Mini Project 6 Report

Jiadao Zou: jxz172230 Houyi Liu: hxl163630

Question

Consider the prostate cancer dataset available on eLearning as prostate cancer.csv. It consists of data on 97 men with advanced prostate cancer. A description of the variables is given in Figure 1. We would like to understand how PSA level is related to the other predictors in the dataset. Note that vesinv is a qualitative variable. You can treat gleason as a quantitative variable.

Build a "reasonably good" linear model for these data by taking PSA level as the response variable. Carefully justify all the choices you make in building the model. Be sure to verify the model assumptions. In case a transformation of response is necessary, try the natural log transformation. Use the final model to predict the PSA level for a patient whose quantitative predictors are at the sample means of the variables and qualitative predictors are at the most frequent category.

header	name	description
subject	ID	1 to 97
psa	PSA level	Serum prostate-specific antigen level (mg/ml)
cancervol	Cancer Volume	Estimate of prostate cancer volume (cc)
weight	Weight	prostate weight (gm)
age	Age	Age of patient (years)
benpros	Benign prostatic hyperplasia	Amount of benign prostatic hyperplasia (cm ²)
vesinv	Seminal vesicle invasion	Presence (1) or absence (0) of seminal vesicle invasion
capspen	Capsular penetration	Degree of capsular penetration (cm)
gleason	Gleason score	Pathologically determined grade of disease (6, 7 or 8)

Figure 1: List of variables in the prostate cancer data

Answer

Analyse

First we draw the boxplot of the PSA

```
1  # Read data
2  data <- read.csv("prostate_cancer.csv")
3  # boxplot drawing
4  boxplot(data$psa, main="Distribution Graph of PSA levels")</pre>
```


As we could see, the original distribution is not good cause there are many outliers and two tails are not balanced.

Then, we plot the Natural Log distribution of PSA and have a look

1 | boxplot(log(data\$psa), main="Distribution Graph of Log of PSA levels")

This time, natural log transformation makes the distribution less skewed and reduce the number of outliers.

Therefore, we should use transformed Distribution of PSA levels.

```
1 \mid y \leftarrow log(data psa)
```

- Next, we try to fit the response to each predictors left. Also, notice that "vesinv" is a qualitative variable and "gleason" is a quantitative value.
- Transformed PSA level && "cancervol"

```
plot(data$cancervol, y, main="Transformed PSA level && cancervol")
fit1 <- lm(y ~ cancervol, data = data)
abline(fit1)
summary(fit1)</pre>
```


• Transformed PSA level && "Weight"

```
plot(data$weight, y, main="Transformed PSA level && weight")
fit2 <- lm(y ~ weight, data = data)
abline(fit2)
summary(fit2)</pre>
```


• Transformed PSA level && "Age"

```
plot(data$age, y, main="Transformed PSA level && Age")
fit3 <- lm(y ~ age, data = data)
abline(fit3)
summary(fit3)</pre>
```


Transformed PSA level && "Benpros"

```
plot(data$benpros, y, main="Transformed PSA level && Benpros")
fit4 <- lm(y ~ benpros, data = data)
abline(fit4)
summary(fit4)</pre>
```


• Transformed PSA level && "Capspen"

```
plot(data$capspen, y, main="Transformed PSA level && Capspen")
fit5 <- lm(y ~ capspen, data = data)
abline(fit5)
summary(fit5)</pre>
```


• Transformed PSA level && "Gleason"

```
plot(data$gleason, y, main="Transformed PSA level && Gleason")
fit6 <- lm(y ~ gleason, data = data)
abline(fit6)
summary(fit6)</pre>
```


• Transformed PSA level && "vesinv"

```
plot(data$vesinv, y, main="Transformed PSA level && Vesinv")
fit7 <- lm(y ~ vesinv, data = data)
abline(7)
summary(fit7)</pre>
```


- From the above summary:
 - \circ As we have seen, features: {cancervol, capspen, gleason and vesinv} are significant predictors because their t-test p-values are ≤ 0.05 .
 - Build a linear model with above significant predictors

```
1 | fit8 <- lm(y ~ cancervol + factor(vesinv) + capspen + gleason, data=data)
2 | summary(fit8)
```

```
call:
lm(formula = y ~ cancervol + factor(vesinv) + capspen + gleason,
    data = data)
Residuals:
Min 1Q Median 3Q Max
-2.1747 -0.4497 0.1049 0.6215 1.6135
Coefficients:
                 (Intercept)
cancervol
factor(vesinv)1 0.70675
                              0.28024
                              0.03455 -0.680 0.49852
0.13100 3.020 0.00327 **
capspen
                 -0.02348
                  0.39566
gleason
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.8078 on 92 degrees of freedom
Multiple R-squared: 0.5301, Adjusted R-squared: 0 F-statistic: 25.95 on 4 and 92 DF, p-value: 2.075e-14
We could see that "capspen" is not significant. To verify it, we should use ANOVA table:
    1 | fit9 <- lm(y ~ cancervol + factor(vesinv) + gleason, data=data)
    2 | anova(fit8, fit9)
> anova(fit8, fit9)
Analysis of Variance Table
Model 1: y ~ cancervol + factor(vesinv) + capspen + gleason
Model 2: y ~ cancervol + factor(vesiny) + gleason
Res.Df RSS Df Sum of Sq F Pr(>F)
      92 60.039
      93 60.340 -1 -0.30134 0.4617 0.4985
Since the P-value is \gg 0.05, it indicates "capspen" is insignificant. Also, we want to make sure the features we
drop at the very beginning are really unimportant.
      fit10 <- lm(y ~ cancervol + weight + factor(vesinv) + gleason, data=data)
       anova(fit10, fit9)
        anova(fit10, fit9)
Analysis of Variance Table
Model 1: y ~ cancervol + weight + factor(vesinv) + gleason
Model 2: y ~ cancervol + factor(vesinv) + gleason
Res.Df RSS Df Sum of Sq F Pr(>F)
1 92 58.305
      93 60.340 -1 -2.0351 3.2111 0.07643 .
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
      fit11 <- lm(y ~ cancervol + age +factor(vesinv) + gleason, data=data)
    2 anova(fit11, fit9)
> anova(fit11, fit9)
Analysis of Variance Table
Model 1: y ~ cancervol + age + factor(vesinv) + gleason

Model 2: y ~ cancervol + factor(vesinv) + gleason

Res.Df RSS Df Sum of Sq F Pr(>F)

1 92 59.635
      93 60.340 -1 -0.70565 1.0886 0.2995
      | fit12 <- lm(y ~ cancervol + benpros + factor(vesinv) + gleason, data=data)
       anova(fit12, fit9)
       anova(fit12, fit9)
Analysis of Variance Table
Model 1: y ~ cancervol + benpros + factor(vesinv) + gleason
Model 2: y ~ cancervol + factor(vesinv) + gleason
Res.Df RSS Df Sum of Sq F Pr(>F)
      92 53.229
      93 60.340 -1 -7.1115 12.291 0.0007054 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

> summary(fit8)

From the above images, anova shows "benpros" is important. Which means the feature we should use to construct the linear model are {cancervol, benpros, vesinv, gleason}, and we could see the final model as below:

```
1 | myfit <- fit12
2 | (myfit)
> (myfit)
```

```
call:
lm(formula = y ~ cancervol + benpros + factor(vesinv) + gleason,
    data = data)
```

Coefficients:
(Intercept) cancervol
-0.65013 0.06488

benpros factor(vesinv)1 0.09136 0.68421

gleason 0.33376

So, the mathematics question:

ln(PSA) = -0.65013 + 0.06488*cancervol + 0.09136*benpros + 0.6842(vesinv = 1) + 0.33376*gleason

Analyse our model

• Now, plot the residual graph for the linear model we build:

```
plot(fitted(myfit), resid(myfit), main="Residual Plot")
abline(h=0)
```


Resident points are scattered around zero and there is no obvious pattern of these points.

• Now, plot the Normal Q-Q plot for the linear model we build:

```
1 qqnorm(resid(myfit))
2 qqline(resid(myfit))
```


From above plot, It's good if residuals are lined well on the straight dashed line. In other words, residual points are approximately around the straight line which means the errors are normally distributed.

• Then, we take a look at time series plot:

```
1 | plot(resid(myfit), type="1", main="Time Series Plot")
2 | abline(h=0)
```


From that series plot, we could not see there is obvious pattern between time interval and residual points. That shows out model is good because errors are independent.

• Final step, comparing our model with AIC generated models

· Backward AIC:

```
1 | myfit.backward <- step(lm(y \sim cancervol + weight + age + benpros + factor(vesinv) + capspen + gleason, data=data), scope = list(lower = \sim-1), direction = "backward")
```

```
Step: AIC=-48.21

y ~ cancervol + benpros + factor(vesinv) + gleason

Df Sum of Sq RSS AIC

<none> 53.229 -48.211

- gleason 1 4.2389 57.468 -42.778

- factor(vesinv) 1 4.8466 58.075 -41.758

- benpros 1 7.1115 60.340 -38.047

- cancervol 1 14.7580 67.987 -26.473
```

Forward AIC:

```
1 | myfit.forward <- step(lm(y \sim 1, data=data), scope = list(upper = \sim cancervol + weight + age + benpros + factor)
```

```
Step: AIC=-48.21
y ~ cancervol + gleason + benpros + factor(vesinv)
Both AIC:
    1 \mid \textit{myfit.both} < - \textit{step}(\textit{lm}(\textit{y} \sim \textit{cancervol} + \textit{weight} + \textit{age} + \textit{benpros} + \textit{factor}(\textit{vesinv}) + \textit{capspen} + \textit{gleason}, \textit{data=data})
        , scope = list(upper = ~cancervol + weight + age + benpros + factor(vesinv) + capspen + gleason), direction =
          "both")
Step: AIC=-48.21
y ~ cancervol + benpros + factor(vesinv) + gleason
                Df Sum of Sq RSS AIC 53.229 -48.211
<none>
                       0.3923 52.837 -46.928
                       0.3306 52.898 -46.815
+ weight
                       0.0250 53.204 -46.256
- gleason 1
- factor(vesinv) 1
                       4.2389 57.468 -42.778
                 1 4.8466 58.075 -41.758
1 7.1115 60.340 -38.047
1 14.7580 67.987 -26.473
- benpros
 cancervol

    Result of above three different stepwise model selection methods agree with our model.

Predicting:
   · concervol:
        concervol <- mean(data$concervol)</pre>
        concervol
 [1] 6.998682
   o benpros:
    1 benpros <- mean(data$benpros)</pre>
      benpros
 [1] 2.534725
   vesinv:
       vesinv.t <- table(factor(data$vesinv))</pre>
        vesinv <- names(which.max(vesinv.t))</pre>
    3
       vesinv
[1] "0"
   • gleason
```

[1] 6.876289

gleason

gleason <- mean(data\$gleason)

· Predicting the response by current predictor and arguments

(vesinv) + capspen + gleason), direction = "forward")

```
1 arguments <- data.frame(cancervol: cancervol, benpros: benpros, vesinv: vesinv, gleason: gleason)
2 PSA_log_response <- predict(myfit, arguments)</pre>
```

3 | exp(PSA_log_response)

1 10.2835

So the predicted PSA level is 10.2835.

Contribution

Jiadao Zou: Report Writing, Coding Houyi Liu: Coding, Screen Shooting