Movie Recommender System

• • •

MovieLens Dataset

Yuyang Tian Yuting Xu Xiaoyun Wang Don Park

Initial Data Analysis

Dataset

- 31620 ratings
- 1465 movies
- 2353 users
- Density: 0.917%

Collaborative Filtering

Reveal User v.s. Movie Interaction

Add Biases

Optimization

Latent Factor Model (SVD)

Baseline Predictor

Stochastic Gradient Descent

- Find the latent factors
 - Romance? Horror?
- Weigh the relationship between users and factors & movies and factors
- Derive unknown ratings by factors

Separate user and movie behavior

- User Bias
 - Rating scale of a user
 - Behavior of a user
- Movie Bias
 - Popularity of a movie
 - Selection bias

- Stochastic: Fast Convergence in practice
- optimal components to reconstruct a full matrix with the minimal loss against the original sparse matrix

Matrix Factorization

$$\hat{r}_{ui} = \mathbf{q}_i \mathbf{p}_u = \sum_f q_{if}^T p_{fu}$$

- 1. "Matrix factorization characterizes both movies and users by vector of factors inferred from item rating patterns." [Koren]
- 2. How to fill the blank entries?

	user1	user2	user3	user4	
movie1	1		4		
movie2		5			
movie3	-			5	
movie4	4	3	2		
movie5	_		,		
movie6		3	4.78		E
movie7				3	
movie8	2				ĺ
movie9		3			
movie10			4		ĺ
		10 rows 🗙	4 columns	5	

		factor1	factor2	factor3
	movie1	q11	q12	q13
	movie2	q21	q22	q23
	movie3	q31	q32	q33
	movie4	q41	q42	q43
: [movie5	q51	q52	q53
	movie6	-0.5	0.6	1.5
	movie7	q71	q72	q73
	movie8	q81	q82	q83
	movie9	q91	q92	q93
	movie10	q10 1	q10 2	q10 3

	user1	user2	user3	user4
factor1	p11	p12	-2	p14
factor2	p21	p22	0.3	p24
factor3	p31	p32	2.4	p34

Objective Function

$$\min_{q_u, p_i} \sum_{u,i} (r_{ui} - \mathbf{q}_i^T \mathbf{p}_u)^2 + \lambda(||\mathbf{q}_i||^2 + ||\mathbf{p}_u||^2)$$

Cost function: min(SSE + Regularization) SSE: how well the mode is fit Regularization: avoid overfit Our goal is to find the Q and P

The idea: minimum of the objective function

Overall: we used known rating to get P,Q then predict rating.

•

$$r_{xi} = \mu + b_x + b_i + q_i \cdot p_x$$

Note The Diagram of the Power A Bias for movie interaction with the province interaction of the province interaction interaction in the province interaction in the province interaction in the province in the provinc

Stochastic gradient descent

Gradient descent optimization

To minimize the objective function f(x):

- —find the direction in which decreases the fastest: negative gradient
- —propose a new point $x' = x \gamma \nabla_x f(x)$, where γ is the learning rate

Stochastic gradient descent

—Minimize an objective function that has the form of a sum:

$$Q(\omega) = \frac{1}{n} \sum_{i=1}^{n} Q_i(\omega)$$

$$\omega = \omega - \gamma \nabla Q(\omega) = \omega - \gamma \frac{1}{n} \sum_{i=1}^{n} \nabla Q_i(\omega)$$

Problem:

large training sets are more computationally expensive.

—Approximated by a gradient at a single sample

$$\omega = \omega - \gamma \nabla Q_i(\omega)$$

Model Process

- Randomly select a sample rui from training set
- Predict \hat{r}_{ui} by $\hat{r}_{ui} = q_i^T p_u$
- Compute the associated prediction error $e_{ui} = r_{ui} q_i^T p_u$
- Update the parameters by a learning rate in the opposite direction of the gradient

$$q_i \leftarrow q_i + \gamma \cdot (e_{ui} \cdot p_u - \lambda \cdot q_i)$$
$$p_u \leftarrow p_u + \gamma \cdot (e_{ui} \cdot q_i - \lambda \cdot p_u)$$

- Repeat step 1-4, until find the optimal p_u , q_i
- Generate the prediction rating matrix

$$R_{pred} = Q^T \times P = [q_1, q_2, ..., q_I]^T \times [p_1, p_2, ..., p_U]$$

SVD Only

Configuration

- # of latent factors: 100
- Fill unrated data with 0 (mean)
- Normalized then trained
- No calibration run (default configuration)

Result

RMSE = 1.429

Good start, but can do better. Biased based on mean rating

SVD with SGD

Configuration

- # of latent factors: 100
- # of epochs: 30
- Learning Rate: 0.005
- Regularization Term: 0.02
- Fill unrated data with 0 (mean)
- Normalized then trained

Result

RMSE = 0.927

Summary

Summary

- Matrix Factorization can be used to predict user ratings
- SVD, an extension of Matrix Factorization, is a good model to predict user ratings
- SVD+SGD has improved performance over just SVD