

Affine transform

$$\begin{bmatrix} x_0 & y_0 \\ x_1 & y_1 \\ x_2 & y_2 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} = \begin{bmatrix} x'_0 & y'_0 \\ x'_1 & y'_1 \\ x'_2 & y'_2 \\ \vdots & \vdots \\ x'_n & y'_n \end{bmatrix} * R + T$$

Corresponding pairs

Affine transform

$$\begin{bmatrix} x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & 1 \end{bmatrix} = \begin{bmatrix} x'_0 & y'_0 & 1 \\ x'_1 & y'_1 & 1 \\ x'_2 & y'_2 & 1 \\ \vdots & \vdots & \vdots \\ x'_n & y'_n & 1 \end{bmatrix} * R'$$

$$R' = \begin{bmatrix} a & c & 0 \\ b & d & 0 \\ \Delta x & \Delta y & 1 \end{bmatrix}$$

Affine transform

$$A = B * R'$$

$$B^{-1} * A = R'$$

$$(B^T * B)^{-1} * B^T * A = R'$$

$$R' = \begin{bmatrix} a & c & 0 \\ b & d & 0 \\ \Delta x & \Delta y & 1 \end{bmatrix}$$

Rigid-body transform

$$A = B * R'$$

$$R_{rigid}' = \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ \Delta x & \Delta y & 1 \end{bmatrix}$$

$$R_{stretch}' = \begin{bmatrix} k_x & 0 & 0 \\ 0 & k_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ \Delta x & \Delta y & 1 \end{bmatrix}$$

$$R_{sheer}{}' = \begin{bmatrix} k_x & k_{xy} & 0 \\ k_{yx} & k_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & \sin(\theta) & 0 \\ -\sin(\theta) & \cos(\theta) & 0 \\ \Delta x & \Delta y & 1 \end{bmatrix}$$
 Same as affine

ICP (iterative closest point)

$$\begin{bmatrix} x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & 1 \end{bmatrix} = \begin{bmatrix} x'_0 & y'_0 & 1 \\ x'_1 & y'_1 & 1 \\ x'_2 & y'_2 & 1 \\ \vdots & \vdots & \vdots \\ x'_n & y'_n & 1 \end{bmatrix} * R'$$

Initial Guess of correspondence (lst1,lst12)

While():

A(lst1) = R * B(lst2)
Calculate transform
Apply transform
Remove bad points
update correspondence (lst1,lst12)

ICP (iterative closest point)

$$\begin{bmatrix} x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ \vdots & \vdots & \vdots \\ x_n & y_n & 1 \end{bmatrix} = \begin{bmatrix} x'_0 & y'_0 & 1 \\ x'_1 & y'_1 & 1 \\ x'_2 & y'_2 & 1 \\ \vdots & \vdots & \vdots \\ x'_n & y'_n & 1 \end{bmatrix} * R'$$

ICP (iterative closest point)

Distance =
$$\sqrt{(x - x')^2 + (y - y')^2}$$

Distance =
$$\sqrt{(x - x')^2 + (y - y')^2 + (shape - shape')^2}$$

Color information

- Dominant color
 - Most prominent color in a region around point

Grab pixels in kernel around point

Bin to histogram or k-means cluster

Report largest bin

Color information

- Scalable color
 - Convert to HSV → hue

Convert to HSV

Discard S and V channels

Report Hue

Color layout description

- Spatial color information around point
 - Convert to YCrCb format
 - Discrete Cosine Transform

Convert to YCrCr (brightness (luma), Blue-luma, Red-luma)

Run a DCT on brightness

Report DCT coefficients

Statistical Texture Descriptors

- Compute the statistical properties in a region
 - Variance (<x^2>)
 - Jerk (<x^3>)
 - Homogeneity <1/(1+|x|)>
 - Inverse Var <1/(x^2)>
 - Entropy <prob*log(prob)>
 - Energy <prob^2>

Texture Energy Descriptors

Convolution kernels

```
[1 4 6 4 1] (ridge)
[-1 -2 0 +2 +1] (edge)
[-1 0 2 0 -1] (spot)
[+1 -4 +6 -4 +1] (ripple)
[-1 +2 0 -2 +1] (wave)
```

Texture Energy Descriptors

- Convolution kernels
 - 4 x 4
 - discard symmetric
 - = 9 terms

Structured Texture Descriptors

- Convolution kernel is texture sample
 - Regional correlation with texture sample

