# Introduction to Data Mining (DATS 6103 - 10) Perceptron and Adaline

#### Yuxiao Huang

Data Science, Columbian College of Arts & Sciences George Washington University yuxiaohuang@gwu.edu

June 21, 2018

#### Reference



Picture courtesy of the website of the book code repository and info resource

#### Reference

- This set of slices is an excerpt of the book by Raschka and Mirjalili, with some trivial changes by the creator of the slides
- Please find the reference to and website of the book below:
  - Raschka S. and Mirjalili V. (2017). Python Machine Learning. 2nd Edition.
  - https://sebastianraschka.com/books.html
- Please find the website of the book code repository and info resource below:
  - https://github.com/rasbt/ python-machine-learning-book-2nd-edition

#### Overview

Perceptrons

Adaptive Linear Neuron

3 Batch VS Stochastic gradient descent

#### Neurons

• In simple terms, neurons take as input the chemical and electrical signals, integrate the signals, and output the integrated signals

input  $\rightarrow$  something magical  $\rightarrow$  output

• Figure 1 (see next page) illustrates a neuron

# Figure 1



## Perceptrons

- Perceptrons (a.k.a., artificial neurons) were proposed to mimic neurons
- Specifically, the "magical" part is simulated by:
  - adding weights (i.e., the parameters) to the input signals
  - integrating the signals using a net input function
  - predicting the output using a threshold function
  - updating the weights based on the errors
- Figure 2 (see next page) illustrates a perceptron

# Figure 2



## The net input function

 The net input function takes as input the signals and their weights, and outputs the weighted sum of the signals:

$$z = w_0 x_0 + w_1 x_1 + \dots + w_m x_m = \sum_{j=0}^m \mathbf{w_j} \mathbf{x_j} = \mathbf{w}^T \mathbf{x}.$$

#### The threshold function

 The threshold function (a variant of the unit step function) takes as input the output of the net input function, and outputs a binary decision:

$$\hat{y} = \phi(z) = \begin{cases} 1 & \text{if } z \ge 0 \\ -1 & \text{otherwise }. \end{cases}$$

• Figure 3 (see next page) illustrates how the threshold function works

# Figure 3



# The updating rule

 The weights are updated based on the difference between the predicted class and the actual one:

$$w_j = w_j + \Delta w_j$$

where  $w_j$  is the weight of feature  $x_j$  and

$$\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$$

- Here:
  - ullet  $y^i$  is the actual class of sample i
  - $\bullet \ \hat{y}^i$  is the predicted class of sample i
  - $x_i^i$  is feature  $x_i$  of sample i
  - $\eta$  is the learning rate

# The updating rule: why it works

• **Q:** Why does the updating rule work:

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$ 

# The updating rule: why it works

• Q: Why does the updating rule work:

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$ 

• A: Because it pulls the predicted class  $(\hat{y})$  closer to the real one (y)

# The updating rule: why it works

• Q: Why does the updating rule work:

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$ 

- A: Because it pulls the predicted class  $(\hat{y})$  closer to the real one (y)
  - Assume  $y^i=1$ ,  $\hat{y}^i=-1$ , and  $x^i_j>0$ , then:

    - $w_j \uparrow$

    - $P(z \ge 0) \uparrow$
    - $P(\hat{y} = 1) \uparrow$

# The updating rule: the problem

• Q: Does the updating rule have any problem:

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$ 

# The updating rule: the problem

• Q: Does the updating rule have any problem:

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$ 

• A: It does not distinguish the distance between  $z = \mathbf{w}^T \mathbf{x}$  and 0

# The updating rule: the problem

• Q: Does the updating rule have any problem:

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$ 

- ullet A: It does not distinguish the distance between  $z=\mathbf{w}^T\mathbf{x}$  and 0
  - Assume  $y^i = 1$  and  $\hat{y}^i = -1$
  - Intuitively:
    - $\bullet$   $\Delta w_j$  should be much larger when z is much smaller than 0, say -100
    - $\bullet$   $\Delta w_i$  should be much smaller when z is much closer to 0, say -0.01
    - However,  $\Delta w_j$  is the same for both kinds of z:

$$\Delta w_j = 2\eta x_j^i$$

# The updating rule: the solution

• Q: Is there a way to fix the problem?

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$ 

# The updating rule: the solution

• Q: Is there a way to fix the problem?

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$ 

ullet A: Yes. We can simply replace  $\hat{y}$  with z

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - z^i \right) x_j^i$ 

Here

$$z = w_0 x_0 + w_1 x_1 + \dots + w_m x_m = \sum_{j=0}^m \mathbf{w_j} \mathbf{x_j} = \mathbf{w}^T \mathbf{x}.$$

## Adaptive Linear Neuron

- The new updating rule leads to another kind of perceptron, Adaptive Linear Neuron (Adaline)
- The difference between perceptron and Adaline is shown in Figure 4 (see next page)

# Figure 4



# The objective function

• Here, the objective function is the Sum of Squared Errors (SSE):

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i} \left( y^{i} - \phi(z^{i}) \right)^{2},$$

#### where:

- $y^i$  is the class of sample i
- $\phi(z)$ , the activation function, is the identity function:

$$\phi(z) = z = \mathbf{w}^T \mathbf{x}.$$

## Estimating the parameters

• The parameters, w, can be estimated by minimizing the objective function

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i} \left( y^{i} - \phi(z^{i}) \right)^{2},$$

• Again, this can be done by gradient descent

# The updating rule

Using gradient descent, the updating rule can be written as

$$\mathbf{w} = \mathbf{w} + \Delta \mathbf{w}$$
 where  $\Delta \mathbf{w} = -\eta \nabla J(\mathbf{w})$ .

#### Here:

- ullet  $\eta$  is the learning rate
- $\nabla J(\mathbf{w})$  the gradient of  $J(\mathbf{w})$
- Q: Why the negative sign?

# The updating rule

Using gradient descent, the updating rule can be written as

$$\mathbf{w} = \mathbf{w} + \Delta \mathbf{w}$$
 where  $\Delta \mathbf{w} = -\eta \nabla J(\mathbf{w})$ .

#### Here:

- ullet  $\eta$  is the learning rate
- $\nabla J(\mathbf{w})$  the gradient of  $J(\mathbf{w})$
- Q: Why the negative sign?
- A: Two kinds of explanations

# The visual explanation

opposite direction of the gradient

The negative sign updates the weights by taking a step in the

- Thus we can minimize, rather than maximize, the objective function
- This is also the reason why it is called gradient descent, rather than gradient assent
- Figure 5 (see next page) shows the idea

# Figure 5



# The mathematical explanation

• The updating rule for  $w_j$  is

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = -\eta \frac{\partial J}{\partial w_j}$ .

Here,  $\frac{\partial J}{\partial w_j}$  is the partial derivative of J with respect to  $w_j$ :

$$\frac{\partial J}{\partial w_j} = -\sum_i \left( y^i - \phi(z^i) \right) x_j^i.$$

ullet Thus, the updating rule for  $w_j$  can be written as

$$w_j = w_j + \eta \sum_i \left( y^i - \phi(z^i) \right) x_j^i.$$

• Q: Does this look familiar?

# Perceptron review: why it works

• Q: Why does the updating rule work:

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$ 

- **A:** Because it pulls the predicted class  $(\hat{y})$  closer to the actual one (y)
- Assume  $y^i = 1$ ,  $\hat{y}^i = -1$ , and  $x_j > 0$ , then:
  - $\Delta w_j > 0$
  - $w_j \uparrow$

  - $P(z > 0) \uparrow$
  - **⑤**  $P(\hat{y} = 1) \uparrow$

# Perceptron review: the problem

• Q: Does the updating rule have any problem:

$$w_j = w_j + \Delta w_j$$
 where  $\Delta w_j = \eta \left( y^i - \hat{y}^i \right) x_j^i$ 

- A: It does not distinguish the distance between  $z = \mathbf{w}^T \mathbf{x}$  and 0
- Assume  $y^i = 1$  and  $\hat{y}^i = -1$ . Intuitively:
  - $\Delta w_j$  should be much larger when z is much smaller than 0, say -100
  - ullet  $\Delta w_j$  should be much smaller when z is much closer than 0, say -0.01
  - However,  $\Delta w_i$  is the same for both kinds of z:

$$\Delta w_j = 2\eta x_j^i$$

# Perceptron review: the solution

• Q: Is there a way to fix the problem?

$$w_j = w_j + \eta \left( y^i - \hat{y}^i \right) x_j^i$$

• A: Yes. We can simply replace  $\hat{y}$  with z

$$w_j = w_j + \eta \left( y^i - z^i \right) x_j^i$$

Here

$$z = w_0 x_0 + w_1 x_1 + \dots + w_m x_m = \sum_{j=0}^m \mathbf{w_j} \mathbf{x_j} = \mathbf{w}^T \mathbf{x}.$$

### Adaline review: the mathematical explanation

ullet Thus, the updating rule for  $w_i$  can be written as

$$w_j = w_j + \eta \sum_i \left( y^i - \phi(z^i) \right) x_j^i.$$

• Q: Does this look familiar?

## Adaline review: the mathematical explanation

ullet Thus, the updating rule for  $w_i$  can be written as

$$w_j = w_j + \eta \sum_i \left( y^i - \phi(z^i) \right) x_j^i.$$

- Q: Does this look familiar?
- A: It is almost the same as the updating rule we just proposed:

$$w_j = w_j + \eta \left( y^i - z^i \right) x_j^i.$$

# Batch VS Stochastic gradient descent

- The only difference between the two updating rules is that, in each epoch:
  - Adaline updates the weights for the whole training set
  - Perceptron updates the weights for each sample
- This difference leads to two kinds of gradient descent
  - Batch gradient descent: updating the parameters for the whole training set
  - Stochastic gradient descent: updating the parameters for each sample

## Stochastic gradient descent

- Since stochastic gradient descent updates parameters more frequently:
  - it usually reaches convergence faster
  - it usually escapes local minimum easier
- To obtain good results:
  - randomize the order of the data in the training set
  - shuffle the data in the training set each epoch