Statistical Methods Project Results & Conclusions

Your Team

March 2025

Study Design Recap

- Ten pre-registered hypotheses covering numeric-numeric, numeric-categorical, and categorical-categorical relationships.
- $\alpha = 0.05$ throughout.
- Effect-sizes reported: Pearson/Spearman r, Cramér's V, Welch–d (\approx SMD), partial η^2 and pseudo- R^2 where relevant.

Key Correlations (Tests 1–4)

Pair	r / ρ	р	
Engine Size \leftrightarrow Price	0.87	$< 2 \cdot 10^{-16}$	[0
$Horsepower \leftrightarrow Price$	0.81	$< 2\cdot 10^{-16}$	[C
$City\;MPG\;\leftrightarrow\;Highway\;MPG$	0.97	$< 2\cdot 10^{-16}$	[0
$Fuel\text{-}Efficiency \leftrightarrow Engine \; Size \; \big(Spearman\big)$	$-0.78 \ (Z = -10.43)$	$< 10^{-4}$	_

Take-away. Vehicle performance attributes (engine size, horsepower) almost perfectly predict price. Engine downsizing *does* trade off fuel economy.

Group Differences (Tests 5–7)

Test	p	Effect	C
Welch t	0.12	d = 0.36 (small)	Ν
Welch t	$1.1\cdot 10^{-4}$	d = -1.05	Т
One-way ANOVA	$3.3 \cdot 10^{-13}$	$\eta^2 = 0.46$	R
Kruskal–Wallis	$4.9\cdot 10^{-11}$	$\eta_H^2 pprox 0.35$	S
	Welch t Welch t One-way ANOVA	$\begin{array}{ccc} \text{Welch } t & 0.12 \\ \text{Welch } t & 1.1 \cdot 10^{-4} \\ \text{One-way ANOVA} & 3.3 \cdot 10^{-13} \end{array}$	Welch t 0.12 $d = 0.36$ (small) Welch t 1.1 \cdot 10 ⁻⁴ $d = -1.05$ One-way ANOVA 3.3 \cdot 10 ⁻¹³ $\eta^2 = 0.46$

Take-away. Aspiration and risk rating (symboling) produce the largest mean shifts; fuel type alone does not.

Categorical Associations (Tests 8–9)

Table	χ^2 (MC)	$p_{ m MC}$	V	Strength
Fuel Type \times Aspiration	33.0	$1.0\cdot10^{-4}$	0.40	Moderate-Strong
Body Style \times Drive Wheels	26.6	0.0042	0.26	Moderate

Interpretation.

- Diesels overwhelmingly use standard aspiration, whereas gas vehicles split between turbo/standard.
- Rear-wheel drive is concentrated in coupes and convertibles; 4-wheel drive almost exclusive to hatchbacks.

Model Line-up & Metrics

RMSE	MAE	R ² (test)
2 103	1 668	0.920
2 053	_	0.925
1 965	_	0.931
2 368	_	0.898
	2 103 2 053 1 965	2 053 — 1 965 —

Observations.

- \bullet Regularization nudges linear RMSE down by 6–7 %.
- Tree sacrifices a little accuracy for interpretability and non-linearity.
- \bullet All models explain $\geq 90\%$ of test-set variance.

Regression Tree (CART)

Regression Tree for Price

Variable Importance (CART)

Tree Insights

- First split on **engine_size i 182** cc: distinguishes mainstream vs. luxury/performance cluster.
- In the "small-engine" branch, curb_weight and horsepower refine price bands.
- For large engines, wheel_base and height separate premium sedans from GT-style coupes (\approx \$35 k leaf).

Predicted vs Actual Price (Linear Model)

Regression Diagnostics (Linear)

- QQ-Plot: residuals close to normal except mild tails.
- **Residuals–Fitted**: no funnel shape⇒ homoscedasticity acceptable.
- Scale-Location: variance fairly constant across fitted.

Key Findings

- **Pricing drivers.** Engine size, horsepower, curb weight, and wheel base dominate both correlation and predictive importance.
- Risk & cost. Higher symboling scores and higher normalized losses cluster around more expensive, powerful vehicles— significant at $p < 10^{-10}$.
- Fuel economy trade-off. Spearman $\rho = -0.78$ confirms large engines penalise average MPG.
- Best predictive model. Lasso regression (10-fold CV) achieved the lowest RMSE (1 965) and highest R^2 (0.93). Tree remains most interpretable.

Future Work

- Gradient-boosted trees (XGBoost, LightGBM) could improve RMSE while retaining some interpretability via SHAP.
- Explore non-linear interactions (e.g. engine_size \times fuel_type) with GAMs or polynomial terms.
- Integrate external data MSRP inflation adjustments or safety-rating scores to refine the price model.

Thank you!

Questions?