Iterative Monomorphisation

Jasmin Blanchette and Tanguy Bozec

LMU, München, Germany and ENS Paris-Saclay, Gif-sur-Yvette, France

```
\forall x: \mathtt{list\_int}, f \langle \mathtt{list\_int} \rangle (x)
```

```
\begin{split} \forall x: & \texttt{list\_int}, f \langle \texttt{list\_int} \rangle(x) \\ \forall x: & \texttt{list\_nat}, f \langle \texttt{list\_nat} \rangle(x) \\ \forall x: & \texttt{list\_bool}, f \langle \texttt{list\_bool} \rangle(x) \\ \forall x: & \texttt{list\_string}, f \langle \texttt{list\_string} \rangle(x) \end{split}
```

```
\forall x: \texttt{list\_int}, f \langle \texttt{list\_int} \rangle (x) \\ \forall x: \texttt{list\_nat}, f \langle \texttt{list\_nat} \rangle (x) \\ \forall x: \texttt{list\_bool}, f \langle \texttt{list\_bool} \rangle (x) \\ \forall x: \texttt{list\_string}, f \langle \texttt{list\_string} \rangle (x) \\ \forall \alpha, \forall x: \texttt{list}(\alpha), f \langle \texttt{list}(\alpha) \rangle (x) \\ \end{aligned}
```

Type variables are quantified universally at the top level of a formula.

Solution

Polymorphic problem → Monomorphic problem

Solution

Polymorphic problem ⇒ Monomorphic problem

Two possibilities:

- 1. Encode type variables in a monomorphic logic.
- 2. Instantiate type variables.

- 1 *P* is the set of input formulae
- 2 **while** new formulae are added to P **do**

```
for all \varphi \in P do
3
        for all occurrences f(\pi)(...) in \varphi with \pi polymorphic do
4
5
```

- for all occurrences $f\langle \tau \rangle(...)$ in P with τ monomorphic do
- if π matches against τ then 6
- add σ , the unifier of π and τ to S
 - for all $\sigma \in S$ do
- add $\varphi \sigma$ to P
- 10 **return** $\{\varphi \in P \mid \varphi \text{ is monomorphic}\}$

Soundness: instantiation of universally quantified type variables.

Completeness: this algorithm is incomplete.

Soundness: instantiation of universally quantified type variables.

Completeness: this algorithm is incomplete.

• Finding a finite equisatisfiable set of monomorphic instances of a first-order polymorphic formula is undecidable.

Soundness: instantiation of universally quantified type variables.

Completeness: this algorithm is incomplete.

- Finding a finite equisatisfiable set of monomorphic instances of a first-order polymorphic formula is undecidable.
- Bounds limit the instantiations we perform.

Initial problem:

- 1. $\forall x : \mathsf{int}, f(\mathsf{int})(x)$
- 2. $\forall x : \alpha, y : \mathsf{list}(\alpha), f(\alpha)(x) \land f(\mathsf{list}(\alpha))(y)$

Initial problem:

- 1. $\forall x : \text{int}, f(\text{int})(x)$
- 2. $\forall x : \alpha, y : \text{list}(\alpha), f(\alpha)(x) \land f(\text{list}(\alpha))(y)$

Successful match of against int.

Initial problem:

- 1. $\forall x : \mathsf{int}, f(\mathsf{int})(x)$
- 2. $\forall x : \alpha, y : \text{list}(\alpha), f(\alpha)(x) \land f(\text{list}(\alpha))(y)$

Successful match of against int.

Failure to match $list(\alpha)$ against int.

Initial problem:

- 1. $\forall x : \mathsf{int}, f(\mathsf{int})(x)$
- 2. $\forall x : \alpha, y : \text{list}(\alpha), f(\alpha)(x) \land f(\text{list}(\alpha))(y)$

Successful match of against int.

We apply the substitution $\alpha \mapsto int$ to clause 2.

3. $\forall x : \text{int}, y : \text{list}(\text{int}), f(\text{int})(x) \land f(\text{list}(\text{int}))(y)$

- 1. $\forall x : \mathsf{int}, f(\mathsf{int})(x)$
- 2. $\forall x : \alpha, y : \mathsf{list}(\alpha), f(\alpha)(x) \land f(\mathsf{list}(\alpha))(y)$
- 3. $\forall x : \text{int}, y : \text{list}(\text{int}), f(\text{int})(x) \land f(\text{list}(\text{int}))(y)$

- 1. $\forall x : \mathsf{int}, f(\mathsf{int})(x)$
- 2. $\forall x : \alpha, y : \text{list}(\alpha), f(\alpha)(x) \land f(\text{list}(\alpha))(y)$
- 3. $\forall x : \text{int}, y : \text{list}(\text{int}), f(\text{int})(x) \land f(\text{list}(\text{int}))(y)$

Successful match of α against list(int).

- 1. $\forall x : \mathsf{int}, f(\mathsf{int})(x)$
- 2. $\forall x : \alpha, y : \text{list}(\alpha), f(\alpha)(x) \land f(\text{list}(\alpha))(y)$
- 3. $\forall x : \text{int}, y : \text{list}(\text{int}), f(\text{int})(x) \land f(\text{list}(\text{int}))(y)$

Successful match of α against list(int).

We apply the substitution $\alpha \mapsto list(int)$ to clause 2.

4. $\forall x: \text{list(int)}, y: \text{list(list(int))},$ $f\langle \text{list(int)} \rangle(x) \wedge f\langle \text{list(list(int))} \rangle(y)$

- 1. $\forall x : \mathsf{int}, f(\mathsf{int})(x)$
- 2. $\forall x : \alpha, y : \text{list}(\alpha), f(\alpha)(x) \land f(\text{list}(\alpha))(y)$
- 3. $\forall x : \text{int}, y : \text{list}(\text{int}), f(\text{int})(x) \land f(\text{list}(\text{int}))(y)$

Successful match of α against list(int).

We apply the substitution $\alpha \mapsto list(int)$ to clause 2.

4.
$$\forall x: list(int), y: list(list(int)),$$

$$f\langle list(int)\rangle(x) \wedge f\langle list(list(int))\rangle(y)$$

This can generate an infinite number of new formulae.

Bounds

Since we cannot **exhaustively enumerate** all type variables instantiations, we use **heuristics** to determine which instantiations we perform:

- We limit the number of iterations.
- We filter type arguments by function symbol.

Bounds

Since we cannot **exhaustively enumerate** all type variables instantiations, we use **heuristics** to determine which instantiations we perform:

- We limit the number of iterations.
- We filter type arguments by function symbol.
- We limit the number of substitutions we generate.
- We limit the number of applications of the substitutions.

Zipperposition and E

Benchmarks

We wanted to test the usefulness of our implementation of iterative monomorphisation.

We had two questions:

- 1. Does Zipperposition benefit from the ability to call E on monomorphised problems?
- 2. Does E perform well on monomorphised problems?

Benchmarks

Methodology

We used the TPTP (Thousand Problems for Theorem Provers) problem set for our evaluations.

Methodology

We used the TPTP (Thousand Problems for Theorem Provers) problem set for our evaluations.

We split the problem set into two:

- 500 problems for adjusting bounds and parameters
- 1034 problems for the benchmarks

Zipperposition benefits from monomorphisation

	Zipperposition without E	Zipperposition with E	Union
500 problems	168	198	207
1034 problems	337	410	434

Zipperposition benefits from monomorphisation

	Zipperposition without E	Zipperposition with E	Union
500 problems	168	198	207
1034 problems	337	410	434

This is **expected** Zipperposition benefits greatly from E in a monomorphic setting.

Zipperposition benefits from monomorphisation

Polymorphic	Monomorphised
-------------	---------------

E	-	340	
Zipperposition	339		

Calling E on monomorphised problems is a viable option.

Polymorphic	Monomorphised

E	_	340	
Zipperposition	339	351	

Calling E on monomorphised problems is a viable option.

Polymor	ohic	Monomorphised
	91110	1-1011011101

E	-	340	
Zipperposition	339	351	
Leo-III	157	231	

Calling E on monomorphised problems is a viable option.

Polymorphic provers perform better on monomorphised problems.

	Polymorphic	Monomorphised	Union
E	-	340	340
Zipperposition	339	351	404
Leo-III	157	231	274

Calling E on monomorphised problems is a viable option.

Polymorphic provers perform better on monomorphised problems.

- Goal: Polymorphic problem \Longrightarrow Monomorphic problem.
- Solution: instantiating type variables with ground types.

- Goal: Polymorphic problem \Longrightarrow Monomorphic problem.
- Solution: instantiating type variables with ground types.
- Bounds are necessary in practice.

- Goal: Polymorphic problem \Longrightarrow Monomorphic problem.
- · Solution: instantiating type variables with ground types.
- Bounds are necessary in practice.
- It is a viable means for extending monomorphic provers.
- Iterative monomorphisation can outperform native implementations of polymorphism.

Iterative Monomorphisation

Jasmin Blanchette and Tanguy Bozec

LMU, München, Germany and ENS Paris-Saclay, Gif-sur-Yvette, France