Питання до колоквіуму з вищої математики (II семестр)

Закінчити речення

- 1. Якщо кожен елемент множини A міститься в множині B, то множина A називається
- 2. Множина, елементами якої ϵ елементи, які належать або до множини A, або до множини B, називається
- 3. Множина, елементами якої ϵ елементи, які належать і до множини A, і до множини B, називається
- 4. Множина, елементами якої ϵ ті елементи множини A, які не належать до множини B, називається
- 5. Якщо кожному натуральному числу поставити у відповідність дійсне число, то одержимо
- 6. Якщо існує таке число M , що кожен член послідовності $\{x_n\}$ задовольняє умову $x_n \leq M$, то послідовність називається
- 7. Якщо існує таке число m , що кожен член послідовності $\{x_n\}$ задовольняє умову $x_n \ge m$, то послідовність називається
- 8. Якщо існує таке число A , що кожен член послідовності $\{x_n\}$ задовольняє умову $|x_n| \le A$, то послідовність називається
- 9. Якщо для довільного числа A>0 існує такий член послідовності x_n , що $|x_n|>A$, то послідовність називається
- 10. Якщо кожний наступний член послідовності більший, ніж попередній, то послідовність називається
- 11. Якщо кожний наступний член послідовності менший, ніж попередній, то послідовність називається
- 12. Якщо кожний наступний член послідовності не більший, ніж попередній, то послідовність називається
- 13. Якщо кожний наступний член послідовності не менший, ніж попередній, то послідовність називається
- 14. Зростаючі та спадні послідовності називаються
- 15. Незростаючі та неспадні послідовності називаються
- 16. Послідовність, яка має границю, називається
- 17. Послідовність, границя якої дорівнює нулю, називається
- 18. Якщо існує правило, за яким кожному елементу $x \in X$ ставиться у відповідність єдиний елемент $y \in Y$, то кажуть, що
- 19. Якщо існує число M > 0, що для всіх $x \in X$ виконується умова $|f(x)| \le M$, то функція f(x), визначена на множині X називається
- 20. Якщо для довільних $x_1, x_2 \in X$ з нерівності $x_1 < x_2$ випливає, що $f(x_1) < f(x_2)$, то функція f(x), визначена на множині X називається
- 21. Якщо для довільних $x_1, x_2 \in X$ з нерівності $x_1 < x_2$ випливає, що $f(x_1) > f(x_2)$, то функція f(x), визначена на множині X називається
- 22. Якщо для довільних $x_1, x_2 \in X$ з нерівності $x_1 < x_2$ випливає, що $f(x_1) \le f(x_2)$, то функція f(x), визначена на множині X називається
- 23. Якщо для довільних $x_1, x_2 \in X$ з нерівності $x_1 < x_2$ випливає, що $f(x_1) \ge f(x_2)$, то функція f(x), визначена на множині X називається
- 24. Зростаючі та спадні функції називаються
- 25. Незростаючі та неспадні функції називаються
- 26. Якщо для кожного $x \in X$ виконується умова f(-x) = f(x), то функція f(x), визначена на множині X називається
- 27. Якщо для кожного $x \in X$ виконується умова f(-x) = -f(x), то функція f(x), визначена на множині X називається

- 28. Графік парної функції є симетричним
- 29. Графік непарної функції є симетричним
- 30. Якщо існує число $T \neq 0$, що для всіх $x \in X$ число $x + T \in X$ і f(x + T) = f(x), то функція f(x), визначена на множині X називається
- 31. $\lim_{x \to 0} \frac{\sin x}{x} =$; $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x =$; $\lim_{x \to 0} (1 + x)^{\frac{1}{x}} =$
- 32. Якщо $\lim_{x \to a} f(x) = f(a)$, то функція, визначена в деякому околі точки a, називається
- 33. Якщо $\lim_{x\to a+0} f(x) = \lim_{x\to a-0} f(x) = C \neq f(a)$, то точка x=a називається
- 34. Якщо границі $\lim_{x \to a+0} f(x)$ та $\lim_{x \to a-0} f(x)$ скінченні і $\lim_{x \to a+0} f(x) \neq \lim_{x \to a-0} f(x)$, то точка x = a називається
- 35. Якщо хоча б одна з границь $\lim_{x\to a+0} f(x)$ чи $\lim_{x\to a-0} f(x)$ не існує або дорівнює нескінченності, то точка x=a називається
- 36. Точки x, які задовольняють умову f(x) = 0, називаються
- 37. Якщо для довільного $x \in X$ виконується умова $f(c) \ge f(x)$ ($c \in X$), то число f(c) називається
- 38. Якщо для довільного $x \in X$ виконується умова $f(c) \le f(x)$ ($c \in X$), то число f(c) називається

Сформулювати означення чи твердження

- 1. Означення множини.
- 2. Означення підмножини деякої множини.
- 3. Означення рівних можин.
- 4. Означення об'єднання множин.
- 5. Означення перетину множин.
- 6. Означення різниці множин.
- 7. Означення декартового добутку множин.
- 8. Означення комплексного числа.
- 9. Означення модуля комплексного числа.
- 10. Означення аргумента комплексного числа.
- 11. Формула Моавра.
- 12. Формула кореня n-го степеня з комплексного числа.
- 13. Означення числової послідовності.
- 14. Означення послідовності, обмеженої зверху.
- 15. Означення послідовності, обмеженої знизу.
- 16. Означення обмеженої послідовності.
- 17. Означення необмеженої послідовності.
- 18. Означення зростаючої послідовності.
- 19. Означення спадної послідовності.
- 20. Означення незростаючої послідовності.
- 21. Означення неспадної послідовності.
- 22. Означення границі послідовності.
- 23. Означення нескінченно малої послідовності.
- 24. Означення нескінченно великої послідовності.
- 25. Означення функції.
- 26. Означення обмеженої функції.
- 27. Означення зростаючої функції.
- 28. Означення спадної функції.
- 29. Означення незростаючої функції.
- 30. Означення неспадної функції.

- 31. Означення парної функції.
- 32. Означення непарної функції.
- 33. Означення періодичної функції.
- 34. Означення границі функції.
- 35. Важливі границі.
- 36. Означення границі функції зліва.
- 37. Означення границі функції справа.
- 38. Означення функції, неперервної в точці.
- 39. Означення найбільшого значення функції на множині.
- 40. Означення найменшого значення функції на множині.