

Tartalomjegyzék

1.	Bevezetés	2
2.	Zebra rejtvények	3
	2.1. Történet és szerkezet	3
	2.2. Megoldhatóság, egyértelműség	3
	2.3. Megoldó módszerek	3
3.	Evolúciós algoritmusok	4
4.	Evolúciós algoritmus Zebra rejtvények megfejtésére	5
	4.1. Kódszerkezet	5
	4.2. Egyedreprezentáció és segédfüggvények	5
	4.3. Evolúciós mechanizmusok	5
	4.3.1. Random új egyed generálás	5
	4.3.2. Mutálás	5
	4.3.3. Keresztezés	5
	4.3.4. Megold függvény	5
	4.4. Egyedek kiértékelése	5
5.	Tesztek	6
6.	Kód automatikus generálása	7
7.	Összefoglalás	8
Hi	ivatkozások	9
Α.	. Mintafejezet	10
	A.1. Kep betoltese	10
	A.2. Tablazatok	10
	A 3 Forraskodok heemelese	11

Bevezetés

TODO: Absztrakt bovebben, szoveges tartalomjegyzek

Zebra rejtvények

TODO: Egy bevezeto mondat, + hogy melyik alfejezetben mi lesz

2.1. Történet és szerkezet

TODO: Miert zebra, mikbol all a rejtveny, Einstein peldajabol reszlet akar

2.2. Megoldhatóság, egyértelműség

TODO: Pici peldakon bemutatni, hogy ha rosszak a szabalyok, akkor lehet nincs megoldas, vagy ha keves a szabaly, akkor lehet tobb megoldas is van. Egy nagyon apro (3 szek, 2 tulajdonsag mondjuk) pelda kitalalasa es megoldasa par lepesben.

2.3. Megoldó módszerek

TODO: Irodalomban talalhato modszerek, 2 mondat roluk, hivatkozasok

Evolúciós algoritmusok

TODO: Tortenetuk, hivatkozasok TODO: Altalanos felepitesuk TODO: Akar par szo arrol, mi mindenre alkalmaztak oket, hivatkozasok

Evolúciós algoritmus Zebra rejtvények megfejtésére

TODO: Par mondat az alapveto elgondolasrol, hogy melyik fejezetben mirol lesz szo

4.1. Kódszerkezet

TODO: Hogy van szervezve a kod, milyen fuggvenyek vannak, azok mikert fognak felelni roviden.

4.2. Egyedreprezentáció és segédfüggvények

TODO: Hogy reprezentaljuk az egyedet TODO: egyedkiir, sorbarendez, ...

4.3. Evolúciós mechanizmusok

TODO: esetleg par felvezeto szo, a kapcsolodo makrok megemlitese (popmeret, megtart)

4.3.1. Random új egyed generálás

TODO: Milyen volt az elso valtozat, hogy lett fejlesztve

4.3.2. Mutálás

TODO: Ugyanez. Milyen valtozatok voltak, vannak, részletesen bemutatva

4.3.3. Keresztezés

TODO: Ugyanez. Milyen valtozatok voltak, vannak, részletesen bemutatva

4.3.4. Megold függvény

TODO: Ugyanez. Milyen valtozatok voltak, vannak, részletesen bemutatva

4.4. Egyedek kiértékelése

TODO: Itt is szepen be lehet mutatni, hogy hogyan fejlodott, meg meg lehet mutatni mind az ot-hat tipusra egy peldat

Tesztek

TODO: Futtatasi eredmenyek, megoldasok megmutatasa, stb.

Kód automatikus generálása

TODO: Miert akarjuk TODO: Hogy csinaltuk TODO: pelda

Összefoglalás

TODO: Mit csinaltunk roviden

Hivatkozások

A. függelék

Mintafejezet

A.1. Kep betoltese

Kep betoltese a Abra makroval az alabbiak szerint. Az elso parameter a fajl neve, ebbol lesz egy fig_fajlnev cimke, amit ref-ekhez lehet hasznalni. MAsodik parameter a kepalairas, a harmadik a meret.

```
\Aref{fig_zebra} abran bla bla.
\Abra{zebra}{Talalo kepalairas}{width=6cm}
```

Az A.1 abran bla bla.

A.1. ábra. Talalo kepalairas

A.2. Tablazatok

Tablazat makroval lehet csinalni az alabbiak szerint. Az elso parameter a cimke, ebbol lesz egy tab_cimke cimke, amit ref-ekhez lehet hasznalni. MAsodik parameter a tablazat cime, a harmadik az oszlopok szerkezete (lasd tabular tutorial), az utolso maga a tablazat tartalma.

```
Ahogy az \aref{tab_cimke} tablazatban lathato, bla bla bla.
\Tablazat{cimke}{Tablazat cime}{r||cc|l}
{
    Elso sor elso cella jobra igazitva & kozepre & kozepre & balra \\
```

```
\hline
Masodik sor & & yay & much wow\\
ize & bize & mize & meh... \\
}
```

Ahogy az az A.1 tablazatban lathato, bla bla bla.

Elso sor elso cella jobra igazitva	kozepre	kozepre	balra
Masodik sor		yay	much wow
ize	bize	mize	meh

A.1. táblázat. Tablazat cime

A.3. Forraskodok beemelese

Forraskodot vagy a Forraskod makroval lehet betolteni a fajlbol, ahol az elso parameter a fajl neve, a masodik tovabbi opciok, pl hogy melyik sortol melyik sorig, stb. A masik lehetoseg, hogy a kodba keruljon be az alabbiak szerint:

\Forraskod{ize.c}{frame=single,lastline=4}

```
int fuggvenynev(int tralala){
   int a;
   int b=3; // egy nagyon hasznos komment
   return a+3*b-masikfuggveny(tralala);
```

```
\begin{lstlisting}[frame=single, language=C]
    printf("Hello world\n");
    if(whatever){
        return 1;
    } else do {
        tanuljmegindentalni();
    } while (i<5);
\end{lstlisting}</pre>
```

```
printf("Hello world\n");
if(whatever){
    return 1;
} else do {
    tanuljmegindentalni();
} while (i < 5);</pre>
```