Prova sem consulta. Duração: 2h.

1ª Prova de Avaliação

- * Não são consideradas as folhas sem identificação. Justifique convenientemente todos os cálculos que efetuar;
- *A desistência só é possível após 1 hora do início da prova;
- * Não é permitida a utilização de máquinas de calcular gráficas nem de microcomputadores.
- **1.** [4,1] Seja a função vetorial $r(t) = (1 e^{-t}, \cos(t), \pi \sin(2t))$, $t \in \mathbb{R}$. Determine:
 - a) Os versores da tangente e da binormal à curva no ponto $P = (0, 1, \pi)$.
 - **b**) A equação cartesiana do plano osculador à curva no ponto *P*.
- **2.** [4,1] Calcule a derivada direcional da função de campo escalar $f(x, y, z) = (x y)^2 xz + z$ no ponto R = (0,1,1), na direção do vetor normal à superfície $x^2 y^2 + z = 0$ nesse ponto.
- 3. [1,6] Calcule os pontos críticos de $f(x, y) = -x^3 y^3 + 6xy$ e classifique-os.
- **4.** [**4,1**] Considere a função derivável $f(x, y, z) = x^2 + y^2 + z^2$ com $x(r, \theta, \phi) = r \cos(\theta) \sin(\phi)$, $y(r, \theta, \phi) = r \sin(\theta) \sin(\phi)$ e $z(r, \phi) = r \cos(\phi)$.
 - a) Aplicando a Regra em Cadeia, escreva as expressões para as derivadas parciais $\frac{\partial f}{\partial r}$, $\frac{\partial f}{\partial \theta}$ e $\frac{\partial f}{\partial \phi}$, recorrendo ao diagrama árvore.
 - **b**) A partir das expressões obtidas, calcule as derivadas parciais da alínea anterior em função de r, $\theta \in \phi$.
- **5.** [**4,1**] Seja o integral $\int_{-1}^{2} \int_{x^2}^{3x+4} 4x \ dy dx$.
 - a) Esboce o domínio de integração.
 - **b**) Calcule o valor do integral.
 - c) Reescreva-o trocando a ordem de integração.
- **6.** [2,0] Seja a função $f(x,y,z): D \subset \mathbb{R}^3 \to \mathbb{R}$. Mostre que em cada ponto $(x_0,y_0,z_0)\in D$ o vetor gradiente $\nabla f(x_0,y_0,z_0)$, se não for nulo, é perpendicular à superfície de nível que passa nesse ponto e definida por f(x,y,z)=C, $C\in \mathbb{R}$.