Коллоквиум по курсу "Математический анализ", I курс, осенний семестр 2022

Группа БПМИ2211

24 октября 2022 г.

- 1 Точные верхние и нижние грани, их существование у ограниченных множеств. Теорема Вейерштрасса о пределе монотонной ограниченной последовательности.
- 1.1 Точные верхние и нижние грани, их существование у ограниченных множеств.

Пусть A — непустое подмножество вещественных чисел.

Число b называется **верхней гранью** множества A, если $a \le b$ для каждого числа $a \in A$. Если есть хотя бы одна верхняя грань, то множество называют **ограниченным сверху**. Наименьшая из верхних граней множества A называется **точной верхней гранью** множества A и обозначается $\sup A$ (супремум).

Число b называется **нижней гранью** множества A, если $b \le a$ для каждого числа $a \in A$. Если есть хотя бы одна нижняя грань, то множество называют **ограниченным снизу**. Наибольшая из нижних граней множества A называется **точной нижней гранью** множества A и обозначается inf A (инфимум).

Ограниченное и сверху и снизу множество называется ограниченным.

Пример 1. Пусть A = (0, 1]. Тогда inf A = 0

 $\forall x \in A: x \geq 0 \Rightarrow 0$ — нижняя грань. Если b — нижняя грань, то $\frac{1}{n} \in A, \ \frac{1}{n} \geq b \Rightarrow 0:=\lim_{n \to \infty} \frac{1}{n} > b$ и $\sup A = 1.$ 1 — верхняя грань, т.к. $\forall x \in A: 1 \geq x$ b — верхняя грань, $b > 1, 1 \in A$

Установим существование точных верхних (нижних) граней у ограниченных сверху (снизу) множеств.

Теорема 2. Пусть A — непустое ограниченное сверху (снизу) множество. Тогда существует точная верхняя (нижняя) грань $\sup A$ ($\inf A$).

Доказательство. Пусть A — непустое ограниченное сверху множество из условия, а B — непустое (по условию) множество его верхних граней. Тогда A левее B и существует разделяющий A и B элемент c. Он явлется верхней гранью для A и $c \le b$ для каждой верхней грани множества A(c — наименьшая из верхних граней). По определению $c = \sup A$.

Наличие inf доказывается аналогично или переходом к множеству -A.

Отсюда получается полезное утверждение о сходимости монотонной ограниченной последовательности.

1.2 Теорема Вейерштрасса о пределе монотонной ограниченной последовательности

Пусть последовательность $\{a_n\}_{n=1}^{\infty}$ не убывает $(a_n \leq a_{n+1})$ и ограничена сверху. Тогда эта последовательность сходится к своему супремуму.

Аналогично, пусть последовательность $\{a_n\}_{n=1}^{\infty}$ не возрастает $(a_{n+1} \leq a_n)$ и ограничена снизу. Тогда эта последовательность сходится к своему инфимуму.

Доказательство. Докажем только первое утверждение. Второе доказывается аналогично или переходом к последовательности $\{-a_n\}_{n=1}^{\infty}$.

Пусть $M = \sup\{a_n \colon n \in \mathbb{N}\} = \sup_{n \in \mathbb{N}} a_n$. Тогда для каждого $\varepsilon > 0$ найдется номер $N \in \mathbb{N}$, для которого $M - \varepsilon < a_N$ (иначе $M - \varepsilon$ — верхняя грань, чего не может быть). В силу того, что последовательность неубывающая, при каждом n > N выполнено

$$M - \varepsilon < a_N \le a_n \le M < M + \varepsilon$$
.

Тем самым, по определению $M = \lim a_n$.

В качестве примера см. п.1 билет 6.