Consider a flow system illustrated in the Figure below. An underground fuel storage tank is initially filled with only with nitrogen gas at $P_{N2-initial}$ =100,000 [Pa]. A very volatile and flammable liquid fuel is slowly pumped into the tank.

a) What will be the maximum level, h_{max} , of the fuel in the tank if the pressure P_1 at point 1 is 160,000. [Pa]? A centrifugal pump, which receives a shaft work of $-W_{s-out}$ [J/kg], maintains pressure P_1 constant. The tank headspace is NOT open to atmosphere; i.e., the vent is closed.

Bonus Part (20 Bonus points)

b) How long will it take for the fuel in the tank to reach the h_{max} level?
Hint: Consider nitrogen gas as an ideal gas; therefore, the ideal gas law applies]

Illustration

Data			
P ₁	= 160,000.	Pressure at point 1 maintained by a pump	[Pa]
Н	= 3.	Total height of the tank	[m]
h _{max}	= ??	Maximum level of fuel in the tank;	[m]
$P_{N2-initial} = 100,000.$		Initial pressure in the empty tank;	[Pa]
P_2		Pressure in the tank at any time;	[Pa]