Chapter 16

Sound and Hearing

16.1 Intro to Sound Waves

8/9: • First quiz this Friday.

- There to get you ready for the midterm.
- Starts at 10:00 AM.
- 30 minutes for the quiz plus 20 minutes to scan and upload \Rightarrow due at 10:50 AM.
- Send Dr. Gazes an email if you have technical issues.
- Study:
 - HW 1-2.
 - Chapter 15-16, and parts of 33.
 - No questions on homework material to which we don't have the solutions.
- Standing wave: A wave with nodes and antinodes that do not move.
- Consider an air-filled pipe of length L with a piston at one end and being open at the other end.

Figure 16.1: An air-filled pipe.

- The air in it has density ρ_0 and pressure p_0 .
- Reviews compression and rarefaction.
- Creating a plot of pressure vs. x-distance yields a transverse pressure wave.
- We consider the pressure at the end to be essentially "clamped" at atmospheric pressure p_0 .
 - Thus, the wave gets reflected at the end of the pipe.

- Sound wave: A wave propagating in a material.
- Speed of sound:
 - For a wave on a string, $v = \sqrt{F/M}$.
 - Tension is how hard a sliver of string is being pulled on by its neighbors. Mass density is inertial; it tells us how much a sliver of string resists being moved by its neighbor.
 - Thus, for a sound wave, we should have something kind of like $v = \sqrt{p_0/\rho_0}$.
 - In fact, adjusting for some other factors, we get (at STP)

$$v_{\text{sound}} = \sqrt{\frac{1.4p_0}{\rho_0}}$$

• Let $\delta p = p - p_0$.

Figure 16.2: Standing waves in an air-filled pipe.

- Then some ways to get a standing wave are $L = \frac{\lambda}{4}, \frac{\lambda}{4} + \frac{\lambda}{2}, \frac{\lambda}{4} + \lambda, \dots$
- Thus, standing waves are given by $L = \frac{\lambda}{4} + m \cdot \frac{\lambda}{2}$, where $m \in \mathbb{N} \cup \{0\}$
- When you have a node for pressure, you have an antinode for displacement and vice versa.
- It follows from the fact that $L = \frac{n\lambda}{4}$ for $n \in 2\mathbb{N} + 1$ that $L = \frac{n}{4} \cdot \frac{v_{\text{sound}}}{f}$ for $n \in 2\mathbb{N} + 1$.
 - Thus, $f_n = \frac{n}{4} \cdot \frac{v_{\text{sound}}}{L}$.
 - f_1 is again the fundamental frequency, and $f_n = nf_1$, but only where $n \in 2\mathbb{N} + 1$.
- Hissing air has all kinds of frequencies. When you blow it over the opening of a bottle, only the frequencies with large amplitudes will produce standing waves.
 - When you partially fill the bottle, decreasing the length of the tube of air, higher frequencies are selected for.
- When you blow air past a tube that is open at both ends, you have pressure nodes (denoted by N_p) at both ends and you can get all sorts of standing waves in between.

Figure 16.3: Standing waves in an uncapped pipe.

- Here, we have $L = n \cdot \frac{\lambda}{2}$, where $n \in \mathbb{N}$.
- Open-open pipes are just like a string clamped at both ends.

16.2 Sound Waves in More Dimensions

- 2001: A Space Odyssey starts with a 16 Hz sound.
- Sound in 1D vs. sound in 3D.

Figure 16.4: Sound waves in 3D.

- Wavelength (3D): The distance between the crests of adjacent waves.
- How much energy is captured by your ear depends on the intensity.
- Intensity: The average power per unit area. Denoted by I. Units W/m^2 .
 - In 3D, $I = \frac{\bar{P}}{4\pi r^2}$.
 - Thus, the power at your ear is given by $P_{\text{ear}} = IA_{\text{ear}}$.
- Threshold intensity: The lowest intensity that can still be heard. Denoted by I_0 .
 - For humans, $I_0 \approx 1 \times 10^{-12} \,\mathrm{W/m^2}$.
- Sound intensity level: The following quantity. Units dB.

$$\beta = 10 \log \left(\frac{I}{I_0} \right)$$

- $-\beta$ (whisper) $\approx 20 \, \mathrm{dB}$.
- $-\beta$ (NYC Subway) $\approx 100 \, \mathrm{dB}$.
 - 1×10^8 times the intensity of a whisper!
- $-\beta$ (ears hurt) $\approx 120 \, \mathrm{dB}$.

16.3 Sound Wave Phenomena

• Speakers at varying distances from one's ear:

Figure 16.5: Speakers at varying distances from one's ear.

$$-y = y_1 + y_2 = A\cos(kx - \omega t) + A\cos(k[x + \Delta x] - \omega t).$$

- If $\Delta x = 0$, then
$$y = 2A\cos(kx - \omega t)$$

- If $\Delta x = \frac{\lambda}{2}$, then

$$y = A \left[\cos(kx - \omega t) + \cos\left(kx + k \cdot \frac{\lambda}{2} - \omega t\right) \right]$$

$$= A \left[\cos(kx - \omega t) + \cos\left(kx + \frac{2\pi}{\lambda} \cdot \frac{\lambda}{2} - \omega t\right) \right]$$

$$= A \left[\cos(kx - \omega t) + \cos(kx - \omega t + \pi) \right]$$

$$= A \left[\cos(kx - \omega t) - \cos(kx - \omega t) \right]$$

$$= 0$$

so you get total cancellation/destructive interference.

- Similarly, you can electronically delay the signal. If $\Delta t = \frac{T}{2}$, then the waves cancel. This is the principle behind noise-cancelling headphones.
- $-\Delta x$ is called the **path length difference**.
- Sound waves of slightly varying frequency:

Figure 16.6: Sound waves of slightly varying frequencies.

- Consider frequencies f_1, f_2 where $\Delta f \ll f_1, f_2$.
- Since $k = 2\pi f/v_{\rm sound}$ and $\omega = 2\pi f$ (i.e., both quantities depend on frequency), we have that

$$y = y_1 + y_2$$

= $A[\cos(k_1x - \omega_1t) + \cos(k_2x - \omega_2t)]$

Suppose x = 0.

$$= A[\cos(\omega_1 t) + \cos(\omega_2 t)]$$

$$= 2A \cos\left(\frac{\omega_1 + \omega_2}{2} \cdot t\right) \cos\left(\frac{\omega_1 - \omega_2}{2} \cdot t\right)$$

$$= 2A \cos(\bar{\omega}t) \cos\left(\frac{\Delta\omega}{2} \cdot t\right)$$

- Since $\bar{\omega} >> \Delta \omega$, y looks like the end result in Figure 16.6.
- Thus, we will hear $\bar{\omega}$, but there will be silences interspersed.
 - These nodes are called **beats**, and $f_{\text{beat}} = f_1 f_2$.
- Suppose we have a source s producing a sound of frequency f. An observer o runs toward the source at speed v_o .
 - Thus, the observer is being hit by wavefronts moving, relative to them, at speed $v + v_o$. Thus, since $v = \lambda f$, the frequency f' that the observer hears is given by

$$f' = \frac{v + v_o}{\lambda} = \frac{v + v_o}{v} \cdot f > f$$

- **Doppler Effect**: The change in frequency produced by the speed of the observer relative to the source. *Also known as* **Doppler Shift**.
 - Also happens when the source moves toward the observer. In this case, though, λ varies: With respect to the source, waves are being emitted at the same frequency, but they're only moving away from the source at speed $v v_s$. Thus, $\lambda' = v v_s/f$, so $f' = \frac{v}{v v_s} \cdot f$.