¿Cómo Influgen las condiciones ambientales en el florecimiento de cianobacterias?

Autor: Tahiel Maccario

Índice

01 Introducción

O2 Preguntas a responder

03 Metadata

04 Análisis

05 Insights

Introducción

Las cianobacterias son microorganismos fotosintéticos que habitan en el agua y son esenciales para la configuración de los ecosistemas.

Ciertas condiciones como la temperatura y el exceso de nutrientes pueden producir un crecimiento de cianobacterias desmedido, conocido como "floraciones". En algunos casos, estas floraciones pueden venir acompañadas por la producción de cianotoxinas, que son compuestos tóxicos capaces de dañar órganos y producir graves enfermedades.

Por esta razón, el monitoreo de las floraciones en fuentes de agua naturales y el estudio de las variables que las afectan es fundamental. A través del análisis de datos ambientales, este proyecto busca identificar patrones y factores que contribuyan al florecimiento de cianobacterias, lo que puede ayudar a desarrollar modelos que predigan la aparición de floraciones para mitigar su impacto en la salud pública y la calidad del agua.

Audiencia

Este proyecto tiene como objetivo analizar las variables ambientales que afectan el florecimiento de cianobacterias, lo que puede ser de gran utilidad para organismos reguladores en el monitoreo y la gestión de la calidad del agua.

Preguntas

Preguntas principales

¿Cómo influye la disponibilidad de nutrientes en los florecimientos de cianobacterias?

¿La temperatura tiene un impacto significativo en el crecimiento de las cianobacterias?

Preguntas secundarias

¿Cual es la tendencia en el tiempo de aparición de floraciones?

¿Cómo cambia la concentración de cianobacterias entre distintos lugares y tipos de ambiente?

¿Qué nutrientes tienen mayor impacto en la aparición de floraciones?

¿Es más relevante la temperatura bajo el agua que en la superficie para el crecimiento de cianobacterias?

Metadata

Se partió de un dataset con 640 muestreos en 20 embalses distintos de Estados Unidos. Tres embalses fueron suprimidos por falta de datos. El resto de datos fueron procesados quedando una tabla de 361 datos y 19 columnas.

Reservoir abbreviation	Reservoir Name	Туре	Stratification
BHR	Buckhorn Lake	Forest	Strong
BRR	Barren River Lake	Agriculture	Strong
BVR	Brookville Lake	Agriculture	Strong
CBR	C. J. Brown Lake	Agriculture	None
CCK	Caesar Creek Lake	Agriculture	Strong
CFK	Carr Creek Lake	Forest	Strong
CHL	C. M. Harden Lake	Agriculture	Weak
CMR	Cagles Mill Lake	Agriculture	Weak
CRR	Cave Run Lake	Agriculture	Strong
EFR	East Fork Lake	Agriculture	Strong
GRR	Green River Lake	Agriculture	Strong
HTR	J. E. Roush Lake	Agriculture	None
MNR	Monroe Lake	Agriculture	Strong
MSR	Mississinewa Lake	Agriculture	None
NRR	Nolin Lake	Agriculture	Weak
PRR	Patoka Lake	Forest	Strong
RRR	Rough River Lake	Agriculture	Strong
SRR	Salamonie Lake	Agriculture	None
TAR	Taylorsville Lake	Agriculture	Strong

muchas capas de vegetación en la zona

La estratificación

nos dice si hay

Variables de estudio

- Reservoir: Iniciales del nombre del embalse
- Reservoir_type: Tipo de ambiente según la vegetación
 - 1 = boscoso con vegetación estratificada
 - 2 = agrícola con vegetacion estratificada
 - 3 = estratificación debil o no estratificado
- Year: Año del muestreo
- Cyanobacteria_Max_cells/ml: concentración de cianobacterias máxima medida (células/ml) -> variable de interés
- **Summer_precip_inches** = Precipitaciones totales durante el verano
- **ST_Celsius** = Temperatura (°C) en la superficie (promedio del verano)
- **DT_Celsius** = Temperatura (°C) en la profundidad (promedio del verano)
- **P_dissolved_ppb** = Fosforo disuleto (ppb)
- **TKN_ppm** = Nitrógeno total de Kjeldahl (ppm)
- NH3_ppm = Amoníaco total (ppm)
- Alcalinity_ppm = Alcalinidad (ppm)
- **DO_mg**/l = Oxígeno disuelto en la profundidad (mg/l)

Las siguientes variables estan medidas en los embalses y en los afluentes al embalse (aclarado como "6to8inflow" en los afluentes):

- **NOx_ppm** = Nitritos y nitratos totales (ppm)
- TKN_ppm = Nitrógeno total de Kjeldahl (ppm)
- NH3_ppm = Amoníaco total (ppm)
- **TP_ppb** = Fósforo total (ppm)
- TOC_ppm = Carbono orgánico total (ppm)

Nutrientes

Análisis Exploratorio

¿Cual es la tendencia en el tiempo de la aparición de floraciones?

Globalmente se ve un aumento de las cianobacterias en los ultimos años

La tendencia también se observa viendo cada embalse por separado (tres ejemplos)

¿Cómo cambia la concentración de cianobacterias entre distintos lugares y tipos de ambiente?

Menos cianobacterias

	Tipo de embalse	Embalse	Concentracion de cianobacterias (células/ml)
vegeta estratif Agrícol vegeta		BHR	135.528
	Boscoso con	CFK	83.440
	vegetación estratificada	CRR	55.463
	estratificada	MNR	103.604
		PRR	154.168
		BRR	518.669
		BVR	328.703
	Agrícola con	CCK	312.232
	vegetacion estratificada	EFR	944.370
	estratificada	GRR	170.631
		RRR	141.070
		TAR	291.089
		CBR	1079.754
	Estratificación	CHL	714.175.
	debil o no	CMR	283.843
estrati	estratificado	MSR	176.059
		NRR	185.421

La concentración de cianobacterias varia entre embalses

¿Qué nutrientes tienen mayor impacto en la aparición de floraciones?

Las variables que tienen más correlación con la concentración de cianobacterias son el Fosforo Total (TP), Fosforo disuelto (P dissolved), el Nitrógeno Total (TKN), el Carbono Organico Total (TOC) y la Alcalinidad. Se observa mayor correlacion con los nitratos y nitritos (NOx) en los afluentes de embalses (6to8inflow) comparado la cantidad en el mismo embalse.

texto

¿Qué nutrientes tienen mayor impacto en la aparición de floraciones?

¿Es más relevante la temperatura bajo el agua que en la superficie para el crecimiento de cianobacterias?

Se observa mayor correlacion con la temperatura bajo el agua (DT) que en superficie (ST)

Insights

- 1. Se observa un aumento de la concentración de cianobacterias en el agua a lo largo de los años.
- 2. Los ambientes boscosos y con vegetación estratificada tienen una menor concentración de cianobacterias. Esto podria deberse a que la vegetación podría estar atenuando la aparición de floraciones o que, al ser una region menos intervenida por el hombre, esta menos afectada por disturbios (como el cambio en concentración de nutrientes).
- 3. Se observa una leve correlación positiva entre la concentración de cianobacterias y la de nutrientes. Los nutrientes que mostraron mayor correlación son el fosforo (principalmente el disuelto) y el nitrógeno. Esto puede deberse a que sean nutrientres limitantes en el ambiente, es decir, que están en baja proporción.
- 4. La temperatura bajo el agua tiene mayor relevancia en el crecimiento de las cianobacterias.

Gracias por su atención!