### **SECTION 23 23 00 REFRIGERANT PIPING**

### **PART 1 - GENERAL**

#### DESCRIPTION

- A. Field refrigerant piping for direct expansion HVAC systems, including site-erected coolers and freezers. This section shall govern installation of refrigerant piping systems installed per the manufacturer's direction and instruction, it is not intended to supersede any installation direction given by the manufacturer. In the event of conflict, the contractor shall submit an RFI requesting clarification. The contractor's price shall include a complete and functioning system installation per the manufacturer's Installation Directions, including any long length, high riser, or other special condition.
- В. Refrigerant piping shall be sized, selected, and designed either by the equipment manufacturer or in strict accordance with the manufacturer's published instructions. The schematic piping diagram shall show all accessories such as, stop valves, level indicators, liquid receivers, oil separator, gauges, thermostatic expansion valves, solenoid valves, moisture separators and driers to make a complete installation.

#### C. Definitions:

- 1. Refrigerating system: Combination of interconnected refrigerant-containing parts constituting one closed refrigeration circuit in which a refrigerant is circulated for the purpose of extracting heat.
  - a. Low side means the parts of a refrigerating system subjected to evaporator pressure.
  - b. High side means the parts of a refrigerating system subjected to condenser pressure.
- 2. Brazed joint: A gas-tight joint obtained by the joining of metal parts with alloys which melt at temperatures higher than 449 degrees C (840 degrees F) but less than the melting temperatures of the joined parts.

#### 2. RELATED WORK

A. Drawings and Specifications as issued as a complete design document apply, including specification sections for Common Work Results for Plumbing and HVAC.

### QUALITY ASSURANCE

- A. Refer to specification section COMMON WORK RESULTS FOR HVAC.
- B. Comply with ASHRAE Standard 15, Safety Code for Mechanical Refrigeration.
- C. Comply with ASME B31.5: Refrigerant Piping and Heat Transfer Components.
- D. Products shall comply with UL 207 "Refrigerant-Containing Components and Accessories, "Nonelectrical"; or UL 429 "Electrical Operated Valves."

### SUBMITTALS

A. Submit components and certifications as outlined in the Project General Requirements specifications for review and approval.

- B. Shop Drawings:
  - Complete information for components noted, including valves and refrigerant piping accessories, clearly presented, shall be included to determine compliance with drawings and specifications for all components required. Components are listed but not limited to:
    - a. Tubing and fittings
    - b. Valves
    - c. Strainers
    - d. Moisture-liquid indicators
    - e. Filter-driers
    - f. Flexible metal hose
    - g. Liquid-suction interchanges
    - h. Oil separators (when specified)
    - i. Gages
    - j. Pipe and equipment supports
    - k. Refrigerant and oil
    - I. Pipe/conduit roof penetration cover
    - m. Soldering and brazing materials
  - 2. Layout of refrigerant piping and accessories, including flow capacities, valves locations, and oil traps slopes of horizontal runs, floor/wall penetrations, and equipment connection details.
- C. Certification: Copies of certificates for welding procedure, performance qualification record and list of welders' names and symbols.
- D. Design Manual: Furnish two copies of design manual of refrigerant valves and accessories.

### 5. APPLICABLE PUBLICATIONS

- A. The publications listed below form a part of this specification to the extent referenced. The publications are referenced in the text by the basic designation only.
- B. Air Conditioning, Heating, and Refrigeration Institute (ARI/AHRI):

| 3, 3,            | <b>3</b>                                                      |
|------------------|---------------------------------------------------------------|
| 495-1999 (R2002) | Standard for Refrigerant Liquid Receivers                     |
| 730-2005         | Flow Capacity Rating of Suction-Line Filters and Suction-Line |
|                  | Filter-Driers                                                 |
| 750-2007         | Thermostatic Refrigerant Expansion Valves                     |
| 760-2007         | Performance Rating of Solenoid Valves for Use with Volatile   |
|                  | Refrigerants                                                  |

C. American Society of Heating Refrigerating and Air Conditioning Engineers (ASHRAE):

ANSI/ASHRAE 15-2007.....Safety Standard for Refrigeration Systems (ANSI)

ANSI/ASHRAE 17-2008......Method of Testing Capacity of Thermostatic Refrigerant

Expansion Valves (ANSI)

63.1-95 (RA 01)......Method of Testing Liquid Line Refrigerant Driers (ANSI)

D. American National Standards Institute (ANSI):

ASME (ANSI)A13.1-2007.....Scheme for Identification of Piping Systems

Z535.1-2006.....Safety Color Code

E. American Society of Mechanical Engineers (ASME):

ANSI/ASME B16.22-2001 (R2005)

Wrought Copper and Copper Alloy Solder-Joint Pressure Fittings (ANSI)

ANSI/ASME B16.24-2006 Cast Copper Alloy Pipe Flanges and Flanged Fittings, Class 150,

300, 400, 600, 900, 1500 and 2500 (ANSI)

ANSI/ASME B31.5-2006.....Refrigeration Piping and Heat Transfer Components (ANSI)

ANSI/ASME B40.100-2005.......Pressure Gauges and Gauge Attachments

ANSI/ASME B40.200-2008....... Thermometers, Direct Reading, and Remote Reading

F. American Society for Testing and Materials (ASTM)

| A126-04 | Standard Specification for Gray Iron Castings for Valves, |
|---------|-----------------------------------------------------------|
|         | Flanges, and Pipe FittingsB32-08 Standard Specification   |
|         | for Solder Metal                                          |
| B88-03  | Standard Specification for Seamless Copper Water Tube     |
| B88M-05 | Standard Specification for Seamless Copper Water Tube     |
|         | (Metric)                                                  |
| B280-08 | Standard Specification for Seamless Copper Tube for Air   |
|         | Conditioning and Refrigeration Field Service              |
|         |                                                           |

G. American Welding Society, Inc. (AWS):

Brazing Handbook

A5.8/A5.8M-04 ......Standard Specification for Filler Metals for Brazing and Braze Welding

H. Underwriters Laboratories (U.L.):

U.L.207-2009 ...... Standard for Refrigerant-Containing Components and Accessories, Nonelectrical

U.L.429-99 (Rev.2006).....Standard for Electrically Operated Valves

### **PART 2 - PRODUCTS**

### 1. PIPING AND FITTINGS

- A. Refrigerant Piping: For piping up to 4-inch use Copper refrigerant tube, ASTM B280, cleaned, dehydrated and sealed, marked ACR on hard temper straight lengths. Coils shall be tagged ASTM B280 by the manufacturer.
- B. Water and Drain Piping: Copper water tube, ASTM B88, Type M or L. Optional drain piping material where approved by the engineer, architect and local authority: Schedule 80 flame retardant Polypropylene plastic.
- C. Fittings, Valves and Accessories:
  - 1. Copper fittings: Wrought copper fittings, ASME B16.22.
    - a. Brazed Joints, refrigerant tubing: Cadmium free, AWS A5.8/A5.8M, 45 percent silver brazing alloy, Class BAg-5.
    - b. Solder Joints, water and drain: 95-5 tin-antimony, ASTM B32 (95TA).
  - 2. Steel fittings: ASTM wrought steel fittings.
    - a. Refrigerant piping Welded Joints.

- 3. Flanges and flanged fittings: ASME B16.24.
- 4. Refrigeration Valves:
  - a. Stop Valves: Brass or bronze alloy, packless, or packed type with gas tight cap, frost proof, back seating.
  - b. Pressure Relief Valves: Comply with ASME Boiler and Pressure Vessel Code; UL listed. Forged brass with nonferrous, corrosion resistant internal working parts of high strength, cast iron bodies conforming to ASTM A126, Grade B. Set valves in accordance with ASHRAE Standard 15.
  - c. Solenoid Valves: Comply with ARI 760 and UL 429, UL-listed, two-position, direct acting or pilot-operated, moisture and vapor-proof type of corrosion resisting materials, designed for intended service, and solder-end connections. Fitted with suitable NEMA 250 enclosure of type required by location and normally // open // closed // holding coil.
  - d. Thermostatic Expansion Valves: Comply with ARI 750. Brass body with stainless-steel or non-corrosive non ferrous internal parts, diaphragm and spring-loaded (direct-operated) type with sensing bulb and distributor having side connection for hot-gas bypass and external equalizer. Size and operating characteristics as recommended by manufacturer of evaporator and factory set for superheat requirements. Solder-end connections. Testing and rating in accordance with ASHRAE Standard 17.
  - e. Check Valves: Brass or bronze alloy with swing or lift type, with tight closing resilient seals for silent operation; designed for low pressure drop, and with solder-end connections. Direction of flow shall be legibly and permanently indicated on the valve body.
- 5. Strainers: Designed to permit removing screen without removing strainer from piping system, and provided with screens 80 to 100 mesh in liquid lines NPS 1 and smaller, 60 mesh in liquid lines larger than NPS 1, and 40 mesh in suction lines. Provide strainers in liquid line serving each thermostatic expansion valve, and in suction line serving each refrigerant compressor not equipped with integral strainer.
- 6. Refrigerant Moisture/Liquid Indicators: Double-ported type having heavy sight glasses sealed into forged bronze body and incorporating means of indicating refrigerant charge and moisture indication. Provide screwed brass seal caps.
- 7. Refrigerant Filter-Dryers: UL listed, angle or in-line type, as shown on drawings. Conform to ARI Standard 730 and ASHRAE Standard 63.1. Heavy gage steel shell protected with corrosion-resistant paint; perforated baffle plates to prevent desiccant bypass. Size as recommended by manufacturer for service and capacity of system with connection not less than the line size in which installed. Filter driers with replaceable filters shall be furnished with one spare element of each type and size.
- 8. Flexible Metal Hose: Seamless bronze corrugated hose, covered with bronze wire braid, with standard copper tube ends. Provide in suction and discharge piping of each compressor.
- 9. Oil Separators: Provide for condensing units, as shown and as required by the manufacturer's installation directions. All welded steel construction with capacity to eliminate a minimum of 95 percent of the oil from the hot gas flowing through it. Provide manufacturer's published ratings for minimum and maximum refrigeration tonnage corresponding to this oil

- separating efficiency. Separator shall be equipped with a float valve to prevent return of the hot gas to crankcase, and shall have isolating stop valves so it can be opened and services without pumping out any other part of the system. ASME construction or UL listed.
- 10. Receivers: Conform to AHRI 495, steel construction, equipped with tappings for liquid inlet and outlet valves, pressure relief valve and liquid level indicator.

### 2. GAGES

- A. Temperature Gages: Comply with ASME B40.200. Industrial-duty type and in required temperature range for service in which installed. Gages shall have Fahrenheit scale in 2-degree graduations and with black number on a white face. The pointer shall be adjustable. Rigid stem type temperature gages shall be provided in thermal wells located within 5 feet of the finished floor. Universal adjustable angle type or remote element type temperature gages shall be provided in thermal wells located 5 to 7 feet above the finished floor. Remote element type temperature gages shall be provided in thermal wells located 7 feet above the finished floor.
- B. Vacuum and Pressure Gages: Comply with ASME B40.100 and provide with throttling type needle valve or a pulsation dampener and shut-off valve. Gage shall be a minimum of 3-1/2 inches in diameter with a range from 0 psig to approximately 1.5 times the maximum system working pressure. Each gage range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range.
  - 1. Suction: 30 inches Hg vacuum to 250 psig.
  - 2. Discharge: 0 to 500 psig.

### 3. PIPE/CONDUIT ROOF PENETRATION COVER

- A. See pipe penetration details on drawings.
- B. Prefabricated Roof Curb: Galvanized steel or extruded aluminum 12 inches overall height, continuous welded corner seams, treated wood nailer, 1-1/2 inch thick, 3 lb/cu.ft. density rigid mineral fiberboard insulation with metal liner, built-in cant strip (except for gypsum or tectum decks). For surface insulated roof deck, provide raised cant strip (recessed mounting flange) to start at the upper surface of the insulation. Curbs shall be constructed for pitched roof or ridge mounting as required to keep top of curb level.
- C. Penetration Cover: Galvanized sheet metal with flanged removable top. Provide 38 mm (1-1/2 inch) thick mineral fiber board insulation.
- D. Flashing Sleeves: Provide sheet metal sleeves for conduit and pipe penetrations of the penetration cover. Seal watertight penetrations.

### 4. PIPE INSULATION FOR DX SYSTEMS

- A. Refer to specification Section MECHANICAL INSULATION.
- B. All exterior insulation shall be jacketed with aluminum pipe jacket unless specifically excluded by direction of the engineer.

## **ANIMAL CONTROL FACILITY**

- C. All exterior insulation that is not jacketed shall be painted with 2 coats of exterior latex paint, or in a method compliant with the manufacturer's IOM.
- D. All interior insulation that is exposed shall be painted per the interior finish schedule.
- E. All interior insulation that is exposed to damage shall be protected by an aluminum jacket as required for exterior installation.

### **PART 3 - EXECUTION**

#### 1. INSTALLATION

- A. Install refrigerant piping and refrigerant containing parts in accordance with ASHRAE Standard 15 and ASME B31.5
  - 1. Install piping as short as possible, with a minimum number of joints, elbow and fittings.
  - 2. Install piping with adequate clearance between pipe and adjacent walls and hangers to allow for service and inspection. Space piping, including insulation, to provide 1 inch minimum clearance between adjacent piping or other surface. Use pipe sleeves through walls, floors, and ceilings, sized to permit installation of pipes with full thickness insulation.
  - 3. Locate and orient valves to permit proper operation and access for maintenance of packing, seat and disc. Generally locate valve stems in overhead piping in horizontal position. Provide a union adjacent to one end of all threaded end valves. Control valves usually require reducers to connect to pipe sizes shown on the drawing.
  - 4. Use copper tubing in protective conduit when installed below ground.
  - 5. Install hangers and supports per ASME B31.5 and the refrigerant piping manufacturer's recommendations.

### B. Joint Construction:

- 1. Brazed Joints: Comply with AWS "Brazing Handbook" and with filler materials complying with AWS A5.8/A5.8M.
  - a. Use Type BcuP, copper-phosphorus alloy for joining copper socket fittings with copper tubing.
  - b. Use Type BAq, cadmium-free silver alloy for joining copper with bronze or steel.
  - c. Swab fittings and valves with manufacturer's recommended cleaning fluid to remove oil and other compounds prior to installation.
  - d. Pass nitrogen gas through the pipe or tubing to prevent oxidation as each joint is brazed. Cap the system with a reusable plug after each brazing operation to retain the nitrogen and prevent entrance of air and moisture.
- C. Protect refrigerant system during construction against entrance of foreign matter, dirt and moisture; have open ends of piping and connections to compressors, condensers, evaporators and other equipment tightly capped until assembly.
- D. Pipe relief valve discharge to outdoors for systems containing more than 100 lbs of refrigerant.
- E. Firestopping: Fill openings around uninsulated piping penetrating floors or fire walls, with firestop material.

F. Seismic Bracing: Refer to specification Section SEISMIC RESTRAINTS REQUIREMENTS FOR NON-STRUCTURAL COMPONENTS, for bracing of piping in seismic areas.

### 2. SIGNS AND IDENTIFICATION

- A. Systems containing more than 20 lb of refrigerant shall be provided with durable signs, in accordance with ANSI A13.1 and ANSI Z535.1, having letters not less than 1/2 inch in height designating:
  - 1. Valves and switches for controlling refrigerant flow, the ventilation and the refrigerant compressor(s).
  - 2. Signs on all exposed high pressure and low pressure piping installed outside the machinery room, with name of the refrigerant and the letters "HP" or "LP."
  - 3. The kind and total number of pounds of refrigerant required in the system for normal operations, and the field test pressure applied.
  - 4. The name and address of the installer.

### 3. FIELD QUALITY CONTROL

- A. Prior to initial operation examine and inspect piping system for conformance to plans and specifications and ASME B31.5. Correct equipment, material, or work rejected because of defects or nonconformance with plans and specifications, and ANSI codes for pressure piping.
- B. After completion of piping installation and prior to initial operation, conduct test on piping system according to ASME B31.5. Furnish materials and equipment required for tests. If the test fails, correct defects and perform the test again until it is satisfactorily done and all joints are proved tight.
  - 1. Every refrigerant-containing parts of the system that is erected on the premises, except compressors, condensers, evaporators, safety devices, pressure gages, control mechanisms and systems that are factory tested, shall be tested and proved tight after complete installation, and before operation.
  - 2. The high and low side of each system shall be tested and proved tight at not less than the lower of the design pressure or the setting of the pressure-relief device protecting the high or low side of the system, respectively, except systems erected on the premises using non-toxic and non-flammable Group A1 refrigerants with copper tubing not exceeding NPS 5/8. This may be tested by means of the refrigerant charged into the system at the saturated vapor pressure of the refrigerant at 68 degrees F minimum.
- C. Test Medium: A suitable dry gas such as nitrogen or shall be used for pressure testing. The means used to build up test pressure shall have either a pressure-limiting device or pressure-reducing device with a pressure-relief device and a gage on the outlet side. The pressure relief device shall be set above the test pressure but low enough to prevent permanent deformation of the system components.

### 4. SYSTEM TEST AND CHARGING

- A. System Test and Charging: As recommended by the equipment manufacturer or as follows:
  - Connect a drum of refrigerant to charging connection and introduce enough refrigerant into system to raise the pressure to 10 psi gage. Close valves and disconnect refrigerant drum. Test system for leaks with halide test torch or other approved method suitable for the test gas used. Repair all leaking joints and retest.

### **WINCHESTER, TN**

- 2. Connect a drum of dry nitrogen to charging valve and bring test pressure to design pressure for low side and for high side. Test entire system again for leaks.
- 3. Evacuate the entire refrigerant system by the triplicate evacuation method with a vacuum pump equipped with an electronic gage reading in microns. Pull the system down to 500 microns and hold for four hours then break the vacuum with dry nitrogen (or refrigerant). Repeat the evacuation two more times breaking the third vacuum with the refrigeration to be charged and charge with the proper volume of refrigerant.

**END OF SECTION 23 23 00**