

Refer to external photo

Sun. Lixun/Reviewer

N/A = nicht anwendbar

Prüfbericht-Nr.: Auftrags-Nr.: 16804255 001 Seite 1 von 33 1140016291 Test Report No.: Order No.: Page 1 of 33

Kunden-Referenz-Nr.: 412990 Auftragsdatum: 2014-06-18

Client Reference No.: Order date:

Beijing GODA Instruments Co., LTD. Auftraggeber:

Hongfu Enterprise Incubation Yard 10, No.2 Workshop 2-4, Chang Ping Dist, Beijing Client:

102209 P.R. China

Prüfgegenstand: **Pulse Radar Level Instrument**

Test item:

Bezeichnung / Typ-Nr.: Refer to section 2.2

Identification / Type No.:

Auftrags-Inhalt: **FCC** certification Order content:

Prüfgrundlage:

FCC Part 15 Subpart C Section 15.256 Test specification:

Wareneingangsdatum:

Date of receipt. 2014-06-18

Prüfmuster-Nr.:

Test sample No.: **Engineering sample**

Prüfzeitraum:

2014-08-11 to 2014-11-10 Testing period:

Ort der Prüfung: Refer to section 1.1

Place of testing:

Prüflaboratorium: Refer to section 1.1 Testing laboratory:

Prüfergebnis*: **Pass**

Test result*:

geprüft von / tested by: kontrolliert von / reviewed by:

2014-12-30 Wang, Gang/PE

Unterschrift Datum Name / Stellung Unterschrift Datum Name / Stellung Name / Position Date Name / Position Date Signature Signature

2014-12-30

Sonstiges / Other.

Zustand des Prüfgegenstandes bei Anlieferung: Prüfmuster vollständig und unbeschädigt Condition of the test item at delivery: Test item complete and undamaged

Legende: 1 = sehr aut 4 = ausreichend 5 = mangelhaft 2 = aut3 = befriedigend F(ail) = entspricht nicht o.g. Prüfgrundlage(n)

P(ass) = entspricht o.g. Prüfgrundlage(n) N/T = nicht getestet 3 = satisfactory 4 = sufficient 1 = very good Legend: 2 = good5 = poor

P(ass) = passed a.m. test specification(s) F(ail) = failed a.m. test specification(s) N/A = not applicable N/T = not tested

Dieser Prüfbericht bezieht sich nur auf das o.g. Prüfmuster und darf ohne Genehmigung der Prüfstelle nicht auszugsweise vervielfältigt werden. Dieser Bericht berechtigt nicht zur Verwendung eines Prüfzeichens.

This test report only relates to the a. m. test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark.

Products

Prüfbericht - Nr.: 16802455 001 Seite 2 von 33

Page 2 of 33

Test Report No.

TEST SUMMARY

4.1.1 MODULATED BANDWIDTH

RESULT: Passed

4.1.2 FUNDAMENTAL EMISSION

RESULT: Passed

4.1.3 ANTENNA REQUIRMENT

RESULT: Passed

4.1.4 RADIATED SPURIOUS EMISSION

RESULT: Passed

4.1.5 FREQUENCY STABILITY

RESULT: Passed

4.2.1 ELECTROMAGNETIC FIELDS

RESULT: Passed

Products

Prüfbericht - Nr.: 16802455 001 Test Report No.

Seite 3 von 33 Page 3 of 33

Contents

	Contents	
1.	Test Sites	4
1.1	TEST FACILITIES	4
1.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS	4
1.3	TRACEABILITY	6
1.4	CALIBRATION	6
1.5	MEASUREMENT UNCERTAINTY	6
2.	GENERAL PRODUCT INFORMATION	7
2.1	PRODUCT FUNCTION AND INTENDED USE	7
2.2	RATINGS AND SYSTEM DETAILS	7
2.3	INDEPENDENT OPERATION MODES	10
2.4	Noise Generating and Noise Suppressing Parts	10
2.5	SUBMITTED DOCUMENTS	10
3.	TEST SET-UP AND OPERATION MODES	11
3.1	PRINCIPLE OF CONFIGURATION SELECTION	11
3.2	TEST OPERATION AND TEST SOFTWARE	11
3.3	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	11
3.4	COUNTERMEASURES TO ACHIEVE EMC/RF COMPLIANCE	12
3.5	TEST SETUP DIAGRAM	12
4.	TEST RESULTS	13
4.1	TRANSMITTER REQUIREMENT & TEST SUITES	
4.1 4.1		
4.1 4.1		
4.1	1.4 Radiated Spurious Emission	22
4.1	1.5 Frequency Stability	30
4.2	RADIO FREQUENCY EXPROSURE COMPLIANCE	
4.2		
5.	LIST OF TABLES	33
6.	LIST OF FIGURES	33

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 4 von 33

 Test Report No.
 Page 4 of 33

1. Test Sites

1.1 Test Facilities

Laboratory 1: TA Beijing Limited (FCC Registration No.: 413514)
Address: Building B-4, No.1, JingHai 3rd Road, BDA East Park,Beijing,
100176 China

Laboratory 2: China Household Electrical Appliance Research Institute (FCC Registration Number: 161284)

Address: No.29 Xiaxie Str. XuanWu District, Beijing 100053, P.R. China

Laboratory 3: The State Radio_Monitoring_Center Testing (SRTC) (FCC

Registration No.: 910917)

Address: No.98 BeiLishi Road, Xicheng District, Beijing 100037

1.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Lab 1: (Fundamental emission bandwidth, Fundamental emission(EIRP),

Frequency stability)

Kind of Equipment Type		S/N	Manufacturer	Calibrated until	
Signal Analyzer	FSUP	101355	ROHDE & SCHHWARZ	2015-01-29	
Horn Antenna	3160-09	00165118	ETS- Lindgren	2017-03-21	
DC Power Supply	RS-1303DF	05022506	TFS	2015-05-24	
Temperature Chamber	VT4002	58566170850020	Votsch	2015-06-24	
Laser Beam	Multi-Point Laser	N/A	Boxin	N/A	

Lab 2: (Radiated spurious emission (below 1GHz))

Kind of Equipment	Type	S/N	Manufacturer	Calibrated until
EMI Receiver	ESCI7	0304826-03	R&S	2015-11-10
Bi-log Antenna	HL562	0304826-06	R&S	2015-11-14
Loop Antenna	HFH2-Z2	8486241002	R&S	2015-11-25

Lab 3: (Radiated spurious emission (above 1GHz))

 Prüfbericht - Nr.:
 16802455 001
 Seite 5 von 33

 Test Report No.
 Page 5 of 33

Kind of Equipment	Туре	S/N	Manufacturer	Calibrated until
Spectrum Analyzer	FSQ40	200065	R&S	2015-03-11
Harmonic Mixer(40- 60GHz)	FS-Z60	100053	R&S	2015-03-11
Harmonic Mixer(60- 90GHz)	FS-Z90	100021	R&S	2015-03-11
Harmonic Mixer(75- 110GHz)	FS-Z110	100019	R&S	2015-03-11
Horn Antenna(1- 18GHz)	HF906	100029	R&S	2015-08-20
Horn Antenna(18- 26.5GHz)	3160-09	760840	ETS	2015-08-20
Horn Antenna(26.5- 40GHz)	3160-10	808234	ETS	2015-08-20
Horn Antenna(75- 110GHz)	27240-20	112	FLANN	2015-03-11
Horn Antenna(60- 90GHz)	26240-20	110	FLANN	2015-03-11
Horn Antenna(40- 60GHz)	24240-20	103	FLANN	2015-03-11

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 6 von 33

 Test Report No.
 Page 6 of 33

1.3 Traceability

All measurement equipment calibrations are traceable to NIM (National Institude of Metrology P.R. China) or where calibration is performed outside the United States, to equivalent nationally recognized standards organizations.

1.4 Calibration

Equipment requiring calibration is calibrated periodically by the lab or according to lab's specifications. Additionally all equipment is verified for proper performance on a regular basics using in house standards or comparisons.

1.5 Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO/IEC 17025 are:

Table 2: Measurement Uncertainty

	Items	Extended Uncertainty
RE	Field strength (dBuV/m)	U=±4.94dB, k=2, σ=95%
(30-1000MHz)		
RE	Field strength (dBuV/m)	U=±4.34dB, k=2, σ=95%
(1-110GHz)		

 Prüfbericht - Nr.:
 16802455 001
 Seite 7 von 33

 Test Report No.
 Page 7 of 33

2. General Product Information

2.1 Product Function and Intended Use

The EUT (equipment under test) is Pulse Radar Level Instrument which is based on radar technology and is used to detect the distance between product surface and sensor by means of high frequency electromagnetic waves. The electronic part uses the running time of the signals reflected by the product surface to calculate the distance to the product surface, For more information, please refer to the user manual.

2.2 Ratings and System Details

Table 3: Rating and Technical Specification of EUT

Kind of Equipment:	Pulse Radar Level Instrument
Type Designation:	Refer to table 4
FCC ID	2ACSOGDRD5X6XC
Rated Input Voltage	DC 24V
Rated comsuption power	Less than 1W
Operating Frequency band	25.8GHz
Channel Number	1

 Prüfbericht - Nr.:
 16802455 001
 Seite 8 von 33

 Test Report No.
 Page 8 of 33

Table 4: Type Designation:

Model	GDRD58-(1)(2)(3)(4)(5)(6)(7)(8)(9)
Meaning of wildcard	Option
(1) Explosion Proof Approval	P: Standard
	I: Intrinsically Safe Exia IIC T6 Ga
(2) Shape of Antenna	С: (T)Horn Ф78mm/ L227
	H: (T)Horn Ф98mm/ L288
	J: (T)Horn Ф123mm/ L620
(0) D	R:(W)ParaboloidΦ246mm
(3) Process Connection/Material	GP: (H)thread G1 /2 A/Stainless Steel 316L
	GA: (H)thread 1 ^{1/2} NPT/Stainless Steel 316L
	GB: (G)thread G1 ^{1/2} PP
	GC: (J)thread G1 ½ A/Stainless Steel 316L/temperature(-
	60~250)°C
	GE: (I)thread G1 1/2 A/Stainless Steel 316L(Huff)
(4) Flange/Material	FA:DN50/PP, GA:DN80/PP,HA:DN100/PP, IA:DN125/PP,
	FB:DN50/PTFE, GB:DN80/PTFE, HB:DN100/PTFE, IB:DN125/PTFE
	FC:DN50/Stainless Steel, GC:DN80/Stainless Steel,
	HC:DN100/Stainless Steel, IC:DN125/Stainless Steel
	MA:ANSI 3"/Stainless Steel MB: ANSI 4"/Stainless Steel
	MC:ANSI 6"/Stainless Steel NA:ANSI 3"/PTFE
	NB: ANSI 4"/PTFE NC:ANSI 6"/PTFE
	F0:NO
(5) Seal/Process Temperature	2: Viton(-60~150) °C
	3: Kalrez(-60~250) °C
	4: Graphite(-60~400) °C
(6) Electronic	B: (4-20)mA/HART 2-Wire
(7) Housing/Protection	A: Aluminium/IP67
(8) Cable Entry	M: M20x1.5, N: 1/2NPT
(9) Display/Programming	A: Yes, X:No

The products are made up of electronic part, housing part, process connection part, flange accessories part and antenna. All electronic parts including RF circuit are same within these models, and differences of other parts such as Explosion Proof Approval, Process Connection/Material, Flange/Material etc. can not affect RF performance of the product. So tests were carried out according to the description of Table 6: Combination Under Test which considering all worst situation and can cover all combination.

Table 5: Antenna Information

Antenna Type Gain(dB		Side lobe gain(dB)	Beam angle
(T)Horn Φ78mm/L227	24.4	-31.8	11°
(T)Horn Ф98mm/L288	27.4	-35.1	8°
(T)Horn Φ123mm/L620	29.2	-37.5	6°
(W)Paraboloid Φ246mm	33.0	-38.1	4°

Seite 9 von 33

Page 9 of 33

Produkte

Products

Prüfbericht - Nr.: 16802455 001
Test Report No.

Table 6: Combination Under Test

For all models have same RF circuit, display circuit, power circuit and similar construction, so for Fundamental emission bandwidth and Frequency stability tests were carried out on Sample 2 which was the most typical one comparing to other models declared by manufacturer, and for Fundamental emission tests were carried out on models that having maximum antenna gain of each type of antenna (Sample 2, Sample 3). For Unwanted emissions tests were carried out on samples which were listed below which cover all types of antenna with maximum and minimum gain:

Description in the report	Model	Antenna
Sample 1	GDRD58-PCGPF02BAMA	(T)Horn Ф78mm/ L227
Sample 2	GDRD58-PJGPF02BAMA	(T)Horn Φ123mm/ L620
Sample 3	GDRD58-PRGPF02BAMA	(W)ParaboloidΦ246mm

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 10 von 33

 Test Report No.
 Page 10 of 33

2.3 Independent Operation Modes

The basic operation modes are:

A. On, transmitting

B. Off

2.4 Noise Generating and Noise Suppressing Parts

Refer to the Circuit Diagram.

2.5 Submitted Documents

- Bill of Material

- PCB Layout

- Photo Document

- Circuit Diagram
- Instruction Manual
- Rating Label

Products

Prüfbericht - Nr.:	16802455 001	Seite 11 von 33
Test Report No		Page 11 of 33

3. Test Set-up and Operation Modes

3.1 Principle of Configuration Selection

The equipment under test (EUT) was configured to measure its maximum power level. The test modes were adapted accordingly in reference to the instructions for use.

3.2 Test Operation and Test Software

Test operation refers to test setup in chapter 5. All testing were performed according to the procedures in ANSI C63.10: 2009.

3.3 Special Accessories and Auxiliary Equipment

None.

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 12 von 33

 Test Report No.
 Page 12 of 33

3.4 Countermeasures to achieve EMC/RF Compliance

The test sample which has been tested contained the noise suppression parts as described in the Constructional Data Form or the Technical Construction File. No additional measures were employed to achieve compliance.

3.5 Test Setup Diagram

Diagram of Measurement Configuration for Radiation Test

Diagram of Measurement Equipment Configuration for Transmitter Measurement

 Prüfbericht - Nr.:
 16802455 001
 Seite 13 von 33

 Test Report No.
 Page 13 of 33

4. Test Results

4.1 Transmitter Requirement & Test Suites

4.1.1 Modulated Bandwidth

RESULT: Passed

Test date : 2014-08-20

Test standard : FCC Part 15.256(f)(1)

Limit : The minimum fundamental emission bandwidth

shall be 50 MHz

The minimum 10dB bandwidth was measured using a 50 ohm spectrum analyser with the resolution bandwidth set at 1MHz and the video bandwidth set at 3MHz. The spectrum analyser's display markers were set to -10dB using max hold until the spectrum was filled and a plot taken.

Table 7: Test result of 10dB Bandwidth

Channel Frequency (GHz)	10dB Bandwidth (MHz)	Limit(MHz)
25.8	655	>50

Span 1.01 GHz

Products

Prüfbericht - Nr.: 16802455 001 Seite 14 von 33
Page 14 of 33

Test Report No. **Test Graph of Modulated Bandwidth** *RBW 1 MHz *VBW 3 MHz -33.92 dBm Ref -10 dBm Att 15 dB SWT 20 ms 25.819775641 GHz -10 Offset 4.5 dВ ndB [T1] 10.00 dB BW 65 5.528846154 MHz -43.86 dBm 1 RM MAXH 5.512243 590 GHz 6.167772436 GHz

Note: offset 4.5dB means cable loss compensation.

101 MHz/

Products

Seite 15 von 33 Prüfbericht - Nr.: 16802455 001 Page 15 of 33

Test Report No.

4.1.2 Fundamental Emission

RESULT: Passed

Test date 2014-08-21

FCC Part 15.256(g)(3) Test standard

ANSI C63.10: 2009,KDB890966 D01 Basic standard

Meas Level Probing Radars v01r01

-14dBm(measured in 1MHz with average Limit

detector)

26dBm(measured in 50MHz with peak

detector)

Kind of test site 3m full anechoic chamber

Test setup

Operation Mode Α **25**℃ Ambient temperature Relative humidity 45% Atmospheric pressure 101 kPa Number of Sampling 701

BINS

Measurement 3m

Distance(D)

Site Correction -0.7dB/m

Factor(antenna factor+cable

loss+amplifier gain)

All power averaging (RMS) emission levels are to be measured utilizing a 1 MHz resolution bandwidth with a one millisecond dwell time over each 1 MHz segment. The frequency span of the analyzer should equal the number of sampling bins times 1 MHz and the sweep rate of the analyzer should equal the number of sampling bins times one millisecond. The video bandwidth of the measurement instrument shall not be less than the resolution bandwidth and trace averaging shall not be employed. The RMS average and peak emission measurement is to be repeated over multiple sweeps with the analyzer set for maximum hold until the amplitude stabilizes.

EIRP (dBm) = E (dB μ V/m) – 104.8 + 20 Log D

Products

Prüfbericht - Nr.: 16802455 001

Seite 16 von 33 *Page 16 of 33*

Test Report No.

Table 8: Test result of Fundamental emission

Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Average result E (dBuV/m)	Final EIRP result(dBm)	Limit (dBm)	Margin (dB)
25.8	Sample 2	70.73	-0.7	70.03	-25.23	-14	11.23

Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Peak result E (dBuV/m)	Final EIRP result(dBm)	Limit ⁽¹⁾ (dBm)	Margin (dB)
25.8	Sample 2	88.92	-0.7	88.22	-7.04	18	25.04

Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Average result E (dBuV/m)	Final EIRP result(dBm)	Limit (dBm)	Margin (dB)
25.8	Sample 3	70.44	-0.7	69.74	-25.52	-14	11.52

Channel Frequency (GHz)	Sample Number	Direct value measured (dBuV)	Site Correction Factor(dB/m)	Corrected Peak result E (dBuV/m)	Final EIRP result(dBm)	Limit ⁽¹⁾ (dBm)	Margin (dB)
25.8	Sample 3	88.43	-0.7	87.73	-7.53	18	25.53

(1)Note: Since the R&S spectrum analyzer had a lower RBW than the 50MHz, a lower RBW of 20MHz was used and a adjustment to the limit is made by 20log(RBW/50) dB. The resolution bandwidth used is 20MHz; therefore 20log(20/50)=-8dB reduction of the limit for the 50MHz EIRP, from 26dBm to 18dBm.

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 17 von 33

 Test Report No.
 Page 17 of 33

Test Graph of Fundamental Emission

Sample 2

EIRP in 1MHz, Average Detector

Prüfbericht - Nr.: 16802455 001 Seite 18 von 33
Page 18 of 33

Products

Products

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 21 von 33

 Test Report No.
 Page 21 of 33

4.1.3 Antenna Requirement

RESULT: Passed

Date of testing : 2014-11-10

Test standard and : FCC Part 15.256(h)(j)

limit

According to the FCC Part 15.256(h), LPR devices operating under the provisions of this section within the 5.925-7.250 GHz and 24.05-29.00 GHz bands must use an antenna with a -3 dB beamwidth no greater than 12 degrees.

According to the FCC Part 15.256(j), LPR devices operating under the provisions of this section must limit the side lobe antenna gain relative to the main beam gain for off-axis angles from the main beam of greater than 60 degrees to the levels provided in the table below:

Frequency Range (GHz)	Antenna Side Lobe Gain Limit Relative to Main Beam Gain (dB)
5.925-7.250	-22
24.05-29.00	-27
75-85	-38

According to the manufacturer's declaration, the parameter of the antennas is:

Antenna Type	Gain(dBi)	Side lobe gain(dB)	Beam angle
(T)Horn Φ78mm/L227	24.4	-31.8	11°
(T)Horn Ф98mm/L288	27.4	-35.1	8°
(T)Horn Φ123mm/L620	29.2	-37.5	6°
(W)Paraboloid Φ246mm	33.0	-38.1	4 °

Therefore it compliances with requirement of FCC Part 15.256(h) and (j).

Products

Seite 22 von 33 Prüfbericht - Nr.: 16802455 001 Page 22 of 33

Test Report No.

4.1.4 Radiated Spurious Emission

RESULT: Passed

Date of testing 2014-08-22

FCC part 15.256(h),(k) Test standard Basic standard ANSI C63.10: 2009

Limits Refer to 15.209(a) and 15.256.

Kind of test site 3m Semi-Anechoic Chamber(<1GHz), 5m

Full Anechoic Chamber(>1GHz)

Test setup

Operation mode Α Ambient temperature **25**℃ Relative humidity 45% Atmospheric pressure 101 kPa

Distance of testing 3m(9kHz-18GHz), 0.1m(18-

90GHz),0.01m(90-110GHz)

During the test, the EUT was checked in the three orthogonal planes with the receive antenna in both horizontal and vertical polarizations. A resolution bandwidth of 120kHz was used for frequency under 1GHz, and a resolution bandwidth of 1MHz was used for frequency above

A pre-test was performed on all of the samples listed in the table 6, no radiated harmonics or unintentional emission was found below 30MHz and above 1GHz. The following plots are provided as reference. The 18-90GHz plots were taken with the messure antenna close to the transimit antenna at 0.1m distance and 0.01m for 90-110GHz to reduce the impact of background noise, and the limit at 0.1m converted from 3m limit for 18-90GHz is 83.54dBuV/m and the limit at 0.01m converted from 3m limit for 90-110GHz is 103.54dBuV/m.

9 kHz - 30 MHz emission result was far below limit, hence not presented in this test report.

Products

Prüfbericht - Nr.: 16802455 001

Seite 23 von 33 *Page 23 of 33*

Test Report No.

Emission below 1GHz

Figure 1: Spurious emission measurement results, worst data(Sample 3)

Frequency	QuasiPeak	Height	Polarization	Azimuth	Margin	Limit
(MHz)	(dBµV/m)	(cm)		(deg)	(dB)	(dBµV/m)
118.027500	29.1	100.0	V	308.0	14.4	43.5
209.935000	28.8	100.0	Н	74.0	14.7	43.5
213.936250	30.4	100.0	Н	74.0	13.1	43.5
215.997500	29.2	100.0	Н	74.0	14.3	43.5
221.938750	32.9	200.0	Н	74.0	13.1	46.0
958.411250	31.5	100.0	V	0.0	14.5	46.0

 Prüfbericht - Nr.:
 16802455 001
 Seite 24 von 33

 Test Report No.
 Page 24 of 33

Emission above 1GHz Figure 2: Spurious emission measurement results, 1GHz-18GHz, worst data(Sample 3)

Final measurement result:

No emission was found above the background noise.

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 25 von 33

 Test Report No.
 Page 25 of 33

Figure 3: Spurious emission measurement results, 18GHz-26.5GHz, worst data(Sample 3)

Frequency (GHz)	Direct value measured (dBuV)	Correction Factor(dB/m)	Corrected Measurement (dBuV/m)	Limit at 0.1m (dBµV/m)	Margin (dB)
No spurio	No spurious emission points over the limit were found.				

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 26 von 33

 Test Report No.
 Page 26 of 33

Figure 4: Spurious emission measurement results, 26.5GHz-40GHz, worst data(Sample 3)

Frequency (GHz)	Direct value measured (dBuV)	Correction Factor(dB/m)	Corrected Measurement (dBuV/m)	Limit at 0.1m (dBµV/m)	Margin (dB)
26.50	59.08	10.27	69.35	83.54	14.19

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 27 von 33

 Test Report No.
 Page 27 of 33

Frequency (GHz)	value measured (dBuV)	Correction Factor(dB/m)	Corrected Measurement (dBuV/m)	Limit at 0.1m (dBµV/m)	Margin (dB)
45.13	28.82	37.62	66.44	83.54	17.10

 Prüfbericht - Nr.:
 16802455 001
 Seite 28 von 33

 Test Report No.
 Page 28 of 33

Figure 6: Spurious emission measurement results, 60GHz-90GHz, worst data(Sample 3)

Frequency (GHz)	Direct value measured (dBuV)	Correction Factor(dB/m)	Corrected Measurement (dBuV/m)	Limit at 0.1m (dBµV/m)	Margin (dB)
68.18	33.78	42.26	76.04	83.54	7.50

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 29 von 33

 Test Report No.
 Page 29 of 33

Figure 7: Spurious emission measurement results, 90GHz-110GHz, worst data(Sample 3)

Frequency (GHz)	Direct value measured (dBuV)	Correction Factor(dB/m)	Corrected Measurement (dBuV/m)	Limit at 0.01m (dBµV/m)	Margin (dB)
90.96	33.78	52.66	86.44	103.54	17.1

Products

16802455 001 Seite 30 von 33 Prüfbericht - Nr.: Page 30 of 33

Test Report No.

4.1.5 Frequency Stability

RESULT: Passed

Test date 2014-08-20

Test standard FCC KDB890966 D01 Meas Level Probing

Radars v01r01

Limit FCC Part 15.256(f)(2): LPR devices operating under

> this section must confine their fundamental emission bandwidth within the 5.925-7.250 GHz, 24.05-29.00 GHz, and 75-85 GHz bands under all conditions of operation

According to the FCC KDB890966 D01 Meas Level Probing Radars v01r01, the bandwidth of the fundamental emission must be contained within the frequency band over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input

Therefore, the normal and extreme test conditions are listed below:

Normal test condition		Extreme test condition		
Voltage	Temperature	Voltage	Temperature	
DC 24V	20 ℃	DC 20.4V and DC 27.6V	-20°C and 50°C	

Products

Prüfbericht - Nr.: 16802455 001
Test Report No.

Seite 31 von 33 *Page 31 of 33*

Table 9: Test result of Frequency Stanbility

Test Conditions		Frequency range measured in a 1MHz bandwidth				
Temperature	Voltage (V)	f _L at Low Channel edge (GHz) f _H at		f _H at High Char	at High Channel edge(GHz)	
		Measure Result	Limit	Measure Result	Limit	
T = -20°C	V_{min}	25.470	fL > 24.05	26.205	$f_H < 29.00$	
	V_{nor}	25.464	fL > 24.05	26.205	$f_H < 29.00$	
	V_{max}	25.462	fL > 24.05	26.205	$f_H < 29.00$	
T = -10°C	V_{min}	25.477	fL > 24.05	26.187	$f_H < 29.00$	
	V_{nor}	25.475	fL > 24.05	26.197	$f_H < 29.00$	
	V_{max}	25.488	fL > 24.05	26.187	$f_H < 29.00$	
T = 0°C	V_{min}	25.505	fL > 24.05	26.173	$f_H < 29.00$	
	V_{nor}	25.506	fL > 24.05	26.173	$f_H < 29.00$	
	V_{max}	25.496	fL > 24.05	26.182	$f_H < 29.00$	
T = 10℃	V_{min}	25.509	fL > 24.05	26.171	$f_H < 29.00$	
	V_{nor}	25.510	fL > 24.05	26.168	$f_H < 29.00$	
	V_{max}	25.510	fL > 24.05	26.168	$f_H < 29.00$	
T = 20℃	V_{min}	25.512	fL > 24.05	26.168	$f_H < 29.00$	
	V_{nor}	25.500	fL > 24.05	26.168	$f_H < 29.00$	
	V_{max}	25.511	fL > 24.05	26.169	$f_H < 29.00$	
T = 30℃	V_{min}	25.486	fL > 24.05	26.186	$f_H < 29.00$	
	V_{nor}	25.467	fL > 24.05	26.190	$f_H < 29.00$	
	V_{max}	25.472	fL > 24.05	26.186	$f_H < 29.00$	
T = 40°C	V_{min}	25.496	fL > 24.05	26.166	$f_H < 29.00$	
	V_{nor}	25.505	fL > 24.05	26.164	$f_H < 29.00$	
	V_{max}	25.509	fL > 24.05	26.159	$f_H < 29.00$	
T = 50°C	V_{min}	25.526	fL > 24.05	26.151	f _H < 29.00	
	V_{nor}	25.526	fL > 24.05	26.149	$f_H < 29.00$	
	V_{max}	25.526	fL > 24.05	26.148	$f_H < 29.00$	

Products

Seite 32 von 33 Prüfbericht - Nr.: 16802455 001 Page 32 of 33

Test Report No.

4.2 Radio Frequency Exprosure Compliance

4.2.1 Electromagnetic Fields

RESULT: Passed

Date of testing Test standard 2014-08-21

FCC KDB Publication 447498 D01 General RF Exposure

Guidance v05r02 FCC 1.1310

MPE Calculation According to the formula

$$Pd = \frac{Pout * G}{4\pi R^2}$$

Where

Pd = power density in mW/cm₂

Pout = output power to antenna in mW

G = Antenna gain in numeric

 $\pi = 3.14159$

R = Distance between observation point and the center of radiator in cm

The antenna of this product, under normal use condition, is at least 20cm away from the body of the user. Warning statement to the user for keeping the safety distance from the antenna should be included in the user manual.

The highest measured power including antenna gain is -7.04dBm(0.198mW), hence the Maximum Permissible Exposure (MPE) value:

$$Pd = \frac{Pout * G}{4\pi R^2} = \frac{0.198 \times 1}{4 \times 3.14159 \times 20^2} = 3.939 \times 10^{-5} \, mW / cm^2 < 1mW / cm^2$$

Therefore the device is exclusion from SAR test, and compliance with MPE limit.

Products

 Prüfbericht - Nr.:
 16802455 001
 Seite 33 von 33

 Test Report No.
 Page 33 of 33

5. List of Tables

Table 1: List of Test and Measurement Equipment Table 2: Measurement Uncertainty Table 3: Rating and Technical Specification of EUT Table 4: Type Designation: Table 5: Antenna Information Table 6: Combination Under Test Table 7: Test result of 10dB Bandwidth Table 8: Test result of Fundamental emission Table 9: Test result of Frequency Stanbility	6 8 8 9 13
6. List of Figures	
Figure 1: Spurious emission measurement results, worst data	23
Figure 2: Spurious emission measurement results, 1GHz-18GHz, worst data	
Figure 3: Spurious emission measurement results, 18GHz-26.5GHz, worst data	25
Figure 4: Spurious emission measurement results, 26.5GHz-40GHz, worst data	26
Figure 5: Spurious emission measurement results, 40GHz-60GHz, worst data	
Figure 6: Spurious emission measurement results, 60GHz-90GHz, worst data	28
Figure 7: Spurious emission measurement results, 90GHz-110GHz, worst data	29