TRIGONOMETRY

Chapter 10 Sesión 2

Razones trigonométricas de un ángulo en posición normal II

MOTIVATING STRATEGY

01

EVOLUCIÓN DE LOS SIGNOS MATEMÁTICOS

Para la suma lo representaban

plus

Para la resta lo representaban

minus

Para la suma lo representaban

Para la resta lo

representaban

JOHANN WIDMAN

LIBRO DE ARITMETICA COMERCIAL(1489)

Pfeffe

2

Signos de las Razones Trigonométricas

Regla práctica:

IIC
sen
csc (+)

IC Todas las RT son (+)

tan (+)

COS (+)

OBSERVACIÓN

Si
$$0^{\circ} < \alpha < 90^{\circ}$$
 \Rightarrow $\alpha \in IC$

Si
$$90^{\circ} < \alpha < 180^{\circ} \Rightarrow \alpha \in IIC$$

Si
$$180^{\circ} < \alpha < 270^{\circ} \Rightarrow \alpha \in IIIC$$

Si 270°<
$$\alpha$$
 < 360° $\implies \alpha \in IVC$

EJEMPLOS:

$$sen \Phi > 0$$
 y $cos \Phi < 0 \Rightarrow \Phi \in IIC$

$$tan\beta > 0$$
 y $csc\beta < 0 \Rightarrow \beta \in IIIC$

Ángulos Cuadrantales

Son ángulos en posición normal cuyo lado final coincide con alguno de los semiejes del plano cartesiano.

R.T	0°; 360°	90°	180°	270°
SEN	0	1	0	-1
cos	1	0	-1	0
TAN	0	N.D	0	N.D
СОТ	N.D	0	N.D	0
SEC	1	N.D	-1	N.D
CSC	N.D	1	N.D	-1

N.D: No determinado

Ángulos coterminales

Son aquellos ángulos trigonométricos que al ser superpuestos presentan los mismos elementos (vértice, lado inicial y lado final).

1. Determine el valor de θ coterminal a 160°, donde θ∈⟨4100°; 4200°⟩

RESOLUCIÓN

Como θ y 160° son coterminales entonces:

$$\theta - 160^{\circ} = 360^{\circ}k$$
, $\forall k \in \mathbb{Z} - \{0\}$
 $\theta = 360^{\circ}k + 160^{\circ}$
 $4100^{\circ} < \theta < 4200^{\circ}$
 $4100^{\circ} < 360^{\circ}k + 160^{\circ} < 4200^{\circ} \dots (-160^{\circ})$
 $3940^{\circ} < 360^{\circ}k < 4040^{\circ} \dots (\div 360^{\circ})$
 $10,94 < k < 11,22$, $k \in \mathbb{Z}$
 $k = 11 \implies \theta = 360^{\circ}(11) + 160^{\circ} = 4120^{\circ}$

2. Determine el menor ángulo positivo coterminal a -560° de manera gráfica.

RESOLUCIÓN

Sea x coterminal a -560° , entonces:

$$x - (-560^{\circ}) = 360^{\circ}k$$
, $\forall k \in \mathbb{Z} - \{0\}$

$$\Rightarrow$$
 $x = 360^{\circ}k - 560^{\circ}$

$$ightharpoonup$$
 Para $k=2$ \Rightarrow $x=360^{\circ}$. (2) -560°

$$x = 160^{\circ}$$

3. Si α y 60° son coterminales, efectúe:

$$P = tan^2\alpha + sec\alpha - 2cos\alpha$$

RESOLUCIÓN

Como α y 60° son coterminales entonces:

$$RT(\alpha) = RT(60^{\circ})$$

$$P = tan^260^{\circ} + sec60^{\circ} - 2cos60^{\circ}$$

$$P = \sqrt{3}^2 + 2 - 2\left(\frac{1}{2}\right)$$

$$P = 3 + 2 - 1$$

$$\therefore P = 4$$

4. Siendo α y β ángulos coterminales y $\cos \alpha = -\frac{1}{3}$; α∈IIC calcule: tanβ.

RESOLUCIÓN

$$cos\alpha = -\frac{1}{3} = \frac{x}{r}$$
 | Como $\alpha \in IIC$ | se tiene que: $x < 0; y > 0$

Como $\alpha \in IIC$

Entonces : x = -1 ; r = 3

Luego: $r = \sqrt{x^2 + y^2}$

$$3 = \sqrt{(-1)^2 + y^2}$$

$$9 = 1 + y^2$$
 \Rightarrow $y = 2\sqrt{2}$

Luego:
$$\tan \alpha = \frac{2\sqrt{2}}{-1} = -2\sqrt{2}$$

Como α y β son coterminales entonces:

$$RT(\alpha) = RT(\beta)$$

$$\therefore tan\beta = -2\sqrt{2}$$

5. Si $\cot \alpha = 2,4$ y $\alpha \in IIIC$, efectúe: M = $\csc \alpha + \cot \alpha$

RESOLUCIÓN

• $\alpha \in IIIC \longrightarrow x(-); y(-); r(+)$

$$cot\alpha = 2.4 = \frac{24}{10} = \frac{-12}{-5} = \frac{x}{y}$$

Luego: x = -12; y = -5

Radio Vector: $r = \sqrt{x^2 + y^2}$

$$r = \sqrt{(-12)^2 + (-5)^2} \qquad r = 13$$

Piden: $M = csc\alpha + cot\alpha$

$$M = \left(\frac{13}{-5}\right) + \left(\frac{-12}{-5}\right)$$

$$\Rightarrow M = \frac{13 - 12}{-5} \qquad \therefore M = -\frac{1}{5}$$

6. Si $\cos^2\phi = \frac{3}{8}$, donde $\phi \in IIIC$, efectúe: $G=\sqrt{10}$.sen $\phi-\sqrt{6}$.cos ϕ

RESOLUCIÓN

$$\cos^2\phi = \frac{3}{8} \quad \Rightarrow \quad \cos\phi = \pm \frac{\sqrt{3}}{\sqrt{8}}$$

Como
$$\phi \in \text{IIIC}: \cos \phi = \frac{-\sqrt{3}}{\sqrt{8}} = \frac{x}{r}$$

Sabemos:
$$r = \sqrt{x^2 + y^2}$$

$$8 = 3 + y^2$$

$$\Rightarrow 5 = y^2 \quad \Rightarrow \pm \sqrt{5} = y$$

Como
$$\phi \in IIIC \implies -\sqrt{5} = y$$

Como
$$\phi \in \text{IIIC} \implies -\sqrt{5} = y$$

Piden: $G = \sqrt{10} sen \phi - \sqrt{6} cos \phi$

$$G = \sqrt{10} \cdot \left(\frac{-\sqrt{5}}{\sqrt{8}}\right) - \sqrt{6} \cdot \left(\frac{-\sqrt{3}}{\sqrt{8}}\right)$$

$$G = \left(\frac{-\sqrt{50}}{\sqrt{8}}\right) + \left(\frac{\sqrt{18}}{\sqrt{8}}\right)$$

$$G = \left(\frac{-5\sqrt{2}}{2\sqrt{2}}\right) + \left(\frac{3\sqrt{2}}{2\sqrt{2}}\right)$$

$$\therefore G = -1$$

7. De acuerdo al gráfico reduzca:

$$E = \frac{2\tan\alpha.\cot\theta + 4\sin^2\alpha}{\sec\alpha.\csc\theta + 2\sec^2\theta}$$

RESOLUCIÓN

I Si α y θ son ángulos coterminales

- $tan\alpha = tan\theta$ $sen\alpha = sen\theta$

Piden:
$$E = \frac{2tan\alpha.cot\theta + 4sen^2\alpha}{sen\alpha.csc\theta + 2sen^2\theta}$$

$$E = \frac{2tan\theta \cdot \cot\theta + 4sen^2\theta}{sen\theta \cdot \csc\theta + 2sen^2\theta}$$

$$E = \frac{2.1 + 4sen^2\theta}{1 + 2sen^2\theta} = \frac{2(1 + 2sen^2\theta)}{1 + 2sen^2\theta}$$

$$\therefore E = 2$$

 $A = 5sen2\alpha + 3sen6\alpha$

 $B = 3\cos 8\alpha - \sec 4\alpha$

Si se sabe que α = 45°, ¿cuál es el perímetro del jardín?

RESOLUCIÓN

$$A = 5sen2\alpha + 3sen6\alpha$$

$$A = 5sen2(45^{\circ}) + 3sen6(45^{\circ})$$

$$A = 5sen90^{\circ} + 3sen270^{\circ}$$

$$A = 5(1) + 3(-1) = 2$$

$$B = 3\cos 8\alpha - \sec 4\alpha$$

$$B = 3\cos 8(45^{\circ}) - \sec 4(45^{\circ})$$

$$B = 3\cos 360^{\circ} - \sec 180^{\circ}$$

$$B = 3(1) - (-1) = 4$$

$$Perimetro: 2p = 2A + 2B$$

$$2p = 2(2) + 2(4)$$
 :.