

Generative Adversarial Networks for Synthetic Time Series Data Generation To Monitor Energy Consumption of CNC Machine

Autonomous Multisensor Systems Group Institute for Intelligent Cooperating Systems Faculty of Computer Science Otto von Guericke University, Magdeburg

13.11.2024

Presenters: Archana Yadav, Gowtham Premkumar, Shweta Bambal

Contents

- Introduction
- Dataset Overview
- Architecture Selection
- Implemented Architectures
 - TimeGAN
 - TransformerGAN
 - WGAN
- Evaluation Metrics
 - Quantitative Metrics
 - Qualitative Metrics
- Results
- Conclusion
- Future Work

Foundational Concepts of GAN

Introduction

Introduction

Generative Adversarial Networks (GANs) are made up of two neural networks, a discriminator and a generator. They use adversarial training to produce artificial data that is identical to actual data.

Figure 1: Images generated by a GAN created by NVIDIA.

Figure 2: A general GAN architecture

Understanding the Dataset, Data Preprocessing and Architecture Selection

Project Overview

Objective: To implement and evaluate different **Generative Adversarial Network** architectures for **Synthetic Time Series Data Generation.**

Understanding the Data

Name: CNC Machine Data

Size: 18*19393

Data Type: Numerical (all columns)

Attributes: Force Parameters, Moment, Material Removed, Acceleration, Velocity and Position Parameters

f_x_sim	f_y_sim	f_z_sim	f_sp_sim	m_sp_si m	materialrem oved_sim	a_x	a_y	a_z	a_sp	v_x	
-7.74482	192.6447	68.96563	192.8003	0.964002	3.412727	-0.31125	0.065	0.00875	0.85875	-3.5355	
-7.57726	192.4559	69.05873	192.605	0.963025	3.575455	-0.13125	0.01875	0.0125	3.861875	-3.543	
-5.73019	190.2727	70.10932	190.359	0.951795	3.487273	0.461875	-0.05375	-0.0075	1.2875	-3.54075	
-5.96102	190.556	69.97542	190.6492	0.953246	3.55	0.44625	-0.0275	-0.01375	-3.43313	-3.52453	

Raw Data Loading	Data Reversal	Normalization	Sequence Segmentation	Random Shuffling		
 Import raw data from csv file 	 Flips data in reverse chronological order 	 Min-Max scaling to standardize data to a 0-1 range 	 Splits data into sequences of fixed length (seq_len). 	 Shuffles the sequences randomly 		
	 Ensures time series data is in chronological order for sequential analysis 	 Prevents dominance by larger values and improves model convergence. 	 Prepares sequential input data window 			

Architecture Selection

TimeGAN

RNN based generator and discriminator along with a supervisor.

TransformerGAN

Transformer based generator and discriminator

WGAN

Wasserstein based loss in critic which acts as discriminator TimeGAN for Time-series Data Generation

TimeGAN

1. Hybrid Architecture with Embedding Network

2. Multi-objective loss function

3. Supervised Learning Component

4. Adaptability to Multi-Dimensional Time-Series 5. High Fidelity and Improved Training Stability

TimeGAN Architecture

Embedder

Maps the original high dimensional feature space to a lower - dimensional latent space.

Discriminator

Distinguishes between real and synthetic time-series data.

Supervisor

Teaches the generator the temporal patterns of real data.

Recovery

Maps the latent representations back to the original feature space

Generator

Generates latent space representations from random noise.

Figure 3: TimeGAN Training Scheme [1]

Transformer GAN for Time-series Data Generation

Transformer GAN

1. Long-range Dependencies

2. Self-Attention Mechanism - Identify Complex Patterns

3. Parallel Processing Efficiency

4. Handle Irregular Time-series Data

5. Effective Combination of GANs and Transformers

TransformerGAN Architecture

Figure 4: Transformer GAN Architecture [2]

WGAN for Time-series Data Generation

WGAN

1. Stabilized GAN Training

2. Improved Loss Function

3. Gradient Clipping for Model Convergence

4.Flexible Architecture for Various Data Types 5. ReducedSensitivity toHyperparameters

Figure 5: WGAN Architecture

$$\max_{w \in W} \underbrace{E_{x \sim p_r(x)}[f_w(x)]}_{\text{Expected reward from real data}} - \underbrace{E_{z \sim p(z)}[f_w(g_\theta(z))]}_{\text{Expected reward from generated data}} + \lambda E_{\hat{x} \sim p_{\hat{x}}}[(\|\nabla_{\hat{x}} f_w(\hat{x})\|_2 - 1)^2]$$

oise vector sample
enerator network parameterized by $oldsymbol{ heta}$
ritic network parameterized by w
eal data sample, Gradient penalty

Predictive Score, Discriminative Score and FID Score

Evaluation Metrics

Evaluation metrics ensure that synthetic data closely resembles real data in terms of realism and feature distribution.

Quantitative Analysis

Use of metrics associated with statistical measures used for time series analytics

Qualitative Analysis

Human visual inspection of the generated data.

Evaluation Metrics - Predictive Score

Training on Synthetic Data

Testing on Real Data

Score Calculation

 Trained a RNN on synthetic data Predicted the value of the last feature of the next sequence for the real data using the trained model

- Calculated the mean absolute error (MAE) between the predicted and the original feature value of the real data
- Average MAE is the predictive score

Evaluation Metrics - Discriminative Score

Test - Train Split

Discriminator Training

Score Calculation

- Labelled real data as1 and synthetic as 0
- Splitted it into training and testing sets.

- Trained discriminator to classify data based on the labels
- Used binary cross entropy loss

- Calculated the discriminator's accuracy on the test set
- Computed discriminative score as |accuracy 0.5|

Extract Features

Calculate Mean & Covariance

Calculate Frechet Distance

- Used InceptionTime neural network
- Capture distributions of the extracted features

- Mean how closely two distributions centered around the same point in feature space.
- Covariance matrix shape and spread of the feature distribution.
- A large Mean and
 Covariance difference synthetic data not same as
 real data

$$FID(\mu_r, \Sigma_r, \mu_g, \Sigma_g) = \|\mu_r - \mu_g\|_2^2 + Tr(\Sigma_r + \Sigma_g - 2(\Sigma_r \Sigma_g)^{\frac{1}{2}})_{[3]}$$

μ_{r}	Mean (real)		
$\mu_{\rm g}$	Mean (generated)		
Σ _r	Cov. Matrix (real)		
$\Sigma_{\rm g}$	Cov. Matrix (generated)		

Evaluation Results of TimeGAN, TransformerGAN and WGAN

Our Results

Figure 6: PCA and t-SNE Plots of TimeGAN(LSTM) for 10k Iterations

Figure 7: PCA and t-SNE plots of TimeGAN(GRU) for 10k iterations

Figure 7: PCA and t-SNE plots of TransformerGAN for 3k iterations

Figure 9: PCA and t-SNE Plots of WGAN for 10k Iterations

Model	Predictive Score	Discriminative Score	FID Score
TimeGAN (GRU)	0.0111	0.4033	0.6667
TimeGAN (LSTM)	0.0075	<mark>0.3634</mark>	0.1047
TransformerGAN	0.5024	0.5148	0.2594
WGAN	0.2242	0.5841	0.2867

What our results conclude?

Conclusion

- **TimeGAN (LSTM)** demonstrated the highest performance, effectively generating synthetic data that closely replicates CNC machine energy consumption, showing its value in complex time series applications.
- Model stability and architecture customization are key to improving the realism and utility of synthetic data.

Opportunities for further Development and Improvement

Future Work

- Developing **training techniques** to ensure stable GAN performance and creating **hybrid model architectures** to enhance the quality of synthetic data generation.
- Development of **interactive visualizations** to illustrate the comparison between real data and synthetic data generated by different models.
- Forecasting energy consumption patterns of CNC machines by utilizing synthetic data for energy demand prediction.

References

- Yoon, Jinsung & Jarrett, Daniel & Schaar, Mihaela. (2019). Time-series Generative Adversarial Networks. https://www.researchgate.net/publication/344464212 Time-series Generative Adversarial Networks
- 2. Xiaomin Li, Vangelis Metsis, Huangyingrui Wang, Anne Hee Hiong Ngu. (2022) TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network. https://arxiv.org/abs/2202.02691
- 3. Ricardo de Deijn, Aishwarya Batra, Brandon Koch, Naseef Mansoor and Hema Makkena. (2024). Reviewing FID and SID metrics on Generative Adversarial Networks. https://arxiv.org/pdf/2402.03654
- 4. Padmanaba Srinivasan, William J. Knottenbelt. (2022) Time-series Transformer Generative Adversarial Networks https://arxiv.org/abs/2205.11164
- 5. <u>EOIN BROPHY</u>, <u>ZHENGWEI WANG</u>, <u>QI SHE</u>, <u>TOMÁS WARD</u>. (2023) Generative Adversarial Networks in Time Series: A Systematic Literature Review https://dl.acm.org/doi/fullHtml/10.1145/3559540
- 6. H. Arnout, J. Bronner and T. Runkler, "Evaluation of Generative Adversarial Networks for Time Series Data," 2021 International Joint Conference on Neural Networks (IJCNN), Shenzhen, China, 2021, pp. 1-7, doi: 10.1109/IJCNN52387.2021.9534373.
- 7. Brophy, Eoin et al. "Generative adversarial networks in time series: A survey and taxonomy." ArXiv abs/2107.11098 (2021): n. pag.,
- 8. https://www.techtarget.com/searchenterpriseai/tip/GAN-vs-transformer-models-Comparing-architectures-and-uses
- 9. https://towardsdatascience.com/evaluation-of-synthetic-time-series-1b4fc4e2be39https://machinelearningmastery.com/how-to-implement-the-frechet-inception-distance-fid-from-scratch/
- 10. https://wandb.ai/ayush-thakur/gan-evaluation/reports/How-to-Evaluate-GANs-using-Frechet-Inception-Distance-FID---Vmlldzo0MTAxOTI
- 11. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein GAN [arXiv preprint arXiv:1701.07875]. Retrieved from https://arxiv.org/abs/1701.07875
- 12. Improved Training of Wasserstein GANs by Gulrajani, Ahmed, Arjovsky, Dumoulin, and Courville (2017). https://arxiv.org/abs/1704.00028

Generative Adversarial Networks for Time Series

Thank You For Your Attention!

