

Low Dimensional EEG Classification for Alzheimer's Disease Recognition

Marija Nedeljković, Pavle Pađin, Strahinja Nikolić

University of Belgrade - School of Electrical Engineering

TELFOR 2023

21-22. November 2023

EEG vs fMRI and PET

WILLIAM TAUFIC / GETTY IMAGES

... but taking into account the advantages of EEG - price, availability, non-invasiveness and high temporal resolution, this approach is chosen.

Performance - Interpretability trade-off

We propose a framework that trades off some performance to significantly increase model interpretability.

The block diagram of the proposed analysis

Dataset description

Our dataset consists of previously preprocessed EEG signals of 65 patients (36 AD + 29 CN). Available at: https://openneuro.org/datasets/ds004504/versions/1.0.5

Data preprocessing and feature extraction

From each signal, 5 brain waves were extracted and divided into 5s epoch intervals with 2.5s overlap.

Data preprocessing and feature extraction

For each of the 19 EEG channels, for each of the 5 brain waves, 5 features were extracted, resulting in 19 * 5 * 5 = 475 features.

Feature selection

The top 5 features with the highest information gain, while also having Pearson cross-correlation less than 0.5 were selected.

Classification

Classifiers kNN, Random Forest, XGBoost, SVM and Logistic Regression were implemented and evaluated with a modified cross-validation technique.

Boxplot representation of 5 best features

Hjorth activity of the alpha wave of the 9th channel turns out to be the best feature.

Comparison of the results

All models show higher accuracies on reduced feature set; Random Forest is best overall with accuracy of 77.6%.

Comparison of the results

Also, all models achieve higher F1 score on the reduced feature set; Random Forest is again best overall with F1 of 78.8%.

Comparison to relevant research

[1] A. Miltiadous et al., "A dataset of scalp EEG recordings of Alzheimer's disease, frontotemporal dementia and healthy subjects from routine EEG" Data, vol. 8, no. 6, p. 95, 2023.

[2] A. Miltiadous et al., "Dice-net: A novel convolution-transformer architecture for alzheimer detection in eeg signals," IEEE Access, 2023.

Conclusion

Enabling cheaper and more accessible healthcare for everyone

Our method achieved 77.6% accuracy using 5 features without deep learning

Possible improvements of future work include a bigger and more diverse dataset as well as better features

