Exercises The Lambda Calculus

Exercise 1

Keeping in mind both alpha equivalence and how multiple heads are nested, choose an answer that is equivalent to the listed lambda term.

- 1. $\lambda xy.xz$
 - (a) $\lambda xz.xz$
 - (b) $\lambda mn.mz$
 - (c) $\lambda z(\lambda .x.xz)$
- 2. $\lambda xy.xxy$
 - (a) $\lambda mn.mnp$
 - (b) $\lambda x.(\lambda y.xy)$
 - (c) $\lambda a(\lambda b.aab)$
- 3. $\lambda xyz.zx$
 - (a) $\lambda x.(\lambda y.(\lambda z))$
 - (b) $\lambda tos.st$
 - (c) $\lambda mnp.mn$

Exercise 2

Write out lambda calculus trees for the following expressions.

- 1. $\lambda x.\lambda y.xy$
- 2. $\lambda x..\lambda y.xy.\lambda z.yz$
- 3. $\lambda x.(.\lambda y.xy)(.\lambda z.yz)$

Exercise 3

Write out the equivalent lambda calculus expression for the following trees.

Exercise 4

Find the free variables What are the free variables? To which lambdas are bound variables bound?

Exercise 5

Using β reduction etc., rewrite these expressions in normal form.

- 1. $(\lambda x.x)y$
- 2. $(\lambda x.xz)(\lambda y.y)$
- 3. $(\lambda x.x(\lambda x.y))(\lambda z.z)$
- 4. $(\lambda x.(\lambda y.x))y(\lambda z.z)$

5. $(\lambda x.xx)(\lambda x.xx)$

Exercise 6

Rewrite, using Haskell and evaluate the following:

- 1. $(\lambda x.x)$ 2
- 2. $(\lambda x.(x*2))4$
- 3. $(\lambda x.(\lambda y.x * y))34$
- 4. $(\lambda x.\lambda y.(if \ x < y \ then \ -1 \ else \ if \ x == y \ then \ 0 \ else \ 1))$ 3 4 (Note: Use of if inside the lambda expression.)

Exercise 7

Write a lambda version of the following functions:

- 1. **abs:** which takes an Integer and returns the non-negative value. e.g. abs -1 = 1, abs 4 = 4.
- 2. mymax: which takes two numbers and returns the larger of the two
- 3. mymin: which takes two numbers and returns the smaller of the two