練習問題 0.1: Griffith Example 8.1

1 次元調和振動子 $\hat{H}=-rac{\hbar^2}{2m}rac{{
m d}^2}{{
m d}x^2}+rac{1}{2}m\omega^2x^2$ の基底エネルギーを見積もれ.ただし,試行関数を $\psi(x)=\left(rac{2b}{\pi}
ight)^{1/4}{
m e}^{-bx^2}$ とせよ.試行関数は規格化されている.

$$E(b) = \langle \psi | \hat{H} | \psi \rangle = \left(\frac{2b}{\pi}\right)^{1/2} \int_{-\infty}^{\infty} e^{-bx^2} \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2} m\omega^2 x^2\right) e^{-bx^2} dx$$
 (0.0.1)

$$=\frac{\hbar^2 b}{2m} + \frac{m\omega^2}{8b} \tag{0.0.2}$$

次にE(b)の最小値を求める.

$$\frac{\mathrm{d}}{\mathrm{d}b}E(b_0) = \frac{\hbar^2}{2m} - \frac{m\omega^2}{8b_0^2} = 0 \Rightarrow b_0 = \frac{m\omega}{2\hbar}$$
 (0.0.3)

$$E(b_0) = \frac{1}{2}\hbar\omega \tag{0.0.4}$$

偶然にも試行関数は基底エネルギーの固有関数となっていたため、 $E(b_0)$ は基底エネルギーと一致した.

練習問題 0.2: Griffith Example 8.2

デルタ関数型ポテンシャル $\hat{H}-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-\alpha\delta(x)$ の基底エネルギーを見積もれ。ただし,試行関数を $\psi(x)=\left(\frac{2b}{\pi}\right)^{1/4}\mathrm{e}^{-bx^2}$ とせよ.試行関数は規格化されている.

1

$$\langle V \rangle = -\alpha \left(\frac{2b}{\pi}\right)^{1/2} \int_{-\infty}^{\infty} e^{-2bx^2} \delta(x) \, \mathrm{d}x = -\alpha \left(\frac{2b}{\pi}\right)^{1/2} \tag{0.0.5}$$

$$\langle T \rangle = \frac{\hbar^2 b}{2m} \tag{0.0.6}$$

$$E(b) = \frac{\hbar^2 b}{2m} - \alpha \left(\frac{2b}{\pi}\right)^{1/2} \tag{0.0.7}$$

E(b) の最小値を求める.

$$\frac{\mathrm{d}}{\mathrm{d}b}E(b_0) = \frac{\hbar^2}{2m} - \frac{\alpha}{\sqrt{2\pi b_0}} = 0 \Rightarrow b_0 = \frac{2m^2\alpha^2}{\pi\hbar^4}$$
 (0.0.8)

よって, 基底エネルギーの近似解として

$$E(b_0) = -\frac{m\alpha^2}{\pi\hbar^2} \tag{0.0.9}$$

を得る^a.

a
厳密解を求めることができ、 $\psi(x)=rac{\sqrt{mlpha}}{\hbar}\mathrm{e}^{-mlpha|x|/\hbar^2},\; E_0=-rac{mlpha^2}{2\hbar^2}$ である.

Yuto Masuda

練習問題 0.3: Griffith Example 8.3

[0,a]の無限井戸型ポテンシャルの基底エネルギーを見積もれ、ただし、試行関数を

$$\psi(x) = \begin{cases} Ax & \text{if } 0 \le x \le a/2\\ A(a-x) & \text{if } a/2 \le x \le a\\ 0 & \text{otherwise} \end{cases}$$
 (0.0.10)

とせよ.

規格化条件より, $A=rac{2}{a}\sqrt{rac{3}{a}}$ を得る.波動関数の導関数は

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = \begin{cases} Ax & \text{if } 0 \le x \le a/2\\ A(a-x) & \text{if } a/2 \le x \le a\\ 0 & \text{otherwise} \end{cases}$$
 (0.0.11)

である. よって、2次の微係数として

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = A\delta(x) - 2A\delta(x - \frac{a}{2}) + A\delta(x - a) \tag{0.0.12}$$

を得る. したがって近似解は

$$E = \int_0^a \psi(x) \left(-\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} \right) \psi(x) \, \mathrm{d}x \tag{0.0.13}$$

$$= -\frac{\hbar^2}{2m} \int_0^a A \left[\delta(x) - \delta \left(x - \frac{a}{2} \right) + \delta(x - a) \right] \psi(x) \, \mathrm{d}x$$
 (0.0.14)

$$=\frac{12\hbar^2}{2ma^2}\tag{0.0.15}$$

2

である。

$$a$$
厳密解は $E_0 = \frac{\pi^2 h^2}{2ma^2}$