Linux Driver Development for Embedded Processors

ST STM32MP1 Practical Labs Setup

Building a Linux embedded system for the ST STM32MP1 processor

The STM32MP1 microprocessor series is based on a heterogeneous single or dual Arm Cortex-A7 and Cortex-M4 cores architecture, strengthening its ability to support multiple and flexible applications, achieving the best performance and power figures at any time. The Cortex-A7 core provides access to open-source operating systems (Linux/Android) while the Cortex-M4 core leverages the STM32 MCU ecosystem.

You can check all the info related to this family at

https://www.st.com/en/microcontrollers-microprocessors/stm32mp1-series.html#overview

For the development of the labs the **STM32MP157C-DK2** Discovery kit will be used. The documentation of this board can be found at

https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html

Connect and set up hardware

To set up the STM32MP15 Discovery kit connections follow the steps indicated in the STM32 MPU wiki section located at

https://wiki.st.com/stm32mpu/wiki/Getting started/STM32MP1 boards/STM32MP157x-DK2

Creating the structure for the STM32MPU embedded software distribution

The STM32MPU embedded software distribution for STM32 microprocessor platforms supports three software packages.

- The Starter Package to quickly and easily start with any STM32MPU microprocessor device. The Starter Package is generated from the Distribution Package.
- The Developer Package to add your own developments on top of the STM32MPU Embedded Software distribution, or to replace the Starter Package pre-built binaries.
 The Developer Package is generated from the Distribution Package.
- The **Distribution Package** to create your own Linux® distribution, your own Starter Package and your own Developer Package.

Create your <working directory> and assign a unique name to it (for example by including the release name).

PC:~\$ mkdir STM32MP15-Ecosystem-v2.0.0

```
PC:~$ cd STM32MP15-Ecosystem-v2.0.0
```

Create the first-level directories that will host the software packages delivered through the STM32MPU embedded software distribution release note.

```
PC:~/STM32MP15-Ecosystem-v2.0.0$ mkdir Starter-Package
PC:~/STM32MP15-Ecosystem-v2.0.0$ mkdir Developer-Package
PC:~/STM32MP15-Ecosystem-v2.0.0$ mkdir Distribution-Package
```

Populate the target and boot the image

To populate the STM32MP15 Discovery kit with the Starter Package follow the steps indicated in the STM32 MPU wiki section located at

https://wiki.st.com/stm32mpu/wiki/Getting_started/STM32MP1_boards/STM32MP157x-DK2/Let%27s_start/Populate_the_target_and_boot_the_image

Installing the SDK for the developer package

PC:~\$ mdir -p \$HOME/STM32MPU workspace/tmp

To download the STM32MP1 Developer Package SDK for the STM32MP15-Ecosystem-v2.0.0 release follow the steps indicated in the STM32 MPU wiki section located at https://wiki.st.com/stm32mpu/wiki/STM32MP1_Developer_Package

Follow the next steps to install the SDK:

1. Uncompress the tarball file to get the SDK installation script and make it executable.

```
PC:~$ mkdir -p $SDK_ROOT/SDK

PC:~/STM32MPU_workspace/tmp$ tar xvf en.SDK-x86_64-stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24.tar.xz
PC:~/STM32MPU_workspace/tmp$ chmod +x stm32mp1-openstlinux-5.4-dunfell-mp1-20-
```

PC:~/SIM3ZMPU_workspace/tmp% cnmod +x stm32mp1-openstlinux-5.4-duntell-mp1-20-06-24/sdk/st-image-weston-openstlinux-weston-stm32mp1-x86_64-toolchain-3.1-openstlinux-5.4-dunfell-mp1-20-06-24.sh

2. Add the following line to .bashrc.

PC:~\$ echo "export SDK_ROOT=\$HOME/STM32MP15-Ecosystem-v2.0.0/Developer-Package"
>> \$HOME/.bashrc

3. Install the SDK.

```
PC:~/STM32MPU_workspace/tmp$ ./stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sdk/st-image-weston-openstlinux-weston-stm32mp1-x86_64-toolchain-3.1-openstlinux-5.4-dunfell-mp1-20-06-24.sh -d $SDK_ROOT/SDK ST OpenSTLinux - Weston - (A Yocto Project Based Distro) SDK installer version 3.1-openstlinux-5.4-dunfell-mp1-20-06-24
```

Each time you wish to use the SDK in a new shell session, you need to source the environment setup script:

PC:~\$ source \$SDK_ROOT/SDK/environment-setup-cortexa7t2hf-neon-vfpv4-ostl-linux-gnueabi

Installing and compiling the Linux kernel for the developer package

To download the STM32MP1 Linux kernel for the STM32MP15-Ecosystem-v2.0.0 release follow the steps indicated in the STM32 MPU wiki section located at https://wiki.st.com/stm32mpu/wiki/STM32MP1_Developer_Package

Follow the next steps to install and compile the Linux kernel:

1. Extract the kernel source code.

```
PC:~$ cd $SDK ROOT
```

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package\$ tar xvf en.SOURCES-kernel-stm32mp1-openstlinux-5-4-dunfell-mp1-20-06-24.tar.xz

PC:~\$ cd \$SDK_ROOT/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0\$ tar xvf linux-5.4.31.tar.xz

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0\$ cd linux-5.4.31

2. To initialize a pad in GPIO mode with a bias (internal pull-up, pull-down...), it is needed to disable the strict mode of pinctrl. You have to change the strict variable of the struct pinmux_ops to false. You can find within the kernel sources the struct pinmux_ops structure; it is included in the /drivers/pinctrl/stm32/pinctrl-stm32.c file.

```
static const struct pinmux_ops stm32_pmx_ops = {
    .get_functions_count = stm32_pmx_get_funcs_cnt,
    .get function name = stm32 pmx get func name,
```

```
.get_function_groups = stm32_pmx_get_func_groups,
           .set mux
                               = stm32 pmx set mux,
           .gpio_set_direction = stm32_pmx_gpio_set_direction,
           .strict
                               = false,
   };
3. Prepare and configure kernel source code.
   PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-
   dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-
   r0/linux-5.4.31$ for p in `ls -1 ../*.patch`; do patch -p1 < $p; done
   PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-
   dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-
   r0/linux-5.4.31$ make multi_v7_defconfig fragment*.config
   PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-
   dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-
   r0/linux-5.4.31$ for f in `ls -1 ../fragment*.config`; do
   scripts/kconfig/merge config.sh -m -r .config $f; done
   PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-
   dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-
   r0/linux-5.4.31$ yes '' | make ARCH=arm oldconfig
4. Configure the following kernel settings that will be needed during the development of
   the drivers.
   PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-
   dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-
   r0/linux-5.4.31$ make ARCH=arm menuconfig
           Device drivers >
                  <*> Industrial I/O support --->
                         -*- Enable buffer support within IIO
                               Industrial I/O buffering based on kfifo
                         <*> Enable IIO configuration via configfs
                          -*- Enable triggered sampling support
                         <*>
                              Enable software IIO device support
                         <*>
                               Enable software triggers support
                                Triggers - standalone --->
                                        <*> High resolution timer trigger
                                        <*> SYSFS trigger
            Device drivers >
                  <*> Userspace I/O drivers --->
                         <*> Userspace I/O platform driver with generic IRQ
   handling
          Device drivers >
                  Input device support --->
```

```
-*- Generic input layer (needed for keyboard, mouse, ...)
<*> Polled input device skeleton
```

5. Compile kernel source code and kernel modules.

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31\$ make -j4 ARCH=arm uImage vmlinux dtbs LOADADDR=0xC2000040

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31\$ make ARCH=arm modules

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31\$ mkdir -p \$PWD/install artifact/

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31\$ make ARCH=arm INSTALL_MOD_PATH="\$PWD/install_artifact" modules install

6. Boot the STM32MP1 target and open a new terminal on the host, for example "minicom". Set the following configuration: "115.2 kbaud, 8 data bits, 1 stop bit, no parity".

PC:~\$ minicom -D /dev/ttyACM0

7. Connect Ethernet cable between host and eval board and verify the connection.

root@stm32mp1:~# ifconfig eth0 down

root@stm32mp1:~# ifconfig eth0 up

root@stm32mp1:~# ifconfig eth0 10.0.0.10

root@stm32mp1:~# ping 10.0.0.1

8. Deploy the compiled Linux kernel image and the kernel modules to the target STM32MP1 device.

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31\$ scp arch/arm/boot/uImage root@10.0.0.10:/boot

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31\$ rm install_artifact/lib/modules/5.4.31/build install artifact/lib/modules/5.4.31/source

```
PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31$ find install_artifact/ -name "*.ko" | xargs $STRIP --strip-debug --remove-section=.comment --remove-section=.note --preserve-dates

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31$ scp -r install_artifact/lib/modules/*

root@10.0.0.10:/lib/modules
```

9. Re-generate the list of module dependencies (modules.dep) and the list of symbols provided by modules (modules.symbols), synchronize data on disk with memory and reboot the board.

```
root@stm32mp1:~# /sbin/depmod -a
root@stm32mp1:~# sync
root@stm32mp1:~# modinfo vivid
root@stm32mp1:~# reboot
```

Compile and deploy the Linux kernel drivers

Download the linux_5.4_stm32mp1_drivers.zip file from the github of the book and unzip it in the STM32MP15-Ecosystem-v2.0.0 folder of the Linux host:

```
PC:~$ cd ~/STM32MP15-Ecosystem-v2.0.0/
```

Compile and deploy the drivers to the STM32MP157C-DK2 Discovery kit:

```
~/STM32MP15-Ecosystem-v2.0.0/linux_5.4_stm32mp1_drivers$ make
```

~/STM32MP15-Ecosystem-v2.0.0/linux_5.4_stm32mp1_drivers\$ make deploy

```
scp *.ko root@10.0.0.10:
adxl345 stm32mp1.ko
                                                   100%
                                                          12KB 12.3KB/s
                                                                           00:00
adxl345 stm32mp1 iio.ko
                                                   100%
                                                          12KB 12.4KB/s
                                                                           00:00
hellokeys stm32mp1.ko
                                                   100% 7024
                                                                 6.9KB/s
                                                                           00:00
helloworld stm32mp1.ko
                                                   100% 4008
                                                                 3.9KB/s
                                                                           00:00
helloworld stm32mp1 char driver.ko
                                                   100% 6184
                                                                 6.0KB/s
                                                                           00:00
                                                   100% 7724
100% 4604
100% 5688
helloworld stm32mp1 class driver.ko
                                                                 7.5KB/s
                                                                           00:00
helloworld_stm32mp1_with_parameters.ko
                                                                 4.5KB/s
                                                                           00:00
helloworld_stm32mp1_with_timing.ko
                                                                 5.6KB/s
                                                                           00:00
i2c_stm32mp1_accel.ko
                                                   100% 7216
                                                                 7.1KB/s
                                                                           00:00
int_stm32mp1_key.ko
                                                   100% 7812
                                                                 7.6KB/s
                                                                           00:00
int stm32mp1 key wait.ko
                                                   100%
                                                          10KB
                                                                 9.9KB/s
                                                                           00:00
io stm32mp1 expander.ko
                                                   100% 9664
                                                                 9.4KB/s
                                                                           00:00
keyled stm32mp1 class.ko
                                                   100%
                                                          16KB 16.2KB/s
                                                                           00:00
ledRGB stm32mp1 class platform.ko
                                                   100% 9524
                                                                 9.3KB/s
                                                                           00:00
                                                   100% 11KB 10.9KB/s
ledRGB stm32mp1 platform.ko
                                                                           00:00
```

```
led stm32mp1 UIO platform.ko
                                                 100% 6912
                                                              6.8KB/s
                                                                        00:00
                                                 100% 9460
linkedlist stm32mp1 platform.ko
                                                              9.2KB/s
                                                                        00:00
ltc2422_stm32mp1_dual.ko
                                                 100% 7344
                                                              7.2KB/s
                                                                        00:00
ltc2422 stm32mp1 trigger.ko
                                                 100% 9840
                                                              9.6KB/s
                                                                        00:00
ltc2607 stm32mp1 dual device.ko
                                                 100% 8056
                                                             7.9KB/s
                                                                        00:00
ltc3206_stm32mp1_led_class.ko
                                                 100% 11KB 11.1KB/s
                                                                        00:00
                                                 100% 5780
misc stm32mp1 driver.ko
                                                             5.6KB/s
                                                                        00:00
                                                       12KB 11.7KB/s
                                                                        00:00
sdma stm32mp1 m2m.ko
                                                 100%
sdma stm32mp1 mmap.ko
                                                 100%
                                                       12KB 11.7KB/s
                                                                        00:00
~/STM32MP15-Ecosystem-v2.0.0/linux 5.4 stm32mp1 drivers$
```

Verify that the drivers are now in the STM32MP157C-DK2 Discovery kit:

```
root@stm32mp1:~# ls
adx1345_stm32mp1.ko
                                        keyled_stm32mp1_class.ko
adxl345_stm32mp1_iio.ko
                                        ledRGB_stm32mp1_class_platform.ko
hellokeys stm32mp1.ko
                                        ledRGB stm32mp1 platform.ko
helloworld stm32mp1.ko
                                        led stm32mp1 UIO platform.ko
helloworld stm32mp1 char driver.ko
                                        linkedlist stm32mp1 platform.ko
helloworld_stm32mp1_class_driver.ko
                                        ltc2422_stm32mp1_dual.ko
helloworld_stm32mp1_with_parameters.ko
                                        ltc2422 stm32mp1 trigger.ko
helloworld stm32mp1 with timing.ko
                                        ltc2607 stm32mp1 dual device.ko
i2c_stm32mp1_accel.ko
                                        ltc3206_stm32mp1_led_class.ko
int stm32mp1 key.ko
                                        misc stm32mp1 driver.ko
int stm32mp1 key wait.ko
                                        sdma stm32mp1 m2m.ko
io stm32mp1 expander.ko
                                        sdma stm32mp1 mmap.ko
root@stm32mp1:~#
```

The stm32mp15xx-dkx.dtsi and stm32mp15-pinctrl.dtsi files with all the needed modifications to run the drivers are stored in the device_tree folder inside the linux_5.4_stm32mp1_drivers.zip file. During the development of the drivers you will modify these device tree files, then build and copy them to the STM32MP1 board.

```
PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31$ make dtbs

PC:~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31$ scp arch/arm/boot/dts/stm32mp157c-dk2.dtb root@10.0.0.10:/boot
```

Hardware and device tree descriptions for the ST STM32MP1 labs

In the next sections it will be described the different hardware and device tree configurations for the labs where external hardware connected to the processor is controlled by the drivers. The schematic of the STM32MP157C-DK2 Discovery kit is included inside the linux_5.4_stm32mp1_drivers.zip file that can be downloaded from the github of the book.

LAB 5.2, 5.3 and 5.4 hardware and device tree descriptions

During the development of these drivers you will use the LD6 RED, LD5 GREEN and LD8 BLUE leds included in the STM32MP157C-DK2 Discovery kit. Go to the pag.13 of the schematic to see them. Each LED is individually controlled by a processor pin programmed as GPIO output. The pins are PA13, PA14, and PD11. The PD11 pin is used by the "gpio-leds" driver, therefore you'll have to disable it in the stm32mp15xx-dkx.dtsi file to avoid conflicts with your developed drivers.

This is the device tree node that should be included in the stm32mp15xx-dkx.dtsi file to run the driver for the LAB 5.2:

This is the device tree node that should be included in the stm32mp15xx-dkx.dtsi file to run the driver for the LAB 5.3:

```
ledclassRGB {
          compatible = "arrow,RGBclassleds";
           reg = <0x50002000 0x400>,
                 <0x50005000 0x400>;
          clocks = <&rcc GPIOA>,
                   <&rcc GPIOD>;
          clock-names = "GPIOA", "GPIOD";
          red {
                  label = "ledred";
          };
          green {
                  label = "ledgreen";
          };
          blue {
                  label = "ledblue";
           };
   };
```

This is the device tree node that should be included in the stm32mp15xx-dkx.dtsi file to run the driver for the LAB 5.4:

```
UIO {
    compatible = "arrow,UIO";
    reg = <0x50002000 0x1000>;
    clocks = <&rcc GPIOA>;
};
```

LAB 6.1 hardware and device tree descriptions

In this lab the driver will able to manage several PCF8574 I/O expander devices connected to the I2C bus. You can use one of the multiples boards based on this device to develop this lab, for example, the next one https://www.waveshare.com/pcf8574-io-expansion-board.htm.

You will take the I2C5 bus from the CN13 connector of the STM32MP157C-DK2 Discovery kit. Go to the pag.10 of the STM32MP157C-DK2 schematic to see the connector.

You can take the 3V3 and GND signals from the CN16 connector of the STM32MP157C-DK2 board. Go to the pag.10 of the STM32MP157C-DK2 schematic to see the connector.

This is the device tree node that should be included in the stm32mp15xx-dkx.dtsi file to run the driver for the LAB 6.1:

```
&i2c5 {
    pinctrl-names = "default", "sleep";
    pinctrl-0 = <&i2c5_pins_a>;
    pinctrl-1 = <&i2c5_pins_sleep_a>;
    i2c-scl-rising-time-ns = <185>;
    i2c-scl-falling-time-ns = <20>;
    clock-frequency = <400000>;
    /delete-property/dmas;
    /delete-property/dma-names;
    status = "okay";

ioexp@38 {
        compatible = "arrow,ioexp";
        reg = <0x38>;
}
```

```
};
};
```

LAB 6.2 hardware and device tree descriptions

To test this driver you will use the DC749A - Demo Board (http://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/dc749a.html).

In this lab you will use the I2C5 pins of the STM32MP157C-DK2 CN13 connector to connect to the DC749A - Demo Board. Connect the pin 9 (I2C5_SDA) of the CN13 connector to the pin 7 (SDA) of the DC749A J1 connector and the pin 10 (I2C5_SCL) of the CN13 connector to the pin 4 (SCL) of the DC749A J1 connector. Connect the 3.3V pin from the STM32MP157C-DK2 CN16 connector to the DC749A Vin J2 pin and to the DC749A J20 DVCC connector. Connect the pin 1 (PG3 pad) of the CN13 connector to the pin 6 (ENRGB/S) of the DC749A J1 connector. Do not forget to connect GND between the two boards.

This is the device tree node that should be included in the stm32mp15xx-dkx.dtsi file to run the driver for the LAB 6.2:

```
&i2c5 {
   pinctrl-names = "default", "sleep";
   pinctrl-0 = <&i2c5 pins a>;
   pinctrl-1 = <&i2c5 pins sleep a>;
   i2c-scl-rising-time-ns = <185>;
   i2c-scl-falling-time-ns = <20>;
   clock-frequency = <400000>;
   /delete-property/dmas;
   /delete-property/dma-names;
   status = "okay";
   ltc3206: ltc3206@1b {
           compatible = "arrow,ltc3206";
           reg = \langle 0x1b \rangle;
           gpios = <&gpiog 3 GPIO_ACTIVE_LOW>;
           led1r {
                  label = "red";
           };
           led1b {
                  label = "blue";
           };
           led1g {
                   label = "green";
           };
```

LAB 7.1 and 7.2 hardware and device tree descriptions

In these two labs you will use the "USER" button (B3) of the STM32MP157C-DK2 board. The button is connected to PA14 pin. The pin will be programmed as an input generating an interrupt. You will also have to ensure the mechanical key is debounced. Open the STM32MP157C-DK2 schematic and find the button B3 in pag.13.

These are the device tree nodes that should be included in the stm32mp15xx-dkx.dtsi file to run the drivers for the LAB 7.1 and the LAB 7.2:

```
int_key_wait {
    compatible = "arrow,intkeywait";
    pinctrl-names = "default";
    pinctrl-0 = <&key_pins>;
    label = "PB_USER";
    gpios = <&gpioa 14 GPIO_ACTIVE_LOW>;
    interrupt-parent = <&gpioa>;
    interrupts = <14 IRQ_TYPE_EDGE_FALLING>;
};
```

LAB 7.3 hardware and device tree descriptions

In this lab you will use the LD7 ORANGE and the LD8 BLUE leds included in the STM32MP157C-DK2 Discovery kit. Go to the pag.13 of the STM32MP157C-DK2 schematic to see them. Each LED is individually controlled by a processor pin programmed as GPIO output. The pins are PH7 and PD11. Currently the PD11 pin is used by by the "gpio-leds" driver, therefore you'll have to disable it in the stm32mp15xx-dkx.dtsi file. In this lab you will also use the buttons B4 and B3. The button B4 is connected to PA13 pin and the button B3 is connected to the PA14 pin. Both pins will be programmed as an input generating an interrupt. You will also have to ensure the mechanical key is debounced. Open the STM32MP157C-DK2 schematic and find the B4 and B3 buttons in pag.13.

This is the device tree node that should be included in the stm32mp15xx-dkx.dtsi file to run the driver for the LAB 7.3:

```
ledpwm {
    compatible = "arrow,ledpwm";

    pinctrl-names = "default";
    pinctrl-0 = <&keyleds_pins>;

    bp1 {
        label = "KEY_1";
        gpios = <&gpioa 13 GPIO_ACTIVE_LOW>; // B4:USER2
        trigger = "falling";
    };

    bp2 {
        label = "KEY_2";
        gpios = <&gpioa 14 GPIO_ACTIVE_LOW>; //B3:USER1
```

```
trigger = "falling";
};

ledorange {
    label = "led";
    colour = "orange";
    gpios = <&gpioh 7 GPIO_ACTIVE_LOW>;
};

ledblue {
    label = "led";
    colour = "blue";
    gpios = <&gpiod 11 GPIO_ACTIVE_LOW>;
};
};
```

This is the device tree node that should be included in the stm32mp15-pinctrl.dtsi file to run the driver for the LAB 7.3:

```
keyleds_pins: keyleds-0 {
                          pins1 {
                                 pinmux = <STM32_PINMUX('H', 7, GPIO)>,
                                          <STM32 PINMUX('D', 11, GPIO)>;
                                 drive-push-pull;
                                 bias-pull-down;
                          };
                          pins2 {
                                 pinmux = <STM32 PINMUX('A', 13, GPIO)>;
                                 drive-push-pull;
                                 bias-pull-up;
                          };
                          pins3 {
                                 pinmux = <STM32_PINMUX('A', 14, GPIO)>;
                                 drive-push-pull;
                                 bias-pull-up;
                          };
};
```

LAB 10.1,10.2 and 12.1 hardware and device tree descriptions

In these labs you will control an accelerometer board connected to the I2C and SPI buses of the processor. You will use the ADXL345 Accel click mikroBUSTM accessory board to develop the drivers; you will access to the schematic of the board at http://www.mikroe.com/click/accel/.

For the LAB 10.1 you will connect the accelerometer board to the I2C5 pins of the STM32MP157C-DK2 CN13 connector. For the LAB 10.2 and the LAB 12.1 you will connect the accelerometer board to the SPI4 pins of the CN13 connector.

The pin 1 of the CN13 connector (PG3 pad) will be programmed as an input generating an interrupt for the LAB 10.2 and the LAB 12.1.

This is the device tree node that should be included in the stm32mp15xx-dkx.dtsi file to run the driver for the LAB 10.1:

```
&i2c5 {
    pinctrl-names = "default", "sleep";
    pinctrl-0 = <&i2c5_pins_a>;
    pinctrl-1 = <&i2c5_pins_sleep_a>;
    i2c-scl-rising-time-ns = <185>;
    i2c-scl-falling-time-ns = <20>;
    clock-frequency = <400000>;
    /delete-property/dmas;
    /delete-property/dma-names;
    status = "okay";

adxl345@1c {
        compatible = "arrow,adxl345";
        reg = <0x1d>;
    };
};
```

This is the device tree node that should be included in the stm32mp15xx-dkx.dtsi file to run the drivers for the LAB 10.2 and the LAB 12.1:

```
&spi4 {
   pinctrl-names = "default", "sleep";
```

```
pinctrl-0 = <&spi4 pins a>;
   pinctrl-1 = <&spi4_sleep_pins_a>;
   cs-gpios = <&gpioe 11 0>;
   status = "okay";
   Accel: ADXL345@0 {
           compatible = "arrow,adx1345";
           pinctrl-names ="default";
           pinctrl-0 = <&accel pins>;
           spi-max-frequency = <5000000>;
           spi-cpol;
           spi-cpha;
           reg = \langle 0 \rangle;
           int-gpios = <&gpiog 3 GPIO_ACTIVE_LOW>;
           interrupt-parent = <&gpiog>;
           interrupts = <3 IRQ TYPE LEVEL HIGH>;
   };
};
```

This is the device tree node that should be included in the stm32mp15-pinctrl.dtsi file to run the drivers for the LAB 10.2 and the LAB 12.1:

LAB 11.1 hardware and device tree descriptions

In this lab you will control the Analog Devices LTC2607 internal DACs individually or both DACA + DACB in a simultaneous mode. You will use the DC934A evaluation board; you can download the schematics at

https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/dc934a.html

For this LAB 11.1 you will connect the I2C5 pins of the STM32MP157C-DK2 CN13 connector to the SDA and SCL pins of the LTC2607 DC934A evaluation board. You are going to power the LTC2607 with the 3.3V pin of the STM32MP157C-DK2 CN16 connector, connecting it to V+, pin 1 of the DC934A's connector J1. Also connect GND between the DC934A (i.e., pin 3 of connector J1) and GND pin of the STM32MP157C-DK2 Discovery kit.

This is the device tree node that should be included in the stm32mp15xx-dkx.dtsi file to run the driver for the LAB 11.1:

```
&i2c5 {
   pinctrl-names = "default", "sleep";
   pinctrl-0 = <&i2c5 pins a>;
   pinctrl-1 = <&i2c5 pins sleep a>;
   i2c-scl-rising-time-ns = <185>;
   i2c-scl-falling-time-ns = <20>;
   clock-frequency = <400000>;
   /delete-property/dmas;
   /delete-property/dma-names;
   status = "okay";
   ltc2607@72 {
           compatible = "arrow,ltc2607";
           reg = \langle 0x72 \rangle;
   };
   ltc2607@73 {
           compatible = "arrow,ltc2607";
           reg = \langle 0x73 \rangle;
   };
};
```

LAB 11.2, LAB 11.3 and LAB 11.4 hardware and device tree descriptions

In these three labs you will reuse the hardware description of the LAB 11.1 and will use the SPI4 pins of the STM32MP157C-DK2 CN13 connector to connect to the LTC2422 dual ADC SPI device that is included in the DC934A board.

Open the STM32MP157C-DK2 schematic to see the CN13 connector and look for the SPI pins. The CS, SCK and MISO (Master In, Slave Out) signals will be used. The MOSI (Master out, Slave in) signal won't be needed, as you are only going to receive data from the LTC2422 device. Connect the next CN13 SPI4 pins to the LTC2422 SPI ones obtained from the DC934A board J1 connector:

- Connect the STM32MP157C-DK2 SPI4_NSS (CS) to LTC2422 CS
- Connect the STM32MP157C-DK2 SPI4_SCK (SCK) to LTC2422 SCK
- Connect the STM32MP157C-DK2 SPI4_MISO (MISO) to LTC2422 MISO

In the lab 11.4 you will also use the "USER" button (B3). The button is connected to the PA14 pin. The pin will be programmed as an input generating an interrupt.

These are the device tree nodes that should be included in the stm32mp15xx-dkx.dtsi file to run the drivers for the LAB 11.2, LAB 11.3 and LAB 11.4:

```
&spi4 {
    pinctrl-names = "default", "sleep";
    pinctrl-0 = <&spi4_pins_a>;
    pinctrl-1 = <&spi4_sleep_pins_a>;
    cs-gpios = <&gpioe 11 0>;
    status = "okay";

/* spidev@0 {
        compatible = "spidev";
        spi-max-frequency = <2000000>;
        reg = <0>;
```

This is the device tree node that should be included in the stm32mp15-pinctrl.dtsi file to run the driver for the LAB 11.4:

The kernel 5.4 modules developed for the STM32MP157C-DK2 board are included in the linux_5.4_STM32MP1_drivers.zip file and can be downloaded from the GitHub repository at https://github.com/ALIBERA/linux_book_2nd_edition

LAB 11.5: "IIO Mixed-Signal I/O Device" Module

This new lab has been added to the labs of Chapter 11 to reinforce the concepts of creating IIO drivers explained during this chapter, and apply in a practical way how to create a gpio controller reinforcing thus the theory developed during Chapter 5.

A new low cost evaluation board based on the MAX11300 device has been used, thus expanding the number of evaluation boards that can be tested during Chapter 11 to practice with the theory explained in this chapter.

This new kernel module will control the Maxim MAX11300 device. The MAX11300 integrates a PIXITM, 12-bit, multichannel, analog-to-digital converter (ADC) and a 12-bit, multichannel, buffered digital-to-analog converter (DAC) in a single integrated circuit (IC). This device offers 20 mixed-signal high-voltage, bipolar ports, which are configurable as an ADC analog input, a DAC analog output, a general-purpose input port (GPI), a general-purpose output port (GPO), or an analog switch terminal. You can check all the info related to this device at https://www.maximintegrated.com/en/products/analog/data-converters/analog-to-digital-converters/MAX11300.html

The hardware platforms used in this lab are the STM32MP157C-DK2 board from ST and the PIXITM CLICK from MIKROE. The documentation of these boards can be found at https://www.st.com/en/evaluation-tools/stm32mp157c-dk2.html and https://www.mikroe.com/pixi-click

Before developing the driver, you can first create a custom design using the MAX11300 configuration GUI software. You will download this tool from Maxim's website. The MAX11300ConfigurationSetupV1.4.zip tool and the custom design used as a starting point for the development of the driver will be in included in the lab folder.

In the nex screenshot of the tool you can see the configuration that will be used during the development of the driver:

These are the parameters used during the configuration of the used ports of the MAX11300 device:

- **Port 0 (P0)** -> Single Ended ADC, Average of samples = 1, Reference Voltage = internal, Voltage Range = 0V to 10V.
- **Port 1 (P1)** -> Single Ended ADC, Average of samples = 1, Reference Voltage = internal, Voltage Range = 0V to 10V.
- Port 2 (P2) -> DAC, Voltage Output Level = 0V, Voltage Range = 0V to 10V.
- **Port 3 (P3)** -> DAC, Voltage Output Level = 0V, Voltage Range = 0V to 10V.
- **Port 4 (P4) and Port 5 (P5)** -> Differential ADC, Pin info: Input Pin (-) is P5 and Input Pin (+) is P4, Reference Voltage = internal, Voltage Range = 0V to 10V.

- **Port 6 (P6)** -> DAC with ADC monitoring, Reference Voltage = internal, Voltage Output Level = 0V, Voltage Range = 0V to 10V.
- **Port** 7 **(P7)** -> GPI, Interrupt: Masked, Voltage Input Threshold: 2.5V.
- **Port 8 (P8)** -> GPO, Voltage output Level = 3.3V.
- Port 18 (P18) -> GPI, Interrupt: Masked, Voltage Input Threshold: 2.5V.
- **Port 19 (P19)** -> GPO, Voltage output Level = 3.3V.

And these are the general parameters used during the configuration of the MAX11300 device:

Not all the MAX11300 specifications were included during the development of this driver. These are the main specifications that have been included:

- Funcional modes for ports: Mode 1, Mode 3, Mode 5, Mode 6, Mode 7, Mode 8, Mode 9.
- DAC Update Mode: Sequential.

- ADC Conversion Mode: Continuous Sweep.
- Default ADC Conversion Rate of 200Ksps.
- Interrupts are masked.

LAB 11.5 hardware description

In this lab you will use the SPI4 pins of the STM32MP157C-DK2 CN13 connector to connect to the PIXITM CLICK mikroBUSTM socket. See below the STM32MP157C-DK2 CN13 connector:

And the PIXITM CLICK mikroBUSTM socket:

Notes	Pin	mikro" BUS				Pin	Notes
	NC	1	AN	PWM	16	CNV	ADC trigger control
	NC	2	RST	INT	15	INT	Interrupt output
Chip select	cs	3	CS	RX	14	NC	
SPI clock	SCK	4	SCK	TX	13	NC	
SPI data output	SDO	5	MISO	SCL	12	NC	
SPI data input	SDI	6	MOSI	SDA	11	NC	
Power supply	+3.3V	7	3.3V	5V	10	+5V	Power supply
Ground	GND	8	GND	GND	9	GND	Ground

Open the STM32MP157C-DK2 schematic to see the CN13 connector and look for the SPI pins. The CS, SCK and MISO (Master In, Slave Out) and MOSI (Master out, Slave in) signals will be used. Connect the next CN13 SPI4 pins to the MAX11300 SPI ones obtained from the PIXITM CLICK mikroBUSTM socket:

- Connect the STM32MP157C-DK2 SPI4_NSS (Pin 3 of CN13) to MAX11300 CS (Pin 3 of Mikrobus)
- Connect the STM32MP157C-DK2 SPI4_SCK (Pin 6 of CN13) to MAX11300 SCK (Pin 4 of Mikrobus)
- Connect the STM32MP157C-DK2 SPI4_MOSI (Pin 4 of CN13) to MAX11300 MOSI (Pin 6 of Mikrobus)
- Connect the STM32MP157C-DK2 **SPI4_MISO** (Pin 5 of CN13) to MAX11300 **MISO** (Pin 5 of Mikrobus)
- Connect STM32MP157C-DK2 GND (Pin 7 of CN13) to MAX11300 GND (Pin 9 of Mikrobus)

Now in the STM32MP157C-DK2 schematic find the CN16 connector:

And connect the next power pins between the two boards:

- Connect the Pin 4 of CN16 (3.3V) to MAX11300 3.3V (Pin 7 of Mikrobus)
- Connect the Pin 5 of CN16 (5V) to MAX11300 5V (Pin 10 of Mikrobus)
- Connect the Pin 6 of CN16 (GND) to MAX11300 GND (Pin 9 of Mikrobus)

Finally in the PIXITM CLICK schematic (https://download.mikroe.com/documents/add-on-boards/click/pixi/pixi-click-schematic-v100.pdf) find the HD2 connector:

And connect the following pins:

- Connect the Pin 2 of HD2 (+5V) to the Pin 1 of HD2 (AVDDIO)
- Connect the Pin 4 of HD2 (GND) to the Pin 3 of HD2 (AVSSIO)

The hardware setup between the two boards is already done!!

LAB 11.5 device tree description

Open the stm32mp15xx-dkx.dtsi DT file and find the spi4 controller master node. Inside the spi4 node you can see the pinctrl properties which configure the pin muxing, so that the pins are configured as SPI mode when the system runs and into a different state (ANALOG) when the system suspends to RAM. Both spi4_pins_a and spi4_sleep_pins_a are already defined in the stm32mp15-pinctrl.dtsi file.

The cs-gpios property specifies the gpio pins to be used for chip selects. In this spi4 node you can see that there is only one chip select enabled. The spi4 controller is enabled by writing "okay" to the status property. Comment out all the sub-nodes included in the spi4 node from previous labs.

Now you will add the max11300 node which includes twenty sub-nodes representing the different ports of the MAX11300 device. The first two properties inside the max11300 node are #size-cells and #address-cells. The #address-cells property defines the number of <u32> cells used to encode the address field in the child node's reg properties. The #size-cells property defines the number of <u32> cells used to encode the size field in the child node's reg properties. In this

driver, the #address-cells property of the max11300 node is set to 1 and the #size-cells property is set to 0. This setting specifies that one cell is required to represent an address and there is no a required cell to represent the size of the nodes that are children of the max11300 node. The serial device reg property included in all the channel childrens follows this specification set in the parent max11300 node.

There must be a DT device node's compatible property identical to the compatible string stored in one of the driver's of_device_id structures.

The spi-max-frequency specifies the maximum SPI clocking speed of device in Hz.

Each of the twenty children nodes can include the following properties:

- reg -> this property sets the port number of the MAX11300 device.
- **port-mode** -> this property sets the port configuration for the selected port.
- AVR -> this property selects the ADC voltage reference: 0: Internal, 1: External.
- adc-range -> this property selects the voltage range for ADC related modes.
- **dac-range** -> this property selects the voltage range for DAC related modes.
- adc-samples -> this property selects the number of samples for ADC related modes.
- **negative-input** -> this property sets the negative port number for ports configured in mode 8.

The channel sub-nodes have been configured with the same parameters that were used in the MAX11300 configuration GUI software:

```
&spi4 {
    pinctrl-names = "default", "sleep";
    pinctrl-0 = <&spi4_pins_a>;
    pinctrl-1 = <&spi4_sleep_pins_a>;
    cs-gpios = <&gpioe 11 0>;
    status = "okay";

max11300@0 {
        #size-cells = <0>;
        #address-cells = <1>;
        compatible = "maxim,max11300";
        reg = <0>;
        spi-max-frequency = <10000000>;
        channel@0 {
            reg = <0>;
        }
```

```
port-mode = <PORT_MODE_7>;
         AVR = \langle 0 \rangle;
         adc-range = <ADC_VOLTAGE_RANGE_PLUS10>;
         adc-samples = <ADC SAMPLES 1>;
};
channel@1 {
         reg = \langle 1 \rangle;
         port-mode = <PORT MODE 7>;
         AVR = \langle 0 \rangle;
         adc-range = <ADC_VOLTAGE_RANGE_PLUS10>;
         adc-samples = <ADC_SAMPLES_128>;
};
channel@2 {
         reg = \langle 2 \rangle;
         port-mode = <PORT_MODE_5>;
         dac-range = <DAC_VOLTAGE_RANGE_PLUS10>;
};
channel@3 {
         reg = \langle 3 \rangle;
         port-mode = <PORT MODE 5>;
         dac-range = <DAC VOLTAGE RANGE PLUS10>;
};
channel@4 {
         reg = \langle 4 \rangle;
         port-mode = <PORT_MODE_8>;
         AVR = \langle 0 \rangle;
         adc-range = <ADC VOLTAGE RANGE PLUS10>;
         adc-samples = <ADC SAMPLES 1>;
         negative-input = <5>;
};
channel@5 {
         reg = \langle 5 \rangle;
         port-mode = <PORT MODE 9>;
         AVR = \langle 0 \rangle;
         adc-range = <ADC VOLTAGE RANGE PLUS10>;
};
channel@6 {
         reg = \langle 6 \rangle;
         port-mode = <PORT MODE 6>;
         AVR = \langle 0 \rangle;
         dac-range = <DAC VOLTAGE RANGE PLUS10>;
};
channel@7 {
         reg = \langle 7 \rangle;
         port-mode = <PORT_MODE_1>;
};
channel@8 {
         reg = \langle 8 \rangle;
```

```
port-mode = <PORT_MODE_3>;
};
channel@9 {
         reg = \langle 9 \rangle;
         port-mode = <PORT_MODE_0>;
};
channel@10 {
         reg = \langle 10 \rangle;
         port-mode = <PORT_MODE_0>;
};
channel@11 {
         reg = \langle 11 \rangle;
         port-mode = <PORT_MODE_0>;
};
channel@12 {
         reg = \langle 12 \rangle;
         port-mode = <PORT_MODE_0>;
};
channel@13 {
         reg = \langle 13 \rangle;
         port-mode = <PORT_MODE_0>;
};
channel@14 {
         reg = \langle 14 \rangle;
         port-mode = <PORT_MODE_0>;
};
channel@15 {
         reg = \langle 15 \rangle;
         port-mode = <PORT_MODE_0>;
};
channel@16 {
         reg = \langle 16 \rangle;
         port-mode = <PORT MODE 0>;
};
channel@17 {
         reg = (17);
         port-mode = <PORT_MODE_0>;
};
channel@18 {
         reg = \langle 18 \rangle;
         port-mode = <PORT_MODE_1>;
};
channel@19 {
         reg = \langle 19 \rangle;
         port-mode = <PORT_MODE_3>;
};
```

};

```
/* spidev@0 {
        compatible = "spidev";
        spi-max-frequency = <2000000>;
        reg = \langle 0 \rangle;
}; */
/*Accel: ADXL345@0 {
        compatible = "arrow,adx1345";
        pinctrl-names ="default";
        pinctrl-0 = <&accel pins>;
        spi-max-frequency = <5000000>;
        spi-cpol;
        spi-cpha;
        reg = \langle 0 \rangle;
        int-gpios = <&gpiog 3 GPIO ACTIVE LOW>;
        interrupt-parent = <&gpiog>;
        interrupts = <3 IRQ_TYPE_LEVEL_HIGH>;
};*/
/*ADC: 1tc2422@0 {
        compatible = "arrow,ltc2422";
        spi-max-frequency = <2000000>;
        reg = \langle 0 \rangle:
};
ADC: 1tc2422@0 {
        compatible = "arrow,ltc2422";
        spi-max-frequency = <2000000>;
        reg = \langle 0 \rangle;
        pinctrl-names ="default";
        pinctrl-0 = <&key_pins>;
        int-gpios = <&gpioa 14 GPIO_ACTIVE_LOW>;
};*/
```

You also have to include the next header file at the beginning of the stm32mp15xx-dkx.dtsi DT file.

```
#include <dt-bindings/iio/maxim,max11300.h>
```

};

The maxim,max11300.h file includes the values of the DT binding properties that will be used for the DT channel children nodes. This file will also be included within the source files of the max11300 driver. You have to place the maxim,max11300.h file under the next iio folder inside the kernel sources:

```
~/STM32MP15-Ecosystem-v2.0.0/Developer-Package/stm32mp1-openstlinux-5.4-dunfell-mp1-20-06-24/sources/arm-ostl-linux-gnueabi/linux-stm32mp-5.4.31-r0/linux-5.4.31/include/dt-bindings/iio/
```

This is the content of the maxim, max11300.h file:

```
#ifndef DT BINDINGS MAXIM MAX11300 H
#define DT BINDINGS MAXIM MAX11300 H
#define
          PORT MODE 0
#define
          PORT MODE 1
                        1
#define
          PORT MODE 2
                        2
#define
          PORT MODE 3
                        3
#define
          PORT MODE 4
                        4
#define
          PORT MODE 5
                        5
#define
          PORT MODE 6
                        6
#define
          PORT MODE 7
                        7
#define
          PORT MODE 8
                        8
#define
          PORT MODE 9
                        9
#define
          PORT MODE 10
                        10
#define
          PORT MODE 11
                        11
#define
          PORT_MODE 12
                        12
#define
          ADC SAMPLES 1
#define
          ADC_SAMPLES_2
                          1
#define
          ADC SAMPLES 4
                          2
#define
          ADC SAMPLES 8
                          3
#define
          ADC SAMPLES 16
                          4
#define
          ADC SAMPLES 32
                          5
#define
          ADC SAMPLES 64
                          6
#define
          ADC_SAMPLES_128 7
/* ADC voltage ranges */
          ADC VOLTAGE RANGE NOT SELECTED
#define
                                             0
#define ADC VOLTAGE RANGE PLUS10
                                             1
                                                    // 0 to +5V range
#define
                                             2
          ADC VOLTAGE RANGE PLUSMINUS5
                                                    // -5V to +5V range
#define
          ADC VOLTAGE RANGE MINUS10
                                             3
                                                    // -10V to 0 range
#define
          ADC VOLTAGE RANGE PLUS25
                                            4
                                                    // 0 to +2.5 range
/* DAC voltage ranges mode 5*/
          DAC VOLTAGE RANGE NOT SELECTED
                                             0
#define
#define
          DAC VOLTAGE RANGE PLUS10
                                             1
                                             2
#define
          DAC_VOLTAGE_RANGE_PLUSMINUS5
                                             3
#define
          DAC VOLTAGE RANGE MINUS10
#endif /* DT BINDINGS MAXIM MAX11300 H */
```

LAB 11.5 driver description

The main code sections of the driver will be described using three categories: Industrial framework as a SPI interaction, Industrial framework as an IIO device and GPIO driver interface. The MAX11300 driver is based on Paul Cercueil's AD5592R driver (https://elixir.bootlin.com/linux/latest/source/drivers/iio/dac/ad5592r.c)

Industrial framework as a SPI interaction

These are the main code sections:

1. Include the required header files:

```
#include <linux/spi/spi.h>
```

2. Create a struct spi_driver structure:

3. Register to the SPI bus as a driver:

```
module_spi_driver(max11300_spi_driver);
```

4. Add "maxim,max11300" to the list of devices supported by the driver. The compatible variable matchs with the compatible property of the max11300 DT node:

5. Define an array of struct spi device id structures:

6. Initialize the struct max11300_rw_ops structure with read and write callbacks that will access via SPI to the registers of the MAX11300 device. See below the code of these callbacks:

```
/* Initialize the struct max11300 rw ops with read and write callback functions
to write/read via SPI from MAX11300 registers */
static const struct max11300 rw ops max11300 rw ops = {
       .reg write = max11300 reg write,
       .reg read = max11300 reg read,
       .reg read differential = max11300 reg read differential,
};
/* function to write MAX11300 registers */
static int max11300_reg_write(struct max11300_state *st, u8 reg, u16 val)
{
       struct spi_device *spi = container_of(st->dev, struct spi_device, dev);
       struct spi_transfer t[] = {
                      .tx buf = &st->tx cmd,
                      .len = 1,
              }, {
                      .tx buf = &st->tx msg,
                      .1en = 2,
              },
       };
       /* to transmit via SPI the LSB bit of the command byte must be 0 */
       st->tx cmd = (reg << 1);
       /*
        * In little endian CPUs the byte stored in the higher address of the
        * "val" variable (MSB of the DAC) is stored in the lower address of the
        * "st->tx msg" variable using cpu to be16()
       st->tx_msg = cpu_to_be16(val);
       return spi_sync_transfer(spi, t, ARRAY_SIZE(t));
}
/* function to read MAX11300 registers in SE mode */
static int max11300 reg read(struct max11300 state *st, u8 reg, u16 *value)
{
       struct spi device *spi = container of(st->dev, struct spi device, dev);
       int ret;
       struct spi_transfer t[] = {
     {
```

```
.tx_buf = &st->tx_cmd,
                      .len = 1,
              }, {
                      .rx buf = &st->rx msg,
                      .1en = 2,
              },
       };
       dev info(st->dev, "read SE channel\n");
       /* to receive via SPI the LSB bit of the command byte must be 1 */
       st->tx \ cmd = ((reg << 1) \mid 1);
       ret = spi_sync_transfer(spi, t, ARRAY_SIZE(t));
       if (ret < 0)
              return ret;
       /*
        * In little endian CPUs the first byte (MSB of the ADC) received via
        * SPI (in BE format) is stored in the lower address of "st->rx msg"
        * variable. This byte is copied to the higher address of the "value"
        * variable using be16_to_cpu(). The second byte received via SPI is
        * copied from the higher address of "st->rx msg" to the lower address
        * of the "value" variable in little endian CPUs.
        * In big endian CPUs the addresses are not swapped.
        */
       *value = be16 to cpu(st->rx msg);
       return 0;
}
/* function to read MAX11300 registers in differential mode (2's complement) */
static int max11300 reg read differential(struct max11300 state *st, u8 reg,
                                          int *value)
{
       struct spi device *spi = container of(st->dev, struct spi device, dev);
       int ret;
       struct spi transfer t[] = {
               {
                      .tx buf = &st->tx cmd,
                      .len = 1,
              }, {
                      .rx_buf = &st->rx_msg,
                      .1en = 2,
              },
       };
```

Industrial framework as an IIO device

These are the main code sections:

1. Include the required header files:

```
#include <linux/iio/iio.h> /* devm_iio_device_alloc(), iio_priv() */
```

2. Create a global private data structure to manage the device from any function of the driver:

```
struct max11300 state {
       struct device *dev; // pointer to SPI device
       const struct max11300_rw_ops *ops; // pointer to spi callback functions
       struct gpio_chip gpiochip; // gpio_chip controller
       struct mutex gpio lock;
       u8 num_ports; // number of ports of the MAX11300 device = 20
       u8 num_gpios; // number of ports declared in the DT as GPIOs
       u8 gpio offset[20]; // gpio port numbers (0 to 19) for the "offset"
values in the range 0..(@ngpio - 1)
       u8 gpio_offset_mode[20]; // gpio port modes (1 and 3) for the "offset"
values in the range 0..(@ngpio - 1)
       u8 port modes[20]; // port modes for the 20 ports of the MAX11300
       u8 adc range[20]; // voltage range for ADC related modes
       u8 dac range[20]; // voltage range for DAC related modes
       u8 adc reference[20]; // ADC voltage reference: 0: Internal, 1: External
       u8 adc samples[20]; // number of samples for ADC related modes
       u8 adc negative port[20]; // negative port number for ports configured
in mode 8
```

```
u8 tx_cmd; // command byte for SPI transactions
__be16 tx_msg; // transmit value for SPI transactions in BE format
__be16 rx_msg; // value received in SPI transactions in BE format
```

3. In the max11300_probe() function, declare an instance of the private structure and allocate the iio_dev structure.

```
struct iio_dev *indio_dev;
struct max11300_state *st;
indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
```

};

4. Initialize the <code>iio_device</code> and the data private structure within the <code>max11300_probe()</code> function. The data private structure will be previously allocated by using the <code>iio_priv()</code> function. Keep pointers between physical devices (devices as handled by the physical bus, SPI in this case) and logical devices:

st = iio_priv(indio_dev); /* To be able to access the private data structure in
other parts of the driver you need to attach it to the iio_dev structure using
the iio_priv() function. You will retrieve the pointer "data" to the private
structure using the same function iio priv() */

st->dev = dev; /* Keep pointer to the SPI device, needed for exchanging data with the MAX11300 device */

dev_set_drvdata(dev, iio_dev); /* link the spi device with the iio device */

iio_dev->name = name; /* Store the iio_dev name. Before doing this within
your probe() function, you will get the spi_device_id that triggered the match
using spi_get_device_id() */

iio_dev->dev.parent = dev; /* keep pointers between physical devices
(devices as handled by the physical bus, SPI in this case) and logical devices
*/

indio_dev->info = &max11300_info; /* store the address of the iio_info
structure which contains a pointer variable to the IIO raw reading/writing
callbacks */

max11300_alloc_ports(st); /* configure the IIO channels of the device to
generate the IIO sysfs entries. This function will be described in more detail
in the next point */

5. The max11300_alloc_ports() function will read the properties from the DT channel children nodes of the DT max11300 node using the fwnode_property_read_u32() function, and will store the values of these properties into the variables of the data global structure. The function max11300_set_port_modes() will use later these variables to configure the ports of the MAX11300 device. The max11300_alloc_ports() function will also generate the different IIO sysfs entries using the max11300_setup_port_*_mode() functions:

```
* this function will allocate and configure the iio channels of the iio device
* It will also read the DT properties of each port (channel) and will store
* them in the global structure of the device
static int max11300 alloc ports(struct max11300 state *st)
       unsigned int i, curr port = 0, num ports = st->num ports,
port mode 6 count = 0, offset = 0;
       st->num gpios = 0;
       /* recover the iio device from the global structure */
       struct iio_dev *iio_dev = iio_priv_to_dev(st);
       /* pointer to the storage of the specs of all the iio channels */
       struct iio chan spec *ports;
       /* pointer to struct fwnode handle allowing device description object */
       struct fwnode handle *child;
       u32 reg, tmp;
       int ret;
        * walks for each MAX11300 child node from the DT,
        * if an error is found in the node then walks to
        * the following one (continue)
        */
       device for each child node(st->dev, child) {
              ret = fwnode_property_read_u32(child, "reg", &reg);
              if (ret || reg >= ARRAY_SIZE(st->port_modes))
                     continue;
              /* store the value of the DT "port,mode" property
               * in the global structure to know the mode of each port in
               * other functions of the driver
              ret = fwnode property read u32(child, "port-mode", &tmp);
              if (!ret)
                      st->port modes[reg] = tmp;
              /* all the DT nodes should include the port-mode property */
              else {
                      dev info(st->dev, "port mode is not found\n");
                     continue;
              }
              /*
```

```
* you will store other DT properties
 * depending of the used "port, mode" property
 */
switch (st->port modes[reg]) {
case PORT MODE 7:
       ret = fwnode_property_read_u32(child, "adc-range", &tmp);
       if (!ret)
              st->adc range[reg] = tmp;
       else
              dev info(st->dev, "Get default ADC range\n");
       ret = fwnode property read u32(child, "AVR", &tmp);
       if (!ret)
              st->adc_reference[reg] = tmp;
       else
              dev info(st->dev, "Get default internal ADC
                       reference\n");
       ret = fwnode property read u32(child, "adc-samples",
                                      &tmp);
       if (!ret)
              st->adc samples[reg] = tmp;
       else
              dev info(st->dev, "Get default internal ADC
                       sampling\n");
       break;
case PORT MODE 8:
       ret = fwnode property_read_u32(child, "adc-range", &tmp);
       if (!ret)
              st->adc_range[reg] = tmp;
       else
              dev info(st->dev, "Get default ADC range\n");
       ret = fwnode property read u32(child, "AVR", &tmp);
       if (!ret)
              st->adc reference[reg] = tmp;
       else
              dev info(st->dev, "Get default internal ADC
                       reference\n");
       ret = fwnode property_read_u32(child, "adc-samples",
                                      &tmp);
       if (!ret)
              st->adc_samples[reg] = tmp;
       else
```

```
dev_info(st->dev, "Get default internal ADC
                       sampling\n");
       ret = fwnode property read u32(child, "negative-input",
                                      &tmp);
       if (!ret)
               st->adc negative port[reg] = tmp;
       else {
              dev info(st->dev, "Bad value for negative ADC
                       channel\n");
               return -EINVAL;
       }
       break;
case PORT MODE 9: case PORT MODE 10:
       ret = fwnode_property_read_u32(child, "adc-range", &tmp);
       if (!ret)
               st->adc range[reg] = tmp;
       else
              dev info(st->dev, "Get default ADC range\n");
       ret = fwnode property read u32(child, "AVR", &tmp);
       if (!ret)
              st->adc reference[reg] = tmp;
       else
               dev_info(st->dev, "Get default internal ADC
                       reference\n");
       break;
case PORT MODE 5: case PORT MODE 6:
       ret = fwnode property read u32(child, "dac-range", &tmp);
       if (!ret)
       st->dac_range[reg] = tmp;
       else
               dev info(st->dev, "Get default DAC range\n");
        * A port in mode 6 will generate two IIO sysfs entries,
        * one for writing the DAC port, and another for reading
        * the ADC port
        */
       if ((st->port modes[reg]) == PORT MODE 6) {
               ret = fwnode property read u32(child, "AVR",
                                             &tmp);
               if (!ret)
                      st->adc_reference[reg] = tmp;
```

```
else
                      dev_info(st->dev, "Get default internal
                              ADC reference\n");
               * get the number of ports set in mode_6 to
               * allocate space for the realated iio channels
              port_mode_6_count++;
       }
       break;
/* The port is configured as a GPI in the DT */
case PORT MODE 1:
       /*
        * link the gpio offset with the port number,
        * starting with offset = 0
       st->gpio offset[offset] = reg;
        * store the port mode for each gpio offset,
        * starting with offset = 0
       st->gpio offset mode[offset] = PORT MODE 1;
        * increment the gpio offset and number of configured
        * ports as GPIOs
        */
       offset++;
       st->num_gpios++;
       break;
/* The port is configured as a GPO in the DT */
case PORT_MODE_3:
       /*
        * link the gpio offset with the port number,
        * starting with offset = 0
        */
       st->gpio_offset[offset] = reg;
        * store the port_mode for each gpio offset,
        * starting with offset = 0
```

```
*/
              st->gpio offset mode[offset] = PORT MODE 3;
               * increment the gpio offset and
               * number of configured ports as GPIOs
               */
              offset++;
              st->num_gpios++;
              break;
       case PORT MODE 0:
              dev_info(st->dev, "the channel %d is set in default port
                       mode_0\n", reg);
              break;
       default:
              dev_info(st->dev, "bad port mode for channel %d\n", reg);
       }
}
 * Allocate space for the storage of all the IIO channels specs.
 * Returns a pointer to this storage
devm kcalloc(st->dev, num ports + port mode 6 count,
             sizeof(*ports), GFP KERNEL);
 * i is the number of the channel, &ports[curr_port] is a pointer
 * variable that will store the "iio chan spec structure" address of
 * each port
 */
for (i = 0; i < num ports; i++) {
       switch (st->port modes[i]) {
       case PORT MODE 5:
              max11300 setup port 5 mode(iio dev, &ports[curr port],
                                         true, i, PORT MODE 5);
              curr port++;
              break;
       case PORT MODE 6:
              max11300_setup_port_6_mode(iio_dev, &ports[curr_port],
                                          true, i, PORT_MODE_6);
              curr_port++;
```

```
max11300_setup_port_6_mode(iio_dev, &ports[curr_port],
                                                false, i, PORT_MODE_6);
                      curr port++;
                      break;
              case PORT MODE 7:
                      max11300_setup_port_7_mode(iio_dev, &ports[curr_port],
                                                false, i, PORT_MODE_7);
                      curr port++;
                      break;
              case PORT_MODE 8:
                      max11300_setup_port_8_mode(iio_dev, &ports[curr_port],
                             false, i, st->adc_negative_port[i], PORT_MODE_8);
                      curr port++;
                      break;
              case PORT MODE 0:
                      dev_info(st->dev, "the channel is set in default port
                              mode_0\n");
                      break;
              case PORT MODE 1:
                      dev_info(st->dev, "the channel %d is set in port
                              mode_1\n", i);
                      break;
              case PORT MODE 3:
                      dev_info(st->dev, "the channel %d is set in port
                              mode_3\n", i);
                      break;
              default:
                      dev_info(st->dev, "bad port mode for channel %d\n", i);
              }
       }
       iio dev->num channels = curr port;
       iio dev->channels = ports;
       return 0;
}
```

6. Write the struct iio_info structure. The read/write user space operations to sysfs data channel access attributes are mapped to kernel callbacks.

```
static const struct iio_info max11300_info = {
```

```
.read_raw = max11300_read_adc,
    .write_raw = max11300_write_dac,
};
```

The max11300_write_dac() function contains a switch(mask) that is setting different tasks depending of the received parameter values. If the received info_mask value is [IIO_CHAN_INFO_RAW] = "raw", the max11300_reg_write() function is called, which writes a DAC value (entered through the user space via a IIO sysfs entry) to the selected port DAC data register using a SPI transaction.

When the max11300_read_adc() function receives the info_mask value [IIO_CHAN_INFO_RAW] = "raw", it first reads the received ADC channel address value to select the ADC port mode. Once the ADC port mode has been discovered, then max11300_reg_read() or max11300_reg_read_differential() functions are called, which get the value of the selected port ADC data register via a SPI transaction. The returned ADC value is stored in the val variable and this value is returned to the user space through the IIO_VAL_INT identifier.

GPIO driver interface

The MAX11300 driver will include a GPIO controller, which will configure and control the MAX11300 ports selected as GPIOs (Port 1 and Port 3 modes) in the DT node of the device.

In the Chapter 5 of this book , you saw how to control GPIOs from kernel space using the GPIO descriptor consumer interface of the GPIOLib framework.

Most processors today use composite pin controllers. These composite pin controllers will control the GPIOs of the processor, generate interrupts on top of the GPIO functionality and allow pin multiplexing using the I/O pins of the processor as GPIOs or as one of several peripheral functions. The STM32MP1 from ST is one of these processors, including composite pin controllers, which are configured with the pinctrl-stm32 driver: https://elixir.bootlin.com/linux/v5.4.64/source/drivers/pinctrl/stm32

The pinctrl-stm32 driver will register the gpio_chip structures with the kernel, the irq_chip structures with the IRQ system and the pinctrl_desc structures with the Pinctrl subsystem. The gpio and pin controllers are associated with each other within the pinctrl-stm32 driver through the pinctrl_add_gpio_range() function, which adds a range of GPIOs to be handled by a certain pin controller. In the section 2.1 of the gpio device tree binding document at https://elixir.bootlin.com/linux/latest/source/Documentation/devicetree/bindings/gpio/gpio.txt , you can see the gpio and pin controllers interaction from the DT sources.

The GPIOLib framework will provide the kernel and user space APIs to control the GPIOs.

In the next image, taken from the STM32MP1 wiki article at https://wiki.st.com/stm32mpu/wiki/GPIOLib_overview, you can see the interaction between different kernel drivers and frameworks to control the GPIO chips. You can also see in this STM32MP1 wiki article a description of the blocks shown in the image.

Our MAX11300 IIO driver will include a basic GPIO controller, which will configure the ports of the MAX11300 device as GPIOs, set the direction of the GPIOs (input or output) and control the ouput level of the GPIO lines (low or high ouput level).

These are the main steps to create the GPIO controller in our MAX11300 IIO driver:

1. Include the following header, which defines the structures used to define a GPIO driver:

```
#include <linux/gpio/driver.h>
```

2. Initialize the gpio_chip structure with the different callbacks that will control the gpio lines of the GPIO controller and register the gpio chip with the kernel using the gpiochip add data() function:

```
static int max11300_gpio_init(struct max11300_state *st)
{
    st->gpiochip.label = "gpio-max11300";
    st->gpiochip.base = -1;
    st->gpiochip.ngpio = st->num_gpios;
    st->gpiochip.parent = st->dev;
    st->gpiochip.can_sleep = true;
    st->gpiochip.direction_input = max11300_gpio_direction_input;
    st->gpiochip.direction_output = max11300_gpio_direction_output;
    st->gpiochip.get = max11300_gpio_get;
    st->gpiochip.set = max11300_gpio_set;
    st->gpiochip.owner = THIS_MODULE;

    /* register a gpio_chip */
    return gpiochip_add_data(&st->gpiochip, st);
}
```

3. These are the callback functions that will control the GPIO lines of the MAX11300 GPIO controller:

```
* struct gpio chip get callback function.
* It gets the input value of the GPIO line (0=low, 1=high)
* accessing to the GPI DATA registers of the MAX11300
*/
static int max11300 gpio get(struct gpio chip *chip, unsigned int offset)
       struct max11300 state *st = gpiochip get data(chip);
       int ret = 0;
       u16 read val;
       u8 reg;
       int val;
       mutex lock(&st->gpio lock);
       if (st->gpio offset mode[offset] == PORT MODE 3)
       dev info(st->dev, "the gpio %d cannot be configured in input mode\n",
               offset);
       /* for GPIOs from 16 to 19 ports */
       if (st->gpio offset[offset] > 0x0F) {
```

```
reg = GPI_DATA_19_TO_16_ADDRESS;
               ret = st->ops->reg_read(st, reg, &read_val);
               if (ret)
                      goto err unlock;
               val = (int) (read_val);
               val = val << 16;</pre>
               if (val & BIT(st->gpio_offset[offset]))
                      val = 1;
               else
                      val = 0;
               mutex_unlock(&st->gpio_lock);
               return val;
       else {
               reg = GPI_DATA_15_TO_0_ADDRESS;
               ret = st->ops->reg_read(st, reg, &read_val);
               if (ret)
                      goto err_unlock;
               val = (int) read val;
               if(val & BIT(st->gpio_offset[offset]))
                      val = 1;
               else
                      val = 0;
               mutex_unlock(&st->gpio_lock);
               return val;
       }
err unlock:
       mutex_unlock(&st->gpio_lock);
       return ret;
}
 * struct gpio chip set callback function.
* It sets the output value of the GPIO line with
* GPIO ACTIVE HIGH mode (0=low, 1=high)
* writing to the GPO DATA registers of the max11300
static void max11300_gpio_set(struct gpio_chip *chip, unsigned int offset,
                              int value)
{
       struct max11300_state *st = gpiochip_get_data(chip);
```

```
u8 reg;
       unsigned int val = 0;
       mutex lock(&st->gpio lock);
       if (st->gpio_offset_mode[offset] == PORT_MODE_1)
       dev info(st->dev, "the gpio %d cannot accept this output\n", offset);
       if (value == 1 && (st->gpio_offset[offset] > 0x0F)) {
              dev_info(st->dev, "The GPIO ouput is set high and port_number is
                       %d. Pin is > 0x0F\n", st->gpio_offset[offset]);
              val |= BIT(st->gpio offset[offset]);
              val = val >> 16;
              reg = GPO_DATA_19_TO_16_ADDRESS;
              st->ops->reg write(st, reg, val);
       else if (value == 0 && (st->gpio_offset[offset] > 0x0F)) {
              dev_info(st->dev, "The GPIO ouput is set low and port_number is
                       %d. Pin is > 0x0F\n", st->gpio_offset[offset]);
              val &= ~BIT(st->gpio offset[offset]);
              val = val >> 16;
              reg = GPO_DATA_19_TO_16_ADDRESS;
              st->ops->reg_write(st, reg, val);
       }
       else if (value == 1 && (st->gpio_offset[offset] < 0x0F)) {
              dev_info(st->dev, "The GPIO ouput is set high and port_number is
                       %d. Pin is < 0x0F\n", st->gpio_offset[offset]);
              val |= BIT(st->gpio offset[offset]);
              reg = GPO_DATA_15_TO_0_ADDRESS;
              st->ops->reg_write(st, reg, val);
       }
       else if (value == 0 && (st->gpio_offset[offset] < 0x0F)) {
              dev info(st->dev, "The GPIO ouput is set low and port number is
                       %d. Pin is < 0x0F\n", st->gpio_offset[offset]);
              val &= ~BIT(st->gpio offset[offset]);
              reg = GPO DATA 15 TO 0 ADDRESS;
              st->ops->reg_write(st, reg, val);
       }
       else
              dev info(st->dev, "the gpio %d cannot accept this value\n",
                       offset);
       mutex_unlock(&st->gpio_lock);
}
* struct gpio_chip direction_input callback function.
* It configures the GPIO port as an input (GPI)
```

```
* writing to the PORT CFG register of the max11300
static int max11300 gpio direction input(struct gpio chip *chip,
                                         unsigned int offset)
{
       struct max11300_state *st = gpiochip_get_data(chip);
       int ret:
       u8 reg;
       u16 port mode, val;
       mutex lock(&st->gpio lock);
       /* get the port number stored in the GPIO offset */
       if (st->gpio offset mode[offset] == PORT MODE 3)
              dev_info(st->dev, "Error.The gpio %d only can be set in output
                       mode\n", offset);
       /* Set the logic 1 input above 2.5V level */
       val = 0x0fff;
       /* store the GPIO threshold value in the port DAC register */
       reg = PORT DAC DATA_BASE_ADDRESS + st->gpio_offset[offset];
       ret = st->ops->reg write(st, reg, val);
       if (ret)
              goto err_unlock;
       /* Configure the port as GPI */
       reg = PORT CFG BASE ADDRESS + st->gpio offset[offset];
       port_mode = (1 << 12);
       ret = st->ops->reg_write(st, reg, port_mode);
       if (ret)
              goto err unlock;
       mdelay(1);
err unlock:
       mutex unlock(&st->gpio lock);
       return ret;
}
 * struct gpio chip direction output callback function.
* It configures the GPIO port as an output (GPO) writing to
* the PORT_CFG register of the max11300 and sets output value of the
 * GPIO line with GPIO ACTIVE HIGH mode (0=low, 1=high)
 * writing to the GPO data registers of the max11300
```

```
*/
static int max11300_gpio_direction_output(struct gpio_chip *chip,
                                      unsigned int offset, int value)
{
       struct max11300_state *st = gpiochip_get_data(chip);
       int ret;
       u8 reg;
       u16 port mode, val;
       mutex_lock(&st->gpio_lock);
       dev info(st->dev, "The GPIO is set as an output\n");
       if (st->gpio_offset_mode[offset] == PORT_MODE_1)
               dev info(st->dev, "the gpio %d only can be set in input mode\n",
                       offset);
       /* GPIO output high is 3.3V */
       val = 0x0547;
       reg = PORT_DAC_DATA_BASE_ADDRESS + st->gpio_offset[offset];
       ret = st->ops->reg_write(st, reg, val);
       if (ret) {
              mutex unlock(&st->gpio lock);
              return ret;
       }
       mdelay(1);
       reg = PORT CFG BASE ADDRESS + st->gpio offset[offset];
       port mode = (3 << 12);
       ret = st->ops->reg_write(st, reg, port_mode);
       if (ret) {
              mutex_unlock(&st->gpio_lock);
              return ret;
       }
       mdelay(1);
       mutex_unlock(&st->gpio_lock);
       max11300 gpio set(chip, offset, value);
       return ret;
}
```

See in the next **Listings** the complete "IIO Mixed-Signal I/O Device" driver source code for the STM32MP1 processor.

Note: The "IIO Mixed-Signal I/O Device" driver source code developed for the STM32MP157C-DK2 board is included in the linux_5.4_max11300_driver.zip file and can be downloaded from the GitHub repository at https://github.com/ALIBERA/linux_book_2nd_edition

Listing 11-6: max11300-base.h

```
#ifndef DRIVERS IIO DAC max11300 BASE H
#define DRIVERS IIO DAC max11300 BASE H
#include <linux/types.h>
#include <linux/cache.h>
#include <linux/mutex.h>
#include <linux/gpio/driver.h>
struct max11300_state;
/* masks for the Device Control (DCR) Register */
#define DCR ADCCTL CONTINUOUS SWEEP (BIT(0) | BIT(1))
#define DCR_DACREF BIT(6)
#define BRST BIT(14)
#define RESET BIT(15)
/* define register addresses */
#define DCR ADDRESS 0x10
#define PORT CFG BASE ADDRESS 0x20
#define PORT ADC DATA BASE ADDRESS 0x40
#define PORT DAC DATA BASE ADDRESS 0x60
#define DACPRSTDAT1 ADDRESS 0x16
#define GPO DATA 15 TO 0 ADDRESS 0x0D
#define GPO DATA 19 TO 16 ADDRESS 0x0E
#define GPI DATA 15 TO 0 ADDRESS 0x0B
#define GPI DATA 19 TO 16 ADDRESS 0x0C
 * declare the struct with pointers to the functions that will read and write
 * via SPI the registers of the MAX11300 device
struct max11300 rw ops {
   int (*reg write)(struct max11300 state *st, u8 reg, u16 value);
   int (*reg_read)(struct max11300_state *st, u8 reg, u16 *value);
   int (*reg_read_differential)(struct max11300_state *st, u8 reg, int *value);
};
/* declare the global structure that will store the info of the device */
```

```
struct max11300 state {
   struct device *dev;
   const struct max11300_rw_ops *ops;
   struct gpio chip gpiochip;
   struct mutex gpio_lock;
   u8 num ports;
   u8 num gpios;
   u8 gpio offset[20];
   u8 gpio_offset_mode[20];
   u8 port_modes[20];
   u8 adc_range[20];
   u8 dac range[20];
   u8 adc_reference[20];
   u8 adc_samples[20];
   u8 adc negative port[20];
   u8 tx cmd;
   __be16 tx_msg;
   __be16 rx_msg;
};
int max11300 probe(struct device *dev, const char *name,
            const struct max11300 rw ops *ops);
int max11300_remove(struct device *dev);
#endif /* __DRIVERS_IIO_DAC_max11300_BASE_H__ */
```

Listing 11-7: maxim, max11300.h

#ifndef DT BINDINGS MAXIM MAX11300 H

```
#define _DT_BINDINGS_MAXIM_MAX11300_H
#define
          PORT MODE 0
                                0
#define
          PORT_MODE_1
                                1
#define
          PORT MODE 2
#define
          PORT MODE 3
                                3
#define
          PORT MODE 4
                                4
#define
          PORT MODE 5
                                5
#define
          PORT MODE 6
          PORT MODE 7
                                7
#define
#define
          PORT MODE 8
                                8
#define
          PORT MODE 9
#define
          PORT MODE 10
                                10
#define
          PORT MODE 11
                                11
#define
                                12
          PORT MODE 12
          ADC SAMPLES 1
                                0
#define
#define
          ADC SAMPLES 2
                                1
#define
          ADC SAMPLES 4
```

```
#define
          ADC SAMPLES 8
#define
          ADC SAMPLES 16
                               5
#define
          ADC SAMPLES 32
#define
          ADC SAMPLES 64
#define
          ADC SAMPLES 128
                               7
/* ADC voltage ranges */
#define
         ADC VOLTAGE RANGE NOT SELECTED
#define ADC VOLTAGE RANGE PLUS10
                                             1 // 0 to +5V range
#define ADC_VOLTAGE_RANGE_PLUSMINUS5
                                            2 // -5V to +5V range
#define ADC_VOLTAGE_RANGE_MINUS10
                                           3 // -10V to 0 range
#define
        ADC_VOLTAGE_RANGE_PLUS25
                                            4 // 0 to +2.5 range
/* DAC voltage ranges mode 5*/
#define
         DAC VOLTAGE RANGE NOT SELECTED
                                             0
#define
          DAC_VOLTAGE_RANGE_PLUS10
                                             1
                                             2
#define
          DAC_VOLTAGE_RANGE_PLUSMINUS5
#define
         DAC VOLTAGE RANGE MINUS10
#endif /* DT BINDINGS MAXIM MAX11300 H */
```

Listing 11-8: max11300.c

```
#include "max11300-base.h"
#include <linux/bitops.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/spi/spi.h>
/* function to write MAX11300 registers */
static int max11300_reg_write(struct max11300_state *st, u8 reg, u16 val)
{
   struct spi_device *spi = container_of(st->dev, struct spi_device, dev);
   struct spi_transfer t[] = {
          {
                  .tx buf = &st->tx cmd,
                  .len = 1,
          }, {
                  .tx buf = &st->tx_msg,
                  .len = 2,
          },
   };
   /* to transmit via SPI the LSB bit of the command byte must be 0 */
```

```
st->tx_cmd = (reg << 1);
   /*
    * In little endian CPUs the byte stored in the higher address of
    * the "val" variable (MSB of the DAC) is stored in the lower address
    * of the "st->tx_msg" variable using cpu_to_be16()
    */
   st->tx msg = cpu to be16(val);
   return spi sync transfer(spi, t, ARRAY SIZE(t));
}
/* function to read MAX11300 registers in SE mode */
static int max11300 reg read(struct max11300 state *st, u8 reg, u16 *value)
   struct spi_device *spi = container_of(st->dev, struct spi_device, dev);
   int ret;
   struct spi transfer t[] = {
                  .tx buf = &st->tx cmd,
                  .len = 1.
          }, {
                  .rx buf = &st->rx msg,
                  .len = 2,
          },
   };
   dev_info(st->dev, "read SE channel\n");
   /* to receive via SPI the LSB bit of the command byte must be 1 */
   st->tx \ cmd = ((reg << 1) \mid 1);
   ret = spi_sync_transfer(spi, t, ARRAY_SIZE(t));
   if (ret < 0)
          return ret;
    * In little endian CPUs the first byte (MSB of the ADC) received via
    * SPI (in BE format) is stored in the lower address of "st->rx msg"
    * variable. This byte is copied to the higher address of the "value"
    * variable using be16 to cpu(). The second byte received via SPI is
    * copied from the higher address of "st->rx msg" to the lower address
    * of the "value" variable in little endian CPUs.
    * In big endian CPUs the addresses are not swapped.
   *value = be16_to_cpu(st->rx_msg);
```

```
return 0;
}
/* function to read MAX11300 registers in differential mode (2's complement) */
static int max11300_reg_read_differential(struct max11300_state *st, u8 reg,
                                          int *value)
{
   struct spi device *spi = container of(st->dev, struct spi device, dev);
   int ret;
   struct spi transfer t[] = {
                  .tx_buf = &st->tx_cmd,
                  .len = 1,
          }, {
                  .rx buf = &st->rx msg,
                  .len = 2,
          },
   };
   dev info(st->dev, "read differential channel\n");
   /* to receive LSB of command byte has to be 1 */
   st->tx \ cmd = ((reg << 1) | 1);
   ret = spi sync transfer(spi, t, ARRAY SIZE(t));
   if (ret < 0)
          return ret;
    * extend to an int 2's complement value the received SPI value in 2's
    * complement value, which is stored in the "st->rx msg" variable
   *value = sign extend32(be16 to cpu(st->rx msg), 11);
   return 0;
}
 * Initialize the struct max11300 rw ops with read and write
 * callback functions to write/read via SPI from MAX11300 registers
 */
static const struct max11300 rw ops max11300 rw ops = {
   .reg write = max11300 reg write,
   .reg_read = max11300_reg_read,
   .reg read differential = max11300 reg read differential,
};
```

```
static int max11300 spi probe(struct spi device *spi)
   const struct spi device id *id = spi get device id(spi);
   return max11300_probe(&spi->dev, id->name, &max11300_rw_ops);
}
static int max11300 spi remove(struct spi device *spi)
   return max11300 remove(&spi->dev);
}
static const struct spi_device_id max11300_spi_ids[] = {
   \{ .name = "max11300", \}, 
   {}
};
MODULE DEVICE TABLE(spi, max11300 spi ids);
static const struct of device id max11300 of match[] = {
   { .compatible = "maxim, max11300", },
   {},
};
MODULE DEVICE TABLE(of, max11300 of match);
static struct spi driver max11300 spi driver = {
   .driver = {
           .name = max11300,
           .of match table = of match ptr(max11300 of match),
   },
   .probe = max11300_spi_probe,
   .remove = max11300_spi_remove,
   .id table = max11300 spi ids,
};
module spi driver(max11300 spi driver);
MODULE AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("Maxim max11300 multi-port converters");
MODULE LICENSE("GPL v2");
```

Listing 11-9: max11300-base.c

```
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/property.h>
#include <dt-bindings/iio/maxim,max11300.h>
#include "max11300-base.h"
 * struct gpio chip get callback function.
 * It gets the input value of the GPIO line (0=low, 1=high)
 * accessing to the GPI DATA registers of max11300
static int max11300 gpio get(struct gpio chip *chip, unsigned int offset)
   struct max11300 state *st = gpiochip get data(chip);
   int ret = 0;
   u16 read_val;
   u8 reg;
   int val;
   mutex lock(&st->gpio lock);
   dev_info(st->dev, "The GPIO input is get\n");
   if (st->gpio offset mode[offset] == PORT MODE 3)
   dev info(st->dev, "the gpio %d cannot be configured in input mode\n",
           offset);
   /* for GPIOs from 16 to 19 ports */
   if (st->gpio offset[offset] > 0x0F) {
          reg = GPI DATA 19 TO 16 ADDRESS;
          ret = st->ops->reg read(st, reg, &read val);
          if (ret)
                  goto err unlock;
          val = (int) (read_val);
          val = val << 16;</pre>
          if (val & BIT(st->gpio offset[offset]))
                  val = 1:
          else
```

```
val = 0;
          mutex unlock(&st->gpio lock);
          return val;
   }
   else {
          reg = GPI DATA 15 TO 0 ADDRESS;
           ret = st->ops->reg read(st, reg, &read val);
           if (ret)
                  goto err_unlock;
          val = (int) read val;
          if(val & BIT(st->gpio_offset[offset]))
                  val = 1;
           else
                  val = 0;
          mutex_unlock(&st->gpio_lock);
          return val;
   }
err unlock:
   mutex unlock(&st->gpio lock);
   return ret;
}
 * struct gpio chip set callback function.
* It sets the output value of the GPIO line in
 * GPIO ACTIVE HIGH mode (0=low, 1=high)
 * writing to the GPO_DATA registers of max11300
 */
static void max11300_gpio_set(struct gpio_chip *chip, unsigned int offset,
                             int value)
{
   struct max11300_state *st = gpiochip_get_data(chip);
   u8 reg;
   unsigned int val = 0;
   mutex lock(&st->gpio lock);
   dev info(st->dev, "The GPIO ouput is set\n");
   if (st->gpio offset mode[offset] == PORT MODE 1)
   dev_info(st->dev, "the gpio %d cannot accept this output\n", offset);
   if (value == 1 && (st->gpio_offset[offset] > 0x0F)) {
```

```
dev info(st->dev,
              "The GPIO ouput is set high and port number is %d. Pin is > 0x0F\n",
                   st->gpio offset[offset]);
          val |= BIT(st->gpio offset[offset]);
          val = val >> 16;
          reg = GPO_DATA_19_TO_16_ADDRESS;
          st->ops->reg write(st, reg, val);
   else if (value == 0 && (st->gpio offset[offset] > 0x0F)) {
          dev info(st->dev,
               "The GPIO ouput is set low and port number is %d. Pin is > 0x0F\n",
                   st->gpio offset[offset]);
          val &= ~BIT(st->gpio_offset[offset]);
          val = val >> 16;
          reg = GPO DATA 19 TO 16 ADDRESS;
          st->ops->reg write(st, reg, val);
   else if (value == 1 && (st->gpio_offset[offset] < 0x0F)) {</pre>
          dev info(st->dev,
              "The GPIO ouput is set high and port number is %d. Pin is < 0x0F\n",
                   st->gpio offset[offset]);
          val |= BIT(st->gpio offset[offset]);
          reg = GPO DATA 15 TO 0 ADDRESS;
          st->ops->reg write(st, reg, val);
   else if (value == 0 && (st->gpio offset[offset] < 0x0F)) {
          dev_info(st->dev,
               "The GPIO ouput is set low and port number is %d. Pin is < 0x0F\n",
                   st->gpio offset[offset]);
          val &= ~BIT(st->gpio_offset[offset]);
          reg = GPO DATA 15 TO 0 ADDRESS;
          st->ops->reg_write(st, reg, val);
   }
   else
          dev info(st->dev, "the gpio %d cannot accept this value\n", offset);
   mutex unlock(&st->gpio lock);
}
/*
 * struct gpio chip direction input callback function.
* It configures the GPIO port as an input (GPI)
 * writing to the PORT CFG register of max11300
static int max11300 gpio direction input(struct gpio chip *chip,
                                         unsigned int offset)
   struct max11300_state *st = gpiochip_get_data(chip);
```

```
int ret;
   u8 reg;
   u16 port mode, val;
   mutex_lock(&st->gpio_lock);
   dev info(st->dev, "The GPIO is set as an input\n");
   /* get the port number stored in the GPIO offset */
   if (st->gpio offset mode[offset] == PORT MODE 3)
          dev info(st->dev,
                   "Error. The gpio %d only can be set in output mode\n",
                   offset);
   /* Set the logic 1 input above 2.5V level*/
   val = 0x0fff;
   /* store the GPIO threshold value in the port DAC register */
   reg = PORT DAC DATA BASE ADDRESS + st->gpio offset[offset];
   ret = st->ops->reg write(st, reg, val);
   if (ret)
          goto err unlock;
   /* Configure the port as GPI */
   reg = PORT CFG BASE ADDRESS + st->gpio offset[offset];
   port mode = (1 << 12);
   ret = st->ops->reg write(st, reg, port mode);
   if (ret)
          goto err_unlock;
   mdelay(1);
err unlock:
   mutex_unlock(&st->gpio_lock);
   return ret;
 * struct gpio chip direction output callback function.
* It configures the GPIO port as an output (GPO) writing to
* the PORT CFG register of max11300 and sets output value of the
 * GPIO line in GPIO ACTIVE HIGH mode (0=low, 1=high)
* writing to the GPO data registers of max11300
static int max11300_gpio_direction_output(struct gpio_chip *chip,
                                          unsigned int offset, int value)
```

}

{

```
struct max11300_state *st = gpiochip_get_data(chip);
   int ret;
   u8 reg;
   u16 port mode, val;
   mutex_lock(&st->gpio_lock);
   dev info(st->dev, "The GPIO is set as an output\n");
   if (st->gpio_offset_mode[offset] == PORT_MODE_1)
          dev info(st->dev,
                   "the gpio %d only can be set in input mode\n",
                   offset);
   /* GPIO output high is 3.3V */
   val = 0x0547;
   reg = PORT_DAC_DATA_BASE_ADDRESS + st->gpio_offset[offset];
   ret = st->ops->reg write(st, reg, val);
   if (ret) {
          mutex_unlock(&st->gpio_lock);
          return ret;
   }
   mdelay(1);
   reg = PORT CFG BASE ADDRESS + st->gpio offset[offset];
   port_mode = (3 << 12);
   ret = st->ops->reg_write(st, reg, port_mode);
   if (ret) {
          mutex_unlock(&st->gpio_lock);
          return ret;
   mdelay(1);
   mutex_unlock(&st->gpio_lock);
   max11300 gpio set(chip, offset, value);
   return ret;
* Initialize the MAX11300 gpio controller (struct gpio chip)
 * and register it to the kernel
static int max11300 gpio init(struct max11300 state *st)
   if (!st->num_gpios)
          return 0;
```

}

```
st->gpiochip.label = "gpio-max11300";
   st->gpiochip.base = -1;
   st->gpiochip.ngpio = st->num gpios;
   st->gpiochip.parent = st->dev;
   st->gpiochip.can sleep = true;
   st->gpiochip.direction input = max11300_gpio_direction_input;
   st->gpiochip.direction output = max11300 gpio direction output;
   st->gpiochip.get = max11300 gpio get;
   st->gpiochip.set = max11300 gpio set;
   st->gpiochip.owner = THIS MODULE;
   mutex_init(&st->gpio_lock);
   /* register a gpio chip */
   return gpiochip add data(&st->gpiochip, st);
}
 * Configure the port configuration registers of each port with the values
* retrieved from the DT properties. These DT values were read and stored in
 * the device global structure using the max11300 alloc ports() function.
 * The ports in GPIO mode will be configured in the gpiochip.direction input
 * and gpiochip.direction output callback functions.
static int max11300 set port modes(struct max11300 state *st)
   const struct max11300 rw ops *ops = st->ops;
   int ret;
   unsigned int i;
   u8 reg;
   u16 adc_range, dac_range, adc_reference, adc_samples, adc_negative_port;
   u16 val, port mode;
   struct iio dev *iio dev = iio priv to dev(st);
   mutex lock(&iio dev->mlock);
   for (i = 0; i < st->num ports; i++) {
          switch (st->port modes[i]) {
          case PORT MODE 5: case PORT MODE 6:
                  reg = PORT CFG BASE ADDRESS + i;
                  adc reference = st->adc reference[i];
                  port mode = (st->port modes[i] << 12);</pre>
                  dac range = (st->dac_range[i] << 8);</pre>
                  dev info(st->dev,
               "the value of adc cfg addr for channel %d in port mode %d is %x\n",
                          i, st->port_modes[i], reg);
```

```
if ((st->port_modes[i]) == PORT_MODE_5)
               val = (port_mode | dac_range);
       else
               val = (port_mode | dac_range | adc_reference);
       dev info(st->dev, "the channel %d is set in port mode %d\n",
                i, st->port modes[i]);
       dev info(st->dev,
     "the value of adc cfg val for channel %d in port mode %d is %x\n",
                i, st->port modes[i], val);
       ret = ops->reg_write(st, reg, val);
       if (ret)
               goto err unlock;
       mdelay(1);
       break;
case PORT_MODE 7:
       reg = PORT CFG BASE ADDRESS + i;
       port mode = (st->port modes[i] << 12);</pre>
       adc_range = (st->adc_range[i] << 8);</pre>
       adc reference = st->adc reference[i];
       adc samples = (st->adc samples[i] << 5);</pre>
       dev info(st->dev,
     "the value of adc cfg addr for channel %d in port mode %d is %x\n",
                i, st->port modes[i], reg);
       val = (port_mode | adc_range | adc_reference | adc_samples);
       dev info(st->dev,
                "the channel %d is set in port mode %d\n",
                i, st->port_modes[i]);
       dev info(st->dev,
      "the value of adc cfg val for channel %d in port mode %d is %x\n",
                i, st->port modes[i], val);
       ret = ops->reg write(st, reg, val);
       if (ret)
               goto err unlock;
       mdelay(1);
       break;
case PORT_MODE_8:
       reg = PORT CFG BASE ADDRESS + i;
       port_mode = (st->port_modes[i] << 12);</pre>
```

```
adc range = (st->adc range[i] << 8);</pre>
                  adc reference = st->adc reference[i];
                  adc samples = (st->adc samples[i] << 5);</pre>
                  adc negative port = st->adc negative port[i];
                  dev info(st->dev,
                "the value of adc cfg addr for channel %d in port mode %d is %x\n",
                           i, st->port modes[i], reg);
                  val = (port_mode | adc_range | adc_reference | adc_samples |
adc negative port);
                  dev_info(st->dev,
                           "the channel %d is set in port mode %d\n",
                           i, st->port modes[i]);
                  dev info(st->dev,
                "the value of adc cfg val for channel %d in port mode %d is %x\n",
                           i, st->port modes[i], val);
                  ret = ops->reg write(st, reg, val);
                  if (ret)
                         goto err unlock;
                  mdelay(1);
                  break;
           case PORT MODE 9: case PORT MODE 10:
                  reg = PORT CFG BASE ADDRESS + i;
                  port mode = (st->port modes[i] << 12);</pre>
                  adc range = (st->adc range[i] << 8);</pre>
                  adc_reference = st->adc_reference[i];
                  dev_info(st->dev,
                "the value of adc cfg addr for channel %d in port mode %d is %x\n",
                           i, st->port_modes[i], reg);
                  val = (port mode | adc range | adc reference);
                  dev info(st->dev,
                           "the channel %d is set in port mode %d\n",
                           i, st->port modes[i]);
                  dev info(st->dev,
                 "the value of adc cfg val for channel %d in port mode %d is %x\n",
                           i, st->port modes[i], val);
                  ret = ops->reg write(st, reg, val);
                  if (ret)
                         goto err_unlock;
```

```
mdelay(1);
                  break;
          case PORT MODE 0:
                  dev_info(st->dev,
                          "the port %d is set in default port mode_0\n", i);
                  break:
          case PORT MODE 1:
                  dev info(st->dev, "the port %d is set in port mode 1\n", i);
                  break;
          case PORT MODE 3:
                  dev info(st->dev, "the port %d is set in port mode 3\n", i);
                  break;
          default:
                  dev_info(st->dev, "bad port mode is selected\n");
                  return -EINVAL;
          }
   }
err unlock:
   mutex unlock(&iio dev->mlock);
   return ret;
}
/* IIO writing callback function */
static int max11300 write dac(struct iio dev *iio dev,
                             struct iio chan spec const *chan,
                             int val, int val2, long mask)
{
   struct max11300 state *st = iio priv(iio dev);
   u8 reg;
   int ret;
   reg = (PORT DAC DATA BASE ADDRESS + chan->channel);
   dev_info(st->dev, "the DAC data register is %x\n", reg);
   dev_info(st->dev, "the value in the DAC data register is %x\n", val);
   switch (mask) {
   case IIO CHAN INFO RAW:
          if (!chan->output)
                  return -EINVAL;
          mutex lock(&iio dev->mlock);
          ret = st->ops->reg write(st, reg, val);
          mutex unlock(&iio dev->mlock);
          break;
   default:
          return -EINVAL;
```

```
}
   return ret;
}
/* IIO reading callback function */
static int max11300_read_adc(struct iio_dev *iio_dev,
                             struct iio chan spec const *chan,
                             int *val, int *val2, long m)
{
   struct max11300 state *st = iio priv(iio dev);
   u16 read val se;
   int read_val_dif;
   u8 reg;
   int ret;
   reg = PORT_ADC_DATA_BASE_ADDRESS + chan->channel;
   switch (m) {
   case IIO CHAN INFO RAW:
          mutex_lock(&iio_dev->mlock);
           if (!chan->output && ((chan->address == PORT_MODE_7) || (chan->address
== PORT MODE 6))) {
                  ret = st->ops->reg_read(st, reg, &read_val_se);
                  if (ret)
                          goto unlock;
                  *val = (int) read_val_se;
          else if (!chan->output && (chan->address == PORT_MODE_8)) {
                  ret = st->ops->reg_read_differential(st, reg, &read_val_dif);
                  if (ret)
                          goto unlock;
                  *val = read_val_dif;
          else {
                  ret = -EINVAL;
                  goto unlock;
           }
          ret = IIO VAL INT;
          break;
   default:
          ret = -EINVAL;
   }
unlock:
   mutex_unlock(&iio_dev->mlock);
```

```
return ret;
}
/* Create kernel hooks to read/write IIO sysfs attributes from user space */
static const struct iio info max11300 info = {
   .read raw = max11300 read adc,
   .write raw = max11300 write dac,
};
/* DAC with positive voltage range */
static void max11300 setup port 5 mode(struct iio dev *iio dev,
                                       struct iio chan spec *chan, bool output,
                                       unsigned int id, unsigned long port_mode)
{
   chan->type = IIO VOLTAGE;
   chan->indexed = 1;
   chan->address = port mode;
   chan->output = output;
   chan->channel = id;
   chan->info mask separate = BIT(IIO CHAN INFO RAW);
   chan->scan type.sign = 'u';
   chan->scan type.realbits = 12;
   chan->scan type.storagebits = 16;
   chan->scan type.endianness = IIO BE;
   chan->extend_name = "mode_5_DAC";
}
/* DAC with positive voltage range */
static void max11300 setup port 6 mode(struct iio dev *iio dev,
                                       struct iio_chan_spec *chan, bool output,
                                       unsigned int id, unsigned long port_mode)
{
   chan->type = IIO VOLTAGE;
   chan->indexed = 1;
   chan->address = port mode;
   chan->output = output;
   chan->channel = id;
   chan->info mask separate = BIT(IIO CHAN INFO RAW);
   chan->scan type.sign = 'u';
   chan->scan type.realbits = 12;
   chan->scan type.storagebits = 16;
   chan->scan type.endianness = IIO BE;
   chan->extend_name = "mode_6_DAC_ADC";
}
/* ADC in SE mode with positive voltage range and straight binary */
static void max11300_setup_port_7_mode(struct iio_dev *iio_dev,
                                       struct iio_chan_spec *chan, bool output,
```

```
unsigned int id, unsigned long port mode)
{
   chan->type = IIO VOLTAGE;
   chan->indexed = 1;
   chan->address = port mode;
   chan->output = output;
   chan->channel = id:
   chan->info mask separate = BIT(IIO CHAN INFO RAW);
   chan->scan type.sign = 'u';
   chan->scan type.realbits = 12;
   chan->scan type.storagebits = 16;
   chan->scan type.endianness = IIO BE;
   chan->extend_name = "mode_7_ADC";
}
/* ADC in differential mode with 2's complement value */
static void max11300_setup_port_8_mode(struct iio_dev *iio_dev,
                                       struct iio chan spec *chan, bool output,
                                       unsigned id, unsigned id2,
                                       unsigned int port mode)
{
   chan->type = IIO VOLTAGE;
   chan->differential = 1.
   chan->address = port mode;
   chan->indexed = 1;
   chan->output = output;
   chan->channel = id;
   chan->channel2 = id2;
   chan->info mask separate = BIT(IIO CHAN INFO RAW);
   chan->scan_type.sign = 's';
   chan->scan_type.realbits = 12;
   chan->scan_type.storagebits = 16;
   chan->scan type.endianness = IIO BE;
   chan->extend name = "mode 8 ADC";
}
 * this function will allocate and configure the iio channels of the iio device.
* It will also read the DT properties of each port (channel) and will store them
* in the device global structure
static int max11300 alloc ports(struct max11300 state *st)
   unsigned int i, curr port = 0, num ports = st->num ports, port mode 6 count =
0, offset = 0;
   st->num_gpios = 0;
   /* recover the iio device from the global structure */
```

```
struct iio dev *iio dev = iio priv to dev(st);
/* pointer to the storage of the specs of all the iio channels */
struct iio chan spec *ports;
/* pointer to struct fwnode handle that allows a device description object */
struct fwnode handle *child;
u32 reg, tmp;
int ret;
 * walks for each MAX11300 child node from the DT, if there is an error
* then walks to the following one (continue)
device for each child node(st->dev, child) {
       ret = fwnode property read u32(child, "reg", &reg);
       if (ret || reg >= ARRAY SIZE(st->port modes))
              continue;
        * store the value of the DT "port,mode" property in the global struct
        * to know the mode of each port in other functions of the driver
        */
       ret = fwnode property read u32(child, "port-mode", &tmp);
       if (!ret)
              st->port modes[reg] = tmp;
       /* all the DT nodes should include the port-mode property */
       else {
              dev info(st->dev, "port mode is not found\n");
              continue;
       }
        * you will store other DT properties depending
        * of the used "port, mode" property
        */
       switch (st->port modes[reg]) {
       case PORT MODE 7:
              ret = fwnode property read u32(child, "adc-range", &tmp);
              if (!ret)
                      st->adc range[reg] = tmp;
              else
                      dev info(st->dev, "Get default ADC range\n");
              ret = fwnode_property_read_u32(child, "AVR", &tmp);
              if (!ret)
```

```
st->adc reference[reg] = tmp;
       else
              dev info(st->dev,
                       "Get default internal ADC reference\n");
       ret = fwnode_property_read_u32(child, "adc-samples", &tmp);
       if (!ret)
              st->adc samples[reg] = tmp;
       else
              dev info(st->dev, "Get default internal ADC sampling\n");
       dev info(st->dev, "the channel %d is set in port mode %d\n",
               reg, st->port_modes[reg]);
       break:
case PORT MODE 8:
       ret = fwnode_property_read_u32(child, "adc-range", &tmp);
       if (!ret)
              st->adc_range[reg] = tmp;
       else
              dev info(st->dev, "Get default ADC range\n");
       ret = fwnode property read u32(child, "AVR", &tmp);
       if (!ret)
              st->adc reference[reg] = tmp;
       else
              dev_info(st->dev,
                       "Get default internal ADC reference\n");
       ret = fwnode property read u32(child, "adc-samples", &tmp);
       if (!ret)
              st->adc_samples[reg] = tmp;
       else
              dev info(st->dev, "Get default internal ADC sampling\n");
       ret = fwnode property read u32(child, "negative-input", &tmp);
       if (!ret)
              st->adc_negative_port[reg] = tmp;
       else {
              dev info(st->dev,
                       "Bad value for negative ADC channel\n");
              return -EINVAL;
       }
       dev info(st->dev, "the channel %d is set in port mode %d\n",
               reg, st->port modes[reg]);
       break;
case PORT MODE 9: case PORT MODE 10:
       ret = fwnode_property_read_u32(child, "adc-range", &tmp);
```

```
if (!ret)
              st->adc_range[reg] = tmp;
       else
              dev info(st->dev, "Get default ADC range\n");
       ret = fwnode property read u32(child, "AVR", &tmp);
              st->adc reference[reg] = tmp;
       else
              dev info(st->dev,
                       "Get default internal ADC reference\n");
       dev info(st->dev, "the channel %d is set in port mode %d\n",
               reg, st->port_modes[reg]);
       break:
case PORT MODE 5: case PORT MODE 6:
       ret = fwnode property read u32(child, "dac-range", &tmp);
       if (!ret)
       st->dac_range[reg] = tmp;
       else
              dev info(st->dev, "Get default DAC range\n");
        * A port in mode 6 will generate two IIO sysfs entries,
        * one for writing the DAC port, and another for reading
        * the ADC port
        */
       if ((st->port modes[reg]) == PORT MODE 6) {
              ret = fwnode property read u32(child, "AVR", &tmp);
              if (!ret)
                      st->adc_reference[reg] = tmp;
              else
                      dev_info(st->dev,
                              "Get default internal ADC reference\n");
              /*
               * get the number of ports set in mode_6 to allocate
               * space for the related iio channels
               */
              port mode 6 count++;
              dev_info(st->dev, "there are %d channels in mode_6\n",
                       port mode 6 count);
       }
       dev info(st->dev, "the channel %d is set in port mode %d\n",
               reg, st->port modes[reg]);
       break:
/* The port is configured as a GPI in the DT */
case PORT_MODE_1:
```

```
dev info(st->dev, "the channel %d is set in port mode %d\n",
               reg, st->port modes[reg]);
        * link the gpio offset with the port number,
        * starting with offset = 0
       st->gpio offset[offset] = reg;
       /*
        * store the port mode for each gpio offset,
        * starting with offset = 0
        */
       st->gpio_offset_mode[offset] = PORT_MODE_1;
       dev info(st->dev,
           "the gpio number %d is using the gpio offset number %d\n",
               st->gpio offset[offset], offset);
        * increment the gpio offset and number
        * of configured ports as GPIOs
       */
       offset++;
       st->num_gpios++;
       break;
/* The port is configured as a GPO in the DT */
case PORT MODE 3:
       dev info(st->dev, "the channel %d is set in port mode %d\n",
               reg, st->port_modes[reg]);
        * link the gpio offset with the port number,
        * starting with offset = 0
       st->gpio offset[offset] = reg;
        * store the port mode for each gpio offset,
        * starting with offset = 0
       */
       st->gpio offset mode[offset] = PORT MODE 3;
       dev info(st->dev,
            "the gpio number %d is using the gpio offset number %d\n",
               st->gpio_offset[offset], offset);
```

```
* increment the gpio offset and
               * number of configured ports as GPIOs
               */
              offset++;
              st->num_gpios++;
              break:
       case PORT MODE 0:
              dev info(st->dev,
                       "the channel %d is set in default port mode 0\n", reg);
              break;
       default:
              dev_info(st->dev, "bad port mode for channel %d\n", reg);
       }
}
/*
 * Allocate space for the storage of all the IIO channels specs.
* Returns a pointer to this storage
 */
ports = devm kcalloc(st->dev, num ports + port mode 6 count,
                     sizeof(*ports), GFP KERNEL);
if (!ports)
       return - ENOMEM;
 * i is the number of the channel, &ports[curr port] is a pointer variable that
* will store the "iio_chan_spec structure" address of each port
for (i = 0; i < num ports; i++) {
       switch (st->port_modes[i]) {
       case PORT MODE 5:
              dev_info(st->dev, "the port %d is configured as MODE 5\n", i);
              max11300_setup_port_5_mode(iio_dev, &ports[curr_port],
                                         true, i, PORT MODE 5); // true = out
              curr port++;
              break;
       case PORT MODE 6:
              dev_info(st->dev, "the port %d is configured as MODE 6\n", i);
              max11300 setup port 6 mode(iio dev, &ports[curr port],
                                         true, i, PORT MODE 6); // true = out
              curr port++;
              max11300 setup port 6 mode(iio dev, &ports[curr port],
                                         false, i, PORT MODE 6); // false = in
              curr_port++;
              break;
       case PORT_MODE_7:
```

```
dev_info(st->dev, "the port %d is configured as MODE 7\n", i);
                  max11300_setup_port_7_mode(iio_dev, &ports[curr_port],
                                            false, i, PORT MODE 7); // false = in
                  curr port++;
                  break;
          case PORT_MODE_8:
                  dev info(st->dev, "the port %d is configured as MODE 8\n", i);
                  max11300 setup port 8 mode(iio dev, &ports[curr port],
                                            false, i, st->adc negative port[i],
                                            PORT MODE 8); // false = in
                  curr port++;
                  break;
          case PORT_MODE_0:
                  dev_info(st->dev,
                          "the channel is set in default port mode 0\n");
                  break;
          case PORT MODE 1:
                  dev_info(st->dev, "the channel %d is set in port mode_1\n", i);
                  break;
          case PORT MODE 3:
                  dev info(st->dev, "the channel %d is set in port mode 3\n", i);
                  break;
          default:
                  dev info(st->dev, "bad port mode for channel %d\n", i);
          }
   }
   iio dev->num channels = curr port;
   iio dev->channels = ports;
   return 0;
}
int max11300_probe(struct device *dev, const char *name,
            const struct max11300 rw ops *ops)
{
   /* create an iio device */
   struct iio dev *iio dev;
   /* create the global structure that will store the info of the device */
   struct max11300_state *st;
   u16 write val;
   u16 read val;
   u8 reg;
   int ret;
```

```
write val = 0;
dev info(dev, "max11300 probe() function is called\n");
/* allocates memory fot the IIO device */
iio dev = devm iio device alloc(dev, sizeof(*st));
if (!iio dev)
       return - ENOMEM:
/* link the global data structure with the iio device */
st = iio priv(iio dev);
/* store in the global structure the spi device */
st->dev = dev;
 * store in the global structure the pointer to the
* MAX11300 SPI read and write functions
st->ops = ops;
/* setup the number of ports of the MAX11300 device */
st->num ports = 20;
/* link the spi device with the iio device */
dev set drvdata(dev, iio dev);
iio dev->dev.parent = dev;
iio_dev->name = name;
* store the address of the iio info structure,
* which contains pointer variables
* to IIO write/read callbacks
*/
iio dev->info = &max11300 info;
iio dev->modes = INDIO DIRECT MODE;
/* reset the MAX11300 device */
reg = DCR ADDRESS;
dev_info(st->dev, "the value of DCR_ADDRESS is %x\n", reg);
write_val = RESET;
dev info(st->dev, "the value of reset is %x\n", write val);
ret = ops->reg write(st, reg, write val);
if (ret != 0)
       goto error;
```

```
/* return MAX11300 Device ID */
   reg = 0x00;
   ret = ops->reg read(st, reg, &read val);
   if (ret != 0)
          goto error;
   dev_info(st->dev, "the value of device ID is %x\n", read_val);
   /* Configure DACREF and ADCCTL */
   reg = DCR ADDRESS;
   write val = (DCR ADCCTL CONTINUOUS SWEEP | DCR DACREF);
   dev info(st->dev, "the value of DACREF CONT SWEEP is %x\n", write val);
   ret = ops->reg write(st, reg, write val);
   udelay(200);
   if (ret)
          goto error;
   dev info(dev, "the setup of the device is done\n");
   /* Configure the IIO channels of the device */
   ret = max11300 alloc ports(st);
   if (ret)
          goto error;
   ret = max11300 set port modes(st);
   if (ret)
          goto error reset device;
   ret = iio device register(iio dev);
   if (ret)
          goto error;
   ret = max11300_gpio_init(st);
   if (ret)
          goto error dev unregister;
   return 0;
error dev unregister:
   iio_device_unregister(iio_dev);
error reset device:
   /* reset the device */
   reg = DCR ADDRESS;
   write val = RESET;
   ret = ops->reg_write(st, reg, write_val);
   if (ret != 0)
          return ret;
```

error:

```
return ret;
}
EXPORT_SYMBOL_GPL(max11300_probe);
int max11300_remove(struct device *dev)
{
    struct iio_dev *iio_dev = dev_get_drvdata(dev);
    iio_device_unregister(iio_dev);
    return 0;
}
EXPORT_SYMBOL_GPL(max11300_remove);

MODULE_AUTHOR("Alberto Liberal <aliberal@arroweurope.com>");
MODULE_DESCRIPTION("Maxim max11300 multi-port converters");
MODULE_LICENSE("GPL v2");
```

LAB 11.5 driver demonstration

libgpiod provides a C library and simple tools for interacting with the linux GPIO character device. The GPIO sysfs interface is deprecated from Linux 4.8 for these libgpiod tools. The C library encapsulates the ioctl() calls and data structures using a straightforward API. For more information see: https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/about/

You will use the 1.4.3 version of the library and tools during this demonstration section:

libgpiod	libgpiod	1.4.3	LGPLv2.1+	C library and tools for interacting with the linux GPIO character device
libgpiod	libgpiod-tools	1.4.3	LGPLv2.1+	C library and tools for interacting with the linux GPIO character device

The tools provided with libgpiod allow accessing the GPIO driver from the command line. There are six commands in libgpiod tools:

- **gpiodetect**: list all gpiochips present on the system, their names, labels, and number of GPIO lines. In the lab the MAX11300 gpio chip will appear with the name of gpiochip10.
- **gpioinfo:** list all lines of specified gpiochips, their names, consumers, direction, active state, and additional flags.

- **gpioget:** read values of specified GPIO lines. This tool will call to the gpiochip.direction_input and gpiochip.get callback functions declared in the struct gpio_chip of the driver.
- **gpioset:** set values of specified GPIO lines, potentially keep the lines exported and wait until timeout, user input or signal. This tool will call to the gpiochip.direction_output callback function declared in the struct gpio_chip of the driver.
- **gpiofind:** find the gpiochip name and line offset given the line name.
- **gpiomon:** wait for events on GPIO lines, specify which events to watch, how many events to process before exiting or if the events should be reported to the console.

Download the linux_5.4_max11300_driver.zip file from the github of the book and unzip it in the STM32MP15-Ecosystem-v2.0.0 folder of the Linux host:

```
PC:~$ cd ~/STM32MP15-Ecosystem-v2.0.0/
```

Compile and deploy the drivers to the STM32MP157C-DK2 Discovery kit:

```
~/STM32MP15-Ecosystem-v2.0.0/linux_5.4_max11300_drivers$ make

~/STM32MP15-Ecosystem-v2.0.0/linux_5.4_max11300_drivers$ make deploy
```

Follow the next instructions to test the driver:

```
/* load the module */
root@stm32mp1:~# insmod max11300-base.ko
   49.999595] max11300 base: loading out-of-tree module taints kernel.
root@stm32mp1:~# insmod max11300.ko
    53.414477] max11300 spi0.0: max11300 probe() function is called
   53.419065] max11300 spi0.0: the value of DCR_ADDRESS is 10
   53.443251] max11300 spi0.0: the value of reset is 8000
   53.447408] max11300 spi0.0: read SE channel
    53.463302] max11300 spi0.0: the value of device ID is 424
    53.467382] max11300 spi0.0: the value of DACREF CONT SWEEP is 43
   53.483879] max11300 spi0.0: the setup of the device is done
    53.488095] max11300 spi0.0: the channel 0 is set in port mode 7
   53.513303] max11300 spi0.0: the channel 1 is set in port mode 7
    53.517860] max11300 spi0.0: the channel 2 is set in port mode 5
    53.543299] max11300 spi0.0: the channel 3 is set in port mode 5
   53.547856] max11300 spi0.0: the channel 4 is set in port mode 8
   53.558583] max11300 spi0.0: the channel 5 is set in port mode 9
    53.573303] max11300 spi0.0: there are 1 channels in mode 6
   53.577414] max11300 spi0.0: the channel 6 is set in port mode 6
   53.603435] max11300 spi0.0: the channel 7 is set in port mode 1
    53.607979] max11300 spi0.0: the gpio number 7 is using the gpio offset number
```

```
53.633269] max11300 spi0.0: the channel 8 is set in port mode 3
    53.637995] max11300 spi0.0: the gpio number 8 is using the gpio offset number
    53.653305] max11300 spi0.0: the channel 9 is set in default port mode_0
    53.658550] max11300 spi0.0: the channel 10 is set in default port mode_0
    53.683352] max11300 spi0.0: the channel 11 is set in default port mode_0
    53.703354] max11300 spi0.0: the channel 12 is set in default port mode_0
    53.708682] max11300 spi0.0: the channel 13 is set in default port mode 0
    53.733264] max11300 spi0.0: the channel 14 is set in default port mode_0
    53.738596] max11300 spi0.0: the channel 15 is set in default port mode_0
    53.753306] max11300 spi0.0: the channel 16 is set in default port mode 0
    53.758638] max11300 spi0.0: the channel 17 is set in default port mode 0
    53.783352] max11300 spi0.0: the channel 18 is set in port mode 1
    53.787984] max11300 spi0.0: the gpio number 18 is using the gpio offset number
    53.813258] max11300 spi0.0: the channel 19 is set in port mode 3
[
    53.817891] max11300 spi0.0: the gpio number 19 is using the gpio offset number
[
    53.843381] max11300 spi0.0: the port 0 is configured as MODE 7
    53.847839] max11300 spi0.0: the port 1 is configured as MODE 7
    53.873361] max11300 spi0.0: the port 2 is configured as MODE 5
    53.877825] max11300 spi0.0: the port 3 is configured as MODE 5
    53.893290] max11300 spi0.0: the port 4 is configured as MODE 8
    53.897752] max11300 spi0.0: bad port mode for channel 5
    53.903040] max11300 spi0.0: the port 6 is configured as MODE 6
    53.933290] max11300 spi0.0: the channel 7 is set in port mode_1
    53.937836] max11300 spi0.0: the channel 8 is set in port mode 3
    53.963201] max11300 spi0.0: the channel is set in default port mode 0
    53.968395] max11300 spi0.0: the channel is set in default port mode_0
    53.993241] max11300 spi0.0: the channel is set in default port mode_0
    53.998314] max11300 spi0.0: the channel is set in default port mode_0
    54.013253] max11300 spi0.0: the channel is set in default port mode_0
    54.018322] max11300 spi0.0: the channel is set in default port mode 0
    54.041409] max11300 spi0.0: the channel is set in default port mode_0
    54.063302] max11300 spi0.0: the channel is set in default port mode_0
    54.068369] max11300 spi0.0: the channel is set in default port mode 0
    54.083404] max11300 spi0.0: the channel 18 is set in port mode_1
    54.088038] max11300 spi0.0: the channel 19 is set in port mode_3
    54.113297] max11300 spi0.0: the value of adc cfg addr for channel 0 in port
mode 7 is 20
    54.120010] max11300 spi0.0: the channel 0 is set in port mode 7
    54.143298] max11300 spi0.0: the value of adc cfg val for channel 0 in port
mode 7 is 7100
    54.164512] max11300 spi0.0: the value of adc cfg addr for channel 1 in port
mode 7 is 21
    54.171232] max11300 spi0.0: the channel 1 is set in port mode 7
    54.193247] max11300 spi0.0: the value of adc cfg val for channel 1 in port
mode 7 is 71e0
```

```
54.214426] max11300 spi0.0: the value of adc cfg addr for channel 2 in port
mode 5 is 22
   54.221142 max11300 spi0.0: the channel 2 is set in port mode 5
    54.243258] max11300 spi0.0: the value of adc cfg val for channel 2 in port
mode 5 is 5100
    54.264524] max11300 spi0.0: the value of adc cfg addr for channel 3 in port
mode 5 is 23
    54.271238] max11300 spi0.0: the channel 3 is set in port mode 5
    54.293253] max11300 spi0.0: the value of adc cfg val for channel 3 in port
mode 5 is 5100
    54.314402 max11300 spi0.0: the value of adc cfg addr for channel 4 in port
mode 8 is 24
    54.321121] max11300 spi0.0: the channel 4 is set in port mode 8
    54.343410] max11300 spi0.0: the value of adc cfg val for channel 4 in port
    54.364616] max11300 spi0.0: the value of adc cfg addr for channel 5 in port
mode 9 is 25
    54.371335] max11300 spi0.0: the channel 5 is set in port mode 9
    54.393306] max11300 spi0.0: the value of adc cfg val for channel 5 in port
mode 9 is 9100
    54.414374] max11300 spi0.0: the value of adc cfg addr for channel 6 in port
mode 6 is 26
    54.421092] max11300 spi0.0: the channel 6 is set in port mode 6
    54.443469] max11300 spi0.0: the value of adc cfg val for channel 6 in port
mode 6 is 6100
    54.464637] max11300 spi0.0: the port 7 is set in port mode 1
    54.468921] max11300 spi0.0: the port 8 is set in port mode 3
    54.493295] max11300 spi0.0: the port 9 is set in default port mode 0
    54.498273] max11300 spi0.0: the port 10 is set in default port mode 0
    54.523486] max11300 spi0.0: the port 11 is set in default port mode_0
    54.528547] max11300 spi0.0: the port 12 is set in default port mode_0
    54.543431] max11300 spi0.0: the port 13 is set in default port mode_0
    54.548497] max11300 spi0.0: the port 14 is set in default port mode 0
    54.573339] max11300 spi0.0: the port 15 is set in default port mode_0
    54.578402] max11300 spi0.0: the port 16 is set in default port mode 0
    54.603446] max11300 spi0.0: the port 17 is set in default port mode 0
    54.608512] max11300 spi0.0: the port 18 is set in port mode 1
    54.633300] max11300 spi0.0: the port 19 is set in port mode 3
root@stm32mp1:~# cd /sys/bus/iio/devices/iio:device0/
```

/* check the IIO sysfs entries under the IIO MAX11300 device */
root@stm32mp1:/sys/devices/platform/soc/44005000.spi/spi_master/spi0/spi0.0/iio:de
vice0# ls

root@stm32mp1:/sys/devices/platform/soc/44005000.spi/spi master/spi0/spi0.0/iio:de

vice0#

```
dev
                                       in voltage1 mode 7 ADC raw
in voltage6 mode 6 DAC ADC raw
                                       of node
out_voltage3_mode_5_DAC_raw
                                       power
                                               uevent
in voltage0 mode 7 ADC raw
                                       in voltage4-voltage5 mode 8 ADC raw name
out voltage2 mode 5 DAC raw
                                       out voltage6 mode 6 DAC ADC raw subsystem
Connect port2 (DAC) to port0 (ADC)
/* write to the port2 (DAC) */
root@stm32mp1:/sys/devices/platform/soc/44005000.spi/spi_master/spi0/spi0.0/iio:de
vice0# echo 1000 > out_voltage2_mode 5 DAC raw
[ 813.600342] max11300 spi0.0: the DAC data register is 62
[ 813.604560] max11300 spi0.0: the value in the DAC data register is 3e8
/* read the port0 (ADC) */
root@stm32mp1:/sys/devices/platform/soc/44005000.spi/spi_master/spi0/spi0.0/iio:de
vice0# cat in voltage0 mode 7 ADC raw
[ 835.930969] max11300 spi0.0: read SE channel
1001
connect port2 (DAC) to port4 (ADC differential positive) & port3 (DAC) to port 5
(ADC differential negative)
/* set 5V output in the port2 (DAC) */
root@stm32mp1:/sys/devices/platform/soc/44005000.spi/spi master/spi0/spi0.0/iio:de
vice0# echo 2047 > out voltage2 mode 5 DAC raw
  282.286001] max11300 spi0.0: the DAC data register is 62
  282.289852] max11300 spi0.0: the value in the DAC data register is 7ff
/* set 2.5V in the port3 (DAC) */
root@stm32mp1:/sys/devices/platform/soc/44005000.spi/spi master/spi0/spi0.0/iio:de
vice0# echo 1024 > out_voltage3_mode_5_DAC_raw
  314.356308] max11300 spi0.0: the DAC data register is 63
[ 314.361039] max11300 spi0.0: the value in the DAC data register is 400
/* read differential input (port4 port5): 2.5V */
root@stm32mp1:/sys/devices/platform/soc/44005000.spi/spi_master/spi0/spi0.0/iio:de
vice0# cat in voltage4-voltage5 mode 8 ADC raw
[ 335.131855] max11300 spi0.0: read differential channel
513
/* set DAC and read ADC in port mode 6 */
root@stm32mp1:/sys/devices/platform/soc/44005000.spi/spi_master/spi0/spi0.0/iio:de
vice0# echo 1024 > out voltage6 mode 6 DAC ADC raw
[11090.790511] max11300 spi0.0: the DAC data register is 66
[11090.794478] max11300 spi0.0: the value in the DAC data register is 400
root@stm32mp1:/sys/devices/platform/soc/44005000.spi/spi master/spi0/spi0.0/iio:de
vice0# cat in_voltage6_mode_6_DAC_ADC_raw
```

```
[11095.169444] max11300 spi0.0: read SE channel
1022
/* check the gpio chip controllers */
root@stm32mp1:~# ls -l /dev/gpiochip*
crw----- 1 root root 254, 0 Feb 7 15:50 /dev/gpiochip0
crw----- 1 root root 254, 1 Feb 7 15:50 /dev/gpiochip1
crw----- 1 root root 254, 10 Feb 7 16:07 /dev/gpiochip10
crw----- 1 root root 254, 2 Feb 7 15:50 /dev/gpiochip2
crw----- 1 root root 254, 3 Feb 7 15:50 /dev/gpiochip3
crw----- 1 root root 254, 4 Feb 7 15:50 /dev/gpiochip4
crw----- 1 root root 254, 5 Feb 7 15:50 /dev/gpiochip5
crw----- 1 root root 254, 6 Feb 7 15:50 /dev/gpiochip6
crw----- 1 root root 254, 7 Feb 7 15:50 /dev/gpiochip7
crw----- 1 root root 254, 8 Feb 7 15:50 /dev/gpiochip8
crw----- 1 root root 254, 9 Feb 7 15:50 /dev/gpiochip9
root@stm32mp1:~#
/* active-high means that 0 value sets output line low */
/* Print information of all the lines of the gpiochip10 */
root@stm32mp1:~# gpioinfo gpiochip10
gpiochip10 - 4 lines:
       line 0:
                                   unused input active-high
                      unnamed
       line 1:
                      unnamed
                                   unused input active-high
                 unnamed
unnamed
       line 2:
                                   unused input active-high
                                  unused input active-high
       line 3:
connect port19 (GPO) to port 18 (GPI)
/* Set port19 (GPO) to high */
root@stm32mp1:~# gpioset gpiochip10 3=1
   62.435888] max11300 spi0.0: The GPIO is set as an output
   62.450060] max11300 spi0.0: The GPIO ouput is set
   62.453531] max11300 spi0.0: The GPIO ouput is set high and port number is 19.
Pin is > 0x0F
/* Read port 18 (GPI) */
root@stm32mp1:~# gpioget gpiochip10 2
   84.553859] max11300 spi0.0: The GPIO is set as an input
   84.559241] max11300 spi0.0: The GPIO input is get
   84.562564] max11300 spi0.0: read SE channel
1
/* Set port19 (GPO) to low */
root@stm32mp1:~# gpioset gpiochip10 3=0
[ 237.579351] max11300 spi0.0: The GPIO is set as an output
[ 237.586048] max11300 spi0.0: The GPIO ouput is set
```

```
[ 237.589376] max11300 spi0.0: The GPIO ouput is set low and port number is 19.
Pin is > 0x0F
/* Read port 18 (GPI) */
root@stm32mp1:~# gpioget gpiochip10 2
[ 242.972241] max11300 spi0.0: The GPIO is set as an input
[ 242.977719] max11300 spi0.0: The GPIO input is get
[ 242.981045] max11300 spi0.0: read SE channel
connect port19 (GPO) to port 7 (GPI)
/* Set port19 (GPO) to high */
root@stm32mp1:~# gpioset gpiochip10 3=1
  353.390612] max11300 spi0.0: The GPIO is set as an output
[ 353.397354] max11300 spi0.0: The GPIO ouput is set
[ 353.400681] max11300 spi0.0: The GPIO ouput is set high and port_number is 19.
Pin is > 0x0F
/* Read port7 (GPI) */
root@stm32mp1:~# gpioget gpiochip10 0
[ 360.911737] max11300 spi0.0: The GPIO is set as an input
[ 360.917224] max11300 spi0.0: The GPIO input is get
[ 360.920549] max11300 spi0.0: read SE channel
/* Set port19 (GPO) to low */
root@stm32mp1:~# gpioset gpiochip10 3=0
[ 395.411163] max11300 spi0.0: The GPIO is set as an output
[ 395.417793] max11300 spi0.0: The GPIO ouput is set
[ 395.423392] max11300 spi0.0: The GPIO ouput is set low and port number is 19.
Pin is > 0x0F
/* Read port7 (GPI) */
root@stm32mp1:~# gpioget gpiochip10 0
[ 398.715539] max11300 spi0.0: The GPIO is set as an input
  398.720941] max11300 spi0.0: The GPIO input is get
[ 398.724369] max11300 spi0.0: read SE channel
connect port8 (GPO) to port 7 (GPI)
/* Set port8 (GPO) to high */
root@stm32mp1:~# gpioset gpiochip10 1=1
  513.866874] max11300 spi0.0: The GPIO is set as an output
[ 513.877063] max11300 spi0.0: The GPIO ouput is set
[ 513.880397] max11300 spi0.0: The GPIO ouput is set high and port number is 8.
Pin is < 0x0F
```

```
/* Read port7 (GPI) */
root@stm32mp1:~# gpioget gpiochip10 0
[ 524.255066] max11300 spi0.0: The GPIO is set as an input
[ 524.260480] max11300 spi0.0: The GPIO input is get
[ 524.264006] max11300 spi0.0: read SE channel
/* Set port8 (GPO) to low */
root@stm32mp1:~# gpioset gpiochip10 1=0
[ 549.280354] max11300 spi0.0: The GPIO is set as an output
[ 549.287047] max11300 spi0.0: The GPIO ouput is set
[ 549.290375] max11300 spi0.0: The GPIO ouput is set low and port number is 8.
Pin is < 0x0F
/* Read port7 (GPI) */
root@stm32mp1:~# gpioget gpiochip10 0
[ 553.596437] max11300 spi0.0: The GPIO is set as an input
[ 553.601859] max11300 spi0.0: The GPIO input is get
[ 553.606632] max11300 spi0.0: read SE channel
/* check the new direction of the gpio lines */
root@stm32mp1:~# gpioinfo gpiochip10
gpiochip10 - 4 lines:
       line 0:
                     unnamed
                                  unused input active-high
       line 1:
                    unnamed
                                   unused output active-high
                                unused input active-high
       line 2:
                    unnamed
       line 3:
                  unnamed
                                  unused output active-high
/* remove the module */
root@stm32mp1:~# rmmod max11300.ko
root@stm32mp1:~# rmmod max11300-base.ko
```