Subject index

Α

```
adjusted R^2: see coefficient (adjusted R^2)
                                                                   analysis (continued)
AEM: see asymmetric eigenvector maps
                                                                     classical scaling, 426, 492
algae, 8, 316, 537, 593, 622, 623, 642, 688, 689,
                                                                     classification tree a. (CT), 406
                                                                     classification and regression tree a. (CART),
  700, 856; see also phytoplankton
algebra, 71
  of canonical correspondence analysis, 662-
                                                                     cluster a., 337-424, 427, 526, 625, 689, 717
                                                                     co-inertia a. (CoIA), 531, 532, 696-707, 710
  of redundancy analysis, 635-642
                                                                     concordance a., 213-218, 395-397, 422, 424
aliasing, 714, 715
                                                                     confirmatory factor a., 535
alphabet, 227
                                                                     contingency table a.: see contingency table
                                                                        analysis
analysis
                                                                     correspondence a. (CA), 4-6, 36, 183, 200,
  4th-corner a.: see fourth-corner method, or
                                                                        243, 290, 391, 426–428, 452, 464–492,
                                                                        507, 509, 519, 520, 529, 612, 616, 627,
  analysis of similarities (ANOSIM), 597, 608-
                                                                        670, 699, 768, 852; see also analysis
     611, 624
                                                                        (detrended correspondence a., three-way
  analysis of variance: see analysis (one-way
                                                                        principal component a.), contingency table
     ANOVA, two-way ANOVA)
                                                                        analysis
  association a., 377-379, 390
                                                                     cross-contingency a., 719, 737
  Beals smoothing, 334, 335
                                                                     detrended correspondence a. (DCA), 382,
  Box-Jenkins a., 718, 780-782, 783
                                                                        434, 482-487, 489, 490
  canonical a. of community composition (or
     species) data, 706-709
                                                                     dimensional a.: see dimensional (analysis)
  canonical a., 10, 15, 36, 52, 54, 182, 530–534,
                                                                     direct gradient a., 526, 528, 625; see also
     566, 601, 602, 606, 607, 625-710, 718,
                                                                        comparison (direct)
     719, 791, 850, 852–858, 863, 874, 877,
                                                                     discrete discriminant a., 198, 531, 532
     900, 902; see also analysis (canonical
                                                                     discriminant a.: see analysis (linear
     correlation a., canonical correspondence a.
                                                                        discriminant a., multiple discriminant a.)
     partial canonical a.)
                                                                     dissimilarity a., 380
  canonical correlation a. (CCorA), 99, 198,
                                                                     distance-based RDA (db-RDA), 198, 199,
                                                                        201, 646-649, 709, 710
     201, 452, 529, 531, 532, 626, 629, 630,
     660, 678, 690-697, 702, 705-707, 709, 710
                                                                     exploratory data a., 722
  canonical correspondence a. (CCA), 198, 199,
                                                                     factor a., 340, 401, 425, 426, 535
     201, 406, 417, 465, 531–534, 582, 626–629,
                                                                     fourth-corner a.: see fourth-corner method, or
     641, 646-649, 654, 656, 660-673, 689, 691,
                                                                        problem
     696, 706–710, 719, 894; see also analysis
                                                                     Friedman two-way ANOVA by ranks, 202,
     (partial canonical correspondence a.)
                                                                        204, 213-214, 218
  canonical R^2, 531, 566, 632-633, 649
                                                                     generalized Procrustes a., 611, 704-705
  canonical variate a. (CVA), 674, 676; see also
                                                                     gradient a., 478, 479
     analysis (linear discriminant a., multiple
                                                                     harmonic a., 739, 747-748, 750, 751; see also
     discriminant a.)
                                                                        harmonic
```

analysis (continued)	analysis (continued)
hybrid scaling, 470, 512	partial principal component a. (partial PCA),
indirect gradient a., 526, 528, 625; see also	657
comparison (indirect)	partial redundancy analysis (partial RDA),
inertia a., 426	649–658, 661, 709, 854, 874, 878, 894,
information a., 372–376, 421	896–900
Kedem's spectral a., 719, 766	path a., 4, 183–186, 198, 201, 526, 535, 536,
Kruskal-Wallis one-way ANOVA by ranks,	579, 580, 592–597, 624, 689
202, 203, 218	point pattern a., 7, 789–790
lagged contingency a. see analysis (cross-	principal component a. (PCA), 4-6, 36, 45,
contingency a.)	56, 193, 198, 200, 267, 268, 273, 300, 328,
line pattern a., 790	330, 380–381, 395–397, 426, 427–466,
linear discriminant a. (LDA), 198, 201, 417,	471, 479–481, 484, 496, 507, 516, 518,
530, 531, 588, 626, 628, 629, 673–690,	519, 520, 522, 523, 529, 581, 612, 627,
708–710	676, 680, 702–703, 768, 895; see also
maximum entropy spectral a. (MESA), 719,	analysis (three-way principal component
763–766	a.)
metric multidimensional scaling: see analysis	principal component a. in the frequency
(principal coordinate a.)	domain, 763, 764
multidimensional (or multivariate) a. of	principal components of instrumental
variance (MANOVA), 198, 199, 416, 604,	variables, 630
656–657, 694, 710	principal coordinate a. (PCoA), 6, 197, 198,
multidimensional unfolding, 428	200, 268, 276, 286, 296, 297, 305, 310,
multiple discriminant a., 676, 679, 688; see	312, 323, 333, 359, 362, 387, 394, 395,
also analysis (linear discriminant a.)	402, 412, 426–428, 463, 464, 492–513,
multiple factor a. (MFA), 703	519, 520, 524, 525, 527, 768, 859, 883, 904
multivariate regression tree a. (MRT), 338,	Procrustes a. (Proc), 428, 531, 532, 597, 611,
402, 406–411, 422–424, 531–534, 660,	612, 629, 696–707, 710
773-774, 783	Q-mode a., 308, 330, 334
multivariate spectral a., 719, 763; see also	R-mode a., 275, 309, 313, 315, 334
analysis (principal component a. in the	reciprocal averaging, 456, 464, 478–479; see
frequency domain; spatial eigenfunction a),	also analysis (correspondence a.)
regression (frequency r.)	redundancy a. (RDA), 198, 201, 300, 328,
multiway ANOVA, 202, 204	330, 396, 531–534, 556, 557, 566, 607,
non-centred PCA, 433	626–661, 673, 689–691, 695, 696, 706–
nonmetric multidimensional scaling (nMDS),	710, 719, 851, 854, 874, 877, 887, 889,
4-6, 197, 198, 200, 310, 425–427, 452,	890, 894–900; see also analysis (distance-
463, 464, 487, 493, 506, 512–520, 768,	based RDA, transformation-based RDA)
769, 777, 779	regression a.: see regression
O-mode a., 266	regression tree a. (RT), 406
of variance (ANOVA); 18, 49, 202-204, 218,	replication a., 417
220, 316; <i>see also</i> analysis (Friedman two-	S-mode a., 266
way ANOVA by ranks)	scaling a., 124
one-way ANOVA, see analysis (of variance)	simple discriminant a.: see analysis (linear
orthogonal Procrustes a., 428, 611-612, 703	discriminant a.)
P-mode a., 266	spatial a., 16, 657, 767, 785–858, 859-906
partial canonical a., 20, 654, 656, 660, 853,	spatial eigenfunction a., 859-905
902; see also analysis (partial canonical	spatial trend surface a., 861
correspondence a., partial redundancy	spectral a., 7, 16, 45, 714, 717–719, 727, 754–
analysis)	766, 783
partial canonical correspondence a. (partial	surface pattern a., 790, 791, 857
CCA), 656, 657, 667, 710, 894	T-mode a., 266, 267
partial Mantel a., 604-607, 624	three-way correspondence a., 269

analysis (continued)	beetles, 401
three-way principal component analysis, 269	Beals smoothing: <i>see</i> analysis (Beals smoothing)
time series a., 4, 7–9, 711-858, 859, 881, 892	Behrens-Fisher problem, 25
transformation-based K-means partitioning	benthos, 243, 768; see also molluscs
(tb- <i>K</i> -means), 328	Bergmann's law, 537
transformation-based PCA (tb-PCA), 200,	beta diversity: see diversity (species beta d.)
328, 462–464	binary question, 223–227
transformation-based RDA (tb-RDA), 328,	bioassay, 8
646–649, 657	biogeography, 33, 397, 519, 621, 859
trend-surface a., 568, 791, 803, 821–829, 850,	biplot; see also joint plot, triplot
858, 860, 861	correlation b., 437, 441–445, 448, 453, 454,
TWINSPAN, 381–383, 397-398, 402, 418,	462, 640, 707
422	distance b., 437, 441–444, 448, 453, 462, 639,
two-way ANOVA, 202, 204, 213	640
wavelet a., 766–767, 783, 790	in CA, 463, 469–473, 480, 487-488, 616
weighted averaging partial least squares	in CCA, 666-670
(WA-PLS), 709	in CCorA, 693, 695-696
anisotropy, 800	in PCA, 437, 441, 442–445, 448, 452-454,
geometric, 810	
•	462, 463, 520, 657
zonal, 810	in PCoA, 499 in RDA, 637-641, 644-648
ANOVA: <i>see</i> analysis (of variance) anthropology, 339, 884	
	birds, 215, 235, 243, 401, 742, 750, 759, 762,
arch effect, 482–487; see also horseshoe	773, 852, 855
asymmetric eigenvector maps (AEM), 888–893,	bit, 227
897, 904	Bonferroni correction: <i>see</i> multiple testing
association; see also coefficient	bootstrap, 31, 57
biological a.: <i>see</i> species (biological	boundary
associations)	definition, 846
measure of a., 63-64, 265-266	detection of b, 804, 844-847, 857
autocorrelation	Box-Cox method, 48–50, 57, 370
in time series, 717, 727–736, 755, 756, 759,	Box-Jenkins: see analysis (Box-Jenkins a.)
764, 766, 781, 783	broken stick model, 256–257, 449, 453, 520; see
spatial a., 12-20, 259, 783, 792, 793, 803,	also distribution (broken stick d.)
818, 857, 879, 880, 894, 896, 897, 903	
tests of significance in the presence of a.: see	
test (statistical, of significance in the	C CA: <i>see</i> analysis (correspondence a.)
presence of a.)	calibration, 670, 672
autocorrelogram: see correlogram (in time	canonical
series)	analysis: see analysis (canonical a., canonical
autocovariance, 717, 727–736, 755, 756, 759,	correlation a., canonical correspondence a.,
766, 783	canonical variate a.)
axis	form, 76, 90, 625–626, 661
major a., principal a., 165-171, 429, 542,	variate, 680, 689, 693, 695; see also analysis
546–549	(canonical variate a., linear discriminant a.,
major, minor a. of a concentration ellipse,	multiple discriminant a.)
165, 429	CART: see analysis (classification and
time, 266, 767; see also data (time) series	regression tree a.)
	causal model, 182-183; see also model (biotic
	control; environmental control; historical
bacteria, 2, 129, 257, 518, 564, 574, 596, 688,	dynamics)
723, 763, 822-824, 844, 850-852, 854-856,	chain, 183
893	double cause, 183
barnacles, 509, 805, 806	double effect, 183

В

causal model (continued)	clustering (continued)
spurious correlation, 596	average linkage c., 352
triangular relationship, 183	beta-flexible c.: see clustering (flexible c.)
causal modelling	chronological c., 773–780, 783, 839
on resemblance matrices, 606	Clifford & Goodall: see clustering
using correlations, 182–187, 535-536; <i>see</i>	(probabilistic methods)
also analysis (path a.)	CoIA (co-interia analysis), 401
using partial canonical analysis, 182	combinatorial c. methods, 367–370, 421
causality, 9, 182,-183, 878	combined with an ordination, 522-526
CCA: see analysis (canonical correspondence a.)	complete linkage c., 343, 348, 350-351, 369,
CCorA: see analysis (canonical correlation a.)	370, 392-395, 404, 414, 421-422,
central limit theorem, 158, 315	constrained c., 349, 402, 773, 777, 779, 783,
centring, 43	791, 839–844, 847, 851, 852, 857, 858
cetaceans, 36, 119, 120	descriptive c., 341
chain, chaining, 343-345, 350-351, 370, 375,	dissimilarity analysis, 380
395, 421, 423, 522, 863; <i>see also</i> causal	division in ordination space, 380–381, 422
(chain)	division c. methods, 348
of primary (external) connections, 346, 355,	Edwards & Cavalli-Sforza, 379-380
359, 419, 523–525, 527	flexible c., 370–371
chaos theory, 2, 3	furthest neighbour sorting: see clustering
characteristic equation, 92	(complete linkage)
characteristic polynomial, 93, 98	general agglomerative c. model, 367–370,
characteristic root: see eigenvalue	376, 423, 840
characteristic value, 70, 124-126, 129; see also	hierarchical agglomerative c. methods, 349,
scale factor (in dimensional analysis)	350–376, 384, 419, 421, 775
characteristic vector: see eigenvector	hierarchical c., 527
chart (depicting functions), 118–119	hierarchical c. methods, 348–349, 421-423
chess moves, 795	hierarchical divisive c., 377–383
chi-square (X^2) : see statistic	information analysis, 372–376, 421
chronobiology, 714	integer link linkage c., 352
classification, 36, 219, 337–339, 346, 347, 349;	intermediate linkage c., 351–352, 370, 414,
see also clustering	421, 775, 777
and regression tree a. (CART): see analysis	monothetic c. methods, 348, 377–379, 422
(classification and regression tree a.)	nearest neighbour c.: see clustering (single
function: see function (classification f.)	linkage c.)
table, 588, 681, 686, 688	non-hierarchical complete linkage c., 392-
tree a. (CT): <i>see</i> analysis (classification tree a.)	395, 422
cluster, 265, 337-340	non-hierarchical c. methods, 346, 348–349,
connectedness within c.: see connectedness	422; see also clustering (non-hierarchical
degree of isolation of c., 411–412	complete linkage c.)
representation, 418–420	non-probabilistic c. methods, 349–350
validation, 338, 415–418	overlapping c. methods, 393
clustering, 4, 198, 200, 265-266, 273, 324, 334,	polythetic c. methods, 348, 379–380, 422
337-424, 521-533, 718, 747, 769; see also	probabilistic c. methods, 349–350
partition	proportional link linkage c., 352, 414, 423
absolute resemblance c., 352	relative resemblance c., 352
agglomeration c. methods, 348	sequential c. algorithms, 347-348
association analysis, 377–379	simultaneous c. algorithms, 347-348
average clustering methods, 351–360, 421;	single linkage c., 341–346, 374-350, 369,
see also clustering (unweighted arithmetic	370, 391, 411, 414, 415, 421–423, 522–
average c.; unweighted centroid c.;	525, 527
weighted arithmetic average c.; weighted	space constrained c., spatial c., 402, 839-844
centroid c.)	species c., 389-403

clustering (continued)	coefficient (continued)
statistics, 411–415, 416	contingency c., 234-235, 314, 334
synoptic c., 341, 419	correlation c.: see correlation
time-constrained c. by MRT, 773	Czekanowski, 276, 285, 304-305
unweighted arithmetic average c. (UPGMA), 352–355, 369, 421	dependence c.: see coefficient (of dependence)
unweighted centroid c. (UPGMC), 353, 357–	deviant index, 380
360, 369, 372, 376, 421	dissimilarity c., 270
very large data sets, 349	distance c., 64, 270, 272, 273, 295–312, 322,
Ward's minimum variance c., 360–367	323, 327, 328, 492, 775
weighted arithmetic average c. (WPGMA),	distance between species profiles (D_{18}) , 263,
353, 355–356, 369, 421	298, 305, 307, 321, 324
weighted centroid c. (WPGMC), 353, 360-	drag c.: see drag (coefficient)
362, 369, 376, 421	efficiency c., 375
with spatial contiguity constraint, 774	Estabrook & Rogers (S_{16}) , 280-283, 297, 325
co-spectrum, 759	Euclidean distance (D_1) , 261-263, 272, 297–
coding, 39–54, 610, 720, 901; see also	301, 304, 309, 325, 327–329, 332-334,
normalization, transformation of variables	426, 453, 465, 492, 513, 799, 834
coefficient; see also statistic	Fager & McGowan (S_{14}) , 318, 392
adjusted c. of multiple determination	Faith c. (S_{26}) , 277, 297
(adjusted R^2), 565–566, 633	Geary's spatial autocorrelation c. (c) , 793, 817
association c., 4, 45, 198-200, 269–273	geodesic metric (D_4) , 298, 302, 324
asymmetric uncertainty c., 233–234	Goodall probabilistic c. (S_{22}, S_{23}) , 288-292
asymmetrical binary c., 275–277	Gower (S_{15}) , 280, 297, 325, 335
asymmetrical c., 272	Gower (S_{19}) , 286-288, 297, 323, 333 Gower (S_{19}) , 286-288, 297, 321, 324, 370, 510
asymmetrical quantitative c., 284–288	Gower distance (for matrix comparison), 413-
asymmetrical quantitative $c.$, $264-266$ average distance (D_2) , 298, 300-301, 325	415
binary c.: see coefficient (asymmetrical	great-circle distance, 795
binary c.; symmetrical binary c.)	Hamann c., 275
Bray-Curtis (D_{14}) : see coefficient (percentage	Hellinger distance (D_{17}) , 261, 263, 277, 289,
difference distance)	298, 310, 321-324, 333
Canberra metric (D_{10}) , 298, 306, 312, 321,	index of association (D_9) , 298, 305, , 319-320,
324	324
chi-square c. (X^2) : see statistic (chi-square s.)	information measures, 198-199; see also
chi-square distance (D_{16}) , 263, 308-310, 452,	coefficient (reciprocal information c.)
480, 654, 657, 665–667, 699, 894; <i>see also</i>	Jaccard c. of community (S_7) , 263, 275-276,
transformation of variables (chi-square	284, 317
distance t.)	Krylov (S_{25}), 318-319, 393
chi-square metric (D_{15}) , 319, 323; see also	Kulczynski (S_1) , 277, 296, 324
transformation of variables (chi-square	Kulczynski (S ₁₈), 286, 297, 311, 324
metric t.)	Lance & Williams information statistic (1),
chi-square similarity (S_{21}) , 288, 297	372-373, 375
choice of a c., 320–326	Legendre & Chodorowski (S_{20}) , 287-288, 297,
chord distance (D ₃), 261, 263, 277, 289, 298,	321, 324
301-302, 310, 324	Mahalanobis generalized distance (D_5) , 298,
city-block metric (D_{τ}) : see coefficient	303-304, 325, 335
(Manhattan metric)	Manhattan metric (D_7) , 298, 304-306, 325, 334
coherence c., 233	mean character difference (D_s) , 298, 304-305,
cohesion index, 411–412	325
coincidence index (S_o) : see coefficient	Minkowski metric (D_s) , 298, 304
(Sørensen c.)	modified Gower dissimilarity, 305
concordance: see coefficient (of concordance)	modified mean character difference (D_{10}) ,
connectedness: see connectedness	298, 305, 324

coefficient (continued)	coefficient (continued)
Moran's spatial autocorrelation c. (1), 793	symmetrical binary c., 273-275
nonmetric c. (D_{13}) , 298, 310-311	symmetrical c., 272
Ochiai (S_{14}) , 277, 297, 317	symmetrical quantitative c., 278–284
Odum c. (D_{14}) : see coefficient (percentage	taxicab metric (D_1) : see Manhattan metric
difference distance)	transforming D into S, 270
of alienation, 595	transforming S into D, 270, 296-297
of community: see coefficient (Jaccard c.)	Tschuproff contingency c., 234
of concordance (Kendall W), 196, 205, 213-	types of c., 320–321
218, 395, 396, 530-531	uncertainty c., 233-234, 326
of dependence, 199, 313–320, 391, 538	Whittaker's index of association (D_0): see
of divergence (D_{11}) , 298, 306, 321, 324	coefficient (index of association)
of diffuse light attenuation, 114	Yule, 275, 323
of multiple determination (\mathbb{R}^2), 172-176, 179-	coenoclines, coenoplanes, 487, 519
181, 530, 564-565, 567, 636	coherence,: see coefficient (coherence),
of nondetermination, 178, 543, 595	spectrum (coherence s.)
of partial determination, 180, 181	collinearity, 533, 557–564
of racial likeness (D_{12}) , 298, 306-307, 325, 770	comparison
of species dispersal direction, 847-849	direct, 526, 528-529, 531, 533, 597, 625
of variation, 148	indirect, 526, 528-533, 625
path c., 579, 580, 594–595	competitive exclusion principle, 478
Pearson contingency c., 234	computer programs and packages, 32-33
Pearson's φ (phi), 275	3WAYPACK, 269
percentage difference distance (D_{14}) , 261, 263,	BOUNDARYSEER, 847, 857
285, 298, 311, 312, 321, 324, 333, 402,	CANOCO, 330, 442, 443, 470, 485, 490, 519,
464, 501, 504, 649 B-C 263, 311, 333, 334	629, 634, 638, 642, 644, 646, 658, 661,
probabilistic c., 288–295, 320, 324, 326	665–667, 709
probabilistic similarity measure of association	CLUSTAN, 334
$(S_{77}), 295$	DECODA, 512, 517
properties of distance c., 296-298	Geoeas, 857
Q-mode association c., 200, 266-268	GSLIB, 852, 854, 857
quantitative c., 278-288	Isatis, 857
R^2 : see coefficient (of multiple determination)	JMP, 334, 423
R-mode association c., 199, 266-268	MATLAB, 32, 103, 107, 194, 588, 667
Rajski's metric, 233	NTSYSPC, 275, 334, 423, 513
Rand index, 413, 424, 531	ODRPACK, 556
Raup & Crick (S_{27}) , 293–295	PATN, 335, 512, 513
reciprocal information c., 232-234, 326	PC-ORD, 335, 381, 398, 513, 519, 629, 709
redundancy c., 695	PERMANOVA, 710
regression c.: see regression (c.)	PRIMER, 513, 608, 610, 710
Rogers & Tanimoto (S_2) , 274, 296	R, 32–33; see also R functions, R packages
Russell & Rao (S_{11}) , 277, 296, 324	S, 32
RV c., 699-700, 704, 710	SAAP, 857
similarity c., 64, 200, 270, 272–297, 392, 501	SAS, 32, 107, 203, 334, 353, 366, 386, 389,
simple matching c. (S_1) , 274, 278, 296, 325,	420, 423, 512, 586, 588, 679
334	SPACESTAT, 857
singularity index, 380	S-PLUS, 32, 59, 103, 107, 194, 588
Sørensen coefficient (S_8), 276, 317	SPSS, 32, 334, 423, 512, 586
spatial autocorrelation c.: see coefficient	STATISTICA, 32, 334, 423, 679
(Geary's spatial autocorrelation c., Moran's	Surfer, 857
spatial autocorrelation c.)	SYN-TAX 2000, 335, 519, 629, 709
Steinhaus (S_{17}) , 285-286, 289, 297, 311, 324	SYSTAT, 334, 353, 423, 512, 592
symmetric uncertainty, c., 233–234	THE R PACKAGE, 783

computer programs and packages (continued)	correlation (continued)
TWINSPAN, 381–383, 391, 397, 398, 402,	cophenetic c.: see cophenetic c.
418, 422	cross-correlation, 718-719, 735-739, 759, 783
WINTWINS, 381	false c., 878, 880
WOMBSOFT, 858	general formula of c. coefficient, 206
concentration index (Simpson): see entropy	•
(Simpson concentration index)	Kendall c. coefficient (τ), 34, 187, 198, 209-
	213, 218, 314, 326, 335, 531
concentration ellipse, 162–165	Kendall cross-correlation, 737
concordance analysis: <i>see</i> analysis (concordance	lag c.: see correlation (cross-correlation)
a.)	matrix, 23, 151–158, 194, 335
concordance, coefficient of: see coefficient (of	multiple c. coefficient (<i>R</i>), 172, 173–175, 179
concordance)	nonparametric c. coefficient: see correlation
conditional entropy: see entropy (conditional e.)	(rank c. coefficient)
congruence among distance matrices (CADM),	partial c. coefficient (nonparametric), 213
217, 218, 608	partial c. coefficient (parametric), 172, 175-194
connectedness, 345, 351, 411–412	Pearson c. coefficient (<i>r</i>), 17, 34, 151-158,
connection network, 834–839	194, 198, 266, 313-315, 326, 334-335, 531,
consensus (index, tree), 415, 417-418, 529	795
conservation biology, 401	point c. coefficient, 319
contiguity constraint, 769	principal components of a c. matrix, 445–448,
spatial c. c., 423, 774, 840, 842	453
temporal c. c., 423, 769, 773–780, 840, 842	properties of multiple c. coefficient, 181
contingency table analysis, 228-247, 264	properties of partial c. coefficient, 181
ANOVA hypothesis in c. t. a., 220	properties of linear c. coefficient (Pearson <i>r</i>),
correlation hypothesis in c. t. a., 220	158
correspondence in c. t. a., 199, 243–247	Q-mode c., 61, 315, 450-451
cross-contingency a.: see analysis (cross-	rank c. coefficient, 205–213, 334, 413
contingency a.)	semipartial c. coefficient, 172, 179, 181, 182
expected frequencies in c. t. a., 229-231, 235-	serial c.: see autocorrelation
238, 240-246	spatial c., 8–22, 732, 788, 791
hierarchical models in multiway c. t. a., 236–	spatial cross-correlation, 817-818
239	Spearman c. coefficient (r or ρ), 18, 198, 205-
multiway c. t. a., 198-199, 219–220, 235–244,	209, 212, 218, 314, 319, 326, 335, 451, 531
264, 316, 584	species c. (SC), 319-320
null hypothesis (H ₀) in c. t. a., 220, 229–231,	species-environment c. in RDA, 638
237, 243, 245, 246	spurious c., 43, 596
test of hypothesis $O_{ij} = E_{ij}$, 244, 247	correlogram, 7
two-way c. t. a., 200, 203, 219–220, 228–235,	all-directional c., 792, 800–807
241, 244, 264, 314, 465	autocorrelogram: see correlogram (in time
cophenetic	series)
correlation, 412–415, 418	cross-c., 737-739,
distance, 346-347	directional c., 802, 807, 810-812, 858
matrix, 346–347, 376, 411–414, 417, 423, 527	in time series, 719, 730-734
similarity, 346-347	Mantel (multivariate) c., 601, 719, 739, 747,
coral reefs, 124, 614, 622	763, 791, 792, 797, 819–821, 858
correction for multiple testing: see multiple	spatial c., 719, 744, 745, 792–800, 805, 806,
testing	812, 818, 858
correlation	spatial cross-c., 817-818
among objects (Q-mode): see Q-mode c.	spline c., 805, 858
canonical c.: see analysis (canonical	correspondence analysis: see analysis
correlation a.)	(correspondence a.)
causal modelling using c.: see causal	covariance, 146-152, 158, 198, 326, 334; see
modelling (using c.)	also matrix (covariance m.)

D

covariance (continued)	descriptor (continued)
cross-covariance in time series, 735–739, 783	binary d., 35-36, 202, 334-335, 426, 531, 533,
matrix, 144-152, 161, 168, 194, 335	719; see also descriptor (presence-absence)
multivariate covariogram, 843	centred d. in PCA, 442
spatial, 816–818	meristic d., 35
spatial cross-covariance, 817 crabs, 742	mixed precision levels: <i>see</i> descriptors (of mixed precision)
crayfish, 601, 742	number of d., 145, 151, 450
CT: see analysis (classification tree)	of mixed precision, 197-201, 426, 531, 719
er. see unurysis (chassification dee)	presence-absence d., 35-36, 324–326, 421, 533
data (time) series, 4, 711-783; <i>see also</i> analysis (time series), autocorrelation, autocovariance,	qualitative d., 35-36, 197-204, 219-264, 325, 426, 531, 533, 535, 719
autocorrelogram, correlogram, periodogram,	quantitative d., 34–35, 143-194, 197-204,
spectrum, wavelet	324-326, 426, 453, 531, 533, 535, 719
binary d. s., 719, 763, 766	scale of d.: see scale
components of d. s., 711-717	semiquantitative d., 35-36, 195-218, 324-325, 426, 531
detrended d. s., 723–726, 732, 734, 757, 763 discontinuities in d. s.: <i>see</i> discontinuities	standardized d. in PCA, 448
(detection of)	state, 34
equispaced data, 721, 732-733, 769-771, 773	with mixed levels of precision: see descriptors
Eulerian approach, 712, 775	(of mixed precision)
Lagrangian approach, 712	deshrinking, 672
multidimensional (or multivariate) d. s., 712,	determinant, 76–80
717, 718, 719, 737-739, 747, 759-763, 767,	properties of the d., 76, 78-79
768-780,782, 783	determinantal equation, 92
noise in d. s., 714-717, 721, 726, 727, 730-	deterministic relationship, 1-3
731, 765, 780	detrending (in data series, or in spatial structure):
periodic variability in d. s., 715, 720, 727-	see trend (extraction)
767, 783	detrending (in correspondence analysis); see
qualitative d. s., 719, 732, 737, 739, 744-747,	analysis (detrended correspondence a.)
763	controversy about d., 486
residual d. s., 717, 723-724, 732, 782	diagram
semiquantitative d. s., 737, 739, 747, 763, 766	path d., 593
short d. s., 712, 719, 732, 741, 747, 751, 764,	quantitative-rank d., 198–200
765-766	rank d.: <i>see</i> rank-rank diagram
trend in d. s.: see trend	rank-rank d., 198-200
with measurement error, 765	scatter d., 198–200 Shepard d., 427-428
data box, 266-269	Shepard-like d., 414
dbMEM: see distance-based Moran's	trellis d., 403–406
eigenvector maps	dimensions (physical), 109-115
decit, 227	of animals, 119-122
degrees of freedom, 18-20 in contingency table analysis, 230, 236-237,	dimensional
240-241	analysis, 3-4, 109–142
Delaunay triangulation, 830, 835–836	constant, 111
dendrites, 346	homogeneity principle, 115–116, 125, 128,
dendrogram, 343-344, 346-347, 412-420, 527-529	129
comparison of, 528-529	variable, 111, 115, 124 dimensionless
dependence; see also independence	complete set of d. products, 116, 117,
linear, 558, 561, 569	130–138
descriptor, 33-39, 60, 61, 63, 144-147, 266-268;	constant, 111, 126
see also data (time) series, variable	Constant, 111, 120

dimensionless (continued)	E	ecological interpretation, 526-536: see also
graph, 118–119, 123		structure
product, 111, 116		ecological resemblance, 265-335, 403; see also
variable, 111, 117, 124		coefficient
direction cosine, 170–171		edge (of a dendrogram, or a graph), 53, 343,
Dirichlet tessellation, 839		405, 835-839, 858, 881-892
discontinuities (detection of), 717-718		eigenanalysis, 89-103, 194, 429, 495, 626
chronological clustering, 773-780		eigenvalue, 89-103, 104, 107
Hawkins & Merriam segmentation method,		multiple e., 97, 100-102
718, 769-770		negative e., 55, 100, 297, 310, 462, 500-508,
Ibanez segmentation method, 772		520, 699, 864, 868, 884, 890
in multivariate series, 768–780, 783		properties of e., 99-103
McCoy et al. segmentation method, 772		eigenvector, 89-103, 104, 107
Webster segmentation method, 718, 770–772		normalized e., 87, 95
discriminant analysis: see analysis (linear		properties of e., 99-103
discriminant a.)		entropy, 221-222
discrimination, 522, 530		Brillouin H, 253
dispersal routes, 847		conditional e., 231
dispersion: see covariance		generalized e. formula, 250
distance (dissimilarity), 270; see also coefficient,		negative e., 222
metric d., nonmetric d., semimetric d.		Shannon H, 227, 250, 252–253, 260, 372
properties of d. coefficients, 295-298		Simpson concentration index, 253-254
square-root transformation of d., 270, 296-		equality of variances: see homogeneity of
298		variances
ultrametric, 527; see also cophenetic (matrix)		equation
distance-based Moran's eigenvector maps		characteristic, or determinantal e.: see
(dbMEM), 815, 8610-881, 904		determinantal equation
distance-based RDA (db-RDA): see analysis		Einstein's e., 537
(distance-based RDA)		Gaussian logistic e.: see model (Gaussian
distribution		logistic)
bivariate normal d., 161–164		logistic e.: see model (logistic)
broken stick d., 256, 264; see also broken		Taylor e., 583
stick model		equilibrium
multinormal d., 157–165		circle of descriptors, 437-438
normal d., 157–159		contribution of a descriptor, 437–441, 447,
random d., 8-9		448, 453
uniform d., 8		projection, 436–439
univariate normal d., 159		equitability: see evenness
diversity (species), 37, 198, 247-264, 788		Euclidean distance: see coefficient (Euclidean
alpha d., 248, 258-259, 294		d.)
beta d., 258–261, 661, 702, 860, 874, 903–		Euclidean property (or Euclidean coefficient),
904		297; see also space (Euclidean s.)
gamma d., 258–260		Euclidean representation, 492–494, 499–501,
hierarchical components of d., 253		503, 506, 507; <i>see also</i> space (Euclidean s.)
indices, 243, 247-255, 259, 260, 264		evenness, 255-258
numbers (Hill), 251, 254, 258		Hurlbert e., 256
double-zero problem, 271–273, 327, 451		index of functional e., 257
drag		Pielou e., 255–256
force, 116		evolution (biological), 2, 68, 337, 768
coefficient, 118, 120, 139		ex aequo: see tied values

	expansion by minors, 77, 78, 84 experiment field e., 8, 20, 21, 788, 866 manipulative e., 8, 534, 535, 785, 853 mensurative e., 535, 785 extent (element of sampling design), 786-788		graph (<i>continued</i>) undirected g, 345 growth allometric, 545 isometric, 545 Guttman effect, 483; <i>see also</i> arch effect, horseshoe
F	filtration, filter (in time series), 726-727 fish, 54, 185, 249, 481, 487, 622, 623, 658–660, 670, 671, 695, 759, 773, 774, 849, 855, 856, 876, 877, 888, 893 association, 393-396 fisheries, 243 growth, 127-129, 137 Fisher's irises, 674 Fourier fast F. transform (FFT), 755-756, 761 series, 748–750, 753, 754 transform, 755–757, 759, 761, 766 Freeman-Tukey deviate, 244, 245 fourth-corner method, or problem, 526, 531-532, 613-622, 624 frequency (in time series), 712 fundamental f., 712 harmonic f., 712, 750, 755 Nyquist f., 713–714, 757	Н	harmonic, 712, 713, 731, 739, 747–751, 755–756, 758; <i>see also</i> frequency, period, wavelength, wavenumber regression, 753-754 hartley, 227 heterogeneity of variances, heteroscedasticity, 45, 46 heterogeneity (ecological), 22, 788-789 measured h., 789 functional h., 789 Holm correction: <i>see</i> multiple testing (Holm c.) homogeneity of variances, homoscedasticity, 46 horseshoe, 483, 507; <i>see also</i> arch effect human communication, 227-228 hypothesis (statistical) alternative h., 24 null h., 22–24
	Friedman chi-square statistic: see statistic (Friedman chi-square s.) function classification f., 680-681, 708 discriminant f., 673-676, 678, 681, 683 identification f., 533-534, 673, 676, 680 objective f., 360, 384, 514-516, 583 structure f., 791-821, 858 fundamental niche: see niche theory fungi, 271, 455, 700	I	icicle plot, 419 independence, 10 linear i., 10, 81 of observations (hypothesis of), 8, 11, 18, 25,146 independent observations, 8, 10, 18 descriptors, 10, 34 samples, 10, 201–204 variable of a model, 10 index: see coefficient
G	game theory, 2-3 Gauss-Jordan method, 85, 86 geostatistics, 21, 831 gradient (ecological), 53, 259-260, 285, 451, 463-464, 486, 487, 509; see also structure (spatial) grain size (element of sampling design), 786-788 Gram-Schmidt orthogonalization, 73, 457, 491 graph connected subgraph, 343–346, 418, 419 Gabriel g., 836 relative neighbourhood g, 838 theory, 344-345, 884		indicator value: see species (indicator value) inertia, 426, 467–468, 480, 481, 617, 667-668 inference, 6 design-based, randomization-based, 6, 11, 21 model-based, superpopulation, 6, 11 inflated data matrix, 477, 478, 663, 664, 666 information, 222 shared by two descriptors (B), 232, 233 theory, 3-4, 219, 221 insects, 401, 417, 880, 901 intercept, 539–540 confidence limits of, 552 invertebrates, 612, 622, 623, 702 isotropy, 800

J	jackknife, 31, 257	man (continued)
J	joint plot, 469, 481, 629, 698; <i>see also</i> biplot,	map (<i>continued</i>) trend-surface m., 791, 822–829
	tripot	unconstrained ordination m., 849–853, 858
	u-pot	weighted polynomial fitting m., 831
		marine benthos, 243
K	V 229 292 290 206 401 402 422	matrix, 62
17	K-means, 328, 383–389, 396, 401-402, 422– 424, 842, 843	addition, 71
	Kaiser-Guttman criterion, 448–449	adjugate (adjoint) m., 83
	Kendall coefficient of concordance (W): see	algebra, 3, 4, 59–107
	coefficient (of c.)	association m, 5, 63–65, 147, 233-234, 266–
	Kendall τ : see correlation (Kendall c.	267, 269
	coefficient)	asymmetric m.: see matrix (non-symmetric m.)
	Kendall <i>W: see</i> coefficient (of concordance)	canonical form of a m., 90, 625-626
	kriging, 791, 792, 811, 831–833, 857, 858	classification m., 681
	Kronecker delta, 279–281	cofactor, 78
	kurtosis, 188	column m., 62, 69
	,	comparison, 526-528, 597-613, 624
		conformable m., 74
L	lag (element of sampling design), 786	cophenetic m.: see cophenetic (matrix)
_	Lagrangian multiplier, 90, 166–167	correlation (i.e. m. correlation), 412-413,
	language	526-528
	English, 227	correlation m.: see correlation (matrix)
	French, 227, 228	covariance m., see covariance (matrix)
	redundancy in 1, 228	data m., 4, 60–63
	latent root: see eigenvalue	degenerate m., 494
	latent vector: see eigenvector	design m.: see matrix (model m.)
	LDA: see analysis (linear discriminant a.)	determinant of a m.: see determinant
	least squares	diagonal m., 66, 67
	method, 88	dimensions of a m., 62
	ordinary l. s. criterion (OLS), 541	dispersion m. (S), 144–151, 158, 429–432,
	principle of l. s., 541	450, 453, 626
	limnology, 43, 670	format of a m.: <i>see</i> matrix (dimensions of a m.)
	linear algebra, 62; see also matrix algebra	Hadamard product of two m., 75 identity m.: see matrix (unit m.)
	linear equations (system of), 87	ill-conditioned m., 105–106
	link (in clustering), 343, 344	indefinite m., 102, 103
	lizards, 243	inflated data m., 477, 615,-616, 663
	losslerinimum 284 286 514	inverse m. (properties of), 86-87
	local minimum, 384–386, 514 Loch Ness Monster, 225–226	inversion, 82–89
	Locii Ness Molister, 223–220	minor of a m., 77
		model m., 601, 819-820
M	M 1 1 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1' 1'	multiplication, 71–76
IVI	Mahalanobis generalized distance: see	negative semidefinite m., 102-103
	coefficient (Mahalanobis generalized	non-symmetric m., 68, 91, 100, 269, 404,
	distance) mammals, 121, 122, 235, 604, 839, 855; <i>see also</i>	422-423, 428, 511, 513, 517
	cetaceans	nonsingular m., 84
	MANOVA: see analysis (multidimensional a. of	null (zero) m., 67
	variance)	of diagonal elements of Σ , 156
	map, 792, 821-834; <i>see also</i> kriging	of eigenvalues, 90
	constrained ordination m., 849–853, 858	order of a m.: see matrix (dimensions of a m.)
	interpolated m., 791, 821, 829–833, 857	orthogonal m., 75
	inverse-distance weighting m., 830–832	orthonormal m., 86
	multivariate trend-surface m., 791	partial similarity m.: see partial similarity

matrix (continued)	model (continued)
pattern m.: see matrix (model m.)	forecasting m., 532, 671, 718, 782
positive definite m., 102-103	forward selection of terms in a m., 240,
positive semidefinite m., 102-103	561–562, 567
postmultiplication, 76	Gaussian logistic m., 588
power of a m., 100	hierarchical m., 236–239
premultiplication, 76	historical dynamics, 878, 879, 906
quadratic form of a m., 103	inverse-squared-distance diffusion m., 825,
rank of a m., 80–82, 100, 104, 133, 151	826
rearrangement, 403	linear regression m., 539-568
row m., 62	log-linear m., 198, 235–242, 264, 535, 536,
scalar m., 66	584, 587
singular m., 84	logistic model, 583-585, 588
skew-symmetric m., 68, 269, 404, 511	logit m., 198, 242, 535, 536; see also
square m., 62, 64–68	regression (logistic)
symmetric m., 64, 68, 102–103, 269, 404, 511	mathematical m., xiv, 138, 536
trace of a m., 66	moving average m. (MA), 731, 780, 783
transform m., 99	path m., 593, 596
transpose of a m., 67	permutational m., 618–620
triangular m., 67	physical m., 138
unit m., 66	polynomial m., 486, 568, 827
zero m.: see matrix (null m.)	predictive m., 532, 534, 782
mean, 146	saturated m., 236
median, 195	small-scale, 138-141
meiofauna, 404	spatial m., 791
MEM: see Moran's eigenvector maps	testing (in engineering), 118, 138
metric	variogram m., 808-810, 832-833, 838, 852,
distance, 299-310, 324-326, 527	854, 858
properties of m. distance, 295	molluscs, 509
space, 268, 273	monomial, 569
Michaelis-Menten equation, 123-124	monotonic relationship, 196
missing data, 54–57, 279, 462, 500	Monte Carlo method, 31
in time series, 721, 739, 765, 771	Moran's eigenvector maps (MEM), 881–888,
mites, 396-397, 402, 660, 700–702, 705-706,	892–893, 898–900, 904; see also distance-
815, 849, 877, 886, 887, 898–900, 902	based Moran's eigenvector maps
model, 3-8	moving average, 581, 718, 723-726
all-pole m.: see model (autoregressive m.)	weighted m. a., 724
autoregressive m. (AR), 12, 764, 765, 780-	repeated m. a., 724-726
783	MRT: see analysis (multivariate regression
autoregressive-integrated-moving average m.	tree a.)
(ARIMA), 781, 783	MSO: see multiscale ordination
autoregressive-moving average m. (ARMA),	multidimensional
781, 783	data, 4
backward elimination of terms in a m., 240,	qualitative data, 219–264
561-562, 567	quantitative data, 143–194
biotic control m., 878-879	scaling: see analysis (nonmetric
Box-Jenkins: see analysis (Box-Jenkins a.)	multidimensional s., principal coordinate a.)
broken stick m.: see broken stick model	semiquantitative data, 195–218
confirmatory, 592	variate, 144
correlative m., 532	multiple correlation: <i>see</i> correlation (multiple c.
environmental control m., 12, 13, 582, 601,	coefficient)
785, 878-879	multiple factor analysis (MFA), 401, 607, 703,
exploratory, 186, 592	710

	multiple regression: <i>see</i> regression (multiple linear r.) multiple testing, 23, 57, 143, 239 Bonferroni correction, 23, 244-245, 745-746, 799-800, 815 Hochberg correction, 23 Holm correction, 23, 244, 318, 396, 622-623, 800		number Froude n., 116 Newton n., 116, 133 Reynolds n., 116, 120, 129, 133, 139 numerical ecology, xiv-xv numerical taxonomy, xv, 33, 337, 341, 676 nunatak hypothesis, 582
	progressive Bonferroni correction, 745–747, 800–802, 806, 812, 818, 820 multiplicity, 101, 102, 168, 171 multiscale ordination (MSO), 894–900, 904 multiscale codependence analysis (MCA), 901–902 multivariate: <i>see</i> multidimensional (variate) multivariate regression tree (MRT): <i>see</i> analysis (multivariate regression tree a.)	O	object, 33, 60, 61, 63, 144-147, 266-268 number of o. (or observations) <i>versus</i> number of descriptors, 151, 450, supplementary o. in PCA, 460–461 observation: <i>see</i> object Ockham's razor, 559–561, 568, 583 ordered comparison case series (OCCAS), 322, 323 ordination, 4, 198, 200, 265–269, 339–341, 380– 383, 391, 394–397, 414, 421–422, 425–520,
N	nat, 227 negative matches, 273; see also double-zero problem niche theory, 4-5, 12, 271, 478 nMDS: see analysis (nonmetric multidimensional scaling) node (of a graph), 343, 884 non-Euclideanarity, 492, 500, 501		522-533, 611, 612, 763, 768-769; see also map (constrained ordination m., unconstrained ordination m.), multiscale ordination canonical o., 611, 625-710, 791 overall minimum: <i>see</i> local minimum
	nonmetric distance, 296, 298, 500, 517 properties of n. d, 296 nonmetric multidimensional scaling (nMDS): see analysis (nonmetric multidimensional scaling) nonparametric statistics, 4, 31, 36, 195–218; see also parametric non-symmetric data matrix: see matrix (non-symmetric data m.) normal distribution: see distribution normal probability plot, 190–191 normality assumption, 25 normalization, 45-54 Anderson transformation, 285, 327 angular transformation, 48 arcsine transformation, 48 Box-Cox method, 48–50 hyperbolic transformation, 46, 48 logarithmic transformation, 41-42, 46, 47, 49 of a distance coefficient, 270 omnibus procedure, 50–51 square root transformation, 46-49 Taylor's power law, 50 NP-hard, NP-complete problem, 386 nugget effect, 804, 808–810, 812	P	π (Pi) theorem, 115–130 palaeoecology, 293, 328, 670, 855 parameter, 146, 159 parametric, nonparametric, 3, 4, 157-158, 195-196 partial canonical analysis: see analysis (partial canonical a., partial CCA, partial RDA) partial canonical correspondence analysis (partial CCA): see analysis (partial canonical correspondence a.) partial correlation: see correlation (partial c. coefficient) partial least squares, 709 partial coefficient of multiple determination (partial R), 572, 575, 576, 649, 651, 658 partial redundancy analysis (partial RDA): see analysis (partial redundancy a.) partial regression, 172, 557, 570–583, 624 partial similarity, 278–284, 287-288, 289–291, 324, 325 partition, 338-339, 347; see also K-means, variation partitioning fuzzy p., 424 patches (detection of): see structure (spatial) PCA: see analysis (principal component a.) PCNM: see distance-based Moran's eigenvector maps (dbMEM)

PCoA: <i>see</i> analysis (principal coordinate a.)		principle
Pearson chi-square statistic: see statistic		of least squares, 541
Pearson r: see correlation		of maximum likelihood (ML), 586
period, 712		of parsimony, 559, 568
fundamental, 712, 748, 751		probability
harmonic, 712, 713, 731, 748, 750, 751		frequency theory of, 1
characteristic, 7, 717–719, 766		distribution, 1
periodic phenomena, 712, 713		of interspecific encounter, 254
periodic variability, 715, 727–767, 783		Proc: <i>see</i> analysis (Procrustes a.)
periodogram, 719, 739-753, 755, 783		process, 6, 711
contingency p., 719, 744–747, 783		physical p., 9, 888
• • •		stochastic p., 6, 711
Dutilleul modified p., 751–753 Schuster p., 747–751, 754, 783		
* * * * * * * * * * * * * * * * * * * *		product
two-dimensional Schuster p., 793		cross p., 72
Whittaker and Robinson, 739–744, 747, 750		dot p., 72, 334
periphyton, 855		inner p., 72
permutation		postmultiplication, 76
exact or complete p. test, 30		premultiplication, 76
models, 618–620; see also permutation (of		properties of matrix p., 75
raw data)		scalar p., 72–73
number of permutations, 26, 31		vector (or external) p., 72
of raw data, 579, 651–653		prototype, 118, 138-141
of residuals, 652-653		protozoa, 688, 855
restricted p., 25, 30, 652		_
sampled p. test, 30, 31		
test, 21, 25–32, 57	Q	O analysis: saa analysis (O mode a)
phytoplankton, 2, 8, 36, 114, 123–124, 125, 238,	V	Q analysis: see analysis (Q-mode a.)
242, 246-247, 370, 391, 723, 732, 733, 737,		quantification, 39
738, 747, 753, 754, 757, 760, 761, 763, 766,		
769	-	
phytosociology, 339, 404	R	R functions
pivotal condensation method, 79–80		acf(), 729, 731, 783
pixel, 787		ad.test(), 191, 194
plant ecology, 596		agnes(), 366, 423
		anosim(), 624
pollution, 258, 396, 782, 847, 856		anova.2way.unbalanced(), 710
polygon; see also Dirichlet tessellation		aov(), 218
Voronoï, 830, 839		anova.cca(), 634
influence, 839		ar(), 783
Thiessen, 839		arima(), 783
ponds, 290–292, 342–345, 524-525, 604		ARMAacf(), 783
population genetics, 592		beals(), 335
Prim network, 346		betadisper(), 303, 335, 656, 682, 710
principal axis, 165–171		bgdispersal(), 858
principal component, 429, 430, 432; see also		
analysis (principal component a.)		boxcox.fit(), 57 BSS.test(), 335
meaningful components, 448-449		
misuses of p. c., 450–452		bstick(), 264, 520
principal-component axis, 429		buysbal(), 783
principal coordinate analysis (PCoA): see		ca(), 520
analysis (principal coordinate a.)		CA(), 520
principal coordinates of neighbour matrices		CADM.global(), 218
(PCNM): see distance-based Moran's		CADM most() 219
		CADM.post(), 218
eigenvector maps (dhMEM)		cancor(), 710
eigenvector maps (dbMEM)		• "

R functions (continued)	R functions (continued)
cascadeKM(), 423	fourthcorner2(), 624
CascadeMRT(), 424	friedman.test(), 218
cc(), 710	ftable(), 264
cca(), 520, 710	geoXY(), 858, 862, 905
CCA(), 710	giny(), 107
ccf(), 736, 783	glm(), 218, 624
M. C.	6 0.
cclust(), 423	gowdis(), 279, 335
CCorA(), 694, 696, 710	hclust(), 353, 355, 357, 360, 366, 423
chclust(), 783	heatmap(), 383, 403, 405, 423
chisq.test(), 218, 264, 335	help(), 33
chol(), 107	hmap(), 383, 403, 423
clustIndex(), 389, 423, 841	imputePCA(), 57
clValid(), 389, 423, 841	indval(), 399, 424
cmdscale(), 520	is.euclid(), 335, 520
cmeans(), 424	isoMDS(), 520
cocorresp(), 699, 710	kendall.global(), 218, 424
coeffRV(), 710	kendall.post(), 218, 424
coinertia(), 697–701, 710	kkmeans(), 423
coldiss(), 403, 423	kmeans(), 423
constrained.clust(), 783, 844	KMeans(), 423
contr.helmert(), 57	krige.conv(), 858
contr.poly(), 57	kruskal.test(), 218
cophenetic(), 412, 423	lda(), 679, 710
cor(), 194, 218, 335, 412	lillie.test(), 191, 194
correlog(), 858	lisa(), 807, 858
corresp(), 520, 710	lm(), 567, 622, 623, 657, 782, 858
cor.test(), 194, 335	lmodel2(), 624
cov(), 194, 335	lmorigin(), 623
cpgram(), 783	lm.ridge(), 624
create.MEM.model(), 864, 904	loglin(), 264
daisy(), 279, 335	mahalanobis(), 335
dbFD(), 264	manovRDa(), 710
decostand(), 57, 327, 330, 331, 335	mantel(), 624
det(), 107	mantel.correlog(), 819, 858
discrimin(), 710	mantel.rtest (), 624
dist(), 334, 335	mantel.test (), 624
dist.binary(), 335	mantelhaen.test(), 264
divc(), 264	MAT(), 710
dudi.acm(), 520	MLRC(), 710
dudi.coa(), 520	mca(), 520
dudi.fca(), 520	MCA(), 520
dudi.pca(), 520, 699	mcnemar.test(), 218
dudi.pco(), 520, 699	metaMDS(), 520
dwt(), 783 dwt.2d(), 783	mfa(), 703, 710
W *	MFA(), 703, 710
eigen(), 95, 107, 194, 492, 503, 883	mice(), 57 mjca(), 520
est.variogram(), 858	3 07
eyefit(), 858 fanny(), 424	mlogit(), 218
• •	model.matrix(), 57
fisher.test(), 218	moran.I.multi(), 890
forward.sel(), 567, 658, 709 fourthcorner(), 624	MRM(), 624
Tournicoffici(), 024	mso(), 814, 815, 819, 858, 895, 899, 904

R functions (continued)	R functions (continued)
mstree(), 423	residuals(), 575
mst(), 423	ridge(), 624
multipatt(), 399, 424	rlq(), 624
mvpart(), 407, 410, 423	rnorm(), 51
nested.anova.dbrda(), 710	RV.rtest(), 710
nls(), 624, 753	sample(), 57
nmds(), 520	scale(), 57
optim(), 624	seriate(), 423
ordiequilibriumcircle(), 520	seriation(), 423
ordistep(), 567, 658, 709	shapiro.test(), 191, 194
ordiR2step(), 567, 658, 709	sma(), 623
* "	
ortho.AIC(), 887	Sncf(), 858
p.adjust(), 57	Sncf2D(), 858
pam(), 424	Sncf.srf(), 858
partial.cor(), 194	solve(), 107
partial.mantel.test(), 624	spantree(), 405, 423
pca(), 520	sp.correlogram(), 783, 858
PCA(), 520	specaccum.psr(), 264
PCAsignificance(), 520	spec.ar(), 783
pchisq(), 194	spec.pgram(), 783
pco(), 520	spectrum(), 783
pcoa(), 504, 520	spline.correlog(), 858
pcoa.all(), 520, 883	spline.correlog2D(), 858
pcnm(), 904	sr.value(), 858, 867
PCNM(), 904	stepclass(), 710
penalized(), 624	STImodels(), 905
periodograph(), 783	strassoc(), 424
permutest.cca(), 634, 652	s.value(), 858
pf(), 194, 335	svd(), 103, 107, 468, 492, 650, 692
plot.acf(), 731, 783	table(), 264
plot.coinertia(), 701	table.cont(), 264
plot.procrustes(), 706	test.W(), 885, 904
plot.ts(), 782	t.perm(), 32
plot.varpart(), 577, 624, 659	ts(), 782
pnorm(), 190, 194	ts.union(), 782
poly(), 569, 624, 823, 858	t.test(), 218
prc(), 709	turnogram(), 783
prcomp(), 520	turpoints(), 783
procrustes(), 705, 710	var(), 194, 335
protest(), 612, 624, 704,	vario(), 858
710	variog(), 858
pt(), 194	Variogram(), 858
qqnorm(), 194	varpart(), 624, 642, 659, 709, 853, 854, 873
qr(), 107, 623, 650, 710	var.test(), 194
quickPCNM(), 904	vegclust(), 424
quickSTI(), 905	vegdist(), 424 vegdist(), 285, 306, 335, 710
randtest.coinertia(), 710	veguisi(), 263, 366, 353, 716 venneuler(), 577, 624
randest.comerda(), 710 raoD(), 264	veinleuler(), 377, 624 vif(), 623
rarefy(), 264	WA(), 710
rauperick(), 294, 335	WAPLS(), 710
rda(), 33, 520, 624, 634, 635, 644, 646, 650,	wcmdscale(), 520
709, 858, 897	wilcox.test(), 218

R packages	R packages (continued)
ADE4, 264, 335, 423, 520, 624, 659, 697–	SPDEP, 423, 783
701, 703, 710, 858	SPLINES, 624
ADESPATIAL, 905	STATS, used in chapters 1, 3, 4, 6, 7, 8, 9, 10,
AEM, 888–901, 904	11, 13, 14
APE, 423, 504, 520, 623, 624	STI, 900–901, 905
BASE, 107, 264, 623, 710	SURVEY, 264
BIODIVERSITYR, 264, 520, 710	SURVIVAL, 624
CA, 520	VEGAN, used in chapters 1, 3, 4, 6, 7, 8, 9,
CAR, 623	10, 11, 13, 14
CCLUST, 389, 423, 841	VEGCLUST, 424
CLUSTER, 279, 335, 366, 423, 424	VENNEULER, 624
CLVALID, 418, 424	WAVESLIM, 783
COCORRESP, 699, 710	WMTSA, 783
CODEP, 905	\vec{R} : see coefficient (of multiple determination,
CONST.CLUST, 783, 844, 858	canonical R^2)
DAAG, 623	R^2 -like ratio in PCA and PCoA, 505–506
DIERCKXSPLINE, 624	R analysis: see analysis (R-mode a.)
ECODIST, 520, 624	randomization: see permutation
FACTOMINER, 520, 703, 710	range
FD, 264, 279, 335	of a Buys-Ballot table, 740
FLEXCLUST, 424	of a variable, 16, 35, 136, 195, 248, 786; see
GEOR, 57, 858	also transformation (ranging)
INDICSPECIES, 399, 424	of a variogram, 808
KERNLAB, 423	rank statistic, 195
KLAR, 710	rarefaction method (Sanders), 251
LABDSV, 399, 424, 520	RDA: see analysis (redundancy a.)
LMODEL2, 552, 623	redundancy (Patten), 256
MASS, 107, 520, 624, 679, 710	redundancy in RDA and CCorA, 630; see also
Matrix, 107	analysis (redundancy a.)
MICE, 57	regression, 198, 536-592; see also intercept,
MISSMDA, 57	slope
MLOGIT, 218	coefficient, 539; see also slope
MVPART, 407, 410, 423	cubic splines, 589-592
MVPARTWRAP, 423	dummy variable r., 530, 531, 533, 534, 567
NCF, 624, 807, 858	frequency r., 763
NLME, 858	geometric mean r., 550
NORTEST, 191, 194	harmonic r., 753–754
PACKFOR, 567, 658, 709	linear r., 87-88, 198, 539-568, 622-623
PASTECS, 783, 858	logistic r., 202, 203, 218, 242–243, 530–534,
PCNM, 520, 860–862, 870, 874, 883, 904,	584–588, 624
905	LOWESS, 590-592, 624
PENALIZED, 624	major axis r. (MA), 542, 546–549, 553, 556,
PICANTE, 264	623
	model I r., 540-543, 545, 555
RCMDR, 194, 423 RDATEST, 709	
	model II r., 538, 543–555, 549, 623, 632 monotone r., 514, 515, 518, 584
RIOJA, 673, 710, 783	
SEM, 624	multiple linear r., 88, 533–535, 555–568, 592,
SERIATION, 383, 403, 423	622, 651
SGEOSTAT, 858	multiple r. on resemblance matrices, 606
SMATR, 623	multivariate linear r., 556, 623
SoDA, 858, 905	nonlinear r., 533, 540, 554, 556, 583–584
SPACEMAKER, 885, 887, 904	nonparametric r.: see regression (monotone)

S

regression (continued)	scalar, 62
objectives of r. analysis (description,	scale
inference, forecasting), 537-538	broad s., 788
on principal components, 562–563	fine s., 788
ordinary least-squares r. (OLS), 541; see also	interval s. (of a descriptor), 34
regression (simple linear)	relative s. (of a descriptor), 34
orthogonal distance r., 556	spatial s. of pattern or process, 787
partial linear r.: see partial regression	spatial s. of sampling design, 787
partial r. coefficient: see partial regression	spatial s., 785–789
periodic r., 747	scale factor (in dimensional analysis), 129, 137,
polynomial r., 88–89, 568–570	138–141
ranged major axis r. (RMA), 551–554	scaling
recommendations about model II r. methods,	in correspondence analysis (CA), 470–471
552–555	in principal component analysis (PCA), 434-
reduced major axis r.: see regression (standard	435
major axis)	in redundancy analysis (RDA), 639-640
residual, 540	in canonical correspondence analysis (CCA),
ridge r., 563–564, 624	665–666
simple linear r., 87–88, 198, 539–555, 622-623	segmentation of data series, 718, 772
splines, 198, 589-592, 624	semi-variance, 807–809, 811, 812, 816, 817
standard major axis r. (SMA), 549, 551, 554,	semimetric distance, 296-298, 310–312, 324-325
623	properties of s. d., 295, 500
standard minor axis r., 556	semipartial correlation: see correlation
tree analysis (RT): see analysis (regression	(semipartial c. coefficient)
tree)	semipartial coefficient of multiple determination
variable selection in multiple r. (backward,	(semipartial R^2), 572, 575, 578, 651
forward, stepwise), 561–562, 623	seriation, 339, 403–406, 422, 423
resolution of a study, 786	sewage, 564, 763
reversal, 357, 358, 360, 376–377, 421	sill of a variogram, 808-810
rhythm	similarity (in dimensional analysis), 141
geophysical r., 712 endogenous r., 712, 742, 744, 766	geometric, 122, 139, 141 kinematic, 141
river network, 53–54, 605, 852, 888, 889, 891,	physical, 141
892	similarity of qualitative descriptors, 233
rotation angle, 169, 436	singleton, 776
RT: see analysis (regression tree)	singular value decomposition, 82–84, 103–107
K1. see analysis (regression nee)	skewness, 188
	skyline plot, 419–420
1 1 507	slope, 539
salamanders, 537	confidence interval of s., 548-551
sample	estimation of s. of linear relationship:
independent s., 10, 201–204	recommendations, 552-555
matched s.: <i>see</i> sample (related)	maximum likelihood (ML) estimate of s., 546
paired s.: see sample (related)	Slutzky-Yule effect, 725–726
related s., 10-11, 201–204, 218, 266, 655-656 small s., 25, 31, 190, 195, 230, 450	small number of observations: see sample
	(small)
sampling design, 5–7, 15, 16, 21, 199, 241, 355, 359,	smoothing: see regression (cubic splines,
	LOWESS, splines)
712, 714, 795, 821, 864, 894; <i>see also</i> extent, grain size, lag, sampling (interval),	snails, 596, 597
	soil microfungi, 455
scale interval (element of sampling design), 786–788	space
nested s., 241, 818	A-space, 268, 411-412,
with (or without) replacement, 31, 253, 416	contraction, 414, 421
with (or without) replacement, 31, 233, 410	

space (continued)	standardization, 44, 57, 95, 152, 324, 332, 703-
Euclidean s., 69, 144-145, 268, 295, 310, 500,	704
502, 505, 637; <i>see also</i> coefficient	stationarity, 717, 723, 767
(Euclidean distance), Euclidean property,	intrinsic assumption, 797, 803, 808, 810
Euclidean representation	second-order s., 717, 728, 798, 803, 807
metric s.: see metric (space)	statistic, 19, 22, 146, ; see also nonparametric
reduced s., 427	(statistics), test (specific, statistical)
solution s., 384-385	2I s., 230
space-time interaction (STI), 900–901, 905	chi-square (X^2) s., 157, 216, 220, 229, 230,
spatial	275, 277, 314, 318, 319, 378, 466, 682
analysis: see analysis (spatial a.)	components of Pearson and Wilks X^2 s., 244
autocorrelation: <i>see</i> autocorrelation (spatial a.)	F, 24, 25
correlation: see correlation (spatial c.)	Freeman-Tukey deviate, 244
heterogeneity, 9, 22, 790, 791, 817, 852, 855	Friedman chi-square s. (X^2) , 216
origin of s. structure, 11–17	G or G^2 s., 230, 615, 616, 620, 622
Spearman r or ρ : see correlation	Hotelling T ² , 304
species	information s., 744
abundance paradox, 300, 329	Kullback (X^2) s., 682
association, 316-320,379, 389–403, 421, 422,	Mann-Whitney <i>U</i> , 202, 610-611
424, 452, 661, 662, 700	Mantel s., 510–511, 598, 819
bioindicator, 401	partitioning a X^2 s., 240
biological associations: see species	Pearson chi-square s., 230, 466
(associations)	partial F, 651
differential s., 382	pivotal test s, 24
diversity: see diversity (species)	Procrustes s. (m^2) : see test (Procrustes t.)
fidelity of s., 382, 398-400, 402	Shannon (diversity, entropy) s., 221, 250, 252
indicator s., 381-383, 397-403, 422, 424, 708	Shapiro & Wilk s., 191
indicator value of a s., 382-383, 398-403,	squared error s. (e^2) , 363
411, 422, 424	standardized Mantel s., 600, 820
null models for s. associations, 391	strain, 516
number of s., 61, 198, 199, 248-253, 255-257,	stress, 413, 515-517
26	Student t, 24, 25, 304, 682
presence-absence, 260, 275, 293316-319,	sum of squared errors s. (E^2) , 363
334, 335, 372, 390, 393, 399, 400, 455,	test s., 18, 22, 24–27,
476, 708, 763, 772, 814, 846	total error sum of squares (TESS), 366
probabilistic association, 320	Wilks Λ (lambda), 304, 682
pseudospecies, 382, 383, 402, 422	Wilks chi-square (or likelihood ratio) s, 230
satellite s., 393, 394, 422	statistics (descriptive, inferential), 5, 22, 158
specificity of s., 398-402	stopping rules in clustering, 389
succession of s.: see succession	structure (ecological), 269, 521
spectral analysis: see analysis (spectral a.)	explanation, 522, 526, 530-532
spectrum, 717-718, 754-767, 783	forecasting, 522, 526, 529, 532-535
co-spectrum, 759	interpretation of s., 4-6, 201, 341, 521-624
coherence s., 719, 760–762, 766, 767	prediction, 522, 526, 532, 534–536,
cross-amplitude s., 759	structure (spatial), 8-22
gain s., 760	autocorrelation model, 12-16, 259, 792, 793,
phase s., 719, 760, 766	803, 879, 880, 894, 896, 897
power s., 755	gradient (true false), 17, 802-804, 807, 821;
quadrature s., 759	see also gradient (ecological)
variance s., 717, 755, 757, 759	induced spatial dependence model, 12-15,
spiders, 410, 411, 418, 452, 454, 460, 487, 488,	792, 793, 802, 894-895, 897
660–663, 877	patch, patchiness, 9, 21, 136, 732-733, 761,
standard deviation, 148	777, 785, 805-806, 818, 834-849, 858

	succession (ecological; species), 2, 482, 717, 768-769, 774-778	test (specific) (<i>continued</i>) Procrustes t., Procrustean randomization t.,
	surface (statistical definition), 790	597, 611, 612, 624, 704, 710
	Surface (statistical definition), 770	Shapiro & Wilk t. of normality, 190-191, 193,
т		194 sign t., 202, 204, 720
T	table	t-test (Student), 202-204, 218
	Buys-Ballot t., 739–744, 783	up and down runs t., 720, 721
	classification t., 588, 681, 686	Wilcoxon signed-ranks t., 202, 204, 218
	confusion t., 588, 681	Wilks lambda (Λ) t., 682, 694
	contingency t., 200, 210, 211, 219–220, 228–	test (statistical), 5, 17-21, 22-32, 57
	247, 264, 464–471, 476-481, 530–532,	classical t. of significance, 22–25
	584, 615–617, 622-623, 744-746	distribution-free, 195
	inflated data t.: see matrix (inflated data)	for the presence of trends in data series, 719–
	taxocene, 249–250	720
	taxonomy: see numerical taxonomy	multidimensional ranking t., 205-218
	Taylor's power law, 50	multiple testing, 22, 23, 57, 799
	tb-PCA: see analysis (transformation-based	nonparametric t., 157, 195-218
	PCA) tb-RDA: see analysis (transformation-based	of dependence coefficients, 313
	RDA)	of differences among groups, 201-205, 609
	terrestrial fauna, 283	of normality and multinormality, 187–194
	test (specific); see also statistic	of series randomness, 721–722
	Anderson-Darling t. of normality, 190, 191	of significance in RDA and CCA, 632-635,
	Bartlett t. of equality of variances, 25	651–653, 665, 709-710
	Bartlett t. of independence of variables, 157	of significance in the presence of
	chi-square (X^2) t., 218, 229, 264, 335; see also	autocorrelation, 11, 17-21
	statistic (chi-square s.)	of trend-surface model, 826-827
	Cochran Q t., 202, 204	one-tailed t., 24
	Cramér-von Mises t. of normality, 190	parametric t., 157
	Fisher exact probability t., 203, 218, 319	permutation t.: see permutation
	Friedman t., 213, 218	power of a t., 11, 23, 202, 212,
	goodness-of-fit Mantel t., 601, 608	ranking: see tests (statistical, nonparametric)
	Hotelling T^2 t., 198, 199, 304, 682	statistic: see statistic
	Kolmogorov-Smirnov t. of normality, 189-	two-tailed t., 24
	190, 193	tied values, ex aequo, 51 207-216, 279, 408,
	Kolmogorov-Smirnov two-sample t., 202-203	514-517, 609, 797
	Kruskal-Wallis Ht., 202-203, 218, 316	time series: see data (time) series
	Mann-Whitney Ut., 202, 218, 610–611	transformation-based K-means partitioning (tb-
	Mantel t., 217, 417, 528, 597–608, 624, 718,	K-means): see analysis (transformation-based
	719, 814, 819	K-means partitioning)
	McNemar t., 202-204, 218, 848	transformation-based PCA (tb-PCA): see
	median t., 202-203	analysis (transformation-based PCA)
	of Kendall W (coefficient of concordance),	transformation-based RDA (tb-RDA): see analysis (transformation-based RDA)
	216-217, 218	transformation of variables, 39, 40; see also
	of Kendall τ t, 212, 720	normalization
	of multinormality (Dagnelie), 193–194	community composition data t., 261, 263
	of multiple correlation coefficient, 181	chi-square distance t., 263, 328, 331-332
	of partial correlation coefficient, 172, 181-	chi-square metric t., 328, 331–332
	182, 213 of Pearson r, 180	chord t., 261, 263, 326, 328, 330, 332
	of Spearman r, 208	Hellinger t., 261, 263, 326, 328, 330–332
	of Spearman r, 208 partial Mantel t., 604, 606, 607, 624	linear t., 10, 40–41
	Portmanteau O-test, 799	logarithmic t., 41–42, 46, 47, 49
	- 5. manicua V (600, 177	-

transformation of variables (continued)	variable (<i>continued</i>)
nonlinear t., 41–43	dimensionless v., 44, 111
profile: see transformation (species profile t.)	dummy v., 52–54
ranging, 44, 57	explanatory v., 10-15, 56, 180, 242, 338, 406,
species profile t., 263, 328, 330–331	416, 532–534, 536-593, 625-710, 718, 793,
square root t., 46-49	822, 852-857, 860-863, 877-880, 895-897
standardization, 44, 57	extensive v., 37, 38
tree (classification), 338	independent v., 10, 160, 522, 533, 536, 755
minimum-length t.: see tree (classification,	intensive v., 37, 38
minimum spanning t.)	non-additive v., 38, 821
minimum spanning t., 345–346, 423	predictor v., 10, 673, 676, 677, 852
shortest spanning t. : <i>see</i> tree (classification,	qualitative v., 52-53, 264, 532, 533, 567, 568,
minimum spanning t.)	614–616, 720, 744, 747, 844
tree (plot), 419	random v., 1–3, 38, 144–147, 152, 158–160,
trees (vegetation): see vegetation	181, 240, 314, 536, 541–545, 552, 554,
trend (in data series, or in spatial structure), 16,	559, 566, 571, 712, 747
714-719	regionalized v., 790, 844
analytical method for estimating t., 726	response v., 11–15, 56, 180, 186, 533–535,
cyclic t., 721, 724–726	536-538, 629, 631, 641, 649, 673, 711,
extraction (detrending), 16, 18, 717, 720,	718, 822, 858, 901, 903
722–727, 730, 782, 803, 825–828, 890	scale of a v.: see scale
linear t., 716, 717, 719, 721	selection of v. in multiple regression: see
removal: see trend (extraction)	regression (variable selection in multiple r.)
trend-surface analysis: see analysis (trend-	standardized v., 44
surface a.), trend (extraction)	supplementary v. in PCA, 460, 461
trend (in correspondence analysis); see analysis	target v., 718, 719, 737
(detrended correspondence a.)	variance, 146-148, 194, 195, 248
triangle's inequality, 295, 500	analysis of v. (ANOVA); see analysis
trilobites, 519	(ANOVA)
triplot; see also biplot, joint plot	partition of v. in spectral analysis, 756
in CCA, 666, 669, 710	semi-variance: see semi-variance
in RDA, 637, 639, 640, 644-648, 653-654,	variate difference method, 718, 726, 781
661, 662	variate: see random variable
turning point, 721, 783	variaton partitioning, 172, 570-583, 624,
typology, 338	658–661, 667, 709, 853–855, 858, 859–
	861, 871, 873–875, 890, 905
	variogram, 791, 792, 807-813
ultrametric property, 347, 357, 370,	directional v., 800, 808, 811, 857
376	multivariate v., 719, 739, 791, 813–815, 858,
units	894–898
base, 110, 112	vector, 69, 144-145
derived, 111, 112-113	characteristic: see eigenvector
	length, 70, 71
international system (SI), 110–113, 142	linearly independent vectors, 10, 80, 81
	norm, 70
validation: see cluster (validation)	normalization, 70–71
variable, 1-2, 33, 144; see also data, descriptor	orthogonal v., 10, 73, 438, 860
additive v., 37-38	row v., 69
criterion v., 10, 595	scaling, 70
dependent v., 10, 135-136, 186, 220, 522,	vegetation, 222, 311, 402, 478, 489, 597, 601,
533, 676	660, 661, 663, 700, 768, 789, 807, 849, 850,
dimensional v., 111, 115, 124	855, 877

U

V

W Wavelength, 712 wombling, 844 fundamental w., 712 categorical, 844, 846 harmonic w., 712 triangulation, 844, 845 wavenumber; 712 fundamental w., 712 Z harmonic w., 712 zero Wilks chi-square (or likelihood ratio) statistic: double zero problem: see double-zero see statistic problem Williams' correction, 230, 233, 238, 247, historical origin of the zero, 67 848 sampling z., 240, 242 window structural z., 241 in moving averages, 723-725 zooplankton, 2, 13-15, 36, 290, 342, 372, observational w., 712-714, 745, 746, 748, 518, 524, 525, 555, 723, 766, 788 768, 777–779, 789, 855, 864, smoothing w. in spectral analysis, 756 877, 893