1. What is meant by attribute? Explain the different types of attributes with examples.

Attributes (describe objects)., Variable, field, characteristic, feature or observation

Attribute Type	Description	Examples	Operations
Nominal	Each value represents a label. (Typical comparisons between two values are limited to "equal" or "no equal")	Flower color, gender, zip code	Mode, entropy, contingency correlation, χ^2 test
Ordinal	The values can be ordered. (Typical comparisons between two values are "equal" or "greater" or "less")	Hardness of minerals, {good, better, best}, grades, street numbers, rank, age	Median, percentiles, rank correlation, run tests, sign tests
Interval	The differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	Calendar dates, temperature in Celsius or Fahrenheit	Mean, standard deviation, Pearson's correlation, t and F tests
Ratio	Differences and ratios are meaningful. (*, /)	Monetary quantities, counts, age, mass, length, electrical current	Geometric mean, harmonic mean, percent variation

Attribute (or dimensions, features, variables): a data field, representing a characteristic or feature of a data object

Nominal: categories, states, or names

Hair_color = {auburn, black, blond, brown, grey, red, white}

marital status, occupation, ID numbers, zip codes

Binary: Nominal attribute with only 2 states (0 and 1)

Symmetric binary: both outcomes equally important e.g., gender

Asymmetric binary: outcomes not equally important

e.g., medical test (positive vs. negative)

Convention: assign 1 to most important outcome (e.g., HIV positive)

Ordinal

Values have a meaningful order (ranking), but magnitude between successive values is not known

Size = {small, medium, large}, grades, army rankings Quantity (integer or real-valued)

Interval

Measured on a scale of equal-sized units Values have order E.g., temperature in C° or F°, calendar dates No true zero-point

Ratio

Inherent zero-point., We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°) e.g., temperature in Kelvin, length, counts, monetary quantities.

2. Explain the measures of central tendency and dispersion.

- Mean (algebraic measure) (sample vs. population): $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_{i}$ $\mu = \frac{\sum x}{N}$ Note: n is sample size and N is population size
 - Weighted arithmetic mean:
 - $\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i}$ Trimmed mean: chopping extreme values
- - Middle value if odd number of values, or average of the middle two values otherwise
 - 200 Estimated by interpolation (for grouped data): 6 - 15450
- ode $median = L_1 + (\frac{n/2 (\sum freq)l}{freq_{median}}) width$ 16-20 21-50 Value that occurs most frequently in the data 300 1500 Mode 700 44
 - Unimodal, bimodal, trimodal
 - Empirical formula:

 $mean-mode=3\times(mean-median)$

frequency

Measuring the Dispersion of Data

- Quartiles, outliers and boxplots
 - Quartiles: Q₁ (25th percentile), Q₃ (75th percentile)
 - Inter-quartile range: IQR = Q₃ Q₁
 - Five number summary: min, Q₁, median, Q₃, max
 - Boxplot: ends of the box are the quartiles; median is marked; add whiskers, and plot outliers individually
 - Outlier: usually, a value higher/lower than 1.5 x IQR
- Variance and standard deviation (sample: s, population: σ)
 - Variance: (algebraic, scalable computation)

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} x_{i}^{2} - \frac{1}{n} \left(\sum_{i=1}^{n} x_{i} \right)^{2} \right] \qquad \sigma^{2} = \frac{1}{N} \sum_{i=1}^{n} (x_{i} - \mu)^{2} = \frac{1}{N} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

• Standard deviation s (or σ) is the square root of variance s^{2} (or σ^{2})

3. Explain the concept of master data management.

The processes and technology to produce and maintain a single clean copy of master data → The "Golden" record

An Application for creating and maintaining an authoritative view of master data including policies and procedures for access, update, modification, viewing between systems across the enterprise

- ➤ MDM is the process of helping a company to standardize the definition and attributes of all of its critical data elements (customer, vendor, product, etc.) to create a common point of reference enterprise wide.
- ➤ MDM can facilitate the sharing of data among all a company's disparate business functions, departments and even divisions not to mention across all information systems, platforms and applications

4. List the major issues in data mining.

- Mining different kinds of knowledge in databases
- > Interactive mining of knowledge at multiple levels of abstraction
- > Incorporation of background knowledge
- > Data mining query languages and ad hoc data mining
- Presentation and visualization of data mining results
- > Handling noisy or incomplete data
- > Efficiency and scalability of data mining algorithms
- > Pattern evaluation
- Handling of relational and complex types of data
- > Parallel, distributed, and incremental mining algorithms
- Mining information from heterogeneous databases and global information systems

5. What is meant by data cleaning? Explain the basic methods for data cleaning

How to Handle Noisy Data?

- Binning
 - first sort data and partition into (equal-frequency) bins
 - then one can smooth by bin means, smooth by bin median, smooth by bin boundaries, etc.
- Regression
 - smooth by fitting the data into regression functions
- Clustering
 - detect and remove outliers
- Combined computer and human inspection
 - detect suspicious values and check by human (e.g., deal with possible outliers)

Data in the Real World Is Dirty: Lots of potentially incorrect data, e.g., instrument faulty, human or computer error, transmission error

- incomplete: lacking attribute values, lacking certain attributes of interest, or containing only aggregate data
 - e.g., Occupation=" " (missing data)
- noisy: containing noise, errors, or outliers
 - e.g., Salary="-10" (an error)
- inconsistent: containing discrepancies in codes or names, e.g.,
 - Age="42", Birthday="03/07/2010"
 - Was rating "1, 2, 3", now rating "A, B, C"
 - discrepancy between duplicate records
- Intentional (e.g., disguised missing data)
 - Jan. 1 as everyone's birthday?

6. Explain data placement and query parallelism with reference to parallel databases

Physical placement of the DB onto multiple nodes

Static vs. Dynamic