Homework 9

519030910245 余北辰

9.6 Given six memory partitions of 300 KB, 600 KB, 350 KB, 200 KB, 750 KB, and 125 KB (in order), how would the first-fit, best-fit, and worst-fit algorithms place processes of size 115 KB, 500 KB, 358 KB, 200 KB, and 375 KB (in order)?

first-fit:

初始时:

编号	1	2	3	4	5	6
大小	300KB	600KB	350KB	200KB	750KB	125KB

115KB插入到编号1的位置;

编号	1	2	3	4	5	6
大小	185KB	600KB	350KB	200KB	750KB	125KB

500KB插入到编号2的位置;

编号	1	2	3	4	5	6
大小	185KB	100KB	350KB	200KB	750KB	125KB

358KB插入到编号5的位置;

编号	1	2	3	4	5	6
大小	185KB	100KB	350KB	200KB	392KB	125KB

200KB插入到编号3的位置;

编号	1	2	3	4	5	6
大小	185KB	100KB	150KB	200KB	392KB	125KB

375KB插入到编号5的位置。

编号	1	2	3	4	5	6
大小	185KB	100KB	150KB	200KB	17KB	125KB

best-fit:

初始时:

编号	1	2	3	4	5	6
大小	300KB	600KB	350KB	200KB	750KB	125KB

115KB插入到编号6的位置;

编号	1	2	3	4	5	6
大小	300KB	600KB	350KB	200KB	750KB	10KB

500KB插入到编号2的位置;

编号	1	2	3	4	5	6
大小	300KB	100KB	350KB	200KB	750KB	10KB

358KB插入到编号5的位置;

编号	号	1	2	3	4	5	6
大	小	300KB	100KB	350KB	200KB	392KB	10KB

200KB插入到编号4的位置;

编号	1	2	3	4	5	6
大小	300KB	100KB	350KB	0KB	392KB	10KB

375KB插入到编号5的位置。

编号	1	2	3	4	5	6
大小	300KB	100KB	350KB	0KB	17KB	10KB

worst-fit:

初始时:

编号	1	2	3	4	5	6
大小	300KB	600KB	350KB	200KB	750KB	125KB

115KB插入到编号5的位置;

编号	1	2	3	4	5	6
大小	300KB	600KB	350KB	200KB	635KB	125KB

500KB插入到编号5的位置;

编号	1	2	3	4	5	6
大小	300KB	600KB	350KB	200KB	135KB	125KB

358KB插入到编号2的位置;

编号	1	2	3	4	5	6
大小	300KB	242KB	350KB	200KB	135KB	125KB

200KB插入到编号3的位置;

编号	1	2	3	4	5	6
大小	300KB	242KB	150KB	200KB	135KB	125KB

375KB没有足够的位置。

9.7 Assuming a 1-KB page size, what are the page numbers and offsets for the following address references (provided as decimal numbers):

- a. 3085
- b. 42095
- c. 215201
- d. 650000
- e. 2000001

页的大小为1KB说明offset有10位。

- a. $3085 = (110000001101)_2$,故page number为 $(11)_2 = 3$,offset为 $(1101)_2 = 13$ 。
- b. $42095=(1010010001101111)_2$,故page number为 $(101001)_2=41$,offset为 $(1101111)_2=111$ 。
- c. $215201=(110100100010100001)_2$,故 page number为 $(11010010)_2=210$,offset为 $(10100001)_2=161$ 。
- d. $650000=(10011110101100010000)_2$,故 page number为 $(1001111010)_2=634$,offset为 $(1100010000)_2=784$ 。
- e. $2000001 = (111101000010010010000001)_2$,故 page number为 $(11110100001)_2 = 1953$,offset为 $(10000001)_2 = 129$ 。
- 9.9 Consider a logical address space of 256 pages with a 4-KB page size, mapped onto a physical memory of 64 frames.
- a. How many bits are required in the logical address?

b. How many bits are required in the physical address?

a. 页的大小为4KB说明offset有12位。

逻辑地址空间有256页说明page number有8位。

因此共20位。

b. 页的大小为4KB说明offset有12位。

页帧有64页说明frame number有6位。

因此共18位。

- 9.10 Consider a computer system with a 32-bit logical address and 4-KB page size. The system supports up to 512 MB of physical memory. How many entries are there in each of the following?
- a. A conventional, single-level page table
- b. An inverted page table

页的大小为4KB说明offset有12位, page number有32-12=20位。

物理内存大小为512MB说明frame number有29-12=17位。

- a. 普通单级页表 条目的数量对应的是逻辑地址空间,为 2^{20} ;
- b. 倒置页表 条目的数量对应的是物理地址空间,为 2^{17} 。