

4.1 Multiple features

Multiple features (variables).

<i>_</i>	Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)	
	2104	5	1	45	460 7	
	7 1416	3	2	40	232	m=40
	1534	3	Z	30	315	
	852	2	1	36	178	example 4
				<u></u>		V

$$\chi_{ij}^{(i)} = i \frac{1}{2} \frac{1$$

$$(2)$$
 (2) = $\begin{bmatrix} 1416 \\ 3 \\ 1 \end{bmatrix}$ (2) = (2) = (2) = (2)

$$h_{q}(2) = \theta_{o} + \theta_{1} 2 + \theta_{2} 2 + \cdots + \theta_{n} 2 + \cdots +$$

$$=) \begin{bmatrix} 0, 0, \cdots & 0 \\ 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \lambda_1 \\ \lambda_1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \lambda \end{bmatrix}$$

4.2 Gradient descent for multiple variables

Cost function:
$$J(\theta_0,\theta_1;:,\theta_N) = J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_0(x^{(i)}) - y^{(i)})^{\alpha}$$
Gradient descept:
$$\theta_i := \theta_i - \alpha \frac{1}{2} \int_{\theta_i} J(\theta_i) \frac{(s_i h_i h_i + t_i h_i e^{\alpha x^{(i)}})}{(s_i h_i h_i + t_i h_i e^{\alpha x^{(i)}})} \frac{1}{2} \int_{\theta_i} \frac{1}{2\pi} \frac{1}{2\pi}$$

4.3 Gradient descent in practice I: Feature Scaling

· Man normalization

ex)
$$t_1 = \frac{3i2e - 1000}{2000 - 0}$$
 $\frac{11 - 11}{2000 - 0}$ $\frac{11 - 11}{5}$

$$2 = \frac{11 - 11}{5}$$

$$3 = \frac{11 - 11}{5}$$

4.4 Gradient descent in practice II: Learning rate (4)

4.5 Features and polynomial regression

(다항 31, 81년형)

4.6 Normal equation (अत क्षेत्र)

Gradient Descentakt 84 2132 (1942) 25 401

Andrew Ng

J		Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
$\rightarrow x_0$		x_1	x_2	x_3	x_4	y	
(1	2104	5	1	45	460	٦
]	1	1416	3	2	40	232	M
	1	1534	3	2	30	315	1"17
	1	852	2	_1	_36	178	7
	>>: 	$X = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	$2104 5 1$ $416 3 2$ $1534 3 2$ $852 2 1$ $M \times (N+1)$ $(N-1)^{-1}X^{T}y$	2 30 36	$y=egin{bmatrix} y & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	460 232 315 178	testor

$$\underbrace{m \text{ examples } (\underline{x^{(1)}}, \underline{y^{(1)}}), \dots, (\underline{x^{(m)}}, \underline{y^{(m)}}); \underbrace{n \text{ features.}}_{T}}_{T}$$

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$(\text{design} \\ \text{Modern})$$

$$(\text{Mesign} \\ \text{Modern})$$

$$(\text{Mesign} \\ \text{Modern})$$

E.g. If
$$\underline{x^{(i)}} = \begin{pmatrix} 1 \\ x_1^{(i)} \end{pmatrix} \times z \begin{bmatrix} 1 \\ x_1^{(i)} \end{bmatrix} \begin{pmatrix} y = \begin{bmatrix} y_1^{(i)} \\ y_2^{(i)} \end{bmatrix} \\ \vdots \\ y_n^{(i)} \end{bmatrix}$$

4.7 Normal equation and non-invertibility

$$\theta = (x^T x)^T x^T y$$