Teorija pri matematiki

Jure Slak

2008 – 2012, Gimnazija Vič

Kazalo

1	Izja	ve	8
2	Mno	ožice	8
3	Pres	slikave	9
4	Rela	acije	9
5	Nar	avna števila	9
	5.1	Zakoni	9
	5.2	Številski sestavi	10
	5.3	Relacija deljivosti	10
		5.3.1 Kriteriji deljivosti	11
6	Cela	a števila	12
	6.1	Zakoni	12
	6.2	Zakoni urejenosti	12
7	Rac	ionalna števila	12
	7.1	Zakoni	13
	7.2	Urejenost racionalnih števil	13
8	Rea	lna števila	13
9	Abs	olutna vrednost	14
10	Inte	rvali	14
11	Izra	zi	15
12	Pote	ence	16
	12.1	Potence z naravnim eksponentom	16
		12.1.1 Pravila za računanje	16
	12.2	Potence s celim eksponentom	16
		12.2.1 Pravila za računanje	16
	12.3	Potence z racionalnim eksponentom	16
		12.3.1 Pravila za računanje	17
13	Kor	eni	17

	13.1	Pravila za računanje	18
14	Loga	aritmi	20
	14.1	Pravila za računanje	20
15	Koo	rdinatni sistem	21
	15.1	Pravokotni, v ravnini	21
	15.2	Pravokotni, v prostoru	22
	15.3	Polarni, v ravnini	22
		15.3.1 Polarni zapis kompleksnega števila	23
16	Fun	kcije	24
	16.1	Premik funkcije	25
	16.2	Razteg funkcije	26
	16.3	Inverzna funkcija	26
	16.4	Linearna funkcija	26
	16.5	Potenčna funkcija	27
	16.6	Korenska funkcija	28
	16.7	Kvadratna funkcija	28
		16.7.1 Ničle kvadratne funkcije	30
		16.7.2 Vpliv diskriminante in parametra a na parabolo	31
		16.7.3 Lega premice in parabole	32
	16.8	Eksponentna funkcija	32
	16.9	Logaritemska funkcija	33
	16.10	OKrožne funkcije	33
	16.13	Racionalne funkcije	34
	16.12	2Kompozitum funkcij	35
17	Ena	čbe	35
	17.1	Reševanje enačb	36
	17.2	Linearne enačbe	36
	17.3	Razcepne enačbe	37
	17.4	Kvadratne enačbe	37
		17.4.1 Viétovi formuli	37
	17.5	Kompleksne enačbe	37
	17.6	Eksponentne enačbe	38
	17.7	Logaritemske enačbe	38
	17.8	Trigonometrične enačbe	38

	17.9 Polinomske enačbe	38
	17.10Racionalne enačbe	39
	17.11Iracionalne enačbe	39
18	Neenačbe	39
	18.1 Reševanje neenačb	39
	18.2 Linearne neenačbe	40
	18.3 Kvadratne neenačbe	40
	18.4 Polinomske neenačbe	40
	18.5 Racionalne neenačbe	40
19	Geometrija	41
20	Podobnost	41
	20.1 Talesovi izreki	41
	20.2 Izreki v pravokotnem trikotniku	41
21	Kotne funkcije	42
	21.1 V pravokotnem trikotniku	42
	21.2 Kot	43
	21.3 Sinus in kosinus	43
	21.4 Tangens in kotangens	44
	21.5 Osnovne zveze med kotnimi funkcijami	45
	21.6 Adicijski izreki	46
	21.7 Dvojni koti	47
	21.8 Polovični koti	47
	21.9 Komplementarni koti	48
	21.10Suplementarni koti	48
	21.11Periode	48
	21.12Faktorizacija	48
	21.13Antifaktorizacija	49
	21.14Grafi trigonometričnih funkcij	49
	21.15Kot med premicama	50
22	Vektorji	51
	22.1 Seštevanje vektorjev	51
	22.2 Produkt vektorja s skalarjem	52
	22.3 Linearna kombinacija vektorjev	52

	22.4	Pravokotna projekcija	53
	22.5	Skalarni produkt	53
	22.6	Krajevni vektorji	54
		22.6.1 Seštevanje krajevnih vektorjev	55
		22.6.2 Množenje krajevnega vektorja s skalarjem	55
		22.6.3 Vektor med dvema točkama	5
		22.6.4 Skalarni produkt krajevnih vektorjev	55
		22.6.5 Enotski vektor v smeri danega vektorja	6
	22.7	Vektorski produkt	56
23	Kon	apleksna števila 5	6
	23.1	Seštevanje kompleksnih števil	57
	23.2	Množenje kompleksnih števil	57
	23.3	Konjugirano kompleksno število	57
	23.4	Absolutna vrednost kompleksnega števila	58
	23.5	Deljenje kompleksnih števil	59
24	Liki	5	9
	24.1	Ploščina	59
	24.2	Kvadrat	60
	24.3	Pravokotnik	60
	24.4	Paralelogram	60
	24.5	Trapez	60
	24.6	Deltoid	60
	24.7	Romb	60
	24.8	Trikotnik	60
	24.9	Enakostranični trikotnik	60
	24.10	Pravilni mnogokotnik	i1
	24.1	lSinusni izrek	32
	24.12	2 m Kosinusni izrek	3
	24.13	BPolmer včrtanega kroga	34
	24.14	Heronov obrazec	55
	24.15	5Krog	55
25	Tele	${f sa}$	5
	25.1	Cavalierjevo načelo	6
	25.2	Prizma	66

		25.2.1 Kvader	66
		25.2.2 Kocka	66
	25.3	Valj	66
		25.3.1 Enakostranični valj	67
	25.4	Piramida	67
	25.5	Stožec	67
		25.5.1 Enakostranični stožec	68
	25.6	Krogla	68
0.0	D 1'		60
26		nomi	69
		Seštevanje polinomov	
		Množenje polinomov	
		Deljenje polinomov	
		Hornerjev algoritem	
	26.5	Ničle polinoma	
		26.5.1 Osnovni izrek algebre	
		26.5.2 Kompleksne ničle polinoma z realnimi koeficienti	
		26.5.3 Cele ničle polinoma s celimi koeficienti	
	20.0	26.5.4 Racionalne ničle polinoma s celimi koeficienti	
		Graf polinoma	
	26.7	Bisekcija	73
27	Stož	énice	74
	27.1	Krožnica	74
		Elipsa	
	27.3	Hiperbola	77
	27.4	Parabola	79
28	_	oredja	80
		Aritmetično zaporedje	
	28.2	Geometrijsko zaporedje	82
		Matematična indukcija	
	28.4	Limita zaporedja	
		28.4.1 Pravila za računanje z limitami	
	28.5	Geometrijska vrsta	85
29	Obr	estni račun	86

30	Statistika	87
31	Zveznost in limite funkcij	88
	31.1 Pravila za računanje z limitami funkcij $\ \ldots \ \ldots \ \ldots \ \ldots \ \ldots \ \ldots$	88
	31.2 Neskončna limita in limita v neskončnosti	89
32	Diferencialni račun	89
	32.1 Geometrijski pomen odvoda	90
	32.2 Pravila za odvajanje	91
	32.2.1 Osnovna pravila	91
	32.2.2 Odvodi kotnih in krožnih funkcij	93
	32.2.3 Odvod eksponentne in logaritemske funkcije	95
	32.3 Implicitni odvod	96

1 Izjave

Izjava je smiseln povedni stavek, ki mu lahko določimo njegovo vrednost.

Negacija izjave A je nova izjava, "Ni res, da drži A." $(\neg A)$, ki je pravilna, če je izjava A napačna in obratno.

Konjunkcija izjavA in B je nova izjava "A in B." $(A \wedge B)$, ki je pravilna le, če sta izjavi A in B pravilni.

Disjunkcija izjav A in B je nova izjava "A ali B." $(A \lor B)$, ki je pravilna, ko je pravilna vsaj ena izmed izjav A in B.

Implikacija izjav A in B je nova izjava "Če A, potem sledi B." $(A \Rightarrow B)$, ki je napačna samo v primeru, da je prva izjava pravilna, druga pa napačna.

Ekvivalenca izjav A in B je nova izjava "Če A, natanko takrat B." $(A \Leftrightarrow B)$, ki je pravilna, če imata izjavi enako vrednost.

2 Množice

Množica je skupina elementov, ki jih druži neka skupna lastnost.

Prazna množica je množica brez elementa. (0)

Univerzalna množica (\mathcal{U}) je množica, ki vsebuje vse elemente, ki jih preučujemo.

Množica A je **podmnožica** B $(A \subset B)$, če je vsak element množice A tudi element množice B.

Dve množici sta **enaki**, če imata iste elemente.

Unija množic A in B $(A \cup B)$ je nova množica, ki vsebuje elemente, ki so v množici A ali v množici B. $(A \cup B = \{x : x \in A \lor x \in B\})$

Presek množici A in B $(A \cap B)$ je nova množica, ki vsebuje elemente, ki so v množici A in v množici B. $(A \cup B = \{x : x \in A \land x \in B\})$

Razlika množic A in B (A-B ali $A\setminus B)$ je nova množica, ki vsebuje vse elemente, ki so v drugi množici v prvi pa ne. $(A-B=\{x\in A;x\notin B\})$

Komplement množice A (A^c) je nova množica, ki vsebuje vse elemente, ki niso v množici A. ($A^c = \mathcal{U} - A$)

Moč množice je število njenih elementov. (|A|)

Potenčna množica množica A je množica vseh podmnožic množice A. $(|\mathcal{P}(A)| = 2^{|A|})$.

Kartezični produkt množic A in B ($A \times B$) je nova množica, ki vsebuje urejene pare, v katerih je prvi element iz množice A, drugi pa iz množice B. ($A \times B = \{(a,b); a \in A \land b \in B\}$, $|A \times B| = |A| \cdot |B|$).

3 Preslikave

Preslikava, ki množico A preslika v množico B $(f: A \to B, f: a \mapsto b)$, je predpis, ki vsakemu elementu iz množice A priredi natanko določen element iz množice B.

Preslikava je **injektivna**, kadar se par različnih elementov iz množice A preslika v par različnih elementov iz množice B. $(a_1 \neq a_2 \Rightarrow f(a_1) \neq f(a_2); a_1, a_2 \in A)$

Preslikava je **surjektivna**, kadar je vsak element množice B slika vsaj enega elementa iz množice A. $(\forall b \in B, \exists a \in A : b = f(a))$

Preslikava je bijektivna, če je injektivna in surjektivna hkrati.

Graf preslikave $f: A \to B$ je podmnožica kartezičnega produkta $A \times B$.

4 Relacije

Relacija je odnos med elementi neke množice. Relacija je podmnožica kartezičnega produkta.

Relacija je **refleksivna**, za vsak element v množici velja, da je element v relaciji sam s seboj. (\mathcal{R} refleksivna $\Leftrightarrow \forall a \in A : a\mathcal{R}a$)

Relacija je **simetrična**, kadar za vsak par elementov velja, če je prvi v relaciji z drugim, je tudi drugi v relaciji s prvim. (\mathcal{R} simetrična $\Leftrightarrow \forall a, b \in A : a\mathcal{R}b \Rightarrow b\mathcal{R}a$)

Relacija je **tranzitivna**, če za vsako trojico elementov velja, če je prvi v relaciji z drugim in drugi v relaciji s tretjim, potem je tudi prvi v relaciji s tretjim. (\mathcal{R} tranzitivna $\Leftrightarrow \forall a, b, c \in A : (a\mathcal{R}b \land b\mathcal{R}c) \Rightarrow a\mathcal{R}c$)

Relacija je **ekvivalenčna**, če je refleksivna, simetrična in tranzitivna hkrati.

5 Naravna števila

$$\mathbb{N} = 1, 2, 3, 4, 5, 6, \dots$$

$$\mathbb{N}_0 = \mathbb{N} \cup \{0\}$$

 $\mathbb{Z} \mathbb{N}_n$ označimo množico prvih n naravnih števil.

Operacija dvema elementoma priredi nov element.

5.1 Zakoni

Zakon o komutativnosti ali zakon o zamenjavi za množenje in seštevanje:

$$a+b=b+a$$

$$a \cdot b = b \cdot a$$

Zakon o asociativnosti ali zakon o združevanju za množenje in seštevanje:

$$a + (b+c) = (a+b) + c$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

Zakon o distributivnosti ali zakon o razčlenjevanju:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

5.2 Številski sestavi

Vsako število v desetiškem sistemu z osnovo 10 lahko zapišemo v kateremkoli sistemu z osnovo b.

Poljubno število $a_n a_{n-1} \dots a_4 a_3 a_2 a_1 a_0$ pomeni:

$$a_n \cdot b^n + a_{n-1} \cdot b^{n-1} + \dots + a_2 \cdot b^2 + a_1 \cdot b + a_0$$

b osnova, $b \in \mathbb{N} \land b \ge 2$ a_i števka, $0 \le a < b$

Vsako naravno število a lahko zapišemo na en sam način v številskem sestavu z osnovo b

5.3 Relacija deljivosti

Število a deli število b natanko takrat, ko je število b večkratnik števila a.

$$a|b \Leftrightarrow b = k \cdot a; \quad a, b, k \in \mathbb{N}$$

Lastnosti:

refleksivnost: a|a

antisimetričnost: $a|b \wedge b|a \Rightarrow a = b$

tranzitivnost: $a|b \wedge b|c \Rightarrow a|c$

neimenovana 1: $a|b \wedge a|c \Rightarrow a|(b+c)$

neimenovana 2: $a|b \wedge a| (b+c) \Rightarrow a|c$

Dokaz antisimetričnosti:

$$a|b \Leftrightarrow b = k_1 \cdot a; \quad k_1 \in \mathbb{N} \tag{5.1}$$

$$b|a \Leftrightarrow a = k_2 \cdot b; \quad k_2 \in \mathbb{N}$$
 (5.2)

$$a = k_2 \cdot b$$
 \\ izhaja iz definicije (5.3)

$$a = k_2 \cdot k_1 \cdot a$$
 \\ b zamenjamo po definiciji, glej (5.2) (5.4)

$$k_1 \cdot k_2 = 1 \tag{5.5}$$

$$k_1 = 1, k_2 = 1$$
 \\ $k_1 k_2$ je lahko 1 le, če velja ta vrstica (5.6)

$$a = b$$
 \\ zazremo se v (5.3) in se spomnimo na (5.6) (5.7)

Dokaz tranzitivnosti:

$$a|b \Leftrightarrow b = k_1 \cdot a; \quad k_1 \in \mathbb{N} \tag{5.8}$$

$$b|c \Leftrightarrow c = k_2 \cdot b; \quad k_2 \in \mathbb{N}$$
 (5.9)

$$c = k_2 \cdot b \tag{5.10}$$

$$c = \underbrace{k_2 \cdot k_1}_{k_3} \cdot a \qquad \backslash \backslash \ b \text{ zamenjamo po (5.8)}$$
 (5.11)

$$c = k_3 \cdot a \Rightarrow a \mid c \tag{5.12}$$

Dokaz neimenovane 1:

$$a|b \Leftrightarrow b = k_1 \cdot a; \quad k_1 \in \mathbb{N} \tag{5.13}$$

$$a|c \Leftrightarrow c = k_2 \cdot a; \quad k_2 \in \mathbb{N}$$
 (5.14)

$$b + c = k_1 \cdot a + k_2 \cdot a$$
 \\ zamenjamo po (5.13) in (5.14) (5.15)

$$b + c = (\underbrace{k_1 + k_2}_{k_2}) \cdot a \tag{5.16}$$

$$b + c = k_3 \cdot a \Rightarrow a | (b + c) \tag{5.17}$$

Dokaz neimenovane 2:

$$a|b \Leftrightarrow b = k_1 \cdot a; \quad k_1 \in \mathbb{N} \tag{5.18}$$

$$a|(b+c) \Leftrightarrow b+c = k_2 \cdot a; \quad k_2 \in \mathbb{N}$$
 (5.19)

$$b + c = k_2 \cdot a$$
 \\ po definiciji (5.19) (5.20)

$$k_1 \cdot a + c = k_2 \cdot a$$
 \\ zamenjamo b po (5.18) (5.21)

$$c = k_2 \cdot a - k_1 \cdot a \tag{5.22}$$

$$c = \underbrace{(k_2 - k_1)}_{k_3} \cdot a \tag{5.23}$$

$$c = k_3 \cdot a \Rightarrow a|c \tag{5.24}$$

5.3.1 Kriteriji deljivosti

$$2|a \Leftrightarrow 2|a_0$$

$$3|a \Leftrightarrow 3|(a_0 + a_1 + \cdots + a_n)$$

$$4|a \Leftrightarrow 4|(10a_1 + a_0)$$

$$5|a \Leftrightarrow 5|a_0$$

$$6|a \Leftrightarrow 2|a \wedge 3|a$$

$$8|a \Leftrightarrow 8|(100a_2 + 10a_1 + a_0)$$

$$9|a \Leftrightarrow 9|(a_0 + a_1 + \cdots + a_n)$$

Praštevila so števila, ki imajo natanko dva delitelja. Praštevil je neskončno mnogo. Dokaz manjka. Števila, ki imajo več kot dva različna delitelja so **sestavljena** števila.

Izrek 1. Osnovni izrek aritmetike: Vsako število lahko zapišemo kot produkt samih praštevil.

Izrek 2. Osnovni izrek o deljenju: Za vsaki dve števili a in b obstajata natanko določeni števili k in o, tako da velja $a = k \cdot b + o$; $0 \le o < b$.

Največji skupni delitelj števil a in b je največje število, ki deli obe števili hkrati. (oznaka: D(a,b))

Najmanjši skupni večkratnik dveh števil a in b je največje število, ki je deljivo z obema številoma hkrati. (oznaka: v(a,b))

Med D(a,b) in v(a,b) velja zveza:

$$D(a,b) \cdot v(a,b) = a \cdot b \quad .$$

Števili sta si **tuji**, ko je njun največji skupni delitelj enak 1.

Evklidov algoritem je postopek s katerim dobimo D(a,b). Zadnji od nič različen ostanek je D(a,b).

6 Cela števila

$$\mathbb{Z} = \mathbb{Z}^- \cup \{0\} \cup \mathbb{Z}^+$$

6.1 Zakoni

Vsi zakoni kot za naravna (razdelek 5.1). Poleg teh velja še: Obstaja nevtralni element za seštevanje in je 0:

$$a + 0 = a$$

Obstaja nevtralni element za množenje in je 1:

$$1 \cdot a = a$$

Vsota števila in nasprotnega števila je enaka 0 ali "nasprotnost je vzajemna":

$$a + (-a) = 0$$

6.2 Zakoni urejenosti

Za vsako trojico števila, b in c velja:

 $\forall a, b, c \in \mathbb{Z}$:

1.
$$a < b \lor a = b \lor a > b$$

2.
$$a < b \land b < c \Rightarrow a < c$$

3.
$$a < b \Rightarrow a + c < b + c$$

4.
$$a < b \land c > 0 \Rightarrow ac < bc$$

5.
$$a < b \land c < 0 \Rightarrow ac > bc$$

7 Racionalna števila

$$\mathbb{Q} = \left\{ \frac{a}{b}; a, b \in \mathbb{Z}, b \neq 0 \right\}$$

7.1 Zakoni

Vsi zakoni kot za cela števila (razdelek 6.1). Poleg teh še:

Produkt števila in obratnega števila je enak 1 ali "obratnost je vzajemna":

$$a \cdot a^{-1} = 1$$

Deljenje je množenje z obratno vrednostjo.

Razširjanje ulomkov: ulomek lahko v števcu in v imenovalcu pomnožimo z enakim številom, pa se vrednost ne spremeni:

$$\frac{a}{b} = \frac{a \cdot k}{b \cdot k}$$

Seštevanje racionalnih števil:

$$\frac{a}{b}\pm\frac{c}{d}=\frac{ad}{bd}\pm\frac{cb}{bd}=\frac{ad\pm bc}{bd}$$

Množenje racionalnih števil:

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

Vsak ulomek lahko zapišemo z **decimalnim številom**, ki je lahko končno ali periodično. Ulomki, ki jih lahko razširimo tako, da imajo v imenovalcu potenco z osnovo 10, se imenujejo **desetiški** ulomki. V razcepu imajo lahko le faktorja 5 in 2. Taki ulomki so končna decimalna števila.

7.2 Urejenost racionalnih števil

Ulomke lahko predstavimo na številski premici. Množica racionalnih števil je povsod enako gosta. Med dvema racionalnima številoma je vedno še vsaj eno racionalno število.

$$a<\frac{a+b}{2}< b; a,b\in \mathbb{Q}$$

8 Realna števila

To je množica vseh **decimalnih** števil. Med množico \mathbb{R} in množico točk na premici obstaja bijektivna preslikava.

13

Izrek 3.
$$\sqrt{2} \notin \mathbb{Q}$$

Dokaz izreka 3:

$$A:=\sqrt{2}\notin\mathbb{Q}$$
 \\ dokažimo trditev \(\neg A \)
$$\sqrt{2}=\frac{p}{q} \quad \text{\backslash} \sqrt{2}\in\mathbb{Q}, \text{ torej se ga lahko zapiše kot okrajšan ulomek}$$

$$2=\frac{p^2}{q^2}$$
 \\ kvadrat \(p \) je sodo, torej je tudi \(p \) sodo; \(p = 2m \)
$$2q^2=(2m)^2$$
 \\ kvadrat \(q \) je sodo, torej je tudi \(q \) sodo; \(q = 2n \)
$$(2n)^2=2m^2$$
 \\ kvadrat \(q \) je sodo, torej je tudi \(q \) sodo; \(q = 2n \)
$$(2n)^2=2m^2$$
 \\ 2n^2=m^2

: \\ p je sodo, q je sodo, torej ulomek ni okrajšan, trditev je napačna $\neg A=0\Rightarrow A=1 \qquad \backslash\backslash \sqrt{2} \text{ torej ni element } \mathbb{Q}$

$$\sqrt{2} \notin \mathbb{Q}$$

9 Absolutna vrednost

$$|x| = \begin{cases} x; & \text{\'e } x \ge 0, \\ -x; & \text{\'e } x < 0. \end{cases}$$
 (9.1)

Lastnosti:

- |x| > 0
- \bullet $|x| = 0 \Leftrightarrow x = 0$
- Grafično predstavlja oddaljenost števila od izhodišča na številski premici.
- $|xy| = |x| \cdot |y|$ Absolutna vrednost produkta je enaka produktu absolutnih vrednosti.
- $|x+y| \le |x| + |y|$ Absolutna vrednost vsote je manjša ali enaka vsoti absolutnih vrednosti. (**trikotniška neenakost**)

10 Intervali

11 Izrazi

Matematični izraz je zapis sestavljen iz števil, spremenljivk, matematičnih funkcij in operacij ter iz oklepajev, ki določajo vrstni red računanja. Da je tak zapis res matematični izraz, mora biti tudi smiseln: Če namesto spremenljivk vstavimo konkretna števila, mora biti možno izračunati vrednost izraza (vsaj za nekatere vrednosti spremenljivk). Primer:

$$\frac{x+1}{x}$$

Vrednost tega izraza lahko izračunamo za katero koli vrednost spremenljivke x, razen za x=0.

Dva matematična izraza sta **enakovredna**, če imata pri istih izbirah spremenljivk vedno enako vrednost. Primer: Zgornji izraz je enakovreden izrazu

$$1 + \frac{1}{x}$$
.

Izraz **poimenujemo** glede na glavno računsko operacijo, ki v njem nastopa – to je računska operacija, ki jo izračunamo nazadnje. Primeri:

$$(x+1)(x+2)$$
 imenujemo produkt izrazov $(x+1)$ in $(x+2)$

$$5a + 3b - 2c$$
 imenujemo vsota izrazov $5a$, $3b$ in $-2c$

$$(2m+3)^2$$
 imenujemo kvadrat izraza $(2m+3)$

Izraz, v katerem nastopajo samo osnovne štiri računske operacije (seštevanje, odštevanje, množenje in deljenje), imenujemo **aritmetični** izraz. Če v izrazu poleg tega nastopajo še algebrske funkcije kot npr. korenjenje, je to **algebrski** izraz.

Pri preoblikovanju matematičnih izrazov pogosto uporabljamo naslednja dva postopka: **faktorizacija** (preoblikovanje v produkt faktorjev) **razčlenjevanje** (preoblikovanje v vsoto členov).

Formule za preoblikovanje izrazov:

$$n \in \mathbb{N}, \quad a, b, c \in \mathbb{R}$$

$$(a \pm b)^2 = a^2 \pm 2ab + b^2 \quad \backslash \text{kvadrat dvočlenika} \qquad (11.1)$$

$$(a \pm b)^3 = a^3 \pm 3a^2b + 3ab^2 \pm b^3 = a^3 \pm b^3 + 3ab(a \pm b) \qquad (11.2)$$

$$(a \pm b \pm c)^2 = a^2 + b^2 + c^2 \pm 2ab \pm 2ac \pm 2bc \quad \backslash \text{kvadrat tročl.} \qquad (11.3)$$

$$a^2 - b^2 = (a + b)(a - b) \quad \backslash \text{razlika kvadratov} \qquad (11.4)$$

$$a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2) \quad \backslash \text{razlika ali vsota kubov} \qquad (11.5)$$

$$(x \pm a)(x \pm b) = x^2 + (a \pm b)x \pm ab \quad \backslash \text{Viètovo previlo} \qquad (11.6)$$

$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1}) \qquad (11.7)$$

$$a^n - b^n = (a - b)\sum_{i=1}^n a^{i-1}b^{n-i} = (a - b)\sum_{i=1}^n a^{n-i}b^{i-1}$$

$$a^n + b^n = (a + b)(a^{n-1} - a^{n-2}b + \dots - ab^{n-2} + b^{n-1}) \qquad (11.8)$$

$$a^n + b^n = (a + b)\sum_{i=1}^n (-1)^{i+1}a^{i-1}b^{n-i} \quad \backslash \text{va lihe } n$$

¹Kub dvočlenika.

12 Potence

12.1 Potence z naravnim eksponentom

So krajši zapis za množenje več enakih faktorjev.

$$a^n = \underbrace{a \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a}_{n} \tag{12.1}$$

12.1.1 Pravila za računanje

Vsa pravila se dokaže tako, da se potenco zamenja po definiciji (12.1) in pogleda število faktorjev.

$$a^m \cdot a^n = a^{m+n} \tag{12.2}$$

$$(a^m)^n = a^{m \cdot n} \tag{12.3}$$

$$(a \cdot b)^n = a^n \cdot b^n \tag{12.4}$$

12.2 Potence s celim eksponentom

$$a^{k} = \begin{cases} a^{k}; & \text{\'e } k > 0 \text{ (po definiciji (12.1))} \\ 1; & \text{\'e } k = 0 \\ \frac{1}{a^{-k}}; & \text{\'e } k < 0 \end{cases}$$
 $k \in \mathbb{Z}$ (12.5)

12.2.1 Pravila za računanje

Vsa pravila kot za naravna števila (razdelek 12.1.1), dokažejo se s pravili za naravna, ali pa so dokazi podobni tistim za naravna. Poleg teh veljajo še naslednja pravila:

$$\frac{a^n}{a^m} = a^{n-m} \tag{12.6}$$

$$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n \tag{12.7}$$

12.3 Potence z racionalnim eksponentom

V tem razdelku se uporabljajo koreni in pravila za računanje z njimi. Koreni so opisani kasneje v razdelku 13, pravila pa v razdelku 13.1.

$$a^{\frac{m}{n}} = \sqrt[n]{a^m}; \quad a \in \mathbb{R}^+ \cup \{0\}; \ m \in \mathbb{Z}; \ n \in \mathbb{Z} - \{0\}$$

$$\tag{12.8}$$

12.3.1 Pravila za računanje

$$a^{\frac{m}{n}} \cdot a^{\frac{q}{p}} = a^{\frac{mp+qn}{np}} \tag{12.9}$$

$$\frac{a^{\frac{m}{n}}}{a^{\frac{q}{p}}} = a^{\frac{m_{p-qn}}{np}} \tag{12.10}$$

$$\left(a^{\frac{m}{n}}\right)^{\frac{q}{p}} = a^{\frac{mq}{np}} \tag{12.11}$$

$$(a \cdot b)^{\frac{m}{n}} = a^{\frac{m}{n}} \cdot b^{\frac{m}{n}} \tag{12.12}$$

$$\left(\frac{a}{b}\right)^{\frac{m}{n}} = \frac{a^{\frac{m}{n}}}{b^{\frac{m}{n}}} \tag{12.13}$$

(12.14)

Dokaz pravila 12.9:

$$a^{\frac{m}{n}} \cdot a^{\frac{q}{p}} = \sqrt[n]{a^m} \cdot \sqrt[p]{a^q} = \sqrt[np]{a^{mp+qn}} = a^{\frac{mp+qn}{np}}$$
\\ pravilo za računanje s koreni (13.8)

Dokaz pravila 12.10:

$$\frac{a^{\frac{m}{n}}}{a^{\frac{q}{p}}} = \sqrt[n]{a^m} = \sqrt[np]{a^{mp-qn}} = a^{\frac{mp-qn}{np}} \qquad \text{$$\backslash$ pravilo za računaje s koreni (13.9)}$$

Dokaz pravila 12.11:

$$\left(a^{\frac{m}{n}}\right)^{\frac{q}{p}} = \sqrt[p]{\left(\sqrt[n]{a^m}\right)^q} = \sqrt[np]{a^{mq}} = a^{\frac{mq}{np}}$$
\\ pravilo za računanje s koreni (13.12)

Dokaz pravila 12.12:

$$(a \cdot b)^{\frac{m}{n}} = \sqrt[n]{(a \cdot b)^m} = \sqrt[n]{a^m \cdot b^m} = \sqrt[n]{a^m} \cdot \sqrt[n]{b^m} = a^{\frac{m}{n}} \cdot b^{\frac{m}{n}} \qquad \text{\backslash up. pravile (13.6)}$$

Dokaz pravila 12.13:

$$\left(\frac{a}{b}\right)^{\frac{m}{n}} = \sqrt[n]{\left(\frac{a}{b}\right)^m} = \sqrt[n]{\frac{a^m}{b^m}} = \frac{\sqrt[n]{a^m}}{\sqrt[n]{b^m}} = \frac{a^{\frac{m}{n}}}{b^{\frac{m}{n}}} \qquad \text{$$\backslash$ uporabljeno pravilo (13.7)$}$$

13 Koreni

$$\sqrt[n]{a} = b \Leftrightarrow b^n = a; \quad a, b \in \mathbb{R}^+ \cup \{0\}, \ n \in \mathbb{Z} - \{0\}$$

$$\tag{13.1}$$

Če $a \in \mathbb{R}^-$:

če n lih: $\sqrt[n]{a} = -\sqrt[n]{|a|}$

če n sod: ne obstaja v realnem.

Dogovor:

$$\sqrt[2]{a} = \sqrt{a}$$

Osnovne izpeljave:

$$\sqrt[n]{a} = a$$

$$\sqrt[n]{a^n} = a \tag{13.2}$$

$$\left(\sqrt[n]{a}\right)^n = a \tag{13.3}$$

13.1 Pravila za računanje

$$\sqrt[n]{a^m} = \sqrt[p]{a^q} \Leftrightarrow mp = qn \tag{13.4}$$

$$\sqrt[n]{a^m} = \sqrt[nx]{a^{mx}} \tag{13.5}$$

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b} \tag{13.6}$$

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = \sqrt[n]{\frac{a}{b}} \tag{13.7}$$

$$\sqrt[n]{a^m} \cdot \sqrt[p]{a^q} = \sqrt[np]{a^{mp+qn}} \tag{13.8}$$

$$\frac{\sqrt[n]{a^m}}{\sqrt[p]{a^q}} = \sqrt[np]{a^{mp-qn}} \tag{13.9}$$

$$\sqrt[p]{\sqrt[n]{a}} = \sqrt[np]{a} \tag{13.10}$$

$$\left(\sqrt[n]{a^m}\right)^q = \sqrt[n]{a^{mq}} \tag{13.11}$$

$$\sqrt[p]{\left(\sqrt[n]{a^m}\right)^q} = \sqrt[np]{a^{mq}} \tag{13.12}$$

Pri dokazih se uporabljajo pravila za računanje s potencami s celim eksponentom (razdelek 12.2.1).

Dokaz pravila 13.4:

$$\sqrt[n]{a^m} = \sqrt[p]{a^q} \setminus ^{np}$$

$$\left(\sqrt[n]{a^m}\right)^{np} = \left(\sqrt[p]{a^q}\right)^{np} \quad \land \text{upoštevamo osnovno izpeljavo (13.3)}$$

$$(a^m)^p = (a^q)^n$$

$$a^{mp} = a^{qm}$$

$$mp = qn$$

Dokaz pravila 13.5:

$$\sqrt[n]{a^m} = \sqrt[nx]{a^m x}$$
 $mnx = nmx \quad \land \text{ glej pravilo (13.4)}$

Dokaz pravila 13.6:

$$\sqrt[n]{a} \cdot \sqrt[n]{b} = x$$

$$\left(\sqrt[n]{a} \cdot \sqrt[n]{b}\right)^n = x^n$$

$$\left(\sqrt[n]{a}\right)^n \cdot \left(\sqrt[n]{b}\right)^n = x^n$$

$$a \cdot b = x^n$$

$$x = \sqrt[n]{a \cdot b} \qquad \text{$\backslash \text{upoštevamo definicijo korena (13.1)}}$$

Dokaz pravila 13.7:

$$\frac{\sqrt[n]{a}}{\sqrt[n]{b}} = x$$

$$\left(\frac{\sqrt[n]{a}}{\sqrt[n]{b}}\right)^n = x^n$$

$$\frac{\left(\sqrt[n]{a}\right)^n}{\left(\sqrt[n]{b}\right)^n} = x^n$$

$$\frac{a}{b} = x^n$$

$$x = \sqrt[n]{\frac{a}{b}} \qquad \text{\backslash upoštevamo definicijo korena (13.1)}$$

Dokaz pravila 13.8:

$$\sqrt[n]{a^m} \cdot \sqrt[p]{a^q} = x \qquad \backslash \backslash ^{np}
(a^m)^p \cdot (a^q)^n = x^{np}
a^{mp} \cdot a^{qn} = x^{np}
a^{mp+qn} = x^{np}
x = \sqrt[np]{a^{mp+qn}} \qquad \backslash \backslash \text{upoštevamo definicijo korena (13.1)}$$

Dokaz pravila 13.9:

$$\frac{\sqrt[n]{a^m}}{\sqrt[p]{a^q}} = x^{np}$$

$$\frac{a^{mp}}{a^{qn}} = x^{np}$$

$$\frac{a^{mp}}{a^{qn}} = x^{np}$$

$$x = \sqrt[np]{a^{mp-qn}}$$
\\ upoštevamo definicijo korena (13.1)

Dokaz pravila 13.10:

$$\sqrt[p]{\sqrt[n]{a}} = x$$

$$\sqrt[n]{a} = x^p$$

$$a = (x^p)^n$$

$$a = x^{np}$$

$$x = \sqrt[np]{a} \qquad \text{\backslash upoštevamo definicijo korena (13.1)}$$

Dokaz pravila 13.11:

$$\begin{pmatrix} \sqrt[n]{a^m} \end{pmatrix}^q = x$$
 $\begin{pmatrix} \sqrt[n]{a^m} \end{pmatrix}^{qn} = x^n$ \\ upoštevamo osnovno izpeljavo (13.3)
 $(a^m)^q = x^n$
 $a^{mq} = x^n$
 $x = \sqrt[n]{a^{mq}}$

Dokaz pravila 13.12:

$$\sqrt[p]{\left(\sqrt[n]{a^m}\right)^q} = \sqrt[p]{\sqrt[n]{a^{mq}}} = \sqrt[np]{a^{mq}} \qquad \text{\backslash upoštevamo pravili (13.10) in (13.11).}$$

14 Logaritmi

$$\log_a x = y \Leftrightarrow a^y = x \tag{14.1}$$

Osnovne izpeljave iz definicije:

$$\log_a a = 1 \tag{14.2}$$

$$\log_a 1 = 0 \tag{14.3}$$

$$a^{\log_a x} = x \tag{14.4}$$

$$\log_a a^y = y \tag{14.5}$$

Dogovora:

$$\log_{10} x = \log x$$

$$\log_e x = \ln x^2$$

14.1 Pravila za računanje

Logaritem potence je enak produktu med eksponentom in logaritmom osnove:

$$\log_a x^n = n \log_a x \tag{14.6}$$

Logaritem produkta je enak vsoti logaritmov posameznih faktorjev:

$$\log_a xy = \log_a x + \log_a y \tag{14.7}$$

Logaritem kvocienta je enak razliki med logaritmom števca in imenovalca:

$$\log_a \frac{x}{y} = \log_a x - \log_a y \tag{14.8}$$

Dokaz pravila 14.6 (upoštevamo osnovni izpeljavi (14.4) in (14.5)):

$$\log_a x^n = \log_a \left(a^{\log_a x}\right)^n = \log_a \left(a^{n \log_a x}\right) = n \cdot \log_a x$$

Dokaz pravila 14.7 (upoštevamo osnovni izpeljavi (14.4) in (14.5)):

$$\log_a xy = \log_a \left(a^{\log_a x} \cdot a^{\log_a y} \right) = \log_a \left(a^{\log_a x + \log_a y} \right) = \log_a x + \log_a y$$

Dokaz pravila 14.8 (upoštevamo pravili (14.7) in (14.6)):

$$\log_a \frac{x}{y} = \log_a xy^{-1} = \log_a x + \log_a y^{-1} = \log_a x - \log_a y$$

 $^{^2}$ Matematiki za logaritem z osnovo e pogosto uporabljajo kar zapis $\log x$.

Prehod na novo osnovo:

$$\log_b a^y = \log_b x \qquad \text{\backslash po definiciji (14.1) je a^y enak x}$$

$$y \cdot \log_b a = \log_b x \qquad \text{\backslash uporabimo pravilo (14.6)$}$$

$$y = \frac{\log_b x}{\log_b a}$$

$$\log_a x = \frac{\log_b x}{\log_b a} \qquad \text{\backslash po definiciji je y enak $\log_a x$}$$

Iz tega izpeljemo zvezo:

$$\log_a x = \frac{1}{\log_x a}$$

15 Koordinatni sistem

15.1 Pravokotni, v ravnini

Dve pravokotni osi.

x — abscisna os

y — ordinatna os

$$\mathcal{M} = \{(x,y); \ x,y \in \mathbb{R}\} = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$$

Glej tudi sliko 1.

Slika 1: Pravokotni koordinatni sistem.

Osi razdelita ravnino na štiri kvadrante:

I. kvadrant: $x > 0 \land y > 0$ II. kvadrant: $x < 0 \land y > 0$ III. kvadrant: $x < 0 \land y < 0$ IV. kvadrant: $x > 0 \land y < 0$ Pomembni **premici**:

$$y = x$$
 \\ simetrala lihih kvadrantov
 $y = -x$ \\ simetrala sodih kvadrantov

Pas: a < x < b

Razdalja med dvema točkama (dokaz: Pitagorov izrek):

$$A(x_1, y_1)$$

$$B(x_2, y_2)$$

$$d(A,B) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Središče daljice:

$$S_{AB} = \left(\frac{x_a + x_b}{2}, \frac{y_a + y_b}{2}\right)$$

Težišče in ploščina trikotnika³:

Determinanta:

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = a \cdot d - b \cdot c \tag{15.1}$$

15.2 Pravokotni, v prostoru

Dve pravokotni osi.

x — abscisna os

y — ordinatna os

z — aplikatna os

$$\mathcal{M} = \{(x,y,z); \ x,y,z \in \mathbb{R}\} = \mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^3$$

Formule so enake kot v ravnini (razdelek 15.1), le da vsebujejo še tretjo koordinato.

15.3 Polarni, v ravnini

Za polarni koordinatni sistem potrebujemo izhodišče, poltrak in enoto. Točka je enolično določena z oddaljenostjo od izhodišča in pozitivnim kotom od poltraka. Polarni koordinatni sistem je prikazan pa sliki 2.

$$T(r,\varphi); r \ge 0; 0 \le \varphi \le 2\pi$$

Slika 2: Polarni koordinatni sistem.

Pretvarjanje med kartezičnim in polarnih sistemom je možno. Držijo naslednje enakosti (za razlago glej sliko 3):

$$r^{2} = x^{2} + y^{2}$$
$$\tan \varphi = \frac{y}{x}$$
$$x = r \cdot \cos \varphi$$
$$y = r \cdot \sin \varphi$$

Slika 3: Pretvarjanje med koordinatnima sistemoma in kompleksno ravnino.

15.3.1 Polarni zapis kompleksnega števila

Kompleksno število predstavimo kot točko v koordinatnem sistemu. Po formulah za pretvarjanje med sistemoma ugotovimo (glej sliko 3):

$$z = x + yi$$

$$z = r \cos \varphi + r \sin \varphi \cdot i$$

$$z = |z| (\cos \varphi + i \sin \varphi)$$

Formula za potenciranje kompleksnega števila z naravnim številom (dokažemo s popolno indukcijo):

$$z^n = |z|^n (\cos n\varphi + i \sin n\varphi)$$

 $[\]overline{^3}$ Za razrešitev determinante matrike glej enačbo (15.1). In ja, | | ne pomeni absolutne vrednosti.

16 Funkcije

$$f(x): A \to B$$

Funkcija, ki množico A preslika v množico B je predpis, ki vsakemu elementu iz množice A priredi natanko določen element iz množice B.

$$f(x): A \to B; A, B \subseteq \mathbb{R}$$

Funkcija je **realna**, če podmnožico realnih števil preslika v podmnožico realnih števil.

Definicijsko območje (D_f) funkcije f je množica realnih števil, za katera lahko predpis izračunamo.

Zaloga vrednosti (Z_f) funkcije f je množica realnih števil, ki jih funkcija lahko zavzame.

Graf (G_f) funkcije f je množica urejenih parov (x, y), pri katerih je x element definicijskega območja, y pa vrednost funkcije pri x.

$$G_f = \{(x,y); x \in D_f, y = f(x)\}$$

a je **ničla** funkcije, če je vrednost funkcije pri a enaka 0.

$$a \text{ ničla} \Leftrightarrow f(a) = 0$$

Začetna vrednost funkcije je vrednost funkcije pri 0.

$$začetna vrednost = f(0)$$

Funkcija je **padajoča**, če pri vsakem večjem x zavzame manjšo vrednost.

$$f(x)$$
 padajoča $\Leftrightarrow \forall x_1, x_2 \in D_f : x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

Funkcija je **naraščajoča**, če pri vsakem večjem x zavzame večjo vrednost.

$$f(x)$$
 naraščajoča $\Leftrightarrow \forall x_1, x_2 \in D_f : x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

Funkcija je **navzgor omejena**, ko so vse funkcijske vrednosti manjše ali enake od nekega realnega števila M (zgornja meja).

$$f(x)$$
 navzgor omejena $\Leftrightarrow \exists M \in \mathbb{R} : f(x) \leq M; \forall x \in D_f$

Funkcija je **navzdol omejena**, ko so vse funkcijske vrednosti večje ali enake od nekega realnega števila m (spodnja meja).

$$f(x)$$
 navzdol omejena $\Leftrightarrow \exists m \in \mathbb{R} : f(x) \geq m; \forall x \in D_f$

Funkcija je **omejena**, če je omejena navzgor in navzdol.

Pol je realno število, za katerega funkcija ni definirana.

Asimptota je črta, ki se ji graf približuje.

Funkcija je na nekem območju **konveksna**, če za vsaki dve točki na grafu funkcije velja, da leži graf pod daljico, ki jo določata ti dve točki.

Funkcija je na nekem območju **konkavna**, če za vsaki dve točki na grafu funkcije velja, da leži graf nad daljico, ki jo določata ti dve točki.

Funkcija je **soda**, če za vsak x iz definicijskega območja velja: f(-x) = f(x).

$$f(x)$$
 soda $\Leftrightarrow f(-x) = f(x); \ \forall x \in D_f$

Funkcija je liha, če za vsak x iz definicijskega območja velja: f(-x) = -f(x).

$$f(x)$$
 liha $\Leftrightarrow f(-x) = -f(x); \ \forall x \in D_f$

Funkcija je na nekem območju **pozitivna**, če so vse funkcijske vrednosti na tem območju večje od 0.

Funkcija je na nekem območju **negativna**, če so vse funkcijske vrednosti na tem območju manjše od 0.

Funkcija je **periodična** natanko takrat, ko obstaja tak $\omega \in \mathbb{R}^+$, da za vsak x iz definicijskega območja velja $f(x) = f(x + \omega)$.

$$f(x)$$
 periodična $\Leftrightarrow \exists \omega \in \mathbb{R}^+ : f(x) = f(x + \omega), \ \forall x \in D_f \ \setminus \omega$ — perioda

Val periodične funkcije je del funkcije na intervalu $[x, x + \omega], x \in D_f$.

16.1 Premik funkcije

Funkcijo y = f(x) premaknemo za vektor $\vec{v} = (p,q)$ (glej sliko 4).

$$x = x' - p$$

$$y = y' - q$$

$$y = f(x)$$

$$y' - q = f(x' - p)$$

$$y' = f(x' - p) + q$$

Parameter p vpliva na **premik** po x osi (levo – desno), parameter q pa na premik po y osi (gor – dol).

Slika 4: Premik funkcije.

16.2 Razteg funkcije

Funkcijo y = f(x) raztegnemo s parametroma a in b.

$$y = a \cdot f\left(\frac{x}{b}\right)$$

Parameter a predstavlja razteg v smeri y osi, če je negativen, se graf preslika čez y os. Odvisnost funkcije od parametra a je prikazana na sliki 5(a).

Parameter b predstavlja razteg v smeri x osi, če je negativen, se graf preslika čez x os. Odvisnost funkcije od parametra b je prikazana na sliki 5(b).

Slika 5: Odvisnost funkcije od parametrov a in b.

16.3 Inverzna funkcija

Inverzna funkcija funkcije f(x) je funkcija $f^{-1}(x)$, ki jo dobimo tako, da v prvotni funkciji zamenjamo vlogo odvisne in neodvisne spremenljivke, ter izrazimo novo neodvisno spremenljivko. **Grafično** dobimo graf $f^{-1}(x)$ tako, da graf prvotne funkcije preslikamo čez simetralo lihih kvadrantov. Inverzno funkcijo lahko dobimo samo na območjih, ko je prvotna funkcija **injektivna**.⁴

16.4 Linearna funkcija

Linearna funkcija je vsaka funkcija oblike y = kx + n; $k, n \in \mathbb{R}$. Graf linearne funkcije je premica. Funkcijski predpis lahko zapišemo v treh oblikah:

$$y = kx + n$$
 \\ eksplicitna
 $ax + by + c = 0$ \\ implicitna
 $\frac{x}{m} + \frac{y}{n} = 1$ \\ odsekovna

⁴Za definicijo injektivnosti glej razdelek 3.

V eksplicitni obliki ne moremo napisati premic vzporednih z ordinatno osjo, v odsekovni obliki pa ne moremo napisati premic, ki so vzporedne katerikoli izmed osi ali gredo skozi središče koordinatnega sistema.

k — smerni koeficient

n — začetna vrednost, odsek na ordinatni osi

m — odsek na abscisni osi

Osnovni Evklidov aksiom: Skozi dve točki lahko potegnemo natanko eno premico. **Smerni koeficient** premice skozi dve točki se izračuna kot razmerje med razliko v smeri y in razliko v smeri x osi.

$$k = \frac{y_2 - y_1}{x_2 - x_1}$$

Če je smerni koeficient večji od 0 je premica naraščajoča, če je manjši od 0, je premica padajoča.

Družina premic ki so **vzporedne** premici $y = k_1x + n_1$: $y = k_1x + n_2$ Družina premic, ki gredo skozi **točko** $T_0(x_0,y_0)$: $y - y_0 = k(x - x_0)$

Vzporedna premica dani premici ima enak k kot podana, k premice, ki je na dano premico **pravokotna**, pa je nasprotno in obratno število smernemu koeficientu dane premice.

$$k_2 = -\frac{1}{k_1}$$

Razdalja točke $T(x_0, y_0)$ od premice p(ax + by - c = 0):

$$d(p,T) = \left| \frac{ax_0 + by_0 - c}{\sqrt{a^2 + b^2}} \right|$$

Snop premic na sliki 6(a), **šop** premic na sliki 6(b).

Slika 6: Posebni medsebojni legi premic.

16.5 Potenčna funkcija

Potenčna funkcija je vsaka funkcija oblike: $f(x) = x^n$; $n \in \mathbb{Z} - \{0,1\}$. Poznamo štiri glavne **grafe** potenčne funkcije, ki se delijo glede na eksponent:

- pozitiven sod eksponent (slika 7(a))
- pozitiven lih eksponent (slika 7(b))

- negativen sod eksponent (slika 7(c))
- negativen lih eksponent (slika 7(d)).

- (a) Pozitiven sod eksponent
- (b) Pozitiven lih eksponent

- (c) Negativen sod eksponent
- (d) Negativen lih eksponent

Slika 7: Grafi potenčne funkcije.

16.6 Korenska funkcija

Korenska funkcija je vsaka funkcija oblike $f(x) = \sqrt[n]{x}$.

 $n \text{ sod: } D_f = \mathbb{R}^+ \cup \{0\}, \ Z_f = \mathbb{R}^+ \cup \{0\}$

 $n \text{ lih: } D_f = \mathbb{R}, \ Z_f = \mathbb{R}$

Graf korenske funkcije je na sliki 8.

16.7 Kvadratna funkcija

Kvadratna funkcija je vsaka funkcija oblike $f(x) = ax^2 + bx + c$; $a, b, c \in \mathbb{R}$; $a \neq 0$. Definicijsko območje so vsa realna števila.

Splošna oblika kvadratne funkcije:

$$f(x) = ax^2 + bx + c \tag{16.1}$$

a — vpliva na konkavnost oz. konveksnost in razteg

c — vpliva na premik v smeri y osi

Temenska oblika kvadratne funkcije, teme T(p,q):

$$f(x) = a(x-p)^2 + q (16.2)$$

Slika 8: Graf korenske funkcije.

a — vpliva na konkavnost oz. konveksnost in razteg

p — vpliva na premik v smeri x osi

q — vpliva na premik v smeri y osi

Oblika za ničle (razcep tročlenika):

$$f(x) = a(x - x_1)(x - x_2)$$
(16.3)

a— vpliva na konkavnost oz. konveksnost in razteg x_1,x_2 — ničli funkcije

Prehod iz splošne v temensko obliko, formule za p in q:

$$f(x) = ax^{2} + bx + c$$

$$f(x) = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$f(x) = a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c$$

$$f(x) = a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a} + c$$

$$f(x) = a\left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2} - 4ac}{4a} \quad \text{\backslash primerjamo s temensko obliko}$$

$$p = -\frac{b}{2a} \qquad (16.4)$$

$$q = -\frac{b^{2} - 4ac}{4a} = -\frac{D}{4a} \qquad (16.5)$$

$$D = b^2 - 4ac \qquad \land \text{ diskriminanta}$$
 (16.6)

Graf kvadratne funkcije je premaknjena in raztegnjena parabola $f(x) = x^2$. Vsako kvadratno funkcijo v splošni obliki lahko zapišemo tudi v temenski obliki. Primeri grafov kvadratne funkcije so na sliki 9.

Slika 9: Graf kvadratne funkcije v odvisnosti od parametra a.

16.7.1 Ničle kvadratne funkcije

Ničle kvadratne funkcije se izračunajo po formuli:

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$
 \\ D zamenjamo po definiciji (16.6) (16.7)

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{16.8}$$

Kvadratne funkcija ima dve različni realni ničli če D>0, eno dvojno realno ničlo, če D=0 in nobene realne ničle, če je D<0.

$$D > 0 \Rightarrow x_1 \neq x_2; \ x_1, x_2 \in \mathbb{R}$$

$$D = 0 \Rightarrow x_1 = x_2; \ x_1, x_2 \in \mathbb{R}$$

$$D < 0 \Rightarrow x_1 \neq x_2; \ x_1, x_2 \notin \mathbb{R}$$

Izpeljava formule za ničle kvadratne funkcije:

$$0 = f(x)$$

$$0 = a(x - p)^2 + q \qquad \text{\backslash temenska oblika kvadratne funkcije (16.2)}$$

$$a(x - p)^2 = -q$$

$$(x - p)^2 = -\frac{q}{a}$$

$$x - p = \pm \sqrt{-\frac{q}{a}}$$

$$x = p \pm \sqrt{-\frac{q}{a}} \qquad \text{\backslash zamenjamo p in q po (16.4) in (16.5)}$$

$$x = -\frac{b}{2a} \pm \sqrt{-\frac{D}{4a^2}}$$

$$x = -\frac{b}{2a} \pm \sqrt{\frac{D}{4a^2}}$$

$$x = -\frac{b}{2a} \pm \frac{\sqrt{D}}{2a}$$

$$x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$$

Abscisa temena izražena z ničlami:

$$p = \frac{x_1 + x_2}{2}$$

Teme je tudi **ekstrem** funkcije, funkcija ima ekstremno vrednost ko x = p. To je minimum če je a > 0 ali maksimum, če je a < 0.

16.7.2 Vpliv diskriminante in parametra a na parabolo

Prikazan je na sliki 10.

Slika 10: Vpliv diskriminante in parametra a na parabolo

16.7.3 Lega premice in parabole

$$ax^2 + bx + c = kx + n$$

- D > 0 sekanta (slika 11(a))
- D = 0 tangenta (slika 11(b))
- D < 0 mimobežnica (slika 11(c))

Možne lege so prikazane na sliki 11.

Slika 11: Možne lege premice in parabole

16.8 Eksponentna funkcija

Eksponentna funkcija je vsaka funkcija oblike $f(x) = a^x$, $a \in \mathbb{R}^+ - \{1\}$.

a > 1
$$D_f = \mathbb{R}, Z_f = \mathbb{R}^+, \qquad D_f = \mathbb{R}, Z_f = \mathbb{R}^+,$$
naraščajoča, konveksna, pozitivna, padajoča, konveksna, pozitivna, navzdol omejena graf na sliki 12(a) graf na sliki 12(b)

Slika 12: Graf eksponentne funkcije.

Vodoravna **asimptota** je x os. Vse eksponentne funkcije gredo skozi točko N(0,1), kar izhaja iz definicije (12.5). Vse z osnovo iz enake skupine se razlikujejo le po **strmini** padanja in naraščanja. Lahko jih premikamo ali raztegujemo.

$$f(x) = b \cdot a^{x-p} + q$$

16.9 Logaritemska funkcija

Logaritemska funkcija je vsaka funkcija oblike $y = \log_a x$, $a \in \mathbb{R}^+ - \{1\}$. Je **inverzna** funkcija eksponentni funkciji.

$$a>1$$
 $a<1$ $D_f=\mathbb{R}^+, Z_f=\mathbb{R},$ $D_f=\mathbb{R}^+$ ničla $x=1,$ naraščajoča, konkavna, ničla $x=1$ pozitivna $x>1,$ negativna $x<1,$ pozitivna navzgor omejena navzgor graf na sliki $13(a)$ graf na s

a
$$< 1$$

 $D_f = \mathbb{R}^+, Z_f = \mathbb{R},$
ničla $x = 1$, padajoča, konveksna,
pozitivna $x < 1$, negativna $x > 1$,
navzgor omejena
graf na sliki 13(b)

Slika 13: Graf logaritemske funkcije.

Navpična **asimptota** je y os. Vse logaritemske funkcije gredo skozi točko N(1,0), kar izhaja iz izpeljave iz definicije (14.3). Vse funkcije z bazo iz enake skupine se razlikujejo le po **strmini** padanja in naraščanja. Lahko jih premikamo ali raztegujemo.

$$f(x) = b \cdot \log_a(x - p) + q$$

16.10 Krožne funkcije

 ${f Krožne}$ funkcije ali arcus funkcije so delni inverzi kotnih funkcij.

Arcus sinus x je tisti kot, pri katerem je sinus enak x.

$$y = \arcsin x \Leftrightarrow \sin y = x, \ D_f = [-1,1], Z_f = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

Arcus kosinus x je tisti kot, pri katerem je kosinus enak x.

$$y = \arccos x \Leftrightarrow \cos y = x, \ D_f = [-1,1], Z_f = [0,\pi]$$

Arcus tangens x je tisti kot, pri katerem je tangens enak x.

$$y = \arctan x \Leftrightarrow \tan y = x, \ D_f = \mathbb{R}, Z_f = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

Arcus kotangens x je tisti kot, pri katerem je kotangens enak x.

$$y = \operatorname{arccot} x \Leftrightarrow \cot y = x, \ D_f = \mathbb{R}, Z_f = (0, \pi)$$

⁵Kotne funkcije so definirane kasneje, v razdelku 21.

Grafi arcus funkcij so prikazani na sliki 14.

Slika 14: Grafi arcus funkkcij.

16.11 Racionalne funkcije

Racionalna funkcija je vsaka funkcija oblike $f(x) = \frac{p(x)}{q(x)}$, pri čemer je ta ulomek okrajšan.

Ničle racionalne funkcije so ničle polinoma p(x), **poli** racionalne funkcije pa so ničle polinoma q(x), torej abscise pri katerih funkcija ni definirana. **Stopnja** pola racionalne funkcije je enaka stopnji ničle imenovalca. Stopnja ničle racionalne funkcije je enaka stopnji ničle imenovalca.

Pri polih in ničlah **lihe** stopnje se predznak racionalne funkcije spremeni, pri polih ali ničlah **sode** stopnje pa se ohrani. Bližje kot smo polu, večje so funkcijske vrednosti po absolutni vrednosti.

Vsako racionalno funkcijo lahko zapišemo kot vsoto polinoma in nove racionalne funkcije, ki ima v števcu polinom nižje stopnje kot v imenovalcu.

$$p(x) = k(x) \cdot q(x) + o(x) \qquad \backslash : q(x) \quad \operatorname{st}(q(x)) > \operatorname{st}(o(x)) \qquad \backslash \setminus \operatorname{Izrek} \ (26.1).$$

$$\frac{p(x)}{q(x)} = k(x) + \frac{o(x)}{q(x)}$$

k(x) je **asimptota** racionalne funkcije. Je krivulja, kateri se graf približuje pri zelo velikih in majhnih x-ih, ker je takrat ulomek $\frac{o(x)}{q(x)} \approx 0$, ker je $q(x) \gg o(x)$. Racionalna funkcija ima asimptoto če je stopnja polinoma v imenovalcu večja ali enaka stopnji polinoma v števcu. Če sta stopnji enaki je asimptota vodoravna.

Presečišče z asimptoto (kadar je funkcijska vrednost enaka k(x))

$$\frac{p(x)}{q(x)} = k(x) + \frac{o(x)}{q(x)}$$
$$f(x) = k(x) \Leftrightarrow \frac{o(x)}{q(x)} = 0 \Leftrightarrow o(x) = 0$$

16.12 Kompozitum funkcij

Kompózitum ali sestava funkcij je matematična operacija v množici funkcij. Postopek računanja kompozituma imenujemo komponiranje ali sestavljanje, dobljeni rezultat pa se imenuje sestavljena funkcija. Sestavljena funkcija je funkcija, ki ji kot argument podamo vrednost druge funkcije.

$$(f \circ g)(x) = f(g(x))$$

Kompozitum funkcij ni komutativna operacija.

$$(f \circ g)(x) \neq (g \circ f)(x)$$

Kompozitum funkcij je asociativna operacija.

$$((f \circ g) \circ h)(x) = (f \circ (g \circ h))(x)$$

Kompozitum **inverznih** funkcij je enak x.

$$(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = f(f^{-1}(x)) = f^{-1}(f(x)) = x$$

17 Enačbe

Enačba je zapis za enakost dveh izrazov. Izraza imenujemo leva stran enačbe in desna stran enačbe. Med njima stoji enačaj. Spremenljivke, ki nastopajo v enačbi, imenujemo neznanke. Vrednost neznanke, ki zadosti enakosti imenujemo rešitev ali koren enačbe.

Enačbi, ki imata enaki množici rešitev, sta enakovredni ali **ekvivalentni**.

Enačba, ki nima rešitve se imenuje **nerešljiva enačba**. Primer:

$$x + 1 = x + 3$$

Če je enakost enačbe velja ne glede na vrednost neznanke, tako enačbo imenujemo identična enačba ali **identiteta**. Primer:

$$2x^2 - (x+1)^2 - 4 = x^2 - 2x - 5$$

17.1 Reševanje enačb

Enačbo lahko preoblikujemo v drugo ekvivalentno enačbo z naslednjimi postopki:

- Levo ali desno stran enačbe lahko preoblikujemo s pravili za preoblikovanje izrazov.
- Enačbi lahko na obeh straneh **prištejemo** ali **odštejemo** poljubno število ali izraz. Iz tega izhaja tudi "prenašanje" člena preko enačaja (na obeh straneh odštejemo ali prištejemo ta člen).
- Enačbo lahko na obeh straneh **množimo** ali **delimo** s poljubnim številom ali izrazom, ki ni enak 0.
- Na levi in na desni strani lahko **izvedemo** isto matematično **funkcijo**, ki mora biti **bijektivna**.⁶

Pozor: Če levo in desno stran pomnožimo ali delimo z matematičnim izrazom, ki bi lahko bil enak 0 (za določeno vrednost spremenljivke), dobljena enačba ni nujno enakovredna prvotni. Če na levi in desni strani izvedemo funkcijo, ki ni bijektivna (npr. kvadriranje), dobljena enačba ni nujno enakovredna prvotni.

Sistem enačb je več enačb v katerih nastopajo enake neznanke. Sistem je enolično rešljiv, če je enačb vsaj toliko kot neznank.

17.2 Linearne enačbe

Linearna enačba je vsaka enačba oblike $kx + n = 0; k, n \in \mathbb{R}$ ali vsaka enačba, ki jo v to obliko lahko prevedemo.

Število rešitev linearne enačbe:

$$k\neq 0 \Rightarrow 1 \text{ rešitev } x=-\frac{n}{k}$$

$$k=0 \land n=0 \Rightarrow \infty \text{ rešitev, identiteta}$$

$$k=0 \land n\neq 0 \Rightarrow \text{ni rešitve}$$

Sistem linearnih enačb se rešuje na več načinov. Z zamenjalnim načinom: iz ene enačbe izrazimo eno neznanko in jo vstavimo v vse druge. S primerjalnim načinom: iz dveh enačb izrazimo enako neznanko in ju izenačimo. Z metodo nasprotnih koeficientov: eno enačbo pomnožimo tako, da se pri odštevanju ali seštevanju enačb členi z isto neznanko odštejejo med seboj.

Primer:

Sistem dveh linearnih neenačb z dvema neznankama:

$$ax + by = e$$
$$cx + dy = f$$

Sistem ima lahko nič, eno ali neskončno rešitev. Grafično te rešitve predstavljajo po vrsti: dve vzporednici brez skupne točke, dve premici, ki se sekata v eni točki in dve premici, ki se popolnoma pokrivata. Sistem lahko predstavlja tudi ravnino in sicer, ko so vsi koeficienti enaki 0.

 $^{^6\}mathrm{Za}$ definicijo bijektivne preslikave glej razdelek3.

17.3 Razcepne enačbe

$$A \cdot B = 0 \Rightarrow A = 0 \lor B = 0$$

Primer uporabe:

$$x^{2} + 5x + 6 = 0$$
$$(x+3)(x+2) = 0$$
$$1. \quad x+3 = 0 \Rightarrow x_{1} = -3$$
$$2. \quad x+2 = 0 \Rightarrow x_{2} = -2$$

17.4 Kvadratne enačbe

Kvadratna enačba je vsaka enačba oblike $ax^2 + bx + c = 0$; $a, b, c \in \mathbb{R}$ in $a \neq 0$ ali vsaka enačba, ki jo v to obliko lahko prevedemo.

Kvadratna enačba oblike $ax^2 + bx + c = 0$ sprašuje po **ničlah** funkcije $f(x) = ax^2 + bx + c$. Za rešitvi enačbe imamo formulo (16.8).

Kvadratne enačba ima:

- dve različni realni rešitvi, če D > 0
- \bullet eno dvojno realno rešitev, če D=0
- dve kompleksni⁷ rešitvi, ki sta par konjugiranih števil, če D < 0.

17.4.1 Viétovi formuli

Če je pri kvadratni enačbi a enak 1:

$$x^{2} + ux + v = 0$$

$$u = -(x_{1} + x_{2})$$

$$v = x_{1} \cdot x_{2}$$

Dokaz:

Izhajajmo iz kvadratne funkcije in njene oblike za ničle, upoštevajoč a = 1 (16.3).

$$(x - x_1)(x - x_2) = 0$$

 $x^2 - x_1x - x_2x + x_1x_2 = 0$
 $x^2 - (x_1 + x_2) \cdot x + x_1x_2 = 0$ \\ Preberemo *u* in *v*.

17.5 Kompleksne enačbe

Kompleksna⁷ enačba je vsaka enačba oblike $z = w; z, w \in \mathbb{C}$ ali vsaka neenačba, ki jo v to obliko lahko prevedemo.

Kompleksno število je enako nič, če sta obe njegovi komponenti enaki nič.

$$A + Bi = 0 \Leftrightarrow A = 0 \land B = 0$$

Dve kompleksni števili sta enaki, če sta njuni realni in imaginarni komponenti enaki.

$$A + Bi = C + Di \Leftrightarrow A = C \land B = D$$

⁷Kompleksa števila so definirana kasneje, v razdelku 23.

17.6 Eksponentne enačbe

Eksponentna enačba je vsaka enačba v kateri neznanka nastopa v eksponentu.

Enostavne rešitve enačbe:

$$a^{x} = a^{y} \Leftrightarrow x = y$$

 $a^{x} = 1 \Leftrightarrow x = 0$
 $a^{x} = b^{x} \Leftrightarrow x = 0$

Poznamo štiri tipe enačb:

Primer: $2^{2x+3} = 8$. Rešujemo s pravili zgoraj.

Primer: $3^{x+1} - 3^{x-1} = 24$. Reševanje z izpostavljanjem.

Primer: $2^x - 2^{2x-1} = 4$. Reševanje s substitucijo.

Primer: $4^x = 10$. Reševanje z logaritmiranjem.

17.7 Logaritemske enačbe

Logaritemska enačba je vsaka enačba v katerih nastopa neznanka v logaritmu.

Najprej damo vse logaritme na eno osnovo, skrčimo, nato **antilogaritmiramo** ali razrešimo po definiciji in rešimo nastalo enačbo. Lahko se rešujejo tudi s **substitucijo**.

17.8 Trigonometrične enačbe

Trigonometrična enačba je vsaka enačba v kateri nastopa neznanka v kotnih funkcijah.

Enostavne: $\sin x = a$; $a \in \mathbb{R}$. Običajno dve neskončni množici rešitev. Skica je priporočljiva.

Homogene: $A \sin x + B \cos x = 0$ in podobne višjih stopenj. Lahko se deli s $\cos x$ ali $\sin x$, ker noben izmed njiju ni enak 0. Vsi členi morajo imeti enako število faktorjev s kotno funkcijo.

Produkt dveh kotnih funkcij je enak 0: $\sin x \cdot \tan x = 0$. Glej razcepne enačbe (razdelek 17.3).

Uporaba **faktorizacije**, **substitucije**, metoda **polovičnih kotov** (substitucija $x = 2\alpha$, pri enačbah $A \sin x + B \cos x = C$. Ne pozabite, ko izračunate α izračunati še x) **razčlenjevanje** (produkt dveh kotnih funkcij v enem členu)

17.9 Polinomske enačbe

Polinomska⁸ enačba je vsaka enačba oblike p(x) = 0 ali vsaka enačba, ki jo v to obliko lahko prevedemo.

Rešitve enačbe so ničle polinoma p(x).

⁸Polinomi so definirani kasneje, v razdelku 26.

17.10 Racionalne enačbe

Racionalna enačba je vsaka enačba oblike $\frac{p(x)}{q(x)} = 0$ ali vsaka enačba, ki jo v to obliko lahko prevedemo. p(x) in q(x) sta polinoma. Pomembno je, da si pri reševanju take enačbe zapišemo pogoje za rešitve (ničle imenovalcev ne smejo biti rešitve).

17.11 Iracionalne enačbe

Iracionalne enačbe so enačbe v katerih nastopajo koreni. Ponavadi jih rešujemo tako, da koren **osamimo** na eni strani in kvadriramo. Če nastopata dva tretja korena lahko uporabimo trik z uporabo drugega dela enačbe 11.2. Primer:

$$\sqrt[3]{x} + \sqrt[3]{x+1} = 2 \qquad \text{\setminus na3$

$$x + (x+1) + 3\sqrt[3]{x}\sqrt[3]{x+1} \underbrace{(\sqrt[3]{x} + \sqrt[3]{x+1})}_2 = 2 \qquad \text{\setminus Po zgornji enačbi.}$$

$$x + (x+1) + 3\sqrt[3]{x}\sqrt[3]{x+1} \cdot 2 = 2$$

18 Neenačbe

Neenačba je simbolični zapis sestavljen iz dveh matematičnih izrazov, med katerima stoji **neenačaj**. Neenačaj je lahko katerikoli od znakov za relacijo urejenosti $(<, \le, >, \ge,$ včasih tudi \ne). Izraza, ki nastopata v neenačbi, imenujemo **leva stran** in **desna stran** neenačbe. Spremenljivke, ki nastopajo v neenačbi, imenujemo **neznanke**. **Rešitev** neenačbe je vrednost neznanke, ki zadosti neenakosti. Množico rešitev, ki je pogosto neskončna, ponavadi zapišemo z intervalom. Primer:

$$x+1 \le 2 \Rightarrow x \in (-\infty, 1]$$

Neenačbi sta enakovredni ali **ekvivalentni**, če imata enako množico rešitev. Primer:

$$3x + 1 < x + 7$$
 in $2x < 6$

Neenačbe se v nalogah dostikrat povezuje z definicijskim območjem funkcij. Primer: Poišči definicijsko območje funkcije $f(x) = \log(x^3 + 2x - 4)$ je enako kot: reši neenačbo $x^3 + 2x - 4 > 0$.

18.1 Reševanje neenačb

Neenačbo lahko preoblikujemo v drugo ekvivalentno neenačbo z naslednjimi postopki:

- Levo ali desno stran neenačbe lahko preoblikujemo s pravili za preoblikovanje izrazov.
- Neenačbi lahko na desni in na levi strani **prištejemo** ali **odštejemo** isto število ali izraz. Prav tako lahko tudi "prenesemo" člene preko neenačaja, tako da jim spremenimo predznak.
- Neenačbo lahko na desni in na levi strani **množimo** ali **delimo** z istim *pozitivnim* številom ali izrazom.

- Če neenačbo na desni in na levi strani **množimo** ali **delimo** z istim *negativnim* številom ali izrazom, se neenačaj obrne.
- Na levi in desni strani lahko **izvedemo** isto matematično **funkcijo**, ki pa mora biti povsod strogo rastoča.
- Če na levi in desni strani **izvedemo** isto matematično **funkcijo**, ki je povsod strogo padajoča, se neenačaj obrne

Rešitev sistema neenačb je presek rešitev posameznih neenačb.

18.2 Linearne neenačbe

Linearna neenačba je vsaka neenačba oblike kx+n neenačaj $0; k, n \in \mathbb{R}$ ali vsaka neenačba, ki jo v to obliko lahko prevedemo.

Primer:

Obravnavajmo linearno enačbo ax + b < 0. Preoblikujemo jo v ax < -b.

- 1. a = 0
 - i. $b > 0 \Rightarrow 0$ rešitev
 - ii. $b < 0 \Rightarrow \forall x \in \mathbb{R}$ je rešitev (premica)
- 2. $a<0 \Rightarrow \forall x>-\frac{b}{a}$ je rešitev (poltrak) 3. $a>0 \Rightarrow \forall x<-\frac{b}{a}$ je rešitev (poltrak)

Kvadratne neenačbe 18.3

Kvadratna neenačba je vsaka neenačba oblike $ax^2 + bx + c$ neenačaj 0 ali vsaka neenačba, ki jo v to obliko lahko prevedemo.

Rešitve poiščemo tako, da izračunamo ničle funkcije $f(x) = ax^2 + bx + c$ in ugotovimo predznak kvadratne funkcije na celotni realni osi ter nato izberemo želene intervale, ki ustrezajo pogojem. Skica je priporočljiva.

18.4 Polinomske neenačbe

Polinomska neenačba je vsaka neenačba oblike p(x) neenačaj 0 ali vsaka neenačba, ki jo v to obliko lahko prevedemo.

Rešitve poiščemo tako, da izračunamo ničle polinoma p(x) in ugotovimo predznak funkcije na celotni realni osi ter nato izberemo želene intervale, ki ustrezajo pogojem. Skica je priporočljiva.

18.5Racionalne neenačbe

Racionalna neenačba je vsaka neenačba oblike $\frac{p(x)}{q(x)}$ neenačaj 0 ali vsaka neenačba, ki jo v to obliko lahko prevedemo. Rešimo jo tako da vse člene prenesemo na eno stran, in določimo ničle in pole dobljene racionalne funkcije, ter tako ugotovimo njen predznak na celotni realni osi in nato izberemo želeni interval kot rešitev neenačbe. Skica je priporočljiva.

19 Geometrija

Listi!

Naslednje dokaze je treba znat:

- 1. vsota notranjih kotov v trikotniku: $\alpha + \beta + \gamma = 180^{\circ}$, grafično
- 2. vsota zunanjih kotov v trikotniku: $\alpha' + \beta' + \gamma' = 360^{\circ}$, grafično in računsko
- 3. zveza med zunanjimi in notranjimi koti: $\alpha' = \beta + \gamma$, grafično in računsko
- 4. središčni in obodni kot, grafično
- 5. Talesov izrek: kot ki ima vrh na krožnici, kraka pa potekata skozi krajišči polmera, meri 90°.

20 Podobnost

Enakoležne stranice so tiste, ki ležijo nasproti istim kotom.

20.1 Talesovi izreki

Če sta si trikotnika podobna, je razmerje dveh enakoležnih stranic enako razmerju drugih dveh enakoležnih stranic.

$$\frac{a_1}{a} = \frac{b_1}{b} = \frac{c_1}{c} = k \tag{20.1}$$

Če sta si trikotnika podobna, je razmerje stranic prvega trikotnika enako razmerju enakoležnih stranic drugega trikotnika.

$$a:b:c=a_1:b_1:c_1$$
 (20.2)

Če se trikotnika ujemata v kotu in razmerju stranic, ki kot oklepata, sta si podobna. Razmerje obsegov, višin in ploščin:

$$\frac{o_1}{o} = k \qquad \qquad \frac{v_1}{v} = k \qquad \qquad \frac{p_1}{p} = k^2$$

20.2 Izreki v pravokotnem trikotniku

Višinski izrek:

$$v_c^2 = a_1 \cdot b_1 \tag{20.3}$$

Evklidov izrek:

$$a^2 = a_1 \cdot c \qquad \qquad b^2 = b_1 \cdot c \tag{20.4}$$

Pitagorov izrek:

$$c^2 = a^2 + b^2 (20.5)$$

Ob prvih dveh dokazih glej tudi sliko 15.

Slika 15: Višinski in Evklidov izrek v trikotniku.

Dokaz izreka (20.3).

$$\triangle ABC \sim \triangle CTB$$

$$v:b_1=a_1:v$$

$$v^2 = a_1 \cdot b_1$$

Dokaz izreka (20.4).

$$\triangle ABC \sim \triangle ACT$$

$$b:b_1=c:b$$

$$b^2 = b_1 \cdot c$$

$$\triangle ABC \sim \triangle CBT$$

$$a:a_1=c:a$$

$$a^2 = a_1 \cdot c$$

Dokaz izreka (20.5):

$$c^2 = a^2 + b^2$$

$$c^2 = a_1 \cdot c + b_1 \cdot c$$

$$c^2 = c \cdot (a_1 + b_1)$$

$$c^2 = c \cdot c$$

21 Kotne funkcije

21.1 V pravokotnem trikotniku

Sinus kota je enak razmerju med kotu nasprotno kateto in hipotenuzo.

$$\sin \alpha = \frac{a}{c}$$

 $\mathbf{Kosinus}$ \mathbf{kota} je enak razmerju med kotu priležno kateto in hipotenuzo.

$$\cos \alpha = \frac{a}{c}$$

Tangens kota je enak razmerju med kotu nasprotno in kotu priležno kateto.

$$\tan \alpha = \operatorname{tg} \alpha = \frac{a}{c}$$

Kotangens kota je enak razmerju med kotu priležno in kotu nasprotno kateto.

$$\cot \alpha = \cot \alpha = \frac{a}{c}$$

rabela 1. Vicanosti kotimi rankelj za določene kote.						
α	$\sin \alpha$	$\cos \alpha$	$\tan \alpha$	$\cot \alpha$		
0°	0	1	0	nedef.		
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	$\sqrt{3}$		
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	1		
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{\sqrt{3}}{3}$		
90°	1	$\frac{\sqrt{3}}{2}$	nedef.	0		

Tabela 1: Vrednosti kotnih funkcij za določene kote

21.2 Kot

Definicijo kota za delo s kotnimi funkcijami razširimo tako, da kotu določimo **smer** (slika 16(a) in 16(b)), tako da določimo prvi in drugi krak (kot tako vedno merimo od prvega do drugega kraka po krajši poti) in da dopuščamo **poljubno velike** kote (slika 16(c)).

Slika 16: Razširjena definicija kota

Kot tudi merimo v različnih enotah. **Radian** je enota, ki predstavlja dolžino krožnega loka z radijem 1 nad določenim kotom. Pretvorba določenih vrednosti iz stopinj v radiane je prikazana v tabeli 2.

Tabela 2: Tabela pretvorb med radiani in stopinjami za določene kote.

stopinje	0°	30°	45°	60°	90°	120°	135°	150°	180°	360°
radiani	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{2}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	2π

21.3 Sinus in kosinus

Ob izpeljavi glej sliko 17.

$$\vec{a} = (1,0)$$

$$\vec{b} = (x,y)$$

 $\vec{a}\cdot\vec{b}=ab\cos{lpha}$ \\\ \vec{a} in \vec{b} sta enotska vektorja

$$\cos \alpha = \frac{\vec{a} \cdot \vec{b}}{a \cdot b} = \vec{a} \cdot \vec{b} = (1,0) \cdot (x,y) = 1x + 0y = x$$
 (21.1)

Slika 17: Kot med enotskima vektorjema, uporabljen pri definiciji sinusa in kosinusa.

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = \begin{vmatrix} \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{vmatrix} = \begin{vmatrix} \begin{pmatrix} 0, 0, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \end{pmatrix} = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = ab \sin \alpha$$

$$\sin \alpha = \frac{\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}}{a \cdot b} = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ x & y \end{vmatrix} = 1y - 0x = y$$
 (21.2)

Sinus kota, ki ima en krak na pozitivni strani x osi in vrh v izhodišču je abscisa točke v kateri drugi krat seka enotsko krožnico.

Kosinus kota, ki ima en krak na pozitivni strani x osi in vrh v izhodišču je ordinata točke v kateri drugi krat seka enotsko krožnico.

Grafična predstavitev sinusa in kosinusa je prikazana na sliki 18.

Lastnosti:

- 1. $D_{\sin} = D_{\cos} = \mathbb{R}$
- 2. $Z_{\sin} = Z_{\cos} = [-1,1]$
- 3. Obe sta omejeni m=-1, M=1
- 4. Sinus je **liha** funkcija: $\sin(-x) = -\sin(x)$
- 5. Kosinus je **soda** funkcija: $\cos(-x) = \cos(x)$

21.4 Tangens in kotangens

Tangens kota je enak razmerju med sinusom in kosinusom kota.

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} \tag{21.3}$$

Kotangens kota je enak razmerju med kosinusom in sinusom kota.

$$\cot \alpha = \frac{\cos \alpha}{\sin \alpha} \tag{21.4}$$

Tangens kota je ordinata točke v katerem drugi krak kota ali njegova nosilka seka tangento na enotsko krožnico v točki (0,1).

⁹Za formule, ki se tičejo vektorjev glej razdelek 22. Za skalarni produkt glej razdelek 22.5, za vektorski produkt pa 22.7.

Slika 18: Grafični prikaz vrednosti kotnih funkcij.

Kotangens kota je abscisa točke v katerem drugi krak kota ali njegova nosilka seka tangento na enotsko krožnico v točki (1,0).

Grafična predstavitev tangensa in kotangensa je prikazana na sliki 18.

Lastnosti:

- 1. $D_{tan} = \mathbb{R} \left\{ \frac{\pi}{2} + k\pi; \ k \in \mathbb{Z} \right\}$
- 2. $D_{\text{cot}} = \mathbb{R} \{k\pi; k \in \mathbb{Z}\}$
- 3. $Z_{\text{tan}} = Z_{\text{cot}} = \mathbb{R}$
- 4. Tangens in kotangens sta lihi funkciji.

$$\tan(-x) = -\tan(x) \quad \cot(-x) = -\cot(x)$$

5. Obe funkciji sta **periodični** s periodo $\omega = \pi$.

21.5 Osnovne zveze med kotnimi funkcijami

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 \\ Grafičen dokaz na sliki 18. (21.5)

$$\tan \alpha \cdot \cot \alpha = 1 \tag{21.6}$$

$$1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha} \tag{21.7}$$

$$1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha} \tag{21.8}$$

(21.9)

Ostale zveze se dokaže tako, da se tangens ali kotangens zamenja po definiciji (21.3) ali (21.4) in nato poenostavi enačbo.

Slika 19: Adicijski izreki.

21.6 Adicijski izreki

Ob izpeljavi glej sliko 19. Izpeljane so iz definiciji kotnih funkcij sinus (21.2), kosinus (21.1), tangens (21.3) in kotangens (21.4).

$$\cos(\alpha + \beta) = \vec{a} \cdot \vec{b} = (\cos \alpha, -\sin \alpha) \cdot (\cos \beta, \sin \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\sin(\alpha + \beta) = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} = \begin{vmatrix} \cos \alpha & -\sin \alpha \\ \cos \beta & \sin \beta \end{vmatrix} = \sin \alpha \cos \beta - \sin \beta \cos \alpha$$

$$\tan(\alpha + \beta) = \frac{\sin(\alpha + \beta)}{\cos \alpha + \beta} = \frac{\sin \alpha \cos \beta + \sin \beta \cos \alpha : (\cos \alpha \cos \beta)}{\cos \alpha \cos \beta - \sin \alpha \sin \beta : (\cos \alpha \cos \beta)} =$$

$$= \frac{\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\sin \beta \cos \alpha}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta} + \frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\cot(\alpha + \beta) = \frac{\cos(\alpha + \beta)}{\sin\alpha + \beta} = \frac{\cos\alpha\cos\beta - \sin\alpha\sin\beta : (\sin\alpha\sin\beta)}{\sin\alpha\cos\beta + \sin\beta\cos\alpha : (\sin\alpha\sin\beta)} =$$

$$= \frac{\frac{\cos\alpha\cos\beta}{\sin\alpha\sin\beta} + \frac{\sin\alpha\sin\beta}{\sin\alpha\sin\beta}}{\frac{\sin\alpha\cos\beta}{\sin\alpha\sin\beta} + \frac{\sin\beta\cos\alpha}{\sin\alpha\sin\beta}} = \frac{\cot\alpha\cot\beta - 1}{\cot\alpha + \cot\beta}$$

$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta \tag{21.10}$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \sin \beta \cos \alpha \tag{21.11}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \mp \tan \beta}{1 + \tan \alpha \tan \beta} \tag{21.12}$$

$$\tan(\alpha \pm \beta) = \frac{\tan \alpha \mp \tan \beta}{1 \pm \tan \alpha \tan \beta}$$

$$\cot(\alpha \pm \beta) = \frac{\cot \alpha \cot \beta \mp 1}{\cot \alpha \mp \cot \beta}$$
(21.12)

21.7 Dvojni koti

Formule se izpelje iz adicijskih izrekov definiranih v razdelku 21.6.

$$\sin 2x = 2\sin x \cos x \tag{21.14}$$

$$\cos 2x = \cos^2 x - \sin^2 x \tag{21.15}$$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$$
$$\cot 2x = \frac{\cot^2 x - 1}{2\cot x}$$

$$\cot 2x = \frac{\cot^2 x - 1}{2\cot x}$$

21.8Polovični koti

$$\sin \alpha = 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \quad \land \text{Po formuli (21.14)}. \tag{21.16}$$

$$\cos \alpha = \cos^2 \frac{\tilde{\alpha}}{2} - \sin^2 \frac{\alpha}{2} \quad \land \quad \text{Po formuli (21.15)}.$$
 (21.17)

$$1 = \cos^2 \frac{\alpha}{2} + \sin^2 \frac{\alpha}{2} \qquad \text{\backslash Po osnovni zvezi (21.5).}$$
 (21.18)

Odštejemo enačbi (21.18) in (21.17) med seboj.

$$1 - \cos \alpha = 2\sin^2 \frac{\alpha}{2}$$
$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

Seštejemo enačbi (21.18) in (21.16) med seboj.

$$1 + \cos \alpha = 2\cos^2 \frac{\alpha}{2}$$
$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$$
$$\cot \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{1 - \cos \alpha}} = \frac{\sin \alpha}{1 - \cos \alpha} = \frac{1 + \cos \alpha}{\sin \alpha}$$

21.9 Komplementarni koti

21.10 Suplementarni koti

Po adicijskih izrekih velja:

$$\sin\left(\frac{\pi}{2} - \theta\right) = \cos\theta$$

$$\cos\left(\frac{\pi}{2} - \theta\right) = \sin\theta$$

$$\tan\left(\frac{\pi}{2} - \theta\right) = \cot\theta$$

$$\cot\left(\frac{\pi}{2} - \theta\right) = \tan\theta$$

Po adicijskih izrekih velja:

$$\sin (\pi - \theta) = \sin \theta$$

$$\cos (\pi - \theta) = -\cos \theta$$

$$\tan (\pi - \theta) = -\tan \theta$$

$$\cot (\pi - \theta) = -\cot \theta$$

21.11 Periode

Za definicijo periodične funkcije glej razdelek 16.

$$\sin(\theta + 2k\pi) = \sin \theta; \ k \in \mathbb{Z}$$

$$\cos(\theta + 2k\pi) = \cos \theta; \ k \in \mathbb{Z}$$

$$\tan(\theta + k\pi) = \tan \theta; \ k \in \mathbb{Z}$$

$$\cot(\theta + k\pi) = \cot \theta; \ k \in \mathbb{Z}$$

$$\sin(\theta + k\pi) = (-1)^k \sin \theta; \ k \in \mathbb{Z}$$

$$\cos(\theta + k\pi) = (-1)^k \cos \theta; \ k \in \mathbb{Z}$$

21.12 Faktorizacija

$$x = \alpha + \beta, \ y = \alpha - \beta$$

$$\alpha = \frac{x+y}{2}, \ \beta = \frac{x-y}{2}$$

$$\sin x + \sin y = \sin(\alpha + \beta) + \sin(\alpha - \beta) =$$

$$= \sin \alpha \cos \beta + \sin \beta \cos \alpha + \sin \alpha \cos \beta - \sin \beta \cos \alpha =$$

$$= 2 \sin \alpha \cos \beta =$$

$$= 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$$

$$(21.19)$$

Ostale formule se izpeljejo podobno.

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\sin x - \sin y = 2\cos\frac{x+y}{2}\sin\frac{x-y}{2}$$

$$\cos x + \cos y = 2\cos\frac{x+y}{2}\cos\frac{x-y}{2}$$

$$\cos x - \cos y = -2\sin\frac{x+y}{2}\sin\frac{x-y}{2}$$

21.13 Antifaktorizacija

Pogledamo enačbi (21.19) in (21.20) pri faktorizaciji (razdelek 21.12) in zapišemo naslednjo enakost:

$$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$$

in izpeljemo

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

Podobno naredimo tudi za ostale formule.

$$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

$$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin(\alpha + \beta) - \sin(\alpha - \beta) \right]$$

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} \left[\cos(\alpha + \beta) - \cos(\alpha - \beta) \right]$$

21.14 Grafi trigonometričnih funkcij

Splošna oblika:

$$f(x) = A\sin\omega(x-p) + q^{10}$$

A — amplituda

 ω — krožna frekvenca (koliko valov je na intervalu dolžine 2π)

 $\vec{v} = (p,q)$ — vektor premika

Grafi vseh funkcij so prikazni na sliki 20.

V naslednjih definicijah velja: $k \in \mathbb{Z}$.

Sinus:

Tangens:

ničle:	$x = k\pi$	ničle:	$x = k\pi$
minimumi:	$x = -\frac{\pi}{2} + 2k\pi$	poli:	$x = \frac{\pi}{2} + k\pi$
	$x = \frac{\pi}{2} + 2k\pi$		slika 20(c)
graf:	slika 20(a)		

Kosinus:

Kotangens:

ničle:	$x = \frac{\pi}{2} + k\pi$	ničle:	$x = \frac{\pi}{2} + k\pi$
minimumi:	$x = \pi + 2k\pi$	poli:	$x = k\pi$
maksimumi:	$x = 2k\pi$	graf:	slika 20(d)
graf:	slika 20(b)	O	· /

¹⁰ Seveda je lahko namesto funkcije sin vstavljena tudi katera koli druga trigonometrična funkcija.

Slika 20: Grafi trigonometričnih funkcij

21.15 Kot med premicama

Naklonski kot premice je pozitiven kot med abscisno osjo in premico. Če je premica vzporedna abscisni osi je kot enak 0° .

$$k = \frac{y_2 - y_1}{x_2 - x_1} = \tan \varphi; \ 0^\circ \le \varphi < 180^\circ \qquad \backslash \backslash \text{ Za } k \text{ glej razdelek } 16.4 \qquad (21.21)$$

Ob izpeljavi glej sliko 21.

$$k_1 = \tan \alpha_1 \tag{21.22}$$

$$k_2 = \tan \alpha_2 \tag{21.23}$$

Slika 21: Kot med premicama.

Po izrekih za kote v trikotniku (razdelek 19, 3 element seznama) velja:

$$\begin{split} &\alpha_1+\varphi=\alpha_2\\ &\varphi=\alpha_2-\alpha_1\\ &\tan\alpha=\tan(\alpha_2-\alpha_1)\\ &\tan\varphi=\frac{\tan\alpha_2-\tan\alpha_1}{1+\tan\alpha_1\tan\alpha_2} \qquad \text{\backslash Po adicijskem izreku za tangens (21.12).}\\ &\tan\varphi=\left|\frac{k_2-k_1}{1+k_1k_2}\right| \qquad \text{\backslash Po izpeljavah (21.22) in (21.23).} \end{split}$$

Vektorji 22

Vektor je **usmerjena daljica**. Vektor je **urejen par točk** v prostoru. Vektor **nič**, $\vec{0}$, je vektor \overline{AA} , ki je točka. **Enotski** vektor je vektor z dolžino 1.

Dva vektorja sta **enaka**, če sta enako dolga, imata enako smer in sta vzporedna. Enakost vektorjev je **ekvivalenčna** relacija. Za definicijo ekvivalenčne relacije glej razdelek 4.

V ravnini je toliko različnih vektorjev kot točk.

22.1Seštevanje vektorjev

Dva vektorja **seštejemo** tako, da začetno točno 2. vektorja postavimo v začetno točko 1. vektorja. Vsota je vektor, ki se začne v začetni točki 1. vektorja in konča v končni točki 2. vektorja. Seštevanje vektorjev je prikazano na sliki 22. Paralelogramsko pravilo je prikazano na sliki 22(a), trikotniško pa na sliki 22(b).

Lastnosti:

 $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ Grafični dokaz: slika 23(a). komutativnost:

 $\vec{a} + \left(\vec{b} + \vec{c}\right) = \left(\vec{a} + \vec{b}\right) + \vec{c} = \vec{a} + \vec{b} + \vec{c} \text{ Grafični dokaz: slika 23(b)}.$ $\vec{a} + \vec{0} = \vec{a}$ asociativnost:

enota za seštevanje: $\vec{a} + (-\vec{a}) = \vec{0}$ nasprotni element:

Odštevanje je prištevanje nasprotnega elementa.

Slika 22: Seštevanje vektorjev.

Slika 23: Grafični dokaz komutativnosti in asociativnosti seštevanja vektorjev.

22.2 Produkt vektorja s skalarjem

Produkt vektorja \vec{a} s **skalarjem** x je nov vektor, katerega dolžina je enaka produktu dolžine vektorja \vec{a} in absolutne vrednosti skalarja x. Za vektor velja, da je vzporeden vektorju \vec{a} . Če je x pozitiven ima isto smer kot \vec{a} , če je x negativen ima nasprotno, če je x 0 pa je rezultat vektor $\vec{0}$.

$$|x\vec{a}| = |x| \cdot |\vec{a}|, \ x \in \mathbb{R}$$

Lastnosti:

asociativnost v skalarnem faktorju: $x(y\vec{a}) = (xy)\vec{a}$ distributivnost v skalarnem faktorju: $x\vec{a} + y\vec{a} = (x+y)\vec{a}$ distributivnost v vektorskem faktorju: $x(\vec{a} + \vec{b}) = x\vec{a} + x\vec{b}$

22.3 Linearna kombinacija vektorjev

Linearna kombinacija vektorjev \vec{a} in \vec{b} je nov vektor $x\vec{a} + y\vec{b}$; $x,y \in \mathbb{R}$. **Linearna kombinacija** vektorjev $\vec{a_1}, \vec{a_2}, \dots, \vec{a_n}$ je nov vektor $x_1\vec{a_1} + x_2\vec{a_2} + \dots + x_n\vec{a_n}$; $x_1, x_2, \dots, x_n \in \mathbb{R}$

Dva vektorja \vec{a} in \vec{b} sta **neodvisna** kadar je njuna linearna kombinacija enaka 0 samo če sta x in y 0.

$$\vec{a}, \vec{b}$$
 neodvisna $\sim: x\vec{a} + y\vec{b} = 0 \Leftrightarrow x = y = 0$

Dva vektorja sta **odvisna**, če je njuna linearna kombinacija enaka nič in je vsaj eden od skalarjev različen od nič.

$$\vec{a}, \vec{b}$$
odvisna $\sim: x\vec{a} + y\vec{b} = 0 \Leftrightarrow x \neq 0 \lor y \neq 0$

Baza je množica neodvisnih vektorjev v prostoru. Število vektorjev v bazi je enako dimenziji prostora.

Če imamo v ravnini 2 nekolinearna vektorja lahko vsak drug vektor ravnine napišemo kot linearno kombinacijo danih nekolinearnih vektorjev. Če imamo v prostoru bazo $\vec{a}, \vec{b}, \vec{c}$ potem lahko vsak vektor zapišemo na en sam način kot linearno kombinacijo baznih vektorjev.

22.4 Pravokotna projekcija

Imejmo vektorja $\vec{a} = \overrightarrow{OA}$ in $\vec{b} = \overrightarrow{ZK}$. Naj bo točka Z' pravokotna projekcija začetka vektorja ZK na nosilko vektorja \overrightarrow{OA} , točka K' pa projekcija konca. Potem je pravokotna projekcija vektorja \vec{b} na vektor \vec{a} enaka **razdalji** med točkama Z' in K'. Če ima vektor \overrightarrow{OA} enako smer kot vektor $\overrightarrow{Z'K'}$, potem je razdalja **pozitivno** predznačena, če ne je **negativno** predznačena.

$$\operatorname{pr}_{\vec{a}} \vec{b} = \begin{cases} |Z'K'|; & \overrightarrow{Z'K'} \uparrow \uparrow \overrightarrow{OA} \\ -|Z'K'|; & \overrightarrow{Z'K'} \uparrow \downarrow \overrightarrow{OA} \end{cases}$$

$$\operatorname{pr}_{\vec{a}} \vec{b} = b \cdot \cos \varphi$$

Pravokotna projekcija vektorja \vec{b} na vektor \vec{a} je prikazana na sliki 24.

Slika 24: Pravokotna projekcija vektorja \vec{b} na vektor \vec{a} .

Lastnosti:

$$\operatorname{pr}_{\vec{a}}(x\vec{b}) = x \cdot \operatorname{pr}_{\vec{a}} \vec{b}$$
$$\operatorname{pr}_{\vec{a}}(\vec{b} + \vec{c}) = \operatorname{pr}_{\vec{a}} \vec{b} + \operatorname{pr}_{\vec{a}} \vec{c}$$

22.5 Skalarni produkt

Kot φ med dvema vektorjema, ki se začneta v isti točki, je manjši od obeh kotov, ki ju vektorja določata.

Skalarni produkt dveh vektorjev je enak produktu dolžin obeh vektorjev s kosinusom vmesnega kota.

$$\vec{a} \cdot \vec{b} = a \cdot b \cdot \cos \varphi \tag{22.1}$$

Lastnosti:

$$\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \quad \backslash \text{Komutativnost.}$$
 (22.2)

Skalarni produkt pravokotnih vektorjev je enak 0:

$$\vec{a} \perp \vec{b} \Rightarrow \vec{a}\vec{b} = 0 \tag{22.3}$$

Skalarni produkt vektorja samega s seboj je enak kvadratu njegove dolžine:

$$\vec{a}\vec{a} = a^2 \tag{22.4}$$

$$x(\vec{a}\vec{b} = (x\vec{a})\vec{b} = \vec{a}(x\vec{b})$$
 \\ Homogenost. (22.5)

$$\vec{a}\vec{b} = a \cdot \operatorname{pr}_{\vec{a}} \vec{b} \tag{22.6}$$

$$\vec{a}(\vec{b}+\vec{c}) = \vec{a}\vec{b} + \vec{a} + \vec{b}$$
 \\ Distributivnost. (22.7)

Dokaz lastnosti 22.2:

$$\vec{a}\vec{b}=ab\cos\varphi=ba\cos\varphi=\vec{b}\vec{a}$$
 \\ Množenje je komutativno.

Dokaz lastnosti 22.3:

$$\vec{a}\vec{b} = ab\cos 90^\circ = ab \cdot 0 = 0$$

Dokaz lastnosti 22.4:

$$\vec{a}\vec{a} = a \cdot a \cdot \cos 0^{\circ} = a^2$$

$$a = \sqrt{\vec{a}\vec{a}}$$
 \\ Formula za dolžino vektorja.

Dokaz lastnosti 22.5:

$$x(\vec{a}\vec{b}) = x(ab\cos\varphi) = xab\cos\varphi$$

$$(x\vec{a})\vec{b} = (xa)b\cos\varphi = xab\cos\varphi$$

$$\vec{a}(x\vec{b}) = a(xb)\cos\varphi = xab\cos\varphi$$
 \\ Množenje je asociativno.

Dokaz lastnosti 22.6:

$$\operatorname{pr}_{\vec{a}} \vec{b} = b \cdot \cos \varphi$$

$$\vec{a}\vec{b} = a \cdot b \cdot \cos \varphi = a \cdot \operatorname{pr}_{\vec{a}} \vec{b}$$

Dokaz lastnosti 22.7:

$$\vec{a}(\vec{b} + \vec{c}) = a \cdot \operatorname{pr}_{\vec{a}}(\vec{b} + \vec{c}) = a \cdot (\operatorname{pr}_{\vec{a}} \vec{b} + \operatorname{pr}_{\vec{a}} \vec{c}) = a \cdot \operatorname{pr}_{\vec{a}} \vec{b} + a \cdot \operatorname{pr}_{\vec{a}} \vec{c} = \vec{a}\vec{b} + \vec{a}\vec{c}$$

Iz formule za skalarni produkt izpeljemo tudi formulo za računanje **kota** med vektorjema:

$$\cos \varphi = \frac{\vec{a}\vec{b}}{ab} \Rightarrow \varphi = \arccos\left(\frac{\vec{a}\vec{b}}{ab}\right)$$

22.6 Krajevni vektorji

Ortonormirana baza so vektorji \vec{i} , \vec{j} , \vec{k} , ki so med sabo paroma pravokotni, ležijo na koordinatnih oseh in so dolgi 1 enoto. **Krajevni vektor** do točke A je vektor, ki se začne v izhodišču koordinatnega sistema in se konča v točki A. (oznaka: $\overrightarrow{r_A}$)

Vsak krajevni vektor lahko zapišemo kot linearno kombinacijo baznih vektorjev, ki

jo predstavimo z urejeno trojico, ki jo imenujemo **komponente** vektorjev. Komponente vektorjev so enake koordinatam točke do katere vektor kaže.

$$\vec{r_A} = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} = (a_1, a_2, a_3)$$

22.6.1 Seštevanje krajevnih vektorjev

Vektorje v komponentah seštevamo tako, da seštevamo istoležne komponente.

$$(a_1,a_2,a_3)+(b_1,b_2,b_3)=(a_1+b_1,\,a_2+b_2,\,a_3+b_3)$$

$$(a_1, a_2, a_3) + (b_1, b_2, b_3) = a_1 \vec{i} + a_2 \vec{j} + a_3 \vec{k} + b_1 \vec{i} + b_2 \vec{j} + b_3 \vec{k} =$$

$$= \vec{i}(a_1 + b_1) + \vec{j}(a_2 + b_2) + \vec{k}(a_3 + b_3) =$$

$$= (a_1 + b_1, a_2 + b_2, a_3 + b_3)$$

22.6.2 Množenje krajevnega vektorja s skalarjem

Vektor v komponentah množimo s skalarjem tako da množimo vsako komponento posebej.

$$x(a_1,a_2,a_3) = (xa_1, xa_2, xa_3)$$

 $x(a_1,a_2,a_3) = x(a_1\vec{i} + a_2\vec{j} + a_3\vec{k}) = xa_1\vec{i} + xa_2\vec{j} + xa_3\vec{k} = (xa_1, xa_2, xa_3)$

22.6.3 Vektor med dvema točkama

Vektor med dvema točkama je enak razliki istoležnih komponent drugega in prvega vektorja. Ob izpeljavi glej sliko 25.

$$\overrightarrow{AB} = (b_1 - a_1, b_2 - a_2, b_3 - a_3)$$

$$\overrightarrow{AB} = -\overrightarrow{r_A} + \overrightarrow{r_B} = -(a_1, a_2, a_3) + (b_1, b_2, b_3) =$$

$$= (-a_1, -a_2, -a_3) + (b_1, b_2, b_3) = (b_1 - a_1, b_2 - a_2, b_3 - a_3)$$

Slika 25: Vektor med dvema točkama

22.6.4 Skalarni produkt krajevnih vektorjev

Skalarni produkt vektorjev v komponentah je enak vsoti produktov istoležnih komponent.

$$\vec{a}\vec{b} = a_1b_1 + a_2b_2 + a_3b_3$$

$$\vec{a}\vec{b} = (a_1, a_2, a_3) \cdot (b_1, b_2, b_3) = (a_1\vec{i} + a_2\vec{j} + a_3\vec{k}) \cdot (b_1\vec{i}, b_2\vec{j}, b_3\vec{k}) =$$

$$= a_1\vec{i} \cdot b_1\vec{i} + a_1\vec{i} \cdot b_2\vec{j} + a_1\vec{i} \cdot b_3\vec{k} + a_2\vec{j} \cdot b_1\vec{i} + a_2\vec{j} \cdot b_2\vec{j} + a_2\vec{j} \cdot b_3\vec{k} +$$

$$+ a_3\vec{k} \cdot b_1\vec{i} + a_3\vec{k} \cdot b_2\vec{j} + a_3\vec{k} \cdot b_3\vec{k} =$$

$$= a_1\vec{i} \cdot b_1\vec{i} + a_2\vec{j} \cdot b_2\vec{j} + a_3\vec{k} \cdot b_3\vec{k} \quad \land \vec{i} = \vec{i}\vec{k} = \vec{j}\vec{k} = 0 \text{ po } (22.3).$$

$$= a_1b_1 \cdot \vec{i}\vec{i} + a_2b_2 \cdot \vec{j}\vec{j} + a_3b_3 \cdot \vec{k}\vec{k} \quad \land \vec{i} = \vec{j}\vec{j} = \vec{k}\vec{k} = 1 \text{ po } (22.4).$$

$$= a_1b_1 + a_2b_2 + a_3b_3$$

22.6.5 Enotski vektor v smeri danega vektorja

$$\overrightarrow{e_{\vec{a}}} = \frac{\vec{a}}{|\vec{a}|}$$

22.7 Vektorski produkt

Vektorski produkt vektorjev \vec{a} in \vec{b} je nov vektor $\vec{a} \times \vec{b}$, ki je pravokoten na oba vektorja, njegova dolžina je enaka ploščini paralelograma, ki ga določata vektorja \vec{a} in \vec{b} , usmerjen pa je tako, da je gledano z njegovega konca krajša pot od vektorja \vec{a} do vektorja \vec{b} pozitivna.

$$\vec{a} \times \vec{b} = \begin{pmatrix} \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix}, \begin{vmatrix} a_3 & a_1 \\ b_3 & b_1 \end{vmatrix}, \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}, \end{pmatrix} \quad \land \quad Za \text{ razrešitev determinante matrike glej (15.1)}.$$

$$\begin{vmatrix} \vec{a} \times \vec{b} \end{vmatrix} = |\vec{a}| \cdot |\vec{b}| \cdot \sin \varphi$$

23 Kompleksna števila

Vpeljemo število *i*, ki ga imenujemo **imaginarna enota**.

$$i^2 = -1 \Rightarrow i = \sqrt{-1}$$

$$\mathbb{C} = \left\{ z; \ z = x + yi; \ x, y \in \mathbb{R}, \ i = \sqrt{-1} \right\}$$

Kompleksno število se lahko predstavi tudi z urejenim parom (x,y) ali s krajevnim vektorjem (x,y).

Kompleksna števila imajo podmnožico realnih in imaginarnih števil.

$$\mathbb{R} = \{ z; \ z = x + yi; \ x \in \mathbb{R}, \ y = 0 \}$$
$$\mathcal{I} = \{ z; \ z = x + yi; \ x = 0, \ y \in \mathbb{R} \}$$

 $\Re z$ — realna komponenta števila z, tudi x

 $\Im z$ — imaginarna komponenta števila z, tudi y

Kompleksna števila lahko narišemo v kompleksni ravnini, ki ima realno in imaginarno os, kot urejene pare (x,y). Primer je prikazan na sliki 26.

Slika 26: Grafični prikaz kompleksnega števila.

23.1 Seštevanje kompleksnih števil

Kompleksna števila **seštevamo** tako, da seštejemo realni komponenti obeh števil in imaginarni komponenti obeh števil.

$$z = a + bi$$

$$w = c + di$$

$$z + w = (a + bi) + (c + di) = (a + c) + (bi + di) = (a + c) + (b + d)i$$

$$z - w = z + (-w) = (a + bi) + (c + di) = (a - c) + (b - d)i$$

Rezultat seštevanja ali odštevanja dveh kompleksnih števil je vedno kompleksno število.

23.2 Množenje kompleksnih števil

$$z = a + bi$$

$$w = c + di$$

$$z \cdot w = (a + bi)(c + di) = ac + adi + bic + bidi =$$

$$= ac + (ad + bc)i + bdi^2 = (ac - bd) + (ad + bc)i$$

Rezultat množenja kompleksnih števil je vedno kompleksno število.

$$i^{4n} = (i^4)^n \cdot i^0 = 1 \cdot 1 = 1$$

$$i^{4n+1} = (i^4)^n \cdot i^1 = 1 \cdot i = i$$

$$i^{4n+2} = (i^4)^n \cdot i^2 = 1 \cdot -1 = -1$$

$$i^{4n+3} = (i^4)^n \cdot i^3 = 1 \cdot -i = -i$$

23.3 Konjugirano kompleksno število

$$z = x + yi$$
$$\overline{z} = x - yi$$

Lastnosti:

- konjugirano kompleksno število in prvotno število imata sliki zrcalni glede na realno os (slika 27)
- ullet konjugirano število konjugiranega števila z je enako številu

$$z \colon \overline{\overline{z}} = z$$

• produkt števila in njegove konjugirane vrednosti je enak vsoti kvadratov realne in imaginarne komponente:

$$z \cdot \overline{z} = (x + yi)(x - yi) = x^2 + y^2 \tag{23.1}$$

• konjugirana vrednost vsote je enaka vsoti konjugiranih vrednosti:

$$\overline{z+w} = \overline{z} + \overline{w} \tag{23.2}$$

• konjugirana vrednost produkta je enaka produktu konjugiranih vrednosti:

$$\overline{z \cdot w} = \overline{z} \cdot \overline{w} \tag{23.3}$$

• konjugirana vrednost potence je enaka potenci konjugirane vrednosti:

$$\overline{z^n} = \overline{z}^n \tag{23.4}$$

• konjugirana vrednost realnega števila je enaka realnemu številu:

$$\overline{a} = a, \ a \in \mathbb{R}$$
 (23.5)

Slika 27: Grafični prikaz konjugiranega kompleksnega števila.

23.4 Absolutna vrednost kompleksnega števila

$$|z| = +\sqrt{z \cdot \overline{z}} = +\sqrt{x^2 + y^2}$$

Lastnosti:

- grafično predstavlja oddaljenost števila od izhodišča kompleksne ravnine (slika 28)
- |z| > 0; $|z| = 0 \Leftrightarrow z = 0 + 0i$
- produkt absolutnih vrednosti je enak absolutni vrednosti produkta:

$$|z| \cdot |w| = |z \cdot w|$$

• vsota absolutnih vrednosti je večja ali enaka absolutni vrednosti vsote (trikotniška neenakost): $|z|+|w|\geq |z+w|$

Slika 28: Grafični prikaz absolutne vrednosti kompleksnega števila.

23.5 Deljenje kompleksnih števil

$$z^{-1}=rac{1}{z}=rac{\overline{z}}{z\overline{z}};\;z
eq0$$
 \\ Pod ulomkom je vedno realno število zaradi (23.1).
$$w:z=w\cdot z^{-1}=rac{w}{z}=rac{w\overline{z}}{z\overline{z}};\;z
eq0$$

Rezultat deljenja dveh kompleksnih števil je vedno kompleksno število.

24 Liki

Geometrijski lik je strnjena ravninska množica točk, ki je omejena s sklenjeno krivuljo ali lomljeno črto.

24.1 Ploščina

Ploščina je funkcija, ki liku priredi določeno število, ki nam pove, koliko enotskih kvadratkov popolnoma prekrije dani lik.

Lastnosti:

- $p(L) \geq 0$
- $p\left(\prod_{1} \right) = 1$
- $p(L) = p(L_1) + p(L_2) \Leftrightarrow L = L_1 + L_2 \wedge L_1 \cap L_2 = \emptyset$ Glej sliko 29.
- $L_1 \cong L_2 \Leftrightarrow p(L_1) = p(L_2)$

Slika 29: Ploščina lika, sestavljenega iz več likov.

24.2Kvadrat

Glej sliko 30(a).

$$p = a^2 = \frac{d^2}{2}$$
$$o = 4 \cdot a$$

24.3Pravokotnik

Glej sliko 30(b).

$$p = a \cdot b$$
$$o = 2(a+b)$$

Paralelogram

Glej sliko 30(c).

$$p = a \cdot v_a = b \cdot v_b$$

$$p = a \cdot b \cdot \sin \alpha = a \cdot b \cdot \sin \beta$$

$$o = 2(a + b)$$

$$v_a = b \cdot \sin \alpha$$

$$v_b = a \cdot \sin \beta$$

24.5Trapez

Glej sliki 30(d) in 30(e).

$$p = \frac{(a+c) \cdot v}{2} = \frac{a+c}{2} \cdot v = s+v$$

$$o = a+b+c+d$$

$$s = a - x - y$$
$$s = a + x + y$$

$$2s=a+c \qquad \backslash \backslash$$
 Seštejemo zgornji enačbi.

$$s = \frac{a+c}{2}$$

Deltoid 24.6

Glej sliko 31(a).

$$p = \frac{e \cdot f}{2}o = 2(a+b)$$

24.7 Romb

$$p = a \cdot v_a = \frac{e \cdot f}{2} = a^2 \cdot \sin \alpha = a^2 \cdot \sin \beta$$
$$o = 4 \cdot a$$

24.8 Trikotnik

Glej sliki 31(b) in 31(c).

$$p = \frac{a \cdot v_a}{2} = \frac{b \cdot v_b}{2} = \frac{c \cdot v_c}{2}$$

$$p = \frac{a \cdot b \cdot \sin \gamma}{2} = \frac{a \cdot c \cdot \sin \beta}{2} = \frac{b \cdot c \cdot \sin \alpha}{2}$$

$$o = a + b + c$$

$$p = \frac{a \cdot b}{2}$$

$$v = \frac{a\sqrt{3}}{2}$$

Enakostranični trikotnik

$$p = \frac{a \cdot v}{2} = \frac{a^2 \sqrt{3}}{4}$$
$$o = 3 \cdot a$$
$$v = \frac{a\sqrt{3}}{2}$$

Slika 30: Kvadrat, pravokotnik, paralelogram in trapez.

Slika 31: Deltoid in trikotnik.

24.10 Pravilni mnogokotnik

Pravilni mnogokotnik mnogokotnik, ki ima vse stranice enako dolge in vse kote med seboj skladne. Pravilni mnogokotnik je vedno konveksen. Vsakemu pravilnemu mnogokotniku se da hkrati včrtati in očrtati krožnico, ki imata skupno središče.

Vsota notranjih kotov: $S_n = (n-2) \cdot 180^{\circ}$

Vsota zunanjih kotov: $S'_n = 360^{\circ}$ Število diagonal: $D_n = \frac{n(n-3)}{2}$

Ploščina se izračuna kot vsota ploščin enakokrakih trikotnikov, ki imajo za osnovnico eno stranico, vrh pa imajo v središču mnogokotniku včrtane krožnice. Polmer mnogokotniku včrtane krožnice označimo z r, polmer mnogokotniku očrtane krožnice pa z R.

$$o = n \cdot a$$

$$\varphi = \frac{360^{\circ}}{n}$$

$$p = \frac{nar}{2}$$

$$p = \frac{nR^2 \sin \varphi}{2}$$

$$p = \frac{na^2}{4 \tan \frac{\varphi}{2}}$$

Sinusni izrek 24.11

Slika 32: Sinusni izrek.

Ob izpeljavi glej sliko 32.

- 1. Vsakemu trikotniku lahko očrtamo krožnico.
- 2. Kot γ je obodni kot.
- 3. $\angle ASB = 2\gamma$, ker je središčni kot.
- 4. $\triangle ABS$ je enakokrak $\Rightarrow AD = \frac{c}{2} \wedge \angle ASD = \gamma$
- 5. $\triangle ADS$ je pravokoten, torej veljajo kotne funkcije.
- 6. $\sin \gamma = \frac{\frac{c}{2}}{R}$ 7. $\frac{c}{\sin \gamma} = 2R$
- 8. Ponovimo za vse kote.

$$a = 2R \cdot \sin \alpha$$

$$b = 2R \cdot \sin \beta$$

$$c = 2R \cdot \sin \gamma$$

Razmerje med stranico in sinusom nasprotnega kota je konstantno.

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

Uporaba: 2 kota in stranica, 2 stranici in kot, ki ni med njima.

$$p = \frac{ab\sin\gamma}{2} = \frac{ac\sin\beta}{2} = \frac{bc\sin\alpha}{2}$$

$$2p = ab\sin\gamma = ac\sin\beta = bc\sin\alpha$$

$$\frac{2p}{abc} = \frac{\sin\alpha}{a} = \frac{\sin\beta}{b} = \frac{\sin\gamma}{c} = \frac{1}{2R}$$

$$\frac{abc}{2p} = 2R$$

$$R = \frac{abc}{4p}$$

$$p = \frac{abc}{4R}$$

24.12 Kosinusni izrek

Ob izpeljavi glej sliko 33(a).

$$c^{2} = \vec{c} \cdot \vec{c}$$

$$c^{2} = (\vec{a} = \vec{b})(\vec{a} - \vec{b})$$

$$c^{2} = a^{2} - 2ab\cos\gamma + b^{2}$$

$$c^{2} = a^{2} + b^{2} - 2ab\cos\gamma$$

Ponovimo za vse stranice:

$$a^{2} = b^{2} + c^{2} - 2bc \cos \alpha$$

$$b^{2} = a^{2} + c^{2} - 2ac \cos \beta$$

$$c^{2} = a^{2} + b^{2} - 2ab \cos \gamma$$
(24.1)

Kvadrat stranice trikotnika je enak vsoti kvadratov drugih dveh stranic zmanjšanih za produkt dolžin teh dveh stranic s kosinusom njunega vmesnega kota.

Uporaba: 2 stranici in en kot, 3 stranice.

Slika 33: Kosinusni izrek in polmer včrtanega kroga.

24.13 Polmer včrtanega kroga

Ob izpeljavi glej sliko 33(b).

$$p = \frac{c \cdot r}{2} + \frac{a \cdot r}{2} + \frac{b \cdot r}{2}$$

$$p = r \cdot \left(\frac{a+b+c}{2}\right)$$

$$p = r \cdot s$$

$$r = \frac{p}{s}$$

$$s = \frac{a+b+c}{2} \quad \land \text{Polovični obseg.}$$
(24.2)

24.14 Heronov obrazec

$$p = \frac{b \cdot c \cdot \sin \alpha}{2} \quad \text{\backslash Kvadriramo, vse je pozitivno.}$$

$$p^2 = \frac{b^2 \cdot c^2 \cdot \sin^2 \alpha}{4} \quad \text{\backslash Zamenjamo } \sin^2 \alpha \text{ po osnovni zvezi } (21.5).$$

$$p^2 = \frac{b^2 c^2 (1 - \cos^2 \alpha)}{4} \quad \text{\backslash Razlika kvadratov } (11.4).$$

$$p^2 = \frac{b^2 c^2 \left(1 - \cos \alpha\right) \left(1 + \cos \alpha\right)}{4} \quad \text{\backslash Kosinusni izrek } 24.1. \cos \alpha = \frac{b^2 + c^2 - a^2}{2bc}$$

$$p^2 = \frac{b^2 c^2 \left(1 - \frac{b^2 + c^2 - a^2}{2bc}\right) \left(1 + \frac{b^2 + c^2 - a^2}{2bc}\right)}{4} \quad \text{\backslash Se znebimo dvojnih ulomkov.}$$

$$p^2 = \frac{b^2 c^2}{16 \cdot b^2 c^2} \left(2bc - b^2 - c^2 + a^2\right) \left(2bc + b^2 + c^2 - a^2\right) \quad \text{\backslash Sestavimo popolne kvadrate.}$$

$$p^2 = \frac{1}{16} \left(a^2 - (b - c)^2\right) \left((b + c)^2 - a^2\right) \quad \text{\backslash Razlika kvadratov } (11.4).$$

$$p^2 = \frac{1}{16} \left(a - b + c\right) \left(a + b - c\right) \left(b + c - a\right) \left(b + c + a\right)$$

$$p^2 = \frac{a + b + c}{2} \cdot \frac{b + c - a}{2} \cdot \frac{a - b + c}{2} \cdot \frac{a + b - c}{2} \quad \text{\backslash Uporabimo polobseg } (24.2).$$

$$p^2 = s \left(s - a\right) \left(s - b\right) \left(s - c\right)$$

$$p = \sqrt{s \left(s - a\right) \left(s - b\right) \left(s - c\right)}$$

Uporabimo ga, ko imamo podane vse tri stranice in želimo izračunati ploščino.

24.15 Krog

Krog je množica točk v ravnini, ki so r ali manj oddaljene od neke točke S v isti ravnini Π . Točki S pravimo središče.

$$\mathcal{K} = \{T; \ T, S \in \Pi \land d(T, S) \le r\}$$

Razmerje med obsegom in premerom kroga je **konstantno**. Konstanto označimo s $\boldsymbol{\pi}$.

$$o = 2\pi r$$

$$l = \frac{\pi r \alpha}{180^{\circ}} = r\alpha$$

$$p = \pi r^{2}$$

$$p_{iz} = \frac{\pi r^{2} \alpha}{360^{\circ}} = \frac{r^{2} \alpha}{2} = \frac{l \cdot r}{2}$$

$$p_{od} = p_{iz} - p_{\triangle}$$

25 Telesa

Poznamo **okrogla** in **oglata** telesa. Okrogla so med drugim tudi **valj**, **krogla**, **stožec** in **vrtenine**. Oglata telesa ali **poliedre** med drugim delimo tudi na pravilne

poliedre (platonska telesa), piramide in prizme.

Rob je stičišče dveh ploskev. Oglišče je stičišče dveh ali več robov. Površina telesa je enaka vsoti ploščin vseh mejnih ploskev. Volumen ali prostornina je funkcija, ki telesu priredi določeno število, ki nam pove koliko enotskih kock popolnoma napolni lik.

Lastnosti:

- $V(T) \ge 0$
- $\bullet \ V\left(\bigoplus_{i=1}^{n}\right) = 1$
- $T_1 \cong T_2 \Rightarrow V(T_1) = V(T_2)$
- $V(T) = V(T_1) + V(T_2) \Leftrightarrow T = T_1 \cup T_2 \wedge T_1 \cap T_2 = \emptyset$

Polieder je oglato telo, omejeno s samimi *n*-kotniki. **Pravilni polieder** je polieder, ki je omejen s samimi pravilnimi *n*-kotniki, v vsakem oglišču pa se stika enako število robov. (tetraeder, heksaeder, oktaeder, dodekaeder, ikozaeder)

25.1 Cavalierjevo načelo

Dve telesi imata **enaki prostornini**, če sta **ploščinsko enaka poljubna ravninska preseka** s skupno ravnino, ki je **vzporedna** ravnini, na kateri leži osnovna ploskev.

25.2 Prizma

Prizma je polieder, ki je omejen z dvema vzporednima n-kotnikoma, v plašču pa ima n paralelogramov. Poznamo pokončne in poševne prizme.

Višina prizme je najkrajša možna razdalja med osnovnima ploskvama. Prizma je pokončna, če je višina enaka stranskemu robu. Prizma je pravilna, če sta osnovni ploskvi pravilna n-kotnika in če je pokončna. Prizma je enakoroba, če so vsi robovi enako dolgi. (ni nujno pokončna).

$$P = 2 \cdot O + pl$$

$$V = O \cdot v$$

25.2.1 Kvader

25.2.2 Kocka

Pokončna štiristrana prizma.

$$P = 2 \cdot (ab + ac + bc)$$

$$V = a \cdot b \cdot c$$

Pravilna enakoroba štiristrana prizma ali heksaeder.

$$P = 6a^2$$

$$V = a^3$$

25.3 Valj

Krožni valj je rotacijsko geometrijsko telo, ki nastane z rotacijo paralelograma okoli ene od njegovih stranic za 360°. Poznamo pokončen in poševen valj.

Višina valja je najkrajša razdalja med osnovnima ploskvama. Valj je **pokončen**, če je višina enaka stranskemu robu, če ne je **poševen**.

Površino valja sestavljata dva skladna kroga s polmerom r in **paralelogram**, katerega osnovnica je enaka obsegu osnovne ploskve, višina pa je enaka višini valja v.

Osni presek pokončnega valja je pravokotnik. Značilni osni presek valja je tisti, ki vsebuje višino valja. Pravokotni osni presek valja je tisti, ki je pravokoten na značilnega in je vedno pravokotnik.

$$P = 2 \cdot O + pl = 2\pi r^2 + 2\pi rv = 2\pi r(r+v)$$

 $V = O \cdot v = \pi r^2 v$

25.3.1 Enakostranični valj

Enakostranični valj je valj, katerega vsak osni presek je kvadrat.

$$v = 2r$$

$$P = 2\pi r(r+v) = 6\pi r^{2}$$

$$V = \pi r^{2}v = 2\pi r^{3}$$

25.4 Piramida

Piramida je množica točk prostora, ki je omejena s ploskvijo, ki je poljuben n-kotnik in plaščem, ki je zgrajen iz n trikotnikov.

 \mathbf{Vrh} piramide V je oglišče, ki ne meji na osnovno ploskev. $\mathbf{Višina}$ piramide v je najkrajša razdalja med vrhom in ravnino v kateri leži osnovna ploskev. Poznamo **poševne** in **pokončne** piramide. Piramida je **pokončna**, če se vrh piramide projicira v središče n-kotniku očrtanega kroga. Piramida je **pravilna**, če je pokončna in če je osnovna ploskev pravilni n-kotnik. Stranske ploskve so enakokraki trikotniki. Piramida je **enakoroba**, če ima vse robove enako dolge.

$$\begin{split} P &= O + pl \\ V &= \frac{O \cdot v}{3} \\ \alpha &= \angle(s, O) \qquad \backslash \text{Kot med stranskim robom in osnovno ploskvijo.} \\ \beta &= \angle(v_s, 0) \qquad \backslash \text{Kot med stransko in osnovno ploskvijo.} \end{split}$$

25.5 Stožec

Krožni stožec je množica točk v prostoru, ki je omejena s ploskvijo, ki je krog in plaščem, ki je unija vseh daljic, ki povezujejo rob osnovne ploskve s poljubno točko, ki ni v isti ravnini kot osnovna ploskev.

Vrh stožca V je edino oglišče stožca. **Višina** stožca v je najkrajša razdalja med vrhom in ravnino v kateri leži osnovna ploskev. **Stranica** stožca s je daljica, ki povezuje vrh stožca s točko na robu osnovne ploskve.

Poznamo poševen in pokončen stožec. Stožec je pokončen, če se vrh projicira v

središče osnovne ploskve, če ne, je poševen.

Osni presek pokončnega stožca je enakokrak trikotnik. **Značilni** presek stožca vsebuje višino, **pravokotni** pa je pravokoten na značilnega in je vedno enakokrak trikotnik.

$$\begin{split} pl &= \frac{\pi s^2 \alpha}{360^\circ} = \frac{\pi s \alpha}{180^\circ} \cdot \frac{s}{2} = \frac{l \cdot s}{2} = \frac{2\pi r s}{2} = \pi r s \\ P &= O + pl = \pi r^2 + \pi r s = \pi r (r+s) \\ V &= \frac{O \cdot v}{3} = \frac{\pi r^2 v}{3} \end{split}$$

25.5.1 Enakostranični stožec

Stožec je **enakostraničen**, če je njegov vsak osni presek **enakostraničen trikotnik**.

$$s = 2r$$

$$v = r\sqrt{3}$$

$$P = \pi r(r+s) = 3\pi r^{2}$$

$$V = \frac{\pi r^{2} v}{3} = \frac{\pi r^{3} \sqrt{3}}{3}$$

25.6 Krogla

Množica točk prostora, ki so za radij ali manj oddaljene od izbrane točke, ki ji pravimo središče. Katerikoli presek krogle je krog. Dokaz?

Volumen polkrogle je po Cavalierjevem načelu enak valju z višino in radijem r, ki mu izrežemo največji možen stožec.

$$\frac{V}{2} = \pi r^2 r - \frac{\pi r^2 r}{3}$$
$$V = \frac{4\pi r^3}{3}$$

Površina krogle (psevdodokaz):

$$V = \sum_{i=0}^{\infty} \frac{O_i \cdot v}{3} \qquad \text{\backslash Volumen je vsota volumnov zelo majhnih piramid.}$$

$$V = \frac{v}{3} \left(\sum_{i=0}^{\infty} O_i \right) \qquad \text{\backslash Vsota vseh osnovnih ploskev je površina.}$$

$$V = \frac{v}{3} P$$

$$P = \frac{3V}{r}$$

$$P = \frac{3 \cdot 4\pi r^3}{3r}$$

$$P = 4\pi r^2$$

26 Polinomi

Polinom je funkcija oblike:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0; \ a_n, \dots, a_0 \in \mathbb{C}$$

$$a_n, \dots, a_0 - \text{ koeficienti}$$

$$a_0 - \text{ prosti člen ali svobodni člen}$$

$$a_n - \text{ vodilni koeficient}$$

$$a_n x^n - \text{ vodilni člen}$$

Stopnja polinoma je tista največja potenca x, ki ima poleg sebe neničelni koeficient. Dva polinoma sta **enaka** natanko tedaj, ki imata enaki stopnji in enake koeficiente pri potencah iste stopnje.

26.1 Seštevanje polinomov

Dva polinoma seštejemo tako, da seštejemo koeficiente pri potencah istih stopenj. **Vsota** dveh polinomov je **polinom**, njegova stopnja pa je **manjša** ali **enaka** višji od stopenj sumandov.

26.2 Množenje polinomov

Množimo vsak člen z vsakim. **Produkt** dveh polinomov **je** polinom, stopnja produkta neničelnih polinomov pa je enaka **vsoti** stopenj polinomov, ki jih množimo.

Polinom je **razcepen**, če ga lahko zapišemo kot produkt dveh nekonstantnih polinomov s koeficienti iz iste množice števil kot so koeficienti prvotnega polinoma.

26.3 Deljenje polinomov

Osnovni izrek o deljenju polinomov:

$$p(x) = k(x) \cdot q(x) + o(x); \text{ st } (o(x)) < \text{st } (q(x)))$$
(26.1)

Za dva polinoma p(x) in q(x) obstajata dva natanko določena polinoma k(x) in o(x), tako da velja osnovni izrek o deljenju.

26.4 Hornerjev algoritem

Hornerjev algoritem je **postopek** za **deljenje** polinoma p(x) z **linearnim** polinomom (x-a). V prvi vrstici Hornerjeve sheme so koeficienti polinoma p(x). V zadnji vrstici pa so po vrsti koeficienti **količnika** k(x), ki ima za ena manjšo stopnjo od polinoma p(x). Zadnje število pa je ravno **vrednost** polinoma pri a (p(a)) oz. ostanek (o(x)).

$$p(x) = k(x)q(x) + o(x)$$

$$p(a) = k(a)(a - a) + o(x)$$

$$p(a) = o(x)$$

Shema:

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

$$\begin{vmatrix} a_n & a_{n-1} & \dots & a_1 & a_0 \\ & a \cdot a_n & \dots & \dots \\ \hline a & a_n & a \cdot a_n + a_{n-1} & \dots & p(a) \end{vmatrix}$$

26.5 Ničle polinoma

Število a je **ničla** polinoma, če je vrednost polinoma pri a enaka 0.

$$a \text{ ničla} \Leftrightarrow p(a) = 0$$

Število a je ničla polinoma natanko takrat, ko je polinom p(x) deljiv z linearnim polinomom (x-a).

$$p(a) = 0 \Leftrightarrow p(x) = k(x)(x - a)$$

Dokaz:

$$p(x) = k(x)(x - a)$$
$$p(a) = k(x)(a - a)$$
$$p(a) = 0$$

Število ničel ne presega stopnje p(x). Dokaz:

$$\operatorname{st}(p(x)) = n$$

$$x_1 \text{ ničla} \Rightarrow p(x) = k_1(x)(x - x_1); \text{ st}(k_1(x)) = n - 1$$

$$x_2 \text{ ničla} \Rightarrow p(x) = k_2(x)(x - x_1)(x - x_2); \text{ st}(k_2(x)) = n - 2$$

$$\vdots$$

$$x_n \text{ ničla} \Rightarrow p(x) = k_n(x) \underbrace{(x - x_1)(x - x_2) \cdot \dots \cdot (x - x_n)}_{n}; \text{ st}(k_n(x)) = 0$$

Število a je ničla k-te stopnje, če $(x-a)^k \mid p(x)$. Ničla je enostavna če je k=1, če ne je večkratna (k-kratna).

26.5.1 Osnovni izrek algebre

Vsak **nekonstanten** polinom s kompleksnimi koeficienti ima vsaj **eno** kompleksno ničlo.

Posledica:

Polinom stopnje n s kompleksnimi koeficienti ima natanko n kompleksnih ničel.

Dokaz:

$$\operatorname{st}(p(x)) = n$$

$$x_1 \operatorname{ničla} \Rightarrow p(x) = k_1(x)(x - x_1)$$

$$\operatorname{st}(k_1(x)) = n - 1 \qquad \backslash k_1(x) \text{ je nekonstanten, torej ima vsaj eno kompleksno ničlo.}$$

$$x_2 \operatorname{ničla} \Rightarrow p(x) = k_2(x)(x - x_1)(x - x_2)$$

$$\operatorname{st}(k_2(x)) = n - 2 \qquad \backslash k_2(x) \text{ je nekonstanten, torej ima vsaj eno kompleksno ničlo.}$$

$$\vdots$$

$$x_n \operatorname{ničla} \Rightarrow p(x) = k_n(x) \underbrace{(x - x_1)(x - x_2) \cdot \cdots \cdot (x - x_n)}_{n \operatorname{ničel}}$$

$$\operatorname{st}(k_n(x)) = 0 \qquad \backslash \operatorname{Polinom}(k_n(x)) \text{ je konstanten.}$$

$$p(x) = c(x - x_1)(x - x_2) \cdot \cdots \cdot (x - x_n) \qquad \backslash \operatorname{Oblika za ničle.}$$

c je vodilni koeficient. Polinom je z ničlami določen do konstante natančno.

26.5.2 Kompleksne ničle polinoma z realnimi koeficienti

Če je ničla polinoma z realnimi koeficienti kompleksno število z = a + bi, potem je ničla tudi konjugirano število $\overline{z} = a - bi$.

$$p(z) = 0 \Leftrightarrow p(\overline{z}) = 0 \tag{26.2}$$

Dokaz:

$$\frac{p(z)=0}{\overline{p(z)}=\overline{0}} \qquad \text{\setminus Konjugiramo obe strani ena\"obe.}$$

$$\overline{a_nz^n+a_{n-1}z^{n-1}+\cdots+a_1z+a_0}=0; \ a_n,\ldots,a_0\in\mathbb{R} \qquad \text{\setminus Uporabimo pravilo (23.5).}$$

$$\overline{a_nz^n+\overline{a_{n-1}z^{n-1}}+\cdots+\overline{a_1z}+\overline{a_0}=0} \qquad \text{\setminus Uporabimo pravilo (23.2).}$$

$$a_n\overline{z^n+a_{n-1}\overline{z^{n-1}}+\cdots+a_1\overline{z}+a_0=0} \qquad \text{\setminus Uporabimo pravilo (23.3).}$$

$$a_n\overline{z}^n+a_{n-1}\overline{z}^{n-1}+\cdots+a_1\overline{z}+a_0=0 \qquad \text{\setminus Uporabimo pravilo (23.4).}$$

$$p(\overline{z})=0$$

Kompleksne ničle polinoma z realnimi koeficienti nastopajo v konjugiranih parih.

Posledica:

Polinom lihe stopnje z realnimi koeficienti ima vsaj eno realno ničlo.

Primer:

stopnja 3: ena realna, 2 kompleksni ali 3 realne.

stopnje 4: 4 realne ali 2 realni in 2 kompleksni ali 4 kompleksne.

Polinom stopnje 3 lahko zapišemo kot produkt dveh polinomov z realnimi koeficienti, če poznamo eno njegovo kompleksno ničlo a + bi:

$$p(x) = a(x - x_1)(x - (a + bi))(x - (a - bi)) =$$
 \\ Po pravilu (26.2).
 $= a(x - x_1)(x^2 - (a + bi + a - bi)x + (a + bi)(a - bi) =$
 $= a(x - x_1)(x^2 - 2ax + a^2 + b^2)$ \\ x_1 je realna ničla.

26.5.3 Cele ničle polinoma s celimi koeficienti

Če je celo število c ničla polinoma s celimi koeficienti, potem velja, da c deli prosti člen.

$$c \in \mathbb{Z}$$
: $p(c) = 0 \Rightarrow c|a_0$

Dokaz:

$$p(c) = 0$$

$$0 = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0; \ a_n, \dots, a_0 \in \mathbb{Z}$$

$$-a_0 = c \underbrace{\left(a_n c^{n-1} + a_{n-1} c^{n-2} + \dots + a_1\right)}_{\in \mathbb{Z}}$$

$$-a_0 = c \cdot k; \ k \in \mathbb{Z}$$

$$c|a_0$$

26.5.4 Racionalne ničle polinoma s celimi koeficienti

Če je okrajšani ulomek $\frac{c}{d}$ ničla polinoma s celimi koeficienti, potem velja, da c deli prosti člen, d pa deli vodilni koeficient.

$$\frac{c}{d} \in \mathbb{Q}, D(c,d) = 1: p\left(\frac{c}{d}\right) = 0 \Rightarrow c|a_0 \wedge d|a_n$$

Dokaz:

$$p\left(\frac{c}{d}\right) = 0$$

$$0 = a_n \left(\frac{c}{d}\right)^n + a_{n-1} \left(\frac{c}{d}\right)^{n-1} + \dots + a_1 \frac{c}{d} + a_0; \ a_n, \dots, a_0 \in \mathbb{Z}$$

$$0 = a_n \frac{c^n}{d^n} + a_{n-1} \frac{c^{n-1}}{d^{n-1}} + \dots + a_1 \frac{c}{d} + a_0 \quad \backslash \quad d^n$$

$$0 = a_n c^n + a_{n-1} c^{n-1} d + \dots + a_1 c d^{n-1} + a_0 d^n$$

$$-a_0 d^n = c \underbrace{\left(a_n c^{n-1} + a_{n-1} c^{n-2} d + \dots + a_1 d^{n-1}\right)}_{\in \mathbb{Z}}$$

$$-a_0 d^n = c \cdot k; \ k \in \mathbb{Z}$$

$$c|a_0 \quad \backslash \quad c \text{ ne more deliti } d^n, \text{ ker } D(c,d) = 1$$

Če pa enačbo (26.3) preoblikujemo drugače:

$$-a_n c^n = a_{n-1} c^{n-1} d + \dots + a_1 c d^{n-1} + a_0 d^n$$

$$-a_n c^n = d \underbrace{\left(a_{n-1} c^{n-1} + \dots + a_1 c d^{n-2} + a_0 d^{n-1}\right)}_{\in \mathbb{Z}}$$

$$-a_n c^n = d \cdot k; \ k \in \mathbb{Z}$$

$$d|a_n \quad \backslash d \text{ ne more deliti } c^n, \text{ ker } D(c,d) = 1$$

26.6 Graf polinoma

$$p(x) \colon \mathbb{R} \to \mathbb{R}$$

Med dvema zaporednima ničlama polinom **ne more spremeniti predznaka**. Vsak polinom z realnimi koeficienti lahko zapišemo kot produkt linearnih faktorjev in kvadratnih faktorjev, ki imajo diskriminanto negativno. Vrednost polinoma **ohrani** predznak pri prehodu čez ničlo **sode** stopnje, **spremeni** pa ga pri prehodu čez ničlo **lihe** stopnje. Polinom se pri zelo velikih in zelo majhnih x obnaša tako kot vodilni člen. Primera grafov polinoma sta na slikah 34(a) in 34(b).

$$p(x) = a_n x^n \underbrace{\left(\frac{a_{n-1}}{x} + \frac{a_{n-2}}{x^2} + \dots + \frac{a_1}{x_{n-1}} + \frac{a_0}{x^n}\right)}_{\text{to so zelo majhna števila}}$$

Slika 34: Graf polinoma.

26.7 Bisekcija

Bisekcija je postopek za iskanje ničel zveznih funkcij. Denimo, da poznamo tak interval [a,b], da je zvezna funkcija $f:\mathbb{R}\to\mathbb{R}$ (polinom) v krajiščih različno predznačena. Potem iz zveznosti sledi, da ima f na intervalu (a,b) vsaj eno ničlo. Če vzamemo sredinsko točko $s=\frac{a+b}{2}$, potem bo, razen, če je f(s)=0, kar pomeni, da smo imeli srečo in zadeli ničlo, na enem izmed intervalov [a,s] ali [s,b] funkcija v krajiščih spet različno predznačena in to vzamemo za nov interval [a,b]. Postopek rekurzivno ponavljamo in v vsakem koraku nadaljujemo z razpolovljenim intervalom, ki zagotovo vsebuje vsaj eno ničlo. Ko je interval dovolj majhen (manjši od želene vrednosti ϵ), končamo in vrnemo točko s sredine intervala kot približek za ničlo funkcije f. Ker mora biti funkcija v krajiščih različno predznačena pa lahko tako najdemo le ničle lihe stopnje. Algoritem bisekcije je zapisan v psevdokodi kot algoritem 1.

Algoritem 1 Bisekcija

```
1: while |b-a| < \epsilon do

2: s \leftarrow \frac{a+b}{2}

3: if PREDZNAK(f(a)) = \text{PREDZNAK}(f(b)) then

4: a \leftarrow s

5: else

6: b \leftarrow s

7: end if

8: end while
```

27 Stožnice

Stožnice so dvorazsežne presečne krivulje, ki nastanejo, če presekamo enojni ali dvojni neskončni stožec z ravnino pod različnimi koti.

Možni preseki:

- krožnica
- elipsa
- parabola
- hiperbola
- dve vzporednici
- dve nevzporedni premici
- ena premica
- točka
- prazna množica

Splošna enačba stožnice:

$$Ax^{2} + Bxy + Cy^{2} + Dx + Ey + F = 0; \quad A, B, C, D, E, F \in \mathbb{R}$$
 (27.1)

27.1 Krožnica

Krožnica je množica točk v ravnini, ki so enako oddaljene od izbrane točke S. S imenujemo **središče** krožnice. Razdaljo med točko krožnice in središčem imenujemo **polmer** in ga označimo z r.

$$\mathcal{K} = \{ T(x, y); \ d(T, S) = r \}$$

Enačba krožnice v **središčni** legi:

$$x^2 + y^2 = r^2$$

Eksplicitna enačba krožnice:

$$y = \pm \sqrt{r^2 - x^2} \tag{27.2}$$

Enačba krožnice v **premaknjeni** legi:

$$(x-p)^2 + (y-q)^2 = r^2$$

Potreben pogoj za krožnico. Do njega pridemo tako, da enačbo krožnice v premaknjeni legi razvijemo do konca in nato končno enačbo primerjamo s splošno enačbo stožnice.

$$A = C \wedge B = 0$$
 \\ konstante so iz splošne enačbe stožnice (27.1)

Krožnici sta **koncentrični**, če imata skupno središče. Sliki krožnice v središčni legi in "premaknjene" krožnice sta prikazani na sliki 35.

Slika 35: Slika krožnice.

27.2 Elipsa

Elipsa je množica točk v ravnini, ki imajo konstantno vsoto razdalj do dveh izbranih točk, ki ju imenujemo gorišči. $|G_1G_2| = 2e, r_1+r_2 = 2a$ Elipsa z označenimi glavnimi konstantami je prikazana na sliki 36.

Enačba elipse v **središčni** legi:

$$a^2b^2 = b^2x^2 + a^2y^2$$

Odsekovna enačba elipse v središčni legi:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

a je odsek na abscisni osi oziroma **velika polos**, b pa odsek na ordinatni osi ali **mala polos**. Konstanta e se imenuje **linearna ekscentričnost** in se izračuna kot:

$$e^2 = a^2 - b^2$$

Konstanta ε se imenuje **numerična ekscentričnost**. Pri elipsi je vedno manjša od 1.

$$\varepsilon = \frac{e}{a}$$

p se imenuje **polparameter** elipse in je vrednost elipse pri e.

$$p=\pm \frac{b^2}{a}$$

Slika 36: Slika elipse.

Eksplicitna enačba elipse:

$$y = \pm \frac{b}{a} \sqrt{a^2 - x^2}$$

Če to enačbo primerjamo z enačbo krožnice (27.2), ugotovimo, da je elipsa pravzaprav krožnica, raztegnjena za faktor $\frac{b}{a}$.

Gorišči:

$$G_1(-e,0)$$

$$G_2(e, 0)$$

Temena elipse:

A(a,0)

B(-a, 0)

C(0,b)

D(0, -b)

Elipsa je **simetrična** glede na obe koordinatni osi, njeno **definicijsko območje** pa je $D_f[-a, a]$, saj drugače e ni definiran, $e^2 = a^2 - b^2 > 0$.

Vse zgornje enačbe veljajo za "ležeče" elipse, pri katerih je a > b. Če pa imamo "pokončno" elipso, moramo v vseh enačbah zamenjati a in b, pa tudi gorišča so na ordinatni osi. Za sliko "ležeče" elipse glej sliko 37(a), za sliko "pokončne" elipse pa glej sliko 37(b).

Enačba elipse v **premaknjeni** legi:

$$\frac{(x-p)^2}{a^2} + \frac{(y-q)^2}{b^2} = 1$$

Središče elipse je v točki S(p,q).

Potreben pogoj za elipso (do njega pridemo podobno kot pri krožnici):

$$B=0 \wedge A \cdot C > 0 \qquad \backslash \backslash \ A$$
in C sta enako predznačena

Slika 37: Slika elipse.

27.3 Hiperbola

Hiperbola je množica točk ravnine, ki imajo konstantno absolutno vrednost razlike razdalj do dveh izbranih točk, ki ju imenujemo gorišči hiperbole. Hiperbola in njene glavne konstante so prikazane na sliki 38.

Slika 38: Primer slike hiperbole z označenimi konstantami.

$$|G_1G_2| = 2e$$
$$|r_1 - r_2| = 2a$$

Odsekovna enačba hiperbole:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

e se imenuje linearna ekscentričnost in se izračuna kot:

$$e^2 = a^2 + b^2$$

 ε se imenuje **numerična ekscentričnost** in je pri hiperboli vedno večji od 1.

$$\varepsilon = \frac{e}{a}$$

Eksplicitna enačba hiperbole:

$$y = \pm \frac{b}{a} \sqrt{x^2 - a^2}$$

Definicijsko območje hiperbole je $D_f = (-\infty, -a] \cup [a, \infty)$. Hiperbola je **simetrična** glede na obe koordinatni osi.

Gorišči hiperbole:

$$G_1(-e,0)$$

$$G_2(e, 0)$$

Temeni hiperbole:

$$A(-a,0)$$

Asimptoti hiperbole sta premici

$$y = \pm \frac{b}{a}x$$

Če gre x proti ∞ , gre vrednost ulomka $\frac{a^2}{x^2}$ proti0 in vrednost korena v eksplicitni enačbi proti1, iz česar ugotovimo asimptoti.

$$y = \pm \frac{b}{a}\sqrt{x^2 - a^2} = \pm \frac{b}{a}x\sqrt{1 - \frac{a^2}{x^2}}$$

Slika "ležeče" hiperbole je prikazana na sliki 39(a), slika "pokončne" hiperbole pa na sliki 39(b).

p je **polparameter** hiperbole in je vrednost hiperbole pri e.

$$p=\pm \frac{b^2}{a}$$

Potreben pogoj za hiperbolo:

$$B = 0 \wedge A \cdot C < 0$$
 \\ A in C različno predznačena

Enačba "pokončne" hiperbole:

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

Enačba hiperbole v **premaknjeni** legi:

$$\frac{(x-p)^2}{a^2} - \frac{(y-q)^2}{b^2} = 1 \qquad \backslash \backslash \text{ Središče hiperbole je v točki } S(p,q).$$

78

Slika 39: Slika hiperbole.

27.4 Parabola

Parabola je množica točk v ravnini, ki imajo enako razdaljo od izbrane premice vodnice v in izbrane točke gorišča G.

$$\mathcal{P} = \{T(x,y): d(T,v) = d(T,G)\}$$

Temenska enačba parabole:

$$y^2 = 2px$$

Eksplicitna enačba parabole:

$$y = \pm \sqrt{2px}$$

p je **polparameter** parabole in je enak razdalji med vodnico in goriščem. Vrednost parabole pri $\frac{p}{2}$ je p.

Gorišče parabole:

$$G\left(\frac{p}{2},0\right)$$

Enačba **vodnice**:
$$x = -\frac{p}{2}$$

Teme parabole:

Parabola je **simetrična**, njena os simetrije pa se imenuje os parabole. Definicijsko območje parabole $D_f = [0, \infty)$.

Enačba **premaknjene** parabole:

$$(y-b)^2 = 2p(x-a)$$
 \\ Teme je v točki $T(a,b)$.

Enačba **zrcaljene**, **pokončne** in **pokončne zrcaljene** parabole v tem vrstnem redu:

$$y^{2} = -2px$$

$$y = \frac{1}{2p}x^{2}$$

$$y = -\frac{1}{2p}x^{2}$$

Slika normalne parabole je na sliki 40(a), slika zrcaljene in premaknjene parabole pa na sliki 40(b).

Potreben pogoj za parabolo:

$$A=B=0 \lor B=C=0$$

Slika 40: Slika parabole.

28 Zaporedja

Zaporedje je vsaka funkcija, ki množico naravnih števil preslika v realna števila.

$$f: \mathbb{N} \to \mathbb{R}$$

Slike funkcije se imenujejo **členi** zaporedja in jih označimo s a_1, a_2, a_3, \ldots

$$1\mapsto f(1)=a_1$$

$$2\mapsto f(2)=a_2$$

$$\vdots$$

$$n\mapsto f(n)=a_n \qquad \backslash \text{ Splošni člen zaporedja}.$$

Zaporedje lahko navajamo s funkcijo, s splošnim členom ali s členi zaporedja. Poznamo **končna** in **neskončna** zaporedja. Končno zaporedje je vsaka funkcija, ki

množico prvih n naravnih števil preslika v realna števila.

$$f: \mathbb{N}_n \to \mathbb{R}$$

Zaporedje je **alternirajoče** kadar imata vsaka dva zaporedna člena različen predznak.

$$a_n$$
 padajoče $\Leftrightarrow a_n \cdot a_{n+1} < 0 \quad \forall n \in \mathbb{N}$

Zaporedje je **naraščajoče** natanko takrat, kadar je vsak naslednji člen večji od prejšnjega.

$$a_n$$
 naraščajoče $\Leftrightarrow a_n < a_{n+1} \quad \forall n \in \mathbb{N}$

Zaporedje je **padajoče** natanko takrat, kadar je vsak naslednji člen manjši od prejšnjega.

$$a_n$$
 padajoče $\Leftrightarrow a_n > a_{n+1} \quad \forall n \in \mathbb{N}$

Zaporedje je monotono, če je naraščajoče ali padajoče.

Zaporedje je **navzgor omejeno**, če obstaja tako naravno število M, da so vsi členi zaporedja manjši ali enaki temu številu.

$$\exists M \in \mathbb{R} \ni : a_n \leq M \quad \forall n \in \mathbb{N}$$

Zaporedje je **navzdol omejeno**, če obstaja tako naravno število m, da so vsi členi zaporedja večji ali enaki temu številu.

$$\exists m \in \mathbb{R} \ni : a_n \ge m \quad \forall n \in \mathbb{N}$$

Zaporedje je **omejeno**, če je omejeno navzgor in navzdol. Zaporedje je **konstantno**, če so vsi členi enaki med seboj.

Graf zaporedja je prikazan na sliki 41.

Slika 41: Graf zaporedja $a_n = 3\frac{n-4}{n+1} + 1,5.$

28.1 Aritmetično zaporedje

Aritmetično zaporedje je zaporedje, pri katerem je razlika med vsakima dvema sosednjima členoma a_n in a_{n+1} konstantna. Konstanta se imenuje **diferenca** in se označi z d.

$$a_n$$
 aritmetično $\Leftrightarrow a_{n+1} - a_n = d; \ d \in \mathbb{R} \quad \forall n \in \mathbb{N}$

Če d<0 bo zaporedje padajoče, če d>0 bo zaporedje naraščajoče, če d=0 bo zaporedje konstantno.

Splošni člen aritmetičnega zaporedja:

$$a_n = a_1 + (n-1) \cdot d$$

Lahko preoblikujemo v:

$$a_1 = a_n - (n-1) \cdot d$$

Vsak člen aritmetičnega zaporedja je aritmetična sredina simetrično ležečih členov.

$$a_n = \frac{a_{n-i} + a_{n+i}}{2}$$

Formula za \mathbf{vsoto} n členov aritmetičnega zaporedja ali za vsoto končne aritmetične vrste.

$$S_{n} = a_{1} + a_{2} + a_{3} + \dots + a_{n}$$

$$S_{n} = a_{1} + (a_{1} + d) + (a_{1} + 2d) + \dots + (a_{1} + (n - 1)d)$$

$$S_{n} = a_{n} + (a_{n} - d) + (a_{n} - 2d) + \dots + (a_{n} - (n - 1)d)$$

$$2S_{n} = n \cdot a_{n} + n \cdot a_{1} \qquad \text{\setminus Seštejemo zgornji dve enačbi.}$$

$$S_{n} = \frac{n \cdot (a_{1} + a_{n})}{2}$$

$$S_n = \sum_{i=1}^n a_i = \frac{n(a_1 + a_n)}{2} = \frac{n(2a_1 + (n-1)d)}{2} = \frac{n(2a_n - (n-1)d)}{2}$$
(28.1)

Velja tudi:

$$a_n = S_n - S_{n-1}$$

Dokaz:

$$S_n - S_{n-1} = a_n + a_{n-1} + a_{n-2} + \dots + a_2 + a_1 - (a_{n-1} + a_{n-2} + \dots + a_2 + a_1) =$$

$$= a_n + a_{n-1} - a_{n-1} + a_{n-2} - a_{n-2} + \dots + a_2 - a_2 + a_1 - a_1 =$$

$$= a_n$$

Razlika dveh členov aritmetičnega zaporedja.

$$a_n - a_m = (n - m)d; \ n > m$$

Dokaz:

$$a_n - a_m = a_1 + (n-1)d - (a_1 + (m-1)d) = (n-1)d - (m-1)d =$$

= $d(n-1-m+1) = (n-m)d$

28.2 Geometrijsko zaporedje

Geometrijsko zaporedje je zaporedje, pri katerem je količnik vsakih dveh sosednjih členov a_n in a_{n+1} konstanten. Količnik se označi s k.

$$a_n$$
 geometrijsko $\Leftrightarrow \frac{a_{n+1}}{a_n} = k$

Naraščanje in padanje geometrijskega zaporedja:

1.
$$a_1 > 0$$

- a) $k > 1 \Rightarrow \text{naraščajoče}$
- b) $0 < k < 1 \Rightarrow \text{padajoče}$
- c) $k < 0 \Rightarrow$ alternirajoče
- $2. a_1 < 0$
 - a) $k > 1 \Rightarrow \text{padajoče}$
 - b) $0 < k < 1 \Rightarrow \text{naraščajoče}$
 - c) $k < 0 \Rightarrow$ alternirajoče
- 3. $k = 1 \Rightarrow \text{konstantno}$
- 4. k = 0 in $a_1 = 0$ ne obstajata zaradi definicije geometrijskega zaporedja.

Splošni člen geometrijskega zaporedja:

$$a_n = a_1 \cdot k^{n-1}$$

Geometrijsko zaporedje je **omejeno**, ko je $|k| \leq 1$.

Formula za **vsoto** členov geometrijskega zaporedja ali za vsoto členov končne geometrijske vrste.

$$S_{n} = a_{1} + a_{2} + a_{3} + \dots + a_{n-1} + a_{n}$$

$$S_{n} = a_{1} + a_{1} \cdot k + a_{1} \cdot k^{2} + \dots + a_{1} \cdot k^{n-2} + a_{1} \cdot k^{n-1} \qquad \text{$\backslash $Množimo s k.}}$$

$$k \cdot S_{n} = a_{1} \cdot k + a_{1} \cdot k^{2} + a_{1} \cdot k^{3} + \dots + a_{1} \cdot k^{n-1} + a_{1} \cdot k^{n}$$

$$k \cdot S_{n} - S_{n} = a_{1} \cdot k^{n} - a_{1}$$

$$S_{n}(k-1) = a_{1}(k^{n} - 1)$$

$$S_{n} = a_{1} \frac{k^{n} - 1}{k - 1}; \ k \neq 0$$

$$S_{n} = \sum_{i=1}^{n} a_{i} = a_{1} \frac{k^{n} - 1}{k - 1} = a_{n} \frac{k^{n} - 1}{k^{n} - k^{n-1}}; \ k \neq 0$$

$$(28.2)$$

$$\frac{a_n}{a_m} = k^{n-m}; \ n > m$$

 $S_n = n \cdot a_1; \ k = 0$

Dokaz:

$$\frac{a_n}{a_m} = \frac{a_1 \cdot k^{n-1}}{a_1 \cdot k^{m-1}} = \frac{k^{n-1}}{k^{m-1}} = k^{n-1-m+1} = k^{n-m}$$

Vsak člen geometrijskega zaporedja je **geometrijska sredina** simetrično ležečih členov.

$$a_n = \sqrt{a_{n-1} \cdot a_{n+1}}$$

Dokaz:

$$\frac{a_n}{a_{n-1}} = \frac{a_{n+1}}{a_n} \qquad \text{\backslash Po definiciji geometrijskega zaporedja.}$$

$$a_n^2 = a_{n-1} \cdot a_{n+1}$$

$$a_n = \sqrt{a_{n-1} \cdot a_{n+1}}$$

28.3 Matematična indukcija

Matematična indukcija ali popolna indukcija je način dokazovanja matematičnih trditev, v katerih nastopajo naravna števila. Poteka v dveh korakih. Prvi korak je, da dokažemo, da trditev velja za prvo naravno število n = 1. Nato dokažemo, da iz predpostavke, da trditev velja za poljubno naravno število n izhaja, da trditev velja tudi za njegovega naslednika n + 1. Izrek je s tem dokazan. Ker trditev velja za 1 (po prvi točki), velja tudi za naslednika, to je 2. Ker velja za 2, velja za 3 in tako naprej za vsa naravna števila.

Primer:

Dokaži da velja:

$$1 \cdot 2 + 2 \cdot 5 + 3 \cdot 8 + \dots + n(3n - 1) = n^{2}(n + 1)$$

1.
$$n = 1$$

$$n^{2}(n+1) = 1(1+1) = 2$$

$$n(3n-1) = 1(3 \cdot 1 - 1) = 2$$

2.
$$n + 1$$

$$S_n = n^2(n+1), S_{n+1} = (n+1)^2(n+1)$$

$$S_{n+1} = S_n + a_{n+1} =$$

$$= n^2(n+1) + (n+1)(3(n+1) - 1) = (n+1)(n^2 + 3n + 2) =$$

$$= (n+1)(n+1)(n+2) = (n+1)^2(n+2)$$

28.4 Limita zaporedja

Okolica ε točke a je odprt interval¹¹ ($-\varepsilon+a, a+\varepsilon$). Točka a je **stekališče** zaporedja a_n , če je v vsaki okolici točke a neskončno mnogo členov zaporedja. Točka a je **limita** zaporedja a_n če je v vsaki okolici točke a **neskončno** mnogo členov zaporedja, izven te okolice pa **končno** mnogo. Zaporedje, ki ima limito je **konvergentno** zaporedje, zaporedje, ki limite nima pa je **divergentno**.

$$a_n \in \mathcal{O}_{\varepsilon}(a) \Leftrightarrow |a_n - a| > \varepsilon; \ \varepsilon > 0$$

$$\lim_{n \to \infty} a_n = a \Leftrightarrow (\forall \varepsilon > 0)(\exists N \in \mathbb{N}) : n > N \Rightarrow a_n \in \mathcal{O}_{\varepsilon}(a)$$

Pomembne limite:

$$\lim_{n \to \infty} C = C \qquad \backslash \backslash \text{ Limita konstante je konstanta.}$$
 (28.3)

$$\lim_{n \to \infty} \frac{1}{n} = 0 \tag{28.4}$$

$$\lim_{n \to \infty} a^n = 0; \ |a| < 1 \tag{28.5}$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e \tag{28.6}$$

(28.7)

 $^{^{11}{\}rm Za}$ osvežitev spomina o intervalih glej razdelek 10.

28.4.1 Pravila za računanje z limitami

• Limita vsote dveh zaporedij je enaka vsoti limit dveh zaporedij.

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n \tag{28.8}$$

• Limita produkta dveh zaporedij je enaka produktu limit dveh zaporedij.

$$\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n \tag{28.9}$$

• Limita kvocienta dveh zaporedji je enaka kvocientu limit dveh zaporedij, pri čemer morajo biti vsi členi in limita drugega zaporedja neničelni.

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}; \lim_{n \to \infty} b_n \neq 0 \land b_n \neq 0 \quad \forall n \in \mathbb{N}$$
 (28.10)

• Limita potence je enaka potenci limite.

$$\lim_{n \to \infty} (a_n)^k = (\lim_{n \to \infty} a_n)^k \tag{28.11}$$

• Limita korena je enaka korenu limite.

$$\lim_{n \to \infty} \sqrt[k]{a_n} = \sqrt[k]{\lim_{n \to \infty} a_n} \tag{28.12}$$

Primer računanja:

28.5 Geometrijska vrsta

Vrsta je vsota vseh členov zaporedja. Poznamo končne in neskončne vrste.

$$\sum_{i=1}^{\infty} a_i = a_1 + a_2 + a_2 + \dots + a_n + \dots$$

Zaporedje delnih vsot:

$$\sum_{i=1}^{1} a_i = S_1 = a_1$$

$$\sum_{i=1}^{2} a_i = S_2 = a_1 + a_2$$

$$\sum_{i=1}^{3} a_i = S_3 = a_1 + a_2 + a_3$$

$$\vdots$$

$$\sum_{i=1}^{n} a_i = S_n = a_n + a_n + a_3 + \dots + a_n$$

$$\vdots$$

Neskončna vrsta ima svojo **vsoto** S natanko takrat, kadar obstaja **limita delnih vsot**, ko gre n v neskončnost in je enaka S.

$$a_1 + a_2 + a_2 + \dots + a_n + \dots = S \Leftrightarrow \lim_{n \to \infty} S_n = S$$

$$\sum_{i=1}^{\infty} a_i = S \Leftrightarrow \lim_{n \to \infty} \sum_{i=1}^{n} a_i = S$$

Vrsta je konvergentna, če ima svojo vsoto, če je nima, je divergentna.

Geometrijska vrsta je vsota vseh členov geometrijskega zaporedja. Konvergentna je, kadar je količnik geometrijskega zaporedja po absolutni vrednosti manjši od 1.

$$\sum_{n=1}^{\infty} a_n = a_1 + a_1 k + a_1 k^2 + \dots + a_1 k^{n-1} + \dots = \frac{a_1}{1-k}; |k| < 1$$

Dokaz:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{a_1 (k^n - 1)}{k - 1} = \quad \text{\backslash Po formuli (28.2).}$$

$$= \frac{\lim_{n \to \infty} a_1 - \lim_{n \to \infty} (k^n - 1)}{\lim_{n \to \infty} k - \lim_{n \to \infty} 1} =$$

$$= \frac{a_1 \left(\lim_{n \to \infty} k^n - \lim_{n \to \infty} 1\right)}{k - 1} = \quad \text{\backslash Glej limito (28.5).}$$

$$= \frac{a_1}{1 - k}; |k| < 1$$

29 Obrestni račun

Obresti o so denarni znesek, ki ga posojilojemalec da posojilodajalcu kot nadomestilo za uporabo določenega zneska denarja denarja – **glavnice** a. **Obrestna mera** p% je količnik med obrestmi in glavnico. Čas med dvema zaporednima pripisoma obresti imenujemo **kapitalizacijsko obdobje**.

Poznamo dva načina obrestovanja: **navadno** obrestovanje in **obrestno** obrestovanje.

Pri **navadnem** obrestovanju je vrednost glavnice po n kapitalizacijskih dobah enaka:

$$a_n = a + na_1 \cdot \frac{p}{100}$$
 \\ Aritmetično zaporedje.

Pri **obrestnem** obrestovanju je vrednost glavnice po n kapitalizacijskih dobah enaka:

$$a_1 = a + a \cdot \frac{p}{100} = a \left(1 + \frac{p}{100} \right) = ak$$

$$a_2 = a_1 + a_1 \left(1 + \frac{p}{100} \right) = a \left(1 + \frac{p}{100} \right)^2 = ak^2$$

$$a_n = a \left(1 + \frac{p}{100} \right)^n = a \cdot k^n \quad \land \text{Geometrijsko zaporedje.}$$

$$k = \left(1 + \frac{p}{100} \right)^n \quad \land \text{Obrestovalni faktor.}$$

Relativna obrestna mera je obrestna mera, ki se enakomerno razdeli na posamezna krajša obdobja. Konformna obrestna mera je obrestna mera, ki prinese pri pogostejšem pripisovanju obresti enak znesek obresti. Izračuna se jih po formuli:

$$p_{d_1} = 100 \left(\sqrt[d]{1 + \frac{p}{100}} - 1 \right); \ d = \frac{d_2}{d_1}$$

 d_2 je osnovna kapitalizacijska doba, d_1 pa je doba na katero želimo preračunati konformno obrestno mero.

Načelo ekvivalence glavnic pravi, da lahko različne glavnice primerjamo tako, da jih preračunamo na isti trenutek.

30 Statistika

Populacija je množica pojavov, ki jo želimo proučevati.

Vzorec je podmnožica populacije, s katero delamo, dobro je, da je reprezentativen.

Numerus n (ali N) je število podatkov v vzorcu.

Statistična enota je posamezen element populacije.

Statistični znak je lastnost populacije, ki jo preučujemo.

Statistični parametri so splošne lastnosti, ki veljajo za populacijo kot celoto in jih dobimo kot rezultat statistične raziskave (\bar{x}, Mo, Me) .

Aritmetična sredina \bar{x} ali povprečje vsota vseh vrednosti, deljena z njihovim številom.

$$\bar{x} = \frac{x_1 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{n} \sum_{i=1}^n x_i f_i$$

Modus Mo je vrednost, ki se najpogosteje pojavlja.

Mediana Me je vrednost, ki je na sredini razvrščenih podatkov. Če sta na sredini dva rezultata je mediana aritmetična sredina teh dveh rezultatov.

Ranžirna vrsta so podatki, urejeni po velikosti.

Frekvenčna tabela je tabela, v katero razporedimo rezultate tako, da poleg vsake vrednosti napišemo kolikokrat se pojavlja.

Absolutna frekvenca f pove kolikokrat se pojavi določena vrednost (število enot v posameznem frekvenčnem razredu). Velja: $\sum_{i=0}^{n} f_i = n$.

Relativna frekvenca f' predstavlja delež enot v celoti. $f' = \frac{f}{n}$

Kumulativna frekvenca F predstavlja koliko je bilo podatkov pred določenim razredom.

Relativna kumulativna frekvenca F' predstavlja delež podatkov pred določenim razredom glede na celoto. $F' = \frac{F}{n}$.

Variacijski razmik je razlika med največjo in najmanjšo vrednostjo.

Standardni odklon je povprečje kvadratov odstopanj od aritmetične sredine. Pove nam, kako koncentrirani so podatki.

$$\sigma = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (\bar{x} - x_i)^2}$$

Medčetrtinski razmik je razlika med kvartiloma Q_1 in Q_3 . Ta kvartila dobimo kot mediani prve polovice podatkov (manjši od Me) in druge polovice podatkov (večji od Me). Tako lahko narišemo škatlo z brki, ki prikazuje razpršenost podatkov.

Histogram grafična predstavitev rezultata s stolpci, sestavljena iz pravokotnikov, katerih višina je enaka frekvenci razreda, širina pa predstavlja interval enega razreda.

Poligon je grafična predstavitev z lomljeno črto.

Krožni diagram ali tortni diagram je grafična predstavitev, ki nazorno pokaže delež podatkov glede na celoto.

31 Zveznost in limite funkcij

Limita funkcije f(x) je b, ko gre x proti a, če za vsako zaporedje x-ov, ki konvergira proti a, ustrezno zaporedje funkcijskih vrednosti konvergira proti b.

$$\lim_{x \to a} f(x) = b \Leftrightarrow (\forall \varepsilon > 0)(\exists \delta > 0) : x \in \mathcal{O}_{\delta}(a) \Rightarrow y \in \mathcal{O}_{\varepsilon}(b)$$

Funkcija je zvezna, če za vsak x = a velja, da je funkcija pri tem x definirana in da je limita funkcije, ko gre x proti a, enaka f(a).

$$f(x)$$
 zvezna $\Leftrightarrow \forall x = a : a \in D_f \land \lim_{x \to a} f(x) = f(a)$

31.1 Pravila za računanje z limitami funkcij

Limita vsote je enaka vsoti limit.

$$\lim_{x \to a} f(x) + \lim_{x \to a} g(x) = \lim_{x \to a} \left(f(x) + g(x) \right)$$

Limita produkta je enaka produktu limit.

$$\lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x) = \lim_{x \to a} (f(x) \cdot g(x))$$

Limita kvocienta je enaka kvocientu limit.

$$\frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}; \lim_{x \to a} g(x) \neq 0$$

Znane limite:

Limita konstante je enaka konstanti.

$$\lim_{x \to a} C = C$$

Limita funkcije, ko gre x proti a je f(a), če je funkcija pri a definirana.

$$\lim_{x \to a} f(x) = f(a)$$

$$\lim_{x \to 0} \frac{x}{\sin x} = \lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$

31.2 Neskončna limita in limita v neskončnosti

Neskončna limita f(x), ko gre x proti a obstaja, če za vsako pozitivno realno število A obstaja taka δ okolica a, da so funkcijske vrednosti vseh števil v okolici večje od A.

$$\lim_{x \to a} f(x) = \infty \Leftrightarrow (\forall A > 0)(\exists \delta > 0) : x \in \mathcal{O}_{\delta}(a) \Rightarrow f(x) \ge A$$

$$\lim_{x \to a} f(x) = -\infty \Leftrightarrow (\forall A < 0)(\exists \delta > 0) : x \in \mathcal{O}_{\delta}(a) \Rightarrow f(x) \le A$$

Limita v neskončnosti, oz. limita f(x) ko gre x proti ∞ je b, če za vsako pozitivno realno število ε obstaja pozitivno realno število A, tako da je funkcijska vrednost vsakega x, ki je večji od A, element ε okolice števila b.

$$\lim_{x \to \infty} f(x) = b \Leftrightarrow (\forall \varepsilon > 0)(\exists A > 0) : x > A \Rightarrow f(x) \in \mathcal{O}_{\varepsilon}(b)$$

$$\lim_{x \to -\infty} f(x) = b \Leftrightarrow (\forall \varepsilon > 0)(\exists A < 0) : x < A \Rightarrow f(x) \in \mathcal{O}_{\varepsilon}(b)$$

32 Diferencialni račun

Definirajmo **diferenčni kvocient** funkcije f pri x_0 .

$$m = \frac{f(x_0 + h) - f(x_0)}{h}$$

Odvod funkcije pri x_0 je limita diferenčnega kvocienta, ko gre h proti 0.

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

Funkcija je na nekem intervalu odvedljiva, če je odvedljiva v vsaki točki tega intervala.

Odvod funkcije f je nova funkcija f', ki za vsak x vrne odvod funkcije f pri x.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{32.1}$$

32.1 Geometrijski pomen odvoda

Diferenčni kvocient funkcije predstavlja smerni koeficient sekante funkcije v točkah $T(x_0, f(x_0))$ in $U(x_0 + h, f(x_0 + h))$.

Premica, ki gre skozi točko $T(x_0, y_0)$ in ima smerni koeficient enak odvodu funkcije v točki x_0 se imenuje **tangenta** na graf funkcije f v točki T.

Geometrijski pomen odvoda je prikazan na sliki 42. Če bi se h manjšal proti nič, bi se sekanta modre krivulje približevala zeleni tangenti.

Slika 42: Geometrijski pomen odvoda.

Splošna enačba tangente:

$$y - y_0 = f'(x)(x - x_0)$$

Tangens **naklonskega kota** tangente v točki $T(x_0, y_0)$ je po (21.21) enak njenemu smernemu koeficientu oz. odvodu funkcije v točki T.

$$\tan \alpha = k_t = f'(x_0)$$

Normala je premica, ki seka krivuljo v točki $T(x_0, y_0)$ in je pravokotna na tangento na funkcijo v točki T.

Kot med krivuljo in **abscisno osjo** je enak naklonskemu kotu tangente na krivuljo presečišču.

Kot med krivuljama je enak kotu med tangentama na krivulji v presečišču.

32.2 Pravila za odvajanje

32.2.1 Osnovna pravila

$$C' = 0 ag{32.2}$$

$$x' = 1 \tag{32.3}$$

$$(x^r)' = r \cdot x^{r-1} \quad r \in \mathbb{R} \tag{32.4}$$

$$(f(x) \pm g(x))' = f'(x) \pm g'(x) \tag{32.5}$$

$$(C \cdot f(x))' = C \cdot f'(x) \tag{32.6}$$

$$(f(x) \cdot g(x))' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$
 (32.7)

$$\left(\frac{1}{f(x)}\right)' = -\frac{f'(x)}{f^2(x)}\tag{32.8}$$

$$\left(\frac{f(x)}{g(x)}\right)' = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{g^2(x)} \tag{32.9}$$

$$(f(g(x)))' = f'(g(x)) \cdot g'(x)$$
 (32.10)

Dokaz pravila (32.2):

$$f(x) = C$$

$$m = \frac{C - C}{h} = 0$$

$$f'(x) = \lim_{h \to 0} m = 0$$

Dokaz pravila (32.3):

$$f(x) = x$$

$$m = \frac{x + h - x}{h} = 1$$

$$f'(x) = \lim_{h \to 0} m = 1$$

Dokaz pravila (32.4):

$$f(x) = x^{n} \quad n \in \mathbb{N}$$

$$f'(x) = \lim_{h \to 0} \frac{(x+h)^{n} - x^{n}}{h} = \qquad \text{\backslash Po pravilu (11.7).}$$

$$= \lim_{h \to 0} \frac{(x+h-x)\sum_{i=0}^{n} (x+h)^{n-1}x^{i-1}}{h} = \qquad \text{\backslash h se krajša, sledi $h=0$}$$

$$= \sum_{i=1}^{n} x^{n-i}x^{i-1} = \sum_{i=1}^{n} x^{n-1} = n \cdot x^{n-1}$$

$$\begin{split} f(x) &= x^{-n} = \frac{1}{x^n} \quad n \in \mathbb{N} \\ f'(x) &= -\frac{n \cdot x^{n-1}}{x^{2n}} = -n \cdot x^{n-1-2n} = \quad & \setminus \text{Po pravilu (32.8)}. \\ &= -n \cdot x^{-n-1} \quad & \setminus \text{Velja tudi za 0 in negativna števila, torej velja za } \mathbb{Z}. \end{split}$$

$$f(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$$

$$\left(\sqrt[n]{x}\right)^n = x \quad \text{\backslash Odvajamo po (32.10).}$$

$$n(\sqrt[n]{x})^{n-1}(\sqrt[n]{x})' = 1 = \left(\sqrt[n]{x}\right)' = \frac{1}{n(\sqrt[n]{x})^{n-1}} = \frac{1}{n}\left(x^{\frac{1}{n}}\right)^{-n+1} = \frac{1}{n}x^{-\frac{n}{n}+\frac{1}{n}} = \frac{1}{n}x^{\frac{1}{n}-1}$$

$$f(x) = \left(\sqrt[m]{x}\right)^n = x^{\frac{m}{n}} = \left(x^{\frac{1}{n}}\right)^m$$

$$f'(x) = m(x^{\frac{1}{n}})^{m-1} \left(x^{\frac{1}{n}}\right)' = m(x^{\frac{1}{n}})^{m-1} \frac{1}{n} x^{\frac{1}{n}-1} = \qquad \text{\backslash Po pravilu (32.4).}$$

$$= \frac{m}{n} x^{\frac{m}{n} - \frac{1}{n} + \frac{1}{n} - 1} = \frac{m}{n} x^{\frac{m}{n} - 1} \qquad \text{\backslash Velja za \mathbb{Q}. Pa tudi za \mathbb{R} :-).}$$

Dokaz pravila (32.5):

$$(f(x) + g(x))' = \lim_{h \to 0} \frac{f(x+h) + g(x+h) - f(x) - g(x)}{h} = \text{ $$\setminus$ Po definiciji (32.1).}$$
$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} = f'(x) + g'(x)$$

Dokaz pravila (32.6):

$$(C \cdot f(x))' = \lim_{h \to 0} \frac{Cf(x+h) - Cf(x)}{h} = \lim_{h \to 0} \frac{C(f(x+h) - f(x))}{h} = C \cdot f'(x)$$

Dokaz pravila (32.7):

$$(f(x)g(x))' = \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x)}{h} = \text{ $$\setminus$ Po definiciji (32.1).}$$

$$= \lim_{h \to 0} \frac{f(x+h)g(x+h) - f(x)g(x+h) + f(x)g(x+h) - f(x)g(x)}{h} =$$

$$= \lim_{h \to 0} g(x+h) \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} f(x) \frac{g(x+h) - g(x)}{h} =$$

$$= f'(x)g(x) + f(x)g'(x)$$

Dokaz pravila (32.8):

$$\left(\frac{1}{f(x)}\right)' = \lim_{h \to 0} \frac{\frac{1}{f(x+h)} - \frac{1}{f(x)}}{h} = \lim_{h \to 0} \frac{f(x) - f(x+h)}{h \cdot f(x+h) \cdot f(x)} = \text{ \text{$$$$$ \ N$ definiciji (32.1).}}$$
$$= \lim_{h \to 0} -\frac{f(x+h) - f(x)}{h \cdot f(x+h) f(x)} = -\frac{f'(x)}{f^2(x)}$$

Dokaz pravila (32.9):

Dokaz pravila (32.10):

$$(f(g(x)))' = \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h} = \text{\setminus Glej sliko 43.}$$

$$\lim_{\substack{h \to 0 \\ k \to 0}} \frac{f(g(x)+k) - f(g(x))}{hk} = \lim_{\substack{h \to 0 \\ k \to 0}} \frac{(f(g(x)+k) - f(g(x))) k}{hk} = \lim_{\substack{h \to 0 \\ k \to 0}} \frac{(f(g(x)+k) - f(g(x)))}{k} = f'(g(x))g'(x)$$

Slika 43: Graf funkcije g(x) za izpeljavo odvoda kompozituma funkcij.

32.2.2 Odvodi kotnih in krožnih funkcij

$$\left(\sin x\right)' = \cos x\tag{32.11}$$

$$(\cos x)' = -\sin x \tag{32.12}$$

$$(\tan x)' = \frac{1}{\cos^2 x} \tag{32.13}$$

$$(\cot x)' = -\frac{1}{\sin^2 x} \tag{32.14}$$

$$(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$$
 (32.15)

$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$
 (32.16)

$$(\arctan x)' = \frac{1}{x^2 + 1}$$
 (32.17)

$$(\operatorname{arccot} x)' = -\frac{1}{x^2 + 1}$$
 (32.18)

Dokaz pravila (32.11):

$$f(x) = \sin x$$

$$f'(x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin(x)}{h} = \lim_{h \to 0} \frac{2\sin\frac{x+h-x}{2}\cos\frac{x+h+x}{2}}{h} = \text{ \backslash Faktoriz., razd. 21.12.}$$

$$= \lim_{h \to 0} \frac{\sin\frac{h}{2}\cos\left(x + \frac{h}{2}\right)}{\frac{h}{2}} = \lim_{h \to 0} \cos\left(x + \frac{h}{2}\right) =$$

$$= \cos x$$

Dokaz pravila (32.12):

$$(\cos x)' = \left(\sin\left(\frac{\pi}{2} - x\right)\right)' = \cos\left(\frac{\pi}{2} - x\right) \cdot (0 - 1) = -\sin x \quad \land \quad \text{Pravilo 21.9, sledi (32.10)}.$$

Dokaz pravila (32.13):

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)' = \frac{\cos x \cos x - (-\sin x)\sin x}{\cos^2 x} = \frac{1}{\cos^2 x} \quad \land \quad \text{Pravilo 32.9, sledi (21.5)}.$$

Dokaz pravila (32.14):

$$(\cot x)' = \left(\frac{1}{\tan x}\right)' = -\frac{\frac{1}{\cos^2 x}}{\tan^2 x} = -\frac{1}{\sin^2 x} \quad \setminus \text{Pravilo } (32.8).$$

Dokaz pravila (32.15):

$$\sin(\arcsin x) = x$$
 \\ Odvajamo obe strani.

$$\cos(\arcsin x) (\arcsin x)' = 1$$

$$(\arcsin x)' = \frac{1}{\cos(\arcsin x)}$$
 \\ \ \ Iz (21.5) izpeljemo $\cos \alpha = \pm \sqrt{1 - \sin^2 \alpha}$.

$$(\arcsin x)' = \frac{1}{\sqrt{1 - (\sin(\arcsin x))^2}}$$
 \\ Pozitivno, $\ker -\frac{\pi}{2} \le \arcsin x \le \frac{\pi}{2} \Rightarrow \cos x \ge 0.$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

Dokaz pravila (32.16):

$$\cos(\arccos x) = x$$
 \\ Odvajamo obe strani.

$$-\sin(\arccos x)(\arccos x)' = 1$$

$$(\arccos x)' = -\frac{1}{\sin(\arccos x)}$$
 \\ Iz (21.5) izpeljemo $\sin \alpha = \pm \sqrt{1 - \cos^2 \alpha}$.

$$(\arccos x)' = -\frac{1}{\sqrt{1 - (\cos(\arccos x))^2}}$$

$$(\arccos x)' = -\frac{1}{\sqrt{1 - (\cos(\arccos x))^2}}$$
 \\ Koren je pozit., ker $0 \le \arccos x \le \pi \Rightarrow \sin x \ge 0$

$$(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$$

Dokaz pravila (32.17):

$$tan(\arctan x)) = x$$
 \\ Odvajamo obe strani.

$$\frac{1}{\cos^2 \arctan x} (\arctan x)' = 1$$

$$(\arctan x)' = \frac{1}{1 + (\tan(\arctan x))^2}$$

$$(\arctan x)' = \frac{1}{1+x^2}$$

Dokaz pravila (32.17):

$$\cot(\operatorname{arccot} x)) = x \qquad \land \operatorname{Odvajamo obe strani.}$$

$$-\frac{1}{\sin^2 \operatorname{arccot} x} (\operatorname{arccot} x)' = 1$$

$$(\operatorname{arccot} x)' = -\sin^2 \operatorname{arccot} x \qquad \land \operatorname{Iz (21.8) izpeljemo sin}^2 \alpha = \frac{1}{1 + \cot^2 \alpha}.$$

$$(\operatorname{arccot} x)' = -\frac{1}{1 + (\cot(\operatorname{arccot} x))^2}$$

$$(\operatorname{arccot} x)' = -\frac{1}{1 + r^2}$$

Odvod eksponentne in logaritemske funkcije

$$(\ln x)' = \frac{1}{x}$$
 (32.19)

$$(\log_a x)' = \frac{1}{x \ln a}$$

$$(e^x)' = e^x$$
(32.20)

$$(e^x)' = e^x \tag{32.21}$$

$$\left(a^{x}\right)' = a^{x} \ln a \tag{32.22}$$

Dokaz pravila (32.19):

$$f(x) = \ln x$$

$$f'(x) = \lim_{h \to 0} \frac{\ln(x+h) - \ln x}{h} = \lim_{h \to 0} \frac{1}{h} \ln\left(\frac{x+h}{x}\right) =$$

$$= \lim_{h \to 0} \frac{1}{h} \ln\left(1 + \frac{h}{x}\right) = \lim_{h \to 0} \ln\left(1 + \frac{h}{x}\right)^{\frac{1}{h}} =$$

$$= \lim_{h \to 0} \log\left(1 + \frac{1}{n}\right)^{\frac{n}{x}} = \quad \text{\setminus Substitucija } \frac{h}{x} = \frac{1}{n} \Rightarrow h = \frac{x}{n}.$$

$$= \lim_{n \to \infty} \ln\left(\left(1 + \frac{1}{n}\right)^n\right)^{\frac{1}{x}} = \lim_{n \to \infty} \frac{1}{x} \ln\left(1 + \frac{1}{n}\right)^n = \frac{1}{x} \ln e =$$

$$= \frac{1}{x}$$

Dokaz pravila (32.20):

$$\begin{split} f(x) &= \log_a x = \frac{\log x}{\log a} = \frac{1}{\log a} \log x \\ f'(x) &= \frac{1}{\log a} \cdot \frac{1}{x} = \frac{1}{x \log a} \quad \setminus \setminus \frac{1}{\log a} \text{ je konstanta.} \end{split}$$

Dokaz pravila (32.21):

$$\ln e^x = x$$
 \\ Pravilo (32.10).
 $\frac{1}{e^x} (e^x)' = 1$
 $(e^x)' = e^x$

Dokaz pravila (32.22):

$$(a^x)' = (e^{x \ln a})' = e^{x \ln a} \cdot (x \ln a)' = a^x \ln a$$
 \\ \ln a \text{ je konstanta.}

32.3 Implicitni odvod

Uporabljamo, kadar bi bil eksplicitni odvod bolj zapleten, ali kadar odvisne spremenljivke v eksplicitni obliki sploh ne moremo izraziti.

Odvajamo enačbo po neodvisni spremenljivki, odvisno obravnavamo kot sestavljeno funkcijo y(x).

Primer:

$$x^2+y^2=4$$
 \\ Odvajamo obe strani enačbe.
$$2x+2yy'=0$$
 \\ y je sestavljena funkcija, odvajamo po pravilu (32.10).
$$2yy'=-2x$$
 \\ Izrazimo y'.
$$y'=-\frac{x}{y}$$

Kazalo slik

1	Pravokotni koordinatni sistem					
2	Polarni koordinatni sistem					
3	Pretvarjanje med koordinatnima sistemoma in kompleksno ravnino 2					
4	Premik funkcije	25				
5	Odvisnost funkcije od parametrov a in b	26				
	(a) Parameter <i>a</i>	26				
	(b) Parameter b	26				
6	Posebni medsebojni legi premic	27				
	(a) Snop premic	27				
	(b) Šop premic	27				
7	Grafi potenčne funkcije.	28				
	(a) Pozitiven sod eksponent	28				
	(b) Pozitiven lih eksponent	28				
	(c) Negativen sod eksponent	28				
	(d) Negativen lih eksponent	28				
8	Graf korenske funkcije	29				
9	Graf kvadratne funkcije in a	30				
10	Vpliv diskriminante in parametra a na parabolo	31				
	(a) $a > 0$	31				
	(b) $a < 0 \dots \dots$	31				
11	Možne lege premice in parabole	32				
	(a) Sekanta	32				
	(b) Tangenta	32				
	(c) Mimobežnica	32				
12	Graf eksponentne funkcije	32				
	(a) $a > 1 \dots \dots$	32				
	(b) $a < 1 \dots \dots$	32				
13	Graf logaritemske funkcije	33				
	(a) $a > 1 \dots \dots$	33				
	(b) $a < 1 \dots \dots$	33				
14	Grafi arcus funkkcij.	34				
	(a) Arcus sinus	34				
	(b) Arcus kosinus	34				
	(c) Arcus tangens	34				

	(d) Arcus kotangens	34				
15	Višinski in Evklidov izrek v trikotniku	42				
16	Razširjena definicija kota	43				
	(a) Pozitiven kot	43				
	(b) Negativen kot	43				
	(c) Poljubno velik kot	43				
17	Definicija sinusa in kosinusa	44				
18	Grafični prikaz vrednosti kotnih funkcij.					
19 Adicijski izreki						
20	Grafi trigonometričnih funkcij	50				
	(a) Graf funkcije $\sin(x)$	50				
	(b) Graf funkcije $\cos(x)$	50				
	(c) Graf funkcije $tan(x)$	50				
	(d) Graf funkcije $\cot(x)$	50				
21	Kot med premicama	51				
22	Seštevanje vektorjev	52				
	(a) Paralelogramsko pravilo	52				
	(b) Trikotniško pravilo	52				
23	Grafični dokaz komutativnosti in asociativnosti seštevanja vektorjev.	52				
	(a) Komutativnost seštevanja vektorjev	52				
	(b) Asociativnost seštevanja vektorjev	52				
24	Pravokotna projekcija vektorja \vec{b} na vektor \vec{a}	53				
	(a) $\operatorname{pr}_{\vec{a}} \vec{b} > 0$					
	(b) $\operatorname{pr}_{\vec{a}} \vec{b} < 0 \dots \dots \dots \dots \dots \dots$	53				
25	Vektor med dvema točkama					
26	Grafični prikaz kompleksnega števila					
27	Grafični prikaz konjugiranega kompleksnega števila	58				
28	Grafični prikaz absolutne vrednosti kompleksnega števila					
29	Ploščina lika, sestavljenega iz več likov	60				
30	Kvadrat, pravokotnik, paralelogram in trapez					
	(a) Kvadrat					
	(b) Pravokotnik					
	(c) Paralelogram					
	(d) Trapez – izpeljava srednice					
	(e) Trapez – izpeljava ploščine.					
31	Deltoid in trikotnik	61				

	(a)	Deltoid	L
	(b)	Izpeljava ploščine trikotnika	L
	(c)	Ploščina trikotnika	L
32	Sinus	ni izrek	2
33	Kosii	nusni izrek in polmer včrtanega kroga	1
	(a)	Kosinusni izrek	1
	(b)	Polmer včrtanega kroga	1
34	Graf	polinoma	}
	(a)	$p(x) = x^3 + \frac{1}{4}x^2 - 2x - 1 \dots $ 73	}
	(b)	$p(x) = -\frac{1}{4}x^4 + 0.2x^3 + x^2 - \frac{\sqrt{3}}{2}x + \frac{1}{2} \dots \qquad 73$	}
35	Slika	krožnice	5
	(a)	$x^2 + y^2 = 4$	5
	(b)	$(x+1)^2 + (y-1)^2 = 4 \dots \dots$	
36	Slika	elipse	;
37	Slika	elipse	7
	(a)	$3x^2 + 4y^2 = 27$	7
	(b)	$100x^2 + 36y^2 = 255 \dots 77$	7
38	Prim	er slike hiperbole z označenimi konstantami	7
39	Slika	hiperbole)
	(a)	$5x^2 - 4y^2 = 5 \dots \dots$)
	(b)	$4x^2 - 7y^2 = -8 \dots $)
40	Slika	parabole 80)
	(a)	$y^2 = 4x \dots $)
	(b)	$y^2 = -2x + 4$)
41	Graf	zaporedja $a_n = 3\frac{n-4}{n+1} + 1.5.$	L
42	Geor	netrijski pomen odvoda)
43	Graf	funkcije $g(x)$ za izpeljavo odvoda kompozituma funkcij 93	}