RUNI: Reinforcement Learning MidTerm Project RL - Theory Part Fall Semester 2022-23 TASHPAG

Submitted by: Yarden Fogel ID: 011996279 (yarden.fogel@post.runi.ac.il)

Partner: Sharon Koubi ID: 301315040 (sharon.koubi@post.runi.ac.il)

Date: January 16, 2023

Question 1: Dynamic Programming Policy Evaluation

Using Dynamic Programming, run (theoretically) Policy Evaluation and show what will be the states values at next iteration. Show your computations in details.

Question 1: Solution

Note: We are assuming $\gamma = 1$ since it wasn't given, and thus leaving it out of the below equations and solution, with the exception of the calculation of $v_1^{(1)}$, for the sake of illustration.

The values of the terminal states = 0 and do not change. Therefore, we can infer that:

 $v_0^{(1)}=0$ and $v_6^{(1)}=0$ The remaining calculations are as follows:

$$v_1^{(1)} = 0.5*(0 + \gamma * v_0^{(0)}) + 0.5*(0 + \gamma * v_2^{(0)}) = 0.5*0 + 0.5*\tfrac{2}{6} = \tfrac{1}{6}$$

$$v_2^{(1)} = 0.5*(0+v_1^{(0)}) + 0.5*(0+v_3^{(0)}) = 0.5*(0+\tfrac{1}{6}) + 0.5*(0+\tfrac{3}{6}) = \tfrac{1}{12} + \tfrac{3}{12} = \tfrac{1}{3}$$

$$v_3^{(1)} = 0.5*(0+v_2^{(0)}) + 0.5*(0+v_4^{(0)}) = 0.5*(0+\tfrac{2}{6}) + 0.5*(0+\tfrac{4}{6}) = \tfrac{1}{6}+\tfrac{2}{6} = \tfrac{3}{6} = \tfrac{1}{2}$$

$$v_4^{(1)} = 0.5*(0+v_3^{(0)}) + 0.5*(0+v_5^{(0)}) = 0.5*(0+\frac{3}{6}) + 0.5*(0+\frac{4}{6}) = \frac{3}{12} + \frac{4}{12} = \frac{7}{12}$$

$$v_5^{(1)} = 0.5 * (0 + v_4^{(0)}) + 0.5 * (0 + v_6^{(0)}) = 0.5 * (0 + \frac{4}{6}) + 0.5 * (1 + 0) = \frac{2}{6} + \frac{3}{6} = \frac{5}{6}$$

Question 2 on Next Page

Question 2: Grid World

0	-14	-20	-22
-14	-18	-20	-20
-20	-20	S2	-14
-22	S1	-14	0

In this 4x4 grid world environment, we were partially given the "Values" for certain states (according to the current policy). Calculate (manually) the Values (according to the current policy) for states: S1, S2, Show your computations in details.

Question 2: Solution

S1:

$$S1 = 0.25*(-1+(-22)) + 0.25*(-1+(-20)) + 0.25*(-1+(-14)) + 0.25*(-1+S1)$$

$$S1 = 0.25*-23+0.25*-21+0.25*-15+0.25*-1+0.25*S1$$

$$S1 = -15+0.25*S1$$

$$0.75*S1 = -15 \Longrightarrow S1 = -20$$

S2:

$$S2 = 0.25 * (-1 + (-20)) + 0.25 * (-1 + (-20)) + 0.25 * (-1 + (-14)) + +0.25 * (-1 + (-14))$$

$$S2 = 0.25 * -21 + 0.25 * -21 + 0.25 * -15 + 0.25 * -15$$

$$S2 = -5.25 + (-5.25) + (-3.75) + (-3.75)$$

$$\implies S2 = -18$$