Synchronous Generator

Contents

Global Definitions		2
Synchronous Genera	tor	
•		
-		
Rotating Machine	ery, Magnetic	6
Mesh 1		
Study 1		9
-		
Results		10
Data Sets		10
Plot Groups		11

Global Definitions

Date Apr 26, 2019 12:22:21 PM

GLOBAL SETTINGS

Name	Synchronous Generator.mph
Path	C:\Users\Scrupy\Desktop\Github_Projects\Synchronous Generator.mph
Version	COMSOL Multiphysics 5.4 (Build: 295)

USED PRODUCTS

COMSOL Multiphysics

AC/DC Module

Synchronous Generator

DEFINITIONS

Pairs

Identity Boundary Pair 1

Pair type	Identity pair
Pair name	ар1

Source selection

Destination selection

Coordinate Systems

Boundary System 1

Coordinate system type	Boundary system
Tag	sys1

COORDINATE NAMES

First	Second	Third
t1	n	to

Moving Mesh

Rotating Domain 1

Tag rot1

SELECTION

Geometric entity level	Domain
Selection	Domains 33–38

Selection

GEOMETRY 1

Geometry 1

UNITS

Length unit	mm
Angular unit	deg

MATERIALS

Air

Air

SELECTION

Geometric entity level	Domain
Selection	Domains 1, 3–33, 35–38

Material 2

Material 2

SELECTION

Geometric entity level	Domain
Selection	Domains 2, 34

ROTATING MACHINERY, MAGNETIC

Rotating Machinery, Magnetic

EQUATIONS

Vector potential formulation (Ampère's law):

$$\nabla \times \mathbf{H} = \mathbf{J}$$

$$\mathbf{B} = \nabla \times \mathbf{A}$$

$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t}$$

Scalar potential formulation (Magnetic flux conservation):

$$\nabla \cdot \mathbf{B} = 0$$

FEATURES

Electric Field Transformation 1

Ampère's Law 1

Mixed Formulation Boundary 1

Magnetic Insulation 1

Initial Values 1

Continuity 1

External Current Density 1

External Current Density 2

Coil A

Coil B

Coil C

Electric Field Transformation 2

Ampère's Law 1

EQUATIONS

$$\nabla \times \mathbf{H} = \mathbf{J}$$

$$\mathbf{B} = \nabla \times \mathbf{\Delta}$$

$$\mathbf{B} = \nabla \times \mathbf{A}$$
$$\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t}$$

$$\mathbf{J} = \sigma \mathbf{E}$$

Magnetic Insulation 1

EQUATIONS

$$\mathbf{n} \cdot \mathbf{B} = 0$$

Continuity 1

Magnetic Insulation 1

EQUATIONS

$$\mathbf{n} \cdot \mathbf{B} = 0$$

External Current Density 1

EQUATIONS

$$\mathbf{J} = \sigma \mathbf{E} + \mathbf{J}_{\mathrm{e}}$$

External Current Density 2

EQUATIONS

$$\mathbf{J} = \sigma \mathbf{E} + \mathbf{J}_{e}$$

Coil A

EQUATIONS

$$\mathbf{J}_{\mathrm{e}} = \frac{NI_{\mathrm{coil}}}{A} \mathbf{e}_{\mathrm{coil}}$$

Coil B

EQUATIONS

$$\mathbf{J}_{\mathsf{e}} = \frac{NI_{\mathsf{coil}}}{A} \mathbf{e}_{\mathsf{coil}}$$

Coil C

EQUATIONS

$$\mathbf{J}_{\mathsf{e}} = \frac{NI_{\mathsf{coil}}}{A} \mathbf{e}_{\mathsf{coil}}$$

MESH 1

Mesh 1

Study 1

COMPUTATION INFORMATION

Computation time	1 min 32 s
CPU	Intel64 Family 6 Model 58 Stepping 9, 2 cores
Operating system	Windows 10

TIME DEPENDENT

Times	Unit
range(0,2.314814814814815e-4,0.01666666666666666	66) s

STUDY SETTINGS

Description	Value
Include geometric nonlinearity	On

MESH SELECTION

Geometry	Mesh
mesh1	mesh1

PHYSICS AND VARIABLES SELECTION

Physics interface	Discretization
Rotating Machinery, Magnetic (rmm)	physics

MESH SELECTION

Geometry	Mesh
Geometry 1 (geom1)	mesh1

Results

DATA SETS

Study 1/Solution 1

SOLUTION

Description	Value
Solution	Solution 1
Component	Save Point Geometry 1

Data set: Study 1/Solution 1

PLOT GROUPS

Magnetic Flux Density (rmm)

Surface: Magnetic flux density norm (T) Arrow Surface: Magnetic flux density (material and geometry frames)