

Approved For Release STAT
2009/08/19 :
CIA-RDP88-00904R000100120

Approved For Release
2009/08/19 :
CIA-RDP88-00904R000100120

**Вторая Международная конференция
Организации Объединенных Наций
по применению атомной энергии
в мирных целях**

A/CONF.15/P/2216
USSR
ORIGINAL: RUSSIAN

Не подлежит обглашению до официального сообщения на Конференции

ОТДЕЛЕНИЕ УРАНА И ПЛУТОНИЯ ОТ ПРОДУКТОВ
ДЕЛЕНИЯ ЭКСТРАКЦИЕЙ СМЕСЬЮ ДИБУТИЛОВОГО
ЭФИРА И ЧЕТЫРЕХХЛОРИСТОГО УГЛЕРОДА

В.М.Вдовенко, М.П.Ковалевская

I. Введение

В лабораториях разработан экстракционный метод переработки облученного в реакторах урана. В качестве экстрагента применяется взрывобезопасная смесь 85 об.% дибутилового эфира и 15 об.% четыреххлористого углерода. Метод обеспечивает, возможно, полное отделение урана и плутония и очистку их от γ - и β -активных продуктов деления порядка 10^6 .

Основными элементами аппаратурного оформления процесса могут служить насадочные колонны для противоточной экстракции.

II. Общие положения

24/92
В качестве растворителя, пригодного для создания метода переработки облученного урана, была предложена взрывобезопасная смесь 85 об.% дибутилового эфира и 15 об.% четыреххлористого углерода. Экстрагент обладает достаточно высокой экстракционной способностью по отношению к нитратам шестивалентных урана и плутония при применении водных растворов с высаливателем и очень высокой селективностью по отношению к осколочным продуктам деления. Плотность экстрагента - 0,89 г/см³ - достаточно удобна для проведения экстракционных операций в насадочных колоннах даже без пульсации.

-2-

I. Экстракционные свойства экстрагента-смеси

Данные по распределению урана и плутония в шестивалентных состояниях между некоторыми водными растворами и органической смесью (85 об.% ДБЭ + 15 об.% ССР₄) приведены в табл. I. Во всех случаях Ru окислялся до Ru^{VII} бихроматом калия. Полнота окисления проверялась спектрофотометрически.

Таблица I

Коэффициенты распределения нитратов U^{VI} и Pu^{VI}

Состав исходного водного раствора	Температура опыта (°C)	С орг. С вод. для	
		U ^{VI}	Pu ^{VI}
2,5M UO ₂ (NO ₃) ₂ 2,4M Ca(NO ₃) ₂ 0,63M HNO ₃ ~0,1 г/л Ru	60	0,20	0,12
0,76M UO ₂ (NO ₃) ₂ 4,26M Ca(NO ₃) ₂ 0,53M HNO ₃ ~0,1 г/л Ru	35	0,67	0,40
0,5M UO ₂ (NO ₃) ₂ 4,5M Ca(NO ₃) ₂ 0,5M HNO ₃ ~0,1 г/л Ru	25	0,70	0,42
0,01M UO ₂ (NO ₃) ₂ 5,4M Ca(NO ₃) ₂ 0,05M HNO ₃ ~0,1 г/л	20	1,20	0,70

Результаты, приведенные в табл. I, характеризуют поведение урана и плутония в шестивалентных состояниях при процессах экстракции их из водных растворов. Для отделения плутония от урана применяется процесс, при котором плутоний селективно восстанавливается

-3-

до трехвалентного состояния (уран при этом остается шестивалентным). Нитрат трехвалентного плутония в очень малой степени экстрагируется органическим растворителем. В качестве таких избирательных восстановителей были выбраны нитраты гидразина или гидроксиламина. Полнота восстановления Pu^{+3} контролировалась спектрофотометрически.

Таблица 2

Коэффициенты распределения нитрата
трехвалентного Pu

Состав исходного водного раствора	Температура опыта ($^{\circ}\text{C}$)	$\frac{C_{\text{орг.}}}{C_{\text{вод.}}} \text{ для } \text{Pu}^{+3}$
5,4 М $\text{Ca}(\text{NO}_3)_2$ 0,05 М HNO_3 0,2 М $\text{N}_2\text{H}_4 \cdot \text{HNO}_3$ ~0,1 г/л Pu	20	0,003
5,4 М $\text{Ca}(\text{NO}_3)_2$ свободная HNO_3 отсутствует 0,2 М $\text{N}_2\text{H}_4 \cdot \text{HNO}_3$ ~0,1 г/л Pu	20	0,0005

Данные табл. 2 свидетельствуют о возможности достигнуть весьма высокой степени разделения урана и плутония в процессе восстановительной реэкстракции.

2. Некоторые особенности экстракционного поведения осколочных элементов в описываемом процессе

Используемый экстрагент характеризуется чрезвычайно низкими коэффициентами распределения осколочных элементов, образующихся в процессе деления U^{235} . Помимо этого, он обладает ярко выраженной специфичностью по отношению к некоторым химическим формам, в виде которых осколочные элементы находятся в водных растворах. После экстракционного извлечения части осколочной активности экстрагируемость оставшейся части еще более падает и становится пренебрежи-

-4-

мо малой (высаливающее и комплексообразующее действие раствора при этом не меняется).

Данные, приведенные в табл.3, подтверждают эту точку зрения.

Таблица 3
Коэффициенты очистки урана при его экстракции
из водного раствора

Состав водного раствора, из которого ведется экстракция и осколков	Количество экстрагента, прошедшее через раствор (в объемах по отношению к объему водного раствора)	Коэффициент очистки урана от осколочной γ -активности (рассчитан на 1 г экстрагируемого U)
3M $UO_2(NO_3)_2$	1 - 2	40
1M HNO_3	3 - 4	65
Суммарная осколочная γ -активность	5 - 6	320
	7 - 8	380
	9 - 10	520

Это свойство экстрагента позволяет при некоторых операциях описываемого технологического процесса накапливать в водных растворах значительные количества осколочной активности, находящейся в неэкстрагируемой форме.

Как показывают данные радиохимического анализа (табл.4), основными осколочными элементами, экстрагируемыми смесью 85% ДБЭ и 15% CCl_4 , являются Nb , Zr и Ru , характеризующиеся сложным химическим поведением в азотнокислых растворах облученного урана.

Таблица 4
Коэффициенты очистки урана по отдельным осколочным элементам при его экстракции из водного раствора

	Суммарная γ -активность	γ -активность отдельных осколочных элементов в % от суммарной				
		№	Zr	Ru	Сумма редких земель	Cs
Исходный водный раствор	85 мг-экв Ra	45	34	4,2	2,2	1,0

-5-

	Суммарная γ -активность	γ -активность отдельных оско- лочных элементов в % от сум- марной				
		№	Zr	Ru	Сумма редких земель	Cs
Органическая фаза	10 мг-экв Ra	5	79	I,6	>0,I	<0,4
Коэффициент очистки	8,5	76	3,7	22	>187	>2I

III. Описание процесса

Основные операции процесса: I) совместное растворение урановых блоков с алюминиевой оболочкой, 2) приготовление исходного раствора для экстракции, 3) экстракция урана и плутония растворителем, 4) восстановительная реэкстракция плутония с дополнительной отмывкой урана, 5) окисление раствора плутония и вторая экстракция плутония, 6) вторая восстановительная реэкстракция плутония с дополнительной отмывкой урана, 7) окисление раствора плутония и третья экстракция плутония, 8) реэкстракция плутония в водный раствор, 9) промывка органического раствора урана, 10) сорбционная очистка органического раствора урана, 11) реэкстракция урана в водный раствор, 12) осаждение урана из водного раствора.

Схема аппаратурного оформления описываемого процесса приведена на рисунке.

I. Растворение блоков и оболочки в азотной кислоте

Необходимость присутствия в исходном водном растворе значительного количества высаливателя - неэкстрагируемого нитрата многовалентного катиона позволяет производить совместное растворение блоков с алюминиевой оболочкой. Растворение производится после необходимого периода выдержки. Может быть применен метод растворения в концентрированной азотной кислоте. Растворение алюминия инициируется добавкой небольшого количества соли ртути. Введением кислорода в реакционную смесь достигается полное окисление азотсодержащих продуктов реакции. Последующее поглощение окислов азота позволяет сократить расход азотной кислоты до стехиометрического:

2492

-6-

2 моля HNO_3 на грамматом U. Предусмотрены устройства для очистки от радиоактивного иода и улавливания газообразных продуктов деления - ксенона и криптона.

После охлаждения раствор блоков передается в аппарат приготовления исходного водного раствора, предназначенного для экстракции.

2. Приготовление исходного водного раствора для экстракции

К раствору блоков будут добавляться сбросные растворы после второй и третьей экстракций плутония (насыщенные при комнатной температуре водные растворы $\text{Ca}(\text{NO}_3)_2$ с небольшим содержанием $\text{K}_2\text{Cr}_2\text{O}_7$, $\text{Cr}(\text{NO}_3)_3$, β -и γ -активных продуктов деления), часть водного раствора после промывки органической фазы урана, некоторое количество чистых растворов $\text{K}_2\text{Cr}_2\text{O}_7$ и $\text{Ca}(\text{NO}_3)_2$. Такой способ приготовления исходного раствора обусловлен необходимостью, во-первых, иметь в нем достаточно высокую концентрацию высаливателей $\text{Al}(\text{NO}_3)_3$ и $\text{Ca}(\text{NO}_3)_2$, во-вторых, иметь минимальное количество γ -активных сбросных растворов.

Исходный раствор упаривается до состава: 2,5M $\text{UO}_2(\text{NO}_3)_2$, 1,5M $\text{Ca}(\text{NO}_3)_2$, 0,53M $\text{Al}(\text{NO}_3)_3$, 0,6M HNO_3 , 0,03M $\text{K}_2\text{Cr}_2\text{O}_7$, одновременно происходит окисление всего плутония до $\text{PuO}_2(\text{NO}_3)_2$. Дистиллат после очистки повторной перегонкой используется для реэкстракций. Исходный раствор, имеющий температуру кристаллизации 64° , подается по обогреваемым коммуникациям на экстракцию.

3. Экстракция урана и плутония

Экстракция урана и плутония может быть проведена в двух колоннах высотой по 5 теоретических тарелок каждая. Отношение объема экстрагента к объему исходного водного раствора в первой (обогреваемой) колонне равна 16. Величина объема экстрагента не может быть снижена путем увеличения высоты колонны, так как эта величина определяется емкостью органического растворителя по урану.

В первой колонне в органическую фазу извлекается 96% урана, 70% плутония и большая часть азотной кислоты. Водный раствор, вытекающий из первой колонны, после подкисления его азотной кислотой поступает на дополнительную экстракцию во вторую (необогреваемую)

-7-

колонну. Экстракция 96% урана сократила объем и снизила температуру кристаллизации водного раствора.

Через вторую колонну проходит весь тот экстрагент, который после извлечения оставшихся в водном растворе урана и плутония подается на экстракцию в первую колонну. Отношение объема экстрагента к объему водного раствора во второй колонне возрастает до 30 за счет сокращения объема последнего. Вытекающий из второй колонны водный раствор содержит основную массу осколочной активности и направляется на длительное хранение.

4. Восстановительная реэкстракция плутония

Восстановительный раствор состава 5,4M $\text{Ca}(\text{NO}_3)_2$, 0,2M $\text{N}_2\text{H}_4 \cdot \text{HNO}_3$ подается сверху в колонну реэкстракции плутония. Органический раствор нитратов шестивалентных урана и плутония после экстракции вводится в середину колонны: в верхней части последней (для достаточно быстрого восстановления плутония гидразином ее необходимо обогревать) в водную фазу переходит 99,9% плутония и 3% урана. Благодаря очень низкому коэффициенту распределения трехвалентного плутония, отношение объемов органического и водного растворов при высоте этой части колонны в 5 теоретических тарелок может быть доведено до 50.

В нижней (необогреваемой) части колонны 4-кратным (по отношению к объему раствора восстановленного плутония) объемом экстрагента производится извлечение урана, перешедшего в водную фазу вместе с плутонием. Этот органический раствор внутри колонны смешивается с основным органическим раствором урана.

5. Дальнейшая переработка плутония

Для дальнейшей очистки плутония от урана и осколочных элементов и для его большего концентрирования необходим еще ряд операций.

После восстановительной реэкстракции в водный раствор добавляется $\text{K}_2\text{Cr}_2\text{O}_7$ и HNO_3 . Раствор нагревается. При этом происходит разложение гидразина, в основном до N_2 , и окисление трехвалентного плутония до шестивалентного.

Из водного раствора $\text{PuO}_2(\text{NO}_3)_2$ экстрагируется в колонне высотой в 5 теоретических тарелок шестикратным объемом растворителя. Органический раствор плутония подается на вторую восстановительную

2492

-8-

реэкстракцию, аналогичную первой. Следующая за нею дополнительная стмыка из водного раствора малых количеств урана позволяет достигнуть на этой операции необходимой величины разделения урана и плутония. После этого водный раствор плутония еще раз окисляется и проводится третья экстракция плутония, подобная второй.

Заключительной операцией плутониевой ветви экстракционной схемы переработки облученного урана является реэкстракция плутония из органической фазы после третьей экстракции в разбавленную азотную кислоту. Этот раствор плутония, содержащий минимальное количество солевых примесей - продуктов восстановления $K_2Cr_2O_7$ и коррозии аппаратуры, концентрируется упариванием и поступает на специальную переработку.

6. Промывка органического уранового раствора

Последующая очистка урана от β - и γ -активных продуктов деления достигается применением промывки органической фазы урана (после восстановительной реэкстракции) насыщенным водным раствором $UO_2(NO_3)_2$ с добавкой 0,06 М $K_2Cr_2O_7$. Этот водный раствор является равновесным по уранилнитрату для данной органической фазы.

При этом реэкстрагируемые в промывной раствор осколочные элементы меняют свое химическое состояние таким образом, что значительное накопление в нем β - и γ -активности не ведет к изменению очистки. Это явление можно назвать необратимой экстракцией осколочной активности.

Но так как чрезмерное накопление активности в промывном растворе все же нежелательно, то предусмотрено постепенное обновление промывного раствора. Сверху в колонну подается свежий промывной раствор. Его объем составляет 10% от объема всего промывного раствора, циркулирующего в промывной колонне.

Остальные 90% вводятся в среднюю часть колонны (промываемая органическая фаза направляется в колонну снизу). Также непрерывно от промывного раствора, выходящего из колонны, отбирается 10%, которые передаются для приготовления исходного водного раствора.

Суммарное отношение объема органического уранового раствора к объему промывного равно 20. Для эффективного проведения промывки необходим нагрев колонны до 50°.

-9-

7. Сорбционная очистка и реэкстракция урана
в воду

Органическая фаза урана после промывки поступает для окончательной доочистки на колонну с сорбентом (силикагелем), после чего уран из нее реэкстрагируется в воду, а водные растворы уранилнитрата направляются на осаждение с целью получения для металлургии более удобных соединений. Экстрагент после реэкстракции подается в отделение регенерации, которая состоит из ряда специальных промывок.

На пути органической фазы предусмотрено размещение нескольких попеременно действующих сорбционных колонн: во время работы одной другая может быть отмыта от сорбированной на ней β - и γ -активности. Поскольку основными осколочными элементами, поглощаемыми силикагелем, являются Zr и Nb , лучшим десорбирующим раствором была признана разбавленная щавелевая кислота.

Выводы

Данные, приведенные в табл. 5 и 6, характеризуют очистку урана и плутония на различных операциях предлагаемого процесса.

Таблица 5

Очистка урана от γ -активности

Операция	Реэкстракция	Восстановительная реэкстракция	Промывка	Сорбционная очистка	Реэкстракция в воду
Коэффициент очистки	150	4	20	50	2

2/92

-10-

Таблица 6

Очистка плутония от γ -активности

Операция	1-я экст- ракция	1-я восста- новитель- ная реэкст- ракция	2-я эк- страк- ция	2-я вос- станови- тельная реэкст- ракция	3-я эк- страк- ция	Реэк- страк- ция
Коэффици- ент очистки	I50	I,3	20	-	20	-

Применение вышеописанного метода позволяет регенерировать уран с выходом 99,9% и выделить плутоний с выходом не менее 98%. Суммарные коэффициенты очистки от γ -активных продуктов деления:
 $U \quad I,2 \cdot 10^6$, $Pu \quad 8 \cdot 10^4$.

-II-

Схема аппарата:

1-аппарат растворения блоков и оболочки; 2-аппарат приготовления исходного раствора; 3-колонка основной экстракции; 4-аппарат подкисления водного раствора; 5- колонка дополнительной экстракции; 6- колонка восстановительной реэкстракции; 7-промывная колонка; 8 - аппарат сорбционной очистки; 9- реэкстракционная колонка; 10 и 13-аппараты окисления растворов плутония; 11- колонка для 2-й экстракции плутония; 12- колонка восстановительной реэкстракции плутония; 14-колонка для 3-й экстракции плутония ; 15-реэкстракционная колонна

2492