1

Gate 2022 EC Q55

EE23BTECH11212 - Manugunta Meghana Sai*

Gate 2022 EC Q50

Two linear time-invariant systems with transfer functions

$$G_1(s) = \frac{10}{s^2 + s + 1}$$

and

$$G_2(s) = \frac{10}{s^2 + s\sqrt{10} + 10}$$

have unit step responses $y_1(t)$ and $y_2(t)$, respectively. Which of the following statements is/are true?

- 1) $y_1(t)$ and $y_2(t)$ have the same percentage peak overshoot.
- 2) $y_1(t)$ and $y_2(t)$ have the same steady state values.
- 3) $y_1(t)$ and $y_2(t)$ have the same damped frequency of oscillation.
- 4) $y_1(t)$ and $y_2(t)$ have the same 2% settling time.

Solution: The general second-order transfer function is given by:

$$G(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2} \tag{1}$$

After comparing the coefficients of $G_1(s)$ and $G_2(s)$, as $zeta = \frac{1}{2}$ is less than 1, the system is underdamped.

Tranfer function	ω_n	ζ
$G_1(s)$	1	$\frac{1}{2}$
$G_1(s)$	$\sqrt{10}$	1/2

TABLE 4 Given Parameters

$$Y(s) = X(s)G(s)$$
(2)

$$=\frac{1}{s}\left(\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}\right) \tag{3}$$

Applying inverse laplace transform,

$$y(t) = 1 - \frac{e^{-\zeta \omega_n t}}{1 - \zeta^2} \sin(\omega_d t + \phi)$$
(4)

where ω_d is the damped frequency of oscillation.

$$\omega_d = \omega_n \sqrt{1 - \zeta^2} \tag{5}$$

The percentage peak overshoot (*PO*) is a measure of how much a system's response exceeds its steady-state value in terms of a percentage of the steady-state value:

$$PO = \left(\frac{y_{\text{max}} - y_{\text{ss}}}{y_{\text{ss}}}\right) \times 100\% \tag{6}$$

 y_{max} is obtained by differentiating (4) with respect to time and equating it to zero, substituting the value in (4),

$$y_{\text{max}} = 1 + \frac{1}{\sqrt{1 - \zeta^2}} \tag{7}$$

 y_{ss} is obtained by final value theorem,

$$y_{ss} = \lim_{s \to 0} sY(s) \tag{8}$$

$$= \lim_{s \to 0} s \frac{\omega_n^2}{s^2 + 2\zeta \omega_n s + \omega_n^2} \frac{1}{s}$$
 (9)

$$=1 \tag{10}$$

Substituting the values of y_{max} and y_{ss} in (6),

$$PO = \frac{1}{\sqrt{1-\zeta^2}} \times 100\% \tag{11}$$

 $y_1(t)$ and $y_2(t)$ have same ζ , they have same percentage peak overshoot. So, option (1) is correct. The steady state value of y(t) is given by final value theorem:

$$y_{1ss} = \lim_{s \to 0} s Y_1(s) \tag{12}$$

$$= \lim_{s \to 0} s \frac{10}{s^2 + s + 1} \frac{1}{s} \tag{13}$$

$$= 10 \tag{14}$$

$$y_{2ss} = \lim_{s \to 0} s Y_2(s) \tag{15}$$

$$= \lim_{s \to 0} s \frac{10}{s^2 + s\sqrt{10} + 10} \frac{1}{s} \tag{16}$$

$$=1 \tag{17}$$

as both the unit step responses have different steady state values, option (2) is incorrect.

From (6), as ω_n is different for $y_1(t)$ and $y_2(t)$, they have different damped frequency of oscillation. Hence option (3) is incorrect.

Settling time T_s is the time required for the transient damped oscillations to reach and stay within 2% of the steady-state value.

$$T_s = \frac{4}{\zeta \omega_n} \tag{18}$$

As, ω_n is different for $y_1(t)$ and $y_2(t)$, they have different 2% settling time, Hence option (4) is incorrect. So, only option (1) is correct.