НАЦИОНАЛЕН ВОЕНЕН УНИВЕРСИТЕТ "ВАСИЛ ЛЕВСКИ" ФАКУЛТЕТ "АРТИЛЕРИЯ, ПВО И КИС"

Утвърждавам:	
Декан:	_Π
Полк. доц. д-р инж	. Дилян Димитров

УЧЕБНА ПРОГРАМА

по учебна дисциплина

"Извличане на знания от данни"

включена в учебни планове

6-432-22, 6-434-22, 7-432-22, 7-434-22, 10-432-22, 10-434-22 на специалност "Изкуствен интелект"

Образователно-квалификационна степен: "магистър"

Обучаваща катедра: "Компютърни системи и технологии"

Шумен 2022 г.

1. Въведение в учебна дисциплина "Извличане на знания от данни".

- 1.1 Учебната дисциплина "Извличане на знания от данни" е предназначена за обучение на курсанти и студенти в образователно-квалификационна степен "магистър".
- 1.2. Учебната дисциплина е от задължителен блок на учебните дисциплини и се изучава в един семестър, съгласно показаната извадка от учебните планове:

№ в уч. план	Учебна дисциплина	Учебни планове	Специалност	Семестър	Часове	Лекции	Упражнения	Курсов проект	Извънаудиторна заетост	Кредити	Форма на контрол
6	Извличане на знания от данни	6-432-22 7-432-22 10-432-22	ИИ	2	60	30	30	да	120	6	СИ
16	Извличане на знания от данни	6-434-22 7-434-22 10-434-22	ИИ	4	60	30	30	да	120	6	СИ

- 1.3. Програмата е структурирана в две самостоятелни теми, всяка от които третира основни въпроси от дисциплината.
- 1.3.1. В тема 1 "Класически теории в областта на извличане на знания от данни" се изучава историческото развитие и основните класически концепции в областта на извличане на знания от данни.
- 1.3.2. В тема 2 "Съвременни теории и приложение в областта на извличане на знания от данни " се разглеждат основните съвременни концепции и тяхното приложение в областта на извличане на знания от данни.
- 1.4. Учебната дисциплина е сравнително самостоятелна и се базира на знанията на обучаемите по дисциплината "Програмни езици", "Операционни системи", "Компютърни мрежи", "Бази от данни", "Невронни мрежи", "Машинно обучение и самообучение". Поставя основите върху които се изгражда по-нататъшната подготовка на обучаемите като софтуерни и хардуерни специалисти.
- 1.5. Основен метод за даване на нови знания са лекциите. Те се водят в поток и се осигуряват от необходимите дидактически материали. Лекциите са с достатъчен брой примери за да се разбере същността на излагания материал.
- 1.6. Практическите занятия се водят по класни чрез решаване на конкретни задачи и примери. На тези занятия се следи за творческото прилагане на придобитите знания и развитие на абстрактното мислене. Разнообразието от различни подходи към дадена конкретна задача позволява придобиване на трайни практически навици. По време на упражненията се провежда текущ контрол, с цел осигуряване на ритмично овладяване на учебния материал. На

някои упражнения обучаемите получават задачи за самостоятелна работа, чието решаване се проверява от преподавателя на следващото упражнение.

- 1.7. Семинарните занятия позволяват на обучаемите да разширят и задълбочат знанията си по дисциплината, да развият способностите си за самостоятелно изучаване на проблемни въпроси от техническа литература и за обобщаване на получените резултати.
- 1.8. В края на всяка тема се провежда тестово изпитване, за да се провери общото усвояване на учебното съдържание. Получените резултати позволяват да се следи развитието на обучаемите през семестъра.
- 1.9. За постигане на добри резултати и пълно усвояване на учебния материал се предвижда провеждане на групови консултации преди всяко упражнение, а при желание от страна на обучаемите и индивидуални такива.
- 1.10. Контролът на знанията на обучаемите завършва със защита на курсов проект и оформяна на крайна комплексна текуща оценка.

2. Цел и задачи на учебна дисциплина "Извличане на знания от данни".

- 2.1. Основните цели са необходимостта от познания, относно теоретичните принципи и технологиите за изграждане на съвременни системи за съхранение на данни.
- 2.2. В резултат на обучението по настоящата програма обучаемите следва да придобият нови знания за:
 - 2.2.1. Основните класически теории в областта на изкуствения интелект.
 - 2.2.2. Основните съвременни теории в областта на изкуствения интелект.
- 2.2.3. Конкретни технологични решения за изграждане на системи с използване на изкуствен интелект.
 - 2.2.4. Тенденциите в развитието на изкуствения интелект.
- 2.2.5. Аспектите на сигурността и защитата на системите с изкуствен интелект.
- 2.3. В резултат на предвидените по програмата упражнения обучаемите трябва да изградят нови способности:
- 2.3.1. Да вземат мотивирани решения за избор на технология за изграждане на системи с изкуствен интелект.
- 2.3.2. Да използват в практико-приложен аспект придобитите знания и практически умения за работа със системи с изкуствен интелект.
- 2.3.3. Да ползват специализиран софтуер за контрол и управление на системи с изкуствен интелект.
- 2.3.3. Да разработват нови технологични решения на базата на изкуствения интелект.
- 2.3.5. Да формулират политики и процедури за гарантиране на сигурността на данните в системите с изкуствен интелект.

3. Система за оценяване знанията на обучаемите.

3.1. Резултатите от обучението по дисциплината "Извличане на знания от данни" въз основа на настоящата учебна програма се оценяват посредством

текуща оценка в хода на провежданото обучение, оценка от разработен курсов проект и комплексна оценка след приключване на обучението в края семестъра.

3.2. Текущата оценка в хода на обучението се закръглява с точност до единица и се получава в резултат на поставените текущи оценки и резултатите от тестовото изпитване по отделните теми въз основа на зависимостта:

$$TO = 0.5.TO1 + 0.5.TO2,$$

където:

- ТО е крайната текуща оценка;
- ТО1, ТО2 са усреднени резултати от текущи изпитвания по темите;
- 3.3. В заключителните занятия по дисциплината обучаемите разработват самостоятелно индивидуален курсов проект (КП), включващ проектиране на система с избрана технология за съхранение на данни.
 - 3.4. Дисциплината завършва със семестриален изпит (СИ).
- 3.5. Крайната комплексна оценка (КО) от придобитите знания по учебната дисциплина въз основа на преминатото обучение по тази учебна програма се закръглява до цяла единица и се получава от зависимостта:

$$KO = 0.3*CH + 0.3*K\Pi + 0.3*TO.$$

Крайната комплексна оценка се вписва в изпитния протокол, студентската книжка, главната книга, дипломата и европейското дипломно приложение.

4. Съдържание на учебната програма.

<u>ТЕМА 1</u>. "Класически теории в областта на извличане на знания от данни". (21 ч. – 15 ч. лекции/ 11 ч. пр. занятия)

No	Вид	Наименование на занятието	бр. часове	Материално осигуряване	Място
1.1	лек.	Големи данни и извличане на знания от данни – основни концепции	3	проектор	зала
1.2	лек.	Бази от данни – хранилища на големи данни	3	проектор	зала
1.3	упр.	Бази от данни – хранилища на големи данни	2	компютри	комп. лаб.
1.4	лек.	Функции на извличането на знания от данни	3	проектор	зала
1.5	упр.	Функции на извличането на знания от данни	2	компютри	комп. лаб.
1.6	лек.	Технологии за извличане на знания от данни	3	проектор	зала
1.7	упр.	Технологии за извличане на знания от данни	2	компютри	комп. лаб.
1.8	лек.	Методология за извличане на знания от данни	3	проектор	зала
1.9	упр.	Методология за извличане на знания от данни	2	компютри	комп. лаб.
1.10	сем.	Семинар	3	компютри	комп. лаб.

TEMA 2. "Съвременни теории и приложение в областта на извличане на знания от данни".

(21 ч. – 15 ч. лекции/ 11 ч. пр. занятия)

	1				
No	Вид	Наименование на занятието	бр. часове	Материално осигуряване	Място
1.1	лек.	Архитектури за облачна киберсигурност, използващи CloudGuard мрежова сигурност	3	проектор	зала
1.2	лек.	Референтна архитектура за публичен облак IAAS		проектор	зала
1.3	упр.	Референтна архитектура за публичен облак IAAS	2	компютри	комп. лаб.
1.4	лек.	Архитектура за защита на облачни услуги – част I	3	проектор	зала
1.5	упр.	Архитектура за защита на облачни услуги	2	компютри	комп. лаб.
1.6	лек.	Архитектура за защита на облачни услуги – част II	3	проектор	зала
1.7	упр.	Архитектура за защита на облачни услуги	2	компютри	комп. лаб.
1.8	лек.	Python в науката за данни	3	проектор	зала
1.9	упр.	Python в науката за данни	2	компютри	комп. лаб.
1.10	сем.	Семинар	3	компютри	комп. лаб.

<u>TEMA 3.</u> "Курсов проект". (8 ч. – 0 ч. лекции/ 8 ч. пр. занятия)

№	Вид	Наименование на занятието	бр. часове	Материално осигуряване	Място
3.1	пр. з.	Курсов проект	3	компютри	комп. лаб.
3.2	пр. з.	Курсов проект	3	компютри	комп. лаб.
3.3	пр. з.	Защита на курсов проект	2	компютри	комп. лаб.
		Общо часове за дисциплината:	60	30 ч. лек. 30 ч. упр. 125 ч. ИАЗ	

Литература:

- 1) Anderson, J.A., "Some Properties of a Neural Model for Memory", AAA Symposium. Theoretical Biology and Biomathematics, Washington, US, 20022.
- 2) Burkov, A., "The Hundred-Page Machine Learning Book", Amazon Kindle Edition, 13 January, 2019.
- 3) Colby, K. M., "Artificial Paranoia: A Computer Simulation of Paranoid Processes", Elsevier, US, January 1975.
- 4) Dubois, D., H. Prade, "Fuzzy Sets and Systems: Theory and Applications", Academic Press, New York, 1980.
- 5) Demuth, H., M. Beale, "Neural Network Toolbox for Use with Matlab User's Guide", version 4, The MathWorks, 2022.
- 6) Fraser, A., D. Burnell, "Computer Models in Genetics", McGraw-Hill, New York, US, 1970.
- 7) "Fuzzy Logic Toolbox User's Guide R2020b", The MathWorks, 2022.
- 8) "Global Optimization Toolbox User's Guide R2022b", The MathWorks, 2022.
- 9) Hebb, Donald, "The Organization of Behavior", Brain Theory, pp 231-233, Springer Link, 1949.
- 10) Kohonen, T., "Correlation Matrix Memories", IEEE Transaction, Volume C-21, Issue 4, pp. 353-359, 1972.
- 11) Mamdani, E.H., "Applications of fuzzy algorithm for control a simple dynamic
- 12) Minsky, M., S. Papert, "Perceptrons: an introduction to computational geometry", The MIT Press, MA, 1969.
- 13) Sugeno, M., "Industrial applications of fuzzy control", Elsevier Science Pub. Co., 2005.
- 14) Turing, A. M., "Computing machinery and intelligence", in journal "Mind a quarterly review of psychology and philosophy", vol. LIX, No.236, Oxford University Press, October, 2020.

РАЗРАБОТИЛ ПРОГРАМАТА:

Чавдар Минчев

Програмата е обсъдена и приета на заседание на катедрения съвет	на
катедра КСТ с протокол №/2022 г. и е утвърдена от Факултетен съ	вет
на факултет "Артилерия, ПВО и КИС" с протокол №/2022 г.	

полк. проф. д-р инж.

Началник на катедра "Компютърни системи и технологии":

П

	подп. доц. д-р инж.	Π	Красимир Славянов
2022 г.			
гр. Шумен			