Machine Learning

Kevin Corcoran

December 9, 2021

Contents

4:	Assignment 4	1
1	Part 1	1
2	Part 2	2
3	Part 3	3

Lecture 1: Assessing Classification Performance

Mon 04 Oct 2021 15:01

1 Contingency Tables

	Predicted +	Predicted $-$	
Actual + Actual-	5 (TP) 4 (FN)	5 (FP) 100 (TN)	
	9 (P)	105 (N)	114

1.1 Accuracy

$$acc = \frac{TP + TN}{P + N} = 92.1\%$$
 (1)

1.2 Precision

$$prec = \frac{TP}{\hat{P}} = 50\% \tag{2}$$

1.3 Recall/Sensitivity

$$recall = \frac{TP}{P} = 55.6\% \tag{3}$$

1.4 Examples

- Covid19
 - Recall is more important
 - Want less false negatives. Don't want someone with covid (pos) to think the don't have it (neg).
- Google
 - Precision is more important
 - Want less false positives. Don't want an unwanted (pos) to show up in the search results.

1.5 Contingency Venn Diagram

Figure 1: Contingency Venn Diagram

2 Coverage Plots

Consider classifiers C_1, C_2, C_3

In a coverage plot, classifiers with the same accuracy are connected by line segments with slope 1. Both C_1 and C_3 dominate C_2 , but the choice of classifier depends on whether we want more true positives (less false negatives), in which case we choose C_3 , or we care less about true positives and want less false positives, in which case we choose C_1 .

So for Covid19, we choose C_3 , and for Google, we choose C_1 ?

Figure 2: Coverage Plot