Development Project: Build a Cyber Physical Rover

Motivation:

- We want to have a "test platform" of Cyber Physical Rovers. For example:
- cars that follow one another in some type of platoon
- robots that collectively help one another out

Your Task:

- Build one car for now using available material
- Make the car autonomously follow a pre-plotted course
- This requires some sensors

Development Project: Build a Cyber Physical Rover Hive

Motivation:

- We want to have a "test platform" of Cyber Physical Rovers. For example:
- cars that follow one another in some type of platoon
- robots that collectively help one another out

What we have:

- We have a set of four Gopigo robot kits w/ Raspberry Pi
- Heterogeneous hardware:
 each robot has unique features

Development Project: Build a Cyber Physical Rover Hive

Base Hardware:

- Gopigo2
- Raspberry Pi and SD Card
- Wireless connector
- Servo kit

KITT:

- Raspberry Pi Model 3
- 16GB SD Card
- Distance Sensor
- Camera

KAT:

- Raspberry Pi Model 3
- 16GB SD Card
- Distance Sensor
- Line Follower

KARR:

- Raspberry Pi Model 2
- 8GB SD Card
- Distance Sensor

PLATO:

- Raspberry Pi Model 2
- 16GB SD Card
- Distance Sensor
- Line Follower

Development Project: Build a Cyber Physical Rover Hive

Your Goals:

Team PLATO:

- Follow a course laid out on
- the ground.
 Explore the course.
 Make a "map" of the course to share with other robots.

Team KITT:

- Use OpenCV to detect a robot in your field of vision.
- Follow that robot.

Team KAT:

- Lead the hive.
- Consider plato's map and decide where to go.

Team KARR:

- Roam around
- Detect obstacles in the way.
- **Tell other robots**

