Problem Set #4

LATEST SUBMISSION GRADE

92%

1.	How many different minimum cuts	are there in a tree with	n nodes (ie. $n-1$ edges)?

1/1 point

- $\binom{n}{2}$
- \bigcap n
- $\bigcirc 2^{n} 2$
- n-1

✓ Correct

Each edge defines a distinct minimum cut (with one crossing edge).

2. Let "output" denote the cut output by Karger's min cut algorithm on a given connected graph with n vertices, and let p = 0.6/1 point . Support denote the cut output by Karger's min $\binom{1}{2}$. Which of the following statements are true?

For hints on this question, you might want to watch the short optional video on "Counting Minimum Cuts".

 $\hfill \square$ For every graph G with n nodes, there exists a min cut (A,B) such that

 $Pr[out = (A, B)] \le p.$

This should not be selected

Recall the first problem of this problem set.

 $\Pr[out = (A,B)] \leq p.$

 $\hfill \square$ There exists a graph G with n nodes and a min cut (A,B) of G such that

 $Pr[out = (A, B)] \le p.$

Call an arbitrary vertex s, let t range over all other n-1 vertices, and return the best of the s-t min cuts founds.