

WYPEŁNIA ZDAJĄCY Miejsce na naklejkę. Sprawdź, czy kod na naklejce to E-100. Jeżeli tak – przyklej naklejkę. Jeżeli nie – zgłoś to nauczycielowi.

Egzamin maturalny

Formula 2015

MATEMATYKA

Poziom podstawowy

*Symbol arkusza*EMAP-P0-**100**-2406

DATA: 4 czerwca 2024 r.

GODZINA ROZPOCZĘCIA: 9:00

CZAS TRWANIA: 170 minut

LICZBA PUNKTÓW DO UZYSKANIA: 🗸	16
--------------------------------	----

WYPEŁNIA ZESPÓŁ NADZORUJĄCY Uprawnienia zdającego do: dostosowania zasad oceniania dostosowania w zw. z dyskalkulią nieprzenoszenia odpowiedzi na kartę.

Przed rozpoczęciem pracy z arkuszem egzaminacyjnym

- 1. Sprawdź, czy nauczyciel przekazał Ci właściwy arkusz egzaminacyjny, tj. arkusz we właściwej formule, z właściwego przedmiotu na właściwym poziomie.
- Jeżeli przekazano Ci niewłaściwy arkusz natychmiast zgłoś to nauczycielowi. Nie rozrywaj banderol.
- 3. Jeżeli przekazano Ci **właściwy** arkusz rozerwij banderole po otrzymaniu takiego polecenia od nauczyciela. Zapoznaj się z instrukcją na stronie 2.

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 33 strony (zadania 1–36). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Na pierwszej stronie arkusza oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 3. Odpowiedzi do zadań zamkniętych (1–29) zaznacz na karcie odpowiedzi w części karty przeznaczonej dla zdającego. Zamaluj pola do tego przeznaczone. Błędne zaznaczenie otocz kółkiem i zaznacz właściwe.
- 4. Pamiętaj, że pominięcie argumentacji lub istotnych obliczeń w rozwiązaniu zadania otwartego (30–36) może spowodować, że za to rozwiązanie nie otrzymasz pełnej liczby punktów.
- 5. Rozwiązania zadań i odpowiedzi wpisuj w miejscu na to przeznaczonym.
- 6. Pisz czytelnie i używaj tylko długopisu lub pióra z czarnym tuszem lub atramentem.
- 7. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 8. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.
- 9. Pamiętaj, że zapisy w brudnopisie nie będą oceniane.
- 10. Możesz korzystać z *Wybranych wzorów matematycznych*, cyrkla i linijki oraz kalkulatora prostego. Upewnij się, czy przekazano Ci broszurę z okładką taką jak widoczna poniżej.

Zadania egzaminacyjne są wydrukowane na następnych stronach.

W każdym z zadań od 1. do 29. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Zadanie 1. (0-1)

Liczba $2^{-1} \cdot 32^{\frac{3}{5}}$ jest równa

- **A.** (-16)
- **B.** (-4)
- **C.** 2

D. 4

Zadanie 2. (0-1)

Liczba $\log_3\left(\frac{3}{2}\right) + \log_3\left(\frac{2}{9}\right)$ jest równa

- **A.** $\log_3 \frac{31}{18}$ **B.** $\log_3 \frac{5}{11}$ **C.** (-1)
- **D.** $\frac{1}{3}$

Zadanie 3. (0-1)

Liczba $(2\sqrt{10} + \sqrt{2})^2$ jest równa

- **A.** 22
- **B.** 42
- **C.** $42 + 4\sqrt{5}$ **D.** $42 + 8\sqrt{5}$

Zadanie 4. (0-1)

Dane są dwa prostokąty: \mathcal{P}_1 oraz \mathcal{P}_2 .

Długości boków prostokąta \mathcal{P}_1 są równe a oraz b.

Długości boków prostokąta \mathcal{P}_2 są równe 0,2a oraz 8b.

Pole prostokąta \mathcal{P}_1 stanowi

- **A.** 60% pola prostokąta \mathcal{P}_2 .
- **B.** 62,5% pola prostokąta \mathcal{P}_2 .
- **C.** 160% pola prostokąta \mathcal{P}_2 .
- **D.** 162,5% pola prostokata \mathcal{P}_2 .

Zadanie 5. (0-1)

Klient wpłacił do banku na trzyletnią lokatę kwotę w wysokości K_0 zł. Po każdym rocznym okresie oszczędzania bank dolicza odsetki w wysokości 6% od kwoty bieżącego kapitału znajdującego się na lokacie – zgodnie z procentem składanym.

Po trzech latach oszczędzania w tym banku kwota na lokacie (bez uwzględniania podatków) jest równa

A.
$$K_0 \cdot (1,06)^3$$

B.
$$K_0 \cdot (1,02)^3$$

C.
$$K_0 \cdot (1.03)^6$$

D.
$$K_0 \cdot 1,18$$

Zadanie 6. (0-1)

Liczba wszystkich całkowitych dodatnich rozwiązań nierówności

$$\frac{3x-5}{12} < \frac{1}{3}$$

jest równa

Zadanie 7. (0-1)

Układ równań
$$\begin{cases} x - 2y = 3 \\ -4x + 8y = -12 \end{cases}$$

- A. nie ma rozwiązań.
- B. ma dokładnie jedno rozwiązanie.
- C. ma dokładnie dwa rozwiązania.
- **D.** ma nieskończenie wiele rozwiązań.

Zadanie 8. (0-1)

Jednym z rozwiązań równania $\frac{3x \cdot (2x+8)}{x-2} = 0$ jest liczba

Zadanie 9. (0-1)

Funkcja y = f(x) jest określona za pomocą tabeli

х	-2	-1	0	1	2
y	-1	0	1	0	3

Wskaż zdanie prawdziwe.

- **A.** Funkcja f ma dokładnie jedno miejsce zerowe.
- **B.** W układzie współrzędnych (x,y) wykres funkcji f jest symetryczny względem osi ∂y .
- **C.** Największa wartość funkcji f jest równa 3.
- **D.** Najmniejsza wartość funkcji f jest równa (-2).

Zadanie 10. (0-1)

Liczba 2 jest miejscem zerowym funkcji liniowej f(x) = (3 - m)x + 4.

Liczba m jest równa

- **A.** 0
- **B.** 3
- **C.** 4
- **D.** 5

Informacja do zadań 11.–13.

Na rysunku 1., w układzie współrzędnych (x, y), przedstawiono wykres funkcji f.

Rysunek 1.

Zadanie 11. (0-1)

Największa wartość funkcji f jest równa

- **A.** 2
- **B.** 4
- **C.** 6
- **D.** 7

Zadanie 12. (0-1)

Funkcja f jest malejąca w zbiorze

- **A.** $\langle -1, 1 \rangle$
- **B.** $\langle 0, 4 \rangle$
- **C.** (1,7)
- **D.** (4, 7)

Zadanie 13. (0-1)

Na rysunku 2., w układzie współrzędnych (x,y), przedstawiono wykres funkcji g, powstałej w wyniku przesunięcia równoległego wykresu funkcji f wzdłuż osi Ox o 4 jednostki w lewo.

Rysunek 2.

Funkcje f i g są powiązane zależnością

A.
$$g(x) = f(x+4)$$

B.
$$g(x) = f(x - 4)$$

C.
$$g(x) = f(x) + 4$$

D.
$$g(x) = f(x) - 4$$

Zadanie 14. (0-1)

Funkcja kwadratowa f jest określona wzorem $f(x) = -(x+1)^2 + 4$.

Fragment wykresu funkcji y = f(x) przedstawiono na rysunku

A.

В.

C.

D.

Zadanie 15. (0-1)

Ciąg (a_n) jest określony wzorem $a_n=2\cdot (-1)^{n+1}+5\,$ dla każdej liczby naturalnej $n\geq 1.$ Suma dziesięciu początkowych kolejnych wyrazów tego ciągu jest równa

A. 3

- **B.** 7
- **C.** 50
- **D.** 100

Zadanie 16. (0-1)

W ciągu arytmetycznym (a_n) , określonym dla każdej liczby naturalnej $n\geq 1$, dane są wyrazy: $a_1=7$ oraz $a_2=13$.

Wyraz a_{10} jest równy

- **A.** (-47)
- **B.** 52
- **C.** 61
- **D.** 67

Zadanie 17. (0-1)

Trzywyrazowy ciąg (-1, 2, x) jest arytmetyczny.

Trzywyrazowy ciąg (-1, 2, y) jest geometryczny.

Liczby x oraz y spełniają warunki

A. x > 0 i y > 0

B. x > 0 i y < 0

C. x < 0 i y > 0

D. x < 0 i y < 0

Zadanie 18. (0-1)

Liczba 1 + cos² 27° jest równa

A. $2 - \sin^2 27^\circ$

B. sin² 27°

C. $2 + \sin^2 27^\circ$

D. 2

Zadanie 19. (0-1)

Podstawy trapezu prostokątnego ABCD mają długości: |AB|=8 oraz |CD|=5. Wysokość AD tego trapezu ma długość $\sqrt{3}$ (zobacz rysunek).

Miara kąta ostrego ABC jest równa

- **A.** 15°
- **B.** 30°
- **C.** 45°
- **D.** 60°

Zadanie 20. (0-1)

Punkty A, B oraz C leżą na okręgu o środku w punkcie S. Długość łuku AB, na którym jest oparty kąt wpisany ACB, jest równa $\frac{1}{5}$ długości okręgu (zobacz rysunek).

Miara kąta ostrego ACB jest równa

- **A.** 18°
- **B.** 30°
- **C.** 36°
- **D.** 72°

Zadanie 21. (0-1)

Proste k oraz l są określone równaniami

$$k: y = (3m+1)x + 2$$

$$l: y = -4x + (2m + 5)$$

Proste k oraz l są równoległe, gdy liczba m jest równa

- **A.** (-4)
- **B.** $\left(-\frac{5}{3}\right)$ **C.** $\left(-\frac{3}{2}\right)$
- **D.** (-1)

Zadanie 22. (0-1)

Dana jest prosta o równaniu y = -3x + 1.

Obrazem tej prostej w symetrii środkowej względem początku układu współrzędnych jest prosta o równaniu

A.
$$y = 3x + 1$$

B.
$$y = 3x - 1$$

C.
$$y = -3x + 1$$

D.
$$y = -3x - 1$$

Zadanie 23. (0-1)

Przekątna ściany sześcianu ma długość $2\sqrt{2}$.

Objętość tego sześcianu jest równa

A. 8

- **B.** 24
- **c.** $\frac{16\sqrt{6}}{9}$
- **D.** $16\sqrt{2}$

Zadanie 24. (0-1)

Podstawą graniastosłupa prawidłowego czworokątnego jest kwadrat o boku długości 4. Przekątna tego graniastosłupa jest nachylona do płaszczyzny podstawy pod kątem α takim, $\dot{z}e tg \alpha = 2 (zobacz rysunek).$

Wysokość tego graniastosłupa jest równa

- **A.** 2
- **B.** 8

- **C.** $8\sqrt{2}$ **D.** $16\sqrt{2}$

Zadanie 25. (0-1)

Ostrosłup prawidłowy ma 2024 ściany boczne.

Liczba wszystkich krawędzi tego ostrosłupa jest równa

- **A.** 2025
- **B.** 2026
- **C.** 4048
- **D.** 4052

Zadanie 26. (0-1)

Dany jest ostrosłup prawidłowy czworokątny ABCDS o podstawie ABCD.

Długość krawędzi podstawy tego ostrosłupa jest równa 4.

Pole powierzchni całkowitej tego ostrosłupa jest równe 56.

Wysokość ściany bocznej poprowadzona z wierzchołka S do krawędzi podstawy AB tego ostrosłupa jest równa

- **A.** 3
- **B.** $\frac{5}{2}$
- **c**. $\frac{21}{2}$
- **D**. 5

Zadanie 27. (0-1)

Na diagramie przedstawiono wyniki sprawdzianu z matematyki w pewnej klasie maturalnej. Na osi poziomej podano oceny, które uzyskali uczniowie tej klasy, a na osi pionowej podano liczbę uczniów, którzy otrzymali daną ocenę.

Średnia arytmetyczna ocen uzyskanych z tego sprawdzianu przez uczniów tej klasy jest równa

A. 3

- **B.** 3,12
- **C.** 3,5
- **D.** 4,1(6)

Zadanie 28. (0-1)

Wszystkich liczb naturalnych czterocyfrowych <u>parzystych</u>, w których zapisie dziesiętnym występują tylko cyfry 2, 4, 7 (np. 7272, 2222, 7244), jest

- **A.** 16
- **B.** 27
- **C.** 54
- **D.** 81

Zadanie 29. (0-1)

W pudełku znajdują się wyłącznie kule białe i czarne. Kul czarnych jest 18.

Z tego pudełka w sposób losowy wyciągamy jedną kulę.

Prawdopodobieństwo zdarzenia polegającego na tym, że wyciągniemy kulę czarną, jest równe $\frac{3}{5}$.

Liczba kul białych w pudełku, przed wyciągnięciem jednej kuli, była równa

A. 9

- **B.** 12
- **C.** 15
- **D.** 30

Zadanie 30. (0-2)

Rozwiąż nierówność

$$x(3x-1)+4<7x$$

Zadanie 31. (0-2)

Parabola, która jest wykresem funkcji kwadratowej f, ma z osiami układu współrzędnych (x, y) dokładnie dwa punkty wspólne: M = (0, 18) oraz N = (3, 0).

Wyznacz wzór funkcji kwadratowej f.

Zadanie 32. (0-2)

Wykaż, że dla każdej liczby rzeczywistej $\,x \neq 1\,$ i dla każdej liczby rzeczywistej $\,y\,$ prawdziwa jest nierówność

$$x^2 + 49y^2 > 2(x + 7y - 1)$$

Zadanie 33. (0-2)

Bok kwadratu ABCD ma długość równą 12. Punkt S jest środkiem boku BC tego kwadratu. Na odcinku AS leży punkt P taki, że odcinek BP jest prostopadły do odcinka AS. Oblicz długość odcinka BP.

Zadanie 34. (0-2)

Trzywyrazowy ciąg $(4x^2 - 1, 2x^2 + 1, 1 - x)$ jest arytmetyczny.

Oblicz x.

Zadanie 35. (0-2)

Doświadczenie losowe polega na dwukrotnym rzucie symetryczną sześcienną kostką do gry, która na każdej ściance ma inną liczbę oczek – od jednego oczka do sześciu oczek.

Oblicz prawdopodobieństwo zdarzenia $\,A\,$ polegającego na tym, że w pierwszym rzucie wypadnie większa liczba oczek niż w drugim rzucie.

Zadanie 36. (0-5)

W układzie współrzędnych (x,y) dane są punkty A=(2,8) oraz B=(10,2). Symetralna odcinka AB przecina oś Ox układu współrzędnych w punkcie P.

Oblicz współrzędne punktu P oraz obwód trójkąta ABP.

MATEMATYKA Poziom podstawowy

Formula 2015

MATEMATYKA Poziom podstawowy Formuła 2015

Formula 2015

MATEMATYKA Poziom podstawowy

Formula 2015