Recitation #12

Irina Espejo (iem244@nyu.edu)

Center for Data Science

DS-GA 1014: Optimization and Computational Linear Algebra for Data Science

Exercise 4, 2018 review

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_1, ..., \lambda_n$. Prove that $||Ax|| \leq \max_i |\lambda_i| ||x||$ for any $x \in \mathbb{R}^n$.

Exercise 4, 2018 review

Exercise 8, 2018 review

Suppose $A \in \mathbb{R}^{m \times n}$ has rank m. Prove AA^T is invertible

Exercise 8, 2018 review

Exercise 9, 2018 review

Consider the optimization problem

$$\begin{array}{l}
\text{minimize}_{x} \|x\|^{2} \\
\text{subject to } Ax = b
\end{array}$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ are fixed and $b \in Im(A)$.

- **1** Prove that any minimizer x^* must belong to Im(A)
- **①** Give a formula for the minimizer x^* and show it is unique

Exercise 9, 2018 review

Exercise 9, 2018 review

Exercise 10, 2018 review

Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$, we define the block matrix $C \in \mathbb{R}^{n \times (m+k)}$ by

$$C = [A \ B]$$

Either prove the following statement or give a counterexample

$$rank(C) = rank(A) + rank(B)$$

Exercise 10, 2018 review

Exercise 20, 2018 review

Let $A \in \mathbb{R}^{n \times n}$ have the unsual property that the image space (column space) Im(A) is equal to its kernel.

- What can we say about A^2 ?
- \odot Give an example of such an A

Exercise 20, 2018 review

Exercise 25, 2018 review

Let $A \in \mathbb{R}^{n \times n}$ and consider its SVD decomposition $A = U \Sigma V^T$. Let $A' = U \Sigma' V^T$ where Σ' is obtained from Σ by replacing every entry by zero except for the entry corresponding to the largets singular value.

- **3** Show that A' is the best rank 1 approximation of A in the Forbenius norm, meaning that A' is the solution to $\min_{B:rank(B)=1} \|B-A\|_F$
- **③** Show that A' is the best rank 1 approximation of A in the spectral norm, meaning that A' is the solution to $\min_{B:rank(B)=1} \|B A\|_F$

Exercise 25, 2018 review

Exercise 25, 2018 review

Exercise 0.9, 2019 review

For each of the following statement, say if they are true or false and justify your answer

- ① If a continuous function $f: \mathbb{R} \to \mathbb{R}$ has a unique minimizer then f is convex
- If a continuous function $f : \mathbb{R} \to \mathbb{R}$ is such that f is decreasing on $(-\infty, x_0]$ and increasing on $(x_0, +\infty]$
- **3** A twixe differentiable function $f: \mathbb{R} \to \mathbb{R}$ whose derivative f' is non-decreasing is convex

Exercise 0.9, 2019 review