105-94

問題文

ボルツマン分布は、異なるエネルギー準位 E_1 、 E_2 (E_1 < E_2)をもつ分子の数をそれぞれ N_1 、 N_2 としたときの、熱平衡状態における両者の比(N_2 / N_1)に関する情報を与える(下式参照)。ボルツマン分布に関する記述のうち、正しいのはどれか。2つ選べ。

$$N_2/N_1 = \exp{\frac{-(E_2 - E_1)}{k_{\rm B}}}$$

k_B:ボルツマン定数

- 1. 式中の(A)に入る物理量は体積である。
- 2. 常にN₂/N₁ < 1が成り立つ。
- 3. $E_1 \& E_2$ の差が大きいほど N_2 / N_1 が小さくなる。
- 4. 温度が高いほど N_2/N_1 が小さくなる。
- 5. $N_2/N_1 = 1/e$ となるときの($E_2 E_1$)を活性化エネルギーという。

解答

2, 3

解説

選択肢 1.4 ですが

Aに入るのは T(絶対温度)です。体積ではありません。よって、選択肢 1 は誤りです。

また、これにより「T が大きくなる」ほど、「e $^{\rm X}$ における指数部分が小さくなる」とわかります。つまり、T が大きいほど N $_2$ /N $_1$ は「大きく」なります。よって、選択肢 4 は誤りです。

選択肢 2.3 は妥当な記述です。

 $E_1 < E_2$ より、 $E_2 - E_1$ は0よりも大きい数です。ボルツマン定数 k_B 、絶対温度も正なので、右辺は 「 e^X における指数部分が 0 より小さい式」です。従って、 N_2/N_1 は e^0 ~ e^- の間なので、0 ~1 の間をとります。さらに、 E_1 と E_2 の差が大きいと、 $E_2 - E_1$ は 大きくなります。すると、より指数部分が $-\infty$ に近づきます。すると、左辺の値は 0 に近づくため「小さく」なります。

選択肢 5 ですが

活性化エネルギーがわかるのはアレニウスの式です。よって、選択肢 5 は誤りです。

以上より、正解は 2.3 です。

参考)