Homework Assignment 13

Arjun Subramanian

- 1. The contrapositive of this statement is if G has an edge e in ≥ 2 cycles, G will hand an even cycles. Let e connect nodes u, v. With contradiction assume that G has no odd cycles. Then there are at least G ways to connect G will be or G evenly sized paths. The evenly sized paths must intersect, otherwise there will be an even cycle though G will not be even. There are G paths connecting where the G evenly sized paths separate. Those G new paths make a cycle with even length (both even or both odd).
- 2. Pick an node in G to represent a node in T. From there, assign unused connected nodes in G to represent connected nodes in T. For any node in T, the node that correlates in G has enough connections for all the T node's connections. If n nodes have already been used, the G node has at least m-n connections to unused nodes. The T node has at most m-n children (m other nodes -n used nodes).
- 3. Each non-leaf node takes what used to be 1 leaf and makes it i leaves. That means adding 2...k such transitions will result in 1+...+k-1 added leafs. Since the problem state that are n-k+1 leafs, use algebra to solve for n: 1+(1+...+k-1)=n-k+1 or 1+...+k-1=n-k or $(k-1)(k) \div 2=n-k$ or k(k-1)=2n-2k or k(k+1)=2n, so $n=k(k+1) \div 2$.
- 4. If G has no odd cycles, then $\chi(G)=2$. All regions must be paths or cycles which are both 2 colorable. Otherwise if G has just 1 odd cycle, the cycle is 3 colorable and the remaining graph is 2 colorable, adding to a max of $\chi(G)=5$. Otherwise, diversions from the odd cycles make even cycles which don't increase an odd cycles 3 colorability. That way the same technique can be applied to such graph leaving $\chi(G) \leq 5$.
- 5. Solve this problem for G with an induction on all H. The claim is H is $\leq d+1$ colorable. BC: When there is 1 nodes in H, it is $\leq d+1$ colorable because you only need 1 color. IH: Assume that when H's n=k the claim holds. IS: Let v be the vertex being added to H. Because $\forall H, \delta(H) \leq d$, v can have at most d connections, and By the IH, H' (H without v) is d0 is d1 colorable. There will be at least d1 colorable.
- 6. There are 3^{100} different colorings. That expands to about 5.1537752×10^{47} . That is about 5.1537752×10^{41} seconds or 8.5896253×10^{39} minutes or 8.5896253×10^{39} or 1.4316042×10^{38} hours or 5.9650176×10^{36} days.