Seminar 6

1. Recall that the Taylor series for sin and cos are given, for any $x \in \mathbb{R}$, by:

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots,$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots$$

- (a) Prove that $(\sin x)' = \cos x$ and $(\cos x)' = -\sin x$, for any $x \in \mathbb{R}$.
- (b) Deduce that $x \frac{x^3}{6} < \sin x < x$, $\forall x > 0$ and $1 \frac{x^2}{2} < \cos x < 1 \frac{x^2}{2} + \frac{x^4}{24}$, $\forall x \in \mathbb{R}$.
- (c) Prove formally Euler's formula $e^{ix} = \cos x + i \sin x$.
- (a) For $\alpha \in \mathbb{R}$ and |x| < 1, prove the generalized binomial expansion (binomial series)

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose k} x^k, \quad {\alpha \choose k} := \frac{\alpha(\alpha-1)\dots(\alpha-k+1)}{k!}, \quad {\alpha \choose 0} = 1.$$

- (b) Find the first four terms in the binomial series of $\sqrt{1+x}$ and $1/\sqrt{1+x}$.
- 3. Find the MacLaurin series and its radius of convergence for the following functions:
 - (a) a^x , a > 0.

(c) $\sin^2(x)$.

(b) $(1+x)\ln(1+x)$.

- (d) $\arctan x$.
- 4. For each function $f: \mathbb{R} \to \mathbb{R}$ given below check that f'(0) = 0 and find the first $n \in \mathbb{N}$ such that $f^{(n)}(0) \neq 0$. Then, deduce whether 0 is a local extremum point of f or not; in the affirmative, specify if 0 is a global extremum point or just a local one.
 - (a) $f(x) = e^x + e^{-x} x^2$. (b) $f(x) = \cos(x^2)$.
- (c) $f(x) = 6\sin x 6x + x^3$.

No homework this week. Prepare for the midterm.