Simple strategies for Banach-Mazur games and fairly correct systems

Thomas Brihaye and Quentin Menet

Université de Mons - Belgium

HIGHLIGHTS of Logic, Games and Automata - Paris

Outline of the talk

- Motivations
- 2 Banach-Mazur games and large sets
- 3 Simple strategies for Banach-Mazur games
- 4 The concept of α -strategy

Classical Model-Checking

Given a model M and a property φ , decide whether :

 $M \models \varphi$, i.e. $\{\rho \text{ execution of } M \mid \rho \not\models \varphi\}$ is **empty**.

 $M_{\text{coin}} \not\models \mathbf{F} \text{ head}$; $M_{\text{coin}} \not\models \mathbf{GF} \text{ tails}$

Fair Model-Checking

Given a model M and a property φ , decide whether :

 $M \approx \varphi$, i.e. $\{\rho \text{ execution of } M \mid \rho \not\models \varphi\}$ is "very small".

Fair Model-Checking

Given a model M and a property φ , decide whether :

$$M \approx \varphi$$
, i.e. $\{\rho \text{ execution of } M \mid \rho \not\models \varphi\}$ is "very small".

How to formalise the fair model-checking?

Via probability

$$M \bowtie_{\mathbb{P}} \varphi \quad iff \quad \mathbb{P}(\{\rho \text{ of } M \mid \rho \not\models \varphi\}) = 0$$

$$iff \quad \mathbb{P}(\{\rho \text{ of } M \mid \rho \models \varphi\}) = 1$$

Via topology

$$M \bowtie_{\mathcal{T}} \varphi$$
 iff $\{\rho \text{ of } M \mid \rho \not\models \varphi\}$ is meagre iff $\{\rho \text{ of } M \mid \rho \models \varphi\}$ is large

A natural question

Given a model ${\it M}$ and property φ , do we have that

$$M \bowtie_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \bowtie_{\mathcal{T}} \varphi \quad ???$$

A natural question

Given a model M and property φ , do we have that

$$M \bowtie_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \bowtie_{\mathcal{T}} \varphi \quad ???$$

In general, the answer is **NO** (e.g. fat Cantor set.)

A natural question

Given a model M and property φ , do we have that

$$M \bowtie_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \bowtie_{\mathcal{T}} \varphi \quad ???$$

In general, the answer is **NO** (e.g. fat Cantor set.)

Theorem [VV06]

Given a finite system M and an ω -regular property φ , we have that

$$M \bowtie_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \bowtie_{\mathcal{T}} \varphi,$$

for bounded Borel measures.

A natural question

Given a model M and property φ , do we have that

$$M \bowtie_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \bowtie_{\mathcal{T}} \varphi \quad ???$$

In general, the answer is NO (e.g. fat Cantor set.)

Theorem [VV06]

Given a finite system M and an ω -regular property φ , we have that

$$M \approx_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \approx_{\mathcal{T}} \varphi,$$

for bounded Borel measures.

Can we go further?

Outline of the talk

- Motivations
- 2 Banach-Mazur games and large sets
- 3 Simple strategies for Banach-Mazur games
- 4 The concept of α -strategy

Definition

A Banach-Mazur game G on a finite graph is a triplet (G, v_0, W) where

- G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$ is the initial state,
- $W \subset V^{\omega}$.

Definition

A Banach-Mazur game G on a finite graph is a triplet (G, v_0, W) where

- ullet G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$ is the initial state,
- $W \subset V^{\omega}$.

Given (G, v_0, W) , Pl. 0 and Pl. 1 play as follows:

• Pl. 1 begins with choosing a finite path ρ_1 starting in v_0 ;

Definition

A Banach-Mazur game G on a finite graph is a triplet (G, v_0, W) where

- ullet G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$ is the initial state,
- $W \subset V^{\omega}$.

- Pl. 1 begins with choosing a finite path ρ_1 starting in v_0 ;
- Pl. 0 prolongs ρ_1 by choosing another finite path ρ_2 ;

Definition

A Banach-Mazur game G on a finite graph is a triplet (G, v_0, W) where

- ullet G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$ is the initial state,
- $W \subset V^{\omega}$.

- Pl. 1 begins with choosing a finite path ρ_1 starting in v_0 ;
- ullet Pl. 0 prolongs ho_1 by choosing another finite path ho_2 ;
- Pl. 1 prolongs $\rho_1\rho_2$ by choosing another finite path ρ_3 ;

Definition

A Banach-Mazur game G on a finite graph is a triplet (G, v_0, W) where

- ullet G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$ is the initial state,
- $W \subset V^{\omega}$.

- Pl. 1 begins with choosing a finite path ρ_1 starting in v_0 ;
- ullet Pl. 0 prolongs ho_1 by choosing another finite path ho_2 ;
- Pl. 1 prolongs $\rho_1\rho_2$ by choosing another finite path ρ_3 ;
- ...

Definition

A Banach-Mazur game G on a finite graph is a triplet (G, v_0, W) where

- ullet G = (V, E) is a finite directed graph with no deadlock,
- $v_0 \in V$ is the initial state,
- $W \subset V^{\omega}$.

Given (G, v_0, W) , Pl. 0 and Pl. 1 play as follows:

- Pl. 1 begins with choosing a finite path ρ_1 starting in v_0 ;
- Pl. 0 prolongs ρ_1 by choosing another finite path ρ_2 ;
- Pl. 1 prolongs $\rho_1\rho_2$ by choosing another finite path ρ_3 ;
- ..

A play $\rho = \rho_1 \rho_2 \rho_3 \cdots$ is won by Pl. 0 wins iff $\rho \in W$.

Let G = (V, E) be a graph and $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game.

Definition

A strategy for PI. 0 is a function $f:V^* o V^*$ such that whenever

$$f(\rho) = \rho'$$

we have that ρ' prolongs ρ in G.

 ρ_1

Let G = (V, E) be a graph and $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game.

Definition

A strategy for PI. 0 is a function $f:V^* \to V^*$ such that whenever

$$f(\rho) = \rho'$$

we have that ρ' prolongs ρ in G.

 $f(\rho_1) = \rho_2$

 $\rho_1 \rho_2$

Let G = (V, E) be a graph and $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game.

Definition

A strategy for PI. 0 is a function $f:V^* \to V^*$ such that whenever

$$f(\rho) = \rho'$$

we have that ρ' prolongs ρ in G.

 $f(\rho_1) = \rho_2$

 $\rho_1 \rho_2 \rho_3$

Let G = (V, E) be a graph and $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game.

Definition

A strategy for PI. 0 is a function $f:V^* o V^*$ such that whenever

$$f(\rho) = \rho'$$

Let G = (V, E) be a graph and $G = (G, v_0, W)$ be a Banach-Mazur game.

Definition

A strategy for PI. 0 is a function $f: V^* \to V^*$ such that whenever

$$f(\rho) = \rho'$$

we have that ρ' prolongs ρ in G.

 $\rho_1 \rho_2 \rho_3 \rho_4 \rho_5$

 $f(\rho_1) = \rho_2$

Let G=(V,E) be a graph and $\mathcal{G}=(G,v_0,W)$ be a Banach-Mazur game.

Definition

A strategy for PI. 0 is a function $f:V^* o V^*$ such that whenever

$$f(\rho) = \rho'$$

Let G = (V, E) be a graph and $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game.

Definition

A strategy for PI. 0 is a function $f:V^* o V^*$ such that whenever

$$f(\rho) = \rho'$$

Let G = (V, E) be a graph and $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game.

Definition

A strategy for PI. 0 is a function $f:V^* \to V^*$ such that whenever

$$f(\rho) = \rho'$$

Banach-Mazur games and large sets

Let (V, E) be a graph. We consider V^{ω} equipped with the Cantor topology.

Definitions

A set $S \subseteq V^{\omega}$ is said

- nowhere dense if the closure of S has empty interior.
- meagre if it can be seen as a countable union of nowhere dense sets.
- large if S^c is meagre.

Theorem [Oxtoby57]

Let $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game on a finite graph.

Pl. 0 has a winning strategy for \mathcal{G} if and only if W is large.

Outline of the talk

- Motivations
- 2 Banach-Mazur games and large sets
- 3 Simple strategies for Banach-Mazur games
- 4 The concept of α -strategy

Back to our motivation

Theorem [VV06]

Given a finite system M and an ω -regular property φ , we have that

$$M \bowtie_{\mathbb{P}} \varphi \quad \Leftrightarrow \quad M \bowtie_{\mathcal{T}} \varphi,$$

for bounded Borel measures.

The key ingredient to prove the above result is the following result :

Theorem [BGK03]

Given $\mathcal{G}=(\mathit{G},\mathit{v}_0,\mathit{W})$ where W is an ω -regular property, we have that

Pl. 0 has a winning strategy for \mathcal{G} iff

Pl. 0 has a **positional** winning strategies for \mathcal{G} .

Given $\mathcal{G} = (G, v_0, W)$, let $f: V^* \to V^*$ be a strategy for Pl. 0.

$$f(\underline{\rho_1\rho_2\cdots\rho_{2n+1}}) = \underline{\rho_{2n+2}}$$

What is observed What is played

We say that f is

Given $\mathcal{G} = (G, v_0, W)$, let $f: V^* \to V^*$ be a strategy for Pl. 0.

$$f(\underline{\rho_1\rho_2\cdots\rho_{2n+1}}) = \underline{\rho_{2n+2}}$$

What is observed What is played

We say that f is

• positional if it only depends on Last(ρ_{2n+1}).

Given $\mathcal{G} = (G, v_0, W)$, let $f: V^* \to V^*$ be a strategy for Pl. 0.

$$f(\underbrace{\rho_1\rho_2\cdots\rho_{2n+1}}_{\text{What is observed}}) = \underbrace{\rho_{2n+2}}_{\text{What is played}}$$

We say that f is

- positional if it only depends on Last(ρ_{2n+1}).
- finite memory if it only depends on Last(ρ_{2n+1}) and a finite memory.

E. Grädel, S. Leßenich, Banach-Mazur Games with Simple Winning Strategies, CSL 2012

Given $\mathcal{G} = (G, v_0, W)$, let $f: V^* \to V^*$ be a strategy for Pl. 0.

$$f(\underbrace{\rho_1 \rho_2 \cdots \rho_{2n+1}}_{\text{What is observed}}) = \underbrace{\rho_{2n+2}}_{\text{What is played}}$$

We say that f is

- positional if it only depends on Last(ρ_{2n+1}).
- finite memory if it only depends on Last(ρ_{2n+1}) and a finite memory.
- *b-bounded* if $|\rho_{2n+2}| \leq b$.

E. Grädel, S. Leßenich, Banach-Mazur Games with Simple Winning Strategies, CSL 2012

Given $\mathcal{G} = (G, v_0, W)$, let $f: V^* \to V^*$ be a strategy for Pl. 0.

$$f(\underline{\rho_1\rho_2\cdots\rho_{2n+1}}) = \underline{\rho_{2n+2}}$$

What is observed What is played

We say that f is

- positional if it only depends on Last(ρ_{2n+1}).
- finite memory if it only depends on Last(ρ_{2n+1}) and a finite memory.
- *b-bounded* if $|\rho_{2n+2}| \leq b$.
- bounded if there is $b \ge 1$ such that f is b-bounded.

Given $\mathcal{G} = (G, v_0, W)$, let $f: V^* \to V^*$ be a strategy for Pl. 0.

$$f(\underbrace{\rho_1 \rho_2 \cdots \rho_{2n+1}}_{\text{What is observed}}) = \underbrace{\rho_{2n+2}}_{\text{What is played}}$$

We say that f is

- positional if it only depends on Last(ρ_{2n+1}).
- finite memory if it only depends on Last(ρ_{2n+1}) and a finite memory.
- *b-bounded* if $|\rho_{2n+2}| \leq b$.
- bounded if there is $b \ge 1$ such that f is b-bounded.
- move-counting if it only depends on Last(ρ_{2n+1}) and the number of moves already played.

E. Grädel, S. Leßenich, Banach-Mazur Games with Simple Winning Strategies, CSL 2012

Given $\mathcal{G} = (G, v_0, W)$, let $f: V^* \to V^*$ be a strategy for Pl. 0.

$$f(\underline{\rho_1\rho_2\cdots\rho_{2n+1}}) = \underline{\rho_{2n+2}}$$

What is observed What is played

We say that f is

- positional if it only depends on Last(ρ_{2n+1}).
- finite memory if it only depends on Last(ρ_{2n+1}) and a finite memory.
- *b-bounded* if $|\rho_{2n+2}| \leq b$.
- bounded if there is $b \ge 1$ such that f is b-bounded.
- move-counting if it only depends on Last(ρ_{2n+1}) and the number of moves already played.
- length-counting if it only depends on the Last(ρ_{2n+1}) and the length of the prefix already played.

E. Grädel, S. Leßenich, Banach-Mazur Games with Simple Winning Strategies, CSL 2012

Simple strategies for PI. 0 on finite graphs

Combining simple observations and results from [BGK03], [VV06], [GL12], [BM13]

Relations with the sets of probability one

Proposition

Let $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game on a finite graph and \mathbb{P} a reasonable probability measure.

If PI. 0 has
$$\begin{cases} \mathsf{a} \ \mathsf{move\text{-}counting} \\ \mathsf{a} \ \mathsf{bounded} \end{cases}$$
 winning strategy for $\mathcal{G}, \ \mathsf{then} \ \mathbb{P}(W) = 1.$

Relations with the sets of probability one

Proposition

Let $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game on a finite graph and \mathbb{P} a reasonable probability measure.

If PI. 0 has
$$\begin{cases} \mathsf{a} \ \mathsf{move\text{-}counting} \\ \mathsf{a} \ \mathsf{bounded} \end{cases}$$
 winning strategy for $\mathcal{G}, \ \mathsf{then} \ \mathbb{P}(W) = 1.$

There exist large **open** set of probability 1 without a positional/ bounded/ move-counting winning strategy.

We look for a new concept of "simple strategy"

Outline of the talk

- Motivations
- 2 Banach-Mazur games and large sets
- 3 Simple strategies for Banach-Mazur games
- 4 The concept of α -strategy

A play consists in concatenating finite paths,

Another simple strategy for Banach-Mazur game

Given $\mathcal{G} = (G, v_0, W)$, a strategy for Pl. 0 can be seen as $f : \mathcal{O} \to \mathcal{O}$.

$$f(\underbrace{O_1\,O_2\cdots O_{2n+1}}_{ ext{What is observed}}) = \underbrace{O_{2n+2}}_{ ext{What is played}},$$

where $O_1 \supseteq O_2 \supseteq \cdots \supseteq O_{2n+1} \supseteq O_{2n+2}$ are open sets.

Another simple strategy for Banach-Mazur game

Given $\mathcal{G} = (G, v_0, W)$, a strategy for PI. 0 can be seen as $f : \mathcal{O} \to \mathcal{O}$.

$$f(\underbrace{O_1 \, O_2 \cdots O_{2n+1}}_{ ext{What is observed}}) = \underbrace{O_{2n+2}}_{ ext{What is played}},$$

where $O_1 \supseteq O_2 \supseteq \cdots \supseteq O_{2n+1} \supseteq O_{2n+2}$ are open sets.

Assuming that G is equipped with a probability distribution on edges.

The notion of α -strategy

Given $0 < \alpha < 1$, we say that f is an α -strategy if and only if

$$\mathbb{P}\left(O_{2n+2}|O_{2n+1}\right) \geqslant \alpha.$$

Our results

Theorem

Let $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game on a finite graph and \mathbb{P} a reasonable probability measure.

If PI. 0 has a winning α -strategy for some $\alpha > 0$, then $\mathbb{P}(W) = 1$.

Our results

Theorem

Let $\mathcal{G} = (G, v_0, W)$ be a Banach-Mazur game on a finite graph and \mathbb{P} a reasonable probability measure.

If PI. 0 has a winning α -strategy for some $\alpha > 0$, then $\mathbb{P}(W) = 1$.

Theorem

When W is a **countable intersection of open sets**, the following assertions are equivalent :

- **1** P(W) = 1,
- ② Pl. 0 has a winning α -strategy for some $\alpha > 0$,
- **3** Pl. 0 has a winning α -strategy for all $0 < \alpha < 1$.

Summary

Thank you!!!