

Universidade Federal da Bahia - UFBA Instituto de Matemática e Estatística - IME Departamento de Matemática

MAT A07 - Álgebra Linear A Aula 12

Subespaços Vetoriais: Intersecção, União, Soma Combinação Linear. Subespaços Gerados. Geradores

Professora: Isamara C. Alves

Data: 13/04/2021

Operações: Exercícios

Exercício.1:

Operações: Exercícios

Exercício.1:

Sejam $\mathcal{V}=\mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K}=\mathbb{R},~\mathcal{W}_1=\{A\in\mathcal{M}_n(\mathbb{R})|A=A^t\}$

Operações: Exercícios

Exercício.1:

Operações: Exercícios

Exercício.1:

Sejam
$$\mathcal{V}=\mathcal{M}_n(\mathbb{R})$$
 um espaço vetorial sobre o corpo $\mathbb{K}=\mathbb{R}$, $\mathcal{W}_1=\{A\in\mathcal{M}_n(\mathbb{R})|A=A^t\}$ e $\mathcal{W}_2=\{A\in\mathcal{M}_n(\mathbb{R})|A=-A^t\}$ subespaços vetoriais de \mathcal{V} .

1. Determine o conjunto $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$.

Operações: Exercícios

Exercício.1:

Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

1. Determine o conjunto $(W_1 \cap W_2) \subseteq V$. $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\}$

Operações: Exercícios

Exercício.1:

Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

1. Determine o conjunto $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$. $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\}$ $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = a_{ji} \in a_{ij} = -a_{ji}; \forall i, j\}$

Exercício.1:

Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

1. Determine o conjunto $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$. $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \text{ e } A = -A^t\}$ $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = a_{ji} \text{ e } a_{ij} = -a_{ji}; \forall i, j\} = \{0_n\} = \{0\}.$

Exercício.1:

- 1. Determine o conjunto $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$. $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\}$ $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ii} = a_{ii} \in a_{ii} = -a_{ii}; \forall i, j\} = \{0_n\} = \{0\}.$
- 2. Determine o conjunto $(W_1 \cup W_2) \subseteq V$.

Exercício.1:

- 1. Determine o conjunto $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$. $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\}$ $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = a_{ji} \in a_{ij} = -a_{ji}; \forall i, j\} = \{0_n\} = \{0\}.$
- 2. Determine o conjunto $(W_1 \cup W_2) \subseteq V$. $(W_1 \cup W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \text{ ou } A = -A^t\}$

Exercício.1:

- 1. Determine o conjunto $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$. $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\}$ $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = a_{ji} \in a_{ij} = -a_{ji}; \forall i, j\} = \{0_n\} = \{0\}.$
- 2. Determine o conjunto $(W_1 \cup W_2) \subseteq \mathcal{V}$. $(W_1 \cup W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \text{ ou } A = -A^t\}$ $(W_1 \cup W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = a_{ji} \text{ ou } a_{ij} = -a_{ji}; \forall i, j\}$

Exercício.1:

- 1. Determine o conjunto $(\mathcal{W}_1 \cap \mathcal{W}_2) \subseteq \mathcal{V}$. $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\}$ $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = a_{ji} \in a_{ij} = -a_{ji}; \forall i, j\} = \{0_n\} = \{0\}.$
- 2. Determine o conjunto $(\mathcal{W}_1 \cup \mathcal{W}_2) \subseteq \mathcal{V}$. $(\mathcal{W}_1 \cup \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \text{ ou } A = -A^t\}$ $(\mathcal{W}_1 \cup \mathcal{W}_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = a_{ji} \text{ ou } a_{ij} = -a_{ji}; \forall i, j\}$.

Operações: Exercícios

Exercício.1:

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$

Operações: Exercícios

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

3. Determine o conjunto $(W_1 + W_2) \subseteq V$.

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

3. Determine o conjunto $(\mathcal{W}_1 + \mathcal{W}_2) \subseteq \mathcal{V}$. $(\mathcal{W}_1 + \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in \mathcal{W}_1 \in A_2 \in \mathcal{W}_2\}$

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

3. Determine o conjunto $(\mathcal{W}_1 + \mathcal{W}_2) \subseteq \mathcal{V}$. $(\mathcal{W}_1 + \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in \mathcal{W}_1 \text{ e } A_2 \in \mathcal{W}_2\}$ $(\mathcal{W}_1 + \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in \mathcal{W}_1 \text{ e } A_2 \in \mathcal{W}_2\}$

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

3. Determine o conjunto $(\mathcal{W}_1 + \mathcal{W}_2) \subseteq \mathcal{V}$. $(\mathcal{W}_1 + \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in \mathcal{W}_1 \in A_2 \in \mathcal{W}_2\}$ $(\mathcal{W}_1 + \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in \mathcal{W}_1 \in A_2 \in \mathcal{W}_2\}$ $(\mathcal{W}_1 + \mathcal{W}_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j;$

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\}$

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$

4. Verifique se W_1 é soma direta com W_2 .

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$

4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\}$

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$

4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\}$

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$

4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2.$

Operações: Exercícios

- 3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
- 4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2$.
- 5. $V = W_1 \oplus W_2$? (Justifique sua resposta)

Operações: Exercícios

- 3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
- 4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2.$
- 5. $V = W_1 \oplus W_2$? (JUSTIFIQUE SUA RESPOSTA) (i) $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\}$

Operações: Exercícios

- 3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
- 4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2.$
- 5. $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$? (Justifique sua resposta) (i) $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\}$

Operações: Exercícios

- 3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
- 4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2.$
- 5. $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$? (JUSTIFIQUE SUA RESPOSTA) (i) $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow \mathcal{W}_1 \oplus \mathcal{W}_2$; e,

Operações: Exercícios

- 3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
- 4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2$.
- 5. $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$? (JUSTIFIQUE SUA RESPOSTA) (i) $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow \mathcal{W}_1 \oplus \mathcal{W}_2$; e, (ii) $(\mathcal{W}_1 + \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in \mathcal{W}_1 \in A_2 \in \mathcal{W}_2\} =$

Operações: Exercícios

- 3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
- 4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2$.
- 5. $V = W_1 \oplus W_2$? (Justifique sua resposta)
 - (i) $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow \mathcal{W}_1 \oplus \mathcal{W}_2; e,$
 - (ii) $(W_1 + W_2) = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in \mathcal{W}_1 \text{ e } A_2 \in \mathcal{W}_2 \} = \{ A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t A_2^t; A_1 \in \mathcal{W}_1 \text{ e } A_2 \in \mathcal{W}_2 \}$

Operações: Exercícios

- 3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
- 4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2$.
- 5. $V = W_1 \oplus W_2$? (Justifique sua resposta)
 - (i) $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow \mathcal{W}_1 \oplus \mathcal{W}_2$; e,
 - (ii) $(\mathcal{W}_1 + \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in \mathcal{W}_1 \text{ e } A_2 \in \mathcal{W}_2\} = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t A_2^t; A_1 \in \mathcal{W}_1 \text{ e } A_2 \in \mathcal{W}_2\} = \mathcal{M}_n(\mathbb{R}).$

Operações: Exercícios

- 3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
- 4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2$.
- 5. $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$? (JUSTIFIQUE SUA RESPOSTA) (i) $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow \mathcal{W}_1 \oplus \mathcal{W}_2$; e,
 - (ii) $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\} = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\} = \mathcal{M}_n(\mathbb{R}).$

Operações: Exercícios

- 3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
- 4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2$.
- 5. $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$? (JUSTIFIQUE SUA RESPOSTA) (i) $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow \mathcal{W}_1 \oplus \mathcal{W}_2$; e,
 - (ii) $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\} = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
 - Por (i) e (ii) temos que $V = W_1 \oplus W_2$.

Operações: Exercícios

EXERCÍCIO.1: Sejam $\mathcal{V} = \mathcal{M}_n(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_n(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

- 3. Determine o conjunto $(W_1 + W_2) \subseteq V$. $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t - A_2^t; A_1 \in W_1 \text{ e } A_2 \in W_2\}$ $(W_1 + W_2) = \{A = (a_{ij}) \in \mathcal{M}_n(\mathbb{R}) \mid a_{ij} = b_{ji} - c_{ji}; \forall i, j; A_1 = (b_{ij}) \in W_1 \text{ e } A_2 = (c_{ij}) \in W_2\} = \mathcal{M}_n(\mathbb{R}).$
- 4. Verifique se W_1 é soma direta com W_2 . $(W_1 \cap W_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow W_1 \oplus W_2$.
- 5. $\mathcal{V} = \mathcal{W}_1 \oplus \mathcal{W}_2$? (JUSTIFIQUE SUA RESPOSTA) (i) $(\mathcal{W}_1 \cap \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A^t \in A = -A^t\} = \{0\} \Rightarrow \mathcal{W}_1 \oplus \mathcal{W}_2$; **e**, (ii) $(\mathcal{W}_1 + \mathcal{W}_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in \mathcal{W}_1 \in A_2 \in \mathcal{W}_2\} =$
 - (ii) $(VV_1 + VV_2) = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1 + A_2; A_1 \in VV_1 \text{ e } A_2 \in VV_2\} = \{A \in \mathcal{M}_n(\mathbb{R}) \mid A = A_1^t A_2^t; A_1 \in \mathcal{W}_1 \text{ e } A_2 \in \mathcal{W}_2\} = \mathcal{M}_n(\mathbb{R}).$

Por (i) e (ii) temos que $V = W_1 \oplus W_2$.

Operação: Intersecção

Proposição.1:

Operação: Intersecção

Proposição.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

$$\mathcal{W}_1 \cap \mathcal{W}_2 =$$

Operação: INTERSECÇÃO

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: INTERSECÇÃO

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

$$\mathcal{W}_1\cap\mathcal{W}_2=\{u\in\mathcal{V}\ |\ u\in\mathcal{W}_1\ \mathbf{E}$$

Operação: INTERSECÇÃO

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mid \mathbf{E} \mid u \in W_2 \}$$

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial $\ensuremath{\mathcal{V}}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mid \mathbf{E} \mid u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} .

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{E} \quad u \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{E} \quad u \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam $\mathcal{W}_1, \mathcal{W}_2$ subespaçoes vetoriais de \mathcal{V}

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \mid \mathbf{E} \mid u \in W_2\}$$

é um subespaço vetorial de $\ensuremath{\mathcal{V}}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaçoes vetoriais de V e sejam $u, v \in (W_1 \cap W_2)$ dois vetores quaisquer;

Operação: INTERSEÇÃO

Proposição.1: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial \mathcal{V} definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mid \mathbf{E} \mid u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} .

DEMONSTRAÇÃO:

Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaçoes vetoriais de \mathcal{V} e sejam $u, v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$ dois vetores quaisquer;

TESE: $u + v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{E} \quad u \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaçoes vetoriais de V e sejam $u, v \in (W_1 \cap W_2)$ dois vetores quaisquer;

TESE: $u + v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Por hipótese; $u,v\in (\mathcal{W}_1\cap\mathcal{W}_2)\Rightarrow$

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{E} \quad u \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaçoes vetoriais de V e sejam $u, v \in (W_1 \cap W_2)$ dois vetores quaisquer;

TESE: $u + v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Por hipótese; $u, v \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u, v \in \mathcal{W}_1$

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{E} \quad u \in W_2 \}$$

é um subespaço vetorial de $\ensuremath{\mathcal{V}}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaçoes vetoriais de V e sejam $u, v \in (W_1 \cap W_2)$ dois vetores quaisquer;

TESE: $u + v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Por hipótese; $u, v \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u, v \in \mathcal{W}_1 \to u, v \in \mathcal{W}_2$,

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{E} \quad u \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaçoes vetoriais de V e sejam $u, v \in (W_1 \cap W_2)$ dois vetores quaisquer;

TESE: $u + v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Por hipótese; $u, v \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u, v \in \mathcal{W}_1 \quad \mathbf{E} \ u, v \in \mathcal{W}_2$,

Se $u, v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1$, **E**;

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{E} \quad u \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaçoes vetoriais de V e sejam $u, v \in (W_1 \cap W_2)$ dois vetores quaisquer;

TESE: $u + v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Por hipótese; $u, v \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u, v \in \mathcal{W}_1 \to u, v \in \mathcal{W}_2$,

Se $u, v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1$, E; se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2$;

pois, por hipótese,

Operação: Intersecção

Proposição.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mid \mathbf{E} \mid u \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaçoes vetoriais de V e sejam $u, v \in (W_1 \cap W_2)$ dois vetores quaisquer;

TESE: $u + v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Por hipótese; $u, v \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u, v \in \mathcal{W}_1 \to u, v \in \mathcal{W}_2$,

Se $u, v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1$, E; se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2$;

pois, por hipótese, \mathcal{W}_1 e \mathcal{W}_2 são subespaços vetoriais ;

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mid \mathbf{E} \mid u \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaçoes vetoriais de V e sejam $u, v \in (W_1 \cap W_2)$ dois vetores quaisquer;

TESE: $u + v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Por hipótese; $u, v \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u, v \in \mathcal{W}_1 \to u, v \in \mathcal{W}_2$, Se $u, v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1$, **E**; se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2$; pois, por hipótese, $\mathcal{W}_1 \in \mathcal{W}_2$ são subespaços vetoriais ;

então, $u+v\in (\mathcal{W}_1\cap \mathcal{W}_2).$

Operação: Intersecção

PROPOSIÇÃO.1: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \mid \mathbf{E} \mid u \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaçoes vetoriais de V e sejam $u, v \in (W_1 \cap W_2)$ dois vetores quaisquer;

TESE: $u + v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

então, $u + v \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Por hipótese; $u, v \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u, v \in \mathcal{W}_1 \to u, v \in \mathcal{W}_2$, Se $u, v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1$, **E**; se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2$; pois, por hipótese, $\mathcal{W}_1 \in \mathcal{W}_2$ são subespaços vetoriais ;

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Operação: Intersecção

Proposição.1:

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO: (continuação)

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESES: Sejam $\mathcal{W}_1, \mathcal{W}_2$ subespaços vetoriais de \mathcal{V}

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO:(continuação)

(II) Multiplicação por escalar:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V e sejam $u \in (W_1 \cap W_2)$ um vetor qualquer e $\lambda \in \mathbb{K}$;

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO:(continuação)

(II) Multiplicação por escalar:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de \mathcal{V} e sejam $u \in (W_1 \cap W_2)$ um vetor qualquer e $\lambda \in \mathbb{K}$;

TESE: $\lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V e sejam $u \in (W_1 \cap W_2)$ um vetor qualquer e $\lambda \in \mathbb{K}$;

TESE: $\lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Por hipótese, $u \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1 \quad \mathbf{E} \quad u \in \mathcal{W}_2$;

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V e sejam $u \in (W_1 \cap W_2)$ um vetor qualquer e $\lambda \in \mathbb{K}$; TESE: $\lambda u \in (W_1 \cap W_2)$.

Por hipótese, $u \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1 \quad \mathbf{E} \quad u \in \mathcal{W}_2;$

E, por hipótese, \mathcal{W}_1 e \mathcal{W}_2 são subespaços vetoriais ; então,

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO:(continuação)

```
HIPÓTESES: Sejam \mathcal{W}_1, \mathcal{W}_2 subespaços vetoriais de \mathcal{V} e sejam u \in (\mathcal{W}_1 \cap \mathcal{W}_2) um vetor qualquer e \lambda \in \mathbb{K};

TESE: \lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).

Por hipótese, u \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1 E u \in \mathcal{W}_2;

E, por hipótese, \mathcal{W}_1 e \mathcal{W}_2 são subespaços vetoriais ; então,

Se u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1,
```

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO: (continuação)

```
HIPÓTESES: Sejam \mathcal{W}_1, \mathcal{W}_2 subespaços vetoriais de \mathcal{V} e sejam u \in (\mathcal{W}_1 \cap \mathcal{W}_2) um vetor qualquer e \lambda \in \mathbb{K};

TESE: \lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).

Por hipótese, u \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1 E u \in \mathcal{W}_2;

E, por hipótese, \mathcal{W}_1 e \mathcal{W}_2 são subespaços vetoriais ; então,

Se u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1. E, se u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2:
```

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO: (continuação)

```
HIPÓTESES: Sejam \mathcal{W}_1, \mathcal{W}_2 subespaços vetoriais de \mathcal{V} e sejam u \in (\mathcal{W}_1 \cap \mathcal{W}_2) um vetor qualquer e \lambda \in \mathbb{K};

TESE: \lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).

Por hipótese, u \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1 E u \in \mathcal{W}_2;

E, por hipótese, \mathcal{W}_1 e \mathcal{W}_2 são subespaços vetoriais ; então,
Se u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1, E, se u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2;
logo,
\lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).
```

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO:(continuação)

(II) Multiplicação por escalar:

```
HIPÓTESES: Sejam \mathcal{W}_1, \mathcal{W}_2 subespaços vetoriais de \mathcal{V} e sejam u \in (\mathcal{W}_1 \cap \mathcal{W}_2) um vetor qualquer e \lambda \in \mathbb{K};

TESE: \lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).

Por hipótese, u \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1 E u \in \mathcal{W}_2;

E, por hipótese, \mathcal{W}_1 e \mathcal{W}_2 são subespaços vetoriais ; então,

Se u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1, E, se u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2;

logo,

\lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).
```

$$\mathcal{W}_1 \cap \mathcal{W}_2 =$$

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO:(continuação)

(II) Multiplicação por escalar:

```
HIPÓTESES: Sejam \mathcal{W}_1, \mathcal{W}_2 subespaços vetoriais de \mathcal{V} e sejam u \in (\mathcal{W}_1 \cap \mathcal{W}_2) um vetor qualquer e \lambda \in \mathbb{K};

TESE: \lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).

Por hipótese, u \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1 E u \in \mathcal{W}_2;

E, por hipótese, \mathcal{W}_1 \in \mathcal{W}_2 são subespaços vetoriais ; então,

Se u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1, E, se u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2;

logo,

\lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).
```

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: Intersecção

PROPOSIÇÃO.1: DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

```
HIPÓTESES: Sejam \mathcal{W}_1, \mathcal{W}_2 subespaços vetoriais de \mathcal{V} e sejam u \in (\mathcal{W}_1 \cap \mathcal{W}_2) um vetor qualquer e \lambda \in \mathbb{K};

TESE: \lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).

Por hipótese, u \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1 E u \in \mathcal{W}_2;

E, por hipótese, \mathcal{W}_1 e \mathcal{W}_2 são subespaços vetoriais ; então,

Se u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1, E, se u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2;

logo,

\lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).
```

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in \mathcal{W}_1 \mid \mathbf{E} \}$$

Operação: Intersecção

Proposição.1: DEMONSTRAÇÃO:(continuação)

(II) Multiplicação por escalar:

```
HIPÓTESES: Sejam \mathcal{W}_1, \mathcal{W}_2 subespaços vetoriais de \mathcal{V} e sejam u \in (\mathcal{W}_1 \cap \mathcal{W}_2) um vetor qualquer e \lambda \in \mathbb{K};

TESE: \lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).

Por hipótese, u \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1 E u \in \mathcal{W}_2;

E, por hipótese, \mathcal{W}_1 \in \mathcal{W}_2 são subespaços vetoriais ; então,

Se u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1, E, se u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2;

logo,

\lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2).
```

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{E} \quad u \in W_2 \}$$

Operação: Intersecção

Proposição.1:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESES: Sejam $\mathcal{W}_1, \mathcal{W}_2$ subespaços vetoriais de \mathcal{V} e sejam $u \in (\mathcal{W}_1 \cap \mathcal{W}_2)$ um vetor qualquer e $\lambda \in \mathbb{K}$; TESE: $\lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2)$. Por hipótese, $u \in (\mathcal{W}_1 \cap \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ E $u \in \mathcal{W}_2$; E, por hipótese, \mathcal{W}_1 e \mathcal{W}_2 são subespaços vetoriais ; então, Se $u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1$, E, se $u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2$; logo, $\lambda u \in (\mathcal{W}_1 \cap \mathcal{W}_2)$.

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cap \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \in u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} .

Operação: UNIÃO

Proposição.2:

Operação: UNIÃO

PROPOSIÇÃO.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Operação: UNIÃO

PROPOSIÇÃO.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Operação: UNIÃO

PROPOSIÇÃO.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

$$\mathcal{W}_1 \cup \mathcal{W}_2 =$$

Operação: UNIÃO

PROPOSIÇÃO.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: UNIÃO

PROPOSIÇÃO.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in \mathcal{W}_1 \mid \mathbf{o}\mathbf{U}\}$$

Operação: UNIÃO

PROPOSIÇÃO.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

Operação: UNIÃO

Proposição.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{ov} \quad u \in W_2 \}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1.$

Operação: UNIÃO

PROPOSIÇÃO.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. DEMONSTRAÇÃO:

(II) Multiplicação por escalar:

Operação: UNIÃO

Proposição.2: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. <u>DEMONSTRAÇÃO:</u>

(II) Multiplicação por escalar:

HIPÓTESE: Sejam $\mathcal{W}_1, \mathcal{W}_2$ subespaços vetoriais de \mathcal{V}

Operação: UNIÃO

Proposição.2: Sejam V um espaço vetorial sobre o corpo \mathbb{K} , W_1 e W_2 subespaços vetoriais de V.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2\}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. <u>DEMONSTRAÇÃO:</u>

(II) Multiplicação por escalar:

HIPÓTESE: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$, e;

Operação: UNIÃO

Proposição.2: Sejam V um espaço vetorial sobre o corpo \mathbb{K} , W_1 e W_2 subespaços vetoriais de V.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2\}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. <u>DEMONSTRAÇÃO:</u>

(II) Multiplicação por escalar:

HIPÓTESE: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$, e; sejam $u \in (W_1 \cup W_2)$ e $\lambda \in \mathbb{K}$.

Operação: UNIÃO

Proposição.2: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. <u>DEMONSTRAÇÃO:</u>

(II) Multiplicação por escalar:

HIPÓTESE: Sejam W_1, W_2 subespaços vetoriais de \mathcal{V} tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$, e; sejam $u \in (\mathcal{W}_1 \cup \mathcal{W}_2)$ e $\lambda \in \mathbb{K}$.

TESE: $\lambda u \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Operação: UNIÃO

Proposição.2: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. <u>DEMONSTRAÇÃO:</u>

(II) Multiplicação por escalar:

HIPÓTESE: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$, e; sejam $u \in (W_1 \cup W_2)$ e $\lambda \in \mathbb{K}$.

TESE: $\lambda u \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Se $\forall u \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ OU $u \in \mathcal{W}_2$.

Operação: UNIÃO

Proposição.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2\}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. <u>DEMONSTRAÇÃO:</u>

(II) Multiplicação por escalar:

HIPÓTESE: Sejam W_1, W_2 subespaços vetoriais de \mathcal{V} tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$, e; sejam $u \in (W_1 \cup W_2)$ e $\lambda \in \mathbb{K}$.

TESE: $\lambda u \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Se $\forall u \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ OU $u \in \mathcal{W}_2$.

Se $u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1$; se $u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2$,

Operação: UNIÃO

Proposição.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. <u>DEMONSTRAÇÃO:</u>

(II) Multiplicação por escalar:

HIPÓTESE: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$, e; sejam $u \in (W_1 \cup W_2)$ e $\lambda \in \mathbb{K}$.

TESE: $\lambda u \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Se $\forall u \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ **ou** $u \in \mathcal{W}_2$.

Se $u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1$; se $u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2$, pois; $\mathcal{W}_1, \mathcal{W}_2$ são subespaços vetoriais;

Operação: UNIÃO

PROPOSIÇÃO.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. <u>DEMONSTRAÇÃO:</u>

(II) Multiplicação por escalar:

HIPÓTESE: Sejam W_1, W_2 subespaços vetoriais de \mathcal{V} tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$, e; sejam $u \in (W_1 \cup W_2)$ e $\lambda \in \mathbb{K}$.

TESE: $\lambda u \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Se $\forall u \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ **ou** $u \in \mathcal{W}_2$.

Se $u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1$; se $u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2$, pois; $\mathcal{W}_1, \mathcal{W}_2$ são subespaços vetoriais;

então, $\lambda u \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Operação: UNIÃO

PROPOSIÇÃO.2: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2 \}$$

é um subespaço vetorial de $\mathcal V$ se, e somente se, $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. DEMONSTRAÇÃO:

(II) Multiplicação por escalar:

HIPÓTESE: Sejam W_1, W_2 subespaços vetoriais de \mathcal{V} tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$, e; sejam $u \in (W_1 \cup W_2)$ e $\lambda \in \mathbb{K}$.

TESE: $\lambda u \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Se $\forall u \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ **ou** $u \in \mathcal{W}_2$.

Se $u \in \mathcal{W}_1 \Rightarrow \lambda u \in \mathcal{W}_1$; se $u \in \mathcal{W}_2 \Rightarrow \lambda u \in \mathcal{W}_2$, pois; $\mathcal{W}_1, \mathcal{W}_2$ são subespaços vetoriais:

então, $\lambda u \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Operação: UNIÃO

Proposição.2:

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam $\mathcal{W}_1, \mathcal{W}_2$ subespaços vetoriais de \mathcal{V}

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam $\mathcal{W}_1, \mathcal{W}_2$ subespaços vetoriais de \mathcal{V} tais que $\mathcal{W}_1 \subseteq \mathcal{W}_2$ ou $\mathcal{W}_2 \subseteq \mathcal{W}_1$;

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de \mathcal{V} tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer. TESE: $u + v \in (W_1 \cup W_2)$.

MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u,v\in (\mathcal{W}_1\cup\mathcal{W}_2)$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ ou $u \in \mathcal{W}_2$;

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ ou $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ ou $v \in \mathcal{W}_2$.

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ ou $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ ou $v \in \mathcal{W}_2$.

(1) Se
$$u, v \in \mathcal{W}_1$$
 então $u + v \in \mathcal{W}_1$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ OU $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ OU $v \in \mathcal{W}_2$.

Assim, considerando todas as possibilidades;

(1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ OU $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ OU $v \in \mathcal{W}_2$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ OU $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ OU $v \in \mathcal{W}_2$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ OU $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ OU $v \in \mathcal{W}_2$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ OU $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ OU $v \in \mathcal{W}_2$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ ou $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ ou $v \in \mathcal{W}_2$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de \mathcal{V} tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ OU $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ OU $v \in \mathcal{W}_2$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.
- (4) Se $v \in \mathcal{W}_1$ e $u \in \mathcal{W}_2$ então, $u + v \notin \mathcal{W}_1$ e

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de \mathcal{V} tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u,v\in (\mathcal{W}_1\cup\mathcal{W}_2)\Rightarrow u\in \mathcal{W}_1$ OU $u\in \mathcal{W}_2;\ v\in \mathcal{W}_1$ OU $v\in \mathcal{W}_2.$

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.
- (4) Se $v \in \mathcal{W}_1$ e $u \in \mathcal{W}_2$ então, $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ OU $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ OU $v \in \mathcal{W}_2$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.
- (4) Se $v \in \mathcal{W}_1$ e $u \in \mathcal{W}_2$ então, $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ ou $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ ou $v \in \mathcal{W}_2$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.
- (4) Se $v \in \mathcal{W}_1$ e $u \in \mathcal{W}_2$ então, $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$. Porém, por hipótese, $\mathcal{W}_1 \subseteq \mathcal{W}_2$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de \mathcal{V} tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2) \Rightarrow u \in \mathcal{W}_1$ OU $u \in \mathcal{W}_2$; $v \in \mathcal{W}_1$ OU $v \in \mathcal{W}_2$.

Assim, considerando todas as possibilidades;

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.
- (4) Se $v \in \mathcal{W}_1$ e $u \in \mathcal{W}_2$ então, $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$. Porém, por hipótese, $\mathcal{W}_1 \subseteq \mathcal{W}_2$ ou, $\mathcal{W}_2 \subseteq \mathcal{W}_1$;

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de \mathcal{V} tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$:
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$:
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.
- (4) Se $v \in \mathcal{W}_1$ e $u \in \mathcal{W}_2$ então, $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$. Porém, por hipótese, $\mathcal{W}_1 \subseteq \mathcal{W}_2$ ou, $\mathcal{W}_2 \subseteq \mathcal{W}_1$; então, nos casos (3) e (4), temos que $u + v \in \mathcal{W}_1$ ou

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.
- (4) Se $v \in \mathcal{W}_1$ e $u \in \mathcal{W}_2$ então, $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$. Porém, por hipótese, $\mathcal{W}_1 \subseteq \mathcal{W}_2$ ou, $\mathcal{W}_2 \subseteq \mathcal{W}_1$; então, nos casos (3) e (4), temos que $u + v \in \mathcal{W}_1$ ou $u + v \in \mathcal{W}_2$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.
- (4) Se $v \in \mathcal{W}_1$ e $u \in \mathcal{W}_2$ então, $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$. Porém, por hipótese, $\mathcal{W}_1 \subseteq \mathcal{W}_2$ ou, $\mathcal{W}_2 \subseteq \mathcal{W}_1$; então, nos casos (3) e (4), temos que $u + v \in \mathcal{W}_1$ ou $u + v \in \mathcal{W}_2$ logo, $u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$.

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V tais que $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$; e sejam $u, v \in (W_1 \cup W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 \cup \mathcal{W}_2)$.

- (1) Se $u, v \in \mathcal{W}_1$ então $u + v \in \mathcal{W}_1 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (2) Se $u, v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_2 \Rightarrow u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$;
- (3) Se $u \in \mathcal{W}_1$ e $v \in \mathcal{W}_2$ então $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$.
- (4) Se $v \in \mathcal{W}_1$ e $u \in \mathcal{W}_2$ então, $u + v \notin \mathcal{W}_1$ e $u + v \notin \mathcal{W}_2 \Rightarrow u + v \notin \mathcal{W}_1 \cup \mathcal{W}_2$. Porém, por hipótese, $\mathcal{W}_1 \subseteq \mathcal{W}_2$ ou, $\mathcal{W}_2 \subseteq \mathcal{W}_1$; então, nos casos (3) e (4), temos que $u + v \in \mathcal{W}_1$ ou $u + v \in \mathcal{W}_2$ logo, $u + v \in \mathcal{W}_1 \cup \mathcal{W}_2$.

Operação: UNIÃO

Proposição.2:

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO:(continuação)

Por (I) e (II) provamos que

Operação: UNIÃO

Proposição.2:

<u>DEMONSTRAÇÃO:</u>(continuação)

Por (I) e (II) provamos que

 $\mathcal{W}_1 \cup \mathcal{W}_2 =$

Operação: UNIÃO

Proposição.2:

<u>DEMONSTRAÇÃO:</u>(continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: UNIÃO

Proposição.2:

<u>DEMONSTRAÇÃO:</u>(continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou$$

Operação: UNIÃO

Proposição.2:

<u>DEMONSTRAÇÃO:</u>(continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \text{ov} \quad u \in W_2 \}$$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{ov} \quad u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} , Se $W_1\subseteq W_2$ ou $W_2\subseteq W_1$.

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{ov} \quad u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} , Se $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. \blacksquare

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} , Se $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. \blacksquare

Se
$$\mathcal{W}_1 \cup \mathcal{W}_2 =$$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} , Se $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. \blacksquare

Se
$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid$$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} , Se $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. \blacksquare

Se
$$W_1 \cup W_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ou$$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \text{ ou } u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} , Se $W_1\subseteq W_2$ ou $W_2\subseteq W_1$. \blacksquare

Se
$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ OU } u \in W_2\}$$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{ov} \quad u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} , Se $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$.

Note que para provar:

Se $\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in \mathcal{W}_1 \ \text{ou} \ u \in \mathcal{W}_2\}$ é um subespaço vetorial de \mathcal{V}

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u \in W_1 \quad \mathbf{ov} \quad u \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} , Se $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$.

Note que para provar:

Se $\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2\}$ é um subespaço vetorial de \mathcal{V} então $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2\}$$

é um subespaço vetorial de \mathcal{V} , Se $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$.

Note que para provar:

Se $\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2\}$ é um subespaço vetorial de \mathcal{V} então $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$ é de forma análoga à prova feita anteriormente.

Operação: UNIÃO

Proposição.2:

DEMONSTRAÇÃO: (continuação)

Por (I) e (II) provamos que

$$\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2\}$$

é um subespaço vetorial de \mathcal{V} , Se $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$.

Note que para provar:

Se $\mathcal{W}_1 \cup \mathcal{W}_2 = \{u \in \mathcal{V} \mid u \in W_1 \text{ ov } u \in W_2\}$ é um subespaço vetorial de \mathcal{V} então $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$ é de forma análoga à prova feita anteriormente.

Operação: SOMA

Proposição.3:

Operação: SOMA

PROPOSIÇÃO.3: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Operação: SOMA

PROPOSIÇÃO.3: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial $\ensuremath{\mathcal{V}}$ definido por :

Operação: SOMA

PROPOSIÇÃO.3: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial $\ensuremath{\mathcal{V}}$ definido por :

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid$$

Operação: SOMA

Proposição.3: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 + u_2;$$

Operação: SOMA

PROPOSIÇÃO.3: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ \textbf{\textit{u}} \in \mathcal{V} \mid \textbf{\textit{u}} = \textbf{\textit{u}}_1 + \textbf{\textit{u}}_2; \ \textbf{\textit{u}}_1 \in \textbf{\textit{W}}_1 \ \textbf{\textit{e}}$$

Operação: SOMA

Proposição.3: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial $\ensuremath{\mathcal{V}}$ definido por :

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 + u_2; \ u_1 \in W_1 \ e \ u_2 \in W_2 \}$$

Operação: SOMA

Proposição.3: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

Operação: SOMA

PROPOSIÇÃO.3: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

Operação: SOMA

Proposição.3: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V;

Operação: SOMA

Proposição.3: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V; e sejam $u, v \in (W_1 + W_2)$ dois vetores quaisquer.

Operação: SOMA

Proposição.3: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V; e sejam $u, v \in (W_1 + W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 + \mathcal{W}_2)$.

Operação: SOMA

Proposição.3: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V; e sejam $u, v \in (W_1 + W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 + \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2, \ v = v_1 + v_2; \ u_1, v_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2, v_2 \in \mathcal{W}_2,$

Operação: SOMA

Proposição.3: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V; e sejam $u, v \in (W_1 + W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 + \mathcal{W}_2)$.

Por hipótese, $u, v \in (W_1 + W_2) \Rightarrow u = u_1 + u_2, \ v = v_1 + v_2; \ u_1, v_1 \in W_1 \ \mathbf{E} \ u_2, v_2 \in W_2, u_1, v_1 \in W_1 \Rightarrow u_1 + v_1 \in W_1,$

Operação: SOMA

Proposição.3: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V; e sejam $u, v \in (W_1 + W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 + \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2, \ v = v_1 + v_2; \ u_1, v_1 \in \mathcal{W}_1$ E $u_2, v_2 \in \mathcal{W}_2, u_1, v_1 \in \mathcal{W}_1 \Rightarrow u_1 + v_1 \in \mathcal{W}_1$, pois \mathcal{W}_1 é subespaço vetorial; E, $u_2, v_2 \in \mathcal{W}_2 \Rightarrow u_2 + v_2 \in \mathcal{W}_2$,

Operação: SOMA

Proposição.3: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V; e sejam $u, v \in (W_1 + W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 + \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2, \ v = v_1 + v_2; \ u_1, v_1 \in \mathcal{W}_1$ E $u_2, v_2 \in \mathcal{W}_2, u_1, v_1 \in \mathcal{W}_1 \Rightarrow u_1 + v_1 \in \mathcal{W}_1$, pois \mathcal{W}_1 é subespaço vetorial; E, $u_2, v_2 \in \mathcal{W}_2 \Rightarrow u_2 + v_2 \in \mathcal{W}_2$, pois \mathcal{W}_2 é subespaço vetorial;

Operação: SOMA

Proposição.3: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V; e sejam $u, v \in (W_1 + W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 + \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2, \ v = v_1 + v_2; \ u_1, v_1 \in \mathcal{W}_1$ E $u_2, v_2 \in \mathcal{W}_2, u_1, v_1 \in \mathcal{W}_1 \Rightarrow u_1 + v_1 \in \mathcal{W}_1$, pois \mathcal{W}_1 é subespaço vetorial; E, $u_2, v_2 \in \mathcal{W}_2 \Rightarrow u_2 + v_2 \in \mathcal{W}_2$, pois \mathcal{W}_2 é subespaço vetorial; então, $u + v = (u_1 + u_2) + (v_1 + v_2) =$

Operação: SOMA

PROPOSIÇÃO.3: Sejam $\mathcal V$ um espaço vetorial sobre o corpo $\mathbb K$, $\mathcal W_1$ e $\mathcal W_2$ subespaços vetoriais de $\mathcal V$.

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V; e sejam $u, v \in (W_1 + W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 + \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2, v = v_1 + v_2; u_1, v_1 \in \mathcal{W}_1$ **E** $u_2, v_2 \in \mathcal{W}_2, u_1, v_1 \in \mathcal{W}_1 \Rightarrow u_1 + v_1 \in \mathcal{W}_1$, pois \mathcal{W}_1 **é** subespaço vetorial; **E**, $u_2, v_2 \in \mathcal{W}_2 \Rightarrow u_2 + v_2 \in \mathcal{W}_2$, pois \mathcal{W}_2 **é** subespaço vetorial; então, $u + v = (u_1 + u_2) + (v_1 + v_2) = \underbrace{(u_1 + v_1)}_{\in \mathcal{W}_1} + \underbrace{(u_2 + v_2)}_{\in \mathcal{W}_2} \in (\mathcal{W}_1 + \mathcal{W}_2).$

Operação: SOMA

Proposição.3: Sejam \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , \mathcal{W}_1 e \mathcal{W}_2 subespaços vetoriais de \mathcal{V} .

Então, o subconjunto do espaço vetorial ${\mathcal V}$ definido por :

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de ${\cal V}.$

DEMONSTRAÇÃO:

(I) Adição de vetores:

HIPÓTESES: Sejam W_1, W_2 subespaços vetoriais de V; e sejam $u, v \in (W_1 + W_2)$ dois vetores quaisquer.

TESE: $u + v \in (\mathcal{W}_1 + \mathcal{W}_2)$.

Por hipótese, $u, v \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2, \ v = v_1 + v_2; \ u_1, v_1 \in \mathcal{W}_1 \quad \mathbf{E} \ u_2, v_2 \in \mathcal{W}_2, u_1, v_1 \in \mathcal{W}_1 \Rightarrow u_1 + v_1 \in \mathcal{W}_1, \text{ pois } \mathcal{W}_1 \quad \text{\'e subespaço vetorial;} \quad \mathbf{E}, u_2, v_2 \in \mathcal{W}_2 \Rightarrow u_2 + v_2 \in \mathcal{W}_2, \text{ pois } \mathcal{W}_2 \quad \text{\'e subespaço vetorial;} \quad \mathbf{ent\~ao}, \ u + v = (u_1 + u_2) + (v_1 + v_2) = \underbrace{(u_1 + v_1)}_{\in \mathcal{W}_1} + \underbrace{(u_2 + v_2)}_{\in \mathcal{W}_2} \in (\mathcal{W}_1 + \mathcal{W}_2).$

Operação: SOMA

Proposição.3:

Operação: SOMA

Proposição.3: DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

Operação: SOMA

Proposição.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESE: ; Sejam W_1, W_2 subespaços vetoriais de V; e sejam $\lambda \in \mathbb{K}$ e $u \in (W_1 + W_2)$.

Operação: SOMA

Proposição.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

Operação: SOMA

Proposição.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$

Operação: SOMA

Proposição.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$
 $u_1 \in \mathcal{W}_1 \Rightarrow \lambda u_1 \in \mathcal{W}_1$,

Operação: SOMA

Proposicão.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$

$$u_1 \in \mathcal{W}_1 \Rightarrow \lambda u_1 \in \mathcal{W}_1, \ \mathsf{pois} \ \mathcal{W}_1 \ \ \acute{\mathbf{e}} \ \mathsf{subespaço} \ \mathsf{vetorial}; \ \ \mathbf{E}, \ u_2 \in \mathcal{W}_2 \Rightarrow \lambda u_2 \in \mathcal{W}_2,$$

Operação: SOMA

Proposicão.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESE: ; Sejam W_1, W_2 subespaços vetoriais de V; e sejam $\lambda \in \mathbb{K}$ e $u \in (W_1 + W_2)$. TESE: $\lambda u \in (\mathcal{W}_1 + \mathcal{W}_2)$.

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$

Operação: SOMA

Proposicão.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESE: ; Sejam W_1, W_2 subespaços vetoriais de V; e sejam $\lambda \in \mathbb{K}$ e $u \in (W_1 + W_2)$. TESE: $\lambda u \in (\mathcal{W}_1 + \mathcal{W}_2)$.

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$

então,
$$\lambda u = \lambda (u_1 + u_2) =$$

Operação: SOMA

Proposicão.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESE: ; Sejam W_1, W_2 subespaços vetoriais de V; e sejam $\lambda \in \mathbb{K}$ e $u \in (W_1 + W_2)$. TESE: $\lambda u \in (\mathcal{W}_1 + \mathcal{W}_2)$.

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$

então,
$$\lambda u = \lambda(u_1 + u_2) = \underbrace{(\lambda u_1)}_{\in \mathcal{W}_1} + \underbrace{(\lambda u_2)}_{\in \mathcal{W}_2}$$

Operação: SOMA

Proposicão.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESE: ; Sejam W_1, W_2 subespaços vetoriais de V; e sejam $\lambda \in \mathbb{K}$ e $u \in (W_1 + W_2)$. TESE: $\lambda u \in (\mathcal{W}_1 + \mathcal{W}_2)$.

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$

então,
$$\lambda u = \lambda (u_1 + u_2) = \underbrace{(\lambda u_1)}_{\in \mathcal{W}_2} + \underbrace{(\lambda u_2)}_{\in \mathcal{W}_2} \Rightarrow \lambda u \in (\mathcal{W}_1 + \mathcal{W}_2).$$

Operação: SOMA

Proposicão.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESE: ; Sejam W_1, W_2 subespaços vetoriais de V; e sejam $\lambda \in \mathbb{K}$ e $u \in (W_1 + W_2)$. TESE: $\lambda u \in (\mathcal{W}_1 + \mathcal{W}_2)$.

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$

 $u_1 \in \mathcal{W}_1 \Rightarrow \lambda u_1 \in \mathcal{W}_1$, pois \mathcal{W}_1 é subespaco vetorial; E, $u_2 \in \mathcal{W}_2 \Rightarrow \lambda u_2 \in \mathcal{W}_2$, pois \mathcal{W}_2 é subespaco vetorial:

então,
$$\lambda u = \lambda(u_1 + u_2) = \underbrace{(\lambda u_1)}_{\in \mathcal{W}_2} + \underbrace{(\lambda u_2)}_{\in \mathcal{W}_2} \Rightarrow \lambda u \in (\mathcal{W}_1 + \mathcal{W}_2).$$

Por (I) e (II) provamos que

Operação: SOMA

Proposicão.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESE: ; Sejam W_1, W_2 subespaços vetoriais de V; e sejam $\lambda \in \mathbb{K}$ e $u \in (W_1 + W_2)$. TESE: $\lambda u \in (\mathcal{W}_1 + \mathcal{W}_2)$.

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$

 $u_1 \in \mathcal{W}_1 \Rightarrow \lambda u_1 \in \mathcal{W}_1$, pois \mathcal{W}_1 é subespaco vetorial; E, $u_2 \in \mathcal{W}_2 \Rightarrow \lambda u_2 \in \mathcal{W}_2$, pois \mathcal{W}_2 é subespaco vetorial:

então,
$$\lambda u = \lambda (u_1 + u_2) = \underbrace{(\lambda u_1)}_{\in \mathcal{W}_2} + \underbrace{(\lambda u_2)}_{\in \mathcal{W}_2} \Rightarrow \lambda u \in (\mathcal{W}_1 + \mathcal{W}_2).$$

Por (I) e (II) provamos que

$$W_1 + W_2 = \{ u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

Operação: SOMA

Proposicão.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESE: ; Sejam W_1, W_2 subespaços vetoriais de V; e sejam $\lambda \in \mathbb{K}$ e $u \in (W_1 + W_2)$. TESE: $\lambda u \in (\mathcal{W}_1 + \mathcal{W}_2)$.

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$

 $u_1 \in \mathcal{W}_1 \Rightarrow \lambda u_1 \in \mathcal{W}_1$, pois \mathcal{W}_1 é subespaco vetorial; E, $u_2 \in \mathcal{W}_2 \Rightarrow \lambda u_2 \in \mathcal{W}_2$, pois \mathcal{W}_2 é subespaco vetorial:

então,
$$\lambda u = \lambda(u_1 + u_2) = \underbrace{(\lambda u_1)}_{\text{CM}} + \underbrace{(\lambda u_2)}_{\text{CM}} \Rightarrow \lambda u \in (\mathcal{W}_1 + \mathcal{W}_2).$$

Por (I) e (II) provamos que

$$W_1 + W_2 = \{u \in V \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2\}$$

é um subespaco vetorial de \mathcal{V} .

Operação: SOMA

Proposicão.3:

DEMONSTRAÇÃO: (continuação)

(II) Multiplicação por escalar:

HIPÓTESE: ; Sejam W_1, W_2 subespaços vetoriais de V; e sejam $\lambda \in \mathbb{K}$ e $u \in (W_1 + W_2)$. TESE: $\lambda u \in (\mathcal{W}_1 + \mathcal{W}_2)$.

$$\forall u \in (\mathcal{W}_1 + \mathcal{W}_2) \Rightarrow u = u_1 + u_2; \ u_1 \in \mathcal{W}_1 \ \mathbf{E} \ u_2 \in \mathcal{W}_2,$$

 $u_1 \in \mathcal{W}_1 \Rightarrow \lambda u_1 \in \mathcal{W}_1$, pois \mathcal{W}_1 é subespaco vetorial; E, $u_2 \in \mathcal{W}_2 \Rightarrow \lambda u_2 \in \mathcal{W}_2$, pois \mathcal{W}_2 é subespaco vetorial:

então,
$$\lambda u = \lambda (u_1 + u_2) = \underbrace{(\lambda u_1)}_{\in \mathcal{W}_1} + \underbrace{(\lambda u_2)}_{\in \mathcal{W}_2} \Rightarrow \lambda u \in (\mathcal{W}_1 + \mathcal{W}_2).$$

Por (I) e (II) provamos que

$$\mathcal{W}_1 + \mathcal{W}_2 = \{ u \in \mathcal{V} \mid u = u_1 + u_2; u_1 \in W_1 \in u_2 \in W_2 \}$$

é um subespaço vetorial de \mathcal{V} .

Combinação Linear

Definição:

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} .

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de V. Dizemos que um vetor $u \in V$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto *S*

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de V. Dizemos que um vetor $u \in V$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i$$

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Combinação Linear

DEFINICÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{\mathcal{V}},$

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{v_1},\underbrace{(0,0,-1)}_{v_2},$

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{v_1},\underbrace{(0,0,-1)}_{v_2},\underbrace{(0,1,0)}_{v_2}\}\subset\mathcal{V}.$

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Exemplo.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{V_0},\underbrace{(0,0,-1)}_{V_0},\underbrace{(0,1,0)}_{V_0}\}\subset\mathcal{V}.$

Então, $u = (x, y, z) \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Exemplo.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{v_1},\underbrace{(0,0,-1)}_{v_2},\underbrace{(0,1,0)}_{v_2}\}\subset\mathcal{V}.$

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Exemplo.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{V_1},\underbrace{(0,0,-1)}_{V_2},\underbrace{(0,1,0)}_{V_2}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{3} \lambda_i v_i =$$

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Exemplo.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{V_1},\underbrace{(0,0,-1)}_{V_2},\underbrace{(0,1,0)}_{V_2}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0,0) + \lambda_{2}(0,0,-1) + \lambda_{3}(0,1,0) =$$

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Exemplo.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{V_1},\underbrace{(0,0,-1)}_{V_2},\underbrace{(0,1,0)}_{V_2}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,0) + \lambda_2(0,0,-1) + \lambda_3(0,1,0) = (2\lambda_1,\lambda_3,-\lambda_2)$$

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Exemplo.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{V_1},\underbrace{(0,0,-1)}_{V_2},\underbrace{(0,1,0)}_{V_2}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,0) + \lambda_2(0,0,-1) + \lambda_3(0,1,0) = (2\lambda_1,\lambda_3,-\lambda_2) \Rightarrow u = (x,y,z);$$

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Exemplo.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)},\underbrace{(0,0,-1)},\underbrace{(0,1,0)}\}\subset\mathcal{V}.$

Então, $u = (x, y, z) \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se. $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$:

$$u = \sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0,0) + \lambda_{2}(0,0,-1) + \lambda_{3}(0,1,0) = (2\lambda_{1},\lambda_{3},-\lambda_{2}) \Rightarrow u = (x,y,z);$$

portanto, todos os vetores do espaco vetorial \mathbb{R}^3 é uma combinação linear dos vetores de S.

Combinação Linear

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} . Dizemos que um vetor $u \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, existem escalares $\lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{K}$ tais que

$$u = \sum_{i=1}^{n} \lambda_i v_i = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n.$$

Exemplo.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)},\underbrace{(0,0,-1)},\underbrace{(0,1,0)}\}\subset\mathcal{V}.$

Então, $u = (x, y, z) \in \mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se. $\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$:

$$u = \sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0,0) + \lambda_{2}(0,0,-1) + \lambda_{3}(0,1,0) = (2\lambda_{1},\lambda_{3},-\lambda_{2}) \Rightarrow u = (x,y,z);$$

portanto, todos os vetores do espaco vetorial \mathbb{R}^3 é uma combinação linear dos vetores de S.

Combinação Linear

Combinação Linear

EXEMPLO.2: Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $S = \{ (2,3,-1),$

Combinação Linear

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{\mathcal{V}},\underbrace{(0,1,1)}_{\mathcal{V}}\}\subset\mathcal{V}.$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)},\underbrace{(0,1,1)}\}\subset\mathcal{V}.$

Então, $u=(x,y,z)\in\mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{\mathcal{V}_1},\underbrace{(0,1,1)}_{\mathcal{V}_2}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{2} \lambda_i v_i =$$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{_{V_1}},\underbrace{(0,1,1)}_{_{V_2}}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2, 3, -1) + \lambda_{2}(0, 1, 1) =$$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{_{Y_1}},\underbrace{(0,1,1)}_{_{Y_2}}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2, 3, -1) + \lambda_{2}(0, 1, 1) = (2\lambda_{1}, 3\lambda_{1} + \lambda_{2}, \lambda_{2} - \lambda_{1})$$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{\mathcal{V}_1},\underbrace{(0,1,1)}_{\mathcal{V}_2}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2, 3, -1) + \lambda_{2}(0, 1, 1) = (2\lambda_{1}, 3\lambda_{1} + \lambda_{2}, \lambda_{2} - \lambda_{1}) \Rightarrow u = (x, y, y - 2x)$$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $S = \{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}.$

Então, $u=(x,y,z)\in\mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, $\forall \lambda_1, \lambda_2 \in \mathbb{R}$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2, 3, -1) + \lambda_{2}(0, 1, 1) = (2\lambda_{1}, 3\lambda_{1} + \lambda_{2}, \lambda_{2} - \lambda_{1}) \Rightarrow u = (x, y, y - 2x)$$

resolvendo o sistema linear: $\left\{\begin{array}{c} x=2\lambda_1 \\ \end{array}\right.$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $S = \{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\} \subset \mathcal{V}.$

Então, $u=(x,y,z)\in\mathcal{V}$ é uma COMBINAÇÃO LINEAR dos elementos do conjunto S se, somente se, $\forall \lambda_1, \lambda_2 \in \mathbb{R}$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2, 3, -1) + \lambda_{2}(0, 1, 1) = (2\lambda_{1}, 3\lambda_{1} + \lambda_{2}, \lambda_{2} - \lambda_{1}) \Rightarrow u = (x, y, y - 2x)$$

resolvendo o sistema linear: $\begin{cases} x = 2\lambda_1 \Rightarrow \lambda_1 = \frac{1}{2}x \\ \end{cases}$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $S = \{\underbrace{(2,3,-1)}_{\mathcal{V}_1},\underbrace{(0,1,1)}_{\mathcal{V}_2}\} \subset \mathcal{V}.$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2, 3, -1) + \lambda_{2}(0, 1, 1) = (2\lambda_{1}, 3\lambda_{1} + \lambda_{2}, \lambda_{2} - \lambda_{1}) \Rightarrow u = (x, y, y - 2x)$$

resolvendo o sistema linear:
$$\left\{ \begin{array}{l} x=2\lambda_1\Rightarrow\lambda_1=\frac{1}{2}x\\ y=3\lambda_1+\lambda_2 \end{array} \right.$$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $S = \{\underbrace{(2,3,-1)}_{\mathcal{V}_1},\underbrace{(0,1,1)}_{\mathcal{V}_2}\} \subset \mathcal{V}.$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2, 3, -1) + \lambda_{2}(0, 1, 1) = (2\lambda_{1}, 3\lambda_{1} + \lambda_{2}, \lambda_{2} - \lambda_{1}) \Rightarrow u = (x, y, y - 2x)$$

resolvendo o sistema linear:
$$\begin{cases} x = 2\lambda_1 \Rightarrow \lambda_1 = \frac{1}{2}x \\ y = 3\lambda_1 + \lambda_2 \Rightarrow y = \frac{3}{2}x + \lambda_2 \Rightarrow \lambda_2 = y - \frac{3}{2}x \end{cases}$$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,3,-1) + \lambda_{2}(0,1,1) = (2\lambda_{1},3\lambda_{1} + \lambda_{2},\lambda_{2} - \lambda_{1}) \Rightarrow u = (x,y,y-2x)$$

resolvendo o sistema linear:
$$\begin{cases} x = 2\lambda_1 \Rightarrow \lambda_1 = \frac{1}{2}x \\ y = 3\lambda_1 + \lambda_2 \Rightarrow y = \frac{3}{2}x + \lambda_2 \Rightarrow \lambda_2 = y - \frac{3}{2}x \\ z = -\lambda_1 + \lambda_2 \end{cases}$$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{\mathcal{V}_1},\underbrace{(0,1,1)}_{\mathcal{V}_2}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,3,-1) + \lambda_{2}(0,1,1) = (2\lambda_{1},3\lambda_{1} + \lambda_{2},\lambda_{2} - \lambda_{1}) \Rightarrow u = (x,y,y-2x)$$

resolvendo o sistema linear:
$$\begin{cases} x = 2\lambda_1 \Rightarrow \lambda_1 = \frac{1}{2}x \\ y = 3\lambda_1 + \lambda_2 \Rightarrow y = \frac{3}{2}x + \lambda_2 \Rightarrow \lambda_2 = y - \frac{3}{2}x \\ z = -\lambda_1 + \lambda_2 \Rightarrow z = -\frac{1}{2}x + y - \frac{3}{2}x \Rightarrow z = y - 2x \end{cases}$$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,3,-1) + \lambda_{2}(0,1,1) = (2\lambda_{1},3\lambda_{1} + \lambda_{2},\lambda_{2} - \lambda_{1}) \Rightarrow u = (x,y,y-2x)$$

resolvendo o sistema linear:
$$\begin{cases} x = 2\lambda_1 \Rightarrow \lambda_1 = \frac{1}{2}x \\ y = 3\lambda_1 + \lambda_2 \Rightarrow y = \frac{3}{2}x + \lambda_2 \Rightarrow \lambda_2 = y - \frac{3}{2}x \\ z = -\lambda_1 + \lambda_2 \Rightarrow z = -\frac{1}{2}x + y - \frac{3}{2}x \Rightarrow z = y - 2x \end{cases}$$

Combinação Linear

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

$$u = \sum_{i=1}^{2} \lambda_{i} v_{i} = \lambda_{1}(2,3,-1) + \lambda_{2}(0,1,1) = (2\lambda_{1},3\lambda_{1} + \lambda_{2},\lambda_{2} - \lambda_{1}) \Rightarrow u = (x,y,y-2x)$$

resolvendo o sistema linear:
$$\begin{cases} x = 2\lambda_1 \Rightarrow \lambda_1 = \frac{1}{2}x \\ y = 3\lambda_1 + \lambda_2 \Rightarrow y = \frac{3}{2}x + \lambda_2 \Rightarrow \lambda_2 = y - \frac{3}{2}x \\ z = -\lambda_1 + \lambda_2 \Rightarrow z = -\frac{1}{2}x + y - \frac{3}{2}x \Rightarrow z = y - 2x \end{cases}$$

Subespaço Gerado

DEFINIÇÃO:

Subespaço Gerado

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um **subconjunto finito** de \mathcal{V} .

Subespaço Gerado

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} .

Dizemos que o seguinte subconjunto de ${\cal V}$

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{n} \lambda_{i} v_{i}; \forall \lambda_{i} \in \mathbb{K} \}$$

Subespaço Gerado

DEFINIÇÃO: Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e seja $S = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, um subconjunto finito de \mathcal{V} .

Dizemos que o seguinte subconjunto de ${\cal V}$

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{n} \lambda_{i} v_{i}; \forall \lambda_{i} \in \mathbb{K} \}$$

é um SUBESPACO GERADO POR S.

Dizemos que o seguinte subconjunto de \mathcal{V}

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{n} \lambda_{i} v_{i}; \forall \lambda_{i} \in \mathbb{K} \}$$

é um SUBESPACO GERADO POR S.

Dizemos que o seguinte subconjunto de \mathcal{V}

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{n} \lambda_{i} v_{i}; \forall \lambda_{i} \in \mathbb{K} \}$$

é um subespaço gerado por S.

NOTAÇÕES:
$$W = [v_1, v_2, \dots, v_n]$$

Dizemos que o seguinte subconjunto de \mathcal{V}

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{n} \lambda_{i} v_{i}; \forall \lambda_{i} \in \mathbb{K} \}$$

é um subespaço gerado por S.

NOTAÇÕES:
$$W = [v_1, v_2, \dots, v_n]$$
 ou $W = [S]$.

Dizemos que o seguinte subconjunto de \mathcal{V}

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{n} \lambda_{i} v_{i}; \forall \lambda_{i} \in \mathbb{K} \}$$

é um subespaço gerado por S.

NOTAÇÕES:
$$W = [v_1, v_2, \dots, v_n]$$
 ou $W = [S]$.

Subespaço Gerado

EXEMPLO.1:

EXEMPLO.1:
Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $S = \{\underbrace{(2,0,0)}_{t},$

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{v_1},\underbrace{(0,0,-1)}_{v_2},$

Subespaço Gerado

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{v_1},\underbrace{(0,0,-1)}_{v_2},\underbrace{(0,1,0)}_{v_3}\}\subset\mathcal{V}.$

EXEMPLO.1: Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $S = \{\underbrace{(2,0,0)}_{v_1},\underbrace{(0,0,-1)}_{v_2},\underbrace{(0,1,0)}_{v_3}\} \subset \mathcal{V}.$ Então, $\mathcal{W} = \{u \in \mathcal{V} \mid u = (x,y,z)\}$

$$\begin{split} & \text{EXEMPLO.1:} \\ & \text{Seja } \mathcal{V} = \mathbb{R}^3 \text{ e seja } \mathcal{S} = \{\underbrace{(2,0,0)}_{v_1}, \underbrace{(0,0,-1)}_{v_2}, \underbrace{(0,1,0)}_{v_3}\} \subset \mathcal{V}. \\ & \text{Então, } \mathcal{W} = \{u \in \mathcal{V} \mid u = (x,y,z)\} = \mathbb{R}^3 \end{split}$$

EXEMPLO.1: Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{v_1},\underbrace{(0,0,-1)}_{v_2},\underbrace{(0,1,0)}_{v_3}\}\subset\mathcal{V}.$ Então, $\mathcal{W}=\{u\in\mathcal{V}\mid u=(x,y,z)\}=\mathbb{R}^3$ é o subespaço gerado por $S.$

```
EXEMPLO.1:
Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,0,0)},\underbrace{(0,0,-1)},\underbrace{(0,1,0)}\}\subset\mathcal{V}.
Então, W = \{u \in V \mid u = (x, y, z)\} = \mathbb{R}^3 é o subespaço gerado por S.
EXEMPLO.2:
```

Subespaço Gerado

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)}_{v_1},\underbrace{(0,0,-1)}_{v_2},\underbrace{(0,1,0)}_{v_3}\}\subset\mathcal{V}.$

Então,
$$W = \{u \in V \mid u = (x, y, z)\} = \mathbb{R}^3$$
 é o subespaço gerado por S .

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{\mathcal{I}},$

Subespaço Gerado

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)},\underbrace{(0,0,-1)},\underbrace{(0,1,0)}\}\subset\mathcal{V}.$

Então,
$$W = \{u \in V \mid u = (x, y, z)\} = \mathbb{R}^3$$
 é o subespaço gerado por S .

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)},\underbrace{(0,1,1)}\}\subset\mathcal{V}.$

Subespaço Gerado

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)},\underbrace{(0,0,-1)},\underbrace{(0,1,0)}\}\subset\mathcal{V}.$

Então,
$$W = \{u \in V \mid u = (x, y, z)\} = \mathbb{R}^3$$
 é o subespaço gerado por S .

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)}_{v_1},\underbrace{(0,1,1)}_{v_2}\}\subset\mathcal{V}.$

Então,
$$W = \{u \in V \mid u = (x, y, y - 2x)\}$$

Subespaço Gerado

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)},\underbrace{(0,0,-1)},\underbrace{(0,1,0)}\}\subset\mathcal{V}.$

Então,
$$W = \{u \in V \mid u = (x, y, z)\} = \mathbb{R}^3$$
 é o subespaço gerado por S .

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)},\underbrace{(0,1,1)}\}\subset\mathcal{V}.$

Então,
$$W = \{u \in V \mid u = (x, y, y - 2x)\}\$$
 é o subespaço gerado por S .

Subespaço Gerado

EXEMPLO.1:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,0)},\underbrace{(0,0,-1)},\underbrace{(0,1,0)}\}\subset\mathcal{V}.$

Então,
$$W = \{u \in V \mid u = (x, y, z)\} = \mathbb{R}^3$$
 é o subespaço gerado por S .

EXEMPLO.2:

Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,3,-1)},\underbrace{(0,1,1)}\}\subset\mathcal{V}.$

Então,
$$W = \{u \in V \mid u = (x, y, y - 2x)\}\$$
 é o subespaço gerado por S .

Subespaço Gerado

Propriedades:

Subespaço Gerado

PROPRIEDADES:

Subespaço Gerado

PROPRIEDADES:

Seja \mathcal{V} um espaço vetorial sobre o corpo \mathbb{K} , e sejam $S_1 = \{v_1, v_2, \dots, v_n\}; n \in \mathbb{N}^*$, e $S_2 = \{u_1, u_2, \dots, u_m\}; m \in \mathbb{N}^*$, subconjuntos finitos de \mathcal{V} .

1. $S_1 \subset [S_1]$

PROPRIEDADES:

- 1. $S_1 \subset [S_1]$
- 2. Se $S_1 \subset S_2$ então $[S_1] \subset [S_2]$

PROPRIEDADES:

- 1. $S_1 \subset [S_1]$
- 2. Se $S_1 \subset S_2$ então $[S_1] \subset [S_2]$

Subespaço Gerado

PROPRIEDADES:

- 1. $S_1 \subset [S_1]$
- 2. Se $S_1 \subset S_2$ então $[S_1] \subset [S_2]$
- 3. $[S_1] + [S_2] = [S_1 \cup S_2]$

Subespaço Gerado

PROPRIEDADES:

- 1. $S_1 \subset [S_1]$
- 2. Se $S_1 \subset S_2$ então $[S_1] \subset [S_2]$
- 3. $[S_1] + [S_2] = [S_1 \cup S_2]$

Subespaço Gerado

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{
u_1},$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{\mathcal{V}_1},\underbrace{(0,-2,-1)}_{\mathcal{V}_2},\underbrace{(1,-1,1)}_{\mathcal{V}_2}\}\subset\mathcal{V}.$

Subespaço Gerado

Exercícios:

$$1. \text{ Seja } \mathcal{V}=\mathbb{R}^3 \text{ e seja } S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset \mathcal{V}.$$

Determine o subespaco gerado por S.

Subespaço Gerado

Exercícios:

 $1. \ \mathsf{Seja} \ \mathcal{V} = \mathbb{R}^3 \ \mathsf{e} \ \mathsf{seja} \ \mathcal{S} = \{ \underbrace{(2,0,1)}_{\mathsf{v}_1}, \underbrace{(0,-2,-1)}_{\mathsf{v}_2}, \underbrace{(1,-1,1)}_{\mathsf{v}_3} \} \subset \mathcal{V}.$ Determine o subespaco gerado por S.

2. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $S=\{\underbrace{(2,0)}_{\mathcal{V}_1},$

Subespaço Gerado

Exercícios:

 $1. \ \mathsf{Seja} \ \mathcal{V} = \mathbb{R}^3 \ \mathsf{e} \ \mathsf{seja} \ \mathcal{S} = \{ \underbrace{(2,0,1)}_{\mathsf{v}_1}, \underbrace{(0,-2,-1)}_{\mathsf{v}_2}, \underbrace{(1,-1,1)}_{\mathsf{v}_3} \} \subset \mathcal{V}.$ Determine o subespaco gerado por S.

2. Seja
$$\mathcal{V}=\mathbb{R}^2$$
 e seja $S=\{\underbrace{(2,0)}_{\mathcal{V}_1},\underbrace{(-2,-1)}_{\mathcal{V}_2},$

Subespaço Gerado

- 1. Seja $\mathcal{V}=\mathbb{R}^3$ e seja $S=\{\underbrace{(2,0,1)}_{\mathcal{V}},\underbrace{(0,-2,-1)}_{\mathcal{V}},\underbrace{(1,-1,1)}_{\mathcal{V}}\}\subset\mathcal{V}.$ Determine o subespaco gerado por S.
- 2. Seja $\mathcal{V}=\mathbb{R}^2$ e seja $S=\{\underbrace{(2,0)},\underbrace{(-2,-1)},\underbrace{(1,1)}\}\subset\mathcal{V}.$

- 1. Seja $\mathcal{V}=\mathbb{R}^3$ e seja $S=\{\underbrace{(2,0,1)},\underbrace{(0,-2,-1)},\underbrace{(1,-1,1)}\}\subset\mathcal{V}.$ Determine o subespaco gerado por S.
- 2. Seja $\mathcal{V} = \mathbb{R}^2$ e seja $S = \{(2,0), (-2,-1), (1,1)\} \subset \mathcal{V}$.

Determine o subespaco gerado por S.

- $1. \text{ Seja } \mathcal{V}=\mathbb{R}^3 \text{ e seja } \mathcal{S}=\{\underbrace{(2,0,1)},\underbrace{(0,-2,-1)},\underbrace{(1,-1,1)}\}\subset \mathcal{V}.$ Determine o subespaco gerado por S.
- 2. Seja $\mathcal{V} = \mathbb{R}^2$ e seja $S = \{(2,0), (-2,-1), (1,1)\} \subset \mathcal{V}$. Determine o subespaco gerado por S.
- 3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2v = z\}.$

16 MAT A07 - Álgebra Linear A - Semestre Letivo - 2021.1

- 1. Seja $\mathcal{V}=\mathbb{R}^3$ e seja $S=\{\underbrace{(2,0,1)},\underbrace{(0,-2,-1)},\underbrace{(1,-1,1)}\}\subset\mathcal{V}.$ Determine o subespaco gerado por S.
- 2. Seja $\mathcal{V} = \mathbb{R}^2$ e seja $S = \{(2,0), (-2,-1), (1,1)\} \subset \mathcal{V}$. Determine o subespaço gerado por S.
- 3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2v = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} .

- 1. Seja $\mathcal{V}=\mathbb{R}^3$ e seja $S=\{\underbrace{(2,0,1)},\underbrace{(0,-2,-1)},\underbrace{(1,-1,1)}\}\subset\mathcal{V}.$ Determine o subespaco gerado por S.
- 2. Seja $\mathcal{V} = \mathbb{R}^2$ e seja $S = \{(2,0), (-2,-1), (1,1)\} \subset \mathcal{V}$. Determine o subespaço gerado por S.
- 3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2v = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} .

Subespaço Gerado

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{\mathcal{V}_1},\underbrace{(0,-2,-1)}_{\mathcal{V}_2},\underbrace{(1,-1,1)}_{\mathcal{V}_2}\}\subset\mathcal{V}.$

Subespaço Gerado

EXERCÍCIOS:

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$

Determine o **subespaço gerado por** *S*.

Subespaço Gerado

EXERCÍCIOS:

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{\mathcal{V}_1},\underbrace{(0,-2,-1)}_{\mathcal{V}_2},\underbrace{(1,-1,1)}_{\mathcal{V}_2}\}\subset\mathcal{V}.$

Determine o subespaco gerado por S.

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$
 temos que ;

Subespaço Gerado

Exercícios:

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{V_2},\underbrace{(0,-2,-1)}_{V_2},\underbrace{(1,-1,1)}_{V_2}\}\subset\mathcal{V}.$

Determine o subespaço gerado por S.

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \text{ temos que };$$
 $\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^3 \lambda_i v_i = 0 \}$

Subespaço Gerado

1. Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $S = \{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\} \subset \mathcal{V}.$ Determine o subespaco gerado por S .

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$
 temos que ;

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} = 0$$

Subespaço Gerado

```
1. Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.
      Determine o subespaco gerado por S.
      \forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} temos que :
      \mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} = 0
      \mathcal{W} = \{ u = (x, y, z) \in \mathcal{V} \mid
```

Subespaço Gerado

```
1. Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.
                                                   Determine o subespaco gerado por S.
                                                   \forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} temos que :
                                                \mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} =
                                                   W = \{ u = (x, y, z) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u = ((2\lambda_1 + \lambda_3), u) \in V \mid u
```

Subespaço Gerado

```
1. Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.
                                                     Determine o subespaco gerado por S.
                                                     \forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} temos que :
                                                  \mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} =
                                                     W = \{ u = (x, y, z) \in V \mid u = ((2\lambda_1 + \lambda_3), -(2\lambda_2 + \lambda_3), -(2\lambda_3 + \lambda_3), -(2\lambda
```

Subespaço Gerado

```
1. Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,0,1)}_{\mathcal{V}_1},\underbrace{(0,-2,-1)}_{\mathcal{V}_2},\underbrace{(1,-1,1)}_{\mathcal{V}_3}\}\subset\mathcal{V}.
      Determine o subespaco gerado por S.
      \forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} temos que :
      \mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} =
      W = \{ u = (x, y, z) \in V \mid u = ((2\lambda_1 + \lambda_3), -(2\lambda_2 + \lambda_3), (\lambda_1 - \lambda_2 + \lambda_3)) \}
```

Subespaço Gerado

```
1. Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,0,1)}_{\mathcal{V}_1},\underbrace{(0,-2,-1)}_{\mathcal{V}_2},\underbrace{(1,-1,1)}_{\mathcal{V}_3}\}\subset\mathcal{V}.
        Determine o subespaco gerado por S.
        \forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} temos que :
         \mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} = 
 \mathcal{W} = \{ u = (x,y,z) \in \mathcal{V} \mid u = ((2\lambda_1 + \lambda_3), -(2\lambda_2 + \lambda_3), (\lambda_1 - \lambda_2 + \lambda_3)) \} 
        resolvendo o sistema linear:
```

Subespaço Gerado

```
1. Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,0,1)}_{\mathcal{V}_1},\underbrace{(0,-2,-1)}_{\mathcal{V}_2},\underbrace{(1,-1,1)}_{\mathcal{V}_3}\}\subset\mathcal{V}.
        Determine o subespaco gerado por S.
        \forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} temos que :
        \mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} = 
 \mathcal{W} = \{ u = (x,y,z) \in \mathcal{V} \mid u = ((2\lambda_1 + \lambda_3), -(2\lambda_2 + \lambda_3), (\lambda_1 - \lambda_2 + \lambda_3)) \} 
        resolvendo o sistema linear:
               x = 2\lambda_1 + \lambda_3 \Rightarrow \lambda_3 = x - 2\lambda_1
```

Subespaço Gerado

```
1. Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,0,1)}_{\mathcal{V}_1},\underbrace{(0,-2,-1)}_{\mathcal{V}_2},\underbrace{(1,-1,1)}_{\mathcal{V}_3}\}\subset\mathcal{V}.
       Determine o subespaco gerado por S.
       \forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} temos que :
      \mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} = 0
      W = \{ u = (x, y, z) \in V \mid u = ((2\lambda_1 + \lambda_3), -(2\lambda_2 + \lambda_3), (\lambda_1 - \lambda_2 + \lambda_3)) \}
       resolvendo o sistema linear:
      \begin{cases} x = 2\lambda_1 + \lambda_3 \Rightarrow \lambda_3 = x - 2\lambda_1 \\ y = -2\lambda_2 - \lambda_3 \end{cases}
```

Subespaço Gerado

```
1. Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}. Determine o subespaço gerado por S. \forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R} \text{ temos que }; \mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\} resolvendo o sistema linear: \begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3) \end{cases}
```

Subespaço Gerado

```
1. Seja \mathcal{V}=\mathbb{R}^3 e seja S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}. Determine o subespaço gerado por S. \forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R} \text{ temos que }; \mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\} resolvendo o sistema linear: \begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3)\Rightarrow\lambda_2=-\frac{1}{2}(y+x-2\lambda_1) \end{cases}
```

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$ Determine o **subespaço gerado por** S .
$$\forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R} \text{ temos que };$$

$$\mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\}$$
 resolvendo o sistema linear:
$$\begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3)\Rightarrow\lambda_2=-\frac{1}{2}(y+x-2\lambda_1)\\ z=\lambda_1-\lambda_2+\lambda_3 \end{cases}$$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$ Determine o **subespaço gerado por** S .
$$\forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R} \text{ temos que };$$

$$\mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\}$$
 resolvendo o sistema linear:
$$\begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3)\Rightarrow\lambda_2=-\frac{1}{2}(y+x-2\lambda_1)\\ z=\lambda_1-\lambda_2+\lambda_3\Rightarrow z=\lambda_1+ \end{cases}$$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$ Determine o **subespaço gerado por** S .
$$\forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R} \text{ temos que };$$

$$\mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\}$$
 resolvendo o sistema linear:
$$\begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3)\Rightarrow\lambda_2=-\frac{1}{2}(y+x-2\lambda_1)\\ z=\lambda_1-\lambda_2+\lambda_3\Rightarrow z=\lambda_1+\frac{1}{2}(y+x-2\lambda_1) \end{cases}$$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$ Determine o **subespaço gerado por** S .
$$\forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R} \text{ temos que };$$

$$\mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\}$$
 resolvendo o sistema linear:
$$\begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3)\Rightarrow\lambda_2=-\frac{1}{2}(y+x-2\lambda_1)\\ z=\lambda_1-\lambda_2+\lambda_3\Rightarrow z=\lambda_1+\frac{1}{2}(y+x-2\lambda_1)+x-2\lambda_1 \end{cases}$$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$ Determine o **subespaço gerado por** S .
$$\forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R} \text{ temos que };$$

$$\mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\}$$
 resolvendo o sistema linear:
$$\begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3)\Rightarrow\lambda_2=-\frac{1}{2}(y+x-2\lambda_1)\\ z=\lambda_1-\lambda_2+\lambda_3\Rightarrow z=\lambda_1+\frac{1}{2}(y+x-2\lambda_1)+x-2\lambda_1\Rightarrow z=-2\lambda_1+1\end{cases}$$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$ Determine o **subespaço gerado por** $S.$ $\forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R}$ temos que ; $\mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\}$ resolvendo o sistema linear:
$$\begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3)\Rightarrow\lambda_2=-\frac{1}{2}(y+x-2\lambda_1)\\ z=\lambda_1-\lambda_2+\lambda_3\Rightarrow z=\lambda_1+\frac{1}{2}(y+x-2\lambda_1)+x-2\lambda_1\Rightarrow z=-2\lambda_1+\frac{1}{2}y \end{cases}$$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$ Determine o **subespaço gerado por** S .
$$\forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R} \text{ temos que };$$

$$\mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\}$$
 resolvendo o sistema linear:
$$\begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3)\Rightarrow\lambda_2=-\frac{1}{2}(y+x-2\lambda_1)\\ z=\lambda_1-\lambda_2+\lambda_3\Rightarrow z=\lambda_1+\frac{1}{2}(y+x-2\lambda_1)+x-2\lambda_1\Rightarrow z=-2\lambda_1+\frac{1}{2}y+\frac{3}{2}x \end{cases}$$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$ Determine o **subespaço gerado por** S .
$$\forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R} \text{ temos que };$$

$$\mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\}$$
 resolvendo o sistema linear:
$$\begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3)\Rightarrow\lambda_2=-\frac{1}{2}(y+x-2\lambda_1)\\ z=\lambda_1-\lambda_2+\lambda_3\Rightarrow z=\lambda_1+\frac{1}{2}(y+x-2\lambda_1)+x-2\lambda_1\Rightarrow z=-2\lambda_1+\frac{1}{2}y+\frac{3}{2}x \end{cases}$$

Subespaço Gerado

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)},\underbrace{(0,-2,-1)},\underbrace{(1,-1,1)}\}\subset\mathcal{V}.$ Determine o **subespaço gerado por** $S.$
$$\forall \lambda_1,\lambda_2,\lambda_3\in\mathbb{R} \text{ temos que} ;$$

$$\mathcal{W}=\{u\in\mathcal{V}\mid u=\sum_{i=1}^3\lambda_iv_i=\lambda_1(2,0,1)+\lambda_2(0,-2,-1)+\lambda_3(1,-1,1)\}=\mathcal{W}=\{u=(x,y,z)\in\mathcal{V}\mid u=((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\}$$
 resolvendo o sistema linear:
$$\begin{cases} x=2\lambda_1+\lambda_3\Rightarrow\lambda_3=x-2\lambda_1\\ y=-2\lambda_2-\lambda_3\Rightarrow\lambda_2=-\frac{1}{2}(y+\lambda_3)\Rightarrow\lambda_2=-\frac{1}{2}(y+x-2\lambda_1)\\ z=\lambda_1-\lambda_2+\lambda_3\Rightarrow z=\lambda_1+\frac{1}{2}(y+x-2\lambda_1)+x-2\lambda_1\Rightarrow z=-2\lambda_1+\frac{1}{2}y+\frac{3}{2}x \end{cases}$$
 Observe que as coordenadas de u , x,y , e z , podem assumir qualquer valor em \mathbb{R}

EXERCÍCIOS:

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$

Determine o **subespaço gerado por** *S*.

$$\begin{array}{l} \forall \lambda_1,\lambda_2,\lambda_3 \in \mathbb{R} \text{ temos que ;} \\ \mathcal{W} = \{u \in \mathcal{V} \mid u = \sum_{i=1}^3 \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1)\} = \\ \mathcal{W} = \{u = (x,y,z) \in \mathcal{V} \mid u = ((2\lambda_1+\lambda_3),-(2\lambda_2+\lambda_3),(\lambda_1-\lambda_2+\lambda_3))\} \\ \text{resolvendo o sistema linear:} \\ \left\{ \begin{array}{l} x = 2\lambda_1 + \lambda_3 \Rightarrow \lambda_3 = x - 2\lambda_1 \\ \end{array} \right. \end{array}$$

$$\begin{cases} x = 2\lambda_1 + \lambda_3 \Rightarrow \lambda_3 = x - 2\lambda_1 \\ y = -2\lambda_2 - \lambda_3 \Rightarrow \lambda_2 = -\frac{1}{2}(y + \lambda_3) \Rightarrow \lambda_2 = -\frac{1}{2}(y + x - 2\lambda_1) \\ z = \lambda_1 - \lambda_2 + \lambda_3 \Rightarrow z = \lambda_1 + \frac{1}{2}(y + x - 2\lambda_1) + x - 2\lambda_1 \Rightarrow z = -2\lambda_1 + \frac{1}{2}y + \frac{3}{2}x \end{cases}$$
Observe the observation of the property of the property

Observe que as coordenadas de u, x, y, e z, podem assumir qualquer valor em \mathbb{R} e, além disso, não existe a dependência entre os valores destas variáveis. Então,

EXERCÍCIOS:

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$

Determine o **subespaço gerado por** *S*.

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R} \text{ temos que};$$

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0,1) + \lambda_{2}(0,-2,-1) + \lambda_{3}(1,-1,1) \} =$$

$$\mathcal{W} = \{ u = (x,y,z) \in \mathcal{V} \mid u = ((2\lambda_{1} + \lambda_{3}), -(2\lambda_{2} + \lambda_{3}), (\lambda_{1} - \lambda_{2} + \lambda_{3})) \}$$

resolvendo o sistema linear:

$$\begin{cases} x = 2\lambda_1 + \lambda_3 \Rightarrow \lambda_3 = x - 2\lambda_1 \\ y = -2\lambda_2 - \lambda_3 \Rightarrow \lambda_2 = -\frac{1}{2}(y + \lambda_3) \Rightarrow \lambda_2 = -\frac{1}{2}(y + x - 2\lambda_1) \\ z = \lambda_1 - \lambda_2 + \lambda_3 \Rightarrow z = \lambda_1 + \frac{1}{2}(y + x - 2\lambda_1) + x - 2\lambda_1 \Rightarrow z = -2\lambda_1 + \frac{1}{2}y + \frac{3}{2}x \end{cases}$$

Observe que as coordenadas de u, x, y, e z, podem assumir qualquer valor em \mathbb{R} e, além disso, não existe a dependência entre os valores destas variáveis. Então,

$$\mathcal{W} = \{ u = (x, y, z) \in \mathcal{V} \mid$$

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$

Determine o subespaco gerado por S.

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$
 temos que ;

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} =$$

$$\mathcal{W} = \{ u = (x,y,z) \in \mathcal{V} \mid u = ((2\lambda_1 + \lambda_3), -(2\lambda_2 + \lambda_3), (\lambda_1 - \lambda_2 + \lambda_3)) \}$$

resolvendo o sistema linear:

$$\begin{cases} x = 2\lambda_1 + \lambda_3 \Rightarrow \lambda_3 = x - 2\lambda_1 \\ y = -2\lambda_2 - \lambda_3 \Rightarrow \lambda_2 = -\frac{1}{2}(y + \lambda_3) \Rightarrow \lambda_2 = -\frac{1}{2}(y + x - 2\lambda_1) \\ z = \lambda_1 - \lambda_2 + \lambda_3 \Rightarrow z = \lambda_1 + \frac{1}{2}(y + x - 2\lambda_1) + x - 2\lambda_1 \Rightarrow z = -2\lambda_1 + \frac{1}{2}y + \frac{3}{2}x \end{cases}$$

Observe que as coordenadas de u, x, y, e z, podem assumir qualquer valor em \mathbb{R} e, além disso, não existe a dependência entre os valores destas variáveis. Então,

$$\mathcal{W} = \{ u = (x, y, z) \in \mathcal{V} \mid u = (2\lambda_1 + \lambda_3, x_3) \in \mathcal{V}$$

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$

Determine o subespaco gerado por S.

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$
 temos que ;

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} =$$

$$\mathcal{W} = \{ u = (x,y,z) \in \mathcal{V} \mid u = ((2\lambda_1 + \lambda_3), -(2\lambda_2 + \lambda_3), (\lambda_1 - \lambda_2 + \lambda_3)) \}$$

resolvendo o sistema linear:

$$\begin{cases} x = 2\lambda_1 + \lambda_3 \Rightarrow \lambda_3 = x - 2\lambda_1 \\ y = -2\lambda_2 - \lambda_3 \Rightarrow \lambda_2 = -\frac{1}{2}(y + \lambda_3) \Rightarrow \lambda_2 = -\frac{1}{2}(y + x - 2\lambda_1) \\ z = \lambda_1 - \lambda_2 + \lambda_3 \Rightarrow z = \lambda_1 + \frac{1}{2}(y + x - 2\lambda_1) + x - 2\lambda_1 \Rightarrow z = -2\lambda_1 + \frac{1}{2}y + \frac{3}{2}x \end{cases}$$

Observe que as coordenadas de u, x, y, e z, podem assumir qualquer valor em \mathbb{R} e, além disso, não existe a dependência entre os valores destas variáveis. Então,

$$W = \{u = (x, y, z) \in V \mid u = (2\lambda_1 + \lambda_3, -(2\lambda_2 + \lambda_3),$$

EXERCÍCIOS:

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$

Determine o **subespaço gerado por** *S*.

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$
 temos que ;

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0,1) + \lambda_{2}(0,-2,-1) + \lambda_{3}(1,-1,1) \} =$$

$$\mathcal{W} = \{ u = (x,y,z) \in \mathcal{V} \mid u = ((2\lambda_{1} + \lambda_{3}), -(2\lambda_{2} + \lambda_{3}), (\lambda_{1} - \lambda_{2} + \lambda_{3})) \}$$

resolvendo o sistema linear:

$$\begin{cases} x = 2\lambda_1 + \lambda_3 \Rightarrow \lambda_3 = x - 2\lambda_1 \\ y = -2\lambda_2 - \lambda_3 \Rightarrow \lambda_2 = -\frac{1}{2}(y + \lambda_3) \Rightarrow \lambda_2 = -\frac{1}{2}(y + x - 2\lambda_1) \\ z = \lambda_1 - \lambda_2 + \lambda_3 \Rightarrow z = \lambda_1 + \frac{1}{2}(y + x - 2\lambda_1) + x - 2\lambda_1 \Rightarrow z = -2\lambda_1 + \frac{1}{2}y + \frac{3}{2}x \end{cases}$$

Observe que as coordenadas de u, x, y, e z, podem assumir qualquer valor em \mathbb{R} e, além disso, não existe a dependência entre os valores destas variáveis. Então,

$$W = \{ u = (x, y, z) \in V \mid u = (2\lambda_1 + \lambda_3, -(2\lambda_2 + \lambda_3), (-2\lambda_1 + \frac{1}{2}y + \frac{3}{2}x) \}$$

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$

Determine o subespaco gerado por S.

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$
 temos que ;

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_i v_i = \lambda_1(2,0,1) + \lambda_2(0,-2,-1) + \lambda_3(1,-1,1) \} =$$

$$\mathcal{W} = \{ u = (x,y,z) \in \mathcal{V} \mid u = ((2\lambda_1 + \lambda_3), -(2\lambda_2 + \lambda_3), (\lambda_1 - \lambda_2 + \lambda_3)) \}$$

resolvendo o sistema linear:

$$\begin{cases} x = 2\lambda_1 + \lambda_3 \Rightarrow \lambda_3 = x - 2\lambda_1 \\ y = -2\lambda_2 - \lambda_3 \Rightarrow \lambda_2 = -\frac{1}{2}(y + \lambda_3) \Rightarrow \lambda_2 = -\frac{1}{2}(y + x - 2\lambda_1) \\ z = \lambda_1 - \lambda_2 + \lambda_3 \Rightarrow z = \lambda_1 + \frac{1}{2}(y + x - 2\lambda_1) + x - 2\lambda_1 \Rightarrow z = -2\lambda_1 + \frac{1}{2}y + \frac{3}{2}x \end{cases}$$

Observe que as coordenadas de u, x, y, e z, podem assumir qualquer valor em \mathbb{R} e, além disso, não existe a dependência entre os valores destas variáveis. Então,

$$W = \{ u = (x, y, z) \in V \mid u = (2\lambda_1 + \lambda_3, -(2\lambda_2 + \lambda_3), (-2\lambda_1 + \frac{1}{2}y + \frac{3}{2}x) \} = \mathbb{R}^3$$

1. Seja
$$\mathcal{V}=\mathbb{R}^3$$
 e seja $S=\{\underbrace{(2,0,1)}_{v_1},\underbrace{(0,-2,-1)}_{v_2},\underbrace{(1,-1,1)}_{v_3}\}\subset\mathcal{V}.$

Determine o subespaco gerado por S.

$$\forall \lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$$
 temos que ;

$$\mathcal{W} = \{ u \in \mathcal{V} \mid u = \sum_{i=1}^{3} \lambda_{i} v_{i} = \lambda_{1}(2,0,1) + \lambda_{2}(0,-2,-1) + \lambda_{3}(1,-1,1) \} =$$

$$\mathcal{W} = \{ u = (x,y,z) \in \mathcal{V} \mid u = ((2\lambda_{1} + \lambda_{3}), -(2\lambda_{2} + \lambda_{3}), (\lambda_{1} - \lambda_{2} + \lambda_{3})) \}$$

resolvendo o sistema linear:

$$\begin{cases} x = 2\lambda_1 + \lambda_3 \Rightarrow \lambda_3 = x - 2\lambda_1 \\ y = -2\lambda_2 - \lambda_3 \Rightarrow \lambda_2 = -\frac{1}{2}(y + \lambda_3) \Rightarrow \lambda_2 = -\frac{1}{2}(y + x - 2\lambda_1) \\ z = \lambda_1 - \lambda_2 + \lambda_3 \Rightarrow z = \lambda_1 + \frac{1}{2}(y + x - 2\lambda_1) + x - 2\lambda_1 \Rightarrow z = -2\lambda_1 + \frac{1}{2}y + \frac{3}{2}x \end{cases}$$

Observe que as coordenadas de u, x, y, e z, podem assumir qualquer valor em \mathbb{R} e, além disso, não existe a dependência entre os valores destas variáveis. Então,

$$W = \{ u = (x, y, z) \in V \mid u = (2\lambda_1 + \lambda_3, -(2\lambda_2 + \lambda_3), (-2\lambda_1 + \frac{1}{2}y + \frac{3}{2}x) \} = \mathbb{R}^3$$

Subespaço Gerado

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} .

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$.

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W:

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W:

$$u = (x, y, x + 2y) =$$

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W: u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) =

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W: u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, y, 2y)

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W: u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, y)

Seja V = R³ e seja W = {u ∈ V | x + 2y = z}.
 Determine um sistema de geradores para o subespaço W.
 Seja u = (x, y, x + 2y) ∈ W. Então, podemos escrever u como a seguinte combinação linear de vetores de W:
 u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1)

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W:

$$u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, y, 2y)$$

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W: u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, y)

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W: u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} .

Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W:

$$u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).$$

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} .

Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W:

$$u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).$$

$$v_1=(1,0,1)\in\mathcal{W}$$
 e

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} .

Seja $u=(x,y,x+2y)\in\mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W:

$$u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).$$

$$v_1 = (1,0,1) \in \mathcal{W} \text{ e } v_2 = (0,1,2) \in \mathcal{W}$$

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W:

$$u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).$$

$$v_1=(1,0,1)\in\mathcal{W}$$
 e $v_2=(0,1,2)\in\mathcal{W}$ portanto, estes vetores v_1 e v_2

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u=(x,y,x+2y)\in\mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1 = (1,0,1) \in \mathcal{W}$ e $v_2 = (0,1,2) \in \mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um conjunto de geradores

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u=(x,y,x+2y)\in\mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1=(1,0,1)\in\mathcal{W}$ e $v_2=(0,1,2)\in\mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um conjunto de geradores para o subespaço W.

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u=(x,y,x+2y)\in\mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1=(1,0,1)\in\mathcal{W}$ e $v_2=(0,1,2)\in\mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um conjunto de geradores para o subespaço W. Ou seja.

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1 = (1,0,1) \in \mathcal{W}$ e $v_2 = (0,1,2) \in \mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um conjunto de geradores para o subespaço W. Ou seja, $\mathcal{W} = [v_1, v_2] = [(1, 0, 1), (0, 1, 2)]$

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1=(1,0,1)\in\mathcal{W}$ e $v_2=(0,1,2)\in\mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um coniunto de geradores para o subespaço W. Ou seia. $W = [v_1, v_2] = [(1, 0, 1), (0, 1, 2)]$ ou $\mathcal{W} = \{u = (x, y, z) \in \mathcal{V} \mid u = \underbrace{x}_{\lambda_1} . v_1 + \underbrace{y}_{\lambda_2} . v_2 = \underbrace{x}_{\lambda_1} . v_2 = \underbrace{x}_{\lambda_2} . v_3 = \underbrace{x}_{\lambda_1} . v_4 + \underbrace{y}_{\lambda_2} . v_4 = \underbrace{x}_{\lambda_2} . v_4 + \underbrace{y}_{\lambda_2} . v_4 = \underbrace{x}_{\lambda_1} . v_4 + \underbrace{y}_{\lambda_2} . v_4 = \underbrace{x}_{\lambda_2} . v_4 + \underbrace{y}_{\lambda_2} . v_4 = \underbrace{x}_{\lambda_1} . v_4 + \underbrace{y}_{\lambda_2} . v_4 = \underbrace{x}_{\lambda_2} . v$

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1 = (1,0,1) \in \mathcal{W}$ e $v_2 = (0,1,2) \in \mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um coniunto de geradores para o subespaço W. Ou seia. $W = [v_1, v_2] = [(1, 0, 1), (0, 1, 2)]$ ou $\mathcal{W} = \{ u = (x, y, z) \in \mathcal{V} \mid u = \underbrace{x}_{\lambda_1} . v_1 + \underbrace{y}_{\lambda_2} . v_2 = x(1, y) \}$

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1 = (1,0,1) \in \mathcal{W}$ e $v_2 = (0,1,2) \in \mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um coniunto de geradores para o subespaço W. Ou seia. $W = [v_1, v_2] = [(1, 0, 1), (0, 1, 2)]$ ou $W = \{u = (x, y, z) \in V \mid u = \underbrace{x}_{\lambda_1} . v_1 + \underbrace{y}_{\lambda_2} . v_2 = x(1, 0, y)\}$

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1 = (1,0,1) \in \mathcal{W}$ e $v_2 = (0,1,2) \in \mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um coniunto de geradores para o subespaço W. Ou seia. $W = [v_1, v_2] = [(1, 0, 1), (0, 1, 2)]$ ou $W = \{u = (x, y, z) \in V \mid u = \underbrace{x}_{\lambda_1} . v_1 + \underbrace{y}_{\lambda_2} . v_2 = x(1, 0, 1)$

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1 = (1,0,1) \in \mathcal{W}$ e $v_2 = (0,1,2) \in \mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um coniunto de geradores para o subespaço W. Ou seia. $W = [v_1, v_2] = [(1, 0, 1), (0, 1, 2)]$ ou $W = \{u = (x, y, z) \in V \mid u = \underbrace{x}_{\lambda_1}.v_1 + \underbrace{y}_{\lambda_2}.v_2 = x(1, 0, 1) + y(0, y)\}$

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1 = (1,0,1) \in \mathcal{W}$ e $v_2 = (0,1,2) \in \mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um coniunto de geradores para o subespaço W. Ou seia. $W = [v_1, v_2] = [(1, 0, 1), (0, 1, 2)]$ ou $W = \{u = (x, y, z) \in V \mid u = \underbrace{x}_{\lambda_1} . v_1 + \underbrace{y}_{\lambda_2} . v_2 = x(1, 0, 1) + y(0, 1, 1)\}$

3. Seia $\mathcal{V} = \mathbb{R}^3$ e seia $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}$. Determine um sistema de geradores para o subespaço \mathcal{W} . Seja $u = (x, y, x + 2y) \in \mathcal{W}$. Então, podemos escrever u como a seguinte **combinação** linear de vetores de W. u = (x, y, x + 2y) = (x, 0, x) + (0, y, 2y) = x(1, 0, 1) + y(0, 1, 2).Observe que escrevemos u como a combinação linear dos vetores: $v_1 = (1,0,1) \in \mathcal{W}$ e $v_2 = (0,1,2) \in \mathcal{W}$ portanto, estes vetores v_1 e v_2 formam um coniunto de geradores para o subespaço W. Ou seja, $\mathcal{W} = [v_1, v_2] = [(1, 0, 1), (0, 1, 2)]$ ou $W = \{u = (x, y, z) \in V \mid u = \underbrace{x}_{\lambda_1} . v_1 + \underbrace{y}_{\lambda_2} . v_2 = x(1, 0, 1) + y(0, 1, 2)\}$

Subespaço Gerado

Subespaço Gerado

3. Seja
$$\mathcal{V} = \mathbb{R}^3$$
 e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{u \in \mathcal{V} \mid x + 2y = z\}.$ Determine um sistema de geradores para o subespaço \mathcal{W} .

Subespaço Gerado

EXERCÍCIOS:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Encontramos $S = \{(1,0,1),(0,1,2)\}$ um conjunto de geradores para W.

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}.$ Determine um sistema de geradores para o subespaco \mathcal{W} . Encontramos $S = \{(1,0,1),(0,1,2)\}$ um conjunto de geradores para W. Contudo, note que não existe apenas um conjunto de geradores para um mesmo subespaco vetorial.

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.$

Determine um sistema de geradores para o subespaco \mathcal{W} .

Encontramos $S = \{(1,0,1),(0,1,2)\}$ um conjunto de geradores para W.

Contudo, note que não existe apenas um conjunto de geradores para um mesmo subespaco vetorial.

Podemos obter outros subconjuntos de vetores em W que gere W.

Subespaço Gerado

Exercícios:

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}.$ Determine um sistema de geradores para o subespaço \mathcal{W} . Encontramos $S = \{(1,0,1),(0,1,2)\}$ um conjunto de geradores para W. Contudo, note que não existe apenas um conjunto de geradores para um mesmo subespaco vetorial. Podemos obter outros subconjuntos de vetores em W que gere W. Neste exercício, por exemplo, os subconjuntos $S_1 = \{(2,0,2), (0,3,6)\}$

Subespaço Gerado

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}.
   Determine um sistema de geradores para o subespaço \mathcal{W}.
   Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
   Contudo, note que não existe apenas um conjunto de geradores para um mesmo
   subespaco vetorial.
   Podemos obter outros subconjuntos de vetores em W que gere W.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
   S_2 = \{(1,0,1),(2,0,2),(0,3,6)\}
```

Subespaço Gerado

Exercícios:

```
Determine um sistema de geradores para o subespaco \mathcal{W}.
Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
Contudo, note que não existe apenas um conjunto de geradores para um mesmo
subespaco vetorial.
Podemos obter outros subconjuntos de vetores em W que gere W.
Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
```

3. Seja $\mathcal{V} = \mathbb{R}^3$ e seja $\mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}.$

Subespaço Gerado

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2v = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
   Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
   Contudo, note que não existe apenas um conjunto de geradores para um mesmo
   subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
   S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
   \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
```

Subespaço Gerado

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
                       Determine um sistema de geradores para o subespaco \mathcal{W}.
                      Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
                      Contudo, note que não existe apenas um conjunto de geradores para um mesmo
                      subespaco vetorial.
                       Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
                     Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
                     S_2 = \{(1,0,1),(2,0,2),(0,3,6)\} também são um sistema de geradores para \mathcal{W}:
                     \mathcal{W} = [S_2] \text{ e } \mathcal{W} = [S_3].
                      ou:
                      \mathcal{W} = \{ u = (x, y, z) \in \mathcal{V} \mid u = (x, y,
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
   S_2 = \{(1,0,1),(2,0,2),(0,3,6)\} também são um sistema de geradores para \mathcal{W}:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{ u = (x, y, z) \in V \mid u = \lambda_1(2, y) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
    Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
   S_2 = \{(1,0,1),(2,0,2),(0,3,6)\} também são um sistema de geradores para \mathcal{W}:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{ u = (x, y, z) \in V \mid u = \lambda_1(2, 0, z) \}
```

Subespaço Gerado

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
    Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
   S_2 = \{(1,0,1),(2,0,2),(0,3,6)\} também são um sistema de geradores para \mathcal{W}:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{ u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
    Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, y) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 1)\}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
    Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
     Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
     Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
    Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
    \mathcal{W} = \{ u = (x, y, z) \in \mathcal{V} \mid u = \mathcal{U} \in \mathcal{V} \mid u = \mathcal{U} \in \mathcal{V} \mid u = \mathcal{U} \in \mathcal{U} \mid u = \mathcal{U} \in \mathcal{U} \in \mathcal{U}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
    \mathcal{W} = \{ u = (x, y, z) \in \mathcal{V} \mid u = \lambda_1(1, y) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
    W = \{ u = (x, y, z) \in V \mid u = \lambda_1(1, 0, z) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
    W = \{ u = (x, y, z) \in V \mid u = \lambda_1(1, 0, 1) + \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
    W = \{ u = (x, y, z) \in V \mid u = \lambda_1(1, 0, 1) + \lambda_2(2, 1) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
    W = \{ u = (x, y, z) \in V \mid u = \lambda_1(1, 0, 1) + \lambda_2(2, 0, 1) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
    W = \{ u = (x, y, z) \in V \mid u = \lambda_1(1, 0, 1) + \lambda_2(2, 0, 2) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
   W = \{ u = (x, y, z) \in V \mid u = \lambda_1(1, 0, 1) + \lambda_2(2, 0, 2) + \lambda_3(0, 1) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
   W = \{ u = (x, y, z) \in V \mid u = \lambda_1(1, 0, 1) + \lambda_2(2, 0, 2) + \lambda_3(0, 3, 1) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
   W = \{ u = (x, y, z) \in V \mid u = \lambda_1(1, 0, 1) + \lambda_2(2, 0, 2) + \lambda_3(0, 3, 6) \}
```

```
3. Seja \mathcal{V} = \mathbb{R}^3 e seja \mathcal{W} = \{ u \in \mathcal{V} \mid x + 2y = z \}.
    Determine um sistema de geradores para o subespaco \mathcal{W}.
    Encontramos S = \{(1,0,1), (0,1,2)\} um conjunto de geradores para W.
    Contudo, note que não existe apenas um conjunto de geradores para um mesmo
    subespaco vetorial.
    Podemos obter outros subconjuntos de vetores em \mathcal{W} que gere \mathcal{W}.
   Neste exercício, por exemplo, os subconjuntos S_1 = \{(2,0,2), (0,3,6)\} e
    S_2 = \{(1,0,1), (2,0,2), (0,3,6)\} também são um sistema de geradores para W:
    \mathcal{W} = [S_2] \in \mathcal{W} = [S_3].
    ou:
    W = \{u = (x, y, z) \in V \mid u = \lambda_1(2, 0, 2) + \lambda_2(0, 3, 6)\}
   W = \{ u = (x, y, z) \in V \mid u = \lambda_1(1, 0, 1) + \lambda_2(2, 0, 2) + \lambda_3(0, 3, 6) \}
```

Subespaço Gerado

Subespaço Gerado

EXERCÍCIOS:

Sejam $\mathcal{V}=\mathcal{M}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K}=\mathbb{R}$, $\mathcal{W}_1=\{A\in\mathcal{M}_2(\mathbb{R})|A=A^t\}$

Subespaço Gerado

EXERCÍCIOS:

Subespaço Gerado

EXERCÍCIOS:

Sejam $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$ um espaço vetorial sobre o corpo $\mathbb{K} = \mathbb{R}$, $\mathcal{W}_1 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = A^t\}$ e $\mathcal{W}_2 = \{A \in \mathcal{M}_2(\mathbb{R}) | A = -A^t\}$ subespaços vetoriais de \mathcal{V} .

1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.

EXERCÍCIOS:

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto $(W_1 + W_2) \subseteq V$.

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto $(\mathcal{W}_1 + \mathcal{W}_2) \subseteq \mathcal{V}$. (DICA: utilize a propriedade $[S_1] + [S_2] = [S_1 \cup S_2]$)

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto $(W_1 + W_2) \subseteq V$. (DICA: utilize a propriedade $[S_1] + [S_2] = [S_1 \cup S_2]$)
- 3. Determine um conjunto de geradores para $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$.

- 1. Determine um conjunto de geradores para $(W_1 \cap W_2) \subseteq V$.
- 2. Determine um conjunto $(W_1 + W_2) \subseteq V$. (DICA: utilize a propriedade $[S_1] + [S_2] = [S_1 \cup S_2]$)
- 3. Determine um conjunto de geradores para $\mathcal{V} = \mathcal{M}_2(\mathbb{R})$.