Lecture 9 - CDFs and PMFs

Thursday, September 30, 2021 9:28 AM

Additional Office Hours: Friday 10-11 am Monday 12-1 pm

Theorem: Fis the CDF of some RV iff

$$\lim_{X\to\infty} F(\chi) = 1 \quad \text{and} \quad \lim_{X\to-\infty} F(x) = 0$$

 $\frac{\mathcal{E}_{X}}{F(x)} = \frac{1}{1 + e^{-X}} \quad \forall x \in \mathbb{R}$

Is this a valid CDF?

Check our 3 conditions!

(1) $\lim_{X \to \infty} F(x) = \frac{1}{1 + e^{-\infty}} = \frac{1}{1 + 0} = 1$

 $\lim_{X \to -\infty} F(X) = \frac{1}{1 + e^{-(-\infty)}} = \frac{1}{\infty} = 0$

$$\frac{d}{dx}F(x) = \frac{e^{-x}}{(1+e^{-x})^2} > 0$$
So increasing function

3) Right cts?

It is a continual function.

So, yes, this is a valid CDF.

Pefu: Identically Distributed RVs (equal in distribution)

Two RVr X and Y are equal in distribution if YACR

 $P(X \in A) = P(Y \in A)$

We denote this as X = Y.

This is different than X = Y as functions. EX_1 3 coin flips

X = # heads and / = # fails

$$P(X=0) = \frac{1}{8} = P(Y=0)$$

 $P(X=1) = \frac{3}{8} = P(Y=1)$

Theorem:
$$X \stackrel{d}{=} Y$$
 iff $F_X = F_Y$ (as fins)

CDF of X CPF Y

Ex. Tose coins independutly intil a Happears.

$$S = \{H, TH, TTH, TTTH, \dots \}$$
so $|S| = \infty$.

TTH 3 TTTH 4	
G () I G	
Q: What is the CDF of X?	
$F(\chi) = P(\chi \leq \chi)$	
To determine Flets consider	
$P(X=X)$ for $X \in \mathbb{R}$	
it takes x flips to get H	
let Hi = H on ith flip and Ti = Hi.	
Then independent	
Then $ X = X = T, T_2 T_3 T_{\chi-1} H_{\chi}$	
χ	
80	
$P(X=x) = P(T_1 \cdots T_{\chi-1} H_{\chi})$	
= P(T) D(T) D(H)	
$= P(T_1) - P(T_{\chi-1}) P(H_{\chi})$	
$= (I-P) - \cdots (I-P) P$	
$= (1-p) - \cdots (1-p) p$ $\chi = \sqrt{1 - p} p$	
$= (1-p)^{\chi-1} $ (if $W_i = {}^{\prime\prime}\chi = i^{\prime\prime} $ so that $P(W_i) = (1-p)^{i-1}$)
(et Wi = " X = i" so that I'(Wi) = (1-P)	P

Defu! Discrete/Continuous RVs

A discrete RV is one whose CDF is a step fur.

A continuous RV is one whose CDF is continuous.

Defu: Probability Mass Function

For a discrete RV X the prob. mass function (PMF) is the function $f: \mathbb{R} \to \mathbb{R}$ where

 $f(x) = P(X = x) \forall x \in \mathbb{R}$.

Sometimes called the distribution of X.

Ex. For our geometric 12V

$$f(x) = P(x=x) = \begin{cases} (1-p)^{x-1} & x=1,2,3,4,... \\ 0 & else \end{cases}$$

f(x)
(P)P

Theorem: For discrete RVs

$$F(x) = \sum_{i \le x} f(i)$$

$$P(x \le x)$$

$$P(x = i)$$

Pf. $X \leq \chi'' = \bigcup_{i \leq \chi} X = i''$ Als joint union

hence

$$F(x) = P(X \leq x) = P(i \leq x) = i''$$

$$= \sum_{i \leq x} P(X = i')$$

$$= \sum_{i \leq x} f(i)$$

Ex, Say X has a uniform distribution
on 1, ..., n

denoted

vead: distributed as

V(\$1,--, h})

$$\chi \sim \cup (\{1,...,h\})$$

$$f(i) = \begin{cases} \frac{1}{n} & \text{for } i=1,...,n \\ 0 & \text{else} \end{cases}$$

$$F(x) = \sum_{i \in X} f(i) = \sum_{i=1}^{x} n = \frac{x}{n}$$

$$fechically:$$

$$\begin{cases}
0 & \chi < 1 & h \\
h & 0
\end{cases}$$

$$F(x) = \begin{cases}
\frac{|\chi|}{n} & 1 \le \chi \le h \\
1 & \chi > h
\end{cases}$$

Said:
$$F(x) = \sum_{i \leq x} f(i)$$

$$P(x \leq x)$$

$$P(X \in A) = \sum_{i \in A} f(i) \Re$$

$$\mathcal{E}_{X}$$
, \mathbb{X} uniform over $1, \dots, 7$
 $(\mathbb{X} \sim \mathcal{U}(\S1, \dots, 7))$

$$P(2 \le X \le 5)$$
= $P(X \in \{2,3,4,5\})$
= $\sum_{i=2,3,4,5} f(i)$
= $\sum_{i=2} \frac{1}{4} = \frac{4}{4}$.

$$f(x) = P(X = x) = prds$$
. I get $x = 6s$ among 60 rolls .

$$f(0) = P(X=0) = (5/6)(5/6)(5/6) - (5/6) = (5/6)$$

$$f(1) = |P(X=1)| = {\binom{60}{1}} {\binom{5}{6}} {\binom{5}{6}} {\binom{5}{6}} - {\binom{5}{6}}$$

$$= {\binom{66}{1}} {\binom{1}{6}} {\binom{5}{6}} {\binom{5}{6}} = {\binom{59}{10}}$$

$$f(2) = P(X=2) = {\binom{60}{2}} {\binom{1}{6}} {\binom{5}{6}} - {\binom{5}{6}}$$

$$= {\binom{60}{2}} {\binom{1}{6}} {\binom{5}{6}} {58}$$

general pattern

$$f(x) = P(\chi = x) = {60 \choose x} {1 \choose 6}^{\chi} {5 \choose 6}^{60-\chi}$$

We call Huis a Binomial RV.

Any experiment where I do n cactions independently each u/a prob. p of occurring ad

$$X = # occurres$$

then $X \sim Bin(n, p)$.

