

Définition

La flèche qui définit la translation est un vecteur. Une translation de vecteur (\overrightarrow{AB}) transforme le point A son origine en B son extrémité.

Un vecteur (\overrightarrow{AB}) est défini selon :

- une direction la droite (AB),
- un sens de A vers B,
- une norme $||\overrightarrow{AB}|| = AB$.

2 vecteurs sont égaux si ils ont mm direction, mm sens et mm norme.

 $\overrightarrow{AB} = \overrightarrow{CD}$, donc \overrightarrow{AB} et \overrightarrow{CD} sont des représentants d'un même vecteur \overrightarrow{u}

Propriétés

Dire que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux revient à dire que le quadrilatère ABDC est un parallélogramme, éventuellement aplati.

Dire que B est le milieu du segment [AC] revient à dire que $\overrightarrow{AB} = \overrightarrow{BC}$.

$$\overrightarrow{AB} = \frac{1}{2}\overrightarrow{AC} \qquad \qquad \overrightarrow{BA} + \overrightarrow{BC} = \overrightarrow{0}$$

 M_1

Vecteur nul et opposé

Vecteur nul: Un vecteur \overrightarrow{AB} est nul lorsque les points A et B sont confondus. On note : $\overrightarrow{AB} = \overrightarrow{0}$.

Pour tout point M, on a $\overrightarrow{MM} = \overrightarrow{0}$.

Vecteur opposé : Deux vecteurs sont opposés lorsqu'ils ont la même direction, la même longueur et qu'ils sont de sens contraire.

 \overrightarrow{AB} et \overrightarrow{BA} sont des vecteurs opposés. On note $\overrightarrow{BA} = -\overrightarrow{AB}$

Produit d'un vecteur par un réel

On a $0 \times \overrightarrow{u} = \overrightarrow{0}$

Soit $k \in \mathbb{R}$ avec k > 0.

Le vecteur $k\overrightarrow{u}$ aura la même direction et le même sens que \overrightarrow{u} mais sa norme sera multipliée par k

Le vecteur $-k\overrightarrow{u}$ aura la même direction que \overrightarrow{u} . Les vecteurs $-k\overrightarrow{u}$ et \overrightarrow{u} seront de sens contraire et la norme $de - k \overrightarrow{u}$ sera égale à $k \times ||\overrightarrow{u}||$

Somme de vecteurs et relation de Chasles

Soit t_1 la translation de vecteur \overrightarrow{u} et t_2 la translation de vecteur \overrightarrow{v} . Appliquer t_1 puis $t_2: M \mapsto M_1 \mapsto M_2$ revient à appliquer la translation t de vecteur $\overrightarrow{w}: M \mapsto M_2$. L'enchaînement de 2 translations de vecteurs \overrightarrow{u} et \overrightarrow{v} est la translation de vecteur \overrightarrow{w} avec $\overrightarrow{w} = \overrightarrow{u} + \overrightarrow{v}$.

Relation de Chasles : $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$

 \vec{v}

Dire que ABCD est un parallélogramme signifie que $\overrightarrow{AB} + \overrightarrow{AD} = \overrightarrow{AC}$

Milieu et Distance

$$A \begin{pmatrix} x_A \\ y_A \end{pmatrix} \text{ et } B \begin{pmatrix} x_B \\ y_B \end{pmatrix} \text{. Coordonnées de}$$

$$M \text{ le milieu de } [AB] : \begin{pmatrix} \frac{x_A + x_B}{2} \\ \frac{y_A + y_B}{2} \end{pmatrix}$$

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Coordonnées d'un vecteur et norme

$$\overrightarrow{AB} = 3\overrightarrow{i} + 2\overrightarrow{j} : \overrightarrow{AB} \begin{pmatrix} 3\\2 \end{pmatrix}$$

$$Soit A \begin{pmatrix} x_A\\y_A \end{pmatrix} et B \begin{pmatrix} x_B\\y_B \end{pmatrix}$$

$$On a \overrightarrow{AB} \begin{pmatrix} x_B - x_A\\y_B - y_A \end{pmatrix}$$

Soit
$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$$
, $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ et $k \in \mathbb{R}$

On a:
$$\bullet \overrightarrow{u} + \overrightarrow{v} \begin{pmatrix} x + x' \\ y + y' \end{pmatrix} \quad \bullet k \overrightarrow{u} \begin{pmatrix} kx \\ ky \end{pmatrix} \quad \bullet - \overrightarrow{u} \begin{pmatrix} -x \\ -y \end{pmatrix}$$

$$\bullet k\overrightarrow{u} \begin{pmatrix} kx \\ ky \end{pmatrix} \quad \bullet -\overrightarrow{u} \begin{pmatrix} -x \\ -y \end{pmatrix}$$

ullet $\overrightarrow{u} = \overrightarrow{v}$ si x = x' et y = y' $\qquad ullet$ $||\overrightarrow{u}|| = \sqrt{x^2 + y^2}$

$$\bullet \ k \overrightarrow{u} \begin{pmatrix} kx \\ ky \end{pmatrix} \quad \bullet - \overrightarrow{u} \begin{pmatrix} -x \\ -y \end{pmatrix}$$

Colinéarité

2 vecteurs non nuls \overrightarrow{u} et \overrightarrow{v} sont colinéaires s'ils ont la mm direction càd s'il $\exists k \in \mathbb{R} \text{ tq } \overrightarrow{u} = k \overrightarrow{v}$.

$$\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix} \text{ et } \overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix} \quad \det(\overrightarrow{u}; \overrightarrow{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - yx'$$

 $\overrightarrow{u}et\overrightarrow{v}$ colinéaires \iff $\det(\overrightarrow{u};\overrightarrow{v})=0$

- 1) (AB) et (CD) sont parallèles
- $\iff \overrightarrow{AB}$ et \overrightarrow{CD} sont colinéaires
- 2) A, B et C sont alignés $\iff \overrightarrow{AB}$ et \overrightarrow{AC} sont colinéaires

