Stats 141SL Thyroid Eye Disease Volume - Final

Yi Ai Chen, Niamh Evenhouse, Mrinalini Garg, Kitu Komya, Caitlin Shener, Mohini Vembusubramanian

3/23/2018

Cleaning up the data (Yi Ai)

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
# read data, deleted hidden cols via excel - yiai
#setwd("~/Desktop/School/STATS 141SL/Final Project")
#TEDV visible cols <- read.csv("TEDV.csv")</pre>
# read data, deleted hidden cols via excel
TEDV visible cols <- read.csv(file = "TEDV.csv")
# new `control` patient variable
control <- c(rep(0, 24), rep(1, 21)) # 24 patients, 21 control obs
TEDV_visible_cols <- cbind(TEDV_visible_cols, control)</pre>
# replicate observations that are non-control
TEDV_replicated <- rbind(TEDV_visible_cols, TEDV_visible_cols[1:24,])</pre>
# rows 1:24 will be OD, rows 25:69 will be OS. label OD = 0, OS = 1 (use OS for control obs)
OD_or_OS \leftarrow c(rep(0, 24), rep(1, 45))
# make a new variable optic neuropathy (present if 12th var is 0, 1 or 2)
optic_neuropathy <- rep(NA, 69)
for(i in 1:24) {
  if(is.na(TEDV_replicated[i, 12])){
    optic_neuropathy[i] <- 0
  else if(TEDV_replicated[i,12] == 0) {
    optic_neuropathy[i] <- 1
  else if(TEDV_replicated[i,12] == 2) {
    optic_neuropathy[i] <- 1</pre>
  }
  else {
```

```
optic_neuropathy[i] <- 0</pre>
 }
}
for(i in 25:69) {
  if(is.na(TEDV_replicated[i, 12])){
    optic_neuropathy[i] <- 0
  else if(TEDV_replicated[i,12] == 1) {
    optic_neuropathy[i] <- 1</pre>
  else if(TEDV_replicated[i,12] == 2) {
    optic_neuropathy[i] <- 1
  else {
    optic_neuropathy[i] <- 0
}
sum(optic_neuropathy) # should be 9
## [1] 9
# combine cols
TEDV_replicated <- cbind(TEDV_replicated, OD_or_OS, optic_neuropathy)</pre>
# make new cols!
lagophthalmos <- c(TEDV_replicated[1:24, 4], TEDV_replicated[25:69, 5])</pre>
hertel <- c(TEDV_replicated[1:24, 6], TEDV_replicated[25:69, 7])
# strabismus # don't need to fix, applies to both eyes
medial_bow <- c(TEDV_replicated[1:24, 14], TEDV_replicated[25:69, 15])</pre>
decompression <- c(TEDV_replicated[1:24, 16], TEDV_replicated[25:69, 17])
fat_volume <- c(TEDV_replicated[1:24, 18], TEDV_replicated[25:69, 19])</pre>
muscle_volume <- c(TEDV_replicated[1:24, 20], TEDV_replicated[25:69, 21])</pre>
orbit_volume <- c(TEDV_replicated[1:24, 22], TEDV_replicated[25:69, 23])
FV.OV <- c(TEDV_replicated[1:24, 24], TEDV_replicated[25:69, 25])
MV.OV <- c(TEDV_replicated[1:24, 26], TEDV_replicated[25:69, 27])
medial_rectus_muscle_vol <- c(TEDV_replicated[1:24, 28], TEDV_replicated[25:69, 29])</pre>
TEDV <- cbind(TEDV_replicated[,c(1,2,3,8,9,10,13,30,31,32)],lagophthalmos, hertel,medial_bow,decompres
# make new var: fat volume / muscle volume
fat muscle ratio <- TEDV$fat volume/TEDV$muscle volume
TEDV <- cbind(TEDV, fat_muscle_ratio)</pre>
TEDV %>% group by(control) %>% summarise(avg fat volume = mean(fat volume, na.rm = TRUE))
## # A tibble: 2 x 2
##
     control avg_fat_volume
##
       <dbl>
                       <dbl>
## 1
           0
                   8365.816
## 2
           1
                   6699.896
```

```
TEDV %>% group_by(control) %>% summarise(avg_muscle_volume = mean(muscle_volume, na.rm = TRUE))
## # A tibble: 2 x 2
## control avg_muscle_volume
      <dbl>
##
                        <dbl>
## 1
          0
                    11544.026
## 2
          1
                     7897.825
TEDV %>% group_by(control) %>% summarise(avg_orbit_volume = mean(orbit_volume, na.rm = TRUE))
## # A tibble: 2 x 2
   control avg_orbit_volume
##
##
      <dbl>
                       <dbl>
## 1
          0
                    24763.24
## 2
          1
                    22160.14
TEDV %>% group_by(control) %>% summarise(avg_medial_rectus_volume = mean(medial_rectus_muscle_vol, na.r.
## # A tibble: 2 x 2
##
   control avg_medial_rectus_volume
## 1
          0
                            2081.173
## 2
          1
                             837.308
```

Exploration of data (Yi Ai)

```
# histograms of numerical values
hist(TEDV$Age)
```

Histogram of TEDV\$Age

hist(TEDV\$CAS.score)

Histogram of TEDV\$CAS.score

hist(TEDV\$OSDI.score)

Histogram of TEDV\$OSDI.score

hist(TEDV\$hertel)

Histogram of TEDV\$hertel

hist(TEDV\$fat_volume)

Histogram of TEDV\$fat_volume

hist(TEDV\$muscle_volume)

Histogram of TEDV\$muscle_volume

hist(TEDV\$orbit_volume)

Histogram of TEDV\$orbit_volume

hist(TEDV\$FV.OV)

Histogram of TEDV\$FV.OV

hist(TEDV\$MV.OV)

Histogram of TEDV\$MV.OV

hist(TEDV\$medial_rectus_muscle_vol)

Histogram of TEDV\$medial_rectus_muscle_vol

hist(TEDV\$fat_muscle_ratio)

Histogram of TEDV\$fat_muscle_ratio


```
# contingency table between optic neuropathy (ON) and logistic/categorical predictors
ON <- factor(TEDV$optic_neuropathy)</pre>
strabismus <- factor(TEDV$Strabismus.0.No.1.yes)</pre>
table(ON, strabismus)
##
      strabismus
## ON
        0 1
     0 16 23
##
lagophthalmos <- factor(TEDV$lagophthalmos)</pre>
table(ON, lagophthalmos)
      lagophthalmos
##
## ON
        0 0.45 0.5 1 1.5
##
             0
                  2 10
     0 19
                  0 0
medial_bow <- factor(TEDV$medial_bow)</pre>
table(ON, medial_bow)
##
      medial_bow
## ON
        0
          1
##
     0 28 7
decompression <- factor(TEDV$decompression)</pre>
table(ON, decompression)
```

```
decompression
##
       0 1
## ON
##
     0 21 14
     1 1 4
##
names(TEDV)
   [1] "Time.of.Image...Date.of.visit" "Age"
##
   [3] "CAS.score"
                                         "OSDI.score"
  [5] "baseline.visit.date"
                                        "time.from.onset"
## [7] "Strabismus.O.No.1.yes"
                                         "control"
## [9] "OD or OS"
                                         "optic neuropathy"
## [11] "lagophthalmos"
                                         "hertel"
## [13] "medial bow"
                                         "decompression"
## [15] "fat_volume"
                                         "muscle_volume"
## [17] "orbit_volume"
                                         "FV.OV"
## [19] "MV.OV"
                                         "medial_rectus_muscle_vol"
## [21] "fat_muscle_ratio"
```

Using Fisher's Exact Test for testing the null independence of rows and columns in contingency tables for categorical variables (Yi Ai)

```
mat_ON_strab <- as.matrix(table(ON, strabismus))</pre>
fisher.test(mat_ON_strab)
##
## Fisher's Exact Test for Count Data
##
## data: mat_ON_strab
## p-value = 1
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1590346 5.1201667
## sample estimates:
## odds ratio
     0.872122
mat_ON_lago <- as.matrix(table(ON, lagophthalmos)) ## too few elements in the matrix, many have O
fisher.test(mat_ON_lago)
##
  Fisher's Exact Test for Count Data
##
## data: mat ON lago
## p-value = 0.02985
## alternative hypothesis: two.sided
mat_ON_med <- as.matrix(table(ON, medial_bow))</pre>
fisher.test(mat_ON_med)
  Fisher's Exact Test for Count Data
##
## data: mat_ON_med
```

```
## p-value = 0.08929
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
    0.5412784 80.0689978
## sample estimates:
## odds ratio
     5.657694
mat_ON_decomp <- table(ON, decompression) ## advised that decompression is not a good predictor of ON,
fisher.test(mat ON decomp)
##
##
   Fisher's Exact Test for Count Data
##
## data: mat_ON_decomp
## p-value = 0.1554
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
      0.5001107 308.6522623
## sample estimates:
## odds ratio
##
     5.747191
```

Results: all p-values not significant, 95% confidence intervals all contain 1. This tells us that we cannot reject the null hypothesis of independence between ON and strabismus, ON and medial bowing, and ON and decompression.

Left versus Right Eye (Mrinalini)

MV.OV Medial_vol

##

FV.OV

```
library(ggplot2)
#Separate table for experimental data:
TEDV %>% filter( control== 0) -> tedv exp
tedv_exp$OD_or_OS<- as.factor(tedv_exp$OD_or_OS)</pre>
# Getting some summary stats for left versus right
# In experiment group
TEDV %>% filter(control== 0, OD_or_OS==1) %% summarise(count=n(), CAS= mean(CAS.score,na.rm= T), OSDI
                     OSDI Strabismus_prop ON_prop lagophthalmos hertel
## 1
        24 2.6667 48.0208
                                   0.5833
                                            0.125
                                                             0.5 21.8542
    medial_bow_prop decompression fat_volume muscle_volume orbit_volume
## 1
                                     8868.116
                                                    11307.66
                                                                 24856.61
                 0.2
                              0.45
               MV.OV Medial_vol
       FV.OV
## 1 34.9509 46.8726
                       1904.092
TEDV %>% filter(control== 0, OD_or_OS==0) %% summarise(count=n(), CAS= mean(CAS.score,na.rm= T), OSD
##
                     OSDI Strabismus_prop ON_prop lagophthalmos hertel
     count
              CAS
        24 2.6667 48.0208
                                   0.5833
                                             0.25
                                                          0.6475 22.3542
##
    medial_bow_prop decompression fat_volume muscle_volume orbit_volume
## 1
                 0.3
                              0.45
                                     7863.517
                                                    11780.39
                                                                 24669.86
```

1 30.764 49.8548 2258.253

```
# Visualising and testing for significance in numerical variables:
#QUESTIONS: Is decompression carried out for both eyes?
#CAS_score, OSDI, strabismus, decompression-- Same for both eyes
# Lagopthalmos
ggplot(tedv_exp, aes(x=lagophthalmos, colour= OD_or_OS)) + geom_density(alpha= 0.1)
```

Warning: Removed 8 rows containing non-finite values (stat_density).

fat volume
ggplot(tedv_exp, aes(x=fat_volume, colour= OD_or_OS)) + geom_density(alpha= 0.1)

#Muscle volume:
ggplot(tedv_exp, aes(x=muscle_volume, colour= OD_or_OS)) + geom_density(alpha= 0.1)

#Hertel
ggplot(tedv_exp, aes(x=hertel, colour= OD_or_OS)) + geom_density(alpha= 0.2)

Warning: Removed 4 rows containing non-finite values (stat_density).

#Medial Rectus Volume: too few obsevations
ggplot(tedv_exp, aes(x=medial_rectus_muscle_vol, colour= OD_or_OS)) + geom_density(alpha= 0.2)

Warning: Removed 32 rows containing non-finite values (stat_density).

```
3e-04-

0e+00-

0e+00-00-

0e+00-

0e+00-

0e+00-

0e+00-

0e+00-

0e+00-

0e+00-

0e+
```

```
# Checking correlations between left and right eye:
# Using pearson coefficients for numerical and chiquared for categorical
\#Lagopthalmos- seems to be independent for two eyes in experiment
cor.test(subset(tedv_exp$lagophthalmos, tedv_exp$OD_or_OS ==1), subset(tedv_exp$lagophthalmos, tedv_exp
##
##
   Pearson's product-moment correlation
##
## data: subset(tedv_exp$lagophthalmos, tedv_exp$OD_or_OS == 1) and subset(tedv_exp$lagophthalmos, ted
## t = 1.8197, df = 18, p-value = 0.08548
\#\# alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## -0.05855501 0.71242947
## sample estimates:
##
         cor
## 0.3941797
#Hertel- seems to be independent for two eyes in experiment
cor.test(subset(tedv_exp$hertel, tedv_exp$0D_or_OS ==1), subset(tedv_exp$hertel, tedv_exp$0D_or_OS==0),
##
##
   Pearson's product-moment correlation
##
## data: subset(tedv_exp$hertel, tedv_exp$OD_or_OS == 1) and subset(tedv_exp$hertel, tedv_exp$OD_or_OS
```

t = 8.1366, df = 22, p-value = 4.452e-08

alternative hypothesis: true correlation is not equal to 0

```
## 95 percent confidence interval:
## 0.7116876 0.9409178
## sample estimates:
##
         cor
## 0.8663591
# Fat volume:
cor.test(subset(tedv_exp$fat_volume, tedv_exp$0D_or_0S ==1), subset(tedv_exp$fat_volume, tedv_exp$0D_or
##
##
  Pearson's product-moment correlation
## data: subset(tedv_exp$fat_volume, tedv_exp$OD_or_OS == 1) and subset(tedv_exp$fat_volume, tedv_exp$
## t = 10.436, df = 22, p-value = 5.519e-10
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8048635 0.9616707
## sample estimates:
##
        cor
## 0.9121153
#Muscle volume- seems to be independent for two eyes in experiment
cor.test(subset(tedv_exp$muscle_volume, tedv_exp$DD_or_OS ==1), subset(tedv_exp$muscle_volume, tedv_exp
##
## Pearson's product-moment correlation
## data: subset(tedv_exp$muscle_volume, tedv_exp$OD_or_OS == 1) and subset(tedv_exp$muscle_volume, ted
## t = 6.7908, df = 22, p-value = 8.003e-07
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6277859 0.9206312
## sample estimates:
        cor
## 0.8228089
#Orbital: seems to be independent for two eyes in experiment
cor.test(subset(tedv_exp$orbit_volume, tedv_exp$0D_or_0S ==1), subset(tedv_exp$orbit_volume, tedv_exp$0
##
## Pearson's product-moment correlation
##
## data: subset(tedv exp$orbit volume, tedv exp$OD or OS == 1) and subset(tedv exp$orbit volume, tedv
## t = 27.792, df = 20, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.9690698 0.9948131
## sample estimates:
        cor
## 0.9872993
# Medial Rectus: Too few observations: But seems significant at 90%
cor.test(subset(tedv_exp$medial_rectus_muscle_vol, tedv_exp$DD_or_OS ==1), subset(tedv_exp$medial_rectu
##
##
  Pearson's product-moment correlation
##
```

Next step would be to fit models separately for both left and right and see how they compare. (To do

Conclusions: Seem indepedent as per pearson's coefficient, but look related in the plots (ask prof)

Control vs Experimental (Kitu)

```
\mathtt{Min}.
                                   Min.
                                           :18.0
                                                   Min.
                                                           : NA
                                                                  \mathtt{Min}.
   1st Qu.: NA
                                   1st Qu.:30.0
                                                   1st Qu.: NA
                                                                  1st Qu.: NA
## Median : NA
                                   Median:42.0
                                                   Median : NA
                                                                  Median: NA
## Mean
                                           :44.9
                                                           :NaN
           :NaN
                                   Mean
                                                   Mean
                                                                  Mean
                                                                          :NaN
##
  3rd Qu.: NA
                                   3rd Qu.:58.0
                                                   3rd Qu.: NA
                                                                  3rd Qu.: NA
## Max.
           : NA
                                   Max.
                                           :91.0
                                                   Max.
                                                           : NA
                                                                  Max.
                                                                          : NA
## NA's
                                                   NA's
                                                           :21
                                                                  NA's
## baseline.visit.date time.from.onset Strabismus.O.No.1.yes
                                                                    control
           : NA
                        Min.
                                : NA
                                         Min.
                                                 : NA
                                                                 Min.
   1st Qu.: NA
##
                         1st Qu.: NA
                                          1st Qu.: NA
                                                                 1st Qu.:1
## Median : NA
                         Median: NA
                                         Median: NA
                                                                 Median:1
##
  Mean
           :NaN
                                :NaN
                                         Mean
                                                                 Mean
                         Mean
                                                 :NaN
   3rd Qu.: NA
                         3rd Qu.: NA
                                          3rd Qu.: NA
                                                                 3rd Qu.:1
##
   Max.
           : NA
                                 : NA
                                                 : NA
                         Max.
                                          Max.
                                                                 Max.
##
    NA's
           :21
                         NA's
                                :21
                                          NA's
                                                 :21
##
       OD_or_OS optic_neuropathy lagophthalmos
                                                     hertel
                                                                  medial_bow
   \mathtt{Min}.
          :1
                Min.
                      :0
                                  Min.
                                          : NA
                                                 Min.
                                                       : NA
                                                                Min.
                                                                       : NA
##
   1st Qu.:1
                1st Qu.:0
                                  1st Qu.: NA
                                                 1st Qu.: NA
                                                                1st Qu.: NA
## Median:1
                Median:0
                                  Median : NA
                                                 Median : NA
                                                                Median: NA
  Mean
          :1
                Mean
                        :0
                                  Mean
                                          :NaN
                                                 Mean
                                                         :NaN
                                                                Mean
                                                                       :NaN
    3rd Qu.:1
                3rd Qu.:0
                                  3rd Qu.: NA
                                                 3rd Qu.: NA
##
                                                                3rd Qu.: NA
##
   {\tt Max.}
           :1
                Max.
                        :0
                                  Max.
                                          : NA
                                                 {\tt Max.}
                                                         : NA
                                                                Max.
##
                                  NA's
                                          :21
                                                 NA's
                                                        :21
                                                                NA's
                                                                       :21
                    fat_volume
                                   muscle_volume
   decompression
                                                     orbit volume
                  Min. : 4257
##
  Min.
           : NA
                                   Min.
                                          : 5773
                                                            :18267
                                                    Min.
   1st Qu.: NA
                  1st Qu.: 5337
                                   1st Qu.: 7076
                                                    1st Qu.:19936
## Median : NA
                  Median: 6423
                                   Median: 7504
                                                    Median :22338
## Mean
           :NaN
                  Mean
                         : 6700
                                   Mean
                                         : 7898
                                                    Mean
                                                            :22160
## 3rd Qu.: NA
                  3rd Qu.: 7635
                                   3rd Qu.: 8081
                                                    3rd Qu.:23303
                          :10611
                                   Max.
                                           :12403
                                                            :26997
## Max. : NA
                  Max.
                                                    Max.
```

```
NA's :21
                 NA's
                       :2
                                 NA's :2
                                                 NA's :2
##
       FV.OV
                       MV.OV
                                   medial_rectus_muscle_vol fat_muscle_ratio
                                   Min. : 649.8
##
           :18.70
                   Min.
                          :26.64
                                                            Min. :0.5064
                                   1st Qu.: 660.2
                                                            1st Qu.:0.6458
   1st Qu.:25.38
                   1st Qu.:30.80
   Median :30.85
                   Median :34.40
                                   Median: 831.9
                                                            Median :0.8068
##
   Mean
          :30.22
                   Mean
                          :35.93
                                   Mean : 837.3
                                                                   :0.8762
                                                            Mean
   3rd Qu.:33.24
                   3rd Qu.:38.77
                                   3rd Qu.: 896.6
                                                            3rd Qu.:1.0845
          :43.65
## Max.
                   Max.
                          :58.66
                                   Max.
                                           :1148.0
                                                            Max.
   NA's
          :2
                   NA's
                          :2
                                   NA's
                                           :16
                                                            NA's
summary(TEDV experimental)
   Time.of.Image...Date.of.visit
                                                   CAS.score
                                      Age
##
   Min.
          :-592.00
                                 Min. :22.79
                                                 Min.
                                                        :0.000
##
   1st Qu.: -18.25
                                 1st Qu.:42.68
                                                 1st Qu.:1.000
##
   Median: 6.00
                                 Median :53.46
                                                 Median :2.500
   Mean
         : -27.75
                                 Mean
                                       :52.81
                                                 Mean :2.667
##
   3rd Qu.: 32.25
                                 3rd Qu.:58.19
                                                 3rd Qu.:4.250
   Max.
         : 117.00
                                        :87.20
                                 Max.
                                                 Max.
                                                        :6.000
##
   NA's
           :8
##
      OSDI.score
                     baseline.visit.date time.from.onset
##
   Min.
         : 4.167
                     Min. :41740
                                         Min. : 71
##
   1st Qu.: 22.396
                     1st Qu.:42111
                                         1st Qu.: 235
##
   Median: 52.083
                     Median :42398
                                         Median: 441
   Mean
         : 48.021
                     Mean :42259
                                         Mean :1075
   3rd Qu.: 70.833
                                         3rd Qu.:1268
##
                     3rd Qu.:42447
##
   Max.
          :100.000
                     Max. :42558
                                         Max.
                                                :5801
##
   NA's
           :8
                     NA's
                          :6
                                         NA's
                                                :8
   Strabismus.O.No.1.yes
                                        OD_or_OS
                                                   optic_neuropathy
##
                            control
##
   Min.
          :0.0000
                         Min.
                                 :0
                                     Min. :0.0
                                                   Min.
                                                         :0.0000
##
   1st Qu.:0.0000
                         1st Qu.:0
                                     1st Qu.:0.0
                                                   1st Qu.:0.0000
   Median :1.0000
                         Median:0
                                     Median:0.5
                                                   Median :0.0000
##
   Mean
         :0.5833
                         Mean
                               :0
                                     Mean :0.5
                                                   Mean
                                                         :0.1875
##
   3rd Qu.:1.0000
                         3rd Qu.:0
                                     3rd Qu.:1.0
                                                   3rd Qu.:0.0000
                                                   Max. :1.0000
##
   Max. :1.0000
                         Max.
                                 :0
                                     Max.
                                            :1.0
##
##
   lagophthalmos
                        hertel
                                      medial_bow
                                                   decompression
         :0.0000
                                          :0.00
                                                   Min. :0.00
##
   Min.
                    Min.
                           :11.00
                                    Min.
##
   1st Qu.:0.0000
                    1st Qu.:20.00
                                    1st Qu.:0.00
                                                   1st Qu.:0.00
   Median :0.0000
                    Median :22.00
                                    Median:0.00
                                                   Median:0.00
##
   Mean
         :0.5737
                    Mean
                          :22.10
                                    Mean :0.25
                                                   Mean :0.45
##
   3rd Qu.:1.0000
                     3rd Qu.:24.25
                                    3rd Qu.:0.25
                                                   3rd Qu.:1.00
##
   Max.
          :2.0000
                    Max. :30.00
                                    Max.
                                          :1.00
                                                   Max.
                                                         :1.00
##
   NA's
          :8
                                    NA's
                                          :8
                                                   NA's :8
                                                       FV.OV
##
      fat volume
                   muscle volume
                                    orbit volume
                                   Min. :15883
   Min. : 2021
                   Min. : 5041
##
                                                   Min.
                                                          : 8.077
   1st Qu.: 5076
                   1st Qu.: 9572
                                    1st Qu.:22949
                                                   1st Qu.:22.222
   Median : 8434
                   Median :11442
                                   Median :24136
                                                   Median :32.885
##
   Mean : 8366
                   Mean
                         :11544
                                   Mean
                                         :24763
                                                   Mean :32.857
##
   3rd Qu.:10713
                   3rd Qu.:13255
                                   3rd Qu.:27256
                                                   3rd Qu.:39.929
##
   Max.
         :19101
                          :18649
                                   Max.
                                          :34370
                                                   Max.
                                                          :55.576
                   Max.
##
                                   NA's
                                          :4
                                                   NA's
                                                          :6
##
        MV.OV
                   medial_rectus_muscle_vol fat_muscle_ratio
                   Min. : 836.3
##
   Min.
           :20.41
                                            Min.
                                                   :0.1921
```

:1.4264

:2

1st Qu.:0.3950

1st Qu.:42.14

1st Qu.:1103.9

```
## Median :47.80
                   Median :1531.9
                                            Median :0.6679
##
  Mean
          :48.36
                  Mean
                          :2081.2
                                            Mean
                                                  :0.7960
   3rd Qu.:54.28
                   3rd Qu.:2823.7
                                            3rd Qu.:1.1168
##
  Max.
           :74.68
                   Max.
                          :4111.2
                                            Max.
                                                   :2.4685
   NA's
           :6
                   NA's
# histograms of controls
hist(TEDV_control$Age, col = "steelblue")
```

Histogram of TEDV_control\$Age

hist(TEDV_control\$fat_volume, col = "steelblue")

Histogram of TEDV_control\$fat_volume

hist(TEDV_control\$muscle_volume, col = "steelblue")

Histogram of TEDV_control\$muscle_volume

hist(TEDV_control\$orbit_volume, col = "steelblue")

Histogram of TEDV_control\$orbit_volume

hist(TEDV_control\$FV.OV, col = "steelblue")

Histogram of TEDV_control\$FV.OV

hist(TEDV_control\$MV.OV, col = "steelblue")

Histogram of TEDV_control\$MV.OV

hist(TEDV_control\$medial_rectus_muscle_vol, col = "steelblue")

Histogram of TEDV_control\$medial_rectus_muscle_vol

histograms of experimentals
hist(TEDV_experimental\$Age, col = "steelblue")

Histogram of TEDV_experimental\$Age

hist(TEDV_experimental\$fat_volume, col = "steelblue")

Histogram of TEDV_experimental\$fat_volume

hist(TEDV_experimental\$muscle_volume, col = "steelblue")

Histogram of TEDV_experimental\$muscle_volume

hist(TEDV_experimental\$orbit_volume, col = "steelblue")

Histogram of TEDV_experimental\$orbit_volume

hist(TEDV_experimental\$FV.OV, col = "steelblue")

Histogram of TEDV_experimental\$FV.OV

hist(TEDV_experimental\$MV.OV, col = "steelblue")

Histogram of TEDV_experimental\$MV.OV

hist(TEDV_experimental\$medial_rectus_muscle_vol, col = "steelblue")

Histogram of TEDV_experimental\$medial_rectus_muscle_vol

TEDV_experimental\$medial_rectus_muscle_vol

```
# t-tests on all vars
t.test(TEDV_control$Age, TEDV_experimental$Age) # not significant: 0.1111
##
##
   Welch Two Sample t-test
##
## data: TEDV_control$Age and TEDV_experimental$Age
## t = -1.6403, df = 30.87, p-value = 0.1111
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -17.727365
                 1.924788
## sample estimates:
## mean of x mean of y
  44.90476 52.80605
t.test(TEDV_control$fat_volume, TEDV_experimental$fat_volume) # signifcant: 0.01603
##
##
   Welch Two Sample t-test
## data: TEDV_control$fat_volume and TEDV_experimental$fat_volume
## t = -2.4757, df = 62.215, p-value = 0.01603
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3010.9356 -320.9043
## sample estimates:
## mean of x mean of y
```

```
## 6699.896 8365.816
t.test(TEDV_control$muscle_volume, TEDV_experimental$muscle_volume) # significant: 1.894*10^-8
##
## Welch Two Sample t-test
##
## data: TEDV_control$muscle_volume and TEDV_experimental$muscle_volume
## t = -6.4901, df = 59.542, p-value = 1.894e-08
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4770.161 -2522.242
## sample estimates:
## mean of x mean of y
## 7897.825 11544.026
t.test(TEDV_control$orbit_volume, TEDV_experimental$orbit_volume) # significant: 0.00222
##
## Welch Two Sample t-test
##
## data: TEDV_control$orbit_volume and TEDV_experimental$orbit_volume
## t = -3.2324, df = 48.083, p-value = 0.00222
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -4222.2306 -983.9619
## sample estimates:
## mean of x mean of y
## 22160.14 24763.24
t.test(TEDV_control$FV.OV, TEDV_experimental$FV.OV) # not significant: 0.29
##
## Welch Two Sample t-test
## data: TEDV_control$FV.OV and TEDV_experimental$FV.OV
## t = -1.0684, df = 55.431, p-value = 0.29
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -7.586280 2.309578
## sample estimates:
## mean of x mean of y
## 30.21913 32.85748
t.test(TEDV_control$MV.OV, TEDV_experimental$MV.OV) # significant: 3.939*10^-6
##
##
  Welch Two Sample t-test
## data: TEDV_control$MV.OV and TEDV_experimental$MV.OV
## t = -5.2212, df = 47.147, p-value = 3.939e-06
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -17.218475 -7.640837
## sample estimates:
## mean of x mean of y
## 35.93404 48.36370
```

```
t.test(TEDV_control$medial_rectus_muscle_vol, TEDV_experimental$medial_rectus_muscle_vol) # significant
##
## Welch Two Sample t-test
##
## data: TEDV_control$medial_rectus_muscle_vol and TEDV_experimental$medial_rectus_muscle_vol
## t = -4.1004, df = 17.485, p-value = 0.0007083
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1882.5377 -605.1913
## sample estimates:
## mean of x mean of y
     837.308 2081.173
# plots comparing control with experimental
library(ggplot2)
TEDV$control <- as.factor(TEDV$control)</pre>
ggplot(TEDV, aes(x = Age, color = control, fill = control)) + geom_density(alpha = 0.4)
    0.03 -
                                                                                   control
    0.02 -
                                                                                       0
    0.01 -
    0.00 -
            20
                              40
                                                60
                                                                  80
                                          Age
  #geom_histogram(data = subset(TEDV, control == 1), fill = "red", alpha = 0.2) +
  #geom_histogram(data = subset(TEDV, control == 0), fill = "blue", alpha = 0.2)
```

ggplot(TEDV, aes(x = Age, color = control, fill = control)) + geom_density(alpha = 0.4)

ggplot(TEDV, aes(x = fat_volume, color = control, fill = control)) + geom_density(alpha = 0.4)

Warning: Removed 2 rows containing non-finite values (stat_density).

ggplot(TEDV, aes(x = muscle_volume, color = control, fill = control)) + geom_density(alpha = 0.4)

ggplot(TEDV, aes(x = orbit_volume, color = control, fill = control)) + geom_density(alpha = 0.4)
Warning: Removed 6 rows containing non-finite values (stat_density).

Warning: Removed 8 rows containing non-finite values (stat_density).

ggplot(TEDV, aes(x = MV.OV, color = control, fill = control)) + geom_density(alpha = 0.4)

Warning: Removed 8 rows containing non-finite values (stat_density).

ggplot(TEDV, aes(x = medial_rectus_muscle_vol, color = control, fill = control)) + geom_density(alpha =

Warning: Removed 48 rows containing non-finite values (stat_density).

Correlation Coefficient (Kitu)

```
# new variable
TEDV$fat_over_muscle <- TEDV$fat_volume/TEDV$muscle_volume</pre>
# new dataframes
TEDV_exp_ON <- TEDV[TEDV$control == 0 & TEDV$optic_neuropathy == 1, ]</pre>
TEDV_exp_no_ON <- TEDV[TEDV$control == 0 & TEDV$optic_neuropathy == 0, ]</pre>
# correlation tests: do this manually for all variables
cor.test(TEDV_exp_ON$hertel, TEDV_exp_ON$muscle_volume, use = "complete.obs")
##
## Pearson's product-moment correlation
## data: TEDV_exp_ON$hertel and TEDV_exp_ON$muscle_volume
## t = 3.0489, df = 7, p-value = 0.01861
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1828911 0.9452598
## sample estimates:
         cor
## 0.7552756
```

```
cor.test(TEDV_exp_no_ON$hertel, TEDV_exp_no_ON$muscle_volume, use = "complete.obs")
##
##
  Pearson's product-moment correlation
##
## data: TEDV_exp_no_ON$hertel and TEDV_exp_no_ON$muscle_volume
## t = 2.9455, df = 37, p-value = 0.005548
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.1394996 0.6605206
## sample estimates:
         cor
## 0.4358336
# make dataframe when significant
dat <- data.frame(</pre>
    x = c(1, 1, 1, 2, 2, 2),
    y = c(0.3, 0.6, 0.9, 0.1, 0.4, 0.7)
# rename variable
dat$x <- ifelse(dat$x == 1, "Experimental with ON", "Experimental without ON")
# plot boxplots for each time correlation coefficient is significant
ggplot(dat, aes(x = factor(x), y = y)) + geom_boxplot(aes(fill = factor(x))) + guides(fill = F) + ylab(
```

Hertel vs Muscle Volume

Modeling (Caitlin)

```
#this is how many non blind eyes vs how many blind eyes
table( TEDV$optic_neuropathy)
##
## 0 1
## 60 9
model_ON <-glm(optic_neuropathy~ CAS.score + OSDI.score + lagophthalmos+ Strabismus.0.No.1.yes + he
summary(model_ON )
##
## Call:
## glm(formula = optic_neuropathy ~ CAS.score + OSDI.score + lagophthalmos +
      Strabismus.O.No.1.yes + hertel + FV.OV + MV.OV + medial_bow +
##
      decompression + medial_rectus_muscle_vol, family = binomial,
      data = TEDV[TEDV$control == 0, ])
##
##
## Deviance Residuals:
## [1] 0 0 0 0 0 0 0 0 0
## Coefficients: (1 not defined because of singularities)
##
                             Estimate Std. Error z value Pr(>|z|)
                           -2.734e+02 9.061e+05
## (Intercept)
                                                    0
## CAS.score
                           1.432e+01 1.382e+05
                                                       0
                                                                1
## OSDI.score
                           -2.130e+00 1.947e+04
## lagophthalmos
                            3.563e+01 1.842e+05
                                                      0
                                                                1
## Strabismus.O.No.1.yes
                                                    NA
                                                               NΑ
                           NA NA
-3.593e+01 1.186e+05
## hertel
                                                     0
                                                                1
## FV.OV
                            1.084e+01 3.641e+04
                                                                1
                            1.178e+01 3.011e+04
## MV.OV
                                                      0
                                                                1
## medial_bow
                            1.125e+02 1.090e+06
                                                       0
## decompression
                            1.794e+02 9.339e+05
                                                       0
                                                                1
## medial_rectus_muscle_vol -2.578e-03 3.148e+02
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1.3460e+01 on 9 degrees of freedom
##
## Residual deviance: 4.2867e-10 on 0 degrees of freedom
     (38 observations deleted due to missingness)
## AIC: 20
##
## Number of Fisher Scoring iterations: 23
model_ON_2 <- glm(optic_neuropathy ~ fat_muscle_ratio, family=binomial, data = TEDV[TEDV$control == 0,
summary(model_ON_2)
##
## glm(formula = optic_neuropathy ~ fat_muscle_ratio, family = binomial,
##
      data = TEDV[TEDV$control == 0, ])
##
## Deviance Residuals:
##
      Min
                1Q Median
                                  3Q
                                          Max
```

```
## -0.8961 -0.7379 -0.5325 -0.3888
##
## Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
##
## (Intercept)
                     -0.3250
                                 0.7863 -0.413
                                                   0.679
## fat muscle ratio -1.6285
                                 1.1091 -1.468
                                                   0.142
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 46.327 on 47 degrees of freedom
## Residual deviance: 43.614 on 46 degrees of freedom
## AIC: 47.614
##
## Number of Fisher Scoring iterations: 5
model_ON_3 <- glm(optic_neuropathy ~ FV.OV, family=binomial, data = TEDV[TEDV$control == 0, ])</pre>
summary(model_ON_3)
##
## Call:
## glm(formula = optic_neuropathy ~ FV.OV, family = binomial, data = TEDV[TEDV$control ==
       0, ])
##
##
## Deviance Residuals:
       Min
                 10
                     Median
                                   30
                                           Max
## -0.9581 -0.6205 -0.4553 -0.3064
                                        2.2210
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 0.05339
                           1.21942
                                    0.044
                                              0.965
## FV.OV
               -0.06184
                           0.04172 -1.482
                                              0.138
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 34.450 on 41 degrees of freedom
## Residual deviance: 31.967 on 40 degrees of freedom
     (6 observations deleted due to missingness)
## AIC: 35.967
##
## Number of Fisher Scoring iterations: 5
model_ON_4 <- glm(optic_neuropathy ~ MV.OV, family=binomial, data = TEDV[TEDV$control == 0, ])</pre>
summary(model_ON_4)
##
## Call:
## glm(formula = optic_neuropathy ~ MV.OV, family = binomial, data = TEDV[TEDV$control ==
      0,])
##
##
## Deviance Residuals:
       Min
                1Q
                      Median
                                   3Q
                                           Max
## -0.7968 -0.5751 -0.5102 -0.4522
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
```

```
## (Intercept) -3.38777
                           2.20572 -1.536
                                              0.125
## MV.OV
                0.03218
                           0.04254
                                     0.757
                                              0.449
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 34.450 on 41 degrees of freedom
## Residual deviance: 33.873 on 40 degrees of freedom
     (6 observations deleted due to missingness)
## AIC: 37.873
##
## Number of Fisher Scoring iterations: 4
model_ON_5 <- glm(optic_neuropathy ~ lagophthalmos, family=binomial, data = TEDV[TEDV$control == 0, ])</pre>
summary(model_ON_5)
##
## Call:
## glm(formula = optic_neuropathy ~ lagophthalmos, family = binomial,
       data = TEDV[TEDV$control == 0, ])
##
## Deviance Residuals:
##
      Min
                10
                     Median
                                   3Q
                                           Max
## -0.6849 -0.5556 -0.4476 -0.4476
                                        2.1681
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
                  -2.2502
                              0.6772 -3.323 0.000891 ***
## (Intercept)
## lagophthalmos
                  0.4598
                              0.6337 0.726 0.468074
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 30.142 on 39 degrees of freedom
## Residual deviance: 29.633 on 38 degrees of freedom
     (8 observations deleted due to missingness)
## AIC: 33.633
##
## Number of Fisher Scoring iterations: 4
model_ON_6 <- glm(optic_neuropathy ~ hertel, family=binomial, data = TEDV[TEDV$control == 0, ])</pre>
summary(model_ON_6)
##
## Call:
## glm(formula = optic_neuropathy ~ hertel, family = binomial, data = TEDV[TEDV$control ==
##
      0,])
## Deviance Residuals:
      Min
                 1Q
                      Median
                                   3Q
                                           Max
## -0.6629 -0.6467 -0.6418 -0.6302
                                        1.8692
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.64330
                          1.96335 -0.837
```

```
## hertel
                 0.00799
                             0.08687
                                       0.092
                                                 0.927
##
##
  (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 46.327 on 47 degrees of freedom
## Residual deviance: 46.319 on 46 degrees of freedom
## AIC: 50.319
## Number of Fisher Scoring iterations: 4
Table of Means to explain why nothing is important.
TEDV %>% group_by(optic_neuropathy) %% summarize(mean(CAS.score, na.rm = TRUE), mean(Strabismus.0.No.1
## # A tibble: 2 x 7
##
     optic_neuropathy `mean(CAS.score, na.rm = TRUE)`
##
                 <dbl>
                                                   <dbl>
## 1
                     0
                                                2.666667
## 2
                                                2.666667
## # ... with 5 more variables: `mean(Strabismus.0.No.1.yes, na.rm =
       TRUE) \( \langle dbl \rangle , \quad \text{mean(orbit_volume, na.rm = TRUE) \quad \langle dbl \rangle ,
       `mean(muscle_volume, na.rm = TRUE)` <dbl>, `mean(fat_volume, na.rm =
## #
       TRUE) \( \langle dbl \rangle , \quad \text{mean(medial_rectus_muscle_vol, na.rm = TRUE) \) \( \langle dbl \rangle \)
model_decompression <-glm(decompression~ CAS.score + OSDI.score + lagophthalmos+ Strabismus.0.No.1.ye
summary(model_decompression)
##
## Call:
## glm(formula = decompression ~ CAS.score + OSDI.score + lagophthalmos +
       Strabismus.O.No.1.yes + hertel + FV.OV + MV.OV + medial bow +
##
       medial_rectus_muscle_vol, data = TEDV[TEDV$control == 0,
##
##
  Deviance Residuals:
##
                                               9
                                                                      46
           1
                                   8
                                                          15
    0.055612
                0.017907
                           -0.018442
                                       0.000874
                                                  -0.067265
                                                              -0.075294
##
##
          49
                      53
                                  54
                                              60
## -0.004257
                0.024034
                          -0.004692
                                       0.071522
##
## Coefficients: (1 not defined because of singularities)
##
                                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                              -0.3136652 0.9182306
                                                      -0.342
                                                                 0.790
## CAS.score
                               0.0949968 0.1134866
                                                       0.837
                                                                 0.556
## OSDI.score
                               0.0189648 0.0086575
                                                        2.191
                                                                 0.273
## lagophthalmos
                               0.0785373 0.1808816
                                                        0.434
                                                                 0.739
## Strabismus.O.No.1.yes
                                                  NΑ
                                                           NΑ
                                                                    NΑ
                                      NΑ
## hertel
                               0.0273305
                                          0.1240738
                                                        0.220
                                                                 0.862
## FV.OV
                              -0.0179793 0.0345942
                                                      -0.520
                                                                 0.695
## MV.OV
                              -0.0086762 0.0310507
                                                      -0.279
                                                                 0.827
## medial_bow
                              -1.1083784
                                          0.3672130
                                                      -3.018
                                                                 0.204
## medial_rectus_muscle_vol 0.0002860 0.0001784
                                                       1.604
                                                                 0.355
##
## (Dispersion parameter for gaussian family taken to be 0.01968114)
##
       Null deviance: 1.600000 on 9 degrees of freedom
##
```

```
## Residual deviance: 0.019681 on 1 degrees of freedom
     (38 observations deleted due to missingness)
## AIC: -13.928
##
## Number of Fisher Scoring iterations: 2
model_Strabismus<- glm(Strabismus.0.No.1.yes~ CAS.score+ Lagophthalmos.OD + Lagophthalmos.OS + Hertel.O
summary(model_Strabismus)
##
## Call:
## glm(formula = Strabismus.O.No.1.yes ~ CAS.score + Lagophthalmos.OD +
       Lagophthalmos.OS + Hertel.OD + Hertel.OS + OSDI.score + OPTIC.NEUROPATHY..O.1. +
##
       OPTIC.NEUROPATHY.EYE..OD.O..OS.1..OU.2. + MEDIAL.BOW.OD..O.1..O..No..1..Yes +
       MEDIAL.BOW.OS..O.1..O..No..1..Yes + DECOMPRESSION.OD..1..O. +
##
##
       DECOMPRESSION.OS..1..0. + FV.OV.OD + FV.OV.OS + MV.OV.OD +
##
       MV.OV.OS + FV.OV.OS + R.Medial.Rectus.Muscle.Volume + Left.Medial.Rectus.Muscle.Volume,
##
       family = binomial, data = TEDV_visible_cols[TEDV_visible_cols$control ==
##
##
## Deviance Residuals:
## [1] 0 0 0 0
## Coefficients: (15 not defined because of singularities)
                                              Estimate Std. Error z value
                                             2.357e+01 1.692e+05
## (Intercept)
## CAS.score
                                            -2.153e-07 3.785e+04
                                                                         0
## Lagophthalmos.OD
                                             8.071e-07 1.463e+05
                                                                         0
## Lagophthalmos.OS
                                            -9.686e-07 2.010e+05
                                                                         0
## Hertel.OD
                                                    NA
                                                                        NA
## Hertel.OS
                                                    NA
                                                                NΑ
                                                                        NA
## OSDI.score
                                                    NA
                                                                NA
                                                                        NA
## OPTIC.NEUROPATHY..O.1.
                                                    NA
                                                                NΑ
                                                                        NA
## OPTIC.NEUROPATHY.EYE..OD.O..OS.1..OU.2.
                                                    NA
                                                                        NA
## MEDIAL.BOW.OD..O.1..O..No..1..Yes
                                                    NΑ
                                                                NA
                                                                        NΑ
## MEDIAL.BOW.OS..O.1..O..No..1..Yes
                                                    NA
                                                                NA
                                                                        NA
## DECOMPRESSION.OD..1..0.
                                                    NA
                                                                NA
                                                                        NA
## DECOMPRESSION.OS..1..0.
                                                    NA
                                                                NA
                                                                        NA
## FV.OV.OD
                                                    NA
                                                               NA
                                                                        NΑ
## FV.OV.OS
                                                    NA
                                                               NΑ
                                                                        NA
## MV.OV.OD
                                                    NA
                                                               NA
                                                                        NA
## MV.OV.OS
                                                    NA
                                                                NA
                                                                        NA
## R.Medial.Rectus.Muscle.Volume
                                                               NA
                                                    NΑ
                                                                        NA
## Left.Medial.Rectus.Muscle.Volume
                                                    NA
                                                                NA
                                                                        NA
                                            Pr(>|z|)
##
## (Intercept)
                                                   1
## CAS.score
                                                   1
## Lagophthalmos.OD
                                                   1
## Lagophthalmos.OS
                                                   1
## Hertel.OD
                                                  NA
## Hertel.OS
                                                  NA
## OSDI.score
                                                  NA
## OPTIC.NEUROPATHY..O.1.
                                                  NΑ
## OPTIC.NEUROPATHY.EYE..OD.O..OS.1..OU.2.
                                                  NΑ
```

NA

MEDIAL.BOW.OD..O.1..O..No..1..Yes

```
## MEDIAL.BOW.OS..O.1..O..No..1..Yes
                                                 NA
## DECOMPRESSION.OD..1..0.
                                                 NΑ
## DECOMPRESSION.OS..1..0.
                                                 NA
## FV.OV.OD
                                                 NΑ
## FV.OV.OS
                                                 NΑ
## MV.OV.OD
                                                 NΑ
## MV.OV.OS
                                                 NΑ
## R.Medial.Rectus.Muscle.Volume
                                                 NΑ
## Left.Medial.Rectus.Muscle.Volume
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 0.000e+00 on 3 degrees of freedom
## Residual deviance: 4.661e-10 on 0 degrees of freedom
     (20 observations deleted due to missingness)
## AIC: 8
##
## Number of Fisher Scoring iterations: 22
library(logistf)
## Warning: package 'logistf' was built under R version 3.4.4
decompression_log <- logistf(decompression~ CAS.score + OSDI.score + lagophthalmos+ Strabismus.0.No.1
summary(decompression_log)
## logistf(formula = decompression ~ CAS.score + OSDI.score + lagophthalmos +
       Strabismus.O.No.1.yes + hertel + FV.OV + MV.OV + medial_bow +
##
##
       medial_rectus_muscle_vol, data = TEDV[TEDV$control == 0,
##
       ])
## Model fitted by Penalized ML
## Confidence intervals and p-values by Profile Likelihood Profile Likelihood Profile Likelihood Profil
##
##
                                     coef
                                              se(coef)
                                                          lower 0.95
## (Intercept)
                            -4.738933e+00 1.034509e+01 -1.805894e+01
## CAS.score
                            1.052394e-01 5.133092e-01 -6.047611e-01
## OSDI.score
                             6.948420e-02 1.425618e-01 -3.122314e-02
## lagophthalmos
                             1.191538e+00 1.565633e+00 -8.162645e-01
## Strabismus.O.No.1.yes
                            -2.466635e-02 4.877426e-01 -1.547153e+00
## hertel
                             6.743252e-04 1.416775e-03 -1.174441e-02
## FV.OV
                            -5.652883e-04 8.510291e-04 -1.652260e-02
## MV.OV
                             9.702845e-03 9.861444e-03 -2.962117e-02
## medial bow
                            -6.957945e-01 6.994267e-01 -5.751928e+00
## medial_rectus_muscle_vol 2.916356e-11 7.107756e-08 -1.643230e-06
                              upper 0.95
                                                Chisq
                            4.190581e+00 0.000000e+00 1.0000000
## (Intercept)
## CAS.score
                            6.759871e-01 0.000000e+00 1.0000000
## OSDI.score
                            2.171606e-01 1.338059e+00 0.2473766
## lagophthalmos
                            4.505138e+00 7.404121e-01 0.3895289
## Strabismus.O.No.1.yes
                            5.364591e+00 0.000000e+00 1.0000000
## hertel
                            2.724841e-02 3.724401e-01 0.5416772
## FV.OV
                            2.062223e-02 1.879952e-01 0.6645905
## MV.OV
                            8.489655e-02 2.050068e-01 0.6507095
                            2.086171e+00 4.419027e-01 0.5062055
## medial_bow
```

```
## medial_rectus_muscle_vol 1.643218e-06 6.735226e-08 0.9997929
##
## Likelihood ratio test=1.916964 on 9 df, p=0.9927136, n=10
## Wald test = 3.120637 on 9 df, p = 0.9593193
## Covariance-Matrix:
##
                  [.1]
                               [,2]
                                             [.3]
                                                           Γ.47
##
   [1,] 1.070209e+02 -4.262530e+00 -1.451299e+00 -7.091261e+00
   [2,] -4.262530e+00 2.634863e-01 5.374691e-02 1.492419e-01
  [3,] -1.451299e+00 5.374691e-02 2.032386e-02 8.039304e-02
   [4,] -7.091261e+00 1.492419e-01 8.039304e-02 2.451206e+00
   [5,] -3.948417e-01 3.758788e-03 2.365198e-03 8.357053e-03
##
   [6,] 7.331637e-03 -2.082105e-04 -1.086453e-04 -2.871671e-04
  [7,] 7.910405e-05 -6.352048e-05 7.501319e-07 1.756484e-04
   [8,] -4.890741e-03 1.117479e-03 4.218882e-05 -2.697743e-03
   [9,] 3.515351e-01 -7.942807e-02 -3.060982e-03 1.913420e-01
## [10,] 9.723820e-11 -1.131644e-13 -1.616797e-12 -3.509257e-12
##
                  [,5]
                               [,6]
                                             [,7]
   [1,] -3.948417e-01 7.331637e-03 7.910405e-05 -4.890741e-03
##
   [2,] 3.758788e-03 -2.082105e-04 -6.352048e-05 1.117479e-03
##
  [3,] 2.365198e-03 -1.086453e-04 7.501319e-07 4.218882e-05
  [4,] 8.357053e-03 -2.871671e-04 1.756484e-04 -2.697743e-03
  [5,] 2.378929e-01 -4.254316e-05 1.783353e-05 -2.676269e-04
##
   [6,] -4.254316e-05 2.007253e-06 -8.752603e-07 8.786442e-06
##
  [7,] 1.783353e-05 -8.752603e-07 7.242506e-07 -6.306052e-06
   [8,] -2.676269e-04 8.786442e-06 -6.306052e-06 9.724808e-05
   [9,] 1.897340e-02 -6.240307e-04 4.441335e-04 -6.896254e-03
##
## [10,] 3.108326e-14 4.397383e-14 -6.363041e-14 -2.731600e-14
##
                  [,9]
                              [,10]
  [1,] 3.515351e-01 9.723820e-11
##
   [2,] -7.942807e-02 -1.131644e-13
## [3,] -3.060982e-03 -1.616797e-12
## [4,] 1.913420e-01 -3.509257e-12
## [5,] 1.897340e-02 3.108326e-14
   [6,] -6.240307e-04 4.397383e-14
## [7,] 4.441335e-04 -6.363041e-14
## [8,] -6.896254e-03 -2.731600e-14
## [9,] 4.891977e-01 -1.387398e-11
## [10,] -1.387398e-11 5.052020e-15
model_ON_logistf <- logistf(optic_neuropathy~ CAS.score + OSDI.score + lagophthalmos+ Strabismus.O.No
summary(model_ON_logistf)
## logistf(formula = optic_neuropathy ~ CAS.score + OSDI.score +
##
      lagophthalmos + Strabismus.O.No.1.yes + hertel + FV.OV +
      MV.OV + medial_bow + decompression + medial_rectus_muscle_vol,
##
##
      data = TEDV[TEDV$control == 0, ], family = binomial)
## Model fitted by Penalized ML
## Confidence intervals and p-values by Profile Likelihood Profile Likelihood Profile Likelihood Profil
##
##
                                             se(coef)
                                    coef
                                                         lower 0.95
                           -1.406250e+00 1.902286e+01 -3.714719e+01
## (Intercept)
                           1.659109e-02 5.404048e-01 -5.474668e-01
## CAS.score
## OSDI.score
                            1.655920e-02 2.877124e-01 -8.361266e-02
```

```
## lagophthalmos
                            4.024792e-01 1.432840e+00 -8.322116e-01
## Strabismus.O.No.1.yes
                            1.421852e-03 4.065993e-01 -4.927741e+00
                            -5.314775e-05 1.913279e-03 -1.741003e-02
## hertel
## FV.OV
                            5.578744e-05 2.001672e-03 -1.168674e-02
## MV.OV
                            -3.658710e-04 8.462519e-03 -5.191529e-02
                            3.370655e-02 6.828944e-01 -3.611438e+00
## medial bow
                            -8.329804e-03 5.019008e-01 -2.453959e+00
## decompression
## medial_rectus_muscle_vol 4.073133e-13 5.796374e-08 -7.420365e-07
##
                             upper 0.95
                                              Chisq
                                                            p
                            5.098175e+00 0.00000000 1.0000000
## (Intercept)
## CAS.score
                            7.172519e-01 0.02552855 0.8730571
## OSDI.score
                            2.659405e-01 0.21328610 0.6442039
## lagophthalmos
                           4.325294e+00 0.77445283 0.3788430
## Strabismus.O.No.1.yes
                           4.010803e+00 0.00000000 1.0000000
## hertel
                            1.539853e-02 0.00000000 1.0000000
## FV.OV
                            1.246485e-02 0.00000000 1.0000000
## MV.OV
                            4.373491e-02 0.00000000 1.0000000
## medial bow
                            3.653056e+00 0.00000000 1.0000000
                           2.760320e+00 0.00000000 1.0000000
## decompression
## medial_rectus_muscle_vol 7.421017e-07 0.00000000 1.0000000
##
## Likelihood ratio test=0.8764926 on 10 df, p=0.9999063, n=10
## Wald test = 0.08758449 on 10 df, p = 1
##
  Covariance-Matrix:
##
                  [,1]
                                [,2]
                                              [,3]
                                                            [,4]
##
    [1,] 3.618691e+02 -8.476400e+00 -5.448369e+00 -1.163909e+01
   [2,] -8.476400e+00 2.920374e-01 1.221397e-01 2.469916e-01
   [3,] -5.448369e+00 1.221397e-01 8.277844e-02 1.558220e-01
   [4,] -1.163909e+01 2.469916e-01 1.558220e-01 2.053031e+00
##
   [5,] -8.114153e-01 1.287400e-02 9.977153e-03 1.682275e-02
   [6,] 3.273957e-02 -6.983883e-04 -5.029538e-04 -6.909124e-04
##
   [7,] -3.224697e-02 6.236511e-04 4.993490e-04 6.857887e-04
   [8,] -1.824937e-02 9.962969e-04 2.633104e-04 -1.498021e-03
##
    [9,] -7.052776e+00 9.530383e-02 1.104579e-01 2.692958e-01
## [10,] 8.239877e+00 -1.636346e-01 -1.274796e-01 -1.615925e-01
   [11,] -2.179878e-10 5.930914e-12 3.289451e-12 2.795639e-12
##
                  [,5]
                                [,6]
                                              [,7]
##
    [1,] -8.114153e-01 3.273957e-02 -3.224697e-02 -1.824937e-02
##
   [2,] 1.287400e-02 -6.983883e-04 6.236511e-04 9.962969e-04
   [3,] 9.977153e-03 -5.029538e-04 4.993490e-04 2.633104e-04
##
   [4,] 1.682275e-02 -6.909124e-04 6.857887e-04 -1.498021e-03
   [5,] 1.653230e-01 -7.301245e-05 6.152505e-05 -1.591337e-04
##
   [6,] -7.301245e-05 3.660636e-06 -3.375547e-06 1.661929e-06
   [7,] 6.152505e-05 -3.375547e-06 4.006691e-06 1.935171e-06
##
   [8,] -1.591337e-04 1.661929e-06 1.935171e-06 7.161423e-05
   [9,] 2.563208e-02 -9.089512e-04 8.391148e-04 -3.999933e-03
   [10,] -1.423336e-02 7.813425e-04 -9.657515e-04 -1.037963e-03
   [11,] 4.962544e-13 1.305713e-16 -5.653166e-15 1.909903e-14
##
##
                  [,9]
                               [,10]
                                             [,11]
##
   [1,] -7.052776e+00 8.239877e+00 -2.179878e-10
##
   [2,] 9.530383e-02 -1.636346e-01 5.930914e-12
##
  [3,] 1.104579e-01 -1.274796e-01 3.289451e-12
   [4,] 2.692958e-01 -1.615925e-01 2.795639e-12
```

```
## [5,] 2.563208e-02 -1.423336e-02 4.962544e-13

## [6,] -9.089512e-04 7.813425e-04 1.305713e-16

## [7,] 8.391148e-04 -9.657515e-04 -5.653166e-15

## [8,] -3.999933e-03 -1.037963e-03 1.909903e-14

## [9,] 4.663448e-01 -1.818500e-01 -2.951128e-12

## [10,] -1.818500e-01 2.519044e-01 -8.913479e-12

## [11,] -2.951128e-12 -8.913479e-12 3.359796e-15
```

out of these there are too many predictors we need to decide which ones to use

```
model_Strabismus_logistf<- logistf(Strabismus.0.No.1.yes~ CAS.score+ Lagophthalmos.OD + Lagophthalmos.O
summary(model_Strabismus_logistf)</pre>
```

Muscle vs Orbital

```
#make a new column that is "control" "ON present" "ON absent"
TEDV$type <- '0'
TEDV[TEDV$optic_neuropathy== 1,'type'] <- 'ON Present'
TEDV[TEDV$optic_neuropathy== 0, 'type'] <- 'ON Absent'
TEDV[TEDV$control== 1,'type'] <- 'Control'
names(TEDV)</pre>
```

```
## [1] "Time.of.Image...Date.of.visit" "Age"
## [3] "CAS.score"
                                         "OSDI.score"
   [5] "baseline.visit.date"
                                         "time.from.onset"
##
## [7] "Strabismus.O.No.1.yes"
                                        "control"
## [9] "OD_or_OS"
                                         "optic_neuropathy"
## [11] "lagophthalmos"
                                         "hertel"
## [13] "medial_bow"
                                         "decompression"
## [15] "fat_volume"
                                         "muscle_volume"
## [17] "orbit_volume"
                                         "FV.OV"
## [19] "MV.OV"
                                         "medial_rectus_muscle_vol"
## [21] "fat_muscle_ratio"
                                        "fat_over_muscle"
## [23] "type"
```

Fat vs age Fat vs CAS.Score Fat vs hertel

```
#EXPLORING THE RELATIONSHIP BETWEEN FAT, MUSCLE, and ORBIT
par(mfrow=c(3,1))
ggplot(TEDV, aes(fat_volume, orbit_volume)) + geom_point(aes(color = type))+ ggtitle("Fat Volume vs Orb
```

Warning: Removed 6 rows containing missing values (geom_point).

ggplot(TEDV, aes(fat_volume, muscle_volume)) + geom_point(aes(color = type))+ ggtitle("Fat Volume vs Mu

Warning: Removed 2 rows containing missing values (geom_point).

ggplot(TEDV, aes(muscle_volume, orbit_volume)) + geom_point(aes(color = type))+ ggtitle("Muscle Volume)

Warning: Removed 6 rows containing missing values (geom_point).


```
par(mfrow= c(1,1))

#EXPLORING FAT IN GENERAL
par(mfrow=c(3,1))
# not very interesting most variation at age 60
ggplot(TEDV, aes(Age, fat_volume)) + geom_point(aes(color = type))+ ggtitle("Age vs Fat Volume") +xlab(
```

Warning: Removed 2 rows containing missing values (geom_point).

#not interesting
ggplot(TEDV, aes(fat_volume, CAS.score)) + geom_point(aes(color = type))+ ggtitle("Fat Volume vs CAS Sc

Warning: Removed 21 rows containing missing values (geom_point).

#nothing significant... not measured for control group
ggplot(TEDV, aes(fat_volume, hertel)) + geom_point(aes(color = type))+ ggtitle("Fat Volume vs Hertel") +

Warning: Removed 21 rows containing missing values (geom_point).

Correlation Matrix (Niamh)

```
TEDV2 \leftarrow cbind(TEDV\_replicated[,c(1,2,3,8,9,10,13,30,31,32)],lagophthalmos, hertel,medial_bow,decompre
names(TEDV2)
  [1] "Time.of.Image...Date.of.visit" "Age"
## [3] "CAS.score"
                                         "OSDI.score"
                                         "time.from.onset"
## [5] "baseline.visit.date"
## [7] "Strabismus.O.No.1.yes"
                                         "control"
##
  [9] "OD_or_OS"
                                         "optic_neuropathy"
                                         "hertel"
## [11] "lagophthalmos"
## [13] "medial_bow"
                                         "decompression"
## [15] "fat_volume"
                                         "muscle_volume"
                                         "FV.OV"
## [17] "orbit_volume"
## [19] "MV.OV"
                                         "medial_rectus_muscle_vol"
##Remove controls and irrelevant columns
TEDV_exp<-subset(TEDV2, TEDV$control==0)</pre>
names(TEDV_exp)
  [1] "Time.of.Image...Date.of.visit" "Age"
  [3] "CAS.score"
                                         "OSDI.score"
## [5] "baseline.visit.date"
                                         "time.from.onset"
```

```
## [7] "Strabismus.O.No.1.yes"
                                           "control"
## [9] "OD_or_OS"
                                           "optic_neuropathy"
## [11] "lagophthalmos"
                                           "hertel"
## [13] "medial_bow"
                                           "decompression"
## [15] "fat_volume"
                                           "muscle volume"
## [17] "orbit volume"
                                           "FV.OV"
## [19] "MV.OV"
                                           "medial rectus muscle vol"
TEDV exp$Time.of.Image...Date.of.visit<-NULL
TEDV exp$baseline.visit.date<-NULL
TEDV exp$time.from.onset<-NULL
TEDV exp$control<-NULL
TEDV_exp$OD_or_OS<-NULL
#convert to factors
TEDV_exp$CAS.score<-as.numeric(TEDV_exp$CAS.score)</pre>
TEDV_exp$Strabismus.0.No.1.yes<-factor(TEDV_exp$Strabismus.0.No.1.yes)
TEDV_exp$optic_neuropathy<-factor(TEDV_exp$optic_neuropathy)</pre>
TEDV_exp$medial_bow<-factor(TEDV_exp$medial_bow)</pre>
TEDV_exp$decompression<-factor(TEDV_exp$decompression)</pre>
## Correlation matrix
library(vcd)
## Warning: package 'vcd' was built under R version 3.4.3
## Loading required package: grid
p_mat<-matrix(nrow=ncol(TEDV_exp), ncol=ncol(TEDV_exp))</pre>
cor_mat<-matrix(nrow=ncol(TEDV_exp), ncol=ncol(TEDV_exp))</pre>
for (i in 1:ncol(TEDV exp)){
  for (j in 1:ncol(TEDV_exp)){
    x<-TEDV_exp[[i]]
    y<-TEDV_exp[[j]]
    if (class(x)=="numeric" & class(y)=="numeric"){
      c<-cor.test(x, y)</pre>
      cor_mat[i,j]<-c$estimate</pre>
      p_mat[i,j]<-c$p.value</pre>
    if ((class(x)=="factor" & class(y)=="factor")){
      tab<-xtabs(~ x+y)</pre>
      res<-assocstats(tab)
      cor_mat[i,j]<-res$phi</pre>
      p_mat[i,j]<-res$chisq_tests[6]</pre>
    if ((class(x)=="factor" & class(y)=="numeric")|(class(x)=="numeric" & class(y)=="factor")){
      x<-as.numeric(x)</pre>
      y<-as.numeric(y)</pre>
      c<-cor.test(x,y)</pre>
      c<-cor.test(x, y)</pre>
      cor_mat[i,j]<-c$estimate</pre>
      p_mat[i,j]<-c$p.value</pre>
   }
 }
}
```

```
length(cor_mat)
## [1] 225
## format for corrplot
nams<-c("Age", "CAS", "OSDI", "Strab", "ON", "lago", "hertel", "bowing", "decom", "FV", "MV", "OV", "FV"
colnames(cor_mat)<-nams</pre>
rownames(cor mat)<-nams</pre>
colnames(p mat)<-nams</pre>
rownames(p mat)<-nams</pre>
options(digits = 2)
cor_mat
##
                  CAS
                       OSDI Strab
                                      ON
                                          lago hertel bowing decom
           Age
         1.000 -0.086
                                         0.072 - 0.340
## Age
                      0.681 0.317
                                  0.219
                                                      0.1189 0.494
         -0.086
               1.000 0.489 0.428 0.000
                                        0.084 0.408 0.4660 0.170
## CAS
## OSDI
         0.681
                0.489 1.000 0.681
                                   0.049 -0.057 -0.031
                                                      0.4533 0.423
                0.428 0.681
## Strab
         0.317
                             1.000
                                   0.027
                                            NA -0.108
                                                      0.3026 0.348
## ON
         0.219
                0.000 0.049
                             0.027
                                   1.000
                                            NA
                                               0.013
                                                      0.3055 0.266
## lago
         0.072
                0.084 -0.057
                               NA
                                      NA
                                            NA
                                               0.234
                                                          NA
                                                      0.1654 0.186
## hertel -0.340
                0.408 -0.031 -0.108
                                         0.234
                                               1.000
                                   0.013
## bowing 0.119
                0.466 0.453 0.303
                                   0.306
                                            NA 0.165
                                                      1.0000 0.290
                0.170 0.423 0.348 0.266
## decom
         0.494
                                            NA 0.186 0.2901 1.000
## FV
         -0.224 0.191 0.035 0.012 -0.201
                                         0.148  0.522  -0.0083  0.237
## MV
         0.103
                0.454 0.106 0.229 0.226
                                         0.036 0.534
                                                      0.1598 0.159
## OV
         0.090
                0.309 0.110 0.093 0.175
                                         0.370
                                                0.369
                                                      0.1618 0.123
        ## FVOV
## MVOV
         -0.024 0.346 0.016 0.184 0.117 -0.210 0.321 0.1493 0.081
         -0.222 0.209 0.052 -0.220 0.370 -0.248 0.631 0.4043 0.398
## MRMV
             F۷
                              FVOV
                                     VOVM
##
                   MV
                          OV
                                           MRMV
## Age
         -0.2239 0.103 0.090 -0.374 -0.024 -0.222
         0.1910 0.454 0.309 0.030 0.346 0.209
## CAS
## OSDI
         ## Strab
         0.0125 0.229 0.093 -0.156
                                   0.184 - 0.220
## ON
         -0.2010 0.226 0.175 -0.237 0.117 0.370
## lago
         ## hertel 0.5218 0.534 0.369 0.554
                                   0.321 0.631
## bowing -0.0083 0.160 0.162 -0.245
                                   0.149 0.404
## decom
         0.2370 0.159 0.123 0.158 0.081 0.398
## FV
          -0.0374 1.000 0.415 -0.076 0.728
## MV
                                          0.655
## OV
         0.6214  0.415  1.000  0.296  -0.299  0.557
## FVOV
         0.9230 -0.076 0.296
                             1.000 -0.285
## MVOV
         -0.3320 0.728 -0.299 -0.285
                                   1.000 0.200
## MRMV
         0.3137 0.655 0.557 0.526
                                   0.200
p_mat
##
                   CAS
                         OSDI
            Age
                               Strab
                                         ON
                                              lago hertel bowing
## Age
         0.0e+00 0.5612 1.3e-06 2.8e-02 1.3e-01 0.6567 1.8e-02 4.6e-01
         5.6e-01 0.0000 1.4e-03 2.4e-03 1.0e+00 0.6053 4.0e-03 2.4e-03
## CAS
         1.3e-06 0.0014 0.0e+00 1.3e-06 7.6e-01 0.7251 8.5e-01 3.3e-03
## OSDI
```

```
## Strab 2.8e-02 0.0024 1.3e-06 4.3e-12 8.5e-01 0.4285 4.7e-01 5.6e-02
## ON
         1.3e-01 1.0000 7.6e-01 8.5e-01 4.3e-12 0.0065 9.3e-01 5.3e-02
         6.6e-01 0.6053 7.3e-01 4.3e-01 6.5e-03 0.0000 1.5e-01 4.0e-01
## hertel 1.8e-02 0.0040 8.5e-01 4.7e-01 9.3e-01 0.1457 0.0e+00 3.1e-01
## bowing 4.6e-01 0.0024 3.3e-03 5.6e-02 5.3e-02 0.4002 3.1e-01 2.5e-10
## decom 1.2e-03 0.2940 6.5e-03 2.8e-02 9.3e-02 0.1972 2.5e-01 6.7e-02
## FV
          1.3e-01 0.1935 8.3e-01 9.3e-01 1.7e-01 0.3611 1.4e-04 9.6e-01
          4.9e-01 0.0012 5.1e-01 1.2e-01 1.2e-01 0.8260 9.2e-05 3.2e-01
## MV
## OV
         5.6e-01 0.0415 5.2e-01 5.5e-01 2.5e-01 0.0265 1.4e-02 3.5e-01
         1.5e-02 0.8528 4.1e-01 3.2e-01 1.3e-01 0.8862 1.4e-04 1.5e-01
## FVOV
## MVOV
         8.8e-01 0.0249 9.3e-01 2.4e-01 4.6e-01 0.2194 3.8e-02 3.8e-01
## MRMV
         4.1e-01 0.4370 8.7e-01 4.1e-01 1.6e-01 0.4375 8.8e-03 1.9e-01
##
            decom
                      F۷
                              MV
                                      OV
                                             FVOV
                                                     VOVM
                                          1.5e-02 8.8e-01 4.1e-01
## Age
         1.2e-03 1.3e-01 4.9e-01 5.6e-01
## CAS
         2.9e-01 1.9e-01 1.2e-03 4.2e-02 8.5e-01 2.5e-02 4.4e-01
## OSDI
         6.5e-03 8.3e-01 5.1e-01 5.2e-01 4.1e-01 9.3e-01 8.7e-01
## Strab 2.8e-02 9.3e-01 1.2e-01 5.5e-01 3.2e-01 2.4e-01 4.1e-01
## ON
         9.3e-02 1.7e-01 1.2e-01 2.5e-01 1.3e-01 4.6e-01 1.6e-01
## lago
         2.0e-01 3.6e-01 8.3e-01 2.6e-02 8.9e-01 2.2e-01 4.4e-01
## hertel 2.5e-01 1.4e-04 9.2e-05 1.4e-02 1.4e-04 3.8e-02 8.8e-03
## bowing 6.7e-02 9.6e-01 3.2e-01 3.5e-01 1.5e-01 3.8e-01 1.9e-01
## decom 2.5e-10 1.4e-01 3.3e-01 4.7e-01 3.6e-01 6.4e-01 2.0e-01
## FV
          1.4e-01 0.0e+00 8.0e-01 6.8e-06 3.5e-18 3.2e-02 2.4e-01
## MV
          3.3e-01 8.0e-01 0.0e+00 5.1e-03 6.3e-01 4.7e-08 5.9e-03
## OV
         4.7e-01 6.8e-06 5.1e-03 0.0e+00 5.7e-02 5.5e-02 3.8e-02
## FVOV
         3.6e-01 3.5e-18 6.3e-01 5.7e-02 1.1e-308 6.7e-02 5.3e-02
## MVOV
         6.4e-01 3.2e-02 4.7e-08 5.5e-02 6.7e-02 0.0e+00 4.9e-01
## MRMV
         2.0e-01 2.4e-01 5.9e-03 3.8e-02 5.3e-02 4.9e-01 7.1e-109
##plot
library(corrplot)
## Warning: package 'corrplot' was built under R version 3.4.3
## corrplot 0.84 loaded
corrplot(cor_mat, type="upper", tl.col = "black", p.mat = p_mat, sig.level = 0.05, insig = "label_sig")
```


Wilcoxon tests (Mrinalini)

```
library(dplyr)
#Data
TEDV %>% filter( control== 0) -> tedv_exp
tedv_exp$MV.FV<- tedv_exp$muscle_volume/ tedv_exp$fat_volume</pre>
#ON
wilcox.test( tedv_exp$lagophthalmos ~tedv_exp$optic_neuropathy)
## Warning in wilcox.test.default(x = c(0, 2, 1, 0.5, 1, 2, 2, 0, 0, 0, 1, :)
## cannot compute exact p-value with ties
##
##
   Wilcoxon rank sum test with continuity correction
##
## data: tedv_exp$lagophthalmos by tedv_exp$optic_neuropathy
## W = 70, p-value = 0.5
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$hertel ~tedv_exp$optic_neuropathy)
## Warning in wilcox.test.default(x = c(22, 30, 24, 21.5, 22, 23, 26, 21,
## 16, : cannot compute exact p-value with ties
```

```
##
## Wilcoxon rank sum test with continuity correction
## data: tedv_exp$hertel by tedv_exp$optic_neuropathy
## W = 200, p-value = 0.8
\#\# alternative hypothesis: true location shift is not equal to 0
#wilcox.test( tedv_exp$F ~tedv_exp$optic_neuropathy)
wilcox.test( tedv exp$muscle volume ~tedv exp$optic neuropathy)
##
##
   Wilcoxon rank sum test
## data: tedv_exp$muscle_volume by tedv_exp$optic_neuropathy
## W = 100, p-value = 0.1
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$orbit_volume ~tedv_exp$optic_neuropathy)
##
   Wilcoxon rank sum test
## data: tedv_exp$orbit_volume by tedv_exp$optic_neuropathy
## W = 100, p-value = 0.4
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$lagophthalmos ~tedv_exp$optic_neuropathy)
## Warning in wilcox.test.default(x = c(0, 2, 1, 0.5, 1, 2, 2, 0, 0, 0, 1, :
## cannot compute exact p-value with ties
## Wilcoxon rank sum test with continuity correction
## data: tedv_exp$lagophthalmos by tedv_exp$optic_neuropathy
## W = 70, p-value = 0.5
## alternative hypothesis: true location shift is not equal to 0
#wilcox.test( tedv_exp$D ~tedv_exp$optic_neuropathy)
wilcox.test( tedv_exp$MV.FV ~tedv_exp$optic_neuropathy)
##
  Wilcoxon rank sum test
## data: tedv_exp$MV.FV by tedv_exp$optic_neuropathy
## W = 100, p-value = 0.06
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$medial_rectus_muscle_vol ~tedv_exp$optic_neuropathy)
## Warning in wilcox.test.default(x = c(1077.73, 949.66, 1529.42, 2602.97, :
## cannot compute exact p-value with ties
##
##
   Wilcoxon rank sum test with continuity correction
## data: tedv_exp$medial_rectus_muscle_vol by tedv_exp$optic_neuropathy
## W = 20, p-value = 0.2
## alternative hypothesis: true location shift is not equal to 0
```

```
tedv_exp %>% filter(optic_neuropathy==1) %% summarise(mean(lagophthalmos, na.rm= T), mean(hertel, na..
     mean(lagophthalmos, na.rm = T) mean(hertel, na.rm = T)
##
## 1
                               0.79
##
    mean(FV.OV, na.rm = T) mean(MV.OV, na.rm = T)
## 1
                         26
##
    mean(orbit_volume, na.rm = T) mean(MV.FV, na.rm = T)
                                                      2.4
## 1
                             26109
##
    mean(medial_rectus_muscle_vol, na.rm = T)
## 1
tedv exp %>% filter(optic neuropathy==0) %% summarise(mean(lagophthalmos, na.rm= T), mean(hertel, na.
##
     mean(lagophthalmos, na.rm = T) mean(hertel, na.rm = T)
## 1
    mean(FV.OV, na.rm = T) mean(MV.OV, na.rm = T)
##
## 1
                         34
##
    mean(orbit_volume, na.rm = T) mean(MV.FV, na.rm = T)
## 1
                             24464
##
    mean(medial_rectus_muscle_vol, na.rm = T)
## 1
                                          1760
#Strabismus
wilcox.test( tedv_exp$lagophthalmos ~tedv_exp$Strabismus.0.No.1.yes)
## Warning in wilcox.test.default(x = c(0, 1, 0.5, 1, 0, 0, 1, 0, 2, 1, 1, :
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
## data: tedv_exp$lagophthalmos by tedv_exp$Strabismus.0.No.1.yes
## W = 200, p-value = 0.6
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$hertel ~tedv_exp$Strabismus.0.No.1.yes)
## Warning in wilcox.test.default(x = c(19, 24, 21.5, 22, 16, 28, 21, 21,
## 26, : cannot compute exact p-value with ties
## Wilcoxon rank sum test with continuity correction
##
## data: tedv_exp$hertel by tedv_exp$Strabismus.O.No.1.yes
## W = 300, p-value = 0.4
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$fat_volume ~tedv_exp$Strabismus.0.No.1.yes)
##
##
   Wilcoxon rank sum test
## data: tedv_exp$fat_volume by tedv_exp$Strabismus.0.No.1.yes
## W = 300, p-value = 0.9
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$muscle_volume ~tedv_exp$Strabismus.0.No.1.yes)
```

```
##
## Wilcoxon rank sum test
##
## data: tedv_exp$muscle_volume by tedv_exp$Strabismus.0.No.1.yes
## W = 200, p-value = 0.3
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$orbit_volume ~tedv_exp$Strabismus.0.No.1.yes)
##
##
   Wilcoxon rank sum test
## data: tedv_exp$orbit_volume by tedv_exp$Strabismus.0.No.1.yes
## W = 300, p-value = 0.6
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$MV.FV ~tedv_exp$Strabismus.0.No.1.yes)# Significant
##
## Wilcoxon rank sum test
## data: tedv_exp$MV.FV by tedv_exp$Strabismus.O.No.1.yes
## W = 200, p-value = 0.2
## alternative hypothesis: true location shift is not equal to 0
tedv_exp %>% filter(Strabismus.0.No.1.yes==1) %% summarise(mean(lagophthalmos, na.rm= T), mean(hertel
##
     mean(lagophthalmos, na.rm = T) mean(hertel, na.rm = T)
## 1
                               0.56
##
    mean(FV.OV, na.rm = T) mean(MV.OV, na.rm = T)
## 1
##
    mean(orbit_volume, na.rm = T) mean(MV.FV, na.rm = T)
## 1
                             25043
##
    mean(medial_rectus_muscle_vol, na.rm = T)
## 1
tedv exp %>% filter(Strabismus.0.No.1.yes==0) %% summarise(mean(lagophthalmos, na.rm= T), mean(hertel
     mean(lagophthalmos, na.rm = T) mean(hertel, na.rm = T)
##
## 1
    mean(FV.OV, na.rm = T) mean(MV.OV, na.rm = T)
##
## 1
                         35
    mean(orbit volume, na.rm = T) mean(MV.FV, na.rm = T)
                             24360
    mean(medial_rectus_muscle_vol, na.rm = T)
##
## 1
#Decompression
wilcox.test( tedv_exp$lagophthalmos ~tedv_exp$decompression)
## Warning in wilcox.test.default(x = c(0, 0, 1, 0.5, 0, 0, 0, 0, 0, 1, :
## cannot compute exact p-value with ties
##
## Wilcoxon rank sum test with continuity correction
## data: tedv_exp$lagophthalmos by tedv_exp$decompression
## W = 100, p-value = 0.02
```

```
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$hertel ~tedv_exp$decompression)
## Warning in wilcox.test.default(x = c(22, 19, 24, 21.5, 21, 16, 21, 17,
## 28, : cannot compute exact p-value with ties
##
  Wilcoxon rank sum test with continuity correction
## data: tedv_exp$hertel by tedv_exp$decompression
## W = 100, p-value = 0.2
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$FV.OV ~tedv_exp$decompression)
##
   Wilcoxon rank sum test
##
## data: tedv_exp$FV.OV by tedv_exp$decompression
## W = 100, p-value = 0.3
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$muscle_volume ~tedv_exp$decompression)
##
##
   Wilcoxon rank sum test
## data: tedv_exp$muscle_volume by tedv_exp$decompression
## W = 200, p-value = 0.8
\#\# alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv_exp$orbit_volume ~tedv_exp$decompression)
##
##
  Wilcoxon rank sum test
## data: tedv exp$orbit volume by tedv exp$decompression
## W = 100, p-value = 0.3
## alternative hypothesis: true location shift is not equal to 0
wilcox.test( tedv exp$MV.FV~tedv exp$decompression)#
##
## Wilcoxon rank sum test
##
## data: tedv_exp$MV.FV by tedv_exp$decompression
## W = 200, p-value = 0.9
## alternative hypothesis: true location shift is not equal to 0
#Decompression correlated to lagorthalmos, hertel, fat_volume, orbit_volume and not MV
tedv_exp %>% filter(decompression==1) %>% summarise(mean(lagophthalmos, na.rm= T), mean(hertel, na.rm=
    mean(lagophthalmos, na.rm = T) mean(hertel, na.rm = T)
##
## 1
                               0.86
##
    mean(FV.OV, na.rm = T) mean(MV.OV, na.rm = T)
## 1
                         36
                                                49
```

```
mean(orbit_volume, na.rm = T) mean(MV.FV, na.rm = T)
## 1
                             25216
##
    mean(medial_rectus_muscle_vol, na.rm = T)
## 1
tedv_exp %>% filter(decompression==0) %>% summarise(mean(lagophthalmos, na.rm= T), mean(hertel, na.rm=
##
    mean(lagophthalmos, na.rm = T) mean(hertel, na.rm = T)
## 1
                               0.34
##
    mean(FV.OV, na.rm = T) mean(MV.OV, na.rm = T)
## 1
                         32
##
    mean(orbit_volume, na.rm = T) mean(MV.FV, na.rm = T)
                             24253
##
    mean(medial_rectus_muscle_vol, na.rm = T) n()
## 1
                                          1108 22
```