: Solides et volumes Lecon

Espace et Géométrie : Reconnaître des solides (pavé droit, cube, prisme, cylindre, pyramide, cône, boule)

Espace et Géométrie : Construire et mettre en relation des représentations de ces solides (vues en perspective cavalière, de face, de dessus, sections planes, patrons, etc.);

Grandeurs et Mesures : Connaître les formules d'aires et de périmètres des figures usuelles

Grandeurs et Mesures: Connaître et appliquer le volume d'un prisme, d'un cylindre, d'une pyramide, d'un cône et d'une boule

Grandeurs et Mesures: Effectuer des conversions d'unités et connaître la correspondance entre unités de volume et de contenance (1 L = 1 dm 3 , 1 000 L = 1 m 3)

Τ Les solides

Les prismes droits

Un prisme droit est un solide qui a deux faces polygonales, parallèles et superposables appelées les bases et dont toutes les autres faces sont des rectangles.

La hauteur du prisme est la longueur commune des faces latérales

Représentation en perspective cavalière d'un prisme droit à base triangulaire

Patron d'un prisme droit à base triangulaire

Deux prismes droits particuliers:

Le parallélépipède rectangle

Un parallélépipède rectangle ou pavé droit est un prisme droit à base rectangulaire.

Le cube

Un cube est un prisme droit dont toutes les faces sont des carrés

Représentation en perspective cavalière d'un cube

Les cylindres de révolution

Un cylindre de révolution est un solide obtenu en faisant tourner un rectangle autour d'un axe porté par un côté.

Il a deux bases qui sont des disques parallèles et de même rayon et une face latérale rectangulaire.

Représentation en perspective cavalière d'un cylindre de révolution

Patron d'un cylindre de révolution

Les pyramides

Une pyramide est un solide qui a une base polygonale et dont les faces latérales sont des triangles qui ont un point commun : le sommet.

Une pyramide régulière a pour base un polygone régulier (côtés égaux, angles égaux) et ses faces latérales sont des triangles isocèles.

Représentation en perspective cavalière d'une pyramide régulière à base pentagonale

Patron d'une pyramide régulière à base pentagonale

Les cônes de révolution

Un cône de révolution est le solide obtenu en faisant tourner un triangle rectangle autour d'un axe porté par l'un des côtés de l'angle droit.

Sa base est un cercle. Sa face latérale et un secteur circulaire

Représentation en perspective cavalière d'un cône de révolution

Patron d'un cône de révolution

Les sphères / boules

Soit O un point de l'espace.

La sphère de centre O et de rayon R est l'ensemble de tous les points de l'espace qui sont situés à une distance R du point O.

La boule de centre O et de rayon R est l'ensemble de tous les points de l'espace qui sont situés à une distance inférieure ou égale à R du point O.

II. Changements d'unités

Tableau des unités de longueur :

Tableau des unités d'aire :

Unités agraires : l'hectare (ha) et l'are (a)

Tableau des unités de volume :

(Lien entre les unités de volume et de capacité :)

III. Formulaire Périmètre Aire Volume

Le carré

Périmètre = $4 \times c$ Aire = $c \times c = c^2$

FIGURES PLANES

Périmètre =
$$(L + I) \times 2 = 2L + 2I$$

Aire = $L \times I$

Le parallélogramme

Périmètre = $(a + b) \times 2 = 2a + 2b$ Aire = $a \times h$

Le triangle

Périmètre = a + b + cAire = $b \times h : 2 = \frac{b \times h}{2}$

Le triangle rectangle

Périmètre = a + b + cAire = $b \times a : 2 = \frac{b \times a}{2}$

Le cercle / disque

Longueur du cercle = d \times π ou 2 \times r \times π Aire du disque = π \times r 2

Le cube

Volume = $a \times a \times a = a^3$ Aire totale = $6 \times c^2$

Le pavé droit

Volume = $a \times b \times c$ = a b c

SOLIDES

Volume = $A_{Base} \times h$ Aire latérale = $P_{Base} \times h$ A_{Base} : Aire de la base P_{Base} : Périmètre de la base

Le cylindre

Volume = $\pi \times r^2 \times h$ Aire latérale = $2 \pi r \times h$

La pyramide

Volume = $A_{\text{Base}} \times h : 3$ = $\frac{A_{\text{Base}} \times h}{3}$

Le cône

Volume =
$$\pi \times r^2 \times h : 3$$

= $\frac{\pi r^2 \times h}{3}$

La sphère / boule

Volume de la boule =

Aire de la sphère =

Boite de solides pour identification Activités QF p 262 ?

QF 12 et 13 p 270 + ex 17 p 270 Exercices feuille 1

Vidéos:

Patron cube: https://www.geogebra.org/m/na3gBdAe#material/CHXQMqSV
Patron pavé: https://www.geogebra.org/m/na3gBdAe#material/cQhptCEq
Patron pyramide: https://www.geogebra.org/m/na3gBdAe#material/Ry35kWxU
Patron cylindre: https://www.geogebra.org/m/na3gBdAe#material/hCRh3FRV

Patron cône: https://www.geogebra.org/m/qseMgAcF

Volume pavé : https://www.geogebra.org/m/n7cZmt2a
Volume prisme : https://www.geogebra.org/m/rbHqTENd

Génération d'un cylindre : https://www.geogebra.org/m/shdeFmH6 Génération cône : https://www.geogebra.org/m/VN7m8efz ou https://www.geogebra.org/m/wUPZANGr

Volume Cône (lien avec cylindre): https://www.youtube.com/watch?v=yfuHUBDH2T0 (à partir de 2 ') ou https://www.geogebra.org/m/gj7qtebw

Volume: de la pyramide au cône: https://www.geogebra.org/m/na3gBdAe#material/v2SX7eeJ

Définition sphère/boule: https://www.youtube.com/watch?v=qDiq3q9jzo8

Volume boule: https://www.youtube.com/watch?v=PaA-q_z_E2E

Quand Pythagore: ex Asie juin 2008

Quand Trigonométrie: ex Pondichéry avril 2009

Quand Grandeurs composées : ex Amérique du nord juin 2012