Universidade de Aveiro Departamento de Matemática

Cálculo I — Agrupamento 4

2019/2020

FICHA DE EXERCÍCIOS 1

Complementos de funções reais de variável real

(Funções trigonométricas inversas, Teoremas de Weierstrass, Rolle, Lagrange e Cauchy, Regra de Cauchy, contradomínios e extremos)

- 1. Em cada uma das alíneas que se seguem, determine a inversa da função considerada, indicando também o seu contradomínio.
 - (a) f definida por $f(x) = \frac{1}{x+1}$;

- (b) f definida por $f(x) = 2 + e^{x+1}$;
- (c) f definida por $f(x) = \log_3(2 x)$;
- (d) f definida por $f(x) = \sqrt[3]{x+1}$.
- 2. Considere as funções f e g de domínio ${\bf R}$ tais que

$$f(x) = \frac{e^x - e^{-x}}{2} e g(x) = \frac{e^x + e^{-x}}{2}$$
,

estas funções são as chamadas seno hiperbólico e cosseno hiperbólico e as suas notações usuais são senh(x) e cosh(x), respetivamente.

- (a) Mostre que, para todo o $x \in \mathbb{R}$:
 - i. $(\operatorname{senh}(x))' = \operatorname{cosh}(x);$
 - ii. $(\cosh(x))' = \sinh(x)$.
- (b) Mostre que a função seno hiperbólico é invertível e determine a sua inversa.
- (c) Justifique que a função cosseno hiperbólico (definida em \mathbb{R}) não é invertível. Identifique uma sua restrição invertível (considerando o "maior" domínio possível) e determine o domínio dessa inversa.
- 3. Calcule:
 - (a) $sen (arccos(-\frac{1}{2}))$
- (b) $\arccos(\cos(\frac{3\pi}{2}))$
- (c) sen (arcsen $\left(-\frac{1}{2}\right)$)

- (d) $\cos(\arcsin(-\frac{1}{2}))$
- (e) $\cot \left(\arcsin \left(\frac{12}{13} \right) \right)$
- (f) $\cos(2 \cdot \arctan(\frac{4}{3}))$

- (g) $\operatorname{arccotg}\left(\operatorname{cotg}\left(\frac{1}{2}\right)\right)$
- (h) $\operatorname{arccotg}\left(\operatorname{tg}\frac{\pi}{4}\right)$)
- (i) $arctg(tg(\pi))$
- 4. Em cada uma das alíneas seguintes, defina a função inversa de f e indique o seu contradomínio. Considere as correspondentes restrições principais das funções trigonométricas envolvidas.
 - (a) $f(x) = \frac{1}{2} \text{sen } (x + \frac{\pi}{2});$

(b) $f(x) = \frac{\pi}{2} - \frac{2\arcsin(1-x)}{3}$;

(c) $f(x) = \text{tg}(\frac{\pi}{2-x});$

- (d) $f(x) = 3\arccos(\sqrt{x+4}) \frac{\pi}{2}$;
- (e) $f(x) = \pi 3 \arctan(\frac{x-1}{2});$
- (f) $f(x) = \operatorname{arccotg} (\ln(x+1))$.
- 5. Considere a função f definida por $f(x) = 5x^7 + 6x^3 + x + 9$. Sabendo que f(-1) = -3 e que f é invertível, determine $(f^{-1})'(-3)$.
- 6. Considere a função f definida por $f(x) = 4x^3 + x + 2$. Sabendo que f é invertível, determine $(f^{-1})'(2)$.

- 7. Sejam f e g duas funções reais de variável real definidas por $f(x) = x^3$ e $g(x) = \cos x$. Determine, utilizando o teorema da derivada da função inversa, as derivadas seguintes:
 - (a) $(f^{-1})'(x)$, para $x \in \mathbb{R}^+$;
 - (b) $(g^{-1})'(0)$.
- 8. Em cada uma das alíneas que se seguem, determine a função derivada da função considerada.
 - (a) $f(x) = \sqrt[3]{(2x-1)^2}$;
 - (b) $f(x) = x^2 e^{x^2}$;
 - (c) $f(x) = \cos(\log_2(x^2));$
 - (d) $f(x) = (1 x^2) \ln x$;
 - (e) $f(x) = (1 + x^2) \arctan x;$
 - (f) $f(x) = \arcsin \sqrt{x}$.
- 9. Calcule f'(x):
 - (a) $f(x) = \operatorname{arccotg}(\operatorname{sen}(4x^3));$
- (b) $f(x) = \arcsin \frac{1}{x^2}$;

(c) $f(x) = \arccos(1 - e^x)$;

- (d) $f(x) = \arctan(1 + \ln x)$.
- 10. Considere $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \begin{cases} -x+1 & se & x < 0 \\ x+2 & se & x \ge 0 \end{cases}$.
 - (a) Estude a continuidade de f.
 - (b) Mostre que a função f não tem mínimo global em [-1,1], determinando o seu contradomínio.
 - (c) A não existência de mínimo global de f em [-1,1] não contradiz o Teorema de Weierstrass. Porquê?
- 11. Sendo $f(x) = x^3 6x^2 + 9x 1$, $x \in \mathbb{R}$, mostre que f possui exatamente um zero no intervalo [1,3].
- 12. Mostre que se a>0 a equação $x^3+ax+b=0$ não pode ter mais que uma raiz real, qualquer que seja $b\in\mathbb{R}$.
- 13. Prove que a equação $4x^3 6x^2 + 1 = 0$ tem 3 zeros distintos e localize-os em intervalos de \mathbb{R} cujos extremos sejam números inteiros consecutivos.
- 14. Considere a função polinomial p definida por p(x) = x(x+1)(x+2)(x+3). Prove que a equação p'(x) = 0 tem exatamente três soluções reais distintas.
- 15. Considere a função f definida em \mathbb{R}_0^+ por $f(x) = \ln(1+x) x$. Mostre que f é decrescente e diga, justificando se é verdadeira ou falsa a seguinte afirmação: f(x) < 0, para todo o $x \in \mathbb{R}^+$.
- 16. Prove que:
 - (a) para todo o $x \in]0,1]$ se tem arcsen x > x;
 - (b) para todo o $x \ge 0$ se tem sen $x \le x$;
 - (c) para todo o x > 0 se tem $\ln x < x$.
- 17. Considere a função f definida por $f(x) = e^{-x^2}$. Estude f quanto à monotonia e existência de extremos globais.

- 18. Verifique que x=0 é um extremante local da f.r.v.r. definida por $h(x)=2x^5-x^3+x^2+5$. Classifique-o e calcule o respetivo extremo local.
- 19. Sejam $f \in g$ funções diferenciáveis em \mathbb{R} tais que f'(x) > g'(x), para todo o $x \in \mathbb{R}$ e f(a) = g(a). Prove que:
 - (a) f(x) > g(x), para todo o x > a;
 - (b) f(x) < q(x), para todo o x < a.
- 20. Seja f uma função real de variável real. Mostre que se f admite terceira derivada no intervalo [a,b] e f(a)=f(b)=f'(a)=f'(b)=0, então existe $c\in]a,b[$ tal que f'''(c)=0.
- 21. Mostre que existe $\lim_{x\to +\infty} \frac{x-\sin x}{x+\sin x}$, mas que não se pode aplicar a regra de Cauchy no seu cálculo.
- 22. Calcule, caso exista, o limite considerado em cada uma das alíneas que se seguem:

(a)
$$\lim_{x\to 0} \frac{\sin^2 \frac{x}{3}}{x^2}$$
;

(b)
$$\lim_{x \to 0} \frac{\sqrt{x+1} - x}{x}$$
;

(c)
$$\lim_{x \to 0} \frac{2 \arcsin x}{3x} ;$$

(d)
$$\lim_{x \to 0} \frac{\cos x - 1}{x \operatorname{sen} x}$$

(e)
$$\lim_{x \to -\pi/4} \frac{\cos(2x)}{1 + \cot x}$$
;

(f)
$$\lim_{x \to +\infty} \frac{\ln x}{x^p} \text{ com } p \in \mathbb{R}^+$$
;

(g)
$$\lim_{x \to 1} \frac{1-x}{\ln(2-x)}$$

(d)
$$\lim_{x \to 0} \frac{\cos x - 1}{x \sin x}$$
; (e) $\lim_{x \to -\pi/4} \frac{\cos(2x)}{1 + \cot x}$; (g) $\lim_{x \to 1} \frac{1 - x}{\ln(2 - x)}$; (h) $\lim_{x \to +\infty} \left(x^2 \sin \frac{1}{x} - x\right)$;

(i)
$$\lim_{x\to 0^+} (\operatorname{tg} x)^{\operatorname{tg}} (2x)$$
;

(j)
$$\lim_{x \to +\infty} \left(\frac{x+3}{x-1} \right)^{x+3}$$
;

(j)
$$\lim_{x \to +\infty} \left(\frac{x+3}{x-1} \right)^{x+3}$$
; (k) $\lim_{x \to +\infty} (\ln(3x^2+2) - \ln(x^2))$;

(l)
$$\lim_{x \to 0^+} \left(\frac{1}{x}\right)^x$$
;

(m)
$$\lim_{x \to 0^+} x^{\frac{1}{\ln x}}$$
;

(n)
$$\lim_{x\to 0} (\cos(2x))^{\frac{1}{x^2}};$$

(o)
$$\lim_{x \to 0^+} x^{\frac{1}{x}}$$
.

23. Seja f uma função real de variável real definida por:

$$f(x) = \begin{cases} x \ln x & \text{se } x > 0\\ \text{sen } (x) + 5x & \text{se } x \le 0 \end{cases}.$$

- (a) Estude f quanto à continuidade.
- (b) Averigue se a função f é diferenciável para x=0.
- (c) Mostre que o Teorema de Rolle é aplicável à função f no intervalo [0,1]. Determine o(s)ponto(s) b do interior desse intervalo tais que f'(b) = 0.
- (d) f tem extremos globais em $[-\pi, 1]$? Justifique. Caso existam, calcule-os e classifique-os.
- 24. ¹ Considere a função $f: [0, e] \to \mathbb{R}$ definida por $f(x) = \begin{cases} \frac{1}{1 + (\ln x)^2} & \text{se } x \in]0, e] \\ 0 & \text{se } x = 0. \end{cases}$
 - (a) Estude f quanto à continuidade.
 - (b) Calcule, caso exista, $f'_{+}(0)$.
 - (c) Estude a função quanto à existência de extremos absolutos. Caso existam, calcule-os e classifique-os.
 - (d) Identifique o contradomínio de f. Justifique.

¹A partir deste exercício, são retomados tópicos já abordados em exercícios anteriores. A maioria dos exercícios foram retirados de provas de avaliação de Cálculo I realizadas em anos anteriores.

25. Considere a função
$$f$$
 definida em \mathbb{R} por $f(x) = \begin{cases} \arctan(x^2) & se \ x \leq 0 \\ \ln(1+x) & se \ x > 0. \end{cases}$

- (a) Estude f quanto à continuidade em x = 0.
- (b) Estude f quanto à diferenciabilidade em x = 0.
- (c) Estude f quanto à existência de extremos locais.
- (d) Mostre que existe pelo menos um $\theta \in]-1,0[$ tal que $f'(\theta)=-\frac{\pi}{4}.$
- (e) Mostre que a equação $f(x) = 1 x^2$ possui exatamente uma solução em]-1,0[.
- (f) Considere a função g definida em \mathbb{R}_0^- por g(x)=f(x). Justifique que g é invertível e determine a função inversa de g indicando o domínio, o contradomínio e a expressão analítica que a define.
- 26. Verifique que x=1 é solução da equação $\mathrm{e}^{x-1}=x$ e que esta equação não pode ter outra raiz real.
- 27. Considere a função f definida pela expressão analítica $f(x) = \arcsin(1-x) + \sqrt{2x-x^2}$.
 - (a) Determine o domínio de f.
 - (b) Mostre que $f'(x) = -\frac{x}{\sqrt{2x-x^2}}$.
 - (c) Justifique que f atinge um máximo global y_M e um mínimo global y_m . Determine também esses valores.
 - (d) Determine o contradomínio de f.
- 28. (a) Utilizando o Teorema de Lagrange, mostre que se $f:[a,b] \to \mathbb{R}$ é uma função contínua em [a,b], diferenciável em [a,b[e tal que f'(x)=0, para todo o $x\in]a,b[$, então f é constante em [a,b].
 - (b) Prove que sendo $f(x) = \arcsin(x) + \arccos(x)$, então $f(x) = \frac{\pi}{2}, \forall x \in [-1, 1]$ (Sugestão use a alínea anterior).
- 29. Seja h uma função de domínio \mathbb{R} tal que h(0) = 0 e $h'(x) = \cos x \cdot e^{\sin^2 x}$. Usando o Teorema de Lagrange, mostre que $h(x) \leq e \cdot x$, para todo o $x \in \mathbb{R}^+$.
- 30. Seja $\alpha \in \mathbb{R}$ e h a função definida por $h(x) = \alpha \arcsin(x^2 1) + x^2 \frac{\pi}{2}x$.
 - (a) Determine o domínio de h.
 - (b) Mostre que a função h tem pelo menos um zero no intervalo] -1,1[, qualquer que seja o valor do parâmetro α .
- 31. Calcule o limite $\lim_{x\to 0^+} (1 + \arcsin(x^2))^{\frac{1}{x}}$.
- 32. Seja $f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$ a função real de variável real definida por

$$f(x) = e^{\frac{1}{x}} + \operatorname{arctg}\left(\frac{1}{x}\right).$$

Estude f quanto à monotonia e existência de extremos locais.

33. Considere a função real N(t), de domínio $\mathbb{R}_0^+ = [0, +\infty[$, definida por

$$N(t) = a e^{-kt}$$
, onde a e k são parâmetros(constantes) reais positivos.

A função N(t) é frequentemente usada como modelo do decaimento radioativo de uma substância radioativa. Onde N(t) representa o número de átomos radioativos no instante t, contado em anos, numa amostra de determinado radioisótopo. O parâmetro k é a chamada constante de desintegração.

- (a) Estude N quanto à monotonia.
- (b) Verifique se N tem extremos absolutos e, em caso afirmativo, identifique-os e indique os respetivos extremantes.
- (c) Determine o contradomínio de N.
- (d) Sabendo que para determinada substância $k = 10^{-10} \ln(4)$, calcule a sua meia-vida, isto é, calcule o instante de tempo em que o número de átomos radioativos numa amostra é metade do número de átomos radioativos no instante inicial de tempo.