Classe **3D**

Anno scolastico **2024/2025**

🕞: www.gferraris.it - 🖃: segreteria@gferraris.it

Verifica scritta valida per l'orale di Sistemi e Reti - Teoria

Data: 12-11-2024

Nome Cognome

Parte 1 - Domande a scelta multipla (10 punti)

Seleziona la risposta corretta per ciascuna domanda (seleziona UNA SOLA)

- 1. Quale tipo di memoria sfrutta il principio di località temporale?
 - A) La ROM
 - B) La RAM
 - C) La Cache
 - D) L'EPROM
- 2. Quale caratteristica distingue la SRAM dalla DRAM?
 - A) È non volatile
 - B) Non necessita di refresh
 - C) Ha capacità maggiore
 - D) È più economica
- 3. Quale tipo di architettura prevede l'utilizzo di un opcode per le sue operazioni?
 - A) Architettura a due operandi
 - B) Architettura a tre operandi
 - C) MIPS
 - D) DIPS
- 4. Quale periferica si occupa di gestire le interruzioni all'interno di un modulo condiviso?
 - A) Module controller
 - B) Controller
 - C) PCI/e
 - D) DMA

- 5. Quale tipo di memoria ROM è elettricamente riprogrammabile?
 - A) EPROM
 - B) EEPROM
 - C) PROM
 - D) ESPROM
- 6. L'instruction set di tipo CISC:
 - A) Ha poche istruzioni semplici
 - B) Ha molte istruzioni complesse
 - C) È tipico dei microcontrollori
 - D) È sempre più veloce del RISC
- 7. L'architettura SIMD:
 - A) Esegue istruzioni diverse su dati diversi
 - B) Esegue la stessa istruzione su dati diversi
 - C) Non può essere implementata in hardware
 - D) È più lenta di una architettura sequenziale
- 8. La cosiddetta "legge di Amdahl" implementa il principio di "località" dei dati: cosa vuol dire?
 - A) I dati sono già disponibili in memoria, non occorre riprenderli tramite fetch/decode/execute
 - B) I dati si trovano vicini, quindi non dobbiamo spostarci; usiamo dei bus per prenderli
 - C) Non è un concetto applicabile alle CPU
 - D) Diminuisce il parallelismo; non si usa

9. La SRAM rispetto alla DRAM: 10. Quali parti compongono il linguaggio Assembly (per come l'abbiamo visto noi: x86)? A) È più lenta ma più economica B) È più veloce ma più costosa A) Deassembler/Unlinker C) Ha maggiore capacità B) Disassembler/Reassembler D) Richiede refresh periodico C) Assembler/Linker D) Assembler Parte 2 – Vero o Falso (10 punti) Indica se le seguenti affermazioni sono Vere (V) o False (F) – l'opzione di scelta è sulla colonna a dx 1. La memoria DRAM è più costosa della SRAM. **(V/F)** 2. L'istruzione MOV tra due locazioni di memoria è consentita in tutte le architetture x86. **(V/F)** 3. Per effettuare un indirizzamento, le componenti sono SOLO due: base address ed offset. **(V/F)** 4. L'istruzione JMP in Assembly corrisponde ad un IF in programmazione. (V/F) 5. La sintassi delle istruzioni è "Opcode Destinazione Sorgente" **(V/F)** 6. Il ciclo macchina è composto da 5 fasi: IF, ID, EX, MEM e WB **(V/F)** 7. Il DMA (Direct Memory Access) permette il trasferimento diretto di dati tra memoria e periferiche senza coinvolgere la CPU. (V/F)8. La pipeline permette di eseguire più fasi di istruzioni diverse contemporaneamente. **(V/F)** 9. Nell'architettura MIMD ogni processore esegue la stessa istruzione su dati diversi. **(V/F)** 10. La cache prevede due tipi di caratteristiche per trovare i dati: hit e miss (V/F) Parte 3 – Domande aperte e pratiche (20 punti) Rispondi alle seguenti domande in modo chiaro e preciso (se lo ritieni opportuno, si disegni pure schema e/o figura di interesse, anche dietro i fogli – i dettagli e gli esempi sono apprezzati e contribuiscono a più punti) 1. Descrivi la tecnica della pipeline, spiegando come migliora le prestazioni del processore e quali problemi può presentare. Fai un esempio pratico di come funziona. Risposta:

molti processori moderni usano un approccio ibrido?		
Risposta:		
2 Danamirri i dire		111:4-44
	con istruzioni assembly.	lle architetture x86, spiegando come funzionano e
auconae esempi		
Risposta:		
		_
4. Data la seguei	nte sequenza di istruzioni assembly	Risposta:
x86 (sintassi: ist	ruzione – sorgente – destinazione):	
MOV AX, 5	; AX = 5	
MOV BX, 3		
MOV CX, 0	; CX = 0	
start:		
	; $AX = AX + BX$	
	; CX = CX - 1	
	; confronta CX con -5	
JNE start CX ≠ -5	; salta a 'start' se	
O11 / O		
Spiega cosa fa il programma		
• Calcola il valore finale di AX		
	volte viene eseguito il ciclo stri coinvolti e le loro funzioni	

2. Spiega le differenze tra architetture CISC e RISC, evidenziando vantaggi e svantaggi di ciascuna. Perché