1.3 The Limit of a Function Introduction to Limits

Differential Calculus

Outline

- Notation and Basic Concepts
- 2 Informal Definition
- More Examples
- 4 When Limits Don't Exist
- One-Sided Limits
- **6** Infinite Limits
- Summary

1.3 The Limit of a Function

Limit Notation

We write:

$$\lim_{x\to a} f(x) = L$$

This should be read as:

The limit of f(x) as x approaches a is L.

- This is shorthand notation to avoid writing long sentences
- Mathematically precise and language-independent
- Can also be written as: $f(x) \to L$ as $x \to a$
- Both notations mean exactly the same thing

Understanding Limits with a Simple Example

Consider the function:

$$f(x) = \begin{cases} 2x & \text{if } x < 3 \\ 9 & \text{if } x = 3 \\ 2x & \text{if } x > 3 \end{cases}$$

What happens as x approaches 3?

Let's plug in values close to 3:

			2.999			
f(x)	5.8	5.98	5.998	6.002	6.02	6.2

- As x gets closer to 3, f(x) gets closer to 6
- We write: $\lim_{x\to 3} f(x) = 6$
- Note: f(3) = 9, but the limit is 6
- The limit does NOT depend on the value at x = 3

Definition 1.3.3

Informal Definition

We write $\lim_{x\to a} f(x) = L$ if the value of the function f(x) is sure to be arbitrarily close to L whenever the value of x is close enough to a, without being exactly a.

- This is an informal definition sufficient for most purposes
- The condition "without being exactly a" is important
- We'll see why this matters when we study derivatives
- For now, this gives us a working understanding of limits

Computing a Limit

Consider:

$$\lim_{x \to 2} \frac{x - 2}{x^2 + x - 6}$$

- If we try to compute f(2), we get $\frac{0}{0}$ which is **undefined**
- This is exactly why we need limits!
- We must "sneak up" on points where functions are not defined

Important:

 $\frac{0}{0}$ is **not** ∞ and it is **not** 1. It is **undefined**.

Let's plug in values close to 2

Numerical Analysis:

X	1.9	1.99	1.999	2.001	2.01	2.1
f(x)	0.20408	0.20040	0.20004	0.19996	0.19960	0.19608

- As x approaches 2, f(x) approaches 0.2
- Therefore: $\lim_{x\to 2} \frac{x-2}{x^2+x-6} = 0.2$
- The limit exists even though the function is not defined at x=2

When Limits Don't Exist - Case 1

Consider:

$$\lim_{x\to 0}\sin\left(\frac{\pi}{x}\right)$$

Oscillates faster and faster as $x \to 0$

- As $x \to 0$, $\frac{\pi}{x}$ becomes larger and larger
- sin oscillates faster and faster
- Function doesn't approach a single number
- Therefore: $\lim_{x\to 0} \sin\left(\frac{\pi}{x}\right) = DNE$

Differential Calculus 1.3 The Limit of a Function 9 / 24

When Limits Don't Exist - Case 2

Consider:

$$f(x) = \begin{cases} x & \text{if } x < 2\\ -1 & \text{if } x = 2\\ x + 3 & \text{if } x > 2 \end{cases}$$

Approaching from Different Sides

Let's plug in values close to 2:

				2.001		
f(x)	1.9	1.99	1.999	5.001	5.01	5.1

- From below: $f(x) \rightarrow 2$
- From above: $f(x) \rightarrow 5$
- Since we get different values, the limit does not exist
- $\lim_{x\to 2} f(x) = DNE$

Definition 1.3.7

Left-Hand Limit:

$$\lim_{x\to a^-}f(x)=K$$

When f(x) gets closer to K as x < a approaches a from below.

Right-Hand Limit:

$$\lim_{x\to a^+}f(x)=L$$

When f(x) gets closer to L as x > a approaches a from above.

- Also called "left-hand" and "right-hand" limits
- Be careful to include the superscript + and -
- Alternative notations exist but we'll use the standard ones

Theorem 1.3.8

Important Theorem:

$$\lim_{x\to a} f(x) = L$$
 if and only if $\lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$

- The two-sided limit exists only if both one-sided limits exist and are equal
- If either one-sided limit doesn't exist, or if they're different, then the two-sided limit doesn't exist
- This gives us a systematic way to check if limits exist

Function f(x)

Function f(x):

$$\lim_{x \to 1^{-}} f(x) = 2$$
$$\lim_{x \to 1^{+}} f(x) = 2$$
$$\therefore \lim_{x \to 1} f(x) = 2$$

Function g(t)

Function g(t):

$$\lim_{t \to 1^{-}} g(t) = 2$$

$$\lim_{t \to 1^{+}} g(t) = -2$$

$$\therefore \lim_{t \to 1} g(t) = \mathsf{DNE}$$

Definition 1.3.10: Positive Infinity

Positive Infinity:

$$\lim_{x \to a} f(x) = +\infty$$

When f(x) becomes arbitrarily large and positive as x approaches a.

Definition 1.3.10: Negative Infinity

Negative Infinity:

$$\lim_{x \to a} f(x) = -\infty$$

When f(x) becomes arbitrarily large and negative as x approaches a.

Differential Calculus 1.3 The Limit of a Function 1

Definition 1.3.11

Right-Hand Infinite Limits:

$$\lim_{x \to a^+} f(x) = +\infty \text{ or } \lim_{x \to a^+} f(x) = -\infty$$

Left-Hand Infinite Limits:

$$\lim_{x \to a^{-}} f(x) = +\infty \text{ or } \lim_{x \to a^{-}} f(x) = -\infty$$

- These occur when functions approach infinity from only one side
- Very common in rational functions and trigonometric functions
- Important for understanding vertical asymptotes

One-Sided Infinite Limits

Consider:

$$g(x) = \frac{1}{\sin(x)}$$

Find the one-sided limits as $x \to \pi$.

Understanding the Behavior: Analysis

Analysis:

- As $x \to \pi^-$: $\sin(x) \to 0^+$ (small positive numbers)
- Therefore: $\frac{1}{\sin(x)} \to +\infty$
- As $x \to \pi^+$: $\sin(x) \to 0^-$ (small negative numbers)
- Therefore: $\frac{1}{\sin(x)} \to -\infty$

Understanding the Behavior: Result

Result:

$$\lim_{x \to \pi^{-}} \frac{1}{\sin(x)} = +\infty$$

$$\lim_{x\to\pi^+} \frac{1}{\sin(x)} = -\infty$$

- Since the one-sided limits are different, $\lim_{x\to\pi}\frac{1}{\sin(x)}=\mathsf{DNE}$
- But the one-sided infinite limits give us more information than just "DNE"

What We've Learned

Limits That Exist:

- $\lim_{x\to a} f(x) = L$ where L is a finite number
- Both one-sided limits exist and are equal

Limits That Don't Exist:

- **① Oscillation**: Function oscillates wildly (like $sin(\frac{\pi}{x})$)
- 2 Jump: One-sided limits are different
- **1 Infinite**: Function approaches $\pm \infty$

One-Sided Limits:

- $\lim_{x\to a^-} f(x) = L$ (left-hand limit)
- $\lim_{x\to a^+} f(x) = L$ (right-hand limit)
- Can be finite numbers or $\pm \infty$

Important Concepts

Notation:

$$\lim_{x \to a} f(x) = L \quad \text{vs} \quad f(a) = L$$

Critical Points:

- Limits describe behavior near a point, not at the point
- A function can have a limit at x = a even if f(a) is undefined
- Infinity is not a number it's a description of behavior
- One-sided limits help us understand discontinuities

Next Steps:

We'll develop systematic methods for computing limits using limit laws and algebraic techniques.