Final Project

K.Saketh Sai Nigam 22201204

2022-12-16

Importing All the Libraries Required in this Project

#importing the required libraries to perform the project
library(ggplot2)

Part 1: Analysis

Loading the DataSet

The SolarSafeguardingZonesData2012 Dataset is:

Import the SolarSafeguardingZonesData2012 dataset and look at the SolarSafeguardingZonesData2012 dataset
SolarSafeguardingZonesData2012 = read.csv("/Users/saketh/Desktop/Solar_Safeguarding_Zones.csv")
SolarSafeguardingZonesData2012

##	Name	IAIP_Name
## 1	Abbeyshrule	EIAB - ABBEYSHRULE
## 2	Athboy	EIMH - ATHBOY
## 3	Bantry	EIBN - BANTRY
## 4	Birr	EIBR - BIRR
## 5	Casement	EIME - CASEMENT
## 6	Clonbullogue	EICL - CLONBULLOGUE
## 7	Connemara	EICA - CONNEMARA

##	8	Coonagh	EICN - COONAGH
##	9	Cork	<pre>EICK - CORK/International</pre>
##	10	Donegal	EIDL - DONEGAL
##	11	Dublin	<pre>EIDW - DUBLIN/International</pre>
##	12	Inisheer	EIIR - INISHEER
##	13	Inishmaan	EIMN - INISHMAAN
##	14	Inishmore	EIIM - INISHMORE
##	15	Ireland West	EIKN - IRELAND WEST
##	16	Kerry	EIKY - KERRY
##	17	Kilkenny	EIKK - KILKENNY
##	18	Newcastle	EINC - NEWCASTLE
##	19	Rathcool	EIRT - RATHCOOL
##	20	Shannon	EINN - SHANNON/International
##	21	Sligo	EISG - SLIGO
##	22	Waterford	EIWF - WATERFORD
##	23	Weston	EIWT - WESTON
##	24	Bishopstown GAA Club	n/a
##	25	Royal Hospital Kilmainham	n/a
##	26	Phoenix Park Army Sports Ground	n/a
##	27	Beaumont Secondary School	n/a
##	28	Waterford Airport	n/a
##	29	Wexford Racecourse	n/a
##	30	Lourdes Stadium, Drogheda	n/a
##	31	Letterkenny University Hospital	n/a
##	32	Mayo University Hospital	n/a
##	33	Sligo University Hospital	n/a
##	34	University Hospital Galway	n/a
##	35	University Hospital Limerick	n/a
##	36	Cork University Hospital (planned)	n/a
##	37	University Hospital Kerry	n/a
##	38	Tallaght University Hospital	n/a
##	39	Custume Barracks, Athlone	n/a
##	40	DFTC/Curragh Camp	n/a

##	41	Finner Camp n/							
##	42	The Naval Base Haul	Lbowline	9			n/a		
##	43	Gormanst	on Camp)			n/a		
##	44	Cathal Brugha E	Barracks	5			n/a		
##		IAIP_Filename	X_{itm}	Y_itm	Buffer_km	Buffer_m	OBJECTID		
##	1	Abbeyshrule_EI_AD_2_EIAB	623650	760229	3	3000	1		
##	2	Athboy_EI_AD_2_EIMH	674158	765916	3	3000	2		
##	3	Bantry_EI_AD_2_EIBN	497168	548248	3	3000	3		
##	4	Birr_EI_AD_2_EIBR	606795	702251	3	3000	4		
##	5	Casement_EI_AD_2_EIME	702959	729198	5	5000	5		
##	6	Clonbullogue_EI_AD_2_EICL	658506	722509	3	3000	6		
##	7	Connemara_EI_AD_2_EICA	501967	721024	3	3000	7		
##	8	Coonagh_EI_AD_2_EICN	553873	657464	3	3000	8		
##	9	Cork_EI_AD_2_EICK	566159	565577	5	5000	9		
##	10	Donegal_EI_AD_2_EIDL	578199	921904	5	5000	10		
##	11	Dublin_EI_AD_2_EIDW	714988	742647	5	5000	11		
##	12	<pre>Inisheer_EI_AD_2_EIIR</pre>	498739	702602	3	3000	12		
##	13	Inishmaan_EI_AD_2_EIMN	494974	705868	3	3000	13		
##	14	<pre>Inishmore_EI_AD_2_EIIM</pre>	489317	707541	3	3000	14		
##	15	<pre>IrelandWest_EI_AD_2_EIKN</pre>	546214	795966	5	5000	15		
##	16	<pre>Kerry_EI_AD_2_EIKY</pre>	495786	604320	5	5000	16		
##	17	Kilkenny_EI_AD_2_EIKK	647629	655748	3	3000	17		
##	18	Newcastle_EI_AD_2_EINC	731579	704265	3	3000	18		
##	19	Rathcool_EI_AD_2_EIRT	532639	595307	3	3000	19		
##	20	Shannon_EI_AD_2_EINN	537502	661603	5	5000	20		
##	21	Sligo_EI_AD_2_EISG	560981	836997	5	5000	21		
##	22	Waterford_EI_AD_2_EIWF	662433	604329	5	5000	22		
##	23	Weston_EI_AD_2_EIWT	700640	734621	3	3000	23		
##	24	n/a	563956	570367	3	3000	24		
##	25	n/a	712930	733867	3	3000	25		
##	26	n/a	712585	734662	3	3000	26		
##	27	n/a	717741	738987	3	3000	27		
##	28	n/a	662506	604466	3	3000	28		

##	≠ 2	29 n/a 7027	70 62204	.7 3	3000	29
##	≠ 3	n/a 7088	311 77624	3	3000	30
##	≠ 3	n/a 6169	72 91272	21 3	3000	31
##	¥ 3	n/a 5143	27 7897	.4 3	3000	32
##	≠ 3	n/a 5696	59 83636	55 3	3000	33
##	∮ 3	n/a 5286	94 72567	5 3	3000	34
##	≠ 3	n/a 5559	45 65370)6 3	3000	35
##	≠ 3	n/a 5649	21 57028	3	3000	36
##	ŧ 3	n/a 4849	12 61389	6 3	3000	37
##	≠ 3	n/a 7082	23 72779	9 3	3000	38
##	≠ 3	n/a 6034	70 74156	3	3000	39
##	≠ 4	n/a 6782	86 71138	3	3000	40
##	≠ 4	n/a 5846	13 86053	3	3000	41
##	≠ 4	n/a 5788	67 56538	3	3000	42
##	≠ 4	n/a 7170	63 76762	2 3	3000	43
##	≠ 4	n/a 7151	30 73216	3	3000	44

Dimensions of the DataSet

#display rows and columns of SolarSafeguardingZonesData2012 dataset dim(SolarSafeguardingZonesData2012)

[1] 44 8

The SolarSafeguardingZonesData2012 DataSet has 44 rows i.e 44 different Datas and 8 Columns i.e 8 categories of the Solar Safeguarding Zones in 2012. They are Name, IAIP Name,IAIP Filename,X item, Y item, Buffer meter, Buffer Kilometer, ObjectId of each data

Structure of the DataSet

#display Structure of SolarSafeguardingZonesData2012 dataset
str(SolarSafeguardingZonesData2012)

```
## 'data.frame':
                44 obs. of 8 variables:
                : chr "Abbeyshrule" "Athboy" "Bantry" "Birr" ...
## $ Name
                 : chr "EIAB - ABBEYSHRULE" "EIMH - ATHBOY" "EIBN - BANTRY" "EIBR - BIRR" ...
## $ IAIP Name
  $ IAIP Filename: chr "Abbeyshrule EI AD 2 EIAB" "Athboy EI AD 2 EIMH" "Bantry EI AD 2 EIBN" "Birr EI AD 2 EI
BR"
  $ X itm
                : int 623650 674158 497168 606795 702959 658506 501967 553873 566159 578199 ...
## $ Y itm
                : int 760229 765916 548248 702251 729198 722509 721024 657464 565577 921904 ...
## $ Buffer km
                : int 3 3 3 3 5 3 3 3 5 5 ...
## $ Buffer m
                 ## $ OBJECTID
                 : int 1 2 3 4 5 6 7 8 9 10 ...
```

This provides the dataset's Dimension and Mode. The SolarSafeguardingZonesData2012 DataSet consists of 8 columns, or the categories of the Solar Safeguarding Zones in 2012, and 44 rows, or 44 individual data sets. They are the following for each piece of data: Name, IAIP Name, IAIP Filename, X item, Y item, Buffer meter, Buffer Kilometer, and ObjectId. The common mode for the Name, IAIP Name, and IAIP Filename is "Character," while the remaining measures have the "Integer" mode.

Mode of the DataSet

#display Mode of SolarSafeguardingZonesData2012 dataset
mode(SolarSafeguardingZonesData2012)

```
## [1] "list"
```

factor(SolarSafeguardingZonesData2012\$Buffer_m)

Despite the fact that the DataFrame appears to be a matrix, R treats data frame measures as lists.

Factors of the DataSet

#display Factors of Buffer_m of SolarSafeguardingZonesData2012 dataset factor(SolarSafeguardingZonesData2012\$Buffer_m)

Categorical data is stored in 'R' language factors. They are only vectors with some level-specific information added. This shows the Dataset's Buffer m's data as well as its levels.

#display Factors of Buffer_km of SolarSafeguardingZonesData2012 dataset factor(SolarSafeguardingZonesData2012\$Buffer_km)

Categorical data is stored in 'R' language factors. They are only vectors with some level-specific information added. This shows the Dataset's Buffer km's data as well as its levels.

#display structure of Factors of Buffer_m of SolarSafeguardingZonesData2012 dataset
str(factor(SolarSafeguardingZonesData2012\$Buffer_m))

```
## Factor w/ 2 levels "3000", "5000": 1 1 1 1 2 1 1 1 2 2 ...
```

This displays the number of levels in the Dataset's Buffer m's data as well as the level each item of information belongs to particular level value.

#display structure of Factors of Buffer_km of SolarSafeguardingZonesData2012 dataset str(factor(SolarSafeguardingZonesData2012\$Buffer_km))

```
## Factor w/ 2 levels "3", "5": 1 1 1 1 2 1 1 1 2 2 ...
```

This displays the number of levels in the Dataset's Buffer km's data as well as the level each item of information belongs to particular level value.

Numerical Summary of the DataSet

#summarize of ParkData dataset
summary(SolarSafeguardingZonesData2012)

##	Name	IAIP_Name	IAIP_Filename	X_itm
##	Length: 44	Length:44	Length: 44	Min. :484912
##	Class :character	Class :character	Class :character	1st Qu.:544036
##	Mode :character	Mode :character	Mode :character	Median :594042
##				Mean :608619
##				3rd Qu.:701172
##				Max. :731579
##	Y_itm	Buffer_km	Buffer_m OBJE	CTID
##	Min. :548248	Min. :3.000 Min	. :3000 Min.	: 1.00
##	1st Qu.:645791	1st Qu.:3.000 1st	Qu.:3000 1st Qu.	:11.75
##	Median :721766	Median:3.000 Med	ian :3000 Median	:22.50
##	Mean :707627	Mean :3.409 Mean	n :3409 Mean	:22.50
##	3rd Qu.:747042	3rd Qu.:3.000 3rd	Qu.:3000 3rd Qu.	:33.25
##	Max. :921904	Max. :5.000 Max	.:5000 Max.	:44.00

The Numerical summaries shows each categories Name, IAIP_Name,IAIP_Filename of the dataset taken each has total length of 44 and mode and class of each Category is of Character

The Numerical summaries of categories that are X_itm, Y_itm,Buffer_m,Buffer_km of the dataset taken shows Minimum,Maxiimum,Mean,Median,1st,3rd quartile values

X_itm has MINIMUM VALUE:- 484912, MAXIMUM VALUE:- 731579, MEAN VALUE:- 608619, MEDIAN VALUE:- 594042, 1ST QUARTILE:- 544036, 3RD QUARTILE:- 701172

Y_itm has MINIMUM VALUE:- 548248, MAXIMUM VALUE:- 921904, MEAN VALUE:- 707627, MEDIAN VALUE:- 721766, 1ST QUARTILE:- 645791, 3RD QUARTILE:- 747042

Buffer_km has MINIMUM VALUE:- 3, MAXIMUM VALUE:- 5, MEAN VALUE:- 3.409091, MEDIAN VALUE:- 3, 1ST QUARTILE:- 3, 3RD QUARTILE:- 3

Buffer_m has MINIMUM VALUE:- 3000, MAXIMUM VALUE:- 5000, MEAN VALUE:- 3409, MEDIAN VALUE:- 3000, 1ST QUARTILE:- 3000, 3RD QUARTILE:- 3000

OBJECTID has MINIMUM VALUE:- 1, MAXIMUM VALUE:- 44, MEAN VALUE:- 22.5, MEDIAN VALUE:- 22.5, 1ST QUARTILE:- 11.75, 3RD QUARTILE:- 33.25

Graphical Summary of DataSet

1. BAR PLOT of SolarSafeguardingZonesData2012 datase:-

The Bar plot is a plot designed the category **Name** with respect to the **X_itm** values as a categorical variable

```
#Bar-Plot of SolarSafeguardingZonesData2012 dataset
ggplot(SolarSafeguardingZonesData2012, aes(x=X_itm, y=Name, fill=X_itm)) +
    geom_bar(stat='identity', position='dodge')+
    ggtitle("Bar Plot of the Names of dataset with respect to X_itm") +
        xlab("X_itm Values") +
        ylab("Names")
```


2. HISTOGRAM PLOT of SolarSafeguardingZonesData2012 datase:-

The Histogram plot is a plot designed the category **X_itm** with respect to the range of values

Histogram Graph of the X_item of Dataset

3. SCATTER PLOT of SolarSafeguardingZonesData2012 datase:-

The Scatter plot is a plot designed the category **Y_itm** with respect to the **X_itm** values. We get linearly increasing graph with respect ro values as we are using Linear Regression

```
## `geom_smooth()` using formula = 'y ~ x'
```


4. BOX PLOT of SolarSafeguardingZonesData2012 datase:-

The Box plot is a plot designed the category **Y_itm** with respect to the **Buffer_m** values

```
#Box-Plot of SolarSafeguardingZonesData2012 dataset
ggplot(SolarSafeguardingZonesData2012, aes(x=Buffer_m, y=Y_itm,color=factor(Buffer_m))) +
  geom_boxplot(outlier.color="darkblue")+
  ggtitle("BoxPlot of the Y_itm with respect to Buffer_m") +
  xlab("Buffer_m") +
  ylab("Y_itm")
```


5. PIE PLOT of SolarSafeguardingZonesData2012 datase:-

The Pie plot is a plot designed the category **X_itm** with respect to the **Buffer_km** values

```
#Pie-Plot of SolarSafeguardingZonesData2012 dataset
ggplot(SolarSafeguardingZonesData2012, aes(x=2, y=X_itm, fill=factor(Buffer_km))) +
  geom_col() +
  coord_polar(theta="y") + xlim(c(0.2, 2.5))+
  ggtitle("PiePlot of the X_itm with respect to Buffer_km") +
  xlab("X_itm") +
  ylab("Buffer_km")
```

PiePlot of the X_itm with respect to Buffer_km

Buffer_km

Correlation of SolarSafeguardingZonesData2012 datase:-

round(cor(SolarSafeguardingZonesData2012[c('X_itm', 'Y_itm', 'Buffer_m', 'Buffer_km')]), 2)

```
##
            X itm Y itm Buffer m Buffer km
## X itm
            1.00 0.20
                           -0.08
                                     -0.08
## Y itm
             0.20 1.00
                            0.06
                                      0.06
## Buffer m -0.08 0.06
                            1.00
                                      1.00
## Buffer km -0.08 0.06
                            1.00
                                      1.00
```

The Correlation values of the numerical dataset SolarSafeguardingZonesData2012 with the measurements X_itm,Y_itm,Buffer_m,Buffer_km,OBJECTID taken in the dataset is printed in the matrix as shown above with 2 decimal rounded.

Total no:of missing values in the DataSet

```
#count total missing values in each column of ParkData dataset sapply(SolarSafeguardingZonesData2012, function(x) sum(is.na(x)))
```

```
## Name IAIP_Name IAIP_Filename X_itm Y_itm
## 0 0 0 0 0 0
## Buffer_km Buffer_m OBJECTID
## 0 0 0
```

As the sum of all missing elements are zero, There are no missing values

Part 2: R Package

The Pakage used in this Project is 'ggplot2'

Report on GGPLOT2:-

A plotting software called ggplot2 offers helpful functions for generating intricate graphs from data in a data frame. It offers a more programmatic interface for choosing which variables to plot, how to present them, and other visual characteristics. Therefore, if the underlying data change or if we choose to switch from a bar plot to a scatterplot, we just need to make minor adjustments. This enables the creation of plots of publication

quality with little adjustment and fine tuning. By adding new components, ggplot graphics are built up layer by layer. This method of layering plots allows for a great deal of versatility and personalization.

Because it enables you to alter already-existing ggplot objects, the "Plus" in the ggplot2 package is especially helpful. This makes it simple to construct up plot "templates" and rapidly examine various plot kinds. In order to prevent unintentional downloads as well as further ambiguity, the ggplot() method was included in the ggplot2 package's earlier iteration, called ggplot, which is no longer offered and has been decommissioned from CRAN.

The method you link facts to the graphic's elements is through attractiveness. Aesthetics instruct ggplot as to what belongs on the x-axis, what belongs on the y-axis, and what colors belong there. Although diverse geometrical (shapes) may have distinct aesthetics, the most popular elegance are x, y, and color/fill.

Add the code +ggtitle("Your Title Here") to your line of fundamental ggplot program to add a title to any graph. Make sure your description is in quote marks at both the beginning and the finish. For both the plot's x and y axes, the variables xlab("—") and ylab("—") indicate labels. Ensure that the beginning and the conclusion of your description are enclosed in quotation marks.

Scatterplots are produced using the point geometry. The link between two continuous variables is best shown with a scatterplot. A version like geom jitter(), geom count(), or geom bin2d() is typically more suitable. It can be used to compare one continuous and one categorical variable, or two categorical variables. A bubblechart is a scatterplot where the size of the points is the third variable.

There are 2 categories for "color="

- 1. In scatterplots, geom_point() is used for dots and circles.
- 2. Line charts employ the geom_line() function.

There are 2 categories for "fill="

- 1. For column/bar charts, 'fill=' has two categories and is used with the geom col() and geom bar() functions.
- 2. Area charts use the geom_area() function.

You can split the contour by a categorical data (referred to as a "discrete" variable in ggplot) by using 'color=' or 'fill='

Part 3: Functions/Programming

```
class(SolarSafeguardingZonesData2012) = "SSZData2012"
summary.SSZData2012 = function(s)
 cat("THE SUMMARY OF THE SOLAR SAFEGUARDING ZONES IN 2012 DATASET USING S3 CLASS: \n")
 cat("-----\n")
  cat("1. NAME\n")
 cat("-----\n")
 cat("LENGTH:- ", length(s$Name),"\n")
cat("CLASS:- ", class(s$Name),"\n")
 cat("MODE:- ", mode(s$Name),"\n")
 cat("-----\n")
 cat("2. IAIP Name\n")
 cat("-----\n")
 cat("LENGTH:- ", length(s$IAIP Name),"\n")
cat("CLASS:- ", class(s$IAIP Name),"\n")
 cat("MODE:- ",mode(s$IAIP Name),"\n")
cat("-----\n")
  cat("3. IAIP Filename\n")
 cat("-----\n")
cat("LENGTH:- ", length(s$IAIP Filename),"\n")
cat("CLASS:- ", class(s$IAIP_Filename),"\n")
 cat("MODE:- ", mode(s$IAIP Filename),"\n")
cat("-----\n")
 cat("4. X itm\n")
cat("-----\n")
cat("MINIMUM VALUE:- ", min(s$X_itm),"\n")
cat("MAXIMUM VALUE:- ", max(s$X itm), "\n")
cat("MEAN VALUE:- ",sum(s$X itm)/length(s$X itm),"\n")
cat("MEDIAN VALUE:- ",median(s$X itm),"\n")
cat("1ST QUARTILE:- ",quantile(s$X itm, 0.25),"\n")
 cat("3RD QUARTILE:- ",quantile(s$X itm, 0.75),"\n")
```

```
cat("-----\n")
cat("5. Y itm\n")
cat("-----\n")
cat("MINIMUM VALUE:- ", min(s$Y itm),"\n")
cat("MAXIMUM VALUE:- ",max(s$Y itm),"\n")
cat("MEAN VALUE:- ",sum(s$Y itm)/length(s$Y itm),"\n")
cat("MEDIAN VALUE:- ",median(s$Y itm),"\n")
cat("1ST QUARTILE:- ",quantile(s$Y itm, 0.25),"\n")
cat("3RD OUARTILE:- ",quantile(s$Y itm, 0.75),"\n")
cat("-----\n")
cat("6. Buffer km\n")
cat("-----\n")
cat("MINIMUM VALUE:- ", min(s$Buffer km),"\n")
cat("MAXIMUM VALUE:- ",max(s$Buffer km),"\n")
cat("MEAN VALUE:- ",sum(s$Buffer km)/length(s$Buffer_km),"\n")
cat("MEDIAN VALUE:- ",median(s$Buffer km),"\n")
cat("1ST QUARTILE:- ",quantile(s$Buffer km, 0.25),"\n")
cat("3RD OUARTILE:- ",quantile(s$Buffer km, 0.75),"\n")
cat("-----\n")
cat("7. Buffer m\n")
cat("-----\n")
cat("MINIMUM VALUE:- ", min(s$Buffer_m),"\n")
cat("MAXIMUM VALUE:- ", max(s$Buffer m), "\n")
cat("MEAN VALUE:- ",sum(s$Buffer m)/length(s$Buffer m),"\n")
cat("MEDIAN VALUE:- ",median(s$Buffer m),"\n")
cat("1ST QUARTILE:- ",quantile(s$Buffer m, 0.25),"\n")
cat("3RD QUARTILE:- ",quantile(s$Buffer m, 0.75),"\n")
cat("-----\n")
 cat("8. OBJECTID\n")
cat("-----\n")
cat("MINIMUM VALUE:- ", min(s$OBJECTID),"\n")
cat("MAXIMUM VALUE:- ",max(s$OBJECTID),"\n")
cat("MEAN VALUE:- ",sum(s$OBJECTID)/length(s$OBJECTID),"\n")
```

```
cat("MEDIAN VALUE:- ",median(s$0BJECTID),"\n")
cat("1ST QUARTILE:- ",quantile(s$0BJECTID, 0.25),"\n")
cat("3RD QUARTILE:- ",quantile(s$0BJECTID, 0.75),"\n")
cat("-----\n")
}
summary(SolarSafeguardingZonesData2012)
```

```
## THE SUMMARY OF THE SOLAR SAFEGUARDING ZONES IN 2012 DATASET USING S3 CLASS:
## _______
## 1. NAME
## -----
## LENGTH: - 44
## CLASS:- character
## MODE:- character
## ______
## 2. IAIP Name
## -----
## LENGTH:- 44
## CLASS:- character
## MODE:- character
## ______
## 3. IAIP Filename
## -----
## LENGTH:- 44
## CLASS:- character
## MODE:- character
## -----
## 4. X itm
## -----
## MINIMUM VALUE:- 484912
## MAXIMUM VALUE:- 731579
## MEAN VALUE:- 608619
```

```
## MEDIAN VALUE:- 594041.5
## 1ST OUARTILE:- 544036
## 3RD OUARTILE:- 701172.5
## -----
## 5. Y itm
## ______
## MINIMUM VALUE:- 548248
## MAXIMUM VALUE: - 921904
## MEAN VALUE:- 707627
## MEDIAN VALUE:- 721766.5
## 1ST OUARTILE:- 645791.2
## 3RD OUARTILE:- 747042.5
## -----
## 6. Buffer km
## ______
## MINIMUM VALUE:- 3
## MAXIMUM VALUE:- 5
## MEAN VALUE:- 3.409091
## MEDIAN VALUE:- 3
## 1ST QUARTILE:- 3
## 3RD OUARTILE:- 3
## -----
## 7. Buffer m
## -----
## MINIMUM VALUE:- 3000
## MAXIMUM VALUE:- 5000
## MEAN VALUE:- 3409.091
## MEDIAN VALUE:- 3000
## 1ST OUARTILE:- 3000
## 3RD OUARTILE:- 3000
## -----
## 8. OBJECTID
```

```
## MINIMUM VALUE:- 1
## MAXIMUM VALUE:- 44
## MEAN VALUE:- 22.5
## MEDIAN VALUE:- 22.5
## 1ST QUARTILE:- 11.75
## 3RD QUARTILE:- 33.25
## ------
```

The Summary of the SolarSafeguardingZonesData2012 Using "S3-Class"

The Summary using S3 Class shows each categories Name, IAIP_Name,IAIP_Filename of the dataset taken each has total length of 44 and mode and class of each Category is of Character

The Summary using S3 Class show the categories that are X_itm, Y_itm,Buffer_m,Buffer_km of the dataset taken shows Minimum,Maxiimum,Mean,Median,1st,3rd quartile values

X_itm has MINIMUM VALUE:- 484912, MAXIMUM VALUE:- 731579, MEAN VALUE:- 608619, MEDIAN VALUE:- 594041.5, 1ST QUARTILE:- 544036, 3RD QUARTILE:- 701172.5

Y_itm has MINIMUM VALUE:- 548248, MAXIMUM VALUE:- 921904, MEAN VALUE:- 707627, MEDIAN VALUE:- 721766.5, 1ST QUARTILE:- 645791.2, 3RD QUARTILE:- 747042.5

Buffer_km has MINIMUM VALUE:- 3, MAXIMUM VALUE:- 5, MEAN VALUE:- 3.409091, MEDIAN VALUE:- 3, 1ST QUARTILE:- 3, 3RD QUARTILE:- 3

Buffer_m has MINIMUM VALUE:- 3000, MAXIMUM VALUE:- 5000, MEAN VALUE:- 3409.091, MEDIAN VALUE:- 3000, 1ST QUARTILE:- 3000, 3RD QUARTILE:- 3000

OBJECTID has MINIMUM VALUE:- 1, MAXIMUM VALUE:- 44, MEAN VALUE:- 22.5, MEDIAN VALUE:- 22.5, 1ST QUARTILE:- 11.75, 3RD QUARTILE:- 33.25