Getting started with SINS

Slides to guide you through the steps given below: SINS - Getting started

1. Installation:

Download the latest version of SINS from (https://github.com/PopConGen/SINS/releases), unzip it and **rename** it as 'SINS'.

2. Check Java Version:

Check your Java version with this command in the terminal -

\$ java -version

(Ensure you have Java version 8 (or later) installed on your machine.)

3. Folder Structure:

Inside the SINS file, the 'input' and 'output' folders are crucial for the user.

- Input: Place your project (for instance, 'Your_Simulation_Project') inside this folder. All simulation scenarios you wish to run MUST be inside the "input" folder inside "SINS" folder.
- **Output:** After running SINS, your output files will be automatically saved in the 'output' folder by the same name (for instance, 'Your_Simulation_Project').

NOTE: If you do not see the 'output' folder initially, it will be created automatically after running your first simulation.

4. Test Run:

- To ensure SINS is functioning correctly, run the premade file 'Premade_SINS_Project' located in the 'input' folder. This will help verify that SINS is running smoothly on your system.

Steps to run Premade SINS Project

1. Inside the 'input' folder, you will find 'Premade_SINS_Project'. This file is a toy example of the format of input files for SINS.

```
>SINS/input/Premade_SINS_Project
```

>SINS/input/My_New_Simulation_Project_Must_Be_Here

2. To run SINS using 'Premade_SINS_Project' as input, open the terminal inside the SINS folder and run the following command:

```
$ java -jar SINS2.jar -projectName Premade_SINS_Project -outDir
output -numberOfSimulations 19 -compress noComp -parallel false
-parallelCores 0 -verbose false -outputFormat adegenet
-makeDemographicImages false
```

3. You can modify the above command as you need. You can change the output directory by changing the argument of -outDir, change the number of simulations by changing the argument of -numberOfSimulations. For eg, To run simulations faster, run in parallel and provide a number for parallel cores. Following code is an example-

```
$ java -jar SINS2.jar -projectName Premade_SINS_Project -outDir
output -numberOfSimulations 19 -compress noComp -parallel true
-parallelCores 3 -verbose false -outputFormat adegenet
-makeDemographicImages false
```

- 4. After running the above command, an 'output' folder will be created inside the "SINS" folder containing 'Premade_SINS_Project'. Note that all the output files will be saved here if you don't change the argument of -outDir.
- 5. This initial example was only meant to ensure SINS run on your system, and we will not analyze the outputs. Now, lets move on to a simpler simulation scenario.
- 6. For the first scenario, we will simulate a panmictic population
 - Of population size K = 1000 diploid individuals
 - Mutation rate u = 0.001 per generation
 - Simulation time: 1000 generations.
 - Each individual has 10 loci and each loci has 2 alleles at the start of the simulation.

7. Steps:

- Download the input file and unzip it inside 'input' folder of SINS 1deme K1000 u001 1000gen.zip
 - Run the simulation by following command:

```
$ java -jar SINS2.jar -projectName 1deme_K1000_u001_1000gen
-outDir output -numberOfSimulations 19 -compress noComp -parallel
true -parallelCores 3 -verbose false -outputFormat adegenet
```

-makeDemographicImages false

8. Output:

The output folder will contain a directory named '1deme_K1000_u001_1000gen' with 19 independent simulations of the same scenario. To improve speed, these simulations were run using 3 parallel cores.

9. Converting outputs:

To make the simulation outputs usable in R, we will convert them into a compatible format using **SINS_Sampler**.

Importing SINS output files into RStudio for analysis

Download the 'SINS_Sampler' from the link below and unzip in the same folder where SINS is downloaded -

SINS Sampler.zip

Modifications:

Changes to be made in SINS Sampler before using it.

- Go to SINS_Sampler>bin
- In 'run_sampler.sh' change path_script according to your path.
- In 'sampler.sh', change pathToDir and directory_path
- In 'run GetData.sh', change path_to_script
- In 'Get Data.sh', change path
- In 'Get Data.R', change path_sins.

Install Required R packages:

You will need to install several R packages:

adegenet, ade4, ggplot2, reshape2, gridExtra, hierfstat, pegas, Hmisc, plyr, data.table, StAMPP

This can be done by copying this in R:

```
packages <- c("adegenet", "ade4", "hierfstat", "pegas", "ggplot2",
   "reshape2", "gridExtra", "Hmisc", "plyr", "data.table", "StAMPP")

for (pkg in packages) {
   if (!require(pkg, quietly = TRUE)) {</pre>
```

```
install.packages(pkg, dependencies = TRUE)
}
```

Run SINS_Sampler

After the above changes have been made, Open the terminal inside the SINS_Sampler>bin directory.

And run the following commands one after another -

```
$ ./run_sampler.sh 1deme_K1000_u001_1000gen 10 19
```

Format: ./run_sampler.sh -filename -no_of_loci -no_of_simulations

```
$./run_GetData.sh 1deme_K1000_u001_1000gen 0 1000 10 19 100 50
```

```
Format:./run_GetData.sh -filename -time_start -time_end -no_of_loci -no_of_simulations -interval_size -no_of_individuals_sampled
```

After running above commands, new R files are created in SINS>output>1deme_K1000_u001_1000gen folder. You can import these files into R for further analysis of the simulated data.

Analyze the Output

■ SINS-guide-data-analysis.pdf

The above report is an example of analyzing SINS data for the mean number of alleles and expected Heterozygosity.