MATG-393US

- 21 -

What is Claimed:

- A laser micromachining system for drilling holes in a work piece 1. 1 comprising: 2 a laser beam generator for directing a laser beam having a wavelength λ, 3 4 along an optical path, an image interpolating mask having an array of apertures, disposed in the 5 optical path, for receiving the laser beam and forming a corresponding array of sub-beams 6 of a first pitch size, 7 a translation stage configured to move the array of sub-beams in a 8 9 perpendicular direction to the optical path, and a demagnifier, disposed in the optical path, for forming a reduced-size 10 pattern of the array of sub-beams on the work piece, the reduced-size pattern having a 11 second pitch size, 12 wherein the second pitch size is less than λ and the first pitch size is greater 13 than λ , and 14 when the laser beam is generated and the translation stage moves the array 15 of sub-beams, the image interpolating mask is effective in forming an array of holes 16 having the second pitch size. 17 2. The laser micromachining system of claim 1 wherein 1
- the array of sub-beams formed by the image interpolating mask is a sub-2 pattern of the reduced-size pattern formed on the work piece, and 3
- the translation stage is configured to move the array of sub-beams in a 4 5 sequence to form the reduced-size pattern on the work piece.

1	3. The laser micromachining system of claim 2 wherein
2	the translation stage is coupled to the image interpolating mask for moving
3	the image interpolating mask and the array of sub-beams.
1	4. The laser micromachining system of claim 2 wherein
2	the translation stage is coupled to a work piece holder holding the work
3	piece for moving the work piece with respect to the array of sub-beams.
1	5. The laser micromachining system of claim 1 wherein
2	the array of apertures of the image interpolating mask has an aperture
3	density of 1/N times an image density of the reduced-size pattern on the work piece and
4	times a demagnification factor of the demagnifier, N being a positive integer, and
5	the array of sub-beams is configured to translate N-times in a perpendicular
6	direction to the optical path by the translation stage to form the array of holes of the
7	second pitch size.
1	6. The laser micromachining system of claim 1 wherein
2	the laser beam generator includes a pulsed laser providing a pulsed-on
3	period of less than 200 femtoseconds, and
4	a harmonic generating crystal, coupled to the pulsed laser, for providing a
5	harmonic frequency of the pulsed laser to produce the laser beam having the wavelength
6	of λ .
1	7. The laser micromachining system of claim 1 wherein
2	the demagnifier includes a first lens having a first focal length and a
3	microscope objective having a second focal length, and
	· · · · · · · · · · · · · · · · · · ·

MATG-393US

4 5	a demagnification factor resulting from the first focal length divided by the second focal length.	
1	8. The laser micromachining system of claim 1 wherein	
2	each of the sub-beams includes a Gaussian intensity distribution, and	
3	a hole of the array of holes has a diameter of approximately less than or equal to the full width at half maximum (FWHM) of the Gaussian intensity distribution.	
1	9. The laser micromachining system of claim 1 wherein	
2	a scanning mirror is provided in the optical path behind the laser beam generator for uniformly distributing the laser beam onto the image interpolating mask.	
1	10. The laser micromachining system of claim 1 wherein	
2	the second pitch size is less than a diffraction limit of the laser beam, and	
3	the first pitch size is greater than the diffraction limit of the laser beam multiplied by a demagnification factor of the demagnifier.	
1	11. A laser micromachining system for drilling holes in a work piece comprising:	
3	a laser beam generator for directing a laser beam along an optical path, the laser beam having a wavelength of $\lambda,$	
5 6 7	a diffraction optical element (DOE) and a telecentric f- θ lens disposed in the optical path for receiving the laser beam and forming an array of sub-beams, the array of sub-beams having a first pitch size,	
8 9	a translation stage configured to move the array of sub-beams in a perpendicular direction to the optical path, and	

MATG-393US

PATENT

- 24 -

10	a demagnifier for forming a reduced-size pattern of the sub-beams onto the	3
11	work piece, the reduced-size pattern having a second pitch size,	
12	wherein the second pitch size is less than λ and the first pitch size is greate	:r
13	than λ , and	
14	when the laser beam is generated and the translation stage moves the arra	y
15	of sub-beams, the DOE and the telecentric f- θ lens are effective in forming an array of	
16	holes having the second pitch size.	
1	12. The laser micromachining system of claim 11 wherein	
2	the array of sub-beams formed by the DOE and the telecentric f- θ lens are	a
3	sub-pattern of the reduced-size pattern formed on the work piece, and	
4	the translation stage is configured to move the array of sub-beams in a	
4 5	sequence to form the reduced-size pattern on the work piece.	
	bequence to form the reduced Size pattern on the Work piece.	
1	13. The laser micromachining system of claim 12 wherein	
2	the translation stage is coupled to the telecentric f - θ lens for moving the	
3	telecentric f - θ lens and the array of sub-beams.	
1	14. The laser micromachining system of claim 12 wherein	
2	the translation stage is coupled to a work piece holder holding the work piece for moving the work piece with respect to the array of sub-beams.	
3	piece for moving the work piece with respect to the array of sub-beams.	
1	15. The laser micromachining system of claim 11 wherein	
	• • • • • • • • • • • • • • • • • • • •	
2	the array of sub-beams has a density of 1/N times an image density of the	
3	reduced-size pattern on the work piece and times a demagnification factor of the	
4	demagnifier, N being a positive integer, and	

5	the array of sub-beams is configured to translate N-times in a perpendicular		
6	direction to the optical path by the translation stage to form the array of holes of the		
7	second pitch size.		
1	16. The laser micromachining system of claim 11 wherein		
2	the laser beam generator includes a pulsed laser providing a pulsed-on		
3	period of less than 200 femtoseconds, and		
4	a harmonic generating crystal, coupled to the pulsed laser, for providing a		
5	harmonic frequency of the pulsed laser to produce the laser beam having the wavelength		
6	of λ.		
1	17. The laser micromachining system of claim 11 wherein		
2	each of the sub-beams includes a Gaussian intensity distribution, and		
•			
3	a hole of the array of holes has a diameter of approximately less than or		
4	equal to the full width at half maximum (FWHM) of the Gaussian intensity distribution.		
1	18. The laser micromachining system of claim 11 wherein		
•	16. The laser meromachining system of claim 11 wherein		
2	a scanning mirror is provided in the optical path behind the laser beam		
3	generator for uniformly distributing the laser beam onto the DOE.		
1.	19. The laser micromachining system of claim 11 wherein		
2	the second pitch size is less than a diffraction limit of the laser beam, and		
3	the first pitch size is greater than the diffraction limit of the laser beam		
4	multiplied by a demagnification factor of the demagnifier.		
l	20. A laser micromachining system for drilling holes in a work piece		
,	comprising:		

MATG-393US

- 26 -

3	a laser beam generator for directing a laser beam having a wavelength $\boldsymbol{\lambda},$
4	along an optical path,
5	an image interpolating mask having an array of apertures, disposed in the
6 7	optical path, for receiving the laser beam and forming a corresponding array of sub-beams of a first pitch size,
,	of a first pitch size,
8	a translation stage configured to move the array of sub-beams in a
9	perpendicular direction to the optical path, and
10	a demagnifier, disposed in the optical path, for forming a reduced-size
11	pattern of the array of sub-beams on the work piece, the reduced-size pattern having a
12	second pitch size,
13	wherein the second pitch size is less than a diffraction limit of the laser
14	beam, and the first pitch size is greater than the diffraction limit of the laser beam, and
15	when the laser beam is generated and the translation stage moves the array
16	of sub-beams, the image interpolating mask is effective in forming an array of holes
17	having the second pitch size.
18	21. The laser micromachining system of claim 20 wherein
10	21. The laser fineromachining system of claim 20 wherein
19	the second pitch size is approximately equal to a Rayleigh distance of
20	$0.61*\lambda/N.A.$, where N.A. is a numerical aperture of a lens in the optical path.
21	22. The laser micromachining system of claim 21 wherein
22	the second pitch size is approximately equal to 1.5* Rayleigh distance.
	and determ production depresentation, equal to 210 maying in disturbed
23	23. A laser micromachining system for drilling holes in a work piece
24	comprising:

25	a laser beam generator for directing a laser beam along an optical path, the
26	laser beam having a wavelength of λ ,
27	a diffraction optical element (DOE) and a telecentric f- θ lens disposed in the
28	optical path for receiving the laser beam and forming an array of sub-beams, the array of
29	sub-beams having a first pitch size,
30	a translation stage configured to move the array of sub-beams in a
31	perpendicular direction to the optical path, and
32	a demagnifier for forming a reduced-size pattern of the sub-beams onto the
33	work piece, the reduced-size pattern having a second pitch size,
34	wherein the second pitch size is less than a diffraction limit of the laser
35	beam, and the first pitch size is greater than the diffraction limit of the laser beam, and
36	when the laser beam is generated and the translation stage moves the arra-
37	of sub-beams, the DOE and the telecentric f- θ lens are effective in forming an array of
38	holes having the second pitch size.
39	24. The laser micromachining system of claim 23 wherein
40	the second pitch size is approximately equal to a Rayleigh distance of
41	$0.61*\lambda/N.A.$, where N.A. is a numerical aperture of a lens in the optical path.
42	25. The laser micromachining system of claim 24 wherein
43	the second pitch size is approximately equal to 1.5* Rayleigh distance.
44	26. A method of drilling holes in a work piece comprising the steps of:
45	(a) receiving a laser beam directed along an optical path;

MATG-393US

46	(b)	directing the laser beam through a beam former, disposed in the
47		optical path, to form an array of sub-beams of a first pitch size;
48	(c)	demagnifying the array of sub-beams to form a reduced-size pattern
49		of a second pitch size on the work piece;
50	(d)	translating the array of sub-beams in a perpendicular direction to the
51		optical path; and
52	(e)	after translating the array of sub-beams in the perpendicular
53 54		direction to the optical path, forming the reduced-size pattern of the second pitch size on the work piece.
1	27.	The method of claim 26 wherein
2	step ((a) includes receiving the laser beam having a wavelength of λ ;
3	step (than the wavelengtl	(b) includes forming the array of sub-beams with a pitch size greater h of λ ; and
5		(e) includes forming the reduced-size pattern on the work piece with a nan the wavelength of λ .
1 2	28. second pitch size by	The method of claim 26 wherein the first pitch size is larger than the a factor of P times a demagnification factor provided by the
3	demagnifying step,	P being a positive integer; and
4	step ((d) includes translating the array of sub-beams in the perpendicular
5	direction P times; a	nd
6 7	•	(e) includes after translating the array of sub-beams P times, forming ttern of the second pitch size on the work piece.
1	29.	The method of claim 26 wherein

MATG-393US PA

- 29 -

2	step (b) includes directing the laser beam through an image interpolating		
3	mask having an array of apertures, and		
4	forming the array of sub-beams after passing the laser beam through the		
5	array of apertures.		
1	30. The method of claim 26 wherein		
2	step (b) includes directing the laser beam through a DOE and a telecentric f- $\boldsymbol{\theta}$ lens, and		
4 5	forming the array of sub-beams after passing the laser beam through the DOE and the telecentric f- θ lens.		
1	31. The method of claim 30 including		
2	after directing the laser beam through the DOE, forming an angled beam pattern; and		
4 5	forming the array of sub-beams into a parallel pattern by passing the angled beam pattern through the telecentric f- θ lens.		
1 2 3	32. The method of claim 26 wherein the array of sub-beams has a density of 1/N times an image density of the reduced-size pattern on the work piece and times a demagnification factor of the demagnifying step, N being a positive integer; and		
4 5	step (d) includes translating the array of sub-beams N times in the perpendicular direction to the optical path; and		
6 7	step (e) includes after translating the array of sub-beams N times, forming the reduced-size pattern on the work piece.		

The method of claim 26 wherein

1

33.

MATG-393US PATENT

- 30 -

- step (d) includes coupling a translation stage to the beam former for translating the array of sub-beams in the perpendicular direction to the optical path.
 - 34. The method of claim 26 wherein

1

step (d) includes coupling a translation stage to a work piece holder for translating the array of sub-beams in the perpendicular direction with respect to the optical path.