FÁZOVÉ ROVNOVÁHY

Gibbsov fázový zákon

Fáza - homogénna časť sústavy, oddelená od ostatných fáz rozhraním, v ktorom sa vlastnosti menia skokom

Počet zložiek - minimálny počet čistých látok, z ktorých je možné danú sústavu zložiť

- ak látky medzi sebou chemicky nereagujú počet zložiek sa rovná počtu čistých látok
- ak látky medzi sebou chemicky reagujú treba od počtu čistých látok odpočítať počet rovníc, ktorými tieto látky navzájom súvisia

Počet stupňov voľnosti - počet nezávisle premenných veličín určujúcich termodynamický stav sústavy

Gibbsov fázový zákon

$$v = k - f + 2$$

Fyzikálne premeny čistých látok - fázové premeny bez zmeny chemického zloženia

FÁZOVÉ ROVNOVÁHY - ZÁKLADNÉ POJMY

Fázová premena - samovoľná premena jednej fázy na inú fázu, pri danom tlaku a pri určitej charakteristickej teplote

Teplota premeny, T_{prem} - teplota, pri ktorej sú dve fázy pri danom tlaku v rovnováhe a teda ich chemické potenciály sú rovnaké

Metastabilné fázy - termodynamicky nestabilné fázy, ktoré pretrvávajú v dôsledku kinetických zábran (diamant→grafit)

Fázový diagram látky - predstavuje oblasti tlakov a teplôt, pri ktorých sú rôzne fázy danej látky termodynamický stabilné

Koexistenčné krivky - čiary oddeľujúce jednotlivé oblasti, znázorňujú hodnoty p a T, pri ktorých existujú v rovnováhe vedľa seba dve fázy

Uvažujme o kvapalnej vzorke čistej látky v uzavretej nádobe ⇒ tlak, ktorý má para v rovnováhe s kvapalinou sa nazýva *tlak pary* danej látky (*tlak nasýtenej pary*)

Ak sa kvapalina zohrieva v <u>otvorenej</u> nádobe, bude sa na povrchu *vyparovať*

Var kvapaliny - ak teplota dosiahne takú hodnotu, že sa tlak pary vyrovná vonkajšiemu tlaku, para môže voľne expandovať do okolia a vyparovanie začne búrlivo prebiehať v celom objeme

Teplota varu - teplota, pri ktorej sa tlak pary rovná vonkajšiemu tlaku

Pri zohrievaní kvapaliny v <u>uzavretej</u> nádobe:

- so zvyšovaním teploty nepretržite narastá tlak pary ⇒ *nedochádza k varu*
- pri určitej teplote nastane stav, kedy sa hustota pary vyrovná hustote zvyšnej kvapaliny \Rightarrow mizne rozhranie medzi dvoma fázami *kritická teplota* látky T_k
- tlak pary pri kritickej teplote sa nazýva $kritický tlak p_k$

Nadkritická tekutina - jediná jednotná fáza nad kritickou teplotou, ktorá vypĺňa celý objem nádoby

$$H_2O$$
 $T_K = 374$ °C; $p_K = 218$ atm

- a) Kvapalina v rovnováhe so svojou parou
- b) Pri zohrievaní kvapaliny v uzavretej nádobe, hustota jej pary narastá a hustota kvapaliny klesá
- c) Pri kritickej teplote sa obidve hustoty vyrovnajú a medzifázové rozhranie mizne

Teplota topenia - teplota, pri ktorej sú za daného tlaku vedľa seba v rovnováhe kvapalná a tuhá fáza

Teplota topenia = teplota tuhnutia

Trojitý bod - tri fázy vedľa seba v rovnováhe

- je daný jediným definovaným tlakom a jedinou teplotou, charakteristickými pre danú látku

$$H_2O$$
 $T_3 = 273,16 \text{ K}; p_3 = 611 \text{ Pa}$

ROZDELENIE SÚSTAV

Podľa počtu stupňov voľnosti:

- v = 2, bivariantná sústava
- v = 1, univariantná alebo monovariantná sústava
- v = 0, nonvariantná alebo invariantná sústava

Podľa počtu zložiek:

- jednozložkové k = 1
- dvojzložkové k = 2
- viaczložkové

JEDNOZLOŽKOVÁ SÚSTAVA

Fázový diagram sústavy s jednou zložkou

Pre sústavy s jednou zložkou je $k = 1 \implies v = 3 - f$

- počet fáz v rovnováhe nemôže byť väčší ako 3

Môžu nastať tri prípady:

- jedna fáza $\Rightarrow v = 2$, bivariantná sústava
- dve fázy v rovnováhe $\Rightarrow v = 1$, monovariantná sústava
- tri fázy v rovnováhe $\Rightarrow v = 0$, nonvariantná sústava \Rightarrow trojitý bod

Fázový diagram vody

Medzi I a III - sublimačná (desublimačná) krivka

- krivka závislosti teploty sublimácie od vonkajšieho tlaku
- pri teplote a tlaku, ktorý jej odpovedá, je vedľa seba v rovnováhe tuhá a plynná fáza

Medzi I a II - krivka topenia (tuhnutia)

- krivka závislosti teploty topenia od vonkajšieho tlaku
- pri teplote a tlaku, ktorý jej odpovedá, je vedľa seba v rovnováhe kvapalná a tuhá fáza

Medzi II a III - krivka vyparovania (kondenzácie)

- krivka závislosti teploty varu od vonkajšieho tlaku
- pri teplote a tlaku, ktorý jej odpovedá, je vedľa seba v rovnováhe kvapalná a plynná fáza

Clausiusova a Clapeyronova rovnica

Majme *rovnovážnu uzavretú jednozložkovú dvojfázovú* sústavu ⇒ rovnováhu medzi dvoma fázami môžeme odvodiť zo základnej podmienky medzifázovej rovnováhy

$$\mu^{I} = \mu^{II} \left[p, T \right]$$

Ak zmeníme teplotu o d $T \Rightarrow$ tlak sa zmení o dp a chemické potenciály oboch fáz o d μ^I a d $\mu^{II} \Rightarrow$ pre novú rovnováhu platí

$$\mu^{I} + d\mu^{I} = \mu^{II} + d\mu^{II} = 0$$
 [p,T]

Z porovnania posledných dvoch vzťahov vyplýva $\mathrm{d}\mu^I=\mathrm{d}\mu^{II}$ $\mathrm{d}G_m^I=\mathrm{d}G_m^{II}$

$$-S^{I} dT + V^{I} dp = -S^{II} dT + V^{II} dp$$

po úprave
$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{S^{II} - S^{I}}{V^{II} - V^{I}} = \frac{\Delta S}{\Delta V}$$

Keďže pre vratný dej pri konštantnej teplote a tlaku platí

$$\Delta S = \frac{Q_{rev}}{T} = \frac{\Delta H}{T} \quad [T, p, rev.]$$

⇒ po dosadení

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta H}{T \, \Delta V}$$

Clapeyronova rovnica

- ΔH je mólová tepelná kapacita príslušnej fázovej premeny

Clapeyronova rovnica - vyjadruje závislosť rovnovážneho tlaku od teploty v jednozložkovej dvojfázovej sústave

Rovnováha <u>kvapalina – para</u>, resp. <u>tuhá látka – para</u>

- mólový objem kvapaliny $V_m^I <<$ mólový objem pary V_m^{II} $\Rightarrow V_m^I$ môžeme oproti V_m^{II} zanedbať
- pri nízkych tlakoch sa plynná fáza riadi stavovou rovnicou ideálneho plynu $V_m^{II} - V_m^{II} \cong V_m^{II} = \frac{KI}{m}$

po dosadení
$$\frac{dp}{p dT} = \frac{\Delta H_{m,výp}}{RT^2}$$

dosadení
$$\frac{\mathrm{d}p}{p\,\mathrm{d}T} = \frac{\Delta H_{m,výp}}{RT^2} \text{ resp.} \qquad \frac{\mathrm{d}\ln p}{\mathrm{d}T} = \frac{\Delta H_{m,výp}}{RT^2} \qquad \begin{array}{c} \text{Clausiusova} - \frac{1}{2} & \frac{1}{2}$$

$$\log \frac{p_2}{p_1} = -\frac{\Delta H_{m,v\acute{y}p}}{2,303 R} \left(\frac{1}{T_2} - \frac{1}{T_1} \right) = \frac{\Delta H_{m,v\acute{y}p}(T_2 - T_1)}{2,303 R T_1 T_2}$$

- p je tlak nasýtených pár príslušnej kvapaliny
- $\Delta H_{m,výp}$ je mólové výparné (sublimačné) teplo

Fázová rovnováha tuhá látka – kvapalina

- pri rovnováhe medzi tuhou a kvapalnou fázou je závislosť rovnovážneho tlaku jednozložkovej sústavy od teploty vyjadrená pomocou Clapeyronovej rovnice $\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta H_{top}}{\left(V(l) - V(s)\right)T}$

 ΔH_{top} - je tepelný efekt (teplo) topenia látky V(l) - je objem kvapaliny a V(s) je objem tuhej fázy

- topenie je vždy endotermický dej $(\Delta H > 0)$
- pri väčšine látok sa objem pri topení zväčšuje $(V(l) > V(s)) \Rightarrow$ teplota topenia s rastúcim tlakom stúpa
- výnimky voda a bizmut

Fázová rovnováha tuhá látka – tuhá látka

- závislosť teploty premeny od vonkajšieho tlaku, platí Clapeyronova rovnica v tvare

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{\Delta H_{prem}}{\left(V(\alpha) - V(\beta)\right)T}$$

 ΔH_{prem} - je tepelný efekt (teplo) premeny látky

 $V(\alpha)$ a $V(\beta)$ - sú objemy oboch kryštálových modifikácii

- objemové zmeny sú tu nepatrné
- ⇒ teplota premeny sa s vonkajším tlakom mení len veľmi nepatrne

Fázový diagram vody

Záporný sklon krivky topenia ⇒ zvyšovanie tlaku pri konštantnej teplote spôsobí topenie

- pri topení ľadu sa zmenšuje jeho objem

Fázový diagram CO₂

Trojitý bod leží nad tlakom 1 atm ⇒ pri normálnom tlaku nemôže kvapalný oxid uhličitý existovať pri žiadnej teplote

⇒ tuhý oxid uhličitý ponechaný voľne na vzduchu sublimuje - "suchý ľad"

Fázový diagram hélia

Pri veľmi nízkych teplotách sa tuhá a plynná fáza nikdy nenachádzajú v rovnováhe

- atómy He sú také ľahké, že vibrujú s veľkou amplitúdou aj pri veľmi nízkych teplotách

Na prípravu tuhého He je potrebné zvýšiť tlak nad 20 bar

Hélium-II je supratekutá fáza

- hcp označuje hexagonálnu a bcc priestorovo centrovanú kubickú mriežku

Fázové rovnováhy v dvojzložkovej sústave

Roztoky - homogénne zmesi dvoch alebo viacerých látok

- pomer množstiev jednotlivých zložiek môže byť v medziach, ktoré pripúšť a vzájomná rozpustnosť ľubovoľný

Rozpúšť anie - proces vzniku roztoku zo zložiek

- *je samovoľným dejom* ⇒ klesá Gibbsova energia a rastie entropia sústavy
- prebieha kým sa nedosiahne termodynamická rovnováha
 (minimálna hodnota G, maximálna hodnota S, rovnaké chemické potenciály každej zložky v oboch fázach v kontakte) ⇒ stav

nasýtenia

Roztok - rozpúšť adlo a rozpustená látka Roztoky - plynné, kvapalné, tuhé

> koloidné sústavy – rozmery rozptýlených častíc sú rádovo 1-500 nm – koloidná chémia

Roztoky

Homogénna sústava (fáza) skladajúca sa najmenej z dvoch chemicky odlišných zložiek (látok).

plynné roztoky - zmes plynov

 $p=\Sigma_i p_i$

parciálny tlak i-tej zložky

$$V = \Sigma_i V_i$$

parciálny objem i-tej zložky kvapalné roztoky

rozpúšťadlo (v nadbytku) zvyčajne kvapalina

rozpustená látka plyn, kvapalina, tuhá látka tuhé roztoky sklá, izomorfné

kryštály,

...

- iónové zlúčeniny pri rozpúšť aní disociujú
- kovalentné zlúčeniny si pri rozpúšťaní zachovávajú molekuly

Zloženie roztokov

<u>Hmotnostný zlomok</u>, w_i - vyjadruje pomer hmotnosti i-tej zložky m_i k celkovej hmotnosti roztoku m $w_i = \frac{m_i}{m_i}$

Hmotnostný zlomok daný v percentách vyjadruje *hmotnostné*percento w%

 $w\% = w_i.100\%$

Objemový zlomok, φ_i - vyjadruje pomer parciálneho objemu i-tej zložky V_i k celkovému objemu V $\varphi_i = \frac{V_i}{V}$

Objemový zlomok daný v percentách vyjadruje *objemové percento* $\phi\%$

$$\varphi\% = \varphi_i.100\%$$

Mólový zlomok, x_i (y_i) - vyjadruje pomer látkového množstva zložky n_i k celkovému látkovému množstvu (počtu mólov všetkých zložiek) v roztoku $n = \sum_i n_i$

$$x_i = \frac{n_i}{\sum n_i} = \frac{n_i}{n}$$

Platí $\sum x_i = 1$

Mólový zlomok daný v percentách vyjadruje *mólové percento x*%

$$x\% = x_i.100 \%$$

 $\underline{Molalita}$ i-tej zložky m_i - je pomer jej látkového množstva n_i a hmotnosti rozpúšťadla m_0

$$\mathbf{m}_i = \frac{n_i}{m_0} = \frac{m_i}{M_i m_0}$$

 m_i je hmotnosť i-tej zložky, M_i je mólová hmotnosť i-tej zložky

<u>Molárna koncentrácia</u> (<u>molarita</u>) i-tej zložky c_i - je daná pomerom jej látkového množstva n_i a celkového objemu roztoku V

$$c_i = \frac{n_i}{V} = \frac{m_i}{M_i V}$$

 m_i je hmotnosť i-tej zložky, M_i je mólová hmotnosť i-tej zložky

 $rac{Hustota}{c}$ ($rac{hmotnostná koncentrácia}{c}$) ho_i - je hmotnosť i-tej zložky m_i delená objemom roztoku V

$$\rho_i = \frac{m_i}{V}$$

Plynné roztoky

Ak zložky plynnej zmesi navzájom nereagujú a ako čisté plyny sa správajú ideálne ⇒ aj zmes sa správa ako ideálny plyn

Zmes plynov môžeme považovať za ideálny roztok, ak platí

- parciálny mólový objem zložky v ideálnom roztoku sa rovná mólovému objemu čistej zložky pri rovnakom tlaku (Amagatov zákon) $\Delta V_{zmes} = 0$

- entalpia každej zložky ideálneho roztoku nezávisí od zloženia roztoku $\Delta H_{\rm zmes} = 0$

- pre entropiu zmiešania ideálneho plynného roztoku platí

$$\Delta S_{zmes} = -R \sum n_i \ln x_i$$

Z týchto troch podmienok vyplýva

$$\Delta G_{m,i} = RT \ln x_i \qquad \Delta G_{zmes} = RT \sum n_i \ln x_i$$

Kvapalné roztoky Raoultov zákon

Ak rozpustíme určité množstvo látky v kvapalnom rozpúšťadle, znižujeme tým koncentráciu rozpúšťadla ⇒ zmení sa tlak nasýtenej pary rozpúšťadla nad roztokom (zníženie tlaku)

kvapalina, ktorá je v rovnováhe so svojou nasýtenou parou

Schéma <u>zníženia</u> tlaku pary rozpúšťadla po rozpustení <u>neprchavej</u> látky

<u>Nasýtená para</u> je charakterizovaná stavom termodynamickej rovnováhy \Rightarrow v určitom čase sa vyparí práve toľko molekúl zložky (napr. rozpúšťadla n'_A), koľko ich z parnej fázy skondenzuje späť do kvapaliny (n''_A)

- n_A' je úmerné koncentrácii zložky v kvapalnom roztoku x_A
- n_A'' je úmerné parciálnemu tlaku zložky ${f A}$ v parách ${m p}_A$

Platí teda
$$n'_A = k'x_A$$
 $n''_A = k''p_A$

V rovnováhe je
$$n_A' = n_A'' \implies p_A = \frac{k'}{k''} x_A$$
 alebo $p_A = k x_A$

Keďže pri $x_A = 1$ (nad čistou zložkou A) je $p = p_A^*$ (tlak nasýtenej pary čistej zložky), platí podľa posledného vzťahu

$$p_A^* = k$$

$$p_A = p_A^* x_A$$
 Raoultov zákon

Raoultov zákon - parciálny tlak nasýtenej pary zložky nad jej roztokom sa rovná tlaku nasýtenej pary nad čistou zložkou (rozpúšť adlom) násobenému jej mólovým zlomkom v roztoku

Podobne pre zložku B

$$p_B = p_B^* x_B$$

Celkový tlak pary

nad roztokom
$$p = p_A + p_B = p_A^* x_A + p_B^* x_B^*$$

Pri vyšších tlakoch sa môže chovanie nasýtených pár líšiť od chovania ideálneho plynu ⇒ potrebné nahradiť parciálne tlaky príslušnými fugacitami

$$f_i = f_i^* x_i$$

kde f_i je fugacita i-tej zložky v parách a f_i^* je fugacita pár nad čistou *i*-tou zložkou

Závislosť tlaku pary od zloženia roztoku

Priamky p_A a p_B sú grafickým vyjadrením Raoultovho zákona, priamka p vyjadruje súčet oboch parciálnych tlakov

Kladné odchýlky od Raoultovho zákona súvisia s vyššou prchavosťou zložiek, teda s ich nižšou vzájomnou rozpustnosťou v porovnaní s ideálnym roztokom ⇒ príťažlivé sily v zmesi sú menšie ako v čistých zložkách (väzba medzi rovnakými molekulami A-A a B-B je silnejšia ako väzba A-B)

Kladné odchýlky od Raoultovho zákona: sústava acetón – sírouhlík pri teplote 35,2°C

Záporné odchýlky od Raoultovho zákona zodpovedajú nižšej prchavosti, teda zvýšenej vzájomnej rozpustnosti v porovnaní s ideálnymi roztokmi ⇒ molekuly oboch zložiek v zmesi sú k sebe pútané silnejšie ako molekuly čistých zložiek (väzba A-B je pevnejšia než sú väzby A-A a B-B)

Záporné odchýlky od Raoultovho zákona sústava acetón – chloroform pri teplote 35,2°C

Roztoky plynov v kvapalinách, Henryho zákon

Sústava zložená z kvapaliny a plynu, ktorý sa v nej <u>rozpúšťa</u>, <u>ale</u> <u>chemicky s ňou nereaguje</u> ⇒ dve zložky, dve fázy, dva stupne voľnosti

<u>W. Henry</u> - množstvo rozpusteného plynu je úmerné jeho tlaku nad roztokom

c = k.p

 c je koncentrácia plynu v nasýtenom roztoku, p je jeho tlak nad roztokom, k je konštanta úmernosti závislá len od teploty

Nasýtený roztok je v rovnováhe s plynom \Rightarrow za určitý čas vyletí práve toľko molekúl plynu do parnej fázy n', koľko do neho z parnej fázy vnikne n'

n' je úmerné mólovému zlomku plynu v roztoku n'=k'xn'' je úmerné tlaku plynu n'' = k'' p

Za rovnováhy
$$n' = n'' \Rightarrow x = \frac{k''}{k'}p \Rightarrow x = kp$$

- konštanta úmernosti k sa nazýva *absorpčným koeficientom* plynu v danom rozpúšťadle

Ak máme nad kvapalinou zmes viacerých plynov, možno uvedenú úvahu aplikovať na každú zložku $x_i = k_i p_i$

Často sa rozpustnosť plynu charakterizuje *Henryho konštantou*

$$H_i = \frac{1}{k_i}$$

Henryho zákon
$$p_i = H_i x_i$$

Koligatívne vlastnosti

- vlastnosti roztokov, ktoré závisia len od množstva častíc sa nazývajú koligatívne
- Zníženie tlaku nasýtenej pary rozpúšťadla nad roztokom
- Zvýšenie bodu varu roztokov
- Zníženie bodu tuhnutia roztokov
- Osmotický tlak

Zníženie tlaku nasýtenej pary rozpúšť adla nad roztokom

Ak rozpustená látka B je neprchavá \Rightarrow môžeme parciálny tlak rozpustenej látky p_B^* zanedbať $p = p_A = p_A^* x_A$

$$\frac{\mathbf{p}_{A}}{\mathbf{p}_{A}^{*}} = \mathbf{x}_{A} \quad \text{po úprave} \quad \frac{p_{A}^{*} - p_{A}}{p_{A}^{*}} = 1 - x_{A} \quad \frac{\Delta p}{p_{A}^{*}} = x_{B}$$

kde Δp je zníženie tlaku pary rozpúšť adla nad roztokom

<u>Raoultov zákon</u> - relatívne zníženie tlaku pary rozpúšťadla nad roztokom (relatívna depresia) sa rovná mólovému zlomku rozpustenej látky v roztoku

- rozpustíme určité množstvo látky v kvapalnom rozpúšťadle, znížime tým koncentráciu rozpúšťadla
 - ⇒ zmení sa tlak nasýtenej pary rozpúšťadla nad roztokom

$$\frac{\Delta p}{p_A^*} = x_B$$

Vplyv rozpustenej zložky na fázový diagram vody

Zvýšenie bodu varu roztokov

Zvýšenie bodu varu $\Delta T_e = T - T_e$ (úsek AB) je úmerné zníženiu tlaku pary (úsek AC), ktoré je úmerné koncentrácii rozpustenej neprchavej látky $m \Rightarrow$

 $\Delta T_e = E_e \, m$

-konštanta E_e sa nazýva ebulioskopická konštanta

v zriedenom roztoku je
zvýšenie bodu varu
(ebulioskopické
zvýšenie) úmerné koncentrácii
neprchavej rozpustenej látky m

Krivky tlaku nasýtenej pary nad čistým rozpúšťadlom (I) a nad roztokom(II)

Pre zriedený (ideálny) roztok sú zmeny tlaku aj teploty veľmi malé $\Rightarrow \Delta H_{výp}$ môžeme považovať za konštantné \Rightarrow úpravou Clausiovej a Clapeyronovej rovnice dostaneme

$$\ln \frac{p}{p^*} = \frac{\Delta H_{v\acute{y}p}}{R} \left(\frac{T_e - T}{T_e T} \right)$$

Pre ebulioskopickú konštantu E_e platí:

$$E_{e} = \frac{RT_{e}^{2}}{1_{e}}$$

$$1_{e} = \frac{\Delta H_{vyp}}{M_{0}}$$

- kde l_e je merné skupenské teplo vyparovania rozpúšť adla

Fyzikálny význam ebulioskopickej konštanty - zvýšenie bodu varu roztoku jednotkovej molality

Zníženie bodu tuhnutia roztokov

Krivka tlaku pary nad tuhým rozpúšťadlom I je strmšia než krivka tlaku pary nad kvapalinou II ($\Delta H_{subl.} \rangle \Delta H_{výp.}$) $\Rightarrow T \leq T_k$

Zníženie bodu tuhnutia roztoku (kryoskopické zníženie) je úmerné koncentrácii rozpustenej neprchavej látky

- kde *m* je molalita rozpustenej látky
- K_k kryoskopická konštanta

Krivky tlaku pary nad kvapalným rozpúšťadlom (I), nad roztokom (II) a nad tuhým rozpúšťadlom (III)

Pre kryoskopickú konštantu K_k môžeme s použitím Clausiovej a Clapeyronovej rovnice odvodiť vzťah

$$\mathbf{K}_{k} = \frac{RT_{k}^{2}}{l_{k}}$$

$$l_{k} = \frac{\Delta H_{tuh}}{M_{0}}$$

- kde l_k je merné skupenské teplo tuhnutia rozpúšťadla

Fyzikálny význam kryoskopickej konštanty - zníženie bodu tuhnutia jednomolálneho roztoku

Stanovenie molekulových váh v roztoku

Ak si do vzťahu
$$\Delta T_e = E_e \, m$$

dosadíme za molalitu rozpustenej látky
$$m = \frac{m}{M m_0}$$

kde m je hmotnosť rozpustenej látky, M je jej mólová hmotnosť, m₀ je hmotnosť rozpúšťadla

máme
$$\Delta T_e = E_e \frac{m}{M m_0}$$
 \Rightarrow $M = \frac{E_e m}{\Delta T_e m_0}$

Podobne pri použití kryoskopickej metódy dostaneme vzťah

$$M = \frac{K_k m}{\Delta T_k m_0}$$

Osmotický tlak

Roztok oddelíme od rozpúšťadla polopriepustnou membránou ⇒ v dôsledku rozdielu koncentrácií vniká rozpúšťadlo do roztoku - osmóza

Osmotický tlak roztoku π:

- tlak ktorý musí pôsobiť na roztok, aby sa zabránilo prechodu rozpúšťadla do roztoku semipermeabilnou membránou
- možno ho merať osmometrom

Reverzná osmóza:

- použitím tlaku vyššieho ako je osmotický tlak sú molekuly rozpúšťadla pretláčané semipermeabilnou membránou z roztoku do rozpúšťadla ⇒ roztok sa koncentruje;
- odsoľovanie morskej vody

J.H. van't Hoff:

- osmotický tlak π zriedených roztokov sa riadi tými istými zákonmi ako tlak ideálnych plynov, t.j. platí
 - Boylov zákon $\pi V = \text{konšt.}$
 - Charlesov zákon $\pi = kT$
 - Avogadrov zákon za rovnakých podmienok obsahujú rovnaké objemy roztokov rovnaký počet molekúl rozpustenej látky

Spojením týchto troch zákonov
$$\pi V = nRT$$
 $c = \frac{n}{V}$

Po úprave
$$\pi = ciRT$$

 rozpustená látka obsahuje v zriedenom roztoku práve toľko molekúl, koľko by obsahovala v plynnom stave pri tej istej teplote, v tom istom objeme a pri tlaku, ktorý sa rovná osmotickému tlaku roztoku Osmotický tlak je koligatívnou vlastnosťou \Rightarrow môžeme ho použiť na stanovenie molekulovej váhy rozpustenej látky M

$$\pi = \frac{m}{MV}RT \implies M = \frac{mRT}{\pi V}$$

kde M je mólová hmotnosť rozpustenej látky, m je hmotnosť rozpustenej látky a V je objem roztoku

Rôzne roztoky s rovnakým osmotickým tlakom - sa nazývajú izotonické

Ak osmotické tlaky roztokov nie sú rovnaké:

- roztok s menším osmotickým tlakom *hypotonick*ý
- roztok s väčším osmotickým tlakom hypertonický

Smer pohybu molekúl vody pri rôznych koncentráciách roztokov soli vo vnútri balónika – bunky

- a) koncentrácia soli vo vnútri balónika je väčšia ako v okolí
- b) koncentrácie soli vo vnútri balónika aj v okolí sú rovnaké
- c) koncentrácia soli vo vnútri balónika je menšia ako v okolí

Hypotonický roztok – koncentrácia NaCl je nižšia než v bunkách ľudského tela (menej než 0,9 %)

- na suchú sliznicu, ktorá je náchylná na tvorbu chrást, pri nádche a infekcii horných ciest dýchacích či zápale nosohltanu

Izotonický roztok – zodpovedá vnútornému zloženiu ľudského tela, je to fyziologický roztok s koncentráciou 0,9 % NaCl

- očistenie a zvlhčenie sliznice

Hypertonický roztok – koncentrácia soli je vyššia než v bunkách ľudského tela (vyššia než 0,9 % NaCl)

- pri vstreknutí do nosa začne hypertonický roztok v kontakte so sliznicou pracovať na princípe osmózy (bude z tkaniva vyťahovať vodu, aby sa koncentrácia soli na oboch stranách vyrovnala)
- ak máme nádchu, je sliznica nosa zdurená a zadržuje tak viac vody než obvykle
- aplikácia hypertonického roztoku umožní sliznici odpuchnúť

KONIEC