PA5 Program Listing

1. Classes

- 1.1. Vector.m
- 1.2. Rotation.m
- 1.3. Frame.m

2. Functions

- 2.1. registration3dTo3d.m
- 2.2. find frame transformation.m
- 2.3. find closet point on triangle.m
- 2.4. find_closest_point_on_mesh.m
- 2.5. verify.m
- 2.6. get barycentric coord.m
- 2.7. get deformed coord
- 2.8. termination test.m
- 2.9. Functions for I/O
 - 2.9.1. get num.m
 - 2.9.2. validate.m
 - 2.9.3. form vector set.m
 - 2.9.4. read_from_body.m
 - 2.9.5. read_from_mesh.m
 - 2.9.6. read_from_modes.m
 - 2.9.7. read from sample.m
 - 2.9.8. write result.m

3. Executable program

3.1. main.m

1. Classes

<u>1.1 Vector.m</u> - please refer to the program listing for PA1 for details (A new function is added)

Class Method

result = dot(obj1, obj2) computes the dot product of the two given Vector objects.

Parameter(s)

- obj1 one of the Vector objects which the dot product is to be found
- obj2 one of the Vector objects which the dot product is to be found

Returned value(s)t

• result the dot product of the two given Vector objects

1.2 Rotation.m - please refer to the program listing for PA1 for details

<u>1.3 Frame.m</u> - please refer to the program listing for PA1 for details

2. Functions

2.1 registration3dTo3d.m - please refer to the program listing for PA3 for details

2.2 find frame transformation.m

frame_set = find_frame_transformation(a, b) obtains a set of frame that
transforms the set of points in a to each set of observed points b

Parameter(s)

- a the set of points to be transformed to the other set of points
- b sets of point from which a is to be transformed into

Returned value(s)

• frame_set the set of frame that transforms a into each set of b

<u>2.3 find_closet_point_on_triangle.m</u> - please refer to the program listing for PA3 for details

<u>2.4 find_closest_point_on_mesh.m</u> - please refer to the program listing for PA4 for details

2.5 verify.m

bool = verify(m, v_set) verifies that the vertices of the mesh from the input file matches with "Mode 0"

Parameter(s)

- m the set of points to be transformed to the other set of points
- v_set sets of point from which a is to be transformed into

Returned value(s)

• bool 1 if the vertices from the input file matches with "Mode 0", 0 otherwise

2.6 get barycentric coord.m

[lambda, mu, v] = get_barycentric_coord(c, m_s, m_t, m_u) computes the barycentric coordinates of a point given the three vertices of the triangle that the point is on.

Parameter(s)

- c the position of the point
- m_s the position of the first vertex of the triangle that the point is on
- m t the position of the second vertex of the triangle that the point is on
- m u the position of the third vertex of the triangle that the point is on

Returned value(s)

lambda the coordinates in terms of the first vertex of the triangle
 mu the coordinates in terms of the second vertex of the triangle

• v the coordinates in terms of the third vertex of the triangle

2.7 get deformed coord.m

[m_new, m_m] = get_deformed_coord(m, vertex, m_lams) computes the coordinates of the given point in the deformed atlas and the corresponding vector displacements of each mode of that point

Parameter(s)

• m a matrix consisting of vector displacements of each vertex for each mode

• vertex the vertex which the coordinates in the deformed atlas are to be found

• m lams mode weights

Returned value(s)

• m new coordinates of the vertex in the deformed atlas

• m m the vector displacements of the vertex for each mode

2.8 termination test.m

count = termination_test(sigma, epsilon_max, epsilon_avg, n,
count) returns the number of iterations which the conditions for termination have been
satisfied.

Parameter(s)

• sigma the variance of the c_k from s_k from the 1^{st} to the n^{th} iteration

• epsilon_max the maximum magnitude difference between c_k from s_k from the 1st to the nth iteration

ullet epsilon_avg the average magnitude difference between c_k from s_k from the 1^{st}

to the nth iteration

n current iteration number

• count the number of iterations which the conditions for

been satisfied

Returned value(s)

• count termination have

termination have

the number of iterations which the conditions for

been satisfied

2.9 Functions for I/O

2.9.1 get num.m

num = get_num(fileID) reads a floating point number in the format of '%f,'
from a text file

Parameter(s)

• fileID the file ID of the file to be read from

Returned value(s)

• num the number that has been read

2.9.2 validate

validate (fileID, filename) validates a text file by comparing its name to the name given in the text file. It terminates the program by throwing an error if the text file is invalid.

Parameter(s)

• fileID the file ID of the file to be read from

• filename the name of the file (including the path)

2.9.3 form vector set.m

set = form_vector_set(num, fileID) reads all vectors in a frame from a
text file and uses them to form a set

Parameter(s)

- num the number of vectors in a frame
 fileID the file ID of the file to be read from
- Returned value(s)
 - set the set of vectors formed

2.9.4 read_from_body.m

[set, tip] = read_from_body(filename) reads all vectors describing the rigid body from a text file

Parameter(s)

• filename the name of the text file to be read from (including the path)

Returned value(s)

- set a set of vectors describing the position of marker LEDs in body coordinates
- tip a set of vectors describing the position of the tip in body coordinates

2.9.5 read_from_mesh.m

[v_set, triangle_v_set] = read_from_mesh(filename) reads all data
describing the surface model from a .sur file

Parameter(s)

• filename the name of the .sur file to be read from (including the path)

Returned value(s)

• v_set a set of vectors describing the position of vertices on the surface

model

• triangle_v_set a 2D array of vertex indices of the three vertices for each triangle

2.9.6 read from modes.m

[vertex_displacements] = read_from_sample(filename) reads all
vectors describing the sample readings from a text file

Parameter(s)

• filename the name of the text file to be read from (including the path)

Returned value(s)

• vertex_displacements sets of vectors describing the displacement of each mode

2.9.7 read from sample.m

[A_sample, B_sample, num_modes] =
read_from_sample(filename, num_a, num_b) reads all vectors describing
the sample readings and the number of modes used for this dataset from a text file

Parameter(s)

• filename the name of the text file to be read from (including the path)

Returned value(s)

- A_sample a set of vectors describing the position of marker LEDs in optical tracker coordinates in rigid body A
- B_sample a set of vectors describing the position of marker LEDs in optical tracker coordinates in rigid body B
- num_modes the number of modes needed for this data set

2.9.8 write_result.m

write_result(filename, s_set, c_set, m_lams) outputs the results to a text file in the specified format

Parameter(s)

•	filename	the name of the text file to be outputted to (including the path)
•	s_set	position of sample points (a_tip) in the coordinates of the bone
•	c_set	the points on the surface mesh that are closest to \boldsymbol{s}_k
•	${\tt m_lams}$	the mode weights of the deformed atlas

3. Executable program

3.1 main.m

An executable program that reads from the following text files from the INPUT directory:

- "Problem5-Body[Y].txt"-body design files, where Y is A or B
- "Problem5MeshFile.sur"-body surface definition file
- "Problem5Modes.txt" the deformed atlas mode file
- "PA5-[X]-[ddddd]-SampleReadingsTest.txt" file of sample readings, where, X is a letter, and ddddd is "debug" or "unknown".

This program outputs a text file named "pa5-[α] -Output.txt" in the OUTPUT directory where α is a letter between characters "a" and "k" (except i). This file includes the mode weights determined, vectors s_k (position of sample points in the coordinates of the bone), c_k (the CT coordinates corresponding to each sample taken), and the magnitude difference between c_k and s_k . This program also saves a plot named "pa5-[α].png" in the OUTPUT directory showing the average magnitude difference between s and c after each iteration of the ICP algorithm.

Program Input

When the program is run, the following will be displayed in the command window:

```
"Enter a letter from 'a' to 'k' (except i) to specify a dataset: " \,
```

The expected input from the command line is an alphabet from a to k which identifies the data set in the relative path "../INPUT/" to be read.

Program Output

The program will output a text file named "pa5-[α]-Output.txt" and a plot of ϵ_{avg} named "pa5-[α]-Output.png" in the relative path "../OUTPUT/" folder. Upon program completion, the following will be displayed in the command window: "Results written to: ../OUTPUT/pa5-[α]-Output.txt".