Fundamentals of Cryptography Homework 6

周书予

2000013060@stu.pku.edu.cn

November 26, 2022

Problem 1

Part A

$$\mathsf{Dec}(sk, ct = (\mathbf{t}, v)) = \begin{cases} 0, & v - \mathbf{s}^T \mathbf{t} \in [-\frac{q}{2}, \frac{q}{2}] \\ 1, & \text{otherwise} \end{cases}$$

since one can see that $v - \mathbf{s}^T \mathbf{t} = \mathbf{e}^T \mathbf{r} + \lfloor \frac{q}{2} \rfloor \cdot b$, so it is "small" if b = 0, and "big" if b = 1.

Notice that $|\mathbf{e}^T\mathbf{r}| \leq Bm$, so to decrypt correctly, we'd like to have the constraint that $Bm \leq \frac{q}{4}$.

Part B

Hybrid 0 and hybrid 1 are computationally indistinguishable

FSOC assume PPT distinguisher \mathcal{D} distinguishes hybrid 0 from hybrid 1 with non-negligible advantage. Then another distinguisher \mathcal{D}' can be built, which takes $(\mathbf{A}, \mathbf{b}^T) = pk$ as input, randomly samples $\mathbf{r} \leftarrow \{0, 1\}^m$, send $(pk, ct = (\mathbf{Ar}, \mathbf{b}^T \mathbf{r} + \lfloor \frac{q}{2} \rfloor \cdot b))$ to distinguisher \mathcal{D} , and finally outputs whatever \mathcal{D} outputs.

So \mathcal{D}' distinguishes $(\mathbf{A}, \mathbf{s}^T \mathbf{A} + \mathbf{e}^T)$ from $(\mathbf{A}, \mathbf{b}^T)$, which breaks LWE assumption.

Hybrid 1 and hybrid 2 are statistically indistinguishable

Theorem 8.11 (Leftover Hash Lemma). Let H be a keyed hash function defined over (K, S, T). Assume that H is a $(1 + \alpha)/N$ -UHF, where N := |T|. Let $\mathbf{k}, \mathbf{s}_1, \ldots, \mathbf{s}_m$ be mutually independent random variables, where \mathbf{k} is uniformly distributed over K, and each \mathbf{s}_i has guessing probability at most γ . Let δ be the statistical difference between

$$(\mathbf{k}, H(\mathbf{k}, \mathbf{s}_1), \dots, H(\mathbf{k}, \mathbf{s}_m))$$

and the uniform distribution on $\mathcal{K} \times \mathcal{T}^m$. Then we have

$$\delta \le \frac{1}{2}m\sqrt{N\gamma + \alpha}.$$

Here each row of matrix \mathbf{A} , $\mathbf{a}_1, \dots, \mathbf{a}_n$, together with \mathbf{b} , can be regarded as s_1, \dots, s_m . \mathbf{r} can be regarded as hash function key k, which means that the hash function $\mathbb{Z}_q^m \times \mathbb{Z}_q^m \to \mathbb{Z}_q$ is defined as "dot product".

Leftover Hash Lemma shows that the statistical difference between $(\mathbf{Ar}, \mathbf{b}^T \mathbf{r})$ and (\mathbf{a}, v)

$$\delta \leqslant \frac{1}{2}(n+1)\sqrt{q \cdot q^{-m}} = \frac{(n+1)q^{-(m-1)/2}}{2}$$

When $\frac{(n+1)q^{-(m-1)/2}}{2} = \text{negl}(n)$, we can say that hybrid 1 and hybrid 2 are statistically indistinguishable.

Problem 2

Part A

For all $0 \le i < N$, we have

$$(1+N)^i = 1 + iN \in \mathbb{G}_N$$

For any $0 \le i < j < N$, $1 + iN \ne 1 + jN$, which means that $|\{(1+N)^i|0 \le i < N\}| = N$, thus 1 + N is a generator of \mathbb{G}_N .

Part B

Every element in \mathbb{G}_n can be written as 1 + kN, for some $0 \leq k < N$.

Suppose that g = 1 + xN and $g^a = 1 + yN$ (here x and y can be computed efficiently), we know that $(1 + xN)^a = 1 + yN$, thus $ax \equiv y \mod N$.

- If x is invertable module N, one can simply calculates $a' = y \cdot x^{-1} \mod N$.
- If p|x and $q \nmid x$, then we must have p|y, so one can calculates $a' = \left(\frac{y}{p}\right) \cdot \left(\frac{x}{p}\right)^{-1} \mod q$.
- If q|x and $p \nmid x$, we must have q|y, so one can calculates $a' = \left(\frac{y}{q}\right) \cdot \left(\frac{x}{q}\right)^{-1} \mod p$.
- If x = 0, then y = 0, a' can be any integer.

Part C

Uniformly randomly sample x from \mathbb{QR}_{N^2} , then output x^N .

- x can be written as x = gh such that $g \in \mathbb{G}_N$ and $h \in \mathbb{H}_N$. Since $|\mathbb{G}_N| = N$, $g^N = 1$ holds for all $g \in \mathbb{G}_N$. So $x^N = g^N h^N = h^N \in \mathbb{H}_N$.
- Since $\mathbb{QR}_{N^2} = \mathbb{G}_N \times \mathbb{H}_N$, so uniform x over \mathbb{QR}_{N^2} implies uniform h over \mathbb{H}_N . Notice that $\gcd(N, p'q') = 1$, so N is invertable module p'q', and h^N is also uniform over \mathbb{H}_N .

Part D

$$\mathsf{Dec}(sk,c) = \mathsf{discrete-log}(c^{p'q'}) \cdot (p'q')^{-1} \bmod N$$

Notice that $|\mathbb{H}_N| = p'q'$, so we must have $c^{p'q'} = (h \cdot (1+N)^m)^{p'q'} = 1 + mp'q'N \in \mathbb{G}_N$, and p'q' is invertable module N, which gives the chance to reveal the message and then make the public-key encryption scheme correct.

FSOC assume PPT adversary \mathcal{A} breaks this encryption scheme as EAV-secure (notice that EAV-secure is equivalent to CPA-secure under public-key encryption scheme settings). We construct a PPT distinguisher \mathcal{D} who distinguishes (N, h) from (N, x) for $h \leftarrow \mathbb{H}_N$ and $x \leftarrow \mathbb{QR}_{N^2}$, and thus breaks DCR assumption.

When \mathcal{D} receives (N, y), it calls \mathcal{A} with public key pk = N. \mathcal{A} outputs two distinct messages m_0, m_1 , and \mathcal{D} picks $r \in \mathbb{H}_N$ and $b \in \{0, 1\}$ uniformly at random. Instead of returning $c = h \cdot (1+N)^{m_b}$, it returns $c = h \cdot y \cdot (1+N)^{m_b}$. Then \mathcal{A} outputs a single bit b', and \mathcal{D} outputs 1 iff b' = b.

Then here are two cases:

- If y is sampled from \mathbb{H}_N , then the encryption is "right", which means that \mathcal{A} outputs the correct answer b with probability at least $\frac{1}{2} + \frac{1}{\operatorname{poly}(n)}$, so \mathcal{D} outputs 1 with probability at least $\frac{1}{2} + \frac{1}{\operatorname{poly}(n)}$.
- If y is sampled from \mathbb{QR}_{N^2} , then the encryption is "corrupt", which means that the ciphertext c output by challenger is the encryption of a random message, and thus \mathcal{A} can do nothing but random guessing with this random ciphertext, which makes \mathcal{D} outputs 1 with probability at most a half.

Thus \mathcal{D} distinguishes (N, h) from (N, x) with non-negligible advantage, which breaks DCR assumption.