Anomalies on orbifolds

Nima Arkani-Hamed, Andrew G. Cohen, Howard Georgi.

Physics Letters B 516 (2001) 395-402, arxiv:hep-th/0103135.

安倍研 M1 宮根一樹 2024 5/7 (火)

読んだ動機

この春休み、QFTやKK理論をメインに勉強した。

くりこみ、有効作用、(非可換)ゲージ場の(経路積分)量子化など・・・・・・。

読んだ動機

この春休み、QFTやKK理論をメインに勉強した。

くりこみ、有効作用、(非可換)ゲージ場の(経路積分)量子化など・・・・・・。

その中で、<mark>アノマリー</mark>を勉強してみたいなと思いました。

(教科書の写真を2つ)

一方で、この研究室でも高次元の理論のアノマリーは調べてみたかったけど、良 く分かっていなかった部分もある模様。

([2] の写真を)

そこで、高次元のアノマリーに関連しているこの論文を読もうと思った。

Anoma	alies on	orbifolds			
Nima Arka Mar, 2001		Harvard U.), Andre	ew G. Cohen (Harvard	U.), Howard Georgi (Harvar	d U.)
11 pages					
Published	in: Phys.Lett	B 516 (2001) 395	-402		
e-Print: he	p-th/01031	35 [hep-th]			
DOI: 10.10	16/S0370-2	693(01)00946-7			
Report nui	mber: HUTP	-01-A013, BUHEP	-01-4, LBNL-47614, UG	B-PTH-01-09	
View in: Al	MS MathSci	Net, OSTI Informa	tion Bridge Server, AD	S Abstract Service	
Da odf	☐ cite	🖫 claim		reference se	arch → 164 citation

イントロダクション

アノマリー

4次元の場合のカイラルアノマリーを確認する。

アノマリー

4次元の場合のカイラルアノマリーを確認する。

ゲージ場 A_{μ} と結合しているフェルミオン ψ を考える

$$\mathcal{L} = \bar{\psi}(i\partial\!\!\!/ - m)\psi + e\bar{\psi}\gamma^{\mu}\psi A_{\mu}$$

カイラル変換 $\psi o e^{i\gamma^5 lpha(x)} \psi$ に対するネーターカレントの方程式は

$$\partial_{\mu}j_{5}^{\mu}=2imar{\psi}\gamma^{5}\psi,\quad j_{5}^{\mu}=ar{\psi}\gamma^{\mu}\gamma^{5}\psi$$

しかし、この結果は古典論の結果

$$\partial_{\mu}(\bar{\psi}\gamma^{\mu}\gamma^{5}\psi)=2im\bar{\psi}\gamma^{5}\psi$$

しかし、この結果は古典論の結果

$$\partial_{\mu}(ar{\psi}\gamma^{\mu}\gamma^{5}\psi)=2imar{\psi}\gamma^{5}\psi$$

量子論の意味では、以下のファインマンダイアグラムの計算をすることと等価 (ファインマンダイアグラムを 2 つほど)

左側のダイアグラムの振幅を計算して位置基底に戻すと

$$\partial_{\mu} \langle \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \rangle = 2im \langle \bar{\psi} \gamma^{5} \psi \rangle + Q, \quad Q = \frac{e^{2}}{16\pi^{2}} \varepsilon^{\mu\nu\rho\sigma} \langle F_{\mu\nu} F_{\rho\sigma} \rangle$$

この余分な Q は、ゲージ不変性を保って発散を正則化するときに生じる項

この Q をカイラルアノマリーという。

理論にアノマリーがあると、通常の量子論の定式化ができなくなることが知られている [3]。(例えば、S 行列のユニタリティーが保証できない。)

左側のダイアグラムの振幅を計算して位置基底に戻すと

$$\partial_{\mu} \langle \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \rangle = 2im \langle \bar{\psi} \gamma^{5} \psi \rangle + Q, \quad Q = \frac{e^{2}}{16\pi^{2}} \varepsilon^{\mu\nu\rho\sigma} \langle F_{\mu\nu} F_{\rho\sigma} \rangle$$

この余分な Q は、ゲージ不変性を保って発散を正則化するときに生じる項

この Q をカイラルアノマリーという。

理論にアノマリーがあると、通常の量子論の定式化ができなくなることが知られている [3]。(例えば、S 行列のユニタリティーが保証できない。) よって、

アノマリーが相殺されるように理論を作りたい

Kaluza-Klein 理論とアノマリー

一方で、高次元の時空を考え、余剰空間に周期条件を与えること (コンパクト化) によって、4 次元有効理論を作る方法があり、それを Kaluza-Klein 理論という。

特に、今回は5次元の時空 $x^M=(x^0,x^1,\cdots,x^4)$ を考え、 x^4 の方向に $x^4\sim x^4+2L$ の周期境界条件を課してコンパクト化する。

Kaluza-Klein 理論とアノマリー

一方で、高次元の時空を考え、余剰空間に周期条件を与えること (コンパクト化) によって、4 次元有効理論を作る方法があり、それを Kaluza-Klein 理論という。

特に、今回は 5 次元の時空 $x^M=(x^0,x^1,\cdots,x^4)$ を考え、 x^4 の方向に $x^4\sim x^4+2L$ の周期境界条件を課してコンパクト化する。

5 次元の理論でのアノマリー相殺と4 次元有効理論でのアノマリー相殺の対応

を調べたい。

オービフォールド S^1/Z_2

今回は、さらにオービフォールドという境界条件を余剰空間に課す。

オービフォールド S^1/Z_2

今回は、さらにオービフォールドという境界条件を余剰空間に課す。

例えば、スカラー場の理論を考える

$$S=\int \mathrm{d}^5 x \, \left(rac{1}{2}\partial^M\Phi\partial_M\Phi-rac{1}{2}m(x^4)^2\Phi^2
ight)$$

この理論に、 $\Phi(x,x^4)=\Phi(x,x^4+2L)$ という境界条件に加えて

$$\Phi(x, x^4) = \eta \Phi(x, -x^4) , \ \eta = \pm 1$$

という境界条件を課す。

まずは、周期境界条件 $\Phi(x,x^4) = \Phi(x,x^4+2L)$ から

$$\Phi(x, x^4) = \sum_{n = -\infty}^{\infty} \phi_n(x) \exp\left[i\frac{n\pi}{L}x^4\right]$$

とフーリエ展開できる。

さらに、オービフォールドの境界条件 $\Phi(x,x^4)=-\Phi(x,-x^4)$ を課すと $\phi_n(x)+\phi_{-n}(x)=0$ という条件になる

この条件により、n=0 のモード $\phi_0(x)$ は消えることがわかる

まずは、周期境界条件 $\Phi(x,x^4)=\Phi(x,x^4+2L)$ から

$$\Phi(x, x^4) = \sum_{n = -\infty}^{\infty} \phi_n(x) \exp\left[i\frac{n\pi}{L}x^4\right]$$

とフーリエ展開できる。

さらに、オービフォールドの境界条件 $\Phi(x,x^4)=-\Phi(x,-x^4)$ を課すと $\phi_n(x)+\phi_{-n}(x)=0$ という条件になる

この条件により、n=0 のモード $\phi_0(x)$ は消えることがわかる

境界条件をうまく選べば、ゼロモードの場を消したり残したりできるため 4 次元の有効理論を作るときに嬉しい

ので、調べられている。

本論文の流れ・まとめ

本論

セットアップ

付録

A. 目次

```
イントロダクション
アノマリー
Kaluza-Klein 理論とアノマリー
```

本論

付録

目次

4次元のカイラルアノマリーの計算

参考文献

B. 4次元のカイラルアノマリーの計算

QED のカイラルアノマリーを計算する。

参考文献

- N. Arkani-Hamed, A. G. Cohen, and H. Georgi, Anomalies on Orbifolds, Physics Letters B 516 (2001) 395–402, arxiv:hep-th/0103135.
- [2] H. Abe, T. Kobayashi, S. Uemura, and J. Yamamoto, Loop Fayet-Iliopoulos terms in T² / Z₂ models: Instability and moduli stabilization, Phys. Rev. D 102 (2020) 045005, arxiv:2003.03512 [hep-ph, physics:hep-th].
- [3] 藤川和男, 経路積分と対称性の量子的破れ. 岩波書店, 東京, 2001.
- [4] 藤川和男, ゲージ場の理論. 岩波書店, 東京, 2001.
- [5] K.-S. Choi and C.-ŭ. Kim, Quarks and Leptons from Orbifolded Superstring, no. volume 954 in Lecture Notes in Physics. Springer, Cham, second edition ed., 2020.