Система скоринга обучающихся 1Т

#4EduTech Pipeline обработки данных

Документ для понимания обработки данных в проекте

Разработчик документа: Яковлев А.Л. DO Дата создания:31.10.2024

Оглавление

Концепция проекта «Система скоринга обучающихся 1Т»	2
Анализ существующей ситуации, параметры, по которым можно определять эти	
статусы	3
Общая схема обработки данных	1
Получение данных, преобразование из формата CSV в формат SQL	1
Работа с данными в базе PostgreSQL	۷
Работа DS над данными	10
Рассматриваемые гипотезы	17

Концепция проекта «Система скоринга обучающихся 1Т»

Название проекта: Система скоринга обучающихся 1Т.

<u>Видение</u>:

Система должна в автоматическом режиме собирать и обрабатывать с помощью искусственного интеллекта полный набор доступных характеристик учеников и их прогресса в обучении и предсказывать:

- Вероятность того, что студент бросит курс.
- Вероятность успешного завершения курса каждым учеником.
- Автоматически распределять студентов по категориям активности (например, "активные", "засыпающие", "уснувшие").
 - "Критические точки" перехода в категории "засыпающих" и "уснувших".

Классификация активности учеников, дополнительно к вероятности закончит/не закончит, поможет на более ранних этапах заметить снижение вовлеченности. Например, даже если вероятность завершения курса все еще высока, ученик может попасть в категорию "засыпающих", что сигнализирует о возможных будущих проблемах. Это дает возможность вмешаться до того, как ситуация станет критической, а также понять, на каких этапах студенты испытывают наибольшие затруднения, и когда целесообразна дополнительная мотивация их к обучению.

Анализ существующей ситуации, параметры, по которым можно определять эти статусы

Предлагаемые статусы

1. Спящие:

- * Не активны в течение определенного периода времени (например, 20+ дней).
- * Не взаимодействуют с учебными материалами
- * Не выполняют задания
- * Отсутствует прогресс по курсу

2. Засыпающие:

* Не активны в течение 7-19 дней.

*

Проявляют минимальную активность (например, просматривают определенны е разделы курса).

- * Выполняют часть доступных заданий
- * Прогресс по курсу минимальный

3. Активные:

- * Регулярно заходят на платформу электронного обучения.
- * Взаимодействуют с учебными материалами (например, просматривают видео, читают тексты, отвечают на тесты)
- * Завершают задания в срок.
- * Прогресс по курсу заметен

Параметры для определения статуса

- Активность на платформе: частота захода на платформу, время просмотра материалов, количество просмотренных страниц.
- Взаимодействие с учебными материалами: количество просмотренных видео, прочитанных текстов, пройденных тестов.
- Взаимодействие с преподавателем и студентами: количество заданных вопросов, ответов на вопросы преподавателя и других студентов, участие в обсуждениях.
- Сдача заданий: своевременность сдачи заданий, качество выполнения.
- Успеваемость: результаты тестирования, оценка работ.
- Посещение вебинаров

Общая схема обработки данных

1 — на данный момент данные в виде CSV файлов представлены, в будущем подключение к БД клиента, 2 — Импорт данных в базу данных, 3 — чистка и обработка данных, 4 — сохранение в базу данных, 5 — получение данных для дальнейшего анализа, 6 — формирование датасетов для DA и DS, 7 — этап работы DS с данными для понимания метрик, 8,9,10 — работа с данными для создания датасета, 11 — получение готового датасета для DS, 12,13 — обучение модели на датасете и проверка гипотез, 14 — формирование результирующих данных для клиента, 15 — сохранение данных в базе данных, 16 — передача клиенту результата. В будущем данные будут приходить, формироваться датасет, передаваться модели, возвращаться клиенту

Получение данных, преобразование из формата CSV в формат SQL

Данные были предоставлены файлами CSV, т.к. в будущем проект будет получать данные непосредственно из базы данных клиента, делать автоматическую загрузку не было смысла. В процессе работы с данными были сделаны предварительные изменения с названиями полей

CS	V: users_	_age_t	imezo	Table: users_age_timezone				
	Α	В	С		Название	#	Тип данных	
1	userID	982	2566		123 user_id	1	int4	
2	timeZone	+03:00	+03:00		ABC time_zone	2	varchar(50)	
3	age	16	16		123 age	3	int4	

C	SV: authorizat	ion.csv		Table: authorization			
4	Α	В	С	С Название		Тип данных	
1	user_id	7722	7722	123 user_id	1	int4	
2	created_at	2022-12-07 17:43:14	2022-12-07 19:51:34	created_at	2	timestamp	
3	user_agent	Mozilla/5.0 (Windows	Mozilla/5.0 (Window	ABC user_agent	3	varchar(256)	
4	window size	1872x932	1872x918	ABC window_size	4	varchar(50)	

CS	SV: schedule	e.csv	Table: schedule				
4	Α	В	С	Название	#	Тип данных	
1	course_id	3	3	123 course_id	1	int4	
2	type	активность	активность активность		2	varchar(50)	
3	taskID	81	81	123 task_id	3	int4	
4	activivtyID	8719	8720	123 activivty_id	4	int4	
5	activityType	slide	slide	ABC activity_type	5	varchar(50)	
6	isAttestation	0	0	123 is_attestation	6	int4	
7		n	n	ABC visibility	7	varchar(50)	
/	visibility	V	V	123 flows	8	int4	
8	flows	1	1	date_shown	9	timestamp	
9	dateShown	2023-12-05 11:00:00	2023-12-05 11:00:00				

CS	SV: activity_	history_viewed.c	Table: activity_history_viewed			
A	Α	В	С	Название	#	Тип данных
1	user_id	982	982	123 user_id	1	int4
2	created_at	2024-01-24 19:14:11	2024-01-24 19:34:09	created_at	2	timestamp
3	page_type	занятие	занятие	ABC page_type	3	varchar(50)
4	page_id	3015	3015	123 page_id	4	int4
5	module	2	2	123 module	5	int4
6	attestation	1	1	123 attestation	6	int4
7		_	-	ABC activity_type	7	varchar(50)
/	activity_type					

CS	V: webinars_logs.cs	V	Table: webinars_logs			
4	A	В	С	Название	#	Тип данных
1	userId	74952	74952	123 user_id	1	int4
2	dateTime	23.12.2023 12:10	23.12.2023 12:15	datetime	2	timestamp
3	eventName	Подключение	Отключение	ABC event_name	3	varchar(50)
4	webinarId	13378	13378	123 webinar_id	4	int4
5	формат подключения	офлайн	офлайн	ABC conn_format		varchar(50)
6	вводный вебинар	. 1	1	123 webinar_vvod	_	int4
7	module			123 module	7	int4

CS	V: exerci	se_results.csv	Table: exercise_results			
1	Α	В	С	Название	#	Тип данных
1	module	2	2	123 module	1	int4
2	activityID	13278	13278	123 activity_id	2	int4
3	userId	72002	66421	123 user_id	_	int4
4	createdAt	2023-12-01 08:53:00	2023-12-01 09:18:55	<pre>created_at</pre>		timestamp
5	result	100	100	ABC result		varchar(50)
6	success	1	1	123 success	6	int4

C	SV: use	ers_logs.csv	Table: users_logs				
1	A user id	B 2566	C 2614	Название	#	Тип данных	
2	created_a		19.02.2024 17:20	123 user_id	1	int4	
3	event	tags-changed	tags-changed Были хештеги: #мотив #онлайн	created_at		timestamp	
			#М1-завершил #сверка-дат	ABC event	3	varchar(50)	
		Были хештеги: #entry-email #офлайн, стали:	#M1-оплачен #M2-завершил, стали: #мотив #онлайн #M1-завершил #M1-оплачен	ABC comment	4	varchar(256)	
4	comment	#entry-email #онлайн	#М2-завершил				

CSV: users.csv			Table: users			
A	В	С		Название	#	Тип данных
1 unti_id	1051004	1118021		123 unti_id	1	int4
2 userID	982	2566	2566 3	123 user_id	2	int4
3 course id	3	3		123 course_id	3	int4
4 flow num	1.00	1.00		123 flow_num	4	float4
5 tgBot		_		ABC tg_bot	5	varchar(50)
	12	0		ABC m2_progress	6	varchar(50)
	13		-	ABC m2_attestation	7	varchar(50)
7 M2_attestation	Не сдана	Не сдана		m2_attestation_date	8	timestamp
8 M2_attestation_date						·

CS	CSV: activities_guide.csv													
4	Α	В	С	Название	#	Тип данных								
1	courseID	3		123 course_id	1	int4								
2	Курс	Нейро.РҮ	Hei	ABC course	2	varchar								
3	Провайдер	1T		ABC provider	3	varchar								
4	Модуль	2		123 modul		int4								
5	themeID	13		123 theme_id	5	int4								
6	Тема	Функции и классы	Функции и н	ABC theme	6	varchar								
_			Функциин	123 task_id	7	int4								
7	taskID	81		ABC exercise	8	varchar								
8	Занятие	рики и запроса данных	рики и запроса д	123 task_position	9	int4								
9	taskPosition	1		123 att_priznak	10	int4								
10	Признак Аттестации	0		123 activity_id	11	int4								
11	activityID	14823		ABC activity_type	12	varchar								
12	Тип Активности	CodeExercise	CodeEx	ABC activity	13	varchar								
13	Активность	Тренажер 1	Трена		14	int4								
14	Признак Обязательного	0	•	ABC visibility	15	varchar								
15	Видимость	{}												

Работа с данными в базе PostgreSQL

Фильтр выборки обучающихся по данным был задан заказчиком, брать тех кто имеет статус онлайн

```
with
t1 as(
select distinct user_id, created_at, comment
from public.users_logs logs
where comment like 'Были хештеги:%онлайн%стали:%онлайн%'
   or comment like 'Установлен хештег "#онлайн"' --'%Установлен%онлайн%'
   or comment like 'Были хештеги: , стали:%онлайн%'
   or comment like 'Были хештеги%оулайн%стали:%онлайн%'
   or comment like 'Были хештеги%оглайн%стали:%онлайн%')

select *
from users
where "userID" in(select distinct user_id from t1)
```

@TatianaGlu

В процессе работы с данными аналитиками были сформированы представления, по которым проверялись гипотезы

Коллеги, позволил себе нескромность сделать новые вьюшки из датасетов, которые собрали мы с Таней. По крайней мере мне так удобнее пользоваться, если работать напрямую с базой. dataset_v - 1й датасет, где все даты расположены по вертикали (V) dataset_h - 2й датасет, где часть событий сопоставлена по горизонтали (H) Важное уточнение! Убрал в 1м датасете фильтрацию только успешных студентов (строк стало больше), но сохранил фильтрацию тех студентов, по которым есть след во всех таблицах. 2й датасет сразу был собран по такому принципу.

@ryurikovich_37


```
123 user_id
123 course id
ABC type
ABC activity_type
123 task id
123 activivty_id
date_shown
123 is attestation
___ created_at
123 module
123 attestation
result_time
123 result
123 success
123 obyaz_priznak
ABC tg_bot
123 m2_progress
m2_attestation_date
123 m2_attestation
123 age
ABC time_zone
```

dataset_h_v3

Новую версию сохранил как dataset_h_v3 Изменения:

- 1) Данные на основе датасета students v3 (см. выше)
- 2) Не стал выкидывать студентов, которые засветились не во всех таблицах
- 3) Добавил столбец обязательного признака задания

Датасет стал тяжелым (1 217 959 строк), выполняется долго.

```
with

cross_schedule as (
select sv2.user_id, sv.course_id, sv.*type*, sv.activity_type, sv.task_id, sv.activity_id, sv.date_shown, sv.is_attestation

from schedule_v2 sv

inl outer join students_v3 sv2

on sv2.course_id = vx.course_id
),

cross_schedule.user_id, cross_schedule.course_id, cross_schedule.*type*, cross_schedule.activity_type, cross_schedule.task_id,

cross_schedule.activity_tid, cross_schedule.date_shown , cross_schedule.is_attestation,

ahwv.reated_at , ahvv.*module* , ahvv.attestation

from cross_schedule

lef join activity_history_viewed_v2 ahvv

on (ahvv.user_id = cross_schedule.user_id) and (ahvv.page_id = cross_schedule.task_id)

where type = 'anarame'

union

select cross_schedule.user_id, cross_schedule.course_id, cross_schedule.*type*, cross_schedule.activity_type, cross_schedule.task_id,

ross_schedule.activity_history_viewed_v2 ahvv

on (ahvv.user_id = cross_schedule.user_id) and (ahvv.page_id = cross_schedule.activity_type, cross_schedule.

lef join activity_history_viewed_v2 ahvv

on (ahvv.user_id = cross_schedule.user_id) and (ahvv.page_id = cross_schedule.activity_id)

here type = 'anramocras')

history_results as (

select cross_history.*, erv.created_at as result_time,

case when erv.result = 'Ippanyex' then -1 else cast(erv.result as int4) end as result,

erv.success

from cross_schedule.user_id = cross_history_user_id) and (erv.activity_id = cross_history_activity_id)

)

select history_results.*, agv.obyaz_priznak, sv.tg_bot,

case when erv.result = 'Ippanyex' then -1 else cast(sv.m2_progress as int4) end as m2_progress,

sv.m2_attestation_date,

case when erv.zesults.*, agv.obyaz_priznak, sv.tg_bot,

case when erv.zesults.*, agv.obyaz_priznak, sv.tg_bot,

case when erv.zesults.*

lef join activity_hid = history_results.user_id

left join activities_guide 2.02 apv

on sv.user_id = history_results.user_id

left join activities_guide 2.02 apv

on ayv.activity_id = history_results.activity_id

order by history_results.user_id

left join activities_guide 2.02 apv
```

@ryurikovich_37

По представлениям много было испробовано и отброшено общим решением DA, после долгих споров, анализов и уточнений у заказчиков оставили текущие версии.

```
запросы, которыми формировали стартовые датасеты?
              интересно, как считали sum m2 progress и остальные значения
              with
               select user_id, created_at as time, 'authorization' as event, " as type, " as activity_type, O as task_id, O as activity_id, O as result, O as success, O as m2_progress, O as
m2_attestation
               from authorization v2 av
               where user_id in (select user_id from public.students_v3)
               select user_id, created_at as time, event, "as type, "as activity_type, 0 as task_id, 0 as activity_id, 0 as result, 0 as success, 0 as m2_progress, 0 as m2_attestation
               from users_logs_v2 ulv
               where user_id in (select user_id from public.students_v3)
               select user_id, m2_attestation_date as time, 'attestation' as event, " as type, " as activity_type, 0 as task_id, 0 as activity_id, 0 as result, 0 as success,
               case when m2_progress = 'Heт данных' then -1 else cast(m2_progress as int4) end as m2_progress,
               case when m2_attestation = 'He c_{Aa+a}' then -1 else cast(m2_attestation as int4) end as m2_attestation
               from students v2
               where user_id in (select user_id from public.students_v3)
               select user_id, created_at as time, 'history' as event, page_type as type, activity_type, 0 as task_id, null as activity_id, 0 as result, 0 as success, 0 as m2_progress, 0 as
m2_attestation
               from public.activity_history_viewed_v2
               where (page_type = 'занятие') and (user_id in (select user_id from public.students_v3))
```

```
union
               select ahvv.user_id, ahvv.created_at as time, 'history' as event, page_type as type, ahvv.activity_type
                , sv.task_id as task_id, ahvv.page_id as activity_id, O as result, O as success, O as m2_progress, O as m2_attestation
               from public.activity_history_viewed_v2 ahvv
               left join schedule_v2 sv on ahvv.page_id = sv.activivty_id
                where (ahvv.page_type = 'активность') and (ahvv.user_id in (select user_id from public.students_v3))
               union
               select user_id, created_at as time, 'results' as event, " as type, " as activity_type, 0 as task_id, activity_id,
               case when result = 'Пропуск' then -1 else cast(result as int4) end as result, success as success, 0 as m2_progress, 0 as m2_attestation
               from public.exercise results v2 erv
               where user_id in (select user_id from public.students_v3)
               union
               select user_id, datetime as time, event_name as event, 'Be6uhap' as type, " as activity_type, 0 as task_id, webinar_id as activity_id, 0 as result, 0 as success, 0 as
m2_progress, 0 as m2_attestation
               from public.webinars logs v2
               where user_id in (select user_id from public.students_v3)
               ,--выбираем юзеров сдавших аттестацию по модулю вовремя
              success_intime_users as(
               select user_id from public.users_v2 --where m2_attestation_date between '2023-12-01 00:00:00.000' and '2024-02-01 00:00:00.000' закомментили для неуспешных
              )
               ,--собрали user_id, кто сдал аттестацию
               success_users as(
               select user_id from events where m2_attestation >= 50 and m2_progress >=50 and user_id in (select user_id from success_intime_users)
               ,--подтягиваем номер группы, часовой пояс и возраст
               events_with_personal_info as(
               select ev.user_id, users.course_id, ev.time, ev.event, ev.type, ev.activity_type, ev.task_id, ev.activity_id, ev.result, ev.success, ev.m2_progress, ev.m2_attestation
                 , uat.time_zone, uat.age
                from events ev
               left join public.users_v2 users
               on ev.user_id=users.user_id
               left join public.users_age_timezone_v2 uat
               on ev.user_id=uat.user_id
               union
                select O as user_id, course_id, date_shown as time, 'schedule' as event, type, activity_type, task_id, activivty_id, O as result, O as success, O as m2_progress, O as
m2_attestation, " as time_zone, 0 as age
               from public.schedule_v2 sv2
               order by user_id, time
               ,--выбрали юзеров из 49 группы успешно сдавших модуль и разбили их по неделям
              dataset_vsev_suc as(
               select user_id, age
               , date_part('year', time) as year, date_part('week', time) week
               -- , count(event) filter (where event = 'authorization') authorization count
                , count(event) filter (where event = 'history') all_activity_count
               , count(event) filter (where event = 'attestation') attestation_event_count
               , count(event) filter (where event = 'results') results_event_count
               -- , count(activity_type) filter (where activity_type = 'CodeExercise') "CodeExercise_count"
               -- , count(activity_type) filter (where activity_type = 'interactive') interactive_count
               -- , count(activity_type) filter (where activity_type = 'slide') slide_count
               -- , count(activity_type) filter (where activity_type = 'exercise') exercise_count
                , sum(result) total_score
               , sum(success) success_attempts
               , count(success) total_attempts
                , round((1.0*sum(success)/count(success)), 2) success_rate --удачные попытки / все попытки
               , case when sum(success)!= 0 then 1.0*sum(result)/sum(success) else 0 end as avg_success_scare --cp.балл удачных попыток сдачи
```

```
, case when count(success)!= 0 then 1.0*sum(result)/count(success) else 0 end as avg_scare --cpeдний балл всех попыток сдачи заданий , sum(m2_progress) sum_m2_progress from events_with_personal_info where user_id in(select user_id from success_users) and user_id!= 0 and course_id=49 and date_part('week', time) in(1, 2, 3, 4, 5, 48, 49, 50, 51, 52) group by user_id, year, week, age order by user_id, year, week )
select * from dataset_vsev_suc
```

@TatianaGlu

Одно из представлений сделали таблицей и вывели в общее использование.

Работа DS над данными

Описание датасета с временными рядами и метриками

Датасет содержит 39 столбцов и 574140 строк.

Датасет содержит информацию о 2734 уникальных юзерах и для каждого юзера исследования на 210 дат, начиная с 2023-12-01 (начало обучения на курсе) с интервалом в 1 день. Если необходим другой интервал, лишние строки просто удаляются с нужными промежутками.

В датасете содержится большинство метрик, описанных аналитиками в документе https://docs.google.com/document/d/1gvpjHjb-05bBbcDs7jgaP4128XxgwRwHuT8wo0OWQVk/edit?tab=t.0

Информация по столбцами:

- 0. user_id id юзера
- 1. payment была ли оплата
- 2. time_zone временная зона юзера в цифровом формате
- 3. age возраст юзера
- 4. unti_id id юзера по УНТИ
- 5. course_id номер курса
- 6. flow_num номер потока
- 7. tg_bot подключен ли тг бот (0 не подключен, 1 подключен, 2 остановлен)
- 8. *m2_progress* итоговый прогресс по 2 модулю
- 9. m2_attestation результат сдачи аттестации
- 10. *module* модуль
- 11. *m2_delay* задержка в сдаче аттестации в днях на дату cur_date
- 12. sum auth кол-во авторизаций на дату cur date
- 13. sum_schedule_activities кол-во открытых активностей на дату cur_date
- 14. sum_required_activity кол-во обязательных открытых активностей на дату cur_date
- 15. sum_attestation_activity кол-во аттестационных открытых активностей на дату cur_date
- 16. view_delay_first среднее кол-во дней до первого просмотра активности на дату cur_date
- 17. view_delay_sum суммарная задержка непросмотренных занятий в днях на дату cur_date
- 18. sum_activity_viewed кол-во просмотров активностей на дату cur_date
- 19. sum_required_activity_viewed кол-во просмотров обязательных активностей на дату cur_date
- 20. sum_attestation_activity_viewed кол-во просмотров аттестационных активностей на дату cur_date
- 21. w view hours кол-во часов просмотра вебинаров на дату cur date
- 22. sum_exercise кол-во УСПЕШНО сданных заданий на дату cur_date
- 23. sum_required_exercises кол-во УСПЕШНО обязательных сданных заданий на дату cur_date
- 24. sum_attestation_exercises кол-во УСПЕШНО аттестационных сданных заданий на дату cur_date
- 25. exercise delay first среднее отклонение в сроках ПЕРВОЙ сдачи задания на дату cur date
- 26. exercise delay sum суммарное отклонение в сроках ПЕРВОЙ сдачи задания на дату cur date
- 27. result_delay_mean среднее отклонение в сроках УСПЕШНОЙ сдачи задания на дату cur_date
- 28. result_delay_sum суммарная задержка в сроках УСПЕШНОЙ сдачи задания на дату cur_date
- 29. sum exercise attempts mean среднее кол-во попыток сдачи задания на дату cur date
- 30. mean_required_result средний результат сдачи обязательных заданий на дату cur_date
- 31. mean_non_req_result средний результат необязательных заданий на дату cur_date
- 32. mean_attestation_result средний результат сдачи аттестационных заданий на дату cur_date
- 33. sum_result суммарный результат выполненных заданий на дату cur_date
- 34. conn кол-во подключений к вебинарам на дату cur date
- 35. online rate доля онлайн подключений к вебинарам на дату cur date
- 36. mean_result средний результат по выполненным заданиям на дату cur_date
- 37. progress прогресс выполнения заданий на дату cur_date
- 38. cur_date дата исследования

Примечание:

При загрузке датасета в pandas следует указывать параметр index_col=0.

Прогнозирование показателя результативности обучения на курсах Код разработан пользователем с телеграмм username @zloy

Прогнозирование показателя результативности обучения на курсах

Исходные данные: выборки, содержащие показатели прохождения курса обучающимися.

Задача: используя модели машинного обучения, спрогнозировать показатель результативности прохождения курса.

m2_delay_7_we	m2_delay_6_week	m2_delay_5_week	m2_delay_4_week	m2_delay_3_week	m2_delay_2_week	m2_delay_1_week	age	user_id	
-58.4583	-58.458332	-58.458332	-58.458332	-58.458332	-58.458332	-58.458332	15	23052	1
-58.4583	-58.458332	-58.458332	-58.458332	-58.458332	-58.458332	-58.458332	15	29079	2
view_delay_first_6_w	view_delay_first_5_w	view_delay_first_4_w	view_delay_first_3_w	view_delay_first_2_w	view_delay_first_1_w	m2_delay_10_week	m2_delay_9_week	m2_delay_8_week	
(0.0	0.0	0.0	0.0	0.0	-58.458332	-58.458332	-58.458332	1
(0.0	0.0	0.0	0.0	0.0	-58.458332	-58.458332	-58.458332	2
		5.0	5.0			-			_
view_delay_sum_5_w	view_delay_sum_4_w	view_delay_sum_3_w	view_delay_sum_2_w	view_delay_sum_1_w	view_delay_first_10	view_delay_first_9_w	view_delay_first_8_w	view_delay_first_7_w	
(0.0	0.0	0.0	0.0	-0.17836145	-0.17836145	-0.17836145	-0.18401042	1
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2
sum_activity_viewed_	sum_activity_viewed	sum_activity_viewed	sum_activity_viewed	view_delay_sum_10	view_delay_sum_9_w	view_delay_sum_8_w	view_delay_sum_7_w	iew_delay_sum_6_w	١
(0.0	0.0	0.0	-24.888681	-24.888681	-24.888681	-15.484445	0.0	Ť
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
sum_required_activity	sum_required_activity	sum_required_activity	sum_activity_viewed	sum_activity_viewed	sum_activity_viewed	sum_activity_viewed	sum_activity_viewed	sum_activity_viewed	
(0.0	0.0	111.0	111.0	111.0	70.0	0.0	0.0	ł
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	t
									ì
sum_exercise_1_we	sum_required_activity								
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
sum_exercise_10_we		sum_exercise_8_week	sum_exercise_7_week	sum_exercise_6_week	sum_exercise_5_week	sum_exercise_4_week	sum_exercise_3_week	sum_exercise_2_week	L
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	L
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
sum_required_exerc	sum_required_exerci	ı							
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Ť
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
exercise_delay_first_	exercise_delay_first	sum_required_exerci							
8.8273	4.7916665	0.0	0.0	0.0	0.0	0.0	0.0	0.0	t
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	average delay aver	average delay aver	average delay aver			avancias datav avan	aversian dalay first	aversian dalay fort	
exercise_delay_sum_	exercise_delay_sum	exercise_delay_sum	exercise_delay_sum	exercise_delay_sum	exercise_delay_sum	exercise_delay_sum	exercise_delay_first	exercise_delay_first	1
19.1666	0.0	0.0	0.0	0.0	0.0	0.0	22.827381	15.827381	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
result_delay_sum_7_	result_delay_sum_6	result_delay_sum_5	result_delay_sum_4	result_delay_sum_3	result_delay_sum_2	result_delay_sum_1	exercise_delay_sum	xercise_delay_sum	е
	0.0	0.0	0.0	0.0	0.0	0.0	159.79167	110.791664	ľ
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
sum_exercise_attemp	sum_exercise_attemp	sum_exercise_attemp	sum_exercise_attemp	sum exercise attemp	sum_exercise_attemp	result_delay_sum_10	result_delay_sum_9	esult_delay_sum_8	
									F
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ł
sum_result_5_we	sum_result_4_week	sum_result_3_week	sum_result_2_week	sum_result_1_week	sum_exercise_attemp	sum_exercise_attemp	sum_exercise_attemp	sum_exercise_attemp	+
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	ł
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
mean_result_4_we	mean_result_3_week	mean_result_2_week	mean_result_1_week	sum_result_10_week	sum_result_9_week	sum_result_8_week	sum_result_7_week	sum_result_6_week	
(0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
progress_3_we	progress_2_week	progress_1_week	mean_result_10_week	mean_result_9_week	mean_result_8_week	mean_result_7_week	mean_result_6_week	mean_result_5_week	
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

^{1.} course_49_lubov_dataset.csv - датасет с данными учеников 49 группы.

```
# Формируем стратифицированную обучающую выборку
import pandas as pd
# Предполагаем, что df уже определен
# Шаг 1: Выбор 30 записей из группы course_id=3
group_3_sample = df[df['course_id'] == 3].sample(n=30, replace=True)
# Шаг 2: Размножение выбранных записей до 500
group_3_expanded = group_3_sample.sample(n=500, replace=True)
# Шаг 3: Выбор 15 записей из группы course_id=77
group_77_sample = df[df['course_id'] == 77].sample(n=15, replace=True)
# Шаг 4: Размножение выбранных записей до 500
group_77_expanded = group_77_sample.sample(n=500, replace=True)
# Шаг 5: Получение стратифицированной выборки по 500 образцов из остальных групп
other groups = df[df['course id'] != 77]
other_groups = other_groups[other_groups['course_id'] != 3] # Исключаем группу course_id=3
# Получаем уникальные значения course_id для остальных групп
other_course_ids = other_groups['course_id'].unique()
# Проверяем, что у нас есть как минимум две другие группы
if len(other_course_ids) < 2:</pre>
    raise ValueError("Ожидается как минимум две другие группы.")
# Шаг 6: Выбор по 500 образцов из каждой другой группы
stratified_samples = []
for course_id in other_course_ids:
    samples = other_groups[other_groups['course_id'] == course_id].sample(n=500, replace=True)
    stratified_samples.append(samples)
# Объединение всех выборок
train_sample = pd.concat([group_3_expanded, group_77_expanded] + stratified_samples)
# Проверка результата
print("\nРазмер итоговой выборки:", len(train_sample))
print("\nКоличество записей из course_id=3:", len(train_sample[train_sample['course_id'] == 3]))
print("\nKoличество записей из course_id=77:", len(train_sample[train_sample['course_id'] == 77]))
print("\nКоличество записей из других групп:")
for course_id in other_course_ids:
    print(f"course_id={course_id}: {len(train_sample[train_sample['course_id'] == course_id])}")
```

```
Размер итоговой выборки: 2000

Количество записей из course_id=3: 500

Количество записей из course_id=77: 500

Количество записей из других групп: course_id=71: 500

сourse_id=71: 500

# Создаем валидационную выборку методом исключения из датасета обучающих примеров val_sample = df.drop(train_sample.index)

# Проверка результатов
print("Обучающая стратифицированная выборка:")
print(len(train_sample))
print("Nвалидационная выборка:")
print(len(val_sample))

Обучающая стратифицированная выборка:
2000
```

Валидационная выборка: 1880

```
# остатки 77 группы для тестирования

df_71_test = val_sample[val_sample['course_id'] == 77]

df_71_test = val_sample[val_sample['course_id'] == 71]

df_49_test = val_sample[val_sample['course_id'] == 49]

df_3_test = val_sample[val_sample['course_id'] == 3]
```

df_3_test

	user_id	course_id	age	payment	tg_bot	m2_delay	view_delay_first_1_week	view_delay_first_2_week	view_delay_first_3_week
50	31678	3	15	0	1	-58.458332	-4.496157	-2.752473	-2.886936
73	33026	3	19	0	1	-45.245810	-3.194155	-2.963096	-3.352257
238	51059	3	19	0	2	0.725949	266.864600	25.554272	25.554272
341	55218	3	15	1	1	0.671539	0.000000	0.000000	0.000000
494	66184	3	18	0	1	-58.458332	12.727256	12.727256	12.727256
508	66405	3	19	0	1	8.577789	13.070785	12.799987	12.799987
1335	69383	3	19	0	2	-0.379537	0.000000	-4.597754	-4.212048

Выводы:

- в датасете нет пропусков, он хорошо подходит для обучения моделей;
- для прогнозирования целевого признака m2_progress в различные периоды необходимо сформировать датасеты для каждой недели, что позволит исключить "подглядывание в будущее".
- 1.3. Создание отдельных датасетов для каждой недели

1.3. Создание отдельных датасетов для каждой недели

```
# train_sample.columns.tolist()
```

```
from itertools import chain
# Определяем названия столбцов для каждой недели
sum_exercise_week_10 = [f'sum_exercise_{i}_week' for i in range(1, 11)]
sum_required_exercises_week_10 = [f'sum_required_exercises_{i}_week' for i in range(1, 11)]
result_delay_sum_week_10 = [f'result_delay_sum_{i}_week' for i in range(1, 11)]
sum_exercise_attempts_mean_week_10 = [f'sum_exercise_attempts_mean_{i}week' for i in range(1, 11)]
sum_result_week_10 = [f'sum_result_{i}_week' for i in range(1, 11)]
mean_result_week_10 = [f'mean_result_{i}_week' for i in range(1, 11)]
progress_week_10 = [f'progress_{i}_week' for i in range(1, 11)]
view_delay_first_week_10 = [f'view_delay_first_{i}_week' for i in range(1, 11)]
view_delay_sum_week_10 = [f'view_delay_sum_{i}_week' for i in range(1, 11)]
# sum_activity_viewed_week_10 = [f'sum_activity_viewed_{i}_week' for i in range(1, 11)]
# sum_required_activity_viewed_week_10 = [f'sum_required_activity_viewed_{i}_week' for i in range(1, 11)]
# exercise_delay_first_week_10 = [f'exercise_delay_first_{i}_week' for i in range(1, 11)]
exercise delay sum week 10 = [f'exercise delay sum {i} week' for i in range(1, 11)]
# Уменьшаем количество элементов в списке для каждой последующей недели
def generate_weekly_columns(base_list, weeks):
    return [base_list[:i] for i in range(1, weeks + 1)]
# Генерируем названия столбцов по неделям
sum_exercise_weeks = generate_weekly_columns(sum_exercise_week_10, 10)
sum_required_exercises_weeks = generate_weekly_columns(sum_required_exercises_week_10, 10)
result_delay_sum_weeks = generate_weekly_columns(result_delay_sum_week_10, 10)
sum_exercise_attempts_mean_weeks = generate_weekly_columns(sum_exercise_attempts_mean_week_10, 10)
sum_result_weeks = generate_weekly_columns(sum_result_week_10, 10)
mean_result_weeks = generate_weekly_columns(mean_result_week_10, 10)
progress_weeks = generate_weekly_columns(progress_week_10, 10)
view delay first weeks = generate weekly columns(view delay first week 10, 10)
view_delay_sum_weeks = generate_weekly_columns(view_delay_sum_week_10, 10)
# sum_activity_viewed_weeks = generate_weekly_columns(sum_activity_viewed_week_10, 10)
# sum_required_activity_viewed_weeks = generate_weekly_columns(sum_required_activity_viewed_week_10, 10)
# exercise_delay_first_weeks = generate_weekly_columns(exercise_delay_first_week_10, 10)
exercise_delay_sum_weeks = generate_weekly_columns(exercise_delay_sum_week_10, 10)
```

```
# Формируем столбцы для каждой недели
columns = []
for i in range(10):
    columns.append(list(chain(
        ['user_id', 'age', 'payment', 'tg_bot', 'm2_delay'],
       view_delay_first_weeks[i],
       view delay sum weeks[i],
       sum_exercise_weeks[i],
       sum_required_exercises_weeks[i],
       # exercise_delay_first_weeks[i],
       result_delay_sum_weeks[i],
       sum_exercise_attempts_mean_weeks[i],
       sum result_weeks[i],
       mean_result_weeks[i],
       progress_weeks[i],
       # view_delay_sum_weeks[i],
       # sum_activity_viewed_weeks[i],
       # sum_required_activity_viewed_weeks[i],
        exercise_delay_sum_weeks[i],
        ['m2_progress']
   )))
# Теперь на позиции `columns[0]` у нас находятся столбцы для 1-й недели,
# на `columns[1]` для 2-й и так далее до 10-й недели.
 Week 1 - Mean Absolute Error: 7.9924794391680525
 Week 2 - Mean Absolute Error: 6.924550653267929
 Week 3 - Mean Absolute Error: 6.700902867699872
 Week 4 - Mean Absolute Error: 6.300852912703257
Week 5 - Mean Absolute Error: 5.999639314988462
Week 6 - Mean Absolute Error: 5.704828925945423
Week 7 - Mean Absolute Error: 4.9113169553779565
Week 8 - Mean Absolute Error: 3.818703643099225
Week 9 - Mean Absolute Error: 2.934018585007375
 Week 10 - Mean Absolute Error: 2.8606435373430092
 rf models
 # Сериализация моделей!!!
 import joblib # Импортируем библиотеку для сериализации
 import os
 # Укажите директорию для сохранения моделей
 model_dir = '/home/shared_notebooks/zloy/saved_models'
 # Создаем директорию, если она не существует
 os.makedirs(model_dir, exist_ok=True)
 {'rf_model_week_1': RandomForestRegressor(max_features='log2', n_estimators=50),
  'rf_model_week_2': RandomForestRegressor(max_features='log2', n_estimators=50),
  'rf_model_week_3': RandomForestRegressor(max_features='log2', n_estimators=50),
  'rf_model_week_4': RandomForestRegressor(max_depth=30, max_features='log2', n_estimators=200),
  'rf_model_week_5': RandomForestRegressor(max_features='log2', n_estimators=50),
  'rf_model_week_6': RandomForestRegressor(max_features='log2', n_estimators=200),
  'rf_model_week_7': RandomForestRegressor(max_features='sqrt', n_estimators=200),
  'rf_model_week_8': RandomForestRegressor(max_features='sqrt', n_estimators=200),
  'rf_model_week_9': RandomForestRegressor(max_features='sqrt', n_estimators=200),
  'rf_model_week_10': RandomForestRegressor(max_features='sqrt', n_estimators=200)}
 # Сериализация моделей на диск
 for model name, model in rf models.items():
     model_filename = os.path.join(model_dir, f'{model_name}.joblib') # Создаем имя файла для модели
     joblib.dump(model, model_filename) # Сохраняем модель в файл
     print(f"Модель '{model_name}' успешно сохранена в '{model_filename}'")
 print(f"\nВсе модели успешно сохранены в директорию: {model_dir}")
```

В результате получены модели

rf_model_week_1.joblib	8 минут назад
rf_model_week_10.joblib	8 минут назад
rf_model_week_2.joblib	8 минут назад
rf_model_week_3.joblib	8 минут назад
rf_model_week_4.joblib	8 минут назад
rf_model_week_5.joblib	8 минут назад
rf_model_week_6.joblib	8 минут назад
rf_model_week_7.joblib	8 минут назад
rf_model_week_8.joblib	8 минут назад
rf_model_week_9.joblib	8 минут назад
Untitled.ipynb	24 минуты назад

На данный момент идет работа и проверка гипотез

Рассматриваемые гипотезы

Первые три гипотезы нравятся: они выглядят прямолинейными в хорошем смысле и довольно твердыми.. Единственное, есть смысл, наверное, у Карины уточнить, не трекается ли уже что-то из этого.

Гипотеза о прогрессе:

- Гипотеза: Студенты, которые не успевают завершить определенный процент task (тем) и activities (заданий) модуля, включая просмотр учебных материалов, к дате среза, с большей вероятностью бросят его.
- Основание: Недостижение определенных вех (промежуточные дедлайны) может указывать на проблемы с дисциплиной или трудности с усвоением материала.
- **Метрики для проверки**: процент завершенных activities к дате среза, процент выполненных activities, обязательных к проверке, процент выполненных необязательных activities, индекс успешности выполнения заданий, средний балл удачных попыток сдачи, средний балл всех попыток сдачи заданий.

Гипотеза о регулярности обучения:

- Гипотеза: Студенты, которые имеют нерегулярное расписание обучения (большие перерывы между сессиями на платформе), с большей вероятностью бросят курс.
 - Основание: Нерегулярная активность может указывать на отсутствие дисциплины или сниженный интерес к обучению.
 - **Метрики для проверки**: среднее время между логинами, количество завершенных activities в неделю

Гипотеза о выполнении работ вовремя:

- Гипотеза: Студенты, которые часто пропускают сроки сдачи работ сделанное задание по task до открытия нового task, с большей вероятностью бросят курс.
 - Основание: Пропуск сроков сдачи часто является индикатором недостатка времени, организации или мотивации.
 - Метрики для проверки: количество пропущенных сроков сдачи, среднее время сдачи заданий относительно срока сдачи.

Гипотеза о ранних успехах:

- **Гипотеза**: Студенты, которые успешно выполняют первые задания и тесты, с большей вероятностью завершат курс.
 - Основание: Успехи на раннем этапе могут укрепить уверенность студента и мотивацию для дальнейшего обучения.
 - **Метрики для проверки**: результаты сильно. первых нескольких activities, скорость выполнения заданий.

Илья Трубников 17:31 27 окт.

Мне очень нравятся все гипотезы, но вот эта вызывает переживание. Дело в том, что поначалу большинство людей как раз-таки очень активны. Они вдохновлены, они видят будущие перспективы. Но со временем вдохновение и мотивация сменяются рутиной, и человеку уже нужна дисциплина — а с этим как раз у большинства проблемы.

В то же время мне кажется, что эта интуиция у вас в правильном направлении -- нужно просто перевернуть оптику. Я бы сказал, что

! отсутствие ранних успехов увеличивает вероятность, что студент бросит. !

Здесь как раз-таки понятный механизм работает: втягиваться сложно, когда отстаешь. Начинаешь оправдывать себя и бессознательно обесценивать происходящее. А тут человек отстаёт прямо сходу: то есть он ценность особо увидеть и не успел, поэтому и обесценить проще. Вот в это я уже верю сильно.