3.4.1

Use the methods of this chapter to prove that $\forall x (P(x) \land Q(x))$ is equivalent to $\forall x P(x) \land \forall x Q(x)$.

We want to prove $\forall x (P(x) \land Q(x) \iff \forall x P(x) \land \forall x Q(x))$.

Theorem. The statement $\forall x (P(x) \land Q(x))$ is equivalent to $\forall x P(x) \land \forall x Q(x)$.

Proof. (\rightarrow) Suppose $\forall x(P(x) \land Q(x))$. Let y be arbitrary. Since $\forall x(P(x) \land Q(x))$ it follows P(y) and Q(y). Since y was arbitrary, we can conclude $\forall x P(x)$ and $\forall x Q(x)$ or $\forall x P(x) \land \forall x Q(x)$.

 (\leftarrow) Let y be arbitrary. Since $\forall x P(x)$ and $\forall x Q(x)$ then it follows P(y) and Q(y). Since y was arbitrary we can conclude $\forall x (P(x) \land Q(x))$.

3.4.2

Prove that if $A \subseteq B$ and $A \subseteq C$ then $A \subseteq B \cap C$.

Theorem. If $A \subseteq B$ and $A \subseteq C$ then $A \subseteq B \cap C$.

Proof. Let x be arbitrary and suppose $x \in A$. Since $A \subseteq B$ then $x \in B$ and since $A \subseteq C$ then $x \in C$ or $x \in B \cap C$. Therefore, if $x \in A$ then $x \in B \cap C$ and since x was arbitrary we can conclude $A \subseteq B \cap C$.

3.4.3

Suppose $A \subseteq B$. Prove that for every set $C, C \setminus B \subseteq C \setminus A$.

Theorem. Suppose $A \subseteq B$, then for every set C, $C \setminus B \subseteq C \setminus A$.

Proof. Suppose $A \subseteq B$ and C is an arbitrary set. Let x be arbitrary and suppose $x \in C \setminus B$, which means $x \in C$ and $x \notin B$. Since $x \notin B$ and $A \subseteq B$, then $x \notin A$, which means that $x \in C \setminus A$. Therefore, if $x \in C \setminus B$ then $x \in C \setminus A$ and since x and C were arbitrary, we can conclude $\forall C(C \setminus B \subseteq C \setminus A)$.

3.4.5

Prove that if $A \subseteq B \setminus C$ and $A \neq \emptyset$ then $B \not\subseteq C$.

Theorem. If $A \subseteq B \setminus C$ and $A \neq \emptyset$ then $B \not\subseteq C$.

Proof. Let x be arbitrary and suppose $x \in A$. Since $A \subseteq B \setminus C$ then $x \in B$ and $x \notin C$. Since x was arbitrary we can conclude $B \not\subseteq C$.

3.4.6

Prove that for any sets A, B, and C, $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$ finding a string of equivalences starting with $x \in A \setminus (B \cap C)$ and ending with $x \in (A \setminus B) \cup (A \setminus C)$.

Theorem. for any sets A, B, and C, $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Proof. Suppose A, B,and C are arbitrary sets. Then

```
\begin{split} x \in A \setminus (B \cap C) \text{ iff } x \in A \to (x \notin B \land x \notin C) \\ \text{ iff } x \notin A \lor (x \notin B \land x \notin C) \\ \text{ iff } (x \notin A \lor x \notin B) \land (x \notin A \lor x \notin C) \\ \text{ iff } (x \in A \to x \notin B) \lor (x \in A \to x \notin C) \\ \text{ iff } x \in A \setminus B \lor x \in A \setminus C \\ \text{ iff } x \in (A \setminus B) \cup (A \setminus C) \end{split}
```

3.4.7

Theorem. For any sets A and B, $\mathscr{P}(A \cap B) = \mathscr{P}(A) \cap \mathscr{P}(B)$.

Proof. (\rightarrow) Let M be an arbitrary set and suppose $M \in \mathscr{P}(A \cap B)$. Then $M \subseteq A \cap B$. Let x be arbitrary and suppose $x \in M$. Since $M \subseteq A \cap B$, $x \in A \cap B$ and therefore $x \in A$. Since x was arbitrary, $M \subseteq A$ and therefore $M \in \mathscr{P}(A)$. Similarly, since $M \subseteq A \cap B$, $x \in B$. Since x was arbitrary, $M \subseteq B$ and therefore $M \in \mathscr{P}(B)$. Therefore, $M \in \mathscr{P}(A)$ and $M \in \mathscr{P}(B)$.

 (\leftarrow) Now suppose $M \in \mathscr{P}(A) \cap \mathscr{P}(B)$. Then $M \subseteq A$ and $M \subseteq B$. Suppose $x \in M$. Since $M \subseteq A$ and $M \subseteq B$ then $x \in A \cap B$. Since x was arbitrary, $M \subseteq A \cap B$ and therefore $M \in \mathscr{P}(A \cap B)$.

3.4.8

Theorem. $A \subseteq B \iff \mathscr{P}(A) \subseteq \mathscr{P}(B)$

Proof. (\to) Suppose $A \subseteq B$. Let M be an arbitrary set and suppose $M \in \mathscr{P}(A)$. Then $M \subseteq A$. Now let y be arbitrary and suppose $y \in M$. Since $M \subseteq A$ then $y \in A$, and since $A \subseteq B$ then $y \in B$. Since y was arbitrary, $M \subseteq B$ and therefore $M \in \mathscr{P}(B)$. Since M was arbitrary, $\mathscr{P}(A) \subseteq \mathscr{P}(B)$.

 (\leftarrow) Now suppose $\mathscr{P}(A) \subseteq \mathscr{P}(B)$ and $y \in A$. Then the set $\{y\}$ is in $\mathscr{P}(A)$. Since $\mathscr{P}(A) \subseteq \mathscr{P}(B)$ then $\{y\} \in \mathscr{P}(B)$ and $y \in B$. Since y was arbitrary, $A \subseteq B$.

3.4.9

Theorem. If x and y are odd integers, then xy is odd.

Proof. Suppose x and y are odd integers. This means there is an integer k such that x=2k+1 and there is an integer j such that y=2j+1. Therefore, xy=2(2kj+k+j)=4kj+2k+2j+1=(2k+1)(2j+1), and since 2kj+k+j is an integer, then xy is odd.

3.4.10

Theorem. For every integer n, n^3 is even iff n is even.

Proof. (\rightarrow) Let n be arbitrary. We will prove the contrapositive. Suppose x is odd, which means there exists an integer k such that x=2k+1. Therefore, $n^3=(2k+1)^3=8k^3+12k^2+6k+1=2(4k^3+6k^2+3k)+1$. Since $4k^3+6k^2+3k$ is an integer, n^3 is odd. Therefore, if n^3 is even, n is even.

(\leftarrow) Now suppose n is even, which means there exists an integer m such that n=2m. Now $n^3=(2m)^3=8m^3=2(4m^3)$ and since $4m^3$ is an integer, n^3 is even.

3.4.11

\mathbf{A}

The problem is with using the same variable k for defining m as an even integer and n as an odd integer when k may take on different values for n and m.

\mathbf{B}

Let m=2 and n=-3. Then $n^2-m^2=(-3)^2-2^2=9-4=5$ and n+m=-3+2=-1. Therefore $n^2-m^2\neq n+m$.

3.4.12

Theorem. $\forall x \in \mathbb{R}[\exists y \in \mathbb{R}(x+y=xy) \iff x \neq 1]$

Proof. (\rightarrow) We will prove by contradiction. Suppose x is an arbitrary real number and there exists a real number y such that x+y=xy. Now suppose x=1. Since x+y=xy, then $y=\frac{x}{x-1}$. But this contradicts x=1 because there is no real number y such that y=x/0.

 (\leftarrow) Now suppose $x \neq 1$ and $y = \frac{x}{x-1}$. Then

$$x + y = x + \frac{x}{x+1} = \frac{x(x-1) + x}{x-1}$$
$$= \frac{x^2 - x + x}{x-1}$$
$$= \frac{x^2}{x-1} = xy$$

3.4.13

Theorem. $\exists z \in \mathbb{R} \forall x \in \mathbb{R}^+ [\exists y \in \mathbb{R} (y - x = \frac{y}{x}) \iff x \neq z]$

Proof. (\rightarrow) Let z=1. Let x be an arbitrary real number and suppose x>0. Suppose $y \in \mathbb{R}$ and $y - x = \frac{y}{x}$. Then $y = \frac{x^2}{x-1}$. Now suppose x > 0. Suppose $y \in \mathbb{R}$ and $y = \frac{y}{x}$. Therefore, $x \neq z$ and since x was arbitrary we can conclude $\exists z \in \mathbb{R} \forall x \in \mathbb{R}^+ [\exists y \in \mathbb{R} (y - x = \frac{y}{x}) \to x \neq z]$. (\leftarrow) Now suppose $x \neq 1$ and $y = \frac{x^2}{x-1}$. Then

$$y - x = \frac{x^2}{x - 1} - x = \frac{x^2 - x(x - 1)}{x - 1}$$
$$= \frac{x^2 - x + 2 + x}{x - 1} = \frac{x}{x - 1} = \frac{y}{x}$$

3.4.14

Theorem. If B is a set and F is a family of sets, then $\cup \{A \setminus B | A \in \mathcal{F}\} \subset$ $\cup (\mathcal{F} \setminus \mathscr{P}(B)).$

Proof. Let x be arbitrary and suppose $x \in \bigcup \{A \setminus B | A \in \mathcal{F}\}$. This means that there is a set $A \in \mathcal{F}$ such that $x \in A$ and also $x \notin B$. Since $x \in A$ and $x \notin B$, then $A \not\subseteq B$ and $A \notin \mathscr{P}(B)$. Thus there is a set $A \in \mathcal{F}$ such that $x \in A$, and $A \notin \mathscr{P}(B)$, which means that $x \in \cup(\mathcal{F} \setminus \mathscr{P}(B))$. Therefore, if $x \in \bigcup \{A \setminus B | A \in \mathcal{F}\}$ then $x \in \bigcup (\mathcal{F} \setminus \mathscr{P}(B))$ and since x was arbitrary, we can conclude $\cup \{A \setminus B | A \in \mathcal{F}\} \subseteq \cup (\mathcal{F} \setminus \mathscr{P}(B))$.

3.4.15

Theorem. If \mathcal{F} and \mathcal{G} are nonempty families of sets and every element of \mathcal{F} is disjoint from some element of \mathcal{G} , then $\cup \mathcal{F}$ and $\cap \mathcal{G}$ are disjoint.

Proof. Suppose \mathcal{F} and \mathcal{G} are nonempty families of sets and every element of \mathcal{F} is disjoint from some element of \mathcal{G} . We will use proof by contradiction. Now suppose $\cup \mathcal{F}$ and $\cap \mathcal{G}$ are not disjoint. Then there exists a y such that $y \in \cup \mathcal{F}$ and $y \in \cap \mathcal{G}$. Since $y \in \cup \mathcal{F}$ there is a set in \mathcal{F} that contains y and since $y \in \cap \mathcal{G}$, y is in every set in \mathcal{G} . But because every element of \mathcal{F} is disjoint from some element of \mathcal{G} , then there is at least one set in \mathcal{G} that does not contain y. But this contradicts $y \in \cap \mathcal{G}$. Therefore, $(\cup \mathcal{F}) \cap (\cap \mathcal{G}) = \emptyset$.

3.4.16

Theorem. For any set A, $A = \cup \mathscr{P}(A)$.

Proof. (\rightarrow) Suppose A is an arbitrary set, x is arbitrary, and $x \in A$. Then there is subset of A that contains x and, by definition, this subset is in $\mathscr{P}(A)$. Therefore, $x \in \mathscr{P}(A)$. Since x was arbitrary $A \subseteq \mathscr{P}(A)$.

 (\leftarrow) Now suppose $x \in \cup \mathscr{P}(A)$. This means there is a subset of A that contains x and therefore $x \in A$. Since x was arbitrary we conclude $\cup \mathscr{P}(A) \subseteq A$. Since A was arbitrary, we can conclude for all sets A, $A = \cup \mathscr{P}(A)$.

3.4.17

\mathbf{A}

Theorem. $\cup (\mathcal{F} \cap \mathcal{G}) \subseteq (\cup \mathcal{F}) \cap (\cup \mathcal{G})$

Proof. Let x be arbitrary and suppose $x \in \cup (\mathcal{F} \cap \mathcal{G})$. Since $x \in \cup (\mathcal{F} \cap \mathcal{G})$ there is a set in \mathcal{F} and in \mathcal{G} that both contain x. Since there is a set in \mathcal{F} than contains x, then $x \in \cup \mathcal{F}$ and since there is a set in \mathcal{G} that contains x, $x \in \cup \mathcal{G}$. Therefore, $x \in (\cup \mathcal{F}) \cap (\cup \mathcal{G})$. Since x was arbitrary, we can conclude $\cup (\mathcal{F} \cap \mathcal{G}) \subseteq (\cup \mathcal{F}) \cap (\cup \mathcal{G})$.

\mathbf{B}

The mistake is that we can't choose a set A such that $A \in \mathcal{F}$ and $A \in \mathcal{G}$ and $x \in A$. The given $x \in (\cup \mathcal{F}) \cap (\cup \mathcal{G})$ means that x is within a set in \mathcal{F} and within a set in \mathcal{G} , but these two sets are not necessarily the same set.

\mathbf{C}

Let $\mathcal{F} = \{\{1,2\},\{3\}\}\$ and $\mathcal{G} = \{\{4,5\},\{1\}\}\$. Then $\cup(\mathcal{F} \cap \mathcal{G}) = \emptyset$, but $(\cup \mathcal{F}) \cap (\cup \mathcal{G}) = \{1\}$.

3.4.18

Theorem. Suppose \mathcal{F} and \mathcal{G} are families of sets, then $(\cup \mathcal{F}) \cap (\cup \mathcal{G}) \subseteq \cup (\mathcal{F} \cap \mathcal{G})$ $\iff \forall A \in \mathcal{F} \forall B \in \mathcal{G}(A \cap B \subseteq \cup (\mathcal{F} \cap \mathcal{G})).$

Proof. (\to) Suppose $(\cup \mathcal{F}) \cap (\cup \mathcal{G}) \subseteq \cup (\mathcal{F} \cap \mathcal{G})$. Suppose A is an arbitrary set in \mathcal{F} , B is an arbitrary set in \mathcal{G} , x is arbitrary, and $x \in A \cap B$. Since $x \in A \cap B$ and A is an arbitrary set in \mathcal{F} , then $x \in \cup \mathcal{F}$. Also, since $x \in A \cap B$ and B is an arbitrary set in \mathcal{G} , then $x \in \cup \mathcal{G}$. Therefore $x \in (\cup \mathcal{F}) \cap (\cup \mathcal{G})$ and since $(\cup \mathcal{F}) \cap (\cup \mathcal{G}) \subseteq \cup (\mathcal{F} \cap \mathcal{G})$, it follows that $x \in \cup (\mathcal{F} \cap \mathcal{G})$. Therefore, if $x \in (\cup \mathcal{F}) \cap (\cup \mathcal{G}) \to x \in \cup (\mathcal{F} \cap \mathcal{G})$ and since $x \in A$, and $x \in A$ were arbitrary we can conclude that $x \in A \cap B \subseteq \cup (\mathcal{F} \cap \mathcal{G})$.

 $(\leftarrow) \text{ Now suppose } \forall A \in \mathcal{F} \forall B \in \mathcal{G}(A \cap B \subseteq \cup (\mathcal{F} \cap \mathcal{G})) \text{ and } x \in (\cup \mathcal{F}) \cap (\cup \mathcal{G}).$ Since $x \in (\cup \mathcal{F}) \cap (\cup \mathcal{G})$, then there is a set $M \in \mathcal{F}$ such that $x \in M$ and there is a set $N \in \mathcal{G}$ such that $x \in N$ and it follows that $x \in M \cap \mathcal{G}$. Then since $M \in \mathcal{F}$, $N \in \mathcal{G}$, $x \in M \cap \mathcal{G}$, and $\forall A \in \mathcal{F} \forall B \in \mathcal{G}(A \cap B \subseteq \cup (\mathcal{F} \cap \mathcal{G}))$ we can conclude that $x \in \cup (\mathcal{F} \cap \mathcal{G})$. Therefore if $\forall A \in \mathcal{F} \forall B \in \mathcal{G}(A \cap B \subseteq \cup (\mathcal{F} \cap \mathcal{G}))$ then $(\cup \mathcal{F}) \cap (\cup \mathcal{G}) \subseteq \cup (\mathcal{F} \cap \mathcal{G})$.

3.4.19

Theorem. Suppose \mathcal{F} and \mathcal{G} are families of sets. Prove that $\cup \mathcal{F}$ and $\cup \mathcal{G}$ are disjoint iff for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$, A and B are disjoint.

Proof. (\rightarrow) Suppose $\cup \mathcal{F} \cap \cup \mathcal{G} = \emptyset$. We will prove by contradiction. Let A be an arbitrary set in \mathcal{F} and B be an arbitrary set in \mathcal{G} . Suppose $x \in A \cap B$, which means $x \in A$, $x \in B$, and $A \cap B \neq \emptyset$. Since $x \in A$ and $A \in \mathcal{F}$ then $x \in \cup \mathcal{F}$ and since $x \in B$ and $B \in \mathcal{G}$ then $x \in \cup \mathcal{G}$. Therefore $x \in \cup \mathcal{F} \cap \cup \mathcal{G}$, but this contradicts $\cup \mathcal{F} \cap \cup \mathcal{G} = varnothing$. Therefore $A \cap B = \emptyset$ and since A and B were arbitrary we can conclude $\forall A \in \mathcal{F} \forall B \in \mathcal{G} (A \cap B = \emptyset)$.

 (\leftarrow) Now suppose $\forall A \in \mathcal{F} \forall B \in \mathcal{G}(A \cap B = \varnothing)$. We will again prove by contradiction. Suppose $\cup \mathcal{F}$ and $\cup \mathcal{G}$ are not disjoint, which means there is an element x that is in both $\cup \mathcal{F}$ and $\cup \mathcal{G}$. This means that there is a set in \mathcal{F} that contains x and there is a set in \mathcal{G} that contains x. However, this contradicts our given that every set in \mathcal{F} is disjoint from every set in \mathcal{G} . Therefore $\cup \mathcal{F} \cap \cup \mathcal{G} = \varnothing$.