Contents

0.1	4-((2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenol 124	2
0.2	$5-(4-(Hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl) pyrimidine-2,4-diamine~ \textbf{125}~\dots \dots $	2
0.3	$(S) \text{-1-Cyclopropyl-6-fluoro-4-oxo-7-} \\ (4 \text{-} (4 \text{-} (4 \text{-} (2 \text{-} \text{oxo-2-} ((2 \text{-} \text{oxotetrahydrofuran-3-yl}) \text{amino}) \text{ethyl}) \text{-} 1 \\ H \text{-} (2 \text{-} \text{oxo-2-} ((2 \text{-} \text{oxotetrahydrofuran-3-yl}) \text{-} 1 \text{-} $	
	1,2,3-triazol-4-yl) butyl) piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid ${\bf 126}$	3
0.4	$(S) \text{-}1\text{-}Cyclopropyl-6-fluoro-}4\text{-}oxo-7\text{-}(4\text{-}(4\text{-}(4\text{-}(4\text{-}oxo-}4\text{-}((2\text{-}oxotetrahydrofuran-}3\text{-}yl)amino)butyl)-1H\text{-}(S) \text{-}1\text{-}Cyclopropyl-}(S) \text{-}1\text{-}Cyclopropyl-}(S) \text{-}1\text{-}2\text{-}(2\text{-}oxotetrahydrofuran-}3\text{-}yl)amino)butyl)$	
	1,2,3-triazol-4-yl) butyl) piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid ${\bf 127}$	4
0.5	$(S) - 1 - \mathrm{Cyclopropyl} - 6 - \mathrm{fluoro} - 4 - \mathrm{oxo} - 7 - \left(4 - \left(4 - \left(1 - \left(6 - \mathrm{oxo} - 6 - \left(\left(2 - \mathrm{oxotetrahydrofuran} - 3 - \mathrm{yl}\right) \mathrm{amino}\right) \mathrm{hexyl}\right) - 1 H - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -$	
	1,2,3-triazol-4-yl) butyl) piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid ${\bf 128}$	5
0.6	$1- Cyclopropyl-6-fluoro-7- (4-(4-(1-(2-heptyl-4-oxo-1,4-dihydroquinolin-6-yl)-1\\ H-1,2,3-triazol-4-yl) butyl-4-oxo-1,4-dihydroquinolin-6-yl)-1\\ H-1,2,3-triazol-4-yl)-1\\ H-1,2,3-triazol-4-yl)-1\\ H-1,3-triazol-4-yl)-1\\ H-1,3-triazol-4-yl)-1$	₇ 1)
	piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid ${\bf 129}$	6
0.7	(S) - 4 - (4 - (4 - (4 - (4 - (4 - (4 - (4	
	1-yl)- N -(2-oxotetrahydrofuran-3-yl)butanamide 130	7
0.8	(S) - 6 - (4 - (4 - (4 - (4 - (4 - (4 - (4	
	1-yl)- N -(2-oxotetrahydrofuran-3-yl)hexanamide 131	8
0.9	6-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-	
	yl)-2-heptylquinolin-4(1 H)-one 132	9
0.10	2-(6-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-(4-	
	1-yl)hexyl)-3-hydroxyquinolin- $4(1H)$ -one 133	10

through Cips and check pip C is two peaks

not

doublet

0.1 4-((2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenol 124

Hydrobromic acid (48 % w/w, aq., 50 ml) was heated to 100 °C. Trimethoprim **99** (5.00 g, 17.2 mmol) was added, and the suspension was stirred for 40 min under Ar. The mixture was removed from the heat, and NaOH (50 % w/w, aq., 15 ml) was added dropwise. The reaction mixture was then cooled slowly to 0 °C, and the resulting crystals were filtered out and washed with cold water. The crystals were then dissolved in hot water (80 ml), neutralized with NH₄OH (sat., aq.) and cooled slowly to 0 °C. The resulting crystals were filtered out, washed with cold water and dried under vacuum. **124** was obtained as pale pink prisms (2.06 g, 7.46 mmol, 43.4 %).

TLC $R_f = 0.04 (5 \% \text{ MeOH/CHCl}_2)$

mp $T / {}^{\circ}C = 238 \text{ (H}_2O, \text{ decomposes)}$

IR (neat) ν_{max} / cm⁻¹ = 3314.0 (N-H), 3137.4 (N-H), 3045.3 (C-H), 3000.9 (C-H), 2938.1 (C-H), 2838.7 (C-H), 1662.9 (pyrimidine), 1645.2 (pyrimidine), 1626.6 (pyrimidine)

¹**H NMR** (400 MHz, MeOD) δ / ppm = 7.21 (s, 1 H, C<u>H</u>N), 6.54 (s, 2 H, meta to OCH₂), 4.87 (br s, 5 H, OH, NH₂ × 2), 3.82 (s, 6 H, OC<u>H</u>₃), 3.63 (s, 2 H, CC<u>H</u>₂C)

¹³C NMR (101 MHz, MeOD) δ / ppm = 166.4 (CH₂C<u>C</u>NH₂), 162.0 (CHN<u>C</u>NH₂), 156.2 (<u>C</u>HNCNH₂), 149.8 (*ipso* to OCH₃), 135.9 (*ipso* to OH), 128.2 (*para* to OH), 111.7 (CH₂<u>C</u>CNH₂), 107.5 (*meta* to OH), 57.0 (O<u>C</u>H₃), 33.9 (C<u>C</u>H₂C)

HRMS (ESI⁺) m/z / Da = 277.1295, [M+H]⁺ found, [C₁₃H₁₇N₄O₃]⁺ requires 277.1301

The data are consistent with the literature.?

0.2 5-(4-(Hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl)pyrimidine-2,4-diamine 125

$$0 \longrightarrow N \longrightarrow NH_2$$

$$N \longrightarrow NH_2$$

4-((2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenol**124**(1.00 g, 3.62 mmol, 1 eq.), 6-chloro-1-hexyne**134** $(0.524 ml, 0.420 g, 4.34 mmol, 1.2 eq.), <math>Cs_2CO_3$ (2.36 g, 7.24 mmol, 2 eq.) and anhydrous DMF (30 ml)

were stirred at 70 °C for 7 h. The solvent was removed under reduced pressure, then $\mathrm{CH_2Cl_2}$ (30 ml) was added and the mixture filtured. The filtrate was concentrated under reduced pressure and purified by column chromatography using a Combiflash (SiO₂, 5 % MeOH/CH₂Cl₂). **125** was obtained as a pale cream amorphous solid (0.253 g, 0.709 mmol, 19.6 %).

TLC $R_f = 0.14 \ (5 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3451.4 (alkyne C-H), 3313.4 (N-H), 3136.7 (N-H), 3113.9 (N-H), 2944.2 (C-H), 2839.0 (C-H), 1635.1 (pyrimidine)

¹H NMR (400 MHz, MeOD) δ / ppm = 7.77 (s, 1 H, C<u>H</u>N), 6.37 (s, 2 H, meta to OCH₂), 4.83 (br s, 2 H, CHNCN<u>H</u>₂), 4.63 (br s, 2 H, CH₂CCN<u>H</u>₂), 3.95 (t, J = 6.3 Hz, 2 H, C<u>H</u>₂O), 3.79 (s, 6 H, OC<u>H</u>₃), 3.65 (s, 2 H, CC<u>H</u>₂C), 2.28 (td, J = 7.1, 2.6 Hz, 2 H, HC≡CC<u>H</u>₂), 1.94 (t, J = 2.7 Hz, 1 H, <u>H</u>C≡C), 1.81 - 1.90 (m, 2 H, C<u>H</u>₂CH₂O), 1.71 - 1.80 (m, 2 H, C<u>H</u>₂CH₂CH₂O)

¹³C NMR (101 MHz, MeOD) δ / ppm = 162.7 (CH₂C<u>C</u>NH₂), 162.0 (CHN<u>C</u>NH₂), 156.4 (<u>C</u>HNCNH₂), 153.8 (*ipso* to OCH₃), 136.0 (*ipso* to OCH₂), 133.6 (*para* to OCH₂), 106.5 (CH₂<u>C</u>CNH₂), 105.0 (*meta* to OCH₂), 84.5 (HC=<u>C</u>), 72.6 (<u>C</u>H₂O), 68.3 (H<u>C</u>=C), 56.1 (O<u>C</u>H₃), 34.7 (C<u>C</u>H₂C), 29.1 (<u>C</u>H₂CH₂O), 24.9 (<u>C</u>H₂CH₂CH₂O), 18.0 (HC=<u>C</u><u>C</u>H₂)

HRMS (ESI⁺) m/z / Da = 357.1920, [M+H]⁺ found, [C₁₉H₂₅N₄O₃]⁺ requires 357.1927

The compound has not been reported previously.

0.3 (S)-1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(2-oxo-2-((2-oxotetrahydrofuran-3-yl)amino)ethyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinoli ne-3-carboxylic acid 126

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid **135** (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-2-azido-N-(2-oxotetrahydrofuran-3-yl)acetamide **41** (9.2 mg, 50.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (50 μ l) was then added. The mixture was stirred at r.t. under argon for 3 h. On observation that the reaction had stalled, the reaction was degassed again, and a further portion of cataylst solution (50 μ l) was added. After a further 3 h the reaction mixture was dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂ over 15 min). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **126** was obtained as a white amorphous solid (8.8 mg, 14.8 μ mol, 29.6 %).

IR (neat) ν_{max} / cm⁻¹ = 3266.3 (N-H), 2949.0 (C-H), 2934.8 (C-H), 2827.2 (C-H), 1778.0 (lactone C=O), 1724.9 (carboxylic acid C=O), 1665.0 (amide C=O), 1625.5 (quinolone C=O)

¹H NMR (400 MHz, DMSO d₆) δ / ppm = 15.23 (s, 1 H, C(=O)O<u>H</u>), 8.84 (d, J = 7.9 Hz, 1 H, N<u>H</u>), 8.66 (s, 1 H, ortho to C(=O)OH), 7.90 (d, J = 13.3 Hz, 1 H, ortho to F), 7.82 (s, 1 H, C<u>H</u>=CCH₂), 7.57 (d, J = 7.6 Hz, 1 H, meta to F), 5.13 (s, 1 H, C(=O)C<u>H</u>HN), 5.12 (s, 1 H, C(=O)CH<u>H</u>N), 4.64 (ddd, J = 10.9, 9.0, 7.8 Hz, 1 H, C<u>H</u>NH), 4.36 (td, J = 8.9, 1.7 Hz, 1 H, OC<u>H</u>H), 4.23 (ddd, J = 10.6, 8.8, 6.4 Hz, 1 H, OC<u>H</u>H), 3.83 (tt, J = 7.0, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.32 (br s, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.67 (t, J = 7.4 Hz, 2 H, CH=CC<u>H</u>₂), 2.58 (br t, J = 5.0 Hz, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.42 - 2.49 (m, 1 H, OCH₂C<u>H</u>H), 2.40 (t, J = 7.1 Hz, 1 H, CH=CCH₂CH₂CH₂CH₂CH₂), 2.17 (dtd, J = 11.7, 10.8, 10.8, 9.0 Hz, 1 H, OCH₂CH<u>H</u>), 1.66 (quin, J = 7.2 Hz, 1 H, CH=CCH₂CH₂C<u>H</u>₂), 1.53 (quin, J = 7.2 Hz, 1 H, CH=CCH₂CH₂CH₂), 1.28 - 1.35 (m, 1 H, NCH(C<u>H</u>H)₂), 1.16 - 1.21 (m, 1 H, NCH(CH<u>H</u>)₂)

¹³C NMR (101 MHz, DMSO d₆) δ / ppm = 176.4 (\underline{C} (=O)CC(=O)OH), 174.9 (O \underline{C} (=O)), 166.0 (\underline{C} (=O)OH), 165.9 (NH \underline{C} (=O)), 153.1 (d, J = 250.8 Hz, ipso to F), 148.0 (\underline{C} H=CC(=O)OH), 146.6 (CH= \underline{C} CH₂), 145.3 (d, J = 9.6 Hz, ipso to piperazine), 139.2 (para to F), 123.4 (\underline{C} H=CCH₂), 118.5 (d, J = 7.5 Hz, para to piperazine), 110.9 (d, J = 23.5 Hz, ortho to C=O and ortho to F), 106.7 (\underline{C} C(=O)OH), 106.4 (d, J = 3.2 Hz, meta to C=O and meta to F), 65.4 (O \underline{C} H₂), 57.3 (CH=CCH₂CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N(\underline{C} H₂)CH₂), 51.2 (C(=O) \underline{C} H₂N), 49.5 (d, J = 4.3 Hz, CH₂CH₂CH₂N(CH₂ \underline{C} H₂)CH₂CH₂), 48.2 (\underline{C} HNH), 35.9 (N \underline{C} H(CH₂)2), 28.2 (\underline{C} H₂CHNH), 26.8 (CH=CCH₂ \underline{C} H₂), 25.7 (CH=CCH₂CH₂ \underline{C} H₂), 24.9 (CH=C \underline{C} H₂), 7.6 (NCH(\underline{C} H₂)2)

HRMS (ESI⁺) m/z / Da = 596.2627, [M+H]⁺ found, [C₂₉H₃₅FN₇O₆]⁺ requires 596.2633 [α]_D²⁰ / °10⁻¹cm²g⁻¹ = -3.5 (c / g(100 mL)⁻¹ = 0.0575 , MeOH)

0.4 (S)-1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(4-(4-(4-oxo-4-((2-oxotetrahydrofuran-3-yl)amino)butyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinol ine-3-carboxylic acid 127

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 135 (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-4-azido-N-(2-oxotetrahydrofuran-3-yl)butanamide 46 (10.6 mg, 50.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (50 μ l) was then added. The mixture was stirred at r.t. under argon for 3 h, then dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂ over 15 min). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. 127 was obtained as a white amorphous solid (14.6 mg, 23.4 μ mol, 46.8 %).

 $\mathbf{IR} \text{ (neat) } \nu_{max} \text{ / cm}^{-1} = 3286.7 \text{ (N-H), } 2949.7 \text{ (C-H), } 2820.6 \text{ (C-H), } 2778.0 \text{ (C-H), } 1778.1 \text{ (lactone C=O), } 12820.6 \text{ (C-H), } 128200.6 \text{ (C-$

1725.6 (carboxylic acid C=O), 1663.7 (amide C=O), 1625.8 (quinolone C=O)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 15.22 (br s, 1 H, C(=O)O<u>H</u>), 8.65 (s, 1 H, ortho to C(=O)OH), 8.40 (d, J = 8.0 Hz, 1 H, N<u>H</u>), 7.88 (d, J = 13.4 Hz, 1 H, ortho to F), 7.85 (s, 1 H, C<u>H</u>=CCH₂), 7.55 (d, J = 7.5 Hz, 1 H, meta to F), 4.53 (ddd, J = 10.9, 9.0, 8.1 Hz, 1 H, C<u>H</u>NH), 4.33 (td, J = 8.9, 1.8 Hz, 1 H, OC<u>H</u>H), 4.31 (t, J = 7.0 Hz, 2 H, C<u>H</u>₂NCH=C), 4.20 (ddd, J = 10.5, 8.8, 6.5 Hz, 1 H, OCH<u>H</u>), 3.82 (tt, J = 6.9, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.32 (br. t, J = 4.2, 4.2 Hz, 4 H, CH₂CH₂CH₂N(CH₂C<u>H</u>₂)CH₂C<u>H</u>₂), 2.64 (t, J = 7.4 Hz, 2 H, CH=CC<u>H</u>₂), 2.57 (br. t, J = 5.0, 5.0 Hz, 2 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.34 - 2.42 (m, 3 H, OCH₂C<u>H</u>H and CH=CCH₂CH₂CH₂CH₂), 2.09 - 2.19 (m, 3 H, OCH₂CH<u>H</u> and C(=O)C<u>H</u>₂), 2.02 (quin, J = 7.2 Hz, 2 H, C(=O)CH₂CH₂), 1.64 (quin, J = 7.6 Hz, 2 H, CH=CCH₂CH₂), 1.52 (quin, J = 7.2 Hz, 2 H, CH=CCH₂CH₂CH₂), 1.29 - 1.34 (m, 2 H, NCH(C<u>H</u>H)₂), 1.15 - 1.21 (m, 2 H, NCH(CH<u>H</u>)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 176.3 ($\underline{\mathbf{C}}$ (=O)CC(=O)OH), 175.4 (O $\underline{\mathbf{C}}$ (=O)), 171.2 (NH $\underline{\mathbf{C}}$ (=O)), 166.0 ($\underline{\mathbf{C}}$ (=O)OH), 153.0 (d, J = 248.6 Hz, ortho to F), 148.0 ($\underline{\mathbf{C}}$ H=CC(=O)OH), 146.8 (CH= $\underline{\mathbf{C}}$ CH₂), 145.2 (d, J = 9.6 Hz, ipso to piperazine), 139.2 (para to F), 121.7 ($\underline{\mathbf{C}}$ H=CCH₂), 118.5 (d, J = 7.5 Hz, para to piperazine), 110.9 (d, J = 22.4 Hz, ortho to C=O and ortho to F), 106.7 ($\underline{\mathbf{C}}$ CC(=O)OH), 106.3 (d, J = 3.2 Hz, meta to C=O and meta to F), 65.3 (O $\underline{\mathbf{C}}$ H₂), 57.3 (CH=CCH₂CH₂CH₂CH₂N), 52.4 (CH₂CH₂CH₂N($\underline{\mathbf{C}}$ H₂)CH₂), 49.5 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 49.4 (CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 48.6 ($\underline{\mathbf{C}}$ H₂NCH=C), 47.9 (OC(=O) $\underline{\mathbf{C}}$ HNH), 35.9 (N $\underline{\mathbf{C}}$ H(CH₂CH₂CH₂), 31.7 (NHC(=O) $\underline{\mathbf{C}}$ H₂), 28.2 ($\underline{\mathbf{C}}$ H₂CHNH), 26.9 (CH=CCH₂CH₂), 25.8 (NHC(=O)CH₂CH₂ and CH=CCH₂CH₂CH₂), 24.9 (CH=C $\underline{\mathbf{C}}$ H₂), 7.6 (NCH($\underline{\mathbf{C}}$ H₂)₂)

HRMS (ESI⁺) m/z / Da = 624.2928, [M+H]⁺ found, [C₃₁H₃₉FN₇O₆]⁺ requires 624.2946 [α]_D²⁰ / °10⁻¹cm²g⁻¹ = -10.6 (c / g(100 mL)⁻¹ = 0.094 , MeOH)

0.5 (S)-1-Cyclopropyl-6-fluoro-4-oxo-7-(4-(4-(1-(6-oxo-6-((2-oxotetrahydrofuran-3-yl)amino)hexyl)-1H-1,2,3-triazol-4-yl)butyl)piperazin-1-yl)-1,4-dihydroquinol ine-3-carboxylic acid 128

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 135 (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-6-azido-N-(2-oxotetrahydrofuran-3-yl)hexanamide 47 (12.0 mg, 50.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (50 μ l) was then added. The mixture was stirred at r.t. under argon for 3 h, then dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂ over 15 min) The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. 128 was obtained as a white amorphous solid (12.4 mg, 19.0 μ mol, 38.0 %).

TLC $R_f = 0.30 \ (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3301.8 (N-H), 2939.7 (C-H), 2857.5 (C-H), 1784.6 (lactone C=O), 1728.5 (carboxylic acid C=O), 1658.2 (amide C=O), 1625.5 (quinolone C=O)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 15.22 (br s, 1 H, C(=O)O<u>H</u>), 8.65 (s, 1 H, ortho to C(=O)OH), 8.32 (d, J = 8.0 Hz, 1 H, N<u>H</u>), 7.89 (d, J = 13.3 Hz, 1 H, ortho to F), 7.84 (s, 1 H, C<u>H</u>=CCH₂), 7.55 (d, J = 7.6 Hz, 1 H, meta to F), 4.51 (ddd, J = 10.9, 9.1, 7.9 Hz, 1 H, C<u>H</u>NH), 4.33 (td, J = 8.8, 1.8 Hz, 1 H, OC<u>H</u>H), 4.28 (t, J = 7.1 Hz, 2 H, C<u>H</u>₂NCH=C), 4.19 (ddd, J = 10.5, 8.7, 6.6 Hz, 1 H, OCH<u>H</u>), 3.82 (tt, J = 7.0, 4.0 Hz, 1 H, NC<u>H</u>(CH₂)₂), 3.32 (br t, J = 4.5, 4 H, CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 2.63 (t, J = 7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.57 (br t, J = 4.2, 4.2 Hz, 4 H, CH₂CH₂CH₂N(C<u>H</u>₂)C<u>H</u>₂), 2.33 - 2.41 (m, 3 H, OCH₂C<u>H</u>H and CH=CCH₂CH₂CH₂CH₂CH₂), 2.06 - 2.16 (m, 3 H, OCH₂CH<u>H</u> and C(=O)C<u>H</u>₂), 1.79 (quin, J = 7.4 Hz, 2 H, C(=O)CH₂CH₂CH₂CH₂CH₂), 1.63 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂), 1.45 - 1.56 (m, 4 H, C(=O)CH₂C<u>H</u>₂ and CH=CCH₂CH₂CH₂C), 1.29 - 1.34 (m, 2 H, NCH(C<u>H</u>H)₂), 1.19 - 1.25 (m, 2 H, C(=O)CH₂CH₂C<u>H</u>₂), 1.15 - 1.19 (m, 2 H, NCH(CHH)₂)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 176.4 ($\underline{\mathbf{C}}(=O)\mathrm{CC}(=O)\mathrm{OH}$), 175.4 ($\underline{\mathbf{OC}}(=O)$), 172.1 (NH $\underline{\mathbf{C}}(=O)$), 166.0 ($\underline{\mathbf{C}}(=O)\mathrm{OH}$), 153.0 (d, J=250.2 Hz, ipso to F), 148.0 ($\underline{\mathbf{C}}\mathrm{H=CC}(=O)\mathrm{OH}$), 146.8 (CH= $\underline{\mathbf{C}}\mathrm{CH}_2$), 145.2 (d, J=9.6 Hz, ipso to piperazine), 139.2 (para to F), 121.6 ($\underline{\mathbf{C}}\mathrm{H=CCH}_2$), 118.5 (d, J=8.0 Hz, para to piperazine), 110.9 (d, J=23.5 Hz, ortho to C=O and ortho to F), 106.7 ($\underline{\mathbf{C}}\mathrm{C}(=O)\mathrm{OH}$), 106.3 (d, J=2.1 Hz, meta to C=O and meta to F), 65.3 ($\underline{\mathbf{OC}}\mathrm{H}_2$), 57.4 (CH= $\underline{\mathbf{C}}\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{N}$), 52.4 (CH₂CH₂CH₂N($\underline{\mathbf{C}}\mathrm{H}_2$)CH₂), 49.5 (d, J=3.2 Hz, CH₂CH₂CH₂N(CH₂CH₂)CH₂CH₂), 49.0 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{NCH=C}$), 47.8 ($\underline{\mathbf{C}}\mathrm{HNH}$), 35.9 (NCH(CH₂)₂), 34.8 (NHC(=O)CH₂), 29.5 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{CH}_2\mathrm{NCH=C}$), 28.3 ($\underline{\mathbf{C}}\mathrm{H}_2\mathrm{CHNH}$), 26.9 (CH= $\underline{\mathbf{C}}\mathrm{C}\mathrm{H}_2\mathrm{C}\mathrm{H}_2$), 25.7 (CH= $\underline{\mathbf{C}}\mathrm{C}\mathrm{H}_2\mathrm{C}\mathrm{H}_2$), 25.4 (NHC(=O)CH₂CH₂), 24.9 (CH= $\underline{\mathbf{C}}\mathrm{C}\mathrm{H}_2$), 24.5 (NHC(=O)CH₂CH₂), 7.6 (NCH($\underline{\mathbf{C}}\mathrm{H}_2$)₂)

HRMS (ESI⁺) m/z / Da = 652.3254, [M+H]⁺ found, [C₃₃H₄₃FN₇O₆]⁺ requires 652.3248 [α]_D²⁰ / °10⁻¹cm²g⁻¹ = -8.5 (c / g(100 mL)⁻¹ = 0.106 , MeOH)

$\begin{array}{ll} 0.6 & 1\text{-Cyclopropyl-6-fluoro-7-}(4\text{-}(4\text{-}(1\text{-}(2\text{-heptyl-4-oxo-1},4\text{-dihydroquinolin-6-yl})\text{-}1H\text{-}1,2,3\text{-triazol-4-yl})\text{butyl}) piperazin-1\text{-yl})\text{-}4\text{-oxo-1},4\text{-dihydroquinoline-3-carboxylic acid } 129 \end{array}$

50 % water/t-BuOH (1 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 1-cyclopropyl-6-fluoro-7-(4-(hex-5-yn-1-yl)piperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 135 (4.1 mg, 10.0 μ mol, 1 eq.) and 6-azido-2-heptylquinolin-4(1H)-one 26 (2.8 mg, 10.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (125 μ g, 0.5 μ mol, 0.05 eq. 50 mM), THPTA (218 μ g, 0.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (198 μ g, 1 μ mol, 0.1 eq., 100 mM) in 50 % water/t-BuOH (10 μ l) was then added. The mixture was stirred at r.t. under argon for 1.5 h, then the reaction mixture was evaporated under reduced pressure. The residue was purified by preparatory HPLC (50-100 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated

under reduced pressure. 129 was obtained as a white amorphous solid (8.6 mg, 2.7 μ mol, 27.0 %).

IR (neat) ν_{max} / cm⁻¹ = 2927.0 (C-H), 2865.5 (C-H), 1715.5 (carboxylic acid C=O), 1631.0 (ciprofloxacin quinolone C=O and HHQ C=O)

¹H NMR (500 MHz, DMSO d₆) 15.12 (br s, $\underline{\mathbf{C}}(=O)\mathrm{OH}$), 11.79 (s, 1 H, N $\underline{\mathbf{H}}$), 8.75 (s, 1 H, NC $\underline{\mathbf{H}}=\mathrm{CCH}_2$), 8.71 (s, 1 H, ortho to C(=O)OH), 8.40 (d, J=2.7 Hz, 1 H, ortho to C(=O) and ortho to N), 8.18 (dd, J=8.9, 2.6 Hz, 1 H, para to C(=O) and ortho to N), 7.99 (d, J=13.0 Hz, 1 H, ortho to F), 7.75 (d, J=9.0 Hz, 1 H, meta to C(=O) and meta to N), 7.62 (d, J=7.8 Hz, 1 H, meta to F), 6.02 (s, 1 H, NHC=C $\underline{\mathbf{H}}$ C(=O)), 3.85 (tt, J=7.0, 4.0 Hz, 1 H, NC $\underline{\mathbf{H}}$ (CH₂)₂), 3.23 - 3.30 (m, 6 H, C $\underline{\mathbf{H}}$ 2N(C $\underline{\mathbf{H}}$ 2C $\underline{\mathbf{H}}$ 2)C $\underline{\mathbf{H}}$ 2), 2.82 (t, J=5.9 Hz, 2 H, NCH=CC $\underline{\mathbf{H}}$ 2), 2.63 (t, J=7.9 Hz, 2 H, C $\underline{\mathbf{H}}$ 2C=CHC(=O)), 1.76 - 1.81 (m, 4 H, NCH=CCH₂C $\underline{\mathbf{H}}$ 2C $\underline{\mathbf{H}}$ 2), 1.70 (quin, J=7.2 Hz, 2 H, C $\underline{\mathbf{H}}$ 2C=CHC(=O)), 1.15 - 1.38 (m, 12 H, CH₃C $\underline{\mathbf{H}}$ 2C $\underline{\mathbf{H}}$ 2C $\underline{\mathbf{H}}$ 2, NCH(C $\underline{\mathbf{H}}$ H)₂ and NCH(CH $\underline{\mathbf{H}}$ 1)₂), 0.87 (t, J=6.9 Hz, 3 H, C $\underline{\mathbf{H}}$ 3)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 176.4 (\underline{C} (=O)CC(=O)OH), 176.3 (CH \underline{C} (=O)), 165.8 (\underline{C} (=O)OH), 154.3 (CCH \underline{C} (=O)), 152.9 (d, J = 240.1 Hz, ipso to F), 148.3 (\underline{C} H=CC(=O)OH), 147.5 (NCH \underline{C} CH₂), 143.3 (d, J = 8.5 Hz, ortho to F and ipso to N), 139.6 (ipso to NH), 139.0 (para to F), 132.0 (para to NH), 124.9 (ipso to C(=O) and ortho to NH), 123.6 (para to C(=O) and meta to NH), 120.5 (N \underline{C} H=CCH₂), 120.0 (meta to C(=O) and meta to N), 119.6 (d, J = 9.6 Hz, ipso to C(=O) and para to N), 115.1 (ortho to C(=O) and ortho to N), 111.3 (d, J = 28.8 Hz, ortho to F and ortho to C(=O)), 107.9 (meta to F and meta to C(=O)), 107.2 (meta to F and meta to C(=O)), 55.4 (CH=CCH₂CH₂CH₂CH₂N), 50.6 (CH₂CH₂CH₂N(metaCH₂CH₂), 46.5 (CH₂CH₂CH₂N(CH₂CH₂), 36.0 (NmetaCH(CH₂)), 33.2 (metaCH₂CH₂N), 31.2 (CH₃CH₂CH₂), 28.3 - 28.5 (CH₃CH₂CH₂CH₂CH₂), 25.6 (CH=CCH₂CH₂CH₂), 24.4 (CH=CmetaCH₂CH₂CH₂CH₂CH₂CH₂), 22.0 (CH₃CH₂), 13.9 (metaCH₃), 7.6 (NCH(metaCH₂))

¹⁹**F NMR** (376.45 MHz, MeOD) δ / ppm = ??

HRMS (ESI⁺) m/z / Da = 696.3667, [M+H]⁺ found, [C₃₉H₄₇FN₇O₄]⁺ requires 696.3668

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl) pyrimidine-2,4-diamine 125 (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-4-azido-N-(2-oxotetrahydrofuran-3-yl) butanamide 46 (15.9 mg, 75.0 μ mol, 1.5 eq.). Similarly degassed solutions of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in water (50 μ l) were then added. An extra portion of 46 (10.6 mg, 50.0 μ mol, 1 eq.) was added after 4 d. Extra portions of the catalysts were added after 9 d. After 2 weeks, the reaction mixture was extracted with CH₂Cl₂ (6 × 10 ml) then dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **130** was obtained as a pale brown gum (4.8 mg, 8.4 μ mol, 16.8 %).

TLC $R_f = 0.30 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3340.5 (N-H), 3303.3 (N-H), 3182.5 (N-H), 2933.8 (C-H), 1774.2 (lactone C=O), 1659.7 (amide C=O and pyrimidine)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.43 (d, J = 8.0 Hz, 1 H, N<u>H</u>), 7.80 (s, 1 H, NC<u>H</u>=CCH₂), 7.46 (s, 1 H, C<u>H</u>N=CNH₂), 6.68 (br s, 2 H, CH₂CCN<u>H</u>₂), 6.53 (s, 2 H, meta to CH₂), 6.21 (br s, 2 H, CHN=CN<u>H</u>₂), 4.49 (dt, J = 10.7, 8.6 Hz, 1 H, C<u>H</u>NH), 4.32 (td, J = 8.7, 1.6 Hz, 1 H, C<u>H</u>HOC(=O)), 4.29 (t, J = 6.8 Hz, 2 H, C<u>H</u>₂N), 4.19 (ddd, J = 10.6, 8.7, 6.5 Hz, 1 H, CH<u>H</u>OC(=O)), 3.79 (t, J = 6.2 Hz, 2 H, CH₂CH₂C<u>H</u>₂O), 3.68 (s, 6 H, C<u>H</u>₃), 3.53 (br s, 2 H, CC<u>H</u>₂C), 2.63 (t, J = 7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.37 (dddd, J = 12.2, 8.9, 6.7, 1.8 Hz, 1 H, C<u>H</u>HCHNH), 2.08 - 2.15 (m, 3 H, CH<u>H</u>CHNH and C(=O)C<u>H</u>₂), 2.00 (quin, J = 7.2 Hz, 2 H, CH₂CH₂N), 1.72 (quin, J = 7.3 Hz, 2 H, CH=CCH₂C<u>H</u>₂), 1.61 (quin, J = 6.7 Hz, 2 H, CH₂CH₂O)

¹³C NMR (126 MHz, DMSO d₆) δ / ppm = 175.8 (OC=O), 171.9 (NHC=O), 163.1 (CC(NH₂)N), 159.7 (br s, NC(NH₂)N), 153.2 (ipso to OCH₃), 150.5 (br s, CHNC(NH₂)N), 147.3 (NCH=CCH₂CH₂CH₂), 135.2 (para to CH₂O), 135.0 (ipso to CH₂O), 122.1 (CH=CCH₂CH₂), 107.3 (CH₂CC(NH₂)=N), 106.2 (meta to CH₂O), 72.3 (CH₂CH₂CH₂O), 65.7 (OCH₂CH₂CHNH), 56.2 (OCH₃), 48.9 (CH₂N), 48.3 (CHNH), 32.9 (CCH₂C), 32.0 (C(=O)CH₂), 29.3 (CH₂CH₂CH₂O), 28.4 (OCH₂CH₂CHNH), 26.0 (CH₂CH₂N), 25.7 (CH=CCH₂CH₂), 24.9 (CH=CCH₂CH₂)

HRMS (ESI⁺) m/z / Da = 569.2834, [M+H]⁺ found, [C₂₇H₃₇N₈O₆]⁺ requires 569.2836 [α]_D²⁰ / °10⁻¹cm²g⁻¹ = -4.6 (c / g(100 mL)⁻¹ = 0.0433 , MeOH)

50 % water/t-BuOH (2 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl)pyrimidine-2,4-diamine **125** (20.6 mg, 50.0 μ mol, 1 eq.) and (S)-6-azido-N-(2-oxotetrahydrofuran-3-yl)hexanamide **47** (18.0 mg, 75.0 μ mol, 1.5 eq.). Similarly degassed solutions of CuSO₄ · 5 H₂O (624 μ g, 2.5 μ mol, 0.05 eq. 50 mM), THPTA (1.09 mg, 2.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (991 μ g, 5 μ mol, 0.1 eq., 100 mM) in water (50 μ l) were then added. An extra portion of **47** (12.0 mg, 50.0 μ mol, 1 eq.) was added after was added after 4 d. Extra portions of the catalysts were added after 9 d. After 2 weeks, the After 2 weeks, the reaction mixture was extracted with CH₂Cl₂ (6 × 10 ml) then dry-loaded onto SiO₂ and purified by column chromatography using a Combiflash (SiO₂, 0-20 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **131** was obtained as a clear gum (8.0 mg, 13.4 μ mol, 26.8 %).

TLC $R_f = 0.35 (30 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 3336.0 (N-H), 3208.7 (N-H), 2941.1 (C-H), 2869.2 (C-H), 1775.2 (lactone C=O), 1657.3 (amide C=O and pyrimidine)

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 8.34 (d, J = 8.0 Hz, 1 H, N $\underline{\text{H}}$), 7.83 (s, 1 H, NC $\underline{\text{H}}$ =CCH₂), 7.50 (s, 1 H, C $\underline{\text{H}}$ N=CNH₂), 6.54 (s, 2 H, meta to CH₂), 6.17 (br s, 2 H, CH₂CCN $\underline{\text{H}}$ ₂), 5.77 (br s, 2 H, CHN=CN $\underline{\text{H}}$ ₂), 4.51 (ddd, J = 11.0, 9.0, 8.1 Hz, 1 H, C $\underline{\text{H}}$ NH), 4.33 (td, J = 8.8, 1.9 Hz, 1 H, C $\underline{\text{H}}$ HOC(=O)), 4.27 (t, J = 7.1 Hz, 2 H, C $\underline{\text{H}}$ ₂N), 4.19 (ddd, J = 10.5, 8.7, 6.5 Hz, 1 H, CH $\underline{\text{H}}$ OC(=O)), 3.80 (t, J = 6.3 Hz, 2 H, CH₂CH₂CH₂O), 3.70 (s, 6 H, C $\underline{\text{H}}$ ₃), 3.52 (s, 2 H, CC $\underline{\text{H}}$ ₂C), 2.64 (t, J = 7.5 Hz, 2 H, CH=CC $\underline{\text{H}}$ ₂), 2.36 (dddd, J = 12.1, 8.9, 6.7, 1.8 Hz, 1 H, C $\underline{\text{H}}$ HCHNH), 2.06 - 2.16 (m, 3 H, CH $\underline{\text{H}}$ CHNH and C(=O)C $\underline{\text{H}}$ ₂), 1.78 (quin, J = 7.4 Hz, 2 H, C $\underline{\text{H}}$ ₂CH₂N), 1.73 (quin, J = 7.7 Hz, 2 H, CH=CCH₂C $\underline{\text{H}}$ ₂), 1.63 (quin, J = 6.8 Hz, 2 H, C $\underline{\text{H}}$ ₂CH₂O), 1.52 (quin, J = 7.5 Hz, 2 H, C(=O)CH₂CH₂), 1.17 - 1.27 (m, 2 H, C(=O)CH₂CH₂)

¹³C NMR (125 MHz, DMSO d₆) δ / ppm = 175.4 (OC=O), 172.0 (NHC=O), 162.2 (CC(NH₂)N), 161.8 (NC(NH₂)N), 154.8 (CHNC(NH₂)N), 152.8 (ipso to OCH₃), 146.7 (CH=CCH₂CH₂CH₂), 135.5 (para to CH₂O), 134.8 (ipso to CH₂O), 121.6 (CH=CCH₂CH₂), 105.9 (CH₂CC(NH₂)=N), 105.8 (meta to CH₂O), 71.9 (CH₂CH₂CH₂O), 65.2 (OCH₂CH₂CHNH), 55.8 (OCH₃), 49.0 (CH₂N), 47.8 (CHNH), 34.8 (C(=O)CH₂), 32.9 (CCH₂C), 29.4 (CH₂CH₂N), 29.1 (CH₂CH₂O), 28.2 (OCH₂CH₂CHNH), 25.5 (CH=CCH₂CH₂), 25.3 (C(=O)CH₂CH₂CH₂), 24.7 (CH=CCH₂CH₂CH₂), 24.4 (C(=O)CH₂CH₂)

HRMS (ESI⁺) m/z / Da = 597.3149, [M+H]⁺ found, [C₂₉H₄₁N₈O₆]⁺ requires 597.3144 [α]_D²⁰ / °10⁻¹cm²g⁻¹ = -3.6 (c / g(100 mL)⁻¹ = 0.11 , MeOH)

0.9 6-(4-(4-(4-(4-(2,4-Diaminopyrimidin-5-yl)methyl)-2,6-dimethoxyphenoxy)butyl)-1H-1,2,3-triazol-1-yl)-2-heptylquinolin-4(1H)-one 132

50 % water/t-BuOH (1 ml) was degassed by bubbling N₂ through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl)pyrimidine-2,4-diamine **125** (3.6 mg, 10.0 μ mol, 1 eq.) and 6-azido-2-heptylquinolin-4(1H)-one **26** (2.8 mg, 10.0 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (125 μ g, 0.5 μ mol, 0.05 eq. 50 mM), THPTA (218 μ g, 0.5 μ mol, 0.05 eq. 50 mM) and sodium ascorbate (198 μ g, 1 μ mol, 0.1 eq., 100 mM) in water (10 μ l) was then added. The mixture was stirred at r.t. under argon for 1.5 h, then evaporated under reduced pressure. The residue was purified by preparatory HPLC (5-100 % acetonitrile/water over 20 min). The combined pure fractions were evaporated under reduced pressure and then partitioned between NaHCO₃ (aq., sat., 10 ml) and 10 % i-PrOH/CHCl₃ (10 ml). The organic layer was dried with MgSO₄ and evaporated under reduced pressure. **132** was obtained as a clear gum (2.6 mg, 4.1 μ mol, 41.0 %).

TLC $R_f = 0.17 (20 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2927.7 (C-H), 2855.5 (C-H), 1664.1 (pyrimidine), 1645.4 (pyrimidine and HHQ C=O),

¹H NMR (500 MHz, DMSO d₆) δ / ppm = 11.80 (s, 1 H, N<u>H</u>), 8.69 (s, 1 H, NC<u>H</u>=CCH₂), 8.41 (d, J = 2.7 Hz, 1 H, ortho to C=O), 8.17 (dd, J = 9.0, 2.6 Hz, 1 H, para to C=O), 7.73 (d, J = 9.0 Hz, 1 H, ortho to NH), 7.51 (br s, 4 H, NH₂), 7.41 (s, 1 H, C<u>H</u>N=CNH₂), 6.61 (s, 2 H, meta to CH₂), 6.02 (d, J = 1.8 Hz, 1 H, C(=O)C<u>H</u>), 3.86 (t, J = 6.3 Hz, 2 H, C<u>H</u>₂O), 3.73 (s, 6 H, OC<u>H</u>₃), 3.57 - 3.62 (m, 2 H, CC<u>H</u>₂C), 2.78 (t, J = 7.5 Hz, 2 H, CH=CC<u>H</u>₂), 2.63 (t, J = 7.3 Hz, 2 H, HNCC<u>H</u>₂), 1.85 (quin, J = 7.5 Hz, 2 H, CH=CCH₂CH₂C), 1.61 - 1.78 (m, 4 H, HNCCH₂C<u>H</u>₂ and CH=CCH₂CH₂CH₂), 1.31 - 1.40 (m, 4 H, HNCCH₂CH₂C<u>H</u>₂C<u>H</u>₂), 1.25 - 1.31 (m, 4 H, CH₃C<u>H</u>₂C<u>H</u>₂), 0.86 (t, J = 7.2 Hz, 3 H, C<u>H</u>₃CH₂)

check all frequencies

¹³C NMR (125 MHz, DMSO d₆) δ / ppm = 176.4 (\underline{C} =O), 164.1 (\underline{C} C(NH₂)N), 154.3 (HNC), 154.2 (NC(NH₂)N), 153.1 (ipso to OCH₃), 148.3 (CH= \underline{C} CH₂CH₂), 140.2 (\underline{C} HNC(NH₂)N), 139.6 (ipso to NH), 135.4 (ipso to CH₂O), 132.8 (para to CH₂O), 132.1 (para to NH), 124.9 (ipso to C=O), 123.7 (para to C=O), 120.3 (\underline{C} H=CCH₂CH₂), 120.0 (meta to C=O and ortho to NH), 115.1 (ortho to C=O and meta to NH), 109.0 (CH₂CC(NH₂)=N), 108.0 (C(=O) \underline{C} H), 106.3 (meta to CH₂O), 72.0 (CH₂CH₂CH₂O), 56.0 (O \underline{C} H₃), 33.3 (HNC \underline{C} H₂), 32.1 (C \underline{C} H₂C), 31.2 (CH₃CH₂CH₂), 29.1 (\underline{C} H₂CH₂O), 28.3 - 28.6 (CH₃CH₂CH₂CH₂CH₂CH₂), 25.3 (\underline{C} H₂CH₂CH₂O), 24.7 (CH= \underline{C} CH₂), 22.1 (CH₃CH₂), 14.0 (\underline{C} H₃CH₂)

HRMS (ESI⁺) m/z / Da = 641.3557, [M+H]⁺ found, [C₃₅H₄₅N₈O₄]⁺ 641.3558

50 % water/t-BuOH (1 ml) was degassed by bubbling N_2 through it. This was then added to a mixture of 5-(4-(hex-5-yn-1-yloxy)-3,5-dimethoxybenzyl)pyrimidine-2,4-diamine **125** (14.2 mg, 39.8 μ mol, 1 eq.) and 2-(6-azidohexyl)-3-hydroxyquinolin-4(1H)-one **70** (11.4 mg, 39.8 μ mol, 1 eq.). A similarly degassed solution of CuSO₄ · 5 H₂O (1.25 mg, 5 μ mol, 0.125 eq. 50 mM), THPTA (2.18 mg, 5 μ mol, 0.125 eq. 50 mM) and sodium ascorbate (1.98 mg, 10 μ mol, 0.25 eq., 100 mM) in water (100 μ l) was then added. The mixture was stirred at r.t. under argon for 3 h, then MeOH (1 ml) was added and the reaction mixture was dry-loaded onto SiO₂ and purified by column chromatography (SiO₂, 0-20 % MeOH/CH₂Cl₂). The combined pure fractions were dried with MgSO₄ and evaporated under reduced pressure. **133** was obtained as a pale brown amorphous solid (4.7 mg, 7.3 μ mol, 18.3 %).

TLC $R_f = 0.21 \ (20 \% \text{ MeOH/CH}_2\text{Cl}_2)$

IR (neat) ν_{max} / cm⁻¹ = 2924.8 (C-H), 2853.4 (C-H), 1660.0 (pyrimidine), 1638.8 (pyrimidine and PQS C=O),

¹**H NMR** (500 MHz, DMSO d₆) δ / ppm = 11.53 (br s, 1 H, N<u>H</u>), 8.09 (d, J = 8.0 Hz, 1 H, ortho to C=O), 7.83 (s, 1 H, NC<u>H</u>=CCH₂), 7.48 - 7.57 (m, 3 H, para to C=O, ortho to NH and C<u>H</u>N=CNH₂), 7.21 (ddd, J =

8.0, 6.3, 1.5 Hz, 1 H, para to NH), 6.55 (s, 2 H, meta to CH₂), 4.28 (t, J=7.1 Hz, 2 H, C $\underline{\mathrm{H}}_2$ N), 3.80 (t, J=6.2 Hz, 2 H, C $\underline{\mathrm{H}}_2$ O), 3.70 (s, 6 H, C $\underline{\mathrm{H}}_3$), 3.53 (d, J=0.3 Hz, 2 H, CC $\underline{\mathrm{H}}_2$ C), 2.73 (t, J=7.5 Hz, 2 H, HNCC $\underline{\mathrm{H}}_2$), 2.64 (t, J=7.4 Hz, 2 H, CH=CC $\underline{\mathrm{H}}_2$), 1.80 (quin, J=7.4 Hz, 2 H, C $\underline{\mathrm{H}}_2$ CH₂N), 1.73 (quin, J=7.5 Hz, 2 H, CH=CCH₂C $\underline{\mathrm{H}}_2$), 1.66 (quin, J=7.2 Hz, 2 H, HNCCH₂C $\underline{\mathrm{H}}_2$), 1.62 (quin, J=6.8 Hz, 2 H, C $\underline{\mathrm{H}}_2$ CH₂O), 1.33 - 1.40 (m, 2 H, HNCCH₂CH₂C), 1.27 - 1.32 (m, 2 H, HNCCH₂CH₂CH₂C)

¹³C NMR (125 MHz, DMSO d_6) δ / ppm = 168.9 (C=O), 162.5 (CC(NH₂)N), 162.5 (NC(NH₂)N), 152.9 (CHNC(NH₂)N), 152.8 (ipso to OCH₃), 146.8 (CH=CCH₂CH₂), 137.7 (COH), 137.3 (para to OH), 135.4 (HNC), 135.1 (para to CH₂O), 134.8 (ipso to CH₂O), 129.9 (para to C=O), 124.4 (ortho to C=O and meta to NH), 122.1 (ipso to C=O), 121.5 (para to NH), 121.4 (CH=CCH₂CH₂), 117.7 (meta to C=O and ortho to NH), 106.2 (CH₂CC(NH₂)=N), 105.8 (meta to CH₂O), 71.9 (CH₂CH₂CH₂O), 55.8 (OCH₃), 49.0 (CH₂N), 32.8 (CCH₂C), 29.5 (CH₂CH₂N), 29.0 (CH₂CH₂O), 28.1 (HNCCH₂CH₂CH₂), 27.9 (HNCCH₂), 27.6 (HNCCH₂CH₂O), 25.6 (CH₂CH₂CH₂N), 25.4 (CH₂CH₂CH₂O), 24.6 (CH=CCH₂CH₂CH₂)

HRMS (ESI⁺) m/z / Da = 643.3365, [M+H]⁺ found, [C₃₄H₄₃N₈O₅]⁺ requires 643.3351