Contents

1	Fun	ctions	
	1.1	square	efree – Squarefreeness tests
		1.1.1	Definition
		1.1.2	lenstra – Lenstra's condition
		1.1.3	trial_division - trial division
		1.1.4	trivial_test - trivial tests
		1.1.5	viafactor – via factorization
		1.1.6	viadecomposition – via partial factorization
		1.1.7	lenstra ternary – Lenstra's condition, ternary version
		1.1.8	trivial test ternary – trivial tests, ternary version
		1.1.9	trial division ternary – trial division, ternary version
		1.1.10	viafactor ternary – via factorization, ternary version

Chapter 1

Functions

1.1 squarefree – Squarefreeness tests

There are two method groups. A function in one group raises **Undetermined** when it cannot determine squarefreeness. A function in another group returns None in such cases. The latter group of functions have "_ternary" suffix on their names. We refer a set {True, False, None} as ternary.

The parameter type integer means either int, long or Integer.

This module provides an exception class.

Undetermined: Report undetermined state of calculation. The exception will be raised by **lenstra** or **trivial test**.

1.1.1 Definition

We define squarefreeness as:

n is squarefree \iff there is no prime p whose square divides n.

Examples:

- 0 is non-squarefree because any square of prime can divide 0.
- 1 is squarefree because there is no prime dividing 1.
- 2, 3, 5, and any other primes are squarefree.
- 4, 8, 9, 12, 16 are non-squarefree composites.
- \bullet 6, 10, 14, 15, 21 are squarefree composites.

1.1.2 lenstra – Lenstra's condition

 $lenstra(n: integer) \rightarrow bool$

If return value is True, n is squarefree. Otherwise, the squarefreeness is still unknown and **Undetermined** is raised. The algorithm is based on [1].

†The condition is so strong that it seems n has to be a prime or a Carmichael number to satisfy it.

Input parameter n ought to be an odd integer.

1.1.3 trial division – trial division

```
trial division(n: integer) \rightarrow bool
```

Check whether n is squarefree or not.

The method is a kind of trial division and inefficient for large numbers.

Input parameter n ought to be an integer.

1.1.4 trivial test – trivial tests

```
trivial test(n: integer) \rightarrow bool
```

Check whether n is squarefree or not. If the squarefreeness is still unknown, then **Undetermined** is raised.

This method do anything but factorization including Lenstra's method.

Input parameter n ought to be an odd integer.

1.1.5 viafactor – via factorization

```
viafactor(n: integer) \rightarrow bool
```

Check whether n is squarefree or not.

It is obvious that if one knows the prime factorization of the number, he/she can tell whether the number is squarefree or not.

Input parameter n ought to be an integer.

1.1.6 viadecomposition – via partial factorization

 $viadecomposition(n: integer) \rightarrow bool$

Test the squarefreeness of n. The return value is either one of True or False; None never be returned.

The method uses partial factorization into squarefree parts, if such partial factorization is possible. In other cases, It completely factor ${\tt n}$ by trial division.

Input parameter n ought to be an integer.

1.1.7 lenstra_ternary - Lenstra's condition, ternary version

```
lenstra ternary(n: integer) \rightarrow ternary
```

Test the squarefreeness of n. The return value is one of the ternary logical constants. If return value is True, n is squarefree. Otherwise, the squarefreeness is still unknown and None is returned.

†The condition is so strong that it seems n has to be a prime or a Carmichael number to satisfy it.

This is a ternary version of **lenstra**.

Input parameter n ought to be an odd integer.

1.1.8 trivial_test_ternary - trivial tests, ternary version

```
trivial test ternary(n: integer) \rightarrow ternary
```

Test the squarefreeness of ${\tt n}$. The return value is one of the ternary logical constants.

The method uses a series of trivial tests including lenstra_ternary. This is a ternary version of trivial test.

Input parameter n ought to be an integer.

1.1.9 trial_division_ternary - trial division, ternary version

```
trial division ternary(n: integer) \rightarrow ternary
```

Test the squarefreeness of n. The return value is either one of True or False; None never be returned.

The method is a kind of trial division.

This is a ternary version of **trial** division.

Input parameter n ought to be an integer.

$\begin{array}{ccc} \textbf{1.1.10} & \textbf{viafactor_ternary} - \textbf{via factorization, ternary version} \\ & \textbf{sion} \end{array}$

 $viafactor_ternary(n: integer) \rightarrow ternary$

Just for symmetry, this function is defined as an alias of **viafactor**.

Input parameter n ought to be an integer.

Bibliography

[1] H. W. Lenstra, Jr. Miller's primality test. *Information processing letters*, Vol. 8, No. 2, 1979.