```
univariable analysis for limited edition
```{r}
Encoding limited edition offer marketing as factor sephora$limited_edition =
as.factor(sephora$limited_edition)
Univariable model model.limited_edition <- glm(online_only ~ limited_edition,
family = binomial, data = sephora)
Statistic summary sum model.limited edition <- summary(model.limited edition)
sum model.limited edition
٠.,
Call:
glm(formula = online only ~ limited edition, family = binomial,
 data = sephora)
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
 -1.25805 0.02667 -47.165 <2e-16 ***
(Intercept)
limited_edition1 0.70269 0.07685
 9.144 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
 Null deviance: 9791.0 on 8986 degrees of freedom
Residual deviance: 9712.2 on 8985 degrees of freedom
AIC: 9716.2
Number of Fisher Scoring iterations: 4
Wald test for limited edition
```{r}
# Wald test
```

wald limited_edition <- round(sum_model.limited_edition\$coefficients[2]/</pre>

sum_model.limited_edition\$coefficients[2,2],3)

pvalue_limited_edition <- round(2*(1-pnorm(wald_limited_edition)),4)</pre>

$$H_0: eta_1 = 0$$
 $W = rac{\hat{eta_1}}{\hat{SE}(\hat{eta_1})} = 9.144$ $P_-value = 0$

According to the Wald test, the independent variable "limited_edition" is statistically significant because its p-values is less than the significant level α =0.25