Contrôle 3: Analyse I

Cours de mathématiques spéciales (CMS)

9 avril 2018 Semestre de printemps ID: -999

écrire lisiblement s.v.p)	
Nom:	
Prénom:	•
Groupe:	

Question	Pts max.	Pts
1	6	
2	5	
3	7	
4	2	
Total	20	

Indications

- Durée de l'examen : 105 minutes.
- Posez votre carte d'étudiant sur la table.
- La réponse à chaque question doit être rédigée à l'encre sur la place réservée à cet effet à la suite de la question.
 - Si la place prévue ne suffit pas, vous pouvez demander des feuilles supplémentaires aux surveillants; chaque feuille supplémentaire doit porter nom, prénom, n° du contrôle, branche, groupe, ID et date. Elle ne peut être utilisée que pour une seule question.
- Les feuilles de brouillon ne sont pas à rendre : elles **ne seront pas** corrigées ; des feuilles de brouillon supplémentaires peuvent être demandées en cas de besoin auprès des surveillants.
- Les feuilles d'examen doivent être rendues agrafées.

Question 1 (à 6 points)

Points obtenus: (laisser vide)

Soit f la fonction définie par $f(x) = |x^3 - a^3| + 3x$, où a est un paramètre réel.

- a) Déterminer $a \in \mathbb{R}$ de sorte que le graphe de f admette un point anguleux qui soit un extremum.
- b) Ce point anguleux est-il un point d'inflexion du graphe de f?

 En déduire l'esquisse locale du graphe au voisinage de ce point pour a=-1.

Réponse à la question 1:

laisser la marge vide

Question 2 (à 5 points)

Points obtenus: (laisser vide)

On considère l'arc paramétré Γ défini par

$$\Gamma: \begin{cases} x(t) = \frac{t^2 + 1}{t} \\ y(t) = t \cdot e^{\frac{1}{t}} \end{cases} \quad t \in D_{\text{def}}.$$

Etudier les branches infinies de cet arc paramétré.

Réponse à la question 2:

laisser la marge vide

Question 3 (à 7 points)

Points obtenus: (laisser vide)

Soit Γ , l'arc paramétré défini par

$$\Gamma : \begin{cases} x(t) = 2 \cos(3t) \\ y(t) = \sqrt{3} \left[\sin(2t) - 2 \sin(t) \right], \end{cases} \quad t \in [-\pi, \pi].$$

Faire l'étude complète de l'arc paramétré $\ \Gamma$, puis le représenter dans un système d'axes orthonormé d'unités 4 carrés.

On ne demande pas de chercher d'éventuels points doubles de Γ .

Réponse à la question 3:

laisser la marge vide

ID: -999

ID: -999

Question 4 (à 2 points)

Points obtenus: (laisser vide)

Déterminer l'ensemble des primitives de la fonction $\ f$ définie par

$$f(x) = \frac{1}{\sqrt{e^{2x} + e^x}}.$$

Réponse à la question 4:

laisser la marge vide

Réponses

1. $a \in]-\infty, -1] \cup]1, +\infty[.$

Oui, le point anguleux est un point d'inflexion du graphe de $\ f$.

- 2. Lorsque $t \to \pm \infty$, Γ admet une asymptote oblique d'équation y = x + 1.
 - Lorsque $\,t \to 0^-, \,\, \Gamma\,$ admet donc une asymptote horizontale d'équation $\,y = 0\,.$
 - Lorsque $\,t \to 0^+,\,\,\,\Gamma\,\,$ admet une branche parabolique de direction verticale.
- 3. Tableau de variation

t	0		$\frac{\pi}{3}$		$\frac{2\pi}{3}$		π
$\dot{x}(t)$	0	_	0	+	0	_	0
x(t)	2	¥	-2	7	2	¥	-2
$\dot{y}(t)$	0	_		_	0	+	
y(t)	0	¥	$-\frac{3}{2}$	¥	$-\frac{9}{2}$	7	0

4.
$$\int f(x) dx = -2\sqrt{1 + e^{-x}} + C.$$