

TD 7: GRAPHES - ARBRES

Exercice 1. On considère l'arborescence ordonnée ci-dessous :

- (i) Donnez l'ordre dans lequel les sommets sont traversés dans le cas d'un parcours préfixe.
- (ii) Donnez l'ordre dans lequel les sommets sont traversés dans le cas d'un parcours infixe
- (iii) Donnez l'ordre dans lequel les sommets sont traversés dans le cas d'un parcours postfixe.

Exercice 2. Jeux avec les expressions arithmétiques :

- 1. Calculer la valeur des expressions suivantes, avec A = 1, B = 2, C = 2, D = 3 et E=4.
 - a. Resfixées : $ABC + *CDE + \uparrow ; ADBCD * + *$
 - b. Préfixées : -* +ABC DB; *A +D B*CD
- 2. Dessiner l'arbre binaire représentant l'expression suivante et donnez-en une forme préfixe, infixe et postfixe : (A*B-C/D+E) + (A-B-C-D*D)/(A+B+C)

Exercice 3. Écrivez les équations suivantes sous la forme préfixe et postfixe en suivant la priorité des opérations.

- (a) 1+2*3
- (b) (1-2)*(3+4)
- (c) $(3 \land 2+4 \land 2) \land (1/2)$

Exercice 4. Donnez le résultat des équations suivantes.

- préfixe:
 - (a) +-42/5+*123
 - (b) +4//++29*-15+2*1233
- postfixe:
 - (c) 142*+3/53-+
 - (d) 273+*2-411+5*-/

Exercice 5. Donnez les arbres de recouvrement en partant du noeud 6 en utilisant la fouille en profondeur et en largeur. Notez que dans le cas où plusieurs noeuds équivalents sont disponibles, on les choisit en ordre croissant.

Exercice 6. À partir du graphe suivant, décrivez chaque étape afin d'obtenir l'arbre de recouvrement ayant le coût minimal en utilisant :

- (a) l'algorithme de Prim.
- (b) l'algorithme de Kruskal.

Exercice 7. Appliquer l'algorithme de Prim aux données du tableau ci-après pour trouver le coût minimal.

	S_1	S_2	S_3	S_4	S_5
S_1					
S_2	7				
S_3	4	8			
$ \begin{array}{c c} S_1 \\ S_2 \\ \hline S_3 \\ S_4 \\ S_5 \end{array} $	2	6	5		
S_5	5	7	2	1	

Exercice 8. Une compagnie désire installer au moindre coût un réseau de transmission de données entre son siège et 7 de ses succursales numérotées $S_1, S_2, ..., S_7$. Le coût d'une ligne entre deux agences est donné par le tableau suivant :

Table 1. Coût d'installation d'un réseau de transmission

	Siège	S_1	S_2	S_3	S_4	S_5	S_6
S_1	5						
S_2	18	17					
S_3	9	11	27				
S_4	13	7	23	20			
S_5	7	12	15	15	15		
S_6	38	38	20	40	40	35	
S_7	22	15	25	25	30	10	45

- 1. Appliquer Prim pour trouver le coût minimal du projet.
- 2. Appliquer Kruskal pour trouver le coût minimal du projet.
- 3. Comparer les deux solutions.