

National University of Computer & Emerging Sciences MT-1003 Calculus and Analytical Geometry

Instructor: Miss Urooj

SECOND DERIVATIVE TEST

SECOND DERIVATIVE TEST

There is another test for relative extrema that is based on the following geometric observation: A function f has a relative maximum at a stationary point if the graph of f is concave down on an open interval containing that point, and it has a relative minimum if it is concave up (Figure 3.2.7).

3.2.4 THEOREM (Second Derivative Test) Suppose that f is twice differentiable at the point x_0 .

- (a) If $f'(x_0) = 0$ and $f''(x_0) > 0$, then f has a relative minimum at x_0 .
- (b) If $f'(x_0) = 0$ and $f''(x_0) < 0$, then f has a relative maximum at x_0 .
- (c) If $f'(x_0) = 0$ and $f''(x_0) = 0$, then the test is inconclusive; that is, f may have a relative maximum, a relative minimum, or neither at x_0 .

▲ Figure 3.2.7

Question: Locate the critical points and identify which critical points are stationary points.

10.
$$f(x) = \frac{x^2}{x^3 + 8}$$

Solution:

$$f'(x) = -\frac{x(x^3 - 16)}{(x^3 + 8)^2}$$
, so stationary points at $x = 0, 2^{4/3}$.

Example 5 Find the relative extrema of $f(x) = 3x^5 - 5x^3$.

Solution. We have

$$f'(x) = 15x^4 - 15x^2 = 15x^2(x^2 - 1) = 15x^2(x + 1)(x - 1)$$

$$f''(x) = 60x^3 - 30x = 30x(2x^2 - 1)$$

Solving f'(x) = 0 yields the stationary points x = 0, x = -1, and x = 1. As shown in the following table, we can conclude from the second derivative test that f has a relative maximum at x = -1 and a relative minimum at x = 1.

STATIONARY POINT	$30x(2x^2-1)$	f''(x)	SECOND DERIVATIVE TEST
x = -1	-30	_	f has a relative maximum
x = 0	0	0	Inconclusive
x = 1	30	+	f has a relative minimum

The test is inconclusive at x = 0, so we will try the first derivative test at that point. A sign analysis of f' is given in the following table:

INTERVAL	$15x^2(x+1)(x-1)$	f'(x)
-1 < x < 0	(+)(+)(-)	_
0 < x < 1	(+)(+)(-)	_

 $y = 3x^5 - 5x^3$

Since there is no sign change in f' at x = 0, there is neither a relative maximum nor a relative minimum at that point. All of this is consistent with the graph of f shown in Figure 4.2.8.

Question: Find the relative extrema using both first and second derivative tests.

35.
$$f(x) = \sin 2x$$
, $0 < x < \pi$

Solution:

 $f'(x) = 2\cos 2x$: critical points at $x = \pi/4, 3\pi/4, f''(\pi/4) = -4$: f has a relative maximum of 1 at $x = \pi/4, f''(3\pi/4) = 4$: f has a relative minimum of -1 at $x = 3\pi/4$.

EXERCISE SET 3.2

29–32 Find the relative extrema using both first and second derivative tests. ■

29.
$$f(x) = 1 + 8x - 3x^2$$

30.
$$f(x) = x^4 - 12x^3$$

31.
$$f(x) = \sin 2x$$
, $0 < x < \pi$

32.
$$f(x) = x + \sin 2x$$
, $0 < x < \pi$

SOLUTION SET:

29.
$$f'$$
: $\frac{---0}{0} + + + + \frac{---0}{0}$ Critical

Critical point: x = 0; x = 0: relative minimum.

3

31.
$$f'$$
: $\frac{---0+++0---}{-1}$

Critical points: x = -1, 1; x = -1: relative minimum, x = 1: relative maximum.