WS 17/18
- Blatt 4 -

Dr. W. Spann F. Hänle, M. Oelker

Lineare Algebra für Informatiker und Statistiker

Aufgabe 13 (4 Punkte)

Sei (G, \circ) eine Gruppe, $\emptyset \neq U \subset G$. Zeigen Sie:

U Untergruppe von $G \iff \forall a, b \in U : a \circ b^{-1} \in U$.

Aufgabe 14 (4 Punkte)

Seien (G, \circ) , (H, *) Gruppen mit den neutralen Elementen $e_G \in G$ und $e_H \in H$. Außerdem sei $\phi : G \to H$ ein Gruppenhomomorphismus. Zeigen Sie:

- (a) $\phi(e_G) = e_H$ (Hinweis: $e_G \circ e_G = e_G$)
- (b) $\phi(g^{-1}) = \phi(g)^{-1} \quad (g \in G)$
- (c) $\phi(G)$ ist Untergruppe von H.
- (d) \mathbb{Z} isomorph zu $G \implies G$ zyklisch und unendlich

Aufgabe 15 (4 Punkte)

Sei (G, \circ) eine Gruppe, $a \in G$ und $*: G \times G \to G$ definiert durch

$$x * y := x \circ a \circ y \quad (x, y \in G)$$

Zeigen Sie:

- (a) (G, *) ist eine Gruppe.
- (b) (G, \circ) und (G, *) sind isomorph. (Hinweis: $\phi : G \to G, x \mapsto a^{-1} \circ x$)

Aufgabe 16 (4 Punkte)

Sei (G, \circ) eine Gruppe und e ihr neutrales Element. Zeigen Sie:

- (a) $a \sim b :\Leftrightarrow a = b \vee a = b^{-1} \quad (a, b \in G)$ ist eine Äquivalenz relation.
- (b) Es gilt: $[a] = \{a, a^{-1}\}$ $(a \in G)$
- (c) Ist G abelsch und endlich, so gilt für $A := \{a \in G : a \circ a = e\}$

$$\prod_{g \in G} g = \prod_{g \in A} g$$

Dabei bezeichnet $\prod_{g\in M}g$ für eine nicht leere Teilmenge M der abelschen Gruppe G das Produkt aller Elemente aus M.

Abgabe einzeln, zu zweit oder zu dritt: Dienstag, 28.11.2017 bis 10¹⁵ Uhr, Übungskasten vor der Bibliothek im 1. Stock