CORRECTION D'EXAMEN D'OPTIQUE GEOMETRIQUE SMP2 (FSA) – Session rattrapage – 2014

Partie A

1°) Le dioptre sphérique (DS) est $\underline{\text{convexe}}$. 0.5

2°) Le (DS) est convergent. (0,5)

Son centre C_1 se trouve dans le milieu le plus réfringent ; (0.5) ou $(n_2 > n_1 \text{ et } \overline{S_1 C_1} > 0)$

3°) a) Relation de conjugaison du (DS): $\frac{n_2}{\overline{S_1A'}} - \frac{n_1}{\overline{S_1A}} = \frac{n_2-n_1}{\overline{S_1C_1}}$

 \Rightarrow Position des foyers F_1 et F_1' par rapport à S_1 en fonction de n_1 , n_2 et $\overline{S_1C_1}$:

$$\overline{S_1 F_1} = \frac{n_1 \overline{S_1 C_1}}{n_1 - n_2} \quad \text{O,5} \qquad \text{et} \qquad \overline{S_1 F_1'} = \frac{n_2 \overline{S_1 C_1}}{n_2 - n_1} \quad \text{O,5}$$

b) Distances focales du (DS) en cm :

$$f_1 = \overline{S_1 F_1} = -4 \ cm \ 0.5$$
 et $f'_1 = \overline{S_1 F'_1} = +6 \ cm \ 0.5$

c) La convergence C_1 en dioptrie : $C_1 = \frac{n_2}{f_1'}$ soit $C_1 = 25 \ \delta$. 0.5

$$C_1 > 0 \implies (DS)$$
 convergent. 0.5

4°) a) L'objet (AB) est <u>virtuel</u> 0.5 car $\overline{S_1A} > 0.$ 0.5

b) Position de l'image (A'B') par rapport à S_1 en cm : On applique la relation de conjugaison en remplaçant $\overline{S_1A}$ par $4\ cm$:

c) Le grandissement transversal Y_1 du (DS): $Y_1 = \frac{n_1}{n_2} \frac{S_1 A'}{\overline{S_1 A}}$ \bigcirc $\Rightarrow Y_1 = 0, 5 . \bigcirc$

d) Taille de l'image (A'B'): $\overline{A'B'} = Y_1 \overline{AB} \implies \overline{A'B'} = 0,5 cm$ (0.5)

On a $\Upsilon_1 > 0$ donc l'image (A'B') est de même sens que l'objet (AB). (ou image droite) 0.5

e) Construction géométrique de l'image (A'B'). 1

 $\frac{\textbf{Remarque}}{\textbf{Remarque}} : \textbf{Parmi les trois rayons particuliers, deux sont suffisants pour construire } (A'B').$

Partie B

1°) C'est un miroir sphérique convergent (0,5) car il est concave (ou $\overline{S_2C_2} < 0$). (0,5)

2°) Relation de conjugaison de position avec origine au sommet $S_2: \frac{1}{\overline{S_2A'}} + \frac{1}{\overline{S_2A}} = \frac{2}{\overline{S_2C_2}}$

 3°) Position des foyers F_2 et F_2' par rapport à S_2 en cm :

$$\overline{S_2F_2} = \overline{S_2F_2'} = \frac{\overline{S_2C_2}}{2}$$
 (0,5) soit $\overline{S_2F_2} = \overline{S_2F_2'} = -8 cm$ (0,5)

4°) Position par rapport à S_2 d'un objet (AB) pour que son image (A'B') soit 4 fois plus grande et de même sens : $\overline{A'B'} = 4 \overline{AB} \implies \Upsilon_2 = +4 \ 0.5$

Or:
$$\Upsilon_2 = -\frac{\overline{S_2 A'}}{\overline{S_2 A}} \implies \overline{S_2 A'} = -4 \overline{S_2 A}$$
 (0.5)

En reportant cette expression de $\overline{S_2A'}$ dans la relation de conjugaison on obtient :

$$\overline{S_2A} = \frac{3}{8} \overline{S_2C_2} \implies \overline{S_2A} = -6 cm$$
 (0,5)

Partie C

- 1°) C'est un système catadioptrique. (0,5)
- 2°) a) La marche d'un rayon lumineux incident parallèle à l'axe optique : 1

b) Le foyer principal image F' du système est l'intersection avec l'axe optique du rayon émergent correspondant au rayon incident parallèle à l'axe. On trouve sur le dessin :

$$F' \equiv F_1$$
 soit $\overline{S_1 F'} = -4 \ cm$.

c) L'intersection du rayon incident parallèle à l'axe avec le rayon émergent correspondant donne la position du plan principal image (PPI) du système. Le point principal image H' du système est le point d'intersection du (PPI) avec l'axe optique.

On trouve sur le dessin : $\overline{S_1H'} \approx -3, 5*2 = -7 cm$.

d) La distance focale image f' du système est : $f'=\overline{H'F'}=\overline{H'S_1}+\overline{S_1F'}=+3~cm$. 0,5 La distance focale objet f du système peut être obtenue avec la relation : $\frac{f'}{f}=-\frac{n_s}{n_e}$ Pour un système catadioptrique, on écrit $n_s=-n_e$ donc : f=f'=+3~cm . 0,5

e) La distance focale image $f'=\overline{\Sigma F'}=\frac{\overline{\Sigma \Omega}}{2}$ du miroir équivalent sera identique à $f'=\overline{H'F'}$ du système optique étudié. Donc le rayon de courbure du miroir sphérique équivalent est $\rho=\overline{\Sigma \Omega}=2\overline{\Sigma F'}=2f'=6$ cm. 1
