Cálculo Numérico Solución de sistemas lineales

Rafael Orive Illera

Departamento de Matemáticas Universidad Autónoma de Madrid rafael.orive@uam.es

Febrero 2020

Objetivo Resolver sistemas lineales de ecuaciones:

en forma matricial

$$Ax = b$$

A matriz cuadrada real de orden d, b vector de \mathbb{R}^d conocido y x vector de \mathbb{R}^d desconocido.

Teorema Rouche- Frobenius. Si A es invertible $(\det(A) \neq 0)$, el sistema posee una única solución $x = A^{-1}b$ (Regla de Cramer)

Problema: Invertir matrices es muy costoso. Buscamos eficiencia.

ÁLGEBRA LINEAL NUMÉRICA

Eliminación gaussiana

Vamos a escribir d sistemas equivalentes: $A^{(1)}x = b^{(1)}, \dots, A^{(d)}x = b^{(d)}$.

Sistema 1: $A^{(1)} = A$, $b^{(1)} = b$, sistema $A^{(1)}x = b^{(1)}$.

Sistema 2: Eliminamos x_1 de las ecuaciones $2,3,\ldots,d$ del sistema $A^{(1)}x=b^{(1)}$. Definimos $A^{(2)}=M_1A^{(1)}$, $b^{(2)}=M_1b^{(1)}$, y obtenemos el sistema $A^{(2)}x=b^{(2)}$. M_1 es la matriz identidad de dimensión d que la columna 1 la hemos sustituido por el vector

$$c_1 = (1, -\ell_{21}, \dots, -\ell_{d1})^t, \qquad \text{con } \ell_{j1} = \frac{a_{j1}^{(1)}}{a_{11}^{(1)}}, \quad j = 2, \dots, d.$$

Sistema 3: Eliminamos x_2 de las ecuaciones $3, \ldots, d$ del sistema $A^{(2)}x = b^{(2)}$. Definimos $A^{(3)} = M_2 A^{(2)}$, $b^{(3)} = M_2 b^{(2)}$, y obtenemos el sistema $A^{(3)}x = b^{(3)}$. M_2 es la matriz identidad de dimensión d en la que hemos sustituido la columna 2 por el vector de \mathbb{R}^d :

$$c_2 = (0, 1, -\ell_{32}, \dots, -\ell_{d2})^t, \qquad \text{con } \ell_{j2} = \frac{a_{j2}^{(2)}}{a_{22}^{(2)}}, \quad j = 3, \dots, d.$$

...

Sistema d: Eliminamos x_d de la ecuación d que nos ha quedado del sistema previo $A^{(d-1)}x=b^{(d-1)}$. Definimos $A^{(d)}=M_{d-1}A^{(d-1)}$, $b^{(d)}=M_{d-1}b^{(d-1)}$, y obtenemos el sistema $A^{(d)}x=b^{(d)}$ donde $A^{(d)}$ es una matriz triangular superior que llamamos U y al vector lo llamamos $b^{(d)}=c$.

 M_{d-1} es la matriz identidad de dimensión d en la que hemos sustituido la columna d-1 por el vector de \mathbb{R}^d :

$$c_{d-1} = (0, \cdots, 1, -\ell_{dd-1})^t, \qquad \text{con } \ell_{dd-1} = \frac{a_{dd-1}^{(d-1)}}{a_{d-1d-1}^{(d-1)}}.$$

Conclusión: Nos ha quedado el sistema Ux = c de fácil solución mediante una sustitución regresiva.

Factorización LU.

La eliminación gaussiana nos determina en el último sistema equivalente una matriz triangular superior U. Además, en el cálculo de esta matriz hemos identificado unos valores ℓ_{jk} con $k \in \{1, \ldots, d-1\}$, $j \in \{k+1, \ldots, d\}$ con los que construimos la matriz triangular inferior L. Así:

$$L = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ \ell_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \ell_{d1} & \ell_{d2} & \cdots & 1 \end{pmatrix} \qquad U = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{dd} \\ 0 & u_{22} & \cdots & u_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{dd} \end{pmatrix}$$

tal que A = LU: Factorización LU.

Consecuencia de esta factorización: Resolver el sistema Ax = b es equivalente a \blacktriangleright Primero, resolver un sistema progresivo,

calcular vector c que satisface Lc = b.

- ▶ Segundo, resolver el sistema regresivo Ux = c con c del punto anterior.
- ▶ El vector x obtenido en el punto anterior es la solución de Ax = b

Teorema

Dada una matriz cuadrada A de dimensión de d. Sean A_k las submatrices principales

de orden
$$k$$
 de A , con $k=1,2,\ldots,d$, $A_k=\begin{pmatrix} a_{11}&\cdots&a_{1k}\\ \vdots&\ddots&\vdots\\ a_{k1}&\cdots&a_{kk} \end{pmatrix}$. Entonces, el método

de eliminación gaussiana puede completarse si, y solo si todas las submatrices principales son invertibles.

Corolario

Si A tiene factorización LU, la factorización es única y coincide con la que se obtiene por eliminación gaussiana al resolver un sistema AX = b.

Teorema

Sea A matriz cuadrada simétrica definida positiva $(x^T Ax > 0 \text{ si } x \neq 0)$. Entonces A es no singular y sus submatrices principales son no singulares.

A matriz cuadrada es estrictamente dominante diagonalmente si satisface que para todo i, $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$.

Teorema

Sea A matriz cuadrada estrictamente dominante diagonalmente. Entonces A es no singular y sus submatrices principales son no singulares.

Pivotaje parcial

Problemas de la eliminación gaussiana para una matriz invertible A:

- ▶ Algún pivote nulo, $u_{ii} = 0$.
- ► Aritmética inexacta (por pivotes pequeños)

Solución: Eliminación gaussiana con pivotaje parcial:

- Estamos en el sistema $A^{(k)}x = b^{(k)}$ y vamos a eliminar x_k de d-k ecuaciones
- Identificamos el primer $p(k) \in \{k, k+1, \ldots, d\}$ tal que

$$|a_{p(k)k}^{(k)}| = \max\left\{|a_{jk}^{(k)}| : \text{ para } j \in \{k, \dots, d\}\right\}.$$

- Permutamos las ecuaciones k y p(k), con la matriz P_k
- Eliminación gaussiana de x_k de las ecuaciones k+1 a d, con la matriz M_k .
- ullet Haciendo este proceso en d-1 etapas, obtenemos una triangular superior

$$U = M_{d-1}P_{d-1}\cdots M_1P_1A = M_{d-1}\widetilde{M}_{d-2}\cdots \widetilde{M}_1P_{d-1}\cdots P_1A$$

Invirtiendo $M_{d-1}\widetilde{M}_{d-2}\cdots\widetilde{M}_1$ se obtiene

$$PA = LU$$

donde P es una matriz de permutaciones, L triangular inferior con 1's en la diagonal y U triangular superior.

Método de Cholesky

Sea A una matriz cuadrada simétrica de tamaño d definida positiva. Entonces, existe una única matriz triangular inferior C (matriz de Cholesky) tal que $\mathbf{A} = \mathbf{C}\mathbf{C}^{\mathrm{T}}$.

Cómo se construye C. Dado que A es una matriz cuadrada simétrica definida positiva, el método de la eliminación gaussiana es aplicable y obtenemos la factorización A = LU. Entonces,

$$C = L \cdot \left(\begin{array}{ccc} \sqrt{u_{11}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sqrt{u_{dd}} \end{array} \right)$$

donde los u_{ii} son los pivotes de la matriz U.

Método iterativos

Idea:

- 1) Reemplazamos el sistema Ax = b (1) por otro equivalente x = Px + c (2).
- 2) Constuímos una sucesión de vectores $\{x_k\}_{k\geq 0}$ tal que

$$x_{k+1} = Px_k + c$$
, método iterativo

3) Si el método iterativo es convergente, $x_k \to x$ cuando $k \to \infty$, entonces x = Bx + c.

Teorema

Sea P matriz cuadrada de tamaño d. Entonces, el método iterativo $x_{k+1} = Px_k + c$ es convergente para todo $x_0 \in \mathbb{R}^d$ si, y solo si el radio espectral es menor que 1, $\rho(P) < 1$.

$$\rho(P) = \max_{i \in \{1, \dots, d\}} \{ |\lambda_i(P)| : \lambda_i \in \operatorname{spe}(P) \}$$

donde spe(P) es el conjunto de todos los autovalores de P con su multiplicidad

$$\operatorname{spe}(P) = \{\lambda_1(P), \dots \lambda_d(P)\} \subset \mathbb{C}.$$

P se conoce como matriz iteración. Definiendo error $e_n = x_n - x$ en la iteración n y $e_n = Pe_{n-1}$. Entonces, con $\|\cdot\|$ norma de \mathbb{R}^d

$$||e_n|| \le \rho(P)||e_{n-1}||$$

Llamo $R = -\log_{10} \rho(P)$ razón de convergencia. 1/R es el número de iteraciones que necesito para dividir por 10 el error.

Cómo tomamos P. Descomponemos A = M - N donde M es una matriz *fácil* de invertir. Así,

$$Ax = b \Leftrightarrow Mx = Nx + b \Leftrightarrow x = M^{-1}Nx + M^{-1}b = Px + c$$

Así, $P = M^{-1}N$ y $c = M^{-1}b$.

Método de Jacobi. $M = \text{diag}(a_{11}, \dots, a_{dd})$ con $a_{ii} \neq 0$. Así, tenemos una sucesión de vectores $\{x_n\}$ de \mathbb{R}^d cuyas componentes satisfacen:

$$a_{ii}x_{n,i} = b_i - \sum_{j \neq i} a_{ij}x_{n-1,j}, \qquad i = 1, \dots, d.$$

Método de Gauss-Seidel. M es la triangular inferior de A incluyendo la diagonal. Así, tenemos una sucesión de vectores $\{x_n\}$ de \mathbb{R}^d cuyas componentes satisfacen:

$$a_{ii}x_{n,i} = b_i - \sum_{j < i} a_{ij}x_{n,j} - \sum_{j > i} a_{ij}x_{n-1,j}, \qquad i = 1, \dots, d.$$

Teorema

Sea A matriz cuadrada estrictamente dominante diagonalmente. Entonces el método de Jacobi y él de Gauss-Siedel convergen.

El método de Gauss-Seidel se puede mejorar para converger en algunos casos que no sucede (métodos de subrrelajación, $0 < \omega < 1$) o para acelerar la convergencia (métodos de subrrelajación, $\omega > 1$):

$$x_{n,i} = (1 - \omega)x_{n-1,i} + \frac{\omega}{a_{ii}} \left(b_i - \sum_{j < i} a_{ij} x_{n,j} - \sum_{j > i} a_{ij} x_{n-1,j} \right), \qquad i = 1, \dots, d.$$