Polar Graph Test

John Hunter Kohler

February 2020

- 1. Find the intersections of $r = a \sin \theta + b \cos \theta$ with the standard x any y axis for $x \in [0, \pi)$ in both polar and cartesian coordinates.
- 2. Sketch $r = a \sin \theta + b \cos \theta$ for $[0, 2\pi)$ (indicate identifying points).
- 3. Find the set of points that are the intersections of $r = a\cos(n\theta)$ and r = a for $\theta \in [0, 2\pi)$
- 4. Write the equations, in polar, of the distinct lines of symmetry of the equation $r^2 = a^2 \sin(2\theta)$.
- 5. Sketch $r = 2 3\sin\theta$ on $\theta \in [0, 2\pi)$ (indicate identifying points).
- 6. Convert the equation $\frac{4x}{3x^2 + 3y^2} = 6 x$ to polar.
- 7. Convert $6r^3 \sin \theta = 4 \cos \theta$ to cartesian coordinates.
- 8. Find the tangent line to the curve of $r = \cos 3\theta$ at its farthest point from the pole in the second quadrant.
- 9. Identify the type of algabreic curve described by $r^2 = \sec(2\theta)$ for $x \in [0, 2\pi)$.
- 10. Identify the polar axis of symmetrry for the curve $r^2 = a^2 \cos(\frac{\pi}{2} 2\theta)$.