Comparison tables: BBOB 2009 function testbed in 3-D

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [14, 9]. The experimental set-up is described in [13].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [13] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 03-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

V		-		-	$\frac{1}{1}$ Sph	here	5		1	1	- - •
Attarget	1e+03	1e+02	1.9	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-0.7	Δ itarget EPT /P
ERI best/D	0.333	0.333	1.2	7.07	7.07	7.07	7.07	7.07	7.07	7.07	ERI_{best}/D
ALPS	-	-	5.6	31	160	280	450	099	860	1200	ALPS [17]
AMaLGaM IDEA	П	1.1	3.1	7.4	16	56	37	45	54	73	AMaLGaM IDEA [4]
avg NEWUOA	П	1.3	2.4	1.1	1.1	1.1	1.1	1.1	1.1	1.1	avg NEWUOA [31]
$_{ m BayEDAcG}$	1	1	2.4	9.2	96	120	160	180	280	420	BayEDAcG [10]
BFGS	П	1	2.4	1.1	1.1	1.1	1.1	1.1	1.1	1.1	BFGS [30]
Cauchy EDA	Н	1.1	40	36	28	91	110	140	160	210	Cauchy EDA [24]
BIPOP-CMA-ES	1	1	2.8	5.1	11	18	23	29	34	47	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	П	1	1.8	5.2	8.8	12	15	19	23	30	(1+1)-CMA-ES [2]
DASA	П	3.1	37	37	49	63	92	68	100	130	DASA [19]
DEPSO	1	1	2.9	15	36	65	96	120	150	200	DEPSO[12]
DIRECT	1	1	1.2	7	2.2	15	27	38	52	92	DIRECT [25]
EDA-PSO	П	1.1	2.8	10	28	26	120	280	390	069	EDA-PSO [6]
full NEWUOA	П	1.3	2.9	1.4	1.4	1.4	1.4	1.4	1.4	1.4	full NEWUOA [31]
G3-PCX	Н	1.3	1.9	12	15	19	24	56	34	47	G3-PCX [26]
simple GA	Н	1.1	3.1	26	440	1200	2100	3200	4200	0089	simple GA [22]
GLOBAL	П	1.1	3.1	22	38	41	42	44	45	48	GLOBAL [23]
iAMaLGaM IDEA	П	1.2	2.4	5.5	12	18	24	30	36	49	iAMaLGaM IDEA [4]
LSfminbnd	Н	2.2	5.2	4.1	5.3	5.6	5.6	5.8	5.9	5.9	LSfminbnd [28]
LSstep	Н	1.2	130	94	100	100	100	100	100	100	LSstep [28]
MA-LS-Chain	П	1.1	2.2	14	36	22	20	75	85	96	MA-LS-Chain [21]
MCS (Neum)	П	1	Н	1.6	77	2.4	2.4	2.4	2.4	2.4	MCS (Neum) [18]
NELDER (Han)	Н	1.5	1.9	1.8	3.4	5.3	2.9	8.3	8.6	13	NELDER (Han) [16]
NELDER (Doe)	Н	1	7	2.4	3.9	5.4	6.9	8.7	10	14	NELDER (Doe) [5]
NEWUOA	Н	П	1.8	П	Н	П	-	П	П	П	NEWUOA [31]
(1+1)-ES	П	1.3	3.4	4.1	7	11	14	18	22	59	(1+1)-ES [1]
POEMS	н	23	170	110	180	390	1e3	1300	1700	2400	POEMS $[20]$
PSO	1	1.1	3.2	6.6	44	98	160	230	310	200	PSO [7]
PSO_Bounds	П	П	3.1	13	28	230	430	650	820	1500	PSO_Bounds [8]
Monte Carlo	н	П	3.8	35	1400	3.3e4	1.3e6	15e-4/1e6			Monte Carlo [3]
Rosenbrock	П	1.7	4.5	3.3	4.8	5.9	7.5	8.5	10	13	Rosenbrock [27]
IPOP-SEP-CMA-ES	Н	1	3.5	5.3	10	14	20	26	31	41	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	1	2.6	13	24	31	37	46	20	62	VNS (Garcia) [11]

Table 2: 03-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		$_{16}$ ERT $_{ m best}/{ m D}$																	14 iAMaLGaM IDEA [4]						4.6 NELDER (Doe) [5]							26 Rosenbrock [27]	IPC	30 VNS (Garcia) [11]
	1e-05	15.6	250	17	43	70	5.1	40	23	14	23	40	33	150	22	200	1400	9.2	12	1	13	38	5.2	5.1	4.2	56	36e-4/1e6	620	120	640	-	24	16	29
	1e-04	15.3	220	16	36	55	ಬ	36	22	13	21	36	14	130	19	180	1200	9.4	11	-	13	33	ಬ	4.9	3.9	49	4.8e5	510	100	280		24	15	56
ple		14.8																									•							
separa	1e-02	14.6	160	12	21	46	4.9	50	21	13	18	50	10	84	12	130	780	9.3	8.9	_	14	56	3.7	4.6	3.6	33	6.6e4	450	83	510		22	14	27
Ellipsoid	$\tilde{1}e-01$	14.4	130	10	14	29	4.7	25	20	12	15	24	8.9	28	8.2	120	570	6	9.7	-	14	22	2.2	4.3	3.2	22	4.1e4	360	65	340	14e-1/1e6	20	13	26
, 71	1e+00	13.8	100	8.1	8.2	26	4	21	17	11	14	18	7.3	31	4.2	87	410	8.9	6.1	П	14	19	1.9	3.3	2.8	14	2e4	320	26	300	1.8e5	16	12	26
	1e + 01	12.7	99	9	1.7	19	3.1	18	13	8.4	11	15	4.5	13	1.7	43	280	6	4.4	-	15	14	1.8	2.5	2.3	3.4	5800	280	46	150	6e3	4.9	9.2	21
	1e + 02	9.82	49	5.6	1	15	2.3	17	9.2	6.4	12	14	4.6	6.6	1.1	11	160	11	3.7	1.3	17	12	1.1	73	1.8	1.3	270	250	25	47	420	3.2	∞	17
	1e + 03	6.04	43	5.9	1	15	3.4	15	8.9	9	15	18	ಬ	7.8	1	16	70	16	3.2	1.9	28	12	1.9	2.4	1.9	1	09	270	20	16	99	2.9	6	17
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 3: 03-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

3 Rastricin separable

				•••	3 Kastrigir	ı separabl	മ				
$\Delta { m ftarget}$	1e + 03	1e + 02	1e + 01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.333	0.733	12.6	274	277	278	281	282	282	284	${ m ERT_{best}/D}$
ALPS	1	1	25	6.2	8.9	11	13	15	17	21	ALPS [17]
AMaLGaM IDEA	1	77	3.6	4.2	14	15	15	15	15	15	AMaLGaM İDEA [4]
avg NEWUOA	1	4.4	9.4	ಬ	33	33	33	33	33	32	avg NEWUOA [31]
$_{ m BayEDAcG}$	1.1	1.5	32	9.7	70e-2/2e3			٠	٠	٠	BayEDAcG [10]
BFGS	1.3	29	42	25	160	150	150	150	150	150	BFGS [30]
Cauchy EDA	1.1	41	14	7.6	250	2600	10e-2/5e4				Cauchy EDA [24]
BIPOP-CMA-ES	1	3.5	3.2	4.7	25	25	26	56	56	56	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1.8	8.1	4	38	38	37	37	37	37	(1+1)-CMA-ES [2]
DASA	1.3	32	14	1.4	12	12	12	12	12	12	DASA $[19]$
DEPSO	1	2.4	11	2.7	4.1	4.8	5.6	5.9	7.3	8.6	DEPSO [12]
DIRECT	1	П	4.8	4.1	17	17	17	17	17	17	DIRECT [25]
EDA-PSO	П	1.6	5.6	13	42	44	44	45	46	49	EDA-PSO [6]
full NEWUOA	1	4.5	4.9	3.3	15	15	15	15	15	15	full NEWUOA [31]
G3-PCX	1.1	1.9	73	58	330	330	330	330	330	320	G3-PCX [26]
simple GA	1	2.5	52	15	23	31	41	26	69	100	simple GA [22]
GLOBAL	1.1	2.2	8.2	3.6	12	12	12	12	12	12	GLOBAL [23]
iAMaLGaM IDEA	1.1	1.9	12	12	39	39	39	39	39	39	iAMaLGaM IDEA [4]
LSfminbnd	1	6.9	1	38	54	54	53	23	53	25	LSfminbnd [28]
LSstep	28	150	21	1	н	Н	1	1	-1	1	LSstep [28]
MA-LS-Chain	П	2.3	6.7	2.3	8.3	8.4	8.4	8.4	8.4	8 73.	MA-LS-Chain [21]
MCS (Neum)	1	1	8.9	1.2	10	11	11	12	12	12	MCS (Neum) [18]
NELDER (Han)	-	1.8	22	17	100	100	100	100	100	100	NELDER (Han) [16]
NELDER (Doe)	1	1.7	က	1.5	8.4	8.4	8.3	8.3	8.3	8.3	NELDER (Doe) [5]
NEWUOA	П	2.9	5.7	ಬ	52	54	54	54	53	53	NEWUOA [31]
(1+1)-ES	1	4.3	14	12	69	89	89	29	29	29	(1+1)-ES [1]
POEMS	16	210	26	8.2	23	27	31	35	37	45	POEMS $[20]$
PSO	1	1.5	7.3	3.5	6.1	7	7.9	8.5	9.6	11	PSO [7]
PSO_Bounds	н	2.5	15	8.6	18	22	25	27	59	41	PSO_Bounds [8]
Monte Carlo	П	1.3	110	5500	5.1e4	10e-1/1e6					Monte Carlo [3]
Rosenbrock	П	42	41	27	410	410	400	400	400	400	Rosenbrock [27]
IPOP-SEP-CMA-ES	1	2.8	3.4	3.7	14	17	17	17	17	17	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	1.7	8.4	3.8	7.4	7.4	7.6	8.6	11	17	VNS (Garcia) [11]

Table 4: 03-D, running time excess ERT/ERT_{best} on f_4 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

4 Skew Bastriein-Bueche separable

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				4	Skew Kasti	rigin-paec	$_{ m ne}$ seb	arable				
0.333 1.8 13.5 269 289 307 317 330 338 348 1.5 1.7 37 36 16 18 19 21 27 2.9 9.2 110 970 950 930 980 880 870 2.9 9.2 111 14 160 150 150 140 140 130 5.9 2.0 2.3 476 463 390 380 380 370 390 1.1 1.2 2.5 2.0 3300 380 380 370 390 2.5 1.8 47 46 45 49 47 46 47 49 49 1.5 1.2 1.2 2.4 4.7 46 47 49 49 49 49 49 49 49 49 49 49 49 49 49 <th< td=""><td>Δftarget</td><td>1e + 03</td><td>1e + 02</td><td>1e + 01</td><td>1e+00</td><td>1e-01</td><td>1e-02</td><td>1e-03</td><td></td><td>1e-05</td><td>1e-07</td><td>$\Delta { m ftarget}$</td></th<>	Δ ftarget	1e + 03	1e + 02	1e + 01	1e+00	1e-01	1e-02	1e-03		1e-05	1e-07	$\Delta { m ftarget}$
1.5 1.7 37 96 16 18 19 21 23 27 2.9 1.2 23 110 970 950 930 900 870 2.9 1.2 33 $47e-1/2e3$	$\mathrm{ERT_{best}/D}$	0.333	1.8	13.5	269	289	307	317		338	348	${ m ERT_{best}/D}$
1.3 1.2 23 110 970 950 930 980 870 1.3 1.2 23 110 970 150 140 140 130 1.3 20 48 $\frac{5}{4}$ $\frac{30e-1}{3e}$ $\frac{1}{3}$ $$	ALPS	1.5	1.7	37	9.6	16	18	19		23	22	ALPS [17]
2.9 9.2 11 14 160 150 140 140 140 130 1.3 3.3 $47e-1/2e3$ 3.0e-1/3e3	AMaLGaM IDEA	1.3	1.2	23	110	920	950	930		880	870	AMaLGaM İDEA [4]
1.3 3.3 $47e-1/2e3$	avg NEWUOA	2.9	9.5	11	14	160	150	150		140	130	avg NEWUOA [31]
1.8 20 48 54 $30e-1/3e3$	$_{ m BayEDAcG}$	1.3	1.3	33	47e-1/2e3		•			٠		BayEDAcG [10]
5.9 20 23 1300 $18e-1/5e4$ <th< td=""><td>BFGS</td><td>1.8</td><td>20</td><td>48</td><td>54</td><td>30e-1/3e3</td><td></td><td></td><td></td><td></td><td></td><td>BFGS [30]</td></th<>	BFGS	1.8	20	48	54	30e-1/3e3						BFGS [30]
1.1 1.4 9.5 260 3300 $4e3$ 3900 3800 3700 3600 2 1.8 13 21 150 140 140 140 130 3700 3600 2.5 1.8 13 6.8 18 47 46 45 44 430 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 140	Cauchy EDA	5.9	20	23	1300	13e-1/5e4					٠	Cauchy EDA [24]
2 1.8 13 21 150 140 140 130 130 130 1.7 29 1.2 2 2 2 2.1 2.1 2.3 2.5 1.5 1.5 1.5 1.6 1.2 1.7 2.1 2.1 2.1 2.3 1.5 1.5 1.5 1.6 2.4 110 10	BIPOP-CMA-ES	1.1	1.4	9.2	260	3300	4e3	3900	3800	3700	3600	BIPOP-CMA-ES [15]
17 29 12 1.2 2 2 2 2.1 2.1 2.1 2.3 2.5 1.5 1.3 6.8 18 47 46 45 44 43 1.5 1.5 1.3 6.8 18 47 46 45 44 43 2.7 1.5 1.6 24 110 100	(1+1)-CMA-ES	7	1.8	13	21	150	140	140	130	130	130	(1+1)-CMA-ES [2]
2.5 1.5 1.3 6.8 18 47 46 45 44 43 1 1 4.8 20 26 44 83 170 180 180 1.5 1.2 16 24 110 100 </td <td>DASA</td> <td>17</td> <td>29</td> <td>12</td> <td>1.2</td> <td>7</td> <td>7</td> <td>77</td> <td>2.1</td> <td>2.1</td> <td>2.3</td> <td>DASA $[19]$</td>	DASA	17	29	12	1.2	7	7	77	2.1	2.1	2.3	DASA $[19]$
1 1 4.8 20 26 44 83 170 180 180 1.5 1.2 16 24 110 100 100 100 100 1.8 1.3 1.3 1.3 1.3 1.4 90 19 24 42 54 63 110 1.8 1.7 1.2 7.9 51 48 46 44 43 42 1.3 1.7 1.2 1.3 1.4 20-1/4e3 . <td>DEPSO</td> <td>2.2</td> <td>1.5</td> <td>13</td> <td>8.9</td> <td>18</td> <td>47</td> <td>46</td> <td>45</td> <td>44</td> <td>43</td> <td>DEPSO [12]</td>	DEPSO	2.2	1.5	13	8.9	18	47	46	45	44	43	DEPSO [12]
1.5 1.2 16 24 110 110 100 100 100 100 2.7 3.5 11 25 170 160 150 140 100 100 100 1.8 1.3 130 62 430 400 380 370 360 1.3 1.7 12 7.9 51 48 46 44 43 42 1.3 1.6 12 7.9 51 48 46 44 43 42 2.1 1.2 1.2 1.3 20e-1/4e3 . <td>DIRECT</td> <td>Н</td> <td>1</td> <td>4.8</td> <td>20</td> <td>26</td> <td>44</td> <td>83</td> <td>170</td> <td>180</td> <td>180</td> <td>DIRECT [25]</td>	DIRECT	Н	1	4.8	20	26	44	83	170	180	180	DIRECT [25]
2.7 3.5 11 25 170 160 150 140 140 140 1.8 1.3 130 62 430 400 390 380 370 360 1.3 1.4 90 1.9 24 43 42 54 63 110 1.3 1.4 12 1.30 860 820 800 770 760 740 2.1 3.4 1 $20e-1/4e3$. . <th< td=""><td>EDA-PSO</td><td>1.5</td><td>1.2</td><td>16</td><td>24</td><td>110</td><td>110</td><td>100</td><td>100</td><td>100</td><td>100</td><td>EDA-PSO [6]</td></th<>	EDA-PSO	1.5	1.2	16	24	110	110	100	100	100	100	EDA-PSO [6]
1.8 1.3 130 62 430 400 390 380 370 360 1.3 1.4 90 19 24 34 42 54 63 110 1.3 1.7 12 7.9 51 48 42 54 63 110 2.1 3.4 1 $20e^{-1}/4e^3$ 2.1 3.4 1 $20e^{-1}/4e^3$ 2.1 3.4 1 $20e^{-1}/4e^3$ 54 70 17 1 1 1 1 1 1 1 1 1 1 1.4 2.1 9.6 6.6 60 56 55 53 57 56 2.3 1.4 3.3 7.2 300 280 280 280 270 270 270 2.3 2.2 2.4 4.7 4.8	full NEWUOA	2.7	3.5	11	25	170	160	150	140	140	140	full NEWUOA [31]
1.3 1.4 90 19 24 34 42 54 63 110 1.3 1.7 12 7.9 51 48 46 44 43 40 1.3 1.6 12 130 860 820 80 770 740 14 2.1 3.4 1 20e-1/4e3 . <t< td=""><td>G3-PCX</td><td>1.8</td><td>1.3</td><td>130</td><td>62</td><td>430</td><td>400</td><td>390</td><td>380</td><td>370</td><td>360</td><td>G3-PCX [26]</td></t<>	G3-PCX	1.8	1.3	130	62	430	400	390	380	370	360	G3-PCX [26]
1.3 1.7 12 7.9 51 48 46 44 43 42 1.3 1.6 12 130 860 820 800 770 760 740 14 2.1 3.4 1 $20e-1/4e3$. . <th< td=""><td>simple GA</td><td>1.3</td><td>1.4</td><td>06</td><td>19</td><td>24</td><td>34</td><td>42</td><td>54</td><td>63</td><td>110</td><td>simple GA [22]</td></th<>	simple GA	1.3	1.4	06	19	24	34	42	54	63	110	simple GA [22]
1.3 1.6 12 130 860 820 800 770 760 740 14 2.1 3.4 1 $20e-I/4e3$. .	GLOBAL	1.3	1.7	12	7.9	51	48	46	44	43	42	GLOBAL [23]
2.1 3.4 1 $20e-1/4e3$.	iAMaLGaM IDEA	1.3	1.6	12	130	860	820	800	220	200	740	iAMaLGaM IDEA [4]
54 70 17 1	LSfminbnd	2.1	3.4	П	20e-1/4e3							LSfminbnd [28]
1.4 2.1 9.6 5.6 60 56 55 53 52 51 1. 1.2 5.9 10 67 63 61 59 57 56 2.3 1.4 33 10 67 63 61 59 57 56 2.3 1.4 33 20 30 280 280 270 270 77 2.3 2.2 24 21 300 280 280 260 260 250 2.5 1.8 31 33 230 210 210 200 190 190 8.9 1.3 1.3 1.5 6 98 93 91 89 87 87 1.1. 28 21 28 36 36 38 39 51 1.3 1.7 220 1.64 140 130 130 120 120 2.2 36 43 44 140 130 130 120 120 2.2	LSstep	54	70	17	П	П	П	П	П	1	-	LSstep [28]
1 1.2 5.9 10 67 63 61 59 57 56 2.3 1.4 33 72 320 300 290 270 270 N 2.3 2.2 2.4 7.8 43 40 30 37 37 36 1 2.5 1.8 31 33 230 210 210 200 260 250 250 89 100 48 13 46 47 48 51 53 57 1.3 1.5 2.1 2.8 36 36 38 87 87 1.3 1.7 2.20 1.64 $14e^{-1}/1e6$ 2.2 36 43 $14e^{-1}/1e6$ <	MA-LS-Chain	1.4	2.1	9.6	5.6	09	26	22	53	25	21	MA-LS-Chain [21]
2.3 1.4 33 72 320 300 290 280 270 270 1.8 1 4.5 7.8 43 40 39 37 37 36 2.3 2.2 24 21 300 280 280 260 260 250 89 100 48 13 46 47 48 51 53 57 1.3 1.5 6 98 93 91 89 87 87 1.5 1.1 28 21 28 36 36 38 39 51 1.3 1.7 220 1.6e4 $14e-1/1e6$ 2.2 36 43 140 130 120 120 120 2.2 1.8 19 7.6 20 19 20 22 50	MCS (Neum)	П	1.2	5.9	10	29	63	61	29	22	26	MCS (Neum) [18]
1.8 1 4.5 7.8 43 40 39 37 37 36 2.3 2.2 24 21 300 280 280 260 260 250 2.5 1.8 31 33 230 210 200 190 190 89 100 48 13 46 47 48 57 57 1.3 1.3 15 6 98 93 91 89 87 87 1.5 1.1 28 21 28 36 36 38 39 51 1.3 1.7 220 1.64 $14e^{-1}/1e6$ $.$ $.$ $.$ $.$ $.$ 2.2 36 43 $14e^{-1}/1e4$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ $.$ </td <td>NELDER (Han)</td> <td>2.3</td> <td>1.4</td> <td>33</td> <td>72</td> <td>320</td> <td>300</td> <td>290</td> <td>280</td> <td>270</td> <td>270</td> <td>NELDER (Han) [16]</td>	NELDER (Han)	2.3	1.4	33	72	320	300	290	280	270	270	NELDER (Han) [16]
2.3 2.2 24 21 300 280 280 260 250 2.5 1.8 31 33 230 210 210 200 190 250 89 100 48 13 46 47 48 51 53 57 1.3 1.3 1.3 26 98 93 91 89 87 87 1.5 1.1 28 21 28 36 36 38 39 51 1.3 1.7 220 1.6e4 $14e^{-1}/1e6$ 2.2 36 43 $14e^{-1}/1e6$ 2.2 1.9 6.3 83 $14e^{-1}/1e4$ 2.2 1.8 1.9 7.6 1.9 19 20 22 50	NELDER (Doe)	1.8	1	4.5	7.8	43	40	39	37	37	36	NELDER (Doe) [5]
2.5 1.8 31 33 230 210 210 100 13 46 47 48 51 53 57 1.3 1.3 1.3 1.5 6 98 36 36 38 37 87 1.5 1.1 28 21 28 36 36 38 39 51 1.3 1.7 220 1.6e4 $14e-1/1e6$ 2.2 36 43 44 140 130 130 120 120 120 2.2 1.8 19 7.6 20 19 20 22 50	NEWUOA	2.3	2.5	24	21	300	280	280	260	260	250	NEWUOA [31]
8910048134647485153571.31.31.569893918987871.41.128212836363839512.2364314e-1/1e62.23643441401301301201202.21.8197.61919202250	(1+1)-ES	2.2	1.8	31	33	230	210	210	200	190	190	(1+1)-ES [1]
1.31.31569893918987871.51.128212836363839511.31.72201.6e4 $14e-1/1e6$ 2.23643441401301301201201202.21.8197.6 $16e^{-1/1}/1e4$ 1	POEMS	68	100	48	13	46	47	48	51	53	22	POEMS $[20]$
1.51.1 28 21 28 36 36 38 39 51 1.31.7 220 1.64 $1/4e^{-1}/1e^6$ 2.2 36 43 44 140 130 120 120 2.21.81.9 7.6 7.6 7.6 7.6 7.6 7.6 7.6	PSO	1.3	1.3	15	9	86	93	91	86	87	87	PSO [7]
1.31.7 220 $1.6e4$ $14e-1/1e6$ 2.23643 44 140 130 120 120 11.96.383 $14e-1/1e4$ 2.21.81.97.62019202250	PSO_Bounds	1.5	1.1	28	21	28	36	36	38	39	21	PSO_Bounds [8]
2.2 36 43 44 140 130 120 120 120 12 1 1.9 6.3 83 $14e-1/1e4$	Monte Carlo	1.3	1.7	220	1.6e4	14e-1/1e6						Monte Carlo [3]
1 1.9 6.3 83 $14e-1/1e4$ 1 1.8 19 7.6 20 19 19 20 22 50	Rosenbrock	2.5	36	43	44	140	130	130	120	120	120	Rosenbrock [27]
2.2 1.8 19 7.6 20 19 19 20 22 50	IPOP-SEP-CMA-ES	1	1.9	6.3	83	14e-1/1e4						IPOP-SEP-CMA-ES [29]
	VNS (Garcia)	2.5	1.8	19	9.7	20	19	19	20	22	20	VNS (Garcia) [11]

Table 5: 03-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_5 in the following f_5 in the following f_5 in the property of the property of the following f_5 is the following f_5 in the following f_5 in the following f_5 is the following f_5 in the following

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2.2	110	21	1.5	370	2.6	23	5.8	2.9	62	39	6.2	17	1.8	25	22e-8/1e5	48	8.	11	120	93	1	2.2	2.5	1.4	3.1	180	18	15		3.6	7.1	20
	1e-05	2.2	110	21	1.5	370	5.6	23	5. 8.	2.9	53	39	6.2	17	1.8	25	1.5e4	48	8. 8.	11	120	93	П	2.2	2.5	1.4	3.1	180	18	15		3.6	7.1	20
	1e-04	2.2	110	21	1.5	370	5.6	23	5.8 8.	2.9	49	39	6.2	17	1.8	22	1.1e4	48	8.8	11	120	93	-	2.2	2.2	1.4	3.1	180	18	15		3.6	7.1	20
	1e-03	2.2	110	21	1.5	370	5.6	23	5.8	2.9	44	39	6.2	17	1.8	25	7500	48	8.	11	120	93	П	2.2	2.2	1.4	3.1	180	18	15		3.6	7.1	20
ear slope	1e-02	2.2	100	21	1.5	370	2.6	23	5.8	2.9	40	39	6.2	17	1.8	25	4800	48	8.8	11	120	92	н	2.2	2.2	1.4	3.1	180	18	15	32e-2/1e6	3.6	7.1	20
5 Lin	1e-01	2.2	86	21	1.5	370	2.5	23	5.7	2.8	36	39	6.2	17	1.8	25	3e3	47	8.8	11	120	92	П	2.2	2.2	1.4	3.1	170	18	15	6.5e6	3.6	7	20
	1e+00	2.2	06	20	1.5	360	2.4	22	5.4	2.7	31	35	4.6	16	1.7	22	1100	47	8.3	11	120	88	П	2.4	2.4	1.4	က	150	16	14	1.8e4	3.6	6.7	20
	1e+01	2.2	27	11	1.3	22	1.6	20	3.6	2.1	19	15	3.7	8.5	1.2	9.4	14	31	3.5	7.5	93	22	П	1.6	1.4	1.1	2.3	120	8.5	6.3	34	3.3	4.1	18
	1e + 02	0.333	1.3	1.1	1.5	1.3	2.6	13	1.5	1.1	21	1.4	1	1.3	77	1.5	1.2	1.3	1.2	1.1	28	1.3	П	1.3	1.5	1.1	1.6	59	1.1	1.3	1.2	22	1.3	1
	1e+03	0.333	1	1	-	1	-	1	-	1	-	1	-	1	-	1	1	-	-	-	-	-	-	-	1	1	-	1	-	-	-	1	-	-
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 6: 03-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	88.2	72	7.5	4.7	•	3.1	22	3.2	1.6	99	14		92	6.9	4.8	1.6e4	2.3	4.8	190	1700	8.1	210	1.3	Н	4.8	က	110	28	120		1.6	3.6	3.8
	1e-05	71.6	64	6.9	4.3		1.9	24	က	1.6	54	13		99	6.1	4.3	4400	2.3	4.3	220	670	8.3	150	1.2	П	4.1	2.1	66	22	120		1.7	3.6	3.9
	1e-04	61.3	61	9.9	4.1		1.8	25	3.1	1.6	56	13	23e-3/3e4	62	9	3.5	3800	2.4	4.2	260	260	8.9	130	1.2	П	4	7	92	22	130		1.8	3.6	4
tor	1e-03	49.7	28	6.4	3.9		7	26	3.2	1.6	55	14	2700	59	5.7	3.2	4400	2.8	4.1	310	029	9.1	140	1.2	1	4.1	7	100	18	120	26e-3/1e6	1.6	3.6	4.3
ive sector	1e-02	38.9	53	6.3	3.8		2.4	27	3.2	1.7	36	13	1300	42	5.4	3.2	4200	3.3	3.7	400	820	9.6	140	1.3	П	4	1.8	93	17	100	1.1e5	1.7	3.5	4.6
Attract	1e-01	30.1	46	5.5	2.9	٠	5.9	28	3.1	1.8	30	11	440	28	5.1	2.9	270	4	3.1	510	1e3	10	120	1.3	1	3.8	1.8	83	13	56	8200	1.7	3.3	4.8
9		18.7				60																												
	1e + 01	11.2	9.2	3.7	2.6	130	3.5	28	2.4	1.3	30	9	က	2.7	4	3.5	6	5.2	2.1	490	1200	4.3	က	1.7	Н	2.1	1.7	31	2.9	5.9	7.7	2.1	8.8	5.6
	1e+02	2.53	3.3	4.3	2.3	10	2.5	33	1.6	1.6	58	3.3	1.1	3.4	3.7	3.2	2.7	3.7	7	220	069	4.6	1.5	1.2	-	1.9	3.2	91	4	2.3	1.9	4	3.6	2.3
	1e+03	1.38	4.9	4.8	1.2	4.2	3.3	24	1.6	1.4	33	2.4	1.4	3.9	1.5	က	2.4	2.2	2.4	14	240	3.8	2.1	1.6	1	1.4	2.1	160	3.8	2.5	2.8	3.9	4.5	2.2
	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 7: 03-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES $[2]$	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock $[27]$	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	178	11	2.9	37			7	-1	1.3	1500	5.3	30	22	6.2	48	250	46	5.4	260		3.9	8.8	27	8.8	35	8.4	20	5.1	13	55e-4/1e6		1.4	3.9
	1e-05	161	9.3	က	41			1.9	1	1.4	1600	5.1	34	20	8.9	54	200	51	9	290		3.9	4.1	30	8.8 8.8	39	9.3	21	5.1	12	1.6e4		1.3	4.1
	1e-04	161	9.3	က	41			1.9	1	1.4	1600	5.1	34	20	8.9	54	200	51	9	290		3.9	4.1	30	8. 8.	39	9.3	21	5.1	12	1.6e4		1.3	4.1
		161				45															yo													
p-ellipsoid																																79		
7 Ste	1e-01	114	7	2.1	4.8	72	37e-1/100	1.9	1.1	1	120	5.9	2.1	8.8 8.8	1.4	12	27	4.6	8.1	33	390	2.2	2.4	20	4.3	10	3.9	12	3.1	4.8	130	370	1.4	2.6
	1e+00																																	
on on	1e+01	3.8	6.2	5.6	1.2	3.6	17	14	3.3	2.7	82	5.2	2.9	3.3	П	6.2	3.3	6.2	2.6	46	300	6.1	1	œ	7.5	11	7	81	3.5	4.1	ಬ	26	2.7	7.5
0 v Ciiio	1e+02	0.867	7	2.1	3.5	1	4.1	16	77	3.5	57	1.7	1.4	1.9	3.4	1.5	2.5	2.5	3.3	19	210	2.1	1.1	က	1.9	2.6	2.3	270	2.5	77	7	140	3.3	3.2
Caci	1e + 03	0.333	1.1	1.2	1.3	1.4	1.8	7.1	1	1.4	24	1.2	Н	1.3	1.2	1.1	1.3	1.3	1.2	8.7	1.6	1.3	Н	1.7	1.1	1.3	1.1	170	1.1	1.3	1.3	41	3.2	1
TATIONAL CARTAGORIO DO TOGOTI OTIVO VOLTO CAL	Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 8: 03-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		${ m ERT_{best}/D}$								(1+1)-CMA-ES [2]											~=			NELDER (Han) [16]							Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	69.4	210	8.3	1		1	17	5.6	3.4	2800		42	370	1	6		2.2	5.9		73e-2/1e	12	5.7	1.2	1.5	1.2	170	410	380	1e3		က	7.2	6.1
	1e-05	62.9	150	7.8	1		1	16	5.4	3.2	2e3		29	260	1	9.1		2.5	5.6	96e-2/1e4	2100	12	5.9	1.1	1.5	1.2	120	330	260	920		3.1	7.1	5.9
	1e-04	64.7	120	7.5	1		1	15	5.2	3.1	1500	62e-4/2e3	22	210	1	9.1		2.5	5.3	2200	2200	11	9	1.1	1.4	1.2	91	290	210	840		က	7	5.7
k original																															6.7			
Rosenbroc	1e-02	58.5	65	6.3	-1	73e-2/2e3	1.1	14	4.9	2.8	750	24	9.2	110	1	9.3	49e-3/1e5	2.6	ъ	2400	2400	6.6	6.3	1	1.4	1.2	39	69	93	290	1.2e5	3.1	6.7	5.4
8 F	1e-01	50.5	33	8.	1	260	1.1	14	4.5	2.8	470	11	3.5	20	1.1	6	400	2.8	4.5	2800	2800	7.7	7.2	П	1.5	1.2	20	48	52	160	1e4	က	6.2	5.1
	1e+00	14.9	46	6.6	2.6	110	2.7	28	œ	6.3	470	14	ಬ	74	2.8	16	170	8.2	8.1	810	089	14	Н	2.1	4	2.8	45	94	46	09	1e3	6.9	8.3	9.4
	1e+01	9.07	23	3.8	1.9	11	1.4	21	3.5	1.9	15	7.7	7	8.9	1.4	4.2	47	11	2.5	24	51	9.9	1	П	1.6	1.4	2.8	37	8.6	17	43	1.7	3	7.7
	1e+02	4.87	8.5	5.9	1.9	4.7	2.1	18	3.8	1.6	22	8.1	1.4	4	1.9	4.3	3.4	9.5	2.4	4.4	20	4.5	1	П	2.1	1.5	3.3	20	4.4	4	6.9	1.8	1.9	6.6
	1e + 03	1.4	2.8	5.1	3.1	3.7	3.3	24	4.8	1.7	38	6.7	1.5	2.9	3.7	2.2	2.2	2.6	2.6	10	150	4.7	1	1.6	2.1	3.1	4.5	140	2.9	2.2	2.7	4.2	3.8	2.5
	Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 9: 03-D, running time excess ERT/ERT_{best} on f_9 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		${ m ERT_{best}/D}$								(1+1)-CMA-ES [2]										~=		MA-LS-Chain [21]						POEMS $[20]$		PSO_Bounds [8]		Rosenbrock [27]		
	1e-07	59.4	220	8.6	1.2		1	20	5.6	4.1	3600		38	490	1	12		3.1	6.4	71e-3/1e		13	1.2	1.3	1.3	1.3	240	910	440	1e3		2.9	8.4	1
	1e-05	56.3	170	8.1	1.2		1.1	19	5.3	3.9	2500		29	350	1	12		3.1	9	2600		12	1.2	1.2	1.2	1.3	180	200	270	880		2.9	8.3	2
	1e-04	54.9	130	7.7	1.1		1.1	18	5.1	3.8	1900	46e-4/2e3	27	260	1	12		3.1	5.8	2600		11	1.2	1.1	1.1	1.2	150	380	200	780		2.8	8.2	C.
rotated	1e-03	53.2	100	7.1	1.1		1.1	17	4.9	3.7	1400	260	18	190	П	12	11e-2/1e5	3.1	5.4	1300	56e-2/1e4	11	1.1	1.1	1.1	1.2	120	250	130	670	43e-3/1e6	2.7	8.1	8
brock																																		
9 Rosen	1e-01	42.4	48	9	1.2	12e-1/2e3	1.1	16	4.4	3.6	720	27	6.2	69	1	12	3800	3.5	4.9	310	3300	8.7	1	-	1.1	1.2	71	89	34	370	1e4	2.7	7.4	S
•	1e+00	21.8	30	6.2	1.7	110	1.5	17	4.6	4.5	790	19	1.7	49	1.4	14	100	6.2	25	180	400	6.6	1	1.2	1.4	1.7	79	69	17	22	029	2.6	5.6	œ
	1e+01	6.93	30	5.4	1.7	12	1.5	24	3.9	2.7	24	15	1.5	7.5	1.6	5.4	49	14	3.3	4.7	180	11	1	1.2	1.5	1.7	2.6	99	11	13	43	1.6	3.7	-
	1e + 02	0.333	130	40	20	09	20	290	30	36	390	22	-	42	18	53	130	100	28	61	3e3	73	1	12	18	22	32	780	72	59	7.1	23	28	140
	1e + 03	0.333	7.9	15	11	15	9.3	140	6.6	8.2	200	∞	1	7	9.4	11	8.4	10	12	22	390	12	1	5.2	6.9	7.7	11	650	9.3	11	12	13	10	20
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 10: 03-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO[12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	9.08	7100	3.8	11	٠	92	9.2	4.8	3		٠	2e3		7.1	42		2.5	3.3			12		-	1.1	16			1.8e4	1.8e4		6.5	7.8	5.3
	1e-05	72.8	2600	3.6	9.2		5.9	8.7	4.9	3			1e3	•	9	41		2.3	3.2			12		П		14			6500	2e4		6.9	8.2	5.5
	1e-04	8.89	1900	3.4	8.8		1.5	8.3	4.9	က		•	480	61e-2/1e5	5.6	33		2.4	3.1	-		12	29e-2/2e4	Н	1.1	13	36e-4/1e6		6700	2.1e4		6.4	8.5	5.6
	1e-03	64.5	1300	3.2	7.9		1.4	7.8	4.9	3.1			490	1.1e4	4.9	36		2.5	က			13	3800	1	1.1	12	7.6e4	51e-2/1e5	4800	2.2e4		6.5	∞.∞	5.7
biosc	1e-02	60.2	200	2.9	6.9		1.2	7.3	4.9	က	24e-1/1e6		160	7e3	4.4	30	55e-2/1e5	2.6	2.9	61e+0/1e4		12	4100	1	1.1	10	2.3e4	1.2e4	3600	1.1e4	11e-1/1e6	8.9	9.5	5.8
10 Ellipsoid	1e-01	55.9	360	2.7	5.8		1.2	6.7	4.6	2.7	2.5e5	55e-1/2e3	120	4200	3.9	28	1.2e4	2.7	2.6	2500		12	820	1	1.1	8.3	1.2e4	5300	2400	1.2e4	2.5e5	7.2	9.6	5.9
for a	1e+00	50.7	120	2.3	3.4		1.2	6.2	4.1	2.7	4.4e4	110	49	2400	2.6	21	2e3	2.8	2.1	2800	53e+1/1e4	11	170	1	1.1	5.2	6200	1600	1100	8e3	6e4	7.8	8.6	9
	1e+01	38	50	77	1.9	37e+1/2e3	1	6.3	4.1	2.7	1.1e4	29	9.2	210	1.6	14	200	3.3	1.8	1700	1700	9.6	29	1	1.2	2.8	2100	410	59	2100	2100	8.5	11	5.9
	1e + 02	18	38	က	1.3	1600	1	9.4	5.6	3.1	180	35	8.4	99	1.6	7.2	06	9	2.2	480	2400	13	14	1.3	1.3	1.3	320	72	12	31	210	3.9	17	7.1
	1e+03	9.71	23	3.2	1.1	88	1.4	13	8.1	4.5	130	13	4.1	20	П	8.8 8.8	30	6.6	3.3	340	1100	16	23	1.8	77	1.4	28	49	9.5	13	34	2.6	22	9.3
	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 11: 03-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	109	5e3	2.8	ಬ		33e-7/7e3	6.4	3.6	2.5	3.9e4				4.7	320		1.7	2.4			9.7		1.1	1	5.1		3200	066	1700		4.7	6.1	4.3
		101																																
	1e-04	96.3	1800	2.3	3.7	٠	11	5.2	3.7	2.2	4.3e4	·	24e-4/3e4	41e-4/1e5	3.5	210		1.8	2.1	·		10		1.2	н	3.7		2100	450	1600		ಬ	6.5	4.4
	1e-03	92.5	1100	2.1	3.3		3.7	ಬ	3.7	2.5	3.3e4		220	5100	3.1	180		1.8	7			10	24e-3/2e4	1.2		3.2	37e-3/1e6	1700	360	1600		5.1	9.9	4.4
Discus	1e-02	87.7	520	1.9	2.7	٠	1.4	4.3	3.6	2.5	2.2e4	٠	390	1100	2.6	140	90e-2/1e5	1.8	1.9	٠		10	510	1.2	-	2.6	1.7e5	1500	270	1e3	13e-2/1e6	5.3	9.9	4.5
11	1e-01	75.7	250	1.7	2.5	85e-1/2e3	1	4.1	4	2.7	1.4e4	89e-1/2e3	150	490	2.5	100	2600	7	1.9			11	100	1.3	1.1	2.5	1.7e4	830	160	610	6.1e4	5.9	7.4	4.8
ò	1e+00	35.1	120	က	3.3	810	1	6.5	7.5	4.6	9300	270	28	290	3.6	93	2100	3.9	3.1	32e+0/1e4	36e+0/1e4	22	82	2.5	7	3.4	1.5e4	1e3	150	740	2200	12	15	9.6
	1e+01	22.4	31	3.1	77	91	1	7.8	9.2	5.8	4600	130	13	74	3.2	30	74	5.4	3.1	1800	2900	21	49	2.5	2.3	3.1	8400	370	09	240	130	17	17	14
	1e + 02	3.87	48	7	2.6	23	1.9	24	14	8.6	16	62	6.4	28	6.9	10	99	23	6.7	190	400	24	1	3.4	3.7	8. 8.	1300	100	30	22	52	2.7	20	30
	1e+03	3.13	19	5.5	1.9	10	2.1	19	5.7	4.6	15	8.6	5.7	9.6	2.3	8.7	17	14	4.6	2.1	2.1	13	1	က	3.2	1.7	3.7	42	12	6	22	2.7	5.2	12
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 12: 03-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	263	9.3e4	5.2	1.9		43	13	4.1	3.5			240		1.6	8.1		4	4.6			8.9	18	1.1	1	1.2						11	8.9	4.4
	1e-05	232	1.4e4	4.9	1.8		2.3	13	4	3.6		-	49	91e-2/1e5	1.5	6.7		2.8	4.7			9.1	4.5	П	П	1.1						7.4	7	4.4
	1e-04	208	3400	4.9	1.8		7	13	3.9	3.3			53	0089	1.4	œ		2.2	4.7			∞. ∞.	2.5	1	1	П				24e-1/1e5		6.9	6.7	4.6
	1e-03	148	1600	5.6	2.2	38e-1/2e3	1	16	4.8	4.2			58	9500	1.7	6.6	11e-1/1e5	2.4	5.9			11	2.7	1.3	1.3	1.3	12e-1/1e6	69e-2/1e5					8.7	
Bent cigar	1e-02	134	460	5.2	2.2	220	1	16	4.7	4.2	81e-1/1e6	67e-1/2e3	10	1.1e4	1.7	9.2	1.1e4	2.4	9	-	34e+0/1e4	11	1.2	1.3	1.2	1.2	1.1e5	5e3	1e4	1.1e4		9.4	9.1	5.6
	1e-01	113	170	4.8	2.2	120	1	17	4.5	4.3	3.6e4	260	5.7	2900	1.6	8.9	1.3e4	7	6.1	14e+0/1e4	400	10	1.2	1.3	1.3	1.2	3.9e4	3800	5800	2500		10	8.4	9
,	1e+00	55.9	100	4.2	3.2	82	1.4	26	5.7	6.1	3.6e4	160	6.5	1700	2.2	11	2400	3.1	∞	1200	790	15	1	1.7	1.6	1.6	2.7e4	1600	2700	2200	26e+0/1e6	19	10	9.5
	1e+01	21.6	94	4.7	4.5	29	1.7	34	7.9	8.5	3.1e4	80	7	096	2.9	9	430	5.9	9.6	200	1400	25	1	7	1.8	73	2.8e4	1800	2400	2e3	1.6e5	38	10	13
	1e + 02	13.2	85	6.4	1.9	56	1.5	26	4.8	4.3	17	25	4.6	260	1.9	4.3	380	8.6	4.4	6.2	73	14	1.1	1.4	1.4	Н	7200	170	41	280	1.1e4	1.5	5.6	6.6
	1e+03	9.78	73	5.9	1.1	27	1.9	26	5.2	3.8	17	24	4.6	190	Н	4.8	200	11	4.1	9	87	16	1.3	1.5	1.5	1.2	2.7	100	30	110	1700	1.6	5.4	9.3
	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 13: 03-D, running time excess ERT/ERT_{best} on f_{13} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	122	2.2e4	3.4	36e-4 /8e3		25e-6/9e3	9.3	4.6	9	46e-5/1e6		160		51e-5/9e3	210			2.5			12		1	1.1		5.7e4		71e-3/1e5			320	7.1	7.2
	1e-05	93.8	5400	3.5	260		410	9.6	4.8	6.1	1.5e5		61		089	230			2.6			12	22e-4/2e4	1	1.2	12e-4/7e3	3300		1.5e4			130	8.3	7.5
	1e-04	84.9	1600	3.4	280		31	9.5	4.4	5.9	4e4		31	73e-4/1e5	260	220	16e-2/1e5	35e-4/400	2.5			12	830	1	1.2	1200	1600		1.7e4	42e-3/1e5		82	8.5	7.8
$_{ m ridge}$	$1\overline{e}$ -03	71.7	410	3.4	160		2.1	9.4	4.5	5.9	2e4	11e-2/2e3	29	2800	120	160	2e4	88	2.4	39e-2/1e4		13	710	1	1.2	200	1e3	19e-3/1e5	2e4	9200		31	8.9	8.5
Sharp	1e-02	45.3	200	4.3	110		П	12	6.1	6.9	6100	210	16	1400	28	110	1.5e4	8.4	က	1500		17	370	1.3	1.3	62	290	4900	5e3	9e3		20	13	12
13	1e-01	36.2	100	4.2	42	24e-1/2e3	1	12	ಬ	5.9	1600	100	8.9	400	38	26	3600	6.3	3.1	620	65e-1/1e4	17	370	1.2	1.2	42	120	1700	2200	1200	17e-1/1e6	9.5	16	7.8
•	1e+00	28.3	99	3.9	14	120	1	12	3.8	4.5	1100	09	8.9	140	10	73	250	4.5	2.7	220	1500	13	130	1.1	1.1	6	65	029	220	1400	1.6e5	8.6	15	9
	1e + 01	16.4	48	3.7	5.6	45	1.1	14	3.7	4.1	320	14	2.9	48	က	20	150	9.9	2.9	120	510	9.7	14	П	-1	4.5	16	73	19	086	1300	ಬ	8.6	7.1
	1e + 02	5.6	12	4.3	1	34	1.5	22	2.6	2.9	52	9.5	1.9	4.7	1	4.8	12	9.4	3.2	14	150	7.9	1.7	1.2	1.3	1	2.3	52	5.8	9.9	13	2.9	က	8.6
	1e+03	0.533	1.5	1.4	2.2	1.5	3.5	39	1.6	1.9	18	1.9	П	1.2	2.5	1.5	2.5	1.3	2.5	5.9	120	2.5	1	1.9	1.5	7	1.7	280	1.2	1.5	1.7	4.5	2.6	1
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 14: 03-D, running time excess ERT/ERT_{best} on f_{14} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\overline{\mathrm{ERT}}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDÈA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	64.8	2500	3.6	6.9	28e-4/2e3	29	11	5.9	3.6	4.8e4	11e-6/2e3	480	6500	4.4	280	25e-6/1e5	11e-6/300	3.2			13	20e-7/2e4	1	1.2	17	16e-7/1e6	1e4	2e3	1100		14	8.3	7.2
	1e-05	36.7	200	4.7	2.7	780	-1	14	7.1	4.2	2900	130	110	190	2.3	45	6e3	12	3.6	31e-5/1e4		15	20	1.3	1.6	က	2400	220	92	280		3.1	11	8.4
owers	1e-04	30.7	81	4.5	1.6	280	П	14	6.4	4	400	26	45	130	1.5	11	1600	4.8	3.2	009	22e-4/1e4	11	9	1.3	1.5	2.1	110	160	45	140	43e-4/1e6	2.4	6.6	7.7
erent r	_	23.8																																
f of diffe	1e-02	14.4	71	ಬ	1.1	110	1.3	18	4.2	$^{2.6}$	23	16	5.5	21	п	4.2	280	7.4	3.7	6.1	160	12	7.9	1.3	1.8		2.2	110	24	62	1.9e4	1.5	4.2	8.3
Sum	1e-01	9.47	55	4.5	1.1	120	1.5	17	3.5	2.2	20	12	2.7	11	1.2	4.6	160	11	3.2	3.5	20	11	11	1.2	1.4	П	1.9	91	14	33	430	1.3	3.6	8.7
14	1e+00	5.76	10	2.7	1.2	28	1.5	15	5.9	1.4	24	4.9	1.7	4.2	1.4	4	10	8.4	2.4	4.4	84	6.7	12	-	1.1	1.1	1.8	55	3.1	4	17	1.4	5.6	7.1
	1e+01	0.733	2.3	2.1	4.7	1.6	3.7	20	3.1	2.1	43	1.5	1.8	1.8	6.2	7	1.9	2.2	2.7	7.2	210	1.8	2.2	1.9	2.7	4.1	2.5	250	Н	2.7	2.1	5.5	2.8	П
	1e+02	0.333	1.2	1.2	1.2	1.1	2.1	1	1.3	1.1	13	1	-	1.1	1.3	1.1	-	П	1.4	-	29	1.1	1	1.3	-	1.1	1.1	140	1.1	1	1.3	2.2	1.1	1
	1e + 03	0.333	Т	Т	7	П	-	1	п	П	п		1	П	п		1	П	-	н	1	П	п	н	1	П	п	1	1	1		1	1	1
	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 15: 03-D, running time excess ERT/ERT $_{\text{best}}$ on f_{15} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	3010	5.1	2.9	2.1		15		1.3	9.9	140		1.7	7.5	6.1	27	150	2.7	3.4	14	48	2.4	1.5	6.5	1.8	3.1	9.3	56	41	22		13	П	4.5
	1e-05	2930	4.8	က	2.5		16		1.3	8.9	140	10e-1/2e3	1.7	7.4	6.3	28	83	2.8	3.5	15	49	2.4	1.6	6.7	1.8	3.2	9.6	22	42	21		14	1	2.9
	1e-04	2860	4.6	က	2.5		16		1.3	6.9	140	2.6	1.7	7.4	6.4	56	64	2.9	3.5	15	20	2.2	1.3	6.9	1.9	3.3	8.6	22	43	22		14	Н	2.9
	1e-03	2810	4.4	က	2.3		16		1.3	7.1	150	2.6	1.7	7.3	6.5	29	62	2.9	3.6	15	20	2.5	1.3	7	1.9	3.3	10	28	44	22		14	П	2.8
strigin	$1\overline{e}$ -02	2760	4.2	3.1	2.3	11e-1/2e3	17	78e-3/5e4	1.3	7.2	150	2.6	1.7	7.4	6.7	30	62	က	3.6	15	51	2.2	1.4	7.1	1.9	3.4	10	59	44	21		15	1	2.8
15 Ra	1e-01	2100	3.9	3.7	3.1	14	22	27	1.7	9.2	200	3.3	-	9.5	8.8	39	62	3.9	4.6	20	29	3.3	1.8	9.4	2.2	4.5	13	22	28	27	65e-2/1e6	19	1.3	3.7
,	1e+00	457	5.3	ಬ	3.7	11	17	5.4	1.3	5.8 8.0	200	9.9	1.5	7.4	2.8	28	20	3.2	5.6	21	140	1.6	1	4.6	1	3.4	6.2	32	4	27	1500	11	2.5	က
	1e + 01	40.5	7.6	1.2	3.2	3.1	7.3	3.9	1.9	1	26	3.4	-	3.8	2.5	40	14	2.7	6.2	8.8	380	2.6	1.8	2.3	1.4	3.5	3.4	14	2.7	8.8	29	11	2.3	က
	1e + 02	0.778	3.3	1.8	3.4	2.4	27	46	4.4	3.9	36	1	1.4	1.6	3.3	2.9	က	2.3	က	5.5	170	3.1	1.4	2.9	2.2	2.5	4.5	190	2.8	3.8	2.5	38	4.4	2.6
	1e + 03	0.333	1.3	1.3	71	1.5	5.8	9.5	1.9	1.5	8.6	1.5	Н	1.2	1.3	1.4	1.4	1.2	1.4	Н	1.2	1.5	П	1.3	2.3	1.3	2.2	39	1.5	1.3	1.5	5.9	1.7	1.4
	Δ ftarget	$_{ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 16: 03-D, running time excess ERT/ERT_{best} on f_{16} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

10 9.2 19 50 94 170 4.8 5.6 11 33 21 29 3.4 3.9 12 58 40 57 71 210 41 77 58 170 180 4400
1.2 1.1.1 1.
1.1. 1.19 1.12 1.16 1.13 4.11 1.13 4.11 1.13 4.11 1.13 4.11 1.13 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.14 1.13 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15

Table 17: 03-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

			3	rani	17 Schaffer F7,		condition 10	0			
Δ ftarget	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
${ m ERT_{best}/D}$	0.333	0.333	1.2	26.2	93.9	164	378	602	782	1160	${ m ERT_{best}/D}$
ALPS	1	1.2		11	13	15	9.2	8.3	8.5	8.8	ALPS [17]
AMaLGaM IDEA	П	1.3		1.5	1	П	2.6	3.1	3.9	က	AMaLGaM İDEA [4]
avg NEWUOA	П	1.9		∞	13	150	32e-3/5e3				avg NEWUOA [31]
BayEDAcG	1	1.7	2.3	6.7	7.6	17	9.7	16	32e-4/2e3		BayEDAcG [10]
BFGS	1	2.1	48	44	44e-2/2e3						BFGS [30]
Cauchy EDA	П	4.9		7.3	4.1	3.6	2.2	1.8	1.8	1.6	Cauchy EDA [24]
BIPOP-CMA-ES	П	1.2		4	2.4	2.3	1.5	1.2	1.4	1.1	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	П	1.1	32	9.7	6.2	32	37	75	58	76e-5/1e4	(1+1)-CMA-ES [2]
DASA	Н	15		49	110	480	006	066	3900	1.2e4	DASA [19]
DEPSO	П	1.3		4	3.5	3.5	2.3	2.2	2.3	വ	DEPSO [12]
DIRECT	Н	1			1.2	1.5	П	-	1	1.2	DIRECT [25]
EDA-PSO	1.1	1.3		4	17	29	20	17	17	16	EDA-PSO [6]
full NEWUOA	Н	1.7		5.5	7.3	31	53	35e-4/6e3			full NEWUOA [31]
G3-PCX	П	1.3		33	39	48	47	110	290	640	G3-PCX [26]
simple GA	Н	1.1	1.4	30	57	72	72	65	120	58e-8/1e5	simple GA [22]
GLOBAL	1	1.5	က	4.2	7.3	21	98e-3/400			-	GLOBAL [23]
iAMaLGaM IDEA	1	1.4		П	3.1	2.7	3.1	4.4	3.6	က	iAMaLGaM IDEA [4]
LSfminbnd	П	1.2		8.2	30	140	21e-3/1e4	٠			LSfminbnd [28]
LSstep	н	1.5		200	100	880	69e-3/1e4	٠			LSstep [28]
MA-LS-Chain	1	1.4		3.4	4	4.9	3.1	2.6	2.3	7	MA-LS-Chain [21]
MCS (Neum)	П	1		2.5	5.6	16	180	35e-4/2e4			MCS (Neum) [18]
NELDER (Han)	П	П		22	44	92	92	110	250	400	NELDER (Han) [16]
NELDER (Doe)	н	1.2		3.7	8.5	36	69	12e-4/2e4			NELDER (Doe) [5]
NEWUOA	н	1.6		6	19	140	32e-3/5e3	٠			NEWUOA [31]
(1+1)-ES	П	2.5	24	33	870	2300	4100	12e-4/1e6			(1+1)-ES [1]
POEMS	Н	93		20	23	28	17	18	16	15	POEMS $[20]$
PSO	н	1.1	8.8	4.4	80	52	26	18	15	14	PSO [7]
PSO_Bounds	П	1.3		4.7	14	21	14	13	25	28	PSO_Bounds [8]
Monte Carlo	П	1.1		30	7200	92e-3/1e6		•			Monte Carlo [3]
Rosenbrock	Н	1.3		2200	20e-1/8e3						Rosenbrock $[27]$
IPOP-SEP-CMA-ES	н	1.2	8.8	1.8	2.1	1.8	1.4		1.1		IPOP-SEP-CMA-ES [29]
VNS (Garcia)	П	1		2.9	1.2	1.7	1.3	7	4.8	18	VNS (Garcia) [11]

Table 18: 03-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

t /D IDEA JOA											
	1e+03	1e+02	1e+01	1e+00	1e-01	1°	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
	0.333	0.4	13.4	48.2	18.2 430	1030	1170	1310	1580	1840	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$
	.3	2.6	2	17	5.5	5.2	7.2	13	18	140	ALPS [17]
	1.2	3.4	1.6	6.1	3.5	3.2	3.1	2.9	2.5	2.5	AMaLGaM IDEA [4]
BayEDAcG 1	6.1	4.8	11	30	15	89	76e-3/6e3				avg NEWUOA [31]
	1.1	က	4.5	9.7	29	20e-2/2e3		٠			BayEDAcG [10]
BFGS	1	16	33	29e-1/3e3							BFGS [30]
Cauchy EDA 1	6.3	31	280	80	9.4	4.3	4	8.5	7.3	9.9	Cauchy EDA [24]
_	1.1	3.4	1.4	3.4	1.8	1.1	-1	П	1.1	1.3	BIPOP-CMA-ES [15]
-	7.7	3.8	2.7	ಬ	8.3	22	40	16e-3/1e4			(1+1)-CMA-ES [2]
	5.6	93	91	086	460	1600	10e-3/1e6				DASA [19]
DEPSO 1	6.1	2.4	3.8	12	3.4	5.1	12	18e-3/2e3			DEPSO [12]
DIRECT	1	1.5	1.1	2.7	1	П	61	2.9	22	8.3	DIRECT [25]
EDA-PSO	1	4.5	2.4	28	13	9.3	12	13	14	16	EDA-PSO [6]
OA 1	1.1	4.6	4.2	16	13	48e-3/7e3					full NEWUOA [31]
G3-PCX 1	[.1	3.3	2.4	11	18	63	91e-4 /5e4				G3-PCX [26]
simple GA		3.2	6.3	63	42	420	1200	17e-3/1e5			simple GA [22]
-	7.7	2.7	3.9	5.7	4.6	21e-2/500	٠	٠			GLOBAL [23]
EA :	1.1	1.9	1	1	1.6	3.3	3.7	3.9	3.4	3.8	iAMaLGaM IDEA [4]
LSfminbnd	1	4.4	8.7	35	33	10e-2/1e4					LSfminbnd [28]
LSstep	1	25	42	360	330	12e-1/1e4					LSstep [28]
	1.1	2.3	က	4.8	5.3	12	11	13	12	11	MA-LS-Chain [21]
MCS (Neum)	-	1	4	2.9	20	40e-3/2e4					MCS (Neum) [18]
_		4.2	25	27	30	45	120	550	98e-5/1e5		NELDER (Han) [16]
oe) :		3.5	1.9	5.4	7	16	72		170	~	NELDER (Doe) [5]
	1	5.1	7.2	17	34	12e-2/6e3		٠			NEWUOA [31]
	8.1	6	340	300	2800	1.4e4	1.2e4	83e-3/1e6			(1+1)-ES $[1]$
S	42	250	25	180	22	24	20	92	100	170	POEMS [20]
PSO	1	2.7	77	16	57	22	66	92	110	180	PSO [7]
PSO_Bounds	1	2.7	77	170	65	22	29	89	69	780	PSO_Bounds [8]
Monte Carlo 1	[:]	2.5	4.7	450	26e-2/1e6						Monte Carlo [3]
	[:]	160	220	2300	50e-1/8e3			٠			Rosenbrock [27]
IPOP-SEP-CMA-ES 1	7.7	4.7	1.2	1.8	2.1	1	1.1	Н	1	П	IPOP-SEP-CMA-ES [29]
VNS (Garcia) 1	7.	3.5	3.2	2.3	4.3	5.3	9.9	13	45	130	VNS (Garcia) [11]

Table 19: 03-D, running time excess ERT/ERT_{best} on f_{19} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension.

	Δ ftarget	ERT_{hest}/D	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2480	7.1	9	92				3.3	17	480			16	17	94	68e-6/1e5		7.7	-		2.3	1	40	11	53	2600	59	28	35	79e-4/1e6		2.5	10
	1e-05	2470	5.5	9	92				3.2	17	460		10e-3/3e4	13	17	92	81		7.7			2.2	1	40	11	54	2600	28	25	30	6100		2.2	6.3
2	1e-04	2460	5.2	9	92				3.2	17	460		09	12	17	92	20		7.7			2.5	-	40	11	54	2600	28	22	27	6100	-	2.4	6.1
brock F8F2	1e-03	2460	4.6	5.9	92		86e-3/5e3		3.2	17	460		09	11	17	92	39	94e-3/1e3	7.7	38e-3/7e3	28e-3/1e4	2.2	1	40	11	54	2600	22	24	26	2900	27e-2/1e4	2.4	9
wank-Rosen	1e-02	2250	33	3.8	39	64e-3/2e3	33	53e-3/5e4	2.9	8.8	230	43e-3/2e3	59	5.8	11	100	19	3.9	9.2	46	63	1.6	П	17	5.4	25	1800	40	14	13	490	32	2.6	4.8
Griew	1e-01	36.5	46	36	120	43	160	310	49	160	520	41	П	85	26	640	100	46	73	54	56	20	11	120	20	280	3.1e4	170	24	91	810	820	54	36
$\tilde{19}$	1e+00	0.333	470	120	320	130	870	540	100	920	5100	240	-	370	370	920	930	290	160	270	650	190	-	1500	150	1300	2.1e5	1400	240	250	1e3	3100	190	220
	1e + 01	0.333	11	13	13	6.6	110	22	13	6.1	09	5.4	-	9.1	22	9.2	7.1	14	10	56	8.9	9.7	-	4.1	9.7	20	10	630	10	6.7	=======================================	250	9.1	23
	1e + 02	0.333	П	1.2	1.5	1.1	37	2.3	1.5	1	3.3	1	1	1.4	1.7	1.1	1.2	1.1	1.2	က	7	1.1	1	П	1.1	1.5	2.3	130	1.1	1.1	1.1	15	1.1	1.4
	1e + 03	0.333	1	1	П	1	П	1	1	П	П	П	-	-	-	н	1	-	-	н	1	-	1	н	-	-	1	1	-	-		1	1	-
	Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 20: 03-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

					20 Schwefel	el x*sin(x)					
$\Delta { m ftarget}$	1e + 03	1e + 02	1e+01	1e+00	1e-01	1e-02		1e-04	1e-05	1e-07	Δ ftarget
$\text{ERT}_{\text{best}}/ ext{D}$	1.84	5.6	2.76	128	764	799	827	842	828	925	${ m ERT_{best}/D}$
ALPS	2.8	4.1	5.1	2	3.9	4.6		6.2	7.2	8.2	ALPS [17]
AMaLGaM IDEA	2.2	2.2	2.7	20	26	25		22	24	23	AMaLGaM İDEA [4]
avg NEWUOA	1.5	1.3	1.3	2.3	6.6	9.5		6	8.9	8.2	avg NEWUOA [31]
$_{ m BayEDAcG}$	3.1	က	3.2	71	13e-1/2e3						BayEDAcG [10]
BFGS	1.8	1.7	1.9	1.7	5.5	5.3		20	4.9	4.6	BFGS [30]
Cauchy EDA	17	18	20	10	460	930	8				Cauchy EDA [24]
BIPOP-CMA-ES	2.2	2.1	2.3	8.2	10	10		10	10	9.2	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	2.1	2.6	2.7	5.6	9.2	9.1		8.7	8.5	6.7	(1+1)-CMA-ES [2]
DASA	31	37	37	21	43	41		33	38	36	DASA [19]
DEPSO	1.1	4.1	5.9	2.4	4.9	4.8		4.9	4.8	4.7	DEPSO[12]
DIRECT	3.7	5.2	5.9	П	6	8.7		.5 .5	8.5	8.1	DIRECT [25]
EDA-PSO	2.3	3.4	3.6	6.7	4.5	4.9		5.3	5.6	6.1	EDA-PSO [6]
full NEWUOA	1.9	1.3	1.2	5.2	9.1	8.7		8.3	8.1	7.5	full NEWUOA [31]
G3-PCX	1.5	2.8	3.5	17	22	21		20	20	19	G3-PCX [26]
simple GA	3.2	4.3	5.1	14	7.1	10		17	21	59	simple GA [22]
GLOBAL	1.3	2.7	3.4	9	18	17		16	16	15	GLOBAL [23]
iAMaLGaM IDEA	2.3	2.9	3.7	16	19	18		18	17	16	iAMaLGaM IDEA [4]
LSfminbnd	6.4	6.1	8.9	6.6	42e-2/1e4						LSfminbnd [28]
LSstep	150	180	220	28	180	180		170	170	160	LSstep [28]
MA-LS-Chain	2.2	2.3	2.8	2.2	1	н		П	П	1	MA-LS-Chain [21]
MCS (Neum)	2.9	2.5	2.3	3.2	3.5	3.4		3.2	3.1	2.9	MCS (Neum) [18]
NELDER (Han)	Н	Н	-	19	25	24		23	23	21	NELDER (Han) [16]
NELDER (Doe)	1.5	1.5	1.7	3.6	10	10		9.2	9.4	8.7	NELDER (Doe) [5]
NEWUOA	1.6	1.4	1.3	1.1	3.9	3.7		3.5	3.4	3.2	NEWUOA [31]
(1+1)-ES	2.5	3.1	3.1	4.7	9.5	9.1		8.7	8.5	7.9	(1+1)-ES [1]
POEMS	110	87	84	7.4	65	63		69	69	99	POEMS $[20]$
PSO	1.4	3.2	3.7	2.6	22	22		21	21	20	PSO [7]
PSO_Bounds	2.1	2.4	3.2	5.2	52	78		82	84	80	PSO_Bounds [8]
Monte Carlo	1.3	2.6	3.1	26	1600	94e-3/1e6					Monte Carlo [3]
Rosenbrock	ဗ	2.6	2.2	1.5	10	9.2		9.1	6.8	8.3	Rosenbrock [27]
IPOP-SEP-CMA-ES	1.7	2.1	2.8	6.7	5.5	5.5		5.5	5.4	5.2	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	3.7	2.8	2.9	4.4	5.5	5.3		5.1	5.2	5.8 8.0	VNS (Garcia) [11]

Table 21: 03-D, running time excess ERT/ERT_{best} on f_{21} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	ERT_{best}/D	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	161	15	39	7		3.2	860	6.1	7.4	61	7.5	5.8	65	2.6	5.4	230	П	18	46	220	9.7	4.2	23	2.6	3.4	16	200	100	170	62e-7/1e6	11	17	11
	1e-05	156	11	40	7		3.2	890	6.1	7.5	62	7.1	4.2	62	5.6	5.4	66	П	18	39	200	9.7	4.1	23	2.4	3.4	16	510	100	170	4500	11	17	11
	1e-04	155	8.8	40	7		3.3	650	9	7.6	62	9.9	3.8	29	2.6	5.4	43	П	18	38	200	9.7	4.1	23	2.7	3.4	16	510	100	170	086	11	17	11
peaks	1e-03	153	7.4	40	7		3.3	200	9	7.7	62	5.3	1.4	28	2.6	5.4	50	П	19	31	190	9.6	4.1	24	2.7	3.4	16	510	100	170	120	11	17	11
Gallagher 101 p	1e-02	146	5.8	41	7	63e-2/2e3	3.4	240	6.1	œ	65	4.6	1.4	55	2.7	5.6	18	1	19	26	190	8.6	4.3	25	2.8	3.5	17	540	110	170	34	11	17	11
Gallag	1e-01	142	3.7	41	2.1	94	3.5	240	9	8.1	99	3.5	1.4	54	8.7	5.7	5.3	1	20	27	200	9.7	4.4	56	2.9	3.5	17	550	110	180	8.3	12	15	11
21																				21														
	1e + 01	1.98	1.3	2.5	4	2.1	2.1	16	1.7	1.9	12	1.2	1.9	1.4	2.4	1.6	1.5	1.8	1.6	6.1	15	1.7	6.2	1.6	7	1.6	7	92	1.2	П	1.5	17	н	2.1
	1e + 02	0.333	Н	Н	н	1	П	1	1	1	П	П	1	1	Н	П	1	1	П	1	Н	1	Н	П	Н	Н	П	1	Н	1	Н	Н	н	1
	1e + 03	0.333	П	1	П	1	П	1	1	1	П	1	1	1	П	1	П	1	П	1	П	1	Т	П	П	Н	П	1	П	П	н	П	Н	1
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 22: 03-D, running time excess ERT/ERT_{best} on f_{22} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_{22} , f_{23} ,

	1e-04 $1e-05$ $1e-07$	8 132 134 138 ERT _{best} /D	17 21 28	58 57 57	2.9 2.9 3.1		2 2 2	2500 2400 2400	13 13 13 Bl	9.7 9.6 9.4	88 98 120	18 26 34	9.8 15	22 29 42	1.9 1.9 2.1 fu	9.6 7.6 7.6	950 1600 3100	1 1 1	42 43 42 iAN	70 77 150 L3	16e-2/1e4	3.5 3.8 4.3 MA	4.6 4.5 4.6	12 12 12	7	5.5 5.5 5.7	18 19 20	420 410 410	120 120 120	69 76 88	1500 7100 $30e-7/1e6$	5.1 5.1 5	30 29 29 IPC	77
lagher 21 peaks	1e-02	121	8.5	61	2.9	36e-2/2e3	2.1	1100	14	10	75	14	6.2	11	1.9	10	27	Н	44	99	240	3.3	1.2	13	2.2	5.8	17	450	130	65	40	5.3	31	13
22 Ga	1e-01	56.7 118	4	26	2.9	48	2.1	640	13	11	69	13	6.3	5.4	1.8	10	6.5	1	43	19	160	2.7	1.2	13	2.5	5.8	17	450	130	64	4.8	5.2	13	15
		6.02 56																																
	1e + 02	0.333	Т	1	П	1	П	1	1	1	1	1	1	1	П	1	1	1	1	П	1	П	П	Н	П	П	Н	П	П	П	н	П	1	_
	1e + 03	0.333	1	1	1	1	П	1	1	1	1	1	1	1	1	1	1	1	1	1	1	П	1	П	1	-	1	П	1	1	1	1	1	_
	$\Delta { m ftarget}$	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$\overline{ ext{BayEDAcG}}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 23: 03-D, running time excess ERT/ERT_{best} on f_{23} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	862	3e4	5.1		•			4.2	12	5100		22		160	42			4.3			3.1		-	1.4		3500	43	190	890			5.8	23
	1e-05	764	6300	5.1					4.2	12	5300		18		170	43			4.3			3.1		-	1.4		1800	92	200	930		-	5.9	24
	1e-04	751	890	5.1	46e-3/7e3	•		٠	4.2	12	5400	٠	16	31e-2/1e5	170	30	٠	٠	4.3	٠	٠	3.1	77e-4/2e4	-	1.4	•	1500	75	200	450		31e-3/5e3	5.9	23
	1e-03	738	370	5.1	150				4.2	12	1900	-	15	2e3	37	17	88e-3/1e5		4.3			2.9	330	1	1.1	68e-3/6e3	510	73	200	440	-	48	5.9	23
Katsuuras	1e-02	405	200	8.9	85		23e-2/5e3		7.1	17	1700		25	3700	40	29	3700	81e-3/1e3	7.5	31e-2/9e3	25e-2/1e4	5.2	39	1.8	П	110	240	130	360	220	13e-2/1e6	88	11	41
23 F	1e-01	302	54	10	22	11e-1/2e3	110	51e-2/5e4	9.3	11	880	12e-1/2e3	31	4900	15	14	520	3.1	9.7	420	490	6.7	12	2.3	П	24	13	130	170	460	2.3e4	10	13	27
•	1e+00	136	12	6.3	2.5	34	8.7	52	6.4	7	71	40	1.5	23	2.4	2.1	16	1.6	8.4	7.1	4.9	2.1	2.7	1.4	Н	2.4	2.9	22	11	15	13	1.9	7.1	6.7
	1e+01	0.867	3.7	3.9	11	3.2	17	4.1	4.9	3.7	15	1.9	4.7	2.9	6.7	4.9	4.3	3.1	4.4	3.2	5.6	4.1	Н	3.1	6.7	11	21	18	3.2	1.9	5.6	2.4	4.6	4.6
	1e + 02	0.333	1	1	1	П	-1	1	1	П	1	-	-	-	-	1	-	-	-	-	-	1	-	-	1	-	-	-	-	П	-	1	-	-
	1e + 03	0.333	1	1	1	П	-1	1	1	П	1	-	-	1	1	1	1	1	1	-	1	1	1	-	1	-	1	-	1	1	-	1	1	1
	Δ ftarget	$\text{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 24: 03-D, running time excess ERT/ERT_{best} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

References

- [1] Anne Auger. Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In Rothlauf [32], pages 2447–2452.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2459–2466.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 testbed. In Rothlauf [32], pages 2479–2484.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noiseless black-box optimization benchmarking. In Rothlauf [32], pages 2247–2254.
- [5] Benjamin Doerr, Mahmoud Fouz, Martin Schmidt, and Magnus Wahlström. BBOB: Nelder-mead with resize and halfruns. In Rothlauf [32], pages 2239–2246.
- [6] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [32], pages 2263–2268.
- [7] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization. In Rothlauf [32], pages 2269–2274.
- [8] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using PSO_Bounds. In Roth-lauf [32], pages 2275–2280.
- [9] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
- [10] Marcus Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noiseless function testbed. In Rothlauf [32], pages 2281–2286.
- [11] Carlos García-Martínez and Manuel Lozano. A continuous variable neighbourhood search based on specialised EAs: application to the noiseless BBO-benchmark 2009. In Rothlauf [32], pages 2287–2294.
- [12] José García-Nieto, Enrique Alba, and Javier Apolloni. Noiseless functions black-box optimization: evaluation of a hybrid particle swarm with differential operators. In Rothlauf [32], pages 2231–2238.
- [13] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [14] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.

- [15] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2389–2396.
- [16] Nikolaus Hansen. Benchmarking the nelder-mead downhill simplex algorithm with many local restarts. In Rothlauf [32], pages 2403–2408.
- [17] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noiseless testbed.
- [18] Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noiseless function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 989.
- [19] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noiseless function testbed. In Rothlauf [32], pages 2295–2302.
- [20] Jirí Kubalik. Black-box optimization benchmarking of prototype optimization with evolved improvement steps for noiseless function testbed. In Rothlauf [32], pages 2303–2308.
- [21] Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using local search chaining for black-box optimization benchmarking 2009 for noise free functions. In Rothlauf [32], pages 2255–2262.
- [22] Miguel Nicolau. Application of a simple binary genetic algorithm to a noiseless testbed benchmark. In Rothlauf [32], pages 2473–2478.
- [23] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-benchmarking of the GLOBAL method for the noiseless function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 986.
- [24] Petr Posik. BBOB-benchmarking a simple estimation of distribution algorithm with Cauchy distribution. In Rothlauf [32], pages 2309–2314.
- [25] Petr Posik. BBOB-benchmarking the DIRECT global optimization algorithm. In Rothlauf [32], pages 2315–2320.
- [26] Petr Posik. BBOB-benchmarking the generalized generation gap model with parent centric crossover. In Rothlauf [32], pages 2321–2328.
- [27] Petr Posik. BBOB-benchmarking the Rosenbrock's local search algorithm. In Rothlauf [32], pages 2337–2342.
- [28] Petr Posik. BBOB-benchmarking two variants of the line-search algorithm. In Rothlauf [32], pages 2329–2336.
- [29] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2435–2440.
- [30] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 function testbed. In Rothlauf [32], pages 2409–2414.
- [31] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 function testbed. In Rothlauf [32], pages 2421–2428.

[32] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.