COURSE NAME COURSE CODE

ASSIGNMENT NAME

Abdulsalam Aldahir dv18aar@cs.umu.se

September 19, 2022

 $\begin{array}{c} \text{COURSE NAME} \\ \text{Someone} \text{ , Someone} \end{array}$

Contents

1	Introduction	1
2	Background	1
3	Method	1
4	Results	1
5	Discussion	1

Abstract

The development and widespread of Internet browsers and technologies make them a tool that can be used for many scientific problems. This raises the question of whether Internet browsers, together with WebGPU and WebRTC, can be used to do scalable computing in a distributed cluster. This thesis answers the question by implementing a peer-to-peer cluster and testing it with two problems, Matrix multiplication and Mandelbrot sets generation. The experimental results show that computing embarrassingly parallel problems are scalable with more than 75% efficiency.

1 Introduction

2 Background

3 Method

$$\max_{j \in [0..n]} \left\{ \max J(j) \right\} \tag{1}$$

$$maxJ(j) = max \begin{cases} CC(j) + RR(n-j) \\ DD(j) + SS(n-j) - G_{open} \end{cases}$$
 (2)

4 Results

Figure 1: The Speed up results of the algorithm[?]

5 Discussion