

LOG1810 STRUCTURES DISCRÈTES

TD 3 : INFÉRENCE ET TECHNIQUES DE PREUVES E2023

SOLUTIONNAIRE

Exercice 1

Michel-Ange est un célèbre peintre italien qui a vécu au XVIe siècle. Il est connu pour ses fresques à la chapelle Sixtine. En se préparant pour une nouvelle œuvre d'art, Michel-Ange essaie de se rappeler les couleurs de peinture qu'il a emportées. Il se souvient que :

- (I.) Il n'a pas de blanc
- (II.) Il a toujours du jaune lorsqu'il n'a pas de vert
- (III.) S'il a du rouge, alors il n'a ni marron ni noir
- (IV.) Des trois couleurs : vert, blanc et rouge, il en a au moins deux
- (V.) Des deux couleurs : noir et gris, il en a exactement une

On suppose qu'il n'a jamais d'autres couleurs que celles citées. Quelle(s) couleur(s) a-t-il emportée(s) avec certitude ? Qu'en est-il des autres couleurs ? Montrez toutes les étapes de votre réponse.

Solution:

Pour résoudre ce problème, nous allons définir les propositions suivantes :

- B : Michel-Ange a du blanc
- J: Michel-Ange a du jaune
- V: Michel-Ange a du vert
- R: Michel-Ange a du rouge
- M : Michel-Ange a du marron
- N: Michel-Ange a du noir
- G: Michel-Ange a du gris

Ensuite, nous pouvons traduire les énoncés en utilisant ces propositions.

```
\begin{array}{l} H1: \neg B \\ H2: \neg V \rightarrow J \\ H3: R \rightarrow (\neg M \land \neg N) \\ H4: (V \land B) \lor (V \land R) \lor (B \land R) \\ H5: N \bigoplus G \end{array}
```

Maintenant, nous allons utiliser les règles d'inférence pour déduire les couleurs de peinture que Michel-Ange a emportées avec certitude. Le raisonnement est le suivant :

1.	$\neg B$	<i>H</i> 1
2.	$(V \wedge B) \vee (V \wedge R) \vee (B \wedge R)$	H4
3.	$(V \wedge R)$	Étapes 1 et 2 et résolution
4.	R	Étape 3 et règle de la simplification
5.	$R \to (\neg M \land \neg N)$	Н3
6.	$(\neg M \land \neg N)$	Étapes 4 et 5 et règle du modus ponens
7.	$\neg N$	Étape 6 et règle de la simplification
8.	$\neg M$	Étape 6 et règle de la simplification

À partir des étapes 1, 7 et 8, nous pouvons affirmer avec certitude qu'il y n'y a pas de blanc, de noir ou de marron.

Nous pouvons ainsi conclure que Michel-Ange a les couleurs de peinture suivantes avec certitude : vert, rouge et gris.

12.
$$V$$
 Étape 11 et règle de la simplification 13. $\neg J \rightarrow V$ Contraposée de $H2$

Cependant, nous ne pouvons pas déduire jaune, car avec les étapes 11 et 12, $([V \land (\neg J \rightarrow V)] \rightarrow \neg J)$ n'est pas une tautologie et correspond à un sophisme, plus précisément à l'affirmation du conséquent, ce qui n'est pas une règle d'inférence valide.

En somme, nous pouvons conclure avec certitude que Michel-Ange a les couleurs de peinture suivantes : vert, rouge et gris. De plus, nous pouvons affirmer avec certitude qu'il n'y a pas de blanc, de marron ou de noir. Cependant, nous ne pouvons pas conclure que Michel-Ange a emporté la couleur jaune.

Exercice 2

Lors d'une galerie d'art au Musée des beaux-arts de Montréal. Salomé fait le raisonnement suivant :

- (I.) Un artiste dans cette galerie n'a pas utilisé de pinceaux
- (II.) Tous les artistes dans cette galerie ont vendu au moins une œuvre
- (III.) Donc, quelqu'un qui a vendu au moins une œuvre n'a pas utilisé de pinceaux

Montrez que le raisonnement de Salomé est valide. Présentez toutes les étapes de votre réponse.

Utilisez

les fonctions propositionnelles suivantes :

```
G(x): « x est dans cette galerie »
P(x): « x a utilisé des pinceaux »
O(x): « x a vendu au moins une œuvre »
```

• les prémisses :

$$H1: \exists x \big(G(x) \land \neg P(x)\big)$$

$$H2: \forall x \big(G(x) \to O(x)\big)$$

• et la conclusion :

$$C: \exists x \big(O(x) \land \neg P(x) \big)$$

Solution:

Soit *a* un artiste arbitraire.

1. $\exists x (G(x) \land \neg P(x))$

2. $G(a) \land \neg P(a)$

3. G(a)

4. $\forall x (G(x) \rightarrow O(x))$

5. $G(a) \rightarrow O(a)$

6. O(a)

7. $\neg P(a)$

8. $O(a) \land \neg P(a)$

9. $\exists x (O(x) \land \neg P(x))$

H1

Instanciation existentielle de l'étape 1 Étape 2 et règle de la simplification

*H*2

Instanciation universelle de l'étape 4 Étapes 3 et 5 et règle du modus ponens Étape 2 et règle de la simplification Étapes 6 et 7 et règle de la conjonction Généralisation existentielle de l'étape 8

Le raisonnement de Salomé est donc valide. CQFD

Exercice 3

En utilisant la preuve par cas, démontrez que si $x \in \mathbb{R}$, alors $0 \le \frac{x+|x|}{2} \le |x|$.

Solution:

Les deux cas sont :

- Cas 1) $x \ge 0$
- Cas 2) x < 0

Cas 1) $x \ge 0$

On le fait avec une preuve directe :

Par hypothèse, $x \ge 0$.

Dans ce cas, |x| = x.

Donc,
$$\frac{x+|x|}{2} = \frac{x+x}{2}$$
$$= \frac{2x}{2}$$
$$= x$$

D'une part, comme $x \ge 0$, on a $x \ge 0$ et donc $\frac{x+|x|}{2} \ge 0$.

Et d'autre part, on a également $x \le |x|$, donc $\frac{x+|x|}{2} \le |x|$.

Ainsi dans ce cas, $0 \le \frac{x+|x|}{2} \le |x|$ est vraie.

Cas 2) x < 0

On le fait avec une preuve directe :

Par hypothèse, x < 0.

Dans ce cas,
$$|x| = -x$$
.
Donc, $\frac{x+|x|}{2} = \frac{x+(-x)}{2}$
 $= \frac{x-x}{2}$
 $= 0$

Comme x < 0, on a également |x| = -x > 0, donc $\frac{x+|x|}{2} \le |x|$.

Ainsi dans ce cas, $0 \le \frac{x+|x|}{2} \le |x|$ est également vraie.

Dans les deux cas, nous avons montré que $0 \le \frac{x+|x|}{2} \le |x|$. Par conséquent, nous avons démontré que si $x \in \mathbb{R}$, alors $0 \le \frac{x+|x|}{2} \le |x|$. CQFD

Exercice 4

En utilisant la preuve directe, démontrez que la moyenne de deux nombres rationnels q_1 et q_2 est aussi un nombre rationnel.

Indication:

Un nombre q est rationnel si et seulement s'il existe deux entiers $a \in \mathbb{Z}$ et $b \in \mathbb{Z}^*$ tels que $q = \frac{a}{b}$.

Solution:

Supposons par hypothèse que q_1 et q_2 sont des nombres rationnels. Il existe donc des entiers a_1,b_1,a_2,b_2 tels que $q_1=\frac{a_1}{b_1}$ et $q_2=\frac{a_2}{b_2}$. Si on note m la moyenne des nombres q_1 et q_2 , on obtient :

$$\begin{array}{ll} m & = \frac{a_1+q_2}{2} \\ & = \frac{\frac{a_1}{b_1} + \frac{a_2}{b_2}}{2} \\ & = \frac{a_1b_2 + a_2b_1}{2b_1b_2} \\ & = \frac{a'}{b'} \qquad \qquad \text{, en posant } a' = a_1b_2 + a_2b_1 \text{ et } b' = 2b_1b_2 \text{ qui sont des entiers} \end{array}$$

Donc, il existe des entiers a' et b' tels que m= $\frac{a'}{b'}$. Ainsi, la moyenne de q_1 et q_2 est un nombre rationnel. CQFD

Exercice 5

Soit $x \in \mathbb{R}$. En utilisant la preuve par contradiction (preuve par l'absurde), démontrez que si x^2 n'est pas un multiple entier de 16, alors $\frac{x}{2}$ n'est pas un entier pair.

Solution:

Puisqu'on suggère une preuve par l'absurde, on doit supposer l'hypothèse vraie et la conclusion fausse pour arriver à une contradiction, donc que :

 x^2 n'est pas un multiple entier de 16 et $\frac{x}{2}$ est un entier pair.

Supposons donc par hypothèse que $\frac{x}{2}$ est pair.

Il existe donc un entier k tel que $\frac{x}{2} = 2k$.

Donc, que
$$\frac{x}{2} = 2k$$
 $\equiv x = 4k$ $\equiv x^2 = (4k)^2$ $\equiv x^2 = 16 k^2$

On a donc que x^2 est un multiple entier de 16.

Cela contredit l'hypothèse comme quoi x^2 n'est pas un multiple entier de 16, ce qui est absurde.

Il faut donc, si x^2 n'est pas un multiple entier de 16, alors $\frac{x}{2}$ n'est pas un entier pair.

CQFD

Exercice 6

Soit $\alpha \in \mathbb{R}$ et $\beta \in \mathbb{R}$. En utilisant la preuve par contraposition (preuve indirecte), démontrez que

$$(\alpha + \beta) \ge 2 \rightarrow [(\alpha \ge 1) \lor (\beta \ge 1)]$$

Solution:

Puisqu'on suggère une preuve par contraposition, on démontrera la contraposée :

$$[(\alpha < 1) \land (\beta < 1)] \rightarrow (\alpha + \beta) < 2$$

Supposons donc par hypothèse que $(\alpha < 1) \land (\beta < 1)$ est vraie.

D'après la règle de la simplification, (α < 1) est vraie et (β < 1) est aussi vraie.

Donc, la somme des deux inégalités donne $(\alpha + \beta) < 2$.

La conséquence de la contraposée est donc vraie.

Ainsi par contraposition, $(\alpha + \beta) \ge 2 \rightarrow [(\alpha \ge 1) \lor (\beta \ge 1)].$

CQFD

Exercice 7.

Soit a < b des nombres rationnels. En utilisant la preuve par contradiction (preuve par l'absurde), démontrez qu'il existe une infinité de nombres rationnels x satisfaisant a < x < b.

Solution:

Puisqu'on suggère une preuve par l'absurde, on doit supposer l'hypothèse vraie et la conclusion fausse pour arriver à une contradiction, donc que :

a < b sont rationnels mais il existe seulement un nombre fini de nombres rationnels x satisfaisant a < x < b.

Supposons donc par hypothèse que a < b sont rationnels et qu'il existe seulement un nombre fini de nombres rationnels x tels que a < x < b.

Notons n la quantité de tous ces nombres x, et notons ces x en ordre croissant : $a < x_1 < x_2 < ... < x_n < b$.

Donc, x_1 est le plus petit de tous les nombres rationnels x tels que a < x < b.

Soit $x' = \frac{a+x_1}{2}$ la moyenne des nombres rationnels a et x_1 .

On a donc que x' est rationnel (car il est la moyenne de deux nombres rationnels), a $< x' < x_1$ (car la moyenne de deux nombres réels distincts est strictement comprise entre ces nombres) et donc a $< x' < x_1 < b$.

Cela contredit que x_1 est le plus petit des nombres rationnels x tels que a < x < b.

Il faut donc que, si a < b rationnels, qu'il existe une infinité de nombres rationnels x tels que a < x < b. CQFD