Билет 40

Свойства функции, обратной строго монотонной непрерывной функции. Теорема о пределе корня.

Теорема

f — непрерывна и строго монотонна на $[a;b] \Rightarrow f^{-1}$ — непрерывна и строго монотонна на f([a;b])

Доказательство

1. Докажем, что f — взаимно-однозначна на [a;b]

$$\exists f(x_1) = f(x_2)
x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \Rightarrow f(x_1) \neq f(x_2), \text{ но } f(x_1) = f(x_2)
x_1 > x_2 \Rightarrow f(x_1) > f(x_2) \Rightarrow f(x_1) \neq f(x_2), \text{ но } f(x_1) = f(x_2)$$
(1)

$$(1) \wedge (2) \Rightarrow x_1 = x_2$$

2. Докажем теорему, используя материал предыдущих билетов:

По т. Дарбу (Билет 36): f([a;b]) = [c;d]

f рассматривается на [a;b], то есть f — непрерывна означает, что она непрерывна на [a;b].

Аналогично сокращаются утверждения про f^{-1} на [c;d]

По теореме о непрерывности обратной функции (Билет 37):

f — взаимно-однозначна \wedge f — непрерывна \Rightarrow f^{-1} — непрерывна

По теореме о строгой монотонности непрерывной взаимно-однозначной функции (Билет 38):

 f^{-1} — взаимно-однозначна \wedge f^{-1} — непрерывна \Rightarrow f^{-1} — строго монотонна \square .

Теорема о пределе корня

 $f(x) = \sqrt[n]{x}, n \in \mathbb{N}$ — непрерывна на $[0; +\infty)$ при чётных n и непрерывна на \mathbb{R} при нечётных n

Доказательство

1. n — чётно

$$g(x)=x^n$$
 — непрерывна и строго монотонна на $[0;+\infty)\Rightarrow$ $\Rightarrow g^{-1}(x)=f(x)=\sqrt[n]{x}$ — непрерывна и строго монотонна на $g([0;+\infty))=[0;+\infty)$

$$\lim_{k \to \infty} \sqrt[n]{x_k} = \sqrt[n]{x_0}$$
, если $\lim_{k \to \infty} x_k = x_0 \land \forall x_k \ge 0$

2. n — нечётно

$$g(x)=x^n$$
 — непрерывна и строго монотонна на $\mathbb{R}\Rightarrow$ $\Rightarrow g^{-1}(x)=f(x)=\sqrt[n]{x}$ — непрерывна и строго монотонна на $g(\mathbb{R})=\mathbb{R}$ \square .

$$\lim_{k\to\infty} \sqrt[n]{x_k} = \sqrt[n]{x_0}$$
, если $\lim_{k\to\infty} x_k = x_0$