Przetwarzanie sygnałów i obrazów Studia niestacjonarne roku akademickiego 2023/2024

Propozycja projektu

Stanisław Horna **241202**

Przemysław Kowalski **241214**

Spis treści

1. Cel Projektu	3
Opis stanowiska symulującego monitorowanie tablic rejestracyjnych na bramkach parkingu	4
2.1. Kamera	4
2.2. Oświetlenie	4
3. Funkcje systemu wizyjnego	5
3.1. Rozpoznawanie i kategoryzowanie tablic rejestracyjnych	5
3.2. Ostrzeżenie w przypadku nieskategoryzowania numerów tablicy rejestracyjnej	5
4. Architektura systemu	6
4.1. Sprzętowa część systemu	6
4.1.1. Komputer przemysłowy	6
4.2. Oprogramowanie	6
5. Podsumowanie	7

1. Cel Projektu

Celem projektu jest stworzenie systemu wizyjnego, który będzie działał w czasie rzeczywistym na bramce wjazdowej i wyjazdowej parkingu. System ma rozpoznawać tablice rejestracyjne, klasyfikować oraz wykonywać określone obliczenia widocznych elementów na kamerze.

2. Opis stanowiska symulującego monitorowanie tablic rejestracyjnych na bramkach parkingu

2.1. Kamera

Zainstalowana kamera będzie rejestrować tablice rejestracyjne pod kątem 60° z odległości 100 cm, która nagrywa minimum w jakości FullHD (1920x1080) oraz 30 klatkach na sekundę (30fps).

2.2. Oświetlenie

Wykorzystane zostanie oświetlenie dzienne (słońca), aby jak najlepiej odzwierciedlić realne warunki działania systemu wizyjnego.

3. Funkcje systemu wizyjnego

3.1. Rozpoznawanie i kategoryzowanie tablic rejestracyjnych

System będzie analizował obrazy tablic rejestracyjnych rejestrowanych przez kamerę przypisywał im odpowiednią grupę tj. z jakiego województwa pochodzi pojazd, który wjeżdża na parking

3.2. Ostrzeżenie w przypadku nieskategoryzowania numerów tablicy rejestracyjnej

Jeśli system nie wykryje województwa na podstawie numerów system zaznaczy go w czerwonej ramce.

4. Architektura systemu

4.1. Sprzętowa część systemu

4.1.1. Komputer przemysłowy

Odpowiednio wydajny komputer do analizy i przetwarzania obrazu, z zainstalowanym językiem programowania Python, podstawowymi bibliotekami, a także dodatkowymi:

- Numpy,
- CV2,
- Matplotlib,
- Skimage.

4.2. Oprogramowanie

Algorytmy przetwarzania obrazu z wykorzystaniem narzędzi takich jak **OpenCV** oraz bibliotek w języku programowania **Python**.

Zostanie przygotowany interfejs użytkownika, na którym:

- będą aktualizowane w czasie rzeczywistym statystyki ile wykryto tablic oraz ile udało się skategoryzować,
- dodatkowo dla każdego nowo wykrytego elementu będzie pokazywany histogram,
- możliwość zatrzymania i wznowienie nagrania.

5. Podsumowanie

Projekt zakłada stworzenie kompleksowego systemu wizyjnego, który spełni wymagania dotyczące rozpoznawania i kategoryzacji tablic rejestracyjnych. Przedstawione w pliku szczegóły maksymalnie dokładnie opisują założenia niezbędne do zbudowania kompleksowego systemu wizyjnego, przed przystąpieniem do prac nad budową systemu. Wszystkie przedstawione założenia są elastyczne i mogą ulec zmianie w miarę rozwoju i postępu prac nad projektem.