CS 6041 Theory of Computation

Reducibility

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Whether a collection of dominos has a match

 PCP = {\langle P \rangle | P is an instance of the Post Correspondence Problem with a match}.

Description of PCP

An individual domino

$$\left[\frac{a}{ah}\right]$$

a

ab

Description of PCP

A collection of dominos

$$\left\{ \left[\frac{b}{ca} \right], \left[\frac{a}{ab} \right], \left[\frac{ca}{a} \right], \left[\frac{abc}{c} \right] \right\}$$

Description of PCP

A match

A collection without a match

For a given collection

$$\left\{ \left[\frac{abc}{ab} \right], \left[\frac{ca}{a} \right], \left[\frac{acc}{ba} \right] \right\}$$

 It cannot contain a match because every top string is longer than the corresponding bottom string

Theorem 5.15

PCP is undecidable

• Proof:

To simplify the problem, we create *Modified Post*Correspondence Problem (MPCP),

MPCP = $\{\langle P \rangle \mid P \text{ is an instance of the PCP with a match that starts with the first domino}\}$.

Theorem 5.15

$$\begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} b \\ ca \end{bmatrix} \begin{bmatrix} ca \\ a \end{bmatrix} \begin{bmatrix} a \\ ab \end{bmatrix} \begin{bmatrix} abc \\ c \end{bmatrix}$$

Input

• The PCP program is very similar with the A_{TM} program

• Proof:

Suppose PCP is decidable

We construct TM S to decide A_{TM} (Theorem 4.11: A_{TM} is undecidable)

$$M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$$

S constructs an instance of the PCP P that has a match iff

M accepts w:

- (1) S first constructs an instance P' of the MPCP;
- (2) Transfer P' into P;

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.1) Generating beginning configuration

Put
$$\left[\frac{\#}{\#q_0w_1w_2...w_n\#}\right]$$
 into P' as $\left[\frac{t_1}{b_1}\right]$

TM M = (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject})

P'

q_0 w_1 w_2 ... w_n

header

• Proof:

(1) S first constructs an instance P' of the MPCP;

(1.1) Generating beginning configuration

Suppose $\Gamma = \{0,1,2, _\}, w = 0100,$

Put the following into P':
$$\left[\frac{\#}{\#q_00100\#}\right] = \left[\frac{t_1}{b_1}\right]$$

• Proof:

S first constructs an instance P' of the MPCP;

(1.2) The head move to the right

For each a, $b \in \Gamma$ and q, $r \in Q$, where $q \neq q_{reject}$,

if
$$\delta(q, a) = (r, b, R)$$
, then put $\left[\frac{qa}{br}\right]$ into P'

• Proof:

(1) S first constructs an instance P' of the MPCP;

(1.2) The head moves to the right

For each a, $b \in \Gamma$ and q, $r \in Q$, where $q \neq q_{reject}$,

if
$$\delta(q_0, 0) = (q_7, 2, R)$$
, then put $\left[\frac{q_0 0}{2q_7}\right]$ into P'

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.3) The head moves to the left

Discuss it later on.

- Proof:
 - S first constructs an instance P' of the MPCP;
 - (1.4) For each $a \in \Gamma$,

put
$$\left[\frac{a}{a}\right]$$
 into P'

• Proof:

S first constructs an instance P' of the MPCP;

$$(1.4) \Gamma = \{0, 1, 2, \bot\},\$$

put
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} \frac{1}{1} \end{bmatrix}$, $\begin{bmatrix} \frac{2}{2} \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ into P'

• Proof:

(1) S first constructs an instance P' of the MPCP;

$$(1.4) \Gamma = \{0, 1, 2, _\},\$$

put
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} \frac{1}{1} \end{bmatrix}$, $\begin{bmatrix} \frac{2}{2} \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ into P'

• Proof:

(1) S first constructs an instance P' of the MPCP;

$$(1.4) \Gamma = \{0, 1, 2, \bot\},\$$

put
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} \frac{1}{1} \end{bmatrix}$, $\begin{bmatrix} \frac{2}{2} \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ into P'

• Proof:

(1) S first constructs an instance P' of the MPCP;

$$(1.4) \Gamma = \{0, 1, 2, _\},\$$

put
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} \frac{1}{1} \end{bmatrix}$, $\begin{bmatrix} \frac{2}{2} \end{bmatrix}$ and $\begin{bmatrix} \frac{1}{2} \end{bmatrix}$ into P'

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.5) Copy # and Put _ at the end of configuration

put
$$\left[\frac{\#}{\#}\right]$$
 and $\left[\frac{\#}{\#}\right]$ into P'

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.5) Copy # and Put _ at the end of configuration

put
$$\left[\frac{\#}{\#}\right]$$
 and $\left[\frac{\#}{\#}\right]$ into P'

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.5) Copy # and Put _ at the end of configuration

put
$$\left[\frac{\#}{\#}\right]$$
 and $\left[\frac{\#}{\#}\right]$ into P'

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.5) Copy # and Put _ at the end of configuration

put
$$\left[\frac{\#}{\#}\right]$$
 and $\left[\frac{\#}{\#}\right]$ into P'

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.5) Copy # and Put _ at the end of configuration

suppose
$$\delta(q_7, 1) = (q_5, 0, R)$$
, then put $\left[\frac{q_7 1}{0q_5}\right]$ into P'

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.5) Copy # and Put _ at the end of configuration

keep putting
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} \# \\ \# \end{bmatrix}$ and $\begin{bmatrix} \# \\ -\# \end{bmatrix}$ into P'

• Proof:

S first constructs an instance P' of the MPCP;

(1.3) The head moves to the left

For each a, b, $c \in \Gamma$ and q, $r \in Q$, where $q \neq q_{reject}$,

if $\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{L})$, then put $\left[\frac{cqa}{rcb}\right]$ into P', c is the element on the left of q

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.3) The head moves to the left

Suppose
$$\delta(q_5, 0) = (q_9, 2, L)$$
, remove the old 0

if
$$\delta(q, a) = (r, b, L)$$
, then put $\left[\frac{cqa}{rcb}\right]$ into P', c is the element on the left of q

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.3) The head moves to the left

Suppose
$$\delta(q_5, 0) = (q_9, 2, L)$$
, remove the old 0

if
$$\delta(q, a) = (r, b, L)$$
, then put $\left[\frac{cqa}{rcb}\right]$ into P', c is the element on the left of q

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.3) The head moves to the left

Suppose
$$\delta(q_5, 0) = (q_9, 2, L)$$
, put $\left[\frac{0q_50}{q_902}\right]$ into P'

if $\delta(q, a) = (r, b, L)$, then put $\left[\frac{cqa}{rcb}\right]$ into P', c is the element on the left of q

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.3) The head moves to the left

keep putting
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} \# \\ \# \end{bmatrix}$ and $\begin{bmatrix} \# \\ -\# \end{bmatrix}$ into P'

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.3) The head moves to the left

keep putting
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} \# \\ \# \end{bmatrix}$ and $\begin{bmatrix} \# \\ -\# \end{bmatrix}$ into P'

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.3) The head moves to the left

keep putting
$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$, $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} \# \\ \# \end{bmatrix}$ and $\begin{bmatrix} \# \\ -\# \end{bmatrix}$ into P'

• Proof:

(1)S first constructs an instance P' of the MPCP;

keep putting something into P' until M halts:

- if M rejects, S also rejects, means no match in PCP;
- if M accepts, add something to the top to match the bottom.

- (1) S first constructs an instance P' of the MPCP;
- (1.6) For $a \in \Gamma$,

put
$$\left[\frac{aq_{accept}}{q_{accept}}\right]$$
 and $\left[\frac{q_{accept}a}{q_{accept}}\right]$ into P'

- S first constructs an instance P' of the MPCP;
- (1.6) For $a \in \Gamma$,

put
$$\left[\frac{aq_{accept}}{q_{accept}}\right]$$
 and $\left[\frac{q_{accept}a}{q_{accept}}\right]$ into P'

- (1) S first constructs an instance P' of the MPCP;
- (1.6) For $a \in \Gamma$,

put
$$\left[\frac{aq_{accept}}{q_{accept}}\right]$$
 and $\left[\frac{q_{accept}a}{q_{accept}}\right]$ into P'

- S first constructs an instance P' of the MPCP;
- (1.6) For $a \in \Gamma$,

put
$$\left[\frac{aq_{accept}}{q_{accept}}\right]$$
 and $\left[\frac{q_{accept}a}{q_{accept}}\right]$ into P'

- (1) S first constructs an instance P' of the MPCP;
- (1.6) For $a \in \Gamma$,

put
$$\left[\frac{aq_{accept}}{q_{accept}}\right]$$
 and $\left[\frac{q_{accept}a}{q_{accept}}\right]$ into P'

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.6) For $a \in \Gamma$,

Keep doing until the top and bottom difference is 1.

- Proof:
 - (1) S first constructs an instance P' of the MPCP;
 - (1.7) Finish the match

put
$$\left[\frac{q_{accept}##}{#}\right]$$
 into P'

• Proof:

(2) Transfer P' into P

P' is MPCP = $\{\langle P \rangle | P \text{ is an instance of the PCP with a match that starts with the first domino}\}.$

Suppose $u=u_1u_2...u_n$ to be any string of length n, define

- *u = *u1*u2 *...*u3
- $u \star = u_1 * u_2 * ... * u_3 *$
- $\star u \star = *u_1 * u_2 * ... * u_3 *$

$$*u = *u1*u2 *...*u3$$

$$u \star = u_1 * u_2 * ... * u_3 *$$

$$\star u \star = *u_1 * u_2 * ... * u_3 *$$

• Proof:

(2) Transfer P' into P

If P' =
$$\left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$$
, then let

$$\mathsf{P} = \left\{ \left[\frac{\star t_1}{\star b_1 \star} \right], \left[\frac{\star t_2}{b_2 \star} \right], \left[\frac{\star t_3}{b_3 \star} \right], \dots, \left[\frac{\star t_k}{b_k \star} \right], \left[\frac{\star \Delta}{\Delta} \right] \right\}$$

First domino: The only element as beginning

The match in P must be in shape as $\left[\frac{\star t_1}{\star b_1 \star}\right] \dots \left[\frac{\star \Delta}{\Delta}\right]$

• Proof:

Suppose PCP is decidable

We construct TM S using PCP match or not to decide A_{TM}

- (1) S first constructs an instance P' of the MPCP;
- ▶ (2) Transfer P' into P;

Theorem 4.11: A_{TM} is undecidable. Contradiction!

The suppose is wrong. Thus PCP is undecidable.

Example of TM: B={ w#w | w∈{0,1}* }

Example of PCP to A_{TM}

- $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$
 - Q= {q0, q1, q2}
 - $\Sigma = \{0, 1, x, \#\},$
 - $\Gamma = \{0, 1, x, \#, B\}$
 - o q0={q1}
 - \circ $q_{accept} = q_{accept}$
 - q_{reject} = all not q_{accept}

Put
$$\left[\frac{\#}{\#q_0w_1w_2...w_n\#}\right]$$
 into P' as $\left[\frac{t_1}{b_1}\right]$

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if $\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{L})$, then put $\left[\frac{cqa}{rcb}\right]$ into P', c is the element on the left of q

if $\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{L})$, then put $\left[\frac{cqa}{rcb}\right]$ into P', c is the element on the left of q

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(q, a) = (r, b, R)$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

if
$$\delta(\mathbf{q}, \mathbf{a}) = (\mathbf{r}, \mathbf{b}, \mathbf{R})$$
,
then put $\left[\frac{qa}{br}\right]$ into P'

put
$$\left[\frac{aq_{accept}}{q_{accept}}\right]$$
 and $\left[\frac{q_{accept}a}{q_{accept}}\right]$ into P'

Finish the match, put $\left[\frac{q_{accept}^{\#\#}}{\#}\right] \text{ into P'}$

Finish the match, put $\left[\frac{q_{accept}^{\#}}{\#}\right]$ into P'

Conclusion

Relationship of languages on reducibility

Conclusion

Closure on operations

	Complement \overline{A}	Intersection ∩	Union ∪	Star <i>A</i> *
Regular/DFA/ NFA	√	~	√	√
CFL/ PDA	×	×	√	~
Turing- decidable TM	√	√	√	√
Turing- recognizable TM	×	√	√	√