Analyzing efficiency

- efficiency: A measure of the use of computing resources by code.
 - most commonly refers to run time; but could be memory, etc.
- Rather than writing and timing algorithms, let's *analyze* them. Code is hard to analyze, so let's make the following assumptions:
 - Any single Java statement takes a constant amount of time to run.
 - The runtime of a sequence of statements is the sum of their runtimes.
 - An *if/else*'s runtime is the runtime of the if test, plus the runtime of whichever branch of code is chosen.
 - A *loop*'s runtime, if the loop repeats *N* times, is *N* times the runtime of the statements in its body.
 - A *method call*'s runtime is measured by the total of the statements inside the method's body.

Runtime example

```
statement1;
statement2;
for (int i = 1; i <= N; i++) {
    statement3;
    statement4;
                                            4N
    statement5;
    statement6;
                                                        \frac{1}{2}N^2 + 4N + 2
for (int i = 1; i <= N; i++) {
    for (int j = 1; j \le N/2; j++) {
         statement7;
```

• How many statements will execute if N = 10? If N = 1000?

Complexity classes

• **complexity class**: A category of algorithm efficiency based on the algorithm's relationship to the input size *N*.

Class	Big-Oh	If you double N,	Example	
constant	O(1)	unchanged	10ms	
logarithmic	O(log ₂ N)	increases slightly	175ms	
linear	O(N)	doubles	3.2 sec	
log-linear	$O(N \log_2 N)$	slightly more than doubles	6 sec	
quadratic	O(<i>N</i> ²)	quadruples	1 min 42 sec	
cubic	O(<i>N</i> ³)	multiplies by 8	55 min	
	•••			
exponential	O(2 ^N)	multiplies drastically	5 * 10 ⁶¹ years	

Java collection efficiency

Method	Array List	Linked List	Stack	Queue	TreeSet /Map	[Linked] HashSet /Map	Priority Queue
add or put	O(1)	O(1)	O(1)*	O(1)*	O(log N)	O(1)	O(log <i>N</i>)*
add at index	O(N)	O(N)	-	-	-	-	-
contains/ indexOf	O(N)	O(N)	-	-	O(log N)	O(1)	-
get/set	O(1)	O(N)	O(1)*	O(1)*	-	-	O(1)*
remove	O(N)	O(N)	O(1)*	O(1)*	O(log N)	O(1)	O(log <i>N</i>)*
size	O(1)	O(1)	O(1)	O(1)	O(1)	O(1)	O(1)

• * = operation can only be applied to certain element(s) / places

Big-Oh defined

- Big-Oh is about finding an asymptotic upper bound.
- Formal definition of Big-Oh: f(N) = O(g(N)), if there exists positive constants c, N_0 such that $f(N) \le c \cdot g(N)$ for all $N \ge N_0$.
 - We are concerned with how f grows when N is large.
 - not concerned with small N or constant factors
 - Lingo: "f(N) grows no faster than g(N)."

Big-Oh questions

```
• N + 2 = O(N)?
  yes
• 2N = O(N) ?
  yes
• N = O(N^2) ?
  yes
• N^2 = O(N) ?
  no
• 100 = O(N) ?
  yes
• N = O(1) ?
  no
• 214N + 34 = O(N^2)?
  yes
```

Preferred Big-Oh usage

• Pick the tightest bound. If f(N) = 5N, then:

• Ignore constant factors and low order terms:

```
f(N) = O(N), not f(N) = O(5N)
f(N) = O(N^3), not f(N) = O(N^3 + N^2 + 15)
```

- Wrong: $f(N) \le O(g(N))$
- Wrong: $f(N) \ge O(g(N))$
- Right: f(N) = O(g(N))

A basic Big-Oh proof

- Claim: 2N + 6 = O(N).
- To prove: Must find c, N_0 such that for all $N \ge N_0$, $2N + 6 \le c \cdot N$

• *Proof*: Let
$$c = 3$$
, $N_0 = 6$.
 $2N + 6 \le 3 \cdot N$
 $6 \le N$

Math background: Exponents

- Exponents:
 - X^Y, or "X to the Yth power";
 X multiplied by itself Y times
- Some useful identities:

$$X^A \cdot X^B = X^{A+B}$$

$$X^A / X^B = X^{A-B}$$

$$(X^A)^B = X^{AB}$$

$$X^{N} + X^{N} = 2X^{N}$$

$$2^{N} + 2^{N} = 2^{N+1}$$

Math background: Logarithms

Logarithms

- definition: $X^A = B$ if and only if $log_X B = A$
- intuition: log_X B means:
 "the power X must be raised to, to get B"
- In this course, a logarithm with no base implies base 2.
 log B means log₂ B

Examples

- $\log_2 16 = 4$ (because $2^4 = 16$)
- $\log_{10} 1000 = 3$ (because $10^3 = 1000$)

Logarithm bases

- Identities for logs with addition, multiplication, powers:
 - $log(A \cdot B) = log A + log B$
 - $\log (A/B) = \log A \log B$
 - $log(A^B) = B log A$
- Identity for converting bases of a logarithm:

$$\log_A B = \frac{\log_C B}{\log_C A}$$

example:

$$log_4 32 = (log_2 32) / (log_2 4)$$

= 5 / 2

Practically speaking, this means all log_c are a constant factor away from log₂, so we can think of them as equivalent to log₂ in Big-Oh analysis.

More runtime examples

What is the exact runtime and complexity class (Big-Oh)?

```
int sum = 0;
for (int i = 1; i <= N; i += c) {
    sum++;
}</pre>
```

• Runtime = N / c = O(N).

```
int sum = 0;
for (int i = 1; i <= N; i *= c) {
    sum++;
}</pre>
```

• Runtime = $\log_c N = O(\log N)$.

Binary search

- binary search successively eliminates half of the elements.
 - Algorithm: Examine the middle element of the array.
 - If it is too big, eliminate the right half of the array and repeat.
 - If it is too small, eliminate the left half of the array and repeat.
 - Else it is the value we're searching for, so stop.
 - Which indexes does the algorithm examine to find value 42?
 - What is the runtime complexity class of binary search?

Binary search runtime

• For an array of size N, it eliminates ½ until 1 element remains.

- How many divisions does it take?
- Think of it from the other direction:
 - How many times do I have to multiply by 2 to reach N? 1, 2, 4, 8, ..., N/4, N/2, N
 - Call this number of multiplications "x".

$$2^{x} = N$$
$$x = \log_{2} N$$

• Binary search is in the **logarithmic** (O(log N)) complexity class.

Math: Arithmetic series

• Arithmetic series notation (useful for analyzing runtime of loops):

$$\sum_{i=i}^{k} Expr$$

- the sum of all values of *Expr* with each value of *i* between *j*--*k*
- Example:

$$\sum_{i=0}^{\infty} 2i + 1$$
= $(2(0) + 1) + (2(1) + 1) + (2(2) + 1) + (2(3) + 1) + (2(4) + 1)$
= $1 + 3 + 5 + 7 + 9$
= 25

Arithmetic series identities

• sum from 1 through N inclusive:

$$\sum_{i=1}^{N} i = \frac{N(N+1)}{2} = O(N^2)$$

• Intuition:

■ sum =
$$1 + 2 + 3 + ... + (N-2) + (N-1) + N$$

■ sum = $(1 + N) + (2 + N-1) + (3 + N-2) + ...$ // rearranged // N/2 pairs total

• sum of squares:

$$\sum_{i=1}^{N} i^2 = \frac{N(N+1)(2N+1)}{6} = O(N^3)$$

Series runtime examples

What is the exact runtime and complexity class (Big-Oh)?

```
int sum = 0;
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= N * 2; j++) {
        sum++;
    }
}

Runtime = N · 2N = O(N²).

int sum = 0;
for (int i = 1; i <= N; i++) {
    for (int j = 1; j <= i; j++) {
        sum++;
    }
}</pre>
```

• Runtime = $N(N + 1) / 2 = O(N^2)$.