Linear Models, Regularization Bias-Variance Tradeoff

R Greiner
Department of Computing Science
University of Alberta

Outline

- Linear Regression
- Evaluating Predictors
 - Training set error vs Test set error
 - Cross Validation

Overfitting

- Bias-Variance analysis
- Feature Selection
- L2 Regularization
- Setting parameters ... internal C-V
- Bayesian Model
- L1-Regularization (Lasso)
- Linear Classification

The Design Cycle

How to do this (based on data) ...

What is best choice of Polynomial?

Noisy Source Data

Fit using Degree: 0, 1, 3, 9

True error ...

- Generate a new TEST SET:
 - 100 new (x,t) values
 - [same process that generated original training data]
- For M=9 (9th degree poly):
 - Training error is 0
 - ... 10 degrees of freedom, can exactly fit 10 datapoints
 - Why test error so large?

Bias-Variance Analysis in Regression

- Observed value is $t(\mathbf{x}) = h(\mathbf{x}) + \varepsilon$
 - Typically $\varepsilon \sim N(0, \sigma^2)$
 - normally distributed: mean 0, std deviation σ^2
 - Note: h(x) = E[t(x) | x]
- Given training examples, d = { (x_i, t_i) } , let

$$y(\cdot; d)$$

be predicted function, based on model learned using d

• Here, linear model $y(x; d) = \theta_d^T x$ using $\hat{\theta}_d = MLE(d)$

Truth: $h(x) = x + 2 \sin(1.5x)$

Observed: t(x) = h(x) + N(0, 0.2)

$$t(x) = x + 2 \sin(1.5x) + N(0, 0.2)$$

Bias-Variance Analysis

- Fix a dataset d
- Given a new data point x*
 - return predicted response: y(x*; d)
 - observed response: $t^* = h(x^*) + \varepsilon$
- The expected prediction error is ...

Eerr(d) =
$$E_{(x^*,t^*)}[(t^*-y(x^*;d))^2]$$

$$t(x) = x + 2 \sin(1.5x) + N(0, 0.2)$$

$$= 20 \text{ points}$$

$$Actual value t$$

$$true function$$

12

Fixed dataset d: $y(\mathbf{x}) = y(\mathbf{x}, d)$

Expected Squared Loss

$$[y(\mathbf{x}) - t]^{2} = [y(\mathbf{x}) - h(\mathbf{x}) + h(\mathbf{x}) - t]^{2} = [y(\mathbf{x}) - h(\mathbf{x})]^{2} + 2 [y(\mathbf{x}) - h(\mathbf{x})] [h(\mathbf{x}) - t]$$

Expected value (wrt t) is 0 as $h(\mathbf{x}) = E[t \mid \mathbf{x}]$

$$Eerr(d) = \int [y(\mathbf{x}) - t]^2 p(\mathbf{x}, t) dt d\mathbf{x}$$

$$= \int \{y(\mathbf{x}) - h(\mathbf{x})\}^2 p(\mathbf{x}) d\mathbf{x} + \int \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$$

Mismatch between OUR hypothesis y(.) & target h(.) ... we can influence this, as we can change h(.)

Noise in distribution of target ... nothing we can do...

1 fit, based on 20 examples

50 fits, each based on 20 examples

Each dataset d drawn from distribution over datasets \mathcal{D} .. of size 20

Terms

- x input variable
 - x* new input variable
- h(x) "truth" underlying response function
- $t = t(x) = h(x) + \varepsilon$ actual observed response
- y(x; d) predicted response,
 based on model learned from dataset d
- $\hat{y}(\mathbf{x}) = E_{d \sim \mathcal{D}}[y(\mathbf{x}; d)]$ expected response, averaged over (models based on) all datasets
- Eerr = $E_{d \sim \mathcal{D}, \mathbf{x}^*}[(h(\mathbf{x}^*) y(\mathbf{x}^*, d))^2]$
 - expected L_2 error on new instance \mathbf{x}^* ... over all $\mathbf{d} \sim \mathcal{D}$

$Eerr(d) = \int \{h(\mathbf{x}) - y(\mathbf{x}; \mathbf{d})\}^2 p(\mathbf{x}) d\mathbf{x} + \int \{h(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) d\mathbf{x} dt$

Relevant Part of Loss

- y(x) = y(x; d) is fit to data d... so consider expectation over data sets $d \sim \mathcal{D}$
 - Let $\hat{y}(\mathbf{x}) = E_{d \sim \mathcal{D}}[y(\mathbf{x}; d)]$
- $E_{d\sim \mathcal{D}}[\{h(\mathbf{x}) y(\mathbf{x}; d)\}^2]$

Does not depend on d ... so pull out from $E_d[...]$

$$= E_{\mathcal{D}} \left[\left\{ h(\mathbf{x}) - \hat{y}(x) + \hat{y}(x) - y(\mathbf{x}; d) \right\}^{2} \right]$$

$$= E_{\mathcal{D}}[\{h(\mathbf{x}) - \hat{y}(\mathbf{x})\}^{2}] + 2E_{\mathcal{D}}[\{h(\mathbf{x}) - \hat{y}(\mathbf{x})\} \{\hat{y}(\mathbf{x}) - \hat{y}(\mathbf{x}; d)\}]$$

+
$$E_{\mathcal{D}}[\{ y(\mathbf{x}; d) - E_{\mathcal{D}}[y(\mathbf{x}; d)] \}^2]$$

=
$$\{h(\mathbf{x}) - \hat{y}(\mathbf{x})\}^2 + E_{\mathcal{D}}[\{y(\mathbf{x}; d) - \hat{y}(\mathbf{x})\}^2]$$

Bias²

Variance

Bias, Variance, Noise

Understanding Bias

$${ \hat{y}(x) - h(x) }^2$$

- Measures how well
 our approximation architecture (all of models)
 can fit the data
- Weak approximators
 - (eg, low-degree polynomials)will have high bias
- Strong approximators
 - (eg, high-degree polynomials)will have lower bias

Understanding Variance

$$\mathsf{E}_{\mathsf{d} \sim \mathcal{D}}[\{ \mathsf{y}(\mathsf{x}; \mathsf{d}) - \hat{\mathsf{y}}(\mathsf{x}) \}^2]$$

- No direct dependence on target values
- For a fixed size |d|:
 - Strong approximators tend to have more variance ... different datasets will lead to DIFFERENT predictors
 - Weak approximators tend to have less variance ... slightly different datasets may lead to SIMILAR predictors
- Variance will typically disappear as $|\mathbf{d}| \to \infty$

Summary of Bias, Variance, Noise

```
■ Eerr = E[(t^*-y(\mathbf{x}^*))^2] = (\hat{y}(\mathbf{x}^*)-h(\mathbf{x}^*))^2 + E[(y(\mathbf{x}^*)-\hat{y}(\mathbf{x}^*))^2] + E[(t^*-h(\mathbf{x}^*))^2] = Bias( h(\cdot)) 2 + Var( h(\cdot)) + Noise
```

```
Expected prediction error
= Bias<sup>2</sup> + Variance + Noise
```


Bias, Variance, and Noise

- Bias: ŷ(x*)- h(x*)
 - the best error of model $\hat{y}(x^*)$ [average over datasets]
- Variance: $E_{d\sim\mathcal{D}}[(y_d(\mathbf{x}^*) \hat{y}(\mathbf{x}^*))^2]$
 - How much $y_d(x^*)$ varies from one training set d to another
- Noise: $E[(t^* h(x^*))^2] = E[\varepsilon^2] = \sigma^2$
 - How much t^* varies from $h(x^*) = t^* + \varepsilon$
 - Unavoidable error, even given PERFECT model, and ∞ data

50 fits (20 examples each)

Predictions at x=2.3

50 fits (20 examples each)

Predictions at x=5.2

y-values observed at x=6.8

27

Bias and Variance

Model Selection: Bias-Variance

C₁ "more expressive than" C₂ iff

representable in $C_2 \Rightarrow$ representable in C_1 iff

$$^{"}C_2 \subset C_1^{"}$$

■ Eg, LinearFns QuadraticFns

- \Rightarrow can ALWAYs get better fit using C_1 , over C_2
- But ... sometimes better to look for y ∈ C_{2,29}

Standard Plot...

∃ x* ∈ C₁ that is at-least-as-good-as y

- But given *limited sample*, might not find this best x*
- Approach: consider Bias² + Variance!!

Bias-Variance tradeoff – Intuition

- Model too "simple" ⇒ does *not* fit the data well
 - A biased solution
- Model too "complex" ⇒ small changes to the data, changes predictor a lot
 - A high-variance solution

Bias-Variance Tradeoff

- Choice of hypothesis class introduces learning bias
 - Simple class \Rightarrow high bias
 - Complex class ⇒ high variance

Degree 1: High Bias, Low Variance

Degree 13: Low Bias, High Variance

Effect of Algorithm Parameters on Bias and Variance

Skip Estimating B & V

- linear regressors over r features
 - increasing number of features r reduces bias and increases variance
 - increasing range of values for parameters $\{\theta_i\}$ reduces bias and increases variance
- k-nearest neighbor:
 - increasing k typically increases bias and reduces variance
- decision trees of depth d:
 - increasing d typically reduces bias and increases variance
- **RBF SVM with parameter \sigma**:
 - increasing of typically increases bias and reduces variance

Estimating Bias and Variance

- In practice (unlike in theory), only ONE training set d
- Simulate multiple training sets by bootstrap replicates
 - d' = {x | x is drawn at random, with replacement, from d }
 - |d'| = |d|
 - E[| d' \cap d |] / |d| $\approx 1 \frac{1}{e} \approx 0.632$

$$\lim \left(1 - \frac{1}{n}\right)^n = \frac{1}{e}$$

Estimating Bias / Variance

Estimating Bias / Variance

Average Response for each x_i

 X_1 X_r $\in {}^{?}T_1$ $y_1(x_1)$ $y_2(x_r)$ $\in {}^{?}T_2$... $y_B(x_1)$ $y_B(x_r)$

$$\hat{y}(x_1) = \frac{1}{k_1} \sum_{i} y_i(x_1) \dots \hat{y}(x_r) = \frac{1}{k_r} \sum_{i} y_i(x_r)$$

$$\hat{y}(x_j) = \frac{1}{|\{i : x \in T_i\}|} \sum_{\{i : x \in T_i\}} y_i(x_j)$$

Procedure for Measuring Bias and Variance

- Construct B bootstrap replicates of S:
 S₁, ..., S_B
- Apply learning alg to each replicate S_b to obtain hypothesis y_b
- Let $T_b = S \setminus S_b = \text{data points not in } S_b$ (out of bag points)
- Compute predicted value

$$y_b(x)$$
 for each $x \in T_b$

Estimating Bias and Variance

- For each $x \in S$,
 - observed response t = t(x)
 - predictions y₁, ..., y_k

- Compute average prediction $\hat{y}(x) = ave_i \{ y_i \}$
- Estimate bias: $\hat{y}(x) t(x)$
- Estimate variance:

$$\frac{1}{|\{i:x\in T_i\}|-1}\sum_{\{i:x\in T_i\}}(\hat{y}(x) - y_i(x))^2$$

- Consider Average Bias, Average Variance
- Assume noise is 0

- This analysis considered FIXED sample size
 - N = 15
- Overfitting is less problematic, as #datapoints increases...

Outline

- Linear Regression
- Evaluating Predictors
 - Training set error vs Test set error
 - Cross Validation
- Overfitting
 - Bias-Variance analysis
 - Feature Selection
 - L2 Regularization
 - Setting parameters ... internal C-V
 - Bayesian Model
 - L1 Regularization (Lasso)
- Linear Classification

a datapoint

N data points

Least Squares Estimator x₁, ..., x_k

- If truth: $f(x) = x^T \theta$ Observed: $y = f(x) + \varepsilon$; E[ε] = 0
- Least squares estimator

$$\hat{f}(\mathbf{x}_0) = \mathbf{x}_0^{\mathsf{T}} \hat{\theta} \qquad \hat{\theta} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

• $\hat{f}(\cdot)$ unbiased iff $f(x_0) = E[\hat{f}(x_0)]$

$$f(\mathbf{x}_{0}) - \mathbf{E}[\hat{f}(\mathbf{x}_{0})]$$

$$= \mathbf{x}_{0}^{\mathsf{T}}\theta - \mathbf{E}[\mathbf{x}_{0}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}} \mathbf{y}]$$

$$= \mathbf{x}_{0}^{\mathsf{T}}\theta - \mathbf{E}[\mathbf{x}_{0}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{X}\theta + \varepsilon)]$$

$$= \mathbf{x}_{0}^{\mathsf{T}}\theta - \mathbf{E}[\mathbf{x}_{0}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}(\mathbf{X}^{\mathsf{T}}\mathbf{X})\theta + \mathbf{x}_{0}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\varepsilon]$$

$$= \mathbf{x}_{0}^{\mathsf{T}}\theta - \mathbf{x}_{0}^{\mathsf{T}}\theta + \mathbf{x}_{0}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\varepsilon[\varepsilon] = 0$$
₄₅

Gauss-Markov Theorem

- Least squares estimator $\hat{f}(x) = x^{T}(X^{T}X)^{-1}X^{T}y$
 - ... is unbiased: $E[\hat{f}(x)] = f(x)$
 - ... is linear in x ... $\hat{f}(x) = x^T c_0$ where c_0
- Gauss-Markov Theorem:
 - OLS (*Ordinary Least Square*) *estimate* has the minimum variance among all linear unbiased estimators.
 - BLUE: Best Linear Unbiased Estimator
- Interpretation: Let g(x) be any other ...
 - unbiased estimator of f(x) ... ie, E[g(x)] = f(x)
 - that is linear in x ... ie, $g(x) = x^T c$ then $Var[\hat{f}(\cdot)] \le Var[g(\cdot)]$

However...

Gauss-Markov Theorem:

OLS (Ordinary Least Square) estimate has the minimum variance among all linear unbiased estimators.

 However, there may be a biased estimator with lower Mean Square Error

$$MSE(\hat{\theta}) = E(\hat{\theta} - \theta)^2$$
 this is 0 for OLS
$$= Var(\hat{\theta}) + [E(\hat{\theta}) - \theta]^2$$

4

Better Linear Model... reduce MSE

- Bias—variance trade off:
 - Goal: choose a model to minimize MSError

$$MSE(\hat{\theta}) = Var(\hat{\theta}) + Bias(\hat{\theta})^2$$

- Method: sacrifice a little bit of bias to reduce the variance
- Feature selection (remove variables)
 - ... variance is O(p)
 - ... so fewer features, reduce variance... but biased...
 - Subset selection
 - Forward selection
 - Backward selection
 - (L1-regularization)
- Reduce "range of values" of parameters
 - Shrinkage methods (L2-regularization)

Notation

- Set of all features F
- Given SUBSET of indices $R \subset \{1,2,...,|F|\}$
 - $X_R \subset X$ subset of data involving just R
 - $\theta_R \subset \theta$ subset of parameters involving just R

Subset selection

- Goal: to eliminate unnecessary variables from the model.
- Three approaches:
 - Best subset regression
 - Choose subset of size k that gives lowest MSE
 - Forward stepwise selection
 - Sequentially add "best" features
 - Backward stepwise selection
 - Sequentially remove "worst" features

Greedy techniques – not guaranteed to find the best model

Best Subset Regression

- For each k ∈ {0, 1, ..., p}, find subset of size k that gives smallest MSE (validation)
- Leaps and bounds procedure works with $p \le 40$
- How to choose k?
 Choose model that minimizes prediction error
- For larger p, searching through all subsets is not feasible.
 Instead: seek a good path through subsets...

Forward Stepwise Selection

$$m_R = MSE(\theta_R) = (t - X_R \theta_R)^T (t - X_R \theta_R)$$

- Sequential Greedy Method:
 - Start with trivial model: R = {}
 - Sequentially include "best" variable f
 - $\blacksquare R \leftarrow R + f$
 - Stop when no new variable improves fit significantly ... and use that final R
- "Best"??
 - Highest correlation with the residual error?
 - $f = argmax_j \{ | correlation(X_j, m_R)| \}$
 - "F test": $argmax_f F(f) = \frac{MSE(\theta_R) MSE(\theta_{R+f})}{\frac{MSE(\theta_{R+f})}{n-k-2}}$

Backward Stepwise selection

Method:

- Start with *full* model $R = \{1, ..., |F|\}$
- Sequentially *delete* feature *f* that produces the smallest value ...
 - ... of correlation
 - ... of F statistic
- Stop when no significant gain
- ∃ hybrids between forward and backward stepwise selection

Comparison

- Which is best... depends ...
- One example...

Feature selection:

- Feature Selection can help to...
 - i. ... improve predictive accuracy
 - 2. ... help explain the classifier (?)
 - 3. ... reduce cost of features (+ time) at performance time
 - 4. ... reduce training time
- Here... just #1:Can consider other methods

Shrinkage methods

- Use additional penalties/constraints to reduce (range of) parameters
 - Weights
- Shrinkage methods are "more continous" than stepwise selection
 - ⇒ do not suffer as much from variability

Coefficient Size...

- At M=9: coefficients are finely tuned to data
 - ... too tuned! ... matches NOISE in target values
- Why bad?
 - ... between data points, function goes crazy
- As M increases,
 the magnitude of
 coefficients gets larger

	_		-	
	M=0	M = 1	M = 3	M = 9
w_0^{\star}	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^{\star}			-25.43	-5321.83
w_3^{\star}			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042 26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43
	'			

4

Why should regularization help?

- Extreme curves typically require extreme parameter values
 - ... eg coefficients for polynomials
- So to avoid extreme curves, avoid extreme values, θ_i
- One-to-one correspondence between s and λ

- Approach:

 - Subject to $|\theta|_2^2 \leq s$
- Lagrange: $\arg\min_{\boldsymbol{\theta}} \sum_{i} (y(\mathbf{x}^{(i)}; \boldsymbol{\theta}) t_i)^2 + \lambda |\boldsymbol{\theta}|_2^2$

Regularization

- Idea: Penalize overly-complicated answers
- Regular regression minimizes:

$$\sum_{i} \left(y(\mathbf{x}^{(i)}; \boldsymbol{\theta}) - t_{i} \right)^{2}$$

Regularized regression minimizes:

$$\sum_{i} \left(y(\mathbf{x}^{(i)}; \boldsymbol{\theta}) - t_i \right)^2 + \left[\lambda |\boldsymbol{\theta}|_2^2 \right]$$

Solving Regularized Form

Solving
$$\theta^{OLS} = \arg\min_{\theta} \left[\sum_{j} \left[y^{j} - \sum_{i} \theta_{i} x_{i}^{j} \right]^{2} \right]$$

$$\theta^{OLS} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\,\mathbf{y}$$

Solving
$$\theta^{Ridge} = \arg\min_{\theta} \left[\sum_{j} \left[y^{j} - \sum_{i} \theta_{i} x_{i}^{j} \right]^{2} + \lambda \sum_{i>0} \theta_{i}^{2} \right]$$

$$\theta^{Ridge} = \left(\mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I} \right)^{-1} \mathbf{X}^{T} \mathbf{y}$$

Note i>0 ... not $i \ge 0$...

Properties of Ridge Regression

Solution by matrix notation:

$$\theta^{Ridge} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

Adding λ>0 to the diagonal of X^TX makes the problem nonsingular...
 (easier to invert)

... even if X is not of full rank

 Quadratic penalty makes the ridge solution a linear function of y

Comparing Ridge Regression

Advantages w.r.t. Least Squares

- $(X^TX + \lambda I)$ is always invertible \Rightarrow closed form solution always exists
- Ridge regression controls the complexity with regularization term via λ , which is less prone to overfitting (vs OLS)
 - e.g. sometimes a wildly large θ_i on one variable can be cancelled by another wildly large θ_k of a correlated variable
- Often higher prediction accuracy, as the estimates of ridge regression trade a little bias for less variance

Advantages w.r.t. Subset Selection Methods

 Ridge regression is a continuous shrinkage method, which has less variance than subset selection methods

Disadvantages w.r.t. Subset Selection Methods

- Interpretability and compactness:
 Though coefficients are shrunk, but not to 0
 So do NOT help "interpretability"
- Unlike methods that select subset of the features, ridge regression may be inefficient interpretations in high dimensional problems.

Properties of Ridge Regression, cont.

- Later: motivate via Bayesian statistics, using appropriate prior for θ
- Does not automatically select variables
 - See L1-regularization (LASSO)
- Ridge existence theorem: ... $\exists \lambda > 0$ such that

$$MSE(\widehat{\boldsymbol{\theta}}^{ridge}) \leq MSE(\widehat{\boldsymbol{\theta}}^{OLS})$$

• Must estimate effective complexity parameter λ

Regularization: Empirical Approach

- Problem: magic constant λ trading-off complexity vs fit
- Solution 1:
 - Generate multiple models
 - Use lots of test data to discover and discard bad models

Solution 2: k-fold INTERNAL cross validation:

- Divide data S into k subsets { S₁, ..., S_k }
- Create training subset S_{-i} = S S_i
 - Produces k groups, each of size (k 1)/k
- For each value of $\lambda \in \{..., 0.01, 0.1, 1, 10, 100, ...\}$
 - For i=1..k: Train using this λ on S_{-i} , Eval on S_{i} : val(λ , i)
 - Compute mean value: $val(\lambda) = average\{ val(\lambda, i) \}$
- Set $\lambda^* = \arg\min_{\lambda} \operatorname{val}(\lambda)$

Learn + Parameter Setting

```
L+PS( dataset S ): regressor

% Learning + parameter setting
```

- \bullet $S = S_A \cup S_B$
- For $\lambda \in \{ 0.1, 1, 10 \}$ do

$$R_{\lambda} = L(S_A, \lambda)$$

•
$$v_{\lambda} = \text{Eval}(R_{\lambda}, S_B)$$

- Return($L(S, \lambda^*)$)

Labeled data, S

Labeled data, S 1. Use internal search to... Select best value for λ 2. Then run "base learner", with that setting L+PS Use same learner in ALL places ... $err_{S1}(\theta_1)$ $\operatorname{err}_{S5}(\theta_5)$ Average) θ , $\approx err_D(\theta)$

Complexity

Here, considering 3 values of λ :

- Run base classifier $L(S_A, \lambda)$ 3 times (one for each value of λ)
 - + 1 to produce final predictor, on all data $L(S, \lambda^*)$
 - Total: 3 + 1 = 4

- Do this entire process 6 times
 - 1 to produce best regressor
 - One for each of 5 EXTERNAL folds
- Total: $6 \times 4 = 24$

-

Learn + Parameter Setting

% Learning + parameter setting

$$S = S_1 \cup \cdots \cup S_5$$

- For $\lambda \in \{ ..., 0.1, 1, 10, ... \}$ do
 - For i = 1...5

•
$$R_{\lambda,i} = L(S_{-i}, \lambda)$$

•
$$v_{\lambda,i} = \text{Eval}(R_{\lambda,i}, S_i)$$

•
$$v_{\lambda} = \text{Average}(v_{\lambda,1}, ..., v_{\lambda,5})$$

• Return(
$$L(S, \lambda^*)$$
)

Complexity L+PS L+PS

If considering 10 values of λ :

- Run base classifier 10 times for each of 5 internal folds (in L+PS)
 - + 1 to produce final predictor, on all data
 - Total: $10 \times 5 + 1 = 51$
- Do this entire process 6 times
 - 1 to produce best regressor
 - One for each of 5 EXTERNAL folds
- Total: $6 \times 51 = 306$

4

Finding Best Model/Parameters

- Want to learn which "parameter values" v work best?
 - v = Any "setting" for learner:
 - λ, degree of polynomial? Number k of features? Best set of k features?
 - ... any other parameters?
 - Model class: SVM or Decision tree or Logistic Regression or ... RBF vs linear? ...
 - argmin_v { err_D(L(S, v)) }
- Learner LV(S) == { Find v*; return L_{v*}(S) } involves BOTH

finding best v, then best predictor, wrt v: $L_v(S)$

- Finding v* may involve internal C-V steps
 - $v^* = \operatorname{argmin}_{\mathbf{v}} \{ \sum_{i} E[\operatorname{err}_{S_i}(L(S_{-i}, \mathbf{v}))] \}$
- To estimate quality of LV(S), C-V of this COMPLEX LV(.)
 - CVerr(LV, S) = $\frac{1}{k} \sum_{i} E[err_{S_i}(LV(S_{-i}))]$

Ways to Cheat ... ie, what NOT to do!

- Select k«p features
 - based on all n labeled instances
- Then run learner on just these features
- Run 5-fold CV to estimate accuracy of that classifier
 - each built using 4/5 of the data, eval'ed on 1/5
 - Report average value

A Lesson

- Van't Veer et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530-536.
- Goal: Predict Good vs Bad Prognosis
 - Good == "no metastasis for 5 years after initial diagnosis"
- Alg:
 - Select 231 features, ensemble size based on entire data set
 - Then run 5-fold Cross-Validation (w/those features, ...)
- Apparent accuracy: 83%
- If done correctly: (select features within fold):
 Accuracy: 73%
- Note: same final predictor; only difference is "certificate" (accuracy)...

4

622/623 of the data

- SNP study
 - 623 instances (302 case and 321 control)
 - > 500K features
- Alg1 ("cheating"):
 - Select 500 features $R \subset F$ features using all 623 instances
 - LOO-CV: run SVM on 622 (w/ features R) (Apparent) Accuracy: ≈90%
- Alg2 ("correct"):
 - LOO-CV...
 select 500 features R_i in each fold (using only 622 instances)
 run SVM on 622 (w/ features R_i)

Actual Accuracy: ≈**59%**

WE FOUND NO LINK BETWEEN PINK JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN BLUE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN TEAL JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN RED JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN TURQUOISE JELLY BEANS AND ACNE (P>0.05),

WE FOUND NO LINK BETWEEN MAGENTA JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN YELLOW JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN GREY JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN TAN JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN CYAN JELLY BEANS AND ACNE (P>0.05).

WE FOUND A LINK BETWEEN GREEN JELLY BEANS AND ACNE (P<0.05).

WE FOUND NO LINK BETWEEN MAUVE JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN BEIGE JELLY BEANS AND ACNE (P>0.05)

WE FOUND NO LINK BETWEEN LILAC JELLY BEANS AND ACNE (P > 0.05)

WE FOUND NO LINK BETWEEN BLACK JELLY BEANS AND ACNE (P>0.05).

WE FOUND NO LINK BETWEEN PEACH JELLY BEANS AND ACNE (P > 0.05).

WE FOUND NO LINK BETWEEN ORANGE JELLY BEANS AND ACNE (P>0.05)

2 reasons for Cross-Validation

- External: to evaluate quality of predictor
- Internal: to set parameters (feature selection)
- wrt INTERNAL cross-validation:
 - feel free to "cheat" doesn't matter
 - If it is wrong, the EXTERNAL cross-validation will catch this!

Outline

 $y(x_0, \theta)$

- Linear Regression
- Evaluating Predictors
 - Training set error vs Test set error
 - Cross Validation

- Bias-Variance analysis
- Feature Selection
- L₂ Regularization
- Setting parameters ... internal C-V
- Bayesian Model
- L₁ Regularization (Lasso)
- Linear Classification

Bayesian Approach

- Formulate our knowledge about the world probabilistically:
 - define the model that expresses our knowledge qualitatively
 - eg: independence assumptions, forms of distributions
 - Model has some unknown parameters
 - before seeing data
 - capture assumptions (== prior beliefs) about unknown parameters (eg, range of plausible values)
 by specifying the prior distribution over those parameters,
- Observe the data
- Compute the posterior probability for the parameters, given observed data
- Use this posterior to...
 - Make predictions by averaging over the posterior distribution
 - Examine/Account for uncertainly in the parameter values
 - Make decisions by minimizing expected posterior loss

4

A Bayesian Perspective

• Given space of possible hypotheses $H = \{ h_j \}$ find hypothesis with the highest posterior:

$$P(h | D) = \frac{P(D | h) P(h)}{P(D)}$$

- As P(D) does not depend on h: $argmax_h P(h | D) = argmax_h P(D | h) P(h)$
- "Uniform P(h)" ⇒ Maximum Likelihood Estimate
 - (model for which data has highest probability)
- ... can use P(h) for \approx regularization ...

Bayesian Regression

- Assume that, given x, noise is iid Gaussian
- Homoscedastic noise model (same of for each position)

Maximum Likelihood Solution

$$P(D \mid \mathbf{h}_{\boldsymbol{\theta}}) = P(t^{(1)}, \dots, t^{(m)} \mid y(\mathbf{x}; \boldsymbol{\theta}), \sigma) = \prod_{i} \frac{\exp\left(-\frac{\left(t^{(i)} - y(\mathbf{x}^{(i)}; \boldsymbol{\theta})\right)^{2}}{2\sigma^{2}}\right)}{\sqrt{2\pi\sigma^{2}}}$$

MLE fit for θ is ...

- just linear regression fit
- does not depend upon σ^2

Bayesian learning of Gaussian parameters

- Conjugate priors
 - Mean: Gaussian prior
 - Variance: Wishart Distribution
- Prior for mean:

$$P(\mu \mid \eta)(\lambda) = \frac{1}{\lambda \sqrt{2\pi}} e^{\frac{-(\mu - \eta)^2}{2\lambda^2}}$$

Bayesian Solution

 $h = hypothesis ... corresponding to weights <math>\theta$

Introduce prior distribution over weights

$$P(h_{\theta}) = P(\theta | \rho) = N(\theta | \theta, \rho^2 I)$$

Posterior is...

$$P(D \mid h_{\theta}) P(h_{\theta}) = P(t^{(1)}, ..., t^{(m)} \mid y(\mathbf{x}; \boldsymbol{\theta}), \boldsymbol{\sigma}) P(\boldsymbol{\theta})$$

$$= \prod_{i} \frac{\exp\left(-\frac{(t^{(i)} - y(\mathbf{x}^{(i)}; \boldsymbol{\theta}))^{2}}{2\sigma^{2}}\right)}{\sqrt{2\pi\sigma^{2}}} \frac{\exp\left(-\frac{\boldsymbol{\theta}^{T}\boldsymbol{\theta}}{2\rho^{2}}\right)}{\sqrt{2\pi\rho^{2}^{k}}}$$

■ Bayesian Regression = $MAP(\theta)$ is...

$$\operatorname{argmax}_{\boldsymbol{\theta}} \quad \prod_{i} \frac{\exp\left(-\frac{\left(t^{(i)} - y(\mathbf{x}^{(i)}; \boldsymbol{\theta})\right)^{2}}{2\sigma^{2}}\right)}{\sqrt{2\pi\sigma^{2}}} \quad \frac{\exp\left(\frac{-\boldsymbol{\theta}^{T}\boldsymbol{\theta}}{2\rho^{2}}\right)}{\sqrt{2\pi\rho^{2}^{k}}}$$

4

Bayesian Solution

■ Bayesian Regression = MAP(⊕) is...

$$\operatorname{argmax}_{\boldsymbol{\theta}} \prod_{i} \frac{\exp\left(-\frac{\left(t^{(i)} - y(\mathbf{x}^{(i)}; \boldsymbol{\theta})\right)^{2}}{2\sigma^{2}}\right)}{\sqrt{2\pi\sigma^{2}}} \frac{\exp\left(\frac{-\boldsymbol{\theta}^{T}\boldsymbol{\theta}}{2\rho^{2}}\right)}{\sqrt{2\pi\rho^{2}^{k}}}$$

$$= \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{i} \left(-\frac{\left(t^{(i)} - y(\mathbf{x}^{(i)}; \boldsymbol{\theta})\right)^{2}}{2\sigma^{2}}\right) + \frac{-\boldsymbol{\theta}^{T}\boldsymbol{\theta}}{2\rho^{2}}$$

$$= \operatorname{argmin}_{\boldsymbol{\theta}} \sum_{i} \left(t^{(i)} - y(\mathbf{x}^{(i)}; \boldsymbol{\theta})\right)^{2} + \frac{2\sigma^{2}}{2\rho^{2}}\boldsymbol{\theta}^{T}\boldsymbol{\theta}$$

Compare to Regularized Regression:

$$\operatorname{argmin}_{\boldsymbol{\theta}} \sum_{i} \left(t^{(i)} - y(\mathbf{x}^{(i)}; \boldsymbol{\theta}) \right)^{2} + \lambda |\boldsymbol{\theta}|_{2}^{2}$$

up to constants!!!

Outline

 $y(x_0, \theta)$

- Linear Regression
- Evaluating Predictors
 - Training set error vs Test set error
 - Cross Validation

Overfitting

- Bias-Variance analysis
- Feature Selection
- L₂ Regularization
- Setting parameters ... internal C-V
- Bayesian Model
- L₁ Regularization (Lasso)
- Linear Classification

Viewing L₂ Regularization

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{i} \left(t^{(i)} - \sum_{j} \theta_j x_j^{(i)} \right)^2 + \lambda \sum_{j} \theta_j^2$$

Using Lagrange Multiplier...

$$\Rightarrow \theta^* = \operatorname{argmin}_{\theta} \sum_{i} \left(t^{(i)} - \sum_{j} \theta_j x_j^{(i)} \right)^2$$

L₂ vs L₁ Regularization

1st power, not 2nd

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{i} \left(t^{(i)} - \sum_{j} \theta_j \, x_j^{(i)} \right)^2 + \lambda \sum_{j} |\theta_j|^2$$

$$\Rightarrow \theta^* = \operatorname{argmin}_{\theta}$$

Intersections often on axis! ... here, $\theta_i = 0 !!$

The

The Lasso

Lasso is a shrinkage method, like Ridge, but 1st

$$\theta^{Lasso} = \operatorname{argmin}_{\theta} \sum_{i}^{S} \left(t^{(i)} - \sum_{j}^{N} \theta_{j} x_{j}^{(i)} \right)^{2} \text{S.t.} \sum_{j}^{N} |\theta_{j}| \le s$$

- L_1 penalty \Rightarrow solution *nonlinear* in arg's (**t**, **x**)
 - Use quadratic programming to compute the solutions
- Sufficient shrinkage will cause some coefficients to be exactly 0
 - so it acts like a subset selection method!
- Bayesian: Prior is Laplacian, not Gaussian ...

$$P(\theta \mid \tau) = \frac{1}{\tau} \exp(\frac{-|\theta|}{\tau})$$

Coefficients plotted against

$$s = \frac{|t|}{\sum_{j=1..p} |\hat{\theta}|}$$

Some LASSO coefficients hit 0, while those for Ridge do not.

Example: Prostate cancer

Term	OLS	Best subset	Ridge	Lasso
Intercept	2.480	2.495	2.467	2.477
Icalvol	0.680	0.740	0.389	0.545
lweight	0.305	0.367	0.238	0.237
age	-0.141		-0.029	
lbph	0.210		0.159	0.098
svi	0.305		0.217	0.165
lcp	-0.288		0.026	
Gleason	-0.021		0.042	
Pgg45	0.267		0.123	0.059
Test err.	0.586	0.574	0.540	0.491
Std.err.	0.184	0.156	0.168	0.152

A unifying view

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{i} \left(t^{(i)} - \sum_{j} \theta_j \, x_j^{(i)} \right)^2 + \lambda \sum_{j} |\theta_j|^q$$

- \bullet λ is "bias", q indicates a prior distribution on θ
 - λ =0: ordinary least squares
 - $\lambda > 0$, q = 2: Ridge regression
 - $\lambda > 0$, q = 1: the LASSO

Other Possible q-norms

$$\theta^* = \operatorname{argmin}_{\theta} \sum_{i} \left(t^{(i)} - \sum_{j} \theta_j \, x_j^{(i)} \right)^2 + \lambda \sum_{j} |\theta_j|^q$$

	Convex	Smooth	Sparse
q<1	No	No	Yes
q=1	Yes	No	Yes
q>1	Yes	Yes	No

- Want Yes, Yes, Yes... but Yes, No, Yes isn't bad...
- q=0: pure variable selection
 - just counting #non-zero coefficients
 - NP-hard

What you need to know

- Regression
 - Optimizing sum squared error == MLE!
 - Basis functions = features
 - Relationship between regression and Gaussians
- Evaluating Predictor
 - TestSetError ≠ Prediction Error
 - Cross Validation
- Bias-Variance trade-off
 - Model complexity ...

Play with Applet

- Regularization ≈ Bayesian modeling
- L₁ regularization finds 0 weights!

Overfitting Thriller!

https://www.youtube.com/watch?v=DQWI1kvmwRg

