Definiamo

$$\hat{f}(\xi) := \int_{-\infty}^{+\infty} e^{-ix\xi} f(x) \, dx$$

e

$$f(x) := \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ix\xi} \hat{f}(\xi) d\xi.$$

Esercizio 1. Calcolare la trasformata di Fourier delle seguenti funzioni:

1.

$$f(x) = \begin{cases} e^x & \text{se } x \le 0 \\ 0 & \text{se } x > 0; \end{cases}$$

2.

$$f(x) = \begin{cases} xe^x & \text{se } x \le 0 \\ e^{-2x} & \text{se } x > 0 \end{cases};$$

3.

$$f(x) = \begin{cases} e^{ax} & \text{se } x \le 0\\ 0 & \text{se } x > 0 \end{cases}$$

con a > 0;

4.

$$f(x) = \begin{cases} a & \text{se } -b \leq x \leq b \\ 0 & \text{altrimenti} \end{cases}$$

con a, b > 0;

5.

$$f(x) = \begin{cases} e^x & \text{se } x < 0 \\ e^{-x} & \text{se } x \ge 0 \end{cases}.$$

Esercizio 2. Calcolare la trasformata di Fourier della gaussiana:

$$f(x) = e^{-x^2}.$$

Esercizio 3. Siano $f \in L^1(\mathbb{R}) \cap C^2(\mathbb{R})$, $f' \in L^1(\mathbb{R})$ e $f'' \in L^1(\mathbb{R})$. Allora, dimostrare che si ha $\hat{f} \in L^1(\mathbb{R})$.

Esercizio 4. Siano $f,g\in L^1(\mathbb{R})\cap L^2(\mathbb{R})$. Allora, dimostrare che si ha

1.

$$\int_{-\infty}^{+\infty} f(x)\hat{g}(x) dx = \int_{-\infty}^{+\infty} \hat{f}(x)g(x) dx;$$

2.

$$\int_{-\infty}^{+\infty} f(x)\overline{g(x)} \, dx = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \hat{f}(x)\overline{\hat{g}(x)} \, dx \qquad \text{(identità di Parseval)};$$

3.

$$\widehat{f * g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi);$$

4.

$$\widehat{fg}(\xi) = \frac{1}{2\pi} (\widehat{f} * \widehat{g})(\xi) .$$