Deep Learning Workshop

Machine Learning 101

Machine Learning 101

Classical Programming and Machine Learning

Machine Learning Overview

Data Transformation

Supervised, Unsupervised, Reinforcement Learning

Example: School Class

Supervised Learning

Task: Use Label / Target Variable for Learning/Prediction

Name	Age	Learning Method	Class	Grade	
Anton	14	Α	Sport	2	
Bert	15	В	Sport	2	
Clare	13	Α	Sport	3	
Dave	16	В	Math	1	
Emilia	15	Α	Math	2	
					de

Example: School Class

Example: School Class

Reinforcement Learning

- -Assign Learning Method to each student one by one.
- -Task: Find which learning method should be chosen in future
- -RL Methods find faster solution than A/B tests.

Name	Age	Learning Method	Class	Grade
Anton	14	А	Sport	2
Bert	15	В	Sport	2
Clare	13	А	Sport	3
Dave	16	В	Math	1
Emilia	15	А	Math	2

Example: Student Test Prediction

Example: Classification and Regression Plot

Example: Student Test Prediction

Property	Classification	Regression
Output / Target Variable	Discrete (class labels)	Continuous numbers
Examples	Fail / pass	Percentage scores
What is searched for?	Decision Boundary, Group membership	Best Fit Line
Evaluation Measure	Accuracy	Sum of squared errors (R ²)

High-Level Analogy

Ingredients + technical equipment (Requirements)

Recipe Result gollnickdata.de

High-Level Analogy

Independent Variables

Model Prediction gollnickdata.de

Model Development and -application

Detailed Model Development

Example '

- Task: Target variable (dependent variable) should be predicted.
- Predictors (independent variables) are used to create a model based on an existing relationship between independent and dependent variable.
- Model "learns" relationship
- Learned model can then be applied to new data.

Our Focus in Today's Class

Classification

Analysis Steps

Analysis Steps

Sample Steps

Data Import **Model Training** Missing Data Analysis Create Predictions **Model Evaluation** Missing Data Treatment Data Preparation_ Categorical Data Treatm. Separate Dependent / Independent Feature **Data Splitting** Data Scaling gollnickdata.de

Modeling

Introduction

- Suitable for classification tasks (don't get confused by "regression")
- Only works for binary classifier
- Independent variables can be continous or discrete
- Related to classical regression

From Linear Regression to Logistic Regression

From Linear Regression to Logistic Regression

Logistic Regression

$$Y = mX + n$$

Transform Target Variable with Sigmoid Function

$$p = \frac{1}{1 + e^{-Y}}$$

Rewrite Formula:

$$Y = ln\left(\frac{p}{1-p}\right)$$

Logit-Transformation of Target Variable:

$$Y = \ln\left(\frac{p}{1-p}\right)$$

$$\ln\left(\frac{p}{1-p}\right) = mX + n$$

Sigmoid function maps results to 0 to 1 range.

$$S(x) = \frac{1}{1 + e^{-x}}$$

From Linear Regression to Logistic Regression

From Probabilities to Classes

From Probabilities to Classes

Classification

Confusion Matrix

Example

True Outcome

Errors

Confusion Matrix

Example: Tsunami

Confusion Matrix

Performance Measures: Accuracy

Numerator		Effect Exists?		
			Yes	No
	fect erved?	Yes	True Pos	False Pos
Eff		No	False Neg	True Neg

Denominator		Effect Exists?	
		Yes	No
Effect)bserved?	Yes	True Pos	False Pos
Ef	No	False Neg	True Neg

Accuracy =
$$\frac{TP+TN}{TP+TN+FP+FN}$$

Usually compared to baseline result or to compare models

ROC Curve

Introduction

Receiver Operating Characteristics (**ROC**) Curve

- First developed and used during WWII for detecting enemy objects in battlefields
- Later used in psychology, medicine, forecasting of natural hazards, ...
- ... and finally model performance assessment

From Confusion Matrix to ROC Curve

Actuals	PredNeg	PredPos
ActNeg	3117	1842
ActPos	84	1469

From Confusion Matrix to ROC Curve

Actuals	PredNeg	PredPos
ActNeg	4948	11
ActPos	1305	248

From Confusion Matrix to ROC Curve

_		Predicted Class		
		Yes	No	
Class	Yes	True Pos (Hit)	False Neg (Type I Error)	$TPR = \frac{TP}{TP + FR}$ \(\rightarrow \text{Y Axis on ROC (}
Actual Class	No	False Pos (Type II Error)	True Neg (Correct Rejection)	
				📝 gollnickdata

From Confusion Matrix to ROC Curve

		Predicted Class		
		Yes	No	
Actual Class	Yes	True Pos (Hit)	False Neg (Type I Error)	
	No	False Pos (Type II Error)	True Neg (Correct Rejection)	

$$FPR = \frac{FP}{FP + TN}$$
Axis on ROC Curve gollnickdata.de

From Confusion Matrix to ROC Curve

Example

Threshold	TN	FP	FN	TP	FPR	TPR
0.01	1318	3641	3	1550	0.73	1
0.02	1776	3183	10	1543	0.64	0.99
•••						
0.98	4958	1	1431	122	0	0.08
0.99	4958	1	1448	105	0	0.07

ROC Curve

Purpose

Different methods can be compared

Source: own graph

Binary

- X: images of houses and / or trees
- y:
- one label per image
- two mutually exclusive classes
- Example Label encoding: 0 = tree, 1 = house

y = 0 y = 1

Multi-Class

- X: images of houses and / or trees
- y:
- one label per image
- more than two mutually exclusive

Example:

■ Label encoding: 0 = tree, 1 = house, 2 = road

$$y = 1$$

y = 0

Multi-Label

- X: images of houses and / or trees
- y:
 - each image can have more than one class
 - more than two mutually exclusive classes

Example:

■ Label encoding: 0 = tree, 1 = house, 2 = road

$$y = [1]$$

y = [0, 1]

Classification Example

Classification Example

Dataset

FEDESORIANO - UPDATED 2 YEARS AGO

New Notebook

Heart Failure Prediction Dataset

11 clinical features for predicting heart disease events.

Source: https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction

Main Ingredients

Deep Learning Introduction

Section Overview

Confusing process of interactions

Introduction

- type of machine learning
- Covers all learning types (supervised/unsupervised/reinforcement learning)
- Different architectures for different purposes
 - Fully-connected neural networks
 - Convolutional neural networks
 - Recurrent neural networks
 - •
- Inspired by the structure and functioning of human brain
- Use multiple layers for feature extraction
- Each layer uses data from previous layer
- Learn different levels of abstraction

All Chapters

Computer Vision Tasks

Classification

 Algorithm recognizes a dog in the image

Classification and Object Detection

- Algorithm recognizes a dog in the image
- Algorithm detects rectangular location of dog

Object Detection

- recognizes a dog and cat in the image
- Algorithm detects rectangular location of dog/cat

Semantic Segmentation

recognizes
pixelwise location
of dog/cat

gollnickdata.de

Recurrent Neural Networks

Time Series Prediction Forecasting

Text Generation Machine Translation

GANs and Style Transfer

Style Transfer

Generative
Adversarial Networks

Sources:

- [1] https://ndres.me/post/machine-learning-with-gifs-style-transfer/
- [1] Karras "PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION"

Deep Learning: Performance

Deep Learning: Performance

Deep Learning Performance

- Classical ML techniques work best for small datasets
- With increasing size of available data → neural networks outperform classical techniques

Deep Learning: Performance

Why did Deep Learning improve so much?

Mainly four reasons why Deep Learning took off.

More Data

Moore's Law
More computing
Power
GPU's

Better Algorithms

Open Source

Modeling Overview

Deep Learning Overview

Model Creation Workflow

Deep Learning Overview

Creating Predictions

Perceptron

Perceptron: Example

Simple and Deep Neural Network

Input ValuesHidden NodesOutput Nodes

Simple and Deep Neural Network

Deep Neural Network Multi-Layer Perceptron

Layer Types

Input Layer

- Corresponds to independent variables
- Taken as batches
- Binned data
- Categorized data

Layer Types

Dense Layer

- Each input layer is connected to each output layer
- Also called fully connected layer
- Usually non-linear activation function applied

Layer Types

1D convolutional layer

- Layer consists of filters
- Sequentially a subset of input layer is processed
- All nodes of input layer used

Other Layer Types

Other Layer Types

- Recurrent Neural Networks
 - use recurrent cells
 - Receive their own output with a delay
 - applied when context plays a role
- Long short-term memory (LSTM)
 - use "memory cell"
 - Used for temporal sequences

Deep Learning Details

Layer Types

Output Layer

Problem Type	Nodes	Output Layer Activation
Regression	1	Linear
Multi-Target Regression	N (nr. of targets)	Linear
Binary Classification	1	Sigmoid
Multi-Label Classification	N (nr. of labels)	softmax

Deep Learning: Activation Functions

Activation Functions

There are different activation functions.

Rectified Linear Unit (ReLu)

- Phi = max(0, x)
- Most common
- Non-linear

Activation Functions

Leaky Rectified Linear Unit (Leaky ReL u)

Phi(x) =
$$\begin{cases} x \text{ if } x>0 \\ alpha * x \text{ otherwise} \end{cases}$$

- alpha typically 0.01
- Instead zero for negative inputs, small gradient
- Gradient never zero

Activation Functions

Hyperbolic Tangent (tanh)

$$Phi(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

- Non-linear
- Relatively flat, except for small range
- Derivative small except for small range
- Might suffer vanishing gradient problem

Activation Functions

Sigmoid

- $Phi(x) = 1/(1+e^{-x})$
- Non-linear
- Relatively flat, except for small range
- Derivative small except for small range
- Might suffer vanishing gradient problem
- Result range 0 to 1

Activation Functions

Softmax

Used for multi-class prediction

Overview

- Evaluates model performance during training
- Gradual improvement due to optimizer
- Is minimized during training
- Multiple loss functions for one model possible (one for each output variable)

Regression

Classification

Regression Loss Functions

Regression Losses

- Mean Squared Error $MSE = \frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{n}$ Mean Absolute Error $MAE = \frac{\sum_{i=1}^{n} |y_i \hat{y}_i|}{n}$
- Mean Bias Error $MBE = \frac{\sum_{i=1}^{n} (y_i \hat{y}_i)}{n}$
- Output layer has 1 node
- Typical activation function: linear

Binary Classification Loss Functions

Binary Cross Entropy

- Applicable for binary classification
- Most common
- Output layer has 1 node
- Typical activation function: sigmoid

$$CE = -(y_i \log \hat{y}_i) + (1 - y_i) \log(1 - \hat{y}_i)$$

Binary Classification Loss Functions

Hinge Loss

- Also called SVM loss
- Applicable for binary classification
- Used for maximum margin classifiers
- Output layer has 1 node
- Typical activation function: sigmoid
- $HingeLoss = \sum_{i \neq yi} \max(0, s_i s_{yi} + 1)$

Multi-Label Classification Loss Functions

Multi-Label Cross Entropy

- Most common loss for multi-label classification
- Output layer has n nodes, where n is number of labels
- Typical activation function is softmax

Deep Learning: Optimizers

Deep Learning:Optimizer

Overview

- During training weights of the model updated to minimize loss function
- But how? → Optimizer
- Calculates updates of weights based on Loss Function
- Brute force (check all combinations) → bad idea!
- Educated trial and error → good

Deep Learning:Optimizer

Gradient Descent

Deep Learning: Optimizer

Gradient Descent

Problem: local minima

Solution:

convex loss function

Learning rate

Deep Learning:Optimizer

Learning Rate

- Size of weight changes
- High learning rate
 - Large steps
 - Risk of overshooting the minimum
- Low learning rate
 - Very precise
 - Time-consuming

Deep Learning:Optimizer

Other Optimizers

Adagrad

- Adapts learning rate to features → learning rate = f(weights)
- Works well for sparse datasets
- Learning rate decreases with time and gets sometimes too small
- Adaprop, RMSprop supposed to solve this

Adam

- Adaptive momentum estimation
- Applies momentum → includes previous gradients into current gradient calculation
- Widespread

More Optimizers

Stochastic Gradient Descent, Batch gradient descent, ...

Introduction

- PyTorch structure to work with variables → PyTorch tensors
- Similar to numpy arrays, but more powerful
- Automatically calculates gradients
- Information about dependencies to other tensors

Automatic Gradients

Gradients are calculated automatically

```
# create a tensor with gradients enabled
x = torch.tensor(1.0, requires_grad=True)
# create second tensor depending on first tensor
y = (x-3) * (x-6) * (x-4)
# calculate gradients
y.backward()
# show gradient of first tensor
print(x.grad)
tensor(31.)
```


Computational Graphs

- Simple network:
 - Input x is used to calculate y, which is used to calculate z.

Backpropagation

Forward Pass

$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx}$$
 (Chain rule)

$$\frac{dz}{dx} = 5 * 3x^2$$

Computational Graphs

- Update of Weights
 - Calculated output z
 - True output t
 - Error E = $(z t)^2$
 - Weights can be considered as nodes as well
 - z = f(y, w2)
 - Optimizer updates weights based on gradients

Computational Graphs: Forward Pass

More complex network with multiple inputs

$$x_{22} = f(x_{11}, x_{21})$$

Computational Graphs: Backpropagation

More complex network with multiple inputs

Computational Graphs: Forward Pass

Example

$$X_{22} = 2 * X_{11}^2 + 2 * X_{21}$$

Computational Graphs: Backpropagation

More complex network with multiple inputs

Modeling: Section Overview

Modeling: Section Overview

Section Overview

PyTorch Model Training

nn.Module

Training Loop

Model Evaluation

Datasets

Dataloaders

Batches

Activation Functions

Hyperparameter Tuning

Saving / Loading Models

Introduction

- Model training ideally should be separated from data preprocessing
 - Better readability and modularity
- Dataset and Dataloader
 - Interface to Pre-loaded datasets
 - Interface to custom datasets
- Dataset
 - Stores samples and labels
- Dataloader
 - Iterable wrapped around Dataset

Custom Dataset

- Requires three function implementations:
 - ___init___
 - Runs once during instanciating the object
 - __len__
 - Returns number of samples
 - getitem_
 - Loads samples from dataset, preprocesses them and returns them for given index

from torch.utils.data import Dataset, DataLoader

```
Run Cell|Run Above|Debug Cell
#%% Dataset and Dataloader
class LinearRegressionDataset(Dataset):
    def __init__(self, X, y):
        self.X = X
        self.y = y

    def __len__(self):
        return len(self.X)

    def __getitem__(self, idx):
        return self.X[idx], self.y[idx]
```


Dataloader

- Dataloader iterates through dataset
- Iterations return batches of data
- Features
 - allows for shuffling the data
 - custom sampling strategies

```
train_loader = DataLoader(dataset = LinearRegressionDataset
(X_np, y_np), batch_size=2)
```


Batches

Batches

Introduction

- Often datasets very large → passing the complete dataset in one step to the model training impossible
- Rather smaller bites provides to be consumed by model batches

Batches

Batch Size

- Batch size number of simultaneous provided datasets provided to model.
- Defines speed of model training and stability of learning process.

Reasons for using smaller batch sizes

- Smaller batch sizes noisier and lower generalization error
- Easier to pass a batch of training data in memory (CPU or GPU)

Typical batch sizes

- 1 512
- Often multiple of two
- Good default: 32

