

Eletrónica Geral

3º Trabalho de Laboratório: Compensador Proporcional Integral

Turma:

Fábio Santos – 42111

André Faria – 44731

Afonso Correia – 47521

João Jacinto - 48659

Índice

Introdução	3
Objetivos	3
Esquema de Montagem	3
Dimensionamento	4
4.1)	4
4.2)	5
4.3)	5
)	5
)	6
)	6
)	7
)	7
	8
)	8
)	9
Registo de Resultados	10
5.1)	. 10
5.2)	. 13
Análise de Resultados	. 13
6.1)	. 13
6.2)	12

Introdução

Os compensadores do tipo proporcional integral, vulgarmente designados por CPI, são bastante utilizados para controlo em cadeia fechada de variadas grandezas elétricas, por exemplo, em conversores estáticos de potência.

Objetivos

Com este trabalho pretende-se que o aluno concretize os seguintes objetivos:

- ➤ Determinar a função de transferência para um compensador do tipo proporcional integral;
 - > Efetuar o dimensionamento para ganhos proporcionais e integrais específicos;
- ➤ Montar o compensador do tipo proporcional integral e fazer o ensaio experimental para uma resposta com entrada em escalão;
 - > Obter teoricamente a caraterística de amplitude da resposta em frequência;
- ➤ Obter experimentalmente a caraterística de amplitude da resposta em frequência.

Esquema de Montagem

Para a resposta às questões colocadas no dimensionamento, considere a montagem da Figura 1, em que $R_1=10k\Omega$, $R_2=1k\Omega$, $R_3=6.8k\Omega$, $R_4=3.9k\Omega$, $R_5=10k\Omega$, $R_6=51k\Omega$, $R_7=560k\Omega$; $C_1=1\mu F$, $C_2=10nF$ e 2 AMP 741.

Figura 1 - Esquema de Montagem

Dimensionamento

4.1) Considere os amplificadores ideais. Deduza as funções de transferência V_2 = $f(V_1)$ e V_3 = $f(V_2)$. Caso existam, identifique os zeros e os polos das funções de transferência.

$$V_2=f(V_1)$$

Ao ligar a entrada não inversora à massa, a montagem torna-se uma montagem inversora, assim sendo:

$$V_2 = \left(-\frac{R_4}{R_2}\right) * V_1$$

Ao ligar a entrada inversora à massa, a montagem torna-se não inversora, logo:

$$V_2 = \left(1 + \frac{R_4}{R_2}\right) * \left(\frac{R_3}{R_1 + R_3}\right) * V_1$$

Através do teorema da sobreposição conclui-se que:

$$V_2 = \left(-\frac{R_4}{R_2}\right) * V_1 + \left(1 + \frac{R_4}{R_2}\right) * \left(\frac{R_3}{R_1 + R_3}\right) * V_1$$

$V_3=f(V_2)$

Cálculo da impedância do Feedback:

$$Z = R_6 + \frac{R_7 * \frac{1}{sC_2}}{R_7 + \frac{1}{sC_2}} = \frac{R_6 R_7 sC_2 + R_6 + R_7}{R_7 sC_2 + 1}$$

Cálculo da tensão V₃

$$V_{3} = \frac{\frac{R_{6}R_{7}sC_{2} + R_{6} + R_{7}}{R_{7}sC_{2} + 1}}{R_{5} + \frac{1}{sC_{1}}} * V_{2} = \frac{(R_{6}R_{7}sC_{2} + R_{6} + R_{7})(sC_{1})}{(R_{7}sC_{2} + 1)(R_{5}sC_{1} + 1)} * V_{2}$$

Zeros:

$$s_{01} = 0 \quad \forall \quad s_{02} = \frac{-R_6 - R_7}{R_6 R_7 C_2}$$

Polos:

$$s_x = \frac{-(R_7C_2 + R_5C_1) \pm \sqrt{(R_7C_2 + R_5C_1)^2 - 4R_7R_5C_2C_1}}{2R_7R_5C_2C_1}$$

4.2) Considerando C_1 e R_7 com valores muito elevados ($\approx \infty$), tais que a sua influência possa ser desprezada, deduza as funções de transferência V_2 =f(V_1) e V_3 =f(V_2). Caso existam, identifique os zeros e os polos das funções de transferência.

$$\begin{aligned} \mathbf{V_2} = \mathbf{f(V_1)} \\ V_2 &= \left(-\frac{R_4}{R_2}\right) * V_1 + \left(1 + \frac{R_4}{R_2}\right) * \left(\frac{R_3}{R_1 + R_3}\right) * V_1 \\ \mathbf{V_3} = \left(-\frac{1 + C_2 s R_7}{R_5 C_2 s}\right) * V_2 \\ \text{Zeros:} \\ s_0 &= -\frac{1}{R_7 C_2} \\ \text{Polos:} \\ s_r &= 0 \end{aligned}$$

4.3) Utilizando exclusivamente o software MATLAB/SIMULINK e tendo em conta o circuito da Figura 1, simule o circuito para as seguintes situações:

Figura 2 - V1 e V2 com f=100Hz

Figura 3 - V1 e V3 com f=100Hz

Figura 4 - V2 e V3 com f=100Hz

Figura 5 - V1 e V2 com f=10kHz

Figura 6 - V1 e V3 com f=10kHz

Figura 7 - V2 e V3 com f=10kHz

Figura 8 - Diagrama de Bode a desprezar C_1 e R_7

Figura 9 - Diagrama de Bode sem desprezar C_1 e R_7

Tanto g) como h) foram obtidos através da função de transferência $V_3=f(V_1)$, devido a erros obtidos em Simulink quando utilizado $V_3=f(V_2)$. A montagem do amplificador diferencial não irá influenciar o diagrama de bode.

Registo de Resultados

5.1) De modo a observar a resposta ao escalo do circuito, e após ajuste da saída do gerador de sinais, foram registadas as seguintes evoluções temporais:

Figura 10 - V1 e V2 com f=100Hz

Figura 11 - V1 e V3 com f=100Hz

Figura 12 - V2 e V3 com f=100Hz

Figura 13 - V1 e V2 com f=10kHz

Figura 14 - V1 e V3 com f=10kHz

Figura 15 - V2 e V3 com f=10kHz

5.2) Após o ajuste do gerador de sinais para uma onda sinusoidal, foram obtidos os valores em frequência do ganho do PI, com frequência variável.

V1 (V)	0,05													
f (Hz)	50	100	300	500	700	1,E+03	5,E+03	1,E+04	5,E+04	1,E+05	2,E+05	4,E+05	6,E+05	1,E+06
V ₃ (V)	2,6	1,56	0,76	0,64	0,6	0,6	0,56	0,56	0,52	0,48	0,28	0,16	0,12	0,08
G _∨ (dB)	34,32	29,88	23,64	22,14	21,58	21,58	20,98	20,98	20,34	19,65	14,96	10,10	7,60	4,08

Tabela 1 - Ganho do PI em função da frequência

Análise de Resultados

Gráfico 1 - Diagrama de Bode Experimental do CPI

O diagrama de Bode obtido através dos valores experimentais é concordante com o diagrama obtido na alínea 4.3) do Dimensionamento.

6.2)

O condensador C_1 é utilizado para filtrar as componentes em corrente contínua do circuito, ou seja, filtrar as tensões de offset que venham do primeiro andar do circuito e assim não saturar o segundo andar.

A resistência R_7 foi colocada em paralelo com a condensador C_2 , pois este em baixas frequências comporta-se como um circuito aberto, impedindo assim que o feedback fique em circuito aberto e garantindo um caminho para a corrente de bias à entrada (negativa) do operacional.