

number of the B1 data, "B2 DATA SERIAL NO." representing the serial number of the B2 data corresponding to the B1 data, "CATEGORY", "PAGE", "DETAILED INFORMATION #1" to "DETAILED INFORMATION #6", and "CM#1" to "CM#6". The CM information corresponding to the program detailed information #1 to #6 are assigned to the CM#1 and CM#6 in this case. While, the B2 data D_{B_2} consists of the same format (Fig. 7B) as that of the program list screen described above (Fig. 8B).

By using the B1 data D_{B_1} , the B2 data D_{B_2} , and the screen layout data D_{ML} , the EPG processing part 46A creates the C data (display data) D_c . The C data D_c refers the A1 data D_{A_1} , the A2 data D_{A_2} , and the A3 data D_{A_3} through the B1 data D_{B_1} and the B2 data D_{B_2} . The C data D_c created in this way is stored in the DRAM 37A as bit map data of the EPG screen, and is read out by the MPEG video decoder 37 described above to be displayed on the EPG screen of the monitor device 23.

In this case, as the screen layout data referred by the C data D_c , a standard screen layout data D_{ML}' previously stored in a memory of the multimedia processor 46 may be referred in addition to the transmitted screen layout data D_{ML} (Fig. 3).

In this connection, Fig. 9 shows a data referring process to create the C data D_c . In this case, an arrow in the figure denotes the direction for referring data. First, the A3 data D_{A_3} is referred by the A1 data D_{A_1} and the A2 data D_{A_2} , the A2 data D_{A_2} is referred by the A1 data D_{A_1} , the A1 data D_{A_1} is referred by the B2 data D_{B_2} , and the B2 data D_{B_2} is referred by the B1 data D_{B_1} . Then,

At step SP4, the EPG processing part 46A judges whether or not the layout of the display screen based on the screen layout data D_{ML} includes the CM display area.

When an affirmative result is obtained at step SP4, the EPG processing part 46A proceeds to step SP5 to refer the data F12 (Fig. 4C) relating to CM among from the A3 data D_{A3} constituting the program content data D_{PC} , and then proceeds to step SP6.

On the contrary, when a negative result is obtained at step SP4, the system controller 44 proceeds to step SP6 as it is.

Next, the system controller 44 creates the C data D_c based on the B data D_B and the screen layout data D_{ML} at step SP6, and creates bit map data of the EPG screen. The created bit map data is stored in the DRAM 37A at step SP7 and displayed by the MPEG video decoder 37. After that, the system controller 44 proceeds to step SP8 to terminate the display processing procedure RT1.

In this way, the EPG screen M1, e.g. the screen shown in Fig. 12, can be displayed on the display screen 23A of the monitor device 23. The EPG screen M1 mainly has a program guide area A_1 , an operation setting area A_2 , and a CM display area A_3 .

In the program guide area A_1 , the guide columns of television programs in various time zones are displayed for every broadcasting stations, and the program detailed screen of a predetermined form is hierarchically set in each program. In the operation menu area A_2 , the operation menus of "Search", "Reserve", "Set", and "Return" are displayed, and the operation screen of a predetermined form is