Natural Language Processing (6)

Sequence Labeling and Morphological Analysis

Daisuke Kawahara

Department of Communications and Computer Engineering, Waseda University

Lecture Plan

- 1. Overview of Natural Language Processing
- 2. Formal Language Theory
- 3. Word Senses and Embeddings
- 4. Topic Models
- 5. Collocations, Language Models, and Recurrent Neural Networks
- 6. Sequence Labeling and Morphological Analysis
- 7. Parsing (1)
- 8. Parsing (2)
- 9. Transfer Learning
- 10. Knowledge Acquisition
- 11. Information Retrieval, Question Answering, and Machine Translation
- 12. Guest Talk (1)
- 13. Guest Talk (2)
- 14. Project: Survey or Programming
- 15. Project Presentation

Sequence Labeling

- A process for assigning labels to data sequence
 - Part-of-speech tagging
 - Named entity recognition
 - Morphological analysis

– ...

Part-of-speech (POS) Tagging

- Estimate a grammatical category for each word
- Input: a sentence
- Output: a POS sequence
- Input length = output length

Time flies like an arrow.

noun verb pp det noun ⇒ 光陰矢のごとし

noun noun verb det noun ⇒ 時蝿は矢を好む

Penn Treebank [Marcus+ 1993]

- Syntactically annotated corpus built by Pennsylvania Univ. in 1990
- Penn Treebank-3 (1999) is widely used now, which contains articles of Wall Street Journal in 1989 (1 million words) and documents of the Brown corpus, annotated with POS and syntactic structure

```
( (S
  (NP-SBJ
   (NP (NNP Pierre) (NNP Vinken))
   (, ,)
   (ADJP
    (NP (CD 61) (NNS years))
    (II old))
   (, ,)
  (VP (MD will)
   (VP (VB join)
    (NP (DT the) (NN board))
    (PP-CLR (IN as)
     (NP (DT a) (JJ nonexecutive) (NN director) ))
    (NP-TMP (NNP Nov.) (CD 29) )))
  (..))
```

Penn Treebank POS Tagset

CC	Coordinating conjunction
CD	Cardinal number
DT	Determiner
EX	Existential there
FW	Foreign word
IN	Preposition or subordinating conjunction
JJ	Adjective
JJR	Adjective, comparative
JJS	Adjective, superlative
LS	List item marker
MD	Modal
NN	Noun, singular or mass
NNS	Noun, plural
NNP	Proper noun, singular
NNPS	Proper noun, plural
PDT	Predeterminer
POS	Possessive ending
PRP	Personal pronoun
PRP\$	Possessive pronoun

RB	Adverb
RBR	Adverb, comparative
RBS	Adverb, superlative
RP	Particle
SYM	Symbol
TO	to
UH	Interjection
VB	Verb, base form
VBD	Verb, past tense
VBG	Verb, gerund or present participle
VBN	Verb, past participle
VBP	Verb, non-3 rd person singular present
VBZ	Verb, 3rd person singular present
WDT	Wh-determiner
WP	Wh-pronoun
WP\$	Possessive wh-pronoun
WRB	Wh-adverb
,	Comma
	Sentence-final punctuation

Exercise

- Find one POS tagging error in each of the following sentences that are tagged with the Penn Treebank POS tagset.
 - 1. I/PRP need/VBP a/DT flight/NN from/IN Atlanta/NN
 - 2. Does/VBZ this/DT flight/NN serve/VB dinner/NNS
 - 3. I/PRP have/VB a/DT friend/NN living/VBG in/IN Denver/NNP

Universal Dependencies [Nivre+ 2016]

http://universaldependencies.org/introduction.html

Universal Dependencies POS Tagset

ADJ	Adjective
ADV	Adverb
NOUN	Words for persons, places, things, etc.
VERB	Words for actions and processes
PROPN	Proper noun
INTJ	Interjection
ADP	Adposition (Preposition/Postposition)
AUX	Auxiliary
CCONJ	Coordinating conjunction

DET	Determiner
NUM	Numeral
PART	Particle
PRON	Pronoun
SCONJ	Subordinating conjunction
PUNCT	Punctuation
SYM	Symbol
X	Other

POS Tag Ambiguities

		WSJ	Brown
Types	Unambiguous (1 tag)	86%	85%
	Ambiguous (2+ tags)	14%	15%
Tokens	Unambiguous (1 tag)	45%	33%
	Ambiguous (2+ tags)	55%	67%

[Jurafsky & Martin 2020]

- Particularly ambiguous common words:
 - that, back, down, put, set

6 Different POS for back

- earning growth took a back/JJ seat
- a small building in the back/NN
- a clear majority of senators back/VBP the bill
- Dave began to back/VB toward the door
- enable the country to buy back/RP debt
- I was twenty-one back/RB then

Information Sources in POS Tagging

- Syntagmatic structural information
 - e.g., DT JJ NN > DT JJ VBP
 - \rightarrow 77% accuracy

- Lexical information
 - Most frequent tag for each word
 - e.g., flour can be used as a verb, but an occurrence of flour is much more likely to be a noun
 - → 92% accuracy

Markov Model Tagger

Find the best tagging:

$$\arg \max_{t_{1,n}} P(t_{1,n} \mid w_{1,n}) = \arg \max_{t_{1,n}} \frac{P(w_{1,n} \mid t_{1,n}) P(t_{1,n})}{P(w_{1,n})}$$

$$= \arg \max_{t_{1,n}} P(w_{1,n} \mid t_{1,n}) P(t_{1,n})$$

$$= \arg \max_{t_{1,n}} \prod_{i=1}^{n} P(w_{i} \mid t_{i}) P(t_{i} \mid t_{i-1})$$

Limited Horizon

$$P(t_{i+1} \mid t_{1,i}) = P(t_{i+1} \mid t_i)$$

- Words are independent of each other
- A word's identity only depends on its tag

Training

Maximum Likelihood Estimate using training data

$$P(t^k \mid t^j) = \frac{C(t^j, t^k)}{C(t^j)}$$

$$P(w^{l} \mid t^{j}) = \frac{C(w^{l}, t^{j})}{C(t^{j})}$$

Time/N flies/V like/PREP an/DET arrow/N

Tagging: Viterbi Algorithm

- We need to efficiently calculate $\underset{t_{1,n}}{\operatorname{arg}} \max_{t_{1,n}} P(t_{1,n}|w_{1,n})$
- We can use the Viterbi algorithm, which is based on dynamic programming

Variations

- Models for unknown words
 - Unknown words can be any part of speech
 - → Loss of lexical information
 - Use morphological and other cues

$$P(w^{l} | t^{j}) = \frac{1}{Z} P(\text{unknown word } | t^{j}) P(\text{capitalized } | t^{j}) P(\text{endings } | t^{j})$$

Feature	Value	NNP	NN	NNS	VBG	VBZ
unknown word	yes	0.05	0.02	0.02	0.005	0.005
	no	0.95	0.98	0.98	0.995	0.995
capitalized	yes	0.95	0.10	0.10	0.005	0.005
_	no	0.05	0.90	0.90	0.995	0.995
ending	-S	0.05	0.01	0.98	0.00	0.99
	-ing	0.01	0.01	0.00	1.00	0.00
	-tion	0.05	0.10	0.00	0.00	0.00
	other	0.89	0.88	0.02	0.00	0.01

Variations

- Trigram taggers
 - RB (adverb) can precede both a verb in the past tense (VBD) and a past participle (VBN).
 - "clearly marked" is ambiguous in bigram taggers
 - Trigram taggers can disambiguate such cases
 - "is clearly <u>marked</u>": VBN
 - VBZ RB VBN > VBZ RB VBD
 - "he clearly <u>marked</u>": VBD
 - PRP RB VBD > PRP RB VBN

Tagging Accuracy Depends on:

- The amount of training data available
 - Over 97% accuracy for Penn Treebank
- The tag set
- The difference between a training corpus and a dictionary on the one hand and the corpus of application on the other hand
- Unknown words

Examples of Frequent Errors

Correct tag	Tagging error	Example
noun singular	adjective	an <u>executive</u> order
preposition	particle	He ran <u>up</u> a big
past tense	past participle	load <u>needed</u> to meet
past participle	past tense	load <u>needed</u> to meet

Ambiguous sentences:

- The load needed to meet rising costs of health care.
- They cannot now handle <u>the load needed to meet</u> rising costs of health care.

Confusion Matrix

Correct	Tags assigned by the tagger							
Tags	DT	IN	JJ	NN	RB	RP	VB	VBG
DT	99.4	.3		his Total	.3			
IN	.4	97.5			1.5	.5		
JJ		.1	93.9	1.8	.9		.1	.4
NN			2.2	95.5			.2	.4
RB	.2	2.4	2.2	.6	93.2	1.2		
RP		24.7		1.1	12.6	61.5		
VB			.3	1.4			96.0	
VBG			2.5	4.4				93.0

[Manning & Schütze 1999]

Conditional Random Fields (CRFs)

- We want to use more flexible features than generative models, such as Markov models
- A linear chain CRF:

$$-P(y_{1,n}|x_{1,n}) = \frac{1}{Z} \exp \sum_{i} \sum_{j} (\lambda_{j} f_{j}(x_{1,n}, y_{i-1}, y_{i}, i))$$

• $Z = \sum_{y_{1,n}} P(y_{1,n}|x_{1,n})$

- Feature function: $f_j(x_{1,n}, y_{i-1}, y_i, i)$
- By limiting the scope to the current label y_i and the previous label y_{i-1} , we can use the Viterbi algorithm

Feature Functions of CRFs

- Feature templates
 - $-\langle y_i, x_i \rangle, \langle y_i, y_{i-1} \rangle, \langle y_i, x_{i-1}, x_{i+1} \rangle$
- Feature functions
 - Input sentence:Janet/NNP will/MD back/VB the/DT bill/NN
 - Feature functions for this sentence:
 - f_{3743} : $y_i = VB$ and $x_i = back$
 - f_{156} : $y_i = VB$ and $y_{i-1} = MD$
 - f_{99732} : $y_i = VB$ and $x_{i-1} = will$ and $x_{i+1} = the$

Features for Unknown Words

- x_i contains a particular prefix (perhaps from all prefixes of length ≤ 2
- x_i contains a particular suffix (perhaps from all suffixes of length ≤ 2
- x_i 's word shape
- x_i 's short word shape

```
well-dressed
```

- prefix(x_i) = w
- prefix(x_i) = we
- $\Rightarrow \quad \text{suffix}(x_i) = d \\ \text{suffix}(x_i) = ed$
 - word-shape(x_i) = xxxx-xxxxxx
 - $short-word-shape(x_i) = x-x$

RNN-based Sequence Labeling

[Jurafsky & Martin 2020]

Named Entities

- A named entity is anything that can be referred to with a proper name
- Generic named entity types

Tag	Туре	Sample Categories
PER	People	people, characters
ORG	Organization	companies, sports teams
LOC	Location	regions, mountains, seas
GPE	Geo-Political Entity	countries, states

TIME, MONEY, etc. are often added

Example Document

Citing high fuel prices, [ORG United Airlines] said [TIME Friday] it has increased fares by [MONEY \$6] per round trip on flights to some cities also served by lower-cost carriers. [ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said. [ORG United], a unit of [ORG UAL Corp.], said the increase took effect [TIME Thursday and applies to most routes where it competes against discount carriers, such as [LOC Chicago] to [LOC Dallas] and [LOC Denver] to [LOC San Francisco].

Named Entity Recognition (NER)

- The task of NER is to find and label spans of text
- Issues
 - Segmentation ambiguity
 - What's an entity and what isn't
 - Most words are not named entities
 - Type ambiguity
 - e.g., JFK can refer to a <u>person</u> and the <u>airport</u> in New York

BIO (and BIOES) Tagging Scheme

Words	BIO Label	BIOES Label
Jane	B-PER	B-PER
Villanueva	I-PER	E-PER
of	0	0
United	B-ORG	B-ORG
Airlines	I-ORG	I-ORG
Holding	I-ORG	E-ORG
discussed	0	0
the	0	0
Chicago	B-LOC	S-LOC
route	0	0
	0	0

Features for (CRF-based) NER

- Please think about features for NER
 - Identities of w_i and neighboring words
 - Embeddings of w_i and neighboring words
 - POS of w_i and neighboring words
 - Presence of w_i in a gazetteer
 - $-w_i$ contains a particular prefix
 - $-w_i$ contains a particular suffix
 - Word shape of w_i and neighboring words
 - Short word shape of w_i and neighboring words

Some NER features for a sample sentence

Words	POS	Short shape	Gaze tteer	BIO Label
Jane	NNP	Xx	0	B-PER
Villanueva	NNP	Xx	1	I-PER
of	IN	X	0	0
United	NNP	Xx	0	B-ORG
Airlines	NNP	Xx	0	I-ORG
Holding	NNP	Xx	0	I-ORG
discussed	VBD	X	0	0
the	DT	X	0	0
Chicago	NNP	Xx	1	B-LOC
route	NN	X	0	0
	•	•	0	0

Evaluation of NER

Precision

 Ratio of the number of correctly labeled responses to the total labeled (output)

Recall

 Ratio of the number of correctly labeled responses to the total that should be labeled

• F1

Harmonic mean of precision and recall

Precision, Recall, and F1

- Precision = $\frac{Y}{X+Y}$
- Recall = $\frac{Y}{Y+Z}$
- $F1 = \frac{1}{\frac{1}{P} + \frac{1}{R}} = \frac{2PR}{P + R}$

Japanese Morphological Analysis

X Currently, this is translated correctly.

Japanese Morphological Analysis

Word boundary is not obvious!

```
e.g., 外国人参政権
くるまで待つ
```

- Joint process of word segmentation and POS tagging = Morphological Analysis
- Three components:
 - Dictionary
 - Connection matrix
 - Decoding algorithm

Basic Word Dictionary (JUMAN)

名詞 (普通名詞 (【読み からくさ】(見出し語 唐草 (から草 1.6) (からくさ 1.6】) 意味情報 "代表 記. 店早/かり(ご)))) (名詞 (普通名詞 ((読み からくち)(見出し語 辛口 (から口 1.6) (からくち 1.6))(意味情報 "代表 表記:辛口/からくち")))) (副詞 ((読み からくも)(見出し語 辛くも からくも)(意味情報 "代表表記:辛くも/からくも"))) (名詞 (普通名詞 ((読み からくり)(見出し語 からくり)(意味情報 "代表表記:からくり/からくり")))) (動詞 ((読み からす)(見出し語 枯らす からす)(活用型 子音動詞サ行)(意味情報 "代表表記:枯 らず/からす"))) (名詞 (普通名詞 ((読み からす)(見出し語 烏 カラス (からす 1.6))(意味情報 "代表表記:烏/から (名詞 (普通名詞 ((読み からだ)(見出し語 身体 体 (からだ 1.6))(意味情報 "代表表記:身体/か らた")))) (名詞 (普通名詞 ((読み からだつき)(見出し語 体付き 体付 体つき (からだつき 1.6))(意味情報 "代表表記:体付き/からだつき")))) (名詞 (普通名詞 ((読み からっかぜ)(見出し語 空っ風 (からっかぜ 1.6))(意味情報 "代表表記: 空っ風/からっかぜ")))) (副詞 ((読み からっきし)(見出し語 からっきし)(意味情報 "代表表記:からっきし/からっきし")))

Dictionary (JUMAN)

	Vocab Size	Word Examples
Basic Word	30K	走る,行く,明日
Wikipedia	850K	アベノミクス, Dentsu, 山極, 豊洲
Wiktionary	8K	インセンティヴ, 糾す
Web	10K	ググる,ねんどろいど
Total	900K	

Connection Matrix (JUMAN)

```
(BunsetsuEndSentenceEnd)
BunsetsuEnd
 (助詞 接続助詞 * * の))
   ((名詞))
((VerbBasicForm
IAdjBasicForm
NaAdjAllBasicForm
AuxBasicForm
NaAdjGuessForm
 (***タ系推量形)
 (動詞**タ系連用テ形)
(接尾辞 動詞性接尾辞*タ系連用テ形))
   ((助詞 接続助詞 * * から)))
```

Connection Matrix: Cost Setting

- By human
 - JUMAN
- Variable Memory Markov Model (VMMM)
 - ChaSen
- Conditional Random Fields (CRFs)
 - MeCab
- Support Vector Machines (SVMs)
 - KyTea
- Online learning (confidence weighted) + RNN language model
 - Juman++

Decoding

Using the Viterbi Algorithm

Juman++: Chicken and Egg Problem

Can we use a language model as semantic knowledge?

Juman++: Use of RNN Language Model (RNNLM)

The model can calculate p(w|context) based on **semantically generalized** vector representation

Let's use RNNLM for morphological analysis of unsegmented text!

[Morita+ EMNLP2015]

外国/人参/政権(foreign - carrot - regime)

(analysis error)

人参: carrot じゃがいも, キャベツ 政権:regime 野党,官僚,与党

外国: foreign オランダ,イギリス, ヨーロッパ

オランダ/人 (The Dutch) ヨーロッパ/人 (European) 人: person 家,女性, 者,社員

参政: suffrage

領有,黙秘,叙任

権:right 権,免許, 資金,力,

女性/参政/権 (Women suffrage right) (聖職)/者/叙任/権 (Right of investiture)

Kyoto University Text Corpus

[Kurohashi&Nagao 1998]

- 40K Mainichi newspaper articles annotated with syntactic information
 - Word segmentation
 - POS
 - Dependency
- 10K articles annotated with relation information
 - Predicate-argument structures
 - Relations between nouns
 - Anaphora and coreference

KU Web Document Leads Corpus

[Hangyo+ 2014]

- Lead 3 sentences of 5K web documents annotated with various linguistic information
 - Annotated by linguists
 - Word segmentation
 - POS
 - Dependency
 - Predicate-argument structures
 - Anaphora and coreference
 - Annotated by crowdworkers
 - Discourse relations

今回は様々な保険について ([著者]ガ)([読者]二)説明しています。丁寧に([著者]ガ) ([読者]二)(保険ヲ)解説したつもりですが、逆接 ([読者]ガ) 分からない部分もあるかもしれません。原因・理曲 疑問点はどんどん([読者]ガ) ([著者] ニ)コメントしてください。 44

Accuracy

^{* =} Optimized hyper-parameters on 10-fold cross-validation
Using the same Jumandic + concatenation of Kyoto/KWDLC corpora for training

Remaining Problems

- Reading
 - 金(かね or きん)メダル
- Unknown words
 - 素晴しい ようつべ 待受
- 2-1 vs. 1-2 for 3-letter strings
 - 水/分子 ↔ 水分/子
- Ambiguities of postposition + verb
 - 部屋/に/はいる ↔ 部屋/に/は/いる
- Ambiguities of adverbs and verbs
 - あまり 極めて 改めて

Assignment

Try to use one of POS taggers or morphological analyzers for any languages. Report analysis errors and think of an idea to solve them.

Deadline: May 26 (Thu) 23:59

X You can write it in English or Japanese.

Summary

- Sequence labeling tasks
 - POS tagging
 - Named entity recognition
 - Morphological analysis
- Methods
 - Viterbi decoding
 - BIO tagging scheme
 - CRF-based sequence labeling