Спецкурс 2020/2021: "Геометрические и комбинаторные свойства матриц и аппроксимация" Блок лекций "Сложность матриц и аппроксимация" Лекция 5: "Реализация матриц с большим отступом (margin)"

24 ноября 2020 г.

Определение

Пусть $S \in \{-1,1\}^{m imes n}$ — сигнум-матрица. Определим "максимальный отступ" матрицы:

$$\mathsf{margin}(S) := \max_{\{x_i\}, \{y_j\}} \ \min_{i,j} \frac{|\langle x_i, y_j \rangle|}{|x_i| \cdot |y_j|},$$

где максимум берётся по всем peanusauusm матрицы, т.е. таким наборам векторов $x_1,\ldots,x_m,\ y_1,\ldots,y_n,\$ что $S_{i,j}=\mathrm{sign}\langle x_i,y_j\rangle \quad \forall i,j.$ Смысл в том, что равенство $S_{i,j}=\mathrm{sign}\langle x_i,y_j\rangle$ должно выполняться с большим "запасом".

Margin — отступ, зазор.

Определим сложность реализации с отступом (margin complexity) сигнум матрицы S как

$$mc(S) := margin^{-1}(S)$$
.

(Чем сложнее реализовать матрицу, тем больше сложность.)

Базовые свойства

Oцените mc(S):

- ullet "Диагональная" матрица n imes n: $S_{i,j} = 1$, $S_{i,j} = -1$ при i
 eq j.
- $S_{i,i} = -1$, $S_{i,j} = 1$ при $i \neq j$.
- ullet $S_{1,1}=1$, $S_{i,j}=-1$ при остальных i,j.

Утверждение

Для любой матрицы $S \in \{-1,1\}^{m imes n}$ имеем

$$1 \leqslant \mathsf{mc}(S) \leqslant \mathsf{min}\{\sqrt{m}, \sqrt{n}\}.$$

Докажите оценку снизу. $\mathsf{margin}(S) \leqslant 1$, т.к. $|\langle x_i, y_j \rangle| \leqslant |x_i||y_j|$.

Докажите оценку сверху. Пусть $m\leqslant n$. Возьмём в качестве $\{y_j\}_{j=1}^n$ столбцы матрицы S, в качестве $\{x_i\}_{i=1}^n$ — базисные вектора. Тогда $|x_i|\cdot|y_j|\leqslant m^{1/2}$ и $\langle x_i,y_j\rangle=S_{i,j}$.

Классификация с максимальным отступом

Пусть $(x_1,t_1),\ldots,(x_n,t_n)$ — выборка из некоторого множества объектов. Каждый объект принадлежит одному из двух классов: $t_i=1$ или $t_i=-1$. Вектор $x_i\in\mathbb{R}^d$ состоит из d чисел (признаков), описывающих i-й объект.

Задача классификации состоит в построении функции $\hat{f}\colon \mathbb{R}^d o \{-1,1\}$, позволяющей отличать объекты разных классов. То есть, ошибка $\mathrm{Err}=\mathsf{P}(t
eq \hat{f}(x))$ должна быть мала.

В линейной классификации функция \hat{f} строится с помощью линейной: $\hat{f}(x)=\mathrm{sign}\langle b,x\rangle,\ b\in\mathbb{R}^d.$ (Случай аффинной функции $b_0+\langle b,x\rangle$ можно свести к линейному, добавим признак, тождественно равный 1.)

Пространство \mathbb{R}^d гиперплоскостью $\langle b,x\rangle=0$ разделяется на два полупространства: $\langle b,x\rangle>0$, классифицируется как t=1, и $\langle b,x\rangle<0$ (соответственно, t=-1).

Классификация с максимальным отступом

Разделяющая гиперплоскость $\langle b,x \rangle = 0$, строится по обучающей выборке $(x_1,t_1),\ldots,(x_n,t_n)$.

Предположим, мы можем получить на обучении нулевую ошибку: существует ненулевой вектор b, такой что

$$t_i = \operatorname{sign}\langle b, x_i \rangle, \quad i = 1, \dots, n.$$

Какой b взять, чтобы ошибка на тестовой выборке была поменьше?

Потребуем, чтобы b обеспечивал правильную классификацию с максимальным запасом, $\mathit{отступоm}$:

$$egin{cases} \min\limits_{i} |\langle b, x_i
angle|
ightarrow \max, \ t_i = \mathrm{sign} \langle b, x_i
angle, \quad i = 1, \ldots, n, \ |b| = 1. \end{cases}$$

Эквивалентная формулировка: мы проводим разделяющую гиперплоскость так, чтобы максимизировать расстояние от точек до края.

Опорные вектора

Можно показать, что b является линейной комбинацией *опорных* векторов x_i , для которых $|\langle b, x_i \rangle|$ минимально.

Отсюда название *Метод Опорных Векторов*, Support Vector Machine (SVM). На практике в SVM используется так называемый *soft margin*, когда мы не требуем, чтобы гиперплоскоть правильно разделяла обучающую выборку; разрешаем "залезать за край", но "штрафуем" за это:

$$\begin{cases} |b|^2 + C \sum_{i=1}^n \xi_i \to \min, \\ t_i \langle b, x_i \rangle \geqslant 1 - \xi_i, \quad i = 1, \dots, n \\ \xi_i \geqslant 0, \quad i = 1, \dots, n. \end{cases}$$

Классификация с максимальным отступом

Вернёмся к классификации с максимальным отступом. Пусть $\mathcal{O}=\{O_1,\dots,O_n\}$ — множество объектов, $\Phi\colon \mathcal{O}\to\mathbb{R}^d$ — отображение в пространство признаков (feature map), $x_i=\Phi(O_i)$. Класс объекта задаётся (неизвестной нам) функцией $f\colon \mathcal{O}\to \{-1,1\}\colon t_i=f(O_i)$. Обозначим через $\mathrm{margin}_\Phi(f)$ величину максимального отступа:

$$egin{cases} \min\limits_{i} |\langle b, x_i
angle|
ightarrow \max, \ t_i = ext{sign} \langle b, x_i
angle, \quad i = 1, \dots, n, \; |b| = 1. \end{cases}$$

Теперь предположим, есть целый класс возможных функций: $\mathcal{F} = \{f_1, \dots, f_m\}$. Минимальный отступ

$$\mathsf{margin}_{\Phi}(\mathcal{F}) = \mathsf{min}(\mathsf{margin}_{\Phi}(f_1), \dots, \mathsf{margin}_{\Phi}(f_m))$$

характеризует сложность задачи классификации произвольной функции из \mathcal{F} .

Классификация с максимальным отступом

Если теперь минимизировать margin $_{\Phi}(\mathcal{F})$ по всевозможным отображениям $\Phi\colon \mathcal{O} \to \mathcal{S}^{d-1}$ (нормируем признаки):

$$\begin{cases} \min_{i,j} |\langle b^j, x_i \rangle| \to \max, \\ t_i^j = \operatorname{sign} \langle b^j, x_i \rangle, & i = 1, \dots, n, \ j = 1, \dots, m, \\ |b^j| = 1, |x_i| = 1, \end{cases}$$

мы, получим в точности величину margin(S) сигнум-матрицы $S = \{f_j(O_i)\}_{\substack{i=1,\dots,n\\j=1,\dots,m}}$

Таблица различных мер сложности

Напомним определения:

$$\begin{split} \mathsf{margin}(S) &:= \mathsf{max} \{ \min_{i,j} \frac{|\langle x_i, y_j \rangle|}{|x_i| \cdot |y_j|} \colon \mathsf{sign} \langle x_i, y_j \rangle = S_{i,j} \}, \\ \mathsf{mc}(S) &:= \mathsf{margin}^{-1}(S). \end{split}$$

	равенство	знак
размерность	rank	$rank_\pm$
длина	γ_2	mc

Величина $\log {\rm rank}_{\pm}$ эквивалентна коммуникационной сложности в вероятностной модели с неограниченной ошибкой.

Величина γ_2 возникла в функциональном анализе (факторизация операторов через гильбертовы пространства).

Theorem (Forster, 2002)

Для $S \in \{-1,1\}^{m imes n}$ имеет место неравенство

$$\operatorname{mc}(S) \geqslant \frac{\sqrt{mn}}{\|S\|_{2\to 2}}.$$

Пусть $\{x_i\}$, $\{y_j\}$ — реализация S с помощью единичных векторов. Рассмотрим величину

$$D:=\sum_{j=1}^n(\sum_{i=1}^m|\langle x_i,y_j\rangle|)^2.$$

Ранее было доказано (лекция №2), что $D\leqslant m\|S\|_{2\to 2}^2$. С другой стороны, если это реализация с максимальным отступом, то $|\langle x_i,y_j\rangle|\geqslant \mathrm{margin}(S)$, поэтому $D\geqslant nm^2$ margin $^2(S)$. Отсюда

$$nm^2 \, \mathrm{margin}^2(S) \leqslant m \|S\|_{2 \to 2}^2, \quad$$
ч.т.д.

Пусть H — матрица Адамара, т.е. $n \times n$ сигнум-матрица с ортогональными строками. Чему равно $\operatorname{mc}(H)$? Воспользуемся теоремой Форстера. Оценка снизу: $n^{1/2}$, сверху тоже $n^{1/2}$, следовательно, $\operatorname{mc}(H) = n^{1/2}$.

Связь γ_2 и mc

Утверждение

$$mc(S) = min\{\gamma_2(A): A_{i,j}S_{i,j} \geqslant 1 \ \forall i,j\}.$$

Доказательство. Пусть есть реализация $S_{i,j}=\operatorname{sign}\langle x_i,y_j\rangle$ с векторами $|x_i|=1,\ |y_j|=1$ и максимальным отступом margin $(S)=\min|\langle x_i,y_j\rangle|$. Матрица $A_1=(\langle x_i,y_j\rangle)$ имеет $\gamma_2(A_1)\leqslant 1$. Матрица $A=A_1/\operatorname{margin}(S)$ имеет $\gamma_2(A)\leqslant \operatorname{mc}(S)$, при этом

$$A_{i,j}S_{i,j} = \frac{1}{\mathsf{margin}(S)} \langle x_i, y_j \rangle \mathsf{sign} \langle x_i, y_j \rangle \geqslant 1.$$

Мы доказали оценку $\min \gamma_2(A) \leqslant \operatorname{mc}(S)$.

Обратно, пусть $A_{i,j}S_{i,j}\geqslant 1$. Запишем $A_{i,j}=\langle x_i,y_j
angle$ и

$$|x_i|\cdot |y_j|\leqslant \gamma_2(A)$$
. Тогда $\mathrm{sign}\langle x_i,y_j
angle=S_{i,j}$ и

$$\min \frac{|\langle x_i, y_j \rangle|}{|x_i| \cdot |y_i|} \geqslant \frac{|A_{i,j}|}{\gamma_2(A)} \geqslant \gamma_2^{-1}(A).$$

Следовательно, margin $(S) \geqslant \gamma_2^{-1}(A)$, т.е. mc $(S) \leqslant \gamma_2(A)$.

Утверждение

 $mc(S) \geqslant mn/\gamma_2^*(S)$.

Пусть $\operatorname{mc}(S) = \gamma_2(A), \ A_{i,j}S_{i,j} \geqslant 1.$ Нормируем $A' = A/\gamma_2(A),$ тогда

$$\gamma_2^*(S) \geqslant \langle S, A' \rangle = \sum S_{i,j} A'_{i,j} \geqslant \gamma_2(A)^{-1} = \mathsf{mc}(S)^{-1}.$$

Ч.т.д. Оказывается, эта оценка усиливает теорему Форстера $(\text{mc}(S)\geqslant \sqrt{mn}/\|S\|_{2\to 2})$, поскольку $\gamma_2^*(S)\leqslant \sqrt{mn}\|S\|_{2\to 2}$ (Упражнение).

Мы доказали, что величины mc, γ_2 и rank связаны следующим образом:

$$mc(S) \leqslant \gamma_2(S) \leqslant \sqrt{rank(S)}$$
.

Для матриц Адамара достигается равенство.

Установим связь между mc и rank $_{\pm}$.

Утверждение

$$\operatorname{rank}_{\pm}(S) \leqslant C \operatorname{mc}(S)^2 \log(m+n),$$

где C — абсолютная постоянная.

Johnson-Lindenstrauss

Нам потребуется лемма Johnson-Lindenstrauss.

Утверждение

Пусть R — матрица $d \times N$ со стандартными гауссовыми элементами, т.е. $R_{i,j} \sim \mathcal{N}(0,1)$. Тогда для любых векторов $x,y \in \mathbb{R}^N$, $|x|,|y| \leqslant 1$ и $\varepsilon \in (0,1/2)$ имеем

$$\mathsf{P}(|\langle \frac{1}{\sqrt{d}}Rx, \frac{1}{\sqrt{d}}Ry\rangle - \langle x, y\rangle| \geqslant \varepsilon) \leqslant 2\exp(-d\varepsilon^2/8).$$

Отметим, что от размерности N ничего не зависит. Следствие (Johnson–Lindenstrauss): M точек в единичном шаре можно (линейно) отобразить в пространство размерности $d \asymp \log(M)\varepsilon^{-2}$, изменив попарные расстояние не более чем на ε . Действительно, нам требуется сохранить M^2 скалярных произведений; если $2M^2 \exp(-d\varepsilon^2/8) < 1$, то случайная матрица делает это с положительной вероятностью.

Докажем теперь оценку $\operatorname{rank}_{\pm}(S) \ll \operatorname{mc}(S)^2 \log(m+n)$.

Возьмём реализацию $S_{i,j}=\operatorname{sign}\langle x_i,y_j\rangle$ с $|x_i|=|y_j|=1$ и максимальным отступом $\operatorname{margin}(S)=\min|\langle x_i,y_j\rangle|$. Применим лемму Johnson–Lindenstrauss:

$$P(|\langle x_i', y_j' \rangle - \langle x_i, y_j \rangle| \geqslant \varepsilon) \leqslant 2 \exp(-d\varepsilon^2/8). \tag{*}$$

Если $2mn \exp(-d\varepsilon^2/8) < 1$, то найдутся вектора $\{x_i'\}, \{y_i'\}$ в d-мерном пространстве, такие что (*) выполнено для всех $i=1,\ldots,m$, $j=1,\ldots,n$.

При этом, если $\varepsilon < \mathrm{margin}(S)$, например, $\varepsilon = \frac{1}{2} \, \mathrm{margin}(S)$, то знак $\langle x_i, y_j \rangle$ не поменяется: $\mathrm{sign}\langle x_i', y_j' \rangle = S_{i,j}$. Тогда $\mathrm{rank}_\pm(S) \leqslant d$. Условие на d:

$$d > 8\varepsilon^{-2} \ln(2mn) \asymp \operatorname{mc}(S)^2 \log(2mn).$$

Дискрепанс

Напомним понятие дискрепанса матрицы $S \in \{-1,1\}^{m imes n}.$

Пусть μ — мера на множестве индексов $[m] \times [n]$. Для $R \subset [m] \times [n]$ обозначим через R_+ множество индексов $(i,j) \in R$ в которых $S_{i,j} = 1$, и R_- соответственно. Тогда

$$\operatorname{disc}_{\mu}(S) := \max_{R} |\mu(R_{+}) - \mu(R_{-})|,$$

где максимум берётся по всевозможным комбинаторным прямоугольникам $R=R'\times R''\subset [m]\times [n]$. Положим также $\mathrm{disc}(S):=\min_{\mu}\mathrm{disc}_{\mu}(S)$, минимум берётся по всем вероятностным распределениям μ .

В лекции №1 мы установили неравенство $C(f) \geqslant \log_2(1/\operatorname{disc}(f))$ для коммуникационной сложности в детерминированной модели ($\chi \leqslant 2^C$, $\operatorname{disc} \geqslant 1/\chi$).

Дискрепанс и CUT-норма

В случае равномерной меры u величина $\operatorname{disc}_u(S)$ выражается следующим образом:

$$mn\operatorname{disc}_u(S) = \max_{R',R''} |\sum_{i \in R',j \in R''} S_{i,j}|.$$

Величина в правой части равенства называется также CUT-нормой: $\|S\|_{\mathrm{CUT}}$. CUT — т.к. мы "вырезаем" из матрицы прямоугольник и суммируем элементы. Можно считать её дискрепансом по отношению к считающей мере $\mu_{i,j} \equiv 1$. Кроме того, CUT-норма определена для всех вещественных матриц (и является нормой).

Комбинаторный дискрепанс

Ранее нам уже встречался дискрепанс матрицы M вида $\mathrm{disc}_{old}(M)=\min_{x\in\{-1,1\}^n}\|\mathit{M}x\|_{\infty}.$ В чём связь между этими понятиями?

 $\mathrm{disc}_u(S)$ и $\mathrm{disc}_{old}(M)$ происходят из общего понятия — комбинаторного дискрепанса.

Пусть Ω — множество и $\mathcal A$ — некоторое семейство его подмножеств. Задача: раскрасить Ω в два цвета так, чтобы в каждом $A \in \mathcal A$ было примерно поровну точек обоих цветов. Раскраска $\chi\colon\Omega\to\{-1,1\}$ имеет дискрепанс

$$\operatorname{disc}(\chi, \mathcal{A}) = \max_{A \in \mathcal{A}} |\sum_{x \in A} \chi(x)|.$$

Дискрепанс семейства ${\mathcal A}$ определяется как $\min_\chi \operatorname{disc}(\chi,{\mathcal A}).$

 $\mathrm{disc}_u(S)$ это дискрепанс для множества $\Omega=[m]\times[n]$, семейства $\mathcal{R}=\{R'\times R''\}$ комбинаторных прямоугольников и $\chi=S$.

 $\operatorname{disc}_{old}(S)$ это дискрепанс семейства множеств $A_i\subset\Omega=[n]$, задаваемых строками S_i (т.е. $j\in A_i$, если $S_{i,j}=1$).

Дискрепанс и тс

Theorem (Linial, Shraibman, 2008)

$$\frac{1}{8}\operatorname{margin}(S)\leqslant\operatorname{disc}(S)\leqslant 8\operatorname{margin}(S).$$

Доказательство.

1 шаг. Заменим в определении margin произвольные вектора $\{x_i\}, \{y_j\} \in \mathbb{R}^N$ на знаковые $\{x_i\}, \{y_j\} \in \{-1,1\}^N$. Получится величина $\mathsf{margin}_{\pm}(S) \leqslant \mathsf{margin}(S)$.

Мы докажем (используя неравенство Гротендика), что эти величины эквивалентны:

$$\operatorname{margin}_{\pm}(S) \leqslant \operatorname{margin}(S) \leqslant K_G \operatorname{margin}_{\pm}(S).$$

Левое неравенство очевидно (строже требования к x_i, y_j , меньше отступ).

Доказательство $\operatorname{disc} \simeq \operatorname{margin} (\operatorname{продолжениe})$

Рассмотрим матрицу $B=(rac{\langle x_i,y_j
angle}{|x_i||y_i|})$, где $x_i,y_j\in\{-1,1\}^N$. Имеем

 $B_{i,j} = N^{-1} \sum_{p=1}^{N} x_{i,p} y_{j,p}$. Тем самым, B есть выпуклая комбинация одноранговых сигнум матриц $B_p = (x_{i,p} y_{j,p})_{i,j}$.

Обочначим через M_\pm выпуклую оболочку всех одноранговых $m \times n$ сигнум-матриц. Тогда $B \in M_\pm$. Обратно, любую матрицу из выпуклой оболочки можно приблизить такой матрицей B (с коэффициентами 1/N).

Следовательно,

$$\operatorname{margin}_{\pm}(S) = \max_{B \in M_{\pm}} \min_{i,j} S_{i,j} B_{i,j}.$$

По определению,

$$\mathsf{margin}(S) = \max_{\gamma_2(A) \leqslant 1} \min S_{i,j} A_{i,j}.$$

Из неравенства Гротендика мы вывели, что $\gamma_2^*(A) \leqslant K_G \|A\|_{\infty \to 1}$. Следовательно, для сопряжённой нормы $\gamma_2(A) \geqslant K_G^{-1} \|A\|_{\nu}$. Нетрудно проверить, что M_{\pm} это шар в норме $\|A\|_{\nu}$, сопряженной к $\|A\|_{\infty \to 1}$.

Доказательство $\operatorname{\mathsf{disc}} \asymp \operatorname{\mathsf{margin}} (\operatorname{продолжениe})$

2 шаг. Докажем, что $\mathrm{disc}_{\mu}(S) \leqslant \|S \circ \mu\|_{\infty \to 1} \leqslant 4 \, \mathrm{disc}_{\mu}(S)$. Здесь $(S \circ \mu)_{i,j} = S_{i,j}\mu_{i,j}$. Ясно, что неравенство сводится к матрице

Здесь $(S\circ \mu)_{i,j}=S_{i,j}\mu_{i,j}$. Ясно, что неравенство сводится к матрице $T=(S\circ \mu)$.

Имеем $\operatorname{\mathsf{disc}}_\mu(S) = \|T\|_{\mathrm{CUT}}$, нужно доказать:

$$||T||_{\text{CUT}} \leqslant ||T||_{\infty \to 1} \leqslant 4||T||_{\text{CUT}}.$$

Левое неравенство: $\sum_{i \in R', j \in R''} T_{i,j} = \langle T \mathbf{1}_{R''}, \mathbf{1}_{R'} \rangle \leqslant \|T\|_{\infty \to 1}$. Правое неравенство: для любых $x_i, y_i \in \{-1, 1\}$ имеем

$$\sum_{\substack{x_i=1\\y_j=1}} t_{i,j} - \sum_{\substack{x_i=1\\y_j=-1}} t_{i,j} - \sum_{\substack{x_i=-1\\y_j=1}} t_{i,j} + \sum_{\substack{x_i=-1\\y_j=-1}} t_{i,j}.$$

Ясно, что эта величина не превосходит 4 $\|T\|_{\mathrm{CUT}}$.

Доказательство $\operatorname{disc} \asymp \operatorname{margin} (\operatorname{продолжениe})$

Итак,
$$\operatorname{disc}_{\mu}(S)\leqslant \|S\circ\mu\|_{\infty\to 1}\leqslant 4\operatorname{disc}_{\mu}(S)$$
, следовательно,
$$\operatorname{disc}(S)\leqslant \inf_{\mu}\|S\circ\mu\|_{\infty\to 1}\leqslant 4\operatorname{disc}(S).$$

3 шаг. Остаётся доказать, что

$$\operatorname{margin}_{\pm}(S) = \inf_{\mu} \|S \circ \mu\|_{\infty \to 1}.$$

Мы выяснили, что $\operatorname{margin}_{\pm}(S) = \operatorname{max}_{B \in M_{\pm}} \operatorname{min}_{i,j} S_{i,j} B_{i,j}$. Множество M_{\pm} это многогранник, вершины которого – одноранговые сингум-матрицы. Будем обозначать такие матрицы как X^q , $q \in Q$. Таким образом, $B = \sum_{q \in Q} \lambda_q X^q$, где $\sum \lambda_q = 1$, $\lambda_q \geqslant 0$.

Обозначим $\delta:=\min_{i,j}S_{i,j}B_{i,j}$. Нам нужно максимизировать δ при условии $S_{i,j}\sum_{q}\lambda_{q}X_{i,j}^{q}\geqslant\delta$.

Доказательство $\operatorname{disc} \asymp \operatorname{margin} (\operatorname{окончаниe})$

Мы приходим к задаче линейного программирования:

$$egin{cases} \delta o \mathsf{max}, \ \sum_q \ \lambda_q(X^q \circ S)_{i,j} \geqslant \delta, \ \sum_q \lambda_q = 1, \ \lambda_q \geqslant 0. \end{cases}$$

Упражнение: найдите двойственную задачу и докажите, что её значение равно $\|S\|_{\infty \to 1}$.

