Graphs and Level Sets

1. **Example:** Find the domain of

(a)
$$f(x,y) = \frac{x}{y}$$

(b)
$$f(x,y) = \ln(x+y)$$

(c)
$$g(x, y, z) = \frac{1}{\sqrt{4 - x^2 - y^2 - z^2}}$$
.

Solution:

(a) Need $y \neq 0$, so the domain is $\{(x, y) : y \neq 0\}$.

(b) Need x + y > 0, so the domain is $\{(x, y) : x + y > 0\}$. These are all the points above the line y = x.

(c) Need $4 - x^2 - y^2 - z^2 > 0$ so the domain is $\{(x, y, z) : x^2 + y^2 + z^2 < 4\}$, which is the inside of a sphere of radius 2 centered at the origin.

Your turn: Find the domain of the following functions

(a)
$$f(x,y) = \frac{y-3}{x^2-4}$$

(b)
$$g(x, y) = \ln(x^2 - y)$$

(c)
$$h(x,y) = \sqrt{x-2y+4}$$

(d)
$$f(x, y, z) = \frac{3}{\sqrt{x^2 + y^2 + z^2 - 25}}$$

2. **Example:** Sketch the level sets for the function $f(x,y) = 4x^2 + 4y^2 + 2$ which correspond to the function values 2, 4, and 10.

Your turn: Let $f(x,y) = 1/2x^2 - y$. Sketch the three level curves on which f(x,y) = -1 or 0 or 1

Your turn: Describe the level sets of $z = \frac{x}{x^2 + y}$.

3. Example: Let

$$f(x,y) = x\sqrt{x^2 - y}$$

1

(a) Sketch the domain of f.

(b) Sketch the 0-level set of f.

Solution:

(a) Need
$$x^2 - y \ge 0$$
, i.e. $y \le x^2$

The domain is $\{(x,y):y\leq x^2\}$. To sketch the domain, draw the x and y-axis and then the parabola $y=x^2$ (not dotted). Then shade everything below it.

(b) Set
$$x\sqrt{x^2 - y} = 0$$

So either
$$x = 0$$
 or $\sqrt{x^2 - y} = 0$

i.e.
$$x = 0 \text{ or } y = x^2$$

So on the xy-plane, sketch the vertical line x=0 and the parabola $y=x^2$. That is the 0-level set.