## Abschlussprojekt

Ida Hönigmann

Fabian Dopf

January 17, 2022

### Aufgabe 1: Aufwandsordnung numerischer Verfahren

Wir betrachten ein abstraktes numerisches Verfahren, das für  $N \in \mathbb{N}$  Eingabedaten eine Laufzeit von  $y_N \in \mathbb{R}_+$  hat. Man sagt, das Verfahren habe Aufwandsordnung p > 0, falls eine Konstante C > 0 existiert, sodass  $y_N \leq CN^p$  für alle  $N \in \mathbb{N}$ .

### Teilaufgabe 1a:

Die Aufwandsordnung lässt sich über die Folge  $\{p_N\}_{N\in\mathbb{N}}$  mit

$$p_N = \frac{\log(y_{2N}) - \log(y_n)}{\log(2)} \text{ für } N \in \mathbb{N}$$
 (1)

quantifizieren. Beachten Sie, dass die Bestimmung von  $p_N$  die Verfügbarkeit von zwei aufeinanderfolgenden Folgengliedern  $y_N$  und  $y_{2N}$  erfordert. Verwenden Sie den Ansatz  $y_N = CN^p$  und leiten Sie die Formel in 1 her!

Beweis. Annahme:  $\forall N \in \mathbb{N} \text{ ist } p_N, \text{ sodass } y_N \leq CN^{p_N} \text{ für ein } C > 0.$ 

Für ein beliebiges  $N \in \mathbb{N}$  gilt  $\exists C_{1N}, C_{2N} > 0$  und  $p_{1N}, p_{2N} > 0$  mit  $y_N \leq C_{1N} N^{p_{1N}}$  und  $y_{2N} \leq C_{2N} (2N)^{p_{2N}}$ .

Für  $C := \max\{C_{1N}, C_{2N}\}$  und  $p_N := \max\{p_{1N}, p_{2N}\}$  gilt  $y_N \leq C_{1N}N^{p_{1N}} \leq CN^{p_N}$  und  $y_{2N} \leq C_{2N}(2N)^{p_{2N}} \leq C(2N)^{p_N}$ .

$$\log(y_{2N}) - \log(y_N) = \log\left(\frac{y_{2N}}{y_N}\right) = \log\left(\frac{C(2N)^{p_N}}{C \cdot N^{p_N}}\right) = \log(2^{p_N}) = p_N \log(2)$$
 (2)

$$\implies p_N = \frac{\log(y_{2N}) - \log(y_N)}{\log(2)} \tag{3}$$

TODO ob das so alles passt...

#### Teilaufgabe 1b:

Sei  $\{\delta_N\}_{N\in\mathbb{N}}\subseteq\mathbb{R}$  eine Nullfolge, d.h. es gilt  $\delta_N\to 0$  für  $N\to\infty$ . Weiters verhalte sich die Laufzeit wie  $y_N=(C+\delta_N)N^p$  mit C>0. Zeigen Sie, dass die Folge  $\{p_N\}_{N\in\mathbb{N}}$  gegen p konvergiert, d.h. es gilt  $p_N\to p$  für  $N\to\infty$ .

Beweis. Zuerst berechnen wir einen Grenzwert, den wir in späterer Folge verwenden werden. Die Gleichungen stimmen, da lim stetig ist und da laut Voraussetzung  $\delta_N$  und somit auch  $\delta_{2N}$  als Teilfolge, gegen 0 konvergieren.

1

$$\lim_{n \to \infty} \log \left( \frac{C + \delta_{2N}}{C + \delta_N} \right) = \log \left( \lim_{n \to \infty} \frac{C + \delta_{2N}}{C + \delta_N} \right) = \log \left( \frac{\lim_{n \to \infty} C + \delta_{2N}}{\lim_{n \to \infty} C + \delta_N} \right) = \log \left( \frac{C}{C} \right) = \log(1) = 0 \quad (4)$$

Wir berechnen  $\lim_{n\to\infty} p_n$  indem wir die Gleichung 1 verwenden. Durch Einsetzen von  $y_N=(C+\delta_N)N^p$  und den Rechenregeln von Limiten und dem Logarithmus erhalten wir folgendes:

$$\implies p_N = \frac{\log(y_{2N}) - \log(y_N)}{\log(2)} = \frac{\log((C + \delta_{2N})(2N)^p) - \log((C + \delta_N)N^p)}{\log(2)} = \frac{\log\left(\frac{(C + \delta_{2N})(2N)^p}{(C + \delta_N)N^p}\right)}{\log(2)}$$

$$= \frac{\log\left(\frac{(C + \delta_{2N})2^p}{(C + \delta_N)}\right)}{\log(2)} = \frac{p\log(2) + \log\left(\frac{C + \delta_{2N}}{C + \delta_N}\right)}{\log(2)} = p + \frac{\log\left(\frac{C + \delta_{2N}}{C + \delta_N}\right)}{\log(2)} \xrightarrow{n \to \infty} p + 0 = p$$
(6)

Zusammenfassend gilt nun  $\lim_{n\to\infty} p_n = p$ , was zu zeigen war.

Teilaufgabe 1c:

In sogenannter doppelt logarithmischer Darstellung (log-log Plots) wird für beide Koordinatenachsen eine logarithmische Skalierung verwendet, d.h. sowohl die waagrechte als auch die senkrechte Koordinatenachse wird logarithmisch unterteilt. Wie werden Potenzfunktionen der Form  $y = cx^p$  in einem log-log Plot dargestellt? Wie können Sie die Ordnung p und die Konstante c > 0 aus einem log-log Plot von  $y = cx^p$  direkt auslesen?

Darstellung ist Gerade. c = f(1) und p ist Steigung, wenn beide Achsen "gleich" skaliert.

## Aufgabe 2: Cholesky-Verfahren und Skyline-Matrizen

Eine Matrix  $A \in \mathbb{R}^{n \times n}$  heißt Skyline-Matrix, falls es für l = 1, ..., n Zahlen  $p_l, q_l \in \mathbb{N}_0$  gibt, sodass für die *i*-te Zeile und *j*-te Spalte von A gilt:

- $A_{i,k} = 0$  für  $k < i p_i$ ,
- $A_{k,j} = 0$  für  $k < j q_j$ ,

Folgendes Beispiel illustriert diese Aussage:

$$A = \begin{pmatrix} 1 & & & 1 \\ & 1 & & 2 & 2 \\ & & 1 & 3 & 3 \\ 1 & 2 & 3 & 14 & 18 \\ & 4 & 5 & 29 & 48 \end{pmatrix}.$$

#### Teilaufgabe 2a:

Beweisen Sie, dass das Cholesky-Verfahren genau dann wohldefiniert ist (d.h. es wird nicht durch Null dividiert oder die Wurzel aus einer negativen Zahl gezogen), wenn die Matrix  $A \in \mathbb{R}^{n \times n}$  symmetrisch und positiv definit ist.

Beweis. Wir wiederholen zuerst die relevanten Definitionen.

Eine Matrix  $A \in \mathbb{R}^{n \times n}$  heißt symmetrisch, falls  $A = A^T$ .

Eine Matrix  $A \in \mathbb{R}^{n \times n}$  heißt positiv definit, falls  $\forall u \in \mathbb{R}^n \setminus \{0\} : u^T A u > 0$ .

Wir zeigen  $\forall A \in \mathbb{K}^{n \times n}$  symmetrisch und positiv definit  $\exists L \in \mathbb{R}^{n \times n}$  untere Dreiecksmatrix :  $LL^T = A$  durch vollständige Induktion nach n.

#### • Induktionsanfang: n=1

Wenn  $A := (a_{11}) \in \mathbb{R}^{1 \times 1}$  eine beliebige symmetrische und positiv definite Matrix ist, folgt aus positiv definit, dass für

$$u := (1) \in \mathbb{R}^1 \setminus \{0\}$$
  $0 < u^T A u = (1) (a_{11}) (1) = a_{11}$ 

Da also  $a_{11} > 0$  gilt, ist  $L := (\sqrt{a_{11}}) \in \mathbb{R}^1$  wohldefiniert. Dann gilt

$$LL^{T} = (\sqrt{a_{11}}) (\sqrt{a_{11}}) = (a_{11}) = A$$

- Induktionsvoraussetzung:  $\forall A \in \mathbb{R}^{n \times n}$  symmetrisch und positiv definit  $\exists L \in \mathbb{R}^{n \times n}$  untere Dreiecksmatrix :  $LL^T = A$ .
- Induktionsschritt:  $n-1 \implies n$

Sei  $A \in \mathbb{R}^{n \times n}$  eine symmetrische und positiv definite Matrix. Wir definieren eine Matrix  $B \in \mathbb{R}^{(n-1) \times (n-1)}$  durch  $B_{i,j} := A_{i,j}$ , einen Vektor  $a \in \mathbb{R}^{n-1}$  durch  $a_i := A_{i,n}$  und eine Zahl  $\alpha \in \mathbb{R}$  durch  $\alpha := A_{n,n}$ .

Zusammengefasst gilt nun

$$A = \begin{pmatrix} B & a \\ a^T & \alpha \end{pmatrix}$$
 wobei sich das  $a^T$  aus der Symmetrie von  $A$  ergibt.

Für B gilt, dass es sich um eine symmetrische und positiv definite Matrix aus  $\mathbb{R}^{(n-1)\times(n-1)}$  handelt. Laut Induktionsvoraussetzung existiert dazu eine untere Dreiecksmatrix  $P \in \mathbb{R}^{(n-1)\times(n-1)}$  mit  $PP^T = B$ .

Da B positiv definit ist und somit regulär ist, folgt die eindeutige Existenz eines Vektors  $l \in \mathbb{R}^{n-1}$  der die Gleichung Pl = a erfüllt.

Wir wollen nun  $\beta \in \mathbb{R}$  so definieren, dass  $\beta = \sqrt{\alpha - l^T l}$ . Dazu müssen wir sicherstellen, dass  $\alpha - l^T l > 0$ .

Wenn wir die Definition von l verwenden und Umformen erhalten wir

$$\alpha - l^T l = \alpha - (P^{-1}a)^T (P^{-1}a) = \alpha - a^T (P^{-1})^T P^{-1}a$$
$$= \alpha - a^T (PP^T)^{-1}a = \alpha - a^T B^{-1}a$$

Da A positiv definit ist ergibt sich

$$0 < \begin{pmatrix} -B^{-1}a \\ 1 \end{pmatrix}^T \underbrace{\begin{pmatrix} B & a \\ a^T & \alpha \end{pmatrix}}_{=A} \begin{pmatrix} -B^{-1}a \\ 1 \end{pmatrix} = \alpha - a^T B^{-1}a$$

Also ist  $\beta:=\sqrt{\alpha-l^Tl}$  wohldefiniert. Umgeformt gilt nun  $l^Tl+\beta^2=\alpha$ . Definieren wir nun  $L\in\mathbb{R}^{n\times n}$  durch

$$L = \begin{pmatrix} P & 0 \\ l^T & \beta \end{pmatrix}$$

Dann gilt

$$LL^T = \begin{pmatrix} P & 0 \\ l^T & \beta \end{pmatrix} \begin{pmatrix} P^T & l \\ 0 & \beta \end{pmatrix} = \begin{pmatrix} PP^T & Pl \\ l^TP^T & l^Tl + \beta^2 \end{pmatrix} = \begin{pmatrix} PP^T & Pl \\ (Pl)^T & l^Tl + \beta^2 \end{pmatrix} = \begin{pmatrix} B & a \\ a^T & \alpha \end{pmatrix} = A$$

### Teilaufgabe 2b:

Beweisen Sie, dass die Besetzungsstruktur der Cholesky-Zerlegung der Skyline-Matrix A erhalten bleibt, d.h. dass auch die untere Dreiecksmatrix L eine geeignete Bandstruktur aufweist.

Beweis. TODO Beweis 2b  $\Box$ 

# Aufgabe 3: Pseudocode für Cholesky-Zerlegung von Skyline-Matrizen

Verwenden Sie den Cholesky-Algorithmus aus der Vorlesung. Entwerfen Sie jeweils einen Pseudocode, der für eine Skyline-Matrix:

### 0.1 Teilaufgabe 3a:

möglichst effizient die Struktur erkennt.

Listing 1: Strukturerkennung einer Skyline-Matrix

```
values = list()

for i in range(dim(matrix)):
    branch = matrix[:, i][:i + 1]
    branch.reverse()
    while not branch.empty and branch[-1] == 0:
        branch.pop(-1)

values.append(branch)
```

Listing 2: Strukturerkennung einer symmetrischen positiv definiten Skyline-Matrix

#### Teilaufgabe 3b:

die Cholesky-Zerlegung berechnet.

```
def cholesky(matrix):
        n = dim(matrix)
2
        1 = zero matrix of dimension n by n
3
        for k in range(n):
             s = 0
            for j in range(k):
                 s += 1[k, j] * 1[k, j]
            l[k, k] = sqrt(matrix[k, k] - s)
10
             for i in range(k+1, n):
12
13
                 s = 0
14
                 for j in range(k):
                     s += l[i, j] * l[k, j]
16
                 l[i, k] = (matrix[i, k] - s) / l[k, k]
17
18
        return 1
19
```

Listing 3: Algorithmus für die Cholesky Zerlegung einer Matrix

```
def cholesky(values):
1
        n = len(values)
2
3
        l = zero matrix of dimension n by n
        max_width = max(len(branch) for branch in values)
        for k in range(n):
            start_idx = k - len(values[k]) + 1
            s = np.dot(l[k][start_idx:k], l[k][start_idx:k])
9
            l[k, k] = sqrt(self[k, k] - s)
10
        for i in range(k + 1, min(k + max_width, n)):
            if k > i - len(values[i]):
13
                s = np.dot(l[i][start_idx:k], l[k][start_idx:k])
14
                l[i, k] = (self[i, k] - s) / l[k, k]
15
16
        return 1
```

Listing 4: optimierter Algorithmus für die Cholesky Zerlegung einer Skyline-Matrix

## Aufgabe 4: Aufwand des Algorithmus und Verhalten in Spezialfällen

#### Teilaufgabe 4a:

Sei  $A \in \mathbb{R}^{n \times n}$  eine Skyline-Matrix. Welchen Aufwand haben Ihre Algorithmen aus Aufgabe 3 in Abhängigkeit von der Größe n der Eingabedaten und Skyline-Indices  $p_l = q_l$ ? TODO Aufwand bestimmen

### Teilaufgabe 4b:

Betrachten Sie Matrizen mit den Besetzungsstrukturen

Welche Besetzungsstruktur hat die Cholesky-Zerlegung für beide Matrizen? Was könnte man machen, um für Matrizen mit der "linken" Besetzungsstruktur die Cholesky-Zerlegung effizienter zu berechnen?

Ausarbeitung. Die linke Matrix ist vollbesetzt als Skyline-Matrix, in dem Sinne, dass  $\forall k \in \{1,...,n\}$ :  $p_k = q_k = k - 1$  also immer den maximal möglichen Wert annimmt.

Die rechte Matrix hat die Skyline-Indizes  $\forall k \in \{1, ..., n-1\} : p_k = q_k = 0$  und  $p_n = q_n = n-1$  und ist daher nach Aufgabe 4a effizienter in der Berechnung der Cholesky-Zerlegung.

Eine effiziente Berechnung der Cholesky-Zerlegung der linken Matrix erhält man mit folgender Überlegung:

Definieren wir eine Abbildung  $\sigma: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$  die einer Matrix A die "gespiegelte" Matrix  $\sigma(A)$  zuordnet wobei  $\sigma(A)_{i,j} := A_{n+1-j,n+1-i}$ .

Die Umkehrabbildung  $\sigma^{-1} = \sigma$ , da

$$\sigma(\sigma(A))_{ij} = \sigma(A)_{n+1-j,n+1-i} = A_{n+1-(n+1-i),n+1-(n+1-j)} = A_{i,j}$$

Weiters gilt für  $A, B \in \mathbb{R}^{n \times n}$ 

$$\sigma(A^T)_{i,j} = A_{n+1-j,n+1-i}^T = A_{n+1-i,n+1-j} = \sigma(A)_{j,i} = \sigma(A)_{i,j}^T$$

$$(\sigma(A)\sigma(B))_{i,j} = \sum_{k=1}^n \sigma(A)_{i,k}\sigma(B)_{k,j} = \sum_{k=1}^n A_{n+1-k,n+1-i}B_{n+1-j,n+1-k}$$

$$= \sum_{k=1}^n B_{n+1-j,k}A_{k,n+1-i} = (BA)_{n+1-j,n+1-i} = \sigma(BA)_{i,j}$$

da  $k \mapsto n+1-k$  eine Permutation von  $\{1,..,n\}$  ist.

Wenn A eine untere Dreiecksmatrix ist, also  $A_{i,j} = 0$  für i < j, so folgt, dass  $\sigma(A)$  auch eine untere Dreiecksmatrix ist, da  $i < j \iff n+1-j < n+1-i$ .

Wenn A symmetrisch ist, so ist auch  $\sigma(A)$  symmetrisch, da  $\sigma(A)_{i,j} = A_{n+1-j,n+1-i} = A_{n+1-i,n+1-j} = \sigma(A)_{j,i}$ .

Sei A eine Matrix von der linken, ungünstigen Art. Dann ist  $\sigma(A)$  von der rechten Art, und ist es ist daher möglich die Cholesky-Zerlegung von  $\sigma(A)$  effizient zu berechnen. Sei L eben diese Zerlegung von  $\sigma(A)$ , d.h.  $LL^T = \sigma(A)$ .

Nach dem oben gezeigten gilt nun  $\sigma(L)^T \sigma(L) = \sigma(L^T) \sigma(L) = \sigma(LL^T) = \sigma(\sigma(A)) = A$ . Womit wir eine Cholesky-Zerlegung von A erhalten.

# Aufgabe 5: Implementierung des Algorithmus und empirische Aufwandsschätzung

Implementieren Sie Ihren modifizierten Cholesky-Algorithmus in Python und weisen Sie empirisch nach, dass der Aufwand linear in n wächst. Vergleichen Sie die Performance Ihrer Implementierung mit der Python-Funktion scipy.linalg.cholesky, wobei die Skyline-Matrix A als vollbesetzte Matrix gespeichert ist.

TODO Anhang Python-Code (+ Grafik Performance?)