Discussion 3: Merge sort, Quick Sort, together with Divide and Conquer CS101 Fall 2024

CS101 Course Team

Oct 2024

Sort

Recursion relation

3 Divide and Conquer

CS101 Course Team

Merge Sort

Core idea: Merge sorted sequences together to sort the whole array.

Recursion relation: $T(n) = 2T(\frac{n}{2}) + \Theta(n)$.

Time complexity: $\Theta(n \log n)$.

Space complexity: $\Theta(n)$. (Not in-place)

Stable: Rely on breaking ties by choosing the front one.

Quick Sort

Core idea: Distinguish those greater than pivot and less than pivot.

Recursion relation

Choosing *i*-th largest as pivot: $T(n) = T(i) + T(n-i) + \Theta(n)$.

Randomized quick-sort: choosing each as pivot uniformly.

A deterministic way: Median-of-Median.

Time complexity: $\Theta(n \log n)$ (Average case), $\Theta(n^2)$ (Worst case).

Space complexity: $\Theta(1)$. (In-place).

Not stable: Choosing non-distinct element as pivot.

CS101 Course Team

Discussion3

Oct 2024

Variant algorithms

Counting Inversions: Trivial idea: Check all (i,j) pairs whether $a_i > a_i$. Based on merge-sort: Count "Cross-Inversions" when merging.

N-th element: Trivial idea: Sort then find, takes $\Theta(n \log n)$. Based on quick-sort: Consider the number of 2 parts after dividing.

CS101 Course Team Discussion3 5 / 14

Sort

2 Recursion relation

3 Divide and Conquer

Master Theorem

Master Theorem

Given
$$T(n) = aT(\frac{n}{b}) + f(n), T(1) = 1.$$

- $f(n) = o(n^{\log_b a}) \Rightarrow T(n) = \Theta(n^{\log_b a})$
- $f(n) = \Theta(n^{\log_b a} \log^k n) \Rightarrow T(n) = n^{\log_b a} \log^{k+1} n$.
- $f(n) = \Omega(n^{\log_b a} + \epsilon)$ with some $\epsilon > 0 \Rightarrow T(n) = \Theta(f(n))$

Example:

- $T(n) = 2T(\frac{n}{2}) + \Theta(n)$: $a = 2, b = 2, n^{\log_b a} = \Theta(n) \Rightarrow T(n) = \Theta(n \log n)$
- ② $T(n) = 7T(\frac{n}{2}) + \Theta(n^2)$: $a = 7, b = 2, n^{\log_b a} = \omega(n^2) \Rightarrow T(n) = \Theta(n^{\log_2 7})$

Recursion Tree & Expansion

Recall

$$T(n) = 2T(\frac{n}{2}) + \Theta(n) \Rightarrow \exists \text{constant } c, T(n) \leq 2T(\frac{n}{2}) + cn.$$

$$T(n) \leq 2[2T(\frac{n}{4}) + c\frac{n}{2}] + cn = 4T(\frac{n}{4}) + 2cn$$

$$\leq 4[2T(\frac{n}{8}) + c\frac{n}{4}] + 2cn = 8T(\frac{n}{8}) + 3cn.$$

$$\Rightarrow T(n) \leq 2^k T(\frac{n}{2^k}) + kcn$$

Substitute by $k = \log_2 n$, we got $T(n) \le nT(1) + cn \log_2 n = O(n \log_2 n)$.

Recursion Tree: Visualization Understanding of Expansion.

Time = depth \times (average) time for each layer.

→ロト→部ト→ミト→ミトーミーのQで

Mathematical Skill

23 MidTerm

$$T(n) = T(0.99n) + \Theta(1)$$
 where $T(0) = 0$ and $T(1) = 1$.

From senior high school: $T(n) = f(T(n-1), \cdots)$

Substitution: $t(m) = T(0.99^{-m})$ i.e. $m = \log_{\frac{1}{0.99}} n$.

Then
$$t(m) = t(m-1) + \Theta(1) \Rightarrow t(m) = \Theta(m) \Rightarrow T(n) = \Theta(\log n)$$
.

Another

$$T(n) = aT(\frac{n}{b}) + f(n).$$

Sort

Recursion relation

3 Divide and Conquer

CS101 Course Team

Discussion3

Oct 2024

Other Algorithms using divide and conquer

- Strassen Matrix Multiplication: $O(n^{\log_2 7})$. for $n \times n$ matrix (Recent: $n^{\omega}, \omega < 2.371339$, https://arxiv.org/abs/2404.16349)
- Fast Fourier Transform (FFT): $O(n \log n)$ for n-th degree polynomial.

Example: Hanoi Puzzle

- Moving disks over 3 rods.
- Only move one disk each time.
- Never place a larger disk on top of a smaller one.
- Example of moving 3 disks in 7 steps.

Example: Hanoi Puzzle

- Always obey the rule that the larger disks remain on the bottom of the stack.
- ② For the problem with n disks, If we ignore the largest disks, the problem will be reduced to size of n-1. If we successfully solve the problem with n1, that means we move all n1 towers in one stack, then we can move the biggest disk to the right place.
- **3** we can find it costs $2^n 1$ steps to moving n disks.

CS101 Course Team

Example: Hanoi Puzzle

Pseudocode:

- 1: **function** MOVETOWER(currentHeight, fromPole, toPole, withPole)
- if currentHeight = 0 then return 2:
- 3: end if
- moveTower(currentHeight 1, fromPole, withPole, toPole) 4:
- moveDisk(height, fromPole, toPole) 5:
- moveTower(currentHeight 1, withPole, toPole, fromPole) 6:

return

7: end function

totalNumberOfMove $\leftarrow 2^n$

We have T(n) = 2T(n-1) + 1, It's easy to find that we have time complexity $T(n) = O(2^n)$ same as the number of steps we need.

CS101 Course Team