

-> So, we know that when d is constant in time and space, The wave equation has a solution of a traveling wave
in time and space, The wave equation
has a solution of a troveling were
i.e. $u(x,t) = f(x-at) + g(x+at)$
-> However this is not so simple if a is not constant for all x, t, -> In Earth sciences, we trequently consider waves that travel through lasteroseevers medici
a is not constant for all x, t.
-> In Earth sciences, we trequestly
consider waves that travel through
heterogeneors media:
Althospheric arcuity works
Altmospheric gravity workes Seismic woves
Ocean waves
Porosity waves etcrete -> Such problems cannot be solved analytically for arbitrary x(x,t)
-> Such andleuns cannot be solved
analytically for arbitrary d(x,t)
A numerica (method: discretize ux, ux tems
1/2 - 22 1
X = a+idx Then use centered difference formulas for both terms.
L- LAL IN 1
tx=KDt both terms.
. 7

$$\frac{\partial^{2}u}{\partial t^{2}} = u(x_{i}, t_{k+1}) - 2u(x_{i}, t_{k}) + u(x_{i}, t_{k+1})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i-1}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i-1}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i-1}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i+1}, t_{k}) - 2u(x_{i}, t_{k}) + u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i}, t_{k}) - u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i}, t_{k}) - u(x_{i}, t_{k}) + u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i}, t_{k}) - u(x_{i}, t_{k})$$

$$\frac{\partial^{2}u}{\partial x^{2}} = u(x_{i}, t_{k}$$

$$\frac{TC}{u(x,t=0)} = e_{x}\rho\left(-\frac{t_{x-10}}{10}\right)$$

$$u_{t}(x,t=0) = 0$$

$$\frac{BC}{u(x=0,t)} = 0$$

$$u(x=x_{3},t) = 0$$