TDVP

Alessandro Sinibaldi

June 2022

0.1 Introduction

0.2 Time dependent variational principle

In the time dependent variational principle (TDVP) method we consider a linearization in δt of the exact evolution:

$$|\phi(t+\delta t)\rangle = |\phi(t)\rangle - i\delta t\hat{H} |\phi(t)\rangle + O(\delta t^2).$$
 (1)

Similarly, we perform an expansion for the evolved variational state in the first order for δt :

$$|\psi[\boldsymbol{\theta}(t+\delta t)]\rangle = |\psi[\boldsymbol{\theta}(t)]\rangle + \delta t \sum_{k} \dot{\theta}_{k}(t) \hat{O}_{k}(t) |\psi[\boldsymbol{\theta}(t)]\rangle + O(\delta t^{2}),$$
 (2)

where the operators $\hat{O}_k(t)$ are diagonal and they have the following matrix elements on a system's configuration \mathbf{x} :

$$O_k(\mathbf{x}, t) = \frac{\partial_{\theta_k} \psi(\mathbf{x}; \boldsymbol{\theta}(t))}{\psi(\mathbf{x}; \boldsymbol{\theta}(t))}.$$
(3)

where $\psi(\mathbf{x}; \boldsymbol{\theta}(t)) = \langle \mathbf{x} | \psi[\boldsymbol{\theta}(t)] \rangle$. Therefore, the operators $\hat{O}_k(t)$ perform the derivatives of the variational state with respect to the parameters, namely $\hat{O}_k(t) | \psi[\boldsymbol{\theta}(t)] \rangle = \partial_{\theta_k} | \psi[\boldsymbol{\theta}(t)] \rangle$.

The TDVP employs the fidelity as distance among states and maximize it with respect to the $\theta(t)$, according to the McLachlan's variational principle. Actually, the McLachlan's variational principle is valid only if $\theta(t)$ are real, thus when the $\theta(t)$ are complex they can be splitted in real and imaginary parts. In the special case of complex $\theta(t)$ and holomorphic ansätz the Dirac-Frenkel variational principle can be used simplifying the problem.

Therefore, the fidelity among $|\phi(t+\delta t)\rangle$ and $|\psi[\theta(t+\delta t)]\rangle$ is given by:

$$\mathcal{F}(\dot{\boldsymbol{\theta}}(t)) = \frac{|\langle \phi(t+\delta t) | \psi[\boldsymbol{\theta}(t+\delta t)] \rangle|^2}{\langle \phi(t+\delta t) | \phi(t+\delta t) \rangle \langle \psi[\boldsymbol{\theta}(t+\delta t)] | \psi[\boldsymbol{\theta}(t+\delta t)] \rangle}.$$
 (4)

The denominator is present because $|\phi(t+\delta t)|\rangle$ and $|\psi[\boldsymbol{\theta}(t+\delta t)]\rangle$ are not normalized in general. Moreover, we observe that the fidelity depends on the time derivatives of the parameters $\dot{\boldsymbol{\theta}}(t)$, which becomes the variational parameters to optimize. On the contrary, $\boldsymbol{\theta}(t)$ only fix the starting state and are not changed during the optimization. Imposing the maximum condition:

$$\frac{\partial \mathcal{F}(\dot{\boldsymbol{\theta}}(t))}{\partial \dot{\boldsymbol{\theta}}_{t}} = 0 \tag{5}$$

while keeping the first non trivial order in δt , which is $O(\delta t^2)$, yields to a linear system with unknowns: $\dot{\boldsymbol{\theta}}(t)$:

$$\sum_{k'} S_{kk'}^R \dot{\theta}_{k'}(t) = C_k^I, \tag{6}$$

where $S^R_{kk'}$ and C^I_k are respectively the real and imaginary parts of the quantities:

$$S_{kk'} = \frac{\left\langle \partial_{\theta_k} \psi \mid \partial_{\theta_{k'}} \psi \right\rangle}{\left\langle \psi \mid \psi \right\rangle} - \frac{\left\langle \partial_{\theta_k} \psi \mid \psi \right\rangle \left\langle \psi \mid \partial_{\theta_{k'}} \psi \right\rangle}{\left\langle \psi \mid \psi \right\rangle^2},$$

$$C_k = \frac{\left\langle \partial_{\theta_k} \psi \mid \hat{H} \mid \psi \right\rangle}{\left\langle \psi \mid \psi \right\rangle} - \frac{\left\langle \partial_{\theta_k} \psi \mid \psi \right\rangle}{\left\langle \psi \mid \psi \right\rangle} \frac{\left\langle \psi \mid \hat{H} \mid \psi \right\rangle}{\left\langle \psi \mid \psi \right\rangle},$$
(7)

with $|\psi\rangle \equiv |\psi[\boldsymbol{\theta}(t)]\rangle$. The detailed calculation to obtain (6) from (5) is reported in the repository [?]. From the solution $\dot{\boldsymbol{\theta}}(t)$ of (6) we can update the parameters $\boldsymbol{\theta}(t) \longrightarrow \boldsymbol{\theta}(t+\delta t)$ using an integration scheme. The matrix $S_{kk'}$ and the vector C_k are stochastically computed using variational Monte Carlo (VMC), thus the overall algorithm based on the TDVP is called time-dependent variational Monte Carlo.