2022 C1 Block Test Revision Package Solutions **Chapter 2 Graphs and Transformations**

Curves Sketching and Conic Sections

Qn	Solutions	Comments
1(i)	C is a hyperbola with centre at (2, 1).	
	To find the asymptotes, as $x \to \pm \infty$	
	$\frac{(y-1)^2}{4} - (x-2)^2 = 0$	
	$\frac{-4}{4} - (x-2) = 0$	
	$\Rightarrow (y-1)^2 = 4(x-2)^2$	
	$\Rightarrow y-1=\pm 2(x-2)$	
	\Rightarrow $y=1\pm 2(x-2)$	
	\Rightarrow $y = 1 + 2x - 4$ or $y = 1 - 2x + 4$	
	\Rightarrow $y=2x-3$ or $y=-2x+5$	
	When $x = 0$, $\frac{(y-1)^2}{4} - (0-2)^2 = 1$	
	$\Rightarrow (y-1)^2 = 20$	
	$\Rightarrow y = 1 \pm \sqrt{20}$	
	$\overrightarrow{y} y = 1 \pm 2\sqrt{5}$	
	y = 2x - 3 $(2, 3)$	
	$(2, 1) x$ $(2, -1)$ $1-2\sqrt{5}$ $y = -2x + 5$	
1(ii)	Since $(x-2)^2 + (y-1)^2 = r^2$ is a circle with centre (2, 1) and radius r , hence to intersect the hyperbola in only two points, $r = 2$.	
2(i)	$9y^2 + 36y - 4x^2 + 8x - 4 = 0$	
	$9(y^2+4y)-4(x^2-2x)-4=0$	
	$9(y^2+4y+4)-36-4(x^2-2x+1)+4-4=0$	
	$9(y+2)^2-4(x-1)^2=36$	
	$\frac{(y+2)^2}{2^2} - \frac{(x-1)^2}{3^2} = 1 \text{ (shown)}$	

 $\therefore y = \frac{2}{3}x - \frac{8}{3}$ or $y = -\frac{2}{3}x - \frac{4}{3}$

2.(iv)	$2n(x-1)^{2} + (y+2)^{2} = 2n$	
	$(x-1)^2 + \frac{(y+2)^2}{2n} = 1$	
	$(x-1)^{2} + \frac{(y+2)^{2}}{2n} = 1$ $\frac{(x-1)^{2}}{1^{2}} + \frac{(y+2)^{2}}{(\sqrt{2n})^{2}} = 1$	
	For $2n(x-1)^2 + (y+2)^2 = 2n$ and H intersect at least twice,	
	$\sqrt{2n} \ge 2$	
	$n \ge 2$	
3(a) (i)		

3(a) Points of intersection are (2, 1) and (3.2)	3, 4.54).
---	-----------

C:
$$y = 2x + \frac{k}{x+b} = \frac{2x^2 + 2bx + k}{x+b}$$
, for some constant k

Comparing $ax^2 + 2x - 4 = 2x^2 + 2bx + k$

$$\Rightarrow \begin{cases} a=2\\ 2=2b \Rightarrow b=1 \end{cases}$$

Alternatively: $C: y = \frac{ax^2 + 2x - 4}{x + b}$ ax + (2 - ab)

		\neg
	$(x+b)ax^2+2x-4$	
	$ax^2 + abx$	
	(2-ab)x-4	
	(2-ab)x+b(2-ab)	
	-4-b(2-ab)	
	$\therefore C: y = ax + (2-ab) + \frac{-4-b(2-ab)}{x+b}$	
	$\Rightarrow ax + 2 - ab = 2x$	
	a = 2	
	$\Rightarrow \begin{cases} a=2\\ 2-ab=0 \Rightarrow b=1 \end{cases}$	
4(ii)	$2x^2 + 2x - 4$	

4(ii) $C: y = \frac{2x^2 + 2x - 4}{x + 1}$ $\frac{dy}{dx} = \frac{(x + 1)(4x + 2) - (2x^2 + 2x - 4)}{(x + 1)^2}$ $= \frac{4x^2 + 6x + 2 - 2x^2 - 2x + 4}{(x + 1)^2}$ $= \frac{2x^2 + 4x + 6}{(x + 1)^2}$ $= \frac{2[(x + 1)^2 + 2]}{(x + 1)^2}$ $> 0 \quad \text{for } x \neq -1$

Therefore, the gradient of C is positive for all $x \in \mathbb{R}$, $x \neq -1$.

4(iv)
$$(x+1)^4 + (2x^2 + 2x - 4)^2 = 4(x+1)^2$$

$$(x+1)^2 + \left(\frac{2x^2 + 2x - 4}{x+1}\right)^2 = 4$$

Hence, sketch the curve $(x+1)^2 + y^2 = 2^2$ (circle).

The two graphs intersect at 4 distinct points, therefore the equation $(x+1)^4 + (2x^2 + 2x - 4)^2 = 4(x+1)^2$ has 4 distinct real roots.

$$5(i) y = \frac{x^2 + \lambda x + \lambda}{x + 1}$$

$$xy + y = x^2 + \lambda x + \lambda$$

$$x^2 + (\lambda - y)x + (\lambda - y) = 0$$

For real values of x, $(\lambda - y)^2 - 4(1)(\lambda - y) \ge 0$

$$(\lambda - y)(\lambda - 4 - y) \ge 0$$

$$y \le \lambda - 4$$
 or $y \ge \lambda$

Therefore, y cannot lie between the values of $\lambda - 4$ and λ (shown).

Note the use of discriminant here. This is a commonly asked question.

$(x-2)^2 + (y-1)^2 =$	2
$(x-2)^2 + \left(\left(\frac{x-1}{x-2}\right) - 1\right)^2 =$	2
$\left(x-2\right)^2 + \left(\frac{1}{x-2}\right)^2 =$	2

Therefore, the number of roots of the equation is equal to the number of points of intersection of C_1 and C_2 , which is 2.

6(a) C_3 is a circle with center (2,1) radius \sqrt{h} . From the previous

part, we see that any such circle with radius greater than $\sqrt{2}$ will intersect with C_1 at 4 points. Consequently,

$$\sqrt{h} > \sqrt{2} \Longrightarrow h > 2$$
.

6(b) From the vertical asymptote at x = 2, C = -2.

By long division,

$$\frac{Ax^2 + Bx + 11}{x - 2} = Ax + (B + 2A) + \frac{11 + 2(B + 2A)}{x - 2}$$

By comparing y = Ax + (B + 2A) with the oblique asymptote y = x + 5, we have

$$A = 1$$

$$B + 2A = 5 \Rightarrow B = 3$$

Alternative: Since y = x + 5 is an oblique asymptote,

$$\frac{Ax^2 + Bx + 11}{x - 2} = x + 5 + \frac{K}{x - 2}$$
$$Ax^2 + Bx + 11 = \left(x + 5 + \frac{K}{x - 2}\right)(x - 2)$$
$$Ax^2 + Bx + 11 = x^2 + 3x - 10 + K$$

By comparing coefficients, we get A = 1 and B = 3.

7(i)
$$x^{2} - 4x - 4y^{2} - 12 = 0$$
$$(x - 2)^{2} - 4 - 4y^{2} - 12 = 0$$
$$(x - 2)^{2} - 4y^{2} = 16$$
$$\frac{(x - 2)^{2}}{4^{2}} - \frac{y^{2}}{2^{2}} = 1$$

Hwa Chong Institution (College

$$(1)+(2)$$
:

$$\frac{(x-2)^2}{4^2} + \frac{(x-5)^2}{3^2} = 2 \text{ (shown)}$$

Therefore the *x*-coordinate satisfies the equation.

Using GC,

$$x = 0.847$$
 (reject as $x > 6$) or $x = 6.99$ (3 s.f)

B Parametric Equations

B Pa	rametric Equations		
Qn	Solutions		Comments
8(i)	For x-intercept, let $y = 0$. $-e^{t} + 2e^{-t} = 0$ $2e^{-t} = e^{t}$ $e^{2t} = 2$ $t = 0.5 \ln 2$ $x = (0.5 \ln 2)^{3} + (0.5 \ln 2)$ ≈ 0.388 For end-points, At $t = -1$, $x = (-1)^{3} + (-1) = -2$ $y = -e^{-1} + 2e^{1} = 5.07$ By GC,	For y-intercept, let $x = 0$. $t^3 + t = 0$ $t(t^2 + 1) = 0$ $t^2 + 1 = 0$ (N.A.) or $t = 0$ $y = -e^0 + 2e^0 = 1$ At $t = 1$ $x = 1^3 + 1 = 2$ $y = -e^1 + 2e^{-1} = -1.98$ $y = -e^0 + 2e^0 = 1$ 5.07) (0, 1) (0.388, 0) x (2, -1.98)	Need to adjust the Tmin and Tmax under WINDOW in GC after keying in parametric equations.
8(ii)	Substitute $x = t^3 + t$, $y = -e^t + 2$ $-e^t + 2e^{-t} = t^3 + t - 1$.	e^{-t} into $y = x - 1$,	Use GC to find the point of intersection
	Using GC, $t = 0.48678$.		

	Substitute into a and a the nation of interesting in (0.602 - 0.208)	hatavaan
	Substitute into x and y, the point of intersection is $(0.602, -0.398)$	between $y = -e^x + 2e^{-x}$ and
		$y = -e^{x} + 2e^{x}$ and $y = x^{3} + x - 1$.
		$y = x^3 + x - 1.$
9(i)	Given $y = \frac{-4x^2 + 8kx - 5k^2 + 4}{x - k}$ $\frac{dy}{dx} = \frac{(x - k)(-8x + 8k) - (-4x^2 + 8kx - 5k^2 + 4)(1)}{(x - k)^2}$ $= \frac{-8x^2 + 8kx + 8kx - 8k^2 + 4x^2 - 8kx + 5k^2 - 4}{(x - k)^2}$ $= \frac{-4x^2 + 8kx - 3k^2 - 4}{(x - k)^2}$	
	For stationary points, $\frac{dy}{dx} = 0$. $\frac{-4x^2 + 8kx - 3k^2 - 4}{(x - k)^2} = 0$ $\Rightarrow -4x^2 + 8kx - 3k^2 - 4 = 0(1)$	
	Since there are two stationary points, there are two distinct real roots for the equation (1). Hence, discriminant > 0.	
	$64k^2 - 4(-4)(-3k^2 - 4) > 0$	
	$64k^2 + 16(-3k^2 - 4) > 0$	
	$64k^2 - 48k^2 - 64 > 0$	
	$16k^2 - 64 > 0$	
	$k^2 - 4 > 0$	
	(k-2)(k+2) > 0	
	Therefore, $k < -2$ or $k > 2$.	
9(ii)	Working for long division:	

$\frac{-4x+4k}{x-k)-4x^2+8kx+(4-5k^2)}$	
$-) -4x^2 + 4kx$	
$4kx + \left(4 - 5k^2\right)$	
$-) 4kx - 4k^2$	
$4-k^2$	
$y = \frac{-4x^2 + 8kx - 5k^2 + 4}{x - k} = -4x + 4k - \frac{k^2 - 4k}{x - k}$	4
x-k $x-$	k

Oblique asymptote: y = -4x + 4k

Since the oblique asymptote cuts the y-axis at (0,4), 4k = 4

$$k = 1$$

9(iii) Since k = 1, there is no turning points for the curve C.

$$y = \frac{-4x^2 + 8x - 1}{x - 1} = -4x + 4 + \frac{3}{x - 1}$$

Asymptotes:

Vertical: x = 1

Oblique Asymptote: y = -4x + 4

Intercepts:

When
$$x = 0$$
, $y = \frac{-1}{-1} = 1$: (0, 1)

When y = 0,

$$-4x^2 + 8x - 1 = 0$$

$$4x^2 - 8x + 1 = 0$$

$$x = \frac{8 \pm \sqrt{64 - 4(4)(1)}}{2(4)}$$

$$= \frac{8 \pm \sqrt{48}}{8}$$
$$= 1 \pm \frac{\sqrt{16 \times 3}}{8}$$

$$=1\pm\frac{4\sqrt{3}}{8}$$

$$=1\pm\frac{\sqrt{3}}{2}$$

$$\left(1+\frac{\sqrt{3}}{2}, 0\right)$$
 or $\left(1-\frac{\sqrt{3}}{2}, 0\right)$

9(iv)

$$\left(x-1\right)^2+1=\left(\frac{y}{b}\right)^2$$

$$\left(\frac{y}{b}\right)^2 - \left(x - 1\right)^2 = 1$$

9(v) The asymptotes of the hyperbola in (iv) are $y = \pm b(x-1)$ and centre is (1,0).

> The asymptotes of the hyperbola $y = \pm b(x-1)$ passes through the point (1, 0) and will therefore pivot around the point.

Hence, for the hyperbola to intersect the curve C at most twice, $b \ge 4$.

10(i) At y = 0, $\frac{t-3}{3} = 0 \Rightarrow t = 3$

$$x = 16 - \sqrt{18} = 11.8$$

At
$$x = 0$$
, $16 - \sqrt{t^2 + 9} = 0$
 $\sqrt{t^2 + 9} = 16$

$$\sqrt{t^2 + 9} = 16$$

$$t^2 + 9 = 256$$

$$t = \pm \sqrt{247}$$

$$\therefore y = \frac{\sqrt{247} - 3}{\sqrt{247}} \text{ or } y = \frac{-\sqrt{247} - 3}{-\sqrt{247}}$$

Coordinates of the points are (11.8, 0), (0, 0.809), (0, 1.19).

10 (iii) 10 (iii) 10 (iv)	$\frac{dx}{dt} = -\frac{1}{2} \cdot \frac{1}{\sqrt{t^2 + 9}} (2t) \qquad y = 1 - \frac{3}{t}$ $= -\frac{t}{\sqrt{t^2 + 9}} \qquad \frac{dy}{dt} = \frac{3}{t^2}$ $\frac{dy}{dx} = \frac{3}{t^2} \times \frac{\sqrt{t^2 + 9}}{-t}$ $= -\frac{3\sqrt{t^2 + 9}}{t^3}$ Since $t^2 + 9 > 0$ for all real values of t , $3\sqrt{t^2 + 9} \neq 0$. $\therefore \frac{dy}{dx} \neq 0 \therefore C \text{ has no stationary point.}$ $y \text{ is undefined when } t = 0$. $\Rightarrow x = 16 - \sqrt{0^2 + 9} = 13$ $\therefore x = 13 \text{ is the vertical asymptote.}$ As $x \to -\infty$, $16 - \sqrt{t^2 + 9} \to -\infty$ $t^2 \to \infty$ $t \to \pm \infty$ As $t \to \pm \infty$, $y = 1 - \frac{3}{t} \to 1$	
10(v)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Use the information from (i) to (iv) to sketch the graph.
11(i)	For $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$,	

	$-1 < \sin \theta < 1$	
	$\Rightarrow 2-a < a \sin \theta + 2 < 2+a$	
	$\Rightarrow 2-a < x < 2+a$	
	$0 < \cos \theta \le 1$	
	$\Rightarrow 0 < 3\cos\theta \le 3$	
	$\Rightarrow 0 < y \le 3$	
11(ii)	For $0 < a < 2$, Curve C is a half-ellipse with centre (2,0) and	May substitute a
	x-intercepts $(2\pm a,0)$.	value of $0 < a < 2$ into the equations
		and use GC to
		check the shape
		of the curve but
	y ₁ (2,3)	the labelling of
	3 /	intercepts are in terms of a.
		Use range in (i) to
	x x x	help sketch the
	$O_{2-a}(\hat{2},0)_{2+a}$	graph.
	'	
120	For Co Circle with costs (4, 2) and a first 2	
12(i)	For C_1 : Circle with centre $(4, -3)$ and radius 3	
	x-intercept: (4, 0)	
	For C_2 : Hyperbola with centre $(0, 0)$ Asymptotes: $y = x$ and $y = -x$	
	Asymptotes. $y = x$ and $y = -x$ x-intercepts: $(-2, 0)$ and $(2, 0)$	
	x-intercepts. (-2, 0) and (2, 0)	
	y = -x	
	y = -x $y = x$	
	$x^2 - y^2 = 4$	
	(4,0)	
	(-2,0) (2,0) x	
	$(4,-3) \qquad (4,-3) \qquad (y-4)^2 + (y+3)^2 = 9$	
	$(x-4)^2 + (y+3)^2 = 9$	

12(ii)	C_2 : $x^2 - y^2 = 4$ (1)
	Sub $x = 3\sin\theta + 4$, $y = 3\cos\theta - 3$, into (1)
	$(3\sin\theta + 4)^2 - (3\cos\theta - 3)^2 = 4$
	$(9\sin^2\theta + 24\sin\theta + 16) - (9\cos^2\theta - 18\cos\theta + 9) = 4$
	$9(\sin^2\theta - \cos^2\theta) + 24\sin\theta + 18\cos\theta + 3 = 0$
	$3(\sin^2\theta - \cos^2\theta) + 8\sin\theta + 6\cos\theta + 1 = 0 \text{ (shown)}$
12(iii)	Solving using G.C:
	$\theta = 2.5083 \Rightarrow (5.78, -5.42)$
	$\theta = 5.6014 \Rightarrow (2.11, -0.671)$
	·

Graph Transformations

Qn	Solutions	Comments	
13(a)	$\frac{x^2}{6^2} + \frac{(y+3)^2}{2^2} = 1$ $\Rightarrow x^2 + \frac{(y+3)^2}{\left(\frac{2}{6}\right)^2} = 6^2$ $\Rightarrow x^2 + \left(\frac{y+3}{\frac{1}{3}}\right)^2 = 6^2$ Scale parallel to the y-axis by a factor of 3. Translate in the positive y-direction by 9 units. OR Translate in the positive y-direction by 3 units. Scale parallel to the y-axis by a factor of 3.		
13(b) (i)	$y = \frac{1}{g(2-x)}$ $y = \frac{1}{g(2-x)}$ $(-1,0) O \qquad (1,0)$ $x = 0$	Perform translation by 2 units in negative x direction, then reflection about y axis.	

The inequality g(1-x) > a, where a is a constant, has the 14 solution set $\{x \in \mathbb{R} : x > -4\}$. Therefore, $\left\{a \in \mathbb{R} : -7 \le a < -1\right\}.$

Perform the transformations: $y = f(x) \rightarrow \frac{y}{\frac{1}{2}} = f(x)$ $\rightarrow y - 2 = \frac{1}{2}f(x)$

$$\rightarrow y - 2 = \frac{1}{2} f(x)$$

15(a) (ii)

Perform the transformations: $y = f(x) \rightarrow y = f(|x|)$

$$\to y = f(|x-1|)$$

Hwa Chong Institution (College

15(b) Undo C: Translate 2 units in the negative x-direction. i.e. replace x with x + 2

$$y = \frac{(x+2)^2 - 2}{(x+2)+1} = \frac{x^2 + 4x + 2}{x+3}$$

Undo B: Scale parallel to the x-axis by a scale factor of $\frac{1}{3}$.

i.e. replace x with 3x

$$y = \frac{(3x)^2 + 4(3x) + 2}{3x + 3} = \frac{9x^2 + 12x + 2}{3x + 3}$$

Undo A: Translated 4 units in the positive y-direction. i.e. replace y with y-4

$$y-4 = \frac{9x^2 + 12x + 2}{3x + 3}$$
$$y = \frac{9x^2 + 12x + 2}{3x + 3} + 4$$
$$y = \frac{9x^2 + 12x + 2 + 12x + 12}{3x + 3}$$
$$y = \frac{9x^2 + 24x + 14}{3x + 3}$$

16(i)

Oblique asymptote:

$$y = \pm \frac{3k/2}{3/4}(x-1) = \pm 2k(x-1)$$

18.(i) y = f(-x) + 3

C'(-3, 0)

Perform the transformations: $y = f(x) \rightarrow y = f(x-1)$ $\rightarrow y = f(|x|-1)$

18. (iii)

0

B'(1, -4)

B'(-1, -4)

C'(3, 0)

Real Life Applications

Qn	Solutions	Comments
19	The y-intercept is $(0, 1.5351-0.2553)=(0, 1.2798)$.	
	$\therefore b = 1.2798$.	
	The asymptote is $y = \frac{b}{a}x$.	
	a	
	$\frac{b}{a} = 1.5096$	
	$\frac{1.2798}{g} = 1.5096$	
	a = 0.848 (3 s.f)	
20	Let $FG = h_1$ and let $BC = h_2$.	
	Form equation of the ellipse: $\frac{x^2}{a^2} + \frac{y^2}{2000^2} = 1$ (1)	
	Since the areas of ABCD and EFGH are equal: $1000h_2 = 1435h_1$	
	(2)	
	Substitute the point $G\left(\frac{1435}{2}, h_1\right)$ into (1):	
	$\frac{717.5^2}{a^2} + \frac{{h_1}^2}{2000^2} = 1 (3)$	
	Substitute the point $C\left(\frac{1000}{2}, h_2\right)$ into (1):	
	$\frac{500^2}{a^2} + \frac{h_2^2}{2000^2} = 1 \qquad (4)$	
	Substitute (2) into (4): $\frac{500^2}{a^2} + \frac{(1.435h_1)^2}{2000^2} = 1$ (5)	
	From (3) and (5): $a^2 = 764806.25 \Rightarrow a = 874.532 \Rightarrow$	
	$MN = 2a = 1749.06 \approx 1749 \text{ mm}$	
21(a)(i)	When Toy Rocket A hits the ground, $y = 0$.	
	$(10\sin\alpha)t - 5t^2 = 0$	
	$t \lceil (10\sin\alpha) - 5t \rceil = 0$	
	$t = 0$ or $(10\sin\alpha) - 5t = 0$	
	$t = 0 \text{ of } (10\sin\alpha) - 3t = 0$ $t = 2\sin\alpha$	
	$t = 2\sin\alpha$ Time taken is $2\sin\alpha$ s.	
21(a)(ii)	To find the range after (2 sin a) a:	
(u)(u)	To find the range after $(2\sin\alpha)$ s:	
	$x = (10\cos\alpha)2\sin\alpha$	
	$=20\cos\alpha\sin\alpha$	

	Range is $20\cos\alpha\sin\alpha$ or $10\sin2\alpha$.					
	Range $r = 20 \sin \alpha \cos \alpha = 10 \sin 2\alpha$.					
	$\alpha = \frac{\pi}{4}$.					
	4 Justification					
	For r to be maximum, $\sin 2\alpha = 1$ and $2\alpha = \frac{\pi}{2}$ (since $0 < \alpha < \frac{\pi}{2}$).					
	Hence, $\alpha = \frac{\pi}{4}$.					
	Or					
	$\frac{\mathrm{d}r}{\mathrm{d}\alpha} = \frac{\mathrm{d}}{\mathrm{d}\alpha} 10\sin 2\alpha = 20\cos 2\alpha$					
	$20\cos 2\alpha = 0$					
	$\Rightarrow \cos 2\alpha = 0$					
	$\Rightarrow \alpha = \frac{\pi}{4} \qquad \left(\text{since } 0 < \alpha < \frac{\pi}{2} \right)$					
	To test for nature of stationary point:					
	$\frac{\mathrm{d}^2 r}{\mathrm{d}\alpha^2} = \frac{\mathrm{d}}{\mathrm{d}\alpha} 20\cos 2\alpha = -40\sin 2\alpha$					
	At $\alpha = \frac{\pi}{4}$, $\frac{d^2r}{d\alpha^2} = -40\sin\left[2\left(\frac{\pi}{4}\right)\right] < 0$					
	⇒ Stationary point is maximum.					
	Hence, Toy Rocket A should be launched at $\frac{\pi}{4}$.					
21(b)(i)	Given $\alpha = \frac{\pi}{3}$,					
	$x = 10(0.5)t y = 10\left(\frac{\sqrt{3}}{2}\right)t - 5t^2$ = $5t$ = $5\sqrt{3}t - 5t^2$					
	$t = \frac{x}{5}$					
	Sub $t = \frac{x}{5}$ into $y = 5\sqrt{3}t - 5t^2$:					
	$y = \frac{5\sqrt{3}}{5}x - 5\left(\frac{x}{5}\right)^2$					
	$=\sqrt{3}x - \frac{1}{5}x^2 \text{ (Shown)}$					
21(b)(ii)	Since the path is a parabola, maximum point occurs at	Can also find the				
	$x = \left(0 + 20\cos\frac{\pi}{3}\sin\frac{\pi}{3}\right) \div 2 = 10\left(\frac{1}{2}\right)\frac{\sqrt{3}}{2} = \frac{5\sqrt{3}}{2}$	turning point of the				
	Maximum value of y	quadratic function by				
		-unction by				

	,				
	$y = \sqrt{3} \left(\frac{5\sqrt{3}}{2} \right) - \frac{1}{5} \left(\frac{5\sqrt{3}}{2} \right)^2$ $= \frac{15}{2} - \frac{75}{20} = 3\frac{3}{4}$				
	$ \begin{array}{c} y \\ \hline $				
21(c)	The graph traced by Toy Rocket A is scaled by a scale factor of 5 parallel to the y-axis and then scaled by a scale factor of $\frac{1}{2}$ parallel to the x-axis. (Or vice versa)				
22(a)	(i) Scaling parallel to y-axis with scale factor 1/5; Scaling parallel to x-axis with scale factor 1/5				
	(ii) Equation of stencil circle: $(x-h)^2 + (y-k)^2 = r^2$ $\frac{\text{Method 1}}{\text{Replace } x \text{ by 5} x \text{ & replace } y \text{ by 5} y:}$ $(5x-h)^2 + (5y-k)^2 = r^2$ $\left(x-\frac{h}{5}\right)^2 + \left(y-\frac{k}{5}\right)^2 = \left(\frac{r}{5}\right)^2$ $\frac{\text{Method 2}}{\text{The centre is transformed to the point }} \left(\frac{h}{5}, \frac{k}{5}\right)$ $\text{The point } (h, k+r) \text{ is transformed to } \left(\frac{h}{5}, \frac{k+r}{5}\right)$ $\text{Sso the new radius is } \frac{r}{5}$ $\text{So engraved shape is a circle with equation}$ $\left(x-\frac{h}{5}\right)^2 + \left(y-\frac{k}{5}\right)^2 = \left(\frac{r}{5}\right)^2$				
	(iii) $A = \pi \left(\frac{r}{5}\right)^2 = \frac{\pi r^2}{25}$				