Finding Duals of LP's in Non-standard form

IEOR 162 (Spring 2022)

Method A

1. Convert problem to "standard form" (maximization with ≤ constraints) as indicated by following table:

Non-standard from	Equivalent standard form
Minimize z	Maximize (-z)
$\sum_{j=1}^{n} a_{ij} x_j \ge b_i$	$-\sum_{j=1}^{n} a_{ij} x_{j} \le -b_{i}$
$\sum_{j=1}^{n} a_{ij} x_{j} = b_{i}$ $x_{i} \text{ unconstrained in sign}$	$\sum_{j=1}^{n} a_{ij} x_{j} \le b_{i} \text{and} -\sum_{j=1}^{n} a_{ij} x_{j} \le -b_{i}$ $(x'_{i} - x''_{j}), x'_{i} \ge 0, x''_{j} \ge 0$
,	() J/2 J J V

- 2. Take dual of this equivalent LP in standard form
- 3. Simplify result, if possible, by "reversing" step 1; that is, replace an expression of a form similar to one in the right column of the table in Step 1 with the corresponding expression in the left column of the table.

Method B

- 1. Put LP in one of the following forms:
 - a) maximize objective with \leq or = constraints
 - b) minimize objective with \geq or = constraints
- 2. Construct dual as indicated by following table:

Maximize in objective	Minimize in objective
ith constraint is a \leq	ith variable constrained in sign
ith constraint is an =	ith variable unrestricted in sign
jth variable constrained to be ≥ 0	jth constraint is a \geq
jth variable unrestricted in sign	jth constraint is an =

Example of Dual of LP not in standard form:

min
$$3x1 + 5x2 + 4x3$$

subject to: $x1 + 3x2 + x3 \le 8$
 $2x1 + x2 - 2x3 = 5$
 $3x1 - 2x2 + 4x3 \ge 7$
 $x1 \ge 0, x2 \ge 0, x3$ unrestricted in sign

Method A

Step 1

Step 2

min subject to:
$$\begin{array}{lll} & 8y1 + 5y'2 - 5y"2 - 7y3 \\ & y1 + 2y'2 - 2y"2 - 3y3 & \geq -3 \\ & 3y1 + y'2 - y"2 + 2y3 & \geq -5 \\ & y1 - 2y'2 + 2y"2 - 4y3 & \geq -4 \\ & -y1 + 2y'2 - 2y"2 + 4y3 & \geq 4 \\ & y1 \geq 0, y'2 \geq 0, y"2 \geq 0, y3 \geq 0 \end{array}$$

Step 3

Multiply first two functional constraints by (-1).

The result is
subject to:
$$-8y1 - 5y2 + 7y3 \\ - y1 - 2y2 + 3y3 \le 3 \\ -3y1 - y2 - 2y3 \le 5 \\ - y1 + 2y2 + 4y3 = 4 \\ y1 \ge 0, y2 \text{ unrestricted}, y3 \ge 0$$

Method B

Yields directly the dual formulation.