Introduction to W-Graphs

1. Kazhdan-Lusztig W-Graphs

Recall that, in [KL79], Kazhdan and Lusztig found a pair of self-dual bases over $\mathcal{H}(W, S)$ in terms of the standard basis $\{T_x : x \in W\}$. These are the Kazhdan-Lusztig (or canonical) basis

$$C_x = (-1)^{\ell(x)} q^{\frac{1}{2}\ell(x)} \sum_{y \le x} (-1)^{\ell(y)} q^{-\ell(y)} \overline{P_{y,x}(q)} T_y$$

and the dual Kazhdan-Lusztig (or dual canonical) basis

$$C'_{x} = q^{-\frac{1}{2}\ell(x)} \sum_{y \le x} P_{y,x}(q) T_{y}.$$

Let $\mathcal{D}_x := \{s \in S : sx < x\}$ denote the *left descent set of x*. It was also shown in [KL79] that

$$T_s C_x = \begin{cases} -C_x, & \text{if } s \in \mathcal{D}_x; \\ qC_x + q^{1/2} \sum_{\{y \in W: s \in \mathcal{D}_y\}} \mu(y, x) C_y, & \text{otherwise} \end{cases}$$

and

$$T_s C_x' = \begin{cases} q C_x', & \text{if } s \in \mathcal{D}_x; \\ -C_x' + q^{1/2} \sum_{\{y \in W: s \in \mathcal{D}_y\}} \mu(y, x) C_y', & \text{otherwise.} \end{cases}$$

Here $\mu(y,x) := c(y,x) + c(x,y)$, where c(y,x) is defined to be the coefficient of $q^{(\ell(x)-\ell(y)-1)/2}$ (the power of q of maximal degree) in the KL polynomial $P_{y,x}(q)$. This motivates the following.

Definition 1. (W-Graph). Let (W,S) be a Coxeter system and $\mathcal{H}(W,S)$ its associated Iwahori–Hecke algebra. A W-graph is a triple (X,I,μ) consisting of a set X of vertices, a function $I:X\to \mathcal{P}(S)$ that assigns to each vertex $x\in X$ a descent set $I_x\subseteq S$, and a function

$$\mu: X \times X \to \mathbb{Z}$$

such that there is an edge $y \to x$ in the graph when the edge weight $\mu(y,x)$ is non-zero. Moreover, if $E := \mathbb{Z}[q^{\pm 1/2}]X$ is the free $\mathbb{Z}[q^{\pm 1/2}]$ -module with basis X, we ask that its $\mathbb{Z}[q^{\pm 1/2}]$ -endomorphisms

$$\tau_s(x) := \begin{cases} -x, & \text{if } s \in I_x; \\ qx + q^{1/2} \sum_{\{y \in X: s \in I_y\}} \mu(y, x) y, & \text{otherwise} \end{cases}$$

for each $s \in S$ satisfy the braid relations

$$\underbrace{\tau_s \tau_t \tau_s \cdots}_{m_{st} \ factors} = \underbrace{\tau_t \tau_s \tau_t \cdots}_{m_{st} \ factors},$$

for all $s,t \in S$ such that $m_{st} \neq \infty$. We define dual W-graphs similarly, where we instead use $\mathbb{Z}[q^{\pm 1/2}]$ -endomorphisms of E of the form

$$\tau'_s(x) := \begin{cases} qx, & \text{if } s \in I_x; \\ -x + q^{1/2} \sum_{\{y \in X: s \in I_y\}} \mu(y, x)y, & \text{otherwise.} \end{cases}$$

Asking that the A-endomorphisms τ_s defined above satisfy the braid relations is exactly equivalent to asking that E admit a $\mathcal{H}(W,S)$ -module structure given by $T_s \cdot x := \tau_s(x)$. This is because all $\mathbb{Z}[q^{\pm 1/2}]$ -endomorphisms of the form τ_s satisfy the quadratic relation $(\tau_s + 1)(\tau_s - q) = 0$, provided the sums are finite. To see that this is true, observe that when $s \notin I_x$, we have

$$(\tau_{s}+1)(\tau_{s}-q)x$$

$$=\tau_{s}^{2}(x)-q\tau_{s}(x)+\tau_{s}(x)-qx$$

$$=q\tau_{s}(x)+q^{1/2}\sum_{\{y\in X:s\in I_{y}\}}\mu(y,x)\tau_{s}(y)-q\tau_{s}(x)+qx+q^{1/2}\sum_{\{y\in X:s\in I_{y}\}}\mu(y,x)y-qx$$

$$=q^{1/2}\sum_{\{y\in X:s\in I_{y}\}}\mu(y,x)\tau_{s}(y)+q^{1/2}\sum_{\{y\in X:s\in I_{y}\}}\mu(y,x)y$$

$$=q^{1/2}\sum_{\{y\in X:s\in I_{y}\}}\mu(y,x)(-y)+q^{1/2}\sum_{\{y\in X:s\in I_{y}\}}\mu(y,x)y$$

$$=0.$$

Conversely, when $s \in I_x$, the result follows trivially. It follows that every W-graph (and dual W-graph) corresponds to a representation $\varphi : \mathcal{H}(W,S) \to \operatorname{End}(E)$ given on the generators by $\varphi : T_s \mapsto \tau_s$.

It is sometimes convenient to look at the transposes of τ_s and τ_s' . In particular, suppose we fix $s \in S$ and choose an ordering $X = \{x_1, \ldots, x_n\}$ such that $s \in I_{x_i}$ for all $1 \le i \le k$ and $s \notin I_{x_j}$ for all $j \ge k$. Then we can express τ_s and τ_s' as the matrices

$$\tau_s = \begin{pmatrix} -I_k & 0 \\ * & qI_{n-k} \end{pmatrix} \quad \text{and} \quad \tau_s' = \begin{pmatrix} qI_k & 0 \\ * & -I_{n-k} \end{pmatrix},$$

where I_k is the $k \times k$ identity matrix and the block labelled by the asterisk * has elements that are either 0 or of the form $q^{1/2}\mu(y,x)$. The transposes of τ_s and τ_s' thus involve moving only the sums, giving us

$$\tau_s^T(x) = \begin{cases} -x + q^{1/2} \sum_{\{y \in X : s \notin I_y\}} \mu(y, x) y, & \text{if } s \in I_x; \\ qx, & \text{otherwise} \end{cases}$$

and

$$(\tau'_s)^T(x) = \begin{cases} qx + q^{1/2} \sum_{\{y \in X : s \notin I_y\}} \mu(y, x) y, & \text{if } s \in I_x; \\ -x, & \text{otherwise,} \end{cases}$$

respectively. These also produce representations of $\mathcal{H}(W,S)$, and hence W-graphs, of their own.

The (one-sided) W-graph constructed in [KL79] is defined by taking

$$X := W$$
, $I_x := \mathcal{D}_x$ and $\mu(y, x) := c(y, x) + c(x, y)$.

Note that either c(y,x) = 0 or c(x,y) = 0 (usually both), so this W-graph is not directed. In particular, it corresponds to the left regular representation of $\mathcal{H}(W,S)$.

From now on, we will be working with the normalized standard basis $\delta_w := v^{\ell(w)} T_w$ for $\mathscr{H}(W, S)$, where $v := q^{-1/2}$. Normalizing the dual Kazhdan–Lusztig basis, we obtain

$$b_x = v^{\ell(x)} \sum_{y \le x} P_{y,x}(v^{-2}) v^{-\ell(y)} \delta_y = \sum_{y \le x} h_{y,x}(v) \delta_y,$$

where $h_{y,x}: v \mapsto v^{\ell(x)-\ell(y)} P_{y,x}(v^{-2})$. Recall that $P_{y,x}(q)$ has maximal degree $\frac{1}{2}(\ell(x)-\ell(y)-1)$ in q. It therefore has degree greater than or equal to $1+\ell(y)-\ell(x)$ in v, meaning $h_{y,x}(v) \in v\mathbb{Z}[v]$, where the coefficient of $q^{\frac{1}{2}(\ell(x)-\ell(y)-1)}$ in $P_{y,x}(q)$ is now the coefficient of v in $h_{y,x}(v)$. Because $\tau_s'(x)$ corresponds to $T_s \cdot x$, converting to the normalized basis involves multiplying by a factor of $v^{\ell(s)} = v$, whence

$$\delta_x \cdot x := \begin{cases} v^{-1}x, & \text{if } s \in I_x; \\ -vx + \sum_{\{y \in X : s \in I_y\}} \mu(y, x)y, & \text{otherwise.} \end{cases}$$

Using $b_s = \delta_s + v$, we have an action of the normalized Kazhdan-Lusztig basis given pleasantly by

$$b_s \cdot x := \begin{cases} (v + v^{-1})x, & \text{if } s \in I_x; \\ \sum_{\{y \in X: s \in I_y\}} \mu(y, x)y, & \text{otherwise.} \end{cases}$$

Example 2. $(W = S_3)$. In this case, $P_{y,x}(q) \in \{0,1\}$ for all $x, y \in W$, so the edges all have unit weight. Perhaps unsurprisingly, the graph – pictured on the left – recovers the Bruhat order.

The action of $\{b_s, b_t\}$ induces a subgraph structure – pictured on the right – with the strongly connected components corresponding to the left cells $\{1\}$, $\{s, ts\}$, $\{t, st\}$ and $\{sts\}$ of W. In the language of Soergel bimodules, an arrow $x \xrightarrow{s} y$ (respectively $x \xrightarrow{t} y$) indicates that $B_y \geq_L B_x$; that is, B_y is isomorphic to a direct summand of $B_s \otimes_R B_x$ (respectively $B_t \otimes_R B_x$).

2. The Harish-Chandra Picture

Let's briefly mention the connection between admissible representations and (\mathfrak{g}, K) -modules. Good resources for what follows are [Vog81] and [Bin10].

Definition 3. (Continuous Representation). Let G be a Lie group. A continuous representation of G is a pair (π, \mathcal{H}) , where \mathcal{H} is a complex Hilbert space and $\pi : G \to \mathcal{B}(\mathcal{H})$ is a continuous homomorphism of G into the semigroup $\mathcal{B}(\mathcal{H})$ of bounded operators on \mathcal{H} , where $\mathcal{B}(\mathcal{H})$ is endowed with the weak topology. An invariant subspace of (π, \mathcal{H}) is a closed subspace of \mathcal{H} that is left invariant under all the operators in $\pi(G)$. The continuous representation (π, \mathcal{H}) is said to be irreducible if $\mathcal{H} \neq \{0\}$ and there are no proper, non-trivial invariant subspaces.

Definition 4. (Bounded Equivalence). Let (π, \mathcal{H}) and (π', \mathcal{H}') be continuous representations of a Lie group G. We define the space of intertwining operators between (π, \mathcal{H}) and (π', \mathcal{H}') to be

 $\operatorname{Hom}_G(\pi, \pi') := \{L : \mathcal{H} \to \mathcal{H}' : L \text{ is continuous, linear and } \pi'(g) \circ L = L \circ \pi(g) \text{ for all } g \in G\}.$

We say that two continuous representations are boundedly equivalent if there exists an invertible intertwining operator between them.

Definition 5. (Dual Object). Let G be a Lie group that is the direct product of a compact group and an Abelian group, such that every irreducible continuous representation of G is finite-dimensional. We define the dual object \widehat{G} of G to be the set of bounded equivalence classes of irreducible continuous representations of G.

Definition 6. (Admissible Representation). Let G be a real Lie group with K a maximal compact subgroup. A continuous representation (π, \mathcal{H}) of G is said to be K-admissible if $\operatorname{Hom}_K(V_{\delta}, \mathcal{H})$ is finite-dimensional for all irreducible continuous representations $(\delta, V_{\delta}) \in \widehat{K}$ of K.

Definition 7. ((\mathfrak{g} , K)-Module). Let G be a real Lie group with complexified Lie algebra \mathfrak{g} and maximal compact subgroup K. A (\mathfrak{g} , K)-module is a complex vector space V together with a map $\pi: \mathfrak{g} \sqcup K \to \operatorname{End}(V)$ that restricts to a Lie algebra representation $\pi|_{\mathfrak{g}}$ (that is, V is a $\mathcal{U}(\mathfrak{g})$ -module) and a group representation $\pi|_K$ satisfying certain compatibility conditions. A (\mathfrak{g} , K)-module V is said to be K-admissible if $\operatorname{Hom}_K(V_{\delta}, V)$ is finite-dimensional for all irreducible continuous representations $(\delta, V_{\delta}) \in \widehat{K}$ of K. A K-admissible (\mathfrak{g} , K)-module which is finitely-generated over $\mathcal{U}(\mathfrak{g})$ is called a Harish-Chandra module.

Definition 8. (K-Finiteness). Let G be a real Lie group with K a maximal compact subgroup and (π, \mathcal{H}) a continuous representation of G. A vector $v \in \mathcal{H}$ is said to be K-finite if $\operatorname{span}\{\pi(k)v : k \in K\}$ is finite-dimensional. We denote $\mathcal{H}_K := \{v \in \mathcal{H} : v \text{ is } K\text{-finite}\}.$

Theorem 9. ([Vog81, Theorem 0.3.5]). Let G be a real Lie group with Lie algebra \mathfrak{g}_0 and maximal compact subgroup K. If (π, \mathcal{H}) is a K-admissible representation of G, the limit

$$\widehat{\pi}_0(x)v := \lim_{t \to 0} \frac{\pi(\exp(tx))v - v}{t}$$

exists for all $x \in \mathfrak{g}_0$ and $v \in \mathcal{H}_K$, where $\exp : \mathfrak{g}_0 \to G$ is the exponential map. In particular, this defines a Lie algebra representation $\widehat{\pi}_0 : \mathfrak{g}_0 \to \operatorname{End}(\mathcal{H}_K)$. Let $\widehat{\pi}|_{\mathfrak{g}} : \mathfrak{g} \to \operatorname{End}(\mathcal{H}_K)$ be its complexification, which exists since \mathcal{H} is complex. By definition \mathcal{H}_K induces a group representation $\widehat{\pi}|_K : K \to \operatorname{End}(\mathcal{H}_K)$, whence these representations endow \mathcal{H}_K with the structure of a (\mathfrak{g}, K) -module.

Definition 10. (Infinitesimal Equivalence). Let (π, V) and (π', V') be (\mathfrak{g}, K) -modules. We define the space of intertwining operators between (π, V) and (π', V') to be

 $\operatorname{Hom}_{(\mathfrak{g},K)}(\pi,\pi')\coloneqq\{L:V\to V':L\text{ is complex, linear and }\pi'(x)\circ L=L\circ\pi(x)\text{ for all }x\in\mathfrak{g}\sqcup K\}.$

We say that two (\mathfrak{g}, K) -modules are equivalent if there exists an invertible intertwining operator between them. Two continuous representations are said to be infinitesimally equivalent if their corresponding Harish-Chandra modules are equivalent.

Theorem 11. ([Vog81, Theorem 0.3.10]). Let G be a real Lie group with complexified Lie algebra \mathfrak{g} and maximal compact subgroup K. Then every irreducible (\mathfrak{g}, K) -module is the Harish-Chandra module of an irreducible K-admissible representation of G. In particular, every irreducible (\mathfrak{g}, K) -module is automatically K-admissible, and we have a bijective correspondence

$$\frac{\{\text{irreducible }K\text{-admissible representations of }G\}}{\text{infinitesimal equivalence}}\longleftrightarrow \frac{\{\text{irreducible Harish-Chandra modules}\}}{\text{equivalence}}$$

$$\longleftrightarrow \frac{\{\text{irreducible }(\mathfrak{g},K)\text{-modules}\}}{\text{equivalence}}$$

via Theorem 9.

From now on, we shall assume the following notation. Let \mathbb{G} be a complex, reductive algebraic group defined over \mathbb{R} and G a real form with Cartan involution θ . Write $\mathbb{K} := \mathbb{G}^{\theta}$ and $K := G^{\theta}$ for the corresponding fixed-point subgroups, where we recall that K is necessarily maximal compact (see [AC09, §3] or my notes on categorical representation theory). Denote by \mathfrak{g} the complexification of the Lie algebra of G and let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} . Finally, let W be the Weyl group of \mathfrak{h} in \mathfrak{g} ([Vog81, Definition 0.2.5]).

If V is an irreducible (\mathfrak{g}, K) -module, Dixmier's generalization of Schur's lemma ([Kna13, Proposition 5.19]) tells us that every endomorphism of an irreducible (\mathfrak{g}, K) -module V is a scalar. In particular, by treating V as a $\mathcal{U}(\mathfrak{g})$ -module, the center $Z(\mathcal{U}(\mathfrak{g}))$ acts on V by

$$z \cdot v = \chi_V(z)v$$

for all $z \in Z(\mathcal{U}(\mathfrak{g}))$ and $v \in V$, where $\chi_V(z) \in \mathbb{C}$. The resulting homomorphism $\chi_V : Z(\mathcal{U}(\mathfrak{g})) \to \mathbb{C}$ is known as the *infinitesimal character of* V. Two equivalent (\mathfrak{g}, K) -modules will always share the same infinitesimal character.

By [Vog81, Theorem 0.2.8], we have an algebra isomorphism $\xi: Z(\mathcal{U}(\mathfrak{g})) \to \mathcal{U}(\mathfrak{h})^W$ known as the Harish-Chandra isomorphism. Suppose we let $\lambda \in \mathfrak{h}^*$. This corresponds to an algebra homomorphism $\lambda: \mathfrak{h} \to \mathbb{C}$ and hence lifts to an algebra homomorphism $\lambda: \mathcal{U}(\mathfrak{h}) \to \mathbb{C}$. Composing the latter map with the Harish-Chandra isomorphism, we obtain a map $\xi_{\lambda}: Z(\mathcal{U}(\mathfrak{g})) \to \mathbb{C}$. In fact, we have the following surprising result.

Theorem 12. ([Vog81, Corollary 0.2.10]). Every homomorphism from $Z(\mathcal{U}(\mathfrak{g}))$ to \mathbb{C} is of the form ξ_{λ} , for some $\lambda \in \mathfrak{h}^*$. Moreover, $\xi_{\lambda} = \xi_{\lambda'}$ if and only if there exists some $w \in W$ for which $\lambda' = w\lambda$.

In other words, if we have a map $\chi: \mathsf{Adm}_K(G) \to \mathfrak{h}^*/W$ that takes equivalence classes of irreducible K-admissible representations of G to W-conjugacy classes of elements in \mathfrak{h}^* . Given some $\lambda \in \mathfrak{h}^*/W$, we will write

$$\mathsf{Adm}_K(G,\lambda) \coloneqq \{\pi \in \mathsf{Adm}_K(G) : \chi(\pi) = \lambda\}$$

for the set of equivalence classes of irreducible K-admissible representations of G with infinitesimal character λ . By [Vog81, Corollary 5.4.17], this set is finite.

We shall henceforth fix $\lambda \in \mathfrak{h}^*$ non-singular and integral $(\langle \lambda, \check{\alpha} \rangle \in \mathbb{Z}_+$ for all simple coroots $\check{\alpha} \in \dot{\Delta})$.

Definition 13. (Block). The smallest equivalence relation generated by

$$V \sim V' \iff$$
 there exists an indecomposable (\mathfrak{g}, K) -module V_B such that we have a non-split short exact sequence $0 \to V \to V_B \to V' \to 0$,

where V and V' are irreducible (\mathfrak{g}, K) -modules, is known as block equivalence. The corresponding equivalence classes of irreducible (\mathfrak{g}, K) -modules are known as blocks.

By [Vog81, Lemma 9.2.3], every (\mathfrak{g}, K) -module V of finite length (that is, every (\mathfrak{g}, K) -module admitting a notion of a Jordan-Hölder series) can be written as a direct sum

$$V = \bigoplus_{\text{blocks } B} V_B,$$

where each V_B is some (\mathfrak{g}, K) -module whose irreducible sub- (\mathfrak{g}, K) -modules all belong to the block B. Moreover, blocks of irreducible (\mathfrak{g}, K) -modules are somehow determined by their infinitesimal characters ([Vog81, Theorem 9.2.11]).

The original definition of a block from [Vog81, Definition 9.2.1] is that block equivalence is generated by two irreducible (\mathfrak{g}, K) -modules having a non-zero first cohomology group $\operatorname{Ext}_{\mathfrak{g},K}^1(V,V')$. Blocks give us a way of computing the composition series of certain standard representations, generalizing the algorithm given by Kazhdan and Lusztig for Verma modules in [KL79].

Remark 14. We have been primarily living in the Harish-Chandra world. Atlas, on the other hand, uses a more geometric language, owing to the Langlands classification. Here, every irreducible admissible representation corresponds to a pair (x, y), where x is a \mathbb{K} -orbit in \mathbb{G}/\mathbb{B} and y is a \mathbb{K}^{\vee} -orbit in $\mathbb{G}^{\vee}/\mathbb{B}^{\vee}$ (see [AC09, §10] and [Ada08, §8]). Here \mathbb{B} is some Borel subgroup of \mathbb{G} , \mathbb{G}^{\vee} is the Langlands dual of \mathbb{G} , \mathbb{B}^{\vee} is a Borel subgroup of \mathbb{G}^{\vee} and \mathbb{K}^{\vee} is the complexification of a maximal compact subgroup K^{\vee} of a real form G^{\vee} of \mathbb{G}^{\vee} . In this language, a block is a set of the form

$$B(G^\vee) \coloneqq \{(x,y) \in \mathbb{K} \backslash \mathbb{G}/\mathbb{B} \times \mathbb{K}^\vee \backslash \mathbb{G}^\vee / \mathbb{B}^\vee : \theta^t_{x,H} = -\theta^\vee_{y,H}\},$$

arising from a real form G^{\vee} . Here $\theta_{x,H}^t = -\theta_{y,H}^{\vee}$ is a technical compatibility condition. Moreover,

$$\mathsf{Adm}_K(G,\lambda) \longleftrightarrow \bigsqcup_{\text{dual real forms } G^{\vee}} B(G^{\vee}).$$

Similarly, the irreducible admissible representations of a real form G^{\vee} can be broken up into blocks corresponding to real forms of \mathbb{G} ; Vogan duality tells us that if $(x,y) \in \mathbb{K} \backslash \mathbb{G} / \mathbb{B} \times \mathbb{K}^{\vee} \backslash \mathbb{G}^{\vee} / \mathbb{B}^{\vee}$ corresponds to an admissible representation of G, then (y,x) will correspond to an admissible representation of the real form G^{\vee} of \mathbb{G}^{\vee} corresponding to \mathbb{K}^{\vee} .

Before we can start building W-graphs from blocks of irreducible Harish-Chandra modules, we need two more ingredients. The first is a notion of cells within these blocks, first appearing in [BV83].

Definition 15. (Harish-Chandra Cell). Let x, y be two irreducible Harish-Chandra modules with infinitesimal character λ . Write $y \geq x$ if there exists an irreducible finite-dimensional representation f of G such that y is isomorphic to a composition factor of $f \otimes y$. We say that $x \sim y$ if $y \geq x$ and $x \geq y$. The resulting equivalence classes are known as left Harish-Chandra cells.

Remark 16. Harish-Chandra cells are sometimes called *left W-cells*, since the Harish-Chandra cells of infinitesimal character λ admit an action of the integral Weyl group $W(\lambda)$ and hence correspond to so-called *Harish-Chandra cell representations of* $W(\lambda)$.

Definition 17. (Borho–Jantzen–Duflo τ -Invariant). Let x be an irreducible Harish-Chandra module with infinitesimal character λ and $R^+(\lambda) := \{\alpha \in \Phi : \langle \lambda, \check{\alpha} \rangle \in \mathbb{Z}_+ \}$ the system of positive integral roots defined by λ . The Borho-Jantzen-Duflo τ -invariant of x is the set $\tau(x) \subseteq R^+(\lambda)$ of simple roots satisfying the equivalent conditions of [Vog81, Corollary 7.2.27].

3. The Atlas Construction

Let B be a block of irreducible Harish-Chandra modules of infinitesimal character λ . Using the setup from the previous section, we build a W-graph from this block as follows.

- The vertices are the elements $x \in B$.
- Define $\mu(y,x)$ to be the coefficient of v in the Kazhdan-Lusztig-Vogan polynomial $h_{y,x}(v)$.
- Define I_x to be the Borho-Jantzen-Duflo τ -invariant of x (see [Vog81, Definition 7.3.8]).

Unlike the Kazhdan–Lusztig W-graph, this W-graph is directed, and the multiplicity $\mu(x,y)$ of an edge $x \to y$ corresponds to the multiplicity with which the representation x appears in $\mathfrak{g} \otimes y$. Moreover, the strongly connected components of the subgraph induced by the action of the Kazhdan–Lusztig–Vogan basis in fact exhaust the Harish-Chandra cells of B.

Example 18. (G = SU(2,1)). Let's compute the Kazhdan-Lusztig-Vogan W-graph for SU(2,1). This W-graph only has one block, the trivial block, consisting of 6 irreducible representations. Let's write $B = \{x_0, x_1, x_2, x_3, x_4, x_5\}$. The complexification of the Lie algebra of SU(2,1) is $\mathfrak{sl}(3,\mathbb{C})$, which has simple roots $\{\alpha, \beta\}$ that we identify with simple reflections $\{s, t\}$. Once again, the multiplicities are all 1 in this example too, and in fact the edges are coincidentally all bidirectional. Recalling the action of b_s on our vertices induced by τ'_s , we have

We see that the left W-cells of this block are $\{x_0\}$, $\{x_1, x_4\}$, $\{x_2, x_3\}$ and $\{x_5\}$, reflecting once again the left cell structure on W as in our previous example.

REFERENCES

- [AC09] Adams, J. and du Cloux, F., Algorithms for Representation Theory of Real Reductive Groups, J. Inst. Math. Jussieu 8.2 (2009), pp. 209–259.
- [Ada08] Adams, J., Guide to the Atlas Software: Computational Representation Theory of Real Reductive Groups, Contemporary Mathematics 472, American Mathematical Society, 2008, pp. 1–37.
- [BV83] Barbasch, D. M. and Vogan, D. A., Weyl Group Representations and Nilpotent Orbits, Progress in Mathematics 40, Birkhäuser Boston, 1983, pp. 21–33.
- [Bin10] Binegar, B., W-Graphs, Nilpotent Orbits, and Primitive Ideals, Oklahoma State University, 2010, https://www.birs.ca/workshops/2010/10w5039/files/BinegarDETAILS.pdf.
- [KL79] Kazhdan, D. and Lusztig, G., Representations of Coxeter Groups and Hecke Algebras, Invent. Math. 53 (1979), pp. 165–184.
- [Kna13] Knapp, A. W., *Lie Groups Beyond an Introduction*, Progress in Mathematics **140**, Springer Science & Business Media, 2013.
- [Vog81] Vogan, D. A., Representations of Real Reductive Lie Groups, Progress in Mathematics 15, Birkhäuser Boston, 1981.