Prova 2 2021.2

Fábio Braga, João Lucas Lima, Luca Argolo, Thiago Vieira

November 30, 2021

Questão 1. Seja $\Sigma=(h,f,c,R)$ uma assinatura onde ar(f)=ar(R)=2, ar(h)=1. Podemos criar 5 Σ -termos sem variavéis usando constantes e funções: $f(c_1,c_2), c_3, R(c_4), h(c_5), c_6$. Podemos criar 5 Σ -fórmulas atômicas usando apenas o símbolo de igualdade, funções, relações, variáveis, constantes e também verum e falsum: $f(c_1,x), c_2=x, R(y,c_3), \bot, \top$. Podemos criar 5 Σ -fórmulas complexas usando quantificadores e símbolos lógicos: $\neg x=c_2, c_3 \rightarrow g, c_4 \lor c_5, f(i,c_7), h(z)$.

Questão 2. Seja $\varphi = \forall x (R(x,c) \to \exists y f(y) = c) \lor P(c)$. A assinatura que contém todos os símbolos não lógicos φ é $\Sigma = (\mathbf{C}, f, R, P; ar(f) = 1, ar(R) = 2, ar(P) = 1)$. O conjunto das subfórmulas de φ terá a seguinte forma: $sub(\varphi) = \{P(c); R(x,c) \to \exists y f(y) = c; R(x,c); f(y) = c\}$

Questão 3. Seja $\Sigma = (h, f, c, R)$ uma assinatura onde ar(P) = ar(R) = 2, ar(h) = 1. A fórmula $\exists x \forall y R(x, y) \lor P(c_1, y)$ é uma fórmula que apresenta x como uma variável ligada e livre ao mesmo tempo.

Questão 4.

Questão 5. Seja $\Sigma = (\mathcal{C}, \mathcal{F}, \mathcal{R}, ar)$ uma assinatura e $\mathcal{M} = (M, (c^{\mathcal{M}})_{c \in \mathcal{C}}, (f^{\mathcal{M}})_{f \in \mathcal{F}}, (r^{\mathcal{M}})_{r \in \mathcal{R}})$ uma estrutura.

Seja ainda v uma valoração e $I(\mathcal{M}, v)$ uma interpretação.

Definimos inicialmente $I \vDash \neg \forall x \varphi$

- $\Leftrightarrow I \nvDash \forall x \varphi$
- \Leftrightarrow nem para todo $n \in \mathcal{M}$ temos que $I_x^n \models \varphi$
- \Leftrightarrow existe $n\in\mathcal{M}$ tal que $I^n_x\nvDash\varphi$
- \Leftrightarrow existe $n \in \mathcal{M}$ tal que $I_x^n \models \neg \varphi$
- $\Leftrightarrow I \vDash \exists x \neg \varphi$, como queríamos provar.

Questão 6.

Questão 7.