COL202: Discrete Mathematical Structures

Spring 2023

Tutorial Sheet 10

Announced on: Apr 06 (Thurs)

1. [Submission Problem for Group 1] Based on Problem 22.1 in [LLM17].

The running time of an algorithm A is described by the recurrence $T(n) = 7 \cdot T(n/2) + n^2$. A competing algorithm B has a running time of $T(n) = a \cdot T(n/4) + n^2$. For what values of a is A asymptotically faster than B? How does your answer change if the running time of B is modified to $T(n) = aT(n/4) + n^4$?

2. [Submission Problem for Group 2] Based on Problem 22.2 in [LLM17].

Use the Akra-Bazzi formula to find $\Theta(\cdot)$ asymptotic bounds for the following divide and-conquer recurrence:

$$T(n) = 3T(\lfloor n/3 \rfloor) + n,$$

where T(0) = 0.

3. [Submission Problem for Group 3] Based on Problem 16.15 in [LLM17].

Solve the linear recurrence given below:

$$T(n) = 2T(n-1) + 2T(n-2)$$
 for $n > 1$.

where T(1) = 1 and T(0) = 0.

- 4. [Submission Problem for Group 4] Based on Problem 15.3, 15.6, and 15.33 in [LLM17].
 - a) How many functions are there in total from set A to set B if |A| = 3 and |B| = 7?
 - b) How many of the billion numbers in the integer interval $[1, 10^9]$ contain the digit 1 in their decimal representation?
 - c) There is a robot that steps between integer positions in 3-dimensional space. Each step of the robot increments one coordinate and leaves the other two unchanged. How many paths can the robot follow going from the origin (0,0,0) to (3,4,5)?

References

[LLM17] Eric Lehman, Tom Leighton, and Albert R Meyer. *Mathematics for Computer Science*. 2017. URL: https://courses.csail.mit.edu/6.042/spring18/mcs.pdf.