Seiberg-Witten

Kangning Wei

July 2020

This is an oversimplified version of the lecture notes *Mark Hamilton, Dieter Kotschick, Mathematical Gauge Theory II.* which I followed as I tried to learn about Seiberg-Witten equations. Many important things in the lecture notes were omitted here, including the discussion of Donaldson's theory for 4-manifolds and computations of Seiberg-Witten invariants for several examples. I initially intended to make my own notes as self-contained as possible, but I realized it is not quite possible. So this note is perhaps only useful to me, and for anyone else, the lecture notes should be more helpful.

1 Spin and Spin^c Structures

1.1 Clifford Modules

Let H be a n-dimensional real vector space, equipped with a Euclidean scalar product g. A Clifford Module for H is a finite dimensional complex vector space with a Hermitian product together with a linear map $\gamma: H \mapsto End(V)$:

- $\gamma(v)^t = -\gamma(v)$
- $\gamma(w)\gamma(v) + \gamma(v)\gamma(w) = -2g(v,w)Id_V$

The elements of V are called spinors.

A Clifford module corresponds to a representation of the Clifford algebra Cl(H,g). Such a representation is called irreducible if there are no nontrivial submodules. We have:

Proposition 1.1. If dimH = 2m then there is a unique irreducible Clifford module (V, γ) with $dim\ V = 2^m$. If dimH = 2m + 1, then there exist two irreducible Clifford modules (V, γ) and $(V, -\gamma)$ with $dim\ V = 2^m$

Example 1.1. Consider \mathbb{R}^4 with the Euclidean metric. For $V = \mathbb{C}^4$, we define γ as follows. Choose an ONB $\{e_0, e_1, e_2, e_3\}$ of \mathbb{R}^4 . We set

$$\gamma(e_j) = A_j := \begin{pmatrix} 0 & -B_j^t \\ B_j & 0 \end{pmatrix}$$

where
$$B_0 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 $B_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ $B_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ $B_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

It is easy to check that this defines a Clifford module.

The Clifford multiplication $\mathbb{R}^4 \times \mathbb{C}^4 \mapsto \mathbb{C}^4$ extends to the exterior algebra: for $i_1 < i_2 < \ldots < i_l$, we define

$$\gamma(e_{i_1} \wedge ... \wedge e_{i_l}) = \gamma(e_{i_1})...\gamma(e_{i_l})$$

For the standard Clifford module for \mathbb{R}^4 , we have

$$\gamma(e_0 \wedge e_1 \wedge e_2 \wedge e_3) = \begin{pmatrix} -Id_2 & 0\\ 0 & Id_2 \end{pmatrix}$$

Definition 1.1. An isomorphism of Clifford modules (V, γ) and (V', γ') for H is a linear isometry $f: V \mapsto V'$ such that $f \circ \gamma(v) = \gamma'(v) \circ f$ for all $v \in H$

Lemma 1.1. (Schur) Let (V, γ) be an irreducible Clifford module of H. Then every automorphism of V is of the form $f = \lambda Id_V$ for a constant $\lambda \in S^1$

Proof. f is an isometry, hence unitary. So it can be diagonalized, each eigenvalue has unit norm. f commute with γ , which means that γ preserves the eigenspaces of f, so each eigenspace is a submodule. By irreducibility, V is an eigenspace of f. $f = \lambda Id$ for some $\lambda \in S^1$.

1.2 Principal Bundle Point of View

1.2.1 $Spin^c$ Structures

We assume that n is even, $\gamma:\mathbb{R}^n\mapsto End\mathbb{C}^N$ denotes the standard Clifford module.

Definition 1.2. The Lie group $Spin^c(n)$ is defined as the set of pairs $(\tau, \sigma) \in SO(n) \times U(N)$ such that the following diagram commutes:

$$\mathbb{R}^{n} \xrightarrow{\tau} \mathbb{R}^{n}$$

$$\downarrow_{\gamma_{0}} \qquad \downarrow_{\gamma_{0}} \qquad where \ Ad\sigma(\mu) = \sigma\mu\sigma^{-1} \ is \ the \ adjoint \ action.$$

$$End\mathbb{C}^{N} \xrightarrow{Ad\sigma} End\mathbb{C}^{N}$$

Lemma 1.2. The homomorphism $Spin^c(n) \mapsto SO(n)$, $(\tau, \sigma) \mapsto \tau$ is surjective with kernel $\{Id_n, S^1\} \cong S^1$

Definition 1.3. A Spin^c structure S on a real, oriented vector bundle equipped with a Euclidean bundle metric $H \to X$ is a pair (V, γ) where $V \to X$ is a complex vector bundle with a Hermitian bundle metric, and $\gamma: H \mapsto End(V)$ is a bundle homomorphism which is fiberwise a standard (irreducible) Clifford module.

Lemma 1.3. Specifying a Spin^c structure $S = (V, \gamma)$ for an oriented Euclidean bundle $H \to X$ is equivalent to specifying a principal Spin^c(n) bundle $Q \to X$ together with an isomprphism $Q/S^1 \cong Fr(H)$, where Fr(H) is the oriented orthonormal frame bundle.

Proof. Given a $Spin^c$ structure $S = (V, \gamma)$, we can define a $Spin^c(n)$ -bundle $Q \to X$. Consider the pairs of orientation preserving linear isometries

$$(t,s) \in Isom(\mathbb{R}^n, H_x) \times Isom(\mathbb{C}^N, V_x) \cong SO(n) \times U(N)$$

that make the following diagram commute:

$$\mathbb{R}^{n} \xrightarrow{t} H_{x}$$

$$\downarrow^{\gamma_{0}} \qquad \downarrow^{\gamma_{x}}$$

$$End(\mathbb{C}^{N}) \xrightarrow{Ad(s)} End(V_{x})$$

Then each fiber is diffeomorphic to $Spin^c(n)$ by construction and $Q_x/S^1 \ni [t,s] \mapsto t$ is a fiberwise isomorphism to Fr(H). For the other direction, given a $Spin^c(n)$ bundle $Q \to X$, there is a representation of $Spin^c(n)$ on \mathbb{C}^N given by $(\tau,\sigma) \mapsto \sigma \in U(N)$. This induces an associated vector bundle $V \to X$ with fiber \mathbb{C}^N , and it is easy to check that the standard Clifford module γ_0 induces a Clifford module γ for V.

1.2.2 Spin Structures and Stiefel-Whitney Classes

Definition 1.4. If $V \to X$ is a complex vector bundle, then there exists a complex conjugate bundle $\bar{V} \to X$. Since $EndV \cong End\bar{V}$, we define charge conjugation as the map

$$Spin^{c}(H) \longrightarrow Spin^{c}(H)$$

$$(V, \gamma) = \mathcal{S} \mapsto \bar{\mathcal{S}} = (\bar{V}, \gamma)$$

Definition 1.5. A complex line bundle $L_{\mathcal{S}}$ such that $\mathcal{S} = \bar{\mathcal{S}} \otimes L_{\mathcal{S}}$ (unique up to isomorphism) is called the characteristic line bundle of \mathcal{S} .

When the characteristic line bundle is trivial, we say that $\mathcal S$ arises from a Spin structure.

Definition 1.6. A Spin^c structure S together with an isomorphism $J: \bar{S} \mapsto S$ is called a Spin structure.

Now consider $(\mathbb{C}^N, \gamma_0, J_0)$, the standard Cifford module for \mathbb{R}^n with its charge conjugation map.

Definition 1.7. Spin(n) is defined as the subgroup of $Spin^{c}(n)$, consisting of elements (τ, σ) such that σ commutes with J_0 .

Lemma 1.4. The homomorphism $Spin(n) \to SO(n)$, $(\tau, \sigma) \mapsto \tau$ is surjective with kernel $\{Id_n, \pm Id_N\} \cong \mathbb{Z}_2$.

Therefore, we have the following short exact sequence:

$$1 \to \mathbb{Z}_2 \to Spin(n) \to SO(n) \to 1$$

Comparing with

$$1 \to S^1 \to Spin^c(n) \to SO(n) \to 1$$

We get $Spin^c(n) \cong (Spin(n) \times S^1)/\mathbb{Z}_2$ with \mathbb{Z}_2 identifies (τ, σ, λ) with $(\tau, -\sigma, -\lambda)$. Similar to $Spin^c$ -structures, which are lifts of an real, oriented vector bundle H to a $Spin^c(n)$ -bundle Q such that $Q/S^1 \cong Fr(H)$, spin structures for H are lifts of Fr(H) to a Spin(n)-bundle P such that $P/\mathbb{Z}_2 \cong Fr(H)$. We have a short exact sequence

$$0 \to S_{\mathbb{Z}_2} \to S_{Spin(n)} \to S_{SO(n)} \to 0$$

and hence a long exact sequence

$$\ldots \to \check{H}^1(X;S_{Spin(n)}) \xrightarrow{q} \check{H}^1(X;S_{SO(n)}) \xrightarrow{\delta'} \check{H}^2(X;S_{\mathbb{Z}_2}) \cong H^2(X,\mathbb{Z}_2) \to \ldots$$

A lift [P] for H exists if and only if $\delta'[H] = 0 \in H^2(X, \mathbb{Z}_2)$.

Definition 1.8. Let H be a real, oriented vector bundle, and Fr(H) its SO(n)principal frame bundle. The second Stiefel-Whitney class $w_2(H)$ of H is defined
as $w_2(H) = \delta'[H] \in H^2(X, \mathbb{Z}_2)$

Proposition 1.2. A manifold is Spin iff its tangent bundle has vanishing second Stiefel-Whitney class.

For $Spin^c$ -structure, the short exact sequence

$$0 \to S_{S^1} \to S_{Spin(n)} \to S_{SO(n)} \to 0$$

also gives rise to a LES:

$$\dots \to \check{H}^1(X; S_{Snin^c(n)}) \xrightarrow{p} \check{H}^1(X; S_{SO(n)}) \xrightarrow{\delta} \check{H}^2(X; S_{S^1}) \cong H^3(X, \mathbb{Z}) \to \dots$$

And we have the obstuction class $o(H) = \delta[H] \in \check{H}^2(X; S_{S^1}) \cong H^3(X, \mathbb{Z})$.

Lemma 1.5. The obstruction class o(H) is the image of w_2 under $i^*: H^2(X, \mathbb{Z}_2) \to \check{H}^2(X; S_{S^1})$

Lemma 1.6. The map $i^*: H^2(X, \mathbb{Z}_2) \to \check{H}^2(X; S_{S^1}) \cong H^3(X; \mathbb{Z})$ is equal to the Bockstein homomorphism $\beta: H^2(X, \mathbb{Z}_2) \mapsto H^3(X, \mathbb{Z})$ induced by the SES:

$$0 \to \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \xrightarrow{mod2} \mathbb{Z}_2 \to 0$$

To summarize, we have

Proposition 1.3. The obsruction class $o(H) = \beta(w_2(H))$ vanishes iff $w_2(H)$ has a lift to $H^2(X; \mathbb{Z})$, i.e. if $w_2(H)$ is in the image of $H^2(X; \mathbb{Z}) \xrightarrow{mod 2} H^2(X; \mathbb{Z}_2)$.

1.3 Spin^c connection and Dirac Operators

1.3.1 The Dirac Operator on \mathbb{R}^n

The Dirac operator comes from the idea of the "square root" of the Laplacian operator. Formally, we want to have an operator written as

$$D\Phi = \sum_{i=1}^{n} A_i \frac{\partial \Phi}{\partial x_i}$$

Where $\Phi: \mathbb{R}^n \longrightarrow \mathbb{C}^N$, and A_i s are constant $N \times N$ matrices. The Laplace operator is given by

$$\Delta \Phi = -\sum_{i=1}^{n} Id_{N} \frac{\partial^{2} \Phi}{\partial x_{i}^{2}}$$

Imposing the condition $D^2 = \Delta$, we obtain

$$A_i^2 = -Id_N ; A_i A_j + A_j A_i = 0 \forall i \neq j$$

Further, we want D to be formally self-adjoint with respect to the L^2 norm:

$$< D\Phi, \Psi > = < \Phi, D\Psi >$$

This is true iff A_i s are skew-adjoint, i.e. $A_i^t = -A_i$, together, this implies that A_i s are unitary.

1.3.2 The Dirac Operator on a Spinor bundle

Let $H \to X$ be a real, oriented vector bundle equipped with a Euclidean metric g and a compatible connection ∇^B . Assume H admits a $Spin^c$ structure $V \to X$ with Hermitian metric h.

Definition 1.9. (Spin^c connection) A Spin^c connection ∇^A on V is a covariant derivative which is

- Hermitian,i.e. $L_Y h(\Phi, \Psi) = h(\nabla_Y^A \Phi, \Psi) + h(\Phi, \nabla_Y^A \Psi)$ for every vector field Y, and sections $\Phi, \Psi \in \Gamma(V)$
- Compatible with ∇^B and the Clifford multiplication, i.e. for any vector field Y, $\Phi \in \Gamma(V)$ and $T \in \Gamma(H)$, we have

$$\nabla_Y^A(T \cdot \Phi) = (\nabla_Y^B T) \cdot \Phi + T \cdot (\nabla_Y^A \Phi)$$

When $T \in \Gamma(H)$ is a parallel section with respect to ∇^B along the flow of a vector field Y, we have $\nabla^A_Y(T \cdot \Phi) = T \cdot (\nabla^A_Y \Phi)$.

Now we specialize to the setting $H = TX \to X$ with metric g, ∇ is the Levi-Civita connection, \mathcal{S} be a $Spin^c$ -structure on X.

Definition 1.10. (Dirac Operator If ∇^A is a Spin^c-connection on V, the Dirac operator $D_A: \Gamma(V) \to \Gamma(V)$ is defined as

$$D_A: \Gamma(V) \xrightarrow{\nabla^A} \Gamma(T^*X \otimes V) \xrightarrow{g} \Gamma(TX \otimes V) \xrightarrow{\gamma_{eval}} \Gamma(V)$$

where γ_{eval} is the composition of γ with the Clifford multiplication.

In coordinates, the Dirac operator can be expressed as following:

Lemma 1.7. Let $\{e_1,...,e_n\}$ be an orthonormal basis of (T_pX,g_p) . Then

$$D_A \Phi = \sum_{i=1}^n e_i \cdot \nabla_{e_i}^A \Phi$$

Suppose (X,g) is closed, then we can define a Hermitian product on the sapce of smooth sections $\Gamma(V)$:

$$<\Phi,\Psi>=\int_X h(\Phi,\Psi)vol_g$$

Proposition 1.4. D_A is formally self-adjoint w.r.t. the Hermitian product.

2 **Dimension Four**

We specialize to the setting that M is a closed, connected oriented smooth 4manifold. Recall from example (1.1) the standard Clifford module for \mathbb{R}^4 :

$$\gamma(e_j) = A_j := \begin{pmatrix} 0 & -B_j^t \\ B_j & 0 \end{pmatrix}$$

where
$$B_0 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 $B_1 = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$ $B_2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ $B_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
The Clifford multiplication $\mathbb{R}^4 \times \mathbb{C}^4 \to \mathbb{C}^4$ extends to the exterior algebra. We

have

$$\gamma(e_0 \wedge e_1 \wedge e_2 \wedge e_3) = \begin{pmatrix} -Id_2 & 0\\ 0 & Id_2 \end{pmatrix}$$

So we can split $\mathbb{C}^4 = \mathbb{C}^2_+ \otimes \mathbb{C}^2_-$ corresponding to the -1 and +1 eigenspace, i.e. $\gamma(vol)|_{\mathbb{C}^2_+} = \mp Id$. \mathbb{C}^4 is called the space of Dirac spinors, \mathbb{C}^2_\pm is the space of positive/negative Weyl spinors.

Definition 2.1. Hodge duality is a map $*: \Lambda^k(\mathbb{R}^n) \to \Lambda^{n-k}(\mathbb{R}^n)$, defined as

$$*(e_{i_1} \wedge e_{i_2} \wedge ... \wedge e_{i_k}) = (-1)^{\sigma}(e_{j_1} \wedge ... \wedge e_{j_{n-k}})$$

where σ is the sign of the permutation which takes $(i_1i_2...i_kj_1j_2...j_{n-k})$ to (12...n).

It is easy to see that * fixes two forms and $*^2 = Id$ on two forms $\Lambda^2(\mathbb{R}^4)$. One can decompose two forms on \mathbb{R}^4 into a self-dual and anti self-dual part as

$$\omega = \omega_+ + \omega_- = \frac{1}{2}(\omega + *\omega) + \frac{1}{2}(\omega - *\omega)$$

This is a decomposition of $\Lambda^2(\mathbb{R}^4) = \Lambda^2_+(\mathbb{R}^4) \oplus \Lambda^2_-(\mathbb{R}^4)$. Taken the standard ONB $\{e_0, ... e_3\}$, we have the following basis for $\Lambda^2_+(\mathbb{R}^4)$:

$$e_0 \wedge e_1 \pm e_2 \wedge e_3$$

$$e_0 \wedge e_2 \mp e_1 \wedge e_3$$

$$e_0 \wedge e_3 \pm e_1 \wedge e_2$$

Under the standard Clifford module γ on \mathbb{R}^4 , the self-dual 2-forms

$$e_0 \wedge e_1 + e_2 \wedge e_3$$

$$e_0 \wedge e_2 - e_1 \wedge e_3$$

$$e_0 \wedge e_3 + e_1 \wedge e_2$$

act on \mathbb{C}^2_+ nontrivially, as $2B_1, 2B_2, 2B_3$ respectively, and are zero on \mathbb{C}^2_- . A similar result holds for the basis set of $\Lambda^2_-(\mathbb{R}^4)$. As a consequence, we have the following:

Lemma 2.1. γ induces isomorphisms

$$(\Lambda^{1}(\mathbb{R}^{4}) \otimes \Lambda^{3}(\mathbb{R}^{4})) \otimes \mathbb{C} \cong Hom(\mathbb{C}_{+}^{2}, \mathbb{C}_{-}^{2}) \otimes Hom(\mathbb{C}_{-}^{2}, \mathbb{C}_{+}^{2})$$
$$\Lambda^{2}_{\pm}(\mathbb{R}^{4}) \otimes \mathbb{C} \cong End_{0}(\mathbb{C}_{\pm}^{2})$$
$$\Lambda^{4}(\mathbb{R}^{4}) \otimes \mathbb{C} \cong \mathbb{C}Id_{\mathbb{C}_{+}^{2}}$$

2.1 Spin(4) and $Spin^{c}(4)$

Recall that

$$SU(2) = \{ \begin{pmatrix} a & -\bar{b} \\ b & \bar{a} \end{pmatrix} | a, b \in \mathbb{C}, |a|^2 + |b|^2 = 1 \}$$

As a real vector space, we identify

$$\mathbb{R}^4 \cong \{ \begin{pmatrix} u & -\bar{v} \\ v & \bar{u} \end{pmatrix} \in Mat(2 \times 2.\mathbb{C}) | u, v \in \mathbb{C} \} \cong \mathbb{C}^2$$

The action $SU(2) \times SU(2) \times \mathbb{R}^4 \to \mathbb{R}^4$, $(h_-, h_+, x) \mapsto h_- x h_+^{-1}$ defines a surjective homomorphism $\phi \colon SU(2) \times SU(2) \to SO(4)$ with kernel $\{(Id, Id), (-Id, -Id)\} \cong \mathbb{Z}_2$. Hence,

$$Spin(4)\cong SU(2)\times SU(2)=\{\begin{pmatrix} B_{+} & 0 \\ 0 & B_{-} \end{pmatrix}|B_{+},B_{-}\in SU(2)\}$$

Remark 1. ϕ is the universal covering of SO(4).

Recall $Spin^c(n) \cong (Spin(n) \times U(1))/\mathbb{Z}_2$ and find

$$Spin^{c}(4) = (SU(2) \times SU(2) \times U(1)) / ((1, 1, 1) \backsim (-1, -1, -1))$$

$$= \{ \begin{pmatrix} \lambda A_{+} & 0 \\ 0 & \lambda A_{-} \end{pmatrix} | A_{+}, A_{-} \in SU(2); \lambda \in U(1) \}$$
(1)

Let $H \to X$ be a real rank-four Euclidean vector bundle equipped with a $Spin^c$ -structure, which we see as a $Spin^c$ -bundle Q. Then we can construct the associated Weyl spinor bundles S_{\pm} , with the positive and negative spinors correspond (fiberwise) to $\mathbb{C}^4 = \mathbb{C}^2_+ \oplus \mathbb{C}^2_-$, as vector bundles associated to Q. The representation used to associate S_{\pm} to Q are

$$\rho_{\pm}: Spin^{c}(4) \to U(2)$$

$$\begin{pmatrix} \lambda A_+ & 0 \\ 0 & \lambda A_- \end{pmatrix} \mapsto \lambda A_{\pm}$$

Since the map $(Spin(n) \times S^1)/\mathbb{Z}_2 \to Spin^c(n), [\tau, \sigma, \lambda] \mapsto (\tau, \lambda \sigma)$ is an isomorphism, the following representation is well-defined:

$$\xi: Spin^c(4) \to U(1)$$

$$\begin{pmatrix} \lambda A_+ & 0 \\ 0 & \lambda A_- \end{pmatrix} \mapsto \lambda^2 = \det(\lambda A_+) = \det(\lambda A_-)$$

The representation associates the determinant line bundle $L \cong det(S_+) = \Lambda^2(S_+) \cong det(S_-) = \Lambda^2(S_-)$ to Q. The conjugate representation is defined obviously as $\bar{S} = \bar{S}_+ \oplus \bar{S}_-$, associated to Q via

$$\bar{\rho_{\pm}}: Spin^c(4) \to U(2)$$

$$\begin{pmatrix} \lambda A_+ & 0\\ 0 & \lambda A_- \end{pmatrix} \mapsto \lambda \bar{A}_{\pm}$$

The next lemma shows that the fundamental representation of SU(2) and its complex conjugate are isomorphic.

Lemma 2.2. There exists a fixed matrix $M \in SU(2)$ such that $MAM^t = \bar{A}$ for all $A \in SU(2)$.

Proof. Since the Pauli matrices form a basis of SU(2), we can impose the required equations on Pauli matrices, and find

$$M = \begin{pmatrix} 0 & \mp 1 \\ \pm 1 & 0 \end{pmatrix}$$

L

Also, we have $\lambda^2 \lambda \bar{A}_{\pm} = \lambda |\lambda|^2 \bar{A}_{\pm} = \lambda \bar{A}_{\pm} = M(\bar{\lambda} A_{\pm}) M^t$, which means $\rho_{\pm} \cong \xi \otimes \bar{\rho}_{\pm}$. Hence we have $S_{\pm} \cong \bar{S}_{\pm} \otimes L$, therefore L is the characteristic line bundle.

2.2 The Existence of $Spin^c$ -connections

The construction in this section applies to all dimensions, not just in dimension 4. To understand the formulation of the Seiberg-Witten equations, it helps to understand the main ingredients in constructing $Spin^c$ connections.

Consider the SO(n)-principal bundle FrH, recall that there is a bijective correspondence between connection 1-forms on a principal bundle and covariant derivatives on associated bundles. So the covariant derivative ∇^B corresponds to a principal connection B on Fr(H), i.e. $B \in \Omega^1(Fr(H), so(n)) = \Gamma(T^*Fr(H) \otimes so(n))$, with:

- B being SO(n) invariant, $Ad_g(r_g^*)B = B$
- $B(X_{\xi}) = \xi$ for any $\xi \in so(n)$, where X_{ξ} is the fundamental vector field associated to ξ , defined by differentiating the SO(n) action on Fr(H)

Let $A \in \Omega^1(Q, spin^c(n))$ be a connection on the $Spin^c(n)$ -bundle $Q \to X$, it defines a Hermitian covariant derivative ∇^A on $V \to X$, where $V \to X$ is the vector bundle associated to $Q \to X$ via the representation

$$\rho_1: Spin^c(n) \to U(N)$$

$$(\tau, \sigma) \mapsto \sigma$$

Let $\rho_2: Spin^c(n) \to SO(n), (\tau, \sigma) \mapsto \tau$, denote the induced Lie algebra homomorphism by ρ_{1*} and ρ_{2*} .

We want to impose conditions on A such that ∇^A is a $Spin^c$ -connection.

Proposition 2.1. Let $\pi: Q \to Fr(H)$ be the bundle map that identifies $Q/S^1 \cong Fr(H)$. A Hermitian covariant derivative ∇^A is a $Spin^c$ -connection iff the

$$TQ \xrightarrow{A} spin^{c}(n)$$

$$\downarrow_{D\pi} \qquad \qquad \downarrow_{\rho_{2*}}$$

$$TFr(H) \xrightarrow{B} so(n)$$

following diagram commutes:

Let $L:=L_s$ denote the characteristic line bundle associated to Q via the homomorphism

$$\xi: Spin^c(n) \to U(1)$$
$$[\tau, \sigma, \lambda] \mapsto \lambda^2$$

 ξ_* is the induced Lie algebra homomorphism. Further we define \mathcal{L} as the U(1) principal bundle corresponding to L.

Proposition 2.2. A connection A on Q induces a connection A on \mathcal{L} such that the following diagram, where $c:Q\to\mathcal{L}$ is a bundle map, commutes.

$$TQ \xrightarrow{A} spin^{c}(n)$$

$$\downarrow^{Dc} \qquad \qquad \downarrow^{\xi_{*}}$$

$$T\mathcal{L} \xrightarrow{A} u(1)$$

Since $Spin^c(n) \cong Spin(n) \times U(1)/\mathbb{Z}_2$, the Lie algebra is given by $spin^c(n) \cong spin(n) \oplus u(1) \cong so(n) \oplus u(1)$, the isomorphism is given by $(\rho_1 \times \xi)_* : spin^c(n) \to so(n) \oplus u(1)$. This allows us to construct a connection on Q from connections on FrH and \mathcal{L} , giving us the following result:

Theorem 1. Let B be a pricipal SO(n)-connection on Fr(H), and \mathcal{A} a principal U(1)-connection on \mathcal{L} . Then there exists a unique pricipal $Spin^c(n)$ -connection A on Q such that the following diagrams commute.

$$TQ \xrightarrow{A} spin^{c}(n) \quad TQ \xrightarrow{A} spin^{c}(n)$$

$$\downarrow^{D\pi} \qquad \downarrow^{\rho_{2*}} \qquad \downarrow^{Dc} \qquad \downarrow^{\xi_{*}}$$

$$TFr(H) \xrightarrow{B} so(n) \qquad T\mathcal{L} \xrightarrow{A} u(1)$$

Corollary 1. The choice of a metric connection ∇^B on H and a Hermitian connection ∇^A on \mathcal{L} determines a unique $Spin^c$ -connection on V.

3 Seiberg-Witten Equations

3.1 Elliptic Operator

Let $E, F \to M$ be bundles, $P: \Gamma(E) \to \Gamma(F)$ be a first-order differential operator.

Definition 3.1. The symbol of P is a bundle map $\sigma(P): T^*M \to Hom(E, F)$, defined as follows. Take $\xi \in T^*M$, $e \in E_p$, choosing an extension \tilde{e} of e to a section of E, and a smooth function $f \in C^{\infty}(M)$ with f(p) = 0 and $(df)_p = \xi$. Then

$$(\sigma(P)(\xi))(e) := (P(f \cdot \tilde{e}))(p)$$

Definition 3.2. P is called elliptic if $\sigma(P)(\xi)$ is an isomorphism for all $\xi \neq 0$.

Example 3.1. Let $P = D_A : \Gamma(V) \to \Gamma(V)$ be a Dirac operator of a Spin^c stucture with a Spin^c connection A. Pick $\phi \in V_p$ and extends to $\tilde{\phi} \in \Gamma(V)$, fix f(p) = 0 and $(df)(p) = \xi$ for a $\xi \in T_p^*V$. Then

$$D_A(f \cdot \tilde{f})(p) = \gamma_{eval} \circ g(\nabla^A(f\tilde{\phi})(p)) = \gamma(\xi^*) \cdot \phi$$

where ξ^* is dual to ξ under g. Hence $\sigma(D_A)(\xi) = \gamma(\xi^*)$ and D_A is elliptic. Since D_A is self-adjoint, $ind(D_A) = 0$.

Now we specialize to the case of closed, smooth 4-manifold with a spin structure. In this case, the Clifford module V has a splitting $V=V_+\oplus V_-$ which is preserved by a $Spin^c$ connection and interchanged by Clifford multiplication, which means the Dirac operator acts as

$$D_A \Phi = \begin{pmatrix} 0 & D_A^- \\ D_A^+ & 0 \end{pmatrix} \begin{pmatrix} \Phi_+ \\ \Phi_- \end{pmatrix}$$

where $D_A^{\pm}: \Gamma(V_{\pm}) \to \Gamma(V_{\mp})$.

The Atiya-Singer Index Theorem relates the index of D_A^+ to a topological quantity:

Theorem 2. (Atiya-Singer Index Theorem)

$$ind_{\mathbb{C}}D_A^+ = <\hat{A}(M), [M]>$$

where $\hat{A}(M) = 1 - (1/24)p_1(TM) + ...$ On a 4-manifold, only the first Pontryagin class can be nonvanishing, so

$$ind_{\mathbb{C}}D_{A}^{+} = -\frac{1}{24} < p_{1}(TM), [M] >$$

Using the signature Formula

Theorem 3. (Signature Formula, Thom-Hirzebruch) For a closed, connected, oriented, smooth 4 manifold, the signature is given by

$$\sigma(M) = \frac{1}{3} < p_1(TM), [M] >$$

We then obtain

$$ind_{\mathbb{C}}D_A^+ = -\frac{1}{8}\sigma(M)$$

Corollary 2. If M is spin, $\sigma(M)$ is divisible by 8.

3.2 The Seiberg-Witten Equations

Let (X, g) be a COS Riemannian 4-manifold with a $Spin^c$ -structure \mathcal{S} , equipped with a $Spin^c$ -connection A. Let $\Gamma(V_+)$ denote the space of positive spinors, with $\Phi \in \Gamma(V_+)$ a positive spinor. The Seiberg-Witten equations are equations defined for a pair (A, Φ) .

The first SW equation reads $D_A^+ \Phi = 0$.

To write down the second equation, recall that γ induces and isomorphism $\Lambda_+^2 T^* X \otimes \mathbb{C} \cong End_0(V_+)$, where End_0 denotes the space of traceless endomorphisms. It maps real valued self-dual forms to traceless, skew-Hermitian endomorphisms and imaginary valued forms to traceless, Hermitian endomorphisms. In particular, $F_{\hat{A}}^+$ (where \hat{A} is the U(1)-connection associated to A) is an element of $\Omega_+^2(X,i\mathbb{R})$, thus corresponds to a traceless Hermitian endomorphism under γ .

Let $\phi \in \Gamma(V_+)$ be a positive spinor. Define $\Phi \otimes \Phi^t \in End(V_+)$ by $(\Phi \otimes \Phi^t)(\phi) = \Phi h(\Phi, \phi)$, where h is the Hermitian metric on $\Gamma(V_+)$. The traceless part is denoted by $(\Phi \otimes \Phi^t)_0$. Consider $\Phi = \begin{pmatrix} a \\ b \end{pmatrix}$ in a basis for V_+ , then

$$(\Phi \otimes \Phi^t) = egin{pmatrix} |a|^2 & aar{b} \ ar{a}b & |b|^2 \end{pmatrix}$$

so

$$(\Phi \otimes \Phi^t)_0 = \begin{pmatrix} \frac{1}{2}(|a|^2 - |b|^2) & a\bar{b} \\ \bar{a}b & \frac{1}{2}(|b|^2 - |a|^2) \end{pmatrix}$$

Definition 3.3. We define $\sigma(\Phi, \Phi) \in \Omega^2_+(X, i\mathbb{R})$ through the relation

$$\gamma(\sigma(\Phi,\Phi)) = (\Phi \otimes \Phi^t)_0$$

The second equation, called the curvature equation, reads $F_{\hat{A}}^+ = \sigma(\Phi, \Phi)$. The SW equations for (A, Φ) are:

$$D_{\Delta}^{+}\Phi = 0$$

$$F_{\hat{A}}^{+} = \sigma(\Phi, \Phi)$$

Sometimes it is necessary to perturb the SW equations by a self-dual imaginary valued form $\omega \in \Omega^2_+(X, i\mathbb{R})$. The perturbed equations read:

$$D_A^+\Phi = 0$$

$$F_{\hat{A}}^{+} = \sigma(\Phi, \Phi) + \omega$$

Definition 3.4. (SW Parameter Space) The space of parameters for the SW equation on X is

$$\mathcal{P} = \{ (g, \omega) \in Met(X) \times \Omega^2_+(X, i\mathbb{R}) \}$$

Definition 3.5. The space

$$C_S = A_S \times \Gamma(V_+)$$

where $\mathcal{A}_{\mathcal{S}}$ is the space of $Spin^c$ -connections on V compatible with the Levi-Civita connection is called the Seiberg-Witten configuration space.

Since $\mathcal{A}_{\mathcal{S}}$ can be identified with the space of Hermitian connections on the characteristic line bundle $L_{\mathcal{S}}$, it is an affine space over the sapce $\Omega^1(X, i\mathbb{R})$ of imaginary valued 1-forms over X.

Consider the map

$$f_{\omega}: \mathcal{C}_{\mathcal{S}} \longrightarrow i\Omega^2_+(X) \times \Gamma(V_-)$$

$$(A,\Phi)\mapsto (F_{\hat{A}}^+ - \sigma(\Phi,\Phi) - \omega, D_A^+\Phi)$$

then the solution space of the SW equations

$$\mathcal{Z}_{\omega} = f_{\omega}^{-1}(0)$$

3.3 Symmetries of the Seiberg-Witten Equations

3.3.1 Charge Conjugation

Recall the charge conjugation map $J: \bar{S} \to S$. Let A be a $Spin^c$ -connection on \bar{V} : it then induces a $Spin^c$ -connection A^* on V, defined by $\nabla_X^{A^*}(J\Phi) = J\nabla_X^A\Phi$. So we have a map

$$\begin{split} \tau: \mathcal{C}_{\tilde{\mathcal{S}}} &\to \mathcal{C}_{\mathcal{S}} \\ (A, \Phi) &\mapsto (A^*, J\Phi) \\ (\tilde{A}^*, J^{-1}\Phi) &\longleftrightarrow (\tilde{A}, \Phi) \end{split}$$

It is easy to see that τ is an involution.

Lemma 3.1. A pair $(A, \Phi) \in \mathcal{C}_{\bar{S}}$ satisfies the SW equations fro (g, ω) iff $\tau(A, \Phi) \in \mathcal{C}_{S}$ satisfies SW equations for $(g, -\omega)$.

3.3.2 The action of the Gauge group

The gauge group of the SW equations, $\mathcal{G} = C^{\infty}(X, S^1)$, has actions defined as follows.

• On C_S , for $u \in \mathcal{G}$,

$$(A, \Phi) \mapsto (A, \Phi) \cdot u := ((u^{-1})^* A, u\Phi)$$

and the $Spin^c$ -connection transform as $\nabla^{(u^{-1})^*A} := u \nabla_A u^{-1}$

• On $i\Omega^2_+(X) \times \Gamma(V_-) \subseteq f_\omega(\mathcal{C}_S)$, the action is $(\iota, \phi) \mapsto (\iota, \phi) \cdot u := (\iota, u\phi)$

Lemma 3.2. f_{ω} is equivariant with respect to these actions of \mathcal{G} , i.e. $f_{\omega}((A, \Phi) \cdot v) = f_{\omega}(A, \Phi) \cdot v$

Lemma 3.3. If X^4 is connected, the stablizer $\mathcal{G}_{(A,\Phi)}$ of $(A,\Phi) \in \mathcal{C}_{\mathcal{S}}$ is given by

$$\mathcal{G}_{(A,\Phi)} = \begin{cases} \{1\} & \text{if } \Phi \neq 0 \\ U(1) & \text{if } \Phi \equiv 0 \end{cases}$$
 (2)

Proof. $(A, \Phi) \cdot u = (A, \Phi)$ means $u \nabla^A u^{-1} = \nabla^A$ and $u \Phi = \Phi$. $u \nabla^A u^{-1} = \nabla^A + u d(u^{-1})$, so the first equation is satisfied iff $u d(u^{-1}) = 0$, hence $u \in S^1$ constant.

Definition 3.6. The space of irreducible configurations is

$$\mathcal{G}^*_{(A,\Phi)} = \{(A,\Phi) \in \mathcal{G}_{(A,\Phi)} | \Phi \not\equiv 0\}$$

 $\mathcal{G}_{(A,\Phi)} \setminus \mathcal{G}_{(A,\Phi)}^*$ is the set of reducible solutions.

4 Topology of the Moduli Space

Definition 4.1. (SW Base and Moduli Spaces) We call $\mathcal{B} := \mathcal{C}_{\mathcal{S}}/\mathcal{G}$ the base space of the SW equations. The moduli space is $\mathcal{M}_{\omega} := \mathcal{Z}_{\omega}/\mathcal{G} \subset \mathcal{B}$.

Roughly speaking, we want to show that the Moduli space is a compact smooth manifold of finite dimension.

Recall that the solutions of the SW equations is the zero set of the map

$$f_{\omega}: \mathcal{C}_{\mathcal{S}} \longrightarrow i\Omega^2_+(X) \times \Gamma(V_-)$$

This map is in fact a smooth map. Its differential gives the linearization of the SW equations.

$$\mathcal{T}_{(A,\Phi)} f_{\omega} : i\Omega^1(X) \times \Gamma(V_+) \to i\Omega^2_+(X) \times \Gamma(V_-)$$

Fixing $(A, \Phi) \in \mathcal{C}_{\mathcal{S}}$. The gauge group action induces a map

$$g = i\Omega^0(X) \xrightarrow{L_{(A,\Phi)}} T_{(A,\Phi)} \mathcal{C}_{\mathcal{S}} = i\Omega^1(X) \times \Gamma(V_+)$$

Now for a fixed (A, Φ) , consider the composition of the two maps

$$i\Omega^0(X) \xrightarrow{L_{(A,\Phi)}} i\Omega^1(X) \times \Gamma(V_+) \xrightarrow{\mathcal{T}_{(A,\Phi)}f_\omega} i\Omega^2_+(X) \times \Gamma(V_-)$$

We have the following result

Proposition 4.1. If $D_A^+\Phi = 0$, then for all $\omega \in i\Omega_+^2(X)$, the above is an elliptic complex with index $-\frac{1}{4}(c_1^2(L_S) - (2\chi(X) + 3\sigma(X)))$

Remark 2. It is a general fact that

$$\frac{1}{4}(c_1^2(L_{\mathcal{S}}) - (2\chi(X) + 3\sigma(X))) = c_2(V_+)$$

Definition 4.2. For $(A, \Phi) \in \mathcal{Z}_{\omega}$, let $H^{i}_{(A,\Phi)}$ be the ith cohomology group of the elliptic complex. Its index is $\dim H^{0}_{(A,\Phi)} - \dim H^{1}_{(A,\Phi)} + \dim H^{2}_{(A,\Phi)}$

Lemma 4.1. Let X be a CCOS. Then

$$H^0_{(A,\Phi)} \cong \begin{cases} 0 & \text{if } \Phi \not\equiv 0 \\ \mathbb{R} & \text{if } \Phi \equiv 0 \end{cases}$$
 (3)

Proof. $\xi \in H^0_{(A,\Phi)}$ iff $L_{(A,\Phi)}\xi = (0,0)$, which means $d\xi = 0$ and $\xi\Phi = 0$. The statement follows.

Now assume that (A, Φ) is an irreducible solution of the SW equations, i.e. $H^0_{(A,\Phi)} = 0$. S be a local slice for the \mathcal{G} -action on $\mathcal{C}_{\mathcal{S}}$ aound (A, Φ) . This means a neighborhood of (A, Φ) admits a smoothly embedded Hilbert manifold S and

the neighborhood is diffeomorphic to $S \times \mathcal{G}$.(S is a transverse submanifold to the \mathcal{G} orbits.)

Consider $f_{\omega}|_{S}: S \to i\Omega_{+}^{2}(X) \times \Gamma(V_{-})$. This map is Fredholm between Banach spaces, and a neighborhood of $[A, \Phi] \in \mathcal{M}_{\omega}$ is equal to $(f_{\omega}|_{S})^{-1}(0)$.

We further assume that $H^2_{(A,\Phi)}=0$, which is going to be achieved by transversality. Using a version of implicit function theorem for Banach manifolds, we see that an open neighborhood of $[A,\Phi]$ looks like an open neighborhood of 0 in $H^1_{(A,\Phi)}$. Together with the index discussion, we have

Proposition 4.2. If $H^0_{(A,\Phi)} = H^2_{(A,\Phi)} = 0$, a neighborhood of $[A,\Phi] \in \mathcal{M}_{\omega}$ is a smooth manifold of dimension

$$dim^{exp}\mathcal{M}_{\omega} := \frac{1}{4}(c_1^2(L_{\mathcal{S}}) - (2\chi(X) + 3\sigma(X))) = c_2(V_+)$$

which is called the expected dimension of the moduli space.

An analogous statement holds for the reducible case:

Proposition 4.3. If $H^0_{(A,\Phi)} = \mathbb{R}$, $H^2_{(A,\Phi)} = 0$, a neighborhood of $[A,\Phi] \in \mathcal{M}_{\omega}$ is the quotient of a smooth manifold of dimension $\dim^{exp} \mathcal{M}_{\omega} + 1$ by a U(1)-action.

Using transversality argument, we establish:

Theorem 4. For any fixed Riemannian metric g on X, and a generic $\omega \in i\Omega^2_+(X)$, the irreducible part of the moduli space $\mathcal{M}^*_{\omega} = (\mathcal{Z}_{\omega} \cap \mathcal{C}^*_{\mathcal{S}})/\mathcal{G}$, is either a smooth manifold of dimension $c_2(V_+)$, or empty.

Definition 4.3. (Parametrized Moduli Space) The parametrized moduli space is defined as

$$\mathcal{M} = \{ ([A, \Phi], \omega) \in \mathcal{B} \times i\Omega^2_+(X) | f_\omega(A, \Phi) = 0 \}$$

The irreducible part is

$$\mathcal{M}^* = \mathcal{M} \cap (\mathcal{B}^* \times i\Omega^2_+(X))$$

Let $\pi: \mathcal{M}^* \to i\Omega^2_+(X)$ be the canonical projection, we observe that $\mathcal{M}^*_{\omega} = \pi^{-1}(\omega)$.

We have the following theorem

Theorem 5. (Transversality)

- \mathcal{M}^* is a Banach manifold
- The projection $\pi: \mathcal{M}^* \to i\Omega^2_+(X)$ is Fredholm with index $c_2(V_+)$
- The set of regular values of π is generic. For a regular value ω , $\mathcal{M}^*_{\omega} = \pi^{-1}(\omega)$ is either a smooth manifold of dimension $c_2(V_+)$, or empty.

After assuming certain regularity conditions on the solutions of SW equations and the gauge transformations. There is the following compactness result:

Theorem 6. Let (A_i, Φ_i) be a sequence of L_4^2 (Sobolev norm) solutions to the SW equations. Then there exists a sequence u_i of L_5^2 gauge transformations such that $u_i(A_i, \Phi_i)$ is a bounded sequence in L_k^2 for all k. Hence the solutions $u_i(A_i, \Phi_i)$ are C^{∞} and there is a subsequence that converges in the C^{∞} topology to a C^{∞} solution (A, Φ) of the SW equations. In particular, the moduli space is sequentially compact in the C^{∞} topology.

The proof involves establishing certain bounds on the norms of the solutions of the equations, and then applying an elliptic regularity estimate. We omit the proof here.

5 Seiberg-Witten Invariants

We quote without proof the following result on the topology of the irreducible base space:

Theorem 7. The quotient space $\mathcal{B}^* := \mathcal{C}_{\mathcal{S}}^*/\mathcal{G}$ is a smooth Hilbert manifold with the weak homotopy type of $\mathbb{C}P^{\infty} \times T^{b_1(X)}$, where $T^{b_1(X)}$ is the torus $H^1(X;\mathbb{R})/H^1(X;\mathbb{Z})$.

We assume X is closed, connected, oriented and smooth, with $b_2^+(X) \geq 2$. Given a $Spin^c$ structure S and generic parameters $(g, \omega) \in \mathcal{P}$, \mathcal{M}_{ω} is a smooth, closed, oriented manifold of expected dimension. The fundamental class of the moduli space is an invariant of S.

Theorem 8. The map

$$SW_X : Spin^c(X) \to H_*(\mathcal{B}^*; \mathbb{Z})$$

$$\mathcal{S} \mapsto [\mathcal{M}_{\omega}]$$

is an oriented diffeomorphism invariant of X. i.e. if $f: Y \to X$ is an orientation-preserving diffeomorphism, then $f^* \cdot SW_X = SW_Y \cdot f^*$.

5.1 Properties of Seiberg-Witten Invariants

- Let $\tau: Spin^c(X) \to Spin^c(X)$ be the charge conjugation map. Then $SW_X(\tau(S)) = \pm SW_X(S)$. This is because conjugation leads to an identification $(g, \omega) \leftrightarrow (g, -\omega)$, this yields a diffeomorphism of \mathcal{M}_{ω} .
- SW_X has finite support
- If X admits a metric g_0 with the scalar curvature $s_{g_0} > 0$, then $SW_X(\mathcal{S}) \equiv 0$

Remark 3. This fails if $b_2^+(X) \leq 1$, exemplified by $\mathbb{C}P^2$.

 \bullet In case X admits a scalar-flat metric, we have the following:

Proposition 5.1. Suppose X admits a metric g with $s_g \equiv 0$. If $2\chi(X) + 3\sigma(X) \geq 0$, then $SW_X(S) = 0$ unless $c_1(L_S)_{\mathbb{R}} = 0$ and $2\chi(X) + 3\sigma(X) = 0$. In the latter case, $SW_X(S) \in H_0(\mathcal{B}^*; \mathbb{Z})$.