

N I	\sim	Ν Λ	
IN	U	M	:

Prénom:

Partiel O.I / A.I.I (partie OI)

CLASSE: A1

Durée totale: 3 heures

Date: 19/12/2023

Calculatrice autorisée

Aucun document n'est autorisé

Réponses à écrire sur le document

Mise en situation:

Vous êtes le pilote d'un ilot de production d'un atelier de ferrage. Vous travaillez sur la ligne « STYLE ». En tant que responsable, vous avez en charge de mener à bien l'évolution de la ligne pour assurer la fabrication d'une nouvelle gamme de véhicule.

Les temps de cycle sur la ligne STYLE sont identiques pour chaque gamme de véhicules.

Vous vous occupez du contrôle qualité et l'amélioration des performances de la ligne de production.

Problématique générale

L'intégration d'une nouvelle gamme de véhicule entraîne une modification de la production. En effet, la ligne doit assurer l'assemblage d'un nombre supplémentaire de véhicules. La production a pour objectif de réaliser 1450 véhicules par jour.

Problématique n°1

Vous devrez vérifier que les objectifs futurs peuvent être atteints compte tenu de la charge et de la disponibilité actuelle. Cette ligne de production a une cadence de 115 véhicules toutes les 100 minutes. Vous proposerez une solution adaptée à l'augmentation de la production et justifierez votre choix.

Question Q1/1

Il y a 3 équipes par jour. Chaque équipe travaille 7 heures et à 2 pauses. La première pause de 10min a lieu 2h après la prise de poste théorique. 5h après cette même prise de poste, l'équipe aura une seconde pause de 15 min.

Les équipes qui prennent le relais doivent éviter d'arrêter la chaine. Cependant, on observe en moyenne un arrêt de chaine de 6 min à chaque passation.

Horaires des prises de poste et de fin de poste :

Equipe 1	Equipe 2	Equipe 3
06h00 -13h00	13h00 - 20h00	20h00 - 03h00

Avec ces différents éléments et avec l'exemple donné, compléter le planning journalier fourni ci-après :

Planning journalier : organisation des équipes de la ligne STYLE

Arrêt long de la ligne. Pendant ce temps, on procède aux activités de maintenance préventive \mathbb{Z}

Production normale

Arrêt cour (pauses et passation d'équipe)

Calculer, avec les éléments donnés dans le planning journalier, le temps disponible « D » en minutes. (Temps disponible : c'est le temps pendant lequel la ligne est en production dans 1 journée. Les temps de pauses et de passation ne sont pas comptabilisés) **Question Q1/3** Calculer le temps net de fonctionnement « F »(en minutes) sachant que le facteur de disponibilité de la ligne STYLE est de Do = 0,925. Ce facteur tient compte des arrêts liés aux pannes. **Question Q1/4** Calculer le nombre de véhicules par jour maximum que peut produire la ligne STYLE avec les éléments actuels. **Question Q1/5** Compte tenu des valeurs trouvées, pensez-vous que la ligne STYLE soit capable de produire le nombre de véhicules souhaités suite à l'intégration de la nouvelle gamme de la marque. (Cocher la case à gauche de la réponse choisie) NON OUI Justifier votre réponse.

Question Q1/6

Question Q1/2

Le bureau d'étude a déterminé que la ligne STYLE doit, pour honorer ses commandes, produire 296 voitures de plus par jour.

Calculer **le temps disponible** supplémentaire de la ligne STYLE nécessaire pour réaliser ce nombre de véhicules par jour.

Qu	estion	Q1/7	
Le l	oureau	d'études a déterminé qu'il faudrait 4h30' de production en plus par jour.	
Sur	les 2 c	hoix suivants, quel est la solution? (Cocher la case votre choix)	
		Proposer aux opérateurs de travailler en heures supplémentaires afin de faire fonctionner la ligne toutes les 24h/24h pour 5 jours ouvrés par semaine.	
		Proposer de faire travailler une autre équipe le samedi et dimanche.	
Jus	tifier vo	otre réponse	

Problématique n°2

L'ilot, OP80, se décompose en 5 sous-ensembles gérés par un automate :

- 1 conformateur de doublure d'aile A6
- 4 robots (2 avants et 2 arrières) A5
- 1 barre navette A2
- 2 magasins pour acheminer les pièces ajoutées A3 et A4.
- 1 groupe d'encollage A1

Sur cet ilot, les robots soudent les pièces dites « demi façade » avec les « doublures d'ailes ».

Des problèmes de soudures qui nuisent à la cadence prévue nous obligent à mettre en place une stratégie d'autocontrôle et de surveillance des 10 points.

Le Service Qualité décide de mettre en place une carte de contrôle qui permettra d'avoir une image du déroulement du processus de fabrication et d'intervenir efficacement.

La carte de contrôle est un outil utilisé en suivi de production. On relève un échantillon de n pièces (dans notre cas 10 pièces par échantillon à différents moments de la journée (par exemple à 6h00 puis 7h00...), et on calcule la moyenne de l'échantillon notée \overline{X} ainsi que son étendue (valeur max – valeur min) notée R et on reporte ceci dans un graphique.

Par la suite, on calcule la moyenne des moyennes, qu'on note \overline{X} , ainsi que la moyenne des étendues, qu'on note \overline{R} . Ceci nous permet de calculer les limites de contrôle pour la moyenne et l'étendue, et ainsi de savoir si notre production est sous contrôle on non.

Contexte:

Un C.I.D. (Conducteur d'Installation Divers) contrôle les points de soudure d'une demi-façade avec une doublure d'aile, dans un espace de contrôle destructif, à l'aide d'une pince hydraulique qui « déboutonne » les deux parties.

Celui-ci mesure les diamètres des boutons laissés sur une des parties et les archives sur un tableau. Le bouton doit mesurer 6^{±2} mm.

Question Q2/1

A partir du relevé des prélèvements de la journée dans le tableau page 7

- Calculer la moyenne des X manquantes : \bar{X}
- Calculer la moyenne des moyennes \bar{X}
- Calculer les valeurs des étendues manquantes :R
- Calculer la moyenne des étendues : R̄

Compléter le tableau en reportant ces valeurs.

Question Q2/2

Tracer les courbes des moyennes et des étendues en page 8

Question Q2/3

- Calculer la limite de contrôle supérieur de la moyenne LCS \bar{X}
- Calculer la limite de contrôle inférieur de la moyenne LCI \bar{X}
- Calculer la limite de contrôle supérieur de l'étendue LCS R
- Calculer la limite de contrôle inférieur de l'étendue LCI R

Compléter le tableau en reportant ces valeurs.

Question Q2/4 (voir Documents ressources en pages 9 et 10)
Tracer LCS $ar{X}$ et LCI $ar{X}$ sur la courbe des moyennes $ar{X}$ en page 8
Tracer LCSR, LCIR sur la courbe des étendues en page 8
Question Q2/5 (voir Documents ressources en pages 9 et 10)
Que constate le C.I.D. sur la courbe des moyennes ?
Question Q2/6 (voir Documents ressources en pages 9 et 10)
Que peut-il faire pour y remédier ?

Sou	Société: XXXX		Car	Carte de Contrôle de Procédé (X.R. moyenne et étendue) modèle FORD	le de Procéc modèle	Procédé (X/R moye modèle FORD	enne et éten	(enp	Service Qualité N° de la carte: 2013061703
Machine : Ilot STYLE	t STYLE	Produit:1	Produit : 1/2 faça de	Caractéristique contrôlée : diamètre bouton de soudure	contrôlée : ton de	Fréquence d 1 éc	Fréquence d'échantillonage 1/2 fiçade : 1 échantillonage / heures	1/2 fiçade : /heures	Limites de contrôle
Opéra	Opération : soudure	ø.	Désigna	Désignation : Points de soudure	soudure				Moyenne Etendue
Outil: p	Outil: pince de soudure	nre	Diamètre p	Diamètre point de soudure: 6±2 mm	e: 6±2 mm	Matériel de	Matériel de contrôle: pied à coulisse	à coulisse	LCSX = LCSR =
Date de fabrication : 17/06/2013	ion:17/06/20	113		Contrôleur: Dia	Dia				LCIX = LCIR =
N° éch. Par/h	ų9	7h	9h	99	10h	11h	12h	13h	FORMULES
	5,0	0,9	5,0	0,7	2,0	0,9	8,0	7,0	-
	6,0	5,0	6,0	8,0	0'9	2,0	0,7	2,7	X = Moyenne X =
	6,0	2,0	2,0	8,0	0,9	0,9	2,0	9,7	11
Valeurs	6,0	6,0	0,0	0,9	2,0	0'9	0'9	7,6	R = Moyenne R =
	2,0	6,0	0,9	0,0	0'9	8,0	0,7	8,0	11
des	7,0	7,0	7,0	0,7	0'9	0'9	0'9	8,0	$LCSX = X + A2 \times R = \dots$
	7,0	5,0	0,0	2,0	0'9	0,7	0,7	8,0	";
mesure	6,0	6,0	6,0	0,9	7,0	0,7	2,0	8,5	$LCIX = X - A2 \times R = \dots$
	0,9	0,9	0,9	0,9	0'9	0'9	0'9	8,0	10 27
	6,0	0,9	5,0	6,0	7,0	0,0	2,0	8,0	$LCSK = D4 \times K = \dots$
\bar{X}	0,9	2,8	5,8	6,5	0'9	•••••	•••••		1010 03 0 0 -
<u>x</u>									rcin = D3 X n =
R	2,0	2,0	2,0	3,0	2,0				
R				:					
Nota : tout changement de personnes, de matières,	angement o	de person	nes, de m		hodes, en	vironne mer	nt doit être	noté sur la	méthodes, environnement doit être noté sur la feuille de suivi du procédé (journal de bord)

Page **7** sur **10**

pour aider à prendre des actions correctives.

COURBE DES MOYENNES

COURBE DES ETENDUES

DOCUMENTS RESSOURCES

Les quatre étapes de la soudure par point

1 – Accostage	2 - Soudage	3 – Forgeage	4 – Dégagement
 Avant soudage, serrage des pièces par des électrodes sous pression (les deux électrodes correspondent aux deux extrémités de la pince) 	 Passage du courant La résistance entre les tôles provoque une élévation de température 	 Rupture du courant Maintien de la pression Interpénétration du métal en fusion Refroidissement 	 Le métal est solidifié Les électrodes s'écartent Dégagement de la pièce

Test de points de soudure

Ressources Carte de contrôle

En fonction de la cible et de la moyenne des étendues de la carte de contrôle (valeur de l'étendue du premier échantillon pour la première carte), les limites supérieures et inférieures de contrôle sont calculées : Avec les valeurs A2, D3 et D4 fixées par le tableau ci-dessous.

Tableau des valeurs des constantes (n : nombre de pièce dans l'échantillon)

n	2	3	4	5	6	7	8	9	10
D4	3,267	2,574	2,282	2,114	2,004	1,924	1,864	1,816	1,777
D3	0	0	0	0	0	0,0076	0,136	0,184	0,223
A2	1,880	1,023	0,729	0,577	0,483	0,419	0,373	0,337	0,308

Règles de décision pour la carte de contrôle X/R : méthode FORD

Graphique	Description	Carte de la moyenne	Carte de l'étendue					
LIC LSC	Procédé sous contrôle. Les courbes de la moyenne et de l'étendu oscillent de chaque côté de la moyenne	Poursuivre la	a production					
Moy Lic Lic	Point hors limites Le dernier point tracé a franchi une limite de contrôle	Régler le procédé de l'écart moyen qui sépare la tendance de la valeur cible	La dispersion de la machine augmente : il faut trouver la cause de cette dégradation et intervenir					
LSC Moy LIC	Tendance supérieure ou inférieure 7 points consécutifs sont supérieurs ou inférieurs à la moyenne	Régler le procédé de l'écart moyen qui sépare la tendance de la valeur cible						
LIC LIC	Tendance croissante ou décroissante 7 points consécutifs sont en augmentation ou en diminution régulière	Régler le procédé de l'écart qui sépare le dernier point de la valeur cible	La dispersion de la machine varie, il faut trouver la cause de cette évolution et intervenir					
LSC Moy LIC	1 point est proche des limites Le dernier point tracé se situe dans le 1/6 au bord de la carte de contrôle	Confirmer en prélevant immédiatement un autre échantillon. Si celui-ci est aussi proche des limites, il faut effectuer un réglage	Si plusieurs points de la carte sont proches de la limite supérieur, il faut trouver la cause de cette détérioration et d'y remédier					
En cas de	En cas de réglage, il faut prélever immédiatement un nouvel échantillon							