Circuitos Digitais

Preparatório 05

1. Construa um circuito Contador Assíncrono de Década. Um contador de década efetua a contagem em números binários de 0₁₀ a 9₁₀ (10 algarismos). Isso significa acompanhar a seqüência BCD de 0000 a 1001. Implemente o seu circuito no Digital Works e na bancada.

Decidas de Clock	Q_3	Q_2	Q_1	Q_0	CLR
1^a	0	0	0	0	1
2^a	0	0	0	1	1
3^a	0	0	1	0	1
4^a	0	0	1	1	1
5^a	0	1	0	0	1
6^a	0	1	0	1	1
7^a	0	1	1	0	1
8^a	0	1	1	1	1
9^a	1	0	0	0	1
10^{a}	1	0	0	1	1
repete 1^a	1	0	1	0	0

2. Construa um circuito Contador Assíncrono Decrescente. Faça um contador decrescente que inicie seu ciclo em 7 (sete) e termine em 0 (zero). Implemente o seu circuito no Digital Works e na bancada.

Decidas de Clock	Q_2	Q_1	Q_0
1^a	1	1	1
2^a	1	1	0
3^a	1	0	1
4^a	1	0	0
5^a	0	1	1
6^a	0	1	0
7^a	0	0	1
8^a	0	0	0
repete 1^a	1	1	1

Observe que os sinais de *preset* e *clear* do flip-flop JK mestre-escravo do Digital Works são ativos em 1 (nível alto) e do circuito integrado 7476 são ativos em 0 (nível baixo).

Conteúdo do Preparatório:

- Capa (disciplina, preparatório, turma, nome, data) (0,5 p^{tos});
- Tabelas da verdade (2,0 p^{tos});
- Simplificações lógicas (mapas de Karnaugh) (2,5 p^{tos});
- Desenho do circuito teórico (baseado nas simplificações obtidas) (1,0 pto);
- Definição das entradas e saídas (1,0 p^{to});
- Lista de circuitos integrados (0,5 p^{tós});
- Alimentação dos circuitos integrados (0,5 p^{tos});
- Simulação (apresentar simulação no *Digital Works*, anexando o circuito lógico impresso, contendo a pinagem dos *chips* utilizados) (2,0 p^{tos}).

Observações:

- A construção do preparatório é individual e de próprio punho, com exceção da capa e da simulação;
- Utilize os flip-flops JK mestre-escravo do circuito integrado 7476 para efetuar as montagens.
- Pontuação relacionada à montagem do preparatório no laboratório:
 - . Montagem não efetuada: 25% da nota do preparatório (ou da saída correspondente);
 - . Montagem efetuada, porém funcionamento incorreto: 50% da nota do preparatório (ou saída correspondente).