从DPG到DDPG

肖淇文, Apr/20/2024

[!important] 本文仅为大纲

I. DPG (Deterministic Policy Gradient)

易混淆符号规定:

符号及定义	含义
$r_t^{\gamma} = \sum\limits_{k=t}^{\infty} \gamma^{k-t} r(s_k, a_k)$	discounted reward from time-step t
$J(\pi) = \mathbb{E}[r_1^\gamma \pi]$	performance objective
$p(s o s',t,\pi)$	density at state s^\prime after t steps from s
$ ho^{\pi}(s') = \int_{\mathcal{S}} \sum_{t=1}^{\infty} \gamma^{t-1} p_1(s) p(s ightarrow s', t, \pi) \mathrm{d}s$	discounted state distribution
$V^\pi(s)=\mathbb{E}[r_1^\gamma S_1=s;\pi]$	state value
$Q^\pi(s,a) = \mathbb{E}[r_1^\gamma S_1=s,A_1=a;\pi]$	action value

因此有:

$$J(\pi_{ heta}) = \int_{\mathcal{S}}
ho^{\pi}(s) \int_{\mathcal{A}} \pi_{ heta}(s,a) r(s,a) \mathrm{d}a \mathrm{d}s \ = \mathbb{E}_{s \sim
ho^{\pi}, a \sim \pi_{ heta}}[r(s,a)]$$

I.A. Stochastic Policy Gradient Theorem

使用梯度上升最大化 $J(\pi_{\theta})$ 需要求解梯度,根据随机策略梯度定理:

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{s \sim \rho^{\pi}, a \sim \pi_{\theta}} [\nabla_{\theta} \pi_{\theta}(a|s) Q^{\pi}(s, a)]$$
(1)

I.B. Stochastic Actor-Critic

Actor: 由 (1) 式梯度上升更新 θ .

Critic: 参数 w 通过temporal-difference learning近似 $Q^w(s,a) \approx Q^\pi(s,a)$.

会产生bias,除非满足:

1.
$$Q^w(s,a) =
abla_{ heta} \log \pi_{ heta}(a|s)^ op w$$
,以此来满足 (1) 式;

2.
$$w$$
 最小化MSE $\epsilon^2(w)=\mathbb{E}_{s\sim
ho^\pi,a\sim\pi_ heta}\left[(Q^w(s,a)-Q^\pi(s,a))^2
ight].$

对1.的证明(Sutton, 1999):

如果达到局部最优,则有

$$\int_{\mathcal{S}}
ho^{\pi}(s) \int_{\mathcal{A}} \pi_{ heta}(s,a) \left[Q^{\pi}(s,a) - Q^w(s,a)
ight]
abla_w Q^w(s,a) \mathrm{d}a \mathrm{d}s = 0$$

此时如果满足

$$Q^w(s,a) =
abla_{ heta} \log \pi_{ heta}(a|s)^ op w$$

则有

$$\int_{\mathcal{S}}
ho^{\pi}(s) \int_{\mathcal{A}} \pi_{ heta}(s,a) \left[Q^{\pi}(s,a) - Q^w(s,a)
ight]
abla_{ heta} \log \pi_{ heta}(a|s) \mathrm{d}a \mathrm{d}s = 0$$

可知估计误差 $[Q^{\pi}(s,a)-Q^{w}(s,a)]$ 与策略梯度 $\nabla_{\theta}\pi_{\theta}(a|s)$ 正交。

由随机策略梯度定理:

$$egin{aligned}
abla_{ heta} J(\pi_{ heta}) &= \int_{\mathcal{S}}
ho^{\pi}(s) \int_{\mathcal{A}} oldsymbol{Q}^{\pi}(s,a)
abla_{ heta} \pi_{ heta}(a|s) \mathrm{d}a \mathrm{d}s \ &- \int_{\mathcal{S}}
ho^{\pi}(s) \int_{\mathcal{A}} \pi_{ heta}(s,a) \left[oldsymbol{Q}^{\pi}(s,a) - Q^{w}(s,a)
ight]
abla_{ heta} \log \pi_{ heta}(a|s) \mathrm{d}a \mathrm{d}s \ &= \int_{\mathcal{S}}
ho^{\pi}(s) \int_{\mathcal{A}} Q^{w}(s,a)
abla_{ heta} \pi_{ heta}(a|s) \mathrm{d}a \mathrm{d}s \end{aligned}$$

更直观地说,估计函数 $Q^w(s,a)$ 与策略梯度在features上呈线性关系。

对于条件2,实际应用中可能不会去满足,而是使用temporal-difference learning来提高效率。

I.C. Off-Policy Actor-Critic

Off-policy: $\beta(a|s) \neq \pi_{\theta}(a|s)$.

Performance objective 一般被更改为目标策略 π 在行为策略 β 的状态分布上的平均价值:

$$egin{aligned} J_eta(\pi_ heta) &= \int_{\mathcal{S}}
ho^eta(s) V^\pi(s) \mathrm{d}s \ &= \int_{\mathcal{S}} \int_{\mathcal{A}}
ho^eta(s) \pi_ heta(a|s) Q^\pi(s,a) \mathrm{d}a \mathrm{d}s \end{aligned}$$

再求梯度:

$$egin{aligned}
abla_{ heta} J_{eta}(\pi_{ heta}) &pprox \int_{\mathcal{S}} \int_{\mathcal{A}}
ho^{eta}(s)
abla_{ heta} \pi_{ heta}(a|s) Q^{\pi}(s,a) \mathrm{d}a \mathrm{d}s \ &= \mathbb{E}_{s \sim
ho^{eta}} \left[\int_{\mathcal{A}} eta_{ heta}(a|s) rac{\pi_{ heta}(a|s)}{eta_{ heta}(a|s)}
abla_{ heta} \log \pi_{ heta}(a|s) Q^{\pi}(s,a) \mathrm{d}a
ight] \ &= \mathbb{E}_{s \sim
ho^{eta}, a \sim eta} \left[rac{\pi_{ heta}(a|s)}{eta_{ heta}(a|s)}
abla_{ heta} \log \pi_{ heta}(a|s) Q^{\pi}(s,a)
ight] \end{aligned}$$

丟掉了 $abla_{ heta}Q^{\pi}(s,a)$ (因为难以估计) , 但是可以保留local optima.

为什么?证明如下 (来自Degris et al., Off-Policy Actor-Critic, 2012):

定理:对于任何策略参数 θ ,令

$$heta' = heta + lpha \int_{\mathcal{S}} \int_{\mathcal{A}}
ho^eta(s)
abla_ heta \pi_ heta(a|s) Q^\pi(s,a) \mathrm{d}a \mathrm{d}s$$

则存在 $\epsilon > 0$ 使得 $\forall \alpha < \epsilon$,

$$J_eta(\pi_{ heta'}) \geq J_eta(\pi_{ heta})$$

具体证明过程略。由此可知这种梯度上升方式是可行的。

在Off-Policy Actor-Critic架构中,Critic的目标进而改为估计 $V^v(s) \approx V^\pi(s)$.

由于 $Q^\pi(s,a)$ 未知,使用temporal-difference error $\delta_t=r_{t+1}+\gamma V^v(s_{t+1})-V^v(s_t)$,可证明是真实梯度的近似。

Actor和Critic都使用importance sampling ratio $\dfrac{\pi_{\theta}(a|s)}{\beta_{\theta}(a|s)}$ 来调整使得actions是根据 π 来选择而不是 β .

I.D. Gradients of Deterministic Policies

确定性策略用 μ 表示。

如果直接令 $\mu^{k+1}(s) = \arg\max_{a} Q^{\mu^k}(s,a)$,在连续动作空间里每一步都需要求最大值,不方便。

替代方案是使策略以 ∇Q 的方向移动,即

$$heta^{k+1} = heta^k + lpha \mathbb{E}_{s \sim
ho^{\mu^k}} \left[
abla_{ heta} Q^{\mu^k}(s, \mu_{ heta}(s))
ight]$$

可以看到对于策略的提升可被分解为action value对action的梯度以及策略对策略参数的梯度:

$$heta^{k+1} = heta^k + lpha \mathbb{E}_{s \sim
ho^{\mu^k}, a = \mu_{ heta}(s)} \left[
abla_{ heta} \mu_{ heta}(s)
abla_a Q^{\mu^k}(s, a)
ight]$$

DPG定理证明上面的更新就是performance objective的梯度方向,即

$$abla_{ heta} J(\mu_{ heta}) = \mathbb{E}_{s \sim
ho^{\mu^k}, a = \mu_{ heta}(s)} \left[
abla_{ heta} \mu_{ heta}(s)
abla_{a} Q^{\mu^k}(s, a)
ight]$$

另外文章还证明了DP是SP的极限形式。

I.D.1. On-Policy Deterministic Actor-Critic

虽然是deterministic, 但是在噪声较大的情况下也能保证exploration.

算法流程:

$$egin{aligned} \delta_t &= r_t + \gamma Q^w(s_{t+1}, a_{t+1}) - Q^w(s_t, a_t) \ & w_{t+1} &= w_t + lpha_w \delta_t
abla_w Q^w(s_t, a_t) \ & heta_{t+1} &= heta_t + lpha_ heta
abla_ heta \mu_ heta(s_t)
abla_a Q^w(s_t, a_t)|_{a = \mu_ heta(s)} \end{aligned}$$

I.D.2. Off-Policy Deterministic Actor-Critic

跟stochastic情况相似,有

$$abla_{ heta} J_{eta}(\mu_{ heta}) pprox \mathbb{E}_{s \sim
ho^{eta}, a = \mu_{ heta}(s)} \left[
abla_{ heta} \mu_{ heta}(s)
abla_{a} Q^{\mu}(s, a)
ight]$$

算法流程:

$$egin{aligned} \delta_t &= r_t + \gamma Q^w(s_{t+1}, \mu_{ heta}(s_{t+1})) - Q^w(s_t, a_t) \ w_{t+1} &= w_t + lpha_w \delta_t
abla_w Q^w(s_t, a_t) \ heta_{t+1} &= heta_t + lpha_{ heta}
abla_{ heta} \mu_{ heta}(s_t)
abla_a Q^w(s_t, a_t)|_{a = \mu_{ heta}(s)} \end{aligned}$$

I.D.3. Compatible Function Approximation

相似地, $Q^w(s,a)$ 的选择需要满足下列两个条件:

1.
$$\nabla_a Q^w(s,a)|_{a=\mu_{\theta}(s)} = \nabla_{\theta} \mu_{\theta}(s)^{\top} w;$$
2. w 最小化 $MSE(\theta,w) = \mathbb{E}[\epsilon(s;\theta,w)^{\top}\epsilon(s;\theta,w)]$,其中 $\epsilon(s;\theta,w) = \nabla_a Q^w(s,a)|_{a=\mu_{\theta}(s)} - \nabla_a Q^\mu(s,a)|_{a=\mu_{\theta}(s)}.$

对条件1的证明类似于stochastic的情况。

对条件2的证明:

达到最小值时,梯度为0,即

$$egin{aligned}
abla_w MSE(heta,w) &= 0 \ \mathbb{E}\left[
abla_ heta \mu_ heta(s)
abla_a Q^w(s,a)|_{a=\mu_ heta(s)}
ight] &= \mathbb{E}\left[
abla_ heta \mu_ heta(s)
abla_a Q^\mu(s,a)|_{a=\mu_ heta(s)}
ight] \ &=
abla_ heta J_{(eta)}(\mu_ heta) \end{aligned}$$

对于任意确定性策略 $\mu_{\theta}(s)$, 总存在approximator, 形式为

$$Q^w(s,a) = (a - \mu_{ heta}(s))^ op
abla_{ heta} \mu_{ heta}(s)^ op w + V^v(s)$$

其中, $V^v(s)$ 可以是任何可导且独立于 a 的基准函数,比如 $V^v(s)=v^\top\phi(s)$, $\phi(s)$ 为state features.

可以大致理解为

$$s$$
下 a 的动作价值 = 选 a 而不是 $\mu_{\theta}(s)$ 的优势 $+ s$ 的状态价值 $A^w(s,a) = \phi(s,a)^{\top} w = (a - \mu_{\theta}(s))^{\top} \nabla_{\theta} \mu_{\theta}(s)^{\top} w$

这里作者都选择用线性approximator:

We note that a linear function approximator is not very useful for predicting action-values globally, since the action value diverges to $\pm \infty$ for large actions. However, it can still be highly effective as a *local* critic.

总结下来:

- Critic 是一个线性approximator来估计action value
- Actor向Critic给出的action value梯度方向更新参数

II. DQN

用神经网络 (Q-network) 拟合action-value.

DQN最初提出时仍然是stochastic的情况。

Q-network在每个iteration i 的训练目标是最小化

$$L_i(heta_i) = \mathbb{E}_{s,a\sim
ho(\cdot)}\left[\left(y_i - Q(s,a; heta_i)
ight)^2
ight]$$

其中

$$y_i = \mathbb{E}_{s \sim \mathcal{S}}\left[r + \gamma \max_{a'} Q(s', a'; heta_{i-1}) | s, a
ight]$$

即iteration i 的target.

需要注意到一点是训练目标包含上一个迭代的参数。

求导可得:

$$egin{aligned}
abla_{ heta_i} L_i(heta_i) &= \mathbb{E}_{s,a \sim
ho(\cdot);s' \in \mathcal{S}} \left[r + \gamma \max_{a'} Q(s',a'; heta_{i-1}) - Q(s,a; heta_i)
abla_{ heta_i} Q(s,a; heta_i)
ight] \end{aligned}$$

实际应用中不会去计算这个期望,而是每个时间步都根据单样本来更新。

DQN的创新点Experience Replay: 可以避免strong correlation.

By using experience replay the behavior distribution is averaged over many of its previous states, smoothing out learning and avoiding oscillations or divergence in the parameters.

III. DDPG

DDPG结合了DPG和DQN.

DQN的问题在于连续动作空间内 $\max_{a'} Q(s',a';\theta_{i-1})$ 不易求得,所以把DQN放进deterministic的框架中。

References

[DDPG] https://arxiv.org/abs/1509.02971

[DPG] https://proceedings.mlr.press/v32/silver14.pdf

[Off-Policy AC] https://arxiv.org/pdf/1205.4839.pdf

[Func Approx] https://proceedings.neurips.cc/paper-files/paper/1999/file/464d828b85b0bed98e8
https://proceedings.neurips.cc/paper-files/paper/1999/file/464d828b85b0bed98e8
https://proceedings.neurips.cc/paper-files/paper/1999/file/464d828b85b0bed98e8
https://proceedings.neurips.cc/paper-files/paper/1999/file/464d828b85b0bed98e8
https://proceedings.neurips.cc/paper-files/paper/1999/file/464d828b85b0bed98e8
https://proceedings.neurips.cc/paper-pa

[DQN] https://www.cs.toronto.edu/~vmnih/docs/dqn.pdf