1. ZÁRTHELYI

2024. november 7.

Programtervező informatikus BSc szak

Gyak.vez. neve	Név
Gyak. ideje	Neptun kód
	Dontezóm

- 1. (13 pont) Az M=M(7,-4,5) gépi számok halmazában
 - a) számítsuk ki M_{∞} és ε_0 értékét,
 - b) adjuk meg a 2-nek és 7.2-nek megfeleltetett gépi számot,
 - c) végezzük el a 2 + fl(7.2) gépi összeadást.
 - d) Milyen hosszúnak kell választanunk a mantisszát az M(t, -4, 5) számhalmazban, ha azt szeretnénk, hogy az $1/\pi$ szám ábrázolásából eredő hiba biztosan kisebb legyen, mint 10^{-3} ?
- 2. (9 pont) Határozzuk meg a következő mátrix inverzét és determinánsát Gauss-eliminációval!

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ -2 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

- 3. (10 pont) Adjuk meg a szimmetrikus A mátrix
 - a) LU-felbontását,
 - **b)** LDL^T -felbontását és a
 - c) Cholesky-felbontását!

$$\mathbf{A} = \begin{bmatrix} 4 & -4 & 0 & 0 \\ -4 & 8 & 2 & 0 \\ 0 & 2 & 2 & -3 \\ 0 & 0 & -3 & 10 \end{bmatrix}$$

4. (9 pont) Határozzuk meg az $\bf A$ mátrix QR-felbontását Gram-Schmidt-ortogonalizációval!

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ -2 & 0 & 1 \\ 2 & 0 & 1 \end{bmatrix}$$

5. (9 pont) Tekintsük az

$$\mathbf{u} = \begin{bmatrix} 1 & 2 & 3 & 1 & -1 \end{bmatrix}^T$$

vektort.

- a) Határozzuk meg azt a \mathbf{v} vektort, amellyel a $\mathbf{H}(\mathbf{v})$ Householder-transzformáció az \mathbf{u} vektort $k\mathbf{e}_1$ alakra hozza.
- **b)** Adjunk meg olyan x vektort, amelyre H(v)x = -x.
- c) Adjunk meg olyan y vektort, amelyre H(v)y = y.
- d) Ellenőrizzük ez utóbbi eredményt, számítsuk ki a $\mathbf{H}(\mathbf{v})\mathbf{y}$ vektort a Householder-mátrix meghatározása nélkül!