II prova in itinere – 14 gennaio 2019

1) Tra le armature di un condensatore a facce piane e parallele è mantenuta una differenza di potenziale $V = V_o \sin(\omega t)$. All'interno del condensatore è inserita una lastra di materiale isolante parallela alle armature e a distanze a e b, rispettivamente, da esse. Sulla lastra è distribuita carica elettrica con densità σ . Trascurando gli effetti di bordo, si determinino il campo elettrico e il campo magnetico all'interno del condensatore, specificando modulo, $direzione\ e\ verso$.

(Si supponga di poter considerare le armature del condensature molto estese, al limite infinite.)

- 2) Attorno ad un toro di sezione quadrata con raggio interno R ed esterno (R + a), sono avvolti due solenoidi con, rispettivamente, N_1 ed N_2 spire distribuite uniformemente.
- Si determini (giustificando tutte le risposte):
- a) il campo magnetico $\mathbf{B_1}$ (*modulo*, *direzione e verso*) generato *in ogni punto dello spazio* dalla corrente I_1 nel solenoide con N_1 spire;
- b) le autoinduttanze L_1 ed L_2 dei due solenoidi e la loro mutua induttanza M.
- 3) Si ricavi l'equazione delle onde dalle equazioni di Maxwell e si discutano le proprietà delle sue soluzioni.
- 4)
- a) Si enuncino le leggi di Snell e le si ricavino dalle condizioni al contorno per il campo elettromagnetico.
- b) A partire dalle leggi di Snell, si ricavi, almeno in un caso, l'angolo di incidenza per cui si osserva una particolare condizione di riflessione e/o trasmissione e la si discuta.

Nota:

Si invitano gli studenti a:

- Scrivere in stampatello NOME, COGNOME e numero di MATRICOLA e a FIRMARE ogni foglio;
- MOTIVARE e COMMENTARE adeguatamente ogni risultato.