

Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

WPISUJE ZDAJĄCY

KOD PESEL

Miejsce na naklejkę z kodem

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM PODSTAWOWY

CZĘŚĆ I

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 8 stron (zadania 1–3). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz obok zadeklarowane (wybrane) przez Ciebie na egzamin środowisko komputerowe, kompilator języka programowania oraz program użytkowy.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w wybranej przez siebie notacji: listy kroków, schematu blokowego lub języka programowania, który wybrałeś/aś na egzamin.
- 8. Na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

MAJ 2014

(środowisko)

WYBRANE:

	(Komphator)
•••••	•••••
	(nrogram użytkowy)

Czas pracy: 75 minut

Liczba punktów do uzyskania: 20

MIN-P1 1P-142

Zadanie 1. Doskonała inaczej (6 pkt)

Poniższy algorytm wyznacza wszystkie dzielniki liczby naturalnej $n \ge 1$, mniejsze od n.

Specyfikacja algorytmu:

Dane: liczba naturalna $n \ge 1$,

Wynik: ciąg liczb, które są dzielnikami liczby n, mniejszymi od n.

Algorytm:

1. $d \leftarrow 1$

2. dopóki d < n wykonuj

2.1. jeżeli $n \mod d = 0$, to wypisz d

2.2. $d \leftarrow d+1$

Uwaga: " $n \mod d$ " oznacza resztę z dzielenia liczby $n \mod 2 = 1$, $6 \mod 2 = 0$.

a) Uzupełnij poniższą tabelę – podaj wyniki działania algorytmu dla wskazanych argumentów:

n	Wynik algorytmu
6	1 2 3
35	
56	
81	

- b) Dla argumentu n instrukcja przypisania $d \leftarrow d+1$ jest wykonywana w każdym przebiegu algorytmu n-1 razy. Zmień warunek pętli dopóki tak, aby liczba wykonań tej instrukcji była nie większa od n/2. Nowy warunek wpisz w wykropkowane miejsce.
 - 1. $d \leftarrow 1$ 2. dopóki wykonuj 2.1. jeżeli $n \mod d = 0$, to wypisz d
 - 2.2. $d \leftarrow d+1$
- c) *Liczbą doskonałą II rzędu* nazywamy liczbę naturalną *n*, która jest równa iloczynowi wszystkich swoich dzielników mniejszych od niej samej. Liczba 6 jest taką liczbą, ponieważ 6 = 1·2·3. Podaj algorytm sprawdzający, czy liczba naturalna *n*>1 jest liczbą doskonałą II rzędu.

Specyfikacja:

Dane: liczba naturalna n > 1Wynik: "TAK", gdy liczba n jest liczbą doskonałą II rzędu, bądź "NIE", gdy liczba n nie jest liczbą doskonałą II rzędu

Algorytm:

***	Nr zadania	1.a	1.b	1.c
Wypełnia	Maks. liczba pkt	1	2	3
egzaminator	Uzyskana liczba pkt			

Zadanie 2. Min-Max (6 pkt)

Dana jest parzysta, dodatnia liczba całkowita n oraz n-elementowa tablica a[1..n] liczb całkowitych. Rozważ poniższy algorytm działający na tej tablicy.

Algorytm:

- 1. $i \leftarrow 1$
- 2. dopóki i < n wykonuj

2.1. jeżeli
$$a[i] > a[i+1]$$
, to zamień zawartości $a[i]$ oraz $a[i+1]$

$$2\ 2\ i \leftarrow i+2$$

a) Przeanalizuj podany algorytm i podaj wynik jego działania dla poniższych danych – wpisz odpowiednie liczby w wykropkowane miejsca.

dla
$$n = 6$$
, $a = [45, 12, 7, 39, 20, 1]:$

po wykonaniu algorytmu a = [.....,,,]

dla
$$n = 8$$
, $a = [21, 1, 56, 90, 8, 8, 19, 47]$:

po wykonaniu algorytmu a = [....,,,,]

Miejsce na obliczenia

b) Uzupełnij poniższe zdanie tak, aby poprawnie opisywało ono zawartość tablicy *a* po wykonaniu algorytmu. Wstaw w pusty prostokąt poniżej jeden ze znaków "<", ">", ">", ">", ">":

Dla każdego
$$i = 1, 3, ..., n-1$$
 mamy $a[i]$ $a[i+1]$.

c) W poniższym algorytmie uzupełnij luki tak, aby znajdował on minimalną i maksymalną wartość w tablicy a[1..n] liczb całkowitych, gdzie n to parzysta liczba całkowita dodatnia. Wykorzystaj fakt, że z pary porównywanych ze sobą elementów ciągu tylko jeden warto brać pod uwagę jako kandydata na minimum i tylko jeden jako kandydata na maksimum.

Algorytm:

- $1.i \leftarrow 1$
- 2. dopóki $i \le n$ wykonuj
 - 2.1. jeżeli a[i] > a[i+1], to zamień zawartości a[i] oraz a[i+1]

$$2\ 2\ i \leftarrow i+2$$

- 3. *min* ←
- 4. *max* ←
- $5.i \leftarrow 3$
- 6. dopóki wykonuj
 - 6.1. jeżeli, to *min* ←
 - 6.2. jeżeli, to *max* ←
 - 6.3. $i \leftarrow i+2$

***	Nr zadania	2.a	2.b	2.c
Wypełnia	Maks. liczba pkt	2	1	3
egzaminator	Uzyskana liczba pkt			

Zadanie 3. (8 pkt)

a) Rozważmy bazę danych z jedną tabelą *Firma*. Tabela ta zawiera następujące informacje (w nawiasach są nazwy kolumn): nazwa firmy (Nazwa), adres firmy (Adres), nazwa towaru (Towar), cena (Cena).

Przykładowe rekordy z tabeli:

Nazwa	Adres	Towar	Cena
Antena	Zapolska 71	Telewizor S-11	2800
Kwak	Matejki 23	Radio Q-989	590
Kwak	Matejki 23	Telewizor	1999
Moc	Nowa 87	Bateria R-6-4	18
Antena	Zapolska 71	Radio P-0219	560

Na przykładzie tej tabeli opisz następujące zjawiska:

1. Redundancja

2. Anomalia przy modyfikacji

W podpunktach b) - g) **zaznacz znakiem X** poprawne odpowiedzi. Tylko jedna odpowiedź jest prawdziwa.

b) Liczba binarna 10101010 to w systemie dziesiętnym

160.	
165.	
170.	

c)	Ujednolicony format adresowania zasobów (informacji, danych, usług) stosowany				
w internecie i w sieciach lokalnych to					
	FTP.				
	URL.				
	LIDN				

d) Urządzenie, które pobiera dane cyfrowe z komputera i zamienia je na sygnały analogowe przesyłane w sieci telefonicznej, to

karta sieciowa.	
router.	
modem.	

e) W arkuszu kalkulacyjnym **adres bezwzględny** oznacza adres komórki zapisany w formule, który nie zmienia się przy kopiowaniu komórki zawierającej tę formułę. Przykładem takiego adresu jest

B\$12\$.	
B12.	
\$B\$12.	

f) Formatami plików graficznych przechowujących grafikę rastrową są

JPEG, GIF, BMP.	
SVG, CDR, SWF.	
PAS, CPP, COM.	

g) W arkuszu kalkulacyjnym komórka B3 zawiera liczbę 7, a komórka B4 zawiera liczbę 9. Jeśli formułę =JEŻELI (B3<7;B3/2;JEŻELI (B4<>9;3;MOD (B4;B3))) wpiszemy do komórki C3, to pojawi się tam

4.	
3.	
2.	

***	Nr zadania	3.a	3.b	3.c	3.d	3.e	3.f	3.g
Wypełnia	Maks. liczba pkt	2	1	1	1	1	1	1
egzaminator	Uzyskana liczba pkt							

BRUDNOPIS