Convolutional Neural Network - Intuition

Introduction:

- Image can be converted into matrix of pixel values
- These pixel values ranges from 0 to 255
- Dimension of this matrix will be of

[Image width x Image height x number of channels]

• A grayscale image has one channel

Size $[3 \times 3 \times 1] >>$ Only one 2D matrix of shape (3×3)

0	2	3
9	2	3
2	2	1

coloured image have three channels (RGB)

Size $[3 \times 3 \times 3] >>$ Totally three matrix and each of 2D matrix of shape (3×3)

Each refers channel Red, Green Blue respectively

0	2	3
9	2	3
2	2	1

4	2	3
9	7	3
2	2	10

6	2	5
9	13	3
2	2	5

Convolutional Neural Network Architecture:

- CNN is extracting features from the image to understand patterns about it.

Patterns are normally: Edges, Shapes, Textures, Curves, Objects, Colours

Convolutional Operation:

- Input image is represented by a matrix of pixel values and there is a filter or kernel matrix which will do convolution
- This filter matrix slide over the input matrix by stride i.e pixel, perform element-wise multiplication, sum the results and produce a single number.

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

Kernel

0	-1	0
-1	5	-1
0	-1	0

114	: 40	

Feature map representing the extracted features.

Here filter has detected the edges from the actual image

- Can use multiple filters to extract different features from the image
- Depth of the feature map will be the number of filters
- These filter matrix can be initialized randomly and the optimal values of filter matrix will be learned by back propagation.
- It is expected of us to specify size of the filter and number of filters during building of CNN
- For example if convolution operation is defined with seven filter, there will be seven feature map

Importance of Strides:

- When stride is set to small number, can encode a more detailed representation of the image.
- When stride is set to high value, can encode with less time to compute but not a detailed encoding.
- If stride is set to 2, than slide over the input matrix with the filter matrix by two pixels as below,

0	2	3	4	Stride of 2	0	2	3	4
9	2	3	5	THE PARTY IN	9	2	3	5
2	2	1	7		2	2	1	7
3	5	6	9	A A SERVICE AND A SERVICE	3	5	6	9

Importance of Padding:

- Due to convolving process, the input size is getting smaller and smaller at every time, whenever filter is provided
- While convolving, the information is getting lost at the edge of the image.
- To Avoid this, zero padding pixels are introduced around the edges of image and output image size is not decreased

- If padding mode is 'Valid', then Convolution layer is not going to pad at all
- If padding mode is 'Same' then output size is the same as the input size after padding is applied all edges of input matrix

Formula to calculate output of feature map:-

$$o = (i - f + 2*p)/s + 1$$

Here,

- o output size
- i input size
- f filter size
- p padding amount
- s number of strides

Importance of Pooling layers:

- Pooling Operation is also called as 'Down Sampling' Or 'Sub Sampling' operation.
- The pooling layers reduces spatial dimensions by keeping only the important features

Max Pooling Operation:

While slide over the filter on input matrix, simply take the maximum value from the filter window

Average Pooling Operation:

While slide over the filter on input matrix, take average value of the input matrix within the filter window Sum Pooling Operation:

While slide over the filter on input matrix, sum all the values of the input matrix within the filter window

Which type of pooling is this??

0	50	0	29			
0	80	31	2	80	?	
33	90	0	75	?	?	
0	9	0	95			-

Fully Connected layers

- Given any image, convolutional layers extract features from the image and produce a feature map.
- Flattening this feature map, produces vector and feed it to the feed forward network
- Feed forward network takes the flattened features and applies an activation function and returns the output
- This output stating whether the image contains which category of features or not .

