UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS FÍSICAS

DEPARTAMENTO DE ESTRUCTURA DE LA MATERIA, FÍSICA TÉRMICA Y ELECTRÓNICA

TRABAJO DE FIN DE GRADO

Código de TFG: [Código TFG]
Sistema de comunicaciones inalámbricas
Wireless communication system

Supervisor/es: Javier Olea Ariza

Jose Luis Gutiérrez Moreno

Grado en Ingeniería Electrónica de Comunicaciones

Curso académico 2023-2024

Convocatoria XXXX

[Título extendido del TFG (si procede)]

Resumen:

Esto es una prueba para probar el formato del Resumen. Esto es una prueba para probar el formato del ResumenEsto es una prueba para probar

Abstract:

This is a test to prove the abstract's layout. This is a test to prove the abstract's layout.

Nota: el título extendido (si procede), el resumen y el abstract deben estar en una misma página y su extensión no debe superar una página. Tamaño mínimo 11pto.

Extensión máxima 50 páginas sin contar portada, contraportada y declaración responsable (sí se incluye índice, introducción, conclusiones y bibliografía

Declaración Responsable sobre Autoría y Uso Ético de Herramientas de Inteligencia Artificial (IA)

Yo, APELLIDOS Y NOMBRE
Con DNI/NIE/PASAPORTE:
declaro de manera responsable que el/la presente:
 Trabajo de Fin de Grado (TFG) Trabajo de Fin de Máster (TFM) Tesis Doctoral
Titulado/a
CAMPO PARA TÍTULO
es el resultado de mi trabajo intelectual personal y creativo, y ha sido elaborado de acuerdo con los principios éticos y las normas de integridad vigentes en la comunidad académica y, más específicamente, en la Universidad Complutense de Madrid.
Soy, pues, autor del material aquí incluido y, cuando no ha sido así y he tomado el material de otra fuente, lo he citado o bien he declarado su procedencia de forma clara -incluidas, en su caso, herramientas de inteligencia artificial Las ideas y aportaciones principales incluidas en este trabajo, y que acreditan la adquisición de competencias, son mías y no proceden de otras fuentes o han sido reescritas usando material de otras fuentes.
Asimismo, aseguro que los datos y recursos utilizados son legítimos, verificables y han sido obtenidos de fuentes confiables y autorizadas. Además, he tomado medidas para garantizar la confidencialidad y privacidad de los datos utilizados, evitando cualquier tipo de sesgo o discriminación injusta en el tratamiento de la información.
En Madrid a FECHA
FIRMA

Índice

1.	Introducción	4
	1.1. Objetivos y motivación	4
2.	Marco Teórico	4
	2.1. Sistemas de comunicación y Transmisión ASK	4
	2.2. Transistores y sus parámetros característicos	5
	2.3. Realimentación	7
	2.4. Sistemas integrados: Atmega328p	
3.	Desarrollo	12
	3.1. Parte analógica	12
	3.1.1. Diseño del "front-end" del TRANSMISOR de RF analógico	13
	3.1.2. Diseño del "front-end" del RECEPTOR de RF analógico	18
	3.2. Parte digital	23
	3.2.1. Diseño del demodulador digital para la recepción	24
	3.2.2. Diseño del codificador digital para la transmisión	
4.	Cronología del proyecto y diagrama de Grant	30
	4.1. transmisor FM a varactor	30
	4.1.1. Motivos de reemplazo	30
	4.2. receptor superheterodino FM	30
	4.3. Máquina de estados digital	31
	4.4. Diagrama de Grant	31
5 .	Resultados y conclusiones	31
6.	Bibliografía	31
7.	Indice de figuras	31

1. Introducción

explicacion del problema (calefactor) aplicacion, diagrama de bloques general, explicacion de funciones

1.1. Objetivos y motivación

objetivos: comprension de los conceptos teoricos, diseno propio basado en los bloques teoricos, solido y funcional motivacion: interes por las bases y las comunicaciones inalambricas.

2. Marco Teórico

2.1. Sistemas de comunicación y Transmisión ASK

teoria FM, en fsk, demodulacion coherente, ventajas e inconvenientes frente a otras modulaciones, por que de la eleccion de frecuencia 4 MHz y su frecuencia intermedia caracteristicas selectividad, fiabilidad etc libro 1970 radio amateur pag 94 modulacion ask

Una comunicación inalámbrica tiene como objetivo el intercambio de información a través de un medio de propagación no guiado. En este trabajo, se realizará la comunicación inalámbrica por medio de radiofrecuencia. Esta técnica consiste en acoplar la señal eléctrica que contiene la información a transmitir, a una señal de alta frecuencia. La señal de información se denomina moduladora, mientras que la señal de radiofrecuencia es llamada portadora. La señal eléctrica de información se denomina moduladora y la acción de separar la señal portadora de la moduladora se denomina demodulación.

Los elementos que realizan la comunicación son emisor y receptor. La calidad de estos elementos viene definida por las siguientes características:

Receptor: Las características principales que definen a un buen receptor son: Sensibilidad, propiedad de recibir señales débiles; Selectividad: Propiedad de distinguir entre señales muy próximas en frecuencia, y Estabilidad: Propiedad de mantener de manera fiable una comunicación a lo largo del tiempo.

Cabe mencionar que, por la forma de diseño, los receptores se pueden clasificar en función del tipo de detección utilizada: regenerativos y super-regenerativos, que normalmente utilizan una conversión directa, o heterodinos y super-heterodinos, los cuales convierten la señal de radiofrecuencia recibida en una señal de frecuencia intermedia, favoreciendo el grado de selectividad principalmente. En general, los receptores super-heterodinos presentan mejores prestaciones a costa de una complejidad y coste mayor.

Transmisor: La característica principal que define a un buen transmisor es la eficiencia de radiación. Esta medida es la relación entre la potencia transmitida a la antena y la potencia total consumida por el mismo. Idealmente este parámetro es: $\eta = \frac{P_{rad}}{P_{in}} = 1$. La potencia radiada, en esencia, es la potencia que se emite al canal de comunicación. Si se mantiene la eficiencia de radiación, y se aumenta la potencia del transmisor, se consigue un aumento lineal de la potencia radiada. Como resultado, se hace llegar la comunicación a mayor distancia.

También existen otros parámetros que se pueden considerar heredados, ya que son más propios de las antenas, como por ejemplo, la directividad. La mejora de estos parámetros es sustancial a la hora de diseñar un buen receptor.

Modulación ASK La modulación ASK es un tipo de modulación digital que se basa en la transmisión de una señal digital en función de la emisión conmutada de una señal portadora, donde la recepción de esta señal representa un símbolo lógico, mientras que su ausencia representa otro. El esquema de la comunicación ASK se representa en la figura 1.

Figura 1: Esquema de una posible modulación ASK

2.2. Transistores y sus parámetros característicos

Un transistor es un dispositivo semiconductor de tres terminales, entrada, salida y terminal común, capaz de amplificar la corriente que circula a través de él. Las numerosas técnicas de fabricación de estos dispositivos, dan lugar a los distintos tipos de transistores que existen: BJT, MOSFET, JFET, entre otros. En este trabajo se utilizarán transistores bipolares BJT, tanto NPN como PNP, para la realización del enlace de radio frecuencia, mientras que, el microconrtolador utilizado en el apartado digital, utiliza principalmente transistores de efecto campo MOSFET.

Los transistores BJT logran la amplificación gracias a dos uniones p-n interconectadas entre sí, donde, un pequeño flujo de corriente de entrada, regula un gran flujo de corriente de salida. Por otro lado, en un transistor MOSFET la amplificación se logra por medio de la regulación del estrechamiento del canal por donde circula la corriente, aplicando una tensión inversa.

Polarización: Para lograr que un transistor realice la función de amplificación, es necesario proporcionar al dispositivo, las tensiones de trabajo adecuadas para que funcione de forma deseada. Esta acción es conocida como polarización del transistor. En función de la polarización aplicada, el transistor puede trabajar de diferentes formas, algunas de las cuales son: activa directa, donde se trabaja en amplificación de señales; o corte y saturación, que son utilizadas principalmente en circuitos digitales. Existen numerosas técnicas para lograr la polarización deseada, estas serán expuestas en los apartados de desarrollo correspondientes.

Modelo de gran señal del transistor bipolar: Existen numerosos modelos matemáticos para definir el comportamiento de un transistor, en este trabajo se utilizará el modelo SPICE del

transistor caracterizado por el siguiente modelo circuital y sus ecuaciones características:

$$I_{E} = \frac{I_{be}}{B_{F}} + I_{be} - I_{bc}$$

$$I_{be} = I_{s} \cdot \left(e^{\left(\frac{V_{BE}}{N_{T} \cdot V_{t}}\right)} - 1\right)$$

$$I_{C} = I_{be} - \frac{I_{bc}}{B_{R}} - I_{bc}$$

$$I_{bc} = I_{s} \cdot \left(e^{\left(\frac{V_{BC}}{N_{T} \cdot V_{t}}\right)} - 1\right)$$

$$I_{B} = \frac{I_{be}}{B_{F}} + \frac{I_{bc}}{B_{R}}$$

Considerando una polarización en activa directa, donde la amplificación de señales se realiza de manera óptima, las ecuaciones quedan simplificadas al despreciar I_{bc} , ya que $V_{CB} < 0$. El resultado de las ecuaciones, a las cuales se aplica el efecto Early, que no se puede considerar despreciable, queda de la siguiente forma.

$$I_C = I_s \cdot \left(e^{\left(\frac{V_{BE}}{N_T \cdot V_t}\right)} - 1 \right) \cdot \left(1 + \frac{V_{CE}}{V_{AF}} \right) \tag{1}$$

$$I_B = \frac{I_s}{B_F} \cdot \left(e^{\left(\frac{V_{BE}}{N_T \cdot V_t}\right)} - 1 \right) \tag{2}$$

Pequeña señal: Como se ha mencionado anteriormente, si se dispone de un transistor que trabaja en activa directa, se consigue la amplificación de las señales. Debido a que el transitor es un dispositivo no lineal, la señal introducida debe ser suficientemente pequeña para poder aproximar al dispositivo como un elemento lineal. Por tanto, a la hora de trabajar con pequeña señal, se modelará al transistor como un cuadripolo lineal de dos puertos. En función de las variables de entrada o salida que se elijan, el modelo circuital del cuadripolo variará. El modelo principal con el que se trabajará será el de parámetros híbridos, el cual, se caracteriza por usar como variables independientes i_1, v_2 y dependientes i_2, v_1 . Cabe mencionar la existencia de otras configuraciones de parámetros característicos como son el modelo de admitancias, cuyas variables independientes son v_1, v_2 , o el modelo de impedancias, cuyas variables independientes son i_1, i_2 . El modelo general del cuadripolo lineal así como sus parámetros de entrada y salida se muestran en la figura 2 a continuación:

Figura 2: Representación de un transistor como cuadripolo lineal.

En general, las ecuaciones que describen el conjunto de los modelos son:

$$dY_1 = \frac{\partial f_1}{\partial X_1} \cdot \partial X_1 + \frac{\partial f_1}{\partial X_2} \cdot \partial X_2 \tag{3}$$

$$dY_2 = \frac{\partial f_2}{\partial X_1} \cdot \partial X_1 + \frac{\partial f_2}{\partial X_2} \cdot \partial X_2 \tag{4}$$

Donde X_1 y X_2 corresponden a las variables independientes y Y_1 e Y_2 a las variables dependientes

Las ecuaciones que definen al modelo de parámetros híbridos en concreto son por tanto:

$$v_1 = h_{11} \cdot i_1 + h_{12} \cdot v_2$$
$$i_2 = h_{21} \cdot i_1 + h_{22} \cdot v_2$$

El valor de los parámetros h_{nm} se deriva de las ecuaciones del modelo de gran señal, simplificadas para una polarización activa directa. Al derivar dichas ecuaciones se obtiene un modelo de parámetros en admitancias, fácilmente transformable al modelo de parámetros híbridos. Además, en función de la configuración del terminal común del transistor, el valor de los parámetros característicos cambiará, en este caso, se supondrá una configuración en emisor común. Los valores de los parámetros para las distintas configuraciones pueden ser deducidos utilizando relaciones matemáticas sencillas. A continuación se expone la obtención de los valores de los parámetros híbridos, para la configuración de emisor común, a partir de las ecuaciones de gran señal, ecuaciones 1 y 2.

$$\begin{cases} i_{b} = \frac{\partial I_{B}}{\partial V_{BE}} \cdot v_{be} + \frac{\partial I_{B}}{\partial V_{CE}} \cdot v_{ce} \\ i_{c} = \frac{\partial I_{C}}{\partial V_{BE}} \cdot v_{be} + \frac{\partial I_{C}}{\partial V_{CE}} \cdot v_{ce} \end{cases} => \begin{cases} i_{b} = y_{11} \cdot v_{be} + y_{12} \cdot v_{ce} \\ i_{c} = y_{21} \cdot v_{be} + y_{22} \cdot v_{ce} \end{cases}$$

$$\begin{cases} v_{be} = h_{ie} \cdot i_{b} + h_{re} \cdot v_{ce} \\ i_{c} = h_{fe} \cdot i_{b} + h_{oe} \cdot v_{ce} \end{cases} => \begin{cases} v_{be} = \frac{1}{y_{11}} \cdot i_{b} + \left(\frac{-y_{12}}{y_{11}}\right) \cdot v_{ce} \\ i_{c} = \frac{y_{21}}{y_{11}} \cdot i_{b} + \left(y_{22} - \frac{y_{12} \cdot y_{21}}{y_{11}}\right) \cdot v_{ce} \end{cases}$$

Teniendo en cuenta las relaciones obtenidas, se puede establecer la relación de los parámetros híbridos con su valor numérico como se muestra a continuación.

$$h_{ie} = \frac{1}{y_{11}} = \frac{N_F \cdot V_t}{I_B} \qquad h_{re} = \frac{-y_{12}}{y_{11}} \approx 0$$

$$h_{fe} = \frac{y_{21}}{y_{11}} = \frac{I_C}{I_B} \qquad h_{oe} = y_{22} - \frac{y_{12} \cdot y_{21}}{y_{11}} \approx \frac{I_C}{V_{AE}}$$
(6)

$$h_{fe} = \frac{y_{21}}{y_{11}} = \frac{I_C}{I_B} \qquad h_{oe} = y_{22} - \frac{y_{12} \cdot y_{21}}{y_{11}} \approx \frac{I_C}{V_{AF}}$$
 (6)

Seguidamente, se establecen las relaciones de los parámetros híbridos en emisor común para las demás configuraciones de terminal común. Las relaciones se obtienen de manera similar a las anteriores dadas:

Por último, cabe mencionar que los transistores por su construcción física poseen elementos denominados parásitos. Estos elementos se modelan, de manera circuital principalmente como condensadores, y pueden influir en los valores de las impedancias de entrada, salida o realimentaciones. Estos efectos se incluirán cuando sean necesarios en el desarrollo del proyecto.

2.3. Realimentación

libro Paul R. Gray, Paul J. Hurst, Stephen H. Lewis, Robert G. Meyer - Analysis and Design of Analog Integrated Circuits (2001, Wiley) capitulo feedback revista todoelectronica fasciculo segundo.

La realimentación es un concepto ligado a la amplificación. La realimentación, en los amplificadores, consiste en tomar una muestra de tensión o de corriente a la salida y reenviarla a la entrada a través de una red apropiada, gracias a la realimentación se consigue estabilizar la ganancia, la resistencia de entrada, la resistencia de salida y el ancho de banda, aunque el fin más importante es la estabilización de la ganancia.

En la figura 3 se muestra el esquema general de un sistema realimentado. Donde A se corresponde con la ganancia en lazo abierto del amplificador, y f la red de realimentación correspondiente. Dependiendo de la naturaleza del amplificador y del tipo de realimentación, la ganancia en lazo abierto puede ser de tensión, corriente, transimpedancia o transconductancia.

Figura 3: a) Amplificador sin realimentación, b) Sistema realimentado

Se calculan las ganancias propias de cada sistema en la figura 3. La nomenclatura S_n se refiere a una señal que bien puede ser de corriente o tensión. Por un lado, la ganancia en lazo abierto del amplificador se calcula como:

$$A = \frac{S_o}{S_i}$$

Por otro lado, se calcula la ganancia en lazo cerrado A_f :

$$\begin{cases} S_f = S_o \cdot f \\ S_E = S_i - S_f \\ S_o = S_E \cdot A \end{cases} = > \frac{\frac{S_o}{A} = S_i - S_o \cdot f}{S_i = S_o \cdot \left(\frac{1}{A} + f\right)} = S_o \cdot \frac{1}{A} \cdot (1 + f \cdot A) \qquad A_f = \frac{S_o}{S_i} = \frac{A}{(1 + f \cdot A)}$$

Se señalan las ecuaciones que serán de utilidad:

$$A_f = \frac{S_o}{S_i} = \frac{A}{(1 + f \cdot A)} \tag{8}$$

$$A = \frac{S_o}{S_E} \tag{9}$$

$$A_l = A \cdot f \tag{10}$$

Es útil definir el parámetro ganancia en lazo abierto, $A_l = A \cdot f$, para poder analizar el comportamiento del sistema en lazo cerrado cuando A_l varía. Esto se conoce como el criterio de Barkhausen, el cual se expone considerando el criterio de signos de la ecuación 8:

- Si $A_1 \gg 1$: en este caso se obtiene una ganancia total del sistema $A_f = \frac{1}{f}$. Esta realimentación se conoce como negativa.
- Si $A_1 \ll 0$: en este caso se tiene que $S_E = S_i + S_f$, es decir, las señales se encuentran en fase y se suman en lugar de restarse. Esta suma es amplificada una y otra vez dando lugar a un sistema inestable. Esta realimentación se conoce como positiva.
- Si $A_1 = -1$: en este caso se el sistema se encuentra en la frontera entre la estabilidad y la inestabilidad. Por lo que idealmente, el sistema responderá a la función impulso o delta de Dirac con una oscilación continuada. Este caso es conocido como el criterio de Barkhausen y se trata de la condición necesaria para encontrar oscilaciones.

Por último se han de mencionar los diferentes tipos de realimentación que se dan en los amplificadores prácticos. Como se ha mencionado anteriormente, las señales de trabajo pueden ser de tensión, corriente o incluso una combinación de ambas. De esta forma, se pueden clasificar los diferentes tipos de realimentación en función de la señal de trabajo tanto a la entrada como a la salida. Alugnos de estos tipos se exponen en las figuras 4 y 5.

Figura 4: Amplificador de tensión con realimentación serie paralelo ideal.

Figura 5: Amplificador de transresistencia con realimentación paralelo paralelo real.

2.4. Sistemas integrados: Atmega328p

Digital Design and Computer Architecture capitulo 4; datasheet atmega

Un sistema integrado o embebido, es un sistema digital complejo, compuesto principalmente por CPU, memoria, buses y periféricos, entre otros. La conjunción específica del sistema se denomina arquitectura. El conjunto de los elementos del sistema también es conocido como SOC (System On Chip).

A continuación se realiza una descripción de los elementos principales que componen el SOC:

■ **CPU:** Un sistema integrado posee al menos una CPU, la cual se encarga de la ejecución de los programas, operando con datos e instrucciones. Dependiendo del diseño de la CPU, se tiene una arquitectura de n bits, lo cual implica que el tamaño de los registros y de las direcciones es de n bits. El diseño de la CPU también especifica el uso de un repertorio de instrucciones concreto. Algunos ejemplos de repertorio de instrucciones son ARM, MIPS o CISC. La CPU se consolida como el principal elemento de la arquitectura.

Figura 6: Esquema general de un SOC.

A pesar de que la CPU constituya el elemento principal del sistema integrado, para que todo su procesamiento de datos resulte en trabajo útil, es necesario el soporte de hardware externo. Dentro de este conjunto de hardware se pueden distinguir:

- Subsistema de memoria: La memoria en general se encarga de almacenar y servir los datos e instrucciones utilizadas por el procesador. El sistema de memoria se puede descomponer en varios módulos, como por ejemplo la memoria caché, una memoria físicamente al lado del procesador con una velocidad de trabajo de unos pocos ciclos de procesador; la memoria DRAM, un dispositivo de memoria con un espacio de almacenamiento mayor que la caché, aunque normalmente un orden de magnitud más lenta, u otras memorias externas de diferentes tipos como pueden ser SRAM, FLASH o ROM.
- Controlador de interrupciones: Este mecanismo gestiona los requerimientos de atención del procesador por parte de los dispositivos, sin necesidad de que este tenga que estar pendiente de la falta de atención continuamente.
- Timers: El objetivo de estos dispositivos es generar una frecuencia de onda cuadrada estable. Estos dispositivos son imprescindibles para el funcionamiento de la CPU, ya que controlan la frecuencia de trabajo del procesador, o incluso otras tareas como las interrupciones periódicas, programación de eventos o la fecha y hora.

Mapa de memoria: El mapa de memoria es la lista de direcciones accesibles de todos los elementos del sistema: DRAM, controlador de interrupciones... El tamaño total del mapa de memoria dependerá del tipo de arquitectura del procesador y se calcula como 2^n . Cuando el procesador ejecuta una instrucción de lectura o escritura, la dirección es decodificada por los decodificadores y finalmente enrutada hacia el correspondiente elemento del sistema.

AVR Atmega328p: Como ejemplo de un sistema integrado, se introduce el procesador Atmega328p, el cual fue utilizado en el proyecto. En las figura 7 se muestra un esquema general del sistema integrado Atmega328p. El Atmega328p Es un sistema integrado tipo RISC con un procesador de 8 bit, el cual es capaz de ejecutar una instrucción por ciclo. Esto es posible gracias al diseño de una arquitectura tipo harvard, la cual, se caracteriza por disponer de memorias separadas para datos y para las instrucciones del programa. Las instrucciones son ejecutadas con un nivel de segmentación, lo que permite que, mientras una instrucción está siendo ejecutada, la siguiente

Figura 7: Diagrama de bloques del Atmega328p, en detalle la CPU

instrucción está siendo buscada en la memoria de programa. Es necesario aclarar que la CPU es capaz de trabajar con registros dobles, siendo capaz de direccionar un total de 2^{16} posiciones de memoria.

Como se puede apreciar en la figura 7 el bloque Flash program memory (memoria flash) se corresponde con la memoria de instrucciones donde se encuentran las instrucciones de nuestro software, seguidamente, Instruccion register, que permite el nivel de segmentación de las instrucciones. Siguiendo el esquema, La instrucción a ejecutar es decodificada siguiendo el mapa de memoria y correctamente enrutada al dispositivo correspondiente mediante Instruction decoder.

Una vez la instrucción es decodificada, pasa a ser ejecutada, entrando en escena la parte de datos. El bloque de los registros, $General\ purpose\ Registers$ sirven de operandos y junto al bloque ALU, se encargan de realizar las operaciones que se requieran. Una vez generados los datos, se vuelcan en el bus de datos y serán recogidos por el dispositivo interesado, gobernados por $Control\ Lines$. La lectura de los operandos la operación con la ALU y la escritura del resultado en el banco de registros, se realiza en un solo ciclo de reloj. El $Status\ Register$ Es un registro que se actualiza en cada operación aritmética con las particularidades de dicha operación: bit zero, carry, overflow, incluso la habilitación de las interrupciones globales.

Como se ha comentado existen dos mapas de memoria bien diferenciados, instrucciones y datos. La memoria de instrucciones es la flash la cual tiene una capacidad de 2^{15} B ≈ 32 kB, por lo que

todas las direcciones de memoria están dedicadas a este elemento. Por otro lado, se tiene el mapa de memoria de datos, estructurado de la forma mostrada en la figura 8. Se puede observar en la

Figura 8: Mapa de memoria de datos direccionada por bytes

figura 8 que el mapa de memoria de datos está separado en distintas regiones: para el banco de registros, para los dispositivos de entrada salida y para la SRAM. la SRAM es la memoria física de datos y posee una capacidad de 2 kB. Al igual que la FLASH, esta memoria es accedida mediante registros dobles. El soporte para lidiar con datos de 16 bits se realiza por medio de unos registros especiales, nombrados como X, Y y Z.

3. Desarrollo

En este apartado se desarrollarán los diferentes módulos que componen el sistema.

La comunicación que se llevará a cabo consiste en un enlace digital mediante radio frecuencia de dos canales. La frecuencia de trabajo es de 30 MHz y los canales se diferencian mediante distintas señales digitales codificadas en NRZ apolar. La codificación de las señales digitales se realiza con ayuda de un microcontrolador Atmega328p, el cual, mediante las señales producidas por dos distintos pulsadores, codifica la señal digital de diferentes formas.

Se muestra un esquema general de ambas partes del proyecto, transmisor y receptor. En ambas figuras se diferencian la parte digital y analógica en cada caso. FIGURAS GENERALES

3.1. Parte analógica

En este apartado se desarrolla todo lo referente a la interfaz de radiofrecuencia (RF). En primer lugar, se explica de manera analítica el funcionamiento del transmisor y receptor, para posteriormente realizar un análisis cuantitativo, realizando los cálculos correspondientes a los valores de los componentes del sistema.

Transmisor El transmisor está basado en un oscilador de un solo transistor en base común sintonizado por un circuito LC conocido como circuito tanque. Los valores del condensador e inductancia del circuito tanque, poseen una frecuencia de resonancia la cual será la que se amplifique por medio de la realimentación positiva. La oscilación es cortada eléctricamente a conveniencia por medio de otro transistor, produciendo una modulación AM-ASK. El transmisor se diseña de forma que radie la mayor potencia posible, y así propagar la señal a la mayor distancia posible.

Receptor super-regenerativo diseñado en 1920 se basa en el concepto de realimentación positiva. Mientras que su antecesor, el receptor regenerativo, consiste en diseñar un bucle de realimentación cuyo Al sea $A_l = 1$ referencia teoria realim, en el momento que este receptor tiene gran sensibilidad a las señales con frecuencia igual a la de diseño. El receptor regenerativo, en la práctica, es muy complicado de llevarlo a su condicion de trabajo, pues las mínimas variaciones

harán que el circuito comience a oscilar o no ser tan sensible. Por este mismo hecho se desarrolla el receptor super-regenerativo, que se basa en este mismo concepto de realimentación positiva, con la diferencia que $A_l > 1$ dejandose oscilar. pasado un determinado tiempo, el circuito corta la oscilación permitiendo que el ciclo comience de nuevo. Esta señal de reinicio y paro se denomina "quench-signal". En cada inicio del periodo de la quench-signal, momento en el cual la oscilación se está montando, el circuito atraviesa un periodo de sensibilidad máxima a las señales con frecuencia igual a la de diseño. Si una señal es detectada, la oscilación del circuito se producirá de forma más rápida, aumentando así la frecuencia de la quench-signal, obteniendo como salida una señal con modulación FM con frecuencia de la quench-signal.

Eleccion de frecuencia 33MHz (sistemas de radio control) El receptor super-regenerativo trabaja mejor con frecuencias mayores pues permite una frecuencia de quench mayor, aumentando la tasa de muestreo. empiricamente cuanto mayor frecuencia mejor diseño de antena optimo mas corto, mejor distancia

3.1.1. Diseño del "front-end" del TRANSMISOR de RF analógico

datasheets ne555, 2n2222, octave

Introducción En este apartado se expondrá el diseño del transmisor, los cálculos matemáticos necesarios, simulacion por ordenador y los resultados practicos. El transmisor está diseñado para generar una modulación ASK y emitir a una frecuencia de 30Mhz. La frecuencia de emisión se sintoniza con la del receptor por medio de un condensador de capacidad variable.

NO REPETIR, EXPLICAR LA FOTO En la figura 9 se puede observar el esquema eléctrico del transmisor. El principio de funcionamiento del transmisor es un oscilador, basado en un par resonante LC, el cual fija la frecuencia de emisión. Esto se realiza realizando un bucle de realimentación positiva, donde el transistor NPN juega el papel de elemento activo de amplificación, el circuito tanque LC es el filtro que permite que en cada iteración del bucle, se amplifique la frecuencia deseada. mientras que el condensador de realimentación, genera la realimentación positiva, sumando una fracción de la salida con la señal de entrada, que en este caso es el propio ruido generado por el circuito. El circuito se diseña para disipar la mayor potencia posible para que la señal alcance la mayor distancia posible. Por otra parte, el cicuito permite modular la señal portadora eléctricamente cortando y produciendo la oscilación en función de las variaciones de la señal moduladora. Esto es posible gracias al segundo transistor PNP, el cual trabaja en corte y saturación y corta el paso de corriente general del circuito. El esquema completo del transmisor se expone en la figura 9.

Diseño del oscilador

Polarización: IGUAL Y MENCIONANDO EL TRANSISTOR PNP EN CORTE APROX 0.2 V DESPRECIABLE. En primer lugar se debe fijar el punto de operación deseado. Se deben tener encuenta dos cosas: la zona trabajo del transistor y la potencia del circuito. La zona de trabajo debe ser activa directa, pues para producir la oscilación, el bucle de realimentación positiva debe tener la etapa de amplificación proporcionada por el transistor. La potencia del circuito, junto a la fracuencia de diseño, acotan el modelo de transistor que se ajuste al circuito. En primer lugar se necesita un transistor con una frecuencia de transición $f_t > 30\,\mathrm{MHz}$. Aparte el parámetro I_{Cmax} debe ser suficiente para proporcionar la potencia deseada sin deteriorarse. Se elige un transistor 2N2222, cuya $f_t > 30\,\mathrm{MHz}$ e $I_{Cmax} = 0.6\,\mathrm{A}$ y una $V_{CC} = 9\,\mathrm{V}$. Se fija $Ic = 80\,\mathrm{mA}$, que supondrá una potencia de aproximadamente $I_C \cdot V_{CC} = 0.72\,\mathrm{W}$ y $V_{CE} = \frac{V_{CC}}{2} = 4.5\,\mathrm{V}$ condición necesaria para trabajar en

Figura 9: Esquema eléctrico del transmisor

activa directa. Además, de la hoja de características del 2N2222 se conoce $h_{FEmax} \approx 300$, aunque medido con un multímetro, nos da el valor $h_{FE} = 280$ por lo que se utilizará este último. En lugar de repetir el cálculo que se hizo para seleccionar el valor de las resistencias de polarización, se optará por comprobar si los valores elegidos satisfacen las imposiciones.

Se utiliza equivalente de Thevenin para las resistencias en paralelo. En la malla que aparece se obtiene:

$$V_{th} - 0.7 - I_c \cdot R_e = I_b \cdot R_{th}$$

Siendo:

$$V_{th} = \frac{V_{CC} \cdot R_2}{R_1 + R_2} \qquad I_b \cdot h_{FE} = I_c$$

$$R_{th} = \frac{R_1 \cdot R_2}{R_1 + R_2} \qquad h_{FE} = 280$$

Se obtienen I_c y V_{CE} con las siguientes dos ecuaciones sustituyendo los valores correspondientes:

$$\begin{split} R_1 &= 10 \, \mathrm{k}\Omega \quad R_2 = 20 \, \mathrm{k}\Omega \quad R_E = 40 \, \Omega \quad V_{CC} = 9 \, \mathrm{V} \\ I_c \cdot \left(40 + \frac{R_{th}}{h_{FE}} \right) &= V_{th} - 0.7 \\ V_{CC} &= V_{CE} + I_C \cdot R_E \\ V_{CE} &= 5.68 \, \mathrm{V} \quad I_C = 83 \, \mathrm{mA} \end{split}$$

Una vez calculado el puto de operación se obtienen los parámetros híbridos en base común siguiendo la metodología expuesta en el apartado 2.2. En primer lugar calcular los parámetros híbridos en emisor común a partir de los resultados obtenidos en el punto de operación, utilizando las ecuaciones 5 y 6. En segundo lugar, aplicar las transformaciones indicadas en 7. Además se debe calcular el dato V_{AF} con ayuda de la hoja de datos del transistor, en este caso el dato se obtuvo como una media del rango de valores proporcionado. El resultado del cálculo de los parámetros es el siguiente:

$$V_{AF} = \frac{I_{Cdata}}{h_{OEdata}} = \frac{1 \text{ mA}}{6 \,\mu\text{S}} = 50 \,\text{V}$$

$$\tag{11}$$

$$h_{ib} = 8.4 \Omega$$
 $h_{rb} = 0.014$
 $h_{fb} = -0.99$ $h_{ob} = 6 \,\mu\text{S}$ (12)

Figura 10: A) Modelo en pequeña señal del bucle de oscilación para frecuencias medias B) Modelo en pequeña señal del oscilador sustituyendo el condensador de realimentación C_1 por su equivalente en parámetros Y

Modelo en pequeña señal: ANADIR LOS CALCULOS DE LA INDUCTANCIA APROX 200N SEGUN INTERESE. El objetivo de este modelo es el cálculo de la frecuencia de resonancia del oscilador. En la figura 10 se muestra el modelo en pequeña señal del oscilador para frecuencias intermedias, entorno a la frecuencia de oscilación. El bucle de oscilación se trata de una realimentación paralelo-paralelo, por lo que se representa el condensador de realimentación C_1 como su equivalente en parámetros Y. El valor de dichos parámetros son:

$$Y_{11} = \frac{i_1}{v_1}|_{v_2=0} = s \cdot C_2 \qquad Y_{21} = \frac{i_2}{v_1}|_{v_2=0} = -s \cdot C_2$$

$$Y_{12} = \frac{i_1}{v_2}|_{v_1=0} = -s \cdot C_2 \qquad Y_{22} = \frac{i_2}{v_2}|_{v_1=0} = s \cdot C_2$$

Se deben tener en cuenta ciertas consideraciones previas como consecuencia del análisis del esquema B) en la figura 10. La realimentación es positiva en el momento que $Y_{12} < 0$ y $h_{fb} < 0$ por lo que $V_2 > 0$. El modelo que se muestra corresponde a frecuencias intermedias entorno a la de oscilación. Para frecuencias bajas, la impedancia de C_2 tendrá un valor tan alto que corta la realimentación ,siguiendo el esquema A) figura 10. para frecuencias altas, la impedancia de C_2 tendrá un valor tan bajo que supondrá un cortocircuito a tierra para la corriente de realimentación, por lo que ie = 0A.

Se calcula la frecuencia de resonancia, en base al modelo B) de la figura 10. Siguiendo el criterio de Barkhausen la frecuencia de resonancia se corresponde con la única con desfase $\angle A_l(f_0) = 180^{\circ}$ a lo largo del bucle y una magnitud $|A_l(f_0)| \ge 0$. Se obtiene la función de transferencia de la ganancia en lazo abierto. Siguiendo el modelo general de la realimentación ecuación 8 aplicada al esquema B) de la figura 10, se calcula:

$$f = Y_{12} = -s \cdot C1 \tag{13}$$

Se muestra el desarrollo para el cálculo de $A = \frac{V_2}{i_F}$:

$$\frac{i_{E}}{V_{1}} = Y_{T1} = s \cdot C_{2} + \frac{1}{h_{ib}} \qquad \frac{V_{2}}{h_{fb} \cdot i_{e}} = Y_{T2}^{-1}
\frac{i_{e}}{V_{1}} = \frac{1}{h_{ib}} \qquad Y_{T2} = s \cdot C_{2} + s \cdot C_{1} + \frac{1}{s \cdot L_{1}} + h_{ob}
i_{E} = Y_{T1} \cdot i_{e} \cdot h_{ib} \qquad V_{2} = \frac{h_{fb} \cdot i_{e}}{Y_{T2}}$$

$$A = \frac{-h_{fb}}{Y_{T1} \cdot Y_{T2} \cdot h_{ib}} \qquad (14)$$

Se calcula la ganancia en lazo abierto como $A_l = A \cdot f$ y sustituyendo los valores de Y_{T1} e Y_{T2} :

$$A_{l} = \frac{h_{fb} \cdot C_{1} \cdot s^{2}}{\left(C_{2} + C_{1}\right)\left(s \cdot h_{ib} \cdot C_{2} + 1\right)\left(s^{2} + s \cdot \frac{h_{ob}}{C_{1} + C_{2}} + \frac{1}{\left(C_{1} + C_{2}\right) \cdot L_{1}}\right)}$$
(15)

Al observar la expresión obtenida en la ecuación 19, se sacan conclusiones para esbozar el diagrama de Bode de manera analítica. En primer lugar, se analiza el desfase, el cual a bajas frecuencias es 0, debido a la suma de los 180° del cero doble junto a los 180° de h_{fb} . El polo cuadrático introduce un desfase de -180° , al que se llega de manera asintótica pero de forma rápida debido al bajo valor del coeficiente de amortiguación. Si a este hecho se le añaden los -90° del polo simple, se obtiene que la frecuencia de resonancia con desfase 180° se encontrará en algún lugar entre el polo simple y el polo cuadrático.

Se esboza el diagrama de bode para los valores obtenidos en el apartado de polarización (ecuaciones 17 y 18) junto a los siguientes valores de los elementos

$$L_1 = 630 \,\mathrm{nH}$$
 $C_1 = 47 \,\mathrm{pF}$ $C_2 = 47 \,\mathrm{pF}$

En el diagrama de Bode de la figura 11, se obtiene una frecuencia angular $\omega_0 = 1.8 \times 10^8 \,\mathrm{rad\,s^{-1}}$, por lo que se obtiene una frecuencia de resonancia de:

$$f_0 = \frac{\omega_0}{2 \cdot \pi} = 28,65 \,\text{MHz}$$
 (16)

La obtención del diagrama de Bode se ha conseguido por medio del programa de cálculo computacional Octave REFERENCIA

Figura 11: Diagrama de Bode de la ganancia en lazo abierto del oscilador A_l para frecuencias intermedias

la señal digital de inicio o corte es producida por el microcontrolador Atmega328p, y se desarrollará en el correspondiente apartado CITAR. El transistor PNP es utilizado como conmutador.

Antena CALCULOS DEL TRANSFORMADOR, EXPLICAR EL CONDENSADOR ES PARA QUE AL TOCARLA NO PASE NADA. CALCULOS: Primero impedancia de salida del circuito sin bobina (usada de primario), y generador a la frecuencia de resonancia. segundo, modelo del transformador y transformacion de impedancias a cable de 1k aprox? simulacion de potencia disipada por la antena?

Para asegurar la máxima transferencia de potencia de señal a la antena se diseña un transformador como adaptador de impedancias entre el transmisor y la antena. Se considera esta opción como la alternativa más sencilla de implementar y que no carga al circuito, ya que para producir la oscilación, el transmisor es bastante sensible.

El objetivo del diseño es calcular la relación del número de vueltas óptimo entre el primario y el secundario. Se sigue el siguiente modelo de relación de impedancias en un transformador.

METER FOTO MODELO TRANSFORMADOR

Siguiendo el modelo de la figura REF, se obtienen las siguientes relaciones:

En particular para el diseño propio se debe calcular tanto la impedancia de salida del transmisor como la resistencia de radiación de la entena utilizada para la frecuencia de trabajo.

Resultado de la Simulación SIMULACION LTSPICE son 3 capturas una la de la oscilacion con las medidas de frecuencia. una general con varios ciclos de digitalin. otra del flanco de subida y bajada de digitalin con vout y vbe viendo como se corta el transistor.

En este apartado se muestra una simulación del circuito en función del tiempo de los puntos de interés del circuito. En la figura 12 se observa el V_C , que es la tensión que se aplicará en el transformador de impedancias a la antena, y $V_{digital}$, la señal moduladora que produce la modulación ASK.

Figura 12: Simulación de V_C modulada por $V_{digital}$

En la figura 13 se observa la FFT de la señal V_C de forma general, con un span de frecuencias alto. Por otro lado, en la figura ?? se muestra ampliada la frecuencia de trabajo, para observar los detalles de la modulación AM. A la frecuencia de trabajo se observa la modulación AM. En la figura general de la FFT, Al tratarse de una modulación ASK, se observa con acentuada potencia, la señal moduladora en banda base. Además, esta señal, al poseer una forma de onda cuadrada, su espectro se extiende ampliamente en el dominio de la frecuencia, aportando numerosos armónicos. En la figura ??, se observa el espectro de la modulación ampliado a la frecuencia de trabajo. Se sitúan cursores a la frecuencia de trabajo y los armónicos fundamentales a $10 \,\mathrm{kHz}$. Además, se pueden observar multitud de armónicos secundarios a distancias múltiplos de la frecuencia fundamental $10 \,\mathrm{kHz}$.

Resultado de la práctica CAPTURA DEL OSCILOSCOPIO Y MEDIDA DE CORRIENTE En la parte práctica se trata de comparar con los resultados de la simulación, los resultados obtenidos en el circuito real. El circuito está fabricado en placa soldada de agujeros y los resultados se miden con un osciloscopio en los mismos puntos de interés que en el apartado de simulación. Las figuras corresponden a capturas realizadas por el osciloscopio al tomarlas medidas pertinentes.

3.1.2. Diseño del "front-end" del RECEPTOR de RF analógico

Introducción explicar separacion de partes entre oscilador y quench signal El diseño del receptor se ha de separar en tres partes diferenciadas. En primer lugar, lo correspondiente al punto de operación del transistor, donde se trabaja con la componente DC. En segundo lugar, se desarrolla la parte de RF correspondiente al oscilador, el cual define la frecuencia de trabajo. Por último la

Figura 13: Simulación de la FFT de V_C de forma general

Figura 14: Simulación de la FFT de V_C ampliada a la frecuencia de trabajo

parte correspondiente a la quench signal, encargada de gestionar el paro y arranque de la oscilación. Esta parte trabaja a una frecuencia intermedia que puede diferenciarse claramente de la parte de RF y de la componente DC.

El esquema completo del receptor se expone en la figura 15.

Polarización EXPLICAR PORQUE ESE PUNTO DE OPERACION (MENOR RUIDO POSIBLE, MENOR CONSUMO DE POTENCIA) En este caso la estrategia para fijar el punto de operación es ligeramente distinta a como se diseña en el transmisor. El transistor debe trabajar en zona activa directa, por lo que se fijará $V_{CE} = \frac{V_{CC}}{2}$ para garantizar el mayor rango de linealidad posible. También se elige una $I_C = 1 \,\text{mA}$, en este caso para que el transistor trabaje introduciendo el mínimo ruido posible. Este hecho es importante pues, cuando el receptor se encuentra en la etapa de inicio de oscilación, un bajo nivel de ruido ayuda a aumentar la sensibilidad del receptor. Esto es debido a que la suma mínima de todos los ruidos generados por un transistor se encuentra en este rango de corriente de colector. REFERENCIA A ART OF ELECTRONICS. Cabe recalcar que la estructura del circuito de polarización es de la forma realimentación de colector. Esta forma,

Figura 15: Esquema eléctrico del receptor

provoca una realimentación negativa, que fija el punto de operación de manera más independiente a los parámetros característicos del transistor. Esta realimentación negativa debe eliminarse en corriente alterna para provocar la oscilación. La estrategia para eliminarla se verá en el apartado de pequeña señal. Se realizan los cálculos para estimar los valores de las resistencias de polarización en función de los valores anteriormente fijados. FIGURA AISLADA DE LA PARTE DC

Parte oscilador RF IGUAL QUE EN TRANSMISOR. SMALL-SIGNAL ETC La estructura del oscilador en el receptor es idéntica al transmisor. Para lograr evitar la realimentación negativa provocada por la parte de polarización se coloca el condensador $C_4 = 470 \,\mathrm{nF}$, este valor es suficiente para que su impedancia para la frecuencia de RF suponga un cortocircuito a tierra. La inclusión de este condensador es imprescindible para que el circuito funcione.

Modelo en pequeña señal: Debido a que el diseño es estructuralmente igual que en el transmisor, los cálculos serán idénticos sustituyendo los valores correspondientes. Se incluyen los valores característicos junto a las ecuaciones de interés. En función de los valores del punto de operación obtenido, se calculan los parámetros híbridos para el receptor.

$$V_{AF} = \frac{I_{Cdata}}{h_{OEdata}} = \frac{1 \text{ mA}}{6 \,\mu\text{S}} = 50 \,\text{V}$$
 (17)

$$h_{ib} = 8.4 \,\Omega$$
 $h_{rb} = 0.014$
 $h_{fb} = -0.99$ $h_{ob} = 6 \,\mu\text{S}$ (18)

El modelo en pequeña señal para las frecuencias de RF es sustancialmente igual a la parte del receptor. En la figura REF, se muestra el modelo del receptor en pequeña señal para las frecuencias

de RF. L2 tiene una impedancia suficientemente grande como para considerarla circuito abierto. El objetivo del modelo es la obtención de una expresión para la frecuencia de resonancia.

Figura 16: A) Modelo en pequeña señal del bucle de oscilación para frecuencias de RF B) Modelo en pequeña señal del oscilador sustituyendo el condensador de realimentación C_2 por su equivalente en parámetros Y

FALTA FUNCION DE TRANSFERENCIA IGUAL QUE TX Y CALCULO DE FREQ RE-SONANCIA IGUAL QUE TX. RAPIDAMENTE. DECIR QUE SE ANADE CONDENSADOR VARIABLE PARA SINTONIZAR ELUDIENDO LAS DISCREPANCIAS REALES DEL CIR-CUITO.

Debido a la dualidad con respecto al tx, la expresión de la función de transferencia de lazo cerrado, es idéntica al transmisor se muestra la expresión:

$$A_{l} = \frac{h_{fb} \cdot C_{1} \cdot s^{2}}{\left(C_{2} + C_{1}\right)\left(s \cdot h_{ib} \cdot C_{2} + 1\right)\left(s^{2} + s \cdot \frac{h_{ob}}{C_{1} + C_{2}} + \frac{1}{\left(C_{1} + C_{2}\right) \cdot L_{1}}\right)}$$
(19)

Se obtiene la frecuencia de resonancia como

$$\omega_0^2 = \frac{1}{L_1 \cdot (C_1 + C_2)}$$

Se obtiene el valor de la inductancia con la siguiente expresión:

$$PONERDELOCTAVE$$

$$L_{1} = 500 \,\text{nH}$$
(20)

Parte quench-signal AISLAR CIRCUITO, REALIZAR CÁLCULOS, L(CHOKE) R Y C En este caso al contrario que en el receptor, la bobina de RFC no podrá ser arbitrariamente grande, pues debe permitir el paso de la frecuencia de quench pero no de la señal de RF. La explicación del valor de la frecuencia de quench no es algo trivial. Para poder dar explicación al fenómeno es necesario una explicación analítica antes de realizar los cálculos. En la figura QUENCH-EXPLAIN se observa

la simulación de la generación de un ciclo de oscilación y paro del mismo. Partiendo de una tensión $V_B - V_{quench} \approx 0.7 \, \text{V}$, la oscilación comienza a generarse. Se toma como referencia V_{quench} y no V_E debido a que V_E proporciona información tanto de las frecuencias de RF como las de frecuencia de quench, mientras que V_{quench} proporciona la información de las frecuencias de interés por actuar como filtro paso bajo. El transistor, en configuración de base común, implica que la tensión de base V_B es fija, mientras que V_E varía. Mientras que la frecuencia de RF evidententemente satura y corta el transistor en numerosos ciclos por segundo, quien importa es quien corta la oscilación. A medida que la oscilación, al encontrarse dentro de un bucle de realimentación positiva, va incrementando su amplitud, la tensión media V_{quench} , también aumenta. En el momento que V_{quench} aumenta de forma que $V_B - V_{quench} < 0.7$, el transistor se corta, matando la oscilación y provocando que la tensión V_{quench} descienda, volviendo de esta forma a completar el ciclo.

Para calcular la frecuencia de quench, se debe tener en cuenta el filtro paso bajo formado por L2, Cx, R3 REVISAR, pero no en este caso la frecuencia de quench no se corresponde con la frecuencia de corte del filtro, ya que, el condensador no se descarga completamente en sus ciclos pues depende del transistor.

Antena ?? a transformador de impedancias y condensador para evitar al tocar con mano. Si no se hace explicar el acople magnetico con las bobinas

Resultado simulación Se muestran las medidas simuladas de tension de mayor interés con la nomenclatura de la figura FIG RF captura de oscilacion de rf, v en rc y vout captura con senal de entrada vout cambia de frecuencia

En el apartado de simulación trata de obtener una represaentación gráfica de lo desarrollado anteriormente sobre el receptor. Por ello, en la figura REF se observan los puntos de interés del circuito como son V_C , V_{quench} y V_B , además de añadir la diferencia $V_B - V_{quench}$ como V(B, quench). Estas cuatro medidas son suficientes para entender el ciclo de paro y marcha del transistor.

Como se puede observar en la figura 17, a medida que se construye la oscilación, el valor medio de la tensión de V_C , es decir V_{quench} , aumenta hasta que finalmente, la diferencia $V_B - V_{quench} < 0.7 \, \mathrm{V}$ hace desaparecer la oscilación. Este corte provoca que el valor medio de V_C descienda, y por tanto V_{quench} , provocando finalmente que la diferencia $V_B - V_{quench} > 0.7 \, \mathrm{V}$ reactivando al transistor y reiniciando el ciclo de oscilación.

Se añade también, en la figura 18, la forma de onda de la tensión de salida V_{out} , que es la señal de entrada al microcontrolador atmega328p, el cual se encargará de demodular la señal. Esta señal debe ser una señal digital entre 0 V y 5 V.

Resultado práctico En este caso se muestran las medidas tomadas en el apartado de simulacion, esta vez tomadas en el circuito real. Las medidas se toman usando un osciloscopio. La configuración es la misma que en el en el apartado REF del transmisor. En este caso al disponer de dos canales se muestran en la figura REF los puntos V_{quench} (rojo) y V_C (amarillo).

lo mismo que en simulacion pero capturas de osciloscopio

Figura 17: Simulación de puntos de interés en varios ciclos ampliados

Figura 18: Simulación de V_{out} junto a V_{quench}

3.2. Parte digital

Introducción para establecer un canal de comunicación de datos digital, se utilizan dos microcontroladores para la codificación y la demodulación de los mismos. En este caso, el modelo de microcontrolador utilizado es el mismo en ambos dispositivos, el Atmega328p, pero con distintos programas dependiendo de si se utiliza en el transmisor o receptor.

Configuración del entorno de trabajo El microcontrolador se programa por medio de un proyecto escrito en C. Para ello, se trabaja con las herramientas que permiten la compilación de este lenguaje a un archivo ejecutable entendible para la plataforma de AVR. En primer lugar, se necesita compilar el programa a un archivo binario ejecutable para la plataforma objetivo, para ello se usará el compilador avr-gcc. Este binario generado no puede ser grabado directamente a la flash del microcontrolador, si no que se necesita la traducción a código hexadecimal del mismo. Para ello, se utiliza el programa avr-objcopy. Finalmente, el programa es grabado en la flash. Este proceso se realiza de la siguiente forma: el archivo hexadecimal debe ser grabado en el microcontrolador configurando el micro en modo programación de la flash y transfiriendo el programa por medio del protocolo ISP. Para ello se hará uso de un programador software, avrdude, y un programador hardware que traduzca el protocolo usb del ordenador de trabajo a ISP para ser grabado en la memoria del micro objetivo. En este proyecto se utiliza un microcontrolador Atmega2560 montado

en la placa Mega2560 R3. Este micro será programado con un programa que permita el proceso de traducción anteriormente descrito. Este software se ofrece oficialmente desde la página web de Arduino. Para conseguir automatizar todo este proceso se hace uso de la herramienta make. A continuación se muestra el archivo Makefile utilizado para clarificar el proceso anteriormente descrito:

3.2.1. Diseño del demodulador digital para la recepción

Objetivo El objetivo del microcontrolador en la parte de recepción tiene dos funciones. Implementar un contador de frecuencia que identifique las variaciones recibidas por el módulo de RF correspondientes a los diferentes símbolos digitales, de tal forma que sirva como demodulador. y además decodificar la señal digital recibida, identificando la orden concreta transmitida por el transmisor.

Contador de frecuencia Esta parte se implementa por medio de dos timers/counters incorporados en el SOC del Atmega328p. La configuración y uso de estos dispositivos se encuentra en la hoja de datos del microcontrolador (REF). La estrategia de implementación es la siguiente: mientras uno de los timers genera interrupciones periódicas en un intervalo de tiempo conocido. Durante el mismo espacio de tiempo, el segundo timer/counter, se encarga de detectar el número de flancos de subida o bajada producidos por la señal de salida codificada en FM del módulo de RF. Este proceso provoca un número de interrupciones variable en función de la frecuencia de la señal de entrada en un intervalo de tiempo conocido.

Cada vez que el timer produzca su interrupción periódica, la rutina de tratamiento de interrupción (IRQ) se encargará de examinar el número de interrupciones producidas por el counter en ese lapso de tiempo y decidir si se ha recibido señal, en función del número de interrupciones del counter.

Se hacen uso tanto del TIMERO como del TIMER2, esto es debido a que poseen las mismas características necesarias las cuales se encuentran expuestas en la hoja de datos. Existen a su vez, más timers/counters con características más complejas, pero no serán necesarias en este proyecto. Se configura TIMERO como temporizador, generando la interrupción periódica necesaria conocida como gate. mediante el registro de configuración propio del timer, se configura el ancho de tiempo en el cual se genera la interrupción. La rutina de tratamiento de interrupción ISR(TIMERO), se encarga de comparar el número de interrupciones producidas por el counter, almacenadas en una variable global, y un número fijo umbral. Si el número de cuentas supera el umbral, la señal fue recibida, produciendo la demodulación digital. Por otro lado, el TIMER2, se configura como contador, identificando los flancos de bajada de una señal externa introducida por el pin OSC2. La interrupción del TIMER2, se puede producir cada cierto número de flancos detectados. la rutina de tratamiento de interrupción ISR(TIMER2), actualiza la variable global de cuenta.

Lo óptimo para que la identificación de las variaciones de frecuencia fuera lo más sensible posible sería que se provocara una interrupción con cada flanco de la señal de entrada y que la interrupción periódica del timer fuera lo más extensa posible, pero nos encontramos con varios limitantes: la frecuencia de reloj de CPU y su procesamiento de instrucciones y la velocidad de transmisión de datos (bps).

Para encontrar el límite se realiza un cálculo aproximado y posteriormete se ajustan los valores del programa con ayuda de un osciloscopio. El cálculo realizado es el siguiente: CALCULO.

A continuación, se muestra el código del receptor (archivo main.c) con comentarios que describen las diferentes líneas escritas

```
#include <avr/io.h>
// definiciones de registros especificos del controlador de io
#include <avr/interrupt.h>
// gestion de IRQs
#include <stdint.h>
// definiciones de tipos estandar
#define WAIT TIME 10000UL
#define COUNT_MAX 79
#define COUNT_MIN 79
uint8_t volatile count = 0;
uint8_t volatile count_before = 0;
uint8_t volatile mean = 0;
// AJUSTAR TIEMPOS DE LOS TIMERS CON EL OSCILOSCOPIO Y 2 SONDAS
void setup_timer_0_counter(void)
   // set configuration registers
   // set CTC mode and COM on toggle with compare match
   TCCROA = (1 << COMOAO) | (1 << WGMO1);
   //TCCROA = (0 << COMOAO) | (1 << WGMO1);
   // 4 count limit frequency for F_in = 60 KHz and F_CPU = 1 MHz
   OCROA = 4;
     select clock source as external source falling edge no prescaler
   TCCROB = (1 << FOC2A) | (1 << FOC2B) | (1 << CS12) | (1 << CS11);
   // set PD6 as output wich is TIMERO COMP_A OUTPUT
   DDRD = (1 << DDD6);
// set TIMERO interrupt COMP_A mask enable
   TIMSKO = (1 << OCIEOA);
ISR(TIMERO_COMPA_vect)
{
   //counter
     count++;
}
void setup_timer_2_gate(void)
```

```
{
   // set CTC mode and COM on toggle with compare match
   TCCR2A = (1 << COM2A0) | (1 << WGM21);
   //TCCR2A = (0 << COM2A0) | (1 << WGM21);
   OCR2A = 200;
// select clock source as internal prescaler 32
   TCCR2B = (1 << CS21) | (1 << CS20);
// PB3 as output compare match A timer 2
        DDRB = (1 << DDB3);
// set TIMER2 interrupt COMP_A mask enable
   TIMSK2 = (1 << OCIE2A);
}
ISR(TIMER2_COMPA_vect)
   // gate
   //mean = (count + count_before) >> 1;
   if (count > COUNT_MAX)
      // pinout PBO
      // digital_out = 0;
      PORTB &= ~(1 << PORTBO);
   if(count < COUNT_MIN)</pre>
      // digital_out = 1;
      PORTB |= (1 << PORTBO);
// count_before = count;
   count = 0;
void wait_init(void)
      for(int i=0; i<WAIT_TIME; i++);</pre>
int main(void)
    PRTIMO = 0 to enable in power reduction and to enable timer2
   IMPORTANTE
   setup_timer_0_counter();
   setup_timer_2_gate();
   DDRB |= (1 << DDB0);</pre>
   //enable global interrupts
   sei();
   wait_init();
  while(1);
}
```

3.2.2. Diseño del codificador digital para la transmisión

Introducción El objetivo del microcontrolador en la parte de transmisión, codifica mensajes según los botones pulsados. Consiste en tres pulsadores, donde cada cual codifica un símbolo diferente, para que el receptor actúe de manera distinta según el botón pulsado. El algoritmo de comunicación entre transmisor y receptor se realiza de manera asíncrona. Para diferenciar los símbolos digitales se ha de tener en cuenta el tipo de modulación ASK, donde el 1 implica recibir señal y el 0 no se ha recibido. Los relojes o timers encargados de la codificación y decodificación tanto en transmisión como en recepción, deben trabajar a la misma tasa de baudios para identificar correctamente los mensajes.

Configuración de reloj

Codificación de los mensajes La codificación de los diferentes símbolos se desarrolla de forma que, los algoritmos de codificación y decodificación se realicen de la forma más sencilla y robusta posible, teniendo en cuenta el tipo de modulación ASK. Es por eso que cada símbolo se representa por el número de unos lógicos transmitidos de forma que si quisieramos transmitir N símbolos, la serie de codificación sería:

Symbol	Codification
1	0b1
2	0b11
3	0b111
N	0 b $1111 \cdot N$ times

Cuadro 1: Codification of Digital Symbols

```
#include <avr/io.h>
// definiciones de registros especificos del controlador de io
#include <avr/interrupt.h>
// gestion de IRQs
#include <stdint.h>
// definiciones de tipos estandar
#define PIN_OUT PINBO
uint8_t volatile lock_button = 0;
uint8_t volatile code = 0;
/* code legend binary:
 * 0000 = Not_valid
* 1000 = pd5
  1100 = pd6
  1110 = pd4
#define DEBUG
#ifdef DEBUG
#define COUNT 100000UL
void debug_stop_exec(void)
{
   //toggle pb0
      PORTB ^= (1 << PORTBO);
```

```
for(int i=0; i<COUNT; i++);</pre>
      PORTB ^= (1 << PORTBO);
      for(int i=0; i<COUNT; i++);</pre>
      while(1);
}
#endif
void setup_timer_2_gate(void)
   // set CTC mode and COM on toggle with compare match
   TCCR2A = (1 << COM2A0) | (1 << WGM21);
   //TCCR2A = (0 << COM2A0) | (1 << WGM21);
   OCR2A = 200;
    select clock source as internal prescaler 32
   TCCR2B = (1 << CS21) | (1 << CS20);
    PB3 as output compare match A timer 2
        DDRB |= (1 << DDB3);</pre>
// set TIMER2 interrupt COMP_A mask enable
  // TIMSK2 = (1 << OCIE2A);
   // enable timer2 in power reduction
   //PRR &= ~(1 << PRTIM2);
}
ISR(TIMER2_COMPA_vect)
   // gate
   uint8_t current_code = 0;
   // check if LSB of variable code is 0 or 1
   current_code = (0b1 & code);
   // LSR variable code to load next LSB
   code = (code >> 1);
   // detectado 0 -> desbloquear boton y desactivar mask
   if(!current_code)
   {
      // unlock button press
      lock_button = 0;
      // write 0 in output pin
      PORTB &= ~(1 << PIN_OUT);</pre>
      // disable timer2 interrupts
      TIMSK2 &= ~(1 << OCIE2A);
   }
   else
      // continue with lock button until a 0 is processed
      lock_button = 1;
      // write 1 in output pin
      PORTB |= (1 << PIN_OUT);
   }
```

```
}
ISR(PCINT2_vect)
   // auto clear the interrupt
   // read which pin invoked the interrupt line
   uint8_t irq = 0;
   irq = PIND;
// if (button_pressed & irq)
   // check if pd5 set interrupt flag and if lock button is in progress
   if ( ((!(irq & (1 << PIND6))) & (!lock_button)) )</pre>
   {
      //lock button
      lock_button = 1;
      // set appropiate code variable
      code = 0b01;
      //clear possible timer2 interrupt to sync timer2
      // TIMER2 interrupt COMP_A interrupt clear by writing a logic 1 if a
          1 is written
      //TIFR2 |= (TIFR2 & (1 << OCIE2A));
      TCNT2 = 0;
      //enable timer2 interrupt mask
      TIMSK2 = (1 << OCIE2A);
   }
}
void setup_gpio_pins(void)
   //configurar gpios pd5, pd6, pd7 as input
   DDRD &= ~(1 << DDD5);
   DDRD &= ~(1 << DDD6);
   DDRD &= ~(1 << DDD7);
   // activate pull-ups
   PORTD |= (1 << PORTD5);
   PORTD |= (1 << PORTD6);
   PORTD |= (1 << PORTD7);
   // activate the pin change interrupts
   // first activate PC2vector
   PCICR |= (1 << PCIE2);
   // second activate pd5 \rightarrow PC21, pd6 \rightarrow PC22, pd7 \rightarrow PC23 to trigger
      interrupt
   PCMSK2 = ((1 << PCINT21) | (1 << PCINT22) | (1 << PCINT23));
   //config pb7 as output
   DDRB |= (1 << PIN_OUT);</pre>
   //set init low level
   //set init high level
```

```
PORTB &= ~(1 << PIN_OUT);
}
int main(void)
{
   setup_timer_2_gate();
   setup_gpio_pins();

   //enable global interrupts
   sei();

   while(1);
}</pre>
```

4. Cronología del proyecto y diagrama de Grant

cuento general cronologico migracion de unas cosas a otras

En este apartado se expone a modo de resumen, un historial de desarrollos del proyecto los cuales no se terminaron llevando a cabo por diferentes motivos. Se trata de dar a entender las diferentes alternativas que han surgido, el aprendizaje que se ha obtenido de las mismas y el por qué fue abandonada su línea de desarrollo.

4.1. transmisor FM a varactor

Desarrollo técnico la idea original del proyecto fue el realizar un transmisor y receptor de FM digital. El sistema se pensó de forma que su frecuencia de trabajo fuera aproximadamente 1MHz. El transmisor modulaba la frecuencia portadora de forma que una tensión inversa de baja frecuencia (moduladora), se aplicaba a unos diodos capacitivos o varactores. Estos diodos varactores se encontraban de circuito tanque en el bucle de oscilación. Este modelo de transmisor funcionaba correctamente.

Por otro lado, el receptor de FM era bastante complejo. Un filtro de entrada exigente, seguido de un amplificador, y acontinuación una etapa de filtrado muy agudo a la frecuencia de la portadora. Esta estrategia permite la conversión de una señal modulada en FM a una señal modulada en AM. Posteriormente se realizala etapa del demodulador AM el cual requería de amplificadores y acondicionamiento de señal tedioso.

ANADIR IMAGENES BUSCAR

Motivos de reemplazo Los motivos de remplazo de este modelo fueron varios. En primer lugar, el sistema de transmisor y receptor no funcionaba a distancias mayores de pocos centímetros. Esto era debido principalmente a la baja potencia radiada. La bobina del circuito tanque de oscilación debía tener numerosas espiras para que a esa frecuencia tan baja consiguiera inducir, por acople magnético, tensión en el receptor. A parte de el problema mencionado, el transmisor tenía un excesivo consumo estático. En cuanto al receptor, los problemas también fueron varios. Los filtros, tan agudos eran complicados de fabricar, más si los filtros debían ser diseñados a la frecuencia de la portadora como conversión directa. Además, la necesidad de implementar también el demodulador de AM tomando como entrada la señal filtrada se hacía complicado. Finalmente se opta por mejorar el diseño del sistema proponiendo una segunda versión.

4.2. receptor superheterodino FM

Desarrollo técnico Como intento de mejora a la anterior versión, la cual era de conversión directa, se trató de diseñar un receptor superheterodino. A su vez, se mantuvo el diseño del transmisor a varactores, pero se cambió la frecuencia de trabajo a una mayor, unos 16 MHz.

El diseño consistía en un filtro de entrada que era mezclado en un mezclador con un oscilador. Después se realizaba el tratamiento con la señal de frecuencia intermedia. Un amplificador de dos etapas y posteriormente a un rectificador con filtro paso bajo para demodular la señal. Se muestra un esquemático en la figura REF

Motivos de reemplazo buena selectividad abandono por mala distancia de recepcion amplificador de FI complejo y oscilante, en general no era eficiente, muchos componentes para bajas prestaciones, aparte de cambio de modulacion y frecuencia. Es por esto, que en el diseño final se opta por diseñar un sistema AM.

4.3. Máquina de estados digital

desarrollo tecnico

correcto funcionamiento, sin embargo, debido a que la senal digital de entrada no era fiable, esto provocaba un comportamiento no deseado del circuito. A parte de esto, el uso de un microcontrolador abre una inmensidad de posibilidades como la recepción de múltiples canales, en un menor espacio e incluso con un precio más económico.

4.4. Alternativa viable: conversión directa

posible diseño final funcionaba aunque poca distancia.

4.5. Diagrama de Grant

5. Resultados y conclusiones

gestion de ideas y su implementacion en la realidad, diversos niveles de complejidad, un proyecto complicado en la teoria en la practica no funcionaba como se esperaba, al final equilibrio entre complejidad y performance. Conocimiento de sistemas de radiofrecuencia y metodos de analisis y visualizacion practica, diversos errores relacionados con RF Relacion de los conocimientos de las distintas ramas que ofrece el grado (control, informatica y diseno digital, fisica y electromagnetismo, radiofrecuencia, electronica analogica). Lo considero una experiencia, aunque dura y complicada, que me ha llevado mas tiempo del esperado, ha sido satisfactoria, y que ademas me ha permitido llevar con facilidad mi desarrollo a nivel profesional, debido a la asimilacion de numerosos conceptos estudiadas en las materias y llevados a la practica.

6. Bibliografía

7. Indice de figuras

Índice de figuras

2.	Representación de un transistor como cuadripolo lineal	6
3.	a) Amplificador sin realimentación, b) Sistema realimentado	8
4.	Amplificador de tensión con realimentación serie paralelo ideal	9
5.	Amplificador de transresistencia con realimentación paralelo paralelo real	9
6.	Esquema general de un SOC	10
7.	Diagrama de bloques del Atmega328p, en detalle la CPU	11
8.	Mapa de memoria de datos direccionada por bytes	12
9.	Esquema eléctrico del transmisor	14
10.	A) Modelo en pequeña señal del bucle de oscilación para frecuencias medias B)	
	Modelo en pequeña señal del oscilador sustituyendo el condensador de realimentación	
	C_1 por su equivalente en parámetros Y	15
11.	Diagrama de Bode de la ganancia en lazo abierto del oscilador A_l para frecuencias	
	intermedias	17
12.	Simulación de V_C modulada por $V_{digital}$	18
13.	Simulación de la FFT de V_C de forma general	19
14.	Simulación de la FFT de V_C ampliada a la frecuencia de trabajo $\ldots \ldots \ldots$	19
15.	Esquema eléctrico del receptor	20
16.	A) Modelo en pequeña señal del bucle de oscilación para frecuencias de RF B) Modelo	
	en pequeña señal del oscilador sustituyendo el condensador de realimentación \mathcal{C}_2 por	
	su equivalente en parámetros Y	21
17.	Simulación de puntos de interés en varios ciclos ampliados	23
18.	Simulación de V_{out} junto a V_{ouench}	23