```
#Importing Libraries
In [1]:
          import numpy as np
          import matplotlib.pyplot as plt
          %matplotlib inline
          import pandas as pd
          from sklearn.preprocessing import LabelEncoder
          from sklearn.utils import shuffle
          #Constants
          TRAIN SIZE = 6772
          TEST SIZE = 1693
          ACTIVATION_F = 'tanh'
          #Import Training Set
          df = pd.read csv('SeoulBikeData.csv',engine='python')
          dummies = pd.get dummies(df.Seasons)
          df= pd.concat([df,dummies],axis='columns')
          df= df.drop(['Seasons','Winter'], axis='columns')
          le= LabelEncoder()
          dfle = df
          df.Holiday=le.fit_transform(dfle.Holiday)
          df['Functioning Day']=le.fit_transform(dfle['Functioning Day'])
In [2]:
          df.head()
                                                                    Wind
Out[2]:
                       Rented
                                                                                                        So
                                                                          Visibility
                                                                                         Dew point
                          Bike
                               Hour Temperature(°C) Humidity(%)
                                                                                                    Radiati
                  Date
                                                                   speed
                                                                            (10m) temperature(°C)
                        Count
                                                                                                     (MJ/m)
                                                                    (m/s)
                                   0
                                                 -5.2
                                                                      2.2
           01/12/2017
                           254
                                                               37
                                                                              2000
                                                                                              -17.6
            01/12/2017
                          204
                                                 -5.5
                                                               38
                                                                      8.0
                                                                              2000
                                                                                              -17.6
            01/12/2017
                           173
                                                 -6.0
                                                               39
                                                                      1.0
                                                                              2000
                                                                                              -17.7
            01/12/2017
                           107
                                   3
                                                 -6.2
                                                               40
                                                                      0.9
                                                                              2000
                                                                                              -17.6
            01/12/2017
                           78
                                   4
                                                 -6.0
                                                               36
                                                                      2.3
                                                                              2000
                                                                                              -18.6
In [3]:
          X=df
          X=X.drop("Date",axis=1)
          X=X.drop("Rented Bike Count",axis=1)
          y = df["Rented Bike Count"]
          X.head()
In [4]:
Out[4]:
                                                Wind
                                                                                    Solar
                                                       Visibility
                                                                     Dew point
            Hour Temperature(°C) Humidity(%)
                                                                                Radiation
                                                                                          Rainfall(mm)
                                                speed
                                                         (10m) temperature(°C)
                                                (m/s)
                                                                                 (MJ/m2)
         0
               0
                                                                                                   0.0
                             -5.2
                                            37
                                                  2.2
                                                          2000
                                                                          -17.6
                                                                                      0.0
```

(

(

(

|   | Hour | Temperature(°C) | Humidity(%) | Wind<br>speed<br>(m/s) | Visibility<br>(10m) | Dew point temperature(°C) | Solar<br>Radiation<br>(MJ/m2) | Rainfall(mm) | Sn |
|---|------|-----------------|-------------|------------------------|---------------------|---------------------------|-------------------------------|--------------|----|
| 1 | 1    | -5.5            | 38          | 0.8                    | 2000                | -17.6                     | 0.0                           | 0.0          |    |
| 2 | 2    | -6.0            | 39          | 1.0                    | 2000                | -17.7                     | 0.0                           | 0.0          |    |
| 3 | 3    | -6.2            | 40          | 0.9                    | 2000                | -17.6                     | 0.0                           | 0.0          |    |
| 4 | 4    | -6.0            | 36          | 2.3                    | 2000                | -18.6                     | 0.0                           | 0.0          |    |
|   |      |                 |             |                        |                     |                           |                               |              |    |

Out[5]: ((7008, 14), (1752, 14))

In [6]: X\_train.corr()

Out[6]:

|                            | Hour      | Temperature(°C) | Humidity(%) | Wind<br>speed<br>(m/s) | Visibility<br>(10m) | Dew point temperature(°C) | S<br>Radiat<br>(MJ/ |
|----------------------------|-----------|-----------------|-------------|------------------------|---------------------|---------------------------|---------------------|
| Hour                       | 1.000000  | 0.135492        | -0.233281   | 0.282317               | 0.096367            | 0.016132                  | 0.148               |
| Temperature(°C)            | 0.135492  | 1.000000        | 0.154051    | -0.032333              | 0.036242            | 0.912724                  | 0.363               |
| Humidity(%)                | -0.233281 | 0.154051        | 1.000000    | -0.344004              | -0.547715           | 0.532832                  | -0.457              |
| Wind speed (m/s)           | 0.282317  | -0.032333       | -0.344004   | 1.000000               | 0.176518            | -0.175369                 | 0.332               |
| Visibility (10m)           | 0.096367  | 0.036242        | -0.547715   | 0.176518               | 1.000000            | -0.176538                 | 0.145               |
| Dew point temperature(°C)  | 0.016132  | 0.912724        | 0.532832    | -0.175369              | -0.176538           | 1.000000                  | 0.105               |
| Solar Radiation<br>(MJ/m2) | 0.148713  | 0.363076        | -0.457705   | 0.332530               | 0.145275            | 0.105797                  | 1.000               |
| Rainfall(mm)               | 0.011442  | 0.047771        | 0.229661    | -0.020668              | -0.159169           | 0.121061                  | -0.071              |
| Snowfall (cm)              | -0.019582 | -0.218641       | 0.110899    | -0.003987              | -0.117943           | -0.150324                 | -0.074              |
| Holiday                    | 0.000357  | 0.052282        | 0.051985    | -0.023402              | -0.032970           | 0.065061                  | 0.003               |
| Functioning Day            | 0.012371  | -0.049998       | -0.015002   | 0.017091               | -0.032013           | -0.050186                 | -0.002              |
| Autumn                     | -0.000024 | 0.056742        | 0.036346    | -0.131273              | 0.109990            | 0.064274                  | -0.042              |
| Spring                     | -0.005970 | 0.010933        | 0.014811    | 0.089861               | -0.193632           | 0.002597                  | 0.093               |
| Summer                     | 0.012511  | 0.665986        | 0.187273    | -0.062988              | 0.065471            | 0.652420                  | 0.134               |
| 4                          |           |                 |             |                        |                     |                           | •                   |

```
import seaborn as sns
#Using Pearson Correlation
plt.figure(figsize=(12,10))
cor = X_train.corr()
sns.heatmap(cor, annot=True, cmap=plt.cm.CMRmap_r)
plt.show()
```

