

Data Structure and Algorithms

Session-28

Dr. Subhra Rani Patra SCOPE, VIT Chennai

What is 'Single Source Shortest Path'?

✓ Definition:

- ✓ Single source shortest path problem is about finding a path between a given vertex (called 'Source') to all other Vertices in a graph such that, the total distance between them (source & Destination) is minimum.
- √ Example
 - ✓ Let's say we have office in 5 different cities and we need to travel from Head office to all other offices.
 - ✓ Flight charges between cities are known (as given in below diagram).
 - ✓ What is the cheapest way to reach each office from HQ?

Single Source Shortest Path vs Minimum Spanning Tree(MST):

Directed Graph

	A B C	D E
·A	0 4 6	₩
C	1045	6 6
E	8 ←	14 7
B	[8] <	13 -
D		[9] <
٤.		
	bath from	A-D
	path: DB	

Algorithms - Single Source Shortest Path:

Dijkstra's Algorithm

```
Input:
 a weighted digraph G=(V,E) with positive edge weights
 a source node s ∈ V
Initialization:
 d[s]=0
 for each vertex x ∈ V-s
        d[x]=infinity
 Mark all the vertices as unprocessed
Iteration:
 for i=1 to |V|
        Choose an unprocessed vertex x from V with minimum d[x]
        Mark x as processed
        for all y \in adj(x)
                 if d[y] > d[x]+w(x,y)
                           d[y] = d[x] + w(x,y)
```

Negative Weights

Negative Cycle

- ✓ A path is called "Negative Cycle" if:
 - ✓ There is a cycle (A cycle is a path of edges and vertices wherein a vertex is reachable from itself).
 - ✓ Total weight of cycle should be a negative number

Thank,