# Guión de la Práctica 1 Fundamentos de la Automática:

### 1.Introducción a MATLAB:

#### 1.1 Vectores y matrices:

Generación de un vector:

Generación de una matriz:

```
matriz = [1 3 5; 2 4 6; 7 9 0]

matriz = 3x3

1 3 5
2 4 6
7 9 0
```

Generación de un vector con patrón de incremento:

```
vector_incremento = 1:2:19

vector_incremento = 1x10
    1     3     5     7     9     11     13     15     17     19
```

Generación de un vector columna:

```
vector_columna = [4;3;2]

vector_columna = 3x1
4
3
2
```

### Ejercicio práctico 2. Creación de vectores y matrices

1. Averigua para qué sirven las instrucciones vector\_1 = linspace(0,10) y vector\_2 = logspace(1,1000).

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ...

2. Utilizando una única instrucción, crea una matriz A de dimensiones 5 x 10 donde sus elementos sean los 50 primeros números enteros, en orden de menor a mayor.

```
vector 5x10 = [1:10;11:20;21:30;31:40;41:50]
vector_5x10 = 5x10
     1
           2
                  3
                         4
                               5
                                      6
                                            7
                                                   8
                                                         9
                                                               10
    11
          12
                 13
                       14
                              15
                                     16
                                           17
                                                  18
                                                        19
                                                               20
    21
          22
                 23
                       24
                              25
                                     26
                                           27
                                                  28
                                                        29
                                                               30
    31
          32
                 33
                       34
                              35
                                     36
                                           37
                                                  38
                                                        39
                                                               40
    41
          42
                 43
                              45
                                           47
                                                        49
                                                               50
                       44
                                     46
                                                  48
```

#### Ejercicio práctico 3. Operaciones elemento a elemento en matrices

1. Crea una nueva matriz B donde cada elemento Bij sea el cuadrado de cada elemento Aij de la matriz A del ejercicio práctico 2, punto 2.

```
A = [1:10;11:20;21:30;31:40;41:50]
A = 5 \times 10
     1
             2
                    3
                           4
                                  5
                                                7
                                                       8
                                                              9
                                                                    10
                                         6
    11
           12
                  13
                          14
                                 15
                                        16
                                               17
                                                      18
                                                             19
                                                                    20
    21
            22
                   23
                          24
                                 25
                                        26
                                               27
                                                      28
                                                             29
                                                                    30
    31
            32
                  33
                          34
                                 35
                                        36
                                               37
                                                      38
                                                             39
                                                                    40
    41
            42
                  43
                          44
                                 45
                                        46
                                               47
                                                      48
                                                             49
                                                                    50
B = A \cdot ^2
B = 5 \times 10
                                                                                  36 ...
             1
                                         9
                                                                    25
                           4
                                                      16
          121
                         144
                                       169
                                                     196
                                                                   225
                                                                                 256
                         484
                                       529
                                                     576
                                                                   625
                                                                                 676
          961
                       1024
                                      1089
                                                    1156
                                                                  1225
                                                                                1296
         1681
                       1764
                                      1849
                                                    1936
                                                                  2025
                                                                                2116
```

2. Multiplica elemento a elemento las matrices A y B.

| C = A .* B        |       |       |       |       |         |
|-------------------|-------|-------|-------|-------|---------|
| $C = 5 \times 10$ |       |       |       |       |         |
| 1                 | 8     | 27    | 64    | 125   | 216 ••• |
| 1331              | 1728  | 2197  | 2744  | 3375  | 4096    |
| 9261              | 10648 | 12167 | 13824 | 15625 | 17576   |
| 29791             | 32768 | 35937 | 39304 | 42875 | 46656   |
| 68921             | 74088 | 79507 | 85184 | 91125 | 97336   |

# 1.2 Definición de polinomios:

Definición de un polinomio:

#### Raíces de un polinomio:

```
root = roots(polinomio)

root = 3x1
    -4.8385
    -1.5592
    0.3977
```

Obtener polinomio mediante sus raíces:

```
r = [-1;0.5+1i;0.5-1i];

p = poly(r)

p = 1x4

1.0000 0 0.2500 1.2500
```

#### Ejercicio práctico 4. Manejo de polinomios

1. Halla los tres polinomios que tienen una raíz quíntuple igual a -1, a 2 y a -3, respectivamente.

```
r1 = [-1; -1; -1; -1; -1];
p1 = poly(r1)
p1 = 1 \times 6
           5
                10
                    10
                              5
     1
                                    1
r2 = [2;2;2;2;2];
p2 = poly(r2)
p2 = 1 \times 6
        -10
                40
                    -80
                             80
                                 -32
r3 = [-3; -3; -3; -3; -3];
p3 = poly(r3)
p3 = 1 \times 6
                     270
     1
          15
                90
                            405
                                  243
```

2. ¿Qué característica tienen los polinomios con todas sus raíces reales y negativas?

Todos los coeficientes del polinomio son positivos: ESTABILIDAD.

3. Halla los polinomios que tiene las raíces complejas iguales a –i, i, tanto simples como dobles y triples. ¿Encuentras algo en común entre ellos?

```
r4 = [-1i];

p4 = poly(r4)

p4 = 1x2 complex

1.0000 + 0.0000i  0.0000 + 1.0000i

r5 = [-1i;1i;-1i;1i];

p5 = poly(r5)

p5 = 1x5
```

```
1 0 2 0 1
```

4. Calculas las raíces del polinomio x^10 + x^5 - x +1.

```
pol = [1 0 0 0 0 1 0 0 0 -1 1];
R = roots(pol)

R = 10x1 complex
    -1.0343 + 0.2710i
    -1.0343 - 0.2710i
    -0.5190 + 0.9514i
    -0.5190 - 0.9514i
    -0.0000 + 1.0000i
    -0.0000 - 1.0000i
    0.7822 + 0.6922i
    0.7822 - 0.6922i
    0.7712 + 0.2966i
    0.7712 - 0.2966i
```

## 1.3 Creación de gráficos:

Generación de gráfico simple (función exponencial):

```
t=0:0.1:10 % Variable independiente
t = 1 \times 101
        0
             0.1000
                      0.2000
                               0.3000
                                        0.4000
                                                  0.5000
                                                           0.6000
                                                                    0.7000 • • •
y = exp(-t); % Variable dependiente
plot(t,y,'blue');
hold on
y = \exp(-t/5);
plot(t,y,'red');
y = \exp(-t/0.1);
plot(t,y,'green');
legend('\exp(-t)','\exp(-t/5)','\exp(-t/0.1)')
axis([0 1 0 1])
```



grid on hold off

Ejercicio práctico 5. Gráficas de funciones reales.

Utiliza distintas opciones de color, símbolo y tipo de línea que aparecen explicadas en la ayuda (doc plot) para:

1. Realizar las gráficas de  $f(t) = t^2 y$   $f(t) = t^3$  en el intervalo t=[-3,3] en el mismo gráfico.

```
figure
t=-3:0.1:3
t = 1 \times 61
   -3.0000
            -2.9000
                      -2.8000
                               -2.7000
                                         -2.6000
                                                  -2.5000
                                                            -2.4000
                                                                      -2.3000 ...
y1=t.^2;
plot(t,y1,'blue');
hold on
y2=t.^3;
plot(t,y2,'red');
legend('t2','t3');
hold off
```



2. Realizar la gráfica de  $f(t) = e-a \cdot t \cdot \cos(t)$  en el intervalo t=[0,5], para distintos valores de a.

```
t=0:0.1:5;
for a=1:1:5
    y=exp(-a.*t).*cos(t);
    plot(t,y); hold on
end
legend('a=1','a=2','a=3','a=4','a=5')
hold off
```



3. Realizar la gráfica de  $f(t) = e - t \cos(bt)$  en el intervalo t = [0,5], para distintos valores de b.

```
t=0:0.1:5;
for b=1:1:5
    y=exp(-t).*cos(b.*t);
    plot(t,y); hold on
end
legend('b=1','b=2','b=3','b=4','b=5')
hold off
```



Ejercicio práctico 6. Prueba los comandos anteriores en las gráficas realizadas en el ejercicio práctico 5.

### Ejercicio práctico 7. Utilizando el comando subplot:

1. Introduce las gráficas b y c del ejercicio práctico 5 en una única gráfica dividida en una fila y dos columnas.

```
t=0:0.1:5;
figure
subplot(1,2,1);
y1 = exp(-t).*cos(t);
plot(t,y1)
subplot(1,2,2);
y2 = exp(-t).*cos(t);
plot(t,y2)
```



2. Crea una gráfica con subplot que contenga cuatro subgráficas de las funciones trigonométricas sen(t), cos(t), tan(t), sen(t)\*cos(t).

```
t=0:0.1:5;
figure
subplot(2,2,1);
plot(t,sin(t))
subplot(2,2,2);
plot(t,cos(t))
subplot(2,2,3);
plot(t,tan(t))
subplot(2,2,4);
plot(t,sin(t).*cos(t))
```

