TRIGOMOMETRIC EQUATIONS AND GRAPHS

Extended

The graphs of $y = \sin x$ and $y = \cos x$

In the diagram the line *OP* is of length 1 unit and *OP* makes an angle *x* with the positive horizontal axis.

Using trigonometry:

- height of right-angled triangle = $\sin x$
- base of right-angled triangle = $\cos x$

The height of *P* above the horizontal axis changes from $0 \rightarrow 1 \rightarrow 0 \rightarrow -1 \rightarrow 0$.

The displacement of P from the vertical axis changes from $1 \rightarrow 0 \rightarrow -1 \rightarrow 0 \rightarrow 1$.

Extended

The graph of $y = \sin x$ for $0^{\circ} \le x \le 360^{\circ}$ is:

The graph of $y = \cos x$ for $0^{\circ} \le x \le 360^{\circ}$ is:

Extended

The graphs of $y = \sin x$ and $y = \cos x$ can be expanded beyond $0^{\circ} \le x \le 360^{\circ}$

Extended

The sine and cosine functions are called **periodic functions** because they repeat themselves over and over again.

The **period** of a periodic function is defined as the length of one repetition or cy

The basic sine and cosine functions repeat every 360°.

We say they have a **period** of 360°.

The **amplitude** of a periodic function is defined as the distance between a maximum (or minimum) point and the principal axis.

The basic sine and cosine functions have

amplitude 1.

Extended

The graph of $y = \tan x$

The tangent function behaves very differently to the sine and cosine functions

The red dashed lines at $x = 90^{\circ}$ and $x = 270^{\circ}$ are **asymptotes**.

The branches of the graph get closer and closer to the asymptotes without ever reaching them.

The tangent function repeats its cycle every 180° so its period is 180°.

The tangent function does not have an amplitude.

Extended

The graph of $y = \tan x \operatorname{can}$ be expanded beyond $0^{\circ} \le x \le 360^{\circ}$:

Extended

Solving trigonometric equations for values between 0° and 360°

Consider solving the equation: $\sin x = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$.

$$x = \sin^{-1}(0.5)$$

A calculator gives the answer: $x = 30^{\circ}$

$$x = 30^{\circ}$$

There is, however, a second value of x for which $\sin x = 0.5$

This can be found by considering the symmetry of the curve $y = \sin x$:

The second value $= 180^{\circ} - 30^{\circ} = 150^{\circ}$

Hence the solution of the equation $\sin x = 0.5$ for $0^{\circ} \le x \le 360^{\circ}$ is

$$x = 30^{\circ} \text{ or } 150^{\circ}$$

Extended

Example

$$\cos x = 0.7$$

 $x = \cos^{-1}(0.7)$
 $x = 45.6^{\circ}$

A sketch graph of $y = \cos x$ is used to find any other values:

The second value = $360^{\circ} - 45.6^{\circ} = 314.4^{\circ}$ Hence the solution of the equation cos x = 0.7 for $0^{\circ} \le x \le 360^{\circ}$ is $x = 45.6^{\circ}$ or 314.4°

Extended

Example

$$\cos x = -0.5$$

 $x = \cos^{-1}(-0.5)$
 $x = 120^{\circ}$

A sketch graph of $y = \cos x$ is used to find any other values:

The second value $= 360^{\circ} - 120^{\circ} = 240^{\circ}$

Hence the solution of the equation $\cos x = -0.5$ for $0^{\circ} \le x \le 360^{\circ}$ is $x = 120^{\circ}$ or 240°

Extended

Example

$$\sin x = -0.6$$

$$x = \sin^{-1}(-0.6)$$

$$x = -36.9^{\circ}$$

 $x = -36.9^{\circ}$ (this angle is out of range)

A sketch graph of $y = \sin x$ is used to find any other values:

$$x = 180^{\circ} + 36.9^{\circ} = 216.9^{\circ}$$
 or $x = 360^{\circ} - 36.9^{\circ} = 323.1^{\circ}$

Hence the solution of the equation $\sin x = -0.6$ for $0^{\circ} \le x \le 360^{\circ}$ is $x = 216.9^{\circ} \text{ or } 323.1^{\circ}$

Extended

Example

$$\tan x = 2$$

 $x = \tan^{-1}(2)$
 $x = 63.4^{\circ}$

A sketch graph of $y = \tan x$ is used to find any other values:

The second value = $180^{\circ} + 63.4^{\circ} = 243.4^{\circ}$

Hence the solution of the equation $\tan x = 2$ for $0^{\circ} \le x \le 360^{\circ}$ is

$$x = 63.4^{\circ} \text{ or } 243.41$$