Efficient Neural Network Verification via Order Leading Exploration of Branch-and-Bound Trees

Guanqin Zhang^{1,2}, Kota Fukuda³, Zhenya Zhang³, Dilum Bandara^{1,2}, Shiping Chen^{1,2}, Jianjun Zhao³, Yulei Sui¹

¹University of New South Wales, Sydney, Australia ²CSIRO's Data61, Australia ³Kyushu University, Fukuoka, Japan

Contribution

We propose Oliva , a novel framework that accelerates **branch-and-bound** neural network verification by incorporating an **order leading exploration** of sub-problems, characterized by:

- A greedy order to prioritize sub-problems likely to contain true counterexamples (Oliva ^{GR}).
- A simulated annealing-inspired approach for stochastically balancing exploration and exploitation (Oliva^{SA}).

This framework significantly accelerates the verification process by effectively **navigating** the sub-problem space, and **falsifying** the verification task.

Are Neural Networks Robustness?

¹ Explaining and Harnessing Adversarial Examples

²Optical Adversarial Attack.

Are Neural Networks Robustness?

Small perturbations on the input can fool neural networks to yield incorrect output.

¹Explaining and Harnessing Adversarial Examples

²Optical Adversarial Attack.

Over-Approximation for Neural Network Verification

 $\text{Specification: } \Phi \wedge \Psi \qquad \text{Input: } \Phi := x_1 \in [-1,1] \wedge x_2 \in [-1,1] \quad \text{Output: } \Psi = (O > 0)$

Network: f

Over-Approximation for Neural Network Verification

Specification: $\Phi \wedge \Psi$ Input: $\Phi := x_1 \in [-1,1] \wedge x_2 \in [-1,1]$ Output: $\Psi = (O > 0)$

Network: f $[-1,1] \begin{array}{c} x_1 \\ x_2 \\ \hline \\ [-1,1] \end{array} \begin{array}{c} ReLU \\ \hline \\ r_1 \\ \hline \\ 2 \\ \hline \\ -3 \\ \hline \\ -3 \\ \hline \\ ReLU \\ \hline \\ r_2 \\ \hline \end{array} \begin{array}{c} ReLU \\ \hline \\ -1,7 \\ \hline \\ -1$

Figure: DeepPoly

Lowerbound $\hat{p}: \min O = \mathtt{LPSolver}(\Phi \land f \land \Psi)$ $\hat{p} = -\mathbf{2.7}$ obtained by conservative over-approximation of active functions (i.e., ReLU) via linear solver and cannot verify the specification.

 $^{^{3}}$ An Abstract Domain for Certifying Neural Networks

Specification Distance

Specification: $\Phi \wedge \Psi$ Input: $\Phi := x_1 \in [-1,1] \wedge x_2 \in [-1,1]$ Output: $\Psi = (O > 0)$

Network:

 $\hat{p} = -2.7$ is the **specification distance** of the overapproximation.

$$\hat{p} < 0$$
Unsafe

Spurious Counterexample

Now, it cannot verify the specification. Branch-and-bound specification tree splitting is needed!

ReLU r_1 is selected to be split. An atomic proposition with respect to the selected r_1 neuron is enforced as either $\mathbf{x}_1 \geq 0$ (denoted r_i^+) or $\mathbf{x}_1 < 0$ (denoted r_i^-).

Precise spliting ReLU T1 Over-approximations for ReLUs T2 T3 T4

A specification tree $\mathcal T$ consists **nodes** as tuples $\langle \Gamma, \hat p \rangle$ that record the subproblems explored. Γ records the split subproblems with the enforced ReLU conditions. Subproblem with the split ReLU (r_1^+) is computed by $\hat p = \text{LPSolver}(\Phi \wedge f \wedge \Psi \wedge r_1^+)$, while the rest of the ReLUs are kept approximated.

Specification Tree

Existing Approach

Tree grows when continuing to spit ReLU r_2 ⁴.

Existing Approach

Tree grows when continuing to spit ReLU r_2 ⁴.

Precise spliting ReLU r_1 r_2 Over-approximations for ReLUs r_3 r_4

Keep branching ReLU r_2 , while ReLUs r_3 and r_4 are kept over-approximation, we find the true counterexample in the end.

 $^{^4}$ Branch and Bound for Piecewise Linear Neural Network Verification, J. of Machine Learning Research 2020.

Our Insights

Our Insights

From our insights, **counterexamples** are related to two factors:

- The nodes (specification distance \hat{p}) with smaller values are more likely to have a true counterexample.
- The node's depth measures the over-approximation level ($|\Gamma|$): deeper with less approximation

ECOOP'25

Our Insights

From our insights, counterexamples are related to two factors:

- The nodes (specification distance \hat{p}) with smaller values are more likely to have a true counterexample.
- The node's depth measures the over-approximation level ($|\Gamma|$): deeper with less approximation

If we find a true **counterexample** in the subproblem, it is also a **counterexample** for the root problem (step 1).

Limitations of existing approaches and our contribution

- The conventional BaB algorithm ⁴ **exhaustively** verifies the subproblems (each leaf node of BaB tree), which is **inefficient** in discovering counterexamples.
- Our approach explores the order of the subproblems to quickly identify true counterexamples (i.e., eagerly falsify the verification instance based on the counterexample potential of the subproblem spaces).

⁴ Branch and bound for piecewise linear neural network verification. J. of Machine Learning Research 2020.

Contribution I: Inferring the Potentiality of Counterexample

Contribution:

Order-leading verification of subproblems based on counterexample potentiality

Contribution I: Inferring the Potentiality of Counterexample

Contribution:

Order-leading verification of subproblems based on counterexample potentiality

$$\llbracket \Gamma
rbracket = egin{cases} -\infty & \textit{if } \hat{p} > 0 \ +\infty & \textit{true CE} \ \lambda rac{|\Gamma|}{K} + (1 - \lambda) rac{\hat{p}}{\hat{p}_{min}} & \textit{otherwise} \end{cases}$$

$$\begin{bmatrix}
 \Gamma_A
 \end{bmatrix} = 0.7
 \begin{bmatrix}
 \Gamma_{B_{-1}}
 \end{bmatrix} = 0.9
 \begin{bmatrix}
 \Gamma_{B_{-2}}
 \end{bmatrix} = 1.1
 so $\Gamma_{B_{-2}}$ is selected$$

Contribution I: Inferring the Potentiality of Counterexample

Contribution:

Order-leading verification of subproblems based on counterexample potentiality

$$\llbracket \Gamma \rrbracket = \begin{cases} -\infty & \text{if } \hat{p} > 0 \\ +\infty & \text{true } CE \\ \lambda \frac{|\Gamma|}{K} + (1 - \lambda) \frac{\hat{p}}{\hat{p}_{min}} & \text{otherwise} \end{cases} \qquad \begin{matrix} \llbracket \Gamma_{A} \rrbracket = 0.7 \\ \llbracket \Gamma_{B_1} \rrbracket = 0.9 \\ \llbracket \Gamma_{B_2} \rrbracket = 1.1 \\ \text{so } \Gamma_{B_2} \text{ is selected} \end{matrix}$$

• The nodes ($\llbracket \Gamma_i \rrbracket$) with larger **rewards** (of counterexample potentiality) are more likely to have a true counterexample.

Order Leading Verification Approach (Oliva^{GR})

The conventional BaB algorithm manages "first-come, first-served" processing order, using

 7 times of bounding, and 2 of branching (only two ReLUs) to find the couterexample.

Order Leading Verification Approach (Oliva^{GR})

The conventional BaB algorithm manages "first-come, first-served" processing order, using

 7 times of bounding, and 2 of branching (only two ReLUs) to find the couterexample.

Oliva^{GR} considers the order of the subproblems (subtrees). Hence, it can speed up the verification process and use

• 5 times of bounding, and 2 times of bounding to find the couterexample.

ECOOP'25

Greedily guided by **counterexample potentiality order** may:

- Trapped in local optima (similar to "Hill Climbing").
- unable to achieve further improvement.

Greedily guided by **counterexample potentiality order** may:

- Trapped in local optima (similar to "Hill Climbing").
- unable to achieve further improvement.

Oliva^{SA} with simulated annealing can:

- Possible escape local optima and occasionally accept worse solution.
- Temperature controlled to achieve further improvement by balancing exploration and exploitation.
- Slowly converge to exploitation.

4 D > 4 D > 4 E > 4 E > E 9 9 C

17

Oliva^{SA} with simulated annealing can:

- Possible escape **local** optima and occasionally accept worse solution.
- **Temperature** controlled to achieve further improvement by balancing exploration and exploitation.
- Slowly converge to exploitation.

18

Temperature: 0.0

Oliva^{SA} with simulated annealing can:

- Possible escape local optima and occasionally accept worse solution.
- Temperature controlled to achieve further improvement by balancing exploration and exploitation.
- Slowly converge to exploitation.

Guanqin Zhang July 02, 2025

Oliva^{SA} Child Selection Policy

$$\begin{split} \Delta p \leftarrow \exp\left(\frac{\min \mathsf{R}(\Gamma \cdot a) - \max \mathsf{R}(\Gamma \cdot a)}{T}\right) & \text{ s.t. } a \in \{r_k^+, r_k^-\} \\ \Gamma^* \leftarrow \Gamma \cdot a^* & \text{ s.t. } a^* \leftarrow \begin{cases} \text{randomly choose } r_k^+ \text{ or } r_k^- & \text{if } \mathsf{rand}(0, 1) < \Delta p \\ \arg \max_{a \in \{r_k^+, r_k^-\}} \mathsf{R}(\Gamma \cdot a) & \text{otherwise} \end{cases} \end{split}$$

Oliva^{SA} Child Selection Policy

<□ > <□ > <□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Oliva^{SA} Child Selection Policy

Order Leading Verification Approach (Oliva)

Experiment Results with model MNIST-L2 by 241 problem instances

Each point is a verification problem:

- x-axis: time costs by BaB-baseline
- y-axix: our speedup over BaB-baseline

Distribution of our speedup for violated instances and for certified instances.

Guanqin Zhang July 02, 2025

Future Work

Order-leading Incremental Neural Network Verification - OOPSLA'25

Q&A

Code:

https://github.com/DeepLearningVerification/Oliva

Paper

Guanqin Zhang July 02, 2025

Reference

to be added

Guanqin Zhang July 02, 2025