Colle 0

Quille pendulaire ★ – Corrigé

Concours Commun Mines Ponts 2014.

Mise en situation

Objectif

L'objectif de proposer un correcteur permettant de vérifier l'ensemble des critères du cahier des charges.

C1-02

C2-04

Modélisation du vérin

Question 1 Donner les expressions des fonctions de transfert A_1 , A_2 , A_3 et A_4 en fonction de la variable complexe p et des constantes.

Correction

D'une part, on transforme les équations dans le domaine de Laplace : Q(p) = SpX(p) + SpX(p)D'une part, on transforme les equations dans le dollaine de Laplace . Q(p) = SPX(p) . $\frac{V}{2B}p\Sigma(p)$ et $Mp^2X(p) = S\Sigma(p) - kX(p) - \lambda pX(p) - F_R(p)$. En utilisant le schéma-blocs, on a $\Sigma(p) = A_2 (A_1Q(p) - X(p)) = A_1A_2Q(p) - A_2X(p)$. Par ailleurs $\Sigma(p) = \frac{Q(p) - SpX(p)}{V} = Q(p)\frac{2B}{Vp} - X(p)\frac{S2B}{V}$. On a donc $A_2 = \frac{S2B}{V}$, $A_1A_2 = \frac{2B}{Vp}$ soit $A_1 = \frac{2B}{Vp}\frac{V}{S2B} = \frac{1}{Sp}$. On a aussi $X(p) = A_4 (-F_R(p) + A_3\Sigma(p)) = -A_4F_R(p) + A_3A_4\Sigma(p)$. Par ailleurs, $X(p)(Mp^2 + \lambda p + k) = S\Sigma(p) - F_R(p) \Leftrightarrow X(p) = \frac{S\Sigma(p)}{Mp^2 + \lambda p + k} - \frac{F_R(p)}{Mp^2 + \lambda p + k}$. On

a donc : $A_4 = \frac{1}{Mp^2 + \lambda p + k}$ et $A_3 = S$.

Au final, $A_1 = \frac{1}{Sp}$, $A_2 = \frac{S2B}{V}$, $A_3 = S$ et $A_4 = \frac{1}{Mp^2 + \lambda p + k}$.

Question 2 Donner les expressions des fonctions de transfert H_1 et H_2 en fonction de A_1 , A_2 , A_3 et A_4 , puis de la variable p et des constantes.

Correction

Méthode 1 : Utilisation des relations précédentes On a $X(p) = (H_1Q(p) - F_R(p))H_2(p)$. Par ailleurs, on a vu que $X(p) = A_4 \left(-F_R(p) + A_3 \Sigma(p) \right)$ et $\Sigma(p) = A_2 \left(A_1 Q(p) - X(p) \right)$. On a donc $X(p) = A_4 (-F_R(p) + A_3 A_2 (A_1 Q(p) - X(p))) \Leftrightarrow X(p) (1 + A_2 A_3 A_4) =$ $A_4(-F_R(p) + A_3A_2A_1Q(p))$. On a donc $H_1(p) = A_1A_2A_3$ et $H_2 = \frac{A_4}{1 + A_2A_3A_4}$

Méthode 2 : Lecture directe du schéma-blocs Revient à utiliser la méthode précédente. Méthode 3 : Algèbre de schéma-blocs Le schéma-blocs proposé est équivalent au schéma suivant.

$$A_1 = \frac{1}{Sp}, A_2 = \frac{S2B}{V}, A_3 = S \text{ et } A_4 = \frac{1}{Mp^2 + \lambda p + k}.$$

En faisant le calcul on obtient :
$$H_1(p) = \frac{2BS}{pV}$$
 et $H_2 = \frac{\frac{1}{Mp^2 + \lambda p + k}}{1 + \frac{2BS^2}{V} \frac{1}{Mp^2 + \lambda p + k}}$

$$=\frac{1}{Mp^2+\lambda p+k+\frac{2BS^2}{V}}.$$

Question 3 Pour ce vérin non perturbé ($F_R = 0$), donner sa fonction de transfert X(p)/Q(p) en fonction de la variable p et des constantes.

Correction

Dans ce cas,
$$\frac{X(p)}{Q(p)} = H_1(p)H_2(p)\frac{2BS}{p(MVp^2 + \lambda pV + kV + 2BS^2)}$$
.

Comportement pour une commande de faible amplitude

Question 4 Tracer sur les figures suivantes les diagrammes d'amplitude asymptotiques de Bode de $H_{BO}(p)$ en indiquant les valeurs numériques associées aux points particuliers et la valeur des pentes.

Correction

On a :
$$H_{BO}(p) = \frac{2,2}{p(1+0,12p+0,04p^2)}$$
. En conséquences, $\frac{1}{\omega_0^2} = 0,04$ et $\omega_0 = 5 \text{ rad s}^{-1}$ et $\frac{2\xi}{\omega_0} = 0,12 \Leftrightarrow \xi = 0,3$.

On a donc une asymptote de $-20\,\mathrm{dB/decade}$ pour $\omega < 5\,\mathrm{rad}\,\mathrm{s}^{-1}$ et $-60\,\mathrm{dB/decade}$ pour $\omega > 5\,\mathrm{rad}\,\mathrm{s}^{-1}$.

De plus, pour $\omega = 5 \text{ rad s}^{-1}$, on a $20 \log \frac{2,2}{5} = -7.1 \text{ dB}$.

Question 5 Déterminer par calcul la pulsation de résonance ω_r de cette fonction de transfert.

Correction

On a
$$\omega_r = \omega_0 \sqrt{1 - 2\xi^2} = 5 \times \sqrt{1 - 2 \times 0, 3^2} \simeq 4.5 \,\text{rad s}^{-1}$$
.

Question 6 Évaluer littéralement puis numériquement à cette pulsation ω_r la différence, notée ΔK et exprimée en dB, entre l'amplitude de résonance et l'amplitude évaluée par le diagramme asymptotique.

Correction

L'amplitude de résonance ne dépend que du système du second ordre. On a alors (résultat de cours sur le second ordre) : $\Delta K = 20 \log \left(\frac{1}{2\xi\sqrt{1-\xi^2}}\right) = 20 \log \left(\frac{1}{2\times0,3\sqrt{1-0,3^2}}\right) = 4,8 \, \mathrm{dB}.$

Question 7 Tracer sur la figure précédente, l'allure des diagrammes d'amplitude et

de phase (asymptotiques et allure de la courbe réelle) de Bode de ce correcteur pour $K_{\text{COR}} = 1$. Préciser les expressions littérales des pulsations caractéristiques.

Correction

On a b > 1 donc T < bT et $\frac{1}{T} > \frac{1}{bT}$.

Pour $\omega < \frac{1}{bT}$ on a donc un gain de pente nulle et un déphasage nul.

Pour $\frac{1}{bT} < \omega < \frac{1}{T}$ on a donc un gain de pente -20 dB/decade et un déphasage de -180°.

Pour $\omega > \frac{1}{T}$ on a donc un gain de pente $0 \, \text{dB/decade}$ et un déphasage de 0° .

Question 8 Déterminer alors en fonction de b, l'amplitude $|C(j\omega^*)|_{\mathrm{dB}}$ à la pulsation notée ω^* .

Correction

$$\left|C\left(j\omega^{*}\right)\right|_{\mathrm{dB}} = 10\log\frac{1+T^{2}\frac{1}{T^{2}b}}{1+b^{2}T^{2}\frac{1}{T^{2}b}} = 10\log\frac{1+\frac{1}{b}}{1+b} = 10\log\frac{1}{b}\frac{1+b}{1+b} = -10\log b.$$

Question 9 Pour $K_{\text{COR}} = 1$, en faisant correspondre la pulsation de résonance ω_r de H_{BO} à ω^* :

- ightharpoonup calculer b pour que « l'excès » de gain ΔK soit compensé par le correcteur et calculer la valeur de T;
- \blacktriangleright calculer le supplément de déphasage introduit par le correcteur à la pulsation ω^* .

Correction

D'une part, on veut que $|C(j\omega^*)|_{\mathrm{dB}} = -4.8$ soit $10\log b = 4.8$ et b = 3.02. D'autre part, $\omega^* = \omega_r$ et $T = \frac{1}{\omega_r \sqrt{b}} = 0.127\,\mathrm{s}$.

Par ailleurs, on a donc $\phi\left(\omega^*\right) = \arcsin\left(\frac{1-b}{1+b}\right) = \arcsin\left(\frac{1-3,02}{1+3,02}\right) \simeq -28,79^\circ.$

Validation du cahier des charges

Question 10 Déterminer la vitesse de rotation angulaire maximale de la quille obtenue avec ce réglage du correcteur. Validez les exigences 2.2.1 et 2.2.2 en laissant vos constructions apparentes.

Correction

En regardant où la courbe a la pente la plus importante, on a apporximativement 2/0, $5 \simeq 4^\circ/s$. $t_5\% \simeq 2.3 \, \text{s} < 4 \, \text{s} \, 4^\circ/s < 8^\circ/s$.

CDCF validé.

Question 11 Conclure en utilisant le diagramme ci-dessous.

Correction

