10

N

CHANGE THE PERSON

Le coefficient μ est appelé : perméabilité magnétique du matériau, et le rapport sans dimensions $\mu_r = \mu/\mu_0$: perméabilité relative :

$$\mu_r = \mu/\mu_0 = 1 + \chi_{re}$$

Enfin en éliminant H au profit de B, il vient :

(5)
$$\mathbf{A}\left(\frac{1}{\mu} - \frac{1}{o\mu}\right) = \frac{\mathbf{A}}{o\mu} \frac{m\chi}{m\chi + 1} = \mathbf{M}$$

Les relations (1), (2) et (3) sont bien entendu équivalentes. Donnons pour la matière condensée (liquides, solides) à la température ordinaire un ordre de grandeur des susceptibilités χ_m rencontrées :

. ratériaux diamagnétiques : X, (négatif) ≈ -10 - s;

— matériaux paramagnétiques : x_m (positif) ≈ 10⁻³;

les gaz ont des susceptibilités plus faibles (en valeur absolue), la matière étant plus diluée.

En ce qui concerne les ferromagnétiques à faible hystérésis, on adopte les mêmes définitions pour la susceptibilité x_m et les perméabilités µ et µ,; mais deux particularités importantes doivent être notées :

— la susceptibilité des corps ferromagnétiques est très élevée, allant de 10^2 à 10^6 pour certains matériaux; la distinction entre χ_m et μ_r est alors mineure

et c'est le coefficient p, qui est le plus souvent utilisé;

— de plus la relation entre M et H, comme celle entre B et H n'est plus

Incesire, autrement dit χ_m et μ , ainsi que μ , sont fonctions de H = ||H||.

Pour de nombreux matériaux ferromagnétiques, M dépend aussi de toute l'histoire du processus d'aimantation; on dit alors qu'il y a hystérésis magnétique et le lien entre M et B, ou entre B et H, ne peut être exprimé sans connaître le passé de l'échantillon, tels que les traitements thermiques et

mécaniques subis. Nous y reviendrons au chap. 8, § 4.

1-3. Calcul d'une aimantation induite. Position du problème

Un échantillon d'un matériau isotrope est placé dans un champ magnétique \mathbf{B}_0 , créé par exemple par une distribution de courant de densité volumique \mathbf{j}_1 connue. On se propose de déterminer l'aimantation \mathbf{M} dans l'échantillon et le champ magnétique total \mathbf{B} en tout point, en supposant connue la relation constitutive qui relie \mathbf{M} à \mathbf{B} , ou à \mathbf{H} .

Comme en Électrostatique des diélectriques, nous avons à résoudre un problème « bouclé ». En effet les équations de la Magnétostatique étudiée au chapitre précédent nous permettent de calculer le champ \mathbf{B}_m dû à l'aimantation induite \mathbf{M} ; par ailleurs la relation constitutive du matériau $\mathbf{M}(\mathbf{B})$ ou $\mathbf{B}(\mathbf{H})$,