3. Materiales y Métodos

En esta sección se describen los materiales y métodos empleados para la elaboración del RPISDRSL.

3.1. Materiales

3.1.1. Software y hardware

El Cuadro 1 presenta las características del equipo de cómputo empleado en el desarrollo del RPISDRSL.

Cuadro 1: Características del equipo de cómputo.

Modelo	Lenovo Legion 5i	
Procesador	Intel Core i7-13700H 2.4 [GHz]	
Unidad de procesamiento gráfico	NVIDIA Geforce RTX 4060 $8[Gb]$	
RAM instalada	16[Gb]	
Arquitectura del procesador	64 [bits]	
Sistema Operativo	Windows 11 Home Single	

En el Cuadro 2 se muestran los programas utilizados para la adquisición de datos, para el control del RPISDRSL y para la elaboración de figuras y gráficas.

Cuadro 2: Software utilizados para el desarrollo del robot.

Nombre	Descripción	
	Escritura y compilación del código de	
PIC C Compiler	programación, así como la generación del archivo	
	hexadecimal (hex) usado para programar el	
	microcontrolador PIC18F4550	
PICkit 3 versión 3.10	Módulo para programar el microcontrolador	
	PIC18F4550 utilizando el archivo hexadecimal	
Octave versión 9.0.1	Cálculo de los datos de inercia, ganancias y	
	obtención de las gráficas intermedias del sistema	
Visual Studio Code versión	Entorno de desarrollo integrado para diferentes	
1.92.2	lenguajes.	
MinGW-w64 (Rev6, Built by	Compilador para el lenguaje de programación C++	
MSYS2 project) 13.1.0	(S2 project) 13.1.0 en Windows	
KiCad versión 7.0	Diseño del diagrama de conexiones eléctricas y	
	generación de pistas para la fabricación del PCB	

En el Cuadro 3 se presentan los elementos electrónicos y mecánicos empleados.

Cuadro 3: Componentes electrónicos y mecánicos utilizados para el desarrollo del RPISDRSL.

Nombre	Descripción	
Motorreductor metálico 58:1 con encoder	Es el actuador de cada rueda y es necesario para cualquier condición de operación del robot	
Soporte de motorreductor metálico	Ayuda a fijar el motorreductor a la base del robot	
Rueda	Facilita el desplazamiento del robot	
Adaptador de rueda	Permite acoplar la rueda al eje del motorreductor	
MPU6050	Es un sensor que combina un acelerómetro y un giroscopio para los tres ejes	
Módulo de puente H L298N	Permite mover los motorreductores en ambos sentidos de giro	
Sensor infrarrojo Tcrt5000	Detecta la luz reflejada en una superficie cuando esta se encuentra frente al sensor, en este caso, detecta la presencia de la línea blanca. Estos datos permiten al robot conocer la ruta que debe seguir	
Módulo bluetooth HC05	Transmite los datos adquiridos por el microcontrolador al puerto serial emulado en la computadora	
PIC18F4550	Se utiliza para adquirir y enviar datos, además de mandar pilotear el puente H para mover los motores. El microcontrolador también fija el periodo de muestreo en $10\ [ms]$	
Batería de polímero de litio	Es una batería recargable utilizada para suministrar energía eléctrica al robot	
Cable 22AWG	Utilizado para las conexiones entre los componentes electrónicos	
Placa fenólica	En ella se realiza el dibujo de pistas y se ensamblan los componentes electrónicos necesarios	
Molex	Conectores que permiten la orientación correcta y única de las conexiones eléctricas	

Figura 7: Diagrama de conexiones eléctricas del RPISDRSL.

El Cuadro 4 muestra los elementos empleados en la sujeción de la estructura del robot.

Cuadro 4: Elementos requeridos para la fabricación del RPISDRSL.

Cantidad	Elemento	Dimensiones	Descripción
2	Placas realizadas con impresión 3D	$13 [cm] \times 5 [cm]$	Utilizadas para montar en ellas los componentes electrónicos
16	Tuercas	$\frac{3}{16}$ [in]	Para sujeción de las dos placas 3D
16	Rondanas de presión	$\frac{3}{16}$ [in]	Para sujeción de las dos placas 3D
8	Tornillos	$rac{5}{32}\left[in ight]$	Sujeción de las bases de los motorreductores
4	Espárragos	$\frac{3}{16}$ $[in]$	Elementos de sujeción para los componentes

El Cuadro 5 muestra las herramientas empleadas para la fabricación y medición del robot.

Cuadro 5: Equipo de medición y fabricación.

Equipo	Descripción	
Báscula Camry EK5055	Utilizada para obtener las masas de los componentes que conforman al robot	
Vernier digital genérico	Instrumento utilizado para medir las distancias entre los componentes del robot y el eje de las ruedas, al igual que para delimitar el área de no impresión para la colocación de los componentes del robot	
Cautín	Utilizado para soldar cables que requieren mayor longitud	
Pinza de corte diagonal	Utilizada para dar la longitud correcta de los cables	
Impresora 3D Creality Ender-3 V3 SE	Utilizada para fabricar las bases estructurales del RPISDRSL	
Impresora láser Brother DCP-L2540DW	Utilizada para la impresión de las pistas del circuito del PCB en hoja de papel fotográfico	
Plancha de ropa	Empleada para transferir las pistas desde la hoja de papel fotográfico hacia la placa fenólica	
Dremel 3000	Utilizado para realizar las perforaciones en la placa fenólica	
Cronómetro	Herramienta utilizada para medir la velocidad angular máxima de los motores	

En la Figura 8 se muestra la vista superior del diseño de la pista de pruebas utilizada, esta misma imagen muestra las dimensiones. Por otro lado, en la Figura 9 se muestra el diseño y dimensiones de la rampa de pruebas. Utilizando ambas perspectivas en la Figura 10 se muestra el resultado físico del ensamble de la pista de pruebas.

Figura 8: Vista superior de la pista utilizada para pruebas, las distancias se muestran en [m].

Figura 9: Vista lateral del diseño de la rampa utilizada para las pruebas, las distancias se muestran en [m].

Figura 10: Vista de la pista construida y ensamblada para las pruebas.

3.2. Metodología

La metodología empleada en el desarrollo del RPISDRSL se presenta en la Figura 11.

Figura 11: Diagrama de bloques de metodología.

Con respecto a la Figura 11, a continuación se describe cada uno de los bloques:

- 1. Recopilación: Recolectar la información de las especificaciones del RPISDRSL y sobre el marco teórico referente al comportamiento dinámico y el control del robot. También recopilar y analizar la información obtenida en la entrega anterior, tanto de los puntos de mejora como de la retroalimentación dada por los mismos integrantes del equipo y por el docente. En esta etapa también se obtiene el material electrónico y las herramientas de trabajo necesarias para el desarrollo del robot.
- 2. Medición: Medir las longitudes de los componentes electrónicos para la correcta ubicación de los mismos dentro de la estructura del robot. Además, realizar la medición de las masas de los componentes para su correcta distribución en la estructura y para los cálculos pertinentes sobre los momentos de inercia tanto de la estructura completa del robot, así como de algunos materiales individuales. Medir el número de vueltas realizadas por uno de los motores durante un minuto para calcular la velocidad angular máxima.

- 3. Diseño: Diseñar la estructura del robot teniendo en consideración sus especificaciones, así como las longitudes y masas de los componentes. Además, diseñar el PCB, que incluye el trazado de pistas de las conexiones eléctricas y la ubicación de los componentes.
- 4. Armado: Fabricar el PCB, posteriormente colocar los componentes en la estructura, haciendo uso de materiales de sujeción (tornillos, tuercas, rondanas de presión), además de realizar la conexión entre los componentes electrónicos a través de los cables con conectores tipo Molex.
- 5. Medición final: Obtener las longitudes finales del RPISDRSL entre el eje de los motorreductores y cada uno de los elementos del robot.
- 6. Cálculo: Obtener los parámetros necesarios involucrados en el marco teórico, tanto de la dinámica del RPISDRSL como de las ganancias referentes al controlador a implementar.
- 7. Migración: Embeber el algoritmo de control dentro del microcontrolador del RPISDRSL.
- 8. Adaptación de la comunicación inalámbrica con el módulo HC05.
- 9. Sintonización: Finalmente, realizar el ajuste fino de las ganancias para la correcta sintonización del controlador para realizar el recorrido indicado.

4. Resultados y Discusión

En esta sección se presentan los resultados obtenidos en el desarrollo de este proyecto, así como la discusión e interpretación de los mismos.

4.1. Diseño del RPISDRSL y montaje de los materiales

La distribución de los componentes se muestra en la Figura 12 y a continuación se detalla:

- 1. Piso superior del RPISDRSL de la Figura 12: En la placa superior, específicamente en la parte superiorcentral de la placa, se encuentra la batería, encima de la batería se encuentra el PCB y el módulo bluetooth, a la derecha de la batería se encuentra el *MPU* y a la izquierda de la batería está el interruptor. Por último, en la parte inferior de la placa superior se encuentra el puente H.
- 2. Piso inferior del RPISDRSL de la Figura 12: Por debajo de la placa inferior se encuentran los motores con sus *encoders*, llantas y también los sensores infrarrojos para la detección de línea.