Deel

Growth Analytics Challenge

Task 1

Analysing Sales Data Funnel

a) Time series analysis

- Perform a time series analysis on the number of:
 - demo occurrences
 - sales qualified opportunities
 - closed won opportunities.
- Are there any seasonality patterns in the data?
 - If so: how can we use this information for marketing strategy planning?

Evaluation

- The funnel data shows **significant patterns of seasonality**
- The data suggests there are *no Demos / Sales / Closed opportunities on weekends*
- This is highly plausible, given the 5-day work week (Mon-Fri)

Next Steps

- We run a time series decomposition, with a 7-day period, due to our assumption of the weekly cyclical nature of the daily data
- This decomposition shows:
 - seasonality in the data
 - trend of the data
 - Residuals (variation which can't be attributed to the seasonality / trend

Analysis

- High daily seasonality in all 3 funnel KPIs
- Demos / Sales Qualified opportunities:
 - Generally stable over the timeframe
 - Consistently lower values at the start of the month
 - o Increasing from the middle towards the end of the month, before declining again
- Closed Opportunities:
 - Trending downwards, with a major decrease towards the end of July

Recommendations

- Marketing budgets should be *disproportionately allocated to the working week* (Mon-Fri)
- Lower proportion of budget allocated to the start of the month
- Given the stable demos / sales opportunities but lower closed opportunities:
 - We could develop many hypotheses why this is occurring, but we might consider a general reduction in budget

b) Funnel conversion rate

- Calculate the conversion rates for the sales funnel over time, from:
 - Demo Occurred to Sales Qualified Opportunity
 - Sales Qualified Opportunity to Closed Won Opportunity
- Provide visualizations to illustrate these trends.

Analysis

- Daily data shows high variance, possible due to data seasonality
- Time series decomposition outside the scope of this question
- Weekly data shows:
 - Generally stable 'Demo > Sales Qualified Opportunity'
 - Decrease 'Sales Qualified Opportunity > Closed Won Opportunity'

c) CPA | Medium & Source combinations

- Calculate the Cost Per Acquisition (CPA) for:
 - UTM medium and source combinations that cost data is provided.
- How does the CPA vary across different marketing channels?

	Utm Medium	Utm Source	\$ Cost	# Closed Won Opportunity	сра
1	paid-search	google	19820244.0	1110.8	17843.0
0	paid-search	bing	906303.0	36.6	24762.0
2	paid-social	facebook	5243682.0	38.8	135146.0
3	paid-social	linkedin	6876231.0	30.9	222532.0

Analysis

- CPA's vary significantly:
 - Paid-search (€18,000-€25,000) significantly more efficient than paid-social (€135,000-€222,000)
- Google is by far the best performing paid channel, in terms of:
 - Scale (\$ Cost) & Efficiency (CPA), driving the overwhelming majority of #closed won opportunities
- Bing, whilst less efficient and much less scaled than Google, is much more efficient CPA's than paid-social channels
- Facebook and Linkedin, based on this dataset, show decent scale at very low efficiency

d) Funnel conversion rate insights

- Provide insights and recommendations on how to optimize the marketing strategy based on the sales funnel data
- Which channels or campaigns should be prioritized for future marketing efforts

Proposal

Bid Adjustments based on over / underperforming campaigns

Assumptions

- There is a scale <> efficiency trade off in marketing
- Easiest way to control this is by increasing / decrease campaign bids

Strategy

- Spend more on efficient campaigns & spend less on inefficient campaigns
- Ideally we would use the campaign ROAS
- We will use 'Demo > Closed Won Opportunity rate' as a proxy

Approach

- Limit dataset to: paid-search & paid-social
- Calculate Average: 'Demo > Closed Won Opportunity rate' across the entire dataset (8.3%)
- For each campaign: Compare 'Demo > Closed Won Opportunity rate' with the Average, if:
 - Campaign value > average value: Increase Bid
 - Campaign value < average value: Decrease Bid

Approach

- Limit dataset to: paid-search & paid-social
- Calculate Average: 'Demo > Closed Won Opportunity rate' across the entire dataset (8.3%)
- For each campaign: Compare 'Demo > Closed Won Opportunity rate' with the Average, if:
 - Campaign value > average value: Increase Bid
 - Campaign value < average value: Decrease Bid

Efficient Campaigns Sample

	Utm Source	Utm Campaign	# Demo Occurred	# Sales Qualified Opportunity	# Closed Won Opportunity	Demo > Sales Qualified Opportunity	Sales Qualified Opportunity > Closed Won Opportunity	Demo > Closed Won Opportunity	Bidding Decision
558	google	nam-t1_acq_searchbrand_google_search_broad all	1854.6	1427.7	299.0	0.77	0.21	0.16	Increase Bid
441	google	emea- t1a_acq_searchbrand_google_search_broad	930.8	657.6	151.5	0.71	0.23	0.16	Increase Bid
573	google	nam-t1_acq_searchnonbranded_google_search_coun	399.1	238.7	36.0	0.60	0.15	0.09	Increase Bid

Inefficient Campaigns Sample

	Utm Source	Utm Campaign	# Demo Occurred	# Sales Qualified Opportunity	# Closed Won Opportunity	Demo > Sales Qualified Opportunity	Sales Qualified Opportunity > Closed Won Opportunity	Demo > Closed Won Opportunity	Bidding Decision
459	google	emea-t1a_acq_searchnonbranded_google_search_pa	352.9	168.6	18.2	0.48	0.11	0.05	Decrease Bid
578	google	nam-t1_acq_searchnonbranded_google_search_payr	501.4	136.1	15.8	0.27	0.12	0.03	Decrease Bid
574	google	nam-t1_acq_searchnonbranded_google_search_eor	320.1	157.3	13.5	0.49	0.09	0.04	Decrease Bid

Task 2

Paid Marketing Channel Analysis

a) Paid Channel CTR Analysis

- Calculate the click-through rate (CTR) for each of the four paid marketing channels on a weekly basis
- Visualize the CTR trends over time and identify any significant fluctuations.

Analysis

- Non-Normalized data fails to provide clear answers
- Normalized data shows quite high fluctuations, although fluctuations don't appear unusual
 - Exception for Bing, where CTR's significantly fall mid-July before increasing at the end of September

b) Budget allocation

- Provide recommendations on how to allocate the marketing budget effectively based on the analysis of the paid marketing channels.
- Which channels should receive more budget, and which ones should be scaled back?

Aggregated KPIs per Channel

Assumptions

- Data is based on an attribution model, which fairly attributes conversions also towards early journey channels
- Data is correct, given LinkedIn CPA is incredibly high

Recommendations

- Significantly reduce paid-social budgets (linkedin & facebook)
- Increase budgets for paid-search
 - Majority going towards 'google' given the scale opportunities over bing

c) Budget allocation: Measuring effectiveness

- How would you track and monitor the effectiveness of the revised budget allocation strategy over time?
- What key performance indicators (KPIs) would you use to measure success?

Analysis

- We need to monitor our '\$ Cost', '#Cosed Won Opportunities' and 'CPA'
- Increase in efficiency, *through a lower CPA, is the primary KPI* to monitor here
- Monitor this metric over time, expecting a downward trend beginning once the new strategy is implemented

Additional Considerations

- Most likely the marketing strategy aims to maximise efficiency whilst maintaining a certain amount of #Closed Won Opportunity'
 - As such a secondary KPI to monitor would '# Closed Won Opportunity'

General Point

 Performance marketing typically has to consider all 3 elements (Scale, Conversions/Revenue & Efficiency)

d) Cost <> Sales Funnel Conversion Relationship

- Visualize the relationship between cost and sales funnel conversions over time
- Are there any noticeable patterns or trends?

Spend vs Closed Won Opportunities

Spend vs CPA

Observations

- Given that spend is stable / trending upwards, whilst Closed Won Opportunities are significantly decreasing:
 - CPA's are rising significantly

- Depending on business strategy, if we want to increase our efficiency, we could consider:
 - Decreasing spend
 - Allocate spend towards more efficient channels / campaigns

Task 3

General Questions

c) Key Takeaways

 Summarize the key takeaways and actionable recommendations from your analysis for a non-technical audience.

1. Our sales funnel data has high seasonality

- Demos / Sales Opportunities / Closed Opportunities occur Mon-Fri, not at the weekend
- Disproportionately allocate budgets to the working week

2. The beginning of the month has less activity

- Demos / Sales Opportunities / Closed Opportunities are low at the start of the month
- Allocate a larger share of the budget between the middle to the end of the month

3. Lower funnel (Sales Opportunities > Closed Opportunities) has been decreasing significantly

- Investigate underlying issues
- consider reducing marketing spend, allocating larger budgets to more active periods during the year

4. CPAs: Paid-Search > Paid-Social, Google is King

- CPAs for paid-social are extremely high, and despite the significant spend, drive few closed opportunities
- Allocate budget away from Linkedin & Facebook and paid-social (predominantly Google)
- Google, by far, has the best scale and is the most efficient channel

5. Stable spend, declining closed won opportunities = Rising CPAs

- With spend stable / moderately increasing, our lower funnel drop is leading to far fewer closed opportunities
- CPAs are rising significantly

a) Missing Values

 Are there any data quality issues or missing values in the datasets? How would you handle them if you found any?

Data Quality

Data quality appears to be *generally quite good*, despite some issues and unusual observations:

- 1. There are some *formatting issues*, which need to be dealt with, in order to work with the data:
- Cost data isn't numerical
- Date's aren't always datetime format

2. Null Values:

- Beyond the Utm Campaign, there are no null values in the entire dataset

3. Bing CTR:

- CTR drop is so significant that it would require an investigation in click / impressions to ensure the data is accurate

4. Linkedin CPA

- Intuitively the value seems much too high

Dealing with missing values

Can have significant impact on our analysis and therefore needs to be dealt with. Some solutions:

1. Drop missing / null values

2. Replace missing / null values with an average

- More sophisticated might be replacing with the forecasted trend (Can be overkill in many situations)

b) Outliers

 How would you handle outliers in the data? Are there any outliers in the provided datasets?

Zscore (Normal Distributions)

- Common approach to deal with outliers is using a zscore, which calculates the standard deviation from mean, for each value
- Essentially, we calculate how far each value is from the average
- Assuming the data follows a normal distribution, we would deem zscores greater than 3, as extreme outliers

Excluding outliers

- Based on the zscore the majority of outliers are from google
- Given that google, by far, is the best performing channel, these values are probably not outliers which we should remove
- Removing these values would, incorrectly, distort the entire analysis

Notes

- This is assumes the data is normally distributed, which was not tested in this analysis
- One consideration was to calculate a zscore, within each UTM source, which most likely would have kept all
 of the Google outliers. This wasn't done due to time constraints
- There are additional approaches to dealing with outliers, that weren't considered due to time constraints

c) Attribution models

 How would you describe how marketing attribution models work? Note: this is a general question, not related to Deel or the dataset you have worked on for this task

General

An attribution model is the set of rules which determines how much each conversion
 / revenue should be allocated towards each step within the conversion path

Marketing Context

 Within a marketing context, an attribution model ensures that each marketing channel with which a user has engaged with, get's it's according share of the final conversion / revenue

Attribution Models [1 / 2]

First / Last Touch

- Attributing the conversion/revenue to the first/last marketing channel within the conversion journey
- Comes with significant limitations

Linear

Here we assign each step within the conversion journey an equal share

Bathtub Attribution

- Assign the first and last touch each 40%, attributing the remaining 20% on the steps in between the first and last touch
- When there are 2 steps, each is attributed 50%
- Significant improvement on first/last/linear models in that it incorporates larger weighting to the driving initial / closing touchpoints, whilst ensuring the touchpoints in between are accounted for.

Attribution Models [2 / 2]

Probabilistic Attribution Modelling

- Given the move away from App Tracking and Cookies, it is getting increasingly difficult to identify users across their conversion journeys.
- Probabilistic attribution is a form of attribution modelling based on probabilities, rather than user identifiers. Machine learning and statistical modelling techniques are used to identify probable conversions across various marketing touchpoints.
- There is a significantly more complexity in both setup, maintenance and interpretation for non-technical stakeholders

c) Attribution model proposal

What attribution model do you propose for our business?

Primary: Probabilistic Attribution Modelling

- Given the resources available at Deel, there would be value in having a probabilistic attribution model which relies on Machine Learning and statistical modelling
- Not only does this deal with the issue regarding the move away from cookies, but can also incorporate out-of-home advertising, in-person events and TV in a way that a classic user identifier model cannot.

Secondary: Bathtub Attribution

 If this isn't possible, Deel should incorporate a Bathtub Attribution model, based on server-side tracking, to minimise the impact away from cookies