# (19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出願公別番号 特開2002-76185 (P2002-76185A)

(43)公開日 平成14年3月15日(2002.3.15)

| (51) Int.Ci.7 | 識別記号                        | FΙ                 | テーマコード(参考)             |
|---------------|-----------------------------|--------------------|------------------------|
| H01L 23/12    | 501                         | H01L 23/12         | 501T 5E319             |
| 11012 20,12   |                             |                    | 501B 5E336             |
|               |                             | H05K 1/02          | L 5E338                |
| H05K 1/02     |                             | 1/18               | L                      |
| 1/18          |                             | 3/32               | Z                      |
|               | 審查請求                        | 未請求 請求項の数5 OL      | (全9頁) 最終頁に続く           |
| (21) 出廣番号     | 特驥2000-255842(P2000-255842) | (71) 出願人 000003078 |                        |
|               |                             | 株式会社東芝             |                        |
| (22) 出顧日      | 平成12年8月25日(2000.8.25)       | 東京都港区芝浦一丁目1番1号     |                        |
|               |                             | (72)発明者 樋口 和人      |                        |
|               |                             | 神奈川県横浜             | 市磯子区新磯子町33番地 株         |
|               |                             | 式会社東芝生             | 産技術センター内               |
|               |                             | (74)代理人 100058479  |                        |
|               |                             | 弁理士 鈴江             | 武彦 (外6名)               |
|               |                             | Fターム(参考) 5E319 BB  | 04 BB05 BB11 CD29      |
|               |                             | 5E336 AA           | 04 BB03 BB15 BC28 BC34 |
|               |                             | cc                 | 31 EE15 GGO1 GG16      |
|               |                             | 5E338 AA           | 01 AA16 BB61 BB75 CC01 |
|               |                             | 1                  |                        |

# (54) 【発明の名称】 回路基板装置及びその製造方法

#### (57)【要約】

【課題】高密度に配置された配線上に狭ビッチで形成された導電性バンプを具備した配線基板と電子部品とが高い接続信頼性・耐候性で接続された回路基板装置を提供すること。

【解決手段】配線基板30は、絶縁基材31と、この絶縁基材31のベアチップ20側に設けられた配線32と、絶縁基材31上に設けられ、かつ、その先端部が配線基板30とベアチップ20との間隙まで達するとともに第2の樹脂で形成された突起部34aと、この突起部34aを覆うとともに配線32と連続する金属膜34bとを有する導電性バンプ34とを備えている。





2

## 【特許請求の範囲】

【請求項1】封止樹脂を介して一体化された配線基板及 び電子部品を有する回路基板装置において、

1

上記配線基板は、第1の樹脂で形成された絶縁基材と、 この絶縁基材の上記電子部品側に設けられた配線と、

上記絶縁基材上に設けられ、かつ、その先端部が上記配線基板と上記電子部品との間隙まで達するとともに第2の樹脂で形成された突起部と、この突起部を覆うとともに上記配線と連続する導電部材とを有する導電性バンプとを備えていることを特徴とする回路基板装置。

【請求項2】上記封止樹脂は、上記第2の樹脂よりも熱膨張係数が小さいものであることを特徴とする請求項1 に記載の回路基板装置。

【請求項3】上記絶縁基材と上記封止樹脂との間には、 上記配線を覆う樹脂層が形成されていることを特徴とす る請求項1に記載の回路基板装置。

【請求項4】封止樹脂を介して一体化された配線基板及 び電子部品を有する回路基板装置において、

上記配線基板は、第1の樹脂で形成された絶縁基材と、 この絶縁基材の上記電子部品側に設けられた配線と、 上記絶縁基材上に設けられ上記第1の樹脂とは異なる第 2の樹脂で形成された突起部と、この突起部を覆うとと もに上記配線と連続する導電部材とを有する導電性バン ブとを備えていることを特徴とする回路基板装置。

【請求項5】基材表面に凹部を設けた型板の表面の少なくとも上記凹部上に配置されるように配線層を形成する 配線層形成工程と、

上記配線層上に第1の樹脂からなる絶縁基材を形成する 絶縁基材形成工程と、

上記配線層を上記絶縁基材上に保持しつつ上記型板だけ を上記配線層及び上記絶縁基材から剥離し、上記凹部に 型取られた導電性バンプを有する配線基板を形成する配 線基板形成工程と、

上記導電性バンプ上に電子部品を電気的に接続する電子 部品実装工程と、

上記配線基板と上記電子部品との間隙を封止樹脂にて封止する封止工程を具備したことを特徴とする回路基板装置の製造方法。

#### 【発明の詳細な説明】

## [0001]

【発明の属する技術分野】本発明は、配線基板に導電性 バンプを介して電子部品が搭載された回路基板装置及び その製造方法に関し、特に狭ビッチで形成された導電性 バンプであっても配線基板と電子部品とを高い信頼性及 び耐候性で接続できるものに関する。

## [0002]

【従来の技術】近年、半導体集積回路技術の発達により 電子機器の小型化、薄型化、高性能化が進められてお り、これに伴って半導体チップの搭載方法は従来のリー ドフレームを用いたパッケージ形態から、小型化、薄型 50

化、多ピン化に有利なボールグリッドアレイ(BGA)、チップスケールパッケージ(CSP)等のパッケージ形態に変化しつつある。さらに、このようなパッケージを用いず、ベアチップを直接配線基板上に搭載するダイレクト・チップ・アタッチ(DCA)法も実用化されている。

[0003]特に、数百MHzの周波数で動作し演算処理を行うようなマイクロプロセッサユニット等のLSIチップの場合には、高周波特性に優れ、より多ピン化に対応した接続方法が望まれる。このため、BGA、CSP等のパッケージの場合はチップとパッケージ基板、あるいはDCAの場合はチップと配線基板との接続に、従来のワイヤボンディング法に代わりLSIチップを突起状の導電性パンプを介しパッケージ基板あるいは配線基板にフリップチップ実装する場合が多くなっている。

【0004】図3はフリップチップ実装したCSP100を示す断面図である。図3中110は半導体集積回路が搭載されたベアチップ、120は配線基板を示している。ベアチップ110の表面にはバッド111と保護層112が形成されており、バッド111上に金やはんだ等のバンプ113を形成する。バンプ113の形成にはめっき法やワイヤボンディング法などを用いることができる。

[0005] 配線基板120は樹脂からなる絶縁基材121、配線122、樹脂保護層123、ビア孔124からなり、配線基板120にフリップチップボンダ等を用いて、ベアチップ110を位置合わせして搭載し、電気的な接続を得る。

【0006】また、ベアチップ110と配線基板120の熱膨張係数が異なる場合には、熱サイクルにより基板面方向でチップと基板の寸法差が生じ、バンプ113の接続点に応力が生じる。この応力による接続点の破壊を回避するために、ベアチップ110と配線基板120の間に熱硬化性樹脂130を挿入し、熱サイクルにより生じるベアチップ110と配線基板120の寸法差を緩和している。

【0007】しかし、このような方法では、バンプ113を形成するための別プロセスが必要となる。例えば電気めっき法では、LSIチップのバッド上に通電用のシード層を形成し、その後、めっきプロセスによりバンプを形成するために、プロセスが非常に煩雑なものとなる。また、無電解めっき法では、シード層の形成は必要ないが、成長速度が遅いために生産性は低い。また、ワイヤボンディング法では、100μmビッチ以下の狭ビッチ化が難しく、バンブ高さのばらつきも±5μm程度となってしまうため、400ピンにもおよぶような多ピンICではフリップチップボンディングが困難となる。さらに、スクリーン印刷による形成では、狭ビッチ化が困難である。

【0008】また、バンプとしてはんだを用いる場合に

は、搭載後リフローを行いはんだを溶融させる必要がある。この際、はんだは多くのLSIチップのバッドに用いられるアルミには濡れ性が悪いため、チップのバッド上に銅や金などの金属層を形成する工程が必須である。【0009】しかも、これらいずれの方法も、LSIチップ側のバッドに何らかの方法でバンプを形成することが必須であることから、組み立てユーザには扱いにくい問題を有していた。このため、近年では基板上に導電性バンプを形成する方法も提案されつつある(Proc.2-nd IEMT / IMC Symposium、pp.364-368、1998)。このような用途に用いる基板においては、はんだ以外の材料で配線基板とベアチップとを接続するために必要な微細で狭ビッチな導電性バンプを設ける必要がある。

【0011】次に周知のサブトラクティブ法で図4の(e)~(g)に示す如く銅箔130をエッチングし、配線パターンを形成する。バンブ113及び配線122を形成した後、図4の(h)のように炭酸ガスレーザによる加工法等でメインの配線基板に接続するためのパッドとなるビア孔124を形成し、続いて図4の(i)に示すように樹脂保護層123を形成する。

【0012】樹脂保護層123は、エボキシ樹脂等のワ 30 ニスをカーテンコート法やスクリーン印刷法などにより全面に形成し、硬化後全面を軽くエッチングしてバンプ 113を露出させる。バンプ113は他の部分に比べ突出しているため、バンプ113上に形成される樹脂保護層123の厚さは薄く、軽度のエッチングで除去可能である。この後、図4の(j)に示す如くベアチップ110をバンブ113上に搭載し、電気的に接続を行う。接続に先立ち、配線基板120上のベアチップ110を搭載する個所に封止用樹脂、異方導電シート、異方導電ペースト等を設けておく。最後に、必要に応じ、配線基板 40 裏面のビア孔124にはんだボール等を設ける。

#### [0013]

【発明が解決しようとする課題】上述した回路基板装置 及びその製造方法にあっては、次のような問題があっ た。すなわち、上述しためっきやワイヤボンディングを 用い、銅や金などの高硬度な塑性変形が少ない金属材料 でソリッドな導電性バンブを形成した場合、次のような 問題が発生する。例えば、LSIチップ接続時のボンディング荷重が少ない場合、バンブの高さバラツキが影響 し、バンブを押し潰し高さを均一化できず容易に接続オ 50

ープン不良が発生してしまう。

[0014] 一方、ボンディング荷重を増加すればバンプを押し潰し、高さを均一化できるため、チップ上の全てのバッドとバンプ間の接続は達成されるものの、チップ又は基板の破壊を招く恐れがある。すなわち、銅や金などソリッドな金属材料でバンブを形成した場合、適切なボンディング荷重の範囲は極めて狭く、安定に製造することが困難となっている問題があった。

4

[0015] さらに、たとえ初期的な接続が得られたとしても、温度サイクル試験で封止樹脂がバンプの高さ方向に伸縮した場合、一般に樹脂に比べソリッドな金属で構成されたバンプの熱膨張係数が小さいため、容易に接続オープン不良が発生してしまう問題も有していた。

【0016】これら問題を解決するため、特開平11-168116号公報に導電性バンプ構造及び製造方法が開示されている。上記公報では熱硬化性樹脂に銀などの導電性粒子を分散させた導電性ペーストを用い、これをスクリーン印刷法によりバンプを形成する個所に印刷する。その後、ベークを行いペーストを硬化させ、導電性バンプを形成している。

【0017】また、特開平9-246271号公報では 導電粒子を分散させたポリイミド樹脂をエッチング加工 することにより、導電性バンプを形成している。さら に、特開平6-124952号公報では導電粒子を分散 させた感光性ポリイミド樹脂を露光・現像することによ りバターニングし、導電性バンプを形成している。

【0018】 これらいずれの方法もLSIチップ上にバンプを形成しているが、同様な方法で基板上にバンプ形成することは容易である。これらの方法によれば、金属製バンプに比べ弾性を有する樹脂製バンプをチップと基板の接続に用いているため、初期接続におけるボンディング・マージンを大きくでき、かつ、接続後の信頼性を高くすることが可能となる。

【0019】しかしながら、バンプの形成法において、スクリーン印刷法では100μmピッチ以下の狭ピッチ化が難しく、エッチング法又は露光・現像法においても、バンプ高さが高く、微細なバンプを形成することは困難であった。さらに、いずれの方法においても配線上に導電性樹脂を用いてバンプを形成するため、バンプ自体の抵抗又は配線とバンプの接続抵抗が金属製のバンプに比べ高くなってしまう。

[0020] これらバンプに係る問題に加え、基板上の配線の高密度化に伴い配線ピッチが細かくなった場合、隣り合う配線間の保護層に空隙が生じる頻度が高くなる問題があった。図4の(i)に示すように、樹脂保護層123は通常、エポキシ等の樹脂をカーテンコートやスクリーン印刷等の手法により配線上に塗布し、熱処理を施して形成する。

[0021]図5は例えば図4の(i)の配線基板12 0を配線幅方向に切った場合の断面図であるが、上述の

方法では配線122が形成するアスペクト比が大きい凹部125へ樹脂を塗布することが困難であり、凹部125の底では空隙126が残る。特に凹部125の開口寸法が小さく、かつ、アスペクト比が大きい場合は顕著であるが、例えば、配線幅が30μm、配線ビッチが60μm、配線厚さ30μmの狭ビッチ配線では配線122間の凹部125のアスペクト比は1となり、この配線122間に樹脂を空隙なく均一に塗布することは極めて困難となる。このように配線122間の樹脂に空隙126が形成された場合、樹脂に含まれた水分が空隙126に10残留しやすくなるため、耐湿試験後の配線間の絶縁抵抗が極端に低下してしまい信頼性が悪化する。

5

【0022】配線表面に腐食しにくい貴金属等を形成して樹脂保護層124を省略することもできるが、配線基板120とベアチップ110との間に封止樹脂を挿入する段階で同様な問題が生じてしまう。

【0023】また、特開平9-139560には、配線の一部をバンプとして形成する方法が開示されているが、バンプと封止樹脂との熱膨張係数との差により、バンプとパッドとが離間する問題は回避できない。

【0024】そこで本発明は、高密度に配置された配線上に狭ピッチで形成された導電性パンプを具備した配線基板と電子部品とが高い接続信頼性・耐候性で接続された回路基板装置及びこの回路基板装置を高い生産性で製造できる回路基板装置製造方法を提供することを目的とする。

[0025]

【課題を解決するための手段】上記課題を解決し目的を 達成するために、本発明の回路基板装置及びその製造方 法は次のように構成されている。

【0026】(1) 封止樹脂を介して一体化された配線 基板及び電子部品を有する回路基板装置において、上記 配線基板は、第1の樹脂で形成された絶縁基材と、この 絶縁基材の上記電子部品側に設けられた配線と、上記絶 縁基材上に設けられ、かつ、その先端部が上記配線基板 と上記電子部品との間隙まで達するとともに第2の樹脂 で形成された突起部と、この突起部を覆うとともに上記 配線と連続する導電部材とを有する導電性バンブとを備 えていることを特徴とする。

【0027】(2)上記(1)に記載された回路基板装 40 置であって、上記封止樹脂は、上記第2の樹脂よりも熱 膨張係数が小さいものであることを特徴とする。

【0028】(3)上記(1)に記載された回路基板装置であって、上記絶縁基材と上記封止樹脂との間には、上記配線を覆う樹脂層が形成されていることを特徴とする。

【0029】(4) 封止樹脂を介して一体化された配線 基板及び電子部品を有する回路基板装置において、上記 配線基板は、第1の樹脂で形成された絶縁基材と、この 絶縁基材の上記電子部品側に設けられた配線と、上記絶 50

縁基材上に設けられ上記第1の樹脂とは異なる第2の樹脂で形成された突起部と、この突起部を覆うとともに上記配線と連続する導電部材とを有する導電性バンブとを備えていることを特徴とする。

6

[0030](5)基材表面に凹部を設けた型板の表面の少なくとも上記凹部上に配置されるように配線層を形成する配線層形成工程と、上記配線層上に第1の樹脂からなる絶縁基材を形成する絶縁基材形成工程と、上記配線層を上記絶縁基材上に保持しつつ上記型板だけを上記配線層及び上記絶縁基材から剥離し、上記凹部に型取られた導電性バンプを有する配線基板を形成する配線基板形成工程と、上記導電性バンプ上に電子部品を電気的に接続する電子部品実装工程と、上記配線基板と上記電子部品との間隙を封止樹脂にて封止する封止工程を具備したことを特徴とする。

[0031]

【発明の実施の形態】図1の(a),(b)は本発明の一実施の形態に係る回路基板装置の1つであるCSP10を示す断面図である。CSP10は、ベアチップ(電20子部品)20と、配線基板30と、ベアチップ20と配線基板30との間隙を封止する封止樹脂40とを備えている。

【0032】ベアチップ20は、半導体集積回路が収容されたチップ本体21を備え、このチップ本体21の図1の(a)中下面側にはバッド22及び保護層23が形成されている。

【0033】配線基板30は、樹脂材製の絶縁基材31 と、この絶縁基材31上に形成された配線32と、絶縁 基材31上面を覆う樹脂材製の保護層33と、導電性バ ンブ34とを備えている。導電性バンブ34は、絶縁基 材31と一体に形成されるとともにベアチップ20側に 突出形成された突起部34aと、この突起部34aを覆 うように形成され、配線32と連続して形成された金属 膜34bとから形成されている。なお、突起部34aの 先端は封止樹脂40まで達している。また、突起部34 aを構成する樹脂の熱膨張係数は封止樹脂40を構成す る樹脂の熱膨張係数よりも大きいものが使用されてい る。

【0034】図2の(a)~(k)は、CSP10の製造方法を示す断面図である。図2の(a)に示すように、型板となるテンプレート50を用意し、突起状電極を形成する部位に凹部51を形成する。テンプレート50にはシリコン単結晶、ガラス、インバー等の平坦性、寸法安定性、加工性に優れた材料を用いる。

【0035】ととで、テンプレート50としてシリコン単結晶ウエハを用いる場合は、凹部51の形成に次に示すような異方性エッチングを利用することができる。すなわち、先ずp型(100)面方位のシリコン単結晶ウエハ上に熱酸化膜を形成する。次いで、レジストを形成し、露光・現像により凹部を形成する部位に例えば50

8

μm角の正方形開口部を形成する。

【0036】との後、弗化アンモニウム、弗酸混合溶液 でシリコン酸化膜のエッチングを行い、シリコンを露出 させる。レジストを剥離した後、水酸化カリウム水溶液 を用いて露出したシリコン部位を選択的にエッチングす ると、(111)面方位のエッチング速度が他の面のエ ッチング速度に比較して極めて遅いために、結果として 深さ35μm程度の逆四角錐状の凹部51が形成でき る。なお、エッチング時間を制御すれば、逆四角錐状の 底部を平坦にすることも可能である。

7

【0037】図2の(b) に示すように、凹部51を形 成したテンプレート50上に後で行う電気めっきの陰極 となるシード層52を銅、ニッケル、金等の金属で蒸着 法、無電解めっき法等を用いて形成する。とのシード層 52は、後にテンプレートを剥離する際の剥離層として も機能するため、剥離工程で剥離しやすく、かつ、剥離 工程までの間の工程で剥離が生じないように、シード層 52とテンプレートとの密着強度はピール強度として 0.05 kg/cmより大きく0.5 kg/cmより小 さくなるようにシード層52の材料又は形成法を選択 し、形成温度等の形成条件を制御する。とこでは、純銅 を蒸着法を用いて形成温度50℃で0.5μmの厚さ形 成した。なお、凹部51底付近での蒸着膜のカバレッジ を改善するために、蒸着中は被蒸着物を自公転させるこ とが望ましい。

【0038】次に図2の(c)~(e)に示すように、 パターンめっき法により、配線32を形成する。パター ンめっき法では先ずシード層52上にレジスト膜53を 形成する。レジスト膜53にはフィルム状のドライフィ ルム・レジストを用いることができる。本実施の形態に 30 おいては厚さ30μmのネガ型のドライフィルム・レジ ストを用い、シード層52上にラミネートした。

【0039】とのレジスト膜53を露光・現像し、配線 32を形成するための配線形成部54を形成する。配線 形成部54はレジストを現像により除去し、下地のシー ド層52が露出するように形成する。本実施の形態にお いては、テンプレート50として平坦性、寸法安定性に 優れたシリコン基板を用いるため、露光時のバターン形 成用マスクにガラス乾板を用いれば極めて高いパターン 解像度を得ることができる。

硫酸銅5水和物

硫酸(比重1.84)

塩酸(34%)

ポリエチレングリコール(分子量約400,000) 80ppm チオキサンテート-s-プロパンスルホン酸

めっき条件は、液温25℃、電流密度1~5A/dm とし、空気吹き出しによりめっき液を攪拌すること により、銅イオンの供給を十分に行う。めっき膜厚が1 0 μ m に達する時間を予め求めておき、その時間になっ \*【0040】レジスト形成後の工程でシード層52を陰 極として電気めっきを行うが、レジスト膜53が開口さ れた配線形成部54にめっきを行いながら、同時にテン プレート50の凹部51内にも均一な厚さ、例えば10  $\mu$ mの膜厚でめっきを行う。一般に、微細孔内部にめっ きを行う場合、被めっきイオンの供給が孔内部で滞って しまうため、過電圧が上昇し孔内部のめっき膜厚は他の 部位に比べ薄くなりやすい。

【0041】このような現象はテンプレート50の凹部 51内でも同様に生じるため、均一な厚さでめっき膜を 10 形成する目的で配線形成部54に比べ凹部51内部での めっき速度を高める必要がある。電気めっきにおいてめ っき速度を制御する因子は主に、電界分布と陰極表面で 生じる過電圧であることは明らかになっている。

【0042】通常、めっき膜表面を平滑にし光沢を与え る目的でめっき液中に微量添加されるポリエチレングリ コール等の高分子成分は、陰極に吸着し析出過電圧を著 しく上昇させる。この高分子成分の吸着は拡散支配の下 において行われるため、めっき液の流動状態に依存す 20 る。例えば、陰極表面のめっき液流速を静止状態から増 加させるに伴い、高分子成分の吸着量が増加し過電圧は 上昇する。

【0043】図2の(c)に示すような陰極としてのシ ード層52上にレジスト膜53が形成された基板を一様 に攪拌されためっき液に浸漬した場合には、凹部51内 では配線形成部54に比べめっき液流動状態は抑制さ れ、配線形成部54の陰極での過電圧が凹部51内の陰 極での過電圧より上昇する。陰極上で過電圧の高低差が 生じた場合、過電圧が高い部位のめっき電流は低下し、 過電圧が低い部位のめっき電流は上昇する。この結果、 配線形成部54に比べ凹部51内部でのめっき電流は上 昇し析出速度も上昇する。以上の理由により配線形成部 54に比べ凹部51内でのめっき析出速度が上昇し、均 一な膜厚でめっき膜を形成できる。

[0044] 電気めっき工程においては、電気めっき装 置の電流源(不図示)の陰極に、テンプレート50上に 形成されたシード層52を接続し、電流源の陽極には含 リン銅板 (不図示) を接続する。なお、めっき液として は、例えば下記の組成の溶液を使用することができる。

[0045] **\*40** 

75g/L

180g/L

0. 15mL/L

40 p p m

分に水洗する。めっき膜厚は10μmであるため、深さ 35μmの逆四角錐状の凹部は完全に埋まることはな く、めっき後におよそ25μmの凹部が残存する。

【0046】続いて、レジスト膜53を水酸化ナトリウ たら通電を止め、絶縁基材をめっき装置から取り出し十 50 ム溶液等により除去することにより、図2の(e)に示 すようなテンプレート50上の配線32が形成できる。 なお、この時点では、各配線53はシード層52により 電気的に接続されたままの状態である。続いて形成する 樹脂材製の絶縁基材31とめっきにより形成した配線3 2との密着性を高める目的で、この時点で配線32の表 面を粗面化する。粗面化処理は銅を酸化させるいわゆる 黒色化処理やとれをさらに還元する還元処理、あるいは 無電解銅めっきにより針状結晶を析出させる処理などを 用いることができるが、本実施の形態では黒色化処理の 後に還元処理を行う工程を用い、配線32の表面の平均 10 粗さを約3μmにした。

【0047】この後、図2の(f)に示すように、絶縁 性樹脂によりテンプレート50全面上に絶縁基材31を 形成する。この樹脂はテンプレート50剥離後に配線を 機械的に保持する目的を有しているため、可撓性が高く 屈曲性に優れたポリイミド、ポリエステル、ベンゾシク ロブテン、エポキシ含浸ボリアミド紙、エポキシ含浸ガ ラスクロス、ビスマレイミド・トリアジン含浸ガラスク ロス等を用いる。

【0048】形成法としては、配線32間の隙間やバン プを形成する凹部51に樹脂が均一に埋め込まれるよう に、真空印刷法、真空ラミネート法、真空プレス法、電 着法等を用いる。例えば、ポリイミド樹脂を用いる場合 には、非感光性のポリイミド樹脂のワニスを電着法等に より絶縁基材上に塗布し、約30μm厚の塗膜を形成す る。との後、キュアを行い重合・硬化させる。樹脂と接 する配線表面は粗面化されているため、樹脂塗布時に樹 脂がその粗面に沿って流動し強固なアンカーを形成する ため、キュア後の樹脂と配線との密着力は高く、1 kg f/cm程度のピール強度を有する。また、およそ25 μmの深さの凹部51にも樹脂が流れ込み、凹部51は 樹脂により平坦化される。

【0049】次に、図2の(g)に示すように、絶縁基 材31に炭酸ガスレーザ等により直径100μm程度の 表裏面接続用のビア孔35を形成する。ビア孔35を形 成した後、レーザ加工によりビア孔35底部に残ったス ミアを除去する目的で、過マンガン酸ナトリウム溶液等 で樹脂表面を軽度にエッチングする。

【0050】なお、本実施の形態では絶縁基材31に非 感光性の熱硬化樹脂を使用したが、感光性樹脂を用いる こともできる。この場合は、ビア孔35を形成する方法 としてレーザ加工を用いることなく、露光・現像工程で 行うことができる。

【0051】続いて図2の(h)に示すように、配線3 2を絶縁基材31に保持しつつテンプレート50だけを 絶縁基材31及び配線32から剥離する。との際、絶縁 基材31及び配線32との間の密着力は1kgf/cm 程度であり、テンプレート50とシード層52との密着 力の2倍以上であるため、シード層52が剥離層として 機能し、テンプレート50はシード層52との界面から 50 ができる。最後に、必要に応じ、配線基板30裏面のビ

剥離する。なお、剥離後のテンプレート50は、図2の (b) に示すシード層形成工程から再度使用することが できる。

[0052]次に剥離した絶縁基材31及び配線32を 過硫酸アンモニウム、硫酸、エタノールからなる混合溶 液で軽度にエッチングし、約0.5μm厚の銅薄膜から なるシード層52を除去することにより図2の(i)に 示す絶縁基材31、配線32、導電性バンプ34が形成 できる。さらに、酸化防止を目的として無電解めっき法 を用いて配線又は突起状電極表面上に金/ニッケル多層 **膜等を形成してもよい。** 

【0053】以上のようにして形成された配線基板30 は、微細な配線上に四角錐型の高さ35μm、幅50μ mの先端が鋭い導電性バンプ34を有し、これら配線3 2が樹脂によりモールドされた構造となる。 ここにおい て内部に樹脂のコアを有するバンプが形成される。

[0054]図2の(j)においては、エポキシ樹脂等 からなる樹脂保護層33を形成する。樹脂保護層33は ワニス状のエポキシ樹脂をカーテンコート法等で基板全 面に渡り塗布し、その後、キュアを行い重合・硬化させ る。バンプ先端は鋭いため、形成される樹脂厚は薄く、 キュア後、過マンガン酸カリウム溶液等で軽度にエッチ ングすることにより導電性バンプ34は露出する。配線 表面に酸化防止膜を形成した場合には、本工程を省略 し、樹脂保護層33を形成しなくてもよい。樹脂保護層 33は上記の他、印刷によっても形成可能である。

【0055】この後、図2の(k)の工程において、べ アチップ20をバンプ上に搭載する。まずフリップチッ プボンダ等を用い、導電性バンプ34とパッド22との 位置合わせする。なお、フリップチップボンダによる接 30 続に先立ち、配線基板30上のベアチップ20を搭載す る個所に封止樹脂となる異方導電シート、異方導電ペー スト、非導電ペースト等の樹脂を設けておく。これらの 樹脂は、樹脂中にシリカ等からなる無機フィラーを分散 させることにより、硬化後の熱膨張係数が導電性バンプ 34の突起部34aを構成する樹脂の熱膨張係数よりも 小さくなるように調整される。

【0056】全ての導電性バンプ34がバンプ高さのバ ラツキによらず確実にバッド22と接し、かつ、適当な 応力を発生させるためにベアチップ20を導電性バンプ 34に押し付ける荷重を調節する。荷重を加えた状態 で、全体を加熱することで、ベアチップ20と配線基板 30間に設けた封止樹脂40は流動し、ベアチップ20 のパッド22面全体に行き渡り、冷却することで導電性 バンプ34が変形し応力を維持した状態で硬化する。

【0057】なお、ベアチップ20のパッド22は保護 層23によって、保護層23の表面より凹んだ場所に位 置するが、導電性バンプ34の先端の径をパッド22の 寸法より小さくすることで確実に電気的接続を得ること

ア孔35にはんだボール等を設ける。

[0058]以上のようにして形成されたCSP10では、導電性バンプ34の核となる突起部34aは、その中心部が樹脂で構成されているため、金属に比べ小さい弾性率を有している。このため、ベアチップ20を配線基板30にフリップチップ接続した場合には、ボンディング時の荷重により導電性バンプ34は弾性変形を生じ、封止樹脂40が硬化し荷重を除いた後もベアチップ20のバッド22と導電性バンプ34の間には弾性力が残存することになる。この結果、初期接続抵抗が低く保10たれることはもちろん、温度サイクル試験により導電性バンプ34の高さ方向(Z方向)の伸縮が生じても常に接触が確保され高い接続信頼性を得ることができる。

【0059】また、導電性バンプ34の高さバラツキが 影響し、ボンディング荷重の増減加減で容易に接続オー ブン不良が発生したりベアチップ20や絶縁基材31が 破壊されてしまう問題を回避できる。

【0060】一方、導電性バンプ34の突起部34aの 先端はベアチップ20と配線基板30との間隙にまで達 している。このため、次のような効果が得られる。すな わち、突起部34aの導電性バンプ34の先端が上記間 隙に達していない場合には、封止樹脂40中の導電性バ ンプ34は金属のみとなり、熱膨張係数の差が着しい。 このため、高温となった場合に、熱膨張係数の差により 導電性バンプ34とバッド22が離れてしまう虞があ る。突起部34aの導電性バンプ34の先端が上記間隙 に達している場合には、このような不具合を回避でき る。

【0061】特に、導電性バンプ34の突起部34aを構成する樹脂の熱膨張係数が封止樹脂の熱膨張係数より大きく設定することにより、常に導電性バンプ34には圧縮応力が生じ導電性バンプ34がパッド22に圧接することになることから、温度サイクル試験で接続オープン不良が発生してしまう問題は回避できる。

【0062】上記したように突起部34aの導電性バンプ34の先端が上記間隙に達するようにするためには、テンプレート50の凹部51を配線32を構成する金属で完全に埋め込むことがないように、めっき膜の厚さを少なくとも凹部51の深さよりも薄くする必要がある。【0063】さらに、導電性バンプ34表面に被覆され 40た金属は配線32と連続しており、また、導電性バンプ34の核となる樹脂は絶縁基材31と連続しているため、導電性バンプ34自体の抵抗は有に及ばず導電性バンプ34と配線32との接続点における接続抵抗も低く保たれ、機械的強度にも優れている。加えて、配線34は絶縁基材31に埋め込まれ、その表面は平坦化されているため、樹脂保護層33と配線31の界面には空隙の発生が無く、耐湿試験により樹脂保護層が吸湿しても配線間の絶縁抵抗が極端に劣化することは無い。

12

【0064】なお、上述した例では、導電性パンプ34の突起部34aを構成する樹脂と絶縁基材31を構成する樹脂とは同じものを使用しているが、図1の(b)に示すように、それぞれの目的に応じた最適な樹脂を選択をするようにしてもよい。例えば、絶縁基材31を構成する樹脂としては、電気的絶縁性が高く、誘電率が低く、機械的強度が高い材料を選択でき、突起部34aを構成する樹脂としては、熱膨張率が大きく、弾性率が小さい材料を選択できる。

【0065】なお、本発明は上記実施の形態に限定されるものではない。すなわち、テンプレート基材、シード層、配線、絶縁性樹脂、レジスト、めっき液、エッチング液、樹脂保護層、封止樹脂はその材質、寸法などに関して種々変更して用いることができ、さらに、電気めっきあるいはエッチングにおける条件も上記例示に限定されない。

[0066]また、上述した例では回路配線基板として 配線層1層、絶縁層1層で電子部品と同程度の大きさの 配線基板を形成した例を示したが、基板の寸法や基板の 20 層数を増やすことも可能である。この他、本発明の要旨 を逸脱しない範囲で種々変形実施可能であるのは勿論で ある。

## [0067]

30

[発明の効果] 本発明によれば、高密度に配置された配線上に狭ビッチで形成された導電性バンプを具備した配線基板と電子部品とを高い接続信頼性で接続することができる。また、このような回路基板装置を生産性が高い工程で製造することが可能となる。

# 【図面の簡単な説明】

【図1】本発明の一実施の形態に係る回路基板装置を示す断面図。

【図2】同回路基板装置の製造方法を示す断面図。

【図3】従来の回路基板装置の一例を示す断面図。

[図4] 同回路基板装置の製造工程を示す断面図。

[図5] 同回路基板装置の製造工程中における断面図。【符号の説明】

10 ... CSP

20…ベアチップ(電子部品)

21…チップ本体

0 22…バッド

23…保護層

30…配線基板

31…絶縁基材

32…配線

33…保護層

3 4 …導電性バンプ

3 4 a … 突起部

3 4 b …金属膜

40…封止樹脂

(a) (a) (b) (b) (c) (d) 50 (d



(k)

[図4]



フロントページの続き

(51)Int.Cl.' H 0 5 K 3/32 識別記号

F I H O 1 L 23/12 テーマコード(参考)