devision free!

Decision Trees

Boston University CS 506 - Lance Galletti

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

What a Decision Tree looks like

How it works

Refund	Marital Status	Income	Class
No	Single	70k	?

Part 1

How do we learn it?

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

IF marital status == Married

Refund	Marital Status	Income	Class	
Yes	Single	125k	No	
No	Married	100k	No	
No	Single	70k	No	
Yes	Married	120k	No	
No	Divorced	90k	Yes	
No	Married	60k	No	
Yes	Divorced	220k	No	
No	Single	85k	Yes	
No	Married	75k	No	
No	Single	90k	Yes	

IF marital status == Married po he has be amme?

/		\
ı.	١	١
4	١	-)
٠,		_

Refund	Marital Status	Income	Class
No	Married	100k	No
Yes	Married	120k	No
No	Married	60k	No
No	Married	75k	No

THEN class = NO

Wsipy Lypu: Wship]

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

IF income < 60k

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

IF income < 60k

Refund Marital Status	Income	Class
-----------------------	--------	-------

THEN?

presents detail to class

/ right class

Hunt's Algorithm

- Recursive Algorithm
 - Repeatedly split the dataset based on attributes
- Base cases:
 - IF Split and all data points in the same class
 - Great! Predict that class
 - IF Split and no data points
 - No problem! Predict a reasonable default

Hunt's Algorithm

The recursion (IF split and data points belong to more than one class)

 Find the attribute (and best way to split that attribute) that best splits the data

Example

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Refund	Marital Status	Income	Class
Yes	Single	125k	No
No	Married	100k	No
No	Single	70k	No
Yes	Married	120k	No
No	Divorced	90k	Yes
No	Married	60k	No
Yes	Divorced	220k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Refund	Marital Status	Income	Class
Yes	Single	125k	No
Yes	Married	120k	No
Yes	Divorced	220k	No

	1/1/1 + AS	that he ve	alr did
Refund	Marital Status	Income	Class
No	Married	100k	No
No	Single	70k	No
No	Divorced	90k	Yes
No	Married	60k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Refund	Marital Status	Income	Class
Yes	Single	125k	No
Yes	Married	120k	No
Yes	Divorced	220k	No

Refund	Marital Status	Income	Class
No	Married	100k	No
No	Single	70k	No
No	Divorced	90k	Yes
No	Married	60k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Refund	Marital Status	Income	Class
No	Married	100k	No
No	Single	70k	No
No	Divorced	90k	Yes
No	Married	60k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Refund	Marital Status	Income	Class
No	Married	100k	No
No	Single	70k	No
No	Divorced	90k	Yes
No	Married	60k	No
No	Single	85k	Yes
No	Married	75k	No
No	Single	90k	Yes

Refund	Marital Status	Income	Class
No	Single	70k	No
No	Divorced	90k	Yes
No	Single	85k	Yes
No	Single	90k	Yes

Refund	Marital Status	Income	Class
No	Married	100k	No
No	Married	60k	No
No	Married	75k	No

Refund	Marital Status	Income	Class
No	Single	70k	No
No	Divorced	90k	Yes
No	Single	85k	Yes
No	Single	90k	Yes

Refund	Marital Status	Income	Class
No	Married	100k	No
No	Married	60k	No
No	Married	75k	No

Refund	Marital Status	Income	Class
No	Single	70k	No
No	Divorced	90k	Yes
No	Single	85k	Yes
No	Single	90k	Yes

Refund	Marital Status	Income	Class
No	Single	70k	No
No	Divorced	90k	Yes
No	Single	85k	Yes
No	Single	90k	Yes

Refund	Marital Status	Income	Class
No	Single	70k	No

Refund	Marital Status	Income	Class
No	Divorced	90k	Yes
No	Single	85k	Yes
No	Single	90k	Yes

What do we mean by best split?

Many ways to split a given attribute

- Binary Split
- Multi-Way Split

Binary Split Income < 80k > 80k NO NO YES YES 12

don hithe pointing **Marital Status** Single, Divorced Married NO 3 NO 5 YES 3 YES 4

Multi-Way Split

Continuous Variables

- Use binning before running the decision tree
 - Can use clustering for that for example
- Compute a threshold while building the tree
 - \circ A > t vs A < t

Need a metric

That favors nodes like this:

NO	1
YES	7

Over nodes like this:

NO	4
YES	4

GINI index

Denote $p(j \mid t)$ as the relative frequency of class j at node t.

NO	1	
YES	7	

$$p(NO | t) = \frac{1}{8}$$

 $p(YES | t) = \frac{1}{8}$

p(NO
$$| t) = 4/7$$

p(YES $| t) = 3/7$

GINI index

$$GINI(t) = 1 - \sum_{j} p(j|t)^{2}$$

NO 1

YES 7

p(NO | t) = 1/8

 $p(YES | t) = \frac{7}{8}$

GINI(t) = 1 - 1/64 - 49/64 = 14/64

2501/2

p(NO
$$| t) = 4/7$$

$$p(YES | t) = 3/7$$

$$GINI(t) = 1 - 16/49 - 9/49 = 24/49$$

GINI of the Split

GINI of the split

$$GINI_{split} = \sum_{t=1}^{k} \frac{n_t}{n} GINI(t)$$

where:

n_t = number of data points at node tn = number of data points before the split (parent node)

GINI of the split

Part 2

Putting it all together

Before splitting

NO	8				
YES	7				
Gini =	= .49]			
**************************************	WSX	aj Ni	cen he	<i>l'</i>	0.5

Limitations

not well for me form

Easy to construct a tree that is too complex and overfits the data.

Solutions:

bild u a hu & sby at rode 4 , bre byin.

- Early termination (stop before tree is fully grown use majority vote at leaf node)
 - Stop at some specified depth
 - Stop if size of node is below some threshold
 - Stop if gini does not improve
 - Pruning (create fully grown tree then trim) quiddin

i Why grown)

Extensions

Other measures of node purity

Entropy

Entropy
$$(t) = -\sum_{j} p(j|t) \log(p(j|t))$$
 tion Error

Misclassification Error

$$\operatorname{Error}(t) = 1 - \max_{j}(p(j|t))$$

Part 3