and in brightness of the corona, as the sun slowly loses heat, and the actions of the photosphere become less fervent.

The candle of the sun is burning down, and so far as we can see, must at last reach the socket. Then will begin a total eclipse which will have no end:

" Dies illa Solvet seclum in favilla."

"Results of the Harmonic Analysis of Tidal Observations."
By A. W. Baird, Major R.E., and G. H. Darwin, F.R.S.,
Fellow of Trinity College and Plumian Professor in the
University of Cambridge. Received March 19, 1885.

The harmonic analysis of continuous tidal records, inaugurated by a Committee of the British Association in 1868, has now been carried out at a considerable number of ports. Some of the earlier results were collected together in the Reports to the Association in 1872 and 1876, and in a paper by Sir W. Thomson and Captain Evans, read before the Association in 1878, but the largest mass of data is contained in the tide tables now being annually published for the Indian ports under the authority of Her Majesty's Secretary of State for India.

The Report of the last Committee of the British Association, published in the volume for the meeting at Southport in 1883, is entirely theoretical, and has been adopted in India as a manual of the method of harmonic analysis. It is there shown how the results of the analysis are to be presented in a form appropriate either for theoretical treatment or for mechanical prediction by the instrument of the Indian Government in London. It is also shown how the scattered results, referred to above, may be reduced to the form which has been adopted as a standard. Major Baird has collected the whole of the Indian results, and those contained in the Reports of 1872 and 1876, and, by the aid of his staff of computers at Poona, has reduced them to this standard form. The greater part of the annexed tables is the result of this work.

We must refer to the Report to the British Association for 1883 for an explanation of the method of harmonic analysis, but it will be well to give a few words of explanation.

Each one of the tides, into which the oscillation of sea-level is regarded as analysed, is expressed in the form—

$$fH\cos(V+u-\kappa)$$
.

 $V+u-\kappa$ is the argument of the tide, and increases uniformly with the time, so that this term represents a simple harmonic oscillation of the sea-level with semi-range f H.

It is supposed that u stands for the mean value, estimated over the year or period of observation, of a certain known function of the longitude of the moon's nodes, or in a few cases of the sun's perigee; f stands for a factor of augmentation or diminution of the range of tide due to the variability of the obliquity of the equator to the lunar orbit, and a mean value for f estimated over the year or period of observation is adopted. Tables for computing u and f for each tide are given in the Report.*

V is a known linear function of the local mean time, of the mean longitudes of the sun, of the moon, and of the lunar perigee, and it increases uniformly with the time; the rate of its increase, measured say in degrees per mean solar hour, is called the speed of the tide.

The numerical operation of harmonic analysis gives us H and κ , which are constants peculiar to the port of observation. As the tide tables are principally for the use of British sailors, H is expressed in feet and decimals of a foot, and κ is an angle less than 360°. The argumen $V+u-\kappa$ is such that if the equilibrium theory of tides were true, with a water-covered globe, then κ would be zero; and κ divided by the speed is the time elapsing after any theoretical equilibrium high-water until the next actual high-water; we may call κ the "lag" of the tide. If the equilibrium theory were true, H would have a value which may be computed from the formulæ given in the Report.

If tidal observations were perfectly accurate, and if the tides were undisturbed by the weather, H and κ would be absolute constants for each tide and for each port, whatever periods are submitted to analysis; and in proportion as they are found to be constant so is the analysis satisfactory.

A knowledge of H and κ is necessary and sufficient to determine the height of water, as due to the particular tide, at any time, past or future.

The letters \uparrow γ , σ , η , ϖ have been appropriated to the earth's angular velocity of rotation, and to the mean motions of the moon, of the sun, and of the lunar perigee respectively. Hence the rate of increase of V or the speed of tide, is expressible by these symbols. For practical convenience an initial has been adopted to indicate each one of the tides; and we here reproduce Schedule A of the Report containing the arbitrarily chosen initial letters, the speed, and a descriptive name for most of the tides.

The tides involving γ in the speed are approximately diurnal, those containing 2γ are approximately semi-diurnal, and those containing 3γ , 4γ , &c., are approximately ter-diurnal, quater-diurnal, and so on. Those whose speed does not involve γ are called tides of long period, since the quickest of them has a period of a fortnight.

^{*} In the case of the results for the English ports below it is Greenwich mean time.

[†] The initials of γη, σελήνη, ήλως, and perigee.

Schedule of Notation.

Initials.	Speed.	Name of Tide.
$egin{array}{c} \mathbf{M_1} \\ \mathbf{M_2} \\ \mathbf{M_3} \\ \& \mathbf{c}. \\ \end{array}$	$ \begin{array}{c c} \gamma-\sigma-\varpi, \text{ and} \\ \gamma-\sigma+\varpi \\ 2(\gamma-\sigma) \\ 3(\gamma-\sigma) \\ \&c. \end{array} $	Principal lunar series.
K_2	2γ	Luni-solar semi-diurnal.
N	$2\gamma - 3\sigma + \varpi$	Larger lunar elliptic.
L	$ \begin{array}{c c} 2\gamma - \sigma - \varpi \text{ and} \\ 2\gamma - \sigma + \varpi \end{array} $	Smaller lunar elliptic.
	$2\gamma + \sigma - \varpi$	Luni-solar elliptic semi-diurnal.
2N	$2\gamma - 4\sigma + 2\varpi$	Lunar elliptic, second order.
ν	$2\gamma - 3\sigma - \varpi + 2\eta$	Larger lunar evectional.
λ	$2\gamma - \sigma + \varpi - 2\eta$	Smaller lunar evectional.
0	$\gamma - 2\sigma$	Lunar diurnal.
00	$\gamma+2\sigma$	
K ₁	γ	Luni-solar diurnal.
Q	$\gamma - 3\sigma + \varpi$	Larger lunar elliptic diurnal.
	$ \gamma - \sigma - \varpi $ included in M_1	Smaller lunar elliptic diurnal.
J	γ+σ-w	Luni-solar elliptic diurnal.
	$\gamma - 4\sigma + 2\varpi$	Lunar elliptic diurnal, second order.
	$\gamma - 3\sigma - \varpi + 2\eta$	Larger lunar evectional diurnal.
$egin{array}{c} \mathbf{S_1} \\ \mathbf{S_2} \\ \mathbf{S_3} \\ & \mathbf{\&c.} \end{array}$	$\begin{array}{c} \gamma - \eta \\ 2(\gamma - \eta) \\ 3(\gamma - \eta) \\ \text{&c.} \end{array}$	Principal solar series.

Schedule of Notation—continued.

Initials.	Speed.	Name of Tide.				
T	$2\gamma - 3\eta$	Larger solar elliptic.				
R	$2\gamma - \eta$	Smaller solar elliptic.				
P	$\gamma - 2\eta$	Solar diurnal.				
Mm	σ-w	Lunar monthly.				
Mf	26	Lunar fortnightly.				
Sa	η	Solar annual.				
Ssa	2η	Solar semi-annual.				
MSf	$2(\sigma-\eta)$	Luni-solar synodic fortnightly.				
MS	$4\gamma - 2\sigma - 2\eta$					
μ or 2MS	$2\gamma - 4\sigma + 2\eta$					
2SM	$2\gamma + 2\sigma - 4\eta$	(C 14'1				
MK	$3\gamma - 2\sigma$	Compound tides.				
2MK	$3\gamma - 4\sigma$					
MN	$4\gamma - 5\sigma + \varpi$					

The operations of the computers give the values of κ in degrees and two places of decimals of a degree, but as the values of κ are in no case so consistent from year to year as to present variations of less than a degree, the tables have been abridged by the entry merely of the nearest degree. The values of κ are printed in a different type from those of H, and the degree mark ° has been omitted.

In the case of the ports of Toulon and Brest the results in the Report of the Committee of the British Association were given in centimetres, but they have been reduced to feet for the sake of uniformity.

At the head of the table for each port the epoch, or instant, at which the analysed observations begin is noted; at every port (excepting Kathiwadar) the epoch is 0h. of (old) astronomical time, or civil noon, of the day specified.

In Table I is given the latitude and longitude of the several ports.

In Table II the values are given of H and κ for each year or period analysed for the ports specified at the head; these are the values deduced from the results of 1872, 1876, 1878, and from those of the Indian Survey.

The initial of the tide is shown in the margin.

The last column for each port gives the mean of the values for the years under observation. An inspection of the numbers from which the mean is derived shows the degree of consistency between the numbers obtained in the several years. The number of results is hardly sufficient to make it worth while to deduce a probable error for H and κ ; moreover, it would be a somewhat arduous task to do so.

Table III is a summary of Table II, giving only the mean values, together with the number of years from which the mean is derived, and this is of much value for the theoretical discussion of the tides.

Table IV gives Mr. Ferrel's results from the Reports to the United States Coast Survey.

The tables give altogether results for 43 ports, and for 137 periods of observation and analysis.

*[We have to thank Mr. Edward Roberts, the importance of whose work in this subject is well known, for having reduced the results given in the paper of 1878, viz., those for Freemantle, Mauritius, E. Falkland, Malta, Marseilles, and Toulon. In several of these the heights were stated in centimetres, but they are now reduced to feet and decimals.

Professor Ferrel has carried out an harmonic analysis at several ports for the United States Coast Survey. The process adopted by him does not appear to be identical with the method of the British Association, and there seemed to be room for doubt as to whether the results were truly comparable with ours. In answer to an inquiry on this point, addressed to the United States Coast Survey, Mr. Ferrel kindly sent a memorandum to the Superintendent, Mr. Hilgard, which has been forwarded for our information. The memorandum, dated Washington, April 27th, 1885, runs as follows:—

"The results of harmonic analyses of tide observations of the United States Coast and Geodetic Survey are found in Report of the British Association for 1872, and the Reports of the Coast and Geodetic Survey of 1878, App. No. 11; 1882, App. No. 17; 1883, App. No. 9. The results for Governor's Island have not yet been printed.

* This paragraph and the corresponding portion of the tables were added on May 15, 1885, subsequently to the presentation of the paper. These results of 1878 are only given in Table III, and not also in Table II.

"Those in the Report of the B.A. are by Sir W. Thomson. In those of the Coast and Geodetic Survey the A's (amplitude) correspond with Sir W. Thomson's R's, but the ϵ 's (epochs) differ from his by 90° in the diurnal components. These corrections of his epochs I introduced into my 'Tidal Researches' in 1874, p. 44, § 28.*

"From a reference to Schedule I, Tides of Penobscot Bay, Professor Darwin with reason concludes that I have not applied this correction in the diurnal component of the κ -tides. This arises from the omission by oversight of a footnote to Schedule I, as follows:—

"'For λ^1 read $\lambda^1 - \frac{1}{2}\pi$ in the diurnal component of the K-tide."

"The corrections have, in all cases, been applied according to this note.

"In my 'Tidal Researches' of 1874 I have given formulæ for the correction of both the amplitudes and epochs depending upon the position of the moon's node. These corrections reduce them to what they would have been if the moon had moved in the ecliptic. By a reverse method these amplitudes and epochs can be reduced back to any year for which practical application of the results is required. In the discussion of tides in Penobscot Bay I have also given small tables, Tables III—VI inclusive, to facilitate these corrections, and reductions depending upon the lunar node. The double signs, however, of Tables III, V, and VI, got reversed somehow in copying and printing; but the signs have been used correctly in the reductions, even in those of the Report in which the signs are given erroneously, which shows that they were at first correct, and that the error was introduced in copying.

"These nodal corrections have in all cases been applied to the results, so that in these corrected results the irregularity of long period depending upon the moon's node is eliminated, and the amplitudes and epochs are the same from year to year, except so far as they are affected by small irregularities from abnormal disturbances not completely eliminated. An exception to this, however, is the case of the St. Thomas tides, in which the reductions were not carried so far, and these small nodal corrections were not applied to these small tides. The amplitudes and epochs are those simply belonging to the years of observations. . . . It is certainly desirable to have an international uniform notation.

"I should have stated sooner that in Table II, column C, 90° have

* [Notwithstanding this assurance I venture to think that Mr. Ferrel must be mistaken. For example, at Sandy Hook, it looks as though it were certain that K_2 , L, λ have been reduced according to one rule, and the rest of the semi-diurnal tides according to another; for the phases differ by about 180°. Compare again O, K_1 , P with J and Q at Penobscot Bay.—G. H. D., August 12, 1885.]

[It may be noticed that κ of S_1 for San Diego differs by 180° in the U.S. reduction from the value in the B.A. reduction. I have no evidence as to which is correct.—G. H. D., October, 1885.]

always been deducted before using it in the reductions in the case of the diurnal component of the K-tides."

We give below the results above referred to by Mr. Ferrel. We may remark, however, that the heights have been abridged by the omission of a place of decimals, and the epochs by the omission of the decimals of a degree. We have not, however, given quite all the results of the United States Coast Survey. Mr. Ferrel's treatment of M₁ is not identical with ours, and it is omitted; also there is no place vacant for some of the smaller overtides in our schedules. The reader especially interested in these tides is therefore advised to refer also to the original sources. The results for St. Thomas are derived from a letter dated March 10th, 1885, addressed by Mr. Ferrel to the superintendent, and kindly communicated to us.

From the correspondence it appears that the American results should be comparable with the others, or at least that the difference should be insignificant. As remarked, however, in a footnote on the preceding page, this conclusion is open to doubt. We have thought it best, therefore, to keep these results in a table separate from the others.]

 $\begin{array}{c} {\bf Table~I.} \\ {\bf Indian~Tide~Tables.} \end{array}$

	l٤	ıt.		lor	ng.
Aden	12°	47′ N.		44°	59' E.
Karachi	24	47		66	58
Okha Point and Beyt Harbour, Gulf of Cutch	22	28		69	7
Kathiwadar or Shial Bet, S. coast of Kattywar	20	58	•••••	71	3 6
Bombay, Apollo Bunder	18	55	•••••	72	50
Karwar	14	48		74	6
Beypore, 7 miles S. of Calicut	11	10	• • • • • • • •	75	49
Paumben Pass, island of Ramesweram	9	16		79	11
Negapatam	10	46	• • • • • • •	79	53
Madras	13	4		80	15
Vizagapatam	17	41		83	17
False Point	20	25		86	47
Dublat, Saugor Island, River Hooghly	21	38		88	6
Diamond Harbour, River Hooghly	22	11		88	14
Kidderpore, River Hooghly	22	32		88	22
Elephant Point	16	29		96	19
Rangoon	16	46	• • • • • • • •	96	12
Amherst	16	5		97	34
Moulmein	16	29		97	40
Port Blair, Ross Island	11	41	•••••	92	45

British Association Reports.

N.B.—Results for English ports are referred to Greenwich mean time.

	la	ıt.		loi	ng.
Fort Point, California	37	40 N.		122	15 W.
San Diego, California	32	42		117	13
Port Leopold, Arctic Archipelago	74			91	
Beechey Island, Erebus Bay, Arctic Archip	74	43		91	54
Cat Island, Gulf of Mexico	30	23		89	0
Toulon	43	7		5	56 E.
Brest	48	23		4	30 W.
Ramsgate	51	18		1	21 E.
West Hartlepool	54	41		1	12 W.
Portland Breakwater	50	30		2	24
Liverpool	53	24		3	0
Helbre Island about	53	24	about	3	0
Freemantle, West Australia	32	3 S.		115	45 E.
Mauritius, Port Louis	20	9		57	11
East Falkland, Port Louis, Berkeley Sound	51	29	• • • • • • • •	58	0 W.
Malta	35	55 N.		14	30 E.
Marseilles	43	18		5	23

United States Coast Survey Reports.

	1	at.		long.		
Penobscot Bay, Pulpit Cove, Maine	44	9 N.		68	53 W.	
Port Townsend, Puget Sound, Washington						
Territory	48	8		122	48	
Astoria, Columbia River, Oregon	46	11		123	50	
San Diego Bay, California	32	43	,	117	1.0	
St. Thomas, West Indies	18	20		64	56	
Sandy Hook				74	1	

Table II. Aden. Commence 0 h., March 3.

Year	1879–80.	1880-1.	1881-2.	1882-3.	Mean.
$S_1 \begin{cases} H = \\ \kappa = \end{cases}$	0·073 168	0:117	0.093	0·077 166	0·090 162
$S_2 \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·693 248	0.693	0·704 246	0 ·699 247	0 ·697 248
$S_4 \left\{ egin{array}{l} H = \\ \kappa = \end{array} \right.$	0.006	0 ·005 257	0·006 275	0.005	0·006 271
$S_6 \begin{cases} H = \kappa \end{cases}$	0 ·005 218	0.004	0.004	0 · 004 185	0·004 201
$S_8 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.001	0·001 238	0·001 3 ² 5	0·00 1 261	0 ·001 259
$\mathbf{M}_1 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·033	0.052	0 •053 355	0 ·048 45	0.047
$\mathbf{M}_{2}\left\{egin{matrix}\mathbf{H} &= \ \kappa &= \end{matrix} ight.$	1 ·578 228	1.558 232	1 ·569	1 ·567	1:568 229
$M_3 \left\{ egin{array}{l} \mathbf{H} &= \ \kappa &= \end{array} ight.$	0.019	0.020	0.018	0.016	0 ·018 209
$\mathrm{M_4} \left\{ egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} ight.$	0.011	0 · 006 334	0·007 318	0·003 281	0·007 3 ¹ 4
$\mathbf{M}_{6} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0 ·006 343	0 ·004 280	0·004 26	0·007 355	0·005 341
$M_8 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·003 87	0 · 001 49	0·004 333	0·002 65	0 ·003 43
$O\left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0·657 38	0 ·658 40	0·646 38	0.651	0·653 38
$K_1 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	1 ·29 5 36	1 ·297 38	1·299 36	1:305 36	1·299 36
$\mathbb{K}_2 \left\{egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} ight.$	0 ·218 245	0·197 244	0.188	0·202 246	0 ·201 ² 44
$P \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0·389	0 ·375 35	0 ·389 33	31 0.398	0 ·388 33
$J \left\{egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} ight.$	0·118 49	0 ·110 70	0·083 53	0·100 35	0·103 5²

Table II.

Aden.

Commence 0 h., March 3.

Year	1879-80.	1880-1.	1881–2.	1882-3.	Mean.
$Q \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0 174 4°	0.157	0.134	0·139 48	0·151 42
$\mathbf{L}\left\{egin{matrix}\mathbf{H} &= \ \kappa &= \end{matrix}\right.$	0·023 259	0.063	0·033 209	0 065	0·046 230
$N \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0 -443 223	0 ·436 230	0 421	0 ·409	0·427 225
$\lambda \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0·018	0.020	0.038	0·026	0 ·02 6 197
$ u \begin{cases} H = \kappa \\ \kappa = 0 \end{cases} $	0·157 241	0 ·132	0.059 170	0·048 293	0·099 226
$\mu \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0.086	0·082 204	0·072 182	0 ·058 204	0·075 196
$R\left\{egin{matrix} H &= \ \kappa &= \end{matrix} ight.$		0·006 64		0·003 356	0 ·005 30
$T\left\{egin{array}{l} \mathbf{H} &= \ \kappa &= \end{array} ight.$	•••••	0·057 286		0 ·042 194	0·050 240
$\operatorname{MS}\left\{egin{array}{l} \mathrm{H} = \ \kappa = \end{array}\right.$	0·007 136	0·020 167	0.009	0.01 1 167	0·012 159
$2SM \left\{ \begin{matrix} H & = \\ \kappa & = \end{matrix} \right.$	0.022	0·021 101	0·021 114	0·026	0·023 109
$\operatorname{Mm}\left\{egin{array}{l} \mathrm{H} = \\ \kappa = \end{array}\right.$	0 ·03 5 5	0 076 348	0·025 3·24	0.033	0·042 354
$\operatorname{Mf}\left\{egin{array}{l} \operatorname{H} = \ \kappa = \end{array} ight.$	0·052 14	0.039	0·045 26	0·044 53	0 ·045 3 ¹
$MSf \left\{ egin{array}{l} H &= \\ \kappa &= \end{array} \right\}$	0·014 4°	0 ·015 295	0.016	0·010 209	0·014 341
$\operatorname{Sa}\left\{egin{array}{l} \mathbf{H} = \ \kappa = \end{array} ight.$	0 ·404 3	0 ·402 358	0·353 2	0·399 347	0·390 357
$\operatorname{Ssa}\left\{egin{array}{l} \mathrm{H} &= \ \kappa &= \end{array} ight.$	0·110 94	0·109	0·093 151	99 99	0·095 126

VOL. XXXIX.

Table II.

Karachi.

Commence 0 h., May 1.

Year	1868–9.	1869–70.	1870–1.	1871-2.	1872–3.	1873-4.
$S_1 \begin{cases} H = \\ \kappa = \end{cases}$	0.072	0 ·071 188	0·0 75 162	0 :083	0.108	0·083 155
$S_2 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0 ·932 3 ² 3	0 ·943 3 · 24	0 ·923 3 ² 4	0.951 322	0.952	0 ·943 321
$S_4 \begin{cases} H = \kappa \end{cases}$			0·014 356	0·013 5	0.008	0.010
$S_6 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		•••••		0·004 293	0·012 295	0·004 312
$S_8 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	1					0 ·000 27
$M_1 \begin{Bmatrix} H = \kappa = 0$	0·01 3 336		0·030 78	0.063	0.040 359	0·038 46
$\mathbf{M}_{2}\left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	2·511 294	2·447	2·450 295	2·492 294	2·476 294	2·471 293
$M_3 \begin{Bmatrix} H = \kappa \\ \kappa = 0 \end{Bmatrix}$	0·042 333	0 ·037 333	0.048	0.048	0 ·037 316	0.030 330
$\mathbf{M}_4 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0·016 44	0.027	0 .024	0.029	0 •020 28	0·022 9
$\mathbf{M}_{6}\left\{egin{matrix}\mathbf{H} = \\ \kappa = \end{smallmatrix} ight.$	0.040	0.046	0.044	0.045	0.046	0·048 208
$M_8 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		•••••		0.006 249	0.006 266	0 ·003 155
$O\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0 662	0.645	0 629 48	0.636 47	0 ·632 4 ⁶	0 · 645 46
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	1 ·278 47	1 ·257 47	1 ·255 48	1·279 46	1 ·275 46	1 ·269 46
$K_2 \left\{ egin{array}{l} \mathbf{H} &= \ \kappa &= \end{array} ight.$		0·273 315	0.260	0.293	0.292	0·274 315
$P\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	1	0.385	0·375 45	0.360 48	0 ·368 47	0·393 48
$J \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·091 79	0.046	0.070	0.107	0.104	0.059

Table II.

Karachi.

Commence 0 h., May 1.

Year	1868-9.	1869-70.	1870–1.	1871–2.	1872–3.	1873-4.
$Q \begin{cases} H = \\ \kappa = \end{cases}$	0·129 46	0·120 61	0·138 54	0·146 5°	0·129 5²	0 ·119 63
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·079 298	0 ·047 321	0·089 294	0·043 356	0·137 263	0 ·084 284
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·604 279	0·587 281	0·572 279	0.650 280	0·605 275	0·587 278
$\lambda \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·059 335	0 ·037 270	0 043	0.084	0.076	0·041 259
$ \nu \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right. $	0·190 254	0.081	0·080 343	0·143 284	0·191 300	0·116 238
$\mu \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·066 267	0·032 224	0·070 3°°	0·062 254	0·055 270	0.055
$R \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	· · · · · · · · · · · · · · · · · · ·	0·035 271	•••••	0·027 221		0·021 228
$T \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$		0·111 320		0.058		0.012
$MS \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.017	0·024 180	0·031 3²4	0·020 358		0 ·023 3°7
$_{2\mathrm{SM}}\left\{ egin{matrix} \mathrm{H} = \ \kappa = \end{matrix} ight.$		•••••	•••••		•••••	0·007 128
$\mathbf{M}\mathbf{m}\left\{egin{matrix}\mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·069 248	0 040 175	0·031 116			0·055 56
$\mathrm{Mf}\left\{egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} ight.$	0.023 3.18	0·078 311	0·037 259	•••••		0.012
$\operatorname{MSf}\left\{egin{array}{l} \mathbf{H} = \ \kappa = \end{array} ight.$	0·009 328	0 .074	0·057 159			0·042 44
$\mathbf{Sa}\left\{egin{matrix}\mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·115 44	0 ·179 80	0·162 107			0·250 95
$\operatorname{Ssa} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa \end{matrix} \right. =$	0·198 82	0·059 117	0·062 7°			0 ·211

Table II.

Karachi.

Commence 0 h., May 1.

Year	1874–5.	1875-6.	1876–7.	1877–8.	1878-9.	1879–80.
$S_1 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.076	0.079	0:087	.0:088	0·044 167	0.086
$S_2 \left\{ egin{array}{l} H = \\ \kappa = \end{array} ight.$	0.949	0 · 953 320	0.936 318	0.961	0·922 3²4	0·957 3 ² 5
$S_4 \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$	0.008	0.008 353	0·012 17	0.010	0.009	0.008 63
$S_6 \left\{ egin{array}{l} H = \\ \kappa = \end{array} \right.$	0·007 309	0 ·009 295	0.006	0 ·005 275	0.008	0:006 325
$S_8 \left\{ \begin{array}{l} II = \\ \kappa = \end{array} \right.$	0·003 266	0·002 283	0.001	0 ·002 254	0 ·001 126	0:002
$M_1 \begin{Bmatrix} H = \kappa \end{Bmatrix}$	0 ·055 66	0.081	0·015 353	0·013 76	0·035 54	0.060 14
M_{2} $\begin{cases} H = \\ \kappa = \end{cases}$	2:517	2 550 291	2·474 291	2·468 291	2:521 296	2·555 296
$M_3 \left\{ egin{array}{l} H & \equiv \\ \kappa & \equiv \end{array} ight.$	0.026	0.037 345	0 · 037 343	0.055 327	0.048	0 ·042 320
$\mathbf{M}_{4}\left\{ egin{matrix} \mathbf{H} & = \ \kappa & = \end{matrix} ight.$	0.020	0·025	0.019	0.024	0.031	0·027 7
$M_6 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.056	0.055	0.049	0.053	0.051	0.055
$M_8 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.006	0·006 297	0.006	0.006	0·004 269	0.003
$O\left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0·647 46	0·649 46	0 ·646 45	0 654 46	0·677 49	0 ·654 47
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	1·292 46	1 · 296 46	1 · 263 44	1·278 45	1 · 314 48	1 ·301 48
$K_2 \begin{cases} H = \kappa \end{cases}$	0.247	0.261	0.276	0·260 3·14	0.240	0 · 284 3 2 5
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·386 46	0·367 45	0·368 49	0·423 43	0 ·440 44	0 ·396 45
$J \left\{ egin{matrix} H = \\ \kappa = \end{smallmatrix} ight.$	0.088	0.104	0.077	0 ·025 88	0·084 66	0.102

Table II. Karachi. Commence 0 h., May 1.

Year	1874-5.	1875-6.	1876-7.	1877-8.	1878-9.	1879-80.
$Q \begin{cases} H = \\ \kappa = \end{cases}$	0·123 58	0·136 46	0·124 35	0·110 48	0·150 47	0·154 5°
$L \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0.088 280	0.042	0 ·085 306	0·099 3°5	0.054 263	0.066
$N \begin{Bmatrix} H = \kappa = 0$	0.560	0·602 274	0 ·606 273	0 ·556 273	0.667 274	0:597
$\lambda \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.022	0 ·009 95	0 · 04 ₀ 0 300	0.082	0·063 184	0·019 35
$ \nu \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right. $	0.023	0·154 317	0·207 285	0·218 236	0 ·127	0.089
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·056 274	0·070 260	0.068	0.113	0 041	0·077 249
$R \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$			0.008 308		0·069 273	
$T \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$			0·122 344		0.059 315	•••••
$\operatorname{MS}\left\{ \begin{matrix} \mathrm{H} = \\ \kappa = \end{matrix} \right.$	0·021 304	0.031	0.034	0.030	0.033 351	0·031 337
$2SM \begin{cases} H = \\ \kappa = \end{cases}$	0.018	0·025 98	0.012	0.026	0·019 167	0·018 158
$\operatorname{Mm}\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.064	0.067	0.097	0·124 49		0·040 26
$\operatorname{Mf}\left\{ \begin{smallmatrix} \mathbf{H} & = \\ \kappa & = \end{smallmatrix} \right.$	0 033 41	0.010	0 032	0.047		0.030
$\operatorname{MSf} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.040	0.015	0.045	0.038		318 0.030
$\operatorname{Sa}\left\{ egin{array}{l} \mathrm{H} = \\ \kappa = \end{array} \right.$	0·149 56	0·086 76	0·197 80	0 .170	•••••	0.042
Ssa $\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.172	0.173	0·145 164	0.087		0·165 171

Table II.

(a) Karachi.

(b) Okha. (c) Kathiwadar.

(a) Com. 0h., May 1. (b) Com. 0 h., Apr. 16. (c) Com. 12 h., Oct. 31.

	(a)	(a)	(a)	(a)	(b)	(c)
Year	1880-1.	1881–2.	1882–3.	Mean.	1874–5.	1881–2.
$S_1 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0·135 64	0·076 174	0·066 172	0·082 158	0·074 150	0.134
$S_2 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.969 324	0.960 324	0 ·962 324	0.948	1 ·222	1 ·207 81
$S_4 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0.006	0.012	0·008 35	0·010 14	0.013 117	0·029 273
$S_6 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·006 292	0.008	0 ·006 287	0·007 295	0.003	0·013 4²
$S_8 \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.001	0 ·000 1 2 4	0·001 162	0·001 204	0.001	0·002 264
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·059 319	0·048 39	0·062 61	0·044 30	0 ·051 43	0·057 35
$\mathbf{M}_{2} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	2·536 295	2·541 294	2 ·558 294	2·504 294	3·820 347	2·970 55
$M_3 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	319	0·034 327	336 0.030	0·039 33°	0.030	0·020 152
$\mathbf{M}_{4}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{matrix} ight.$	0.026	0.027	0 · 02 3 359	0·024 14	0·136 107	0.220 178
$M_6 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·052 209	0.049	0·044 204	0.049	0.007 270	0·139 137
$M_8 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·002 341	0·009 257	0.002	0·005 267	0·011 96	0 002
$O\left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0 ·632 46	0 ·654 46	0 ·645 47	0 ·647 47	0·693 57	0 · 7 20 66
$K_1 \begin{cases} H = \kappa \end{cases}$	1 ·246 47	1 ·295 47	1 ·310 47	1 ·281 46	1 ·414 53	1 ·611 66
$K_2 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0 ·415 322	0·269 317	0·234 321	0·278 3²0	0.328	0·324 79
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·266 49	0·396 46	0·396 44	0·380 4 ⁶	0·384 50	0 ·436 7 I
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	106 0.066	0·063 53	0.099 38	0·079 7°	0 ·107 81	0·175 107

Table II.

(a) Karachi.

(b) Okha. (c) Kathiwadar.

(a) Com. 0. h., May 1. (b) Com. 0 h., April 16. (c) Com. 12 h., Oct. 31.

(a) (a) (a)(a) (b) (c) 1882-3. Year 1880-1. 1881-2. Mean. 1874-5. 1881-2. $Q \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \middle| \begin{array}{c} 0.104 \\ 51 \end{array} \right.$ 0.1520.124 0.1320.1290.13764 61 68 52 59 $\mathbf{L} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right\}$ 0.1230.0960.0760.081 0.2210.079310 29 I 26 I 293 299 23 $\mathbf{N} \left\{ \begin{array}{c} \mathbf{H} = \\ \kappa = \end{array} \right| \begin{array}{c} 0.581 \\ 276 \end{array}$ 0.631 0.5940.600 0.781 0.755280 279 277 322 34 $\lambda \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \middle| \begin{array}{c} 0.020 \\ 313 \end{matrix} \right.$ 0.0290.001 0.042 0.073 0.043 236 282 275 23 107 $\nu \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right. \begin{array}{c} 0.169 \\ 314 \end{array}$ 0.2110.125 0.1420.164 0.131264 236 277 15 $\mu \left\{ \begin{array}{c} H = \\ \kappa = \end{array} \right. \begin{array}{c} 0.037 \\ 283 \end{array}$ 0.0810.0390.061 0.203 0.286 267 270 263 182 343 $R \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right. \begin{array}{l} 0.040 \\ 317 \end{array}$ 0.0090.030317 276 315 $T \left\{ \begin{array}{c} H = \\ \kappa = \end{array} \middle| \begin{array}{c} 0.094 \\ 330 \end{array} \right.$ 0.0210.0684 I 332 $MS \begin{cases} H = \begin{vmatrix} 0.028 \\ \kappa = \end{vmatrix} & 317 \end{cases}$ 0.030 0.024 0.064 0.0270.159317 327 328 307 III 215 0 .031 $2SM \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right|$ 0.0300.021 0.0210.0440.029121 115 123 292 154 $\operatorname{Mm} \left\{ \begin{array}{c} H = \\ \kappa = \end{array} \right. \begin{array}{c} 0.036 \\ 131 \end{array}$ 0.0550.040 0.0600.0660.052 72 94 95 311 8 $\mathbf{Mf} \left\{ \begin{array}{l} \mathbf{H} = \begin{bmatrix} 0.020 \\ \kappa = \end{bmatrix} \right. 71$ 0.0340.0060.0330.0500.027 254 128 316 44 103 $MSf \begin{cases} H = \begin{vmatrix} 0.018 \\ \kappa = \end{vmatrix} & 302 \end{cases}$ 0.0430.0230.036 0.1410.040266 131 148 250 153 $\operatorname{Sa} \left\{ \begin{array}{l} \mathbf{H} = \left| \begin{array}{c} 0.102 \\ \kappa = \left| \begin{array}{c} 102 \end{array} \right| \end{array} \right. \right.$ 0.100 0.0990.1380.1620.23650 51 79 3 133 $\operatorname{Ssa} \left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$ 0.1390.116 0.0980.1350.1210.109192 164 194 142 145 156

Table II.

Bombay.

Commence 0 h., January 1.

Year	1878.	1879.	1880.	1881.	1882.	Mean.
$S_1 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0 ·075 187	0·083 184	0.088	0 074	0.072	0.078
$S_2 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	1·614 3	1.634	1 ·627 4	1.618	1 ·616 4	1·622 3
$S_4 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·018 257	0·013 235	0.013	0·011 315	0.006	0 012 256
$S_6 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0 ·002 195	0 ·004 179	0.004	0.005 0.005	0.002	0.003 171
$S_8 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0:002 86	0:002 196	0.001	0 · 002 69	0·000 72	0.001 115
$M_1 \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$	0·024 46	0.036	0.086 51	0.065	0.045	0 ·051 49
$M_2 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	3·991 33°	4·041 329	4·065 33°	4 058	4·014 33°	4·034 33°
$M_3 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0 074	0.067	0.068	0.055	0.060	0.065 23
$M_4 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·119 3 ²⁰	0·129 3 ² 7	0·120 314	0 ·126 3 ² 4	0.124	0·124 322
$M_6 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.014	0.015	0·002 79	0.017	0.008 124	0.011
M_8 $\begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.003 316	0 · 004 347	0.002	0.004	0 005 46	0.004 351
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0 ·643 48	0 ·650 48	0 · 663 48	0 · 647 48	0 ·645 49	0 ·650 48
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	1 ·384 46	1·391 45	1 ·393 45	1·398 45	1 ·398 45	1·393 45
$\mathbb{K}_2 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0 ·412 349	0 ·394 353	0·427 355	0·431 353	0 388 351	0·410 35 ²
$\mathbb{P}\left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·404 42	0 · 400 43	0 · 406 44	0·403 42	0·396 41	0 · 402 42
$J \begin{Bmatrix} \kappa = \\ \kappa = \\ \end{Bmatrix}$	0·043 89	0·083 48	0 ·128 62	0·122 88	0·067 74	0 ·089 72

Table II. Bombay. Commence 0 h., January 1.

Year	1878.	1879.	1880.	1881.	1882.	Mean.
$Q \begin{cases} H = \\ \kappa = \end{cases}$	0·122 47	0 ·138 60	0·159 55	0·133 46	0·101 5°	0·131 5²
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·122 299	0·0 5 4 34 ⁸	0·128 3 ² 5	0·094 306	0·143 298	0.108
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	1.024 312	1:036 315	0·991 316	0·974 315	0 ·988 312	1.003
$\lambda \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·051 284	0·023 254	0.030	0·013 203	0·043 277	0.032
$ \nu \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right. $	0 ·288 3 ¹ 9	0·245 283	0·078 269	0·121 9	0·261 336	0·199 315
$\mu \left\{ \begin{matrix} \mathbf{H} & = \\ \kappa & = \end{matrix} \right.$	0·231 313	0·189 294	0 ·214 3 · 4	0.182	0 ·212 318	0·206 308
$\mathbb{R}\left\{ \begin{matrix} \mathbf{H} \stackrel{\cdot}{=} \\ \kappa \stackrel{\cdot}{=} \end{matrix} \right.$		0.046		0·037 265		0·042 283
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		0 ·088 46		0.256		0·171 24
$MS \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0 122	0.138	0.126	0:125	0.134	0·129 24
$2SM \left\{ \begin{matrix} H = \\ \kappa = \end{matrix} \right.$	0.039	0.025	0.048	0.036	0·033 94	0·036 106
$\operatorname{Mm} \left\{ \begin{matrix} \mathrm{H} = \\ \kappa = \end{matrix} \right.$	0.058	0·049 355	0 ·042 86	0·047 56	0.085	0 ·056 26
$\operatorname{Mf}\left\{egin{array}{l} \operatorname{H} = \ \kappa = \end{array} ight.$	0.068 34 ⁶	0·054 7	0.054	0.029	0 ·052 47	0·051 346
$\operatorname{MSf} \left\{ \begin{matrix} \mathrm{H} = \\ \kappa = \end{matrix} \right.$	0.056	0.016	0.042 184	0.019	0.023 136	0.031
$\operatorname{Sa}\left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·254 117	0·137 33°	0.173	0.188	0·179 355	0·186 358
$\operatorname{Ssa}\left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0.068	0:124	0.071	0.201	0.145	0·122 228

Table II. Karwar. Commence 0 h., March 1.

Year	1878–9.	1879-80.	1880-1.	1881-2.	1882-3.	Mean.
$S_1 \begin{Bmatrix} \mathbf{H} = \kappa \\ \kappa = 0$	0·067 159	0.075	0·055 156	0.052	0 ·035 167	0·05 7 159
$S_2 \begin{cases} H = \kappa \end{cases}$	0 ·631 335	0 ·629 33 6	0 ·621 334	0 ·616 333	0 ·625 335	0·624 335
$S_4 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·007	0·007 87	0 ·016 94	0.011	0·011 9²	0:010
$S_6 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.002	0·007 58	0 ·004 82	0.006	0·006 39	0·005 5²
$S_8 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0·002 344	0 ·002 295	0 ·000 297	0.002	0·004 3°3	0·002 3°4
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·019 7°	0.01 <i>7</i> 4 <i>5</i>	0·049 29	0.045	0·036 48	0·033 41
$M_2 \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$	1·724 3°3	1·733 3°3	1.75 7 301	1 ·754 301	1·741 3°1	1 ·742 302
$M_3 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0·012 280	0·014 286	0·018 275	0·012 264	0·012 261	0·014 273
$M_4 \begin{cases} H = \\ \kappa = \end{cases}$	0 .045	0.059	0·054 11	0·059	0.060	0·055 17
$M_6 \left\{ egin{array}{l} H = \ \kappa = \end{array} \right.$	0·013 289	0.010	0·013 277	0·011 284	0 009	0·011 284
$M_8 \left\{ egin{matrix} H = \\ \kappa = \end{smallmatrix} ight.$	0.001	0.003	0·004 9	0·00 2 58	0.002	0·002 109
$O\left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0 ·496 50	0 ·498 50	0 · 505 49	0 ·494 48	0 ·493 49	0 •497 49
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	1 ·001 47	0 ·996 47	1 ·010 45	1.008	1 ·006 45	1 ·004 45
$K_2 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0·175 33°	0·174 3 ² 9	0·164 3·27	0·175 333	0 ·180	0 · 17 4 33°
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·269 4 ¹	0·274 43	0 · 282 43	0.287	0·274 4°	0·277 4²
$J\left\{egin{array}{l} H= \ \kappa= \end{array} ight.$	0·046 51	0·078 55	0·087 71	0·064 67	0·065 42	0·068 57

Table II. Karwar. Commence 0 h., March 1.

Year	1878-9.	1879–80.	1880–1.	1881–2.	1882–3.	Mean.
$Q \left\{ \begin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·111 57	0·133 62	0·130 54	0·101 58	0:097 63	0·114 59
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·09 3 3 · 26	0·041 3 ² 5	0.059 318	0·038 292	0 ·050 3 ² 4	0·056 3 ¹ 7
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·416 282	0.426	0·413 282	0 ·400 281	0·397 279	0 ·410 282
$\lambda \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·022 244	0 .004	0 ·032 29	0·021 34 ¹	0·021 268	0 ·020 273
$v \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·077 340	0 ·136 297	0·122 261	0.057	0·047 338	0 ·088 294
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{smallmatrix} ight.$	0.033	0·057 245	0·046 260	0·051 244	0·033 284	0·044 263
$R \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	•••••	0.006 91	•••••	0.009		0.008 145
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		0·046 9		0·075 3°°		0·061 155
$MS \begin{cases} H = \\ \kappa = \end{cases}$	0·022 80	0·028 75	0·021 61	0·029 60	0·028 60	0·026 67
$28M \left\{ \begin{matrix} H = \\ \kappa = \end{matrix} \right.$	0.012	0·004 353	0.004	0·007 106	0.009 351	0·007 3 ¹ 5
$\operatorname{Mm}\left\{ egin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0·046 351	0.061	0.048	0.043	0.126	0 ·065 27
$Mf \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0 ·051. 345	0.028	0·034 346	0.038	0·027 37	0·042 5
$MSf \begin{cases} H = \\ \kappa = \end{cases}$	0.029	0.023	0.021	0·009	0.030	0·022 164
$\operatorname{Sa}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$	0 170	0 ·344 307	0·491 3°3	0.383	0.373	0·352 310
Ssa $\left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0.045	0.083	0.128	0.053	0.033	0.068

Table II. Beypore. Commence 0 h., December 1.

Year	1878-9.	1879–80.	1880–1.	1881–2.	1882–3.	Mean.
$S_1 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0.021	0.083	0·093 187	0·073 185	0.035	0.061
$S_2 \left\{ egin{matrix} H = \\ \kappa = \end{smallmatrix} ight.$	0.331	0:310	0.308	0·341 17	0 ·359 1 2	0.330
$S_4 \begin{cases} H = \kappa \end{cases}$	0·004 140	0.003	0.004	0 · 006 145	0·007 148	0·005 137
$S_6 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·004 252	0·004 244	0 ·003 266	0·006 227	0 ·010 248	0·005 247
$S_8 \begin{cases} H = \kappa \end{cases}$	0.001	0.000	0 ·001 45	0.001 319	0·001 339	0·001 339
$M_1 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0 017 146	0·032 69	0·038	0 ·024 40	0·032 90	0·029 73
$M_2 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0 907 33°	0 · 904 33°	0 ·895 333	0·950 329	1·001 3 ² 4	0·931 3 ² 9
$M_3 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.011	0.010	0.011	0.010 196	0 ·009 194	0·010 197
$M_4 \begin{Bmatrix} H = \kappa \end{Bmatrix}$	0 ·021 45	0.015	0·018 53	0·020 41	0·026 31	0·020 4·1
$M_6 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.010	0.004	0.003 184	0.006	0.012	0·007 138
$M_8 \begin{Bmatrix} H = \kappa \\ \kappa = 0$	0.008 137	0.010	0.007	0.008	0.009	0·008 146
$O\left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·337 58	0·338 57	0 ·334 59	0·337 57	0·356 55	0 · 340 57
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·704 52	0.691 53	0 · 683 54	0 ·715 51	0·727 47	0.704 52
$K_2 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.065	0.079	0.089	0.069	0·098	1 I 0 :080
$P\left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·184 49	0·188 56	0·197 57	0·177 54	0 ·211 48	0 19 1 53
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·035 67	0 ·047 44	0 ·064 84	0·040 82	0·034 4°	0·044 63

Table II. Beypore. Commence 0 h., December 1.

Year	1878-9.	187980.	1880-1.	1881-2.	1882–3.	Mean.
$Q \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·078 68	0 °089 76	0·032 59	0·078 62	0·078 - 67	0 081 66
$L \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·018 349	0·037 341	0.020 342	0 ·033 347	0·025 1	0·027 348
$N \begin{cases} H = \kappa \end{cases}$	0·191 3°6	0·189 3°9	0·190 3°2	0·199 3°7	0·215 299	0·197 3°5
$\lambda \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0·004 187	0·012	0.013 289	0·01/7 14	0·011 354	0·011 313
$ \nu \left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right. $	0 ·035 249	0.041	0·050 354	0·095 296	0·053 277	0 ·055
$\mu \left\{ egin{matrix} \mathbf{H} = \ \mathbf{c} = \end{matrix} \right.$	0.024	0·020 349	0.008	0·014 299	0·030 239	0·019 258
$R \left\{ \begin{matrix} H = \\ \kappa = \end{matrix} \right.$		0·017 163		0·028 101	••••	0·023 132
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		0·043 37		0.036	••••	0·040 19
$MS \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·010 76	0·004 80	0.002	0·008 57	0·016 69	0·009 77
$2SM \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0·006 65	0.004	0·004 241	0 · 004, 243	0·007 35°	0·00 5 296
$\operatorname{Mm}\left\{ egin{matrix} \mathrm{H} = \\ \kappa = \end{array} \right.$	0·073 6	0·072 85	0·105 35°	0.144	0·059 44	0.091
$\operatorname{Mf}\left\{ egin{matrix} \mathrm{H} &= \\ \kappa &= \end{matrix} \right.$	0·086 15	0.086	0·022 5°	0·118 48	0 ·044 346	0.071
$\operatorname{Msf}\left\{egin{array}{l} \mathrm{H} = \ \kappa = \end{array} ight.$	0·066 228	0·037 167	0·017 275	0·041 197	0·028 214	0·038 216
$\operatorname{Sa}\left\{ egin{array}{l} \operatorname{H} = \\ \kappa = \end{array} ight.$	0·307 3 ¹¹	0.344	0.328	0·321 329	0·243 298	313 0.309
$\operatorname{Ssa}\left\{egin{array}{l} \mathrm{H} = \ \kappa = \end{array} ight.$	0·139 226	0·252 181	0·180 208	0·189 193	0·123 214	0·177 205

Table II. Paumben. Commence 0 h., October 1.

Year	1878-9.	1879-80.	1880-1.	1881-2.	Mean.
$S_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·036 146	0·049 131	0.035	0.022	0·036 148
$S_2 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0 ·377	0 ·375	0·377	0 · 3 60	0 ·372
	90	92	91	94	92
$S_4 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0 ·00 5 287	0.001	0·004 262	0·003 3°4	0·00 3 261
$S_6 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·002	0.001	0·005	0 ·006	0·004
	246	0.001	195	179	197
$S_8 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0 ·004 249	0 · 00 5 255	0·002 257	0.001	0·003 224
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.013	38 0.000	0·013 64	0.008	0·011 9 35
$\mathbf{M}_{2}\left\{egin{array}{l} \mathbf{H} &= \ \kappa &= \end{array} ight.$	0·589	0 · 585	0·598	0 ·569	0 ·585
	47	47	46	49	47
$M_3 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.016	0:016	0·015	0·017	0·016
	170	168	165	177	170
$M_4 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0·020 199	0·016	0·015 199	0·014 187	0·016 194
$\mathbf{M}_{6}\left\{egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·011	0 ·011	0·011	0·009	0·011
	4²	50	4°	34	4²
$ M_8 \left\{ egin{array}{l} H = \ \kappa = \end{array} \right\}$	0·005	0·004	0 ·004	0·007	0·005
	294	348	3°3	313	314
$O\left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right\}$	0·114	0·113	0·116	0·115	0·115
	47	45	43	47	45
$\mathbf{K}_{1} \left\{ egin{matrix} \mathbf{H} = \ \kappa = \end{matrix} \right.$	0·297	0 ·293	0 ·295	0 ·291	0·294
	44	45	45	49	46
$\mathbf{K}_{2}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{matrix} ight.$	0·103	0·110	0·116	0·121	0·113
	84	9²	89	94	90
$P\left\{egin{matrix} \mathrm{H} = \ \kappa = \end{smallmatrix} ight.$	0·105	0·110	0·108	0·115	0·1 10
	44	47	46	5°	46
$J \left\{ egin{matrix} \mathrm{H} = \ \kappa = \end{matrix} ight.$	0 ·008 68	0·013 44	0.014	0 ·021 42	0·014 48

Table II. Paumben. Commence 0 h., October 1.

Year	1878-9.	1879–80.	1880-1.	1881–2.	Mean.
$Q \begin{cases} H = \\ \kappa = \end{cases}$	0 ·025 84	0·021 98	0·023 91	0.016	0·021 89
$L \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·023 56	0·026 49	0·016 79	0 ·026 5°	0 ·023 58
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·076 29	0 ·087 3°	0.084	0.082	0 ·082
$\lambda \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·017 63	0 · 023	0·008 354	0·014 173	0 ·016 64
$ \nu \left\{ egin{array}{l} \mathrm{H} = \\ \kappa = \end{array} \right. $	0·016 82	0 ·034 49	0.030	0·027 334	0 ·027 3°
$\mu \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0 · 004 78	0 ·010 98	0·012 95	0·011 148	0·009 105
$R \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	•••••	0.012		0·019 94	0:016 114
$T \begin{cases} H = \\ \kappa = \end{cases}$		0.038		0·012 79	0 ·025 92
$MS \begin{cases} H = \\ \kappa = \end{cases}$	0.021	0.017	0·018 286	0·017 295	0.018 292
$2SM \left\{ \begin{matrix} H = \\ \kappa = \end{matrix} \right.$	0.010	0.008	0·012 34°	0.008	0·010 333
$\operatorname{Mm} \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·063 349	0 :053 58	0.033	0·043 4°	0 ·048 27
$\mathbf{Mf}\left\{egin{matrix}\mathbf{H} = \\ \kappa = \end{matrix}\right.$	0.045	0 ·040 355	0·053 359	0·033 344	0 ·043 355
$\mathbf{MSf} \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0 ·016 174	0·01 3	0·027 157	0.007	0 ·016
Sa $\begin{cases} H = \\ \kappa = \end{cases}$	0·122 299	0.138	0·164 287	0 ·171 3 · 4	0·149 3°2
$\operatorname{Ssa} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·138 96	0.178	0.184	0:129	0 ·157 108

Table II.

Negapatam.

Madras.

Commence 0 h., December 6.

Commence 0 h., February 1.

Year	1881–2.	1882–3.	Mean.	1880-1.	1881–2.	1882–3.	Mean.
$S_1 \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0·048 117	0.014	0.046	0·037 80	0.026	0.012	0.025
$\mathbb{S}_2 \left\{ egin{matrix} \mathbb{H} &= \ \kappa &= \end{matrix} ight.$	0·271 283	0·277 286	0·274 284	0·437 277	0 · 445 275	0·440 276	0·441 276
$S_4 \begin{cases} H = \kappa \end{cases}$	0.008	0 ·004 166	0.002	0·002 98	0 ·002 169	0.001	0.002 161
$S_6 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0.000	166 0.000	0.000 150	0·002 61	0·001 99	0·001 176	0 001
$S_8 \begin{cases} H = \kappa \end{cases}$	0.001	0.001	0.001 227	0.001	0.000	0.001	0.001
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·003 149	0.006	0.002	0·019 4	0.001	0.004	0·008 7
$M_2 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0·712 251	0.727	0.720	1 · 04/7 249	1 ·051 247	1.049	1·049 248
$M_3 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0·003 73	0.003	0.003	0·004 65	0.003	0 ·006 67	0 ·004 62
$M_4 \left\{egin{array}{l} \mathrm{H} \ = \ \kappa \ = \end{array} ight.$	0·023 76	0·018 77	0·021 77	0.002	0.001	0.005	0·00 3 146
$M_6 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.010	0.013	0.012	0.010 1.61	0.011 149	0 ·009	0:010 154
$M_8 \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$	0.005	0.004	0.005 303	0.062	0 ·001 84	0.002	0 ·002 46
$O\left\{ \begin{array}{l} \Pi &= \\ \kappa &= \end{array} \right.$	0.092	0.089	0.091	0·094 327	0 ·096 3 · 24	0·101 3 ² 5	0·097 325
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·222 345	0·227 345	0·225 345	0.294	0.291	0·293 34 ²	0 ·293 340
$K_2 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0.071	0.082	0·077 286	0.121	0.120	0.094	0·112 280
$P\left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0.083	0·085 35°	0.084 346	0.093	0.094 341	0.103	0·097 344
$J \left\{ egin{matrix} \kappa &= \ \kappa &= \ \end{matrix} ight.$	0.006	0.016	0.011	0.029	0.012	0.021	0.021

Table II.

Negapatam.

Madras.

Commence 0 h., December 6.

Commence 0 h., February 1.

1	1			11	1		*
Year	1881–2.	1882–3.	Mean.	1880-1.	1881-2.	1882-3.	Mean.
$Q \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.007	0.007	0·007 181	0.004	0.003	0·009 43	0.002
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.022	0·031 279	0·02 7 279	0·037 278	0·017 335	0·054 310	0 ·036 3°7
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.164	0·152 246	0·158 ²⁴⁴	0·246 243	0.235	0.238	0·240 242
$\lambda \begin{Bmatrix} H = \kappa \\ \kappa = 0$	0.025	0.005	0·015 231	0·027 348	0·025 283	0·035 268	0·029 299
$\nu \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0.048	0·047 206	0·048 217	0·053 209	0.007 287	0·072 318	0·044 271
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.018	0.024	0·021 122	0·046 184	0·048 167	183 0.030	0·041 178
$R\begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$		0·031 349	0·031 349		0.016	•••••	0·016 103
$T \begin{cases} H = \\ \kappa = \end{cases}$	•••••	0·050 255	0 ·050 255		0 ·056 257	· · · · · · ·	0 ·056 257
$\operatorname{MS}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$	0·019 96	0·017 9 ⁶	0·018 96	0 ·004 177	0 ·001 54	0·004 280	0.003
$2MS \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0·007 161	0.006 216	0·007 188	0.020	0.022	0·023 178	0.022
$\operatorname{Mm}\left\{egin{array}{l} \operatorname{H} = \\ \kappa = \end{array}\right\}$	0·081 345	0·032 310	0·057 328	0.040 41	0.047	0 · 0 55 68	0·047 80
$\operatorname{Mf}\left\{egin{array}{l} \operatorname{H} = \\ \kappa = \end{array}\right\}$	0·061 35	0·017 33 ⁸	0·039 7	0·030 5	0·050 349	0·055 25	0·045 6
$MSf \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0 .084	0.097	0 ·091 7	0 ·001 84	0·034 46	0·021 44	0·019 58
$\operatorname{Sa}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right\}$	0 · 543	0·522 233	0.533	0.372	0.335	0·449 211	0.385
$\operatorname{Ssa}\left\{egin{array}{l} \mathbf{H} = \ \kappa = \end{array} ight.$	0 · 400 1 2 6	0.316 134	0.358	0.275	0·383 149	0·257 115	0:305 128

VOL. XXXIX.

Table II.

Vizagapatam.

Commence 0 h., February 3.

Year	1879-80.	1880–1.	1881-2.	1882-3.	Mean.
$S_1 \begin{cases} H = \\ \kappa = \end{cases}$	0.028	0·047 77	0:035	0.096	0·052 68
$S_2 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0 ·674	0 ·659	0 ·651	0 ·641	0·656
	280	286	286	290	285
$S_4 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0.001	0·007 77	0 · 006 50	0 · 006	0·00 5 47
$S_6 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0.001	0·001 128	0·001 214	0.002	0·001 170
$S_8 \begin{cases} H = \kappa \end{cases}$	0·001 73	0 · 001	0.00 3	0 ·001 78	0·00 2 79
$\mathbf{M_1} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·023 355	0.021	0·001 199	0·004 242	0·012 295
$\mathbf{M}_2\left\{egin{array}{l} \mathbf{H} = \ \kappa = \end{array} ight.$	1 ·532	1 · 460	1 ·459	1 ·439	1 ·473
	² 49	253	254	255	253
$\mathbf{M}_{3}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{matrix} ight.$	0·007	0·001	0·006	0.008	0·006
	33²	208	41	14	3 ² 9
$\mathbf{M}_4 \left\{ egin{matrix} \mathbf{H} = \ \kappa = \end{matrix} \right.$	0.014	0·014 33 I	0 ·015 339	0·018 34²	0 ·0 15 33 ¹
$\mathbf{M}_{6}\left\{egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·003 144	0·004 78	0 ·005	0·008 35	0·005 7²
M_8 $\left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0 ·004	0·002	0·002	0·005	0·003
	174	214	243	206	209
$O\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·139	0·140	0·144	0·142	0·141
	33°	33²	333	3 ² 9	331
$K_1 \begin{cases} H = \kappa \end{cases}$	0·371	0·364	0·366	0·335	0 ·359
	338	34²	34 ²	346	34²
$\mathrm{K}_{2}\left\{egin{matrix}\mathrm{H} = \ \kappa = \end{smallmatrix} ight.$	0·179	0·157	0·168	0·306	0·203
	270	274	285	278	277
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·112	0·104	0·117	0·049	0·096
	336	346	346	3²9	339
$J \left\{ egin{matrix} \kappa &= \ \kappa &= \ \end{matrix} ight.$	0·035	0 ·027	0·014	0·024	0·02 5
	328	356	3 1 4	351	337

Table II.

Vizagapatam.

Commence 0 h., February 3.

Year	1879-80.	1880–1.	1881-2.	1882-3.	Mean.
$Q \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0.010	0 ·00 7 277	0 ·004 306	0·014 336	0·009 3 ² 5
$\mathbf{L} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·049 257	0·044 245	0·027 297	0.088	0·052 ² 54
$N \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0·355 ² 43	0·300 250	0·291 251	0·309 242	0·314 246
$\lambda \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.021	0·019 33²	0·022 244	0·024 278	0·022 264
$ \nu \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{array} \right. $	0·114 244	0·05 5 199	0 · 002 72	0·127 283	0·075 199
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0 ·030 234	0·026 259	0.016	0 · 034 326	0·02 7 259
$R \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	•••••	0·015 130		0·039 246	0·02 7 188
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	•••••	0 ·021 336	•••••	0.080 189	0·051 263
$MS \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·007 345	0·010 20	0.014	0 ·015 357	0·012 5
$_{2 ext{MS}}\left\{ egin{matrix} ext{H} &= \ \kappa &= \end{matrix} ight.$	0.008	0·010 292	0·015 250	0·016 148	0·012 225
$\operatorname{Mm}\left\{egin{array}{l} \mathbf{H} = \ \kappa = \end{array} ight.$	0.022	0·078 53	0·049 104	0·072 35	0 · 055 54
$\mathbf{Mf} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0.030	0·051 34°	0.061	0.027	0 042
$MSf \begin{cases} H = \\ \kappa = \end{cases}$	0.076	0.021	0·038 3 ¹ 4	0·048 102	0.046
$\operatorname{Sa}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$	0 · 7 40 190	0·833 173	0·577 189	0 707 175	0 · 714 182
$\operatorname{Ssa} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0 · 301 89	0:328 126	0 · 458 140	0.241	0·332 114

Table II.

False Point.

Dublat.

Commence 0 h., May 1.

Commence 0 h., April 22.

Year	1881–2.	1882-3.	Mean.	1881–2.	1882–3.	Mean.
$S_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·006 325	0·024 48	0·015 6	0·044 99	0 ·050	0.047
$S_2 \begin{cases} H = \kappa \end{cases}$	1·005 3°2	1.030 3°4	1·018 3°3	2·053 3 ² 7	2·163 326	2·108 3²7
$S_4 \left\{ egin{matrix} H = \\ \kappa = \end{smallmatrix} ight.$	0 ·007 33 I	0·008 327	0·008 329	0.025	0.011	0 ·018
$S_6 \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$	0.003 153	0.003 185	169 0.00 3	0.002	0 ·005 78	0·004 99
$S_8 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0.003	0.003 261	0·003 240	0.004	0.007	0.006
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·009	0 ·008 355	0.009 30	0 ·008 345	0·007 97	0·008 41
$M_2 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	2·247 269	2·253 271	2·250 270	4.623	4·596 290	4 ·610 290
$M_3 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0·012 34	0·016 27	0·014 3°	0 ·049	0·043 135	0·046
$\mathbf{M}_4 \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·035 224	0·041 236	0·038 23°	0.101	0·089 145	0·095 144
$M_6 \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$	0 ·006 80	0 ·014 47	0·010 63	0·014 275	0·013 236	0·014 255
$M_8 \begin{cases} H = \kappa \end{cases}$	0·003 229	0·002 262	0 ·003 246	0 ·014 316	0·009 273	0·012 294
$O\left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0·175 335	0·179 335	0·177 335	0·181 332	0·197 335	0·189 334
$K_1 \begin{cases} H = \\ \kappa = \end{cases}$	0·408 344	0 ·407 346	0 ·408 345	0·498 353	0·488 35°	0 · 493 352
$K_2 \begin{cases} H = \\ \kappa = \end{cases}$	0 ·2 68 296	0·241 297	0·255 297	0.573 310	0.618 325	318 0.596
$P \begin{cases} H = \\ \kappa = \end{cases}$	0·133 349	0·157 34°	0·145 344	0 ·158 336	0·151 351	0 ·15 5 343
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·021 306	0.030 0.030	0·026 312	0.031	0·016 296	0·024 3²4

Table II.

False Point.

Dublat.

Commence 0 h., May 1.

Commence 0 h., April 22.

Year	1881-2.	1882–3.	Mean.	1881-2.	1882–3.	Mean.
$Q \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·004 3°7	0·017 34°	0·011 3 ² 4	0.010	0.008	0.009
$\mathbf{L} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.068	0·050 227	0·059 254	0·175 291	0·158 292	0·16 7 291
$\mathbf{N} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·471 265	0·481 268	0·476 267	1·041 285	0.852 286	0·947 286
$\lambda \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·045 277	0·081 83	0.063	0·298 339	0·139 293	0·219 316
$\nu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·163 247	0·120 241	0·142 ² 44	0·2 71 261	0 ·192 240	0 ·232
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·070 266	0·080 280	0·075 273	0.218	0.111	0·165
$R \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$		0·034 217	0 ·034 217	•••••	0·219 289	0·219 289
$T \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	•••••	0·017 149	0·017 149		0·137 299	0·13 7 299
$MS \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0·039 272	0·042 275	0·041 274	0·094 171	0·059 139	0·077 155
$2MS \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·019 196	0·014 177	0·017 187	0·097 195	0·046 227	0·072 211
$\operatorname{Mm} \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0 · 053 53	0·0 72 58	0·063 55	0.045	0·03 5	0 ·040 77
$\operatorname{Mf}\left\{egin{matrix} \mathrm{H} = \ \kappa = \end{array} ight.$	0·061 37	0·073 33	0·067 35	0·056 61	0·039 71	0 ·048 66
$\operatorname{MSf}\left\{egin{matrix} \mathbf{H} = \\ \kappa = \end{smallmatrix}\right.$	0·041 279	0·059 73	0.050 356	0·049 278	0·077 75	0 · 0 63 3 5 6
$\operatorname{Sa}\left\{egin{matrix} \mathrm{H} = \ \kappa = \end{array} ight.$	0·746 166	0·840 166	0 · 7 93 166	0·796 147	1·003 154	0·900 150
$\operatorname{Ssa}\left\{egin{array}{l} \mathrm{H} = \ \kappa = \end{array} ight.$	0·364 142	0·210 149	0 ·287 146	0 · 234 162	0.182	0 ·208 136

Table II.

Diamond Harbour.

Kidderpore.

Commence 0 h., April 4.

Commence 0 h., March 22.

Year	1881–2.	1882–3.	Mean.	1881-2.	1882-3.	Mean.
$S_1 \begin{cases} H = \\ \kappa = \end{cases}$	0·082 156	0 ·088 147	0 ·085	0·094 197	0.088	0·091 193
$S_2 \left\{egin{array}{l} H = \ \kappa = \end{array} ight.$	2·215 26	2 · 288	2·252 26	1 · 427	1 ·508	1·468 101
$S_4 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·117 328	0·122 3 ² 3	0·120 326	0.066	0 084	0·075 119
$S_6 \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$	0·013 266	0·013 235	0·013 251	0.006	0·004 33²	0 005 299
$S_8 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0·002 3°5	0·004 4²	0·00 3 353	0 ·006 298	0·009 323	0.008
$M_1 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0·020 88	0.020 103	0·020 95	0.012	0.013	0 ·013 157
$M_2 \left\{ egin{matrix} \mathbf{H} = \ \kappa = \end{matrix} ight.$	5·175 345	5·179 344	5·177 344	3·593 59	3·660 58	3 ·627 58
$M_3 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.042	0.028 225	0.035	0 · 012 335	0.018	0·015 33 ¹
$\mathbf{M}_{4}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{aligned} ight.$	0·756 246	0 · 734 245	0·745 246	0 · 734 39	0 ·719 35·	0 · 727 37
$\mathbf{M}_{6}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{matrix} ight.$	0·156 106	0·148 105	0·152 106	0·158 3 ² 3	0·160 315	0·159 319
$M_8 \left\{ egin{matrix} \mathbf{H} = \ \kappa = \end{matrix} \right.$	0·065 347	0·058 343	0·062 345	0·074 276	0·082 263	0·078 270
$O\left\{egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} ight.$	0 · 237 344	0·230 346	0 · 234 345	0.228	0·211 20	0.220
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·499 15	0·492 14	0·496 14	0 390 58	0 ·387 54	0·389 56
$\mathrm{K}_{2}\left\{egin{matrix}\mathrm{H}=\ \kappa=\end{matrix} ight.$	0.667	0·644 27	0.656	0·439 90	0·431 101	0 ·43 5 96
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·176 6	0·174 12	0·175 9	0·146 42	0·142 5²	0·144 47
$\mathbf{J}\left\{egin{matrix} \mathbf{H} = \ \kappa = \end{matrix} ight.$	0 ·029 299	0·033 340	0.031	0·016 355	0·012 298	0·014 327

Table II.

Diamond Harbour.

Kidderpore.

Commence 0 h., April 4.

Commence 0 h., March 22.

Year	1881–2.	1882–3.	Mean.	1881–2.	1882-3.	Mean.
$Q\left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·024 9	0.036	0 ·030	0 ·039 358	0.039	0 · 039
$\mathbf{L} \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·174 357	0 ·347 344	0·261 351	0·201 86	0·173 62	0·187 74
$\mathbf{N}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{matrix} ight.$	0·988 339	0 · 914 34°	0·951 339	0·677 48	0 ·599 4 ⁶	0 ·638 47
$\lambda \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·171 19	0·058 296	0·115 337	0:126	0·075 84	0·101 107
$ u \left\{ egin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right. $	0 ·420 294	0·186 284	0·303 289	0·323 358	0 ·152 349	0 ·238 353
$\mu \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right\}$	0 ·2 72 79	9°	0 · 303 85	0 · 224 174	0·260 190	0·242 182
$R \left\{ egin{matrix} H = \ \kappa = \end{matrix} \right.$	•••••	0·216 10	0·216 10		0·167 77	0·167 77
$T \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$		0·078 55	0·078 55		0·147 107	0·14 7 107
$\mathbf{MS}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$	0·687 286	0·702 284	0·695 285	0 646 82	0 643 80	0 ·645 81
$2SM \left\{ \begin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·095 251	0·053 290	0·074 271	0·084 355	0·086 9	0.085
$\operatorname{Mm}\left\{egin{array}{l} \operatorname{H} = \\ \kappa = \end{array}\right.$	0·147	0 057 351	0·102 1	0.316	0·172 34 ¹	0·244 351
$\mathrm{Mf}\left\{egin{array}{l} \mathbf{H} = \ \kappa = \end{array} ight.$	0·157 36	0·142 4 ¹	0·150 39	0:301 41	0 ·293 36	0·297 38
$\mathbf{MSf}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$	0 ·401 26	0 ·501 4○	0 ·451 33	0·829 35	0·920 43	0 ·875 39
$\operatorname{Sa}\left\{egin{array}{l} \mathbf{H} = \ \kappa = \end{array} ight.$	1·011 140	1·189 147	1·100 143	2·809 157	2·670 157	2 ·740 157
$\operatorname{Ssa}\left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·023 64	0·109 77	0·066 71	0 ·935 205	0·708 334	0·822 269

Table II.

(a) Elephant Point.

Rangoon.

(a) Commence 0 h., May 24.

Commence 0 h., March 1.

(a)

	(a)				
Year	1880-1.	1880–1.	1881–2.	1882–3.	Mean.
$S_1 \begin{cases} H = \\ \kappa = \end{cases}$	0·113 79	0·120 141	0·123	0·097 129	0.113
$S_2 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	2 ·337 143	2·009 169	2·003 170	2·025	2·012 170
$S_4 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0·037 162	0·076 262	0·088 256	0·079 258	0·081 259
$S_6 \begin{Bmatrix} H = \kappa = 0 \end{Bmatrix}$	0 ·021 94	0·011 4²	0 · 009 39	0·011 63	0 ·010 48
$S_8 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·008 60	0.006	0·003 117	0.005	0 ·005 120
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·019 88	0·049 151	0·037 236	0·013	0 · 033 183
$\mathbf{M}_{2}\left\{egin{matrix}\mathbf{H} &= \ \kappa &= \end{matrix} ight.$	5·870 103	5·539	5·519	5.577	5·545 131
$M_3 \begin{Bmatrix} H = \kappa = 0$	0 ·025 146	0 ·009 238	0 ·016 154	0.038	0 ·021 178
$M_4 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·079 46	0·388 167	0·424 171	0 ·418 168	0 ·410 169
$\mathbf{M}_{6} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0 · 205 349	0 ·236 85	0 · 227 89	0·235 87	0 ·233 87
$M_8 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·031 322	0·074 92	0.083	0·087 96	0·081 97
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·349 356	0·289 3°	0 ·294 27	0.300	0·294 28
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·807 18	0·674 35	0·682 35	0·653 36	0·670 35
$K_2 \begin{Bmatrix} H = \kappa \\ \kappa = 0 \end{Bmatrix}$	0 ·401 9 I	0.235 168	0 576 173	0.598 165	0·570 169
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·199 33	0·134 61	0·148 52	0·166 53	0·149 55
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·110 61	0 ·049 70	0·023 91	0.018	0·030 33
1			1		<u> </u>

Table II.

(a) Elephant Point.

Rangoon.

(a) Commence 0 h., May 24.

Commence 0 h., March 1.

	(a)				
Year	1880-1.	1880–1.	1881–2.	1882-3.	Mean.
$Q \left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0·042 336	0.028	0 .024	0 ·028 56	0.027
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·346 109	0.368	0·32 7 158	0 · 525 160	0·40 7 157
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	1:543 80	1 .045	0.949	0.977	0·990 117
$\lambda \left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0·659 145	0·299 174	0·290 184	0·181 152	0·257 170
$\nu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·681 209	0 ·479 94	0·288 75	0.184	0·317 100
$\mu \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0 ·356 279	0·497 289	0 · 508 295	0·536 286	0·514 290
$R \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$			0·117 66	•••••	0·117 66
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		•••••	0·290 128		0·290 128
$MS \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·135 67	0·349 207	0.415	0.394	0.386
$2SM \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·042 84	0·173 46	0·155 54	0·153 61	0 · 160 54
$\operatorname{Mm}\left\{egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix}\right.$	0·145 6	0.296	0·230 9	0·182 39	0 ·236 23
$\mathrm{Mf} \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0.098 310	0·168 35	0 · 223 27	0 ·233 39	0·208 34
$\operatorname{MSf} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·059 273	0 · 515 45	0 · 559 52	0 588 49	0 ·554 49
$\operatorname{Sa}\left\{egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0 ·930 146	1 ·600 144	1·415 153	1 · 444	1·486 150
$\operatorname{Ssa} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0 ·261 198	0·193 306	0:012 3 ¹ 5	0:174	0·126 3·28

Table II.

Amherst.

Moulmein.

Commence 0 h., August 5.

Commence 0 h., April 17.

N.B.—The MS. gives H of $K_2=1\cdot771$ for 1880–1; an obvious mistake. The mean has been corrected.

Year	1880–1.	1881–2.	1882–3.	Mean.	1880-1.	1881–2.	1 882–3 .	Mean.
$S_1 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·426 178	0·143 149	0·096 97	0.222	0·095 146	0.099	0·095 148	0·096 149
$S_2 \begin{cases} H = \kappa \end{cases}$	2·851 109	2·705 101	2·750 105	2·769 105	1·400 148	1 ·344 145	1·343 150	1 ·362 148
$S_4 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·095 147	0:118	0·104 117	0.106	0.068	0.069	0.065 231	0.067
$S_6 \begin{cases} H = \kappa \end{cases}$	0.022	0.004	0.009	0·012 187	0.006	0·006 187	0·004 185	0.005 183
$S_8 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0.009	0 ·006 348	0·009 269	0 ·008 276	0·002 164	0·001 252	0.002	0.002
$M_1 \begin{Bmatrix} H = \kappa \\ \kappa = 0$	0 ·041 192	0.021 273	0·035 3°°	0 ·032 255	0 ·034 128	0.019	0·002 183	0.018
$M_2 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	6·230 7°	6·081 68	6·389 68	6 · 233 69	3 .884	3 698 112	3·756 115	3·779 113
$M_3 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0·034 287	0·003 224	0·019 273	0.019	0·023 274	0.031	0·020 139	0 ·025 209
$M_4 \begin{Bmatrix} H = \kappa \\ \kappa = 0$	0 ·273 60	0·423 51	0·355 41	0·350 51	0·926 169	0.880 170	0·897 174	0 ·901 171
$M_6 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·070 257	0·146 248	0·139 251	0·118 252	0.105	0·107 198	0·095 201	0.102
M_8 $\begin{cases} H = \\ \kappa = \end{cases}$	0.006	0·014 244	0 .021	0·014 249	0·034 125	0·036 141	0·044 134	0.038
$O\left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·310 328	0·319 339	0·323 35²	0·317 339	0 ·256 44	0·252 49	0·252 5°	0·253 48
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.668	0 ·686 6	0·744 6	0·699 5	0·452 39	0 ·447 40	0·414 42	0·438 40
$K_2 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0·771 91	0·858 81	0 · 6 82 97	0 · 7 70 90	0·409 151	0 ·282 152	0·316 162	0·336 155
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·132 308	0·193 348	0 ·207 354	0·177 337	0·113 62	0·144 61	0·144 57	0·134 60
$J\left\{egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix}\right.$	0.109	0·083 7	0·031 82	0·0 74 34	0·038 5²	0·018 48	0.009	0·022 107

Table II.

Amherst.

Moulmein.

Commence 0 h., August 5.

Commence 0 h., April 17.

Year	1880-1.	1881–2.	1882–3.	Mean.	1880-1.	1881–2.	1882–3.	Mean.
$Q \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.064	0.060	0.039	0.054	0 .043	0·054 55	0.039	0·045 53
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.226	0.303	0·348 103	0·292 112	0 · 204 134	0·390	0·242 129	0·279 139
$N \begin{cases} H = \\ \kappa = \end{cases}$	1 · 374 60	1 248 51	1·343 51	1·322 54	0·735 97	0·672 106	0.630 102	0.679
$\lambda \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0.393	0·280 65	0·226 178	0.300	0·161 152	0·249 182	0·118 162	0·176 165
$ u \begin{cases} H = \\ \kappa = \end{cases} $	0·426 186	0·283 267	0·566 79	0 ·425 177	0.314	0·215 91	0·169 58	0 ·233 84
$\mu \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·443 278	0·247 299	0·220 326	301 0.303	0.308	0·314 259	0·316 280	0.313
$R \begin{cases} H = \\ \kappa = \end{cases}$		0 ·451 252	•••••	0 ·451 252		0·097 7°		0·097 7°
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		0·841 144	•••••	0.841 144	•••••	0·200 110		0.200
$MS \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·285 9°	0 ·406 80	0·350 76	0 ·347 82	0.741	0·701 209	0.693 214	0.712
$2SM \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$	0·188 345	0·150 28	0 · 1 15	0.151	0·127 38	0·137 4°	0·109 37	0·124 38
$\operatorname{Mm} \left\{ \begin{matrix} \mathrm{H} = \\ \kappa = \end{matrix} \right.$		0·152 43	0.038 52	0·095 48	0 · 409	0·441 17	0.229	0·360 14
$\mathrm{Mf}\left\{egin{matrix}\mathrm{H}=\ \kappa=\ \end{smallmatrix} ight.$	•••••	0.062	0.132	0·097 35°	0·282 42	0·379 4°	0·342 4°	0·334 4 ¹
$\operatorname{Msf}\left\{egin{array}{l} \mathrm{H} = \ \kappa = \end{array} ight.$	•••••	0·080 76	0 ·029 66	0·055 71	1·088 43	1 ·097 48	$1.146 \\ 46$	1·110 46
$\operatorname{Sa}\left\{egin{array}{l} \mathrm{H} = \ \kappa = \end{array} ight.$		0 ·638 150	0·814 130	0 ·726 140	2·460 145	2·389 153	2·453 149	2 ·434 149
$\operatorname{Saa}\left\{egin{array}{l} \mathrm{H}=\ \kappa=\end{array} ight.$		0.188	0·124 332	0 ·156 235	0.563 283	0·653 284	0·59 3 295	0·603 287

Table II.

Port Blair.

Fort Point, California.

Commence 0 h., April 19.

Commence 0 h., October 1.

Year	1880–1.	1881–2.	1882–3.	Mean.	1858-9.	1859–60.	1860–1.	Mean.
$S_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·028 49	0·018 35	0.016	0.021	0.015	•••••		0.015
$S_2 \begin{cases} H = \kappa \end{cases}$	0.966 316	0.978	0.959 315	0.968	0 · 407 334	0·380 336	0 ·382 336	336 0.380
$S_4 \left\{ egin{matrix} \mathrm{H} = \ \kappa = \end{array} ight.$	0.003	0 ·001 86	0 ·004 59	0·003 84				
$S_6 \begin{cases} H = \kappa \end{cases}$	0.002	0·002 99	0.002	0.002				
$S_8 \begin{cases} H = \kappa \end{cases}$	0·002 98	0 ·002 88	0 · 001 53	0·002 80				
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.016	0·007 254	0.008	0 ·010 291	0 ·034 98	0 ·037 273	0·044 139	0.038
$M_2 \left\{ egin{array}{ll} \mathrm{H} &= \ \kappa &= \end{array} ight.$	2·042 279	2·014 277	2·010 278	2·022 278	1 · 722 332	1 ·659 333	1.685 331	1 ·689 332
M_3 $\begin{Bmatrix} H = \kappa \\ \kappa = 0 \end{Bmatrix}$	0.004	0.011	0.007	0·007 16				
$M_4 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0.003 167	0.011	0.011	0 ·008	0.066	0.074	0·072 15	0·071 24
$M_6 \left\{ egin{array}{ll} \mathrm{H} &= \ \kappa &= \end{array} ight.$	0·004 34²	0·002 206	0·000 42	0·002 317				
$M_8 \left\{ egin{array}{ll} H &= \ \kappa &= \end{array} ight.$	0.003	0·002 7°	0.002	0·002 7°				
$O\left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0·153 299	0·162 3°4	0·166 3°2	0·160 3°2	0·769 89	0·756 89	0·814 85	0·780 87
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·403 326	0·397 3 ² 7	0·391 327	0·397 3²7	1 ·217 106	1 ·209	1 ·232 107	1 219
$K_2 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·286 3 ¹ 4	0·296 3°8	0·264 310	0·282 3 ¹ 1	0·139 336	0·143 328	0·122 3 ² 5	0 ·135 33°
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·130 3 ² 4	0·137 327	0·134 326	0·134 326	0·367 107	0.366	0 ·387 104	0·373 105
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·038 316	0·030 3 ² 4	0.014	0·027 3 ² 5	0.072	0·034 127	0·053 105	0 · 053 121

Table II.

Port Blair.
Commence 0 h., April 19.

Fort Point, California.

Commence 0 h., October 1.

Year	1880–1.	1881–2.	1882–3.	Mean.	18 5 8–9.	1859–60.	1860–1.	Mean.
$Q \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0.023	0.027	0.023	0.024	0·147 78	0·094 54	0·123 9°	0 ·121 74
$L \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0 ·059 269	0·098 290	0·046 258	0.068	0.053	0.060	0·064 335	0.059
$\mathbf{N} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·413 273	0·392 273	0·391 277	0 ·399 274	0·406 3°5	0·357 3°7	0·359 3°5	0·374 3°5
$\lambda \left\{ egin{matrix} H = 0 \\ \kappa = 0 \end{smallmatrix} \right.$	0.035	0.046	0·047 3°1	0·043 280	0.038	0.029	0 ·012 326	0 · 026 345
$v \begin{cases} H = \\ \kappa = \end{cases}$	0·148 294	0·137 254	0·079 214	0·121 254	0·107 288	0·040 274	0 ·045 352	0·064 3°5
$\mu \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0·094 288	0 ·089 298	0·074 291	0.086	0 ·028 257	0.032	0·026 214	0.029
$R \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$		0.020		0·020 326		0.008		0·008 63
$T \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$		0.099	••••	0.099	••••	0.014	•••••	0·014 198
$ ext{MS} \left\{ egin{matrix} ext{H} &= \ \kappa &= \end{matrix} ight.$	0 ·004 1 5 3	0·016 206	0·007 284	0.009	0.026	0·034 14	0.032	0 ·031 2 I
$2SM \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·021 149	0.020 168	0·028 146	0·023 154				
$\mathbf{Mm} \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0.020	0.017	0.005	0.014				
$\mathbf{Mf} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0 ·056 356	0.067	0.048	0·057 9				
MSf $\begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·019 168	0·007 4	0·018 9	0·015 61				
$\operatorname{Sa}\left\{egin{array}{l} \mathrm{H} = \ \kappa = \end{array} ight.$	0.299	0.062	0·251 156	0 · 204 150				
Ssa $\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$	0·106 165	0·134 197	0.110	0·117 177				

Table II.

- (a) San Diego.(b) Port Leopold.(c) Beechey Island.(d) Cat Island.(e) Toulon.
- (a) Com. 0 h., Jan. 1. (b) Com. 0 h., Nov. 1, 1848, to July 31, 1849. (c) Com. 0 h., Nov. 2, 1858, to Feb. 28, 1859. (d) Com. 0 h., Jan. 1. (e) Com. 0 h., Jan. 1.

	(a)	(a)	(a)	(6)	(c)	(d)	(e)
Year	1860.	1861.	Mean.	1848-9.	1858–9.	1848.	1853.
$S_1 \begin{cases} H = \\ \kappa = \end{cases}$	0.030	0 ·025 246	0.028	0.031		0.044	0.010
$S_2 \left\{ egin{array}{l} H &= \ \kappa &= \end{array} ight.$	0·697 273	0·693 275	0·695 274	0.643	0 ·686 34	0 · 0 68 24	0.090
$S_4 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·007 187	0.005 221	0 ·006 204	0·007 257			0.002
$S_6 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right\}$							
$S_8 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right\}$							
$M_1 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0 ·046 115	0 ·051 98	0·049 106	0.045		0.007	0.010 319
$M_2 \left\{ egin{array}{l} H &= \ \kappa &= \end{array} ight.$	1·718 275	1 ·712 277	1·715 276	2.001	1 · 996 347	0.116	0·190 252
$M_3 \left\{ egin{array}{l} H &= \ \kappa &= \end{array} ight.$	0 007 17	0.007	0·007 19				0 ·004 9
$M_4 \begin{cases} H = \\ \kappa = \end{cases}$	0·028 205	0.027	0.028	0.015	0·024 268		0·011 349
$M_6 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0 · 010 88	0 ·013 80	0·012 84				0.002
M_8 $\begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$							0.001 146
$O\left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0·694 77	0·698 78	0·696 78	0·443 164	0 ·488 162	0 ·479 315	0.059 302
$K_1 \begin{cases} H = \kappa \end{cases}$	1 ·097 94	1·095 95	1 ·096 94	0·899 216	0 ·901 243	0 · 525 3 · 5	0.116
$K_2 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·210 260	0·203 267	0 ·207 263	0·175 29	0·151 54	0 · 028 288	0·024 254
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·352 91	0 ·361 90	0 ·357 90	0.216	0.215	0·156 321	0.041
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·068 96	0.100	0 ·084 99	•••••		0·035 297	0.008

Table II.

- (a) San Diego.(b) Port Leopold.(c) Beechey Island.(d) Cat Island.(e) Toulon.
- (a) Com. 0 h., Jan. 1. (b) Com. 0 h., Nov. 1, 1848, to July 31, 1849. (c) Com. 0 h., Nov. 2, 1858, to Feb. 28, 1859. (d) Com. 0 h., Jan. 1. (e) Com. 0 h., Jan. 1.

	(a)	(a)	(a)	(b)	(c)	(d)	(e)
Year	1860.	1861.	Mean.	1848-9.	1858-9.	1848.	1853.
$Q \begin{cases} H = \\ \kappa = \end{cases}$	0·129 73	0 ·160 77	0·145 75			0·091 3°7	0.006
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.033	0·005 328	0·019 344	0.044	0 ·080 47	0.012	0.007
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·415 258	0 ·440 261	0·428 260	0 · 420 306	0.429	0.026	0.046
$\lambda \begin{cases} H = \\ \kappa = \end{cases}$	0·069 179	0 ·049 268	0·059 224	•••••	•••••		0.003
$v \begin{cases} H = \\ \kappa = \end{cases}$	0·134 261	0·070 233	0·102 247	•••••			0.008
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·039 244	0 ·015 235	0·027 240				0.007
$R \begin{cases} H = \\ \kappa = \end{cases}$		0·010 153	0·010 153				
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		0·041 319	0 ·041 319				
$MS \begin{cases} H = \\ \kappa = \end{cases}$	188 0.006	0 ·012 191	0.009 0.009				
$2SM \begin{cases} H = \\ \kappa = \end{cases}$	-						
$\operatorname{Mm} \left\{ \begin{matrix} \mathrm{H} = \\ \kappa = \end{matrix} \right.$						0·094 3°4	0.061
$\operatorname{Mf} \left\{ egin{matrix} \mathrm{H} = \ \kappa = \end{array} \right.$						0·069	0·045 118
$\mathbf{MSf} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$						0 ·095	0·018 53
Sa $\begin{cases} H = \kappa \end{cases}$	1					0·274 ·	0·157 279
Ssa $\begin{cases} H = \\ \kappa = \end{cases}$						0·128 35	0.090

Table II.

(a) Brest.

(b) Ramsgate.

(c) West Hartlepool.

(a) Com. 0 h., Jan. 1.

(b) Com. 0 h., Jan. 1.

(c) Com. 0 h., July 1.

N.B.—English ports referred to G.M.T.

	(a)	(b)	(c)	(c)	(c)	(c)
Year	1875.	1864.	1858-9.	1859–60.	1860–1.	Mean.
$S_1 \begin{cases} H = \kappa \end{cases}$	0·015 5²	0·037 313	0.019	0·054 157	0·025 169	0·033 152
$S_2 \left\{ egin{array}{l} \mathbf{H} &= \ \kappa &= \end{array} ight.$	2·551 138	1.877	1 ·754 141	1·711 138	1 ·749 138	1·738 139
$S_4 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	•••••	0.032	0.025	0 ·021 174	0·019 172	0·022 179
$S_6 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	•••••	0 ·027 27			z	
$S_8 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$						
$M_1 \begin{cases} H = \kappa \end{cases}$	0 ·004 167	•••••	0·028 39	0.030	0·019 147	0·026 104
$M_2 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	6.766	6 ·144 34 ¹	5·176 99	5·148 99	5·166 97	5·163 98
$M_3 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.067	0·04 3 56	0.038	0·023 105	0·046 127	0.036
$M_4 \begin{cases} H = \kappa \end{cases}$	0·169 85	0·548 243	0.080	0 .106	0·099 107	0·095
$M_6 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·106 3 · 25	0·164 127	0·071 5°	0·078 55	0·073 46	0·074 50
$M_8 \begin{Bmatrix} H = \kappa = 0$	0.008	0 ·054 54				
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.211	0·342 180	0·433 84	0·425 86	0·444 85	0·434 85
$K_1 \begin{cases} H = \kappa \end{cases}$	0 ·208 66	0 ·223 18	0·390 ² 47	0 ·365 247	0·385 248	0·380 248
$K_2 \begin{cases} H = \kappa \end{cases}$	0 553 144	0.520	0·485 139	0.211	0 ·467 132	0 ·488 135
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·071 59	0·0 7 3 353	0.121	0.120	0·095 232	0·112 232
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	••••		0·031 268	0·026 300	0·027 105	0·028 224

Table II.

- (b) Ramsgate. (c) West Hartlepool. (a) Brest.
- (a) Com. 0 h., Jan. 1. (b) Com. 0 h., Jan. 1. (c) Com. 0 h., July 1. N.B.—English ports referred to G.M.T.

	(a)	(b)	(c)	(c)	(c)	(c)
Year	1875.	1864.	1858–9.	1859–60.	1860-1.	Mean.
$Q\left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$			0·140 41	0 ·143	0.160	0 ·148 3 ²
$L \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·192 101	0·447 16	0·169 106	0·179 140	0 ·253 94	0·200 114
$N \begin{cases} H = \kappa \end{cases}$	1·375 83	1.084	0·951 77	0·973 7°	1 ·040 72	0 988 73
$\lambda \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0·059 59	0·174 351	0·057 148	0·110 85	0·117 115	0·095 116
$ \nu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right. $	0·293 45	0 ·344 33°	0·115 75	0 ·325 116	0·369 73	0 · 270 88
$\mu \left\{ egin{array}{l} \mathbf{H} &= \ \kappa &= \end{array} ight.$	0·307 92	0 ·251 87	0·097 9	0·100 34 ⁶	0·057	0 ·085 6
$R \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right\}$	•••••		•••••		0·008 158	0·008 158
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		•••••			0·140 200	0·140 200
$MS \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$		0:324	0.047	0·040 142	0·046 115	0·044 126
$2SM \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right\}$	••••	0·141 262	0·034 315	0.034	0·009 226	0·026 310
$\operatorname{Mm}\left\{egin{array}{l} \operatorname{H} &= \ \kappa &= \end{array} ight.$	0·038 328	0·029 45	0·085	0·148 176	0·147 79	0·127 93
$\mathrm{Mf}\left\{egin{matrix} \mathrm{H} = \ \kappa = \end{smallmatrix} ight.$	0·069 76	0·044 288	0.037	0·040 237	0·060 178	0.046
$\mathbf{MSf} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0 ·290 52	0·094 206	0 ·135 7°	0·134 56	0·143 53	0·137 59
$\operatorname{Sa}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$	0 ·261 234	0·127 181	0·217 258	0.366	0.213	0.265
$\operatorname{Ssa}\left\{ \begin{matrix} \mathrm{H} \ = \\ \kappa \ = \end{matrix} \right $	0·071 93	0·075 288	0·004 275	0 ·138	0·149 287	0.097

VOL. XXXIX. N

Table II.

Portland Breakwater.

Commence 0 h., January 1.

N.B.—Referred to G.M.T.

Year	1851.	1857.	1866.	1870.	Mean.
$S_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.074	0.031	0.026	0 °015 83	0 ·037 89
$S_2 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	1.076	1·076	1 ·090 245	1 ·055 241	1·074 244
$S_4 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0·012 193	0 ·010 185	0 ·016 168	0·010 196	0·012 186
$S_6 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$					
$S_8 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$					
$M_1 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0·011 317	0·004 184	0.030	0·013 3²	0·015 292
$M_2 \left\{ egin{array}{l} H &= \ \kappa &= \end{array} ight.$	2·109 193	2·104 197	1 ·911 195	2·067	2·048 194
$M_3 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0.029	0 ·045 195	0 ·045 188	0 ·026 166	0·036 180
$M_4 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0·440 29	0·535 4²	0·439 3 I	0·456 29	0·468 3²
$M_6 \left\{ egin{array}{l} \Pi = \\ \kappa = \end{array} \right.$	0 ·211 67	0·217 79	0·195 68	0 · 203 65	0 ·207 7°
$M_8 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0·013 54	0·017 46	0·009 4°	0·009 57	0·012 49
$O\left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0·165 351	0·162 357	0·156 351	0·168 353	0·163 353
$K_1 \begin{cases} H = \\ \kappa = \end{cases}$	0.283	0·292 116	0·295 114	0.308	0·295 114
$K_2 \begin{cases} H = \\ \kappa = \end{cases}$	0·312 238	0·292 243	0·316 234	0·282 236	0·301 237
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.096	0.118	0.108	0.108 108	0·108 108
$J \begin{Bmatrix} \kappa = \\ \kappa = \end{Bmatrix}$					

Table II.

Portland Breakwater.

Commence 0 h., January 1.

N.B.—Referred to G.M.T.

Year	1851.	1857.	1866.	1870.	Mean.
$Q \begin{cases} H = \\ \kappa = \end{cases}$					
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·227 144	0·105 98	0·142 109	0·208 95	0 ·171 111
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·465 184	0 ·462 186	0·499 186	0 ·483 184	0·477 185
$\lambda \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0·103	0·058 109	0.080 134	0 ·089	0·083 117
$v \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	196 0.093	0·125 119	0·121 109	0·121 135	0·115 140
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0 ·377 197	0·401 199	0 ·350	0 ·367	0·374 196
$R \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$					
$T \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$					
$MS \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right\}$	0 · 261 86	0 ·276 94	0 · 25 3 90	0·279 91	0 • 267 90
$2SM \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0·050 351	0·072 6	0·062 34 ⁸	0·050 346	0·059 353
$\operatorname{Mm}\left\{egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix}\right.$					
$\mathrm{Mf}\left\{egin{matrix} \mathrm{H} = \ \kappa = \end{array} ight.$					
$\operatorname{Msf} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$					
$\operatorname{Sa}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$					·
$\operatorname{Ssa}\left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$					

Table II. Liverpool. Commence 0 h., September 1.

N.B.—Referred to G.M.T.

Year	1857–8.	1858–9.	1859–60.	Mean.
$S_1 \begin{cases} H = \\ \kappa = \end{cases}$	0·045	0·070	0·084	0·066
	70	60	57	62
$\mathbf{S}_{2}\left\{egin{matrix}\mathbf{H} &= \ \kappa &= \end{matrix} ight.$	3·215	3·312	3·194	3·240
	12	11	10	11
$S_4 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= . \end{matrix} \right.$	0.061	0·060	0·048	0·056
	322	33°	295	316
$S_6 \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$				
$S_8 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$				
$M_1 \begin{cases} H = \\ \kappa = \end{cases}$	0·015	0·042	0·004	0·020
	3°3	3 ¹ 4	159	258
M_2 $\left\{egin{array}{l} H = \ \kappa = \end{array} ight.$	10·03 3	10·136	10·130	10·100
	3 ² 7	327	326	326
$M_3 \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0·111	0·103	0·159	0·124
	33 ¹	317	3·24	3·24
$M_4 \left\{ egin{array}{l} H = \\ \kappa = \end{array} \right.$	0·737 221	0.700	0.668 225	0·702 222
$M_6 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·202	0·208	0·224	0·211
	344	352	348	34 ⁸
$M_8 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0·067	0·092	0·073	0·077
	264	283	266	271
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0 · 374	0·356	0·400	0·377
	45	4²	4²	43
$K_1 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0·354	0·362	0·357	0 ·358
	195	197	189	194
$K_2 \left\{ egin{array}{l} H &= \ \kappa &= \end{array} ight.$	0·904 9	1.001	0.912	0·939 7
$P \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0.125	0·134 196	0·131 189	0·130 192
$J \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$				

Table II.

Liverpool.

Commence 0 h., September 1.

N.B.—Referred to G.M.T.

,				
Year	1857–8.	1858–9.	1859–60.	Mean.
$Q \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$				
$\mathbf{L}\left\{ \mathbf{H} = \mathbf{K} \right\}$	0·408 33°	0·681 4	0·530 34²	0·540 345
$N \begin{cases} H = \\ \kappa = \end{cases}$	1·930 3°4	1·819 310	2·019 306	1·923 306
$\lambda \begin{cases} H = \\ \kappa = \end{cases}$	0·424 322	0·233 316	0·120 13	0·259 337
$v \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·769 308	0·651 285	0·291 263	0·570 285
$\mu \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0.308	0·241 44	0·323 36	0·291 38
$R \begin{cases} H = \\ \kappa = \end{cases}$		0·101 46	0·082 46	0·092 46
$T \begin{Bmatrix} H = \kappa \\ \kappa = 0$		0·349 34 ⁸	0·121 3 ¹ 7	0 · 2 3 5 333
$MS \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·454 271	0·361 267	0.397	0·404 270
$2SM \left\{ \begin{matrix} H = \\ \kappa \cdot = \end{matrix} \right.$	0·140 206	0·165 216	0·151 228	0·152 216
$\operatorname{Mm} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·053 289	0.223	0·166 173	0·147 165
$\operatorname{Mf}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$	0·064 175	0·027 159	0·018 89	0·036 141
$\mathbf{MSf} \left\{ \begin{matrix} \mathbf{H} & = \\ \kappa & = \end{matrix} \right.$	0.071	0·021 3·24	0.081 302	0·058 246
$\operatorname{Sa}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$	0.359	0·284 259	0.353	0·332 ²² 7
Ssa $\begin{cases} H = \\ \kappa = \end{cases}$	0·090 144	0·104 27°	0.190	0·128 175

Table II.

Liverpool.

Commence 0 h., January 23.

N.B.—Referred to G.M.T.

Year	1866–7.	1867-8.	1868-9.	1869–70.	Mean.
$S_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·047 39	0.035	0.040	0 028 124	0·038 83
$S_2 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	3·130 12	3.099	3 ·122	3 ·052	3·101 12
$S_4 \begin{cases} H = \\ \kappa = \end{cases}$	0·048 3 ¹ 4	0·068 327	0·064 298	0.051 313	0 ·058 3 I 3
$S_6 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$					
$S_8 \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right\}$					
$\mathbf{M}_{1}\left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0 ·035 3°4	0 ·023	0.049	0 ·048 39	0·0 39 336
$M_2 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	9 ·901 3 2 6	9 ·906 3 2 6	9·807 3 ² 7	9·911 328	9·881 3 ² 7
$M_3 \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·081 336	0·097 3 ² 7	0·111 323	0.098	0·097 3 ² 4
$\mathbf{M}_{4}\left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·711 225	0.673	0.659	0.688 225	0.68 3
$\mathbf{M}_{6}\left\{egin{matrix}\mathbf{H} = \\ \kappa = \end{smallmatrix} ight.$	0·184 344	0·174 347	0·172 35°	0·205 358	0·184 350
$\mathbf{M} \left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0 ·058 283	0 ·058 279	0.059	0·070 287	0.061 285
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·379 4 ¹	0·331 41	0·398 39	0·357 36	0·366 4°
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·372 192	0·332 197	0·344 194	0·362 196	0·353 195
$\mathrm{K}_{2} \Big\{ egin{matrix} \mathrm{H} = \ \kappa = \ \end{smallmatrix} \Big\}$	0·846 10	1·021 9	0.935	0·933 7	0·934 7
$P \begin{cases} H = \\ \kappa = \end{cases}$	0·141 178	0·1 3 6	0·133 174	0·094 167	0·126 180
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$					

Table II.

Liverpool.

Commence 0 h., January 23.

N.B.—Referred to G.M.T.

Year	1866–7.	1867-8.	1868-9.	1869–70.	Mean.
$\mathrm{Q}\left\{egin{matrix}\mathrm{H} = \ \kappa = \end{smallmatrix} ight.$					
$L \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0·550 296	0·491 331	0·476 347	0·565 337	0·521 328
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	2·083 3°2	1·845 308	1·774 306	1·848 303	1·888 3°5
$\lambda \left\{ egin{matrix} \mathrm{H} = \ \kappa = \end{array} ight.$	0·228 356	0·209 0	0·19 2 3 ¹ 7	0·187 310	0·204 336
$ \nu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right. $	0·692 279	0·487 267	310 0.138	0·675 331	0·498 297
$\mu \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0·238 33	0·212 31	0·242 62	0·220 36	0·228 41
$R \begin{Bmatrix} H = \kappa \\ \kappa = 0$					
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$					
$MS \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·447 270	0·400 27I	0·395 268	0·387 271	0·407 270
$2SM \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.134	0·112 2·25	0·136 225	0·118 235	0·125 227
$\operatorname{Mm}\left\{egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·064 260		•••••	•••••	0·064 260
$\mathrm{Mf}\left\{egin{matrix} \mathrm{H} = \ \kappa = \end{array} ight.$	0·057 344			•••••	0·057 344
$ ext{MSf} \left\{ egin{matrix} ext{H} &= \ \kappa &= \end{matrix} ight.$	0.051 68				0·051 68
$\operatorname{Sa}\left\{egin{array}{l} \mathrm{H} = \ \kappa = \end{array} ight.$	0 · 452 272	•••••			0 ·452 272
$\operatorname{Ssa} \left\{ \begin{matrix} \mathrm{H} = \\ \kappa = \end{matrix} \right.$	0·185 229				0·185 229

Table II.

Helbre Island.

Commence 0 h., January 1.

N.B.—Referred to G.M.T.

Year	1858.	1859.	1860.	1861.	1862.	1863.
$S_1 \begin{cases} H = \kappa \end{cases}$			The second secon			
$S_2 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	3 ·138	3 · 177	3 · 163	3 ·171	3·119 3	3·120 3
$S_4 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.033	0.033	0.026	0.030	0·026 317	0.025
$S_6 \begin{cases} H = 0 \\ \kappa = 0 \end{cases}$						
$S_8 \begin{cases} H = \kappa \end{cases}$						
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.008 289	0.043	0.036	0·023 60	0.080 125	0·013 267
$\mathbf{M}_{2}\left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	9·768 319	9.763	9.929	9·828 318	9.740	9·709 3 ² 0
$M_3 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·104 3°4	0.091 288	0·106 3°7	0·140 278	0·079 283	0·117 279
$M_4 \begin{cases} H = \\ \kappa = \end{cases}$	0 ·446 216	0.441	0.491	0.479	0.409	0:500 213
$M_6 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·065 37	0.063	0.081	0.066	0.065 28	0;066 36
M_8 $\left\{ egin{array}{l} H = \\ \kappa = \end{array} \right.$	0 ·01 3 350	0 ·007 5 i	0·012 339	0 ·01 3	0·011 3°9	0·013
$O\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·367 41	0 ·368 4 ²	0·361 42	0 404	0·379 44	0·377 4°
$K_1 \begin{cases} H = \\ \kappa = \end{cases}$	0·387 192	0·376 187	0·376 186	0 · 404 188	0 ·387 188	189 0.388
$\mathbf{K}_{2} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0.922 358	0:883 355	0·919 354	0 ·916	0·928 354	0·989 5
$P\left\{ \begin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0·172 184	0:147 180	0·131 190	0·131 99	0·162 176	0·138 194
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·022 251	0·018 159				

Table II.

Helbre Island.

Commence 0 h., January 1.

N.B.—Referred to G.M.T.

Year	1858.	1859.	1860.	1861.	1862.	1863.
$Q \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·108 359	0·099 334				
$L \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right\}$	0· 37 0 334	0·561 354	0·477 336	0 ·424 3 · 24	0·215 256	0·315 353
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	1 ·855 296	1 ·896 292	1 ·794 291	1·883 295	1·847 297	1·843 296
$\lambda \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right $	0·144 3 ² 7	0 ·204 293	0.058	0 ·202 353	0 ·255 357	0·182 3·23
$v\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array} ight.$	0·189 268	0 ·321 274	0·221 336	0.626 277	0.371	0.611 276
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right\}$	0 · 033	0 ·176 44	0·076 3°	0·145 3²	0·026 345	0·057 73
$R\left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right\}$		0·022 18		0.102		
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	•••••	0·222 311		0 · 406 6		
$MS \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·275 276	0·206 265	0·261 272	0·310 267	0·257 277	0·270 266
$2SM \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0·132 217	0·122 230	0·123 237	0·126 208	0·126 216	0·123 234
$\operatorname{Mm}\left\{egin{array}{l} \mathrm{H} = \\ \kappa = \end{array}\right.$						
$\mathbf{Mf} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right\}$						
$\operatorname{Msf} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$						
$\operatorname{Sa}\left\{egin{array}{l} \mathbf{H} = \ \kappa = \end{array} ight.$						
$\operatorname{Ssa} \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$						

Table II.

Helbre Island.

Commence 0 h., January 1.

N.B.—Referred to G.M.T

Year	1864.	1865.	1866.	1867.	Mean.
$S_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$					
$S_2 \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$	3·089 3	3·093 3	3 ·106	3·108 2	3·128 3
$S_4 \left\{ egin{matrix} H = \ \kappa = \end{matrix} \right.$	0·03 5 309	0·029 3°3	0·030 3°4	0·034 302	0.030
$S_6 \begin{cases} H = \kappa \end{cases}$		-			
$S_8 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$					
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·002 166	0·034 256	0·044 336	0 ·046 284	0·033 262
$M_2 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	9 .728	9·762 320	9·708 319	9·645 319	9·758 319
$M_3 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·104 3°5	0·077 285	0·107 310	0·110 293	0·104 293
$M_4 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·515 213	0·510 211	0 ·503 209	0·494 211	0·479 213
$\mathbf{M}_{6}\left\{ egin{matrix} \mathbf{H} & = \\ \kappa & = \end{matrix} \right.$	0·078 44	0·069 4²	0·079 32	0·072 28	0·070 34
$M_8 \begin{Bmatrix} H = \kappa \end{Bmatrix}$	0·011 18	0 ·009 348	0·009 3°7	0·005 338	0·010 35 ²
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0 341 37	0.386 41	0·363 40	0·357 39	0·370 41
$K_1 \begin{Bmatrix} H \equiv \kappa \end{Bmatrix}$	0 ·388 189	0 ·416 189	0·419 185	0·370 187	0 391 188
$K_2 \begin{cases} H = \kappa \end{cases}$	0.738	0·919 4	0.918 351	0·770 357	0·890 358
$P\left\{egin{matrix} H &= \\ \kappa &= \end{matrix}\right.$	0 ·134 176	0·153 179	0 ·160 179	0·134 183	0·146 174
$J\left\{egin{matrix} H = \\ \kappa = \end{smallmatrix} ight.$		•••••	0·018 34²	0·044 98	0.026 122

Table II.

Helbre Island.

Commence 0 h., January 1.

N.B.—Referred to G.M.T.

Year	1864.	1865.	1866.	1867.	Mean.
$Q \begin{cases} H = \\ \kappa = \end{cases}$		•••••	0 121	0 ·122 35°	0 ·113 345
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.506 356	0·554 34²	0·390 3 ¹ 7	0·466 34 ^I	0 ·428 33 I
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	1·923 296	1 ·852 295	1 ·824 298	1·849 297	1·857 295
$\lambda \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right\}$	0·275 334	0 · 263 343	0·254 3 4 3	0.106	0·194 334
$ \nu \left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{array} \right. $	0·666 289	0·683 295	0·522 263	0·173 291	0·438 278
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.061	0·095 43	0 ·012 33 I	0·151 66	0·083 34
$R \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		0 ·050 344		0 ·026 63	0·050 359
$\mathbf{T}\left\{egin{matrix}\mathbf{H} &= \ \kappa &= \end{matrix} ight.$	•••••	0·230 356	•••••	0·158 277	0·254 3 ² 7
$MS \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0·314 266	0·322 264	0·290 261	0·292 260	0·280 267
$2SM \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right\}$	0·094 212	0.124	0·104 221	0·112 230	0·119 221
$\operatorname{Mm} \left\{ egin{matrix} \mathrm{H} = \ \kappa = \end{array} \right.$					
$\operatorname{Mf}\left\{egin{matrix} \mathrm{H} = \ \kappa = \end{smallmatrix} ight.$					
$\operatorname{MSf} \left\{ egin{matrix} \mathrm{H} = \ \kappa = \end{array} \right.$					
Sa $\begin{cases} H = \kappa \end{cases}$					
Ssa $\begin{cases} H = \kappa \end{cases}$					

Table III.

1, Aden. 2, Karachi. 3, Okha. 4, Kathiwadar. 5, Bombay. 6, Karwar. 7, Beypore.

	1	2	3	4	5	6	7
Years.	1879- 8 3.	1868-83.	1874–5.	1881–2.	1878-82.	1878-83.	1878–83.
No. of years observed	4	15	1	1	5	5	5
$S_1 \begin{cases} H = \\ \kappa = \end{cases}$	0.090	0·082 158	0 .074	0·134 201	0 ·078 182	0·057	0·061 174
$S_2 \begin{cases} H = \kappa \end{cases}$	0.697	0.948	1.222	1 ·207 8 I	1.622	0·624 335	0.330
$S_4 \begin{cases} H = \kappa \end{cases}$	0.006 271	0·010 14	0.013	0.029	0.012	0.010	0·005 137
$S_6 \begin{cases} H = \\ \kappa = \end{cases}$	0.004	0 •007 295	0.003	0·013 4²	0.003	0.005	0·005 247
$S_8 \begin{cases} H = \kappa \end{cases}$	0.001	0.001	0.001	0.002	0.001	0·002 3°4	0.001
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.047	0.044	0 • 051 43	0·057 35	0·051 49	0.033	0·029 73
$M_2 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	1.568	2 ·504 294	3·820 347	2·970 55	4.034	1.742	0·931 3²9
$M_3 \left\{ egin{matrix} H = \ \kappa = \end{matrix} ight.$	0.018	0.039	0.030	0 ·020 152	0.065	0.014	0·010 197
$M_4 \left\{ egin{matrix} H = \ \kappa = \end{matrix} \right.$	0.007	0.024	0.136	0·220 178	0.124	0·055 17	0 ·020 4 I
$M_6 \begin{Bmatrix} H = \kappa = 0$	0.005 341	0.049	0·007 27°	0·139 137	0.011	0.011	0.007
$M_8 \begin{cases} H = \kappa \end{cases}$	0.003	0·005 267	0·011 96	0·002 199	0·004 351	0.002	0·008 146
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·653 38	0 · 647 47	0 ·693 57	0 ·720 66	0.650 48	0 · 497 49	0·340 57
$K_1 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	1 · 299 36	1·281 46	1·414 53	1.611 66	1 ·393 45	1 · 004 45	0·704 5²
$K_2 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0 ·201 244	0.278	0.328	0·324 79	0·410 35 ²	0·174 33°	0.080
$P \begin{cases} H = \\ \kappa = \end{cases}$	0.388	0·380 46	0 ·384 5°	0 ·436 7 I	0 ·402 42	0·277 4²	0·191 53
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·103 5²	0·079 7°	0.107	0.175	0·089 72	0 ·068 57	0 · 044 63
i	r	-	1	1			

Table III.

1, Aden. 2, Karachi. 3, Okha. 4, Kathiwadar. 5, Bombay. 6, Karwar. 7, Beypore.

′ 3 2 5 7 1 6 Years. 1879-83. 1868-83. 1874-5. 1881-2. 1878-82. 1878-83. 1878-83. No. of years observed ... 4 1 1 5 5 5 15 0.151 0.1290.1370.1520.131 0.114 0.081 68 66 42 52 59 52 59 $L \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$ 0.0460.0810.2210.0790.108 0.0560.02726I 230 316 348 299 23 317 0.781 $N \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right\}$ 0.4270.600 0.7551.003 0.4100.197225 322 282 277 34 314 305 $\lambda \begin{cases} H = \\ \kappa = \end{cases}$ 0.0260.042 0.0730.0430.020 0.011 0.032197 282 23 107 235 273 313 $\nu \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right\}$ 0.099 0.1420.1640.131 0.1990.088 0.055226 277 15 315 294 311 $\mu \begin{cases} H = \\ \kappa = \end{cases}$ 0.075 0.061 0.203 0.2860.2060.0440.019 196 263 182 308 263 258 343 $R \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right|$ 0.0050.0300.0420.0080.023. 30 276 283 145 132 $T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$ 0.0500.068 0.171 0.0610.040. 240 332 24 155 19 $MS \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right\}$ 0.012 0.0270.0640.1590.1290.0260.009 67 159 307 III 215 24 77 $2SM \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right\}$ 0.044 0.0230.0210.0290.0360.0070.005109 123 292 154 106 296 315 0.091 $\mathbf{M}\mathbf{m} \left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right\}$ 0.0420.060 0.0660.0520.056 0.065 311 8 26 354 95 27 32 0.045 0.033 0.0270.051 $\operatorname{Mf}\left\{egin{array}{l} \operatorname{H} = \\ \kappa = \end{array}\right\}$ 0.0500.0420.0713 I 316 103 346 44 5 23 $MSf \left\{ egin{matrix} H &= \\ \kappa &= \end{array} \right\}$ 0.022 0.0140.0360.1410.0400.031 0.038 34I 266 250 153 228 164 216 $\operatorname{Sa}\left\{egin{array}{l} \mathrm{H} &= \ \kappa &= \end{array}
ight.$ 0.390 0.1380.1620.2360.1860.3520.30979 358 310 357 3 133 .313 0.0950.1210.1090.1220.177 $\operatorname{Ssa} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right\}$ 0.1350.068126 142 145 156 228 228 205

Table III.

8, Paumben. 9, Negapatam. 10. Madras. 11. Vizagapatam. 12. False Point. 13. Dublat. 14. Diamond Harbour.

	8	9	10	11	12	13	14
Years.	1878-82.	1881–3.	1880–3.	1879–83.	1881–3.	1881-3.	1881-3.
No. of years observed	4	2	3	4	2	2	2
$S_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·036 148	0·046 108	0·025 9²	0.052 68	0·015 6	0·047 110	0·085 152
$S_2 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0·372 92	0·274 284	0·441 276	0.656 285	1.018 303	2·108 3 ² 7	2·252 26
$S_4 \begin{cases} H = \\ \kappa = \end{cases}$	0.003 261	0·005 151	0.002 161	0 · 005 47	0.008 329	0.018	0·120 326
$S_6 \begin{cases} H = \\ \kappa = \end{cases}$	0·004 197	0.000 150	0.001 112	0.001 170	0.003	0·004 99	0·013 251
$S_8 \begin{cases} H = \kappa \end{cases}$	0.003	0·001 227	0:001 162	0·002 79	0·003 24°	0.006	0·003 353
$M_1 \begin{cases} H = \kappa \end{cases}$	0·011 35	0.005	0·008 7	0·012 295	0.009	0·008 41	0·020 95
$\mathbf{M}_{2}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{matrix} ight.$	0·585 47	0·720 252	1·049 248	1 ·473 253	2·250 270	4·610 290	5·177 344
$M_3 \left\{ egin{array}{l} H = \\ \kappa = \end{array} \right.$	0·016 170	0.003	0·004 62	0 ·006 329	0 ·014 30	0.046 133	0.035
$M_4 \begin{cases} H = \kappa = 0 \end{cases}$	0·016 194	0 ·021 77	0.003 146	0·015 331	0.038	0·095 144	0·745 246
$\mathbf{M}_{6}\left\{egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} ight.$	0·011 4²	0·012 128	0.010 154	0·005 7²	0 ·010 63	0·014 255	0·152 106
$M_8 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0.005 314	0·005 3°3	0·002 46	0·003 209	0.003 246	0 •012 294	0·062 345
$O\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·115 45	0·091 322	0·097 3 ² 5	0·141 331	0·177 335	0·189 334	0 · 234 345
$K_1 \begin{cases} H = \\ \kappa = \end{cases}$	0 •294 46	0 ·225 345	0 ·293 340	0 ·359 34²	0 ·408 345	0·493 35²	0·496 14
$\mathbf{K}_{2} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·113 9°	0·077 286	0:112 280	0·203 277	0·255 297	0·596 318	0.656
$P \begin{cases} H = \\ \kappa = \end{cases}$	0·110 46	0·084 346	0·097 344	0·096 339	0·145 344	0·155 343	0·175 9
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·014 48	0·011 328	0·021 318	0·025 337	0.026	0·024 3 ² 4	0·031 320

Table III.

8, Paumben. 9, Negapatam. 10, Madras. 11, Vizagapatam. 12, False Point. 13, Dublat. 14, Diamond Harbour.

	8	9	10	11	12	13	14
Years.	1878–82.	1881–3.	1880-3.	1879–83.	1881-3.	1881-3.	1881–3.
No. of years observed	4	2	3	4	2	2	2
$Q \begin{cases} H = \\ \kappa = \end{cases}$	0 ·021 89	0·007 181	0.002	0·009 325	0·011 3 ² 4	0 ·009 333	0 ·0 3 0
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·023 58	0·027 279	0 ·036 3°7	0 ·052 254	0·059 254	0·167 291	0·261 351
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.082	0·158 ² 44	0 ·240 242	0·314 246	0·476 267	0·947 286	0 ·951 339
$\lambda \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·016 64	0.015	0 ·029 299	0·022 264	0.063	0·219 316	0·11 5 337
$v \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.027	0.048	0·044 271	0·075 199	0.142	0·232 251	0·303 289
$\mu \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.009	0.021	0 ·041 178	0·027 259	0·075 273	0.165	0·303 85
$R \begin{cases} H = \\ \kappa = \end{cases}$	0.016	0 ·031 349	0.016	0:027	0.034	0·219 289	0.216
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.025	0.050 255	0.056 257	0.051	0·017 149	0·137 299	0 ·078 55
$MS \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.018	0·018 96	0.003	0.012	0·041 274	0.077	0.695 285
$2SM \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.010	0 ·007 188	0.022	0.012	0.017	0.072	0·074 271
$\operatorname{Mn}\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{smallmatrix} ight.$	0.048	0.057	0 ·047 80	0·055 54	0·063 55	0 · 040 77	0.102
$\operatorname{Mf}\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·043 355	0.039	0.045	0.042	0·067 35	0 · 048 66	0·150 39
$\operatorname{Msf} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0.016 141	0·091 7	0·019 58	0.046	0.050 356	0·063 356	0.451
$\operatorname{Sa} \left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0.149	0.533	0 385	0.714	0·793 166	0.900 150	1·100 143
$\operatorname{Ssa} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·157 108	0.358	0.305	0·332 114	0.287	0·208 136	0.066

Table III.

15, Kidderpore. 16, Elephant Point. 17, Rangoon. 18, Amherst. 19, Moulmein. 20, Port Blair. 21, Fort Point.

	15	16	17	18	19	20	21
Years.	1881–3.	1880–1.	1880-3.	1880-3.	1880–3.	1880-3.	1858–61.
No. of years observed	2	1	3	3	3	3	3
$S_1 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·091	0 ·113 79	0·113 133	0 ·222 141	0·096 149	0·021 38	0.015
$S_2 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	1.468	2·337 143	2·012 170	2·769 105	1·362 148	0·968 315	0 ·390 336
$S_4 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0.075	0·037 162	0·081 259	0·106 122	0·067 229	0 ·003 84	
$S_6 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0.005	0·021 94	0·010 48	0·012 187	0.002	0·002 131	
$S_8 \begin{Bmatrix} H = \kappa = 0$	0.008	0 ·008	0 ·005 120	0·008 276	0.002	0·002 80	
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·013 157	0 ·019 88	0.033	0·032 255	0.018	0.010	0·038 170
$\mathbf{M}_{2}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{aligned} ight.$	$\begin{array}{c} 3.627 \\ 58 \end{array}$	5·870 103	5 · 545 13 I	6 ·233 69	3·779 113	2·022 278	1.689 332
$M_3 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0·015 331	0·025 146	0·021 178	0·019 261	0·025 209	0·007 16	
$M_4 \left\{ egin{matrix} H = \\ \kappa = \end{smallmatrix} ight.$	0·727 37	0·079 46	0 ·410 169	0 ·350 5 I	0.901 171	0.008	0·071 ² 4
$M_6 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·159 319	0 · 205 349	0 ·233 87	0·118 252	0 ·102	0·002 317	
$M_8 \begin{cases} H = \kappa \end{cases}$	0·078 270	0.031	0·081 97	0·014 249	0 .038	0 ·002 7°	
$O\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.220	0·349 356	0 ·294 28	0·317 339	0 ·253 48	0 160 3°2	0·780 87
$K_1 \begin{cases} H = \\ \kappa = \end{cases}$	0 ·389 56	0 ·807. 18	0·670 35	0·699 5	0 · 438 40	0·397 327	1·219 107
$K_2 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·435 96	0·401 91	0.570 169	1·104 90	0·336 155	0 · 282 3 I I	0·135 330
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 · 144 47	0·199 33	0·149 55	0·177 337	0·134 60	0·134 326	0·373 105
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·014 327	0·110 61	0.030	0·074 34	0·022 107	0·027 3 ² 5	0·053 121

Table III.

15, Kidderpore. 16, Elephant Point. 17, Rangoon. 18, Amherst. 19, Moulmein. 20, Port Blair, 21, Fort Point.

	15	16	17	18	19	20	21
Years.	1881–3.	1880-1.	1880-3.	1880-3.	1880-3.	1880–3.	1858–61.
No. of years observed	2	1	3	3	3	3	3
$Q\left\{ \begin{matrix} H & = \\ \kappa & = \end{matrix} \right.$	0.039	0·042 336	0·027	0.054	0·045 53	0.024	0·121 74
$\mathbf{L} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·187 74	0:346	0·407 157	0·292 112	0·279 139	0.068	0·059 338
$N \begin{cases} H = \kappa \end{cases}$	0 ·638 47	1 ·543 80	0.990 117	1·322 54	0·679 102	0·399 274	0·374 305
$\lambda \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0·101 107	0·659 145	0·257 170	0.300	0·176 165	0·043 280	0·026 345
$ \mathbf{v} \left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right. $	0·238 353	0.681 209	0·317 100	0 ·425 177	0 · 233 84	0·121 254	0·064 3°5
$\mu \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·242 182	0·356 279	0·514 290	301	0·313 270	0.086	0·029 227
$R \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·167 77		0·117 66	0.451	0·097 7°	0.020 326	0.008
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·147 107		0-290 128	0 ·841 144	0.200	0.099	0·014 198
$MS \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.645 81	0·135 67	0.386	0°347 82	0.712	0.009	0.031
$2SM \left\{ \begin{matrix} H = \\ \kappa = \end{matrix} \right.$	0.085	0 042 84	0·160 54	0.151	0·124 38	0·023 154	
$\mathbf{Mm} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0·244 351	0.145	0.236	0·095 48	0.360	0.014	
$\mathbf{Mf} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0.297	0.098	0·208 34	0·097 3·50	0·334 41	0°057 9	:
$\operatorname{MSf} \left\{ \begin{matrix} \mathrm{H} = \\ \kappa = \end{matrix} \right.$	0 ·875 39	0 ·059 273	0°554 4 9	0·055	1·110 46	0.012	
$\operatorname{Sa}\left\{ \begin{matrix} \mathrm{H} = \\ \kappa = \end{matrix} \right.$	2·740 157	0.930	1:486 150	0.726	2 ·434	0.204	
$\operatorname{Ssa} \left\{ \begin{matrix} \mathrm{H} = \\ \kappa = \end{matrix} \right.$	0.822	0·261 198	0·126 3·28	0.156	0.603 287	0 ·117	

Table III.

22, San Diego. 23, Port Leopold. 24, Beechey Island. 25, Cat Island, Gulf of Mexico. 26, Toulon. 27, Brest. 28, Ramsgate (referred to G.M.T.).

	22	23	24	25	26	27	28
Years.	1860–1.	1848-9.	1858–9.	1848.	1853.	1875.	1864.
No. of years observed	2	1	1	1.	1	1	1
$S_1 \begin{cases} H = \\ \kappa = \end{cases}$	0 •028 238	0.031		0.044	0.010 186	0·015 5²	0.037
$S_2 \begin{cases} H = \\ \kappa = \end{cases}$	0·695 274	0.643	0·686 34	0.068	0.090	2:551 138	1.877
$S_4 \begin{cases} H = \kappa \end{cases}$	0·006 204	0·007 257			0·002 298		0·032 4
$S_6 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$		•••••	•••••			•••••	0·027 27
$S_8 \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$							
$\mathbf{M}_1 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0·049 106	0·045 230	•••••	0 ·007 26	0.010 319	0·004 167	
$\mathbf{M}_{2}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{aligned} ight.$	1·715 276	2·001 338	1 ·996 347	0.116	0·190 252	6 · 766 100	6·144 341
$M_3 \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0·007 19			• • • • • • • • • • • • • • • • • • •	0·004 9	0.067	0·043 56
$\mathbf{M}_4 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	203	0.015	0·024 268	•••••	0 ·011 349	0·169 85	0 · 548 243
$\mathbf{M}_{6}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{array} ight.$	0·012 84	••••		•••••	0·002 152	0·106 3 ² 5	0·164 127
$M_8 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$					0·001 146	0·008 203	0·054 54
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0 ·696 78	0 · 443 164	0·488 162	0·479 315	0·059 302	0·211 3 ² 2	0·342 180
$K_1 \begin{cases} H = \kappa \end{cases}$	1·096 94	0·899 216	0·901 243	0·525 3 ² 5	0.116	0 ·208 66	0.223
$K_2 \begin{cases} H = \\ \kappa = \end{cases}$	0·207 263	0·175 29	0·151 .54	0·028 288	0·024 254	0 ·553 144	0 ·520 24
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·357 90	0·216 218	0 ·215 222	0·156 321	0.041	0 ·071 59	0·073 353
$J\left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·084 99		•••••	0·035 297	0·008 15		

Table III.

22, San Diego. 23, Port Leopold. 24, Beechey Island. 25, Cat Island, Gulf of Mexico. 26, Toulon. 27, Brest. 28, Ramsgate (referred to G.M.T.).

G.111.1.).	22	23	24	25	26	27	28
Years.	1860-1.	1848–9.	1858-9.	1848.	1853.	1875.	1864.
No. of years observed	2	1	1	1	1	1	1
$Q \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·145 75			0·091 3°7	0.006		
$L \left\{ egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} ight.$	0·019 344	0.044	0·080 47	0·012 33	0.007	0.192	0·447 16
$N \begin{cases} H = \kappa \end{cases}$	0·428 260	0 420 306	0·429 315	0·026 33	0.046	1 ·375 83	1 ·084 312
$\lambda \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.059				0.003	0 ·059 59	0·174 351
$ \mathbf{v} \left\{ \begin{array}{l} \mathbf{H} = \\ \mathbf{\kappa} = \end{array} \right. $	0·102 247				0.008	0 · 293 45	0:344
$\mu \begin{cases} H = \\ \kappa = \end{cases}$	0.027	•••••			0.007	0.307	0·251 87
$R \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.010				·		
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.041						,
$MS \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.009						0·324 127
$2SM \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$							0 141
$\operatorname{Mm}\left\{egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix}\right.$			•••••	0·094 3°4	0.061	0.038 328	0 ·029 45
$\mathbf{Mf}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$			•••••	0 ·069 134	0·045 118	0·069 76	0·044 288
$MSf \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$				0.095 336	0·018 53	0·290 5²	0·094 206
$\operatorname{Sa}\left\{egin{array}{l} \mathrm{H} = \ \kappa = \end{array} ight.$	•••••	•••••		0·274 145	0·157 279	0 ·261 234	0·127 181
$\operatorname{Ssa} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$				0·128 35	0·090 144	0·071 93	0·075 288

Table III.

29, West Hartlepool. 30, Portland Breakwater. 31, Liverpool. 32, Liverpool. 33, Helbre Island. 34, Freemantle, West Australia. 35, Mauritius, Port Louis.

N.B.—English ports referred to G.M.T.

	29	30	31	32	33	34	35
Years.	1858-61.	1851, 57, 66, & 70.	1857–60.	1866–70.	1858–67.	1873-4.	1838-9.
No. of years observed	3	4	3	4	10	1	1
$S_1 \begin{cases} H = \kappa \end{cases}$	0.033	0·037 89	0·066 62	0·038 83	•••,•••	0·039	0.013 32
$S_2 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	1.738 139	1 ·074 244	3·240 11	3·101 12	3·128 3	0 145	0·331 26
$S_4 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·022 179	0.012 186	0.056 316	0·058 313	0 ·030 312	0 ·004 72	0.003
$S_6 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$				•••••	•••••		0 ·002 235
$S_{s} \begin{cases} H = \\ \kappa = \end{cases}$				•••••		•••••	0 ·001 114
$\mathbf{M}_1 \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0 ·026 104	0·015 292	0·020 258	0.039 336	0·033 262	0 ·025 261	0·004 100
$M_2 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	5·163 98	2·048 194	10·100 326	9 ·881 3 · 27	9·758 319	0·159 286	0 ·433 23
$\mathbf{M}_{3} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.036	0.036	0·124 3 ² 4	0 ·097 3 ² 4	0·104 293	0.008	0 ·016 167
$M_4 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0.095	0·468 32	0.702	0.683	0 ·479 213	0·010 260	0 ·004 296
$\mathbf{M}_{6}\left\{egin{matrix}\mathbf{H}=\ \kappa=\end{matrix} ight.$	0·074 50	0 ·207 7°	0·211 348	0·184 35°	0·070 34	0·007 277	0·005 94
$M_8 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$		0·012 49	0·077 27 I	0 ·061 285	0.010 352	0 ·005 259	0.001 168
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.434 85	0 ·163 353	0·377 43	0·366 4°	0·370 4 ¹	0·372 291	0 ÷140 98
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·380 248	0·295 114	0 358 194	0 ·353 195	0 ·391 188	0 ·638	0 ·244 121
$\mathbf{K}_{2}\left\{egin{matrix}\mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0 ·488 135	0·301 237	0 ·939 7	0 ·934 7	0·890 358	0 057 288	0·138 23
$P\left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0.112	0·108 108	0·130 192	0 ·126 180	0·146 174	0·156 297	0.056 132
$J \begin{Bmatrix} H = \kappa \\ \kappa = 0$	0·028 224	*****		•••••	0.026	0.029	0.009

Table III.

29, West Hartlepool. 30, Portland Breakwater. 31, Liverpool. 32, Liverpool. 33, Helbre Island. 34, Freemantle, West Australia. 35, Mauritius, Port Louis.

N.B.—English ports referred to G.M.T.

			usa poris	-			
	29	30	. 31	32	33	34	35
Years.	1858–61.	1851, 57, 66, & 70.	1857–60.	1866-70.	1858–67.	1873-4.	1838-9.
No. of years observed	3	4	3	4	10	1	1
$Q \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0.148			•••••	0·113 345	0 ·099 290	0·024 78
$L \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0.200	0.171	0 · 540 345	0·521 328	0·428 33 I	0.021	0 ·033 4
$N \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0.988	0·477 185	1 ·923 306	1 ·888 305	1·857 295	0 ·041 34°	0·137 3²
$\lambda \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.095	0.083	0·259 337	0·204 336	0·194 334	0·006 356	0·018 298
$ u \begin{cases} H = \\ \kappa = \end{cases} $	0·270 88	0·115 140	0·570 285	0·498 297	0·438 278	0.012	0 ·008 257
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.085	0·374 196	0·291 38	0·228 4 ¹	0·083 34	0·016 3 ² 4	0 ·019 3 ¹ 7
$R \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0.008 158		0·092 46		0 · 050 359		
$T \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0.140		0 ·235 333		0·254 3 ² 7		
$MS \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0·044 126	0·267 9°	0·404 270	0·407 270	0 ·280 267		
$2SM \left\{ \begin{matrix} H & = \\ \kappa & = \end{matrix} \right.$	0.026 310	0·059 353	0.152	0·125 227	0.119		
$\operatorname{Mm} \left\{ egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} ight.$	0·127 93	•••••	0·147 165	0·064 260		0·079 147	0 ·047 297
$\mathrm{Mf}\left\{egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} ight.$	0.046		0.036 141	0·057 344		0.082	0·036 35°
$\mathrm{MSf}\left\{egin{matrix} \mathrm{H} = \ \kappa = \end{matrix} ight.$	0 ·137 59		0 ·058 246	0·051 68	•••••	0·032 178	0 · 015 9 I
$\operatorname{Sa} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.265		0.332	0·452 272	•••••	0 537 27	0 ·211 34 ⁶
$\operatorname{Ssa} \left\{ \begin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.097		0·128 175	0·185 229	•••••	0·175 126	0.118
	I	1	I	1			

Table III.

36, Falkland Islands, Port Louis. 37, Malta. 38, Marseilles.
39, Toulon.

	36	37	38	39
Years.	1842-3.	1871–2.	1850-1.	Mean of
No. of years observed	1	1	1	1847, 48, 53.
$S_1 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0·289 25	0·009 162	0.019	0.011
$S_2 \left\{ egin{array}{l} \mathbf{H} &= \ \kappa &= \end{array} ight.$	0·492 195	0.120	0·078 247	0·091 250
$S_4 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0 ·007 64	0.001 37	0·003 277	0·002 288
$S_6 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right\}$				
$S_8 \left\{ egin{array}{l} H = \ \kappa = \end{array} \right\}$				
$\mathbf{M}_1 \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0 · 024 79	0·005 69	0 ·003 1 2 4	0 ·005 168
$M_2 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	1 ·544 157	0·197 93	0·220 228	0·195 246
$M_3 \left\{ egin{array}{l} H &= \ \kappa &= \end{array} ight.$	0·018 83	0·002 204	0 ·005 185	0·004 174
$ m M_4 \left\{ egin{matrix} m H &= \ \kappa &= \end{matrix} ight. ight.$	0·068 357	0·003 35°	0.019	0·014 352
$\mathrm{M}_{6}\left\{egin{array}{l} \mathrm{H} \ = \ \kappa \end{array} ight. = \left. $	0·012 76	0.001		0 001 145
$\mathbf{M}_{8}\left\{egin{matrix}\mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0.010	0·003 127	•••••	0 002 60
$O\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right\}$	0 ·451 4	0 ·024 83	0.069	0·060 120
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$			0·104 181	0·105 186
$\mathbf{K}_{2}\left\{egin{matrix}\mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·170 206	0.033	0 · 016 254	0·019 -254
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·141 87	0·011 58	0 ·040 182	0 041 178
$J \left\{egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$		0 ·001 59	0·008 198	0·005 176

Table III.
36, Falkland Islands, Port Louis. 37, Malta. 38, Marseilles.
39, Toulon.

-	36	37	38	39
Years.	1842-3.	1871–2.	1850–1.	Mean of
No. of years observed	1	1	3	1847, 48, 53.
$Q \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	•••••	0 · 006	0.012	0 ·010 44
$L \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·09 5	0.016 110	0·006 280	0·009 255
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·335 130	0·031 114	0.043	0.049
$\lambda \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	•••••	0·007 7²	0.004	0.010
$v \begin{cases} H = \kappa \end{cases}$		0·00 3	308 0.003	0.011
$\mu \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	•••••	0·003 73	0·004 187	0.009
$R \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$				
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$				
$\operatorname{MS} \left\{ \begin{matrix} \mathbf{H} & = \\ \kappa & = \end{matrix} \right.$				
$2SM \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$				
$\mathbf{Mm} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	•••••		0·010 293	0·057 196
$\operatorname{Mf} \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	•••••	•••••	0.019	0·061 159
$\operatorname{MSf} \left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$			0·008 41	0·029 3·23
$\operatorname{Sa}\left\{egin{array}{l} \mathrm{H} = \\ \kappa = \end{array}\right.$			0·151 185	0·123 254
$\operatorname{Ssa} \left\{ \begin{matrix} \mathrm{H} \ = \\ \kappa \ = \end{matrix} \right.$	******		0·170 118	0.108

Table IV. Penobscot Bay.

Year	1870.	1871.	1872.	1873.	1874.	1875.	Mean.
$S_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.068	0·015 78	0·022 67	0.020	0·020 73	0.002	0.024±0.004 65.9 ±10.8
$S_2 \begin{cases} K = \kappa \\ \kappa = \kappa \end{cases}$	0.825 35°	0·735 356	0·776 357	0·797 354	0·746 354	0· 74 7 35 ⁸	0.771 ± 0.007 354.7 ± 9.8
$S_4 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0.008	0 ·004 73	0·003 346	0.006	0 ·005	0 ·004 29	
$S_6 \begin{cases} H = \\ \kappa = \end{cases}$							
$S_8 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$							
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	Not	reduced	accordin		ne rules a omitted.	s the res	t of our results
$M_2 \begin{Bmatrix} H = \kappa \\ \kappa = 0$	4.878	4·849 319	4·910 320	4.911	4·884 320	4·937 320	4.895 ± 0.008 319.82 ± 0.10
$M_3 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.012	0·002 135	161 0.008	0.012	0·006 279	0.002	
$M_4 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0.039	0·021 154	0·019 173	0·028 115	0 ·020 127	0·022 121	
$\mathbf{M}_{6}\left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·118 61	0·115 60	0·121 65	0·125 61	0·122 60	0·119 58	
$M_8 \begin{Bmatrix} H = \kappa = 0$	0·017 336	0.014	0.009	0·018 336	0·014 326	0.016	
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.363	0.351	0 364	0·353	0.354	0.366	0.359 ± 0.002 111.1 ± 0.55
$K_1 \begin{cases} H = \kappa \end{cases}$	0.455	0 ·459 130	0.452	0 ·452 129	0·459 129	0.440	0·453± 0·002 129·6 ± 0·35
$K_2 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0.256	0 ·229 351	0·226 359	0.195	0 ·235	0.238	0.230 ± 0.006 358.8 ± 1.7
$P\left\{\begin{matrix} H = \\ \kappa = \end{matrix}\right.$	0.152	0 .151	0·148 137	0·152	0·155	0.160	0.153± 0.001 130.5 ± 1.2
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.025	0.014	0.026	0.031	0.019	0.009	0·020 3 ¹ 5

Table IV.

Penobscot Bay.

Year	1870.	1871.	1872.	1873.	1874.	1875.	Mean.
$Q\left\{ \begin{matrix} H & = \\ \kappa & = \end{matrix} \right.$	0·060 245	0·058 27I	0·073 259	0·058 246	0.077	0·073 284	0.066 ± 0.002 262.8 ± 3.7
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.336 0.336	0 172 187	0·195 156	0·285 193	0·223 219	0·209 209	0.237 ± 0.017 192.1 ± 6.4
$N \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	1·046 295	1·136 291	0.986 287	0.929 289	0 ·991 291	1·027 289	1.019 ± 0.019 290.3 ± 0.8
$\lambda \begin{Bmatrix} \mathbf{H} = \\ \kappa = \end{Bmatrix}$	0.083	0·132 256	0·043 146	0·120 256	0·156 125	0·177 234	0·064 196
$v \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	1	317	306 0.093	0.320	0.215	0·289 3·23	0 ·274 308
$\mu \begin{cases} H = \kappa \end{cases}$	0.043	0·034 194	0·015 176	0.031 241	0.048	0.035	0·032 216
$R \begin{Bmatrix} H = \kappa = 0$	0.068	0.026	0·055 9²	0.050 35 ²	0.035	0.062	
$T \begin{Bmatrix} H = \kappa \\ \kappa = 0$	0.189	0·104 139	0·190 5°	0·233 33 I	0.156	0.087	0·022 288
$MS \left\{ \begin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	308 0.036	0.016	0.025	0.010	0.028	0·010 75	
$2SM \begin{cases} H = \\ \kappa = \end{cases}$	0.039	0.014	0.021	0.025	0.055	0·025 4 ^I	
$\operatorname{Mm}\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·082 96	0.069	0·024 34	0.074	0·057 279	0.014	
$\operatorname{Mf}\left\{ egin{matrix} \mathbf{H} = \\ \kappa = \end{matrix} \right.$	0 ·012	0.037	0.048	0.047	0.073	0·040 95	
$\operatorname{Msf} \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.190	0 ·157	0·163 152	0.229	0.180	0·123 159	0·174± 0·010 157± 1·2
$\operatorname{Sa}\left\{egin{array}{l} \mathrm{H} = \\ \kappa = \end{array}\right.$	0.080	0.176		0.120	0·177 188	0.262) κ is computed on hypothesis that these are
Ssa $\begin{cases} H = \\ \kappa = \end{cases}$	0.090	0·093 57	••••	0.097 111	0·026 146	0·152 74	astronomical tides.

Table IV.

Port Townsend.

Astoria, Oregon.

Commence, January, 1874.

Year	1874.	1875.	1876.	Mean.	1874.	1875.	1876.	Mean.
$S_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.086	0·072	0·102 114	0.087	0.051	0.053		0.052
$S_2 \left\{ egin{array}{l} H &= \ \kappa &= \end{array} ight.$	0 ·557 130	0·558 129	0·542 129	0.552	0.778	0 ·774 38	0 ·811 41	0·788 4°
$S_4 \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0 ·007 349	0.011 316	0·013 316	0·010 327	0·012 344	0.009 341	0·007 348	0·009 344
$S_6 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$								
$S_8 \begin{cases} H = \kappa \end{cases}$								
$M_1 \begin{cases} H = \\ \kappa = \end{cases}$								
$\mathbf{M}_{2} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	2·202 109	2 ·311 108	2·218 108	2·244 108·5	2 · 963	2·942 12	2.905	2·937 11·7
M_3 $\left\{ egin{array}{l} H = \\ \kappa = \end{array} \right.$	0·021 41	0 ·015 3 +3	0·022 298	0·019 347	0.021	0·013 63	0 ·029 34	0·021 68
$M_4 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0·128 297	0·113 299	0·125 295	0·122 297	0.093	0.095 329	0·116 3 ² 9	0·101 326
$M_6 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	0·032 240	0·027 255	0.028 236	0 ·029 244	0.033	0.026	0.033	0.031
$M_8 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$								
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	1 ·407 132	1:397	1·430 130	1·411 131	0.773	0 ·752 118	••••	0.762 118
$K_1 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	2·475 149	2·470 148	2·465 148	2·470 149	1·290 129	1.288		1·289 129
$K_2 \begin{Bmatrix} H = \kappa \\ \kappa = 0$	0.171	0.145	0 ·167 137	0·161 132	0 .233	0.214		0·224 26
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·776 145	0·751 147	0·787 147	0·771 147	0·374 96	0·347 96		0 ·360 96
$J\left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·162 36	0 ·050 345	0·149 167		0·067 172	0·009 142		

Table IV.

Port Townsend.

Astoria, Oregon.

Commence, January, 1874.

Year	1874.	1875.	1876.	Mean.	1874.	1875.	1876.	Mean.
$Q \begin{cases} H = \kappa \end{cases}$	0·297 119	0·315 124	0 ·295 124	0.302	0.175	0·156 120	••••	0.166
$L \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·085 347	0·107 355	0.080	0.091 341	0·117 198	0·119	0·109 198	0·112 204
$N \begin{cases} H = \\ \kappa = \end{cases}$	0 ·461 82	0 ·466 8 I	0 · 440 79	0·456 80	0·574 352	0·556 351	0·543 345	0·559 349
$\lambda \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right\}$	0.045	0.031	0·019 33²	0.031	0·073 192	0.032	0.035 150	0·047 181
$ u \begin{cases} H = \\ \kappa = \end{cases} $	0·156 76	0·089 46	0·029 137	0·091 86	0 · 202 342	0.127	0 ·129 53	0·153 16
$\mu \left\{ egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} \right.$	0·078 35 ²	0 ·098 7	0·059 35 ⁶	0·078 358	0.016	0.030 142	0.040 108	0·029 127
$R \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right\}$	0.010 35 ²	0.008	0 ·020 241	0 ·013 269	0.016	0·002 320	0·126 148	
$T \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0·071 38	0.050	0·108 175		0·083 3°7	0·067	0 ·058 169	-
$MS \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right\}$	0·062 319	$\begin{bmatrix} 0.072\\310 \end{bmatrix}$	0.028 318	0 ·064 316	0·055 34 ^I	0·049 344	0·053 4	0·052 35°
$2SM \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right\}$	0·011 62	0.017	0.018 41	0 ·016 49	0.018	0·021 259	0·030 246	0·023 242
$\operatorname{Mm} \left\{ egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} \right\}$								
$\operatorname{Mf}\left\{egin{array}{l} \operatorname{H} = \\ \kappa = \end{array}\right.$								
$MSf \left\{ egin{array}{l} H &= \\ \kappa &= \end{array} \right.$								
$\operatorname{Sa}\left\{egin{array}{l} \mathrm{H} = \\ \kappa = \end{array}\right\}$					-			
$\operatorname{Ssa} \left\{ \begin{matrix} \mathbf{H} & = \\ \kappa & = \end{matrix} \right $			~					

Table IV.

San Diego.

St. Thomas.

Commence 0 h., January 1, 1869.

Commence October 4, 1872.

Year	1869.	1870.	1871.	Mean.	1872-3.	1873–4.	1874-5.	Mean.
$S_1 \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$	0 ·024 54	0.024	0·023	0.024	0.007	0·017 249	0.008	0.011
$S_2 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$	0 ·701 274	0·69 7 274	0·716 275	0·704 275	0.030	0.032	0 ·031 242	0.031
$S_4 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0.006	0.005 169	0.006	0·006 207				
$S_6 \left\{ egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} ight.$						٠		
$S_8 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$								
$M_1 \left\{ egin{array}{l} H = \ \kappa = \end{array} ight.$								
$M_2 \begin{cases} H = \kappa \\ \kappa = \kappa \end{cases}$	1·710 279	1 ·703 279	1 ·697 280	1 · 703 279	0.131	0.121	0·119 207	0.124
$M_3 \left\{ egin{matrix} \mathrm{H} &= \ \kappa &= \end{matrix} ight.$	0.008	0·012 67	0·00 5 4 ⁸	0 ·008 49				
M_4 $\begin{cases} H = \\ \kappa = \end{cases}$	0.025	0·026 193	0.030 194	0·027 196		-		
$\mathbf{M}_{6} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} ight.$	0·010 150	0.011	0.009	0 ·010 126				
M_8 $\left\{ egin{array}{l} H = \\ \kappa = \end{array} \right.$								
$O\left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right.$	0.697	0·698 71	0·714 72	0 ·703 7 I	0·237 149	0 · 240 153	0· 253 156	0 ·243 153
$K_1 \begin{cases} H = \kappa \end{cases}$	1·010 96	1 ·010 96	1·010 96	1 · 010 96	0·290 173	0·296 170	0:300 170	0 · 2 9 5 17 I
$K_2 \begin{cases} H = \kappa \\ \kappa = 0 \end{cases}$	0·207 268	0·202 265	0·194 266	0·201 266				
$P \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0 ·358 93	0 ·349 92	0·339 95	0 ·349 93	0 ·082 190	0 ·080 167	0.073	0·078 176
$J \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$								

Table IV.

San Diego.

St. Thomas.

Commence 0 h., January 1, 1869.

Commence October 4, 1872.

Year	1869.	1870.	1871.	Mean.	1872–3.	1873-4.	1874-5.	Mean.
$Q \begin{cases} H = \kappa \end{cases}$		-		ï				
$L \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·065 62	0.028	0.032	0·042 69				
$N \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0 · 423 262	0.412	0·401 264	0·412 263				
$\lambda \left\{ egin{matrix} H = \\ \kappa = \end{matrix} \right.$								
$v \left\{ egin{array}{l} H = \\ \kappa = \end{array} \right.$								
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0·024 256	0 ·037	0·017 258	0 ·026 253				
$R \left\{ \begin{matrix} H = \\ \kappa = \end{matrix} \right.$								444
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$								
$MS \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$								
$2SM \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right\}$								
$\operatorname{Mm}\left\{egin{array}{l} \operatorname{H} = \\ \kappa = \end{array}\right.$								
$\mathbf{Mf} \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{array} \right\}$								
$MSf \left\{ egin{array}{l} H = \\ \kappa = \end{array} \right.$					Me	teorologi	cal	
$\operatorname{Sa}\left\{egin{array}{l} \mathrm{H} = \\ \kappa = \end{array}\right.$						0·007 355	0.037	
$\operatorname{Ssa}\left\{egin{array}{l} \mathrm{H} = \ \kappa = \end{array} ight.$						0·049 98	0·061 207	

Table IV.

Sandy Hook.

Year	1876.	1877.	1878.	1879.	1880.	1881.	Mean.
$S_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.026	0.028	0·028 254	0:025	0·036 255	0.049	0.032
$S_2 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0 ·439 246	0 · 432	0 ·436 2+8	0 ·445 245	0·416 242	0 ·435 249	0·434 246
$S_4 \left\{ egin{matrix} H &= \\ \kappa &= \end{matrix} \right.$	0 ·036 65	0·047 64	0.033	81 0 .033	0 ·037 68	0·041 5²	0·038 69
$S_6 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$							
$S_8 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	-						
$M_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$							
$M_2 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	2:238	2·230 218	2·272 218	2 · 244	2·229 215	2·250 216	2·246 217
$M_3 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0·025 191	0·022 196	0.021	0.035	0.029	0.030	0.027
$M_4 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} ight.$	0·020 349	0·016 339	0·017 336	0.020	0 ·024 335	0 ·027 3 ² 9	0·021 335
$M_6 \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right.$	0 · 049 352	0·048 355	0.053	0 046 344	0·057 344	0·059 34²	0·052 348
$M_8 \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	1						
$O\left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0·178 94	0·167 95	0·13 3 99	0·157 101	0·177 9°	0·176 100	0·170 97
$K_1 \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0·322 91	61 0.330	0 · 3 40 90	0 ·337	88 0 ·333	0·342 90	0·334 90
$K_2 \begin{cases} H = \kappa \end{cases}$	0 ·129 45	0·126 34	0.113	0·114 4 0	0·130 35	0·160 40	0·129 37
$P\left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0 ·103 97	0.123	0.091 103	0·100 107	0·102 106	0.100	0·103 104
$J\left\{egin{array}{l} \mathbf{H} &= \ \kappa &= \end{array} ight.$	0·013 86	0·024 125	0·014 145	0·014 111	0·009 107	0 ·025 134	0.016

Table IV.

Sandy Hook.

Year	1876.	1877.	1878.	1879.	1880.	1881.	Mean.
$Q \left\{ egin{matrix} H &= \ \kappa &= \end{matrix} \right\}$	0.039	0.039	0·029 107	0.033	0·033 98	0·037 134	0.035
$\mathbf{L}\left\{egin{matrix}\mathbf{H} &= \\ \kappa &= \end{matrix} ight.$	0.103	0 ·110 47	0·108 3°	0·084 35	0.075	0.072	0:092 31
$\mathbf{N} \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right\}$	0·470 198	0.507	0·532 199	0.500	0·457 199	0 ·475 199	0 ·490 199
$\lambda \left\{ egin{matrix} \mathbf{H} &= \ \kappa &= \end{matrix} \right.$	0.012	0 .039	0.030	0·029 69	0·042 60	0·062 13	0·036 35
$ \nu \left\{ \begin{array}{l} \mathbf{H} = \\ \kappa = \end{array} \right. $	0·045 178	0·124 238	0·167 198	0·153 170	0·065 149	0·077 253	0·105 198
$\mu \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0.072	0.063	0·094 235	0·061 207	0·083 249	0·039 236	0.069
$R \left\{ \begin{matrix} H = \\ \kappa = \end{matrix} \right.$	0.020 3.24	0.030 241	0.010	0·011 16	0·073 318	0·037 9	0 · 030 334
$T \begin{Bmatrix} H = \\ \kappa = \end{Bmatrix}$	0.098	0·105 34	0·046 306	0·075 155	0·111 94	0.058	
$MS \left\{ egin{matrix} \mathbf{H} &= \\ \kappa &= \end{matrix} \right.$	0 ·045 116	0.037	0·050 107	116 0.039	0·041 104	0·040 114	0.042
$2SM \left\{ \begin{matrix} H = \\ \kappa = \end{matrix} \right.$	0.018	0·014 158	0·007 66	0·021 237	0.010	0 ·005 3 2 3	
$\operatorname{Mm}\left\{egin{array}{l} \mathrm{H} = \\ \kappa = \end{array}\right.$							
$Mf \begin{cases} H = \\ \kappa = \end{cases}$							
$\operatorname{Msf} \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$	0.030 41	0·014 171	0·010 33²	0·042 224	0.011	0.014	
$\operatorname{Sa}\left\{egin{array}{l} \mathbf{H} = \\ \kappa = \end{array}\right.$	0.083	0.066	0·066 164	0.072	0.060	0·058 198	0·068 208
$\operatorname{Ssa} \left\{ \begin{array}{l} H = \\ \kappa = \end{array} \right.$							
	<u> </u>	1		l	1	1	<u> </u>

VOL. XXXIX. P