MATH463: Complex Variables

James Zhang*

August 27, 2024

These are my notes for UMD's MATH463: Complex Variables. These notes are taken live in class ("live-TeX"-ed). This course is taught by Professor Antoine Mellet.

Contents

1	Introduction		
	1.1	Algebra	2
	1.2	Vectors and Modulus	3
	1.3	Conjugate of a Complex Number	4

^{*}Email: jzhang72@terpmail.umd.edu

§1 Introduction

Definition 1.1 (Complex numbers). A **complex number** takes the form z = x + iy where $x, y \in \mathbb{R}$ and the "x" is the real part = Re(z) and the "y" is the imaginary part = Im(z). We denote \mathcal{C} to be the set of complex numbers.

Note 1.2. Note that $i^2 = -1$.

Note 1.3.

$$z_1 = z_2 \in \mathcal{C} \iff \begin{cases} Re(z_1) = Re(z_2) \\ Im(z_1) = Im(z_2) \end{cases}$$

Definition 1.4 (Pure Imaginary Number). $Im(z) = 0 \implies z$ is real and $Re(z) = 0 \implies z$ is a **pure imaginary number**.

Note 1.5. $z = x + iy \in \mathcal{C} \iff (x, y) \in \mathbb{R}^2$ and we draw this as the **complex plane**. We call the x-axis the "real axis" and the y-axis the "imaginary axis."

Example 1.6

Denote the set S to be

$$S = \{z \in \mathcal{C} \mid Re(z) = 2\} = \{z = 2 + iy \mid y \in \mathbb{R}\}\$$

which graphically is a vertical line at x = 2.

§1.1 Algebra

Definition 1.7 (Sum, Product of Complex Numbers). Let $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2 \in \mathcal{C}$ then we can define the sum

$$z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$$

$$z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = x_1 x_2 + ix_1 y_2 + ix_2 y_1 - y_1 y_2$$

$$\implies z_1 z_2 = (x_1 x_2 - y_1 y_2) + i(y_1 x_2 + x_1 y_2)$$

$$z_1^2 = z_1 z_1 = x_1^2 - y_1^2 + 2ix_1 y_1$$

We can continue to get more powers.

Definition 1.8 (Inverse). Given z = x + iy, we want to find w = u + iv such that zw = 1, so $w = \frac{1}{z}$.

$$zw = xu - yv + i(xv + yu) = 1 + i0 \implies \begin{cases} xu - yv = 1\\ yu + xv = 0 \end{cases}$$

If you know x and y, then this is just a linear system with 2 unknowns. We can rewrite this as

$$\begin{bmatrix} x & -y \\ y & x \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Therefore, this system has a unique soltion if and only if the determinant of this matrix $= x^2 + y^2 \neq 0 \implies x \neq 0 \& y \neq 0$.

Thus, z has a unique inverse if and only if $z \neq 0 + i0$ and

$$u = \frac{x}{x+2+y^2}v = -\frac{y}{x^2+y^2}$$

So,

$$\frac{1}{z} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2}$$

Definition 1.9 (Fraction). Following inverses, fractions naturally follow. For example, $\frac{z_1}{z_2} = z_1 \cdot \frac{1}{z_2}$

Definition 1.10 (Projection). $(z_1z_2)^{-1} = z_1^{-1}z_2^{-1}$

§1.2 Vectors and Modulus

Definition 1.11 (Vector Representations). For example, if $z_1 = 3 - 2i$ then in vector representation this appears as the vector $\begin{bmatrix} 3 & -2 \end{bmatrix}' \in \mathbb{R}^2$

Definition 1.12 (Modulus). The modulus of z = x + iy is the norm of the vector $\begin{bmatrix} x & y \end{bmatrix}' \implies |z| = \sqrt{x^2 + y^2} \in \mathbb{R}, |z| \ge 0$

Note 1.13. |z| = 0 if and only if z = 0 + i0

Note 1.14. If $y = 0 \implies z = x \implies |x| = \sqrt{x^2} = |x|$. Thus, when y = 0, the modulus of z is the absolute value of x

Example 1.15

$$|3 - 2i| = \sqrt{3^2 + 2^2} = \sqrt{13}$$

Example 1.16

$$|i| = \sqrt{0^2 + i^2} = 1$$

Remark 1.17. Observe that

$$|z| = \sqrt{x^2 + y^2} \ge \sqrt{x^2} = |Re(z)|$$

$$|z| = \sqrt{x^2 + y^2} \ge \sqrt{y^2} = |Im(z)|$$

Definition 1.18 (Distance). The distance between $z_1 = x_1 + iy_1$ and $z_2 = x_2 + iy_2$ is

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} = |(x_2 - x_1) + i(y_2 - y_1)| = |z_2 - z_1|$$

Definition 1.19 (Circles). A cricle centered at $z_0 = x_0 + iy_0$ with radius R can be expressed as the set

$$C = \{z \in \mathcal{C} \mid |z - z_0| = R\} = \{z \in \mathcal{C} \mid (x - x_0)^2 + (y - y_0)^2 = R^2\}$$

and so we recover the classical definition of a circle.

Example 1.20

Define the set $S_1 = \{z \in \mathcal{C} \mid |z| = 2\}$ which is a circle of radius 2 centered at $z_0 = 0$. Now define $S_2 = \{z \in \mathcal{C} \mid |z - (-2 + 3i)| = 2\}$ which is a circle of radius 2 centered at -2 + 3i.

Definition 1.21 (Disk). Consider $D = \{z \in \mathcal{C} \mid |z-1| \leq 3\}$ which is a disk centered at $z_0 = 1, R = 3$.

Theorem 1.22 (Triangle Inequality)

Consider two complex numbers z_1, z_2 then

$$|z_1 + z_2| \le |z_1| + |z_2| \ \forall \ z_1, z_2 \in \mathcal{C}$$

Proof. Proof ommitted.

Corollary 1.23 (Consequences of Triangle Inequality)

- $|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$
- $|z_1 + z_2| \ge ||z_1| |z_2||$

Proof. Note that $z_1 = z_1 + z_2 + (-z_2)$ and so

$$|z_1| = |(z_1 + z_2) + (-z_2) \le |z_1 + z_2| + |-z_2| = |z_1 + z_2| + |z_2|$$

a and so we have showed that $|z_1| - |z_2| \le |z_1 + z_2|$. The absolute value is necessary in case $|z_2| > |z_1|$, in which case we can perform a similar proof by switching the order of z_1 and z_2 .

Example 1.24

Consider the unit circle $\{z \in \mathcal{C} \mid |z| = 1\}$ and the point $z_0 = 2$. The smallest this distance can be is 1, and the largest is 3.

$$|z-z_0| \le |z|+|-z_0|=1+2=3$$
 by Triangle Inequality
$$|z-z_0| \ge ||z|-|z_0||=|1-2|=1$$
 by Corollary

§1.3 Conjugate of a Complex Number

Definition 1.25 (Conjugate of a Complex Number). If z = x+iy then the **conjugate** of z is denoted $\bar{z} = x - iy$.

Note 1.26 (Properties of Conjugates).

$$\bullet \ \overline{z_1 + z_2} = \bar{z_1} + \bar{z_2}$$

$$\bullet \ \overline{z_1 z_2} = \bar{z_1} * \bar{z_2}$$

$$\bullet \ (\frac{\bar{1}}{z_1}) = \frac{1}{\bar{z_1}}$$

$$\bullet \ \overline{\overline{z}} = z$$

Remark 1.27.

•
$$z + \overline{z} = x + iy + x - iy = 2x$$

•
$$z - \overline{z} = 2iy$$

•
$$Im(z) = \frac{1}{2i}(z - \bar{z})$$

•
$$z * \bar{z} = (x + iy)(x - iy) = x^2 + y^2 = |z|^2 \ge 0$$