ECE608, Homework #2 Solution

(1) CLR 3.1-2

To show that $(n+a)^b = \Theta(n^b)$, we want to find constants c_1 , c_2 , and $n_0 > 0$ such that $0 \le c_1 n^b \le (n+a)^b \le c_2 n^b$ for all $n \ge n_0$. Note that $n+a \le n+|a| \le 2n$, when $|a| \le n$, and $n+a \ge n-|a| \ge \frac{n}{2}$, when $|a| \le \frac{n}{2}$. Thus, $0 \le \frac{n}{2} \le n+a \le 2n$, when $n \ge 2|a|$. Since b > 0, the inequality continues to hold when all parts are raised to the power of b: $0 \le (\frac{n}{2})^b \le (n+a)^b \le (2n)^b$ and $0 \le (\frac{1}{2})^b n^b \le (n+a)^b \le 2^b n^b$. Thus, $c_1 = (\frac{1}{2})^b$, $c_2 = 2^b$, and $n_0 = 2|a|$ satisfy the definition.

Another way to look at this is as follows:

$$0 \le c_1 n^b \le (n+a)^b \le c_2 n^b$$

$$\downarrow$$

$$0 \le c_1 n^b \le (n(1+\frac{a}{n}))^b \le c_2 n^b$$

$$\downarrow$$

$$0 \le c_1 n^b \le n^b (1+\frac{a}{n})^b \le c_2 n^b$$

$$\downarrow$$

$$0 \le c_1 \le (1+\frac{a}{n})^b \le c_2$$

Let $n_0 = 2|a|$, then $c_1 = (\frac{1}{2})^b$ and $c_2 = (\frac{3}{2})^b$.

(2) CLR 3.1-6

Prove that the running time of an algorithm $T(n) = \Theta(g(n))$ if and only if the worst-case running time is O(g(n)) and the best-case running time is $\Omega(g(n))$.

Proof

 (\Leftarrow)

Let T(n) be the running time of the algorithm. Then, if the worst-case running time of the algorithm is O(g(n)), it follows that T(n) = O(g(n)), because the algorithm cannot operate more slowly than the worst case. If the best-case running time of the algorithm is $\Omega(g(n))$, it also follows that $T(n) = \Omega(g(n))$, because it is impossible for the algorithm to operate faster than the best case.

Hence, by the Theorem 3.1 in CLR, $T(n) = \Theta(g(n))$

 (\Rightarrow)

If the running time $T(n) = \Theta(g(n))$, there exist constants $c_1 > 0$, $c_2 > 0$, and $n_0 > 0$

such that $0 \le c_1 g(n) \le T(n) \le c_2 g(n)$ for all $n \ge n_0$. Thus, by the definition of $O(\cdot)$, $\Omega(\cdot)$, T(n) = O(g(n)) and $T(n) = \Omega(g(n))$.

(3) CLR 3.1-7

Prove that $\omega(g(n)) \cap o(g(n))$ is the empty set.

Proof

If $\omega(g(n)) \cap o(g(n))$ is non-empty then $\exists f(n)$ such that $f(n) \in o(g(n))$ and $f(n) \in \omega(g(n))$. For every $f(n) \in o(g(n))$ we know that $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. But such an $f(n) \notin \omega(g(n))$ because that requires $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$. Thus by contradiction we know that $\omega(g(n)) \cap o(g(n))$ must be empty.

(4) CLR 3.2-2

Proof
$$a^{log_bc} = (c^{log_ca})^{log_bc} = c^{(log_ca \cdot log_bc)} = c^{\frac{log_ca}{log_cb}} = c^{log_ba}$$

(5) CLR 3.2-3

Stirling's approximation: $n! = \sqrt{2\pi n} (\frac{n}{e})^n (1 + \Theta(\frac{1}{n}))$

(1)
$$\lg(n!) = \Theta(n \lg n)$$

Proof

By Stirling's approximation,

$$\lg(n!) = \lg\{\sqrt{2\pi n} (\frac{n}{e})^n (1 + \Theta(\frac{1}{n}))\}
= \frac{\lg 2\pi}{2} + \frac{\lg n}{2} + n \lg n - n \lg e + \lg\{1 + \Theta(\frac{1}{n})\}$$

Because $n \lg n$ is the dominant term in the above equation, $\lg(n!) = \Theta(n \lg n)$.

(2)
$$n! = \omega(2^n)$$

Proof

By Stirling's approxmation,

$$\lim_{n \to \infty} \frac{n!}{2^n} = \lim_{n \to \infty} \sqrt{2\pi n} (\frac{n}{2e})^n (1 + \Theta(\frac{1}{n}))$$

$$= \lim_{n \to \infty} \frac{(\sqrt{2\pi})n^{(n+\frac{1}{2})}}{(2e)^n}$$

$$= \infty$$

Hence, $n! = \omega(2^n)$.

(3) $n! = o(n^n)$

Proof

By Stirling's approxmation,

$$\begin{split} \lim_{n \to \infty} \frac{n!}{n^n} &= \lim_{n \to \infty} \sqrt{2\pi n} (\frac{1}{e})^n (1 + \Theta(\frac{1}{n})) \\ &= \lim_{n \to \infty} \frac{\sqrt{2\pi n}}{e^n} \\ &= \lim_{n \to \infty} \frac{\sqrt{2\pi}}{2\sqrt{n}e^n} \quad \text{by L'Hospital's rule} \\ &= 0 \end{split}$$

Hence, $n! = o(n^n)$.

(6) CLR 3.2-5

 $\lg^*(\lg n)$ is asymptotically larger than $\lg(\lg^* n)$.

Proof

Let $m = \lg^* n$, and assume that $n \ge 4$. Hence $\lg^*(\lg n) = m - 1$. We are now comparing between $\lg(\lg^* n) = \lg m$ and m - 1. Clearly m - 1 is asymptotically larger than $\lg m$ when m is sufficiently large. Thus we can conclude that $\lg^*(\lg n)$ is asymptotically larger than $\lg(\lg^* n)$.

(7) CLR 3-2 (refer to Figure 31 for table)

- (a) If $f(n) = \lg^k n$, then $f'(n) = \frac{k \lg^{k-1} n \lg e}{n}$; hence, by using L'Hôpital's rule as follows: $\lim_{n \to \infty} \frac{\lg^k n}{n^{\epsilon}} = \lim_{n \to \infty} \frac{k \lg^{k-1} n \lg e}{\epsilon n^{\epsilon}} = \lim_{n \to \infty} \frac{[k(k-1) \lg^{k-2} n \lg^2 e]}{\epsilon^2 n^{\epsilon}} = \dots = \lim_{n \to \infty} \frac{k! \lg^k e}{\epsilon^k n^{\epsilon}} = 0, \text{ we conclude that } \lg^k n = o(n^{\epsilon}) \Rightarrow \text{ hence } O(n^{\epsilon}).$
- (b) If $f(n) = c^n$, then $f'(n) = c^n \ln c$; hence, by using L'Hôpital's rule as follows: $\lim_{n \to \infty} \frac{n^k}{c^n} = \lim_{n \to \infty} \frac{kn^{k-1}}{c^n \ln c} = \dots = \lim_{n \to \infty} \frac{k!}{c^n \ln^k c} = 0,$ we conclude that $n^k = o(c^n) \Rightarrow \text{hence } O(c^n)$.
- (c) $\lim_{n \to \infty} \frac{\sqrt{n}}{n^{\sin(n)}} = \lim_{n \to \infty} n^{\frac{1}{2} \sin(n)}$

Since $\sin(n)$ oscillates between +1 and -1, $n^{\frac{1}{2}-\sin(n)}$ takes a value between $n^{-\frac{1}{2}}$ and $n^{+\frac{3}{2}}$. Thus, an asymptotic comparison cannot be made.

(d)
$$\lim_{n \to \infty} \frac{2^n}{2^{n/2}} = \lim_{n \to \infty} 2^{n/2} = \infty$$
. Thus, $2^n = \omega(2^{n/2}) \Rightarrow \Omega(2^{n/2})$.

(e)
$$\lim_{n \to \infty} \frac{n^{\lg(m)}}{m^{\lg(n)}} = \lim_{n \to \infty} 1 = 1$$
, because $n^{\lg(m)} = m^{\lg(n)}$. Thus, $n^{\lg(m)} = \Theta(m^{\lg(n)}) \Rightarrow n^{\lg(m)} = O(m^{\lg(n)})$ and $n^{\lg(m)} = \Omega(m^{\lg(n)})$.

3

(f) $\lg n! = \Theta(n \lg n)$ and $\lg(n^n) = n \lg n$. Thus, $\lg n! = \Theta(n \lg n) = \Theta(\lg(n^n))$ and we have $\lg n! = O(\lg(n^n))$ and $\lg n! = \Omega(\lg(n^n))$.

item	О	О	Ω	ω	Θ
a	yes	yes	no	no	no
b	yes	yes	no	no	no
c	no	no	no	no	no
d	no	no	yes	yes	no
e	yes	no	yes	no	yes
f	yes	no	yes	no	yes

Figure 1: Table for Problem CLR 3-2.

(8) CLR 3-3

(a) Ranking by asymptotic growth rate, equivalent classes are enclosed by '[]'.

 $[1, n^{1/\lg n}], \lg (\lg^* n), [\lg^* (\lg n), \lg^* (n)], 2^{\lg^* n}, \ln \ln n, \sqrt{\lg n}, \ln n, \lg^2 n, 2^{\sqrt{2\lg n}}, (\sqrt{2})^{\lg n}, 2^{\lg n}, [n \lg n, \lg(n!)], [4^{\lg n}, n^2], n^3, (\lg n)!, [n^{\lg\lg n}, (\lg n)^{\lg n}], (3/2)^n, 2^n, n2^n, e^n, n!, (n+1)!, 2^{2^n}, 2^{2^{n+1}}$

- **(b)** $2^{2^{n+5}}(\sin(n)+1)$
- (9) CLR 3-4
 - (a) False. Let $g(n) = n^2$ and f(n) = n, so that f(n) = O(g(n)), i.e., $n = O(n^2)$. But this does not imply that g(n) = O(f(n)) as $n^2 \neq O(n)$.
 - (b) False. Let $f(n) = n^2$, g(n) = n, then $f(n) + g(n) = n^2 + n = \Theta(n^2)$. $\Theta(\min(f(n), g(n))) = \Theta(n)$ and $\Theta(n^2) \neq \Theta(n)$. Thus, $f(n) + g(n) \neq \Theta(\min(f(n), g(n)))$.
 - (c) If we assume that f(n) and g(n) represent the time complexities for an algorithm, then they are monotonically increasing functions. Given these assumptions, the claim is true. Given f(n) = O(g(n)) and $f(n) \ge 1$, we know $1 \le f(n) \le c_1g(n)$ for all $n \ge n_0$ and $c_1 > 0$. Since $f(n) \ge 1$, $g(f(n)) \ge 0$, g(g(n)) is positive, and g(f(n)) is positive, $g(f(n)) \le g(f(n))$.
 - $\Rightarrow 0 \le \lg(f(n)) \le \lg c_1 + \lg(g(n))$
 - \Rightarrow for $c_1 \ge 1$ and $0 \le \lg(f(n)) \le c_2 \lg(g(n))$, for $c_2 \ge 1$.

(d) False. Given f(n) = O(g(n)), we have $0 \le f(n) \le cg(n)$ for positive c, n_0 , and $n > n_0$. Then if it is true that $0 \le 2^{f(n)} \le c2^{g(n)}$ for some c, n_0 , and $n > n_0$, then $0 \le \frac{2^{f(n)}}{2^{g(n)}} \le c$ and $0 \le 2^{f(n)-g(n)} \le c$.

However, if f(n) = 5n and g(n) = n, then $0 \le 2^{4n} \le c$ is impossible.

(e) If $0 \le f(n) \le c(f(n))^2$ for some positive c, n_0 and $n \ge n_0$, then $0 \le \frac{f(n)}{(f(n))^2} \le c$ and $0 \le \frac{1}{f(n)} \le c$.

With additional assumptions as stated in (c), this claim is true. But without those additional assumptions about f(n), then if $f(n) = \frac{1}{n}$, this claim is false.

(f) True. f(n) = O(g(n)) implies that for some positive c_1 and n_0 , $0 \le f(n) \le c_1g(n)$, for all $n \ge n_0$. $g(n) = \Omega(f(n))$ implies that for some positive c_2 and n_0 , $0 \le c_2f(n) \le g(n)$, for all $n \ge n_0$.

 $\lim_{n\to\infty}\frac{\mathrm{f}(n)}{\mathrm{g}(n)}=c,\,0\leq c<\infty,\,\text{given that }\mathrm{f}(n)=\mathrm{O}(\mathrm{g}(n)).$

Case 1: If c = 0, $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$. Here $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \infty$, so f(n) is a lower bound of g(n).

Case 2: If c > 0, $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$. Here $\lim_{n \to \infty} \frac{g(n)}{f(n)} = \frac{1}{c} = c'$, where c' > 0.

Based on those two cases, $g(n) = \Omega(f(n))$.

- (g) False. Consider $f(n) = 2^n$ and $f(\frac{n}{2}) = 2^{\frac{n}{2}}$, then if $f(n) = \Theta(f(\frac{n}{2}))$, we must have $2^n \le c_2 2^{\frac{n}{2}} \Rightarrow 2^{\frac{n}{2}} \le c_2$, which is impossible as there is no c_2 for fixed n_0 .
- (h) True. $0 \le c_1 f(n) \le f(n) + o(f(n)) \le c_2 f(n)$

 $\Rightarrow 0 \le c_1 \le 1 + \frac{\mathrm{o}(\mathrm{f}(n))}{\mathrm{f}(n)} \le c_2$, but $\lim_{n \to \infty} \frac{\mathrm{o}(\mathrm{f}(n))}{\mathrm{f}(n)} = 0$ by the definition of o(f(n)).

Hence, there is a c_1 , say 1 and a c_2 for sufficiently large n and $n \ge n_0$.