Circuiti Sequenziali Macchine Completamente Specificate

Introduzione
Riduzione del numero degli stati
Irragiungibilità
Indistinguibilità & Equivalenza

Introduzione

- Passi per la sintesi delle FSM completamente specificate:
 - Realizzazione del diagramma degli stati a partire dalle specifiche informali del problema
 - Costruzione della tabella degli stati
 - Riduzione del numero degli stati
 - Ottimizzazione
 - Costruzione della tabella delle transizioni
 - Assegnamento degli stati
 - Codice & codifica
 - Costruzione della tabella delle eccitazioni
 - Scelta degli elementi di memoria (tipo)
 - Sintesi delle reti combinatorie necessarie

Il numero minimo di elementi di memoria (flip-flop) necessari a memorizzare tutti gli stati dell'insieme s è:

$$N_{\text{FF,min}} = \lceil \log_2 \mid S \mid \rceil$$

- Nel modello di una FSM possono esistere stati ridondanti
- L'identificazione ed eliminazione di tali stati comporta
 - Reti combinatorie meno costose
 - Aumento dei gradi di libertà nella sintesi combinatoria
 - Condizioni di indifferenza dovute all'utilizzo parziale delle configurazioni che possono codificare lo stato
 - Riduzione del numero di bit necessari per codificare gli stati
 - Minore numero di ingressi e di uscite alle reti combinatorie
 - Numero minore di elementi di memoria

- Lo scopo della riduzione del numero degli stati consiste nella individuazione della macchina minima equivalente
- La macchina minima equivalente è quella macchina:
 - Funzionalmente equivalente alla macchina data
 - Avente il minimo numero di stati
- Il problema della riduzione del numero di stati è distinto in due passi:
 - Eliminazione degli stati non raggiungibili dallo stato iniziale
 - Identificazione degli stati:
 - Equivalenti: Macchine completamente specificate
 - Compatibili: Macchine non completamente specificate

- Eliminazione degli stati irraggiungibili
 - Uno stato s non è raggiungibile se non esiste alcuna sequenza di transizioni che porti dallo stato iniziale ad s

Macchina iniziale Macchina ridotta 0/10 0/10 -/00 -/001/11 0/01 0/01 1/01 0/00 b g 0/00 0/00 1/11 1/11 1/11 1/11 е 1/11 1/11 0/10 0/10 Transizioni di RESET

- Eliminazione degli stati irraggiungibili
 - Mediante la tabella degli stati
 - Partendo dallo stato di reset si indicano gli stati a cui rimanda
 - Iterativamente, si svolge la stessa operazione per tutti gli stati successivi, non inicando quelli che sono già considerati
 - Quando non è più possibile identificare nuovi stati, il risultato è l'insieme degli stati ragginugibili

	0	1
R	g/00	g/00
b	g/00	d/01
С	-/	R/11
d	c/10	d/11
е	g/00	f/11
£	f/10	e/10
g	R/01	f/11

```
Analisi di raggiungibilità

1: {R{g,g}} = {R{g}}

2: {R{g{R,f}}} = {R{g{f}}}

3: {R{g{f{e}}}} = {R{g{f}}}

4: {R{g{f{e}}}} = {R{g{f{e}}}}

Stati raggiungibili: {R,g,f,e}
```


- Si consideri una macchina completamente specificata
- Siano:
 - I_a generica sequenza di ingresso i_j, ..., i_k
 - ullet $oldsymbol{u}_{a}$ sequenza d'uscita associata a $oldsymbol{I}_{a}$ ottenuta tramite λ
 - s_i, s_i due generici stati
- Gli stati s; e s; appartenenti ad s sono indistinguibili se:

$$\mathbf{U}_{\alpha,i} = \lambda(\mathbf{s}_i, \mathbf{I}_{\alpha}) = \lambda(\mathbf{s}_j, \mathbf{I}_{\alpha}) = \mathbf{U}_{\alpha,j} \quad \forall \mathbf{I}_{\alpha}$$

L'indistinguibilità tra s; e s; si indica con: s; ~ s;

- La relazione di indistinguibilità gode di tre proprietà:
 - ▶ Riflessiva: $\mathbf{s_i} \sim \mathbf{s_i}$
 - ▶ Simmetrica: $\mathbf{s_i} \sim \mathbf{s_j} \leftrightarrow \mathbf{s_j} \sim \mathbf{s_i}$
 - ▶ Transitiva: $s_i \sim s_j \wedge s_j \sim s_k \rightarrow s_i \sim s_k$
- L'indistinguibilità è una relazione d'equivalenza
 - Due stati indistinguibili sono equivalenti
 - Possono essere sostituiti con un solo stato
- In generale
 - Un gruppo di stati tra loro equivalenti può essere raggruppato in unica classe
- L'insieme delle classi identificate determina l'insieme degli stati della macchina minima equivalente

- Formalmente, una relazione di equivalenza induce sull'insieme degli stati una partizione P_e
 - ▶ L'insieme degli stati s si dice partizionato nelle m classi di equivalenza c_1, \ldots, c_m se:

$$C_1 \cup C_2 \cup \ldots \cup C_m = S$$

 $C_i \cap C_j = \emptyset \quad \forall i,j: i \neq j$

Il nuovo insieme degli stati è formato dalle classi di equivalenza della partizione

Esempio

- La definizione di indistinguibilità è difficilmente applicabile in modo diretto
 - Richiederebbe di considerare tutte le sequenze di ingresso che, a priori, possono essere in numero infinito
- Si ricorre a una regola ricorsiva introdotta da Paull-Unger
 - Due stati s_i e s_j appartenenti ad s sono indistinguibili se e solo se per ogni simbolo di ingresso i_a:

$$\lambda(s_i,i_a) = \lambda(s_i,i_a)$$

Ovvero, le uscite sono uguali per ogni simbolo di ingresso

$$\delta(s_i, i_a) \sim \delta(s_j, i_a)$$

Ovvero, gli stati prossimi sono indistinguibili

- Poiché gli insiemi s e I hanno cardinalità finita, dopo un numero finito di passi si ricadrà in una delle 2 condizioni:
- s_i + s_j
 - Se i simboli d'uscita sono diversi
 - Se gli stati prossimi sono già stati verificati come distinguibili
- s_i ~ s_j
 - Se i simboli di uscita sono uguali
 - Se gli stati prossimi sono già stati verificati come indistinguibili

- Le relazioni di indistinguibilità o equivalenze possono essere evidenziate mediante la Tabella delle Implicazioni
- Tale tabella ha le seguenti caratteristiche:
 - Mette in relazione ogni coppia di stati
 - È triangolare (proprietà simmetrica)
 - È priva della diagonale principale (proprietà riflessiva)
- Esempio:

- Ogni elemento della tabella può contenere
 - ► Il simbolo di non equivalenza
 - Gli stati corrispondenti non sono equivalenti
 - Il simbolo di equivalenza
 - Gli stati corrispondenti sono equivalenti
 - Le coppie di stati a cui si rimanda la verifica
 - Se non è possibile pronunciarsi sulla equivalenza degli stati corrispondenti
- Sulla tabella così ottenuta si procede ad una analisi di tutte le coppie di stati

Esempio

L'equivalenza tra **s3** ed **s0** dipende dall'equivalnza tra **s1** ed **s2**

- Analisi delle coppie di stati
 - Una volta costruita la tabella delle implicazioni si procede ad una seconda fase di analisi
 - Tale analisi deve essere effettuata per ogni coppia di stati
 - Segue il criterio di equivalenza secondo la formulazione ricorsiva di Paull-Unger
- Tale analisi porta alla definizione dell'insieme minimo di stati per la macchina originale

- Regole di analisi
 - Una coppia marcata come equivalente o come non equivalente non richiede ulteriori verifiche
 - Se si trova un rimando ad un'altra coppia
 - Se gli stati cui si rimanda sono equivalenti anche gli stati della coppia in esame sono equivalenti
 - Se gli stati cui si rimanda non sono equivalenti anche gli stati della coppia in esame non sono equivalenti
 - Se gli stati cui si rimanda dipendono da una ulteriore coppia di stati si ripete il procedimento in modo iterativo fino a quando ci si riconduce ad uno dei due casi precedenti
 - Il procedimento termina quando non sono possibili ulteriori riduzioni

Tabella degli stati

	0	1
	U	-
a	h/0	g/1
b	c/0	e/0
С	b/0	a/0
d	e/1	c/0
е	h/0	d/1
£	e/1	h/0
g	a/1	c/0
h	d/0	f/1

b	x						
C	x	ae					
d	x	x	x				
е	dg	x	x	x			
f	x	x	x	ch	x		
g	x	x	x	ae	x	ae ch	
h	dh fg	x	x	x	dh df	x	x
	a	b	С	đ	е	£	g

- 1: Le coppie contrassegnate dal simbolo di equivalenza o di non equivalenza non necessitano ulteriore analisi
- 2: Si procede all'analisi delle coppie rimanenti

- 1: La coppia (a,e) rimanda alla coppia (d,g)
- 2: La coppia (d,g) rimanda alla coppia (a,e)
- 3: Il vincolo è circolare
- 4: Gli stati a ed e sono equivalenti Gli stati d e g sono equivalenti
- 5: Si sosticuiscono i rimandi con simboli di equivalenza

- 1: La coppia (a,h) rimanda alle coppie (d,h) e (f,g)
- 2: Gli stati d ed h non sono equivalenti
- 3: Di conseguenza, gli stati **a** ed **h** non sono equivalenti
- 4: Si sosticuisce il rimando con il simbolo di non equivalenza

- 1: La coppia (b,c) rimanda alla coppia (a,e)
- 2: Gli stati a ed e sono equivalenti
- 3: Di conseguenza, gli stati **b** e **c** sono equivalenti
- 4: Si sosticuisce il rimando con il simbolo di equivalenza

- 1: La coppia (d,f) rimanda alla coppia (c,h)
- 2: Gli stati **c** ed **h** non sono equivalenti
- 3: Di conseguenza, gli stati **d** ed **f** non sono equivalenti
- 4: Si sosticuisce il rimando con il simbolo di non equivalenza

- 1: La coppia (e,h) rimanda alle coppie (d,h) e (d,f)
- 2: Gli stati **d** ed **h** non sono equivalenti
- 3: Di conseguenza, gli stati **e** ed **h** non sono equivalenti
- 4: Si sosticuisce il rimando con il simbolo di non equivalenza

- 1: La coppia (f,g) rimanda alle coppie (a,e) e (c,h)
- 2: Gli stati **c** ed **h** non sono equivalenti
- 3: Di conseguenza, gli stati **f** e **g** non sono equivalenti
- 4: Si sosticuisce il rimando con il simbolo di non equivalenza

- 1: Tutti i rimadi sono stati risolti ed il procedimento termina
- 2: La nuova tabella evidenzia tutte le relazioni di equivalenza fra gli stati della macchina originale

- Le relazioni d'equivalenza sono rappresentabili in forma grafica mediante un grafo
 - Vertice
 - Rappresenta uno stato
 - Arco
 - Due vertici sono uniti da un lato se e solo se sono equivalenti
- Le classi d'equivalenza
 - Sono i poligoni completi del grafo
 - Sono detti anche grafi completi o clique

Esempio 1 (continua)

Tabella delle implicazioni

Grafo di equivalenza

Grafo di equivalenza

Classi di equivalenza (cliques)

$$\alpha = \{a, e\}$$

$$\beta = \{b, c\}$$

$$\gamma = \{d, g\}$$

Nuovo insieme degli stati

$$S_{\min} = \{\alpha, \beta, \gamma, f, h\}$$

Nuovo insieme degli stati

$$S_{\min} = \{\alpha, \beta, \gamma, f, h\}$$

Tabella degli stati originale

Tabella degli stati ridotta

- La macchina a stati finiti ottenuta mediante la minimizzazione degli stati gode di alcune proprietà
- Equivalente alla precedente
 - Per costruzione
- Minima
 - Due stati indistinguibili appartengono ad una sola classe della partizione
 - Due stati distinguibili appartengono a classi distinte della partizione
- Unica
 - La partizione d'equivalenza è unica

Diagramma degli stati

Tabella degli stati

	0	1
a	g/00	c/01
b	g/00	d/01
С	d/10	a/01
d	c/10	b/01
е	g/00	f/01
£	f/10	e/11
g	a/01	f/11

Esempio 2:

Tabella degli stati

	0	1
a	g/00	c/01
b	g/00	d/01
С	d/10	a/01
đ	c/10	b/01
е	g/00	f/01
£	f/10	e/01
g	a/01	f/11

_	_					
b	cd					
С	x	x				
d	x	x	ab			
е	cf	fd	x	x		
£	ж	x	ae df	cf be	ж	
g	x	x	x	x	x	x
	a	b	С	d	е	£

Tabella delle implicazioni

Grafo di equivalenza

Grafo di equivalenza

Classi di equivalenza (cliques)

$$\alpha = \{a, b, e\}$$

$$\beta = \{c, d, f\}$$

Nuovo insieme degli stati

$$S_{\min} = \{\alpha, \beta, g\}$$

Nuovo insieme degli stati

$$S_{\min} = \{\alpha, \beta, g\}$$

Tabella degli stati originale

Tabella degli stati ridotta

	0	1			0	1
a	g/00	c/01	$\{a, b, e\} \rightarrow \alpha \longrightarrow$	α	g/00	<mark>β</mark> /01
b	g/00	d/01				
С	d/10	a/01	$\{c, d, f\} \rightarrow \beta \longrightarrow$	β	<mark>β</mark> /10	<mark>α</mark> /01
đ	c/10	b/01				
е	g/00	f/01				
£	f/10	e/11				
g	a/01	f/11	-	g	$\alpha/01$	β/11

- Sintetizzare una FSM di Moore secondo le specifiche:
 - La FSM ha due ingressi A e B
 - La FSM ha una uscita Z, che assume valore iniziale 1
 - L'uscita assume il valore di B quando A=1
 - Tale valore è mantenuto fino a che non si ripresenta la condizione specificata
 - Il ruolo assunto da A e B viene scambiato quando si presenta la condizione A = B = Z = 1
- Il primo passo consiste nel disegnare il diagramma delle transizioni e nel costruire la corrispondente tabella degli stati

Diagramma degli stati

Tabella degli stati

	00	01	11	10	Z
ន0	S0	S0	S2	S1	1
s1	S1	S1	S0	S1	0
S2	S2	S3	S0	S2	1
s 3	S3	S3	S2	S3	0

Tabella degli stati

	00	01	11	10	Z
ន0	S0	S0	S2	S1	1
s1	S1	S1	S0	S1	0
S2	S2	S3	S0	S2	1
ຮ 3	S3	S3	S2	S3	0

		_	
s1	x		
s2	S0,S3 S1,S2	ж	
s 3	x	s0,s2	x
	ຮ 0	S1	S2
s1	x		
s2	x	x	
s 3	x	x	ж
	s 0	s1	s2

Tabella degli stati

Tabella delle implicazioni iniziale

	00	01	11	10
s1	S2/0	S8/1	S6/0	S3/0
S2	S7/0	S1/1	S5/1	S8/1
S 3	S4/0	S8/1	S7/0	S5/0
S4	S6/0	S3/1	S1/1	S8/1
S 5	S2/0	S8/1	S7/0	S1/0
S 6	S1/1	S6/0	S3/1	S7/1
S 7	S3/1	S6/0	S5/1	S7/1
s 8	S1/1	S2/1	S8/1	S7/1

s2	x						
s 3	S2,S4 S6,S7 S3,S5	ж					
s4	x	S5,S1 S6,S7 S3,S1	ж				
s 5	S6,S7 S3,S1	x	S4,S2 S5,S1	x			
S 6	x	x	x	x	x		
s7	x	x	x	x	x	S3,S1 S3,S5	
S8	x	x	x	x	x	x	x
	s1	S2	S 3	S 4	S 5	s 6	s 7

Tabella delle implicazioni iniziale

Grafo di equivalenza

Classi di equivalenza (cliques)

Classi di equivalenza (cliques)

Tabella degli stati ridotta

Insieme degli stati ridotto

$$S_{\min} = \{a, b, c, S8\}$$

	00	01	11	10
a	b /0	S8/1	c /0	a /0
b	c /0	a /1	a /1	S8/1
C	a /1	c /0	a /1	c /1
s 8	a /1	b /1	S8/1	c /1

Osservazione:

- Non è obbligatorio utilizzare i blocchi della partizione per ottenere una macchina equivalente a quella di partenza a patto di raggruppare stati che appartengono a sotto-grafi completi
 - Non è ammissibile riunire in una stessa classe di equivalenza stati che equivalenti non sono
- È la cifra di merito (costo) che richiede di utilizzare il minor numero di stati possibile e, come conseguenza, i blocchi della partizione
 - I grafi completi