Física Experimental

- Trabalho, Energia e Conservação de Energia -

ISEP 2016/17 1°semestre

Energia

Qualquer processo físico envolve energia – cinética, potencial, térmica -, transferência de energia, transformação de uma forma de energia em outra forma de enegia...

Conceitos como deslocamento, velocidade, aceleração, força são mais facilmente definidos e apreendidos e permitiram, até agora fazer uma descrição de corpos tratados como partículas materiais. Mas...

... E se a força resultante sobre um corpo/sistema não for constante? (Ex.: força gravítica, força elástica, força de Coulomb)

É vantajoso poder descrever a evolução do sistema em termos de balanços energéticos: conservação ou dissipação de energia.

Energia

Sistema: partícula, corpo, conjunto de corpos, separados do resto do Universo – vizinhança - por uma fronteira, através da qual se efectuam as eventuais trocas de energia.

Exemplo:

sistema = esfera+bloco+fio

Influência da vizinhança: peso dos corpos, força de atrito e reacção normal no bloco, força da roldana no fio.

Forças internas: tensão no fio, forças dos corpos no fio e do fio nos corpos.

Trabalho e Energia cinética (1)

Trabalho (work): forma mais comum de transferência de energia

Trabalho de uma <u>força constante</u> num movimento rectilíneo (1D):

$$W_{\vec{F}}(\Delta \vec{r}_{AB}) = \vec{F} \cdot \Delta \vec{r}_{AB} = F \cdot \Delta s_{AB} \cdot \cos \theta$$

(produto escalar ou interno de vectores)

Trabalho e Energia cinética (2)

Força "útil" na realização de trabalho

$$W_{\vec{F}}(\Delta \vec{r}_{AB}) = F \cdot \cos \theta \cdot \Delta s_{AB} = F_t \cdot \Delta s_{AB}$$

Unidade SI: joule (1J=1Nm=1kgm²s⁻²)

Nota:
$$\Delta \vec{r} = \vec{0} \Rightarrow W_{\vec{F}} = 0$$

$$0 \le \theta < 90^{\circ}$$
 $\Rightarrow W_{\vec{F}} > 0$ trabalho potente (ex. peso numa descida) $\theta = 90^{\circ}$ $\Rightarrow W_{\vec{F}} = 0$ trabalho nulo (ex. reacção normal) $0 < \theta \le 180^{\circ}$ $\Rightarrow W_{\vec{F}} < 0$ trabalho resistente (ex. força de atrito cinético, peso numa subida)

Trabalho e Energia cinética (3)

E quando <u>várias forças constantes</u> actuam no mesmo corpo/sistema, em simultâneo? Qual o trabalho total realizado sobre o sistema?

$$\begin{split} W_{\vec{F}_{1}}(\Delta\vec{r}_{AB}) + W_{\vec{F}_{2}}(\Delta\vec{r}_{AB}) + \dots + W_{\vec{F}_{n}}(\Delta\vec{r}_{AB}) &= \vec{F}_{1} \cdot \Delta\vec{r}_{AB} + \vec{F}_{2} \cdot \Delta\vec{r}_{AB} + \dots + \vec{F}_{n} \cdot \Delta\vec{r}_{AB} \\ &= (\vec{F}_{1} + \vec{F}_{2} + \dots + \vec{F}_{n}) \cdot \Delta\vec{r}_{AB} \\ &= \vec{F}_{R} \cdot \Delta\vec{r}_{AB} \\ &= W_{\vec{F}_{D}}(\Delta\vec{r}_{AB}) \end{split}$$

O trabalho total realizado sobre o sistema é igual ao trabalho realizado pela força resultante!

Trabalho e Energia cinética (4)

A realização de trabalho está associada a uma <u>transferência de energia</u> entre o resto do universo e o sistema (por intermédio da vizinhança deste), através da fronteira que o delimita.

$$W_{ec{F}} > 0
ightarrow rac{ ext{trabalho realizado sobre o sistema (pela vizinhança)}}{ ext{vizinhança}} \ W \leftrightarrow \Delta E \quad \therefore \quad W_{ec{F}} = 0
ightarrow \qquad ext{trabalho nulo} \ W_{ec{F}} < 0
ightarrow \qquad ext{trabalho realizado pelo sistema sobre a vizinhança}$$

Trabalho e Energia cinética (5)

Energia cinética: forma de energia associada ao movimento

Uma consequência possivel da realização de trabalho sobre um corpo é a alteração da sua velocidade...

$$W_{total}(\Delta \vec{r}_{AB}) = W_{\vec{F}_R}(\Delta \vec{r}_{AB}) = \vec{F}_R \cdot \Delta \vec{r}_{AB} = F_{Rx} \cdot \Delta s_{AB}$$

$$\vec{F}_R = m \cdot \vec{a} \Rightarrow F_{Rt} = m \cdot a_t \quad (2^a \text{ Lei de Newton})$$

$$v_B^2 = v_A^2 + 2 \cdot a_t \cdot \Delta s_{AB} \quad \text{(movimento uniformemente variado a 1D)}$$

$$W_{total}(\Delta \vec{r}_{AB}) = m \cdot a_t \cdot \Delta s_{AB} = m \cdot \frac{1}{2} (v_B^2 - v_A^2) = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2$$

Trabalho e Energia cinética (6)

Energia cinética: forma de energia associada ao movimento

O trabalho total realizado sobre um corpo de massa m no seu deslocamento de A para B é igual à variação correspondente da quantidade

$$\frac{1}{2}mv^2$$

associada ao movimento do corpo — Energia cinética (E_C) de um corpo de massa m com velocidade v.

$$E_C = \frac{1}{2}mv^2$$

Unidade SI de Energia : joule (1J=1kgm²s⁻²)

Trabalho e Energia cinética (7)

Teorema do Trabalho-Energia cinética:

O trabalho total realizado sobre um sistema de massa m no seu deslocamento de A para B é igual à variação da sua energia cinética entre essas posições.

$$W_{total}(\Delta \vec{r}_{AB}) = \frac{1}{2} m v_B^2 - \frac{1}{2} m v_A^2$$
$$= E_C(B) - E_C(A)$$
$$= \Delta E_C(A \to B)$$

Nota: o resultado foi deduzido para forças constantes e deslocamentos rectilíneos, mas mantém a sua validade para forças variáveis e deslocamentos no espaço 3D.

Trabalho e Energia cinética (8)

Table 7.1

Kinetic Energies for Various Objects			
Object	Mass (kg)	Speed (m/s)	Kinetic Energy (J)
Earth orbiting the Sun	5.98×10^{24}	2.98×10^{4}	2.66×10^{33}
Moon orbiting the Earth	7.35×10^{22}	1.02×10^{3}	3.82×10^{28}
Rocket moving at escape speeda	500	1.12×10^{4}	3.14×10^{10}
Automobile at 65 mi/h	2 000	29	8.4×10^{5}
Running athlete	70	10	3 500
Stone dropped from 10 m	1.0	14	98
Golf ball at terminal speed	0.046	44	45
Raindrop at terminal speed	3.5×10^{-5}	9.0	1.4×10^{-3}
Oxygen molecule in air	5.3×10^{-26}	500	6.6×10^{-21}

Escape speed is the minimum speed an object must reach near the Earth's surface in order to move infinitely far away from the Earth.

Trabalho e Energia Cinética (9)

Trabalho de uma força variável

$$W \approx F_x \Delta x$$

~ trabalho realizado por F num pequeno deslocamento Δx , em que F ~ constante

$$W \approx \sum_{x_i}^{x_f} F_x \Delta x$$

 \sim trabalho realizado por F no deslocamento $x_i \rightarrow x_f$

No limite em que $\Delta x \rightarrow 0$, o trabalho realizado por F no deslocamento $x_i \rightarrow x_f$ é determinado de forma exacta pelo integral a uma dimensão:

$$\lim_{\Delta x \to 0} \sum_{x_i}^{x_f} F_x \Delta x = \int_{x_i}^{x_f} F_x dx$$

Trabalho e Energia Cinética (10)

Trabalho \rightarrow área debaixo da curva F = F(x)

$$W = \int_{x_i}^{x_f} F_x \, dx$$

Quando várias forças actuam simultaneamente no sistema, o cálculo pode ser feito através do trabalho da força resultante:

$$\sum W = W_{\text{net}} = \int_{x_i}^{x_f} \left(\sum F_x\right) dx$$

Uma força F, com uma componente horizontal de intensidade variável, representada no gráfico como função da posição x, actua num corpo enquanto este se desloca 6m.

Qual o trabalho total realizado por F sobre o corpo?

trabalho realizado por F no deslocamento $0 \rightarrow 4$ m (área do rectângulo)

trabalho realizado por F no deslocamento $4 \rightarrow 6 \text{ m}$ $\frac{1}{2}(5.0 \text{ N})(2.0 \text{ m}) = 5.0 \text{ J}$ (área do triângulo)

$$(5.0 \text{ N})(4.0 \text{ m}) = 20 \text{ J}$$

$$\frac{1}{2}(5.0 \,\mathrm{N})(2.0 \,\mathrm{m}) = 5.0 \,\mathrm{J}$$

25 J.

Trabalho e Energia Cinética (11)

Trabalho da força elástica

Força elástica numa mola → exemplo típico de uma força variável (Lei de Hooke):

$$F_s = -kx$$

O trabalho realizado pela força que a mola faz no bloco, num deslocamento $x_i \rightarrow x_f$ é calculado através do integral

$$W_s = \int_{x_i}^{x_f} (-kx) dx = \frac{1}{2} k x_i^2 - \frac{1}{2} k x_f^2$$
$$\int x^n dx = \frac{x^{n+1}}{(n+1)}$$

Trabalho e Energia Cinética (12)

Trabalho da força elástica

– cálculo gráfico

trabalho realizado por F no deslocamento $-x_{max} \rightarrow 0$ (área do triângulo):

$$W_s = \int_{x_i}^{x_f} F_s dx = \int_{-x_{\text{max}}}^{0} (-kx) dx = \frac{1}{2} kx_{\text{max}}^2$$

trabalho realizado por F no deslocamento $\theta \to x_{max}$ (área de um triângulo semelhante, abaixo do eixo xx):

$$W_{\rm s} = -\frac{1}{2}kx_{\rm max}^2$$

O trabalho realizado por F no deslocamento total $-x_{max} \rightarrow x_{max}$ é nulo!

Trabalho e Energia a 3 dimensões (1)

Definição geral de trabalho

Partícula de massa *m*, em movimento ao longo de uma trajectória curva *s* no espaço 3D, sujeita à acção de uma força variável **F**:

$$W_{\vec{F}}(\vec{r}_1 \to \vec{r}_2) = \int_{\vec{r}_1}^{\vec{r}_2} \vec{F}(\vec{r}) \cdot d\vec{r}$$

$$\therefore W_{\vec{F}}(\vec{r}_1 \to \vec{r}_2) = \int_{s_1}^{s_2} F_s(s) \, ds$$

Nota:
$$W_{\vec{F}}(\vec{r}_1 \to \vec{r}_2) = \int_{x_1}^{x_2} F_x dx + \int_{y_1}^{y_2} F_y dy + \int_{z_1}^{z_2} F_z dz$$

Trabalho e Energia a 3 dimensões (2)

Teorema do trabalho-energia cinética - F(s), 3D

trabalho realizado por $\mathbf{F}(s)$ na trajectória $s_1 \rightarrow s_2$:

$$W_{\vec{F}}(\vec{r}_1 \to \vec{r}_2) = \int_{s_1}^{s_2} F_s(s) \, ds$$

mudança de variável de integração por aplicação da 2^a Lei de Newton (v é a velocidade escalar):

$$F_s(s) = m a_s = m \frac{dv}{dt} = m \frac{dv}{ds} \frac{ds}{dt} = m \frac{dv}{ds} v$$

$$\therefore F_s(s) = m \frac{dv}{ds} v \Leftrightarrow F_s(s) ds = mv dv$$

$$W_{\vec{F}}(\vec{r_1} \to \vec{r_2}) = \int_{s_1}^{s_2} F_s(s) \, ds = \int_{v_1}^{v_2} mv \, dv = \frac{1}{2} mv_2^2 - \frac{1}{2} mv_1^2$$

$$W_{\vec{F}}(\vec{r}_1 \to \vec{r}_2) = E_C(2) - E_C(1) = \Delta E_C(1 \to 2)$$

Potência (1)

Potência – taxa temporal de realização de trabalho (ou transferência de energia)

$$Potência = \frac{Energia}{tempo}$$

Unidade SI de Potência: watt (1W=1Js⁻¹)

Potência (2)

Potência média no intervalo 4t:

$$\overline{P} = \frac{W}{\Delta t} = \frac{\Delta E}{\Delta t}$$

(taxa à qual a energia atravessa a fronteira do sistema)

$$\lim_{\Delta t \to 0} \overline{P} = \lim_{\Delta t \to 0} \frac{W}{\Delta t} = \frac{dW}{dt} = \frac{\vec{F} \cdot d\vec{r}}{dt} = \vec{F} \cdot \vec{v} = F_s v$$

Potência instantânea:

$$P = \vec{F} \cdot \vec{v} = F_s \ v = \frac{dE}{dt}$$

$$(1W=1Js^{-1}=1kgm^2s^{-3}=1Nms^{-1})$$

Trabalho e Energia Potencial (1)

Forças conservativas e não-conservativas

O trabalho realizado pelo peso do frigorífico no deslocamento do chão até à traseira da *pickup* é independente do comprimento e inclinação da rampa.

$$\begin{aligned} W_{\vec{P}} &= \vec{P} \cdot \Delta \vec{r} = P \cdot L \cdot \cos(\vec{P}^{\wedge} \Delta \vec{r}) \\ &= -mg \cdot L \cdot \frac{\Delta h}{L} = -mg\Delta h \\ &= mgh_i - mgh_f \end{aligned}$$

Trabalho e Energia Potencial (2)

Forças conservativas e não-conservativas

O trabalho realizado pelo peso desta bola (P=10N) nas três trajectórias descendentes **a**, **b** e **c**, tem sempre o valor W=30I...

... e se houver atrito? O trabalho da força de atrito depende da trajectória (existência ou não de rampa, inclinação, comprimento...)

Trabalho e Energia Potencial (3)

Forças conservativas e não-conservativas

A força gravítica é uma força conservativa e a força de atrito é uma força nãoconservativa.

Forças conservativas:

- 1. O trabalho não depende da trajectória, mas apenas das posições inicial e final (ex: $W_P = mg(h_f h_i)$).
- 2. O trabalho é nulo numa trajectória fechada ($b_f = b_i$, logo $W_p = 0$)

Trabalho e Energia Potencial (4)

<u>Sistema</u> = livro + Terra (interacção através da força gravítica)

Ao elevarmos o livro de uma altura inicial y_a até uma altura final y_b , a uma velocidade constante, estamos a realizar trabalho sobre o sistema...

Se não houver variação da E_{C} , qual o tipo de energia que estamos a transferir para o sistema?

Nota: se deixarmos cair o livro a partir de y_b , o sistema vai adquirir Ec...

Trabalho e Energia Potencial (5)

A energia armazenada no sistema tinha o potencial de se transformar em trabalho ou E_C , o que aconteceu quando largámos o livro... chama-se por isso <u>Energia potencial</u>:

- depende da configuração do sistema;
- existe apenas associada a forças conservativas.

O trabalho da força aplicada \mathbf{F}_{ap} para elevar o livro, é:

$$W = (\mathbf{F}_{app}) \cdot \Delta \mathbf{r} = (mg\hat{\mathbf{j}}) \cdot [(y_b - y_a)\hat{\mathbf{j}}] = mgy_b - mgy_a$$

Também aqui, o trabalho realizado é igual à variação de uma quantidade entre os estados inicial e final...

Trabalho e Energia Potencial (6)

Energia potencial gravítica

À quantidade cuja variação está assocido o trabalho da força simétrica do peso do livro, no exemplo anterior, dá-se o nome de Energia potencial gravítica:

$$E_{Pg} = mgh$$

- é uma grandeza escalar;
- exprime-se em joules (J) no sistema internacional;
- depende apenas da altura *h* do corpo (para um sistema Terra+corpo, próximo da superfície da Terra);
- a sua variação está relacionada com o trabalho da força gravítica:

$$\Delta E_{Pg}(A \to B) = mg\Delta h_{AB} = -W_{\vec{P}}(A \to B)$$

Conservação da Energia Mecânica (1)

<u>Sistema</u> = livro + Terra (interacção gravítica)

Sendo a força gravítica conservativa, o trabalho do peso do livro está associado à variação da E_{Pg} :

$$W_{\vec{P}}(B \to A) = \vec{P} \cdot \Delta \vec{r}_{BA}$$

$$= -mg \, \hat{j} \cdot (y_A - y_B) \, \hat{j}$$

$$= -(mg \, y_A - mg \, y_B)$$

$$= -\Delta E_{Pg}(B \to A)$$

Segundo o teorema do Trabalho - Energia Cinética,

$$\vec{F}_a = \vec{0} \Rightarrow \vec{F}_R = \vec{P}$$

$$\Rightarrow W_{\vec{P}}(B \to A) = W_{total}(B \to A) = \Delta E_C(B \to A)$$

Conservação da Energia Mecânica (2)

Energia mecânica E_m

$$\begin{split} \therefore -\Delta E_{Pg} \left(B \to A \right) &= \Delta E_C \left(B \to A \right) \\ \Leftrightarrow \Delta E_{Pg} \left(B \to A \right) + \Delta E_C \left(B \to A \right) &= 0 \\ \Leftrightarrow \Delta \left[E_{Pg} + E_C \right]_{(B \to A)} &= 0 \end{split}$$

Não há variação da quantidade $(E_{Pg}+E_C)$ do sistema. Ou seja, essa quantidade permanece constante:

$$\Leftrightarrow (E_{Pg} + E_C)_B = (E_{Pg} + E_C)_A$$

À quantidade $(E_p + E_C)$ dá-se o nome de Energia Mecânica (E_m) do sistema (no termo E_p estão incluídos todos os tipos de energia potencial existentes no sistema – gravítica, elástica, electrostática...)

Conservação da Energia Mecânica (3)

Conservação da energia mecânica

Quando apenas forças conservativas internas realizam trabalho sobre o sistema, a energia mecânica permanece constante (é 'conservada'... daí o termo 'conservativa' aplicado a certas forças):

$$\Delta E_m = 0 \Leftrightarrow E_{mi} = E_{mf}$$

$$\Leftrightarrow E_{Pi} + E_{Ci} = E_{Pf} + E_{Cf}$$

Exemplo: interacção entre uma mola e um bloco que pode deslizar numa superfície horizontal sem atrito:

Conservação da Energia

Transferências de Energia

Mecanismos de transferência (exs.)

ondas mecânicas, electromagnéticas, transferência de massa, energia eléctrica, calor, trabalho mecânico...

Conservação da Energia

Trabalho de forças não conservativas

Quando uma força não-conservativa realiza trabalho, a energia mecânica do sistema não é conservada.

Pelo terorema do Trabalho – En. Cinética:

$$\Delta E_C = W_{total} = W_{\vec{F}_R} = W_{\vec{F}_{Cons}} + W_{\vec{F}_{NCons}}$$

Pela definição de forças conservativas:

$$\Delta E_P = -W_{\vec{F}_{Cons}}$$

Assim, pela definição de Energia Mecânica:

$$\Delta E_C + \Delta E_P = W_{\vec{F}_{Cons}} + W_{\vec{F}_{NCons}} - W_{\vec{F}_{Cons}}$$

$$\Leftrightarrow \Delta E_m = W_{\vec{F}_{NCons}}$$

Nota: na figura, \mathbf{F} aumenta a energia mecânica do bloco enquanto $\mathbf{f_k}$ diminúi a energia mecânica. \mathbf{n} , apesar de ser também uma força não-conservativa, não altera a E_m do bloco.

Conservação da Energia

Trabalho da força de atrito cinético

Quando a única força não conservativa a realizar trabalho sobre o sistema é a força de atrito cinético, o sistema perde energia mecânica, habitualmente sob a forma de calor:

$$\Delta E_m = W_{\vec{F}_{ac}}$$

Se a força de atrito for uma força interna do sistema (ex: sistema=bloco+superfície+ar circundante) a energia mecânica perdida é transformada em energia térmica do mesmo sistema (aumento de temperatura):

$$\Delta E_m = W_{\vec{F}_{ac}} = -\Delta E_{term} \Longrightarrow \Delta E_m + \Delta E_{term} = \Delta E_{sist} = 0$$

E se o sistema for apenas o bloco?

$$\Delta E_{sist} = W_{\vec{F}_{ac}} \Longrightarrow \Delta E_m = \Delta E_C = W_{\vec{F}_{ac}}$$

Notas: (1) a designação correcta do termo W_{Fac} é a de "pseudo-trabalho de F_{ac} "; (2) apenas as formas mecânica e térmica de energia estão a ser consideradas.

Uma criança de massa *m*=20kg desliza por um escorrega de 2m de altura e trajecto (curvatura e inclinação) irregular, partindo do topo em repouso.

Se não existir atrito entre a superfície do escorrega e a criança, qual a velocidade desta ao atingir a base?

Supondo que, devido à existência de atrito, a criança atinge a base do escorrega com uma velocidade de 3m/s, qual a perda percentual de energia mecânica do sistema?

Será possivel, com estes dados, determinar o valor do coeficiente de atrito cinético entre a criança e o escorrega?

Um bloco de massa m é abandonado em repouso sobre uma superfície plana com uma inclinação θ , onde desliza sem atrito. Depois de percorrer uma distância d, entra em contacto com uma mola de constante elástica k e massa desprezável, inicialmente não deformada. Em contacto com a mola, o bloco percorre ainda uma distância adicional x até atingir um estado de repouso momentâneo, após o qual inverte o sentido do seu movimento.

Qual a distância inicial d percorrida pelo bloco?

R:
$$d = \sqrt{\frac{kx^2}{2mg\sin\theta} - x}$$

Os dois blocos representados na figura estão ligados por um fio inextensível e de massa desprezável, que passa por uma roldana sem atrito. Os blocos são abandonados em repouso na configuração representada.

Porque é que para o sistema constituído pelos 2 blocos e a Terra, podemos considerar que há conservação da energia mecânica?

Qual a velocidade do bloco 2 quando o bloco 1 chega ao chão?

R: v_2 =4.43m/s;

Os dois blocos representados na figura estão ligados por um fio inextensível e de massa desprezável, que passa por uma roldana sem atrito. O bloco 1 está pousado numa superfície horizontal onde pode deslizar com atrito. Os blocos são abandonados em repouso na configuração representada, com a mola não deformada.

Se o bloco 2 desce uma altura *h* até ficar novamente em repouso, qual o coeficiente de atrito cinético entre o bloco 1 e a superfície?

R:
$$\mu_k = \frac{m_2 g - \frac{1}{2} kh}{m_1 g}$$

Os dois blocos representados na figura estão ligados por um fio inextensível e de massa desprezável, que passa por uma roldana sem atrito.

Determine a variação de energia cinética do sistema quando o bloco de 50kg se desloca entre os pontos A e B, distantes entre si 20m, sabendo que o coeficiente de atrito cinético entre este e a superfície do plano inclinado tem o valor 0.250.

