

RV University

School of Computer Science and Engineering

B.Tech. (Hons). Degree Examination-May 2025

Semester

: IV

Course Code: CS2213

Course Title: Introduction to Machine Learning

Duration

: 2 hours

Max. Marks: 30

Instructions to students: i) Answer all Questions

ii) Scientific calculators are allowed.

Sl. No.	PART A – Questions						Marks	L1-L6	CO
1.	What is the purpose of encoding categorical variables? Describe two methods used for encoding with an example in each case.					5	L2	CO1	
	Build a simple classifier to predict whether a fruit is an Apple or an Orange based on its weight (in grams) and colour intensity (scale 1-10). The following labelled data is available:								
		Fruit	Weight (g)	Colour Intensity	Label			(2)	
2.		F1	150	6	Apple	1			CO2
		F2	170	7	Apple		5	L3	
		F3	140	5	Apple				
		F4	130	3	Orange		11		
		F5	120	2	Orange				
		F6	110	1	Orange	-			
	Now, you have a new fruit with: Weight = 135g, Colour Intensity = 4.								
	Using KNN with $k=3$ and Euclidean distance, classify the new fruit.								

SI. No.	PART B – Max Marks(20)								L1- L6	CO
3.	a) Given the following standardized dataset with two variables X_1 and X_2 , compute the first principal component (PC1). Show all steps including calculating the covariance matrix, eigenvalues, eigenvectors, and finally projecting the data onto the direction of PC1.									
		X1	4	8	13	7				
							1 1	- 1		

b) Given a neural network with two inputs $x_1=0.50$ and $x_2=0.80$, a hidden layer-1 with one neuron (3), a hidden layer-2 with one neuron (4), and an output layer with one neuron (5), where the activation function is the sigmoid $Y_i=\sigma(Z_i)$ and the cost function $J=(Y_5-t)^2$ where target output $t=1$ and the weights are initialized as $w_{30}=0.3$, $w_{31}=0.2$, $w_{32}=0.7$ for neuron 3. $w_{40}=0.2$, $w_{43}=0.4$ for neuron 4. $w_{50}=0.8$, $w_{54}=0.9$ for neuron 5. Consider Z_i indicates the weighted summation at a neuron i, before applying activation function. Compute the outputs Y_3 , Y_4 , and Y_5 and updated value of w_{31} . Sigmoid function $\sigma(z)=\frac{1}{1+e^{-z}}$ [5 M] Consider learning rate = 1.	L3	CO3, CO4	
Input layer — Hidden Layer-1 — Hidden Layer-2 — Output Layer			A STATE OF THE STA
 a. Consider a Convolutional Neural Network which has i) a Conv2D layer with 32 filters, followed by MaxPooling2D. ii. another Conv2D layer with 64 filters, followed by MaxPooling2D. iii a Flatten layer, and two Dense layers (128 and 10 units). i. Consider the input image dimension is 50x50x3 and the output feature map obtained by first Conv2D is 46x46x32. Find the spatial dimension of the convolution filter. You can assume stride=1, no padding applied. [2 M] ii. Consider the output feature map obtained from the first Conv2D is 46x46x32 which is given as input to the first MaxPooling2D layer. Assume this pooling layer uses a 2x2 filter with stride=4. Find the output feature map dimension and the number of parameters in this layer. [2 M] iii. Find the number of parameters in the first Conv2D layer. [1 M] 			
 b. i. For a single sample, the true label is class 3 (one-hot encoded as [0,0,1,0,0]), and the predicted probabilities from the softmax layer are [0.1,0.1,0.6,0.1,0.1]. Calculate the categorical cross-entropy loss for this sample. ii. Derive the gradient of the ReLU function f(x) with respect to x. Provide the expression for the gradient, considering all possible cases of x. [2 M] f(x) = max(x,0) 	5+5	L3	CO5

2,