AN EXTENSION OF MASSEX'S DISTRIBUTION OF THE MAXIMUM DEVIATION BETWEEN TWO SAMPLE CUMULATIVE STEP FUNCTIONS

CHIA ALSI TSAC

TECHNICAL REPORT NO. 7
July 15, 1953

PREPARED UNDER CONTRACT Morar-451(00)
(NR-042-017)

' POR

OFFICE OF NAVAL RESEARCH

DEPARTMENT OF NATHEMATICS WAYNE UNIVERSITY DETROIT, MICHIGAN AN FITENSION OF MASSET'S DISTRIBUTION OF THE MAXIMUM DEVIATION BETWEEN TWO SAMPLE CUMULATIVE STEP FUNCTIONS

By Chia Kuei Teao Wayne University

1. Surrary and Introduction

Let $x_1 < x_2 < \ldots < x_n$ and $y_1 < y_2 < \ldots < y_m$ be the ordered results of two random samples from populations having continuous cumulative distribution functions F(x) and G(x) respectively. Let $S_n(x) = k/n$ where k is the number of observations of X which are less than or equal to x and $S_n(x) = j/m$ where j is the number of observations of Y which are less than or equal to x.

The statistics

$$d_{\mathbf{r}} = \max_{\mathbf{x} \leq \mathbf{x}_{\mathbf{r}}} \left| S_{\mathbf{n}}(\mathbf{x}) - S_{\mathbf{m}}^{\mathbf{t}}(\mathbf{x}) \right|$$

and

$$d_{\mathbf{r}}^{!} = \max_{\substack{\mathbf{x} \leq \max(\mathbf{x}_{\mathbf{r}}, \mathbf{y}_{\mathbf{r}}) \\ \mathbf{r} \leq \min(\mathbf{m}, \mathbf{n})}} \left| \mathbf{S}_{\mathbf{n}}(\mathbf{x}) - \mathbf{S}_{\mathbf{m}}^{!}(\mathbf{x}) \right|$$

can be used to test the hypothesis F(x) = G(x). For example, using d_r we would reject the hypothesis if the observed d_r , <u>i.e.</u>, the maximum absolute deviation between the two step functions below the rth observation of a given sample, is significantly large.

2. Distribution of dr

Denote by m_1 the number of observed values of Y which are less than x_1 , by m_2 the number of values of Y which are between x_1 and x_2 , ..., by m_r the number of values of Y which are between x_{r-1} and x_r and by M the number of values of Y which are greater than x_r . If the hypothesis $F(x) \equiv G(x)$ is true, the probability of the occurrence of a set of m_1 , m_2 , ..., m_r , M can be shown to be

$$\Pr(\mathbf{m}_{1}, \ldots, \mathbf{m}_{r}, \mathbb{H}) = \frac{\binom{\mathbb{H}+\mathbf{n}-\mathbf{r}}{\mathbb{H}}}{\binom{\mathbf{m}+\mathbf{n}}{\mathbb{m}}}$$

which depends only on M, i.e., for any given M the probability of the occurrence of any set of m_1 , m_2 , ..., m_r is always $\binom{M+n-r}{M} / \binom{m+n}{m}$. Thus, for any given M, the probability that $d_r \leq a$ can be found by counting the number of sets of m_1 , m_2 , ..., m_r which give values of $d_r \leq a$. Denote this number of sets by $K_{r,M}(a)$, then

$$\Pr(d_{r} \leq a) = \sum_{M=0}^{m} K_{r,M}(a) \frac{\binom{M+n-r}{M}}{\binom{m+1}{m}}.$$

The method of counting $K_{r,M}(a)$ is essentially the same as in [5]. As an illustration, suppose m=n, then $S_m(x)$ and $S_m^*(x)$ can only differ by multiples of $\frac{1}{m}$. For any integer c and any given M, we count the number of sets of m_1, m_2, \ldots, m_r such that $d_r \leq \frac{c}{m}$.

Denote by $V_{i,j}(c)$, $i=1,2,\ldots,r$, $j=1,2,\ldots,2c$, the number of sets of possible m_1, m_2, \ldots, m_i such that $d_i \leq \frac{c}{m}$. Then it is evident

that these $V_{i,j}(c)$ satisfy the following difference equations

$$V_{ik}(c) = \sum_{j=1}^{k+1} V_{i-1,j}(c)$$
 $i = 1,2,...r$
 $k = 1,2,...2c$

where

$$V_{Ok}(c) = 1$$
 $k \ge c, k = 1,2,...,2c$ $V_{Oj}(c) = 0$ otherwise.

Hence,

$$K_{r,M}\left(\frac{c}{m}\right) = V_{r,m-M-r+c+1}(c).$$

3. Distribution of dr

If $r \leq n d_r$, then a test based on the number of observations of one sample which are less than or equal to the rth observation of another sample becomes a one-sided test. To avoid this, we may use the statistic d_r^* . In this case

$$\Pr(d_{r}^{!} \leq a) = \Pr(d_{r} \leq a, x_{r} > y_{r}) + \Pr(d_{r} \leq a, x_{r} < y_{r})$$

$$= \frac{m-r}{M=0} K_{r,M}(a) \frac{\binom{M+n-r}{M}}{\binom{m+n}{m}}$$

$$\frac{n-r}{M=0} K_{r,M}(a) \frac{\binom{M+m-r}{M}}{\binom{m+n}{m}}$$

where n_1, n_2, \ldots, n_r, N have the same meaning as m_1, m_2, \ldots, m_r, M .

If m - n, then

$$\Pr(d_{r}^{i} \leq a) = 2 \cdot \sum_{H=0}^{m-r} K_{r,H}(a) \cdot \frac{\begin{pmatrix} H \in r \\ H \end{pmatrix}}{\begin{pmatrix} 2a \\ n \end{pmatrix}}$$

We note that:

- (a) If r = m = n, then both distributions of d_m and d_m^* reduce to Hassey's distribution [5].
- (b) If r = 1, then d_r reduces to a special case of Gumbel and Schelling's exceedances problems [2].

Table I and II give the probabilities of d_{r} and d_{r}^{t} respectively for m = n.

4. Applications

The statistics d_r and d_r^* are useful for situations where the sample sizes are known, but the information beyond a certain ordered observation, say x_r , is unavailable. In life testing, one often wishes, by drawing two samples, to detect whether the mean life in one population is larger than that of another. If the observations become available in order of magnitude, then we can stop the experiment whenever at least r observations of each sample have occurred and reach a decision by the use of d_r^* . Evidently, by doing so, it would be possible, in many cases, to reduce both the average time needed and/or the average number of items destroyed.

As an illustration, we give a numerical example as follows:

Suppose fuses are produced by two different methods. One is interested in detecting whether the mean current needed to blow the fuses produced by the

first method is different from that produced by the second. This can be considered as testing whether two populations are the same. To this end, one then may put, say, 40 fuses produced by the first method and another 40 by the second on a test. Suppose one arranges the test in such a way that every fuse in the 2 samples is subjected to the same current so that the weakest blows first, then the second, etc. Let us choose in advance that r = 6 and a = .05. Let $x_1 < x_2 < ...$ denote the ordered observed current needed to blow the fuses in the first sample and $y_1 < y_2 < ...$ those in the second. Suppose that the actual combined outcomes are as follows: $x_1x_2x_3x_4y_1x_5x_6x_7y_2x_8x_9y_3x_10x_11x_12...$ then the experiment may be terminated when the observation x_{12} has occurred and reject the null hypothesis using the statistic d_1^4 , since for m = n = 40, $Pr(d_1^4 \ge 9) = .0451$ from Table II. In this particular experiment, only 20% of the fuses are destroyed in reaching a decision.

It, perhaps, should be remarked that if we define

$$D_{r} = \text{Max} \left| S_{n}(x) - S_{m}^{i}(x) \right|$$

$$x \ge x_{n-r+1}$$

$$D_{r}^{i} = \text{Max} \left| S_{n}(x) - S_{m}^{i}(x) \right|$$

$$x \ge (x_{n-r+1}, y_{m-r+1})$$

$$r \le \text{Min} (m,n)$$

then the distribution of D_r , and D_r^s are identical with those of d_r and d_r^s . Thus, in a test, if the information below a certain ordered observation is unavailable, or if the observations become available in this order:

 $x_n, x_{n-1}, \dots x_1$ and $y_n, y_{n-1}, \dots y_1$, then D_r or D_r^* would be the appropriate statistic to use.

In conclusion, I would like to thank Mrs. Dorothy Wolfe who carried out the computations of Tables I and II.

References

- 1. W. Feller, "On the Kolmogorov-Smirnov Limit Theorems for Empirical Distributions", Annals of Math. Stat., Vol. 19, (1948), pp. 177-189.
- 2. E. J. Gumbel and H. von Schelling, "The Distribution of the number of exceedances", Annals of Math. Stat., Vol. 21 (1950), pp. 247-262.
- 3. F. J. Massey, Jr., "A note on the estimation of a distribution function by confidence limits", Annals of Math. Stat., Vol. 21, (1950), pp. 115-119.
- 4. F. J. Massey, Jr., "A note on the power of a non-parametric test", Annals of Math. Stat., Vol. 21, (1950), pp. 440-443.
- 5. F. J. Massey, Jr., "The distribution of the maximum deviation between two sample cumulative step functions", Annals of Math. Stat., Vol. 22, (1951), pp. 125-128.
- 6. N. Smirnov, "Tables for estimating the goodness of fit of empirical distributions", Annals of Math. Stat., Vol. 19, (1948), pp. 279-281.
- 7. S. S. Wilks, "Statistical prediction with special reference to the problem of tolerance limits", <u>Annals of Math. Stat.</u>, Vol. 13, (1942), pp. 400-409.

Table I Probability of $d_{\mathbf{r}} \leq c/n$

				7				0			Si			*	w	Ħ	
6	V1	4	w	N	4	4	w	N	4	w	N	w	•	N	N	4 0	
.04662	.07459	12821	. 228444	\$0917	.08658	.13853	. 23810	12121	.15873	. 25397	.43651	. 28571		.45774	.50000	ب	
£48443	diser.	. 56643	.67920	.83042	.55519	.60390	.70130	.84091	.67857	.73810	.85714	. 81.429	}	.814.29	.95000	N	
.80186	.82634	.85897	.90793	.93240	.87229	.89827	.92857	.94372	.93651	.96032	.96032	17.586		.98571	1,00000	w	
.95280	. 96300	.97348	.97348	.97931	.97944	.98701	.98701	.98701	.99603	.99603	.99603	1,00000		1.00000			
.99359	.99592	.99592	.99592	.99592	.99892	.99892	.99892	.99892	1.00000	1.00000	1.00000					V 5	
.99971	.99971	.99971	.99971	.99971	1,00000	1,00000	1.00000	1.00000						^		6	•
1,00000	1.00000	1,00000	1.00000	1.00000												7	
																œ	
																9	
*																10	
																Ħ	

Table I (continued)

B	4 °	۲	N	w	+	5	6	7	œ	9	
00	13	41026	. 823 08	.92424	.97319	.99277	.99876	.99992	1.00000		
	w	. 22191	. 66434	.89378	.96232	.99068	.99876	.99992	1.00000		
	4	.12183	. 54336	.83291	.95649	.99068	.99876	.99992	1.00000		
	S	.06838	.45315	.78291	.94367	.99068	.99876	.99992	1.00000		
	6	.03978	. 39021	.75245	.92968	. 98718	. 99876	.99992	1.00000		
	7	.02486	.35874	.73007	.91880	. 98345	.99806	.99992	1.00000		
9	N	.4 0588	.81765	.91810	° 96833	.98992	.99757	.99963	.99998	1.0000	
	w	.21719	.65362	.88355	.95352	.9854.8	.99685	.99963	.99998	1.00000	
	4	.11.748	.52756	.81473	.94.272	.98322	.99685	. 99963	. 99998	1.00000	
	5	,06450	.43149	.75376	.92236	.98322	.99685	.99963	.99998	1.00000	
	6	.03620	.35985	. 70769	.90539	.97869	.99685	.99963	.99998	1.00000	
	7	.02106	. 30987	,68005	.89058	.97314	.99572	.99963	.99998	1.00000	
	(33	.01316	. 2 84. 88	.65981	. 87982	.96870	.99:43	.99912	.99998	1,00000	

ы

11

Table I (continued)

								15								OI	F
10	9	∞	~7	œ.	الا ر	£-	4.2	N	¥,	\$	~	Ç.	٠,٦	4	(4)	N	n 0
.00236	.00/.36	\$1800	.01534	.02909	.05544	,10611	. 20383	,39272	.00693	,01108	,01952	.03395	.06183	.11431	. 21362	.40248	j.,
.12055	.14935	. 18683	° 23544	. 29843	. 38006	.48591	.62328	.80172	. 22491	. 24464	. 28409	.34065	.41650	. 51602	.64551	.81347	N
.40521	.44362	.48977	. 514.25	.60791	.68171	.76593	.85472	.89962	.59%23	,61101	.63587	.67739	.73309	.80128	.87580	, 91331	w
.67192	4 3669	.7320	.77033	.813 <i>2</i> 7	. 8 5 8 9 7	.90199	.92635	.95259	.83759	.8480).	.86262	. 88049	.90525	.93192	. 94653	. 96440	t
.84825	.8624.2	. 88009	, 90032	.921 <i>i.</i> £	\$4046	.95254	.96571	. 97920	.94987	.951.64	.96121	°96836	.97378	.97610	. 98086	. 98744	۷ı
.94159	.94774	. 95482	.96232	. 96902	. 9737 2	. 97933	.98547	.991.59	. 9884,9	.990.20	. 99228	. 54383	. 99383	.99383	.99466	.99637	٥
.981.35	. 98378	.98578	.98728	. 98828	.98990	.99203	.99147	. 99690	.99th8	.99861	.99897	.99897	.99897	.99897	.99897	. 99921	7
.99515	.99582	.996:17	.99617	.99632	.99671	. 99735	.99815	. 99898	.99983	.95989	.99989	.99989	.99989	.99989	. 99989	. 99989	α,
. 99898	.99908	.99908	. 99908	٤٥٩٩٧ ع	.99913	. 99926	.99947	.99 %/10	.99999	.99999	.99999	.99999	.99999	. 99999	.99999	.99999	9
.99982	. 59982	. 99982	.99982	.99982	.99982	**************************************	.99987	.99993	1.00000	1.00000	1.00000	1,00000	1,00000	1.00000	1.00000	1,00000	10
.99997	.99997	.99997	.99997	.99997	.99997	.99997	.99998	.99999									11
1.00000	1.00000	1.00000	1.00000	1.00000	.00000	1,00000	1.00000	1.00000									12

								30									S	ř.
10	9	33,	7	6	V۲	* -	w	N	10	9	0	7	6	5	ţ.	w	85	۲. _د
00176	.00344	,00673	.01318	.02583	°0 5 065	°09940	.19520	. 38359	,00200	,003e2	,00734	.01414	02733	。0 52 89	.10260	.19939	, 38808	۲
.09278	.12092	.15775	. 20600	. 26922	.3521	. 46086	.60360	.79103	.10393	.13287	.1704.3	. 21923	. 28268	. 36526	, 47286	.61316	.79626	N
, 32189	. 34,041	.42312	.48576	. 55808	.64,744	.73634	°83610	. 886.87	. 35605	.40080	.452 56	. 51231	. 581 72	° 66048	.75053	.84525	.89313	w
°55418	. 59969	.64,937	.70332	.76114	.82088	.87616	. 30768	.94096	. 60405	. 64319	. 6865//	.73418	.78559	. 83900	.88856	.91681	.94674	4
.73062	.76628	.80340	orthe.	.87750	. 90888	.92922	.94998	.97024	. 78336	.81020	. 83906	.86907	. 89 854	.92417	.9407 0	.95784	.97476	Vs.
. 84 ,800	.87193	.89530	.91690	. 93498	.94809	.96122	.97393	.98549	. 89401	,90909	.92458	.93937	.951-6	.96103	.97047	. 97989	. 98868	6
.91867	. 93244	98446°	.95526	. 96350	.97170	.97963	.98693	.99316	.95397	940046	.96661	.97236	.97672	.9814,3	.98627	.99100	.99519	7
. 94868	. 96472	.97055	. 97550	. 9804,5	.98525	.98974	.99370	. 99688	.98198	.98417	.98607	.98773	. 98969	.99186	.95410	. 99624	. 99808	œ
.97355	.98164	°981112	.98724	.99001	.99265	.99504	.99708	.99863	.99011	41,166	.991 ₁ 53	。9 95 12	. 99580	.99674	.99767	. 99854	.99928	9
.98930	J99072	.99220	.99369	.99515	.99651	.99771	. 99870	.99942	.99802	.99804	.99813	.99829	.99853	.99883	.99916	81666°	.99975	10
.99490	.99559	.99631	. 997 05	.99776	. 9984.2	. 99899	.99944	. 9997;6	.99944	.99914	.99945	.99948	.99954	.99963	.99973	。 9998 3	。99 99 2	Ħ
. 99773	.99803	, 9 983 6	.99870	.99902	.99932	°99957	.99977	. 99991	. 99986	. 99986	.99986	. 99987	.99988	.99990	.99992	.99995	,99998	F :

Table I (continued)

Ö	\$	3 0	77	Ö.	٠,	***	٠,٠٠	^:	~ ₀
10 .00167	9 ,00 329	8,00648	7 .01277	₅ ₀0251 7	5 .04962	\$.097 90	3,9319	38239	jud
07880°	.11604	.15239	.20022	. 25940	.3.605	.45521	, 59901	° 78851	N
.30821	.35572	640T4°	.47403	° 547 59	.72363	.72965	.83218	.8838 :2	W
. 53369	.58144	.63311	. 68948	. 7 4992	. 81244	.87031	, 90327	.93811	₽-
.70817	.74735	.78741	.82829	.86770	.90164	°92 36 5	.94607	.96793	Us.
.82735	.85523	.88163	. 90623	°92678	.94169	.95655	. 97086	.98361	6
° 9016 1	.91899	. 93389	,94661	.9566 9	.96659	.97606	.984,72	. 99203	7
.94461	.95439	.96198	. 96869	.97524	87TB6°	. 98722	。 99 221	.99617	0 3
.96875	.97402	.97803	.98228	, 9863 3	.99007	.99339	,99614	.99821	9
.98234	.5854,3	.98776	.99031	.99270	***************************************	. 99668	° 99814	,99918	10
.99025	.99221	.99342	.99489	.99623	£4799°	. 99838	.99913	.99963	Ħ
° 58785	°99606	. 39660	.99740	,99812	.99874	,99924	,39560	Tetus:	13

Table II Probability of $d_{\mathbf{r}}^{'} \leq e/m$

4 2 34286

.777.43

.97143 1,00000

2 , 1,0000

.90000 1.00000

3 .::2857	.77243	°977.43	1.00000			
2 : 31746	°71429	.92063	.99206	1.00000		
3 .19048	.64286	.92063	.99206	1.00000		
4 .12698	. 64286	, 92063	. 99206	1,00000		
2 . 30303	.68182	.88745	.97403	,99784	1.00000	
3 .17316	. 581.42	.85774	.97403	.99784	1,00000	
4 .10390	。52597	.85714	.97403	.99784	1.00000	
5 .069 2 6	. 52597	.85714	. 97403	.99784	1.00000	
2 .29371	.66084	.8648D	. 9 586 2	.99184	.99942	1.00000
3 .16317	. 55070	.81585	.94697	.99184 ₊	. 9991.2	1,00000
4 .09324	.47203	.78788	.91.697	° 99181*	.99942	1.00000
5 .05594	,424,83	.78788	.94697	.99184	. 99942	1,00000
6 。(3 73 0	. (2483	,78788	.94697	.99184	، 99942	1.00000

12

œ

10

F

Table II (continued)

, o	H	N	\ ,,,	۶	Vs.	•	~1	œ	
w	.15664	. 52867	.78737	.92463	.98135	.99751		.99984	.99984 1.00000
1-	.08702	64041°	. 74,281	.91298	.98135	.99751		.99984	.99984 1.00000
Vi	.04973	.37762	.71733	.91298	.98135	.99751		.99984	.99984 1.00000
0	.02828	. 33986	°71733	.91298	·98135	.99751		. 99984	.99984 1.00000
7	.01989	. 33986	.71733	.91298	.98135	.99751		.99984	.99984 1,00000
N	. 28235	.63529	.83620	. 93665	. 97984	.99515		.99926	.99926 .99996
u	,15204	. 51312	.76709	.90703	. 97096	.99371		.99926	.99926 .99996
+	.08293	.41983	18117°	.88544	.9664.3	.99371		.99926	.99926 .99996
Vi	.04,607	.34986	_. 67133	.87413	.96643	.99371		.99926	.99926 .99996
6	.02633	. 29988	. 64829	.87/13	.96643	. 99371		.99926	.99926 .99996
7	.016er	. 26989	.64829	.87413	.96643	,99371		. 99926	.99926 .99996
00	°00023	. 26989	. 64829	, 87413	.96643	.99371		.99926	.99926 .99996

12

ㅂ

Table II (continued)

9

10

#

12

N

33.00	4)	တ	7	6	\n	F	w	15 2	49	σ¢	7	· •	U۱	4	Ç.s	10 2	7	
	.00305	.00566	.01062	.02006	.03811	.c7276	.13946	. 26820	.00554	.00831	.01386	.02425	.04365	.08002	.14861	. 27864		
	.11725	.14516	.18145	. 22850	. 28943	.36837	,47069	.60345	. 21307	. 21307	.23674	.27610	.37144	. 40510	. 50155	.62694		
	° 380° 7	و 5.5 ديه	.45702	° 2065.7	. 56419	,63148	. 7094 5	.7 992 3	, 58248	. 58248	. 58248	,60317	.6395 5	.68926	.75161	.82663		
	.63 7 9#	. 66003	. 6875. 5	.72137	.76009	.80397	.85270	,9051 7	.83218	.83218	. 83218	.83218	.84,300	.86384	.89307	•92 87 9		
	.81978	.82875	.84.224	.85979	.88093	.90509	. 93142	.95840	.94755	. 94755	.94755	.94755	.94755	.95220	.96172	.974.87		
2	. 92454	.92646	.93096	.93805	.94744	.95865	.97094	.98318	. 98766	. 98766	. 98766	.98766	. 98766	. 98766	. 98933	.99274		
	.97375	.97375	. 97455	.97655	.97979	.984,06	,98894	.99380	.99794	.99794	.99794	.99794	.99794	.99794	.99791	.9984.2		
3	. 99234	.9927L	J8523L	.99264	.9934.1	£ 9766°	.99629	.99795	.99978	.99978	.99978	.99978	.99978	.99978	.99978	.99978		
3	.99816	.99816	.99816	.99816	. 99826	.99853	.99894	.99941	.99999	. 99999	.99999	.99999	.99999	. 99999	. 999999	.99999		
2000	.99965	.99965	.99965	. 99965	. 99965	. 99968	.99975	.99985	1.00000	1,0000	1.00000	1,00000	1.00000	1.00000	1,00000	1.00000		
20005	.99995	. 99995	.99995	. 99995	. 99995	.99995	,999 95	. 99997										
	.99999	.99999	.99999	.99999	.99999	.99999	°99999	1,00000										

Table II (continued)

, ₄	٥	20	~	Ć	v	4	w	3 0 2	10	\$	အ	-3	6	5	t.	ڊهرا	8	>>
			, 8	01,	• 03	, (2)	. 13					, 8	,01	, 03	, ,	F.	,	۰° ۲
200	2000	,004.55	,00891	°01745	.034,20	J0 67 09	.13170	, 25870	,00137	°00262	,00502	,00966	,01863	03601	.06977	13543	26334	•
00770	08958	,11673	.15226	.19878	. 25974	. 33966	emm.	. 58207	,07914	,10073	,12871	.16501	. 21216	. 27345	, 35 320	.45708	. 59252	N
	201.38	. 33711	. 38644	.44338	. 50914	. 58509	. 67 <i>2</i> 79	. 77374	. 29454	.32968	.37011	.41753	.47193	. 53471	.607 09	. 69050	.78631	w
· 76747	K) K) . 3	. 54641	. 59128	.64035	.69395	.75233	.81536	.88192	. 53039	.56125	. 59598	.03473	.67771	.7293	.77715	.83363	.89348	4
00/44/2	671.70	. 70685	.74.172	. 77 873	.81775	.85844	.89995	.94047	.71837	·73899	. 76243	.78857	.81727	.84835	.88141	.91568	.94956	Vi
646410	70,000	.81962	.84434	. 86 996	.89618	. 92244	.94787	.97098	. 84708	1,4858	.877.80	. 88706	.90393	.92205	.94093	.95978	.97735	6
0000	27854	.89430	.91053	.92701	.94341	. 95925	.97386	.98632	. 92546	. 93054	. 93701	.914.72	.95344	.96287	.97254	.98201	.99038	7
0070	03138	.94110	.95101	.96089	.97050	.97947	.98739	.99376	. 96781	.96958	.97215	.97546	.97938	,98372	. 98820	.99248	.99616	09 .
· 20/00	0K338	.96885	.97148	.98003	.98530	.99009	.99415	.99725	. 98065	. 98828	.98907	.99024	.99161	.99349	.99533	. 99709	.99856	9
***TOK	087	017186°	.98739	.99030	.99301	.9954.2	.99739	.998873	.99603	.99609	.99626	.99659	.99706	.99766	•99832	.99896	.99950	10
. YY LLα	90718	.99263	.99410	.99552	.99684	.99798	. 99889	.99952	.99888	.99888	.99890	.97897	.99909	.99925	.99946	.99966	.99984	Ħ
7007	82438	.99673	.99740	.99805	. 99864	.99915	. 99954	.99981	.9973	.99973	.99973	.99974	.99976	.99979	.99985	.99990	.~9995	12

Table II (continued)

2.	S)es	- 3	6	·.~	, -	1,0	6 80	2. 14
00113	。00222	.00436	,00860	°01694	.03339	.06586	.12994	, 25.64.5	فاع
°05 , 495	°08521	.11184	,14626	.19294	° 25358	.33541	.43853	. 57702	N
, 24,324	, 28061	.32341	.37319	43082	.49756	. 571.87	. 65436	°76765	W
.щ375	. 48327	. 52560	. 57241	.62363	.67961	.7061	.80654	.87621	4
,61307	. 64,740	。682 67	.72071	. 76095	. 80328	.84730	.89214	.93586	Vs.
.74161	.76874	.79564	. 82419	.85356	. 68338	.91310	.94172	.96763	٥
.83380	.85391	.87308	. 89321	.91337	.93318	.95212	.96943	.0486	~1
.89ó88	.91114	.92396	. 93739	.95049	°96297	.974A4	.98442	。9923 5	œ
.93852	. 94,804	.95606	.96455	。97265	•98014	.98677	.99228	. 99641	9
96468	97086	.97551	,98063	.98540	.98969	.99336	° 49628	.99836	10
。98051	, 98443	° 98685	. 98978	.99247	. 99482	.95577	. 99826	.99927	Ħ
,98964	,99216	. 9932 0	. 99480	.99625	.99748	87866°	. 99921	.99968	12