河南农业大学 2024—2025 学年第二学期 《工科大学物理》考试试卷 (B卷)

题号	_	1 1	111	四	五	总分
分数						

得分	评卷人

一、埴空顋	(毎空 1 分	、共10分)

- 1、 一列机械波的表达式为 $y = 0.06\pi \cos(6\pi + 0.04\pi)$,式中单位为国际单位制。则波长为____
- 3、 热力学第一定律的数学表达式为 ______
- 4、 真空中恒定磁场的安培环路定理的数学表达式 。
- 5、 两个同方向同频率的简谐振动,其合振动的振幅为 0.20 米, 合振动与第一分振动的相位差为
- 60 度,已知第一分振动的振幅为 0.10 米,则第二分振动与第一分振动的相位差为 ____
- 6、 一弹簧振子作简谐振动, 当其位移的大小为振幅的 1/4 时, 其动能为振动总能量

的_____。

- 7、 一简谐振动的周期为 T,若弹簧劲度系数 k 不变,振子质量变为原来的 16 倍,则周期 T变为 倍。
- 8、 两个质点作同频率、同振幅的简谐振动,它们在振幅一半的地方相遇,但运动方向相反,则 两者的相位差为 。
- 9、 无限长密绕直螺线管,线圈载流为I,单位长度密绕n匝线圈,则管内磁感应强度的大小B=
- 10、 稳恒磁场中运动电子所受洛仑兹力的计算公式为 _____

得分	评卷人

- 二、判断题(每题1分,共10分)
- ()11、机械波在传播过程中,介质元也会跟着传播。
- ()12、对于一定质量的理想气体,在温度不变的情况下,它的体积和压强成反比。
- ()13、呼啸而来的列车汽笛音调会变高。
- () 14、理想气体分子的最概然速率与温度 T成正比,与摩尔质量 M成反比。
- ()15、可以通过保持高温热源不变,而降低低温热源的温度来提高卡诺热机的效率。
- ()16、在单缝衍射中,中央明纹比其它明纹都亮。

- ()17、电场线越密的地方代表该处的电场强度越大。
 - ()18、恒定电流产生恒定的磁场,而运动的电荷不产生磁场。
- () 19、 NO_2 分子的平均平动动能是 4kT/2。
- ()20、静电场对电荷所做的功与静电场分布以及电荷带电量都有关。

得分	评卷人

三、选择题 (每小题 **2** 分, 共 **18** 分)

21	22	23	24	25	26	27	28	29

()21、已知某简谐运动的振动曲线如下图所示,则此简谐运动的运动方程为

A.
$$x = 2\cos(\frac{4}{\pi}t + \frac{2}{\pi})$$
 B. $x = 2\cos(\frac{2}{\pi}t + \frac{2}{\pi})$

B.
$$x = 2\cos(\frac{2}{\pi}t + \frac{2}{\pi})$$

C.
$$x = 2\cos\left(\frac{4}{3}\pi t - \frac{2}{3}\pi\right)$$
 D. $x = 2\cos\left(\frac{2}{3}\pi t - \frac{2}{3}\pi\right)$

$$D. \quad x = 2\cos\left(\frac{2}{3}\pi t - \frac{2}{3}\pi\right)$$

-) 22、平面简谐波的波动表达式为 $v = 0.08\cos(4\pi t 2\pi x)$, 离波源 $\sqrt{0.50 \text{ m}}$ $\sqrt{0.50 \text{ m}}$ $\sqrt{0.50 \text{ m}}$ $\sqrt{0.50 \text{ m}}$ $\sqrt{0.50 \text{ m}}$ A. $\pi/2$ B. $\pi/$ C. $\pi/6$ D. π
- ()23、一定量的某种气体的温度从 500 升高到 1000K,麦克斯韦分子速率分布曲线则呈现 A. f(v)~v 曲线下的面积变大 B. f(v)~v 曲线下的面积变小
 - C.具有 V_P 的分子数占总分子数的比率变大 D. $f(v) \sim v$ 曲线的"峰"变低
- () 24、如果在同一个体积不变的容器里,理想气体温度提高为原来的 2 倍,则
 - A. 分子平均平动动能和压强都提高为原来的两倍
 - B. 分子平均平动动能和压强都不变,因为体积不变
 - C. 分子平均平动动能增加为原来的两倍, 压强为原来的四倍
 - D. 分子平均平动动能提高为原来的四倍, 压强为原来的两倍
- ()25、 1mol 氧气,在 300K 时,下列选项正确的是

A.
$$\sqrt{\overline{v^2}}$$

$$\sqrt{\overline{v^2}}$$
 (

$$\sqrt{\overline{v^2}}$$

$$\sqrt{\overline{v^2}}$$
 B. $\sqrt{\overline{v^2}}$ C. $\sqrt{\overline{v^2}}$ D. $\sqrt{\overline{v^2}}$

) 26、一无限长直载流导线,在距它垂直距离为 a 的某点处,其磁感应强度 B 的大小为

() 27、一环形电流,处于 zoy 平面内,其半径为 R,电流为 I,如下图所 心 O 处的磁感应强度 B 的大小和方向

A. $μ_0I/2R$, -x 方向 B. $μ_0I/2\pi R$, -x 方向 C. $μ_0I/2R$, +x 方向 D. $μ_0I/2\pi R$, +x 方向

- () 28、下列说法正确的是
 - A.闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过
 - B.闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零
 - C.磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零
 - D.磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度都不为零

题 27 图

() 29、两偏振片偏振化方向之间的夹角为 60°,若用光强为 2I₀的自然光垂直入射,则透过第二个偏振片后的光强变为

A. I ₀				
得分	评卷人			

B. $I_0/2$ C.

C. $I_0/4$

D. $2I_0$

四、简答题(每题 5分,共 20分)

- 30、简述能量均分定理。
- 31、简述真空中静电场的高斯定理,并写出数学表达式。
- 32、写出真空中稳恒磁场的高斯定理表达式,这个定理说明了磁场的什么性质?
- 33、简述在杨氏双缝干涉实验中,在中央明纹附近的相邻明纹之间的距离与双缝宽度 d 以及入射波波长 λ 有什么关系, 如果把整个实验装置从真空移到水中,条纹间距又会发生什么样的变化呢?

得分	评卷人

五、计算题(共 42 分)

34、波源作简谐运动,其运动方程为 $y=4.0\times10^{-3}\cos(240\pi t)$,式中 y 的单位为 m,t 的单位为 s,它所形成的波以 $30m \cdot s^{-1}$ 的速度沿一直线传播。求:

(1)波的周期及波长; (2)此波向正方向传播时的波动方程; (3)此波向负方向传播时的波动方程。(7分)35、求温度为127℃的氢气分子的平均速率、方均根速率及最概然速率。(R=8.31J. mol⁻¹. K⁻¹)(7分)

38、 一卡诺热机的高温源温度为 500K, 效率为 40%, 若要将其效率提高到 60%, 问低温源的温度需降低多少? (7分)

39、 波长为 600nm 的单色光垂直入射一光栅上,第二级和第三级谱线分别出现在衍射角 θ 满足关系式 $\sin\theta_2=0.2$ 和 $\sin\theta_3=0.3$,第四级为缺级,试求:(1)该光栅的光栅常量 d 及光栅狭缝的最小可能宽度 a;(2)按此 d 和 a 的值,列出屏幕上可能出现的谱线的全部级数。(7 分)