- 1. Joint, marginal and conditional distributions I \star
- 2. Joint, marginal and conditional distributions II *
- 3. Compound distribution
- Sampling vs. evaluating random variables ★
- Generating data ★
- 6. Analyzing and visualizing data ★
- Working with dataframes ★
- 8. Error propagation and functions

Introductory exercises

Eawag Summer School in Environmental Systems Analysis

Note, for the first three exercises you need only pencil and paper.

1. Joint, marginal and conditional distributions I ★

The joint discrete probability table of $P_{A,B}(a,b)$ is given below:

	B.1	B.2	B.3
A.1	0.2	0.1	0.3
A.2	0.1	0.1	0.2

Derive the following probabilities:

- $P_{A,B}(1,2)$
- $P_B(2)$
- $P_{A|B}(1|2)$
- Are A and B independent?

2. Joint, marginal and conditional distributions II ★

Assume the probability densities $p(E \mid B)$, p(B), $p(A, D \mid E)$, and $p(C \mid B, E)$ are known.

 Draw the corresponding directed acyclic graph of the conditional probabilities to visualize the independence structure.

- Derive p(B, C, E)
- Derive the joint distribution of *A*, *B*, *C*, *D*, and *E*.
- Derive $p(A, B \mid C, D, E)$
- Derive $p(A \mid D)$
- Derive $p(A \mid B, E)$

3. Compound distribution

Assume that:

$$\mu \sim f_{\mu}(\mathbf{n}) = \begin{cases} 0.1 \exp(-0.1\mathbf{n}) & \mathbf{n} \ge 0 \\ 0 & \text{else} \end{cases}$$

and

$$X \sim f_{X|\mu \# m}(x \mid m) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x - m)^2}{2}\right)$$

This means X is normal distributed with mean μ and μ itself is exponentially distributed.

Derive and interpret:

- $f_{X,\mu}(x,m)$
- $f_X(x)$, a so called compound distribution.
- $P(\mu > 5)$
- $f_{X,\mu|\mu>5}(x,\mu x)$ $f_{X|\mu>5}(x)$

It is not the aim to find closed forms for the integrals.

4. Sampling vs. evaluating random variables ★

Assume-two random variables X and Y with following distributions:

The
$$X \sim \text{Uniform}(0, 1)$$

 $Y \sim \text{Normal}(2, 10)$

- 1. Evaluate the probability density $f_X(0.8)$ and $f_Y(0.8)$.
- 2. Generate 10000 samples from both random variables. Visualize the distributions as histograms.

Another random variable is defined as a function of X as follows:

$$Z = \sin(2\pi X)\sqrt{X}$$

While it is difficult to derive the probability density of Z, sampling from it is easy. $\angle 3$ Derive the dusty

Generate 10000 samples from Z by first sampling from X and then transforming the samples. \neq_{\geq} (\geq) Visualize as histogram.

10.03.23, 15:05

Hints

R

Julia

Most important univariate probability distributions are already implemented in R. Type ?Distributions to get an overview. For every distribution __ four functions are defined with the following naming scheme:

```
d__(x, ...) # evaluate pdf at x
p__(x, ...) # evaluate cdf at x
q__(p, ...) # evaluate the p-th quantile
r__(n, ...) # sample n random numbers
```

For example, for the normal distribution the functions are called <code>dnorm()</code>, <code>pnorm()</code>, <code>qnorm()</code>, and <code>rnorm()</code>.

Histograms are generated with the function <code>hist</code>. You can adjust the number of bins with the argument <code>breaks</code>, e.g. <code>hist(rnorm(10000)</code>, <code>breaks=100)</code>.

5. Generating data ★

Generate two samples of fictional observations (each of class matrix) denoted as $Y_{\rm obs,indep}$ and $Y_{\rm obs,dep}$. The former should contain 1000 realisations of two *independent* random variables (as two columns of the matrix) and the latter of two *dependent* ones. Use means of $\mu=(3,8)$ for both samples. Use the standard deviations $\sigma_{\rm obs,indep}=(2,5)$ for the independent variables constituting $Y_{\rm obs,indep}$, and the covariance matrix.

$$\Sigma_{\text{obs,dep}} = \begin{pmatrix} 4 & 8 \\ 8 & 25 \end{pmatrix}$$

for the dependent variables constituting $Y_{
m obs,dep}$.

Hints

R

Julia

In R, objects of a certain class can often be constructed by a function that matches the class name, such as matrix(). You can use rnorm() and cbind() to $construct Y_{obs,indep}$ and rmvnorm() from the package mvtnorm to $construct Y_{obs,dep}$.

6. Analyzing and visualizing data ★

Perform some preliminary analysis of the data generated in Task 5:

- a. What are the interquartile and the 90%-interquantile ranges of your samples?
- b. Plot and compare the histograms and the densities of all the marginals
- c. Compare the scatterplots of $Y_{\rm obs,indep}$ and $Y_{\rm obs,dep}$

d. Compute the covariance and the correlation matrix of $Y_{
m obs,indep}$ and $Y_{
m obs,dep}$

Which of the above steps reveal a potential correlation structure in your data?

Try to arrange multiple plots in the same window by setting par(mfrow=c(<nrow>,<ncol>)). Use quantile() to calculate the interquantile range; use hist() and plot(density()) to visualize the data; use cov(), cor() for the covariance and the correlation, respectively.

7. Working with dataframes \star

Real data contain often columns of different data types (e.g. numbers and strings). Dataframes are designed to work with this kind of data conveniently.

a. Import the file ./data/model_growth.csv as dataframe. Perform some analyses similar to the ones in Task 6.

Hints

R Julia

Read the data using read.table("</path/to/somefile.txt>", header=TRUE) to indicate that the first row are the column names (use file ../data/model_growth.csv). To select the column C_M from a dataframe, say data, you can use data C_M or data[,"C_M"].

To add columns, you can use <code>cbind</code> to column-bind the new data to the available matrix and convert everything to a <code>data.frame</code>. Then, you can rename the columns by assigning the desired names with function <code>colnames()</code> applied to the newly created <code>data.frame</code>.

8. Error propagation and functions

It is generally known that, $\underline{\mathbf{f}}f()$ is non-linear: $f(E[X]) \neq E[f(X)]$

where E is the expected value and X is a random variable. Define a non-linear function in R, e.g. $f(x) = \sin \sqrt{x}$. In order to avoid negative values, generate some realizations of a log-normally distributed random variable X. Calculate f(E[X]), E[f(X)], Var[X], Var[f(X)] and compare them.

Hints

R Julia

Use rlnorm to sample from a log-normal distribution, which accepts the mean and the standard deviation on the log-scale, not on the original scale. Additionally, keep in mind that in R a general function can be defined as:

```
function.name <- function(arg1,arg2){
  result <- arg1 + arg2 # or any other operation
  return(result)
}</pre>
```

Most basic functions are already available, and those include both sin and sqrt. Try ?sin in the R console to get access to the manual of the harmonic functions. These can be used anywhere in the code, including inside a custom function.