

EDA软件设计-调度算法

2024-2025年春季学期 主讲人: 孙静翎

有约束的调度

Constrained Scheduling

- 一般情况下是NP完全问题
- 在面积或资源的约束下最小化延迟(ML-RCS)
- 使受到延迟约束的资源最小化(MR-LCS)
- 确切解决方法
 - ILP: 整数线性规划 (Integer linear program)
 - Hu算法:适用于只有一种资源类型的问题
- 启发式算法
 - 列表调度 (List scheduling)
 - 力导向调度(Force-directed scheduling)

列表调度算法: ML-RCS

List scheduling algorithm for minimum latency

```
LIST_L( G(V, E), a) {
         t0 = 0; I = 1;
         repeat {
                   for each resource type k = 1, 2, ..., n_{res} {
                      Determine ready operations U_{l,k};
                      Determine unfinished operations T_{ik};
                      Select S_k \subseteq U_{l,k} vertices, s.t. |S_k| + |T_{l,k}| \le a_k;
                      Schedule the S_k operations at step l;
                   1 = 1 + 1;
         until (v_n is scheduled);
```

列表调度算法: ML-RCS

List scheduling algorithm for minimum latency

```
1 LIST_L( G(V, E), a) {
     t0 = 0; I = 1;
     重复执行以下步骤 {
           对于每种资源类型 k = 1, 2, ..., n_{res} {
             确定就绪的操作集 U_{l,k};(①还未安排开始周期,②前置结点已在当前周期完成)
             确定当前正在进行的操作集 T<sub>lk</sub>;
             选择一个子集S_k \subseteq U_{l,k},使得|S_k| + |T_{l,k}| \le a_k;
             在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
            1 = 1 + 1;
10
     直到 vn 被调度;
13 }
```


确定当前正在进行的操作集 T_{1,k},

选择一个子集 $S_k \subseteq U_{l,k}$,使得 $|S_k| + |T_{l,k}| \le a_k$;

6

8

10

11

12

13 }

1 = 1 + 1;

直到 vn 被调度;

START 0

```
当前值
k
U
S
```

```
在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
```


6

8

13 }

START 0

```
当前值
k
U
S
```

```
1 LIST_L( G(V, E), a) {
      t0 = 0; I = 1;
      重复执行以下步骤 {
         对于每种资源类型 k = 1, 2, ..., n_{res} {
             确定就绪的操作集 U_{l,k};
             确定当前正在进行的操作集 T<sub>1,k</sub>,
             选择一个子集S_k \subseteq U_{l,k},使得|S_k| + |T_{l,k}| \le a_k;
             在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
10
         1 = 1 + 1;
11
      直到 vn 被调度;
12
```


6

8

10

11

12

13 }

START 0

```
    变量
    当前值

    I
    1

    k
    1

    U
    T

    S
```

```
t0 = 0; I = 1;

重复执行以下步骤 {

对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {

确定就绪的操作集 U<sub>l,k</sub>;

确定当前正在进行的操作集 T<sub>l,k</sub>;

选择一个子集S<sub>k</sub> ⊆ U<sub>l,k</sub> ,使得 |S<sub>k</sub>| + |T<sub>l,k</sub>| ≤ a<sub>k</sub>;

在步骤 I 处调度 S 中的所有操作,即对所有 vi ∈ S 设定调度时间 ti = I;

}

I = I + 1;

}

直到 vn 被调度;
```


6

8

10

11

12

13 }

I = I + 1;

直到 vn 被调度;

START 0

```
当前值
     {}
S
```

```
对于每种资源类型 k = 1, 2, ..., n_{res} {
    确定就绪的操作集 U_{l,k};
    确定当前正在进行的操作集 T<sub>1,k</sub>;
    选择一个子集S_k \subseteq U_{l,k},使得|S_k| + |T_{l,k}| \le a_k;
    在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
```


13 }

START 0

```
      变量
      当前值

      I
      1

      k
      1

      U
      {}

      T
      {}

      S
      -
```

```
重复执行以下步骤 {
4
5
         对于每种资源类型 k = 1, 2, ..., n_{res} {
             确定就绪的操作集 U_{l,k};
6
             确定当前正在进行的操作集 T<sub>1k</sub>;
             选择一个子集S_k \subseteq U_{l,k},使得|S_k| + |T_{l,k}| \le a_k;
             在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
8
10
         I = I + 1;
11
      直到 vn 被调度;
12
```


6

8

13 }

START 0

```
当前值
k
      {}
      {}
S
      {}
```

```
重复执行以下步骤 {
        对于每种资源类型 k = 1, 2, ..., n_{res} {
            确定就绪的操作集 U_{l,k};
            确定当前正在进行的操作集T_{l,k}
            选择一个子集S_k \subseteq U_{l,k},使得|S_k| + |T_{l,k}| \le a_k;
            在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
10
         I = I + 1;
11
      直到 vn 被调度;
12
```


6

8

10

11

12

13 }

START 0

```
    变量
    当前值

    I
    1

    k
    1

    U
    {}

    T
    {}

    S
    {}
```

```
重复执行以下步骤 {
    对于每种资源类型 k = 1, 2, ..., n_{res} {
    确定就绪的操作集 U_{l,k};
    确定当前正在进行的操作集 T_{l,k};
    选择一个子集S_k \subseteq U_{l,k},使得 |S_k| + |T_{l,k}| \le a_k;
    在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
    }
    I = I + 1;
}
直到 vn 被调度 ;
```


6

8

10

11

12

13 }

START 0

```
      变量
      当前值

      I
      1

      k
      2

      U
      {}

      T
      {}

      S
      {}
```

```
重复执行以下步骤 {
    对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {
        确定就绪的操作集 U<sub>l,k</sub>;
        确定当前正在进行的操作集 T<sub>l,k</sub>;
        选择一个子集S<sub>k</sub> ⊆ U<sub>l,k</sub> ,使得 |S<sub>k</sub>| + |T<sub>l,k</sub>| ≤ a<sub>k</sub>;
        在步骤 I 处调度 S 中的所有操作,即对所有 vi ∈ S 设定调度时间 ti = I;
    }
    | I = I + 1;
}
直到 vn 被调度;
```


13 }

START 0

```
变量当前值I1k2U{A,C,E,H}T{}S{}
```


6

8

10

11

12

13 }

START 0

```
      变量
      当前值

      I
      1

      k
      2

      U
      {A,C,E,H}

      T
      {}

      S
      {}
```

```
重复执行以下步骤 {
  对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {
      确定就绪的操作集 U_{l,k};
       确定当前正在进行的操作集 T<sub>1k</sub>;
      选择一个子集S_k \subseteq U_{l,k},使得|S_k| + |T_{l,k}| \le a_k;
      在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
   I = I + 1;
直到 vn 被调度;
```


13 }

START 0

```
变量当前值I1k2U{A,C,E,H}T{}S{A,C}
```


k=1为加法器,有一个

变量	当前值
1	1
k	2
U	$\{A,C,E,H\}$
Т	{}
S	{A,C}

k=1为加法器,有一个

变量	当前值
1	2
k	2
U	$\{A,C,E,H\}$
Т	{}
S	{A,C}

12

13 }

直到 vn 被调度;

k=1为加法器,有一个 k=2为乘法器,有两个

> 当前值 k $\{A,C,E,H\}$

```
S
       {A,C}
```


变量	当前值
1	2
k	1
U	$\{A,C,E,H\}$
Т	{}
S	{A,C}

START 0

k=1为加法器,有一个

k=2为乘法器,有两个

B没有就绪,因为B要 等待A执行完成,即 周期1+2=3才能开工

变量	当前值
	2
k	1
U	{}
Т	{}
S	{A,C}

在步骤 I 处调度 S 中的所有操作,即对所有 $vi \in S$ 设定调度时间 ti = I;

直到 vn 被调度; 12

13 }

k=1为加法器,有一个

变量	当前值
I	2
k	1
U	{}
Т	{}
S	{A,C}

直到 vn 被调度;

12

13 }

变量	当前值
	2
k	1
U	{}
Т	{}
S	{}

k=1为加法器,有一个

变量	当前值
I	2
k	1
U	{}
Т	{}
S	{}

变量	当前值
	2
k	2
U	{}
Т	{}
S	{}

变量	当前值
1	2
k	2
U	{E,H}
Т	{}
S	{}

k=1为加法器,有一个

变量	当前值
ĺ	2
k	2
U	{E,H}
Т	{A,C}
S	{}

13 }

k=1为加法器,有一个

k=2为乘法器,有两个

 变量
 当前值

 I
 2

 k
 2

 U
 {E,H}

 T
 {A,C}

 S
 {}

k=1为加法器,有一个 START 0

变量	当前值
1	2
k	2
U	{E,H}
Т	{A,C}
S	{}

直到 vn 被调度;

12

13 }

k=1为加法器,有一个

变量	当前值
I	3
k	2
U	{E,H}
Т	{A,C}
S	{}

11

12

13 }

I = I + 1;

直到 vn 被调度;

k=1为加法器,有一个 k=2为乘法器,有两个

A 1 C 1

变量	当前值
1	3
k	2
U	{E,H}
Т	{A,C}
S	{}

直到 vn 被调度;

12

13 }

START 0

A 1

C 1

k=1为加法器,有一个

变量	当前值
1	3
k	1
U	{E,H}
Т	{A,C}
S	{}

直到 vn 被调度;

12

13 }

k=1为加法器,有一个 START 0 k=2为乘法器,有两个

变量	当前值
1	3
k	1
U	{B}
Т	$\{A,C\}$
S	{}

10

11

12

13 }

I = I + 1;

直到 vn 被调度;

变量	当前值
I	3
k	1
U	{B}
Т	{}
S	{}

6

8

10

11

12

13 }

I = I + 1;

直到 vn 被调度;

k=1为加法器,有一个

```
当前值
      3
k
      {B}
      {}
S
      {B}
```

```
在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
```


变量	当前值
1	3
k	1
U	{}
Т	{}
S	{}

变量	当前值
1	3
k	2
U	{}
Т	{}
S	{}

变量	当前值
1	3
k	2
U	{}
Т	{}
S	{}

变量	当前值
1	3
k	2
U	{E,H}
Т	{}
S	{}

变量	当前值
I	3
k	2
U	{E,H}
Т	{}
S	{}

k=1为加法器,有一个

k=2为乘法器,有两个

变量	当前值
1	3
k	2
U	{E,H}
Т	{}
S	{E,H}

变量	当前值
1	3
k	2
U	{E,H}
Т	{}
S	{E,H}

直到 vn 被调度;

12

13 }

变量	当前值
1	4
k	2
U	{E,H}
Т	{}
S	{E,H}

11

12

13 }

I = I + 1;

直到 vn 被调度;

变量	当前值
1	4
k	2
U	{E,H}
Т	{}
S	{E,H}

变量	当前值
I	4
k	1
U	{E,H}
Т	{}
S	{E,H}

直到 vn 被调度;

12

13 }

变量	当前值
1	4
k	1
U	{D}
Т	{}
S	{E,H}

12

13 }

直到 vn 被调度;

变量	当前值
1	4
k	1
U	{D}
Т	{}
S	{E,H}

12

13 }

直到 vn 被调度;

变量	当前值
I	4
k	1
U	{D}
Т	{}
S	{D}

变量	当前值
1	4
k	1
U	{D}
Т	{}
S	{D}

变量	当前值
ſ	4
k	2
U	{}
Т	{}
S	{}

变量	当前值
I	5
k	1
U	{F}
Т	{}
S	{F}

变量	当前值
1	6
k	1
U	{G}
Т	{}
S	{G}

变量	当前值
I	6
k	2
U	{}
Т	{}
S	{}

能不能按照离终点的距离选择结点执行顺序?

有一个加法器和一个乘法器,乘法器延迟为2,加法器延迟为1

能不能按照离终点的距离选择结点执行顺序?

有一个加法器和一个乘法器,乘法器延迟为2,加法器延迟为1

有一个加法器和一个乘法器,乘法器延迟为2,加法器延迟为1

有一个加法器和一个乘法器,乘法器延迟为2,加法器延迟为1

有一个加法器和一个乘法器,乘法器延迟为2,加法器延迟为1

能不能按照子节点延迟之和选择结点顺序?

有一个加法器和三个乘法器,乘法器延迟为2,加法器延迟为1

能不能按照子节点延迟之和选择结点顺序?

有一个加法器和三个乘法器,乘法器延迟为2,加法器延迟为1

有一个加法器和三个乘法器,乘法器延迟为2,加法器延迟为1

```
1 LIST_L( G(V, E), a) {
     t0 = 0; I = 1;
3
4
5
       重复执行以下步骤 {
         对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {
              确定就绪的操作集 U_{l,k}
6
7
              确定当前正在进行的操作集T_{lk};
              选择一个子集S_k \subseteq U_{l,k},使得|S_k| + |T_{l,k}| \le a_k;
8
              在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
9
          1 = 1 + 1;
      直到 vn 被调度;
13 }
```

随堂作业

in-class assignment

3个乘法器,延迟为2

2个加法器,延迟为1

```
请写出最差情况下的调度结果
1 LIST_L( G(V, E), a) {
      t0 = 0; I = 1;
       重复执行以下步骤 {
                                                 5
4
5
         对于每种资源类型 k = 1, 2, ..., n_{res} {
             确定就绪的操作集 U_{l,k};
                                                            end
             确定当前正在进行的操作集 T<sub>l.k</sub>;
6
             选择一个子集S_k \subseteq U_{l,k},使得|S_k| + |T_{l,k}| \le a_k;
             在步骤 I 处调度 S 中的所有操作,即对所有 vi \in S 设定调度时间 ti = I;
8
9
10
          I = I + 1;
12
       直到 vn 被调度;
13 }
```

3个乘法器,延迟为2

2个加法器,延迟为1

请写出最差情况下的调度结果

随堂作业

随堂作业

有约束的调度

Constrained Scheduling

- 约束调度
 - 一般情况下是NP完全问题
 - 在面积或资源的约束下最小化延迟 (ML-RCS)
 - 使受到延迟约束的资源最小化(MR-LCS)
- 确切解决方法
 - ILP: 整数线性规划 (Integer linear program)
 - Hu算法:适用于只有一种资源类型的问题
- 启发式算法
 - 列表调度 (List scheduling)
 - 力导向调度(Force-directed scheduling)

列表调度算法: MR-LCS

List scheduling algorithm for minimum resource usage

```
LIST_R( G(V, E), \lambda) {
           Compute the latest possible start times t^{L} by ALAP ( G(V, E), \lambda);
           if (t_0 < 0)
              return (\emptyset);
            t_0 = 0; l = 1;
           repeat {
                      for each resource type k = 1, 2, ..., n_{res} {
    Determine ready operations U_{l,k};
    Compute the slacks \{s_i = t_i - l\} for all v_i \in U_{lk};
                          Schedule the candidate operations with zero slack and update a;
                          Schedule the candidate operations not needing additional resources;
                      1 = 1 + 1;
           until (v_n is scheduled);
           return (t, a);
```

列表调度算法: MR-LCS

List scheduling algorithm for minimum resource usage

```
1 LIST_R( G(V, E), \lambda) {
       a = 1; (a代表资源数)
       通过 ALAP(G(V, E), \lambda) 计算所有操作的最晚开始时间 t^{\perp};
       if (t_0 < 0)
         return (Ø);
       t_0 = 0; I = 1;
       重复执行以下步骤{
               对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {
                确定就绪的操作集 U_{l,k};
                对U_{lk}中的每个顶点,计算其slacks s_i = t_{i-1};
10
                调度所有松弛度为零的候选操作, 并更新 a;
                 调度不需要额外资源的候选操作;
13
14
              / = / + 1;
15
       直到 vn 被调度完成;
16
       return (t, a);
18 }
```

λ为6时ALAP调度的结果:

λ为8时ALAP调度的结果:

列表调度算法: MR-LCS

List scheduling algorithm for minimum resource usage

```
1 LIST_R( G(V, E), \lambda) {
       a = 1; (a代表资源数)
       通过 ALAP(G(V, E), \lambda) 计算所有操作的最晚开始时间 t^{\perp};
       if (t_0 < 0)
         return (Ø);
       t_0 = 0; I = 1;
       重复执行以下步骤{
               对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {
                确定就绪的操作集 U_{l,k};
                对U_{lk}中的每个顶点,计算其slacks s_i = t_{i-1};
10
                调度所有松弛度为零的候选操作, 并更新 a;
                 调度不需要额外资源的候选操作;
13
14
              / = / + 1;
15
       直到 vn 被调度完成;
16
       return (t, a);
18 }
```

ALAP调度的结果:

列表调度算法: MR-LCS

List scheduling algorithm for minimum resource usage

```
1 LIST_R( G(V, E), \lambda) {
       a = 1; (a代表资源数)
       通过 ALAP(G(V, E), \lambda) 计算所有操作的最晚开始时间 t^{\perp};
       if (t_0 < 0)
         return (Ø);
       t_0 = 0; I = 1;
       重复执行以下步骤{
               对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {
                确定就绪的操作集 U_{l,k};
                对U_{lk}中的每个顶点,计算其slacks s_i = t_{i-1};
10
                调度所有松弛度为零的候选操作, 并更新 a;
                 调度不需要额外资源的候选操作;
13
14
              / = / + 1;
15
       直到 vn 被调度完成;
16
       return (t, a);
18 }
```

假设λ=6, 乘法器延迟为2, 加法器延迟为1

```
LIST_R( G(V, E), \lambda) {
       a = 1; (a代表资源数)
       通过 ALAP (G(V, E), \lambda) 计算所有操作的最晚开始时间 t^{\perp};
       if (t^{L}_{0} < 0)
         return (\emptyset);
       t_0 = 0; l = 1;
       重复执行以下步骤{
           对于每种资源类型 k = 1, 2, ..., n_{res} {
                确定就绪的操作集 U_{l,k};
                对U_{l,k}中的每个顶点, 计算其slacks s_i = t_{i-1};
                调度所有松弛度为零的候选操作, 并更新 a;
                调度不需要额外资源的候选操作;
           / = / + 1;
                               k=1为加法操作
       直到 vn 被调度完成;
                               k=2为乘操作
       return (t, a);}
```

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
1		
k		
U		
S		

ALAP调度的结果:

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
1		
k		
U		
S		

A 1 B 3 C 2 D 4 E 3 F 5

```
H 4
                                                      G 6
                                         END
LIST_R(G(V, E), \lambda) {
       a = 1; (a代表资源数)
        通过 ALAP (G(V, E), \lambda) 计算所有操作的最晚开始时间 t^{\perp};
        if (t^{L}_{0} < 0)
          return (\emptyset);
        t_0 = 0; I = 1;
        重复执行以下步骤{
            对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {
                 确定就绪的操作集 U_{l,k}; 对U_{l,k}中的每个顶点,计算其slacks s_i = t_i - I;
                  调度所有松弛度为零的候选操作, 并更新 a;
                  调度不需要额外资源的候选操作;
            I = I + 1;
                                 k=1为加法操作
        直到 vn 被调度完成;
                                 k=2为乘操作
        return (t, a);}
```

变量	当前值	
а	a1	1
	a1 a2	1
1	1	
k		
U		
S		

```
A 1
                                                        B 3
                                                        C 2
                                                       D 4
                                                        E 3
                                                       F 5
                                                       H 4
                                                        G 6
                                          END
LIST_R(G(V, E), \lambda) {
        a = 1; (a代表资源数)
        通过 ALAP (G(V, E), \lambda) 计算所有操作的最晚开始时间 t^{\perp};
        if (t^{L}_{0} < 0)
          return (\emptyset);
        t_0 = 0; I = 1;
        重复执行以下步骤{
            对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {
                  确定就绪的操作集 U_{l,k}; 对U_{l,k}中的每个顶点,计算其slacks s_i = t^{l_i} - I;
                  调度所有松弛度为零的候选操作, 并更新 a;
                  调度不需要额外资源的候选操作;
            I = I + 1;
                                  k=1为加法操作
        直到 vn 被调度完成;
                                  k=2为乘操作
        return (t, a);}
```

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
1	1	
k		
U		
S		

```
A 1
                                                      B 3
                                                      C 2
                                                      D 4
                                                      E 3
                                                      F 5
                                                      H 4
                                                      G 6
                                         END
LIST_R(G(V, E), \lambda) {
       a = 1; (a代表资源数)
        通过 ALAP (G(V, E), \lambda) 计算所有操作的最晚开始时间 t^{\perp};
        if (t^{L}_{0} < 0)
          return (\emptyset);
        t_0 = 0; l = 1;
        重复执行以下步骤{
            对于每种资源类型 k = 1, 2, ..., n_{res} {
                 确定就绪的操作集 U_{l,k}; 对U_{l,k}中的每个顶点,计算其slacks s_i = t_{-i} - I;
                  调度所有松弛度为零的候选操作, 并更新 a;
                  调度不需要额外资源的候选操作;
            I = I + 1;
                                 k=1为加法操作
        直到 vn 被调度完成;
                                 k=2为乘操作
        return (t, a);}
```

变量	当前值	
а	a <mark>1</mark>	1
	<mark>a2</mark>	1
1	1	
k	1	
U		
S		

```
A 1
                                                    B 3
                                                    C 2
                                                    D 4
                                                    E 3
                                                    F 5
                                                    H 4
                                                    G 6
                                       END
LIST_R(G(V, E), \lambda) {
       a = 1; (a代表资源数)
       通过 ALAP (G(V, E), \lambda) 计算所有操作的最晚开始时间 t^{\perp};
       if (t^{L}_{0} < 0)
         return (\emptyset);
       t_0 = 0; l = 1;
       重复执行以下步骤{
           对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {
                 确定就绪的操作集U_{l,k};
                 对U_{lk}中的每个顶点,计算其slacks s_i = t_{i-1};
                 调度所有松弛度为零的候选操作,并更新 a;
                 调度不需要额外资源的候选操作;
           I = I + 1;
                                k=1为加法操作
       直到 vn 被调度完成;
                                k=2为乘操作
       return (t, a);}
```

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
1	1	
k	1	
U	{}	
S	{}	

```
A 1
                                                      B 3
                                                      C 2
                                                      D 4
                                                      E 3
                                                      F 5
                                                      H 4
                                                      G 6
                                         END
LIST_R(G(V, E), \lambda) {
       a = 1; (a代表资源数)
        通过 ALAP (G(V, E), \lambda) 计算所有操作的最晚开始时间 t^{\perp};
        if (t^{L}_{0} < 0)
          return (\emptyset);
        t_0 = 0; l = 1;
        重复执行以下步骤{
            对于每种资源类型 k = 1, 2, ..., n_{res} {
                 确定就绪的操作集 U_{l,k}; 对U_{l,k}中的每个顶点,计算其slacks s_i = t_{-i} - I;
                  调度所有松弛度为零的候选操作, 并更新 a;
                  调度不需要额外资源的候选操作;
            I = I + 1;
                                 k=1为加法操作
        直到 vn 被调度完成;
                                 k=2为乘操作
        return (t, a);}
```

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
1	1	
k	2	
U	{}	
S	{}	

START	A 1
A	В 3
	C 2
B	D 4
	E 3
	F 5
	H 4
LIST_R(G(V, E), λ) {	G 6
a = 1; (a代表资源数)	
通过 ALAP (G(V, E), λ) 计算所有操作的最晚	免开始时间 t¹;
if $(t_0^L < 0)$	
return (Ø);	
$t_0 = 0; I = 1;$	
重复执行以下步骤{	
对于每种资源类型 k = 1, 2,, n _{res} {	
确定就绪的操作集 $U_{l,k}$	
对 $U_{l,k}$ 中的每个顶点,计算其sla	
调度所有松弛度为零的候选操作	
调度不需要额外资源的候选操作	作;
} !=!!!!	I = //
/=/+1;} k=1为加法:	
直到 vn 被调度完成; return (t, a);}	作
ι σιαιτί (ι, α <i>)</i> , γ	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
1	1	
k	2	
U	$\{A,C,E,H\}$	
S	{}	

START	A 1
A	B 3 C 2
B	D 4
	E 3 F 5
G	F 5 H 4
LIST_R(G(V, E), λ) {	G 6
Lio	
通过 ALAP (G(V, E), λ) 计算所有操作的最晚开始	台时间 t ^L ;
$\inf_{\mathbf{r} \in \mathbf{r}} (\mathbf{r})$	
return (Ø); t _o = 0;	
重复执行以下步骤{	
对于每种资源类型 k = 1, 2,, n _{res} {	
确定就绪的操作集 <i>U_{I,k}</i> ; 对 <i>U_{I,k}</i> 中的每个顶点,计算其slacks s	$S_i = t^{\perp} - I$:
调度所有松弛度为零的候选操作,	
调度不需要额外资源的候选操作;	
 	E
直到 vn 被调度完成;	-
return (t, a);}	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
1	1	
k	2	
U	$\{A,C,E,H\}$	
S	$\{s_A = 0, s_C = 1, s\}$	$_{E}$ =2, s_{H} =3}

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
1	1	
k	2	
U	$\{A,C,E,H\}$	
S	$\{s_A = 0, s_C = 1, s\}$	$_{\rm E}$ =2, $_{\rm H}$ =3}

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
I	1	
k	2	
U	$\{A,C,E,H\}$	
S	$\{s_A = 0, s_C = 1, s\}$	$_{\rm E}$ =2, $_{\rm H}$ =3}

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
I	2	
k	2	
U	$\{A,C,E,H\}$	
S	$\{s_A = 0, s_C = 1, s\}$	$_{\rm E}$ =2, $_{\rm H}$ =3}

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
I	2	
k	1	
U	$\{A,C,E,H\}$	
S	$\{s_A = 0, s_C = 1, s\}$	$_{E}$ =2, s_{H} =3}

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
I	2	
k	1	
U	{}	
S	{}	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
I	2	
k	2	
U	{}	
S	{}	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
1	2	
k	2	
U	$\{C,E,H\}$	
S	{}	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	1
1	2	
k	2	
U	$\{C,E,H\}$	
S	$\{s_C = 0, s_E = 1, s\}$	_H =2}

A 1

 C_2

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	2	
k	2	
U	$\{C,E,H\}$	
S	$\{s_C = 0, s_E = 1, s\}$	_H =2}

A 1

2

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
I	2	
k	2	
U	$\{C,E,H\}$	
S	$\{s_C=0, s_E=1, s_H=2\}$	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	3	
k	2	
U	$\{C,E,H\}$	
S	$\{s_C = 0, s_E = 1, s\}$	_H =2}

变量	当前值	
а	a1	1
	<mark>a2</mark>	2
1	3	
k	1	
U	$\{C,E,H\}$	
S	$\{s_C = 0, s_E = 1, s\}$	_H =2}

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	3	
k	1	
U	{B}	
S	$\{s_C = 0, s_E = 1, s\}$	_H =2}

START 0	
A 1	
<u>C 2</u>	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	3	
k	1	
U	{B}	
S	$\{s_{R}=0\}$	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	3	
k	1	
U	{B}	
S	$\{s_B = 0\}$	

START 0 A 1 C 2

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	3	
k	1	
U	{B}	
S	$\{s_B = 0\}$	

START 0 A 1 C 2

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	3	
k	2	
U	{B}	
S	$\{s_B = 0\}$	

START 0 A 1 C 2 B 3

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	3	
k	2	
U	{E,H}	
S	$\{s_E=0, s_H=1\}$	

START 0

A 1

C 2

B 3

E 3

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	3	
k	2	
U	{E,H}	
S	$\{s_E=0, s_H=1\}$	

START 0	
A 1	
C 2	
В3	
E 3	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	4	
k	2	
U	{E,H}	
S	$\{s_F=0, s_H=1\}$	

START 0	
A 1	
C 2	
В3	
E 3	

变量	当前值	
а	a1	1
	<mark>a2</mark>	2
1	4	
k	1	
U	{E,H}	
S	$\{s_E=0, s_H=1\}$	

START 0	
A 1	
C 2	
В3	
E 3	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	4	
k	1	
U	{D}	
S	$\{s_{D}=0\}$	

START 0 A 1
C 2
B 3
F 2

D	4

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	4	
k	1	
U	{D}	
S	$\{s_D = 0\}$	

START 0	
A 1	
C 2	
В3	
E 3	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	4	
k	2	
U	{D}	
S	$\{s_{D}=0\}$	

S	ΓΔ	R	ГС)
_	_			

A 1

C 2

B 3

E 3

D 4

H 4

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	4	
k	2	
U	{H}	
S	$\{s_{H}=0\}$	

START 0 A 1 C 2 B 3 E 3 D 4

H 4

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	5	
k	2	
U	{H}	
S	$\{s_{H}=0\}$	

START 0 A 1 C 2 B 3 E 3 D 4

H 4

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	5	
k	1	
U	{H}	
S	$\{s_{H}=0\}$	

START 0 A 1 C 2 B 3 E 3 D 4 H 4

F 5

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	5	
k	1	
U	{F}	
S	${s_F=0}$	

START 0
A 1
C 2
B 3
E 3
D 4

H 4

F 5

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	5	
k	2	
U	{}	
S	{ }	

START 0 A 1 C 2 B 3 E 3 D 4 H 4

F 5

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
1	6	
k	1	
U	{F}	
S	$\{s_F = 0\}$	

START 0 G 6	
A 1 END 7	7
C 2	
В 3	
E 3	
D 4	
H 4	
F 5	

变量	当前值	
а	<mark>a1</mark>	1
	<mark>a2</mark>	2
I	6	
k	1	
U	{F}	
S	$\{s_F = 0\}$	

MR-LCS-随堂作业

in-class assignment


```
LIST_R( G(V, E), \lambda) {
       a=1; (a代表资源数)
       通过 ALAP(G(V, E), \lambda) 计算所有操作的最晚开始时间 t^{\perp};
       if (t_0^L < 0)
         return (\emptyset);
       t_0 = 0; I = 1;
       重复执行以下步骤{
           对于每种资源类型 k = 1, 2, ..., n<sub>res</sub> {
                 确定就绪的操作集U_{l,k};
                 对U_{l,k}中的每个顶点,"计算其slacks s_i = t^{\perp}_i - I"
                 调度所有松弛度为零的候选操作, 并更新 a;
                 调度不需要额外资源的候选操作;
            l = l + 1;}
       直到 vn 被调度完成;
       return (t, a);}
```

若图中所有结点都为加法器(一个周期完成),要求在六个周期完成全部调度(不包括虚拟节点)。若使用列表调度算法,下图对应的最终调度图应该如何,请画出

ALAP调度结果

D 4 E 4

F 5

H 5

G 6

D 4

E 4

F 5

H 5

G 6

A B C E H

D 4

E 4

F 5

H 5

G 6

A B C E H

ALAP调度结果: A 2

B 3

C 3

D 4

E 4

F 5

H 5

G 6

A B C E H

ALAP调度结果: A 2

B 3

C 3

D 4

E 4

F 5

H 5

G 6

A B C E H

- D 4
 E 4
 F 5
 H 5
- G 6

ALAP调度结果: A 2 B 3

C 3 D 4

E 4

F 5

H 5

G 6

A B G END

静态时序分析

相关术语

Related Terminologies

- 静态时序分析(Static Timing Analysis)
 - 到达时间 (Arrival Time)
 - 要求时间 (Required Time)
 - 裕量 (Slack)
 - 关键路径(critical node)
 - 关键节点 (critical node)
 - 关键性 (Criticality)

START В G $\left(\mathsf{H}\right)$ K END

时间分析

Timing Analysis

Timing Analysis

原始顺序图 (包含延迟信息)

到达时间 (Arrival Time)

Timing Analysis

要求时间 (Required Time)

Timing Analysis

裕量 (Slack) = 要求时间-到达时间

Timing Analysis

关键路径

(Critical Path)

Timing Analysis

Timing Analysis

随堂作业

in-class assignment

请写出以下调度图的关键结点,以及代表每个结点关键性的值

