Chương 3 Mạch tuần tự

Nội dung chương 3

- Khái niệm chung
- Các loại Flip Flop
- Bộ đếm
- Thanh ghi dịch

Khái niệm chung

- Mạch tuần tự: các ngõ ra ở trạng thái kế tiếp vừa phụ thuộc vào trạng thái hiện tại của ngõ vào, vừa phụ thuộc trạng thái hiện tại của ngõ ra
- Khi các ngô vào thay đổi trạng thái, các ngô ra không thay đổi ngay mà chờ đến khi có xung đồng hồ
- Mạch tuần tự có tính đồng bộ và tính nhớ → cơ sở để thiết kế các bộ nhớ
- Cơ sở thiết kế mạch tuần tự là dựa trên Flip Flop

Flip – Flop (FF)

- FF là mạch dao động đa hài hai trạng thái bền, được xây dựng trên cơ sở các cổng logic và hoạt động theo một bảng trạng thái cho trước
- Một FF thường có:
 - Một hoặc hai ngô vào dữ liệu, một ngô vào xung đồng hồ
 - Hai ngỗ ra, thường ký hiệu Q (ngỗ ra chính) và \overline{Q} (ngỗ ra phụ)
- Phân loại FF:
 - FF không có tín hiệu điều khiển (không đồng bộ): Chốt (latch)
 - FF có tín hiệu điều khiển (đồng bộ): Chốt (latch) và FF

Flip – Flop đồng bộ

- Ck tác động theo sườn (lên, xuống)
 - RSFF
 - JKFF
 - TFF
 - DFF

RSFF

• Kí hiệu:

• Bảng trạng thái:

S ⁿ	R^n	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	X

S^n	R^n	Q^n	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	X
1	1	1	X

RSFF (tt)

• Phương trình logic:

$$Q^{n+1} = S^n + \overline{R^n}Q^n$$
$$(S^n.R^n = 0)$$

 Dạng sóng: (Ck tác động sườn xuống)

JKFF

• Cải tiến từ RSFF

• Bảng trạng thái:

J^n	K^n	Q^{n+1}
0	0	Q^n
0	1	0
1	0	1
1	1	$\overline{Q^n}$

• Kí hiệu:

J^n	K ⁿ	Q^n	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

JKFF (tt)

• Phương trình logic:

$$Q^{n+1} = J^n \overline{Q^n} + \overline{K^n} Q^n$$

Dạng sóng: (Ck tác động sườn xuống)

TEF

• Kí hiệu:

• Phương trình logic:

$$Q^{n+1} = \overline{T^n}Q^n + T^n\overline{Q^n}$$
$$Q^{n+1} = T^n \oplus Q^n$$

Bảng trạng thái:

T^n	Q^{n+1}
0	Q^n
1	$\overline{Q_n}$

T^n	Q^n	Q^{n+1}
0	0	0
0	1	1
1	0	1
1	1	0

TFF (tt)

Dạng sóng: (Ck tác động sườn xuống)

Khi ngõ vào T luôn bằng 1:

- Vậy khi T = 1, TFF đóng vai trò mạch chia tần số xung đồng hồ
- Nếu ghép n TFF với nhau và các ngõ vào T luôn bằng 1 ta có $f_Q = \frac{f_{Ck}}{2^n}$

DFF

• Kí hiệu:

• Bảng trạng thái:

D^n	Q^{n+1}
0	0
1	1

D^n	Q^n	Q^{n+1}
0	0	0
0	1	0
1	0	1
1	1	1

• Phương trình logic: $Q^{n+1} = D^n$

DFF (tt)

• Dạng sóng:

- Úng dụng:
 - Lưu trữ dự liệu để chế tạo bộ nhớ và thanh ghi
 - Chia tần số nếu mắc hồi tiếp ngõ ra \bar{Q} về ngõ vào D

Bộ đếm

- Xây dựng dựa trên cơ sở các Flip Flop ghép với nhau
- Phân loại:
 - Theo hệ đếm: bộ đếm thập phân, bộ đếm nhị phân
 - Theo hướng đếm: mạch đếm lên, mạch đếm xuống, mạch đếm vòng
 - Theo tín hiệu chuyển: bộ đếm nối tiếp, bộ đếm song song, bộ đếm hỗn hợp
 - Chức năng điều khiển: bộ đếm đồng bộ, bộ đếm không đồng bộ

Bộ đếm nối tiếp

- Bộ đếm nối tiếp: bộ đếm trong đó các TFF hoặc JKFF giữ chức năng của TFF được ghép nối tiếp với nhau và hoạt động theo một loại mã duy nhất là BCD 8421
- Phân loại:
 - Đếm lên
 - Đếm xuống
 - Đếm lên/xuống
 - Modulo M
- Ưu điểm: đơn giản, dễ thiết kế
- Nhược điểm: với dung lượng lớn, sử dụng nhiều FF thì thời gian trễ tích lũy lớn → kết quả sai

Bộ đếm nối tiếp - Đếm lên

- Bộ đếm lên có nội dung đếm tăng dần
- T/(J, K) luôn luôn ở mức logic 1 và ngõ ra của TFF/JKFF đứng trước nối với ngõ vào Ck của TFF/JKFF đứng sau
 - Ck tác động sườn xuống: TFF hoặc JKFF ghép với nhau theo quy luật: $Ck_{i+1} = Q_i$
 - Ck tác động sườn lên: TFF hoặc JKFF ghép với nhau theo quy luật: $Ck_{i+1} = \overline{Q_i}$

Bộ đếm nối tiếp - Đếm lên (tt)

- Xét mạch đếm nối tiếp, đếm 4, đếm lên, dùng TFF:
 - Trường hợp Ck tác động theo sườn xuống:

Clr (Clear) là ngõ vào xóa của TFF; với Clr tác động mức thấp thì khi Clr = 0 thì ngõ ra Q của FF bị xóa về 0

Bộ đếm nối tiếp - Đếm lên (tt)

- Giản đồ thời gian:

– Bảng trạng thái:

Xung vào	Trạng thái hiện tại		Trạng th	ái kế tiếp
Ck	Q_2	Q_1	Q_2	Q_1
1	0	0	0	1
2	0	1	1	0
3	1	0	1	1
4	1	1	0	0

Đếm lên (tt)

Trường hợp Ck tác động theo sườn lên:

- Giản đồ thời gian:

Bộ đếm nối tiếp - Đếm lên (tt)

- Bảng trạng thái:

Xung vào	Trạng thái hiện tại		Trạng th	ái kế tiếp
Ck	Q_2	Q_1	Q_2	Q_1
1	0	1	1	0
2	1	0	1	1
3	1	1	0	0
4	0	0	0	1

Bộ đếm nối tiếp - Đếm xuống

- Bộ đếm xuống có nội dung đếm giảm dần
- T/(J, K) luôn luôn ở mức logic 1 và ngõ ra của TFF/JKFF đứng trước nối với ngõ vào Ck của TFF/JKFF đứng sau
 - Ck tác động sườn xuống: TFF hoặc JKFF ghép với nhau theo quy luật: $Ck_{i+1} = \overline{Q_i}$
 - Ck tác động sườn lên: TFF hoặc JKFF ghép với nhau theo quy luật: $Ck_{i+1} = Q_i$

Bộ đếm nối tiếp - Đếm xuống (tt)

- Xét mạch đếm nối tiếp, đếm 4, đếm xuống, dùng TFF:
 - Trường hợp Ck tác động theo sườn xuống:

Bảng trạng thái:

Xung vào	Trạng thái hiện tại		Trạng th	ái kế tiếp
Ck	Q_2	Q_1	Q_2	Q_1
1	0	0	1	1
2	1	1	1	0
3	1	0	0	1
4	0	1	0	0

Bộ đếm nối tiếp - Đếm xuống (tt)

Trường hợp Ck tác động theo sườn lên:

Bảng trạng thái:

Xung vào	Trạng thái hiện tại		Trạng th	ái kế tiếp
Ck	Q_2	Q_1	Q_2	Q_1
1	1	1	1	0
2	1	0	0	1
3	0	1	0	0
4	0	0	1	1

Bộ đếm nối tiếp - Đếm lên/xuống

- Bộ đếm lên/xuống vừa có thể đếm lên vừa có thể đếm xuống tùy thuộc vào tín hiệu điều khiển
- Gọi X là tín hiệu điều khiến, ta quy ước:
 - Nếu X = 0 thì đếm lên
 - Nếu X = 1 thì đếm xuống
- Trường hợp Ck tác động sườn xuống:

$$Ck_{i+1} = \bar{X}Q_i + X\overline{Q_i} = X \oplus Q_i$$

Trường hợp Ck tác động sườn lên:

$$Ck_{i+1} = \overline{X}\overline{Q_i} + XQ_i = \overline{X \oplus Q_i}$$

Bộ đếm nối tiếp - Đếm modulo M

- Bộ đếm modulo M là bộ đếm nổi tiếp, theo mã BCD 8421, có dung lượng đếm khác 2ⁿ
- Xét mạch đếm 5, đếm lên, đếm nối tiếp: cần dùng 3 FF
 - Bảng trạng thái:

Xung vào	Trạn	g thái hi	ện tại	Trạng thái kế tiếp			
Ck	Q_3	Q_2	Q_1	Q_3	Q_2	Q_1	
1	0	0	0	0	0	1	
2	0	0	1	0	1	0	
3	0	1	0	0	1	1	
4	0	1	1	1	0	0	
5	1	0	0	1/0	0	1/0	

Bộ đếm nối tiếp - Đếm modulo M (tt)

- Vấn đề đặt ra: Sau xung Ck thứ 5, ta tìm cách đưa tổ hợp 101
 về 000 để mạch thực hiện đếm lại từ tổ hợp ban đầu
- Tổ hợp 101 có 2 ngõ ra Q₁ và Q₃ đồng thời bằng 1 (khác với các tổ hợp trước đó) → dấu hiệu nhận biết để xóa bộ đếm về 000
- Để xóa bộ đếm về 000:
 - Đối với FF có ngõ vào Clr tác động mức 0 thì ta dùng cổng NAND 2 ngõ vào
 - Đối với FF có ngõ vào Clr tác động mức 1 thì ta dùng cổng AND 2 ngõ vào

Bộ đếm nối tiếp - Đếm modulo M (tt)

• Sơ đồ mạch:

• Giản đồ thời gian:

Bộ đếm song song

- Bộ đếm trong đó các FF mắc song song với nhau
- Các ngõ ra thay đổi trạng thái đồng thời dưới sự điều khiển của tín hiệu
 Ck → còn gọi là bộ đếm đồng bộ
- Sử dụng bất kỳ loại FF và theo bất kỳ quy luật đếm
- Không phụ thuộc tín hiệu Ck tác động sườn lên, sườn xuống, mức 0 hay mức 1
- Thiết kế dựa trên bảng đầu vào kích của FF: Điều kiện ngõ vào để đạt yêu cầu thay đổi ở ngõ ra.

Q^n	Q^{n+1}	S^n	R^n	J^n	K ⁿ	T^n	D^n
0	0	0	X	0	X	0	0
0	1	1	0	1	X	1	1
1	0	0	1	X	1	1	0
1	1	X	0	X	0	0	1

- Xét mạch đếm đồng bộ, đếm 5, đếm lên theo mã BCD 8421 dùng JKFF: cần dùng 3 JKFF
 - Bảng trạng thái:

Xung vào	Trạn	g thái hi	ện tại	Trạng thái kế tiếp			
Ck	Q_3	Q_2	Q_1	Q_3	Q_2	Q_1	
1	0	0	0	0	0	1	
2	0	0	1	0	1	0	
3	0	1	0	0	1	1	
4	0	1	1	1	0	0	
5	1	0	0	0	0	0	

Bảng đầu vào kích:

Xung	Trạng thái hiện tại		Trạng thái kế tiếp									
vào	Q_3	Q_2	\mathbf{Q}_{1}	Q_3	Q_2	\mathbf{Q}_1	J_3	K_3	J_2	K_2	J_1	$\mathbf{K_1}$
1	0	0	0	0	0	1	0	X	0	X	1	X
2	0	0	1	0	1	0	0	X	1	X	X	1
3	0	1	0	0	1	1	0	X	X	0	1	X
4	0	1	1	1	0	0	1	X	X	1	X	1
5	1	0	0	0	0	0	X	1	0	X	0	X

Lập bảng Karnaugh để tối thiểu hóa:

$K_2 Q_3 Q_2$ $Q_1 00 01 11 10$										
0	X	0	x	0						
1	X	1	x	х						
	K = 0									

Lập bảng Karnaugh để tối thiểu hóa:

Sơ đồ logic:

Thanh ghi dịch chuyển

- Xây dựng dựa trên cơ sở các DFF hoặc các FF khác thực hiện chức năng của DFF
- Mỗi DFF lưu trữ 1 bit dữ liệu
- Để tạo thanh ghi nhiều bit, ghép các DFF lại với nhau theo quy luật:
 - Ngõ ra của DFF đứng trước được nối với ngõ vào dữ liệu của DFF sau $(D_{i+1} = Q_i)$: thanh ghi có khả năng dịch phải
 - Ngõ ra của DFF đứng sau được nối với ngõ vào dữ liệu của DFF trước ($D_i = Q_{i+1}$): thanh ghi có khả năng dịch trái

- Phân loại:
 - Theo hướng dịch chuyển dữ liệu:
 - Dịch trái
 - Dịch phải
 - Vừa dịch phải vừa dịch trái
 - Theo ngô vào dữ liệu:
 - Ngô vào dữ liệu nối tiếp
 - Ngõ vào dữ liệu song song
 - Theo ngô ra:
 - Ngõ ra nối tiếp
 - Ngô ra song song
 - Ngô ra vừa nổi tiếp vừa song song

- Nhập dữ liệu vào FF:
 - Dữ liệu được nhập vào FF bằng chân Preset (Pr)
 - Khi Load = 0: Pr = Clr = 1 (Chân Clr để trống ứng với mức logic 1)
 - → FF tự do, dữ liệu không được nhập vào FF
 - Khi Load = 1: $Pr = \bar{A}$
 - Giả sử ban đầu: Q = 0
 - Nếu A = $0 \rightarrow Pr = 1$, Clr = $1 \rightarrow Q = Q^0 = 0$
 - Nếu A = 1 \rightarrow Pr = 0, Clr = 1 \rightarrow Q = 1
 - Vậy Q = A, dữ liệu được nhập vào FF
 - Chú ý: phương pháp này đòi hỏi trước khi nhập phải xóa FF về 0

• Xét thanh ghi 4 bit dịch phải dùng JKFF:

Trong đó:

- -DSR (Data Shift Right): ngõ vào dữ liệu nối tiếp
- $-Q_1$, Q_2 , Q_3 , Q_4 : các ngỗ ra song song

- Hoạt động của mạch:
 - Giả sử ban đầu Load = 1 → A, B, C, D được nhập vào thanh ghi dịch $Q_1 = A$, $Q_2 = B$, $Q_3 = C$, $Q_4 = D$
 - Xét FF_1 : $D = DSR_1$, $Q_1 = A$
 - Nếu $DSR_1 = 0 \rightarrow Q = 0$
 - Nếu $DSR_1 = 1 \rightarrow Q = 1$
 - Như vậy sau một xung Ck tác động sườn xuống thì $Q_1 = DSR_1$
 - Lúc đó tại FF_2 , FF_3 , FF_3 : $Q_2 = A$, $Q_3 = B$, $Q_4 = C$
 - Như vậy, sau khi Ck tác động sườn xuống, nội dung trong thanh ghi được dời sang phải 1 bit
 - Sau 4 xung, dữ liệu trong thanh ghi được xuất ra ngoài vá nội dung DFF
 được thay bằng dữ liệu từ ngô vào DSR₁, DSR₂, DSR₃, DSR₄

Bảng trạng thái:

Xung	T	rạng tha	ái hiện t	ại	Trạng thái kế				
vào	\mathbf{Q}_1	Q_2	Q_3	Q_4	\mathbf{Q}_1	Q_2	Q_3	\mathbf{Q}_{4}	
1	A	В	С	D	DSR_1	A	В	C	
2	DSR ₁	Α	В	С	DSR ₂	DSR ₁	A	В	
3	DSR ₂	DSR ₁	A	В	DSR ₃	DSR ₂	DSR ₁	Α	
4	DSR ₃	DSR ₂	DSR ₁	A	DSR ₄	DSR ₃	DSR ₂	DSR ₁	

• Trường hợp ngỗ ra $\overline{Q_4}$ bằng ngỗ vào dữ liệu nối tiếp DSR: Bảng trạng thái:

Xung	Т	rạng tha	ái hiện t	ại	Trạng thái kế				
vào	Q_1	Q_2	Q_3	Q_4	Q_1	Q_2	Q_3	Q_4	
1	0	0	0	0	1	0	0	0	
2	1	0	0	0	1	1	0	0	
3	1	1	0	0	1	1	1	0	
4	1	1	1	0	1	1	1	1	
5	1	1	1	1	0	1	1	1	
6	0	1	1	1	0	0	1	1	
7	0	0	1	1	0	0	0	1	
8	0	0	0	1	0	0	0	0	