LaPIS Diagnostic Test Workbook - Mathematics

Name : Prithika M

Class: 7

Section : A

School : AKV Public School

Login ID : AKV127

Prithika M's Performance Report

Score: 14/40 Percentage: 35.0%

Prithika M's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	pal Signature	

Basic arithmetic

Topics to be Improved		
Types of angles		

Hi, here in this video you will learn Types of Angles

Question: 1

Find the angles.

Answer:

The angle ranges from ____° to ____°.

The angle perpendicular to 0° is ____°.

The straight line measures $__$ °.

Question: 2

The angle formed between the directions

(i) West and East is _____ angle.

(ii) North and East is angle.
(iii) East and South is angle.
Answer:
The angle formed between West and East is° and it is called angle.
The angle formed between North and East is° and it is called angle.
The angle formed between East and South is° and it is called angle.
Question: 3
The addition of straight angle and right angle is angle.
Answer:
The measurement of straight angle is°
The measurement of right angle is°.
Straight angle + Right angle = + = =
It is called as angle.

Mensuration

Topics to be Improved		
Perimeter	Perimeter of triangle	

.....

Hi, here in this video you will learn **Perimeter**

Question: 4

Highlight the perimeter in the given image.

1	n	SI	,,	o	n.
\boldsymbol{H}	Ή.	S 7	17	ייש	

Perimeter is the _____ (outer / inner) boundary of the shape

Question: 5

Find the perimeter of the given figure.

Answer:

Sides of the given shape = _____

Perimeter of a shape is _____ (sum / difference) of _____ (all/ opposite) sides.

Perimeter of the given shape = _____

Question: 6

Find the length of the rectangular floor if its perimeter is 60 ft and breadth is 3 ft.

Answer:

Shape of the floor is _____ and its perimeter formula is _____. Given:

floor perimeter =
$$___$$
, and breadth = $___$.
Perimeter of the floor = $2(____+ ___)$.

Therefore, length of the rectangular floor is ______.

Data handling

Topics to be Improved		
Arithmetic mean, mode and median Mean, Median and Mode		
Chance of probability	Sample space in probability, Basis of probability	
Range	Finding the range	

Hi, here in this video you will learn Mean, Median, Mode

Question: 7	
Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67	, 24, 19 and 98.
$\underline{Answer:}$	
Mode is the number that occurs (frequently / rarely) in a given list Arranging the data in ascending order: occurs most number of times. Then, mode of the given data is	
Question: 8	

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

.....

Answer:

Median is the ______(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____ and it is the _____ of a data.

Question: 9

Marks scored	100	90	80	70
Number of students	4	5	2	1

$Mean = \underline{\hspace{1cm}}$, $Median = \underline{\hspace{1cm}}$ and $Mode = \underline{\hspace{1cm}}$.
Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation =, number of observation = Therefore, mean = Arrange the data in ascending order : Here, median =, mode =
Hi, here in this video you will learn Basics of probability Question: 10
Which of the following contains list of all possible outcomes.
which of the following contains list of an possible outcomes.
Probability Sample space Sure events Impossible events
$\underline{Answer:}$

Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of _____ (possible/ impossible) outcomes. Sure events always _____ (occurs/don't occurs). Impossible events _____ (occurs/don't occurs). Therefore, _____ contains list of possible outcomes.

Question: 11

Write the possible outcomes while spinning the given wheel.

.....

Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are ₹0, ₹10,
Question: 12
A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.
Answer:
A bag contains, and balls. If one of the ball is blue in colour, then other ball can be or If one of the ball is green in colour, then other ball can be or If one of the ball is red in colour, then other ball can be or Therefore, if two balls are taken out then possible outcomes are blue +,,
Hi, here in this video you will learn Range
Question: 13
Range of the data = $_$
Answer:
The difference between highest value and lowest value is Example: Find the range of 10, 5, 30, 23, 54, 39 and 16 Highest value = , Lowest value = Range = =
Question: 14
Circle the correct range for the following data 31, -20, 35, -38, 29, 0, 43, -25, 51, 14, 9
$-20+51$ $\frac{-38-51}{2}$ $51+38$ $\frac{51+20}{2}$
Answer: Range =
Question: 15
Find the range of first 10 multiple of 5.
Answer:
First 10 multiple of 5 = Therefore, Highest value = , Lowest value = , Range = – =

Hi, here in this video you will learn Basics of probability
Question: 16
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
Answer:
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events. Here, The sun rises in the west is event. Water is colourless is event. Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 17
Probability of sure events is (greater / smaller) than probability of impossible events.
Answer:
Probability of sure event = $___(0/\ 1/\ any\ number)$. Probability of impossible event = $___(0/\ 1/\ any\ number)$. Therefore, Probability of sure event $___$ Probability of impossible event.
Question: 18
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have

Geometry

Topics to be Improved				
Related angles Basic of angles				
Lines of symmetry for regular polygons Identification of lines of symmetry				
Criteria for congruence of triangle Idenfication of criteria of congruence of triangles				
Angle sum property of triangle Angle sum property of triangle				
Right angle triangle and pythagoras property Basics of Pythagoras property				
Faces vertex and edges				

Hi,	here in this video you will learn Related Angles	
Que	stion: 19	
(i)	When two rays of an angle are perpendicular, then the angle formed between angle .	en them is a
(ii)	When two rays of an angle are in opposite sides, then the angle formed between angle .	veen them is a
	wer:	der in a dimention
ı	(line segment /ray) begins from one point and travels endless	ly in a direction
(i)	The angle formed between two perpendicular rays is° and it is called angle.	
(ii)	If two rays starting at same point moves in opposite direction, they form a starting traight / perpendicular) line. The measure of the angle formed isoand angles.	
านค	$stion \cdot 20$	

Find the angle of $\angle DBE$

Answer:

BA and BC are _____ (parallel / perpendicular) rays. The angle formed between this rays is ____, $\angle ABC =$ ____.

$$\angle ABC = \angle ABE + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= 30^{\circ} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}$$

$$= \underline{\hspace{1cm}}$$
Therefore, $\angle DBE = \underline{\hspace{1cm}}$

Question: 21

Find the complementary angles in the given diagram.

.....

Answer:

Two angles are said be complementary if sum of their angles is equal to ______.

 $\angle AOB =$ _____, and its complement angle is _____.

 $\angle BOC =$ _____, and its complement angle is _____.

 $\angle COD =$ _____, and its complement angle is _____.

 $\angle DOE =$ ______, and its complement angle is ______.

Therefore, in the given figure the complementary angles are $\angle AOB$, _____ and $\angle BOC$, _____

Hi, here in this video you will learn Symmerty

Question: 22

Line of symmetry is identical) halves.	divides any shape into	(one / two) _		(identical / non
$\underline{Answer:}$				
Symmetrical image l	s a line that divides any sha have (identi- mmetry is dividing the shap	ical / non identical	l) parts.	/ unequal) halves.
Question: 23				
How many lines of s	ymmetry does square have?	,		
Answer:				
Square have	sides.			
	re and all a	ingles are		
-		s of symmetry.		
		, ,		
	as lines of symmetry			
Classify the followin	g based on the symmetry., scalene triangle, Letter K,			
Answer:				
	s a line that divides the sha			
	(symmetrical	/ asymmetrical) a	and have	lines of
ě ě	(symmetrical /	asymmetrical) and	l have	lines of
č č	(symmetrical / asyr	nmetrical) and have	ле	lines of
	(symmetrical / asymmet	rical) and have	1	ines of symmetry.
	(symmetrical / asymmetrical /	,		
Hi, here in this	video you will learn C r	riteria of cong	gruence	

Question: 25	
Circle the groups that contain congruent images.	
$\underline{Answer:}$	
Two geometrical shapes are said to be congruent if they are	
(identical/non-identical) in shapes and size.	
Example: Square and Rectangle are (congruent/not congruent).	
Question: 26	
If the three sides of the triangle are equal to the corresponding sides of the other triangle, then triangles are congruent under (SSS/ASA/SAS) criteria .	two
Answer:	
Two triangle are (congruent/not congruent) if they are identical in shapes and s Criteria for congruence of triangles are SSS, and	ize.
1. In SSS Congruence criteria - $(2/3/5)$ sides of the triangle are (equal) not equal) to the three corresponding sides of the other triangle.	/
2. In SAS Congruence criteria - $(2/3/5)$ sides and (one/two) angle betw them are equal to the corresponding sides and the included angle of the other triangle.	een
3. In ASA Congruence criteria (2/ 3/ 5) angles and (one/two) side between them are equal to the corresponding angles and the included side of the other triangle.	

SSS	sides and angles are equal
SAS	sides and angles are equal
ASA	sides and angles are equal

Question: 27

The triangles LNM and PRQ are congruent by SAS criteria. Then find the side PR $\,$

Answer:

The given two triangles satisfy ______ criteria of congruence. By SAS congruence criteria, MN = _____, ____ and $\angle N$ = _____ The side MN=8 cm in ΔLNM is equal to the side _____ in ΔPRQ The common included angle in Δ LNM and ΔPRQ are _____ The side PR is equal to the side in _____ ΔLNM . Therefore, length of side PR = _____

Hi, here in this video you will learn Angle sum property

Question: 28

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

......

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 29

Which of the following triangle satisfy the angle sum property.

.....

Answer:

In $\triangle XYZ$, Sum of the angles = = =
Therefore, the triangles that satisfy the angle sum property are =
<i>Question:</i> 30
Find the angles of triangle, if their angles are in the ratio 8:6:4.
Answer:
Ratio of angles in the triangle is Let's consider the angles of triangle be $8x$, and We know sum of the angles of a triangle is Therefore, $8x+$ + = 180° . The value of $x=$ The angles of the triangle are
Hi, here in this video you will learn Pythagoras property Question: 31
In a right angled triangle, square of the = sum of the squares of the legs.
Answer:
Pythagoras theorem is only applicable for triangle. Longest side of the triangle is (hypotenuse/ legs) and other two sides are called (hypotenuse/ legs). Pythagoras theorem states that
Question: 32
Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.
Answer:
A

Pythagoras theorem states that square of the = sum of the squares o	fit
---	-----

 $Given: Base = \underline{\hspace{1cm}}, Altitude = \underline{\hspace{1cm}},$

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

Therefore, hypotenuse of the triangle is _____.

Question: 33

Find the length of the rectangle, if breadth is $3~\mathrm{cm}$ and diagonal is $5~\mathrm{cm}$.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem, $(____)^2 = (____)^2 + (____)^2$ $= ___ + ___$

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of 3D model

Question: 34

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces). Mark the vertices in the diagram,

<u>Question: 35</u>
Mark and find the number of vertices, edges and faces in a cube.
Answer:
Mark the vertex, edges and faces in a cube.
Count the number of vertex, edges and faces in a cube.
Cube have vertices, edges and faces.
Question: 36
How many vertices, edges and faces does dices have?
Answer:
The shape of dice is
Dices have vertices, edges and faces.

Number system

Topics to be Improved		
Fractions	Multiplication of fractions, Division of fraction	
Exponents	Solving exponents	
Positive and negative rational numbers	Identification of positive rational numbers	
Integers	Basics of integers	
Operations on rational numbers	Subtraction of rational numbers	

Hi, here in this video you will learn Multiplication on fractions

Question: 37

Fill the boxes

$$2+4+\frac{6}{2} = \frac{2}{\Box} + \frac{4}{\Box} + \frac{3}{\Box} = \frac{\Box}{\Box} = 9$$

Answer:

The whole number can be expressed in fraction with denominator equal to $___$ (zero/one). Therefore, 2 can be written as $___$ in fraction.

4 can be written as _____ in fraction.

$$2+4+\frac{6}{2} = \frac{2}{1} + \frac{4}{\square} + \dots = \frac{2}{1} + \frac{4}{\square} + \frac{3}{\square} = \frac{\square}{\square} = 9$$

Question: 38

There are 400 students in a school. Find the number of girls, if three sixteenth of the students are girls.

Answer:

Total number of students = _____

Fraction of students who are girls = _____

Number of girls
$$=$$
 \times $=$ $=$ $=$

Question: 39

Solve: $2\frac{7}{4} \times \frac{2}{3}$

Answer:

 $2\frac{7}{4}$ is a _____ (proper / mixed) fraction. Here, 2 is _____, 7 is ____ and 4 is _____

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}}) + \text{Numerator}}{\text{Denominator}}$ Improper fraction of $2\frac{7}{4} = \underline{\hspace{1cm}}$

$$2\frac{7}{4} \times \frac{2}{3} = \boxed{} \times \frac{2}{3} = \boxed{}$$

Hi, here in this video you will learn Division on fractions

Question: 40

Find the shape which contains the improper fraction of $5\frac{2}{7}$.

.....

Answer:

 $5\frac{2}{7}$ is a _____ (proper/mixed) fraction. Here, 5 is ____ , 2 is ____ and 7 is ____.

To convert mixed fraction into improper fraction, $\frac{\text{(Whole} \times \underline{\hspace{1cm}} \text{)+Numerator}}{\text{Denominator}}$

$$5\frac{2}{7} = \frac{(--- \times ---) + ---- }{7} = \frac{\square}{\square}$$

Question: 41

Solve: $\frac{1}{3} \div \frac{14}{3}$

Answer:

To divide a fraction by another fraction, multiply the dividend by $___$ (same / reciprocal) of the divisor. Here, dividend = $___$ and divisor = $___$.

1	<u>.</u>	14	= 1 ×		
3	•	3	$\overline{3}$	一	

Question: 42	
-	

Find the half of the fraction $\frac{12}{40}$.

Answer:

To find half of a number, divide the number by _____

$$\frac{12}{40} \div \underline{} = \frac{12}{40} \times \underline{} = \underline{}$$

Then the answer is _____

Hi, here in this video you will learn Exponents and power

Question: 43

Find the exponential form of 1000.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

Exponents is also called as _____ (Base / Power).

.....

.....

1000 can be written as = $10 \times$ ____ \times ____ 10 is raised to the power of ____ = (10)

Question: 44

Find the value of $(-2)^3$.

Answer:

_____ (Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form
$$(-2)^3$$
, base = ____, power = ____.
 $(-2)^3$ = ____ × ___ = ___.

Question: 45

- (i) Tenth power of 100 is $((10)^{100})$ or $(100)^{10}$).
- (ii) k is raised to the power of 5 is $((k)^5)$ or $(5)^k$.

Answer:

Exponential form = (Base)—

- (i) Tenth power of 100: Base = ____, Power/Exponents = ____, exponential form = ____.
- (ii) k is raised to the power of 5 : Base = ____, Power/Exponent = ____, exponential form = ____.

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 46

Segregate positive and negative rational number.

......

Answer:

- If either the numerator and the denominator of a rational number are negative, then it is _____ (positive/negative) rational number.

In the given circle, positive rational numbers are _____ and negative rational numbers are

Question: 47

 $\frac{-3}{-4}$ is a _____ (positive /negative / neither positive nor negative) rational number.

Answer:

−3 is a	$\underline{\hspace{0.5cm}}$ number, -4 is a $\underline{\hspace{0.5cm}}$	number.		
Division of $\frac{-3}{-4} = \boxed{}$	number, -4 is a and this	rational numb	er.	
(Positive ,	/ Negative / Neither positi	ive nor negative rati	onal number)	
Question: 48				
-	sitive rational number and ositive/ Negative/ neither p	~		
$\underline{Answer:}$				
Examples for negativ	e rational numbers: ve rational numbers: nber × Negative rational n onal number		=	and this is
Hi, here in this v	video you will learn B a	asics of integer	*S	
Question: 49				
Highlight the ring th	at contains whole numbers	3.		
		-3, -2, -1 0 2, 3,		
Answer:				
The numbers inside t	the inner ring $(1, 2, 3, \ldots)$ the middle ring arethe outer ring are negative	numbers.		o and they are
Question: 50				
Colour the frame of t	the box which contains the	number 1, 4 and -1	.0	
	Whole numbers Negative numbers	Integers	Naturals numbers	

4	ns	211	or	
A	าเธ	w	ET.	

Whole number consists of 0,1,2,3,4,.... Negative number consists of ______. Natural numbers consists of ______.

.....

Now, 1, 4, -10 are in ______.

Question: 51

State whether the statement is true or false.

Every positive number is an integer.

Answer:

Positive numbers are ______. Integers consists of _____.

Therefore, positive numbers are ______ (in/not in) integers.

Hi, here in this video you will learn **Operation on rational numbers**

Question: 52

Solve: $\frac{-3}{3} + \frac{1}{3}$

Answer:

Fractions with same denominators are called ______ (like/ unlike) fractions. Fraction can be added only if they are _____ (like/ unlike) fractions.

$$\frac{-3}{3} + \frac{1}{3} = \frac{-3}{3} = \frac{1}{3}$$

......

Question: 53

Find the addition of shaded part of box A and shaded part of box B.

.....

Answer:

Total number of square in box $A = \underline{\hspace{1cm}}$.

Number of shaded square in box $A = \underline{\hspace{1cm}}$

Shaded part of box A in fraction = _____

Total number of square in box $B = \underline{\hspace{1cm}}$.

Number of shaded square in box $B = \underline{\hspace{1cm}}$.

Shaded part of box B in fraction = $__$.

Shaded part of box A + Shaded part of box B = $___$ + $___$ = $___$

Question: 54

Find the missing values in the given figure.

$$= \begin{array}{c} \\ \\ \\ \\ \\ \end{array}$$

Answer:

One litre =
$$\underline{\hspace{1cm}}$$
 ml $\frac{7}{10}$ of one liter = $\frac{7}{10}$ x $\underline{\hspace{1cm}}$ ml = $\underline{\hspace{1cm}}$ ml

Given:
$$1 = \frac{7}{10} +$$

Transposing $\frac{7}{10}$ to other sides, 1 ____ $\frac{7}{10} =$ ____
Therefore, result is _____.

Comparing Quantities

Topics to be Improved				
Conversion of fraction into percentage	Conversion of fraction into percentage			
Simple interest	Calculation of simple interest			
Equivalent ratios	Basic of proportion			
Percentage	Basic of percentage			

Hi,	here	in	this	video	you	will	learn	Converting	fraction	into
per	cent	age	е							

Question: 55

Complete the box in the given equation.

$$5\% = \frac{5}{}$$

Answer:

Percentage are the fraction with the denominator _____.

Therefore, 5% can be expressed as _____

......

Question: 56

Mark the correct conversion form of fraction $\frac{1}{2}$ to percentage.

(i)
$$\frac{1}{2} \times \frac{50}{50} = \frac{50}{100} = 50\%$$

(ii)
$$\frac{1}{2} \times \frac{100}{100} = \frac{100}{200} = 200\%$$

(iii)
$$\frac{1}{2} \times 100 = \frac{100}{2} = 50\%$$

Answer:

To convert fraction into percentage, the value of ______ (denominator / numerator) should be 100 or _____ (multiply / divide) the fraction with 100 %. Therefore, correct conversion form is _____

Question: 57

Find the percentage of shaded part of square.

1	m			٠.
\boldsymbol{A}	ns	s W	eт	•

The square shape is divided into	parts.
Number of shaded part of square is	
Shaded part of square in fraction is	
To Convert — into percentage ,	x 100
Hi, here in this video you will learn Sim	iple Interest

$\underline{Question \colon 58}$

Match the following.

	Column A		
i	Principle(P)		
ii	Amount (A)		
iii	Rate (R)		
iv	Time period (T)		

	Column B
a	Interest calculated based on this
b	Total sum you borrow
c	Number of years
d	Total sum with interest

Answer:

Formula for calculating simple interest $=$
Interest calculated based on
Total sum you borrow is known as
Number of years is Total sum with interest is
Question: 59
Sara deposited Rs.1200 in a bank. After three years, she received Rs.1320. Find the interest she

earned.

Given:					
	, Principle = _				
	ciple is given, then form		~	is	·
$\underline{Question:~60}$					
The simple interest	on Rs. 5000 for 3 years	is Rs.1350. Fi	nd the rate of	interest.	
Answer:					
Interest =	, Time period =	=	, Principal	l =	·
	x 100				
Rate of interest =	x 100 Principal x				
Substituting values	•				
, and the second	v 100				
Rate of interest =	x 100 Principal x				
Rate of interest = _	-				
	of interest is	%			
					国级数周
Hi, here in this	video you will lear	n Basics of	proportio	n	
	Trace year will rearr	- Basies 01	proportio		
Question: 61					
	quivalent ratio, then it				
Answer:	1				
	ion / ratio) is used to e	ovnross	(one/two) e	ouivalent ra	tios
\ <u>-</u> -	xpress proportion is	_	_ (one/ two) e	equivalent ia	0105.
O					
Question: 62					
Find the ratio of sha	aded part to unshaded	part of A and	B. Are the tw	vo ratios equ	ivalent !
]
					Ī
					-
					-
	A			!	1
			В		
Answer:					
	, Unshaded pa	rt of A —			
	unshaded parts of A is			·	

Shaded part of $B = \underline{\hspace{1cm}}$,
Unshaded part of $B = \underline{\hspace{1cm}}$. Ratio of shaded to unshaded parts of B is $\underline{\hspace{1cm}}$.
Fractional form $=$
Fraction form of A (equal/ not equal) to Fraction form of B.
<i>Question:</i> 63
If a: b:: c: d is proportion, shade the correct expression
$\boxed{a = \frac{bc}{d}}$ $\boxed{c = \frac{ad}{b}}$ $\boxed{ad=cd}$
Answer:
Two equivalent ratio which are proportion, it can be written as a : b :: c : d
or $\underline{\hspace{1cm}} = \underline{\hspace{1cm}} $ (in fraction).
First and fourth term are called and second and third term are called In proportion, product of extreme terms is (equal to/ not equal to) product of middle terms.
Therefore, $a \times d = \underline{\hspace{1cm}}$,
then $a = \underline{\hspace{1cm}}$ and $c = \underline{\hspace{1cm}}$
Hi, here in this video you will learn Basics of percentage
Question: 64
2% can be written as
Answer:
Percentages are numerators of fractions with denominator $2\% = { }$
Question: 65
Arun attended the LaPIS test for 100 marks and got 75% marks. What is the mark scored by Arun?
Answer:
Arun attended LaPIS test for marks. He got marks.
75 % can be written in fraction form

Then the mark scored by Arun = Total mark \times 75% = \times =
Question: 66
There are 25 apples in a basket in which 10 of them are rotten. Find the percentage of rotten apples.
Answer:
There are apples in a basket. Number of rotten apples are Fraction form of rotten apples in a basket =
Convert it into a percent= x% =

Algebra

Topics to be Improved			
Basics of simple equation	Solving of simple equation		
Monomials, binomials, trinomials and polynomials	Types of algebraic expression		
Addition and subtraction of algebraic expressions	Like terms and Unlike terms		
subtraction of algebraic expressions	subtraction of algebraic expressions		

Hi, here in this video you will learn Solving an equation

Question: 67

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \odot is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$

Question: 68

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

......

......

$$7 + 3 = -4$$

Answer:

The given equation is $7 \pm 3 = -4$ Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times __+3 = __$$

$$7 \times$$
 ____+ $3 =$ ____

Therefore, _____ is the number that can be placed in a box to make the equation correct.

$\underline{Question: 69} \quad \dots$

Arrange the terms in the descending order when the value of x is 2.

$$2x \qquad 5x \times 1 \qquad x+3 \qquad 2x-4 \qquad \frac{1}{2}x$$

Answer:

The given expression are
The value of x is
substituting value of x
$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$
$x + 3 = \underline{\qquad} = \underline{\qquad} = \frac{1}{2} \times \underline{\qquad} = \underline{\qquad}$
$5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$
Arranging in descending order:,,, Their respective algebraic terms are,,
Hi, here in this video you will learn Types of expression
Question: 70
There are terms in the expression $7x + 3y + m + 5$.
Answer:
In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.
The terms in the expression are,, and Therefore, there are terms in the expression.
Question: 71
Classify the following expression into monomial, binomial and polynomial.
1. $7m + n + 2$
2. $8x^2 + 0$
$3. \ 7xy + 4m$
Answer:
1. The terms in expression $8x^2 + 0$ are Here, expression has term and it is a
2. The terms in expression $7xy + 4m$ are Here, expression has term and it is a
3. The terms in expression $7m + n + 2$ are Here, expression has term and it is a
<i>Question: 72</i>

$5m^2 + m + 0$ is a	_ expres	ssion. (Monon	nial/Binomia	l/ Trinomial)	
Answer:					
The terms in expression $5m^2 + m^2$. Here, the expression has					expression.
Hi, here in this video you	will lea	arn Additi	on on exp	ression	
Question: 73					
Shade the like terms.					
$3a$ $3a^2$	3b	6a	3c	33a	9a
Answer: Given terms are Two or more term have Here, like terms are			rent) variables	s is called like	e terms.
Question: 74					
Complete the expression $7r^2 +$	r 🗆 _	2 =_	r^{2}		
Answer: (Like / Unlike) terms ca	an be ad	ded or subtra	cted.		
$7r^2+$ r \Box	- 2] = (7 +	- — — — — — — — — — — — — — — — — — — —	r ² =	
Question: 75					
Sam have 3a chocolates and 9y	icecream	. Ram have 7	'a chocolates	and 5y icecre	am.
(i) Total chocolates Ram and	Sam ha	ve:			
(ii) How many icecreams Sam	have mo	ore than Ram	:	·	
Answer:					
		Chocolates	Icecream		
	Sam				

Ram

(i)	(i) Total chocolates Ram and Sam have : Ram's chocolate + Sam's chocolates = + =								
(ii)	(ii) How many icecreams Sam have more than Ram : icecream icecream = =								
Hi,	here in this vie	deo you will learn	Subtraction	on expressi	on				
\overline{Que}	stion: 76								
Find	Find the sum of two expressions $a + b + c$ and $b + c + d$								
	$\underline{Answer:}$								
The given two expressions are and The two terms will get added only if they are (Like/ Unlike) terms. The sum of two expressions = + The answer is									
\overline{Que}	<i>stion:</i> 77								
			School A	School B					
		Number of boys	100b	250b					
		Number of girls	150g	200g					
		Number of teachers	25t	45t					
(i)	(i) Total number of boys in school A and B is								
(ii)	(ii) Total number of students in school B is								
(iii)	(iii) How many more teachers are there in school B than school A?								
Ans	<u>wer:</u>								
(i)	(i) Number of boys in school $A = \underline{\hspace{1cm}}$, Number of boys in school $B = \underline{\hspace{1cm}}$. Total number of boys in school A and school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.								
(ii)	(ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$. Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.								
(iii)	(iii) Number of teachers more in school B than school A = Teachers in school B $-$ Teachers in school A = $___$.								

Question: 78

Solve the following:

$$\begin{array}{c}
13x + \underline{\hspace{1cm}} \\
(+) \quad 12x + 10y \\
\underline{\hspace{1cm}} + 25y
\end{array}$$

$$\begin{array}{c|c}
3a - 5b \\
\hline
 (-) & 5a - 7b \\
\hline
 -2a - \underline{\hspace{1cm}}
\end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{c|c}
 3a - 5b \\
 \hline
 (-) & 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$