

Numerical Integration - Lecture 03

Dr. Serhat Hosder

Associate Professor of Aerospace Engineering

Mechanical and Aerospace Engineering

290B Toomey Hall

Missouri S&T

Rolla, MO 65409

Phone: 573-341-7239

E-mail: hosders@mst.edu

Outline

- Numerical integration plays a key role in many engineering applications. The integration methods that we examine
 - Trapezoidal Rule
 - Simpson's 1/3 Rule
 - Mid-point Rule
 - Romberg Integration
 - Gauss Quadrature
 - Multiple Integrals

Generalization of Extrapolation used in Romberg Integration

h₁=assumed	$ar{I}_{1,1}$		
h ₂ =h ₁ /2	$ar{I}_{2,1}$	$\bar{I}_{2,2} = \frac{4\bar{I}_{2,1} - \bar{I}_{1,1}}{3}$	
h ₃ =h ₂ /2	$ar{I}_{3,1}$	$\bar{I}_{3,2} = \frac{4\bar{I}_{3,1} - \bar{I}_{2,1}}{3}$	$\bar{I}_{3,3} = \frac{16\bar{I}_{3,2} - \bar{I}_{2,2}}{15}$
Error Order	h ²	h ⁴	h ⁶

The extrapolation formula generalizes to:

$$\bar{I}_{i,j} = \frac{4^{j-1}\bar{I}_{i,j-1} - \bar{I}_{i-1,j-1}}{4^{j-1} - 1} \quad \forall \quad i=2,3,\dots,n \atop j=2,3,\dots,i}$$

Romberg Example (1)

Problem Set 4.5.

Problem 1 b. ←

Page 211

$$I = \int_{0}^{1} f(x)dx$$
 $f(x) = e^{-x}x^{2}$
Exact value = $2 - \frac{5}{e}$ = 0.160603

Exact value =
$$2 - \frac{5}{e} = 0.160603$$

h_i (mesh size)

0.18394 0.5

0.167786

0.25

0.162488

0.125

0.16108

0.0625 0.160722

0.03125 0.160633

I have calculated the integral with the trapezoidal rule using 6 different mesh sizes (increasing the number of panels by a factor of 2 each time)

Romberg Example (2)

Romberg Table:

Gauss Quadrature – Basic Principle

The Gauss Quadrature Rule for finding an integral numerically is given by the function

$$\int_{a}^{b} f(x)dx = \sum_{i=1}^{n} c_{i} f(x_{i})$$

where c_i are the weights of the function f(x) at x_i and x_i are the zeros(roots) of the n^{th} degree Legendre polynomial

We have 2n parameters for evaluating the integral

$$C_1, C_2, \ldots C_n$$

and
$$x_1, x_2, x_3, ... x_n$$
.

Approach: Choose the parameters to exactly integrate the largest class of polynomials possible. With 2n parameters (n points), the class of polynomials of degree 2n-1 can be integrated exactly.

AE/ME 5830 Spring 2018 6

Gauss Quadrature Derivation for n=2

Determine the weights and zero's for n=2 on the interval [-1,1]

$$\int_{-1}^{1} f(x)dx = c_1 f(x_1) + c_2 f(x_2)$$

Since n=2, the quadrature formula should be exact for polynomials of degree (2n-1) = 3 or less, i.e., it should be exact for $f(x) = x^m$, for m = 0,1,2,3,...(2n-1)

$$m = 0 \rightarrow \int_{-1}^{1} 1 dx = c_1 + c_2 = 2$$

$$m = 1 \rightarrow \int_{-1}^{1} x dx = c_1 x_1 + c_2 x_2 = 0$$

$$m = 2 \rightarrow \int_{-1}^{1} x^2 dx = c_1 x_1^2 + c_2 x_2^2 = \frac{2}{3}$$

$$m = 3 \rightarrow \int_{-1}^{1} x^3 dx = c_1 x_1^3 + c_2 x_2^3 = 0$$

4 equations in 4 unknowns

Gauss Quadrature n=2

We have 4 equations and 4 unknowns from which the solution can be obtained. The solution to this set of equations is

$$c_1 = c_2 = 1$$
; $x_1 = \frac{1}{\sqrt{3}}$; $x_2 = -\frac{1}{\sqrt{3}}$

$$\frac{1}{\sqrt{3}} = 0.5773502692$$

Example with n = 2

$$\int_{-1}^{1} \cos[\mathbf{x}] d\mathbf{x} = 1.68294$$
 (Exact Value)

$$\approx c_1 f(\frac{1}{\sqrt{3}}) + c_2 f(-\frac{1}{\sqrt{3}})$$

$$= (1) (0.837912) + (1)(0.837912)$$

$$= 1.67582$$

More on Gauss Quadrature

We can extend this approach using the orthogonality property of the Legendre's polynomials on the interval [-1,1]. These polynomials are given by

$$L_0(x) = 1 \qquad \qquad L_1(x) = x$$

The subsequent polynomials are developed by recursion.

$$(n+1)L_{n+1}(x) - (2n+1)xL_n(x) + nL_{n-1}(x) = 0$$

(for n=1, 2, 3, ...)

With n=1, one can obtain
$$L_2(x) = \frac{3x^2 - 1}{2}$$

The roots can be obtained by solving $L_2(x)=0$. This yields,

$$x = \pm \frac{1}{\sqrt{3}}$$

Legendre Polynomials

The first 11 Legendre Polynomials are:

<u>n</u> <u>Legendre Polynomial</u>

```
2 \qquad -\frac{1}{2} + \frac{3x^2}{2}
3 - \frac{3x}{2} + \frac{5x^3}{2}
4 \frac{3}{8} - \frac{15x^2}{4} + \frac{35x^4}{8}
5 \qquad \frac{15x}{8} - \frac{35x^3}{4} + \frac{63x^5}{8}
6 -\frac{5}{16} + \frac{105x^2}{16} - \frac{315x^4}{16} + \frac{231x^6}{16}
7 \qquad -\frac{35x}{16} + \frac{315x^3}{16} - \frac{693x^5}{16} + \frac{429x^7}{16}
    \frac{35}{128} - \frac{315x^2}{32} + \frac{3465x^4}{64} - \frac{3003x^6}{32} + \frac{6435x^8}{120}
        \frac{315x}{128} - \frac{1155x^3}{32} + \frac{9009x^5}{64} - \frac{6435x^7}{32} + \frac{12155x^9}{129}
          -\frac{63}{256} + \frac{3465x^2}{256} - \frac{15015x^4}{128} + \frac{45045x^6}{128} - \frac{109395x^8}{256} + \frac{46189x^{10}}{256}
10
              -\frac{693x}{256} + \frac{15015x^3}{256} - \frac{45045x^5}{128} + \frac{109395x^7}{128} - \frac{230945x^9}{256} + \frac{88179x^{11}}{256}
11
```


Zeros (Roots) and Weights (Coefficients) for Gauss-Legendre Quadrature on [-1,1]

n	Zeros	Weights
2	-0.57735	1.
	0.57735	1.
3	-0.774597	0.555556
	0.	0.888889
	0.774597	0.555556
4	-0.861136	0.347855
	-0.339981	0.652145
	0.339981	0.652145
	0.861136	0.347855
5	-0.90618	0.236927
	-0.538469	0.478629
	0.	0.568889
	0.538469	0.478629
	0.90618	0.236927

This is Table 22.1 in the text on page 646.

The roots are the zeros of the nth degree Legendre polynomial

Gauss Quadrature Theorem

Theorem:

If P is any polynomial of degree 2n-1 or less, then

$$\int_{-1}^{1} P(x) dx = \sum_{i=1}^{n} c_i P(x_i)$$

where
$$c_i = \int_{-1}^{1} \prod_{\substack{j=1 \ j \neq i}}^{n} \frac{(x - x_j)}{(x_i - x_j)} . dx$$

and $x_1, x_2, x_3, ... x_n$ are the zeros of the n^{th} Legendre polynomial

The interval [a,b] is mapped onto [-1,1] via a linear transformation

$$x = \frac{b+a}{2} + \frac{b-a}{2}t \quad \text{where} \quad dx = \frac{(b-a)}{2}dt$$

$$\int_{a}^{b} f(x)dx = \frac{(b-a)}{2} \int_{-1}^{1} f[x(t)]dt = \frac{(b-a)}{2} \sum_{i=1}^{n} c_{i} f(x(t_{i}))$$

12

AE/ME 5830 Spring 2018

Gauss Quadrature Example

Evaluate the integral

$$\begin{split} &\int_0^{\pi\!\!/2} \sin x \, dx = 1 \ \text{ using Gauss Quadrature and Trapezoidal Rule} \\ &b = \frac{\pi}{2}; \ a = 0; \quad x = \frac{\pi}{4} + \frac{\pi}{4} t = (1+t) \frac{\pi}{4} \\ &With \ \mathbf{n} = 2, \ \mathbf{c}_1 = \mathbf{c}_2 = 1; \ t_1 = -0.577; \ t_2 = 0.577 \\ &I_{QUAD} = \frac{\pi}{4} \Big[\sin \Big(\frac{\pi}{4} (1-0.577) \Big) + \sin \Big(\frac{\pi}{4} (1+0.577) \Big) \Big] \\ &I_{QUAD} = 0.9984716 \end{split}$$

The Single Panel Trapezoidal Rule gives $I_{TRAP} = 0.7584$ (also requires two function evaluations)

Summary

In this lecture we have

- Worked on an example problem using Romberg Integration and constructed the elements of the extrapolation table
- Introduced Gaussian Quadrature
 - Requires explicit knowledge of the function
 - Points are chosen to maximize the accuracy
 - n-point Gauss quadrature integrates polynomials of degree 2n-1 or less exactly