CS204: Discrete Mathematics

Ch 2. Basic Structures: Sets, Junctions Ch 9. Relations Functions

Sungwon Kang

Acknowledgement

- [Rosen 19] Kenneth H. Rosen, for Discrete Mathematics & Its Applications (8th Edition), Lecture slides
- [Hunter 11] David J. Hunter, Essentials of Discrete Mathematics, 2nd Edition, Jones & Bartlett Publishers, 2011, Lecture Slides

Ch 2. Basic Structures: Sets, Functions

- 2.1 Sets
- 2.2 Set Operations
- 2.3 Functions

- 2.4 Sequences and Summations
- 2.5 Cardinality of Sets
- 2.6 Matrices

Functions

- 1. Definition
- 2. One-to-One and Onto Functions
- 3. Function Composition

1. Definition

Definition

A <u>function</u> from a set X to a set Y is a <u>relation</u> such that it assigns a <u>single element of Y</u> to every element of X. If f is such a function, we write

$$f: X \longrightarrow Y$$

and we denote the element of Y assigned to $x \in X$ by f(x).

Examples

A simple function and its diagram

Let $X = \{1, 2, 3\}$ and $Y = \{1, 2, 3, 4\}$. The formula f(x) = x + 1 defines a function $f: X \longrightarrow Y$. For this function, f(1) = 2, f(2) = 3 and f(3) = 4.

Examples

A simple function and its diagram

Let $X = \{1, 2, 3\}$ and $Y = \{1, 2, 3, 4\}$. The formula f(x) = x + 1 defines a function $f: X \longrightarrow Y$. For this function, f(1) = 2, f(2) = 3 and f(3) = 4.

6

Examples A relation that is not a function

Examples

- The formula $f(x) = x^2 3x + 2$ defines a function $f: \mathbf{R} \longrightarrow \mathbf{R}$.
- Let W be the set of all words in this book, and let L be the set of all letters in the alphabet. Define a function $\underline{f}: W \longrightarrow L$ by setting f(w) equal to the first letter in the word w.

Example f("element") = "e" = f("elf")

Examples

- The formula $f(x) = x^2 3x + 2$ defines a function $f: \mathbf{R} \longrightarrow \mathbf{R}$.
- Let W be the set of all words in this book, and let L be the set of all letters in the alphabet. Define a function $f: W \longrightarrow L$ by setting f(w) equal to the first letter in the word w.
- Let F be the set of all non-empty finite sets of integers, so $F \subseteq \mathcal{P}(\mathbf{Z})$. Define a function

$$s: F \longrightarrow \mathbf{Z}$$

by setting s(X) to be the sum of all the elements of X. For example, $s(\{1,2,3\}) = 6$.

Examples Let $x \in \mathbb{R}$.

 $\lceil x \rceil$: the ceiling function returns the smallest integer $\geq x$

 $\lfloor x \rfloor$: the floor function returns the largest integer $\leq x$

$$\lceil 2.4 \rceil = 3, \lfloor 2.4 \rfloor = 2$$

2. One-to-one and Onto functions

One-to-one functions

Definition

A function $f: X \longrightarrow Y$ is <u>injective</u> (or <u>one-to-one</u>) if, for all a and b in X, $\underline{f(a)} = \underline{f(b)}$ implies that $a = \underline{b}$. In this case we say that f is a <u>one-to-one mapping</u> from X to Y.

I.e., if $a \neq b$, then $f(a) \neq f(b)$ or "Different elements map to different elements".

One-to-one functions

Definition

A function $f: X \longrightarrow Y$ is <u>injective</u> (or <u>one-to-one</u>) if, for all a and b in X, $\underline{f(a)} = \underline{f(b)}$ implies that $a = \underline{b}$. In this case we say that f is a <u>one-to-one mapping</u> from X to Y.

Proving one-to-one

Prove that the function $f: \mathbf{Z} \longrightarrow \mathbf{Z}$ defined by f(x) = 2x + 1 is one-to-one.

Proof.

Direct proof?

or

Proof by proving contraposition?

Proving one-to-one

Prove that the function $f: \mathbf{Z} \longrightarrow \mathbf{Z}$ defined by f(x) = 2x + 1 is one-to-one.

Proof.

Let $a, b \in \mathbf{Z}$ and suppose f(a) = f(b). Then

$$2a+1 = 2b+1$$
$$2a = 2b$$
$$a = b$$

We have shown that f(a) = f(b) implies that a = b, i.e., that f is one-to-one.

Onto functions

Definition

A function $f: X \longrightarrow Y$ is <u>surjective</u> (or <u>onto</u>) if, for all $b \in Y$, there exists an $a \in X$ such that f(a) = b. In this case we say that f maps X onto Y.

An *image* of a function $f:X \rightarrow Y$ is the set of all values in Y that f can take.

If f is onto, then the image of f is the same as Y.

Onto functions

Definition

A function $f: X \longrightarrow Y$ is <u>surjective</u> (or <u>onto</u>) if, for all $b \in Y$, there exists an $a \in X$ such that f(a) = b. In this case we say that f maps X onto Y.

Proving onto

Let $\lfloor x \rfloor$ denote the greatest integer less than or equal to x. Let $f: \mathbf{R} \longrightarrow \mathbf{Z}$ be defined by $f(x) = \lfloor x \rfloor$. Prove that f maps \mathbf{R} onto \mathbf{Z} .

Proof.

Proving onto

Let $\lfloor x \rfloor$ denote the greatest integer less than or equal to x. Let $f: \mathbf{R} \longrightarrow \mathbf{Z}$ be defined by $f(x) = \lfloor x \rfloor$. Prove that f maps \mathbf{R} onto \mathbf{Z} .

Proof.

Let $n \in \mathbf{Z}$. Then, since $\mathbf{Z} \subseteq \mathbf{R}$, $n \in \mathbf{R}$ as well. But since n is an integer, $\lfloor n \rfloor = n$. Therefore f(n) = n.

This proof actually shows how to systematically find, for any $n \in \mathbb{Z}$, an element x in \mathbb{R} that satisfies f(x) = n. \leftarrow A constructive proof

Disproving one-to-one and onto

Let $E = \{n \in \mathbf{Z} \mid n \text{ is even}\}$ and let $O = \{n \in \mathbf{Z} \mid n \text{ is odd}\}$. Define a function

$$f: E \times O \longrightarrow \mathbf{Z}$$

by f(x,y) = x + y. Is f one-to-one and/or onto? Prove or disprove.

Onto?

One-to-one?

Disproving one-to-one and onto

Solution

We first show that f is <u>not onto</u>. Suppose, to the contrary, that f is onto. Since $2 \in \mathbf{Z}$ is an element of the codomain, there is some ordered pair $(x, y) \in E \times O$ such that

$$f(x,y) = x + y = 2.$$

But since x is even and y is odd, x + y is odd.

This contradicts that 2 is even.

We next show that f is not one-to-one. Notice that

$$f(4,-3)=1=f(6,-5)$$

but $(4,-3) \neq (6,-5)$. This counterexample shows that f is not one-to-one.

Special Cases (1/2)

Suppose f: $A \leftrightarrow B$

- 1. f is a function defined for all values of A we say f is a "total" function, and write $A \rightarrow B$
- 2. f is a function defined for some subset of A including \emptyset we say f is a "partial" function, and write A \rightarrow B
- 3. f is a function defined for a *finite set* of values of A we say f is a "<u>finite</u>" function, and write A → B
- 4. f is a function for which no element in ran(f) is associated with more than one element in dom(f) we say f is a "one-to-one" or "injective" function, and write A → B
- 5. f is a function whose range is Bwe say f is an "onto" or "surjective" function, and write A → B
- 6. f is both one-to-one and onto we say f is a "bijection", and write A → B

Is bijection total?

Special Cases (2/2)

22

One-to-one correspondence

Definition A total function $f: X \to Y$ that is surjective and injective is called a *one-to-one correspondence* (\neq one-to-one).

Example 1.

Consider the set of all natural numbers $\mathbb N$ and the set of all even numbers E. Is there a one-to-one correspondence between $\mathbb N$ and E?

Example 2.

Is there a one-to-one correspondence between $\mathbb N$ and the set of all rational numbers $\mathbb Q$?

Example 3.

Is there a one-to-one correspondence between \mathbb{N} and the set of all real numbers \mathbb{R} ?

Let $f: X \to Y$ be a one-to-one correspondence. The *inverse function* of f, denoted f^{-1} , is the function that assigns to an element $b \in Y$ the unique element $a \in X$ such that f(a) = b. Hence, $f^{-1}(b) = a$ when f(a) = b.

Example Let f be the function from $\{a, b, c\}$ to $\{1, 2, 3\}$ such that f(a) = 2, f(b) = 3, and f(c) = 1.

Is f invertible?

Yes.

What is its inverse?

$$f^{-1}(1) = c$$
, $f^{-1}(2) = a$, and $f^{-1}(3) = b$.

3. Function Composition

If $f: X \longrightarrow \underline{Y}$ and $g: \underline{Y} \longrightarrow Z$, then $g \circ f$ is a function from X to Z defined by $(g \circ f)(x) = g(f(x))$.

Example of function composition

Function composition

If $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$, then $g \circ f$ is a function from X to Z defined by $(g \circ f)(x) = g(f(x))$.

Example of function composition

Let $f : \mathbf{R} \longrightarrow \mathbf{R}$ be defined by $f(x) = \lfloor x \rfloor$, and let $g : \mathbf{R} \longrightarrow \mathbf{R}$ be defined by g(x) = 3x. Then for x = 2.4

$$(g \circ f)(2.4) = g(f(2.4)) = g(2) = 6$$

Function composition

If $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$, then $g \circ f$ is a function from X to Z defined by $(g \circ f)(x) = g(f(x))$.

Example of function composition

Let $f : \mathbf{R} \longrightarrow \mathbf{R}$ be defined by $f(x) = \lfloor x \rfloor$, and let $g : \mathbf{R} \longrightarrow \mathbf{R}$ be defined by g(x) = 3x. Then for $\mathbf{x} = 2.4$

$$(g \circ f)(2.4) = g(f(2.4)) = g(2) = 6$$

and

$$(f \circ g)(2.4) = f(g(2.4)) = f(7.2) = 7$$

Function restriction

If $f: X \longrightarrow Y$ is some function, and $H \subseteq X$, then the restriction of f to H is the function

$$f|_H: \underline{H} \longrightarrow Y$$

defined by taking $f|_{H}(x) = f(x)$.

Example

$$\begin{split} f\left(x,y\right) &= x \ / \ y & \text{is a partial function with the type } \mathbb{R} \times \mathbb{R} \to \mathbb{R} \\ f\left(\mathbb{R}_{\times} \left(\mathbb{R} - \{0\} \right) \right) &= x \ / \ y & \text{is a total function.} \end{split}$$

Function restriction: example

Let $D = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ and let $D^* = D \setminus \{(0, 0)\}$. Let $S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ Define a function $p:D^*\longrightarrow S^1$ by projecting straight out along a radius until you reach the boundary of the disk.

What is the formula for p?

Function restriction: example

Getting a formula for p might be a little messy, but things can be cleaner if we consider a restriction. Let H be the circle of radius $\frac{1}{2}$:

$$H = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 = \frac{1}{4}\}$$

Then $p|_H(x,y) = ?$

Function restriction: example

Getting a formula for p might be a little messy, but things can be cleaner if we consider a restriction. Let H be the circle of radius $\frac{1}{2}$:

$$H = \{(x, y) \in \mathbf{R}^2 \mid x^2 + y^2 = \frac{1}{4}\}$$

Then $p|_{H}(x,y) = (2x,2y)$. (Why?)

Quiz 13-1

Which of the following is/are NOT true?

- (a) Any function is a partial function.
- (b) A total function is a partial function.
- (c) Some partial functions are total functions.
- (d) A one-to-one function is a one-to-one correspondence.
- (e) A one-to-one and onto function is a one-to-one correspondence.
- (f) A one-to-one correspondence must be a total function.

