Photogrammetry & Robotics Lab

Iterative Solution for the Relative Orientation

Cyrill Stachniss

1

Table of Contents

Iterative Solution for Computing the Relative Orientation

- 1. Iterative solution for computing the relative orientation from corresponding points
- 2. Quality of the iterative solution
- 3. Quality of the relative orientation solution using Gruber points

Motivation

 $\mathsf{E}, oldsymbol{B}, R$ Image courtesy: Collins 2

Relative Orientation

Last lecture

Compute the essential matrix matrix given corresponding points using a direct method

Today's Lecture

- Compute the essential matrix given corresponding points with an **iterative** least squares approach
- Analyze the quality of our solution

Iterative Solution for the Relative Orientation from Corresponding Points

5

Coplanarity Constraint for N Corresponding Points

 For each point pair, we can formulate the coplanarity constraint:

$${}^{k}\mathbf{x'}_{n}^{\mathsf{T}} \mathsf{E} {}^{k}\mathbf{x}_{n}^{\prime\prime} = 0 \qquad n = 1, ..., N$$

Expressed for the parameterizations of dependent images:

$${}^{k}\mathbf{x'}_{n}^{\mathsf{T}}\,\mathsf{S}_{b}\mathsf{R}^{\mathsf{T}}\,{}^{k}\mathbf{x}_{n}^{\prime\prime}=0 \qquad n=1,...,N$$

Reminder: Essential Matrix

 Essential matrix encodes the R.O. for a calibrated camera pair

$$\mathsf{E} = \mathsf{R}'\mathsf{S}_b\mathsf{R''}^\mathsf{T}$$

 Often parameterized through (parameterizations of dependent images)

$$\mathsf{E} = \mathsf{S}_b R^\mathsf{T}$$

Coplanarity constraint

$$k \mathbf{x'}^\mathsf{T} \mathsf{E}^k \mathbf{x''} = 0$$

6

Estimate the Essential Matrix (Here: Stereo Normal Case)

- Estimate E through least squares
- Coplanarity constraint directly yields an error function in the parameters of the R.O.
- Coplanarity constraint is non-linear in the parameters
- Thus, we need to iterate

Non-Linear Error Function

 Coplanarity constraint yields a non-linear error function

Assumptions

- Approximately stereo normal case
- Classic photogrammetric parameteriz. of dependent images ($B_X = const.$, 5 parameters for the R.O.)

9

Towards the Linearized Observation Equations

- Starting point: ${}^k\mathbf{x'}^\mathsf{T} \mathsf{S}_b \mathsf{R}^\mathsf{T} {}^k\mathbf{x''} = 0$
- Initial guess: $B^a = [B_X, 0, 0]^\mathsf{T}, R^a = I_3$
- Next goal: find the observation equation for the Gauss-Markov model:

observation + correction = coefficients times corrections in unknowns

Problem Statement

Wanted: R.O. parameters B, R (approximately stereo normal case)

Given:

- Observed image coordinates $(x'_n, y'_n) := ({}^k x'_n, {}^k y'_n) \qquad (x''_n, y''_n) = ({}^k x''_n, {}^k y''_n) \qquad n = 1, \dots, N$
- Uncertainty of the observations simplified: $\Sigma_{x'x'}$ $\Sigma_{x''x''}$ n=1,...N $\Sigma_{xx}=\sigma^2 I$
- Initial guess for the R.O. parameters \boldsymbol{B}^a, R^a parameters: $\boldsymbol{B}^a = [B_X, 0, 0]^\mathsf{T}, R^a = \boldsymbol{I}_3$

Towards the Linearized Observation Equations

• Starting point: ${}^k\mathbf{x'}^\mathsf{T} \mathsf{S}_b \mathsf{R}^\mathsf{T} {}^k\mathbf{x''} = 0$

• Initial guess: $B^a = [B_X, 0, 0]^\mathsf{T}, R^a = I_3$

"How do variations in the variables effect the function itself?"

$${}^{k}\mathbf{x}' = {}^{k}\mathbf{x}'^{a} + \mathrm{d} {}^{k}\mathbf{x}'^{a} = \begin{bmatrix} x' \\ y' \\ c \end{bmatrix} + \begin{bmatrix} \mathrm{d}x' \\ \mathrm{d}y' \\ 0 \end{bmatrix} \quad \text{correction in } \mathbf{x}'$$
$${}^{k}\mathbf{x}'' = {}^{k}\mathbf{x}''^{a} + \mathrm{d} {}^{k}\mathbf{x}''^{a} = \begin{bmatrix} x'' \\ y'' \\ c \end{bmatrix} + \begin{bmatrix} \mathrm{d}x'' \\ \mathrm{d}y'' \\ 0 \end{bmatrix} \quad \text{correction in } \mathbf{x}''$$

Basis

Linearized equation for the basis

$$\mathbf{b} = \mathbf{b}^a + \mathrm{d}\mathbf{b} = \left[egin{array}{c} B_X \\ 0 \\ 0 \end{array}
ight] + \left[egin{array}{c} 0 \\ \mathrm{d}B_Y \\ \mathrm{d}B_Z \end{array}
ight]$$
 2 unknowns

This leads to the skew-symmetric S_b

$$\mathsf{S}_b = \mathsf{S}_b^a + \mathrm{d}\mathsf{S}_b = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -B_X \\ 0 & B_X & 0 \end{bmatrix} + \begin{bmatrix} 0 & -\mathrm{d}B_Z & \mathrm{d}B_Y \\ \mathrm{d}B_Z & 0 & 0 \\ -\mathrm{d}B_Y & 0 & 0 \end{bmatrix}$$
correction in S_b

13

Linearized Observation Equation

The coplanarity constraint

$${}^{k}\mathbf{x'}^{\mathsf{T}} \mathsf{S}_{b} \mathsf{R}^{\mathsf{T}} {}^{k}\mathbf{x''} = 0$$

 The linearized error function through the initial guess and total differential

$${}^{k}\mathbf{x}'^{a\mathsf{T}}\mathsf{S}^{a}_{b}R^{a\mathsf{T}}{}^{k}\mathbf{x}''^{a} + \\ \mathrm{d}{}^{k}\mathbf{x}'^{a\mathsf{T}}\mathsf{S}^{a}_{b}R^{a\mathsf{T}}{}^{k}\mathbf{x}''^{a} + \\ {}^{k}\mathbf{x}'^{a\mathsf{T}}\mathsf{S}^{a}_{b}R^{a\mathsf{T}}\mathrm{d}{}^{k}\mathbf{x}''^{a} + \\ {}^{k}\mathbf{x}'^{a\mathsf{T}}\mathrm{d}\mathsf{S}_{b}R^{a\mathsf{T}}{}^{k}\mathbf{x}''^{a} + \\ {}^{k}\mathbf{x}'^{a\mathsf{T}}\mathsf{S}^{a}_{b}\mathrm{d}R^{\mathsf{T}}{}^{k}\mathbf{x}''^{a} = 0$$

Rotation

Linearized equation for the rotation

$$R^{\mathsf{T}} = R^{a\mathsf{T}} + \mathrm{d}R^{\mathsf{T}} = I_3 + S_{\mathrm{d}r}^{\mathsf{T}} = I_3 + \begin{bmatrix} 0 & \mathrm{d}\kappa & -\mathrm{d}\phi \\ -\mathrm{d}\kappa & 0 & \mathrm{d}\omega \\ \mathrm{d}\phi & -\mathrm{d}\omega & 0 \end{bmatrix}$$
 correction in R 3 unknowns

Coplanarity constraint (~normal case)

$$\begin{bmatrix} k_{\mathbf{X}'}^{\mathsf{T}} \begin{bmatrix} 0 & -\mathrm{d}B_Z & \mathrm{d}B_Y \\ \mathrm{d}B_Z & 0 & -B_X \\ -\mathrm{d}B_Y & B_X & 0 \end{bmatrix} \begin{bmatrix} 1 & -d\kappa & d\phi \\ d\kappa & 1 & -d\omega \\ -d\phi & d\omega & 1 \end{bmatrix}^{\mathsf{T}} k_{\mathbf{X}''} = 0$$

14

Linearized Observation Equation

21

23

Linearized Observation Equation

 $cB_X(y''-y')$ $+cB_X(\mathrm{d}y''-\mathrm{d}y')$ $-c dB_Y(x''-x')$ $-\mathrm{d}B_Z(x'y''-x''y')$ $+B_X d\omega (y'y'' + c^2) - B_X d\phi y'x'' - cB_X d\kappa x'' = 0$

Target on p_v as this is term can be seen as the observation of of the deviation (coplanarity constraint for stereo normal)

This Leads Us to

$$cB_X p_y$$

$$+cB_X dp_y$$

$$-c dB_Y p_x$$

$$+dB_Z y' p_x$$

$$+B_X d\omega (y'y'' + c^2)$$

$$-B_X d\phi y'x''$$

$$-cB_X d\kappa x'' = 0$$

Gauss Markov Model

$$cB_X p_y$$

$$+cB_X dp_y$$

$$-c dB_Y p_x$$

$$+dB_Z y' p_x$$

$$+B_X d\omega (y'y'' + c^2)$$

$$-B_X d\phi y'x''$$

$$-cB_X d\kappa x'' = 0$$

Observation Equation Written Using Vectors

$$p_{y} + \mathrm{d}p_{y} = \frac{p_{x}}{B_{X}} \mathrm{d}B_{Y} - \frac{p_{x}}{B_{X}} \frac{y'}{c} \mathrm{d}B_{Z} - \left(\frac{y'y''}{c} + c\right) \mathrm{d}\omega$$

$$+ \frac{y'x''}{c} \mathrm{d}\phi + x'' \mathrm{d}\kappa$$

$$= \begin{bmatrix} \frac{p_{x}}{B_{X}} \\ -\frac{p_{x}}{B_{X}} \frac{y'}{c} \\ -\left(\frac{y'y''}{c} + c\right) \end{bmatrix}^{\mathsf{T}} \underbrace{\begin{bmatrix} \mathrm{d}B_{Y} \\ \mathrm{d}B_{Z} \\ \mathrm{d}\omega \\ \mathrm{d}\phi \\ \mathrm{d}\kappa \end{bmatrix}}_{\Delta x}$$

$$= a_{n}^{\mathsf{T}} \Delta x$$
coefficients
times the corrections
in the unknowns

For All Observations, We Obtain

Uncertainties

Uncertainty in the y-parallax

$$\sigma_{p_{y_n}}^2 = \sigma_{y'_n}^2 + \sigma_{y''_n}^2$$

 In case both coordinates are measured equally accurate

$$\sigma_{p_{y_n}} = \sqrt{2} \; \sigma_{y'}$$

 Assuming no correlation between corresponding points

$$\Sigma_{ll} = \mathrm{Diag}(\sigma_{p_{y_n}}^2)$$
 \longleftarrow n by n diagonal matrix

System of Normal Equations

- We computed the linearized error eqn
- We have the observation cov matrix
- This leads to the normal equations

$$A^{\mathsf{T}} \Sigma_{ll}^{-1} A \Delta x = A^{\mathsf{T}} \Sigma_{ll}^{-1} \Delta l$$

And thus the parameter corrections

$$\widehat{\Delta x} = (A^{\mathsf{T}} \Sigma_{ll}^{-1} A)^{-1} A^{\mathsf{T}} \Sigma_{ll}^{-1} \Delta l$$

For the observations (y-parallaxes)

$$\widehat{\boldsymbol{v}} = A\widehat{\Delta \boldsymbol{x}} - \Delta \boldsymbol{l}$$
 or $\widehat{\boldsymbol{v}}_n = \boldsymbol{a}_n\widehat{\Delta \boldsymbol{x}} - \Delta \boldsymbol{l}_n$

27

Summary so far

- Iterative least squares approach to estimate the relative orientation for calibrated cameras
- We used the coplanarity constraint as our error function
- Linearization
- Yields GM model
- Setup of a linear system
- Solving it yields the corrections

Quality of the Result "How Good is a Solution?"

30

Precision, Trueness, Accuracy

- Precision (DE: Präzision)
 The closeness of agreement between independent test results obtained under the same conditions.
- Trueness (DE: Richtigkeit)
 The closeness of agreement between the average value obtained from a large series of measurements and the true value.
- Accuracy (DE: äußere Genauigk.)
 The closeness of agreement between a test result and the true value.

Precision, Trueness, Accuracy

English vs. German

Precision

DE: Präzision (or innere Genauigkeit, Wiederholgenauigkeit)

Trueness

DE: Richtigkeit

Accuracy

DE: äußere Genauigkeit

Reliability

DE: Zuverlässigkeit

"Genauigkeit"... innere oder äußere?

Precision for the Relative Orientation

• Precision: How large is the influence of random noise on the result?

34

Precision & Reliability for the Relative Orientation

- Precision: How large is the influence of random noise on the result?
- Reliability: Can we detect measurement errors/outliers?

Precision

- To analyze the precision, we need the covariance matrix of the unknowns
- Theoretical precision

$$\Sigma_{\widehat{x}\widehat{x}} = (A^{\mathsf{T}}\Sigma_{ll}^{-1}A)^{-1}$$

Empirical precision

$$\widehat{\Sigma}_{\widehat{x}\widehat{x}} = \widehat{\sigma}_0^2 \Sigma_{\widehat{x}\widehat{x}} = \widehat{\sigma}_0^2 (A^{\mathsf{T}} \Sigma_{ll}^{-1} A)^{-1}$$

 Empirical and theoretical precision related through the variance factor

Variance Factor

Computation of the variance factor

$$\widehat{\sigma}_0^2 = \frac{\Omega}{R}$$

 Weighted sum of the squared corrections in the parallaxes after convergence

$$\Omega = \widehat{m{v}}^\mathsf{T} \pmb{\Sigma}_{ll}^{-1} \widehat{m{v}} = \sum_n \widehat{m{v}}_n^\mathsf{T} \pmb{\Sigma}_{l_n l_n}^{-1} \widehat{m{v}}_n$$

Redundancy

$$R = N - \#unknowns = N - 5$$

37

39

Correlation

 We can also compute the correlation of the parameters

$$\rho_{x_i x_j} = \frac{\Sigma_{\widehat{x}_i \widehat{x}_j}}{\sigma_{x_i} \sigma_{x_j}}$$

 Large correlation values (=> +1/-1) between parameters can be a reason for instabilities of the solution

Empirical Precision

 With a redundancy of R>30, we obtain realistic estimates of the precision of our unknown relative orientation

$$\widehat{\boldsymbol{\Sigma}}_{\widehat{x}\widehat{x}} = \underbrace{\frac{\widehat{\boldsymbol{v}}^\mathsf{T}\boldsymbol{\Sigma}_{ll}^{-1}\widehat{\boldsymbol{v}}}{N-5}}_{\widehat{\sigma}_0^2}(\boldsymbol{A}^\mathsf{T}\boldsymbol{\Sigma}_{ll}^{-1}\boldsymbol{A})^{-1}$$

38

Reliability

Covariance matrix of the corrections

$$\Sigma_{vv} = \Sigma_{ll} - A\Sigma_{\widehat{x}\widehat{x}}A^{\mathsf{T}}$$

- Σ_{vv} is smaller than Σ_{ll}
- Redundancy components r_n of observations are defined as

$$r_n = \frac{\sigma_{v_n}^2}{\sigma_{l_n}^2} \in [0, 1]$$

• Sum over all r_n gives the redundancy

$$R = \sum r_n$$

Reliability

• Redundancy components $r_n = \sigma_{v_n}^2 \sigma_{l_n}^{-2}$ tells which fraction of original errors we see in the residual parallaxes v_n after the adjustment

$$\Delta v_n = -r_n \, \Delta l_n$$

• Small values for r_n indicate that outliers are hard to detect

Quality of the Relative Orientation for the Stereo Normal Case

41

Quality of the R.O. for the Stereo Normal Case

- Depends on the exact configuration
- Difficult in the general case
- Here: stereo normal case with Gruber points

Image courtesy: Förstner 43

Assumptions

- Six corresponding points (Gruber points) in the overlapping area
- Image overlap: 60%
- Identical uncertainty in y-parallaxes (weight=1, $\sigma_0 = \sigma_{p_y}$)
- Basis $B_X = M b_X$ (image scale number times image basis)

3	4	3	4	
0	0	0	0	
10	200	10	200	
5	6	5	6	

Image courtesy: Förstner 44

Image Coordinates

 3	4	3	4	
0	0	0	0	
10	2 0	100	200	
5	6	5	6	

Gruber point	x'	y'	x''	y''
1	0	0	-b	0
2	b	0	0	0
3	0	d	-b	d
4	b	d	0	d
5	0	-d	-b	-d
6	b	-d	0	-d

Image courtesy: Förstner 45

47

Coefficient Matrix

$$p_y + dp_y = \frac{p_x}{B_X} dB_y - \frac{p_x}{B_X} \frac{y'}{c} dB_Z - \left(\frac{y'y''}{c} + c\right) d\omega + \frac{y'x''}{c} d\phi + x'' d\kappa$$

$$A = -\begin{bmatrix} \frac{b}{B_X} & 0 & c & 0 & b \\ \frac{b}{B_X} & 0 & c & 0 & 0 \\ \frac{b}{B_X} & -\frac{bd}{B_X c} & \frac{d^2}{c} + c & \frac{bd}{c} & b \\ \frac{b}{B_X} & -\frac{bd}{B_X c} & \frac{d^2}{c} + c & 0 & 0 \\ \frac{b}{B_X} & \frac{bd}{B_X c} & \frac{d^2}{c} + c & -\frac{bd}{c} & b \\ \frac{b}{B_X} & \frac{bd}{B_X c} & \frac{d^2}{c} + c & 0 & 0 \end{bmatrix} \qquad \text{point}$$

point 1

point 6

46

Matrix of the Normal Equations

$$A = - \begin{bmatrix} \frac{b}{B_X} & 0 & c & 0 & b \\ \frac{b}{B_X} & 0 & c & 0 & 0 \\ \frac{b}{B_X} & -\frac{bd}{B_X c} & \frac{d^2}{c} + c & \frac{bd}{c} & b \\ \\ \frac{b}{B_X} & -\frac{bd}{B_X c} & \frac{d^2}{c} + c & 0 & 0 \\ \frac{b}{B_X} & \frac{bd}{B_X c} & \frac{d^2}{c} + c & -\frac{bd}{c} & b \\ \\ \frac{b}{B_X} & \frac{bd}{B_X c} & \frac{d^2}{c} + c & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}^{\mathsf{T}} \mathbf{A} = \begin{bmatrix} 6 \frac{b^2}{B_X^2} & 0 & 2 \frac{b(3 c^2 + 2 d^2)}{B_X c} & 0 & 3 \frac{b^2}{B_X} \\ 0 & 4 \frac{b^2 d^2}{B_X^2 c^2} & 0 & -2 \frac{b^2 d^2}{B_X c^2} & 0 \\ 2 \frac{b(3 c^2 + 2 d^2)}{B_X c} & 0 & 2 \frac{3 c^4 + 2 d^4 + 4 d^2 c^2}{c^2} & 0 & \frac{b(3 c^2 + 2 d^2)}{c} \\ 0 & -2 \frac{b^2 d^2}{B_X c^2} & 0 & 2 \frac{b^2 d^2}{c^2} & 0 \\ 3 \frac{b^2}{B_X} & 0 & \frac{b(3 c^2 + 2 d^2)}{c} & 0 & 3 b^2 \end{bmatrix}$$

Covariance Matrix

 This directly yields the covariance matrix of the parameter through

$$\begin{split} \widehat{\Sigma}_{\widehat{x}\widehat{x}} &= \sigma_0^2 (A^\mathsf{T} A)^{-1} \\ &= \begin{bmatrix} \frac{1}{12} \frac{B_X^2 \left(9 \, c^4 + 8 \, d^4 + 12 \, d^2 c^2\right)}{b^2 d^4} & 0 & -\frac{1}{4} \frac{\left(3 \, c^2 + 2 \, d^2\right) B_X \, c}{b d^4} & 0 & -\frac{1}{3} \frac{B_X}{b^2} \\ 0 & \frac{1}{2} \frac{B_X^2 c^2}{b^2 d^2} & 0 & \frac{1}{2} \frac{B_X \, c^2}{b^2 d^2} & 0 \\ -\frac{1}{4} \frac{\left(3 \, c^2 + 2 \, d^2\right) B_X \, c}{b d^4} & 0 & \frac{3}{4} \frac{c^2}{d^4} & 0 & 0 \\ 0 & \frac{1}{2} \frac{B_X}{b^2} & 0 & \frac{c^2}{b^2 d^2} & 0 \\ -\frac{1}{3} \frac{B_X}{b^2} & 0 & 0 & 0 & \frac{2}{3} \frac{1}{b^2} \end{bmatrix} \end{split}$$

Uncertainty in the Parameters

$$\hat{\Sigma}_{\bar{z}\bar{z}} = \sigma_0^2 (A^T A)^{-1} \\ = \sigma_0^2 \begin{bmatrix} \frac{12}{12} \frac{B_c^2 (0) c^4 + 8 c^4 + 12 d^2 c^2)}{b^2 d^2} & 0 & -\frac{1}{4} \frac{(3 c^2 + 2 d^2) B_X c}{b d^2} & 0 & -\frac{1}{3} \frac{B_Z}{b^2} \\ 0 & \frac{1}{2} \frac{B_c^2 c^2 (0) c^4 + 8 c^4 + 12 d^2 c^2)}{b^2 d^2} & 0 & \frac{1}{2} \frac{B_C c^2}{b^2 d^2} & 0 \\ -\frac{1}{4} \frac{(3 c^2 + 2 d^2) B_X c}{b d^4} & 0 & \frac{3}{4} \frac{c^2}{d^4} & 0 & 0 \\ 0 & \frac{1}{2} \frac{B_C c^2}{b^2 d^2} & 0 & \frac{c^2}{b^2 d^2} & 0 \\ -\frac{1}{3} \frac{B_C}{b^2} & 0 & 0 & 0 & \frac{2}{3} \frac{1}{b^2} \end{bmatrix} & \text{scale number:} M \approx B_X/b$$

standard deviation

$$\sigma_0 = \sigma_{p_y} = \sqrt{2}\sigma_{y'}$$

$$\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}} \sigma_{y'}$$

$$\sigma_{B_Z} = M \frac{c}{d} \sigma_{y'}$$

$$\sigma_{\omega} = \sqrt{\frac{3}{2}} \frac{c}{d^2} \sigma_{y'}$$

$$\sigma_{\phi} = \sqrt{2} \frac{c}{bd} \sigma_{y'}$$

$$\sigma_{\kappa} = \frac{2}{\sqrt{3}} \frac{1}{b} \sigma_{y'}$$

49

51

Discussion

Size of the scene and overlap

$$\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}} \sigma_{y'}$$

$$\sigma_{B_Z} = M \frac{c}{d} \sigma_{y'} \qquad \qquad 3 \qquad 4$$

$$\sigma_{\omega} = \sqrt{\frac{3}{2}c^2} \sigma_{y'} \qquad \qquad \qquad \begin{vmatrix} & & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

"the larger the overlap and spacing in d, the better the result

Discussion

Impact of the pixel measurements

$$\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}} \sigma_{y'}$$

$$\sigma_{B_Z} = M \frac{c}{d} \sigma_{y'}$$

$$\sigma_{\omega} = \sqrt{\frac{3}{2}} \frac{c}{d^2} \sigma_{y'}$$

$$\sigma_{\phi} = \sqrt{2} \frac{c}{bd} \sigma_{y'}$$

$$\sigma_{\kappa} = \frac{2}{\sqrt{3}} \frac{1}{b} \sigma_{y'}$$

"the more accurate one can measure the parallaxes, the better the result

50

Discussion

Size of the scene and overlap

$$\sigma_{\omega} = \sqrt{\frac{3}{2}} \frac{c}{d^{2}} \sigma_{y'}
\sigma_{\phi} = \sqrt{2} \frac{c}{bd} \sigma_{y'}$$

"the spread of the points in the plane (b, d) strongly impacts roll and pitch"

Discussion

Camera constant

$$\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}} \sigma_{y'}$$

$$\sigma_{B_Z} = M \frac{c}{d} \sigma_{y'}$$

$$\sigma_{\omega} = \sqrt{\frac{3}{2}} \frac{c}{d^2} \sigma_{y'}$$

$$\sigma_{\phi} = \sqrt{2} \frac{c}{bd} \sigma_{y'}$$

$$\sigma_{\kappa} = \frac{2}{\sqrt{3}} \frac{1}{b} \sigma_{y'}$$

"the smaller the camera constant (at identical images), the better the result $_{53}$

55

Discussion

- ullet All quantities are proportional to $\sigma_{p_{n'}}$
- σ_{B_Y} , σ_{B_Z} increase with the scale number
- d strongly influences $\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}} \sigma_y$ roll (ω) and pitch (ϕ) $\sigma_{B_z} = M \frac{c}{d} \sigma_{y'}$
- If b=d , all quantities $\sigma_{\omega}=\sqrt{rac{3}{2}}rac{c}{d^2}\,\sigma_{y'}$ become more accurate $\sigma_{\phi} = \sqrt{2} \frac{c}{i \cdot i} \sigma_{u'}$ with a larger basis b $\sigma_{\kappa} = \frac{2}{\sqrt{2}} \frac{1}{h} \sigma_{y'}$
- The more the overlap is exploited, the better

Discussion

Scale number and the baseline

$$\sigma_{B_Y} = M \frac{\sqrt{9c^4 + 8d^4 + 12d^2c^2}}{d^2\sqrt{6}} \sigma_{y'}$$

$$\sigma_{B_Z} = M \frac{c}{d} \sigma_{y'}$$

image scale number: $M \approx B_X/b$

"the smaller the image scale number (or the larger the image scale), the better the resulting baseline

54

Reliability

Covariance matrix of the corrections

and thus the redundancy components

$$r_1 = r_2 = \frac{1}{3}$$
 $r_3 = r_4 = r_5 = r_6 = \frac{1}{12}$

Reliability

Covariance matrix of the corrections

Low redundancy components! A Law A

$$\Delta v_n = -r_n \, \Delta l_n$$

Gross errors in the y-parallaxes must be large compared to the standard deviation of the parallaxes in order to be detectable.

and thus the redundancy components

$$r_1 = r_2 = \frac{1}{3}$$
 $r_3 = r_4 = r_5 = r_6 = \frac{1}{12}$

57

59

Double Points/12 Gruber Points

Improving the result with 12 points

3	4	3	4	
0	0	0	0	
1 0	20	1 0	2 0	
5 0	6	5 0	6	

58

Double Points

Improving the result with 12 points

Furthermore:
The more points we have, the easier we can detect outliers!

Double Points

Covariance of the parallax corrections

$$\Sigma_{vv}(12) = \begin{bmatrix} \Sigma_{ll} & \mathbf{0} \\ \mathbf{0} & \Sigma_{ll} \end{bmatrix} - \begin{bmatrix} A \\ A \end{bmatrix} \Sigma_{xx}(12)(A^{\mathsf{T}} A^{\mathsf{T}})$$

which leads to the redundancy components

$$r_n = \frac{2}{3}$$
 $n = 1, 1', 2, 2'$ $r_n = \frac{7}{12}$ $n = 3, 3', \dots, 6, 6'$

Double Points

Covariance of the parallax corrections

$$\boldsymbol{\Sigma}_{vv}(12) = \left[\begin{array}{cc} \boldsymbol{\Sigma}_{ll} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma}_{ll} \end{array} \right] - \left[\begin{array}{c} \boldsymbol{A} \\ \boldsymbol{A} \end{array} \right] \boldsymbol{\Sigma}_{xx}(12) (\boldsymbol{A}^\mathsf{T} \ \boldsymbol{A}^\mathsf{T})$$

which leads to the redundancy components

$$r_n = \frac{2}{3}$$
 $n = 1, 1', 2, 2'$ $r_n = \frac{7}{12}$ $n = 3, 3', \dots, 6, 6'$

Outliers are much easier to detect with Gruber "double" points!

61

Double Points

Covariance of the parallax corrections

$$\Sigma_{vv}(12) = \begin{bmatrix} \Sigma_{ll} & \mathbf{0} \\ \mathbf{0} & \Sigma_{ll} \end{bmatrix} - \begin{bmatrix} A \\ A \end{bmatrix} \Sigma_{xx}(12)(A^{\mathsf{T}} A^{\mathsf{T}})$$

The more points we have, the easier we can detect outliers!

$$r_n = \frac{2}{3}$$
 $n = 1, 1', 2, 2'$ $r_n = \frac{7}{12}$ $n = 3, 3', \dots, 6, 6'$

Outliers are much easier to detect with Gruber "double" points!

62

Summary

- Estimating the relative orientation using a least squares approach
- Solution for the normal stereo case (done without relinearizing)
- Statistically optimal solution
- Analysis of the solution based on Gruber points
- More points improve the results

Literature

- Förstner, Skript Photogrammetrie II, Chapter 1.3
- Förstner, Wrobel: Photogrammetric Computer Vision, Ch. 12.3.6 & 3.3.3

Slide Information

- These slides have been created by Cyrill Stachniss as part of the Photogrammetry II course taught in 2014/15.
- The material heavily relies on the very well written scripts by Wolfgang Förstner and the (upcoming) Photogrammetric Computer Vision book by Förstner and Wrobl.
- I tried to acknowledge all people that contributed image or video material. In case I missed something, please let me know. If you adapt this course material, please make sure you keep the acknowledgements.
- Feel free to use and change the slides. If you use them, I would appreciate an acknowledgement as well. To satisfy my own curiosity, please send me short email notice.

Cyrill Stachniss, 2014 cyrill.stachniss@igg.unibonn.de