Niveau: Première année de PCSI

COLLE 9 = FONCTIONS DÉRIVABLES

Connaître son cours:

- 1. Soit $f: I \to \mathbb{R}$ dérivable, montrer que : Si f admet un extremum local en un point a intérieur à I, alors f'(a) = 0.
- 2. Énoncer le théorème de Rolle et donner une démonstration de celui-ci.
- 3. Soit $f, g: I \to \mathbb{R}$ des fonctions n fois dérivables. Énoncer la formule de Leibniz pour la dérivée $n^{\text{ième}}$ de la fonction $f \times g$. En déduire la dérivée n-ième de la fonction suivante : $x \mapsto x^{n-1} \ln(1+x)$.

Exercices:

Exercice 1. (**)

On considère dans tout cet exercice les deux fonctions F et G définies sur \mathbb{R}_+^* par :

$$F(x) = \frac{\sin(x)}{x} \quad G(x) = \frac{1 - \cos(x)}{x}$$

- 1. (a) Montrer que F et G sont continues et prolongeables par continuité en 0. On notera encore F et G ces prolongements.
 - (b) Montrer que les fonctions F et G sont dérivables sur \mathbb{R}^* et calculer leurs dérivées.
 - (c) Montrer que les fonctions F et G sont dérivables en 0. Préciser les valeurs de F'(0) et G'(0).
- 2. (a) Montrer que les réels strictement positifs tels que F(x) = 0 constituent une suite $(a_k)_{k \in \mathbb{N}^*}$ strictement croissante. On donnera explicitement la valeur de a_k
 - (b) Montrer que les réels strictement positifs tels que G(x) = 0 constituent une suite $(b_k)_{k \in \mathbb{N}^*}$ strictement croissante. Y a-t-il un lien entre les suites $(a_k)_{k \in \mathbb{N}^*}$ et $(b_k)_{k \in \mathbb{N}^*}$?
- 3. (a) Soit $k \in \mathbb{N}^*$. Montrer qu'il existe un réel $x_k \in]a_k, a_{k+1}[$ tel que $F'(x_k) = 0$.
 - (b) Montrer que la fonction F' est de même signe que $h: x \longmapsto x \cos(x) \sin(x)$ sur \mathbb{R}_+^* et que pour tout $k \in \mathbb{N}^*$, la fonction h est strictement monotone sur $[a_k, a_{k+1}]$.
 - (c) En déduire l'unicité du réel x_k défini dans la question 4.(a).
 - (d) Etablir que : $\forall k \in \mathbb{N}^*, x_k \in]a_k, a_k + \frac{\pi}{2}[.$
- 4. Calculer $\lim_{k\to +\infty} x_k$ puis déterminer un équivalent simple de la suite $(x_k)_{k\in\mathbb{N}^*}$.

Exercice 2. (**) Polynômes de Laguerre

On pose, pour tout entier naturel n et pour tout réel x,

$$h_n(x) = x^n e^{-x}$$
 et $L_n(x) = \frac{e^x}{n!} h_n^{(n)}(x)$.

- 1. Montrer que, pour tout entier n, L_n est une fonction polynômiale. Préciser son degré et son coefficient dominant.
- 2. Montrer que, pour tout $k \in \{0, ..., n\}$, il existe $Q_k \in \mathbb{R}[X]$ tel que, pour tout $x \in \mathbb{R}$, on a

$$h_n^{(k)}(x) = x^{n-k}e^{-x}Q_k(x).$$

Niveau: Première année de PCSI

Exercice 3. (***)

Soit f définie sur un intervalle ouvert I contenant 0, continue sur I. On suppose en outre que $\lim_{x\to 0} \frac{f(2x)-f(x)}{x} = 0$. Montrer que f est dérivable en 0.

Exercice 4. (**)

Soit $f:]0, +\infty[\to \mathbb{R}$ une fonction dérivable et $\ell \in \mathbb{R}$ tel que $\lim_{x \to +\infty} f'(x) = \ell$.

L'objectif de cet exercice est de démontrer que $\lim_{x\to +\infty} \frac{f(x)}{x} = \ell$.

- 1. On suppose dans cette question que $\ell = 0$. Soit $\varepsilon > 0$.
 - (a) Montrer qu'il existe A > 0 tel que, pour tout $x \ge A$, on a

$$\left| \frac{f(x)}{x} \right| \le \left| \frac{f(A)}{x} \right| + \varepsilon.$$

- (b) En déduire le résultat dans ce cas.
- 2. Démontrer le résultat dans le cas général.
- 3. Réciproquement, est-il vrai que pour toute fonction dérivable $f:]0, +\infty[\to \mathbb{R}$ telle que $\lim_{x \to +\infty} \frac{f(x)}{x} = \ell$, alors on a $\lim_{x \to +\infty} f'(x) = \ell$?

Exercice 5. (**)

Déterminer la dérivée d'ordre n de la fonction f définie par $f(x) = (x-a)^n (x-b)^n$ (a,b) sont des réels). En étudiant le cas a = b, trouver la valeur de $\sum_{k=0}^{n} {n \choose k}^2$.

Exercice 6. (**)

Soit $n \in \mathbb{N}$. Montrer que la dérivée d'ordre n+1 de $x^n e^{1/x}$ est

$$\frac{(-1)^{n+1}}{x^{n+2}}e^{1/x}.$$