Heuristic Search

Alice Gao Lecture 3

Readings: RN 3.5 (esp. 3.5.2), PM 3.6

Outline

Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*
Lowest-Cost-First Search
Greedy Best-First Search
A* Search

Designing an Admissible Heuristic

Pruning the Search Space

Learning goals

By the end of the lecture, you should be able to

- Describe motivations for applying heuristic search algorithms.
- ► Trace the execution of and implement the Lowest-cost-first search, Greedy best-first search and A* search algorithm.
- ▶ Describe properties of the Lowest-cost-first, Greedy best-first and A* search algorithms.
- Design an admissible heuristic function for a search problem.
 Describe strategies for choosing among multiple heuristic functions.
- Describes strategies for pruning a search space.

Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Designing an Admissible Heuristic

Pruning the Search Space

Why Heuristic Search?

How would ____ choose which one of the two states to expand?

- ▶ an uninformed search algorithm
- humans

5	3	
8	7	6
2	4	1

1	2	3
4	5	
7	8	6

Why Heuristic Search

An uninformed search algorithm

- considers every state to be the same.
- does not know which state is closer to the goal.
- may not find the optimal solution.

An heuristic search algorithm

- uses heuristics to estimate how close the state is to a goal.
- try to find the optimal solution.

Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Lowest-Cost-First Search Greedy Best-First Search A* Search

Designing an Admissible Heuristic

Pruning the Search Space

The Cost Function

Suppose that we are executing a search algorithm and we have added a path ending at n to the frontier.

cost(n) is the actual cost of the path ending at n.

The Heuristic Function

Definition (search heuristic)

A search heuristic h(n) is an estimate of the cost of the cheapest path from node n to a goal node.

In general, h(n) can be arbitrary.

However, a good heuristic function has the following properties.

- problem-specific.
- ▶ non-negative.
- h(n) = 0 if n is a goal node.
- h(n) must be easy to compute (without search).

LCFS, GBFS, and A*

- LCFS: remove the path with the lowest cost cost(n).
- ► GBFS: remove the path with the lowest heuristic value h(n).
- A*: remove the path with the lowest cost + heuristic value cost(n) + h(n).

Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*
Lowest-Cost-First Search
Greedy Best-First Search
A* Search

Designing an Admissible Heuristic

Pruning the Search Space

Lowest-cost-first search

- Frontier is a priority queue ordered by cost(n).
- ► Expand the path with the lowest *cost*(*n*).

Trace LCFS on a search graph

If there is a tie, remove nodes from the frontier in alphabetical order.

CFS

Properties of LCFS

- ► Complexity:

 time and space complexities are both exponential.
- ► Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the optimal solution?

Yes

mild technical conditions required:

- O branching factor is finite.
- 2) the cost of every arc is bounded below by a positive,

LCFS, GBFS, and A*

Greedy Best-First Search

A* Search

Greedy Best-First Search

- Frontier is a priority queue ordered by h(n).
- **Expand** the node with the lowest h(n).

Trace GBFS on a search graph

If there is a tie, remove nodes from the frontier in alphabetical order.

Properties of GBFS

- Complexity:
 space and time complexity are both exponential.
- Complete: Guaranteed to find a solution if one exists?
 No.
- Optimal: Guaranteed to find the optimal solution?
 No.

Learning Goals

Why Heuristic Search

LCFS, GBFS, and A*

Greedy Best-First Search

A* Search

Designing an Admissible Heuristic

Pruning the Search Space

A* Search

- Frontier is a priority queue ordered by f(n) = cost(n) + h(n).
- \triangleright Expand the node with the lowest f(n).

Trace A* search on a search graph

If there is a tie, remove nodes from the frontier in alphabetical order.

Properties of A*

- ► Complexity:

 Space and time complexities are both exponential.
- Complete: Guaranteed to find a solution if one exists?
 Yes, if the heuristic satisfies a mild condition.
- Poptimal: Guaranteed to find the optimal solution?

 Yes, if the heuristic satisfies a mild condition

A* is Optimal

$$h^*(n)$$
: cost of cheapest path from n to a goal.
 $0 \le h(n) \le h^*(n)$.

Definition (admissible heuristic)

A heuristic h(n) is admissible if it is never an overestimate of the cost of the cheapest path from node n to a goal node.

Theorem (Optimality of A*)

If the heuristic h(n) is admissible, the solution found by A^* is optimal.

h(n) - a lower bound on the actual cost - an optimistic estimate of the actual cost.

A* is Optimally Efficient

Among all optimal algorithms that start from the same start node and use the same heuristic, A^* expands the fewest nodes.

A* could be unlucky w/ tie breaking. Define optimal efficiency as

expanding the minimum number of nodes n for which $f(n) \neq f^*$ where f^* is the cost of the cheapest path.

Learning Goals

Why Heuristic Search

Greedy Best-First Search

A* Search

Designing an Admissible Heuristic

Pruning the Search Space

Some Heuristic Functions for 8-Puzzle

- Manhattan Distance Heuristic: h₁
 The sum of the Manhattan distances of the tiles from their goal positions
- Misplaced Tile Heuristic: h₂
 The number of tiles that are NOT in their goal positions

Both heuristic functions are admissible.

Goal State						
1	2	3				
4	5	6				
7	8					

Coal State

Constructing an Admissible Heuristic

- Define a relaxed problem by simplifying or removing constraints on the original problem.
- Solve the relaxed problem without search.
- ► The cost of the optimal solution to the relaxed problem is an admissible heuristic for the original problem.

Constructing an Admissible Heuristic for 8-Puzzle

8-puzzle: A tile can move from square A to square B

- ▶ if A and B are adjacent, and
- B is empty.

Which heuristics can we derive from relaxed versions of this problem?

CQ: Constructing an Admissible Heuristic

CQ: Which heuristics can we derive from the following relaxed 8-puzzle problem?

A tile can move from square A to square B if A and B are adjacent. (B may not be empty.)

- (A) The Manhattan distance heuristic
- (B) The Misplaced tile heuristic
- (C) Another heuristic not described above

CQ: Constructing an Admissible Heuristic

CQ: Which heuristics can we derive from the following relaxed 8-puzzle problem? (A and B may not be adjacent.)

A tile can move from square A to square B. (B may not be empty.)

- (A) The Manhattan distance heuristic
- (B) The Misplaced tile heuristic
- (C) Another heuristic not described above

Which Heuristic is Better?

- We want a heuristic to be admissible.
- Prefer a heuristic that is very different for different states.
- ▶ Want a heuristic to have higher values (close to h^*).

Dominating Heuristic

Definition (dominating heuristic)

Given heuristics $h_1(n)$ and $h_2(n)$. $h_2(n)$ dominates $h_1(n)$ if

- $\blacktriangleright (\forall n (h_2(n) \geq h_1(n))).$
- $\qquad \qquad (\exists n \ (h_2(n) > h_1(n))).$

Theorem

If $h_2(n)$ dominates $h_1(n)$, A^* using h_2 will never expand more nodes than A^* using h_1 .

CQ: Which Heuristic of 8-puzzle is Better?

CQ: Which of the two heuristics of the 8-puzzle is better?

- (A) The Manhattan distance heuristic dominates the Misplaced tile heuristic.
- (B) The Misplaced tile heuristic dominates the Manhattan distance heuristic.
- (C) I don't know....

Learning Goals

Why Heuristic Search

Greedy Best-First Search

A* Search

Designing an Admissible Heuristic

Pruning the Search Space

Cycle Pruning

- ► A cycle cannot be part of a least-cost path.
- Works well with depth-first search.
- ▶ The complexity of cycle pruning is . . .

Multiple-Path Pruning

- If we have already found a path to a node, we can prune other paths to the same node.
- Subsumes a cycle check.
- Requires storing all nodes we have found paths to.
- What if a subsequent path to n is shorter than the first path found?

Lowest-cost-first search w/ multiple-path pruning

If we perform multiple-path pruning with lowest-cost-first search, is it possible for us to prune the optimal solution (least-cost path)?

(A) Yes, it is possible.

(Dost (Pi) > Cost (Pi)

(B) No, it is not possible.

A* search w/ multiple-path pruning

Q: come up w/ a search graph s.t.

A* w/ multi-path pruning discards

the optimal solution.

If we perform multiple-path pruning with A* search, is it possible for us to prune the optimal solution (least-cost path)?

(A) Yes, it is possible.

(B) No, it is not possible.

(B) No, it is not possible.

(C) h(A) = 6This example is h(A) = 6The pages below h(C) = 0The pages below h(C) = 0 h(C) = 0

poth found: SBCG (21) optimal solution SACG (31)

explored: S, A, B, G

O O O O O

frontier: S, SA, SB, SAG, SBA

21 22 42 3

path found; SAG (42)
Optimal solution; SBAG (24)

$$h=18$$

$$h=14$$

$$h=14$$

$$h=1$$

$$h=1$$

$$h=1$$

$$h=1$$

path found: SCDG (26)
optimal solution: SABDG (23)

Find Optimal Solution w/ Multiple-Path Pruning

What if a subsequent path to n is shorter than the first path found?

- ▶ Remove all paths from the frontier that use the longer path.
- Change the initial segment of the paths on the frontier to use the shorter path.
- ▶ Make sure that the least-cost path to a node is found first.

A* search w/ multiple-path pruning

How can we ensure that A* with multiple-path pruning is optimal?

- ▶ Ensure that we find the least-cost path to every node first.
- Admissible heuristic guarantees the above for a goal node, but not for other nodes.
 Consistent.
- We need the heuristic to satisfy the monotone restriction:

for any
$$arc \langle m, n \rangle$$
, $h(m) - h(n) \leq cost(m, n)$.

if n is a goal node, $h(m) \leq cost(m, n)$ admissible heuristic satisfies the monotone restriction,

A* search with multiple-path pruning is optimal.

h(m) - h(n) = the heuristic estimate of the path cost from m to n

Summary of Search Strategies

Strategy	Frontier Selection	Halts?	Space	Time
Depth-first	Last node added	No	Linear	Exp
Breadth-first	First node added	Yes	Exp	Exp
Lowest-cost-first	min cost(n)	Yes	Exp	Exp
Greedy Best-first	min $h(n)$	No	Exp	Exp
A*	min cost(n) + h(n)	Yes	Exp	Exp

Revisiting the learning goals

By the end of the lecture, you should be able to

- ▶ Describe motivations for applying heuristic search algorithms.
- ► Trace the execution of and implement the Lowest-cost-first search, Greedy best-first search and A* search algorithm.
- ▶ Describe properties of the Lowest-cost-first, Greedy best-first and A* search algorithms.
- Design an admissible heuristic function for a search problem.
 Describe strategies for choosing among multiple heuristic functions.
- Describes strategies for pruning a search space.