D206 Performance Assessment

Part I: Research Question

Data File being used:

Medical_raw_data.csv

Describe **one** question or decision that you will address using the data set you chose. The summarized question or decision must be relevant to a realistic organizational need or situation.

Which key variables predict which patients are at high risk of readmission?

B. Describe the variables in the data set and indicate the specific type of data being described. Use examples from the data set that support your claims.

Variable types:

library(readr)

df_raw <- read.csv('C:/Users/Hydraconix/Desktop/DATA/medical_raw_data.csv')
str(df_raw)</pre>

Output:

```
'data.frame': 10000 obs. of 53 variables:
           : int 12345678910...
$ CaseOrder
               :int 12345678910...
$ Customer_id
               : chr "C412403" "Z919181" "F995323" "A879973" ...
              $ Interaction
bc1037f1734c" "a2057123-abf5-4a2c-abad-8ffe33512562" "1dec528d-eb34-4079-adce-0d7a40e82205"
$ UID
            : chr "3a83ddb66e2ae73798bdf1d705dc0932" "176354c5eef714957d486009feabf195"
"e19a0fa00aeda885b8a436757e889bc9" "cd17d7b6d152cb6f23957346d11c3f07" ...
$ City
            : chr "Eva" "Marianna" "Sioux Falls" "New Richland" ...
             : chr "AL" "FL" "SD" "MN" ...
$ State
$ County
              : chr "Morgan" "Jackson" "Minnehaha" "Waseca" ...
            : int 35621 32446 57110 56072 23181 74423 44086 22641 32404 56362 ...
$ Zip
$ Lat
            : num 34.3 30.8 43.5 43.9 37.6 ...
$ Lng
            : num -86.7 -85.2 -96.6 -93.5 -76.9 ...
               : int 2951 11303 17125 2162 5287 981 2558 479 40029 5840 ...
$ Population
            : chr "Suburban" "Urban" "Suburban" "Suburban" ...
$ Area
               : chr. "America/Chicago" "America/Chicago" "America/Chicago" "America/Chicago" ...
$ Timezone
$ Job
            : chr "Psychologist, sport and exercise" "Community development worker" "Chief
Executive Officer" "Early years teacher" ...
              : int 1330 NA NA 07 NA 2 ...
$ Children
            : int 53 51 53 78 22 76 50 40 48 78 ...
$ Age
$ Education
               : chr "Some College, Less than 1 Year" "Some College, 1 or More Years, No Degree"
"Some College, 1 or More Years, No Degree" "GED or Alternative Credential" ...
$ Employment : chr "Full Time" "Full Time" "Retired" "Retired" ...
              : num 86576 46806 14370 39741 1210 ...
$ Income
$ Marital
              : chr "Divorced" "Married" "Widowed" "Married" ...
$ Gender
              : chr "Male" "Female" "Female" "Male" ...
               : chr "No" "No" "No" "No" ...
$ ReAdmis
```

```
$ Doc_visits
               :int 6444566767...
$ Full_meals_eaten : int 0211000231...
               :int 0100200002...
$ VitD_supp
               : chr NA "No" "No" "No" ...
$ Soft_drink
$ Initial_admin : chr "Emergency Admission" "Emergency Admission" "Elective Admission" "Elective
Admission" ...
$ HighBlood
               : chr "Yes" "Yes" "Yes" "No" ...
             : chr "No" "No" "No" "Yes" ...
$ Stroke
$ Complication_risk : chr "Medium" "High" "Medium" "Medium" ...
$ Overweight : int 0 1 1 0 0 1 1 1 1 1 ...
             : chr "Yes" "No" "No" "Yes" ...
$ Arthritis
               : chr "Yes" "No" "Yes" "No" ...
$ Diabetes
$ Hyperlipidemia : chr "No" "No" "No" "No" ...
$ BackPain
               : chr "Yes" "No" "No" "No" ...
$ Anxiety
              : int 1 NA NA NA 0 0 1 0 NA 0 ...
$ Allergic_rhinitis : chr "Yes" "No" "No" "No" ...
$ Reflux_esophagitis: chr "No" "Yes" "No" "Yes" ...
               : chr "Yes" "No" "No" "Yes" ...
$ Asthma
              : chr "Blood Work" "Intravenous" "Blood Work" "Blood Work" ...
$ Services
$ Initial_days : num 10.59 15.13 4.77 1.71 1.25 ...
$ TotalCharge : num 3191 4215 2178 2465 1886 ...
$ Additional_charges: num 17939 17613 17505 12993 3717 ...
$ Item1
             : int 3323244135...
$ Item2
             : int 3445153235...
              : int 2345343225...
$ Item3
$ Item4
              : int 2443342533...
$ Item5
              :int 4434533434...
$ Item6
              : int 3445354232...
```

\$ Item7 : int 3 3 3 5 4 4 5 4 4 3 ... \$ Item8 : int 4 3 3 5 3 6 5 2 2 2 ...

\$ VitD_levels : num 17.8 19 17.4 17.4 16.9 ...

Variable Name:	Data Type:	Description:
Х	Integer	Index
CaseOrder:	Integer	Index ,a placeholder variable to preserve the original order of the raw data file
Customer_id	Character string	Unique patient ID
Interaction	Character string	Related to patient transactions, procedures and admissions
UID	Character string	Unique IDs related to patient transactions, procedures, and admissions
City	Character string	Patient's city of residence as listed on the billing statement
State	Character string	Patient's state of residence as listed on the billing statement
County	Character string	Patient's county of residence as listed on the billing statement
Zip	Integer	Patient's zip code of residence as listed on the billing statement
Lat	Continuous numeric	GPS coordinates indicating latitude of patient's residence as listed on the billing statement
Lng	Continuous numeric	GPS coordinates indicating longitude of patient's residence as listed on the billing statement
Population	Integer	Population within a mile radius of patient- based on census data
Area	Nominal categorical character string	Area type- based on census data
Timezone	Nominal categorical character string	Time zone of patient's residence as provided by patient
Job	Nominal categorical character string	Patient's (or primary insurance holder's) job as provided by patient
Children	Integer	Number of children in patient's household as provided by patient
Age	Integer	Patient's age as provided by patient

Education	Nominal categorical character string	Patient's highest earned degree as provided by patient
Employment	Ordinal categorical character string	Indicating patient's employment status as provided by patient
Income	Numeric	Annual income of patient (or primary insurance holder) as provided by patient
Marital	Nominal categorical character string	Patient's (or primary insurance holder's) marital status as provided by patient
Gender	Binary categorical character string	Whether or not patient was readmitted within a month of release [Yes, No] *target variable
ReAdmis	Binary categorical character string	Whether or not patient was readmitted within a month of release [Yes, No] *target variable
VitD_levels	Continuous numeric	Indicating patient's vitamin D levels as measured in ng/mL
Doc_visits	Integer	Number of times the primary physician visited the patient during the initial hospitalization
Full_meals_eaten	Integer	Number of full meals eaten (partial meals count as 0) VitD_supp: integer indicating number of times that vitamin D supplements were administered to patient
Soft_drink	Binary categorical character string	Whether or not patient regularly drinks three or more sodas in a day [Yes, No]
Initial_admin	Nominal categorical character string	The means by which the patient was initially admitted into the hospital
HighBlood	Character string	Whether or not the patient has high blood pressure [Yes, No]
Stroke	Binary categorical character string	Whether or not the patient has had a stroke [Yes, No]
Complication_risk	Ordinal categorical character string	Level of complication risk [High, Medium, Low]
Overweight	Binary categorical character string	Whether (1) or not (0) the patient is overweight, as determined by age, gender, and height

Arthritis	Binary categorical character string	Whether or not the patient has arthritis [Yes, No]
Diabetes	Binary categorical character string	Whether or not the patient has diabetes [Yes, No]
Hyperlipidemia	Binary categorical character string	Whether or not the patient has hyperlipidemia [Yes, No]
BackPain	Binary categorical character string	Whether or not the patient has chronic backpain [Yes, No]
Anxiety	Binary categorical character string	Whether (1) or not (0) the patient has an anxiety disorder
Allergic_rhinitis	Binary categorical character string	Whether or not the patient has allergic rhinitis [Yes, No]
Reflux_esophagitis	Binary categorical character string	Whether or not the patient has reflux esophagitis [Yes, No]
Asthma	Binary categorical character string	Whether or not the patient has asthma [Yes, No]
Services	Nominal categorical character string	The primary service the patient received while hospitalized
	Total # of data types identified: 8	3

Part II: Data - Cleaning Plan

The approach for assessing the quality of the data will focus on the following data preparation tasks:

- Changing misleading values
- Adding an index field
- Reexpressing categorical data as numeric data
- Standardizing the numeric fields
- Identifying outliers

The raw data provided does not always come in the proper format. There are also variables within the raw data set that do not provide accurate representation of the data model. It is necessary to change the misleading values before I start the exploratory data analysis. Next would be to add my own index field. "Adding an index field serves two purposes: (j) it acts as an ID field for data sets without such a field and (ii) it tracks the sort order of the records in the database. In data science, we often repartition and re-sort the data; it is therefore helpful to have an index field, in order to recover the original sort order when desired." (Chantal D. Larose, Daniel T. Larose, 2019) The current indexes in the raw data set are in currently in the data; I want the index to act as an ID field instead.

The next data preparation task would be to change the expression of categorical data as numeric. "To provide this information to our algorithms, we transform the data values into numeric values, where it is clear that one value is larger than another. (Chantal D. Larose, Daniel T. Larose, 2019) "Certain algorithms perform better when the numeric fields are standardized so that the field mean equals 0 and the field standard deviation equals 1. Positive z-values may be interpreted as representing the number of standard deviations above the mean the data value lies, while negative z-value represent the number of standard deviations below the mean. Some analysts standardize all their numeric fields as a matter of course." (Chantal D. Larose, Daniel T. Larose, 2019) According to Chantal D. Larose and Daniel T. Larose in Data Science Using Python and R(2019), "Once the numeric fields are standardized, one may use the z-values to identify outliers, which are record with extreme value along a particular dimension or dimensions. The data scientist should consult with the client regarding what he or she would like to do with the outliers. Outliers should not be automatically removed! Nor should they be automatically changed."

For the data cleaning process, I will be using R, a software for statistical computing, to implement my coding solutions, manipulating the data, and creating visual representations for the performance assessment. "In recent years, progress in statistical learning has been marked by the increasing availability of powerful and relatively user-friendly software, such as the popular and freely available R system." (James, Witten, Hastie, Tibshirani, p. 6)

R lets me use packages that are built in the software to clean data and identify outliers. This is what makes this software a great tool for statistical analysis. The built-in packages that I will be using in the data cleaning process will be readr, caret, dplyr, ggplot2, mice, and FactoMineR.

"Readr prints out the column specification that gives the name and type of each column." (Wickam, Grolemund, 2017) "Caret is a set of functions that attempt to streamline the process

of creating predictive models." (Cran.project.org, paras. 1) I will be using Caret for encoding dummy variables. The dyplr functions will allow me to solve most of my data manipulation encounters. The mice package in R will help me input missing values. Lastly, I will be using the FactomineR for my exploratory data analysis.

Data cleaning Outline:

- · The removal of irrelevant, and(or) misleading variables from the analysis
 - o Variables:'X', 'Customer_id', 'Interaction_id', 'Job', 'Income', 'Marital'
- I am removing the job and the marital variables in the dataset due to possible inconsistencies of this data that can lead to inaccurate conclusions.
- Next will be renaming misleading variables. There was data that was collected on the income
 that was taken upon registration, this data will be renamed as total income. The data type will
 be changed from categoric data to numeric data as well.
- Reset index
- Changing character values to numeric values or separating values into separate variables using dummy variables.
 - https://stackoverflow.com/questions/54602192/make-only-some-features-dummyvars
- Changing NULL values from the raw data to be reflected as '0' observation.
- Using the MICE imputation for all of the other NULL Values
 https://www.rdocumentation.org/packages/mice/versions/2.25/topics/mice
- Identifying Outliers
 - o Summaries of univariate stats, searching for any flags
 - Visualization of potential outliers using graphs
 - Running hypothesis test on potential outliers (Using the Grubbs tests)
 https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm
 - Standardizing variables if necessary
- PCA
 - Identifying which variables I will be using in my analysis http://factominer.free.fr/factomethods/principal-components-analysis.html
 - o Explaining how the organization can benefit from the results of the PCA

Note: The data cleaning process will not be deleting or altering any data. Only if the data has been verified to be a discrepancy.

Data Cleaning Process:

head(df_raw)

Output:

X CaseOrder Customer_id Interaction UID
1 1 C412403 8cd49b13-f45a-4b47-a2bd-173ffa932c2f 3a83ddb66e2ae73798bdf1d705dc0932
2 2 Z919181 d2450b70-0337-4406-bdbb-bc1037f1734c 176354c5eef714957d486009feabf195
3 3 F995323 a2057123-abf5-4a2c-abad-8ffe33512562 e19a0fa00aeda885b8a436757e889bc9
4 4 A879973 1dec528d-eb34-4079-adce-0d7a40e82205 cd17d7b6d152cb6f23957346d11c3f07
5 5 C544523 5885f56b-d6da-43a3-8760-83583af94266 d2f0425877b10ed6bb381f3e2579424a
6 6 S543885 e3b0a319-9e2e-4a23-8752-2fdc736c30f4 03e447146d4a32e1aaf75727c3d1230c
City State County Zip Lat Lng Population Area Timezone
1 Eva AL Morgan 35621 34.34960 -86.72508 2951 Suburban America/Chicago
2 Marianna FL Jackson 32446 30.84513 -85.22907 11303 Urban America/Chicago
3 Sioux Falls SD Minnehaha 57110 43.54321 -96.63772 17125 Suburban America/Chicago
4 New Richland MN Waseca 56072 43.89744 -93.51479 2162 Suburban America/Chicago
5 West Point VA King William 23181 37.59894 -76.88958 5287 Rural America/New_York
6 Braggs OK Muskogee 74423 35.67302 -95.19180 981 Urban America/Chicago
Job Children Age Education
1 Psychologist, sport and exercise 1 53 Some College, <u>Less</u> than 1 Year
1 Psychologist, sport and exercise 1 53 Some College, <u>Less</u> than 1 Year 2 Community development worker 3 51 Some College, 1 or More Years, No Degree
Community development worker
Community development worker
2 Community development worker 3 51 Some College, 1 or More Years, No Degree 3 Chief Executive Officer 3 53 Some College, 1 or More Years, No Degree 4 Early years teacher 0 78 GED or Alternative Credential
2 Community development worker 3 51 Some College, 1 or More Years, No Degree 3 Chief Executive Officer 3 53 Some College, 1 or More Years, No Degree 4 Early years teacher 0 78 GED or Alternative Credential 5 Health promotion specialist NA 22 Regular High School Diploma
2 Community development worker 3 51 Some College, 1 or More Years, No Degree 3 Chief Executive Officer 3 53 Some College, 1 or More Years, No Degree 4 Early years teacher 0 78 GED or Alternative Credential 5 Health promotion specialist NA 22 Regular High School Diploma 6 Corporate treasurer NA 76 Regular High School Diploma
2 Community development worker 3 51 Some College, 1 or More Years, No Degree 3 Chief Executive Officer 3 53 Some College, 1 or More Years, No Degree 4 Early years teacher 0 78 GED or Alternative Credential 5 Health promotion specialist NA 22 Regular High School Diploma 6 Corporate treasurer NA 76 Regular High School Diploma Employment Income Marital Gender ReAdmis VitD_levels Doc_visits Full_meals_eaten
2 Community development worker 3 51 Some College, 1 or More Years, No Degree 3 Chief Executive Officer 3 53 Some College, 1 or More Years, No Degree 4 Early years teacher 0 78 GED or Alternative Credential 5 Health promotion specialist NA 22 Regular High School Diploma 6 Corporate treasurer NA 76 Regular High School Diploma Employment Income Marital Gender ReAdmis VitD_levels Doc_visits Full_meals_eaten 1 Full Time 86575.93 Divorced Male No 17.80233 6 0

5	Full Tin	ne 1209	9.56	Wi	dowe	d Fema	ale	No	16.87	7052		5		0		
6	Retire	d NA	\ Neve	er Ma	arried	Male	N	o 1	9.956	14	6			0		
٧	itD_sup	op Soft_	drink		Initial _.	_admir	n Hig	hBlo	od Stro	oke C	omp	licati	ion_	risk	Overwei	ght
1	0	<na></na>	Eme	rgen	cy Adr	missio	n	Yes	No		Med	ium		0		
2	1	No	Emerg	gency	y Adm	ission	Y	es	No	ı	High		1			
3	0	No	Electi	ive A	dmissi	ion	Yes	No		Med	ium		1			
4	0	No	Electi	ive A	dmissi	ion	No	Yes		Med	ium		0			
5	2	Yes	Electi	ive A	dmissi	ion	No	No		Lo	N	0				
6	0	No C)bserv	ation	n Adm	ission	N	lo.	No	N	lediu	ım	1	1		
Α	rthritis	Diabete	es Hyp	erlip	idemi	a Back	Pain	Anxi	ety All	ergic	_rhir	itis F	Reflu	ıx_e	sophagiti	s
1	Yes	Yes	ı	No	Yes	1		Yes		N	0					
2	No	No		No	No	NA		N	0	Υ	es					
3	No	Yes		No	No	NA		N	0	Į	No					
4	Yes	No		No	No	NA		N	0	γ	es					
5	No	No	Υ	'es	No	0		Yes		N	0					
6	Yes	Yes	ı	No	Yes	0		Yes		N	0					
A	sthma	Servic	es Init	ial_d	lays To	otalCha	arge .	Addi	tional_	_char	ges l	tem1	l Ite	m2 I	tem3 Ite	m4 Ite
1	Yes B	lood Wo	ork 1	0.58	5770	3191	.049		17939	9.403	3	3	2	2	4	
2	No In	traveno	us 1	5.12	9562	4214	.905		17612	.998	3	4	3	4	4	
3	No B	lood W	ork 4	4.772	2177	2177.	587		17505	.192	2	4	4	4	3	
4	Yes B	lood Wo	ork :	1.714	1879	2465.	119		12993	.437	3	5	5	3	4	
5	No	CT Scan	1.2	25480	07 18	885.65	5	37	716.52	6 2	1	3	3	5		
6	No B	lood W	ork !	5.957	7250	2774.	090		12742	.590	4	5	4	4	3	
It	em6 Ite	em7 Iter	m8													
1	3 3	4														
2	4 3															
3	4 3															
4	5 5	5														
5	3 4	3														

6 5 4 6

The summary of this step is to view the raw data. I will then start my analysis once going over all of the variables and referring back to the research question.

Removing irrelevant columns from data_raw

library(dplyr)

Output:

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

df <- df_raw[,c(6:53)]

(Removed X, Caseorder, Interaction, UID)

The summary of outcome for this step is that I have removed the indexes to create a new index that acts as an ID field without the field in the data set. The rest of the variables were not relevant to my exploratory analysis. I do not see any connection with variables job and marital to the research question. Therefore, they will be removed from the analysis.

df <- select(df, c(-Job, -Marital))

(Removed Job and Marital)

The outcome of this step is to remove the variables that will reduce the negative impacts to the model.

Renaming misleading variable names in df

```
names(df)[names(df) == 'Income'] <- 'Total_income'
names(df)[names(df) == 'Item1'] <- 'Survey_TimelyAdmin'
names(df)[names(df) == 'Item2'] <- 'Survey_TimelyTreatment'
names(df)[names(df) == 'Item3'] <- 'Survey_TimelyVisits'
names(df)[names(df) == 'Item4'] <- 'Survey_Reliability'
names(df)[names(df) == 'Item5'] <- 'Survey_Options'
names(df)[names(df) == 'Item6'] <- 'Survey_HoursTreatment'
names(df)[names(df) == 'Item7'] <- 'Survey_CourteousStaff'
names(df)[names(df) == 'Item8'] <- 'Survey_ActiveListening'
head(df)
```

	City State	County Zi) Lat	Lng Population	Area	Timezone
1	Eva AL	Morgan 35	621 34.34	1960 -86.72508	2951 Sub	urban America/Chicago
2	Marianna FL	. Jackson	32446 30	.84513 -85.22907	11303	Urban America/Chicago
3 Si	oux Falls SD	Minnehah	a 57110 4	13.54321 -96.6377	72 1712	5 Suburban America/Chicago
4 Ne	ew Richland	MN Was	eca 56072	2 43.89744 -93.51	479 21	62 Suburban America/Chicago
5 V	Vest Point V	A King Willia	m 23181	37.59894 -76.889	58 528	7 Rural America/New_York
6	Braggs OK	Muskogee	74423 3	5.67302 -95.19180	981	Urban America/Chicago
Chi	ildren Age		Educati	on Employment T	otal_Incon	ne Gender
1	1 53 S	ome College	, <u>Less</u> tha	n 1 Year Full Time	e 8657	75.93 Male
2	3 51 Some (College, 1 or	More Yea	ars, No Degree Fu	ıll Time	46805.99 Female
3	3 53 Some (College, 1 or	More Yea	ars, No Degree R	Retired	14370.14 Female
4	0 78	GED or Alter	native Cre	edential Retired	39741	49 Male
5	NA 22	Regular Hi	gh School	Diploma Full Tim	ne 120	09.56 Female
6	NA 76	Regular Hi	gh School	Diploma Retire	d N	NA Male
Re	Admis VitD_le	vels Doc_vis	its Full_m	eals_eaten VitD_	supp Soft_	drink Initial_admin
1	No 17.8023	3 6	0	0 <na> Em</na>	ergency Ac	dmission

		40.00			-			-	
2	No	18.99464	4		2	1	No	Emergen	cy Admission
3	No	17.41589	4		1	0	No	Elective	Admission
4	No	17.42008	4		1	0	No	Elective	Admission
5	No	16.87052	5		0	2	Yes	Elective	Admission
6	No	19.95614	6		0	0	No	Observati	on Admission
Н	ighBloo	od Stroke C	Complica	tion	_risk	Overw	eight A	rthritis Di	abetes Hyperlipidemia Ba
1	Yes	No	Mediun	n	0	Yes	Yes	No	Yes
2	Yes	No	High		1	No	No	No	No
3	Yes	No	Mediun	n	1	No	Yes	No	<u>No</u>
4	No	Yes	Mediun	n	0	Yes	No	No	No.
5	No	No	Low		0	No	No	Yes	No
6	No	No	Mediun	n	1	Yes	Yes	No	Yes
А	nxiety /	Allergic_rh	initis Ref	lux_	esop	hagitis	Asthm	a Servic	es Initial_days TotalCharg
1	1	Yes	1	No	Yes	Blood \	Work	10.58577	0 3191.049
2	NA	No		Yes	No	Intrav	enous	15.1295	52 4214.905
3	NA	No		No	No	Blood	Work	4.77217	77 2177.587
4	NA	No		Yes	•	Blood			
5	0	Yes	1	No	No	CT Sc		.254807	1885.655
6	0	Yes	1	No	0000	Blood		5.957250	2774.090
					0000				atment Survey_TimelyVisi
1		939.403	3			3		2	,
2		612.998	3			4		3	
3		505.192	2			4		4	
4		993.437	3			5		5	
5		16.526	2			1		3	
6		742.590	4			5		4	o
	irvey_l			ptio		urvey_		reatment	Survey_CourteousStaff
1		2	4		3		3		
2		4	4		4		3		

3	4	3	4	3
4	3	4	5	5
-		-	•	
5	3	5	3	4
6	4	3	5	4
0	4		-	7
Survey	_ActiveL	istening		

- L ·
- 2 3
- 3
- 4
- 5 3
- 6 6

The outcome of this step is to give the variables the correct names to distinguish them during the PCA. This will help improve the accuracy of the model.

Set index

Number_of_rows <- dim(df)[1] row.names(df) <- c(1:num_rows)

head(df)

City State	County Zip	Lat	Lng Population	Area	Timezone
1 Eva AL	Morgan 356	521 34.349	960 -86.72508	2951 Sub	urban America/Chicago
2 Marianna I	FL Jackson 3	2446 30.8	34513 -85.22907	11303	Urban America/Chicago
3 Sioux Falls S	D Minnehaha	57110 43	3.54321 -96.6377	2 1712	5 Suburban America/Chicago
4 New Richland	MN Wase	ca 56072	43.89744 -93.514	179 216	52 Suburban America/Chicag
5 West Point	VA King Williar	n 23181 3	7.59894 -76.8895	58 528	7 Rural America/New_York
6 Braggs Of	Muskogee	74423 35.	67302 -95.19180	981	Urban America/Chicago
Children Age		Educatio	n Employment to	tal_Incom	e Gender
1 1 53	Some College,	Less than	1 Year Full Time	8657	75.93 Male

2	3 5	1 Some Co	llege, 1 or N	/lore Y	ears, N	lo Degr	ee Full Ti	me 46805.99 Female	
3	3 5	3 Some Co	llege, 1 or N	/lore Y	ears, N	lo Degr	ee Retir	ed 14370.14 Female	
4	0 7	8 GE	D or Alterna	ative C	redent	tial Re	tired	39741.49 Male	
5	NA	22 I	Regular High	h Scho	ol Dipl	oma Fı	ıll Time	1209.56 Female	
6	NA	76 I	Regular High	h Scho	ol Dipl	oma F	Retired	NA Male	
Re	Admi	s VitD_leve	ls Doc_visit	s Full_	meals_	_eaten '	VitD_supp	Soft_drink Initial_admin	
1	No	17.80233	6	0	0	<na></na>	Emerge	ncy Admission	
2	No	18.99464	4	2	1	No	Emergen	cy Admission	
3	No	17.41589	4	1	0	No	Elective	Admission	
4	No	17.42008	4	1	0	No	Elective	Admission	
5	No	16.87052	5	0	2	Yes	Elective	Admission	
6	No	19.95614	6	0	0	No (Observatio	on Admission	
Hi	ghBlo	od Stroke C	Complication	n_risk	Overw	eight A	rthritis Dia	abetes Hyperlipidemia BackPa	iin
1	Yes	No	Medium	0	Yes	Yes	No	Yes	
2	Yes	No	High	1	No	No	No	No	
3	Yes	No	Medium	1	No	Yes	No	No	
4	No	Yes	Medium	0	Yes	No	No	No	
5	No	No	Low	0	No	No	Yes	No	
6	No	No	Medium	1	Yes	Yes	No	Yes	
Ar	nxiety.	Allergic_rh	initis Reflux	_esop	hagitis	Asthm	a Service	es Initial_days TotalCharge	
1	1	Yes	No	Yes	Blood \	Work	10.58577	3191.049	
2	NA	No	Yes	No.	Intrav	enous	15.12956	52 4214.905	
3	NA	No	No	No.	Blood	Work	4.77217	7 2177.587	
4	NA	No	Yes	Yes	Blood	Work	1.71487	9 2465.119	
5	0	Yes	No	No	CT Sc	an 1.	254807	1885.655	
6	0	Yes	No	No	Blood \	Work	5.957250	2774.090	
Ac	Additional_charges Survey_TimelyAdmin Survey_TimelyTreatment Survey_TimelyVisits								
1	17	939.403	3		3		2		
	17								

3	17505.192	2	4	4		
		_	_			
4	12993.437	3	5	5		
5	3716.526	2	1	2		
,	3/10.320	2	1	3		
6	12742.590	4	5	4		
						-
Sur	vey_Reliability Su	rvey_Option:	s Survey_Ho	ursTreatmen	t Survey_Courteo	usStafi
	2 4					

1	2	4	3	3
2	4	4	4	3
3	4	3	4	3
4	3	4	5	5
5	3	5	3	4

5

Survey_ActiveListening

1	4
2	3
3	3
4	5
5	3
6	6

This outcome of this step is to make an index that acts as an ID field that is not in the dataset. This will help repartitioning as well as re-sorting the data when I need to.

Changing expressions of categorical data as numeric data

State

```
x <- df[order(df$State),"State"]
unique(x)</pre>
```

[1] "AK" "AL" "AR" "AZ" "CA" "CO" "CT" "DC" "DE" "FL" "GA" "HI" "IA" "ID" "IL" "IN" "KS" "KY"

```
[19] "LA" "MA" "MD" "ME" "MI" "MN" "MO" "MS" "MT" "NC" "ND" "NE" "NH" "NJ" "NM" "NV" "NY"
"OH"
```

[37] "OK" "OR" "PA" "PR" "RI" "SC" "SD" "TN" "TX" "UT" "VA" "VT" "WA" "WI" "WV" "WY"

library(plyr)

Output:

You have loaded plyr after dplyr - this is likely to cause problems.

If you need functions from both plyr and dplyr, please load plyr first, then dplyr:

library(plyr); library(dplyr)

Attaching package: 'plyr'

new_data <- df\$State

"NH" = 30.

The following objects are masked from 'package:dplyr':

arrange, count, desc, failwith, id, mutate, rename, summarise, summarize

```
df_state_dict <- c(

"AL" = 1, "AK" = 2, "AZ" = 3, "AR" = 4, "CA" = 5, "CO" = 6, "CT" = 7, "DE" = 8, "DC" = 9, "FL" = 10,

"GA" = 11, "HI" = 12, "ID" = 13, "IL" = 14, "IN" = 15, "IA" = 16, "KS" = 17, "KY" = 18, "LA" = 19, "ME" = 20,

"MD" = 21, "MA" = 22, "MI" = 23, "MN" = 24, "MS" = 25, "MO" = 26, "MT" = 27, "NE" = 28, "NV" = 29,
```

"NJ" = 31, "NM" = 32, "NY" = 33, "NC" = 34, "ND" = 35, "OH" = 36, "OK" = 37, "OR" = 38, "PA" = 39, "PR" = 40,

"RI" = 41, "SC" = 42, "SD" = 43, "TN" = 44, "TX" = 45, "UT" = 46, "VT" = 47, "VA" = 48, "WA" = 49, "WV" = 50,

"WI" = 51, "WY" = 52)

Df_state_val <- revalue(x= new_data, replace = df_state_dict)

df\$State <- as.numeric(df_state_val)

Area

unique(df\$Area)

```
[1] "Suburban" "Urban" "Rural"
```

```
new_data <- df$Area

df_area_dict <- c(

"Rural" = 1,

"Suburban" = 2,

"Urban" = 3)

Df_area_val <- revalue(x= new_data, replace = df_area_dict)

df$Area <- as.numeric(df_area_val)
```

Timezone

```
unique(df$Timezone)
```

```
new_data <- df$Timezone

df_timezone_dict <- c(

"America/Puerto_Rico" = -2,

"America/Detroit" = -3,

"America/Indiana/Indianapolis" = -3,

"America/Indiana/Marengo" = -3,

"America/Indiana/Vincennes" = -3,

"America/Indiana/Vevay" = -3,

"America/Indiana/Winamac" = -3,

"America/Kentucky/Louisville" = -3,

"America/New_York" = -3,

"America/Toronto" = -3,

"America/Chicago" = -4,
```

```
"America/Indiana/Knox" = -4,
 "America/Indiana/Tell_City" = -4,
 "America/Menominee" = -4,
 "America/North_Dakota/Beulah" = -4,
 "America/North_Dakota/New_Salem" = -4,
 "America/Boise" = -5,
 "America/Denver" = -5,
 "America/Phoenix" = -5,
 "America/Los_Angeles" = -6,
 "America/Anchorage" = -7,
 "America/Nome" = -7,
 "America/Sitka" = -7,
 "America/Yakutat" = -7,
 "America/Adak" = -8,
 "Pacific/Honolulu" = -8)
Df_timezone_val <- revalue(x= new_data, replace = df_timezone_dict)
df$Timezone <- as.numeric(df_timezone_val)
```

Education

unique(df\$Education)

[1] "Some College, <u>Less</u> than 1 Year"	"Some College, 1 or More Years, No Degree"
[3] "GED or Alternative Credential"	"Regular High School Diploma"
[5] "Bachelor's Degree"	"Master's Degree"
[7] "Nursery School to 8th Grade"	"9th Grade to 12th Grade, No Diploma"
[9] "Doctorate Degree"	"Associate's Degree"
[11] "Professional School Degree"	"No Schooling Completed"

```
New_data <- df$Education
Df_education_dict <- c(
 "No Schooling Completed" = 0,
 "Nursery School to 8th Grade" = 8,
 "9th Grade to 12th Grade, No Diploma" = 12,
 "GED or Alternative Credential" = 12,
 "Regular High School Diploma" = 12,
 "Some College, Less than 1 Year" = 13,
 "Some College, 1 or More Years, No Degree" = 14,
 "Associate's Degree" = 15,
 "Bachelor's Degree" = 16,
 "Master's Degree" = 18,
 "Professional School Degree" = 20,
 "Doctorate Degree" = 24
Df_education_val <- revalue(x= new_data, replace = df_education_dict)
df$Education <- as.numeric(df_education_val)
Readmission
unique(df$ReAdmis)
[1] "No" "Yes"
New_data <- df$ReAdmis
bi_dict <- c(
 "No" = 0,
 "Yes" = 1)
bi_val <- revalue(x= new_data, replace = bi_dict)
df$ReAdmis <- as.numeric(bi_val)
```

Soft Drink

```
unique(df$Soft_drink)
```

[1] NA "No" "Yes"

```
New_data <- df$Soft_drink
bi_val <- revalue(x= new_data, replace = bi_dict)
df$Soft_drink <- as.numeric(bi_val)
```

High blood pressure

unique(df\$HighBlood)

[1] "Yes" "No"

```
New_data <- df$HighBlood
bi_val <- revalue(x= new_data, replace = bi_dict)
df$HighBlood <- as.numeric(bi_val)
```

Stroke

```
New_data <- df$Stroke
bi_val <- revalue(x= newdata, replace = bi_dict)
df$Stroke <- as.numeric(bi_val)
```

Complication Risk

```
unique(df$Complication_risk)
```

[1] "Medium" "High" "Low"

```
New_data <- df$Complication_risk

Df_comprisk_dict <- c(

"Low" = 1,

"Medium" = 2,

"High" = 3)

Df_risk_val <- revalue(x= new_data, replace = df_risk_dict)

df$Complication_risk <- as.numeric(df_risk_val)
```

Arthritis

```
New_data <- df$Arthritis
bi_val <- revalue(x= new_data, replace = bi_dict)
df$Arthritis <- as.numeric(bi_val)
```

Diabetes

```
New_data <- df$Diabetes
bi_val <- revalue(x= new_data, replace = bi_dict)
df$Diabetes <- as.numeric(bi_val)
```

Hyperlipidemia

```
New_data <- df$Hyperlipidemia
bi_val <- revalue(x= new_data, replace = bi_dict)
df$Hyperlipidemia <- as.numeric(bi_val)
```

Back Pain

```
New_data <- df$BackPain
binary_val <- revalue(x= new_data, replace = bi_dict)
df$BackPain <- as.numeric(bi_val)
```

Allergic rhinitis

```
New_data <- df$Allergic_rhinitis
bi_val <- revalue(x= new_data, replace = bi_dict)
df$Allergic_rhinitis <- as.numeric(bi_val)
```

Reflux esophagitis

```
New_data <- df$Reflux_esophagitis
bi_val <- revalue(x= new_data, replace = bi_dict)
df$Reflux_esophagitis <- as.numeric(bi_val)
```

Asthma

```
New_data <- df$Asthma
bi_val <- revalue(x= new_data, replace = bi_dict)
df$Asthma <- as.numeric(bi_val)
```

Services

```
unique(df$Services)
```

[1] "Blood Work" "Intravenous" "CT Scan" "MRI'

```
New_data <- df$Services

Df_services_dict <- c(

"Blood Work" = 1,

"Intravenous" = 2,
```

```
"CT Scan" = 3,
 "MRI" = 4)
Df_services_val <- revalue(x= new_data, replace = df_services_dict)
df$Services <- as.numeric(df_services_val)
library(caret)
Loading required package: lattice
Loading required package: ggplot2
Employment
unique(df$Employment)
[1] "Full Time" "Retired" "Unemployed" "Student" "Part Time"
dmy <- dummyVars(" ~ Employment", data = df)
my_dummy <- data.frame(predict(dmy, newdata = df))
df$Employment_FullTime <- my_dummy$EmploymentFull.Time
df$Employment_PartTime <- my_dummy$EmploymentPart.Time
df$Employment_Retired <- my_dummy$EmploymentRetired
df$Student <- my_dummy$EmploymentStudent
df$Unemployed <- my_dummy$EmploymentUnemployed
df <- select(df, -Employment)
Gender
unique(df$Gender)
[1] "Male"
                  "Female"
                                  "Prefer not to answer"
```

```
dmy <- dummyVars(" ~ Gender", data = df)
my_dummy <- data.frame(predict(dmy, newdata = df))
df$Female <- my_dummy$GenderFemale
df$Male <- my_dummy$GenderMale
df <- select(df, -Gender)</pre>
```

Initial Admission

unique(df\$Initial_admin)

```
[1] "Emergency Admission" "Elective Admission" "Observation Admission"

dmy <- dummyVars(" ~ Initial_admin", data = df)

my_dummy <- data.frame(predict(dmy, newdata = df))

df$Admin_elective <- my_dummy$Initial_adminElective.Admission

df$Admin_observation <- my_dummy$Initial_adminObservation.Admission

df$Admin_emergency <- my_dummy$Initial_adminEmergency.Admission

df <- select(df, -Initial_admin)
```

The steps taken here was to change the categorical data to numeric data. This step will let the algorithms analyze the data that are being used in the data wrangling process. The caret package was used to create separate columns for each input. This step allows me to analyze the variable more effectively.

Imputation of NULL values

summary(df)

```
City State County Zip Lat

Length:10000 Min. : 1.00 Length:10000 Min. : 610 Min. :17.97

Class :character 1st Qu.:14.00 Class :character 1st Qu.:27592 1st Qu.:35.26

Mode :character Median :26.00 Mode :character Median :50207 Median :39.42

Mean :26.84 Mean :50159 Mean :38.75
```

3rd Qu.:39.00 3rd Qu.:72412 3rd Qu.:42.04

Max. :52.00 Max. :99929 Max. :70.56

Lng Population Area Timezone Children

Min. :-174.21 Min. : 0.0 Min. :1.000 Min. :-10.000 Min. :0.000

1st Qu.: -97.35 1st Qu.: 694.8 1st Qu.:1.000 1st Qu.: -6.000 1st Qu.: 0.000

Median: -88.40 Median: 2769.0 Median: 2.000 Median: -6.000 Median: 1.000

Mean :-91.24 Mean : 9965.2 Mean :1.993 Mean :-5.861 Mean :2.098

3rd Qu.: -80.44 3rd Qu.: 13945.0 3rd Qu.:3.000 3rd Qu.: -5.000 3rd Qu.: 3.000

Max. :-65.29 Max. :122814.0 Max. :3.000 Max. :-4.000 Max. :10.000

NA's :2588

Age Education Total_Income ReAdmis VitD_levels

Min. :18.0 Min. : 0.00 Min. : 154.1 Min. :0.0000 Min. : 9.519

1st Qu.:35.0 1st Qu.:12.00 1st Qu.: 19450.8 1st Qu.:0.0000 1st Qu.:16.513

Median: 53.0 Median: 14.00 Median: 33942.3 Median: 0.0000 Median: 18.081

Mean :53.3 Mean :13.61 Mean :40484.4 Mean :0.3669 Mean :19.413

3rd Qu.:71.0 3rd Qu.:16.00 3rd Qu.: 54075.2 3rd Qu.:1.0000 3rd Qu.:19.790

Max. :89.0 Max. :24.00 Max. :207249.1 Max. :1.0000 Max. :53.019

NA's :2414 NA's :2464

Doc_visits Full_meals_eaten VitD_supp Soft_drink HighBlood

Min. :1.000 Min. :0.000 Min. :0.0000 Min. :0.0000 Min. :0.000

1st Qu.:4.000 1st Qu.:0.000 1st Qu.:0.0000 1st Qu.:0.0000

Median :5.000 Median :1.000 Median :0.0000 Median :0.0000 Median :0.000

Mean :5.012 Mean :1.001 Mean :0.3989 Mean :0.2581 Mean :0.409

3rd Qu.:6.000 3rd Qu.:2.000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.000

Max. :9.000 Max. :7.000 Max. :5.0000 Max. :1.0000 Max. :1.000

NA's :2467

Stroke Complication_risk Overweight Arthritis Diabetes

Min. :0.0000 Min. :1.000 Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:2.000 1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :2.000 Median :1.0000 Median :0.0000 Median :0.0000

Mean :0.1993 Mean :2.123 Mean :0.7091 Mean :0.3574 Mean :0.2738

3rd Qu.:0.0000 3rd Qu.:3.000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :3.000 Max. :1.0000 Max. :1.0000 Max. :1.0000

NA's :982

Hyperlipidemia BackPain Anxiety Allergic_rhinitis Reflux_esophagitis

Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000

Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000 Median :0.0000

Mean :0.3372 Mean :0.4114 Mean :0.3223 Mean :0.3941 Mean :0.4135

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000

Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000 Max. :1.0000

NA's :984

Asthma Services Initial_days TotalCharge Additional_charges

Min. :0.0000 Min. :1.000 Min. :1.002 Min. :1257 Min. :3126

1st Qu.: 0.0000 1st Qu.: 1.000 1st Qu.: 7.912 1st Qu.: 3253 1st Qu.: 7986

Median: 0.0000 Median: 1.000 Median: 34.447 Median: 5852 Median: 11574

Mean :0.2893 Mean :1.672 Mean :34.432 Mean :5892 Mean :12935

3rd Qu.:1.0000 3rd Qu.:2.000 3rd Qu.:61.125 3rd Qu.: 7615 3rd Qu.:15626

Max. :1.0000 Max. :4.000 Max. :71.981 Max. :21524 Max. :30566

NA's :1056

Survey TimelyAdmin Survey TimelyTreatment Survey TimelyVisits Survey Reliability

Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.000

Median :4.000 Median :3.000 Median :4.000 Median :4.000

Mean :3.519 Mean :3.507 Mean :3.511 Mean :3.515

3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000

Max. :8.000 Max. :7.000 Max. :8.000 Max. :7.000

Survey_Options Survey_HoursTreatment Survey_CourteousStaff Survey_ActiveListening Min. :1.000 Min. :1.000 Min. :1.000 Min. :1.00 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.000 1st Qu.:3.00 Median :3.000 Median :4.000 Median :3.000 Median :3.00 Mean :3.494 Mean :3.51 Mean :3.497 Mean :3.522 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.00 Max. :7.000 Max. :7.000 Max. :7.000 Max. :7.00

 Employment_FullTime Employment_PartTime Employment_Retired
 Student
 Unemployed

 Min. :0.0000
 Min. :0.0000
 Min. :0.0000
 Min. :0.0000
 Min. :0.0000

 1st Qu.:0.0000
 1st Qu.:0.0000
 1st Qu.:0.0000
 1st Qu.:0.0000
 1st Qu.:0.0000

 Median :1.0000
 Median :0.0000
 Median :0.0000
 Median :0.0000
 Median :0.0000

 Mean :0.6029
 Mean :0.0991
 Mean :0.098
 Mean :0.1017
 Mean :0.0983

 3rd Qu.:1.0000
 3rd Qu.:0.0000
 3rd Qu.:0.0000
 3rd Qu.:0.0000

 Max. :1.0000
 Max. :1.0000
 Max. :1.0000
 Max. :1.0000

Female Male Admin_elective Admin_observation Admin_emergency

Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.0000

1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000

Median :1.0000 Median :0.0000 Median :0.0000 Median :0.0000 Median :1.000

Mean :0.5018 Mean :0.4768 Mean :0.2504 Mean :0.2436 Mean :0.506

3rd Qu.:1.0000 3rd Qu.:1.0000 3rd Qu.:1.0000 Max. :1.0000 Max. :1.

There are Null values found in 7 columns:

```
Age - Anxiety - Children - Total_Income - Initial_days - Overweight - Soft_drink
```

* Children, Soft_drink, and Anxiety will be converted to 0, the variables consist of yes/no data. It is assumed that these were left blank and did not apply.

```
var <- df$Children

df$Children <- replace(var, is.na(var), 0)
var <- df$Soft_drink

df$Soft_drink <- replace(var, is.na(var), 0)
var <- df$Anxiety

df$Anxiety <- replace(var, is.na(var), 0)</pre>
```

The outcome of this step was to replace the values that were determined by analyzing the variables that they were "0" value observations.

The rest of the NULL values will be replaced using MICE

library(mice)

Attaching package: 'mice'

The following object is masked from 'package:stats':

filter

The following objects are masked from 'package:base':

cbind, rbind

```
micedata <- df
```

micedata\$Overweight=as.factor(micedata\$Overweight)

summary(df)

*Change back Overweight to numeric

df\$Overweight=as.numeric(df\$Overweight)

md.pattern(df)

City State County Zip Lat Lng Population Area Timezone Children Education ReAdmis

4618	1	1	1	1	1	1	1	1	1	1	1	1
1496	1	1	1	1	1	1	1	1	1	1	1	1
1481	1	1	1	1	1	1	1	1	1	1	1	1
467	1	1	1	1	1	1	1	1	1	1	1	1
535	1	1	1	1	1	1	1	1	1	1	1	1
187	1	1	1	1	1	1	1	1	1	1	1	1
165	1	1	1	1	1	1	1	1	1	1	1	1
69	1	1	1	1	1	1	1	1	1	1	1	1
509	1	1	1	1	1	1	1	1	1	1	1	1
166	1	1	1	1	1	1	1	1	1	1	1	1

153	1	. 1	1	1	1	1	1	l 1	. 1	. 1	. 1	. 1
54	1	1	1	1	1	1	1	1	1	1	1	1
53	1	1	1	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1	1	1	1	1	1
3	1	1	1	1 :	1	1	1	1	1	1	1	1
	0	0	0 0	0 0	()	0	0	0	0	0	0

VitD_levels Doc_visits Full_meals_eaten VitD_supp Soft_drink HighBlood Stroke

4618	1	1	1	1	1	1	1
1496	1	1	1	1	1	1	1
1481	1	1	1	1	1	1	1
467	1	1	1	1	1	1	1
535	1	1	1	1	1	1	1
187	1	1	1	1	1	1	1
165	1	1	1	1	1	1	1
69	1	1	1	1	1	1	1
509	1	1	1	1	1	1	1
166	1	1	1	1	1	1	1
153	1	1	1	1	1	1	1
54	1	1	1	1	1	1	1
53	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1
	0	0	0	0	0	0	0

Complication_risk Arthritis Diabetes Hyperlipidemia BackPain Anxiety Allergic_rhinitis

4618	1	1	1	1	1	1	1
1496	1	1	1	1	1	1	1
1481	1	1	1	1	1	1	1

467	1	1	1	1	1	1	1
535	1	1	1	1	1	1	1
187	1	1	1	1	1	1	1
165	1	1	1	1	1	1	1
69	1	1	1	1	1	1	1
509	1	1	1	1	1	1	1
166	1	1	1	1	1	1	1
153	1	1	1	1	1	1	1
54	1	1	1	1	1	1	1
53	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1
	0	0	0	0	0	0	0

Reflux_esophagitis Asthma Services TotalCharge Additional_charges Survey_TimelyAdmin

4618	1	1	1	1	1	1
1496	1	1	1	1	1	1
1481	1	1	1	1	1	1
467	1	1	1	1	1	1
535	1	1	1	1	1	1
187	1	1	1	1	1	1
165	1	1	1	1	1	1
69	1	1	1	1	1	1
509	1	1	1	1	1	1
166	1	1	1	1	1	1
153	1	1	1	1	1	1
54	1	1	1	1	1	1
53	1	1	1	1	1	1

22	1	1	1	1	1	1
3	1	1	1	1	1	1
	0	0	0	0	0	0

Survey_TimelyTreatment Survey_TimelyVisits Survey_Reliability Survey_Options

	-			
4618	1	1	1	1
1496	1	1	1	1
1481	1	1	1	1
467	1	1	1	1
535	1	1	1	1
187	1	1	1	1
165	1	1	1	1
69	1	1	1	1
509	1	1	1	1
166	1	1	1	1
153	1	1	1	1
54	1	1	1	1
53	1	1	1	1
22	1	1	1	1
22	1	1	1	1
3	1	1	1	1
	0	0	0	0

Survey_HoursTreatment Survey_CourteousStaff Survey_ActiveListening Employment_FullTime

4618	1	1	1	1
1496	1	1	1	1
1481	1	1	1	1
467	1	1	1	1
535	1	1	1	1
187	1	1	1	1
165	1	1	1	1

69	1	1	1	1
509	1	1	1	1
166	1	1	1	1
153	1	1	1	1
54	1	1	1	1
53	1	1	1	1
22	1	1	1	1
22	1	1	1	1
3	1	1	1	1
	0	0	0	0

Employment_PartTime Employment_Retired Student Unemployed Female Male Admin_elective

4618	1	1	1	1	1	1	1
1496	1	1	1	1	1	1	1
1481	1	1	1	1	1	1	1
467	1	1	1	1	1	1	1
535	1	1	1	1	1	1	1
187	1	1	1	1	1	1	1
165	1	1	1	1	1	1	1
69	1	1	1	1	1	1	1
509	1	1	1	1	1	1	1
166	1	1	1	1	1	1	1
153	1	1	1	1	1	1	1
54	1	1	1	1	1	1	1
53	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1
22	1	1	1	1	1	1	1
3	1	1	1	1	1	1	1
	0	0	0	0	0 0)	0

Admin_observation Admin_emergency Overweight Initial_days Age total_income

4618	1	1	1	1 1	1 0
1496	1	1	1	1 1	0 1
1481	1	1	1	1 0	1 1
467	1	1	1	1 0	0 2
535	1	1	1	0 1	1 1
187	1	1	1	0 1	0 2
165	1	1	1	0 0	1 2
69	1	1	1	0 0	0 3
509	1	1	0	1 1	1 1
166	1	1	0	1 1	0 2
153	1	1	0	1 0	1 2
54	1	1	0	1 0	0 3
53	1	1	0	0 1	1 2
22	1	1	0	0 1	0 3
22	1	1	0	0 0	1 3
3	1	1	0	0 0	0 4
	0	0	982	1056 2414	2464 6916

 $000 \frac{\text{CD} + \text{CD} + \text{CD}$

I chose to use the MICE(Multivariate Imputation by Chained Equations) because j felt like it was the most simplified approach to impute missing data. "The mice package in R, helps you imputing missing values with plausible data values. These plausible values are drawn from a distribution specifically designed for each missing datapoint." (Imputing Missing Data with R; MICE package, 2014)

I felt that the best approach to handle the missing data was to use the built-in models that are provided for the continuous data(predictive mean matching) and binary data(logistic regression.

The outcome of this step was that I used plausible data values that was generated using complete datasets. I used the mean-substitution and logistic regression within the MICE package. I have now ensured that all missing values been identified and have been mitigated using the approach best seemed fit.

Identifying Outliers

df < -df[,c(14,1,3,2,4:12,44,45,46,48,47,49,50,13,15,18,16,17,19:32,51:53,33:43)]

(Setting dataset to identify outliers)

Head(df)

Re	Admis	City	County	State Zi	ip Lat	Lng Po	pulation	n Area 1	Timez	one
1	0	Eva	Morgan :	1 35621	34.34960	0 -86.7250)8 29	951 2	-6	
2	0 [Marianna	Jackson	10 324	146 30.84	1513 -85.2	2907	11303	3	-6
3	0 Sid	oux Falls	Minnehah	a 43 57	7110 43.5	54321 -96	.63772	1712	5 2	-6
4	0 Ne	w Richlar	nd Wase	ca 245	6072 43.	.89744 -93	3.51479	216	2 2	-6
5	0 W	est Point/	King Willia	m 482	3181 37.	59894 -76	5.88958	528	7 1	-5
6	0	Braggs	Muskogee	37 744	123 35.67	7302 -95.1	.9180	981	3	-6
			cation Empl	oyment_	_FullTime	Employm	nent_Pa	rtTime	Emplo	oyme
Une	employ	/ed								
1	1 53	3 13	1		0	0	0			
2							-			
_	3 5:	1 14	1		0	0	0			
3	3 5: 3 5:		1		0	0				
		3 14					0			
3	3 53	3 14 3 12	0		0	1	0			

Stu	dent	Fer	male	Male	total_i	ncom	e Vit[)_lev	els Vi	tD_s	upp D	oc_v	isits	Full_r	neals	_eate	en	
1	0	0	1	865	75.93	17.8	0233		0	6		0						
2	0	1	0	468	05.99	18.9	9464		1	4		2						
3	0	1	0	143	70.14	17.4	1589		0	4		1						
4	0	0	1	397	41.49	17.4	2008		0	4		1						
5	0	1	0	120	09.56	16.87	7052	:	2	5		0						
6	0	0	1		NA 1	9.956	14	0	6		0							
Sof	t_dri	nk I	Highl	Blood	Stroke	Comp	olicati	on_r	isk Ov	erw	eight	Arth	ritis D	iabet	tes Hy	yperli	piden	ni
1	0		1	0	2		0	1	1		0							
2	0		1	0	3	,	1	0	0		0							
3	0		1	0	2		1	0	1		0							
4	0		0	1	2		0	1	0		0							
5	1		0	0	1		0	0	0		1							
6	0		0	0	2		1	1	1		0							
Bac	:kPaiı	n Aı	nxiet	y Allei	rgic_rh	initis	Reflux	c_esc	phag	itis A	sthm	a Ser	vices	Adm	in_el	ective	e	
1	1	1		1		0	1	1		0								
2	0	0		0		1	0	2		0								
3	0	0		0		0	0	1		1								
4	0	0		0		1	1	1		1								
5	0	0		1		0	0	3		1								
6	1	0		1		0	0	1		0								
Adı	min_e	obs	erva	tion A	dmin_	emerg	gency	Initia	al_day	/s To	talCh	arge	Addit	tional	_cha	rges		
1		0		1	10.58	5770	319	1.049	9	179	39.40	3						
2		0		1	15.12	9562	421	4.90	5	176	12.99	8						
3		0		0	4.772	2177	2177	7.587		1750	5.192	2						
4		0		0	1.714	1879	2465	.119		1299	3.43	7						
5		0		0	1.254	1807	1885	.655		371	6.526							
6		1		0	5.957	7250	2774	1.090)	1274	12.590	D						

Survey_TimelyAdmin Survey_TimelyTreatment Survey_TimelyVisits Survey_Reliability

1	3	3	2	2
2	3	4	3	4
3	2	4	4	4
4	3	5	5	3
5	2	1	3	3
6	4	5	4	4

Survey_Options Survey_HoursTreatment Survey_CourteousStaff Survey_ActiveListening

1	4	3	3	4
2	4	4	3	3
3	3	4	3	3
4	4	5	5	5
5	5	3	4	3
6	3	5	4	6

The summary for this step was to re-organize the data so that it is easier to view when analyzing each variable.

Checking for outliers using boxplots

Population

as.character(Zip), "")), hjust = 1.5)

graph1

When reviewing the top zip codes, it looks like the populations are accurate; however, there are still outliers that could create a discrepancy in the effectiveness of the model. So this variable will be standardized.

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

df\$Population <- scale(x = df\$Population)

This outcome of this step is to standardize the variable so that the variable is able to be analyzed more efficiently in the model.

Children

```
Graph2 <- qplot(data = df, y= Children, x=1,
geom='boxplot',
outlier.color='deeppink2',
xlim=c(0,2),
```

main='Children')

graph2

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

Performing a Grubbs test on these outliers

library(outliers)

x <- df\$Children

grubbs.test(x)

Grubbs test for one outlier

data: x

```
G = 4.07815, U = 0.99834, p-value = 0.2254
```

alternative hypothesis: highest value 10 is an outlier

The P-value is greater than 0.05, these values will remain the same.

The outcome of this step is to determine whether to outliers are creating a negative impact on the model. The approach in this step is to analyze the p-values as well as the mean to determine if the variable will be standardized.

Age

```
Graph3 <- qplot(data = df, y= Age, x=1,
geom='boxplot',
outlier.color='deeppink2',
xlim=c(0,2),
main='Age')
```

Graph3

There are no outliers within this variable

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

Education

graph4

There are very low and very high levels of education values that are outliers, so this variable will be standardized, to reduce inaccuracies in the model.

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

```
df$Education <- scale(x = df$Education)
```

The outcome of this step is to determine whether to outliers are creating a negative impact on the model. The approach in this step is to analyze the p-values as well as the mean to determine if the variable will be standardized.

Total_Income

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

```
x <- df$Total_Income
grubbs.test(x)

Grubbs test for one outlier
```

```
data: x
G = 5.81774, U = 0.99551, p-value = 2.164e-05
alternative hypothesis: highest value 207249.13 is an outlier
```

These values are very off from the mean. So they will be standardized.

```
df$Total_Income <- scale(x = df$Total_Income)
```

The outcome of this step is to determine whether to outliers are creating a negative impact on the model. The approach in this step is to analyze the p-values as well as the mean to determine if the variable will be standardized.

VitD_levels

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

Check for correlation between VitD_levels and VitD_supp

```
plot(df$VitD_levels, df$VitD_supp,
main ='Vitamin D Levels and Supplements',
xlab ='Levels',
ylab = 'Supplements Administered')
```

Vitamin D Levels and Supplements

When analyzing the graph, there looks to be two separate groups of data. The group consisting of patients with high Vitamin D levels will now be checked against potential reasons for the supplements administered of Vitamin D for patients with normal levels of Vitamin D.

high_VitD <- which(df\$VitD_levels > 30 & df\$VitD_supp>1)

houtput <- df[high_VitD,]; houtput

ReAdmis	City County State Zip Lat Lng Population Area
95 0	Lincoln Benton 26 65338 38.36077 -93.28146 -0.48710768 3
838 0	Lawrence Douglas 17 66049 38.98240 -95.34463 1.40600915 2
1070 0	Whitney Westmoreland 39 15693 40.25315 -79.40764 -0.65776813 2
1083 0	Powderly Lamar 45 75473 33.81433 -95.48986 -0.42450970 3
1380 0	Elko New Market Scott 24 55054 44.57008 -93.35030 -0.49547207 2
1446 0	Smithville Clay 26 64089 39.39226 -94.56261 0.19863704 2
1813 0	Withams Accomack 48 23488 37.95241 -75.60823 -0.65055048 2
1973 0	Philadelphia Philadelphia 39 19139 39.96144 -75.22981 2.35449002 2
2090 0	Elgin Union 38 97827 45.58792 -117.84525 -0.51159375 3
2345 0	Grady Curry 32 88120 34.87865 -103.45422 -0.65729595 3

2373	0	Spreckels	Monterey	5 93962	36.62471 -:	121.64649 -	0.64623338	2
2496	0	Mina	Mineral 29	89422 38	.17367 -11	8.41485 -0.	66471597	2
2670	0	Grant	Allen 197	0644 30.7	79160 -92.9	94369 -0.65	702613 1	
3043	0	Boise	Ada 1383	3709 43.5	4978 -116.2	28929 3.27	666355 2	
3714	0	Spring N	Montgomery	45 7738	2 30.19805	-95.54607	2.01660931	. 3
4003	0	Waldo	Sheboygan	51 53093	43.65997	-87.94222 -	0.53533781	1
4029	0	Mount Olive	· Macoupin	14 620	69 39.0883	3 -89.7393	8 -0.4639032	26 3
4200	0 Fort	George G M	leade Anne A	rundel 2	21 20755 39	9.10578 -76	5.74679 0.02	237785 2

Timezone Children Age Education Employment_FullTime Employment_PartTime

95	-6	0 59 -4.4033282	1	0
838	-6	0 34-0.5206366	0	1
1070	-5	1 21 3.3620550	1	0
1083	-6	0 82 0.4500363	1	0
1380	-6	4 50 -0.5206366	1	0
1446	-6	2 60 -0.5206366	1	0
1813	-5	1 83 -1.8148671	1	0
1973	-5	1 69 0.1264787	1	0
2090	-8	1 70 -0.5206366	1	0
2345	-7	2 NA -0.5206366	1	(
2373	-8	0 71 1.4207092	0	0
2496	-8	0 84 0.1264787	0	0
2670	-6	0 50 0.7735939	1	0
3043	-7	0 84 -0.1970790	0	0
3714	-6	0 NA -0.5206366	1	(
4003	-6	0 31 0.1264787	0	0
4029	-6	0 47 -0.1970790	1	0
4200	-5	1 41 -0.5206366	1	0

Employment_Retired Unemployed Student Female Male total_income VitD_levels VitD_supp

95 0 0 0 1 0 -0.2586776 49.25631 2

838	0	0	0	0	1	-0.7929269 44.32063	3
1070	0	0	0	1	0	NA 45.51117 2	
1083	0	0	0	0	1	-0.6585808 46.27789	2
1380	0	0	0	0	1	0.9195290 48.32009	2
1446	0	0	0	0	1	NA 46.22136 2	
1813	0	0	0	1	0	NA 48.96519 2	
1973	0	0	0	1	0	0.5548327 44.53013	2
2090	0	0	0	0	1	-0.2317255 47.20976	2
2345	0	0	0	1	0	-0.6514634 50.88236	2
2373	0	1	0	1	0	-1.0437999 49.24153	2
2496	0	0	1	1	0	2.3218030 46.54305	2
2670	0	0	0	1	0	NA 46.67834 2	
3043	0	0	1	1	0	-0.5201280 45.66015	2
3714	0	0	0	1	0	-0.7591039 43.25143	2
4003	0	0	1	0	1	-0.2294844 50.25739	3
4029	0	0	0	1	0	-0.4539052 44.92039	2
4200	0	0	0	0	1	-0.2194153 45.67685	2

Doc_visits Full_meals_eaten Soft_drink HighBlood Stroke Complication_risk Overweight

95	5	1	0	1	0	2	NA
838	5	1	0	0	0	2	0
1070	6	1	0	0	0	2	1
1083	5	1	0	0	0	2	1
1380	6	3	1	0	0	1	1
1446	6	2	0	0	0	3	1
1813	6	1	0	1	0	2	1
1973	5	2	1	1	0	3	1
2090	4	1	1	0	0	2	0
2345	4	0	0	1	0	1	1
2373	6	1	0	0	0	1	0

2496	7	2	0	0	0	2	1
2670	5	0	0	1	0	2	1
3043	4	1	1	0	0	3	1
3714	2	0	0	0	0	3	1
4003	5	1	0	0	0	3	0
4029	5	0	0	0	0	2	1
4200	6	1	0	0	0	2	NA

Arthritis Diabetes Hyperlipidemia BackPain Anxiety Allergic_rhinitis Reflux_esophagitis

95	1	0	0	0	0	0	1
838	0	0	0	0	1	0	1
1070	1	0	0	1	1	0	1
1083	0	0	1	0	1	1	0
1380	0	1	0	0	0	0	0
1446	0	0	0	1	1	0	0
1813	0	1	0	0	0	1	1
1973	0	0	0	0	1	1	0
2090	0	0	0	1	0	0	0
2345	0	0	0	1	1	1	1
2373	0	0	1	0	0	0	0
2496	0	0	0	0	0	0	0
2670	0	0	1	0	0	0	1
3043	0	1	0	0	0	0	1
3714	0	0	1	0	0	1	0
4003	0	0	0	0	1	0	0
4029	0	0	0	0	0	0	0
4200	0	1	0	0	1	0	0

Asthma Services Admin_elective Admin_observation Admin_emergency Initial_days TotalCharge

95	0	3	0	0	1	4.879928	14977.48
838	0	1	1	0	0	1.783260	13333.47

1070	0	2	0	0	1	9.961665	15137.32
1083	0	1	0	0	1	1.731035	14727.20
1380	0	2	1	0	0	8.273022	13861.09
1446	0	3	0	0	1	6.518810	15171.92
1813	0	1	0	1	0	3.950573	14729.64
1973	1	1	0	0	1	NA 15	491.18
2090	0	1	0	1	0	NA 14	394.84
2345	0	1	0	1	0	6.280303	14266.64
2373	0	1	0	0	1	18.724093	15262.74
2496	0	1	0	1	0	NA 13	090.41
2670	0	1	0	0	1	13.580691	15522.65
3043	0	4	0	0	1	5.583115	14837.60
3714	0	1	0	1	0	NA 14	717.59
4003	0	1	0	1	0	3.230261	14818.70
4029	1	1	0	1	0	8.209031	13372.92
4200	1	3	0	1	0	14.573414	14664.68

Additional_charges Survey_TimelyAdmin Survey_TimelyTreatment Survey_TimelyVisits

95	19669.392	3	4	3
838	5854.828	4	4	4
1070	4101.760	4	3	4
1083	13948.709	5	5	5
1380	8459.387	5	4	5
1446	10887.557	4	4	6
1813	27044.905	4	4	4
1973	23312.854	2	2	2
2090	11639.026	4	5	5
2345	7335.478	4	4	4
2373	12029.279	3	4	4
2496	13774.091	4	3	3

2670	16787.041	3	3	2
3043	14669.599	4	4	4
3714	9366.721	3	3	3
4003	5906.286	4	4	4
4029	7832.590	5	4	5
4200	7054.125	3	3	3

Survey_Reliability Survey_Options Survey_HoursTreatment Survey_CourteousStaff

95	4	5	3	4
838	4	4	3	4
1070	4	2	5	5
1083	4	2	6	4
1380	1	4	4	2
1446	4	4	4	3
1813	4	3	3	3
1973	3	3	3	5
2090	3	2	4	6
2345	4	3	3	4
2373	4	4	3	2
2496	4	2	3	4
2670	4	4	3	2
3043	4	4	3	3
3714	2	4	3	3
4003	3	3	4	4
4029	2	4	3	4
4200	4	3	3	3

Survey_ActiveListening

95 3 838 4 1070

1083	5
1380	3
1446	5
1813	3
1973	4
2090	4
2345	4
2373	4
2496	5
2670	3
3043	5
3714	4
4003	2
4029	3
4200	4

plot(houtput\$Age, houtput\$Overweight)

When analyzing the graph that shows the patient's age and weight. It is understandable that given the patients over 50 and/or overweight are at higher risk for health problems that would require vitamin supplements(Vitamin D). These would be considered normal outliers and are necessary for analysis, because it is likely that these patients are more likely to be readmitted if they are not given the vitamin supplements necessary. These values will remain.

Doc_visits

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

There are no outliers within this variable

```
Full Meals Eaten
```

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

```
Hypothesis test
```

```
x <- df$Full_meals_eaten
grubbs.test(x)

data: x

G = 5.95030, U = 0.99646, p-value = 1.297e-05
alternative hypothesis: highest value 7 is an outlier

Need to standardize values

df$Full_meals_eaten <- scale(x = df$Full_meals_eaten)
```

The outcome of this step is to determine whether to outliers are creating a negative impact on the model. The approach in this step is to analyze the p-values as well as the mean to determine if the variable will be standardized.

Complication_risk

There are no outliers within this variable.

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

There are no outliers within this variable

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

TotalCharge

The visual is displaying that there are outliers within the TotalCharge variable. However, it looks like there is a correlation with both the TotalCharge and Readmission variables. <u>So</u> this data will not need changing.

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

The visual is showing that the additional charges variable has outliers. I cannot determine if there is a correlation with the readmission variable so we will standardize this variable.

The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

df\$Additional_charges <- scale(x = df\$Additional_charges)

The outcome of this step is to determine whether to outliers are creating a negative impact on the model. The approach in this step is to analyze the p-values as well as the mean to determine if the variable will be standardized.

Survey Results

```
survey_results <- df[,46:53]
for (col in survey_results){
   graph13 <- qplot(data = survey_results, y= col, x=1,</pre>
```

```
geom='boxplot',
    outlier.color='deeppink2',
    xlim=c(0,2))
print(graph13)}
```


The outcome of this step is that I have created a visualization to analyze the outliers within the variables. This step helps me look closer on how the variables are measured and determine the accuracy of the model.

```
for (col in survey_results){
x <- col
 print(grubbs.test(x))}
        Grubbs test for one outlier
data: x
G = 4.34239, U = 0.99811, p-value = 0.06985
alternative hypothesis: highest value 8 is an outlier
        Grubbs test for one outlier
data: x
G = 3.37574, U = 0.99886, p-value = 1
alternative hypothesis: highest value 7 is an outlier
        Grubbs test for one outlier
data: x
G = 4.34653, U = 0.99811, p-value = 0.06854
alternative hypothesis: highest value 8 is an outlier
       Grubbs test for one outlier
data: x
```

G = 3.36289, U = 0.99887, p-value = 1

alternative hypothesis: highest value 7 is an outlier

Grubbs test for one outlier

data: x

G = 3.40043, U = 0.99884, p-value = 1

alternative hypothesis: highest value 7 is an outlier

Grubbs test for one outlier

data: x

G = 3.36844, U = 0.99887, p-value = 1

alternative hypothesis: highest value 7 is an outlier

Grubbs test for one outlier

data: x

G = 3.43253, U = 0.99882, p-value = 1

alternative hypothesis: highest value 7 is an outlier

Grubbs test for one outlier

data: x

G = 3.34861, U = 0.99888, p-value = 1

alternative hypothesis: highest value 7 is an outlier

These values will remain.

The outcome of this step is to determine whether to outliers are creating a negative impact on the model. The approach in this step is to analyze the p-values as well as the mean to determine if the variable will be standardized.

The Limitations of the Analysis

Considering that this data was provided by a third party rather than the individual, this has been identified as a major limitation. Another limitation that was identified was how the variables are being measured. An example would be when analyzing the Vitamin D supplement intake for patients, it is not clear if the number of supplements were being taken daily, or throughout the stay of the patient's visit. There was also no indication of the dosage amount being taken. Discrepancies such as these examples could skew results of the analysis.

After the data cleaning process, the strengths that this clean data set has is that I have made almost all the values numeric. I have also cleaned the null values that appeared in the data set. This allows the data set to provide more accurate calculations and proper visualizations. One of the limitations recognized when cleaning the data set, is that it is difficult to interpret all the data types being used in the raw data.

Principle Component Analysis

head(df)

ReA	dmis	City	County St	tate Zip	Lat	Lng Populat	ion Area Time	zone	
1	0 E	va M	lorgan 1	35621 34	.34960	-86.72508 -0	.4731446 2	-6	
2	0 Mar	ianna	Jackson	10 32446	30.845	13 -85.2290	7 0.0902373	3	-6
3	0 Sioux	Falls N	/linnehaha	43 5711	LO 43.54	321 -96.637	72 0.4829587	2	-6
4	0 New R	Richland	Wased	:a 24 560	72 43.8	9744 -93.51	479 -0.526366	3 2	-6
5	0 West	: Point Ki	ing Williar	n 48 231	81 37.5	9894 -76.889	958 -0.315570	3 1	-5
6	0 Bra	aggs N	luskogee	37 74423	35.673	02 -95.1918	0 -0.6060304	3	-6
	ildren Age mployed		tion Empl	oyment_Fi	ullTime I	Employment	_PartTime Em	ployn	nent_Retired
1	1 53-0	.197079	0	1	0	0	0		
2	3 51 0	.126478	7	1	0	0	0		
3	3 53 0	.126478	7	0	0	1	0		
4	0 78-0	.520636	6	0	0	1	0		

5	0 2	22 -(0.52	06366		1		()		0	0			
6	0 7	76 -(0.52	06366		0		()		1	0			
St	udent	: Fei	mal	e Male	total_Inc	com	e Vitl	D_lev	els Vi	tD_su	pp Do	c_visits F	ull_mea	als_eat	en
1	0	0	1	1.60	794401	17	.8023	3	0	6	-0.99	3337188			
2	0	1	0	0.22	053314	18	.9946	4	1	4	0.99	0559733			
3	0	1	0	-0.91	102128	17	.4158	39	0	4	-0.00	1388728			
4	0	0	1	-0.02	591843	17	.4200)8	0	4	-0.00	01388728			
5	0	1	0	-1.37	014019	16	.8705	52	2	5	-0.99	93337188			
6	0	0	1		NA 19.	956	14	0	6	-0.9	99333	7188			
So	ft_dri	ink	High	nBlood	Stroke C	om	plicati	ion_r	isk O	verwe	ight A	rthritis Di	abetes	Hyperli	ipid
1	0		1	0	2		0	1	1		0				
2	0		1	0	3		1	0	0		0				
3	0		1	0	2		1	0	1		0				
4	0		0	1	2		0	1	0		0				
5	1		0	0	1		0	0	0		1				
6	0		0	0	2		1	1	1		0				
Ва	ickPai	n A	nxie	ty Allei	rgic_rhin	itis	Reflu	x_esc	phag	itis As	thma	Services /	Admin_	electiv	e
1	1	1		1		0	1	1		0					
2	0	0		0		1	0	2		0					
3	0	0		0		0	0	1		1					
4	0	0		0		1	1	1		1					
5	0	0		1		0	0	3		1					
6	1	0		1		0	0	1		0					
Ac	dmin_	obs	erv	ation A	dmin_en	nerg	gency	Initia	I_day	ys Tot	alChar	ge Additi	onal_ch	arges	
1		0		1	10.5857	770	319	1.049)	0.764	96708	5			
2		0		1	15.1295	562	421	4.905	5	0.715	07786	4			
3		0		0	4.7721	77	2177	7.587	C).6986	00372	2			
4		0		0	1.7148	79	2469	5.119	C	0.0090	03875	i			
5		0		0	1.2548	07	1885	5.655	-1	1.4089	920097	7			

6	1	0 5.9572	50 2774.090	-0.029336751
Surv	ey_TimelyA	dmin Survey_	TimelyTreatme	nt Survey_TimelyVisits Survey_Reliabi
1	3	3	2	2
2	3	4	3	4
3	2	4	4	4
4	3	5	5	3
5	2	1	3	3
6	4	5	4	4
Surv	ey_Options	Survey_Hours	Treatment Sur	vey_CourteousStaff Survey_ActiveList
1	4	3	3	4
2	4	4	3	3
3	3	4	3	3
4	4	5	5	5
5	5	3	4	3
6	3	5	4	6
>				

I will not use the target variable (ReAdmis), the qualititative variables (City and County), or the redundant variables (State, Lat, Lng, Timezone)

The outcome of this step is to create a new dataset that I will use for the PCA.

Standardization

```
df_sub <- scale(x = df[,c(5, 8, 9, 11:53)])
head(df_sub)
```

Zip Population	Area Ch	nildren Age	Education Employm	ent_FullTime	
1 -0.5292516 -0.4	731446 0.	008079945 -0	.2681162 -0.0143121	-0.1970790	0.8115319
2 -0.6448340 0.0	902373 1.:	232313962 0.	6977202 -0.1111214	0.1264787	0.8115319

```
3 0.2530317 0.4829587 0.008079945 0.6977202 -0.0143121 0.1264787
                                                                 -1.2321143
4 0.2152444 -0.5263663 0.008079945 -0.7510343 1.1958036 -0.5206366
                                                                 -1.2321143
5 -0.9821161 -0.3155703 -1.216154073 -0.7510343 -1.5148555 -0.5206366
                                                                  0.8115319
6 0.8832923 -0.6060304 1.232313962 -0.7510343 1.0989943 -0.5206366
                                                                 -1.2321143
Employment PartTime Employment Retired Unemployed Student Female Male
                  -0.3296006 -0.3301597 -0.3364558 -1.0035563 1.0474759
     -0.3316476
     -0.3316476
                  -0.3296006 -0.3301597 -0.3364558 0.9963566 -0.9545805
     -0.3316476
                   3.0336712 -0.3301597 -0.3364558 0.9963566 -0.9545805
     -0.3316476
                   3.0336712 -0.3301597 -0.3364558 -1.0035563 1.0474759
     -0.3316476
                  -0.3296006 -0.3301597 -0.3364558 0.9963566 -0.9545805
     -0.3316476
                  3.0336712 -0.3301597 -0.3364558 -1.0035563 1.0474759
total_Income VitD_levels VitD_supp Doc_visits Full_meals_eaten Soft_drink HighBlood
    1.60794401 -0.23951785 -0.6346809 0.94459928 -0.993337188 -0.4912094 1.2020163
    0.22053314 -0.06217740 0.9563968 -0.96793217 0.990559733 -0.4912094 1.2020163
   -0.91102128 -0.29699603 -0.6346809 -0.96793217 -0.001388728 -0.4912094 1.2020163
   -0.02591843 -0.29637274 -0.6346809 -0.96793217 -0.001388728 -0.4912094 -0.8318523
   -1.37014019 -0.37811197 2.5474746 -0.01166644 -0.993337188 2.0355880 -0.8318523
       NA 0.08083369 -0.6346809 0.94459928 -0.993337188 -0.4912094 -0.8318523
  Stroke Complication_risk Overweight Arthritis Diabetes Hyperlipidemia BackPain
1 -0.4988811 -0.1688644 -1.5613384 1.3408228 1.6285072 -0.713232 1.1960691
2 -0.4988811
            1.2006768 0.6404051 -0.7457362 -0.6139979 -0.713232 -0.8359885
3 -0.4988811
              -0.1688644 -1.5613384 1.3408228 -0.6139979 -0.713232 -0.8359885
4 2.0042853
5 -0.4988811
              -1.5384057 -1.5613384 -0.7457362 -0.6139979
                                                        1.401928 -0.8359885
6 -0.4988811
              -0.1688644 0.6404051 1.3408228 1.6285072 -0.713232 1.1960691
  1 1.5623419
              1.2398683
                         -0.8396186 1.5672823 -0.8069574 -0.5779372
2 -0.6400008
                           1.1908979 -0.6379833 0.3938721 -0.5779372
              -0.8064566
3 -0.6400008
              -0.8064566
                           -0.8396186 -0.6379833 -0.8069574 1.7301187
```

4 -0.6400008	-0.8064566	1.1908979	1.5672823	-0.8069574	1.7301187
5 -0.6400008	1.2398683	-0.8396186	-0.6379833	1.5947016	1.7301187
6 -0.6400008	1.2398683	-0.8396186	-0.6379833	-0.8069574	-0.5779372
Admin_obser	vation Admin_em	ergency Initia	I_days Total	lCharge Addit	ional_charges
1 -0.56746	77 0.9880217	-0.9071506	-0.7995390	0.764967	085
2 -0.56746	77 0.9880217	-0.7342977	-0.4964039	0.715077	864
3 -0.56746	77 -1.0120223	-1.1283086	-1.0995966	0.698600	372
4 -0.56746	77 -1.0120223	-1.2446130	-1.0144664	0.009003	875
5 -0.56746	77 -1.0120223	-1.2621148	-1.1860294	-1.408920	0097
6 1.76203	85 -1.0120223	-1.0832266	-0.9229888	-0.029336	751
Survey_Timel	yAdmin Survey_Ti	imelyTreatme	ent Survey_T	imelyVisits Su	urvey_Reliability
1 -0.50272	299 -0.4896	481 -1.4	631734	-1.4620544	
2 -0.50272	99 0.4766	991 -0.4	948898	0.4679230	
3 -1.47175	0.4766	991 0.4	733939	0.4679230	
4 -0.50272	299 1.4430	463 1.4	416775	-0.4970657	
5 -1.47175	544 -2.4223	426 -0.4	948898	-0.4970657	
6 0.46629	1.4430	463 0.4	733939	0.4679230	
Survey_Optio	ns Survey_HoursT	reatment Su	rvey_Courte	ousStaff Surv	ey_ActiveListening
1 0.4883553	-0.5061140	0 -0.48	36475	0.4703965	
2 0.4883553	0.4625253	3 -0.483	36475	-0.4890090	
3 -0.482337:	0.462525	3 -0.48	36475	-0.4890090	
4 0.4883553	1.4311649	5 1.474	14395	1.4298020	
5 1.4590477	7 -0.5061140	0.49	53960	-0.4890090	
6 -0.482337:	1.431164	5 0.49	53960	2.3892076	

Principal Component Analysis

```
library(FactoMineR)

df_sub.pca <- PCA(df_sub, scale.unit=TRUE, graph=F)
```

The outcome of this step is that I applied the FactoMineR to the new dataset. This package allows me to reduce the dimensionality of the dataset so that it is summarized.

Scree Plot

```
eig.val <- df_sub.pca$eig

barplot(eig.val[, 2],

main = "Explained Variance (%)",

xlab = "Principal Components",

ylab = "(%) of Variance",

col = "darkblue")
```

Explained Variance (%)

Graph of Variables

plot(df_sub.pca, choix = "var", autoLab = "auto", col.var="darkblue", label="var", graph.type = "ggplot", select="cos2 0.40")

To determine the principal components, I used the package FactoMineR to run the PCA and used eigenvalues for my scree plot. The PCA graph of variables let me reduce the data to the important variables. The variables with cos2 over 0.4 were those that I identified as "important," and they were variables:

 TotalCharge - Additional_charges - Survey_HoursTreatment - Survey_TimelyVisits -Survey_TimelyAdmin - Survey_TimelyTreatment

Hospitals can benefit from researching these components and analyzing the correlation between these principal components and readmission rates. From the results of an in-depth analysis, the organization can extract insights and attempt to reduce readmission rates.

References:

James, G., Witten, D., Hastie, T., & Dishirani, R. (2017). In An introduction to statistical learning: with applications in R (pp. 6–6). essay, Springer.

Wickham, H., & Discourage and Mickham, H., & Discourage and Mickha

1.3.5.17.1. Grubbs' Test for Outliers. (n.d.). https://www.itl.nist.gov/div898/handbook/eda/section3/eda35h1.htm.

A Short Introduction to the caret Package. (n.d.). https://cran.r-project.org/web/packages/caret/vignettes/caret.html.

Doug Fir Doug Fir 15k3939 gold badges122122 silver badges229229 bronze badges, & Julius VainoraJulius Vainora 44k99 gold badges7979 silver badges9696 bronze badges. (1967, October 1). Make only some features dummyVars. Stack Overflow. https://stackoverflow.com/questions/54602192/make-only-some-features-dummyvars.

mice: Multivariate Imputation by Chained Equations (MICE). RDocumentation. (n.d.). https://www.rdocumentation.org/packages/mice/versions/2.25/topics/mice.

Sébastien Lê, G. F. F. H. (n.d.). Principal Components Analysis. FactoMineR. http://factominer.free.fr/factomethods/principal-components-analysis.html.

Alice, M. (2018, May 14). Imputing Missing Data with R; MICE package. DataScience+. https://datascienceplus.com/imputing-missing-data-with-r-mice-package/.