

16

SHORTEST PATH ALGORITHMS

Outline

16.1 Shortest Path Problems

16.2 Single Source Shortest Paths

16.3 All-Pairs Shortest Paths

16.1 Shortest Path Problems

Paths in Graphs

Consider a digraph G = (V, E) with edge-weight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be

$$w(p) = \sum_{i=1}^{k-1} w(v_i, v_{i+1}).$$

Shortest Paths

A *shortest path* from *u* to *v* is a path of minimum weight from *u* to *v*. The *shortest-path weight* from *u* to *v* is defined as

 $\delta(u, v) = \min\{w(p) : p \text{ is a path from } u \text{ to } v\}.$

Note: $\delta(u, v) = \infty$ if no path from u to v exists.

Optimal Sub-Structure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle Inequality

Theorem. For all
$$u, v, x \in V$$
, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v)$.

Proof.

Well-Definedness of SP

If a graph *G* contains a negative-weight cycle, then some shortest paths may not exist.

16.2 Single-Source Shortest Paths

Single-Source Shortest Paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

Single-Source Shortest Paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist.

Dijkstra's Algorithm

Dijkstra, Edsger Wybe

- Legendary figure in computer science;
- •1930.5.11~2002.8.6
- Supports teaching introductory computer courses without computers (pencil and paper programming)
- Supposedly wouldn't (until recently) read his e-mail; so, his staff had to print out messages and put them in his box.

Single-Source Shortest Paths

If all edge weights w(u, v) are nonnegative, all shortest-path weights must exist.

IDEA: Greedy.

- 1. Maintain a set *S* of vertices whose shortest-path distances from *s* are known.
- 2. At each step add to S the vertex $v \in V S$ whose distance estimate from S is minimal.
- 3. Update the distance estimates of vertices adjacent to *v*.

Dijkstra's Algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    do d[v] \leftarrow \infty
S \leftarrow \emptyset
Q \leftarrow V \triangleright Q is a priority queue maintaining V - S
while Q \neq \emptyset
    do u \leftarrow \text{Extract-Min}(Q)
        S \leftarrow S \cup \{u\}
        for each v \in Adj[u]
                                                            relaxation
             do if d[v] > d[u] + w(u, v)
                     then d[v] \leftarrow d[u] + w(u, v)
                                                                 step
                    Implicit Decrease-Key
```

Graph with nonnegative edge weights:

S: { A, C }

Correctness-I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Correctness-I

Lemma. Initializing $d[s] \leftarrow 0$ and $d[v] \leftarrow \infty$ for all $v \in V - \{s\}$ establishes $d[v] \ge \delta(s, v)$ for all $v \in V$, and this invariant is maintained over any sequence of relaxation steps.

Proof. Suppose not. Let v be the first vertex for which $d[v] < \delta(s, v)$, and let u be the vertex that caused d[v] to change: d[v] = d[u] + w(u, v). Then,

$$d[v] < \delta(s, v)$$
 supposition
 $\leq \delta(s, u) + \delta(u, v)$ triangle inequality
 $\leq \delta(s, u) + w(u, v)$ sh. path \leq specific path
 $\leq d[u] + w(u, v)$ v is first violation

Correctness-II

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Correctness-II

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. It suffices to show that $d[v] = \delta(s, v)$ for every $v \in V$ when v is added to S. Suppose u is the first vertex added to S for which $d[u] \neq \delta(s, u)$. Let y be the first vertex in V - S along a shortest path from s to u, and let x be its predecessor:

Correctness-II

Theorem. Dijkstra's algorithm terminates with $d[v] = \delta(s, v)$ for all $v \in V$.

Since u is the first vertex violating the claimed invariant,

$$d[x] = \delta(s, x).$$

Since subpaths of shortest paths are shortest paths

$$d[y] = \delta(s, x) + w(x, y) = \delta(s, y) \le \delta(s, u) \le d[u]$$

Non-negative weight

But, $d[u] \le d[y]$ by our choice of u

$$d[y] = \delta(s, u) = d[u]$$

Record the Shortest paths

- The algorithm described above does not record the shortest paths. It can not output the shortest paths.
- The algorithm can be modified to record the paths by building an array pre[]. If pre[i]=k, this represents that the shortest path from v_0 to v_i is $(v_0,...,v_k,v_i)$. It is easy to prove that if $(v_0,...,v_k,v_i)$ is the shortest path from v_0 to v_i , the path $(v_0,...,v_k)$ is the shortest path from v_0 to v_k . We can output the shortest path from v_0 to v_k outputting the shortest path from v_0 to v_k recursively and vertex to v_i
- The pre[i] is initiated by v₀. It is updated while the minimum distance is modified.

Dijkstra's Algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
    \operatorname{do} d[v] \leftarrow \infty \quad prev[v] \leftarrow s
S \leftarrow \emptyset
O \leftarrow V \triangleright O is a priority queue maintaining V - S
while Q \neq \emptyset
     do u \leftarrow \text{Extract-Min}(Q)
         S \leftarrow S \cup \{u\}
         for each v \in Adj[u]
                                                                   relaxation
              do if d[v] > d[u] + w(u, v)
                        then d[v] \leftarrow d[u] + w(u, v)
                                                                         step
                                prev[v] \leftarrow u
```

Analysis of Dijkstra

```
times while Q \neq \emptyset
do u \leftarrow \text{Extract-Min}(Q)
S \leftarrow S \cup \{u\}
for each \ v \in Adj[u]
do \text{ if } d[v] > d[u] + w(u, v)
then \ d[v] \leftarrow d[u] + w(u, v)
```

Handshaking Lemma $\Rightarrow \Theta(E)$ implicit Decrease-Key's.

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$

Analysis of Dijkstra

Time =
$$\Theta(V) \cdot T_{\text{EXTRACT-MIN}} + \Theta(E) \cdot T_{\text{DECREASE-KEY}}$$
 $Q \quad T_{\text{EXTRACT-MIN}} \quad T_{\text{DECREASE-KEY}}$

Total

array

 $O(V) \quad O(1) \quad O(V^2)$

binary
heap

 $O(\lg V) \quad O(\lg V) \quad O(E \lg V)$

Fibonacci
 $O(\lg V) \quad O(1) \quad O(E + V \lg V)$
heap amortized amortized worst case

Dijkstra for Unweighted Graphs

Suppose w(u, v) = 1 for all $(u, v) \in E$. Can the code for Dijkstra be improved?

Dijkstra for Unweighted Graphs

- Use a simple FIFO queue instead of a priority queue.
- Breadth-first search

 while $Q \neq \emptyset$ do $u \leftarrow \text{Dequeue}(Q)$ for each $v \in Adj[u]$ do if $d[v] = \infty$ then $d[v] \leftarrow d[u] + 1$ Enqueue(Q, v)

Analysis: Time = O(V + E).

Bellman-Ford Algorithm

Negative-Weight Cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path lengths from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford Algorithm

```
d[s] \leftarrow 0
for each v \in V - \{s\}
do \ d[v] \leftarrow \infty
initialization
 for i \leftarrow 1 to |V| - 1
                         do for each edge (u, v) \in E
                                                do if d[v] > d[u] + w(u, v)
then d[v] \leftarrow d[u] + w(u, v)
to v
 for each edge (u, v) \in E
                        do if d[v] > d[u] + w(u, v)
                                                                        then report that a negative-weight cycle exists
```

At the end, $d[v] = \delta(s, v)$. Time = O(VE).

A	B	C	D	E
0	∞	∞	∞	∞

\boldsymbol{A}	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Note: Values decrease monotonically.

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1
0	-1	2	-2	1

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

Proof. Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since *p* is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i).$$

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and d[s] is unchanged by relaxations

- After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$.
- After *k* passes through *E*, we have $d[v_k] = \delta(s, v_k)$.

Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edges.

Detection of Negative-Weighted Cycles

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from S.

Short Test in Class

Work out the shortest distances of each vertex from vertex 1.

16.3 All-Pairs Shortest Paths

All-Pairs Shortest Paths

Given a weighted digraph G = (V, E) with weight function $w : E \to \mathbf{R}$, (R is the set of real numbers), determine the length of the shortest path (i.e., distance) between all pairs of vertices in G.

without negative cost cycle with negative cost cycle

Solution 1: Dijkstra's Algorithm

If there are no negative cost edges apply Dijkstra's algorithm to each vertex (as the source) of the digraph.

Recall that D's algorithm runs in ⊖((n+e) log n).
 This gives a

$$\Theta(n(n+e)\log n) = \Theta(n^2\log n + ne\log n)$$
 time algorithm, where $n = |V|$ and $e = |E|$.

Application: Dijkstra's Algorithm

く 返回

7-43 3.3.3 Camelot (190 分)

很久以前,亚瑟王和他的骑士习惯每年元旦去庆祝他们的友谊.在回忆中,我们把这些是看作是一个有一人玩的棋盘游戏.有一个国王和若干个骑士被放置在一个由许多方格组成的棋盘上,没有两个骑士在同一个方格内.

• 这个例子是标准的 8*8 棋盘

一个骑士可以从黑点移动到白点(如下图),但前提是他不掉出棋盘之外.

国王可以移动到任何一个相邻的方格,从黑点移动到白点(如下图),但前提是他不掉出棋盘之外.

玩家的任务就是把所有的棋子移动到同一个方格里——用最小的步数. 为了完成这个任务,他必须按照上面所说的规则去移动棋子. 玩家必须选择一个骑士跟国王一起行动,其他的单独骑士则自己一直走到集中点. 骑士和国王一起走的时候,只算一个人走的步数.

Application: Dijkstra's Algorithm

一个骑士可以从黑点移动到白点(如下图), 但前提是他不掉出棋盘之外.

Dist[x][y][s]表示某个骑士走到棋盘位置(x,y)的最小步数, $s \in \{0,1\}, 0$ 表示自己单独到达,1表示带着king一起到达。

$$Dist[x][y][0] = \min \left\{ \begin{array}{l} \min(\{Dist[x+a][y+b][0] \mid a,b \in \{1,-1,2,-2\}\}) + 1 \\ Dist[x][y][0] \end{array} \right.$$

$$Dist[x][y][1] = min \begin{cases} min(\{Dist[x+a][y+b][1] \mid a,b \in \{1,-1,2,-2\}\}) + 1 \\ Dist[x][y][0] + kingDist[x][y] \end{cases}$$

用DP计算,但bottom-up顺序不明确,直接迭代困难!

用Dijkstra Algorithm追踪bottom-up顺序

To make DP work:

(1) How do we decompose the all-pairs shortest paths problem into subproblems?

(2) How do we express the optimal solution of a subproblem in terms of optimal solutions to some subsubproblems?

(3) How do we use the recursive relation from (2) to compute the optimal solution in a bottom-up fashion?

(4) How do we construct all the shortest paths?

Matrix multiplication

To simplify the notation, we assume that $V = \{1, 2, \dots, n\}$.

Assume that the graph is represented by an $n \times n$ matrix with the weights of the edges:

$$w_{ij} = \left\{ \begin{array}{ll} 0 & \text{if } i = j, \\ w(i,j) & \text{if } i \neq j \text{ and } (i,j) \in E, \\ \infty & \text{if } i \neq j \text{ and } (i,j) \notin E. \end{array} \right.$$

Output Format: an $n \times n$ matrix $D = [d_{ij}]$ where d_{ij} is the length of the shortest path from vertex i to j.

Input
$$\begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

Without negative circle

Output
$$\begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

How to decompose the problem

 Subproblems with smaller sizes should be easier to solve.

 An optimal solution to a subproblem should be expressed in terms of the optimal solutions to subproblems with smaller sizes.

These are guidelines ONLY.

Step 1: Decompose in a Natural Way

• Define $d_{ij}^{(m)}$ to be the length of the shortest path from i to j that contains at most m edges. Let $D^{(m)}$ be the $n \times n$ matrix $[d_{ij}^{(m)}]$.

• $d_{ij}^{(n-1)}$ is the true distance from i to j (see next page for a proof this conclusion).

- Subproblems: compute $D^{(m)}$ for $m = 1, \dots, n-1$.
 - **Question:** Which $D^{(m)}$ is easiest to compute?

 $d_{ij}^{(n-1)}$ = True Distance from i to j

Proof: We prove that any shortest path P from i to j contains at most n-1 edges.

First note that since all cycles have positive weight, a shortest path can have no cycles (if there were a cycle, we could remove it and lower the length of the path).

A path without cycles can have length at most n-1 (since a longer path must contain some vertex twice, that is, contain a cycle).

Step 2: Recursive Formula

Consider a shortest path from i to j of length $d_{ij}^{(m)}$.

Case 1: It has at most m-1 edges. $d_{ij}^{(m-1)}$

$$0 \longrightarrow 0 \longrightarrow 0 \longrightarrow 0$$

$$\begin{vmatrix} d_{ij}^{(m-1)} & \end{vmatrix}$$

Then
$$d_{ij}^{(m)} = d_{ij}^{(m-1)} = d_{ij}^{(m-1)} + w_{jj}$$
.

Case 2: It has m edges. Let k be the vertex before jon a shortest path.

Then
$$d_{ij}^{(m)} = d_{ik}^{(m-1)} + w_{kj}$$
.

Step 2: Recursive Formula

Combining the two cases,

$$d_{ij}^{(m)} = \min_{1 \le k \le n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\}.$$

Step 3: Bottom-Up Computation

• Bottom: $D^{(1)} = \begin{bmatrix} w_{ij} \end{bmatrix}$, the weight matrix.

• Compute $D^{(m)}$ from $D^{(m-1)}$, for m = 2, ..., n-1, using

$$d_{ij}^{(m)} = \min_{1 \le k \le n} \left\{ d_{ik}^{(m-1)} + w_{kj} \right\}.$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$
 weight matrix

$$D^{(1)}$$

$$D^{(1)}$$

$$0 \quad 3 \quad 8 \quad \infty \quad -4$$

$$0 \quad 3 \quad 8 \quad \infty \quad -4$$

$$0 \quad 3 \quad 8 \quad \infty \quad -4$$

$$0 \quad 3 \quad 8 \quad \infty \quad -4$$

$$0 \quad 0 \quad \infty \quad 1 \quad 7$$

$$0 \quad 0 \quad \infty \quad 0 \quad 1 \quad 7$$

$$0 \quad 0 \quad \infty \quad \infty \quad 0$$

$$2 \quad \infty \quad -5 \quad 0 \quad \infty$$

$$0 \quad \infty \quad \infty \quad \infty$$

$$2 \quad \infty \quad \infty \quad \infty \quad 6 \quad 0$$

$$0 \quad \infty \quad \infty$$

$$d_{ij}^{(2)} = \min_{1 \le k \le 5} \{d_{ik}^{(1)} + d_{kj}^{(1)}\}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 2 & -4 \\ 3 & 0 & -4 & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & \infty & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(2)}$$

$$D^{(1)}$$

$$0 \quad 3 \quad 8 \quad 2 \quad -4$$

$$3 \quad 0 \quad -4 \quad 1 \quad 7$$

$$\infty \quad 4 \quad 0 \quad 5 \quad 11$$

$$2 \quad -1 \quad -5 \quad 0 \quad -2$$

$$8 \quad \infty \quad 1 \quad 6 \quad 0$$

$$X \quad 0 \quad 0 \quad \infty \quad 1 \quad 7$$

$$\infty \quad 4 \quad 0 \quad \infty \quad \infty$$

$$\infty \quad \infty \quad \infty \quad \infty$$

$$d_{ij}^{(3)} = \min_{1 \le k \le 5} \{d_{ik}^{(2)} + d_{kj}^{(1)}\}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 11 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

$$D^{(3)}$$

$$D^{(1)}$$

$$\begin{bmatrix}
0 & 3 & -3 & 2 & -4 \\
3 & 0 & -4 & 1 & -1 \\
7 & 4 & 0 & 5 & 11 \\
2 & -1 & -5 & 0 & -2 \\
8 & 5 & 1 & 6 & 0
\end{bmatrix} \times \begin{bmatrix}
0 & 3 & 8 & \infty & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
2 & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & \infty & 6 & 0
\end{bmatrix}$$

$$d_{ij}^{(4)} = \min_{1 \le k \le 5} \{d_{ik}^{(3)} + d_{kj}^{(1)}\}$$

$$D^{(4)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

The shortest distances between any pair of vertices

Algorithm

```
for m=1 to n-1
   for i = 1 to n
      for j = 1 to n
          min = \infty;
          for k = 1 to n
             new = d_{ik}^{(m-1)} + w_{kj};
             if (new < min) min = new;
```

Comments

• Algorithm uses $\Theta(n^3)$ space; how can this be reduced down to $\Theta(n^2)$?

 How can we extract the actual shortest paths from the solution?

• Running time $O(n^4)$, much worse than the solution using Dijkstra's algorithm. Can we improve this?

Improvement: Repeated Squaring

$$D^{(n-1)} = D^i$$
, for all $i \ge n$.

In particular, this implies that $D^{\left(2^{\lceil \log_2 n \rceil}\right)} = D^{(n-1)}$.

We can calculate $D^{\left(2^{\lceil \log_2 n \rceil}\right)}$ using "repeated squaring" to find

$$D^{(2)}, D^{(4)}, D^{(8)}, \dots, D^{\left(2^{\lceil \log_2 n \rceil}\right)}$$

Improvement: Repeated Squaring

• Bottom: $D^{(1)} = \begin{bmatrix} w_{ij} \end{bmatrix}$, the weight matrix.

• For $s \ge 1$ compute $D^{(2s)}$ using

$$d_{ij}^{(2s)} = \min_{1 \le k \le n} \left\{ d_{ik}^{(s)} + d_{kj}^{(s)} \right\}.$$

Given this relation we can calculate $D^{\left(2^i\right)}$ from $D^{\left(2^{i-1}\right)}$ in $O(n^3)$ time. We can therefore calculate all of

$$D^{(2)}, D^{(4)}, D^{(8)}, \dots, D^{\left(2^{\lceil \log_2 n \rceil}\right)} = D^{(n)}$$

in $O(n^3 \log n)$ time, improving our running time.

Floyd-Warshell Algorithm

Definition: The vertices $v_2, v_3, ..., v_{l-1}$ are called the *intermediate vertices* of the path $p = \langle v_1, v_2, ..., v_{l-1}, v_l \rangle$.

• Let $d_{ij}^{(k)}$ be the length of the shortest path from i to j such that all intermediate vertices on the path (if any) are in set $\{1, 2, \ldots, k\}$.

 $d_{ij}^{(0)}$ is set to be w_{ij} , i.e., no intermediate vertex. Let $D^{(k)}$ be the $n \times n$ matrix $[d_{ij}^{(k)}]$.

Floyd-Warshell Algorithm

Definition: The vertices $v_2, v_3, ..., v_{l-1}$ are called the *intermediate vertices* of the path $p = \langle v_1, v_2, ..., v_{l-1}, v_l \rangle$.

- Claim: $d_{ij}^{(n)}$ is the distance from i to j. So our aim is to compute $D^{(n)}$.
- Subproblems: compute $D^{(k)}$ for $k = 0, 1, \dots, n$.

Similar to a 0-1 knapsack problem!

The Structure of Shortest Paths

Observation 1: A shortest path does not contain the same vertex twice.

Non-negative circle!

Step 2: The Structure of Shortest Paths

Observation 2: For a shortest path from i to j such that any intermediate vertices on the path are chosen from the set $\{1, 2, \dots, k\}$, there are two possibilities:

k is a vertex on the path.

k is not a vertex on the path,

$$d_{ij}^{(k)} = \min \left\{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right\}.$$

Step 3: Bottom-Up Computation

- Bottom: $D^{(0)} = [w_{ij}]$, the weight matrix.
- Compute $D^{(k)}$ from $D^{(k-1)}$ using

$$d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$
 for $k = 1, ..., n$.

Step 3: Bottom-Up Computation

- Bottom: $D^{(0)} = [w_{ij}]$, the weight matrix.
- Compute $D^{(k)}$ from $D^{(k-1)}$ using

$$d_{ij}^{(k)} = \min\left(d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\right)$$
 for $k = 1, ..., n$.

$$D^{(0)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & \infty & -5 & 0 & \infty \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$
 weight matrix

$$\begin{pmatrix}
0 & 3 & 8 & \infty & \boxed{-4} \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & \infty & \infty \\
\boxed{2} & \infty & -5 & 0 & \infty \\
\infty & \infty & \infty & \infty & 6 & 0
\end{pmatrix}$$

 $D^{(0)}$

$$d_{ij}^{(1)} = min\{d_{ij}^{(0)}, d_{i1}^{(0)} + d_{1j}^{(0)}\}$$

$$D^{(1)} = \begin{pmatrix} 0 & 3 & 8 & \infty & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & \infty & \infty \\ 2 & 5 & -5 & 0 & 2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$D^{(1)}$$

$$d_{ij}^{(2)} = min\{d_{ij}^{(1)}, \ d_{i2}^{(1)} + d_{2j}^{(1)}\}$$

$$D^{(2)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & 5 & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
0 & 3 & 8 & 4 & -4 \\
\infty & 0 & \infty & 1 & 7 \\
\infty & 4 & 0 & 5 & 11 \\
2 & 5 & -5 & 0 & -2 \\
\infty & \infty & \infty & 6 & 0
\end{pmatrix}$$

$$d_{ij}^{(3)} = min\{d_{ij}^{(2)}, \ d_{i3}^{(2)} + d_{3j}^{(2)}\}$$

$$D^{(3)} = \begin{pmatrix} 0 & 3 & 8 & 4 & -4 \\ \infty & 0 & \infty & 1 & 7 \\ \infty & 4 & 0 & 5 & 11 \\ 2 & \boxed{-1} & -5 & 0 & -2 \\ \infty & \infty & \infty & 6 & 0 \end{pmatrix}$$

$$d_{ij}^{(5)} = min\{d_{ij}^{(4)}, d_{i5}^{(4)} + d_{5j}^{(4)}\}$$

$$D^{(5)} = \begin{pmatrix} 0 & 1 & -3 & 2 & -4 \\ 3 & 0 & -4 & 1 & -1 \\ 7 & 4 & 0 & 5 & 3 \\ 2 & -1 & -5 & 0 & -2 \\ 8 & 5 & 1 & 6 & 0 \end{pmatrix}$$

The shortest distances between any pair of vertices

Algorithm

```
Floyd-Warshall(w, n)
\{ \text{ for } i = 1 \text{ to } n \text{ do } \}
                                 initialize
    for j = 1 to n do
     \{d[i,j] = w[i,j];
       pred[i, j] = nil;
  for k=1 to n do
                                 dynamic programming
    for i=1 to n do
       for j = 1 to n do
          if (d[i, k] + d[k, j] < d[i, j])
               {d[i,j] = d[i,k] + d[k,j]};
               pred[i, j] = k;
  return d[1..n, 1..n];
```

Comments

• The algorithm's running time is clearly $\Theta(n^3)$.

 The predecessor pointer pred[i, j] can be used to extract the final path (see later).

Problem: the algorithm uses ⊖(n³) space.
 It is possible to reduce this down to ⊖(n²) space by keeping only one matrix instead of n.

Extracting The Shortest Paths

To find the shortest path from i to j, we consult pred[i,j]. If it is nil, then the shortest path is just the edge (i,j). Otherwise, we recursively compute the shortest path from i to pred[i,j] and the shortest path from pred[i,j] to j.

Short Test in Class

Give $D^{(1)}$, $D^{(2)}$, $D^{(3)}$ with matrix multiplication algorithm, or $D^{(0)}$, $D^{(1)}$, $D^{(2)}$ by Floyd-Warshell algorithm.

数据结构与算法课程组 重庆大学计算机学院

End of Section.