- 6. (a) Let $f:[a,b]\to\mathbb{R}$ be Riemann integrable and $f(x)\geq 0$ for all $x \in [a,b]$. Show that $\int_a^b f(x)dx \ge 0$. Further, if f is continuous and
 - $\int_a^b f(x)dx = 0, \text{ show that } f(x) = 0 \text{ for all } x \in [a,b].$ (b) Give an example of a Riemann integrable function on [a,b] such that $f(x) \geq 0$ for all $x \in [a,b]$ and $\int_a^b f(x)dx = 0$, but $f(x) \neq 0$ for some

$$M_{\ell}(f) = \inf_{\mathbf{x} \in [n_{i_1}, n_{\ell}]} f(\mathbf{x}) \geqslant 0 \quad [:: f(\mathbf{x}) \geqslant 0 \quad \mathbf{x} \in [a, b]]$$

$$L(f, P_0) \geq 0$$
 ": $L(f, P) = \sum_{i=1}^{n} m_i(x_i - n_{i-1})$

$$L(f) : \sup_{f \in n} L(f, P) = \int_{\alpha}^{b} f(n) dn$$

$$T = L(f) \gg L(f, P_{o}) \gg 0 \implies \int_{\alpha}^{b} f(n) dn \gg 0$$

$$F(n) = \int_{\alpha}^{n} f(t) dt \implies F'(n) = f(n) \ge 6 [F(n)]$$

$$F(n) = \int_{\alpha}^{n} f(t) dt \implies F'(n) = f(n) \ge 6 [F(n)]$$

$$F(x) = F(x) = f(x) \ge 0 \quad \text{LF1C}$$

$$F(x) = F(x) = f(x) \ge 0 \quad \text{LF1C}$$

$$F(x) = f(x) \le F(x) \le F(x) \le F(x) = 0$$

$$F(x) = f(x) = 0$$

b)
$$f(x) = 0$$
; $x \neq 1$ $f: [0,2] \rightarrow \mathbb{R}$

7. Evaluate $\lim S_n$ by showing that S_n is an approximate Riemann sum for a suitable function over a suitable interval:

(i)
$$S_n = \frac{1}{n^{5/2}} \sum_{i=1}^n i^{3/2}$$

(iii)
$$S_n = \sum_{i=1}^n \frac{1}{\sqrt{in + n^2}}$$

(iv)
$$S_n = \frac{1}{n} \sum_{i=1}^n \cos \frac{i\pi}{n}$$

(v)
$$S_n = \frac{1}{n} \left\{ \sum_{i=1}^n \left(\frac{i}{n} \right) + \sum_{i=n+1}^{2n} \left(\frac{i}{n} \right)^{3/2} + \sum_{i=2n+1}^{3n} \left(\frac{i}{n} \right)^2 \right\}$$

i)
$$u = Jt$$
, $F(x) = \int_{0}^{\pi} 2u \cos(u^{2}) du$
 $F'(x) = 2\pi \cos(x^{2})$

9. Let p be a real number and let f be a continuous function on \mathbb{R} that satisfies the equation f(x+p) = f(x) for all $x \in \mathbb{R}$. Show that the integral $\int_a^{a+p} f(t)dt$ has the same value for every real number a. (Hint: Consider $F(a) = \int_a^{a+p} f(t)dt$, $a \in \mathbb{R}$.)

$$F'(n) = 1 \cdot f(n+p) - 1 \cdot f(n) = f(n+p) - f(x) = 0$$

10. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous and $\lambda \in \mathbb{R}$, $\lambda \neq 0$. For $x \in \mathbb{R}$, let $g(x) = \frac{1}{\lambda} \int_0^x f(t) \sin \lambda (x - t) dt$.

Show that $g''(x) + \lambda^2 g(x) = f(x)$ for all $x \in \mathbb{R}$ and g(0) = 0 = g'(0).

$$g(n) = \frac{1}{\lambda} \int_{0}^{\pi} f(t) \left[\sin \lambda n \cos \lambda t - \cos \lambda n \sin \lambda t \right]$$

$$= \frac{1}{\lambda} \sin \lambda x \int_{0}^{\pi} f(t) \cos \lambda t dt - \frac{1}{\lambda} \cos \lambda n \int_{0}^{\pi} f(t) \sin \lambda t dt$$

$$= \frac{1}{2} \cos 2\pi - 2 \int dt + \frac{1}{2} \sin 2\pi \sin 2\pi + \frac{1}{2} \sin 2\pi - 2 \int dt - \frac{1}{2} \cos 2\pi f(n) \sin 2\pi$$

$$g'(n) = \cos 2\pi \int f(t) \cos 2t dt + \sin 2\pi \int f(t) \sin (2t)$$

$$g''(n) = f(n) - \lambda^2 \left(\frac{1}{\lambda} \int_{b}^{x} f(t) \left(\frac{\sin \lambda n \cos \lambda t - \cos \lambda n \sin \lambda t}{\sin \lambda (n - t)} \right) \right)$$

$$g'(n) = f(n) - \lambda^2 g(n) \Rightarrow g''(n) + \lambda^2 g(n) = f(n)$$

5. Let f(x) = 1 if $x \in [0,1]$ and f(x) = 2 if $x \in (1,2]$. Show from the first principles that f is Riemann integrable on [0,2] and find $\int_0^2 f(x)dx$.

$$\exists i_{0} = + - \times \text{ML} \in [6, 1] , \ x_{LM} \in [1, 12]$$

$$= \text{For } i_{0} = 1, 2, 3, \dots i_{0}$$

$$= \text{MIL}[j] = \inf_{x \in [M_{1}, x_{1}]} f(x) = \{ \text{ if } M_{1} \mid j \in \text{SUP } f(x) = \{ \text{ if } x \in [M_{1}, x_{1}] \} \}$$

$$= \text{For } i_{0} = \text{if } f(x) = \{ \text{ if } x \in [M_{1}, x_{1}] \} \}$$

$$= \text{For } i_{0} = \text{if } x \in [M_{1}, x_{1}] \}$$

$$= \text{MIL}[j] = 2$$

$$= \text{MIL}[j$$