Resolução de Problemas do Livro

Equações Diferenciais Elementares e Problemas de Valores de Contorno (Boyce, W. E.; DiPrima, R. C.)

poi

Igo da Costa Andrade

BOYCE, W. E.; DIPRIMA, R. C.. Equações Diferenciais Elementares e Problemas de Valores de Contorno. Rio de Janeiro, LTC, 2013.

Capítulo 1: Introdução

Nos problemas de 1 a 6, desenha um campo de direções para a equação diferencial dada. Determine o comportamento de y quando $t \to \infty$. Se esse comportamento depender do valor inicial de y quando t = 0, descreva essa dependência.

1
$$y' = 3 - 2y$$

Solução:

Inicialmente, determinemos a solução de equilíbrio:

$$y' = 0 \Rightarrow 3 - 2y = 0 \Rightarrow y = \frac{3}{2} = 1.50$$

Como ilustra o campo de direções abaixo, todas as soluções tendem à solução de equilíbrio quando $t \to \infty$.

Solução:

Inicialmente, determinemos a solução de equilíbrio:

$$y' = 0 \Rightarrow 2y - 3 = 0 \Rightarrow y = \frac{3}{2} = 1.50$$

Como ilustra o campo de direções abaixo, todas as soluções afastam-se solução de equilíbrio quando $t \to \infty$.

3 y' = 3 + 2y

Solução:

Inicialmente, determinemos a solução de equilíbrio:

$$y' = 0 \Rightarrow 3 + 2y = 0 \Rightarrow y = -\frac{3}{2} = -1.50$$

Como ilustra o campo de direções abaixo, todas as soluções afastam-se solução de equilíbrio quando $t \to \infty$.

2

Solucionário de Equações Diferenciais Elementares e Problemas de Valores de Contorno (Boyce, W. E.; DiPrima, R. C.)

4
$$y' = -1 - 2y$$

Solução:

Inicialmente, determinemos a solução de equilíbrio:

$$y' = 0 \Rightarrow -1 - 2y = 0 \Rightarrow y = -\frac{1}{2} = -0.50$$

Como ilustra o campo de direções abaixo, todas as soluções tendem à solução de equilíbrio quando $t \to \infty$.

5 y' = 1 + 2y

Solução:

Inicialmente, determinemos a solução de equilíbrio:

$$y' = 0 \Rightarrow 1 + 2y = 0 \Rightarrow y = -\frac{1}{2} = -0.50$$

Como ilustra o campo de direções abaixo, todas as soluções afastam-se da solução de equilíbrio quando $t \to \infty$.

6 y' = y + 2

Solução:

Inicialmente, determinemos a solução de equilíbrio:

$$y' = 0 \Rightarrow y + 2 = 0 \Rightarrow y = -2$$

Como ilustra o campo de direções abaixo, todas as soluções afastam-se da solução de equilíbrio quando $t \to \infty$.

Em cada um dos problemas de 7 a 10, escreva uma equação diferencial da forma dy/dt = ay + b cujas soluções têm o comportamento descrito quando $t \to \infty$.

7 Todas as soluções tendem a y = 3.

Solução:

Solucionário de Equações Diferenciais Elementares e Problemas de Valores de Contorno (Boyce, W. E.; DiPrima, R. C.)

$$\frac{dy}{dt} = 9 - 3y$$

8 Todas as soluções tendem a y = 2/3.

Solução:

$$\frac{dy}{dt} = 2 - 3y$$

9 Todas as soluções se afastam de y = 2.

Solução:

$$\frac{dy}{dt} = 4y - 8$$

10 Todas as soluções se afastam de y = 1/3.

Solução:

$$\frac{dy}{dt} = 3y - 1$$

Nos problemas de 11 a 14, desenhe um campo de direções para a equação diferencial dada. Baseado no campo de direções, determine o comportamento de y quando $t \to \infty$. Se esse comportamento depender do valor inicial de y quando t=0, descreva essa dependência. Note que nesses problemas, as equações não são da forma y'=ay+b, e o comportamento das soluções é um pouco mais complicado do que o das equações no texto.

11 y' = y(4-y)

Solução:

Inicialmente, determinemos a solução de equilíbrio:

$$y' = 0 \Rightarrow y(4 - y) = 0 \Rightarrow \begin{cases} y = 0 \\ 4 - y = 0 \end{cases} \Rightarrow \begin{cases} y = 0 \\ y = 4 \end{cases}$$

Observemos que existem duas soluções de equilíbrio: y=0 e y=4, destacadas no campo de direções abaixo.

Como ilustra o campo de direções acima, o comportamento das soluções quando $t \to \infty$ depende do valor inicial de y em t=0. De fato, seja a condição inicial $y_0=y(t=0)$. Então

- Soluções em que $y_0 < 0$ afastam-se da solução de equilíbrio y = 0. Ou seja, $\lim_{t \to \infty} y = -\infty$.
- \bullet Soluções em que $y_0>4$ tendem à solução de equilíbrio y=4. Ou seja, $\lim_{t\to\infty}y=4$.
- Soluções em que $0 < y_0 < 4$ afastam-se da solução de equilíbrio y=0 e tendem à solução y=4. Ou seja, $\lim_{t \to \infty} y=4$.

12 y' = -y(5-y)

Solução:

Inicialmente, determinemos a solução de equilíbrio:

$$y' = 0 \Rightarrow -y(5-y) = 0 \Rightarrow \begin{cases} -y = 0 \\ 5 - y = 0 \end{cases} \Rightarrow \begin{cases} y = 0 \\ y = 5 \end{cases}$$

Observemos que existem duas soluções de equilíbrio: y=0 e y=5, destacadas no campo de direções abaixo.

Como ilustra o campo de direções acima, o comportamento das soluções quando $t \to \infty$ depende do valor inicial de y em t=0. De fato, seja a condição inicial $y_0=y(t=0)$. Então

- \bullet Soluções em que $y_0<0$ tendem à solução de equilíbrio y=0. Ou seja, $\lim_{t\to\infty}y=0$.
- Soluções em que $y_0 > 5$ afastam-se da solução de equilíbrio y = 5. Ou seja, $\lim_{t \to \infty} y = \infty$.
- \bullet Soluções em que $0 < y_0 < 5$ afastam-se da solução de equilíbrio y=5 e tendem à solução y=0. Ou seja, $\lim_{t \to \infty} y=0$.

13 $y' = y^2$

Solução:

Inicialmente, determinemos a solução de equilíbrio:

$$y' = 0 \Rightarrow y^2 = 0 \Rightarrow y = 0$$

Observemos que existe uma solução de equilíbrio: y = 0, destacada no campo de direções abaixo.

Como ilustra o campo de direções acima, o comportamento das soluções quando $t \to \infty$ depende do valor inicial de y em t=0. De fato, seja a condição inicial $y_0=y(t=0)$. Então

- \bullet Soluções em que $y_0<0$ tendem à solução de equilíbrio y=0. Ou seja, $\lim_{t\to\infty}y=0$.
- Soluções em que $y_0>0$ afastam-se da solução de equilíbrio y=0. Ou seja, $\lim_{t\to\infty}y=\infty$.

14 $y' = y(y-2)^2$

Solução:

Inicialmente, determinemos a solução de equilíbrio:

$$y' = 0 \Rightarrow y(y-2)^2 = 0 \Rightarrow \begin{cases} y = 0 \\ y = 2 \end{cases}$$

Observemos que existem duas soluções de equilíbrio: y=0 y=2, destacadas no campo de direções abaixo.

Como ilustra o campo de direções acima, o comportamento das soluções quando $t \to \infty$ depende do valor inicial de y em t=0. De fato, seja a condição inicial $y_0=y(t=0)$. Então

Solucionário de Equações Diferenciais Elementares e Problemas de Valores de Contorno (Boyce, W. E.; DiPrima, R. C.)

- Para $y_0 < 0$, as soluções afastam-se da solução de equilíbrio y = 0 e tendem a $-\infty$.
- Para $y_0 > 2$, as soluções afastam-se da solução de equilíbrio y = 2 e tendem a $+\infty$.
- Para $0 < y_0 < 2$, as soluções afastam-se da solução de equilíbrio y = 0 e tendem à solução y = 2.

9