Karkhar Theorems

Power Series Theorems

16A

Suppose there is a $z_1 \neq z_0$ such that

$$\sum_{n=0}^{\infty} a_n (z_1 - z_0)^n$$
 converges

Then

$$\forall z: |z - z_0| < |z_1 - z_0|$$

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$
 converges absolutely

If we know a point z_1 where the series is convergent, then for *every* point that is closer to z_0 than is z_1 , the series converges absolutely.

16B

If

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

has a positive (or infinite) radius of convergence, then inside the disk $|z-z_0| < R$, then inside that disk f(z) is infinitely differentiable. Each

derivative is given by a power series:

$$f^{(k)}(z) = \sum_{n=0}^{\infty} n \cdot (n-1) \dots (n-k-1) \ a_n \ (z-z_0)^n$$

17A

Suppose f is analytic on domain D. Let γ be a piecewise smooth simple closed curve in D whose inside Ω is also in D. Then

$$\int_{\gamma} f(z) \ dz = 0$$

(One proof uses the CRE).

17B

Let D be a simply connected domain and γ a closed curve in D. If f is analytic in D then

$$\int_{\gamma} f(z) \ dz = 0$$

(no requirement for piecewise smooth or closed).

17C

If f is analytic in a simply connected domain D, then there is an analytic function F on D with F' = f throughout D.

18A

Cauchy's formula:

Suppose f is analytic on a domain D and γ is a piecewise smooth, positively oriented, simple, closed curve in D whose inside Ω is in D. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} \ dw = f(z) \quad \forall z \in \Omega$$

Let's change this to use z for the complex variable and z_0 for the point, that I'm used to.

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz = f(z_0) \quad \forall z_0 \in \Omega$$

So z_0 is any fixed point in Ω , and depending on its value, there is a singularity at that point.

19A

Suppose f is analytic in a domain D and $z_0 \in D$. If the disk $\{z : |z - z_0| < R\}$ lies in D, then f has a power series:

$$f(z) = \sum_{0}^{\infty} a_k (z - z_0)^k$$

valid in the disk. Also

$$a_k = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{k+1}} dw$$

19B

A corollary of 19A is: if f(z) is analytic on D, then so is f'(z). So, f has derivatives of all orders, and all of them are analytic on D.

19C

Another corollary: suppose f is analytic on D, and at $z_0 \in D$

$$f^{(k)}(z_0) = 0$$
 $k = 0, 1, 2 \dots$

then

$$f(z) = 0 \ \forall \ z \in D$$

That is, if there is any point z_0 in a domain D where an analytic function f is zero (and so its derivatives are all zero), then the value of the function is zero for all z in the domain.