

axiomatic definition of the real numbers

 ${\bf Canonical\ name} \quad {\bf Axiomatic Definition Of The Real Numbers}$

Date of creation 2013-03-22 15:39:29 Last modified on 2013-03-22 15:39:29

Owner matte (1858) Last modified by matte (1858)

Numerical id 17

Author matte (1858)
Entry type Definition
Classification msc 54C30
Classification msc 26-00
Classification msc 12D99
Related topic RealNumber

Axiomatic definition of the real numbers

The real numbers consist of a set \mathbb{R} together with mappings $+: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and a relation $< \subseteq \mathbb{R} \times \mathbb{R}$ satisfying the following conditions:

- 1. $(\mathbb{R}, +)$ is an Abelian group:
 - (a) For $a, b, c \in \mathbb{R}$, we have

$$a + b = b + a,$$

 $(a + b) + c = a + (b + c),$

- (b) there exists an element $0 \in \mathbb{R}$ such that a + 0 = a for all $a \in \mathbb{R}$,
- (c) every $a \in \mathbb{R}$ has an inverse $(-a) \in \mathbb{R}$ such that a + (-a) = 0.
- 2. $(\mathbb{R} \setminus \{0\}, \cdot)$ is an Abelian group:
 - (a) For $a, b, c \in \mathbb{R}$, we have

$$a \cdot b = b \cdot a,$$

 $(a \cdot b) \cdot c = a \cdot (b \cdot c),$

- (b) there exists an element $1 \in \mathbb{R} \setminus \{0\}$ such that $a \cdot 1 = a$ for all $a \in \mathbb{R}$,
- (c) every $a \in \mathbb{R} \setminus \{0\}$ has an inverse $a^{-1} \in \mathbb{R}$ such that $a^{-1} \cdot a = 1$.
- 3. The operation \cdot is distributive over +: If $a, b, c \in \mathbb{R}$, then

$$a \cdot (b+c) = a \cdot b + a \cdot c,$$

 $(b+c) \cdot a = b \cdot a + c \cdot a.$

- 4. $(\mathbb{R}, <)$ is a total order:
 - (a) (transitivity) if $c \in \mathbb{R}$, a < b, and b < c, then a < c,
 - (b) (trichotomy) precisely one of the below alternatives hold:

$$a < b$$
, $a = b$, $b < a$.

For convenience we make the following notational definitions: a > b means b < a, $a \le b$ means either a < b or a = b, and $a \ge b$ means either b < a or a = b.

- 5. The operations + and \cdot are compatible with the order <:
 - (a) If $a, b, c \in \mathbb{R}$ and a < b, then a + c < b + c.
 - (b) If $a, b, c \in \mathbb{R}$ with a < b and 0 < c, then ac < bc.
- 6. \mathbb{R} has the least upper bound property: If $A \subset \mathbb{R}$, then an element $M \in \mathbb{R}$ is an for A if

$$a < M$$
, for all $a \in A$.

If A is non-empty, we then say that A is bounded from above. That \mathbb{R} has the least upper bound property means that if $A \subset \mathbb{R}$ is bounded from above, it has a least upper bound $m \in \mathbb{R}$. That is, A has an upper bound m such that if M is any upper bound from M, then $m \leq M$.

Here it should be emphasized that from the above we can not deduce that a set \mathbb{R} with operations $+,\cdot,<$ exists. To settle this question such a set has to be explicitly constructed. However, this can be done in various ways, as discussed on http://planetmath.org/RealNumberthis page. One can also show the above conditions uniquely determine the real numbers (up to an isomorphism). The proof of this can be found on http://planetmath.org/EveryOrderedFieldWithT page.

Basic properties

In condensed form, the above conditions state that \mathbb{R} is an ordered field with the least upper bound property. In particular $(\mathbb{R}, +, \cdot)$ is a ring, and $(\mathbb{R} \setminus \{0\}, \cdot)$ is a group, and we have the following basic properties:

Lemma 1. Suppose $a, b \in \mathbb{R}$.

- $1. \ \ \textit{The additive inverse } (-a) \ \textit{is unique http://planetmath.org/UniquenessOfAdditiveIdented} \\$
- $2. \ \ The \ additive \ identity \ 0 \ is \ unique \ \textbf{http://planetmath.org/UniquenessOfAdditiveIdentit}$
- 3. $(-1) \cdot a = (-a)$ http://planetmath.org/1cdotAA(proof).
- $4. \ (-a) \cdot (-b) = a \cdot b \ \textit{http://planetmath.org/XcdotYXcdotY}(proof).$
- $5. \ 0 \cdot a = 0 \ \textit{http://planetmath.org/OcdotAO}(proof)$

- 6. The multiplicative inverse a^{-1} is unique http://planetmath.org/UniquenessOfInverseFo
- 7. If a,b are non-zero, then $(ab)^{-1}=b^{-1}a^{-1}$ http://planetmath.org/InverseOfAProduct(product)

In view of property ??, we can write simply -a instead of $(-1) \cdot a$ and (-a).

Because of the additive inverse of a real number is unique (by property 1 above), and (-a) + a = a + (-a) = 0, we see that the additive inverse of -a is a, or that -(-a) = a. Similarly, if $a \neq 0$, then $a^{-1} \neq 0$ (or we'll end up with $1 = aa^{-1} = a0 = 0$), and therefore by Property 6 above, a^{-1} has a unique multiplicative inverse. Since $aa^{-1} = a^{-1}a = 1$, we see that a is the multiplicative inverse of a^{-1} . In other words, $(a^{-1})^{-1} = a$.

For $a, b \in \mathbb{R}$ let us also define a-b=a+(-b), which is called the difference of a and b. By commutativity, a-b=-b+a. It is also common to leave out the multiplication symbol and simply write $ab=a\cdot b$. Suppose $a\in \mathbb{R}$ and $b\in \mathbb{R}$ is non-zero. Then b http://planetmath.org/Divisiondivided by a is defined as

$$\frac{a}{b} = ab^{-1}.$$

In consequence, if $a, b, c, d \in \mathbb{R}$ and b, c, d are non-zero, then

- $\bullet \ \ \frac{\frac{a}{b}}{\frac{c}{a}} = \frac{bd}{ac},$
- \bullet $\frac{ab}{b} = a$.

For example,

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ab^{-1}}{cd^{-1}} = ab^{-1}(cd^{-1})^{-1} = ab^{-1}dc^{-1} = \frac{ad}{bc}.$$