

CredX: Acquisition and Operation Risk Analytics

PGDDS: December-2018

By: Pravin Pawar and Aashish Sharma

Problem Statement

- CredX is a leading credit card provider that gets thousands of credit card applications every year. But in the past few years,
 it has experienced an increase in credit loss.
- The CEO believes that the best strategy to mitigate credit risk is to 'acquire the right customers'.

Objective

- The objective is to help CredX identify the right customers using predictive models.
- To build an application scorecard and identify the cut-off score below which one would not grant credit cards to applicants.
- We need to determine the factors affecting credit risk and create strategies to mitigate the acquisition risk and assess the financial benefit of the project.

Customer's Demographic Data

Dimensions:

12 Variables

71,295

Observations

Information provided by the customer while applying for credit card

\	Variables	Description				
	Application ID	Unique ID of the customers				
	Age	Age of customer				
	Gender	Gender of customer				
	Marital Status	Marital status of customer (at the time of application)				
\	No of dependents	No. of children of customers				
\rangle	Income	Income of customers				
	Education	Education of customers				
	Profession	Profession of customers				
	Type of residence	Type of residence of customers				
	No of months in current residence	No of months in current residence of customers				
	No of months in current company	No of months in current company of customers				
	Performance Tag	Status of customer performance (" 1 represents "Default")				

Customer's Credit Bureau Data

Dimensions:

19 Variables

71,295

Observations

• This information is extracted by the institution while accessing the customers application

Variables	Description
Application ID	Customer application ID
No of times 90 DPD or worse in last 6 months	Number of times customer has not payed dues since 90days in last 6 months
No of times 60 DPD or worse in last 6 months	Number of times customer has not payed dues since 60 days last 6 months
No of times 30 DPD or worse in last 6 months	Number of times customer has not payed dues since 30 days last 6 months
No of times 90 DPD or worse in last 12 months	Number of times customer has not payed dues since 90 days last 12 months
No of times 60 DPD or worse in last 12 months	Number of times customer has not payed dues since 60 days last 12 months
No of times 30 DPD or worse in last 12 months	Number of times customer has not payed dues since 30 days last 12 months
Avgas CC Utilization in last 12 months	Average utilization of credit card by customer
No of trades opened in last 6 months	Number of times the customer has done the trades in last 6 months
No of trades opened in last 12 months	Number of times the customer has done the trades in last 12 months
No of PL trades opened in last 6 months	No of PL trades in last 6 month of customer
No of PL trades opened in last 12 months	No of PL trades in last 12 month of customer
No of Inquiries in last 6 months (excluding home & auto loans)	Number of times the customers has inquired in last 6 months
No of Inquiries in last 12 months (excluding home & auto loans)	Number of times the customers has inquired in last 12 months
Presence of open home loan	Is the customer has home loan (1 represents "Yes")
Outstanding Balance	Outstanding balance of customer
Total No of Trades	Number of times the customer has done total trades
Presence of open auto loan	Is the customer has auto loan (1 represents "Yes")
Performance Tag	Status of customer performance (" 1 represents "Default")

Nature of Data and Data Quality Observations(1/2)

- Application ID is the common key between Demographic and Credit Bureau data
- Performance Tag is the target variable and its common in both data set. 1 signifies defaulted customer and 0 signifies non-defaulted customer
- Performance Tag has 1,425 row as blank, which means the performance is not mapped
- There are some duplicate entries of 3 Application Ids (765011468, 671989187 and 653287861)
 - The application ids can left as is since the rest of the variables have different values, also while creating a woe variables and model preparation application id would be dropped
- There are 65 observations in the Age variables which are less than 18 which seems to be incorrect. These values can be imputed with the appropriate mean of the corresponding Education and Profession
 - There are 64 non-default customer and 1 defaulted customer
 - As there are very less possibility that an under age person can be apply for a credit card

Nature of Data and Data Quality Observations (2/2)

- Income variable has 107 observation which are less than equal to 0. These values will be imputed with the mean value of the same gender, education and profession
- Education variables has 119 observations which are blanks. These values cannot be imputed as education cannot be derived from age, income, gender and profession
- Gender has 2 missing values, Marital Status has 6 missing values, No of dependents has 3 missing values and Type of residence has 8 missing values
 - Since these are very small missing values these will be dropped

Missing Value, Outlier Treatment and Derived Variable: Variable wise Treatment

Variable Name	Observation	Imputation or Treatment or Creation Method						
Performance Tag	2% missing values in Defaulter which is out target / dependent variable.	As per problem statement, if applicant has gone 90 days past due (DPD) or worse in the past 12 months then that customer is marked as Defaulter. Basis this business rule the missing value are imputed						
Age	 20 observation less than equal to 0 45 observation grater than 0 but less than 18 	 For values less than equal to 0: Value imputed with the mean age for the most matching profile. Profile attributes are like, Education, Profession, Gender and Marital Status For values greater than 0 and less than 18: Retained as is since there are applicant with age less than 18 targeted as married which again raise question on data quality. 						
CC Utilization in 12M	Missing values for 1058 observation							
Trades Opened in 6M	Missing values for 1 observation	Since all the missing values means that customer has not appeared in any of the variables hence imputing the						
Presence of open home loan	Missing values for 272 observation	missing values with 0 for each of the variable.						
Outstanding Balance	Missing values for 272 observation							
Income per Dependent	There are multiple dependents for each of applicant, hence income per dependent could be a useful variable to know if the customer has sufficient income per dependent	Income of applicant / number of dependents						
Have Secured Loans	It would be interesting to know if the customer have secured loans (car loan or home loans) or unsecured loans (personal loan or other unsecured loans which don't have any collateral against the loan)	If the customer has any of home loan or car loan then marked as 1 else 0						
Variable Name Corrections	The provided names were very lengthy and also there were some spelling mistakes in the variables	Shorter and relevant names were assigned and correction in the spelling mistakes were corrected as part of the data quality step						

Weight of Evidence (WOE) and Information Value (IV) (1/3)

WOI and IV is a variables transformation and selection technique. Using this technique of the data set we can select useful variable and transform variables to get rid of outlier variables and missing values.

Bucketing continuous variables

Demographic Data:

- Age: 0 to 18, 19 to 20, 21 to 25, 26 to 30, 31 to 40, 41 to 50, 51 to 60, 61 to 70 are the groups for Age variable
- Income: 0 to 10, 11 to 20, 21 to 30, 31 to 40, 41 to 50, 51 to 61 are the groups for Income variable
- Income_Per_Dependent: 0 to 10, 11 to 20, 21 to 30, 31 to 40, 41 to 50, 51 to 61 are the groups for Income per Dependent variable
- Months in Current Company: 0 to 6, 7 to 12, 13 to 24, 25 to 36, 37 to 48, 49 to 60, 61 to 72, 73 to 133 are the groups for Months in Current Company
- Months in Current Residence: 0 to 6, 7 to 12, 13 to 24, 25 to 36, 37 to 48, 49 to 60, 61 to 72, 73 to 84, 85 to 96, 97 to 108, 109 to 120, 121 to 132 are the groups for Months in Current Residence variable

Credit Bureau Data:

- CC Utilization in 12M: 0 to 1, 2 to 10, 11 to 20, 21 to 30, 31 to 40, 41 to 50, 51 to 60, 61 to 70, 71 to 80, 81 to 90, 91 to 100, 101 to 120 are the groups for CC Utilization in 12M variable
- Outstanding Balance: 0 to 10k, 10.1k to 50k, 50.1k to 100k, 100.1k to 200k to 200.1k to 300k, 300.1k to 400k, 400.1k to 500k, 500.1k to 1mn, 1.1mn to 2mn to 2.1mn to 3mn, 3.1mn to 4mn, 4.1mn to 5mn, 5.1mn to 6mn are the groups for Outstanding Balance
- Total No of Trades: 0 to 5, 6 to 10, 11 to 15, 16 to 20, 21 to 25, 26 to 30, 31 to 35, 36 to 45 are the groups for Total No. of Trades
- Trades Opened in 6M: All the numbers till 9 are individual group and last group is from 10 to 12
- Trades Opened in 12M: *Groups formed with interval of 2 starting from 0 and the last group is from 21 to 28*
- PL Trades Opened in 12M: All the numbers till 9 are individual group and last group is from 10 to 12
- Inquiries in 12M: *Groups formed with interval of 2 starting from 0 till 20.*

Weight of Evidence (WOE) and Information Value (IV) for Demographic Data

Feature	IV (Information Value)
Months in Current Residence	0.181553
Income	0.135013
Months in Current Company	0.087902
Income_Per_Dependent	0.065015
No of dependents	0.037736
Age	0.012391
Profession	0.007376
Type of residence	0.002033
Education	0.001575
Marital Status	0.000622
Gender	0.000092

- Months in Current Residence(0.18), Income(0.13) variable have Medium Predictor Power
- Where as Months in Current Company(0.09), Income_Per_Dependent(0.06) & No of dependents(0.04) variables are Weak Predictors.
- Remaining variables are not useful for Prediction.

Weight of Evidence (WOE) and Information Value (IV) for Credit Bureau

ie)	IV (Information Value)	Feature						
71	0.848371	30 DPD in 6M						
84	0.845984	30 DPD in 12M						
39	0.768439	60 DPD in 12M						
52	0.765552	90 DPD in 12M						
67	0.761867	60 DPD in 6M						
63 E E E E E E E E E E E E E E E E E E E	0.604573	90 DPD in 6M						
63	0.553363	CC Utilization in 12M						
78	0.528978	Trades Opened in 12M						
45	0.464845	PL Trades Opened in 12M						
89	0.438889	Outstanding Balance						
69	0.395969	Total No of Trades						
55	0.374655	PL Trades Opened in 6M						
09	0.341709	Trades Opened in 6M						
08	0.333308	Inquiries in 6M						
15	0.304615	Inquiries in 12M						
53	0.046253	Presence of open home loan						
65	0.040865	Have_Secured_Loan						
17	0.001917	Presence of open auto loan						

- Apart from DPD variable Credit Card Utilization, Trade Opened in 12M, Personal Loan Trades Opened in 12M, Inquiries in 12M are strong predictors with information value greater than 0.5
- Months in Current Residence(0.18) & Income(0.13) variable have Medium Predictor Power
- Presence of open home loan, Presence of open auto loan variable scores very less which indicates they are not useful for prediction.

Univariate Analysis

For Customer Demographic and Credit Bureau Data

Applicant Age Distribution

Age	No of Application	No of Defaulter	% Defaulter in Category	% Defaulter in All Defaultor
(-0.001, 18.0]	68	1	1.47	0.02
(18.0, 20.0]	52	2	3.85	0.05
(20.0, 25.0]	304	30	9.87	0.69
(25.0, 30.0]	5668	386	6.81	8.94
(30.0, 40.0]	19137	1303	6.81	30.17
(40.0, 50.0]	23237	1348	5.8	31.21
(50.0, 60.0]	17792	988	5.55	22.88
(60.0, 70.0]	4886	261	5.34	6.04

Gender, Marital Status, No. of Dependents and Education

Income Distribution

Income	No of Application	No of Defaulter	% Defaulter in Category	% Defaulter in All Defaultor
(-0.001, 10.0]	13375	1363	10.19	31.56
(10.0, 20.0]	13629	902	6.62	20.88
(20.0, 30.0]	13842	771	5.57	17.85
(30.0, 40.0]	13754	616	4.48	14.26
(40.0, 50.0]	10908	471	4.32	10.91
(50.0, 61.0]	5636	196	3.48	4.54

Profession, Type of Residence and Performance Tag

Credit Bureau Data: No of times 90, 60 and 30 DPD or worse in last 6 months

Credit Bureau Data: No of times 90, 60 and 30 DPD or worse in last 12 months

Credit Bureau Data: No of trades opened in last 6 months

Credit Bureau Data: No of trades opened in last 12 months

Credit Bureau Data: No of PL trades opened in last 6 and 12 months

Credit Bureau Data: No of Inquiries in last 6 months (excluding home & auto loans)

Credit Bureau Data: No of Inquiries in last 12 months (excluding home & auto loans)

Credit Bureau Data: Presence of Open Home Loan, Auto Loan

Credit Bureau Data: Total No. Trades

Insights

Multivariate Analysis

Top 6 Customer Profiles Contributing to 37% of Default Customers

7% defaults are caused by the applicants with:

- Gender: Male
- Age: 41 to 50
- Marital Status: Married
- Education: Professional

6% defaults are caused by the applicants with:

- Gender: Male
- Age: 51 to 60
- Marital Status: Married
- Education: Professional

7% defaults are caused by the applicants with:

- Gender: Male
- Age: 41 to 50
- Marital Status: Married
- Education: Masters

6% defaults are caused by the applicants with:

- Gender: Male
- Age: 31 to 40
- Marital Status: Married
- Education: Masters

6% defaults are caused by the applicants with:

- Gender: Male
- Age: 51 to 60
- Marital Status: Married
- Education: Masters

6% defaults are caused by the applicants with:

- Gender: Male
- Age: 31 to 40
- Marital Status: Married
- Education: Professional

Outstanding Balance and Customer Penetration for Defaulters

Customer Penetration per Loan Outstanding Balance

- Every second defaulter (54% of the defaulters) have the outstanding balance between 500k to 2 Mn.
- 96% of the defaulter have neither car loan or home loan

Salary Group and Outstanding Balance for Defaulters

Outstanding_Balance_Grp	a.<=10		b.11to20		c.21to30		d.31to40		e.41to50		f.51to60	
a.<=10k	21	• 2.9%	18	• 3.0%	46	• 7.7%	40	• 8.2%	36	9.4%	17	1 0.6%
b.10.1kto50k	14	• 2.0%	19	• 3.1%	16	• 2.7%	22	• 4.5%	23	• 6.0%	8	• 5.0%
c.50.1kto100k	3	• 0.4%	2	. 0.3%	3	• 0.5%	2	• 0.4%			1	• 0.6%
d.100.1kto200k	5	• 0.7%	8	• 1.3%	9	• 1.5%	9	• 1.9%	5	• 1.3%	5	• 3.1%
e.200.1kto300k	28	• 3.9%	29	• 4.8%	24	• 4.0%	19	• 3.9%	22	• 5.7%	8	• 5.0%
f.300.1kto400k	31	• 4.3%	29	• 4.8%	23	• 3.8%	10	• 2.1%	15	• 3.9%	3	• 1.9%
g.400.1kto500k	32	• 4.5%	47	• 7.8%	39	• 6.5%	35	• 7.2%	21	• 5.5%	10	• 6.2%
h.500.1kto1mn	329	46.1%	230	38.1%	220	36.6%	169	34.8%	110	28.6%	45	28.0%
i.1.1mnto2mn	131	18.4%	104	17.2%	87	14.5%	74	15.3%	58	15.1%	24	14.9%
j.2.1mnkto3mn	9	• 1.3%	21	• 3.5%	25	• 4.2%	30	• 6.2%	35	• 9.1%	13	• 8.1%
k.3.1mnto4mn	97	13.6%	89	14.7%	87	14.5%	60	• 12.4%	50	• 13.0%	25	15.5%
l.>4mn	13	• 1.8%	8	• 1.3%	22	• 3.7%	15	• 3.1%	9	• 2.3%	2	• 1.2%
Grand Total	713	100%	604	100%	601	100%	485	100%	384	100%	161	100%

- Every 4th Defaulter has income less than 20k and outstanding balance greater than Rs. 500k and none of them has any of the secured loans
- Every 5th Defaulter come from a segment with outstanding balance less than Rs. 50k and salary between 31 to 60

Salary Group and Total Trades for Defaulters

Total_No_of_Trades_Grp	а	.<=10	b.	11to20	С	.21to30	d	.31to40	е	.41to50	f	.51to60
a.<=5	140	• 19.6%	139	• 23.0%	170	• 28.3%	157	32.4%	139	36.2%	67	41.6%
b.6to10	354	49.6%	299	4 9.5%	265	4 4.1%	186	38.4%	147	38.3%	55	3 4.2%
c.11to15	162	• 22.7%	103	• 17.1%	87	• 14.5%	70	• 14.4%	33	• 8.6%	21	• 13.0%
d.16to20	9	• 1.3%	19	• 3.1%	15	• 2.5%	18	• 3.7%	17	• 4.4%	6	• 3.7%
e.21to25	23	• 3.2%	22	• 3.6%	33	• 5.5%	29	• 6.0%	21	• 5.5%	3	• 1.9%
f.26to30	19	• 2.7%	17	• 2.8%	23	• 3.8%	21	• 4.3%	18	• 4.7%	4	• 2.5%
g.31to35	5	• 0.7%	4	· 0.7%	8	• 1.3%	4	- 0.8%	9	• 2.3%	5	• 3.1%
i.>35	1	0.1%	1	· 0.2%								
Grand Total	713	100%	604	100%	601	100%	485	100%	384	100%	161	100%

- 12% of the defaulters have less than 5 trades and also income is greater than 30.
- Defaulters with trades between 6 to 15 trades contribute and salary less than 20 contribute to 31% of defaulters

Way Forward

- Model Building
- Model Evaluation
- Application Scorecard

- Predicting Defaulter and Non Defaulter is **Classification Problem** under **Supervised Learning** category as we know the dependent/target variable.
- Will build 2 different classification model, one with Demographic Data and another with Demographic & Credit Bureau data
- Major problem in Dataset is Class Imbalance (94:6) which means out of 100 random sample there are 94 Non Defaulters and 6
 Defaulters, so will use Stratified Sampling technique to split data in train & test set.
- We are not going to scale data as we are building model on WOE transformed value dataset.
- For Feature selection we are using **WOE & Information Value**, based on IV metrics of Week, Medium & Strong predictor will choose feature variable from both dataset.

Modelling Technique:

- Will use below mentioned 3 classification algorithms to fit data and based on different evaluation criteria will choose final model.
- Logistic Regression is easy to interpret and it will act as baseline model for classification problems
- Random Forest is one of the ensemble technique which build strong predictor using multiple week predictor/trees
- Support Vector Machine provides different kernel method which transform data from non liner space to linear space and fit model on that transformed dataset to segregate different classes.

- For module evaluation will use Train-Validate-Test approach using **GridSerachCV** and **Stratified K-Fold** Cross Validator
- Tune different **Hyper-Parameter** for different algorithms and verify the score
- There are multiple metrics to evaluate classification model
- Validate Discriminatory Power of model using Sensitivity & Specificity metrics as well as AUC curve.
- **Sensitivity** is true positive rate which measures proportion of actual (Defaulters) that are correctly identified.
- Where as **Specificity** deals with negative rate (True negative rate)
- Area Under Curve (AUC) measure how well target variable distinguish between two groups, higher the AUC i.e. 1, better the model.
- Check Calibration Accuracy, discriminatory power validate classification ability, where as accuracy used to validate how different actual and predicated defaults are
- Stability is nothing but consistency of model on unseen data, to evaluate stability will check performance of model of train dataset vs test dataset.

Application Scorecard

- Score is the Calibrated log of odds value predicated by model.
- The score reflects the increase or decrease in odds, with High Score Values reflect a low probability of default.
- To generate score card will build logistic regression model using customer single view data (complete data set Demographic & Credit Bureau) as we want regression coefficient to scale or calibrate the scorecard.
- We calibrate predicated log of odds such that at score of 400 good to bad odds is 10 to 1 and increase score by 20 points corresponds to doubling of good to bad odds.

Score =
$$\sum_{i=1}^{n} (-(woei * \beta_i + \frac{a}{n}) * factor + offset/n)$$

Factor = points to double/Ln(2)

Offset = score
$$-(factor * ln(odds))$$

Odds	Score
10	400
20	420
40	440

Thank You