MEMORIA ENTREGA VOLUNTARIA DE SIMIO 3

DISEÑO DE MODELOS DE SIMULACIÓN

Juan Bautista Muñoz Ruiz

jbmr0001@red.ujaen.es

Aeropuerto 2:

Siguiendo el siguiente modelo disponemos los objetos:

Creamos un Source llamado LlegadaPasajeros y su correspondiente ModelEntity
 Pasajero, se le ha asignado a Llegada Pasajeros un símbolo en forma de Taxi:

• Creamos el Sink llamado SalidaPasajeros y le asociamos un símbolo en forma de máquina:

 Creamos los dos servidores de nuestra simulación, el CheckInPrioritario y el CheckIn y le colocamos un trabajador a cada uno:

Establecemos las conexiones entre todos los elementos mediante "Path":

- Asignamos las distancias de cada conexión según las indicaciones del modelo activando la opción "Drawn to Scale" e indicando la distancia en su unidad correspondiente:
 - o LlegadaPasajeros a CheckInPrioritario:

LlegadaPasajeros a SalidaPasajeros:

	,
Entry Ranking Rule	First In First Out
Drawn To Scale	False
 Logical Length 	125.0
Allow Dassing	T

LlegadaPasajeros a ChekIn:

o Checkin a Salida Pasajeros:

Lifti y Karikiriy Kule	FIRST TH FIRST OUT
Drawn To Scale	False
	65.0
Units	Meters

o CheclnPrioritario a SalidaPasajeros:

 Asignamos las probabilidades de cada camino, en primer lugar configuramos el nodo de decisión:

• LlegadaPasajeros a CheckInPrioritario:

LlegadaPasajeros a CheckIn:

LlegadaPasajeros a SalidaPasajeros:

Se han dispuesto las colas de una manera realista:

Se ha creado un rectángulo para el suelo de la entrada y se le ha aplicado una textura:

Se ha creado una elipse para el suelo del aeropuerto y se le ha asignado una textura:

Se ha creado una línea curva, se ha modificado su altura y anchura y se le ha aplicado una textura:

Se han creado varios símbolos para los Pasajeros y se ha habilitado la opción "Random Symbol" del ModelEntity:

Ejecutamos y observamos los resultados.

Creamos una Rate table:

Modificamos las propiedades de la EntradaPasajeros para incluir la Rate Table:

Ejecutamos y observamos los resultados. Baja considerablemente el flujo debido a la nueva tabla:

Creamos una Data Table para establecer los tiempos de atención de cada servidor:

Tubicz	TUDICZ			
	PrioridadPasajero	TiempoCheckInPrioritario	TiempoCheckIn	
▶ 1	1	Random.Triangular(1,2,5)	Random.Uniform(2,5)	
2	2	Random.Triangular(2,3,6)	Random.Uniform(3,5)	
3	3	Random.Triangular(3,4,7)	Random.Uniform(4,6)	

Establecemos las unidades de tiempo para las propiedades de la tabla en minutos

Establecemos las prioridades del Pasajero con una distribución discreta con 0,33 para cada prioridad:

Modificamos los tiempos de servicio de los dos servidores:

Observamos el siguiente error tal y como vimos en clase:

