Morphological Operators on Binary Image

<u>NHÓM:</u> ULTRABEASTS THÀNH VIÊN:

-	Nguyễn Huỳnh Xuân Mai	1712091
-	Nguyễn Anh Khoa	1712532
-	Huỳnh Lê Minh Nhật	1712632
_	Võ Văn Quân	1712698

1. Giải thích slide 14? (cách nhìn trực giác) (ảnh 1)

Tại mỗi điểm thuộc hình A, đưa mỗi hình tham chiếu của B vào sẽ hằn lên hình A. Ta xét tại biên trước: tại biên hình tham chiếu B sẽ lấn ra ngoài B (với tâm thuộc biên của A, và phần lồi ra có kích thước là d/8), còn khi tham chiếu B tại các điểm nằm trong A (khác biên) thì sẽ hằn lên các điểm thuộc A (bao phủ hết A).

2. Giải thích slide 14? (cách nhìn trực giác) (ảnh 2)

Tương tự, đưa kết cấu B vào mỗi điểm thuộc hình A. Xét ở biên trước: khi trượt B trên biên trên và biên dưới, phần lồi ra là d/2; khi trượt B trên biên trái phải thì phần lồi ra là d/8. Đối với các điểm khác nằm trong hình A thì hình tạo thành vẫn nằm gọn trong biên mới.

3. Chứng minh 2 công thức bằng nhau?

$$X \oplus B = \{ p \in \varepsilon^2 : p = x + b, x \in X \text{ and } b \in B \}$$

 $X \oplus B = \{ p \in \varepsilon^2 : (\hat{B})_p \cap X \neq \emptyset \}$

The translation of a set B by point $z = (z_1, z_2)$, denoted $(B)_z$, is defined as

$$(B)_z = \{c | c = b + z, \text{ for } b \in B\}$$
 (9.1-2)

- Công thức 1 ta có:

p = x + b

 \Leftrightarrow -b + p = x mà giao X sẽ khác rỗng

Ta lấy một thành phần q thuộc (B^{\wedge})p giao X $q = -b + p = x \Leftrightarrow p=x+b$

4. Chứng minh 2 công thức bằng nhau?

$$X \oplus B = \{ p \in \varepsilon^2 : p = x + b, x \in X \text{ and } b \in B \}$$

 $X \oplus B = \bigcup_{b \in B} X_b$

Ta có: p = x + b

- Cố định b, lấy hết tất cả x thuộc X => chính là tập Xb (tập hợp các điểm của x tịnh tiến theo b)
- Cố định x, lấy hết tất cả b thuộc B thì chính là hội của b thuộc B

5. Trực quan hóa giải thích cách erosion

Đưa điểm tham chiếu của B vào các phần tử của X, nếu các điểm hằn của B thuộc X thì lấy phần tử tham chiếu đó.

	О		
О	О	О	О
	О		
	О		
	О		

X	O
---	---

О			
О	О	О	
О			
О			
О			

6. Giải thích slide 19?

Tại mỗi phần tử thuộc hình A, đưa mỗi hình tham chiếu của B vào sẽ hằn lên hình A. Tại các điểm trong A cách biên khoảng lớn hơn d/8 thì các phần tử của B sẽ thuộc luôn A. Biên tới hạn sẽ cách biên của A một khoảng d/8.

Tại các phần tử biên A và các điểm cách biên A khoảng bé hơn d/8, hình tham chiếu B tồn tại các phần tử không thuộc A nên ta loại bỏ các điểm đó.

7. Giải thích vì sao phép co nhị phân làm hình VD nhỏ lại?

- Ta có B là ma trận lập phương 3x3 có điểm tham chiếu ở giữa, nên theo công thức phép co nhị phân tại các vị trí x là biên ảnh sẽ bị mất đi nên khoảng cách trắng sẽ to ra thêm và phần thân đen sẽ nhỏ lại.

8. Giải thích vì sao toán tử X\X(-)B lấy được biên?

-Vì như giải thích ở trên phần biên sao khi lấy phép X(-)B sẽ bị mất nên khi lấy $X\setminus (X(-)B)$ phần biên lúc nãy sẽ hiện ra, phần thân còn lại lúc nãy sẽ mất đi.