SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

ZADANIE 3 : KONVOLUČNÉ NEURÓNOVÉ SIETE A PRENOS VEDOMOSTÍ SEMINÁRNA PRÁCA

SLOVENSKÁ TECHNICKÁ UNIVERZITA V BRATISLAVE FAKULTA ELEKTROTECHNIKY A INFORMATIKY

ZADANIE 3 : KONVOLUČNÉ NEURÓNOVÉ SIETE A PRENOS VEDOMOSTÍ SEMINÁRNA PRÁCA

Študijný program: Aplikovaná informatika

Predmet: I-SUNS – Strojové učenie a neurónové siete

Prednášajúci: prof. Dr. Ing. Miloš Oravec Cvičiaci: Ing. Zuzana Bukovčiková Ing. Vanesa Andicsová

Ing. Dominik Sopiak, PhD.

Bratislava 2022

Ladislav Rajcsányi

Obsah

vod			1
Pou	ıžité te	echnológie	3
1.1	Panda	ıs	. 3
1.2	Matpl	otlib	. 3
1.3	Seabo	${ m rn}$. 3
1.4	Scikit-	-Learn	. 3
1.5	Tenso	m rFlow	. 3
1.6	Keras		. 3
Imp	olemen	tácia	4
2.1	Načíta	anie Dát	. 4
2.2	Priesk	zumná Analýza Dát (Exploratory Data Analysis)	. 4
2.3	Konvo	olučná Neurónová Sieť (Convolutional Neural Network)	. 11
	2.3.1	Najlepšia Siet	. 11
	2.3.2	Pretrénovanie	. 14
	2.3.3	Regularizátory	. 18
		2.3.3.1 L1 - 0.001	. 18
		2.3.3.2 L1 - 0.0001	. 21
		2.3.3.3 L1 - 0.00001	. 25
		2.3.3.4 L2 - 0.001	. 28
		2.3.3.5 L2 - 0.0001	. 32
		2.3.3.6 L2 - 0.00001	. 35
	2.3.4	Predtrénovaná Siet	. 39
2.4	Iné Kl	lasifikátory	. 40
znar	n použ	žitej literatúry	42
rílohy	y		I
Štri	uktúra	projektu	II
			IV
	Pou 1.1 1.2 1.3 1.4 1.5 1.6 Imp 2.1 2.2 2.3 2.4 excellence of the control of the con	Použité te 1.1 Panda 1.2 Matpl 1.3 Seabo 1.4 Scikit- 1.5 Tenso 1.6 Keras Implemen 2.1 Načíta 2.2 Priesk 2.3 Konvo 2.3.1 2.3.2 2.3.3 2.3.4 2.4 Iné Ki oznam použ cílohy Štruktúra	Použité technológie

Zoznam obrázkov a tabuliek

Obrázok 1	Počet prvkov v kategóriach trénovacích dát	4
Obrázok 2	Počet prvkov v kategóriách trénovacích dát	5
Obrázok 3	Príklad z trénovacích dát	5
Obrázok 4	Príklad z testovacích dát	6
Obrázok 5	Vývoj úspešnosti počas trénovania	12
Obrázok 6	Vývoj chybovej hodnoty počas trénovania	12
Obrázok 7	Konfúzna matica	14
Obrázok 8	Vývoj úspešnosti počas trénovania	15
Obrázok 9	Vývoj chybovej hodnoty počas trénovania	16
Obrázok 10	Konfúzna matica	17
Obrázok 11	Vývoj úspešnosti počas trénovania	19
Obrázok 12	Vývoj chybovej hodnoty počas trénovania	19
Obrázok 13	Konfúzna matica	21
Obrázok 14	Vývoj úspešnosti počas trénovania	22
Obrázok 15	Vývoj chybovej hodnoty počas trénovania	23
Obrázok 16	Konfúzna matica	24
Obrázok 17	Vývoj úspešnosti počas trénovania	26
Obrázok 18	Vývoj chybovej hodnoty počas trénovania	26
Obrázok 19	Konfúzna matica	28
Obrázok 20	Vývoj úspešnosti počas trénovania	29
Obrázok 21	Vývoj chybovej hodnoty počas trénovania	30
Obrázok 22	Konfúzna matica	31
Obrázok 23	Vývoj úspešnosti počas trénovania	33
Obrázok 24	Vývoj chybovej hodnoty počas trénovania	33
Obrázok 25	Konfúzna matica	35
Obrázok 26	Vývoj úspešnosti počas trénovania	36
Obrázok 27	Vývoj chybovej hodnoty počas trénovania	37
Obrázok 28	Konfúzna matica	38
Obrázok 29	3D Scatter Plot pre Validačné Dáta	39
Obrázok 30	Konfúzna matica	41

Zoznam skratiek

API Application Programming Interface

KNS Konvolučná Neurónová Sieť

ML Machine Learning

$\mathbf{\acute{U}vod}$

Hlavným cieľom tohto zadania je predpovedanie kategórie daného jedla na obrázku pomocou Konvolučných Neurónových Sietí (Convolutional Neural Network), tým pádom úloha je triediaca (klasifikačná). Na vypracovanie zadania sme použili poskytnuté obrázky, ktoré sú rozdelené na trénovacie a testovacie dáta. Trénovacie dáta použijeme na natrénovanie konvolučných neurónových sietí a v prípade potreby môžeme z nich vybrať aj validačné dáta, ktoré môžeme používať na monitorovanie úspešnosti na predtým nevidených dát počas fázy trénovania.

Dáta sú uložené v JPG formáte. Trénovacie aj testovacie dáta sú rozdelené do 30 rôznych kategórii, ktoré sú nasledovné:

- apple_pie
- baby_back_ribs
- caesar_salad
- \bullet caprese_salad
- chicken_quesadilla
- chicken_wings
- chocolate_cake
- cup cakes
- donuts
- dumplings
- french fries
- garlic_bread
- grilled_salmon
- guacamole
- hamburger
- hot_dog

- \bullet ice_cream
- lasagna
- $\bullet \ \ {\rm macaroni_and_cheese}$
- macarons
- onion_rings
- oysters
- pancakes
- pho
- pizza
- $\bullet \ \ \mathrm{red_velvet_cake}$
- risotto
- \bullet sashimi
- $\bullet \hspace{0.1in} spaghetti_bolognese$
- waffles

1 Použité technológie

1.1 Pandas

Pandas je rýchly, výkonný, flexibilný a ľahko použiteľný open source nástroj na analýzu a manipuláciu s údajmi, postavený na programovacom jazyku Python [1].

1.2 Matplotlib

Matplotlib je komplexná knižnica na vytváranie statických, animovaných a interaktívnych vizualizácií v jazyku Python [2].

1.3 Seaborn

Seaborn je knižnica na vizualizáciu údajov v jazyku Python založená na matplotlib. Poskytuje vysokoúrovňové rozhranie na kreslenie atraktívnej a informatívnej štatistickej grafiky [3].

1.4 Scikit-Learn

- Jednoduché a efektívne nástroje na prediktívnu analýzu údajov
- Prístupné pre každého a opakovane použiteľné v rôznych kontextoch
- Postavené na NumPy, SciPy a matplotlib
- Open Source, komerčne použiteľný licencia BSD [4]

1.5 TensorFlow

TensorFlow je komplexná open source platforma pre strojové učenie (angl.: Machine Learning - ML). Má komplexný, flexibilný ekosystém nástrojov, knižníc a komunitných zdrojov, ktorý umožňuje výskumníkom posúvať najnovšie poznatky v oblasti ML a vývojárom ľahko vytvárať a nasadzovať aplikácie využívajúce ML [5].

1.6 Keras

Keras je API určené pre ľudí, nie pre stroje. Keras sa riadi osvedčenými postupmi na zníženie kognitívnej záťaže: ponúka konzistentné a jednoduché API, minimalizuje počet činností používateľa potrebných pre bežné prípady použitia a poskytuje jasné a použiteľné chybové hlásenia. Má tiež rozsiahlu dokumentáciu a príručky pre vývojárov [6].

2 Implementácia

2.1 Načítanie Dát

Riešenie tohto zadania začneme načítaním vopred nachystaných trénovacích aj testovacích dát, ktoré sú obrázkové dáta. Na načítanie dát sme vytvorili vlastnú funkciu (**Dataloader.load_all_data(...)**) na základe článku [7] a odpovedí [8], ktorá postupne v batchoch načíta všetky obrázky, pridelí k nim kategóriu na základe priečinku, v ktorom sa nachádzajú dané obrázky. V tomto procese normalizujeme obrázky (všetky hodnoty vynásobíme s 1/255, a tým pádom, všetky pixely v našich obrázkoch budú mať hodnoty <0.0, 1.0>) a následne ich zmenšíme, aby sme zrýchlili proces trénovania. V tomto procese sme tiež vytvorili aj validačnú množinu, ktorú budeme používať počas trénovania na skúmanie správania sa našej siete keď pracuje s vopred nevidenými dátami. V Prieskumnej Analýze Dát si overíme, či sa nám podarilo úspešne načítať všetky obrázky.

2.2 Prieskumná Analýza Dát (Exploratory Data Analysis)

Po načítaní dát nasleduje Prieskumná Analýza Dát. Začneme so zobrazením základných informácii o našich dátach. Inšpiráciu pre túto analýzu sme našli v článku [9]. Najprv sme si zobrazili ako vyzeralo rozloženie našich dát pred rozdelením. Na nižšie uvedených obrázkoch vidíte, že každá kategória má rovnaký počet prvkov. Každá kategória má v prípade trénovacích 900 a v prípade testovacích 100 prvkov.

Obr. 1: Počet prvkov v kategóriach trénovacích dát

Obr. 2: Počet prvkov v kategóriách trénovacích dát

Potom zobrazili sme jeden prvok z každej kategórie z trénovacích aj testovacích dát (V dokumentácii sme nezobrazili všetky výsledky, lebo nechceli sme aby samotný dokument bol príliš dlhý, ale program Vám vygeneruje tieto výsledky). Na nižšie uvedených obrázkoch ešte vidíte pôvodnú veľkosť našich obrázkov.

Obr. 3: Príklad z trénovacích dát

Obr. 4: Príklad z testovacích dát

Následne sme aj vyskúšali načítané dáta augmentovať (používali sme horizontal a vertical flip spolu s rotation, ale samotné trénovanie modelov sme robili na originálnych dátach), následne sme dostali podobné výsledky.

Potom zobrazili sme informáciu o veľkosti jednotlivých množín. Prvý riadok reprezentuje trénovaciu, druhá validačnú a tretia testovaciu množinu.

```
Found 20250 images belonging to 30 classes.
Found 6750 images belonging to 30 classes.
Found 3000 images belonging to 30 classes.
```

Následne sme zobrazili jednotlivé kategórie, ktoré sa nachádzajú v jednotlivých množinách.

```
Classes in the Training Data:
{
     'apple_pie': 0,
     'baby_back_ribs': 1,
     'caesar_salad': 2,
     'caprese_salad': 3,
     'chicken quesadilla': 4,
     'chicken_wings': 5,
     'chocolate_cake': 6,
     'cup cakes': 7,
     'donuts': 8,
     'dumplings': 9,
     'french_fries': 10,
     'garlic_bread': 11,
     'grilled_salmon': 12,
     'guacamole': 13,
     'hamburger': 14,
     'hot_dog': 15,
     'ice_cream': 16,
     'lasagna': 17,
     'macaroni and cheese': 18,
     'macarons': 19,
     'onion_rings': 20,
```

```
'oysters': 21,
     'pancakes': 22,
     'pho': 23,
     'pizza': 24,
     'red_velvet_cake': 25,
     'risotto': 26,
     'sashimi': 27,
     'spaghetti_bolognese': 28,
     'waffles': 29
 }
Classes in the Validation Data:
{
     'apple_pie': 0,
     'baby_back_ribs': 1,
     'caesar_salad': 2,
     'caprese_salad': 3,
     'chicken_quesadilla': 4,
     'chicken_wings': 5,
     'chocolate_cake': 6,
     'cup_cakes': 7,
     'donuts': 8,
     'dumplings': 9,
     'french_fries': 10,
     'garlic_bread': 11,
     'grilled_salmon': 12,
     'guacamole': 13,
     'hamburger': 14,
     'hot_dog': 15,
```

```
'ice_cream': 16,
    'lasagna': 17,
    'macaroni_and_cheese': 18,
    'macarons': 19,
    'onion_rings': 20,
    'oysters': 21,
    'pancakes': 22,
    'pho': 23,
    'pizza': 24,
    'red_velvet_cake': 25,
    'risotto': 26,
    'sashimi': 27,
    'spaghetti_bolognese': 28,
    'waffles': 29
}
Classes in the Testing Data:
{
     'apple_pie': 0,
     'baby_back_ribs': 1,
     'caesar_salad': 2,
     'caprese_salad': 3,
     'chicken_quesadilla': 4,
     'chicken_wings': 5,
     'chocolate_cake': 6,
     'cup_cakes': 7,
     'donuts': 8,
     'dumplings': 9,
     'french_fries': 10,
     'garlic_bread': 11,
     'grilled_salmon': 12,
     'guacamole': 13,
     'hamburger': 14,
```

```
'hot_dog': 15,
'ice_cream': 16,
'lasagna': 17,
'macaroni_and_cheese': 18,
'macarons': 19,
'onion_rings': 20,
'oysters': 21,
'pancakes': 22,
'pho': 23,
'pizza': 24,
'red_velvet_cake': 25,
'risotto': 26,
'sashimi': 27,
'spaghetti_bolognese': 28,
'waffles': 29
```

Na vyššie uvedených výpisoch vidíme, že každá množina má tie isté kategórie. Potom nás zaujímalo, či sme vôbec zmenili veľkosť našich obrázkov. Preto sme si zobrazili nasledujúce výpisy.

}

```
Image Shape in the Training Data: (32, 32, 3)
Image Shape in the Validation Data: (32, 32, 3)
Image Shape in the Testing Data: (32, 32, 3)
```

Na základe týchto grafov a výpisov sme zistili dôležité informácie o našich načítaných dátach. Úspešne sme modifikovali veľkosť našich obrázkov a rozdelili sme ich to troch množín. Keďže dáta sú už načítané a analyzované sme skončili s Prieskumnou Analýzou Dát.

Konvolučná Neurónová Sieť (Convolutional Neural 2.3 Network)

Najlepšia Sieť 2.3.1

Po Prieskumnej Analýze Dát sme natrénovali Konvolučnú Neurónovú Siet. Na nižšie uvedenom diagrame vidíte jej štruktúru, pričom vrstva dense obsahuje aj L1(0.0001) regularizátor. V tejto štruktúre sme sa snažili vyhýba pretrénovaniu, preto sme nastavili EarlyStopping [10] s trpezlivosťou 5 epoch, ktorý nám zastavil trénovanie po 66. epoche. Sieť je minimálne pretrénovaná. Na nižšie uvedených hodnotách vidíte dosiahnuté výsledky.

Model: "sequential"

Layer (type)		
conv2d (Conv2D)	(None, 32, 32, 32)	
activation (Activation)	(None, 32, 32, 32)	0
conv2d_1 (Conv2D)	(None, 32, 32, 64)	18496
activation_1 (Activation)	(None, 32, 32, 64)	0
max_pooling2d (MaxPooling	(2D) (None, 16, 16, 64)	0
conv2d_2 (Conv2D)	(None, 16, 16, 64)	36928
activation_2 (Activation)	(None, 16, 16, 64)	0
flatten (Flatten)	(None, 16384)	0
dense (Dense)	(None, 1024)	16778240
activation_3 (Activation)	(None, 1024)	0
dropout (Dropout)	(None, 1024)	0
dense_1 (Dense)	(None, 30)	30750

Total params: 16,866,846 Trainable params: 16,866,846 Non-trainable params: 0

Obr. 5: Vývoj úspešnosti počas trénovania

Obr. 6: Vývoj chybovej hodnoty počas trénovania

Model evaluation:

Loss: 3.034605026245117

Accuracy: 0.2776666581630707

Classification Report:

	p	recision	recall	f1-score	support
	0	0.20	0.08	0.11	100
	1	0.30	0.25	0.27	100
	2	0.36	0.40	0.38	100
	3	0.31	0.28	0.30	100
	4	0.14	0.16	0.15	100
	5	0.25	0.19	0.21	100
	6	0.28	0.62	0.38	100
	7	0.23	0.26	0.25	100
	8	0.24	0.11	0.15	100
	9	0.44	0.55	0.49	100
1	LO	0.19	0.29	0.23	100
1	11	0.13	0.06	0.08	100
1	12	0.24	0.15	0.18	100
1	13	0.33	0.39	0.36	100
1	14	0.25	0.23	0.24	100
1	15	0.20	0.12	0.15	100
1	16	0.45	0.17	0.25	100
1	L7	0.35	0.22	0.27	100
1	18	0.18	0.29	0.22	100
1	19	0.18	0.22	0.20	100
2	20	0.25	0.26	0.25	100
2	21	0.28	0.50	0.36	100
2	22	0.20	0.18	0.19	100
2	23	0.41	0.44	0.43	100
2	24	0.32	0.31	0.31	100
2	25	0.38	0.46	0.42	100
2	26	0.27	0.30	0.29	100
2	27	0.33	0.40	0.36	100
2	28	0.38	0.31	0.34	100
2	29	0.21	0.13	0.16	100
accura	су			0.28	3000
macro a	vg	0.28	0.28	0.27	3000
reighted a	avg	0.28	0.28	0.27	3000

Obr. 7: Konfúzna matica

2.3.2 Pretrénovanie

Na túto podúlohu sme používali tú istú sieť ako v prípade najlepšej siete, síce v tomto príprade sme chceli naschvál pretrénovať sieť, a kvôli tomu sme deaktivovali EarlyStopping.

Model: "sequential_34"				
Layer (type)	Output Shape	Param #		
conv2d_81 (Conv2D)	(None, 32, 32, 32)	2432		
activation_41 (Activation) (None, 32, 32, 32)	0		
conv2d_82 (Conv2D)				
activation_42 (Activation) (None, 32, 32, 64)	0		
max_pooling2d_32 (MaxPool	ing (None, 16, 16, 64)	0		

conv2d_83 (Conv2D)	(None, 16	6, 16, 64)	36928
activation_43 (Activation)	(None, 1	16, 16, 64)	0
flatten_32 (Flatten)	(None, 16	6384)	0
dense_64 (Dense)	(None, 10	024)	16778240
activation_44 (Activation)	(None, 1	1024)	0
dropout_20 (Dropout)	(None, 10	024)	0
dense_65 (Dense)	(None, 30	0) =======	30750

Total params: 16,866,846 Trainable params: 16,866,846 Non-trainable params: 0

Obr. 8: Vývoj úspešnosti počas trénovania

Obr. 9: Vývoj chybovej hodnoty počas trénovania

Model evaluation:

Loss: 2.9544947147369385

Accuracy: 0.26733332872390747

Classification Report:

	precision	recall	f1-score	support
0	0.20	0.18	0.19	100
1	0.29	0.27	0.28	100
2	0.35	0.42	0.38	100
3	0.25	0.20	0.22	100
4	0.11	0.14	0.13	100
5	0.33	0.22	0.26	100
6	0.33	0.46	0.38	100
7	0.18	0.24	0.21	100
8	0.16	0.12	0.14	100
9	0.45	0.44	0.44	100
10	0.20	0.15	0.17	100
11	0.25	0.21	0.23	100
12	0.17	0.17	0.17	100
13	0.31	0.37	0.34	100
14	0.10	0.09	0.10	100
15	0.16	0.11	0.13	100

	16	0.26	0.26	0.26	100
	17	0.35	0.31	0.33	100
	18	0.23	0.25	0.24	100
	19	0.20	0.17	0.18	100
	20	0.19	0.25	0.21	100
	21	0.37	0.42	0.39	100
	22	0.11	0.08	0.09	100
	23	0.48	0.48	0.48	100
	24	0.30	0.28	0.29	100
	25	0.33	0.44	0.38	100
	26	0.26	0.39	0.31	100
	27	0.43	0.28	0.34	100
	28	0.41	0.43	0.42	100
	29	0.18	0.19	0.18	100
accur	acy			0.27	3000
macro	avg	0.27	0.27	0.26	3000
eighted	avg	0.27	0.27	0.26	3000

Obr. 10: Konfúzna matica

2.3.3 Regularizátory

Po pretrénovaní sme vyskúšali aký vplyv majú regularizátory na pretrénovanie. Vyskúšali sme hodnoty 0.001, 0.0001 a 0.00001 pre L1 a L2 regularizátory. Dosiahli sme nasledujúce výsledky. V každom prípade sme nastavili regularizátor na Dense vrstvu, ktorá obsahuje 1024 neurónov.

2.3.3.1 L1 - 0.001

V tomto prípade L1 regularizátor zabránil pretrénovaniu.

Model: "sequential_30"		
Layer (type)	Output Shape	Param #
conv2d_69 (Conv2D)	(None, 32, 32, 32)	2432
activation_25 (Activation)	(None, 32, 32, 32)	0
conv2d_70 (Conv2D)	(None, 32, 32, 64)	18496
activation_26 (Activation)	(None, 32, 32, 64)	0
max_pooling2d_28 (MaxPooli	ing (None, 16, 16, 64)	0
conv2d_71 (Conv2D)	(None, 16, 16, 64)	36928
activation_27 (Activation)	(None, 16, 16, 64)	0
flatten_28 (Flatten)	(None, 16384)	0
dense_56 (Dense)	(None, 1024)	16778240
activation_28 (Activation)	(None, 1024)	0
dropout_16 (Dropout)	(None, 1024)	0
dense_57 (Dense)	(None, 30)	30750
Total params: 16,866,846 Trainable params: 16,866,8 Non-trainable params: 0	346	

Model evaluation:

Loss: 3.289435863494873

Accuracy: 0.18966667354106903

Obr. 11: Vývoj úspešnosti počas trénovania

Obr. 12: Vývoj chybovej hodnoty počas trénovania

Classification Report:

	precision	recall	f1-score	support
0	0.24	0.08	0.12	100
1	0.18	0.29	0.23	100
2	0.18	0.25	0.21	100
3	0.17	0.14	0.15	100
4	0.12	0.08	0.10	100
5	0.13	0.23	0.17	100
6	0.33	0.32	0.32	100
7	0.16	0.25	0.19	100
8	0.09	0.04	0.05	100
9	0.28	0.45	0.34	100
10	0.13	0.08	0.10	100
11	0.10	0.05	0.07	100
12	0.26	0.08	0.12	100
13	0.40	0.14	0.21	100
14	0.14	0.03	0.05	100
15	0.12	0.11	0.12	100
16	0.20	0.13	0.16	100
17	0.16	0.07	0.10	100
18	0.19	0.35	0.25	100
19	0.14	0.11	0.12	100
20	0.15	0.19	0.17	100
21	0.34	0.26	0.30	100
22	0.15	0.05	0.08	100
23	0.21	0.39	0.27	100
24	0.14	0.03	0.05	100
25	0.25	0.54	0.34	100
26	0.17	0.27	0.21	100
27	0.16	0.26	0.20	100
28	0.23	0.30	0.26	100
29	0.11	0.12	0.12	100
accuracy			0.19	3000
macro avg	0.19	0.19	0.17	3000
weighted avg	0.19	0.19	0.17	3000

Obr. 13: Konfúzna matica

2.3.3.2 L1 - 0.0001 V tomto prípade sme vyskúšali L1 regularizátor s menšou hodnotou a v tomto prípade už nastalo pretrénovanie cca. na 30-35. epoche.

Model: "sequential_35"

Layer (type)	Output Shape	Param #
conv2d_84 (Conv2D)	(None, 32, 32, 32)	2432
activation_45 (Activation) (None, 32, 32, 32)	0
conv2d_85 (Conv2D)	(None, 32, 32, 64)	18496
activation_46 (Activation	(None, 32, 32, 64)	0

max_pooling2d_33 (MaxPooli	ng (None, 16, 16, 64)	0
conv2d_86 (Conv2D)	(None, 16, 16, 64)	36928
activation_47 (Activation)	(None, 16, 16, 64)	0
flatten_33 (Flatten)	(None, 16384)	0
dense_66 (Dense)	(None, 1024)	16778240
activation_48 (Activation)	(None, 1024)	0
dropout_21 (Dropout)	(None, 1024)	0
dense_67 (Dense)	(None, 30)	30750

Total params: 16,866,846
Trainable params: 16,866,846
Non-trainable params: 0

Obr. 14: Vývoj úspešnosti počas trénovania

Obr. 15: Vývoj chybovej hodnoty počas trénovania

Model evaluation:

Loss: 3.1494674682617188

Accuracy: 0.26899999380111694

Classification Report:

	precision	recall	f1-score	support
0	0.15	0.08	0.10	100
1	0.27	0.26	0.27	100
2	0.35	0.47	0.40	100
3	0.36	0.21	0.26	100
4	0.14	0.08	0.10	100
5	0.21	0.21	0.21	100
6	0.32	0.49	0.38	100
7	0.17	0.26	0.21	100
8	0.24	0.11	0.15	100
9	0.40	0.47	0.43	100
10	0.22	0.26	0.24	100
11	0.18	0.25	0.21	100
12	0.19	0.19	0.19	100
13	0.48	0.40	0.43	100
14	0.33	0.15	0.21	100

	15	0.14	0.19	0.16	100
	16	0.20	0.23	0.21	100
	17	0.22	0.26	0.24	100
	18	0.25	0.19	0.22	100
	19	0.23	0.30	0.26	100
	20	0.24	0.24	0.24	100
	21	0.38	0.29	0.33	100
	22	0.20	0.09	0.12	100
	23	0.42	0.44	0.43	100
	24	0.27	0.43	0.33	100
	25	0.43	0.42	0.43	100
	26	0.21	0.35	0.26	100
	27	0.41	0.35	0.38	100
	28	0.39	0.36	0.37	100
	29	0.10	0.04	0.06	100
accur	acy			0.27	3000
macro	avg	0.27	0.27	0.26	3000
weighted	avg	0.27	0.27	0.26	3000

Obr. 16: Konfúzna matica

$2.3.3.3 \quad L1 - 0.00001 \quad \text{V tomto prípade sme vyskúšali L1 s ešte menšou hodnotou, a teraz už vôbec nezabránil pretrénovaniu, ktoré nastalo na 10 - 15. epoche. }$

Model: "sequential_36"					
Layer (type) 0	Output Shape				
	(None, 32, 32, 32)				
activation_49 (Activation)	(None, 32, 32, 32)	0			
conv2d_88 (Conv2D) ((None, 32, 32, 64)	18496			
activation_50 (Activation)					
max_pooling2d_34 (MaxPoolin					
conv2d_89 (Conv2D) ((None, 16, 16, 64)	36928			
activation_51 (Activation)					
flatten_34 (Flatten) ((None, 16384)	0			
dense_68 (Dense) ((None, 1024)	16778240			
activation_52 (Activation)		0			
dropout_22 (Dropout) ((None, 1024)	0			
dense_69 (Dense) (, ,	30750			
Total params: 16,866,846 Trainable params: 16,866,846 Non-trainable params: 0					

Obr. 17: Vývoj úspešnosti počas trénovania

Obr. 18: Vývoj chybovej hodnoty počas trénovania

Model evaluation:

Loss: 4.162998199462891

Accuracy: 0.2553333342075348

Classification Report:

	precision	recall	f1-score	support
0	0.12	0.08	0.09	100
1	0.25	0.31	0.28	100
2	0.31	0.37	0.33	100
3	0.21	0.25	0.23	100
4	0.12	0.14	0.13	100
5	0.20	0.25	0.22	100
6	0.40	0.39	0.39	100
7	0.19	0.20	0.19	100
8	0.20	0.22	0.21	100
9	0.56	0.37	0.45	100
10	0.23	0.24	0.24	100
11	0.17	0.18	0.18	100
12	0.18	0.25	0.21	100
13	0.32	0.32	0.32	100
14	0.18	0.12	0.14	100
15	0.15	0.15	0.15	100
16	0.20	0.22	0.21	100
17	0.27	0.26	0.27	100
18	0.26	0.19	0.22	100
19	0.28	0.19	0.23	100
20	0.19	0.21	0.20	100
21	0.32	0.39	0.35	100
22	0.18	0.14	0.16	100
23	0.52	0.47	0.49	100
24	0.28	0.29	0.28	100
25	0.40	0.40	0.40	100
26	0.27	0.25	0.26	100
27	0.34	0.30	0.32	100
28	0.35	0.39	0.37	100
29	0.13	0.12	0.13	100
accuracy			0.26	3000
macro avg	0.26	0.26	0.25	3000
weighted avg	0.26	0.26	0.25	3000

Obr. 19: Konfúzna matica

2.3.3.4 L2 - 0.001 V tomto prípade už nastalo pretrénovanie cca. na 10-15. epoche.

model: "sequential_3/"		
Layer (type)	Output Shape	Param #
conv2d_90 (Conv2D)	(None, 32, 32, 32)	2432
activation_53 (Activation)) (None, 32, 32, 32)	0
conv2d_91 (Conv2D)		18496
activation_54 (Activation)		0
max_pooling2d_35 (MaxPool:		

conv2d_92 (Conv2D)	(None, 16, 16, 64)	36928
activation_55 (Activation)	(None, 16, 16, 64)	0
flatten_35 (Flatten)	(None, 16384)	0
dense_70 (Dense)	(None, 1024)	16778240
activation_56 (Activation)	(None, 1024)	0
dropout_23 (Dropout)	(None, 1024)	0
dense_71 (Dense)	(None, 30)	30750

Total params: 16,866,846
Trainable params: 16,866,846
Non-trainable params: 0

.____

Obr. 20: Vývoj úspešnosti počas trénovania

Obr. 21: Vývoj chybovej hodnoty počas trénovania

Model evaluation:

Loss: 3.7327451705932617

Accuracy: 0.26566663646698

Classification Report:

	precision	recall	f1-score	support
0	0.14	0.17	0.15	100
1	0.29	0.28	0.29	100
2	0.32	0.29	0.30	100
3	0.25	0.22	0.23	100
4	0.15	0.12	0.13	100
5	0.34	0.23	0.27	100
6	0.30	0.56	0.39	100
7	0.21	0.24	0.22	100
8	0.12	0.09	0.10	100
9	0.39	0.43	0.41	100
10	0.22	0.18	0.20	100
11	0.18	0.16	0.17	100
12	0.20	0.17	0.19	100
13	0.34	0.32	0.33	100

	14	0.21	0.14	0.17	100
	15	0.24	0.22	0.23	100
	16	0.23	0.23	0.23	100
	17	0.26	0.26	0.26	100
	18	0.17	0.26	0.20	100
	19	0.29	0.23	0.26	100
	20	0.19	0.23	0.21	100
	21	0.30	0.39	0.34	100
	22	0.13	0.07	0.09	100
	23	0.50	0.52	0.51	100
	24	0.26	0.28	0.27	100
	25	0.43	0.43	0.43	100
	26	0.27	0.30	0.28	100
	27	0.40	0.41	0.41	100
	28	0.38	0.41	0.39	100
	29	0.15	0.13	0.14	100
accur	acy			0.27	3000
macro	avg	0.26	0.27	0.26	3000
weighted	avg	0.26	0.27	0.26	3000

Obr. 22: Konfúzna matica

${\bf 2.3.3.5}\quad {\bf L2}$ - ${\bf 0.0001}\quad {\bf V}$ tomto prípade už nastalo pretrénovanie cca. na 10-15. epoche.

Model: "sequential_38"

Layer (type)	Output Shape	
conv2d_93 (Conv2D)		
activation_57 (Activation)	(None, 32, 32, 32)	
conv2d_94 (Conv2D)		
activation_58 (Activation)	(None, 32, 32, 64)	0
max_pooling2d_36 (MaxPooli	ng (None, 16, 16, 64)	0
conv2d_95 (Conv2D)	(None, 16, 16, 64)	36928
activation_59 (Activation)		
flatten_36 (Flatten)		0
dense_72 (Dense)	•	16778240
activation_60 (Activation)	(None, 1024)	0
dropout_24 (Dropout)		0
dense_73 (Dense)	(None, 30)	30750
Total params: 16,866,846 Trainable params: 16,866,8		

Obr. 23: Vývoj úspešnosti počas trénovania

Obr. 24: Vývoj chybovej hodnoty počas trénovania

Model evaluation:

Loss: 3.6375985145568848

Accuracy: 0.26233333349227905

Classification Report:

		precision	recall	f1-score	support
	0	0.17	0.13	0.15	100
	1	0.24	0.21	0.22	100
	2	0.29	0.35	0.32	100
	3	0.26	0.20	0.23	100
	4	0.10	0.07	0.08	100
	5	0.25	0.19	0.22	100
	6	0.30	0.40	0.34	100
	7	0.23	0.16	0.19	100
	8	0.18	0.17	0.18	100
	9	0.42	0.49	0.45	100
1	10	0.29	0.26	0.27	100
1	11	0.24	0.20	0.22	100
1	12	0.19	0.19	0.19	100
1	13	0.28	0.35	0.31	100
1	14	0.16	0.16	0.16	100
1	15	0.27	0.13	0.18	100
1	16	0.23	0.20	0.21	100
1	17	0.28	0.22	0.25	100
1	18	0.19	0.30	0.23	100
1	19	0.22	0.25	0.23	100
2	20	0.29	0.21	0.24	100
2	21	0.26	0.49	0.34	100
2	22	0.15	0.15	0.15	100
2	23	0.43	0.54	0.48	100
2	24	0.20	0.25	0.22	100
2	25	0.45	0.43	0.44	100
2	26	0.28	0.30	0.29	100
2	27	0.40	0.34	0.37	100
2	28	0.43	0.46	0.45	100
2	29	0.08	0.07	0.07	100
accura	су			0.26	3000
macro a	ıvg	0.26	0.26	0.26	3000
weighted a	avg	0.26	0.26	0.26	3000
	_				

Obr. 25: Konfúzna matica

2.3.3.6 L2 - 0.00001 V tomto prípade už nastalo pretrénovanie cca. na 10-15. epoche.

Model: "sequential_39"				
Layer (type)	Output Shape	Param #		
conv2d_96 (Conv2D)	(None, 32, 32, 32)	2432		
activation_61 (Activation)) (None, 32, 32, 32)	0		
conv2d_97 (Conv2D)		18496		
activation_62 (Activation)		0		
max_pooling2d_37 (MaxPool:				

conv2d_98 (Conv2D)	(None, 16, 16, 64)	36928
activation_63 (Activation)	(None, 16, 16, 64)	0
flatten_37 (Flatten)	(None, 16384)	0
dense_74 (Dense)	(None, 1024)	16778240
activation_64 (Activation)	(None, 1024)	0
dropout_25 (Dropout)	(None, 1024)	0
dense_75 (Dense)	(None, 30)	30750

Total params: 16,866,846 Trainable params: 16,866,846 Non-trainable params: 0

Obr. 26: Vývoj úspešnosti počas trénovania

Obr. 27: Vývoj chybovej hodnoty počas trénovania

Model evaluation:

Loss: 3.528132915496826

Accuracy: 0.25466665625572205

Classification Report:

	precision	recall	f1-score	support
0	0.14	0.14	0.14	100
1	0.24	0.23	0.23	100
2	0.30	0.36	0.33	100
3	0.27	0.20	0.23	100
4	0.12	0.09	0.10	100
5	0.25	0.23	0.24	100
6	0.35	0.43	0.38	100
7	0.17	0.19	0.18	100
8	0.15	0.18	0.16	100
9	0.47	0.44	0.46	100
10	0.19	0.17	0.18	100
11	0.18	0.21	0.19	100
12	0.21	0.21	0.21	100
13	0.29	0.30	0.29	100

	14	0.16	0.14	0.15	100
	15	0.19	0.10	0.13	100
	16	0.19	0.25	0.22	100
	17	0.27	0.26	0.26	100
	18	0.19	0.30	0.24	100
	19	0.21	0.26	0.23	100
	20	0.29	0.26	0.28	100
	21	0.41	0.24	0.30	100
	22	0.14	0.10	0.12	100
	23	0.50	0.47	0.48	100
	24	0.26	0.33	0.29	100
	25	0.37	0.39	0.38	100
	26	0.29	0.31	0.30	100
	27	0.34	0.37	0.35	100
	28	0.49	0.38	0.43	100
	29	0.10	0.10	0.10	100
accur	acy			0.25	3000
macro	avg	0.26	0.25	0.25	3000
weighted	avg	0.26	0.25	0.25	3000

Obr. 28: Konfúzna matica

2.3.4 Predtrénovaná Sieť

Na túto podúlohu sme si vybrali **model VGG16** [11]. Používali sme **váhy ImageNet** [12]. Pomocou tejto siete sme boli schopní zakódovať a vyexportovať príznaky a kategórie do CSV súborov. Po zakódovaní a exporte sme dáta načítali do DataFrameov, a pomocou **UMAP**y [13] sme boli schopní zredukovať dimenziu príznakov. Používali sme nasledujúce nastavenia.

Počet komponentov sme si vybrali na základe toho, že sme chceli zobraziť Scatter Plot v 3D, na čo potrebujeme minimálne tri parametre. Po modifikácii sme si zobrazili samotný 3D Scatter Plot (čo Vám vygeneruje program a uloží do priečinku **output/p-lots/3d_scatter/**.) Tieto dáta sme zobrazili pre validačnú množinu.

Obr. 29: 3D Scatter Plot pre Validačné Dáta

2.4 Iné Klasifikátory

V tejto podúlohe sme vyskúšali Stroje s Podpornými Vektormi (z predchádzajúceho zadania) na túto klasifikačnú úlohu. Dosiahli sme slabšie výsledky ako v prípade konvolučných neurónových sietí.

Classification Report:

	precision	recall	f1-score	support
0	0.00	0.00	0.00	100
1	0.04	0.01	0.02	100
2	0.20	0.40	0.26	100
3	0.11	0.11	0.11	100
4	0.10	0.02	0.03	100
5	0.25	0.01	0.02	100
6	0.06	0.07	0.07	100
7	0.12	0.21	0.15	100
8	0.07	0.02	0.03	100
9	0.27	0.30	0.28	100
10	0.27	0.28	0.27	100
11	0.02	0.01	0.01	100
12	0.00	0.00	0.00	100
13	0.03	0.01	0.02	100
14	0.00	0.00	0.00	100
15	0.09	0.21	0.13	100
16	0.05	0.01	0.02	100
17	0.00	0.00	0.00	100
18	0.10	0.16	0.12	100
19	0.25	0.31	0.27	100
20	0.14	0.24	0.17	100
21	0.05	0.08	0.06	100
22	0.13	0.25	0.17	100
23	0.35	0.56	0.43	100
24	0.18	0.35	0.24	100
25	0.22	0.41	0.29	100
26	0.10	0.08	0.09	100
27	0.12	0.22	0.15	100
28	0.26	0.37	0.30	100
29	0.20	0.01	0.02	100
accuracy	7		0.16	3000
macro ava	g 0.13	0.16	0.12	3000
weighted av	g 0.13	0.16	0.12	3000

Obr. 30: Konfúzna matica

Zoznam použitej literatúry

- 1. pandas [online] [cit. 2021-10-19]. Dostupné z : https://pandas.pydata.org/.
- 2. Matplotlib [online] [cit. 2021-10-19]. Dostupné z : https://matplotlib.org/.
- 3. Seaborn Statistical Data Visualization [online] [cit. 2021-10-19]. Dostupné z : https://seaborn.pydata.org/.
- 4. scikit-learn [online] [cit. 2021-10-19]. Dostupné z : https://scikit-learn.org/stable/.
- 5. Tensorflow [online] [cit. 2021-10-19]. Dostupné z : https://www.tensorflow.org/.
- 6. Keras Simple. Flexible. Powerful. Dostupné tiež z: https://keras.io/.
- 7. INFOARYAN. CNN Image Data Pre-processing with Generators [online]. 2020-07-16 [cit. 2021-12-05]. Dostupné z: https://www.geeksforgeeks.org/cnn-image-data-pre-processing-with-generators/.
- 8. EZCHX a POTDAR, Keyur. Keras split train test set when using ImageDataGenerator [online]. 2019-06-06 [cit. 2021-12-05]. Dostupné z : https://stackoverflow.com/a/52372042.
- 9. RAUSCH, Dana. *EDA for Image Classification* [online]. Geek Culture, 2021-04-11 [cit. 2021-12-05]. Dostupné z:https://medium.com/geekculture/eda-for-image-classification-dcada9f2567a.
- 10. Keras Documentation: EarlyStopping [online] [cit. 2021-10-26]. Dostupné z : https://keras.io/api/callbacks/early_stopping/.
- 11. VGG16 Convolutional Network for Classification and Detection [online]. 2018-11-20 [cit. 2021-12-08]. Dostupné z : https://neurohive.io/en/popular-networks/vgg16/.
- 12. ImageNet [online] [cit. 2021-12-08]. Dostupné z : https://image-net.org/.
- 13. Uniform Manifold Approximation and Projection for Dimension Reduction [online] [cit. 2021-12-08]. Dostupné z: https://umap-learn.readthedocs.io/en/latest/.
- 14. KARAGIANNAKOS, Sergios. Best practices to write Deep learning code: Project structure, OOP, type checking and documentation [online]. Sergios Karagiannakos, 2020-06-17 [cit. 2021-10-26]. Dostupné z: https://theaisummer.com/best-practices-deep-learning-code/.

Prílohy

A	Štruktúra projektu	I
	Používateľská príručka	

A Štruktúra projektu

Inšpiráciu pre projektovú štruktúru sme našli na webovej stránke AI Summer [14].

```
data
```

```
· Dátové súbory
```

/encoded_data

· Na základe príznakov zakódované dáta

/test

· Testovacie dáta

/train

· Trénovacie dáta

dataloader

```
· Čítač dát
```

/dataloader.py

· Čítač dát

executor

· Spúšťač

```
/convolutional_neural_network_project.py
```

· Spúštač zadania

models

· Modely Strojového Učenia

checkpoints

· Checkpointy trénovania

```
/convolutional_neural_network.py
```

· Konvolučná Neurónová Sieť

```
/support_vector_machine.py
```

· Stroj s Podpornými Vektormi

ops

 \cdot Operácie

```
/plotter.py
```

· Vykresľovač grafov

```
output
  · Výstupy
  /plots
     \cdot Grafy
     /3d_scatter
        \cdot 3D Scatter Ploty
     /bar_plots
        \cdotStĺp<br/>cové Grafy
     /confusion_matrices
        · Konfúzne matice
     /line_graphs
        · Čiarové Grafy
utils
  · Utilitné funkcie
  /setup.py
     · Setup metódy
/I-SUNS\_-\_Convolutional\_Neural\_Network\_Project.pdf
  · Dokumentácia - tento dokument
/main.py
  · Hlavný program
/Convolutional\_Neural\_Network\_Project
  · Bash Script
/Convolutional_Neural_Network_Project.ps1
  · PowerShell Script
/requirements.txt
  · Zoznam požiadaných balíčkov
```

B Používateľská príručka

V tejto časti práce prejdeme spôsoby, ktoré nám umožňujú spúšťať túto aplikáciu.

Ak ešte nie je aktivovaný virtuálny priestor, aktivujte ho, nainštalujte potrebné balíčky a spustite main.py skript.