Week 3

Linear Algebra Review

3.1 Elements of Linear Algebra

10/10:

- Today: Review of linear algebra.
- Start with a **vector space** over \mathbb{R} or \mathbb{C} or, more generally, any field K.
- **Vector space** (over *K*): A set equipped with addition and scalar multiplication such that the following axioms are satisfied.
 - 1. Commutativity and associativity of addition.
 - 2. Additive identity and inverse.
 - 3. Compatibility of scalar multiplication and addition (distributive laws).
 - 4. The additive identity times any vector is zero.
- In \mathbb{R}^n , \mathbb{C}^n , addition is component-wise and scalar multiplication is scaling of the element.
- For a homogeneous equation

$$y' = A(t)y = \begin{pmatrix} a_{11}(t)y^1 + a_{12}(t)y^2 + \cdots \\ \vdots \end{pmatrix}$$

- If y_1, y_2 are solutions, any linear combination of them is a solution. This is called the **solution** space of the equation.
- Linearly independent (set of vectors): A set of vectors $x_1, \ldots, x_m \in V$ for which the only coefficients $\lambda_1, \ldots, \lambda_m$ such that

$$\lambda_1 x_1 + \dots + \lambda_m x_m = 0$$

is
$$\lambda_1 = \cdots = \lambda_m = 0$$
.

 $-\lambda_m \neq 0$ implies

$$x_m = -\frac{1}{\lambda_m}(\lambda_1 x_1 + \dots + \lambda_{m-1} x_{m-1})$$

- Maximal linear independence group: A subset $X \subset V$ such that for any $y \in V$, $\{y\} \cup X$ is not linearly independent. Also known as basis.
- \bullet Theorem: Any basis of V has the same cardinality.
- **Dimension** (of V): The cardinality given by the above theorem. Denoted by $\dim V$.
- We usually denote a basis as an ordered *n*-tuple since the order often matters (e.g., for orientation??).

- Notational conventions.
 - For \mathbb{R}^n , \mathbb{C}^n , we will always use column vectors.
 - $-x_1, x_2, \ldots$ denote vectors.
 - $-x^1, x^2, \dots$ denote the components of a column vector.
 - Powers of vector components may be denoted $(x^1)^2$, for example.
- Standard basis (for \mathbb{R}^n): The set of n vectors of length n which have a 1 as one entry and a zero in all the others and are all distinct.
- Linear transformation (of V to V): A mapping $\phi: V \to V$ satisfying

$$\phi(\lambda x + \mu y) = \lambda \phi(x) + \mu \phi(y)$$

• A mapping is completely determined by its action on the basis vectors:

$$\phi\left(\sum_{k=1}^{n} x^{k} e_{k}\right) = \sum_{k=1}^{n} x^{k} \phi(e_{k})$$

• Matrix (of a linear transformation wrt. the standard basis): The $n \times n$ array

$$(\phi(e_1) \cdots \phi(e_n))$$

- If $\phi, \psi: V \to V$ are linear, $\phi \circ \psi$ is also linear.
 - Composition of linear transformations corresponds to matrix multiplication.
- Matrix multiplication: If

$$B = \begin{pmatrix} b_1 & \cdots & b_n \end{pmatrix}$$

then

$$AB = \begin{pmatrix} Ab_1 & \cdots & Ab_n \end{pmatrix}$$

where

$$Ax = \begin{pmatrix} a_{11}x^1 + \dots + a_{1n}x^n \\ \vdots \\ a_{n1}x^1 + \dots + a_{nn}x^n \end{pmatrix}$$

• We can talk about matrix inverses: If it exists, it is unique, and

$$AA^{-1} = A^{-1}A = I_n$$

- Matrix multiplication is not commutative in general. Shao gives a counterexample.
- A is invertible iff the columns of A are a basis for \mathbb{R}^n (resp. \mathbb{C}^n).
- **Determinant** (of *A*): Not explicitly defined.
- Properties of the determinant.
 - Multilinear.

$$\det (a_1 \cdots \lambda a_k + \mu \tilde{a}_k \cdots a_n) = \lambda \det (a_1 \cdots a_k \cdots a_n) + \mu \det (a_1 \cdots \tilde{a}_k \cdots a_n)$$

- Skew-symmetric.

$$\det (a_1 \quad \cdots \quad a_i \quad \cdots \quad a_j \quad \cdots \quad a_n) = -\det (a_1 \quad \cdots \quad a_j \quad \cdots \quad a_i \quad \cdots \quad a_n)$$

- Theorem: The determinant is uniquely characterized by these two axioms.
- $\det I_n = 1$.
- Shao goes over computing the determinant via minors.
- Special cases:
 - If the matrix is upper- or lower-triangular, the determinant is equal to the product of the diagonal entries.
 - If the matrix is blocked upper- or lower-triangular, e.g.,

$$A = \begin{pmatrix} A_1 & * \\ 0 & A_2 \end{pmatrix}$$

then $\det A = \det A_1 \cdot \det A_2$.

- det(AB) = det(A) det(B).
- $\det A \neq 0$ iff A is invertible.
- Direct formula to compute the inverse.

$$A^{-1} = \frac{1}{\det A} \left((-1)^{i+j} \det A_{ji} \right)$$

- Tedious for higher-dimensional cases, but quite sufficient for n = 2, 3.
- Essentially, the inverse of A is the **adjoint** of A divided by $\det A$. The adjoint is the transpose of the **cofactor matrix**. The **cofactor** of a_{ij} (the element in the i^{th} row and j^{th} column of A) is $(-1)^{i+j} \det A_{ij}$, where A_{ij} is $(n-1) \times (n-1)$ matrix created by removing the i^{th} row and the j^{th} column of A. $\det A_{ij}$ is the **minor** of a_{ij} .
- Let A be $n \times n$, and let Ax = b.
 - If A is invertible, then $x = A^{-1}b$.
 - If A is not invertible and $b \in \text{span}(a_1, \dots, a_n)$, then $x = x_h + x_p$ where $Ax_h = 0$ and $Ax_p = b$.
- **Kernel** (of A): The set of all vectors $y \in \mathbb{R}^n$ (resp. \mathbb{C}^n) such that Ay = 0.
- Range (of A): The set of all linear combinations of the columns a_1, \ldots, a_n of A.
- Suppose $\phi: \mathbb{R}^n \to \mathbb{R}^n$ has matrix A under (e_1, \ldots, e_n) . Let (q_1, \ldots, q_n) be another basis.
 - There exists a matrix Q such that $q_k = Qe_k$. Q is called the **connecting matrix** between (e_1, \ldots, e_n) and (q_1, \ldots, q_n) .
 - Claim: Let $x \in \mathbb{R}^n$ have representation $x = (x^1, \dots, x^n)$ under the standard basis. Then under the Q basis, x has representation $x' = Q^{-1}(x^1, \dots, x^n)$. Similarly, x = Qx'.
 - Claim: ϕ has matrix $B = Q^{-1}AQ$ with respect to the Q basis.
- Matrix similarity: $A \sim B$ iff there exists Q invertible such that $B = Q^{-1}AQ$.
 - Implies that A and B describe the same matrix under different bases.
 - Matrix product under the old and new bases are related.

$$Q^{-1}ABQ = (Q^{-1}AQ)(Q^{-1}BQ)$$

- Similarity preserves the determinant:

$$\det(Q^{-1}AQ) = \det(Q^{-1})\det(A)\det(Q) = \det(A)\det(Q^{-1})\det(Q) = \det(A)$$

• There is an extra example in Shao's notes of a linear transformation in two bases.

3.2 Diagonalization and Jordan Normal Form

• Similar matrices and Jordan Normal Form (JNF).

- Suppose $A: \mathbb{C}^n \to \mathbb{C}^n$ is linear. We can express A in a different basis with the help of a connecting matrix Q.
- In this lecture, we seek to find the most convenient basis in which to discuss our linear transformation.
- Today we will work in \mathbb{C}^n (but all results hold for \mathbb{R}^n , too).
- Invariant subspace (of A): A subspace $K \subset \mathbb{C}^n$ such that A(K) = K.
- Suppose you have m invariant subspaces $K_1, \ldots, K_m \subset \mathbb{C}^n$ whose pairwise intersection is $\{0\}$.
- **Direct sum** (of K_1, \ldots, K_m): The set of all vectors which can be represented as a sum containing one vector from each of K_1, \ldots, K_m . Denoted by $K_1 \oplus \cdots \oplus K_m$. Given by

$$K_1 \oplus \cdots \oplus K_m = \left\{ x \in \mathbb{C}^n \mid x = \sum_{j=1}^m x_j, \ x_j \in K_j \right\}$$

• Suppose $K_1, K_2 \in \mathbb{C}^n$ are invariant subspaces of A of dimension n_1, n_2 , respectively, such that $K_1 \oplus K_2 = \mathbb{C}^n$. Then choosing a basis for K_1 and K_2 , the matrix A takes the form

$$\begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}$$

where B_1 is an $n_1 \times n_1$ block and B_2 is an $n_2 \times n_2$ block.

- Eigenvalue (of A): A complex number $\lambda \in \mathbb{C}$ such that $A \lambda I$ is not invertible. Denoted by λ .
 - Equivalently, $det(A \lambda I) = 0$.
- Characteristic polynomial: The polynomial in z defined as follows. Denoted by $\chi_A(z)$. Given by

$$\chi_A(z) = \det(A - zI)$$

- Similar matrices have the same characteristic polynomials.
- Spectrum (of A): The set of all eigenvalues of A. Denoted by $\sigma(A)$.
- Eigenvector (of A): A vector $v \in \mathbb{C}^n$ corresponding to an eigenvalue λ via

$$Av = \lambda v$$

• Claim: The set of all eigenvectors corresponding to λ form an invariant subspace.

Proof.

$$A(v_1 + v_2) = \lambda v_1 + \lambda v_2 = \lambda (v_1 + v_2)$$

- **Eigenspace** (of λ): The vector subspace of \mathbb{C}^n equal to the span of the eigenvectors of λ . Denoted by V_{λ} .
- Algebraic multiplicity (of λ): The degree of the $(z-\lambda)$ term in the factorization of the characteristic polynomial. Denoted by α_{λ} .
- Geometric multiplicity (of λ): The dimension of the eigenspace of λ . Denoted by γ_{λ} .

- $\gamma_{\lambda} \leq \alpha_{\lambda}$.
- If $\alpha_{\lambda} = \gamma_{\lambda}$ for each λ , then each eigenspace V_{λ} has a basis such that $\bigoplus_{\lambda} V_{\lambda} = \mathbb{C}^n$.
 - Under this basis, the matrix of A is diagonal with all λ 's (along the diagonal) repeated according to their algebraic multiplicity.
- Superdiagonal: The set of entries in a matrix which are directly above a diagonal entry.
- Jordan block: A $d \times d$ matrix corresponding to an eigenvalue λ that has λ as every diagonal entry, 1 as every superdiagonal entry, and zeroes everywhere else. Denoted by $J_d(\lambda)$.
 - A Jordan block is an example of a matrix with one eigenvalue of algebraic multiplicity d and geometric multiplicity 1.
 - The geometric multiplicity γ_j is the number of Jordan blocks with eigenvalue λ_j . Of course, when $\gamma_j = \alpha_j$ (in particular, if $\alpha_j = 1$), there is no Jordan block corresponding to λ_j at all.
- For any linear transformation, we can find a basis such that the matrix of the transformation is block-diagonalized with each block being a Jordan block. Formally...
- Theorem: Let A be an $n \times n$ complex matrix. Then there is a **Jordan basis** Q under which

$$Q^{-1}AQ = \begin{pmatrix} J_1 & & \\ & \ddots & \\ & & J_k \end{pmatrix}$$

i.e., under which the matrix of $Q^{-1}AQ$ is block-diagonalized Jordan blocks.

- The proof will not be tested it is very hard. Shao will sketch it, though.
- The proof is constructive: It will tell you how to convert a matrix into the Jordan normal form.
- Proof procedure:
 - 1. Determine the eigenvalues as well as their algebraic and geometric multiplicities.
 - (a) Compute $\chi_A(z)$.
 - (b) Find $\lambda_1, \ldots, \lambda_m$ (factor $\chi_A(z)$).
 - (c) Find $\alpha_1, \ldots, \alpha_m$ (combine like terms in the factorization of $\chi_A(z)$).
 - (d) Find $\gamma_1, \ldots, \gamma_m$ ($\gamma_i = n \text{rank}(A \lambda_i I)$).
 - 2. Find the generalized eigenspaces of each λ_i . This will allow us to block-diagonalize A.
 - (a) For each λ_i , compute the $\ker(A \lambda_i I) \subset \ker(A \lambda_i I)^2 \subset \ker(A \lambda_i I)^3 \subset \cdots$.
 - (b) The sequence will stop at some $d_i \in \mathbb{N}$. In particular, it will stop when $\dim \ker(A \lambda I)^{d_j} = \alpha_i$. - Claim: $\mathbb{C}^n = K_1 \oplus \cdots \oplus K_m$.
 - (c) Since each K_i is an invariant subspace of A, we know that there is a matrix of the linear transformation corresponding to A of the form

$$\begin{pmatrix} B_1 & & 0 \\ & \ddots & \\ 0 & & B_m \end{pmatrix}$$

We now just need to choose the *best* basis of each K_i , i.e., the one that makes each B_i into a (direct sum of) Jordan block(s).

3. Find the best basis for each K_i .

(a) Recall that each λ_i corresponds to $\gamma = \gamma_i$ linearly independent eigenvectors, which we will denote $v_{i,1}, \ldots, v_{i,\gamma}$. We will block-diagonalize B_i into γ Jordan blocks, each of which corresponds to a $v_{i,j}$ as follows.

Every Jordan block is of the form

$$\begin{pmatrix} \lambda_i & 1 & & 0 \\ & \lambda_i & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_i \end{pmatrix}$$

Let the above block be of dimension $k_{i,j} = d$. It follows that this block will be responsible for linearly transforming d vectors in the Jordan basis. Let $v_{i,j,1} = v_{i,j}$ be the first of these d vectors. Then the submatrix of $v_{i,j,1}$ in the Jordan basis corresponding to this Jordan block is

$$\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

which should make sense since we want $Av_{i,j} = \lambda_i v_{i,j}$ and under this definition,

$$\begin{pmatrix} \lambda_i & 1 & & 0 \\ & \lambda_i & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_i \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \lambda_i \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

Now let $v_{i,j,2}$ be the second of the d vectors. Naturally, its submatrix in the Jordan basis should be

$$\begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

But this implies that

$$\begin{pmatrix} \lambda_{i} & 1 & & 0 \\ & \lambda_{i} & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda_{i} \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ \lambda_{i} \\ \vdots \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} + \lambda_{i} \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}$$

$$Jv_{i,j,2} = v_{i,j,1} + \lambda_{i}v_{i,j,2}$$

$$(J - \lambda_{i}I)v_{i,j,2} = v_{i,j,1}$$

Naturally, this process will generalize to show that $(J - \lambda_i I)v_{i,j,k} = v_{i,j,k-1}$, i.e., we can recursively determine the $v_{i,j,1}, \ldots, v_{i,j,k_{i,j}}$.

(b) However, there is slightly more subtlety than we might guess at first glance. Indeed, of our γ eigenvectors corresponding to λ_i , pick the first γ' to be elements of $\ker(A - \lambda_i I) \cap \operatorname{im}(A - \lambda_i I)$. This is a necessary condition for the existence of $v_{i,j,2}$ such that $(A - \lambda_i I)v_{i,j,2} = v_{i,j,1}$ for $j = 1, \ldots, \gamma'$.

(c) Thus, using the above process, we will find $k_{i,j}$ elements of the Jordan basis for each $v_{i,j}$. The full, ordered set of these vectors, listed as follows, constitutes the Jordan basis.

(d) Note that each of these vectors is naturally an element of the generalized eigenspace K_i since for each $k = 1, ..., k_{i,j}$, the formula $(A - \lambda_i I)v_{i,j,k} = v_{i,j,k-1}$ implies that

$$(A - \lambda_i I)^k v_{i,j,k} = 0$$

Also note that each $k_{i,j} \leq d_i$ and $k_{i,1} + \cdots + k_{i,\gamma'} + \gamma - \gamma' = \alpha_i$.

(e) Under this basis, the Jordan normal form of A on the generalized eigenspace K_i will be

$$\begin{pmatrix} J_{k_{i,1}}(\lambda) & & & & \\ & J_{k_{i,2}}(\lambda) & & & \\ & & \ddots & & \\ & & & J_{k_{i,\gamma'}}(\lambda) & & \\ & & & & \lambda I_{\gamma-\gamma'} \end{pmatrix}$$

• Generalized eigenspace (of λ): The kernel of $(A - \lambda I)^{d_{\lambda}}$. Denoted by K_{λ} . Given by

$$K_{\lambda} = \ker(A - \lambda I)^{d_{\lambda}}$$

- d_{λ} : The power of $A \lambda I$ for which the kernel stabilizes.
- The JNF computation can be really heavy; we'll only ever compute 2×2 or 3×3 versions.
- Example [1]:
 - Consider

$$A = \begin{pmatrix} -2 & 2 & 1\\ -7 & 4 & 2\\ 5 & 0 & 0 \end{pmatrix}$$

- Then

$$\chi_A(z) = z(z-1)^2$$

- (1) It follows that

$$\lambda_1 = 0 \qquad \qquad \lambda_2 = 1$$

- (2) We have that

$$\ker(A - 0I) = \operatorname{span}\left\{ \begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \right\} \qquad \ker(A - 1I) = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} \right\}$$

- We call the left vector above q_1 and the right vector above q_2 .
- Thus,

$$A \sim \begin{pmatrix} 0 & & \\ & 1 & x \\ & & 1 \end{pmatrix}$$

¹Largely ignore this misguided relic of class that day.

- We find that

$$(A-1I)^2 = \begin{pmatrix} 0 & 0 & 0\\ 10 & -5 & -3\\ -20 & 10 & 6 \end{pmatrix}$$

so

$$\ker(A-I)^2 = \operatorname{span}\left\{ \begin{pmatrix} 1\\2\\0 \end{pmatrix}, \begin{pmatrix} 3\\0\\10 \end{pmatrix} \right\}$$

Clearly,

$$\ker(A-I) \subsetneq \ker(A-I)^2$$

so we can stop here because the dimension of the kernel has reached the algebraic multiplicity.

- Since $q_2 \in K_1$, q_3 solves the equation $(A I)q_3 = q_2$.
- We know that

$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} e_1 = \lambda e_1 \qquad \qquad \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} e_2 = e_1 + \lambda e_2$$

- It follows that

$$q_3 = \begin{pmatrix} 0\\3\\-5 \end{pmatrix}$$

and hence

$$Q = (q_1 \quad q_2 \quad q_3) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & -1 & 3 \\ 2 & 5 & -5 \end{pmatrix}$$

and

$$Q^{-1}AQ = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- Simple cases.
- The 2×2 case.
 - $A \in \mathcal{M}^2(\mathbb{C})$ can only have nontrivial Jordan form if it has a single eigenvalue λ with $\alpha_{\lambda} = 2$ and $\gamma_{\lambda} = 1$. If both equal 2, then $A = \lambda I_2$. If it has two eigenvalues, then it is regularly diagonalizable.
 - In this particular case, calculate λ from $\chi_Z(z) = (z \lambda)^2$, find one eigenvector v, and find the other generalized eigenvector u; u will satisfy $(A \lambda I)u = v$. The connecting matrix will be $Q = (v|u)^{[2]}$ and the JNF is

$$Q^{-1}AQ = \begin{pmatrix} \lambda & 1\\ 0 & \lambda \end{pmatrix}$$

- The 3×3 case.
 - We divide into three nontrivial cases: $\chi_A(z) = (z \lambda)^3$ with $\gamma_{\lambda} = 2$, $\chi_A(z) = (z \lambda)^3$ with $\gamma_{\lambda} = 1$, and $\chi_A(z) = (z \lambda)^2(z \mu)$ with $\gamma_{\lambda} = 1$.
 - In the first case, we have two eigenvectors v_1, v_2 (make sure to pick v_1 such that it is also in the column space of $A-\lambda I!$). We can find the third (generalized) eigenvector by solving $(A-\lambda I)u=v_1$. Then $Q=(v_1|u|v_2)$ and the JNF is

$$Q^{-1}AQ = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{pmatrix}$$

²Order matters! We need the eigenvector, specifically, to get scaled by λ only.

– In the second case, we have one eigenvector v. We can find the second and third generalized eigenvectors by solving $(A - \lambda I)u_1 = v$ and $(A - \lambda I)u_2 = u_1$. Then $Q = (v|u_1|u_2)$ and

$$Q^{-1}AQ = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{pmatrix}$$

– In the third case, we have two eigenvectors v_{λ}, v_{μ} . We can find the third (generalized) eigenvector by solving $(A - \lambda I)u = v_{\lambda}$. Then $Q = (v_{\lambda}|u|v_{\mu})$ and

$$Q^{-1}AQ = \begin{pmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \mu \end{pmatrix}$$

3.3 Matrix Calculus

10/14: • Today: Matrix calculus.

- We introduced the Jordan normal form because it is an easy form on which to do matrix calculus.
- Matrix norm: A function for $n \times n$ complex matrices such that
 - 1. $||A|| \ge 0$, ||A|| = 0 iff A = 0.
 - 2. $||A + B|| \le ||A|| + ||B||$.
 - 3. $\|\lambda A\| = |\lambda| \|A\|$.
 - 4. $||AB|| \le ||A|| ||B||$.

Denoted by $||\cdot||$.

- The first three axioms above are the normal norm axioms; the last one is unique to matrix norms.
- Operator norm: The norm defined by

$$||Ax|| = \sup_{|x|=1} |Ax|$$

• ??: The norm defined by

$$||A|| = \sum_{i,j=1}^{n} |a_{i,j}|$$

- Theorem: Any two matrix norms are equivalent^[3].
- Convergent (sequence of matrices): A sequence of matrices A_n for which there exists A such that $||A_n A|| \to 0$ as $n \to \infty$. Denoted by $A_n \to A$.
 - Note that $||A_n A|| \to 0$ iff the entries of A_n converge to the entries of A.
- Suppose $A(t) = (a_{ij}(t))_{i,j=1}^n$ is a matrix function. Then

$$A'(t) = (a'_{ij}(t))_{i,j=1}^{n} \qquad \int_{t_0}^{t} A(t) dt = \left(\int_{t_0}^{t} a_{ij}(\tau) d\tau \right)_{i,j=1}^{n}$$

• The product rule holds:

$$\frac{\mathrm{d}}{\mathrm{d}t}[A(t)B(t)] = A'(t)B(t) + A(t)B'(t)$$

 $^{^3}$ See MATH20800Notes, PSet 1, Q1 for a proof.

• However, matrix multiplication is not commutative. This can get us into trouble in the following situation: We might think that

$$\frac{\mathrm{d}}{\mathrm{d}t}[A(t)^2] = 2A'(t)A(t)$$

but, in fact,

$$\frac{\mathrm{d}}{\mathrm{d}t}[A(t)^2] = A'(t)A(t) + A(t)A'(t)$$

- For example, let

$$A(t) = \begin{pmatrix} 0 & 1 \\ t & 0 \end{pmatrix}$$

- Then

$$A'(t) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

- It follows that

$$\frac{\mathrm{d}}{\mathrm{d}t}[A'(t)^{2}] = \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{A'(t)A(t)} + \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{A(t)A'(t)}$$

- Notice that $A'(t)A(t) \neq A(t)A'(t)$.
- Suppose we have a matrix A and we want to compute A^{100} .
- If A is diagonalizable, then $A^n = Q\Lambda^n Q^{-1}$.
- \bullet What if A is not diagonalizable?
 - Then we convert to A to Jordan normal form $A = QBQ^{-1}$. Thus, we just need to compute the powers of the Jordan blocks.
 - Suppose

$$J_d(\lambda) = \begin{pmatrix} \lambda & 1 & & 0 \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{pmatrix}$$

- In a given Jordan block, all entries above the diagonal are 1.
- Decompose

$$J_d(\lambda) = \lambda I_d + N_d$$

- Note that N_d is nilpotent every successive power to which you raise it shifts the 1s up one row until it becomes the zero matrix.
- In computing $[J_d(\lambda)]^m$, invoke the binomial expansion. When m < d invoke the full expansion. When $m \ge d$, neglect all zero terms (terms with N_d^i for $i \ge m$):

$$[J_d(\lambda)]^m = \binom{m}{0} \lambda^m I_d + \binom{m}{1} \lambda^{m-1} N_d + \dots + \binom{m}{d-1} \lambda^{m-d+1} N_d^{d-1}$$

- Example: When d = 3, then

$$\begin{pmatrix} \lambda & 1 & 0 \\ & \lambda & 1 \\ & & \lambda \end{pmatrix}^m = \begin{pmatrix} \lambda^m & m\lambda^{m-1} & m(m-1)\lambda^{m-2} \\ & \lambda^m & m\lambda^{m-1} \\ & & \lambda^m \end{pmatrix}$$

• We will only compute JNF for 2×2 and 3×3 ; Shao reviews these cases from last class.

- We now have a formula to compute the powers of matrices with ease, so we can move onto more complicated functions of matrices now.
- Consider the power series

$$f(z) = c_0 + c_1 z + c_2 z^2 + \cdots$$

- The c_i are complex coefficients.
- Analytic (function): A function whose Taylor series (locally) converges and converges to the function in question.
- We can consider an analytic function of matrices:

$$f(A) = c_0 I + c_1 A + c_2 A^2 + \cdots$$

- Radius of convergence: The number R such that the series converges absolutely for ||A|| < R.
 - We do not talk about the radius of convergence any more in this course.
- von Neumann series: The series $I + A + A^2 + \cdots$ converging to $(I_n A)^{-1}$ for any ||A|| < 1.
 - Example: We can check that the von Neumann series for N_d converges.
- Suppose $A = QBQ^{-1}$. Then

$$f(A) = f(QBQ^{-1})$$

$$= c_0I + c_1(QBQ^{-1}) + c_2(QBQ^{-1})^2 + \cdots$$

$$= Q(c_0I + c_1B + c_2B^2 + \cdots)Q^{-1}$$

$$= Qf(B)Q^{-1}$$

- Going even further,

$$B = \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix} \implies f(B) = \begin{pmatrix} f(B_1) & 0 \\ 0 & f(B_2) \end{pmatrix}$$

- In particular, if A is diagonalizable, then

$$f(A) = Q \begin{pmatrix} f(\lambda_1) & & \\ & \ddots & \\ & & f(\lambda_n) \end{pmatrix} Q^{-1}$$

- \bullet Suppose A is not diagonalizable, and f is some analytic function.
 - Then in the viscinity of a, f can be approximated by the Taylor series

$$f(z) = f(a) + f'(a)(z - a) + \frac{1}{2!}f^{(2)}(a)(z - a)^2 + \cdots$$

- Similarly, we can approximate $f[J_d(\lambda)]$ in the viscinity of λI_d with the Taylor series

$$f[J_d(\lambda)] = f(\lambda I_d + N_d)$$

$$= f(\lambda I_d) + f'(\lambda I_d)[(\lambda I_d + N_d) - \lambda I_d] + \frac{1}{2!}f^{(2)}(\lambda I_d)[(\lambda I_d + N_d) - \lambda I_d]^2 + \cdots$$

$$= f(\lambda)I_d + f'(\lambda)N_d + \frac{1}{2!}f^{(2)}(\lambda)N_d^2 + \cdots$$

$$= \begin{pmatrix} f(\lambda) & f'(\lambda) & \cdots & \frac{f^{(d-1)}(\lambda)}{(d-1)!} \\ & f(\lambda) & \ddots & \vdots \\ & \ddots & f'(\lambda) \\ & & f(\lambda) \end{pmatrix}$$

• Matrix exponential (of A): The matrix with identical dimensions to A defined by the following power series. Denoted by e^A . Given by

$$e^A = I_n + A + \frac{1}{2!}A^2 + \cdots$$

- This power series is convergent for matrices with ||A|| < 1 since $||A^m|| \le ||A||^m \to 0$.
- Usual rules that you might expect the matrix exponential to obey based on the notation are obeyed.

$$e^{(t+\tau)A} = e^{tA}e^{\tau A} \qquad \qquad e^{A+B} = e^{A}e^{B}$$

- An explicit formula for the e^{tA} .
 - We know that $tA = tQBQ^{-1}$, where we may take B be in JNF.
 - Consider $e^{tJ_3(\lambda)}$, for example.
 - Then from the above, we have that

$$e^{tJ_3(\lambda)} = \begin{pmatrix} e^{t\lambda} & te^{t\lambda} & \frac{t^2}{2}e^{t\lambda} \\ & e^{t\lambda} & te^{t\lambda} \\ & & e^{t\lambda} \end{pmatrix}$$

- Thus,

$$e^{tA} = Qe^{tB}Q^{-1}$$

- Next time: First order linear systems with constant coefficients; will make use of e^{tA} .
- Next Wednesday: Review; next Friday: Midterm.