Nom: Prénom:

INFO I31, partiel 2013

Pour chaque question, répondez directement sur la feuille. Quand vous avez le choix, il n'y a qu'une seule bonne réponse par question. Lisez et comprenez les questions avant d'y répondre! Tous les documents sont autorisés, mais pas la copie de votre voisin.

Question 1 – Déroulez l'algorithme d'Euclide pour calculer le PGCD de 187 et 55 :

Question 2 – Déroulez l'algorithme d'Euclide étendu (ou Bezout) pour a=187 et b=55. u et v sont tels que au+bv=g=PGCD(a,b); $r=a \mod b$, et $q=\lfloor \frac{a}{b} \rfloor$ est le quotient de a par b:

a	b	r	q	g	u	v
187	55					

Question 3 - Citez les noms de 3 algorithmes de tri:

Question 4 – Citez les noms de 3 algorithmes calculant les plus courts chemins dans un graphe :

Question 5 – Donnez les formules nécessaires pour le calcul récursif de a^n (a est une matrice carrée, à valeurs entières). N'oubliez pas le ou les cas terminaux :

Question 6 – Dans l'arbre ci-dessus, l'affichage : a, b, c, d, e est obtenu par :

- ☐ un parcours en largeur
- $\hfill\Box$ un parcours en profondeur

Question 7 — Dans l'arbre ci-dessus, l'affichage : a, b, d, e, c est obtenu par :

- ☐ un parcours en largeur
- \square un parcours en profondeur

Question 8 – Un algorithme optimal de tri, n'utilisant que des comparaisons entre 2 éléments, nécessite :

- $\square \ \ O(n\log n) \ \text{comparaisons pour trier} \ n \ \text{\'el\'ements}$
- \square $O(n^2)$ comparaisons
- \square O(n) comparaisons
- $\hfill\Box$ un nombre exponentiel de comparaisons

Question 9 – L'arbre binaire de hauteur 0 contient 0 éléments. Celui de hauteur 1 contient 1 élément. Combien d'éléments contient l'arbre complet de hauteur h:

Question 10 — L'arbre binaire de hauteur 0 contient 0 éléments, et donc 0 feuilles. Celui de hauteur 1 contient 1 élément, qui est une feuille. Combien de feuilles (éléments les plus profonds dans l'arbre) contient l'arbre complet de hauteur h:

Question ${f 11}$ – L'arbre de Fibonacci T_4 est dessiné cidessus. T_0 est une feuille portant l'étiquette 0, T_1 est une feuille portant l'étiquette 1; pour n>1, T_n est un noeud binaire, dont le fils gauche est T_{n-2} et dont le fils droit est T_{n-1} . Donnez une formule récursive pour

le nombre d'éléments (feuilles ou sommets), noté $|T_n|$, de T_n , pour n>1 :

Question 12 – Définissez U_n le nombre de feuilles étiquetées 1 de T_n . Que constatez-vous :

Question 13 – Définissez Z_n le nombre de feuilles étiquetées 0 de T_n :

Question 14 – Remplissez le tableau suivant, où U_n est le nombre de feuilles étiquetées 1 de T_n , Z_n le nombre de feuilles étiquetées 0 de T_n :

n	0	1	2	3	4	5	6	7	8	9
$ T_n $										
U_n										
Z_n										