October 4, 2021 Instructor: Mark P.-H. Lin TA: P.-C. Wang

Programming Assignment #1

Arrays

1 Problem Description

Matrix multiplication is a common operation in linear algebra for many applications, such as computational optimization, machine learning, circuit and system simulation, and other engineering applications.

Given two **sparse** integer matrices, $\mathbf{A}_{\mathbf{m}\times\mathbf{n}}$ and $\mathbf{B}_{\mathbf{p}\times\mathbf{q}}$, where $0 < m, n, p, q < 10^6$, the problem is to transpose and multiply the matrices according to the following sequence of conditions:

- If n = p, $\mathbf{C} = \mathbf{A} \times \mathbf{B}$.
- If m = p, $\mathbf{C} = \mathbf{A^T} \times \mathbf{B}$.
- If n = q, $\mathbf{C} = \mathbf{A} \times \mathbf{B^T}$.
- If m = q, $\mathbf{C} = \mathbf{A^T} \times \mathbf{B^T}$.

2 Input

The input file (e.g. "sample.in") to your program includes two matrices, $\mathbf{A}_{\mathbf{m}\times\mathbf{n}}$ and $\mathbf{B}_{\mathbf{p}\times\mathbf{q}}$, with the following format, and the dimensions of both matrices satisfy either one of the aforementioned conditions.

Input Format	Sample Input
A;	A;
a_{11} a_{11} \ldots a_{1n} ;	$1 \ 0 \ -2 ;$
$a_{21} a_{22} \dots a_{2n} \; ;$	$0 \ 3 \ 0 ;$
:	B ;
a_{m1} a_{m2} \dots a_{mn} ; B;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$b_{11} b_{11} \dots b_{1q} \; ;$	
$b_{21} b_{22} \dots b_{2q} \; ;$	
:	
$b_{p1} b_{p2} \dots b_{pq} \; ;$	

3 Output

Your program will generate the output file (e.g. "sample.out"), which contains the matrix with the following format resulting from the multiplication of both input matrices.

Output Format	Sample Output
c_{11} c_{11} \ldots c_{1y} ;	0 1 0 2;
c_{21} c_{22} \ldots c_{2y} ;	$9 0 12 0 \; ;$
<u>:</u>	0 -2 0 -4;
c_{x1} c_{x2} c_{xy} ;	

4 Command-line Parameter

In order to correctly test your program, you are asked to add the following command-line parameters to your program.

[executable file name] [input file name] [output file name]

(e.g., StudentID.exe sample.in sample.out)

5 Submission Information

Your program must be written in the C/C++ language, and can be compiled on the Linux platform. The source files of your program must be named with "[your student ID].h" and "[your student ID].cpp". The executable file name of your program must be "[your student ID].exe". To submit your program, please archive both executable and source files of your program into a single zip file, named "[your student ID].zip", and upload to E3.

6 Due Date

The zip file must be submitted through E3 before 23:59, October 12, 2021.

7 Grading Policy

The programming assignment will be graded based on the following rules:

- Pass sample input with compilable source code (50%)
- Pass five hidden test cases (50%)

The submitted source codes, which are copied from or copied by others, will not be graded. There will be 25% penalty per day for late submission.