Invariant Annuli and Singular Fibers

Hazel Brenner

Spring 2023

1 Introduction

This writeup is the first step toward showing that one dimensional orbits of $\operatorname{Homeo}_0(S^1)$ actions on compact three-manifolds are regular fibers of the associated Seifert fibration. In particular, the goal here is to prove that when there is an invariant annulus accumulating onto a given 1-diemnsional orbit, it must be regular. The proof of this fact proceeds by making use of a simple observation about sequences of points in invariant surfaces of $\operatorname{Homeo}_0(S^1)$ actions on spaces.

2 Main trick

We have the following fact which more or less amounts to a restatement of continuity.

Remark 1. Suppose that $\operatorname{Homeo}_0(S^1)$ acts on a compact three-manifold M, and A is an invariant annulus with standard model coordinates $\varphi: S^1 \times (0,1) \to A$ and σ a 1-dimensional orbit in $\overline{A} - A$. Then, if two sequences of points in A with constant S^1 coordinate under φ converge in M to $p \in \sigma$, then their S^1 coordinate must be the same.

Note that the proof of this fact depends on orbit structure of a point stabilizer subgroup of $\mathrm{Homeo}_0(S^1)$ on a model annulus. See Mann-Chen.

Look for ways to relax conditions here, espec. on S coord

Track cites soon rather than later

Pf of remark.

This proof is tricky to extract from the details of the following section, need to work more

Then, when seeking a contradiction, the goal is to search for point sequences with distinct S^1 coordinates converging to the same $p \in \sigma$. The main motivation here is that a singular orbit σ very naturally affords us such point sequences by "wrapping the annulus around" multiple times.

3 First Result

Proposition 1. Suppose that $\text{Homeo}_0(S^1)$ acts on a compact three-manifold M, A is an annulus orbit, and σ is a 1-dimensional orbit in $\overline{A} - A$. Then, σ must be a regular fiber of the associated Seifert fibration.

Because of my difficulties in parsing out and proving this trick independently, the following is a direct proof of this proposition which does not appeal to the trick. Hopefully it will become clearer as I go forward how to parse this proof into two pieces.

Proof. Let $p \in \sigma$ be the fixed point on σ of $G_0 \subset \operatorname{Homeo}_0(S^1)$. Now, let $\gamma := \{(x,0) \in [0,1] \times S^1\}$. In particular, since γ is an orbit of G_0 acting on the model annulus, $\varphi(\gamma)$ is an orbit of G_0 acting on M. So, $\varphi(\gamma)$ is also an invariant set, that is $\varphi(\gamma) - \varphi(\gamma)$ is a union of orbits of G_0 . Furthermore, note that since γ is a continuous curve whose projection onto the first coordinate of the model annulus is all of (0,1), $\varphi(\gamma)$ intersects every S^1 fiber in A, so $\varphi(\gamma) \cap \sigma \neq \emptyset$. Since the action of G_0 divides σ into an invariant open interval, and a fixed point, we must have that $p \in \varphi(\gamma)$. Thus, there is a sequence of points $\{x_k\}$ in $\varphi(\gamma)$, which converges to p, and by definition, the S^1 coordinates of the x_k 's under φ are all 0.

Now, to construct the second sequence of points, suppose toward a contradiction that σ is singular, then there is another θ such that G_{θ} fixes p. Then, apply the same construction with G_{θ} rather than G_0 to

produce a sequence of points x'_k . Note that under any element f of G_0 , we must have by continuity that $f(x'_k)$ converges to f(p) = p, but by sufficiently disturbing the S^1 coordinate away from 0, $f(x'_k)$ cannot converge to p. This proof can be extended to a general invariant annulus by noting that if A is such an invariant annulus and there is no annulus orbit meeting the conditions of the previous proposition, there must be a sequence of 1-dimensional orbits accumulating onto σ . Then the argument will proceed by taking the point sequences to be the respective sequences of the fixed points of G_0 and G_{θ} on the orbits of the sequence of 1-dimensional orbits. Then apply the same kind of map. Notes 1 1 This proof is tricky to extract from the details of the following section, need to work more 1 Because of my difficulties in parsing out and proving this trick independently, the following is a direct proof of this proposition which does not appeal to the trick. Hopefully it will become 1 I am suddenly uneasy about this part. In fact, it's become clear that the initial point sequence may not even be necessary. All I need to violate continuity is a point sequence whose image does 2 Again, I am concerned that the construction of the desired map is trickier than I previously thought. I'm not sure how to "sufficiently disturb" the points of the second sequence so that they no longer

I am suddenly uneasy about this part. In fact, it's become clear that the initial point

sequence may not even be necessary All I need to vio-

late continuity is a point sequence whose image does not converge to

what it should.

Again, I am concerned that the construction of the desired map is trickier than I previously thought. I'm not sure how to "sufficiently disturb"

the points of the second sequence so that they no

longer converge to what they're meant to.

2