PPI

19.10.2011

Kombinačný logický systém - má správanie, ktoré môžeme opísať funkciou Y = f(X) kde X je množina vstupných a Y výstupných premenných (vektorov, výstupné premenné závisia iba od vstupných premenných (vstupných vektorov) v danom čase.

Sekvenčný logický systém - je charakteristický tým, že výstupné premenné závisia nielen od vstupných premenných v danom časovom okamihu, ale aj od postupnosti vstupných premenných v predchádzajúcich časových okamihoch. V závislosti od postupnosti vstupných premenných môže teda sekvenčný obvod v danom čase generovať rôzne hodnoty výstupných premnných. Chovanie sa sekvenčného logického systému (obvodu) teda vyjadruje jeho pamäťovú schopnosť

- Na vstupe logického systému pôsobia vstupné signály (veličiny) x1, x2, ... xm, ktoré menia svoju hodnotu v čase nezávisle od systému. Systém má ďalej výstupné signály (veličiny) y1, y2, ..., y, ktorých. funkčne závisia od hodnôt vstupných veličín.
- V sekvenčnom systéme sú vzťahy medzi hodnotami výstupných a vstupných veličín sú vo všeobecnosti sprostredkované určitými vnútornými veličinami stavovými veličinami systému z1, z2, ... zp.

Ak tieto časové okamihy zmien závisia len od okamihov zmien vstupných premenných, hovoríme o asynchrónnom sekvenčnom logickom systéme. Ak tieto časové okamihy zmien závisia nielenlen od okamihov zmien vstupných premenných ale aj od synchronizačnej alebo hodinovej premennej (CLK)., hovoríme o synchrónnom sekvenčnom logickom systéme.

Postup pri návrhu synchrónneho sekvenčného obvodu.

 Kritérium optimálnosti-minimálny počet preklápacích obvodov, minimálny počet logických členov v kombinačnej časti alebo maximálna operačná rýchlosť.

Postup

- Návrh automatu, kódovanie stavov
- Návrh budiacich funkcií pre stavové premenné
- Návrh výstupných funkcií
- Skupinová minimalizácia budiacich funkcií.

KONEČNÉ STAVOVÉ AUTOMATY

Konečný stavový stroj - automat (Finite State Machine = FSM) je algebrický systém

$$A = (X,S,Y,p,v), A = (X,S,Y,p,v,s_0),$$

kde

X => množina vstupných symbolov, vstupov

S => množina stavov

Y => množina výstupných symbolov, výstupov

p => prechodová funkcia p: S x X -> S

v => výstupná funkcia v: S x X -> Y (Mealy)

v: S -> Y(Moore)

Rospoznávanie reďazca 101 vo vstupocj postupnosti na vstupe x. Ak sa vo vstupnej postupnosti na vstupe x objavi 101 výstup y sa nastaví na 1.

Awtomat Moore

		X	9
4	A	12	0
2	5	3	0
9	1	#	0
4	0	2	1

100	20.0	oec	0.00	UH G	4750		
-	0.00	in a	100	100	6 30	en.	
-	1000	134	100		20.00	40.00	

1	32	4	0	8
Z	3	e	0	0
1	1	2	0	7

automal moore

$$Z_{j} = Z_{1}\overline{Z_{2}} \times \cdot \times /Z_{1}Z_{2} \cdot \overline{Z}_{1}Z_{2}\overline{X} =$$

$$= (J_{1}\overline{Z_{2}}) \cdot (Z_{1} + Z_{2} + X) \cdot (\overline{Z_{1}} + Z_{2} + \overline{X})$$

$$= (J_{1}\overline{Z_{2}}) \cdot (Z_{1} + Z_{2} + X) \cdot (Z_{1} + Z_{2})$$

$$= Z_{2} \cdot (\overline{Z_{2}}) \cdot (\overline{Z_{1}} + \overline{Z_{2}}) \cdot (\overline{Z_{1}} + \overline{Z_{2}})$$

$$= Z_{1} \cdot \overline{Z_{2}} = (Z_{1} + \overline{Z_{2}}) \cdot \Lambda$$

$$= Z_{1} \cdot \overline{Z_{2}} = (Z_{1} + \overline{Z_{2}}) \cdot \Lambda$$

automal moore VYHODNEJSIE KODOVANIE

$$Z_{1} = Z_{1}\overline{Z_{2}}X + Z_{2}\overline{X} =$$

$$= (Z_{1} + \overline{Z_{2}} + X) + (Z_{2} + \overline{X})$$

$$= (Z_{1} + \overline{Z_{2}} + X) + (Z_{2} + \overline{X})$$

$$= (Z_{1} + \overline{Z_{2}} + X) + (Z_{2} + \overline{X})$$

$$= (Z_{1} + \overline{Z_{2}} + X) + (Z_{2} + \overline{X})$$

$$= (Z_{2} + X - \overline{X} + X)$$

$$= (Z_{2} + X - X + X)$$

$$= (Z_{2} + X -$$

