Boston University ENG EC 414 Introduction to Machine Learning

Exam 1

Released on Monday, 5 October, 2020 (120 minutes, 42 points + 2 bonus points), submit to Gradescope

- There are 6 problems plus 1 bonus one.
- For each part, you must clearly outline the key steps and provide proper justification for your calculations in order to receive full credit.
- You can use any material from the class (slides, discussions, homework solutions, etc.), but you cannot look for solutions on the internet. Also, be aware of the limited time.

Problem 1.1 [5pts] Let $f(z) := z^2$ and $\mathcal{A} := [-1, 1]$. Compute: $\underset{z \in \mathcal{A}}{\operatorname{argmin}} \frac{1}{13 + \sqrt{1 + 2 \cdot f(z)}}$.

Problem 1.2 [6pts] Let $\mathcal{Y} := \{1.5, 2.0, 3.5, 6.0\}$ and $y_1 = y_2 = 1.5, y_3 = 2.0, y_4 = y_5 = 3.5, y_6 = 6.0.$

- (a) [2pts] Compute argmin $\frac{1}{6} \sum_{j=1}^{6} \mathbf{1}[y \neq y_j]$.
- (b) [2pts] Compute $\underset{y \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{6} \sum_{j=1}^{6} (y y_j)^2$.
- (c) [2pts] Compute $\underset{y \in \mathbb{R}}{\operatorname{argmin}} \frac{1}{6} \sum_{j=1}^{6} |y y_{j}|.$

Problem 1.3 [10pts]

- (a) [2pts] Consider the hyperplane parametrized by \mathbf{w} and b with b=3 and $\mathbf{w}=(1, -4, 8)^{\mathsf{T}}$. Determine which of the following points lie on the hyperplane: (i) $\mathbf{x}_1=(-2, 2, 1)^{\mathsf{T}}$, (ii) $\mathbf{x}_2=(0, 1, 0)^{\mathsf{T}}$, (iii) $\mathbf{x}_3=(1, 3, 1)^{\mathsf{T}}$.
- (b) [2pts] Compute the distance of $\mathbf{x}_4 = (-1, -1, -1)^{\mathsf{T}}$ from the hyperplane in part (a).
- (c) [3pts] Compute the orthogonal projection of the point \mathbf{x}_4 from part (b) onto the hyperplane in part (a).
- (d) [3pts] Determine parameters **w** and *b* of the hyperplane passing through the following 3 points: $\mathbf{x}_5 = (1/2, 0, 0)^{\mathsf{T}}, \mathbf{x}_6 = (1, 1, 0)^{\mathsf{T}}, \mathbf{x}_7 = (-1, 1, -1)^{\mathsf{T}}.$

Problem 1.4 [6pts] Consider the following set of feature vectors and corresponding real-valued labels

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}, \mathbf{x}_4 = \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \quad y_1 = 4, y_2 = 2, y_3 = -8, y_4 = 2.$$

- (a) [4pts] Fix b = 0 and compute by hand the ordinary least squares (OLS) solution \mathbf{w}^* .
- (b) [2pts] Compute the OLS prediction of \mathbf{w}^* and b = 0 for the vector \mathbf{x}_1 .

Problem 1.5 [7pts] Let $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)$ be a training set with feature vectors $\mathbf{x}_j \in \mathbb{R}^d$ and labels $y_j \in \mathbb{R}$. Consider the following cost function for Regularized Least Square without bias, that is, there is no b:

$$g(\mathbf{w}) = \|\mathbf{w}\|^2 + \frac{1}{2m} \sum_{i=1}^{m} (y_j - \mathbf{x}_j^{\mathsf{T}} \mathbf{w})^2.$$

Note that this formulation is slightly different from the one seen in class, don't just copy from the slides!

- (a) [2pts] Compute the gradient $\nabla g(\mathbf{w})$.
- (b) [2pt] Provide pseudocode for an algorithm to minimize $g(\mathbf{w})$ based on gradient descent with zero initialization, a fixed positive step size $\eta > 0$, and the maximum number of iterations T.
- (c) [3pt] After a certain number of iterations less than the maximum number of iterations, w_t in gradient descent stops changing, that is $w_{t+1} = w_t$. Can it happen? If yes, in which situations? If no, why?

Problem 1.6 [8pts] Consider the following training set of feature vectors and corresponding binary labels

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} -3 \\ 1 \end{bmatrix}, \mathbf{x}_4 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad y_1 = -1, y_2 = 1, y_3 = 1, y_4 = -1.$$

- (a) [2pts] Hand-plot the training set. Proper labeling of axes and key points is needed to receive full credit.
- (b) [2pts] Is it possible to find a hyperplane that linearly separates this training set? A motivation for your answer is needed to receive full credit.
- (c) [2pts] Will the Perceptron converge on this dataset? A motivation for your answer is needed to receive full credit.
- (d) [2pts] Using the usual augmentation to include the bias in features and hyperplane, compute by hand the first update $\tilde{\mathbf{w}}_2$ of the Perceptron algorithm starting from $\tilde{\mathbf{w}}_1 = \begin{bmatrix} 0, 0, 0 \end{bmatrix}^T$, after seeing the example $\tilde{\mathbf{x}}_1 = \begin{bmatrix} 1 \\ \mathbf{x}_1 \end{bmatrix}$.

Problem 1.7 [Bonus, 2pts] Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ equal to $f(x_1, x_2) = \frac{1}{2}x_1^2 + \frac{1}{5}x_2^2 + \frac{1}{4}\sin(2x_1)$. Is it convex? Motivate your answer.