ECONOMETRICS I

José Luis Montiel Olea

Lectures 3 and 4

Conditional Probability

MV Distributions, Independence, and Conditional Probability

Overview

- ★ Define random vectors along with multivariate c.d.f.s (mean, covariance matrix, moment generating function)
- * Present some useful characterizations of independence (general definition relegated to the appendix of the notes)
- * Introduce conditional probability and conditional expectation (general definition also in the appendix of the notes)

1. Random Vectors and MV distributions

Introduction

* So far, we have been working with real-valued random variables:

$$X:\Omega \to \mathbb{R}$$

 \star Consequently, we have learned to think about statements like:

$$P_X(X \leq x),$$

 \star where x is some real number.

MOTIVATION

- * Econ data usually involve more than one random variable (think about cross-sectional or time series data)
- \star Thus, we will work with $X_s: \Omega \to \mathbb{R}, \quad s \in \{1, 2 \dots S\}$
- ★ We will introduce the following statements:
 - 1. Joint Probability Statements.

$$\mathbb{P}_X\left[X_1\leq x_1,\ldots X_S\leq x_s\right]$$

2. Conditional Probability Statements.

$$\mathbb{P}_X \left[X_1 \le x_1 \mid X_2 \le x_2 \right]$$

\mathbb{R}^s -VALUED RANDOM VARIABLE

 \star The $\mathbb{R}^{\mathcal{S}}$ -valued mapping defined over (Ω,\mathcal{F})

$$\mathbf{X}(\omega) \equiv \left(X_1(\omega), \ldots, X_S(\omega)\right)'$$

is a random vector if for all $A \in \mathcal{B}(\mathbb{R}^S)$

$$\mathbf{X}^{-1}(A) \in \mathcal{F}.$$

* The definition is analogous to real-valued case

Multivariate Cumulative Distribution Functions

 \star The c.d.f. of the \mathbb{R}^{S} valued random vector $\mathbf{X}(\omega)$ is a function

$$F_X: \mathbb{R}^S \to [0,1]$$

defined as

$$F_X(x_1,\ldots,x_S) \equiv \mathbb{P}\{\omega \in \Omega \mid X_i(\omega) \leq x_i \text{ for all } i=1,\ldots,S.\}$$

* Thus, the c.d.f. tell us how often each X_i is below x_i .

We classify random vectors according to their c.d.f.s (discrete and continuous)

Absolutely Continuous Random Vector

 \star An \mathbb{R}^S -valued random vector is absolutely continuous if:

$$F(x_1,x_2,\ldots x_S)=\int_{-\infty}^{x_1}\ldots\int_{-\infty}^{x_S}f(z_1,\ldots z_S)dz_1\ldots dz_S$$

for some nonnegative function $f: \mathbb{R}^S \to \mathbb{R}^+$.

$$\star f(x_1,\ldots,x_n) = \partial^n F(x_1,\ldots,x_n)/\partial x_1\ldots\partial x_n$$
 is the p.d.f. of **X**.

MARGINAL DISTRIBUTIONS OF X

$$F_s:\mathbb{R}\to[0,1]$$

$$F_{s}(x) \equiv \mathbb{P}\Big[\mathbf{X}^{-1}\Big(\mathbb{R} \times \dots (-\infty, x) \dots \times \mathbb{R}\Big)\Big]$$

From Joint to Marginals

How to recover a marginal p.d.f. from a joint p.d.f?

Just integrate variables out.

Moments of Random Vector

Let $g: \mathbb{R}^S \to \mathbb{R}^m$. Write

$$g(\mathbf{x}) = (g_1(\mathbf{x}), g_2(\mathbf{x}), \dots g_m(\mathbf{x}))'$$

and let

$$\mathbb{E}_{F}[g(\mathbf{X})] = \left(\mathbb{E}_{F}[g_{1}(\mathbf{X})], \mathbb{E}_{F}[g_{2}(\mathbf{X})], \dots, \mathbb{E}_{F}[g_{m}(\mathbf{X})]\right)'$$

$$\equiv \left(\int_{\mathbb{R}^{S}} g_{1}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}, \dots, \int_{\mathbb{R}^{S}} g_{m}(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}\right)'$$

Mean, Variance, Covariance

$$\mu \equiv \mathbb{E}[\mathbf{X}], \ \mathbf{\Sigma} \equiv \mathbb{E}[(\mathbf{X} - \mu)(\mathbf{X} - \mu)']$$

$$Cov(X, Y) \equiv \mathbb{E}[(X - \mu_x)(Y - \mu_y)].$$

Moment Generating Function of X

The moment generating function of $m_{\mathbf{X}}: \mathbb{R}^S \to \mathbb{R}$ is given by:

$$m_{\mathbf{X}}(t) \equiv \mathbb{E}_F[\exp(t'\mathbf{X})] \quad t \in \mathbb{R}^S$$

REMARKS ABOUT THE M.G.F.

- $\star\,$ Vectors with the same m.g.f. have the same joint distribution
- ★ Vectors with the same distribution ∀ linear combinations have the same joint distribution
 - (see Cramer-Wold Theorem in the notes and problem 2)

Examples of Bivariate Vectors (Bivariate Normal and Bivariate Bernoulli)

BIVARIATE NORMAL

- \star Let $\mu \in \mathbb{R}^2$ and let Σ be a p.s.d. matrix of dimension 2×2 .
- $\star \ \mathbf{X} \sim \mathcal{N}_2(\mu, \mathbf{\Sigma})$, if:

$$\mathbb{E}_{F}[\exp(t'\mathbf{X})] = \exp\left(t'\mu + \frac{1}{2}t'\Sigma t\right).$$

Some Properties of the Bivariate Normal

1. $\mu \in \mathbb{R}^2, A \in \mathbb{R}^{2 \times 2}$

$$\mathbf{Z} \sim \mathcal{N}_2(\mathbf{0}, \mathbb{I}_2) \implies \mu + A\mathbf{Z} \sim \mathcal{N}_2(\mu, AA').$$

- 2. $\mathbf{X} \sim \mathcal{N}(\mu, \Sigma) \iff c' \mathbf{X} \sim \mathcal{N}(c' \mu, c' \Sigma c) \text{ for all } c \in \mathbb{R}^2.$
- 3. $\mathbf{X} \sim \mathcal{N}(\mu, \Sigma)$, Σ invertible. The p.d.f. of \mathbf{X} is:

$$f(\mathbf{x}) = \frac{1}{(\det 2\pi \Sigma)^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)' \Sigma^{-1}(\mathbf{x} - \mu)\right).$$

BIVARIATE BERNOULLI

$$\mathsf{Supp} = \Big\{ (0,0), \; (0,1), \; (1,0), \; (1,1) \Big\}$$

$$p_1 + p_2 + p_3 + p_4 = 1$$

(what are the marginal distributions?)

Remark: Joints are not 'identified' by marginals

$$X \sim \text{Bernoulli}(p_x), \quad Y \sim \text{Bernoulli}(p_y)$$

$$\begin{array}{c|cccc} & & & & Y & & & & & \\ & & & & & 0 & & 1 & & \\ X & & & & p_1 & & p_2 & & \\ & & & p_3 & & p_4 & & & \end{array}$$

$$p_2 + p_4 = p_y$$
 $p_3 + p_4 = p_x$
 $p_1 + p_2 + p_3 + p_4 = 1$

Solve for p_1, p_2, p_3, p_4 .

- \star Let X, Y be real-valued random variables.
- \star Assume $\mu = (\mu_x, \mu_y)'$ and Σ are known.
- * "Predict" Y using using a linear function of $(X \mu_x)$:

$$\alpha + \beta(X - \mu_X)$$

* The best linear predictor minimizes expected squared error

$$\min_{\alpha,\beta} \mathbb{E}[(Y - \alpha - \beta(X - \mu_x))^2]$$

* Show that $\alpha^* = \mu_Y$, $\beta^* = \text{Cov}(X, Y)/V(Y)$.

2. Independence

Conditional Probability

Conditional Probability

(In) dependence

* Important issue in the multivariate world:

How to summarize dependence or lack of dependence between random variables?

 \star Say X_1, \ldots, X_n are independent if for any A_1, \ldots, A_n

$$\mathbb{P}(X_1 \in A_1, \ldots, X_n \in A_n) = \mathbb{P}(X_1 \in A_1) \ldots \mathbb{P}(X_n \in A_n).$$

* i.e., joint distribution equals the product of the marginals.

Random Vectors and MV distributions

Conditional Probability

$$\begin{array}{c|cccc} & & & & & Y \\ & & & & 0 & & 1 \\ X & & 0 & & & .3 & .2 \\ & & 1 & & & .5 & & 0 \\ \end{array}$$

USEFUL CHARACTERIZATIONS

* Joint c.d.f is the product of the marginal c.d.f.s

$$F(X_1,\ldots,X_n)=F(X_1)\ldots F(X_n).$$

* Joint p.d.f. is the product of marginal p.d.f.s

$$f(x_1,\ldots,x_n)=f(x_1)\ldots f(x_n).$$

* Expectation of "products" is the "product" of expectations

$$\mathbb{E}[g_1(X_1),\ldots,g_n(X_n)]=\mathbb{E}[g_1(X_1)]\ldots\mathbb{E}[g(X_n)].$$

* Joint m.g.f. is the product of the marginal m.g.f.s

$$\mathbb{E}[\exp(\mathbf{t}'\mathbf{X})] = \mathbb{E}[\exp(t_1X_1)] \dots \mathbb{E}[\exp(t_nX_n)]$$

Independence implies zero Covariance

$$\operatorname{Cov}(X, Y) \equiv \mathbb{E}[(X - \mu_X)(Y - \mu_Y)]$$
 \Longrightarrow

$$Cov(X, Y) \equiv \mathbb{E}[XY] - \mu_x \mu_y.$$

Therefore (X, Y) independent $\implies Cov(X, Y) = 0$.

Does zero covariance implies independence?

Conditional Probability

* In general, the answer is no. Consider:

$$\begin{array}{c|cccc} & & & & & Y \\ & & & & 0 & & 1 \\ X & & -1 & & \boxed{ \begin{array}{c|cccc} 0 & 3/9 & \\ \hline 3/9 & & 0 \\ & & 1 & \\ \hline & & & 0 & 3/9 \\ \hline \end{array} }$$

* But in some cases like multivariate normals, the answer is yes. (I will ask you to work this out in this week's problem set)

3. Conditional Probability and Conditional Expectation

DEFINITION OF THE CONDITIONAL PROBABILITY FUNCTION

- ⋆ P(Y ∈ A|x): Conditional probability of Y ∈ A given x.
- * Defined as the function such that

$$\int_{B} P(Y \in A|x) f_X(x) dx = P(Y \in A, X \in B).$$

 \star When X, Y have joint p.d.f. f then

$$P(Y \in A|x) = \int_A \frac{f(x,y)}{f_X(x)} dy$$

 \star The p.d.f. of Y|X is defined as:

$$f(y|x) \equiv \frac{f(x,y)}{f_X(x)}$$
.

IN OUR EXAMPLE

$$X \quad 0 \quad \frac{p_1}{p_3} \quad \frac{p_2}{p_4}$$

$$P(Y = 1|X = 1) = \frac{p_4}{p_3 + p_4}$$

$$P(Y = 1|X = 0) = \frac{p_2}{p_1 + p_2}$$

CONDITIONAL EXPECTATION

* If (X, Y) have joint p.d.f. f(x,y):

$$\mathbb{E}[g(Y)|x] \equiv \int g(y) \frac{f(x,y)}{f_X(x)} dy.$$

 \star Law of Iterated Expectations $\mathbb{E}[\mathbb{E}[g(Y)|x]] = \mathbb{E}[g(Y)]$

EXAMPLE

$$\mathbb{E}[Y|X=1] \equiv (0)\frac{p_3}{p_3 + p_4} + (1)\frac{p_4}{p_3 + p_4}$$

BIVARIATE NORMAL

In the problem set I will ask you show that if (X, Y) are bivariate normal:

$$Y|X \sim \mathcal{N}_1(\underbrace{\alpha^* + \beta^*(X - \mu_X)}_{\text{Best Linear Pred}}, \text{ Var}(\underbrace{(Y - \alpha^* - \beta^*(X - \mu_X))}_{\text{Approximation Error}})$$

Signal and Noise

In the problem set I also ask you to consider the model

$$\underbrace{X}_{\text{Noisy Measure}} = \underbrace{\theta}_{\text{signal}} + \underbrace{\epsilon}_{\text{noise}},$$

$$heta \sim \mathcal{N}(\mu, \sigma_{ heta}^2), \quad \epsilon \sim \mathcal{N}(0, \sigma_{\epsilon}^2), \quad \theta oldsymbol{\perp} \epsilon$$

and to work-out the distribution of $\theta|X$.

4. Sums of Random Variables

Let's go back to the example

For any
$$t_1, t_2 \in \mathbb{R}$$
 define $W = t_1 X + t_2 Y$

Distribution of $t_1X + t_2Y$

 \star What is the distribution of W?

$$\mathsf{Supp} = \{0, t_1, t_2, t_1 + t_2\}$$

$$\mathbb{P}_{Z}(W=w)$$
?

* Note that:

$$\mathbb{P}_{Z}[W = t_1 + t_2] = p_4, \quad \mathbb{P}_{Z}[W = t_2] = p_2, \quad \mathbb{P}_{Z}[W = t_1] = p_3$$

$$\mathbb{P}_Z[W=0]=p_1$$

SUMS OF INDEPENDENT RANDOM VARIABLES

- \star The distribution of $X_1 + X_2$ need not be easy to obtain
- \star If X_1 and X_2 are independent and have m.g.f.s, it is

$$\mathbb{E}[\exp(t(X+X_2))] = \mathbb{E}[\exp(tX_1)]\mathbb{E}[\exp(tX_2)]$$

 \star Also, if X_1 and X_2 are independent and have p.d.f.s f and g;

$$Z = X + Y$$
 has p.d.f. $\int f(z - y)g(y)dy$