Execution Semantics of Pattern/Scope Combinations

Pattern/scope combinations	QRE semantics and verdict procedure
always P after Q	EoE (Q P* (<u>¬[P]</u> EoE))
	$\neg [P] = nul1 \qquad \qquad \top$ $\neg [P] \neq nul1 \qquad \qquad \bot$
always P after Q until R	<u>EoE</u> (Q P* (<u>¬[P]</u> R <u>EoE</u>))
	$EoE = null$ $EoE \neq null$ T T P $null$ T
always P before Q	EoE Q <u>¬[P]</u>
	$\neg [P] = nul1 $ $\neg [P] \neq nul1 $ \bot
always P between Q and R	<u>EoE</u> (Q P* <u>¬[P]</u> P* (R <u>EoE</u>)
	$EoE = null \qquad Term $ $EoE \neq null \qquad Term $ $EoE \neq null \qquad Term $
always P globally	EoE <u>¬[P]</u>
	$\neg [P] = null \qquad \top$ $\neg [P] \neq null \qquad \bot$

Table 1: Semantics of ${\sf Universality}$ patterns as QREs and verdict procedures.

Pattern/scope combinations	QRE semantics and verdict procedure
exists [2,3] P after Q	EoE (Q (¬[P]* P' (¬[P]* P (¬[P]* \underline{P} (¬[P]* P' EoE) EoE) EoE) EoE))
exists [2,3] P after Q until R	$ \underbrace{\text{EoE}}_{Q} \mid (\underline{Q} (\neg [P]^* P' (\neg [P]^* P' (\neg [P]^* P' (\neg [P]^* P' R \underline{\text{EoE}})))]} \\ R \mid \underline{\text{EoE}}_{Q} \mid R \mid \underline{\text{EoE}}_{Q} \mid R \mid \underline{\text{EoE}}_{Q}) $ $ \underbrace{\text{FoE}}_{Q} \mid R \mid \underline{\text{FoE}}_{Q} \mid R \mid \text{FoE$
exists [2,3] P before Q	$\neg [P] * P' (\neg [P] * \underline{P} (\neg $
exists [2,3] P between Q and R	$\underline{EoE} \mid Q \neg [P,R]^* (\underline{P} \neg [P,R]^*)^* (R$ $\mid \underline{EoE})$ $ P \not\in [2,3]$ $ P \not\in [2,3]$ $ P \in [2,3]$ $ P \in [2,3]$
exists [2,3] P globally	$\neg [P]* P' (\neg [P]* \underline{P} (\neg [P]$

Table 2: Semantics of ${\sf Existence}$ patterns as QREs and verdict procedures.

Pattern/scope combinations	QRE semantics and verdict procedure
never P after Q	EoE (Q .*? (<u>P</u> EoE))
	$\begin{array}{c} p = nul1 \\ \hline \\ p \neq nul1 \end{array}$
never P after Q until R	<u>EoE</u> (Q .*? (<u>P</u> R <u>EoE</u>))
	$EoE = null$ $EoE \neq null$ $P \neq null$
never P before Q	EoE Q <u>P</u>
	$\begin{array}{c} p = nul1 \\ \hline \\ p \neq nul1 \end{array}$
never P between Q and R	$\underline{\text{EoE}} \mid (Q \neg [P]^* (\underline{P} \neg [P]^*?)? (R \mid \underline{\text{EoE}})$
	$EoE = null$ $EoE \neq null$ $P \neq null$
never P globally	EoE <u>P</u>
	$\begin{array}{c} p = nul1 \\ \hline \\ p \neq nul1 \\ \end{array} $

Table 3: Semantics of $\mathsf{Absence}$ patterns as QREs and verdict procedures.

Pattern/scope combinations	QRE semantics and verdict procedure
S precedes P after Q	EoE Q .*? (EoE S <u>P</u>)
	P ≠ nul ₁ (⊥)
S precedes P after Q until R	<u>EoE</u> Q .*? (<u>EoE</u> R S <u>P</u>))
	$EoE = null$ $EoE \neq null$ $P \neq null$
S precedes P before Q	EoE Q S <u>P</u>
	$\begin{array}{c} p = null \\ \hline \\ p \neq null \end{array}$
S precedes P between Q and R	
	$EoE \approx null$ $P \neq null$ $P \approx null$ $P \approx null$ $P \approx null$
S precedes P globally	EoE S <u>P</u>
	$\begin{array}{c} p = nul1 \\ \hline \\ p \neq nul1 \end{array} $

Table 4: Semantics of Precedence patterns as QREs and verdict procedures.

Pattern/scope combinations	QRE semantics and verdict procedure
S respondsTo P after Q	EoE Q ¬[P]* (<u>P</u> ¬[S]* <u>S</u> ¬[P]*)* (<u>P</u> ¬[S]*)? EoE
	$ P = S \qquad T$ $ P \approx S \qquad \bot$
S respondsTo P after Q until R	$\frac{\text{EoE}}{\neg [P,R]^*} \frac{P}{\neg [R,S]^*} \frac{S}{S} \\ \neg [P,R]^*)^* \frac{P}{\neg [R,S]^*} \frac{S}{S} $ $\frac{EoE}{S}$
	$ P = S $ $ P \neq S $
S respondsTo P before Q	EoE Q $(\underline{P} \neg [S]^* \underline{S} \neg [P]^*)^* (\underline{P} \neg [S]^*)$? (EoE Q)
	$ P = S $ $ P \neq S $ $ P \neq S $
S respondsTo P between Q and R	$\frac{\text{EoE}}{\neg [P,R]^*} Q \neg [P,R]^* \underline{P} \neg [R,S]^* \underline{S} \\ \neg [P,R]^*)^* (\underline{P} \neg [R,S]^*)? (R \mid \underline{EoE})$
	$EoE = null$ $ P \neq S $ $EoE \neq null$ $ P \neq S $
S respondsTo P globally	$(\underline{P} \neg [S]^* \underline{S} \neg [P]^*)^* (\underline{P} \neg [S]^*)?$ EoE
	$ P = S $ $ P \neq S $

Table 5: Semantics of ${\sf Response}$ patterns as QREs and verdict procedures.