SEMINAR 11

- 1) a) Let $a, b, c \in \mathbb{R}$ and $f_1 = (X b)(X c)$, $f_2 = (X c)(X a)$, $f_3 = (X a)(X b)$. Show that:
- i) f_1, f_2, f_3 are linearly independent in $\mathbb{R}[X]$ if and only if

$$(a-b)(b-c)(c-a) \neq 0;$$

- ii) if $(a-b)(b-c)(c-a) \neq 0$ then for any $f \in \mathbb{R}[X]$ with $\deg f \leq 2$ there exist $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$, uniquely determined, such that $f = \lambda_1 f_1 + \lambda_2 f_2 + \lambda_3 f_3$.
- b) Determine $\lambda_1, \lambda_2, \lambda_3$ when $f = 1 + 2X X^2$, a = 1, b = 2 and c = 3.
- 2) Let $p \in \mathbb{N}$ be a prime. Show that the usual addition and multiplication determine on

$$V = \{ a + b\sqrt[3]{p} + c\sqrt[3]{p^2} \mid a, b, c \in \mathbb{Q} \}$$

- a Q-vector space structure and determine a basis and the dimension of this vector space.
- 3) Let V be a K-vector space with the dimension $n \in \mathbb{N}^*$ and let $A, B \leq_K V$ with $\dim A = n 1$ and $B \nsubseteq A$. Show that

$$\dim(A \cap B) = \dim B - 1$$
 and $A + B = V$.

4) Let V be a finite dimensional K-vector space and $A, B \leq_K V$ such that

$$\dim(A+B) = \dim(A \cap B) + 1.$$

Show that $A \subseteq B$ or $B \subseteq A$.

5) Let f and g be two endomorphisms of a finite dimensional K-vector space V. If f+g is an automorphism of V and $f \circ g$ is the zero endomorphism then

$$\dim V = \dim f(V) + \dim g(V).$$

6) a) Let $\varphi \in \mathbb{R}$. Show that the plane rotation

$$h: \mathbb{R}^2 \to \mathbb{R}^2, \ h(x,y) = (x\cos\varphi - y\sin\varphi, x\sin\varphi + y\cos\varphi),$$

is an automorphism of \mathbb{R}^2 . Write the matrix of h of \mathbb{R}^2 (i.e. the basis $E = (e_1, e_2)$, with $e_1 = (1, 0), e_2 = (0, 1)$).

- b) Show that $f: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (x,-y) (the symmetry with respect the standard basis of to Ox) and $g: \mathbb{R}^2 \to \mathbb{R}^2$, f(x,y) = (-x,y) (the symmetry with respect to Oy) are automorphisms of \mathbb{R}^2 . Find the matrices of f, g, f g, f + 2g and $g \circ f$ in the standard basis.
- 7) Let $f: \mathbb{R}^2 \to \mathbb{R}^3$, f(x,y) = (x+y,2x-y,3x+2y). Show that f is an \mathbb{R} -linear map, that B = ((1,2),(-2,1)) and B' = ((1,-1,0),(-1,0,1),(1,1,1)) are bases for \mathbb{R}^2 and \mathbb{R}^3 , respectively, then determine the matrix of f in the pair of bases (B,B').

1