TP15 - Fentes d'Young

Objectifs

- → Procéder à l'évaluation d'une incertitude-type par une autre approche que statistique (évaluation de type B).
- → Simuler, à l'aide d'un langage de programmation ou d'un tableur, un processus aléatoire permettant de caractériser la variabilité de la valeur d'une grandeur composée.
- → Simuler, à l'aide d'un langage de programmation ou d'un tableur, un processus aléatoire de variation des valeurs expérimentales de l'une des grandeurs simulation Monte-Carlo pour évaluer l'incertitude sur les paramètres du modèle.
- → Comparer deux valeurs dont les incertitudes-types sont connues à l'aide de leur écart normalisé.
- \rightarrow Mettre en œuvre un dispositif expérimental pour visualiser le phénomène d'interférences de deux ondes.

Mesures de longueur d'onde

- 1. À l'aide d'un montage analogue aux trous d'Young, mesurer la longueur d'onde :
 - optique d'une diode laser;
 - acoustique d'une onde ultrasonore.

Consignes:

- Les résultats des mesures seront accompagnés de leur incertitude.
- Une comparaison quantitative entre les résultats de mesure et les valeurs de référence est attendue.
- La rédaction du compte-rendu s'appuiera sur les étapes de la démarche scientifique.
- L'exploitation d'un ajustement linéaire sera valorisée.
- Le ou les programmes Python utilisés seront envoyés par mail, sous la forme tp15-nom.py.

Compétence	Observable	\mathbf{A}	$\mid \mathbf{B} \mid$	\mathbf{C}	D
APP	Relier le problème à une situation modèle connue				
ANA	Proposer une stratégie pour répondre à une problématique				
	Choisir, concevoir, justifier un protocole				
REA	Mettre en œuvre les étapes d'une démarche, d'un protocole				
	Schématiser un dispositif, une expérience, une méthode de mesure				
	Effectuer des représentations graphiques à partir de données				
	Utiliser le matériel de manière adaptée en respectant des règles de sécurité				
VAL	Exploiter des mesures en estimant les incertitudes				
	Confronter les résultats d'un modèle à des résultats expérimentaux				
	Analyser les résultats de manière critique				
COM	Présenter les étapes de sa démarche de manière synthétique, organisée et cohérente				

Documents

Document 1 - Matériel

- GBF
- oscilloscope
- deux émetteurs ultrason
- un recepteur ultrason

- diode laser
- diapositive fentes d'Young (Doc. 2)
- banc optique, supports et écran
- mètre à ruban

Document 2 - Diapositives fentes d'Young

Caractéristiques techniques :

- Diapositive : $50 \times 50 \,\mathrm{mm}$; $24 \times 36 \,\mathrm{mm}$ utile.
- Fentes:
 - largeur fente : 70 µm;
 - distance interfente : 200 / 300 / $500 \, \mu m$.
- Précision : environ 10 %.

Document 3 - Vitesse du son dans l'air

La vitesse du son $c_{\rm son}$ dans l'air dépend notamment de la température. Dans l'air sec, on peut montrer que

$$c_{\rm son} = \alpha \sqrt{T}$$
,

où $\alpha = 20,05 \,\mathrm{m\cdot s^{-1}\cdot K^{-0,5}}$ et T est exprimée en kelvins (K).

Rappel: $T = 273,15 + \theta$, où T est en kelvins et θ en degrés Celsius.

Document 4 - Ajustement linéaire

numpy.polyfit(x, y, 1) : réalise un ajustement linéaire des données contenues dans les tableaux x et y. Renvoie les paramètres de la droite d'équation y = ax + b sous la forme d'un tableau : [a, b].

Le programme tp10-ajustement.py disponible sur cahier-de-prepa.fr donne un exemple d'utilisation de cette fonction.