::mat(const arma::vec &X, double dt)> stateTransitionJacobianF

Функция вычисления матрицы перехода состояния F (makeMatrixF)

• std::function< arma::mat(const arma::vec &X)> observationJacobianH

Функция вычисления матрицы перехода измерений Н (makeMatrixH)

Закрытые члены

- void SetStateTransitionJacobianLinearF ()
- void SetStateTransitionMatrixF ()

Запрет доступа

• void SetObservationMatrixH ()

Запрет доступа

8.3.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanEKF< SizeX, SizeY >
```

Класс расширенного фильтра Калмана, РФК (Extended Kalman Filter, EKF)

Источник: NASA Technical report R-135, Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle, Gerald L. Smith, Stanley F. Schmidt and Leonard A. McGee, 1962

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.3.2 Конструктор(ы)

```
CKalmanEKF()
8.3.2.1
template{<}size\_t~SizeX,~size\_t~SizeY{>}
KalmanFilters::CKalmanEKF < SizeX, SizeY >::CKalmanEKF ( ) [inline]
Конструктор по умолчанию
8.3.2.2 \simCKalmanEKF()
template<size t SizeX, size t SizeY>
virtual\ KalmanFilters::CKalmanEKF < SizeX,\ SizeY > :: \sim CKalmanEKF\ (\ ) \quad [virtual],\ [default]
8.3.3
       Методы
8.3.3.1 Correction()
template<size t SizeX, size t SizeY>
virtual void KalmanFilters::CKalmanEKF< SizeX, SizeY >::Correction (
             const arma::vec & Y msd ) [inline], [virtual]
Коррекция
Аргументы
 Y \mod
           - вектор измерений, по которым производится коррекция
Переопределяет метод предка KalmanFilters::CKalmanLKF < SizeX , SizeY >.
Переопределяется в KalmanFilters::CKalmanCKF < SizeX, SizeY >, KalmanFilters::CKalmanSRCKF < SizeX, SizeY >
KalmanFilters::CKalmanSRCKFB < SizeX, SizeY >, KalmanFilters::CKalmanECKF < SizeX, SizeY >,
KalmanFilters::CKalmanSRECKF</br>
SizeX, SizeY >, KalmanFilters::CKalmanSRECKFB
SizeX, SizeY >,
KalmanFilters::CKalmanSREKF<SizeX,SizeY>, KalmanFilters::CKalmanEUKF<SizeX,SizeY>,
KalmanFilters::CKalmanSREUKF</br>
SizeX, SizeY >, KalmanFilters::CKalmanSREUKFB
SizeX, SizeY >,
KalmanFilters::CKalmanUKF < SizeX, SizeY >, KalmanFilters::CKalmanSRUKF < SizeX, SizeY > и
KalmanFilters::CKalmanSRUKFB< SizeX, SizeY >.
```

8.3.3.2 Prediction()

Аргументы

```
dt - Время прогноза, [c]
```

```
Переопределяет метод предка KalmanFilters::CKalmanLKF < SizeX, SizeY >.
Переопределяется в KalmanFilters::CKalmanCKF < SizeX, SizeY >, KalmanFilters::CKalmanSRCKF < SizeX, SizeY >, KalmanFilters::CKalmanECKF < SizeX, SizeY >, KalmanFilters::CKalmanSRECKF < SizeX, SizeY >, KalmanFilters::CKalmanSREKF < SizeX, SizeY >, KalmanFilters::CKalmanEUKF < SizeX, SizeY >, KalmanFilters::CKalmanSREUKF < SizeX, SizeY >, KalmanFilters::CKalmanUKF < SizeX, SizeY > и KalmanFilters::CKalmanSRUKF < SizeX, SizeY >.
```

```
8.3.3.3 PredictionEKF()
template{<}size\_t~SizeX,~size\_t~SizeY{>}
void KalmanFilters::CKalmanEKF < SizeX, SizeY >::PredictionEKF (
              double dt ) [inline], [protected]
Прогноз ЕКГ.
Аргументы
      - Время прогноза, [с]
8.3.3.4 SetObservationJacobianH()
template<size_t SizeX, size_t SizeY>
void KalmanFilters::CKalmanEKF < SizeX, SizeY >::SetObservationJacobianH (
              std::function< arma::mat(const arma::vec &X)> observationJacobianH ) [inline]
Установка функции вычисления матрицы перехода измерений Н (makeMatrixH)
См. также
     observationJacobianH
8.3.3.5 SetObservationMatrixH()
template<size t SizeX, size t SizeY>
void KalmanFilters::CKalmanEKF< SizeY, SizeY >::SetObservationMatrixH ( ) [inline], [private]
Запрет доступа
8.3.3.6 SetObservationModel()
template<size t SizeX, size t SizeY>
void KalmanFilters::CKalmanEKF< SizeX, SizeY >::SetObservationModel (
              std::function< arma::vec(const arma::vec &X)> observationModel ) [inline]
Установка функции перевода состояния в измерение (XtoY)
См. также
     observationModel
8.3.3.7 SetStateTransitionJacobianF()
template<size t SizeX, size t SizeY>
void KalmanFilters::CKalmanEKF< SizeX, SizeY >::SetStateTransitionJacobianF (
              std::function< arma::mat(const arma::vec &X, double dt)> stateTransitionJacobianF) [inline]
Установка функции вычисления матрицы перехода состояния F (makeMatrixF)
См. также
     stateTransitionJacobianF
8.3.3.8 SetStateTransitionJacobianLinearF()
template{<}size\_t~SizeX,~size\_t~SizeY{>}
void KalmanFilters::CKalmanEKF< SizeX, SizeY >::SetStateTransitionJacobianLinearF ( ) [inline], [private]
```

34

```
8.3.3.9 SetStateTransitionMatrixF()
```

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanEKF< SizeX, SizeY>::SetStateTransitionMatrixF ( ) [inline], [private] Запрет доступа
```

8.3.3.10 SetStateTransitionModel()

```
template<size_t SizeX, size_t SizeY>
void KalmanFilters::CKalmanEKF< SizeX, SizeY>::SetStateTransitionModel (
std::function< arma::vec(const arma::vec &X, double dt)> stateTransitionModel) [inline]
Установка функции прогноза состояния (predictState)
```

См. также

state Transition Model

8.3.4 Данные класса

8.3.4.1 observationJacobianH

```
template < size\_t\ SizeX,\ size\_t\ SizeY > std::function < arma::wat(\ const\ arma::vec\ \&X\ ) > KalmanFilters::CKalmanEKF < SizeX,\ SizeY > ::observationJacobian \leftarrow H_ [protected]
```

Функция вычисления матрицы перехода измерений Н (makeMatrixH)

Аргументы

```
Х - вектор состояния текущего момента времени
```

См. также

SetObservationJacobianH

8.3.4.2 observationModel

Функция перевода состояния в измерения (XtoY)

Аргументы

```
Х - вектор состояния текущего момента времени
```

См. также

SetObservationModel

8.3.4.3 stateTransitionJacobianF_

```
template < size\_t\ SizeX,\ size\_t\ SizeY > std::function < arma::mat(\ const\ arma::vec\ \&X,\ double\ dt\ ) > \ KalmanFilters::CKalmanEKF < SizeX,\ SizeY > ::state \hookleftarrow TransitionJacobianF_ [protected]
```

Функция вычисления матрицы перехода состояния F (makeMatrixF)

Аргументы

- вектор состояния с прошлого момента времени

См. также

Set State Transition Jacobian F

8.3.4.4 stateTransitionModel

```
template{<}size\_t~SizeX,~size\_t~SizeY{>}
std::function<arma::vec( const arma::vec &X, double dt )> KalmanFilters::CKalmanEKF< SizeX, SizeY >::state↔
TransitionModel_{\underline{\phantom{a}}} [protected]
Функция прогноза состояния (predictState)
```

Аргументы

- вектор состояния с прошлого момента времени

См. также

SetStateTransitionModel

Объявления и описания членов класса находятся в файле:

• kalman filter extended.h

Шаблон класса KalmanFilters::CKalmanEUKF < SizeX, SizeY > 8.4

Шаблонный класс расширенного сигма-точечного (ансцентного) фильтра Калмана, РСТФК (Extended Unscented Kalman Filter, EUKF)

#include <kalman filter extended unscented.h>

 Граф наследования: Kalman
Filters::CKalmanEUKF
< SizeX, SizeY >:

Граф связей класса KalmanFilters::CKalmanEUKF< SizeX, SizeY >:

Открытые члены

• CKalmanEUKF ()

Конструктор по умолчанию

• void SetStateTransitionJacobianF (std::function< arma::mat(const arma::vec &X, double dt)> stateTransitionJacobianF)

Установка функции вычисления матрицы перехода состояния F (makeMatrixF)

• void SetObservationJacobianH (std::function< arma::mat(const arma::vec &X)> observation \hookleftarrow JacobianH)

Установка функции вычисления матрицы перехода измерений Н (makeMatrixH)

• virtual void Prediction (double dt)

Прогноз расширенного сигма-точечного фильтра Калмана (РСТФК, EUKF)

• virtual void Correction (const arma::vec &Y msd)

Коррекция расширенного сигма-точечного фильтра Калмана (РСТФК, EUKF)

Дополнительные унаследованные члены

8.4.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanEUKF< SizeX, SizeY >
```

Шаблонный класс расширенного сигма-точечного (ансцентного) фильтра Калмана, РСТФК (Extended Unscented Kalman Filter, EUKF)

Источники:

- [1] A New Extension of the Kalman Filter to Nonlinear Systems, Simon J. Julier, Jeffrey K. Uhlmann, The Robotics Research Group, Department of Engineering Science, The University of Oxford, 1997
- [2] The Unscented Kalman Filter for Nonlinear Estimation, Eric A. Wan and Rudolph van der Merwe Oregon Graduate Institute of Science & Technology 20000 NW Walker Rd, Beaverton, Oregon 97006, 2000 ericwan[at]ece.ogi.edu, rvdmerwe[at]ece.ogi.edu
- [3] Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models, Rudolph van der Merwe & Eric Wan, OGI School of Science & Engineering Oregon Health & Science University Beaverton, Oregon, 97006, USA, 2003 {rvdmerwe,ericwan}[at]ece.ogi.edu
- [4] THE SQUARE-ROOT UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER-← ESTIMATION, Rudolph van der Merwe and Eric A. Wan, Oregon Graduate Institute of Science and Technology 20000 NW Walker Road, Beaverton, Oregon 97006, USA rvdmerwe,ericwan[at]ece.ogi.edu

Внимание

Внимание! В реализации UKF вес нулевой сигма-точки Wcov не может быть отрицательным! (Wmean - может)

Фильтр построен по классическому его варианту НИЖНЕтреугольного разложения Холецкого!

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.4.2 Конструктор(ы)

8.4.2.1 CKalmanEUKF()

```
template<size_t SizeX, size_t SizeY>
KalmanFilters::CKalmanEUKF< SizeX, SizeY>::CKalmanEUKF ( ) [inline]
```

Конструктор по умолчанию

```
8.4.3 Методы
```

```
8.4.3.1 Correction()
```

Коррекция расширенного сигма-точечного фильтра Калмана (РСТФК, EUKF)

Аргументы

```
Y_msd - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка KalmanFilters::CKalmanUKF < SizeX, SizeY >.

```
8.4.3.2 Prediction()
```

Прогноз расширенного сигма-точечного фильтра Калмана (РСТФК, EUKF)

Аргументы

```
dt - Время прогноза, [c]
```

Переопределяет метод предка KalmanFilters::CKalmanUKF < SizeX , SizeY >.

8.4.3.3 SetObservationJacobianH()

```
template<size_t SizeX, size_t SizeY>
void KalmanFilters::CKalmanEUKF< SizeX, SizeY >::SetObservationJacobianH (
std::function< arma::mat(const arma::vec &X)> observationJacobianH ) [inline]
Установка функции вычисления матрицы перехода измерений Н (makeMatrixH)
```

См. также

 $observation Jacobian H_$

8.4.3.4 SetStateTransitionJacobianF()

См. также

```
state Transition Jacobian F\_
```

Объявления и описания членов класса находятся в файле:

 \bullet kalman_filter_extended_unscented.h

8.5 Шаблон класса KalmanFilters::CKalmanLKF < SizeX, SizeY >

Шаблонный класс линейного фильтра Калмана, ЛФК (Linear Kalman Filter, LKF) #include <kalman_filter_linear.h>

 Граф наследования: Kalman
Filters:: CKalman
LKF
 SizeX, SizeY >:

Открытые члены

• CKalmanLKF ()

Конструктор по умолчанию

- CKalmanLKF (const CKalmanLKF &)=default
- CKalmanLKF & operator= (const CKalmanLKF &)=default
- CKalmanLKF (CKalmanLKF &&)=default
- CKalmanLKF & operator= (CKalmanLKF &&)=default
- virtual ~CKalmanLKF ()=default
- void SetStateTransitionMatrixF (const arma::mat &F)

Установка матрицы перехода состояния F.

• void SetObservationMatrixH (const arma::mat &H)

Установка матрицы перехода измерений Н.

• void SetEstimateCovarianceMatrixP (const arma::mat &P)

Установка ковариационной матрицы Р состояния Х.

• void SetEstimateCovarianceMatrixPdiag (const arma::vec &Pdiag)

Установка диагонали ковариационной матрицы Р состояния Х.

• void SetProcessCovarianceMatrixQ (const arma::mat &Q)

Установка ковариационной матрицы Q шумов состояния X.

• void SetProcessCovarianceMatrixQdiag (const arma::vec &Qdiag)

Установка диагонали ковариационной матрицы Q шумов состояния X.

• void SetObservationCovarianceMatrixR (const arma::mat &R)

Установка ковариационной матрицы R шумов измерений Y.

• void SetObservationCovarianceMatrixRdiag (const arma::vec &Rdiag)

Установка ковариационной матрицы R шумов измерений Y.

• void SetEstimatedVectorX (const arma::vec &X_est)

Установка оценки вектора состояния Х.

• void SetEstimatedVectorY (const arma::vec &Y est)

Установка оценки вектора состояния Ү.

• void SetMeasuredVectorY (const arma::vec &Y msd)

Установка измереннго вектора измерений Ү.

• void SetDeltaY (const arma::vec &DeltaY)

Установка вектора невязки измерений DeltaY.

• void SetCheckBordersStateAfterPrediction (std::function< arma::vec(const arma::vec &X)> checkBordersStateAfterPrediction)

Установка функции проверки вектора состояния Х после прогноза

• void SetCheckBordersStateAfterCorrection (std::function< arma::vec(const arma::vec &X)> checkBordersStateAfterCorrection)

Установка функции проверки вектора состояния Х после коррекции

• void SetCheckBordersMeasurement (std::function< arma::vec(const arma::vec &Y)> check← BordersMeasurement)

Установка функции проверки вектора измерений Ү.

• void SetCheckDeltaState (std::function < arma::vec(const arma::vec &DeltaX) > checkDeltaState) Установка функции проверки разности векторов состояний X.

• void SetCheckDeltaMeasurement (std::function< arma::vec(const arma::vec &DeltaY)> check← DeltaMeasurement)

Установка функции проверки разности векторов измерений Ү.

• void SetStateTransitionJacobianLinearF (std::function < arma::mat(double dt) > stateTransition ← JacobianLinearF)

Установка функции вычисления матрицы перехода состояния F в случае LKF (makeMatrixF)

• const int GetSizeX () const

Получить размерность вектора состояния Х.

• const int GetSizeY () const

Получить размерность вектора состояния Ү.

• const arma::mat & GetEstimatedCovarianceMatrixP () const

Получить ковариационную матрицу Р состояния Х.

• const arma::mat & GetInnovationCovarianceMatrixS () const

Получить ковариационную матрицу S вектора невязки DeltaY.

• const arma::mat & GetDeltaY () const

Получить вектор невязки измерений DeltaY.

• const arma::mat & GetKalmanGainMatrixK () const

Получить матрицу коэффициентов усиления фильтра К.

• const arma::mat & GetEstimatedVectorX () const

Получить уточненный вектор состояния Х.

• const arma::mat & GetEstimatedVectorY () const

Получить уточненный вектор состояния Ү.

• virtual void Prediction (double dt)

Прогноз

• virtual void Correction (const arma::vec &Y_msd)

Коррекция

• virtual void CalculateInnovationCovarianceS (const arma::vec &PdiagAdd, const arma::vec Rdiag)

Отдельное вычисление ковариационной матрицы S невязки измерений

Защищенные члены

• void fixMatrixMainDiagonalSymmetry (arma::mat &A)

Исправление симметричности матрицы относительно главной диагонали

• void checkMatrixDiagPositive (const arma::mat &A) const

Проверка что в диагонали матрицы лежат только положительные элементы

Защищенные данные

• size t SizeX

Размерность вектора состояния X (state)

• size_t SizeY_

Размернсоть вектора измУстановка матрицы SetEstimateCovarianceMatrixPepeний Y (measurement)

• arma::mat F

Матрица эволюции системы (перехода состояния) (state-transition model), размерность [SizeX * SizeX].

• arma::mat H_

8.5 Шаблон класса KalmanFilters::CKalmanLKF< SizeX, SizeY > Матрица измерений (перехода измерений) (observation model), размерность [SizeY * SizeX]. • arma::mat K Коэффициент усиления фильтра Калмана (Kalman gain), размерность [SizeX * SizeY]. • arma::mat I Единичная матрица, размерность [SizeX * SizeX]. • arma::vec DeltaY Вектор невязки измерений, размерность [SizeY]. • arma::mat P Ковариационная матрица вектора состояния X (estimate covariance matrix), размерность [SizeX * SizeX]. • arma::mat S Ковариационая матрица вектора невязки (innovation covariance), размерность [SizeY * SizeY]. • arma::mat Q Ковариационая матрица (обычно диагональная) шумов вектора состояния Х НА 1 СЕКУНДЕ (covariance of the process noise), размерность [SizeX * SizeX]. • arma::mat R Ковариационая матрица (обычно диагональная) шумов вектора измерений Y (covariance of the observation noise), размерность [SizeY * SizeY]. • arma::vec X pred Экстраполированный (predicted) вектор состояния X, размерность [SizeX]. • arma::vec Y pred Экстраполированный (predicted) вектор измерений Y, размерность [SizeY]. • arma::vec X est Скорректированный (estimated) вектор состояния X, размерность [SizeX]. • arma::vec Y est Скорректированный (estimated) вектор измерений Y, размерность [SizeY]. arma::vec Y msd Измеренный (measured) вектор Y (отметка), размерность [SizeY]. • bool deltaY isSet Признак установки вектора невязки DeltaY (нужно в методе Correction) • bool Y msd isSet Признак установки вектора измерений Y msd;. • bool prediction isDone Признак выполненного прогноза (без этого нельзя делать фильтрацию) • std::function< arma::vec(const arma::vec &X)> checkBordersStateAfterPrediction Проверка границ вектора состояния Х после прогноза • std::function < arma::vec(const arma::vec &X) > checkBordersStateAfterCorrection Проверка границ вектора состояния Х после фильтрации

• std::function< arma::vec(const arma::vec &Y)> checkBordersMeasurement

Проверка границ вектора измерения Ү.

• std::function< arma::vec(const arma::vec &DeltaX)> checkDeltaState

Проверка разности векторов состояния Х.

• std::function< arma::vec(const arma::vec &DeltaY)> checkDeltaMeasurement

Проверка разности векторов измерения Ү.

Закрытые данные

• std::function< arma::mat(double dt)> stateTransitionJacobianLinearF Функция вычисления матрицы перехода состояния F (makeMatrixF)

8.5.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanLKF< SizeX, SizeY >
```

Шаблонный класс линейного фильтра Калмана, ЛФК (Linear Kalman Filter, LKF) Источник: A New Approach to Linear Filtering and Prediction Problems, R.E.KALMAN, Research Institute for Advanced Study, Baltimore, Md., 1960

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.5.2 Конструктор(ы)

```
8.5.2.1 CKalmanLKF() [1/3]
```

```
template<size_t SizeX, size_t SizeY>
KalmanFilters::CKalmanLKF< SizeX, SizeY>::CKalmanLKF ( ) [inline]
Конструктор по умолчанию
```

8.5.2.2 CKalmanLKF() [2/3]

8.5.2.3 CKalmanLKF() [3/3]

8.5.2.4 \sim CKalmanLKF()

```
template<size_t SizeX, size_t SizeY> virtual KalmanFilters::CKalmanLKF < SizeX, SizeY >::~CKalmanLKF ( ) [virtual], [default]
```

8.5.3 Методы

8.5.3.1 CalculateInnovationCovarianceS()

Отдельное вычисление ковариационной матрицы S невязки измерений Отдельное вычисление S применяется при стробировании

Внимание

Необходимо учесть 2 обстоятельства: 1) метод должен выполняться после вызова метода Prediction, где должна быть вычислена матрица H; 2) матрица R при вычислении S будет использована та, которая уже имеется в фильтре и если необходима иная матрица R, то следует её установить, вызвав метод SetObservationCovarianceMatrixR

Аргументы

PdiagAdd	- добавка в диагональ матрицы P, размерность [SizeX]
Rdiag	- диагональная матрица R априорных шумов измерений, размерность [SizeY]

8.5.3.2 checkMatrixDiagPositive()

Проверка что в диагонали матрицы лежат только положительные элементы

Аргументы

```
А - проверяемая матрица
```

Внимание

Метод вызывает assert!

8.5.3.3 Correction()

Аргументы

```
Y_msd - вектор измерений, по которым производится коррекция
```

```
Переопределяется в KalmanFilters::CKalmanCKF < SizeX, SizeY >, KalmanFilters::CKalmanSRCKF < SizeX, SizeY >, KalmanFilters::CKalmanSRCKF < SizeX, SizeY >, KalmanFilters::CKalmanEKF < SizeX, SizeY >, KalmanFilters::CKalmanECKF < SizeX, SizeY >, KalmanFilters::CKalmanSRECKF < SizeX, SizeY >, KalmanFilters::CKalmanSREKF < SizeX, SizeY >, KalmanFilters::CKalmanSREKF < SizeX, SizeY >, KalmanFilters::CKalmanEUKF < SizeX, SizeY >, KalmanFilters::CKalmanSREUKF < SizeX, SizeY >, KalmanFilters::CKalmanSRUKF < SizeX, SizeY >, KalmanFilters::CKalmanSRUKF < SizeX, SizeY >, KalmanFilters::CKalmanSRUKF < SizeX, SizeY >.
```

8.5.3.4 fixMatrixMainDiagonalSymmetry()

Исправление симметричности матрицы относительно главной диагонали

Элементам вне главной диагонали присваивается полусумма между соответствующими элементами

Аргументы

```
А - проверяемая матрица
```

8.5.3.5 GetDeltaY()

```
template<size_t SizeX, size_t SizeY> const arma::mat & KalmanFilters::CKalmanLKF< SizeX, SizeY>::GetDeltaY ( ) const [inline] Получить вектор невязки измерений DeltaY.
```

Возвращает

Вектор невязки измерений DeltaY

8.5.3.6 GetEstimatedCovarianceMatrixP()

```
template<size_t SizeX, size_t SizeY> const arma::mat & KalmanFilters::CKalmanLKF< SizeX, SizeY>::GetEstimatedCovarianceMatrixP ( ) const [inline] Получить ковариационную матрицу Р состояния X.
```

Возвращает

Текущая ковариационная матрица Р

8.5.3.7 GetEstimatedVectorX()

```
template<size_t SizeX, size_t SizeY> const arma::mat & KalmanFilters::CKalmanLKF< SizeX, SizeY>::GetEstimatedVectorX ( ) const \ \ \Piолучить уточненный вектор состояния X.
```

Возвращает

Текущий уточненный вектор состояния Х

8.5.3.8 GetEstimatedVectorY()

```
template<size_t SizeX, size_t SizeY> const arma::mat & KalmanFilters::CKalmanLKF< SizeX, SizeY>::GetEstimatedVectorY ( ) const [inline] Получить уточненный вектор состояния Y.
```

Возвращает

Текущий уточненный вектор состояния Ү

8.5.3.9 GetInnovationCovarianceMatrixS()

```
template<size_t SizeX, size_t SizeY> const arma::mat & KalmanFilters::CKalmanLKF< SizeX, SizeY>::GetInnovationCovarianceMatrixS ( ) const [inline] Получить ковариационную матрицу S вектора невязки DeltaY.
```

Возвращает

Текущая ковариационная матрица S

```
8.5.3.10 GetKalmanGainMatrixK()
```

```
template<size_t SizeX, size_t SizeY> const arma::mat & KalmanFilters::CKalmanLKF< SizeX, SizeY>::GetKalmanGainMatrixK ( ) const [inline] Получить матрицу коэффициентов усиления фильтра K.
```

Возвращает

Текущая матрица коэффициентов усиления фильтра К

```
8.5.3.11 GetSizeX()
```

```
template<size_t SizeX, size_t SizeY> const int KalmanFilters::CKalmanLKF< SizeX, SizeY>::GetSizeX ( ) const [inline] Получить размерность вектора состояния X.
```

Возвращает

Размерность вектора состояния Х

```
8.5.3.12 GetSizeY()
```

```
template<size_t SizeX, size_t SizeY> const int KalmanFilters::CKalmanLKF< SizeX, SizeY>::GetSizeY ( ) const [inline] Получить размерность вектора состояния Y.
```

Возвращает

Размерность вектора состояния Ү

```
8.5.3.13 operator=() [1/2]
```

```
8.5.3.14 operator=() [2/2]
```

8.5.3.15 Prediction()

Аргументы

```
dt | - Время прогноза, [c]
```

Переопределяется в KalmanFilters::CKalmanCKF < SizeX, SizeY >, KalmanFilters::CKalmanSRCKF < SizeX, SizeY >

```
Kalman
Filters::CKalman
EKF< SizeX, SizeY >, Kalman
Filters::CKalman
SRECKF< SizeX, SizeY >, Kalman
Filters::CKalman
SREUKF< SizeX, SizeY >, Kalman
Filters::CKalman
SRUKF< SizeX, SizeY >.
```

8.5.3.16 SetCheckBordersMeasurement()

```
template<size_t SizeX, size_t SizeY>
void KalmanFilters::CKalmanLKF< SizeX, SizeY>::SetCheckBordersMeasurement (
std::function< arma::vec(const arma::vec &Y)> checkBordersMeasurement ) [inline]
Установка функции проверки вектора измерений Y.
```

Аргументы

checkBordersMeasurement | - Функция проверки вектора измерений

8.5.3.17 SetCheckBordersStateAfterCorrection()

Аргументы

checkBordersStateAfterCorrection | - Функция проверки вектора состояния после коррекции

8.5.3.18 SetCheckBordersStateAfterPrediction()

Аргументы

checkBordersStateAfterPrediction | - Функция проверки вектора состояния после прогноза

8.5.3.19 SetCheckDeltaMeasurement()

Аргументы

checkDeltaMeasurement | - Функция проверки разности векторов измерений

8.5.3.20 SetCheckDeltaState()

Установка функции проверки разности векторов состояний Х.

Аргументы

checkDeltaState | - Функция проверки разности векторов состояний

8.5.3.21 SetDeltaY()

Установка вектора невязки измерений DeltaY.

Аргументы

DeltaY | - вектор невязки измерений, размерность [SizeY]

8.5.3.22 SetEstimateCovarianceMatrixP()

Установка ковариационной матрицы P состояния X.

Аргументы

Р - матрица шумов состояния X, размерность [SizeX * SizeX]

8.5.3.23 SetEstimateCovarianceMatrixPdiag()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanLKF< SizeX, SizeY >::SetEstimateCovarianceMatrixPdiag ( const arma::vec & Pdiag ) [inline]
```

Установка диагонали ковариационной матрицы P состояния X.

Аргументы

Pdiag - вектор главной диагонали шумов состояния X (остальные элементы полагаются равными нулю), размерность [SizeX]

8.5.3.24 SetEstimatedVectorX()

Установка оценки вектора состояния Х.

Требуется, например, при начальной установке фильтра

Аргументы

```
X_est | - вектор состояния, размерность [SizeX]
```

8.5.3.25 SetEstimatedVectorY()

Установка оценки вектора состояния Ү.

Требуется, например, при начальной установке фильтра

Аргументы

```
Y_est - вектор состояния, размерность [SizeY]
```

8.5.3.26 SetMeasuredVectorY()

Установка измереннго вектора измерений Ү.

Требуется после получения новых измерений

Аргументы

```
Y_msd - вектор измерений, размерность [SizeY]
```

8.5.3.27 SetObservationCovarianceMatrixR()

Установка ковариационной матрицы R шумов измерений Y.

Аргументы

```
R - матрица R, размерность [SizeY, SizeY]
```

8.5.3.28 SetObservationCovarianceMatrixRdiag()

Установка ковариационной матрицы R шумов измерений Y.

Аргументы

Rdiag

- вектор элементов главной диагонали матрицы R (остальные элементы полагаются равными нулю), размерность [SizeY]

8.5.3.29 SetObservationMatrixH()

Установка матрицы перехода измерений Н.

Аргументы

Н - матрица перехода измерений, размерность [SizeY * SizeX]

8.5.3.30 SetProcessCovarianceMatrixQ()

Установка ковариационной матрицы Q шумов состояния X.

Аргументы

Q - матрица Q, размерность [SizeX, SizeX]

8.5.3.31 SetProcessCovarianceMatrixQdiag()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanLKF< SizeX, SizeY >::SetProcessCovarianceMatrixQdiag ( const arma::vec & Qdiag ) [inline]
```

Установка диагонали ковариационной матрицы Q шумов состояния X.

Аргументы

Qdiag

- вектор элементов главное диагонали матрицы Q (остальные элементы полагаются равными нулю), размерность [SizeX]

8.5.3.32 SetStateTransitionJacobianLinearF()

Установка функции вычисления матрицы перехода состояния F в случае LKF (makeMatrixF)

Аргументы

state Transition Jacobian Linear F	- Функция вычисления матрицы перехода состояния F в
	случае LKF

8.5.3.33 SetStateTransitionMatrixF()

Установка матрицы перехода состояния F.

Аргументы

F - матрица перехода состояния, размерность [SizeX * SizeX]

8.5.4 Данные класса

8.5.4.1 checkBordersMeasurement_

```
template<size_t SizeX, size_t SizeY> std::function<arma::vec( const arma::vec &Y )> KalmanFilters::CKalmanLKF< SizeX, SizeY >::checkBorders \leftarrow Measurement_ [protected] Проверка границ вектора измерения Y.
```

8.5.4.2 checkBordersStateAfterCorrection

```
template < size\_t\ SizeX,\ size\_t\ SizeY > std::function < arma::vec \ \&X\ ) > KalmanFilters::CKalmanLKF < SizeX,\ SizeY > ::checkBordersStateAfter \leftarrow Correction\_ [protected]
```

Проверка границ вектора состояния X после фильтрации

8.5.4.3 checkBordersStateAfterPrediction

```
template<size_t SizeX, size_t SizeY> std::function<arma::vec (const arma::vec &X )> KalmanFilters::CKalmanLKF< SizeX, SizeY >::checkBordersStateAfter← Prediction_ [protected]
Проверка границ вектора состояния X после прогноза
```

8.5.4.4 checkDeltaMeasurement_

```
template<size_t SizeX, size_t SizeY> std::function<arma::vec( const arma::vec &DeltaY )> KalmanFilters::CKalmanLKF< SizeX, SizeY >::checkDelta\hookleftarrow Меаsurement_ [protected] Проверка разности векторов измерения Y.
```

8.5.4.5 checkDeltaState

```
template<size_t SizeX, size_t SizeY> std::function<arma::vec( const arma::vec &DeltaX )> KalmanFilters::CKalmanLKF< SizeX, SizeY >::checkDeltaState_ [protected]
```

Проверка разности векторов состояния Х.

```
8.5.4.6 DeltaY_
template{<}size\_t~SizeX,~size\_t~SizeY{>}
arma::vec KalmanFilters::CKalmanLKF< SizeX, SizeY >::DeltaY [protected]
Вектор невязки измерений, размерность [SizeY].
8.5.4.7 deltaY_isSet
template<size t SizeX, size t SizeY>
bool KalmanFilters::CKalmanLKF < SizeX, SizeY >::deltaY isSet [protected]
Признак установки вектора невязки DeltaY (нужно в методе Correction)
8.5.4.8 F
template{<}size\_t~SizeX,~size\_t~SizeY{>}
arma::mat KalmanFilters::CKalmanLKF< SizeX, SizeY >::F [protected]
Матрица эволюции системы (перехода состояния) (state-transition model), размерность [SizeX *
SizeXl.
8.5.4.9 H
template{<}size\_t~SizeX,~size\_t~SizeY{>}
arma::mat KalmanFilters::CKalmanLKF < SizeX, SizeY >::H [protected]
Матрица измерений (перехода измерений) (observation model), размерность [SizeY * SizeX].
8.5.4.10 I
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanLKF < SizeX, SizeY >::I [protected]
Единичная матрица, размерность [SizeX * SizeX].
8.5.4.11 K
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanLKF< SizeX, SizeY >::K [protected]
Коэффициент усиления фильтра Калмана (Kalman gain), размерность [SizeX * SizeY].
8.5.4.12 P_
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanLKF< SizeX, SizeY >::P_ [protected]
Ковариационная матрица вектора состояния X (estimate covariance matrix), размерность [SizeX *
SizeX].
8.5.4.13 prediction isDone
template<size t SizeX, size t SizeY>
bool KalmanFilters::CKalmanLKF< SizeX, SizeY >::prediction isDone [protected]
Признак выполненного прогноза (без этого нельзя делать фильтрацию)
```

```
8.5.4.14 Q
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanLKF< SizeX, SizeY >::Q [protected]
Ковариационая матрица (обычно диагональная) шумов вектора состояния Х НА 1 СЕКУНДЕ
(covariance of the process noise), размерность [SizeX * SizeX].
8.5.4.15 R
template<size_t SizeX, size_t SizeY>
arma::mat KalmanFilters::CKalmanLKF< SizeX, SizeY >::R_ [protected]
Ковариационая матрица (обычно диагональная) шумов вектора измерений Y (covariance of the
observation noise), размерность [SizeY * SizeY].
8.5.4.16 S
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanLKF < SizeX, SizeY >::S [protected]
Ковариационая матрица вектора невязки (innovation covariance), размерность [SizeY * SizeY].
8.5.4.17 SizeX
template<size t SizeX, size t SizeY>
size t KalmanFilters::CKalmanLKF < SizeX, SizeY >::SizeX [protected]
Размерность вектора состояния X (state)
8.5.4.18 SizeY
template<size_t SizeX, size_t SizeY>
size_t KalmanFilters::CKalmanLKF< SizeX, SizeY >::SizeY_ [protected]
Размернсоть вектора измУстановка матрицы SetEstimateCovarianceMatrixPерений Y (measurement)
8.5.4.19 stateTransitionJacobianLinearF
template<size t SizeX, size t SizeY>
std::function<arma::mat( double dt )> KalmanFilters::CKalmanLKF< SizeX, SizeY >::stateTransitionJacobianLinearF↔
   [private]
Функция вычисления матрицы перехода состояния F (makeMatrixF)
Внимание
     Используется только в линейном фильтре Калмана
Аргументы
     - вектор состояния с прошлого момента времени
```

```
8.5.4.20 X_est_
template<size_t SizeX, size_t SizeY>
arma::vec KalmanFilters::CKalmanLKF< SizeX, SizeY>::X_est_ [protected]
Скорректированный (estimated) вектор состояния X, размерность [SizeX].
```

```
8.5.4.21 X_pred_
template<size t SizeX, size t SizeY>
arma::vec KalmanFilters::CKalmanLKF < SizeX, SizeY >::X pred [protected]
Экстраполированный (predicted) вектор состояния X, размерность [SizeX].
8.5.4.22 \quad Y\_est\_
template<size t SizeX, size t SizeY>
arma::vec KalmanFilters::CKalmanLKF < SizeX, SizeY >::Y est [protected]
Скорректированный (estimated) вектор измерений Y, размерность [SizeY].
8.5.4.23 Y msd
template<size_t SizeX, size_t SizeY>
arma::vec KalmanFilters::CKalmanLKF < SizeX, SizeY >::Y msd [protected]
Измеренный (measured) вектор Y (отметка), размерность [SizeY].
8.5.4.24 Y msd isSet
template<size t SizeX, size t SizeY>
\begin{tabular}{ll} \hline bool Kalman Filters:: CKalman LKF < Size X, Size Y >:: Y \_msd \_is Set & [protected] \\ \hline \end{tabular}
Признак установки вектора измерений Y msd;.
8.5.4.25 Y pred
template<size t SizeX, size t SizeY>
arma::vec KalmanFilters::CKalmanLKF < SizeX, SizeY >::Y pred [protected]
Экстраполированный (predicted) вектор измерений Y, размерность [SizeY].
Объявления и описания членов класса находятся в файле:
```

8.6 Шаблон класса KalmanFilters::CKalmanSRCKF< SizeX, SizeY >

Шаблонный класс квадратно-корневого кубатурного фильтра Калмана, KK-K Φ K (Square Root Cubature Kalman Filter, SR-CKF)

```
#include <kalman filter cubature square root.h>
```

• kalman filter linear.h

Граф наследования:KalmanFilters::CKalmanSRCKF< SizeX, SizeY >:

Граф связей класса KalmanFilters::CKalmanSRCKF< SizeX, SizeY >:

Открытые члены

• CKalmanSRCKF ()

Конструктор по умолчанию

• void SetStateTransitionJacobianF (std::function< arma::mat(const arma::vec &X, double dt)> stateTransitionJacobianF)

Установка функции вычисления матрицы перехода состояния F (makeMatrixF)

• void SetObservationJacobianH (std::function< arma::mat(const arma::vec &X)> observation \hookleftarrow JacobianH)

Установка функции вычисления матрицы перехода измерений Н (makeMatrixH)

• virtual void Prediction (double dt)

 Π рогноз

• virtual void Correction (const arma::vec &Y_msd) Коррекция

Защищенные члены

void CorrectionSRCKF (const arma::vec &Y_msd)
 Коррекция SRCKF.

Дополнительные унаследованные члены

8.6.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanSRCKF< SizeX, SizeY >
```

Шаблонный класс квадратно-корневого кубатурного фильтра Калмана, KK-K Φ K (Square Root Cubature Kalman Filter, SR-CKF)

Источники:

[1] Cubature Kalman Filters, Ienkaran Arasaratnam and Simon Haykin, Life Fellow, IEEE

Внимание

Фильтр построен по классическому его варианту НИЖНЕтреугольного разложения Холецкого!

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.6.2 Конструктор(ы)

8.6.2.1 CKalmanSRCKF()

```
template<size_t SizeX, size_t SizeY> KalmanFilters::CKalmanSRCKF< SizeX, SizeY>::CKalmanSRCKF ( ) [inline] Конструктор по умолчанию
```

8.6.3 Методы

8.6.3.1 Correction()

```
template<size_t SizeX, size_t SizeY> virtual void KalmanFilters::CKalmanSRCKF< SizeX, SizeY >::Correction ( const arma::vec & Y_msd ) [inline], [virtual] Коррекция
```

Аргументы

```
Y_msd - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка KalmanFilters::CKalmanCKF< SizeX, SizeY >.
Переопределяется в KalmanFilters::CKalmanSRCKFB< SizeX, SizeY >, KalmanFilters::CKalmanSRECKF< SizeX, SizeY >.
и KalmanFilters::CKalmanSRECKFB< SizeX, SizeY >.

8.6.3.2 CorrectionSRCKF()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanSRCKF< SizeX, SizeY>::CorrectionSRCKF ( const arma::vec & Y_msd ) [inline], [protected] Коррекция SRCKF.
```

Аргументы

```
Y_msd | - вектор измерений, по которым производится коррекция
```

8.6.3.3 Prediction()

Аргументы

```
dt | - Время прогноза, [с]
```

Переопределяет метод предка Kalman Filters::CKalman
CKF
 SizeX, SizeY >. Переопределяется в Kalman Filters::CKalman
SRECKF
 SizeX, SizeY >.

8.6.3.4 SetObservationJacobianH()

См. также

observationJacobianH

8.6.3.5 SetStateTransitionJacobianF()

См. также

state Transition Jacobian F

Объявления и описания членов класса находятся в файле:

• kalman_filter_cubature_square_root.h

8.7 Шаблон класса KalmanFilters::CKalmanSRCKFB< SizeX, SizeY >

Шаблонный класс квадратно-корневого кубатурного фильтра Калмана (блочная фильтрация), КК-КФКБ (Square Root Cubature Kalman Filter Block, SR-CKFB)

#include <kalman_filter_cubature_square_root.h>

 Граф наследования: Kalman
Filters::C KalmanSRCKFB
 SizeX, SizeY >:

Граф связей класса KalmanFilters::CKalmanSRCKFB< SizeX, SizeY >:

Открытые члены

• CKalmanSRCKFB ()

Конструктор по умолчанию

• virtual void Correction (const arma::vec &Y_msd)
Коррекция

Дополнительные унаследованные члены

8.7.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanSRCKFB< SizeX, SizeY >
```

Шаблонный класс квадратно-корневого кубатурного фильтра Калмана (блочная фильтрация), КК-К Φ KБ (Square Root Cubature Kalman Filter Block, SR-CKFB)

См. CKalmanSRCKF и The J-Orthogonal Square-Root Euler-Maruyama-Based Unscented Kalman Filter for Nonliear Stohastic Systems, Gennady Yu. Kulikov, Maria V. Kulikova, CEMAT, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 LISBOA, Portugal (emails: gennady. ← kulikov[at]tecnico.ulisboa.pt, maria.kulikova[at]ist.utl.pt)

Внимание

Фильтр построен по классическому его варианту НИЖНЕтреугольного разложения Холецкого!

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.7.2 Конструктор(ы)

8.7.2.1 CKalmanSRCKFB()

```
template<size_t SizeX, size_t SizeY>
KalmanFilters::CKalmanSRCKFB<br/>
SizeX, SizeY>::CKalmanSRCKFB ( ) [inline]<br/>
Конструктор по умолчанию
```

8.7.3 Методы

8.7.3.1 Correction()

```
template<size_t SizeX, size_t SizeY> virtual void KalmanFilters::CKalmanSRCKFB< SizeX, SizeY>::Correction ( const arma::vec & Y_msd ) [inline], [virtual] Коррекция
```

порренции

Аргументы

```
Y_msd - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка KalmanFilters::CKalmanSRCKF< SizeX, SizeY >. Объявления и описания членов класса находятся в файле:

• kalman filter cubature square root.h

8.8 Шаблон класса KalmanFilters::CKalmanSRECKF< SizeX, SizeY >

Шаблонный класс квадратно-корневого расширенного кубатурного фильтра Калмана, KK-PK Φ K (Square Root Extended Cubature Kalman Filter, SR-ECKF)

```
#include <kalman filter extended cubature square root.h>
```

Граф наследования:KalmanFilters::CKalmanSRECKF< SizeX, SizeY >:

Граф связей класса KalmanFilters::CKalmanSRECKF< SizeX, SizeY >:

Открытые члены

• CKalmanSRECKF ()

Конструктор по умолчанию

• virtual void Prediction (double dt)

Прогноз квадратно-корневого расширенного кубатурного фильтра Калмана (КК-РК Φ K, SR- \leftarrow ECKF)

• virtual void Correction (const arma::vec &Y msd)

Коррекция квадратно-корневого расширенного кубатурного фильтра Калмана (КК-РК Φ K, SR- \leftarrow ECKF)

Дополнительные унаследованные члены

8.8.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanSRECKF< SizeX, SizeY >
```

Шаблонный класс квадратно-корневого расширенного кубатурного фильтра Калмана, КК-РК Φ К (Square Root Extended Cubature Kalman Filter, SR-ECKF) Источники:

[1] Cubature Kalman Filters, Ienkaran Arasaratnam and Simon Haykin, Life Fellow, IEEE

Внимание

Фильтр построен по классическому его варианту НИЖНЕтреугольного разложения Холецкого!

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.8.2 Конструктор(ы)

8.8.2.1 CKalmanSRECKF()

```
template<size_t SizeX, size_t SizeY>
KalmanFilters::CKalmanSRECKF< SizeX, SizeY>::CKalmanSRECKF ( ) [inline]
Конструктор по умолчанию
```

8.8.3 Методы

8.8.3.1 Correction()

Коррекция квадратно-корневого расширенного кубатурного фильтра Калмана (КК-РК Φ K, SR- \leftarrow ECKF)

Аргументы

```
Y_msd - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка KalmanFilters::CKalmanSRCKF< SizeX, SizeY >. Переопределяется в KalmanFilters::CKalmanSRECKFB< SizeX, SizeY >.

8.8.3.2 Prediction()

Прогноз квадратно-корневого расширенного кубатурного фильтра Калмана (КК-РКФК, SR-ECKF)

Аргументы

```
dt - Время прогноза, [с]
```

Переопределяет метод предка KalmanFilters::CKalmanSRCKF< SizeX, SizeY >. Объявления и описания членов класса находятся в файле:

• kalman filter extended cubature square root.h

8.9 Шаблон класса KalmanFilters::CKalmanSRECKFB< SizeX, SizeY >

Шаблонный класс квадратно-корневого расширенного кубатурного фильтра Калмана (блочная фильтрация), КК-РКФКБ (Square Root Extended Cubature Kalman Filter Block, SR-ECKFB) #include <kalman_filter_extended_cubature_square_root.h>

 Граф наследования: Kalman
Filters::CKalmanSRECKFB
 SizeX, SizeY >:

 Граф связей класса Kalman Filters::CKalman SRECKFB
< SizeX, SizeY >:

Открытые члены

• CKalmanSRECKFB ()

Конструктор по умолчанию

• virtual void Correction (const arma::vec &Y msd)

Коррекция

Дополнительные унаследованные члены

8.9.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanSRECKFB< SizeX, SizeY >
```

Шаблонный класс квадратно-корневого расширенного кубатурного фильтра Калмана (блочная фильтрация), КК-РКФКБ (Square Root Extended Cubature Kalman Filter Block, SR-ECKFB) См. CKalmanSRECKF и The J-Orthogonal Square-Root Euler-Maruyama-Based Unscented Kalman Filter for Nonliear Stohastic Systems, Gennady Yu. Kulikov, Maria V. Kulikova, CEMAT, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 LISBOA, Portugal (emails egennady.kulikov[at]tecnico.ulisboa.pt, maria.kulikova[at]ist.utl.pt)

Внимание

Фильтр построен по классическому его варианту НИЖНЕтреугольного разложения Холецкого!

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.9.2 Конструктор(ы)

8.9.2.1 CKalmanSRECKFB()

```
template<size_t SizeX, size_t SizeY>
KalmanFilters::CKalmanSRECKFB<br/>
SizeX, SizeY>::CKalmanSRECKFB () [inline] Конструктор по умолчанию
```

8.9.3 Методы

8.9.3.1 Correction()

Коррекция

Аргументы

```
Y_msd | - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка KalmanFilters::CKalmanSRECKF< SizeX, SizeY >. Объявления и описания членов класса находятся в файле:

```
• kalman filter extended cubature square root.h
```

8.10 Шаблон класса KalmanFilters::CKalmanSREKF< SizeX, SizeY >

Класс квадратно-корневого расширенного фильтра Калмана, KK-P Φ K (Square Root Extended Kalman Filter, EKF)

#include <kalman_filter_extended_square_root.h> Граф наследования:KalmanFilters::CKalmanSREKF< SizeX, SizeY >:

Граф связей класса KalmanFilters::CKalmanSREKF< SizeX, SizeY >:

Открытые члены

• CKalmanSREKF ()

Конструктор по умолчанию

• virtual void Prediction (double dt)

Прогноз

- virtual void Correction (const arma::vec &Y_msd)

Коррекция

Защищенные члены

• void PredictionSREKF (double dt) Прогноз SREKF.

Дополнительные унаследованные члены

8.10.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanSREKF< SizeX, SizeY >
```

Класс квадратно-корневого расширенного фильтра Калмана, KK-P Φ K (Square Root Extended Kalman Filter, EKF)

Источник: NASA Technical report R-135, Application of statistical filter theory to the optimal estimation of position and velocity on board a circumlunar vehicle, Gerald L. Smith, Stanley F. Schmidt and Leonard A. McGee, 1962

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.10.2 Конструктор(ы)

8.10.2.1 CKalmanSREKF()

```
template<size_t SizeX, size_t SizeY>
KalmanFilters::CKalmanSREKF< SizeX, SizeY>::CKalmanSREKF ( ) [inline]
Конструктор по умолчанию
```

8.10.3 Методы

8.10.3.1 Correction()

Аргументы

```
Y_msd - вектор измерений, по которым производится коррекция
```

 $\label{eq: CKalman EKF Size X} \begin{tabular}{l}{l}{\bf Переопределяет Metod предка Kalman Filters:: CKalman EKF < Size X, Size Y > .} \\ \begin{tabular}{l}{\bf Переопределяет B Kalman Filters:: CKalman SRECKF < Size X, Size Y > , Kalman Filters:: CKalman SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > Size X, Size Y > .} \\ \begin{tabular}{l}{\bf NEW EMBOR Metod SRECKF > .} \\ \begin{tabular}{l}{\bf NEW E$

KalmanFilters::CKalmanSREUKF< SizeX, SizeY > u KalmanFilters::CKalmanSREUKFB< SizeX, SizeY > .

8.10.3.2 Prediction()

Аргументы

dt | - Время прогноза, [c]

```
Переопределяет метод предка Kalman
Filters::C<br/>Kalman
EKF<br/> SizeX, SizeY >.
```

Переопределяет метод предка KalmanFilters::СКаlmanEKF < SizeX, SizeY > и KalmanFilters::СКalmanSREUKF < SizeX, SizeY > и KalmanFilters::СКalmanSREUKF < SizeX, SizeY > и KalmanFilters::СКаlmanSREUKF < SizeX, SizeX > и KalmanFilters::СКаlmanSREUKF < SizeX > и KalmanFilters::СКalmanFilters::СКalmanFilters::СКalmanFilters::СКalmanFilters::СКalmanFilters::

8.10.3.3 PredictionSREKF()

```
template<size_t SizeX, size_t SizeY>
```

void KalmanFilters::CKalmanSREKF < SizeX, SizeY >::PredictionSREKF (double dt) [inline], [protected] Прогноз SREKF.

1

Аргументы

dt - Время прогноза, [с]

Объявления и описания членов класса находятся в файле:

 \bullet kalman_filter_extended_square_root.h

8.11 Шаблон класса KalmanFilters::CKalmanSREUKF < SizeX, SizeY >

Шаблонный класс квадратно-корневого расширенного сигма-точечного (ансцентного) фильтра Калмана, KK-PCT Φ K (Square Root Extended Unscented Kalman Filter, SR-EUKF) #include <kalman_filter_extended_unscented_square_root.h>

 Граф наследования: Kalman
Filters::C KalmanSREUKF
 SizeX, SizeY >:

Граф связей класса KalmanFilters::CKalmanSREUKF< SizeX, SizeY >:

Открытые члены

• CKalmanSREUKF ()

Конструктор по умолчанию

• virtual void Prediction (double dt)

Прогноз квадратно-корневого расширенного сигма-точечного фильтра Калмана (КК-РСТ Φ K, SR-EUKF)

• virtual void Correction (const arma::vec &Y_msd)

Коррекция квадратно-корневого расширенного сигма-точечного фильтра Калмана (КК-РСТ Φ K, SR-EUKF)

Защищенные члены

• void createSignMatrices ()

Создание матриц знаков

Защищенные данные

• arma::mat J

Матрица знаков при Рху.

• arma::mat Jcorrect

Матрица знаков при коррекции

8.11.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanSREUKF< SizeX, SizeY >
```

Шаблонный класс квадратно-корневого расширенного сигма-точечного (ансцентного) фильтра Калмана, KK-PCT Φ K (Square Root Extended Unscented Kalman Filter, SR-EUKF) Источники:

- [1] A New Extension of the Kalman Filter to Nonlinear Systems, Simon J. Julier, Jeffrey K. Uhlmann, The Robotics Research Group, Department of Engineering Science, The University of Oxford, 1997
- [2] The Unscented Kalman Filter for Nonlinear Estimation, Eric A. Wan and Rudolph van der Merwe Oregon Graduate Institute of Science & Technology 20000 NW Walker Rd, Beaverton, Oregon 97006, 2000 ericwan[at]ece.ogi.edu, rvdmerwe[at]ece.ogi.edu
- [3] Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models, Rudolph van der Merwe & Eric Wan, OGI School of Science & Engineering Oregon Health & Science University Beaverton, Oregon, 97006, USA, 2003 {rvdmerwe,ericwan}[at]ece.ogi.edu
- [4] THE SQUARE-ROOT UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER-← ESTIMATION, Rudolph van der Merwe and Eric A. Wan, Oregon Graduate Institute of Science and Technology 20000 NW Walker Road, Beaverton, Oregon 97006, USA rvdmerwe,ericwan[at]ece.ogi.edu

Внимание

Внимание! В реализации UKF вес нулевой сигма-точки Wcov не может быть отрицательным! (Wmean - может)

Фильтр построен по классическому его варианту НИЖНЕтреугольного разложения Холецкого!

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.11.2 Конструктор(ы)

8.11.2.1 CKalmanSREUKF()

```
template<size_t SizeX, size_t SizeY> KalmanFilters::CKalmanSREUKF < SizeX, SizeY >::CKalmanSREUKF ( ) [inline] Конструктор по умолчанию
```

8.11.3 Методы

8.11.3.1 Correction()

Коррекция квадратно-корневого расширенного сигма-точечного фильтра Калмана (КК-РСТ Φ K, SR-EUKF)

Аргументы

Y_{msd}	- вектор измерений, по которым производится коррекция

Переопределяет метод предка KalmanFilters::CKalmanSREKF< SizeX, SizeY >. Переопределяется в KalmanFilters::CKalmanSREUKFB< SizeX, SizeY >.

8.11.3.2 createSignMatrices()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanSREUKF< SizeX, SizeY>::createSignMatrices ( ) [inline], [protected] Создание матриц знаков
```

8.11.3.3 Prediction()

Прогноз квадратно-корневого расширенного сигма-точечного фильтра Калмана (КК-РСТ Φ K, SR-EUKF)

Аргументы

```
dt | - Время прогноза, [с]
```

Переопределяет метод предка KalmanFilters::CKalmanSREKF< SizeX, SizeY >.

8.11.4 Данные класса

8.11.4.1 J

```
template<size_t SizeX, size_t SizeY> arma::mat KalmanFilters::CKalmanSREUKF< SizeX, SizeY>::J_ [protected] Матрица знаков при Pxy.
```

8.11.4.2 Jcorrect

```
template<size_t SizeX, size_t SizeY>
arma::mat KalmanFilters::CKalmanSREUKF< SizeX, SizeY>::Jcorrect_ [protected]
Матрица знаков при коррекции
Объявления и описания членов класса находятся в файле:
```

 $\bullet \ kalman_filter_extended_unscented_square_root.h$

8.12 Шаблон класса KalmanFilters::CKalmanSREUKFB< SizeX, SizeY >

Шаблонный класс квадратно-корневого расширенного сигма-точечного (ансцентного) фильтра Калмана (блочная фильтрация), KK-PCT Φ K (Square Root Extended Unscented Kalman Filter Block, SR-EUKFB)

```
#include <kalman_filter_extended_unscented_square_root.h> Граф наследования:KalmanFilters::CKalmanSREUKFB< SizeX, SizeY >:
```


Граф связей класса KalmanFilters::CKalmanSREUKFB< SizeX, SizeY >:

Открытые члены

• CKalmanSREUKFB ()

Конструктор по умолчанию

virtual void Correction (const arma::vec &Y_msd)
 Коррекция

Защищенные члены

• void createSignMatricesBlock ()

Создание матриц знаков

Защищенные данные

• arma::mat JcorrectBlock

Матрица знаков для фильтра в блочном виде

8.12.1 Подробное описание

template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanSREUKFB< SizeX, SizeY >

Шаблонный класс квадратно-корневого расширенного сигма-точечного (ансцентного) фильтра Калмана (блочная фильтрация), KK-PCT Φ K (Square Root Extended Unscented Kalman Filter Block, SR-EUKFB)

Источники:

- [1] A New Extension of the Kalman Filter to Nonlinear Systems, Simon J. Julier, Jeffrey K. Uhlmann, The Robotics Research Group, Department of Engineering Science, The University of Oxford, 1997
- [2] The Unscented Kalman Filter for Nonlinear Estimation, Eric A. Wan and Rudolph van der Merwe Oregon Graduate Institute of Science & Technology 20000 NW Walker Rd, Beaverton, Oregon 97006, 2000 ericwan[at]ece.ogi.edu, rvdmerwe[at]ece.ogi.edu
- [3] Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models, Rudolph van der Merwe & Eric Wan, OGI School of Science & Engineering Oregon Health & Science University Beaverton, Oregon, 97006, USA, 2003 {rvdmerwe,ericwan}[at]ece.ogi.edu
- [4] THE SQUARE-ROOT UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER-← ESTIMATION, Rudolph van der Merwe and Eric A. Wan, Oregon Graduate Institute of Science and Technology 20000 NW Walker Road, Beaverton, Oregon 97006, USA rvdmerwe,ericwan[at]ece.ogi.edu

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.12.2 Конструктор(ы)

8.12.2.1 CKalmanSREUKFB()

```
template<size_t SizeX, size_t SizeY>
KalmanFilters::CKalmanSREUKFB<br/>
SizeX, SizeY>::CKalmanSREUKFB ( ) [inline] Конструктор по умолчанию
```

8.12.3 Методы

8.12.3.1 Correction()

Коррекция

Аргументы

```
Y_msd | - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка KalmanFilters::CKalmanSREUKF< SizeX, SizeY >.

8.12.3.2 createSignMatricesBlock()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanSREUKFB< SizeX, SizeY>::createSignMatricesBlock ( ) [inline], [protected] Создание матриц знаков
```

8.12.4 Данные класса

8.12.4.1 JcorrectBlock

```
template<size_t SizeX, size_t SizeY> arma::mat KalmanFilters::CKalmanSREUKFB< SizeX, SizeY>::JcorrectBlock_ [protected] Матрица знаков для фильтра в блочном виде Объявления и описания членов класса находятся в файле:
```

 $\bullet \ \, kalman_filter_extended_unscented_square_root.h$

8.13 Шаблон класса KalmanFilters::CKalmanSRUKF < SizeX, SizeY >

Шаблонный класс квадратно-корневого сигма-точечного (ансцентного) фильтра Калмана, КК-СТФК (КК-АФК) (Square Root Unscented Kalman Filter, SR-UKF) #include <kalman_filter_unscented_square_root.h> Граф наследования:KalmanFilters::CKalmanSRUKF < SizeX, SizeY >:

```
KalmanFiters: CKalmanSREUKF

KalmanFiters: CK
```

Граф связей класса KalmanFilters::CKalmanSRUKF< SizeX, SizeY >:

Открытые члены

• CKalmanSRUKF ()

Конструктор по умолчанию

• virtual void SetupDesignParametersMeanSet (double w0)

Установка параметра w0 ансцентного фильтра (MeanSet)

• virtual void SetupDesignParametersScaledSet (double alpha, double beta, double kappa)

Установка параметров масштабируемого ансцентного преобразования (Scaled UT)

• virtual void SetupDesignParametersCDKF (double h2)

Установка параметра фильтра по рекомендации Central Difference Kalman Filter (CDKF)

• void SetStateTransitionJacobianF (std::function< arma::mat(const arma::vec &X, double dt)> stateTransitionJacobianF)

Установка функции вычисления матрицы перехода состояния F (makeMatrixF)

• void SetObservationJacobianH (std::function< arma::mat(const arma::vec &X)> observation \leftarrow JacobianH)

Установка функции вычисления матрицы перехода измерений Н (makeMatrixH)

• virtual void Prediction (double dt)

Прогноз

virtual void Correction (const arma::vec &Y_msd)

Коррекция

Защищенные члены

• void CorrectionSRUKF (const arma::vec &Y msd)

Коррекция SRUKF.

• void createSignMatrices ()

Создание матриц знаков

Защищенные данные

• arma::mat J

Матрица знаков при Рху.

• arma::mat Jpredict

Матрица знаков при прогнозе

• arma::mat Jcorrect

Матрица знаков при коррекции

• bool negativeZeroCovWeight

Признак отрицательного веса "нулевой" сигма-точки Wcov.

8.13.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanSRUKF< SizeX, SizeY >
```

Шаблонный класс квадратно-корневого сигма-точечного (ансцентного) фильтра Калмана, КК-СТФК (КК-АФК) (Square Root Unscented Kalman Filter, SR-UKF) Источники:

- [1] A New Extension of the Kalman Filter to Nonlinear Systems, Simon J. Julier, Jeffrey K. Uhlmann, The Robotics Research Group, Department of Engineering Science, The University of Oxford, 1997
- [2] The Unscented Kalman Filter for Nonlinear Estimation, Eric A. Wan and Rudolph van der Merwe Oregon Graduate Institute of Science & Technology 20000 NW Walker Rd, Beaverton, Oregon 97006, 2000 ericwan@ece.ogi.edu, rvdmerwe@ece.ogi.edu
- [3] Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models, Rudolph van der Merwe & Eric Wan, OGI School of Science & Engineering Oregon Health & Science University Beaverton, Oregon, 97006, USA, 2003 {rvdmerwe,ericwan}[at]ece.ogi.edu
- [4] THE SQUARE-ROOT UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER-← ESTIMATION, Rudolph van der Merwe and Eric A. Wan, Oregon Graduate Institute of Science and Technology 20000 NW Walker Road, Beaverton, Oregon 97006, USA rvdmerwe,ericwan [at]ece.ogi.edu [5] The J-Orthogonal Square-Root Euler-Maruyama-Based Unscented Kalman Filter for Nonliear Stohastic Systems, Gennady Yu. Kulikov, Maria V. Kulikova, CEMAT, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 LISBOA, Portugal (emails: gennady. ← kulikov[at]tecnico.ulisboa.pt, maria.kulikova[at]ist.utl.pt)

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.13.2 Конструктор(ы)

8.13.2.1 CKalmanSRUKF()

```
template<size_t SizeX, size_t SizeY> KalmanFilters::CKalmanSRUKF< SizeX, SizeY>::CKalmanSRUKF ( ) [inline] Конструктор по умолчанию
```

8.13.3 Методы

8.13.3.1 Correction()

```
template<size_t SizeX, size_t SizeY>
virtual void KalmanFilters::CKalmanSRUKF< SizeX, SizeY >::Correction (
```

```
const arma::vec & Y_msd ) [inline], [virtual]
```

Коррекция

Аргументы

```
Y_msd - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка Kalman Filters::CKalman
UKF
 SizeX, SizeY >.
 Ralman Filters::CKalman SREUKF
SizeX, SizeY >, Kalman Filters::CKalman SREUKFB
SizeX, \updelta Kalman Filters::CKalman SREUKFB
SizeX, \updelta SizeX, SizeY >.

```
8.13.3.2 CorrectionSRUKF()
```

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanSRUKF< SizeX, SizeY>::CorrectionSRUKF ( const arma::vec & Y_msd ) [inline], [protected] Коррекция SRUKF.
```

Аргументы

```
Y msd - вектор измерений, по которым производится коррекция
```

8.13.3.3 createSignMatrices()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanSRUKF< SizeX, SizeY>::createSignMatrices ( ) [inline], [protected] Создание матриц знаков
```

8.13.3.4 Prediction()

Прогноз

Аргументы

```
dt | - Время прогноза, [с]
```

Переопределяет метод предка Kalman Filters::C
Kalman UKF<SizeX, SizeY >. Переопределяется в Kalman Filters::C
Kalman SREUKF<SizeX, SizeY >.

8.13.3.5 SetObservationJacobianH()

См. также

observationJacobianH

8.13.3.6 SetStateTransitionJacobianF()

См. также

stateTransitionJacobianF

8.13.3.7 SetupDesignParametersCDKF()

Установка параметра фильтра по рекомендации Central Difference Kalman Filter (CDKF) Смотри [3]

Аргументы

h2 - параметр разброса сигма-точек ($h^{\wedge}2=3$ типичная рекомендация для гауссовых шумов, [3])

Переопределяет метод предка KalmanFilters::CKalmanUKF < SizeX , SizeY >.

8.13.3.8 SetupDesignParametersMeanSet()

Внимание

Нельзя выбирать w0 так, чтобы нулевой вес был > 0, а остальные меньше нуля. Наоборот - MOXHO, т.е. нулевой вес может быть отрицаительным.

Аргументы

```
oxdot{w0} - параметр разброса сигма точек (oxdot{w0} = [0...1) типичная рекомендация для положительных весов)
```

Переопределяет метод предка KalmanFilters::CKalmanUKF < SizeX, SizeY >.

8.13.3.9 SetupDesignParametersScaledSet()

Установка параметров масштабируемого ансцентного преобразования (Scaled UT) Смотри [2], [5], [6]

Аргументы

alpha	- параметр разброса сигма-точек (alpha = 10^{-3} - типичная рекомендация по van der Merwe)	
beta	- параметр, отвечающий за характер распредеелния (beta $=2$ - нормальное)	
kappa	- параметр, отвечающий за разброс сигма-точек (kappa = 0 или (3 - SizeX) - типичная рекомендация по van der Merwe)	

Переопределяет метод предка Kalman Filters::C
Kalman UKF
 SizeX, SizeY >.

8.13.4 Данные класса

```
8.13.4.1 J
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanSRUKF < SizeX, SizeY >::J [protected]
Матрица знаков при Рху.
8.13.4.2 Jcorrect_
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanSRUKF < SizeX, SizeY >::Jcorrect [protected]
Матрица знаков при коррекции
8.13.4.3 Jpredict
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanSRUKF < SizeX, SizeY >::Jpredict [protected]
Матрица знаков при прогнозе
8.13.4.4 negativeZeroCovWeight
template<size t SizeX, size t SizeY>
bool\ Kalman Filters:: CKalman SRUKF < Size X,\ Size Y > :: negative Zero Cov Weight \qquad [protected]
Признак отрицательного веса "нулевой" сигма-точки Wcov.
Объявления и описания членов класса находятся в файле:
    • kalman filter unscented square root.h
```

8.14 Шаблон класса KalmanFilters::CKalmanSRUKFB< SizeX, SizeY >

Шаблонный класс квадратно-корневого сигма-точечного (ансцентного) фильтра Калмана (блочная фильтрация), KK-СТФКБ (KK-АФКБ) (Square Root Unscented Kalman Filter Block, SR-UKFB) #include = kalman filter unscented square root.h=

 Граф наследования: Kalman
Filters:: CKalmanSRUKFB
 SizeX, SizeY >:

Граф связей класса KalmanFilters::CKalmanSRUKFB< SizeX, SizeY >:

Открытые члены

• CKalmanSRUKFB ()

Конструктор по умолчанию

• virtual void Correction (const arma::vec &Y_msd)
Коррекция квадратно-корневого сигма-точечного фильтра Калмана (КК-СТФК, SR-UKF)

Защищенные члены

void createSignMatricesBlock ()
 Создание матриц знаков

Защищенные данные

• arma::mat JcorrectBlock_ Матрица знаков для фильтра в блочном виде

8.14.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanSRUKFB< SizeX, SizeY >
```

Шаблонный класс квадратно-корневого сигма-точечного (ансцентного) фильтра Калмана (блочная фильтрация), KK-СТФКБ (KK-АФКБ) (Square Root Unscented Kalman Filter Block, SR-UKFB) см. CKalmanSRUKF

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.14.2 Конструктор(ы)

8.14.2.1 CKalmanSRUKFB()

```
template<size_t SizeX, size_t SizeY>
KalmanFilters::CKalmanSRUKFB<br/>
SizeX, SizeY>::CKalmanSRUKFB ( ) [inline] Конструктор по умолчанию
```

8.14.3 Методы

8.14.3.1 Correction()

Коррекция квадратно-корневого сигма-точечного фильтра Калмана (КК-СТФК, SR-UKF)

Аргументы

```
Y_msd | - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка KalmanFilters::CKalmanSRUKF< SizeX, SizeY >.

8.14.3.2 createSignMatricesBlock()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanSRUKFB< SizeX, SizeY>::createSignMatricesBlock ( ) [inline], [protected] Создание матриц знаков
```

8.14.4 Данные класса

8.14.4.1 JcorrectBlock

```
template<size_t SizeX, size_t SizeY>
arma::mat KalmanFilters::CKalmanSRUKFB< SizeX, SizeY>::JcorrectBlock_ [protected]
Матрица знаков для фильтра в блочном виде
Объявления и описания членов класса находятся в файле:
```

• kalman filter unscented square root.h

8.15 Шаблон класса KalmanFilters::CKalmanUKF < SizeX, SizeY >

Шаблонный класс сигма-точечного (ансцентного) фильтра Калмана, $CT\Phi K$ ($A\Phi K$) (Unscented Kalman Filter, UKF)

#include <kalman filter unscented.h>

Граф наследования:KalmanFilters::CKalmanUKF < SizeX, SizeY >:

Граф связей класса Kalman Filters::C
Kalman UKF
< SizeX, SizeY >:

Открытые члены

• CKalmanUKF ()

Конструктор по умолчанию

• virtual void SetupDesignParametersMeanSet (double w0)

Установка параметра w0 ансцентного фильтра (MeanSet)

• virtual void SetupDesignParametersScaledSet (double alpha, double beta, double kappa)

Установка параметров масштабируемого ансцентного преобразования (Scaled UT)

• virtual void SetupDesignParametersCDKF (double h2)

Установка параметра фильтра по рекомендации Central Difference Kalman Filter (CDKF)

• void SetWeightedSumStateSigmas (std::function< arma::vec(const arma::vec &weights, const arma::mat &sigmaPoints)> weightedSumStateSigmas)

Установка функции вычисления взвешенной суммы сигма-точек пространства X

• void SetWeightedSumMeasurementSigmas (std::function< arma::vec(const arma::vec &weights, const arma::mat &sigmaPoints)> weightedSumMeasurementSigmas)

Установка функции вычисления взвешенной суммы сигма-точек пространства Ү.

• virtual void Prediction (double dt)

Прогноз

• virtual void Correction (const arma::vec &Y msd)

Коррекция

Защищенные члены

```
• void PredictionUKF (double dt)
        Прогноз UKF.

    void CorrectionUKF (const arma::vec &Y_msd)

        Коррекция UKF.
   • void SetStateTransitionJacobianF ()
        Запрет доступа
   • void SetObservationJacobianH ()
        Запрет доступа
Защищенные данные
   • int k sigma points
        Число сигма-точек
   • arma::vec weights_mean_
        Веса среднего
   • arma::vec weights covariance
        Веса ковариации
   • arma::mat x est sigma points
        Матрица сигма-точек (сигма-точки - столбцы) в пространстве X на текущем такте, размерность
        [SizeX, k\_sigma\_points\_].
   • arma::mat x pred sigma points
        Матрица сигма-точек (сигма-точки - столбцы) в пространстве X, экстраполированный на текущий
        такт, размерность [SizeX,k sigma points ].
   • arma::mat y pred sigma points
        Матрица сигма-точек (сигма-точки - столбцы) в пространстве Ү, экстраполированный на текущий
        такт, размерность [SizeX,k sigma points].
   • arma::mat dXcal
        Матрица Х-каллиграфическое (матрица сигма-точек - столбцов)
   • arma::mat dYcal
        Матрица Ү-каллиграфическое (матрица сигма-точек - столбцов)
   • arma::mat P_xy_
        Матрица кросс-коварации векторов X и Y, размерность [SizeX * SizeY].
   • arma::mat sqrt P chol
        Корень из матрицы Р.
   • double alpha
        Параметр разброса сигма-точек (alpha = 10^{\circ}-3 типичная рекомендация)
   • double kappa
        Параметр разброса сигма-точек (kappa = 3 - SizeX типичная рекомендация)
   • double beta
        Параметр разброса сигма-точек (beta = 2 - нормальное, 0 - нет сведений о распределении)
```

• double lambda

Автоматически вычисляемый параметр, равный (alpha * alpha) * (SizeX + kappa) - SizeX;.

• double w0

Параметр разброса сигма-точек (0..1)

• double gamma

Автоматически вычисляемый (в методах SetDesignParameters*) параметр (множитель при корне из Р при создании сигма-точек)

- std::function< arma::vec(const arma::vec &weights, const arma::mat &sigmaPoints)> weightedSumStateSigmas
 - Вычисление взвешенной суммы сигма-точек пространства Х
- std::function< arma::vec(const arma::vec &weights, const arma::mat &sigmaPoints)> weightedSumMeasurementSig Вычисление взвешенной суммы сигма-точек пространства Ү.

8.15.1 Подробное описание

```
template<size_t SizeX, size_t SizeY> class KalmanFilters::CKalmanUKF< SizeX, SizeY >
```

Шаблонный класс сигма-точечного (ансцентного) фильтра Калмана, $CT\Phi K$ ($A\Phi K$) (Unscented Kalman Filter, UKF)

Источники:

- [1] A New Extension of the Kalman Filter to Nonlinear Systems, Simon J. Julier, Jeffrey K. Uhlmann, The Robotics Research Group, Department of Engineering Science, The University of Oxford, 1997 [2] Julier S.J., Uhlmann J.K. Unscented filtering and nonlinear estiation // Proc. of the IEEE, 2004, №3.P.401-422
- [3] The Unscented Kalman Filter for Nonlinear Estimation, Eric A. Wan and Rudolph van der Merwe Oregon Graduate Institute of Science & Technology 20000 NW Walker Rd, Beaverton, Oregon 97006, 2000 ericwan[at]ece.ogi.edu, rvdmerwe[at]ece.ogi.edu
- [4] Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models, Rudolph van der Merwe & Eric Wan, OGI School of Science & Engineering Oregon Health & Science University Beaverton, Oregon, 97006, USA, 2003 {rvdmerwe,ericwan}[at]ece.ogi.edu
- [5] THE SQUARE-ROOT UNSCENTED KALMAN FILTER FOR STATE AND PARAMETER-← ESTIMATION, Rudolph van der Merwe and Eric A. Wan, Oregon Graduate Institute of Science and Technology 20000 NW Walker Road, Beaverton, Oregon 97006, USA rvdmerwe,ericwan[at]ece.ogi.edu [6] Sebastian Bitzer, Technische Universität Dresden, https://github.com/sbitzer/UKF-exposed/blob/master/← UKF.pdf

Внимание

Внимание! В реализации UKF вес нулевой сигма-точки Wcov не может быть отрицательным! (Wmean - может)

Фильтр построен по классическому его варианту НИЖНЕтреугольного разложения Холецкоro!

Параметры шаблона

SizeX	- размерность пространства состояния X
SizeY	- размерность пространства измерений Ү

8.15.2 Конструктор(ы)

8.15.2.1 CKalmanUKF()

```
template<size_t SizeX, size_t SizeY>
KalmanFilters::CKalmanUKF< SizeX, SizeY>::CKalmanUKF ( ) [inline]
Конструктор по умолчанию
```

8.15.3 Методы

8.15.3.1 Correction()

Аргументы

```
Y_msd - вектор измерений, по которым производится коррекция
```

Переопределяет метод предка Kalman Filters::C
Kalman EKF
 SizeX, SizeY >.

Переопределяется в KalmanFilters::CKalmanEUKF< SizeX, SizeY >, KalmanFilters::CKalmanSREUKF< SizeX, SizeY KalmanFilters::CKalmanSREUKFB< SizeX, SizeY >, KalmanFilters::CKalmanSRUKF< SizeX, SizeY > и KalmanFilters::CKalmanSRUKFB< SizeX, SizeY >.

8.15.3.2 CorrectionUKF()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanUKF< SizeX, SizeY>::CorrectionUKF ( const arma::vec & Y_msd ) [inline], [protected] Коррекция UKF.
```

Аргументы

```
Y msd - вектор измерений, по которым производится коррекция
```

8.15.3.3 Prediction()

Аргументы

```
dt | - Время прогноза, [c]
```

Переопределяет метод предка KalmanFilters::CKalmanEKF< SizeX, SizeY >.

Переопределяется в Kalman Filters::CKalman
EUKF
 SizeX, SizeY >, Kalman Filters::CKalman SRUKF
 SizeX, SizeY >, Kalman Filters::CKalman SRUKF
 SizeX, SizeY >.

8.15.3.4 PredictionUKF()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanUKF< SizeX, SizeY>::PredictionUKF ( double dt ) [inline], [protected] Прогноз UKF.
```

Аргументы

```
dt | - Время прогноза, [c]
```

8.15.3.5 SetObservationJacobianH()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanUKF< SizeX, SizeY>::SetObservationJacobianH ( ) [inline], [protected] Запрет доступа
```

8.15.3.6 SetStateTransitionJacobianF()

```
template<size_t SizeX, size_t SizeY> void KalmanFilters::CKalmanUKF< SizeX, SizeY>::SetStateTransitionJacobianF ( ) [inline], [protected] Запрет доступа
```

8.15.3.7 SetupDesignParametersCDKF()

Установка параметра фильтра по рекомендации Central Difference Kalman Filter (CDKF) Смотри [4]

Аргументы

```
| \  \, h2 \  \, | - параметр разброса сигма-точек (h^{\wedge}2=3 типичная рекомендация для гауссовых шумов, [3])
```

Переопределяется в KalmanFilters::CKalmanSRUKF < SizeX, SizeY >.

8.15.3.8 SetupDesignParametersMeanSet()

Установка параметра w0 ансцентного фильтра (MeanSet)

При выборе w0 = [0...1) обеспечиваются положительные веса. Смотри [1], [2]

Внимание

Нельзя выбирать w0 так, чтобы нулевой вес был > 0, а остальные меньше нуля. Наоборот - MOЖHO, т.е. нулевой вес может быть отрицательным.

Аргументы

```
\begin{bmatrix} w0 \\ ecob \end{bmatrix} - параметр разброса сигма точек (w0 = [0...1) типичная рекомендация для положительных весов)
```

Переопределяется в KalmanFilters::CKalmanSRUKF < SizeX, SizeY >.

8.15.3.9 SetupDesignParametersScaledSet()

Установка параметров масштабируемого ансцентного преобразования (Scaled UT) Смотри [2], [5], [6]

Аргументы

alpha	- параметр разброса сигма-точек (alpha = 10^{-3} - типичная рекомендация по van der Merwe)
beta	- параметр, отвечающий за характер распредеелния (beta $=2$ - нормальное)

Аргументы

карра - параметр, отвечающий за разброс сигма-точек (карра = 0 или (3 - SizeX) - типичная рекомендация по van der Merwe)

Переопределяется в KalmanFilters::CKalmanSRUKF < SizeX, SizeY >.

8.15.3.10 SetWeightedSumMeasurementSigmas()

```
template<size_t SizeX, size_t SizeY>
void KalmanFilters::CKalmanUKF< SizeX, SizeY >::SetWeightedSumMeasurementSigmas (
std::function< arma::vec(const arma::vec &weights, const arma::mat &sigmaPoints)> weightedSum←
MeasurementSigmas ) [inline]
Установка функции вычисления взвешенной суммы сигма-точек пространства Y.
```

Аргументы

weightedSumMeasurementSigmas	- Функция вычисления взвешенной суммы сигма-точек
	пространства Ү

8.15.3.11 SetWeightedSumStateSigmas()

Аргументы

```
weightedSumStateSigmas | - Функция вычисления взвешенной суммы сигма-точек пространства X
```

8.15.4 Данные класса

```
8.15.4.1 alpha_
template<size_t SizeX, size_t SizeY>
double KalmanFilters::CKalmanUKF< SizeX, SizeY>::alpha_ [protected]
Параметр разброса сигма-точек (alpha = 10^-3 типичная рекомендация)

8.15.4.2 beta_
template<size_t SizeX, size_t SizeY>
double KalmanFilters::CKalmanUKF< SizeX, SizeY>::beta_ [protected]
Параметр разброса сигма-точек (beta = 2 - нормальное, 0 - нет сведений о распределении)

8.15.4.3 dXcal_
template<size_t SizeX, size_t SizeY>
arma::mat KalmanFilters::CKalmanUKF< SizeX, SizeY>::dXcal_ [protected]
```

```
Матрица Х-каллиграфическое (матрица сигма-точек - столбцов)
8.15.4.4 dYcal_
template<size t SizeX, size t SizeY>
arma::mat KalmanFilters::CKalmanUKF< SizeX, SizeY >::dYcal [protected]
Матрица Ү-каллиграфическое (матрица сигма-точек - столбцов)
8.15.4.5 gamma
template<size t SizeX, size t SizeY>
double KalmanFilters::CKalmanUKF < SizeX, SizeY >::gamma [protected]
Автоматически вычисляемый (в методах SetDesignParameters*) параметр (множитель при корне из
Р при создании сигма-точек)
8.15.4.6 k_sigma_points_
template{<}size\_t~SizeX,~size\_t~SizeY{>}
int KalmanFilters::CKalmanUKF < SizeX, SizeY >::k sigma points [protected]
Число сигма-точек
8.15.4.7 kappa
template<size t SizeX, size t SizeY>
\label{lem:condition} double \ \underline{KalmanFilters::CKalmanUKF} < \underline{SizeX}, \ \underline{SizeY} > :: \underline{kappa} \underline{\quad [protected]}
Параметр разброса сигма-точек (kappa = 3 - SizeX типичная рекомендация)
8.15.4.8 lambda
template<size t SizeX, size t SizeY>
double KalmanFilters::CKalmanUKF < SizeX, SizeY >::lambda [protected]
Автоматически вычисляемый параметр, равный ( alpha * alpha ) * ( SizeX + kappa ) - SizeX;.
8.15.4.9 P_xy_
template<size t SizeX, size t SizeY>
arma::mat\ KalmanFilters::CKalmanUKF < SizeX,\ SizeY >::P\_xy\_\quad [protected]
Матрица кросс-коварации векторов X и Y, размерность [SizeX * SizeY].
8.15.4.10 sqrt_P_chol_
template<size_t SizeX, size_t SizeY>
arma::mat KalmanFilters::CKalmanUKF< SizeX, SizeY >::sqrt P_chol_ [protected]
Корень из матрицы Р.
8.15.4.11 w0
template<size t SizeX, size t SizeY>
```

double KalmanFilters::CKalmanUKF < SizeX, SizeY >::w0 [protected]

Параметр разброса сигма-точек (0..1)

8.15.4.12 weightedSumMeasurementSigmas

SizeX, SizeY >::weightedSumStateSigmas [protected]

Веса среднего

```
template<size_t SizeX, size_t SizeY>
std::function<arma::vec( const arma::vec &weights, const arma::mat &sigmaPoints )> KalmanFilters::CKalmanUKF<
SizeX, SizeY>::weightedSumMeasurementSigmas_ [protected]
Вычисление взвешенной суммы сигма-точек пространства Y.

8.15.4.13 weightedSumStateSigmas_
template<size_t SizeX, size_t SizeY>
std::function<arma::vec( const arma::vec &weights, const arma::mat &sigmaPoints )> KalmanFilters::CKalmanUKF<
```

Вычисление взвешенной суммы сигма-точек пространства ${\bf X}$

```
8.15.4.14 weights_covariance_
template<size_t SizeX, size_t SizeY>
arma::vec KalmanFilters::CKalmanUKF< SizeX, SizeY>::weights_covariance_ [protected]
Beca ковариации

8.15.4.15 weights_mean_
template<size_t SizeX, size_t SizeY>
arma::vec KalmanFilters::CKalmanUKF< SizeX, SizeY >::weights_mean_ [protected]
```

```
8.15.4.16 x_est_sigma_points_
template<size_t SizeX, size_t SizeY>
arma::mat KalmanFilters::CKalmanUKF< SizeX, SizeY>::x_est_sigma_points_ [protected]
Матрица сигма-точек (сигма-точки - столбцы) в пространстве X на текущем такте, размерность [SizeX,k sigma points].
```

```
8.15.4.17 x_pred_sigma_points_
template<size_t SizeX, size_t SizeY>
arma::mat KalmanFilters::CKalmanUKF< SizeX, SizeY>::x_pred_sigma_points_ [protected]
Матрица сигма-точек (сигма-точки - столбцы) в пространстве X, экстраполированный на текущий такт, размерность [SizeX,k sigma points].
```

```
8.15.4.18 y_pred_sigma_points_
template<size_t SizeX, size_t SizeY>
arma::mat KalmanFilters::CKalmanUKF< SizeX, SizeY>::y_pred_sigma_points_ [protected]
Матрица сигма-точек (сигма-точки - столбцы) в пространстве Y, экстраполированный на текущий такт, размерность [SizeX,k_sigma_points_].
Объявления и описания членов класса находятся в файле:
```

• kalman filter unscented.h

Предметный указатель

\sim CKalmanEKF	KalmanFilters::CKalmanLKF< SizeX, SizeY
KalmanFilters::CKalmanEKF< SizeX, SizeY	>, 42
>, 32	CKalmanSRCKF
\sim CKalmanLKF	KalmanFilters::CKalmanSRCKF< SizeX
KalmanFilters::CKalmanLKF< SizeX, SizeY	SizeY > 55
>, 42	CKalmanSRCKFB
	KalmanFilters::CKalmanSRCKFB< SizeX
alpha_	SizeY > 59
KalmanFilters::CKalmanUKF< SizeX, SizeY	CKalmanSRECKF
>, 83	KalmanFilters::CKalmanSRECKF< SizeX
	SizeY >, 60
beta_	CKalmanSRECKFB
KalmanFilters::CKalmanUKF< SizeX, SizeY	KalmanFilters::CKalmanSRECKFB< SizeX
>, 83	SizeY >, 62
	CKalmanSREKF
CalculateInnovationCovarianceS	KalmanFilters::CKalmanSREKF< SizeX
KalmanFilters::CKalmanLKF< SizeX, SizeY	SizeY >, 64
>, 42	CKalmanSREUKF
${\it checkBordersMeasurement}_$	KalmanFilters::CKalmanSREUKF< SizeX
KalmanFilters::CKalmanLKF< SizeX, SizeY	SizeY >, 66
>, 50	CKalmanSREUKFB
checkBordersStateAfterCorrection_	KalmanFilters::CKalmanSREUKFB< SizeX
KalmanFilters::CKalmanLKF< SizeX, SizeY	SizeY $>$, 68
>, 50	CKalmanSRUKF
checkBordersStateAfterPrediction_	KalmanFilters::CKalmanSRUKF< SizeX
KalmanFilters::CKalmanLKF< SizeX, SizeY	SizeY >, 71
>, 50	CKalmanSRUKFB
${\it checkDeltaMeasurement}$	KalmanFilters::CKalmanSRUKFB< SizeX
KalmanFilters::CKalmanLKF< SizeX, SizeY	SizeY >, 77
>, 50	CKalmanUKF
checkDeltaState_	KalmanFilters::CKalmanUKF < SizeX, SizeY
KalmanFilters::CKalmanLKF< SizeX, SizeY	
>, 50	>, 80 Correction
checkMatrixDiagPositive	KalmanFilters::CKalmanCKF < SizeX, SizeY
KalmanFilters::CKalmanLKF< SizeX, SizeY	>, 23
>, 43	KalmanFilters::CKalmanECKF< SizeX
CKalmanCKF	SizeY >, 29
KalmanFilters::CKalmanCKF< SizeX, SizeY	KalmanFilters::CKalmanEKF< SizeX, SizeY
>, 23	
CKalmanECKF	>, 32 KalmanFilters::CKalmanEUKF< SizeX
KalmanFilters::CKalmanECKF < SizeX,	
SizeY >, 29	SizeY >, 38
CKalmanEKF	KalmanFilters::CKalmanLKF< SizeX, SizeY
KalmanFilters::CKalmanEKF< SizeX, SizeY	>, 43
>, 32	KalmanFilters::CKalmanSRCKF< SizeX
CKalmanEUKF	SizeY >, 55
KalmanFilters::CKalmanEUKF< SizeX,	KalmanFilters::CKalmanSRCKFB< SizeX
SizeY >, 37	SizeY >, 59
CKalmanLKF	KalmanFilters::CKalmanSRECKF< SizeX
	SizeY >, 60

```
KalmanFilters::CKalmanSRECKFB< SizeX,
                                                    KalmanFilters::CKalmanLKF< SizeX, SizeY
        SizeY >, 62
                                                         >, 43
    KalmanFilters::CKalmanSREKF<
                                        SizeX.
        SizeY >, 64
                                                    KalmanFilters::CKalmanCKF< SizeX, SizeY
    Kalman Filters:: CKalman SREUKF <
                                        SizeX,
        SizeY >, 66
                                                    KalmanFilters::CKalmanUKF< SizeX, SizeY
    KalmanFilters:: CKalmanSREUKFB <
                                        SizeX.
                                                         >, 84
        SizeY >, 69
                                                {\rm GetDeltaY}
    KalmanFilters::CKalmanSRUKF<
                                        SizeX.
                                                    KalmanFilters::CKalmanLKF < \ SizeX, \ SizeY
        SizeY >, 71
    KalmanFilters::CKalmanSRUKFB<
                                        SizeX,
                                                {\bf GetEstimatedCovarianceMatrixP}
        SizeY >, 77
                                                    KalmanFilters::CKalmanLKF< SizeX, SizeY
    KalmanFilters::CKalmanUKF< SizeX, SizeY
                                                         >, 44
        >, 80
                                                GetEstimatedVectorX
CorrectionCKF
                                                    KalmanFilters::CKalmanLKF< SizeX, SizeY
    KalmanFilters::CKalmanCKF< SizeX, SizeY
                                                         >. 44
        >, 23
                                                {\bf GetEstimatedVectorY}
CorrectionSRCKF
                                                    KalmanFilters::CKalmanLKF< SizeX, SizeY
    KalmanFilters::CKalmanSRCKF<
                                        SizeX,
                                                         >. 44
        SizeY >, 55
                                                GetInnovationCovarianceMatrixS
CorrectionSRUKF
                                                    KalmanFilters::CKalmanLKF< SizeX, SizeY
    KalmanFilters::CKalmanSRUKF<
                                        SizeX,
                                                        >, 44
        SizeY >, 72
                                                GetKalmanGainMatrixK
CorrectionUKF
                                                    KalmanFilters::CKalmanLKF< SizeX, SizeY
    KalmanFilters::CKalmanUKF < SizeX, SizeY
        >, 81
                                                GetSizeX
create Sign Matrices \\
                                                    KalmanFilters::CKalmanLKF< SizeX, SizeY
    KalmanFilters:: CKalmanSREUKF <
                                        SizeX.
                                                         >, 45
        SizeY >, 67
                                                GetSizeY
    KalmanFilters::CKalmanSRUKF <
                                        SizeX.
                                                    KalmanFilters::CKalmanLKF< SizeX, SizeY
        SizeY >, 72
                                                         >, 45
createSignMatricesBlock
                                                {\rm GetVersion}
    KalmanFilters::CKalmanSREUKFB<
                                        SizeX,
                                                    KalmanFilters, 20
        SizeY >, 69
                                        SizeX,
    KalmanFilters::CKalmanSRUKFB<
                                                {\rm H}_{-}
        SizeY >, 77
                                                    KalmanFilters::CKalmanLKF< SizeX, SizeY
                                                         >, 51
DeltaY
    KalmanFilters::CKalmanLKF< SizeX, SizeY
        >, 50
                                                    KalmanFilters::CKalmanLKF< SizeX, SizeY
deltaY isSet
                                                        >, 51
    KalmanFilters::CKalmanLKF< SizeX, SizeY
                                                {\bf J}_{-}
dXcal
                                                    KalmanFilters::CKalmanSREUKF <
                                                                                         SizeX,
    KalmanFilters::CKalmanCKF< SizeX, SizeY
                                                        SizeY >, 67
                                                    KalmanFilters::CKalmanSRUKF <
                                                                                         SizeX,
    KalmanFilters::CKalmanUKF< SizeX, SizeY
                                                        SizeY >, 74
        >, 83
                                                Jcorrect
dYcal
                                                    KalmanFilters::CKalmanSREUKF <
                                                                                         SizeX,
    {\it KalmanFilters::} {\it CKalmanCKF} < {\it SizeX}, {\it SizeY}
                                                        SizeY >, 67
                                                    KalmanFilters:: CKalmanSRUKF <
                                                                                         SizeX,
    KalmanFilters::CKalmanUKF< SizeX, SizeY
                                                        SizeY >, 74
        >, 84
                                                JcorrectBlock
                                                    KalmanFilters:: CKalmanSREUKFB <
                                                                                         SizeX,
                                                        SizeY >, 69
    KalmanFilters::CKalmanLKF< SizeX, SizeY
                                                    KalmanFilters::CKalmanSRUKFB <
                                                                                         SizeX,
        >, 51
                                                        SizeY >, 77
fixMatrixMainDiagonalSymmetry
                                                Jpredict
```

KalmanFilters::CKalmanSRUKF< SizeX,	SetStateTransitionModel, 34
SizeY >, 74	stateTransitionJacobianF_, 34
	stateTransitionModel_, 35
K_	KalmanFilters::CKalmanEUKF< SizeX, SizeY >,
KalmanFilters::CKalmanLKF< SizeX, SizeY	35
>, 51	CKalmanEUKF, 37
k_sigma_points_	Correction, 38
KalmanFilters::CKalmanCKF< SizeX, SizeY	Prediction, 38
>, 25	SetObservationJacobianH, 38
KalmanFilters::CKalmanUKF< SizeX, SizeY	SetStateTransitionJacobianF, 38
>, 84	•
Kalman filters, 17	KalmanFilters::CKalmanLKF < SizeX, SizeY >, 39
KalmanFilters, 19	~CKalmanLKF, 42
	CalculateInnovationCovarianceS, 42
GetVersion, 20	$checkBordersMeasurement_, 50$
KalmanFilters::CKalmanCKF < SizeX, SizeY >, 21	$checkBordersStateAfterCorrection_, 50$
CKalmanCKF, 23	$checkBordersStateAfterPrediction_, 50$
Correction, 23	$checkDeltaMeasurement_, 50$
CorrectionCKF, 23	$checkDeltaState_, 50$
$\mathrm{dXcal}_{-},25$	checkMatrixDiagPositive, 43
$dYcal_{-}, 25$	CKalmanLKF, 42
$gamma_, 25$	Correction, 43
k_sigma_points_, 25	DeltaY_, 50
$P_{xy}, \overline{25}$	deltaY isSet, 51
Prediction, 24	_
PredictionCKF, 24	F_, 51 fixMatrixMainDiagonalSymmetry, 43
SetObservationJacobianH, 24	
SetStateTransitionJacobianF, 24	GetDeltaY, 44
SetupDesignParametersCubatureBaseSet, 24	GetEstimatedCovarianceMatrixP, 44
SetWeightedSumMeasurementSigmas, 24	GetEstimatedVectorX, 44
	GetEstimatedVectorY, 44
SetWeightedSumStateSigmas, 25	GetInnovationCovarianceMatrixS, 44
sqrt_P_chol_, 26	GetKalmanGainMatrixK, 44
weightedSumMeasurementSigmas_, 26	GetSizeX, 45
weightedSumStateSigmas_, 26	GetSizeY, 45
weights_covariance_, 26	$\mathrm{H}_{_},51$
weights_mean_, 26	I_, 51
x_est_sigma_points_, 26	$K_{-}^{-}, 51$
x_pred_sigma_points_, 26	operator=, 45
y_pred_sigma_points_, 26	P_, 51
KalmanFilters::CKalmanECKF< SizeX, SizeY >,	Prediction, 45
27	prediction isDone, 51
CKalmanECKF, 29	- · · · · · · · · · · · · · · · · · · ·
Correction, 29	$Q_{-}, 51$
Prediction, 29	R_{\perp} , 52
SetObservationJacobianH, 29	S_{-} , 52
SetStateTransitionJacobianF, 30	SetCheckBordersMeasurement, 46
	SetCheckBordersStateAfterCorrection, 46
KalmanFilters::CKalmanEKF < SizeX, SizeY >, 30	SetCheckBordersStateAfterPrediction, 46
~CKalmanEKF, 32	SetCheckDeltaMeasurement, 46
CKalmanEKF, 32	SetCheckDeltaState, 46
Correction, 32	SetDeltaY, 47
observationJacobianH_, 34	SetEstimateCovarianceMatrixP, 47
observationModel_, 34	SetEstimateCovarianceMatrixPdiag, 47
Prediction, 32	SetEstimatedVectorX, 47
PredictionEKF, 32	SetEstimatedVectorY, 48
SetObservationJacobianH, 33	SetMeasuredVectorY, 48
SetObservationMatrixH, 33	SetObservationCovarianceMatrixR, 48
SetObservationModel, 33	SetObservationCovarianceMatrixRt, 48 SetObservationCovarianceMatrixRdiag, 48
SetStateTransitionJacobianF, 33	SetObservationCovarianceMatrixItdiag, 48 SetObservationMatrixH, 49
SetStateTransitionJacobianLinearF, 33	
SetStateTransitionMatrixF, 33	SetProcessCovarianceMatrixQ, 49

SetProcessCovarianceMatrixQdiag, 49	createSignMatrices, 72
SetStateTransitionJacobianLinearF, 49	J_{0} , 74
SetStateTransitionMatrixF, 50	Jcorrect_, 74
SizeX_, 52	Jpredict , 74
SizeY_, 52	negativeZeroCovWeight , 74
stateTransitionJacobianLinearF_, 52	Prediction, 72
	SetObservationJacobianH, 72
X_est_, 52	
X_pred_, 52	SetStateTransitionJacobianF, 72
Y_est_, 53	SetupDesignParametersCDKF, 73
Y_msd_, 53	SetupDesignParametersMeanSet, 73
Y_msd_isSet, 53	SetupDesignParametersScaledSet, 73
$Y_{pred}, 53$	KalmanFilters::CKalmanSRUKFB< SizeX, SizeY
KalmanFilters::CKalmanSRCKF < SizeX, SizeY >,	>, 74
53	CKalmanSRUKFB, 77
CKalmanSRCKF, 55	Correction, 77
Correction, 55	createSignMatricesBlock, 77
CorrectionSRCKF, 55	JcorrectBlock_, 77
Prediction, 55	KalmanFilters::CKalmanUKF < SizeX, SizeY >, 78
SetObservationJacobianH, 56	alpha_, 83
SetStateTransitionJacobianF, 56	beta_, 83
KalmanFilters::CKalmanSRCKFB< SizeX, SizeY	CKalmanUKF, 80
>, 56	Correction, 80
CKalmanSRCKFB, 59	CorrectionUKF, 81
Correction, 59	dXcal_, 83
KalmanFilters::CKalmanSRECKF< SizeX, SizeY	dYcal_, 84
>, 59	gamma_, 84
CKalmanSRECKF, 60	k_sigma_points_, 84
Correction, 60	kappa_, 84
Prediction, 61	lambda_, 84
KalmanFilters::CKalmanSRECKFB< SizeX,	P_xy_, 84
SizeY >, 61	Prediction, 81
CKalmanSRECKFB, 62	PredictionUKF, 81
Correction, 62	SetObservationJacobianH, 81
KalmanFilters::CKalmanSREKF <sizex,sizey>,</sizex,sizey>	SetStateTransitionJacobianF, 81
62	SetupDesignParametersCDKF, 82
CKalmanSREKF, 64	SetupDesignParametersMeanSet, 82
Correction, 64	SetupDesignParametersScaledSet, 82
Prediction, 64	SetWeightedSumMeasurementSigmas, 83
PredictionSREKF, 64	SetWeightedSumStateSigmas, 83
KalmanFilters::CKalmanSREUKF< SizeX, SizeY	sqrt_P_chol_, 84
>, 65	w0 , 84
CKalmanSREUKF, 66	weightedSumMeasurementSigmas , 84
•	
Correction, 66	weightedSumStateSigmas_, 85
createSignMatrices, 67	weights_covariance_, 85
J_{\perp} , 67	weights_mean_, 85
Jcorrect_, 67	x_est_sigma_points_, 85
Prediction, 67	x_pred_sigma_points_, 85
KalmanFilters::CKalmanSREUKFB < SizeX,	y_pred_sigma_points_, 85
SizeY >, 67	kappa_
CKalmanSREUKFB, 68	KalmanFilters::CKalmanUKF< SizeX, SizeY
Correction, 69	>, 84
createSignMatricesBlock, 69	
JcorrectBlock_, 69	lambda_
KalmanFilters::CKalmanSRUKF < SizeX, SizeY >,	KalmanFilters::CKalmanUKF< SizeX, SizeY
69	>, 84
CKalmanSRUKF, 71	
Correction, 71	${\it negative Zero Cov Weight}_$
CorrectionSRUKF, 72	KalmanFilters::CKalmanSRUKF < SizeX,
	SizeY > 74

$observation Jacobian H_$	${\it KalmanFilters::CKalmanLKF} < {\it SizeX}, {\it SizeY}$
KalmanFilters::CKalmanEKF< SizeX, SizeY	>, 51
>, 34 observationModel	R
KalmanFilters::CKalmanEKF< SizeX, SizeY	KalmanFilters::CKalmanLKF< SizeX, SizeY
>, 34	>, 52
operator=	
KalmanFilters::CKalmanLKF< SizeX, SizeY	S
>, 45	KalmanFilters::CKalmanLKF< SizeX, SizeY
_	>, 52 SetCheckBordersMeasurement
P_ KIL DIL GKIL IKD GI V GI V	KalmanFilters::CKalmanLKF < SizeX, SizeY
KalmanFilters::CKalmanLKF< SizeX, SizeY	>, 46
>, 51	SetCheckBordersStateAfterCorrection
P_xy_ KalmanFilters::CKalmanCKF< SizeX, SizeY	KalmanFilters::CKalmanLKF< SizeX, SizeY
>, 25	>, 46
KalmanFilters::CKalmanUKF< SizeX, SizeY	SetCheckBordersStateAfterPrediction
>, 84	KalmanFilters::CKalmanLKF< SizeX, SizeY
Prediction	>, 46
KalmanFilters::CKalmanCKF< SizeX, SizeY	SetCheckDeltaMeasurement
>, 24	KalmanFilters::CKalmanLKF< SizeX, SizeY
KalmanFilters::CKalmanECKF < SizeX,	>, 46
SizeY >, 29	SetCheckDeltaState
KalmanFilters::CKalmanEKF< SizeX, SizeY	KalmanFilters::CKalmanLKF< SizeX, SizeY >, 46
>, 32	SetDeltaY
KalmanFilters::CKalmanEUKF< SizeX, SizeY >, 38	KalmanFilters::CKalmanLKF< SizeX, SizeY
KalmanFilters::CKalmanLKF< SizeX, SizeY	>, 47
>, 45	SetEstimateCovarianceMatrixP
KalmanFilters::CKalmanSRCKF< SizeX,	KalmanFilters::CKalmanLKF< SizeX, SizeY
SizeY >, 55	>, 47
$KalmanFilters:: CKalmanSRECKF < \hspace{1.5cm} SizeX,$	Set Estimate Covariance Matrix P diag
SizeY > 61	KalmanFilters::CKalmanLKF< SizeX, SizeY
KalmanFilters::CKalmanSREKF< SizeX,	>, 47
SizeY >, 64	SetEstimatedVectorX KalmanFilters::CKalmanLKF< SizeX, SizeY
KalmanFilters::CKalmanSREUKF< SizeX,	>, 47
SizeY >, 67 KalmanFilters::CKalmanSRUKF < SizeX,	SetEstimatedVectorY
SizeY $>$, 72	KalmanFilters::CKalmanLKF< SizeX, SizeY
KalmanFilters::CKalmanUKF< SizeX, SizeY	>, 48
>, 81	$\operatorname{SetMeasuredVectorY}$
prediction is Done	KalmanFilters::CKalmanLKF< SizeX, SizeY
KalmanFilters::CKalmanLKF< SizeX, SizeY	>, 48
>, 51	SetObservationCovarianceMatrixR
PredictionCKF	KalmanFilters::CKalmanLKF< SizeX, SizeY
KalmanFilters::CKalmanCKF< SizeX, SizeY	>, 48
>, 24	SetObservationCovarianceMatrixRdiag KalmanFilters::CKalmanLKF< SizeX, SizeY
PredictionEKF	>, 48
KalmanFilters::CKalmanEKF< SizeX, SizeY	SetObservationJacobianH
>, 32 PredictionSREKF	KalmanFilters::CKalmanCKF< SizeX, SizeY
KalmanFilters::CKalmanSREKF< SizeX,	>, 24
SizeY $>$, 64	KalmanFilters::CKalmanECKF< SizeX,
PredictionUKF	SizeY >, 29
${\it KalmanFilters::CKalmanUKF} < {\it SizeX}, {\it SizeY}$	KalmanFilters::CKalmanEKF< SizeX, SizeY
>, 81	>, 33
0	KalmanFilters::CKalmanEUKF< SizeX,
$\mathrm{Q}_{_}$	SizeY >, 38

```
KalmanFilters::CKalmanSRCKF<
                                         SizeX,
                                                         SizeY >, 73
        SizeY >, 56
                                                     KalmanFilters::CKalmanUKF< SizeX, SizeY
    KalmanFilters::CKalmanSRUKF <
                                         SizeX.
                                                         >, 82
        SizeY >, 72
                                                Setup De sign Parameters Scaled Set\\
    KalmanFilters::CKalmanUKF< SizeX, SizeY
                                                     KalmanFilters:: CKalmanSRUKF <
                                                                                         SizeX,
                                                         SizeY >, 73
        >, 81
{\bf SetObservationMatrix} {\bf H}
                                                     KalmanFilters::CKalmanUKF< SizeX, SizeY
    KalmanFilters::CKalmanEKF< SizeX, SizeY
                                                         >, 82
                                                SetWeightedSumMeasurementSigmas
    KalmanFilters::CKalmanLKF< SizeX, SizeY
                                                     KalmanFilters::CKalmanCKF< SizeX, SizeY
        >, 49
SetObservationModel
                                                     KalmanFilters::CKalmanUKF< SizeX, SizeY
    KalmanFilters::CKalmanEKF< SizeX, SizeY
                                                         >, 83
                                                Set Weighted Sum State Sigmas \\
Set Process Covariance Matrix Q\\
                                                     KalmanFilters::CKalmanCKF< SizeX, SizeY
    KalmanFilters::CKalmanLKF< SizeX, SizeY
        >, 49
                                                     KalmanFilters::CKalmanUKF< SizeX, SizeY
SetProcessCovarianceMatrixQdiag
                                                         >, 83
    KalmanFilters::CKalmanLKF< SizeX, SizeY
                                                SizeX
                                                     KalmanFilters::CKalmanLKF< SizeX, SizeY
        >, 49
Set State Transition Jacobian F\\
                                                         >, 52
                                                SizeY
    KalmanFilters::CKalmanCKF< SizeX, SizeY
                                                     KalmanFilters::CKalmanLKF< SizeX, SizeY
    KalmanFilters::CKalmanECKF<
                                         SizeX,
                                                         >, 52
        SizeY >, 30
                                                sqrt_P_chol_
    KalmanFilters::CKalmanEKF< SizeX, SizeY
                                                     KalmanFilters::CKalmanCKF< SizeX, SizeY
                                                         >, 26
    KalmanFilters::CKalmanEUKF<
                                         SizeX,
                                                     KalmanFilters::CKalmanUKF< SizeX, SizeY
        SizeY >, 38
                                                         >. 84
    KalmanFilters:: CKalmanSRCKF <
                                                state Transition Jacobian F\\
                                         SizeX,
        SizeY >, 56
                                                     KalmanFilters::CKalmanEKF< SizeX, SizeY
    KalmanFilters::CKalmanSRUKF<
                                         SizeX,
        SizeY >, 72
                                                state Transition Jacobian Linear F\\
                                                     KalmanFilters::CKalmanLKF< SizeX, SizeY
    KalmanFilters::CKalmanUKF< SizeX, SizeY
        >, 81
                                                         >, 52
Set State Transition Jacobian Linear F\\
                                                state Transition Model \\
                                                     KalmanFilters::CKalmanEKF< SizeX, SizeY
    KalmanFilters::CKalmanEKF< SizeX, SizeY
                                                         >, 35
    KalmanFilters::CKalmanLKF< SizeX, SizeY
                                                w0
        >, 49
                                                     KalmanFilters::CKalmanUKF< SizeX, SizeY
SetStateTransitionMatrixF\\
                                                         >, 84
    KalmanFilters::CKalmanEKF< SizeX, SizeY
                                                weighted Sum Measurement Sigmas\\
                                                     KalmanFilters::CKalmanCKF< SizeX, SizeY
    KalmanFilters::CKalmanLKF< SizeX, SizeY
                                                         >, 26
        >, 50
                                                     KalmanFilters::CKalmanUKF< SizeX, SizeY
SetStateTransitionModel
                                                         >, 84
    KalmanFilters::CKalmanEKF< SizeX, SizeY
                                                weightedSumStateSigmas
        >, 34
                                                     KalmanFilters::CKalmanCKF< SizeX, SizeY
{\bf Setup De sign Parameters CDKF}
    KalmanFilters::CKalmanSRUKF <
                                         SizeX.
                                                     KalmanFilters::CKalmanUKF< SizeX, SizeY
        SizeY >, 73
                                                         >, 85
    KalmanFilters::CKalmanUKF< SizeX, SizeY
                                                weights covariance
        >, 82
                                                     KalmanFilters::CKalmanCKF < SizeX, SizeY
{\bf Setup De sign Parameters Cubature Base Set}
    KalmanFilters::CKalmanCKF< SizeX, SizeY
                                                     KalmanFilters::CKalmanUKF< SizeX, SizeY
        >, 24
                                                         >, 85
{\bf Setup De sign Parameters Mean Set}
    {\bf Kalman Filters:: CKalman SRUKF} <
                                                weights_mean_
                                         SizeX,
```

```
KalmanFilters::CKalmanCKF< SizeX, SizeY
    KalmanFilters::CKalmanUKF< SizeX, SizeY
        >, 85
X est
    KalmanFilters::CKalmanLKF< SizeX, SizeY
        >, 52
x est sigma points
    KalmanFilters::CKalmanCKF< SizeX, SizeY
    KalmanFilters::CKalmanUKF< SizeX, SizeY
        >, 85
X_{pred}
    KalmanFilters::CKalmanLKF< SizeX, SizeY
        >, 52
x_pred_sigma_points_
    KalmanFilters::CKalmanCKF< SizeX, SizeY
    KalmanFilters::CKalmanUKF< SizeX, SizeY
        >, 85
    KalmanFilters::CKalmanLKF< SizeX, SizeY
        >, 53
Y \text{ msd}
    {\it KalmanFilters::CKalmanLKF} < {\it SizeX}, {\it SizeY}
        >, 53
Y msd isSet
    KalmanFilters::CKalmanLKF< SizeX, SizeY
        >, 53
Y pred
    KalmanFilters::CKalmanLKF< SizeX, SizeY
        >, 53
y_pred_sigma_points
    KalmanFilters::CKalmanCKF< SizeX, SizeY
    KalmanFilters::CKalmanUKF< SizeX, SizeY
        >, 85
```