Computing Basics for Bioinformatics in R

Yaoyu Wang

Overview

- What is R
- Basic IO and data type
- Data type manipulation
- Set operation

- Programs for statistical analysis
 - SAS, SPSS, STATA, ...
- Programming Language
 - Assembly, FORTRAN, COBOL->B, C, S -> C++, JAVA
 - S = statistical programming language
 developed by Bell Labs in the late 70s
- Evoluation of S
 - S-Plus
 - R: Free & open source implementation of S
 - We can use R for Free!!.

- slow / fast
- Interpreted language : R, BASIC
- Compiled language : C, FORTRAN
- easy
- Great help manual
- Many web resource..(https://stat.ethz.ch/mailman/listinfo/r-help)
- Extensible
- Cross-platform: can run anywhere
- lots of libraries
- Can execture C, Fortran through Dynamic Link Library
- CRAN & Bioconductor

Basic of R

- R
 - Basic programming
 - Using packages
- stats
- Good reference
- http://www.r-project.org/

- Programs for statistical analysis
 - SAS, SPSS, STATA, ...
- Programming Language
 - Assembly, FORTRAN, COBOL->B, C, S -> C++, JAVA
 - S = statistical programming language
 developed by Bell Labs in the late 70s
- Evoluation of S
 - S-Plus
 - R : Free & open source implementation of S
 - We can use R for Free!!

Starting R

- Scalar
- Vector
- Matrix
- List
- Dataframe
- Factor

Data type: Scalar

- A single variable of numeric, character, and logical type
 - e.g. a=10 a variable a with value 10

Data type: Vector

- Statistical data = a set of (random) variables
- It can uniformly contain numeric, character, and logical values

e.g.
$$a=c(1,2,3,4)$$
 or $a=c("a", "b", "c","d")$

Data type: Matrix

 A set of vectors with the same length and same scalar data type

```
Example: A 2x2 matrix
```

```
> mdat =matrix(c(52,2,77, 11), nrow = 2, ncol=2, byrow=TRUE)
```

> mdat		[,1]	[,2]
	[1,]	52	2
	[2.]	77	11

Data type: List

An object that contains a LIST of other objects

Set operation of vectors

- > xy=union(x,y)
- > xy_inter = intersect(x,y)
- > x_diff_y= setdiff(x,y)
- > x_in_y = is.element(x,y)
- $> x_{in}y = x[x \%in\% y]$

R Packages and Bioconductor

- There are many contributed packages that can be used to extend R basic function
- These libraries are created and maintained by the authors.
- BioConductor is an open source and open development software project for the analysis and comprehension of genomic data.
- http://www.bioconductor.org
- Download > Software > Installation Instructions

source("http://bioconductor.org/biocLite.R")
biocLite()

Basic Visualization for R

- Boxplot
- Scatterplots
- Histogram
- Heatmap

source("http://bioconductor.org/biocLite.R")
biocLite("gplots")

(want to see what's in gplots? Do > ls("package:gplots")

Generate Boxplot

```
boxplot(join.dat)
boxplot(join.dat, las=2)
boxplot(join.dat, las=2, cex.axis=0.8)
boxplot(join.dat, las=2, cex.axis=0.7, col=c("red, "blue""))
```


Scatter plot with connecting lines

```
plot(join.dat[,1], join.dat[,4], xlab="I am X-lab", ylab="I am Y-lab")
points(join.dat[,3], join.dat[,4])
points(join.dat[,3], join.dat[,4], col="red", pch=16)
lines(join.dat[,3], join.dat[,4], col="red", pch=16)
lines(join.dat[,3], join.dat[,4], col="blue", pch=16, lty="dashed")
```


A histogram of all the probes intensity

join.dat=as.matrix(join.dat)
hist(join.dat)
hist(join.dat, col=colorpanel(10,"grey", "black"))

Multiple Plots Together

```
par(mfrow=c(2,2))
plot(join.dat[,1], join.dat[,4], xlab="I am X-lab", ylab="I am Y-lab")
boxplot(join.dat, las=2, cex.axis=0.7, col=c("red", "blue"))
hist(join.dat, col=colorpanel(10,"grey", "black"))
```


Histogram of join.dat

Heatmap

```
heatmap(join.dat)
heatmap(join.dat, col=colorpanel(100, "blue", "white", "yellow"))
heatmap(join.dat, col=colorpanel(100, "blue", "white", "yellow"),
margin=c(10,10))
```

heatmap(as.matrix(in.data[1:50,]), col=colorpanel(100, "blue", "white", "yellow"),

margin=c(10,10)

Hierachical Cluster Tree

dist(join.dat)
t(join.dat)
tree=dist(t(join.dat))
hclust(tree)

Cluster Dendrogram

tree hclust (*, "complete")

Exercise

Let's generate boxplots and figures for the expression patterns of all the **cell cycle** genes located on **chr17**

The probe/Gene name file is at:

/apps/ComputingBasics/cellcycle.chr17.txt

Just to get you start

```
# set target file and read in gexp.file="C:\\Users\\Yaoyu\\Desktop\\ComputingBasics\\example.rma.cll.txt" gexp=read.table(gexp.file, header=TRUE, sep="\t")
```

set probe file and read in probe.file="C:\\Users\\Yaoyu\\Desktop\\ComputingBasics\\cellcycle.chr17.txt" probe=read.table(probe.file, header=TRUE, sep="\t")

