RED: Recommendations Encouraging Diversity

Project check-in #2

10.06.2025 Clemence Reda

Background

1.	Motiv	ation:	Dive	rsity in	recommend	lation	(p.3-4)
					•		, _,

- 2. Objectives of the RED project (p.5)
- 3. Data & diversity metrics (p.6-8)
- 4. Intro to MABs and DPPs (p.9-11)
- 5. Main idea (p.12)

Pass Culture a phone app for French teens (<20yr) to browse and book cultural goods nearby with credits.

Diversification points obtained for each new category / subcategory / genre / location / type (a bit like set cover; achievement score); those are not visible to the user

Courtesy of Jill-Jenn Vie (Inria SODA).

Drug repurposing First-in-class versus Best-in-class

First launched in that mechanistic class

Highest therapeutic advantage [...]

"The data indicated that it is slightly better to be first than to be best"

"[...] products that are firstto-launch increasingly tend to perform better [...]"

^[1] Schulze, U., & Ringel, M. (2013). What matters most in commercial success: first-in-class or best-in-class?. *Nature Reviews Drug Discovery*, 12(6), 419-420.

^[2] Spring, L., Demuren, K., Ringel, M., & Wu, J. (2023). First-in-class versus best-in-class: an update for new market dynamics. *Nat Rev Drug Discov*, *22*(7), 531-532.

Objective of RED to design recommender systems for personalized good and diverse items.

suggesting items with a high probability of positive feedback from the user

somewhat "controllable" recommendations: e.g., out of the user's comfort zone

taking into account the user's interests/item history

Scientific challenges

- Incorporate a tradeoff between quality and diversity
- Versatile enough to be applicable in all use cases
- Not too computationally expensive (millions of items)

Data

 Φ_i : embedding for item i with $|\Phi_i|=1$

H_u: item history for user u (at all times)

q: (un)known feedback model with positive values

B: the size of the batch of items to recommend at each time

recommender system

Data sets I don't have access to Pass Culture data

Synthetic: Gaussian Generate item and user embeddings Φ_i and c_{ij} at random, $q(i,u) \propto \Phi_i^T c_{ij}$

```
Pseudo-real: MovieLens [1] for movie recommendation: 0 (not seen), 1, 2, ..., 5 stars
Apply universal-sentence-encoder to movie title & keywords
q(i,u) := SVD(rating matrix)[i,u] # fill out 0's with Singular Value Decomposition
RMSE: 0.96 (on held-out data)
```

Pseudo-real: PREDICT [2] for drug repurposing: 0 (not tested), 1 (success), -1 (failure) Select 10 first PCs from drug and disease feature vectors to get Φ_i and c_u % of cumulative explained variance: 85% (drugs), 68% (diseases) $q(i,u) := RF([\Phi_i, c_{i,i}])$ # classification with Random Forest

Average accuracy: 0.97 (on held-out data)

Clemence Reda

^[1] https://movielens.org/

^[2] Réda, C. (2023). PREDICT drug repurposing dataset (2.0.1) [Data set]. Zenodo. doi:10.5281/zenodo.7983090

Diversity metrics introduction to similarity kernels

(Item embedding) kernel K $K_{\{x\},\{y\}} = \langle \Phi(x), \Phi(y) \rangle$ e.g., linear kernel: $\Phi = Id$, \sim similarity b/w items with K positive definite

(Log)-determinant of (a subset of) the kernel Volume in space occupied by a set S of items: $vol(S)=|det(K_{S,S})|^{1/2}$

Drawn for all i $|x_i|^2=1$, K linear kernel in 2D ... but works for any # of dimension and # of points (and any symmetric kernel)

 $|K_{\{x_1,x_2\},\{x_1,x_2\}}| \le |K_{\{x_3,x_4\},\{x_3,x_4\}}|$ where $< x_3, x_4 > \le < x_1, x_2 >$ (cosine similarity)

(Pointwise) relevance and diversity metrics with kernels

Relevance: "Click-through-rate" $R(S=\{i_1,...,i_B\}, H_t) = \sum_{i < B} q(i,u_t) / B$

Intrabatch diversity: "inside a batch" $AD(S) = vol(K_{S,S})$

Interbatch diversity: "across history" $ED(S, H_t) = vol(K_{SUHt,SUHt}) - vol(K_{H,H})$

Avg # unique recommendations in history Complementary to the interbatch metric

(Stochastic, contextual) multi-armed bandits or MABs online reward maximization when q is *unknown*

Definition A MAB is defined by its sampling rule: arm with highest probability of positive feedback?

Reward maximization Performance is compared to a deterministic oracle with access to the true q

Regret(T) =
$$\Sigma_t$$
 Perf(q, t) - Perf(q_t, t)

(Finite) determinantal Point Processes or DPPs sampling diverse set of points in a data-driven fashion

Point Process A distribution over finite subsets of a (finite) set $X=\{x_1,x_2,...,x_N\}$ Definition* The probability of a subset is correlated to its determinant $Prob(S \subseteq X) \propto det(K_{S,S})$ where $K_{S,S}$ is the kernel built on the subset $S \subseteq X$

- Sampling Algorithms in $O(N^3)$ [1] or O(N.poly(k)) [2] to sample k points out of N from a DPP
- Conditioning (SAMPLE) [3] Prob(S \subseteq X | H \subseteq X) \propto det(K_{S,S} K_{S,H}K_{H,H}⁻¹(K_{S,H})^T)
- MAP inference (MAX) Finding a subset S of size k maximizing Prob(S \subseteq X) is NP-hard
- [1] Theorem 7 and Algorithm 18 in Hough, J. B., Krishnapur, M., Peres, Y., & Virág, B. (2006). Determinantal processes and independence.
- [2] Calandriello, D., Derezinski, M., & Valko, M. (2020). Sampling from a k-DPP without looking at all items. *Advances in Neural Information Processing Systems* 33, 6889-6899.
- [3] Borodin, A., & Rains, E. M. (2005). Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. *Journal of statistical physics*, 121, 291-317.

(Finite) determinantal Point Processes or DPPs sampling diverse set of points in a data-driven fashion

Point Process A distribution over finite subsets of a (finite) set $X = \{x_1, x_2, ..., x_N\}$ Definition* The probability of a subset is correlated to its determinant $Prob(S \subseteq X) \propto det(K_{S,S})$ where $K_{S,S}$ is the kernel built on the subset $S \subseteq X$

Sampling Algorithms in $O(N^3)$ [1] or O(N.poly(k)) [2] to sample k points out of N from a DPP \times

- includes history Conditioning (SAMPLE) [3] Prob(S \subseteq X | H \subseteq X) \propto det(K_{S,S} - K_{S,H}K_{H,H}⁻¹(K_{S,H})^T) in $O(k^3+|H|^3+k^2|H|^2+(N-|H|)k^2)$ [4]
- MAP inference (MAX) Finding a subset S of size k maximizing Prob(S \subseteq X) is NP-hard

- [1] Theorem 7 and Algorithm 18 in Hough, J. B., Krishnapur, M., Peres, Y., & Virág, B. (2006). Determinantal processes and independence.
- [2] Calandriello, D., Derezinski, M., & Valko, M. (2020). Sampling from a k-DPP without looking at all items. Advances in *Neural Information Processing Systems* 33, 6889-6899.
- [3] Borodin, A., & Rains, E. M. (2005). Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. Journal of statistical physics, 121, 291-317.
- [4] Mariet, Z., Gartrell, M., & Sra, S. (2019, April). Learning determinantal point processes by corrective negative sampling. In The 22nd International Conference on Artificial Intelligence and Statistics (pp. 2251-2260). PMLR.
- [5] Chen, L., Zhang, G., & Zhou, E. (2018). Fast greedy map inference for determinantal point process to improve recommendation diversity. Advances in Neural Information Processing Systems, 31.

(Finite) determinantal Point Processes or DPPs leveraging the quality-diversity decomposition

Quality-diversity decomposition (QD) [1] $K = QQ^TQQ$

where Φ is the item embedding matrix $|\Phi_i|=1$ and $Q=\text{diag}(q_1, q_2, ..., q_N)$ where $q_i \ge 0$ $\text{Prob}(S \subseteq X) \propto \text{det}(K_{S,S}) = \Pi_{i \in S} q_i^2 \text{det}(\Phi_{S,:}^T \Phi_{S,:})$

$$f_{QD}(S, u) = 2 \log vol(Q_{S,u}^{2\lambda} \Phi_{S,:}^{T} \Phi_{S,:}^{2(1-\lambda)} Q_{S,u}^{2\lambda})$$

Scientific challenges (bis)

- Incorporate a tradeoff between quality and diversity
 - → use (a version of) QD decomposition as objective function
- Versatile enough to be applicable in all use cases
 - → for any kernel and any feedback model, including *unknown* ones
- Not computationally too expensive (millions of items)
 - → a time complexity with a dependency larger than O(N) will be too expensive

[1] Kulesza, A., & Taskar, B. (2010). Structured determinantal point processes. *Advances in neural information processing systems*, 23.

My progress on the project since last time

1.	General	ized QD	objective	function
----	---------	---------	-----------	----------

- 2. Case where the reward model is known
- 3. Case where the reward model is unknown
- 4. Adaptive QD tradeoff
- 5. Perspectives

(p.14-15)

(p.16-19)

(p.20-21)

(p.22-24)

(p.25)

Generalized quality-diversity objective function

Data

 Φ_i : embedding for item i with $|\Phi_i|=1$

H_{II}: item history for user u

q : feedback model with positive values

B: the size of the batch of items to recommend at each time

K: kernel similarity

Hyperparameters

 λ : weight of the relevance task

η: regularization factor

Objective function f for user u

For all S, $f_{obj}(S, u) = 2 \log vol(Q_{S,u}^{2\lambda} M_{S|Hu,S|Hu}^{2(1-\lambda)} Q_{S,u}^{2\lambda})$

- Q_{S,u} = diag({ q(i, u) for i in S })
- $M_{S|Hu,S|Hu} = K_{S,S} K_{S,Hu}(K_{Hu,Hu} + \eta Id)^{-1}(K_{S,Hu})^T$

a single user

a single user

commends

observes feedback

recommender system

a trajectory of length T

Conditioning:

dependency in $\Omega(|H|^2 \log |H|)$

on items i₁,...,i₈

items $i_1,...,i_B$

Generalized quality-diversity objective function with a fuzzy denuding/masking approach

Practical function f for user u

 $f_{Prac}(S, u) = 2log \ vol(Q_{S,u}^{2\lambda} M_{S \cap Hu, S \cap Hu}^{2(1-\lambda)} Q_{S,u}^{2\lambda}) \qquad \text{where } M_{S \cap Hu, S \cap Hu} = K_{S,S} - K'_{S,S} \\ \text{and for all } x, y \text{ in } S, \ K'_{\{x\}, \{y\}} = <\Phi'(x), \ \Phi'(y) > \text{and } \Phi'(x) = 0 \text{ if } \min_{\psi \in Hu} |\Psi - x| > \alpha, \text{ else } \Phi(x)$

dependency in Ω(k log|H|)
using a k-d tree for all of S
can be faster using GPUs

Synthetic Gaussian data, B=5, T=10, α =0, η =0.01, K linear, average across 10 iters (MAX)

	QD λ=0.5	Obj λ=0.5	Prac λ=0.5	QD λ=0.8	Obj λ=0.8	Prac λ=0.8	QD λ=0.1	Obj λ=0.1	Prac λ=0.1	
Relevance	0.586	0.516	0.559	0.571	0.524	0.558	0.586	0.496	0.560	rewards in [0,1]
Intrabatch diversity	0.956	0.971	0.976	0.990	0.965	0.971	0.956	0.961	0.960	Volume
Interbatch diversity	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	collapses
%unique recomm	0.100	1.000	1.000	0.100	1.000	1.000	0.100	1.000	1.000	

Case where the reward model is known Synthetic Gaussian data: reward $q(i,u) \propto \Phi_i^T c_u$

B=5, T=10, α =0, λ =0.5, η =0.01, K linear, average across 10 iters (MAX)

	E-greedy (E=λ)	QD	Markov DPP [1]	Obj	Prac
Relevance	0.536	0.592	0.524	0.526	0.572
Intrabatch diversity	0.582	0.956	0.953	0.972	0.972
Interbatch diversity	0.000	0.000	0.000	0.000	0.000
%unique recomm.	0.200	0.100	0.600	1.000	1.000
	Baseline for diversity	Baseline for relevance	Baseline for int user history		

[1] Affandi, R. H., Kulesza, A., & Fox, E. B. (2012). Markov determinantal point processes. arXiv preprint arXiv:1210.4850.

Case where the reward model is known (SAMPLE) Synthetic Gaussian data: reward $q(i,u) \propto \Phi_i^T c_u$

2D PCA plot of selected points (positive ●, negative ●) at each point of the trajectory of length T=10 Previously selected ●

Case where the reward model is known

MovieLens data: reward q(i,u) := SVD(rating matrix)[i,u]

B=5, T=10, α =0, λ =0.5, η =0.01, K linear, average across 10 iters (MAX)

	E-greedy (E=λ)	QD	Markov DPP [1]	Obj	Prac	
Relevance	4.581	4.577	<u>4.430</u>	4.421	4.481	rewards in [1,5]
Intrabatch diversity	0.261	0.761	0.543	0.692	0.711	
Interbatch diversity	0.000	0.000	0.000	0.000	0.000	
%unique recomm.	0.200	0.100	0.860	1.000	1.000	
Runtime	353 +- 35	510 +- 6	1,328 +- 12	508 +- 3	<u>515 +- 4</u>	
(sec.)						
	Baseline for diversity	Baseline for relevance		•		

[1] Affandi, R. H., Kulesza, A., & Fox, E. B. (2012). Markov determinantal point processes. arXiv preprint arXiv:1210.4850.

Case where the reward model is known

PREDICT data: reward $q(i,u) := RandomForest([\Phi_i, c_u])$

B=5, T=10, α =0, λ =0.5, η =0.01, K linear, average across 10 iters (MAX)

	E-greedy (E=λ)	QD	Markov DPP [1]	Obj	Prac	rewards in {0,1
Relevance	1.000	1.000	1.000	1.000	1.000	(overfitting)
Intrabatch diversity	0.637	1.000	0.881	1.000	0.961	
Interbatch diversity	0.000	0.000	0.000	0.000	0.000	
%unique recomm.	0.100	0.100	<u>0.967</u>	1.000	0.933	
Runtime (sec.)	51 +- 1	52 +- 1	56 +- 1	51 +- 0	<u>52 +- 0</u>	
	Baseline for diversity	Baseline f		0		

[1] Affandi, R. H., Kulesza, A., & Fox, E. B. (2012). Markov determinantal point processes. arXiv preprint arXiv:1210.4850.

Case where the reward model is unknown

Assumption: linear reward $q^*(i,u) := ([\Phi_i, c_u])^T \theta^*$

Cumulative regret at time T Regret(T) = $\sum_{t<T} f_{obj}(S_t, u_t; q^*) - f_{obj}(S_t, u_t; q_t)$

At each time, we update the model $q_t(i,u) = [\Phi_i, H_u]^T \theta_t$ based on the received feedback and then use MAX on the Upper Confidence Bound of the empirical reward model q_t

Synthetic data : B=5, T=16, α =0, λ =0.5, η =0.01, K linear (MAX)

(δ-uniform) Upper Confidence Bound	Synthetic data: $B=5$, $T=16$, $\alpha=0$, $\Lambda=0.5$, $\eta=0.01$, K linear (IVIAX)					
There is β such that for all t, i, u,	•	LinUCB bandit [1]	LinOASM bandit [2]	Prac+UCB		
$q^*(i,u) \le q_t(i,u) + \beta(t,i)$	Relevance	0.94	<u>0.95</u>	0.99		
with probability 1- δ The baselines (almost)	Intrabatch diversity	0.94	1.00	1.00		
never learn because we forced the MAX approach	%unique recomm.	0.10	0.10	1.00		
What happens if we allow	Regret(T)	16.15	14.84	5.28		
SAMPLE?	Dacali	ing for learning D	acalina far lagraina y a	divorcity		

[1] Li et al. "A contextual-bandit approach to personalized news article recommendation." *Proceedings of the 19th international conference on World wide web*. 2010.

Baseline for learning

Baseline for learning × diversity

^[2] Gabillon et al. "Large-scale optimistic adaptive submodularity." *Proceedings of the AAAI Conference on Artificial Intelligence*. Vol. 28. No. 1. 2014.

Case where the reward model is unknown

Assumption: linear reward $q^*(i,u) := ([\Phi_i, c_u])^T \theta^*$

Cumulative regret at time T Regret(T) = $\sum_{t<T} f_{obj}(S_t, u_t; q^*) - f_{obj}(S_t, u_t; q_t)$ Comparing the regret curves for each bandit algorithm at T=16

LinUCB

MAX: cumulative regret 16.15

SAMPLE: cumulative regret 15.62

LinOASM

MAX: cumulative regret 14.84

SAMPLE: cumulative regret 15.52

Prac+UCB

MAX: cumulative regret 5.28

The regret may decrease when we allow SAMPLE

But the baselines are still not learning (linear curve)...

... contrary to Prac+UCB (using MAX)

Adaptive quality-diversity tradeoff automatically tune λ in [0,1] to the user feedback

Goal: Finetune on the fly λ to a value which maximizes $\Sigma_{t< T} f(S_t, u_t; \lambda)$

We can use any "good" learner (e.g., AdaHedge, EXP3, etc.) to learn the value of λ

Pseudo-code (for any bandit)

```
Start with a value \lambda_0
Initialize the online learner with the starting value
```

For each time t up to T

Apply the bandit strategy for sampling S_t

Update the learner with the "gain" obtained with λ_t on S_t : $-\nabla_{\lambda}$ f(S_t , u_t ; λ_t)

Obtain the new value λ_{t+1}

Return λ_T and the best a posteriori $\lambda^* = \operatorname{argmax}_{\lambda} \Sigma_{t < T} f(S_t, u_t; \lambda)$

Adaptive quality-diversity tradeoff Synthetic data: reward $q(i,u) \propto \Phi_i \tau c_u$

2D PCA plot of selected points (positive •, negative •) at each point of the trajectory of length T=10 Previously selected • Starting from $\lambda_0 = 0.3$

Adaptive quality-diversity tradeoff Synthetic data: reward $q(i,u) \propto \Phi_i^T c_u$

2D PCA plot of selected points (positive •, negative •) at each point of the trajectory of length T=10 Previously selected • Starting from λ_0 =0.1

What happens next

- 1. Find a better measure of interbatch diversity
- 2. Solve the overfitting problem in the PREDICT data set
- 3. Optimize the implementation of Prac(+UCB) for millions of items
- 4. Test in "real conditions": alternating users
- 5. Derive theoretical guarantees on relevance/diversity