ÁLGEBRA LINEAL COMPUTACIONAL

Segundo Cuatrimestre 2022

Trabajo Práctico N° 2.

En este trabajo vamos a implementar el método del gradiente conjugado para resolver sistemas de ecuaciones lineales y comparar su convergencia con la del método del descenso.

Método del descenso

Para resolver un sistema de ecuaciones lineles Ax = b, con $A \in \mathbb{R}^{n \times n}$ definida positiva, aplicamos el método del descenso a la función

$$J(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{x}^T \boldsymbol{b}.$$

Ejercicio 1.

Implementar una función que reciba una matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$, un vector $\mathbf{b} \in \mathbb{R}^n$, un vector $\mathbf{x}_0 \in \mathbb{R}^n$ y un entero N > 0 y aplique N pasos del método del descenso:

$$\boldsymbol{x}^{(k)} = \boldsymbol{x}^{(k-1)} + \lambda^{(k)} \boldsymbol{r}^{(k)}, \quad \text{con} \quad \boldsymbol{r}^{(k)} = \boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}^{(k-1)} \quad \text{y} \quad \lambda^{(k)} = \frac{(\boldsymbol{r}^{(k)})^T \boldsymbol{r}^{(k)}}{(\boldsymbol{r}^{(k)})^T \boldsymbol{A} \boldsymbol{r}^{(k)}}$$

El programa debe devolver la aproximación obtenida $\mathbf{x}^{(N)}$ y una lista con los errores $\|\mathbf{b} - \mathbf{A}\mathbf{x}^{(k)}\|_2$ obtenidos en cada paso.

Ejercicio 2.

Aplicar el método en el siguiente ejemplo:

- $A \in \mathbb{R}^{10 \times 10}$, $A = M^T M + I$, donde $M \in \mathbb{R}^{10 \times 10}$ es una matriz con coordenadas aleatorias en [0, 1).
- $b \in \mathbb{R}^{10}$, un vector con coordenadas aleatorias en [0,1).
- $x^{(0)} \in \mathbb{R}^{10}$, un vector con coordenadas aleatorias en [0,1).
- N = 20

Graficar los errores en función del número de pasos.

Método del gradiente conjugado

Por el Lema 6.1 del Apunte de la materia, si en el método del descenso las direcciones $v_1, v_2, ...$ que tomamos en cada paso son A-ortogonales (es decir, $v_i^T A v_j = 0$ para $i \neq j$), el método converge luego de n pasos.

Dado un conjunto v_1, \ldots, v_n de vectores l.i., la siguiente modificación del método de Gram-Schmidt nos permite obtener direcciones A-ortogonales:

$$\mathbf{d}_1 = oldsymbol{v}_1, \qquad \mathbf{d}_{k+1} = oldsymbol{v}_{k+1} - \sum_{i=1}^k rac{oldsymbol{v}_{k+1}^T oldsymbol{A} \mathbf{d}_i}{\mathbf{d}_i^T oldsymbol{A} \mathbf{d}_i} \mathbf{d}_i.$$

Para el método del gradiente conjugado, implementamos primero una función que realice un paso de este proceso.

Ejercicio 3.

(Direcciones A-ortogonales) Implementar una función que reciba una lista \mathtt{d} de vectores y un vector v y devuelva un vector u que sea el resultado de aplicar un paso de la modificación del método Gram-Schmidt vista:

Gram-Schmidt(d, v, A):

- 1) $\boldsymbol{u} = \text{copia de } \boldsymbol{v}$
- 2) Para i = 1, ..., len(d):

$$oldsymbol{u} = oldsymbol{u} - rac{oldsymbol{v}^T A oldsymbol{d}_i}{oldsymbol{d}_i^T A oldsymbol{d}_i} oldsymbol{d}_i$$

Dados un punto $z \in \mathbb{R}^n$ y una dirección $v \in \mathbb{R}^n$, la función J(x) alcanza su mínimo en la recta $z + \lambda v$ para

$$\lambda = \frac{\boldsymbol{v}^T \boldsymbol{r}}{\boldsymbol{v}^T \boldsymbol{A} \boldsymbol{v}},$$

donde r = Az - b.

En base a estas propiedades, obtenemos el método del gradiente conjugado, que converge a la solución del sistema en n pasos:

gradiente-conjugado (A, x_0, b, n) :

- 1) $\mathbf{x} = \text{copia de } \mathbf{x}_0$
- 2) d =lista vacía
- 3) Para i = 1, ..., n:
 - (a) $r_i = \boldsymbol{b} \boldsymbol{A}\boldsymbol{x}$
 - (b) $\tilde{\boldsymbol{r}}_i = \texttt{Gram-Schmidt}(d, \boldsymbol{r}_i, \boldsymbol{A})$
 - (c) $\lambda_i = \frac{\tilde{\boldsymbol{r}}_i^T \boldsymbol{r}_i}{\tilde{\boldsymbol{r}}_i^T A \tilde{\boldsymbol{r}}_i}$
 - (d) $\mathbf{x} = \mathbf{x} + \lambda_i \tilde{\mathbf{r}}_i$
 - (e) Agregar \tilde{r}_i a la lista d
- 4) Devolver \boldsymbol{x}

(Observar que en el paso 3)c, el segundo factor en el numerador es \mathbf{r}_i y no $\tilde{\mathbf{r}}_i$).

En los siguientes ejercicios se pide implementar este método.

Ejercicio 4.

Implementar una función que reciba una matriz $\mathbf{A} \in \mathbb{R}^{n \times n}$, un vector $\mathbf{b} \in \mathbb{R}^n$, un vector $\mathbf{x}_0 \in \mathbb{R}^n$ y aplique n pasos del método del gradiente conjugado.

El programa debe devolver la aproximación obtenida $x^{(n)}$ y una lista con los errores $\|b - Ax^{(k)}\|_2$ obtenidos en cada paso.

Ejercicio 5.

Aplicar el método para la matriz A y los vectores b y x_0 definidos en el ejercicio 2.

Graficar los erorres en función del número de pasos.

En base a los resultados obtenidos, ¿cuál de los dos métodos considera más apropiado para resolver un sistema de ecuaciones lineales?