

Generalization of Deep Learning

Yuan YAO HKUST

Some Theories are limited but help:

- Approximation Theory and Harmonic Analysis: What functions are represented well by deep neural networks, without suffering the curse of dimensionality and better than shallow networks?
 - Sparse (local), hierarchical (multiscale), compositional functions avoid the curse dimensionality
 - Group (translation, rotational, scaling, deformation) invariances achieved as depth grows
- Generalization: How can deep learning generalize well without overfitting the noise?
 - Double descent curve with overparametrized models
 - Implicit regularization of SGD: Max-Margin classifier
 - "Benign overfitting"?
- Optimization: What is the landscape of the empirical risk and how to optimize it efficiently?
 - Wide networks may have simple landscape for GD/SGD algorithms ...

Empirical Risk vs. Population Risk

Consider the empirical risk minimization under i.i.d. (independent and identically distributed) samples

$$\hat{R}_n(\theta) = \hat{\mathbb{E}}_n \ell(y, f(x; \theta)) := \frac{1}{n} \sum_{i=1}^n \ell(y_i, f(x_i; \theta)) + \mathcal{R}_n(\theta)$$

■ The **population risk** with respect to unknown distribution

$$R(\theta) = \mathbb{E}_{(x,y)\sim P}\ell(y, f(x;\theta))$$

Optimization vs. Generalization

 Fundamental Theorem of Machine Learning (for 0-1 misclassification loss, called 'errors' below)

$$\underbrace{R(\theta)}_{\text{test/validation/generalization loss}} = \underbrace{\hat{R}_n(\theta)}_{\text{training loss}} + \underbrace{R(\theta) - \hat{R}_n(\theta)}_{\text{generalization gap}}$$

$$\sup_{\theta \in \Theta} |R(\theta) - \hat{R}_n(\theta)| \le Complexity(\Theta)$$

- e.g. Rademacher complexity
- ► How to make training loss/error small? Optimization issue
- How to make generalization gap small? Model Complexity issue

Uniform Convergence: Another View

▶ For $\theta^* \in \arg\min_{\theta \in \Theta} R(\theta)$ and $\widehat{\theta}_n \in \arg\min_{\theta \in \Theta} \hat{R}_n(\theta)$,

$$\underbrace{R(\widehat{\theta}_n) - R(\theta^*)}_{\text{excess risk}} = \underbrace{R(\widehat{\theta}_n) - \hat{R}_n(\widehat{\theta}_n)}_{\text{A}} + \dots \\ + \underbrace{(\hat{R}_n(\widehat{\theta}_n) - \hat{R}_n(\theta^*))}_{\leq 0} + \dots \\ + \underbrace{(\hat{R}_n(\theta^*) - R(\theta^*))}_{\text{P}}$$

To make both A and B small,

$$\sup_{\theta \in \Theta} |R(\theta) - \hat{R}_n(\theta)| \le Complexity(\Theta)$$

e.g. Rademacher complexity

Example: regression and square loss

ightharpoonup Given an estimate \hat{f} and a set of predictors X, we can predict Y using

$$\hat{Y} = \hat{f}(X),$$

Assume for a moment that both \hat{f} and X are fixed. In regression setting,

$$\mathbb{E}(Y - \hat{Y})^{2} = \mathbb{E}[f(X) + \epsilon - \hat{f}(X)]^{2}$$

$$= \underbrace{[f(X) - \hat{f}(X)]^{2}}_{\text{Reducible}} + \underbrace{Var(\epsilon)}_{\text{Irreducible}}, \qquad (2)$$

where $\mathbb{E}(Y-\hat{Y})^2$ represents the expected squared error between the predicted and actual value of Y, and $Var(\epsilon)$ represents the variance associated with the error term ϵ . An optimal estimate is to minimize the reducible error.

Bias-Variance Decomposition

- Let f(X) be the true function which we aim at estimating from a training data set \mathcal{D} .
- Let $\hat{f}(X; \mathcal{D})$ be the estimated function from the training data set \mathcal{D} .
- ightharpoonup Take the expectation with respect to \mathcal{D} ,

$$\mathbb{E}_{\mathcal{D}}\left[f(X) - \hat{f}(X; \mathcal{D})\right]^{2}$$

$$= \underbrace{\left[f(X) - \mathbb{E}_{\mathcal{D}}(\hat{f}(X; \mathcal{D}))\right]^{2}}_{Bias^{2}} + \underbrace{\mathbb{E}_{\mathcal{D}}\left[\left[\mathbb{E}_{\mathcal{D}}(\hat{f}(X; \mathcal{D})) - \hat{f}(X; \mathcal{D})\right]^{2}\right]}_{Variance}$$

Bias-Variance Tradeoff

Trevor Hastie
Robert Tibshirani
Jerome Friedman

The Elements of
Statistical Learning
Data Mining, Inference, and Prediction

Second Edition

Why big models in NN generalize well?

CIFAR 10

n=50,000 d=3,072 k=10

What happens when I turn off the regularizers?

<u>Model</u>	<u>parameters</u>	<u>p/n</u>	Train <u>Ioss</u>	Test <u>error</u>
CudaConvNet	145,578	2.9	0	23%
CudaConvNet (with regularization)	145,578	2.9	0.34	18%
MicroInception	1,649,402	33	0	14%
ResNet	2,401,440	48	0	13%

Chiyuan Zhang et al. 2016

The Bias-Variance Tradeoff?

Increasing # parameters

Figure: Experiments on MNIST. Left: [Belkin, Hsu, Ma, Mandal, 2018]. Right: [Spigler, Geiger, Ascoli, Sagun, Biroli, Wyart, 2018].

Similar phenomenon appeared in the literature [LeCun, Kanter, and Solla, 1991], [Krogh and Hertz, 1992], [Opper and Kinzel, 1995], [Neyshabur, Tomioka, Srebro, 2014], [Advani and Saxe, 2017].

"Double Descent"

Figure: A cartoon by [Belkin, Hsu, Ma, Mandal, 2018].

- ✓ Peak at the interpolation threshold.
- ✓ Monotone decreasing in the overparameterized regime.
- ✓ Global minimum when the number of parameters is infinity.

Complementary rather than Contradiction

U-shaped curve

Test error vs model complexity that tightly controls generalization.

Examples: ℓ_2 norm in linear model, "k" in k nearest-neighbors.

Double-descent

Test error vs number of parameters.

Examples: # parameters in NN.

In NN, # parameters \neq model complexity that tightly controls generalization.

[Bartlett, 1997], [Bartlett and Mendelson, 2002]

Thank you!

