Министерство образования и науки РФ

Российский государственный университет нефти и газа имени И. М. Губкина

Кафедра высшей математики

С.И. ВАСИН, В.И. ИВАНОВ

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

Учебно-методическое пособие для студентов

Пособие написано на основе курса лекций и практических занятий, проводимых авторами со студентами. В пособии изложены основные теоретические сведения из курса аналитической геометрии. Рассмотрены темы: вектор в декартовой системе координат, скалярное, векторное и смешанное произведение векторов, прямая на плоскости, плоскость и прямая в пространстве, кривые второго порядка. Изложены основные алгоритмы решений задач. Подробно разобрано множество примеров, приведены варианты контрольной работы, список экзаменационных вопросов. Отзывы и замечания просьба отправлять авторам по адресу s.vasin@rambler.ru

Рецензенты:

Ролдугин В.И., зав. лабораторией института физической химии и электрохимии им. А.Н. Фрумкина РАН, доктор ф-м. наук, профессор;

Скугорев В.П., доцент кафедры ВиПМ МГУПП, канд. техн. наук, доцент.

СОДЕРЖАНИЕ

1. Вектор. Определение, основные понятия	3
2. Линейные операции над векторами	3
3. Проекция вектора на ось	4
4. Вектор в декартовой системе координат	5
5. Скалярное произведение векторов	11
6. Векторное произведение векторов	15
7. Смешанное произведение векторов	18
8. Уравнение прямой на плоскости	21
9. Уравнение плоскости в пространстве	29
10. Уравнение прямой в пространстве	34
11. Взаимное расположение прямой и плоскости	36
12. Кривые второго порядка	39
Варианты расчетно-графического задания	47
Решение варианта расчетно-графического задания	51
Вопросы к экзамену по теме «аналитическая геометрия»	59
Список питературы	60

ВЕКТОР. ОПРЕДЕЛЕНИЕ, ОСНОВНЫЕ ПОНЯТИЯ

1. ВЕКТОР. ОПРЕДЕЛЕНИЕ, ОСНОВНЫЕ ПО-

КИТКН

а А Рис. 1

Определение. Вектор – направленный отрезок.

Обозначения. Вектор обозначается как a, \vec{a} или

AB, AB, где точка A – начало вектора, а точка B – конец вектора (рис. 1).

Вектор имеет две характеристики: длину и направление.

Определение. Длина вектора **a** называется модулем вектора и обозначается lal.

Определение. Векторы равны, если равны их длины и они сонаправлены, т.е. направлены в одну сторону.

Замечание. Вектор объект нефиксированный в пространстве, т.е. его можно перемещать в пространстве параллельно самому себе.

Hулевой вектор **0** — вектор, начало и конец которого совпадают; его длина равна нулю, направление неопределенное.

Определение. Векторы, лежащие на одной прямой или на параллельных прямых называются коллинеарными.

2. ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД ВЕКТОРАМИ

Умножение вектора на скаляр

Произведение $\lambda \mathbf{a}$ — вектор в $|\lambda|$ раз длиннее вектора \mathbf{a} и направленный в ту же сторону, что и вектор \mathbf{a} , если λ положительное, и в противоположную сторону, если λ отрицательное (рис. 2). В частности, вектор ($-\mathbf{a}$) по модулю равен $|\mathbf{a}|$ и

направлен в противоположную сторону относительно а (рис. 2).

Из определения следует, что векторы ${\bf a}$ и ${\bf \lambda a}$ коллинеарные.

Сложение

Правило многоугольника. Суммой векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}, ..., \mathbf{d}$ называется вектор \mathbf{s} , замыкающий ломаную линию, построенную из данных векторов так, что начало каждого из после-

ЛИНЕЙНЫЕ ОПЕРАЦИИ НАД ВЕКТОРАМИ

дующих векторов совмещается с концом предыдущего. Замыкающий вектор \mathbf{s} направлен от начала первого вектора к концу последнего (рис. 3).

Правило параллелограмма для сложения двух векторов. Пусть даны два вектора **a** и **b**. Отложим векторы **a** и **b** от одной точки. От конца вектора **b** отложим вектор **a**, а от конца вектора **a** – вектор **b**. Таким образом, получаем параллелограмм. Диагональ, проведенная из точки общего начала векторов в противолежащий

угол параллелограмма, будет искомым вектором суммы (рис. 4).

<u>Вычитание.</u> $\mathbf{a} - \mathbf{b} = \mathbf{a} + (-\mathbf{b})$, т.е. вычитание векторов производится путем сложения вектора \mathbf{a} и вектора $(-\mathbf{b})$.

Свойства линейных операций над векторами

- 1. a + b = b + a переместительный закон.
- 2. $\mathbf{a} + (\mathbf{b} + \mathbf{c}) = (\mathbf{a} + \mathbf{b}) + \mathbf{c}$ сочетательный закон.
- 3. $\lambda(\mathbf{a} + \mathbf{b}) = \lambda \mathbf{a} + \lambda \mathbf{b}$ распределительный закон относительно векторов.
- 4. $\mathbf{a}(\lambda + \beta) = \lambda \mathbf{a} + \beta \mathbf{a}$ распределительный закон относительно чисел.

Доказательство данных свойств следует из определений линейных операций.

Замечание. Из свойств линейных операций следует, что векторную сумму можно преобразовывать по тем же правилам, что и алгебраическую: общий скалярный множитель можно выносить за скобки, можно раскрывать скобки и приводить подобные члены, можно переносить члены из одной части равенства в другую с обратным знаком.

3. ПРОЕКЦИЯ ВЕКТОРА НА ОСЬ

Определение. Проекцией вектора ${\bf AB}$ на ось u называется величина (длина) вектора ${\bf A'B'}$, взятая со знаком «+», если направление

вектора $\mathbf{A'B'}$ совпадает с направлением оси u, и, взятая со знаком «-», если направление вектора $\mathbf{A'B'}$ не совпадает с направлением оси u (рис. 5).

ПРОЕКЦИЯ ВЕКТОРА НА ОСЬ

Свойства проекции

1) Проекция вектора **a** на ось *u* равна произведению модуля вектора **a** на косинус угла φ , который вектор составляет с осью *u* (рис. 6): $np_{u}\mathbf{a} = |\mathbf{a}| \cos \varphi.$

2) Проекция суммы векторов равна сумме проекций (рис. 7), т.е.

$$np_{u}\left(\mathbf{a}+\mathbf{b}\right)=np_{u}\mathbf{a}+np_{u}\mathbf{b}.$$

4. ВЕКТОР В ДЕКАРТОВОЙ СИСТЕМЕ КООРДИНАТ

Декартова система координат. Координаты вектора

Определение. Декартова система координат — система, состоящая из трех, взаимно-перпендикулярных осей 0x, 0y и 0z, имеющих общее начало и масштаб. 0x— ось абсцисс, 0y — ось ординат, 0z — ось аппликат.

Определение. Проекции вектора на оси $p_{0z} = z$ $\mathbf{a} = \{x, y, z\}$ координат называются координатами вектора $p_{0z} = z$ $p_{0z} = z$

Геометрический объект описали аналитически, вектору сопоставили тройку чисел x, y, z.

Базис. Разложение вектора по базису

Определение. Вектор, у которого начало совпадает с началом координат, называется радиус-вектором.

Замечание. Любой вектор можно отложить от начала координат, так как он не фиксирован в пространстве.

Определение. Единичные векторы **i**, **j**, **k**, направленные вдоль осей координат, называются базисными векторами (рис. 9).

Рассмотрим в декартовой системе координат радиус – вектор $\mathbf{OM} = \{x, y, z\}$.

Вектор **ОМ** можно представить в виде суммы (рис. 9)

OM=OM'+OM₃=OM₁+OM₂+ OM₃. Вектор **OM**₁ коллинеарен базисному вектору **i** и может быть получен из него умножением на координату x, т.е. **OM**₁=x**i**. Аналогично, **OM**₂=y**j**, **OM**₃=z**k**.

Следовательно, **OM**= x**i**+ y**j**+ z**k.** Произвольный вектор разложили на линейную комбинацию базисных векторов. Коэффициенты при базисных векторах – координаты вектора.

Вычисление модуля вектора

Задача 1. Дан вектор $\mathbf{a} = \{x, y, z\}$. Вычислить его модуль $|\mathbf{a}|$.

Решение. Из теоремы Пифагора следует (рис. 9)

$$|\mathbf{a}| = |\mathbf{OM}| = \sqrt{|\mathbf{OM}|^2 + |\mathbf{OM}_3|^2} = \sqrt{|\mathbf{OM}_1|^2 + |\mathbf{OM}_2|^2 + |\mathbf{OM}_3|^2} = \sqrt{x^2 + y^2 + z^2}.$$

Модуль вектора $\mathbf{a} = \{x; \ y; \ z\}$ равен корню из суммы квадратов координат: $|\mathbf{a}| = \sqrt{x^2 + y^2 + z^2} \ .$

Линейные операции в координатной форме записи

Задача 2. Даны векторы $\mathbf{a} = \{x_a, y_a, z_a\}$, $\mathbf{b} = \{x_b, y_b, z_b\}$. Вычислить координаты вектора $\mathbf{a} \pm \mathbf{b}$.

Решение. $\mathbf{a} = x_a \mathbf{i} + y_a \mathbf{j} + z_a \mathbf{k}$; $\mathbf{b} = x_b \mathbf{i} + y_b \mathbf{j} + z_b \mathbf{k}$. Используя свойства линейных операций получим:

$$\mathbf{a} \pm \mathbf{b} = (x_{\mathbf{a}}\mathbf{i} + y_{\mathbf{a}}\mathbf{j} + z_{\mathbf{a}}\mathbf{k}) \pm (x_{\mathbf{b}}\mathbf{i} + y_{\mathbf{b}}\mathbf{j} + z_{\mathbf{b}}\mathbf{k}) = (x_{\mathbf{a}} \pm x_{\mathbf{b}})\mathbf{i} + (y_{\mathbf{a}} \pm y_{\mathbf{b}})\mathbf{j} + (z_{\mathbf{a}} \pm z_{\mathbf{b}})\mathbf{k}.$$

При сложении векторов $\mathbf{a} = \{x_a, y_a, z_a\}, \mathbf{b} = \{x_b, y_b, z_b\}$ соответствующие координаты складываются: $\mathbf{a} \pm \mathbf{b} = \{x_a \pm x_b; y_a \pm y_b; z_a \pm z_b\}$.

Задача 3. Дан вектор **a**={ x_a , y_a , z_a }. Вычислить координаты вектора λa .

Решение. $\mathbf{a} = x_a \mathbf{i} + y_a \mathbf{j} + z_a \mathbf{k}$; $\lambda \mathbf{a} = \lambda (x_a \mathbf{i} + y_a \mathbf{j} + z_a \mathbf{k}) = \lambda x_a \mathbf{i} + \lambda y_a \mathbf{j} + \lambda z_a \mathbf{k}$.

При умножении вектора $\mathbf{a} = \{x_a, y_a, z_a\}$ на скаляр каждая координата умножается на этот скаляр: $\lambda \mathbf{a} = \{\lambda x_a; \lambda y_a; \lambda z_a\}$.

Пример 1. Даны векторы $\mathbf{a} = \{1;2;-2\}$ и $\mathbf{b} = \{3;1;2\}$. Найти $2\mathbf{a} - 3\mathbf{b}$, $|2\mathbf{a} - 3\mathbf{b}|$. Решение. $2\mathbf{a} = \{2;4;-4\}$, $3\mathbf{b} = \{9;3;6\}$, $2\mathbf{a} - 3\mathbf{b} = \{2;4;-4\} - \{9;3;6\} = \{-7;1;-10\}$. $|2\mathbf{a} - 3\mathbf{b}| = \sqrt{7^2 + 1^2 + (-10)^2} = \sqrt{150}$.

Признак коллинеарности векторов

Если векторы $\mathbf{a} = \{x_a; y_a; z_a\}$ и $\mathbf{b} = \{x_b; y_b; z_b\}$ коллинеарны, то один из них может быть получен из второго умножением на скаляр: $\mathbf{a} = \lambda \mathbf{b}$; \Rightarrow

$$\{x_a; y_a; z_a\} = \lambda \{x_b; y_b; z_b\}; \Rightarrow x_a = \lambda x_b; y_a = \lambda y_b; z_a = \lambda z_b; \Rightarrow \frac{x_a}{x_b} = \frac{y_a}{y_b} = \frac{z_a}{z_b}.$$

Признак коллинеарности. Векторы **a**={ x_a ; y_a ; z_a } и **b**={ x_b ; y_b ; z_b } коллинеарны \Leftrightarrow когда их координаты пропорциональны: $\frac{x_a}{x_b} = \frac{y_a}{y_b} = \frac{z_a}{z_b}$.

Пример 2. При каких значениях α и β векторы $\mathbf{a} = \{2; \alpha; 3\}$ и $\mathbf{b} = \{-3; 2; \beta\}$ колинеарны.

Решение. Выпишем признак коллинеарности:

$$\frac{2}{-3} = \frac{\alpha}{2} = \frac{3}{\beta} \Rightarrow \alpha = -\frac{4}{3}; \beta = -\frac{9}{2}.$$

<u>Координаты точки. Вычисление координат вектора, если известны координаты концов</u>

Определение. Координатами точки \mathbf{M} называются координаты радиусвектора \mathbf{OM} . *Обозначение*: $\mathbf{M}(x, y, z)$.

Задача 4. Даны координаты точек $\mathbf{A}(x_a; y_a; z_a)$, $\mathbf{B}(x_b; y_b; z_b)$. Вычислить координаты вектора \mathbf{AB} .

Решение. ОА+АВ=ОВ; АВ=ОВ-ОА= $\{x_b, y_b, z_b\}$ - $\{x_a, y_a, z_a\}$ = = $\{x_b$ - x_a ; y_b - y_a ; z_b - $z_a\}$ (рис. 10).

При вычислении координат вектора **AB** из координат конца **B**(x_b ; y_b ; z_b) вычитаются координаты начала **A**(x_a ; y_a ; z_a): **AB**={ x_b - x_a ; y_b - y_a ; z_b - z_a }.

Деление отрезка в заданном отношении

Задача 5. Даны координаты концов отрезка $\mathbf{A}(x_a, y_a, z_a)$, $\mathbf{B}(x_b, y_b, z_b)$. Точка \mathbf{M} принадлежит отрезку $\mathbf{A}\mathbf{B}$ и делит его в отношении $\lambda = |\mathbf{A}\mathbf{M}|/|\mathbf{M}\mathbf{B}|$. Найти координаты точки $\mathbf{M}(x; y; z)$ (рис. 11).

Решение. Векторы **АМ** и **МВ** коллинеарные и, следовательно, вектор $\mathbf{AM} = \{x - x_a; y - y_a; z - z_a\}$ может быть получен из вектора $\mathbf{MB} = \{x_b - x; y_b - y; z_b - z\}$ умножением на скаляр |**AM**|/|**MB**|= λ :

$$\mathbf{AM} = \lambda \cdot \mathbf{MB}; \Leftrightarrow \left\{ x - x_{\mathbf{a}}; y - y_{\mathbf{a}}; z - z_{\mathbf{a}} \right\} = \lambda \left\{ x_{\mathbf{b}} - x; y_{\mathbf{b}} - y; z_{\mathbf{b}} - z \right\} \Leftrightarrow \begin{cases} x - x_{\mathbf{a}} = \lambda (x_{\mathbf{b}} - x), \\ y - y_{\mathbf{a}} = \lambda (y_{\mathbf{b}} - y), \\ z - z_{\mathbf{a}} = \lambda (z_{\mathbf{b}} - z). \end{cases}$$

$$\Leftrightarrow x = \frac{x_a + \lambda x_b}{1 + \lambda}; \quad y = \frac{y_a + \lambda y_b}{1 + \lambda}; \quad z = \frac{z_a + \lambda z_b}{1 + \lambda}.$$

Координаты точки M, делящей отрезок AB в отношении $\lambda = |AM|/|MB|$,

вычисляются по формуле
$$\mathbf{M}\left(\frac{x_a + \lambda x_b}{1 + \lambda}; \frac{y_a + \lambda y_b}{1 + \lambda}; \frac{z_a + \lambda z_b}{1 + \lambda}\right)$$
.

Если точка **M** является серединой отрезка **AB**, то |**AM**|=|**MB**|; λ =|**AM**|/|**MB**|=1 и координаты середины отрезка вычисляются по формуле $\mathbf{M}\left(\frac{x_a+x_b}{2};\frac{y_a+y_b}{2};\frac{z_a+z_b}{2}\right)$, т.е. координаты середины равны полусумме координат концов.

Пример 3. Отрезок **AB** разделен на три равные части. Найти координаты точек **A** и **B**, если координаты точек деления C=(2;4;-1), D=(5;6;0).

Решение. Точка С является серединой отрезка **AD** (рис. 12). Напишем формулы для нахождения середины отрезка:

$$\begin{cases} x_C = \frac{x_A + x_D}{2}; \\ y_C = \frac{y_A + y_D}{2}; \Rightarrow \begin{cases} 2 = \frac{x_A + 5}{2}; \\ 4 = \frac{y_A + 6}{2}; \\ -1 = \frac{z_A + z_D}{2}; \end{cases} \Rightarrow \begin{cases} x_A = -1; \\ y_A = 2; \\ z_A = -2. \end{cases} A(-1;2;-2).$$

Точка **D** делит отрезок **AB** в отношении 2:1. Выпишем формулы для нахождения координат точки, делящей отрезок в заданном отношении:

$$\begin{cases} x_{D} = \frac{x_{A} + 2x_{B}}{1 + 2}; \\ y_{D} = \frac{y_{A} + 2y_{B}}{1 + 2}; \Rightarrow \begin{cases} 5 = \frac{-1 + 2x_{B}}{3}; \\ 6 = \frac{2 + 2y_{B}}{3}; \Rightarrow \begin{cases} x_{B} = 8; \\ y_{B} = 8; \\ z_{B} = 1. \end{cases} \mathbf{B}(8;8;1). \\ 0 = \frac{-2 + 2z_{B}}{3}; \end{cases}$$

Направляющие косинусы вектора

Углы, которые вектор **a=OM**={x; y; z} составляет с осями координат обозначаются через α , β , γ (рис. 13). Косинусы этих углов $\cos \alpha$, $\cos \beta$, $\cos \gamma$ называются направляющими косинусами вектора.

По свойству проекции $x = |\mathbf{a}| \cos \alpha$, $y = |\mathbf{a}| \cos \beta$, $z = |\mathbf{a}| \cos \gamma$.

Направляющие косинусы вектора $\mathbf{a} = \{x; y; z\}$ вычисляются по формулам $\cos \alpha = \frac{x}{|\mathbf{a}|}; \cos \beta = \frac{y}{|\mathbf{a}|}; \cos \gamma = \frac{z}{|\mathbf{a}|}$.

Возведем последние равенства в квадрат и сложим:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = \frac{x^2 + y^2 + z^2}{|\mathbf{a}|^2} = \frac{|\mathbf{a}|^2}{|\mathbf{a}|^2} = 1.$$

Сумма квадратов направляющих косинусов равна единице:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$$
.

Орт вектора

Определение. Ортом вектора ${\bf a}$ называется единичный вектор ${\bf e}$, направленный в ту же сторону, что и ${\bf a}$.

Орт е получается из вектора $\mathbf{a} = \{x, y, z\}$ делением на $|\mathbf{a}|$:

$$\mathbf{e} = \frac{\mathbf{a}}{|\mathbf{a}|} = \left\{ \frac{x}{|\mathbf{a}|}; \frac{y}{|\mathbf{a}|}; \frac{z}{|\mathbf{a}|} \right\} = \{\cos\alpha; \cos\beta; \cos\gamma\}.$$

Координатами орта являются направляющие косинусы: $\mathbf{e} = \{\cos\alpha; \cos\beta; \cos\gamma\}$.

Задачи к разделам 1-4

- 1) Даны произвольные векторы \vec{a} и \vec{b} . Построить векторы $\vec{a} + \vec{b}$, $\vec{a} \vec{b}$, $\vec{b} \vec{a}$, $-\vec{a} \vec{b}$, $2\vec{a}$, $-0.5\vec{a}$.
- 2) Дано: $|\vec{a}|$ =**3**, $|\vec{b}|$ =**4**, $|\vec{a}-\vec{b}|$ =**6**. Найти $|\vec{a}+\vec{b}|$.
- 3) Дано: $|\vec{a}| = 4$, $|\vec{b}| = 5$, угол между ними $\pi/3$. Найти $|\vec{a} + \vec{b}|$ и $|\vec{a} \vec{b}|$.
- 4) Дано: $\vec{a} = \{2; -3; z\}$, $|\vec{a}| = 17$. Найти z.
- 5) Дано: $\overrightarrow{AB} = \{2; -4; 6\}, A(3, -4, 5)$. Найти координаты точки B.
- 6) Дано: $\overrightarrow{AB} = \{-4, -7, 8\}, B(-2, 8, 1)$. Найти координаты точки A.
- 7) Может ли вектор составлять с координатными осями углы: а) $\alpha = 45^{\circ}$, $\beta = 60^{\circ}$, $\gamma = 120^{\circ}$; b) $\alpha = 45^{\circ}$, $\beta = 120^{\circ}$, $\gamma = 135^{\circ}$; c) $\alpha = 30^{\circ}$, $\beta = 45^{\circ}$, $\gamma = 90^{\circ}$.
- 8) Дано: $\alpha = 45^{\circ}$, $\beta = 135^{\circ}$. Найти у.
- 9) Вычислить направляющие косинусы вектора $\vec{a} = \{-3, 4, 7\}$.
- 10) Дан модуль вектора $|\vec{a}|$ =4 и углы α =45 0 , β =60 0 , γ =120 0 . Вычислить координаты вектора \vec{a} .
- 11) Дано: $|\vec{a}|$ =4, α =30°, β =90°. Вычислить координаты вектора \vec{a} .
- 12) Определить координаты точки M, если ее радиус-вектор составляет с осями координат равные углы и его модуль равен 6.
- 13) Три силы $\overrightarrow{\mathbf{M}}$, $\overrightarrow{\mathbf{N}}$, $\overrightarrow{\mathbf{P}}$ приложены к одной точке, имеют взаимно перпендикулярные направления. Построить равнодействующую силу $\overrightarrow{\mathbf{R}}$ и найти ее величину, если $|\overrightarrow{\mathbf{M}}|$ =3, $|\overrightarrow{\mathbf{N}}|$ =4, $|\overrightarrow{\mathbf{P}}|$ =5.

- 14) Даны два вектора $\vec{a} = \{3;5;-1\}$ и $\vec{b} = \{3;5;-1\}$. Найти проекции на координатные оси следующих векторов: 1) $\vec{a} + \vec{b}$; 2) $\vec{a} \vec{b}$; 3) $2\vec{a} + 3\vec{b}$; 4) $4\vec{a} 5\vec{b}$.
- 15) При каких значениях x и y векторы $\vec{a} = \{x;5;-1\}$ и $\vec{b} = \{3;y;-1\}$ коллинеарны.
- 16) Доказать, что ABCD трапеция, где A(1,2), B(3,5), C(1,10), D(-3,4).
- 17) Даны три точки A(-1,2,6), B(3,5,7), C(4,-1,1). Точки M и N середины отрезков AB и BC соответственно. Найти координаты вектора \overrightarrow{MN} .
- 18) Отрезок AB разделен на три части, C и D точки деления. Найти координаты C и D, если A(-4,-2,6) , B(1,-5,7).
- 19) Отрезок AB разделен на три части, C и D точки деления. Найти координаты A и B, если C(3,-2,6), D(-1,-5,4).

5. СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Определение. Скалярным произведением векторов **a** и **b** называется число, равное произведению модулей векторов на косинус угла между ними (рис. 14).

Обозначение. Скалярное произведение обозначается точкой между векторами, т.е. $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \alpha$. Точка иногда опускается, и пишут \mathbf{ab} .

Свойства скалярного произведения векторов

- 1. **ab=ba** переместительный закон.
- 2. $\mathbf{a}(\lambda \mathbf{b}) = \lambda(\mathbf{a}\mathbf{b})$ –сочетательный закон.

Доказательство свойств 1 и 2 следует из определения скалярного произведения.

3.
$$\mathbf{ab} = |\mathbf{a}| \pi \mathbf{p_a} \mathbf{b} = |\mathbf{b}| \pi \mathbf{p_b} \mathbf{a}$$
.

Доказательство. Из свойств проекции имеем пр $_{\mathbf{a}}\mathbf{b}=|\mathbf{b}|\cos\alpha$. Следовательно, $|\mathbf{a}|$ пр $_{\mathbf{a}}\mathbf{b}=|\mathbf{a}||\mathbf{b}|\cos\alpha=\mathbf{a}\mathbf{b}$.

4. (a+b)с=ас+bс – распределительный закон.

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Доказательство. Используя свойства проекции получим $(\mathbf{a} + \mathbf{b})\mathbf{c} = |\mathbf{c}| \operatorname{пp}_{\mathbf{c}} (\mathbf{a} + \mathbf{b}) = |\mathbf{c}| \operatorname{пp}_{\mathbf{c}} \mathbf{a} + |\mathbf{c}| \operatorname{пp}_{\mathbf{c}} \mathbf{b} = \mathbf{a} \mathbf{c} + \mathbf{b} \mathbf{c}.$

Скалярное произведение в координатной форме записи

Задача 6. Даны векторы $\mathbf{a} = \{x_a, y_a, z_a\}, \mathbf{b} = \{x_b, y_b, z_b\}$. Вычислить \mathbf{ab} .

Решение.
$$\mathbf{a} = x_a \mathbf{i} + y_a \mathbf{j} + z_a \mathbf{k}$$
; $\mathbf{b} = x_b \mathbf{i} + y_b \mathbf{j} + z_b \mathbf{k}$.

Используя свойства скалярного произведения получим

$$\mathbf{ab} = (x_a \mathbf{i} + y_a \mathbf{j} + z_a \mathbf{k})(x_b \mathbf{i} + y_b \mathbf{j} + z_b \mathbf{k}) = x_a x_b \mathbf{ii} + x_a y_b \mathbf{ij} + x_a z_b \mathbf{ik} + y_a x_b \mathbf{ji} + y_a y_b \mathbf{jj} + y_a z_b \mathbf{jk} + z_a x_b \mathbf{ki} + z_a y_b \mathbf{kj} + z_a z_b \mathbf{kk}.$$

Вычисление скалярного произведения свелось к вычислению произведений базисных векторов. Вычислим их. **ii=lillil**cos(0°)=1*1*1=1 (рис. 9). Следовательно, скалярное произведение одноименных базисных векторов равно 1. **ij=lillj**lcos(90°)=1*1*0=0. Произведение разноименных базисных векторов равно нулю. Следовательно, **ab**= $x_a x_b + y_a y_b + z_a z_b$.

Скалярное произведение векторов $\mathbf{a} = \{x_a, y_a, z_a\}, \mathbf{b} = \{x_b, y_b, z_b\}$ равно сумме произведений соответствующих координат: $\mathbf{a}\mathbf{b} = x_a x_b + y_a y_b + z_a z_b$.

Применение скалярного произведения

1. *Вычисление угла между векторами*. Из определения скалярного произведения следует, что

косинус угла между двумя векторами
$$\mathbf{a}$$
 и \mathbf{b} равен $\cos\alpha = \frac{\mathbf{a}\mathbf{b}}{|\mathbf{a}||\mathbf{b}|}.$

2. *Признак перпендикулярности*. Скалярное произведение перпендикулярных векторов равно нулю, т.к. угол между ними 90 градусов, а косинус прямого угла равен нулю.

Признак перпендикулярности. Векторы $\mathbf{a} = \{x_a, y_a, z_a\}$ и $\mathbf{b} = \{x_b, y_b, z_b\}$ перпендикулярны \Leftrightarrow когда $\mathbf{a}\mathbf{b} = x_a x_b + y_a y_b + z_a z_b = 0$.

3. Вычисление проекции. Из третьего свойства скалярного произведения

следует, что
$$\boxed{ \mathbf{пp_ab} = \frac{\mathbf{ab}}{|\mathbf{a}|} }$$

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

4. *Работа силы*. Определение. Работа A силы $\overline{\mathbf{F}}$ при перемещении из точки \mathbf{B} в точку \mathbf{C} равна скалярному произведению силы $\overline{\mathbf{F}}$ на перемещение \mathbf{BC} , т.е. $A = \overline{\mathbf{F}} \cdot \mathbf{BC}$.

Пример 4. Угол между векторами **a** и **b** равен 60 градусов, $|\mathbf{a}|$ =3, $|\mathbf{b}|$ =4. Вычислить а) \mathbf{a}^2 ; б) $\mathbf{a}\mathbf{b}$; с) $(2\mathbf{a}$ -3 $\mathbf{b})(\mathbf{a}$ +4 $\mathbf{b})$.

Решение. а) По определению скалярного произведения

$$\mathbf{a}^2 = |\mathbf{a}| |\mathbf{a}| \cos 0^0 = 3 \cdot 3 = 9.$$

б) По определению скалярного произведения

$$\mathbf{ab} = |\mathbf{a}||\mathbf{b}|\cos 60^{\circ} = 3 \cdot 4 \cdot 0.5 = 6.$$

с) Используя свойства скалярного произведения раскроем скобки и вычислим получившиеся произведения:

$$(2\mathbf{a} - 3\mathbf{b})(\mathbf{a} + 4\mathbf{b}) = 2\mathbf{a}\mathbf{a} + 8\mathbf{a}\mathbf{b} - 3\mathbf{b}\mathbf{a} - 12\mathbf{b}\mathbf{b} = 2\mathbf{a}\mathbf{a} + 5\mathbf{a}\mathbf{b} + 2\mathbf{b}\mathbf{b} = 2\mathbf{a}\mathbf{a} + 5\mathbf{a}\mathbf{b} + 2\mathbf{b}\mathbf{b} = 2\mathbf{a}\mathbf{a} + 2\mathbf{b}\mathbf{b} = 2\mathbf{a}\mathbf{a} + 2\mathbf{b}\mathbf{b} = 2\mathbf{a}\mathbf{a} + 2\mathbf{b}\mathbf{b} = 2\mathbf{a}\mathbf$$

Пример 5. Даны точки A(2;1;3), B(-2;4;z), C(3;3;1). Векторы AB и AC перпендикулярны. Найти а) координату z точки B; б) косинус угла ABC; с) проекцию вектора BC на направление вектора AC.

Решение. а) Найдем координаты векторов **AB** и **AC** и выпишем условие их перпендикулярности: $\mathbf{AB} = \{-2-2;4-1;z-3\} = \{-4;3;z-3\}, \mathbf{AC} = \{1;2;-2\};$

$$\mathbf{AB} \cdot \mathbf{AC} = 0 \Leftrightarrow -4 \cdot 1 + 3 \cdot 2 + (z - 3) \cdot (-2) = 0 \Leftrightarrow z = 4.$$

б) угол **ABC** это угол между векторами **BA** и **BC**, косинус которого вычисляется по формуле $\cos(\mathbf{ABC}) = \frac{\mathbf{BA} \cdot \mathbf{BC}}{|\mathbf{BA}||\mathbf{BC}|}$. Вычислим координаты векторов **BA** и

ВС и подставим в формулу: **ВА**={4;-3;-1}, **ВС**={5;-1;-3};

$$\cos\left(\mathbf{ABC}\right) = \frac{\{4; -3; -1\} \cdot \{5; -1; -3\}}{\sqrt{4^2 + \left(-3\right)^2 + \left(-1\right)^2} \cdot \sqrt{5^2 + \left(-1\right)^2 + \left(-3\right)^2}} = \frac{4 \cdot 5 + 3 \cdot 1 + 1 \cdot 3}{\sqrt{26}\sqrt{35}} = \frac{26}{\sqrt{910}}.$$

с) проекция вычисляется по формуле

$$np_{AC}BC = \frac{BC \cdot AC}{|AC|} = \frac{\{5; -1; -3\} \cdot \{1; 2; -2\}}{\sqrt{5^2 + 1^2 + 3^2}} = \frac{5 - 2 + 6}{\sqrt{35}} = \frac{9}{\sqrt{35}}.$$

СКАЛЯРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Задачи к разделу «Скалярное произведение»

- 20) Найти скалярное произведение векторов \vec{a} и \vec{b} , если $a)|\vec{a}|=2,|\vec{b}|=3$, угол между векторами равен 45°; \vec{o}) $\vec{a}=4i-3j+k$, $\vec{b}=-5i+j+k$.
- 21) Найти угол между векторами \vec{a} и \vec{b} , если $\vec{a} = 2i 3j + 3k$, $\vec{b} = -i + 2j + k$.
- 22) Ортогональны ли векторы $\vec{a} = i 6j + 3k$, $\vec{b} = j + 2k$?
- 23) Скалярное произведение векторов \vec{a} и \vec{b} равно (–3), длина вектора \vec{b} равна 2, угол между векторами равен 120°. Найти длину вектора \vec{a} .
- 24) Найти проекцию вектора \vec{a} на вектор $(-2\vec{a}+3\vec{b})$, если $\vec{a}=7j+2k$, $\vec{b}=-3i-k$.
- 25) Найти проекцию вектора $(-\vec{a} + 2\vec{b})$ на вектор \vec{b} , если $\vec{a} = i j + k$, $\vec{b} = -i + 2k$.
- 26) Найти проекцию вектора $(\vec{a} + 2\vec{b})$ на вектор $(\vec{a} \vec{b})$, если $\vec{a} = -i + 4j + k$, $\vec{b} = -3i + k$.
- 27) Найти взаимно ортогональные векторы среди векторов $\vec{a} = \{1, 2, -1\}$, $\vec{b} = \{2, -1, 1\}$, $\vec{c} = \{6, -3, 0\}$.
- 28) Найти $|\vec{c}|$, если $\vec{c} = \vec{a} \vec{b}$, $|\vec{a}| = 2$, $|\vec{b}| = 3$, угол между векторами \vec{a} и \vec{b} равен 60°.
- 29) Найти скалярное произведение векторов \vec{a} и \vec{b} , если $\vec{a} = 2\vec{m} \vec{n}$, $\vec{b} = -\vec{m} + 3\vec{n}$, $|\vec{m}| = 5$, $|\vec{n}| = 1$, угол между векторами \vec{m} и \vec{n} равен 30°.
- 30) Найти угол между векторами \vec{a} и \vec{b} , если $\vec{a}=3\vec{m}+\vec{n}$, $\vec{b}=2\vec{m}-3\vec{n}$, $|\vec{m}|=2$, $|\vec{n}|=1$, угол между векторами \vec{m} и \vec{n} равен 45°.
- 31) Вычислить $(-i+2j+3k)\cdot(2i-3j+k)$.
- 32) Упростить выражение $(2\vec{a}+3\vec{b}-\vec{c})\cdot(\vec{a}-\vec{b}+3\vec{c})$, если $|\vec{a}|=3, |\vec{b}|=2, |\vec{c}|=4$ и векторы \vec{a} , \vec{b} и \vec{c} ортогональны.
- 33) Найти работу силы $\vec{F} = \{2, -3, 6\}$ при перемещении из точки A(2, -4, 7) в точку B(-3, 2, 1).
- 34) Найти работу равнодействующей трех сил $\vec{F} = \{1,-3,6\}, \ \vec{P} = \{1,2,1\}, \ \vec{R} = \{-1,4,-2\} \ \text{при перемещении из точки } A(-2,-1,3)$ в точку B(-3,1,1).

6. ВЕКТОРНОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Определение. Векторным произведением векторов **a** и **b** называется вектор **c** (рис.15), удовлетворяющий следующим условиям:

- 1) вектор с перпендикулярен векторам а и b;
- 2) длина вектора **c** равна площади параллелограмма, построенного на векторах **a** и **b**, т.е. $|\mathbf{c}| = |\mathbf{a}||\mathbf{b}|\sin\alpha$;

3) векторы **a**, **b** и **c** образуют правую тройку.

Определение. Тройка векторов \mathbf{a} , \mathbf{b} и \mathbf{c} называется правой, если \mathbf{c} конца третьего вектора \mathbf{c} наикратчайший поворот от первого вектора \mathbf{a} ко второму вектору \mathbf{b} виден против часовой стрелки.

Обозначение. Векторное произведение обозначается крестиком между векторами, т.е. $\mathbf{a} \times \mathbf{b} = \mathbf{c}$.

Свойства векторного произведения векторов

- 1. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ антикоммутативность.
- 2. $\mathbf{a} \times (\lambda \mathbf{b}) = \lambda (\mathbf{a} \times \mathbf{b})$ –сочетательный закон.

Доказательство свойств 1 и 2 следует из определения векторного произведения.

3. $(a+b)\times c=a\times c+b\times c$ – распределительный закон.

Векторное произведение в координатной форме записи

Задача 7. Даны векторы $\mathbf{a} = \{x_a, y_a, z_a\}, \mathbf{b} = \{x_b, y_b, z_b\}$. Вычислить $\mathbf{a} \times \mathbf{b}$.

Решение. $\mathbf{a} = x_a \mathbf{i} + y_a \mathbf{j} + z_a \mathbf{k}$; $\mathbf{b} = x_b \mathbf{i} + y_b \mathbf{j} + z_b \mathbf{k}$;

$$\mathbf{a} \times \mathbf{b} = (x_a \mathbf{i} + y_a \mathbf{j} + z_a \mathbf{k}) \times (x_b \mathbf{i} + y_b \mathbf{j} + z_b \mathbf{k}) = x_a x_b \mathbf{i} \times \mathbf{i} + x_a y_b \mathbf{i} \times \mathbf{j} + x_a z_a \mathbf{i} \times \mathbf{k} + y_a x_b \mathbf{j} \times \mathbf{i} + y_a y_b \mathbf{j} \times \mathbf{j} + y_a y_b \mathbf{j} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{i} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} = x_a x_b \mathbf{i} \times \mathbf{i} + y_a y_b \mathbf{j} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + y_a y_b \mathbf{j} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + y_a y_b \mathbf{j} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + y_a y_b \mathbf{j} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + y_a y_b \mathbf{j} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + y_a y_b \mathbf{j} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + y_a y_b \mathbf{j} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + y_a y_b \mathbf{j} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_a y_b \mathbf{k} \times \mathbf{j} + z_a z_b \mathbf{k} \times \mathbf{k} + z_$$

Вычисление векторного произведения свелось к вычислению произведений базисных векторов. Вычислим их. $|\mathbf{i} \times \mathbf{i}| = |\mathbf{i}| \|\mathbf{i}\| \sin(0^\circ) = 1*1*0=0$. Следовательно, векторное произведение одноименных базисных векторов равно 0. $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, т.к. 1) **k** перпендикулярен к **a** и **b**; 2) $|\mathbf{i} \times \mathbf{j}| = |\mathbf{i}| \|\mathbf{j}\| \sin(90^\circ) = 1*1*1=1=|\mathbf{k}|$; 3) Векторы **i**, **j**, **k** образуют правую тройку. Аналогично, $\mathbf{i} \times \mathbf{k} = -\mathbf{j}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$.

Следовательно, $\mathbf{a} \times \mathbf{b} = (x_a y_b - y_a x_b) \mathbf{k} - (x_a z_a - z_a x_b) \mathbf{j} + (y_a z_b - z_a y_b) \mathbf{i}$. Для запоминания полученной формулы ее можно свернуть в определитель:

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} y_{a} & z_{a} \\ y_{b} & z_{b} \end{vmatrix} \mathbf{i} - \begin{vmatrix} x_{a} & z_{a} \\ x_{b} & z_{b} \end{vmatrix} \mathbf{j} + \begin{vmatrix} x_{a} & y_{a} \\ x_{b} & y_{b} \end{vmatrix} \mathbf{k} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_{a} & y_{a} & z_{a} \\ x_{b} & y_{b} & z_{b} \end{vmatrix}.$$
Векторное произведение векторов $\mathbf{a} = \{x_{a}; y_{a}; z_{a}\}$ u $\mathbf{b} = \{x_{b}; y_{b}; z_{b}\}$ вычисляется

Векторное произведение векторов $\mathbf{a} = \{x_a; y_a; z_a\}$

по формуле
$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ x_a & y_a & z_a \\ x_b & y_b & z_b \end{vmatrix}$$
.

Применение векторного произведения

1. Вычисление площадей. Из определения векторного произведения следует, что площадь параллелограмма, построенного на векторах **a** и **b**, равна $S_{\Diamond} = |\mathbf{a} \times \mathbf{b}|$,

2. Вычисление момента силы. Определение. Моментом силы $\overline{\mathbf{F}}$, приложенной в точке \mathbf{A} , относительно точки \mathbf{B} называется вектор $\overline{\mathbf{M}}_{\mathbf{B}}$ равный векторному произведению плеча ${\bf BA}$ на силу $\overline{\bf F}$, т.е. $\overline{\bf M}_{\bf B} = {\bf BA} \times \overline{\bf F}$ (рис.17).

Пример 6. Угол между векторами **a** и **b** равен 30 градусов, |**a**|=4, |**b**|=3. Вычислить площадь треугольника, построенного на векторах (2a-3b) и (4a+2b).

Решение. Площадь треугольника равна половине модуля векторного произведения:

$$S_{\Delta} = \frac{1}{2} |(2\mathbf{a} - 3\mathbf{b}) \times (4\mathbf{a} + 2\mathbf{b})| = \frac{1}{2} |8\mathbf{a} \times \mathbf{a} + 4\mathbf{a} \times \mathbf{b} - 12\mathbf{b} \times \mathbf{a} - 6\mathbf{b} \times \mathbf{b}| = \frac{1}{2} |4\mathbf{a} \times \mathbf{b} + 12\mathbf{a} \times \mathbf{b}| = \frac{1}{2} |16\mathbf{a} \times \mathbf{b}| = 8|\mathbf{a} \times \mathbf{b}| =$$

При вычислениях учитывалось, что векторное произведение одноименных векторов равно нулю и свойство антикоммутативности.

Пример 7. Вычислить длину высоты, опущенной из вершины **A** в треугольнике **ABC**, **A**(1;2;3), **B**(-3;4;1), **C**(3;5;5).

Решение. Найдем площадь треугольника АВС:

$$BC = \{6;1;4\}, BA = \{4;-2;2\}.$$

$$\mathbf{BC} \times \mathbf{BA} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 6 & 1 & 4 \\ 4 & -2 & 2 \end{vmatrix} = \mathbf{i} \begin{vmatrix} 1 & 4 \\ -2 & 2 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 6 & 4 \\ 4 & 2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 6 & 1 \\ 4 & -2 \end{vmatrix} = 10\mathbf{i} + 4\mathbf{j} - 16\mathbf{k}.$$

$$S_{\Delta} = \frac{1}{2} |\mathbf{BC} \times \mathbf{BA}| = \frac{1}{2} \sqrt{10^2 + 4^2 + 16^2} = \frac{\sqrt{372}}{2}$$
. Высоту, опущенную из вершины

A, найдем из формулы
$$S_{\Delta} = \frac{1}{2} |\mathbf{BC}| \cdot h_A \Rightarrow h_A = \frac{2S_{\Delta}}{|\mathbf{BC}|} = \frac{\sqrt{372}}{\sqrt{6^2 + 1^2 + 4^2}} = \frac{\sqrt{372}}{\sqrt{53}}.$$

Задачи к разделу «Векторное произведение»

- 35) Даны векторы $\vec{a} = \{2, -1, 3\}, \ \vec{b} = \{-3, 0, 1\}$. Найти векторные произведения: $\vec{a} : \vec{a} : \vec{b} : \vec{b} : \vec{b} : \vec{a} : \vec{b} : \vec{a} : \vec{b} : \vec{a} : \vec{b} : \vec{b} : \vec{b} : \vec{a} : \vec{b} : \vec$
- 36) Найти площадь параллелограмма, построенного на векторах \vec{a} и \vec{b} , если $\vec{a}=\{-1,-1,3\}, \vec{b}=\{-3,2,1\}$.
- 37) Найти высоты параллелограмма, построенного на векторах \vec{a} и \vec{b} , если $\vec{a} = \{3, -1, 1\}, \ \vec{b} = \{-1, -2, 0\}.$
- 38) Найти координаты вектора $\vec{c} = 2\vec{a} \times \vec{b} + \vec{b}$, если $\vec{a} = \{-2, -1, 0\}$, $\vec{b} = \{-1, 0, 2\}$.
- 39) Найти направляющие косинусы вектора $\vec{c} = \vec{a} \times \vec{b}$, если $\vec{a} = \{-2, -1, 0\}, \ \vec{b} = \{-1, 0, 2\}.$
- 40) Найти угол между векторами \vec{c} и \vec{d} , если $\vec{c} = \vec{a} + \vec{b}$, $\vec{d} = \vec{a} \times \vec{b}$, $\vec{a} = \{-3,0,2\}$, $\vec{b} = \{2,-1,0\}$.
- 41) Вычислить: $a) \left(\vec{a} + \vec{b}\right) \times \left(\vec{a} \vec{b}\right)$; δ) $\left(\vec{a} \vec{b}\right) \times \left(\vec{a} + \vec{b}\right)$.
- 42) Найти проекцию вектора \vec{a} на вектор \vec{c} , если $\vec{c} = \vec{a} \times (-2\vec{b}) \vec{b}$, $\vec{a} = \{0,4,2\}, \ \vec{b} = \{1,-1,3\}.$
- 43) Найти проекцию вектора $(-2\vec{a}+3\vec{b})$ на вектор $(\vec{a}-\vec{b})\times\vec{c}$, если $\vec{c}=\vec{a}\times(-2\vec{b}+\vec{a})$, $\vec{a}=\{1,4,2\},\ \vec{b}=\{2,-1,3\}$.
- 44) Вычислить: $(2i j + 3k) \times (i + 2j 4k)$.
- 45) Найти $|\vec{a} \times \vec{b} + \vec{c} \times \vec{a}|$, если $\vec{a} = \{1,1,1\}$, $\vec{b} = \{0,2,-1\}$, $\vec{c} = \{1,0,1\}$.

- 46) Определить коллинеарны ли векторы \vec{c} и \vec{d} , если $\vec{c} = \vec{a} \times (-2\vec{b} + \vec{a})$, $\vec{d} = (3\vec{a}) \times \vec{b}$.
- 47) Найти неизвестный вектор \vec{x} , если $\vec{a} \times \vec{x} = \vec{b}$, $\vec{a} = \{1,0,2\}$, $\vec{b} = \{2,-1,1\}$.

7. СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Определение. Смешанным произведением векторов **a**, **b** и **c** называется число равное $\mathbf{a} \times \mathbf{b} \cdot \mathbf{c}$. Первым выполняется векторное умножение.

Геометрический смысл смешанного произведения

Модуль векторного произведения $\mathbf{a} \times \mathbf{b} = \mathbf{d}$ равен площади параллелограмма: $|\mathbf{d}| = |\mathbf{a}| |\mathbf{b}| \sin \beta = S$ (рис.18). Из определения скалярного произведения следует $\mathbf{a} \times \mathbf{b} \cdot \mathbf{c} = \mathbf{d}$ $\mathbf{c} = |\mathbf{d}| |\mathbf{c}| \cos \alpha$. Произведение $|\mathbf{c}| \cos \alpha$ равняется высоте параллелепипеда \mathbf{h} со знаком "+", если угол между векторами \mathbf{c} и \mathbf{d} острый и высоте со знаком "-", если угол тупой. Угол

 α будет острым, если тройка векторов **a**, **b**, **c** правая. Окончательно имеем $\mathbf{a} \times \mathbf{b} \cdot \mathbf{c} = \mathbf{d} \cdot \mathbf{c} = |\mathbf{d}| |\mathbf{c}| \cos \alpha = \pm \mathbf{S} \cdot \mathbf{h} = \pm \mathbf{V}$.

Модуль смешанного произведения векторов **a**, **b**, **c** равен объему параллелениеда, построенного на этих векторах, т.е $V=|\mathbf{a}\times\mathbf{b}\cdot\mathbf{c}|$.

Определение. Перестановки **abc**, **bca**, **cab** элементов **a**, **b** и **c** называются циклическими.

Утверждение. При циклической перестановке векторов **a**, **b** и **c** ориентация тройки векторов не меняется. Истинность данного утверждения легко проверить непосредственно. Например, тройки **abc**, **bca**, **cab** на рис. 18 правые.

Поменяем в произведении $\mathbf{a} \times \mathbf{b}$ \mathbf{c} местами знаки умножения: $\mathbf{a} \ \mathbf{b} \times \mathbf{c} = \mathbf{b} \times \mathbf{c}$ \mathbf{a} . Каждое произведение равно объему параллелепипеда со знаком "+" или "-". Тройки $\mathbf{a} \mathbf{b} \mathbf{c}$ и $\mathbf{b} \mathbf{c} \mathbf{a}$ имеют одинаковую ориентацию, т.к. одна получается из другой циклической перестановкой. Следовательно, произведения $\mathbf{a} \times \mathbf{b} \ \mathbf{c}$ и $\mathbf{a} \ \mathbf{b} \times \mathbf{c}$ равны, т.е. $\mathbf{a} \times \mathbf{b} \ \mathbf{c} = \mathbf{a} \ \mathbf{b} \times \mathbf{c}$. Так как в смешанном произведении все равно, как

СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

расставлены знаки умножения, поэтому их не указывают и смешанное произведение обозначают **abc.**

Смешанное произведение в координатной форме записи

Задача 8. Даны векторы $\mathbf{a} = \{x_a; y_a; z_a\}$, $\mathbf{b} = \{x_b; y_b; z_b\}$ и $\mathbf{c} = \{x_c; y_c; z_c\}$. Вычислить \mathbf{abc} .

Решение. Используя формулы для вычисления скалярного и векторного произведения получим

$$\mathbf{abc} = \mathbf{a} \times \mathbf{b} \cdot \mathbf{c} = \left\{ \begin{vmatrix} y_{a} & z_{a} \\ y_{b} & z_{b} \end{vmatrix}; - \begin{vmatrix} x_{a} & z_{a} \\ x_{b} & z_{b} \end{vmatrix}; \begin{vmatrix} x_{a} & y_{a} \\ x_{b} & y_{b} \end{vmatrix} \right\} \left\{ x_{c}; y_{c}; z_{c} \right\} =$$

$$= x_{c} \begin{vmatrix} y_{a} & z_{a} \\ y_{b} & z_{b} \end{vmatrix} - y_{c} \begin{vmatrix} x_{a} & z_{a} \\ x_{b} & z_{b} \end{vmatrix} + z_{c} \begin{vmatrix} x_{a} & y_{a} \\ x_{b} & y_{b} \end{vmatrix} = \begin{vmatrix} x_{a} & y_{a} & z_{a} \\ x_{b} & y_{b} & z_{b} \\ x_{c} & y_{c} & z_{c} \end{vmatrix}.$$

Смешанное произведение векторов $\mathbf{a} = \{x_a; y_a; z_a\}$, $\mathbf{b} = \{x_b; y_b; z_b\}$ и $\mathbf{c} = \{x_c; y_c; z_c\}$ равно определителю, составленному из координат векторов: $\mathbf{abc} = \begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix}$.

Применение смешанного произведения

1. Вычисление объемов. Из геометрического смысла смешанного произведения следует, что объем параллелепипеда, построенного на векторах \mathbf{a} , \mathbf{b} и \mathbf{c} равен $\boxed{\mathbf{V}_n = |\mathbf{abc}|}$ (рис.19). Объем тетраэдра, построенного на векторах

a, **b** и **c** равен (рис.19)
$$V_{_{\rm T}} = \frac{1}{3} S_{\Delta} h = \frac{1}{3} \frac{1}{2} S_{\Diamond} h = \frac{1}{6} V_{_{\rm I}} = \frac{1}{6} |{\bf abc}|$$
. Итак, $V_{_{\rm T}} = \frac{1}{6} |{\bf abc}|$.

2. Признак компланарности. Определение. Векторы, лежащие в одной плоскости или в параллельных плоскостях, называются компланарными.

Параллелепипед, построенный на компланарных векторах, является плоской фигурой и его объем равен нулю.

СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

Признак компланарности. Векторы $\mathbf{a} = \{x_a; y_a; z_a\}, \mathbf{b} = \{x_b; y_b; z_b\}$ и $\mathbf{c} = \{x_c; y_c; z_c\}$ компланарны \Leftrightarrow когда их смешанное произведение равно нулю,

T.e. **abc** =
$$\begin{vmatrix} x_a & y_a & z_a \\ x_b & y_b & z_b \\ x_c & y_c & z_c \end{vmatrix} = 0.$$

Пример 8. При каком значении x точки A(1;2;3), B(x;3;2), C(2;1;2), D(-2;1;0) лежат в одной плоскости.

Решение. Точки лежат в одной плоскости, если векторы **AB**, **AC**, **AD** компланарны. Запишем признак компланарности и найдем значение x:

$$AB = \{x - 1; 1; -1\}, AC = \{1; -1; -1\}, AD = \{-3; -1; -3\}.$$

$$\mathbf{AB} \cdot \mathbf{AC} \times \mathbf{AD} = \begin{vmatrix} x - 1 & 1 & -1 \\ 1 & -1 & -1 \\ -3 & -1 & -3 \end{vmatrix} = 0; \Rightarrow 2(x - 1) + 4 = 0; \Rightarrow x = -1.$$

Задачи к разделу «Смешанное произведение»

- 48) Найти смешанное произведение векторов $\vec{a}=\{1,-2,1\}$, $\vec{b}=\{-1,0,2\}$, $\vec{c}=\{2,-1,0\}$.
- 49) Найти смешанное произведение векторов $A\vec{B}\,A\vec{C}\,A\vec{D}$ и $D\vec{C}\,B\vec{C}\,A\vec{C}$, если $A(1,1,0),\ B(0,1,-1),\ C(2,-1,0),\ D(-1,-2,1).$ Почему смешанные произведения векторов $A\vec{B}\,A\vec{C}\,A\vec{D}$ и $D\vec{C}\,B\vec{C}\,A\vec{C}$ по абсолютной величине равны?
- 50) На векторах \vec{a} , \vec{b} и \vec{c} построен параллелепипед. Найти его высоты, если $\vec{a} = \{3, -2, 1\}$, $\vec{b} = \{-1, 1, 2\}$, $\vec{c} = \{2, -1, 1\}$.
- 51) Даны координаты пяти точек A(1,2,0), B(2,1,-1), C(2,-1,1), D(-2,-2,1), E(0,1,-1). Найти отношение высот пирамид ABCD и ABCE. Высоты опущены на общее основание ABC.
- 52) Лежат ли точки A(1,1,3), B(0,1,-3), C(2,2,0), D(1,-2,1) в одной плоскости?
- 53) Компланарны ли векторы? a) (i-2j+k), (-2i+j-k) и (3i-j+2k); \vec{a} , \vec{b} и $\vec{c} = -2\vec{a} + 5\vec{b}$.
- 54) Вычислить $\vec{a} \cdot ((3\vec{a} + 2\vec{b}) \times \vec{b})$.
- 55) Вычислить: a) $(i \times j k) \cdot k$; δ) $(j \times k + k) \cdot i$; ϵ) $((i \times k) \times i) \cdot k$.

СМЕШАННОЕ ПРОИЗВЕДЕНИЕ ВЕКТОРОВ

56) На векторах $\vec{a} = \{1, -2, 0\}$, $\vec{b} = \{-1, 1, 0\}$, $\vec{c} = \{c_x, -1, 1\}$ построен параллелепипед объёмом 12 куб. ед. Найти координату c_x .

8. УРАВНЕНИЕ ПРЯМОЙ НА ПЛОСКОСТИ

Каноническое уравнение прямой. Рассмотрим прямую *s*, проходящую

через точку $\mathbf{M}_0(x_0; y_0)$ в направлении вектора $\mathbf{s} = \{l; m\}$ (рис. 20). Очевидно, этими геометрическими условиями определяется единственная прямая. Возьмем произвольную точку $\mathbf{M}(x; y)$, принадлежащую нашей прямой. Выведем условие кото-

рому должны удовлетворять координаты точки **M**, чтобы она принадлежала прямой. Для того чтобы точка **M** находилась на прямой s необходимо и достаточно, чтобы векторы $\mathbf{M}_0\mathbf{M} = \{x - x_0; y - y_0\}$ и $\mathbf{s} = \{l; m\}$ были коллинеарны. Выпишем признак коллинеарности векторов: $\frac{x - x_0}{l} = \frac{y - y_0}{m}$.

Уравнение $\frac{x-x_0}{l} = \frac{y-y_0}{m}$ называется каноническим уравнением прямой.

Точка $\mathbf{M}_0(x_0, y_0)$ называется начальной точкой, а вектор $\mathbf{s} = \{l; m\}$ — направляющим вектором.

Замечание. Если прямая параллельна одной из осей координат, то одна из координат направляющего вектора равна нулю. В этом случае один из знаменателей в каноническом уравнении равен нулю. Такая запись допускается и понимается как параллельность одной из осей координат.

<u>Параметрические уравнения прямой</u>. Левая и правая части канонического уравнения равны переменной величине, которую обозначим через λ :

$$\frac{x-x_0}{l} = \frac{y-y_0}{m} = \lambda$$
. Выразим переменные x и y через λ : $\begin{cases} x = x_0 + l\lambda, \\ y = y_0 + m\lambda. \end{cases}$

Уравнения $\begin{cases} x = x_0 + l\lambda, \\ y = y_0 + m\lambda \end{cases}$ называются параметрическими уравнениями пря-

мой, где λ — параметр, $\mathbf{M}_0(x_0, y_0)$ — начальная точка, $\mathbf{s} = \{l; m\}$ — направляющий вектор.

Уравнение прямой, проходящей через две точки

Задача 9. Даны точки $\mathbf{A}(x_a, y_a)$ и $\mathbf{B}(x_b, y_b)$. Написать уравнение прямой $\mathbf{A}\mathbf{B}$.

Решение. Для того чтобы написать уравнение прямой достаточно знать начальную точку и направляющий вектор. В качестве начальной точки можно взять одну из точек **A** или **B**. В качестве направляющего вектора возьмем $\mathbf{AB} = \{x_b - x_a; y_b - y_a\}$.

Уравнение прямой, проходящей через точки $\mathbf{A}(x_a; y_a)$ и $\mathbf{B}(x_b; y_b)$, имеет вид

$$\frac{x - x_a}{x_b - x_a} = \frac{y - y_a}{y_b - y_a}.$$

Уравнение прямой в отрезках на осях

Рассмотрим уравнение прямой, проходящей через точки $\mathbf{A}(a;0)$ и $\mathbf{B}(0;b)$ (рис. 21), расположенные на осях координат:

$$\frac{x-a}{0-a} = \frac{y-0}{b-0}; \iff \frac{x}{a} + \frac{y}{b} = 1.$$

Уравнение прямой в отрезках на осях имеет вид $\frac{x}{a} + \frac{y}{b} = 1$, где a и b отрезки, отсекаемые прямой на осях 0x и 0y соответственно.

Уравнение прямой с угловым коэффи-

<u>циентом</u>. Рассмотрим каноническое уравнение прямой, проходящей через точку $\mathbf{B}(0;b)$ с единичным направляющим вектором \mathbf{e} (рис. 22). Координатами единичного вектора являются направляющие косинусы, т.е. $\mathbf{e} = \{\cos\alpha; \cos\beta\}$,

 $\beta = 90^{\circ} - \alpha$, $\cos \beta = \cos \left(90^{\circ} - \alpha \right) = \sin \alpha$. Следовательно, $\mathbf{e} = \{\cos \alpha; \sin \alpha\}$. Кано-

ническое уравнение имеет вид $\frac{x-0}{\cos\alpha} = \frac{y-b}{\sin\alpha}$. Выразим из уравнения y: $y = \frac{\sin\alpha}{\cos\alpha}x + b; \Rightarrow y = \lg\alpha \cdot x + b$. Обозначим $\lg\alpha = k$. Уравнение прямой примет вид y = kx + b.

Уравнение прямой с угловым коэффициентом имеет вид y=kx+b, где k- угловой коэффициент равный тангенсу угла наклона прямой к оси 0x, b- отрезок, отсекаемый прямой на оси 0y.

Замечание. Прямая x=b параллельна оси 0y, наклонена к оси 0x под углом 90^0 , тангенс которого неопределен, следовательно, такая прямая не может быть описана уравнением с угловым коэффициентом.

Уравнение прямой, проходящей через

точку $M_0(x_0, y_0)$ перпендикулярно вектору $n=\{A;B\}$ (рис. 23)

Вектор **n** перпендикулярный к прямой называется вектором *нормали*. Возьмем про- извольную точку $\mathbf{M}(x, y)$, принадлежащую

нашей прямой. Для того чтобы точка **M** находилась на прямой необходимо и достаточно, чтобы векторы $\mathbf{M}_0\mathbf{M} = \{x - x_0; y - y_0\}$ и $\mathbf{n} = \{A; B\}$ были перпендикулярны. Выпишем признак перпендикулярности векторов:

$$\mathbf{M}_0 \mathbf{M} \cdot \mathbf{n} = 0; \Leftrightarrow A(x - x_0) + B(y - y_0) = 0.$$

Уравнение прямой, проходящей через точку $\mathbf{M}_0(x_0; y_0)$ перпендикулярно вектору $\mathbf{n} = \{A; B\}$, имеет вид $A(x-x_0) + B(y-y_0) = 0$.

Общее уравнение прямой. В уравнении прямой, проходящей через точку $\mathbf{M}_0(x_0, y_0)$ перпендикулярно вектору $\mathbf{n} = \{A; B\}$ $A(x-x_0) + B(y-y_0) = 0$ раскроем скобки и переобозначим комбинацию констант: $Ax + By - Ax_0 - By_0 = 0$; $C = -Ax_0 - By_0$; $\Rightarrow Ax + By + C = 0$. Полученное уравнение называется общим уравнением прямой.

Общее уравнение прямой имеет вид Ax+By+C=0, где A, B — координаты вектора нормали $\mathbf{n}=\{A;B\}$.

Угол между прямыми. Признаки коллинеарности и перпендикулярности прямых

Определение. Углом между двумя прямыми называется меньший из углов, которые они образуют.

Рассмотрим прямые, заданные различными видами уравнений.

Прямые заданы уравнениями с угловыми коэффициентами s_1 : $y=k_1x+b_1$; s_2 : $y=k_2x+b_2$. Угол между прямыми (рис. 24) равен $\phi=\alpha_2-\alpha_1$ и, следовательно,

$$\operatorname{tg} \varphi = \operatorname{tg} (\alpha_2 - \alpha_1) = \frac{\operatorname{tg} \alpha_2 - \operatorname{tg} \alpha_1}{1 + \operatorname{tg} \alpha_1 \operatorname{tg} \alpha_2} = \frac{k_2 - k_1}{1 + k_1 k_2}.$$

Чтобы величина угла не зависела от нумерации прямых, выражение для тангенса нужно брать по модулю.

Тангенс угла между прямыми s_1 : $y=k_1x+b_1$; s_2 : $y=k_2x+b_2$ вычисляется по формуле $\operatorname{tg} \varphi = \left| \frac{k_2-k_1}{1+k_1k_2} \right|$.

Из полученной формулы следуют признаки параллельности и перпендикулярности прямых.

Прямые параллельны, если угол между ними равен 0° , тангенс нуля равен нулю, следовательно, $k_1 = k_2$.

Признак параллельности. Прямые s_1 : $y=k_1x+b_1$; s_2 : $y=k_2x+b_2$ параллельны \Leftrightarrow когда равны угловые коэффициенты, т.е. $k_1=k_2$.

Прямые перпендикулярны, если угол между ними равен 90° , тангенс 90° неопределен, а это согласно формуле будет, если $k_1k_2 = -1$.

Признак перпендикулярности. Прямые s_1 : $y=k_1x+b_1$; s_2 : $y=k_2x+b_2$ перпендикулярны $\Leftrightarrow k_1k_2=-1$.

Пример 9. Дана прямая y=2x-5 и точка **A**(1;2). А) Написать уравнение прямой, проходящей через точку **A** параллельно исходной прямой.

Б) Написать уравнение прямой, проходящей через точку **A** перпендикулярно исходной прямой.

Решение. А) Будем искать уравнение прямой в виде $y=k_1x+b_1$. Из признака параллельности прямых следует, что угловой коэффициент исходной прямой 2 равен угловому коэффициенту искомой прямой, т.е. k_1 =2 и уравнение искомой прямой принимает вид $y=2x+b_1$. Коэффициент b_1 найдем из условия, что прямая проходит через точку $\mathbf{A}(1;2)$: $2=2*1+b_1$; b_1 =0. Следовательно, уравнение прямой, проходящей через точку \mathbf{A} параллельно исходной прямой, имеет вид y=2x.

Б) Будем искать уравнение прямой в виде $y=k_2x+b_2$. Из признака перпендикулярности прямых следует, что произведение угловых коэффициентов равно -1, т.е. $2k_2=-1$; $k_2=-0.5$ и уравнение искомой прямой принимает вид $y=-0.5x+b_2$. Коэффициент b_2 найдем из условия, что прямая проходит через точку A(1;2): $2=-0.5*1+b_2$; $b_2=2.5$. Следовательно, уравнение прямой, проходящей через точку A перпендикулярно исходной прямой, имеет вид y=-0.5x+2.5

$$s_1: \ \frac{{}^*\Pi$$
рямые заданы каноническими уравнениями
$$s_1: \ \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1}; \quad s_2: \ \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2}. \ \ \mathrm{B} \ \ \mathrm{этом}$$

случае угол ϕ между прямыми равен углу между направляющими векторами $\mathbf{s_1} = \{l_1; m_1\}$ и $\mathbf{s_2} = \{l_2; m_2\}$ или смежному с ним углу (рис. 25). Косинус угла ϕ равен модулю косинуса угла между векторами и вычисляется по формуле

$$\cos \varphi = \frac{|\mathbf{s}_1 \cdot \mathbf{s}_2|}{|\mathbf{s}_1||\mathbf{s}_2|} = \frac{|l_1 l_2 + m_1 m_2|}{\sqrt{l_1^2 + m_1^2} \sqrt{l_2^2 + m_2^2}}.$$

 $\frac{\Pi p u з н a \kappa}{s_1} = \frac{m_1}{l_1}; \quad s_2 : \frac{x - x_2}{l_2} = \frac{y - y_2}{m_2} \quad \text{параллельны} \Leftrightarrow \text{когда коллинеарны направляющие}$ векторы $\mathbf{s_1} = \{l_1; m_1\}$ и $\mathbf{s_2} = \{l_2; m_2\} \Leftrightarrow \frac{l_1}{l_2} = \frac{m_1}{m_2}.$

0

Рис. 25

Текст, напечатанный мелким шрифтом, является необязательным и при первом прочтении может быть пропущен.

<u>Признак перпендикулярности прямых, заданных каноническими уравнениями.</u> Прямые $s_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1}; \ s_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2}$ перпендикулярны \Leftrightarrow когда перпендикулярны направляющие векторы $\mathbf{s_1} = \{l_1; m_1\}$ и $\mathbf{s_2} = \{l_2; m_2\} \iff \mathbf{s_1} \ \mathbf{s_2} = 0; \iff l_1 \ l_2 + m_1 \ m_2 = 0.$

Прямые заданы общими уравнениями s_1 : $A_1x+B_1y+C_1=0$; s_2 : $A_2x+B_2y+C_2=0$. В этом случае угол ϕ между прямыми равен углу между векторами нормалей $\mathbf{n_1} = \{A_1; B_1\}$ и $\mathbf{n_2} = \{A_2; B_2\}$ или смежному с ним углу (рис. 26). Косинус угла ф равен модулю косинуса угла между нормалями и вычисляется по

формуле
$$\cos \varphi = \left| \frac{\mathbf{n}_1 \cdot \mathbf{n}_2}{\left| \mathbf{n}_1 \right| \left| \mathbf{n}_2 \right|} \right| = \frac{\left| A_1 A_2 + B_1 B_2 \right|}{\sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}}$$
.

 $\|\mathbf{n}_1\|\mathbf{n}_2\| \sqrt{A_1^2 + B_1^2} \sqrt{A_2^2 + B_2^2}$ $\mathbf{n}_1 = \{A_1; B_1\}$ $\underline{\mathbf{n}}_1 = \{A_1; B_1\}$ $\underline{\mathbf{n}}_2 = \{A_2; B_2\}$ $\underline{\mathbf{n}}_3 = \{A_2; B_2\}$ $\underline{\mathbf{n}}_4 = \{A_2; B_2\}$ ми уравнениями. s_2 : $A_2x+B_2y+C_2=0$ параллельны \Leftrightarrow когда коллинеарны

их нормали $\mathbf{n_1} = \{A_1; B_1\}$ и $\mathbf{n_2} = \{A_2; B_2\} \Leftrightarrow \frac{A_1}{A_2} = \frac{B_1}{B_2}$.

Признак перпендикулярности прямых, заданных общими уравнениями. Прямые s_1 : $A_1x+B_1y+C_1=0$; s_2 : $A_2x+B_2y+C_2=0$ перпендикулярны \Leftrightarrow когда перпендикулярны их нормали $\mathbf{n_1} = \{A_1; B_1\} \text{ if } \mathbf{n_2} = \{A_2; B_2\} \iff \mathbf{n_1} \mathbf{n_2} = 0; \iff A_1A_2 + B_1B_2 = 0.$

Геометрическая интерпретация системы двух линейных уравнений с двумя неизвестными

Рассмотрим систему двух линейных уравнений с двумя неизвестными $\begin{cases} A_1x + B_1y + C_1 = 0; \\ A_2x + B_2y + C_2 = 0. \end{cases}$ Каждое уравнение системы является общим уравнением прямой на плоскости. Взаимное расположение двух прямых на плоскости определяет решение системы. Существует три различных случая.

1. Прямые совпадают. В этом случае система имеет бесконечно много решений. Уравнения системы задают одну прямую. Одно уравнение получается из другого умножением на константу, т.е. $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}$. Чтобы решить систему, следует одно из уравнений системы отбросить,

т.к. оно является следствием другого. Из оставшегося уравнения выразить одну переменную через другую, полученная формула будет описывать все множество решений.

- 2. *Прямые параллельны*. Согласно признаку, прямые параллельны, если $\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2}$. В этом случае система решений не имеет.
- 3. *Прямые пересекаются*. В этом случае система имеет единственное решение точку пересечения прямых.

Задачи к разделу «Прямая на плоскости»

- 57) Даны точки A(1,2), B(-1,3). Написать уравнение прямой в различных видах общее уравнение, каноническое, с угловым коэффициентом, в отрезках на осях.
- 58) Найти угол, образованный прямой y = 2x 1 и осью *OY*.
- 59) Найти пару прямых, образующих угол 45°, среди прямых y = -x, y = 5x 3, y = 2x/3 7.
- 60) Найти параллельные прямые среди прямых 2x y = 5, y = x + 1, 6x + 10 3y = 0.
- 61) Найти перпендикулярные прямые: *a*) 2x-3y=5, y=2x+1, 6x+10+4y=0; δ) $\frac{x-1}{2}=\frac{y+2}{3}$, $\frac{x+2}{5}=\frac{y+1}{2}$, $\frac{x+3}{-3}=\frac{y+4}{2}$; *a*) 5x+10-3y=0, $\frac{x}{5}+\frac{y}{10}=1$, $y-1=\frac{3}{5}(x+3)$.
- 62) Найти площадь треугольника, образованного началом координат и точками пересечения прямой $\frac{x}{-2} + \frac{y}{5} = 1$ с осями координат.
- 63) Дано уравнение прямой 5x + 7 3y = 0. Написать уравнение прямой, проходящей через точку A(2,-1): а) параллельно заданной прямой; b) перпендикулярно заданной прямой.
- 64) Найти угол между прямой 2x + y + 1 = 0 и прямой, проходящей через точки A(0,1) и B(1,4).
- 65) Определить на какой прямой линии лежит точка A(2,0) $l_1: x+y-1=0$, $l_2: \frac{x-1}{2} = \frac{y+2}{0}, \ l_3: y=3x-6 \ .$
- 66) Найти координаты точки пересечения прямых 3x-1+y=0, x+10+2y=0.

- 67) Найти координаты проекции точки A(2,1) на прямую x-2y-1=0.
- 68) Даны координаты трёх точек A(0,1), B(-1,3)и C(2,-2). Написать уравнения: a) всех медиан; δ) всех высот; ϵ) всех средних линий треугольника ABC.
- 69) Написать общее уравнение прямой, проходящей через точки A(3, -1), B(2, 2).
- 70) Написать уравнение с угловым коэффициентом прямой, проходящей через точку D(-3, -2) параллельно вектору $\overline{d} = \{3, 2\}.$
- 71) Написать каноническое уравнение прямой, проходящей через точку N(-2, 5) перпендикулярно прямой y=2x-5.
- 72) Написать параметрическое уравнение прямой, проходящей через точку пересечения прямых 2x 3y + 1 = 0, y = 5x 4 перпендикулярно первой прямой.
- 73) Написать уравнение геометрического места точек, равноудаленных от двух заданных: K(3; -5), M(-1; -3).
- 74) Написать уравнение прямой, проходящей через точку Q(2, 7): а) параллельно прямой 4x + 3y 5 = 0; б) перпендикулярно прямой $y = -\frac{1}{5}x + 2$.
- 75) Написать уравнение в отрезках прямой, проходящей через точку $M(5,\ 1)$ параллельно прямой $\begin{cases} x=t, \\ y=3t-1. \end{cases}$
- 76) Написать общее уравнение прямой, проходящей через точку G(-7, -1/2) параллельно прямой $\begin{cases} x = 2 t, \\ y = 2t + 5. \end{cases}$
- 77) Найти точку пересечения прямых 7x 11y 3 = 0, $\frac{x}{4} + \frac{y}{2} = 1$.
- 78) При каких значениях p и q прямые px-6y+2=0, $\frac{x-3}{2}=\frac{y-q}{5}$ будут пересекаться в точке I(1,1)?
- 79) Найти угол между прямыми -x + 4y + 5 = 0, $y = -\frac{3}{2}x + 2$.

- 80) Найти угол между прямыми $\frac{x}{3} + \frac{y}{-2} = 1$, $\begin{cases} x = t + 5, \\ y = 5t + 1. \end{cases}$
- 81) Через точку J(3, -1) провести прямую, пересекающую прямую y = 2x + 5 под углом 45° .
- 82) Вычислить углы треугольника, стороны которого заданы уравнениями $3x-4y+5=0, \ \frac{x-2}{2}=\frac{y-3}{-3}, \ \begin{cases} x=4t, \\ y=3t-1. \end{cases}$
- 83) Дан треугольник ΔABC : A(-2,1), B(3,2), C(4,-3). Написать уравнения сторон, высот, медиан, средних линий. Найти точку пересечения медиан, основания высот. Вычислить углы треугольника, высоты.
- 84) Дан параллелограмм ABCD: A(3, -1), B(2, 3), C(-4, 1). Написать уравнения сторон, высот, диагоналей. Найти точку пересечения диагоналей, основания высот. Вычислить углы параллелограмма, высоты.
- 85) Найти расстояние от точки Q(4, -5) до прямой y=7x+1.
- 86) Написать уравнение прямой, симметричной относительно начала отсчета $\text{прямой } \frac{x+2}{3} = \frac{y-3}{-2}.$
- 87) Выяснить, какая из прямых находится дальше от начала отчета $y = -5x + 7 \text{ или } \begin{cases} x = 7t 2, \\ y = 2t 7. \end{cases}$
- 88) При каком значении n прямые 7x + y 1 = 0, $\frac{x+1}{n} = \frac{y}{2}$ будут перпендикулярны, а при каком параллельны?

9. УРАВНЕНИЕ ПЛОСКОСТИ В ПРОСТРАНСТВЕ

Рассмотрим плоскость π , проходящую через точку $\mathbf{M}_0(x_0; y_0; z_0)$ перпенди-

кулярно вектору $\mathbf{n} = \{A; B; C\}$ (рис. 27). Очевидно, этим геометрическим условиям удовлетворяет единственная плоскость. Возьмем произвольную точку $\mathbf{M}(x;y;z)$, принадлежащую нашей плоскости. Выведем условие, которому должны удовлетворять координаты точки \mathbf{M} , чтобы она

принадлежала плоскости. Для того чтобы точка **M** находилась на плоскости π необходимо и достаточно, чтобы векторы $\mathbf{M}_0\mathbf{M} = \{x-x_0;y-y_0;z-z_0\}$ и $\mathbf{n} = \{A;B;C\}$ были перпендикулярны. Выпишем признак перпендикулярности векторов: $\mathbf{M}_0\mathbf{M} \cdot \mathbf{n} = 0$; $\Rightarrow A(x-x_0) + B(y-y_0) + C(z-z_0) = 0$.

Уравнение $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ называется уравнением плоскости, проходящей через точку $\mathbf{M}_0(x_0;y_0;z_0)$, перпендикулярно вектору $\mathbf{n}=\{A;B;C\}$. Точка $\mathbf{M}_0(x_0;y_0;z_0)$ называется начальной точкой, а вектор $\mathbf{n}=\{A;B;C\}$ — вектором нормали (нормалью).

Общее уравнение плоскости. Раскроем скобки и переобозначим комбинацию констант в уравнении $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$:

$$Ax+By+Cz+(-Ax_0-By_0-Cz_0)=0$$
; $-Ax_0-By_0-Cz_0=D$; $Ax+By+Cz+D=0$.

Уравнение Ax+By+Cz+D=0 называется общим уравнением плоскости, где A, B, C координаты вектора нормали $\mathbf{n}=\{A;B;C\}$.

Неполные уравнения плоскости

- 1) Если D=0, то плоскость имеет вид Ax+By+Cz=0. Точка (0;0;0) удовлетворяет уравнению плоскости \Rightarrow плоскость проходит через начало координат.
- 2) Если A=0, то вектор нормали \mathbf{n} ={0;B;C} перпендикулярен оси 0x, а плоскость By+Cz+D=0 параллельна оси 0x. Следовательно, если один из коэффициентов A, B, C при переменных x, y, z равен нулю, то плоскость параллельна соответствующей оси координат.

3) Если два из коэффициентов A, B, C равны нулю, то плоскость будет параллельна двум координатным осям, т.е. будет параллельна соответствующей координатной плоскости. Например, плоскость By+D=0 параллельна плоскости 0xz.

Уравнение плоскости в отрезках на осях. Преобразуем общее уравнение плоскости следующим образом:

$$Ax + By + Cz + D = 0; \Rightarrow \frac{x}{-D/A} + \frac{y}{-D/B} + \frac{z}{-D/C} = 1.$$
 Обозначим $-D/A = a;$

$$-D/B=b$$
; $-D/C=c$. Уравнение плоскости примет вид $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$. Точки

 ${\bf A}(a;0;0), {\bf B}(0;b;0), {\bf C}(0;0;c),$ расположенные на осях координат, удовлетворяют уравнению плоскости.

Уравнение плоскости в отрезках на осях имеет вид $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, где a, b, c

- отрезки, отсекаемые плоскостью на осях координат.

Уравнение плоскости, проходящей через три точки. Из аксиомы геометрии следует, что через три точки не лежащие на одной прямой можно провести единственную плоскость. Составим уравнение плоскости, проходящей через точки $\mathbf{A}(x_a;y_a;z_a)$, $\mathbf{B}(x_b;y_b;z_b)$, $\mathbf{C}(x_c;y_c;z_c)$. Возьмем произвольную точку $\mathbf{M}(x;y;z)$, принадлежащую нашей плоскости. Векторы $\mathbf{A}\mathbf{M} = \{x-x_a;y-y_a;z-z_a\}$, $\mathbf{A}\mathbf{B} = \{x_b-x_a;y_b-y_a;z_b-z_a\}$, $\mathbf{A}\mathbf{C} = \{x_c-x_a;y_c-y_a;z_c-z_a\}$ компланарны. Запишем признак компланарности:

$$\mathbf{AM} \times \mathbf{AB} \cdot \mathbf{AC} = 0; \Leftrightarrow \begin{vmatrix} x - x_{\mathbf{a}} & y - y_{\mathbf{a}} & z - z_{\mathbf{a}} \\ x_{\mathbf{b}} - x_{\mathbf{a}} & y_{\mathbf{b}} - y_{\mathbf{a}} & z_{\mathbf{b}} - z_{\mathbf{a}} \\ x_{\mathbf{c}} - x_{\mathbf{a}} & y_{\mathbf{c}} - y_{\mathbf{a}} & z_{\mathbf{c}} - z_{\mathbf{a}} \end{vmatrix} = 0.$$

Уравнение плоскости, проходящей через три точки $\mathbf{A}(x_a; y_a; z_a)$, $\mathbf{B}(x_b; y_b; z_b)$,

$$\mathbf{C}(x_{c};y_{c};z_{c})$$
, имеет вид $\begin{vmatrix} x-x_{a} & y-y_{a} & z-z_{a} \\ x_{b}-x_{a} & y_{b}-y_{a} & z_{b}-z_{a} \\ x_{c}-x_{a} & y_{c}-y_{a} & z_{c}-z_{a} \end{vmatrix} = 0.$

Замечание. Чтобы написать уравнение плоскости надо знать начальную точку и вектор нормали или три точки, принадлежащие плоскости. При решении задач следует из условия находить одну из указанных комбинаций.

Пример 10. Написать уравнение плоскости, проходящей через точки A(1;2;3), B(-2;3;1), параллельно вектору $a=\{2;5;2\}$.

Решение. Из условия задачи следует, что векторы $\mathbf{AB} = \{-2-1; 3-2; 1-3\} = \{-3; 1; -2\}$ и $\mathbf{a} = \{2; 5; 2\}$ параллельны плоскости. Их векторное произведение перпендикулярно плоскости и является вектором нормали, т.е.

$$\mathbf{n} = \mathbf{A}\mathbf{B} \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & -2 \\ 2 & 5 & 2 \end{vmatrix} = \mathbf{i} \begin{vmatrix} 1 & -2 \\ 5 & 2 \end{vmatrix} - \mathbf{j} \begin{vmatrix} -3 & -2 \\ 2 & 2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} -3 & 1 \\ 2 & 5 \end{vmatrix} = 12\mathbf{i} + 2\mathbf{j} - 17\mathbf{k}.$$

В качестве начальной точки возьмем **A**(1;2;3). Уравнение искомой плоскости, проходящей через точку **A** с вектором нормали **n**, имеет вид 12(x-1)+2(y-2)-17(z-3)=0; $\Leftrightarrow 12x+2y-17z-35=0$.

Угол между плоскостями. Признаки параллельности

и перпендикулярности плоскостей

Определение. Углом между плоскостями будем называть меньший двугранный угол, который они образуют.

Пусть даны две плоскости π_1 : $A_1 x + B_1 y + C_1 z + D_1 = 0$; π_2 : $A_2 x + B_2 y + C_2 z + D_2 = 0$.

Угол между плоскостями ϕ равен углу между векторами нормалей $\mathbf{n_1} = \{A_1; B_1; C_1\}$ и $\mathbf{n_2} = \{A_2; B_2; C_2\}$ или смежному с ним углу (рис. 28). Косинус угла ϕ равен модулю косинуса угла между нормалями и вычисляется по формуле

$$\cos \varphi = \frac{|\mathbf{n}_1 \cdot \mathbf{n}_2|}{|\mathbf{n}_1||\mathbf{n}_2|} = \frac{|A_1 A_2 + B_1 B_2 + C_1 C_2|}{\sqrt{A_1^2 + B_1^2 + C_1^2} \sqrt{A_2^2 + B_2^2 + C_2^2}}$$

Признак параллельности плоскостей

Плоскости π_1 : $A_1 x+B_1 y+C_1 z+D_1=0$; π_2 : $A_2 x+B_2 y+C_2 z+D_2=0$ параллельны \Leftrightarrow когдаколлинеарны их нормали $\mathbf{n_1}=\{A_1;B_1;C_1\}$ и $\mathbf{n_2}=\{A_2;B_2;C_2\}$

$$\iff \frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2}.$$

Признак перпендикулярности плоскостей

Плоскости π_1 : $A_1 x + B_1 y + z + D_1 = 0$; π_2 : $A_2 x + B_2 y + z + D_2 = 0$ перпендикулярны \Leftrightarrow когда перпендикулярны их нормали $\mathbf{n_1} = \{A_1; B_1; C_1\}$ и $\mathbf{n_2} = \{A_2; B_2; C_2\} \Leftrightarrow \mathbf{n_1} \mathbf{n_2} = 0$; $\Leftrightarrow A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$.

Расстояние от точки до плоскости

Задача 10. Найти расстояние от точки $\mathbf{M}(x_{\mathrm{M}};y_{\mathrm{M}};z_{\mathrm{M}})$ до плоскости Ax+By+Cz+D=0.

Решение. Расстояние от точки до плоскости — это длина перпендикуляра, опущенного из точки на плоскость (рис. 29). Возьмем на плоскости произвольную точку $\mathbf{P}(x;y;z)$. Расстояние d

от точки ${\bf M}$ до плоскости равно модулю проекции вектора

РМ= $\{x_{M}$ -x; y_{M} -y; z_{M} - $z\}$ на вектор нормали **n**= $\{A$;B;C $\}$, т.е.

$$d = |\text{np}_{\mathbf{n}} \mathbf{PM}| = \frac{|\mathbf{n} \cdot \mathbf{PM}|}{|\mathbf{n}|} = \frac{|A(x_{\mathbf{M}} - x) + B(y_{\mathbf{M}} - y) + C(z_{\mathbf{M}} - z)|}{\sqrt{A^2 + B^2 + C^2}} = \frac{|Ax_{\mathbf{M}} + By_{\mathbf{M}} + Cz_{\mathbf{M}} + (-Ax - By - Cz)|}{\sqrt{A^2 + B^2 + C^2}}.$$

Точка $\mathbf{P}(x;y;z)$ принадлежит плоскости и удовлетворяет уравнению плоскости, следовательно, D=-Ax-By-Cz. С учетом сказанного формула для расстояния принимает вид $d=\frac{\left|Ax_{\mathrm{M}}+By_{\mathrm{M}}+Cz_{\mathrm{M}}+D\right|}{\sqrt{A^2+B^2+C^2}}$.

Расстояние d от точки $\mathbf{M}(x_{\text{M}};y_{\text{M}};z_{\text{M}})$ до плоскости Ax+By+Cz+D=0

вычисляется по формуле
$$d = \frac{\left|Ax_{\rm M} + By_{\rm M} + Cz_{\rm M} + D\right|}{\sqrt{A^2 + B^2 + C^2}}.$$

Задачи к разделу «Плоскость в пространстве»

- 89) Написать уравнение плоскости, проходящей через точки S(2,3,4), T(1,0,-3), R(-4,2,0).
- 90) Написать уравнение плоскости, проходящей через точку W(-1,3,7) и параллельной векторам $\overline{a} = \{-1, 7, -4\}, \ \overline{b} = \{2, 0, 3\}.$
- 91) Написать уравнение плоскости, проходящей через точки U(4,-6,0), V(0,6,4) и параллельной вектору $\overline{c}=\{2,5,-1\}$.
- 92) Написать уравнение плоскости, проходящей через точку D(1, -3, 4) и параллельной плоскости ABC: A(3, 5, -1), B(0, -2, 4), C(1, -5, 0).
- 93) Написать уравнение плоскости, проходящей через точку K(6,-7,1) и перпендикулярной вектору $\bar{n} = \{3,5,1\}.$
- 94) Написать уравнение плоскости, проходящей через точку N(-4,-7,0) и перпендикулярной плоскостям 2x + 5y 3 = 0, -x + 3y + 4z + 2 = 0.
- 95) Найти угол между плоскостями 2x + 5y z + 3 = 0, -x + 3y + 5z 2 = 0.
- 96) Найти угол между плоскостью 5x-3y-2z+4=0 и плоскостью, проходящей через точки E(2,3,4), F(1,0,-3), G(-4,2,0).
- 97) При каком значении μ плоскости $-x+(1-2\mu)y+(2+\mu)z+5=0$, $\mu x+5y+7=0$ будут перпендикулярны, а при каком параллельны?
- 98) Найти точку пересечения плоскостей 2x-z+3=0, x+y+4z-4=0, -3x+y-5z+1=0.
- 99) Найти расстояние от точки K(6, -7, 1) до плоскости -5x + 2y 5z + 2 = 0.
- 100) Найти расстояние от точки $G(-1,\ 0,-3)$ до плоскости $\begin{vmatrix} x-1 & y & z+2 \\ -2 & 3 & 0 \\ 0 & -1 & 1 \end{vmatrix} = 0.$

УРАВНЕНИЕ ПРЯМОЙ В ПРОСТРАНСТВЕ

10. УРАВНЕНИЕ ПРЯМОЙ В ПРОСТРАНСТВЕ

Канонические, параметрические уравнения прямой и прямой, проходящей через две точки, в пространстве получаются аналогично плоскому случаю (см. п.8).

Канонические уравнения прямой в пространстве: $\frac{x-x_0}{l} = \frac{y-y_0}{m} = \frac{z-z_0}{n}$, где $\mathbf{M}_0(x_0;y_0;z_0)$ – начальная точка, $\mathbf{s} = \{l;m;n\}$ – направляющий вектор.

Параметрические уравнения прямой в пространстве: $\begin{cases} x = x_0 + l\lambda, \\ y = y_0 + m\lambda, \\ z = z_0 + n\lambda, \end{cases}$

где $M_0(x_0, y_0; z_0)$ – начальная точка, $\mathbf{s} = \{l; m; n\}$ – направляющий вектор.

Уравнение прямой, проходящей через точки $A(x_a; y_a; z_a)$ и $B(x_b; y_b; z_b)$, имеет

вид
$$\frac{x-x_a}{x_b-x_a} = \frac{y-y_a}{y_b-y_a} = \frac{z-z_a}{z_b-z_a}$$
.

Общие уравнения прямой в пространстве. Зададим прямую, как пересе-

чение двух плоскостей: $\begin{cases} A_1x+B_1y+C_1z+D_1=0,\\ A_2x+B_2y+C_2z+D_2=0. \end{cases}$ Данные уравнения называют-

ся общими уравнениями прямой.

Переход от общих уравнений к каноническим и параметрическим. Пусть

заданы общие уравнения прямой
$$\begin{cases} A_1x+B_1y+C_1z+D_1=0,\\ A_2x+B_2y+C_2z+D_2=0. \end{cases}$$

Чтобы написать канонические и параметрические уравнения нужно знать начальную точку и направляющий вектор. Найдем две точки **A** и **B** принадлежащие нашей прямой. Для нахождения точки, следует в общих уравнениях прямой одну из переменных положить равной какой-нибудь константе, а две оставшиеся неизвестные найти, решив получившуюся систему двух уравнений с двумя неизвестными. Одну из найденных точек надо взять в качестве начальной, а в качестве направляющего вектора взять вектор **AB**.

УРАВНЕНИЕ ПРЯМОЙ В ПРОСТРАНСТВЕ

Пример 11. Найти канонические уравнения прямой $\begin{cases} 2x - y + z - 2 = 0, \\ x - 2y + 3z + 1 = 0. \end{cases}$

Решение. Найдем две точки, принадлежащие нашей прямой. Положим

$$x=0, \text{ тогда } \begin{cases} -y+z-2=0, \\ -2y+3z+1=0. \end{cases} \Leftrightarrow \begin{cases} y=z-2, \\ -2(z-2)+3z+1=0. \end{cases} \Leftrightarrow \begin{cases} y=z-2, \\ z=-5. \end{cases} \Leftrightarrow \begin{cases} y=z-2, \\ z=-5. \end{cases}$$

Найденная точка A(0;-7;-5) принадлежит нашей прямой. Найдем другую точку B, положив y=0:

$$\begin{cases} 2x+z-2=0, \\ x+3z+1=0. \end{cases} \Leftrightarrow \begin{cases} 2(-3z-1)+z-2=0, \\ x=-3z-1. \end{cases} \Leftrightarrow \begin{cases} z=-0.8; \\ x=-3z-1. \end{cases} \Leftrightarrow \begin{cases} z=-0.8; \\ x=-3.4. \end{cases} \Leftrightarrow$$

B(-3,4;0;-0,8). Направляющим вектором прямой является вектор

АВ={-3,4;7;4,2}. Напишем канонические уравнения прямой, взяв в качестве

начальной – точку
$$\mathbf{A}(0;-7;-5)$$
: $\frac{x}{-3.4} = \frac{y+7}{7} = \frac{z+5}{4.2}$.

Угол между прямыми. Косинус угла ф между прямыми

$$s_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}; \ s_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$$
 вычисляется по формуле

аналогичной для плоского случая (см.п.8):

$$\cos \varphi = \frac{|\mathbf{s}_1 \cdot \mathbf{s}_2|}{|\mathbf{s}_1||\mathbf{s}_2|} = \frac{|l_1 l_2 + m_1 m_2 + n_1 n_2|}{\sqrt{l_1^2 + m_1^2 + n_1^2} \sqrt{l_2^2 + m_2^2 + n_2^2}}$$

Признаки параллельности и перпендикулярности прямых

Признак параллельности прямых. Прямые $s_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1};$

 $s_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ параллельны \Leftrightarrow когда коллинеарны направляющие

векторы
$$\mathbf{s_1} = \{l_1; m_1; n_1\}$$
 и $\mathbf{s_2} = \{l_2; m_2; n_2\} \Leftrightarrow \frac{l_1}{l_2} = \frac{m_1}{m_2} = \frac{n_1}{n_2}$.

Признак перпендикулярности прямых. Прямые

$$s_1: \frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}; \ s_2: \frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$$
 перпендикулярны \Leftrightarrow

когда перпендикулярны направляющие векторы $\mathbf{s_1} = \{l_1; m_1; n_1\}$ и $\mathbf{s_2} = \{l_2; m_2; n_2\} \Leftrightarrow \mathbf{s_1} \mathbf{s_2} = 0; \Leftrightarrow l_1 l_2 + m_1 m_2 + n_1 n_2 = 0.$

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ

11. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ

Угол между прямой и плоскостью

Определение. Углом между прямой и плоскостью называется угол ф между прямой и ее проекцией на плоскость.

Угол между нормалью плоскости и а направляющим вектором прямой у равен

90+ ϕ или 90- ϕ (рис. 30). Синус угла ϕ равен модулю косинуса γ и вычисляется по формуле $\sin \phi = \frac{|\mathbf{n} \cdot \mathbf{s}|}{|\mathbf{n}||\mathbf{s}|} = \frac{|Al + Bm + Cn|}{\sqrt{A^2 + B^2 + C^2}\sqrt{l^2 + m^2 + n^2}}$.

Взаимное расположение прямой и плоскости

Рассмотрим плоскость, заданную общим уравнением Ax+By+Cz+D=0, и прямую, заданную каноническими уравнениями $\frac{x-x_0}{l}=\frac{y-y_0}{m}=\frac{z-z_0}{n}$. Прямая может пересекать плоскость, быть ей параллельна, принадлежать плоскости.

Прямая параллельна плоскости, если вектор нормали плоскости $\mathbf{n} = \{A; B; C\}$ перпендикулярен направляющему вектору прямой $\mathbf{s} = \{l; m; n\}$, т.е. $\mathbf{n} \cdot \mathbf{s} = 0 \Rightarrow Al + Bm + Cn = 0$.

Прямая перпендикулярна плоскости, если вектор нормали плоскости $\mathbf{n} = \{A; B; C\}$ коллинеарен направляющему вектору прямой $\mathbf{s} = \{l; m; n\}$, т.е. $\frac{A}{l} = \frac{B}{m} = \frac{C}{n}$.

Прямая принадлежит плоскости, если вектор нормали плоскости $\mathbf{n}=\{A;B;C\}$ перпендикулярен направляющему вектору прямой $\mathbf{s}=\{n;l;m\}$, и начальная точка прямой $\mathbf{M}_0(x_0;y_0;z_0)$ принадлежит плоскости, т.е. An+Bl+Cm=0 и $Ax_0+By_0+Cz_0+D=0$.

Если прямая не параллельна плоскости и не принадлежит ей, то она ее пересекает. Для того чтобы найти точку пересечения прямой и плоскости нужно

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ

решить систему уравнений
$$\begin{cases} Ax + By + Cz + D = 0, \\ \frac{x - x_0}{l} = \frac{y - y_0}{m} = \frac{z - z_0}{n}. \end{cases}$$
 При решении системы

следует перейти от канонических уравнений прямой к параметрическим, подставить выражения для x, y, z в уравнение плоскости, из получившегося уравнения найти параметр, а затем x, y, z.

Пример 12. При каких значениях A и y_0 прямая $\frac{x-1}{2} = \frac{y-y_0}{3} = \frac{z+2}{4}$ принадлежит плоскости Ax-3y+z-3,5=0.

Решение. Выпишем условия, при которых прямая принадлежит плоскости $(2A-9+4=0, \qquad (A=2,5);$

(см. выше):
$$\begin{cases} 2A - 9 + 4 = 0, \\ A - 3y_0 - 2 - 3, 5 = 0. \end{cases} \Leftrightarrow \begin{cases} A = 2, 5; \\ y_0 = -1. \end{cases}$$

Пример 13. Написать уравнение плоскости, проходящей через прямую $\begin{cases} x = 3t - 1, \\ y = 2t + 3, \end{cases}$ и точку $\mathbf{A}(1;2;3).$ z = -t + 5.

Решение. Найдем две точки, принадлежащие нашей прямой. Для этого вычислим координаты x, y, z при двух произвольных значениях параметра t.

При
$$t$$
=0: $\begin{cases} x = -1, \\ y = 3, \Rightarrow \mathbf{B}(-1;3;5). \ \text{При } t = 1: \\ z = 5. \end{cases}$ $\begin{cases} x = 2, \\ y = 5, \Rightarrow \mathbf{C}(2;5;4). \ \text{Напишем уравнение} \\ z = 4. \end{cases}$

плоскости, проходящей через три точки А, В, С (см. п.10, с.25):

$$\begin{vmatrix} x-1 & y-2 & z-3 \\ -1-1 & 3-2 & 5-3 \\ 2-1 & 5-2 & 4-3 \end{vmatrix} = 0 \Leftrightarrow \begin{vmatrix} x-1 & y-2 & z-3 \\ -2 & 1 & 2 \\ 1 & 3 & 1 \end{vmatrix} = 0 \Leftrightarrow -5(x-1) + 4(y-2) - 7(z-3) = 0;$$

5x + 4y - 7z + 18 = 0 – уравнение искомой плоскости.

Задачи к разделам 10-11

- 101) Написать уравнение прямой, проходящей через точки I(2,3,4), J(4,-2,0).
- 102) Написать уравнение прямой, проходящей через точку H(-3, 2, -1) параллельно вектору $\bar{s} = \{-2, 4, 6\}$.

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ

- 103) Написать уравнение прямой, проходящей через точку Y(7, -3, 0) перпендикулярно плоскости 4x + 2y 3z + 7 = 0, и найти их точку пересечения.
- 104) Написать уравнение прямой, проходящей через точку A(0, 2, -3) параллельно плоскостям x 3y + 3z 7 = 0 и 5x + y + 2z + 3 = 0.
- 105) Написать уравнение плоскости, проходящей через прямую $\frac{x+2}{2} = \frac{y-3}{3} = \frac{z+4}{-4}$ параллельно прямой $\begin{cases} 2y-7z+\pi=0,\\ x+3z=0. \end{cases}$
- 106) Написать уравнение плоскости, проходящей через точку B(-1,3,5) перпендикулярно прямой $\frac{x-4}{-5} = \frac{y-2}{1} = \frac{z+3}{-2}$.
- 107) Найти угол между прямой $\frac{x+1}{3} = \frac{y-3}{-4} = \frac{z}{2}$ и плоскостью -x+3y-4z-1=0, определить точку их пересечения.
- 108) Найти угол между прямой MN:(M(2,-3,1), N(4,0,-2)) и плоскостью -y+5z+2=0, определить точку их пересечения.
- 109) Дан параллелепипед ABCDA'B'C'D': A(3, -1, 0), B(2, 4, -3), B'(-4, 1, 2), D'(0, 2, -1). Написать уравнения граней, ребер, высот. Найти все вершины, основания высот. Вычислить углы между гранями, между ребрами, между ребрами и гранями, высоты.

12. КРИВЫЕ ВТОРОГО ПОРЯДКА

Определение. Общее уравнение кривой линии второго порядка имеет вид: $a_{11}x^2+2a_{12}xy+a_{22}y^2+2a_{13}x+2a_{23}y+a_{33}=0\,.$

Для анализа общего уравнения и исследования кривых второго порядка, вводят понятие инвариантов.

Определение. Величины, составленные из коэффициентов общего уравнения,

$$I_1 = a_{11} + a_{22}, I_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, I_3 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix},$$

которые не изменяются при линейном преобразовании координат (сдвиге и повороте осей), называются инвариантами.

В определителях инвариантов I_2 и I_3 элементы $a_{ij} = a_{ji}$, т.е. определители I_2 и I_3 являются симметричными.

Инварианты характеризуют свойства кривой линии, не связанные с осями координат. Инвариант I_2 характеризует тип кривой. Если $I_2>0$, то кривая является эллипсом, $I_2<0$ — гипербола, $I_2=0$ — парабола. I_3 характеризует: является ли кривая вырожденной (распадающейся). Если $I_3=0$, то кривая вырождена. Для определения, во что вырождена парабола, вводится дополнительно величина K.

$$K = \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix}.$$

Подробная классификация кривых второго порядка, основанная на инвариантах, приведена в таблице.

Таблица

Значения		Невырожденные круппо I → 0	Вырожденные кривые $I_3 = 0$
инвариантов		кривые $I_3 \neq 0$	
T 0	. /	Действительный	
$I_2>0$	I_3/I_1 $\langle 0$	эллипс	
	$I_3/_{\setminus 0}$	Мнимый эллипс	
	I_1^{0}	(действительных	
		точек нет)	
	$I_3=0$		Эллипс, выродившийся
			в точку
$I_2 < 0$		Гипербола	Гипербола, выродившаяся в
			пару пересекающихся прямых
			линий.
$I_2 = 0$	K>0		Пара мнимых параллельных
		Парабола	прямых линий. Ни одной дей-
			ствительной точки.
	K<0		Пара действительных прямых
			параллельных линий.
	K=0		Одна действительная прямая
			(пара совпавших прямых
			линий)

Пример 14. Определить какому типу кривой линии соответствует уравнение $-x^2 + 2xy - y^2 + 2x - 4y + 3 = 0$.

Решение. Такие задачи решаются следующим образом: вычисляются инварианты, рассматриваются их величины и по таблице определяется тип кривой.

$$a_{11}=-1 \qquad a_{12}=1 \qquad a_{13}=1$$
 1. Выпишем элементы a_{ij} : $a_{21}=1 \qquad a_{22}=-1 \qquad a_{23}=-2$.
$$a_{31}=1 \qquad a_{32}=-2 \qquad a_{33}=3$$

2. Вычислим инварианты
$$I_1 = a_{11} + a_{22} = -1 - 1 = -2$$
. $I_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} = 0$.

 I_2 =0, следовательно кривая параболического типа. Для выяснения является ли парабола вырожденной, вычислим I_3 :

$$I_3 = \begin{vmatrix} -1 & 1 & 1 \\ 1 & -1 & -2 \\ 1 & -2 & 3 \end{vmatrix} = 3 - 2 - 2 - (-1 - 4 + 3) = -1 + 2 = 1.$$

 $I_3 \neq 0$ – кривая не вырождена. В этом случае K вычислять не нужно, т.к. K показывает, во что вырождена парабола, но в данном примере парабола не вырождена.

Ответ: Уравнение соответствует невырожденной параболе.

Общее уравнение кривой второго порядка можно привести к каноническому виду с помощью поворота и сдвига осей координат, т.е. линейным преобразованием координат.

Канонические уравнения кривых второго порядка будут рассмотрены далее. С процедурами приведений общих уравнений к каноническим видам можно ознакомиться в работе [6].

ЭЛЛИПС

Определение. Эллипсом называется геометрическое место точек, для которых сумма расстояний от двух заданных точек, называемых фокусами, есть величина постоянная (рис. 31).

 F_{1} , F_{2} - фокусы эллипса, $r_{1}\,u\,r_{2}$ - фокальные радиусы.

$$r_1 + r_2 = const = 2a > F_1 F_2$$
.

Каноническое уравнение эллипса имеет вид: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Эллипс симметричен относительно осей координат, центрально симметричен относительно начала координат и называется центральной кривой второго порядка. Параметры a и b называются полуосями. Прямоугольник со сторонами 2a и 2b называется основным.

Оптические свойства эллипса

Все лучи, исходящие из фокуса F_1 отражаясь от эллипса собираются и проходят через другой фокус F_2 и наоборот (рис. 32).

Определение. Эксцентриситетом называется отношение $\varepsilon = \frac{c}{a}$, $c = \sqrt{a^2 - b^2}$ при a > b или $\varepsilon = \frac{c}{b}$, $c = \sqrt{b^2 - a^2}$ при b > a. Фокальные радиусы находят-

ся по формулам $r_{1,2}=a\pm\varepsilon x$, при $a>b; r_{1,2}=b\pm\varepsilon x$, при b>a.

Уравнение касательной к эллипсу в точке $M(x_0, y_0)$ имеет вид: $\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1$.

Вектор нормальный к касательной имеет координаты $\left\{\frac{x_0}{a^2}, \frac{y_0}{b^2}\right\}$.

Окружность

Если a=b, то c=0, $r_1=r_2=a=b=R$, фокусы F_1 , F_2 находятся в одной точке - в начале координат. В этом частном случае эллипс представляет собой окружность с центром в начале координат и радиусом R.

Уравнение окружности радиуса R с центром в точке M(a, b) имеет вид: $(x-a)^2 + (y-b)^2 = R^2$.

Пример 15. Дано уравнение эллипса $x^2 + 4y^2 = 4$. Привести уравнение к каноническому виду, найти полуоси эллипса и построить его.

Решение. Заданное уравнение разделим на 4 и запишем в виде:

$$\frac{x^2}{2^2} + \frac{y^2}{1^2} = 1$$
, отсюда следует, что $a = 2$, $b = 1$.

В осях координат построим прямоугольник со сторонами 2a = 4 и 2b = 2. Внутри этого прямоугольника построим эллипс (рис. 33).

Пример 16. Дано уравнение эллипса $9x^2 + 16y^2 = 144$. Найти эксцентриситет, сумму фокальных радиусов, расстояние между фокусами.

Решение. Приведем уравнение к каноническому виду, для этого обе части уравнения разделим на 144: $\frac{x^2}{4^2} + \frac{y^2}{3^2} = 1$, a = 4, b = 3.

Так как
$$a>b$$
 , то $c=\sqrt{a^2-b^2}=\sqrt{4^2-3^2}=\sqrt{7}$, $\varepsilon=\frac{c}{a}=\frac{\sqrt{7}}{4}$, $r_1+r_2=2a=8$,
$$F_1F_2=2c=2\sqrt{7}$$
 .

Omsem: $\varepsilon = \sqrt{7}/4$, $r_1 + r_2 = 8$, $F_1F_2 = 2\sqrt{7}$.

Пример 17. Написать каноническое уравнение эллипса, если известно, что малая полуось $b = \sqrt{8}$ и эксцентриситет $\varepsilon = 0.6$.

Решение. a>b, $c=\sqrt{a^2-b^2}$, $\varepsilon=\frac{c}{a}$. Подставим величины из условия задачи в указанные формулы: $c=\sqrt{a^2-8^2}$, $0.6=\frac{c}{a}$, $0.6a=\sqrt{a^2-8^2}$, $a=\frac{5}{\sqrt{2}}$.

Omsem:
$$\frac{x^2}{(\sqrt{25/2})^2} + \frac{y^2}{(\sqrt{8})^2} = 1.$$

Пример 18. Даны координаты трех точек A(1;0), B(0;1) и C(0;2). Написать уравнение окружности, проходящей через заданные точки.

Решение. Подставим в уравнение окружности координаты данных точек, получим три уравнения: $(1-a)^2 + b^2 = R^2$, $a^2 + (1-b)^2 = R^2$, $a^2 + (2-b)^2 = R^2$. Эти уравнения представляют систему трех уравнений с тремя неизвестными a, b и R. Решая эту систему, получим: $a = \frac{3}{2}$, $b = \frac{3}{2}$, $R = \sqrt{2}$.

Omsem:
$$(x-1,5)^2 + (y-1,5)^2 = 2$$
.

Пример 19. Дано уравнение окружности $x^2+4x+y^2-6y-15=0$. Написать уравнение в каноническом виде, найти координаты центра $O(x_0, y_0)$ и радиус R.

Решение. В заданном уравнении выделим полные квадраты:

$$x^{2}+2\cdot 2\cdot x+4-4+y^{2}-2\cdot 3\cdot y+9-9-15=0$$
;
 $(x+2)^{2}+(y-3)^{2}=28$.

Omsem:
$$(x+2)^2 + (y-3)^2 = (\sqrt{28})^2$$
, $O(-2;3)$, $R = \sqrt{28}$.

ГИПЕРБОЛА

Определение. Гиперболой называется геометрическое место точек, абсолютная величина разности расстояний от каждой из которых до двух заданных точек F_1 и F_2 , называемых фокусами, есть величина

постоянная, равная 2a, т.е. $|r_1 - r_2| = 2a$ (рис. 34).

Для гиперболы характерно $F_1F_2>2a$. Каноническое уравнение гиперболы имеет вид: $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$.

Гипербола состоит из двух ветвей (сплошные линии на рис. 34), имеет центр симметрии в начале координат, две оси симметрии – OX и OY. Точки $A_I(a;0)$ и $A_2(-a;0)$ называются вершинами. Фокусы имеют координаты $F_I(-c;0)$, $F_2(c;0)$. Отрезок A_1A_2 =2a называется действительной осью и B_1B_2 =2b – мнимой осью гиперболы. Расстояние от фокуса до центра $c = \sqrt{a^2 + b^2}$. Величина $\varepsilon = \frac{c}{a}$ называется эксцентриситетом гиперболы (ε >1). Гипербола имеет две асимптоты: $y = \frac{b}{a}x$, $y = -\frac{b}{a}x$. Эти асимптоты являются продолжением диагоналей основного прямоугольника (на рис. 34 он отмечен мелким пунктиром). Величины r_1 и r_2 называются фокальными радиусами и определяются по формулам: $r_1 = |\varepsilon x - a|, r_2 = |\varepsilon x + a|$.

Гипербола с параметрами a=b называется равносторонней. Уравнение $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ описывает гиперболу, ветви которой направлены вверх и вниз (пунктирные линии на рис. 34), 2a – мнимая ось, 2b – действительная ось. Эта гипербола называется сопряженной, она имеет тот же основной прямоугольник и те же асимптоты. Уравнение касательной в точке $M(x_0, y_0)$ имеет вид: $\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1$. Нормальный вектор $\vec{N} = \left\{\frac{x_0}{a^2}, -\frac{y_0}{b^2}\right\}$.

Оптическое свойство гиперболы

Лучи, вышедшие из одного фокуса, после отражения от ближайшей ветви гиперболы распространяются так, будто вышли из другого фокуса (рис. 35).

Пример 20. Привести данное уравнение гиперболы $2x^2 - 9y^2 = 18$ к каноническому виду, найти основные параметры: действительную и

мнимую полуоси, эксцентриситет, уравнения асимптот, координаты вершин, координаты фокусов.

Решение. Разделим уравнение на 18 и приведем его к виду:

$$\frac{x^2}{3^2} - \frac{y^2}{(\sqrt{2})^2} = 1. \quad a = 3, \quad b = \sqrt{2} \ , \quad c = \sqrt{a^2 + b^2} = \sqrt{3^2 + 2} = \sqrt{11}. \quad \varepsilon = \frac{c}{a} = \frac{\sqrt{11}}{3}. \quad \text{Уравнения}$$
 асимптот — $y = \frac{\sqrt{2}}{3}x, y = -\frac{\sqrt{2}}{3}x$. Координаты вершин — $A_I(3;0), \quad A_2(-3;0).$ Координаты фокусов — $F_I(-\sqrt{11};0), F_2(\sqrt{11};0).$

Пример 21. Привести уравнение гиперболы $16x^2 - 4y^2 = 64$ к каноническому виду и написать уравнение касательной к гиперболе в точке $M\left(\frac{\sqrt{68}}{4},1\right)$.

Решение. Разделим уравнение на 64 и приведем к виду $\frac{x^2}{2^2} - \frac{y^2}{4^2} = 1$. a = 2, b = 4. Проверим, лежит ли заданная точка на гиперболе. Подставим ее координаты в уравнение: $\frac{68}{4^2*2^2} - \frac{1^2}{4^2} = 1$; 1 = 1. Координаты удовлетворяют уравнению гиперболы, значит, точка лежит на кривой. Подставляем координаты точки M в уравнение касательной, записанной в общем виде, получим: $\frac{x \sqrt{68}}{2^2} - \frac{y*1}{4^2} = 1$. После простых алгебраических преобразований получим искомое уравнение касательной $\sqrt{68} \, x - y - 16 = 0$.

ПАРАБОЛА

Определение. Параболой называется геометрическое место точек, равноудаленных от некоторой фиксированной точки, называемой фокусом F и от фиксированной прямой d, называемой директрисой параболы, FM=DM (рис. 36). Точка A(0;0) называется вершиной параболы. Координаты фокуса параболы F(p/2;0).

Каноническое уравнение параболы $y^2 = 2px$.

Парабола симметрична относительно прямой, проходящей через вершину A и фокус F. Вершина A находится в начале координат, осью симметрии является ось OX. Расстояние p от фокуса до директрисы называется фокальным параметром.

Оптическое свойство параболы

Если в фокус поместить источник света, то все лучи после отражения от параболы будут параллельны оси параболы (рис. 37).

Рис. 37

Эллипс и гипербола обладают свойствами осевой и центральной симметрии и называются центральными. Парабола обладает свойствами только осевой симметрии и не является центральной.

Пример 22. Привести уравнение параболы $2x-12y^2=0$ к каноническому виду, найти координаты фокуса, расстояние от точки M(6;1) до директрисы.

Решение. Перенесем член, содержащий y^2 в правую часть, и разделим на 2, полученное выражение $x = 2*3*y^2$ представляет собой каноническое уравнение параболы, вытянутой вдоль оси OX. Параметр параболы p=3, координаты фокуса F(3/2;0). Расстояние от точки M(6;1) до фокуса $FM = \sqrt{(x_M - x_F)^2 + (y_M - y_F)^2} = \sqrt{(6-3/2)^2 + (1-0)^2} = \frac{\sqrt{85}}{2}$. По определению это расстояние от точки M до директрисы.

ВАРИАНТЫ РАСЧЕТНО-ГРАФИЧЕСКОГО ЗАДАНИЯ

Задание № 1. Даны декартовы координаты трех точек A, B, C. Найти:

- а) площадь треугольника АВС;
- б) длину высоты AH, проведенной из вершины A, в треугольнике ABC;
- в) длину медианы BM, проведенной из вершины B, в треугольнике ABC;
- Γ) величину угла ABC;
- д) уравнение высоты AH в треугольнике ABC;
- е) уравнение медианы BM в треугольнике ABC;
- ж) проекцию вектора АВ на вектор АС;

- 3) работу силы **BC** при перемещении из A в C;
- и) момент силы AC, приложенной в точке B, относительно точки A;
- к) направляющие косинусы вектора ВС;
- л) уравнение прямой, проходящей через точку B параллельно прямой AC;
- м) координаты точки пересечения медиан в треугольнике АВС;

Задание № 2. Даны декартовы координаты четырех точек A, B, C, P. Найти:

- а) площадь треугольника ABC;
- б) длину высоты AH, проведенной из вершины A, в треугольнике ABC;
- в) длину медианы BM, проведенной из вершины B, в треугольнике ABC;
- Γ) величину угла ABC;
- д) уравнение медианы BM в треугольнике ABC;
- е) проекцию вектора АВ на вектор АС;
- ж) работу силы **BC** при перемещении из A в C;
- 3) момент силы AC, приложенной в точке B, относительно точки P;
- и) направляющие косинусы вектора ВС;
- κ) уравнение прямой, проходящей через точку B параллельно прямой AC;
- л) объем тетраэдра АВСР;
- м) длину высоты PK, проведенной из вершины P, в тетраэдре ABCP;
- н) уравнение плоскости АВС;
- о) уравнение высоты PK, проведенной из вершины PK, в тетраэдре ABCP;
- п) величину угла между ребром AP и гранью ABC, в тетраэдре ABCP;
- р) величину двугранного угла между гранями ABC и ABP, в тетраэдре ABCP;
- с) координаты точки пересечения медиан в треугольнике АВС;
- т) расстояние между прямыми AB и CP;
- у) уравнение высоты AH в треугольнике ABC;

Вариант № 1.

1. A(2; 4), B(-2; 7), C(8; -6).

2. A(1; 2; 4), B(0; -2; 7), C(-5; 8; -6), P(-2; 4; -17).

Вариант № 2.

1. A(-2; 7), B(-6; 3), C(8; -6).

2. *A*(1; -2; 7), *B*(-6; 3; 0), *C*(1; 8; -6), *P*(-2; 4; -17).

Вариант № 3.

1. A(9; 4), B(-2; -7), C(18; -6). 2. A(0; 9; 4), B(1; -2; -7), C(1; 8; -6), P(-12; 4; -17).

Вариант № 4.

1. A(2; 14), B(-12; 7), C(8; 0). 2. A(2; 1; 14), B(-1; 2; 7), C(8; 0; 1), P(-2; 14; -17).

Вариант № 5.

1. A(-12; 4), B(-2; 17), C(0; -6). 2. A(-1; 2; 4), B(-2; 1; 7), C(1; 0; -6), P(32; 4; -17).

Вариант № 6.

1. A(12; 4), B(-2; 17), C(-8; -6). 2. A(0; 12; 4), B(-2; 1; 7), C(-8; -6; 1), P(-2; 4; -7).

Вариант № 7.

1. A(22; -4), B(2; 17), C(-18; -6). 2. A(2; 2; -4), B(2; 1; 7), C(-1; 8; -6), P(-2; -4; -17).

Вариант № 8.

1. A(6; 14), B(-12; 5), C(5; -6). 2. A(6; 1;4), B(-1; 2; 5), C(5; -6; 3), P(-2; 14; -17).

Вариант № 9.

1. A(3; -4), B(-12; 17), C(8; 16). 2. A(0; 3; -4), B(-12; 1; 7), C(8; 1; 6), P(22; 4; -17).

Вариант № 10.

1. A(12; 4), B(-2; 8), C(0; -6).

2. *A*(1; 2; 4), *B*(-2; 8; 3), *C*(0; -6; 6) , *P*(-2; 14; -17).

Вариант № 11.

1. A(1; 4), B(-2; 2), C(-3; -6).

2. *A*(-1; 0; 4), *B*(0; 1; 7), *C*(-5; 2; -6), *P*(-2; -4; -1).

Вариант № 12.

1. *A*(-4; 7), *B*(-1; 3), *C*(4; -6).

2. *A*(4; -2; 7), *B*(-4; 3; 0), *C*(4; 8; -6), *P*(-2; 4; -4).

Вариант № 13.

1. A(1; 4), B(-2; -1), C(8; -6).

2. *A*(0; 1; 4), *B*(1; -1; -7), *C*(1; 8; -1), *P*(-1; 4; -17).

Вариант № 14.

1. A(2; -4), B(-1; 7), C(8; 3).

2. *A*(4; 1; 1), *B*(-1; -2; 7), *C*(8; 3; 1), *P*(-2; 1; -17).

Вариант № 15.

1. A(2; 5), B(-2; 7), C(10; -6).

2. *A*(-3; 2; 4), *B*(-2;0; 7), *C*(1; 0; -6), *P*(2; 4; -1).

Вариант № 16.

1. A(1; 6), B(-2; 1), C(-8; -3). 2. A(1; 12; 4), B(-2; 7; 7), C(-8; -3; 1), P(-2; 4; -2).

Вариант № 17.

1. A(2; -4), B(2; 0), C(-8; -5). 2. A(2; 4; -4), B(8; 1; 7), C(-1; 3; -6), P(-2; -5; -7).

Вариант № 18.

1. A(6; 1), B(-1; 5), C(5; -6). 2. A(6; 1; 3), B(-1; -2; 5), C(5; -6; 9), P(-2; 4; -1).

Вариант № 19.

1. A(-3; -4), B(-12; 1), C(8; 1). 2. A(0; -3; -4), B(-1; 1; 7), C(8; -1; 6), P(2; 4; -8).

Вариант № 20.

1. A(-2; 4), B(-2; -4), C(0; -3). 2. A(1; 0; 4), B(-2; -3; 3), C(0; -2; 6), P(-2; 1; -3).

Вариант № 21.

1. A(2-; -4), *B*(-1; -7), *C*(8; 1). *2. A*(-2; 3; 14), *B*(-1; -2; 7), *C*(8; 0; 1), *P*(-2; 1; 7).

Вариант № 22.

1. A(-1; 3), B(-2; 7), C(0; -3). 2. A(-1; 2; 4), B(-2; 5; 7), C(1; -9; -6), P(3; 4; -5).

Вариант № 23.

1. A(1; -4), B(-2; 1), C(-6; -6). 2. A(0; 1; -4), B(-2; 0; 7), C(-3; -6; 1), P(-2; 1; -7).

Вариант № 24.

1. A(-2; -4), B(2; 9), C(-1; -6). 2. A(2; -2; -4), B(2; -1; 7), C(-1; 3; -6), P(-2; -4; 2).

Вариант № 25.

1. A(6; 1), B(-2; 5), C(5; -3). 2. A(6; -1; 4), B(-1; 8; 5), C(5; -6; 2), P(-2; 1; -1).

Вариант № 26.

1. A(3; -3), B(-12; 7), C(8; 1). 2. A(0; -3; -4), B(-1; 1; 7), C(-8; 1; 6), P(2; -4; -6).

Вариант № 27.

1. A(2; 4), B(-2; -8), C(0; -3). 2. A(-2; 2; 4), B(-2; 1; 3), C(0; -4; 6), P(-2; 4; -17).

Вариант № 28.

1. A(1; 3), B(-2; 1), C(-3; -4). 2. A(-1; 10; 4), B(3; 1; 7), C(-5; 6; -6), P(-2; -7; -1).

Вариант № 29.

1. A(-4; 1), B(-1; 5), C(3; -6). 2. A(-4; -2;4), B(-4; -8; 0), C(4; 1; -6), P(-2; -9; -4).

Вариант № 30.

1. A(1; 14), B(-2; -1), C(3; -6). 2. A(0; -1; 4), B(1; 1; -7), C(1; 8; 3), P(-1; 4; -1).

РЕШЕНИЕ ВАРИАНТА РАСЧЕТНО-ГРАФИЧЕСКОГО ЗАДАНИЯ

Задание № 1.

Даны декартовы координаты 3-х точек: A(2;3), B(-1;5), C(2;-3).

a) Найти площадь треугольника **ABC** (рис. 38).

Решение. Площадь треугольника

 $S = \frac{1}{2} |{\bf AB} \times {\bf AC}|$ (см. п. 6, с.14). Операция векторного произведения определена для пространства. Перейдем от плоского случая к пространству, приписав третью нулевую координату к координатам точек: ${\bf A}(2;3;0), {\bf B}(-1;5;0), {\bf C}(2;-3;0).$ Произведем необходимые вычисления: ${\bf AB} = \{-1-2;5-3;0-0\} = \{-3;2;0\}$,

$$\mathbf{AC} = \{2 - 2; -3 - 3; 0 - 0\} = \{0; -6; 0\}. \quad \mathbf{AB} \times \mathbf{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 2 & 0 \\ 0 & -6 & 0 \end{vmatrix} = 0\mathbf{i} + 0\mathbf{j} + 18\mathbf{k};$$

$$S = \frac{1}{2} |\mathbf{AB} \times \mathbf{AC}| = \frac{\sqrt{0^2 + 0^2 + 18^2}}{2} = \frac{18}{2} = 9.$$

б) Найти длину высоты |**АН**| (рис. 38).

Решение. $S = \frac{1}{2} |\mathbf{BC}| \cdot |\mathbf{AH}| \Rightarrow |\mathbf{AH}| = \frac{2S}{|\mathbf{BC}|}$. Площадь вычислена в п. *a***.** Вы-

числим |ВС| и найдем |АН|:

BC = {3; -8},
$$|\mathbf{BC}| = \sqrt{3^2 + 8^2} = \sqrt{73}$$
, $|\mathbf{AH}| = \frac{2 \cdot 9}{\sqrt{73}} = \frac{18}{\sqrt{73}}$.

в) Найти длину медианы |**ВМ**| (рис. 38).

Решение: Точка \mathbf{M} делит отрезок \mathbf{AC} пополам, используя формулы для координат середины отрезка (см. п. 1, с. 8) найдем координаты \mathbf{M} и вычислим

|BM|:
$$x_M = \frac{x_A + x_C}{2} = \frac{2+2}{2} = 2$$
, $y_M = \frac{y_A + y_C}{2} = \frac{3-3}{2} = 0$.

BM =
$$\{3; -5\}$$
; $|\mathbf{BM}| = \sqrt{3^2 + 5^2} = \sqrt{34}$.

г) Найти величину угла АВС (рис. 38).

Решение.
$$S_{\Delta ABC} = \frac{1}{2} \cdot |\mathbf{AB}| \cdot |\mathbf{BC}| \cdot \sin(ABC)$$
; $\mathbf{AB} = \{-3, 2, 0\}$ (см. п.а);

$$\Rightarrow$$
 |**AB**| = $\sqrt{9+4} = \sqrt{13}$; |**BC**| = $\sqrt{73}$ (cm. π.**6**); S=9 (cm. π.**a**);

$$\Rightarrow \sin(ABC) = \frac{2 \cdot S}{|\mathbf{AB}| \cdot |\mathbf{BC}|} = \frac{2 \cdot 9}{\sqrt{73 \cdot 13}} \approx 0,584.$$

д) Найти уравнение высоты **АН**: $y = k_{AH}x + b_{AH}$ (рис. 38).

Решение.

1. Найдем уравнение прямой **BC** $y=k_{BC}x+b_{BC}$ (см. уравнение прямой, проходящей через две точки, п.8, с. 18): $\frac{x-x_b}{x_c-x_b}=\frac{y-y_b}{y_c-y_b}$; $\frac{x+1}{2+1}=\frac{y-5}{-3-5}$;

$$y = -\frac{8}{3}x + \frac{7}{3}.$$

2. Так как ВС \(\text{AH} \), то (признак перпендикулярности прямых, п.8, с. 20)

$$k_{AH} \cdot k_{BC} = -1; \Rightarrow k_{AH} = \frac{3}{8}.$$

3. Уравнение искомой прямой $y = \frac{3}{8}x + b_{AH}$. Коэффициент b_{AH} найдем из условия, что прямая проходит через точку $\mathbf{A}(2;3)$: $3 = \frac{3}{8} \cdot 2 + b_{AH}$; $\Rightarrow b_{AH} = \frac{9}{4}$.

Уравнение **АН**:
$$y = \frac{3}{8}x + \frac{9}{4}$$
.

е) Найти уравнение медианы ВМ (рис. 38).

Решение. Координаты точки M(2;0) определены в п. **в.** Имея координаты точек B(-1;5) и M(2;0), запишем уравнение прямой, проходящей через эти точ-

ки:
$$\frac{x-x_b}{x_m-x_b} = \frac{y-y_b}{y_m-y_b}; \Rightarrow \frac{x+1}{2+1} = \frac{y-5}{0-5}; \Rightarrow y = -\frac{5}{3}x + \frac{10}{3}.$$

ж) Найти проекцию вектора АВ на вектор АС.

Решение. Координаты векторов $\mathbf{AB} = \{-3, 2\}$ и $\mathbf{AC} = \{0, -6\}$ найдены в п.**a**. Проекция вычисляется по формуле (см. п.2, с. 11)

$$\Pi p_{AC} AB = \frac{AB \cdot AC}{|AC|} = \frac{-3 \cdot 0 + 2(-6)}{\sqrt{0^2 + (-6)^2}} = -2.$$

з) Найти работу силы **BC** при перемещении из точки **A** в точку **C**.

Решение. Вектор перемещения $AC = \{0; -6\}$, вектор силы $BC = \{3; -8\}$.

Работа A равна скалярному произведению вектора силы **BC** на вектор перемещения **AC** (см. п.2, с. 11): $A = \mathbf{BC} \cdot \mathbf{AC} = 3 \cdot 0 + (-8) \cdot (-6) = 48$.

и) Найти момент силы АС, приложенной в точке В, относительно точки А.

Решение: Момент силы $\overline{\mathbf{M}}$ вычисляется по формуле (см. п.3, с.14)

$$\overline{\mathbf{M}} = \mathbf{A}\mathbf{B} \times \mathbf{A}\mathbf{C}; \Rightarrow \overline{\mathbf{M}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 2 & 0 \\ 0 & -6 & 0 \end{vmatrix} = \begin{vmatrix} -3 & 2 \\ 0 & -6 \end{vmatrix} \cdot \mathbf{k} = 18\mathbf{k}.$$

к) Найти направляющие косинусы вектора ВС.

Решение. Направляющие косинусы вектора $BC = \{3; -8\}$ вычисляются по

формулам (см. п.1, с. 9):
$$\cos \alpha = \frac{\mathbf{BC}_x}{|\mathbf{BC}|} = \frac{3}{\sqrt{3^2 + 8^2}} = \frac{3}{\sqrt{73}}, \cos \beta = \frac{\mathbf{BC}_y}{|\mathbf{BC}|} = \frac{-8}{\sqrt{73}}.$$

n) Найти уравнение прямой, проходящей через точку **B**, параллельно прямой **AC**.

Решение. В качестве направляющего вектора прямой можно взять вектор $\mathbf{AC} = \{0; -6\}$, тогда искомое уравнение запишется в виде (см. каноническое

уравнение прямой п.8, с. 17)
$$\frac{x-x_b}{\mathbf{AC}_x} = \frac{y-y_b}{\mathbf{AC}_y} \Rightarrow \frac{x+1}{0} = \frac{y-5}{-6} \Rightarrow x = -1$$
.

м) Найти координаты точки пересечения медиан в треугольнике **ABC** (рис. 38).

Решение. Точка пересечения медиан **О** делит их в отношении 2:1, считая от вершины. Рассмотрим медиану **BM**: $\mathbf{B}(-1;5)$, $\mathbf{M}(2;0)$. Найдем координаты точки **О**, используя формулы (см. п.1, с.8)

$$x_o = \frac{-1+2\cdot 2}{1+2} = 1; \ y_o = \frac{5+2\cdot 0}{1+2} = \frac{5}{3}; \Rightarrow \mathbf{O}(1;5/3).$$

Задание № 2.

Даны декартовы координаты четырёх точек $\mathbf{A}(1;2;3)$, $\mathbf{B}(-2;3;1)$, $\mathbf{C}(1;4-3)$, $\mathbf{P}(4;2;1)$.

а) Найти площадь треугольника АВС.

Решается аналогично задаче 1(a). *Ответ*: $\sqrt{91}$.

б) Найти длину высоты **АН**, проведенной из вершины **А** в треугольнике **АВС**.

Решается аналогично задаче 1(б). *Ответ:* $\sqrt{\frac{182}{13}}$.

в) Найти длину медианы BM, проведенной из вершины B в треугольнике ABC.

Решается аналогично задаче 1(в). *Ответ*: $\sqrt{10}$.

г) Найти величину угла **ABC**.

Решение. Вычислим координаты векторов **BA** и **BC**, образующих искомый угол: **BA** = $\{1+2;2-3;3-1\}=\{3;-1;2\}$; **BC** = $\{1+2;4-3;-3-1\}=\{3;1;-4\}$. Величину угла найдем, используя скалярное произведение (см. п.2, с. 11):

$$\cos(ABC) = \frac{\mathbf{BA} \cdot \mathbf{BC}}{|\mathbf{BA}| \cdot |\mathbf{BC}|} = \frac{3 \cdot 3 + (-1) \cdot 1 + 2 \cdot (-4)}{\sqrt{3^2 + 1^2 + 2^2} \cdot \sqrt{3^2 + 1^2 4^2}} = 0.$$

Следовательно, угол АВС прямой, треугольник прямоугольный.

d) Найти уравнение медианы **BM** в треугольнике **ABC**.

Решается аналогично задаче 1(e). *Ответ*: $\frac{x+2}{-3} = \frac{y-3}{0} = \frac{z-1}{1}$.

е) Найти проекцию вектора АВ на вектор АС.

Решается аналогично задаче 1(ж). *Ответ:* $\sqrt{7/20}$

 $\emph{ж}$) Найти работу силы \mathbf{BC} при перемещении из точки \mathbf{A} в точку \mathbf{C} .

Решается аналогично задаче 1(3). Ответ: 26.

- 3) Найти момент силы **AC**, приложенной в точке **B**, относительно точки **P**. Решается аналогично задаче 1(u). *Ответ:* $\overline{\mathbf{M}} = \{-6; -36; 12\}$.
- и) Найти направляющие косинусы вектора ВС.

Решается аналогично задаче 1(к).

Ombem:
$$\cos \alpha = \frac{3}{\sqrt{26}}; \cos \beta = \frac{1}{\sqrt{26}}; \cos \gamma = \frac{-4}{\sqrt{26}}.$$

 κ) Найти уравнение прямой, проходящей через точку **B**, параллельно прямой **AC**.

Решается аналогично задаче 1(л).

Omsem:
$$\frac{x+2}{0} = \frac{y-3}{2} = \frac{z-1}{-6}$$
.

л) Найти объем тетраэдра **ABCP** (рис. 39).

Решение. Найдем в тетраэдре три вектора, выходящих из вершины **A**:

$$AB=\{-3;1;-2\}, AC=\{0;2-6\}, AP=\{3;0;-2\}.$$

Объем тетраэдра равен (см. п.7, с. 16)

$$V_T = \frac{1}{6} |\mathbf{A}\mathbf{B} \cdot \mathbf{A}\mathbf{C} \times \mathbf{A}\mathbf{P}|.$$

м) Найти длину высоты **РК**, проведенной из вершины **Р**, в тетраэдре **АВСР** (рис. 39).

Решение.
$$V_T = \frac{1}{3}h \cdot S_{och} = \frac{1}{3}|\mathbf{PK}| \cdot S_{ABC}; \Rightarrow |\mathbf{PK}| = \frac{3V_T}{S_{ABC}}. \ V_T = 1, \ S_{ABC} = \sqrt{91}$$

(определены соответственно в пунктах n и a). Следовательно,

$$|\mathbf{PK}| = \frac{3 \cdot 1}{\sqrt{91}} = \frac{3}{\sqrt{91}}.$$

н) Найти уравнение плоскости **ABC**.

Решение. Уравнение плоскости, проходящей через три точки **A, B, C,** имеет вид (см.п.9, с. 25)

$$\begin{vmatrix} x - x_a & y - y_a & z - z_a \\ x_b - x_a & y_b - y_a & z_b - z_a \\ x_c - x_a & y_c - y_a & z_c - z_a \end{vmatrix} = 0; \implies \begin{vmatrix} x - 1 & y - 2 & z - 3 \\ -2 - 1 & 3 - 2 & 1 - 3 \\ 1 - 1 & 4 - 2 & -3 - 3 \end{vmatrix} = 0; \implies \begin{vmatrix} x - 1 & y - 2 & z - 3 \\ 1 - 1 & 4 - 2 & -3 - 3 \end{vmatrix} = 0; \implies \begin{vmatrix} x - 1 & y - 2 & z - 3 \\ -3 & 1 & -2 \\ 0 & 2 & -6 \end{vmatrix} = 0.$$

P

Разложим определитель по элементам 1-й строки:

$$\begin{vmatrix} 1 & -2 \\ 2 & -6 \end{vmatrix} (x-1) - \begin{vmatrix} -3 & -2 \\ 0 & -6 \end{vmatrix} (y-2) + \begin{vmatrix} -3 & 1 \\ 0 & 2 \end{vmatrix} (z-3) = 0;$$

$$-2(x-1) - 18(y-2) - 6(z-3) = 0; \quad -2x + 2 - 18y + 36 - 6z + 18 = 0;$$

$$-2x - 18y - 6z + 56 = 0; \quad x + 9y + 3z - 28 = 0 - \text{уравнение плоскости ABC}.$$

о) Найти уравнение высоты **РК**, проведенной из вершины **Р**, в тетраэдре **АВСР** (рис. 39).

Решение. Прямая **PK** перпендикулярна к плоскости **ABC**, следовательно, направляющим вектором прямой может являться нормальный вектор плоскости $\mathbf{n} = \{1; 9; 3\}$ (см. п. \mathbf{n}). Канонические уравнения прямой, проходящей через точку **P**, с известным направляющим вектором имеют вид

(см. п. 10, с .27)
$$\frac{x - x_P}{\mathbf{n}_x} = \frac{y - y_P}{\mathbf{n}_y} = \frac{z - z_P}{\mathbf{n}_z}$$
; $\Rightarrow \frac{x - 4}{1} = \frac{y - 2}{9} = \frac{z - 1}{3}$ – уравнение

высоты РК.

n) Найти величину угла между ребром **AP** и гранью **ABC** в тетраэдре **ABCP** (рис. 39).

Решение. Найдем уравнение прямой **АР** (см. уравнение прямой, проходящей через две точки п.10, с. 27): $\frac{x-1}{3} = \frac{y-2}{0} = \frac{z-3}{-2}$. Угол α (рис. 39) между

прямой и плоскостью вычисляется по формуле (см. п.11, с. 29) $\sin \alpha = \frac{|\mathbf{n} \cdot \mathbf{s}|}{|\mathbf{n}||\mathbf{s}|}$, где

 $\mathbf{n} = \{1; 9; 3\}$ – вектор нормали плоскости **ABC** (см. п. \mathbf{n}),

 $s={3;0;-2}$ – направляющий вектор прямой. Следовательно,

$$\sin \alpha = \frac{\left|3 \cdot 1 + 0 \cdot 9 + (-2) \cdot 3\right|}{\sqrt{3^2 + 0^2 + (-2)^2} \cdot \sqrt{1^2 + 9^2 + 3^2}} = \frac{3}{\sqrt{1183}}.$$

p) Найти величину двугранного угла между гранями **ABC** и **ABP** в тетраэдре **ABCP**.

Решение. Найдем уравнение плоскости, проходящей через три точки А, В,

P (cm.π.9, c. 25):
$$\begin{vmatrix} x-1 & y-2 & z-3 \\ -2-1 & 3-2 & 1-3 \\ 4-1 & 2-2 & 1-3 \end{vmatrix} = 0; ⇒ \begin{vmatrix} x-1 & y-2 & z-3 \\ -3 & 1 & -2 \\ 3 & 0 & -2 \end{vmatrix} = 0; ⇒.$$

$$-2(x-1)-12(y-2)-3(z-3)=0$$
; $\Rightarrow 2x+12y+3z-35=0$.

Угол у между плоскостями **ABC** и **ABP** вычисляется по формуле (см. п.9,

с. 26)
$$\cos \gamma = \frac{|\mathbf{n}_1 \cdot \mathbf{n}_2|}{|\mathbf{n}_1||\mathbf{n}_2|}$$
, где $\mathbf{n}_1 = \{1;9;3\}$ – вектор нормали плоскости **ABC** (см. п. $\boldsymbol{\mu}$),

 $\mathbf{n}_2 = \{2; 12; 3\}$ – вектор нормали плоскости **ABP.** Следовательно,

$$\cos \gamma = \frac{|\mathbf{n}_1 \mathbf{n}_2|}{|\mathbf{n}_1||\mathbf{n}_2|} = \frac{|1 \cdot 2 + 9 \cdot 12 + 3 \cdot 3|}{\sqrt{1^2 + 9^2 + 3^2} \cdot \sqrt{(-2)^2 + (-12)^2 + (-3)^2}} = \frac{119}{\sqrt{91} \cdot \sqrt{157}}.$$

- *c)* Найти координаты точки пересечения медиан в треугольнике **ABC**. Решается аналогично задаче 1(M). *Ответ:* O(0;3;1/3).
- *m*) Найти расстояние между прямыми **AB** и **CP**.

Решение. Прямые **AB** и **CP** – скрещивающиеся. Две скрещивающиеся прямые можно заключить в две параллельные плоскости π_1 и π_2 (рис. 40). Нормальный вектор **n** этих плоскостей равен векторному произведению векторов **AB** и **CP**: **n** = **AB**×**CP**. Координаты векторов **AB**= $\{-3;1;2\}$, **CP**= $\{3;-2;4\}$.

$$\mathbf{n} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & -2 \\ 3 & -2 & 4 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ -2 & 4 \end{vmatrix} \mathbf{i} - \begin{vmatrix} -3 & -2 \\ 3 & 4 \end{vmatrix} \mathbf{j} + \begin{vmatrix} -3 & 1 \\ 3 & -2 \end{vmatrix} \mathbf{k} = 0\mathbf{i} + 6\mathbf{j} + 3\mathbf{k}.$$

Запишем уравнение плоскости π_1 , про-

ходящей через точку А:

$$0(x-1)+6(y-2)+3(z-3)=0; \Rightarrow 6y+3z-21=0.$$

Расстояние d от точки ${\bf C}$ до плоскости ${\bf \pi}_1$ равно расстоянию между прямыми ${\bf AB}$ и ${\bf CP}$ (рис. 40), и вычисляется по формуле (см. п.9,

c. 27)
$$d = \frac{\left|6\cdot 4 + 3\cdot (-3) - 21\right|}{\sqrt{0^2 + 6^2 + 3^2}} = \frac{2}{\sqrt{5}}$$
.

у) Найти уравнение высоты АН в треугольнике АВС (рис. 40).

Решение: Проведем плоскость π_1 через точку $\mathbf{A}(1;2;3)$ перпендикулярно к вектору $\mathbf{BC} = \{3;1;-4\}$: 3(x-1)+(y-2)-4(z-3)=0; 3x+y-4z+7=0.

 π_2 - плоскость треугольника **ABC** (см. п. **н**): x+9y+3z-28=0.

Прямая **АН** принадлежит плоскостям π_1 и π_2 , т. е. является линией их пересечения и, следовательно, общие уравнения прямой **АН** имеют вид

(см. п. 10, с. 27)
$$\begin{cases} 3x + y - 4z + 7 = 0, \\ x + 9y + 3z - 28 = 0. \end{cases}$$

Найдем канонические уравнения нашей прямой. В п.10 на с. 28 был приведен алгоритм перехода от общих уравнений прямой к каноническим. Предлагаем читателю осуществить этот алгоритм самостоятельно, а мы решим задачу альтернативным способом. Направляющий вектор \mathbf{s} искомой прямой $\mathbf{A}\mathbf{H}$ равен векторному произведению \mathbf{n}_1 и \mathbf{n}_2 – нормальных векторов плоскостей $\mathbf{\pi}_1$ и $\mathbf{\pi}_2$:

$$\mathbf{s} = \mathbf{n}_1 \times \mathbf{n}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 1 & -4 \\ 1 & 9 & 3 \end{vmatrix} = 39\mathbf{i} - 13\mathbf{j} + 26\mathbf{k}.$$

Запишем уравнение прямой, проходящей через точку A(1;2;3), с известным направляющим вектором $s={39;-13;26}$:

$$\frac{x-1}{39} = \frac{y-2}{-13} = \frac{z-3}{26}$$
; $\Longrightarrow \frac{x-1}{3} = \frac{y-2}{-1} = \frac{z-3}{2}$ – уравнение прямой **АН**.

Замечание. Эта задача имеет частное решение. В данном случае значения координат точек A, B, C заданы так, что угол ABC прямой (см. п. ϵ), следовательно, высота AH является катетом AB:

$$\frac{x - x_a}{x_b - x_a} = \frac{y - y_a}{y_b - y_a} = \frac{z - z_a}{z_b - z_a}; \Rightarrow \frac{x - 1}{-2 - 1} = \frac{y - 2}{3 - 2} = \frac{z - 3}{1 - 3}; \Rightarrow$$

$$\frac{x-1}{-3} = \frac{y-2}{1} = \frac{z-3}{-2}$$
 –канонические уравнения прямой **АН**. Сравните с ранее по-

лученным результатом.

ВОПРОСЫ К ЭКЗАМЕНУ ПО ТЕМЕ

«АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ»

- 1. Определение вектора. Линейные операции над векторами и их свойства.
- 2. Базис. Координаты вектора. Модуль вектора.
- 3. Линейные операции над векторами в координатной форме записи. Коллинеарность векторов. Направляющие косинусы.
- 4. Координаты точки. Деление отрезка в заданном отношении.
- 5. Скалярное произведение векторов.
- 6. Применение скалярного произведения векторов.
- 7. Векторное произведение векторов.
- 8. Применение векторного произведения векторов.
- 9. Смешанное произведение векторов.
- 10. Применение смешанного произведения векторов.
- 11. Различные виды уравнений прямой на плоскости.
- 12. Угол между двумя прямыми на плоскости. Признаки параллельности, перпендикулярности прямых.
- 13. Различные виды уравнения плоскости в пространстве.
- 14. Различные виды уравнений прямой в пространстве.
- 15. Взаимное расположение плоскостей и прямых, углы между ними.

СПИСОК ЛИТЕРАТУРЫ

- 1. Привалов И.И. Аналитическая геометрия. М: Наука, 1966.
- 2. Ильин В.А., Позняк Э.Г. Аналитическая геометрия. М: Наука, 1971.
- 3. Хохлов А.Т. Аналитическая геометрия в векторном изложении. МТИПП. M., 1978.
- 4. Клетеник Д.В. Сборник задач по аналитической геометрии. М: Наука, 1972.
- 5. Васин С.И., Иванов В.И., Орешкин О.Ф. Методические указания к изучению темы «Векторная алгебра». М: Издательский комплекс МГУПП, 2003.
- 6. Филиппов А.Н., Орешкин О.Ф. Методические указания к изучению темы «Кривые и поверхности второго порядка». М: Издательский комплекс МГУПП, 2004.