Data Analysis and Information Exploitation (ADEI)

Bachelor Degree in Informatics Engineering Information System Track

FIB-ADEI – 6 ECTS - Course 2020-21

BarcelonaTech - UPC

UNIT 3. CLUSTERING

Lecturer: Lídia Montero (DEIO)

Outline

- 1. Principles
- 2. Direct partitioning
- 3. Hierarchical clustering
- 4. Clustering and principal axes methods
- 5. Clusters description

- Two main families of clustering methods:
 - ✓ Direct partitioning methods
 - ✓ Hierarchical methods
- Classify either original data or factorial projected data?
- Classification into factorial space reduces noisy and coordinates are alway real numbers.
- How many axes have to be taken?

What is clustering?

 A grouping of data objects such that the objects within a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Outliers

 Outliers are objects that do not belong to any cluster or form clusters of very small cardinality

 In some applications we are interested in discovering outliers, not clusters (outlier analysis)

Why do we cluster?

- Clustering: given a collection of data objects group them so that
 - Similar to one another within the same cluster
 - Dissimilar to the objects in other clusters

- Clustering results are used:
 - As a stand-alone tool to get insight into data distribution
 - Visualization of clusters may unveil important information
 - As a preprocessing step for other algorithms
 - Efficient indexing or compression often relies on clustering

Applications of clustering?

- Image Processing
 - cluster images based on their visual content
- Web
 - Cluster groups of users based on their access patterns on webpages
 - Cluster webpages based on their content
- Bioinformatics
 - Cluster similar proteins together (similarity wrt chemical structure and/or functionality etc)
- Many more...

The clustering task

 Group observations into groups so that the observations belonging in the same group are similar, whereas observations in different groups are different

Basic questions:

- What does "similar" mean
- What is a good partition of the objects? I.e., how is the quality of a solution measured
- How to find a good partition of the observations

Observations to cluster

Machine Learning Issues:

- Real-value attributes/variables
 - e.g., salary, height
- Binary attributes
 - e.g., gender (M/F), has_cancer(T/F)
- Nominal (categorical) attributes
 - e.g., religion (Christian, Muslim, Buddhist, Hindu, etc.)
- Ordinal/Ranked attributes
 - e.g., military rank (soldier, sergeant, lieutenant, captain, etc.)
- Variables of mixed types
 - multiple attributes with various types

Observations to cluster

 Usually data objects consist of a set of attributes (also known as features/dimensions/variables)

 If all K dimensions are real-valued then we can visualize each data point as points in a Kdimensional space

• If all d dimensions are binary then we can think of each data point as a binary vector

Distance functions

- The distance d(x, y) between two objects x and y is a metric if
 - d(i, j)≥0 (non-negativity)
 - d(i, i)=0 (isolation)
 - d(i, j) = d(j, i) (symmetry)
 - d(i, j) ≤ d(i, h)+d(h, j) (triangular inequality) [Why do we need it?]
- The definitions of distance functions are usually different for real, boolean, categorical, and ordinal variables.
- Weights may be associated with different variables based on applications and data semantics.

Data Structures

data matrix

Distance matrix

Distance functions for binary vectors

- Not our topic!
- Jaccard similarity between binary vectors X and Y

$$JSim(X,Y) = \frac{X \cap Y}{X \cup Y}$$

- Jaccard distance between binary vectors X and Y
 Jdist(X,Y) = 1- JSim(X,Y)
- Example:
 - JSim = 1/6
 - Jdist = 5/6

	Q1	Q2	Q3	Q4	Q5	Q6
Χ	1	0	0	1	1	1
Υ	0	1	1	0	1	0

Distance functions for real-valued vectors

• L_n norms or *Minkowski distance*:

$$L_p(x,y) = \left(|x_1 - y_1|^p + |x_2 - y_2|^p + \dots + |x_K - x_K|^p \right)^{1/p} = \left(\sum_{i=1}^K (x_i - y_i)^{1/p} \right)^{1/p}$$

where *K* is a positive integer

• If p = 1, L_1 is the *Manhattan (or city block)* distance:

$$L_1(x,y) = |x_1 - y_1| + |x_2 - y_2| + ... + |x_K - y_K| = \sum_{i=1}^K |x_i - y_i|$$

If p = 2, L₂ is the Euclidean distance:

$$d(x,y) = \sqrt{(|x_1 - y_1|^2 + |x_2 - y_2|^2 + ... + |x_K - y_K|^2)}$$

Also one can use weighted distance:

$$d(x,y) = w_1 |x_1 - y_1| + w_2 |x_2 - y_2| + \dots + w_K |x_K - y_K|$$

$$d(x,y) = \sqrt{(w_1|x_1 - x_1|^2 + w_2|x_2 - x_2|^2 + \dots + w_K|x_K - y_K|^2)}$$

Partitioning algorithms: basic concept

- Construct a partition of a set of n objects into a set of d clusters
 - Each object belongs to exactly one cluster
 - The number of clusters d is given in advance

The k-means problem

 Given a set X of n points in a K-dimensional space and an integer d

Task: choose a set of d points {c₁, c₂,...,c_d} in the K-dimensional space to form clusters {C₁, C₂,...,C_d} such that

$$Cost(C) = \sum_{i=1}^{d} \sum_{x \in C_i} L_2^2(x - c_i)$$

is minimized

Some special cases: d = 1, d = n

Algorithmic properties of the k-means problem

- NP-hard if the dimensionality of the data is at least 2 (K>=2)
- Finding the best solution in polynomial time is infeasible

- For K=1 the problem is solvable in polynomial time (how?)
- A simple iterative algorithm works quite well in practice

The k-means algorithm

One way of solving the k-means problem

- ✓ Randomly pick d cluster centers {c₁,...,c_d}
- ✓ For each i, set the cluster C_i to be the set of points in X that are closer to c_i than they are to c_j for all $i \neq j$
- ✓ For each i let c_i be the center of cluster C_i (mean of the vectors in C_i)
- ✓ Repeat until convergence

Properties of the k-means algorithm

Finds a local optimum

Converges often quickly (but not always)

 The choice of initial points can have large influence in the result

Two different K-means Clusterings

Sub-optimal Clustering

Discussion k-means algorithm

- Finds a local optimum
- Converges often quickly (but not always)
- The choice of initial points can have large influence
 - Clusters of different densities
 - Clusters of different sizes

Outliers can also cause a problem (Example?)

Some alternatives to random initialization of

the central points

- Multiple runs
 - Helps, but probability is not on your side
- Select original set of points by methods other than random . E.g., pick the most distant (from each other) points as cluster centers (kmeans++ algorithm)

The k-median problem

 Given a set X of n points in a K-dimensional space and an integer d

Task: choose a set of d points {c₁,c₂,...,c_d} from X and form clusters {C₁,C₂,...,C_d} such that

$$Cost(C) = \sum_{i=1}^{d} \sum_{x \in C_i} L_1(x, c_i)$$

is minimized

The k-medoids algorithm

- Or ... PAM (Partitioning Around Medoids, 1987)
 - Choose randomly d medoids from the original dataset

 Assign each of the n-d remaining points in X to their closest medoid

 iteratively replace one of the medoids by one of the non-medoids if it improves the total clustering cost

Discussion of PAM algorithm

- The algorithm is very similar to the kmeans algorithm
- It has the same advantages and disadvantages
- How about efficiency?

CLARA (Clustering Large

Applications)

- It draws multiple samples of the data set, applies PAM
 on each sample, and gives the best clustering as the
 output
- Strength: deals with larger data sets than PAM
- Weakness:
 - Efficiency depends on the sample size
 - A good clustering based on samples will not necessarily represent a good clustering of the whole data set if the sample is biased

The k-center problem

 Given a set X of n points in a K-dimensional space and an integer d

Task: choose a set of d points from X as cluster centers {c₁,c₂,...,c_d} such that for clusters {C₁,C₂,...,C_d}

$$R(C) = \max_{1 \le j \le d} \max_{x \in C_i} d(x, c_j)$$

is minimized

Algorithmic properties of the k-centers problem

- NP-hard if the dimensionality of the data is at least 2 (K>=2)
- Finding the best solution in polynomial time is infeasible

- For K=1 the problem is solvable in polynomial time (how?)
- A simple combinatorial algorithm works well in practice

What is the right number of clusters?

...or who sets the value of d?

 For n points to be clustered consider the case where d=n. What is the value of the error function

What happens when d = 1?

 Since we want to minimize the error why don't we select always d = n?

Occam's razor and the minimum description

length principle

- Clustering provides a description of the data
- For a description to be good it has to be:
 - Not too general
 - Not too specific
- Penalize for every extra parameter that one has to pay
- Penalize the number of bits you need to describe the extra parameter
- So for a clustering C, extend the cost function as follows:
- New Cost(C) = Cost(C) + |C| x logn
- Criteria: Max I_{partition}/I_{total}

R Function kmeans

kmeans(X, centers, iter.max= 10)

- X: A numeric matrix or a data frame with all numeric columns.
- centers: Either the number of clusters or a set of initial cluster centers.
- If the first, a random set of rows in 'x' are chosen as the initial centers.
- iter.max: The maximum number of iterations allowed.

Results:

- cluster: A vector of integers indicating the cluster to which each point is allocated.
- centers: A matrix of cluster centres.
- withinss: The within-cluster sum of squares for each cluster.
- size: The number of points in each cluster.

Hierarchical Clustering

- Produces a set of *nested clusters* organized as a hierarchical tree
- Can be visualized as a dendrogram
 - A tree-like diagram that records the sequences of merges or splits

Strengths of Hierarchical Clustering

- No assumptions on the number of clusters
 - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level

- Hierarchical clusterings may correspond to meaningful taxonomies
 - Example in biological sciences (e.g., phylogeny reconstruction, etc), web (e.g., product catalogs) etc

Hierarchical Clustering

Two main types of hierarchical clustering

– Agglomerative:

- Start with the points as individual clusters
- At each step, merge the closest pair of clusters until only one cluster (or d clusters) left

Divisive:

- Start with one, all-inclusive cluster
- At each step, split a cluster until each cluster contains a point (or there are d clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
 - Merge or split one cluster at a time

Complexity of hierarchical clustering

 Distance matrix is used for deciding which clusters to merge/split

At least quadratic in the number of data points

Not usable for large datasets

Agglomerative clustering algorithm

- Most popular hierarchical clustering technique
- Basic algorithm
 - Compute the distance matrix between the input data points
 - 2. Let each data point be a cluster
 - 3. Repeat
 - 4. Merge the two closest clusters
 - 5. Update the distance matrix
 - **6.** Until only a single cluster remains
- Key operation is the computation of the distance between two clusters: Different definitions of the distance between clusters lead to different algorithms

Input/Initial setting

 Start with clusters of individual points and a distance/proximity matrix

Distance/Proximity Matrix

Intermediate State

• After some merging steps, we have some clusters

	C 1	C2	C 3	C4	C 5
<u>C1</u>					
C2					
C 3					
C4					
C5					

Distance/Proximity Matrix

Intermediate State

 Merge the two closest clusters (C2 and C5) and update the distance matrix.

Distance/Proximity Matrix

After Merging

"How do we update the distance matrix?"

			C2 U		
		C1	U C5	C3	C4
	C1		?		
C2 U	C 5	?	?	?	?
	C 3		?		
	C4		?		

Distance between two clusters

Each cluster is a set of points

- How do we define distance between two sets of points
 - Lots of alternatives
 - Not an easy task

Distance between two clusters

 Single-link distance between clusters C_i and C_j is the minimum distance between any object in C_i and any object in C_j

The distance is defined by the two most similar objects

$$D_{sl}(C_i, C_j) = \min_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

Single-link clustering: example

 Determined by one pair of points, i.e., by one link in the proximity graph.

	I 1	12	I 3	 4	I 5
11	1.00	0.90	0.10	0.65	0.20
12	0.90	1.00	0.70	0.60	0.50
13	0.10	0.70	1.00	0.40	0.30
1 4	0.65	0.60	0.40	1.00	0.80
15	0.20	0.50	0.30	0.80	0.20 0.50 0.30 0.80 1.00

Single-link clustering: example

Nested Clusters

Dendrogram

Strengths of single-link clustering

Original Points

Two Clusters

• Can handle non-elliptical shapes

Limitations of single-link clustering

Original Points

Two Clusters

- Sensitive to noise and outliers
- It produces long, elongated clusters

Distance between two clusters

Complete-link distance between clusters C_i and C_j is the maximum distance between any object in C_i and any object in C_j

 The distance is defined by the two most dissimilar objects

$$D_{cl}(C_i, C_j) = \max_{x,y} \left\{ d(x, y) \middle| x \in C_i, y \in C_j \right\}$$

Complete-link clustering: example

 Distance between clusters is determined by the two most distant points in the different clusters

Complete-link clustering: example

Nested Clusters

Dendrogram

Strengths of complete-link clustering

- More balanced clusters (with equal diameter)
- Less susceptible to noise

Limitations of complete-link clustering

- Tends to break large clusters
- All clusters tend to have the same diameter small clusters are merged with larger ones

Distance between two clusters

Group average distance between clusters C_i and C_j is the average distance between any object in C_i and any object in C_j

$$D_{avg}\left(C_{i},C_{j}\right) = \frac{1}{\left|C_{i}\right| \times \left|C_{j}\right|} \sum_{x \in C_{i}, y \in C_{j}} d(x,y)$$

Average-link clustering: example

• Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

	I 1	1 12		14	15	
11	1.00	0.90	0.10	0.65	0.20	
12	0.90	1.00	0.70	0.60	0.50	
13	0.10	0.70	1.00	0.40	0.30	
14	0.65	0.60	0.40	1.00	0.80	
15	1.00 0.90 0.10 0.65 0.20	0.50	0.30	0.80	1.00	

Average-link clustering: example

Nested Clusters

Dendrogram

Average-link clustering: discussion

Compromise between Single and Complete Link

- Strengths
 - Less susceptible to noise and outliers

- Limitations
 - Biased towards globular clusters

Distance between two clusters

Centroid distance between clusters C_i and C_j is the distance between the centroid r_i of C_i and the centroid r_j of C_j

$$D_{centroids}(C_i, C_j) = d(r_i, r_j)$$

Distance between two clusters

Ward's distance between clusters C_i and C_j is the difference between the total within cluster sum of squares for the two clusters separately, and the within cluster sum of squares resulting from merging the two clusters in cluster C_{ij}

$$D_{w}(C_{i}, C_{j}) = \sum_{x \in C_{i}} (x - r_{i})^{2} + \sum_{x \in C_{j}} (x - r_{j})^{2} - \sum_{x \in C_{ij}} (x - r_{ij})^{2}$$

- r_i: centroid of C_i
- r_i: centroid of C_i
- r_{ij}: centroid of C_{ij}

Ward's distance for clusters

- Similar to group average and centroid distance
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of k-means
 - Can be used to initialize k-means

Hierarchical Clustering: Comparison

Hierarchical Clustering: Time and Space

requirements

For a dataset X consisting of n points

• O(n²) space; it requires storing the distance matrix

- O(n³) time in most of the cases
 - There are n steps and at each step the size n² distance matrix must be updated and searched
 - Complexity can be reduced to O(n² log(n)) time for some approaches by using appropriate data structures

Data Analysis and Information Exploitation (ADEI)

Bachelor Degree in Informatics Engineering Information System Track

FIB-ADEI – 6 ECTS - Course 2020-21

BarcelonaTech - UPC

Clustering from principal components

2.0

UU00000000

inertia gain

Hierarchical Clustering

Hierarchical clustering on the factor map

Factor map

Cluster description

From the categorical variables

From the categories

> res.hcpc\$desc.var\$category
\$`1`

```
Mod/Cla
                                            Global
                                                          p.value
                      Cla/Mod
                                                                      v.test
B1=health poor
                    90.412272 48.0387163 20.706770
                                                     0.000000e+00
                                                                         Inf
Edad Skol=OldLow
                    66.666667 37.3917473 21.858249
                                                     5.403491e-99
                                                                   21.118273
B1=health fair
                    48.108926 32.3993887 26.245781
                                                     3.360483e-15
                                                                    7.876734
Sex=female
                    42.852470 66.7345899 60.690887
                                                     1.850993e-12
                                                                    7.045272
Edad Skol=OldMedium 48.005908 16.5562914 13.440540
                                                     2.880527e-07
                                                                    5.131101
                                                                    3.632979
Edad Skol=MidLow
                    48.265896
                               8.5073867
                                          6.869168
                                                     2.801679e-04
Edad Skol=OldHigh
                    46.255507
                               5.3489557
                                          4.506651
                                                     2.254253e-02
                                                                    2,281100
Edad Skol=MidMedium 34.720571 14.8751910 16.696446
                                                                   -2.781739
                                                     5.406843e-03
Edad Skol=MidHigh
                    27.345845
                               5.1961284 7.405202
                                                     1.065718e-06
                                                                   -4.879099
                                                                   -6.421950
Edad Skol=JovLow
                                                     1.345397e-10
                    17.801047
                               1.7320428
                                          3.791940
Sex=male
                    32.979798 33.2654101 39.309113
                                                     1.850993e-12
                                                                   -7.045272
Edad Skol=JovHigh
                    11.673152
                                          5.102243
                               1.5282731
                                                     2.449031e-23
                                                                   -9.952915
B1=health good
                    23.189466 16.1487519
                                         27.139170
                                                     9.788030e-47 -14.355876
Edad Skol=JovMedium 16.992188
                               8.8639837 20.329561
                                                     4.079413e-64 -16.905773
B1=health excellent
                     1.694915
                               0.4075395
                                          9.370657
                                                     7.632784e-93 -20.438316
B1=health_very good
                     7.082833
                               3.0056037 16.537622 1.428371e-114 -22.750203
```

RP Role.li -50.446527

From the quantitative variables

```
> res.hcpc$desc.var$quanti.var
                              P-value
                   Eta2
PF Phisica 0.30922824 0.000000e+00
RP Role.li 0.50533202 0.000000e+00
RE Role.li 0.29780836 0.000000e+00
SF Social 0.46725019 0.000000e+00
....etc.
$`1`
              v.test Mean in category Overall mean sd in category Overall sd
                                                                                  p.value
Edad
                                          49.08557
                                                         18.38630
                                                                    18.49395 7.511481e-16
             8.061905
                             51.71472
RE Role.li -38.726772
                             44.86323
                                                         44.61223
                                                                    40.35830 0.000000e+00
                                          72.42412
PF Phisica -39.462304
                             48.55833
                                          69.92952
                                                         28.22450
                                                                    30.71124 0.000000e+00
MH Mental -43.241226
                             46.73255
                                          61.69069
                                                         17.88921
                                                                    19.61691 0.000000e+00
P Pain
          -46.759448
                             39.82454
                                          64.50947
                                                         24.40165
                                                                    29.93736 0.000000e+00
EV_Energy -47.369413
                             33.84870
                                          51.83145
                                                         16.42762
                                                                    21.52827 0.000000e+00
SF Social -48.508473
                             44.98724
                                          64.83442
                                                         21.02165
                                                                    23.20236 0.000000e+00
HP General -48.525317
                             34.58839
                                                         16.98673
                                                                    22.99433 0.000000e+00
                                          54,26444
```

63.00377

25.01274

34.73299

42.70719 0.000000e+00

From the individuals

```
> res.hcpc$desc.ind$para
Cluster: 1
   I3045 I2801 I3404 I4561 I2477
0.0140178 0.0454952 0.0748305 0.1016992 0.1131562
Cluster: 2
    I3451 I3063 I3158 I4466 I1166
0.02458791 0.04874171 0.04874171 0.07030856 0.07354237
> res.hcpc$desc.ind$dist
Cluster: 1
  I1780 I0392 I1413 I0545 I1781
7.783213 7.566054 7.559595 7.543709 7.482944
Cluster: 2
  I0536 I0977 I4932 I3460 I3806
6.219741 6.058947 6.047333 5.978893 5.978893
```


Individuals "para" and "dist" on the principal plane

Individuals factor map (PCA)

Variables values of the individuals "para" and "dist" (cluster 1)

> res.hcpc\$data.clust[which(rownames(res.hcpc\$data.clust)%in%names(res.hcpc\$desc.ind\$para[[1]])),]												
Sex	B1 Ed	ad PF_	Phisica 1	RP_Role.li	RE_Role.li	SF_Social	MH_Mental	EV_Energy	P_Pain	HP_General	Edad_Skol	clust
I2477 female health	_poor	33	30	75	66.67	44.44	36	25	44.44	25	OldLow	1
I2801 female health	_fair	27	40	0	0.00	44.44	52	50	44.44	45	OldMedium	1
I3045 female health	fair	75	35	25	66.67	44.44	28	45	55.56	30	${\tt MidMedium}$	1
I3404 female health	poor	37	90	0	33.33	44.44	68	25	22.22	30	${\tt MidMedium}$	1
I4561 male health	poor	71	50	25	33.33	44.44	56	30	55.56	25	${\tt OldMedium}$	1
> res.hcpc\$data.clust[which(rownames(res.hcpc\$data.clust)%in%names(res.hcpc\$desc.ind\$dist[[1]])),]												
Sex	B1 Ed	ad PF_	Phisica 1	RP_Role.li	RE_Role.li	SF_Social	MH_Mental	EV_Energy	P_Pain	HP_General	Edad_Skol	clust
I0392 female health	poor	49	30	0	0	0.00	4	5	0.00	0	MidLow	1
I0545 female health	poor	57	0	0	0	0.00	24	0	0.00	0	OldLow	1
I0545 female health I1413 male health		57 51	0 40	0	0			•	0.00 11.11			1 1
	poor		_	0 0 0	_	0.00	0	•	11.11	0	MidLow	1 1 1

Cluster description: Selection of a reasonable number of clusters

Hierarchical Clustering

Hierarchical clustering on the factor map

Factor map

Important Numerical Results


```
> dim(res.hcpc$data.clust)
[1] 5037
           12
> summary(res.hcpc$data.clust[,12])
   1
      666 617 868 986 1292
 608
> res.hcpc$call$t$within[1:5]
[1] 5.458357 2.244554 1.651811 1.369927 1.113741
> res.hcpc$call$t$inert.gain[1:5]
[1] 3.2138025 0.5927435 0.2818838 0.2561863 0.2117429
> sum(res.hcpc$call$t$inert.gain)
[11 5.458357
Cut quality:
```

(res.hcpc\$call\$t\$within[1]- res.hcpc\$call\$t\$within[6])/res.hcpc\$call\$t\$within[1]

BetweenSS/TotalSS – Directed provided by k-means

Description according to qualitative variables

Description according to qualitative factor levels


```
$`1`
                                 Mod/Cla
                                            Global
                                                         p.value
                      Cla/Mod
                                                                     v.test
                    44.007670 75.4934211 20.706770 9.799110e-221
B1=health_poor
                                                                   31.714522
Edad Skol=OldLow
                    27.429609 49.6710526 21.858249 9.592124e-60
                                                                  16.301741
Sex=female
                    13.052012 65.6250000 60.690887 7.578879e-03
                                                                   2.670277
Edad Skol=OldMedium 14.918759 16.6118421 13.440540 1.692725e-02
                                                                    2.388284
$~2~
                       Cla/Mod
                                  Mod/Cla
                                             Global
                                                         p.value
                                                                     v.test
B1=health poor
                    33.0776606 51.8018018 20.706770 8.269209e-84
                                                                  19.396447
Edad Skol=OldLow
                    25.8855586 42.7927928 21.858249 2.536287e-39
                                                                  13.119792
Edad Skol=OldMedium 19.9409158 20.2702703 13.440540 1.324499e-07
                                                                    5,275423
B1=health fair
                    17.3222390 34.3843844 26.245781 5.677456e-07
                                                                    5.001878
Sex=female
                    15.0474321 69.0690691 60.690887 1.524938e-06
                                                                    4.807940
Edad Skol=OldHigh
                    20.7048458 7.0570571 4.506651 1.354693e-03
                                                                    3.204134
$~3~
                                 Mod/Cla
                                            Global
                      Cla/Mod
                                                        p.value
                                                                   v.test
B1=health fair
                    19.818457 42.4635332 26.245781 7.805536e-21
                                                                 9.362251
Sex=female
                    13.444553 66.6126418 60.690887 1.205395e-03 3.237600
```



```
$ 4
                      Cla/Mod
                               Mod/Cla
                                          Global
                                                      p.value
                                                                 v.test
B1=health fair
                    26.248109 39.976959 26.245781 1.607979e-22
                                                                9.763932
B1=health good
                    21.872714 34.447005 27.139170 1.791435e-07
                                                               5.219772
Edad Skol=OldMedium 23.781388 18.548387 13.440540 2.904027e-06
                                                                4.677494
Edad Skol=OldHigh
                    23.788546 6.221198 4.506651 1.003363e-02 2.574668
$~5~
                      Cla/Mod
                                Mod/Cla
                                          Global
                                                      p.value
                                                                   v.test
B1=health good
                    30.577908 42.393509 27.139170 3.289184e-31
                                                                11.619274
                                                                9.624370
B1=health very good 32.292917 27.281947 16.537622 6.309239e-22
Edad Skol=JovMedium 30.468750 31.643002 20.329561 3.533054e-21
                                                                9.445620
Edad Skol=JovHigh
                    30.350195 7.910751
                                        5.102243 2.261012e-05
                                                                4.237422
Edad Skol=JovLow
                               5.172414
                                        3.791940 1.460394e-02
                    26.701571
                                                                 2.442054
Edad Skol=MidHigh
                    23.860590
                               9.026369
                                        7.405202 3.363408e-02
                                                                 2.124431
$`6`
                       Cla/Mod
                                Mod/Cla
                                           Global
                                                        p.value
                                                                     v.test
B1=health excellent 74.5762712 27.244582
                                         9.370657 3.763011e-123
                                                                  23.601012
B1=health very good 49.6998800 32.043344 16.537622
                                                   3.668735e-61
                                                                  16.500003
Edad Skol=JovMedium 40.9179688 32.430341 20.329561
                                                   1.168573e-33 12.091690
Sex=male
                    31.6666667 48.529412 39.309113
                                                   5.507268e-15
                                                                  7.814749
Edad Skol=JovHigh
                    43.5797665 8.668731 5.102243
                                                   1.538311e-10
                                                                   6.401526
Edad Skol=JovLow
                    42.9319372 6.346749 3.791940
                                                   1.257359e-07
                                                                   5.284955
Edad Skol=MidHigh
                    30.5630027 8.823529 7.405202
                                                   2.624464e-02
                                                                   2.222572
```

Description according to numeric variables


```
> res.hcpc$desc.var$quanti.var

Eta2 P-value

PF_Phisica 0.5540974 0

RP_Role.li 0.6037848 0

RE_Role.li 0.5429940 0

SF_Social 0.5979396 0

MH_Mental 0.6145947 0

EV_Energy 0.6281132 0

P_Pain 0.5805753 0

HP_General 0.6049045 0
```

Description according to numeric variables


```
$11
              v.test Mean in category Overall mean sd in category Overall sd
                                                                                    p.value
PF_Phisica -30.08759
                             34.78618
                                          69.92952
                                                         24.70291
                                                                     30.71124 7.041828e-199
RP Role.li -33.97905
                              7.81250
                                          63.00377
                                                         19.03903
                                                                    42.70719 4.543193e-253
P Pain
           -34.73364
                             24.96169
                                          64.50947
                                                         17.73485
                                                                     29.93736 2.447572e-264
HP General -35.40172
                             23.30428
                                          54.26444
                                                         13.25947
                                                                     22.99433 1.606760e-274
EV Energy -37.63124
                                          51.83145
                                                         13.06095
                                                                     21.52827 0.000000e+00
                             21.01974
MH Mental -37.69660
                             33.56579
                                          61.69069
                                                         14.74773
                                                                    19.61691 0.000000e+00
RE Role.li -37.75437
                                                         30.20910
                             14.47347
                                          72.42412
                                                                    40.35830 0.000000e+00
SF Social -39.19922
                                          64.83442
                                                                    23.20236 0.000000e+00
                             30.24304
                                                         18.30446
$~2~
               v.test Mean in category Overall mean sd in category Overall sd
                                                                                    p.value
                                                                               1.104536e-03
RE_Role.li
             3.262450
                              77.17733
                                           72.42412
                                                          36.80135
                                                                      40.35830
            -4.711168
                              58.35435
                                           61.69069
                                                                     19.61691
                                                                               2.463012e-06
MH Mental
                                                          13.53121
SF Social -14.443856
                              52.73608
                                           64.83442
                                                          18.77967
                                                                      23.20236 2.740714e-47
                                           51.83145
                                                          14.43413
EV_Energy -16.411812
                              39.07658
                                                                     21.52827 1.574352e-60
HP General -24.247403
                              34.13664
                                           54.26444
                                                          14.82676
                                                                     22.99433 7.042685e-130
           -25.606539
                                           64.50947
                                                                      29.93736 1.290045e-144
P Pain
                              36.83529
                                                          21.05721
PF Phisica -28.200871
                              38.66366
                                           69.92952
                                                          22.35936
                                                                      30.71124 5.705482e-175
RP Role.li -28.667247
                              18.80631
                                           63.00377
                                                          30.54377
                                                                      42.70719 9.772936e-181
$~3~
               v.test Mean in category Overall mean sd in category Overall sd
                                                                                     p.value
                                                                                4.798949e-06
PF Phisica
             4.573390
                              75.22690
                                           69.92952
                                                          21.00854
                                                                      30.71124
P Pain
            -4.500828
                              59.42750
                                           64.50947
                                                          23.00276
                                                                      29.93736
                                                                               6.768936e-06
RP Role.li -7.645505
                              50.68882
                                           63.00377
                                                          38.75247
                                                                     42.70719 2.081264e-14
HP General -9.619138
                              45.92220
                                           54.26444
                                                          16.07661
                                                                      22.99433 6.638531e-22
EV Energy -16.527629
                              38.41167
                                           51.83145
                                                          13.69342
                                                                      21.52827
                                                                               2.320971e-61
SF Social
                              48.22577
                                           64.83442
                                                          17.71799
                                                                      23.20236 2.537308e-80
          -18.979137
                                                          14.20201
MH Mental
          -24.348605
                              43.67585
                                           61.69069
                                                                      19.61691 5.997935e-131
RE Role.li -27.704429
                                                                      40.35830 6.174987e-169
                              30.25371
                                           72.42412
                                                          36.49884
```

Description according to numeric variables


```
$~4~
               v.test Mean in category Overall mean sd in category Overall sd
                                                                                    p.value
RE_Role.li
           16.702296
                              93.24131
                                            72.42412
                                                           19.86619
                                                                      40.35830 1.261168e-62
MH Mental
           12.719324
                              69.39631
                                           61.69069
                                                           12.08360
                                                                      19.61691 4.618379e-37
SF Social
                                          64.83442
                                                                      23.20236 2.380394e-23
           9.955742
                              71.96819
                                                           14.82190
EV Energy
          7.356424
                              56.72235
                                          51.83145
                                                           13.94939
                                                                      21.52827 1.889030e-13
P Pain
            -5.267258
                              59.63967
                                          64.50947
                                                           22.99663
                                                                      29.93736 1.384765e-07
PF Phisica -13.001954
                              57.59793
                                           69.92952
                                                           27.04465
                                                                      30.71124 1.192560e-38
$`5`
              v.test Mean in category Overall mean sd in category Overall sd
                                                                                    p.value
PF Phisica 24.631852
                             91.53651
                                           69.92952
                                                          11.95823
                                                                     30.71124 5.759604e-134
RP Role.li 23.490443
                             91.65822
                                           63.00377
                                                          19.32596
                                                                     42.70719 5.107586e-122
P Pain
           20.486659
                             82.02746
                                           64.50947
                                                          17.77253
                                                                     29.93736
                                                                                2.831708e-93
                             64.15720
HP General 15.062490
                                           54.26444
                                                          13.84032
                                                                     22.99433
                                                                                2.858148e-51
SF Social 10.521685
                             71.80738
                                           64.83442
                                                          14.15020
                                                                     23.20236
                                                                               6.863536e-26
                             78.70199
RE Role.li 5.446027
                                           72.42412
                                                          32.67579
                                                                     40.35830
                                                                                5.150727e-08
EV Energy
            4.031342
                             54.31034
                                           51.83145
                                                          11.99565
                                                                     21.52827
                                                                                5.545920e-05
$`6`
             v.test Mean in category Overall mean sd in category Overall sd
                                                                                   p.value
EV_Energy
                                                                              0.000000e+00
          43.18690
                            74.13700
                                          51.83145
                                                        12,417304
                                                                    21.52827
MH Mental
           39.69956
                            80.37461
                                          61.69069
                                                         9.713970
                                                                    19.61691
                                                                              0.000000e+00
HP General 39.66114
                            76.14396
                                          54.26444
                                                        13.436735
                                                                    22.99433
                                                                              0.000000e+00
SF Social 36.52576
                            85.16657
                                         64.83442
                                                         7.352870
                                                                    23.20236 4.326001e-292
P Pain
           35.09416
                            89.71525
                                         64.50947
                                                        15,488867
                                                                    29.93736 8.275597e-270
RP Role.li 33.12422
                            96.94272
                                         63.00377
                                                        11.939403
                                                                    42.70719 1.331644e-240
PF Phisica 29.75074
                            91.84985
                                         69.92952
                                                        16.836237
                                                                    30.71124 1.696340e-194
RE Role.li 27.04154
                            98.60692
                                         72.42412
                                                         7.632298
                                                                    40.35830 4.802356e-161
```