Ch6 - Regularization

Contents

6ASub	section
A.1	Subset Selection
A.2	Best Subset Selection Algorithm
	RSS or SSE?
A.4	Best Subset
	Need Global Measure of Fit
A.6	Forward Selection
A.7	Backward Selection
A.8	Best Model?
A.9	Shrinkage
A.10	Bias-Variance Trade off
A.11	Ridge
A.12	Lasso
A.13	Another formulation
A.14	Boston Data
A.15	7 Test MSE
A.16	Ridge vs Lasso

A.17 Dimention Reduction	
A.18 Principal Component Regression	
	_

Textbook: James et al. ISLR 2ed.

6A Subsection

[ToC]

A.1 Subset Selection

- Non-linear, but still additive relationship
- Linear model is surprisingly competitive in real world modeling.
- Improve linear model by not using Least Square method.
- Variable Selection (P-values add up)
 - 1. Subset Selection
 - 2. Shrinkage
 - 3. Dimension Reduction

A.2 Best Subset Selection Algorithm

- 1. Let M_0 denote the null model (no predictors).
- 2. For $k = 1, 2, \dots, p$
 - (a) Fit all $\binom{p}{k}$ models with k predictors.
 - (b) Pick the best (min RSS, or max R^2), call it M_k
- 3. Pick the best among M_0, \ldots, M_p , by using C-V prediction error, AIC, BIC, or adjusted R^2 .

A.3 RSS or SSE?

Naming Convention 1 2 3 4 5
$$A \quad \sum (Y_i - \bar{Y})^2 \quad TSS \quad TotSS \quad TotSS \quad SSTot \quad SSTot$$

$$B \quad \sum (Y_i - \hat{Y}_i)^2 \quad SSE \quad ErrSS \quad ResSS \quad SSRes \quad SSErr$$

$$C \quad \sum (\hat{Y}_i - \bar{Y})^2 \quad SSR \quad RegSS \quad ExpSS \quad SSReg \quad SSReg$$

- A. Total Sum of Squares (TSS)
- B. Sum of Squared Estimate of Errors (SSE)
 Error Sum of Squares (ESS)
 Residual Sum of Squares (RSS) (James ISLR)
 Sum of Squared Residuals (SSR)
- C. Sum of Squares (due to) Regression (SSR)
 Regression Sum of Squares (RSS)
 Explained Sum of Squares (ESS)
 Model Sum of Squares (MSS)

A.4 Best Subset

- 1. p=10, you need to try 1000 models. p=20, try 1000000 models.
- 2. not feasible if p > 40

A.5 Need Global Measure of Fit

- 1. RSS always decrease with extra variable, and R^2 always decrease.
- 2. Need some measure of fit that can be used to compare p=1 vs p=10.
- 3. AIC and BIC (under regression model with Gaussian error)

AIC =
$$\frac{1}{n\hat{\sigma}^2}$$
(RSS + $2p\hat{\sigma}^2$), BIC = $\frac{1}{n\hat{\sigma}^2}$ (RSS + $\log(n)p\hat{\sigma}^2$)

where $\hat{\sigma}^2$ is full model MSE.

4. Adjusted- R^2 , Av validation MSE from CV

A.6 Forward Selection

- 1. M_0 is the model with no predictor.
- 2. For $k = 0, \ldots, p 1$
 - (a) Consider all p-k models that augment the predictors in M_k with one additional predictor.
 - (b) Choose the best among these p k models, and call it M_{k+1} . (min RSS or max \mathbb{R}^2).
- 3. Select a best among $M_0, ..., M_p$ using Av. validation CV MSE, AIC, BIC, or adjusted \mathbb{R}^2 .

A.7 Backward Selection

1. M_p is the full model with all predictors.

2. For $k = p, p - 1 \dots, 1$

(a) Consider all k models that contain all but one of the predictors in M_k .

(b) Choose the best among these k models, and call it M_{k-1} . (min RSS or max R^2).

3. Select the best among $M_0, ..., M_p$ using Av. validation CV MSE, AIC, BIC, or adjusted \mathbb{R}^2 .

A.8 Best Model?

	# of Non Intercept			
Model	Parameters	Parameters	\mathbb{R}^2	AIC
1	0	I	0	1.9
2	1	I, 1	0.56	1.4
3	1.	I, 2	0.57	1.2
4	1	I, 3	0.55	1.6
5	1	I, 4	0.52	1.7
6	1	I, 5	0.51	1.8
7	2	I, 1, 2	0.61	1.0
8	2	I, 1, 3	0.64	0.5
9	2	I, 1, 4	0.63	0.8
10	2	I, 1, 5	0.69	0.0
11	2	I, 2, 3	0.61	1.0
12	2	I, 2, 4	0.62	0.9
13	2	I, 2, 5	0.68	0.2
14	2	I, 3, 4	0.66	0.4
15	2	I, 3, 5	0.64	0.5
16	2	I, 4, 5	0.60	1.1

	# of Non			
	Intercept		١	
Model	Parameters	. Parameters	R ²	AIC
17	3	I, 1, 2, 3	0.73	1.3
18.	3	I, 1, 2, 4	0.71	1.5
19	3	I, 1, 2, 5	0.72	1.4
20	3	I, 1, 3, 4	0.75	1.0
21	3	I, 1, 3, 5	0.76	0.8
22	3	I, 1, 4, 5	0.79	0.2
23	3	I, 2, 3, 4	0.78	0.6
24	3	I, 2, 3, 5	0.74	1.2
25	3	I, 2, 4, 5	0.75	1.1
26	3	I, 3, 4, 5	0.73	1.3
27	4	I, 1, 2, 3, 4	0.88	1.6
28	4	I, 1, 2, 3, 5	0.80	2.1
29	4	I, 1, 2, 4, 5	0.87	1.8
30	4	I, 1, 3, 4, 5	0.83	2.0
31	4	I, 2, 3, 4, 5	0.85	1.9
32	5	I, 1, 2, 3, 4, 5	0.90	3.5

Try Best Subset, Forward, and Backward selection.

A.9 Shrinkage

• Ordinary Least Squares

RSS =
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
 where $\hat{Y}_i = \beta_0 + \sum_{j=1}^{p} \beta_j x_{ij}$.

• Ridge Regression

$$RSS + \lambda \sum_{j=1}^{p} \beta_j^2$$

• Lasso Regression

$$RSS + \lambda \sum_{j=1}^{p} |\beta_j|$$

- Tuning parameter λ
- Shrinkage penalty (does not include β_0)
- Use CV to choose best Tuning parameter (Av validation MSE)
- OLS estimators are scale invariant
- Shrinkage penalty is not. So predictors **must be standardized**.

A.10 Bias-Variance Trade off

Black: Sq bias, Green: Variance.

A.11 Ridge

A.12 Lasso

A.13 Another formulation

• Ordinary Least Squares

$$RSS = \sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2$$

• Ridge Regression

$$\min_{\beta} RSS$$
 subject to $\sum_{j=1}^{p} \beta_j^2 \le s$

• Lasso Regression

$$\min_{\beta} RSS$$
 subject to $\sum_{j=1}^{p} |\beta_j| \le s$

• β s on a budjet

A.14 Boston Data

OLS

```
Call:
lm(formula = medv ~ ., data = Train.set)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.007098 0.026689
                                 0.266 0.79042
crim
           -0.064499
                      0.040993
                                -1.573 0.11644
            0.123939
                      0.039960
                                 3.102 0.00207 **
zn
indus
            0.024692
                       0.052226
                                 0.473 0.63663
            0.071541
                       0.027416
                                 2.609 0.00942 **
chas
                                -4.425 1.25e-05 ***
           -0.261382
                       0.059066
nox
            0.263032
                       0.035818
                                7.344 1.25e-12 ***
rm
            0.033274
                      0.047801
                                 0.696 0.48679
age
dis
           -0.338757
                       0.052623
                                -6.437 3.61e-10 ***
rad
            0.304885
                       0.072104
                                4.228 2.94e-05 ***
tax
           -0.238095
                       0.077901
                                -3.056 0.00240 **
ptratio
           -0.227566
                       0.035880
                                -6.342 6.33e-10 ***
black
          0.078829
                      0.031817
                                 2.478 0.01365 *
           -0.454766
                     0.047574 -9.559 < 2e-16 ***
lstat
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Residual standard error: 0.532 on 386 degrees of freedom Multiple R-squared: 0.7326,Adjusted R-squared: 0.7236 F-statistic: 81.33 on 13 and 386 DF, p-value: < 2.2e-16

LASSO

```
CV.for.lambda$lambda.min
[1] 0.002343072
> FitLasso <- glmnet(x, y, alpha = 1, lambda = CV.for.lambda$lambda.min)
>coef(FitLasso)
14 x 1 sparse Matrix of class "dgCMatrix"
                     s0
(Intercept) 0.007387128
           -0.057107142
crim
            0.113845718
zn
            0.002936396
indus
           0.071900326
chas
           -0.241072278
nox
            0.266677208
rm
            0.022894864
age
dis
           -0.330627174
rad
            0.262872998
           -0.198488772
tax
ptratio
           -0.223658142
black
            0.076838064
           -0.449521122
lstat
```

Ridge

-0.398769344

lstat

```
> CV.for.lambda$lambda.min
[1] 0.07496112
> FitRidge <- glmnet(x, y, alpha = 0, lambda = CV.for.lambda$lambda.min)
> coef(FitRidge)
14 x 1 sparse Matrix of class "dgCMatrix"
                     s0
(Intercept) 0.008902216
           -0.050744039
crim
           0.088435303
zn
indus
           -0.024351436
            0.075542575
chas
           -0.171954704
nox
            0.282646332
rm
            0.009136308
age
dis
           -0.256595401
rad
            0.155320997
           -0.117043223
tax
ptratio
           -0.211067354
black
            0.079910836
```

A.15 Test MSE

> OLS

RMSE Rsquare medv 0.4414927 0.7793783

> LASSO

RMSE Rsquare medv 0.4408182 0.780233

> RIDGE

RMSE Rsquare medv 0.4368946 0.7873559

A.16 Ridge vs Lasso

- Lasso can be used as dimention reduction tool.
- Lasso model is easier to interpret
- If no coefficients were suppressed by Lasso, then Ridge is better.

A.17 Dimention Reduction

Principal Component Regression

A.18 Principal Component Regression

Lasso, and Lasso + Ridge

When only 5 predictor is related to response

