Zeit	Temperatur	Druck	Temperatur	Druck
t[s]	T_1 [°C]	$p_b [\mathrm{bar}]$	T_2 [°C]	$p_a [bar]$
0	$26,6 \pm 0,1$	$7,0 \pm 0,5$	$17,4 \pm 0,1$	4.6 ± 0.2
90	$28,0 \pm 0,1$	7.5 ± 0.5	$16,5 \pm 0,1$	4.6 ± 0.2
180	$30,1 \pm 0,1$	7.9 ± 0.5	$15,1 \pm 0,1$	4.4 ± 0.2
270	$32,1 \pm 0,1$	$8,0 \pm 0,5$	$13,9 \pm 0,1$	$4,2 \pm 0,2$
360	$34,0 \pm 0,1$	$8,5 \pm 0,5$	$12,7 \pm 0,1$	4.1 ± 0.2
450	$35,2 \pm 0,1$	9.0 ± 0.5	$11,9 \pm 0,1$	4.0 ± 0.2
540	$37,0 \pm 0,1$	9.0 ± 0.5	$10,9 \pm 0,1$	4.0 ± 0.2
630	$38,6 \pm 0,1$	9.5 ± 0.5	9.8 ± 0.1	$3,9 \pm 0,2$
720	$40,2 \pm 0,1$	$10,0 \pm 0,5$	$8,9 \pm 0,1$	3.9 ± 0.2
810	$41,7 \pm 0,1$	$10,0 \pm 0,5$	$8,0 \pm 0,1$	3.8 ± 0.2
900	$43,1 \pm 0,1$	$10,5 \pm 0,5$	$7,2 \pm 0,1$	3.6 ± 0.2
990	44.5 ± 0.1	$11,0 \pm 0,5$	6.5 ± 0.1	3.6 ± 0.2
1080	$45,8 \pm 0,1$	$11,0 \pm 0,5$	5.9 ± 0.1	3.6 ± 0.2
1170	$46,6 \pm 0,1$	$11,5 \pm 0,5$	$5,4 \pm 0,1$	3.6 ± 0.2
1260	47.9 ± 0.1	$12,0 \pm 0,5$	4.9 ± 0.1	3.6 ± 0.2
1350	$49,0 \pm 0,1$	$12,0 \pm 0,5$	$4,4 \pm 0,1$	$3,5 \pm 0,2$

Tabelle 1: Messwerte der Temperaturen und Drücke

1 Einleitung

2 Theorie

3 Durchführung

4 Auswertung

Im Folgenden sind die während des Versuchs aufgenommenen Daten und die aus diesen berechneten Größen tabellarisch aufgetragen. An entsprechender Stelle sind Erklärungen zu den Werten und Berechnungen gegeben.

In Tabelle 1 befinden sich die für die Auswertung verwendeten Messdaten für die Temperaturen T_1 und T_2 , die Drücke p_b und p_a , sowie die Zeit t der Aufnahme nach Beginn des Versuchs.as

In Abbildung 1 2 sind die Temperaturverläufe für T_1 und T_2 jeweils mit der entsprechenden Regressionskurve dargestellt. Die mit Hilfe der Python Bibliothek SciPy bestimmten Regressionsparameter für die Kurven der Form $T(t) = At^2 + Bt + C$ sind in Tabelle ?? gelistet.

Aus den Regressionskurven für die Temperaturverläufe lassen sich nun deren Differentialquotienten $\frac{dT_1}{dt}$ und $\frac{dT_2}{dt}$ bestimmen, durch die, die gesuchten Apparaturgrößen berech-

Funktion	A	В	С
T_1	$(-3.87 \pm 0.29) \cdot 10^{-6}$	$(2,20\pm0,04)\cdot10^{-4}$	$299,49 \pm 0,12$
T_2	$(3.59 \pm 0.20) \cdot 10^{-6}$	$(-1.47 \pm 0.03) \cdot 10^{-2}$	$290,76 \pm 0,09$

Tabelle 2: Parameter der Regression mit $T(t) = At^2 + Bt + C$

Abbildung 1: Temperaturverlauf mit Regressionskurve von T_1

net werden können. Die Differntialqoutienten $\frac{\mathrm{d}T_1}{\mathrm{d}t}$ und die berechneten, idealen und realen, Güteziffern sowie deren relativer Unterschied sind in Tabelle 3, die Differnetialquotienten $\frac{\mathrm{d}T_2}{\mathrm{d}t}$ und der daraus bestimmte Massendurchsatz des Transportgases $\frac{\Delta m}{\Delta t}$ in Tabelle 4 zu finden.

Die Berechnung der idealen Güteziffer erfolgt nach (??) durch einsetzen der Temperaturen T_1 und T_2 zu den entsprechnden Zeiten.

 $[15.075078810725582 + /-0.396030894345273\ 16.975685203448712 + /-0.4459609052565894\\ 16.842301539887945 + /-0.44245684055256695\ 17.234121065368917 + /-0.4527501623352543]$

4.1 Fehlerrechnung

5 Diskussion

Abbildung 2: Temperaturverlauf mit Regressionskurve von T_2

Zeit	Differentialquotient	reale Güteziffer	ideale Güteziffer	relativer Unterschied
t[s]	$\frac{\mathrm{d}T_1}{\mathrm{d}t} \left[K s^{-1} \right]$	$ u_{real}\left[1\right] $	$ u_{id}\left[1\right] $	$rac{ u_{real}}{ u_{id}}$
180	0,021	$2,879 \pm 0,115$	$20,217 \pm 0,186$	0,142
360	0,019	$2,684 \pm 0,107$	$14,420 \pm 0,093$	0,186
540	0,018	$2,490 \pm 0,100$	$11,883 \pm 0,062$	0,210
720	0,017	$2,296 \pm 0,092$	$10,011 \pm 0,043$	0,229

Tabelle 3: Reale und ideale Güteziffer im Verhältnis

Zeit	Differentialquotient	Massendurchsatz	Mechanische Leistung
t[s]	$\frac{\mathrm{d}T_2}{\mathrm{d}t} \left[K s^{-1} \right]$	$\frac{\Delta m}{\Delta t} [\mathrm{gs}^{-1}]$	$P_{mech}\left[\mathbf{W}\right]$
180	-0,013	$1,479 \pm 0,039$	$15,075 \pm 0,396$
360	-0,012	$1,336 \pm 0,035$	$16,976 \pm 0,446$
540	-0,011	$1,193 \pm 0,031$	$16,843 \pm 0,443$
720	-0,010	$1,050 \pm 0,028$	$17,234 \pm 0,453$

Tabelle 4: Massendurchsatz des Transportgases