Módulo 1 - Diapositiva 1 Sistemas Numéricos

Universidad de Antioquia

Facultad de Ciencias Exactas y Naturales

- Conjunto de los números reales (\mathbb{R}) y subconjuntos numéricos de \mathbb{R} .
- Conjunto de los números complejos (\mathbb{C}).

Conjunto de los Números Naturales (N)

Los números naturales surgen de la necesidad de contar o enumerar objetos y sirven para designar el número de elementos de algunos conjuntos.

$$\mathbb{N} = \{1, 2, 3, \ldots\}$$

$$\mathbb{N}_0 = \{0, 1, 2, 3, ...\} = \mathbb{N} \cup \{0\}$$

Conjunto de los Números Enteros (\mathbb{Z})

El conjunto de los números enteros está formado por los números naturales, 1, 2, 3, ..., por sus inversos aditivos, -1, -2, -3, ... y el cero.

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

$$\mathbb{N} \subset \mathbb{Z}$$

Números Enteros (\mathbb{Z})

Enteros Positivos:
$$\mathbb{Z}^+ = \{1, 2, 3, ...\} = \mathbb{N}$$

Enteros Negativos:
$$\mathbb{Z}^- = \{..., -3, -2, -1\}$$

Enteros no Negativos:
$$\mathbb{N}_0 = \{0, 1, 2, 3, ...\}$$

$$\mathbb{Z} = \mathbb{Z}^+ \cup \mathbb{Z}^- \cup \{0\}$$

Conjunto de los Números Racionales (\mathbb{Q})

El conjunto formado por los números que admiten una representación decimal finita o infinita periódica (pura o mixta), es llamado conjunto de los números racionales y es denotado por \mathbb{Q} .

Ejemplos

$$\frac{1}{2} = 0.5$$
 $\frac{11}{3} = 3.66...$ $\frac{2}{27} = 0.074074...$

Números Racionales (\mathbb{Q})

Note que el conjunto de los números racionales está formado por aquellos números que se pueden representar como el cociente de dos enteros $\frac{p}{q}$ con $q \neq 0$, es decir:

$$\mathbb{Q} = \left\{ \frac{p}{q} : p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \right\}.$$

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{Q}$$

Conjunto de los Números Irracionales (\mathbb{Q}^*)

El conjunto formado por los números cuya representación decimal es infinita y no periódica, es llamado conjunto de los números irracionales y es denotado por \mathbb{Q}^* .

Note que los números irracionales no se pueden escribir de la forma $\frac{p}{q}$, con p y q enteros y $q \neq 0$.

Ejemplos de números irracionales

- e = 2,7182818284... (base del logaritmo natural).
- $\pi = 3,1415926535...$ (la razón entre la longitud de la circunferencia y su diámetro).
- $\sqrt{2} = 1,414213...$ (la diagonal de un cuadrado de lado 1).

El Conjunto de los Números Reales (\mathbb{R})

El conjunto de los números reales está constituido por todos los números racionales e irracionales. Así,

$$\mathbb{R} = \mathbb{Q} \cup \mathbb{Q}^*$$
 con $\mathbb{Q} \cap \mathbb{Q}^* = \phi$

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$$
 y $\mathbb{Q}^* \subset \mathbb{R}$

Recta real

Los números reales los podemos considerar como puntos sobre una recta infinita

Conjunto de los Números Complejos (\mathbb{C})

El conjunto de los números complejos puede definirse a partir del conjunto de los números reales y la unidad imaginaria i que cumple que $i^2 = -1$ y se representan así:

$$\mathbb{C} = \left\{ x + yi : x \in \mathbb{R}, y \in \mathbb{R}, i^2 = -1 \right\}.$$

Note que:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$
 y $\mathbb{Q}^* \subset \mathbb{R} \subset \mathbb{C}$

Eiemplo:

Completar la siguiente tabla indicando si el número pertenece o no al conjunto dado:

	N	\mathbb{Z}^+	\mathbb{Z}^-	\mathbb{Z}	Q	\mathbb{Q}^*	\mathbb{R}	\mathbb{C}
$\frac{10}{5}$	√	√	X	√	√	X	√	✓
$-\frac{1}{5}$								
0				√				
-7								
2,7								
0,033								
$\frac{1}{0,5}$	√							
$\frac{\frac{1}{0,5}}{10^{-2}}$								
$\sqrt{4}$					√	X		
$\sqrt{2}$						✓		

	\mathbb{N}	\mathbb{Z}^+	\mathbb{Z}^-	\mathbb{Z}	Q	\mathbb{Q}^*	\mathbb{R}	\mathbb{C}
π						√		
e								
$\sqrt{-4}$					X			
$\sqrt[3]{-8}$								
i								
i^4	√							✓
i^5							X	
2-3i								
$ \begin{array}{c c} 2 - 3i \\ \hline -4i \end{array} $								
$\sqrt{-9}i$				√		X		

Referencias

Sullivan, M. Álgebra y Trigonometría, 7^a Edición. Editorial Pearson Prentice Hall, 2006.

Swokowski, E.W. Cole, J.A. Álgebra y Trigonometría con Geometría Analítica 13^a Edición. Editorial Cengage Learning, 2011

Zill, D. G. Dewar, J. M. Álgebra, Trigonometría y Geometría Analítica, 3^a Edición. Editorial McGraw-Hill, 2012.