සියලු ම හිමිකම් ඇවිරිණි / (மුழுப் பதிப்புரிமையுடையது / $All\ Rights\ Reserved$]

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கஸ்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரின்ச, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

රසායන විදනවIIஇரசாயனவியல்IIChemistryII

2018.08.17 / 0830 - 1140

පැය තුනයි

மூன்று மணித்தியாலம் Three hours අමතර කියවීම කාලය - මිනිත්තු 10 යි மேலதிக வாசிப்பு நேரம் - 10 நிமிடங்கள் Additional Reading Time - 10 minutes

විභාග අංකය :

අමතර කියවීම කාලය පුශ්න පතුය කියවා පුශ්න තෝරා ගැනීමටත් පිළිතුරු ලිවීමේදී පුමුබත්වය දෙන පුශ්න සංවිධානය කර ගැනීමටත් යොදාගන්න.

- 🗱 ආවර්තිතා වගුවක් 16 වැනි පිටුවෙහි සපයා ඇත.
- 🔆 ගණක යන්තු භාවිතයට ඉඩ දෙනු නොලැබේ.
- * සාර්වතු වායු නියතය, $R = 8.314 \,\mathrm{J} \,\mathrm{K}^{-1} \,\mathrm{mol}^{-1}$
- * ඇවගාඩ්රෝ නියතය, $N_A = 6.022 \times 10^{23} \; \mathrm{mol}^{-1}$
- * මෙම පුශ්න පතුගට පිළිතුරු සැපයීමේ දී ඇල්කයිල් කාණ්ඩ සංක්ෂිප්ත ආකාරයකින් නිරුපණය කළ හැකි ය.

- $oxed{\square}$ A කොටස වපුහගත රචනා (පිටු 2 8)
- 🗱 🛱 🛱 😅 මු පුශ්නවලට මෙම පුශ්න පතුයේ ම පිළිතුරු සපයන්න.
- * ඔබේ පිළිතුරු එක් එක් පුශ්නයට ඉඩ සලසා ඇති තැන්වල ලිවිය යුතු ය. මේ ඉඩ පුමාණය පිළිතුරු ලිවීමට පුමාණවත් බව ද දීර්ඝ පිළිතුරු බලාපොරොත්තු නොවන බව ද සලකන්න.
 - □ B කොටස සහ C කොටස රවනා (පිටු 9 15)
- * එක් එක් කොටසින් පුශ්න දෙක බැගින් තෝරා ගනිමින් පුශ්න හතරකට පිළිතුරු සපයන්න. මේ සඳහා සපයනු ලබන කඩදාසි භාවිත කරන්න.
- * සම්පූර්ණ පුශ්න පතුයට නියමිත කාලය අවසන් වූ පසු A, B සහ C කොටස් තුනට පිළිතුරු, A කොටස මුලින් තිබෙන පරිදි එක් පිළිතුරු පතුයක් වන සේ අමුණා විභාග ශාලාධිපතිට භාර දෙන්න.
- st පුශ්න පතුයෙහි f B සහ f C කොටස් **පමණක්** විභාග ශාලාවෙන් පිටතට ගෙන යාමට ඔබට අවසර ඇත.

පරික්ෂකවරුන්ගේ පුගෝජනය සඳහා පමණි

කොටස	පුශ්න අංකය	ලැබූ ලකුණු
	1	
	2	
A	3	
	4	
	5	
В	6	
	7	
	8	
C	9	
	10	
එකතුව		
පුතිශතය		

අවසාන ලකුණ

ඉලක්කමෙන්	
අකුරින්	

සංකේත අංක

උත්තර පතු පරීක්ෂක 1	
උත්තර පතු පරීක්ෂක 2	
පරීක්ෂා කළේ :	
අධීක්ෂණය කළේ :	

A කොටස - වනුභගත රචන	තාටස - වනහගත	රචනා
---------------------	--------------	------

පුශ්න හතරට ම මෙම පතුයේ ම පිළිතුරු සපයන්න. (එක් එක් පුශ්නය සඳහා නියමිත ලකුණු පුමාණය 10 කි.)

මෙම තීරයේ කිසිවක් නො පියන්න

- $oldsymbol{1}$. (a) පහත සඳහන් පුකාශ **සත** $oldsymbol{z}$ ද නැතහොත් **අසතoldsymbol{z}** ද යන බව සඳහන් කරන්න. (හේතු අවශා **නැත**.)
 - (i) විශාලත්වය වැඩිවීමත් සමග හේලයිඩ අයනවල ධුැවණශීලීතාවය වැඩි වේ.
 - (ii) NO_2 හි O-N-O බන්ධන කෝණය NO_2^- හි එම කෝණයට වඩා විශාල වේ.
 - (iii) ${
 m CCl}_4$ අණු අතර ලන්ඩන් අපකිරණ බල ${
 m SO}_3$ අණු අතර ලන්ඩන් අපකිරණ බලවලට වඩා කුඩා වේ.
 - (iv) HSO-් අයනයේ හැඩය නිුයානති ද්විපිරම්ඩාකාර වේ.
 - (v) පරමාණුවක සියලු ම 3d පරමාණුක කාක්ෂික $(n,l,m_l)\,3,2,1$ යන ක්වොන්ටම අංකවලින් නිරූපණය වේ.
 - (vi) වායුමය පොස්පරස් පරමාණුවකට ඉලෙක්ටුෝනයක් එක් කිරීම තාපදායක කියාවලියක් වන අතර වායුමය නයිටුජන් පරමාණුවක් සඳහා එය තාප අවශෝෂක වේ.

(ලකුණු 2.4 යි)

(b) (i) SF_3N අණුව සඳහා **වඩාත් ම** පිළිගත හැකි ලුවිස් වපුහය අඳින්න.

(ii) C_3O_2 (කාබන් සබ්ඔක්සයිඩ්) අණුව සඳහා වඩාත් ම ස්ථායි ලුවිස් වනුහය පහත දක්වා ඇත. මෙම අණුව සඳහා තවත් ලුවිස් වනුහ (සම්පුයුක්ත වනුහ) **දෙකක්** අඳින්න.

(සැ. යු.: අෂ්ටක නියමයට අනුකූල නොවන ලුවිස් වාුහවලට ලකුණු පුදානය කරනු නොලැබේ.) Ö=C=C=C;

- (iii) පහත සඳහන් ලුවිස් වුෘුහය පදනම් කරගෙන පහත වගුවේ දක්වා ඇති C,N හා P පරමාණුවල
 - I. පරමාණුව වටා VSEPR යුගල්
- II. පරමාණුව වටා ඉලෙක්ටුෝන යුගල් ජාාමිතිය
- III. පරමාණුව වටා හැඩය
- IV. පරමාණුවේ මුහුම්කරණය

සඳහන් කරන්න.

පහත දැක්වෙන පරිදි පරමාණු අංකනය කර ඇත.

$$F - C^{1} - N^{2} - C^{3} - P^{4} - CI$$

		\mathbf{C}^1	N^2	C^3	\mathbf{P}^4
I.	VSEPR යුගල්	-			
II.	ඉලෙක්ටුෝන යුගල් ජාාමිතිය				
III.	හැඩය				
IV.	<u>මුහු</u> ම්කරණය				

L/2018/02-S-II(A)	- 3 -	විභාග අංකය :

ж	<i>JI 2</i> :UJ	OIVA	-0-11(<i>1</i> 1)											
			ඉහත (iii) ෙ පරමාණුක/ඡු	කාට ලෙ	සහි දෙන	ලද ලුවිස්	වුපුහලය	ෘහි පහත	සඳහන් : දෙ. (iii) ල	σ බන්ධන කාටලෙස්	ා සෑදීමර පොතාරය	ට සහභාගි යට වේ)	3 වන	මෙම තීරයේ කිපිවක් නො ලියන්
											4000000	20 00.7		
			I. F—C ¹											
			II. C¹—N											
			III. N ² —C											
			IV. C ³ —F	1 4	C ³]	o ⁴						
			V. P ⁴ —C		-						_	_		
		(v)	ඉහත (iii) ග පරමාණුක ස	කොට ෙ තාක්ෂික	සහි දෙන ා හඳුනාගන	ලද ලුවිස් ා්න. (පරමා	වනුහගෙ ඉරුණුවල අ	ෘහි පහත අංකනය	සඳහන් (iii) කොර	π බන්ධන ටසෙහි අ	ා සෑදීමර කාරයට	ට සහභාග වේ.)	ර වන	
			I. N ² —(<u>_</u> 3	N ²		(C ³						
			II. C ³ —F	× 4	C ³		1	o ⁴				(ලකුණු 5	.2 ය)	
	(c)	වරහ	න් තුළ දක්ව:	ා ඇති (ගුණය වැඩි	වන පිළිවෙ)ළට පහ	ත සඳහන	ත් දෑ සක	හේන. (ම	හ්තු අවශ	ශාප නොවේ	3 .)	
		(i)	B, Na, P, B	e, N (ප	ළමුවන අය	ෘනීකරණ ශ	ශක්තිය)							
				< .		<		<	• • • • • • • • • • • • • • • • • • • •	<				
		(ii)	NH ₃ , NOC	1, NO	CI, NH ₄ ,	, F ₃ C-NC	ි (නයිටු:	ජන්වල වි	ිදසුත් සාමෙ	ශිතාව)			:	
				< .		<		<	• • • • • • • • • • • • • • • • • • • •	<		·····,		
		(iii)	පරමාණුවක	ඉලෙක	ෝටුෝනවල	ක්වොන්ට	ම් අංක	$(n, l, m_l,$	$m_{\rm s}$					/
			$(3,1,0,-\frac{1}{2})$),(3,0	$,0,+\frac{1}{2}$,	$2, 0, 0, +\frac{1}{2}$	$\left(2,1,\frac{1}{2}\right)$	$+1, +\frac{1}{2}$,(3,2,-1	$+\frac{1}{2}$	ලෙක්ටෙු	ා්නයේ ශෘ	ක්තිය)	100
				< .		<		<		<			4.0)	$ \bigvee$
							_				D	(ලකුණු 2		
2.	(a)	ඔස පහ	යනු ආවර්ති ත්සිකරණ අව ාසුවෙන් දුවණ ග්මයක් ලෙස	සේථා ප කෙයවී ස	ාරාසයක් ෙ හාස්මික දුා	පෙන්නුම් a වණයක් ල	කරයි. X _ව බා දෙයි	ිහි වඩා: 3. Y ඔක්ස	න් ම සුලෑ සිකාරකයඃ	හ හයිඩුයි ක්, ඔක්සි	විඩය Y ශ භාරකයක	වේ. \mathbf{Y} ජ $($	ුයෙහි	
		(i)	X සහ Y ව	ගඳුනාග	න්න.									
			X =		•••••	Y	· =	•••••	•••••					
		(ii)	X හි ද්විපර	වාණුක	වායුව සාම	වා <mark>න</mark> ා ලෙය න්	් නිෂ්කිුං	ස සිාහ ස	ලකනු ලැ	බේ. කෙ	වියෙන් ප	පහදන්න.		
		٠											• • • •	
													••••	
		(iii)	X හි ඔක්ස දක්වන්න.	යිඩ තු න	ාක රසායජ	බික සූතු රි	ිුිිිිිිිිිිිිිිි	එක් එස	ත් සංගෙන්ර	ාඉය් X සි	හි ඔක්සි:	කරණ අව)ස්ථාව	
											• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • •	
										• • • • • • • • • • • • • • • • • • • •				
		(iv)	පහත සඳහ සමීකරණය			'ථාවේ දී \	Y හි කිුය	ාකා රි ත්ව	ය පෙන්නු	ුම් කිරීම	සඳහා ස	තුලිත රසා	ායනික	
					ායක් ලෙස								••••	
			II. Y ඔක්	සිහාරක	ායක් ලෙස									

[හතරවැනි පිටුව බලන්න.

· (v)	${f X}$ අඩංගු කාණ්ඩයේ මූලදවාවල ${f Y}$ ට අනුරූප හයිඩුයිඩ සලකන්න. මෙම හයිඩුයිඩවල (${f Y}$ ද ඇතුළුව) තාපාංක විචලනය වන ආකාරයේ දළ සටහනක් පහත පුස්තාරයේ දක්වන්න. ඔබගේ දළ සටහනේ හයිඩුයිඩ, ඒවායේ රසායනික සූතු භාවිතයෙන් පෙන්නුම් කරන්න. (යැ. යු.: තාපාංකවල අගයයන් අවශා නැත.)	මේ නීර කිසි නො
	තාපාංකය ^	
(vi) a	> හයිඩුයිඩය ඉහත (v) කොටසෙහි තාපාංකවල විචලනයට හේතු දක්වන්න.	
(11)	ඉගින් (v) කොටසෙහි තාපාංකවල වචලනයට හෙතු දක්වන්න. 	
(vii)	$I.\ \mathbf{Y}$ හි ජලීය දුාවණයකින් වැඩිපුර පුමාණයක් $\mathrm{Al}_2(\mathrm{SO}_4)_3$ දාවණයකට එක් කළ විට ඔබ කුමක් නිරීක්ෂණය කරන්නේ දැයි ලියන්න.	
]	II. ඉහත I කොටසෙහි ඔබගේ නිරීක්ෂණයට හේතු කාරක වන විශේෂයෙහි රසායනික සූතුය ලියන්න.	
(viii)	Y හඳුනාගැනීමට එක් රසායනික පරීක්ෂාවක් දෙන්න.	
	පරීක්ෂාව:	
	නිරීක්ෂණය:	
(ix) 7	Z යනු X හි ඔක්සො-අම්ලයක් හා පුබල ඔක්සිකාරකයකි.	
	I. Z හඳුනාගන්න.	
I	${f I}$. සල්ෆර් සමග උණු සාන්දු ${f Z}$ පුතිකිුයා කළ විට ලැබෙන එල සඳහන් කරන්න.	
	(ලකුණු 6.0 යි)	
උමණා ඝන අ	${f B}$ යනු ආවර්තිතා වගුවේ එකම කාණ්ඩයට අයත් p - ගොනුවේ මූලදුවා දෙකක සංයෝග වේ. කාමර ත්වයේ දී හා වායුගෝලීය පීඩනයේ දී අවර්ණ, ගඳක් නොමැති දුවයක් ලෙස ${f A}$ පවතී. එය වායු හා වස්ථාවන්හි ද දක්නට ලැබේ. ${f A}$ හි සන අවස්ථාව එහි දුව අවස්ථාවට වඩා සනත්වයෙන් අඩු වේ. ${f a}$ හා ධැවීය සංයෝග පහසුවෙන් ${f A}$ හි දුවණය වේ.	
කාමර	උෂ්ණත්වයේ දී හා වායුගෝලීය පීඩනයේ දී $f B$ අවර්ණ වායුවක් වේ. ලෙඩ් ඇසිටේට්වලින් තෙත් ලද පෙරහන් කඩදාසියක් $f B$ මගින් පිරියම් කළ විට කළු පැහැයට හැරේ.	
	A හා B හඳුනාගන්න.	
	A = B =	

	(ii)	ළවලා ප්ථානවල එකසර ඉලෙක්ලවාන යගල් පොත්වා ${f A}$ හා ${f B}$ හැඩවල දළ සටහන් අඳින්න.	මේරයේ කිපිවක් නො ලියන්න
	(iii)	වඩා විශාල බන්ධන කෝණය ඇත්තේ ${f A}$ ට ද ${f B}$ ට ද යන්න හේතු දක්වමින් සඳහන් කරන්න.	
	(iv)	පහත සඳහන් එක් එක් අවස්ථාවේ දී ${f A}$ හි කිුිිියාකාරිත්වය පෙන්නුම් කිරීම සඳහා තුලිත රසායනික සමීකරණය බැගින් දෙන්න.	
		I. A අම්ලයක් ලෙස :	
		II. A භස්මයක් ලෙස :	
	(v)	ජලීය ලෙඩ ඇසිටේට් සමග $f B$ හි පුතිකිුයාව සඳහා කුලිත රසායනික සමීකරණය ලියන්න.	
	(vi)	I. A හා B වෙන වෙනම ආම්ලිකෘත BiCl ₃ දාවණයකට එක් කළ විට ඔබ කුමක් නිරීක්ෂණය කරන්නේ දැයි ලියන්න.	
		f A (වැඩිපුර) සමග: $f B$ සමග:	
		— II. ඉහත I කොටසෙහි ඔබගේ නිරීක්ෂණ සඳහා තුලිත රසායනික සමීකරණ ලියන්න.	
			100
		(ලකුණු 4.0 යි.)	
3.	A , 0.10	$ ightleftarrow 2C+D$ (දෙදිශාවටම මූලික පුතිකියා වේ.) යන පුතිකියාව $25~^{\circ}$ C හි දී සිදුකරන ලදී. ආරම්භයේ දී mol හා $\mathbf{B}, 0.10\mathrm{mol}$ ආසුැත ජලයෙහි දුවණය කිරීමෙන් (මුළු පරිමාව $100.00\mathrm{cm^3}$) පුතිකියා මිශුණය සාදන පුය සමග මෙම දුාවණයෙහි \mathbf{A} හි සාන්දුණයෙහි වෙනස් වීම පුස්තාරයෙහි දක්වා ඇත.	
	ę	සාන්දුණය (mol dm ⁻³) ූ ූ ූ ූ	
		1.55g -5.2 (mo, dm, /	
		1.0	
		[A]	
		0.5	
		0.0 (min.)	
	(i)4		
	(I) <u>ප</u> ැ	බිකිුයාවේ පළමු මිනිත්තු 4.0 තුළ දී පුතිකිුයා කරන ලද ${f A}$ පුමාණය (මවුලවලින්) ගණනය කරන්න.	
	••		

[ගත්වැනි	පිටුව	බලන්න.

(vii)	සමතුලිතතාවට එළැඹී පසු, ආසැත ජලය $100.00\mathrm{cm}^3$ එකතු කිරීමෙන් දුාවණයෙහි පරිමාව දෙගුණ කරන ලදී. දුාවණයෙහි පරිමාව දෙගුණ කළ විගස සමස්ත පුතිකියාවෙහි දිශාව, සුදුසු ගණනය කිරීමක් මගින් පුරෝකථනය කරන්න.	
(viii)	ඉහත පරීක්ෂණය 25 °C ට අඩු උෂ්ණත්වයක දී සිදු කළේ යැයි සලකන්න. මෙය පසු පුතිකිුිිියාවෙහි ශීසුතාව කෙරෙහි බලපාන්නේ කෙසේ ද? ඔබගේ පිළිතුර හේතු දක්වමින් පහදන්න.	
		$\overline{}$
		100
	(ලකුණු 10.0 යි.)	
4 . (a) (i) C ₅ H ₁₀ O අණුක සූනුය සහිත A, B සහ C යන සංයෝග එකිනෙකෙහි වයුත සමාවයවික වේ. සංයෝග තුනම 2,4-DNP සමග කහ-තැඹිලි අවක්ෂේප ලබා දේ. ඉන් එකක්වත් රිදී කැටපත් පරීක්ෂාවේදී රිදී කැටපතක් නොදේ. A, B සහ C වෙන වෙනම NaBH ₄ සමග පුතිකියා කරවූ විට පිළිවෙළින් D, E සහ F යන සංයෝග ලබා දුනි. E සහ F පමණක් පුකාශ සමාවයවිකතාව පෙන්වයි. B සහ C වෙන වෙනම CH ₃ CH ₂ CH ₂ MgBr සමග පුතිකියා කරවා, ඉන්පසු ජලවිච්ඡේදනය කළ විට පිළිවෙළින් G සහ H යන සංයෝග ලබා දුනි. G පමණක් පුකාශ සමාවයවිකතාව පෙන්නුම් කරයි. A, B, C, D, E, F, G සහ H වල වයුහ පහත දී ඇති කොටුතුළ අඳින්න. (නිමාන සමාවයවික ආකාර පෙන්වීම අවශා නැත.)	
	D E F	
	G	
ſi	i) පහත සඳහන් පුතිකිුියාවේ ඵලයේ වුෘුහය අඳින්න.	
(1	-,	
	A (1) 2,4 – DNP (2) විජලනය (ලකුණු 4.5 යි.)	

(b) පහත දී ඇති එක් එක් පුතිකිුියාවේ **පුධාන** කාබනික **එලගෙහි** වුෘහය අඳින්න.

(ii)
$$C_6H_5$$
-N H_2 \longrightarrow Br_2 දියර

(iv)
$$C_6H_5-N_2^{\oplus}CI^{\ominus}$$
 $\xrightarrow{H_3PO_2}$ $\xrightarrow{\Delta}$

$$(v)$$
 $C_2H_5CONH_2$ ජලීය $NaOH$

(vi)
$$CH_3CH = CH_2$$
 සාන්දු H_2SO_4

(viii)
$$C_2H_5CO_2H$$
 $\xrightarrow{PCl_5}$

(ix)
$$C_2H_5OH$$
 $H^+/KMnO_4$

(x)
$$C_2H_5COCH_3$$
 HCN

(ලකුණු **3.5** සි)

(c) අාලෝකය හමුවේ දී $\mathrm{CH_4}$ සමග $\mathrm{Cl_2}$ පුතිකිුයාවේ එක් ඵලයක් $\mathrm{CH_3Cl}$ වේ. $\mathrm{CH_3Cl}$ සැදෙන ආකාරය පෙන්වන පුතිකිුයාවේ යන්තුණයේ පියවර ලියන්න. ඉලෙක්ටුෝන සංකුමණය වකු ඊතල/වකු අර්ධ ඊතල (\mathbf{C}/\mathbf{C}) මගින් දක්වන්න.

(ලකුණු 2.0 යි)

කිසිවක් නො ලිය ල් ලංකා වත්ත දෙපාර්තමේන්තුව ල් ලංකා විත්ත දෙපාර්තමේන්තුවෙන්න මෙහිවාග ලෙපාල්නා**ම්ලින්තුව**ක්ත දෙපාර්තමේන්තුව ල් ලංකා විත්ත දෙපාර්තමේන්තුව இலங்கைப் பரீட்சைத் திணைக்களம் இலங்கைப் பரீடன்சத் திணைக்களும் இலங்கைப் பரீடன்சத் திணைக்களும் Department of Examinations, Sri Lanka Department o**இலங்கைப் Sri Lanka Operatment of Examinations, Sri Lanka** Operatment of Examinations, Sri Lanka ල් ලංකා වත්ත දෙපාර්තමේන්තුව ල් ලංකා විත්ත දෙකර්තමේන්තුව ල් ලංකා විත්ත දෙකර්තමේන්තුව ලේ ලංකා විත්ත පදහර්තමේන්තුව இலங்கைப் பரீடன்சத் திணைக்களும் இலங்கைப் **பரீடன்சத்** திணைக்களும் இலங்கைப் பரீடன்சத் திணைக்களும்

අධායන පොදු සහතික පතු (උසස් පෙළ) විභාගය, 2018 අගෝස්තු கல்விப் பொதுத் தராதரப் பத்திர (உயர் தர)ப் பரீட்சை, 2018 ஓகஸ்ற் General Certificate of Education (Adv. Level) Examination, August 2018

රසායන විදුනවIIஇரசாயனவியல்IIChemistryII

* සාර්වනු වායු නියතය $R=8.314~{
m J~K^{-1}~mol^{-1}}$ * ඇවගාඩ්රෝ නියතය $N_A=6.022~{
m \times}~10^{23}~{
m mol^{-1}}$

B කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

(a) පහත සඳහන් ප්‍රතිකියා සලකන්න.

$$M(CO_3)_2.nH_2O(s) \rightarrow M(CO_3)_2(s) + nH_2O(g)$$

$$M(CO_3)_2(s) \rightleftharpoons MO_2(s) + 2 CO_2(g)$$

පරිමාව $0.08314\,\mathrm{m}^3$ වූ රේචනය කරන ලද දෘඪ බඳුනක $\mathrm{M(CO_3)_2\cdot nH_2O(s)}$ සුළු පුමාණයක් $(0.10~\mathrm{mol})$ ඇත. බඳුනේ උෂ්ණත්වය $400~\mathrm{K}$ දක්වා වැඩි කරන ලදී. මෙම උෂ්ණත්වයේ දී $\mathrm{M(CO_3)_2}$ ලෝහ කාබනේටය වියෝජනය නොවන නමුත් ස්එටිකීකරණය වූ ජලය සම්පූර්ණයෙන් වාෂ්පීකරණය වේ. බඳුනෙහි පීඩනය $1.60\times10^4~\mathrm{Pa}$ බව මැන ගන්නා ලදී. ඝන දවා මගින් අයත් කරගන්නා පරිමාව නොසලකා හැරිය හැකි වේ.

 $M(CO_3)_2.nH_2O(s)$ සූතුයෙහි ඇති 'n' හි අගය නිර්ණය කරන්න.

(ලකුණු 2.0 යි.)

- (b) ඉහත පද්ධතියෙහි උෂ්ණත්වය ඉන්පසු $800~{
 m K}$ දක්වා වැඩි කරන ලදී. මෙවිට ඝන ලෝහ කාබනේටයෙන් යම් පුමාණයක් වියෝජනය වී වායු කලාපය සමග සමතුලිතව ඇති බව නිරීක්ෂණය කරන ලදී. බඳුනෙහි පීඩනය $4.20 imes 10^4~{
 m Pa}$ බව මැනගන්නා ලදී.
 - (i) 800 K හි දී බඳුන තුළ ඇති ජලවාෂ්පයෙහි අාංශික පීඩනය ගණනය කරන්න.
 - (ii) 800 K හි දී බඳුන තුළ ඇති CO₂ හි ආංශික පීඩනය ගණනය කරන්න.
 - (iii) ${
 m M(CO_3)_2(s)}$ හි වියෝජනයට අදාළ පීඩන සමතුලිකතා නියතය, $K_{
 m P}$ සඳහා පුකාශනයක් ලියන්න. $800~{
 m K}$ හි දී $K_{
 m P}$ ගණනය කරන්න.
 - (iv) 800 K හි දී ලෝහ කාබනේටයෙහි වියෝජනය වූ මවුල පුතිශතය ගණනය කරන්න.
 - (v) ඉහත තත්ත්ව යටතේ ලෝහ කාබනේටයෙහි වියෝජනය සඳහා එන්තැල්පි වෙනස (ΔH) $40.0~{
 m kJ}~{
 m mol}^{-1}$ වේ. අනුරූප එන්ටොපි වෙනස (ΔS) ගණනය කරන්න.
 - $(vi)\ M(CO_3)_2(s)$ හි වියෝජන පුතිකිුයාව ඉදිරි දිශාවට යොමු කිරීම සඳහා කුම **දෙකක්** යෝජනා කරන්න.

(ලකුණු 6.5 යි.)

(c) තාප රසායනික චකු හා වගුවෙහි දී ඇති දත්ත ආධාරයෙන් පහත සඳහන් පුශ්නවලට පිළිතුරු සපයන්න.

විශේෂය	සම්මත උත්පාදන එන්තැල්පිය $({f \Delta H}_f^\circ)({ m kJmol}^{-1})$
M(s)	0.0
M(g)	800.0
O ₂ (g)	0.0
O(g)	249.2
MO ₂ (g)	-400.0

- (i) $MO(g) + \frac{1}{2} O_2(g)$ → $MO_2(g) \Delta H^\circ = -50.0 \text{ kJ mol}^{-1}$ බව දී ඇත්නම් MO(g) හි සම්මත උත්පාදන එන්තැල්පිය ගණනය කරන්න.
- (ii) MO(g) හි M—O බන්ධන විඝටන එන්තැල්පිය ගණනය කරන්න.

- (iii) $\mathrm{MO}_2(\mathrm{g})$ හි $\mathrm{M-O}$ බන්ධන විඝටන එන්තැල්පිය ගණනය කරන්න.
- (iv) සම්මත තත්ත්ව යටතේ දී හා $2000~{
 m K}$ හි දී ${
 m MO}_2({
 m g})
 ightarrow {
 m MO}({
 m g}) + \frac{1}{2} {
 m O}_2({
 m g})$ පුතිකිුයාව ස්වයංසිද්ධ වේ දැයි සුදුසු ගණනය කිරීමක් මගින් පුරෝකථනය කරන්න. මෙම පුතිකිුයාවෙහි සම්මත එන්ටොපි වෙනස $30.0~{
 m J}~{
 m K}^{-1}~{
 m mol}^{-1}$ වේ.
- 6. (a) අමිශු දුව පද්ධතියක් සාදන ජලය $({f A})$ හා කාබනික දාවකයක් $({f B})$ අතර, අයඩීන් $({f I}_2)$ හි වහාප්ති සංගුණකය නිර්ණය කිරීම සඳහා පරීක්ෂණයක් සිදු කරන ලදී. ${f I}_2$ මවුල 'n' සංඛාහාවක් අඩංගු ${f B}$ හි $20.00~{
 m cm}^3$ සමග ${f A}$ හි $20.00~{
 m cm}^3$ මිශු කර කාමර උෂ්ණත්වයේ දී

සමතුලිතතාවයට එළඹීමට ඉඩහරින ලදී.

 ${f A}$ කලාපයෙන් $5.00~{
m cm}^3$ නියැදියක් ඉවත් කර එය $0.005~{
m mol}~{
m dm}^{-3}~{
m Na_2S_2O_3}$ දාවණයක් සමග අනුමාපනය කිරීමෙන් ${f A}$ කලාපයේ ${f I_2}$ සාන්දුණය නිර්ණය කරන ලදී. අන්ත ලක්ෂාය ලබා ගැනීමට අවශා වූ ${
m Na_2S_2O_3}$ පරිමාව ${f 22.00~{
m cm}}^3$ විය. ${f B}$ කලාපයෙහි ${f I_2}$ සාන්දුණය $0.040~{
m mol}~{
m dm}^{-3}$ බව නිර්ණය කරන ලදී.

- (i) $\mathrm{Na_2S_2O_3}$ හා $\mathrm{I_2}$ අතර පුතිකිුයාව සඳහා තුලිත රසායනික සමීකරණය ලියන්න.
- (ii) ${f A}$ කලාපයෙහි ${f I}_2$ සාන්දුණය ගණනය කරන්න.
- (iii) වාහාප්ති සංගුණකය K_D හි අගය ගණනය කරන්න. $K_D = \dfrac{\left[\mathbf{I}_2 \right]_{\mathbf{B}}}{\left[\mathbf{I}_2 \right]_{\mathbf{A}}}$ වේ.
- $({
 m iv})$ ${f A}$ හා ${f B}$ කලාප දෙකෙහි ඇති මුළු ${
 m I}_2$ මවුල පුමාණය ගණනය කරන්න.

(ලකුණු 4.5 යි.)

- (b) $\bf A}$ කලාපයට $\bf I^-$ අයන එකතු කර, ඉහත පරීක්ෂණය එම තත්ත්ව යටතේ දී ම එනම් එම උෂ්ණත්වයේ දී හා එම $\bf I_2$ පුමාණය හා එම පරිමාවන් භාවිතයෙන් නැවත සිදු කරන ලදී. පද්ධතිය හොඳින් කළතා සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. $\bf A$ කලාපයෙහි $5.00~{\rm cm}^3$ නියැදියක ඇති $\bf I_2$ අනුමාපනය කිරීම සඳහා අවශා වූ $0.005~{\rm mol~dm}^{-3}~{\rm Na}_2{\rm S}_2{\rm O}_3$ දාවණ පරිමාව $\bf 41.00~{\rm cm}^3$ විය. මෙවිට $\bf B$ කලාපයෙහි $\bf I_2$ සාන්දුණය $0.030~{\rm mol~dm}^{-3}$ බව නිර්ණය කරන ලදී.
 - (i) ${f A}$ හා ${f B}$ කලාප අතර ${f I}_2$ හි වාාප්තිය සඳහා වාාප්ති සංගුණකය පදනම් කර ගනිමින් ${f A}$ කලාපයෙහි $5.00~{
 m cm}^3$ හි තිබිය යුතු යැයි බලාපොරොත්තු වන ${f I}_2$ පුමාණය (මවුල) ගණනය කරන්න.
 - (ii) ඉහත අනුමාපනයේ දී ${
 m Na_2S_2O_3}$ සමග පුතිකිුයා කරන ලද ${
 m I_2}$ පුමාණය (මවුල) ගණනය කරන්න.
 - (iii) ඉහත (b) (i) හා (b) (ii) කොටස් සඳහා ලබාගත් පිළිතුරු එකිනෙකින් වෙනස් වන්නේ මන්දැයි ${f A}$ කලාපයෙහි ඇති විවිධ අයඩීන් විශේෂ සලකමින් පැහැදිලි කරන්න.

(ලකුණු 3.5 යි.)

(c) \mathbf{X} හා \mathbf{Y} යන දුව රඌල් නියමය අනුගමනය කරන පරිපූර්ණ දුාවණයක් සාදයි.

රූපයේ පෙන්වා ඇති පරිදි රේචනය කරන ලද දෘඪ බඳුනකට මුලින් $\mathbf X$ දුවය පමණක් ඇතුළු කරන ලදී. දුව මට්ටම l හි පවත්වා ගනිමින් පද්ධතිය $400~\mathrm{K}$ හි දී සමතුලිතතාවයට එළඹීමට ඉඩ හරින ලදී. බඳුනෙහි පීඩනය $3.00 \times 10^4~\mathrm{Pa}$ ලෙස මැන ගන්නා ලදී. දුව මට්ටම l හි ඇති විට වාෂ්ප කලාපයේ පරිමාව $4.157~\mathrm{dm}^3$ විය.

ඉන් පසු \mathbf{Y} දුවය බඳුන තුළට ඇතුළු කර \mathbf{X} දුවය සමග මිශු කර පද්ධතිය $400~\mathrm{K}$ හි දී සමතුලිකතාවයට එළඹීමට ඉඩ හරින ලදී. දුව මට්ටම l හි පවත්වා ගන්නා ලදී. දුව කලාපයෙහි $\mathbf{X}:\mathbf{Y}$ මවුල අනුපාතය 1:3 බව සොයාගන්නා ලදී. බඳුනෙහි පීඩනය $5.00\times10^4~\mathrm{Pa}$ බව මැනගන්නා ලදී.

- (i) $400~{
 m K}$ හි දී ${
 m X}$ හි සන්තෘප්ත වාෂ්ප පීඩනය කුමක් වේ ද?
- (ii) සමතුලිතතාවයේ දී දුව කලාපයේ ${f X}$ හා ${f Y}$ හි මවුල භාග ගණනය කරන්න.
- (iii) ${f Y}$ එකතු කළ පසු සමතුලිතතාවයේ දී ${f X}$ හි අාංශික පීඩනය ගණනය කරන්න.
- (iv) සමතුලිතතාවයේ දී Y හි ආංශික පීඩනය ගණනය කරන්න.
- (v) Y හි සන්නෘප්ත වාෂ්ප පීඩනය ගණනය කරන්න.
- (vi) වාෂ්ප කලාපයෙහි ඇති X හා Y හි පුමාණ (මවුලවලින්) ගණනය කරන්න.
- (vii) X හා Y දුව මිශුණයක් භාගික ආසවනයට භාජනය කළ විට භාගික ආසවන කුළුණින් කුමන සංයෝගය මුලින් ආසවනය වී පිට වේ දැයි සඳහන් කරන්න. ඔබගේ පිළිතුරට හේතුව/හේතු දක්වන්න.

(ලකුණු 7.0 යි.)

7. (a) ලැයිස්තුවේ දී ඇති රසායන දුවා පමණක් භාවිත කර ඔබ පහත සඳහන් පරිවර්තනය සිදු කරන්නේ කෙසේ දැයි පෙන්වන්න. ${
m C_2H_5CH_2CHO} \longrightarrow {
m C_2H_5COCH_3}$

රසායන දුවන ලැයිස්තුව ජලීය NaOH, HBr, මදාාසාරීය KOH, NaBH $_{\!\scriptscriptstyle A}$, H $^{^+}$ /KMnO $_{\!\scriptscriptstyle A}$

ඔබගේ පරිවර්තනය පියවර 7 කට වඩා වැඩි නොවිය යුතු ය.

(ලකුණු 6.0 යි.)

(b) පහත සඳහන් පුතිකිුයා පටිපාටිය සම්පූර්ණ කිරීම සඳහා \mathbf{R}_1 — \mathbf{R}_4 සහ \mathbf{X}_1 — \mathbf{X}_4 සහ $\mathbf{Y}_1,\mathbf{Y}_2$ හඳුනාගන්න.

(c) (i) පහත සඳහන් පුතිකිුයාවේ යන්තුණය දෙන්න.

(ලකුණු 6.0 යි.)

$$C_2H_5OH + HBr \longrightarrow C_2H_5Br + H_2O$$

- (ii) ඉහත සඳහන් පුතිකිුයාව නාාෂ්ටිකාමී (nucleophilic) ආදේශ පුතිකිුයාවක් ද නැතහොත් ඉලෙක්ටුෝනකාමී (electrophilic) ආදේශ පුතිකිුයාවක් ද යන්න සඳහන් කරන්න. අදාළ පරිදි නියුක්ලියොෆයිලය හෝ ඉලෙක්ටුොෆයිලය හඳුනාගන්න.
- (iii) පීනෝල් (C_6H_5OH) සහ එතනෝල් (C_2H_5OH) යන සංයෝග දෙක අතරින් වඩා ආම්ලික වන්නේ කුමක් දැයි හේතු දක්වමින් සඳහන් කරන්න. (ලකුණු ${\bf 3.0}\,$ යි.)

C කොටස — රචනා

පුශ්න **දෙකකට** පමණක් පිළිතුරු සපයන්න. (එක් එක් පුශ්නයට **ලකුණු 15** බැගින් ලැබේ.)

8. (a) P නම් ජලීය දාවණයක කැටායන **දෙකක්** හා ඇනායන **දෙකක්** අඩංගු වේ. මෙම කැටායන හා ඇනායන හඳුනාගැනීම සඳහා පහත සඳහන් පරීක්ෂණ සිදු කරන ලදී.

කැටායන

	පරීක්ෂණය	නිරීක්ෂණය
0	තනුක HCl මගින් ${f P}$ ආම්ලිකෘත කර දුාවණය තුළින් ${f H}_2{f S}$ බුබුලනය කරන ලදී.	පැහැදිලි දුාවණයක් ලැබුණි.
0	$ m H_2S$ සියල්ල ම ඉවත් වන තුරු ඉහත දුාවණය නටවන ලදී. සාන්දු $ m HNO_3$ බිංදු කිහිපයක් එකතු කර දුාවණය තවදුරටත් රත් කරන ලදී. ලැබුණු දාවණය සිසිල් කර, $ m NH_4Cl/NH_4OH$ එකතු කරන ලදී.	දුඹුරු පැහැති අවක්ෂේපයක් ($old Q$) සෑදුණි.
3	${f Q}$ පෙරා ඉවත් කර පෙරනය තුළින් ${f H}_2{f S}$ බුබුලනය කරන ලදී.	ලා-රෝස පැහැති අවක්ෂේපයක් (R) සෑදුණි.
4	${f R}$ පෙරා ඉවත් කර ${ m H_2S}$ සියල්ල ම ඉවත් වන තුරු පෙරනය නටවන ලදී. දුාවණයට ${ m (NH_4)_2CO_3}$ එකතු කරන ලදී.	පැහැදිලි දුාවණයක් ලැබුණි.
⑤	P හි අලුත් කොටසකට තනුක NaOH එකතු කරන ලදී.	කැත-කොළ පැහැති අවක්ෂේපයක් සහ සුදු අවක්ෂේපයක් සැදුණි.

${f Q}$ හා ${f R}$ අවක්ෂේප සඳහා පරීක්ෂණ:

	පරීක්ෂණය	නිරීක්ෂණය				
6	තනුක HNO_3 හි \mathbf{Q} දුවණය කර, සැලිසිලික් අම්ල දුාවණයක් එක් කරන ලදී.	ලා-දම් පැහැති දුාවණයක් ලැබුණි.				
0	තනුක අම්ලයක ${f R}$ දුවණය කර, දුාවණයට තනුක ${f NaOH}$ එක් කරන ලදී.	සුදු පැහැති අවක්ෂේපයක් සැදුණි. කල් තැබීමේ දී එය දුඹුරු පැහැයට හැරුණි.				

ඇනායන

		පරීක්ෂාච	නිරීක්ෂණය					
8	I	BaCl_2 දුාවණයක් ${f P}$ වලට එකතු කරන ලදී.	සුදු අවක්ෂේපයක් සැදුණි.					
	II	සුදු අවක්ෂේපය පෙරා වෙන් කර අවක්ෂේපයට තනුක HCl එක් කරන ලදී.	සුදු අවක්ෂේපය දුවණය නොවුණි.					
9	ම එක	II හි පෙරනයෙන් කොටසකට Cl ₂ දියරය හා ක්ලෝරෆෝම් තු කර මිශුණය හොඳින් සොලවන ලදී.	ක්ලෝරෆෝම් ස්තරය කහ-දුඹුරු පැහැයට හැරුණි.					

- (i) ${f P}$ දුාවණයෙහි ඇති කැටායන **දෙක** හා ඇනායන **දෙක** හඳුනාගන්න. (හේතු අවශා **නැත**.)
- (ii) ${f Q}$ හා ${f R}$ අවක්ෂේපවල රසායනික සූතු ලියන්න.
- (iii) පහත සඳහන් දේවල් සඳහා හේතු දෙන්න:
 - I. කැටායන සඳහා $extbf{Q}$ පරීක්ෂණයේ දී $H_2 S$ ඉවත් කිරීම
 - ${
 m II.}$ කැටායන සඳහා ${
 m f Q}$ පරීක්ෂණයේ දී සාන්දු ${
 m HNO_3}$ සමග රත් කිරීම

(b) ලෙඩ්, කොපර් හා නිෂ්කිුය දුවාායක් ${f X}$ නියැදියෙහි අඩංගු වේ. ${f X}$ හි ඇති ලෙඩ් හා කොපර් විශ්ලේෂණය කිරීම සඳහා පහත කිුයාවලිය සිදු කරන ලදී.

කියාචලිය

 ${f X}$ හි 0.285 g ස්කන්ධයක් තනුක ${f HNO_3}$ මඳක් වැඩි පුමාණයක දුවණය කරන ලදී. පැහැදිලි දුාවණයක් ලැබුණි. ලැබුණු පැහැදිලි දුාවණයට ${f NaCl}$ දුාවණයක් එක් කරන ලදී. සුදු අවක්ෂේපයක් ${f (Y)}$ සෑදුණි. අවක්ෂේපය පෙරා වෙන් කර අවක්ෂේපය ${f (Y)}$ හා පෙරනය ${f (Z)}$ වෙන වෙනම විශ්ලේෂණය කරන ලදී.

අවක්ෂේපය (\mathbf{Y})

අවක්ෂේපය උණු ජලයෙහි දුවණය කරන ලදී. K_2CrO_4 දාවණයකින් වැඩිපුර එක් කරන ලදී. කහ පැහැති අවක්ෂේපයක් සැදුණි. අවක්ෂේපය පෙරා වෙන් කර තනුක HNO_3 හි දුවණය කරන ලදී. තැඹිලි පැහැති දාවණයක් ලැබුණි. මෙම දාවණයට වැඩිපුර KI එක් කර, පිටවූ I_2 , දර්ශකය ලෙස පිෂ්ටය යොදා, $0.100~mol~dm^{-3}~Na_2S_2O_3$ සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂාය ලැබීම සඳහා අවශා වූ $Na_2S_2O_3$ පරිමාව $27.00~cm^3$ විය. (අනුමාපනයට NO_3^- අයන බාධා නොකරන බව උපකල්පනය කරන්න.)

පෙරනය (${f Z}$)

පෙරනය උදාසීන කර එයට වැඩිපුර KI එක් කරන ලදී. පිටවූ I_2 , දර්ශකය ලෙස පිෂ්ටය යොදා, $0.100~{
m mol}~{
m dm}^{-3}~{
m Na}_2{
m S}_2{
m O}_3$ සමග අනුමාපනය කරන ලදී. අන්ත ලක්ෂාය ලැබීම සඳහා අවශා වූ ${
m Na}_2{
m S}_2{
m O}_3$ පරිමාව $15.00~{
m cm}^3$ විය.

(**සැ.යූ.**: නිෂ්කිුය දවාස තනුක HNO_3 හි දවණය වේ යැයි හා එය පරීක්ෂණයට බාධා **නොවේ** යැයි උපකල්පනය කරන්න.)

- (i) X හි අඩංගු ලෙඩි හා කොපර් ස්කන්ධ පුතිශත ගණනය කරන්න. අදාළ අවස්ථාවන් හි තුලිත රසායනික සමීකරණ ලියන්න.
- (ii) Y අවක්ෂේපය විශ්ලේෂණයේ දී කරන අනුමාපනයෙහි අන්ත ලක්ෂායේ දී ලැබෙන වර්ණ විපර්යාසය කුමක් ද?

(Cu = 63.5, Pb = 207)

(ලකුණු 7.5 යි.)

- $oldsymbol{9}.~(a)$ පහත සඳහන් පුශ්න පරිසරය සහ ඊට අදාළ ගැටලු මත පදනම් වේ.
 - (i) ගෝලීය උණුසුම්කරණයට දායක වන හරිතාගාර වායු **තුනක්** හඳුනාගන්න. ගෝලීය උණුසුම්කරණය නිසා ඇති වන පුතිවිපාක **දෙකක්** සඳහන් කරන්න.
 - (ii) ගල් අඟුරු බලාගාර නිසා ඇති වන ගෝලීය පාරිසරික ගැටලු හොඳින් පුකට වී ඇත. ගංගා සහ ජලාශ වල සමහර ජල තත්ත්ව පරාමිතියන් වෙනස් වීම සඳහා සැලකීය යුතු ලෙස දායක වන එවැනි එක් ගැටලුවක් හඳුනාගන්න.
 - (iii) ඉහත (ii) හි හඳුනාගන්නා ලද පාරිසරික ගැටලුව සඳහා හේතු වන රසායනික විශේෂය නම් කරන්න. මෙම ගැටලුව නිසා බලපෑමට ලක් විය හැකි ජල තත්ත්ව පරාමිතියන් **තූනක්** සඳහන් කරන්න.
 - (iv) වායුගෝලයේ ඕසෝන් මට්ටම වෙනස් කරන (වැඩි කරන හෝ අඩු කරන) පාරිසරික ගැටලු **දෙකක්** හඳුනාගෙන මෙම වෙනස් වීම් සිදුවන්නේ කෙසේ දැයි තුලිත රසායනික සමීකරණ ආධාරයෙන් කෙටියෙන් පැහැදිලි කරන්න.
 - (v) I. "උත්පේරක පරිවර්තක (catalytic converters) මගින් වාහන පිටාර වායුවෙහි ඇති අහිතකර වායු බහුතරයක්, සාපේක්ෂව අහිතකර බවින් අඩු වායු බවට පරිවර්තනය කරනු ලැබේ." මෙම පුකාශය කෙටියෙන් පැහැදිලි කරන්න.
 - II. උත්පේරක පරිවර්තකයක් මගින් අහිතකර බවින් අඩු වායුවක් බවට පරිවර්තනය නොවන අහිතකර වායුව (CO_2 හැර) නම් කරන්න. මෙම අහිතකර වායුව වාහන එන්ජිම තුළ නිපදවෙන්නේ කෙසේ දැයි කෙටියෙන් සඳහන් කරන්න.

(b) ${f P}_1$ හා ${f P}_2$ යන වැදගත් සංයෝග දෙකක් හා ඒවායින් ව්යුත්පන්න කරනු ලබන ${f P}_3$, ${f P}_4$ හා ${f P}_5$ යන තවත් වැදගත් සංයෝග තුනක් නිපදවන අයුරු පහත දී ඇති ගැලීම් සටහනෙහි දැක්වේ. ${f Na}_2{f CO}_3$ නිෂ්පාදනයේ දී ${f P}_1$ අමුදවායයක් ලෙස භාවිත වේ. ${f P}_1$ හා ${f P}_2$ අතර පුතිකිුයාවෙන් ${f P}_3$ නිෂ්පාදනය කළ හැක. ${f P}_3$ පොහොරක් ලෙස හා ස්ඓා්ටකයක් ලෙස භාවිත වේ. බහුල වශයෙන් භාවිත වන පොහොරක් වන ${f P}_4$ නිෂ්පාදනයේ දී ද ${f P}_1$ භාවිත වේ. වැදගත් තාපස්ථාපන බහු අවයවකයක් වන ${f P}_5$ සංශ්ලේෂණයේ දී ${f P}_4$ භාවිත වේ.

 M
 නිෂ්පාදන කි්යාවලිය
 PC
 අමුදුවා ලබා ගැනීම සඳහා
 R
 අමුදුවා

 P
 ඵලය
 S
 අමුදුවා සඳහා පුභවය

ඉහත ගැලීම් සටහන පදනම් කරගනිමින් පහත පුශ්නවලට පිළිතුරු සපයන්න.

- (i) ${f P_1}, {f P_2}, {f P_3}, {f P_4}$ හා ${f P_5}$ හඳුනාගන්න.
- (ii) $old R_1^{}$, $old R_2^{}$ හා $old R_3^{}$ හඳුනාගන්න.
- $(iii)\ oldsymbol{X_1, X_2}}$ හා $oldsymbol{X_3}$ හඳුනාගන්න.
- (iv) S හඳුනාගන්න.
- (v) අදාළ අවස්ථාවලදී තුලිත රසායනික සමීකරණ දෙමින් \mathbf{PC}_1 හා \mathbf{PC}_2 හි සිදු වන කියාවලි කෙටියෙන් සඳහන් කරන්න.
- $({
 m vi})$ ${f M}_1,{f M}_2$ හා ${f M}_3$ නිෂ්පාදන කිුයාවලි හඳුනාගන්න. (උදා: ස්පර්ශ කුමය හෝ ${f H}_2{
 m SO}_4$ නිෂ්පාදනය.)
- $({
 m vii})$ ${
 m M_1, M_2}$ හා ${
 m M_3}$ හි සිදු වන පුතිකියා සඳහා තුලිත රසායනික සමීකරණ සුදුසු තත්ත්ව සමග දෙන්න.
- (viii) I. ${f P_1}$ හා ${f P_2}$ යන එක් එක් සංයෝගය සඳහා ඉහත සඳහන් කර නොමැති එක් පුයෝජනයක් බැගින් දෙන්න.
 - ${
 m II.}$ අමුදුවා ${
 m g}$ යක් ලෙස භාවිත කිරීම හැර, ${
 m P}_1$ නිෂ්පාදන කිුයාවලියෙහි ${
 m R}_1$ හි එක් පුයෝජනයක් දෙන්න.

10.(a) A හා B යනු අෂ්ටතලීය ජනාමිකියක් ඇති සංකීර්ණ අයන (එනම්, ලෝහ අයනය හා එයට සංගත වී ඇති ලිගත) වේ. ඒවාට එකම පරමාණුක සංයුතිය වන MnC5H3N6 ඇත. එක් එක් සංකීර්ණ අයනයෙහි ලිගන වර්ග දෙකක් ලෝහ අයනයට සංගත වී ඇත. A අඩංගු ජලීය දාවණයක් පොටෑසියම් ලවණයක් සමග පිරියම් කළ විට C සංගත සංයෝගය සැදෙයි. ජලීය දාවණයේ දී C මගින් අයන හතරක් ලැබේ. B අඩංගු ජලීය දාවණයක් පොටෑසියම් ලවණයක් සමග පිරියම් කළ විට D සංගත සංයෝගය සැදෙයි. ජලීය දාවණයක් තුනක් ලැබේ. C හා D දෙකටම අෂ්ටතලීය ජනාමිතියක් ඇත.

(සැ.යූ.; පොටෑසියම් ලවණය සමග පිරියම් කළ විට ${f A}$ හා ${f B}$ හි ඇති මැත්ගනීස් හි ඔක්සිකරණ අවස්ථා වෙනස් නොවේ.)

- (i) ${f A}$ හා ${f B}$ හි මැන්ගනීස්වලට සංගත වී ඇති ලිගන හඳුනාගන්න.
- (ii) A, B, C හා D හි වාපුහ දෙන්න.
- (iii) A හා B හි මැන්ගනීස් අයනයන්හි ඉලෙක්ටෝනික විනාහසයන් ලියන්න.
- (iv) C හා D හි IUPAC නම් ලියන්න.

(ලකුණු 7.5 යි.)

- (b) (i) I. $Ag(s) \mid AgCl(s) \mid Cl^-(aq)$ ඉලෙක්ටෝඩයට අදාළ ඔක්සිහරණ අර්ධ පුතිකියාව ලියන්න.
 - II. $Ag(s) \mid AgCl(s) \mid Cl^-(aq)$ හි ඉලෙක්ටුෝඩ විභවය දුාවණයෙහි Ag^+ සාන්දුණය මත රඳාපවතින්නේ දැයි සඳහන් කරන්න. ඔබගේ පිළිතුර පැහැදිලි කරන්න.
 - (ii) පහත පුතිකිුයාව සලකන්න.

$$Fe(s) + 2H^{+}(aq) + \frac{1}{2}O_{2}(g) \rightarrow Fe^{2+}(aq) + H_{2}O(1)$$

- ඉහත පුතිකිුිිිියාවට අදාළ ඔක්සිකරණ හා ඔක්සිහරණ අර්ධ පුතිකිුිියා ලියන්න.
- II. ඉහත පුතිකිුයාව විදාුුුත් රසායනික කෝෂයක කෝෂ පුතිකිුයාව බව දී ඇත් නම් එම කෝෂයෙහි සම්මත විදාුුුත් ගාමක බලය නිර්ණය කරන්න.

$$E_{Fe^{2+}(aq)/Fe(s)}^{\circ} = -0.44V$$
 $E_{H^{+}(aq)/O_{2}(g)/H_{2}O(1)}^{\circ} = 1.23V$

(iii) රූපයේ දැක්වෙන පරිදි $0.10~{
m mol~dm^{-3}~CaBr_2}$ ජලීය දාවණයක $100.00~{
m cm^3}$ තුළින් $100~{
m mA}$ වූ නියත ධාරාවක් යවන ලදී. පද්ධතියේ උෂ්ණත්වය $25~{
m ^{\circ}C}$ හි පවත්වා ගන්නා ලදී.

- ඉලෙක්ටුෝඩවල සිදු වන ඔක්සිකරණ සහ ඔක්සිහරණ පුතිකියා ලියන්න.
- II. $\operatorname{Ca(OH)}_2(s)$ අවක්ෂේප වීම ආරම්භ වීමට ගත වන කාලය ගණනය කරන්න. $25~^{\circ}\mathrm{C}$ හි දී $\operatorname{Ca(OH)}_2$ හි දුාවානා ගුණිතය $1.0 \times 10^{-5}~\mathrm{mol}^3~\mathrm{dm}^{-9}$ වේ. ජලයෙහි අයනීකරණය නොසලකා හරින්න. ජලීය කලාපයෙහි පරිමාව නියතව පවතින බව උපකල්පනය කරන්න.

ආවර්තිතා වගුව

		,						•										
	1																	2
1	H		,															He
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	N	o	F	Ne
	11	12											13	14	15	16	17	18
3	Na	Mg		_									Al	Si	P	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	55	56	La-	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	Lu	Hf	Ta	w	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	87	88	Ac-	104	105	106	107	108	109	110	111	112	113	10	<u> </u>		AL.	IXII
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs		Uun	l .	ļ						

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr