Міністерство освіти і науки України

Національний технічний університет України

«Київський Політехнічний Інститут імені Ігоря Сікорського»

Кафедра конструювання електронно-обчислювальної апаратури

Звіт

З виконання лабораторної роботи №2

з дисципліни "Аналогова електроніка"

Виконав:

студент групи ДК-61

Сільчук В.І.

Перевірив:

доц. Короткий Є. В.

Так як на практиці були використані резистори 9.83 кОм та 19.8 кОм, а діоди — 1N4148, в симуляціях схем лабораторної роботи використовувались ці ж компоненти.

1. Дослідження однонапівперіодного випрямляча.

Був побудований однонапівперодний випрямляч, за наступною схемою:

Експериментальні результати:

1) R1 = Rнавантаження = 9.83 кОм

Амплітуда пульсацій dU — різниця між найбільшим та найменшим значеннями напруги на резисторі за період.

Як бачимо, амплітуда пульсацій напруги на резисторі:

$$dU$$
експ = 746.2 (мВ) = 0.7462 (В)

Середнє значення струму через навантаження – середнє значення найбільшого та найменшого струму через навантаження за період.

Середній струм через навантаження:

$$\mathbf{Iav} = (4.37/9830 + 3.624/9830) / 2 = 406.62 \text{ (MKA)}$$

Перевіряємо формулу, яка пов'язує dU, Iav, C, f:

$$dUreop = Iav / (C*f)$$

dUekch, Teop =
$$406.62 * 10^{-6} / (10 * 10^{-6} * 50) = 0.8242 (B) = 813.2 (MB) = 0.8132 (B)$$

2) Кнавантаження = 19.8 кОм

Як бачимо, амплітуда пульсацій напруги на резисторі:

$$dU$$
експ = 402.3 (мВ) = 0.4023 (В)

Середній струм через навантаження:

$$\mathbf{Iav} = (4.383/19800 + 3.981/19800) / 2 = 211.2 \, (\text{MKA})$$

dUekch, teop =
$$211.2 * 10^{-6} / (10 * 10^{-6} * 50) = 0.4224 (B) = 422.4 (MB)$$

Симуляція в LTSpice:

1) Кнавантаження = 9.83 кОм

Напруга джерела, напруга на резисторі та струм через резистор:

$$lav = (375.4 + 448.8)/2 = 824.2/2 = 412.1 (MKA) = 412.1 * 10^-6 (A)$$

$$dU$$
симул, теор = Iav / (C * f) = 412.1 * 10^-6 / (10 * 10^-6 * 50) = 0.8242 (B) = 824.2 (мВ)

2) Кнавантаження = 19.8 кОм

Напруга джерела, напруга на резисторі та струм через резистор:

dUсимул = 4.42 - 4.04 = 0.38 (B) = 380 (мВ)

$$Iav = (223.3 + 204) / 2 = 427.3 / 3 = 213.65$$
 (MKA) = 213.65 * 10^-6 (A)

$$dU$$
симул, теор = $Iav / (C * f) = 213.65 * 10^-6 / (10 * 10^-6 * 50) = 0.427 (B) = 427 (мВ)$

Висновки:

1) $R_H = 9.8 \text{ } \kappa O_M$

dU	Виміряне, В	За формулою, В
Експеримент	0.7462	0.8132
Симуляція	0.721	0.8242

Вважаючи значення, отримане при симуляції за точне значення, розрахуємо похибку між цим значенням та експериментально отриманим:

$$\boldsymbol{\delta} = ((d$$
 U симул d U експ $)$ $/$ d U симул $)$ * $100\% = |(0.721 - 0.7462) / 0.721|$ * $100\% = 3.5\%$

Похибка між експериментальним значенням з осцилограм та значенням dU, розрахованим за формулою, для Iav, отриманого експериментально:

$$\delta = |((dU$$
експ, теор – dU експ) / dU експ, теор) |* 100% = 8.2%

Похибка між значенням при симуляції та значенням dU, розрахованим за формулою, для Iav, отриманого при симуляції:

$$\delta = |((dUсимул, теор - dUсимул) / dUсимул, теор)| * 100% = 12.52%$$

2) RH = 19.8 kOm

dU	Виміряне, В	За формулою, В
Експеримент	0.4023	0.4224
Симуляція	0.38	0.427

Вважаючи значення, отримане при симуляції за точне значення, розрахуємо похибку між цим значенням та експериментально отриманим:

$$\delta = |((dUсимул - dUексп) / dUсимул)| * 100% = 5.9%$$

Похибка між експериментальним значенням з осцилограм та значенням dU, розрахованим за формулою:

$$\delta = |((dUekcn, Teop - dUekcn) / dUekcn, Teop)| * 100% = 4.8%$$

Похибка між значенням dU при симуляції та значенням dU, розрахованим за формулою:

$$\delta = |((dU$$
симул, теор – dU симул) / dU симул, теор) | * 100% = 11%

Можна бачити, що для обох значень опорів, похибки між експериментально отриманим значенням dU та значенням, отриманим при симуляції, доволі малі — всього 3-5%.

Також не дуже високі значення похибок отримані як при порівнюванні експериментально отриманих значень зі значеннями, отриманими за допомогою формули dU = Iav/(C*f), так і при порівнюванні значень, отриманих при симуляції, зі значеннями, отриманими при розрахунках за цією формулою.

Було перевірено домножування отриманих за формулою значень dUтеор на ³/₄ для врахування часу розряду конденсатора, але суттєвого покращення результатів в цьому випадку це не дало, тому я зупинився на звичайному вигляді формули для dU при розрахунках.

2. Дослідження двонапівперіодного випрямляча.

Був складений двонапівперіодний випрямляч за наступною схемою:

Симуляція в LTSpice:

1) Rнавантаження = R1 = 9.83 кОм

Напруга джерела, напруга на резисторі, струм через резистор:

Шукаємо амплітуду пульсацій напруги на резисторі навантаження dU:

dUсимул = 3.81 - 3.52 = 0.29 (B)

Шукаємо середнє значення струму через резистор навантаження Iav:

 $\mathbf{Iav} = (387.6 * 10^{\circ} - 6 + 358.5 * 10^{\circ} - 6) / 2 = 373.05 * 10^{\circ} - 6 (A) = 373.05 (MKA)$

Перевірка формули, яка пов'язує амплітуду пульсацій на навантаженні двонапівперіодного випрямляча dU, струм навантаження Iav, ємність конденсатора на виході випрямляча C та частоту сигналу, який випрямляється f:

$$\mathbf{dU} = \text{Iav} / (2 * C * f)$$

$$dU$$
симул, $Teop = 373.05 * 10^{-6} / (2 * 10 * 10^{-6} * 50) = 0.37305 (B)$

Домножимо на ¾, щоб врахувати час розряду конденсатора:

$$dU$$
симул, теор = 0.37305 * $\frac{3}{4}$ = 0.28 (B)

Як видно, результат став значно більш схожий на отриманий в симуляції.

2) Кнавантаження = 19.8 кОм

Напруга джерела, напруга на резисторі, струм через резистор:

Шукаємо амплітуду пульсацій напруги на резисторі навантаження dU:

dUсимул = 3.84 - 3.69 = 0.15 (B)

Шукаємо середнє значення струму через резистор навантаження Iav:

$$Iav = (193.78 * 10^{\circ}-6 + 186.33 * 10^{\circ}-6) / 2 = 190.1 * 10^{\circ}-6 (A) = 190.1 (MKA)$$

$$dU$$
симул, теор = $Iav / (2 * C * f) = 190.1 * 10^-6 / (2 * 10 * 10^-6 * 50) = 0.19 (B)$

Домножимо на ¾, щоб врахувати час розряду конденсатора:

$$dU$$
симул, теор = $0.19 * \frac{3}{4} = 0.14$ (B)

Результати експерименту:

1) Кнавантаження = 9.83 кОм

Напруга на резисторі навантаження:

 $dUe\kappa c\pi = 0.3085 (B) = 308.5 (B)$

$$Iav = (3.734/9830 + 3.426/9830) / 2 = 364.2 * 10^{-6} (A) = 364.2 (MKA)$$

Розрахуємо dU за формулою:

dUekch, teop = Iav /
$$(2 * C * f) = 364.2*10^{-6} / (2 * 10 * 10^{-6} * 50) = 0.3642$$
 (B)

Врахуємо час розряду конденсатора:

dUerch, teop =
$$0.3642 * \frac{3}{4} = 0.27$$
 (B)

2) Кнавантаження = 19.8 кОм

Напруга на резисторі навантаження:

Амплітуда пульсацій напруги на резисторі навантаження:

$$dU$$
експ = 174.5 (мВ) = 0.1745 (В)

Знайдемо середній струм через резистор навантаження:

$$Iav = (3.765/19800 + 3.5896/19800) / 2 = 185.7 * 10^{-6} (A) = 185.7 (MKA)$$

Розрахуємо dU за формулою:

dUekch, Teop = Iav /
$$(2 * C * f) = 185.7 * 10^{-6} / (2 * 10 * 10^{-6} * 50) = 0.1857 (B) = 185.7 (MB)$$

Врахуємо час розряду конденсатора:

dUekch, Teop =
$$0.1857 * \frac{3}{4} = 0.139$$
 (B)

Як видно, в цьому випадку врахування часу розряду конденсатора не дозволило зменшити похибку.

Висновки:

1) $R_H = 9.8 \text{ kOm}$

dU	Виміряне, В	За формулою, В
Експеримент	0.3085	0.27
Симуляція	0.29	0.28

Вважаючи значення, отримане при симуляції за точне значення, розрахуємо похибку між цим значенням та експериментально отриманим:

$$\delta = |((dU$$
симул – dU експ $) / dU$ симул $) | *100% = ((0.29 - 0.3085) / 0.29) *100% = 6.4%$

Похибка між експериментальним значенням з осцилограм та значенням dU, розрахованим за формулою, для Iav, отриманого експериментально:

$$\delta = |((dUekcn, Teop - dUekcn) / dUekcn, Teop)| * 100\% = ((0.27 - 0.3085) / 0.27) * 100\% = 14.3\%$$

Похибка між значенням при симуляції та значенням dU, розрахованим за формулою, для Iav, отриманого при симуляції:

 $\delta = |((dU$ симул, теор – dUсимул) / dUсимул, теор) | * 100% = ((0.28 - 0.29) / 0.28) * 100% = 3.6%

2) RH = 19.8 kOm

dU	Виміряне, В	За формулою, В
Експеримент	0.1745	0.1857
Симуляція	0.15	0.14

Вважаючи значення, отримане при симуляції за точне значення, розрахуємо похибку між цим значенням та експериментально отриманим:

$$\delta = |((dUсимул - dUексп) / dUсимул)| * 100% = ((0.15 - 0.1745) / 0.15) * 100% = 16.3%$$

Похибка між експериментальним значенням з осцилограм та значенням dU, розрахованим за формулою:

$$\pmb{\delta} = |\left((dUe\text{kch}, \text{teop} - dUe\text{kch}) \ / \ dUe\text{kch}, \ \text{teop} \right)| * 100\% = \left((0.1857 - 0.1745) \ / \ 0.1857 \right) * 100\% = 6\%$$

Похибка між значенням при симуляції та значенням dU, розрахованим за формулою:

$$\delta = |((dU$$
симул, теор $- dU$ симул) / dU симул, теор) | * 100% = $((0.14 - 0.15) / 0.14) * 100% = 7.1%$

Загалом, були отримані доволі точні результати для обох значень опорів резистора навантаження.

Також варто відзначити, що врахування часу розряду конденсатора дало можливість дещо зменшити похибки.

3. Дослідження подвоювача напруги.

Збираємо схему подвоювача напруги:

Симуляція в LTSpice:

Напруга на виході – на конденсаторі С2:

Форма вихідної напруги відповідає очікуванням - формі вхідної напруги з методички.

Як видно, вихідна напруга стабілізувалась на значенні ~8.8 В через деякий час після ввімкнення живлення.

Пояснюється це тим, що значення вихідної напруги розраховується як **2*Uвхm -- 2*Uvd**, тобто, напруга 1.2 В падає на двох діодах.

Для кремнієвих діодах значення $Uvd = 0.6 \dots 0.8 B$,

для германієвих $-0.2 \dots 0.4$ В, як і для діодів Шотткі.

Тому іноді ϵ сенс брати саме діоди Шотткі, щоб отримати більшу напругу на вході, адже на них сумарне падіння напруги буде менше, ніж на кремні ϵ вих, і тому вихідна напруга буде більшою.

Результати експерименту:

Була складена схема подвоювача напруги.

Напруга на виході та вході:

Як бачимо, вихідна напруга рівна 8.9 В, що відповідає очікуванням.

4.Дослідження обмежувача напруги.

Складаємо схему обмежувача напруги на діодах:

Симуляція в LTSpice:

При вхідній напрузі, рівній 0.3В, сигнал на виході схеми повторює вхідний сигнал:

Подаємо напругу вищу за 0.6B, -1.5~B в даному випадку -i бачимо, що вихідний сигнал не виходить за межі -0.6B ... 0.6B, що i очікувалось.

Дана схема реалізує обмеження з двох сторін.

Якщо вхідна напруга менша за напругу відкривання діодів, то вона проходить на вихід без змін.

Якщо Ubx \geq 0.65B, то діод VD1 відкриється, і вихідна напруга стане рівною напрузі на ньому.

Якщо Ubx \leq -0.65B, то відкриється діод VD2, і вихідна напруга стане рівною -0.65B.

При відкритих діодах надлишок напруги виділятиметься на R.

При цьому значення 0.65В – це значення напруги відкривання кремнієвих діодів, для діодів Шотткі це значення становить 0.3В.

Результати експерименту:

Амплітуда вхідної напруги — 0.3B.

Вихідний сигнал повторює вхідний.

Подаємо на вхід 1.5В, спостерігаємо обмеження напруги:

Отже, робота схеми відповідає очікуванням.

Висновки:

Отже, в процесі виконання цієї лабораторної роботи, були досліджені одно- та двонапівперіодний випрямлячі.

Робота всіх схем була просимульована в LTSpice, а також на практиці за допомогою плати Analog Discovery 2.

Були розраховані амплітуди пульсацій одно- та двонапівперіодного випрямляча, середній струм через опір навантаження. Отримані результати були порівняні між собою.

I в загальному значення похибок доволі малі.