<u>Lecture 3 – Spatial Filtering (空间滤波)</u>

This lecture will cover:

- Spatial domain (空间域)
- Intensity Transformation (灰度变换)
- Histogram (直方图)
- Spatial Filtering(空间滤波器)
 - ✓ Smoothing (平滑)
 - ✓ Sharpening (锐化)

<u>Lecture 3 – Spatial Filtering (空间滤波)</u>

This lecture will cover:

- Spatial domain (空间域)
- Intensity Transformation (灰度变换)
- Histogram (直方图)
- Spatial Filtering(空间滤波器)
 - ✓ Smoothing (平滑)
 - ✓ Sharpening (锐化)

Spatial Domain

➤ Spatial Domain (空间域)

- Refer to Image plane
- Direct manipulation of pixels
- Computation efficient

➤ Transform Domain(变换域) / Frequency Domain(频率域)

- Transform and inverse transform
- By applying small spatial mask
- By using approximations based on mathematical or statistical criteria

Spatial Domain

$$g(x,y) = T[f(x,y)]$$

➤ Intensity Transformation (灰度变换)

- Operate on single pixels of an image point processing
- Contrast manipulation and image thresholding (对比度和阈值处理)

➤ Spatial Filtering (空间滤波器)

- Operate on a neighborhood of pixels of an image neighborhood processing
- Deal with performing operations, for example sharpening and smoothing (锐 化和平滑)
- ➤ Enhancement and segmentation (增强和分割)

Image Enhancement

Goal - More suitable for specific application

- > Problem oriented
- > Specific
- Subjective
 - For visual interpretation : viewer is the judge
 - For machine perception : easy to quantify

<u>Lecture 3 – Spatial Filtering (空间滤波)</u>

This lecture will cover:

- Spatial domain (空间域)
- Intensity Transform (灰度变换)
- Histogram (直方图)
- Spatial Filtering(空间滤波器)
 - ✓ Smoothing (平滑)
 - ✓ Sharpening (锐化)

Intensity Transformation

> Simplest image processing techniques

$$s = T(r)$$

- > Types of Intensity Transformation
 - Image Negatives (图像反转)
 - Log Transformation (对数变换)
 - Power-law (gamma) Transformation (幂律/伽马变换)
 - Piecewise-Linear Transformation (分段线性变换)

Image Negatives

$$s = L - 1 - r$$

Log Transformation

➤ Log Transformation (对数变换)

$$s = c \log(1+r)$$

➤ Inverse Log Transformation (反对数变换)

$$s = c \cdot 2^r - 1$$

Fourier Spectrum

Gray Level Range

Original Picture

log on domain [0, 255]

log on domain [0, 1]

log on domain [0, 65535]

Log Transformation

Original Image

Log Transform

Inverse Log transform

Gamma Transformation

➤ Gamma Transformation (伽马变换)

$$s = c \cdot r^{\gamma}$$

or

$$s = c \cdot (r + \varepsilon)^{\gamma}$$

Gamma Transformation

Gamma Transformation

Aerial image

y = 3.0

y = 4.0

y = 5.0

Gamma Correction (伽马校正)

Piecewise-Linear Transformation

- > Arbitrarily complex
- User defined
- > Commonly used methods
 - Contrast Stretching (对比度拉伸)
 - Intensity-level slicing (灰度级分层)
 - Bit-plane slicing (比特平面分层)

Contrast Stretching

$$r_1 = r_2$$
, $s_1 = 0$, $s_2 = L-1$

Intensity-level slicing

Intensity-level slicing

Bit-plane slicing

Bit-plane slicing

Bit-plane slicing

