系统生物学作业

生信 2001 张子栋 2020317210101

- **6.1 调节-反馈网络模体中的记忆** 转录因子 X 激活转录因子 Y_1 和 Y_2 , Y_1 和 Y_2 彼此相互激活。在 Y_1 和 Y_2 启动子上的输入函数是一个或门(当 X 或 Y_1 结合到启动子上时 Y_2 被激活)。在时刻 t=0, X 从初始浓度 X=0 开始生成。在初始时刻, $Y_1=Y_2=0$ 。生成率 $\beta=1$,降解率 $\alpha=1$ 。激活阔值 K=0.5。在时刻 t=3,X 产物的生成终止。
 - a. 画出 $X \times Y_1$ 和 Y_2 的动力学曲线。在 X 降解开始后 Y_1 和 Y_2 的变化如何?

b. 考虑同样的问题,但是现在 Y_1 和 Y_2 是相互抑制的,X 激活 Y_1 并抑制 Y_2 。在时刻 t=0,X 开始生成,初始浓度分别为 X=0、Y=0 和 Y=1。在时刻 t=3,X 产物的生成终止。画出此系统的动力学曲线。X 降解后会发生什么?

a. 转录因子关系:

时刻 t=0,X 从零生成,时刻 t=3 终止生成。初始时刻, $Y_1=Y_2=0$, $\beta=1$, $\alpha=1$,k=0.5。 X 动力学方程:

$$\begin{cases} \frac{\mathrm{d}X}{\mathrm{d}t} = 1 - X & 0 \le t < 3 \\ \frac{\mathrm{d}X}{\mathrm{d}t} = -X & t \ge 3 \end{cases}$$

 Y_1, Y_2 动力学方程:

$$\left\{ egin{aligned} rac{\mathrm{d}Y_1}{\mathrm{d}t} &= heta(X > K \ \mathrm{OR} \ Y_2 > k) - Y_1 \ rac{\mathrm{d}Y_2}{\mathrm{d}t} &= heta(X > K \ \mathrm{OR} \ Y_1 > k) - Y_2 \end{aligned}
ight.$$

 Y_1, Y_2 初始浓度均为 0,当 X 达激活 K 时, Y_1, Y_2 开始合成且浓度曲线变化一致。

解 X 微分方程, 带入 X(0) = 0:

$$\begin{cases} X(t) = 1 - e^{-t} & 0 \le t < 3 \\ X(t) = \left(1 - e^{-3}\right)e^{-t} & t \ge 3 \end{cases}$$

当 X 浓度达到 K=0.5 时, $1-e^{-t}=0.5$, $t=\ln 2$, Y_1 , Y_2 浓度随时间变化函数为:

$$\begin{cases} 0 & 0 < t < \ln 2 \\ 1 - e^{-t} & t \ge \ln 2 \end{cases}$$

 X, Y_1, Y_2 动力学曲线如下:

b. 转录因子关系图:

X 的动力学过程与 a. 一致, Y_1 , Y_2 的动力学方程为:

$$\begin{cases} \frac{\mathrm{d}Y_1}{\mathrm{d}t} = \beta\theta\left(X > K \text{ OR } Y_2 < K\right) - \alpha Y_1 = \theta\left(X > 0.5 \text{ OR } Y_2 < 0.5\right) - Y_1 \\ \frac{\mathrm{d}Y_2}{\mathrm{d}t} = \beta\theta\left(X > K \text{ AND } Y_1 < K\right) - \alpha Y_2 = \theta\left(X < 0.5 \text{ AND } Y_1 < 0.5\right) - Y_2 \end{cases}$$

 $X=0,\ Y_1=0,\ Y_2=1,\$ 当 X 达对 Y_1 的激活阈值 K 时, Y_1 开始生成,同时对 Y_2 起抑制作用。 Y_2 的浓度逐渐减小,此时 $t=\ln 2$

 Y_1 浓度随时间变化函数为:

$$egin{cases} Y(t) = 0 & t < \ln 2 \ Y_1(t) = 1 - e^{-t} & t \geq \ln 2 \end{cases}$$

Y₂ 浓度随时间变化函数为:

$$egin{cases} Y(t) = 0 & t < \ln 2 \ Y_1(t) = e^{-t} & t \geq \ln 2 \end{cases}$$

 X, Y_1, Y_2 动力学曲线如下:

- **6.6 重合检测**。考虑图 6.22 中那样的一个 2-输入前馈环模体。这两个输入接受两个稍有延迟的短暂的激活脉冲。脉冲 S_{x1} 的持续时间为 d,在脉冲开始后的时刻 t_0 ,脉冲 S_{x2} 到来并且持续时间为 d。
 - a. 若不用第二个脉冲 S_{x2} ,第一个脉冲 S_{x1} 至少需要持续多长时间 d 才可以激活 Z?
- b. 在平面上绘出 Z 的响应 Z 的响应 Z 的响应 Z 以 其中坐标轴分别是脉冲持续时间 Z 和脉冲间隔时间 Z 。

a. 不用第二个脉冲 S_{X2} ,仅 S_{X1} ,由于 Z 是 X_1 或 X_2 和 Y 的逻辑 AND 门,因此 S_{X1} 不仅要激活 Y 的合成,还要使,Y 浓度达到对 Z 的阈值 K_{yz} 。假设 Y 的生成速率为 β_1 ,稀释/降解速率为 α 。

$$Y(t) = \frac{\beta_1}{\alpha} (1 - e^{-\alpha t})$$

$$= K_{yz}$$

$$e^{-\alpha t} = 1 - \frac{k_{yz}\alpha}{\beta_1}$$

$$-\alpha t = \ln\left(\frac{\beta_1 - k_{yz}\alpha}{\beta_1}\right)$$

$$t = \frac{\ln\beta_1 - \ln(\beta_1 - K_{yz}\alpha)}{\alpha}$$

$$= d$$

即不用第二个脉冲 S_{X2} ,至少需要时间 $d=\frac{\ln \beta_1 - \ln(\beta_1 - K_{yz}\alpha)}{\alpha}$ 可以激活 Z。b.

第一阶段,只有信号 S_1 ,持续时间为 d,Y 浓度由 0 上升至 K_1

$$Y(d) = rac{eta_1}{lpha}ig(1-e^{-lpha d}ig) = K_1$$

第二阶段, 无信号, 间隔时间 t_0 , 浓度指数衰减至 K'

$$Y(t_0) = K_1 e^{-\alpha t_0} = K'$$

第三阶段, S_{X2} 出现,持续时间 d,浓度上升至 K_2

$$Y(t_2) = rac{eta_2}{lpha} + \left(\left(K_1 e^{-lpha t_0} - rac{eta_2}{lpha}
ight) e^{-lpha t_1}
ight) \ rac{\#\lambda}{\pi} \lambda \colon egin{cases} Y(t_2) = K_2 \ t_1 = t_2 = d \ K_2 > K_{yz} \end{cases} \ rac{eta_2}{lpha} + \left(K_1 e^{-lpha t_0} - rac{eta_2}{lpha}
ight) e^{-lpha d} > K_{yz} \ rac{eta_2}{lpha} + \left(rac{eta_2}{lpha} \left(1 - e^{-lpha d}
ight) e^{-lpha t_0} - rac{eta_2}{lpha}
ight) e^{-lpha d} > K_{yz} \ rac{eta_2}{lpha} e^{-lpha d} - rac{eta_1}{lpha} e^{-lpha (2d + t_0)} - rac{eta_2}{lpha} e^{lpha d} > K_{yz} - rac{eta_2}{lpha} \end{cases}$$

以 d 为横坐标,时间间隔 t_0 为纵坐标,假设 $\frac{\beta_1}{\alpha}=2,\, \frac{\beta_2}{\alpha}=3,\, K_{yz}=1$

$$2e^{-x} - \alpha e^{-(2x+y)} - 3e^{-x} > 1 - 2$$

