Digital Signal Processing

Introduction to DSP

What is Digital Signal Processing (DSP)?

- Consists of three words:
 - Digital, Signal and Processing
- Signal: any (physical or non-physical) quantity that varies with time, space, or other independent variable(s)
- **Digital**: a discrete-time and discrete-valued signal, i.e. digitization involves both *sampling* and *quantization*
- **Processing**: operations on the signal

Signal Types

Examples of Signals

- Signals are everywhere and may reflect countless measurements of some physical quantity such as:
 - electric voltages
 - brain signals
 - heart rates
 - temperatures
 - image luminance
 - investment prices
 - vehicle speeds
 - seismic activity
 - human speech

Signal Acquisition

- Various apparatus could be used to acquire signals, including:
 - Digital camera → Image
 - MRI scanner → Activity of the brain
 - EEG/EMG/EOG electrodes → Physiological signals
 - Voice recorder → Audio signal

Signal Dimensions

• 1D (e.g. dependent on time)

• 2D (e.g. images dependent on two coordinates in a plane)

• 3D (e.g. describing an object in space)

Multi-Channel Signals

- In some applications, signals are generated by multiple sources or multiple sensors → represented by a vector
- Such a vector is called a *multi-channel* signal.

Continuous-time vs. Discrete-time

- Continuous-time signals are signals defined at each value of independent variable(s).
- They have values in a continuous interval (a,b) that could extend from $-\infty$ to ∞ .
- Discrete-time signals are defined only at specific values of independent variable(s).
- Discrete-time signals are represented mathematically by a sequence of real or complex numbers.

Continuous-time vs. Discrete-time

Continuous function V of continuous variable t (time, space etc): V(t).

Discrete function V_k of discrete sampling variable t_k , with k = integer: $V_k = V(t_k)$.

Periodic sampling

Continuous-valued vs. Discrete-valued

• Both continuous and discrete-time signals can take a finite (discrete) or infinite (continuous) *range*.

• For a signal to be called *digital*, it must be *discrete-time* and *discrete-range*, i.e. digitization involves both *sampling and quantization*.

Deterministic vs. Random Signals

- Signals could be *deterministic*, with an explicit mathematical description, a table or a well-defined rule.
- All past, present, and future signal values are precisely known with *no uncertainty:*

$$S_1(t) = at S_2(x,y) = ax + bxy + cy^2$$

• In contrast, for *random* signals the functional relationship is unknown.

• > statistical analysis techniques

Signal Processing System

- A **system** that performs some kind of task on a signal which depends on the application, e.g.
 - *Communications*: modulation/demodulation, multiplexing/demultiplexing, data compression
 - Speech Recognition: speech to text transformation
 - Security: signal encryption/decryption
 - Filtering: signal denoising/noise reduction
 - Enhancement: audio signal processing, equalization
 - *Data manipulation*: watermarking, reconstruction, feature extraction
 - Signal generation: music synthesis

Digital vs. Analog Processing

Digital Signal Processing

Advantages

- More flexible
- Data easily stored
- Better control over accuracy requirements
- Reproducibility
- Cheaper

Limitations

- A/D & signal processors' speed
- Finite word-length effect:

(round-off: Error caused by rounding math calculation result to nearest quantization level)

Signal Processing

• Theoretical vs.

Applicable to any field

- Applied

 Easier to comprehend
- Algorithm development vs. implementation

e.g., C++-code, Matlab code

Easier to adapt

e.g., ASIC, DSP chip

Example Application: Audio Processing

• Applications include speech generation / speech recognition

• Speech recognition: DSP generally approaches the problem of voice recognition in two steps: feature extraction followed by

feature matching.

Source: Canon

Example Application: Echo Location

- A common method of obtaining information about a remote object is to bounce a *wave* off of it.
- Applications include radar and sonar.
- DSP can be used for filtering and compressing the data.

Pattern Recognition

- Pattern recognition is a research area that is closely related to digital signal processing.
- Definition: "the act of taking in raw data and taking an action based on the category of the data".
- Pattern recognition classifies data based on either *a priori knowledge* or on *statistical information* extracted from the patterns.

Source: merl.com 17

Application: Biometrics

- The "Biometrics" field focuses on methods for uniquely identifying humans using one or more of their intrinsic physical or behavioural traits.
- Examples include using face, voice, fingerprints, iris, handwriting or the method of walking.

Source: BBC

Biomedical Application: Brain computer interface

- A means for communication between a brain and a computer via measurements associated with brain activity.
- No muscle motion is involved (e.g., eye movement).

Electrode Placement and Sample Data

Pfurtscheller et al, 2003

Graz-BCI: State of the Art and Clinical Applications IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 11, NO. 2, JUNE 2003

In a pilot project with a tetraplegic patient, a mechanical-hand orthosis was controlled by ongoing EEG activity based on a synchronous BCI design and two types of motor imagery. After a number of training sessions with varying types of motor imagery strategies over a period of several months, motor imagery of foot movement versus right hand movement achieved a classification accuracy of close to 100%.

BCI Application- Neuroprosthesis

