Inhaltsverzeichnis

Vo	orwort	5
1	Der Körper C der komplexen Zahlen	7
2	Topologische Grundbegriffe	9
3	Konvergente Folgen komplexer Zahlen	13
4	Konvergente und absolut konvergente Reihen	17
5	Stetige Funktionen	21
6	Zusammenhängende Räume, Gebiete in $\mathbb C$	25
7	Komplexe Differentialrechnung	31
8	Holomorphe Funktionen	35
9	Konvergenzbegriffe der Funktionentheorie	39
10	Potenzreihen 10.1 Konvergenzkriterien	41 41 44 45
11	Elementar-transzendente Funktionen 11.1 Exponentialfunktion und trigonometrische Funktionen	49 49 51 53
12	Komplexe Integralrechnung $12.1 \text{ Wegintegrale in } \mathbb{C} \qquad \dots \qquad \dots \qquad \dots \\ 12.2 \text{ Eigenschaften komplexer Wegintegrale} \qquad \dots \qquad \dots \\ 12.3 \text{ Wegunabhängigkeit von Integralen, Stammfunktionen} \qquad \dots \qquad \dots \\ \dots \qquad \dots \qquad \dots \\ \dots \qquad \dots \qquad \dots \qquad \dots \\ \dots \qquad \dots \qquad$	55 55 55 55
13	Integralsatz, Integralformel und Potenzreihenentwicklung 13.1 Cauchyscher Integralsatz für Sterngebiete	59 59 62 64

In halts verzeichn is

14 Fundamentalsätze über holomorphe Funktionen	69
14.1 Identitätssatz	. 69
14.2 Existenz singulärer Punkte	. 71
14.3 Konvergenzsätze von Weierstraß	
14.4 Offenheitssatz und Maximumprinzip	. 75
14.5 Allgemeine Version von Cauchys Satz	
15 Isolierte Singularitäten	83
15.1 Hebbare Singularitäten, Pole	. 83
15.2 Entwicklung von Funktionen um Polstellen	. 86
15.3 Wesentliche Singularitäten, Satz von Casorati-Weierstrass	. 87
16 Laurentreihen und Fourierreihen	89
16.1 Laurentdarstellung in Kreisringen	. 90

16

Laurentreihen und Fourierreihen

$$A = A_{r,s}(c) := \{ z \in \mathbb{C} \mid 0 \le r < |z - c| < s \le \infty \}$$

ist ein Kreisring um c mit innerem Radius r und äusserem Radius s. $A = A^+ \cap A^-$ mit $A^+ := B_s(c), A^- := \mathbb{C} \setminus \bar{B}_r(c)$.

Satz 16.0.1

Es sei $f \in \mathcal{O}(A_{r,s}(c))$. Dann gilt:

$$\int_{S_\rho} f \, \mathrm{d} \zeta = \int_{S_\sigma} f \, \mathrm{d} \zeta \, \forall \, \rho, \sigma \in \mathbb{R} \text{ mit } r < \rho \leq \sigma < s, \\ S_\rho \coloneqq \{z \in \mathbb{C} \mid |z - c| = \rho\}$$

Beweis: Sei $\gamma := S_{\sigma} - I - S_{\rho} + I$. Dann ist $\gamma \sim 0$, d.h. $B_{\sigma}(c) \setminus (\overline{B_{\rho}(c)} \cup I)$ ist einfach zusammenhängend. Also:

$$\int_{\gamma} f \, \mathrm{d}\zeta = 0$$

und

$$\int_{S_0} f \, \mathrm{d}\zeta - \int_{I} f \, \mathrm{d}\zeta - \int_{S_0} f \, \mathrm{d}\zeta + \int_{I} f \, \mathrm{d}\zeta = 0$$

Satz 16.0.2 Cauchscher Integralsatz für Kreisringe

 $f \in \mathcal{O}(D), A = A^+ \cap A^-$ ein Kreisring um $c \in D$ so dass $\bar{A} \subset D$. Dann gilt:

$$f(z) = \frac{1}{2\pi i} \int_{\partial A} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\partial A^+} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{1}{2\pi i} \int_{\partial A^-} \frac{f(\zeta)}{\zeta - z} d\zeta \, \forall z \in A$$

Beweis: Folgt direkt aus der allgemeinen Version des Cauchyschen Satzes.

16.1 Laurentdarstellung in Kreisringen

Definition 16.1.1

Ist h eine komplexe Funktion in einem unbeschränkten Bereich W, so schreiben wir $\lim_{z\to\infty}h(z)=b$, wenn es zu jeder Umgebung V von $b\in\mathbb{C}$ ein R>0 gibt, so dass $h(z)\in V\,\forall z\in W$ mit $|z|\leq R$

Satz 16.1.2

Es sei $f \in \mathcal{O}(\bar{A})$, $A = A^+ \cap A^-$ ein Kreisring um c mit Radien r,s. Dann existieren $f^+ \in \mathcal{O}(A^+)$ und $f^- \in \mathcal{O}(A^-)$ so dass gilt: $f = f^+ + f^-$ in A und $\lim_{z \to \infty} f^-(z) = 0$. Die Funktionen f^+ und f^- sind hierdurch eindeutig bestimmt. Für jedes $\rho \in [r,s]$ gilt:

$$f^+(z) = \frac{1}{2\pi i} \int_{S_\rho} \frac{f(\zeta)}{\zeta - z} d\zeta, z \in B_\rho(c)$$

$$f^{-}(z) = \frac{-1}{2\pi i} \int_{S_{\rho}} \frac{f(\zeta)}{\zeta - z} d\zeta, z \in \mathbb{C} \setminus \overline{B_{\rho}(c)}$$

Beweis:

Existenz: Die Funktion

$$f_{\rho}^{+}(z) = \frac{1}{2\pi i} \int_{S_{0}} \frac{f(\zeta)}{\zeta - z} d\zeta, z \in B\rho(c)$$

ist holomorph in $B_{\rho}(c)$. Für $\sigma \in (\rho, s)$ gilt: $f_{\rho}^+ = f_{\sigma}^+|_{B_{\rho}(c)}$ nach dem Integralsatz. Es gibt also eine Funktion $f^+ \in \mathcal{O}(A^+)$ die in $B_{\rho}(c)$ mit f^+ übereinstimmt. Ebenso ist

$$f^{-}(z) := f_{\sigma}^{-}(z) := \frac{-1}{2\pi i} \int_{S_{-}} \frac{f(\zeta)}{\zeta - z} d\zeta, z \in A^{-}, r < \sigma < \min\{s, |z - c|\}$$

holomorph in A^- . Die Integralformel, angewendet auf alle Kreisringe A' um c mit $\bar{A}' \subset A$, liefert in A die Darstellung $f = f^+ + f^-$. Die Standardabschätzung für Integrale gilt für $z \in A^-$:

$$|f^-(z)| \leq \sigma \max_{\zeta \in S_\sigma} |f(\zeta)(\zeta - z)^{-1}| \leq \frac{\sigma}{|z - c| - \sigma} |f|_{S_\sigma}$$

also $\lim_{z\to\infty} f^-(z) = 0$.

Eindeutigkeit: Es seien $g^+ \in \mathcal{O}(A^+)$, $g^- \in \mathcal{O}(A^-)$ weitere Funktionen mit $f = g^+ + g^-$ in A und $\lim_{z \to \infty} g^-(z) = 0$. Dann gilt:

$$f^+ - g^+ = g^- - f^-$$

auf A. Daher wird durch $h \coloneqq f^+ - g^+$ auf A^+ und $h \coloneqq g^- - f^-$ auf A^- eine ganze Funktion $h \colon \mathbb{C} \to \mathbb{C}$ mit $\lim_{z \to \infty} h(z) = 0$ definiert. h ist beschränkt auf \mathbb{C} und mit Liouville ist $h(z) \equiv \text{const.}$ Wegen dem Limes ist $h(z) \equiv 0$, also $g^+ \equiv f^+$ und $g^- \equiv f^-$.