The Link Layer: Wireless LANs

CS 352, Lecture 21, Spring 2020

http://www.cs.rutgers.edu/~sn624/352

Srinivas Narayana

Course announcements

- Quiz grades:
 - Drop 2 lowest scores
- Final exam
 - All multiple choice
 - One or more correct: scored as #right #wrong options

Review of concepts

Link layer

Review of concepts

- Link layer: medium access control
- Want: efficiency, fairness, simplicity, distribution
- Channel partitioning: TDMA, FDMA
- Random access
 - Slotted ALOHA Randomly contending is too inefficient (pure ALOHA is 18% asymptotically efficient) Pure ALOHA

 - Carrier sensingCollision Detection
- Listen before speaking, and as you speak
- Ethernet CSMA/CD: Exponential back-off

 One of the most fundamental and reused ideas in all of computer systems

Turn-taking

Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now far exceeds # wired phone subscribers
- # wireless Internet-connected devices far exceeds # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
 - Your refrigerator, microwave, and car are connected
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Wireless network taxonomy

	single hop	multiple hops
infrastructure (e.g., APs)	host connects to base station (WiFi, WiMAX, cellular) which connects to larger Internet	host may have to relay through several wireless nodes to connect to larger Internet: <i>mesh net</i>
no infrastructure	no base station, no connection to larger Internet (Bluetooth, ad hoc nets)	no base station, no connection to larger Internet. May have to relay to reach a given wireless node MANET, VANET

Wireless network characteristics

Wireless Link Characteristics (1)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices interfere
- multipath propagation: radio signal reflects off objects ground, arriving at destination at slightly different times

.... make communication across (even a point to point) wireless link much more challenging

Wireless Link Characteristics (2)

- SNR: signal-to-noise ratio
 - larger SNR easier to extract signal from noise (a "good thing")
- SNR versus BER tradeoffs
 - given physical layer: increase power -> increase SNR->decrease BER
 - given SNR: choose physical layer that meets BER requirement, giving highest thruput
 - SNR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

Wireless network characteristics

Multiple wireless senders and receivers create additional problems (beyond multiple access):

Hidden terminal problem

- B, A hear each other
- B, C hear each other
- A, C can not hear each other means A, C unaware of their interference at B

Signal attenuation:

- B, A hear each other
- B, C hear each other
- A, C can not hear each other interfering at B

IEEE 802.11 Wireless LAN

802.11b

- 2.4-5 GHz unlicensed spectrum
- up to 11 Mbps

802.11a

- 5-6 GHz range
- up to 54 Mbps

802.11g

- 2.4-5 GHz range
- up to 54 Mbps

802.11n: multiple antennae

- 2.4-5 GHz range
- up to 200 Mbps

- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11: Channels, association

- 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication
 - will typically run DHCP to get IP address in AP's subnet

WiFi (802.11) multiple access

CSMA/CA

Review: MAC protocols: Taxonomy

three broad classes:

channel partitioning

- divide channel into smaller "pieces" (time slots, frequency, code)
- allocate piece to node for exclusive use

random access

- channel not divided, allow collisions
- "recover" from collisions

"taking turns"

nodes take turns, but nodes with more to send can take more or longer turns

Review: Ethernet CSMA/CD algorithm

- 1. NIC receives datagram from network layer, creates frame
- 2. If NIC senses channel idle, starts frame transmission. If NIC senses channel busy, waits until channel idle, then transmits.
- 3. If NIC transmits entire frame without detecting another transmission, NIC is done with frame!

- 4. If NIC detects another transmission while transmitting, aborts and sends jam signal
- 5. After aborting, NIC enters binary (exponential) backoff:
 - after mth collision, NIC chooses K at random from {0,1,2, ..., 2^m-1}. NIC waits K·512 bit times, returns to Step 2
 - longer backoff interval with more collisions

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time

timer counts down while channel idle

transmit when timer expires

if no ACK, increase random backoff interval, repeat 2

802.11 receiver

- if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

SIFS < DIFS

Avoiding collisions (more)

idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames

- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they're short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

Wireless multiple access

Code Division Multiple Access (CDMA)

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence

CDMA encode/decode

CDMA: two-sender interference

Summary of the wireless link layer

- Wireless medium is very different from wired
 - Signal attenuation ("fading") much more important to handle
 - Hidden terminal problem
- Consequences of differences:
 - Link-layer ACKs
 - Transmission delays to control contention: SIFS, DIFS
 - Link reservation (RTS/CTS)
 - Conservative backoff timer (count down only when idle)
- Medium access control
 - Frequency division multiple access (AP channels in WiFi)
 - Random access (CSMA/CA for transmitting to/from WiFi AP)
 - Code division multiple access (simultaneous transmission in cellular networks)