Intertemporal Discounting Evolutionary methods and perspectives

Eric Rozon erozon@math.ubc.ca

November 4, 2020

What is intertemporal discounting?

Motivation

The discounting problem

Theory and empirics

What is intertemporal discounting?

Motivation

The discounting problem

Theory and empirics

Discounting in an evolutionary context

Philosophy

Framework

Example

What is intertemporal discounting?

Motivation
The discounting problem

Theory and empirics

Discounting in an evolutionary context

Philosophy

Framework

Example

Chocolate cake or fruit salad?

Chocolate cake or fruit salad? A choice between:

▶ immediate gratification;

Chocolate cake or fruit salad? A choice between:

- immediate gratification; and
- ▶ the "better" choice, with a more delayed payoff.

Please, somebody, play along!

▶ (Suppose) I offer \$10 immediately.

- (Suppose) I offer \$10 immediately. You may accept this offer, or
- choose to instead take \$15 in a week.

- (Suppose) I offer \$10 immediately. You may accept this offer, or
- choose to instead take \$15 in a week.
- Which do you prefer?

- ► (Suppose) I offer \$10 immediately. You may accept this offer, or
- choose to instead take \$15 in a week.
- Which do you prefer?
- **•** . . .

- Please, somebody, play along!
 - (Suppose) I offer \$10 immediately. You may accept this offer, or
 - choose to instead take \$15 in a week.
 - Which do you prefer?
 - **•** . . .

Empirics

Theory

What is intertemporal discounting?

Motivation

The discounting problem

Theory and empirics

Discounting in an evolutionary context

Philosophy

Framework

Example

Experimental work has guided modelling

- Experimental work has guided modelling
- ► Emphasis has been on **individual** optimizing own welfare

- Experimental work has guided modelling
- ► Emphasis has been on **individual** optimizing own welfare

▶ Propose performing analysis at the level of the **population**

- Experimental work has guided modelling
- ► Emphasis has been on **individual** optimizing own welfare

- ▶ Propose performing analysis at the level of the **population**
- Welfare at the level of the population is governed by fitness

In biological terms, reproducing later in life is analogous to waiting for a delayed reward.

In biological terms, reproducing later in life is analogous to waiting for a delayed reward.

Recall the Leslie model

In biological terms, reproducing later in life is analogous to waiting for a delayed reward.

Recall the Leslie model

• Age classes: $a = 1, 2, \dots, A$

In biological terms, reproducing later in life is analogous to waiting for a delayed reward.

Recall the Leslie model

- ▶ Age classes: a = 1, 2, ..., A
- ▶ Fecundities: b_1, b_2, \ldots, b_A

In biological terms, reproducing later in life is analogous to waiting for a delayed reward.

Recall the Leslie model

- Age classes: $a = 1, 2, \dots, A$
- ▶ Fecundities: b_1, b_2, \ldots, b_A
- Survival rates: $s_1, s_2, \ldots, s_{A-1}, s_A = 0$.

In biological terms, reproducing later in life is analogous to waiting for a delayed reward.

Recall the Leslie model

- Age classes: $a = 1, 2, \dots, A$
- ▶ Fecundities: b_1, b_2, \ldots, b_A
- ► Survival rates: $s_1, s_2, \ldots, s_{A-1}, s_A = 0$.

Given a Leslie setup, we have a life history:

In biological terms, reproducing later in life is analogous to waiting for a delayed reward.

Recall the Leslie model

- Age classes: $a = 1, 2, \dots, A$
- ▶ Fecundities: b_1, b_2, \ldots, b_A
- ▶ Survival rates: $s_1, s_2, \ldots, s_{A-1}, s_A = 0$.

Given a Leslie setup, we have a life history:

▶ Probability $s_1 s_2 \cdots s_{a-1}$ of reaching age a

In biological terms, reproducing later in life is analogous to waiting for a delayed reward.

Recall the Leslie model

- ▶ Age classes: a = 1, 2, ..., A
- ▶ Fecundities: b_1, b_2, \ldots, b_A
- ► Survival rates: $s_1, s_2, \ldots, s_{A-1}, s_A = 0$.

Given a Leslie setup, we have a life history:

- ▶ Probability $s_1 s_2 \cdots s_{a-1}$ of reaching age a;
- expected number of offspring produced at age a is $s_1s_2\cdots s_{a-1}b_a$

Life history - visual

Life history – visual

The height of each point is the **expected number of offspring** for each age.

Thank you to ...

Thank you to ...

Laura;

Thank you to . . .

- ► Laura;
- Jaye and Christoph;

Thank you to ...

- ► Laura;
- Jaye and Christoph; and
- you.

Thank you to ...

- Laura;
- Jaye and Christoph; and
- you.

Questions? Comments? Concerns? Queries? Conondrums? Qualms? Quips? Complaints? Critiques? Compliments?