Física Geral I • FIS0703

Aula 02 26/09/2016

Prefixos de unidades no sistema SI

factor	prefixo	símbolo	factor	prefixo	símbolo
10^{18}	exa-	E	10^{-18}	ato-	a
10^{15}	peta-	P	10^{-15}	femto-	f
10^{12}	tera-	${ m T}$	10^{-12}	pico-	p
10^{9}	giga-	G	10^{-9}	nano-	\mathbf{n}
10^{6}	mega-	${f M}$	10^{-6}	micro-	μ
10^{3}	kilo-	k	10^{-3}	mili-	\mathbf{m}
10^{2}	hecto-	h	10^{-2}	centi-	$^{\mathrm{c}}$
10^{1}	deca-	da	10^{-1}	deci-	d

$$1km = 10^{3}m = 1000m$$

$$1\mu s = 10^{-6}s = 0,000001s$$

$$1pg = 10^{-12}g = 0,00000000001g$$

$$1mK = 10^{-3}K = 0,001K$$

As potências de 10

Link para o film "Powers of Ten"

Oscilações e ondas

Movimento periódico

Grande importância: quase todos os sistemas físicos podem vibrar ou oscilar.

Exemplos

Corpo humano (ciclo cardíaco, respiração, falar, ouvir, andar, tremer, ...) Ondas eletromagnéticas, som, ondas de água, terramotos...

Fenómenos periódicos repetem-se em intervalos iguais de tempo (o período T)

Periodicidade: x(t+T) = x(t) para qualquer t

"Sinal" repete-se após período T

também x(t+nT) = x(t) onde n é um número inteiro

Movimento harmônico simples

MHS corresponde à variação puramente sinusoidal duma grandeza

frequência angular

$$f=rac{1}{T}$$
 frequência da oscilação

amplitude

Forma equivalente:
$$x(t) = A\cos(\omega t + \delta)$$

$$com \qquad \delta = \phi - \frac{\pi}{2}$$

O MHS ocorre em muitos sistemas físicos:

Uma força restauradora proporcional ao deslocamento relativamente à posição de equilíbrio dá origem a um MHS.

Massa numa mola

Oscilações duma massa numa mola: um exemplo de MHS

Um MHS pode ser interpretado como a projeção dum movimento circular uniforme numa reta.

MHS e movimento circular uniforme

Movimento circular uniforme:

$$\theta(t) = \theta_0 + \omega t$$

Projeções sobre eixos x e y:

$$x(t) = \cos(\theta_0 + \omega t)$$

$$y(t) = \operatorname{sen}(\theta_0 + \omega t)$$

Para amplitude *A*: multiplicar por *A*

$$x(t) = A\cos(\omega t + \theta_0)$$

$$y(t) = A \operatorname{sen} (\omega t + \theta_0)$$

Representação no plano complexo

Consideremos o número complexo

$$z = x + iy i = \sqrt{-1}$$

$$x = \operatorname{Re}(z)$$
 $y = \operatorname{Im}(z)$

Mas também $z = e^{i\theta}$

$$e^{i\theta} = \cos\theta + i \sin\theta \qquad \text{(Euler)}$$

$$\cos \theta = \operatorname{Re}(e^{i\theta}) \qquad \sin \theta = \operatorname{Im}(e^{i\theta})$$

Identidade de Euler

Série de Taylor:

Com
$$\frac{d}{d\theta} \sin \theta = \cos \theta$$
 e $\frac{d}{d\theta} \cos \theta = -\sin \theta$ obtemos

$$\cos \theta = \cos 0 + \frac{\theta}{1!}(-\sin 0) + \frac{\theta^2}{2!}(-\cos 0) + \frac{\theta^3}{3!}(\sin 0) + \dots = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots$$

$$i^2 = -1$$

Usando $i^2 = -1$ e $i^4 = +1$ podemos escrever

$$\cos \theta + i \sec \theta = 1 + i\theta + \frac{(i\theta)^2}{2!} + \frac{(i\theta)^3}{3!} + \frac{(i\theta)^4}{4!} + \dots$$

Dado que $\frac{d}{d\theta}e^{i\theta}=ie^{i\theta}$ vê-se que isto é a série de Taylor da função $e^{i\theta}$

Fica assim demonstrada a identidade de Euler

$$e^{i\theta} = \cos\theta + i \sin\theta$$

Cálculos com a função exponencial complexa

Porque fazer cálculos com a função exponencial complexa?

Derivadas são muito simples!

No fim separa-se a parte real da parte imaginária → resultados reais

Exemplo (sem derivadas)

$$\cos(\alpha + \beta) + i \operatorname{sen}(\alpha + \beta) = e^{i(\alpha + \beta)} = e^{i\alpha}e^{i\beta}$$

$$= [\cos \alpha + i \operatorname{sen}\alpha] [\cos \beta + i \operatorname{sen}\beta]$$

$$= \cos \alpha \cos \beta + i \cos \alpha \operatorname{sen}\beta + i \operatorname{sen}\alpha \cos \beta + i^2 \operatorname{sen}\alpha \operatorname{sen}\beta$$

$$= (\cos \alpha \cos \beta - \operatorname{sen}\alpha \operatorname{sen}\beta) + i (\cos \alpha \operatorname{sen}\beta + \operatorname{sen}\alpha \cos \beta)$$

Parte real: $\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$

Parte imaginária: $sen (\alpha + \beta) = cos \alpha sen \beta + sen \alpha cos \beta$

Equação do MHS

Já vimos que o MHS pode ser representado por $x(t) = A\cos(\omega t + \phi)$

Notação muito usada:
$$\dot{x}(t) \equiv \frac{d}{dt}x(t)$$
 $\ddot{x}(t) \equiv \frac{d^2}{dt^2}x(t)$ etc

$$\dot{x}(t) = -A\omega \operatorname{sen}(\omega t + \phi)$$

$$\ddot{x}(t) = -A\omega^2 \cos(\omega t + \phi) = -\omega^2 x(t)$$

$$\ddot{x}(t) + \omega^2 x(t) = 0$$

Equação diferencial do MHS

Qualquer função que é solução desta equação descreve um MHS.

Por exemplo:
$$x(t) = A \sin(\omega t + \phi)$$

$$x(t) = Ae^{i(\omega t + \phi)}$$

Sistemas reais: oscilações têm um início e um fim.

São aproximadamente sinusoidais apenas quando demoram muitos períodos.