Reduced Order Model using Graph Neural Networks

Generated by Doxygen 1.9.4

1 Solving PDEs using a Graph Neural Network	1
1.1 PACS Project of Andrea Bonifacio and Sara Gazzoni	1
1.1.1 Introduction	1
1.1.2 Prerequisites	1
1.1.3 Installation	1
1.1.4 Usage	2
1.1.4.1 Mesh generation	2
1.1.4.2 Variational problem solver and data generation	2
1.1.4.3 GNN training	3
1.1.4.4 GNN testing	3
1.1.5 Notebooks	4
1.1.6 Authors	4
2 Namespace Index	5
2.1 Namespace List	5
3 Hierarchical Index	7
3.1 Class Hierarchy	7
4 Class Index	9
4.1 Class List	9
E Ella Indon	44
5 File Index	11
5.1 File List	11
6 Namespace Documentation	13
6.1 datagen Namespace Reference	13
6.1.1 Variable Documentation	13
6.1.1.1 bounds	14
6.1.1.2 data	14
6.1.1.3 dt	14
6.1.1.4 f	14
6.1.1.5 face	14
6.1.1.6 g	14
6.1.1.7 heat_gaussian	14
6.1.1.8 imesh	14
6.1.1.9 k	15
6.1.1.10 kmax	15
6.1.1.11 kmin	15
6.1.1.12 mesh	15
6.1.1.13 mesh_dir	15
6.1.1.14 mesh_info	15
6.1.1.15 mesh_load	15
6.1.1.16 mesh_name	15

6.1.1.17 ngraphs	. 16
6.1.1.18 nmesh	. 16
6.1.1.19 nodes	. 16
6.1.1.20 output_dir	. 16
6.1.1.21 T	. 16
6.1.1.22 timesteps	. 16
6.1.1.23 u0	. 16
6.1.1.24 V	. 16
6.2 GenerateData Namespace Reference	. 17
6.2.1 Detailed Description	. 17
6.3 GenerateGraph Namespace Reference	. 17
6.3.1 Detailed Description	. 17
6.3.2 Function Documentation	. 18
6.3.2.1 add_field()	. 18
6.3.2.2 generate_graph()	. 18
6.3.2.3 save()	. 18
6.4 MeshUtils Namespace Reference	. 19
6.4.1 Detailed Description	. 19
6.4.2 Variable Documentation	. 19
6.4.2.1 args	. 19
6.4.2.2 bool	. 20
6.4.2.3 default	. 20
6.4.2.4 filename	. 20
6.4.2.5 float	. 20
6.4.2.6 help	
6.4.2.7 int	. 20
6.4.2.8 mesh_creator	. 20
6.4.2.9 output_dir	. 20
6.4.2.10 parser	. 21
6.4.2.11 type	. 21
6.5 test_installation Namespace Reference	. 21
6.5.1 Variable Documentation	. 21
6.5.1.1 flag	. 21
6.5.1.2 packages	. 21
7 Class Documentation	23
7.1 GenerateData.DataGenerator Class Reference	. 23
7.1.1 Detailed Description	. 24
7.1.2 Constructor & Destructor Documentation	
7.1.2.1init()	. 25
7.1.3 Member Function Documentation	
7.1.3.1 area()	. 25

7.1.3.2 centerline()	25
7.1.3.3 create_edges()	26
7.1.3.4 edges_data()	26
7.1.3.5 flux()	26
7.1.3.6 generate_json()	26
7.1.3.7 inlet_flux()	27
7.1.3.8 nodes_data()	27
7.1.3.9 save_graph()	27
7.1.3.10 td_nodes_data()	27
7.1.4 Member Data Documentation	28
7.1.4.1 center_line	28
7.1.4.2 edges1	28
7.1.4.3 edges2	28
7.1.4.4 EdgesData	28
7.1.4.5 graph	28
7.1.4.6 mesh	28
7.1.4.7 NNodes	28
7.1.4.8 NodesData	29
7.1.4.9 solver	29
7.2 GenerateData.DataHeat Class Reference	29
7.2.1 Detailed Description	30
7.2.2 Constructor & Destructor Documentation	30
7.2.2.1init()	30
7.2.3 Member Function Documentation	30
7.2.3.1 flux()	31
7.2.3.2 generate_json()	31
7.2.3.3 inlet_flux()	31
7.2.3.4 save_graph()	32
7.2.3.5 td_nodes_data()	32
7.2.4 Member Data Documentation	32
7.2.4.1 model_type	32
7.2.4.2 target_fields	32
7.2.4.3 TDNodesData	33
7.3 GenerateData.DataNS Class Reference	33
7.3.1 Detailed Description	34
7.3.2 Constructor & Destructor Documentation	34
7.3.2.1init()	34
7.3.3 Member Function Documentation	35
7.3.3.1 flux()	35
7.3.3.2 generate_json()	35
7.3.3.3 inlet_flux()	35
7.3.3.4 mean_pressure_boundaries()	36

7.3.3.5 mean_pressure_interface()	36
7.3.3.6 outlet_flux()	36
7.3.3.7 save_graph()	37
7.3.3.8 td_nodes_data()	37
7.3.4 Member Data Documentation	37
7.3.4.1 model_type	37
7.3.4.2 target_fields	3
7.3.4.3 TDNodesData	38
7.4 GenerateData.Heat Class Reference	38
7.4.1 Detailed Description	39
7.4.2 Constructor & Destructor Documentation	39
7.4.2.1init()	39
7.4.3 Member Function Documentation	40
7.4.3.1 plot_solution()	40
7.4.3.2 set_parameters()	40
7.4.3.3 solve()	4
7.4.4 Member Data Documentation	4
7.4.4.1 doplot	4
7.4.4.2 dt	4
7.4.4.3 f	4
7.4.4.4 g	4
7.4.4.5 k	4
7.4.4.6 T	42
7.4.4.7 ts	42
7.4.4.8 u0	42
7.4.4.9 ut	42
7.4.4.10 V	42
7.5 MeshUtils.MeshCreator Class Reference	42
7.5.1 Detailed Description	43
7.5.2 Constructor & Destructor Documentation	43
7.5.2.1init()	43
7.5.3 Member Function Documentation	43
7.5.3.1 convert_mesh()	44
7.5.3.2 create_info_file()	44
7.5.3.3 create_mesh()	44
7.5.4 Member Data Documentation	44
7.5.4.1 hmax	44
7.5.4.2 hmin	4
7.5.4.3 lc	4
7.5.4.4 nmesh	4
7.5.4.5 nodes	4
7.5.4.6 seed	4!

7.5.4.7 spacing	45
7.5.4.8 wmax	45
7.5.4.9 wmin	46
7.6 MeshUtils.MeshLoader Class Reference	46
7.6.1 Detailed Description	46
7.6.2 Constructor & Destructor Documentation	46
7.6.2.1init()	47
7.6.3 Member Function Documentation	47
7.6.3.1 measure_definition()	47
7.6.3.2 plot_mesh()	47
7.6.3.3 update_tags()	47
7.6.4 Member Data Documentation	48
7.6.4.1 bounds	48
7.6.4.2 dS	48
7.6.4.3 ds	48
7.6.4.4 dx	48
7.6.4.5 face	48
7.6.4.6 h	48
7.6.4.7 mesh	48
7.6.4.8 meshfile	49
7.6.4.9 n	49
7.6.4.10 rename_boundaries	49
7.6.4.11 rename_faces	49
7.6.4.12 tags	49
7.7 GenerateData.Solver Class Reference	50
7.7.1 Detailed Description	51
7.7.2 Constructor & Destructor Documentation	51
7.7.2.1init()	51
7.7.3 Member Function Documentation	51
7.7.3.1 plot_solution()	51
7.7.3.2 set_parameters()	51
7.7.3.3 solve()	52
7.7.4 Member Data Documentation	52
7.7.4.1 mesh	52
7.8 GenerateData.Stokes Class Reference	52
7.8.1 Detailed Description	54
7.8.2 Constructor & Destructor Documentation	54
7.8.2.1init()	54
7.8.3 Member Function Documentation	55
7.8.3.1 plot_solution()	55
7.8.3.2 set_parameters()	55
7.8.3.3 solve()	56

7.8.4 Member Data Documentation	56
7.8.4.1 doplot	56
7.8.4.2 dt	56
7.8.4.3 f	56
7.8.4.4 inflow	56
7.8.4.5 k	56
7.8.4.6 L0	57
7.8.4.7 mu	57
7.8.4.8 p	57
7.8.4.9 pt	57
7.8.4.10 Q	57
7.8.4.11 rho	57
7.8.4.12 T	57
7.8.4.13 ts	57
7.8.4.14 u	58
7.8.4.15 U0	58
7.8.4.16 ut	58
7.8.4.17 V	58
8 File Documentation	59
8.1 README.md File Reference	59
8.2 scripts/datagen.py File Reference	59
8.3 scripts/GenerateData.py File Reference	60
8.4 scripts/GenerateGraph.py File Reference	60
8.5 scripts/MeshUtils.py File Reference	60
8.6 scripts/test_installation.py File Reference	61
Index	63

Solving PDEs using a Graph Neural Network

1.1 PACS Project of Andrea Bonifacio and Sara Gazzoni

1.1.1 Introduction

This repository contains the code for a Python-based library for solving PDEs using a Graph Neural Network. The code is based on the paper Learning Reduced-Order Models for Cardiovascular Simulations with Graph Neural Networks. We built the library with the aim of creating a fully working pipeline from the generation of the data to the training of the model and the evaluation of the results. We divided the code into three main folders:

- scripts: contains the scripts for the generation of the data;
- gNN: contains the code for the implementation of the GNN;
- notebooks: contains some example notebooks to test the library.

1.1.2 Prerequisites

- Python 3.x
- · Required packages: FEniCS, numpy, matplotlib, torch, dgl, gmsh, meshio, scipy, tqdm, jupyter

1.1.3 Installation

This installation procedure assumes that the user has already installed FEniCS in an Anaconda environment. If this is not the case, please refer to the FEniCS installation guide. To install the library, please follow these steps:

- 1. Clone the repository
- 2. Activate the FEniCS environment
- 3. Install the required packages using pip install -r requirements.txt
- 4. Check if the installation was successful by running the script python scripts/test_installation.py

1.1.4 Usage

The library is able to create meshes, solve variational problems, save them in a suitable format and train a GNN on the data. The user can choose which part of the pipeline to run. We will now describe each step separately. If the user wants to run the whole pipeline, please refer to the subsection **Notebooks**.

1.1.4.1 Mesh generation

The user can generate a mesh using the script scripts/MeshUtils.py. Inside the script, one can modify the variables filename and output_dir to choose the name of the mesh and the directory where to save it. Then, the user can run the command python scripts/MeshUtils.py --args where args are the various parameters that can be modified to generate the meshes. The parameters are:

- --nmesh: number of meshes to generate;
- --nodes: number of the interfaces inside the mesh;
- --seed: seed for the random generation of the meshes;
- --hmax: maximum length of interfaces;
- --hmin: minimum length of interfaces;
- --wmax: maximum spacing between interfaces;
- --wmin: minimum spacing between interfaces;
- --1c: characteristic length of the mesh;
- --spacing: boolean variable to choose if the interfaces are equally spaced or not (True = equally spaced).

1.1.4.2 Variational problem solver and data generation

The library is built to solve the following problems:

- Heat diffusion
- · Stokes problem

There is an abstract class <code>Solver</code> that the user can extend to solve other variational problems. We prepared two scripts to generate the data for the two problems mentioned above. The scripts are <code>scripts/HeatDataset</code> \leftarrow <code>Gen.py</code> and <code>scripts/StokesDatasetGen.py</code>. These two scripts solve the two problems and create the dataset. As for the section above, it is possible to modify the output directory which is stored in the variable <code>output_dir</code>, the mesh directory modifying the variable <code>mesh_dir</code> and the number of samples to generate which is stored in the variable <code>ngraphs</code>. In the same cell the user can modify the parameters of the problem. To run the script, the user can run the command

```
python scripts/HeatDatasetGen.py
```

or

python scripts/StokesDatasetGen.py

The class MeshLoader has a method $plot_mesh$ that the user can use to see the mesh that is used to solve the problem.

1.1.4.3 GNN training

For further information, please refer to the README .md file inside the gNN folder.

To train a gNN, the user can run the command $% \left(1\right) =\left(1\right) \left(1\right) \left$

python gNN/networkld/training.py --args

Inside the main function, the user can modify the following variables:

- graphs_folder: path to the folder containing the graphs;
- target_features: features to predict;
- nodes_features: features of the nodes;
- edges_features: features of the edges;

The features chosen must correspond to the features that were used during the graph generation. For example, if the user wants to predict the heat flux, the target features must be '['flux']`.

The user can modify the parameters of the training in the main function by adding them as --args. The parameters are:

- --latent_size_gnn: size of the latent space of the GNN;
- --latent_size_mlp: size of the latent space of the MLP;
- --process_iterations: number of iterations of the GNN;
- --number_hidden_layers_mlp: number of hidden layers of the MLP;
- --learning_rate: learning rate of the optimizer;
- --batch_size: batch size;
- --lr_decay: learning rate decay;
- --nepochs: number of epochs;
- --weight_decay: weight decay;
- --rate_noise: rate of noise to add to the target features;
- --rate_noise_features: rate of noise to add to the other features;
- --stride: stride of the time steps (how many time steps to consider);
- --nout: number of output features;
- --bc_type: type of boundary conditions;
- --optimizer: optimizer to use.

1.1.4.4 GNN testing

To test a GNN, the user can run the command

python gNN/networkld/tester.py \$MODELPATH

where \$MODELPATH is the path to the folder containing the trained model. The script will compute the errors for all the train and test geometries.

1.1.5 Notebooks

To facilitate the use of the library, we prepared some notebooks that show how to use the library. The notebooks are:

- notebooks/HeatDatasetGen.ipynb: notebook that generates the data for the heat diffusion problem and creates the graphs;
- notebooks/StokesDatasetGen.ipynb: notebook that generates the data for the Stokes problem and creates the graphs;
- notebooks/ModelTester.ipynb: notebook that, given a model already trained, shows how to test it on the train and test geometries;

These notebooks can be used out of the box, without any modification by simply running all the cells. The dataset generation notebooks work the same as the scripts already presented, so the interested reader can refer to the previous sections for further information.

The model tester notebook shows how to test a model on the train and test geometries. The user can modify the variable path to choose the model to test. The notebook will compute the errors for all the train and test geometries. It is also possible to test the network on a single geometry by modifying the variable $graphs_folder$ to the path of the folder containing the graphs of the geometry to test and the variable new_graph to the name of the graph to test.

1.1.6 Authors

- Andrea Bonifacio
- · Sara Gazzoni

Namespace Index

2.1 Namespace List

Here is a list of all namespaces with brief descriptions:

atagen	13
enerateData enerateData	
This file implements a solver class to solve a variational problem and a data generator class to store the data and the solutions of the problem solved in a dgl graph	17
enerateGraph enerateGraph	
This file contains functions to generate DGL graphs from data generated by the GenerateData	
script	17
eshUtils	
This file contains utilities for creating and loading meshes	19
st_installation	21

6 Namespace Index

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

MeshUtils.MeshCreator	42
MeshUtils.MeshLoader	46
BC	
GenerateData.DataGenerator	23
GenerateData.DataHeat	
GenerateData.DataNS	33
GenerateData.Solver	50
GenerateData.Heat	38
GenerateData.Stokes	52

8 Hierarchical Index

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

enerateData.DataGenerator	. 23
nerateData.DataHeat	. 29
nerateData.DataNS	. 33
nerateData.Heat	. 38
eshUtils.MeshCreator	. 42
eshUtils.MeshLoader	. 46
nerateData.Solver	. 50
nerateData Stokes	52

10 Class Index

File Index

5.1 File List

Here is a list of all files with brief descriptions:

scripts/datagen.py												 				 			59
scripts/GenerateData.py	 								 			 				 			60
scripts/GenerateGraph.py												 				 			60
scripts/MeshUtils.py									 			 				 			60
scripts/test_installation.pv									 			 			_	 			61

12 File Index

Namespace Documentation

6.1 datagen Namespace Reference

Variables

```
• int ngraphs = 2
string output_dir = "data/graphs_test/"
• string mesh_dir = "data/mesh_test/"
mesh_info = json.load(open(mesh_dir + 'mesh_info.json'))
• mesh_name = mesh_info['mesh_name']
nmesh = mesh_info['nmesh']
• nodes = mesh_info['nodes']

    f = Constant(0.0)

• g = Expression('a*exp(-(t-b)*(t-b)/c/c)',degree=2,a=5,b=2.5,c=1,t=0)
• u0 = Expression('0.0',degree=0)
• int T = 5
• int timesteps = 50
• int dt = T/timesteps
• int kmax = 100
• int kmin = 1
imesh = np.random.randint(0,nmesh)
• mesh_load = mutil.MeshLoader(mesh_dir + mesh_name + f"_{imesh}")
• mesh = mesh load.mesh
• bounds = mesh_load.bounds
• face = mesh_load.face

    V = FunctionSpace(mesh load.mesh,"DG",1)

• k = round(np.random.uniform(kmin, kmax),2)
• heat_gaussian = gd.Heat(mesh_load,V,k,f,u0,dt,T,g)
data = gd.DataHeat(heat_gaussian,mesh_load)
```

6.1.1 Variable Documentation

6.1.1.1 bounds

```
datagen.bounds = mesh_load.bounds
```

6.1.1.2 data

```
datagen.data = gd.DataHeat(heat_gaussian,mesh_load)
```

6.1.1.3 dt

```
int datagen.dt = T/timesteps
```

6.1.1.4 f

```
datagen.f = Constant(0.0)
```

6.1.1.5 face

```
datagen.face = mesh_load.face
```

6.1.1.6 g

```
datagen.g = Expression('a*exp(-(t-b)*(t-b)/c/c)',degree=2,a=5,b=2.5,c=1,t=0)
```

6.1.1.7 heat_gaussian

```
datagen.heat_gaussian = gd.Heat(mesh_load, V, k, f, u0, dt, T, g)
```

6.1.1.8 imesh

```
datagen.imesh = np.random.randint(0,nmesh)
```

6.1.1.9 k

```
datagen.k = round(np.random.uniform(kmin, kmax),2)
```

6.1.1.10 kmax

```
int datagen.kmax = 100
```

6.1.1.11 kmin

```
int datagen.kmin = 1
```

6.1.1.12 mesh

```
datagen.mesh = mesh_load.mesh
```

6.1.1.13 mesh_dir

```
string datagen.mesh_dir = "data/mesh_test/"
```

6.1.1.14 mesh_info

```
datagen.mesh_info = json.load(open(mesh_dir + 'mesh_info.json'))
```

6.1.1.15 mesh_load

```
datagen.mesh_load = mutil.MeshLoader(mesh_dir + mesh_name + f"_{imesh}")
```

6.1.1.16 mesh_name

```
datagen.mesh_name = mesh_info['mesh_name']
```

6.1.1.17 ngraphs

```
int datagen.ngraphs = 2
```

6.1.1.18 nmesh

```
datagen.nmesh = mesh_info['nmesh']
```

6.1.1.19 nodes

```
datagen.nodes = mesh_info['nodes']
```

6.1.1.20 output_dir

```
string datagen.output_dir = "data/graphs_test/"
```

6.1.1.21 T

```
int datagen.T = 5
```

6.1.1.22 timesteps

```
int datagen.timesteps = 50
```

6.1.1.23 u0

```
datagen.u0 = Expression('0.0',degree=0)
```

6.1.1.24 V

```
datagen.V = FunctionSpace(mesh_load.mesh,"DG",1)
```

6.2 GenerateData Namespace Reference

This file implements a solver class to solve a variational problem and a data generator class to store the data and the solutions of the problem solved in a dgl graph.

Classes

- · class DataGenerator
- class DataHeat
- class DataNS
- · class Heat
- · class Solver
- · class Stokes

6.2.1 Detailed Description

This file implements a solver class to solve a variational problem and a data generator class to store the data and the solutions of the problem solved in a dgl graph.

This file contains the implementation of two abstract classes: Solver and DataGenerator. The Solver class is used to solve a variational problem on a given mesh, while the DataGenerator class is used to store the data and the solutions of the problem at each time step in a dgl graph. The Solver class is then inherited by two subclasses: Stokes and Heat, which are used to solve the Stokes equation and the heat equation, respectively. The DataGenerator class is also inherited by two subclasses: DataNS and DataHeat, which are used to generate the data for the Stokes equations and the heat equation, respectively. This class needs to be initialized with the proper solver object and mesh object.

Authors

Andrea Bonifacio and Sara Gazzoni

6.3 GenerateGraph Namespace Reference

This file contains functions to generate DGL graphs from data generated by the GenerateData script.

Functions

- def generate_graph (point_data, points, edges_data, edges1, edges2)
- def add field (graph, field, field name, offset=0)
- def save (graph, filename, output_dir="../data/graphs/")

6.3.1 Detailed Description

This file contains functions to generate DGL graphs from data generated by the GenerateData script.

The GenerateGraph script contains some utility functions to generate a DGL graph. The graph is generated by the geenrate_graph function, which takes as input the data generated by the GenerateData script. It is possible to add time-dependent fields to the graph by using the add_field function. The graph can be saved in a specified directory by using the save function.

Authors

Andrea Bonifacio and Sara Gazzoni

6.3.2 Function Documentation

6.3.2.1 add_field()

6.3.2.2 generate_graph()

6.3.2.3 save()

6.4 MeshUtils Namespace Reference

This file contains utilities for creating and loading meshes.

Classes

- · class MeshCreator
- · class MeshLoader

Variables

- parser = argparse.ArgumentParser(description='Mesh creation')
- help
- type
- int
- default
- float
- bool
- args = parser.parse_args()
- string filename = "test_mesh"
- string output_dir = "data/mesh_test/"
- mesh_creator = MeshCreator(args)

6.4.1 Detailed Description

This file contains utilities for creating and loading meshes.

The MeshUtils file contains two classes: MeshCreator and MeshLoader. The MeshCreator class is used to generate meshes using Gmsh and to convert meshes from msh to xml format. The MeshLoader class is used to load meshes from xml files to be used in FEniCS. The file also contains a main function to call the MeshCreator class. The mesh parameters can be set in the main function or using the command line.

Authors

Andrea Bonifacio and Sara Gazzoni

6.4.2 Variable Documentation

6.4.2.1 args

MeshUtils.args = parser.parse_args()

6.4.2.2 bool

MeshUtils.bool

6.4.2.3 default

MeshUtils.default

6.4.2.4 filename

string MeshUtils.filename = "test_mesh"

6.4.2.5 float

MeshUtils.float

6.4.2.6 help

MeshUtils.help

6.4.2.7 int

MeshUtils.int

6.4.2.8 mesh_creator

MeshUtils.mesh_creator = MeshCreator(args)

6.4.2.9 output_dir

string MeshUtils.output_dir = "data/mesh_test/"

6.4.2.10 parser

```
MeshUtils.parser = argparse.ArgumentParser(description='Mesh creation')
```

6.4.2.11 type

MeshUtils.type

6.5 test_installation Namespace Reference

Variables

- list packages = ['numpy', 'matplotlib', 'torch', 'dolfin', 'meshio', 'dgl', 'scipy', 'tqdm','jupyter']
- bool flag = False

6.5.1 Variable Documentation

6.5.1.1 flag

```
bool test_installation.flag = False
```

6.5.1.2 packages

```
list test_installation.packages = ['numpy', 'matplotlib', 'torch', 'dolfin', 'meshio', 'dgl',
'scipy', 'tqdm','jupyter']
```

Class Documentation

7.1 GenerateData.DataGenerator Class Reference

Inheritance diagram for GenerateData.DataGenerator:

Collaboration diagram for GenerateData.DataGenerator:

24 Class Documentation

Public Member Functions

```
    def __init__ (self, solver, mesh)
```

- def flux (self)
- def inlet_flux (self, tag, u)
- def area (self, tag)
- def create_edges (self)
- def edges_data (self)
- def nodes_data (self)
- def td nodes data (self)
- def centerline (self)
- · def save graph (self, output dir, fields names)
- def generate_json (self, output_dir, model_type)

Public Attributes

- solver
- mesh
- NNodes
- edges1
- · edges2
- EdgesData
- NodesData
- · center line
- graph

7.1.1 Detailed Description

7.1.2 Constructor & Destructor Documentation

7.1.2.1 __init__()

Reimplemented in GenerateData.DataNS, and GenerateData.DataHeat.

7.1.3 Member Function Documentation

7.1.3.1 area()

7.1.3.2 centerline()

26 Class Documentation

7.1.3.3 create_edges()

7.1.3.4 edges_data()

7.1.3.5 flux()

```
\label{eq:continuous} \mbox{def GenerateData.DataGenerator.flux (} \\ self \mbox{)}
```

Reimplemented in GenerateData.DataHeat, and GenerateData.DataNS.

7.1.3.6 generate_json()

Reimplemented in GenerateData.DataNS, and GenerateData.DataHeat.

7.1.3.7 inlet_flux()

```
def GenerateData.DataGenerator.inlet_flux ( self, \\ tag, \\ u \ )
```

Reimplemented in GenerateData.DataNS, and GenerateData.DataHeat.

7.1.3.8 nodes_data()

7.1.3.9 save_graph()

Reimplemented in GenerateData.DataNS, and GenerateData.DataHeat.

7.1.3.10 td_nodes_data()

```
\begin{tabular}{ll} \tt def GenerateData.DataGenerator.td\_nodes\_data & ( \\ & self \end{tabular} \label{table}
```

Reimplemented in GenerateData.DataNS, and GenerateData.DataHeat.

28 Class Documentation

7.1.4 Member Data Documentation

7.1.4.1 center_line

GenerateData.DataGenerator.center_line

7.1.4.2 edges1

 ${\tt GenerateData.DataGenerator.edges1}$

7.1.4.3 edges2

GenerateData.DataGenerator.edges2

7.1.4.4 EdgesData

GenerateData.DataGenerator.EdgesData

7.1.4.5 graph

GenerateData.DataGenerator.graph

7.1.4.6 mesh

 ${\tt GenerateData.DataGenerator.mesh}$

7.1.4.7 NNodes

GenerateData.DataGenerator.NNodes

7.1.4.8 NodesData

GenerateData.DataGenerator.NodesData

7.1.4.9 solver

GenerateData.DataGenerator.solver

The documentation for this class was generated from the following file:

scripts/GenerateData.py

7.2 GenerateData.DataHeat Class Reference

Inheritance diagram for GenerateData.DataHeat:

Collaboration diagram for GenerateData.DataHeat:

Public Member Functions

- def __init__ (self, solver, mesh)
- def flux (self, interface, u)
- def inlet flux (self, tag, u)
- def td_nodes_data (self)
- def save_graph (self, output_dir)
- def generate_json (self, output_dir)

Public Attributes

- model_type
- · target fields

7.2.2.1 init ()

TDNodesData

7.2.1 Detailed Description

```
This class represents a data generator for a heat solver.

It inherits from the DataGenerator class.

Attributes:

solver: The solver object for heat equation.

mesh: The mesh object representing the computational domain.

model_type (string): The type of model (heat).

fields_names (string): The fields that will be predicted by the graph neural network (flux).

TDNodesData (dict): A dictionary containing the time-dependent data at each node.
```

7.2.2 Constructor & Destructor Documentation

Reimplemented from GenerateData.DataGenerator.

7.2.3 Member Function Documentation

7.2.3.1 flux()

Reimplemented from GenerateData.DataGenerator.

7.2.3.2 generate_json()

Reimplemented from GenerateData.DataGenerator.

7.2.3.3 inlet_flux()

Reimplemented from GenerateData.DataGenerator.

7.2.3.4 save_graph()

Reimplemented from GenerateData.DataGenerator.

7.2.3.5 td_nodes_data()

Reimplemented from GenerateData.DataGenerator.

7.2.4 Member Data Documentation

7.2.4.1 model_type

GenerateData.DataHeat.model_type

7.2.4.2 target_fields

GenerateData.DataHeat.target_fields

7.2.4.3 TDNodesData

GenerateData.DataHeat.TDNodesData

The documentation for this class was generated from the following file:

• scripts/GenerateData.py

7.3 GenerateData.DataNS Class Reference

Inheritance diagram for GenerateData.DataNS:

Collaboration diagram for GenerateData.DataNS:

Public Member Functions

```
def __init__ (self, solver, mesh)
def flux (self, tag, u)
def inlet_flux (self, tag, u)
def outlet_flux (self, tag, u)
def mean_pressure_interface (self, tag, p)
def mean_pressure_boundaries (self, tag, p)
def td_nodes_data (self)
def save_graph (self, output_dir)
```

• def generate_json (self, output_dir)

Public Attributes

- model_type
- · target fields
- TDNodesData

7.3.1 Detailed Description

```
This class represents a data generator for a Stokes solver.

It inherits from the DataGenerator class.

Attributes:

solver (Solver): The solver object used for solving the Stokes equations.

mesh (Mesh): The mesh object representing the computational domain.

model_type (string): The type of model (stokes).

target_fields (string): The fields that will be predicted

by the graph neural network (flowrate and pressure).

TDNodesData (dict): A dictionary containing the time-dependent data

at each node.
```

7.3.2 Constructor & Destructor Documentation

 $\label{lem:lemented$

7.3.3 Member Function Documentation

7.3.3.1 flux()

Reimplemented from GenerateData.DataGenerator.

7.3.3.2 generate_json()

Reimplemented from GenerateData.DataGenerator.

7.3.3.3 inlet flux()

Reimplemented from GenerateData.DataGenerator.

7.3.3.4 mean_pressure_boundaries()

7.3.3.5 mean_pressure_interface()

7.3.3.6 outlet_flux()

7.3.3.7 save_graph()

Reimplemented from GenerateData.DataGenerator.

7.3.3.8 td_nodes_data()

Reimplemented from GenerateData.DataGenerator.

7.3.4 Member Data Documentation

7.3.4.1 model_type

GenerateData.DataNS.model_type

7.3.4.2 target_fields

GenerateData.DataNS.target_fields

7.3.4.3 TDNodesData

GenerateData.DataNS.TDNodesData

The documentation for this class was generated from the following file:

• scripts/GenerateData.py

7.4 GenerateData.Heat Class Reference

Inheritance diagram for GenerateData.Heat:

Collaboration diagram for GenerateData.Heat:

Public Member Functions

```
def __init__ (self, mesh, V, k, f, u0, dt, T, g, doplot=False)
def set_parameters (self, V, k, f, u0, dt, T, g)
def solve (self)
def plot_solution (self, u)
```

Public Attributes

- V
- f
- u0
- dtT
- g
- doplot
- ts
- ut

7.4.1 Detailed Description

```
Class representing a heat solver.
```

This class inherits from the Solver class and provides methods to solve the heat equation using the Discontinuous Galerkin method with non-homogeneous Neumann boundary conditions.

```
Attributes:
```

```
V (FunctionSpace): Function space for the solution.
k (float): Thermal conductivity.
f (Expression): Source term.
u0 (Expression): Initial condition.
dt (float): Time step.
T (float): Final time.
g (Expression): Neumann boundary condition at the inlet.
doplot (bool): Flag indicating whether to plot the solution at each time step.
ts (numpy.ndarray): Array of time steps.
ut (numpy.ndarray): Array of solutions at each time step.
```

7.4.2 Constructor & Destructor Documentation

7.4.2.1 __init__()

```
Initialize the Heat class.

Args:
    mesh (Mesh): Mesh object.
    V (FunctionSpace): Function space for the solution.
    k (float): Thermal conductivity.
    f (Expression): Source term.
    u0 (Expression): Initial condition.
    dt (float): Time step.
    T (float): Final time.
    g (Expression): Neumann boundary condition at the inlet.
    doplot (bool): Flag indicating whether to plot the solution at each time step.
```

Reimplemented from GenerateData.Solver.

7.4.3 Member Function Documentation

7.4.3.1 plot_solution()

```
def GenerateData.Heat.plot_solution ( self, \\ u \ ) Plot the solution. Args: \\ u: The solution to be plotted.
```

Reimplemented from GenerateData.Solver.

7.4.3.2 set_parameters()

```
def GenerateData.Heat.set_parameters (
              self,
              V,
              k,
              f,
              и0.
              dt,
              Τ,
              g)
Method to set different parameters for the heat solver.
Args:
    V (FunctionSpace): Function space for the solution.
    k (float): Thermal conductivity.
    f (Expression): Source term.
    u0 (Expression): Initial condition.
    dt (float): Time step.
    T (float): Final time.
    g (Expression): Neumann boundary condition at the inlet.
```

Reimplemented from GenerateData.Solver.

7.4.3.3 solve()

Reimplemented from GenerateData.Solver.

7.4.4 Member Data Documentation

7.4.4.1 doplot

GenerateData.Heat.doplot

7.4.4.2 dt

GenerateData.Heat.dt

7.4.4.3 f

GenerateData.Heat.f

7.4.4.4 g

GenerateData.Heat.g

7.4.4.5 k

GenerateData.Heat.k

7.4.4.6 T

GenerateData.Heat.T

7.4.4.7 ts

GenerateData.Heat.ts

7.4.4.8 u0

GenerateData.Heat.u0

7.4.4.9 ut

GenerateData.Heat.ut

7.4.4.10 V

GenerateData.Heat.V

The documentation for this class was generated from the following file:

• scripts/GenerateData.py

7.5 MeshUtils.MeshCreator Class Reference

Public Member Functions

- def __init__ (self, args)
- def create_mesh (self, filename, output_dir)
- def convert_mesh (self, output_dir)
- def create_info_file (self, output_dir, meshname)

Public Attributes

- nmesh
- seed
- hmax
- hmin
- Ic
- wmax
- wmin
- spacing
- nodes

7.5.1 Detailed Description

```
A class for creating mesh using Gmsh.

Attributes:
   nmesh: Number of meshes to create.
   seed: Seed for random number generation.
   hmax: Maximum value for the interfaces height.
   hmin: Minimum value for the interfaces height.
   lc: Characteristic length.
   wmax: Maximum value for the distance between nodes.
   wmin: Minimum value for the distance between nodes.
   spacing: Flag indicating whether the nodes are equispaced or not.
   nodes: Number of nodes.
```

7.5.2 Constructor & Destructor Documentation

7.5.3 Member Function Documentation

7.5.3.1 convert_mesh()

7.5.3.2 create_info_file()

7.5.3.3 create_mesh()

7.5.4 Member Data Documentation

7.5.4.1 hmax

MeshUtils.MeshCreator.hmax

7.5.4.2 hmin

MeshUtils.MeshCreator.hmin

7.5.4.3 lc

MeshUtils.MeshCreator.lc

7.5.4.4 nmesh

MeshUtils.MeshCreator.nmesh

7.5.4.5 nodes

MeshUtils.MeshCreator.nodes

7.5.4.6 seed

MeshUtils.MeshCreator.seed

7.5.4.7 spacing

MeshUtils.MeshCreator.spacing

7.5.4.8 wmax

MeshUtils.MeshCreator.wmax

7.5.4.9 wmin

```
MeshUtils.MeshCreator.wmin
```

The documentation for this class was generated from the following file:

scripts/MeshUtils.py

7.6 MeshUtils.MeshLoader Class Reference

Public Member Functions

```
def __init__ (self, filename)
def update_tags (self, tags={}, nodes=-1)
def measure_definition (self)
```

def plot_mesh (self)

Public Attributes

- · meshfile
- mesh
- bounds
- face
- n
- h
- tags
- rename_boundaries
- rename_faces
- dS
- ds
- dx

7.6.1 Detailed Description

```
A class for loading mesh from a xml file to be used in FEniCS.

Attributes:
    meshfile: The name of the mesh file.
    mesh: The FEniCS mesh.
    bounds: FEniCS MeshFunction for the boundaries of the mesh.
    face: FEniCS MeshFunction for the faces of the mesh.
    n: The normal vector of the mesh.
    h: The characteristic length of the mesh.
    tags: A dictionary containing the tags of the mesh.
    rename_boundaries: FEniCS MeshFunction for the boundaries of the mesh with the tags.
    dS: Measure for integration over external boundaries (inlet and outlet).
    ds: Measure for integration over faces.
```

7.6.2 Constructor & Destructor Documentation

7.6.2.1 __init__()

7.6.3 Member Function Documentation

7.6.3.1 measure_definition()

```
def MeshUtils.MeshLoader.measure_definition ( self \ ) Method to define the measures for the integration.
```

7.6.3.2 plot_mesh()

```
def MeshUtils.MeshLoader.plot_mesh ( self \ ) Method to plot the mesh.
```

7.6.3.3 update tags()

7.6.4 Member Data Documentation

7.6.4.1	bounds
MeshUti	lls.MeshLoader.bounds
7.6.4.2	dS
MeshUti	ls.MeshLoader.dS
7.6.4.3	
MeshUti	lls.MeshLoader.ds
7.6.4.4	dx
	lls.MeshLoader.dx
7.6.4.5	face
MeshUti	ls.MeshLoader.face
7.6.4.6	h
MeshUti	ls.MeshLoader.h

7.6.4.7 mesh

MeshUtils.MeshLoader.mesh

7.6.4.8 meshfile

MeshUtils.MeshLoader.meshfile

7.6.4.9 n

MeshUtils.MeshLoader.n

7.6.4.10 rename_boundaries

MeshUtils.MeshLoader.rename_boundaries

7.6.4.11 rename_faces

MeshUtils.MeshLoader.rename_faces

7.6.4.12 tags

MeshUtils.MeshLoader.tags

The documentation for this class was generated from the following file:

• scripts/MeshUtils.py

7.7 GenerateData.Solver Class Reference

Inheritance diagram for GenerateData.Solver:

Collaboration diagram for GenerateData.Solver:

Public Member Functions

- def __init__ (self, mesh)
- def set_parameters (self)
- def solve (self)
- def plot_solution (self)

Public Attributes

• mesh

7.7.1 Detailed Description

```
This class represents a solver for a variational problem on a given mesh.

This class is an abstract base class (ABC) and cannot be instantiated.

Attributes:

mesh (Mesh): Mesh object.
```

7.7.2 Constructor & Destructor Documentation

Reimplemented in GenerateData.Heat, and GenerateData.Stokes.

7.7.3 Member Function Documentation

7.7.3.1 plot_solution()

```
def GenerateData.Solver.plot_solution ( self )
```

Reimplemented in GenerateData.Heat, and GenerateData.Stokes.

7.7.3.2 set_parameters()

```
\label{lem:conversed_parameters} \mbox{ def GenerateData.Solver.set\_parameters (} \\ self \mbox{ )}
```

Reimplemented in GenerateData.Heat, and GenerateData.Stokes.

7.7.3.3 solve()

```
def GenerateData.Solver.solve ( self )
```

Reimplemented in GenerateData.Stokes, and GenerateData.Heat.

7.7.4 Member Data Documentation

7.7.4.1 mesh

GenerateData.Solver.mesh

The documentation for this class was generated from the following file:

• scripts/GenerateData.py

7.8 GenerateData.Stokes Class Reference

Inheritance diagram for GenerateData.Stokes:

Collaboration diagram for GenerateData.Stokes:

Public Member Functions

- def __init__ (self, mesh, V, Q, rho, mu, U0, L0, inflow, f, dt, T, k, doplot=False)
- def set_parameters (self, V, Q, rho, mu, U0, L0, inflow, f, dt, T)
- def solve (self)
- def plot_solution (self, u, p)

Public Attributes

- V
- Q
- rho
- mu
- U0
- L0
- inflow
- f
- **dt**
- T
- doplot
- k
- ts
- ut
- pt
- **u**
- p

7.8.1 Detailed Description

```
Class representing a Stokes solver.
This class inherits from the Solver class and provides
methods to solve the Stokes equation.
Attributes:
    mesh (Mesh): Mesh object.
    V (FunctionSpace): Velocity function space.
    Q (FunctionSpace): Pressure function space.
    rho (float): Density of the fluid.
    mu (float): Dynamic viscosity of the fluid.
    U0 (float): Characteristic velocity of the fluid.
    LO (float): Characteristic length of the fluid.
    inflow (float): Inflow rate of the fluid.
    f (Expression): Source term.
    dt (float): Time step.
    T (float): Final time.
    k (float): Reynolds number.
    doplot (bool): Flag indicating whether to
                  plot the solution at each time step.
    ts (numpy.ndarray): Array of time steps.
    ut (numpy.ndarray): Array of velocity solutions at each time step.
    pt (numpy.ndarray): Array of pressure solutions at each time step.
```

7.8.2 Constructor & Destructor Documentation

7.8.2.1 __init__()

```
def GenerateData.Stokes.__init__ (
              self,
              mesh,
              0.
              rho.
              mu,
              UO,
              L0,
              inflow,
              f,
              dt,
              Τ.
              doplot = False)
Initialize the GenerateData class.
Args:
    V (FunctionSpace): Velocity function space.
    Q (FunctionSpace): Pressure function space.
    rho (float): Density of the fluid.
    mu (float): Dynamic viscosity of the fluid.
    UO (float): Characteristic velocity of the fluid.
    LO (float): Characteristic length of the fluid.
    inflow (float): Inflow rate of the fluid.
    f (Expression): Source term.
    dt (float): Time step.
    T (float): Final time.
    doplot (bool): Flag indicating whether to plot
                   the solution at each time step.
```

Reimplemented from GenerateData.Solver.

7.8.3 Member Function Documentation

7.8.3.1 plot_solution()

Reimplemented from GenerateData.Solver.

7.8.3.2 set_parameters()

```
def GenerateData.Stokes.set_parameters (
              self,
              Q,
              rho,
              mu,
              UO,
              L0,
              inflow,
              dt,
              T )
Set the parameters for the simulation.
    V (float): Velocity of the fluid.
    Q (float): Flow rate of the fluid.
    rho (float): Density of the fluid.
    mu (float): Viscosity of the fluid.
    U0 (float): Initial velocity of the fluid.
    LO (float): Initial length of the fluid.
    inflow (float): Inflow rate of the fluid.
    f (float): Force applied to the fluid.
    dt (float): Time step for the simulation.
    T (float): Total time for the simulation.
```

Reimplemented from GenerateData.Solver.

7.8.3.3 solve()

```
def GenerateData.Stokes.solve ( self \ ) \\ Solve the Stokes equation.
```

Reimplemented from GenerateData.Solver.

7.8.4 Member Data Documentation

7.8.4.1 doplot

GenerateData.Stokes.doplot

7.8.4.2 dt

GenerateData.Stokes.dt

7.8.4.3 f

GenerateData.Stokes.f

7.8.4.4 inflow

GenerateData.Stokes.inflow

7.8.4.5 k

GenerateData.Stokes.k

7.8.4.6 L0

GenerateData.Stokes.L0

7.8.4.7 mu

GenerateData.Stokes.mu

7.8.4.8 p

GenerateData.Stokes.p

7.8.4.9 pt

GenerateData.Stokes.pt

7.8.4.10 Q

GenerateData.Stokes.Q

7.8.4.11 rho

GenerateData.Stokes.rho

7.8.4.12 T

GenerateData.Stokes.T

7.8.4.13 ts

GenerateData.Stokes.ts

7.8.4.14 u

GenerateData.Stokes.u

7.8.4.15 U0

GenerateData.Stokes.U0

7.8.4.16 ut

GenerateData.Stokes.ut

7.8.4.17 V

GenerateData.Stokes.V

The documentation for this class was generated from the following file:

• scripts/GenerateData.py

Chapter 8

File Documentation

8.1 README.md File Reference

8.2 scripts/datagen.py File Reference

Namespaces

· namespace datagen

Variables

- int datagen.ngraphs = 2
- string datagen.output_dir = "data/graphs_test/"
- string datagen.mesh_dir = "data/mesh_test/"
- datagen.mesh_info = json.load(open(mesh_dir + 'mesh_info.json'))
- datagen.mesh name = mesh info['mesh name']
- datagen.nmesh = mesh_info['nmesh']
- datagen.nodes = mesh_info['nodes']
- datagen.f = Constant(0.0)
- datagen.g = Expression('a*exp(-(t-b)*(t-b)/c/c)',degree=2,a=5,b=2.5,c=1,t=0)
- datagen.u0 = Expression('0.0',degree=0)
- int datagen.T = 5
- int datagen.timesteps = 50
- int datagen.dt = T/timesteps
- int datagen.kmax = 100
- int datagen.kmin = 1
- datagen.imesh = np.random.randint(0,nmesh)
- datagen.mesh_load = mutil.MeshLoader(mesh_dir + mesh_name + f"_{imesh}")
- datagen.mesh = mesh_load.mesh
- datagen.bounds = mesh_load.bounds
- datagen.face = mesh_load.face
- datagen.V = FunctionSpace(mesh_load.mesh,"DG",1)
- datagen.k = round(np.random.uniform(kmin, kmax),2)
- datagen.heat gaussian = gd.Heat(mesh load, V,k,f,u0,dt,T,g)
- datagen.data = gd.DataHeat(heat_gaussian,mesh_load)

60 File Documentation

8.3 scripts/GenerateData.py File Reference

Classes

- · class GenerateData.Solver
- · class GenerateData.Stokes
- · class GenerateData.Heat
- · class GenerateData.DataGenerator
- · class GenerateData.DataNS
- · class GenerateData.DataHeat

Namespaces

namespace GenerateData

This file implements a solver class to solve a variational problem and a data generator class to store the data and the solutions of the problem solved in a dgl graph.

8.4 scripts/GenerateGraph.py File Reference

Namespaces

• namespace GenerateGraph

This file contains functions to generate DGL graphs from data generated by the GenerateData script.

Functions

- def GenerateGraph.generate_graph (point_data, points, edges_data, edges1, edges2)
- def GenerateGraph.add_field (graph, field, field_name, offset=0)
- def GenerateGraph.save (graph, filename, output_dir="../data/graphs/")

8.5 scripts/MeshUtils.py File Reference

Classes

- · class MeshUtils.MeshCreator
- · class MeshUtils.MeshLoader

Namespaces

• namespace MeshUtils

This file contains utilities for creating and loading meshes.

Variables

- MeshUtils.parser = argparse.ArgumentParser(description='Mesh creation')
- · MeshUtils.help
- · MeshUtils.type
- MeshUtils.int
- · MeshUtils.default
- · MeshUtils.float
- · MeshUtils.bool
- MeshUtils.args = parser.parse_args()
- string MeshUtils.filename = "test_mesh"
- string MeshUtils.output_dir = "data/mesh_test/"
- MeshUtils.mesh_creator = MeshCreator(args)

8.6 scripts/test_installation.py File Reference

Namespaces

· namespace test_installation

Variables

- list test_installation.packages = ['numpy', 'matplotlib', 'torch', 'dolfin', 'meshio', 'dgl', 'scipy', 'tqdm','jupyter']
- bool test_installation.flag = False

File Documentation

Index

init	mesh, 15
GenerateData.DataGenerator, 24	mesh_dir, 15
GenerateData.DataHeat, 30	mesh_info, 15
GenerateData.DataNS, 34	mesh_load, 15
GenerateData.Heat, 39	mesh_name, 15
GenerateData.Solver, 51	ngraphs, 15
GenerateData.Stokes, 54	nmesh, 16
MeshUtils.MeshCreator, 43	nodes, 16
MeshUtils.MeshLoader, 46	output dir, 16
•	T, 16
add_field	timesteps, 16
GenerateGraph, 18	u0, 16
area	V, 16
GenerateData.DataGenerator, 25	default
args	MeshUtils, 20
MeshUtils, 19	doplot
	GenerateData.Heat, 41
bool	GenerateData.Stokes, 56
MeshUtils, 19	dS
bounds	MeshUtils.MeshLoader, 48
datagen, 13	ds
MeshUtils.MeshLoader, 48	MeshUtils.MeshLoader, 48
contar line	dt
center_line ConcreteData DataGonerator 28	datagen, 14
GenerateData.DataGenerator, 28 centerline	GenerateData.Heat, 41
	GenerateData.Stokes, 56
GenerateData.DataGenerator, 25	dx
convert_mesh MeshUtils.MeshCreator, 43	MeshUtils.MeshLoader, 48
create_edges	
GenerateData.DataGenerator, 25	edges1
create_info_file	GenerateData.DataGenerator, 28
MeshUtils.MeshCreator, 44	edges2
create_mesh	GenerateData.DataGenerator, 28
MeshUtils.MeshCreator, 44	edges_data
Miconotilis.Miconorcator, 44	GenerateData.DataGenerator, 26
data	EdgesData
datagen, 14	GenerateData.DataGenerator, 28
datagen, 13	f
bounds, 13	datagen, 14
data, 14	GenerateData.Heat, 41
dt, 14	GenerateData.Stokes, 56
f, 14	face
face, 14	datagen, 14
g, 14	MeshUtils.MeshLoader, 48
heat_gaussian, 14	filename
imesh, 14	MeshUtils, 20
k, 14	flag
kmax, 15	test_installation, 21
kmin, 15	float

64 INDEX

Machiltila 00	TDNodesDate 27
MeshUtils, 20	TDNodesData, 37
flux	GenerateData.Heat, 38
GenerateData.DataGenerator, 26	init, 39
GenerateData.DataHeat, 30	doplot, 41
GenerateData.DataNS, 35	dt, 41
	f, 41
g	g, 41
datagen, 14	k, 41
GenerateData.Heat, 41	plot_solution, 40
generate_graph	set_parameters, 40
GenerateGraph, 18	solve, 40
generate_json	T, 41
GenerateData.DataGenerator, 26	ts, 42
GenerateData.DataHeat, 31	u0, 42
GenerateData.DataNS, 35	ut, 42
GenerateData, 17	V, 42
GenerateData.DataGenerator, 23	GenerateData.Solver, 50
init, 24	init , 51
area, 25	
center_line, 28	mesh, 52
centerline, 25	plot_solution, 51
,	set_parameters, 51
create_edges, 25	solve, 51
edges1, 28	GenerateData.Stokes, 52
edges2, 28	init, 54
edges_data, 26	doplot, 56
EdgesData, 28	dt, 56
flux, 26	f, 56
generate_json, <mark>26</mark>	inflow, 56
graph, 28	k, 56
inlet_flux, 26	L0, 56
mesh, 28	mu, 57
NNodes, 28	p, 57
nodes_data, 27	•
NodesData, 28	plot_solution, 55
save_graph, 27	pt, 57
solver, 29	Q, 57
td_nodes_data, 27	rho, 57
	set_parameters, 55
GenerateData.DataHeat, 29	solve, 55
init, 30	T, 57
flux, 30	ts, 57
generate_json, 31	u, 57
inlet_flux, 31	U0, 58
model_type, 32	ut, 58
save_graph, 31	V, 58
target_fields, 32	GenerateGraph, 17
td_nodes_data, 32	add_field, 18
TDNodesData, 32	generate_graph, 18
GenerateData.DataNS, 33	
init, 34	save, 18
flux, 35	graph
generate_json, 35	GenerateData.DataGenerator, 28
	h
inlet_flux, 35	
mean_pressure_interface_36	MeshUtils.MeshLoader, 48
mean_pressure_interface, 36	heat_gaussian
model_type, 37	datagen, 14
outlet_flux, 36	help
save_graph, 36	MeshUtils, 20
target_fields, 37	hmax
td_nodes_data, 37	MeshUtils.MeshCreator, 44

INDEX 65

hmin	mesh_creator, 20
MeshUtils.MeshCreator, 44	output_dir, 20
	parser, 20
imesh	type, 21
datagen, 14	MeshUtils.MeshCreator, 42
inflow	init, 43
GenerateData.Stokes, 56	convert_mesh, 43
inlet_flux	create_info_file, 44
GenerateData.DataGenerator, 26	create_mesh, 44
GenerateData.DataHeat, 31	hmax, 44
GenerateData.DataNS, 35	hmin, 44
int	lc, 45
MeshUtils, 20	nmesh, 45
	nodes, 45
k	seed, 45
datagen, 14	spacing, 45
GenerateData.Heat, 41	wmax, 45
GenerateData.Stokes, 56	wmin, 45
kmax	MeshUtils.MeshLoader, 46
datagen, 15	init, 46
kmin	bounds, 48
datagen, 15	dS, 48
	ds, 48
LO	dx, 48
GenerateData.Stokes, 56	face, 48
lc	h, 48
MeshUtils.MeshCreator, 45	measure_definition, 47
	mesh, 48
mean_pressure_boundaries	
GenerateData.DataNS, 35	meshfile, 48
mean_pressure_interface	n, 49
GenerateData.DataNS, 36	plot_mesh, 47
measure_definition	rename_boundaries, 49
MeshUtils.MeshLoader, 47	rename_faces, 49
mesh	tags, 49
datagen, 15	update_tags, 47
GenerateData.DataGenerator, 28	model_type
GenerateData.Solver, 52	GenerateData.DataHeat, 32
MeshUtils.MeshLoader, 48	GenerateData.DataNS, 37
mesh_creator	mu
MeshUtils, 20	GenerateData.Stokes, 57
mesh_dir	_
datagen, 15	n
mesh info	MeshUtils.MeshLoader, 49
datagen, 15	ngraphs
mesh load	datagen, 15
datagen, 15	nmesh
mesh_name	datagen, 16
datagen, 15	MeshUtils.MeshCreator, 45
meshfile	NNodes
MeshUtils.MeshLoader, 48	GenerateData.DataGenerator, 28
MeshUtils, 19	nodes
args, 19	datagen, 16
bool, 19	MeshUtils.MeshCreator, 45
default, 20	nodes_data
filename, 20	GenerateData.DataGenerator, 27
float, 20	NodesData
help, 20	GenerateData.DataGenerator, 28
int, 20	
III., 20	outlet_flux

66 INDEX

GenerateData.DataNS, 36	GenerateData.Heat, 41			
output_dir	GenerateData.Stokes, 57			
datagen, 16	tags			
MeshUtils, 20	MeshUtils.MeshLoader, 49			
	target_fields			
P	GenerateData.DataHeat, 32			
GenerateData.Stokes, 57	GenerateData.DataNS, 37			
packages	td_nodes_data			
test_installation, 21	GenerateData.DataGenerator, 27			
parser MeshUtils, 20	GenerateData.DataHeat, 32			
plot_mesh	GenerateData.DataNS, 37			
MeshUtils.MeshLoader, 47	TDNodesData			
plot_solution	GenerateDataDataHeat, 32			
GenerateData.Heat, 40	GenerateData.DataNS, 37			
GenerateData.Solver, 51	test_installation, 21			
GenerateData.Stokes, 55	flag, 21			
pt	packages, 21			
GenerateData.Stokes, 57	timesteps			
Generale Data. Stokes, 37	datagen, 16			
Q	ts			
GenerateData.Stokes, 57	GenerateData.Heat, 42			
Gonorato Bata. Storico, Cr	GenerateData.Stokes, 57			
README.md, 59	type			
rename boundaries	MeshUtils, 21			
MeshUtils.MeshLoader, 49				
rename_faces	U Congreto Data Stoken F7			
MeshUtils.MeshLoader, 49	GenerateData.Stokes, 57 U0			
rho				
GenerateData.Stokes, 57	GenerateData.Stokes, 58			
	u0			
save	datagen, 16			
GenerateGraph, 18	GenerateData.Heat, 42			
save_graph	update_tags			
GenerateData.DataGenerator, 27	MeshUtils.MeshLoader, 47			
GenerateData.DataHeat, 31	ut			
GenerateData.DataNS, 36	GenerateData.Heat, 42			
scripts/datagen.py, 59	GenerateData.Stokes, 58			
scripts/GenerateData.py, 60	V			
scripts/GenerateGraph.py, 60				
scripts/MeshUtils.py, 60	datagen, 16 GenerateData.Heat, 42			
scripts/test_installation.py, 61				
seed	GenerateData.Stokes, 58			
MeshUtils.MeshCreator, 45	wmax			
set parameters	MeshUtils.MeshCreator, 45			
GenerateData.Heat, 40	wmin			
GenerateData.Solver, 51	MeshUtils.MeshCreator, 45			
GenerateData.Stokes, 55	Meditotiis.Meditoreator, 40			
solve				
GenerateData.Heat, 40				
GenerateData.Solver, 51				
GenerateData.Stokes, 55				
solver				
GenerateData.DataGenerator, 29				
spacing				
MeshUtils.MeshCreator, 45				
 				
Т				
datagen, 16				