DVPTS ASYMPTOTIQUES

EXERCICE 1 - Tangente

Soit $n \geq 1$.

- 1. Montrer que l'équation $\tan x = x$ possède une solution unique x_n dans $\left[n\pi \frac{\pi}{2}, n\pi + \frac{\pi}{2}\right]$.
- 2. Quelle relation lie x_n et $arctan(x_n)$?
- 3. Montrer que $x_n = n\pi + \frac{\pi}{2} + o(1)$.
- 4. En écrivant $x_n = n\pi + \frac{\pi}{2} + \varepsilon_n$ et en utilisant le résultat de la question 2., en déduire que

$$x_n = n\pi + \frac{\pi}{2} - \frac{1}{n\pi} + \frac{1}{2n^2\pi} + o\left(\frac{1}{n^2}\right).$$

Exercice 2 - Développement asymptotique de la série harmonique

On pose $H_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$.

- 1. Prouver que $H_n \sim_{+\infty} \ln n$.
- 2. On pose $u_n = H_n \ln n$, et $v_n = u_{n+1} u_n$. Étudier la nature de la série $\sum_n v_n$. En déduire que la suite (u_n) est convergente. On notera γ sa limite.
- 3. Soit $R_n = \sum_{k=n}^{+\infty} \frac{1}{k^2}$. Donner un équivalent de R_n .
- 4. Soit w_n tel que $H_n = \ln n + \gamma + w_n$, et soit $t_n = w_{n+1} w_n$. Donner un équivalent du reste $\sum_{k \geq n} t_k$. En déduire que $H_n = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right)$.

Exercice 3 - Equivalence de sommes partielles

Soient (u_n) et (v_n) deux suites réelles positives telles que $u_n \sim_{+\infty} v_n$. On pose

$$U_n = \sum_{k=1}^n u_k \text{ et } V_n = \sum_{k=1}^n v_k,$$

et on suppose de plus que $V_n \to +\infty$. Démontrer que $U_n \sim_{+\infty} V_n$.

Cette feuille d'exercices a été conçue à l'aide du site https://www.bibmath.net