计算机组成与结构专题实验 实验报告

第六次 基本模型计算机设计与实现

一、实验目的

- 1. 深刻领会计算机基本模型的构成要素以及其具备的各项功能。 对计算机中各类典型指令的执行过程进行深入探究。
- 2. 学习微程序控制器的设计原理及相关技术,熟练掌握 LPM_ROM 的配置方式。
- 3. 在熟悉部件单元电路实验的基础上,进一步将单元电路组合成一个完整的系统,构建出一台基本模型计算机。
- 4. 设计五条机器指令,并为其编写相应的微程序,通过上机调试,深入理解计算机整机的概念。掌握微程序的设计方法,学会编写二进制微指令代码表。
- 5. 通过完整地设计计算机,全面了解并掌握采用微程序控制方式的计算机的设计方法。

二、 实验原理

该8位 CPU 的结构如下图所示,主要包括运算部件、寄存器组、指令寄存器、程序计数器、地址寄存器、标志寄存器、微命令产生部件以及时序系统等。在这个模型机中,每条指令都必须包含以下四个部分:操作码、操作数的地址、操作结果的存储地址以及下一条指令的地址,

具体结构如图所示。

8位 CPU 的结构

位	7 6 5 4	32	10
功能	OP-CODE	rs	rd

指令的基本格式

rs 或 rd	选定的寄存器
00	R0
01	R1
10	R2

寄存器操作数

地址(16进制)		助记符	说明
00	00	IN	"INPUT"→ RO, 键盘输入数据
01	10	ADD [OAH]	$[RO]+[OAH] \rightarrow RO$
02	OA		
03	20	STA [OBH]	[RO] → [OBH]
04	OB		
05	30	OUT [OBH]	[0BH] "OUTPUT",显示输出数据
06	OB		
07	40	JMP [08H]	[08H] → PC ,以[08H]内容为转移地址
08	00		
09	00		
OA	34	DB 34H	被加数(自定)
OB	XX		求和结果

模型机指令及编码形式

24	23	22	21	20	19	18	17	16	15 14 13	12 11 10	987	6	5	4	3	2	1
S3	S2	S1	SO	M	Cn	WE	A9	A8	A	В	C	uA5	uA4	uA3	uA2	uA1	uA0
操作控制信号						译码器	译码器	译码器			下地	上字段					

A9	A8	选择
0	0	SW_B
0	1	RAM_B
1	0	LED_B
1	1	无

24 位微代码定义

		A 字段	ζ			B 字段		C 字段				
15	14	13	选择	12	11	10	选择	9	8	7	选择	
0	0	0		0	0	0		0	0	0		
0	0	1	LDRi	0	0	1	RS-B	0	0	1	P(1)	
0	1	0	LDDR1	0	1	0	RD_B	0	1	0	P(2)	
0	1	1	LDDR2	0	1	1	RJ_B	0	1	1	P (3)	
1	0	0	LDIR	1	0	0	SFT_B	1	0	0	P (4)	
1	0	1	LOAD	1	0	1	ALU-B	1	0	1	AR	
1	1	0	LDAR	1	1	0	PC-B	1	1	0	LDPC	

A、B、C 各字段功能说明

地址(16进制)	内容(16进制)	助记符	说明
00	00	IN	"INPUT"→ RO,键盘输入数据
01	10	ADD [OAH]	[RO]+[OAH] → RO
02	OA		
03	20	STA [OBH]	[RO] → [OBH]
04	ОВ		
05	30	OUT [OBH]	[OBH] "OUTPUT",显示输出数据
06	ОВ		
07	40	JMP [08H]	[09H] → PC ,以[08H]内容为转移地址
08	00		
09	00		
0A	34	DB 34H	被加数 (自定)
0B	XX		求和结果

实验程序: 模型机指令及编码形式

微程序流程图

三、 实验任务

- (1) 用图形编辑工具设计模型 CPU 的顶层电路原理图。
- (2) 根据微程序的微操作,对于所需的控制信号,确定微指令,并确定微地址。
 - (3) 微程序流程图按微指令格式转化为"二进制微代码表"。
 - (4) 设计控制存储器 LPM ROM。
 - (5) 对模型 CPU 的整机硬件电路进行编译、波形仿真和调试。
 - (6) 根据仿真波形,查找故障原因,排除故障,重新编译。
- (7)将编译通过的电路和应用程序下载到实验台上的 FPGA 中,在实验台上单步跟踪微程序的执行过程。
- (8) 最终完成模型 CPU 的硬件电路设计和应用程序及微程序的设计和调试。

四、实验步骤及结果

CPU 顶层设计

微指令流程图

微代码表

微地址	微指令	S 3	S 2	S 1	S 0	M	CN	WE	A 9	A 8	A	В	C	uA5-uA0
0 0	018110	0	0	0	0	0	0	0	1	1	000	000	100	010000
0 1	01ED82	0	0	0	0	O	0	0	1	1	110	110	110	000010
0 2	00C048	0	0	0	0	0	0	0	0	1	100	000	001	001000
0 3	00E004	0	0	0	O	0	0	0	0	1	110	000	000	000100
0 4	00B005	0	0	0	0	0	0	0	0	1	011	000	000	000101
0 5	01A206	0	0	0	0	0	0	0	1	1	010	001	000	000110
0 6	919A01	1	0	0	1	0	0	0	1	1	001	101	000	000001
0 7	00E00D	0	0	0	0	0	0	0	0	1	110	000	000	001101
1 0	001001	0	0	0	0	0	0	0	0	o	001	000	000	000001
1 1	01ED83	0	0	0	0	0	0	0	1	1	110	110	110	000011
1 2	01ED87	0	0	o	0	0	0	0	1	1	110	110	110	000111
1 3	01ED8E	0	0	0	0	0	0	0	1	1	110	110	110	001110
1 4	01ED96	0	0	0	0	0	0	0	1	1	110	110	110	010110
1 5	038201	0	0	0	0	0	0	1	1	1	000	001	000	000001
1 6	00E00F	0	0	0	o	0	0	0	0	1	110	000	000	001111
1 7	00A015	0	0	0	0	0	0	0	0	1	010	000	000	010101
2 0	01ED92	0	0	0	0	0	0	0	1	1	110	110	110	010010
2 1	01ED94	0	o	o	o	0	0	0	1	1	110	110	110	010100
2 2	00A018	0	O	0	0	0	0	0	0	1	010	000	000	011000
2 3	018001	0	0	0	0	0	0	0	1	1	000	000	000	000001
2 4	002017	0	0	0	0	0	0	0	0	0	010	000	000	010111
2 5	010A01	0	0	o	О	0	0	0	1	0	000	101	000	000001
2 6	00D181	0	0	0	0	0	0	0	0	1	101	000	110	000001
2 7	038A11	0	0	0	0	0	0	1	1	1	000	101	000	010001
3 0	010A10	0	0	0	0	0	0	0	1	0	000	101	000	010000

		A 字段	ļ. Ç	B 字段					C 字段				
15	14	13	选择	12	11	10	选择	9	8	7	选择		
0	0	0		0	0	0		0	0	0			
0	0	1	LDRi	0	0	1	RS-B	0	0	1	P(1)		
0	1	0	LDDR1	0	1	0	RD_B	0	1	0	P(2)		
0	1	1	LDDR2	0	1	1	RJ_B	0	1	1	P (3)		
1	0	0	LDIR	1	0	0	SFT_B	1	0	0	P (4)		
1	0	1	LOAD	1	0	1	ALU-B	1	0	1	AR		
1	1	0	LDAR	1	1	0	PC-B	1	1	0	LDPC		

拟定指令流程和微命令序列

建立数据通路

微程序控制

绑定引脚

编译并下载至 FPGA

名称	作用	名称	作用
IN	输入单元 INPUT	DR1	暂存器 DR1
OUT	输出单元 OUTPUT	DR2	暂存器 DR2
ALU	算术逻辑单元	PC	程序计数器
BUS	内部数据总线	AR	地址寄存器
R0	寄存器 R0	RAM	程序/数据存储器
R1	寄存器 R1	IR	指令寄存器
R2	寄存器 R2	MC	微程序控制器

LCD 功能说明

模型 CPU 的硬件仿真

STEP	后续 uA	MC	PC	IR	完成功能	执行结果	
SIEI	微地址	微指令	10	指令	元成功能	1411 年末	
1	00	018110	00		控制台(读/写/运行)功能判断	控制台操作: 转入程序运行方式	
2	23	018001		00	SWB、WSA=(11)转 RP,分支转移	转程序执行方式	
3	02	01ED82	01		执行第1条指令。(输入 IN)	PC→AR=00H, PC+1=01H, AR 指向指令地址	
4	10	00C048	1 1	80	取指令,将 RAM 中的指令送指令寄存器	RAM (00H) =00→BUS→IR=00H	
5	01	001001	02	00	接收来自 IN 输入的数据, 送 RO 寄存器	R0=56H, 键 1、键 2 输入数据 56H	
6	02	01ED82	02		执行第2条指令, (加法 ADD)	PC→AR=01H, PC+1=02H, AR 指向指令地址	
7	11	00C048			取指令	RAM (01H) =90H→BUS→IR=90H	
8	03	01ED83			间接寻址,AR 指向取数的间接地址	PC→AR=02H, PC+1=03H, RAM=90H	
9	04	00E004	03	90	取数地址送 AR	RAM(02)=0AH→BUS→AR=0AH	
10	05	00B005	03	90	从 RAM 中取数送 DR2	RAM (OAH) =D5H→BUS→DR2=D5H	
11	06	01A206			将 RO 的数据送 DR1	(R0)=56H→BUS→DR1=56H	
12	01	919A01			加法运算: (DR1)+(DR2)→R0	56H+D5H=12BH→R0=2BH, 进位 FC=1	
13	02	01ED82	04		执行第3条指令(存储 STA)	PC→AR=03H, PC+1=04H	
14	12	00C048			取指令	RAM(03H)=20H→BUS→IR=A0H	
15	07	01ED87			间接寻址,AR 指向存数的间接地址	PC→AR=04H, PC+1=05H	
16	15	00E00D	05	AO	存数的地址送 AR	RAM (04) =0BH→BUS→AR=0BH	
17	01	038201	00	AU	AU	RO 的内容存入 RAM(OBH)单元	(RO)=2BH→BUS→RAM(0BH)=2BH, 此时 RAM 输出 RAM 0B 单元的原数据 ACH
18	02	01ED82	06		执行第4条指令(输出 OUT)	PC→AR=05H, PC+1=06H	
19	13	00C048			取指令	RAM(05H)=BOH→BUS→IR=BOH	
20	16	01ED8E			间接寻址, AR 指向取数的间接地址	PC→AR=06H, PC+1=07H	
21	17	00E00F	07	BO	取数地址送 AR	RAM (06) =0BH→BUS→AR=0BH	
22	25	00A015			从 RAM 中取数送 DR1	RAM(OBH)=2BH→BUS→DR1=2BH	
23	01	010A01	1		DR1 的内容送输出单元 DOUT	DR1=2BH→BUS→DOUT=2BH	
24	02	01ED82	08		执行第5条指令(转移 JMP)	PC→AR=07H, PC+1=08H	
25	14	00C048	08	C0	取指令	RAM (07H) =COH→BUS→IR=COH	
26	26	01ED96	09	CO	间接寻址,AR 指向转移的间接地址	PC→AR=08H, PC+1=09H	
27	01	00D181	00	CU	转移地址送 PC, 转到 00H。	RAM (08H) =00→BUS→PC=00H	
28	02	01ED82	01		执行第1条指令——程序循环	PC→AR=00H, PC+1=01H	
29	10	00C048	01	00	取指令		

微指令执行情况

In-System Memory Content Editor 从 FPGA 中的 ROM 和 RAM 中读取的波形数据

五、 实验总结及问题分析

思考题,除了已有的五条指令外,再设计减法 SUB,AND, OR 3条指令,总共8条指令,编写响应的微程序流程图,写出微程序代码表。

SUB, AND, OR 基本与 ADD 指令类似,只不过在最后一步微指令为 (DR1)-(DR2)->RO, (DR1)(DR2)->RO, (DR1)*(DR2)->RO。 微程序代码表如下:

微地址	微指令	S3 -S0	M	Cn	WE	A9	A8	A	В	С	UA5 UA0
27	01ED9A	0000	0	0	0	1	1	110	110	110	011010
28	01ED9E	0000	0	0	0	1	1	110	110	110	011110
29	01ED20	0000	0	0	0	1	1	110	110	100	100000
30	00E01B	0000	0	0	0	0	1	110	000	000	011011
31	00B01C	0000	0	0	0	0	1	011	000	000	011100

32	01A01D	0000	0	0	0	1	1	010	000	000	011110
33	616A01	0110	0	0	0	1	0	110	101	000	000001
34	00E01F	0000	0	0	0	0	1	110	000	000	011111
35	00B020	0000	0	0	0	0	1	011	000	000	100000
36	01A01F	0000	0	0	0	1	1	010	000	000	011111
37	B99A01	1011	1	0	0	1	1	001	101	000	000001
38	00E021	0000	0	0	0	0	1	110	000	000	100001
39	00B022	0000	0	0	0	0	1	011	000	000	100010
40	01A023	0000	0	0	0	1	1	010	000	000	100011
41	E99A01	1110	1	0	0	1	1	001	101	000	000001