MECH 463 -- Homework 11

1. Two pendulums of lengths ℓ_1 and ℓ_2 , and masses m_1 and m_2 , are coupled together by a spring of stiffness k. In the particular case considered here $\ell_1 = 2\ell$, $\ell_2 = \ell$, $m_1 = m_2 = m$ and $mg/\ell = 3k$. The matrix equation of motion for the coupled pendulum system is:

$$\left[\begin{array}{cc} \mathbf{m_1} \ell_1^2 & \mathbf{0} \\ \mathbf{0} & \mathbf{m_2} \ell_2^2 \end{array} \right] \left[\begin{array}{ccc} \theta_1 \\ \theta_2 \end{array} \right] & + & \left[\begin{array}{ccc} \mathbf{mg} \ell_1 + \mathbf{k} \ell_1^2 & -\mathbf{k} \ell_1 \ell_2 \\ -\mathbf{k} \ell_1 \ell_2 & \mathbf{mg} \ell_2 + \mathbf{k} \ell_2^2 \end{array} \right] \left[\begin{array}{ccc} \theta_1 \\ \theta_2 \end{array} \right] & = & \left[\begin{array}{ccc} \mathbf{0} \\ \mathbf{0} \end{array} \right]$$

Use the Raleigh Quotient to estimate the lowest natural frequency of the pendulum system. To get a good natural frequency estimate, use a guessed mode shape $\underline{v} = [1 \ v_2]^T$, where v_2 is a variable. Find a value of v_2 to give a good natural frequency result. Justify your procedure.

2. A pulsed square wave force f(t) = F for 0 < t < T, f(t) = -F for T < t < 2T and f(t) = 0 for t > 2T is applied to a 1-DOF vibrating system. Starting from the equation $m\ddot{x} + kx = f(t)$, calculate the response of the system for t > 2T, i.e., after completion of the pulse force. Assume the system is at rest before the force application. Confirm that if $T = 2n\pi/\omega$, where n is a positive integer, then the response after completion of the pulse force is zero.

