Let $\mathbf{AB} \in \mathbb{R}^{n \times n}$, and $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $\alpha \in \mathbb{R}$.

Operation	Operations	
	Full matrix	Sparse matrix (m non zero entries)
$\mathbf{x}^T \mathbf{y}$	n(*) + n - 1(+) = 2n - 1	2n-1
$\mathbf{x}(+/-)\mathbf{y}$	n	n
$\alpha \mathbf{x}$	n	n
Ax	$(n(*) + n - 1(+))n (r) = 2n^2 - n$	(m(*) + m - 1(+))n (r) = $2mn - n$
AB		$[(m(*) + m - 1(+))n (r)]m (c) = 2m^2n - nm$
$\mathbf{A} \in \mathbb{R}^{m imes n} \mathbf{B} \in \mathbb{R}^{n imes p}$		
AB	mp(2n-1)	
$\mathbf{A} = \mathbf{L}\mathbf{L}^T$	$1/3n^3$	
$\mathbf{L}\mathbf{x} = \mathbf{y}$	n^2	
$\mathbf{L}^T\mathbf{x} = \mathbf{y}$	n^2	

Algorithm 1 CG method, solving $Ax = b$.	Oper	ations
	Full matrix	Sparse matrix
Give an initial guess \mathbf{x}^0 .		
Compute $\mathbf{r}^0 = \mathbf{b} - \mathbf{A}\mathbf{x}^0$ and set $\mathbf{p}^0 = \mathbf{r}^0$.	$2n^2$	2mn
for $k = 0,,$ until convergence		
$\alpha^k = \frac{(\mathbf{r}^k, \mathbf{r}^k)}{(\mathbf{A}\mathbf{p}^k, \mathbf{p}^k)}$	$2n^2 + 3n - 2$	2nm+3n-2
$\mathbf{x}^{k+1} = \mathbf{x}^{k} + \alpha^k \mathbf{p}^k$	2n	2n
$\mathbf{r}^{k+1} = \mathbf{r}^k - \alpha^k \mathbf{A} \mathbf{p}^k$	$2n^2+n$	2nm+n
$\beta^k = \frac{(\mathbf{r}^{k+1}, \mathbf{r}^{k+1})}{(\mathbf{r}^k, \mathbf{r}^k)}$	4n-1	4n-1
$\mathbf{p}^{k+1} = \mathbf{r}^{k+1} + \beta^k \mathbf{p}^k$	2n	2n
end		
Total each k	$4n^2 + 12n - 3$	4nm + 12n - 3

Algorithm 2 Incomplete Cholesky factorization IC(0)	Opera	ations
	Full matrix	Sparse matrix
for $j = 2,, n$		
1) Eliminate a_{ij} from \mathbf{R}_j		
Divide \mathbf{R}_i by a_{ii}	n-i	m-i
Multiply \mathbf{R}_i by a_{ij}	(n-i+1)(n-i)	(m-i+1)(n-i)
Substraction $\mathbf{R}_j - \mathbf{R}_i$	(n-i+1)(n-i)	(m-i+1)(n-i)
Total number of operations is	$\sum_{i=1}^{n-1} (n-i)(2n-2i+3)$	$\sum_{i=1}^{n-1} (n-1)(2n-2i+3)$

Algorithm 2 ICCG method, solving $Ax = b$.	Oper	ations
Split preconditioner	Full matrix	Sparse matrix
Give an initial guess \mathbf{x}^0 .		
Compute $\mathbf{r}^0 = \mathbf{b} - \mathbf{A}\mathbf{x}^0$.	$2n^2$	2mn
Compute $\hat{\mathbf{r}}^0 = \mathbf{L}^{-1} \mathbf{r}^0$.	n^2	nm
Compute $\hat{\mathbf{p}}^0 = \mathbf{L}^{-T}\hat{\mathbf{r}}^0$.	n^2	nm
for $k = 0,,$ until convergence		
$\alpha^k = \frac{(\mathbf{r}^k, \mathbf{r}^k)}{(\mathbf{A}\mathbf{p}^k, \mathbf{p}^k)}$	$2n^2 + 3n - 2$	2nm + 3n - 2
$\mathbf{x}^{k+1} = \mathbf{x}^{k} + \alpha^k \mathbf{p}^k$	2n	2n
$\mathbf{r}^{k+1} = \mathbf{r}^k - \alpha^k \mathbf{L}^{-1} \mathbf{A} \mathbf{p}^k$	$3n^2 + n$	3nm + n
$\beta^k = \frac{(\mathbf{r}^{k+1}, \mathbf{r}^{k+1})}{(\mathbf{r}^k, \mathbf{r}^k)}$	4n-1	4n - 1
$\mathbf{p}^{k+1} = \mathbf{L}^{-T} \mathbf{r}^{k+1} + \beta^k \mathbf{p}^k$	$n^2 + 2n$	nm + 2n
end		
Total each k	$6n^2 + 12n - 3$	6nm + 12n - 3

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$, with m non zero entries per row.

Algorithm 3 DICCG method, solving $Ax = b$.	Ol	perations
Split preconditioner	Full matrix	Sparse matrix
Let $\mathbf{Z} \in \mathbb{R}^{n \times p}$		
$\mathbf{E} = \mathbf{Z}^T \mathbf{A} \mathbf{Z}$	2np(2n-1)	2np(2m-1)
$\mathbf{Q}\mathbf{x} = \mathbf{Z}\mathbf{E}^{-1}\mathbf{Z}^T\mathbf{x}$	$n^2 + 3np - n + 2p^2 - 2p$	
$\mathbf{P}\mathbf{x} = (\mathbf{I} - \mathbf{A}\mathbf{Q})\mathbf{x}$	$3n^2 + 3np + 2p^2 - 2p - n$	$2nm + n^2 + 3np + 2p^2 - 2p - n$

Algorithm 3 DICCG method, solving $Ax = b$.	Ol	perations
Split preconditioner	Full matrix	Sparse matrix
Give an initial guess \mathbf{x}^0 .		
Compute $\mathbf{r}^0 = \mathbf{b} - \mathbf{A}\mathbf{x}^0$.	$2n^2$	2mn
Compute $\hat{\mathbf{r}}^0 = \mathbf{Pr}^0$.	$3n^2 + 3np + 2p^2 - 2p - n$ n^2	$2nm + n^2 + 3np + 2p^2 - 2p - n$
Compute $\mathbf{y}^0 = \mathbf{L}^{-1}\hat{\mathbf{r}}^0$.	n^2	nm
Compute $\hat{\mathbf{p}}^0 = \mathbf{L}^{-T} \mathbf{y}^0$.	n^2	nm
for $k = 0,,$ until convergence		
$\hat{\mathbf{w}}^0 = \mathbf{P} \mathbf{A} \mathbf{p}^k$.	$5n^2 + 3np + 2p^2 - 2p - 2n$	$4nm + n^2 + 3np + 2p^2 - 2p - 2n$
$egin{aligned} lpha^k &= rac{(\hat{\mathbf{r}}^k, \mathbf{y}^k)}{(\mathbf{p}^k, \hat{\mathbf{w}}^k)} \ \mathbf{x}^{k+1} &= \mathbf{x}^k + lpha^k \mathbf{p}^k \end{aligned}$	$2n^2 + 3n - 2$	2nm + 3n - 2
	2n	2n
$\mathbf{r}^{k+1} = \mathbf{r}^k - \alpha^k \mathbf{L}^{-1} \mathbf{A} \mathbf{p}^k$	$3n^2 + n$	3nm+n
$\beta^k = \frac{(\mathbf{r}^{k+1}, \mathbf{r}^{k+1})}{(\mathbf{r}^k, \mathbf{r}^k)}$	4n-1	4n-1
$\mathbf{p}^{k+1} = \mathbf{L}^{-T} \mathbf{r}^{k+1} + \beta^k \mathbf{p}^k$	$n^2 + 2n$	nm + 2n
end		
Total each k	$11n^2 + 3np + 2p^2 - 2p + 10n - 3$	$10nm + n^2 + 3np + 2p^2 - 2p + 10n - 3$
$\mathbf{x}_{it} = \mathbf{Q}\mathbf{b} + \mathbf{P}^T\mathbf{x}^{k+1}$	$4n^2 + 6np + 4p^2 - 4p - 2n$	$2nm + 2n^2 + 6np + 4p^2 - 4p - 2n$

Operation	Operations	
	Full matrix	Sparse matrix (m non zero entries)
$\mathbf{A} = \mathbf{U}\Sigma \mathbf{V}^T$	$\tilde{1}3n^3$	$\tilde{1}1n^3 + 2mn^2$
$\mathbf{x}(+/-)\mathbf{y}$	n	n
$\alpha \mathbf{x}$	n	n
Ax	$(n(*) + n - 1(+))n (r) = 2n^2 - n$	(m(*) + m - 1(+))n (r) = $2mn - n$
AB	$[(n(*) + n - 1(+))n (r)]n (c) = 2n^3 - n^2$	$[(m(*) + m - 1(+))n (r)]m (c) = 2m^2n - nm$
$\mathbf{A} \in \mathbb{R}^{m imes n} \mathbf{B} \in \mathbb{R}^{n imes p}$		
AB	mp(2n-1)	
$\mathbf{A} = \mathbf{L}\mathbf{L}^T$	$1/3n^3$	
$\mathbf{L}\mathbf{x} = \mathbf{y}$	n^2	
$\mathbf{L}^T\mathbf{x} = \mathbf{y}$	n^2	