EXAMPLE 37

ICR-CDI mice (Male, five weeks old, Body weight: 20 g) were abstained from food for 18 hours, and then used as test subjects.

The phenylalanine derivative of the present invention was suspended in 0.5% CMC-0.14M sodium chloride buffer solution (pH 7.4). The solution thus obtained was administered orally in fixed volume amounts to the test subjects. After a predetermined time, the percentage decrease of the blood glucose against the control group was determined. The results are shown in the following Table.

Example No.	Amounts used of sample mg/kg body weight	Decrease in blood glucose after 60 minutes (%)
21	25	26
22	100	43
23	••	35
24	••	30
25		32
26	**	0
27	"	0
23	6.25	24
29	"	31
30	"	30
31	1.5	30
32	6.25	37
33	100	23
34	**	14
35	25	24
36	100	27

It is clear from the foregoing that the D-phenylalanine derivatives as described above can be used as an antidiabetic drug for oral administration as well as the more usual parenteral administration.

ኅ -

We claim:

1. A D-phenylalanine derivative of the formula

R4-CO-NR3-CH(COOR1)-CH2-C6H5

or a salt thereof or a precursor which can be converted into said D-phenylalanine derivative in vivo, wherein: R¹ is hydrogen or C₁₋₅ alkyl,

R3 is hydrogen or C1.5 alkyl; and

R⁴ is cyclohexane substituted at the 4- or 5-position by methyl, ethyl, ispropyl, tert-butyl, ethene, or isopropene or cyclohexene substituted at the 4- or 5-position by methyl, ethyl, isopropyl, tert-butyl, ethene, or isopropene.

2. The D-phenylalanine derivative of claim 1. wherein R⁴ is said substituted cyclohexane.

3. The D-phenylalanine derivative of ciaim 1, wherein R⁴ is said substituted cyclohexane.

 4. The D-phenylalanine derivative of claim 1. wherein the said derivative is N-(4-isopropylcyclohexylcarbonyl)-D-phenylalanine.

5. The D-phenylalanine derivative of claim 1. wherein the said derivative is N-(4-isopropylcyclohex10 ylcarbonyl)-D-phenylalanine: N-[(S)-perilloyl]-D-phenylalanine; N-(4-methylcyclohexylcarbonyl)-D-phenylalanine: N-(4-ethylcyclohexylcarbonyl)-D-phenylalanine: or N-(4-t-butylcyclohexylcarbonyl)-D-phenylalanine.

6. The D-phenylalanine derivataive of claim 1, wherein the said derivative is N-[(s)-perilloyl]-D-phenylalanine; N-(trans-4-methylcyclohexylcarbonyl)-D-phenylalanine; N-(trans-4-ethylcyclohexylcarbonyl)-D-phenylalanine; N-(trans-4-isopropyicyclohexylcarbonyl)-D-phenylalanine; or N-(trans-4-t-butylcyclohex-

ylcarbonyl)-D-phenylalanine.

7. The D-phenylalanine derivative of claim 1, wherein R¹ is hydrogen and R³ is hydrogen.

8. The D-phenylalanine derivative of claim 1, 25 wherein \mathbb{R}^4 is perilloyl.

9. The D-phenylalanine derivative of claim 1. wherein said substituted cyclonexane is substituted at the 4-position.

 The D-phenylalanine derivative of ciaim 1.
 wherein said substituted cyclohexane is substituted at the 5-position.

11. The D-phenylalanine derivative of claim 1, wherein said substituted cyclonexene is substituted at the 4-position.

35 12. The D-phenylalanine derivative of claim 1, wherein said substituted cyclohexene is substituted at the 5-positon.

13. The D-phenylalanine derivative of ciaim 1, wherein said substituted cyclohexane or said substituted 40 cyclohexene is substituted with methyl, ethyl, isopropyl or tert-butyl.

14. The D-phenylalanine derivative of ciaim 1, wherein said substituted cyclohexane or said substituted cyclohexene is substituted by ethene, or isopropene.

15. A pharmaceutical composition, comprising a Dphenylalanine derivative of claim 1 and a pharmaceutical excipient.

HTA JHC

16. The compound N-(trans-4-isopropylcyclohexylcarbonyl)-D-

phenylalanine.

60