MASS. UNIVERSITY OF MASSACHUSETTS Dept. of Electrical & Computer Engineering

Digital Computer Arithmetic ECE 666

Part 2
Unconventional Number Systems

Israel Koren
Spring 2004

ECE666/Koren Part.2 .1 Copyright 2004 Koren

Unconventional Fixed-Radix Number Systems

- Number system commonly used in arithmetic units binary system with two's complement representation of negative numbers
- Other number systems have proven to be useful for certain applications -
- ♦ Negative radix number system
- ♦ Signed-digit number system
- ♦ Sign-logarithm number system
- ◆ Residue number system

ECE666/Koren Part.2 .2 Copyright 2004 Koren

Negative-Radix Number Systems

- ◆ The radix r of a fixed-radix system usually a positive integer
- $rac{r}{}$ can be negative $rac{r}{}$ (β a positive integer)
- ♦ Digit set $x_i = 0,1,...,\beta-1$
- ♦ Value of n-tuple (Xn-1, Xn-2,...,X0) -

$$X = \sum_{i=0}^{n-1} x_i \ (-\beta)^i.$$

♦ The weight wi is -

$$w_i = \begin{cases} \beta^i & \text{if } i \text{ is even} \\ -\beta^i & \text{if } i \text{ is odd.} \end{cases}$$

Example - Negative-Decimal System

- lacktriangle Negative-radix number system with β =10 nega-decimal system
- ◆Three-digit nega-decimal numbers -

- * Largest positive value 909-10=90910
- * Smallest value 090-10=-9010
- * Asymmetric range $-90 \le X \le 909$
- * Approximately 10 times more positives than negatives
- lacktriangle This is always true for odd values of n opposite for even n
- ♦ Example the range for n=4 is $-9090 \le X \le 909$

ECE666/Koren Part.2 .4 Copyright 2004 Koren

Negative-Radix Number Systems - Properties

- ♦ No need for a separate sign digit
- No need for a special method to represent negative numbers
- Sign of number is determined by the first nonzero digit
- ♦ No distinction between positive and negative number representations - arithmetic operations are indifferent to the sign of the numbers
- ◆ Algorithms for the basic arithmetic operations in the negative-radix number system are slightly more complex then their counterparts for the conventional number systems

ECE666/Koren Part.2 .5 Copyright 2004 Koren

Example - Negative-Binary System

- ♦ Negative-radix numbers of length n=4, $\beta=2$ nega-binary system
- ightharpoonup Range -1010=1010-2 $\leq X \leq$ 0101-2=+510
- When adding nega-binary numbers carry bits can be either positive or negative
- ◆ Example: -8 +4 -2 +1 0 0 1 0 -2 0 0 1 1 -1 1 1 0 1 -3
- Nega-binary proposed for signal processing applications
- ◆ Algorithms exist for all arithmetic operations
- ◆ Did not gain popularity: Main reason not better than the two's complement system

A General Class of Fixed-Radix Number Systems

- ◆ The negative-radix, and many other fixed-radix number systems are members of a broad class of non-redundant number systems
- ♦ An n-digit number system characterized by a positive radix β, digit set $0,1,...,\beta-1$, a vector Λ of length n $\Lambda=(\lambda_{n-1},\lambda_{n-2},...,\lambda_0)$; $\lambda_{i=}-1,1$
- \blacklozenge System identified by triplet \lt n , β , Λ \gt
- ♦ The value X of an n-tuple (Xn-1, Xn-2,...,X0) is

$$X = \sum_{i=0}^{n-1} \lambda_i x_i \beta^i$$

♦ The multiplying factor Λ allows a different selection between β^i and $-\beta^i$ for every digit position i

ECE666/Koren Part.2 .7 Copyright 2004 Koren

Special Cases of General Class

- For any given radix 2^n different number systems corresponding to the different values of Λ
- ♦ Positive-radix number system $\lambda_{i}=+1$ for every i
- ♦ Negative-radix number system λi=(-1)ⁱ for every i
- ♦ Radix-complement number system with x_{n-1} as a "true" sign digit $(x_{n-1}=0,1)$ $\Lambda = (-1,1,1,...,1)$

ECE666/Koren Part.2 .8 Copyright 2004 Koren

General Class $\langle n, \beta, \Lambda \rangle$ - Largest Representable Integer

$$p_i = \begin{cases} eta - 1 & \text{if } \lambda_i = +1 \\ 0 & \text{otherwise} \end{cases} = \frac{1}{2} (\lambda_i + 1) (\beta - 1),$$

$$P = \sum_{i=0}^{n-1} \frac{1}{2} (\lambda_i + 1)(\beta - 1)\beta^i = \frac{1}{2} \left[\sum_{i=0}^{n-1} \lambda_i (\beta - 1)\beta^i + \sum_{i=0}^{n-1} (\beta - 1)\beta^i \right]$$
$$= \frac{1}{2} \left[Q + (\beta^n - 1) \right]$$

 $\blacklozenge Q$ - value of n-tuple $(\beta-1,\beta-1,\ldots,\beta-1)$

General Class $\langle n, \beta, \Lambda \rangle$ - Smallest Representable Integer

♦ N=(yn-1, yn-2,...,y0)

$$y_i = \begin{cases} \beta - 1 & \text{if } \lambda_i = -1 \\ 0 & \text{otherwise} \end{cases}$$
; $i = 0, 1, \dots, n-1$

$$N = \sum_{i=0}^{n-1} \frac{1}{2} (\lambda_i - 1)(\beta - 1)\beta^i = \frac{1}{2} [Q - (\beta^n - 1)]$$

- ightharpoonup Range $N \leq X \leq P$ is asymmetric (in general)
- ♦ Number of integers in range $P-N+1 = \beta^{n}$
- ♦ Measure of asymmetry difference between the absolute values of the largest and smallest numbers - P-|N| = P+N = Q

ECE666/Koren Part.2 .10 Copyright 2004 Koren

Range of System - Examples

- ♦ Negative-radix system with $\Lambda = (..., -1, +1, -1, +1)$ asymmetric range
- lacktriangle For an even n β times more negative numbers than positive
- ♦ To have more positive numbers $\Lambda = (..., +1, -1, +1, -1)$
- ♦ Two of the binary systems are nearly symmetric
- ♦ Two's complement < $n,\beta=2,\Lambda=(-1,1,1,...,1)$ > P+N=Q=-ulp
- ♦ < n,β=2,Λ=(+1,-1,-1,...,-1) > P+N=Q=+ulp

ECE666/Koren Part.2 .11 Copyright 2004 Koren

Additive Inverse and Subtraction in $\langle n, \beta, \Lambda \rangle$

- ♦ Complement of a digit $x_i \bar{x}_i = (\beta 1) x_i$
- lacktriangle Complement \bar{X} of a number X -

$$\overline{X} = \sum_{i=0}^{n-1} \bar{x}_i \lambda_i \beta^i = \sum_{i=0}^{n-1} \lambda_i (\beta - 1) \beta^i - \sum_{i=0}^{n-1} \lambda_i x_i \beta^i = Q - X$$

- $-X = \bar{X} Q = \bar{X} + (-Q)$
- lacktriangle Additive inverse of X adding the additive inverse of Q to the complement X
- \Rightarrow Subtraction X Y = X + Y + (-Q)
 - * Two add operations with carry propagation time consuming
- \blacklozenge Alternative $X Y = \bar{X} + Y$
 - * Two digit-complement operations, and only one addition with carry-propagation

Example

- ♦ Two's complement system Q=-ulp and -X=X+ulp
- ♦ Nega-binary system

* Q =
$$(...,1,1,1,1)$$
-2 = $-(...,0,1,0,1)$ -2
* -Q = $(...,0,1,0,1)$ -2

♦ Example - additive inverse of (01011)-2=(-9)10

- ◆ Addition following rules of nega-binary addition
- Result can be verified by adding the original number to its additive inverse (nega-binary addition)

$$(01011)_{-2} + (11001)_{-2} = (00000)_{-2}$$

Signed-Digit Number Systems

- ♦ So far digit set {0,...,r-1}
- ♦ In the signed-digit (SD) number system, digit set is $\{\overline{r-1}, \overline{r-2}, ..., \overline{1}, 0, 1, ..., r-1\}$ ($\overline{i} = -i$)
- ♦ No separate sign digit

♦ Example:

```
* r=10, n=2; digits - \{9,8,...,1,0,1,...,8,9\}
```

- * Range $99 \le X \le 99$ 199 numbers
- * 2 digits, 19 possibilities each 361 representations redundancy
- * 01=19=1 ; 02=18=-2
- * Representation of 0 (or 10) is unique
- * Out of 361 representations, 361-199=162 are redundant 81% redundancy
- * Each number in range has at most two representations

Reducing Redundancy in Signed-Digit Number Systems

- ◆ Redundancy can be beneficial but more bits needed
- ◆ Reducing redundancy digit set restricted to

$$x_i \in \{\overline{a}, \overline{a-1}, \dots, \overline{1}, 0, 1, \dots, a\}$$
 with $\left|\frac{r-1}{2}\right| \le a \le r-1$

- $* \lceil x \rceil$ smallest integer larger than or equal to x
- ◆ To represent a number in a radix r system at least r different digits are needed
- $\phi \bar{a} \leq x_i \leq a$ 2a+1 digits
- $extstyle 2a+1 \ge r \quad \text{and} \quad \left\lceil \frac{r-1}{2} \right\rceil \le a$

Example - SD Number System

- r=10 range of a is $5 \le a \le 9$
- ♦ If a=6, n=2-133 numbers in range $66 \le X \le 66$
- ♦ 13 values for each digit total of 13² = 169 representations 27% redundancy
- ♦ 1 has only one representation 01 19 is not valid
- ♦ 4 has two representations 04 and 16

ECE666/Koren Part.2 .16 Copyright 2004 Koren

Eliminating Carry Propagation Chains

- \blacklozenge Calculating $(x_{n-1},...,x_0) \pm (y_{n-1},...,y_0) = (s_{n-1},...,s_0)$
- ♦ Breaking the carry chains an algorithm in which sum digit si depends only on the four operand digits Xi, Yi, Xi-1, Yi-1
- ◆ Addition time independent of length of operands
- ♦ An algorithm that achieves this independence:
- ♦ Step 1: Compute interim sum Ui and carry digit Ci
- $lack lack u_i = lack x_i + lack y_i lack C_i$ where $c_i = \left\{egin{array}{ll} 1 & ext{if } (x_i+y_i) \geq a \ ar{1} & ext{if } (x_i+y_i) \leq ar{a} \ 0 & ext{if } |x_i+y_i| < a \end{array}
 ight.$
- ♦ Step 2: Calculate the final sum Si = Ui + Ci-1

Example - r=10, a=6

$$\triangle x_i = \bar{6}, ..., 0, 1, ..., 6$$

♦ Example - 3645+1456

$$c_i = \begin{cases} 1 & \text{if } (x_i + y_i) \ge 6\\ \bar{1} & \text{if } (x_i + y_i) \le \bar{6}\\ 0 & \text{otherwise} \end{cases}$$

- ♦ In conventional decimal number system carry propagates from least to most significant digit
- ♦ Here no carry propagation chain
- ◆ Carry bits shifted to left to simplify execution of second step

Converting Representations

- ◆ This addition algorithm can be used for converting a decimal number to SD form by considering each digit as the sum Xi+yi above
- ♦ Example converting decimal 6849 to 5D

- ◆ Converting SD to decimal subtracting digits with negative weight from digits with positive weight
- **♦ Example** converting 13251 to decimal 10050 -03201 6849

Proof of the Two-Step Algorithm

- ♦ To guarantee no new carry $-|Si| \le a$
- ♦ Since $|C_{i-1}| \le 1$, $|U_i|$ must be $\le a-1$ for all X_i, Y_i
- ♦ Example largest x_{i+y_i} is $2a \Rightarrow c_{i=1}$, $u_{i=2a-r}$ since $a \leq r-1$, $u_{i=2a-r} \leq a-1$
- ♦ Example smallest x_{i+y_i} for which $c_{i=1}$ is $a \Rightarrow u_{i=a-r<0}$ or $|u_i|=r-a$; to get $|u_i| \leq a-1$, $2a \geq r+1$
- lacktriangle Selected digit set must satisfy $\left\lceil \frac{r+1}{2} \right\rceil \leq a \leq r-1$
- ♦ Exercise show that for all values of xi+yi, $|u_i| \le a-1$ if $a \ge \lceil \frac{r+1}{2} \rceil$
- ♦ Example for SD decimal numbers, $a \ge 6$ guarantees no new carries in previous algorithm

ECE666/Koren Part.2 .20 Copyright 2004 Koren

Addition of Binary SD Numbers

- Only one possible digit set $\{1,0,\overline{1}\}$ $\alpha=1$
- ◆ Interim sum and carry in addition algorithm -

$$u_i = (x_i + y_i) - 2c_i$$
 $c_i = \begin{cases} 1 & \text{if } (x_i + y_i) \ge 1 \\ \bar{1} & \text{if } (x_i + y_i) \le \bar{1} \\ 0 & \text{if } (x_i + y_i) = 0. \end{cases}$

♦ Summary of rules -

x_iy_i	00	01	01	11	11	11
c_i	0	1	1	1	1	0
u_i	0	Ī	1	0	0	0

- ♦ Addition is commutative 10, 10, 11 not included
- lacktriangle In the binary case $a \geq \left\lceil \frac{r+1}{2} \right\rceil = 2$ cannot be satisfied
- No guarantee that a new carry will not be generated in the second step of the algorithm

Addition - Carry Generation

- lacktriangle If operands do not have $\overline{1}$ new carries not generated
- ♦ Example -
 - * In conventional representation a carry propagates from least to most significant position

		1	1	• • •	1	1	
+		0	0		0	1	
	1	1	1		1		c_i
		1	1		1	0	u_i
	1	0	0		0	0	$\overline{s_i}$

- * Here no carry propagation chain exists
- lacktriangle If operands have $ar{\mathbf{1}}$ new carries may be generated
- ♦ Example -
 - * If Xi-1yi-1 = 01 Ci-1 = 1 and if Xiyi = 01 - Ui = 1 Si = Ui+Ci-1 = 1+1 a new carry is generated

		0	1	1	$\bar{1}$	1	1	
+		1	0	0	$\bar{1}$	0	1	
	1	1	1	$\overline{1}$	1	1		c_i
				1				
		*	*	*	1	0	0	$\overline{s_i}$

* Stars indicate positions where new carries are generated and must be allowed to propagate

Addition - Avoiding Carry Generation

- ♦ Selecting Ci=0 $Ui = \bar{1}$
- ♦ However, for $x_{i-1}y_{i-1}=\bar{1}\bar{1} \Rightarrow c_{i-1}=\bar{1}$ and we must still select $c_i=\bar{1}$, $u_i=1$
- ♦ Similarly, when $x_iy_i=01$ and $x_{i-1}y_{i-1}=\bar{1}\bar{1}$ or $0\bar{1}$, instead of $u_i=\bar{1}$ \Rightarrow select $c_i=0$ & $u_i=1$
- ◆ Ui and Ci can be determined by examining the two bits to the right Xi-1Yi-1
- ◆ ui and ci can still be calculated in parallel for all bit positions

x_iy_i	00	01	01	11	11	11
c_i	0	1	1	1	1	0
u_i	0	Ī	1	0	0	0

Addition of Binary SD Numbers - Modified Rules

x_iy_i	00	01	01	$0\overline{1}$	$0\overline{1}$	11	$\bar{1}\bar{1}$
$ x_{i-1} y_{i-} $	1 -	$\begin{array}{c} \text{neither} \\ \text{is } \bar{1} \end{array}$	at least one is $\bar{1}$		at least one is $\bar{1}$	-	
$egin{pmatrix} c_i \ u_i \end{pmatrix}$	0 0	$\frac{1}{1}$	0 1	0 1	ī 1	1 0	$\bar{1}$

lacktriangle Direct summation of the two operands results in $001\bar{1}1$, equivalent to 00101, all representing 310

ECE666/Koren Part.2 .24 Copyright 2004 Koren

Minimal Representations of Binary SD Numbers

- Representation with a minimal number of nonzero digits
- Important for fast multiplication and division algorithms
- Nonzero digits add/subtract operations, zero digits shift-only operations
- ♦ Example Representations of X=7:
- ightharpoonup 1001 is the minimal representation

Copyright 2004 Koren

Encoding of SD Binary Numbers

- ♦ 4x3x2=24 ways to encode 3 values of a binary signed bit x using 2 bits, x^h and x¹ (high and low)
- ♦ Only nine are distinct encodings $\begin{bmatrix} 1 & 0 \end{bmatrix}$ under permutation and logical $\begin{bmatrix} 1 & 1 \end{bmatrix}$ negation two have been used in practice
- $\begin{array}{|c|c|c|c|c|c|} \hline & Encoding 1 & Encoding 2 \\ \hline x & x^h x^l & x^h x^l \\ \hline 0 & 0 0 & 0 0 \\ 1 & 0 1 & 0 1 \\ \bar{1} & 1 0 & 1 1 \\ \hline \end{array}$
- Encoding #2 a two's complement representation of the signed digit x
- ♦ Encoding #1 is sometimes preferable
 - * Satisfies $x = x^1 x^h 11$ has a valid value of 0
 - * Simplifies conversion from 5D to two's complement subtracting $x_{n-1}, x_{n-2}, \dots, x_0$ from $x_{n-1}, x_{n-2}, \dots, x_0$ using two's complement arithmetic
 - * This requires a complete binary adder
 - * A simpler conversion algorithm exists

ECE666/Koren Part.2 .26 Copyright 2004 Koren

Conversion Algorithm - Simpler Circuit

- * Binary signed digits examined one at a time, right to left
- * All occurrences of $\overline{\bf 1}$ are removed and the negative sign is forwarded to the most significant bit, the only bit with a negative weight in the two's complement representation
- * The rightmost 1 is replaced by 1 and the negative sign is forwarded to the left, replacing 0's by 1's until a 1 is reached, which ``consumes" the negative sign and is replaced by 0
- * If a 1 is not reached the 0 in the most significant position is turned into a 1, becoming the negative sign bit of the two's complement representation
- * If a second \mathbf{I} is encountered before a $\mathbf{1}$ is, it is replaced by a $\mathbf{0}$ and the forwarding of the negative sign continues
- * The negative sign is forwarded with the aid of a "borrow" bit which equals 1 as long as a $\overline{\bf 1}$ is being forwarded, and equals 0 otherwise

ECE666/Koren Part.2 .27 Copyright 2004 Koren

Conversion Algorithm Rules

- ♦ yi i-th digit of the SD number
- ◆ Zi i-th bit of the two's complement representation
- ♦ Ci previous borrow
- ♦ Ci+1 next borrow

y_i	c_i	z_i	c_{i+1}
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0
$\bar{1}$	0	1	1
$\bar{1}$	1	0	1

- ♦ For the least significant digit we assume Co=0
- ϕ yi Ci = Zi 2Ci+1

Conversion Algorithm - Cont.

♦ Example - -1010 - converting SD to two's complement

- ♦ Range of representable numbers in SD method almost double that of the two's complement method

♦ Without the extra bit position - the number 19 would be converted to -13

ECE666/Koren Part.2 .29 Copyright 2004 Koren