1. Функция Грина для краевой задачи Дирихле для уравнения Лапласа в пространстве

имеем задачу:

$$\begin{cases} \Delta u(M) = 0, M \in T \\ u(P) = g(P), P \in \Sigma \end{cases}$$

 $T\in\mathbb{R}^3$ - область, ограниченная замкнутой поверхностью $\Sigma;\,u,v\in C^2(T)\cap C^1(\overline{T}).$ Справедлива 3-я формула Грина:

$$4\pi u(M_0) = \iint\limits_{\Sigma} (\frac{\partial u}{\partial n_P} \frac{1}{R_{PM_0}} - u \frac{\partial}{\partial n_P} (\frac{1}{R_{PM_0}})) d\delta - \iiint\limits_{T} \frac{\Delta u}{R_{PM_0}} d\tau$$

Пусть v гармонична в T ($\Delta v=0$) и непрерывна с первыми производными в \overline{T} . Применим к u и v 2-ю формулу Грина:

$$0 = \iint\limits_{\Sigma} (v \frac{\partial u}{\partial n_P} - u \frac{\partial v}{\partial n_P}) d\delta - \iiint\limits_{T} (v \Delta u - u \Delta v) d\tau = \iint\limits_{\Sigma} (v \frac{\partial u}{\partial n_P} - u \frac{\partial v}{\partial n_P}) d\delta$$

(второй интеграл исчез, так как $\Delta u = \Delta v = 0$ в T). Складываем и получаем:

$$u(M_0) = \iint_{\Sigma} \left(\frac{\partial u}{\partial n_P} G - u \frac{\partial G}{\partial n_P}\right) d\delta$$

где $G(M,M_0)=\frac{1}{4\pi R_{MM_0}}+v(M)$. Потребуем, чтобы выполнялось условие $G(P,M_0)=0,P\in\Sigma$, тогда

$$u(M_0) = -\iint_{\Sigma} u \frac{\partial G}{\partial n_P} d\delta$$

Определение: Функция $G(M,M_0)$ называется функцией Грина внутренней задачи Дирихле в $T\in\mathbb{R}^3,$ если:

- 1) $G(M,M_0)=rac{1}{4\pi R_{MM_0}}+v(M)$, где v(M) гармонична в T
- 2) $G(P, M_0) = 0, P \in \Sigma$

Если функция Грина $G(M, M_0)$ существует, то решение задачи находим в явном виде по формуле:

$$u(M_0) = -\iint_{\Sigma} g(P) \frac{\partial G(P, M_0)}{\partial n_P} d\delta$$

Для построения функции Грина необходимо найти функцию v(M), удовлетворяющую задаче:

$$\begin{cases} \Delta v(M) = 0, M \in T \\ v(P) = -\frac{1}{4\pi R_{PM_0}}, P \in \Sigma \end{cases}$$

Свойства функции Грина:

1) $G(M,M_0) \ge 0$, если $M,M_0 \in T$

Доказательство: ограничим точку M_0 , в которой у $G(M,M_0)$ особенность, шаром K_{ϵ} достаточно малого радиуса ϵ (чтобы выполнялось $\frac{1}{4\pi R_{MM_0}} > v(M)$) тогда G > 0 в $K_{\epsilon} \cup \Sigma_{\epsilon}$ (Σ_{ϵ} - поверхность шара) и $\Delta G = 0$ в $T \setminus K_{\epsilon}$, тогда по принципу минимума $G \ge 0$ в $\Delta G = 0$ в $T \setminus K_{\epsilon}$, откуда в силу произвольности выбора ϵ следует утверждение. Следствие: $\frac{\partial G}{\partial n}|_{\Sigma} \le 0$

2) Принцип взаимности: $G(M, M_0) = G(M_0, M)$

Короткого доказательства не нашёл

2. Постановка задачи Коши для уравнения теплопроводности на неограниченной прямой.

$$\begin{cases} u_t = a^2 u_{xx} + f(x,t), -\infty < x < \infty, t > 0 \\ u(x,0) = \phi(x) \end{cases}$$

 $f(x,t),\phi(x)$ - заданные непрерывные функции