

**METHODS FOR IDENTIFYING SMALL MOLECULES THAT
MODULATE PREMATURE TRANSLATION TERMINATION
AND NONSENSE MEDIATED mRNA DECAY**

This application is entitled to and claims priority benefit to U.S. Provisional Patent Application No. 60/398,344, filed July 24, 2002 and U.S. Provisional Patent Application No. 60/398,332, filed July 24, 2002, both of which are incorporated herein by reference in their entirety.

1. INTRODUCTION

The present invention relates to a method for screening and identifying compounds that modulate premature translation termination and/or nonsense-mediated messenger ribonucleic acid (“mRNA”) decay by interacting with a preselected target ribonucleic acid (“RNA”). In particular, the present invention relates to methods of identifying compounds that bind to regions of the 28S ribosomal RNA (“rRNA”) and analogs thereof. Direct, non-competitive binding assays are advantageously used to screen libraries of compounds for those that selectively bind to a preselected target RNA. Binding of target RNA molecules to a particular compound is detected using any physical method that measures the altered physical property of the target RNA bound to a compound. The methods of the present invention provide a simple, sensitive assay for high-throughput screening of libraries of compounds to identify pharmaceutical leads.

2. BACKGROUND OF THE INVENTION

Protein synthesis encompasses the processes of translation initiation, elongation, and termination, each of which has evolved to occur with great accuracy and has the capacity to be a regulated step in the pathway of gene expression. Recent studies, including those suggesting that events at termination may regulate the ability of ribosomes to recycle to the start site of the same mRNA, have underscored the potential of termination to regulate other aspects of translation. The RNA triplets UAA, UAG, and UGA are non-coding and promote translational termination. Termination starts when one of the three termination codons enters the A site of the ribosome, thereby signaling the polypeptide chain release factors to bind and recognize the termination signal. Subsequently, the ester bond between the 3' nucleotide of the transfer RNA (“tRNA”) located in the ribosome's P

5 site and the nascent polypeptide chain is hydrolyzed, the completed polypeptide chain is released, and the ribosome subunits are recycled for another round of translation.

Nonsense-mediated mRNA decay is a surveillance mechanism that minimizes the translation and regulates the stability of RNAs that contain chain termination nonsense mutations (see, e.g., Hentze & Kulozik, 1999, Cell 96:307-310; Culbertson, 1999, Trends in Genetics 15:74-80; Li & Wilkinson, 1998, Immunity 8:135-141; and Ruiz-Echevarria *et al.*, 1996, Trends in Biological Sciences, 21:433-438). Chain termination nonsense mutations are caused when a base substitution or frameshift mutation changes a codon into a termination codon, *i.e.*, a premature stop codon that causes translational termination. In nonsense-mediated mRNA decay, mRNAs with premature stop codons are frequently subjected to degradation. A truncated protein is produced as a result of the translation apparatus prematurely terminating at the stop codon.

Nonsense mutations cause approximately 10 to 30 percent of the individual cases of virtually all inherited diseases. Although nonsense mutations inhibit the synthesis of a full-length protein to one percent or less of wild-type levels, minimally boosting the expression levels of the full-length protein to between five and fifteen percent of normal levels can eliminate or greatly reduce the severity of disease. Nonsense suppression causes the read-through of a termination codon and the generation of full-length protein. Certain aminoglycosides have been found to promote nonsense suppression (see, e.g., Bedwell *et al.*, 1997, Nat. Med. 3:1280-1284 and Howard *et al.*, 1996, Nat. Med. 2:467-469). Clinical approaches that target the translation termination event to promote nonsense suppression have recently been described for model systems of cystic fibrosis and muscular dystrophy; gentamicin is an aminoglycoside antibiotic that causes translational misreading and allows the insertion of an amino acid at the site of the nonsense codon in models of cystic fibrosis, Hurlers Syndrome, and muscular dystrophy (see, e.g., Barton-Davis *et al.*, 1999, J. Clin. Invest. 104:375-381). These results strongly suggest that drugs that promote nonsense suppression by altering translation termination efficiency of a premature termination codon can be therapeutically valuable in the treatment of diseases caused by nonsense mutations.

Certain classes of known antibiotics have been characterized and found to interact with RNA. For example, the antibiotic thiostrepton binds tightly to a 60-mer from 35 ribosomal RNA (Cundliffe *et al.*, 1990, in *The Ribosome: Structure, Function & Evolution*

5 (Schlessinger *et al.*, eds.) American Society for Microbiology, Washington, D.C. pp. 479-490), and bacterial resistance to various antibiotics often involves methylation at specific rRNA sites (Cundliffe, 1989, Ann. Rev. Microbiol. 43:207-233). In addition, certain aminoglycosides and other protein synthesis inhibitors have been found to interact with specific bases in 16S rRNA (Woodcock *et al.*, 1991, EMBO J. 10:3099-3103); moreover,
10 10 an oligonucleotide analog of the 16S rRNA has been shown to interact with certain aminoglycosides (Purohit *et al.*, 1994, Nature 370:659-662). Aminoglycosidic aminocyclitol (aminoglycoside) antibiotics and peptide antibiotics are known to inhibit group I intron splicing by binding to specific regions of the RNA (von Ahsen *et al.*, 1991, Nature (London) 353:368-370). Some of these same aminoglycosides have also been found
15 15 to inhibit hammerhead ribozyme function (Stage *et al.*, 1995, RNA 1:95-101). A molecular basis for hypersensitivity to aminoglycosides has been found to be located in a single base change in mitochondrial rRNA (Hutchin *et al.*, 1993, Nucleic Acids Res. 21:4174-4179). Aminoglycosides have also been shown to inhibit the interaction between specific structural RNA motifs and the corresponding RNA binding protein. Zapp *et al.* (Cell, 1993, 74:969-
20 20 978) has demonstrated that the aminoglycosides neomycin B, lividomycin A, and tobramycin can block the binding of Rev, a viral regulatory protein required for viral gene expression, to its viral recognition element in the IIB (or RRE) region of HIV RNA. This blockage appears to be the result of competitive binding of the antibiotics directly to the RRE RNA structural motif.
25

Citation or identification of any reference in Section 2 of this application is not an admission that such reference is available as prior art to the present invention.

3. SUMMARY OF THE INVENTION

The present invention provides methods for identifying compounds that modulate translation termination and/or nonsense-mediated mRNA decay by identifying
30 30 compounds that bind to preselected target elements of nucleic acids including, but not limited to, specific RNA sequences, RNA structural motifs, and/or RNA structural elements. In particular, the present invention provides methods of identifying compounds that bind to regions of the 28S rRNA and analogs thereof. The specific target RNA sequences, RNA structural motifs, and/or RNA structural elements (*i.e.*, regions or
35 35 fragments of the 28S rRNA and analogs thereof) are used as targets for screening small molecules and identifying those that directly bind these specific sequences, motifs, and/or

5 structural elements. For example, methods are described in which a preselected target RNA having a detectable label or method of detection is used to screen a library of compounds, preferably under physiologic conditions; and any complexes formed between the target RNA and a member of the library are identified using physical methods that detect the labeled or altered physical property of the target RNA bound to a compound. Further,
10 methods are described in which a preselected target RNA is used to screen a library of compounds, with each compound in the library having a detectable label or method of detection, preferably under physiologic conditions; and any complexes formed between the target RNA and a member of the library are identified using physical methods that detect the labeled or altered physical property of the compound bound to target RNA.

15 The present invention provides methods for identifying compounds that bind to a target RNA (e.g., regions or fragments of 28S rRNA, or RNA containing a premature stop codon), said methods comprising contacting a target RNA having a detectable label with a library of compounds free in solution, in, e.g., labeled tubes or microtiter plate, and detecting the formation of a target RNA:compound complex. In particular, the present
20 invention provides methods for identifying compounds that bind to a target RNA (e.g., regions or fragments of the 28S rRNA, or RNA containing a premature stop codon), said methods comprising contacting a target RNA having a detectable label with a library of compounds free in solution, in, e.g., labeled tubes or a microtiter plate, and detecting the formation of a target RNA:compound complex. Compounds in the library that bind to the
25 labeled target RNA will form a detectably labeled complex. The detectably labeled complex can then be identified and removed from the uncomplexed, unlabeled complex, and from uncomplexed, labeled target RNA, by a variety of methods, including, but not limited to, methods that differentiate changes in the electrophoretic, chromatographic, or thermostable properties of the complexed target RNA. Such methods include, but are not limited to,
30 electrophoresis, fluorescence spectroscopy, surface plasmon resonance, mass spectrometry, scintillation proximity assay, structure-activity relationships ("SARS") by NMR spectroscopy, size exclusion chromatography, affinity chromatography, and nanoparticle aggregation.

The present invention provides methods for identifying compounds that bind
35 to a target RNA (e.g., regions of 28S rRNA or RNA containing a premature stop codon), said methods comprising contacting a target RNA having a detectable label with a library of compounds bound, wherein each compound in the library is attached to a solid support, and detecting the formation of a target RNA:compound complex. In particular, the present

5 invention provides methods for identifying compounds that bind to a target RNA (e.g., regions or fragments of 28S rRNA, or RNA containing a premature stop codon), said methods comprising contacting a target RNA having a detectable label with a library of compounds wherein each compound is attached to a solid support, (e.g., a bead-based library of compounds or a microarray of compounds), and detecting the formation of a
10 target RNA:compound complex. Compounds in the library that bind to the labeled target RNA will form a detectably labeled complex. Compounds in the library that bind to the labeled target RNA will form a solid support detectably labeled complex (e.g., a bead-based-detectably labeled complex), which can be separated from the unbound solid support, (e.g., beads) and unbound target RNA in the liquid phase by a number of physical means,
15 including, but not limited to, flow cytometry, affinity chromatography, manual batch mode separation, suspension of beads in electric fields, and microwave of the bead-based detectably labeled complex.

The present invention provides methods for identifying compounds that bind to a target RNA (e.g., regions or fragments of 28S rRNA or RNA containing a premature stop codon), said methods comprising contacting a target RNA with a library of compounds, wherein each compound in the library is detectably labeled, and detecting the formation of a target RNA:compound complex. In particular, the present invention provides methods for identifying compounds that bind to a target RNA (e.g., regions or fragments of 28S rRNA, or RNA containing a premature stop codon), said methods comprising contacting a target RNA with a library of compounds free in solution, in e.g., labeled tubes or a microtiter plate, wherein each compound in the library is detectably labeled, and detecting the formation of a target RNA:compound complex. Compounds in the library that bind to the labeled target RNA will form a detectably labeled complex. The detectably labeled complex can then be identified and removed from the uncomplexed, unlabeled complex, and from uncomplexed, target RNA, by a variety of methods, including, but not limited to, methods that differentiate changes in the electrophoretic, chromatographic, or thermostable properties of the complexed target RNA. Such methods include, but are not limited to, electrophoresis, fluorescence spectroscopy, surface plasmon resonance, mass spectrometry, scintillation proximity assay, structure-activity relationships ("SARS") by NMR spectroscopy, size exclusion chromatography, affinity chromatography, and nanoparticle aggregation.

The present invention provides methods for identifying compounds that bind to a target RNA (e.g., regions or fragments of 28S rRNA or RNA containing a premature

5 stop codon), said methods comprising contacting a target RNA attached or conjugated to a solid support with a library of compounds, wherein each compound in the library is detectably labeled, and detecting the formation of a target RNA:compound complex. Target RNA molecules that bind to labeled compounds will form a detectable labeled complex. Target RNA molecules that bind to labeled compounds will form solid support-
10 detectably labeled complex, which can be separated from unbound solid support-target RNA and unbound labeled compounds in the liquid phase by a number of means, including, but not limited to, flow cytometry, affinity chromatography, manual batch mode separation, suspension of beads in electric fields, and microwave of the bead-based detectably labeled complex.

15 In a specific embodiment, the invention provides a method for identifying a compound that binds to a target RNA, said method comprising: (a) contacting a detectably labeled target RNA molecule with a library of compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of compounds and the formation of a detectably labeled target RNA:compound complex, wherein the target RNA
20 is a region or fragment of 28S rRNA, or contains a premature stop codon; and (b) detecting the formation of a labeled target RNA:compound complex. In another embodiment, the invention provides a method for identifying a compound that binds to a target RNA, said method comprising detecting the formation of a detectably labeled target RNA:compound complex formed from contacting a detectably labeled RNA with a member of a library of
25 compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of compounds and the formation of a labeled target RNA:compound complex, wherein the target RNA is a region or fragment of 28S rRNA, or contains a premature stop codon. In accordance with these embodiments, each compound in the library may be attached to a solid support. Non-limiting examples of solid supports include
30 a silica gel, a resin, a derivatized plastic film, a glass bead, cotton, a plastic bead, a polystyrene bead, an aluminum gel, a glass slide or a polysaccharide.

35 In another specific embodiment, the invention provides a method for identifying a compound that binds to a target RNA, said method comprising: (a) contacting a target RNA molecule with a library of detectably labeled compounds under conditions that permit direct binding of the target RNA to a member of the library of labeled compounds and the formation of a detectable target RNA:compound complex, wherein the target RNA is a region or fragment of 28S rRNA, or contains a premature stop codon; and (b) detecting the formation of a target RNA:compound complex. In another embodiment,

5 the invention provides a method for identifying a compound that binds to a target RNA, said method comprising detecting the formation of a target RNA:compound complex formed from contacting a RNA with a member of a library of detectably labeled compounds under conditions that permit direct binding of the target RNA to a member of the library of labeled compounds and the formation of a target RNA:compound complex, wherein the
10 target RNA is a region or fragment of 28S rRNA, or contains a premature stop codon. In accordance with these embodiments, the target RNA may be attached to a solid support. Non-limiting examples of solid supports include a silica gel, a resin, a derivatized plastic film, a glass bead, cotton, a plastic bead, a polystyrene bead, an aluminum gel, a glass slide or a polysaccharide.

15 In another specific embodiment, the invention provides a method for identifying a compound that binds to a target RNA, said method comprising: (a) contacting a detectably labeled target RNA molecule with a library of detectably labeled compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of labeled and the formation of a detectable target RNA:compound complex,
20 wherein the target RNA is a region or fragment of 28S rRNA, or contains a premature stop codon; and (b) detecting the formation of a target RNA:compound complex. In another embodiment, the invention provides a method for identifying a compound that binds to a target RNA, said method comprising detecting the formation of a target RNA:compound complex formed from contacting a labeled RNA with a member of a library of detectably
25 labeled compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of labeled compounds and the formation of a target RNA:compound complex, wherein the target RNA is a region or fragment of 28S rRNA or contains a premature stop codon. In accordance with these embodiments, the target RNA may be attached to a solid support. Non-limiting examples of solid supports are provided
30 *infra*. A number of techniques can be used to detect the interaction between target RNA and the compounds of the invention. In a specific embodiment, fluorescence resonance energy transfer (FRET) is used to detect the interaction between the target RNA and the compound of the invention. Examples of FRET assays are known in the art and are also provided herein (see, e.g., Section 5.6.2).

35 The methods described herein for the identification of compounds that directly bind to 28S rRNA or a RNA containing a premature stop codon are well suited for high-throughput screening. The direct binding method of the invention offers advantages over drug screening systems for competitors that inhibit the formation of naturally-

5 occurring RNA binding protein:target RNA complexes; *i.e.*, competitive assays. The direct binding method of the invention is rapid and can be set up to be readily performed, *e.g.*, by a technician, making it amenable to high-throughput screening. The methods of the invention also eliminate the bias inherent in the competitive drug screening systems, which require the use of a preselected host cell factor that may not have physiological relevance to
10 the activity of the target RNA. Instead, the methods of the invention are used to identify any compound that can directly bind to a target RNA, (*e.g.*, 28S rRNA or a RNA containing a premature stop codon), preferably under physiologic conditions. As a result, the compounds so identified can inhibit the interaction of the target RNA with any one or more of the native host cell factors (whether known or unknown) required for activity of the RNA
15 *in vivo*.

The compounds utilized in the assays described herein may be members of a library of compounds. In specific embodiment, the compound is selected from a combinatorial library of compounds comprising peptides; random biooligomers; diversomers such as hydantoins, benzodiazepines and dipeptides; vinylogous polypeptides; 20 nonpeptidal peptidomimetics; oligocarbamates; peptidyl phosphonates; peptide nucleic acid libraries; antibody libraries; carbohydrate libraries; and small organic molecule libraries. In a preferred embodiment, the small organic molecule libraries are libraries of benzodiazepines, isoprenoids, thiazolidinones, metathiazanones, pyrrolidines, morpholino compounds, or diazepindiones.

25 In certain embodiments, the compounds are screened in pools. Once a positive pool has been identified, the individual compounds of that pool are tested separately. In certain embodiments, the pool size is at least 2, at least 5, at least 10, at least 25, at least 50, at least 75, at least 100, at least 150, at least 200, at least 250, or at least 500 compounds.

30 Once a compound is identified in accordance with the invention, the structure of the compound may be determined utilizing well-known techniques or by referring to a predetermined code. The methods used will depend, in part, on the nature of the library screened. For example, assays of microarrays of compounds, each having an address or identifier, may be deconvoluted, *e.g.*, by cross-referencing the positive sample to 35 original compound list that was applied to the individual test assays. Another method for identifying compounds includes *de novo* structure determination of the compounds using, for example, mass spectrometry or nuclear magnetic resonance ("NMR"). The compounds

5 identified are useful for any purpose to which a binding reaction may be put, for example in assay methods, diagnostic procedures, cell sorting, as inhibitors of target molecule function, as probes, as sequestering agents and the like. In addition, small organic molecules which interact specifically with target RNA molecules may be useful as lead compounds for the development of therapeutic agents.

10 A compound identified in accordance with the methods of the invention may bind to a premature stop codon. A compound identified in accordance with the methods of invention may also disrupt an interaction between a premature stop codon and the mRNA translation machinery. In a preferred embodiment, a compound identified in accordance with the methods of the invention binds to RNA and suppresses premature translation termination and/or nonsense-mediated mRNA decay of a gene encoding a protein, polypeptide or peptide whose expression is beneficial to a subject. In another preferred embodiment, a compound identified in accordance with the methods of the invention binds to RNA and increases premature translation termination and/or nonsense-mediated mRNA decay of a gene encoding a protein, polypeptide or peptide whose expression is detrimental to a subject. In a specific embodiment, a compound identified in accordance with the methods of the invention preferentially or differentially modulates premature translation termination and/or nonsense-mediated mRNA decay of a specific nucleotide sequence of interest relative to another nucleotide sequence.

25 In certain embodiments of the invention, the compound identified using the assays described herein is a small molecule. In a preferred embodiment, the compound identified using the assays described herein is not known to affect premature translation termination and/or nonsense-mediated mRNA decay of a nucleic acid sequence, in particular a nucleic acid sequence of interest. In another preferred embodiment, the compound identified using the assays described herein has not been used as or suggested to be used in the prevention, treatment, management and/or amelioration of a disorder associated with, characterized by or caused by a premature stop codon. In another preferred embodiment, the compound identified using the assays described herein has not been used as or suggested to be used in the prevention, treatment, management and/or amelioration of a particular disorder described herein.

30 35 A compound identified in accordance with the methods of the invention may be tested in *in vitro* and/or *in vivo* assays well-known to one of skill in the art or

5 described herein to determine the prophylactic or therapeutic effect of a particular compound for a particular disorder. In particular, a compound identified utilizing the assays described herein may be tested in an animal model to determine the efficacy of the compound in the prevention, treatment or amelioration of a disorder associated with, characterized by or caused by a premature stop codon, or a disorder described herein, or a
10 symptom thereof. In addition, a compound identified utilizing the assays described herein may be tested for its toxicity in *in vitro* and/or *in vivo* assays well-known to one of skill in the art. Further, a compound identified as binding to a target RNA utilizing assays described herein or those well-known in the art may be tested for its ability to modulate premature translation and/or nonsense mediated mRNA decay.

15 In a specific embodiment, the invention provides a method for identifying a compound to test for its ability to modulate premature translation termination or nonsense-mediated mRNA decay, said method comprising: (a) contacting a detectably labeled target RNA molecule with a library of compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of compounds and the formation of a
20 detectably labeled target RNA:compound complex, wherein the target RNA is a region or fragment of 28S rRNA or contains a premature stop codon; and (b) detecting a detectably labeled target RNA:compound complex formed in step(a), so that if a target RNA:compound complex is detected then the compound identified is tested for its ability to modulate premature translation or nonsense-mediated mRNA decay.

25 In a specific embodiment, the invention provides a method for identifying a compound to test for its ability to modulate premature translation termination or nonsense-mediated mRNA decay, said method comprising: (a) contacting a target RNA molecule with a library of detectably labeled compounds under conditions that permit direct binding of the target RNA to a member of the library of labeled compounds and the formation of a
30 detectably labeled target RNA:compound complex, wherein the target RNA is a region or fragment of 28S rRNA or contains a premature stop codon; and (b) detecting a detectably labeled target RNA:compound complex formed in step(a), so that if a target RNA:compound complex is detected then the compound identified is tested for its ability to modulate premature translation or nonsense-mediated mRNA decay.

5 The invention provides cell-based and cell-free assays to test the ability of a compound identified in accordance with the methods of the invention to modulate premature translation termination and/or nonsense-mediated mRNA decay. In particular, the invention provides cell-based and cell-free reporter assays for the identification of a compound that modulates premature translation termination and/or nonsense-mediated mRNA decay. In general, the level of expression and/or activity of a reporter gene product 10 in the reporter gene based-assays described herein is indicative of the effect of the compound on premature translation termination and/or nonsense-mediated mRNA decay. The reporter gene-based assays described herein for the identification of compounds that modulate premature translation termination and/or nonsense-mediated mRNA decay are 15 well suited for high-throughput screening.

 The reporter gene cell-based assays may be conducted by contacting a compound with a cell containing a nucleic acid sequence comprising a reporter gene, wherein the reporter gene contains a premature stop codon or nonsense mutation, and measuring the expression of the reporter gene. The reporter gene cell-free assays may be 20 conducted by contacting a compound with a cell-free extract and a nucleic acid sequence comprising a reporter gene, wherein the reporter gene contains a premature stop codon or nonsense mutation, and measuring the expression of the reporter gene. In the cell-based and cell-free reporter gene assays described herein, the alteration in reporter gene expression or activity relative to a previously determined reference range, or to the 25 expression or activity of the reporter gene in the absence of the compound or the presence of an appropriate control (*e.g.*, a negative control) indicates that a particular compound modulates premature translation termination and/or nonsense-mediated mRNA decay. In particular, an increase in reporter gene expression or activity relative to a previously determined reference range, or to the expression in the absence of the compound or the 30 presence of an appropriate control (*e.g.*, a negative control) may, depending upon the parameters of the reporter gene assay, indicate that a particular compound reduces or suppresses premature translation termination and/or nonsense-mediated mRNA decay (*i.e.*, increases nonsense suppression). In contrast, a decrease in reporter gene expression or activity relative to a previously determined reference range, or to the expression in the 35 absence of the compound or the presence of an appropriate control (*e.g.*, a negative control)

5 may, depending upon the parameters of the reporter gene-based assay, indicate that a particular compound enhances premature translation termination and/or nonsense-mediated mRNA decay (*i.e.*, decreases nonsense suppression).

In a specific embodiment, the invention provides a method of identifying a compound that modulates premature translation termination or nonsense-mediated mRNA decay, said method comprising: (a) contacting a detectably labeled target RNA molecule with a library of compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of compounds and the formation of a detectably labeled target RNA:compound complex, wherein the target RNA is a region of 28S rRNA or contains a premature stop codon; (b) detecting a labeled target RNA:compound complex formed in step(a); so that if a target RNA:compound complex is detected, then (c) contacting the compound with a cell-free translation mixture and a nucleic acid sequence comprising a regulatory element operably linked to a reporter gene, wherein the reporter gene contains a premature stop codon; and (d) detecting the expression of the reporter gene, wherein a compound that modulates premature translation termination or nonsense-mediated mRNA decay is identified if the expression of the reporter gene in the presence of the compound is altered relative to the expression of the reporter gene in the absence of the compound or the presence of a negative control. In accordance with this embodiment, each compound in the library may be attached to a solid support.

In another embodiment, the invention provides a method of identifying a compound that modulates premature translation termination or nonsense-mediated mRNA decay, said method comprising: (a) contacting a detectably labeled target RNA molecule with a library of compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of compounds and the formation of a detectably labeled target RNA:compound complex, wherein the target RNA is a region of 28S rRNA or contains a premature stop codon; (b) detecting a labeled target RNA:compound complex formed in step(a); so that if a target RNA compound complex is detected, then (c) contacting the compound with a cell containing a nucleic acid sequence comprising a regulatory element operably linked to a reporter gene, wherein the reporter gene contains a premature stop codon; and (d) detecting the expression of the reporter gene, wherein a compound that modulates premature translation termination or nonsense-mediated mRNA

5 decay is identified if the expression of the reporter gene in the presence of the compound is altered relative to the expression of the reporter gene in the absence of the compound or the presence of a negative control. In accordance with this embodiment, each compound in the library may be attached to a solid support.

In a specific embodiment, the invention provides a method of identifying a
10 compound that modulates premature translation termination or nonsense-mediated mRNA decay, said method comprising: (a) contacting a detectably labeled target RNA molecule with a library of compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of compounds and the formation of a detectably labeled target RNA:compound complex, wherein the target RNA is a region of 28S rRNA or
15 contains a premature stop codon; (b) detecting a labeled target RNA:compound complex formed in step(a); then (c) contacting the compound with a cell-free translation mixture and a nucleic acid sequence comprising a regulatory element operably linked to a reporter gene, wherein the reporter gene contains a premature stop codon; and (d) detecting the expression of the reporter gene, wherein a compound that modulates premature translation termination
20 or nonsense-mediated mRNA decay is identified if the expression of the reporter gene in the presence of the compound is altered relative to the expression of the reporter gene in the absence of the compound or the presence of a negative control. In accordance with this embodiment, each compound in the library may be attached to a solid support.

In another embodiment, the invention provides a method of identifying a
25 compound that modulates premature translation termination or nonsense-mediated mRNA decay, said method comprising: (a) contacting a detectably labeled target RNA molecule with a library of compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of compounds and the formation of a detectably labeled target RNA:compound complex, wherein the target RNA is a region of 28S rRNA or
30 contains a premature stop codon; (b) detecting a labeled target RNA:compound complex formed in step(a); then (c) contacting the compound with a cell containing a nucleic acid sequence comprising a regulatory element operably linked to a reporter gene, wherein the reporter gene contains a premature stop codon; and (d) detecting the expression of the reporter gene, wherein a compound that modulates premature translation termination or
35 nonsense-mediated mRNA decay is identified if the expression of the reporter gene in the

5 presence of the compound is altered relative to the expression of the reporter gene in the absence of the compound or the presence of a negative control. In accordance with this embodiment, each compound in the library may be attached to a solid support.

In a specific embodiment, the invention provides a method of identifying a compound that modulates premature translation termination or nonsense-mediated mRNA decay, said method comprising: (a) contacting a target RNA molecule with a library of detectably labeled compounds under conditions that permit direct binding of the target RNA to a member of the library of labeled compounds and the formation of a detectably labeled target RNA:compound complex, wherein the target RNA is a region of 28S rRNA or contains a premature stop codon; (b) detecting a labeled target RNA:compound complex formed in step(a); then (c) contacting the compound with a cell-free translation mixture and a nucleic acid sequence comprising a regulatory element operably linked to a reporter gene, wherein the reporter gene contains a premature stop codon; and (d) detecting the expression of the reporter gene, wherein a compound that modulates premature translation termination or nonsense-mediated mRNA decay is identified if the expression of the reporter gene in the presence of the compound is altered relative to the expression of the reporter gene in the absence of the compound or the presence of a negative control. In accordance with this embodiment, the target RNA may be attached or conjugated to a solid support, or detectably labeled.

In another embodiment, the invention provides a method of identifying a compound that modulates premature translation termination or nonsense-mediated mRNA decay, said method comprising: (a) contacting a target RNA molecule with a library of detectably labeled compounds under conditions that permit direct binding of the target RNA to a member of the library of labeled compounds and the formation of a detectably labeled target RNA:compound complex, wherein the target RNA is a region of 28S rRNA or contains a premature stop codon; (b) detecting a labeled target RNA:compound complex formed in step(a); then (c) contacting the compound with a cell containing a nucleic acid sequence comprising a regulatory element operably linked to a reporter gene, wherein the reporter gene contains a premature stop codon; and (d) detecting the expression of the reporter gene, wherein a compound that modulates premature translation termination or nonsense-mediated mRNA decay is identified if the expression of the reporter gene in the

5 presence of the compound is altered relative to the expression of the reporter gene in the absence of the compound or the presence of a negative control. In accordance with this embodiment, the target RNA may be attached or conjugated to a solid support, or detectably labeled.

In a specific embodiment, the invention provides a method of identifying a
10 compound that modulates premature translation termination or nonsense-mediated mRNA decay, said method comprising: (a) contacting a target RNA molecule with a library of detectably labeled compounds under conditions that permit direct binding of the target RNA to a member of the library of labeled compounds and the formation of a detectably labeled target RNA:compound complex, wherein the target RNA is a region of 28S rRNA or
15 contains a premature stop codon; (b) detecting a labeled target RNA:compound complex formed in step(a); so that if a target RNA:compound complex is detected, then (c) contacting the compound with a cell-free translation mixture and a nucleic acid sequence comprising a regulatory element operably linked to a reporter gene, wherein the reporter gene contains a premature stop codon; and (d) detecting the expression of the reporter gene,
20 wherein a compound that modulates premature translation termination or nonsense-mediated mRNA decay is identified if the expression of the reporter gene in the presence of the compound is altered relative to the expression of the reporter gene in the absence of the compound or the presence of a negative control. In accordance with this embodiment, the target RNA may be attached or conjugated to a solid support, or detectably labeled.

25 In another embodiment, the invention provides a method of identifying a compound that modulates premature translation termination or nonsense-mediated mRNA decay, said method comprising: (a) contacting a target RNA molecule with a library of detectably labeled compounds under conditions that permit direct binding of the target RNA to a member of the library of labeled compounds and the formation of a detectably labeled target RNA:compound complex, wherein the target RNA is a region of 28S rRNA or
30 contains a premature stop codon; (b) detecting a labeled target RNA:compound complex formed in step(a); so that if a target RNA:compound complex is detected, then (c) contacting the compound with a cell containing a nucleic acid sequence comprising a regulatory element operably linked to a reporter gene, wherein the reporter gene contains a premature stop codon; and (d) detecting the expression of the reporter gene, wherein a

5 compound that modulates premature translation termination or nonsense-mediated mRNA decay is identified if the expression of the reporter gene in the presence of the compound is altered relative to the expression of the reporter gene in the absence of the compound or the presence of a negative control. In accordance with this embodiment, the target RNA may be attached or conjugated to a solid support, or detectably labeled.

10 The invention provides methods for preventing, treating, managing or ameliorating a disorder associated with, characterized by or caused by a premature translation termination and/or nonsense-mediated mRNA decay or a symptom thereof, said method comprising administering to a subject in need thereof a therapeutically or prophylactically effective amount of a compound, or a pharmaceutically acceptable salt
15 thereof, identified according to the methods described herein.

The present invention may be understood more fully by reference to the detailed description and examples, which are intended to illustrate non-limiting embodiments of the invention.

3.1 Terminology

20 As used herein, the term "compound" refers to any agent or complex that is being tested for its ability to interact with a target nucleic acid (in particular, a target RNA) or has been identified as interacting with a target nucleic acid (in particular, a target RNA).

As used herein, the terms "disorder" and "disease" are to refer to a condition in a subject.

25 As used herein, a "dye" refers to a molecule that, when exposed to radiation, emits radiation at a level that is detectable visually or via conventional spectroscopic means. As used herein, a "visible dye" refers to a molecule having a chromophore that absorbs radiation in the visible region of the spectrum (*i.e.*, having a wavelength of between about 400 nm and about 700 nm) such that the transmitted radiation is in the visible region and
30 can be detected either visually or by conventional spectroscopic means. As used herein, an "ultraviolet dye" refers to a molecule having a chromophore that absorbs radiation in the ultraviolet region of the spectrum (*i.e.*, having a wavelength of between about 30 nm and about 400 nm). As used herein, an "infrared dye" refers to a molecule having a chromophore that absorbs radiation in the infrared region of the spectrum (*i.e.*, having a wavelength between about 700 nm and about 3,000 nm). A "chromophore" is the network
35

5 of atoms of the dye that, when exposed to radiation, emits radiation at a level that is detectable visually or via conventional spectroscopic means. One of skill in the art will readily appreciate that although a dye absorbs radiation in one region of the spectrum, it may emit radiation in another region of the spectrum. For example, an ultraviolet dye may emit radiation in the visible region of the spectrum. One of skill in the art will also readily
10 appreciate that a dye can transmit radiation or can emit radiation via fluorescence or phosphorescence.

As used herein, the term "effective amount" refers to the amount of a compound which is sufficient to (i) reduce or ameliorate the progression, severity and/or duration of a disorder (*e.g.*, a disorder associated with, characterized by or caused by
15 premature translation termination and/or nonsense-mediated mRNA decay), or one or more symptoms thereof, (ii) prevent the development, recurrence or onset of a disorder (*e.g.*, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay), or one or more symptoms thereof, (iii) prevent the advancement of a disorder (*e.g.*, a disorder associated with, characterized by or caused
20 by premature translation termination and/or nonsense-mediated mRNA decay), or one or more symptoms thereof, or (iv) enhance or improve the therapeutic effect(s) of another therapy.

As used herein, the term "fragment", in the context of a protein or polypeptide refers to a peptide sequence of at least 5 contiguous residues, at least 10
25 contiguous residues, at least 15 contiguous residues, at least 20 contiguous residues, at least 25 contiguous residues, at least 40 contiguous residues, at least 50 contiguous residues, at least 60 contiguous residues, at least 70 contiguous residues, at least 80 contiguous residues, at least 90 contiguous residues, at least 100 contiguous residues, at least 125 contiguous residues, at least 150 contiguous residues, at least 175 contiguous residues, at least 200
30 contiguous residues, or at least 250 contiguous residues of the sequence of another protein or polypeptide. In a specific embodiment, a fragment of a protein or polypeptide retains at least one function of the protein or polypeptide.

As used herein, the term "fragment", in the context of a nucleic acid sequence refers to a nucleotide sequence of at least 5 contiguous bases, at least 10
35 contiguous bases, at least 15 contiguous bases, at least 20 contiguous bases, at least 25

- 5 contiguous bases, at least 40 contiguous bases, at least 50 contiguous bases, at least 60 contiguous bases, at least 70 contiguous bases, at least 80 contiguous bases, at least 90 contiguous bases, at least 100 contiguous bases, at least 125 contiguous bases, at least 150 contiguous bases, at least 175 contiguous bases, at least 200 contiguous bases, or at least 250 contiguous bases of the sequence of another nucleic acid sequence. In a specific
10 embodiment, a fragment of a nucleic acid sequence retains at least one domain of the nucleic acid sequence.

As used herein, the term "in combination" refers to the use of more than one therapy (*e.g.*, prophylactic and/or therapeutic agents). The use of the term "in combination" does not restrict the order in which therapies (*e.g.*, prophylactic and/or therapeutic agents) 15 are administered to a subject with a disorder (*e.g.*, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay). A first therapy (*e.g.*, a prophylactic or therapeutic agent such as a compound identified in accordance with the methods of the invention) can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 20 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (*e.g.*, 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy (*e.g.*, a prophylactic or 25 therapeutic agent such as a chemotherapeutic agent or a TNF- α antagonist) to a subject with a disorder (*e.g.*, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay).

As used herein, a "label" or "detectable label" is a composition that is detectable, either directly or indirectly, by spectroscopic, photochemical, biochemical, 30 immunochemical, or chemical means. For example, useful labels include radioactive isotopes (*e.g.*, ^{32}P , ^{35}S , and ^3H), dyes, fluorescent dyes, electron-dense reagents, enzymes and their substrates (*e.g.*, as commonly used in enzyme-linked immunoassays, *e.g.*, alkaline phosphatase and horse radish peroxidase), biotin, streptavidin, digoxigenin, or haptens and proteins for which antisera or monoclonal antibodies are available. Moreover, a label or 35 detectable moiety can include an "affinity tag" that, when coupled with the target nucleic acid and incubated with a compound or compound library, allows for the affinity capture of

5 the target nucleic acid along with molecules bound to the target nucleic acid. One skilled in the art will appreciate that an affinity tag bound to the target nucleic acids has, by definition, a complimentary ligand coupled to a solid support that allows for its capture. For example, useful affinity tags and complimentary ligands or partners include, but are not limited to, biotin-streptavidin, complimentary nucleic acid fragments (e.g., oligo dT-oligo
10 dA, oligo T-oligo A, oligo dG-oligo dC, oligo G-oligo C), aptamer complexes, aptamers, or haptens and proteins for which antisera or monoclonal antibodies are available. The label or detectable moiety is typically bound, either covalently, through a linker or chemical bound, or through ionic, van der Waals or hydrogen bonds to the molecule to be detected.

As used herein, a "library" in the context of compounds refers to a plurality 15 of compounds with which a target nucleic acid molecule is contacted. A library can be a combinatorial library, *e.g.*, a collection of compounds synthesized using combinatorial chemistry techniques, or a collection of unique chemicals of low molecular weight (less than 1000 daltons) that each occupy a unique three-dimensional space.

As used herein, the terms "manage", "managing" and "management" refer to 20 the beneficial effects that a subject derives from a therapy (*e.g.*, a prophylactic or therapeutic agent) which does not result in a cure of the disorder, (*e.g.*, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay). In certain embodiments, a subject is administered one or more therapies to "manage" a disease or disorder so as to prevent the progression or worsening of 25 the disease or disorder.

As used herein, the phrase "modulation of premature translation termination and/or nonsense-mediated mRNA decay" refers to the regulation of gene expression by 30 altering the level of nonsense suppression. For example, if it is desirable to increase production of a defective protein encoded by a gene with a premature stop codon, *i.e.*, to permit read through of the premature stop codon of the disease gene so translation of the gene can occur, then modulation of premature translation termination and/or nonsense-mediated mRNA decay entails up-regulation of nonsense suppression. Conversely, if it is desirable to promote the degradation of an mRNA with a premature stop codon, then modulation of premature translation termination and/or nonsense-mediated mRNA decays 35 entails down-regulation of nonsense suppression.

5 As used herein, the terms "non-responsive" and "refractory" describe patients treated with a currently available therapy (*e.g.*, prophylactic or therapeutic agent) for a disorder (*e.g.*, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay such as, *e.g.*, cancer), which is not clinically adequate to relieve one or more symptoms associated with such 10 disorder. Typically, such patients suffer from severe, persistently active disease and require additional therapy to ameliorate the symptoms associated with their disorder.

As used herein, "nonsense-mediated mRNA decay" refers to any mechanism that mediates the decay of mRNAs containing a premature translation termination codon.

As used herein, a "nonsense mutation" is a point mutation changing a codon 15 corresponding to an amino acid to a stop codon.

As used herein, "nonsense suppression" refers to the inhibition or suppression of premature translation termination and/or nonsense-mediated mRNA decay.

As used herein, the phrase "pharmaceutically acceptable salt(s)" includes but is not limited to salts of acidic or basic groups that may be present in compounds identified 20 using the methods of the present invention. Compounds that are basic in nature are capable of forming a wide variety of salts with various inorganic and organic acids. The acids that can be used to prepare pharmaceutically acceptable acid addition salts of such basic compounds are those that form non-toxic acid addition salts, *i.e.*, salts containing pharmacologically acceptable anions, including but not limited to sulfuric, citric, maleic, 25 acetic, oxalic, hydrochloride, hydrobromide, hydroiodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, acid citrate, tartrate, oleate, tannate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate, methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate and pamoate (*i.e.*, 30 1,1'-methylene-bis-(2-hydroxy-3-naphthoate)) salts. Compounds that include an amino moiety may form pharmaceutically or cosmetically acceptable salts with various amino acids, in addition to the acids mentioned above. Compounds that are acidic in nature are capable of forming base salts with various pharmacologically or cosmetically acceptable cations. Examples of such salts include alkali metal or alkaline earth metal salts and, 35 particularly, calcium, magnesium, sodium lithium, zinc, potassium, and iron salts.

5 As used herein, the term "previously determined reference range" refers to a reference range for the readout of a particular assay. Each laboratory will establish its own reference range for each particular assay. In a preferred embodiment, at least one positive control and at least one negative control are included in each batch of compounds analyzed.

10 As used herein, a "premature termination codon" or "premature stop codon" refers to the occurrence of a stop codon instead of a codon corresponding to an amino acid.

 As used herein, "premature translation termination" refers to the result of a mutation that changes a codon corresponding to an amino acid to a stop codon.

15 As used herein, the terms "prevent", "preventing" and "prevention" refer to the prevention of the development, recurrence or onset of a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay) or one or more symptoms thereof resulting from the administration of one or more compounds identified in accordance the methods of the invention or the administration of a combination of such a compound and a known therapy for such a disorder.

20 As used herein, the terms "prophylactic agent" and "prophylactic agents" refer to any agent(s) which can be used in the prevention of a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay). In certain embodiments, the term "prophylactic agent" refers to a compound identified in the screening assays described herein. In certain other embodiments, the term "prophylactic agent" refers to an agent other than a compound identified in the screening assays described herein which is known to be useful for, or has been or is currently being used to prevent or impede the onset, development and/or progression of a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay) or one or more symptoms thereof.

25 As used herein, the phrase "prophylactically effective amount" refers to the amount of a therapy (e.g., a prophylactic agent) which is sufficient to result in the prevention of the development, recurrence or onset of one or more symptoms associated with a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay).

5 As used herein, the term "purified," in the context of a compound, *e.g.*, a compound identified in accordance with the method of the invention, refers to a compound that is substantially free of chemical precursors or other chemicals when chemically synthesized. In a specific embodiment, the compound is 60%, preferably 65%, 70%, 75%, 80%, 85%, 90%, or 99% free of other, different compounds. In a preferred embodiment, a
10 compound identified in accordance with the methods of the invention is purified.

As used herein, the term "reporter gene" refers to a nucleotide sequence encoding a protein, polypeptide or peptide that is readily detectable either by its presence or activity. Any reporter gene well-known to one of skill in the art may be used in reporter gene constructs to ascertain the effect of a compound on premature translation termination.

15 As used herein, the term "small molecule" and analogous terms include, but are not limited to, peptides, peptidomimetics, amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (*i.e.*, including heterorganic and/or ganometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds
20 having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.

As used herein, the terms "subject" and "patient" are used interchangeably
25 herein. The terms "subject" and "subjects" refer to an animal, preferably a mammal including a non-primate (*e.g.*, a cow, pig, horse, cat, dog, rat, and mouse) and a primate (*e.g.*, a chimpanzee, a monkey such as a cynomolgous monkey and a human), and more preferably a human. In one embodiment, the subject is refractory or non-responsive to current therapies for a disorder (*e.g.*, a disorder associated with, characterized by or caused
30 by premature translation termination and/or nonsense-mediated mRNA decay). In another embodiment, the subject is a farm animal (*e.g.*, a horse, a cow, a pig, etc.) or a pet (*e.g.*, a dog or a cat). In a preferred embodiment, the subject is a human.

As used herein, the term "synergistic" refers to a combination of a compound identified using one of the methods described herein, and another therapy (*e.g.*, a prophylactic or therapeutic agent), which combination is more effective than the additive
35

- 5 effects of the therapies. A synergistic effect of a combination of therapies (e.g., prophylactic or therapeutic agents) permits the use of lower dosages of one or more of the therapies and/or less frequent administration of said therapies to a subject with disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay). The ability to utilize lower dosages
10 of a therapy (e.g., a prophylactic or therapeutic agent) and/or to administer said therapy less frequently reduces the toxicity associated with the administration of said therapy to a subject without reducing the efficacy of said therapies in the prevention, treatment, management or amelioration of a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay).
- 15 In addition, a synergistic effect can result in improved efficacy of therapies (e.g., prophylactic or therapeutic agents) in the prevention, treatment, management or amelioration of a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay). Finally, a synergistic effect of a combination of therapies (e.g., prophylactic or therapeutic agents)
20 may avoid or reduce adverse or unwanted side effects associated with the use of either therapy alone.

As used herein, the term "substantially one type of compound" means that the assay can be performed in such a fashion that at some point, only one compound need be used in each reaction so that, if the result is indicative of a binding event occurring
25 between the target RNA molecule and the compound, the compound can be easily identified.

As used herein, a "target nucleic acid" refers to RNA, DNA, or a chemically modified variant thereof. In a preferred embodiment, the target nucleic acid is RNA. A target nucleic acid also refers to tertiary structures of the nucleic acids, such as, but not limited to loops, bulges, pseudoknots, guanosine quartets and turns. A target nucleic acid also refers to RNA elements such as, but not limited to, 28S rRNA and structural analogs thereof, which are described in Sections 5.1 and 5.2. Non-limiting examples of target nucleic acids are presented in Sections 5.1 and 5.2.

As used herein, a "target RNA" refers to RNA or a chemically modified variant thereof. A target RNA also refers to tertiary structures of RNA, such as, but not
35

5 limited to loops, bulges, pseudoknots, guanosine quartets and turns. A target RNA also refers to RNA elements such as, but not limited to, 28S rRNA and structural analogs thereof, which are described in Sections 5.1 and 5.2. Non-limiting examples of target RNAs are presented in Sections 5.1 and 5.2. In a specific embodiment, a target RNA is at least 25 nucleotides, preferably at least 30 nucleotides, at least 35 nucleotides, at least 40
10 nucleotides, at least 45 nucleotides, at least 50 nucleotides, at least 55 nucleotides, at least 60 nucleotides, at least 65 nucleotides, at least 70 nucleotides, at least 75 nucleotides, at least 80 nucleotides, at least 85 nucleotides, at least 90 nucleotides, at least 95 nucleotides, at least 100 nucleotides, at least 125 nucleotides, at least 150 nucleotides, at least 175 nucleotides or at least 200 nucleotides in length.

15 As used herein, the terms "therapeutic agent" and "therapeutic agents" refer to any agent(s) which can be used in the prevention, treatment, management or amelioration of one or more symptoms of a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay). In certain embodiments, the term "therapeutic agent" refers to a compound identified in the
20 screening assays described herein. In other embodiments, the term "therapeutic agent" refers to an agent other than a compound identified in the screening assays described herein which is known to be useful for, or has been or is currently being used to prevent, treat, manage or ameliorate a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay) or one or
25 more symptoms thereof.

As used herein, the term "therapeutically effective amount" refers to that amount of a therapy (e.g., a therapeutic agent) sufficient to result in (i) the amelioration of one or more symptoms of a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay), (ii) prevent advancement of a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay), (iii) cause regression of a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay), or (iv) to enhance or improve the therapeutic effect(s) of another therapy (e.g., therapeutic agent).

5 As used herein, the terms "treat", "treatment" and "treating" refer to the reduction or amelioration of the progression, severity and/or duration of a disorder (e.g., a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay) or one or more symptoms thereof resulting from the administration of one or more compounds identified in accordance the methods of the
10 invention, or a combination of one or more compounds identified in accordance with the invention and another therapy.

As used herein, the terms "therapy" and "therapies" refer to any method, protocol and/or agent that can be used in the prevention, treatment, management or amelioration of a disease or disorder or one or more symptoms thereof. In certain
15 embodiments, such terms refer to chemotherapy, radiation therapy, surgery, supportive therapy and/or other therapies useful in the prevention, treatment, management or amelioration of a disease or disorder or one or more symptoms thereof known to skilled medical personnel.

4. DESCRIPTION OF DRAWINGS

20 FIG. 1. The human 28S rRNA. Domains II and V are circled.

FIG. 2. Gel retardation analysis to detect peptide-RNA interactions. In 20 μ l reactions containing 50 pmole end-labeled TAR RNA oligonucleotide, increasing concentrations of Tat₄₇₋₅₈ peptide (0.1 μ M, 0.2 μ M, 0.4 μ M, 0.8 μ M, 1.6 μ M) was added in TK buffer. The reaction mixture was then heated at 90°C for 2 min and allowed to cool
25 slowly to 24°C. 10 μ l of 30% glycerol was added to each sample and applied to a 12% non-denaturing polyacrylamide gel. The gel was electrophoresed using 1200 volt-hours at 4°C in TBE Buffer. Following electrophoresis, the gel was dried and the radioactivity was quantitated with a phosphorimager. The concentration of peptide added is indicated above each lane.

30 FIG. 3. Gentamicin interacts with an oligonucleotide corresponding to the 16S rRNA. 20 μ l reactions containing increasing concentrations of gentamicin (1 ng/ml, 10 ng/ml, 100 ng/ml, 1 μ g/ml, 10 μ g /ml, 50 μ g /ml, 500 μ g /ml) were added to 50 pmole end-labeled RNA oligonucleotide in TKM buffer, heated at 90°C for 2 min and allowed to cool slowly to 24°C. 10 μ l of 30% glycerol was added to each sample and the samples
35 were applied to a 13.5% non-denaturing polyacrylamide gel. The gel was electrophoresed

5 using 1200 volt-hours at 4°C in TBE Buffer. Following electrophoresis, the gel was dried and the radioactivity was quantitated using a phosphorimager. The concentration of gentamicin added is indicated above each lane.

10 FIG. 4. The presence of 10 pg/ml gentamicin produces a gel mobility shift in the presence of the 16S rRNA oligonucleotide. 20 µl reactions containing increasing concentrations of gentamicin (100 ng/ml, 10 ng/ml, 1 ng/ml, 100 pg/ml, and 10 pg/ml) were added to 50 pmole end-labeled RNA oligonucleotide in TKM buffer were treated as described for Figure 3.

15 FIG. 5. Gentamicin binding to the 16S rRNA oligonucleotide is weak in the absence of MgCl₂. Reaction mixtures containing gentamicin (1 µg /ml, 100 µg /ml, 10 µg /ml, 1 µg /ml, 0.1 µg /ml, and 10 ng/ml) were treated as described in Figure 3 except that the TKM buffer does not contain MgCl₂.

20 FIG. 6. Gel retardation analysis to detect peptide-RNA interactions. In reactions containing increasing concentrations of Tat₄₇₋₅₈ peptide (0.1 mM, 0.2 mM, 0.4 mM, 0.8 mM, 1.6 mM) 50 pmole TAR RNA oligonucleotide was added in TK buffer. The reaction mixture was then heated at 90°C for 2 min and allowed to cool slowly to 24°C. The reactions were loaded onto a SCE9610 automated capillary electrophoresis apparatus (SpectruMedix; State College, Pennsylvania). The peaks correspond to the amount of free TAR RNA ("TAR") or the Tat-TAR complex ("Tat-TAR"). The concentration of peptide added is indicated below each lane.

25 FIG. 7. Small molecules involved in nonsense suppression alter the chemical footprinting pattern in Domain V of the 28S rRNA. 100 pmol of ribosomes were incubated with 100 µM compound, followed by treatment with the chemical modifying agents kethoxal (KE) and dimethyl sulfate (DMS, not shown). Following chemical modification, rRNA was prepared and analyzed in primer extension reactions using end-labeled 30 oligonucleotides hybridizing to rRNA. A sequencing reaction was run in parallel as a marker.

35 FIG. 8. Small molecules involved in nonsense suppression alter the chemical footprinting pattern in Domain V of the 28S rRNA. 100 pmol of ribosomes were incubated with 100 µM compound, followed by treatment with the chemical modifying agents kethoxal (KE) and dimethyl sulfate (DMS, not shown). Following chemical modification,

- 5 rRNA was prepared and analyzed in primer extension reactions using end-labeled oligonucleotides hybridizing to rRNA. A sequencing reaction was run in parallel as a marker.

FIG. 9. Small molecules involved in nonsense suppression alter the chemical footprinting pattern in Domain II (GTPase Center) of the 28S rRNA. 100 pmol of 10 ribosomes were incubated with 100 μ M compound, followed by treatment with the chemical modifying agents kethoxal (KE) and dimethyl sulfate (DMS, not shown). Following chemical modification, rRNA was prepared and analyzed in primer extension reactions using end-labeled oligonucleotides hybridizing to rRNA. A sequencing reaction was run in parallel as a marker.

15 FIG. 10. Small molecules involved in nonsense suppression alter the chemical footprinting pattern of domain II of the 28S rRNA. 100 pmol of ribosomes were incubated with 100 μ M compound, followed by treatment with chemical modifying agents dimethyl sulfate (DMS) and kethoxal (KE). Following chemical modification, rRNA was prepared and analyzed in primer extension reactions using end-labeled oligonucleotides 20 hybridizing to rRNA. A sequencing reaction was run in parallel as a marker.

FIG. 11. A specific region of Domain II can compete for compound binding and prevents nonsense suppression in vitro. The in vitro nonsense suppression assay was performed using a luciferase construct with a UGA nonsense mutation. 0.1 mM compound was present in the reaction to induce nonsense suppression. Competitor RNA 25 corresponding to Domain II was added at the indicated concentrations (0, 1, 2.5, 5, 7.5, 10 pM) to titrate the small molecule and prevent nonsense suppression.

5. DETAILED DESCRIPTION OF THE INVENTION

The present invention provides methods for identifying compounds that modulate translation termination and/or nonsense-mediated mRNA decay by identifying 30 compounds that bind to preselected target elements of nucleic acids including, but not limited to, specific RNA sequences, RNA structural motifs, and/or RNA structural elements. In particular, the present invention provides methods of identifying compounds that bind to regions of the 28S rRNA and analogs thereof. The specific target RNA sequences, RNA structural motifs, and/or RNA structural elements (*i.e.*, regions of the 28S 35 rRNA and analogs thereof) are used as targets for screening small molecules and identifying those that directly bind these specific sequences, motifs, and/or structural

5 elements. For example, methods are described in which a preselected target RNA having a detectable label or method of detection is used to screen a library of compounds, preferably under physiologic conditions; and any complexes formed between the target RNA and a member of the library are identified using physical methods that detect the labeled or altered physical property of the target RNA bound to a compound. Further, methods are
10 described in which a preselected target RNA is used to screen a library of compounds, with each compound in the library having a detectable label or method of detection, preferably under physiologic conditions; and any complexes formed between the target RNA and a member of the library are identified using physical methods that detect the labeled or altered physical property of the compound bound to target RNA.

15 The present invention provides methods for identifying compounds that bind to a target RNA (e.g., regions or fragments of 28S rRNA or RNA containing a premature stop codon), said methods comprising contacting a target RNA having a detectable label with a library of compounds free in solution, and detecting the formation of a target RNA:compound complex. In particular, the present invention provides methods for
20 identifying compounds that bind to a target RNA (e.g., regions or fragments of 28S rRNA or RNA containing a premature stop codon), said methods comprising contacting a target RNA having a detectable label with a library of compounds free in solution, in, e.g., labeled tubes or a microtiter plate, and detecting the formation of a target RNA:compound complex. Compounds in the library that bind to the labeled target RNA will form a
25 detectably labeled complex. The detectably labeled complex can then be identified and removed from the uncomplexed, unlabeled complex, and from uncomplexed, labeled target RNA, by a variety of methods, including, but not limited to, methods that differentiate changes in the electrophoretic, chromatographic, or thermostable properties of the complexed target RNA. Such methods include, but are not limited to, electrophoresis,
30 fluorescence spectroscopy, surface plasmon resonance, mass spectrometry, scintillation proximity assay, structure-activity relationships ("SARS") by NMR spectroscopy, size exclusion chromatography, affinity chromatography, and nanoparticle aggregation.

The present invention provides methods for identifying compounds that bind to a target RNA (e.g., regions or fragments of 28S rRNA or RNA containing a premature stop codon), said methods comprising contacting a target RNA with a library of compounds, wherein each compound in the library is detectably labeled, and detecting the formation of a target RNA:compound complex. In particular, the present invention provides methods for identifying compounds that bind to a target RNA (e.g., regions or

5 fragments of 28S rRNA, or RNA containing a premature stop codon), said methods comprising contacting a target RNA with a library of compounds free in solution, in, e.g., labeled tubes or a microtiter plate, wherein each compound in the library is detectably labeled, and detecting the formation of a target RNA:compound complex. Compounds in the library that bind to the labeled target RNA will form a detectably labeled complex. The
10 detectably labeled complex can then be identified and removed from the uncomplexed, unlabeled complex, and from uncomplexed, target RNA, by a variety of methods, including, but not limited to, methods that differentiate changes in the electrophoretic, chromatographic, or thermostable properties of the complexed target RNA. Such methods include, but are not limited to, electrophoresis, fluorescence spectroscopy, surface plasmon
15 resonance, mass spectrometry, scintillation proximity assay, structure-activity relationships ("SARS") by NMR spectroscopy, size exclusion chromatography, affinity chromatography, and nanoparticle aggregation.

The present invention provides methods for identifying compounds that bind to a target RNA (e.g., regions or fragments of 28S rRNA or RNA containing a premature stop codon), said methods comprising contacting a target RNA having a detectable label with a library of compounds bound, wherein each compound in the library is attached to a solid support; and detecting the formation of a target RNA:compound complex. In particular, the present invention provides methods for identifying compounds that bind to a target RNA (in particular, regions of 28S rRNA or RNA containing a premature stop
25 codon), said method comprising contacting a target RNA having a detectable label with a library of compounds, wherein each compound is attached to a solid support (e.g., a bead-based library of compounds or a microarray of compounds), and detecting the formation of a target RNA:compound complex. Compounds in the library that bind to the labeled target RNA will form a detectably labeled complex. Compounds in the library that bind to the
30 labeled target RNA will form a solid support (e.g., a bead-based) detectably labeled complex, which can be separated from the unbound beads and unbound target RNA in the liquid phase by a number of physical means, including, but not limited to, flow cytometry, affinity chromatography, manual batch mode separation, suspension of beads in electric fields, and microwave of the bead-based detectably labeled complex.

35 The present invention provides methods for identifying compounds that bind to a target RNA (e.g., regions of 28S rRNA or RNA containing a premature stop codon), said methods comprising contacting a target RNA attached or conjugated to a solid support with a library of compounds, wherein each compound in the library is detectably labeled,

5 and detecting the formation of a target RNA:compound complex. Target RNA molecules
that bind to labeled compounds will form a detectable labeled complex. Target RNA
molecules that bind to labeled compounds will form a solid support-based detectably
labeled complex, which can be separated from the unbound solid support-target RNA and
unbound compounds in the liquid phase by a number of means, including, but not limited
10 to, flow cytometry, affinity chromatography, manual batch mode separation, suspension of
beads in electric fields, and microwave of the bead-based detectably labeled complex.

Thus, the methods of the present invention provide a simple, sensitive assay
for high-throughput screening of libraries of compounds, in which the compounds of the
library that specifically bind a preselected target nucleic acid are easily distinguished from
15 non-binding members of the library. In one embodiment, the structures of the binding
molecules are deciphered from the input library by methods depending on the type of
library that is used. In another embodiment, the structures of the binding molecules are
ascertained by *de novo* structure determination of the compounds using, for example, mass
spectrometry or nuclear magnetic resonance ("NMR"). The compounds so identified are
20 useful for any purpose to which a binding reaction may be put, for example in assay
methods, diagnostic procedures, cell sorting, as inhibitors of target molecule function, as
probes, as sequestering agents and lead compounds for development of therapeutics, and the
like. Small organic compounds that are identified to interact specifically with the target
RNA molecules are particularly attractive candidates as lead compounds for the
25 development of therapeutic agents.

The assays of the invention reduce bias introduced by competitive binding
assays which require the identification and use of a host cell factor (presumably essential
for modulating RNA function) as a binding partner for the target RNA. The assays of the
present invention are designed to detect any compound or agent that binds to 28S rRNA,
30 preferably under physiologic conditions. Such agents can then be tested for biological
activity, without establishing or guessing which host cell factor or factors is required for
modulating the function and/or activity of 28S rRNA.

5.1 28S rRNA and Analogs Thereof

The ribosome is a 2.5-MDa ribonucleoprotein complex involved in the
decoding of genetic material from mRNA to proteins. A combination of biophysical and
35 biochemical analysis have provided three dimensional models of the ribosome as well as
detailed analyses into the mechanism of the individual steps in translation (see, e.g., Green

5 & Noller, 1997, *Annu. Rev. Biochem.* 66:679-716; Cate *et al.*, 1999, *Science* 285(5436):2095-2104; and Ban *et al.*, 2000, *Science*.289(5481): 905-920.).

The 28S rRNA is one of the ribosomal RNA components of the 60S subunit of eukaryotic ribosomes. The 28S rRNA sequences are conserved when expressed as mature rRNAs, although the 28S rRNA contains variable sequence tracts that are
10 interspersed among conserved core sequences and lacking in the counterpart bacterial 23S rRNA (see, *e.g.*, Hancock & Dover, 1988, *Mol. Biol. Evol.* 5:377-391). A diagram of the 28S rRNA is presented in Figure 1, with domains II and V circled. As indicated in Figure 1, a GTPase center has been mapped to domain II and the peptidyl transferase center has been mapped to domain V.

15 Compounds that interact in these regions or modulate local changes within these domains of the ribosome (*e.g.*, alter base pairing interactions, base modification or modulate binding of trans-acting factors that bind to these regions) have the potential to modulate translation termination. These regions, *i.e.*, domains II and V are conserved from prokaryotes to eukaryotes, but the role of these regions in modulating translation
20 termination has not been realized in eukaryotes. In bacteria, when a short RNA fragment, complementary to the *E. coli* 23S rRNA segment comprising nucleotides 735 to 766 (in domain II), is expressed *in vivo*, suppression of UGA nonsense mutations, but not UAA or UAG, results (Chernyaeva *et al.*, 1999, *J Bacteriol* 181:5257-5262). Other regions of the 23S rRNA in *E. coli* have been implicated in nonsense suppression including the GTPase
25 center in domain II (nt 1034-1120; Jemiolo *et al*, 1995, *Proc. Nat. Acad. Sci.* 92:12309-12313).

Genetic mutations in bacteria have also identified rRNA mutations that either increase the level of frameshifting in the *trpE* or the suppression of a nonsense mutations in the *trpA* gene (reviewed in Green & Noller, 1997, *Annu. Rev. Biochem.* 66:679-716). The frameshifting mutations mapped to domains IV and V of the 23S rRNA.
30 Disruption of the interaction of the CCA end of the tRNA with the peptidyl transferase center of the ribosome has been demonstrated to result in an increased translational error frequency (reviewed in Green & Noller, 1997, *Annu. Rev. Biochem.* 66:679-716).

Regions of the 28S rRNA involved in frameshifting, nonsense mutation
35 suppression, GTPase activity, or peptidyl transferase are attractive target RNAs to identify

5 compounds that modulate premature translation termination and/or nonsense mediated decay. The interference of a compound with one or more of these functions could potentially mediate translation termination by interfering with premature translation termination. Without being bound by theory, a compound could potentially mediate translation termination by causing read through of a premature translation codon, therefore
10 allowing the synthesis of the full-length protein.

In a preferred embodiment, the target RNA comprises a region of 28S rRNA corresponding to domain II (see, e.g., nucleotides 1310 to 2333 of accession number M11167) or domain V of 28S rRNA (see, e.g., nucleotides 3859 to 4425 of accession number M11167) or an analog thereof. It will become apparent to one of skill in the art that
15 an analog of the 28S rRNA has an analogous structure and function to native 28S rRNA. For example, an analog of human 28S rRNA includes, but is not limited to, a human 28S rRNA retropseudogene (see, e.g., Wang *et al.*, 1997, Gene 196:105-111, Accession Number L20636). Regions corresponding to domain II or domain V of the 28S rRNA pseudogene could be used as target RNAs in the present invention. In a preferred embodiment, the 28S
20 rRNA is a human 28S rRNA, although the teachings of the present invention are applicable to mammals.

Synthesis of the target RNAs, *i.e.*, regions of 28S rRNA, can be performed by methods known to one of skill in the art (see, e.g., Sambrook *et al.*, 1989, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory Press, Cold Spring
25 Harbor, New York and Glover, D.M. (ed.), 1985, DNA Cloning: A Practical Approach, MRL Press, Ltd., Oxford, U.K. Vol. I, II). In a preferred embodiment, the target RNAs are cloned as DNAs downstream of a promoter, such as but not limited to T7, T3, or Sp6 promoters, and *in vitro* transcribed with the corresponding polymerase. A detectable label can be incorporated into the *in vitro* transcribed RNA or alternatively, the target RNA is
30 end-labeled (see Section 5.3 *infra*). Alternatively, the target RNA can be amplified by polymerase chain reaction with a primer containing an RNA promoter and subsequently *in vitro* transcribed, as described in U.S. Patent No. 6,271, 002, which is incorporated by reference in its entirety.

5.2 Stop Codon Containing Target RNA

5 The present invention provides for methods for screening and identifying compounds that modulate premature translation termination and/or nonsense-mediated mRNA decay. A target RNA may be engineered to contain a premature stop codon or, alternatively, a target RNA may naturally contain a premature stop codon. The premature stop codon may any one of the stop codons known in the art including UAG, UAA and
10 UGA.

The stop codons are UAG, UAA, and UGA, *i.e.*, signals to the ribosome to terminate protein synthesis, presumably through protein release factors. Even though the use of these stop codons is widespread, they are not universal. For example, UGA specifies tryptophan in the mitochondria of mammals, yeast, *Neurospora crassa*, *Drosophila*,
15 protozoa, and plants (see, *e.g.*, Breitenberger & RajBhandary, 1985, Trends Biochem Sci 10:481). Other examples include the use of UGA for tryptophan in *Mycoplasma* and, in ciliated protozoa, the use of UAA and UAG for glutamine (see, *e.g.*, Jukes et al., 1987, Cold Spring Harb Symp Quant Biol. 52:769-776), the use of UGA for cysteine in the ciliate *Euplotes aediculatus* (see, *e.g.*, Kervestin et al., 2001, EMBO Rep 2001 Aug;2(8):680-684),
20 the use of UGA for tryptophan in *Blepharisma americanum* and the use of UAR for glutamine in *Tetrahymena*, and three spirotrichs, *Stylonychia lemnae*, *S. mytilus*, and *Oxytricha trifallax* (see, *e.g.*, Lozupone et al., 2001, Curr Biol 11(2):65-74). It has been proposed that the ancestral mitochondrion was bearing the universal genetic code and subsequently reassigned the UGA codon to tryptophan independently, at least in the lineage
25 of ciliates, kinetoplastids, rhodophytes, prymnesiophytes, and fungi (see, *e.g.*, Inagaki et al., 1998, J Mol Evol 47(4):378-384).

The readthrough of stop codons also occurs in positive-sense ssRNA viruses by a variety of naturally occurring suppressor tRNAs. Such naturally-occurring suppressor tRNAs include, but are not limited to, cytoplasmic tRNATyr, which reads through the UAG stop codon; cytoplasmic tRNAsGln, which read through UAG and UAA; cytoplasmic tRNAsLeu, which read through UAG; chloroplast and cytoplasmic tRNAsTrp, which read through UGA; chloroplast and cytoplasmic tRNAsCys, which read through UGA; cytoplasmic tRNAsArg, which read through UGA (see, *e.g.*, Beier & Grimm, 2001, Nucl Acids Res 29(23):4767-4782 for a review); and the use of selenocysteine to suppress UGA
30 in *E. coli* (see, *e.g.*, Baron & Böck, 1995, The selenocysteine inserting tRNA species:
35

5 structure and function. In Söll,D. and RajBhandary,U.L. (eds), tRNA: Structure, Biosynthesis and Function, ASM Press, Washington, DC, pp. 529 544). The mechanism is thought to involve unconventional base interactions and/or codon context effects.

As described above, the stop codons are not necessarily universal, with considerable variation amongst organelles (e.g., mitochondria and chloroplasts), viruses 10 (e.g., single strand viruses), and protozoa (e.g., ciliated protozoa) as to whether the codons UAG, UAA, and UGA signal translation termination or encode amino acids. Even though a single release factor most probably recognizes all of the stop codons in eukaryotes, it appears that all of the stop codons are not suppressed in a similar manner. For example, in 15 the yeast *Saccharomyces pombe*, nonsense suppression has to be strictly codon specific (see, e.g., Hottinger et al., 1984, EMBO J 3:423-428). In another example, significant differences were found in the degree of suppression amongst three UAG codons and two UAA codons in different mRNA contexts in *Escherichia coli* and in human 293 cells, although data suggested that the context effects of nonsense suppression operated 20 differently in *E. coli* and human cells (see, e.g., Martin et al., 1989, Mol Gen Genet 217(2 3):411 8). Since unconventional base interactions and/or codon context effects have been implicated in nonsense suppression, it is conceivable that compounds involved in nonsense suppression of one stop codon may not necessarily be involved in nonsense suppression of another stop codon. In other words, compounds involved in suppressing UAG codons may 25 not necessarily be involved in suppressing UGA codons.

In a specific embodiment, a target RNA contains or is engineered to contain the premature stop codon UAG. In another embodiment, a target RNA contains or is engineered to contain the premature stop codon UGA.

In a particular embodiment, a target RNA contains or is engineered to contain two or more stop codons. In accordance with this embodiment, the stop codons are 30 preferably at least 10 nucleotides, at least 15 nucleotides, at least 20 nucleotides, at least 25 nucleotides, at least 30 nucleotides, at least 35 nucleotides, at least 40 nucleotides, at least 45 nucleotides, at least 50 nucleotides, at least 75 nucleotides or at least 100 nucleotides apart from each other. Further, in accordance with this embodiment, at least one of the stop codons is preferably UAG or UGA.

5 In a specific embodiment, a target RNA contains or is engineered to contain a premature stop codon at least 15 nucleotides, preferably at least 20 nucleotides, at least 25 nucleotides, at least 30 nucleotides, at least 35 nucleotides, at least 40 nucleotides, at least 45 nucleotides, at least 50 nucleotides or at least 75 nucleotides from the start codon in the coding sequence. In another embodiment, a target RNA contains or is engineered to
10 contain a premature stop codon at least 15 nucleotides, preferably at least 25 nucleotides, at least 50 nucleotides, at least 75 nucleotides, at least 100 nucleotides, at least 125 nucleotides, at least 150, at least 175 nucleotides or at least 200 nucleotides from the native stop codon in the coding sequence of the full-length protein, polypeptide or peptide. In another embodiment, a target RNA contains or is engineered to contain a premature stop
15 codon at least 15 nucleotides (preferably at least 20 nucleotides, at least 25 nucleotides, at least 30 nucleotides, at least 35 nucleotides, at least 40 nucleotides, at least 45 nucleotides, at least 50 nucleotides or at least 75 nucleotides) from the start codon in the coding sequence and at least 15 nucleotides (preferably at least 25 nucleotides, at least 50 nucleotides, at least 75 nucleotides, at least 100 nucleotides, at least 125 nucleotides, at least 150, at least 175 nucleotides or at least 200 nucleotides) from the native stop codon in the coding sequence of the full-length protein, polypeptide or peptide. In accordance with these
20 embodiments, the premature stop codon is preferably UAG or UGA.
25

The premature translation stop codon can be produced by *in vitro* mutagenesis techniques such as, but not limited to, polymerase chain reaction ("PCR"), linker insertion, oligonucleotide-mediated mutagenesis, and random chemical mutagenesis.

5.3 Target RNAs (Detectably Labeled or Attached to a Solid Support)

Target nucleic acids, including but not limited to RNA and DNA, useful in the methods of the present invention have a label that is detectable *via* conventional spectroscopic means or radiographic means. Preferably, target nucleic acids are labeled
30 with a covalently attached dye molecule. Useful dye-molecule labels include, but are not limited to, fluorescent dyes, phosphorescent dyes, ultraviolet dyes, infrared dyes, and visible dyes. Preferably, the dye is a visible dye.

Useful labels in the present invention can include, but are not limited to, spectroscopic labels such as fluorescent dyes (e.g., fluorescein and derivatives such as
35 fluorescein isothiocyanate (FITC) and Oregon Green™, rhodamine and derivatives (e.g.,

5 Texas red, tetramethylrhodamine isothiocyanate (TRITC), bora-3a,4a-diaza-s-indacene
(BODIPY®) and derivatives, etc.), digoxigenin, biotin, phycoerythrin, AMCA, CyDye™,
and the like), radiolabels (e.g., ^3H , ^{125}I , ^{35}S , ^{14}C , ^{32}P , ^{33}P , etc.), enzymes (e.g., horse radish
peroxidase, alkaline phosphatase etc.), spectroscopic colorimetric labels such as colloidal
gold or colored glass or plastic (e.g. polystyrene, polypropylene, latex, etc.) beads, or
10 nanoparticles – nanoclusters of inorganic ions with defined dimension from 0.1 to 1000 nm.
Useful affinity tags and complimentary partners include, but are not limited to,
biotin-streptavidin, complimentary nucleic acid fragments (e.g., oligo dT-oligo dA, oligo
T-oligo A, oligo dG-oligo dC, oligo G-oligo C), aptamer-streptavidin, or haptens and
proteins for which antisera or monoclonal antibodies are available. The label may be
15 coupled directly or indirectly to a component of the detection assay (e.g., the detection
reagent) according to methods well known in the art. A wide variety of labels may be used,
with the choice of label depending on sensitivity required, ease of conjugation with the
compound, stability requirements, available instrumentation, and disposal provisions.

In one embodiment, nucleic acids that are labeled at one or more specific
20 locations are chemically synthesized using phosphoramidite or other solution or solid-phase
methods. Detailed descriptions of the chemistry used to form polynucleotides by the
phosphoramidite method are well known (see, e.g., Caruthers *et al.*, U.S. Pat. Nos.
4,458,066 and 4,415,732; Caruthers *et al.*, 1982, Genetic Engineering 4:1-17; *Users Manual*
Model 392 and 394 Polynucleotide Synthesizers, 1990, pages 6-1 through 6-22, Applied
25 Biosystems, Part No. 901237; Ojwang, *et al.*, 1997, Biochemistry, 36:6033-6045). The
phosphoramidite method of polynucleotide synthesis is the preferred method because of its
efficient and rapid coupling and the stability of the starting materials. The synthesis is
performed with the growing polynucleotide chain attached to a solid support, such that
excess reagents, which are generally in the liquid phase, can be easily removed by washing,
30 decanting, and/or filtration, thereby eliminating the need for purification steps between
synthesis cycles.

The following briefly describes illustrative steps of a typical polynucleotide
synthesis cycle using the phosphoramidite method. First, a solid support to which is
attached a protected nucleoside monomer at its 3' terminus is treated with acid, e.g.,
35 trichloroacetic acid, to remove the 5'-hydroxyl protecting group, freeing the hydroxyl group
for a subsequent coupling reaction. After the coupling reaction is completed an activated

5 intermediate is formed by contacting the support-bound nucleoside with a protected nucleoside phosphoramidite monomer and a weak acid, e.g., tetrazole. The weak acid protonates the nitrogen atom of the phosphoramidite forming a reactive intermediate. Nucleoside addition is generally complete within 30 seconds. Next, a capping step is performed, which terminates any polynucleotide chains that did not undergo nucleoside addition. Capping is preferably performed using acetic anhydride and 1-methylimidazole.

10 The phosphite group of the internucleotide linkage is then converted to the more stable phosphotriester by oxidation using iodine as the preferred oxidizing agent and water as the oxygen donor. After oxidation, the hydroxyl protecting group of the newly added nucleoside is removed with a protic acid, e.g., trichloroacetic acid or dichloroacetic acid,

15 and the cycle is repeated one or more times until chain elongation is complete. After synthesis, the polynucleotide chain is cleaved from the support using a base, e.g., ammonium hydroxide or t-butyl amine. The cleavage reaction also removes any phosphate protecting groups, e.g., cyanoethyl. Finally, the protecting groups on the exocyclic amines of the bases and any protecting groups on the dyes are removed by treating the

20 polynucleotide solution in base at an elevated temperature, e.g., at about 55°C. Preferably the various protecting groups are removed using ammonium hydroxide or t-butyl amine.

Any of the nucleoside phosphoramidite monomers can be labeled using standard phosphoramidite chemistry methods (Hwang *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96(23):12997-13002; Ojwang *et al.*, 1997, Biochemistry. 36:6033-6045 and references cited therein). Dye molecules useful for covalently coupling to phosphoramidites preferably comprise a primary hydroxyl group that is not part of the dye's chromophore. Illustrative dye molecules include, but are not limited to, disperse dye CAS 4439-31-0, disperse dye CAS 6054-58-6, disperse dye CAS 4392-69-2 (Sigma-Aldrich, St. Louis, MO), disperse red, and 1-pyrenebutanol (Molecular Probes, Eugene, OR). Other dyes useful for coupling to phosphoramidites will be apparent to those of skill in the art, such as fluorescein, cy3, and cy5 fluorescent dyes, and may be purchased from, e.g., Sigma-Aldrich, St. Louis, MO or Molecular Probes, Inc., Eugene, OR.

In another embodiment, dye-labeled target molecules are synthesized enzymatically using *in vitro* transcription (Hwang *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96(23):12997-13002 and references cited therein). In this embodiment, a mixture of

5 ribonucleoside-5'-triphosphates capable of supporting template-directed enzymatic extension (e.g., a mixture including GTP, ATP, CTP, and UTP, including one or more dye-labeled ribonucleotides; Sigma-Aldrich, St. Louis, MO) is added to a promoter-containing DNA template. Next, a polymerase enzyme is added to the mixture under conditions where the polymerase enzyme is active, which are well-known to those skilled in the art. A
10 labeled polynucleotide is formed by the incorporation of the labeled ribonucleotides during polymerase-mediated strand synthesis.

In yet another embodiment of the invention, nucleic acid molecules are end-labeled after their synthesis. Methods for labeling the 5'-end of an oligonucleotide include but are by no means limited to: (i) periodate oxidation of a 5'-to-5'-coupled ribonucleotide, followed by reaction with an amine-reactive label (Heller & Morisson, 1985, in *Rapid Detection and Identification of Infectious Agents*, D.T. Kingsbury and S. Falkow, eds., pp. 245-256, Academic Press); (ii) condensation of ethylenediamine with 5'-phosphorylated polynucleotide, followed by reaction with an amine reactive label (Morrison, European Patent Application 232 967); (iii) introduction of an aliphatic amine substituent using an aminoethyl phosphite reagent in solid-phase DNA synthesis, followed by reaction with an amine reactive label (Cardullo *et al.*, 1988, Proc. Natl. Acad. Sci. USA 85:8790-8794); and (iv) introduction of a thiophosphate group on the 5'-end of the nucleic acid, using phosphatase treatment followed by end-labeling with ATP-³²S and kinase, which reacts specifically and efficiently with maleimide-labeled fluorescent dyes (Czworkowski *et al.*, 1991, Biochem. 30:4821-4830).

A detectable label should not be incorporated into a target nucleic acid at the specific binding site at which compounds are likely to bind, since the presence of a covalently attached label might interfere sterically or chemically with the binding of the compounds at this site. Accordingly, if the region of the target nucleic acid that binds to a host cell factor is known, a detectable label is preferably incorporated into the nucleic acid molecule at one or more positions that are spatially or sequentially remote from the binding region.

After synthesis, the labeled target nucleic acid can be purified using standard techniques known to those skilled in the art (see Hwang *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96(23):12997-13002 and references cited therein). Depending on the length of the

5 target nucleic acid and the method of its synthesis, such purification techniques include, but
are not limited to, reverse-phase high-performance liquid chromatography ("reverse-phase
HPLC"), fast performance liquid chromatography ("FPLC"), and gel purification. After
purification, the target RNA is refolded into its native conformation, preferably by heating
to approximately 85-95°C and slowly cooling to room temperature in a buffer, e.g., a buffer
10 comprising about 50 mM Tris-HCl, pH 8 and 100 mM NaCl.

In another embodiment, the target nucleic acid can also be radiolabeled. A
radiolabel, such as, but not limited to, an isotope of phosphorus, sulfur, or hydrogen, may
be incorporated into a nucleotide, which is added either after or during the synthesis of the
target nucleic acid. Methods for the synthesis and purification of radiolabeled nucleic acids
15 are well known to one of skill in the art. See, e.g., Sambrook *et al.*, 1989, in *Molecular
Cloning: A Laboratory Manual*, pp 10.2-10.70, Cold Spring Harbor Laboratory Press, and
the references cited therein, which are hereby incorporated by reference in their entireties.

In another embodiment, the target nucleic acid can be attached to an
inorganic nanoparticle. A nanoparticle is a cluster of ions with controlled size from 0.1 to
20 1000 nm comprised of metals, metal oxides, or semiconductors including, but not limited to
 Ag_2S , ZnS , CdS , CdTe , Au , or TiO_2 . Nanoparticles have unique optical, electronic and
catalytic properties relative to bulk materials which can be adjusted according to the size of
the particle. Methods for the attachment of nucleic acids are well known to one of skill in
the art (see, e.g., Niemeyer, 2001, *Angew. Chem. Int. Ed.* 40: 4129-4158, International
25 Patent Publication WO/0218643, and the references cited therein, the disclosures of which
are hereby incorporated by reference in their entireties).

In yet another embodiment of the invention, target nucleic acids can be
attached or conjugated to a solid support for use in the assays of the invention. There are a
number of methods, known in the art, that can be used to immobilize nucleic acids on a
30 solid support. For example, modified DNA has been covalently immobilized to a variety of
surfaces using amino acids (see, e.g., Running, J. A., and Urdea, M. S. (1990)
Biotechniques, 8, 276-277), (Newton, C. R., et al., (1993) *Nucl. Acids. Res.*, 21 1155-
1162.), (Nikiforov, T. T., and Rogers, Y. H. (1995) *Anal. Biochem.*, 227, 201-209).
Alternatively, carboxyl groups, (Zhang, Y., et al., (1991) *Nucl. Acids Res.*, 19, 3929-3933),
35 epoxy groups (Lamture, J. B., et al., (1994) *Nucl. Acids Res.* 22, 2121-2125), (Eggers, M.

5 D., et al., (1994) BioTechniques, 17, 516-524) or amino groups (Rasmussen, S. R., et al.,
(1991) Anal. Biochem., 198, 138-142), can be used to attach nucleic acids to solid surfaces.
Such embodiments would be useful in, e.g., high throughput assays intended to screen a
library of compounds in order to identify molecules that bind to target nucleic acids that
have been attached to a solid support. In a particular embodiment, target RNA molecules
10 are attached or conjugated to a solid support, e.g., a slide or a bead, using an appropriate
molecule that does not interfere with its binding to compounds of the invention and then
subsequently screened with a library of compounds. Members of a library of compounds
are preferably detectably labeled so that compounds that bind to target RNAs can be
identified. Suitable detectable labels that can be used to label compounds are known in the
15 art and also described herein. In a more preferred embodiment, target RNA molecules are
immobilized on a surface suitable for performing microarray assays. Any technique known
in the art can be used to immobilize nucleic acid molecules on a solid support surface. The
nucleic acid is preferably, for example, covalently attached to the solid support.

5.4 Libraries of Small Molecules

20 Libraries screened using the methods of the present invention can comprise a
variety of types of compounds. In one embodiment, the libraries screened using the
methods of the present invention can comprise a variety of types of compounds on solid
supports. In other embodiments described below, the libraries can be synthesized on solid
supports or the compounds of the library can be attached to solid supports by linkers. In
25 some embodiments, the compounds are nucleic acid or peptide molecules. In a non-
limiting example, peptide molecules can exist in a phage display library. In other
embodiments, types of compounds include, but are not limited to, peptide analogs including
peptides comprising non-naturally occurring amino acids, e.g., D-amino acids, phosphorous
analog of amino acids, such as α -amino phosphoric acids and α -amino phosphoric acids, or
30 amino acids having non-peptide linkages, nucleic acid analogs such as phosphorothioates
and PNAs, hormones, antigens, synthetic or naturally occurring drugs, opiates, dopamine,
serotonin, catecholamines, thrombin, acetylcholine, prostaglandins, organic molecules,
pheromones, adenosine, sucrose, glucose, lactose and galactose. Libraries of polypeptides
or proteins can also be used.

In a preferred embodiment, the combinatorial libraries are small organic molecule libraries, such as, but not limited to, benzodiazepines, isoprenoids, thiazolidinones, metathiazanones, pyrrolidines, morpholino compounds, and diazepindiones. In another embodiment, the combinatorial libraries comprise peptoids; random bio-oligomers; benzodiazepines; diversomers such as hydantoins, benzodiazepines and dipeptides; vinylogous polypeptides; nonpeptidal peptidomimetics; oligocarbamates; peptidyl phosphonates; peptide nucleic acid libraries; antibody libraries; or carbohydrate libraries. Combinatorial libraries are themselves commercially available (see, e.g., Advanced ChemTech Europe Ltd., Cambridgeshire, UK; ASINEX, Moscow Russia; BioFocus plc, Sittingbourne, UK; Bionet Research (A division of Key Organics Limited), Camelford, UK; ChemBridge Corporation, San Diego, California; ChemDiv Inc, San Diego, California.; ChemRx Advanced Technologies, South San Francisco, California; ComGenex Inc., Budapest, Hungary; Evotec OAI Ltd, Abingdon, UK; IF LAB Ltd., Kiev, Ukraine; Maybridge plc, Cornwall, UK; PharmaCore, Inc., North Carolina; SIDDICO Inc, Tucson, Arizona; TimTec Inc, Newark, Delaware; Tripos Receptor Research Ltd, Bude, UK; Toslab, Ekaterinburg, Russia). In a specific embodiment, the combinatorial libraries are small molecules.

In another embodiment, combinatorial libraries, useful in the present invention are combinatorial libraries of labeled compounds with each compound in the library having a label that is detectable via conventional spectroscopic means or radiographic means. Preferably, compounds are labeled with a covalently attached and detectable isotope. Other useful labels in the present invention include, but are not limited to, fluorescent tags or dye molecules. Useful dye molecules, include, for example. fluorescent dyes, phosphorescent dyes, ultraviolet dyes, infrared dyes, and visible dyes. Useful fluorescent tags, include, for example, fluorescein and derivatives such as fluorescein isothiocyanate (FITC) and Oregon GreenTM, rhodamine and derivatives (e.g., Texas red, tetramethylrhodamine isothiocyanate (TRITC), bora-3a,4a-diaza-s-indacene (BODIPY®) and derivatives, etc.), digoxigenin, biotin, phycoerythrin, AMCA, CyDyeTM, and the like), radiolabels (e.g., ³H, ¹²⁵I, ³⁵S, ¹⁴C, ³²P, ³³P, etc.), enzymes (e.g., horse radish peroxidase, alkaline phosphatase etc.), spectroscopic colorimetric labels such as colloidal gold or colored glass or plastic (e.g. polystyrene, polypropylene, latex, etc.) beads, or nanoparticles – nanoclusters of inorganic ions with defined dimension from 0.1 to 1000 nm. The label may be coupled directly or indirectly to a component of the detection assay (e.g., the detection reagent) according to methods well known in the art. A wide variety of labels may be used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions.

In one embodiment, the combinatorial compound library for the methods of the present invention may be synthesized. There is a great interest in synthetic methods directed toward the creation of large collections of small organic compounds, or libraries, which could be screened for pharmacological, biological or other activity (Dolle, 2001, J.

5 Comb. Chem. 3:477-517; Hall *et al.*, 2001, J. Comb. Chem. 3:125-150; Dolle, 2000, J. Comb. Chem. 2:383-433; Dolle, 1999, J. Comb. Chem. 1:235-282). The synthetic methods applied to create vast combinatorial libraries are performed in solution or in the solid phase, *i.e.*, on a solid support. Solid-phase synthesis makes it easier to conduct multi-step reactions and to drive reactions to completion with high yields because excess reagents can
10 be easily added and washed away after each reaction step. Solid-phase combinatorial synthesis also tends to improve isolation, purification and screening. However, the more traditional solution phase chemistry supports a wider variety of organic reactions than solid-phase chemistry. Methods and strategies for the synthesis of combinatorial libraries can be found in *A Practical Guide to Combinatorial Chemistry*, A.W. Czarnik and S.H.
15 Dewitt , eds., American Chemical Society, 1997; *The Combinatorial Index*, B.A. Bunin, Academic Press, 1998; *Organic Synthesis on Solid Phase*, F.Z. Dörwald, Wiley-VCH, 2000; and *Solid-Phase Organic Syntheses*, Vol. 1, A.W. Czarnik, ed., Wiley Interscience, 2001.

Combinatorial compound libraries of the present invention may be
20 synthesized using apparatuses described in US Patent No. 6,358,479 to Frisina *et al.*, U.S. Patent No. 6,190,619 to Kilcoin *et al.*, US Patent No. 6,132,686 to Gallup *et al.*, US Patent No. 6,126,904 to Zuellig *et al.*, US Patent No. 6,074,613 to Harness *et al.*, US Patent No. 6,054,100 to Stanchfield *et al.*, and US Patent No. 5,746,982 to Saneii *et al.* which are hereby incorporated by reference in their entirety. These patents describe synthesis
25 apparatuses capable of holding a plurality of reaction vessels for parallel synthesis of multiple discrete compounds or for combinatorial libraries of compounds.

In one embodiment, the combinatorial compound library can be synthesized in solution. The method disclosed in U.S. Patent No. 6,194,612 to Boger *et al.*, which is hereby incorporated by reference in its entirety, features compounds useful as templates for
30 solution phase synthesis of combinatorial libraries. The template is designed to permit reaction products to be easily purified from unreacted reactants using liquid/liquid or solid/liquid extractions. The compounds produced by combinatorial synthesis using the template will preferably be small organic molecules. Some compounds in the library may mimic the effects of non-peptides or peptides. In contrast to solid-phase synthesis of
35 combinatorial compound libraries, liquid-phase synthesis does not require the use of specialized protocols for monitoring the individual steps of a multistep solid-phase synthesis (Egner *et al.*, 1995, J.Org. Chem. 60:2652; Anderson *et al.*, 1995, J. Org. Chem.

60:2650; Fitch *et al.*, 1994, J. Org. Chem. 59:7955; Look *et al.*, 1994, J. Org. Chem. 49:7588; Metzger *et al.*, 1993, Angew. Chem., Int. Ed. Engl. 32:894; Youngquist *et al.*, 1994, Rapid Commun. Mass Spectr. 8:77; Chu *et al.*, 1995, J. Am. Chem. Soc. 117:5419; Brummel *et al.*, 1994, Science 264:399; Stevanovic *et al.*, 1993, Bioorg. Med. Chem. Lett. 5 3:431).

Combinatorial compound libraries useful for the methods of the present invention can be synthesized on solid supports. In one embodiment, a split synthesis method, a protocol of separating and mixing solid supports during the synthesis, is used to synthesize a library of compounds on solid supports (see Lam *et al.*, 1997, Chem. Rev. 10 97:41-448; Ohlmeyer *et al.*, 1993, Proc. Natl. Acad. Sci. USA 90:10922-10926 and references cited therein). Each solid support in the final library has substantially one type of compound attached to its surface. Other methods for synthesizing combinatorial libraries on solid supports, wherein one product is attached to each support, will be known to those of skill in the art (see, e.g., Nefzi *et al.*, 1997, Chem. Rev. 97:449-472 and US Patent No. 15 6,087,186 to Cargill *et al.* which are hereby incorporated by reference in their entirety).

As used herein, the term "solid support" is not limited to a specific type of solid support. Rather a large number of supports are available and are known to one skilled in the art. Solid supports that can be used in the assays of the invention include, for example, any surface to which compounds, either natively or via a linker, can be attached. 20 Solid supports include silica gels, resins, derivatized plastic films, glass beads, glass slides (e.g., Hergenrother *et al.*, 2000, J. Am. Chem. Soc. 122:7849-7850 and Kuruvilla *et al.*, 2002, Nature 416:653-657) and cotton, plastic beads, polystyrene beads, doped polystyrene beads (as described by Fenniri *et al.*, 2000, J. Am. Chem. Soc. 123:8151-8152), polystyrene macrobeads (as described by Blackwell *et al.*, 2001, Chemistry & Biology 8:1167-1182), 25 alumina gels, and polysaccharides. In a specific embodiment, the solid support is a glass slide. In a more specific embodiment, the solid support is a glass microscope slide.

A suitable solid support may be selected on the basis of desired end use and suitability for various synthetic protocols. For example, for peptide synthesis, a solid support can be a resin such as p-methylbenzhydrylamine (pMBHA) resin (Peptides 30 International, Louisville, KY), polystyrenes (e.g., PAM-resin obtained from Bachem Inc., Peninsula Laboratories, etc.), including chloromethylpolystyrene, hydroxymethylpolystyrene and aminomethylpolystyrene, poly (dimethylacrylamide)-grafted styrene co-divinyl-benzene (e.g., POLYHIPE resin, obtained from Aminotech, Canada), polyamide resin (obtained from Peninsula Laboratories), polystyrene resin grafted 35 with polyethylene glycol (e.g., TENTAGEL or ARGOGEL, Bayer, Tubingen, Germany) polydimethylacrylamide resin (obtained from Milligen/Bioscience, California), or Sepharose (Pharmacia, Sweden). In another embodiment, the solid support can be a magnetic bead

coated with streptavidin, such as Dynabeads Streptavidin (Dynal Biotech, Oslo, Norway).

In one embodiment, the solid phase support is suitable for *in vivo* use, *i.e.*, it can serve as a carrier or support for administration of the compound to a patient (*e.g.*, TENTAGEL, Bayer, Tubingen, Germany). In a particular embodiment, the solid support is palatable and/or orally ingestable.

Any technique known to one of skill in the art can be used attach compounds to a solid support for use in the assays of the invention. In some embodiments of the present invention, compounds can be attached to solid supports via linkers. Linkers can be integral and part of the solid support, or they may be nonintegral that are either synthesized on the solid support or attached thereto after synthesis. Linkers are useful not only for providing points of compound attachment to the solid support, but also for allowing different groups of molecules to be cleaved from the solid support under different conditions, depending on the nature of the linker. For example, linkers can be, *inter alia*, electrophilically cleaved, nucleophilically cleaved, photocleavable, enzymatically cleaved, cleaved by metals, cleaved under reductive conditions or cleaved under oxidative conditions.

In some embodiments of the present invention, each compound contains a common functional group that mediates covalent attachment to a solid support. In a specific embodiment of the invention, the functional group that mediates covalent attachment to a solid support varies between the compounds. Compounds can be attached on a solid support in any orientation and distribution that is suitable for the assays of the invention. In a further embodiment, compounds are attached or spotted on a solid support such as, *e.g.*, a glass slide, with high spatial density and uniform distance between each spot so that an array is formed. Each surface is subsequently probed with a compound of interest.

In one embodiment, compounds are applied directly to a surface, such as, *e.g.*, a glass slide, using a manual transfer technique. In a particular embodiment, the compounds are transferred or spotted on a surface from a microtiter plate using a robotic arrayer. In another embodiment, the compounds are attached to beads that are subsequently transferred to wells in a microtiter plate where the compounds are released before being arrayed on a surface using any of the means described above. Any type and size of bead can be used to attach compounds of the invention. One skilled in the art would be familiar with the bead properties necessary for a specific purpose. In a particular embodiment, the bead material is polystyrene.

In another embodiment, the combinatorial compound libraries can be assembled *in situ* using dynamic combinatorial chemistry as described in European Patent Application 1,118,359 A1 to Lehn; Huc & Nguyen, 2001, Comb. Chem. High Throughput.

Screen. 4:53-74; Lehn and Eliseev, 2001, Science 291:2331-2332; Cousins *et al.* 2000, Curr. Opin. Chem. Biol. 4: 270-279; and Karan & Miller, 2000, Drug. Disc. Today 5:67-75 which are incorporated by reference in their entirety.

Dynamic combinatorial chemistry uses non-covalent interaction with a target biomolecule, including but not limited to a protein, RNA, or DNA, to favor assembly of the most tightly binding molecule that is a combination of constituent subunits present as a mixture in the presence of the biomolecule. According to the laws of thermodynamics, when a collection of molecules is able to combine and recombine at equilibrium through reversible chemical reactions in solution, molecules, preferably one molecule, that bind most tightly to a templating biomolecule will be present in greater amount than all other possible combinations. The reversible chemical reactions include, but are not limited to, imine, acyl-hydrazone, amide, acetal, or ester formation between carbonyl-containing compounds and amines, hydrazines, or alcohols; thiol exchange between disulfides; alcohol exchange in borate esters; Diels-Alder reactions; thermal- or photoinduced sigmatropic or electrocyclic rearrangements; or Michael reactions.

In the preferred embodiment of this technique, the constituent components of the dynamic combinatorial compound library are allowed to combine and reach equilibrium in the absence of the target RNA and then incubated in the presence of the target RNA, preferably at physiological conditions, until a second equilibrium is reached. The second, perturbed, equilibrium (the so-called "templated mixture") can, but need not necessarily, be fixed by a further chemical transformation, including but not limited to reduction, oxidation, hydrolysis, acidification, or basification, to prevent restoration of the original equilibrium when the dynamical combinatorial compound library is separated from the target RNA.

In the preferred embodiment of this technique, the predominant product or products of the templated dynamic combinatorial library can be separated from the minor products and directly identified. In another embodiment, the identity of the predominant product or products can be identified by a deconvolution strategy involving preparation of derivative dynamic combinatorial libraries, as described in European Patent Application 1,118,359 A1, which is incorporated by reference in its entirety, whereby each component of the mixture is, preferably one-by-one but possibly group-wise, left out of the mixture and the ability of the derivative library mixture at chemical equilibrium to bind the target RNA is measured. The components whose removal most greatly reduces the ability of the derivative dynamic combinatorial library to bind the target RNA are likely the components of the predominant product or products in the original dynamic combinatorial library.

5.5 Library Screening

After a target nucleic acid, such as but not limited to RNA or DNA, is labeled and a compound library is synthesized or purchased or both, the labeled target nucleic acid is used to screen the library to identify compounds that bind to the nucleic acid. Screening comprises contacting a labeled target nucleic acid with an individual, or small group, of the compounds of the compound library. Preferably, the contacting occurs in an aqueous solution, and most preferably, under physiologic conditions. The aqueous solution preferably stabilizes the labeled target nucleic acid and prevents denaturation or degradation of the nucleic acid without interfering with binding of the compounds. The aqueous solution can be similar to the solution in which a complex between the target RNA and its corresponding host cell factor (if known) is formed *in vitro*. For example, TK buffer, which is commonly used to form Tat protein-TAR RNA complexes *in vitro*, can be used in the methods of the invention as an aqueous solution to screen a library of compounds for RNA binding compounds.

Alternatively, compounds are labeled and target RNA molecules are used to screen the library of labeled compounds. After compounds are labeled, target nucleic acids are used to screen the library of labeled compounds to identify those nucleic acids that bind to the labeled compounds. Screening comprises contacting a target nucleic acid with an individual, or small group, of the compounds of the labeled compound library. Preferably, the contacting occurs in an aqueous solution, and most preferably under physiologic conditions. The aqueous solution preferably stabilizes the target nucleic acid and prevents denaturation or degradation of the nucleic acid without interfering with binding of the compounds. The aqueous solution can be similar to the solution in which a complex between the target RNA and its corresponding host cell factor (if known) is formed *in vitro*. For example, TK buffer, which is commonly used to form Tat protein-TAR RNA complexes *in vitro*, can be used in the methods of the invention as an aqueous solution to screen a library of compounds for RNA binding compounds.

The methods of the present invention for screening a library of compounds preferably comprise contacting a compound with a target nucleic acid in the presence of an aqueous solution, the aqueous solution comprising a buffer and a combination of salts, preferably approximating or mimicking physiologic conditions. The aqueous solution optionally further comprises non-specific nucleic acids, such as, but not limited to, DNA; yeast tRNA; salmon sperm DNA; homoribopolymers such as, but not limited to, poly IC, polyA, polyU, and polyC; and non-specific RNA. The non-specific RNA may be an unlabeled target nucleic acid having a mutation at the binding site, which renders the

unlabeled nucleic acid incapable of interacting with a compound at that site. For example, if dye-labeled TAR RNA is used to screen a library, unlabeled TAR RNA having a mutation in the uracil 23/cytosine 24 bulge region may also be present in the aqueous solution. Without being bound by any theory, the addition of unlabeled RNA that is essentially identical to the dye-labeled target RNA except for a mutation at the binding site might minimize interactions of other regions of the dye-labeled target RNA with compounds or with the solid support and prevent false positive results.

The solution further comprises a buffer, a combination of salts, and optionally, a detergent or a surfactant. The pH of the aqueous solution typically ranges from about 5 to about 8, preferably from about 6 to about 8, most preferably from about 6.5 to about 8. A variety of buffers may be used to achieve the desired pH. Suitable buffers include, but are not limited to, Tris, Mes, Bis-Tris, Ada, Aces, Pipes, Mopso, Bis-Tris propane, Bes, Mops, Tes, Hepes, Dipso, Mobs, Tapso, Trizma, Heppso, Popso, TEA, Epps, Tricine, Gly-Gly, Bicine, and sodium-potassium phosphate. The buffering agent comprises from about 10 mM to about 100 mM, preferably from about 25 mM to about 75 mM, most preferably from about 40 mM to about 60 mM buffering agent. The pH of the aqueous solution can be optimized for different screening reactions, depending on the target RNA used and the types of compounds in the library, and therefore, the type and amount of the buffer used in the solution can vary from screen to screen. In a preferred embodiment, the aqueous solution has a pH of about 7.4, which can be achieved using about 50 mM Tris buffer.

In addition to an appropriate buffer, the aqueous solution further comprises a combination of salts, from about 0 mM to about 100 mM KCl, from about 0 mM to about 1 M NaCl, and from about 0 mM to about 200 mM MgCl₂. In a preferred embodiment, the combination of salts is about 100 mM KCl, 500 mM NaCl, and 10 mM MgCl₂. Without being bound by any theory, Applicant has found that a combination of KCl, NaCl, and MgCl₂ stabilizes the target RNA such that most of the RNA is not denatured or digested over the course of the screening reaction. The optional concentration of each salt used in the aqueous solution is dependent on the particular target RNA used and can be determined using routine experimentation.

The solution optionally comprises from about 0.01% to about 0.5% (w/v) of a detergent or a surfactant. Without being bound by any theory, a small amount of detergent or surfactant in the solution might reduce non-specific binding of the target RNA to the solid support and control aggregation and increase stability of target RNA molecules.

Typical detergents useful in the methods of the present invention include, but are not limited to, anionic detergents, such as salts of deoxycholic acid, 1-heptanesulfonic acid, N-laurylsarcosine, lauryl sulfate, 1-octane sulfonic acid and taurocholic acid; cationic detergents such as benzalkonium chloride, cetylpyridinium, methylbenzethonium chloride, and decamethonium bromide; zwitterionic detergents such as CHAPS, CHAPSO, alkyl betaines, alkyl amidoalkyl betaines, N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, and phosphatidylcholine; and non-ionic detergents such as n-decyl α-D-glucopyranoside, n-decyl β-D-maltopyranoside, n-dodecyl β-D-maltoside, n-octyl β-D-glucopyranoside, sorbitan esters, n-tetradecyl β-D-maltoside, octylphenoxy polyethoxyethanol (Nonidet P-40), nonylphenoxy polyethoxyethanol (NP-40), and tritons.

Preferably, the detergent, if present, is a nonionic detergent. Typical surfactants useful in the methods of the present invention include, but are not limited to, ammonium lauryl sulfate, polyethylene glycols, butyl glucoside, decyl glucoside, Polysorbate 80, lauric acid, myristic acid, palmitic acid, potassium palmitate, undecanoic acid, lauryl betaine, and lauryl alcohol. More preferably, the detergent, if present, is Triton X-100 and present in an amount of about 0.1% (w/v).

Non-specific binding of a labeled target nucleic acid to compounds can be further minimized by treating the binding reaction with one or more blocking agents. Non-specific binding of an unlabeled target nucleic acid to labeled compounds can be further minimized by treating the binding reaction with one or more blocking agents. In one embodiment, the binding reactions are treated with a blocking agent, e.g., bovine serum albumin ("BSA"), before contacting with the labeled target nucleic acid. In another embodiment, the binding reactions are treated sequentially with at least two different blocking agents. This blocking step is preferably performed at room temperature for from about 0.5 to about 3 hours. In a subsequent step, the reaction mixture is further treated with unlabeled RNA having a mutation at the binding site. This blocking step is preferably performed at about 4°C for from about 12 hours to about 36 hours before addition of the dye-labeled target RNA. Preferably, the solution used in the one or more blocking steps is substantially similar to the aqueous solution used to screen the library with the dye-labeled target RNA, e.g., in pH and salt concentration.

Once contacted, the mixture of labeled target nucleic acid and the compound is preferably maintained at 4°C for from about 1 day to about 5 days, preferably from about 2 days to about 3 days with constant agitation. To identify the reactions in which binding to the labeled target nucleic acid occurred, after the incubation period, bound from free compounds are determined using any of the methods disclosed in Section 5.5 *infra*. In a

specific embodiment, the complexed target nucleic acid does not need to be separated from the free target nucleic acid if a technique (*i.e.*, spectrometry) that differentiates between bound and unbound target nucleic acids is used.

In another embodiment, once contacted, the mixture of target nucleic acid and the labeled compound is preferably maintained at 4°C for from about 1 day to about 5 days, preferably from about 2 days to about 3 days with constant agitation. To identify the reactions in which binding to the target nucleic acid occurred, after the incubation period, bound from free compounds are determined using any of the methods disclosed in Section 5.5 *infra*. In a specific embodiment, the complexed target nucleic acid does not need to be separated from the free target nucleic acid if a technique (*i.e.*, spectrometry) that differentiates between bound and unbound target nucleic acids is used.

The methods for identifying small molecules bound to labeled nucleic acid will vary with the type of label on the target nucleic acid. For example, if a target RNA is labeled with a visible of fluorescent dye, the target RNA complexes are preferably identified using a chromatographic technique that separates bound from free target by an electrophoretic or size differential technique using individual reactions. The reactions corresponding to changes in the migration of the complexed RNA can be cross-referenced to the small molecule compound(s) added to said reaction. Alternatively, complexed target RNA can be screened *en masse* and then separated from free target RNA using an electrophoretic or size differential technique, the resultant complexed target is then analyzed using a mass spectrometric technique. In this fashion the bound small molecule can be identified on the basis of its molecular weight. In this reaction *a priori* knowledge of the exact molecular weights of all compounds within the library is known. In another embodiment, the compounds bound to the target nucleic acid may not require separation from the unbound target nucleic acid if a technique such as, but not limited to, spectrometry is used.

The methods for identifying labeled small molecules bound to unlabeled nucleic acid will vary with the type of label on the compound. For example, if compound is labeled with a visible of fluorescent dye, the target RNA complexes are preferably identified using a chromatographic technique that separates bound from free target by an electrophoretic or size differential technique using individual reactions. The reactions corresponding to changes in the migration of the complexed RNA can be cross-referenced to the small molecule compound(s) added to said reaction. Alternatively, complexed target RNA can be screened *en masse* and then separated from free target RNA using an electrophoretic or size differential technique, the resultant complexed target is then analyzed using a mass spectrometric technique. In this fashion the bound small molecule can be identified on the basis of its molecular weight. In this reaction *a priori* knowledge of

the exact molecular weights of all compounds within the library is known. In another embodiment, the compounds bound to the target nucleic acid may not require separation from the unbound target nucleic acid if a technique such as, but not limited to, spectrometry is used.

5

5.6 Separation Methods for Screening Compounds

Any method that detects an altered physical property of a target nucleic acid complexed to a compound from the unbound target nucleic acid may be used for separation of the complexed and non-complexed target nucleic acids. Methods that can be utilized for 10 the physical separation of complexed target RNA from unbound target RNA include, but are not limited to, electrophoresis, fluorescence spectroscopy, surface plasmon resonance, mass spectrometry, scintillation, proximity assay, structure-activity relationships ("SAR") by NMR spectroscopy, size exclusion chromatography, affinity chromatography, nanoparticle aggregation, flow cytometry, manual batch, and suspension of beads in electric 15 fields.

In embodiments that use solid support based methods, after the labeled target RNA is contacted with the library of compounds immobilized on a solid support (*e.g.*, beads) or the target RNA conjugated or attached to the solid support is contacted with the library of detectably labeled compounds, the solid support (*e.g.*, beads) must then be 20 separated from the unbound target RNA or unbound compounds, respectively, in the liquid phase. This can be accomplished by any number of physical means; *e.g.*, sedimentation, centrifugation. Thereafter, a number of methods can be used to separate the solid support-based library that is complexed with the labeled target RNA from uncomplexed beads in order to isolate the compound on the bead. Alternatively, mass spectroscopy and NMR 25 spectroscopy can be used to simultaneously identify and separate beads complexed to the labeled target RNA from uncomplexed beads.

5.6.1 Electrophoresis

Methods for separation of the complex of a target RNA bound to a 30 compound from the unbound RNA comprises any method of electrophoretic separation, including but not limited to, denaturing and non-denaturing polyacrylamide gel electrophoresis, urea gel electrophoresis, gel filtration, pulsed field gel electrophoresis, two dimensional gel electrophoresis, continuous flow electrophoresis, zone electrophoresis, agarose gel electrophoresis, and capillary electrophoresis.

In a preferred embodiment, an automated electrophoretic system comprising a capillary cartridge having a plurality of capillary tubes is used for high-throughput screening of compounds bound to target RNA. Such an apparatus for performing automated capillary gel electrophoresis is disclosed in U.S. Patent Nos. 5,885,430; 5,916,428; 6,027,627; and 6,063,251, the disclosures of which are incorporated by reference in their entireties.

The device disclosed in U.S. Patent No. 5,885,430, which is incorporated by reference in its entirety, allows one to simultaneously introduce samples into a plurality of capillary tubes directly from microtiter trays having a standard size. U.S. Patent No. 10 5,885,430 discloses a disposable capillary cartridge which can be cleaned between electrophoresis runs, the cartridge having a plurality of capillary tubes. A first end of each capillary tube is retained in a mounting plate, the first ends collectively forming an array in the mounting plate. The spacing between the first ends corresponds to the spacing between the centers of the wells of a microtiter tray having a standard size. Thus, the first ends of 15 the capillary tubes can simultaneously be dipped into the samples present in the tray's wells. The cartridge is provided with a second mounting plate in which the second ends of the capillary tubes are retained. The second ends of the capillary tubes are arranged in an array which corresponds to the wells in the microtiter tray, which allows for each capillary tube to be isolated from its neighbors and therefore free from cross-contamination, as each 20 end is dipped into an individual well.

Plate holes may be provided in each mounting plate and the capillary tubes inserted through these plate holes. In such a case, the plate holes are sealed airtight so that the side of the mounting plate having the exposed capillary ends can be pressurized. Application of a positive pressure in the vicinity of the capillary openings in this mounting 25 plate allows for the introduction of air and fluids during electrophoretic operations and also can be used to force out gel and other materials from the capillary tubes during reconditioning. The capillary tubes may be protected from damage using a needle comprising a cannula and/or plastic tubes, and the like when they are placed in these plate holes. When metallic cannula or the like are used, they can serve as electrical contacts for 30 current flow during electrophoresis. In the presence of a second mounting plate, the second mounting plate is provided with plate holes through which the second ends of the capillary tubes project. In this instance, the second mounting plate serves as a pressure containment member of a pressure cell and the second ends of the capillary tubes communicate with an internal cavity of the pressure cell. The pressure cell is also formed with an inlet and an

outlet. Gels, buffer solutions, cleaning agents, and the like may be introduced into the internal cavity through the inlet, and each of these can simultaneously enter the second ends of the capillaries.

In another preferred embodiment, the automated electrophoretic system can comprise a chip system consisting of complex designs of interconnected channels that perform and analyze enzyme reactions using part of a channel design as a tiny, continuously operating electrophoresis material, where reactions with one sample are going on in one area of the chip while electrophoretic separation of the products of another sample is taking place in a different part of the chip. Such a system is disclosed in U.S. Patent Nos.

10 5,699,157; 5,842,787; 5,869,004; 5,876,675; 5,942,443; 5,948,227; 6,042,709; 6,042,710;
6,046,056; 6,048,498; 6,086,740; 6,132,685; 6,150,119; 6,150,180; 6,153,073; 6,167,910;
6,171,850; and 6,186,660, the disclosures of which are incorporated by reference in their entireties.

The system disclosed in U.S. Patent No. 5,699,157, which is hereby incorporated by reference in its entirety, provides for a microfluidic system for high-speed electrophoretic analysis of subject materials for applications in the fields of chemistry, biochemistry, biotechnology, molecular biology and numerous other areas. The system has a channel in a substrate, a light source and a photoreceptor. The channel holds subject materials in solution in an electric field so that the materials move through the channel and separate into bands according to species. The light source excites fluorescent light in the species bands and the photoreceptor is arranged to receive the fluorescent light from the bands. The system further has a means for masking the channel so that the photoreceptor can receive the fluorescent light only at periodically spaced regions along the channel. The system also has an unit connected to analyze the modulation frequencies of light intensity received by the photoreceptor so that velocities of the bands along the channel are determined, which allows the materials to be analyzed.

The system disclosed in U.S. Patent No. 5,699,157 also provides for a method of performing high-speed electrophoretic analysis of subject materials, which comprises the steps of holding the subject materials in solution in a channel of a microfluidic system; subjecting the materials to an electric field so that the subject materials move through the channel and separate into species bands; directing light toward the channel; receiving light from periodically spaced regions along the channel simultaneously; and analyzing the frequencies of light intensity of the received light so that velocities of the bands along the channel can be determined for analysis of said materials. The

determination of the velocity of a species band determines the electrophoretic mobility of the species and its identification.

U.S. Patent No. 5,842,787, which is hereby incorporated by reference in its entirety, is generally directed to devices and systems employ channels having, at least in part, depths that are varied over those which have been previously described (such as the device disclosed in U.S. Patent No. 5,699,157), wherein said channel depths provide numerous beneficial and unexpected results such as but not limited to, a reduction in sample perturbation, reduced non-specific sample mixture by diffusion, and increased resolution.

In another embodiment, the electrophoretic method of separation comprises polyacrylamide gel electrophoresis. In a preferred embodiment, the polyacrylamide gel electrophoresis is non-denaturing, so as to differentiate the mobilities of the target RNA bound to a compound from free target RNA. If the polyacrylamide gel electrophoresis is denaturing, then the target RNA:compound complex must be cross-linked prior to electrophoresis to prevent the disassociation of the target RNA from the compound during electrophoresis. Such techniques are well known to one of skill in the art.

In one embodiment of the method, the binding of compounds to target nucleic acid can be detected, preferably in an automated fashion, by gel electrophoretic analysis of interference footprinting. RNA can be degraded at specific base sites by enzymatic methods such as ribonucleases A, U₂, CL₃, T₁, Phy M, and *B. cereus* or chemical methods such as diethylpyrocarbonate, sodium hydroxide, hydrazine, piperidine formate, dimethyl sulfate, [2,12-dimethyl-3,7,11,17-tetraazacyclo[11.3.1]heptadeca-1(17),2,11,13,15-pentaenato] nickel(II) (NiCR), cobalt(II)chloride, or iron(II) ethylenediaminetetraacetate (Fe-EDTA) as described for example in Zheng *et al.*, 1999, Biochem. 37:2207-2214; Latham & Cech, 1989, Science 245:276-282; and Sambrook *et al.*, 2001, in Molecular Cloning: A Laboratory Manual, pp 12.61-12.73, Cold Spring Harbor Laboratory Press, and the references cited therein, which are hereby incorporated by reference in their entireties.

The specific pattern of cleavage sites is determined by the accessibility of particular bases to the reagent employed to initiate cleavage and, as such, is therefore determined by the three-dimensional structure of the RNA. The interaction of small molecules with a target nucleic acid can change the accessibility of bases to these cleavage reagents both by causing conformational changes in the target nucleic acid or by covering a base at the binding interface. When a compound binds to the nucleic acid and changes the accessibility of bases to cleavage reagents, the observed cleavage pattern will change. This method can

be used to identify and characterize the binding of small molecules to RNA as described, for example, by Prudent *et al.*, 1995, J. Am. Chem. Soc. 117:10145-10146 and Mei *et al.*, 1998, Biochem. 37:14204-14212.

In the preferred embodiment of this technique, the detectably labeled target
5 nucleic acid is incubated with an individual compound and then subjected to treatment with a cleavage reagent, either enzymatic or chemical. The reaction mixture can be preferably be examined directly, or treated further to isolate and concentrate the nucleic acid. The fragments produced are separated by electrophoresis and the pattern of cleavage can be compared to a cleavage reaction performed in the absence of compound. A change in the
10 cleavage pattern directly indicates that the compound binds to the target nucleic acid.
Multiple compounds can be examined both in parallel and serially.

Other embodiments of electrophoretic separation include, but are not limited to urea gel electrophoresis, gel filtration, pulsed field gel electrophoresis, two dimensional gel electrophoresis, continuous flow electrophoresis, zone electrophoresis, and agarose gel
15 electrophoresis.

5.6.2 Fluorescence Spectroscopy

In a preferred embodiment, fluorescence polarization spectroscopy, an optical detection method that can differentiate the proportion of a fluorescent molecule that is either bound or unbound in solution (*e.g.*, the labeled target nucleic acid of the present
20 invention), can be used to read reaction results without electrophoretic separation of the samples. Fluorescence polarization spectroscopy can be used to read the reaction results in the chip system disclosed in U.S. Patent Nos. 5,699,157; 5,842,787; 5,869,004; 5,876,675; 5,942,443; 5,948,227; 6,042,709; 6,042,710; 6,046,056; 6,048,498; 6,086,740; 6,132,685; 6,150,119; 6,150,180; 6,153,073; 6,167,910; 6,171,850; and 6,186,660, the disclosures of
25 which are incorporated by reference in their entireties. The application of fluorescence polarization spectroscopy to the chip system disclosed in the U.S. Patents listed *supra* is fast, efficient, and well-adapted for high-throughput screening.

In another embodiment, a compound that has an affinity for the target nucleic acid of interest can be labeled with a fluorophore to screen for compounds that bind
30 to the target nucleic acid. For example, a pyrene-containing aminoglycoside analog was used to accurately monitor antagonist binding to a prokaryotic 16S rRNA A site (which comprises the natural target for aminoglycoside antibiotics) in a screen using a fluorescence quenching technique in a 96-well plate format (Hamasaki & Rando, 1998, Anal. Biochem. 261(2):183-90).

In another embodiment, fluorescence resonance energy transfer (FRET) can be used to screen for compounds that bind to the target nucleic acid. FRET, a characteristic change in fluorescence, occurs when two fluorophores with overlapping emission and excitation wavelength bands are held together in close proximity, such as by a binding event. In the preferred embodiment, the fluorophore on the target nucleic acid and the fluorophore on the compounds will have overlapping excitation and emission spectra such that one fluorophore (the donor) transfers its emission energy to excite the other fluorophore (the acceptor). The acceptor preferably emits light of a different wavelength upon relaxing to the ground state, or relaxes non-radiatively to quench fluorescence. FRET is very sensitive to the distance between the two fluorophores, and allows measurement of molecular distances less than 10 nm. For example, U.S. Patent 6,337,183 to Arenas *et al.*, which is incorporated by reference in its entirety, describes a screen for compounds that bind RNA that uses FRET to measure the effect of compounds on the stability of a target RNA molecule where the target RNA is labeled with both fluorescent acceptor and donor molecules and the distance between the two fluorophores as determined by FRET provides a measure of the folded structure of the RNA. Matsumoto *et al.* (2000, Bioorg. Med. Chem. Lett. 10:1857-1861) describe a system where a peptide that binds to HIV-1 TAR RNA is labeled on one end with a fluorescein fluorophore and a tetramethylrhodamine on the other end. The conformational change of the peptide upon binding to the RNA provided a FRET signal to screen for compounds that bound to the TAR RNA.

In the preferred embodiment, both the target nucleic acid and a compound that has an affinity for the target nucleic acid of interest are labeled with fluorophores with overlapping emission and excitation spectra (donor and acceptor), including but not limited to fluorescein and derivatives, rhodamine and derivatives, cyanine dyes and derivatives, bora-3a,4a-diaza-s-indacene (BODIPY®) and derivatives, pyrene, nanoparticles, or non-fluorescent quenching molecules. Binding of a labeled compound to the target nucleic acid can be identified by the change in observable fluorescence as a result of FRET.

If the target nucleic acid is labeled with the donor fluorophore, then the compounds are labeled with the acceptor fluorophore. Conversely, if the target nucleic acid is labeled with the acceptor fluorophore, then the compounds are labeled with the donor fluorophore. A wide variety of labels may be used, with the choice of label depending on sensitivity required, ease of conjugation with the compound, stability requirements, available instrumentation, and disposal provisions. The fluorophore on the target nucleic acid must be in close proximity to the binding site of the compounds, but should not be

incorporated into a target nucleic acid at the specific binding site at which compounds are likely to bind, since the presence of a covalently attached label might interfere sterically or chemically with the binding of the compounds at this site.

In yet another embodiment, homogeneous time-resolved fluorescence
5 ("HTRF") techniques based on time-resolved energy transfer from lanthanide ion complexes to a suitable acceptor species can be adapted for high-throughput screening for inhibitors of RNA-protein complexes (Hemmila, 1999, J. Biomol. Screening 4:303-307; Mathis, 1999, J. Biomol. Screening 4:309-313). HTRF is similar to fluorescence resonance energy transfer using conventional organic dye pairs, but has several advantages, such as
10 increased sensitivity and efficiency, and background elimination (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356).

It is also contemplated that the target RNA may be labeled with a fluorophore and the compounds in the library labeled with a quencher of the fluorophore, or alternatively, the target RNA labeled with a quencher of the fluorophore and the compounds
15 in the library labeled with a fluorophore, so that when a compound and target RNA bind, the fluorescent signal of the fluorophore is quenched.

Fluorescence spectroscopy has traditionally been used to characterize DNA-protein and protein-protein interactions, but fluorescence spectroscopy has not been widely used to characterize RNA-protein interactions because of an interfering absorption of RNA
20 nucleotides with the intrinsic tryptophan fluorescence of proteins (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356.). However, fluorescence spectroscopy has been used in studying the single tryptophan residue within the arginine-rich RNA-binding domain of Rev protein and its interaction with the RRE in a time-resolved fluorescence study (Kwon & Carson, 1998, Anal. Biochem. 264:133-140). Thus, in this invention, fluorescence
25 spectroscopy is less preferred if the compounds or peptides or proteins possess intrinsic tryptophan fluorescence. However, fluorescence spectroscopy can be used for compounds that do not possess intrinsic fluorescence.

5.6.3 Surface Plasmon Resonance ("SPR")

Surface plasmon resonance (SPR) can be used for determining kinetic rate
30 constants and equilibrium constants for macromolecular interactions by following the association project in "real time" (Schuck, 1997, Annu. Rev. Biophys. Biomol. Struct. 26:541-566).

The principle of SPR is summarized by Xavier *et al.* (Trends Biotechnol., 2000, 18(8):349-356) as follows. Total internal reflection occurs at the boundary between

two substances of different refractive index. The incident light's electromagnetic field penetrates beyond the interface as an evanescent wave, which extends a few hundred nanometers beyond the surface into the medium. Insertion of a thin gold foil at the interface produced SPR owing to the absorption of the energy from the evanescent wave by free electron clouds of the metal (plasmons). As a result of this absorbance, there is a drop in the intensity of the reflected light at a particular angle of incidence. The evanescent wave profile depends exquisitely on the refractive index of the medium it probes. Thus, the angle at which absorption occurs is very sensitive to the refractive changes in the external medium. All proteins and nucleic acids are known to change the refractive index of water by a similar amount per unit mass, irrespective of their amino acid or nucleotide composition (the refractive index change is different for proteins and nucleic acids). When the protein or nucleic acid content of the layer at the sensor changes, the refractive index also changes. Typically, one member of a complex is immobilized in a dextran layer and then the other member is introduced into the solution, either in a flow cell (Biacore AB, Uppsala, Sweden) or a stirred cuvette (Affinity Sensors, Santa Fe, New Mexico). It has been determined that there is a linear correlation between the surface concentration of protein or nucleic acid and the shift in resonance angle, which can be used to quantitate kinetic rate constants and/or the equilibrium constants.

In the present invention, the target RNA may be immobilized to the sensor surface through a streptavidin-biotin linkage, the linkage of which is disclosed by Crouch *et al.* (Methods Mol. Biol., 1999, 118:143-160). The RNA is biotinylated either during synthesis or post-synthetically via the conversion of the 3' terminal ribonucleoside of the RNA into a reactive free amino group or using a T7 polymerase incorporated guanosine monophosphorothioate at the 5' end. SPR has been used to determine the stoichiometry and affinity of the interaction between the HIV Rev protein and the RRE (Van Ryk & Venkatesan, 1999, J. Biol. Chem. 274:17452-17463) and the aminoglycoside antibiotics with RRE and a model RNA derived from the 16S ribosomal A site, respectively (Hendrix *et al.*, 1997, J. Am. Chem. Soc. 119:3641-3648; Wong *et al.*, 1998, Chem. Biol. 5:397-406).

In one embodiment of the present invention, the target nucleic acid can be immobilized to a sensor surface (*e.g.*, by a streptavidin-biotin linkage) and SPR can be used to (a) determine whether the target RNA binds a compound and (b) further characterize the binding of the target nucleic acids of the present invention to a compound.

5.6.4 Mass Spectrometry

An automated method for analyzing mass spectrometer data which can analyze complex mixtures containing many thousands of components and can correct for background noise, multiply charged peaks and atomic isotope peaks is described in U.S. Patent No. 6,147,344, which is hereby incorporated by reference in its entirety. The system disclosed in U.S. Patent No. 6,147,344 is a method for analyzing mass spectrometer data in which a control sample measurement is performed providing a background noise check. The peak height and width values at each m/z ratio as a function of time are stored in a memory. A mass spectrometer operation on a material to be analyzed is performed and the peak height and width values at each m/z ratio versus time are stored in a second memory location. The mass spectrometer operation on the material to be analyzed is repeated a fixed number of times and the stored control sample values at each m/z ratio level at each time increment are subtracted from each corresponding one from the operational runs, thus producing a difference value at each mass ratio for each of the multiple runs at each time increment. If the MS value minus the background noise does not exceed a preset value, the m/z ratio data point is not recorded, thus eliminating background noise, chemical noise and false positive peaks from the mass spectrometer data. The stored data for each of the multiple runs is then compared to a predetermined value at each m/z ratio and the resultant series of peaks, which are now determined to be above the background, is stored in the m/z points in which the peaks are of significance.

One possibility for the utilization of mass spectrometry in high throughput screening is the integration of SPR with mass spectrometry. Approaches that have been tried are direct analysis of the analyte retained on the sensor chip and mass spectrometry with the eluted analyte (Sonksen *et al.*, 1998, Anal. Chem. 70:2731-2736; Nelson & Krone, 1999, J. Mol. Recog. 12:77-93). Further developments, especially in the interfacing of the sensor chip with the mass spectrometer and in reusing the sensor chip, are required to make SPR combined with mass spectroscopy a high-throughput method for biomolecular interaction analysis and the screening of targets for small molecule inhibitors (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356).

In one embodiment of the present invention, the target nucleic acid complexed to a compound can be determined by any of the mass spectrometry processes described *supra*. Furthermore, mass spectrometry can also be used to elucidate the structure of the compound.

5.6.5 Scintillation Proximity Assay (“SPA”)

Scintillation proximity assay ("SPA") is a method that can be used for screening small molecules that bind to the target RNAs. SPA would involve radiolabeling either the target RNA or the compound and then quantitating its binding to the other member to a bead or a surface impregnated with a scintillant (Cook, 1996, Drug Discov. 5 Today 1:287-294). Currently, fluorescence-based techniques are preferred for high-throughput screening (Pope *et al.*, 1999, Drug Discov. Today 4:350-362).

Screening for small molecules that inhibit Tat peptide:TAR RNA interaction has been performed with SPA, and inhibitors of the interaction were isolated and characterized (Mei *et al.*, 1997, Bioorg. Med. Chem. 5:1173-1184; Mei *et al.*, 1998, 10 Biochemistry 37:14204-14212). A similar approach can be used to identify small molecules that directly bind to a preselected target RNA element in accordance with the invention can be utilized.

SPA can be adapted to high throughput screening by the availability of microplates, wherein the scintillant is directly incorporated into the plastic of the microtiter wells (Nakayama *et al.*, 1998, J. Biomol. Screening 3:43-48). Thus, one embodiment of the 15 present invention comprises (a) labeling of the target nucleic acid with a radioactive or fluorescent label; (b) contacted the labeled nucleic acid with compounds, wherein each compound is in a microtiter well coated with scintillant and is tethered to the microtiter well; and (c) identifying and quantifying the compounds bound to the target nucleic acid 20 with SPA, wherein the compound is identified by virtue of its location in the microplate.

5.6.6 Structure-Activity Relationships ("SAR") by NMR Spectroscopy

NMR spectroscopy is a valuable technique for identifying complexed target nucleic acids by qualitatively determining changes in chemical shift, specifically from distances measured using relaxation effects, and NMR-based approaches have been used in 25 the identification of small molecule binders of protein drug targets (Xavier *et al.*, 2000, Trends Biotechnol. 18(8):349-356). The determination of structure-activity relationships ("SAR") by NMR is the first method for NMR described in which small molecules that bind adjacent subsites are identified by two-dimentional ^1H - ^{15}N spectra of the target protein (Shuker *et al.*, 1996, Science 274:1531-1534). The signal from the bound molecule is 30 monitored by employing line broadening, transferred NOEs and pulsed field gradient diffusion measurements (Moore, 1999, Curr. Opin. Biotechnol. 10:54-58). A strategy for lead generation by NMR using a library of small molecules has been recently described (Fejzo *et al.*, 1999, Chem. Biol. 6:755-769).

In one embodiment of the present invention, the target nucleic acid complexed to a compound can be determined by SAR by NMR. Furthermore, SAR by NMR can also be used to elucidate the structure of the compound.

5.6.7 Size Exclusion Chromatography

5 In another embodiment of the present invention, size-exclusion chromatography is used to purify compounds that are bound to a target nucleic acid from a complex mixture of compounds. Size-exclusion chromatography separates molecules based on their size and uses gel-based media comprised of beads with specific size distributions. When applied to a column, this media settles into a tightly packed matrix and forms a complex array of pores. Separation is accomplished by the inclusion or exclusion of 10 molecules by these pores based on molecular size. Small molecules are included into the pores and, consequently, their migration through the matrix is retarded due to the added distance they must travel before elution. Large molecules are excluded from the pores and migrate with the void volume when applied to the matrix. In the present invention, a target 15 nucleic acid is incubated with a mixture of compounds while free in solution and allowed to reach equilibrium. When applied to a size exclusion column, compounds free in solution are retained by the column, and compounds bound to the target nucleic acid are passed through the column. In a preferred embodiment, spin columns commonly used for “desalting” of nucleic acids will be employed to separate bound from unbound compounds 20 (e.g., Bio-Spin columns manufactured by BIO-RAD). In another embodiment, the size exclusion matrix is packed into multiwell plates to allow high throughput separation of mixtures (e.g., PLASMID 96-well SEC plates manufactured by Millipore).

5.6.8 Affinity Chromatography

25 In one embodiment of the present invention, affinity capture is used to purify compounds that are bound to a target nucleic acid labeled with an affinity tag from a complex mixture of compounds. To accomplish this, a target nucleic acid labeled with an affinity tag is incubated with a mixture of compounds while free in solution and then captured to a solid support once equilibrium has been established; alternatively, target 30 nucleic acids labeled with an affinity tag can be captured to a solid support first and then allowed to reach equilibrium with a mixture of compounds.

The solid support is typically comprised of, but not limited to, cross-linked agarose beads that are coupled with a ligand for the affinity tag. Alternatively, the solid support may be a glass, silicon, metal, or carbon, plastic (polystyrene, polypropylene)

surface with or without a self-assembled monolayer (SAM) either with a covalently attached ligand for the affinity tag, or with inherent affinity for the tag on the target nucleic acid.

Once the complex between the target nucleic acid and compound has
5 reached equilibrium and has been captured, one skilled in the art will appreciate that the retention of bound compounds and removal of unbound compounds is facilitated by washing the solid support with large excesses of binding reaction buffer. Furthermore, retention of high affinity compounds and removal of low affinity compounds can be accomplished by a number of means that increase the stringency of washing; these means
10 include, but are not limited to, increasing the number and duration of washes, raising the salt concentration of the wash buffer, addition of detergent or surfactant to the wash buffer, and addition of non-specific competitor to the wash buffer.

In one embodiment, the compounds themselves are detectably labeled with fluorescent dyes, radioactive isotopes, or nanoparticles. When the compounds are applied
15 to the captured target nucleic acid in a spatially addressed fashion (e.g., in separate wells of a 96-well microplate), binding between the compounds and the target nucleic acid can be determined by the presence of the detectable label on the compound using fluorescence.

Following the removal of unbound compounds, bound compounds with high affinity for the target nucleic acid can be eluted from the immobilized target nucleic acids
20 and analyzed. The elution of compounds can be accomplished by any means that break the non-covalent interactions between the target nucleic acid and compound. Means for elution include, but are not limited to, changing the pH, changing the salt concentration, the application of organic solvents, and the application of molecules that compete with the bound ligand. In a preferred embodiment, the means employed for elution will release the
25 compound from the target RNA, but will not effect the interaction between the affinity tag and the solid support, thereby achieving selective elution of compound. Moreover, a preferred embodiment will employ an elution buffer that is volatile to allow for subsequent concentration by lyophilization of the eluted compound (e.g., 0 M to 5 M ammonium acetate).

30 In another embodiment of the invention, the target RNA can be labeled with biotin, an antigen, or a ligand. Library beads complexed to the target RNA can be separated from uncomplexed beads using affinity techniques designed to capture the labeled moiety on the target RNA. For example, a solid support, such as but not limited to, a column or a well in a microwell plate coated with avidin/streptavidin, an antibody to the antigen, or a

receptor for the ligand can be used to capture or immobilize the labeled beads. Complexed RNA may or may not be irreversibly bound to the bead by a further transformation between the bound RNA and an additional moiety on the surface of the bead. Such linking methods include, but are not limited to: photochemical crosslinking between RNA and bead-bound molecules such as psoralen, thymidine or uridine derivates either present as monomers, oligomers, or as a partially complementary sequence; or chemical ligation by disulfide exchange, nitrogen mustards, bond formation between an electrophile and a nucleophile, or alkylating reagents. See, e.g., International Patent Publication WO/0146461, the contents of which are hereby incorporated by reference. The unbound library beads can be removed after the binding reaction by washing the solid phase. If the RNA is irreversibly bound to the bead, compounds can be isolated from the bead following destruction of the bound RNA by preferably, but not limited to, enzymatic or chemical (e.g., alkaline hydrolysis) degradation. The library beads bound to the solid phase can then be eluted with any solution that disrupts the binding between the labeled target RNA and the solid phase. Such solutions include high salt solutions, low pH solutions, detergents, and chaotropic denaturants, and are well known to one of skill in the art. In another embodiment, the compounds can be eluted from the solid phase by heat.

In one embodiment, the library of compounds can be prepared on magnetic beads, such as Dynabeads Streptavidin (Dynal Biotech, Oslo, Norway). The magnetic bead library can then be mixed with the labeled target RNA under conditions that allow binding to occur. The separation of the beads from unbound target RNA in the liquid phase can be accomplished using a magnet. After removal of the magnetic field, the bead complexed to the labeled RNA may be separated from uncomplexed library beads via the label used on the target RNA; e.g., biotinylated target RNA can be captured by avidin/streptavidin; target RNA labeled with antigen can be captured by the appropriate antibody; target RNA labeled with ligand can be captured using the appropriate immobilized receptor. The captured library bead can then be eluted with any solution that disrupts the binding between the labeled target RNA and the immobilized surface. Such solutions include high salt solutions, low pH solutions, detergents, and chaotropic denaturants, and are well known to one of skill in the art. Complexed RNA may or may not be irreversibly bound to the bead by a further transformation between the bound RNA and an additional moiety on the surface of the bead. Such linking methods include, but are not limited to: photochemical crosslinking between RNA and bead-bound molecules such as psoralen, thymidine or uridine derivates either present as monomers, oligomers, or as a partially complementary

sequence; or chemical ligation by disulfide exchange, nitrogen mustards, bond formation between an electrophile and a nucleophile, or alkylating reagents. See, e.g., International Patent Publication WO/0146461, the contents of which are hereby incorporated by reference. If the RNA is irreversibly bound to the bead, compounds can be isolated from
5 the bead following destruction of the bound RNA by enzymatic degradation including, but not limited to, ribonucleases A, U₂, CL₃, T₁, Phy M, *B. cereus* or chemical degradation including, but not limited to, piperidine-promoted backbone cleavage of abasic sites (following treatment with sodium hydroxide, hydrazine, piperidine formate, or dimethyl sulfate), or metal-assisted (e.g. nickel(II), cobalt(II), or iron(II)) oxidative cleavage.

10 In another embodiment, the preselected target RNA can be labeled with a heavy metal tag and incubated with the library beads to allow binding of the compounds to the target RNA. The separation of the labeled beads from unlabeled beads can be accomplished using a magnetic field. After removal of the magnetic field, the compound can be eluted with any solution that disrupts the binding between the preselected target
15 RNA and the compound. Such solutions include high salt solutions, low pH solutions, detergents, and chaotropic denaturants, and are well known to one of skill in the art. In another embodiment, the compounds can be eluted from the solid phase by heat.

5.6.9 Nanoparticle Aggregation

20 In one embodiment of the present invention, both the target nucleic acid and the compounds are labeled with nanoparticles. A nanoparticle is a cluster of ions with controlled size from 0.1 to 1000 nm comprised of metals, metal oxides, or semiconductors including, but not limited to Ag₂S, ZnS, CdS, CdTe, Au, or TiO₂. Methods for the attachment of nucleic acids and small molecules to nanoparticles are well known to one of skill in the art (reviewed in Niemeyer, 2001, Angew. Chem. Int. Ed. 40:4129-4158. The references cited therein are hereby incorporated by reference in their entireties). In particular, if multiple copies of the target nucleic acid are attached to a single nanoparticle and multiple copies of a compound are attached to another nanoparticle, then interaction between the compound and target nucleic acid will induce aggregation of nanoparticles as
25 described, for example, by Mitchel *et al.* 1999, J. Am. Chem. Soc. 121:8122-8123. The aggregate can be detected by changes in absorbance or fluorescence spectra and physically separated from the unbound components through filtration or centrifugation.

5.6.10 Flow Cytometry

In a preferred embodiment, the complexed and non-complexed target nucleic acids are separated by flow cytometry methods. Flow cytometers for sorting and examining biological cells are well known in the art; this technology can be applied to separate the labeled library beads from unlabeled beads. Known flow cytometers are described, for example, in U.S. Patent Nos. 4,347,935; 5,464,581; 5,483,469; 5,602,039; 5,643,796; and 6,211,477; the entire contents of which are incorporated by reference herein. Other known flow cytometers are the FACS Vantage™ system manufactured by Becton Dickinson and Company, and the COPAS™ system manufactured by Union Biometrika.

A flow cytometer typically includes a sample reservoir for receiving a biological sample. The biological sample contains particles (hereinafter referred to as "beads") that are to be analyzed and sorted by the flow cytometer. Beads are transported from the sample reservoir at high speed (>100 beads/second) to a flow cell in a stream of liquid "sheath" fluid. High-frequency vibrations of a nozzle that directs the stream to the flow cell causes the stream to partition and form ordered droplets, with each droplet containing a single bead. Physical properties of beads can be measured as they intersect a laser beam within the cytometer flow cell. As beads move one by one through the interrogation point, they cause the laser light to scatter and fluorescent molecules on the labeled beads (*i.e.*, beads complexed with labeled target RNA) become excited. Alternatively, if the target nucleic acid is labeled with an inorganic nanoparticle, the beads complexed with bound target nucleic acid can be distinguished not only by unique fluorescent properties but also on the basis of spectrometric properties (*e.g.* including but not limited to increased optical density due to the reduction of Ag⁺ ions in the presence of gold nanoparticles (see, *e.g.*, Taton *et al.* Science 2000, 289: 1757-1760)).

5.6.11 Manual Batch

In one embodiment, a for separating complexed beads. To explore a bead-based library within a reasonable time period, the primary screens should be operated with sufficient throughput. To do this, the target nucleic acid is labeled with a dye and then incubated with the combinatorial library. An advantage of such an assay is the fast identification of active library beads by color change. In the lower concentrations of the dye-labeled target molecule, only those library beads that bind the target molecules most tightly are detected because of higher local concentration of the dye. When washed and plated into a liquid monolayer, colored beads are easily separated from non-colored beads with the aid of a dissecting microscope. One of the problems associated with this method could be the interaction between the red dye and library substrates. Control experiments

using the dye alone and dye attached to mutant RNA sequences with the libraries are performed to eliminate this possibility.

5.6.12 Suspension of Beads in Electric Fields

5 In another embodiment of the invention, library beads bound to the target RNA can be separated from unbound beads on the basis of the altered charge properties due to RNA binding. In a preferred embodiment of this technique, beads are separated from unbound nucleic acid and suspended, preferably but not only, in the presence of an electric field where the bound RNA causes the beads bound to the target RNA to migrate toward the
10 anode, or positive, end of the field.

Beads can be preferentially suspended in solution as a colloidal suspension with the aid of detergents or surfactants. Typical detergents useful in the methods of the present invention include, but are not limited to, anionic detergents, such as salts of deoxycholic acid, 1-heptanesulfonic acid, N-laurylsarcosine, lauryl sulfate, 1-octane sulfonic acid, carboxymethylcellulose, carrageenan, and taurocholic acid; cationic detergents such as benzalkonium chloride, cetylpyridinium, methylbenzethonium chloride, and decamethonium bromide; zwitterionic detergents such as CHAPS, CHAPSO, alkyl betaines, alky amidoalkyl betaines,
15 N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate, and phosphatidylcholine; and non-ionic detergents such as n-decyl α-D-glucopyranoside, n-decyl-D-maltopyranoside, n-dodecyl -D-maltoside, n-octyl -D-glucopyranoside, sorbitan esters, n-tetradecyl -D-maltoside and tritons. Preferably, the detergent, if present, is a nonionic detergent.
Typical surfactants useful in the methods of the present invention include, but are not limited to, ammonium lauryl sulfate, polyethylene glycols, butyl glucoside, decyl glucoside,
20 Polysorbate 80, lauric acid, myristic acid, palmitic acid, potassium palmitate, undecanoic acid, lauryl betaine, and lauryl alcohol.

Complexed RNA may or may not be irreversibly bound to the bead by a further transformation between the bound RNA and an additional moiety on the surface of the bead. Such linking methods include, but are not limited to: photochemical crosslinking
30 between RNA and bead-bound molecules such as psoralen, thymidine or uridine derivates either present as monomers, oligomers, or as a partially complementary sequence; or chemical ligation by disulfide exchange, nitrogen mustards, bond formation between an electrophile and a nucleophile, or alkylating reagents.

If the RNA is irreversibly bound to the bead, compounds can be isolated from the bead following destruction of the bound RNA by enzymatic degradation including, but not limited to, ribonucleases A, U₂, CL₃, T₁, Phy M, *B. cereus* or chemical degradation including, but not limited to, piperidine-promoted backbone cleavage of abasic sites

5 (following treatment with sodium hydroxide, hydrazine, piperidine formate, or dimethyl sulfate), or metal-assisted (e.g. nickel(II), cobalt(II), or iron(II)) oxidative cleavage.

5.6.13 Microwave Spectroscopy

In another embodiment, the complexed beads are separated from uncomplexed beads by microwave spectroscopy. For example, as described in U.S. Patent Nos. 6,395,480; 6,376,258; 6,368,795; 6,340,568; 6,338,968; 6,287,874; and 6,287,776 to Hefti, the disclosures of which are hereby incorporated by reference, the unique dielectric properties of molecules and binding complexes, such as hybridization complexes formed between a nucleic acid probe and a nucleic acid target, molecular binding events, and protein/ligand complexes, result in varying microwave spectra which can be measured. The molecule's dielectric properties can be observed by coupling a test signal to the molecule and observing the resulting signal. When the test signal excites the molecule at a frequency within the molecule's dispersion regime, especially at a resonant frequency, the molecule will interact strongly with the signal, and the resulting signal will exhibit dramatic variations in its measured amplitude and phase, thereby generating a unique signal response. This response can be used to detect and identify the bound molecular structure. In addition, because most molecules will exhibit different dispersion properties over the same or different frequency bands, each generates a unique signal response which can be used to identify the molecular structure.

25

5.7 Methods for Identifying or Characterizing the Compounds Bound to the Target Nucleic Acids

If the library comprises arrays or microarrays of compounds, wherein each compound has an address or identifier, the compound can be deconvoluted, e.g., by cross-referencing the positive sample to original compound list that was applied to the individual test assays.

If the library is a peptide or nucleic acid library, the sequence of the compound can be determined by direct sequencing of the peptide or nucleic acid. Such methods are well known to one of skill in the art.

A number of physico-chemical techniques can be used for the de novo characterization of compounds bound to the target.

5.7.1 Mass Spectrometry

Mass spectrometry (*e.g.*, electrospray ionization (“ESI”) and matrix-assisted laser desorption-ionization (“MALDI”), Fourier-transform ion cyclotron resonance (“FT-ICR”)) can be used both for high-throughput screening of compounds that bind to a target RNA and elucidating the structure of the compound. Thus, one example of mass spectroscopy is that separation of a bound and unbound complex and compound structure elucidation can be carried out in a single step.

10 MALDI uses a pulsed laser for desorption of the ions and a time-of-flight analyzer, and has been used for the detection of noncovalent tRNA:amino-acyl-tRNA synthetase complexes (Gruic-Sovulj *et al.*, 1997, *J. Biol. Chem.* 272:32084-32091). However, covalent cross-linking between the target nucleic acid and the compound is required for detection, since a non-covalently bound complex may dissociate during the 15 MALDI process.

ESI mass spectrometry (“ESI-MS”) has been of greater utility for studying non-covalent molecular interactions because, unlike the MALDI process, ESI-MS generates molecular ions with little to no fragmentation (Xavier *et al.*, 2000, *Trends Biotechnol.* 18(8):349-356). ESI-MS has been used to study the complexes formed by HIV Tat peptide 20 and protein with the TAR RNA (Sannes-Lowery *et al.*, 1997, *Anal. Chem.* 69:5130-5135).

Fourier-transform ion cyclotron resonance (“FT-ICR”) mass spectrometry provides high-resolution spectra, isotope-resolved precursor ion selection, and accurate mass assignments (Xavier *et al.*, 2000, *Trends Biotechnol.* 18(8):349-356). FT-ICR has been used to study the interaction of aminoglycoside antibiotics with cognate and non-cognate RNAs (Hofstadler *et al.*, 1999, *Anal. Chem.* 71:3436-3440; Griffey *et al.*, 1999, *Proc. Natl. Acad. Sci. USA* 96:10129-10133). As true for all of the mass spectrometry methods discussed herein, FT-ICR does not require labeling of the target RNA or a compound.

30 An advantage of mass spectroscopy is not only the elucidation of the structure of the compound, but also the determination of the structure of the compound bound to the preselected target RNA. Such information can enable the discovery of a consensus structure of a compound that specifically binds to a preselected target RNA.

In a specific embodiment, the structure of the compound is determined by time of flight mass spectroscopy ("TOF-MS"). In time of flight methods of mass spectrometry, charged (ionized) molecules are produced in a vacuum and accelerated by an electric field into a time of flight tube or drift tube. The velocity to which the molecules 5 may be accelerated is proportional to the accelerating potential, proportional to the charge of the molecule, and inversely proportional to the square of the mass of the molecule. The charged molecules travel, *i.e.*, "drift" down the TOF tube to a detector. The time taken for the molecules to travel down the tube may be interpreted as a measure of their molecular weight. Time-of-flight mass spectrometers have been developed for all of the major 10 ionization techniques such as, but limited to, electron impact ("EI"), infrared laser desorption ("IRLD"), plasma desorption ("PD"), fast atom bombardment ("FAB"), secondary ion mass spectrometry ("SIMS"), matrix-assisted laser desorption/ionization ("MALDI"), and electrospray ionization ("ESI").

5.7.2 Edman Degradation

15 In an embodiment wherein the library is a peptide library or a derivative thereof, Edman degradation can be used to determine the structure of the compound. In one embodiment, a modified Edman degradation process is used to obtain compositional tags for proteins, which is described in U.S. Patent No. 6,277,644 to Farnsworth *et al.*, which is hereby incorporated by reference in its entirety. The Edman degradation chemistry is 20 separated from amino acid analysis, circumventing the serial requirement of the conventional Edman process. Multiple cycles of coupling and cleavage are performed prior to extraction and compositional analysis of amino acids. The amino acid composition information is then used to search a database of known protein or DNA sequences to identify the sample protein. An apparatus for performing this method comprises a sample 25 holder for holding the sample, a coupling agent supplier for supplying at least one coupling agent, a cleavage agent supplier for supplying a cleavage agent, a controller for directing the sequential supply of the coupling agents, cleavage agents, and other reagents necessary for performing the modified Edman degradation reactions, and an analyzer for analyzing amino acids.

30 In another embodiment, the method can be automated as described in U.S. Patent No. 5,565,171 to Dovichi *et al.*, which is hereby incorporated by reference in its entirety. The apparatus includes a continuous capillary connected between two valves that control fluid flow in the capillary. One part of the capillary forms a reaction chamber where the sample may be immobilized for subsequent reaction with reagents supplied through the

valves. Another part of the capillary passes through or terminates in the detector portion of an analyzer such as an electrophoresis apparatus, liquid chromatographic apparatus or mass spectrometer. The apparatus may form a peptide or protein sequencer for carrying out the Edman degradation reaction and analyzing the reaction product produced by the reaction.

- 5 The protein or peptide sequencer includes a reaction chamber for carrying out coupling and cleavage on a peptide or protein to produce derivatized amino acid residue, a conversion chamber for carrying out conversion and producing a converted amino acid residue and an analyzer for identifying the converted amino acid residue. The reaction chamber may be contained within one arm of a capillary and the conversion chamber is located in another
10 arm of the capillary. An electrophoresis length of capillary is directly capillary coupled to the conversion chamber to allow electrophoresis separation of the converted amino acid residue as it leaves the conversion chamber. Identification of the converted amino acid residue takes place at one end of the electrophoresis length of the capillary.

5.7.3 NMR Spectroscopy

- 15 As described above, NMR spectroscopy is a technique for identifying binding sites in target nucleic acids by qualitatively determining changes in chemical shift, specifically from distances measured using relaxation effects. Examples of NMR that can be used for the invention include, but are not limited to, one-dimensional NMR, two-dimensional NMR, correlation spectroscopy ("COSY"), and nuclear Overhauser effect
20 ("NOE") spectroscopy. Such methods of structure determination of compounds are well known to one of skill in the art.

- 25 Similar to mass spectroscopy, an advantage of NMR is the not only the elucidation of the structure of the compound, but also the determination of the structure of the compound bound to the preselected target RNA. Such information can enable the discovery of a consensus structure of a compound that specifically binds to a preselected target RNA.

5.7.4 Vibrational Spectroscopy

- 30 Vibrational spectroscopy (e.g. infrared (IR) spectroscopy or Raman spectroscopy) can be used for elucidating the structure of the compound on the isolated bead.

Infrared spectroscopy measures the frequencies of infrared light (wavelengths from 100 to 10,000 nm) absorbed by the compound as a result of excitation of vibrational modes according to quantum mechanical selection rules which require that

absorption of light cause a change in the electric dipole moment of the molecule. The infrared spectrum of any molecule is a unique pattern of absorption wavelengths of varying intensity that can be considered as a molecular fingerprint to identify any compound.

Infrared spectra can be measured in a scanning mode by measuring the
5 absorption of individual frequencies of light, produced by a grating which separates frequencies from a mixed-frequency infrared light source, by the compound relative to a standard intensity (double-beam instrument) or pre-measured ('blank') intensity (single-beam instrument). In a preferred embodiment, infrared spectra are measured in a pulsed mode (FT-IR) where a mixed beam, produced by an interferometer, of all infrared
10 light frequencies is passed through or reflected off the compound. The resulting interferogram, which may or may not be added with the resulting interferograms from subsequent pulses to increase the signal strength while averaging random noise in the electronic signal, is mathematically transformed into a spectrum using Fourier Transform or Fast Fourier Transform algorithms.

Raman spectroscopy measures the difference in frequency due to absorption
15 of infrared frequencies of scattered visible or ultraviolet light relative to the incident beam. The incident monochromatic light beam, usually a single laser frequency, is not truly absorbed by the compound but interacts with the electric field transiently. Most of the light scattered off the sample will be unchanged (Rayleigh scattering) but a portion of the scatter
20 light will have frequencies that are the sum or difference of the incident and molecular vibrational frequencies. The selection rules for Raman (inelastic) scattering require a change in polarizability of the molecule. While some vibrational transitions are observable in both infrared and Raman spectrometry, must are observable only with one or the other technique. The Raman spectrum of any molecule is a unique pattern of absorption
25 wavelengths of varying intensity that can be considered as a molecular fingerprint to identify any compound.

Raman spectra are measured by submitting monochromatic light to the sample, either passed through or preferably reflected off, filtering the Rayleigh scattered light, and detecting the frequency of the Raman scattered light. An improved Raman
30 spectrometer is described in US Patent No. 5,786,893 to Fink *et al.*, which is hereby incorporated by reference.

Vibrational microscopy can be measured in a spatially resolved fashion to address single beads by integration of a visible microscope and spectrometer. A microscopic infrared spectrometer is described in U.S. Patent No. 5,581,085 to Reffner *et*

al., which is hereby incorporated by reference in its entirety. An instrument that simultaneously performs a microscopic infrared and microscopic Raman analysis on a sample is described in U.S. Patent No. 5,841,139 to Sostek *et al.*, which is hereby incorporated by reference in its entirety.

5 In one embodiment of the method, compounds are synthesized on polystyrene beads doped with chemically modified styrene monomers such that each resulting bead has a characteristic pattern of absorption lines in the vibrational (IR or Raman) spectrum, by methods including but not limited to those described by Fenniri *et al.*, 2000, J. Am. Chem. Soc. 123:8151-8152. Using methods of split-pool synthesis familiar to
10 one of skill in the art, the library of compounds is prepared so that the spectroscopic pattern of the bead identifies one of the components of the compound on the bead. Beads that have been separated according to their ability to bind target RNA can be identified by their vibrational spectrum. In one embodiment of the method, appropriate sorting and binning of the beads during synthesis then allows identification of one or more further components of
15 the compound on any one bead. In another embodiment of the method, partial identification of the compound on a bead is possible through use of the spectroscopic pattern of the bead with or without the aid of further sorting during synthesis, followed by partial resynthesis of the possible compounds aided by doped beads and appropriate sorting during synthesis.

20 In another embodiment, the IR or Raman spectra of compounds are examined while the compound is still on a bead, preferably, or after cleavage from bead, using methods including but not limited to photochemical, acid, or heat treatment. The compound can be identified by comparison of the IR or Raman spectral pattern to spectra previously acquired for each compound in the combinatorial library.

25 In a specific embodiment, compounds can be identified by matching the IR or Raman spectra of a compound to a dataset of vibrational (IR or Raman) spectra previously acquired for each compound in the combinatorial library. By this method, the spectra of compounds with known structure are recorded so that comparison with these spectra can identify compounds again when isolated from RNA binding experiments.

30

5.7.5 Microwave Spectroscopy

In another embodiment, the microwave spectra of a compound can be used to elucidate the structure of the compound. For example, as described in U.S. Patent Nos. 6,395,480; 6,376,258; 6,368,795; 6,340,568; 6,338,968; 6,287,874; and 6,287,776 to Hefti, the disclosures of which are hereby incorporated by reference, the unique dielectric

properties of molecules and binding complexes, such as hybridization complexes formed between a nucleic acid probe and a nucleic acid target, molecular binding events, and protein/ligand complexes, result in varying microwave spectra which can be measured. The molecule's dielectric properties can be observed by coupling a test signal to the molecule and observing the resulting signal. When the test signal excites the molecule at a frequency within the molecule's dispersion regime, especially at a resonant frequency, the molecule will interact strongly with the signal, and the resulting signal will exhibit dramatic variations in its measured amplitude and phase, thereby generating a unique signal response. This response can be used to detect and identify the bound molecular structure.

5 In addition, because most molecules will exhibit different dispersion properties over the same or different frequency bands, each generates a unique signal response which can be used to identify the molecular structure.

10

5.7.6 X-Ray Crystallography

X-ray crystallography can be used to elucidate the structure of a compound.

15 For a review of x-ray crystallography see, e.g., Blundell et al. 2002, Nat Rev Drug Discov 1(1):45-54. The first step in x-ray crystallography is the formation of crystals. The formation of crystals begins with the preparation of highly purified and soluble samples. The conditions for crystallization is then determined by optimizing several solution variables known to induce nucleation, such as pH, ionic strength, temperature, and specific

20 concentrations of organic additives, salts and detergent. Techniques for automating the crystallization process have been developed to automate the production of high-quality protein crystals. Once crystals have been formed, the crystals are harvested and prepared for data collection. The crystals are then analyzed by diffraction (such as multi-circle diffractometers, high-speed CCD detectors, and detector off-set). Generally, multiple

25 crystals must be screened for structure determinations.

A number of methods can be used to acquire a diffraction pattern so that a compound can be characterized. In one embodiment, an X-ray source is provided, for example, by a rotating anode generator producing an X-ray beam of a characteristic wavelength. There are a number of sources of X-ray radiation that may be used in the methods of the invention, including low and high intensity radiation. In one example, the tunable X-ray radiation is produced by a Synchrotron. In another embodiment, the primary X-ray beam is monochromated by either crystal monochromators or focusing mirrors and the beam is passed through a helium flushed collimator. In a preferred embodiment, the crystal is mounted on a pin on a goniometer head, that is mounted to a goniometer which

allows to position the crystal in different orientations in the beam. The diffracted X-rays can be recorded using a number of techniques, including, but not limited to image plates, multiwire detectors or CCD cameras. In other embodiments, flash cooling, for example, of protein crystals, to cryogenic temperatures (~100 K) offers many advantages, the most significant of which is the elimination of radiation damage.

5.8 **Naturally Occurring Genes with Premature Stop Codons: Examples of Disorders and Diseases**

The invention provides for naturally occurring genes with premature stop codons to ascertain the effects of compounds on premature translation termination and/or nonsense-mediated mRNA decay. In general, the expression of the gene product, in particular, a full-length gene product, is indicative of the effect of the compounds on premature translation termination and/or nonsense-mediated mRNA decay.

In a preferred embodiment, the naturally occurring genes with premature stop codons are genes that cause diseases which are due, in part, to the lack of expression of the gene resulting from the premature stop codon. Such diseases include, but are not limited to, cystic fibrosis, muscular dystrophy, heart disease (*e.g.*, familial hypercholesterolemia), p53-associated cancers (*e.g.*, lung, breast, colon, pancreatic, non-Hodgkin's lymphoma, ovarian, and esophageal cancer), colorectal carcinomas, neurofibromatosis, retinoblastoma, Wilm's tumor, retinitis pigmentosa, collagen disorders (*e.g.*, osteogenesis imperfecta and cirrhosis), Tay Sachs disease, blood disorders (*e.g.*, hemophilia, von Willebrand disease, b-Thalassemia), kidney stones, ataxia-telangiectasia, lysosomal storage diseases, and tuberous sclerosis. Genes involved in the etiology of these diseases are discussed below.

The recognition of translation termination signals is not necessarily limited to a simple trinucleotide stop codon, but is instead recognized by the sequences surrounding the stop codon in addition to the stop codon itself (see, *e.g.*, Manuvakhova *et al.*, 2000, RNA 6(7):1044-1055, which is hereby incorporated by reference in its entirety). Thus, any genes containing particular tetranucleotide sequences at the stop codon, such as, but not limited to, UGAC, UAGU, UAGC, UAGG, UAAC, UAAU, UAAG, and UAAA, are candidates of naturally occurring genes with premature stop codons that are useful in the present invention. Human disease genes that contain these particular sequence motifs are sorted by chromosome is presented as an Example in Section 8.

5.8.1 **Cystic Fibrosis**

Cystic fibrosis is caused by mutations in the cystic fibrosis conductance regulator ("CFTR") gene. Such mutations vary between populations and depend on a multitude of factors such as, but not limited to, ethnic background and geographic location. Nonsense mutations in the CFTR gene are expected to produce little or no CFTR chloride channels. Several nonsense mutations in the CFTR gene have been identified (see, e.g., Tzetis *et al.*, 2001, Hum Genet. 109(6):592-601. Strandvik *et al.*, 2001, Genet Test. 5(3):235-42; Feldmann *et al.*, 2001, Hum Mutat. 17(4):356; Wilschanski *et al.*, 2000, Am J Respir Crit Care Med. 161(3 Pt 1):860-5; Castaldo *et al.*, 1999, Hum Mutat. 14(3):272; Mitre *et al.*, 1999, Hum Mutat. 14(2):182; Mickle *et al.*, 1998, Hum Mol Genet. 10(4):729-35; Casals *et al.*, 1997, Hum Genet. 101(3):365-70; Mitre *et al.*, 1996, Hum Mutat. 8(4):392-3; Bonizzato *et al.*, 1995, Hum Genet. 1995 Apr;95(4):397-402; Greil *et al.*, 1995, Wien Klin Wochenschr. 107(15):464-9; Zielenski *et al.*, 1995, Hum Mutat. 5(1):43-7; Dork *et al.*, 1994, Hum Genet. 94(5):533-42; Balassopoulou *et al.*, 1994, Hum Mol Genet. 3(10):1887-8; Ghanem *et al.*, 1994, 21(2):434-6; Will *et al.*, J Clin Invest. 1994 Apr;93(4):1852-9; Hull *et al.*, 1994, Genomics. 1994 Jan 15;19(2):362-4; Dork *et al.*, 1994, Hum Genet. 93(1):67-73; Rolfini & Cabrini, 1993, J Clin Invest. 92(6):2683-7; Will *et al.*, 1993, J Med Genet. 30(10):833-7; Bienvenu *et al.*, 1993, J Med Genet. 30(7):621-2; Cheadle *et al.*, 1993, Hum Mol Genet. 2(7):1067-8; Casals *et al.*, 1993, Hum Genet. 91(1):66-70; Reiss *et al.*, 1993, Hum Genet. 91(1):78-9; Chevalier-Porst *et al.*, 1992, Hum Mol Genet. 1(8):647-8; Hamosh *et al.*, 1992, Hum Mol Genet. 1(7):542-4; Gasparini *et al.*, 1992, J Med Genet. 29(8):558-62; Fanen *et al.*, 1992, Genomics. 13(3):770-6; Jones *et al.*, 1992, Hum Mol Genet. 1(1):11-7; Ronchetto *et al.*, 1992, Genomics. 12(2):417-8.; Macek *et al.*, 1992, Hum Mutat. 1(6):501-2; Shoshani *et al.*, 1992, Am J Hum Genet. 50(1):222-8; Schloesser *et al.*, 1991, J Med Genet. 28(12):878-80; Hamosh *et al.*, 1991, J Clin Invest. 25(6):1880-5; Bal *et al.*, 1991, J Med Genet. 28(10):715-7; Dork *et al.*, 1991, Hum Genet. 87(4):441-6; Beaudet *et al.*, 1991, Am J Hum Genet. 48(6):1213; Gasparini *et al.*, 1991, Genomics. 10(1):193-200; Cutting *et al.*, 1990, N Engl J Med. 1990, 323(24):1685-9; and Kerem *et al.*, 1990, Proc Natl Acad Sci U S A. 87(21):8447-51, the disclosures of which are hereby incorporated by reference in their entireties). Any CFTR gene encoding a premature translation codon including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.8.2 Muscular Dystrophy

Muscular dystrophy is a genetic disease characterized by severe, progressive muscle wasting and weakness. Duchenne muscular dystrophy and Becker muscular dystrophy are generally caused by nonsense mutations of the dystrophin gene (see, e.g., Kerr et al., 2001, *Hum Genet.* 109(4):402-7 and Wagner et al., 2001, *Ann Neurol.* 5 49(6):706-11). Nonsense mutations in other genes have also been implicated in other types of muscular dystrophy, such as, but not limited to, collagen genes in Ullrich congenital muscular dystrophy (see, e.g., Demir et al., 2002, *Am J Hum Genet.* 70(6):1446-58), the emerin gene and lamins genes in Emery-Dreifuss muscular dystrophy (see, e.g., Holt et al., 2001, *Biochem Biophys Res Commun.* 287(5):1129-33; Becane et al., 2000, *Pacing Clin 10 Electrophysiol.* 23(11 Pt 1):1661-6; and Bonne et al., 2000, *Ann Neurol.* 48(2):170-80.), the dysferlin gene in Miyoshi myopathy (see, e.g., Nakagawa et al., 2001, *J Neurol Sci.* 184(1):15-9), the plectin gene in late onset muscular dystrophy (see, e.g., Bauer et al., 2001, *Am J Pathol.* 158(2):617-25), the delta-sarcoglycan gene in recessive limb-girdle muscular dystrophy (see, e.g., Duggan et al., 1997, *Neurogenetics.* 1(1):49-58), the laminina2-chain 15 gene in congenital muscular dystrophy (see, e.g., Mendell et al., 1998, *Hum Mutat.* 12(2):135), the plectin gene in late-onset muscular dystrophy (see, e.g., Rouan et al., 2000, *J Invest Dermatol.* 114(2):381-7 and Kunz et al., 2000, *J Invest Dermatol.* 114(2):376-80), the myophosphorylase gene in McArdle's disease (see, e.g., Bruno et al., 1999, *Neuromuscul Disord.* 9(1):34-7), and the collagen VI in Bethlem myopathy (see, e.g., 20 Lamande et al., 1998, *Hum Mol Genet.* 1998 Jun;7(6):981-9).

Several nonsense mutations in the dystrophin gene have been identified (see, e.g., Kerr et al., 2001, *Hum Genet.* 109(4):402-7; Mendell et al., 2001, *Neurology* 57(4):645-50; Fajkusova et al., 2001, *Neuromuscul Disord.* 11(2):133-8; Ginjaar et al., 2000, *Eur J Hum Genet.* 8(10):793-6; Lu et al., 2000, *J Cell Biol.* 148(5):985-96; 25 Tuffery-Giraud et al., 1999, *Hum Mutat.* 14(5):359-68; Fajkusova et al., 1998, *J Neurogenet.* 12(3):183-9; Tuffery et al., 1998, *Hum Genet.* 102(3):334-42; Shiga et al., 1997, *J Clin Invest.* 100(9):2204-10; Winnard et al., 1995, *Am J Hum Genet.* 56(1):158-66; Prior et al., 1994, *Am J Med Genet.* 50(1):68-73; Prior et al., 1993, *Hum Mol Genet.* 2(3):311-3; Prior et al., 1993, *Hum Mutat.* 2(3):192-5; Nigro et al., 1992, *Hum Mol Genet.* 30 1(7):517-20; Worton, 1992, *J Inherit Metab Dis.* 15(4):539-50; and Bulman et al., 1991, *Genomics.* 10(2):457-60; the disclosures of which are hereby incorporated by reference in their entireties). Any gene encoding a premature translation codon implicated in muscular dystrophy including, but not limited to, the nonsense mutations described in the references

cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.8.3 Familial Hypercholesterolemia

Hypercholesterolemia, or high blood cholesterol, results from either the 5 overproduction or the underutilization of low density lipoprotein ("LDL"). Hypercholesterolemia is caused by either the genetic disease familial hypercholesterolemia or the consumption of a high cholesterol diet. Nonsense mutations in the LDL receptor gene have been implicated in familial hypercholesterolemia. Several nonsense mutations in the LDL receptor gene have been identified (see, e.g., Lind *et al.*, 2002, *Atherosclerosis* 10 163(2):399-407; Salazar *et al.*, 2002, *Hum Mutat.* 19(4):462-3; Kuhrova *et al.*, 2002, *Hum Mutat.* 19(1):80; Zakharova *et al.*, 2001, *Bioorg Khim.* 27(5):393-6; Kuhrova *et al.*, 2001, *Hum Mutat.* 18(3):253; Genschel *et al.*, 2001, *Hum Mutat.* 17(4):354; Weiss *et al.*, 2000, *J Inherit Metab Dis.* 23(8):778-90; Mozas *et al.*, 2000, *Hum Mutat.* 15(5):483-4; Shin *et al.*, 2000, *Clin Genet.* 57(3):225-9; Graham *et al.*, 1999, *Atherosclerosis* 147(2):309-16; Hattori 15 *et al.*, 1999, *Hum Mutat.* 14(1):87; Cenarro *et al.*, 1998, *Hum Mutat.* 11(5):413; Rodnigen *et al.*, 1999, *Hum Mutat.* 13(3):186-96; Hirayama *et al.*, 1998, *J Hum Genet.* 43(4):250-4; Lind *et al.*, 1998, *J Intern Med.* 244(1):19-25; Thiart *et al.*, 1997, *Mol Cell Probes* 20 11(6):457-8; Maruyama *et al.*, 1995, *Arterioscler Thromb Vasc Biol.* 15(10):1713-8; Koivisto *et al.*, 1995, *Am J Hum Genet.* 57(4):789-97; Lombardi *et al.*, 1995, *J Lipid Res.* 36(4):860-7; Leren *et al.*, 1993, *Hum Genet.* 92(1):6-10; Landsberger *et al.*, 1992, *Am J Hum Genet.* 50(2):427-33; Loux *et al.*, 1992, *Hum Mutat.* 1992;1(4):325-32; Motulsky, 1989, *Arteriosclerosis.* 9(1 Suppl):I3-7; Lehrman *et al.*, 1987, *J Biol Chem.* 262(1):401-10; and Lehrman *et al.*, 1985, *Cell* 41(3):735-43; the disclosures of which are hereby 25 incorporated by reference in their entireties). Any LDL receptor gene encoding a premature translation codon including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.8.4 p53-associated Cancers

Mutant forms of the p53 protein, which is thought to act as a negative 30 regulator of cell proliferation, transformation, and tumorigenesis, have been implicated as a common genetic change characteristic of human cancer (see, e.g., Levine *et al.*, 1991, *Nature* 351:453-456 and Hollstein *et al.*, 1991, *Science* 253:49-53). p53 mutations have been implicated in cancers such as, but not limited to, lung cancer, breast cancer, colon

cancer, pancreatic cancer, non-Hodgkin's lymphoma, ovarian cancer, and esophageal cancer.

Nonsense mutations have been identified in the p53 gene and have been implicated in cancer. Several nonsense mutations in the p53 gene have been identified (see, e.g., Masuda *et al.*, 2000, Tokai J Exp Clin Med. 25(2):69-77; Oh *et al.*, 2000, Mol Cells 10(3):275-80; Li *et al.*, 2000, Lab Invest. 80(4):493-9; Yang *et al.*, 1999, Zhonghua Zhong Liu Za Zhi 21(2):114-8; Finkelstein *et al.*, 1998, Mol Diagn. 3(1):37-41; Kajiyama *et al.*, 1998, Dis Esophagus. 11(4):279-83; Kawamura *et al.*, 1999, Leuk Res. 23(2):115-26; Radig *et al.*, 1998, Hum Pathol. 29(11):1310-6; Schuyer *et al.*, 1998, Int J Cancer 76(3):299-303; Wang-Gohrke *et al.*, 1998, Oncol Rep. 5(1):65-8; Fulop *et al.*, 1998, J Reprod Med. 43(2):119-27; Ninomiya *et al.*, 1997, J Dermatol Sci. 14(3):173-8; Hsieh *et al.*, 1996, Cancer Lett. 100(1-2):107-13; Rall *et al.*, 1996, Pancreas. 12(1):10-7; Fukutomi *et al.*, 1995, Nippon Rinsho. 53(11):2764-8; Frebourg *et al.*, 1995, Am J Hum Genet. 56(3):608-15; Dove *et al.*, 1995, Cancer Surv. 25:335-55; Adamson *et al.*, 1995, Br J Haematol. 89(1):61-6; Grayson *et al.*, 1994, Am J Pediatr Hematol Oncol. 16(4):341-7; Lepelley *et al.*, 1994, Leukemia. 8(8):1342-9; McIntyre *et al.*, 1994, J Clin Oncol. 12(5):925-30; Horio *et al.*, 1994, Oncogene. 9(4):1231-5; Nakamura *et al.*, 1992, Jpn J Cancer Res. 83(12):1293-8; Davidoff *et al.*, 1992, Oncogene. 7(1):127-33; and Ishioka *et al.*, 1991, Biochem Biophys Res Commun. 177(3):901-6; the disclosures of which are hereby incorporated by reference in their entireties). Any p53 gene encoding a premature translation codon including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.8.5 Colorectal Carcinomas

Molecular genetic abnormalities resulting in colorectal carcinoma involve tumor-suppressor genes that undergo inactivation (such as, but not limited to, *apc*, *mcc*, *dcc*, *p53*, and possibly genes on chromosomes 8p, 1p, and 22q) and dominant-acting oncogenes (such, but not limited to, *ras*, *src*, and *myc*) (see, e.g., Hamilton, 1992, Cancer 70(5 Suppl):1216-21). Nonsense mutations in the adenomatous polyposis coli ("APC") gene and mismatch repair genes (such as, but not limited to, *mlh1* and *msh2*) have also been described. Nonsense mutations have been implicated in colorectal carcinomas (see, e.g., Viel *et al.*, 1997, Genes Chromosomes Cancer. 18(1):8-18; Akiyama *et al.*, 1996, Cancer 78(12):2478-84; Itoh & Imai , 1996, Hokkaido Igaku Zasshi 71(1):9-14; Kolodner *et al.*, 1994, Genomics. 24(3):516-26; Ohue *et al.*, 1994, Cancer Res. 54(17):4798-804; and Yin *et*

al., 1993, *Gastroenterology*. 104(6):1633-9; the disclosures of which are hereby incorporated by reference in their entireties). Any gene encoding a premature translation codon implicated in colorectal carcinoma including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.8.6 Neurofibromatosis

Neurofibromatosis is an inherited disorder, which is commonly caused by mutations in the NF1 and NF2 tumor suppressor genes. It is characterized by multiple intracranial tumors including schwannomas, meningiomas, and ependymomas. Nonsense mutations in the NF1 and NF2 genes have been described. Nonsense mutations have been implicated in neurofibromatosis (see, e.g., Lamszus *et al.*, 2001, *Int J Cancer* 91(6):803-8; Sestini *et al.*, 2000, *Hum Genet.* 107(4):366-71; Fukasawa *et al.*, 2000, *Jpn J Cancer Res.* 91(12):1241-9; Park *et al.*, 2000, *J Hum Genet.* 45(2):84-5; Ueki *et al.*, 1999, *Cancer Res.* 59(23):5995-8; , 1999, *Hokkaido Igaku Zasshi.* 74(5):377-86; Buske *et al.*, 1999, *Am J Med Genet.* 86(4):328-30; Harada *et al.*, 1999, *Surg Neurol.* 51(5):528-35; Krkljus *et al.*, 1998, *Hum Mutat.* 11(5):411; Klose *et al.*, 1999, *Am J Med Genet.* 83(1):6-12; Park & Pivnick, 1998, *J Med Genet.* 35(10):813-20; Bahaua *et al.*, 1998, *Am J Med Genet.* 75(3):265-72; Bijlsma *et al.*, 1997, *J Med Genet.* 34(11):934-6; MacCollin *et al.*, 1996, *Ann Neurol.* 40(3):440-5; Upadhyaya *et al.*, 1996, *Am J Med Genet.* 67(4):421-3; Robinson *et al.*, 1995, *Hum Genet.* 96(1):95-8.; Legius *et al.*, 1995, *J Med Genet.* 32(4):316-9; von Deimling *et al.*, 1995, *Brain Pathol.* 5(1):11-4; Dublin *et al.*, 1995, *Hum Mutat.* 5(1):81-5; Legius *et al.*, 1994, *Genes Chromosomes Cancer.* 10(4):250-5; Purandare *et al.*, 1994, *Hum Mol Genet.* 3(7):1109-15; Shen & Upadhyaya, 1993, *Hum Genet.* 92(4):410-2; and Estivill *et al.*, 1991, *Hum Genet.* 88(2):185-8; the disclosures of which are hereby incorporated by reference in their entireties). Any gene encoding a premature translation codon implicated in neurofibromatosis including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.8.7 Retinoblastoma

The retinoblastoma gene plays important roles in the genesis of human cancers. Several pieces of evidence have shown that the retinoblastoma protein has dual

roles in gating cell cycle progression and promoting cellular differentiation (see, e.g., Lee & Lee, 1997, *Gan To Kagaku Ryoho* 24(11):1368-80 for a review). Nonsense mutations in the RB1 gene have been described. Nonsense mutations have been implicated in retinoblastoma (see, e.g., Klutz et al., 2002, *Am J Hum Genet.* 71(1):174-9; Alonso et al., 5 *Hum Mutat.* 17(5):412-22; Wong et al., 2000, *Cancer Res.* 60(21):6171-7; Harbour, 1998, *Ophthalmology* 105(8):1442-7; Fulop et al., 1998, *J Reprod Med.* 43(2):119-27; Onadim et al., 1997, *Br J Cancer* 76(11):1405-9; Lohmann et al., 1997, *Ophthalmologe* 94(4):263-7; Cowell & Cragg, 1996, *Eur J Cancer.* 32A(10):1749-52; Lohmann et al., 1996, *Am J Hum Genet.* 58(5):940-9; Shapiro et al., 1995, *Cancer Res.* 55(24):6200-9; Huang et 10 al., 1993, *Cancer Res.* 53(8):1889-94; and Cheng & Haas, 1990, *Mol Cell Biol.* 10(10):5502-9; the disclosures of which are hereby incorporated by reference in their entireties). Any gene encoding a premature translation codon implicated in retinoblastoma including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature 15 translation termination and/or nonsense-mediated mRNA decay.

5.8.8 Wilm's Tumor

Wilm's tumor, or nephroblastoma, is an embryonal malignancy of the kidney that affects children. Nonsense mutations in the WT1 gene have been implicated in Wilm's tumor. Several nonsense mutations in the WT1 have been identified (see, e.g., Nakadate et al., 1999, *Genes Chromosomes Cancer* 25(1):26-32; Diller et al., 1998, *J Clin Oncol.* 20 16(11):3634-40; Schumacher et al., 1997, *Proc Natl Acad Sci U S A.* 94(8):3972-7; Coppes et al., 1993, *Proc Natl Acad Sci U S A.* 90(4):1416-9; and Little et al., 1992, *Proc Natl Acad Sci U S A.* 89(11):4791-5; the disclosures of which are hereby incorporated by reference in their entireties). Any WT1 gene encoding a premature translation codon including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature 25 translation termination and/or nonsense-mediated mRNA decay.

5.8.9 Retinitis Pigmentosa

Retinitis pigmentosa is a genetic disease in which affected individuals 30 develop progressive degeneration of the rod and cone photoreceptors. Retinitis pigmentosa cannot be explained by a single genetic defect but instead the hereditary aberration responsible for triggering the onset of the disease is localized in different genes and at different sites within these genes (reviewed in, e.g., Kohler et al., 1997, *Klin Monatsbl*

Augenheilkd 211(2):84-93). Nonsense mutations have been implicated in retinitis pigmentosa (see, e.g., Ching *et al.*, 2002, Neurology 58(11):1673-4; Zhang *et al.*, 2002, Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 19(3):194-7; Zhang *et al.*, 2002, Hum Mol Genet. 11(9):993-1003; Dietrich *et al.*, 2002, Br J Ophthalmol. 86(3):328-32; Grayson *et al.*, 2002, J Med Genet. 39(1):62-7; Liu *et al.*, 2001, Zhonghua Yi Xue Za Zhi 81(2):71-2; Damji *et al.*, 2001, Can J Ophthalmol. 36(5):252-9; Berson *et al.*, 2001, Invest Ophthalmol Vis Sci. 42(10):2217-24; Chan *et al.*, 2001, Br J Ophthalmol. 85(9):1046-8; Baum *et al.*, 2001, Hum Mutat. 17(5):436; Mashima *et al.*, 2001, Ophthalmic Genet. 22(1):43-7; Zwaenepoel *et al.*, 2001, Hum Mutat. 2001;17(1):34-41; Bork *et al.*, 2001, Am J Hum Genet. 68(1):26-37; Sharon *et al.*, 2000, Invest Ophthalmol Vis Sci. 41(9):2712-21; Dreyer *et al.*, 2000, Eur J Hum Genet. 8(7):500-6; Liu *et al.*, 2000, Hum Mutat. 15(6):584; Wang *et al.*, 1999, Exp Eye Res. 69(4):; Bowne *et al.*, 1999, Hum Mol Genet. 8(11):2121-8; Guillonneau *et al.*, 1999, Hum Mol Genet. 8(8):1541-6; Dryja *et al.*, 1999, Invest Ophthalmol Vis Sci. 40(8):1859-65; Sullivan *et al.*, 1999, Nat Genet. 22(3):255-9; Pierce *et al.*, 1999, Nat Genet. 22(3):248-54; Janecke *et al.*, 1999, Hum Mutat. 13(2):133-40; Cuevas *et al.*, 1998, Mol Cell Probes 12(6):417-20; Schwahn *et al.*, 1998, Nat Genet. 19(4):327-32; Buraczynska *et al.*, 1997, Am J Hum Genet. 61(6):1287-92; Meindl *et al.*, 1996, Nat Genet. 13(1):35-42; Keen *et al.*, 1996, Hum Mutat. 8(4):297-303; Dryja *et al.*, 1995, Proc Natl Acad Sci U S A. 92(22):10177-81; Apfelstedt-Sylla *et al.*, 1995, Br J Ophthalmol. 79(1):28-34; Bayes *et al.*, 1995, Hum Mutat. 5(3):228-34; Shastry, 1994, Am J Med Genet. 52(4):467-74; Gal *et al.*, 1994, Nat Genet. 7(1):64-8; Sargan *et al.*, 1994, Gene Ther. 1 Suppl 1:S89; McLaughlin *et al.*, 1993, Nat Genet. 4(2):130-4; Rosenfeld *et al.*, 1992, Nat Genet. 1(3):209-13; the disclosures of which are hereby incorporated by reference in their entireties). Any gene encoding a premature translation codon implicated in retinitis pigmentosa including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.8.10 Osteogenesis Imperfecta

Osteogenesis imperfecta is a heterogeneous disorder of type I collagen resulting in varying degrees of severity and results from mutations the genes that encode the proalpha chains of type I collagen. Nonsense mutations have been implicated in the genes that encode the proalpha chains of type I collagen ("COLA1" genes) (see, e.g., Slayton *et al.*, 2000, Matrix Biol. 19(1):1-9; Bateman *et al.*, 1999, Hum Mutat. 13(4):311-7; and Willing *et al.*, 1996, Am J Hum Genet. 59(4):799-809; the disclosures of which are hereby

incorporated by reference in their entireties). Any COLA1 gene encoding a premature translation codon including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5

5.8.11 Cirrhosis

Cirrhosis generally refers to a chronic liver disease that is marked by replacement of normal tissue with fibrous tissue. The multidrug resistance 3 gene has been implicated in cirrhosis, and nonsense mutations have been identified in this gene (see, e.g.,

10 Jacquemin *et al.*, 2001, Gastroenterology. 2001 May;120(6):1448-58; the disclosure of which is hereby incorporated by reference in its entirety). Any gene involved in cirrhosis encoding a premature translation codon including, but not limited to, the nonsense mutations described in the reference cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

15

5.8.12 Tay Sachs Disease

Tay Sachs disease is an autosomal recessive disorder affecting the central nervous system. The disorder results from mutations in the gene encoding the alpha-subunit of beta-hexosaminidase A, a lysosomal enzyme composed of alpha and beta polypeptides. Several nonsense mutations have been implicated in Tay Sachs disease (see, 20 e.g., Rajavel & Neufeld, 2001, Mol Cell Biol. 21(16):5512-9; Myerowitz, 1997, Hum Mutat. 9(3):195-208; Akli *et al.*, 1993, Hum Genet. 90(6):614-20; Mules *et al.*, 1992, Am J Hum Genet. 50(4):834-41; and Akli *et al.*, 1991, Genomics. 11(1):124-34; the disclosures 25 of which are hereby incorporated by reference in their entireties). Any hexosaminidase gene encoding a premature translation codon including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.8.13 Blood Disorders

Hemophilia is caused by a deficiency in blood coagulation factors. Affected 30 individuals are at risk for spontaneous bleeding into organs and treatment usually consists of administration of clotting factors. Hemophilia A is caused by a deficiency of blood coagulation factor VIII and hemophilia B is caused by a deficiency in blood coagulation factor IX. Nonsense mutations in the genes encoding coagulation factors have been

implicated in hemophilia (see, e.g., Dansako *et al.*, 2001, Ann Hematol. 80(5):292-4; Moller-Morlang *et al.*, 1999, Hum Mutat. 13(6):504; Kamiya *et al.*, 1998, Rinsho Ketsueki 39(5):402-4; Freson *et al.*, 1998, Hum Mutat. 11(6):470-9; Kamiya *et al.*, 1995, Int J Hematol. 62(3):175-81; Walter *et al.*, 1994, Thromb Haemost. 72(1):74-7; Figueiredo, 5 1993, Braz J Med Biol Res. 26(9):919-31; Reiner & Thompson, 1992, Hum Genet. 89(1):88-94; Koeberl *et al.*, 1990, Hum Genet. 84(5):387-90; Driscoll *et al.*, 1989, Blood. 74(2):737-42; Chen *et al.*, 1989, Am J Hum Genet. 44(4):567-9; Mikami *et al.*, 1988, Jinrui Idengaku Zasshi. 33(4):409-15; Gitschier *et al.*, 1988, Blood 72(3):1022-8; and Sommer *et al.*, 1987, Mayo Clin Proc. 62(5):387-404; the disclosures of which are hereby incorporated 10 by reference in their entireties). Any gene encoding a premature translation codon implicated in hemophilia including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

Von Willebrand disease is a single-locus disorder resulting from a deficiency 15 of von Willebrand factor: a multimeric multifunctional protein involved in platelet adhesion and platelet-to-platelet cohesion in high shear stress vessels, and in protecting from proteolysis and directing circulating factor VIII to the site of injury (reviewed in Rodeghiero, 2002, Haemophilia. 8(3):292-300). Nonsense mutations have implicated in von Willebrand disease (see, e.g., Rodeghiero, 2002, Haemophilia. 8(3):292-300; Enayat 20 *et al.*, 2001, Blood 98(3):674-80; Surdhar *et al.*, 2001, Blood 98(1):248-50; Casana *et al.*, 2000, Br J Haematol. 111(2):552-5; Baronciani *et al.*, 2000, Thromb Haemost. 84(4):536-40; Fellowes *et al.*, 2000, Blood 96(2):773-5; Waseem *et al.*, 1999, Thromb Haemost. 81(6):900-5; Mohlke *et al.*, 1999, Int J Clin Lab Res. 29(1):1-7; Rieger *et al.*, 1998, Thromb Haemost. 80(2):332-7; Kenny *et al.*, 1998, Blood 92(1):175-83; Mazurier *et al.*, 1998, Ann Genet. 41(1):34-43; Hagiwara *et al.*, 1996, Thromb Haemost. 76(2):253-7; 25 Mazurier & Meyer, 1996, Baillieres Clin Haematol. 9(2):229-41; Schneppenheim *et al.*, 1994, Hum Genet. 94(6):640-52; Zhang *et al.*, 1994, Genomics 21(1):188-93; Ginsburg & Sadler, 1993, Thromb Haemost. 69(2):177-84; Eikenboom *et al.*, 1992, Thromb Haemost. 68(4):448-54; Zhang *et al.*, 1992, Am J Hum Genet. 51(4):850-8; Zhang *et al.*, 1992, Hum 30 Mol Genet. 1(1):61-2; and Mancuso *et al.*, 1991, Biochemistry 30(1):253-69; the disclosures of which are hereby incorporated by reference in their entireties). Any gene encoding a premature translation codon implicated in von Willebrand disease including, but not limited to, the nonsense mutations described in the references cited above, can be used

in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

β thalassemia is caused by a deficiency in beta globin polypeptides which in turn causes a deficiency in hemoglobin production. Nonsense mutations have been implicated in b thalassemia (see, e.g., El-Latif *et al.*, 2002, Hemoglobin 26(1):33-40; Sanguansermsri *et al.*, 2001, Hemoglobin 25(1):19-27; Romao 2000, Blood 96(8):2895-901; Perea *et al.*, 1999, Hemoglobin 23(3):231-7; Rhodes *et al.*, 1999, Am J Med Sci. 317(5):341-5; Fonseca *et al.*, 1998, Hemoglobin 22(3):197-207; Gasperini *et al.*, 1998, Am J Hematol. 1998 Jan;57(1):43-7; Galanello *et al.*, 1997, Br J Haematol. 109(2):433-6; Pistidda *et al.*, 1997, Eur J Haematol. 58(5):320-5; Oner *et al.*, 1997, Br J Haematol. 96(2):229-34; Yasunaga *et al.*, 1995, Intern Med. 34(12):1198-200; Molina *et al.*, 1994, Sangre (Barc) 39(4):253-6; Chang *et al.*, 1994, Int J Hematol. 59(4):267-72; Gilman *et al.*, 1994, Am J Hematol. 45(3):265-7; Chan *et al.*, 1993, Prenat Diagn. 13(10):977-82; George *et al.*, 1993, Med J Malaysia 48(3):325-9; Divoky *et al.*, 1993, Br J Haematol. 83(3):523-4; Fioretti *et al.*, 1993, Hemoglobin 17(1):9-17; Rosatelli *et al.*, 1992, Am J Hum Genet. 50(2):422-6; Moi *et al.*, 1992, Blood 79(2):512-6; Loudianos *et al.*, 1992, Hemoglobin 16(6):503-9; Fukumaki, 1991, Rinsho Ketsueki 32(6):587-91; Cao *et al.*, 1991, Am J Pediatr Hematol Oncol. 13(2):179-88; Galanello *et al.*, 1990, Clin Genet. 38(5):327-31; Liu, 1990, Zhongguo Yi Xue Ke Xue Yuan Xue Bao 12(2):90-5; Aulehla-Scholz *et al.*, 1990, Hum Genet. 84(2):195-7; Cao *et al.*, 1990, Ann N Y Acad Sci. 612:215-25; Sanguansermsri *et al.*, 1990, Hemoglobin 14(2):157-68; Galanello *et al.*, 1989, Blood 74(2):823-7; Rosatelli *et al.*, 1989, Blood 73(2):601-5; Galanello *et al.*, 1989, Prog Clin Biol Res. 316B:113-21; Galanello *et al.*, 1988, Am J Hematol. 29(2):63-6; Chan *et al.*, 1988, Blood 72(4):1420-3; Atweh *et al.*, 1988, J Clin Invest. 82(2):557-61; Masala *et al.*, 1988, Hemoglobin 12(5-6):661-71; Pirastu *et al.*, 1987, Proc Natl Acad Sci U S A 84(9):2882-5; Kazazian *et al.*, 1986, Am J Hum Genet. 38(6):860-7; Cao *et al.*, 1986, Prenat Diagn. 6(3):159-67; Cao *et al.*, 1985, Ann N Y Acad Sci. 1985;445:380-92; Pirastu *et al.*, 1984, Science 223(4639):929-30; Pirastu *et al.*, 1983, N Engl J Med. 309(5):284-7; Trecartin *et al.*, 1981, J Clin Invest. 68(4):1012-7; and Liebhaber *et al.*, 1981, Trans Assoc Am Physicians 94:88-96; the disclosures of which are hereby incorporated by reference in their entireties). Any gene encoding a premature translation codon implicated in b thalassemia including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.8.14 Kidney Stones

Kidney stones (nephrolithiasis), which affect 12% of males and 5% of females in the western world, are familial in 45% of patients and are most commonly associated with hypercalciuria (see, e.g., Lloyd *et al.*, Nature 1996 Feb 1;379(6564):445-9).

- 5 Mutations of the renal-specific chloride channel gene are associated with hypercalciuric nephrolithiasis (kidney stones). Nonsense mutations have been implicated in kidney stones (see, e.g., Hoopes *et al.*, 1998, Kidney Int. 54(3):698-705; Lloyd *et al.*, 1997, Hum Mol Genet. 6(8):1233-9; Lloyd *et al.*, 1996, Nature 379(6564):445-9; and Pras *et al.*, 1995, Am J Hum Genet. 56(6):1297-303; the disclosures of which are hereby incorporated by reference in their entireties). Any gene encoding a premature translation codon implicated in kidney stones including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.
- 10

5.8.15 Ataxia-Telangiectasia

15 Ataxia-telangiectasia is characterized by increased sensitivity to ionizing radiation, increased incidence of cancer, and neurodegeneration and is generally caused by mutations in the ataxia-telangiectasia gene (see, e.g., Barlow *et al.*, 1999, Proc Natl Acad Sci USA 96(17):9915-9). Nonsense mutations have been implicated in ataxia-telangiectasia (see, e.g., Camacho *et al.*, 2002, Blood 99(1):238-44; Pitts *et al.*, 2001, Hum Mol Genet.

- 20 10(11):1155-62; Laake *et al.*, 2000, Hum Mutat. 16(3):232-46; Li & Swift, 2000, Am J Med Genet. 92(3):170-7; Teraoka *et al.*, 1999, Am J Hum Genet. 64(6):1617-31; and Stoppa-Lyonnet *et al.*, 1998, Blood 91(10):3920-6; the disclosures of which are hereby incorporated by reference in their entireties). Any gene encoding a premature translation codon implicated in ataxia-telangiectasia including, but not limited to, the nonsense
- 25 mutations described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.8.16 Lysosomal Storage Diseases

There are more than 40 individually recognized lysosomal storage disorders.

- 30 Each disorder results from a deficiency in the activity of a specific enzyme, which impedes the lysosome from carrying out its normal degradative role. These include but are not limited to the diseases listed subsequently. Aspartylglucosaminuria is caused by a deficiency of N-aspartyl-beta-glucosaminidase (Fisher *et al.*, 1990, FEBS Lett. 269:440-444); cholesterol ester storage disease (Wolman disease) is caused by mutations in the LIPA

gene (Fujiyama et al., 1996, Hum. Mutat. 8:377-380); mutations in the CTNS gene are associated with cystinosis (Town et al., 1998, Nature Genet. 18:319-324); mutations in a galactosidase A are associated with Fabry disease (Eng et al., 1993, Pediat. Res. 33:128A; Sakuraba et al., 1990, Am. J. Hum. Genet. 47:784-789; Davies et al., 1993, Hum. Molec. Genet. 2:1051-1053; Miyamura et al., 1996, J. Clin. Invest. 98:1809-1817); fucosidosis is caused by mutations in the FUCA1 gene (Kretz et al., 1989, J. Molec. Neurosci. 1:177-180; Yang et al., 1992, Biochem. Biophys. Res. Commun. 189:1063-1068; Seo et al., 1993, Hum. Molec. Genet. 2:1205-1208); mucolipidosis type I results from mutations in the NEU1 gene (Bonten et al., 1996, Genes Dev. 10:3156-3169); mucolipidosis type IV results from mutations in the MCOLN1 gene (Bargal et al., 2000, Nature Genet. 26:120-123; Sun et al., 2000, Hum. Molec. Genet. 9:2471-2478); Mucopolysaccharidosis type I (Hurler syndrome) is caused by mutations in the IDUA gene (Scott et al., 1992, Genomics 13:1311-1313; Bach et al., 1993, Am. J. Hum. Genet. 53:330-338); Mucopolysaccharidosis type II (Hunter syndrome) is caused by mutations in the IDS gene (Sukegawa et al., 1992, Biochem. Biophys. Res. Commun. 183:809-813; Bunge et al., 1992, Hum. Molec. Genet. 1:335-339; Flomen et al., 1992, Genomics 13:543-550); mucopolysaccharidosis type IIIB (Sanfilippo syndrome type A) is caused by mutations in the SGSH gene (Yogalingam et al., 2001, Hum. Mutat. 18:264-281); mucopolysaccharidosis type IIIB (Sanfilippo syndrome) is caused by mutations in the NAGLU gene (Zhao et al., 1996, Proc. Nat. Acad. Sci. 93:6101-6105; Zhao et al., 1995, Am. J. Hum. Genet. 57:A185); mucopolysaccharidosis type IIID is caused by mutations in the glucosamine-6-sulfatase (G6S) gene (Robertson et al., 1988, Hum. Genet. 79:175-178); mucopolysaccharidosis type IVA (Morquio syndrome) is caused by mutations in the GALNS gene (Tomatsu et al., 1995, Am. J. Hum. Genet. 57:556-563; Tomatsu et al., 1995, Hum. Mutat. 6:195-196); mucopolysaccharidosis type VI (Maroteaux-Lamy syndrome) is caused by mutations in the ARSB gene (Litjens et al., 1992, Hum. Mutat. 1:397-402; Isbrandt et al., 1996, Hum. Mutat. 7:361-363); mucopolysaccharidosis type VII (Sly syndrome) is caused by mutations in the beta-glucuronidase (GUSB) gene (Yamada et al., 1995, Hum. Molec. Genet. 4:651-655); mutations in CLN1 (PPT1) cause infantile neuronal ceroid lipofuscinosis (Das et al., 1998, J. Clin. Invest. 102:361-370; Mitchison et al., 1998, Hum. Molec. Genet. 7:291-297); late infantile type ceroid lipofuscinosis is caused by mutations in the CLN2 gene (Sleat et al., 1997, Science 277:1802-1805); juvenile neuronal ceroid lipofuscinosis (Batten disease) is caused by mutations in the CLN3 gene (Mole et al., 1999, Hum. Mutat. 14: 199-215); late infantile neuronal ceroid lipofuscinosis, Finnish variant, is caused by mutations in the CLN5 gene (Savukoski et al., 1998, Nature Genet. 19:286-288); late-infantile form of neuronal

ceroid lipofuscinosis is caused by mutations in the CLN6 gene (Gao et al., 2002, Am. J.Hum. Genet. 70:324-335); Niemann-Pick disease is caused by mutations in the ASM gene (Takahashi et al., 1992, J. Biol. Chem. 267:12552-12558; types A and B) and the NPC1 gene (Millat et al., 2001, Am. J. Hum. Genet. 68:1373-1385; type C); Kanzaki disease is 5 caused by mutations in the NAGA gene (Keulemans et et al., 1996, J. Med.Genet. 33:458-464); Gaucher disease is caused by mutations in the GBA gene (Stone, et al., 1999, Europ. J. Hum. Genet. 7:505-509); Glycogen storage disease II is the prototypic lysosomal storage disease and is caused by mutations in the GAA gene(Becker et al., 1998, Am. J. Hum. Genet. 62:991-994); Krabbe disease is caused by mutations in the GALC gene (Sakai et al., 10 1994, Biochem. Biophys. Res. Commun. 198:485-491); Tay-Sachs disease is caused by mutations in the HEXA gene (Akli et al., 1991, Genomics 11:124-134; Mules et al., 1992, Am. J. Hum. Genet. 50: 834-841;Triggs-Raine et al., 1991, Am. J. Hum. Genet. 49:1041-1054; Drucker et al., 1993, Hum. Mutat. 2:415-417; Shore et al., 1992, Hum. Mutat. 1:486-490); mutations in the GM2Agene causes Tay-Sachs variant AB (Schepers et al., 1996, Am. 15 J. Hum. Genet. 59:1048-1056; Chen et al., 1999, Am. J. Hum. Genet. 65:77-87); mutations in the HEXB gene cause Sandhoff disease (Zhang et al., 1994, Hum Mol Genet 3:139-145); alphamannosidosis type II is caused by mutations in the MAN2B1 gene (Gotoda et al., 1998, Am. J. Hum. Genet. 63:1015-1024; Autio et al., 1973, Acta Paediat. Scand. 62:555-565); metachromatic leukodystrophy is caused by mutations in the ARSA gene(Gieselmann 20 et al., 1994, Hum. Mutat. 4:233-242). Any gene containing a premature translation codon implicated in lysosomal storage disease disorders including, but not limited to, the nonsense mutations and genes described in the references cited above, can be used in the present invention to identify compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

25

5.8.17 Tuberous Sclerosis

Tuberous sclerosis complex (TSC) is a dominantly inherited disease characterized by the presence of hamartomata in multiple organ systems. The disease is caused bymutations in TSC1 (van Slegtenhorst *et al.*, 1997 Science 277:805-808; Sato *et al.*, 2002, J. Hum. Genet. 47:20-28) and/or TSC2 (Vrtel *et al.*, 1996, J. Med. Genet. 33:47-30 51; Wilson *et al.*, 1996, Hum. Molec. Genet. 5:249-256; Au *et al.*, 1998, Am. J.Hum. Genet. 62:286-294; Verhoef *et al.*, 1999, Europ. J. Pediat. 158:284-287;Carsillo *et al.*, 2000, Proc. Nat. Acad. Sci. 97:6085-6090). Any gene containing a premature translation codon implicated in tuberous sclerosis including, but not limited to, the nonsense mutations described in the references cited above, can be used in the present invention to identify

compounds that mediate premature translation termination and/or nonsense-mediated mRNA decay.

5.9 Secondary Biological Screens

5.9.1 In Vitro Assays

5 The compounds identified in the nonsense suppression assay (for convenience referred to herein as a "lead" compound) can be tested for biological activity using host cells containing or engineered to contain the target RNA element coupled to a functional readout system.

5.9.1.1 Reporter Gene Assays

10 The lead compound can be tested in a host cell engineered to contain the RNA with a premature translation termination codon controlling the expression of a reporter gene. In this example, the lead compounds are assayed in the presence or absence of the RNA with the premature translation termination codon. Compounds that modulate premature translation termination and/or nonsense-mediated mRNA decay will result in
15 increased expression of the full-length gene, *i.e.*, past the premature termination codon. Alternatively, a phenotypic or physiological readout can be used to assess activity of the target RNA with the premature translation termination codon in the presence and absence of the lead compound. In another embodiment of the invention, the compounds identified in the nonsense suppression assay (for convenience referred to herein as a "lead" compound)
20 can also be tested for biological activity using an *in vitro* transcribed RNA from the gene with a premature translation termination codon and subsequent *in vitro* translation of that RNA in a cell-free translation extract. The activity of the lead compound in the *in vitro* translation mixture can be determined by any method that measures increased expression of the full-length gene, *i.e.*, past the premature termination codon. For example, expression of
25 a functional protein from the full-length gene (*e.g.*, a reporter gene) can be measured to determine the effect of the lead compound on premature translation termination and/or nonsense-mediated mRNA decay in an *in vitro* system. Both the *in vitro* and *in vivo* nonsense suppression assays described in International Patent Publication No. WO 01/44516 and International Patent Application No. PCT/US03/19760, each of which is
30 incorporated by reference in its entirety.

5.9.1.1.1 Reporter Gene Constructs, Transfected Cells and Cell-Free Extracts

The invention provides for reporter genes to ascertain the effects of a compound on premature translation termination and/or nonsense-mediated mRNA decay.

In general, the level of expression and/or activity of a reporter gene product is indicative of the effect of the compound on premature translation termination and/or nonsense-mediated mRNA decay.

The invention provides for specific vectors comprising a reporter gene operably linked to one or more regulatory elements and host cells transfected with the vectors. The invention also provides for the *in vitro* translation of a reporter gene flanked by one or more regulatory elements. A reporter gene may or may not contain a premature stop codon depending on the assay conducted. Techniques for practicing this specific aspect of this invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, and recombinant DNA manipulation and production, which are routinely practiced by one of skill in the art. See, e.g., Sambrook, 1989, Molecular Cloning, A Laboratory Manual, Second Edition; DNA Cloning, Volumes I and II (Glover, Ed. 1985); Oligonucleotide Synthesis (Gait, Ed. 1984); Nucleic Acid Hybridization (Hames & Higgins, Eds. 1984); Transcription and Translation (Hames & Higgins, Eds. 1984); Animal Cell Culture (Freshney, Ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); Perbal, A Practical Guide to Molecular Cloning (1984); Gene Transfer Vectors for Mammalian Cells (Miller & Calos, Eds. 1987, Cold Spring Harbor Laboratory); Methods in Enzymology, Volumes 154 and 155 (Wu & Grossman, and Wu, Eds., respectively), (Mayer & Walker, Eds., 1987); Immunochemical Methods in Cell and Molecular Biology (Academic Press, London, Scopes, 1987), Expression of Proteins in Mammalian Cells Using Vaccinia Viral Vectors in Current Protocols in Molecular Biology, Volume 2 (Ausubel et al., Eds., 1991).

5.9.1.1.1.1 Reporter Genes

Any reporter gene well-known to one of skill in the art may be used in reporter gene constructs to ascertain the effect of a compound on premature translation termination. Reporter genes refer to a nucleotide sequence encoding a protein, polypeptide or peptide that is readily detectable either by its presence or activity. Reporter genes may be obtained and the nucleotide sequence of the elements determined by any method well-known to one of skill in the art. The nucleotide sequence of a reporter gene can be obtained, e.g., from the literature or a database such as GenBank. Alternatively, a polynucleotide encoding a reporter gene may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular reporter gene is not available, but the sequence of the reporter gene is known, a nucleic acid encoding the reporter gene may be chemically synthesized or obtained from a suitable source (e.g., a

cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+ RNA, isolated from, any tissue or cells expressing the reporter gene) by PCR amplification. Once the nucleotide sequence of a reporter gene is determined, the nucleotide sequence of the reporter gene may be manipulated using methods well-known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., 1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY and Ausubel et al., eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY, which are both incorporated by reference herein in their entireties), to generate reporter genes having a different amino acid sequence, for example to create amino acid substitutions, deletions, and/or insertions.

In a specific embodiment, a reporter gene is any naturally-occurring gene with a premature stop codon. Genes with premature stop codons that are useful in the present invention include, but are not limited to, the genes described below. In an alternative embodiment, a reporter gene is any gene that is not known in nature to contain a premature stop codon. Examples of reporter genes include, but are not limited to, luciferase (e.g., firefly luciferase, renilla luciferase, and click beetle luciferase), green fluorescent protein ("GFP") (e.g., green fluorescent protein, yellow fluorescent protein, red fluorescent protein, cyan fluorescent protein, and blue fluorescent protein), beta-galactosidase ("beta-gal"), beta-glucuronidase, beta-lactamase, chloramphenicol acetyltransferase ("CAT"), and alkaline phosphatase ("AP"). Alternatively, a reporter gene can also be a protein tag, such as, but not limited to, myc, His, FLAG, or GST, so that nonsense suppression will produce the peptide and the protein can be monitored by an ELISA, a western blot, or any other immunoassay to detect the protein tag. Such methods are well known to one of skill in the art. In a preferred embodiment, the reporter gene is easily assayed and has an activity which is not normally found in the gene of interest. Table 27 below lists various reporter genes and the properties of the products of the reporter genes that can be assayed. In a preferred embodiment, a reporter gene utilized in the reporter constructs is easily assayed and has an activity which is not normally found in the cell or organism of interest.

30

TABLE 27: Reporter Genes and the Properties of the Reporter Gene Products

Reporter Gene	Protein Activity & Measurement
---------------	--------------------------------

CAT (chloramphenicol acetyltransferase)	Transfers radioactive acetyl groups to chloramphenicol or detection by thin layer chromatography and autoradiography
---	--

Reporter Gene	Protein Activity & Measurement
GAL (beta-galactosidase)	Hydrolyzes colorless galactosides to yield colored products.
GUS (beta-glucuronidase)	Hydrolyzes colorless glucuronides to yield colored products.
LUC (luciferase)	Oxidizes luciferin, emitting photons
GFP (green fluorescent protein)	Fluorescent protein without substrate
SEAP (secreted alkaline phosphatase)	Luminescence reaction with suitable substrates or with substrates that generate chromophores
HRP (horseradish peroxidase)	In the presence of hydrogen oxide, oxidation of 3,3',5,5'-tetramethylbenzidine to form a colored complex
AP (alkaline phosphatase)	Luminescence reaction with suitable substrates or with substrates that generate chromophores

Described hereinbelow in further detailed are specific reporter genes and characteristics of those reporter genes.

Luciferase

5 Luciferases are enzymes that emit light in the presence of oxygen and a substrate (luciferin) and which have been used for real-time, low-light imaging of gene expression in cell cultures, individual cells, whole organisms, and transgenic organisms (reviewed by Greer & Szalay, 2002, Luminescence 17(1):43-74).

As used herein, the term "luciferase" is intended to embrace all luciferases, or recombinant enzymes derived from luciferases which have luciferase activity. The 10 luciferase genes from fireflies have been well characterized, for example, from the *Photinus* and *Luciola* species (see, e.g., International Patent Publication No. WO 95/25798 for *Photinus pyralis*, European Patent Application No. EP 0 524 448 for *Luciola cruciata* and *Luciola lateralis*, and Devine et al., 1993, Biochim. Biophys. Acta 1173(2):121-132 for *Luciola mingrelica*). Other eucaryotic luciferase genes include, but are not limited to, the 15 click beetle (*Photinus plagiophthalmus*, see, e.g., Wood et al., 1989, Science 244:700-702), the sea panzy (*Renilla reniformis*, see, e.g., Lorenz et al., 1991, Proc Natl Acad Sci U S A 88(10):4438-4442), and the glow worm (*Lampyris noctiluca*, see e.g., Sula-Newby et al., 1996, Biochem J. 313:761-767). The click beetle is unusual in that different members 20 of the species emit bioluminescence of different colors, which emit light at 546 nm (green), 560 nm (yellow-green), 578 nm (yellow) and 593 nm (orange) (see, e.g. U.S. Patent Nos. 6,475,719; 6,342,379; and 6,217,847, the disclosures of which are incorporated by reference in their entireties). Bacterial luciferin-luciferase systems include, but are not limited to, the

bacterial lux genes of terrestrial *Photorhabdus luminescens* (see, e.g., Manukhov et al., 2000, *Genetika* 36(3):322-30) and marine bacteria *Vibrio fischeri* and *Vibrio harveyi* (see, e.g., Miyamoto et al., 1988, *J Biol Chem.* 263(26):13393-9, and Cohn et al., 1983, *Proc Natl Acad Sci USA.*, 80(1):120-3, respectively). The luciferases encompassed by the present invention also includes the mutant luciferases described in U.S. Patent No. 6,265,177 to Squirrell *et al.*, which is hereby incorporated by reference in its entirety.

In a specific embodiment, the luciferase is a firefly luciferase, a renilla luciferase, or a click beetle luciferase, as described in any one of the references listed *supra*, the disclosures of which are incorporated by reference in their entireties.

10

Green Fluorescent Protein

Green fluorescent protein ("GFP") is a 238 amino acid protein with amino acid residues 65 to 67 involved in the formation of the chromophore which does not require additional substrates or cofactors to fluoresce (see, e.g., Prasher et al., 1992, *Gene* 111:229-233; Yang et al., 1996, *Nature Biotechnol.* 14:1252-1256; and Cody et al., 1993,

15 *Biochemistry* 32:1212-1218).

As used herein, the term "green fluorescent protein" or "GFP" is intended to embrace all GFPs (including the various forms of GFPs which exhibit colors other than green), or recombinant enzymes derived from GFPs which have GFP activity. In a preferred embodiment, GFP includes green fluorescent protein, yellow fluorescent protein, 20 red fluorescent protein, cyan fluorescent protein, and blue fluorescent protein. The native gene for GFP was cloned from the bioluminescent jellyfish *Aequorea victoria* (see, e.g., Morin et al., 1972, *J. Cell Physiol.* 77:313-318). Wild type GFP has a major excitation peak at 395 nm and a minor excitation peak at 470 nm. The absorption peak at 470 nm allows the monitoring of GFP levels using standard fluorescein isothiocyanate (FITC) filter sets.

25 Mutants of the GFP gene have been found useful to enhance expression and to modify excitation and fluorescence. For example, mutant GFPs with alanine, glycine, isoleucine, or threonine substituted for serine at position 65 result in mutant GFPs with shifts in excitation maxima and greater fluorescence than wild type protein when excited at 488 nm (see, e.g., Heim et al., 1995, *Nature* 373:663-664; U.S. Patent No. 5,625,048; Delagrange et al., 1995,

30 *Biotechnology* 13:151-154; Cormack et al., 1996, *Gene* 173:33-38; and Cramer et al., 1996, *Nature Biotechnol.* 14:315-319). The ability to excite GFP at 488 nm permits the use of GFP with standard fluorescence activated cell sorting ("FACS") equipment. In another embodiment, GFPs are isolated from organisms other than the jellyfish, such as, but not limited to, the sea pansy, *Renilla reriformis*.

Techniques for labeling cells with GFP in general are described in U.S. Patent Nos. 5,491,084 and 5,804,387, which are incorporated by reference in their entireties; Chalfie et al., 1994, Science 263:802-805; Heim et al., 1994, Proc. Natl. Acad. Sci. USA 91:12501-12504; Morise et al., 1974, Biochemistry 13:2656-2662; Ward et al., 5 1980, Photochem. Photobiol. 31:611-615; Rizzuto et al., 1995, Curr. Biology 5:635-642; and Kaether & Gerdes, 1995, FEBS Lett 369:267-271. The expression of GFPs in *E. coli* and *C. elegans* are described in U.S. Patent No. 6,251,384 to Tan et al., which is incorporated by reference in its entirety. The expression of GFP in plant cells is discussed in Hu & Cheng, 1995, FEBS Lett 369:331-33, and GFP expression in *Drosophila* is 10 described in Davis et al., 1995, Dev. Biology 170:726-729.

Beta Galactosidase

Beta galactosidase ("beta-gal") is an enzyme that catalyzes the hydrolysis of beta-galactosides, including lactose, and the galactoside analogs o-nitrophenyl-beta-D-galactopyranoside ("ONPG") and chlorophenol red-beta-D-galactopyranoside ("CPRG") 15 (see, e.g., Nielsen et al., 1983 Proc Natl Acad Sci USA 80(17):5198-5202; Eustice et al., 1991, Biotechniques 11:739-742; and Henderson et al., 1986, Clin. Chem. 32:1637-1641). The beta-gal gene functions well as a reporter gene because the protein product is extremely stable, resistant to proteolytic degradation in cellular lysates, and easily assayed. When ONPG is used as the substrate, beta-gal activity can be quantitated with a 20 spectrophotometer or microplate reader.

As used herein, the term "beta galactosidase" or "beta-gal" is intended to embrace all beta-gals, including *lacZ* gene products, or recombinant enzymes derived from beta-gals which have beta-gal activity. The beta-gal gene functions well as a reporter gene because the protein product is extremely stable, resistant to proteolytic degradation in 25 cellular lysates, and easily assayed. In an embodiment where ONPG is the substrate, beta-gal activity can be quantitated with a spectrophotometer or microplate reader to determine the amount of ONPG converted at 420 nm. In an embodiment when CPRG is the substrate, beta-gal activity can be quantitated with a spectrophotometer or microplate reader to determine the amount of CPRG converted at 570 to 595 nm. In yet another embodiment, 30 the beta-gal activity can be visually ascertained by plating bacterial cells transformed with a beta-gal construct onto plates containing Xgal and IPTG. Bacterial colonies that are dark blue indicate the presence of high beta-gal activity and colonies that are varying shades of blue indicate varying levels of beta-gal activity.

Beta-Glucuronidase

Beta-glucuronidase ("GUS") catalyzes the hydrolysis of a very wide variety of beta-glucuronides, and, with much lower efficiency, hydrolyzes some beta-galacturonides. GUS is very stable, will tolerate many detergents and widely varying ionic conditions, has no cofactors, nor any ionic requirements, can be assayed at any physiological pH, with an optimum between 5.0 and 7.8, and is reasonably resistant to thermal inactivation (see, e.g., U.S. Patent No. 5,268,463, which is incorporated by reference in its entirety).

In one embodiment, the GUS is derived from the *Escherichia coli* beta-glucuronidase gene. In alternate embodiments of the invention, the beta-glucuronidase encoding nucleic acid is homologous to the *E. coli* beta-glucuronidase gene and/or may be derived from another organism or species.

GUS activity can be assayed either by fluorescence or spectrometry, or any other method described in U.S. Patent No. 5,268,463, the disclosure of which is incorporated by reference in its entirety. For a fluorescent assay, 4-trifluoromethylumbelliferyl beta-D-glucuronide is a very sensitive substrate for GUS. The fluorescence maximum is close to 500 nm--bluish green, where very few plant compounds fluoresce or absorb. 4-trifluoromethylumbelliferyl beta-D-glucuronide also fluoresces much more strongly near neutral pH, allowing continuous assays to be performed more readily than with MUG. 4-trifluoromethylumbelliferyl beta-D-glucuronide can be used as a fluorescent indicator *in vivo*. The spectrophotometric assay is very straightforward and moderately sensitive (Jefferson et al., 1986, Proc. Natl. Acad. Sci. USA 86:8447-8451). A preferred substrate for spectrophotometric measurement is p-nitrophenyl beta-D-glucuronide, which when cleaved by GUS releases the chromophore p-nitrophenol. At a pH greater than its pK_a (around 7.15) the ionized chromophore absorbs light at 400-420 nm, giving a yellow color.

Beta-Lactamases

Beta-lactamases are nearly optimal enzymes in respect to their almost diffusion-controlled catalysis of beta-lactam hydrolysis, making them suited to the task of an intracellular reporter enzyme (see, e.g., Christensen et al., 1990, Biochem. J. 266: 853-861). They cleave the beta-lactam ring of beta-lactam antibiotics, such as penicillins and cephalosporins, generating new charged moieties in the process (see, e.g., O'Callaghan et al., 1968, Antimicrob. Agents. Chemother. 8: 57-63 and Stratton, 1988, J. Antimicrob. Chemother. 22, Suppl. A: 23-35). A large number of beta-lactamases have been isolated

and characterized, all of which would be suitable for use in accordance with the present invention (see, e.g., Richmond & Sykes, 1978, Adv.Microb.Physiol. 9:31-88 and Ambler, 1980, Phil. Trans. R. Soc. Lond. [Ser.B.] 289: 321-331, the disclosures of which are incorporated by reference in their entireties).

5 The coding region of an exemplary beta-lactamase employed has been described in U.S. Patent No. 6,472,205, Kadonaga et al., 1984, J.Biol.Chem. 259: 2149-2154, and Sutcliffe, 1978, Proc. Natl. Acad. Sci. USA 75: 3737-3741, the disclosures of which are incorporated by reference in their entireties. As would be readily apparent to those skilled in the field, this and other comparable sequences for peptides having beta-lactamase 10 activity would be equally suitable for use in accordance with the present invention. The combination of a fluorogenic substrate described in U.S. Patent Nos. 6,472,205, 5,955,604, and 5,741,657, the disclosures of which are incorporated by reference in their entireties, and a suitable beta-lactamase can be employed in a wide variety of different assay systems, such as are described in U.S. Patent No. 4,740,459, which is hereby incorporated by reference in 15 its entirety.

Chloramphenicol Acetyltransferase

Chloramphenicol acetyl transferase (“CAT”) is commonly used as a reporter gene in mammalian cell systems because mammalian cells do not have detectable levels of CAT activity. The assay for CAT involves incubating cellular extracts with radiolabeled 20 chloramphenicol and appropriate co-factors, separating the starting materials from the product by, for example, thin layer chromatography (“TLC”), followed by scintillation counting (see, e.g., U.S. Patent No. 5,726,041, which is hereby incorporated by reference in its entirety).

As used herein, the term “chloramphenicol acetyltransferase” or “CAT” is intended to embrace all CATs, or recombinant enzymes derived from CAT which have 25 CAT activity. While it is preferable that a reporter system which does not require cell processing, radioisotopes, and chromatographic separations would be more amenable to high through-put screening, CAT as a reporter gene may be preferable in situations when stability of the reporter gene is important. For example, the CAT reporter protein has an *in vivo* half life of about 50 hours, which is advantageous when an accumulative versus a 30 dynamic change type of result is desired.

Secreted Alkaline Phosphatase

The secreted alkaline phosphatase ("SEAP") enzyme is a truncated form of alkaline phosphatase, in which the cleavage of the transmembrane domain of the protein allows it to be secreted from the cells into the surrounding media. In a preferred embodiment, the alkaline phosphatase is isolated from human placenta.

5 As used herein, the term "secreted alkaline phosphatase" or "SEAP" is intended to embrace all SEAP or recombinant enzymes derived from SEAP which have alkaline phosphatase activity. SEAP activity can be detected by a variety of methods including, but not limited to, measurement of catalysis of a fluorescent substrate, immunoprecipitation, HPLC, and radiometric detection. The luminescent method is
10 preferred due to its increased sensitivity over calorimetric detection methods. The advantages of using SEAP is that a cell lysis step is not required since the SEAP protein is secreted out of the cell, which facilitates the automation of sampling and assay procedures. A cell-based assay using SEAP for use in cell-based assessment of inhibitors of the Hepatitis C virus protease is described in U.S. Patent No. 6,280,940 to Potts et al. which is
15 hereby incorporated by reference in its entirety.

5.9.1.1.2 Stop Codons

The present invention provides for methods for screening and identifying compounds that modulate premature translation termination and/or nonsense-mediated
20 mRNA decay. A reporter gene may be engineered to contain a premature stop codon or may naturally contain a premature stop codon. Alternatively, a protein, polypeptide or peptide that regulates (directly or indirectly) the expression of a reporter gene may be engineered to contain or may naturally contain a premature stop codon. The premature stop codon may any one of the stop codons known in the art including UAG, UAA and UGA.

25 In a specific embodiment, a reporter gene contains or is engineered to contain the premature stop codon UAG. In another embodiment, a reporter gene contains or is engineered to contain the premature stop codon UGA.

In a particular embodiment, a reporter gene contains or is engineered to contain two or more stop codons. In accordance with this embodiment, the stop codons are
30 preferably at least 10 nucleotides, at least 15 nucleotides, at least 20 nucleotides, at least 25 nucleotides, at least 30 nucleotides, at least 35 nucleotides, at least 40 nucleotides, at least 45 nucleotides, at least 50 nucleotides, at least 75 nucleotides or at least 100 nucleotides apart from each other. Further, in accordance with this embodiment, at least one of the stop codons is preferably UAG or UGA.

In a specific embodiment, a reporter gene contains or is engineered to contain a premature stop codon at least 15 nucleotides, preferably at least 20 nucleotides, at least 25 nucleotides, at least 30 nucleotides, at least 35 nucleotides, at least 40 nucleotides, at least 45 nucleotides, at least 50 nucleotides or at least 75 nucleotides from the start codon in the coding sequence. In another embodiment, a reporter gene contains or is engineered to contain a premature stop codon at least 15 nucleotides, preferably at least 25 nucleotides, at least 50 nucleotides, at least 75 nucleotides, at least 100 nucleotides, at least 125 nucleotides, at least 150, at least 175 nucleotides or at least 200 nucleotides from the native stop codon in the coding sequence of the full-length reporter gene product or protein, polypeptide or peptide. In another embodiment, a reporter gene contains or is engineered to contain a premature stop codon at least 15 nucleotides (preferably at least 20 nucleotides, at least 25 nucleotides, at least 30 nucleotides, at least 35 nucleotides, at least 40 nucleotides, at least 45 nucleotides, at least 50 nucleotides or at least 75 nucleotides) from the start codon in the coding sequence and at least 15 nucleotides (preferably at least 25 nucleotides, at least 50 nucleotides, at least 75 nucleotides, at least 100 nucleotides, at least 125 nucleotides, at least 150, at least 175 nucleotides or at least 200 nucleotides) from the native stop codon in the coding sequence of the full-length reporter gene product or protein, polypeptide or peptide. In accordance with these embodiments, the premature stop codon is preferably UAG or UGA.

The premature translation stop codon can be produced by *in vitro* mutagenesis techniques such as, but not limited to, polymerase chain reaction ("PCR"), linker insertion, oligonucleotide-mediated mutagenesis, and random chemical mutagenesis.

5.9.1.1.3 Vectors

The nucleotide sequence encoding for a protein, polypeptide or peptide (*e.g.*, a reporter gene), can be inserted into an appropriate expression vector, *i.e.*, a vector which contains the necessary elements for the transcription and translation of the inserted protein-coding sequence. The necessary transcriptional and translational elements can also be supplied by the protein, polypeptide or peptide. The regulatory regions and enhancer elements can be of a variety of origins, both natural and synthetic. In a specific embodiment, a reporter gene is operably linked to regulatory element that is responsive to a regulatory protein whose expression is dependent upon the suppression of a premature stop codon.

A variety of host-vector systems may be utilized to express a protein, polypeptide or peptide. These include, but are not limited to, mammalian cell systems

infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); microorganisms such as yeast containing yeast vectors, or bacteria transformed with bacteriophage, DNA, plasmid DNA, or cosmid DNA; and stable cell lines generated by transformation using a selectable marker. The expression elements of vectors 5 vary in their strengths and specificities. Depending on the host-vector system utilized, any one of a number of suitable transcription and translation elements may be used.

Any of the methods previously described for the insertion of DNA fragments into a vector may be used to construct expression vectors containing a chimeric nucleic acid consisting of appropriate transcriptional/translational control signals and the protein coding 10 sequences. These methods may include *in vitro* recombinant DNA and synthetic techniques and *in vivo* recombinants (genetic recombination). Expression of a first nucleic acid sequence encoding a protein, polypeptide or peptide, such as a reporter gene, may be regulated by a second nucleic acid sequence so that the first nucleic acid sequence is expressed in a host transformed with the second nucleic acid sequence. For example, 15 expression of a nucleic acid sequence encoding a protein, polypeptide or peptide, such as a reporter gene, may be controlled by any promoter/enhancer element known in the art, such as a constitutive promoter, a tissue-specific promoter, or an inducible promoter. Specific examples of promoters which may be used to control gene expression include, but are not limited to, the SV40 early promoter region (Benoist & Chambon, 1981, Nature 290:304- 20 310), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., 1980, Cell 22:787-797), the herpes thymidine kinase promoter (Wagner et al., 1981, Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445), the regulatory sequences of the metallothionein gene (Brinster et al., 1982, Nature 296:39-42); prokaryotic expression 25 vectors such as the β -lactamase promoter (Villa-Kamaroff et al., 1978, Proc. Natl. Acad. Sci. U.S.A. 75:3727-3731), or the *tac* promoter (DeBoer et al., 1983, Proc. Natl. Acad. Sci. U.S.A. 80:21-25); see also "Useful proteins from recombinant bacteria" in Scientific American, 1980, 242:74-94; plant expression vectors comprising the nopaline synthetase promoter region (Herrera-Estrella et al., Nature 303:209-213) or the cauliflower mosaic virus 35S RNA promoter (Gardner, et al., 1981, Nucl. Acids Res. 9:2871), and the promoter 30 of the photosynthetic enzyme ribulose biphosphate carboxylase (Herrera-Estrella et al., 1984, Nature 310:115-120); promoter elements from yeast or other fungi such as the Gal 4 promoter, the ADC (alcohol dehydrogenase) promoter, PGK (phosphoglycerol kinase) promoter, alkaline phosphatase promoter, and the following animal transcriptional control regions, which exhibit tissue specificity and have been utilized in transgenic animals:

elastase I gene control region which is active in pancreatic acinar cells (Swift et al., 1984, Cell 38:639-646; Ornitz et al., 1986, Cold Spring Harbor Symp. Quant. Biol. 50:399-409; MacDonald, 1987, Hepatology 7:425-515); insulin gene control region which is active in pancreatic beta cells (Hanahan, 1985, Nature 315:115-122), immunoglobulin gene control
5 region which is active in lymphoid cells (Grosschedl et al., 1984, Cell 38:647-658; Adames et al., 1985, Nature 318:533-538; Alexander et al., 1987, Mol. Cell. Biol. 7:1436-1444), mouse mammary tumor virus control region which is active in testicular, breast, lymphoid and mast cells (Leder et al., 1986, Cell 45:485-495), albumin gene control region which is active in liver (Pinkert et al., 1987, Genes and Devel. 1:268-276), alpha-fetoprotein gene
10 control region which is active in liver (Krumlauf et al., 1985, Mol. Cell. Biol. 5:1639-1648; Hammer et al., 1987, Science 235:53-58; alpha 1-antitrypsin gene control region which is active in the liver (Kelsey et al., 1987, Genes and Devel. 1:161-171), beta-globin gene control region which is active in myeloid cells (Mogram et al., 1985, Nature 315:338-340; Kollias et al., 1986, Cell 46:89-94; myelin basic protein gene control region which is active
15 in oligodendrocyte cells in the brain (Readhead et al., 1987, Cell 48:703-712); myosin light chain-2 gene control region which is active in skeletal muscle (Sani, 1985, Nature 314:283-286), and gonadotropic releasing hormone gene control region which is active in the hypothalamus (Mason et al., 1986, Science 234:1372-1378).

In a specific embodiment, a vector is used that comprises a promoter
20 operably linked to a reporter gene, one or more origins of replication, and, optionally, one or more selectable markers (e.g., an antibiotic resistance gene). In a preferred embodiment, the vectors are CMV vectors, T7 vectors, lac vectors, pCEP4 vectors, 5.0/F vectors, or vectors with a tetracycline-regulated promoter (e.g., pcDNATM5/FRT/TO from Invitrogen). Some vectors may be obtained commercially. Non-limiting examples of useful vectors are
25 described in Appendix 5 of Current Protocols in Molecular Biology, 1988, ed. Ausubel et al., Greene Publish. Assoc. & Wiley Interscience, which is incorporated herein by reference; and the catalogs of commercial suppliers such as Clontech Laboratories, Stratagene Inc., and Invitrogen, Inc.

Expression vectors containing a construct of the present invention can be
30 identified by the following general approaches: (a) nucleic acid hybridization, (b) presence or absence of "marker" nucleic acid functions, (c) expression of inserted sequences, and (d) sequencing. In the first approach, the presence of a particular nucleic acid sequence inserted in an expression vector can be detected by nucleic acid hybridization using probes comprising sequences that are homologous to the inserted nucleic acid sequence. In the

second approach, the recombinant vector/host system can be identified and selected based upon the presence or absence of certain "marker" nucleic acid functions (e.g., thymidine kinase activity, resistance to antibiotics, transformation phenotype, occlusion body formation in baculovirus, etc.) caused by the insertion of the nucleic acid sequence of interest in the vector. For example, if the nucleic acid sequence of interest is inserted within the marker nucleic acid sequence of the vector, recombinants containing the insert can be identified by the absence of the marker nucleic acid function. In the third approach, recombinant expression vectors can be identified by assaying the product expressed by the recombinant. Such assays can be based, for example, on the physical or functional properties of the particular nucleic acid sequence.

In a preferred embodiment, nucleic acid sequences encoding proteins, polypeptides or peptides are cloned into stable cell line expression vectors. In a preferred embodiment, the stable cell line expression vector contains a site specific genomic integration site. In another preferred embodiment, the reporter gene construct is cloned into an episomal mammalian expression vector.

5.9.1.1.4 Transfection

Once a vector encoding the appropriate gene has been synthesized, a host cell is transformed or transfected with the vector of interest. The use of stable transformants is preferred. In a preferred embodiment, the host cell is a mammalian cell. In a more preferred embodiment, the host cell is a human cell. In another embodiment, the host cells are primary cells isolated from a tissue or other biological sample of interest. Host cells that can be used in the methods of the present invention include, but are not limited to, hybridomas, pre-B cells, 293 cells, 293T cells, HeLa cells, HepG2 cells, K562 cells, 3T3 cells. In another preferred embodiment, the host cells are derived from tissue specific to the nucleic acid sequence encoding a protein, polypeptide or peptide. In another preferred embodiment, the host cells are immortalized cell lines derived from a source, e.g., a tissue. Other host cells that can be used in the present invention include, but are not limited to, bacterial cells, yeast cells, virally-infected cells, or plant cells.

Preferred mammalian host cells include but are not limited to those derived from humans, monkeys and rodents, (see, for example, Kriegler M. in "Gene Transfer and Expression: A Laboratory Manual", New York, Freeman & Co. 1990), such as monkey kidney cell line transformed by SV40 (COS-7, ATCC Accession No. CRL 1651); human embryonic kidney cell lines (293, 293-EBNA, or 293 cells subcloned for growth in suspension culture, Graham et al., J. Gen. Virol., 36:59, 1977; baby hamster kidney cells

(BHK, ATCC Accession No. CCL 10); chinese hamster ovary-cells-DHFR (CHO, Urlaub and Chasin. Proc. Natl. Acad. Sci. 77; 4216, 1980); mouse sertoli cells (Mather, Biol. Reprod. 23:243-251, 1980); mouse fibroblast cells (NIH-3T3), monkey kidney cells (CVI ATCC Accession No. CCL 70); african green monkey kidney cells (VERO-76, ATCC 5 Accession No. CRL-1587); human cervical carcinoma cells (HELA, ATCC Accession No. CCL 2); canine kidney cells (MDCK, ATCC Accession No. CCL 34); buffalo rat liver cells (BRL 3A, ATCC Accession No. CRL 1442); human lung cells (W138, ATCC Accession No. CCL 75); human liver cells (Hep G2, HB 8065); and mouse mammary tumor cells (MMT 060562, ATCC Accession No. CCL51).

10 Other useful eukaryotic host-vector system may include yeast and insect systems. In yeast, a number of vectors containing constitutive or inducible promoters may be used with *Saccharomyces cerevisiae* (baker's yeast), *Schizosaccharomyces pombe* (fission yeast), *Pichia pastoris*, and *Hansenula polymorpha* (methylotropic yeasts). For a review see, Current Protocols in Molecular Biology, Vol. 2, 1988, Ed. Ausubel et al., 15 Greene Publish. Assoc. & Wiley Interscience, Ch. 13; Grant et al., 1987, Expression and Secretion Vectors for Yeast, in Methods in Enzymology, Eds. Wu & Grossman, 1987, Acad. Press, N.Y., Vol. 153, pp. 516-544; Glover, 1986, DNA Cloning, Vol. II, IRL Press, Wash., D.C., Ch. 3; and Bitter, 1987, Heterologous Gene Expression in Yeast, Methods in Enzymology, Eds. Berger & Kimmel, Acad. Press, N.Y., Vol. 152, pp. 673-684; and The 20 Molecular Biology of the Yeast *Saccharomyces*, 1982, Eds. Strathern et al., Cold Spring Harbor Press, Vols. I and II.

Standard methods of introducing a nucleic acid sequence of interest into host cells can be used. Transformation may be by any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a 25 virus and transducing a host cell with the virus, and by direct uptake of the polynucleotide. The transformation procedure used depends upon the host to be transformed. Mammalian transformations (*i.e.*, transfections) by direct uptake may be conducted using the calcium phosphate precipitation method of Graham & Van der Eb, 1978, Virol. 52:546, or the various known modifications thereof. Other methods for introducing recombinant 30 polynucleotides into cells, particularly into mammalian cells, include dextran-mediated transfection, calcium phosphate mediated transfection, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the polynucleotides into nuclei. Such methods are well-known to one of skill in the art.

In a preferred embodiment, stable cell lines containing the constructs of interest are generated for high throughput screening. Such stable cell lines may be generated by introducing a construct comprising a selectable marker, allowing the cells to grow for 1-2 days in an enriched medium, and then growing the cells on a selective medium. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc. Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk-, hgppt- or aprt- cells, respectively. Also, anti-metabolite resistance can be used as the basis of selection for dhfr, which confers resistance to methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al., 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147) genes.

20

5.9.1.1.5 Cell-Free Extracts

The invention provides for the translation of a nucleic acid sequence encoding a protein, polypeptide or peptide (with or without a premature translation stop codon) in a cell-free system. Techniques for practicing the specific aspect of this invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, and recombinant DNA manipulation and production, which are routinely practiced by one of skill in the art. See, e.g., Sambrook, 1989, Molecular Cloning, A Laboratory Manual, Second Edition; DNA Cloning, Volumes I and II (Glover, Ed. 1985); and Transcription and Translation (Hames & Higgins, Eds. 1984).

Any technique well-known to one of skill in the art may be used to generate cell-free extracts for translation. For example, the cell-free extracts can be generated by centrifuging cells and clarifying the supernatant. In one embodiment, the cells are incubated on ice during the preparation of the cell-free extract. In another embodiment, the cells are incubated on ice at least 12 hours, at least 24 hours, at least two days, at least five days, at least one week, at least longer than one week. In a more specific embodiment, the

cells are incubated on ice at least long enough so as to improve the translation activity of the cell extract in comparison to cell extracts that are not incubated on ice. In yet another embodiment, the cells are incubated at a temperature between about 0 °C and 10 °C. In a preferred embodiment, the cells are incubated at about 4 °C.

5 In another preferred embodiment, the cells are centrifuged at a low speed to isolate the cell-free extract for *in vitro* translation reactions. In a preferred embodiment, the cell extract is the supernatant from cells that are centrifuged at about 2 x g to 20,000 x g. In a more preferred embodiment, the cell extract is the supernatant from cells that are centrifuged at about 5 x g to 15,000 x g. In an even more preferred embodiment, the cell extract is the supernatant from cells that are centrifuged at about 10,000 x g. Alternatively, 10 in a preferred embodiment, the cell-free extract is about the S1 to S50 extract. In a more preferred embodiment, the cell extract is about the S5 to S25 extract. In an even more preferred embodiment, the cell extract is about the S10 extract.

15 The cell-free translation extract may be isolated from cells of any species origin. In another embodiment, the cell-free translation extract is isolated from yeast, cultured mouse or rat cells, Chinese hamster ovary (CHO) cells, *Xenopus* oocytes, reticulocytes, wheat germ, or rye embryo (see, e.g., Krieg & Melton, 1984, Nature 308:203 and Dignam *et al.*, 1990 Methods Enzymol. 182:194-203). Alternatively, the cell-free translation extract, e.g., rabbit reticulocyte lysates and wheat germ extract, can be purchased 20 from, e.g., Promega, (Madison, WI). In another embodiment, the cell-free translation extract is prepared as described in International Patent Publication No. WO 01/44516 and U.S. Patent No. 4,668,625 to Roberts, the disclosures of which are incorporated by reference in their entireties. In a preferred embodiment, the cell-free extract is an extract isolated from human cells. In a more preferred embodiment, the human cells are HeLa 25 cells. It is preferred that the endogenous expression of the genes with the premature translation codons is minimal, and preferably absent, in the cells from which the cell-free translation extract is prepared.

30 Systems for the *in vitro* transcription of RNAs with the gene of interest cloned in an expression vectors using promoters such as, but not limited to, Sp6, T3, or T7 promoters (see, e.g., expression vectors from Invitrogen, Carlesbad, CA; Promega, Madison, WI; and Stratagene, La Jolla, CA), and the subsequent transcription of the gene with the appropriate polymerase are well-known to one of skill in the art (see, e.g., Contreras *et al.*, 1982, Nucl. Acids. Res. 10:6353). In another embodiment, the gene encoding the premature stop codon can be PCR-amplified with the appropriate primers,

with the sequence of a promoter, such as but not limited to, Sp6, T3, or T7 promoters, incorporated into the upstream primer, so that the resulting amplified PCR product can be *in vitro* transcribed with the appropriate polymerase.

Alternatively, a coupled transcription-translation system can be used for the
5 expression of a gene encoding a premature stop codon in a cell free extract, such as the TnT® Coupled Transcription/Translation System (Promega, Madison, WI) or the system described in U.S. Patent No. 5,895,753 to Mierendorf *et al.*, which is incorporated by reference in its entirety.

5.9.1.1.2 Assays

10 Various *in vitro* assays can be used to identify and verify the ability of a compound to modulate premature translation termination and/or nonsense-mediated mRNA decay. Multiple *in vitro* assays can be performed simultaneously or sequentially to assess the affect of a compound on premature translation termination and/or nonsense-mediated mRNA decay. In a preferred embodiment, the *in vitro* assays described herein are
15 performed in a high throughput format (*e.g.*, in microtiter plates).

In a specific embodiment, the invention provides a method for identifying a compound that modulates premature translation termination and/or nonsense-mediated mRNA decay, said method comprising: (a) contacting a member of a library of compounds with a cell containing a nucleic acid sequence comprising a reporter gene, wherein the
20 reporter gene comprises a premature stop codon; and (b) detecting the expression of said reporter gene, wherein a compound that modulates premature translation termination and/or nonsense-mediated mRNA decay is identified if the expression of said reporter gene in the presence of a compound is altered relative to a previously determined reference range, or the expression of said reporter gene in the absence of said compound or the presence of an
25 appropriate control (*e.g.*, a negative control).

In another embodiment, the invention provides a method for identifying a compound that modulates premature translation termination and/or nonsense-mediated mRNA decay, said method comprising: (a) contacting a member of a library of compounds with a cell-free extract and a nucleic acid sequence comprising a reporter gene,
30 wherein the reporter gene comprises a premature stop codon; and (b) detecting the expression of said reporter gene, wherein a compound that modulates premature translation termination and/or nonsense-mediated mRNA decay is identified if the expression of said reporter gene in the presence of a compound is altered relative to a previously determined reference range, or the expression of said reporter gene in the absence of said compound or

the presence of an appropriate control (e.g., a negative control). In accordance with this embodiment, the cell-extract is preferably isolated from cells that have been incubated at about 0°C to about 10°C and/or an S10 to S30 cell-free extract.

The alteration in reporter gene expression and/or activity in the reporter gene assays relative to a previously determined reference range, or to the expression or activity of the reporter gene in the absence of the compound or the presence of an appropriate control (e.g., a negative control such as phosphate buffered saline) indicates that a particular compound modulates premature translation termination and/or nonsense-mediated mRNA decay. In particular, an increase in reporter gene expression or activity relative to a 5 previously determined reference range, or to the expression in the absence of the compound or the presence of an appropriate control (e.g., a negative control) may, depending upon the parameters of the reporter gene assay, indicate that a particular compound reduces or suppresses premature translation termination and/or nonsense-mediated mRNA decay. In contrast, a decrease in reporter gene expression or activity relative to a previously 10 determined reference range, or to the expression in the absence of the compound or the presence of an appropriate control (e.g., a negative control) may, depending upon the parameters of the reporter gene-based assay, indicate that a particular compound enhances 15 premature translation termination and/or nonsense-mediated mRNA decay.

The step of contacting a compound or a member of a library of compounds 20 with cell in the reporter gene-based assays described herein is preferably conducted under physiologic conditions. In specific embodiment, a compound or a member of a library of compounds is added to the cells in the presence of an aqueous solution. In accordance with this embodiment, the aqueous solution may comprise a buffer and a combination of salts, preferably approximating or mimicking physiologic conditions. Alternatively, the aqueous 25 solution may comprise a buffer, a combination of salts, and a detergent or a surfactant. Examples of salts which may be used in the aqueous solution include, but not limited to, KCl, NaCl, and/or MgCl₂. The optimal concentration of each salt used in the aqueous solution is dependent on the cells and compounds used and can be determined using routine experimentation. The step of contacting a compound or a member of a library of 30 compounds with a cell containing a reporter gene construct and in some circumstances, a nucleic acid sequence encoding a regulatory protein, may be performed for at least 0.2 hours, 0.25 hours, 0.5 hours, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 8 hours, 10 hours, 12 hours, 18 hours, at least 1 day, at least 2 days or at least 3 days.

The expression of a reporter gene and/or activity of the protein encoded by the reporter gene in the reporter-gene assays may be detected by any technique well-known to one of skill in the art. The expression of a reporter gene can be readily detected, e.g., by quantifying the protein and/or RNA encoded by said gene. Compounds that modulate 5 premature translation termination and/or nonsense-mediated mRNA decay may be identified by changes in the gene encoding the premature translation stop codon, i.e., there is readthrough of the premature translation stop codon and a longer gene product is detected. If a gene encoding a naturally-occurring premature translation stop codon is used, a longer gene product in the presence of a compound that modulates premature translation 10 termination and/or nonsense-mediated mRNA decay can be detected by any method in the art that permits the detection of the longer polypeptide, such as, but not limited to, immunological methods.

Many methods standard in the art can be thus employed, including, but not limited to, immunoassays to detect and/or visualize gene expression (e.g., Western blot, 15 immunoprecipitation followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), immunocytochemistry, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent 20 immunoassays, protein A immunoassays, or an epitope tag using an antibody that is specific to the polypeptide encoded by the gene of interest) and/or hybridization assays to detect gene expression by detecting and/or visualizing respectively mRNA encoding a gene (e.g., Northern assays, dot blots, *in situ* hybridization, etc), etc. Preferably, the antibody is specific to the C-terminal portion of the polypeptide used in an immunoassay. Such assays 25 are routine and well known in the art (see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, which is incorporated by reference herein in its entirety). Exemplary immunoassays are described briefly below (but are not intended by way of limitation).

Immunoprecipitation protocols generally comprise lysing a population of 30 cells in a lysis buffer such as RIPA buffer (1% NP-40 or Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate at pH 7.2, 1% Trasylol) supplemented with protein phosphatase and/or protease inhibitors (e.g., EDTA, PMSF, aprotinin, sodium vanadate), adding the antibody which recognizes the antigen to the cell lysate, incubating for a period of time (e.g., 1 to 4 hours) at 40° C, adding protein A and/or

protein G sepharose beads to the cell lysate, incubating for about an hour or more at 40° C, washing the beads in lysis buffer and resuspending the beads in SDS/sample buffer. The ability of the antibody to immunoprecipitate a particular antigen can be assessed by, e.g., western blot analysis. One of skill in the art would be knowledgeable as to the parameters
5 that can be modified to increase the binding of the antibody to an antigen and decrease the background (e.g., pre-clearing the cell lysate with sepharose beads). For further discussion regarding immunoprecipitation protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.16.1.

Western blot analysis generally comprises preparing protein samples,
10 electrophoresis of the protein samples in a polyacrylamide gel (e.g., 8%- 20% SDS-PAGE depending on the molecular weight of the antigen), transferring the protein sample from the polyacrylamide gel to a membrane such as nitrocellulose, PVDF or nylon, blocking the membrane in blocking solution (e.g., PBS with 3% BSA or non-fat milk), washing the membrane in washing buffer (e.g., PBS-Tween 20), blocking the membrane with primary
15 antibody (the antibody which recognizes the antigen) diluted in blocking buffer, washing the membrane in washing buffer, blocking the membrane with a secondary antibody (which recognizes the primary antibody, e.g., an anti-human antibody) conjugated to an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule (e.g., ³²P or ¹²⁵I) diluted in blocking buffer, washing the membrane in wash buffer, and
20 detecting the presence of the antigen. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected and to reduce the background noise. For further discussion regarding western blot protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.8.1.

25 ELISAs comprise preparing antigen, coating the well of a 96 well microtiter plate with the antigen, adding a primary antibody (which recognizes the antigen) conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the well and incubating for a period of time, and detecting the presence of the antigen. In ELISAs the antibody of interest does not have to be conjugated
30 to a detectable compound; instead, a second antibody (which recognizes the primary antibody) conjugated to a detectable compound may be added to the well. Further, instead of coating the well with the antigen, the antibody may be coated to the well. In this case, a second antibody conjugated to a detectable compound may be added following the addition of the antigen of interest to the coated well. One of skill in the art would be knowledgeable

as to the parameters that can be modified to increase the signal detected as well as other variations of ELISAs known in the art. For further discussion regarding ELISAs see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 11.2.1.

5 Methods for detecting the activity of a protein encoded by a reporter gene will vary with the reporter gene used. Assays for the various reporter genes are well-known to one of skill in the art. For example, as described in Section 5.1.1., luciferase, beta-galactosidase (“beta-gal”), beta-glucuronidase (“GUS”), beta-lactamase, chloramphenicol acetyltransferase (“CAT”), and alkaline phosphatase (“AP”) are enzymes that can be
10 analyzed in the presence of a substrate and could be amenable to high throughput screening. For example, the reaction products of luciferase, beta-galactosidase (“beta-gal”), and alkaline phosphatase (“AP”) are assayed by changes in light imaging (e.g., luciferase), spectrophotometric absorbance (e.g., beta-gal), or fluorescence (e.g., AP). Assays for changes in light output, absorbance, and/or fluorescence are easily adapted for high
15 throughput screening. For example, beta-gal activity can be measured with a microplate reader. Green fluorescent protein (“GFP”) activity can be measured by changes in fluorescence. For example, in the case of mutant GFPs that fluoresce at 488 nm, standard fluorescence activated cell sorting (“FACS”) equipment can be used to separate cells based upon GFP activity.

20 Changes in mRNA stability of the gene encoding the premature translation stop codon can be measured. As discussed above, nonsense-mediated mRNA decay alters the stability of an mRNA with a premature translation stop codon so that such mRNA is targeted for rapid decay instead of translation. In the presence of a compound that modulates premature translation termination and/or nonsense-mediated mRNA decay, the
25 stability of the mRNA with the premature translation stop codon is likely altered, i.e., stabilized. Methods of measuring changes in steady state levels of mRNA are well-known to one of skill in the art. Such methods include, but are not limited to, Northern blots, dot blots, solution hybridization, RNase protection assays, and S1 nuclease protection assays, wherein the steady state levels of the mRNA of interest are measured with an appropriately labeled nucleic acid probe. Alternatively, methods such as semi-quantitative polymerase chain reaction (“PCR”) can be used to measure changes in steady state levels of the mRNA of interest using the appropriate primers for amplification.

Alterations in the expression of a reporter gene may be determined by comparing the level of expression and/or activity of the reporter gene to a negative control

(e.g., PBS or another agent that is known to have no effect on the expression of the reporter gene) and optionally, a positive control (e.g., an agent that is known to have an effect on the expression of the reporter gene, preferably an agent that effects premature translation termination and/or nonsense-mediated mRNA decay). Alternatively, alterations in the
5 expression and/or activity of a reporter gene may be determined by comparing the level of expression and/or activity of the reporter gene to a previously determined reference range.

5.9.1.2 Other In Vitro Assays

Where the gene product of interest is involved in cell growth or viability, the
10 in vivo effect of the lead compound can be assayed by measuring the cell growth or viability of the target cell. Such assays can be carried out with representative cells of cell types involved in a particular disease or disorder (e.g., leukocytes such as T cells, B cells, natural killer cells, macrophages, neutrophils and eosinophils). A lower level of proliferation or survival of the contacted cells indicates that the lead compound is effective
15 to treat a condition in the patient characterized by uncontrolled cell growth. Alternatively, instead of culturing cells from a patient, a lead compound may be screened using cells of a tumor or malignant cell line or an endothelial cell line. Specific examples of cell culture models include, but are not limited to, for lung cancer, primary rat lung tumor cells (see, e.g., Swafford et al., 1997, Mol. Cell. Biol., 17:1366-1374) and large-cell undifferentiated
20 cancer cell lines (see, e.g., Mabry et al., 1991, Cancer Cells, 3:53-58); colorectal cell lines for colon cancer (see, e.g., Park & Gazdar, 1996, J. Cell Biochem. Suppl. 24:131-141); multiple established cell lines for breast cancer (see, e.g., Hambly et al., 1997, Breast Cancer Res. Treat. 43:247-258; Gierthy et al., 1997, Chemosphere 34:1495-1505; and Prasad & Church, 1997, Biochem. Biophys. Res. Commun. 232:14-19); a number of well-
25 characterized cell models for prostate cancer (see, e.g., Webber et al., 1996, Prostate, Part 1, 29:386-394; Part 2, 30:58-64; and Part 3, 30:136-142 and Boulikas, 1997, Anticancer Res. 17:1471-1505); for genitourinary cancers, continuous human bladder cancer cell lines (see, e.g., Ribeiro et al., 1997, Int. J. Radiat. Biol. 72:11-20); organ cultures of transitional cell carcinomas (see, e.g., Booth et al., 1997, Lab Invest. 76:843-857) and rat progression
30 models (see, e.g., Vet et al., 1997, Biochim. Biophys Acta 1360:39-44); and established cell lines for leukemias and lymphomas (see, e.g., Drexler, 1994, Leuk. Res. 18:919-927 and Tohyama, 1997, Int. J. Hematol. 65:309-317).

Many assays well-known in the art can be used to assess the survival and/or growth of a patient cell or cell line following exposure to a lead compound; for example,

cell proliferation can be assayed by measuring bromodeoxyuridine (BrdU) incorporation (see, e.g., Hoshino et al., 1986, Int. J. Cancer 38:369 and Campana et al., 1988, J. Immunol. Meth. 107:79) or (3H)-thymidine incorporation (see, e.g., Chen, 1996, Oncogene 13:1395-403 and Jeoung, 1995, J. Biol. Chem. 270:18367-73), by direct cell count, by detecting changes in transcription, translation or activity of known genes such as proto-oncogenes (e.g., fos, myc) or cell cycle markers (Rb, cdc2, cyclin A, D1, D2, D3, E, etc.). The levels of such protein and mRNA and activity can be determined by any method well known in the art. For example, protein can be quantitated by known immunodiagnostic methods such as western blotting or immunoprecipitation using commercially available antibodies.

mRNA can be quantitated using methods that are well known and routine in the art, for example, using northern analysis, RNase protection, the polymerase chain reaction in connection with reverse transcription ("RT-PCR"). Cell viability can be assessed by using trypan-blue staining or other cell death or viability markers known in the art. In a specific embodiment, the level of cellular ATP is measured to determine cell viability.

Differentiation can be assessed, for example, visually based on changes in morphology.

The lead compound can also be assessed for its ability to inhibit cell transformation (or progression to malignant phenotype) in vitro. In this embodiment, cells with a transformed cell phenotype are contacted with a lead compound, and examined for change in characteristics associated with a transformed phenotype (a set of in vitro characteristics associated with a tumorigenic ability in vivo), for example, but not limited to, colony formation in soft agar, a more rounded cell morphology, looser substratum attachment, loss of contact inhibition, loss of anchorage dependence, release of proteases such as plasminogen activator, increased sugar transport, decreased serum requirement, or expression of fetal antigens, etc. (see, e.g., Luria et al., 1978, General Virology, 3d Ed., John Wiley & Sons, New York, pp. 436-446).

Loss of invasiveness or decreased adhesion can also be assessed to demonstrate the anti-cancer effects of a lead compound. For example, an aspect of the formation of a metastatic cancer is the ability of a precancerous or cancerous cell to detach from primary site of disease and establish a novel colony of growth at a secondary site. The ability of a cell to invade peripheral sites reflects its potential for a cancerous state. Loss of invasiveness can be measured by a variety of techniques known in the art including, for example, induction of E-cadherin-mediated cell-cell adhesion. Such E-cadherin-mediated adhesion can result in phenotypic reversion and loss of invasiveness (see, e.g., Hordijk et al., 1997, Science 278:1464-66).

C C

Loss of invasiveness can further be examined by inhibition of cell migration. A variety of 2-dimensional and 3-dimensional cellular matrices are commercially available (Calbiochem-Novabiochem Corp. San Diego, CA). Cell migration across or into a matrix can be examined using microscopy, time-lapsed photography or videography, or by any 5 method in the art allowing measurement of cellular migration. In a related embodiment, loss of invasiveness is examined by response to hepatocyte growth factor ("HGF"). HGF-induced cell scattering is correlated with invasiveness of cells such as Madin-Darby canine kidney ("MDCK") cells. This assay identifies a cell population that has lost cell scattering activity in response to HGF (see, e.g., Hordijk et al., 1997, Science 278:1464-66).

10 Alternatively, loss of invasiveness can be measured by cell migration through a chemotaxis chamber (Neuroprobe/ Precision Biochemicals Inc. Vancouver, BC). In such assay, a chemo-attractant agent is incubated on one side of the chamber (e.g., the bottom chamber) and cells are plated on a filter separating the opposite side (e.g., the top chamber). In order for cells to pass from the top chamber to the bottom chamber, the cells 15 must actively migrate through small pores in the filter. Checkerboard analysis of the number of cells that have migrated can then be correlated with invasiveness (see e.g., Ohnishi, 1993, Biochem. Biophys. Res. Commun. 193:518-25).

A lead compound can also be assessed for its ability to alter the expression 20 of a secondary protein (as determined, e.g. by western blot analysis) or RNA, whose expression and/or activation is regulated directly or indirectly by the gene product of a gene of interest containing a premature stop codon or a nonsense mutation (as determined, e.g., by RT-PCR or northern blot analysis) in cultured cells *in vitro* using methods which are well known in the art. Further, chemical footprinting analysis can be conducted and is well-known in the art.

25 In another embodiment of the invention, the lead compound can be tested in a host cell. In such an embodiment, the host cell can encode a nucleic acid with a premature translation termination sequence or stop codon. Such nucleic acids can be encoded by a number of vehicles, including, but not limited to, recombinant or chimeric vectors, viruses or the genome of the host cell. In another embodiment of the invention, the presence of the 30 gene, containing a premature stop codon or translation termination sequence, causes a detectable phenotype in the host cell. Moreover, the effect of lead compounds on the phenotype of the cell can be examined in order to determine suitable candidates that modulate premature translation termination from a pool of compounds. In one embodiment, a host cell containing a gene encoding a premature translation termination

- sequence or stop codon, exhibits an abnormal phenotype relative to the wild type cell that does not encode a gene with a premature stop codon. In such an embodiment, the effect of a compound on the host cell phenotype can be examined in order to determine the effect of a lead compound on premature translation termination or nonsense mediated mRNA decay.
- 5 By way of example and not meant to limit the possible models, host cells, expressing mutations in a gene that controls cell cycle or proliferation, e.g., p53, can be exposed to various lead compounds in order to determine their effect on cell proliferation. Any lead compound that affects the proliferative activity of the host cell is identified as a compound that modulates premature translation termination or nonsense mediated mRNA decay.

10

5.9.2 Animal Models

- Animal model systems can be used to demonstrate the safety and efficacy of the lead compounds identified in the nonsense suppression assays described above. The lead compounds identified in the nonsense suppression assay can then be tested for biological activity using animal models for a disease, condition, or syndrome of interest.
- 15 These include animals engineered to contain the target RNA element coupled to a functional readout system, such as a transgenic mouse.

There are a number of methods that can be used to conduct animal model studies. Briefly, a compound identified in accordance with the methods of the invention is introduced into an animal model so that the effect of the compound on the manifestation of 20 disease can be determined. The prevention or reduction in the severity, duration or onset of a symptom associated with the disease or disorder of the animal model that is associated with, characterized by or caused by premature translation termination and/or nonsense mediated mRNA decay would indicate that the compound administered to the animal model had a prophylactic or therapeutic effect. Any method can be used to introduce the 25 compound into the animal model, including, but not limited to, injection, intravenous infusion, oral ingestion, or inhalation. In a preferred embodiment, transgenic hosts are constructed so that the animal genome encodes a gene of interest with a premature translation termination sequence or stop codon. In such an embodiment, the gene, containing a premature translation termination sequence or stop codon, would not encode a full length 30 peptide from a transcribed mRNA. The administration of a compound to the animal model, and the expression of a full length protein, polypeptide or peptide, for example, corresponding to the gene containing a premature stop codon would indicate that the compound modulates premature translation termination. Any method known in the art, or described herein, can be used to determine if the stop codon was modulated by the

compound. In another embodiment, the animal host genome encodes a native gene containing a premature stop codon. In another embodiment of the invention, the animal host is a natural mutant, *i.e.*, natively encoding a gene with a premature stop codon. For example, the animal can be a model for cystic fibrosis wherein the animal genome contains 5 a natural mutation that incorporates a premature stop codon or translation termination sequence.

Examples of animal models for cystic fibrosis include, but are not limited to, cftr(-/-) mice (see, *e.g.*, Freedman *et al.*, 2001, *Gastroenterology* 121(4):950-7), cftr(tm1HGU/tm1HGU) mice (see, *e.g.*, Bernhard *et al.*, 2001, *Exp Lung Res* 27(4):349-10 66), CFTR-deficient mice with defective cAMP-mediated Cl(-) conductance (see, *e.g.*, Stotland *et al.*, 2000, *Pediatr Pulmonol* 30(5):413-24), and C57BL/6-Cftr(m1UNC)/Cftr(m1UNC) knockout mice (see, *e.g.*, Stotland *et al.*, 2000, *Pediatr Pulmonol* 30(5):413-24).

Examples of animal models for muscular dystrophy include, but are not limited to, mouse, hamster, cat, dog, and *C. elegans*. Examples of mouse models for muscular dystrophy include, but are not limited to, the dy-/- mouse (see, *e.g.*, Connolly *et al.*, 2002, *J Neuroimmunol* 127(1-2):80-7), a muscular dystrophy with myositis (mdm) mouse mutation (see, *e.g.*, Garvey *et al.*, 2002, *Genomics* 79(2):146-9), the mdx mouse (see, *e.g.*, Nakamura *et al.*, 2001, *Neuromuscul Disord* 11(3):251-9), the utrophin-20 dystrophin knockout (dko) mouse (see, *e.g.*, Nakamura *et al.*, 2001, *Neuromuscul Disord* 11(3):251-9), the dy/dy mouse (see, *e.g.*, Dubowitz *et al.*, 2000, *Neuromuscul Disord* 10(4-5):292-8), the mdx(Cv3) mouse model (see, *e.g.*, Pillers *et al.*, 1999, *Laryngoscope* 109(8):1310-2), and the myotonic ADR-MDX mutant mice (see, *e.g.*, Kramer *et al.*, 1998, *Neuromuscul Disord* 8(8):542-50). Examples of hamster models for muscular dystrophy 25 include, but are not limited to, sarcoglycan-deficient hamsters (see, *e.g.*, Nakamura *et al.*, 2001, *Am J Physiol Cell Physiol* 281(2):C690-9) and the BIO 14.6 dystrophic hamster (see, *e.g.*, Schlenker & Burbach, 1991, *J Appl Physiol* 71(5):1655-62). An example of a feline model for muscular dystrophy includes, but is not limited to, the hypertrophic feline muscular dystrophy model (see, *e.g.*, Gaschen & Burgunder, 2001, *Acta Neuropathol (Berl)* 30 101(6):591-600). Canine models for muscular dystrophy include, but are not limited to, golden retriever muscular dystrophy (see, *e.g.*, Fletcher *et al.*, 2001, *Neuromuscul Disord* 11(3):239-43) and canine X-linked muscular dystrophy (see, *e.g.*, Valentine *et al.*, 1992, *Am J Med Genet* 42(3):352-6). Examples of *C. elegans* models for muscular dystrophy are

described in Chamberlain & Benian, 2000, *Curr Biol* 10(21):R795-7 and Culette & Sattelle, 2000, *Hum Mol Genet* 9(6):869-77.

Examples of animal models for familial hypercholesterolemia include, but are not limited to, mice lacking functional LDL receptor genes (see, e.g., Aji *et al.*, 1997, 5 *Circulation* 95(2):430-7), Yoshida rats (see, e.g., Fantappie *et al.*, 1992, *Life Sci* 50(24):1913-24), the JCR:LA-cp rat (see, e.g., Richardson *et al.*, 1998, *Atherosclerosis* 138(1):135-46), swine (see, e.g., Hasler-Rapacz *et al.*, 1998, *Am J Med Genet* 76(5):379-86), and the Watanabe heritable hyperlipidaemic rabbit (see, e.g., Tsutsumi *et al.*, 2000, 10 *Arzneimittelforschung* 50(2):118-21; Harsch *et al.*, 1998, *Br J Pharmacol* 124(2):227-82; and Tanaka *et al.*, 1995, *Atherosclerosis* 114(1):73-82).

An example of an animal model for human cancer in general includes, but is not limited to, spontaneously occurring tumors of companion animals (see, e.g., Vail & MacEwen, 2000, *Cancer Invest* 18(8):781-92). Examples of animal models for lung cancer include, but are not limited to, lung cancer animal models described by Zhang & Roth 15 (1994, *In Vivo* 8(5):755-69) and a transgenic mouse model with disrupted p53 function (see, e.g., Morris *et al.*, 1998, *J La State Med Soc* 150(4):179-85). An example of an animal model for breast cancer includes, but is not limited to, a transgenic mouse that overexpresses cyclin D1 (see, e.g., Hosokawa *et al.*, 2001, *Transgenic Res* 10(5):471-8). An example of an animal model for colon cancer includes, but is not limited to, a TCRbeta 20 and p53 double knockout mouse (see, e.g., Kado *et al.*, 2001, *Cancer Res* 61(6):2395-8). Examples of animal models for pancreatic cancer include, but are not limited to, a metastatic model of Panc02 murine pancreatic adenocarcinoma (see, e.g., Wang *et al.*, 2001, *Int J Pancreatol* 29(1):37-46) and nu-nu mice generated in subcutaneous pancreatic tumours (see, e.g., Ghaneh *et al.*, 2001, *Gene Ther* 8(3):199-208). Examples of animal 25 models for non-Hodgkin's lymphoma include, but are not limited to, a severe combined immunodeficiency ("SCID") mouse (see, e.g., Bryant *et al.*, 2000, *Lab Invest* 80(4):553-73) and an IgHmu-HOX11 transgenic mouse (see, e.g., Hough *et al.*, 1998, *Proc Natl Acad Sci USA* 95(23):13853-8). An example of an animal model for esophageal cancer includes, but is not limited to, a mouse transgenic for the human papillomavirus type 16 E7 oncogene 30 (see, e.g., Herber *et al.*, 1996, *J Virol* 70(3):1873-81). Examples of animal models for colorectal carcinomas include, but are not limited to, Apc mouse models (see, e.g., Fodde & Smits, 2001, *Trends Mol Med* 7(8):369-73 and Kuraguchi *et al.*, 2000, *Oncogene* 19(50):5755-63). An example of an animal model for neurofibromatosis includes, but is not limited to, mutant NF1 mice (see, e.g., Cichowski *et al.*, 1996, *Semin Cancer Biol*

7(5):291-8). Examples of animal models for retinoblastoma include, but are not limited to, transgenic mice that express the simian virus 40 T antigen in the retina (see, e.g., Howes *et al.*, 1994, *Invest Ophthalmol Vis Sci* 35(2):342-51 and Windle *et al.*, 1990, *Nature* 343(6259):665-9) and inbred rats (see, e.g., Nishida *et al.*, 1981, *Curr Eye Res* 1(1):53-5 and Kobayashi *et al.*, 1982, *Acta Neuropathol (Berl)* 57(2-3):203-8). Examples of animal models for Wilm's tumor include, but are not limited to, a WT1 knockout mouse (see, e.g., Scharnhorst *et al.*, 1997, *Cell Growth Differ* 8(2):133-43), a rat subline with a high incidence of nephroblastoma (see, e.g., Mesfin & Breech, 1996, *Lab Anim Sci* 46(3):321-6), and a Wistar/Furth rat with Wilms' tumor (see, e.g., Murphy *et al.*, 1987, *Anticancer Res* 7(4B):717-9).

Examples of animal models for retinitis pigmentosa include, but are not limited to, the Royal College of Surgeons ("RCS") rat (see, e.g., Vollrath *et al.*, 2001, *Proc Natl Acad Sci USA* 98(22):12584-9 and Hanitzsch *et al.*, 1998, *Acta Anat (Basel)* 162(2-3):119-26), a rhodopsin knockout mouse (see, e.g., Jaissle *et al.*, 2001, *Invest Ophthalmol Vis Sci* 42(2):506-13), and Wag/Rij rats (see, e.g., Lai *et al.*, 1980, *Am J Pathol* 98(1):281-4).

Examples of animal models for cirrhosis include, but are not limited to, CCl₄-exposed rats (see, e.g., Kloehn *et al.*, 2001, *Horm Metab Res* 33(7):394-401) and rodent models instigated by bacterial cell components or colitis (see, e.g., Vierling, 2001, *Best Pract Res Clin Gastroenterol* 15(4):591-610).

Examples of animal models for hemophilia include, but are not limited to, rodent models for hemophilia A (see, e.g., Reipert *et al.*, 2000, *Thromb Haemost* 84(5):826-32; Jarvis *et al.*, 1996, *Thromb Haemost* 75(2):318-25; and Bi *et al.*, 1995, *Nat Genet* 10(1):119-21), canine models for hemophilia A (see, e.g., Gallo-Penn *et al.*, 1999, *Hum Gene Ther* 10(11):1791-802 and Connelly *et al.*, 1998, *Blood* 91(9):3273-81), murine models for hemophilia B (see, e.g., Snyder *et al.*, 1999, *Nat Med* 5(1):64-70; Wang *et al.*, 1997, *Proc Natl Acad Sci USA* 94(21):11563-6; and Fang *et al.*, 1996, *Gene Ther* 3(3):217-22), canine models for hemophilia B (see, e.g., Mount *et al.*, 2002, *Blood* 99(8):2670-6; Snyder *et al.*, 1999, *Nat Med* 5(1):64-70; Fang *et al.*, 1996, *Gene Ther* 3(3):217-22); and Kay *et al.*, 1994, *Proc Natl Acad Sci USA* 91(6):2353-7), and a rhesus macaque model for hemophilia B (see, e.g., Lozier *et al.*, 1999, *Blood* 93(6):1875-81).

Examples of animal models for von Willebrand disease include, but are not limited to, an inbred mouse strain RIIS/J (see, e.g., Nichols *et al.*, 1994, *83(11):3225-31* and Sweeney *et al.*, 1990, *76(11):2258-65*), rats injected with botrocetin (see, e.g., Sanders

et al., 1988, *Lab Invest* 59(4):443-52), and porcine models for von Willebrand disease (see, e.g., Nichols *et al.*, 1995, *Proc Natl Acad Sci USA* 92(7):2455-9; Johnson & Bowie, 1992, *J Lab Clin Med* 120(4):553-8); and Brinkhous *et al.*, 1991, *Mayo Clin Proc* 66(7):733-42).

Examples of animal models for β -thalassemia include, but are not limited to, 5 murine models with mutations in globin genes (see, e.g., Lewis *et al.*, 1998, *Blood* 91(6):2152-6; Raja *et al.*, 1994, *Br J Haematol* 86(1):156-62; Popp *et al.*, 1985, 445:432-44; and Skow *et al.*, 1983, *Cell* 34(3):1043-52).

Examples of animal models for kidney stones include, but are not limited to, 10 genetic hypercalciuric rats (see, e.g., Bushinsky *et al.*, 1999, *Kidney Int* 55(1):234-43 and Bushinsky *et al.*, 1995, *Kidney Int* 48(6):1705-13), chemically treated rats (see, e.g., Grases *et al.*, 1998, *Scand J Urol Nephrol* 32(4):261-5; Burgess *et al.*, 1995, *Urol Res* 23(4):239-42; Kumar *et al.*, 1991, *J Urol* 146(5):1384-9; Okada *et al.*, 1985, *Hinyokika Kiyo* 31(4):565-77; and Bluestone *et al.*, 1975, *Lab Invest* 33(3):273-9), hyperoxaluric rats (see, e.g., Jones *et al.*, 1991, *J Urol* 145(4):868-74), pigs with unilateral retrograde flexible 15 nephroscopy (see, e.g., Seifmah *et al.*, 2001, 57(4):832-6), and rabbits with an obstructed upper urinary tract (see, e.g., Itatani *et al.*, 1979, *Invest Urol* 17(3):234-40).

Examples of animal models for ataxia-telangiectasia include, but are not limited to, murine models of ataxia-telangiectasia (see, e.g., Barlow *et al.*, 1999, *Proc Natl Acad Sci USA* 96(17):9915-9 and Inoue *et al.*, 1986, *Cancer Res* 46(8):3979-82). A mouse 20 model was generated for ataxia-telangiectasia using gene targeting to generate mice that did not express the Atm protein (see, e.g., Elson *et al.*, 1996, *Proc. Nat. Acad. Sci.* 93: 13084-13089).

Examples of animal models for lysosomal storage diseases include, but are not limited to, mouse models for mucopolysaccharidosis type VII (see, e.g., Brooks *et al.*, 25 2002, *Proc Natl Acad Sci U S A*. 99(9):6216-21; Monroy *et al.*, 2002, *Bone* 30(2):352-9; Vogler *et al.*, 2001, *Pediatr Dev Pathol*. 4(5):421-33; Vogler *et al.*, 2001, *Pediatr Res*. 49(3):342-8; and Wolfe *et al.*, 2000, *Mol Ther*. 2(6):552-6), a mouse model for metachromatic leukodystrophy (see, e.g., Matzner *et al.*, 2002, *Gene Ther*. 9(1):53-63), a mouse model of Sandhoff disease (see, e.g., Sango *et al.*, 2002, *Neuropathol Appl Neurobiol*. 28(1):23-34), mouse models for mucopolysaccharidosis type III A (see, e.g., Bhattacharyya *et al.*, 2001, *Glycobiology* 11(1):99-10 and Bhaumik *et al.*, 1999, *Glycobiology* 9(12):1389-96.), arylsulfatase A (ASA)-deficient mice (see, e.g., D'Hooge *et al.*, 1999, *Brain Res*. 847(2):352-6 and D'Hooge *et al.*, 1999, *Neurosci Lett*. 273(2):93-6); mice with an aspartylglucosaminuria mutation (see, e.g., Jalanko *et al.*, 1998, *Hum Mol*

Genet. 7(2):265-72); feline models of mucopolysaccharidosis type VI (see, e.g., Crawley *et al.*, 1998, J Clin Invest. 101(1):109-19 and Norrdin *et al.*, 1995, Bone 17(5):485-9); a feline model of Niemann-Pick disease type C (see, e.g., March *et al.*, 1997, Acta Neuropathol (Berl). 94(2):164-72); acid sphingomyelinase-deficient mice (see, e.g., Otterbach & Stoffel, 5 1995, Cell 81(7):1053-6), and bovine mannosidosis (see, e.g., Jolly *et al.*, 1975, Birth Defects Orig Artic Ser. 11(6):273-8).

Examples of animal models for tuberous sclerosis ("TSC") include, but are not limited to, a mouse model of TSC1 (see, e.g., Kwiatkowski *et al.*, 2002, Hum Mol Genet. 11(5):525-34), a Tsc1 (TSC1 homologue) knockout mouse (see, e.g., Kobayashi *et 10 al.*, 2001, Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8762-7), a TSC2 gene mutant(Eker) rat model (see, e.g., Hino 2000, Nippon Rinsho 58(6):1255-61; Mizuguchi *et al.*, 2000, J Neuropathol Exp Neurol. 59(3):188-9; and Hino *et al.*, 1999, Prog Exp Tumor Res. 35:95-108); and Tsc2(+/-) mice (see, e.g., Onda *et al.*, 1999, J Clin Invest. 104(6):687-95).

15

5.9.3 Toxicity

The toxicity and/or efficacy of a compound identified in accordance with the invention can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, *e.g.*, for determining the LD₅₀ (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). 20 Cells and cell lines that can be used to assess the cytotoxicity of a compound identified in accordance with the invention include, but are not limited to, peripheral blood mononuclear cells (PBMCs), Caco-2 cells, and Huh7 cells. The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD₅₀/ED₅₀. A compound identified in accordance with the invention that exhibits large therapeutic indices is 25 preferred. While a compound identified in accordance with the invention that exhibits toxic side effects may be used, care should be taken to design a delivery system that targets such agents to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.

The data obtained from the cell culture assays and animal studies can be used 30 in formulating a range of dosage of a compound identified in accordance with the invention for use in humans. The dosage of such agents lies preferably within a range of circulating concentrations that include the ED₅₀ with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any agent used in the method of the invention, the therapeutically effective

dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC₅₀ (*i.e.*, the concentration of the compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately 5 determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.

5.10 Design of Congeners or Analogs

The compounds which display the desired biological activity can be used as lead compounds for the development or design of congeners or analogs having useful 10 pharmacological activity. For example, once a lead compound is identified, molecular modeling techniques can be used to design variants of the compound that can be more effective. Examples of molecular modeling systems are the CHARM and QUANTA programs (Polygen Corporation, Waltham, MA). CHARM performs the energy minimization and molecular dynamics functions. QUANTA performs the construction, 15 graphic modelling and analysis of molecular structure. QUANTA allows interactive construction, modification, visualization, and analysis of the behavior of molecules with each other.

A number of articles review computer modeling of drugs interactive with specific proteins, such as Rotivinen et al., 1988, Acta Pharmaceutical Fennica 97:159-166; 20 Ripka, 1998, New Scientist 54-57; McKinlay & Rossmann, 1989, Annu. Rev. Pharmacol. Toxicol. 29:111-122; Perry & Davies, OSAR: Quantitative Structure-Activity Relationships in Drug Design pp. 189-193 (Alan R. Liss, Inc. 1989); Lewis & Dean, 1989, Proc. R. Soc. Lond. 236:125-140 and 141-162; Askew et al., 1989, J. Am. Chem. Soc. 111:1082-1090. Other computer programs that screen and graphically depict chemicals are 25 available from companies such as BioDesign, Inc. (Pasadena, California), Allelix, Inc. (Mississauga, Ontario, Canada), and Hypercube, Inc. (Cambridge, Ontario). Although these are primarily designed for application to drugs specific to particular proteins, they can be adapted to design of drugs specific to any identified region. The analogs and congeners can be tested for binding to translational machinery using assays well-known in the art or 30 described herein for biologic activity. Alternatively, lead compounds with little or no biologic activity, as ascertained in the screen, can also be used to design analogs and congeners of the compound that have biologic activity.

5.11 Uses of Compounds to Prevent/Treat a Disorder

The present invention provides methods of preventing, treating, managing or ameliorating a disorder or one or more symptoms thereof, said methods comprising administering to a subject in need thereof one or more compounds identified in accordance with the methods of the invention or a pharmaceutically acceptable salt thereof. In particular, the present invention provides methods of preventing, treating, managing or ameliorating a disorder associated with premature translation termination and/or nonsense-mediated mRNA decay, or one or more symptoms thereof, said methods comprising administering to a subject in need thereof one or more compounds identified in accordance with the methods of the invention or a pharmaceutically acceptable salt thereof. Examples of diseases associated with, characterized by or caused by associated with premature translation termination and/or nonsense-mediated mRNA decay include, but are not limited to, cystic fibrosis, muscular dystrophy, heart disease, lung cancer, breast cancer, colon cancer, pancreatic cancer, non-Hodgkin's lymphoma, ovarian cancer, esophageal cancer, colorectal carcinomas, neurofibromatosis, retinoblastoma, Wilm's tumor, retinitis pigmentosa, collagen disorders, cirrhosis, Tay-Sachs disease, blood disorders, kidney stones, ataxia-telangiectasia, lysosomal storage diseases, and tuberous sclerosis. See Sections 5.8 and 6.5 for additional non-limiting examples of diseases and genetic disorders which can be prevented, treated, managed or ameliorated by administering one or more of the compounds identified in accordance with the methods of the invention or a pharmaceutically acceptable salt thereof. Genes that contain one or more nonsense mutations that are potentially involved in causing disease are presented in table form according to chromosome location in Example 6.5 *infra*.

In a preferred embodiment, it is first determined that the patient is suffering from a disease associated with premature translation termination and/or nonsense-mediated mRNA decay before administering a compound identified in accordance with the invention or a combination therapy described herein. In a preferred embodiment, the DNA of the patient can be sequenced or subject to Southern Blot, polymerase chain reaction (PCR), use of the Short Tandem Repeat (STR), or polymorphic length restriction fragments (RFLP) analysis to determine if a nonsense mutation is present in the DNA of the patient.

Alternatively, it can be determined if altered levels of the protein with the nonsense mutation are expressed in the patient by western blot or other immunoassays. Such methods are well known to one of skill in the art.

In one embodiment, the invention provides a method of preventing, treating, managing or ameliorating a disorder or one or more symptoms thereof, said method

comprising administering to a subject in need thereof a dose of a prophylactically or therapeutically effective amount of one or more compounds identified in accordance with the methods of the invention. In another embodiment, a compound identified in accordance with the methods of the invention is not administered to prevent, treat, or ameliorate a disorder or one or more symptoms thereof, if such compound has been used previously to prevent, treat, manage or ameliorate said disorder. In a more specific embodiment of the invention, disorders that can be prevented, managed and/or treated with the compounds of the invention, include, but are not limited to, disorders that are associated with, characterized by or caused by premature translation termination and/or nonsense mediated mRNA decay.

The invention provides methods of preventing, treating, managing or ameliorating a disorder or one or more symptoms thereof, said methods comprising administering to a subject in need thereof one or more of the compounds identified utilizing the screening methods described herein or a pharmaceutically acceptable salt thereof, and one or more other therapies (e.g., prophylactic or therapeutic agents). In particular, the invention provides methods of preventing, treating, managing or ameliorating a disorder associated with, characterized by or caused by premature translation termination and/or nonsense mediate mRNA decay, or one or more symptoms thereof, said methods comprising administering to a subject in need thereof one or more of the compounds identified utilizing the screening methods described herein or a pharmaceutically acceptable salt thereof, and one or more other therapies (e.g., prophylactic or therapeutic agents). Preferably, the other therapies are currently being used, have been used or are known to be useful in the prevention, treatment, management or amelioration of said disorder or a symptom thereof. Non-limiting examples of such therapies are in Section 5.11.1 *infra*.

The therapies (e.g., prophylactic or therapeutic agents) or the combination therapies of the invention can be administered sequentially or concurrently. In a specific embodiment, the combination therapies of the invention comprise a compound identified in accordance with the invention and at least one other therapy that has the same mechanism of action as said compound. In another specific embodiment, the combination therapies of the invention comprise a compound identified in accordance with the methods of the invention and at least one other therapy (e.g., prophylactic or therapeutic agent) which has a different mechanism of action than said compound. The combination therapies of the present invention improve the prophylactic or therapeutic effect of a compound of the invention by functioning together with the compound to have an additive or synergistic

effect. The combination therapies of the present invention reduce the side effects associated with the therapies (e.g., prophylactic or therapeutic agents).

The prophylactic or therapeutic agents of the combination therapies can be administered to a subject in the same pharmaceutical composition. Alternatively, the prophylactic or therapeutic agents of the combination therapies can be administered concurrently to a subject in separate pharmaceutical compositions. The prophylactic or therapeutic agents may be administered to a subject by the same or different routes of administration.

In a specific embodiment, a pharmaceutical composition comprising one or more compounds identified in a screening assay described herein is administered to a subject, preferably a human, to prevent, treat, manage or ameliorate a disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense mediated mRNA decay) or one or more symptoms thereof. In accordance with the invention, the pharmaceutical composition may also comprise one or more other prophylactic or therapeutic agents. Preferably, such prophylactic or therapeutic agents are currently being used, have been used or are known to be useful in the prevention, treatment, management or amelioration of a disorder (in particular, a disorder associated with, characterized by, or caused by premature translation termination or nonsense-mediated mRNA decay) or one or more symptoms thereof.

A compound identified in accordance with the methods of the invention may be used as a first, second, third, fourth or fifth line of therapy for a disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay). The invention provides methods for treating, managing or ameliorating a disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay) or one or more symptoms thereof in a subject refractory to conventional therapies for such disorder, said methods comprising administering to said subject a dose of a prophylactically or therapeutically effective amount of a compound identified in accordance with the methods of the invention. In particular, a disorder may be determined to be refractory to a therapy when at least some significant portion of the disorder is not resolved in response to the therapy. Such a determination can be made either *in vivo* or *in vitro* by any method known in the art for assaying the effectiveness of a therapy on a subject, using the art-accepted meanings of "refractory" in such a context. In a specific embodiment, a disorder

is refractory where the number of symptoms of the disorder has not been significantly reduced, or has increased.

The invention provides methods for treating, managing or ameliorating one or more symptoms of a disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay) in a subject refractory to existing single agent therapies for such disorder, said methods comprising administering to said subject a dose of a prophylactically or therapeutically effective amount of a compound identified in accordance with the methods of the invention and a dose of a prophylactically or therapeutically effective amount of one or more other therapies (e.g., prophylactic or therapeutic agents). The invention also provides methods for treating or managing a disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay) by administering a compound identified in accordance with the methods of the invention in combination with any other therapy (e.g., radiation therapy, chemotherapy or surgery) to patients who have proven refractory to other therapies but are no longer on these therapies. The invention also provides methods for the treatment or management of a patient having disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay) and said patient is immunosuppressed or immunocompromised by reason of having previously undergone other therapies. Further, the invention provides methods for preventing the recurrence of a disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay) such as, e.g., cancer in patients that have been undergone therapy and have no disease activity by administering a compound identified in accordance with the methods of the invention.

In addition to the use of the compounds identified in accordance with the invention for the prevention, treatment, management or amelioration of a disorder or a symptom thereof, the compounds may be used *in vitro* to modulate the expression of particular genes of interest, for example, the compounds may be used to increase or decrease the expression of a particular gene of interest when conducting *in vitro* studies.

30

5.11.1 Other Therapies

The present invention provides methods of preventing, treating, managing or ameliorating a disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay), or one or more symptoms thereof, said methods comprising administering to a subject in need thereof

one or more compounds identified in accordance with the methods of the invention or a pharmaceutically acceptable salt thereof, and one or more other therapies (e.g., prophylactic or therapeutic agents). Any therapy (e.g., chemotherapies, radiation therapies, hormonal therapies, and/or biological therapies/immunotherapies) which is known to be useful, or
5 which has been used or is currently being used for the prevention, treatment, management or amelioration of a disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay) or one or more symptoms thereof can be used in combination with a compound identified in accordance with the methods of the invention. Examples of therapeutic or prophylactic
10 agents which can be used in combination with a compound identified in accordance with the invention include, but are not limited to, peptides, polypeptides, fusion proteins, nucleic acid molecules, small molecules, mimetic agents, synthetic drugs, inorganic molecules, and organic molecules.

Proliferative disorders associated with, characterized by or caused by
15 premature translation termination and/or nonsense-mediated mRNA decay can be prevented, treated, managed or ameliorated by administering to a subject in need thereof one or more of the compounds identified in accordance with the methods of the invention, and one or more other therapies for prevention, treatment, management or amelioration of said disorders or a symptom thereof. Examples of such therapies include, but are not
20 limited to, angiogenesis inhibitors, topoisomerase inhibitors, immunomodulatory agents (such as chemotherapeutic agents) and radiation therapy. Angiogenesis inhibitors (*i.e.*, anti-angiogenic agents) include, but are not limited to, angiostatin (plasminogen fragment); antiangiogenic antithrombin III; angiozyme; ABT-627; Bay 12-9566; Benefin; Bevacizumab; BMS-275291; cartilage-derived inhibitor (CDI); CAI; CD59 complement
25 fragment; CEP-7055; Col 3; combretastatin A-4; endostatin (collagen XVIII fragment); fibronectin fragment; Gro-beta; Halofuginone; Heparinases; Heparin hexasaccharide fragment; HMV833; human chorionic gonadotropin (hCG); IM-862; Interferon alpha/beta/gamma; Interferon inducible protein (IP-10); Interleukin-12; Kringle 5 (plasminogen fragment); Marimastat; Metalloproteinase inhibitors (TIMPs); 2-
30 methoxyestradiol; MMI 270 (CGS 27023A); MoAb IMC-1C11; Neovastat; NM-3; Panzem; PI-88; Placental ribonuclease inhibitor; plasminogen activator inhibitor; platelet factor-4 (PF4); Prinomastat; Prolactin 16kD fragment; Proliferin-related protein (PRP); PTK 787/ZK 222594; retinoids; solimastat; squalamine; SS 3304; SU 5416; SU6668; SU11248; tetrahydrocortisol-S; tetrathiomolybdate; thalidomide; thrombospondin-1 (TSP-1); TNP-

470; transforming growth factor-beta; vasculostatin; vasostatin (calreticulin fragment); ZD6126; ZD 6474; farnesyl transferase inhibitors (FTI); and bisphosphonates. In a specific embodiment, anti-angiogenic agents do not include antibodies or fragments thereof that immunospecifically bind to integrin $\alpha_v\beta_3$.

- 5 Specific examples of prophylactic or therapeutic agents which can be used in accordance with the methods of the invention to prevent, treat, manage or ameliorate a proliferative disorder associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay, or a symptom thereof include, but not limited to: acivicin; aclarubicin; acodazole hydrochloride; acronine; adozelesin;
- 10 aldesleukin; altretamine; ambomycin; ametantrone acetate; aminoglutethimide; amsacrine; anastrozole; anthramycin; asparaginase; asperlin; azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirimine; busulfan; cactinomycin; calusterone; caracemide; carbetimer; carboplatin; carmustine; carubicin hydrochloride;
- 15 carzelesin; cedefingol; chlorambucil; cirolemycin; cisplatin; cladribine; crisnatol mesylate; cyclophosphamide; cytarabine; dacarbazine; dactinomycin; daunorubicin hydrochloride; decitabine; dexormaplatin; dezaguanine; dezaguanine mesylate; diaziquone; docetaxel; doxorubicin; doxorubicin hydrochloride; droloxifene; droloxifene citrate; dromostanolone propionate; duazomycin; edatrexate; eflornithine hydrochloride; elsamitruclin; enloplatin;
- 20 enpromate; epipropidine; epirubicin hydrochloride; erbulozole; esorubicin hydrochloride; estramustine; estramustine phosphate sodium; etanidazole; etoposide; etoposide phosphate; etoprine; fadrozole hydrochloride; fazarabine; fenretinide; floxuridine; fludarabine phosphate; fluorouracil; flurocitabine; fosquidone; fostriecin sodium; gemcitabine; gemcitabine hydrochloride; hydroxyurea; idarubicin hydrochloride; ifosfamide; ilmofosine;
- 25 interleukin II (including recombinant interleukin II, or rIL2), interferon alpha-2a; interferon alpha-2b; interferon alpha-n1 ; interferon alpha-n3; interferon beta-I a; interferon gamma-I b; iproplatin; irinotecan hydrochloride; lanreotide acetate; letrozole; leuprolide acetate; liarozole hydrochloride; lometrexol sodium; lomustine; losoxantrone hydrochloride; masoprocol; maytansine; mechlorethamine hydrochloride; megestrol acetate; melengestrol acetate; melphalan; menogaril; mercaptopurine; methotrexate; methotrexate sodium; metoprine; meturedopa; mitindomide; mitocarcin; mitocromin; mitogillin; mitomalcin; mitomycin; mitosper; mitotane; mitoxantrone hydrochloride; mycophenolic acid; nocodazole; nogalamycin; ormaplatin; oxisuran; paclitaxel; pegaspargase; peliomycin; pentamustine; peplomycin sulfate; perfosfamide; pipobroman; piperulfan; piroxantrone

hydrochloride; plicamycin; plomestane; porfimer sodium; porfiromycin; prednimustine; procarbazine hydrochloride; puromycin; puromycin hydrochloride; pyrazofurin; riboprine; rogletimide; safingol; safingol hydrochloride; semustine; simtrazene; sparfosate sodium; sparsomycin; spirogermanium hydrochloride; spiromustine; spiroplatin; streptonigrin; 5 streptozocin; sulofenur; talisomycin; tecogalan sodium; tegafur; teloxantrone hydrochloride; temoporfin; temiposide; teroxirone; testolactone; thiamiprime; thioguanine; thiotepea; tiazofurin; tirapazamine; toremifene citrate; trestolone acetate; triciribine phosphate; trimetrexate; trimetrexate glucuronate; triptorelin; tubulozole hydrochloride; uracil mustard; uredepa; vapreotide; verteporfin; vinblastine sulfate; vincristine sulfate; vindesine; 10 vindesine sulfate; vinepidine sulfate; vinglycinate sulfate; vinleurosine sulfate; vinorelbine tartrate; vinrosidine sulfate; vinzolidine sulfate; vorozole; zeniplatin; zinostatin; zorubicin hydrochloride. Other anti-cancer drugs include, but are not limited to: 20-epi-1,25 dihydroxyvitamin D3; 5-ethynyluracil; abiraterone; aclarubicin; acylfulvene; adecyepol; adozelesin; aldesleukin; ALL-TK antagonists; altretamine; ambamustine; amidox; 15 amifostine; aminolevulinic acid; amrubicin; amsacrine; anagrelide; anastrozole; andrographolide; angiogenesis inhibitors; antagonist D; antagonist G; antarelix; anti-dorsalizing morphogenetic protein-1; antiandrogen, prostatic carcinoma; antiestrogen; antineoplaston; antisense oligonucleotides; aphidicolin glycinate; apoptosis gene modulators; apoptosis regulators; apurinic acid; ara-CDP-DL-PTBA; arginine deiminase; 20 asulacrine; atamestane; atrimustine; axinastatin 1; axinastatin 2; axinastatin 3; azasetron; azatoxin; azatyrosine; baccatin III derivatives; balanol; batimastat; BCR/ABL antagonists; benzochlorins; benzoylstaurosporine; beta lactam derivatives; beta-alethine; betaclamycin B; betulinic acid; bFGF inhibitor; bicalutamide; bisantrene; bisaziridinylspermine; bisnafide; bistratene A; bizelesin; breflate; bropirimine; budotitane; buthionine sulfoximine; 25 calcipotriol; calphostin C; camptothecin derivatives; canarypox IL-2; capecitabine; carboxamide-amino-triazole; carboxyamidotriazole; CaRest M3; CARN 700; cartilage derived inhibitor; carzelesin; casein kinase inhibitors (ICOS); castanospermine; cecropin B; cetrorelix; chlorlins; chloroquinoxaline sulfonamide; cicaprost; cis-porphyrin; cladribine; clomifene analogues; clotrimazole; collismycin A; collismycin B; combretastatin A4; 30 combretastatin analogue; conagenin; crambescidin 816; crisnatol; cryptophycin 8; cryptophycin A derivatives; curacin A; cyclopentanthraquinones; cycloplatam; cypemycin; cytarabine ocfosfate; cytolytic factor; cytostatin; dacliximab; decitabine; dehydrodidemnin B; deslorelin; dexamethasone; dexifosfamide; dextrazoxane; dexverapamil; diaziquone; didemnin B; didox; diethylnorspermine; dihydro-5-azacytidine; dihydrotaxol, 9-;

dioxamycin; diphenyl spiromustine; docetaxel; docosanol; dolasetron; doxifluridine;
droloxitene; dronabinol; duocarmycin SA; ebselen; ecomustine; edelfosine; edrecolomab;
eflornithine; elemene; emitefur; epirubicin; epristeride; estramustine analogue; estrogen
agonists; estrogen antagonists; etanidazole; etoposide phosphate; exemestane; fadrozole;
5 fazarabine; fenretinide; filgrastim; finasteride; flavopiridol; flezelastine; fluasterone;
fludarabine; fluorodaunorubicin hydrochloride; forfenimex; formestane; fostriecin;
fotemustine; gadolinium texaphyrin; gallium nitrate; galocitabine; ganirelix; gelatinase
inhibitors; gemcitabine; glutathione inhibitors; hepsulfam; heregulin; hexamethylene
bisacetamide; hypericin; ibandronic acid; idarubicin; idoxifene; idramantone; ilmofosine;
10 ilomastat; imidazoacridones; imiquimod; immunostimulant peptides; insulin-like growth
factor-1 receptor inhibitor; interferon agonists; interferons; interleukins; iobenguane;
iododoxorubicin; ipomeanol, 4-; iroplact; irsogladine; isobengazole; isohomohalicondrin B;
itasetron; jasplakinolide; kahalalide F; lamellarin-N triacetate; lanreotide; leinamycin;
15 lenograstim; lentinan sulfate; leptolstatin; letrozole; leukemia inhibiting factor; leukocyte
alpha interferon; leuprolide+estrogen+progesterone; leuprorelin; levamisole; liarozole;
linear polyamine analogue; lipophilic disaccharide peptide; lipophilic platinum compounds;
lissoclinamide 7; lobaplatin; lombricine; lometrexol; lonidamine; losoxantrone; lovastatin;
loxoribine; lurtotecan; lutetium texaphyrin; lysofylline; lytic peptides; maitansine;
mannostatin A; marimastat; masoprocol; maspin; matrilysin inhibitors; matrix
20 metalloproteinase inhibitors; menogaril; merbarone; meterelin; methioninase;
metoclopramide; MIF inhibitor; mifepristone; miltefosine; mirimostim; mismatched double
stranded RNA; mitoguazone; mitolactol; mitomycin analogues; mitonafide; mitotoxin
fibroblast growth factor-saporin; mitoxantrone; mofarotene; molgramostim; monoclonal
antibody, human chorionic gonadotrophin; monophosphoryl lipid A+myobacterium cell
25 wall sk; mepidamol; multiple drug resistance gene inhibitor; multiple tumor suppressor
1-based therapy; mustard anticancer agent; mycaperoxide B; mycobacterial cell wall
extract; myriaporone; N-acetyldinaline; N-substituted benzamides; nafarelin; nagrestip;
naloxone+pentazocine; napavin; naphterpin; nartograstim; nedaplatin; nemorubicin;
neridronic acid; neutral endopeptidase; nilutamide; nisamycin; nitric oxide modulators;
30 nitroxide antioxidant; nitrullyn; O6-benzylguanine; octreotide; okicenone; oligonucleotides;
onapristone; ondansetron; ondansetron; oracin; oral cytokine inducer; ormaplatin;
osaterone; oxaliplatin; oxaunomycin; paclitaxel; paclitaxel analogues; paclitaxel
derivatives; palauamine; palmitoylrhizoxin; pamidronic acid; panaxytriol; panomifene;
parabactin; pazelliptine; pegaspargase; peldesine; pentosan polysulfate sodium; pentostatin;

pentrozole; perflubron; perfosfamide; perillyl alcohol; phenazinomycin; phenylacetate; phosphatase inhibitors; picibanil; pilocarpine hydrochloride; pirarubicin; piritrexim; placetin A; placetin B; plasminogen activator inhibitor; platinum complex; platinum compounds; platinum-triamine complex; porfimer sodium; porfiromycin; prednisone; 5 propyl bis-acridone; prostaglandin J2; proteasome inhibitors; protein A-based immune modulator; protein kinase C inhibitor; protein kinase C inhibitors, microalgal; protein tyrosine phosphatase inhibitors; purine nucleoside phosphorylase inhibitors; purpurins; pyrazoloacridine; pyridoxylated hemoglobin polyoxyethylene conjugate; raf antagonists; raltitrexed; ramosetron; ras farnesyl protein transferase inhibitors; ras inhibitors; ras-GAP 10 inhibitor; retelliptine demethylated; rhenium Re 186 etidronate; rhizoxin; ribozymes; RII retinamide; rogletimide; rohitukine; romurtide; roquinimex; rubiginone B1; ruboxyl; safingol; saintopin; SarCNU; sarcophytol A; sargramostim; Sdi 1 mimetics; semustine; senescence derived inhibitor 1; sense oligonucleotides; signal transduction inhibitors; signal transduction modulators; single chain antigen binding protein; sizofiran; sobuzoxane; 15 sodium borocaptate; sodium phenylacetate; solverol; somatomedin binding protein; sonermin; sparfosic acid; spicamycin D; spiromustine; splenopentin; spongistatin 1; squalamine; stem cell inhibitor; stem-cell division inhibitors; stipamide; stromelysin inhibitors; sulfinosine; superactive vasoactive intestinal peptide antagonist; suradista; suramin; swainsonine; synthetic glycosaminoglycans; tallimustine; 5-fluorouracil; 20 leucovorin; tamoxifen methiodide; tauromustine; tazarotene; tecogalan sodium; tegafur; tellurapyrylium; telomerase inhibitors; temoporfin; temozolomide; teniposide; tetrachlorodecaoxide; tetrazomine; thaliblastine; thiocoraline; thrombopoietin; thrombopoietin mimetic; thymalfasin; thymopoietin receptor agonist; thymotrinan; thyroid stimulating hormone; tin ethyl etiopurpurin; tirapazamine; titanocene bichloride; topsentin; 25 toremifene; totipotent stem cell factor; translation inhibitors; tretinoin; triacetyluridine; triciribine; trimetrexate; triptorelin; tropisetron; turosteride; tyrosine kinase inhibitors; typhostins; UBC inhibitors; ubenimex; urogenital sinus-derived growth inhibitory factor; urokinase receptor antagonists; vapreotide; variolin B; vector system, erythrocyte gene therapy; thalidomide; velaresol; veramine; verdins; verteporfin; vinorelbine; vinxaltine; 30 vorozole; zanoterone; zeniplatin; zilascorb; and zinostatin stimalamer.

Specific examples of prophylactic or therapeutic agents which can be used in accordance with the methods of the invention to prevent, treat, manage and/or ameliorate a central nervous system disorders associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay, or a symptom thereof

include, but are not limited to: Levodopa, L-DOPA, cocaine, α -methyl-tyrosine, reserpine, tetrabenazine, benzotropine, pargyline, fenodolpam mesylate, cabergoline, pramipexole dihydrochloride, ropinorole, amantadine hydrochloride, selegiline hydrochloride, carbidopa, pergolide mesylate, Sinemet CR, or Symmetrel.

- 5 Specific examples of propylactic or therapeutic agents which can be used in accordance with the methods of the invention to prevent, treat, manage and/or ameliorate a metabolic disorders associated with, characterized by or caused by premature translation termination and/or nonsense-mediated mRNA decay, or a symptom thereof include, but are not limited to: a monoamine oxidase inhibitor (MAO), for example, but not limited to,
- 10 iproniazid, clorgyline, phenelzine and isocarboxazid; an acetylcholinesterase inhibitor, for example, but not limited to, physostigmine salicilate, physostigmine sulfate, physostigmine bromide, meostigmine bromide, neostigmine methylsulfate, ambenonium chloride, edrophonium chloride, tacrine, pralidoxime chloride, obidoxime chloride, trimedoxime bromide, diacetyl monoxim, endrophonium, pyridostigmine, and demecarium; an anti-
- 15 inflammatory agent, including, but not limited to, naproxen sodium, diclofenac sodium, diclofenac potassium, celecoxib, sulindac, oxaprozin, diflunisal, etodolac, meloxicam, ibuprofen, ketoprofen, nabumetone, refecoxib, methotrexate, leflunomide, sulfasalazine, gold salts, RHo-D Immune Globulin, mycophenylate mofetil, cyclosporine, azathioprine, tacrolimus, basiliximab, daclizumab, salicylic acid, acetylsalicylic acid, methyl salicylate,
- 20 diflunisal, salsalate, olsalazine, sulfasalazine, acetaminophen, indomethacin, sulindac, mefenamic acid, meclofenamate sodium, tolmetin, ketorolac, dichlofenac, flurbiprofen, oxaprozin, piroxicam, meloxicam, ampiroxicam, droxicam, pivoxicam, tenoxicam, phenylbutazone, oxyphenbutazone, antipyrine, aminopyrine, apazone, zileuton, aurothioglucose, gold sodium thiomalate, auranofin, methotrexate, colchicine, allopurinol,
- 25 probenecid, sulfinpyrazone and benzborumarone or betamethasone and other glucocorticoids; an antiemetic agent, for example, but not limited to, metoclopramide, domperidone, prochlorperazine, promethazine, chlorpromazine, trimethobenzamide, ondansetron, granisetron, hydroxyzine, acetylleucine monoethanolamine, alizapride, azasetron, benzquinamide, bietanautine, bromopride, buclizine, clebopride, cyclizine,
- 30 dimenhydrinate, diphenidol, dolasetron, meclizine, methallatal, metopimazine, nabilone, oxyperndyl, pipamazine, scopolamine, sulpiride, tetrahydrocannabinol, thiethylperazine, thioperazine, tropisetron, and mixtures thereof.

5.12 Compounds and Methods of Administering Compounds

Biologically active compounds identified using the methods of the invention or a pharmaceutically acceptable salt thereof can be administered to a patient, preferably a mammal, more preferably a human, suffering from a disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense mediated mRNA decay). In a specific embodiment, a compound or a pharmaceutically acceptable salt thereof is administered to a patient, preferably a mammal, more preferably a human, as a preventative measure against a disorder (in particular, a disorder associated with, characterized by or caused by premature translation termination and/or nonsense mediated mRNA decay).

In one embodiment, the compound or a pharmaceutically acceptable salt thereof is administered as a preventative measure to a patient. According to this embodiment, the patient can have a genetic predisposition to a disease, such as a family history of the disease, or a non-genetic predisposition to the disease. Accordingly, the compound and pharmaceutically acceptable salts thereof can be used for the treatment of one manifestation of a disease and prevention of another.

A compound identified in accordance with the invention, or a pharmaceutically acceptable salt thereof, may be a component of a composition optionally comprising a carrier, diluent or excipient. When administered to a patient, the compound or a pharmaceutically acceptable salt thereof is preferably administered as component of a composition that optionally comprises a pharmaceutically acceptable vehicle. The composition can be administered orally, or by any other convenient route, for example, by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal, and intestinal mucosa, etc.) and may be administered together with another biologically active agent. Administration can be systemic or local. Various delivery systems are known, e.g., encapsulation in liposomes, microparticles, microcapsules, capsules, etc., and can be used to administer the compound and pharmaceutically acceptable salts thereof.

Methods of administration include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, oral, sublingual, intranasal, intracerebral, intravaginal, transdermal, rectally, by inhalation, or topically, particularly to the ears, nose, eyes, or skin. The mode of administration is left to the discretion of the practitioner. In most instances, administration will result in the release of the compound or a pharmaceutically acceptable salt thereof into the bloodstream.

In specific embodiments, it may be desirable to administer the compound or a pharmaceutically acceptable salt thereof locally. This may be achieved, for example, and not by way of limitation, by local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by 5 means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers.

In certain embodiments, it may be desirable to introduce the compound or a pharmaceutically acceptable salt thereof into the central nervous system by any suitable route, including intraventricular, intrathecal and epidural injection. Intraventricular 10 injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir.

Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent, or via perfusion in a fluorocarbon or synthetic pulmonary surfactant. In certain embodiments, the compound and 15 pharmaceutically acceptable salts thereof can be formulated as a suppository, with traditional binders and vehicles such as triglycerides.

In another embodiment, the compound and pharmaceutically acceptable salts thereof can be delivered in a vesicle, in particular a liposome (see Langer, 1990, Science 249:1527-1533; Treat et al., in *Liposomes in the Therapy of Infectious Disease and Cancer*, 20 Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353-365 (1989); Lopez-Berestein, *ibid.*, pp. 317-327; see generally *ibid.*).

In yet another embodiment, the compound and pharmaceutically acceptable salts thereof can be delivered in a controlled release system (see, e.g., Goodson, in *Medical Applications of Controlled Release*, *supra*, vol. 2, pp. 115-138 (1984)). Other controlled-release systems discussed in the review by Langer, 1990, Science 249:1527-1533 may be used. In one embodiment, a pump may be used (see Langer, *supra*; Sefton, 1987, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and Ball (eds.), Wiley, New York (1984); Ranger and Peppas, 1983, J. Macromol. Sci. Rev. Macromol. Chem. 23:61; see also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105). In yet another embodiment, a controlled-release system can be placed in proximity 30

of a target RNA of the compound or a pharmaceutically acceptable salt thereof, thus requiring only a fraction of the systemic dose.

Compositions comprising the compound or a pharmaceutically acceptable salt thereof ("compound compositions") can additionally comprise a suitable amount of a 5 pharmaceutically acceptable vehicle so as to provide the form for proper administration to the patient.

In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, mammals, 10 and more particularly in humans. The term "vehicle" refers to a diluent, adjuvant, excipient, or carrier with which a compound of the invention is administered. Such pharmaceutical vehicles can be liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. The pharmaceutical vehicles can be saline, gum acacia, gelatin, 15 starch paste, talc, keratin, colloidal silica, urea, and the like. In addition, auxiliary, stabilizing, thickening, lubricating and coloring agents may be used. When administered to a patient, the pharmaceutically acceptable vehicles are preferably sterile. Water is a preferred vehicle when the compound of the invention is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid 20 vehicles, particularly for injectable solutions. Suitable pharmaceutical vehicles also include excipients such as starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. Compound compositions, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering 25 agents.

Compound compositions can take the form of solutions, suspensions, emulsion, tablets, pills, pellets, capsules, capsules containing liquids, powders, sustained-release formulations, suppositories, emulsions, aerosols, sprays, suspensions, or any other form suitable for use. In one embodiment, the pharmaceutically acceptable vehicle is a 30 capsule (see e.g., U.S. Patent No. 5,698,155). Other examples of suitable pharmaceutical vehicles are described in Remington's Pharmaceutical Sciences, Alfonso R. Gennaro, ed., Mack Publishing Co. Easton, PA, 19th ed., 1995, pp. 1447 to 1676, incorporated herein by reference.

In a preferred embodiment, the compound or a pharmaceutically acceptable salt thereof is formulated in accordance with routine procedures as a pharmaceutical composition adapted for oral administration to human beings. Compositions for oral delivery may be in the form of tablets, lozenges, aqueous or oily suspensions, granules, 5 powders, emulsions, capsules, syrups, or elixirs, for example. Orally administered compositions may contain one or more agents, for example, sweetening agents such as fructose, aspartame or saccharin; flavoring agents such as peppermint, oil of wintergreen, or cherry; coloring agents; and preserving agents, to provide a pharmaceutically palatable preparation. Moreover, where in tablet or pill form, the compositions can be coated to 10 delay disintegration and absorption in the gastrointestinal tract thereby providing a sustained action over an extended period of time. Selectively permeable membranes surrounding an osmotically active driving compound are also suitable for orally administered compositions. In these later platforms, fluid from the environment surrounding the capsule is imbibed by the driving compound, which swells to displace the 15 agent or agent composition through an aperture. These delivery platforms can provide an essentially zero order delivery profile as opposed to the spiked profiles of immediate release formulations. A time delay material such as glycerol monostearate or glycerol stearate may also be used. Oral compositions can include standard vehicles such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, and the 20 like. Such vehicles are preferably of pharmaceutical grade. Typically, compositions for intravenous administration comprise sterile isotonic aqueous buffer. Where necessary, the compositions may also include a solubilizing agent.

In another embodiment, the compound or a pharmaceutically acceptable salt thereof can be formulated for intravenous administration. Compositions for intravenous administration may optionally include a local anesthetic such as lignocaine to lessen pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed 25 together in unit dosage form, for example, as a dry lyophilized powder or water-free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the compound or a pharmaceutically acceptable salt thereof is to be administered by infusion, it can be dispensed, for example, with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the compound or a pharmaceutically acceptable salt thereof is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to 30 administration.

The amount of a compound or a pharmaceutically acceptable salt thereof that will be effective in the treatment of a particular disease will depend on the nature of the disease, and can be determined by standard clinical techniques. In addition, *in vitro* or *in vivo* assays may optionally be employed to help identify optimal dosage ranges. The 5 precise dose to be employed will also depend on the route of administration, and the seriousness of the disease, and should be decided according to the judgment of the practitioner and each patient's circumstances. However, suitable dosage ranges for oral administration are generally about 0.001 milligram to about 500 milligrams of a compound or a pharmaceutically acceptable salt thereof per kilogram body weight per day. In specific 10 preferred embodiments of the invention, the oral dose is about 0.01 milligram to about 100 milligrams per kilogram body weight per day, more preferably about 0.1 milligram to about 75 milligrams per kilogram body weight per day, more preferably about 0.5 milligram to 5 milligrams per kilogram body weight per day. The dosage amounts described herein refer to total amounts administered; that is, if more than one compound is administered, or if a 15 compound is administered with a therapeutic agent, then the preferred dosages correspond to the total amount administered. Oral compositions preferably contain about 10% to about 95% active ingredient by weight.

Suitable dosage ranges for intravenous (i.v.) administration are about 0.01 milligram to about 100 milligrams per kilogram body weight per day, about 0.1 milligram 20 to about 35 milligrams per kilogram body weight per day, and about 1 milligram to about 10 milligrams per kilogram body weight per day. Suitable dosage ranges for intranasal administration are generally about 0.01 pg/kg body weight per day to about 1 mg/kg body weight per day. Suppositories generally contain about 0.01 milligram to about 50 milligrams of a compound of the invention per kilogram body weight per day and comprise 25 active ingredient in the range of about 0.5% to about 10% by weight.

Recommended dosages for intradermal, intramuscular, intraperitoneal, subcutaneous, epidural, sublingual, intracerebral, intravaginal, transdermal administration or administration by inhalation are in the range of about 0.001 milligram to about 200 milligrams per kilogram of body weight per day. Suitable doses for topical administration 30 are in the range of about 0.001 milligram to about 1 milligram, depending on the area of administration. Effective doses may be extrapolated from dose-response curves derived from *in vitro* or animal model test systems. Such animal models and systems are well known in the art.

The compound and pharmaceutically acceptable salts thereof are preferably assayed *in vitro* and *in vivo*, for the desired therapeutic or prophylactic activity, prior to use in humans. For example, *in vitro* assays can be used to determine whether it is preferable to administer the compound, a pharmaceutically acceptable salt thereof, and/or another 5 therapeutic agent. Animal model systems can be used to demonstrate safety and efficacy.

6. EXAMPLES

6.1 EXAMPLE: IDENTIFICATION OF A DYE-LABELED TARGET RNA BOUND TO SMALL MOLECULAR WEIGHT COMPOUNDS

10

The results presented in this Example indicate that gel mobility shift assays can be used to detect the binding of small molecules, such as the Tat peptide and gentamicin, to their respective target RNAs.

Materials and Methods

15

Buffers

Tris-potassium chloride (TK) buffer is composed of 50 mM Tris-HCl pH 7.4, 20mM KCl, 0.1%Triton X-100, and 0.5mM MgCl₂. Tris-borate-EDTA (TBE) buffer is composed of 45 mM Tris-borate pH 8.0, and 1 mM EDTA. Tris-Potassium chloride-magnesium (TKM) buffer is composed of 50 mM Tris-HCl pH 7.4, 20mM KCl, 0.1%Triton 20 X-100 and 5mM MgCl₂.

Gel retardation analysis

RNA oligonucleotides were purchased from Dharmacon, Inc, Lafayette, CO). 500 pmole of either a 5' fluorescein labeled oligonucleotide corresponding to the 16S rRNA A site (5'-GGCGUCACACCUUCGGGUGAAGUCGCC-3' (SEQ ID NO: 1); 25 Moazed & Noller, 1987, Nature 327:389-394; Woodcock *et al.*, 1991, EMBO J. 10:3099-3103; Yoshizawa *et al.*, 1998, EMBO J. 17:6437-6448) or a 5' fluorescein labeled oligonucleotide corresponding to the HIV-1 TAR element TAR RNA (5'-GGCAGAUCUGAGCCUGGGAGCUCUCUGCC-3' (SEQ ID NO: 2); Huq *et al.*, 1999, Nucleic Acids Research. 27:1084-1093; Hwang *et al.*, 1999, Proc. Natl. Acad. Sci. USA 30 96:12997-13002) was 3' labeled with 5'-³²P cytidine 3', 5'-bis(phosphate) (NEN) and T4 RNA ligase (NEBiolabs) in 10% DMSO as per manufacturer's instructions. The labeled oligonucleotides were purified using G-25 Sephadex columns (Boehringer Mannheim). For Tat-TAR gel retardation reactions the method of Huq *et al.* (Nucleic Acids Research, 1999,

27:1084-1093) was utilized with TK buffer containing 0.5mM MgCl₂ and a 12-mer Tat peptide (YGRKKRRQRRRP (SEQ ID NO: 3; single letter amino acid code). For 16S rRNA-gentamicin reactions, the method of Huq *et al.* was used with TKM buffer. In 20 µl reaction volumes 50 pmoles of ³²P cytidine-labeled oligonucleotide and either gentamicin sulfate (Sigma) or the short Tat peptide (Tat₄₇₋₅₈) in TK or TKM buffer were heated at 90°C for 2 minutes and allow to cool to room temperature (approximately 24°C) over 2 hours. Then 10 µl of 30% glycerol was added to each reaction tube and the entire sample was loaded onto a TBE non-denaturing polyacrylamide gel and electrophoresed at 1200-1600 volt-hours at 4°C. The gel was exposed to an intensifying screen and radioactivity was quantitated using a Typhoon phosphorimager (Molecular Dynamics).

Background

One method used to demonstrate small molecule interactions with natural occurring RNA structures such as ribosomes is by a method called chemical footprinting or toe printing (Moazed & Noller, 1987, Nature 327:389-394; Woodcock *et al.*, 1991, EMBO J. 10:3099-3103; Yoshizawa *et al.*, 1998, EMBO J. 17:6437-6448). Here the use of gel mobility shift assays to monitor RNA-small molecule interactions are described. This approach allows for rapid visualization of small molecule-RNA interactions based on the difference between mobility of RNA alone versus RNA in a complex with a small molecule. To validate this approach, an RNA oligonucleotide corresponding to the well-characterized gentamicin binding site on the 16S rRNA (Moazed & Noller, 1987, Nature 327:389-394) and the equally well-characterized HIV-1 TAT protein binding site on the HIV-1 TAR element (Huq *et al.*, 1999, Nucleic Acids Res. 27: 1084-1093) were chosen. The purpose of these experiments is to lay the groundwork for the use of chromatographic techniques in a high throughput fashion, such as microcapillary electrophoresis, for drug discovery.

Results

A gel retardation assay was performed using the Tat₄₇₋₅₈ peptide and the TAR RNA oligonucleotide. As shown in Figure 2, in the presence of the Tat peptide, a clear shift is visible when the products are separated on a 12% non-denaturing polyacrylamide gel. In the reaction that lacks peptide, only the free RNA is visible. These observations confirm previous reports made using other Tat peptides (Hamy *et al.*, 1997, Proc. Natl. Acad. Sci. USA 94:3548-3553; Huq *et al.*, 1999, Nucleic Acids Res. 27: 1084-1093).

Based on the results of Figure 2, it was hypothesized that RNA interactions with small organic molecules could also be visualized using this method. As shown in Figure 3, the addition of varying concentrations of gentamicin to an RNA oligonucleotide corresponding to the 16S rRNA A site produces a mobility shift. These results demonstrate 5 that the binding of the small molecule gentamicin to an RNA oligonucleotide having a defined structure in solution can be monitored using this approach. In addition, as shown in Figure 3, a concentration as low as 10ng/ml gentamicin produces the mobility shift.

To determine whether lower concentrations of gentamicin would be sufficient to produce a gel shift, a similar experiment was performed, as shown in Figure 3, 10 except that the concentrations of gentamicin ranged from 100 ng/ml to 10 pg/ml. As shown in Figure 4, gel mobility shifts are produced when the gentamicin concentration is as low as 10 pg/ml. Further, the results shown in Figure 4 demonstrate that the shift is specific to the 16S rRNA oligonucleotide as the use of an unrelated oligonucleotide, corresponding to the HIV TAR RNA element, does not result in a gel mobility shift when incubated with 10 15 mg/ml gentamicin. In addition, if a concentration as low as 10 pg/ml gentamicin produces a gel mobility shift then it should be possible to detect changes to RNA structural motifs when small amounts of compound from a library of diverse compounds is screened in this fashion.

Further analysis of the gentamicin-RNA interaction indicates that the interaction is Mg- and 20 temperature dependent. As shown in Figure 5, when MgCl₂ is not present (TK buffer), 1mg/ml of gentamicin must be added to the reaction to produce a gel shift. Similarly, the temperature of the reaction when gentamicin is added is also important. When gentamicin is present in the reaction during the entire denaturation/renaturation cycle, that is, when gentamicin is added at 90°C or 85°C, a gel shift is visualized (data not shown). In 25 contrast, when gentamicin is added after the renaturation step has proceeded to 75°C, a mobility shift is not produced. These results are consistent with the notion that gentamicin may recognize and interact with an RNA structure formed early in the renaturation process.

30

6.2 EXAMPLE: IDENTIFICATION OF A DYE-LABELED TARGET RNA BOUND TO SMALL MOLECULAR WEIGHT COMPOUNDS BY CAPILLARY ELECTROPHORESIS

The results presented in this Example indicate that interactions between a peptide and its target RNA, such as the Tat peptide and TAR RNA, can be monitored by gel retardation assays in an automated capillary electrophoresis system.

Materials and Methods

Buffers

Tris-potassium chloride (TK) buffer is composed of 50 mM Tris-HCl pH 7.4, 20mM KCl, 0.1%Triton X-100, and 0.5mM MgCl₂. Tris-borate-EDTA (TBE) buffer is composed of 45 mM Tris-borate pH 8.0, and 1 mM EDTA. Tris-Potassium chloride-magnesium (TKM) buffer is composed of 50 mM Tris-HCl pH 7.4, 20mM KCl, 0.1%Triton X-100 and 5mM MgCl₂.

Gel Retardation Analysis Using Capillary Electrophoresis

RNA oligonucleotides were purchased from Dharmacon, Inc, Lafayette, CO). 500 pmole of a 5' fluorescein labeled oligonucleotide corresponding to the HIV-1 TAR element TAR RNA (5'-GGCAGAUCUGAGCCUGGGAGCUCUCUGCC-3' (SEQ ID NO: 2); Huq *et al.*, 1999, Nucleic Acids Research. 27:1084-1093; Hwang *et al.*, 1999, Proc. Natl. Acad. Sci. USA 96:12997-13002) was used. For Tat-TAR gel retardation reactions the method of Huq *et al.* (Nucleic Acids Research, 1999, 27:1084-1093) was utilized with TK buffer containing 0.5mM MgCl₂ and a 12-mer Tat peptide (YGRKKRRQRRRP (SEQ ID NO: 3); single letter amino acid code). In 20 µl reaction volumes 50 pmoles of labeled oligonucleotide and the short Tat peptide (Tat₄₇₋₅₈) in TK or TKM buffer were heated at 90°C for 2 minutes and allow to cool to room temperature (approximately 24°C) over 2 hours. The reactions were loaded onto a SCE9610 automated capillary electrophoresis apparatus (SpectruMedix; State College, Pennsylvania).

20

Results

As presented in the previous sections of the Example 6.1, interactions between a peptide and RNA can be monitored by gel retardation assays. It was hypothesized that interactions between a peptide and RNA could be monitored by gel retardation assays by an automated capillary electrophoresis system. To test this hypothesis, a gel retardation assay by an automated capillary electrophoresis system was performed using the Tat₄₇₋₅₈ peptide and the TAR RNA oligonucleotide. As shown in Figure 6 using the capillary electrophoresis system, in the presence of the Tat peptide, a clear shift is visible upon the addition of increasing concentrations of Tat peptide. In the reaction that lacks peptide, only a peak corresponding to the free RNA is observed. These observations confirm previous reports made using other Tat peptides (Hamy *et al.*, 1997, Proc. Natl. Acad. Sci. USA 94:3548-3553; Huq *et al.*, 1999, Nucleic Acids Res. 27: 1084-1093).

6.3 **EXAMPLE: COMPOUNDS THAT MODULATE
TRANSLATION TERMINATION
BIND SPECIFIC REGIONS OF 28S rRNA**

Data is presented in this Example that demonstrates that specific regions of the 28S rRNA are involved in modulating translation termination in mammalian cells.

Compounds that interact in these regions or modulate local changes within these regions of the ribosome (*e.g.*, alter base pairing interactions, base modification or modulate binding of trans-acting factors that bind to these regions) have the potential to modulate translation termination. These regions are conserved from prokaryotes to eukaryotes, but the role of these regions in modulating translation termination has not been realized in eukaryotes. In bacteria, when a short RNA fragment, complementary to the *E. coli* 23S rRNA segment comprising nucleotides 735 to 766 (in domain II), is expressed *in vivo*, suppression of UGA nonsense mutations, but not UAA or UAG, results (Chernyaeva *et al.*, 1999, J Bacteriol 181:5257-5262). Other regions of the 23S rRNA in *E. coli* have been implicated in nonsense suppression including the GTPase center in domain II (nt 1034-1120; Jemiolo *et al.*, 1995, Proc. Nat. Acad. Sci. 92:12309-12313).

Materials and Methods

Small Molecules Involved in Modulating Translation Termination

Small molecules involved in modulating translation termination, *i.e.*, nonsense suppression, were used in the footprinting experiments presented in Figures 2 to 6 and are listed as Compound A (molecular formula C₁₉H₂₁NO₄), Compound B (molecular formula C₁₉H₂₁N₂O₅), Compound C (molecular formula C₁₂H₁₅N₅O), Compound D (molecular formula C₂₃H₁₅O₃Br), Compound E (molecular formula C₁₉H₂₁NO₄), Compound F, Compound G (molecular formula C₁₂H₁₅N₅O), Compound H (molecular formula C₂₃H₁₅NO₅), Compound I (molecular formula C₂₃H₁₅NO₅), Compound J, and Compound K.

Preparation of a Translation Extract from HeLa cells

HeLa S3 cells were grown to a density of 10⁶ cells/ml in DMEM; 5%CO₂, 10%FBS, 1X P/S in a spinner flask. Cells were harvested by spinning at 1000Xg. Cells were washed twice with phosphate buffered saline. The cell pellet was on ice for 12-24 hours before proceeding. By letting the cells sit on ice, the activity of the extract is increased up to twenty-fold. The length of time on ice can range from 0 hours to 1 week. The cells were resuspended in 1.5 volumes (packed cell volume) of hypotonic buffer (10 mM HEPES (KOH) pH 7.4; 15 mM KCl; 1.5 mM Mg(OAc)₂; 0.5 mM Pefabloc (Roche); 2 mM DTT). The cells were allowed to swell for 5 minutes on ice, dounce homogenized with

10 to 100 strokes using a tight-fitting pestle, and spun for 10 minutes at 12000Xg at 4°C in a Sorvall SS-34 rotor. The supernatant was collected with a Pasteur pipet without disturbing the lipid layer, transferred into Eppendorf tubes (50 to 200 ml aliquots), and immediately frozen in liquid nitrogen.

5

Footprinting

Ribosomes prepared from HeLa cells were incubated with the small molecules (at a concentration of 100 µM), followed by treatment with chemical modifying agents (dimethyl sulfate [DMS] and kethoxal [KE]). Following chemical modification, rRNA was phenol-chloroform extracted, ethanol precipitated, analyzed in primer extension reactions using end-labeled oligonucleotides hybridizing to different regions of the rRNAs and resolved on 6% polyacrylamide gels. The probes used for primer extension cover the entire 18S (7 oligonucleotide primers), 28S (24 oligonucleotide primers), and 5S (one primer) rRNAs are presented in Table 1 (also see, e.g., Gonzalez et al., 1985 Proc Natl Acad Sci U S A. 82(22):7666-70 and McCallum & Maden, 1985, Biochem. J. 232 (3): 15 725-733). Controls in these experiments include DMSO (a control for changes in rRNA accessibility induced by DMSO), paromomycin (a marker for 18S rRNA binding), and anisomycin (a marker for 28S rRNA binding).

Table 1: 18S, 28S, and 5S rRNA primers

5S#1	AAAGCCTACAGCACCC	SEQ ID NO.: 4
28S#1	TACTGAGGGAAATCCTGG	SEQ ID NO.: 5
28S#2	TTACCACCCGCTTGGG	SEQ ID NO.: 6
28S#3	GGGGGCAGGAAAGATCC	SEQ ID NO.: 7
28S#4	CCCCGAGCCACCTTCCC	SEQ ID NO.: 8
28S#5	GGCCCCGGGATTGGCG	SEQ ID NO.: 9
28S#6	CACTGGGGACAGTCCGC	SEQ ID NO.: 10
28S#7	CGCGGCAGGCGAGACGGG	SEQ ID NO.: 11
28S#8	GAGGGAAACTCGGAGGG	SEQ ID NO.: 12
28S#9	CATCGGGCGCCTAACCC	SEQ ID NO.: 13
28S#10	CGACGCACACCACACGC	SEQ ID NO.: 14
28S#11	CCAAGATCTGCACCTGC	SEQ ID NO.: 15
28S#12	TTACCGCACTGGACGCC	SEQ ID NO.: 16
28S#13	GCCAGAGGCTGTTCAAC	SEQ ID NO.: 17
28S#14	TGGGGAGGGAGCGAGCGCG	SEQ ID NO.: 18
28S#15	AAGGGCCCGGCTCGCGTCC	SEQ ID NO.: 19
28S#16	AGGGCGGGGGGACGAACCGC	SEQ ID NO.: 20
28S#17	TTAACACAGTCGGATTCCCCTGG	SEQ ID NO.: 21

28S#18	TTCATCCATTGCGCG	SEQ ID NO.: 22
28S#19	AGTAGTGGTATTCACCGG	SEQ ID NO.: 23
28S#20	ACGGGAGGTTCTGTCC	SEQ ID NO.: 24
28S#21	ACAATGATAGGAAGAGCCG	SEQ ID NO.: 25
28S#22	AGGCAGTCAGTCATAATCCC	SEQ ID NO.: 26
28S#23	TCCGCACCGGACCCGGTCC	SEQ ID NO.: 27
28S#24	GGGCTAGTTGATTGGCAGGTGAGTTG	SEQ ID NO.: 28
18S#1	TCTCCGGAATCGAACCT	SEQ ID NO.: 29
18S#2	ATT ACC GCGGCTGCTGGC	SEQ ID NO.: 30
18S#3	TTGGCAAATGCTTCGC	SEQ ID NO.: 31
18S#4	CCGTCATTCTTAAGTTTC	SEQ ID NO.: 32
18S#5	AGGGCATCACAGACCTGTTAT	SEQ ID NO.: 33
18S#6	CGACGGGCGGTGTGTAC	SEQ ID NO.: 34
18S#7	CCGCAGGTTCACCTACGG	SEQ ID NO.: 35

Results

The results of these foot-printing experiments (see, e.g., Figures 7 to 11) indicated that the small molecules involved in modulating translation termination alter the accessibility of the chemical modifying agents to specific nucleotides in the 28S rRNA. More specifically, the regions protected by the small molecules include a conserved region in the vicinity of the peptidyl transferase center (domain V, see, e.g., Figures 7 and 8) implicated in peptide bond formation and a conserved region in domain II (see, e.g., Figures 9, 10, and 11) that may interact with the peptidyl transferase center based on binding of vernamycin B to both these areas (Vannuffel et al., 1994, Nucleic Acids Res. 22(21):4449-53).

15 **6.4 EXAMPLE: HIGH THROUGHPUT IDENTIFICATION OF
COMPOUNDS USING ARRAYS**

To identify molecules of the invention, high throughput assays that enable each compound to be screened against many different nucleic acids in a parallel manner are used. In brief, synthesis beads, with compounds of the invention attached, are distributed into micro titer plates at a density of one bead per well. Compounds of the invention that are attached to the beads are then released from the beads and dissolved in a small amount of solvent in each microtiter well. A high precision technique, such as a robotic arrayer, is then used to transfer small volumes of solution containing dissolved compounds of the invention from each microtiter well, delivering the compounds to defined locations on glass slides. The glass slides are derivatized so that the compounds of the invention are

immobilized on the surface of the slide. Each compound contains a functional group that allows for its immobilization on the glass slide. Each slide is then probed with a labeled RNA and binding events are detected by, e.g., a fluorescence-linked assay that is able to detect the label.

5

6.5 EXAMPLE: HUMAN DISEASE GENES SORTED BY CHROMOSOME

Table 2: Genes, Locations and Genetic Disorders on Chromosome 1

Gene	GDB Accession ID	OMIM Link
ABCA4	GDB:370748	MACULAR DEGENERATION, SENILE STARGARDT DISEASE 1; STGD1 ATP BINDING CASSETTE TRANSPORTER; ABCR RETINITIS PIGMENTOSA-19; RP19
ABCD3	GDB:131485	PEROXISOMAL MEMBRANE PROTEIN 1; PXMP1
ACADM	GDB:118958	ACYL-CoA DEHYDROGENASE, MEDIUM-CHAIN; ACADM
AGL	GDB:132644	GLYCOGEN STORAGE DISEASE III
AGT	GDB:118750	ANGIOTENSIN I; AGT
ALDH4A1	GDB:9958827	HYPERPROLINEMIA, TYPE II
ALPL	GDB:118730	PHOSPHATASE, LIVER ALKALINE; ALPL HYPOPHOSPHATASIA, INFANTILE
AMPD1	GDB:119677	ADENOSINE MONOPHOSPHATE DEAMINASE-1; AMPD1
APOA2	GDB:119685	APOLIPOPROTEIN A-II; APOA2
AVSD1	GDB:265302	ATRIOVENTRICULAR SEPTAL DEFECT; AVSD
BRCD2	GDB:9955322	BREAST CANCER, DUCTAL, 2; BRCD2
C1QA	GDB:119042	COMPLEMENT COMPONENT 1, q SUBCOMPONENT, ALPHA POLYPEPTIDE; C1QA
C1QB	GDB:119043	COMPLEMENT COMPONENT 1, q SUBCOMPONENT, BETA POLYPEPTIDE; C1QB
C1QG	GDB:128132	COMPLEMENT COMPONENT 1, q SUBCOMPONENT, GAMMA POLYPEPTIDE; C1QG
C8A	GDB:119735	COMPLEMENT COMPONENT-8, DEFICIENCY OF
C8B	GDB:119736	COMPLEMENT COMPONENT-8,

Gene	GDB Accession ID	OMIM Link
		DEFICIENCY OF, TYPE II
CACNA1S	GDB:126431	CALCIUM CHANNEL, VOLTAGE-DEPENDENT, L TYPE, ALPHA 1S SUBUNIT; CACNA1S PERIODIC PARALYSIS I MALIGNANT HYPERHERMIA SUSCEPTIBILITY-5; MHS5
CCV	GDB:1336655	CATARACT, CONGENITAL, VOLKMANN TYPE; CCV
CD3Z	GDB:119766	CD3Z ANTIGEN, ZETA POLYPEPTIDE; CD3Z
CDC2L1	GDB:127827	PROTEIN KINASE p58; PK58
CHML	GDB:135222	CHOROIDEREMIA-LIKE; CHML
CHS1	GDB:4568202	CHEDIAK-HIGASHI SYNDROME; CHS1
CIAS1	GDB:9957338	COLD HYPERSENSITIVITY URTICARIA, DEAFNESS, AND AMYLOIDOSIS
CLCNKB	GDB:698472	CHLORIDE CHANNEL, KIDNEY, B; CLCNKB
CMD1A	GDB:434478	CARDIOMYOPATHY, DILATED 1A; CMD1A
CMH2	GDB:137324	CARDIOMYOPATHY, FAMILIAL HYPERTROPHIC, 2; CMH2
CMM	GDB:119059	MELANOMA, MALIGNANT
COL11A1	GDB:120595	COLLAGEN, TYPE XI, ALPHA-1; COL11A1
COL9A2	GDB:138310	COLLAGEN, TYPE IX, ALPHA-2 CHAIN; COL9A2 EPIPHYSEAL DYSPLASIA, MULTIPLE, 2; EDM2
CPT2	GDB:127272	MYOPATHY WITH DEFICIENCY OF CARNITINE PALMITOYLTRANSFERASE II HYPOGLYCEMIA, HYPOKETOTIC, WITH DEFICIENCY OF CARNITINE PALMITOYLTRANSFERASE CARNITINE PALMITOYLTRANSFERASE II; CPT2
CRB1	GDB:333930	RETINITIS PIGMENTOSA-12; RP12
CSE	GDB:596182	CHOREOATHETOSIS/SPASTICITY, EPISODIC; CSE

Gene	GDB Accession ID	OMIM Link
CSF3R	GDB:126430	COLONY STIMULATING FACTOR 3 RECEPTOR, GRANULOCYTE; CSF3R
CTPA	GDB:9863168	CATARACT, POSTERIOR POLAR
CTSK	GDB:453910	PYCNODYSOSTOSIS CATHEPSIN K; CTSK
DBT	GDB:118784	MAPLE SYRUP URINE DISEASE, TYPE 2
DIO1	GDB:136449	THYROXINE DEIODINASE TYPE I; TXDI1
DISC1	GDB:9992707	DISORDER-2; SCZD2

DPYD	GDB:364102	DIHYDROPYRIMIDINE DEHYDROGENASE; DPYD
EKV	GDB:119106	ERYTHROKERATODERMIA VARIABILIS; EKV
ENO1	GDB:119871	PHOSPHOPYRUVATE HYDRATASE; PPH
ENO1P	GDB:135006	PHOSPHOPYRUVATE HYDRATASE; PPH
EPB41	GDB:119865	ERYTHROCYTE MEMBRANE PROTEIN BAND 4.1; EPB41 HEREDITARY HEMOLYTIC
EPHX1	GDB:119876	EPOXIDE HYDROLASE 1, MICROSOMAL; EPHX1
F13B	GDB:119893	FACTOR XIII, B SUBUNIT; F13B
F5	GDB:119896	FACTOR V DEFICIENCY
FCGR2A	GDB:119903	Fc FRAGMENT OF IgG, LOW AFFINITY IIa, RECEPTOR FOR; FCGR2A
FCGR2B	GDB:128183	Fc FRAGMENT OF IgG, LOW AFFINITY IIa, RECEPTOR FOR; FCGR2A
FCGR3A	GDB:119904	Fc FRAGMENT OF IgG, LOW AFFINITY IIIa, RECEPTOR FOR; FCGR3A
FCHL	GDB:9837503	HYPERLIPIDEMIA, COMBINED

FH	GDB:119133	FUMARATE HYDRATASE; FH LEIOMYOMATA, HEREDITARY MULTIPLE, OF SKIN
FMO3	GDB:135136	FLAVIN-CONTAINING MONOOXYGENASE 3; FMO3 TRIMETHYLAMINURIA

Gene	GDB Accession ID	OMIM Link
FMO4	GDB:127981	FLAVIN-CONTAINING MONOOXYGENASE 2; FMO2
FUCA1	GDB:119237	FUCOSIDOSIS
FY	GDB:119242	BLOOD GROUP--DUFFY SYSTEM; Fy
GALE	GDB:119245	GALACTOSE EPIMERASE DEFICIENCY
GBA	GDB:119262	GAUCHER DISEASE, TYPE I; GD I
GFND	GDB:9958222	GLOMERULAR NEPHRITIS, FAMILIAL, WITH FIBRONECTIN DEPOSITS
GJA8	GDB:696369	CATARACT, ZONULAR PULVERULENT 1; CZP1 GAP JUNCTION PROTEIN, ALPHA-8, 50-KD; GJA8
GJB3	GDB:127820	ERYTHROKERATODERMIA VARIABILIS; EKV DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 2; DFNA2
GLC3B	GDB:3801939	GLAUCOMA 3, PRIMARY INFANTILE, B; GLC3B
HF1	GDB:120041	H FACTOR 1; HF1
HMGCL	GDB:138445	HYDROXYMETHYLGLUTARICACIDURIA; HMGCL
HPC1	GDB:5215209	PROSTATE CANCER; PRCA1 PROSTATE CANCER, HEREDITARY 1
HRD	GDB:9862254	HYPOPARATHYROIDISM WITH SHORT STATURE, MENTAL RETARDATION, AND SEIZURES
HRPT2	GDB:125253	HYPERPARATHYROIDISM, FAMILIAL PRIMARY, WITH MULTIPLE OSSIFYING JAW
HSD3B2	GDB:134044	ADRENAL HYPERPLASIA II
HSPG2	GDB:126372	HEPARAN SULFATE PROTEOGLYCAN OF BASEMENT MEMBRANE; HSPG2 MYOTONIC MYOPATHY, DWARFISM, CHONDRODYSTROPHY, AND OCULAR AND FACIAL
KCNQ4	GDB:439046	DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 2; DFNA2

Gene	GDB Accession ID	OMIM Link
KCS	GDB:9848740	KENNY-CAFFEY SYNDROME, RECESSIVE FORM
KIF1B	GDB:128645	CHARCOT-MARIE-TOOTH DISEASE, NEURONAL TYPE, A; CMT2A
LAMB3	GDB:251820	LAMININ, BETA 3; LAMB3
LAMC2	GDB:136225	LAMININ, GAMMA 2; LAMC2 EPIDERMOLYSIS BULLOSA LETALIS
LGMD1B	GDB:231606	MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 1B; LGMD1B
LMNA	GDB:132146	LAMIN A/C; LMNA LIPODYSTROPHY, FAMILIAL PARTIAL, DUNNIGAN TYPE; LDP1
LOR	GDB:132049	LORICRIN; LOR
MCKD1	GDB:9859381	POLYCYSTIC KIDNEYS, MEDULLARY TYPE
MCL1	GDB:139137	MYELOID CELL LEUKEMIA 1; MCL1
MPZ	GDB:125266	HYPERTROPHIC NEUROPATHY OF DEJERINE-SOTTAS MYELIN PROTEIN ZERO; MPZ
MTHFR	GDB:370882	5,10-@METHYLENETETRAHYDROFO LATE REDUCTASE; MTHFR
MTR	GDB:119440	METHYLtetrahydrofolate:L-HO MOCysteine S-Methyltransferase; MTR
MUTYH	GDB:9315115	ADENOMATOUS POLYPOSIS OF THE COLON; APC
MYOC	GDB:5584221	GLAUCOMA 1, OPEN ANGLE; GLC1A MYOCILIN; MYOC
NB	GDB:9958705	NEUROBLASTOMA; NB
NCF2	GDB:120223	GRANULOMATOUS DISEASE, CHRONIC, AUTOSOMAL CYTOCHROME-b-POSITIVE FORM
NEM1	GDB:127387	NEMALINE MYOPATHY 1, AUTOSOMAL DOMINANT; NEM1
NPHS2	GDB:9955617	ARRHYTHMOGENIC RIGHT VENTRICULAR DYSPLASIA, FAMILIAL, 2; ARVD2
NPPA	GDB:118727	NATRIURETIC PEPTIDE PRECURSOR A; NPPA

Gene	GDB Accession ID	OMIM Link
NRAS	GDB:119457	ONCOGENE NRAS; NRAS; NRAS1
NTRK1	GDB:127897	ONCOGENE TRK NEUROTROPHIC TYROSINE KINASE, RECEPTOR, TYPE 1; NTRK1 NEUROPATHY, CONGENITAL SENSORY, WITH ANHIDROSIS
OPTA2	GDB:9955577	OSTEOPETROSIS, AUTOSOMAL DOMINANT, TYPE II; OPA2
PBX1	GDB:125351	PRE-B-CELL LEUKEMIA TRANSCRIPTION FACTOR-1; PBX1
PCHC	GDB:9955586	PHEOCHROMOCYTOMA
PGD	GDB:119486	6-@PHOSPHOGLUCONATE DEHYDROGENASE, ERYTHROCYTE
PHA2A	GDB:9955628	PSEUDOHYPOALDOSTERONISM, TYPE II; PHA2
PHGDH	GDB:9958261	3-@PHOSPHOGLYCERATE DEHYDROGENASE DEFICIENCY
PKLR	GDB:120294	PYRUVATE KINASE DEFICIENCY OF ERYTHROCYTE
PKP1	GDB:4249598	PLAKOPHILIN 1; PKP1
PLA2G2A	GDB:120296	PHOSPHOLIPASE A2, GROUP IIA; PLA2G2A
PLOD	GDB:127821	PROCOLLAGEN-LYSINE, 2-OXOGLUTARATE 5-DIOXYGENASE; PLOD EHRLERS-DANLOS SYNDROME, TYPE VI; E-D VI; EDS VI
PPOX	GDB:118852	PROTOPORPHYRINOGEN OXIDASE; PPOX
PPT	GDB:125227	CEROID-LIPOFUSCINOSIS, NEURONAL 1, INFANTILE; CLN1 PALMITOYL-PROTEIN THIOESTERASE; PPT
PRCC	GDB:3888215	PAPILLARY RENAL CELL CARCINOMA; PRCC
PRG4	GDB:9955719	ARTHROPATHY-CAMPTODACTYLY SYNDROME
<hr/>		
PSEN2	GDB:633044	ALZHEIMER DISEASE, FAMILIAL, TYPE 4; AD4
PTOS1	GDB:6279920	PTOSIS, HEREDITARY CONGENITAL 1; PTOS1
REN	GDB:120345	RENIN; REN
RFX5	GDB:6288464	REGULATORY FACTOR 5; RFX5

Gene	GDB Accession ID	OMIM Link
RHD	GDB:119551	RHESUS BLOOD GROUP, D ANTIGEN; RHD
RMD1	GDB:448902	RIPPLING MUSCLE DISEASE-1; RMD1
RPE65	GDB:226519	RETINAL PIGMENT EPITHELIUM-SPECIFIC PROTEIN, 65-KD; RPE65 AMAUROSIS CONGENITA OF LEBER II
SCCD	GDB:9955558	CORNEAL DYSTROPHY, CRYSTALLINE, OF SCHNYDER
SERPINC1	GDB:119024	ANTITHROMBIN III DEFICIENCY
SJS1	GDB:1381631	MYOTONIC MYOPATHY, DWARFISM, CHONDRODYSTROPHY, AND OCULAR AND FACIAL
SLC19A2	GDB:9837779	THIAMINE-RESPONSIVE MEGALOBLASTIC ANEMIA SYNDROME
SLC2A1	GDB:120627	SOLUTE CARRIER FAMILY 2, MEMBER 1; SLC2A1
SPTA1	GDB:119601	ELLIPTOCYTOSIS, RHESUS-UNLINKED TYPE HEREDITARY HEMOLYTIC SPECTRIN, ALPHA, ERYTHROCYTIC 1; SPTA1
TAL1	GDB:120759	T-CELL ACUTE LYMPHOCYTIC LEUKEMIA 1; TAL1
TNFSF6	GDB:422178	APOPTOSIS ANTIGEN LIGAND 1; APT1LG1
TNNT2	GDB:221879	TROPONIN-T2, CARDIAC; TNNT2
TPM3	GDB:127872	ONCOGENE TRK TROPOMYOSIN 3; TPM3
TSHB	GDB:120467	THYROID-STIMULATING HORMONE, BETA CHAIN; TSHB
UMPK	GDB:120481	URIDINE MONOPHOSPHATE KINASE; UMPK
UOX	GDB:127539	URATE OXIDASE; UOX
UROD	GDB:119628	PORPHYRIA CUTANEA TARDA; PCT
USH2A	GDB:120483	USHER SYNDROME, TYPE II; USH2
VMGLOM	GDB:9958134	GLOMUS TUMORS, MULTIPLE
VWS	GDB:120532	CLEFT LIP AND/OR PALATE WITH MUCOUS CYSTS OF LOWER LIP
WS2B	GDB:407579	WAARDENBURG SYNDROME, TYPE 2B; WS2B

Table 3: Genes, Locations and Genetic Disorders on Chromosome 2

Gene	GDB Accession ID	Location	OMIM Link
ABCB11	GDB:9864786	2q24-2q24 2q24.3-2q24.3	CHOLESTASIS, PROGRESSIVE FAMILIAL INTRAHEPATIC 2; PFIC2
ABCG5	GDB:10450298	2p21-2p21	PHYTOSTEROLEMIA
ABCG8	GDB:10450300	2p21-2p21	PHYTOSTEROLEMIA
ACADL	GDB:118745	2q34-2q35	ACYL-CoA DEHYDROGENASE, LONG-CHAIN, DEFICIENCY OF
ACP1	GDB:118962	2p25-2p25	PHOSPHATASE, ACID, OF ERYTHROCYTE; ACP1
AGXT	GDB:127113	2q37.3-2q37.3	OXALOSIS I
AHHR	GDB:118984	2pter-2q31	CYTOCHROME P450, SUBFAMILY I, POLYPEPTIDE 1; CYP1A1
ALMS1	GDB:9865539	2p13-2p12 2p14-2p13 2p13.1-2p13.1	ALSTROM SYNDROME
ALPP	GDB:119672	2q37.1-2q37.1	ALKALINE PHOSPHATASE, PLACENTAL; ALPP
ALS2	GDB:135696	2q33-2q35	AMYOTROPHIC LATERAL SCLEROSIS 2, JUVENILE; ALS2
APOB	GDB:119686	2p24-2p23 2p24-2p24	APOLIPOPROTEIN B; APOB
BDE	GDB:9955730	2q37-2q37	BRACHYDACTYLY, TYPE E; BDE
BDMR	GDB:533064	2q37-2q37	BRACHYDACTYLY-MENTAL RETARDATION SYNDROME; BDMR
BJS	GDB:9955717	2q34-2q36	TORTI AND NERVE DEAFNESS
BMPR2	GDB:642243	2q33-2q33 2q33-2q34	PULMONARY HYPERTENSION, PRIMARY; PPH1 BONE MORPHOGENETIC RECEPTOR TYPE II; BMPR2
CHRNA1	GDB:120586	2q24-2q32	CHOLINERGIC RECEPTOR, NICOTINIC, ALPHA POLYPEPTIDE 1; CHRNA1
CMCWTD	GDB:11498919	2p22.3-2p21	FAMILIAL CHRONIC MUCOCUTANEOUS, DOMINANT TYPE
CNGA3	GDB:434398	2q11.2-2q11.2	COLORBLINDNESS, TOTAL CYCLIC NUCLEOTIDE GATED CHANNEL, OLFACTORY, 3;

Gene	GDB Accession ID	Location	OMIM Link
			CNG3
COL3A1	GDB:118729	2q31-2q32.3 2q32.2-2q32.2	COLLAGEN, TYPE III; COL3A1 EHLERS-DANLOS SYNDROME, TYPE IV, AUTOSOMAL DOMINANT
COL4A3	GDB:128351	2q36-2q37	COLLAGEN, TYPE IV, ALPHA-3 CHAIN; COL4A3
COL4A4	GDB:132673	2q35-2q37	COLLAGEN, TYPE IV, ALPHA-4 CHAIN; COL4A4
COL6A3	GDB:119066	2q37.3-2q37.3	COLLAGEN, TYPE VI, ALPHA-3 CHAIN; COL6A3 MYOPATHY, BENIGN CONGENITAL, WITH CONTRACTURES
CPS1	GDB:119799	2q33-2q36 2q34-2q35 2q35-2q35	HYPERAMMONEMIA DUE TO CARBAMOYLPHOSPHATE SYNTHETASE I DEFICIENCY
CRYGA	GDB:119076	2q33-2q35	CRYSTALLIN, GAMMA A; CRYGA
CRYGEP1	GDB:119808	2q33-2q35	CRYSTALLIN, GAMMA A; CRYGA
CYP1B1	GDB:353515	2p21-2p21 2p22-2p21 2pter-2qter	GLAUCOMA 3, PRIMARY INFANTILE, A; GLC3A CYTOCHROME P450, SUBFAMILY I (DIOXIN-INDUCIBLE), POLYPEPTIDE 1; CYP1B1
CYP27A1	GDB:128129	2q33-2qter	CEREBROTENDINOUS XANTHOMATOSIS
DBI	GDB:119837	2q12-2q21	DIAZEPAM BINDING INHIBITOR; DBI
DES	GDB:119841	2q35-2q35	DESMIN; DES
DYSF	GDB:340831	2p-2p 2p13-2p13 2pter-2p12	MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 2B; LGMD2B MUSCULAR DYSTROPHY, LATE-ONSET DISTAL
EDAR	GDB:9837372	2q11-2q13	DYSPLASIA, HYPOHIDROTIC ECTODERMAL DYSPLASIA, ANHIDROTIC
EFEMP1	GDB:1220111	2p16-2p16	DOYNE HONEYCOMB DEGENERATION OF RETINA FIBRILLIN-LIKE; FBNL
EIF2AK3	GDB:9956743	2p12-2p12	EPIPHYSEAL DYSPLASIA, MULTIPLE, WITH EARLY-ONSET DIABETES

Gene	GDB Accession ID	Location	OMIM Link
			MELLITUS
ERCC3	GDB:119881	2q21-2q21	EXCISION-REPAIR, COMPLEMENTING DEFECTIVE, IN CHINESE HAMSTER, 3; ERCC3
FSHR	GDB:127510	2p21-2p16	FOLLICLE-STIMULATING HORMONE RECEPTOR; FSHR GONADAL DYSGENESIS, XX TYPE
GAD1	GDB:119244	2q31-2q31	PYRIDOXINE DEPENDENCY WITH SEIZURES
GINGF	GDB:9848875	2p21-2p21	GINGIVAL SON OF SEVENLESS (DROSOPHILA) HOMOLOG 1; SOS1
GLC1B	GDB:1297553	2q1-2q13	GLAUCOMA 1, OPEN ANGLE, B; GLC1B
GPD2	GDB:354558	2q24.1-2q24.1	GLYCEROL-3-PHOSPHATE DEHYDROGENASE-2; GPD2
GYPC	GDB:120027	2q14-2q21	BLOOD GROUP--GERBICH; Ge
HADHA	GDB:434026	2p23-2p23	HYDROXYACYL-CoA DEHYDROGENASE/3-KETOAC YL-CoA THIOLASE/ENOYL-CoA HYDRATASE,
HADHB	GDB:344953	2p23-2p23	HYDROXYACYL-CoA DEHYDROGENASE/3-KETOAC YL-CoA THIOLASE/ENOYL-CoA HYDRATASE,
HOXD13	GDB:127225	2q31-2q31	HOMEBOX-D13; HOXD13 SYNDACTYLY, TYPE II
HPE2	GDB:136066	2p21-2p21	MIDLINE CLEFT SYNDROME
IGKC	GDB:120088	2p12-2p12 2p11.2-2p11.2	IMMUNOGLOBULIN KAPPA CONSTANT REGION; IGKC
IHH	GDB:511203	2q33-2q35 2q35-2q35 2pter-2qter	BRACHYDACTYLY, TYPE A1; BDA1 INDIAN HEDGEHOG, DROSOPHILA, HOMOLOG OF; IHH
IRS1	GDB:133974	2q36-2q36	INSULIN RECEPTOR SUBSTRATE 1; IRS1
ITGA6	GDB:128027	2pter-2qter	INTEGRIN, ALPHA-6; ITGA6
KHK	GDB:391903	2p23.3-2p23.2	FRUCTOSURIA
KYNU	GDB:9957925	2q22.2-2q23.3	
LCT	GDB:120140	2q21-2q21	DISACCHARIDE INTOLERANCE II

Gene	GDB Accession ID	Location	OMIM Link
LHCGR	GDB:125260	2p21-2p21	LUTEINIZING HORMONE/CHORIOGONADOTROPIN RECEPTOR; LHCGR
LSFC	GDB:9956219	2-2 2p16-2p16	CYTOCHROME c OXIDASE DEFICIENCY, FRENCH-CANADIAN TYPE
MSH2	GDB:203983	2p16-2p16 2p22-2p21	COLON CANCER, FAMILIAL, NONPOLYPPOSIS TYPE 1; FCC1
MSH6	GDB:632803	2p16-2p16	G/T MISMATCH-BINDING PROTEIN; GTBP
NEB	GDB:120224	2q24.1-2q24.2	NEBULIN; NEB NEMALINE MYOPATHY 2, AUTOSOMAL RECESSIVE; NEM2
NMTC	GDB:11498336	2q21-2q21	THYROID CARCINOMA, PAPILLARY
NPHP1	GDB:128050	2q13-2q13	NEPHRONOPHTHISIS, FAMILIAL JUVENILE 1; NPHP1
PAFAH1P1	GDB:435099	2p11.2-2p11.2	PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE, GAMMA SUBUNIT
PAX3	GDB:120495	2q36-2q36 2q35-2q35	KLEIN-WAARDENBURG SYNDROME WAARDENBURG SYNDROME; WS1
PAX8	GDB:136447	2q12-2q14	PAIRED BOX HOMEOTIC GENE 8; PAX8
PMS1	GDB:386403	2q31-2q33	POSTMEIOTIC SEGREGATION INCREASED (S. CEREVIRIAE)-1; PMS1
PNKD	GDB:5583973	2q33-2q35	CHOREOATHETOSIS, FAMILIAL PAROXYSMAL; FPD1
PPH1	GDB:1381541	2q31-2q32 2q33-2q33	PULMONARY HYPERTENSION, PRIMARY; PPH1
PROC	GDB:120317	2q13-2q21 2q13-2q14	PROTEIN C DEFICIENCY, CONGENITAL THROMBOTIC DISEASE DUE TO
REG1A	GDB:132455	2p12-2p12	REGENERATING ISLET-DERIVED 1-ALPHA; REG1A
SAG	GDB:120365	2q37.1-2q37.1	S-ANTIGEN; SAG
SFTPB	GDB:120374	2p12-2p11.2	SURFACTANT-ASSOCIATED PROTEIN, PULMONARY-3; SFTP3

Gene	GDB Accession ID	Location	OMIM Link
SLC11A1	GDB:371444	2q35-2q35	CIRRHOSIS, PRIMARY; PBC NATURAL RESISTANCE-ASSOCIATED MACROPHAGE PROTEIN 1; NRAMP1
SLC3A1	GDB:202968	2p16.3-2p16.3 2p21-2p21	SOLUTE CARRIER FAMILY 3, MEMBER 1; SLC3A1 CYSTINURIA; CSNU
SOS1	GDB:230004	2p22-2p21	GINGIVAL SON OF SEVENLESS (DROSOPHILA) HOMOLOG 1; SOS1
SPG4	GDB:230127	2p24-2p21	SPASTIC PARAPLEGIA-4, AUTOSOMAL DOMINANT; SPG4
SRD5A2	GDB:127343	2p23-2p23	PSEUDO VAGINAL PERINEOSCROTAL HYPOSPADIAS; PPSH
TCL4	GDB:136378	2q34-2q34	T-CELL LEUKEMIA/LYMPHOMA-4; TCL4
TGFA	GDB:120435	2p13-2p13	TRANSFORMING GROWTH FACTOR, ALPHA; TGFA
TMD	GDB:9837196	2q31-2q31	TIBIAL MUSCULAR DYSTROPHY, TARDIVE
TPO	GDB:120446	2p25-2p25 2p25-2p24	THYROID HORMONOGENESIS, GENETIC DEFECT IN, IIA
UGT1	GDB:120007	2q37-2q37	UDP GLUCURONOSYLTRANSFERASE 1 FAMILY, A1; UGT1A1
UV24	GDB:9955737	2pter-2qter	UV-DAMAGE, EXCISION REPAIR OF, UV-24
WSS	GDB:9955707	2q32-2q32	WRINKLY SKIN SYNDROME; WSS
XDH	GDB:266386	2p23-2p22	XANTHINURIA
ZAP70	GDB:433738	2q11-2q13 2q12-2q12	SYK-RELATED TYROSINE KINASE; SRK
ZFHX1B	GDB:9958310	2q22-2q22	DISEASE, MICROCEPHALY, AND IRIS COLOBOMA

Table 4: Genes, Locations and Genetic Disorders on Chromosome 3

Gene	GDB Accession ID	Location	OMIM Link
ACAA1	GDB:119643	3p23-3p22	PEROXISOMAL 3-OXOACYL-COENZYME A THIOLASE DEFICIENCY

Gene	GDB Accession ID	Location	OMIM Link
AGTR1	GDB:132359	3q21-3q25	ANGIOTENSIN II RECEPTOR, VASCULAR TYPE 1; AT2R1
AHSG	GDB:118985	3q27-3q27	ALPHA-2-HS-GLYCOPROTEIN; AHSG
AMT	GDB:132138	3p21.3-3p21.2 3p21.2-3p21.1	HYPERGLYCINEMIA, ISOLATED NONKETOTIC, TYPE II; NKH2
ARP	GDB:9959049	3p21.1-3p21.1	ARGININE-RICH PROTEIN
BBS3	GDB:376501	3p-3p 3p12.3-3q11.1	BARDET-BIEDL SYNDROME, TYPE 3; BBS3
BCHE	GDB:120558	3q26.1-3q26.2	BUTYRYLCHOLINESTERASE; BCHE
BCPM	GDB:433809	3q21-3q21	BENIGN CHRONIC PEMPHIGUS; BCPM
BTD	GDB:309078	3p25-3p25	BIOTINIDASE; BTD
CASR	GDB:134196	3q21-3q24	HYPOCALCIURIC HYPERCALCEMIA, FAMILIAL; HHC1
CCR2	GDB:337364	3p21-3p21	CHEMOKINE (C-C) RECEPTOR 2; CMKBR2
CCR5	GDB:1230510	3p21-3p21	CHEMOKINE (C-C) RECEPTOR 5; CMKBR5
CDL1	GDB:136344	3q26.3-3q26.3	DE LANGE SYNDROME; CDL
CMT2B	GDB:604021	3q13-3q22	CHARCOT-MARIE-TOOTH DISEASE, NEURONAL TYPE, B; CMT2B
COL7A1	GDB:128750	3p21-3p21 3p21.3-3p21.3	COLLAGEN, TYPE VII, ALPHA-1; COL7A1
CP	GDB:119069	3q23-3q25 3q21-3q24	CERULOPLASMIN; CP
CRV	GDB:11498333	3p21.3-3p21.1	VASCULOPATHY, RETINAL, WITH CEREBRAL LEUKODYSTROPHY
CTNNB1	GDB:141922	3p22-3p22 3p21.3-3p21.3	CATENIN, BETA 1; CTNNB1
DEM	GDB:681157	3p12-3q11	DEMENTIA, FAMILIAL NONSPECIFIC; DEM
ETM1	GDB:9732523	3q13-3q13	TREMOR, HEREDITARY ESSENTIAL 1; ETM1
FANCD2	GDB:698345	3p25.3-3p25.3 3pter-3p24.2	FANCONI PANCYTOPENIA, COMPLEMENTATION GROUP D
FIH	GDB:9955790	3q13-3q13	HYPOPARATHYROIDISM, FAMILIAL ISOLATED; FIH
FOXL2	GDB:129025	3q23-3q23	BLEPHAROPHIMOSIS,

Gene	GDB Accession ID	Location	OMIM Link
		3q22-3q23	EPICANTHUS INVERSUS, AND PTOSIS; BPES
GBE1	GDB:138442	3p12-3p12	GLYCOGEN STORAGE DISEASE IV
GLB1	GDB:119987	3p22-3p21.33 3p21.33-3p21.33	GANGLIOSIDOSIS, GENERALIZED GM1, TYPE I
GLC1C	GDB:3801941	3q21-3q24	GLAUCOMA 1, OPEN ANGLE, C; GLC1C
GNAI2	GDB:120516	3p21.3-3p21.2	GUANINE NUCLEOTIDE-BINDING PROTEIN, ALPHA-INHIBITING, POLYPEPTIDE-2;
GNAT1	GDB:119277	3p21.3-3p21.2	GUANINE NUCLEOTIDE-BINDING PROTEIN, ALPHA-TRANSDUCING, POLYPEPTIDE
GP9	GDB:126370	3pter-3qter	PLATELET GLYCOPROTEIN IX; GP9
GPX1	GDB:119282	3q11-3q12 3p21.3-3p21.3	GLUTATHIONE PEROXIDASE; GPX1
HGD	GDB:203935	3q21-3q23	ALKAPTONURIA; AKU
HRG	GDB:120055	3q27-3q27	HISTIDINE-RICH GLYCOPROTEIN; HRG; HRGP
ITIH1	GDB:120107	3p21.2-3p21.1	INTER-ALPHA-TRYPSIN INHIBITOR, HEAVY CHAIN-1; ITIH1; IATIH; ITIH
KNG	GDB:125256	3q27-3q27	FLAUJEAC FACTOR DEFICIENCY
LPP	GDB:1391795	3q27-3q28	LIM DOMAIN-CONTAINING PREFERRED TRANSLOCATION PARTNER IN LIPOMA; LPP
LRS1	GDB:682448	3p21.1-3p14.1	LARSEN SYNDROME, AUTOSOMAL DOMINANT; LRS1
MCCC1	GDB:135989	3q27-3q27 3q25-3q27	BETA-METHYLCROTONYLGLY CINURIA I
MDS1	GDB:250411	3q26-3q26	MYELODYSPLASIA SYNDROME 1; MDS1
MHS4	GDB:574245	3q13.1-3q13.1	HYPERTHERMIA SUSCEPTIBILITY-4; MHS4
MITF	GDB:214776	3p14.1-3p12	MICROPHTHALMIA-ASSOCIATED TRANSCRIPTION FACTOR; MITF WAARDENBURG SYNDROME, TYPE II; WS2

Gene	GDB Accession ID	Location	OMIM Link
MLH1	GDB:249617	3p23-3p22 3p21.3-3p21.3	COLON CANCER, FAMILIAL, NONPOLYPOSIS TYPE 2; FCC2
MYL3	GDB:120218	3p21.3-3p21.2	MYOSIN, LIGHT CHAIN, ALKALI, VENTRICULAR AND SKELETAL SLOW; MYL3
MYMY	GDB:11500610	3p26-3p24.2	DISEASE
OPA1	GDB:118848	3q28-3q29	OPTIC ATROPHY 1; OPA1
PBXP1	GDB:125352	3q22-3q23	PRE-B-CELL LEUKEMIA TRANSCRIPTION FACTOR-1; PBX1
PCCB	GDB:119474	3q21-3q22	GLYCINEMIA, KETOTIC, II
POU1F1	GDB:129070	3p11-3p11	POU DOMAIN, CLASS 1, TRANSCRIPTION FACTOR 1; POU1F1
PPARG	GDB:1223810	3p25-3p25	CANCER OF COLON PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR, GAMMA; PPARG
PROS1	GDB:120721	3p11-3q11 3p11.1-3q11.2	PROTEIN S, ALPHA; PROS1
PTHR1	GDB:138128	3p22-3p21.1	METAPHYSEAL CHONDRODYSPLASIA, MURK JANSEN TYPE PARATHYROID HORMONE RECEPTOR 1; PTHR1
RCA1	GDB:230233	3p14.2-3p14.2	RENAL CARCINOMA, FAMILIAL, ASSOCIATED 1; RCA1
RHO	GDB:120347	3q21.3-3q24	RHODOPSIN; RHO
SCA7	GDB:454471	3p21.1-3p12	SPINOCEREBELLAR ATAXIA 7; SCA7
SCLC1	GDB:9955750	3p23-3p21	SMALL-CELL CANCER OF THE LUNG; SCCL
SCN5A	GDB:132152	3p21-3p21	SODIUM CHANNEL, VOLTAGE-GATED, TYPE V, ALPHA POLYPEPTIDE; SCN5A
SI	GDB:120377	3q25.2-3q26.2	DISACCHARIDE INTOLERANCE I
SLC25A20	GDB:6503297	3p21.31-3p21.31	CARNITINE-ACYLCARNITINE TRANSLOCASE; CACT
SLC2A2	GDB:119995	3q26.2-3q27 3q26.1-3q26.3	SOLUTE CARRIER FAMILY 2, MEMBER 2; SLC2A2 FANCONI-BICKEL SYNDROME; FBS
TF	GDB:120432	3q21-3q21	TRANSFERRIN; TF

Gene	GDB Accession ID	Location	OMIM Link
TGFBR2	GDB:224909	3p22-3p22 3pter-3p24.2	TRANSFORMING GROWTH FACTOR-BETA RECEPTOR, TYPE II; TGFBR2
THPO	GDB:374007	3q26.3-3q27	THROMBOPOIETIN; THPO
THRΒ	GDB:120731	3p24.1-3p22 3p24.3-3p24.3	THYROID HORMONE RECEPTOR, BETA; THRΒ
TKT	GDB:132402	3p14.3-3p14.3	WERNICKE-KORSAKOFF SYNDROME
TM4SF1	GDB:250815	3q21-3q25	TUMOR-ASSOCIATED ANTIGEN L6; TAAL6
TRH	GDB:128072	3pter-3qter	THYROTROPIN-RELEASING HORMONE DEFICIENCY
UMPS	GDB:120482	3q13-3q13	OROTICACIDURIA I
UQCRC1	GDB:141850	3p21.3-3p21.2 3p21.3-3p21.3	UBIQUINOL-CYTOCHROME c REDUCTASE CORE PROTEIN I; UQCRC1
USH3A	GDB:392645	3q21-3q25	USHER SYNDROME, TYPE III; USH3
VHL	GDB:120488	3p26-3p25	VON HIPPEL-LINDAU SYNDROME; VHL
WS2A	GDB:128053	3p14.2-3p13	MICROPHTHALMIA-ASSOCIATED TRANSCRIPTION FACTOR; MITF WAARDENBURG SYNDROME, TYPE II; WS2
XPC	GDB:134769	3p25.1-3p25.1	XERODERMA PIGMENTOSUM, COMPLEMENTATION GROUP C; XPC
ZNF35	GDB:120507	3p21-3p21	ZINC FINGER PROTEIN-35; ZNF35

Table 5: Genes, Locations and Genetic Disorders on Chromosome 4

Gene	GDB Accession ID	Location	OMIM Link
ADH1B	GDB:119651	4q21-4q23 4q22-4q22	ALCOHOL DEHYDROGENASE-2; ADH2
ADH1C	GDB:119652	4q21-4q23 4q22-4q22	ALCOHOL DEHYDROGENASE-3; ADH3
AFP	GDB:119660	4q11-4q13	ALPHA-FETOPROTEIN; AFP
AGA	GDB:118981	4q23-4q35 4q32-4q33	ASPARTYLGLUCOSAMINURIA ; AGU
AIH2	GDB:118751	4q11-4q13 4q13.3-4q21.2	AMELOGENESIS IMPERFECTA 2, HYPOPLASTIC LOCAL, AUTOSOMAL DOMINANT;

Gene	GDB Accession ID	Location	OMIM Link
ALB	GDB:118990	4q11-4q13	ALBUMIN; ALB
ASMD	GDB:119705	4q-4q 4q28-4q31	ANTERIOR SEGMENT OCULAR DYSGENESIS; ASOD
BFHD	GDB:11498907	4q34.1-4q35	DYSPLASIA, BEUKES TYPE
CNGA1	GDB:127557	4p14-4q13	CYCLIC NUCLEOTIDE GATED CHANNEL, PHOTORECEPTOR, cGMP GATED, 1; CNCG1
CRBM	GDB:9958132	4p16.3-4p16.3	CHERUBISM
DCK	GDB:126810	4q13.3-4q21.1	DEOXYCYTIDINE KINASE; DCK
DFNA6	GDB:636175	4p16.3-4p16.3	DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 6; DFNA6
DSPP	GDB:5560457	4pter-4qter 4q21.3-4q21.3	DENTIN PHOSPHOPROTEIN; DPP DENTINOGENESIS IMPERFECTA; DGI1
DTDP2	GDB:9955810	4q-4q	DENTIN DYSPLASIA, TYPE II
ELONG	GDB:11498700	4q24-4q24	
ENAM	GDB:9955259	4q21-4q21	AMELOGENESIS IMPERFECTA 2, HYPOPLASTIC LOCAL, AUTOSOMAL DOMINANT; AMELOGENESIS IMPERFECTA, HYPOPLASTIC TYPE
ETFDH	GDB:135992	4q32-4q35	GLUTARICACIDURIA IIC; GA IIC
EVC	GDB:555573	4p16-4p16	ELLIS-VAN CREVELD SYNDROME; EVC
F11	GDB:119891	4q35-4q35	PTA DEFICIENCY
FABP2	GDB:119127	4q28-4q31	FATTY ACID BINDING PROTEIN 2, INTESTINAL; FABP2
FGA	GDB:119129	4q28-4q28	AMYLOIDOSIS, FAMILIAL VISCERAL FIBRINOGEN, A ALPHA POLYPEPTIDE; FGA
FGB	GDB:119130	4q28-4q28	FIBRINOGEN, B BETA POLYPEPTIDE; FGB
FGFR3	GDB:127526	4p16.3-4p16.3	ACHONDROPLASIA; ACH BLADDER CANCER FIBROBLAST GROWTH FACTOR RECEPTOR-3; FGFR3
FGG	GDB:119132	4q28-4q28	FIBRINOGEN, G GAMMA POLYPEPTIDE; FGG
FSHMD1A	GDB:119914	4q35-4q35	FACIOSCAPULOHUMERAL MUSCULAR DYSTROPHY 1A;

Gene	GDB Accession ID	Location	OMIM Link
			FSHMD1A
GC	GDB:119263	4q12-4q13 4q12-4q12	GROUP-SPECIFIC COMPONENT; GC
GNPTA	GDB:119280	4q21-4q23	MUCOLIPIDOSIS II; ML2; ML II
GNRHR	GDB:136456	4q13-4q13 4q21.2-4q21.2	GONADOTROPIN-RELEASING HORMONE RECEPTOR; GNRHR
GYPA	GDB:118890	4q28-4q31 4q28.2-4q31.1	BLOOD GROUP--MN LOCUS; MN
HCA	GDB:9954675	4q33-4qter	HYPERCALCIURIA, FAMILIAL IDIOPATHIC
HCL2	GDB:119305	4q28-4q31 4q-4q	HAIR COLOR-2; HCL2
HD	GDB:119307	4p16.3-4p16.3	HUNTINGTON DISEASE; HD
HTN3	GDB:125601	4q12-4q21	HISTATIN-3; HTN3
HVBS6	GDB:120687	4q32-4q32	HEPATOCELLULAR CARCINOMA-2; HCC2
IDUA	GDB:119327	4p16.3-4p16.3	MUCOPOLYSACCHARIDOSIS TYPE I; MPS I
IF	GDB:120077	4q24-4q25 4q25-4q25	COMPLEMENT COMPONENT-3 INACTIVATOR, DEFICIENCY OF
JPD	GDB:120113	4pter-4qter 4q12-4q13	PERIODONTITIS, JUVENILE; JPD
KIT	GDB:120117	4q12-4q12	V-KIT HARDY-ZUCKERMAN 4 FELINE SARCOMA VIRAL ONCOGENE HOMOLOG; KIT
KLKB1	GDB:127575	4q34-4q35 4q35-4q35	FLETCHER FACTOR DEFICIENCY
LQT4	GDB:682072	4q25-4q27	SYNDROME WITHOUT PSYCHOMOTOR RETARDATION
MANBA	GDB:125261	4q21-4q25	MANNOSIDOSIS, BETA; MANB1
MLLT2	GDB:136792	4q21-4q21	MYELOID/LYMPHOID OR MIXED LINEAGE LEUKEMIA, TRANSLOCATED TO, 2; MLLT2
MSX1	GDB:120683	4p16.3-4p16.1 4p16.1-4p16.1	MSH, DROSOPHILA, HOMEOPA BOX, HOMOLOG OF, 1; MSX1
MTP	GDB:228961	4q24-4q24	MICROSOMAL TRIGLYCERIDE TRANSFER PROTEIN, 88 KD; MTP
NR3C2	GDB:120188	4q31-4q31 4q31.1-4q31.1	PSEUDOHYPOALDOSTERONIS M, TYPE I, AUTOSOMAL RECESSIVE; PHA1

Gene	GDB Accession ID	Location	OMIM Link
PBT	GDB:120260	4q12-4q21	PIEBALD TRAIT; PBT
PDE6B	GDB:125915	4p16.3-4p16.3	NIGHTBLINDNESS, CONGENITAL STATIONARY; CSNB3 PHOSPHODIESTERASE 6B, cGMP-SPECIFIC, ROD, BETA; PDE6B
PEE1	GDB:7016765	4q31-4q34 4q25-4qter	1; PEE1
PITX2	GDB:134770	4q25-4q27 4q25-4q26 4q25-4q25	IRIDOGONIODYSgenesis, TYPE 2; IRID2 RIEGER SYNDROME, TYPE 1; RIEG1 RIEG BICOID-RELATED HOMEobox TRANSCRIPTION FACTOR 1; RIEG1 HOME BOX 2
PKD2	GDB:118851	4q21-4q23	POLYCYSTIC KIDNEY DISEASE 2; PKD2
QDPR	GDB:120331	4p15.3-4p15.3 4p15.31-4p15.31	PHENYLKETONURIA II
SGCB	GDB:702072	4q12-4q12	MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 2E; LGMD2E
SLC25A4	GDB:119680	4q35-4q35	ADENINE NUCLEOTIDE TRANSLOCATOR 1; ANT1 PROGRESSIVE EXTERNAL OPHTHALMOPLEGIA; PEO
SNCA	GDB:439047	4q21.3-4q22 4q21-4q21	SYNUCLEIN, ALPHA; SNCA PARKINSON DISEASE, FAMILIAL, TYPE 1; PARK1
SOD3	GDB:125291	4p16.3-4q21	SUPEROXIDE DISMUTASE, EXTRACELLULAR; SOD3
STATH	GDB:120391	4q11-4q13	STATHERIN; STATH; STR
TAPVR1	GDB:392646	4p13-4q11	ANOMALOUS PULMONARY VENOUS RETURN; APVR
TYS	GDB:119624	4q-4q	SCLEROZYLOSIS; TYS
WBS2	GDB:132426	4q33-4q35.1	WILLIAMS-BEUREN SYNDROME; WBS
WFS1	GDB:434294	4p-4p 4p16-4p16	DIABETES MELLITUS AND INSIPIDUS WITH OPTIC ATROPHY AND DEAFNESS
WHCR	GDB:125355	4p16.3-4p16.3	WOLF-HIRSCHHORN SYNDROME; WHS

Table 6: Genes, Locations and Genetic Disorders on Chromosome 5

Gene	GDB Accession ID	OMIM Link
ADAMTS2	GDB:9957209	EHLERS-DANLOS SYNDROME, TYPE VII, AUTOSOMAL RECESSIVE
ADRB2	GDB:120541	BETA-2-ADRENERGIC RECEPTOR; ADRB2
AMCN	GDB:9836823	ARTHROGRYPOSIS MULTIPLEX CONGENITA, NEUROGENIC TYPE
AP3B1	GDB:9955590	HERMANSKY-PUDLAK SYNDROME; HPS
APC	GDB:119682	ADENOMATOUS POLYPOSIS OF THE COLON; APC
ARSB	GDB:119008	MUCOPOLYSACCHARIDOSIS TYPE VI; MPS VI
B4GALT7	GDB:9957653	SYNDROME, PROGEROID FORM
BHR1	GDB:9956078	ASTHMA
C6	GDB:119045	COMPLEMENT COMPONENT-6, DEFICIENCY OF
C7	GDB:119046	COMPLEMENT COMPONENT-7, DEFICIENCY OF
CCAL2	GDB:5584265	CHONDROCALCINOSIS, FAMILIAL ARTICULAR
CKN1	GDB:128586	COCKAYNE SYNDROME, TYPE I; CKN1
CMDJ	GDB:9595425	CRANIOMETAPHYSEAL DYSPLASIA, JACKSON TYPE; CMDJ
CRHBP	GDB:127438	CORTicotropin RELEASING HORMONE-BINDING PROTEIN; CRHBP
CSF1R	GDB:120600	COLONY-STIMULATING FACTOR-1 RECEPTOR; CSF1R
DHFR	GDB:119845	DIHYDROFOLATE REDUCTASE; DHFR
DIAPH1	GDB:9835482	DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 1; DFNA1 DIAPHANOUS, DROSOPHILA, HOMOLOG OF, 1
DTR	GDB:119853	DIPHTHERIA TOXIN SENSITIVITY; DTS
EOS	GDB:9956083	EOSINOPHILIA, FAMILIAL
ERVR	GDB:9835857	HYALOIDEORETINAL DEGENERATION OF WAGNER
F12	GDB:119892	HAGEMAN FACTOR DEFICIENCY
FBN2	GDB:128122	CONTRACTURAL

Gene	GDB Accession ID	OMIM Link
		ARACHNODACTYLY, CONGENITAL; CCA
GDNF	GDB:450609	GLIAL CELL LINE-DERIVED NEUROTROPHIC FACTOR; GDNF
GHR	GDB:119984	GROWTH HORMONE RECEPTOR; GHR
GLRA1	GDB:118801	GLYCINE RECEPTOR, ALPHA-1 SUBUNIT; GLRA1 KOK DISEASE
GM2A	GDB:120000	TAY-SACHS DISEASE, AB VARIANT
HEXB	GDB:119308	SANDHOFF DISEASE
HSD17B4	GDB:385059	17-@BETA-HYDROXYSTEROID DEHYDROGENASE IV; HSD17B4
ITGA2	GDB:128031	INTEGRIN, ALPHA-2; ITGA2
KFS	GDB:9958987	VERTEBRAL FUSION
LGMD1A	GDB:118832	MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 1A; LGMD1A
LOX	GDB:119367	LYSYL OXIDASE; LOX
LTC4S	GDB:384080	LEUKOTRIENE C4 SYNTHASE; LTC4S
MAN2A1	GDB:136413	MANNOSIDASE, ALPHA, II; MANA2 DYSERYTHROPOIETIC ANEMIA, CONGENITAL, TYPE II
MCC	GDB:128163	MUTATED IN COLORECTAL CANCERS; MCC
MCCC2	GDB:135990	II
MSH3	GDB:641986	MutS, E. COLI, HOMOLOG OF, 3; MSH3
MSX2	GDB:138766	MSH (DROSOPHILA) HOMEO BOX HOMOLOG 2; MSX2 PARIETAL FORAMINA, SYMMETRIC; PFM
NR3C1	GDB:120017	GLUCOCORTICOID RECEPTOR; GRL
PCSK1	GDB:128033	PROPROTEIN CONVERTASE SUBTILISIN/KEXIN TYPE 1; PCSK1
PDE6A	GDB:120265	PHOSPHODIESTERASE 6A, cGMP-SPECIFIC, ROD, ALPHA; PDE6A
PFBI	GDB:9956096	INTENSITY OF INFECTION IN
RASA1	GDB:120339	RAS p21 PROTEIN ACTIVATOR 1; RASA1
SCZD1	GDB:120370	DISORDER-1; SCZD1
SDHA	GDB:378037	SUCCINATE DEHYDROGENASE COMPLEX, SUBUNIT A,

Gene	GDB Accession ID	OMIM Link
		FLAVOPROTEIN; SDHA
SGCD	GDB:5886421	SARCOGLYCAN, DELTA; SGCD
SLC22A5	GDB:9863277	CARNITINE DEFICIENCY, SYSTEMIC, DUE TO DEFECT IN RENAL REABSORPTION
SLC26A2	GDB:125421	DIASTROPHIC DYSPLASIA; DTD EPIPHYSEAL DYSPLASIA, MULTIPLE; MED NEONATAL OSSEOUS DYSPLASIA I ACHONDROGENESIS, TYPE IB; ACG1B
SLC6A3	GDB:132445	SOLUTE CARRIER FAMILY 6, MEMBER 3; SLC6A3 DEFICIT-HYPERACTIVITY DISORDER; ADHD
SM1	GDB:9834488	SCHISTOSOMA MANSONI SUSCEPTIBILITY/RESISTANCE
SMA@	GDB:120378	SPINAL MUSCULAR ATROPHY I; SMA I SURVIVAL OF MOTOR NEURON 1, TELOMERIC; SMN1
SMN1	GDB:5215173	SPINAL MUSCULAR ATROPHY I; SMA I SURVIVAL OF MOTOR NEURON 1, TELOMERIC; SMN1
SMN2	GDB:5215175	SPINAL MUSCULAR ATROPHY I; SMA I SURVIVAL OF MOTOR NEURON 2, CENTROMERIC; SMN2
SPINK5	GDB:9956114	NETHERTON DISEASE
TCOF1	GDB:127390	TREACHER COLLINS-FRANCESCHETTI SYNDROME 1; TCOF1
TGFBI	GDB:597601	CORNEAL DYSTROPHY, GRANULAR TYPE CORNEAL DYSTROPHY, LATTICE TYPE I; CDL1 TRANSFORMING GROWTH FACTOR, BETA-INDUCED, 68 KD; TGFBI

Table 7: Genes, Locations and Genetic Disorders on Chromosome 6

Gene	GDB Accession ID	OMIM Link
ALDH5A1	GDB:454767	SUCCINIC SEMIALDEHYDE DEHYDROGENASE, NAD(+)-DEPENDENT; SSADH
ARG1	GDB:119006	ARGININEMIA

Gene	GDB Accession ID	OMIM Link
AS	GDB:135697	ANKYLOSING SPONDYLITIS; AS
ASSP2	GDB:119017	CITRULLINEMIA
BCKDHB	GDB:118759	MAPLE SYRUP URINE DISEASE, TYPE IB
BF	GDB:119726	GLYCINE-RICH BETA-GLYCOPROTEIN; GBG
C2	GDB:119731	COMPLEMENT COMPONENT-2, DEFICIENCY OF
C4A	GDB:119732	COMPLEMENT COMPONENT 4A; C4A
CDKN1A	GDB:266550	CYCLIN-DEPENDENT KINASE INHIBITOR 1A; CDKN1A
COL10A1	GDB:128635	COLLAGEN, TYPE X, ALPHA 1; COL10A1
COL11A2	GDB:119788	COLLAGEN, TYPE XI, ALPHA-2; COL11A2 STICKLER SYNDROME, TYPE II; STL2 DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 13; DFNA13
CYP21A2	GDB:120605	ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 21-HYDROXYLASE DEFICIENCY
DYX2	GDB:437584	DYSLEXIA, SPECIFIC, 2; DYX2
EJM1	GDB:119864	MYOCLONIC EPILEPSY, JUVENILE; EJM1
ELOVL4	GDB:11499609	STARGARDT DISEASE 3; STGD3
EPM2A	GDB:3763331	EPILEPSY, PROGRESSIVE MYOCLONIC 2; EPM2
ESR1	GDB:119120	ESTROGEN RECEPTOR; ESR
EYA4	GDB:700062	DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 10; DFNA10
F13A1	GDB:120614	FACTOR XIII, A1 SUBUNIT; F13A1
FANCE	GDB:1220236	FANCONI ANEMIA, COMPLEMENTATION GROUP E; FACE
GCLC	GDB:132915	GAMMA-GLUTAMYL CYSTEINE SYNTHETASE DEFICIENCY, HEMOLYTIC ANEMIA DUE
GJA1	GDB:125196	GAP JUNCTION PROTEIN, ALPHA-1, 43 KD; GJA1
GLYS1	GDB:136421	GLYCOSURIA, RENAL
GMPR	GDB:127058	GUANINE MONOPHOSPHATE

Gene	GDB Accession ID	OMIM Link
		REDUCTASE
GSE	GDB:9956235	DISEASE; CD
HCR	GDB:9993306	PSORIASIS, SUSCEPTIBILITY TO HFE[GDB:119309] HEMOCHROMATOSIS; HFE
HLA-A	GDB:119310	HLA-A HISTOCOMPATIBILITY TYPE; HLAA HLA-DPB1[GDB:120636] LA-DP HISTOCOMPATIBILITY TYPE, BETA-1 SUBUNIT
HLA-DRA	GDB:120641	HLA-DR HISTOCOMPATIBILITY TYPE; HLA-DRA
HPFH	GDB:9849006	HETEROCELLULAR HEREDITARY PERSISTENCE OF FETAL HEMOGLOBIN
ICS1	GDB:136433	IMMOTILE CILIA SYNDROME-1; ICS1
IDDM1	GDB:9953173	DIABETES MELLITUS, JUVENILE-ONSET INSULIN-DEPENDENT; IDDM
IFNGR1	GDB:120688	INTERFERON, GAMMA, RECEPTOR-1; IFNGR1
IGAD1	GDB:6929077	SELECTIVE DEFICIENCY OF
IGF2R	GDB:120083	INSULIN-LIKE GROWTH FACTOR 2 RECEPTOR; IGF2R
ISCW	GDB:9956158	SUPPRESSION; IS
LAMA2	GDB:132362	LAMININ, ALPHA 2; LAMA2
LAP	GDB:9958992	LARYNGEAL ADDUCTOR PARALYSIS; LAP
LCA5	GDB:11498764	AMAUROSIS CONGENITA OF LEBER I
LPA	GDB:120699	APOLIPOPROTEIN(a); LPA
MCDR1	GDB:131406	MACULAR DYSTROPHY, RETINAL, 1, NORTH CAROLINA TYPE; MCDR1
MOCS1	GDB:9862235	MOLYBDENUM COFACTOR DEFICIENCY
MUT	GDB:120204	METHYLMALONICACIDURIA DUE TO METHYLMALONIC CoA MUTASE DEFICIENCY
MYB	GDB:119441	V-MYB AVIAN MYELOBLASTOSIS VIRAL ONCOGENE HOMOLOG; MYB
NEU1	GDB:120230	NEURAMINIDASE DEFICIENCY
NKS1	GDB:128100	SUSCEPTIBILITY TO LYSIS BY ALLOREACTIVE NATURAL KILLER CELLS; EC1
NYS2	GDB:9848763	NYSTAGMUS, CONGENITAL

Gene	GDB Accession ID	OMIM Link
OA3	GDB:136429	ALBINISM, OCULAR, AUTOSOMAL RECESSIVE; OAR
ODDD	GDB:6392584	OCULODENTODIGITAL DYSPLASIA; ODDD
OFC1	GDB:120247	OROFACIAL CLEFT 1; OFC1
PARK2	GDB:6802742	PARKINSONISM, JUVENILE
PBCA	GDB:9956321	BETA CELL AGENESIS WITH NEONATAL DIABETES MELLITUS
PBCRA1	GDB:3763333	CHORIORETINAL ATROPHY, PROGRESSIVE BIFOCAL; CRAPB
PDB1	GDB:136349	DISEASE OF BONE; PDB
PEX3	GDB:9955507	ZELLWEGER SYNDROME; ZS
PEX6	GDB:5592414	ZELLWEGER SYNDROME; ZS PEROXIN-6; PEX6
PEX7	GDB:6155803	RHIZOMELIC CHONDRODYSPLASIA PUNCTATA; RCDP PEROXIN-7; PEX7
PKHD1	GDB:433910	POLYCYSTIC KIDNEY AND HEPATIC DISEASE-1; PKHD1
PLA2G7	GDB:9958829	PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE, SUBUNIT
PLG	GDB:119498	PLASMINOGEN; PLG
POLH	GDB:6963323	PIGMENTOSUM WITH NORMAL DNA REPAIR RATES
PPAC	GDB:9956248	ARTHROPATHY, PROGRESSIVE PSEUDORHEUMATOID, OF CHILDHOOD
PSORS1	GDB:6381310	PSORIASIS, SUSCEPTIBILITY TO
PUJO	GDB:9956231	MULTICYSTIC RENAL DYSPLASIA, BILATERAL; MRD
RCD1	GDB:333929	RETINAL CONE DEGENERATION
RDS	GDB:118863	RETINAL DEGENERATION, SLOW; RDS
RHAG	GDB:136011	RHESUS BLOOD GROUP-ASSOCIATED GLYCOPROTEIN; RHAG RH-NUL, REGULATOR TYPE; RHN
RP14	GDB:433713	RETINITIS PIGMENTOSA-14; RP14 TUBBY-LIKE PROTEIN 1; TULP1
RUNX2	GDB:392082	CLEIDOCRANIAL DYSPLASIA; CCD CORE-BINDING FACTOR, RUNT DOMAIN, ALPHA SUBUNIT 1; CBFA1
RWS	GDB:9956195	SENSITIVITY

Gene	GDB Accession ID	OMIM Link
SCA1	GDB:119588	SPINOCEBELLAR ATAXIA 1; SCA1
SCZD3	GDB:635974	DISORDER-3; SCZD3
SIASD	GDB:433552	SIALIC ACID STORAGE DISEASE; SIASD
SOD2	GDB:119597	SUPEROXIDE DISMUTASE 2, MITOCHONDRIAL; SOD2
ST8	GDB:6118456	OVARIAN TUMOR
TAP1	GDB:132668	TRANSPORTER 1, ABC; TAP1
TAP2	GDB:132669	TRANSPORTER 2, ABC; TAP2
TFAP2B	GDB:681506	DUCTUS ARTERIOSUS; PDA TRANSCRIPTION FACTOR AP-2 BETA; TFAP2B
TNDM	GDB:9956265	DIABETES MELLITUS, TRANSIENT NEONATAL
TNF	GDB:120441	TUMOR NECROSIS FACTOR; TNF
TPBG	GDB:125568	TROPHOBlast GLYCOPROTEIN; TPBG; M6P1
TPMT	GDB:209025	THIOPURINE S-METHYLTRANSFERASE; TPMT
TULP1	GDB:6199353	TUBBY-LIKE PROTEIN 1; TULP1
WISP3	GDB:9957361	ARTHROPATHY, PROGRESSIVE PSEUDORHEUMATOID, OF CHILDHOOD

Table 8: Genes, Locations and Genetic Disorders on Chromosome 7

Gene	GDB Accession ID	OMIM Link
AASS	GDB:11502144	HYPERLYSINEMIA
ABCB1	GDB:120712	P-GLYCOPROTEIN-1; PGY1
ABCB4	GDB:120713	P-GLYCOPROTEIN-3; PGY3
ACHE	GDB:118746	ACETYLCHOLINESTERASE BLOOD GROUP--Yt SYSTEM; YT
AQP1	GDB:129082	AQUAPORIN-1; AQP1 BLOOD GROUP--COLTON; CO
ASL	GDB:119703	ARGININOSUCCINICACIDURIA
ASNS	GDB:119706	ASPARAGINE SYNTHETASE; ASNS; AS
AUTS1	GDB:9864226	DISORDER
BPGM	GDB:119039	DIPHOSPHOLYCERATE MUTASE DEFICIENCY OF ERYTHROCYTE
C7orf2	GDB:10794644	ACHEIROPODY

Gene	GDB Accession ID	OMIM Link
CACNA2D1	GDB:132010	CALCIUM CHANNEL, VOLTAGE-DEPENDENT, L TYPE, ALPHA-2/DELTA SUBUNIT; MALIGNANT HYPERTHERMIA SUSCEPTIBILITY-3
CCM1	GDB:580824	CEREBRAL CAVERNOUS MALFORMATIONS 1; CCM1
CD36	GDB:138800	CD36 ANTIGEN; CD36
CFTR	GDB:120584	CYSTIC FIBROSIS; CF DEFERENS, CONGENITAL BILATERAL APLASIA OF; CBAVD; CAVD
CHORDOMA	GDB:11498328	
CLCN1	GDB:134688	CHLORIDE CHANNEL 1, SKELETAL MUSCLE; CLCN1
CMH6	GDB:9956392	CARDIOMYOPATHY, FAMILIAL HYPERTROPHIC, WITH WOLFF-PARKINSON-WHITE
CMT2D	GDB:9953232	CHARCOT-MARIE-TOOTH DISEASE, NEURONAL TYPE, D
COL1A2	GDB:119062	COLLAGEN, TYPE I, ALPHA-2 POLYPEPTIDE; COL1A2 OSTEogenesis IMPERFECTA TYPE I OSTEogenesis IMPERFECTA TYPE IV; OI4
CRS	GDB:119073	CRANIOSYNOSTOSIS, TYPE 1; CRS1
CYMD	GDB:366594	MACULAR EDEMA, CYSTOID
DFNA5	GDB:636174	DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 5; DFNA5
DLD	GDB:120608	LIPoAMIDE DEHYDROGENASE DEFICIENCY, LACTIC ACIDOSIS DUE TO
DYT11	GDB:10013754	MYOCLONUS, HEREDITARY ESSENTIAL
EEC1	GDB:136338	ECTRODACTYLY, ECTODERMAL DYSPLASIA, AND CLEFT LIP/PALATE; EEC
ELN	GDB:119107	ELASTIN; ELN WILLIAMS-BEUREN SYNDROME; WBS
ETV1	GDB:335229	ETS VARIANT GENE 1; ETV1
FKBP6	GDB:9955215	WILLIAMS-BEUREN SYNDROME; WBS
GCK	GDB:127550	DIABETES MELLITUS, AUTOSOMAL DOMINANT, TYPE II GLUCOKINASE; GCK

Gene	GDB Accession ID	OMIM Link
GHRHR	GDB:138465	GROWTH HORMONE-RELEASING HORMONE RECEPTOR; GHRHR
GHS	GDB:9956363	MICROSOMIA WITH RADIAL DEFECTS
GLI3	GDB:119990	PALLISTER-HALL SYNDROME; PHS GLI-KRUPPEL FAMILY MEMBER 3; GLI3 POSTAXIAL POLYDACTYLY, TYPE A1 GREIG CEPHALOPOLYSYNDACTYLY SYNDROME; GCPS
GPDS1	GDB:9956410	GLAUCOMA, PIGMENT-DISPERSION TYPE
GUSB	GDB:120025	MUCOPOLYSACCHARIDOSIS TYPE VII
HADH	GDB:120033	HYDROXYACYL-CoA DEHYDROGENASE/3-KETOACYL-CoA THIOLASE/ENOYL-CoA HYDRATASE,
HLXB9	GDB:136411	HOME BOX GENE HB9; HLXB9 SACRAL AGENESIS, HEREDITARY, WITH PRESACRAL MASS, ANTERIOR MENINGOCELE,
HOXA13	GDB:120656	HOME BOX A13; HOXA13
HPFH2	GDB:128071	HEREDITARY PERSISTENCE OF FETAL HEMOGLOBIN, HETEROCELLULAR, INDIAN
HRX	GDB:9958999	HRX
IAB	GDB:11498909	ANEURYSM, INTRACRANIAL BERRY
IMMP2L	GDB:11499195	GILLES DE LA TOURETTE SYNDROME; GTS
KCNH2	GDB:138126	LONG QT SYNDROME, TYPE 2; LQT2
LAMB1	GDB:119357	LAMININ BETA 1; LAMB1
LEP	GDB:136420	LEPTIN; LEP
MET	GDB:120178	MET PROTO-ONCOGENE; MET
NCF1	GDB:120222	GRANULOMATOUS DISEASE, CHRONIC, AUTOSOMAL CYTOCHROME-b-POSITIVE FORM
NM	GDB:119454	NEUTROPHIL CHEMOTACTIC RESPONSE; NCR
OGDH	GDB:118847	ALPHA-KETOGLUTARATE DEHYDROGENASE DEFICIENCY
OPN1SW	GDB:119032	TRITANOPIA
PEX1	GDB:9787110	ZELLWEGER SYNDROME; ZS PEROXIN-1; PEX1

Gene	GDB Accession ID	OMIM Link
PGAM2	GDB:120280	PHOSPHOGLYCERATE MUTASE, DEFICIENCY OF M SUBUNIT OF
PMS2	GDB:386406	POSTMEIOTIC SEGREGATION INCREASED (S. CEREVIAE)-2; PMS2
PON1	GDB:120308	PARAOXONASE 1; PON1
PPP1R3A	GDB:136797	PROTEIN PHOSPHATASE 1, REGULATORY (INHIBITOR) SUBUNIT 3; PPP1R3
PRSS1	GDB:119620	PANCREATITIS, HEREDITARY; PCTT PROTEASE, SERINE, 1; PRSS1
PTC	GDB:118744	PHENYLTHIOCARBAMIDE TASTING
PTPN12	GDB:136846	PROTEIN-TYROSINE PHOSPHATASE, NONRECEPTOR TYPE, 12; PTPN12
RP10	GDB:138786	RETINITIS PIGMENTOSA-10; RP10
RP9	GDB:333931	RETINITIS PIGMENTOSA-9; RP9
SERPINE1	GDB:120297	PLASMINOGEN ACTIVATOR INHIBITOR, TYPE I; PAI1
SGCE	GDB:9958714	MYOCLONUS, HEREDITARY ESSENTIAL
SHFM1	GDB:128195	SPLIT-HAND/FOOT DEFORMITY, TYPE I; SHFD1
SHH	GDB:456309	HOLOPROSENCEPHALY, TYPE 3; HPE3 SONIC HEDGEHOG, DROSOPHILA, HOMOLOG OF; SHH
SLC26A3	GDB:138165	DOWN-REGULATED IN ADENOMA; DRA CHLORIDE DIARRHEA, FAMILIAL; CLD
SLC26A4	GDB:5584511	PENDRED SYNDROME; PDS DEAFNESS, NEUROSENSORY, AUTOSOMAL RECESSIVE, 4; DFNB4
SLOS	GDB:385950	SMITH-LEMLI-OPITZ SYNDROME
SMAD1	GDB:3763345	SPINAL MUSCULAR ATROPHY, DISTAL, WITH UPPER LIMB PREDOMINANCE; SMAD1
TBXAS1	GDB:128744	THROMBOXANE A SYNTHASE 1; TBXAS1
TWIST	GDB:135694	ACROCEPHALOSYNDACTYLY TYPE III TWIST, DROSOPHILA, HOMOLOG OF; TWIST
ZWS1	GDB:120511	ZELLWEGER SYNDROME; ZS

Table 9: Genes, Locations and Genetic Disorders on Chromosome 8

Gene	GDB AccessionID	OMIM Link
ACHM3	GDB:9120558	PINGELAPESE BLINDNESS
ADRB3	GDB:203869	BETA-3-ADRENERGIC RECEPTOR; ADRB3
ANK1	GDB:118737	SPHEROCYTOSIS, HEREDITARY; HS
CA1	GDB:119047	CARBONIC ANHYDRASE I, ERYTHROCYTE, ELECTROPHORETIC VARIANTS OF; CA1
CA2	GDB:119739	OSTEOPETROSIS WITH RENAL TUBULAR ACIDOSIS
CCAL1	GDB:512892	CHONDROCALCINOSIS WITH EARLY-ONSET OSTEOARTHRITIS; CCAL2
CLN8	GDB:252118	EPILEPSY, PROGRESSIVE, WITH MENTAL RETARDATION; EPMR
CMT4A	GDB:138755	CHARCOT-MARIE-TOOTH NEUROPATHY 4A; CMT4A
CNGB3	GDB:9993286	PINGELAPESE BLINDNESS
COH1	GDB:252122	COHEN SYNDROME; COH1
CPP	GDB:119798	CERULOPLASMIN; CP
CRH	GDB:119804	CORTicotropin-releasing HORMONE; CRH
CYP11B1	GDB:120603	ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 11-@BETA-HYDROXYLASE DEFICIENCY
CYP11B2	GDB:120514	CYTOCHROME P450, SUBFAMILY XIB, POLYPEPTIDE 2; CYP11B2
DECR1	GDB:453934	2,4-@DIENOYL-CoA REDUCTASE; DECR
DPYS	GDB:5885803	DIHYDROPYRIMIDINASE; DPYS
DURS1	GDB:9958126	DUANE SYNDROME
EBS1	GDB:119856	EPIDERMOLYSIS BULLOSA SIMPLEX, OGNA TYPE
ECA1	GDB:10796318	JUVENILE ABSENCE
EGI	GDB:128830	EPILEPSY, GENERALIZED, IDIOPATHIC; EGI
EXT1	GDB:135994	EXOSTOSES, MULTIPLE, TYPE I; EXT1 CHONDROSARCOMA
EYA1	GDB:5215167	BRANCHIOOTORENAL DYSPLASIA EYES ABSENT 1; EYA1
FGFR1	GDB:119913	ACROCEPHALOSYNDACTYLY TYPE V FIBROBLAST GROWTH FACTOR RECEPTOR-1; FGFR1
GNRH1	GDB:133746	GONADOTROPIN-RELEASING HORMONE 1; GNRH1 FAMILIAL HYPOGONADOTROPHIC
GSR	GDB:119288	GLUTATHIONE REDUCTASE; GSR

Gene	GDB AccessionID	OMIM Link
GULOP	GDB:128078	SCURVY
HR	GDB:595499	ALOPECIA UNIVERSALIS ATRICHLIA WITH PAPULAR LESIONS HAIRLESS, MOUSE, HOMOLOG OF
KCNQ3	GDB:9787230	CONVULSIONS, BENIGN FAMILIAL NEONATAL, TYPE 2; BFNC2 POTASSIUM CHANNEL, VOLTAGE-GATED, SUBFAMILY Q, MEMBER 3
KFM	GDB:265291	KLIPPEL-FEIL SYNDROME; KFS; KFM
KWE	GDB:9315120	KERATOLYTIC WINTER ERYTHEMA
LGCR	GDB:120698	LANGER-GIEDION SYNDROME; LGS
LPL	GDB:120700	HYPERLIPOPROTEINEMIA, TYPE I
MCPH1	GDB:9834525	MICROCEPHALY; MCT
MOS	GDB:119396	TRANSFORMATION GENE: ONCOGENE MOS
MYC	GDB:120208	TRANSFORMATION GENE: ONCOGENE MYC; MYC
NAT1	GDB:125364	ARYLAMIDE ACETYLASE 1; AAC1
NAT2	GDB:125365	ISONIAZID INACTIVATION
NBS1	GDB:9598211	NIJMEGEN BREAKAGE SYNDROME
PLAT	GDB:119496	PLASMINOGEN ACTIVATOR, TISSUE; PLAT
PLEC1	GDB:4119073	EPIDERMOLYSIS BULLOSA SIMPLEX AND LIMB-GIRDLE MUSCULAR DYSTROPHY PLECTIN 1; PLEC1
PRKDC	GDB:234702	SEVERE COMBINED IMMUNODEFICIENCY DISEASE-1; SCID1 PROTEIN KINASE, DNA-ACTIVATED, CATALYTIC SUBUNIT; PRKDC
PXMP3	GDB:131487	PEROXIN-2; PEX2 ZELLWEGER SYNDROME; ZS
RP1	GDB:120352	RETINITIS PIGMENTOSA-1; RP1
SCZD6	GDB:9864736	DISORDER-2; SCZD2
SFTPC	GDB:120373	PULMONARY SURFACTANT APOPROTEIN PSP-C
SGM1	GDB:135350	KLIPPEL-FEIL SYNDROME; KFS; KFM
SPG5A	GDB:250332	SPASTIC PARAPLEGIA-5A, AUTOSOMAL RECESSIVE; SPG5A
STAR	GDB:635457	STEROIDOGENIC ACUTE REGULATORY PROTEIN; STAR
TG	GDB:120434	THYROGLOBULIN; TG
TRPS1	GDB:594960	TRICHORHINOPHALANGEAL SYNDROME, TYPE I; TRPS1

Gene	GDB AccessionID	OMIM Link
TTPA	GDB:512364	VITAMIN E, FAMILIAL ISOLATED DEFICIENCY OF; VED TOCOPHEROL (ALPHA) TRANSFER PROTEIN; TTPA
VMD1	GDB:119631	MACULAR DYSTROPHY, ATYPICAL VITELLIFORM; VMD1
WRN	GDB:128446	WERNER SYNDROME; WRN

Table 10: Genes, Locations and Genetic Disorders on Chromosome 9

Gene	GDB AccessionID	OMIM Link
ABCA1	GDB:305294	ANALPHALIPOPROTEINEMIA ATP-BINDING CASSETTE 1; ABC1
ABL1	GDB:119640	ABELSON MURINE LEUKEMIA VIRAL ONCOGENE HOMOLOG 1; ABL1
ABO	GDB:118956	ABO BLOOD GROUP; ABO
ADAMTS13	GDB:9956467	THROMBOCYTOPENIC PURPURA
AK1	GDB:119664	ADENYLYLATE KINASE-1; AK1
ALAD	GDB:119665	DELTA-AMINOEVULINATE DEHYDRATASE; ALAD
ALDH1A1	GDB:119667	ALDEHYDE DEHYDROGENASE-1; ALDH1
ALDOB	GDB:119669	FRUCTOSE INTOLERANCE, HEREDITARY
AMBp	GDB:120696	PROTEIN HC; HCP
AMCD1	GDB:437519	ARTHROGRYPOSIS MULTIPLEX CONGENITA, DISTAL, TYPE 1; AMCD1
ASS	GDB:119010	CITRULLINEMIA
BDMF	GDB:9954424	BONE DYSPLASIA WITH MEDULLARY FIBROSARCOMA
BSCL	GDB:9957720	SEIP SYNDROME
C5	GDB:119734	COMPLEMENT COMPONENT-5, DEFICIENCY OF
CDKN2A	GDB:335362	MELANOMA, CUTANEOUS MALIGNANT, 2; CMM2 CYCLIN-DEPENDENT KINASE INHIBITOR 2A; CDKN2A
CHAC	GDB:6268491	CHOREOACANTHOCYTOSIS; CHAC
CHH	GDB:138268	CARTILAGE-HAIR HYPOPLASIA; CHH
CMD1B	GDB:677147	CARDIOMYOPATHY, DILATED 1B; CMD1B
COL5A1	GDB:131457	COLLAGEN, TYPE V, ALPHA-1 POLYPEPTIDE; COL5A1
CRAT	GDB:359759	CARNITINE ACETYLTRANSFERASE; CRAT
DBH	GDB:119836	DOPAMINE BETA-HYDROXYLASE, PLASMA; DBH

Gene	GDB AccessionID	OMIM Link
DFNB11	GDB:1220180	DEAFNESS, NEUROSENSORY, AUTOSOMAL RECESSIVE, 7; DFNB7
DFNB7	GDB:636178	DEAFNESS, NEUROSENSORY, AUTOSOMAL RECESSIVE, 7; DFNB7
DNAI1	GDB:11500297	IMMOTILE CILIA SYNDROME-1; ICS1
DYS	GDB:137085	DYSAUTONOMIA, FAMILIAL; DYS
DYT1	GDB:119854	DYSTONIA 1, TORSION; DYT1
ENG	GDB:137193	ENDOGLIN; ENG
EPB72	GDB:128993	ERYTHROCYTE SURFACE PROTEIN BAND 7.2; EPB72 STOMATOCYTOSIS I
FANCC	GDB:132672	FANCONI ANEMIA, COMPLEMENTATION GROUP C; FACC
FBP1	GDB:141539	FRUCTOSE-1,6-BISPHOPHATASE 1; FBP1
FCMD	GDB:250412	FUKUYAMA-TYPE CONGENITAL MUSCULAR DYSTROPHY; FCMD
FRDA	GDB:119951	FRIEDREICH ATAXIA 1; FRDA1
GALT	GDB:119971	GALACTOSEMIA
GLDC	GDB:128611	HYPERGLYCINEMIA, ISOLATED NONKETOTIC, TYPE I; NKH1
GNE	GDB:9954891	INCLUSION BODY MYOPATHY; IBM2
GSM1	GDB:9784210	GENIOSPASM 1; GSM1
GSN	GDB:120019	AMYLOIDOSIS V GELSOLIN; GSN
HSD17B3	GDB:347487	PSEUDOHERMAPHRODITISM, MALE, WITH GYNECOMASTIA
HSN1	GDB:3853677	NEUROPATHY, HEREDITARY SENSORY, TYPE 1
IBM2	GDB:3801447	INCLUSION BODY MYOPATHY; IBM2
LALL	GDB:9954426	LEUKEMIA, ACUTE, WITH LYMPHOMATOUS FEATURES; LALL
LCCS	GDB:386141	LETHAL CONGENITAL CONTRACTURE SYNDROME; LCCS
LGMD2H	GDB:9862233	DYSTROPHY, HUTTERITE TYPE
LMX1B	GDB:9834526	NAIL-PATELLA SYNDROME; NPS1
MLLT3	GDB:138172	MYELOID/LYMPHOID OR MIXED LINEAGE LEUKEMIA, TRANSLOCATED TO, 3; MLLT3
MROS	GDB:9954430	MELKERSSON SYNDROME
MSSE	GDB:128019	EPITHELIOMA, SELF-HEALING SQUAMOUS
NOTCH1	GDB:131400	NOTCH, DROSOPHILA, HOMOLOG OF, 1; NOTCH1
ORM1	GDB:120250	OROSOMUCOID 1; ORM1

Gene	GDB Accession ID	OMIM Link
PAPPA	GDB:134729	PREGNANCY-ASSOCIATED PLASMA PROTEIN A; PAPPA
PIP5K1B	GDB:686238	FRIEDREICH ATAXIA 1; FRDA1
PTCH	GDB:119447	BASAL CELL NEVUS SYNDROME; BCNS PATCHED, DROSOPHILA, HOMOLOG OF; PTCH
PTGS1	GDB:128070	PROSTAGLANDIN-ENDOPEROXIDASE SYNTHASE 1; PTGS1
RLN1	GDB:119552	RELAXIN; RLN1
RLN2	GDB:119553	RELAXIN, OVARIAN, OF PREGNANCY
RMRP	GDB:120348	MITOCHONDRIAL RNA-PROCESSING ENDORIBONUCLEASE, RNA COMPONENT OF; RMRP; CARTILAGE-HAIR HYPOPLASIA; CHH
ROR2	GDB:136454	BRACHYDACTYLY, TYPE B; BDB ROBINOW SYNDROME, RECESSIVE FORM NEUROTROPHIC TYROSINE KINASE, RECEPTOR-RELATED 2; NTRKR2
RPD1	GDB:9954440	RETINITIS PIGMENTOSA-DEAFNESS SYNDROME 1, AUTOSOMAL DOMINANT
SARDH	GDB:9835149	SARCOSINEMIA
TDFA	GDB:9954420	FACTOR, AUTOSOMAL
TEK	GDB:344185	VENOUS MALFORMATIONS, MULTIPLE CUTANEOUS AND MUCOSAL; VMCM TEK TYROSINE KINASE, ENDOTHELIAL; TEK
TSC1	GDB:120735	TUBEROUS SCLEROSIS-1; TSC1
TYRP1	GDB:126337	TYROSINASE-RELATED PROTEIN 1; TYRP1 ALBINISM III XANTHISM
XPA	GDB:125363	XERODERMA PIGMENTOSUM I

Table 11: Genes, Locations and Genetic Disorders on Chromosome 10

Gene	GDB Accession ID	OMIM Link
CACNB2	GDB:132014	CALCIUM CHANNEL, VOLTAGE-DEPENDENT, BETA-2 SUBUNIT; CACNB2
COL17A1	GDB:131396	COLLAGEN, TYPE XVII, ALPHA-1 POLYPEPTIDE; COL17A1
CUBN	GDB:636049	MEGALOBLASTIC ANEMIA 1; MGA1
CYP17	GDB:119829	ADRENAL HYPERPLASIA, CONGENITAL, DUE TO 17-ALPHA-HYDROXYLASE DEFICIENCY

Gene	GDB Accession ID	OMIM Link
CYP2C19	GDB:119831	CYTOCHROME P450, SUBFAMILY IIC, POLYPEPTIDE 19; CYP2C19
CYP2C9	GDB:131455	CYTOCHROME P450, SUBFAMILY IIC, POLYPEPTIDE 9; CYP2C9
EGR2	GDB:120611	EARLY GROWTH RESPONSE-2; EGR2
EMX2	GDB:277886	EMPTY SPIRACLES, DROSOPHILA, 2, HOMOLOG OF; EMX2
EPT	GDB:9786112	EPILEPSY, PARTIAL; EPT
ERCC6	GDB:119882	EXCISION-REPAIR CROSS-COMPLEMENTING RODENT REPAIR DEFICIENCY, COMPLEMENTATION
FGFR2	GDB:127273	ACROCEPHALOSYNDACTYLY TYPE V FIBROBLAST GROWTH FACTOR RECEPTOR-2; FGFR2
HK1	GDB:120044	HEXOKINASE-1; HK1
HOX11	GDB:119607	HOMEBOX-11; HOX11
HPS	GDB:127359	HERMANSKY-PUDLAK SYNDROME; HPS
IL2RA	GDB:119345	INTERLEUKIN-2 RECEPTOR, ALPHA; IL2RA
LGI1	GDB:9864936	EPILEPSY, PARTIAL; EPT
LIPA	GDB:120153	WOLMAN DISEASE
MAT1A	GDB:129077	METHIONINE ADENOSYLTRANSFERASE DEFICIENCY
MBL2	GDB:120167	MANNOSE-BINDING PROTEIN, SERUM; MBP1
MKI67	GDB:120185	PROLIFERATION-RELATED Ki-67 ANTIGEN; MKI67
MXI1	GDB:137182	MAX INTERACTING PROTEIN 1; MXI1
OAT	GDB:120246	ORNITHINE AMINOTRANSFERASE DEFICIENCY
OATL3	GDB:215803	ORNITHINE AMINOTRANSFERASE DEFICIENCY
PAX2	GDB:138771	PAIRED BOX HOMEOTIC GENE 2; PAX2
PCBD	GDB:138478	PTERIN-4-ALPHA-CARBINOLAMINE DEHYDRATASE; PCBD PRIMAPTERINURIA
PEO1	GDB:632784	PROGRESSIVE EXTERNAL

Gene	GDB Accession ID	OMIM Link
		OPHTHALMOPLEGIA; PEO
PHYH	GDB:9263423	REFSUM DISEASE PHYTANOYL-CoA HYDROXYLASE; PHYH
PNLIP	GDB:127916	LIPASE, CONGENITAL ABSENCE OF PANCREATIC
PSAP	GDB:120366	PROSAPOSIN; PSAP
PTEN	GDB:6022948	MACROCEPHALY, MULTIPLE LIPOMAS AND HEMANGIOMATA MULTIPLE HAMARTOMA SYNDROME; MHAM POLYPOSIS, JUVENILE INTESTINAL PHOSPHATASE AND TENSIN HOMOLOG; PTEN
RBP4	GDB:120342	RETINOL-BINDING PROTEIN, PLASMA; RBP4
RDPA	GDB:9954445	REFSUM DISEASE WITH INCREASED PIPECOLICACIDEMIA; RDPA
RET	GDB:120346	RET PROTO-ONCOGENE; RET
SDF1	GDB:433267	STROMAL CELL-DERIVED FACTOR 1; SDF1
SFTPA1	GDB:119593	PULMONARY SURFACTANT APOPROTEIN PSP-A; PSAP
SFTPД	GDB:132674	PULMONARY SURFACTANT APOPROTEIN PSP-D; PSP-D
SHFM3	GDB:386030	SPLIT-HAND/FOOT MALFORMATION, TYPE 3; SHFM3
SIAL	GDB:6549924	NEURAMINIDASE DEFICIENCY
THC2	GDB:10794765	THROMBOCYTOPENIA
TNFRSF6	GDB:132671	APOPTOSIS ANTIGEN 1; APT1
UFS	GDB:6380714	UROFACIAL SYNDROME; UFS
UROS	GDB:128112	PORPHYRIA, CONGENITAL ERYTHROPOIETIC; CEP

Table 12: Genes, Locations and Genetic Disorders on Chromosome 11

Gene	GDB Accession ID	OMIM Link
AA	GDB:568984	ATROPHIA AREATA; AA
ABCC8	GDB:591370	SULFONYLUREA RECEPTOR; SUR PERSISTENT HYPERINSULINEMIC HYPOGLYCEMIA OF INFANCY

Gene	GDB Accession ID	OMIM Link
ACAT1	GDB:126861	ALPHA-METHYLACETOACETICACIDURIA
ALX4	GDB:10450304	PARIETAL FORAMINA, SYMMETRIC; PFM
AMPD3	GDB:136013	ADENOSINE MONOPHOSPHATE DEAMINASE-3; AMPD3
ANC	GDB:9954484	CANAL CARCINOMA
APOA1	GDB:119684	AMYLOIDOSIS, FAMILIAL VISCERAL APOLIPOPROTEIN A-I OF HIGH DENSITY LIPOPROTEIN; APOA1
APOA4	GDB:119000	APOLIPOPROTEIN A-IV; APOA4
APOC3	GDB:119001	APOLIPOPROTEIN C-III; APOC3
ATM	GDB:593364	ATAxia-TELANGiectasia; AT
BSCL2	GDB:9963996	SEIP SYNDROME
BWS	GDB:120567	BECKWITH-WIEDEMANN SYNDROME; BWS
CALCA	GDB:120571	CALCITONIN/CALCITONIN-RELATED POLYPEPTIDE, ALPHA; CALCA
CAT	GDB:119049	CATALASE; CAT
CCND1	GDB:128222	LEUKEMIA, CHRONIC LYMPHATIC; CLL CYCLIN D1; CCND1
CD3E	GDB:119764	CD3E ANTIGEN, EPSILON POLYPEPTIDE; CD3E
CD3G	GDB:119765	T3 T-CELL ANTIGEN, GAMMA CHAIN; T3G; CD3G
CD59	GDB:119769	CD59 ANTIGEN P18-20; CD59 HUMAN LEUKOCYTE ANTIGEN MIC11; MIC11
CDKN1C	GDB:593296	CYCLIN-DEPENDENT KINASE INHIBITOR 1C; CDKN1C
CLN2	GDB:125228	CEROID-LIPOFUSCINOSIS, NEURONAL 2, LATE INFANTILE TYPE; CLN2
CNTF	GDB:125919	CILIARY NEUROTROPHIC FACTOR; CNTF
CPT1A	GDB:597642	HYPOGLYCEMIA, HYPOKETOTIC, WITH DEFICIENCY OF CARNITINE PALMITOYLTRANSFERASE CARNITINE PALMITOYLTRANSFERASE I, LIVER; CPT1A
CTSC	GDB:642234	KERATOSIS PALMOPLANTARIS WITH PERIODONTOPATHIA KERATOSIS PALMOPLANTARIS WITH PERIODONTOPATHIA AND ONYCHOGRYPsis CATHEPSIN C; CTSC
DDB1	GDB:595014	DNA DAMAGE-BINDING PROTEIN; DDB1
DDB2	GDB:595015	DNA DAMAGE-BINDING PROTEIN-2; DDB2

Gene	GDB Accession ID	OMIM Link
DHCR7	GDB:9835302	SMITH-LEMLI-OPITZ SYNDROME
DLAT	GDB:118785	CIRRHOSIS, PRIMARY; PBC
DRD4	GDB:127782	DOPAMINE RECEPTOR D4; DRD4
ECB2	GDB:9958955	POLYCYTHEMIA, BENIGN FAMILIAL
ED4	GDB:9837373	DYSPLASIA, MARGARITA TYPE
EVR1	GDB:134029	EXUDATIVE VITREORETINOPATHY, FAMILIAL; EVR EXT2GDB:344921EXOSTOSES, MULTIPLE, TYPE II; EXT2 CHONDROSARCOMA
F2	GDB:119894	COAGULATION FACTOR II; F2
FSHB	GDB:119955	FOLLICLE-STIMULATING HORMONE, BETA POLYPEPTIDE; FSHB
FTH1	GDB:120617	FERRITIN HEAVY CHAIN 1; FTH1
GIF	GDB:118800	PERNICIOUS ANEMIA, CONGENITAL, DUE TO DEFECT OF INTRINSIC FACTOR
GSD1B	GDB:9837619	GLYCOGEN STORAGE DISEASE Ib
GSD1C	GDB:9837637	STORAGE DISEASE Ic
HBB	GDB:119297	HEMOGLOBIN--BETA LOCUS; HBB
HBBP1	GDB:120035	HEMOGLOBIN--BETA LOCUS; HBB
HBD	GDB:119298	HEMOGLOBIN--DELTA LOCUS; HBD
HBE1	GDB:119299	HEMOGLOBIN--EPSILON LOCUS; HBE1
HBG1	GDB:119300	HEMOGLOBIN, GAMMA A; HBG1
HBG2	GDB:119301	HEMOGLOBIN, GAMMA G; HBG2
HMBS	GDB:120528	PORPHYRIA, ACUTE INTERMITTENT; AIP
HND	GDB:9954478	HARTNUP DISORDER
HOMG2	GDB:9956484	MAGNESIUM WASTING, RENAL
HRAS	GDB:120684	BLADDER CANCER V-HA-RAS HARVEY RAT SARCOMA VIRAL ONCOGENE HOMOLOG; HRAS
HVBS1	GDB:120069	CANCER, HEPATOCELLULAR
IDDM2	GDB:128530	DIABETES MELLITUS, INSULIN-DEPENDENT, 2 DIABETES MELLITUS, JUVENILE-ONSET INSULIN-DEPENDENT; IDDM
IGER	GDB:119696	IgE RESPONSIVENESS, ATOPIC; IGER
INS	GDB:119349	INSULIN; INS
JBS	GDB:120111	JACOBSEN SYNDROME; JBS
KCNJ11	GDB:7009893	POTASSIUM CHANNEL, INWARDLY-RECTIFYING, SUBFAMILY J, MEMBER 11; KCNJ11 PERSISTENT HYPERINSULINEMIC HYPOGLYCEMIA OF

Gene	GDB Accession ID	OMIM Link
		INFANCY
KCNJ1	GDB:204206	POTASSIUM CHANNEL, INWARDLY-RECTIFYING, SUBFAMILY J, MEMBER 1; KCNJ1
KCNQ1	GDB:741244	LONG QT SYNDROME, TYPE 1; LQT1
LDHA	GDB:120141	LACTATE DEHYDROGENASE-A; LDHA
LRP5	GDB:9836818	OSTEOPOROSIS-PSEUDOGLIOMA SYNDROME; OPPG HIGH BONE MASS
MEN1	GDB:120173	MULTIPLE ENDOCRINE NEOPLASIA, TYPE 1; MEN1
MLL	GDB:128819	MYELOID/LYMPHOID OR MIXED-LINEAGE LEUKEMIA; MLL
MTACR1	GDB:125743	MULTIPLE TUMOR ASSOCIATED CHROMOSOME REGION 1; MTACR1
MYBPC3	GDB:579615	CARDIOMYOPATHY, FAMILIAL HYPERTROPHIC, 4; CMH4 MYOSIN-BINDING PROTEIN C, CARDIAC; MYBPC3
MYO7A	GDB:132543	MYOSIN VIIA; MYO7A DEAFNESS, NEUROSENSORY, AUTOSOMAL RECESSIVE, 2; DFNB2 DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 11; DFNA11
NNO1	GDB:10450513	SIMPLE, AUTOSOMAL DOMINANT
OPPG	GDB:3789438	OSTEOPOROSIS-PSEUDOGLIOMA SYNDROME; OPPG
OPTB1	GDB:9954474	OSTEOPETROSIS, AUTOSOMAL RECESSIVE
PAX6	GDB:118997	PAIRED BOX HOMEOTIC GENE 6; PAX6
PC	GDB:119472	PYRUVATE CARBOXYLASE DEFICIENCY
PDX1	GDB:9836634	PYRUVATE DEHYDROGENASE COMPLEX, COMPONENT X
PGL2	GDB:511177	PARAGANGLIOMAS, FAMILIAL NONCHROMAFFIN, 2; PGL2
PGR	GDB:119493	PROGESTERONE RESISTANCE
PORC	GDB:128610	PORPHYRIA, CHESTER TYPE; PORC
PTH	GDB:119522	PARATHYROID HORMONE; PTH
PTS	GDB:118856	6-@PYRUVOYLtetrahydropterin SYNTHASE; PTS
PVRL1	GDB:583951	ECTODERMAL DYSPLASIA, CLEFT LIP AND PALATE, HAND AND FOOT DEFORMITY, DYSPLASIA, MARGARITA

Gene	GDB Accession ID	OMIM Link
		TYPE POLIOVIRUS RECEPTOR RELATED; PVRR
PYGM	GDB:120329	GLYCOGEN STORAGE DISEASE V
RAG1	GDB:120334	RECOMBINATION ACTIVATING GENE-1; RAG1
RAG2	GDB:125186	RECOMBINATION ACTIVATING GENE-2; RAG2
ROM1	GDB:120350	ROD OUTER SEGMENT PROTEIN-1; ROM1
SAA1	GDB:120364	SERUM AMYLOID A1; SAA1
SCA5	GDB:378219	SPINOCEREBELLAR ATAXIA 5; SCA5
SCZD2	GDB:118874	DISORDER-2; SCZD2
SDHD	GDB:132456	PARAGANGLIOMAS, FAMILIAL NONCHROMAFFIN, 1; PGL1
SERPING1	GDB:119041	ANGIONEUROTIC EDEMA, HEREDITARY; HANE
SMPD1	GDB:128144	NIEMANN-PICK DISEASE
TCIRG1	GDB:9956269	OSTEOPETROSIS, AUTOSOMAL RECESSIVE
TCL2	GDB:9954468	LEUKEMIA, ACUTE T-CELL; ATL
TECTA	GDB:6837718	DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 8; DFNA8 DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 12; DFNA12
TH	GDB:119612	TYROSINE HYDROXYLASE; TH
TREH	GDB:9958953	TREHALASE
TSG101	GDB:1313414	TUMOR SUSCEPTIBILITY GENE 101; TSG101
TYR	GDB:120476	ALBINISM I
USH1C	GDB:132544	USHER SYNDROME, TYPE IC; USH1C
VMD2	GDB:133795	VITELLIFORM MACULAR DYSTROPHY; VMD2
VRNI	GDB:135662	VITREORETINOPATHY, NEOVASCULAR INFLAMMATORY; VRNI
WT1	GDB:120496	FRASIER SYNDROME WILMS TUMOR; WT1
WT2	GDB:118886	MULTIPLE TUMOR ASSOCIATED CHROMOSOME REGION 1; MTACR1
ZNF145	GDB:230064	PROMYELOCYTIC LEUKEMIA ZINC FINGER; PLZF

Table 13: Genes, Locations and Genetic Disorders on Chromosome 12

Gene	GDB Accession ID	OMIM Link
A2M	GDB:119639	ALPHA-2-MACROGLOBULIN; A2M
AAAS	GDB:9954498	GLUCOCORTICOID DEFICIENCY AND ACHALASIA
ACADS	GDB:118959	ACYL-CoA DEHYDROGENASE, SHORT-CHAIN; ACADS
ACLS	GDB:136346	ACROCALLOSAL SYNDROME; ACLS
ACVRL1	GDB:230240	OSLER-RENDU-WEBER SYNDROME 2; ORW2 ACTIVIN A RECEPTOR, TYPE II-LIKE KINASE 1; ACVRL1
ADHR	GDB:9954488	VITAMIN D-RESISTANT RICKETS, AUTOSOMAL DOMINANT
ALDH2	GDB:119668	ALDEHYDE DEHYDROGENASE-2; ALDH2
AMHR2	GDB:696210	ANTI-MULLERIAN HORMONE TYPE II RECEPTOR; AMHR2
AOM	GDB:118998	STICKLER SYNDROME, TYPE I; STL1
AQP2	GDB:141853	AQUAPORIN-2; AQP2 DIABETES INSIPIDUS, RENAL TYPE DIABETES INSIPIDUS, RENAL TYPE, AUTOSOMAL RECESSIVE
ATD	GDB:696353	ASPHYXIATING THORACIC DYSTROPHY; ATD
ATP2A2	GDB:119717	ATPase, Ca(2+)-TRANSPORTING, SLOW-TWITCH; ATP2A2 DARIER-WHITE DISEASE; DAR
BDC	GDB:5584359	BRACHYDACTYLY, TYPE C; BDC
C1R	GDB:119729	COMPLEMENT COMPONENT-C1r, DEFICIENCY OF
CD4	GDB:119767	T-CELL ANTIGEN T4/LEU3; CD4
CDK4	GDB:204022	CYCLIN-DEPENDENT KINASE 4; CDK4
CNA1	GDB:252119	CORNEA PLANA 1; CNA1
COL2A1	GDB:119063	STICKLER SYNDROME, TYPE I; STL1 COLLAGEN, TYPE II, ALPHA-1 CHAIN; COL2A1 ACHONDROGENESIS, TYPE II; ACG2
CYP27B1	GDB:9835730	PSEUDOVITAMIN D DEFICIENCY RICKETS; PDDR
DRPLA	GDB:270336	DENTATORUBRAL-PALLIDOLUYSIAN ATROPHY; DRPLA
ENUR2	GDB:666422	ENURESIS, NOCTURNAL, 2; ENUR2

Gene	GDB Accession ID	OMIM Link
FEOM1	GDB:345037	FIBROSIS OF EXTRAOCULAR MUSCLES, CONGENITAL; FEOM
FPF	GDB:9848880	PERIODIC FEVER, AUTOSOMAL DOMINANT
GNB3	GDB:120005	GUANINE NUCLEOTIDE-BINDING PROTEIN, BETA POLYPEPTIDE-3; GNB3
GNS	GDB:120006	MUCOPOLYSACCHARIDOSIS TYPE IIID
HAL	GDB:120746	HISTIDINEMIA
HBP1	GDB:701889	BRACHYDACTYLY WITH HYPERTENSION
HMGIC	GDB:362658	HIGH MOBILITY GROUP PROTEIN ISOFORM I-C; HMGIC
HMN2	GDB:9954508	MUSCULAR ATROPHY, ADULT SPINAL
HPD	GDB:135978	TYROSINEMIA, TYPE III
IGF1	GDB:120081	INSULINLIKE GROWTH FACTOR 1; IGF1
KCNA1	GDB:127903	POTASSIUM VOLTAGE-GATED CHANNEL, SHAKER-RELATED SUBFAMILY, MEMBER
KERA	GDB:252121	CORNEA PLANA 2; CNA2
KRAS2	GDB:120120	V-KI-RAS2 KIRSTEN RAT SARCOMA 2 VIRAL ONCOGENE HOMOLOG; KRAS2
KRT1	GDB:128198	KERATIN 1; KRT1
KRT2A	GDB:407640	ICHTHYOSIS, BULLOUS TYPE KERATIN 2A; KRT2A
KRT3	GDB:136276	KERATIN 3; KRT3
KRT4	GDB:120697	KERATIN 4; KRT4
KRT5	GDB:128110	EPIDERMOLYSIS BULLOSA HERPETIFORMIS, DOWLING-MEARA TYPE KERATIN 5; KRT5
KRT6A	GDB:128111	KERATIN 6A; KRT6A
KRT6B	GDB:128113	KERATIN 6B; KRT6B PACHYONYCHIA CONGENITA, JACKSON-LAWLER TYPE
KRTHB6	GDB:702078	MONILETHRIX KERATIN, HAIR BASIC (TYPE II) 6
LDHB	GDB:120147	LACTATE DEHYDROGENASE-B; LDHB
LYZ	GDB:120160	AMYLOIDOSIS, FAMILIAL

Gene	GDB Accession ID	OMIM Link
		VISCERAL LYSOZYME; LYZ
MGCT	GDB:9954504	TESTICULAR TUMORS
MPE	GDB:120191	MALIGNANT PROLIFERATION OF
MVK	GDB:134189	MEVALONICACIDURIA
MYL2	GDB:128829	MYOSIN, LIGHT CHAIN, REGULATORY VENTRICULAR; MYL2
NS1	GDB:439388	NOONAN SYNDROME 1; NS1
OAP	GDB:120245	OSTEOARTHROSIS, PRECOCIOUS; OAP
PAH	GDB:119470	PHENYLKETONURIA; PKU1
PPKB	GDB:696352	PALMOPLANTAR KERATODERMA, BOTHNIAN TYPE; PPKB
PRB3	GDB:119513	PAROTID SALIVARY GLYCOPROTEIN; G1
PXR1	GDB:433739	ZELLWEGER SYNDROME; ZS PEROXISOME RECEPTOR 1; PXR1
RLS	GDB:11501392	ACROMELALGIA, HEREDITARY
RSN	GDB:139158	RESTIN; RSN
SAS	GDB:128054	SARCOMA AMPLIFIED SEQUENCE; SAS
SCA2	GDB:128034	SPINOCEREBELLAR ATAXIA 2; SCA2 ATAXIN-2; ATX2
SCNN1A	GDB:366596	SODIUM CHANNEL, NONVOLTAGE-GATED, 1; SCNN1A
SMAL	GDB:9954506	SPINAL MUSCULAR ATROPHY, CONGENITAL NONPROGRESSIVE, OF LOWER LIMBS
SPPM	GDB:9954502	SCAPULOPERONEAL MYOPATHY; SPM
SPSMA	GDB:9954510	SCAPULOPERONEAL AMYOTROPHY, NEUROGENIC, NEW ENGLAND TYPE
TBX3	GDB:681969	ULNAR-MAMMARY SYNDROME; UMS T-BOX 3; TBX3
TBX5	GDB:6175917	HOLT-ORAM SYNDROME; HOS T-BOX 5; TBX5
TCF1	GDB:125297	TRANSCRIPTION FACTOR 1, HEPATIC; TCF1 MATURITY-ONSET DIABETES OF THE YOUNG, TYPE III; MODY3
TPI1	GDB:119617	TRIOSEPHOSPHATE ISOMERASE 1; TPI1

Gene	GDB Accession ID	OMIM Link
TSC3	GDB:127930	SCLEROSIS-3; TSC3
ULR	GDB:594089	UTERINE
VDR	GDB:120487	VITAMIN D-RESISTANT RICKETS WITH END-ORGAN UNRESPONSIVENESS TO 1,25-DIHYDROXYCHOLECALCIFERO L VITAMIN D RECEPTOR; VDR
VWF	GDB:119125	VON WILLEBRAND DISEASE; VWD

Table 14: Genes, Locations and Genetic Disorders on Chromosome 13

Gene	GDB Accession ID	OMIM Link
ATP7B	GDB:120494	WILSON DISEASE; WND
BRCA2	GDB:387848	BREAST CANCER 2, EARLY-ONSET; BRCA2
BRCD1	GDB:9954522	BREAST CANCER, DUCTAL, 1; BRCD1
CLNS5	GDB:230991	CEROID-LIPOFUSCOSIS, NEURONAL 5; CLNS5
CPB2	GDB:129546	CARBOXYPEPTIDASE B2, PLASMA; CPB2
ED2	GDB:9834522	ECTODERMAL DYSPLASIA, HIDROTIC; HED
EDNRB	GDB:129075	ENDOTHELIN-B RECEPTOR; EDNRB HIRSCHSPRUNG DISEASE-2; HSCR2
ENUR1	GDB:594516	ENURESIS, NOCTURNAL, 1; ENUR1
ERCC5	GDB:120515	EXCISION-REPAIR, COMPLEMENTING DEFECTIVE, IN CHINESE HAMSTER, 5; ERCC5
F10	GDB:119890	X, QUANTITATIVE VARIATION IN FACTOR X DEFICIENCY; F10
F7	GDB:119897	FACTOR VII DEFICIENCY
GJB2	GDB:125247	GAP JUNCTION PROTEIN, BETA-2, 26 KD; GJB2 DEAFNESS, NEUROSENSORY, AUTOSOMAL RECESSIVE, 1; DFNB1 DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 3; DFNA3
GJB6	GDB:9958357	ECTODERMAL DYSPLASIA, HIDROTIC; HED DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 3; DFNA3
IPF1	GDB:448899	INSULIN PROMOTER FACTOR 1; IPF1
MBS1	GDB:128365	MOEBIUS SYNDROME; MBS

Gene	GDB Accession ID	OMIM Link
MCOR	GDB:9954520	CONGENITAL
PCCA	GDB:119473	GLYCINEMIA, KETOTIC, I
RB1	GDB:118734	BLADDER CANCER RETINOBLASTOMA; RB1
RHOK	GDB:371598	RHODOPSIN KINASE; RHOK
SCZD7	GDB:9864734	DISORDER-2; SCZD2
SGCG	GDB:3763329	MUSCULAR DYSTROPHY, LIMB GIRDLE, TYPE 2C; LGMD2C
SLC10A2	GDB:677534	SOLUTE CARRIER FAMILY 10, MEMBER 2; SLC10A2
SLC25A15	GDB:120042	HYPERNITRITHINEMIA-HYPERAMMONEMIA-HOMOCITRULLINURIA SYNDROME
STARPI	GDB:635459	STEROIDOGENIC ACUTE REGULATORY PROTEIN; STAR
ZNF198	GDB:6382650	ZINC FINGER PROTEIN-198; ZNF198

Table 15: Genes, Locations and Genetic Disorders on Chromosome 14

Gene	GDB Accession ID	OMIM Link
ACHM1	GDB:132458	COLORBLINDNESS, TOTAL
ARVD1	GDB:371339	ARRHYTHMOGENIC RIGHT VENTRICULAR DYSPLASIA, FAMILIAL, 1; ARVD1
CTAA1	GDB:265299	CATARACT, ANTERIOR POLAR 1; CTAA1
DAD1	GDB:407505	DEFENDER AGAINST CELL DEATH; DAD1
DFNB5	GDB:636176	DEAFNESS, NEUROSENSORY, AUTOSOMAL RECESSIVE, 5; DFNB5
EML1	GDB:6328385	USHER SYNDROME, TYPE IA; USH1A
GALC	GDB:119970	KRABBE DISEASE
GCH1	GDB:118798	DYSTONIA, PROGRESSIVE, WITH DIURNAL VARIATION GTP CYCLOHYDROLASE I DEFICIENCY GTP CYCLOHYDROLASE I; GCH1
HE1	GDB:9957680	MALFORMATIONS, MULTIPLE, WITH LIMB ABNORMALITIES AND HYPOPITUITARISM
IBGC1	GDB:10450404	CEREBRAL CALCIFICATION, NONARTERIOSCLEROTIC
IGH@	GDB:118731	IgA CONSTANT HEAVY CHAIN 1; IGHA1 IMMUNOGLOBULIN: D (DIVERSITY) REGION OF HEAVY CHAIN IgA CONSTANT HEAVY CHAIN 2; IGHA2 IMMUNOGLOBULIN: J (JOINING) LOCI OF HEAVY CHAIN; IGHJ IMMUNOGLOBULIN:

Gene	GDB Accession ID	OMIM Link
		HEAVY Mu CHAIN; Mu1; IGHM1 IMMUNOGLOBULIN: VARIABLE REGION OF HEAVY CHAINS--Hv1; IGHV IgG HEAVY CHAIN LOCUS; IGHG1 IMMUNOGLOBULIN Gm-2; IGHG2 IMMUNOGLOBULIN Gm-3; IGHG3 IMMUNOGLOBULIN Gm-4; IGHG4 IMMUNOGLOBULIN: HEAVY DELTA CHAIN; IGHD IMMUNOGLOBULIN: HEAVY EPSILON CHAIN; IGHE
IGHC group	GDB:9992632	IgA CONSTANT HEAVY CHAIN 1; IGH A1 IgA CONSTANT HEAVY CHAIN 2; IGH A2 IMMUNOGLOBULIN: HEAVY Mu CHAIN; Mu1; IGHM1 IgG HEAVY CHAIN LOCUS; IGHG1 IMMUNOGLOBULIN Gm-2; IGHG2 IMMUNOGLOBULIN Gm-3; IGHG3 IMMUNOGLOBULIN Gm-4; IGHG4 IMMUNOGLOBULIN: HEAVY DELTA CHAIN; IGHD IMMUNOGLOBULIN: HEAVY EPSILON CHAIN; IGHE
IGHG1	GDB:120085	IgG HEAVY CHAIN LOCUS; IGHG1
IGHM	GDB:120086	IMMUNOGLOBULIN: HEAVY Mu CHAIN; Mu1; IGHM1.
IGHR	GDB:9954529	G1(A1) SYNDROME
IV	GDB:139274	INVERSUS VISCIERUM
LTBP2	GDB:453890	LATENT TRANSFORMING GROWTH FACTOR-BETA BINDING PROTEIN 2; LTBP2
MCOP	GDB:9954527	MICROPHTHALMOS
MJD	GDB:118840	MACHADO-JOSEPH DISEASE; MJD
MNG1	GDB:6540062	GOITER, MULTINODULAR 1; MNG1
MPD1	GDB:230271	MYOPATHY, LATE DISTAL HEREDITARY
MPS3C	GDB:9954532	MUCOPOLYSACCHARIDOSIS TYPE IIIC
MYH6	GDB:120214	MYOSIN, HEAVY POLYPEPTIDE 6; MYH6
MYH7	GDB:120215	MYOSIN, CARDIAC, HEAVY CHAIN, BETA; MYH7
NP	GDB:120239	NUCLEOSIDE PHOSPHORYLASE; NP
PABPN1	GDB:567135	OCULOPHARYNGEAL MUSCULAR DYSTROPHY; OPMD OCULOPHARYNGEAL MUSCULAR DYSTROPHY, AUTOSOMAL RECESSIVE POLYADENYLATE-BINDING PROTEIN-2; PABP2
PSEN1	GDB:135682	ALZHEIMER DISEASE, FAMILIAL, TYPE 3; AD3
PYGL	GDB:120328	GLYCOGEN STORAGE DISEASE VI
RPGRIPI	GDB:11498766	AMAUROSIS CONGENITA OF LEBER I

Gene	GDB Accession ID	OMIM Link
SERPINA1	GDB:120289	PROTEASE INHIBITOR 1; PI
SERPINA3	GDB:118955	ALPHA-1-ANTICHYMOTRYPSIN; AACT
SERPINA6	GDB:127865	CORTICOSTEROID-BINDING GLOBULIN; CBG
SLC7A7	GDB:9863033	DIBASICAMINOACIDURIA II
SPG3A	GDB:230126	SPASTIC PARAPLEGIA-3, AUTOSOMAL DOMINANT; SPG3A
SPTB	GDB:119602	ELLIPTOCYTOSIS, RHESUS-UNLINKED TYPE HEREDITARY HEMOLYTIC SPECTRIN, BETA, ERYTHROCYTIC; SPTB
TCL1A	GDB:250785	T-CELL LYMPHOMA OR LEUKEMIA
TCRAV17S1	GDB:642130	T-CELL ANTIGEN RECEPTOR, ALPHA SUBUNIT; TCRA
TCRAV5S1	GDB:451966	T-CELL ANTIGEN RECEPTOR, ALPHA SUBUNIT; TCRA
TGM1	GDB:125299	TRANSGLUTAMINASE 1; TGM1 ICHTHYOSIS CONGENITA
TITF1	GDB:132588	THYROID TRANSCRIPTION FACTOR 1; TITF1
TMIP	GDB:9954523	AND ULNA, DUPLICATION OF, WITH ABSENCE OF TIBIA AND RADIUS
TRA@	GDB:120404	T-CELL ANTIGEN RECEPTOR, ALPHA SUBUNIT; TCRA
TSHR	GDB:125313	THYROTROPIN, UNRESPONSIVENESS TO
USH1A	GDB:118885	USHER SYNDROME, TYPE IA; USH1A
VP	GDB:120492	PORPHYRIA VARIEGATA

Table 16: Genes, Locations and Genetic Disorders on Chromosome 15

Gene	GDB Accession ID	OMIM Link
ACCPN	GDB:5457725	CORPUS CALLOSUM, AGENESIS OF, WITH NEURONOPATHY
AHO2	GDB:9954535	HEREDITARY OSTEODYSTROPHY-2; AHO2
ANCR	GDB:119678	ANGELMAN SYNDROME
B2M	GDB:119028	BETA-2-MICROGLOBULIN; B2M
BBS4	GDB:511199	BARDET-BIEDL SYNDROME, TYPE 4; BBS4
BLM	GDB:135698	BLOOM SYNDROME; BLM
CAPN3	GDB:119751	CALPAIN, LARGE POLYPEPTIDE L3; CAPN3 MUSCULAR DYSTROPHY, LIMB-GIRDLE, TYPE 2; LGMD2

Gene	GDB Accession ID	OMIM Link
CDAN1	GDB:9823267	DYSERYTHROPOIETIC ANEMIA, CONGENITAL, TYPE I
CDAN3	GDB:386192	DYSERYTHROPOIETIC ANEMIA, CONGENITAL, TYPE III; CDAN3
CLN6	GDB:4073043	CEROID-LIPOFUSCINOSIS, NEURONAL 6, LATE INFANTILE, VARIANT; CLN6
CMH3	GDB:138299	CARDIOMYOPATHY, FAMILIAL HYPERTROPHIC, 3; CMH3
CYP19	GDB:119830	CYTOCHROME P450, SUBFAMILY XIX; CYP19
CYP1A1	GDB:120604	CYTOCHROME P450, SUBFAMILY I, POLYPEPTIDE 1; CYP1A1
CYP1A2	GDB:118780	CYTOCHROME P450, SUBFAMILY I, POLYPEPTIDE 2; CYP1A2
DYX1	GDB:1391796	DYSLEXIA, SPECIFIC, 1; DYX1
EPB42	GDB:127385	HEREDITARY HEMOLYTIC PROTEIN 4.2, ERYTHROCYTIC; EPB42
ETFA	GDB:119121	GLUTARICACIDURIA II A; GA II A
EYCL3	GDB:4590306	EYE COLOR-3; EYCL3
FAH	GDB:119901	TYROSINEMIA, TYPE I
FBN1	GDB:127115	FIBRILLIN-1; FBN1 MARFAN SYNDROME; MFS
FES	GDB:119906	V-FES FELINE SARCOMA VIRAL/V-FPS FUJINAMI AVIAN SARCOMA VIRAL ONCOGENE
HCVS	GDB:119306	CORONAVIRUS 229E SUSCEPTIBILITY; CVS
HEXA	GDB:120040	TAY-SACHS DISEASE; TSD
IVD	GDB:119354	ISOVALERICACIDEMIA; IVA
LCS1	GDB:11500552	CHOLESTASIS-LYMPHEDEMA SYNDROME
LIPC	GDB:119366	LIPASE, HEPATIC; LIPC
MYO5A	GDB:218824	MYOSIN VA; MYO5A
OCA2	GDB:136820	ALBINISM II
OTSC1	GDB:9860473	OTOSCLEROSIS
PWCR	GDB:120325	PRADER-WILLI SYNDROME
RLBP1	GDB:127341	RETINALDEHYDE-BINDING PROTEIN 1.; RLBP1
SLC12A1	GDB:386121	SOLUTE CARRIER FAMILY 12, MEMBER 1; SLC12A1
SPG6	GDB:511201	SPASTIC PARAPLEGIA 6, AUTOSOMAL

Gene	GDB Accession ID	OMIM Link
		DOMINANT; SPG6
TPM1	GDB:127875	TROPOMYOSIN 1; TPM1
UBE3A	GDB:228487	ANGELMAN SYNDROME UBIQUITIN-PROTEIN LIGASE E3A; UBE3A
WMS	GDB:5583902	WEILL-MARCHESANI SYNDROME

Table 17: Genes, Locations and Genetic Disorders on Chromosome 16

Gene	GDB Accession ID	OMIM Link
ABCC6	GDB:9315106	PSEUDOXANTHOMA ELASTICUM, AUTOSOMAL DOMINANT; PXE PSEUDOXANTHOMA ELASTICUM, AUTOSOMAL RECESSIVE; PXE
ALDOA	GDB:118993	ALDOLASE A, FRUCTOSE-BISPHOSPHATE; ALDOA
APRT	GDB:119003	ADENINE PHOSPHORIBOSYLTRANSFERASE; APRT
ATP2A1	GDB:119716	ATPase, Ca(2+)-TRANSPORTING, FAST-TWITCH 1; ATP2A1 BRODY MYOPATHY
BBS2	GDB:229992	BARDET-BIEDL SYNDROME, TYPE 2; BBS2
CARD15	GDB:11026232	SYNOVITIS, GRANULOMATOUS, WITH UVEITIS AND CRANIAL NEUROPATHIES REGIONAL ENTERITIS
CATM	GDB:701219	MICROPHTHALMIA-CATARACT
CDH1	GDB:120484	CADHERIN 1; CDH1
CETP	GDB:119773	CHOLESTERYL ESTER TRANSFER PROTEIN, PLASMA; CETP
CHST6	GDB:131407	CORNEAL DYSTROPHY, MACULAR TYPE
CLN3	GDB:120593	CEROID-LIPOFUSCINOSIS, NEURONAL 3, JUVENILE; CLN3
CREBBP	GDB:437159	RUBINSTEIN SYNDROME CREB-BINDING PROTEIN; CREBBP
CTH	GDB:119086	CYSTATHIONINURIA
CTM	GDB:119819	CATARACT, ZONULAR
CYBA	GDB:125238	GRANULOMATOUS DISEASE, CHRONIC, AUTOSOMAL CYTOCHROME-b-NEGATIVE FORM
CYLD	GDB:701216	EPITHELIOMA, HEREDITARY MULTIPLE BENIGN CYSTIC
DHS	GDB:9958268	XEROCYTOSIS, HEREDITARY

Gene	GDB Accession ID	OMIM Link
DNASE1	GDB:132846	DEOXYRIBONUCLEASE I; DNASE1
DPEP1	GDB:128059	RENAL DIPEPTIDASE
ERCC4	GDB:119113	EXCISION-REPAIR, COMPLEMENTING DEFECTIVE, IN CHINESE HAMSTER, 4; ERCC4 XERODERMA PIGMENTOSUM, COMPLEMENTATION GROUP F; XPF
FANCA	GDB:701221	FANCONI ANEMIA, COMPLEMENTATION GROUP A; FACA
GALNS	GDB:129085	MUCOPOLYSACCHARIDOSIS TYPE IVA
GAN	GDB:9864885	NEUROPATHY, GIANT AXONAL; GAN
HAGH	GDB:119292	HYDROXYACYL GLUTATHIONE HYDROLASE; HAGH
HBA1	GDB:119293	HEMOGLOBIN--ALPHA LOCUS-1; HBA1
HBA2	GDB:119294	HEMOGLOBIN--ALPHA LOCUS-2; HBA2
HBHR	GDB:9954541	HEMOGLOBIN H-RELATED MENTAL RETARDATION
HBQ1	GDB:120036	HEMOGLOBIN--THETA-1 LOCUS; HBQ1
HBZ	GDB:119302	HEMOGLOBIN--ZETA LOCUS; HBZ
HBZP	GDB:120037	HEMOGLOBIN--ZETA LOCUS; HBZ
HP	GDB:119314	HAPTOGLOBIN; HP
HSD11B2	GDB:409951	CORTISOL 11-BETA-KETOREDUCTASE DEFICIENCY
IL4R	GDB:118823	INTERLEUKIN-4 RECEPTOR; IL4R
LIPB	GDB:119365	LIPASE B, LYSOSOMAL ACID; LIPB
MC1R	GDB:135162	MELANOCORTIN-1 RECEPTOR; MC1R
MEFV	GDB:125263	MEDITERRANEAN FEVER, FAMILIAL; MEFV
MHC2TA	GDB:6268475	MHC CLASS II TRANSACTIVATOR; MHC2TA
MLYCD	GDB:11500940	MALONYL CoA DECARBOXYLASE DEFICIENCY
PHKB	GDB:120286	PHOSPHORYLASE KINASE, BETA SUBUNIT; PHKB
PHKG2	GDB:140316	PHOSPHORYLASE KINASE, TESTIS/LIVER, GAMMA 2; PHKG2
PKD1	GDB:120293	POLYCYSTIC KIDNEYS POLYCYSTIC KIDNEY DISEASE 1; PKD1
PKDTS	GDB:9954545	POLYCYSTIC KIDNEY DISEASE, INFANTILE SEVERE, WITH TUBEROUS SCLEROSIS;
PMM2	GDB:438697	CARBOHYDRATE-DEFICIENT

Gene	GDB Accession ID	OMIM Link
		GLYCOPROTEIN SYNDROME, TYPE I; CDG1 PHOSPHOMANNOMUTASE 2; PMM2
PXE	GDB:6053895	PSEUDOXANTHOMA ELASTICUM, AUTOSOMAL DOMINANT; PXE PSEUDOXANTHOMA ELASTICUM, AUTOSOMAL RECESSIVE; PXE
SALL1	GDB:4216161	TOWNES-BROCKS SYNDROME; TBS SAL-LIKE 1; SALL1
SCA4	GDB:250364	SPINOCEREBELLAR ATAXIA 4; SCA4
SCNN1B	GDB:434471	SODIUM CHANNEL, NONVOLTAGE-GATED 1 BETA; SCNN1B
SCNN1G	GDB:568759	SODIUM CHANNEL, NONVOLTAGE-GATED 1 GAMMA; SCNN1G
TAT	GDB:120398	TYROSINE TRANSAMINASE DEFICIENCY
TSC2	GDB:120466	TUBEROUS SCLEROSIS-2; TSC2
VDI	GDB:119629	DEFECTIVE INTERFERING PARTICLE INDUCTION, CONTROL OF
WT3	GDB:9958957	WILMS TUMOR, TYPE III; WT3

Table 18: Genes, Locations and Genetic Disorders on Chromosome 17

Gene	GDB Accession ID	OMIM Link
ABR	GDB:119642	ACTIVE BCR-RELATED GENE; ABR
ACACA	GDB:120534	ACETYL-CoA CARBOXYLASE DEFICIENCY
ACADVL	GDB:1248185	ACYL-CoA DEHYDROGENASE, VERY-LONG-CHAIN, DEFICIENCY OF
ACE	GDB:119840	Dipeptidyl Carboxypeptidase-1; DCP1
ALDH3A2	GDB:1316855	SJOGREN-LARSSON SYNDROME; SLS
APOH	GDB:118887	APOLIPOPROTEIN H; APOH
ASPA	GDB:231014	SPONGY DEGENERATION OF CENTRAL NERVOUS SYSTEM
AXIN2	GDB:9864782	CANCER OF COLON
BCL5	GDB:125178	LEUKEMIA/LYMPHOMA, CHRONIC B-CELL, 5; BCL5
BHD	GDB:11498904	WITH TRICHODISCOMAS AND ACROCHORDONS
BLMH	GDB:3801467	BLEOMYCIN HYDROLASE
BRCA1	GDB:126611	BREAST CANCER, TYPE 1; BRCA1
CACD	GDB:5885801	CHOROIDAL DYSTROPHY, CENTRAL

Gene	GDB Accession ID	OMIM Link
		AREOLAR; CACD
CCA1	GDB:118763	CATARACT, CONGENITAL, CERULEAN TYPE 1; CCA1
CCZS	GDB:681973	CATARACT, CONGENITAL ZONULAR, WITH SUTURAL OPACITIES; CCZS
CHRNBT1	GDB:120587	CHOLINERGIC RECEPTOR, NICOTINIC, BETA POLYPEPTIDE 1; CHRNBT1
CHRNE	GDB:132246	CHOLINERGIC RECEPTOR, NICOTINIC, EPSILON POLYPEPTIDE; CHRNE
CMT1A	GDB:119785	CHARCOT-MARIE-TOOTH DISEASE, TYPE 1A; CMT1A NEUROPATHY, HEREDITARY, WITH LIABILITY TO PRESSURE PALSIES; HNPP
COL1A1	GDB:119061	COLLAGEN, TYPE I, ALPHA-1 CHAIN; COL1A1 OSTEogenesis IMPERFECTA TYPE I OSTEogenesis IMPERFECTA TYPE IV; OI4
CORD5	GDB:568473	CONE-ROD DYSTROPHY-5; CORD5
CTNS	GDB:700761	CYSTINOSIS, EARLY-ONSET OR INFANTILE NEPHROPATHIC TYPE
EPX	GDB:377700	EOSINOPHIL PEROXIDASE; EPX
ERBB2	GDB:120613	V-ERB-B2 AVIAN ERYTHROBLASTIC LEUKEMIA VIRAL ONCOGENE HOMOLOG 2; ERBB2
G6PC	GDB:231927	GLYCOGEN STORAGE DISEASE I; GSD-I
GAA	GDB:119965	GLYCOGEN STORAGE DISEASE II
GALK1	GDB:119246	GALACTOKINASE DEFICIENCY
GCGR	GDB:304516	GLUCAGON RECEPTOR; GCGR
GFAP	GDB:118799	GLIAL FIBRILLARY ACIDIC PROTEIN; GFAP ALEXANDER DISEASE
GH1	GDB:119982	GROWTH HORMONE 1; GH1
GH2	GDB:119983	GROWTH HORMONE 2; GH2
GP1BA	GDB:118806	GIANT PLATELET SYNDROME
GPSC	GDB:9954564	FAMILIAL PROGRESSIVE SUBCORTICAL
GUCY2D	GDB:136012	AMAUROSIS CONGENITA OF LEBER I GUANYLATE CYCLASE 2D, MEMBRANE; GUC2D CONE-ROD DYSTROPHY-6; CORD6
ITGA2B	GDB:120012	THROMBASTHENIA OF GLANZMANN AND NAEGELI
ITGB3	GDB:120013	INTEGRIN, BETA-3; ITGB3
ITGB4	GDB:128028	INTEGRIN, BETA-4; ITGB4

Gene	GDB Accession ID	OMIM Link
KRT10	GDB:118828	KERATIN 10; KRT10
KRT12	GDB:5583953	CORNEAL DYSTROPHY, JUVENILE EPITHELIAL, OF MEESMANN KERATIN 12; KRT12
KRT13	GDB:120740	KERATIN 13; KRT13
KRT14	GDB:132145	KERATIN 14; KRT14 GLUTATHIONE SYNTHETASE; GSS
KRT14L1	GDB:120121	KERATIN 14; KRT14
KRT14L2	GDB:120122	KERATIN 14; KRT14
KRT14L3	GDB:120123	KERATIN 14; KRT14
KRT16	GDB:136207	KERATIN 16; KRT16
KRT16L1	GDB:120125	KERATIN 16; KRT16
KRT16L2	GDB:120126	KERATIN 16; KRT16
KRT17	GDB:136211	KERATIN 17; KRT17 PACHYONYCHIA CONGENITA, JACKSON-LAWLER TYPE
KRT9	GDB:303970	HYPERKERATOSIS, LOCALIZED EPIDERMOLYTIC
MAPT	GDB:119434	MICROTUBULE-ASSOCIATED PROTEIN TAU; MAPT PALLIDOPONTONIGRAL DEGENERATION; PPND DISINHIBITION-DEMENTIA-PARKINSONI SM-AMYOTROPHY COMPLEX; DDPAC
MDB	GDB:9958959	MEDULLOBLASTOMA; MDB
MDCR	GDB:120525	MILLER-DIEKER LISSENCEPHALY SYNDROME; MDLS PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE, GAMMA SUBUNIT
MGI	GDB:9954550	MYASTHENIA GRAVIS, FAMILIAL INFANTILE; FIMG
MHS2	GDB:132580	MALIGNANT HYPERHERMIA SUSCEPTIBILITY-2; MHS2
MKS1	GDB:681967	MECKEL SYNDROME; MKS
MPO	GDB:120192	MYELOPEROXIDASE DEFICIENCY
MUL	GDB:636050	MULIBREY NANISM; MUL
MYO15A	GDB:9838006	DEAFNESS, NEUROSENSORY, AUTOSOMAL RECESSIVE, 3; DFNB3
NAGLU	GDB:636533	MUCOPOLYSACCHARIDOSIS TYPE III B
NAPB	GDB:9954572	NEURITIS WITH BRACHIAL PREDILECTION; NAPB
NF1	GDB:120231	NEUROFIBROMATOSIS, TYPE I; NF1
NME1	GDB:127965	NON-METASTATIC CELLS 1, PROTEIN EXPRESSED IN; NME1

Gene	GDB Accession ID	OMIM Link
P4HB	GDB:120708	PROLYL-4-HYDROXYLASE, BETA POLYPEPTIDE; PHDB; PROHB
PAFAH1B1	GDB:677430	MILLER-DIEKER LISSENCEPHALY SYNDROME; MDLS PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE, GAMMA SUBUNIT
PECAM1	GDB:696372	PLATELET-ENDOTHELIAL CELL ADHESION MOLECULE; PECAM1
PEX12	GDB:6155804	ZELLWEGER SYNDROME; ZS PEROXIN-12; PEX12
PHB	GDB:126600	PROHIBITIN; PHB
PMP22	GDB:134190	CHARCOT-MARIE-TOOTH DISEASE, TYPE 1A; CMT1A HYPERTROPHIC NEUROPATHY OF DEJERINE-SOTTAS PERIPHERAL MYELIN PROTEIN 22; PMP22
PRKAR1A	GDB:120313	MYXOMA, SPOTTY PIGMENTATION, AND ENDOCRINE OVERACTIVITY PROTEIN KINASE, cAMP-DEPENDENT, REGULATORY, TYPE I, ALPHA; PRKAR1A
PRKCA	GDB:128015	PROTEIN KINASE C, ALPHA; PRKCA
PRKWNK4	GDB:9954566	PSEUDOHYPOALDOSTERONISM TYPE II, LOCUS B; PHA2B
PRP8	GDB:9957697	RETINITIS PIGMENTOSA-13; RP13
PRPF8	GDB:392647	RETINITIS PIGMENTOSA-13; RP13
PTLAH	GDB:9957342	APLASIA OR HYPOPLASIA
RARA	GDB:120337	RETINOIC ACID RECEPTOR, ALPHA; RARA
RCV1	GDB:135477	RECOVERIN; RCV1
RMSA1	GDB:304519	REGULATOR OF MITOTIC SPINDLE ASSEMBLY 1; RMSA1
RP17	GDB:683199	RETINITIS PIGMENTOSA-17; RP17
RSS	GDB:439249	RUSSELL-SILVER SYNDROME; RSS
SCN4A	GDB:125181	PERIODIC PARALYSIS II
SERPINF2	GDB:120301	PLASMIN INHIBITOR DEFICIENCY
SGCA	GDB:384077	ADHALIN; ADL
SGSH	GDB:1319101	MUCOPOLYSACCHARIDOSIS TYPE IIIA
SHBG	GDB:125280	SEX HORMONE BINDING GLOBULIN; SHBG
SLC2A4	GDB:119997	SOLUTE CARRIER FAMILY 2, MEMBER 4; SLC2A4

Gene	GDB Accession ID	OMIM Link
SLC4A1	GDB:119874	SOLUTE CARRIER FAMILY 4, ANION EXCHANGER, MEMBER 1; SLC4A1 BLOOD GROUP--DIEGO SYSTEM; DI BLOOD GROUP--WRIGHT ANTIGEN; Wr ELLIPTOCYTOSIS, RHESUS-UNLINKED TYPE HEREDITARY HEMOLYTIC
SLC6A4	GDB:134713	SOLUTE CARRIER FAMILY 6, MEMBER 4; SLC6A4
SMCR	GDB:120379	SMITH-MAGENIS SYNDROME; SMS
SOST	GDB:10450629	SCLEROSTESIS
SOX9	GDB:134730	DYSPLASIA
SSTR2	GDB:134186	SOMATOSTATIN RECEPTOR-2; SSTR2
SYM1	GDB:512174	SYMPHALANGISM, PROXIMAL; SYM1
SYNS1	GDB:9862343	SYNOSTOSES, MULTIPLE, WITH BRACHYDACTYLY
TCF2	GDB:125298	TRANSCRIPTION FACTOR-2, HEPATIC; TCF2
THRA	GDB:120730	THYROID HORMONE RECEPTOR, ALPHA 1; THRA
TIMP2	GDB:132612	TISSUE INHIBITOR OF METALLOPROTEINASE-2; TIMP2
TOC	GDB:451978	TYLOSIS WITH ESOPHAGEAL CANCER; TOC
TOP2A	GDB:118884	TOPOISOMERASE (DNA) II, ALPHA; TOP2A
TP53	GDB:120445	CANCER, HEPATOCELLULAR LI-FRAUMENI SYNDROME; LFS TUMOR PROTEIN p53; TP53 CARCINOMA
VBCH	GDB:9954554	HYPERTOSTOSIS CORTICALIS GENERALISATA

Table 19: Genes, Locations and Genetic Disorders on Chromosome 18

Gene	GDB Accession ID	OMIM Link
ATP8B1	GDB:453352	CHOLESTASIS, PROGRESSIVE FAMILIAL INTRAHEPATIC 1; PFIC1 INTRAHEPATIC CHOLESTASIS FAMILIAL INTRAHEPATIC CHOLESTASIS-1; FIC1
BCL2	GDB:119031	B-CELL CLL/LYMPHOMA 2; BCL2
CNSN	GDB:9954580	CARNOSINEMIA
CORD1	GDB:118773	CONE-ROD DYSTROPHY-1; CORD1
CYB5	GDB:125236	METHEMOGLOBINEMIA DUE TO

Gene	GDB Accession ID	OMIM Link
		DEFICIENCY OF CYTOCHROME b5
DCC	GDB:119838	DELETED IN COLORECTAL CARCINOMA; DCC
F5F8D	GDB:6919858	FACTOR V AND FACTOR VIII, COMBINED DEFICIENCY OF; F5F8D
FECH	GDB:127282	PROTOPORPHYRIA, ERYTHROPOIETIC
FEO	GDB:4378120	POLYOSTOTIC OSTEOLYTIC DYSPLASIA, HEREDITARY EXPANSILE; HEPOD
LAMA3	GDB:251818	LAMININ, ALPHA 3; LAMA3
LCFS2	GDB:9954578	CANCER
MADH4	GDB:4642788	POLYPOSIS, JUVENILE INTESTINAL MOTHERS AGAINST DECAPENTAPLEGIC, DROSOPHILA, HOMOLOG OF, 4; MADH4
MAFD1	GDB:120163	MANIC-DEPRESSIVE PSYCHOSIS, AUTOSOMAL
MC2R	GDB:135163	ADRENAL UNRESPONSIVENESS TO ACTH
MCL	GDB:9954574	LEIOMYOMATA, HEREDITARY MULTIPLE, OF SKIN
MYP2	GDB:9862232	MYOPIA
NPC1	GDB:138178	NIEMANN-PICK DISEASE, TYPE C1; NPC1
SPPK	GDB:606444	PALMOPLANTARIS STRIATA
TGFBRE	GDB:250852	TRANSFORMING GROWTH FACTOR, BETA 1 RESPONSE ELEMENT
TGIF	GDB:9787150	HOLOPROSENCEPHALY, TYPE 4; HPE4
TTR	GDB:119471	TRANSTHYRETIN; TTR

Table 20: Genes, Locations and Genetic Disorders on Chromosome 19

Gene	GDB Accession ID	OMIM Link
AD2	GDB:118748	ALZHEIMER DISEASE-2; AD2
AMH	GDB:118996	PERSISTENT MULLERIAN DUCT SYNDROME, TYPES I AND II; PMDS ANTI-MULLERIAN HORMONE; AMH
APOC2	GDB:119689	APOLIPOPROTEIN C-II DEFICIENCY, TYPE I HYPERLIPOPROTEINEMIA DUE TO
APOE	GDB:119691	APOLIPOPROTEIN E; APOE
ATHS	GDB:128803	LIPOPROTEIN PHENOTYPE; ALP
BAX	GDB:228082	BCL2-ASSOCIATED X PROTEIN; BAX
BCKDHA	GDB:119723	MAPLE SYRUP URINE DISEASE

Gene	GDB Accession ID	OMIM Link
BCL3	GDB:120561	B-CELL LEUKEMIA/LYMPHOMA-3; BCL3
BFIC	GDB:9954584	BENIGN FAMILIAL INFANTILE CONVULSIONS
C3	GDB:119044	COMPLEMENT COMPONENT-3; C3
CACNA1A	GDB:126432	ATAxia, PERIODIC VESTIBULOCEREBELLAR HEMIPLEGIC MIGRAINE, FAMILIAL; MHP SPINOCEREBELLAR ATAXIA 6; SCA6 CALCIUM CHANNEL, VOLTAGE-DEPENDENT, P/Q TYPE, ALPHA 1A SUBUNIT; CACNA1A
CCO	GDB:119755	CENTRAL CORE DISEASE OF MUSCLE
CEACAM5	GDB:119054	CARCINOEMBRYONIC ANTIGEN; CEA
COMP	GDB:344263	EPIPHYSEAL DYSPLASIA, MULTIPLE; MED PSEUDOACHONDROPLASTIC DYSPLASIA CARTILAGE OLIGOMERIC MATRIX PROTEIN; COMP
CRX	GDB:333932	CONE-ROD DYSTROPHY-2; CORD2 AMAUROSIS CONGENITA OF LEBER I CONE-ROD HOMEOPBOX-CONTAINING GENE
DBA	GDB:9600353	ANEMIA, CONGENITAL HYPOPLASTIC, OF BLACKFAN AND DIAMOND
DDU	GDB:10796026	URTICARIA; DDU
DFNA4	GDB:606540	DEAFNESS, AUTOSOMAL DOMINANT NONSYNDROMIC SENSORINEURAL, 4; DFNA4
DLL3	GDB:9959026	VERTEBRAL ANOMALIES
DMPK	GDB:119097	DYSTROPHIA MYOTONICA; DM
DMWD	GDB:7178354	DYSTROPHIA MYOTONICA; DM
DPD1	GDB:10796170	ENGELMANN DISEASE
E11S	GDB:119101	ECHO 11 SENSITIVITY; E11S
ELA2	GDB:118792	ELASTASE-2; ELA2 NEUTROPENIA, CYCLIC
EPOR	GDB:125242	ERYTHROPOIETIN RECEPTOR; EPOR
ERCC2	GDB:119112	EXCISION-REPAIR, COMPLEMENTING DEFECTIVE, IN CHINESE HAMSTER, 2; ERCC2 XERODERMA PIGMENTOSUM IV; XP4
ETFB	GDB:119887	ELECTRON TRANSFER FLAVOPROTEIN, BETA POLYPEPTIDE; ETFB
EXT3	GDB:383780	EXOSTOSES, MULTIPLE, TYPE III; EXT3

Gene	GDB Accession ID	OMIM Link
EYCL1	GDB:119269	EYE COLOR-1; EYCL1
FTL	GDB:119234	FERRITIN LIGHT CHAIN; FTL
FUT1	GDB:120618	FUCOSYLTRANSFERASE-1; FUT1
FUT2	GDB:120619	FUCOSYLTRANSFERASE-2; FUT2
FUT6	GDB:135180	FUCOSYLTRANSFERASE-6; FUT6
GAMT	GDB:1313736	GUANIDINOACETATE METHYLTRANSFERASE; GAMT
GCDH	GDB:136004	GLUTARICACIDEMIA I
GPI	GDB:120015	GLUCOSEPHOSPHATE ISOMERASE; GPI
GUSM	GDB:119291	GLUCURONIDASE, MOUSE, MODIFIER OF; GUSM
HB1	GDB:9954586	BUNDLE BRANCH BLOCK
HCL1	GDB:119304	HAIR COLOR-1; HCL1
HHC2	GDB:249836	HYPOCALCIURIC HYPERCALCEMIA, FAMILIAL, TYPE II; HHC2
HHC3	GDB:9955121	HYPOCALCIURIC HYPERCALCEMIA, FAMILIAL, TYPE III; HHC3
ICAM3	GDB:136236	INTERCELLULAR ADHESION MOLECULE-3; ICAM3
INSR	GDB:119352	INSULIN RECEPTOR; INSR
JAK3	GDB:376460	JANUS KINASE 3 JAK3
KLK3	GDB:119695	ANTIGEN, PROSTATE-SPECIFIC; APS
LDLR	GDB:119362	HYPERCHOLESTEROLEMIA, FAMILIAL; FHC
LHB	GDB:119364	LUTEINIZING HORMONE, BETA POLYPEPTIDE; LHB
LIG1	GDB:127274	LIGASE I, DNA, ATP-DEPENDENT; LIG1
LOH19CR1	GDB:9837482	ANEMIA, CONGENITAL HYPOPLASTIC, OF BLACKFAN AND DIAMOND
LYL1	GDB:120158	LEUKEMIA, LYMPHOID, 1; LYL1
MAN2B1	GDB:119376	MANNOSIDOSIS, ALPHA B, LYSOSOMAL
MCOLN1	GDB:10013974	MUCOLIPIDOSIS IV
MDRV	GDB:6306714	MUSCULAR DYSTROPHY, AUTOSOMAL DOMINANT, WITH RIMMED VACUOLES; MDRV
MLLT1	GDB:136791	MYELOID/LYMPHOID OR MIXED LINEAGE LEUKEMIA, TRANSLOCATED TO, 1; MLLT1
NOTCH3	GDB:361163	DEMENTIA, HEREDITARY MULTI-INFARCT TYPE NOTCH,

Gene	GDB Accession ID	OMIM Link
		DROSOPHILA, HOMOLOG OF, 3; NOTCH3
NPHS1	GDB:342105	NEPHROSIS 1, CONGENITAL, FINNISH TYPE; NPHS1
OFC3	GDB:128060	OROFACIAL CLEFT-3; OFC3
OPA3	GDB:9954590	OPTIC ATROPHY, INFANTILE, WITH CHOREA AND SPASTIC PARAPLEGIA
PEPD	GDB:120273	PEPTIDASE D; PEPD
PRPF31	GDB:333911	RETINITIS PIGMENTOSA 11; RP11
PRTN3	GDB:126876	PROTEINASE 3; PRTN3; PR3
PRX	GDB:11501256	HYPERTROPHIC NEUROPATHY OF DEJERINE-SOTTAS
PSG1	GDB:120321	PREGNANCY-SPECIFIC BETA-1-GLYCOPROTEIN 1; PSG1
PVR	GDB:120324	POLIOVIRUS SUSCEPTIBILITY, OR SENSITIVITY; PVS
RYR1	GDB:120359	CENTRAL CORE DISEASE OF MUSCLE HYPERTERMIA OF ANESTHESIA RYANODINE RECEPTOR-1; RYR1
SLC5A5	GDB:5892184	SOLUTE CARRIER FAMILY 5, MEMBER 5; SLC5A5
SLC7A9	GDB:9958852	CYSTINURIA, TYPE III; CSNU3
STK11	GDB:9732383	PEUTZ-JEGHERS SYNDROME SERINE/THREONINE PROTEIN KINASE 11; STK11
TBXA2R	GDB:127517	THROMBOXANE A2 RECEPTOR, PLATELET; TBXA2R
TGFB1	GDB:120729	ENGELMANN DISEASE TRANSFORMING GROWTH FACTOR, BETA-1; TGFB1
TNNI3	GDB:125309	TROPONIN I, CARDIAC; TNNI3
TYROBP	GDB:9954457	POLYCYSTIC LIPOMEMBRANOUS OSTEODYSPLOASIA WITH SCLEROSING LEUKOENCEPHALOPATHY

Table 21: Genes, Locations and Genetic Disorders on Chromosome 20

Gene	GDB Accession ID	OMIM Link
ADA	GDB:119649	ADENOSINE DEAMINASE; ADA
AHCY	GDB:118983	S-ADENOSYLHOMOCYSTEINE HYDROLASE; AHCY
AVP	GDB:119009	DIABETES INSIPIDUS,

Gene	GDB Accession ID	OMIM Link
		NEUROHYPOPHYSAL TYPE ARGININE VASOPRESSIN; AVP
CDAN2	GDB:9823270	DYSERYTHROPOIETIC ANEMIA, CONGENITAL, TYPE II
CDMP1	GDB:438940	CHONDRODYSPLASIA, GREBE TYPE CARTILAGE-DERIVED MORPHOGENETIC PROTEIN 1
CHED1	GDB:3837719	CORNEAL DYSTROPHY, CONGENITAL ENDOTHELIAL; CHED
CHRNA4	GDB:128169	CHOLINERGIC RECEPTOR, NEURONAL NICOTINIC, ALPHA POLYPEPTIDE 4; CHRNA4 EPILEPSY, BENIGN NEONATAL; EBN1
CST3	GDB:119817	AMYLOIDOSIS VI
EDN3	GDB:119862	ENDOTHELIN-3; EDN3 WAARDENBURG-SHAH SYNDROME
EEGV1	GDB:127525	ELECTROENCEPHALogram, LOW-VOLTAGE
FTLL1	GDB:119235	FERRITIN LIGHT CHAIN; FTL
GNAS	GDB:120628	GUANINE NUCLEOTIDE-BINDING PROTEIN, ALPHA-STIMULATING POLYPEPTIDE;
GSS	GDB:637022	GLUTATHIONE SYNTHETASE DEFICIENCY OF ERYTHROCYTES, HEMOLYTIC ANEMIA PYROGLUTAMICACIDURIA HNF4AGDB:393281DIABETES MELLITUS, AUTOSOMAL DOMINANT TRANSCRIPTION FACTOR 14, HEPATIC NUCLEAR FACTOR; TCF14
JAG1	GDB:6175920	CHOLESTASIS WITH PERIPHERAL PULMONARY STENOSIS JAGGED 1; JAG1
KCNQ2	GDB:9787229	EPILEPSY, BENIGN NEONATAL; EBN1 POTASSIUM CHANNEL, VOLTAGE-GATED, SUBFAMILY Q, MEMBER 2
MKKS	GDB:9860197	HYDROMETROCOLPOS SYNDROME
NBIA1	GDB:4252819	HALLERVORDEN-SPATZ DISEASE
PCK1	GDB:125349	PHOSPHOENOLPYRUVATE CARBOXYKINASE 1, SOLUBLE; PCK1
PI3	GDB:203940	PROTEINASE INHIBITOR 3; PI3
PPGB	GDB:119507	NEURAMINIDASE DEFICIENCY WITH BETA-GALACTOSIDASE DEFICIENCY
PPMD	GDB:702144	CORNEAL DYSTROPHY, HEREDITARY

Gene	GDB Accession ID	OMIM Link
		POLYMORPHOUS POSTERIOR; PPCD
PRNP	GDB:120720	GERSTMANN-STRAUSSLER DISEASE; GSD PRION PROTEIN; PRNP
THBD	GDB:119613	THROMBOMODULIN; THBD
TOP1	GDB:120444	TOPOISOMERASE (DNA) I; TOP1

Table 22: Genes, Locations and Genetic Disorders on Chromosome 21

Gene	GDB Accession ID	OMIM Link
AIRE	GDB:567198	AUTOIMMUNE POLYENDOCRINOPATHY-CANDIDIASIS-ECTODERMAL DYSTROPHY; APECED
APP	GDB:119692	ALZHEIMER DISEASE; AD AMYLOID BETA A4 PRECURSOR PROTEIN; APP
CBS	GDB:119754	HOMOCYSTINURIA
COL6A1	GDB:119065	COLLAGEN, TYPE VI, ALPHA-1 CHAIN; COL6A1 MYOPATHY, BENIGN CONGENITAL, WITH CONTRACTURES
COL6A2	GDB:119793	COLLAGEN, TYPE VI, ALPHA-2 CHAIN; COL6A2 MYOPATHY, BENIGN CONGENITAL, WITH CONTRACTURES
CSTB	GDB:5215249	MYOCLONUS EPILEPSY OF UNVERRICHT AND LUNDBORG CYSTATIN B; CSTB
DCR	GDB:125354	TRISOMY 21
DSCR1	GDB:731000	TRISOMY 21
FPDMM	GDB:9954610	CORE-BINDING FACTOR, RUNT DOMAIN, ALPHA SUBUNIT 2; CBFA2 PLATELET DISORDER, FAMILIAL, WITH ASSOCIATED MYELOID MALIGNANCY
HLCS	GDB:392648	MULTIPLE CARBOXYLASE DEFICIENCY, BIOTIN-RESPONSIVE; MCD
HPE1	GDB:136065	HOLOPROSENCEPHALY, FAMILIAL ALOBAR
ITGB2	GDB:120574	INTEGRIN BETA-2; ITGB2
KCNE1	GDB:127909	POTASSIUM VOLTAGE-GATED CHANNEL, ISK-RELATED SUBFAMILY, MEMBER 1;

Gene	GDB Accession ID	OMIM Link
KNO	GDB:4073044	KNOBLOCH SYNDROME; KNO
PRSS7	GDB:384083	ENTEROKINASE DEFICIENCY
RUNX1	GDB:128313	CORE-BINDING FACTOR, RUNT DOMAIN, ALPHA SUBUNIT 2; CBFA2 PLATELET DISORDER, FAMILIAL, WITH ASSOCIATED MYELOID MALIGNANCY
SOD1	GDB:119596	AMYOTROPHIC LATERAL SCLEROSIS SUPEROXIDE DISMUTASE-1; SOD1 MUSCULAR ATROPHY, PROGRESSIVE, WITH AMYOTROPHIC LATERAL SCLEROSIS
TAM	GDB:9958709	MYELOPROLIFERATIVE SYNDROME, TRANSIENT

Table 23: Genes, Locations and Genetic Disorders on Chromosome 22

Gene	GDB Accession ID	OMIM Link
ADSL	GDB:119655	ADENYLOSUCCINATE LYASE; ADSL
ARSA	GDB:119007	METACHROMATIC LEUKODYSTROPHY, LATE-INFANTILE
BCR	GDB:120562	BREAKPOINT CLUSTER REGION; BCR
CECR	GDB:119772	CAT EYE SYNDROME; CES
CHEK2	GDB:9958730	LI-FRAUMENI SYNDROME; LFS OSTEOGENIC SARCOMA
COMT	GDB:119795	CATECHOL-O-METHYLTRANSFERASE ; COMT
CRYBB2	GDB:119075	CRYSTALLIN, BETA B2; CRYBB2 CATARACT, CONGENITAL, CERULEAN TYPE, 2; CCA2
CSF2RB	GDB:126838	GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR RECEPTOR, BETA SUBUNIT;
CTHM	GDB:439247	HEART MALFORMATIONS; CTHM
CYP2D6	GDB:132127	CYTOCHROME P450, SUBFAMILY IID; CYP2D
CYP2D@	GDB:119832	CYTOCHROME P450, SUBFAMILY IID; CYP2D
DGCR	GDB:119843	DIGEORGE SYNDROME; DGS
DIA1	GDB:119848	METHEMOGLOBINEMIA DUE TO DEFICIENCY OF METHEMOGLOBIN

Gene	GDB Accession ID	OMIM Link
		REDUCTASE
EWSR1	GDB:135984	EWING SARCOMA; EWS
GGT1	GDB:120623	GLUTATHIONURIA
MGCR	GDB:120180	MENINGIOMA; MGM
MN1	GDB:580528	MENINGIOMA; MGM
NAGA	GDB:119445	ALPHA-GALACTOSIDASE B; GALB
NF2	GDB:120232	NEUROFIBROMATOSIS, TYPE II; NF2
OGS2	GDB:9954619	HYPERTELORISM WITH ESOPHAGEAL ABNORMALITY AND HYPOSPADIAS
PDGFB	GDB:120709	V-SIS PLATELET-DERIVED GROWTH FACTOR BETA POLYPEPTIDE; PDGFB
PPARA	GDB:202877	PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR, ALPHA; PPARA
PRODH	GDB:5215168	HYPERPROLINEMIA, TYPE I
SCO2	GDB:9958568	CYTOCHROME c OXIDASE DEFICIENCY
SCZD4	GDB:1387047	SCHIZOPHRENIA DISORDER-4; SCZD4
SERPIND1	GDB:120038	HEPARIN COFACTOR II; HCF2
SLC5A1	GDB:120375	SOLUTE CARRIER FAMILY 5, MEMBER 1; SLC5A1
SOX10	GDB:9834028	SRY-BOX 10; SOX10
TCN2	GDB:119608	TRANSCOBALAMIN II DEFICIENCY
TIMP3	GDB:138175	TISSUE INHIBITOR OF METALLOPROTEINASE-3; TIMP3
VCF	GDB:136422	VELOCARDIOFACIAL SYNDROME

Table 24: Genes, Locations and Genetic Disorders on Chromosome X

Gene	GDB Accession ID	OMIM Link
ABCD1	GDB:118991	ADRENOLEUKODYSTROPHY; ALD
ACTL1	GDB:119648	ACTIN-LIKE SEQUENCE-1; ACTL1
ADFN	GDB:118977	ALBINISM-DEAFNESS SYNDROME; ADFN; ALDS
AGMX2	GDB:119661	AGAMMAGLOBULINEMIA, X-LINKED, TYPE 2; AGMX2; XLA2
AHDS	GDB:125899	MENTAL RETARDATION, X-LINKED, WITH HYPOTONIA
AIC	GDB:118986	CORPUS CALLOSUM, AGENESIS OF, WITH

Gene	GDB Accession ID	OMIM Link
		CHORIORETINAL ABNORMALITY
AIED	GDB:119663	ALBINISM, OCULAR, TYPE 2; OA2
AIH3	GDB:131443	AMELOGENESIS IMPERFECTA-3, HYPOPLASTIC TYPE; AIH3
ALAS2	GDB:119666	ANEMIA, HYPOCHROMIC
AMCD	GDB:5584286	ARTHROGRYPOSIS MULTIPLEX CONGENITA, DISTAL
AMELX	GDB:119675	AMELOGENESIS IMPERFECTA-1, HYPOPLASTIC TYPE; AIH1
ANOP1	GDB:128454	CLINICAL; ANOP1
AR	GDB:120556	ANDROGEN INSENSITIVITY SYNDROME; AIS ANDROGEN RECEPTOR; AR
ARAF1	GDB:119004	V-RAF MURINE SARCOMA 3611 VIRAL ONCOGENE HOMOLOG 1; ARAF1
ARSC2	GDB:119702	ARYLSULFATASE C, f FORM; ARSC2
ARSE	GDB:555743	CHONDRODYSPLASIA PUNCTATA 1, X-LINKED RECESSIVE; CDPX1
ARTS	GDB:9954651	FATAL X-LINKED, WITH DEAFNESS AND LOSS OF VISION
ASAT	GDB:9954649	SIDEROBLASTIC, AND SPINOCEBELLAR ATAXIA; ASAT
ASSP5	GDB:119019	CITRULLINEMIA
ATP7A	GDB:119395	ATPase, Cu(2+)-TRANSPORTING, ALPHA POLYPEPTIDE; ATP7A MENKES SYNDROME
ATRX	GDB:136052	ALPHA-THALASSEMIA/MENTAL RETARDATION SYNDROME, X-LINKED; ATRX ALPHA-THALASSEMIA/MENTAL RETARDATION SYNDROME, NONDELETION TYPE
AVPR2	GDB:131475	DIABETES INSIPIDUS, NEPHROGENIC
BFLS	GDB:120566	BORJESON SYNDROME; BORJ
BGN	GDB:119727	BIGLYCAN; BGN
BTK	GDB:120542	BRUTON AGAMMAGLOBULINEMIA TYROSINE KINASE; BTK
BZX	GDB:5205912	BAZEX SYNDROME; BZX
C1HR	GDB:119040	TATA BOX BINDING PROTEIN (TBP)-ASSOCIATED FACTOR 2A; TAF2A
CACNA1F	GDB:6053864	NIGHTBLINDNESS, CONGENITAL STATIONARY, X-LINKED, TYPE 2; CSNB2 CALCIUM CHANNEL, VOLTAGE-DEPENDENT, ALPHA 1F SUBUNIT; CACNA1F

Gene	GDB Accession ID	OMIM Link
CALB3	GDB:133780	CALBINDIN 3; CALB3
CBBM	GDB:9958963	COLORBLINDNESS, BLUE-MONO-CONE-MONOCHROMATIC TYPE; CBBM
CCT	GDB:119756	CATARACT, CONGENITAL TOTAL, WITH POSTERIOR SUTURAL OPACITIES IN HETEROZYGOTES;
CDR1	GDB:119053	CEREBELLAR DEGENERATION-RELATED AUTOANTIGEN-1; CDR1; CDR34
CFNS	GDB:9579470	CRANIOFRONTONASAL SYNDROME; CFNS
CGF1	GDB:6275867	COGNITION
CHM	GDB:120400	CHOROIDEREMIA; CHM
CHR39C	GDB:119779	CHOLESTEROL REPRESSIBLE PROTEIN 39C; CHR39C
CIDX	GDB:127736	SEVERE COMBINED IMMUNODEFICIENCY DISEASE, X-LINKED, 2; SCIDX2
CLA2	GDB:119782	CEREBELLAR ATAXIA, X-LINKED; CLA2
CLCN5	GDB:270667	CHLORIDE CHANNEL 5; CLCN5 FANCONI SYNDROME, RENAL, WITH NEPHROCALCINOSIS AND RENAL STONES NEPHROLITHIASIS, X-LINKED RECESSIVE, WITH RENAL FAILURE; XRN
CLS	GDB:119784	RIBOSOMAL PROTEIN S6 KINASE, 90 KD, POLYPEPTIDE 3; RPS6KA3 COFFIN-LOWRY SYNDROME; CLS
CMTX2	GDB:128311	CHARCOT-MARIE-TOOTH NEUROPATHY, X-LINKED RECESSIVE, 2; CMTX2
CMTX3	GDB:128151	CHARCOT-MARIE-TOOTH NEUROPATHY, X-LINKED RECESSIVE, 3; CMTX3
CND	GDB:9954627	DERMOIDS OF CORNEA; CND
COD1	GDB:119787	CONE DYSTROPHY, X-LINKED, 1; COD1
COD2	GDB:6520166	CONE DYSTROPHY, X-LINKED, 2; COD2
COL4A5	GDB:120596	COLLAGEN, TYPE IV, ALPHA-5 CHAIN; COL4A5 LEIOMYOMATOSIS, ESOPHAGEAL AND VULVAL, WITH NEPHROPATHY
COL4A6	GDB:222775	COLLAGEN, TYPE IV, ALPHA-6 CHAIN; COL4A6 LEIOMYOMATOSIS, ESOPHAGEAL AND VULVAL, WITH NEPHROPATHY
CPX	GDB:120598	CLEFT PALATE, X-LINKED; CPX

Gene	GDB Accession ID	OMIM Link
CVD1	GDB:9954659	CARDIAC VALVULAR DYSPLASIA, X-LINKED
CYBB	GDB:120513	GRANULOMATOUS DISEASE, CHRONIC; CGD
DCX	GDB:9823272	LISSENCEPHALY, X-LINKED
DFN2	GDB:119091	DEAFNESS, X-LINKED 2, PERCEPTIVE CONGENITAL; DFN2
DFN4	GDB:433255	DEAFNESS, X-LINKED 4, CONGENITAL SENSORINEURAL; DFN4
DFN6	GDB:1320698	DEAFNESS, X-LINKED, 6, PROGRESSIVE; DFN6
DHOF	GDB:119847	FOCAL DERMAL HYPOPLASIA; DHOF
DIAPH2	GDB:9835484	DIAPHANOUS, DROSOPHILA, HOMOLOG OF, 2 DKC1GDB:119096 DYSKERATOSIS CONGENITA; DKC
DMD	GDB:119850	MUSCULAR DYSTROPHY, PSEUDOHYPERTROPHIC PROGRESSIVE, DUCHENNE AND BECKER
DSS	GDB:433750	DOSAGE-SENSITIVE SEX REVERSAL; DSS
DYT3	GDB:118789	TORSION DYSTONIA-3, X-LINKED TYPE; DYT3
EBM	GDB:119102	BULLOUS DYSTROPHY, HEREDITARY MACULAR TYPE
EBP	GDB:125212	CHONDRODYSPLASIA PUNCTATA, X-LINKED DOMINANT; CDPX2; CDPXD; CPXD
ED1	GDB:119859	ECTODERMAL DYSPLASIA, ANHIDROTIC; EDA
ELK1	GDB:119867	ELK1, MEMBER OF ETS ONCOGENE FAMILY; ELK1
EMD	GDB:119108	MUSCULAR DYSTROPHY, TARDIVE, DREIFUSS-EMERY TYPE, WITH CONTRACTURES
EVR2	GDB:136068	EXUDATIVE VITREORETINOPATHY, FAMILIAL, X-LINKED RECESSIVE; EVR2
F8C	GDB:119124	HEMOPHILIA A
F9	GDB:119900	HEMOPHILIA B; HEMB
FCP1	GDB:347490	F-CELL PRODUCTION, X-LINKED; FCPX
FDPSL5	GDB:119922	SYNTHETASE-5; FPSL5
FGD1	GDB:119131	SYNDROME FACIOGENITAL DYSPLASIA; FGDY
FGS1	GDB:9836950	FG SYNDROME

Gene	GDB Accession ID	OMIM Link
FMR1	GDB:129038	FRAGILE SITE MENTAL RETARDATION-1; FMR1
FMR2	GDB:141566	FRAGILE SITE, FOLIC ACID TYPE, RARE, FRA(X)(q28); FRAXE
G6PD	GDB:120621	GLUCOSE-6-PHOSPHATE DEHYDROGENASE; G6PD
GABRA3	GDB:119968	GAMMA-AMINOBUTYRIC ACID RECEPTOR, ALPHA-3; GABRA3
GATA1	GDB:125373	GATA-BINDING PROTEIN 1; GATA1
GDI1	GDB:1347097	GDP DISSOCIATION INHIBITOR 1; GDI1 MENTAL RETARDATION, X-LINKED NONSPECIFIC, TYPE 3; MRX3
GDXY	GDB:9954629	DYSGENESIS, XY FEMALE TYPE; GDXY
GJB1	GDB:125246	CHARCOT-MARIE-TOOTH PERONEAL MUSCULAR ATROPHY, X-LINKED; CMTX1 GAP JUNCTION PROTEIN, BETA-1, 32 KD; GJB1
GK	GDB:119271	HYPERGLYCEROLEMIA
GLA	GDB:119272	ANGIOKERATOMA, DIFFUSE
GPC3	GDB:3770726	GLYCAN-3; GPC3 SIMPSON DYSMORPHIA SYNDROME; SDYS
GRPR	GDB:128035	GASTRIN-RELEASING PEPTIDE RECEPTOR; GRPR
GTD	GDB:9954635	GONADOTROPIN DEFICIENCY; GTD
GUST	GDB:9954655	MENTAL RETARDATION WITH OPTIC ATROPHY, DEAFNESS, AND SEIZURES
HMS1	GDB:251827	1; HMS1
HPRT1	GDB:119317	HYPOXANTHINE GUANINE PHOSPHORIBOSYLTRANSFERASE 1; HPRT1
HPT	GDB:119322	HYPOPARTHYROIDISM, X-LINKED; HYPX
HTC2	GDB:700980	HYPERTRICHOSIS, CONGENITAL GENERALIZED; CGH; HCG
HTR2C	GDB:378202	5-@HYDROXYTRYPTAMINE RECEPTOR 2C; HTR2C
HYR	GDB:9954625	REGULATOR; HYR
IDS	GDB:120521	MUCOPOLYSACCHARIDOSIS TYPE II
IHG1	GDB:119343	HYPOPLASIA OF, WITH GLAUCOMA; IHG
IL2RG	GDB:134807	INTERLEUKIN-2 RECEPTOR, GAMMA; IL2RG SEVERE COMBINED IMMUNODEFICIENCY DISEASE, X-LINKED, 2; SCIDX2

Gene	GDB Accession ID	OMIM Link
INDX	GDB:9954657	IMMUNONEUROLOGIC DISORDER, X-LINKED
IP1	GDB:120105	INCONTINENTIA PIGMENTI, TYPE I; IP1
IP2	GDB:120106	INCONTINENTIA PIGMENTI, TYPE II; IP2
JMS	GDB:204055	MENTAL RETARDATION, X-LINKED, WITH GROWTH RETARDATION, DEAFNESS, AND
KAL1	GDB:120116	KALLMANN SYNDROME 1; KAL1
KFSD	GDB:128174	KERATOSIS FOLLICULARIS SPINULOSA DECALVANS CUM OPHIASI; KFSD
L1CAM	GDB:120133	CLASPED THUMB AND MENTAL RETARDATION L1 CELL ADHESION MOLECULE; L1CAM
LAMP2	GDB:125376	LYSOSOME-ASSOCIATED MEMBRANE PROTEIN B; LAMP2; LAMPB
MAA	GDB:119372	MICROPHTHALMIA OR ANOPHTHALMOS, WITH ASSOCIATED ANOMALIES; MAA
MAFD2	GDB:119373	PSYCHOSIS, X-LINKED
MAOA	GDB:120164	MONOAMINE OXIDASE A; MAOA
MAOB	GDB:119377	MONOAMINE OXIDASE B; MAOB
MCF2	GDB:120168	MCF.2 CELL LINE DERIVED TRANSFORMING SEQUENCE; MCF2
MCS	GDB:128370	MENTAL RETARDATION, X-LINKED, SYNDROMIC-4, WITH CONGENITAL CONTRACTURES
MEAX	GDB:119383	X-LINKED, WITH EXCESSIVE AUTOPHAGY; XMEA; MEAX
MECP2	GDB:3851454	SYNDROME; RTT
MF4	GDB:119386	METACARPAL 4-5 FUSION; MF4
MGC1	GDB:120179	MEGALOCORNEA; MGC1; MGCN
MICS	GDB:120526	SURFACE ANTIGEN, X-LINKED; SAX
MID1	GDB:9772232	OPITZ SYNDROME
MLLT7	GDB:392309	MYELOID/LYMPHOID OR MIXED-LINEAGE LEUKEMIA, TRANSLOCATED TO, 7; MLLT7
MLS	GDB:262123	MICROPHTHALMIA WITH LINEAR SKIN DEFECTS; MLS
MRSD	GDB:119398	MENTAL RETARDATION, SKELETAL DYSPLASIA, AND ABDUCENS PALSY; MRSD
MRX14	GDB:138453	RETARDATION, X-LINKED 14; MRX14
MRX1	GDB:120193	MENTAL RETARDATION, X-LINKED

Gene	GDB Accession ID	OMIM Link
		NONSPECIFIC, TYPE 1; MRX1
MRX20	GDB:217050	MENTAL RETARDATION, X-LINKED 20; MRX20
MRX2	GDB:120194	RETARDATION, X-LINKED NONSPECIFIC, TYPE 2; MRX2
MRX3	GDB:128105	GDP DISSOCIATION INHIBITOR 1; GDI1 MENTAL RETARDATION, X-LINKED NONSPECIFIC, TYPE 3; MRX3
MRX40	GDB:700754	MENTAL RETARDATION, X-LINKED, WITH HYPOTONIA
MRXA	GDB:9954641	MENTAL RETARDATION, X-LINKED NONSPECIFIC, WITH APHASIA; MRXA
MSD	GDB:119399	SYNDROME
MTM1	GDB:119439	MYOTUBULAR MYOPATHY 1; MTM1
MYCL2	GDB:120209	MYCL-RELATED PROCESSED GENE; MYCL2
MYP1	GDB:127783	MYOPIA, X-LINKED; MYP1
NDP	GDB:119449	NORRIE DISEASE; NDP
NHS	GDB:120235	CATARACT-DENTAL SYNDROME
NPHL1	GDB:433705	NEPHROLITHIASIS, X-LINKED RECESSIVE, WITH RENAL FAILURE; XRN
NR0B1	GDB:118982	ADRENAL HYPOPLASIA, CONGENITAL; AHC
NSX	GDB:125596	SYNDROME; NSX
NYS1	GDB:119458	NYSTAGMUS, X-LINKED; NYS
NYX	GDB:119814	NIGHTBLINDNESS, CONGENITAL STATIONARY, WITH MYOPIA; CSNB1
OA1	GDB:119459	ALBINISM, OCULAR, TYPE 1; OA1
OASD	GDB:138457	OCULAR, WITH LATE-ONSET SENSORINEURAL DEAFNESS; OASD
OCRL	GDB:119461	LOWE OCULOCEREBRORENAL SYNDROME; OCRL
ODT1	GDB:125360	TEETH, ABSENCE OF
OFD1	GDB:120248	OROFACIODIGITAL SYNDROME 1; OFD1
OPA2	GDB:125358	OPTIC ATROPHY 2; OPA2
OPD1	GDB:120249	OTOPALATODIGITAL SYNDROME
OPEM	GDB:119467	OPHTHALMOPLEGIA, EXTERNAL, AND MYOPIA; OPEM
OPN1LW	GDB:120724	COLORBLINDNESS, PARTIAL, PROTAN SERIES; CBP
OPN1MW	GDB:120622	COLORBLINDNESS, PARTIAL, DEUTAN

Gene	GDB Accession ID	OMIM Link
		SERIES; CBD; DCB
OTC	GDB:119468	ORNITHINE TRANSCARBAMYLASE DEFICIENCY, HYPERAMMONEMIA DUE TO; OTC
P3	GDB:9954667	PROTEIN P3
PDHA1	GDB:118895	PYRUVATE DEHYDROGENASE COMPLEX, E1-ALPHA POLYPEPTIDE-1; PDHA1
PDR	GDB:203409	AMYLOIDOSIS, FAMILIAL CUTANEOUS
PFC	GDB:120275	PROPERDIN DEFICIENCY, X-LINKED
PFKFB1	GDB:125375	6-@PHOSPHOFRUCTO-2-KINASE; PFKFB1
PGK1	GDB:120282	PHOSPHOGLYCERATE KINASE 1; PGK1
PGK1P1	GDB:120283	PHOSPHOGLYCERATE KINASE 1; PGK1
PGS	GDB:128372	DANDY-WALKER MALFORMATION WITH MENTAL RETARDATION, BASAL GANGLIA DISEASE,
PHEX	GDB:120520	HYPOPHOSPHATEMIA, VITAMIN D-RESISTANT RICKETS; HYP
PHKA1	GDB:120285	PHOSPHORYLASE KINASE, ALPHA 1 SUBUNIT (MUSCLE); PHKA1
PHKA2	GDB:127279	GLYCOGEN STORAGE DISEASE VIII
PHP	GDB:119494	PANHYPOPITUITARISM; PHP
PIGA	GDB:138138	PHOSPHATIDYLINOSITOL GLYCAN, CLASS A; PIGA
PLP1	GDB:120302	PROTEOLIPID PROTEIN, MYELIN; PLP
POF1	GDB:120716	PREMATURE OVARIAN FAILURE 1; POF1
POLA	GDB:120304	POLYMERASE, DNA, ALPHA; POLA
POU3F4	GDB:351386	DEAFNESS, CONDUCTIVE, WITH STAPES FIXATION
PPMX	GDB:9954669	RETARDATION WITH PSYCHOSIS, PYRAMIDAL SIGNS, AND MACROORCHIDISM
PRD	GDB:371323	DYSPLASIA, PRIMARY
PRPS1	GDB:120318	PHOSPHORIBOSYL PYROPHOSPHATE SYNTHETASE-I; PRPS1
PRPS2	GDB:120320	PHOSPHORIBOSYL PYROPHOSPHATE SYNTHETASE-II; PRPS2
PRS	GDB:128368	MENTAL RETARDATION, X-LINKED, SYNDROMIC-2, WITH DYSMORPHISM AND CEREBRAL
PRTS	GDB:128367	PARTINGTON X-LINKED MENTAL RETARDATION SYNDROME; PRTS

Gene	GDB Accession ID	OMIM Link
PSF2	GDB:119519	TRANSPORTER 2, ABC; TAP2
RENBP	GDB:133792	RENIN-BINDING PROTEIN; RENBP
RENS1	GDB:9806348	MENTAL RETARDATION, X-LINKED, RENPENNING TYPE
RP2	GDB:120353	RETINITIS PIGMENTOSA-2; RP2
RP6	GDB:125381	PIGMENTOSA-6; RP6
RPGR	GDB:118736	RETINITIS PIGMENTOSA-3; RP3
RPS4X	GDB:128115	RIBOSOMAL PROTEIN S4, X-LINKED; RPS4X
RPS6KA3	GDB:365648	RIBOSOMAL PROTEIN S6 KINASE, 90 KD, POLYPEPTIDE 3; RPS6KA3
RS1	GDB:119581	RETINOSCHISIS; RS
S11	GDB:120361	ANTIGEN, X-LINKED, SECOND; SAX2
SDYS	GDB:119590	GLYPCAN-3; GPC3 SIMPSON DYSMORPHIA SYNDROME; SDYS
SEDL	GDB:120372	SPONDYLOEPIPHYSEAL DYSPLASIA, LATE; SEDL
SERPINA7	GDB:120399	THYROXINE-BINDING GLOBULIN OF SERUM; TBG
SH2D1A	GDB:120701	IMMUNODEFICIENCY, X-LINKED PROGRESSIVE COMBINED VARIABLE
SHFM2	GDB:226635	SPLIT-HAND/SPLIT-FOOT ANOMALY, X-LINKED
SHOX	GDB:6118451	SHORT STATURE; SS
SLC25A5	GDB:125190	ADENINE NUCLEOTIDE TRANSLOCATOR 2; ANT2
SMAX2	GDB:9954643	SPINAL MUSCULAR ATROPHY, X-LINKED LETHAL INFANTILE
SRPX	GDB:3811398	RETINITIS PIGMENTOSA-3; RP3
SRS	GDB:136337	MENTAL RETARDATION, X-LINKED, SNYDER-ROBINSON TYPE
STS	GDB:120393	ICHTHYOSIS, X-LINKED
SYN1	GDB:119606	SYNAPSIN I; SYN1
SYP	GDB:125295	SYNAPTOPHYSIN; SYP
TAF1	GDB:120573	TATA BOX BINDING PROTEIN (TBP)-ASSOCIATED FACTOR 2A; TAF2A
TAZ	GDB:120609	CARDIOMYOPATHY, DILATED 3A; CMD3A ENDOCARDIAL FIBROELASTOSIS-2; EFE2
TBX22	GDB:10796448	CLEFT PALATE, X-LINKED; CPX
TDD	GDB:119610	MALE PSEUDOHERMAPHRODITISM:

Gene	GDB Accession ID	OMIM Link
		DEFICIENCY OF TESTICULAR 17,20-DESMOLASE;
TFE3	GDB:125870	TRANSCRIPTION FACTOR FOR IMMUNOGLOBULIN HEAVY-CHAIN ENHANCER-3; TFE3
THAS	GDB:128158	THORACOABDOMINAL SYNDROME; TAS
THC	GDB:125361	THROMBOCYTOPENIA, X-LINKED; THC; XLT
TIMM8A	GDB:119090	DEAFNESS 1, PROGRESSIVE; DFN1
TIMP1	GDB:119615	TISSUE INHIBITOR OF METALLOPROTEINASE-1; TIMP1
TKCR	GDB:119616	TORTICOLLIS, KELOIDS, CRYPTORCHIDISM, AND RENAL DYSPLASIA; TKC
TNFSF5	GDB:120632	IMMUNODEFICIENCY WITH INCREASED IgM
UBE1	GDB:118954	UBIQUITIN-ACTIVATING ENZYME 1; UBE1
UBE2A	GDB:131647	UBIQUITIN-CONJUGATING ENZYME E2A; UBE2A
WAS	GDB:120736	WISKOTT-ALDRICH SYNDROME; WAS
WSN	GDB:125864	PARKINSONISM, EARLY-ONSET, WITH MENTAL RETARDATION
WTS	GDB:128373	MENTAL RETARDATION, X-LINKED, SYNDROMIC-6, WITH GYNECOMASTIA AND OBESITY;
WWS	GDB:120497	WIEACKER SYNDROME
XIC	GDB:120498	X-INACTIVATION-SPECIFIC TRANSCRIPT; XIST
XIST	GDB:126428	X-INACTIVATION-SPECIFIC TRANSCRIPT; XIST
XK	GDB:120499	Xk LOCUS
XM	GDB:119634	XM SYSTEM
XS	GDB:119636	LUTHERAN SUPPRESSOR, X-LINKED; XS; LUXS
ZFX	GDB:120502	ZINC FINGER PROTEIN, X-LINKED; ZFX
ZIC3	GDB:249141	HETEROTAXY, X-LINKED VISCELAR; HTX1
ZNF261	GDB:9785766	MENTAL RETARDATION, X-LINKED; DXS6673E
ZNF41	GDB:125865	ZINC FINGER PROTEIN-41; ZNF41
ZNF6	GDB:120508	ZINC FINGER PROTEIN-6; ZNF6

Table 25: Genes, Locations and Genetic Disorders on Chromosome Y

Gene	GDB Accession ID	OMIM Link
AMELY	GDB:119676	AMELOGENIN, Y-CHROMOSOMAL; AMELY
ASSP6	GDB:119020	CITRULLINEMIA
AZF1	GDB:119027	AZOOSPERMIA FACTOR 1; AZF1
AZF2	GDB:456131	AZOOSPERMIA FACTOR 2; AZF2
DAZ	GDB:635890	DELETED IN AZOOSPERMIA; DAZ
GCY	GDB:119267	CONTROL, Y-CHROMOSOME INFLUENCED; GCY
RPS4Y	GDB:128052	RIBOSOMAL PROTEIN S4, Y-LINKED; RPS4Y
SMCY	GDB:5875390	HISTOCOMPATIBILITY Y ANTIGEN; HY; HYA
SRY	GDB:125556	SEX-DETERMINING REGION Y; SRY
ZFY	GDB:120503	ZINC FINGER PROTEIN, Y-LINKED; ZFY

Table 26: Genes, Locations and Genetic Disorders in Unknown or Multiple Locations

Gene	GDB Accession ID	OMIM Link
ABAT	GDB:581658	GAMMA-AMINOBUTYRATE TRANSAMINASE
AEZ	GDB:128360	ACRODERMATITIS ENTEROPATHICA, ZINC-DEFICIENCY TYPE; AEZ
AFA	GDB:265277	FILIFORME ADNATUM AND CLEFT PALATE
AFD1	GDB:265292	DYSOSTOSIS, TREACHER COLLINS TYPE, WITHLIMB ANOMALIES
AGS1	GDB:10795417	ENCEPHALOPATHY, FAMILIAL INFANTILE, WITH CALCIFICATION OF BASAL GANGLIA
ASAHI	GDB:6837715	FARBER LIPOGRANULOMATOSIS
ASD1	GDB:6276019	atrial septal defect; ASD
ASMT	GDB:136259	CETYLSEROTONIN METHYLTRANSFERASE; ASMT ACETYL SEROTONIN METHYLTRANSFERASE, Y-CHROMOSOMAL; ASMTY; HIOMTY
BCH	GDB:118758	CHOREA, HEREDITARY BENIGN; BCH
CCAT	GDB:118738	CATARACT, CONGENITAL OR JUVENILE
CECR9	GDB:10796163	CAT EYE SYNDROME; CES
CEPA	GDB:581848	CONTROL, CONGENITAL FAILURE OF
CHED2	GDB:9957389	CORNEAL DYSTROPHY, CONGENITAL HEREDITARY

Gene	GDB Accession ID	OMIM Link
CLA1	GDB:119781	CEREBELLOPARENCHYMAL DISORDER III
CLA3	GDB:128453	CEREBELLOPARENCHYMAL DISORDER I; CPD I
CLN4	GDB:125229	CEROID-LIPOFUSCINOSIS, NEURONAL 4; CLN4
CPO	GDB:119070	COPROPORPHYRIA
CSF2RA	GDB:118777	COLONY STIMULATING FACTOR 2 RECEPTOR, ALPHA; CSF2RA GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR RECEPTOR, ALPHA SUBUNIT,
CTS1	GDB:118779	CARPAL TUNNEL SYNDROME; CTS; CTS1
DF	GDB:132645	FACTOR D
DIH1	GDB:439243	DIAPHRAGMATIC
DWS	GDB:128371	SYNDROME; DWS
DYT2	GDB:118788	DYSTONIA MUSCULORUM DEFORMANS 2; DYT2
DYT4	GDB:433751	DYSTONIA MUSCULORUM DEFORMANS 4; DYT4
EBR3	GDB:118739	EPIDERMOLYSIS BULLOSA DYSTROPHICA NEUROTROPHICA
ECT	GDB:128640	CENTRALOPATHIC EPILEPSY
EEF1A1L14	GDB:1327185	PROSTATIC CARCINOMA ONCOGENE PTI-1
EYCL2	GDB:4642815	EYE COLOR-3; EYCL3
FA1	GDB:118795	FANCONI ANEMIA, COMPLEMENTATION GROUP A; FACA
FANCB	GDB:9864269	FANCONI PANCYTOPENIA, TYPE 2
GCSH	GDB:126842	HYPERGLYCINEMIA, ISOLATED NONKETOTIC, TYPE III; NKH3
GCSL	GDB:132139	ISOLATED NONKETOTIC, TYPE IV; NKH4
GDF5	GDB:433948	CARTILAGE-DERIVED MORPHOGENETIC PROTEIN 1
GIP	GDB:119985	GASTRIC INHIBITORY POLYPEPTIDE; GIP
GTS	GDB:118807	GILLES DE LA TOURETTE SYNDROME; GTS
HHG	GDB:118740	HYPERGONADOTROPIC HYPOGONADISM; HHG
HMI	GDB:265275	OF ITO; HMI
HOAC	GDB:118812	DEAFNESS, CONGENITAL, AUTOSOMAL RECESSIVE
HOKPP2	GDB:595535	HYPOKALEMIC PERIODIC PARALYSIS, TYPE II; HOKPP2
HRPT1	GDB:125252	HYPERTHYROIDISM, FAMILIAL PRIMARY
HSD3B3	GDB:676973	GIANT CELL HEPATITIS, NEONATAL

Gene	GDB Accession ID	OMIM Link
HTC1	GDB:265286	HYPERTRICHOSIS UNIVERSALIS CONGENITA, AMBRAS TYPE; HTC1
HV1S	GDB:9955009	HERPES VIRUS SENSITIVITY; HV1S
ICR1	GDB:127785	LAMELLAR, AUTOSOMAL DOMINANT FORM
ICR5	GDB:127789	ICHTHYOSIS CONGENITA, HARLEQUIN FETUS TYPE
IL3RA	GDB:128985	INTERLEUKIN-3 RECEPTOR, ALPHA; IL3RA INTERLEUKIN-3 RECEPTOR, Y-CHROMOSOMAL; IL3RA
KAL2	GDB:265288	KALLMANN SYNDROME 2; KAL2
KMS	GDB:118827	SYNDROME; KMS
KRT18	GDB:120127	KERATIN 18; KRT18
KSS	GDB:9957718	KEARNS-SAYRE SYNDROME; KSS
LCAT	GDB:119359	FISH-EYE DISEASE; FED LECITHIN:CHOLESTEROL ACYLTRANSFERASE DEFICIENCY
LIMM	GDB:9958161	MYOPATHY, MITOCHONDRIAL, LETHAL INFANTILE; LIMM
MANBB	GDB:125262	MANNOSIDOSIS, BETA; MANB1
MCPH2	GDB:9863035	MICROCEPHALY; MCT
MEB	GDB:599557	DISEASE
MELAS	GDB:9955855	MELAS SYNDROME
MIC2	GDB:120184	SURFACE ANTIGEN MIC2; MIC2; CD99 MIC2 SURFACE ANTIGEN, Y-CHROMOSOMAL; MIC2Y
MPFD	GDB:439372	CONGENITAL, WITH FIBER-TYPE DISPROPORTION
MS	GDB:229116	SCLEROSIS; MS
MSS	GDB:118743	MARINESCO-SJOGREN SYNDROME; MSS
MTATP6	GDB:118897	ATP SYNTHASE 6; MTATP6
MTCO1	GDB:118900	COMPLEX IV, CYTOCHROME c OXIDASE SUBUNIT I; MTCO1; COI
MTCO3	GDB:118902	CYTOCHROME c OXIDASE III; MTCO3
MTCYB	GDB:118906	COMPLEX III, CYTOCHROME b SUBUNIT
MTND1	GDB:118911	COMPLEX I, SUBUNIT ND1; MTND1
MTND2	GDB:118912	COMPLEX I, SUBUNIT ND2; MTND2
MTND4	GDB:118914	COMPLEX I, SUBUNIT ND4; MTND4
MTND5	GDB:118916	COMPLEX I, SUBUNIT ND5; MTND5
MTND6	GDB:118917	COMPLEX I, SUBUNIT ND6; MTND6
MTRNR1	GDB:118920	RIBOSOMAL RNA, MITOCHONDRIAL, 12S; MTRNR1

Gene	GDB Accession ID	OMIM Link
MTRNR2	GDB:118921	RIBOSOMAL RNA, MITOCHONDRIAL, 16S; MTRNR2
MTTE	GDB:118926	TRANSFER RNA, MITOCHONDRIAL, GLUTAMIC ACID; MTTE
MTTG	GDB:118933	TRANSFER RNA, MITOCHONDRIAL, GLYCINE; MTTG
MTTI	GDB:118935	TRANSFER RNA, MITOCHONDRIAL, ISOLEUCINE; MTTI
MTTK	GDB:118936	MERRF SYNDROME TRANSFER RNA, MITOCHONDRIAL, LYSINE; MTTK
MTTL1	GDB:118937	MERRF SYNDROME TRANSFER RNA, MITOCHONDRIAL, LEUCINE, 1; MTTL1
MTTL2	GDB:118938	TRANSFER RNA, MITOCHONDRIAL, LEUCINE, 2; MTTL2
MTTN	GDB:118940	TRANSFER RNA, MITOCHONDRIAL, ASPARAGINE; MTTN
MTTP	GDB:118941	TRANSFER RNA, MITOCHONDRIAL, PROLINE; MTTP
MTTS1	GDB:118944	TRANSFER RNA, MITOCHONDRIAL, SERINE, 1; MTTS1
NAMSD	GDB:681237	NEUROPATHY, MOTOR-SENSORY, TYPE II, WITH DEAFNESS AND MENTAL RETARDATION
NODAL	GDB:9848762	NODAL, MOUSE, HOMOLOG OF
OCD1	GDB:118846	DISORDER-1; OCD1
OPD2	GDB:131394	SYNDROME
PCK2	GDB:137198	PHOSPHOENOLPYRUVATE CARBOXYKINASE 2, MITOCHONDRIAL; PCK2
PCLD	GDB:433949	POLYCYSTIC LIVER DISEASE; PLD
PCOS1	GDB:1391802	STEIN-LEVENTHAL SYNDROME
PFKM	GDB:120277	GLYCOGEN STORAGE DISEASE VII
PKD3	GDB:127866	KIDNEY DISEASE 3, AUTOSOMAL DOMINANT; PKD3
PRCA1	GDB:342066	PROSTATE CANCER; PRCA1
PRO1	GDB:128585	
PROP1	GDB:9834318	PROPHET OF PIT1, MOUSE, HOMOLOG OF; PROP1
RBS	GDB:118862	ROBERTS SYNDROME; RBS
RFXAP	GDB:9475355	REGULATORY FACTOR X-ASSOCIATED PROTEIN; RFXAP
RP	GDB:9958158	RETINITIS PIGMENTOSA-8
SLC25A6	GDB:125184	ADENINE NUCLEOTIDE TRANSLOCATOR 3;

Gene	GDB Accession ID	OMIM Link
		ANT3 ADENINE NUCLEOTIDE TRANSLOCATOR 3, Y-CHROMOSOMAL; ANT3Y
SPG5B	GDB:250333	SPASTIC PARAPLEGIA-5B, AUTOSOMAL RECESSIVE; SPG5B
STO	GDB:439375	CEREBRAL GIGANTISM
SUOX	GDB:5584405	SULFOCYSTEINURIA
TC21	GDB:5573831	ONCOGENE TC21
THM	GDB:439378	FAMILIAL
TST	GDB:134043	RHODANESE; RDS
TTD	GDB:230276	TRICHOThIODYSTROPHY; TTD

Equivalents:

The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the invention in addition to those described will become apparent to those skilled in the art from the foregoing description and accompanying figures. Such modifications are intended to fall within the scope of the appended claims.

Various publications are cited herein, the disclosures of which are incorporated by reference in their entireties.

The invention can be illustrated by the following embodiments enumerated in the numbered paragraphs that follow:

1. A method for identifying a compound that modulates premature translation termination or nonsense-mediated mRNA decay, comprising the steps of (a) 5 contacting a detectably labeled target RNA molecule with a library of compounds under conditions that permit direct binding of the labeled target RNA to a member of the library of compounds so that a detectably labeled target RNA:compound complex is formed; (b) separating the detectably labeled target RNA:compound complex formed in step (a) from uncomplexed target RNA molecules and compounds; and (c) determining a structure of the 10 compound bound to the RNA in the RNA:compound complex.

2. A method for identifying a compound that modulates premature translation termination or nonsense-mediated mRNA decay, comprising the steps of (a) contacting a target RNA molecule with a library of detectably labeled compounds under conditions that permit direct binding of the target RNA to a member of the library of 15 labeled compounds so that a target RNA:compound complex that is detectably labeled is formed; (b) separating the target RNA:compound complex formed in step (a) from uncomplexed target RNA molecules and compounds; and (c) determining a structure of the compound bound to the RNA in the RNA:compound complex.

3. The method of paragraph 1 in which the target RNA molecule 20 contains regions of 28S rRNA or analogs thereof.

4. The method of paragraph 1 in which the detectably labeled RNA is labeled with a fluorescent dye, phosphorescent dye, ultraviolet dye, infrared dye, visible dye, radiolabel, enzyme, spectroscopic colorimetric label, affinity tag, or nanoparticle.

5. The method of paragraph 1 in which the compound is selected from a 25 combinatorial library comprising peptoids; random bio-oligomers; diversomers such as hydantoins, benzodiazepines and dipeptides; vinylogous polypeptides; nonpeptidal peptidomimetics; oligocarbamates; peptidyl phosphonates; peptide nucleic acid libraries; antibody libraries; carbohydrate libraries; and small organic molecule libraries, including but not limited to, libraries of benzodiazepines, isoprenoids, thiazolidinones, 30 metathiazanones, pyrrolidines, morpholino compounds, or diazepindiones.

6. The method of paragraph 1 in which screening a library of compounds comprises contacting the compound with the target nucleic acid in the presence of an aqueous solution, the aqueous solution comprising a buffer and a combination of salts, preferably approximating or mimicking physiologic conditions.

7. The method of paragraph 6 in which the aqueous solution optionally further comprises non-specific nucleic acids comprising DNA, yeast tRNA, salmon sperm DNA, homoribopolymers, and nonspecific RNAs.

8. The method of paragraph 6 in which the aqueous solution further
5 comprises a buffer, a combination of salts, and optionally, a detergent or a surfactant. In another embodiment, the aqueous solution further comprises a combination of salts, from about 0 mM to about 100 mM KCl, from about 0 mM to about 1 M NaCl, and from about 0 mM to about 200 mM MgCl₂. In a preferred embodiment, the combination of salts is about 100 mM KCl, 500 mM NaCl, and 10 mM MgCl₂. In another embodiment, the solution
10 optionally comprises from about 0.01% to about 0.5% (w/v) of a detergent or a surfactant.

9. Any method that detects an altered physical property of a target nucleic acid complexed to a compound from the unbound target nucleic acid may be used for separation of the complexed and non-complexed target nucleic acids in the method of paragraph 1. In a preferred embodiment, electrophoresis is used for separation of the
15 complexed and non-complexed target nucleic acids. In a preferred embodiment, the electrophoresis is capillary electrophoresis. In other embodiments, fluorescence spectroscopy, surface plasmon resonance, mass spectrometry, scintillation, proximity assay, structure-activity relationships ("SAR") by NMR spectroscopy, size exclusion chromatography, affinity chromatography, and nanoparticle aggregation are used for the
20 separation of the complexed and non-complexed target nucleic acids.

10. The structure of the compound of the RNA:compound complex of paragraph 1 is determined, in part, by the type of library of compounds. In a preferred embodiment wherein the combinatorial libraries are small organic molecule libraries, mass spectroscopy, NMR, or vibration spectroscopy are used to determine the structure of the
25 compounds.