Divsion of Mathematics and applied mathematics Mälardalen University Examiner: Mats Bodin

Examination Vector algebra
MAA150 - TEN2
Date: 2015-11-06

Exam aids: not any

All solutions should be presented so that calculations and arguments are easy to follow. All answers should be motivated. Each solution should end with a clearly stated answer.

- 1 Find the area of the triangle with vertices A = (0,0,1), B = (1,1,0) and C = (2,2,2). (6p)
- 2 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation given by first a reflection in the line y = -x and then a rotation 45° counter clockwise. Find the standard matrix [T] of T. (6p)
- **3** Let W be the subspace of \mathbb{R}^4 that is given by $W = \{ \mathbf{x} \in \mathbb{R}^4 : x_1 x_2 x_3 + x_4 = 0 \}$.
- **a.** Find a basis for W. (3p)
- **b.** Show that $V = \text{span}\{(1, -1, 1, -1), (-1, 1, 1, 3), (0, 0, 1, 1)\}$ is a subspace of W and find the dimension of V.
- 4 The matrix

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 3 & -2 \end{bmatrix}$$

has eigenvalues $\lambda = 2$, $\lambda = 1$ och $\lambda = -1$.

- **a.** Find the eigenvectors corresponding to the eigenvalues of the matrix A. (3p)
- **b.** Explain why A is diagonalizable. (1p)
- c. Construct a matrix P that diagonalizes A. Find the diagonal form D of the matrix A and state the algebraic relation between A, P and D. (3p)

Avdelningen för Matematik och tillämpad matematik Mälardalens högskola Examinator: Mats Bodin

Tentamen Vektoralgebra MAA150 - TEN2 Datum: 2015-11-06

Hjälpmedel: inga

Lösningarna skall presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Alla svar skall motiveras. Avsluta varje lösning med ett tydligt angivet svar!

- Bestäm arean av triangeln med hörn i A = (0,0,1), B = (1,1,0) och C = (2,2,2).1 (6p)
- Låt $T: \mathbb{R}^2 \to \mathbb{R}^2$ vara den linjära avbildning som ges av först en spegling i linjen y = -x och $\mathbf{2}$ sedan en rotation 45° moturs. Bestäm T:s standardmatris [T]. (6p)
- Låt W vara det underrum till \mathbb{R}^4 som ges av $W = \{ \mathbf{x} \in \mathbb{R}^4 : x_1 x_2 x_3 + x_4 = 0 \}.$ 3
- a. Bestäm en bas till W. (3p)
- **b.** Visa att $V = \text{span}\{(1, -1, 1, -1), (-1, 1, 1, 3), (0, 0, 1, 1)\}$ är ett underrum till W och bestäm V:s dimension. (3p)
- 4 Matrisen

$$A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & -1 \\ 1 & 3 & -2 \end{bmatrix}$$

har egenvärden $\lambda = 2$, $\lambda = 1$ och $\lambda = -1$.

- a. Bestäm tillhörande egenvektorer för egenvärdena till matrisen A.(3p)
- **b.** Motivera varför A är diagonaliserbar. (1p)
- c. Konstruera en matris P som diagonaliserar A. Ange A:s diagonalform D och sambandet mellan A, P och D. (3p)

Answers

1) $\frac{3}{\sqrt{2}}$ area units.

$$[T] = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ -1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}$$

3a)
$$B = \left\{ \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\0\\1 \end{bmatrix} \right\}$$
 is a basis for W

3b)
$$\dim(V) = 2$$

4a) The eigenvectors for
$$\lambda_1 = 2$$
, $\lambda_2 = 1$, and $\lambda_3 = -1$ are

4a) The eigenvectors for
$$\lambda_1 = 2$$
, $\lambda_2 = 1$, and $\lambda_3 = -1$ are $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 1 \\ 3 \end{bmatrix}$.

4b) A is diagonalizable because A has three distinct eigenvalues.

4c)
$$A = PDP^{-1}$$
 where

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 3 \end{bmatrix} \text{ and } D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

MAA150 Vektoralgebra, ht-15.

Bedömningskriterier TEN2 2015-11-06

Allmän bedömningsgrund

Lösningarna skall presenteras på ett sådant sätt att räkningar och resonemang blir lätta att följa. Alla svar skall motiveras. Avsluta varje lösning med ett tydligt angivet svar.

Bedömning uppgifter

- 1. Fullständigt löst uppgift ger 6 poäng. Ange en korrekt formel för arean av triangeln ger 1 poäng och bestämma relevanta vektorer ger 2 poäng. Beräkna kryssprodukt ger 2 poäng, och att beräkna norm ger 1 poäng.
- 2. Fullständigt löst uppgift ger 6 poäng. Reflektionen ger maximalt 2 poäng: Korrekt figur för reflektionsavbildning ger 1 poäng, tillhörande standardmatris ger 1 poäng. Rotationsavbildningen ger maximalt 2 poäng: standardmatrisen för en godtycklig vinkel ger 1 poäng, och korrekt bestämd för 45° ger 1 poäng. Bestämma standardmatrisen för sammansättning ger 2 poäng: korrekt sammansatt ger 1 poäng, och uträknad med matrismultiplikation ger 1 poäng.
- 3. a. Fullständigt löst uppgift ger 3 poäng. Rätt lösningsmetod att ställa upp $x_1 x_2 x_3 + x_4 = 0$ ger 1 poäng. Bestämma den allmänna lösningen ger 1 poäng. Ta ut basvektorerna från lösningen ger 1 poäng.
 - b. Fullständigt löst uppgift ger 3 poäng. Korrekt motivering till varför V är ett underrum till W ger 1 poäng. Att bestämma dimensionen för V ger 2 poäng.
- 4. a. Fullständigt löst uppgift ger maximalt 3 poäng. 1 poäng per egenvektor. Delpoäng för korrekt ekvationssystem $(A \lambda I)\overline{v} = \overline{0}$ för någon av egenvärdena.
 - b. Korrekt motivering ger 1 poäng.
 - c. Fullständigt löst uppgift ger 3 poäng. Att ange korrekt P ger 1 poäng, och tillhörande D ger 1 poäng. Sambandet $A = PDP^{-1}$ eller ekvivalent samband ger 1 poäng.

1/3

$$(\mathcal{I}_{a}) A = (0,0,1), B = (1,1,0), C = (2,2,2)$$

$$\overrightarrow{AB} = (1,1,0) - (0,0,1) = (1,1,-1)$$

$$\overrightarrow{AC} = (2,2,2) - (0,0,1) = (2,2,1)$$

$$\overrightarrow{AB} \times \overrightarrow{AC} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \times \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ -3 \end{bmatrix}$$

$$|Area = ||AB \times AO|| = ||(3, -3, 0)||$$

$$= \sqrt{3^2 + (-3)^2 + 0^2} = \sqrt{18} = \sqrt{9.2} = 3\sqrt{2} = 3$$

$$= \sqrt{2} = \sqrt{$$

Answer: 3 a.e

(2)
$$T_{1}$$
:

 $T_{1}(x,y) = (-y,-x)$
 $Y = -x \Leftrightarrow x = -y = T_{1}(1,0) = (0,-1)$
 $T_{1}(0,1) = (-1,0)$

$$\begin{bmatrix} T_1 \end{bmatrix} = \begin{bmatrix} 6 & -1 \\ -1 & 0 \end{bmatrix}$$

$$T = T_{450} \circ T_{1} \Rightarrow [T] = [T_{450}][T_{1}] = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{12} \end{bmatrix}$$

(3a) W is the nullspace to the matrix
$$A = [1-1-1]$$

Solve $x_1-x_2-x_3+x_4=0$. Set free variables $x_2=s$, $x_3=t$, $x_4=u \Rightarrow x_1=x_2+x_3-x_4=s+t-4$ which gives the general solution

$$\overline{X} = \begin{bmatrix} s+t-u \\ s+t \end{bmatrix} = s \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + u \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

(3b) V is a subspace of W if

$$V_1 = (1,-1,1,-1)V_2 = (-1,1,1,3)$$
 and $V_3 = (0,0,1,1)$ belongs to W

Checking that they satisfy $x_1 - x_2 - x_3 + x_4 = 0$
 $V_1 : 1 - (-1) - 1 + (-1) = 0$ ow!

Hence spanfunzible $V_2 : -1 - 1 - 1 + 3 = 0$ ok!

Hence spanfunzible $V_3 : 0 - 0 - 1 + 1 = 0$ ok!

Is a subspace of W

dim(v) is given by the number of leding 11s in the row-reduced matrix

$$\begin{bmatrix} 1 & -1 & 1 & -1 \\ -1 & 1 & 3 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 0 & 2 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

2 leading 7:s so {r, r₂ } is a basis of V TEN2 2015 - 11-06

 $\frac{3}{3}$

(4a)
$$\lambda_1 = 2$$
, $\lambda_2 = 1$, $\lambda_3 = -1$ are solutions to $\det(A - \lambda_1 I) = 0$

$$[k=2]$$
 $(A-2.I)$ $V=5$ \Rightarrow $\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 1 & 3 & -4 & 0 & 0 & 0 \end{bmatrix}$

and
$$v_1 = 4t - 3t = t$$

So
$$\overline{V}_1 = t[1]$$
, With $t=1$, $\overline{V}_1 = [1]$ is an eigenvector.

$$\left[\frac{1}{\sqrt{2}} \right] \left[\begin{array}{c|c} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ \end{array} \right] \left[\begin{array}{c|c} 1 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 \\ \end{array} \right] \left[\begin{array}{c|c} 3 & \sqrt{0} & 0 & 0 \\ 0 & 3 & -3 & 0 \\ \end{array} \right] \left[\begin{array}{c|c} 3 & \sqrt{0} & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{array} \right]$$

$$V_3 = t \Rightarrow V_2 = t , V_1 = 0$$
 so $V_2 = t \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, Let $t = 1$

$$\begin{bmatrix}
 3 & 6 & 0 & | & 6 \\
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 3 & 0 & 0 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 3 & -1 & 0 & 0
 \end{bmatrix}
 \begin{bmatrix}$$

$$v = \begin{cases} 1 & 3 & -1 & 0 \\ 0 & 3 & -1 & 0 \end{cases}$$
 $v_3 = 3t \Rightarrow v_2 = t \text{ ode } v_1 = 0$