

Sequence Listing

<110> Baker, Jeffre
Chien, Kenneth
King, Kathleen
Pennica, Diane
Wood, William

<120> Cardiac Hypertrophy Factor and Uses Therefor

<130> P0894P1D2C6

<140> US 10/722,095
<141> 2003-11-24

<150> US 09/896,856
<151> 2001-06-29

<150> US 09/033,114
<151> 1998-03-02

<150> US 08/733,850
<151> 1996-10-18

<150> US 08/443,129
<151> 1995-05-17

<150> US 08/286,304
<151> 1994-08-05

<150> US 08/233,609
<151> 1994-04-25

<160> 8

<210> 1
<211> 1352
<212> DNA
<213> Mus musculus

<400> 1
ggataaggct gggcccgagca tgagccagag ggagggaaagt ctggaagacc 50
accagactga ctcctcaatc tcattcctac cccatttgga ggccaagatc 100
cgccagacac acaacacctgc ccgcctcctg accaaatatg cagaacaact 150
tctggaggaa tacgtgcagc aacagggaga gccctttggg ctgccgggct 200
tctcaccacc gcggctgccg ctggccggcc tgagtggccc ggctccgagc 250
catgcagggc taccgggtgtc cgagcggctg cggcaggatg cagccgcct 300
gagtgtgctg cccgcgtgt tggatgccgt ccgccccgc caggcggagc 350
tgaacccgcg cgccccgcgc ctgctgcgga gcctggagga cgcagccgc 400

cagggttcggg ccctgggcgc cgccgtggag acagtgcgg ccgcgcgtgg 450
cgctgcagcc cgccggccccg gccagagcc cgtcaccgtc gccaccctct 500
tcacggccaa cagcaactgca gcatcttct cagccaaggt gctggggttc 550
cacgtgtcg cgcttatgg cgagtgggtg agccgcacag agggcgacct 600
gggccagctg gtgccagggg gcgtgcctg agagtataa cttttcttg 650
taagctcgct ctgtctcgcc tctttggctt caaatttct gtctctccat 700
ctgtgtcctg tgtgttcttgc ggctgtccct atcttctgc atttgtgtgg 750
tctctctctt ctgctctcct ctgtcaggg agcttcttt ttccaacagt 800
ttctcgaaaa gtctctctcc agtcttgaac actttgtct ccgagaggc 850
tcttttggtt tccttgcctc ttgggtctt ctgtgttgc ttgcttgctt 900
gcttgcttgc tggtgagaca gggtctcacc atatagtctt ggtggcctg 950
gaacttgcta tgttagccag gctggcctcc agctcataga gatccacttg 1000
cctccgactc ccaatttccc catctgtctc cctgtgtatcc atatgggtat 1050
gtgttaaccct tactttgtct catggaggtg acaatttttc tcccttcagt 1100
ttctttgttc ttactgacc agaaaagtgc ctacttgcctt cctggggca 1150
aggccattca ccttaggacc ttcccaccag ttcccttgc ggcaaatccc 1200
tccccctttg aggtccttcc ctttcataacc gcccaggctt ggtcaatgg 1250
gagagaaaagg cagaaaaaca tctttaaaga gtttatttg agaataaatt 1300
aattttgtt aataaaatgt ttaacaataa aactaaactt ttatgaaaaa 1350
aa 1352

<210> 2
<211> 1352
<212> DNA
<213> Mus musculus

<400> 2
cctattcgga ccccggtcgactcggtctc cctcccttca gacttctgg 50
tggctgact gaggagttag agtaaggatg gggtaaacct ccgggtcttag 100
gcggctgtg tggttgcacg ggcggaggac tggtttatac gtcttgcgt 150
agacccctt atgcacgtcg ttgtccctct cggaaaccc gacggcccg 200
agagtggtgg cgccgacggc gaccggccgg actcaccggg ccgaggctcg 250
gtacgtcccg atggccacag gtcgcccac gccgtcctac gtcggcg 300

ctcacacgac gggcgcgaca acctacggca ggcggcggcg gtccgcctcg 350
acttgggcgc gcggggcgcg gacgacgcct cggacctcct gcgtcggcg 400
gtccaagccc gggacccgcg ggcgcaccc tcgtcacgacc ggcgcgaccc 450
gcgcacgtcgg gcgcgcggc ccggtctcgg gcagtggcag cggtggaga 500
atgtcccggtt gtcgtgacgt ccgtagaaga gtcggttcca cgaccccaag 550
gtgcacacgc cggagatacc gtcacccac tcggcgtgtc tcccgctgga 600
ccccggtcgac cacggtcccc cgacgcggac tctcacttat gaaaaagaac 650
attcgagcga gacagagcgg agaaaccgaa gttaaaaga cagagaggta 700
gacacaggac acacaagaac ccgacagggta tagaaagacg taaacacacc 750
agagagagaa gacgagagga gagacgtccc tcgaagaaaa aaggttgtca 800
aagagcaaaa cagagagagg tcagaacttg tgaaaacaga ggctctccag 850
agaaaaacaa aggaacagag aaccaagaaa gaaacgaacg aacgaacgaa 900
cgaacgaaca acaactctgt cccagagtgg tatatcgaga cctaccggac 950
cttgaacgat acatccggc cgaccggagg tcgagtatct ctaggtgaac 1000
ggaggctgag ggttaaagggt gtagacagag ggacactagg tataccata 1050
cacattggga atgaaacaga gtacctcac tggtaaaaag aggaaagtca 1100
aagaaaacaag aaatgactgg tctttcacg gatgaacagg ggaccaccgt 1150
tccggtaagt ggaatcctgg aagggtggc aaggaaacat ccgtttaggg 1200
agggggaaac tccaggaagg gaaagtatgg cggatccga ccagttacct 1250
ctctctttcc gtctttgtt agaaatttct caaaataaac tcttatttaa 1300
ttaaaaacat ttatttaca aattgttatt ttgatggaa aatactttt 1350
tt 1352

<210> 3
<211> 203
<212> PRT
<213> Mus Musculus

<400> 3
Met Ser Gln Arg Glu Gly Ser Leu Glu Asp His Gln Thr Asp Ser
1 5 10 15
Ser Ile Ser Phe Leu Pro His Leu Glu Ala Lys Ile Arg Gln Thr
20 25 30

His	Asn	Leu	Ala	Arg	Leu	Leu	Thr	Lys	Tyr	Ala	Glu	Gln	Leu	Leu
		35						40						45
Glu	Glu	Tyr	Val	Gln	Gln	Gly	Glu	Pro	Phe	Gly	Leu	Pro	Gly	
			50				55						60	
Phe	Ser	Pro	Pro	Arg	Leu	Pro	Leu	Ala	Gly	Leu	Ser	Gly	Pro	Ala
				65				70					75	
Pro	Ser	His	Ala	Gly	Leu	Pro	Val	Ser	Glu	Arg	Leu	Arg	Gln	Asp
				80				85					90	
Ala	Ala	Ala	Leu	Ser	Val	Leu	Pro	Ala	Leu	Leu	Asp	Ala	Val	Arg
				95				100					105	
Arg	Arg	Gln	Ala	Glu	Leu	Asn	Pro	Arg	Ala	Pro	Arg	Leu	Leu	Arg
				110				115					120	
Ser	Leu	Glu	Asp	Ala	Ala	Arg	Gln	Val	Arg	Ala	Leu	Gly	Ala	Ala
				125				130					135	
Val	Glu	Thr	Val	Leu	Ala	Ala	Leu	Gly	Ala	Ala	Arg	Gly	Pro	
				140				145					150	
Gly	Pro	Glu	Pro	Val	Thr	Val	Ala	Thr	Leu	Phe	Thr	Ala	Asn	Ser
				155				160					165	
Thr	Ala	Gly	Ile	Phe	Ser	Ala	Lys	Val	Leu	Gly	Phe	His	Val	Cys
				170				175					180	
Gly	Leu	Tyr	Gly	Glu	Trp	Val	Ser	Arg	Thr	Glu	Gly	Asp	Leu	Gly
				185				190					195	
Gln	Leu	Val	Pro	Gly	Gly	Val	Ala							
				200										
<210>	4													
<211>	200													
<212>	PRT													
<213>	Homo sapiens													
<400>	4													
Met	Ala	Phe	Thr	Glu	His	Ser	Pro	Leu	Thr	Pro	His	Arg	Arg	Asp
				1				5			10		15	
Leu	Cys	Ser	Arg	Ser	Ile	Trp	Leu	Ala	Arg	Lys	Ile	Arg	Ser	Asp
					20				25				30	
Leu	Thr	Ala	Leu	Thr	Glu	Ser	Tyr	Val	Lys	His	Gln	Gly	Leu	Asn
					35				40				45	
Lys	Asn	Ile	Asn	Leu	Asp	Ser	Ala	Asp	Gly	Met	Pro	Val	Ala	Ser
					50				55				60	
Thr	Asp	Gln	Trp	Ser	Glu	Leu	Thr	Glu	Ala	Glu	Arg	Leu	Gln	Glu
					65				70				75	

Asn Leu Gln Ala Tyr Arg Thr Phe His Val Leu Leu Ala Arg Leu
80 85 90

Leu Glu Asp Gln Gln Val His Phe Thr Pro Thr Glu Gly Asp Phe
95 100 105

His Gln Ala Ile His Thr Leu Leu Leu Gln Val Ala Ala Phe Ala
110 115 120

Tyr Gln Ile Glu Glu Leu Met Ile Leu Leu Glu Tyr Lys Ile Pro
125 130 135

Arg Asn Glu Ala Asp Gly Met Pro Ile Asn Val Gly Asp Gly Gly
140 145 150

Leu Phe Glu Lys Lys Leu Trp Gly Leu Lys Val Leu Gln Glu Leu
155 160 165

Ser Gln Trp Thr Val Arg Ser Ile His Asp Leu Arg Phe Ile Ser
170 175 180

Ser His Gln Thr Gly Ile Pro Ala Arg Gly Ser His Tyr Ile Ala
185 190 195

Asn Asn Lys Lys Met
200

<210> 5
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> sequence is synthesized

<400> 5
gcggccgcga gctcgaattc tttttttt tttttttt tttttttt 50

<210> 6
<211> 1018
<212> DNA
<213> Homo sapiens

<400> 6
gtgaagggag ccgggatcag ccagggcca gcatgagccg gagggaggga 50
agtctggaag acccccagac tgattcctca gtctcacttc ttccccactt 100
ggaggccaag atccgtcaga cacacagcct tgcgcacctc ctcaccaaat 150
acgctgagca gctgctccag gaatatgtgc agctccaggg agacccttc 200
gggctgccca gcttctcgcc gccgcggctg ccggtgcccg gcctgagcgc 250
cccggtcccg agccacgcgg ggctgccagt gcacgagcgg ctgcggctgg 300
acgcggcggc gctggccgcg ctgccccgc tgctggacgc agtgtgtcgc 350

cgccaggccc agctgaaccc gcgcgcgcgg cgcctgctgc gccgcctgga 400
ggacgcggcg cgccaggccc gggccctggg cgccgcgtg gaggccttgc 450
.tggccgcgt gggcggcc aaccgcggc cccggggcga gccccccgccc 500
gccaccgcct cagccgcctc cgccaccggg gtcttccccg ccaagggtgct 550
ggggctccgc gtttgccgc tctaccgcga gtggctgagc cgcaccgagg 600
gcgacctggg ccagctgctg cccgggggct cggcctgagc gccgcggggc 650
agctcgcccc gcctcctccc gctgggttcc gtctcctt ccgcttctt 700
gtctttctct gccgctgtcg gtgtctgtct gtctgctctt agctgtctcc 750
attgcctcgg ccttccttgc ttttgtggg ggagagggga ggggacgggc 800
agggtctctg tcgcccaggc tgggtgcag tggcgcgatc ccagcactgc 850
agcctaacc tcctgggctc aagccatcct tccgcctcag cttccccagc 900
agctgggact acaggcacgc gccaccacag ccggctaatt ttttatttaa 950
ttttttag agacgagggt tcgccatgtt gcccaggctg gtcttgaact 1000
ccggggctca agcgatcc 1018

<210> 7
<211> 1018
<212> DNA
<213> Homo sapiens

<400> 7
cacttcctc ggccctagtc ggtccccgt cgtactcggc ctccctccct 50
tcagaccttc tgggggtctg actaaggagt cagagtgaag aaggggtgaa 100
cctccggttc taggcagtct gtgtgtcggc acgcgtggag gagtggttta 150
tgcgactcgt cgacgaggc ttatacacgc tcgaggtccc tctgggaaag 200
cccgacgggt cgaagagcgg cggcgccgac ggccaccggc cggactcgcg 250
ggcccgaggg tcgggtgcgc ccgacggta cgtgctcgcc gacgcccacc 300
tgcggccggc cgaccggcgc gacggggggcg acgacactgcg tcacacagcg 350
gcgggtccggc tcgacttggg cgcgcgcggc gcggacgacg cggcggaccc 400
cctgcgcgcgc gcggtccggg cccgggaccc gcggcgccac ctccggaaacg 450
accggcgccga cccgcggcgg ttggcgcccc gggccggct cggggggcgg 500
cggtggcgga gtcggcgag gcggtgccccc cagaaggggc gttccacga 550

ccccgaggcg caaacgccgg agatggcgct caccgactcg gcgtggctcc 600
cgctggaccc ggtcgacgac gggcccccga gccggactcg cggcgccccg 650
tcgagcgggg cggaggaggg cgacccaagg cagagaggaa ggcgaagaaa 700
cagaaaagaga cggcgacagc cacagacaga cagacgagaa tcgacagagg 750
taacggagcc ggaagaaacg aaaaacaccc cctctccct cccctgccc 800
tcccagagac agcgggtccg accccacgtc accgcgctag ggtcgtgacg 850
tcggagttgg aggacccgag ttcggttagga aggccgagtc gaaggggtcg 900
tcgaccctga tgtccgtgcg cggtggtgtc ggccgattaa aaaataaatt 950
aaaaaacatc tctgctccaa agcggtacaa cgggtccgac cagaacttga 1000
ggccccgagt tcgctagg 1018

<210> 8
<211> 201
<212> PRT
<213> Homo sapiens

<400> 8
Met Ser Arg Arg Glu Gly Ser Leu Glu Asp Pro Gln Thr Asp Ser
1 5 10 15
Ser Val Ser Leu Leu Pro His Leu Glu Ala Lys Ile Arg Gln Thr
20 25 30
His Ser Leu Ala His Leu Leu Thr Lys Tyr Ala Glu Gln Leu Leu
35 40 45
Gln Glu Tyr Val Gln Leu Gln Gly Asp Pro Phe Gly Leu Pro Ser
50 55 60
Phe Ser Pro Pro Arg Leu Pro Val Ala Gly Leu Ser Ala Pro Ala
65 70 75
Pro Ser His Ala Gly Leu Pro Val His Glu Arg Leu Arg Leu Asp
80 85 90
Ala Ala Ala Leu Ala Ala Leu Pro Pro Leu Leu Asp Ala Val Cys
95 100 105
Arg Arg Gln Ala Glu Leu Asn Pro Arg Ala Pro Arg Leu Leu Arg
110 115 120
Arg Leu Glu Asp Ala Ala Arg Gln Ala Arg Ala Leu Gly Ala Ala
125 130 135
Val Glu Ala Leu Leu Ala Ala Leu Gly Ala Ala Asn Arg Gly Pro
140 145 150

Arg Ala Glu Pro Pro Ala Ala Thr Ala Ser Ala Ala Ser Ala Thr
155 160 165

Gly Val Phe Pro Ala Lys Val Leu Gly Leu Arg Val Cys Gly Leu
170 175 180

Tyr Arg Glu Trp Leu Ser Arg Thr Glu Gly Asp Leu Gly Gln Leu
185 190 195

Leu Pro Gly Gly Ser Ala
200