Problem Set 7

Problem R-86C ($C_{10}H_{10}O_3$). From the infrared, proton NMR and carbon NMR spectra provided, determine the

structure of R-86C. Whether you arrive at a satisfactory answer or not, answer each part below.
(a) DBE
(b) Analyze the IR spectrum.
(c) What does the region δ 7 to δ 8 in the 1H NMR spectrum tell you? Draw part structures.
(d) Analyze the ¹³ C NMR spectra. Draw part structures.
(e) Draw possible structures for R-86C below. Clrcle your best guess, and label it with as many of the ¹³ C shif as you can assign.

Problem R-86C (C₁₀H₁₀O₃) IR Spectrum neat

(Source: Wesley L. Whipple/Reich 3-16

Problem R-920 (C₁₂H₁₅N). Assign the individual signals of the compound whose 400 MHz ¹H NMR spectrum (CDCl₃, -10 °C) is given below. Use couplings, chemical shifts and intensities in your analysis. From their analysis, the authors deduced the conformation shown (Otter, A.; Neuenschwander, M.; Kellerhals, H. P. *Magn. Reson. Chem.* **1986**, *24*, 353).

δ

6.34

6.11 ____

6.05 ____

5.98

5.94 ____

5.87 ____

5.70 ___

5.55 ____

5.07 ____

Problem R-021H. The partial 300 MHz ¹H NMR spectra below are a series of dihydroxynaphthalenes. Determine the substitution patterns (Source: Aldrich Spectra Viewer).

