

Motivação

- Cenário de exemplo: como aumentar as vendas de um supermercado?
 - Induzir os clientes a comprarem produtos relacionados, colocando-os em prateleiras próximas.
 - Exemplos são: (i) pão e manteiga; (ii) carvão, carne e cerveja, (iii) fralda e cerveja entre outros;
 - Como saber quais produtos estão relacionados?

- Algoritmo pertencente à classe de algoritmos de associação;
- Seu objetivo é encontrar elementos que implicam na presença de outros elementos em uma mesma transação. Ou seja, encontrar relacionamentos ou padrões frequentes entre conjuntos de dados;
- A compra de um produto quando outro é comprado, por exemplo, representa uma regra de associação;
- Regras de associação são frequentemente utilizadas em áreas como marketing, mas também em outras áreas, como descrever falhas em linhas de comunicação, ações na interface do usuário, entre outros.

• Tomemos como exemplo o seguinte dataset:

As linhas remetem à transações e o número 1 que o respectivo item foi

comprado.

ID	Beer	Diaper	Gum	Soda	Snack
1	1	1	1	1	0
2	1	1	0	0	0
3	1	1	1	0	1
4	1	1	0	1	1
5	0	1	0	1	0
6	0	1	0	0	0
7	0	1	0	0	0
8	0	0	0	1	1
9	0	0	0	1	1

Regras de Associação

- Regras de associação nada mais são do que um método para explorar itens em um conjunto de dados;
- Define-se os seguintes termos para as regras de associação:
 - I (Itens): conjunto dos seus n atributos $\{i_1, i_2, ..., i_n\}$;
 - \mathbf{D} (Database): conjunto das m transações $\{t_1, t_2, ..., t_m\}$;
 - Toda transação t, é única em D e consiste em um subconjunto dos Itens I;
 - Define-se a regra de associação (X -> Y), onde X e Y são subconjuntos de I. Eles não podem ter nenhum elemento em comum.
 - X é chamado de antecedente e Y da consequência da Regra.

Regras de Associação

- Exemplo de transação é a regra de ID = 2: {Beer} -> {Diaper}.
 - Exprime a ideia de quem comprou cerveja, também comprou fralda.
- Mesmo um conjunto pequeno pode gerar uma quantidade muito grande de regras.
- Como identificar as regras mais relevantes?
 - Support (Suporte);
 - Confidence (Confiança);
 - Lift (Alavancagem);
 - Conviction (Convicção).

• Support (Suporte):

- Este número é a popularidade do item no conjunto de dados estudado. Sendo assim esse número é definido pela quantidade de vezes que o item apareceu em uma transação, dividido pela quantidade de transações existentes no dataset;
- supp(x) = (número de transações que X aparece) / (número total de transações);
- Ou seja, Supp({Beer}) = 4/9 = 0,4444.
- Algo importante a ser citado neste momento é o support threshold. Este número irá expressar a quantidade mínima que o suporte de um item (ou conjunto de itens) deve aparecer para ele se tornar significante.

• Confidence (Confiança):

- A confiança é um número que expressa a possibilidade de um item ser comprado quando outro item correlato é comprado;
- Por exemplo, qual a confiança que um cliente irá comprar um hambúrguer considerando que ele já comprou cebolas e batatas;
- A confiança é calculada por meio da seguinte equação:

$$conf(X \to Y) = supp(X \cup Y)/supp(X)$$

 \circ Ou seja, **Conf({Beer}=>{Gum})** = **(2/9)/(4/9)** = **1/2.**

• Lift (Alavancagem):

- Esta medida também calcula a possibilidade de um item ser comprado em relação a outro item.
- Porém, esta medida considera a popularidade de ambos os itens.
- O A alavancagem é calculada por meio da seguinte equação:

$$lift(X \to Y) = supp(X \cup Y)/supp(X) * supp(Y)$$

o No caso da regra, $(\{Beer\}=>\{Gum\})$, $Lift(\{Beer\}=>\{Gum\})$ = (2/9)/((4/9)*(2/9)) = 2/3.

• Conviction (Convicção):

 Essa medida está interessada em calcular a frequência que X ocorre e Y não ocorre, ou seja, ela está interessada em quando a Regra falha.

$$conv(X \to Y) = 1 - supp(X)/1 - conf(X \to Y)$$

- Essa medida varia entre [0, inf). Se Conf(X->Y) for igual a 1, então o denominador da fórmula é zerado e o resultado da Convicção é definido como infinito.
- Já se o Supp(Y) for igual a 1, ou seja, Y é presente em todas as transações, então Convicção é igual a 0 — não há erro.
- X = {Soda, Snack} e Y = {Beer}
 - \circ Conv(X=>Y) = ((9/9) (4/9)) / ((9/9) (3/9)) = 5/6

- O Apriori trabalha com o conceito de itens frequentes que são os itens do seu conjunto I que têm a pontuação do Support superior a de um limiar (fornecido como hiperparâmetro);
- É preciso calcular o *Support* de todas as combinações de itens e extrair um subconjunto de itens frequentes.
- Os passos do algoritmo Apriori são:
 - Dentro dos Itens I, extraia um subconjunto (I_freq) dos itens que têm o seu Support maior que o limiar;
 - Dentro de I_freq, itere para formar as combinações dos I_freq com I, aplique o limiar e acumule em I_freq;
 - Pare quando não sobrar nenhum item após aplicar o limiar.

Por exemplo, vamos calcular o Support para grupos de um item, com limiar de 0,4:

support	itemsets	length
0.44444	(Beer)	1
0.777778	(Diaper)	1
0.222222	(Gum)	1
0.555556	(Soda)	1
0.44444	(Snack)	1

• Agora, são removidos os Itens com *Support* menor que o limiar, ou seja, o chiclete é removido:

support	itemsets	length
0.44444	(Beer)	1
0.777778	(Diaper)	1
0.555556	(Soda)	1
0.44444	(Snack)	1

Depois disso, é realizado o mesmo cálculo para os pares de Itens, como por exemplo (Diaper,

Beer):

support	itemsets	length
0.444444	(Diaper, Beer)	2
0.22222	(Gum, Beer)	2
0.22222	(Soda, Beer)	2
0.22222	(Snack, Beer)	2
0.22222	(Gum, Diaper)	2
0.333333	(Soda, Diaper)	2
0.222222	(Snack, Diaper)	2
0.111111	(Gum, Soda)	2
0.111111	(Gum, Snack)	2
0.333333	(Soda, Snack)	2

Agora, aplicando o limiar, sobra apenas (*Diaper, Beer*), que deve ser acumulado em **I_freq**,

como mostrado a seguir:

support	itemsets	length
0.444444	(Beer)	1
0.777778	(Diaper)	1
0.55556	(Soda)	1
0.444444	(Snack)	1
0.444444	(Diaper, Beer)	2

Depois disso, é realizado o mesmo cálculo para grupos de três Itens, como por exemplo

(Diaper, Beer):

support	itemsets	length
0.222222	(Gum, Diaper, Beer)	3
0.222222	(Soda, Diaper, Beer)	3
0.22222	(Snack, Diaper, Beer)	3
0.111111	(Gum, Soda, Beer)	3
0.111111	(Gum, Snack, Beer)	3
0.111111	(Soda, Snack, Beer)	3
0.111111	(Gum, Diaper, Soda)	3
0.111111	(Gum, Diaper, Snack)	3
0.111111	(Soda, Diaper, Snack)	3
0.000000	(Gum, Snack, Soda)	3

• Após aplicar o limiar de 0,4, percebe-se que não sobra nenhum item. Logo, o algoritmo para,

com **I_freq** formado a seguir:

support	itemsets	length
0.44444	(Beer)	1
0.777778	(Diaper)	1
0.55556	(Soda)	1
0.44444	(Snack)	1
0.44444	(Diaper, Beer)	2

Vale a pena deixar as fraldas e cervejas em prateleiras próximas?

Algoritmo Apriori - Outro exemplo

- Considere os seguintes itens comprados por um cliente em um supermercado:
 - 0 representa *não comprou* e 1 representa *comprou*;
 - o define-se um limiar menor ou igual 50% para o *support*.

ID	CEBOLA	BATATA	HAMBÚRGUER	LEITE	CERVEJA
t1	1	1	1	0	0
t2	0	1	1	1	0
t3	0	0	0	1	1
t4	1	1	0	1	0
t5	1	1	1	0	1
t6	1	1	1	1	1

Algoritmo Apriori - Outro exemplo

• Cria-se uma tabela que representa a frequência de cada item e aplica-se o limiar pré-definido:

Item	Suporte
Cebola	4/6
Batata	5/6
Hambúrguer	4/6
Leite	4/6
Cerveja	3/6

Item	Suporte
Cebola	4/6
Batata	5/6
Hambúrguer	4/6
Leite	4/6

Algoritmo Apriori - Outro exemplo

- Agora é preciso realizar todas as combinações possíveis dentre os três itens e cria-se uma tabela contendo a combinação e quantas vezes essa combinação aparece nas transações:
 - Elimina-se os itens que estão abaixo do limiar pré-definido.

Item	Suporte
Cebola + Batata	4/6
Cebola + Hambúrguer	3/6
Cebola + Leite	2/6
Batata + Hambúrguer	4/6
Batata + Leite	3/6
Hambúrguer + Leite	2/6

Item	Suporte
Cebola + Batata + Hambúrguer	3/6
Batata + Leite + Hambúrguer	2/6

Algoritmo Apriori - Exemplo

Encontre as principais regras de associação entre os principais produtos de um supermercado.
Utilize o algoritmo Apriori. Notebook em https://shorturl.at/bxAJS.

Algoritmo Apriori - Exercício

Encontre as principais regras de associação entre os principais produtos de um supermercado.
Utilize o algoritmo Apriori. Notebook em https://shorturl.at/dwBSX.

