

CHIMIE NIVEAU MOYEN ÉPREUVE 1

Lundi 18 mai 2009 (après-midi)

45 minutes

INSTRUCTIONS DESTINÉES AUX CANDIDATS

- N'ouvrez pas cette épreuve avant d'y être autorisé(e).
- Répondez à toutes les questions.
- Choisissez pour chaque question la réponse que vous estimez la meilleure et indiquez votre choix sur la feuille de réponses qui vous est fournie.
- Le tableau périodique est inclus pour référence en page 2.

•	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			
۲-		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
ts		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
lémen 3		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
e des é				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
odida				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
n péri				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
ficatio				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
ı classi				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
u de la				25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
Le tableau de la classification périodique des éléments 3	Numéro atomique	El ement Masse atomique		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
Le	Numéro a	Elen Masse a		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
				22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	+	**
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

- A. 5
- B. 9
- C. 6.0×10^{23}
- D. $5,4 \times 10^{24}$

2. Quel échantillon a la plus grande masse ?

- A. 6.0×10^{25} molécules d'hydrogène
- B. 5,0 mol d'atomes de néon
- C. $1,2 \times 10^{24}$ atomes d'argent
- D. $1,7 \times 10^2$ g de fer

3. Quel volume de trioxyde de soufre, exprimé en cm³, peut-on préparer en utilisant 40 cm³ de dioxyde de soufre et 20 cm³ d'oxygène gazeux selon la réaction suivante ? Supposez que tous les volumes sont mesurés à la même température et à la même pression.

$$2SO_2(g) + O_2(g) \rightarrow 2SO_3(g)$$

- A. 20
- B. 40
- C. 60
- D. 80

4. Quel échantillon d'azote gazeux, N₂, contient le plus grand nombre de molécules d'azote ?

- A. 1,4 g de N₂
- B. $1,4 \text{ dm}^3 \text{ de } N_2 \text{ à } 1,01 \times 10^5 \text{ Pa et à } 273 \text{ K}$
- C. $1,4 \times 10^{23}$ molécules de N_2
- D. 1,4 mol de N₂

- 5. Quel est le numéro atomique d'un atome neutre qui compte 51 neutrons et 40 électrons ?
 - A. 40
 - B. 51
 - C. 91
 - D. 131
- **6.** Quelle est la masse atomique relative d'un élément qui présente le spectre de masse suivant ?

- A. 24
- B. 25
- C. 26
- D. 27

- 7. Quelle est la définition correcte du nombre de masse d'un atome ?
 - A. La masse totale des neutrons et des protons dans le noyau de l'atome
 - B. La masse totale des neutrons, des protons et des électrons dans l'atome
 - C. Le nombre de protons dans le noyau de l'atome
 - D. Le nombre total de neutrons et de protons dans le noyau de l'atome
- **8.** Quelle proposition décrit les tendances des valeurs de l'électronégativité dans le tableau périodique ?
 - A. Les valeurs augmentent de gauche à droite le long d'une période et augmentent de haut en bas dans un groupe.
 - B. Les valeurs augmentent de gauche à droite le long d'une période et diminuent de haut en bas dans un groupe.
 - C. Les valeurs diminuent de gauche à droite le long d'une période et augmentent de haut en bas dans un groupe.
 - D. Les valeurs diminuent de gauche à droite le long d'une période et diminuent de haut en bas dans un groupe.
- 9. Quelle proposition est correcte pour tous les éléments d'une même période ?
 - A. Ils possèdent le même nombre d'électrons dans le niveau d'énergie maximale occupé.
 - B. Ils possèdent la même réactivité chimique.
 - C. Ils possèdent le même nombre de niveaux d'énergie occupés.
 - D. Ils possèdent le même nombre de neutrons.
- 10. Quelle proposition décrit le mieux la liaison intramoléculaire dans HCN(1)?
 - A. Attractions électrostatiques entre les ions H⁺ et CN⁻
 - B. Uniquement des forces de Van der Waals
 - C. Des forces de Van der Waals et des liaisons hydrogène
 - D. Attractions électrostatiques entre des paires d'électrons et des noyaux porteurs de charges positives

2209-6122 Tournez la page

- 11. Quelle proposition décrit le mieux la liaison métallique ?
 - A. Attractions électrostatiques entre des ions de charges opposées
 - B. Attractions électrostatiques entre un réseau d'ions positifs et des électrons délocalisés

-6-

- C. Attractions électrostatiques entre un réseau d'ions négatifs et des protons délocalisés
- D. Attractions électrostatiques entre des protons et des électrons
- **12.** Le métal M n'a qu'un seul nombre d'oxydation et forme un composé dont la formule est MCO₃. Quelle formule est correcte ?
 - A. MNO₃
 - B. MNH₄
 - C. MSO₄
 - D. MPO₄
- 13. Quelle molécule possède la liaison la plus courte entre des atomes de carbone ?
 - A. C_2H_6
 - B. C_2H_4
 - C. C_2H_2
 - D. $C_2H_4Cl_2$
- **14.** Quelle est, en kJ, l'énergie libérée quand 1,00 mol de monoxyde de carbone est brûlée selon l'équation suivante ?

$$2\text{CO}(g) + \text{O}_2(g) \rightarrow 2\text{CO}_2(g)$$
 $\Delta H^{\ominus} = -564 \text{ kJ}$

- A. 141
- B. 282
- C. 564
- D. 1128

- **15.** La chaleur massique du fer est de 0,450 J g⁻¹ K⁻¹. Quelle quantité d'énergie, exprimée en J, faut-il pour élever de 20,0 K la température de 50,0 g de fer ?
 - A. 9,00
 - B. 22,5
 - C. 45,0
 - D. 450
- **16.** Quelles réactions parmi les suivantes sont exothermiques ?
 - I. $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
 - II. NaOH + HCl \rightarrow NaCl + H₂O
 - III. $Br_2 \rightarrow 2Br$
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III
- 17. On considère la réaction entre le magnésium et l'acide chlorhydrique. Quels facteurs influencent la vitesse de réaction ?
 - I. La fréquence des collisions des particules de réactifs
 - II. Le nombre de particules de réactifs qui possèdent $E \ge E_a$
 - III. Le nombre de particules de réactifs qui entrent en collision selon la géométrie appropriée
 - A. I et II uniquement
 - B. I et III uniquement
 - C. II et III uniquement
 - D. I, II et III

- **18.** Quelle est la fonction du fer dans le procédé Haber ?
 - A. Il déplace la position de l'équilibre vers les produits.
 - B. Il diminue la vitesse de la réaction.
 - C. Il fournit une voie réactionnelle alternative avec une énergie d'activation plus basse.
 - D. Il réduit la variation d'enthalpie accompagnant la réaction.
- 19. Quel effet une augmentation de la température aura-t-elle sur la valeur de K_c et la position de l'équilibre dans la réaction suivante ?

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H = -92 \text{ kJ}$

	$K_{\rm c}$	Position de l'équilibre		
A.	augmente	se déplace vers la droite		
B.	diminue	se déplace vers la gauche		
C.	augmente	se déplace vers la gauche		
D.	diminue	se déplace vers la droite		

- 20. Quelle proposition est toujours correcte à propos d'une réaction chimique à l'équilibre ?
 - A. La vitesse de la réaction directe est égale à la vitesse de la réaction inverse.
 - B. Les quantités de réactifs et de produits sont égales.
 - C. La concentration des réactifs et des produits change constamment.
 - D. L'état d'avancement de la réaction directe est plus grand que celui de la réaction inverse.

21. Parmi les suivantes, lesquelles sont des définitions d'un acide selon les théories de Brønsted-Lowry et de Lewis ?

	Théorie de Brønsted-Lowry	Théorie de Lewis			
A.	donneur de protons	accepteur de paires d'électrons			
B.	accepteur de protons	accepteur de paires d'électrons			
C.	accepteur de protons	donneur de paires d'électrons			
D.	donneur de protons	donneur de paires d'électrons			

- 22. Quelle liste ne comporte que des acides forts?
 - A. CH₃COOH, H₂CO₃, H₃PO₄
 - B. HCl, HNO₃, H₂CO₃
 - C. CH₃COOH, HNO₃, H₂SO₄
 - D. HCl, HNO₃, H₂SO₄
- **23.** Une solution aqueuse d'acide perchlorique, HClO₄, est un exemple d'acide fort. Quelle proposition est correcte à propos de cette solution ?
 - A. HClO₄ est complètement dissocié dans la solution.
 - B. HClO₄ existe surtout sous forme de molécules dans la solution.
 - C. La solution réagit uniquement avec les bases fortes.
 - D. La solution a une valeur de pH supérieure à 7.

$$2Ag^{+}(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq)$$

- A. Ag⁺
- B. Cu
- C. Ag
- D. Cu²⁺

25. Quelle liste représente les halogènes en ordre **croissant** de force oxydante (agent oxydant le plus faible en premier) ?

- A. Cl₂ I₂ Br₂
- B. I₂ Br₂ Cl₂
- C. I₂ Cl₂ Br₂
- D. Cl₂ Br₂ I₂

26. Quel est le produit de l'oxydation du butan-2-ol?

- A. But-2-ène
- B. Acide butanoïque
- C. Butanal
- D. Butanone

27. Lequel des composés suivants est un halogénoalcane tertiaire ?

- A. CH₃CH₂CH₂Br
- B. CH₃CH₂CH(CH₃)Cl
- C. $C(CH_3)_3Br$
- D. CH₃CHClCH₂CH₃

28. Quel est le nom du composé suivant selon les règles de l'UICPA?

- A. 2-méthylbutane
- B. Éthylpropane
- C. 3-méthylbutane
- D. Pentane
- 29. Quelles équations représentent la combustion incomplète du méthane ?

I.
$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$

II.
$$CH_4(g) + 1\frac{1}{2}O_2(g) \rightarrow CO(g) + 2H_2O(g)$$

III.
$$CH_4(g) + O_2(g) \rightarrow C(s) + 2H_2O(g)$$

- A. I et II uniquement
- B. I et III uniquement
- C. II et III uniquement
- D. I, II et III

- **30.** Quelle serait la meilleure méthode pour réduire l'incertitude **aléatoire** d'une mesure dans un titrage acide-base ?
 - A. Répéter le titrage
 - B. S'assurer que l'œil est à la même hauteur que le ménisque quand on lit sur la burette
 - C. Utiliser une burette différente
 - D. Utiliser un indicateur différent pour le titrage