Mesure et intégration

Quizz 2 (mesures et mesures extérieures)

1) Soit (X, A) un espace métrique mesurable. L'application μ qui à A associe son diamètre
$\mu(A) = \operatorname{diam}(A) = \sup_{x,y \in A} d(x,y), \ \mu(\emptyset) = 0,$
est une
mesure \square mesure extérieure \square ni l'un ni l'autre \square
2) On considère l'ensemble X des personnes habitant sur terre, muni de la tribu discrète. Préciser si les μ définis ci-dessous sont des mesures, mesures extérieures, ou ni l'un ni l'autre. On définit μ par la valeur qu'elle affecte à une sous-population $A \in \mathcal{P}(X)$ (en affectant toujours 0 à \emptyset).
Mesure \square Mesure extérieure \square nombre total d'années vécues par les éléments de A
Mesure \square Mesure extérieure \square âge moyen des individus dans A
Mesure \square Mesure extérieure \square âge maximal parmi les individus dans A
Mesure \square Mesure extérieure \square - âge minimal parmi les individus dans A
Mesure \square Mesure extérieure \square nombre de "connections" entre individus de A (on compte 1 pour tout couple (x,y) tel que x et y se sont déjà rencontrés).
3) Soit (X, A) un espace métrique mesurable. Soit $r > 0$. On définit $\mu(\cdot)$ comme l'application qui à A associe le nombre minimal (éventuellement infini) de boules fermées nécessaires pour recouvrir A . Alors μ est une
mesure \square mesure extérieure \square ni l'un ni l'autre \square
4) On se place sur $\mathbb R$ muni de la mesure de Lebesgue λ . Les assertions suivantes sont elles vraies / fausses?
Vrai \square Faux \square $\lambda(A) = \lambda(\mathring{A}) = \lambda(\bar{A})$ pour tout intervalle A
Vrai \square Faux \square $\lambda(A) = \lambda(\mathring{A})$ pour tout borélien A
Vrai \square Faux \square $\lambda(A) = \lambda(\bar{A})$ pour tout borélien A
Vrai \square Faux \square $\lambda(\partial A) \leq \lambda(A)$ pour tout borélien A