(Original) An ice skate blade, comprising:
 an elongated blade body having a main blade portion and an edge portion

made from Type 60 Nitinol;

said edge portion of said blade body having an ice-contacting bottom edge; said main blade portion having structure for engaging a blade holder; said bottom edge having opposed corners that are sharpened to bite into ice to facilitate travel and maneuvering on said ice:

said main blade portion having an impact strength of greater than 45 footpounds and a hardness greater than about 40 RC.

- (Original) An ice blade as defined in claim 1, wherein: said main blade portion has a tensile strength of greater than 130KSI and an elastic elongation of more than 3%.
- (Original) An ice blade as defined in claim 1, wherein:
 said blade body has a hardness between about 48RC and 55RC.
- (Original) An ice blade as defined in claim 1, wherein: said ice blade is an ice skate blade, and said blade holder is affixed to an ice skate boot;

said structure for engaging a blade holder includes structure on a top edge, opposite to said bottom edge, for engaging said blade holder of said ice skate boot.

- 5. (Canceled).
- (Original) A method of making ice blades, comprising: selecting a Type 60 Nitinol sheet that has been hot-worked at a temperature of about 900°C to 950°C to a reduction of at least about 2% in the dimension of said hot-working;

cutting ice blade blanks from said sheet;

heating said blanks to between 600°C to about 800°C and immediately quenching said blanks to ambient temperature to produce blanks having a hardness of about 48-53RC; and

grinding one edge of said blade blanks to a desired profile and sharpness.

- (Original) A method as defined in claim 6, further comprising: heat treating of the bottom of the blade to produce a very hard and erosion resistant surface.
- 8. (Original) A method as defined in claim 7, wherein: said heat treating of said bottom of said blade includes heating said one edge to an elevated temperature of about 850-1000°C and immediately quenching said blade blank to produce a hardness at said one edge of above 56RC.
- 9. (Original) A method as defined in claim 6, wherein: said grinding step includes rotating a narrow grinding blade, made primarily of cubic boron nitride, against said one end of said blade blanks and grinding off a layer of Nitinol in several passes, each pass being at a depth of 0.015*-0.020*.
- 10. (Currently Amended) A method of forming a part made of Type 60 Nitinol to a desired shape, comprising:

heating said part to a temperature above 700°C;

placing said part between matched dies having a die interface profile corresponding to said desired shape; and

holding said part at said temperature for a period of at least about 15 miuntesminutes.

11. (Original) The method as defined in claim 9, further comprising: immediately after said holding period, rapidly quenching said part in coolant from said temperature to a temperature below about 400°C.

PAGE 04

- 12. (Original) The method as defined in claim 10, wherein: said part is an ice blade and said desired shape is flat.
- 13. (Previously Added) An ice skate, comprising:
 an elongated blade body having a main blade portion and an edge portion made from Type 60 Nitinol;

said edge portion of said blade body having an ice-contacting bottom edge; said main blade portion having structure engaged in a blade holder that is fastened to a boot;

said bottom edge having opposed corners that are sharpened to bite into ice to facilitate travel and maneuvering on said ice;

said main blade portion having an impact strength of greater than 45 footpounds and a hardness greater than about 40 RC.

- 14. (Previously Added) An ice skate as defined in claim 13, wherein: said main blade portion has a tensile strength of greater than 130KSI and an elastic elongation of more than 3%.
- 15. (Previously Added) An ice blade as defined in claim 13, wherein: said blade body has a hardness between about 48RC and 55RC.
- 16. (New) An ice skate as defined in claim 13, wherein: said main blade portion has a Young's modulus that is lower than the Young's modulus of steel.
- 17. (New) An ice skate as defined in claim 13, wherein: said main blade portion has a higher damping capacity than steel.
- 18. (New) An ice skate as defined in claim 13, wherein: said main blade portion has a lower coefficient of friction on the ice than steel.

- 19. (New) An ice skate as defined in claim 13, wherein:
 said edge portion of said blade body heat treated to have a smooth and hard
 oxide finish on bottom and side edges thereof that is harder and smoother than said
 main blade portion, and has a lower coefficient of friction to produce glide and
 running properties on ice superior to steel.
- 20. (New) An ice skate as defined in claim 13, wherein:
 said blade body is heat treated to reduce brittleness and improve toughness
 and impact strength, and give the skate blade an elastic property called
 ultraelasticity.