

Document # 13-52-12 Title: QMA7981 Datasheet Rev:D

Originator: MEMS / Peili Yan

# **REVISION RECORD**

| Rev. | Date       | Change Description                     |  |  |  |
|------|------------|----------------------------------------|--|--|--|
| Α    | 3/12/2018  | Initial Release                        |  |  |  |
| В    | 12/13/2018 | Update function comments and SPI parts |  |  |  |
| С    | 01/24/2019 | Add 7.6 RAISE_INT                      |  |  |  |
| D    | 10/25/2019 | Update Marking SPEC                    |  |  |  |
|      |            | Update company logo "QST"              |  |  |  |



**Document #:** 13-52-12 **Title:** QMA7981 Datasheet

Datasheet Rev: D

# Abstract Single-Chip 3-Axis Accelerometer QMA7981

Advanced Information

The QMA7981 is a single chip three-axis accelerometer. This surface-mount, small sized chip has integrated acceleration transducer with signal conditioning ASIC, sensing tilt, motion, shock and vibration, targeted for applications such as screen rotation, step counting, sleep quality, gaming and personal navigation in mobile and wearable smart devices.

The QMA7981 is based on our state-of-the-art, high resolution single crystal silicon MEMS technology. Along with custom-designed 14-bit ADC ASIC, it offers the advantages of low noise, high accuracy, low power consumption, and offset trimming. The device supports digital interface IIC and SPI.



The QMA7981 is in a 2x2x0.95mm3 surface mount 12-pin land grid array (LGA) package.

## **FEATURES**

+85 °C.

# ▶ 3-Axis Accelerometer in a 2x2x0.95 mm³ Land Grid Array Package (LGA), guaranteed to operate over a temperature range of -40 °C to

- 14-Bit ADC with low noise accelerometer sensor
- I<sup>2</sup>C Interface with Standard and Fast modes. Support SPI digital interface
- Built-In Self-Test
- Wide range operation voltage (1.71V To 3.6V) and low power consumption (2-50uA low power conversion current)
- ▶ RoHS compliant , halogen-free
- Built-in motion algorithm

#### **BENEFIT**

- Small size for highly integrated products. Signals have been digitized and factory trimmed.
- High resolution allows for motion and tilt sensing
- High-Speed Interfaces for fast data communications.
- ▶ Enables low-cost functionality test after assembly in production
- Automatically maintains sensor's sensitivity under wide operation voltage range and compatible with battery powered applications
- Environmental protection and wide applications
- Low power and easy applications including step counting, sleep quality, gaming and personal navigation

Title: QMA7981 Datasheet

Rev: D

# **CONTENTS**

| CO | NTENTS              |                                                                | 3  |
|----|---------------------|----------------------------------------------------------------|----|
| 1  | INTER               | NAL SCHEMATIC DIAGRAM                                          | 4  |
|    | 1.1                 | Internal Schematic Diagram                                     | 4  |
| 2  | SPECII              | FICATIONS AND I/O CHARACTERISTICS                              |    |
|    | 2.1                 | Product Specifications                                         |    |
|    | 2.2                 | Absolute Maximum Ratings                                       |    |
|    | 2.3                 | I/O Characteristics                                            |    |
| 3  | PACKA               | AGE PIN CONFIGURATIONS                                         |    |
|    | 3.1                 | Package 3-D View                                               | 6  |
|    | 3.2                 | Package Outlines                                               |    |
| 4  | EXTER               | NAL CONNECTION                                                 |    |
|    | 4.1                 | I2C Dual Supply Connection                                     |    |
|    | 4.2                 | I2C Single Supply connection                                   |    |
|    | 4.3                 | SPI Dual Supply Connection                                     |    |
|    | 4.4                 | SPI Single Supply connection                                   |    |
| 5  | BASIC               | DEVICE OPERATION                                               |    |
|    | 5.1                 | Acceleration sensor                                            | 12 |
|    | 5.2                 | Power Management                                               |    |
|    | 5.3                 | Power On/Off Time                                              |    |
|    | 5.4                 | Communication Bus Interface I <sup>2</sup> C and Its Addresses | 13 |
| 6  | MODE                | S OF OPERATION                                                 | 14 |
|    | 6.1                 | Modes Transition                                               | 14 |
|    | 6.2                 | Description of Modes                                           |    |
| 7  | Functio             | ns and interrupts                                              | 15 |
|    | 7.1                 | STEP INT                                                       |    |
|    | 7.2                 | $DRD \bar{Y} \; INT$                                           | 16 |
|    | 7.3                 | ANY MOT INT                                                    |    |
|    | 7.4                 | SIG MOT INT                                                    | 17 |
|    | 7.5                 | NO MOT INT                                                     |    |
|    | 7.6                 | RAĪSE INT                                                      |    |
|    | 7.7                 | Interrupt configuration                                        |    |
| 8  | I <sup>2</sup> C CO | MMUNICATION PROTOCOL                                           |    |
|    | 8.1                 | I <sup>2</sup> C Timings                                       |    |
|    | 8.2                 | I <sup>2</sup> C R/W Operation                                 |    |
| 9  | REGIS'              | TERS                                                           |    |
|    | 9.1                 | Register Map                                                   |    |
|    | 9.2                 | Register Definition                                            |    |



Title: QMA7981 Datasheet

Rev: D

# 1 INTERNAL SCHEMATIC DIAGRAM

# 1.1 Internal Schematic Diagram



Figure 1. Block Diagram

Table 1. Block Function

| Block                                                                                               | Function                     |  |
|-----------------------------------------------------------------------------------------------------|------------------------------|--|
| Transducer                                                                                          | 3-axis acceleration sensor   |  |
| CVA Charge-to-Voltage amplifier for sensor signals                                                  |                              |  |
| Interrupt Digital interrupt engine, to generate interrupt signal on data conversion motion function |                              |  |
| FSM Finite state machine, to control device in different mode                                       |                              |  |
| I <sup>2</sup> C/SPI Interface logic data I/O                                                       |                              |  |
| OSC Internal oscillator for internal operation                                                      |                              |  |
| Power                                                                                               | r Power block, including LDO |  |



Title: QMA7981 Datasheet

Rev: D

# 2 SPECIFICATIONS AND I/O CHARACTERISTICS

# **2.1 Product Specifications**

Table 2. Specifications (\* Tested and specified at 25°C and 3.0V VDD except stated otherwise.)

| Parameter              | Conditions                          | Min  | Тур       | Max      | Unit         |  |
|------------------------|-------------------------------------|------|-----------|----------|--------------|--|
| Supply voltage VDD     | VDD, for internal blocks            | 1.71 | 3.3       | 3.6      | V            |  |
| I/O voltage VDDIO      | VDDIO, for IO only                  | 1.71 | 3.3       | VDD      | V            |  |
| Standby current        | VDD and VDDIO on                    |      | 1         |          | μΑ           |  |
|                        | ODR=268 Hz                          |      | 50        |          |              |  |
|                        | ODR=134 Hz                          |      | 25.3      |          |              |  |
| Low power current      | ODR=67 Hz                           |      | 12.9      |          | μΑ           |  |
|                        | ODR=33.6 Hz                         |      | 6.7       |          |              |  |
|                        | ODR=13.4 Hz                         |      | 2.9       |          |              |  |
|                        | ODR=6.7 Hz                          |      | 1.7       |          |              |  |
|                        | ODR=32.5 Hz                         |      | 100       |          |              |  |
| Low noise current      | ODR=21.6 Hz                         |      | 83.3      |          | μΑ           |  |
|                        | ODR=13 Hz                           |      | 50        |          |              |  |
|                        | ODR=6.5 Hz                          |      | 25        |          |              |  |
| BW                     | Programmable bandwidth              |      | 0.16~168  |          | Hz           |  |
| Data output rate       | 2*BW                                |      | 0.32~336  |          | Samples      |  |
| (ODR)                  | Z DVV                               |      | 0.32 330  |          | /sec         |  |
|                        | From the time when VDD reaches to   |      |           |          |              |  |
| Startup time           | 90% of final value to the time when |      | 2         |          | ms           |  |
|                        | device is ready for conversion      |      |           |          |              |  |
|                        | From the time device enters into    |      |           |          |              |  |
| Wakeup time            | active mode to the time device is   |      | 1         |          | ms           |  |
|                        | ready for conversion                |      |           |          |              |  |
| Operating              |                                     | -40  |           | 85       | •            |  |
| temperature            |                                     | -40  |           | 65       | $\mathbb{C}$ |  |
| Acceleration Full      |                                     |      | ±2/±4/±8/ |          | g            |  |
| Range                  |                                     |      | ±16/±32   |          | g            |  |
|                        | FS=±2g                              |      | 4096      |          |              |  |
| Concitivity            | FS=±4g                              |      | 2048      |          | LCD/a        |  |
| Sensitivity            | FS=±8g                              |      | 1024      |          | LSB/g        |  |
|                        | FS=±16g                             |      | 512       |          |              |  |
|                        | FS=±32g                             |      | 256       |          |              |  |
| Sensitivity            | FS=±2g, Normal VDD Supplies         |      | ±0.02     | <u> </u> | 0/ /°        |  |
| Temperature Drift      | 13-12g, Normal VDD Supplies         |      | ±0.02     |          | %/°C         |  |
| Sensitivity tolerance  | Gain accuracy                       |      | ±4        |          | %            |  |
| Zero-g offset          | FS=±2g, Normal VDD Supplies         |      | ±80       |          | mg           |  |
| Zero-g offset          | FS=±2g, Normal VDD Supplies         |      | ±2        |          | mg/°C        |  |
| Temperature Drift      | 13-128, Normal VDD Supplies         |      |           |          | mg/℃         |  |
| Noise density          | FS=±2g, run state                   |      | 200       |          | μg/ √ Hz     |  |
| Nonlinearity           | FS=±2g, Best fit straight line,     |      | ±0.5      |          | %FS          |  |
| Cross Axis Sensitivity |                                     |      | 1         |          | %            |  |

| The information contained herein is the exclusive property of QST, and shall not be distributed, |
|--------------------------------------------------------------------------------------------------|
| reproduced, or disclosed in whole or in part without prior written permission of QST.            |



Title: QMA7981 Datasheet

Rev: D

# 2.2 Absolute Maximum Ratings

Table 3. Absolute Maximum Ratings (Tested at 25°C except stated otherwise.)

| Parameters          | Condition        | Min  | Max   | Units      |
|---------------------|------------------|------|-------|------------|
| VDD                 |                  | -0.3 | 5.4   | V          |
| VDDIO               |                  | -0.3 | 5.4   | V          |
| ESD                 | НВМ              |      | 2     | kV         |
| Shock Immunity      | Duration < 200μS |      | 10000 | g          |
| Storage temperature |                  | -50  | 150   | $^{\circ}$ |

# 2.3 I/O Characteristics

Table 4. I/O Characteristics

| Parameter      | Symbol            | Pin         | Condition      | Min.     | TYP. | Max.     | Unit |
|----------------|-------------------|-------------|----------------|----------|------|----------|------|
| Voltage Input  | V <sub>IH</sub> 1 | SDA, SCL    |                | 0.7*VDDI |      | VDDIO+0  | V    |
| High Level 1   |                   |             |                | 0        |      | .3       |      |
| Voltage Input  | V <sub>IL</sub> 1 | SDA, SCL    |                | -0.3     |      | 0.3*VDDI | V    |
| Low Level 1    |                   |             |                |          |      | 0        |      |
| Voltage Output | V <sub>OH</sub>   | INT1, INT2  | Output Current | 0.8*VDDI |      |          | ٧    |
| High Level     |                   |             | ≥-100μA        | 0        |      |          |      |
| Voltage Output | V <sub>OL</sub>   | INT1, INT2, | Output Current |          |      | 0.2*VDDI | V    |
| Low Level      |                   | SDA         | ≤100μA(INT)    |          |      | 0        |      |
|                |                   |             | Output Current |          |      |          |      |
|                |                   |             | ≤1mA (SDA)     |          |      |          |      |

# **3 PACKAGE PIN CONFIGURATIONS**

# 3.1 Package 3-D View

Arrow indicates direction of g field that generates a positive output reading in normal measurement configuration.





Figure 2. Package View

| I | The information contained herein is the exclusive property of QST, and shall not be distributed, |
|---|--------------------------------------------------------------------------------------------------|
| I | reproduced, or disclosed in whole or in part without prior written permission of QST.            |



Title: QMA7981 Datasheet

Rev: D

Table 5. Pin Configurations

| PIN<br>No. | PIN<br>NAME | I/O | Power<br>Supply | TYPE  | Function                                                              |
|------------|-------------|-----|-----------------|-------|-----------------------------------------------------------------------|
| 1          | AD0         | I   | VDDIO           | CMOS  | LSB of I <sup>2</sup> C address, or SDO of 4W SPI                     |
| 2          | SDX         | Ю   | VDDIO           | CMOS  | Serial data for I <sup>2</sup> C, or SDI of 4W SPI, or SDIO of 3W SPI |
| 3          | VDDIO       | Р   | VDDIO           | Power | Power supply to digital interface                                     |
| 4          | RESV1       | 1   | VDDIO           | CMOS  | Reserved. Float or connect to GND                                     |
| 5          | INT1        | 0   | VDDIO           | CMOS  | Interrupt 1                                                           |
| 6          | INT2        | 0   | VDDIO           | CMOS  | Interrupt 2                                                           |
| 7          | VDD         | Р   | VDD             | Power | Power supply to internal block                                        |
| 8          | GNDIO       | G   | GND             | Power | Ground to digital interface                                           |
| 9          | GND         | G   | GND             | Power | Ground to internal block                                              |
| 10         | SENB        | IO  | VDDIO           | CMOS  | Protocol selection                                                    |
| 11         | RESV2       | Ю   | VDDIO           | CMOS  | Reserved. Float, or connect to GND                                    |
| 12         | SCL         | I   | VDDIO           | CMOS  | Serial clock for I <sup>2</sup> C, or Serial clock for SPI            |

# 3.2 Package Outlines

# 3.2.1 Package Type

LGA (Land Grid Array)

# 3.2.2 Package Outline Drawing:

2.0mm (Length)\*2.0mm (Width)\*0.95mm (Height)



The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.



Title: QMA7981 Datasheet

Rev: D



**SIDE VIEW** 



# **BOTTOM VIEW**

**DETAIL B** 

|        | D        | IMENSION | 1     | DIMENSION |         |       |  |
|--------|----------|----------|-------|-----------|---------|-------|--|
| SYMBOL | (MM)     |          |       | (inch)    |         |       |  |
|        | MIN.     | NOM.     | MAX.  | MIN.      | NOM.    | MAX.  |  |
| Α      | 0.90     | 0.95     | 1.00  | 0.035     | 0.037   | 0.039 |  |
| С      | 0.16     | 0.20     | 0.24  | 0.006     | 0.008   | 0.009 |  |
| , b    | 0.20     | 0.25     | 0.30  | 0.008     | 0.010   | 0.012 |  |
| D      | 1.95     | 2.00     | 2.05  | 0.077     | 0.079   | 0.081 |  |
| D1     | ,        | 1.80 BSC | ;     | 0.071 BSC |         |       |  |
| E      | 1.95     | 2.00     | 2.05  | 0.077     | 0.079   | 0.081 |  |
| E1     | 1.80 BSC |          |       | C         | .071 BS | С     |  |
| L      | Q.225    | 0.275    | 0.325 | 0.010     | 0.012   | 0.014 |  |

#### NOTE:

1. CONTROLLING DIMENSION: MILLIMETER.

Figure 3. Package Outline Drawing



**Document #:** 13-52-12 | **Title:** QMA7981 Datasheet

Rev: D

# 3.2.3 Marking:



Figure 4. Marking Format

| Marking Text | Description                                  | Comments                                                                                                                                           |
|--------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Line 1       | Y: year code<br>CCC: lot code                | year code: 1 character Lot code: 3 alphanumeric digits, variable to generate mass production trace-code                                            |
| Line 2       | S: Sub-con ID P: Part number 7: Fixed number | S: 1 alphanumeric digit, variable identify sub-con P: 1 alphanumeric digit, variable to identify part number 7: "7" stand for product name QMA7981 |
| •            | Pin 1 identifier                             |                                                                                                                                                    |

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

# 4 EXTERNAL CONNECTION

# 4.1 I2C Dual Supply Connection



Figure 5. I2C Dual Supply Connection

# 4.2 I2C Single Supply connection



Figure 6. I2C Single Supply Connection



Title: QMA7981 Datasheet

Rev: D

# 4.3 SPI Dual Supply Connection



Figure 7. SPI Dual Supply Connection

# 4.4 SPI Single Supply connection



Figure 8. SPI Single Supply Connection



Title: QMA7981 Datasheet

5 BASIC DEVICE OPERATION

#### 5.1 Acceleration sensor

The QMA7981 acceleration sensor circuit consists of tri-axial sensors and application specific support circuits to measure the acceleration of device. When a DC power supply is applied to the sensor, the sensor converts any accelerating incident in the sensitive axis directions to charge output.

# 5.2 Power Management

Device has two power supply pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only.

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

To make sure the POR block functions well, we should have such constrains on the timing of VDD and VDDIO.

The device should turn-on both power pins in order to operate properly. When the device is powered on, all registers are reset by POR, then the device transits to the standby mode and waits for further commends.

Table 6 provides references for four power states.

Table 6. Power States

| Power State | VDD        | VDDIO      | Power State description                                                                                                                          |
|-------------|------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1           | 0V         | 0V         | Device Off, No Power Consumption                                                                                                                 |
| 2           | 0V         | 1.71v~3.6v | Not allowed. User need to make sure that VDDIO is less than VDD. Otherwise, there will be leakage from VDDIO to VDD through internal ESD devices |
| 3           | 1.71v~3.6v | 0V         | Device Off, Same Current as Standby Mode                                                                                                         |
| 4           | 1.71v~3.6v | 1.71v~VDD  | Device On, Normal Operation Mode, Enters Standby<br>Mode after POR                                                                               |

## 5.3 Power On/Off Time

Device has two power supply pins and two ground pins. VDD is the main power supply for all of the internal blocks, including analog and digital. VDDIO is a separate power supply, for digital interface only. GND is 0V supply for all of internal blocks, and GNDIO for digital interface.

There is no limitation on the voltage levels of VDD and VDDIO relative to each other, as long as they are within operating range.

| The information contained herein is the exclusive property of QST, and shall not be distributed, |  |
|--------------------------------------------------------------------------------------------------|--|
| reproduced, or disclosed in whole or in part without prior written permission of QST.            |  |

Rev: D



Title: QMA7981 Datasheet

Rev: D

The device contains a power-on-reset generator. It generates reset pulse as power on, which can load the register's default value, for the device to function properly.

To make sure the POR block functions well, we should have such constrains on the timing of VDD. The power on/off time related to the device is in Table 7

Table 7. Time Required for Power On/Off

| Parameter         | Symbol | Condition                              | Min. | Тур. | Max. | Unit |
|-------------------|--------|----------------------------------------|------|------|------|------|
| POR Completion    | PORT   | Time Period After VDD and              |      |      | 250  | μs   |
| Time              |        | VDDIO at Operating Voltage to          |      |      |      |      |
|                   |        | Ready for I <sup>2</sup> C Commend and |      |      |      |      |
|                   |        | Analogy Measurement.                   |      |      |      |      |
| Power off Voltage | SDV    | Voltage that Device Considers to       |      |      | 0.2  | V    |
|                   |        | be Power Down.                         |      |      |      |      |
| Power on Interval | PINT   | Time Period Required for Voltage       | 100  |      |      | μs   |
|                   |        | Lower Than SDV to Enable Next          |      |      |      |      |
|                   |        | POR                                    |      |      |      |      |
| Power on Time     | PSUP   | Time Period Required for Voltage       |      |      | 50   | ms   |
|                   |        | from SDV to 90% of final value         |      |      |      |      |



**Power On/Off Timing** 

Figure 9. Power On/Off Timing

#### 5.4 Communication Bus Interface I<sup>2</sup>C and Its Addresses

This device will be connected to a serial interface bus as a slave device under the control of a master device, such as the processor. Control of this device is carried out via I<sup>2</sup>C.

This device is compliant with I<sup>2</sup>C -Bus Specification, document number: 9398 393 40011. As an I<sup>2</sup>C compatible device, this device has a 7-bit serial address and supports I<sup>2</sup>C protocols. This device supports standard and fast speed modes, 100 kHz and 400 kHz, respectively. External pull-up resistors are required to support all these modes.

There are two I<sup>2</sup>C addresses selected by connecting pin 1 (AD0) to GND or VDDIO. The first six MSB are hardware configured to "001001" and the LSB can be configured by AD0.

| The information contained herein is the exclusive property of QST, and shall not be distributed, |
|--------------------------------------------------------------------------------------------------|
| reproduced, or disclosed in whole or in part without prior written permission of QST.            |



Title: QMA7981 Datasheet

Rev: D

Table 8. I<sup>2</sup>C Address Options

| AD0 (pin 1)      | I <sup>2</sup> C Slave Address(HEX) | I <sup>2</sup> C Slave Address(BIN) |  |  |  |  |  |
|------------------|-------------------------------------|-------------------------------------|--|--|--|--|--|
| Connect to GND   | 12                                  | 0010010                             |  |  |  |  |  |
| Connect to VDDIO | 13                                  | 0010011                             |  |  |  |  |  |

#### 6 MODES OF OPERATION

#### 6.1 Modes Transition

QMA7981 has two different operational modes, controlled by register (0x11), MODE\_BIT. The main purpose of these modes is for power management. The modes can be transited from one to another, as shown below, through I<sup>2</sup>C commands. The default mode after power-on is standby mode.



NVM Load

NVM Load

Ox36=0xB6

Ox36=0xB6

Ox36=0xB6

Figure 10. Basic operation flow after power-on

Figure 11. The work mode transferring

The default mode after power on is standby mode. Through I<sup>2</sup>C instruction, device can switch between standby mode and active mode. With SOFTRESET by writing 0xB6 into register 0x36, all of the registers will get default values. SOFTRESET can be done both in active mode and in standby mode. Also, by writing 1 in NVM\_LOAD (0x33<3>) when device is in active mode, the NVM related image registers will get default value from NVM, however, other registers will keep the values of their own.

# 6.2 Description of Modes

| The information contained herein is the exclusive property of QST, and shall not be distributed |
|-------------------------------------------------------------------------------------------------|
| reproduced, or disclosed in whole or in part without prior written permission of QST.           |



**Document #:** 13-52-12 | **Title:** QMA7981 Datasheet

QMA7981 Datasheet Rev: D

#### 6.2.1 Active Mode

In active mode, the ADC digitizes the charge signals from transducer, and digital signal processor conditions these signals in digital domain, processes the interrupts, and send data to Data registers  $(0x01^{\circ}0x06)$ .

#### 6.2.2 Standby Mode

In standby mode, most of the blocks are off, while device is ready for access through  $I^2C$ . Standby mode is the default mode after power on or soft reset. Device can enter into this mode by set the soft reset register (0x36) to 0xB6 or set the MODE BIT (0x11<7>) to logic 0.

Besides the above two modes, the device also contains NVM loading state. This state is used to reset the value of the NVM related image registers. There are two bits related to this state. When NVM\_LOAD (0x33<3>) is set to 1, NVM loading starts. When the device is in NVM loading state, NVM\_RDY (0x33<2>) is set to logic 0 by device. After NVM loading is finished, NVM\_RDY (0x33<2>) is set back to logic 1 by device, and NVM\_LOAD is reset to 0 by device automatically. NVM loading can only happen when NVM\_LOAD is set to 1 in active mode. If the user sets this NVM\_LOAD bit to 1 in standby mode, the device will not take the action until it enters into active state by setting MODE\_BIT (0x11<7>) to logic 1.

After loading NVM, the device will enter into standby mode directly.

The loading time for NVM is about 100uS.

# 7 Functions and interrupts

ASIC support interrupts, such as STEP\_INT, DRDY\_INT, ANY\_MOT\_INT, SIG\_MOT\_INT, NO\_MOT\_INT, RAISE\_INT, etc.

## 7.1 STEP\_INT

The STEP/STEP\_QUIT detect that the user is entering/exiting step mode. When the user enter into step mode, at least one axis sensor data will vary periodically, by numbering the variation periods the step counter can be calculated.



Figure 10. STEP/STEP\_QUIT

Median data (max+min) /2 is called dynamic threshold, the max and min data can be updated by certainly samples, the sample number can be set by register STEP\_SAMPLE\_CNT (0x12<6:0>). When the sensor data decreasing (or increasing) through the dynamic threshold, a user run step is detected.

Register STEP\_PRECISION (0x13<6:0>) is used as threshold when updating the new collected sensor data. Sensor data below the threshold will be discarded, this helps removing unstable variations causing failed detection.

The run step event happened at certain interval timing. All of the events outside the timing window will not be regarded as a run step and the step counter will not counted. The timing window can be set by register STEP\_TIME\_UP(0x15) and



Title: QMA7981 Datasheet

Rev: D

STEP\_TIME\_LOW(0x14), the conversion ODR numbers ranged from STEP\_TIME\_LOW \*ODR to 8\* STEP\_TIME\_UP\*ODR.

STEP\_COUNT\_PEAK<2:0> is used to set a fixed peak value for step detection, 0.05G~0.4G can be set. STEP\_COUNT\_P2P<2:0> is used to set a peak to peak threshold for step detection, 0.3G~1G can be set.

To remove unstable variation which will cause false STEP event detection, the step counter considers steps as valid step events only after some continuous steps detected; the start threshold can be set by 0x1F<7:5>. Also, the step counter register STEP\_CNT<23:0> ({0x0E,0x08,0x07}) will be updated immediately by the setting number, and interrupt STEP is also generated.

The related interrupt status bit is STEP\_INT (0x0A<3>) and SIG\_STEP (0x0A<6>). When the interrupt is generated, the value of STEP\_INT will be set to logic 1, which will be cleared after the interrupt status register is read by user. STEP\_IEN/SIG\_STEP\_IEN (0x16<3>/0x16<6>) is the enable bit for the STEP\_INT/SIG\_STEP\_INT. Also, to get this interrupt on PIN\_INT1 and/or PIN\_INT2, we need to set INT1\_STEP (0x19<3>)/INT1\_SIG\_STEP (0x19<6>) or INT2\_STEP (0x1B<3>) /INT2\_SIG\_STEP (0x1B<6>) to logic 1, to map the interrupt to the interrupt PINs.

# 7.2 DRDY\_INT

The width of the acceleration data is 14 bits, in two's complement representation. The data of each axis is split into 2 parts, the MSB part (one byte contains bit 13 to bit 6) and the LSB part (one byte contains bit 5 to bit 0). Reading data should start with LSB part. When user is reading the LSB byte of data, to ensure the integrity of the acceleration data, the content of MSB can be locked, by setting SHADOW\_DIS (0x21<6>) to logic 0. This lock function can be disabled by setting SHADOW\_DIS to logic 1. Without lock, the MSB and LSB content will be updated by new value immediately. The bit NEW\_DATA in the LSB byte is the flag of the new data. If new data is updated, this NEW\_DATA flag will be 1, and will be cleared when corresponding MSB or LSB is read by user.

Also, the user should note that even with SHADOW DIS=0, the data of 3 axes are not guaranteed from the same time point.

The device supports four different acceleration measurement ranges. The range is setting through RANGE (0x0F<3:0>), and the details as following:

| RANGE  | Acceleration range | Resolution |  |  |  |  |
|--------|--------------------|------------|--|--|--|--|
| 0001   | 2g                 | 244ug/LSB  |  |  |  |  |
| 0010   | 4g                 | 488ug/LSB  |  |  |  |  |
| 0100   | 8g                 | 977ug/LSB  |  |  |  |  |
| 1000   | 16g                | 1.95mg/LSB |  |  |  |  |
| 1111   | 32g                | 3.91mg/LSB |  |  |  |  |
| Others | 2g                 | 244ug/LSB  |  |  |  |  |

The interrupt for the new data serves for the synchronous data reading for the host. It is generated after storing a new value of z-axis acceleration data into data register. This interrupt will be cleared automatically when the next data conversion cycle starts, and the interrupt will be effective about 64\*MCLK, and automatically cleared. The interrupt mode for the new data is fixed to be non-latched.

## 7.3 ANY\_MOT\_INT

Any motion Any motion detection uses slope between two successive data to detect the changes in motion. It generates interrupt when a preset threshold ANY\_MOT\_TH (0x2E) is exceeded.

| The information contained herein is the exclusive property of QST, and shall not be distributed, |
|--------------------------------------------------------------------------------------------------|
| reproduced, or disclosed in whole or in part without prior written permission of QST.            |



Title: QMA7981 Datasheet

Rev: D

The time difference between two successive data depends on the output data rate (ODR).

Slope(t1) = (acc(t1) - acc(t0)) \* ODR

The any motion detection criteria are fulfilled and interrupt is generated if any of enabled channels exceeds ANY\_MOT\_TH for ANY\_MOT\_DUR (0x2C<1:0>) consecutive times.

As long as all the enabled channels data fall or stay below ANY\_MOT\_TH for ANY\_MOT\_DUR consecutive times, the interrupt will be reset unless the interrupt signal is latched.

The any motion detection engine will send out the signals of axis which triggered the interrupt (ANY\_MOT\_FIRST\_X (0x09<0>), ANY\_MOT\_FIRST\_Y (0x09<1>), ANY\_MOT\_FIRST\_Z (0x09<2>)) and the sign of the motion (ANY\_MOT\_SIGN (0x09<3>))

# 7.4 SIG\_MOT\_INT

A significant motion is a motion due to a change in user location.

The algorithm is as following:

- 1) Look for movement, same setting as any motion detection
- 2) If movement detected, sleep for T\_Skip (0x2F<3:2>)
- 3) Look for movement
  - a) If no movement detected within T\_Proof (0x2F<5:4>), go back to 1
  - b) If movement detected, report a significant movement, and generate the interrupt

The significant motion detection and any motion detection are exclusive, user can select either one through SIG\_MOT\_SEL (0x2F<0>).

If significant motion is detected, the engine will set SIG\_MOT\_INT (0x0A<0>).

#### 7.5 NO\_MOT\_INT

No-motion interrupt is generated if the slope (absolute value of acceleration difference) on all selected axes is smaller than the programmable threshold for a programmable time. Figure shows the timing for the no-motion interrupt. Register (0x2C) NO\_MOT\_DUR defines the delay times before the no-motion interrupt is generated. Table lists the delay times adjustable with register (0x2C) NO\_MOT\_DUR.

The no-motion interrupt is enabled per axis by writing logic 1 to bits (0x18) NO\_MOTION\_EN\_X, (0x18) NO\_MOTION\_EN\_Y, and (0x18) NO\_MOTION\_EN\_Z, respectively. The no-motion threshold is set through the (0x2D) NO\_MOT\_TH register. The meaning of an LSB of (0x2D) NO\_MOT\_TH depends on the selected g-range: it corresponds to 3.91mg in 2g-range (7.81mg in 4g-range, 15.6mg in 8g-range, 31.25mg in 16g-range, 62.5mg in 32g-range). Therefore the maximum value is 996mg in 2g-range (2g in 4g-range, 4g in 8g-range, 8g in 16g-range, and 16g in 32g-range). The time difference between the successive acceleration samples depends on the selected ODR and equates to 1/ODR.

#### 7.6 RAISE INT

Raise wake algorithm is used to detect the action of raise hand (or hand down). The interrupt is enabled by writing logic 1 to bits (0X16[1]) RAISE\_EN, (0X16[2]) HD\_EN. User can adjust the sensitivity through the registers. The register RAISE\_WAKE\_SUM\_TH(0X2A[5:0]) defines the strength of hand action (raise and down). The register RAISE\_DIFF\_TH(0X2A[7:6],0X2B[1:0]) defines the differential values of twice actions, when the hand behavior almost done the differential value will be smaller and we can use this register to set the threshold. RAISE\_WAKE\_PERIOD and RAISE\_WAKE\_TIMEOUT\_TH define the duration of the total hand action.

#### 7.7 Interrupt configuration



Title: QMA7981 Datasheet

Rev: D

The device has the above 3 interrupt engines. Each of the interrupts can be enabled and configured independently. If the trigger condition of the enabled interrupt fulfilled, the corresponding interrupt status bit will be set to logic 1, and the mapped interrupt pin will be activated. The device has two interrupt PINs, INT1 and INT2. Each of the interrupts can be mapped to either PIN or both PINs.

The interrupt status registers INT\_ST(0x09~0x0d) will update when a new data word is written into the data registers. If an interrupt is disabled, the related active interrupt status bit is disabled immediately.

When interrupt condition is fulfilled, related bit of interrupt will be set, until the associated interrupt condition is no more valid. Read operation to related register will also clear the register.

Device supports 2 interrupt modes, non-latched, and latched mode. The interrupt modes are set through LATCH\_INT (0x21<0>).

In non-latched mode, the mapped interrupt pin will be set and/or cleared same as associated interrupt register bit. Also, the mapped interrupt pin can be cleared with read operation to any of the INT ST(0x09~0x0d).

Exception to this is the new data interrupt and step interrupt, which are automatically reset after a fixed time (T\_Pulse = 64/MCLK), no matter LATCH INT (0x21<0>) is set to 0 or 1.

In latched mode, the clearings of mapped pins are determined by INT\_RD\_CLR (0x21<7>). If the condition for trigging the interrupt still holds, the interrupt status will be set again with the next change of the data registers.

Mapping the interrupt pins can be set by INT\_MAP ( $0x19^{\circ}0x1B$ ).

The electrical interrupt pins can be set INT\_PIN\_CONF (0x20<3:0>). The active logic level can be set to 1 or 0, and the interrupt pin can be set to open-drain or push-pull.



Title: QMA7981 Datasheet

# Rev: D

# 8 I<sup>2</sup>C COMMUNICATION PROTOCOL

# 8.1 I<sup>2</sup>C Timings

Table 9 and Figure 11 describe the I<sup>2</sup>C communication protocol times

Table 9. I<sup>2</sup>C Timings

| Parameter        | Symbol      | Condition | Min. | Тур. | Max. | Unit  |
|------------------|-------------|-----------|------|------|------|-------|
| SCL Clock        | $f_{scl}$   |           | 0    |      | 400  | kHz   |
| SCL Low Period   | $t_{low}$   |           | 1    |      |      | μs    |
| SCL High Period  | $t_{high}$  |           | 1    |      |      | μs    |
| SDA Setup Time   | $t_{sudat}$ |           | 0.1  |      |      | μs    |
| SDA Hold Time    | $t_{hddat}$ |           | 0    |      | 0.9  | μs    |
| Start Hold Time  | $t_{hdsta}$ |           | 0.6  |      |      | μs    |
| Start Setup Time | $t_{susta}$ |           | 0.6  |      |      | μs    |
| Stop Setup Time  | $t_{susto}$ |           | 0.6  |      |      | μs    |
| New Transmission | $t_{buf}$   |           | 1.3  |      |      | luc l |
| Time             |             |           |      |      |      | μς    |
| Rise Time        | $t_r$       |           |      |      |      | μs    |
| Fall Time        | $t_f$       |           |      |      |      | μs    |



Figure 11. I<sup>2</sup>C Timing Diagram

# 8.2 I<sup>2</sup>C R/W Operation

# 8.2.1 Abbreviation

Table 10. Abbreviation

| The information contained herein is the exclusive property of QST, and shall not be distributed, |
|--------------------------------------------------------------------------------------------------|
| reproduced, or disclosed in whole or in part without prior written permission of QST.            |



**Document #:** 13-52-12 | **Title:** QMA7981 Datasheet

| SACK | Acknowledged by slave      |
|------|----------------------------|
| MACK | Acknowledged by master     |
| NACK | Not acknowledged by master |
| RW   | Read/Write                 |

#### 8.2.2 Start/Stop/Ack

START: Data transmission begins with a high to transition on SDA while SCL is held high. Once I<sup>2</sup>C transmission starts, the bus is considered busy.

STOP: STOP condition is a low to high transition on SDA line while SCL is held high.

ACK: Each byte of data transferred must be acknowledged. The transmitter must release the SDA line during the acknowledge pulse while the receiver mush then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

NACK: If the receiver doesn't pull down the SDA line during the high period of the acknowledge clock cycle, it's recognized as NACK by the transmitter.

#### 8.2.3 I<sup>2</sup>C Write

I<sup>2</sup>C write sequence begins with start condition generated by master followed by 7 bits slave address and a write bit (R/W=0). The slave sends an acknowledge bit (ACK=0) and releases the bus. The master sends the one byte register address. The slave again acknowledges the transmission and waits for 8 bits data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

#### Table 11. I<sup>2</sup>C Write

|     |   | S | lave | e Ac | ldre | SS |   | R |          |   | R | egis | ter | Ado | dres | SS |          |   |   |   |   | Da | ta |    |    |   |   |        |
|-----|---|---|------|------|------|----|---|---|----------|---|---|------|-----|-----|------|----|----------|---|---|---|---|----|----|----|----|---|---|--------|
| TS  |   |   |      |      |      |    |   | W | ς (0x11) |   |   |      |     |     |      |    | S (0x80) |   |   |   |   |    |    | ŞΑ | TS |   |   |        |
| ART | 0 | 0 | 1    | 0    | 0    | 1  | 0 | 0 | Š        | 0 | 0 | 0    | 1   | 0   | 0    | 0  | 1        | Š | 1 | 0 | 0 | 0  | 0  | 0  | 0  | 0 | Š | 년<br>영 |
| '   |   |   |      |      |      |    |   |   |          |   |   |      |     |     |      |    |          |   |   |   |   |    |    |    |    |   |   |        |

#### 8.2.4 I<sup>2</sup>C Read

I<sup>2</sup>C write sequence consists of a one-byte I<sup>2</sup>C write phase followed by the I<sup>2</sup>C read phase. A start condition must be generated between two phase. The I<sup>2</sup>C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (R/W=1). Then master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit (ACK = 0) to enable further data transfer. A NACK from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.

The register address is automatically incremented and more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the current I<sup>2</sup>C write command.

Table 12. I<sup>2</sup>C Read

| 0  |     |   | S | lave | e Ad | ldre | SS |   | R<br>W | -  |   | R              | egis | ter<br>(0x | Add<br>00) | dres | SS |   | SA |                |
|----|-----|---|---|------|------|------|----|---|--------|----|---|----------------|------|------------|------------|------|----|---|----|----------------|
| 17 | ABT | 0 | 0 | 1    | 0    | 0    | 1  | 0 | 0      | ĆĶ | 0 | 0              | 0    | 0          | 0          | 0    | 0  | 0 | ĆĶ |                |
| 0  | TS  | • | S | lave | e Ac | ldre | SS |   | R<br>W | SA |   | Data<br>(0x00) |      |            |            |      |    |   | 3  | Data<br>(0x01) |

Rev: D



Title: QMA7981 Datasheet

Rev: D

|     | 0 | 0              | : | 1 | 0 | 0 | 1 | 0 | 1 |     | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0         |            | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0 |     |     |
|-----|---|----------------|---|---|---|---|---|---|---|-----|---|---|---|---|---|---|---|-----------|------------|---|---|---|---|----|---|---|---|-----|-----|
| ≥   |   | Data<br>(0x02) |   |   | ≥ |   |   |   |   |     |   |   |   | Ž |   |   |   | Da<br>(0x | ita<br>07) |   |   |   | Z | TS |   |   |   |     |     |
| ACK | 0 | 0              | ( | 0 | 0 | 0 | 0 | 1 | 0 | ACK |   |   |   |   |   |   |   |           | ACK        | 0 | 0 | 0 | 0 | 0  | 0 | 0 | 0 | ACK | TOP |

# 9 REGISTERS

# 9.1 Register Map

The table below provides a list of the 8-bit registers embedded in the device and their respective function and addresses

Table 13. Register Map

| Add.         | Name            | bit7                                                             | bit6           | bit5            | bit4               | bit3          | bit2            | bit1            | bit0            | R/₩      | DEF       |
|--------------|-----------------|------------------------------------------------------------------|----------------|-----------------|--------------------|---------------|-----------------|-----------------|-----------------|----------|-----------|
| 0x3F         | <u> </u>        |                                                                  | RAISE          | C_WAKE_PERIOD[: | 10:8]              |               | RAISE_WAKE_TII  | MEOUT_TH[11:8]  |                 | R₩       | 02        |
|              | RAISE_CFG       |                                                                  |                |                 | RAISE_WAKE_TI      |               |                 |                 |                 | R₩       | 00        |
| 0x36         | S_RESET         |                                                                  |                |                 | SOFTRESI           |               |                 |                 |                 | R₩       | 00        |
| 0x35         |                 |                                                                  |                |                 | RAISE_WAKE_        | PERIOD[7:0]   |                 |                 |                 | R₩       | 81        |
| 0x34         |                 |                                                                  | YZ_TH_SEL[2:0] |                 |                    |               | Y_TH[4:0]       |                 |                 | R₩       | 9D        |
| 0x32         | ST              | SELFTEST_BIT                                                     |                |                 |                    |               | SELFTEST_SIGN   | BP_AXIS_S       | STEP<1:0>       | R₩       | 00        |
| 0x31         |                 |                                                                  |                |                 |                    |               | T               |                 | I               | R₩       | 00        |
|              | RST_MOT         | MO_BP_CO                                                         | STEP_BP_CO     |                 | LOW_RST_N          | HIGH_RST_N    |                 | SIG_MOT_RST_N   |                 | R₩       | 1F        |
| 0x2F         | - I             |                                                                  |                | SIG_MOT_TH      |                    |               | SKIP<1:0>       |                 | SIG_MOT_SEL     | R₩       | 00        |
| 0x2E         | -               |                                                                  |                |                 | ANY_MOT            |               |                 |                 |                 | R₩       | 00        |
| 0x2D         | WOT GRA         |                                                                  |                | NO NOT I        | NO_MOT_            | IH(7:U)       |                 | ANU NOT         | DIID (1 - A)    | R₩       | 00        |
| 0x2C         | MOT_CFG         |                                                                  | UD 7 TU[0.0]   | NO_MOT_I        | JUK<5:U/           | UD V TU[0.0]  |                 | ANY_MOT_        |                 | RW<br>RW | 7C        |
| 0x2B         | DATOR ORG       | RAISE_WAKE_I                                                     | HD_Z_TH[2:0]   |                 |                    | HD_X_TH[2:0]  | cur cufe.ol     | RAISE_WAKE_I    | JIFF_IH[3:Z]    | RW       | D8        |
| 0x2A<br>0x29 | RAISE_CFG       | KAISE_WAKE_I                                                     | DIFF_IH[I:U]   |                 | OS CUST            | RAISE_WAKE_   | 20W_1H[3:0]     |                 |                 | RW       | 00        |
| 0x28         | 1               |                                                                  |                |                 | OS_CUST            |               |                 |                 |                 | RW       | 00        |
|              | OS_CUST         |                                                                  |                |                 | OS_CUST            |               |                 |                 | ,               | RW       | 00        |
| 0x21         | INT CFG         | INT RD CLR                                                       | SHADOW DIS     | DIS 12C         | 1                  | 1             | 1               | LATCH_INT_STEP  | LATCH INT       | RW       | 1C        |
| 0x20         | INT_PIN_CFG     | DIS PU SENB                                                      | DIS IE ADO     | EN SPI3W        | STEP COUNT PEAK<2> | INT2 OD       | INT2 LVL        | INT1 OD         | INT1 LVL        | RW       | 05        |
| 0x1F         |                 |                                                                  | P START CNT<2  |                 | STEP COUNT         |               |                 | P COUNT P2P<2   |                 | R₩       | A9        |
| 0x1E         | 1               |                                                                  | Z_TH           |                 |                    |               | X TH            |                 | • • •           | R₩       | 66        |
| 0x1D         | STEP_CFG        |                                                                  |                |                 | EP_INTERVAL<6:     | 0>            |                 |                 | EN RESET DC     | R₩       | 00        |
| 0x1C         |                 | INT2 NO MOT                                                      | 1              | 1               | INT2 DATA          | INT2 LOW      | INT2 HIGH       | 1               |                 | R₩       | 62        |
| 0x1B         | 1               | 1 INT2_SIG_STEP 1 1 INT2_STEP INT2_HD INT2_RAISE INT2_SIG_MOT_RW |                |                 |                    |               |                 |                 |                 | R₩       | B0        |
| 0x1A         | ]               | INT1_NO_MOT                                                      | 1              | 1               | INT1_DATA          | INT1_LOW      | INT1_HIGH       | 1               | INT1_ANY_MOT    | R₩       | 62        |
| 0x19         | INT_MAP         | 1                                                                | INT1_SIG_STEP  | 1               | 1                  | INT1_STEP     | INT1_HD         | INT1_RAISE      | INT1_SIG_MOT    | R₩       | B0        |
| 0x18         | <u> </u>        | NO_MOT_EN_Z                                                      | NO_MOT_EN_Y    | NO_MOT_EN_X     | 1                  | 1             | ANY_MOT_EN_Z    | ANY_MOT_EN_Y    | ANY_MOT_EN_X    | R₩       | 18        |
| 0x17         | <u> </u>        | 1                                                                | 1              | 1               | INT_DATA_EN        | LOW_EN        | HIGH_EN_Z       | HIGH_EN_Y       | HIGH_EN_X       | R₩       | ΕO        |
| 0x16<br>0x15 | INT_EN          | 1                                                                | SIG_STEP_IEN   | 1               | 1                  | STEP_IEN      | HD_EN           | RAISE_EN        | 1               | RW<br>KW | B1<br>UU  |
| 0x14         | 1               |                                                                  |                |                 | STEP TIME          |               |                 |                 |                 | RW       | 19        |
| 0x13         | 1               | STEP CLR                                                         |                |                 |                    | P PRECISION<6 | :0>             |                 | ,               | RW       | 7F        |
| 0x12         | STEP CFG        | STEP_EN                                                          |                |                 |                    | P SAMPLE CNT< |                 |                 |                 | R₩       | 14        |
| 0x11         | PM _            | MODE_BIT                                                         | 1              | T RSTB SIN      | C_SEL<1:0>         |               | MCLK SI         | EL<3:0>         |                 | R₩       | 40        |
| 0x10         | B₩              | 1                                                                | 1              | 1               |                    |               | BW<4:0>         |                 |                 | R₩       | ΕO        |
| OxOF         | FSR             | 1                                                                | 1              | 1               | 1                  |               | RANGE           | <3:0>           |                 | R₩       | F0        |
| 0x0E         | STEPCNT         |                                                                  |                |                 | STEP_CN            | <23:16>       |                 |                 |                 | R        | 00        |
| 0x0D         |                 |                                                                  |                |                 |                    |               |                 |                 |                 | R        | 00        |
| 0x0C         |                 |                                                                  |                |                 | HIGH_INT           | HIGH_SIGN     | HIGH_FIRST_Z    | HIGH_FIRST_Y    | HIGH_FIRST_X    | R        | 00        |
| 0x0B         |                 |                                                                  |                |                 | DATA_INT           | LOW_INT       |                 |                 |                 | R        | 00        |
| 0x0A         |                 |                                                                  | SIG_STEP       |                 |                    | STEP_INT      | HD_INT          | RAISE_INT       | SIG_MOT_INT     | R        | 00        |
| 0x09         | INT_ST          | NO_MOT                                                           |                |                 |                    |               | ANY_MOT_FIRST_Z | ANY_MOT_FIRST_Y | ANY_MOT_FIRST_X | R        | 00        |
| 0x08         |                 |                                                                  |                |                 | STEP_CN            |               |                 |                 |                 | R        | 00        |
| 0x07         | STEPCNT         |                                                                  |                |                 | STEP_CI            |               |                 |                 |                 | R        | 00        |
| 0x06         | ļ <b> </b>      |                                                                  |                |                 | ACC_Z              | (13:6>        |                 | I               | T               | Ř        | 00        |
| 0x05         | - I             |                                                                  |                | ACC_Z           |                    | (10.0)        |                 |                 | NEWDATA_Z       | R        | 00        |
| 0x04         |                 |                                                                  |                |                 | ACC_Y              | (13:6)        |                 |                 | 17 DWD 4 D 4    | IK .     | 00        |
| 0x03         | <b>∤  </b>      |                                                                  |                | ACC_Y           | <u> </u>           | (10.4)        |                 |                 | NEWDATA_Y       | R        | 00        |
| 0x02         | L.T. 1          |                                                                  |                |                 | ACC_X              | /13:p>        |                 |                 | MENDARA V       | K<br>D   | 00        |
| 0x01<br>0x00 | DATA<br>CHIP ID |                                                                  |                |                 | (\(5:0\)           | *lan          |                 |                 | NEWDATA_X       | R R      | OO<br>ANA |
| OXOO         | OUTL ID         |                                                                  |                | CHIF            | D to indicate      | the product v | CISION          | ı               | 1               | IX       | MMM       |

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.



Title: QMA7981 Datasheet

Rev: D

# 9.2 Register Definition

Register 0x00 (CHIP ID)

| Bit7        | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|-------------|------|------|------|------|------|------|------|-----|---------|
| CHIP ID<7:0 | RW   | 0xEX |      |      |      |      |      |     |         |

This register is used to identify the device

Register 0x01 ~ 0x02 (DXL, DXM)

| -0       | ( ,  |      |      |      |      |      |         |     |         |
|----------|------|------|------|------|------|------|---------|-----|---------|
| Bit7     | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0    | R/W | Default |
| DX<5:0>  |      |      |      |      |      |      | NEWDATA | R   | 0x00    |
|          |      |      |      |      |      |      | _X      |     |         |
| DX<13:6> |      |      |      |      |      |      |         | R   | 0x00    |

DX: 14bits acceleration data of x-channel. This data is in two's complement.

NEWDATA\_X: 1, acceleration data of x-channel has been updated since last reading

0, acceleration data of x-channel has not been updated since last reading

Register 0x03 ~ 0x04 (DYL, DYM)

| Bit7     | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0    | R/W | Default |
|----------|------|------|------|------|------|------|---------|-----|---------|
| DY<5:0>  |      |      |      |      |      |      | NEWDATA | R   | 0x00    |
|          |      |      |      |      |      |      | _Y      |     |         |
| DY<13:6> | R    | 0x00 |      |      |      |      |         |     |         |

DY: 14bits acceleration data of y-channel. This data is in two's complement.

NEWDATA\_Y: 1, acceleration data of y-channel has been updated since last reading

0, acceleration data of y-channel has not been updated since last reading

Register 0x05 ~ 0x06 (DZL, DZM)

| Bit7     | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0    | R/W | Default |
|----------|------|------|------|------|------|------|---------|-----|---------|
| DZ<5:0>  |      |      |      |      |      |      | NEWDATA | R   | 0x00    |
|          |      |      |      |      |      |      | _Z      |     |         |
| DZ<13:6> |      |      |      |      |      |      |         | R   | 0x00    |

DZ: 14bits acceleration data of z-channel. This data is in two's complement.

NEWDATA\_Z: 1, acceleration data of z-channel has been updated since last reading

0, acceleration data of z-channel has not been updated since last reading

Register 0x07 ~ 0x08 (STEP\_CNT)

| Bit7 |          | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|------|----------|------|------|------|------|------|------|------|-----|---------|
| STEP | _CNT<7:0 |      | R    | 0x00 |      |      |      |      |     |         |
| STEP | CNT<15   | :8>  |      |      |      |      |      |      | R   | 0x00    |

STEP\_CNT<15:0>: 16 bits of step counter, out of total 24bits data. The MSB data are in 0x0e

Register 0x09 (INT\_ST0)

| Bit7   | Bit6     | Bit5 | Bit4 | Bit3    | Bit2    | Bit1    | Bit0    | R/W | Default |
|--------|----------|------|------|---------|---------|---------|---------|-----|---------|
| NO_MOT | SIG_STEP |      |      | ANY_MOT | ANY_MOT | ANY_MOT | ANY_MOT | R   | 0x00    |
|        |          |      |      | SIGN    | FIRST Z | FIRST Y | FIRST X |     |         |

NO\_MOT:

1, no\_motion interrupt active

0, no\_motion interrupt inactive

ANY\_MOT\_SIGN:

1, sign of any\_motion triggering signal is negative

0, sign of any\_motion triggering signal is positive

 ${\sf ANY\_MOT\_FIRST\_Z}:$ 

1, any\_motion interrupt is triggered by Z axis 0, any\_motion interrupt is not triggered by Z axis

ANY\_MOT\_FIRST\_Y:

1, any\_motion interrupt is triggered by Y axis 0, any\_motion interrupt is not triggered by Y axis

ANY\_MOT\_FIRST\_X:

1, any\_motion interrupt is triggered by X axis 0, any\_motion interrupt is not triggered by X axis

Register 0x0a (INT\_ST1)

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.



Title: QMA7981 Datasheet

| Bit7 | Bit6     | Bit5 | Bit4 | Bit3     | Bit2   | Bit1      | Bit0      | R/W | Default |
|------|----------|------|------|----------|--------|-----------|-----------|-----|---------|
|      | SIG_STEP |      |      | STEP_INT | HD_INT | RAISE_INT | SIG_MOT_I | R   | 0x00    |
|      |          |      |      |          |        |           | NT        |     |         |

SIG\_STEP: 1, significant step is active

0, significant step is inactive

step valid interrupt is active
 step quit interrupt is inactive

HD\_INT: 1, hand down interrupt is active

0, hand down interrupt is inactive

1, raise hand interrupt is active

0, raise hand interrupt is inactive

1, significant interrupt is active

0, significant interrupt is inactive

#### Register 0x0b (INT\_ST2)

STEP\_INT:

RAISE\_INT:

SIG\_MOT\_INT:

| Bit7 | Bit6 | Bit5 | Bit4     | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|------|------|------|----------|------|------|------|------|-----|---------|
|      |      |      | DATA INT |      |      |      |      | R   | 0x00    |

DATA\_INT: 1, data ready interrupt active 0, data ready interrupt inactive

#### Register 0x0e (STEP\_CNT)

| Bit7       | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|------------|------|------|------|------|------|------|------|-----|---------|
| STEP_CNT<2 | R    | 0x00 |      |      |      |      |      |     |         |

STEP\_CNT<23:16>: 8bit MSB data of step counter, out of total 24bits data. The LSB data are in 0x07 and 0x08

#### Register 0x0f (FSR)

| Bit7 | Bit6 | Bit5 | Bit4 | Bit3       | Bit2 | Bit1 | Bit0 | R/W | Default |
|------|------|------|------|------------|------|------|------|-----|---------|
| 1    | 1    | 1    |      | RANGE<3:0> |      | RW   | 0xF0 |     |         |

RANGE<3:0>: set the full scale of the accelerometer. Setting as following

| RANGE<3:0> | Acceleration range | Resolution |
|------------|--------------------|------------|
| 0001       | 2g                 | 244ug/LSB  |
| 0010       | 4g                 | 488g/LSB   |
| 0100       | 8g                 | 977ug/LSB  |
| 1000       | 16g                | 1.95mg/LSB |
| 1111       | 32g                | 3.91mg/LSB |
| Others     | 2g                 | 244ug/LSB  |

#### Register 0x10 (BW)

| Bit7 | Bit6 | Bit5 | Bit4    | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|------|------|------|---------|------|------|------|------|-----|---------|
| 1    | 1    | 1    | BW<4:0> |      |      |      |      | RW  | 0xE0    |

BW<4:0>: bandwidth setting, as following

| BW<4:0> | ODR        |
|---------|------------|
| xx000   | MCLK/7695  |
| xx001   | MCLK/3855  |
| xx010   | MCLK/1935  |
| xx011   | MCLK/975   |
| xx100   |            |
| xx101   | MCLK/15375 |
| xx110   | MCLK/30735 |
| xx111   | MCLK/61455 |
| Others  | MCLK/7695  |

#### Register 0x11 (PM)

| Bit7     | Bit6 | Bit5        | Bit4      | Bit3        | Bit2 | Bit1 | Bit0 | R/W | Default |
|----------|------|-------------|-----------|-------------|------|------|------|-----|---------|
| MODE_BIT | 1    | T_RSTB_SINC | _SEL<1:0> | MCLK_SEL<3: | :0>  |      |      | RW  | 0x40    |

MODE\_BIT: 1, set device into active mode 0, set device into standby mode

T\_RSTB\_SINC\_SEL<1:0>: Reset clock setting. The preset time is reserved for CIC filter in digital

11, T\_RSTB\_SINC=8\*MCLK 10, T\_RSTB\_SINC=6\*MCLK 01, T\_RSTB\_SINC=4\*MCLK 00, T\_RSTB\_SINC=3\*MCLK

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.

23 / 30

Rev: D



Title: QMA7981 Datasheet

Rev: D

MCLK\_SEL<3:0>: set the master clock to digital

| MCLK_SEL<3:0> | Freq of MCLK |
|---------------|--------------|
| 0000          | 500KHz       |
| 0001          | 333KHz       |
| 0010          | 200KHz       |
| 0011          | 100KHz       |
| 0100          | 50KHz        |
| 0101          | 25KHz        |
| 0110          | 12.5KHz      |
| 0111          | 5KHz         |
| 1xxx          | Reserved     |

Register 0x12 (STEP CONFO)

|   |        | (          | ,          |      |      |      |      |      |     |         |
|---|--------|------------|------------|------|------|------|------|------|-----|---------|
| В | it7    | Bit6       | Bit5       | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|   | TEP EN | STEP SAMPL | E CNT<6:0> |      |      |      |      |      | RW  | 0x14    |

STEP\_EN:

enable step counter, this bit should be set when using step counter

STEP\_SAMPLE\_CNT:

sample count setting for dynamic threshold calculation. The actual value is STEP\_SAMPLE\_CNT<6:0>\*8, default is 0xC, 96 sample count

Register 0x13 (STEP CONF1)

| Bit7     | Bit6        | Bit5     | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|----------|-------------|----------|------|------|------|------|------|-----|---------|
| STEP CLR | STEP PRECIS | ION<6:0> |      |      |      |      |      | RW  | 0x7F    |

STEP\_CLR:

STEP\_PRECISION<6:0>:

threshold for acceleration change of two successive sample which is used to update sample\_new register in step counter, the actual g

value is STEP\_PRECISION<6:0>\*LSB\*16 when STEP\_PRECISION<6:0>!=0000000 & !=1111111

When STEP\_PRECISION<6:0>=0000000, always use P2P/8 When STEP\_PRECISION<6:0>=1111111, always use P2P/16

When STEP\_PRECISION<6:0>=?, always use P2P/4

clear step count in register 0x07 ,0x08 and 0x0E

Register 0x14 (STEP CONF2)

|             | . (     | 7    |      |      |      |      |      |     |         |
|-------------|---------|------|------|------|------|------|------|-----|---------|
| Bit7        | Bit6    | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
| STEP TIME I | OW<7:0> |      |      |      |      |      |      | RW  | 0x19    |

STEP\_TIME\_LOW<7:0>:

the short time window for a valid step, the actual time is STEP\_TIME\_LOW<7:0>\*(1/ODR)

Register 0x15 (STEP\_CONF3)

| Bit7        | Bit6    | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|-------------|---------|------|------|------|------|------|------|-----|---------|
| STEP_TIME_U | JP<7:0> |      |      |      |      |      |      | RW  | 0x00    |

STEP\_TIME\_UP<7:0>:

time window for quitting step counter, the actual time is STEP\_TIME\_UP<7:0>\*8\*(1/ODR)

Register 0x16 (INT\_EN0)

| Bit7 | Bit6       | Bit5 | Bit4 | Bit3     | Bit2  | Bit1     | Bit0 | R/W | Default |
|------|------------|------|------|----------|-------|----------|------|-----|---------|
| 1    | SIG_STEP_I | 1    | 1    | STEP_IEN | HD_EN | RAISE_EN | 1    | RW  | 0xB1    |
|      | EN         |      |      |          |       |          |      |     |         |

SIG\_STEP\_IEN:

1, enable significant step interrupt

STEP\_IEN:

0, disable significant step interrupt 1, enable step valid interrupt 0, disable step valid interrupt

HD\_EN:

1, enable hand-down interrupt 0, disable hand-down interrupt

RAISE\_EN:

disable nand-down interrupt
 enable raise-hand interrupt
 disable raise-hand interrupt

Register 0x17 (INT\_EN1)

| Bit7 | Bit6 | Bit5 | Bit4     | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|------|------|------|----------|------|------|------|------|-----|---------|
| 1    | 1    | 1    | INT_DATA |      |      |      |      | RW  | 0xE0    |
|      |      |      | _EN      |      |      |      |      |     |         |

INT\_DATA\_EN:

1, enable data ready interrupt

| The information contained herein is the | exclusive property of QST, and shall not be distributed, |
|-----------------------------------------|----------------------------------------------------------|
| reproduced, or disclosed in whole or in | part without prior written permission of QST.            |



#### 13-52-12 **Document #:**

Title: QMA7981 Datasheet

Rev: D

#### 0, disable data ready interrupt

#### Register 0x18 (INT\_EN2)

NO\_MOT\_EN\_Y:

| Bit7    | Bit6    | Bit5    | Bit4 | Bit3 | Bit2    | Bit1    | Bit0    | R/W | Default |
|---------|---------|---------|------|------|---------|---------|---------|-----|---------|
| NO_MOT_ | NO_MOT_ | NO_MOT_ | 1    | 1    | ANY_MOT | ANY_MOT | ANY_MOT | RW  | 0x18    |
| EN_Z    | EN_Y    | EN_X    |      |      | _EN_Z   | _EN_Y   | _EN_X   |     |         |

NO\_MOT\_EN\_Z: 1, enable no motion interrupt on Z axis

> 0, disable no motion interrupt on Z axis 1, enable no\_motion interrupt on Y axis

0, disable no\_motion interrupt on Y axis NO\_MOT\_EN\_X: 1, enable no motion interrupt on X axis

0, disable no\_motion interrupt on X axis ANY\_MOT\_EN\_Z: 1, enable any\_motion interrupt on Z axis 0, disable any\_motion interrupt on Z axis

ANY\_MOT\_EN\_Y: 1, enable any\_motion interrupt on Y axis 0, disable any\_motion interrupt on Y axis ANY\_MOT\_EN\_X: 1, enable any\_motion interrupt on X axis

0, disable any\_motion interrupt on X axis

#### Register 0x19 (INT MAP0)

| Bit7 | Bit6      | Bit5 | Bit4 | Bit3      | Bit2    | Bit1      | Bit0      | R/W | Default |
|------|-----------|------|------|-----------|---------|-----------|-----------|-----|---------|
| 1    | INT1_SIG_ | 1    | 1    | INT1_STEP | INT1_HD | INT1_RAIS | INT1_SIG_ | RW  | 0xB0    |
|      | STEP      |      |      |           |         | E         | мот       |     |         |

INT1\_SIG\_STEP:

1, map significant step interrupt to INT1 pin

0, not map significant step interrupt to INT1 pin

INT1\_STEP:

1, map step valid interrupt to INT1 pin

0, not map step valid interrupt to INT1 pin

INT1\_HD:

1, map hand down interrupt to INT1 pin

0, not map hand down interrupt to INT1 pin

INT1\_RAISE:

1, map raise hand interrupt to INT1 pin

0, not map raise hand interrupt to INT1 pin

INT1\_SIG\_MOT:

1, map significant interrupt to INT1 pin 0, not map significant interrupt to INT1 pin

#### Register 0x1a (INT\_MAP1)

| Bit7     | Bit6 | Bit5 | Bit4     | Bit3 | Bit2 | Bit1 | Bit0      | R/W | Default |
|----------|------|------|----------|------|------|------|-----------|-----|---------|
| INT1_NO_ | 1    | 1    | INT1_DAT |      |      | 1    | INT1_ANY_ | RW  | 0x62    |
| MOT      |      |      | Α        |      |      |      | MOT       |     |         |

INT1\_NO\_MOT: 1, map no\_motion interrupt to INT1 pin

0, not map no\_motion interrupt to INT1 pin

INT1\_DATA: 1, map data ready interrupt to INT1 pin

0, not map data ready interrupt to INT1 pin

INT1\_ANY\_MOT: 1, map any motion interrupt to INT1 pin

0, not map any motion interrupt to INT1 pin

#### Register 0x1b (INT\_MAP2)

| Bit7 | Bit6       | Bit5 | Bit4 | Bit3      | Bit2    | Bit1       | Bit0    | R/W | Default |
|------|------------|------|------|-----------|---------|------------|---------|-----|---------|
| 1    | INT2_SIG_S | 1    | 1    | INT2_STEP | INT2_HD | INT2_RAISE | INT2_SI | RW  | 0xB0    |
|      | TEP        |      |      |           |         |            | G_MOT   |     |         |

INT2\_SIG\_STEP: 1, map significant step interrupt to INT2 pin

0, not map significant step interrupt to INT2 pin

INT2\_STEP: 1, map step valid interrupt to INT2 pin 0, not map step valid interrupt to INT2 pin

1, map hand down interrupt to INT2 pin

INT2\_HD: 0, not map hand down interrupt to INT2 pin

INT2\_RAISE: 1, map raise hand interrupt to INT2 pin

0, not map raise hand interrupt to INT2 pin

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.



Title: QMA7981 Datasheet

Rev: D

INT2\_SIG\_MOT:

1, map significant interrupt to INT2 pin 0, not map significant interrupt to INT2 pin

Register 0x1c (INT\_MAP3)

| Bit7     | Bit6 | Bit5 | Bit4     | Bit3 | Bit2 | Bit1 | Bit0      | R/W | Default |
|----------|------|------|----------|------|------|------|-----------|-----|---------|
| INT2_NO_ | 1    | 1    | INT2_DAT |      |      | 1    | INT2_ANY_ | RW  | 0x62    |
| MOT      |      |      | Α        |      |      |      | MOT       |     |         |

INT2 NO MOT: 1, map no motion interrupt to INT2 pin

0, not map no\_motion interrupt to INT2 pin

INT2\_DATA: 1, map register data ready interrupt to INT2 pin

0, not map register data ready interrupt to INT2 pin

INT2\_ANY\_MOT: 1, map any motion interrupt to INT2 pin

0, not map any motion interrupt to INT2 pin

Register 0x1d (SIG\_STEP\_TH)

| Bit7          | Bit6               | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |  |
|---------------|--------------------|------|------|------|------|------|------|-----|---------|--|
| STEP_INTERVAL | STEP_INTERVAL<7:0> |      |      |      |      |      |      |     |         |  |

STEP\_INTERVAL <7:0>: threshold of significant step. When MOD(STEP\_CNT, STEP\_INTERVAL)=0, SIG\_STEP\_INT will be generated.

Register 0x1e (raise hand: X\_TH Z\_TH)

| Bit7      | Bit6 | Bit5 | Bit4 | Bit3      | Bit2 | Bit1 | Bit0 | R/W | Default |
|-----------|------|------|------|-----------|------|------|------|-----|---------|
| Z TH<3:0> |      |      |      | X TH<3:0> |      |      |      | RW  | 0x66    |

X TH<3:0>: 0~7.5, LSB 0.5 (unit: m/s2) Z TH<3:0>: -8~7, LSB 1 (unit: m/s2)

Register 0x1f

| Bit7       | Bit6     | Bit5 | Bit4       | Bit3      | Bit2       | Bit1     | Bit0 | R/W | Default |
|------------|----------|------|------------|-----------|------------|----------|------|-----|---------|
| STEP START | CNT<2:0> |      | STEP COUNT | PEAK<1:0> | STEP COUNT | P2P<2:0> |      | RW  | 0xA9    |

STEP\_START\_CNT<2:0>: th\_step\_pattern = 0/4/8/12/16/24/32/40

STEP\_COUNT\_PEAK<2:0>:  $FIXED_PEAK = 0.05g + 0.05g * STEP_COUNT_PEAK < 2:0 > .$ 

> This FIXED\_PEAK is used in algorithm of STEP COUNTER.  $\label{eq:step_count_peak} \mbox{STEP\_COUNT\_PEAK<2> is in register 0x20<4> and}$ STEP\_COUNT\_PEAK[2:0]= {0x20[4], 0x1F[4:3]}  $FIXED_P2P = 0.3g + 0.1g * STEP_COUNT_P2P < 2:0 >$ .

 $STEP\_COUNT\_P2P[3:0] = {0x1F[2:0]}$ 

Register 0x20 (INTPIN\_CONF)

STEP\_COUNT\_P2P<2:0>:

| Bit7      | Bit6      | Bit5     | Bit4     | Bit3    | Bit2     | Bit1    | Bit0     | R/W | Default |
|-----------|-----------|----------|----------|---------|----------|---------|----------|-----|---------|
| DIS_PU_SE | DIS_IE_AD | EN_SPI3W | STEP_COU | INT2_OD | INT2_LVL | INT1_OD | INT1_LVL | RW  | 0x05    |
| NB        | 0         |          | NT_PEAK< |         |          |         |          |     |         |
|           |           |          | 2>       |         |          |         |          |     |         |

DIS\_PU\_SENB: 1, disable pull-up resistor of PIN\_SENB

0, enable pull-up resistor of PIN\_SENB DIS\_IE\_AD0: 1, disable input of AD0

0, not disable input of AD0

EN\_SPI3W: 1, enable 3W SPI

0, 4W SPI

STEP\_COUNT\_PEAK<2>: Definition in 0x1F<4:3>

INT2\_OD: 1, open-drain for INT2 pin 0, push-pull for INT2 pin

1, logic high as active level for INT2 pin

0, logic low as active level for INT2 pin

INT1\_OD: 1, open-drain for INT1 pin

0, push-pull for INT1 pin

INT1\_LVL: 1, logic high as active level for INT1 pin

0, logic low as active level for INT1 pin

istar Ov21 (INIT CEC)

INT2\_LVL:

| Register 0x21 | L (IINT_CFG) |         |      |      |      |           |           |     |         |
|---------------|--------------|---------|------|------|------|-----------|-----------|-----|---------|
| Bit7          | Bit6         | Bit5    | Bit4 | Bit3 | Bit2 | Bit1      | Bit0      | R/W | Default |
| INT_RD_CL     | SHADOW_      | DIS_I2C | 1    | 1    | 1    | LATCH_INT | LATCH_INT | RW  | 0x1C    |
| R             | DIC          |         |      |      |      | STED      |           |     |         |

INT RD CLR: 1, clear all the interrupts in latched-mode, when any read operation to any of registers from 0x09 to 0x0D

0, clear the related interrupts, only when read the register INT ST (0x09 to 0x0D),

no matter the interrupts in latched-mode, or in non-latched-mode.

Reading 0x09 will clear the register 0x09 only and the others keep the status

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.



Title: QMA7981 Datasheet

Rev: D

SHADOW\_DIS: 1, disable the shadowing function for the acceleration data

0, enable the shadowing function for the acceleration data.

when shadowing is enabled, the MSB of the acceleration data is locked,

when corresponding LSB of the data is reading.

This can ensure the integrity of the acceleration data during the reading.

The MSB will be unlocked when the MSB is read.

DIS\_I2C: 1: disable I2C. Setting this bit to 1 in SPI mode is recommended

0: enable I2C

LATCH\_INT\_STEP: 1, step related interrupt is in latch mode

0, step related interrupt is in non-latch mode

LATCH\_INT: 1, interrupt is in latch mode

0, interrupt is in non-latch mode

#### Register 0x27 (OS CUST X)

| Bit7       | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|------------|------|------|------|------|------|------|------|-----|---------|
| OS_CUST_X< | 7:0> |      |      |      |      |      |      | RW  | 0x00    |

OS\_CUST\_X<7:0>: offset calibration of X axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x28 (OS CUST Y)

| Bit7      | Bit6   | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|-----------|--------|------|------|------|------|------|------|-----|---------|
| OS CUST Y | /<7:0> |      |      |      | •    | •    |      | RW  | 0x00    |

OS\_CUST\_Y<7:0>: offset calibration of Y axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range,

7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x29 (OS\_CUST\_Z)

| Bit7       | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |  |
|------------|------|------|------|------|------|------|------|-----|---------|--|
| OS_CUST_Z< | 7:0> |      |      |      |      |      |      | RW  | 0x00    |  |

OS\_CUST\_Z<7:0>: offset calibration of Z axis for user, the LSB depends on full-scale of the device which is 3.9mg in 2g range, 7.8mg in 4g range, 15.6mg in 8g range, 31.2mg in 16g, and 62.5mg in 32g

Register 0x2a (RAISE\_WAKE\_SUM\_TH RAISE\_WAKE\_DIFF\_TH)

| Bit7                                         | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|----------------------------------------------|------|------|------|------|------|------|------|-----|---------|
| RAISE_WAKE_DIFF_TH<1: RAISE_WAKE_SUM_TH<5:0> |      |      |      | >    |      |      |      | RW  | 0xD8    |
| 0>                                           | 0>   |      |      |      |      |      |      |     |         |

RAISE\_WAKE\_SUM\_TH <5:0>: 0 ~ 31.5 (LSB 0.5 m/s2)

| RAISE_WAKE_DIFF_TH<3:0> | UNIT (m/s <sup>2</sup> ) |
|-------------------------|--------------------------|
| 0                       | 0.2                      |
| 1                       | 0.3                      |
| 2                       | 0.4                      |
| 3                       | 0.5                      |
| 4                       | 0.6                      |
| 5                       | 0.7                      |
| 6                       | 0.8                      |
| 7                       | 0.9                      |
| 8                       | 1.0                      |
| 9                       | 1.1                      |
| 10                      | 1.2                      |
| default                 | 0.2                      |

#### Register 0x2b (RAISE\_WAKE\_DIFF\_TH HD\_X\_TH HD\_Z\_TH)

| Bit7         | Bit6 | Bit5 | Bit4         | Bit3 | Bit2                  | Bit1 | Bit0 | R/W  | Default |
|--------------|------|------|--------------|------|-----------------------|------|------|------|---------|
| HD_Z_TH<2:0> |      |      | HD_X_TH<2:0> |      | RAISE_WAKE_DIFF_TH<3: |      | RW   | 0x7C |         |
|              |      |      |              |      |                       | 2>   |      |      |         |

 $HD_X_TH<2:0>:$  hand down x threshold,  $0^7$  (m/s2)  $HD_Z_TH<2:0>:$  hand down z threshold,  $0^7$  (m/s2)

Register 0x2c (MOT\_CONF0)

|                 | (    | ,    |      |           |         |      |      |     |         |
|-----------------|------|------|------|-----------|---------|------|------|-----|---------|
| Bit7            | Bit6 | Bit5 | Bit4 | Bit3      | Bit2    | Bit1 | Bit0 | R/W | Default |
| NO_MOT_DUR<5:0> |      |      |      | ANY_MOT_D | UR<1:0> | RW   | 0x00 |     |         |

NO\_MOT\_DUR<5:0>: no motion interrupt will be triggered when slope < NO\_MOT\_TH for the times which defined by NO\_MOT\_DUR<5:0>

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.



Title: QMA7981 Datasheet

Rev: D

Duration = (NO\_MOT\_DUR<3:0> + 1) \* 1s, if NO\_MOT\_DUR<5:4> =b00
Duration = (NO\_MOT\_DUR<3:0> + 4) \* 5s, if NO\_MOT\_DUR<5:4> =b01
Duration = (NO\_MOT\_DUR<3:0> + 10) \* 10s, if NO\_MOT\_DUR<5:4> =b1x

ANY\_MOT\_DUR<1:0>: any motion interrupt will be triggered when slope > ANY\_MOT\_TH for (ANY\_MOT\_DUR<1:0> + 1) samples

Register 0x2d (MOT\_CONF1)

| Bit7      | Bit6   | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|-----------|--------|------|------|------|------|------|------|-----|---------|
| NO_MOT_TH | l<7:0> |      |      |      |      |      |      | RW  | 0x00    |

NO\_MOT\_TH<7:0>: Threshold of no-motion interrupt. The threshold definition is as following

TH= NO\_MOT\_TH<7:0> \* 16 \* LSB

Register 0x2e (MOT CONF2)

| Bit7      | Bit6   | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|-----------|--------|------|------|------|------|------|------|-----|---------|
| ANY MOT T | H<7:0> |      |      |      |      |      |      | RW  | 0x00    |

ANY\_MOT\_TH<7:0>:

Threshold of any motion interrupt. The threshold definition is as following

TH= ANY\_MOT\_TH<7:0> \* 16 \* LSB

Register 0x2f (MOT CONF3)

| Bit7 | Bit6 | Bit5       | Bit4       | Bit3               | Bit2 | Bit1 | Bit0     | R/W | Default |
|------|------|------------|------------|--------------------|------|------|----------|-----|---------|
|      |      | SIG_MOT_TP | PROOF<1:0> | SIG_MOT_TSKIP<1:0> |      |      | SIG_MOT_ | RW  | 0x00    |
|      |      |            |            |                    |      |      | SEL      |     |         |

SIG\_MOT\_TPROOF<1:0>:

00, T\_PROOF=0.25s 01, T\_PROOF=0.5s 10, T\_PROOF=1s 11, T\_PROOF=2s 00, T\_SKIP=1.5s

SIG\_MOT\_TSKIP<1:0>:

01, T\_SKIP=3s 10, T\_SKIP=6s 11, T\_SKIP=12s

SIG\_MOT\_SEL:

1, select significant motion interrupt 0, select any motion interrupt

Register 0x30

| Bit7    | Bit6      | Bit5 | Bit4 | Bit3 | Bit2    | Bit1     | Bit0    | R/W | Default |
|---------|-----------|------|------|------|---------|----------|---------|-----|---------|
| MO_BP_C | STEP_BP_C |      |      |      | NO_MOT_ | SIG_MOT_ | ANY_MOT | RW  | 0x1F    |
| 0       | 0         |      |      |      | RST N   | RST N    | RST N   |     |         |

MO\_BP\_CO: 1, motion detector will use data without OS\_CUST

0, motion detector will use data with OS\_CUST
STEP\_BP\_CO: 1, pedometer will use data without OS\_CUST
0, pedometer will use data with OS\_CUST

NO\_MOT\_RST\_N: 0, Reset no motion detector. After reset, user should write 1 back.

SIG\_MOT\_RST\_N: 0, Reset significant motion detector. After reset, user should write 1 back.

ANY\_MOT\_RST\_N: 0, Reset any motion detector. After reset, user should write 1 back.

Register 0x32 (ST)

| Bit7      | Bit6 | Bit5 | Bit4 | Bit3 | Bit2      | Bit1        | Bit0   | R/W | Default |
|-----------|------|------|------|------|-----------|-------------|--------|-----|---------|
| SELFTEST_ |      |      |      |      | SELFTEST_ | BP_AXIS_STE | P<1:0> | RW  | 0x00    |
| BIT       |      |      |      |      | SIGN      |             |        |     |         |

SELFTEST\_BIT: 1, self-test enabled. When self-test enabled, a delay of 3ms is necessary for the value settling.

0, normal

SELFTEST\_SIGN: 1, set self-test excitation positive

0, set self-test excitation negative

BP\_AXIS\_STEP<1:0>: 11, bypass Z axis, use only X and Y axes data for step counter algorithm

10, bypass Y axis, use only X and Z axes data for step counter algorithm 01, bypass X axis, use only Y and Z axes data for step counter algorithm

00, use all of 3 axes data for step counter algorithm

Register 0x34 (Y\_TH YZ\_TH\_SEL)

| Bit7 | Bit6 | Bit5 | Bit4      | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|------|------|------|-----------|------|------|------|------|-----|---------|
|      | 2:0> |      | Y_TH<4:0> |      |      |      |      | RW  | 0x9D    |
|      |      |      |           |      |      |      |      |     |         |

Y\_TH: -16 ~ 15 (m/s2)

The information contained herein is the exclusive property of QST, and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of QST.



Title: QMA7981 Datasheet

Rev: D

| YZ_TH_SEL<2:0> | UNIT (m/s2) |
|----------------|-------------|
| 0              | 7.0         |
| 1              | 7.5         |
| 2              | 8.0         |
| 3              | 8.5         |
| 4              | 9.0         |
| 5              | 9.5         |
| 6              | 10.0        |
| 7              | 10.5        |
|                |             |

Register 0x35 (RAISE\_WAKE\_PERIOD)

| Bit7                   | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W  | Default |
|------------------------|------|------|------|------|------|------|------|------|---------|
| RAISE WAKE PERIOD<7:0> |      |      |      |      |      |      | RW   | 0x81 |         |

RAISE\_WAKE\_PERIOD<10:0>: \* ODR period = wake count (EX. ODR = 1ms, 0X35 = 100 → wake count = 0.1 sec)

Register 0x36 (SR)

| Bit7       | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W | Default |
|------------|------|------|------|------|------|------|------|-----|---------|
| SOFT_RESET |      |      |      |      |      |      |      | RW  | 0x00    |

SOFT\_RESET:

0xB6, soft reset all of the registers. After soft-reset, user should write 0x00 back

Register 0x3e (RAISE\_WAKE\_TIMEOUT\_TH)

| Bit7                       | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | R/W  | Default |
|----------------------------|------|------|------|------|------|------|------|------|---------|
| RAISE_WAKE_TIMEOUT_TH<7:0> |      |      |      |      |      |      | RW   | 0x00 |         |

Register 0x3f (RAISE\_WAKE\_TIMEOUT\_TH RAISE\_WAKE\_PERIOD RAISE\_WAKE\_EN)

| Bit7 | Bit6                    | Bit5 | Bit4 | Bit3                        | Bit2 | Bit1 | Bit0 | R/W | Default |
|------|-------------------------|------|------|-----------------------------|------|------|------|-----|---------|
|      | RAISE_WAKE_PERIOD<10:8> |      |      | RAISE_WAKE_TIMEOUT_TH<11:8> |      |      |      | RW  | 0x02    |

RAISE\_WAKE\_TIMEOUT\_TH<11:0> \* ODR period = timeout count (EX. ODR = 1ms, 0X3e = 100 → timeout count = 0.1 sec)

#### ORDERING INFORMATION

| Ordering Number | Temperature Range | Package | Packaging                     |
|-----------------|-------------------|---------|-------------------------------|
| QMA7981-TR      | -40℃~85℃          | LGA-12  | Tape and Reel: 5k pieces/reel |



#### Caution

This part is sensitive to damage by electrostatic discharge. Use ESD precautionary procedures when touching, removing or inserting.

**CAUTION: ESDS CAT. 1B** 

# **FIND OUT MORE**

For more information on QST's Accelerometer Sensors contact us at 86-21-50497300.

The application circuits herein constitute typical usage and interface of QST product. QST does not provide warranty or assume liability of customer-designed circuits derived from this description or depiction.

| The information contained herein is the exclusive property of QST, and shall not be distributed in the contained herein is the exclusive property of QST, and shall not be distributed in the contained herein is the exclusive property of QST, and shall not be distributed in the contained herein is the exclusive property of QST. | uted, |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| reproduced, or disclosed in whole or in part without prior written permission of QST.                                                                                                                                                                                                                                                   |       |



Title: QMA7981 Datasheet

Rev: D

QST reserves the right to make changes to improve reliability, function or design. QST does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.

ISO9001: 2015

China Patents 201510000399.8, 201510000425.7, 201310426346.3, 201310426677.7, 201310426729.0, 201210585811.3 and 201210553014.7 apply to the technology described.