Maths: DM 16

Exercice 1: endomorphisme laissant stables toutes les droites

N=°2.

Soit $x \in E \setminus \{0_E\}$ alors $u(x) \in \mathrm{Vect}(x)$ car $\mathrm{Vect}(x)$ est stable par u Donc $\exists ! \lambda, u(x) = \lambda x$

N=°3. a.

Si (x,y) est liée, alors $\exists 6 \in \mathbb{K}, x = 6y$ Supposon 6 = 0alors x = 6y = 0 ce qui est absurde car $x \in E \setminus \{0\}$ Donc $6 \neq 0$ Ainsi u(x) = u(6y) donc $\lambda_x x = 6\lambda_y y$ Donc $\lambda_x 6y = \lambda_y 6y$

$$\begin{array}{c} \text{Donc } \lambda_{x} \underbrace{\delta y}_{\neq 0} = \lambda_{y} \underbrace{\delta y}_{\neq 0} \\ \text{Donc } \lambda_{x} = \lambda_{y} \end{array}$$

b.

Calculons u(x+y) de deux manières différentes

$$u(x+y) = \lambda_{x+y}(x+y) = \lambda_{x+y}x + \lambda_{x+y}y$$

et

$$u(x+y) = u(x) + u(y) = \lambda_x x + \lambda_y y$$

Or comme (x,y) est libre, il vient que $\lambda_x=\lambda_{x+y}=\lambda_y$ Donc $\lambda_x=\lambda_y$

$N=^{\circ}4.$

Les points précédents nous montre que $\forall x,y \in E \setminus \{0\}, \exists ! \lambda \in \mathbb{K}, u(x) = \lambda x \text{ et } u(y) = \lambda y$ Donc $\forall x \in E \setminus \{0\}, \exists ! \lambda \in \mathbb{K}, u(x) = \lambda x$

Or comme $u(0) = 0 = \lambda \times 0$

Donc $\forall x \in E, \exists! \lambda \in \mathbb{K}, u(x) = \lambda x$, autrement dit, u est une homothétie

Exercice 2 bis: endomorphisme de $\mathcal{M}_{n(\mathbb{C})}$ colinéaires à la trace

Pour montrer que $\varphi\in {\rm Vect}(\,{\rm tr})\Leftrightarrow \forall A,B\in \mathcal{M}_n(\mathbb{C}), \varphi(AB)=\varphi(BA)$ On va procéder par double implication

• (\Rightarrow) Supposons que $\varphi \in \text{Vect(tr)}$

alors
$$\exists 6 \in \mathbb{C}, \varphi = 6 \text{ tr}$$

Donc soient $A, B \in \mathcal{M}_n(\mathbb{C})$
alors $\varphi(AB) = 6 \operatorname{tr}(AB) = 6 \operatorname{tr}(BA) = \varphi(BA)$
Donc $\varphi \in \operatorname{Vect}(\operatorname{tr}) \Rightarrow \forall A, B \in \mathcal{M}_n(\mathbb{C}), \varphi(AB) = \varphi(BA)$

• (\Leftarrow) Supposons que $\forall A, B \in \mathcal{M}_n(\mathbb{C}), \varphi(AB) = \varphi(BA)$

Exercice 3: composée de deux projecteurs qui commutent

- Prouvons d'abord que $p \circ q$ est un projecteur alors

$$(p \circ q) \circ (p \circ q) = p \circ q \circ p \circ q = p \circ q \circ q \circ p$$
$$= p \circ q \circ p = p \circ p \circ q$$
$$= p \circ q$$

Et soient $x, y \in E$ et soit $6 \in \mathbb{R}$, alors

$$(p \circ q)(6x + y) = p(q(6x + y)) = p(6q(x) + q(y))$$

= $6p(q(x)) + p(q(y)) = 6(p \circ q)(x) + (p \circ q)(y)$

Ainsi $p \circ q$ est un projecteur

- Prouvons maintenant par double incusion que $\operatorname{Ker}(p \circ q) = \operatorname{Ker} \, p + \operatorname{Ker} \, q$

$$\text{1. d'abord soit } x \in \operatorname{Ker} \ p + \operatorname{Ker} \ q \text{, alors } \exists x_p, x_q \in \operatorname{Ker} \ p \times \operatorname{Ker} \ q, x = x_p + x_q$$

$$\operatorname{Alors} \ (p \circ q)(x) = (p \circ q) \big(x_p + x_q \big) = p \Bigg(q \big(x_p \big) + \underbrace{q \big(x_q \big)}_{} \Bigg) = q \big(p \big(x_p \big) \big) = q(0) = 0$$

Donc $x \in \operatorname{Ker}(p \circ q)$

Donc Ker $p + \operatorname{Ker} q \subset \operatorname{Ker}(p \circ q)$

- 2. De plus soit $x \in \text{Ker}(p \circ q)$
- Enfin prouvons également par double inclusion que $\operatorname{Im}(p \circ q) = \operatorname{Im} p \cap \operatorname{Im} q$

1. Soit
$$x\in \operatorname{Im}(p\circ q)$$
 alors $\exists y\in E, x=p(q(x))$, soit un telle y donc $x\in \operatorname{Im}\, p$ et $x=p(q(x))=q(p(x))\in \operatorname{Im}\, q$ Donc $x\in \operatorname{Im}\, p\cap \operatorname{Im}\, q$

Donc $\operatorname{Im}(p \circ q) \subset \operatorname{Im} p \cap \operatorname{Im} q$

2. Soit $x \in \text{Im } p \cap \text{Im } q \text{ alors } x \in \text{Im } p \text{ \underline{et} } x \in \text{Im } q$ Donc $\exists y,y' \in E, x = p(y) \text{ \underline{et} } x = q(y')$