Département de Mathématiques

1^{ère} année Master MAS Séries Chronologiques

Année: 2020/2021

Série d'exercices n°3

EXERCICE N° 1:

Soient X et Y deux variables aléatoires. Montrer que la covariance entre ces deux variables peut s'écrire sous la forme :

$$\mathbb{C}ov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

EXERCICE N° 2:

Soit X une variable aléatoire de loi gaussienne $\mathcal{N}(0,1)$, et $Y=X\mathbb{1}_{\{U=1\}}-X\mathbb{1}_{\{U=0\}}$ où U est une variable aléatoire de Bernoulli de paramètre $\frac{1}{2}$, indépendante de X.

- 1. Montrer que X et Y ont même loi;
- 2. Montrer que $\mathbb{C}ov(X,Y) = 0$ mais que X et Y ne sont pas indépendantes ;
- 3. En déduire un processus qui est bruit blanc (faible) mais pas bruit blanc fort.

Exercice N° 3:

 $\overline{\text{Soit } (\epsilon_t)_{t \in \mathbb{Z}}}$ un bruit blanc de variance $\sigma^2 > 0$.

Discuter dans chacun des cas suivants de la stationnarité de $(X_t)_{t\in\mathbb{Z}}$.

- 1. Lorsque $\forall t \in \mathbb{Z}, X_t = \epsilon_t \epsilon_{t-1}$?
- 2. Le processus $(X_t)_{t\in\mathbb{Z}}$ défini pour $(a,b,c)\in\mathbb{R}^3$ par

$$\forall t \in \mathbb{Z}, \quad X_t = a + b\epsilon_t + c\epsilon_{t-1}$$

est-il (faiblement) stationnaire?

- 3. Lorsque $\forall t \in \mathbb{Z}$, $X_t = \epsilon_t \epsilon_{t-1}$, si ϵ est un bruit blanc fort? Faible?
- 4. Lorsque X est tel que $\forall t \in \mathbb{Z}$, $X_t X_{t-1} = \epsilon_t$ (on supposera en outre que $\forall t > 0$, $\epsilon_t \perp X_0$)?
- 5. Lorsque $\forall t \in \mathbb{Z}$, $X_t = \epsilon_t \cos(ct) + \epsilon_{t-1} \sin(ct)$ pour $c \in \mathbb{R}$ donné?
- 6. Lorsque $\forall t \in \mathbb{Z}, X_t = \sum_{i=0}^t \lambda^i (\epsilon_{t-i} \epsilon_{t-i-1}), \text{ pour } \lambda \in \mathbb{R} \text{ (discuter selon } \lambda)?$
- 7. La somme de deux processus stationnaires est-elle stationnaire?

EXERCICE N° 4:

On considère le processus modélisé par $Y_t = \beta t + s_t + U_t$ où $\beta \in \mathbb{R}$, où s_t est une fonction périodique de période 4, et où $U = (U_t)_{t \in \mathbb{Z}}$ est un processus stationnaire.

- 1. le processus $(Y_t)_{t\in\mathbb{Z}}$ est-il stationnaire?
- 2. Montrer que $Z=(1-B^4)Y$ est stationnaire et calculer son auto-covariance en fonction de celle de U.

EXERCICE N° 5:

Soit X un processus avec tendance polynomiale d'ordre k:

$$X_t = \sum_{i=0}^k a_i t^i + U_t,$$

où les coefficients a_i appartiennent à \mathbb{R} et (U_t) est un processus stationnaire.

- 1. Montrer que le processus obtenu par l'application de (1 B) à (X_t) , où B désigne l'opérateur retard, admet une tendance polynomiale d'ordre k 1. Que se passe-t-il si on applique $(1 B)^p$ à (X_t) pour $p \in \mathbb{N}$?
- 2. On considère maintenant le processus $Y_t = X_t + S_t$ où S_t est une fonction d-périodique. Comment rendre le processus (Y_t) stationnaire?

EXERCICE N° 6:

On considère le processus défini par

$$\forall t \in \mathbb{Z}, \quad X_t = a + bt + s_t + u_t$$

où $a,b \in \mathbb{R}$, $(s_t)_{t \in \mathbb{Z}}$ est un processus saisonnier (périodique) de période 4 et $(u_t)_{t \in \mathbb{Z}}$ est un bruit blanc de variance σ^2 indépendant de s.

1. Le modèle est-il correctement paramétré? Proposer le cas échéant une contrainte naturelle (que l'on supposera vérifiée par la suite) portant sur $(s_t)_t$. On définit l'opérateur

$$M_4: \left((Z_t)_t \mapsto \left(\frac{Z_t + Z_{t-1} + Z_{t-2} + Z_{t-3}}{4} \right)_t \right)$$

et on considère le processus $Y = M_4X$.

- 2. Donner l'expression de Y_t pour $t \in \mathbb{Z}$, et justifier l'intérêt de la transformation.
- 3. On définit alors $Z = \Delta Y$. Montrer que Z est stationnaire et calculer sa fonction d'auto-corrélation.

EXERCICE N° 7:

On considère le processus défini par $\forall t \in \mathbb{Z}$, $X_t = \epsilon_t - \theta \epsilon_{t-1}$ où $(\epsilon_t)_{t \in \mathbb{Z}}$ est un bruit blanc et $\theta \in]-1,+1[$.

1. Montrer que *X* est stationnaire et calculer sa fonction d'auto-covariance.

EXERCICE N° 8:

Soit le processus défini :

$$Y_t = 1 + \epsilon_t - \frac{1}{2}\epsilon_{t-1}$$

Calculer la fonction d'auto-corrélation et donner une représentation graphique.