The quest for the right pass: quantify soccer player's decision making

Ali Bakkoury MSE, Hugo Artigas MSBA

http://statsbomb.com/wp-content/uploads/2021/11/Javier-M-Buldu.pdf

Introduction

The quest for the right pass: Quantifying players' decision making - Javier Buldu & Borja Burriel (Statsbomb conference 2021)

- **Objective:** Building a mathematical model to quantify the quality of a pass in a football game, Measure each pass' risk and estimated gain
- Our approach: Build risk and gain metrics using a model to estimate the probability a pass is completed

Statsbomb dataset

- 40,337 passes from Barcelona's games in the spanish league (La Liga)
 2020/2021 season
- 35 features
 - Match features: date, period, minute, opponent, home/away
 - Player features: position, best foot
 - Pass features: location, length, height, angle, player situation (under pressure...)

Targe

id	period	minute	possession_team	location	under_pressure	angle	 outcome
1	1	5	Barcelona	[60,40]	True	-2.8	 Completed
2	1	8	Real Madrid	[43,37]	False	3.0	 Failed

Number of passes is biased towards Barça

- Our model will be trained on a high proportion of Barcelona passes
- We expect it to be specifically good at predicting La Liga (specifically Barcelona) players' passes outcome

Failed passes represent ~15% of the data

- Thankfully for football fans, players complete most of their passes
- Our dataset is imbalanced towards completed passes!

Categorical variables influence pass outcome

The closer to the goal, the harder the passes

Building the passes' outcome classifier

- Gradient boosting classifier (XGBoost)
- 15 modeling features (12 numerical and 3 categorical)
 - Engineering new features on players historical passing accuracy
 - One hot encoding categorical data
- Model evaluation on holdout test set

91.5% AUC score

It is hard to complete a pass when pressed in the opponent's area

Can the model be accurate in any league?

 The model is trained on limited data from 1 league and 1 team games. Can it be accurate in other leagues?

We gathered and processed passes data from the 2019 Champions League

final (890 data points)

Divide the pitch into zones

Use of the model outputs to define the average pass success rate: **the risk**

- Take a pair of zone $(b_{ij}b_{f})$.
- Compute the average probability (output of the model) of all the passes from b_i to b_f. Let's call this probability p_{i,f}.
- The risk is defined as:

$$r_{i,f} = 1 - p_{i,f}$$

• Interpretation of the risk: for a pass from b_i to $b_{f'}$ there is a probability $r_{i,f}$ that in average the pass will not be complete.

Pass accuracy vs. risk

Define the Expected Possession Value (EPV)

- The EPV of a zone b is the probability that an action starting from b finishes in a goal.
- To quantify the incremental probability generated by a pass from b_i to b_f , we define:

$$\Delta EPV_{i,f} = EPV_f - EPV_i$$

Distribution of the passes

Player pass choice evaluation

Player pass choice evaluation for the successful passes

Next Steps

- Have access to more Statsbomb data (i.e. position of other players on the pitch) to improve in the model.
- It will allow to determine for any pass the best teammate to give the ball according to his position on the pitch.