MATU9D2 Practical Statistics Practical 2: Hand Calculations: Solutions

1.	X ~ N(M, 02)	7 ~ N(0,1) Z = X-u
		25 une
	X~ N(32,16)	μ= 32 σ= 4
		$\frac{2}{4} = \frac{35 - 32}{4} = \frac{3}{4} = 0.75$
	FS = X (d)	$Z = \frac{27 - 32}{4} = \frac{-5}{4} = -1.25$
	(c) X= 22,7	$\frac{7}{2} = \frac{22.7 - 32}{4} = \frac{-9.3}{4} = -2.325$
	(d) X = 40.5	$\frac{2}{4} = \frac{40.5 - 32}{4} = \frac{8.5}{4} = 2.125$
	(e) X = 30	$\frac{7}{4} = \frac{30-32}{4} = \frac{-2}{4} = -0.5$
2.	(a) 0 1	P(2>1) = 1 - P(2<1) = 1 - 0.8413 = 0.1587//
	(b) 2	P(2<2) = 0.9772//
	(0)	P(2>-0.85) = 1 - P(2<-0.85) = 1 - 0.1977 = 0.8023//
	-0.85 ₀	P(1.55 < Z < 2.15) = P(Z < 2.15) - P(Z < 1.55)
	b 155 2	= 0.9842 - 0.9394

(d)
$$P(Z > 2) = 0.32$$
 is $P(Z < 2) = 1 - 0.32 = 0.68$
is $Z = 0.47$
 $Z = X - M$
 $Z = X - M$

ie. 32% are for more than \$109.18

ie. 85% are for more than & 94.46

(a)
$$P(3 \text{ or fewer are women}) = P(X \le 3)$$

= $P(X=0) + P(X=1) + P(X=2) + P(X=3)$

- = 0.0047 + 0.030S + 0.0916 + 0.1700 (from tables) = 0.2968
- ie. 0.297 chance of 3 or fewer women on this committee
- (b) P(10 or more art men) = P(5 or fewer are women)= $P(X \le 5) = P(X \le 3) + P(X = 4) + P(X = 5)$ = 0.2968 + 0.2186 + 0.2061 = 0.3215
 - ie 0.722 chance of 10 or more men on this committee
- 5. Houng Bunomial p=0.11 = probability of success
 = probability of bung a "high earner"

 n=1500 = no. of that = number in sample

 het X = number of high earners

 X ~ Bi (1500, 0.11)
 - (a) Mean $\mu = np = 1500 \times 0.11 = 165$ Standard Deviation $\sigma = \sqrt{np(1-p)} = \sqrt{1500 \times 0.11 \times (1-0.11)}$ = 12.12
 - (b) Houng Normal Approximation, $X \sim N(165, 12.12^2)$ P(X < 135) = P(X < -2.48) = 0.0066

- ie probability of having 135 or fewer high earners in this sample of 1500 is 0.007
- ie very small if 0.11 is the probability of being a high earner