Introduction to Machine Learning

Al Model Development

Time: 60 mins

Introduction

In this class, the student/s will learn to use teachable machine that can be trained to identify objects in the image.

New Commands Introduced

 Teachable machine
 The model can be trained to predict the class of image detected. The trained model will tell the accuracy level of

each prediction

np.set_printoptions()
 determine the way floating point numbers, arrays and

other NumPy objects are displayed.

load_model()Loads the trained model

open()
 Opens a file and returns the file as an object

np.asarray()Normailize an array

model.predict()
 Predicts the image

np.ragmax()
 Accepts an array of numbers and returns the highest number

in the array

Vocabulary

- The train model is a technique used to train different machine learning models.
- TenserFlow is a free and open-source software library for machine learning and artificial intelligence. It can
 be used across a range of tasks but has a particular focus on training and inference of deep neural
 networks.
- **Neural network** is a method in artificial intelligence that teaches computers to process data in a way that is inspired by the human brain.

Learning Objectives

Student/s should be able to:

- Recall how to detect face mesh with landmarks and place image filters over it
- Demonstrate how the teachable machine works to train a prediction model.
- Explain the working of trained model to predict the objects in the video.

Activities

- 1. Class Narrative: (2 mins)
 - Brief the student/s that you can train an model to detect any object with enough data of that object and test it using different objects.
- 2. Concept Introduction Activity: (5 mins)
 - Let the student/s play the explore-activity to see how teachable machine works.
 - Using the slides, explain that the student/s will learn:
 - o to train a model.
 - to load the model
 - o to predict image classes.
- 3. Activity 1: Train a Model (14 mins)

Teacher Activity: (7 mins)

- Introduce the Kearas library and explain how to prediction is done.
- Explain how to train a model using teachable machine.

https://teachablemachine.withgoogle.com/train.

Explain how to test the model using sample images

Student Activity: (7 mins)

• Guide the student/s to train a model using teachable machine.

4. Activity 2: Load the Model (12 mins)

Teacher Activity: (6 mins).

- Demonstrate how download the trained model, unzip the folder and copy it into the project folder.
- Explain how to load the model, resize and normalize the images.

Student Activity: (6 mins)

• Guide the student/s to download the trained model, unzip it and copy in the project folder.

5. Activity 3: Predict Image Classes (12 mins)

Teacher Activity: (6 mins)

- Ask the students to observe how the prediction percentages change depending on the images.
- Demonstrate displaying the class with highest prediction and print out its name.

Student Activity: (6 mins)

• Guide the student/s to display the class with highest prediction and print out its name.

6. Introduce the Post class project: (2 min)

• .Identify the traffic signs of stop, turn left and turn right using machine learning.

7. Test and Summarize the class learnings: (5 mins)

- Check for understanding through quizzes and summarize learning after respective missions.
- Summarize the overall class learning towards the end of the class.

8. Additional activities:

- Encourage the student/s to use a model that plays the game named rock paper, scissors.
- Encourage the student/s to use a model count the fingers that are held up.

9. State the Next Class Objective: (1 min)

• In the next class, student/s will learn to prepare data for an age prediction AI tool.

U.S. Standards:

CSTA: 2-AP-11, 2-AP-12, 2-AP-13, 2-AP-14, 2-AP-19

Links Table		
Activity	Activity Name	Link
Class Presentation	Introduction to Machine Learning	https://s3-whjr-curriculum-uploads. whjr.online/5e1c48b2-5348-44c7-8 d68-88325b3bc286.html
Explore Activity	Introduction to Machine Learning	https://github.com/Tynker-Computer-V ision/TNK-M10-PRO-C73-SAS-BP
Teacher Activity 1	Train a Model	https://teachablemachine.withgoogle.co m/train/image
Teacher Reference: Teacher Activity 1 Solution	Train a Model: Solution	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C73-TAS
Student Activity 1	Train a Model	https://teachablemachine.withgoogle.co m/train/image
Teacher Reference: Student Activity 1 Solution	Train a Modell: Solution	https://github.com/Tynker-Computer -Vision/TNK-M10-PRO-C73-SAS
Teacher Activity 2	Load the Model	https://github.com/Tynker-Computer-Vi

		sion/TNK-M10-PRO-C73-TAS-BP
Teacher Reference: Teacher Activity 2 Solution	Load the Model: Solution	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C73-TAS
Student Activity 2	Load the Model	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C73-SAS-BP
Teacher Reference: Student Activity 2 Solution	Load the Model: Solution	https://github.com/Tynker-Computer -Vision/TNK-M10-PRO-C73-SAS
Teacher Activity 3	Predict Image Classes	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C73-TAS-BP
Teacher Reference: Teacher Activity 3 Solution	Predict Image Classes: Solution	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C73-TAS
Student Activity 3	Predict Image Classes	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C73-SAS-BP
Teacher Reference: Student Activity 3 Solution	Predict Image Classes: Solution	https://github.com/Tynker-Computer -Vision/TNK-M10-PRO-C73-SAS
Student's Additional Activity 1	Rock, Paper, Scissors	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C73-SAS-BP
Teacher Reference: Student's Additional Activity 1 Solution	Rock, Paper, Scissors: Solution	https://github.com/Tynker-Computer -Vision/TNK-M10-PRO-C73-SAS
Student's Additional Activity 2	Count the Fingers	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C73-SAS-BP
Teacher Reference: Student's Additional Activity 2 Solution	Count the Fingers: Solution	https://github.com/Tynker-Computer -Vision/TNK-M10-PRO-C73-SAS
Post Class Project	Identify the traffic signs	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C73-PCP-BP
Teacher Reference: Post Class Project Solution	Identify the traffic signs: Solution	https://github.com/Tynker-Computer-Vision/TNK-M10-PRO-C73-PCP