

10. Magnetic Gears

Take several identical fidget spinners and attach neodymium magnets to their ends. If you place them side by side on a plane and rotate one of them, the remaining ones start to rotate only due to the magnetic field.

Investigate and explain the phenomenon.

Plan

- ☐ Explanation of the phenomenon
 - Why does the spinner start spinning;
- ☐ Theoretical Model
 - Angular Momentum;
 - ➤ The force of repulsion of magnets;
- ☐ Experimental Part
 - Experimental setup;
 - Distance between the centres of spinners;
 - ➤ The number of fidgets;
 - ➤ The number of magnets;;
 - > Angular velocity;
 - > Friction;
 - > Spinner radius;
- ☐ Comparison of theoretical and experimental results
 - Graphs;
- Conclusion
 - Important parameters;
 - Data analysis;

Explanation of the phenomenon

Theoretical Model

Theoretical Model

$$A_X = rcos\theta_1 A_y = rsin\theta_1$$

$$B_X = rcos\theta_2 B_y = rsin\theta_2 - d$$

$$a_{x} = r(\cos\theta_{1} - \cos\theta_{2})$$

$$a_{y} = r(\sin\theta_{1} - \sin\theta_{2}) + d$$

$$l = \sqrt{a_{x}^{2} + a_{y}^{2}}$$

$$\frac{a_x}{l}$$
, $\frac{a_y}{l}$ Unit vector

$$F_x = \frac{a_x}{l}F(l)$$
 $F_y = \frac{a_y}{l}F(l)$

$$ec{F} = (F_x, F_y)$$
 $ec{t} = (-\sin\theta_1, \cos\theta_1)$
 $ec{F} \cdot \vec{t} = F_t$

$$I\varepsilon = I\ddot{\theta} = M = F_t r$$

F(l) – Experimental determination

Phenomenon

Theoretical model

experiment

y = (-4.6371)x - (17.722)

Calculating the moment of inertia

$$I = \frac{1}{2}m(A^2 + B^2)$$

Parallel axis theorem

$$I = I_{cm} + md^2$$

$$I = \frac{1}{2}mR^2$$

Phenomenon

Theoretical model

experiment

Theoretical Model

$$A_X = rcos\theta_1 A_y = rsin\theta_1$$

$$B_X = rcos\theta_2 B_y = rsin\theta_2 - d$$

$$a_{x} = r(\cos\theta_{1} - \cos\theta_{2})$$

$$a_{y} = r(\sin\theta_{1} - \sin\theta_{2}) + d$$

$$l = \sqrt{a_{x}^{2} + a_{y}^{2}}$$

$$\frac{a_x}{l}$$
, $\frac{a_y}{l}$ Unit vector

$$F_x = \frac{a_x}{l}F(l)$$
 $F_y = \frac{a_y}{l}F(l)$

$$ec{F} = (F_x, F_y)$$
 $ec{t} = (-\sin\theta_1, \cos\theta_1)$
 $ec{F} \cdot \vec{t} = F_0$

$$I\varepsilon = I\ddot{\theta} = M = F_t r$$

$$I\dot{\theta} = M - M_{Friction}$$


```
ln[-]:= i = 0.000103624;
       W = 1.5;
       d = 0.145;
       r = 0.057;
       tmax = 10;
       number = 5;
       motor = Table [w * t + i * 2 * Pi / number, {i, 0, number - 1}];
       free = Table [th[t] + i * 2 * Pi / number, {i, 0, number - 1}];
        connecting Vector [th1, th2] := \{r * (Cos[th1] - Cos[th2]), d + r * (Sin[th1] - Sin[th2]), \emptyset\};
        distance[th1 , th2 ] := Norm[connectingVector[th1, th2]];
       forceMagnitude[l] := 4 * Exp[-17.722] / l^4.6371;
       forceVector[th1 , th2 ] := forceMagnitude[distance[th1, th2]] * connectingVector[th1, th2] / distance[th1, th2];
        torque [th1, th2] := Cross[\{r * Cos[th1], r * Sin[th1], 0\}, forceVector[th1, th2]][[3]];
       M = Sum[torque[free[n], motor[k]], {n, 1, number}, {k, 1, number}];
        sol = NDSolve[{th''[t] == M/(i - 2.5 * sign[th'[t]), th[0] == 0.3, th'[0] == 0.0}, th, {t, 0, tmax}, PrecisionGoal <math>\rightarrow 10, AccuracyGoal \rightarrow 10];
       Plot[-th[t] /. sol, \{t, 0, tmax\}, PlotRange \rightarrow All]
        Animate[
         Show[Join[Table[Graphics[Point[{r * Cos[free[i]]}, r * Sin[free[i]]}]]], {i, 1, number}] /. sol[[1]],
             Table [Graphics [Point [\{r \times Cos[motor[i]]\}], -d + r \times Sin[motor[i]]\}]], \{i, 1, number\}]], PlotRange \rightarrow \{\{-1.1 \times r, 1.1 \times r\}, \{-4 \times r, 1.1 \times r\}\}] /. \{t \rightarrow k\},
         \{k, 0, tmax\}, AnimationRate \rightarrow 0.1
```

Phenomenon Theoretical model experiment conclusion

Friction member

Theoretical model

experiment

Simulation

Phenomenon Theoretical model experiment conclusion

Experimental Part

Experimental Setup

phenomenon Theoretical model experiment conclusion

138.4

132.5

127.1

122.7

118.2

112 Q

149.0°

150.4°

151.7°

152.8°

153.9°

155 0°

91.6

81.6 71.5

65.2

64.2

3.350

3.367

3.383

3.400

3.417

3 /133

-230.7

-233.8

-236.6

-239.1

-241.6

2/12 7

Experimental results

Theoretical model phenomenon

experiment

Distance between centres of spinners

phenomenon Theoretical model experiment conclusion

Fidgets number

Fidgets Number

Distance – 14cm

-3.00E+02

phenomenon Theoretical model experiment conclusion

Time(sc)

Critical Point

Critical Point

phenomenon Theoretical model

experiment

Critical Distance

phenomenon Theoretical model experiment conclusion

Magnets Number

Distance – 14cm

phenomenon

Theoretical model

experiment

Without Motor

Number of Spinners

Theoretical model

experiment

Number of Spinners

phenomenon Theoretical model experiment conclusion

Conclusion

Theoretical and experimental graphs

phenomenon Theoretical model

experiment

Theoretical and experimental graphs

Important Parameters

- Distance between spinners;
- Fidgets Number;
- Magnets Number;
- Moment of Inertia;
- ➤ Angular velocity;
- > Radius of the spinner;

 $\ddot{I}\dot{\theta} = M - M_{Friction}$

phenomenon

Theoretical model

experiment

Thanks for your attention!

Whithout Engine

conclusion

heoretical model experiment