Compito di Laboratorio di Fisica I 2 Febbraio 2017

(1.5) 1. L'accelerazione di gravità *g* può essere stimata andando a misurare la massima quota *h* raggiunta da una sferetta lanciata sulla verticale da una molla, conoscendo la velocità iniziale *v* impressa alla sferetta, utilizzando la relazione:

$$v = \sqrt{2gh}$$

v e h vengono misurati una sola volta con dei sistemi di misura che hanno rispettivamente errori di sensibilità di $0.2 \, m/s \in 10 \, mm$.

Le misure ottenute sono:

$$v = 5.0 \, m/s$$
 $h = 1300 \, mm$

Si determinino l'errore relativo ed assoluto sull'accelerazione di gravità g.

(3.0) 2. Due grandezze fisiche y e x sono legate tra di loro dalla relazione: y = A + B/x

I risultati di alcune misure delle grandezze y e x sono i seguenti (l'incertezza relativa sulla misura di x è 1.10^{-5}):

x(N)	0.1	0.2	0.25	0.4	0.5	1
y (kg)	230	136	95	68	61	30
$\Delta y (kg)$	30	12	19	11	9	30

Determinare graficamente A e B, dando anche una stima della loro incertezza.

(0.5) 3. Riportare in maniera corretta, nella forma $z \pm \Delta z$, i risultati e i corrispondenti errori delle seguenti misure della grandezza fisica z (Δz indica l'incertezza di misura), indicando anche il numero di cifre significative:

$$z$$
 1.31337 54271 * 10^{-2} 0.087542 * 10^{5} 92.7689 * 10^{12} Δz 2.72371 * 10^{-3} 3.134 * 10^{-1} 2836 4.793 * 10^{9}

(1.5) 4. Calcolare i valori delle seguenti funzioni, nei punti indicati, con una approssimazione relativa di 10⁻²:

$$\sqrt{1+2x^2}$$
 in $x = 2 \cdot 10^{-1}$ $\exp\left(\frac{x^3}{2}\right)$ in $x = 0.4$

(0.5) 5. Il periodo *T* di un pendolo semplice viene misurato 6 volte con un cronometro elettronico che ha errore di sensibilità di 0.01 *s*. I risultati ottenuti, espressi in *s*, sono i seguenti:

2.21 2.26 2.84 2.

Si determini la migliore stima del valore vero e dell'incertezza di misura del periodo T.

(1.0) 6. Si consideri la relazione

$$T^{-2} = \sqrt{v/m} * \frac{\sin(\alpha)}{A + B\tau}$$

2.23

dove ν è una velocità, m una massa, T e τ un tempo, e α un angolo.

Si determinino le dimensioni fisiche della grandezza A e della grandezza B.

(2.0) 7. La lunghezza di un insieme di viti, tutte dello stesso tipo, viene misurata con un compasso di Palmer, con errore di sensibilità di 0.01 *mm*, ottenendo le seguenti misure (espresse in *mm*, e già ordinate in ordine crescente).

12.30	12.35	12.37	12.38	12.39	12.39	12.39	12.40	12.41	12.41
12.44	12.46	12.46	12.47	12.47	12.48	12.48	12.49	12.50	12.50
12.50	12.50	12.52	12.52	12.53	12.54	12.54	12.57	12.59	12.60
12.60	12.60	12.64	12.66	12.67	12.69	12.69			

- a. Utilizzando un opportuno numero di classi si disegni su carta millimetrata l'istogramma ad intervalli della distribuzione delle misure, riportando sull'asse delle ordinate il numero di misure nell'intervallo n_k:
- b. Si determini la miglior stima del valore centrale della distribuzione di Gauss che meglio approssima i dati sperimentali.

Tempo a disposizione: 2 ore

ATTENZIONE: NON E' CONSENTITO L'USO DELLA CALCOLATRICE