Tutorial on Learning from Demonstration

Part 5: Considering Model Uncertainty with Optimal Control

Generalization implies uncertainty

More generalization → higher uncertainty

How should the robot behave under uncertainty?

From probabilistic models to robot control

Discards model variance!

Uncertainty influences control

Intuitive examples

Avoiding uncertain obstacles

Uncertainty *increases* obs. avoiding penalty

Following uncertain trajectory

Uncertainty decreases tracking penalty

Evidence from neuroscience

Humans exhibit uncertainty-dependent behavior in the context of stochastic optimal control by adapting...

- ...compliance under stochastic disturbances [Braun 2011]
- ...trajectory/plans under task/partner uncertainty [Grau-Moya 2013]
- D. Braun, A. Nagengast and D. Wolpert, Risk-sensitivity in sensorimotor control, Frontiers in Human Neuroscience 2011
- J. Grau-Moya, P. Ortega and D. Braun, Risk-sensitivity in Bayesian sensorimotor integration, PLOS comp Biol 2013

Uncertainty-dependent optimal control

Approaches

Machine learning ⇔ Robot control

- Adding a variance-dependent term in the cost [Mitrovic/Vijayakumar 2010]
- Adding a measure of probability of collision [Mitrovic/Vijayakumar 2014]
- Generalized binary saturating cost [Deisenroth/Fox/Rasmussen 2013]
- Risk-sensitive stochastic optimal control [Kuindersma/Grupen/Barto 2013]

Stochastic optimal control as a tool for synthesizing uncertaintydependent behavior based on learned models

- J. Mueller and G. Sukhatme , Risk-aware trajectory generation with application to safe quadrotor landing IROS 2014
- M. Deisenroth, D. Fox, and C. Rasmussen, Gaussian Processes for Data-Efficient Learning in Robotics and Control PAMI 2013
- D. Mitrovic, S. Klanke and S. Vijayakumar, Adaptive optimal feedback control with learned internal dynamics models Springer 2010
- S. Kuindersma, R. Grupen and A. Barto, Variational Bayesian optimization for runtime risk-sensitive control RSS 2013

From probabilistic models to robot control

Discards model variance!

From probabilistic models to robot control

Adapts robot behavior to uncertainty level

Optimal control

Problem formulation

System dynamics

$$oldsymbol{\xi}_{k+1} = oldsymbol{f}(oldsymbol{\xi}_k, oldsymbol{u}_k)$$

- Initial state ξ_0
- \bullet Cost (finite horizon T) $J(\pmb{\xi}_{0\cdots T},\pmb{u}_{0\cdots T-1})=h_f(\pmb{\xi}_T)+\sum_{k=0}^{T-1}h_k(\pmb{\xi}_k,\pmb{u}_k)$
- Optimization criterion

$$\min_{\boldsymbol{u}_{0\cdots T-1}} J$$

Stochastic optimal control

Problem formulation

System dynamics

$$oldsymbol{\xi}_{k+1} = oldsymbol{f}(oldsymbol{\xi}_k, oldsymbol{u}_k) + oldsymbol{arepsilon}_k \qquad oldsymbol{arepsilon}_k \sim \mathcal{N}(0, \Sigma_k)$$

$$\boldsymbol{\varepsilon}_k \sim \mathcal{N}(0, \Sigma_k)$$

Initial state ξ_0

Random Cost (finite horizon T)

$$J(\boldsymbol{\xi}_{0\cdots T}, \boldsymbol{u}_{0\cdots T-1}) = h_f(\boldsymbol{\xi}_T) + \sum_{k=0}^{T-1} h_k(\boldsymbol{\xi}_k, \boldsymbol{u}_k)$$

<u>Optimization criterion</u>

$$\min_{oldsymbol{u}_{0\cdots T-1}} \mathbb{E}[J]$$

Neglects cost variance!

Risk-sensitive optimal control

Problem formulation

• System dynamics
$$\boldsymbol{\xi}_{k+1} = \boldsymbol{f}(\boldsymbol{\xi}_k, \boldsymbol{u}_k) + \boldsymbol{\varepsilon}_k \qquad \boldsymbol{\varepsilon}_k \sim \mathcal{N}(0, \Sigma_k)$$

- Initial state ξ_0
- Random Cost (finite horizon T) $J({m \xi}_{0\cdots T},{m u}_{0\cdots T-1})=h_f({m \xi}_T)+\sum_{k=0}^{T-1}h_k({m \xi}_k,{m u}_k)$
- Optimization criterion

$$\min_{\boldsymbol{u}_{0\cdots T-1}} \theta^{-1} \log \mathbb{E}[\exp\{\theta J\}] \approx \mathbb{E}[J] + \theta Var[J]$$

Risk-sensitive optimal control

Uncertainty as a *positive* or *negative* influence?

$$\min_{\boldsymbol{u}_{0\cdots T-1}} \theta^{-1} \log \mathbb{E}[\exp\{\theta J\}]$$

$$\approx \mathbb{E}[J] + \theta Var[J]$$

Risk-averse

 $\theta > 0$

Uncertainty *increases* overall cost

Risk-neutral

 $\theta = 0$

Ignore uncertainty

Risk-seeking

 $\theta < 0$

Uncertainty *decreases* overall cost

Adapts robot behavior to uncertainty level

Simplified setting -> Regulation around desired trajectory

Problem formulation

System dynamics
$$\boldsymbol{\xi}_{k+1} = \boldsymbol{f}(\boldsymbol{\xi}_k, \boldsymbol{u}_k) + \boldsymbol{\varepsilon}_k$$
 $\boldsymbol{\varepsilon}_k \sim \mathcal{N}(0, \Sigma_k)$

$$\boldsymbol{\varepsilon}_k \sim \mathcal{N}(0, \Sigma_k)$$

Second order *error* dynamics:

$$\boldsymbol{\xi} = \begin{bmatrix} x_d - x \\ \dot{x}_d - \dot{x} \end{bmatrix}$$

$$\boldsymbol{\xi}_{k+1} = A_k \boldsymbol{\xi}_k + B_k \boldsymbol{u}_k + \varepsilon_k$$

$$\boldsymbol{\xi} = \begin{bmatrix} x_d - x \\ \dot{x}_d - \dot{x} \end{bmatrix} \qquad \boldsymbol{\xi}_{k+1} = A_k \boldsymbol{\xi}_k + B_k \boldsymbol{u}_k + \varepsilon_k \qquad \Sigma = \begin{bmatrix} 0 & 0 \\ 0 & Var[\dot{x}_d] \end{bmatrix}$$

DS - Manipulator dynamics (linear approx around simulated trjectory)

Initial state

$$\boldsymbol{\xi}_0 = \begin{bmatrix} 0 \\ \dot{x}_{d,0} - \dot{x}_0 \end{bmatrix}$$

Problem formulation

Cost

$$J = \sum_{k=0}^{T} \boldsymbol{\xi}_k^{\mathsf{T}} Q \boldsymbol{\xi}_k + \boldsymbol{u}_k^{\mathsf{T}} R \boldsymbol{u}_k$$

Trade-off between accuracy/effort

Optimization criterion

$$\min_{\boldsymbol{u}_{0\cdots T-1}} \theta^{-1} \log \mathbb{E}[\exp\{\theta J\}] \approx \mathbb{E}[J] + \theta Var[J]$$

Solution

(Linear-quadratic regulation problem)

$$m{u}_k = -L_k m{\xi}_k = -egin{bmatrix} K_k(x_d - x) \\ D_k(\dot{x}_d - \dot{x}) \end{bmatrix}$$
 Stiffness Damping

Expectation

$$\min_{oldsymbol{u}_{0\cdots T-1}}\mathbb{E}[J]$$

$$K_k = R^{-1}B'(BR^{-1}B' + \Pi_{k+1}^{-1})^{-1}A$$

$$\Pi_k = Q_k + A'(BR^{-1}B' + \Pi_{k+1}^{-1})^{-1}A, \qquad \Pi_T = Q_T$$

Risk-sensitive solution
$$\min_{\boldsymbol{u}_{0\cdots T-1}} \theta^{-1} \log \mathbb{E}[\exp\{\theta J\}] \approx \mathbb{E}[J] + \theta Var[J]$$

$$K_k = R^{-1}B'(BR^{-1}B' - \theta \Sigma_k + \Pi_{k+1}^{-1})^{-1}A$$

$$\Pi_k = Q_k + A'(BR^{-1}B' - \theta \Sigma_k + \Pi_{k+1}^{-1})^{-1}A, \qquad \Pi_T = Q_T$$

Compute at each time step → Model predictive control

Only use the solution at simulation time 0

Summary

- Uncertainty encodes valuable information!
- Risk-sensitive optimal control is a convenient tool for control problems with uncertain probabilistic models (LfD)
- Assess uncertainty's influence in different ways depending on risksensitivity parameter.

Open issues and ongoing research

- Consider feedforward + feedback control in the optimization => uncertainty-dependent <u>trajectories</u> and <u>compliance</u>.
- Systematic way to select risk-sensitivity parameters.

