GENERAL EQUATION OF Nth DEGREE

Let polynomial $f(x) = a_0 x^n + a_1 x^{n \frac{5}{6}C^*} + a_2 x^{n \frac{5}{6}C^*} + \hat{a}_1 + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_1 + a_2 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_1 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_1 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_1 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_1 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_1 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_1 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat{a}_1 x^{n \frac{5}{6}C^*} + \hat{a}_2 x^{n \frac{5}{6}C^*} + \hat$ are called root of the equation f(x) = 0. The highest whole number power of x is called the degree of the equation.

For example

 $x^4 \ \hat{a} \in 3x^3 + 4x^2 + x + 1 = 0$ is an equation with degree four.

 x^5 â \in ⁿ $6x^4 + 3x^2 + 1 = 0$ is an equation with degree five.

ax + b = 0 is called the linear equation.

 $ax^2 + bx + c = 0$ is called the quadratic equation.

 $ax^3 + bx^2 + cx + d = 0$ is called the cubic equation.

Properties of equations and their roots

Every equation of the nth degree has exactly n roots.

For example, the equation $x^3 + 4x^2 + 1 = 0$ has 3 roots,

The equation $x^5 \hat{a} \in x + 2 = 0$ has 5 roots, and so on $\hat{a} \in x$

In the equation $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + ... + a_n$, where $a_0, a_1, a_2, ...a_n \neq a_n$

Sum of the roots = $-\frac{a_1}{a_0}$

Sum of the products of the roots taken two at a time = $\frac{a_2}{a_0}$

Sum of the products of the roots taken three at a time = $-\frac{a_3}{a_0}$

Product of the roots = $(-1)^n \frac{a_n}{a_n}$

- In an equation with real coefficients imaginary roots occur in pairs i.e. if a + ib is a root of the equation f(x) = 0, then a $\hat{a} \in \mathbb{C}$ ib will also be a root of the same equation. For example, if 2 + 3i is a root of equation f(x) = 0, 2 â€" 3i is also a root.
- In an equation with rational coefficients, surd roots occur in pairs, i.e. if $a + \sqrt{b}$ is a root of the equation f(x) = 0, then $a - \sqrt{b}$ is also a root of the same equation.

Hence, if $2 + \sqrt{3}$ is a root of the equation f(x) = 0, $2 - \sqrt{3}$ is also a root.

- If the coefficients of an equation are all positive then the equation has no positive root. Hence, the equation 2x⁴ + 3x² + 5x + 1 = 0 has no positive root.
 If the coefficients of even powers of x are all of one sign, and the coefficients of the odd powers are all of opposite sign, then the equation has no negative root.
- Hence, the equation $6x^4 \ \hat{a} \in 11x^3 + 5x^2 \ \hat{a} \in 2x + 1 = 0$ has no negative root
- If the equation contains only even powers of x and the coefficients are all of the same sign, the equation has no real root. Hence, the equation $4x^4 + 5x^2 + 2 = 0$ has no real root.
- If the equation contains only odd powers of x, and the coefficients are all of the same sign, the equation has no real root except x = 0. Hence, the equation 5x⁵
- $+4x^3+x=0$ has only one real root at x=0.

 Descartes $\hat{a}\in\mathbb{N}$ Rule of Signs: An equation f(x)=0 cannot have more positive roots than there are changes of sign in f(x), and cannot have more negative roots than there changes of sign in f(-x). Thus the equation $x^4+7x^3 \hat{a}^2 + x^2 \hat{a}^2 + x$ $\hat{a}^{\prime\prime} 7x^3 \hat{a}^{\prime\prime} 4x^2 + x \hat{a} \in 7 = 0$ hence the number of negative real roots will be either 1 or 3.
- If $\frac{a}{b}$ is the rational root of the equation $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + ... + a_n$ = 0, where a_i € I, then a divides a_n, and b divides a₀.

EXAMPLES:

1. Solve the equation $9x^3 - 54x^2 + 92x - 40 = 0$, given that the roots are in arithmetical progression.

Answer: Let the roots be a - d, a, a + d. We know that

Sum of roots =
$$-\left(\frac{-54}{9}\right)$$

Product of roots =
$$-\left(\frac{-40}{9}\right)$$

$$(a - d)(a)(a + d) = \left(\frac{40}{9}\right)(2 - d)(2 + d) = \left(\frac{20}{9}\right) \text{ or } 4 - d^2 = \left(\frac{20}{9}\right)$$

or $d = \frac{4}{3}$. Hence the roots are $\frac{2}{3}$, 2, and $\frac{10}{3}$.

2. Find the sum of the squares and of the cubes of the roots of the equation $x^3 - 2x^2 + x - 3 = 0$

Answer: Let the roots be denoted a, B, and y. We know that $\alpha+\beta+\gamma=2$ and $\alpha\beta+\beta\gamma+\alpha\gamma=1$ Therefore $\alpha^2+\beta^2+\gamma^2=(\alpha+\beta+\gamma)^2-2(\alpha\beta+\beta\gamma+\alpha\gamma)=4-2=2$ Substituting α , β , and γ in the original equation and adding $(\alpha^3 + \beta^3 + \gamma^3) - 2(\alpha^2 + \beta^2 + \gamma^2) + (\alpha + \beta + \gamma) - 9 = 0$ or $(\alpha^3 + \beta^3 + \gamma^3) - 2 \times 2 + 2 - 9 = 0 \Rightarrow (\alpha^3 + \beta^3 + \gamma^3) = 11$

3. Solve the equation $2x^4 - 5x^3 - 9x^2 - x + 1 = 0$, having given that one root is

Answer: Since $2 - \sqrt{3}$ is root, $2 + \sqrt{3}$ is also a root of the equation. Hence, the polynomial $[x-(2-\sqrt{3})][x-(2+\sqrt{3})]=x^2-4x+1$ is a factor of the equation. Dividing the polynomial $2x^4-5x^3-9x^2-x+1$ by x^2-4x+1 , we get $2x^2+3x+1$. Hence, $2x^4-5x^3-9x^2-x+1=(x^2-4x+1)$ ($2x^2+3x+1$). Therefore, other roots of the equation can be found by the equation $2x^2+1$ $3x + 1 = 0 \rightarrow (2x + 1)(x + 1) = 0 \rightarrow x = \frac{-1}{2}$ or x = -1.

Hence roots are $2-\sqrt{3}$, $2+\sqrt{3}$, $\frac{-1}{2}$, -1.

4. Which of the following is NOT the root of the equation

 $6x^3 + 5x^2 + 2x + 2 = 0$?

- (a) 2/3 (b) 1/6
- (c) 1/3
- (d) none of these

Answer: (d)

- 5. If two roots of the equation $x^3 3x^2 + 5x + k = 0$ are equal but opposite in sign, then what is the value of k? Answer: Let the roots be α , $-\alpha$, and β . Then, $\alpha + (-\alpha) + \beta = 3, \Rightarrow \beta = 3$ $\alpha \times (-\alpha) + \alpha \times \beta + (-\alpha) \times \beta = 5, \Rightarrow -\alpha^2 = 5$ and $\alpha \times (-\alpha) \times \beta = -k \Rightarrow \alpha^2 \beta = k$ \Rightarrow k = -15.
- 6. If the roots of the equation $x^{10} 1 = 0$ are 1, α , β , γ , ... then what is the value of $(1-\alpha)(1-\beta)(1-\gamma)...?$ Answer: $x^{10}-1=(x-1)(x^9+x^8+x^7+...+1)$ Also $x^{10}-1=(x-1)(x-\alpha)(x-\beta)(x-\gamma)...$ $\Rightarrow (x-1)(x-\alpha)(x-\beta)(x-\gamma)...=(x-1)(x^9+x^8+x^7+...+1)$ Canceling (x - 1) on both sides and keeping x = 1 we get $(1 - \alpha)(1 - \beta)(1 - \gamma)... = 10$