

X-Tech

Presented by Xilinx and Avnet

OPTIMAL MEMORY INTERFACE DESIGN WITH XILINX 7 SERIES

MEMORY ARCHITECTURES & MAX DATA RATES

- 80% of FPGA designers use memory in their system.
- > 7 series supports a wide array of options
- Which one will you use?

Memory Architectures	I/O Standard	Artix-7 (3.3V IO)	Kintex-7 (1.8V IO)	Virtex-7 (1.8V IO)
DDR2	SSTL 1.8V	400 MHz	400 MHz	400 MHz
DDR3 DDR3L	SSTL 1.5V SSTL 1.35V	533 MHz 400 MHz	933 MHz 800 MHz	933 MHz 800 MHz
RLDRAM2	HSTL 1.5/1.8V	N/A	533 MHz	533 MHz
RLDRAM 3	SSTL 1.2V	N/A	800 MHz	800 MHz
LPDDR2	HSUL 1.2V	333 MHz	400 MHz	400 MHz
DDR-II+	HSTL 1.5/1.8V	N/A	550 MHz	550 MHz
QDR-II+ B2 QDR-II+ B4	HSTL 1.5/1.8V	N/A	333 MHz 550 MHz	333 MHz 550 MHz

Note: Memories may be able to perform faster than listed performance

DRAM MARKET SEGMENTATION

- PC DRAM and Mobile Applications drive adoption
- > DDR2 (1.8V)
 - > Legacy designs with declining volumes
- > DDR3 (1.5V)
 - > High volume leader 2012-2014
- ➤DDR4 introduction ~2014
- Mobile DRAM
 - Driven by the mobile phone market adoption of LPDDR2
 - DDR3L (1.35V) in some mobile apps.

Source: Industry Research

COURSE OBJECTIVES

- Recognize trade-offs of different memory types
 - > Cost

> Bandwidth

> Density

> Random transaction rate

> Power

- > Access latency
- Understand how to optimize the performance of your memory interface
- See design examples for DDR3, illustrating hardware development platforms and easy-to-use tools

AGENDA

- DDR3 Potential and Pitfalls
- Evaluating Memory Performance and Trade-offs
- Practical DDR3 design with 7 Series
- Next Steps

AGENDA

- DDR3 Potential and Pitfalls
- ➤ Evaluating Memory Performance and Trade-offs
- Practical DDR3 design with 7 Series
- Next Steps

DDR3

- > DDR3 is commonly chosen because:
 - > Lowest cost per memory bit
 - > Largest density per chip
 - Fastest supported clock rates by Xilinx

- DDR3 operation and performance
- DDR3 specs which limit performance
- > Options to improve performance
- > How to create the FPGA design

DDR3 ARCHITECTURE

- Each needs addressing
- Addressing takes time
- Data must be refreshed

BANK MANAGEMENT

- Latency to open or close a row (tRC)
- Latency from one bank access to the next (tRRD)
- Latency after 4th bank before 5th can be opened (tFAW)
- Latency to move from read to write, and vice-versa

DDR3 IDEAL BANDWIDTH

- Ideal Bandwidth = (Clock rate) * (DDR) * (data width)
- Example
 - > Clock rate = 933 MHz (max supported by 7 series)
 - > Runs double-data rate (x2)
 - 1866 Mbps per bit data rate
 - > 16-bit wide data (x8 also supported)
 - > Ideal Bandwidth = 1866 Mbps * 16 =

29.856 Gbps per DDR3!

> Real applications will not achieve this

DDR3 BANDWIDTH REALITY CHECK

- Shared read and write interface
 - > Read/Write or Write/Read transitions → penalty
- Row/column structure
 - > New row access → penalty
- Cell architecture
 - > Refresh → penalty

x16, 933 MHz	% of Max	Bandwidth
Worst-Case	1.1%	330 Mbps
Best-Case	90%	26.5 Gbps

How fast will DDR3 run in your application?

AGENDA

- ➤ DDR3 Potential and Pitfalls
- Evaluating Memory Performance and Trade-offs
- Practical DDR3 design with 7 Series
- Next Steps

RANDOM TRANSACTION RATE (RTR)

- How often can you randomly address the memory to perform a transaction?
- Assumptions
 - > Completely random address accesses
 - > Could be either a read or a write
- Measured in Millions of Transactions per Second (MT/s)
- Does not account for data width
- Guaranteed random memory access bandwidth is

Data Width * RTR

CALCULATING DDR3 RTR

- DDR3 has a penalty for switching between rows within a bank
- RTR calculations based on the Row Cycle Time: T_{RC}
 - Worst case parameter to access DDR3 in a completely random manner
- The DDR3 RTR formula is

$$RTR_{DDR3} = 1 / T_{RC}$$

- DDR3 typical T_{RC} is 48ns
- $ightharpoonup 1/T_{RC} = 1/48ns = 20.8 MT/s$

CALCULATING RLDRAM3 RTR

- > 16 bank, DDR interface
- RTR calculations also based on the Row Cycle Time
- The RLDRAM3 RTR formula is

$$RTR_{RLDRAM3} = 1 / T_{RC}$$

- > For 800 MHz RLDRAM3, T_{RC} is 8.8ns
- \rightarrow 1/T_{RC} = 1/8.8ns = 114 MT/s

CALCULATING HIGH PERFORMANCE SRAM RTR

- No penalty for random access
- DDR-II+ SRAM
 - > Single, shared bus
 - > Burst of 2 (B2)
 - > Maximum performance for imbalanced read/write applications
- QDR-II+ SRAM
 - Dedicated read and write busses
 - > Burst of 2 (B2)
 - Double address rate (DAR) two addresses (1 read + 1 write) per clock
 - Lower frequency but higher RTR
 - > Burst of 4 (B4)
 - Single address rate (SAR) one address per clock cycle
 - Higher clock rate and higher bandwidth

SRAM Type	RTR Formula	RTR
DDR-II+ B2 @ 550 MHz	RTR = FREQUENCY	550 MT/s R or W
QDR-II+ B4 @ 550 MHz	RTR = FREQUENCY	550 MT/s R + W
QDR-II+ B2 @ 333 MHz	$RTR = FREQUENCY \times 2$	666 MT/s R + W

RANDOM TRANSACTION RATE

MEMORY COMPARISON - PART 1

- Understand the nature of the data in your system
- Prioritize and weigh trade-offs

Memory	Cost per Mbit	RTR*	Access Latency	Max Ideal Bandwidth on 7 series*	Max Density on 7 series*	Max Device Width
DDR3	\$0.0015	21 MT/s	30-40 ns	29.9 Gbps	4 Gb	x16
RLDRAM3	\$0.052	114 MT/s	15 ns	57.6 Gbps	1 Gb	x36
DDR-II+B2	\$0.90	550 MT/s	4.5 ns	39.6 Gbps	144 Mb	x36
QDR-II+ B2 QDR-II+ B4	\$0.90	666 MT/s 550 MT/s	4.5 ns	48.0 Gbps 79.2 Gbps	144 Mb	x36 read x36 write

Single component, maximum supported 7 Series frequency, widest width

^{*} Newer memories may be available but are not yet supported by Xilinx

MEMORY COMPARISON - PART 2, POWER

1:1 READ-to-WRITE Operation

Memory Type	Operating Voltage	Max Bandwidth	Actual Bandwidth	IDD	Power	mW per Gbps
DDR3	1.5V	29.9 Gbps	7.5 Gbps	160 mA	240 mW	32 mW/Gbps
RLDRAM3	1.35V	57.6 Gbps	38.5 Gbps	925 mA	1248 mW	32 mW/Gbps
QDR-II+ B4	1.8V	79.2 Gbps	79.2 Gbps	1310 mA	2350 mW	30 mW/Gbps

RLDRAM3 Assumptions

- \rightarrow Config = x36
- tCK = 1.25 ns (800 MHz)
- RL = 13 / WL = 14 clocks
- Continuous IDD1Operation
- Burst Length = 2

QDR-II+ SRAM Assumptions

- \rightarrow Config = x36
- **tCK = 1.8 ns (550 MHz)**
- B4 device
- No other constraints

DDR3 Assumptions

- All banks already open (no activation current in calculation)
- No page misses (favorable assumption)
- \rightarrow Config = x16
- tCK = 1.07ns (933 MHz)
- tWTR = 7 clocks
- \rightarrow BL = BC4
- CL = 13 clocks ; CWL = 9 clocks
- > 50% IDD4R / 50% IDD4W Operation
- Die Rev K

Note: Single device comparison is made with the widest configuration for each memory type

MEMORY COMPARISON - PART 3, POWER

100% Random Reads (LUT) Operation

Memory Type	Operating Voltage	Max Bandwidth	Actual Bandwidth	IDD	Power	mW per Gbps
DDR3	1.5V	29.9 Gbps	2.6 Gbps	120 mA	180 mW	69.2 mW/Gbps
RLDRAM3	1.35V	57.6 Gbps	57.6 Gbps	1895 mA	2558 mW	44.4 mW/Gbps
DDR-II+ B2	1.8V	39.6 Gbps	39.6 Gbps	970 mA	1746 mW	44.1 mW/Gbps

RLDRAM3 Assumptions

- \rightarrow Config = x36
- tCK = 1.25 ns (800 MHz)
- Burst Length = 2
- Read Latency = 13 clocks
- Continuous IDD2ROperation
- 8x data copies
- 72 Mb effective density

DDR-II+ SRAM

Assumptions

- 144 Mb density
- \rightarrow Config = x36
- → tCK = 1.8 ns (550 MHz)

Note: A single device comparison is made with the widest configuration for each memory type

DDR3 Assumptions

- \rightarrow Config = x16
- tCK = 1.07ns (933 MHz)
- tRC = 48.91nS
- → tRRD = 6 clocks
- tFAW = 35ns (33 clocks)
- → CL = 13 clocks
- Continuous IDD1 Operation
- 4x data copies
- 512 Mb effective density

BALANCE PERFORMANCE AND TRADE-OFFS

- To achieve higher performance
 - > Use higher performance (but more expensive) memory
 - > Get more out of your DDR3
- Consider all trade-offs from a system perspective
 - Increasing number of components
 - Adds cost and design complexity
 - More memory controllers in FPGA
 - More pins on FPGA
 - > PCB size and manufacturing complexity
 - > Power and heat
 - > Frequency of die shrinks

GETTING MORE OUT OF YOUR DDR3

- Access data sequentially
- If data is random, close the row automatically
- Xilinx controller re-orders transactions
 - > On by default
- Replicate data across banks (if transactions are predominantly read)
 - > Can be done with 4 of 8 banks
 - Number of banks limited to 4 (see tFAW parameter)
 - Increases RTR by a factor of 4
 - > Reduces density by a factor of 8
 - > Queue transactions
 - DDR3 processes multiple activate commands simultaneously
 - 4 banks incur one tRC penalty
- Replicate data across chips

EXAMPLE: 100 GIGABIT ETHERNET

- Must handle 150 Million packets per second
 - > Up to eight 32-bit reads per packet
 - Need RTR of 1200 MT/s
 - > 160 Mb worth of data

- Packet delivery must be guaranteed
 - > Must assume random addresses
 - > Use RTR to evaluate options
- Calculate number of devices

$$\frac{1200MT/s}{RTR \times (Replication\ Factor)} \times (I/O\ Width\ Factor)$$

Technology	RTR	Replication Factor	I/O Width Factor	# of chips (RTR)	Actual # of chips	Density	Power (Core Only)	Chip Cost
DDR3, x16, 933 MHz	21	4	2	28.6	32	4 Gb	5.8 W	\$96
DDR-II+,B2, x36, 550 MHz	550	1	1	2.2	3	216 Mb	5.2 W	\$195
RLDRAM3, x36, 800 MHz	114	8 (effective 7)	1	1.5	2	288 Mb	7.7 W	\$120

EXAMPLE: 8 CAMERA SYSTEM

- Must handle 16 video streams
 - > 8 transmitting, 8 receiving
 - > 1920 x 1080 @ 75 Hz format
 - > 32 data bits per pixel
 - > 1 Frame = 66 Mbits
 - > 16 streams × 66 Mb × 75 Hz
- Sustained bandwidth required is ~80 Gbps
- Data has a high sequential content
 - > Line-by-line processing
 - > Example: color correction

Will DDR3 handle this?

EXAMPLE: 8 CAMERA SYSTEM

- Similar example created in Xilinx XAPP741
 - > 64-bit DDR3 SODIMM @ 800 MHz on Xilinx KC705

- Calculate DDR3 SODIMM performance potential
 - > Worst-case is ~1.1 Gbps (totally random)
 - > Best-case is ~92 Gbps (totally sequential)
- Conclusion: Data must be 90% sequential

XAPP741 IMPLEMENTATION

- MicroBlaze-based design
- 16 video streams
- > 8 AXI VDMA pipelines
- Video inputs generated by test pattern
- Outputs combined in OSD peripheral
- Built in EDK 13.4

Actual Results = 79.8 Gbps or 77% of Theoretical Max

CHOOSING THE MEMORY THAT BEST FITS

- What are the cost objectives?
 - > DDR3 is lowest cost
- What density is required?
 - DRAM provides highest density
- How sequential is the data?
 - DDR3 does well with sequential accesses
- How often must the bus be turned-around?
 - > QDR-II+ is ideal for read/modify/write scenarios

- Is guaranteed access time critical?
 - > QDR-II+ has fast access time
- Is random addressing critical?
 - Use RTR to analyze access time requirement
 - Bank replication accelerates random reads for DRAM
 - > SRAM has no random access penalty
- Is power critical?
 - Consider DDR3L or LPDDR2 for density
 - Consider high performance memories for low mW per Gbps ratios

DDR3 IS A GOOD CHOICE IN MANY CASES

- Lowest cost per bit
- Largest density
- High sequential access bandwidth
- Modules
 - > On-DIMM termination
 - > Easy PCB design
 - > Upgradeable

7 SERIES DDR3 SUPPORT

Device Support

Component Width	Density	Max Interface Width	DIMMs	Rank	Voltage
x8, x16	1, 2, 4 Gb	72 bit	UDIMM, RDIMM, SODIMM	Single and Dual (14.2)	1.5V, 1.35V

Controller Features

FPGA logic interface clock ratio	HDL	Bus	Re-order transactions
2:1 (MemClk <400 MHz)	Verilog,	User,	Yes (optional)
4:1 (MemClk >400 MHz)	VHDL (14.1)	AXI	

MICRON PRODUCT LONGEVITY PROGRAM (PLP)

- Targets markets requiring long life cycles
 - Automotive, industrial, medical, aerospace, and defense
- Ensures 10 years of support
 - > DRAM, NOR, and NAND
- Provides stability
 - 2-year conversion timeline in the event of a die shrink

	Product Family*	Density Range⁺	Temp Range*
	DDR3 (MT41)	1–2Gb	IT, AT
Σ	DDR2 (MT47)	1–2Gb	IT, AT
DRAM	DDR (MT46)	256–512Mb	IT, AT
	SDRAM (MT48)	128–256Mb	IT, AT

www.micron.com/support/plp

AGENDA

- ➤ DDR3 Potential and Pitfalls
- Evaluating Memory Performance and Trade-offs
- Practical DDR3 design with 7 Series
- Next Steps

KC705 DDR3 SODIMM INTERFACE DESIGN

KC705 – FEATURE OVERVIEW

KINTEX-7 FPGA KC705 EVALUATION KIT

- Hardware
 - KC705 evaluation board
 - > AMS evaluation board
- Design Environment
 - > Full seat ISE Design Suite Logic Edition
 - Device locked to the Kintex 325T
- Reference Designs
 - > Full base reference and example designs and demos
 - Includes PCIe & DDR3 targeted reference design
 - > Board design files

www.xilinx.com/kc705

K7-MMP DDR3 COMPONENT INTERFACE DESIGN

K7-MMP FEATURES

MMP = Mini-Module Plus

MMP BASEBOARD 2 FEATURES

WHAT IS INCLUDED IN THE K7-MMP KIT

- Hardware
 - > Avnet Kintex-7 Mini Module Plus
 - Kintex-7 K325T-1FFG676 FPGA
 - > Avnet Mini Module Plus Baseboard 2
 - 12V Power Supply (US/UK/Euro AC cords)
 - USB A-mini-B Cables (2)
 - Ethernet Cable
 - > Power Module (user choice)
- Design Environment
 - > ISE Design Suite Logic Edition
 - Device locked to the Kintex-7 325T
- Reference Designs
 - > Full base reference and example designs and demos
 - Includes PCIe, MicroBlaze, Linux, and IBERT targeted reference design
 - > Board design files

www.em.avnet.com/k7mmp

Complete Kintex-7 MMP Kit \$1,695

Pico Computing: M-Series Modules

M-505

- Kintex-7 XC7K325T/K410T
- 4GB DDR3 SODIMM
- 128 MB NOR FLASH
- 34 LVDS
- 8 GTX Transceivers

M-503

- Virtex-6
 LX240T/LX365T/SX315T/SX475T
- 2 x 4GB DDR3 SODIMM
- 3 x 9MB QDRII SRAM
- 80 LVDS
- x8 Gen2 PCle Host Interface

M-501

- Virtex-6 LX240T/LX365T/SX315T
- 512 MB DDR3
- x8 Gen2 PCle Host Interface

M-504

- Virtex-6 LX240T/LX365T/LX550T/ SX315T/SX475T
- 2 x 4GB DDR3 SODIMM
- 3 x 9MB QDRII SRAM
- 1GB Spansion Flash
- 63 LVDS
- 8GTX Transceivers
- X8 Gen2 PCle Host Interface

Pico Computing: EX-Series Backplanes 40

EX-400

- Holds up to four M-Series Modules
- X16 Gen2 PCle Interface to Host
- X8 Gen2 PCle Interface to each M-Series Module

EX-500

- Holds up to six M-Series Modules
- X16 Gen2 PCle Interface to Host
- X8 Gen2 PCle Interface to each M-Series Module

DDR3 MEMORY MODULES & SOCKETS

Form Factor	H x W (mm)	Number of Pins	Voltage(s)	Buffered/ Registrered	Bus Width(s)	JEDEC MO Number
Stardard DDR3	30 x 133.35	240	1.5V / 1.35V	Unbuffered or registered	x64/x72	MO-269
DDR3 Very Low Profile (VLP)	18.75 x 133.35	240	1.5V / 1.35V	Unbuffered or registered	x64/x72	MO-269
DDR3 VLPx	19.5 x 133.35	240	1.5V / 1.35V	Unbuffered or registered	x64/x72	MO-269
DDR3 SODIMM	30 x 67.6	204	1.5V	Unbuffered	x64	MO-268

GENERATING THE XILINX MIG DDR3 CONTROLLER

- Memory Interface Generator (MIG)
 - Launch from ISE/CORE Generator or
 - Launch from Vivado IP Catalog
 - > Interface parameter selection
 - Device, burst length, data interleaving, re-ordering
- Generated outputs
 - > HDL Code: Verilog or VHDL
 - User interface: AXI or User
 - Simulation support
 - > Build parameters
 - > Example design
 - Simulate or synthesize

MIG DEMO: VIVADO DESIGN FLOW

EVALUATING MIG CONTROLLER IN CHIPSCOPE

AGENDA

- ➤ DDR3 Potential and Pitfalls
- ➤ Evaluating Memory Performance and Trade-offs
- Practical DDR3 design with 7 Series
- Next Steps

NEXT STEPS – HIGH PERFORMANCE MEMORY

- View RLDRAM3 video demonstration online at www.avnetondemand.com
- Request Cypress white paper
 MEMORY SUBSYSTEMS THE MANY WORLDS
 - Contact your local Avnet FAE
- To get information on Xilinx' validation platforms for RLDRAM3 or QDR-II+
 - > Go to <u>www.xilinx.com/support</u>
 - > Open a support case to request this information

NEXT STEPS – DDR3

- View demonstrations
 - > KC705 and K7-MMP X-fest exhibits (Xilinx and Avnet)
 - > DDR3 video demonstration online at www.avnetondemand.com
- Memory Interface Generator
 - > Follow the KC705 MIG Tutorial available on the web
- Purchase the <u>K7-MMP</u> or <u>KC705</u>
- Attend 2-day Xilinx training
 - > How to Design a High-Speed Memory Interface

Evaluate trade-offs carefully!

Choose the best memory for your application

THANK YOU PLEASE VISIT THE DEMO AREA

