ME 635: Modeling and Simulation Homework 4

Data Modeling and Numerical Methods 10/3/2022

I pledge my honor that I have abided by the Stevens Honor System

> Submitted by, Viral Panchal

- 1. (20 Pts): For the data given in HW4_Problem1.txt (two comma separated values), find:
 - a. Coefficients for the best-fit quadratic model and the RMS error.

Solution:

$$y = a_0 + a_1(x) + a_2(x^2)$$

b. Find the coefficients a_0 and a_1 if $y_{model} = a_0 * x + a_1 * sinh(x)$ and the RMS error

Solution:

$$y_{model} = a_0 *x + a_1 *sinh(x)$$

c. Find the coefficients b_0 and b_1 if $y_{model} = b_0 * x^2 + b_1 * exp(x)$

Solution:

$$y_{model} = b_0 * x^2 + b_1 * exp(x)$$

- 2. **(20 Pts):** For the data given in **HW4_problem2.txt** (two comma separated values: X,Y), find:
 - a. Best-fit cubic model for the entire regime $(0 \le X \le 1)$

Solution:

A0		Coefficients a
A1	Intercept	0.258027996
AI	X	-0.089978217
A2	X^2	0.512793483
A3	X^3	-0.100118874
The state of the s		
	N	101
	Sum(Residual^2)	0.003662277
	RMSE	0.006021642

- b. Two piece-wise cubic models, first fit, $f_1(x)$, is valid from $0 \le X \le 0.5$ and the second fit, $f_2(x)$ is valid from: $0.5 < X \le 1$. (Note: the point X=0.5 belongs to the first fit).
- c. For the fits determined in 3(b), Plot the two functions $f_1(X)$ and $f_2(X)$ and comment on the continuity (C_0 and C_1 : data and slope continuity) of the two models at X=0.5. If $f_2(X)$ is extrapolated to X=0.5.

Solution:

First function from 0 - 0.5

A0		Coefficients
	Intercept	0.249991167
A1	Х	0.050385743
42	X^2	0.121477951
A2	X^3	0.019189636
A3		
	N	51
	Sum(Residual^2)	6.68572E-10
	RMSE	3.62067E-06

Second function from 0.5 - 1 (not including 0.5)

A0		Coefficients
\succ	Intercept	0.266252339
A1	X	-0.009421796
	X^2	0.293626389
A2	X^3	0.030908769
А3		
	N	50
	Sum(residual^2)	8.11183E-10
	RMSE	4.02786E-06

Plotting both the functions:

When x = 0.5;

f1(x)	0.30795223
f2(x)	0.338811634
df1(x)	0.186255921
df2(x)	0.30738617

From the above plot and numerical computation, we can see that the functions do not coincide at x = 0.5. Also, they don't have the same slope at x = 0.5. Hence, they cannot be termed as continuous.

3. (30 Pts): For the data given in HW4_Problem3.txt (two comma separated values: X, Y), model with two piece-wise polynomial models, a cubic function $(f_1(X))$ to fit from $0 \le X \le 0.5$ and a quartic (4th order - $f_2(X)$) to fit from $0.5 \le X \le 1$, such that $f_2(X)$ maintains both C_0 and C_1 continuity at X = 0.5.

Solution:

Function 1: Cubic function coefficients

Second Function: Quartic function coefficients

In this, the values for df1(x) and df2(x) at x=0.5 is almost similar and hence the slope is said to be same for both the functions. Also, the values for both the function at x=0.5 are almost same numerically and hence, the two functions can be said to be continuous which can be even verified by looking at the plot provided above.

4. (30 Pts): Determine polynomial interpolation, $T(x) = \Sigma T_i N_i(x)$; where $x = \{0,...,1\}$ and i=1....5; such that $T(x=0) = T_1$, $T(x=1) = T_2$, $T(x=0.5) = T_3$, $T(X=0.25) = T_4$ and $T(x=0.75) = T_5$. Plot the five interpolation functions, $N_i(x)$. Given $T_1 = 100$, $T_2 = 100$, $T_3 = 160$, $T_4 = 120$, $T_5 = 130$; Plot the temperature field, T(x) and the five interpolation functions ($N_i(x)$, i=1.......5) Interpolation functions.

0.4)	Poly nomial interpolation
	T(x) = ETiNi(x) $x = 6013$
	$T(0) = T_1 = 100$ $i = 1, 5$
	$T(1) = T_2 = 100 \qquad \qquad \chi_1 = 0 \; ; \; \chi_2 = 1 \; ;$
	$T(0.5) = \overline{13} = 150$ $\chi_3 = 0.5$; $\chi_4 = 0.25$ $T(0.25) = \overline{14} = 120$ $\chi_5 = 0.75$
	T(0.25)=T4=120 $75=0.75T(0.75)=T5=130$
	Interpolitation functions,
	$N_{1}(x) = \left[(x - x_{2})(x - x_{3})(x - x_{4})(x - x_{5}) \right] $ $(x_{1} - x_{2})(x_{1} - x_{3})(x_{1} - x_{4})(x_{1} - x_{5})$
	$= (\chi - 1) (\chi - 0.5) (\chi - 0.15) (\chi - 0.75)$
	(-1) (-0-5) (-0-25) (-0-75)
	$M_1(x) = (2-1)(x-0.5)(x-0.25)(x-0.75)$
	0.09375
	$N_2(x) = (x-x_1)(x-x_3)(x-x_4)(x-x_5)$
	(x2-X1) (X2-X3) (X2-X4)(X2-X5)
	$= \chi (\chi - 0.5)(\chi - 0.25)(\chi - 0.75)$
	(1)(1-0.5)(1-0.25)(1-0.75)
	= x(x-0.5)(x-0.25)(x-0.75)
	0,09375

```
N3(x) = (x-x1)(x-x2)(x-x3)(x-x5)
         (23-71) (x3-x2) (x3-24) (x3-25)
          (x-0) (x-1) (x-0.75) (x-0.75)
           (05-0) (0.5-1) (0.5-0.25)(0.5-0.75)
            x (x-1) (x-0-25) (x-0.75)
 N3(N) =
                    0.015625
           (x-x1)(x-x2)(x-x3)(x-x5
Nu(x)
            (xy-x1) (xy-x2) (xy-x3) (xy-x5-)
           (x-0)(x-1)(x-0.5)(x-0.45)
            (0.25-0) (0.25-1) (0.25-0.5) (0.25-0.75)
 14(x)
              x (x-1) (x-05) (x-0.75)
              6005 -0.02344
 N5(x)
            (x-X1) (x-X2) (x-X3) (x-X4)
            (x-x1)(x-x2) (x-x2) (x-x4)
            (x-0) (x-1) (x-6.5) (x-0.25)
             (0.75) (0.75-1) (0.75-0.5) (0.75-0.25)
                x(2-1) (x-0.5)(x-0.5)
                    -0.02344
  T(x) = T, N, (x) +T2 N2(x)
                             + T3 N) (x) + T4 Ny (x) + T5 Nx (x
         constants
  : That -
    Plotted in Matlab.
                       for RECO, 1)
```

Matlab Program:

```
% ME635 HW04 - Q4
% Viral Panchal

close all
clear all
clc

i = 1;
N = zeros();
for x = 0:0.01:1
N_1 = ((x-1)*(x-0.5)*(x-0.25)*(x-0.75))/0.09375;
N(i,1) = N_1;
```

```
N 2 = ((x-0.5)*(x-0.25)*(x-0.75)*(x))/0.09375;
N(i, 2) = N 2;
N = ((x - 1)*(x-0.25)*(x-0.75)*(x))/0.015625;
N(i,3) = N 3;
N 4 = -((x - 1)*(x - 0.5)*(x-0.75)*(x))/0.02344;
N(i, 4) = N 4;
N 5 = -((x - 1) * (x-0.5) * (x-0.25) * (x)) / 0.02344;
N(i,5) = N 5;
N(i, 6) = x;
i = i+1;
end
plot(N(:,6),N(:,1))
hold on
plot(N(:,6),N(:,2))
hold on
plot(N(:,6),N(:,3))
hold on
plot(N(:,6),N(:,4))
hold on
plot(N(:,6),N(:,5))
legend('N 1(x)','N 2(x)','N 3(x)','N 4(x)','N 5(x)')
grid on
ylim([-0.7 1.4])
T1 = 100;
T2 = 100;
T3 = 150;
T4 = 120;
T5 = 130;
j = 1;
T = zeros();
% p = size(N, 6)
for j = 1:1:size(N,1)
    T(j,1) = T1*N(j,1) + T2*N(j,2) + T3*N(j,3) + T4*N(j,4) + T5*N(j,5);
    j = j+1;
end
figure
plot(N(:,6),T(:,1))
legend('T(x) = Sum(T(x)*N i(x))')
grid on
```

Output plots:

