Distributed Quantum Proofs for Replicated Data

arXiv: 2002.10018

Pierre Fraigniaud (CNRS/U de Paris)
Francois Le Gall, <u>Harumichi Nishimura</u> (Nagoya U)
Ami Paz (U Wien)

2020年10月16日 量子ソフトウェア研究会

Quantum Distributed Computing

- Leader election [Tani, Kobayashi, Matsumoto 05, 09]
- Byzantine agreement [Ben-Or, Hassidim 05]
- Diameter [Le Gall, Magniez 18]
- All pairs shortest paths [Izumi, Le Gall 19]
- Triangle finding [Izumi, Le Gall, Magniez 20] etc

- Replicated data on a network
- Are all data identical?

- Replicated data on a network
- Are all data identical?

- Replicated data on a network
- Are all data identical?
- No O(1) round protocol
 - Here, the nodes do not share prior randomness & entanglement

- Replicated data on a network
- Are all data identical?
- No O(1) round protocol
 - Here, the nodes do not share prior randomness & entanglement
- ∃ 1 round "NP-like" protocol (distributed certification)

• Distributed Merlin-Arthur (dMA) protocols

• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16] etc

Two stages:

Prover sends certificates to each node

 χ

• Distributed Merlin-Arthur (dMA) protocols

• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

Two stages:

- Prover sends certificates to each node
- 2. Each node exchanges messages with the neighbors

 χ

- Distributed Merlin-Arthur (dMA) protocols
 - Proof labeling scheme [Korman, Kutten, Peleg 10]
 - Locally checkable proof [Goos, Suomela 16] etc

Properties:

(YES case: Completeness)

∃W[all nodes accept] (w.h.p.)

- Distributed Merlin-Arthur (dMA) protocols
 - Proof labeling scheme [Korman, Kutten, Peleg 10]
 - Locally checkable proof [Goos, Suomela 16] etc

Properties:

(YES case: Completeness)

∃W[all nodes accept] (w.h.p.)

(NO case: Soundness)

 $\forall W$ [some node rejects] (w.h.p.)

• Distributed Merlin-Arthur (dMA) protocols

• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

Trivial protocol:

When all data are x, Prover sends x & each node checks if it is same as the neighbor's one

(YES case: Completeness)

 $\exists W[\text{all nodes accept}]$

• Distributed Merlin-Arthur (dMA) protocols

• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

Trivial protocol:

When all data are x, Prover sends x & each node checks if it is same as the neighbor's one

(NO case: Soundness)

 $\forall W$ [some node rejects]

• Distributed Merlin-Arthur (dMA) protocols

• Proof labeling scheme [Korman, Kutten, Peleg 10]

• Locally checkable proof [Goos, Suomela 16]

etc

Weakness of Trivial Protocol:

- Prover sends n bits for each node (n := length of x)
- Each node sends n bits to the neighbors

Our Results

- Distributed Quantum Merlin-Arthur (dQMA) protocols
 - Quantum certificates from the prover
 - Quantum messages among nodes
- Quantum upper bound
 - \exists dQMA protocol for equality of replicated data with $O(tr^2 \log(n+r))$ -qubit certificates & messages
 - *t*:= number of the terminals
 - r = diameter of the network
- Classical lower bound
 - Any dMA protocol requires $\Omega(n)$ -bit certificates if error probability is reasonably small (say, 1/3)

Path

- Path network
 - t = 2, r = path length
 - Only the left & right nodes have input strings
 - More general networks can be reduced to the path case

Р

 \mathcal{X}

Path (2 nodes)

- $O(\log n)$ messages are possible on the path of 2 nodes
 - Prover is unnecessary
 - Use hash functions
 - $\Pr_h[h(x) \neq h(y)] < 1/\text{poly}(n) \text{ when } x \neq y$
 - Length of pair $(h, h(x)) = O(\log n)$

Path (3 nodes or more)

• Similar strategy is not possible on the path of 3 nodes

Path (3 nodes or more)

- Similar strategy is not possible on the path of 3 nodes
- Prover does not help much (as he/she might be malicious for NO instance)
 - Classical lower bound $\Omega(n)$ for prover's certificate can be proved for the path of 4 nodes

Our Idea for Quantum Protocol

- Quantum fingerprint [Buhrman, Cleve, Watrous, de Wolf 01]
 - $|h_x\rangle = \sum_h |h\rangle |h(x)\rangle$ ($O(\log n)$ -qubit state)
 - $|\langle h_x | h_y \rangle|^2 < 1/\text{poly}(n)$ when $x \neq y$
- SWAP test
 - Can estimate $|\langle h_x|h_y\rangle|^2$ even if the input states $|h_x\rangle$, $|h_y\rangle$ are not known
- Use quantum fingerprint as certificates

Our Protocol

- Honest prover (when x=y) sends certificate $|h_x\rangle$ to each of the intermediate nodes
- Left node creates $|h_x\rangle$ and right node creates $|h_y\rangle$

Our Protocol

• Each node (except right node) chooses $b_j \in \{0,1\}$ uniformly at random: if $b_j = 0$, send the state to the right neighbor; otherwise, keep it by itself.

 Each node (except left node) does SWAP test if it has two states, and outputs its result (accept/reject), and accepts

Analysis

- When x = y, all nodes accept with probability 1
- When $x \neq y$, the probability that all nodes accept is $1 \Omega(1/r^2)$
- Soundness error can be reduced to 0.01 by $O(r^2)$ repetitions

Analysis (soundness)

- When $x \neq y$, the probability that all nodes accept is $1 \Omega(1/r^2)$
 - If the prover P sends product states $|h_1\rangle\otimes|h_2\rangle\otimes\cdots\otimes|h_{r-1}\rangle$, the best strategy of P puts "evenly separated" intermediate states between $|h_\chi\rangle$ and $|h_\gamma\rangle$
 - The nodes can reject with prob. $1 \Omega(1/r)$

Analysis (soundness)

- When $x \neq y$, the probability that all nodes accept is $1 \Omega(1/r^2)$
 - However, P can send an entangled state $|W\rangle$
 - For analysis, we use some property of the SWAP test:

[Property] If the SWAP test accepts on input ρ w.h.p., the two reduced states ρ_1 & ρ_2 must be close ($\rho_1 \approx \rho_2$)

Our Results (Recap) & Future Work

arXiv: 2002.10018

- Distributed Quantum Merlin-Arthur (dQMA) protocols
 - Quantum certificates from the prover
 - Quantum messages among nodes
- Quantum upper bound
 - \exists dQMA protocol for equality of replicated data with $O(tr^2 \log(n+r))$ -qubit certificates & messages
 - *t*:= number of the terminals
 - r = radius of the network
- Classical lower bound
 - Any dMA protocol requires $\Omega(n)$ -bit certificates if error probability is reasonably small (say, 1/3)
- Future Work
 - dQMA protocols for other problems
 - Lower bounds for dQMA protocols