

Dijkstra's Shortest-Path Algorithm

- · Iterative algorithm
 - After k iterations, know least-cost path to k nodes
- $\bullet \ \textbf{S} : \ nodes \ whose \ least-cost \ path \ definitively \ known$
 - -Initially, $S = \{u\}$ where u is the source node
 - Add one node to S in each iteration
- $\mathbf{D}(\mathbf{v})$: current cost of path from source to node \mathbf{v}
- Initially, $\mathbf{D}(\mathbf{v}) = \mathbf{c}(\mathbf{u}, \mathbf{v})$ for all nodes \mathbf{v} adjacent to \mathbf{u}
- ... and $\mathbf{D}(\mathbf{v})$ = ∞ for all other nodes v
- Continually update D(v) as shorter paths are learned

Dijsktra's Algorithm

- 1 Initialization:
- 2 $S = \{u\}$
- 3 for all nodes v
- 4 if v adjacent to u {
- D(v) = c(u,v)
- 6 else D(v) = ∞
- 8 Loop
- 9 find w not in S with the smallest D(w)
- 10 add w to S
- 1 update D(v) for all v adjacent to w and not in S:
- 12 $D(v) = min\{D(v), D(w) + c(w,v)\}$
- 3 until all nodes in S

hortest-Path Tree		
Shortest-path tree from u • F	orwardin	g table at
v 2 y		link
3 1 x 4	V	(u,v)
2 1 2	w	(u,w)
w 4 3 t	×	(u,w)
w 4 3 3	У	(u,v)
	Z	(u,v)
	S	(u,w)
	t	(u,w)

Distance Vector Algorithm

- c(x,v) = cost for direct link from x to v
 Node x maintains costs of direct links c(x,v)
- D_x(y) = estimate of least cost from x to y
 Node x maintains distance vector D_x = [D_x(y): y ∈ N]
- Node x maintains its neighbors' distance vectors
 For each neighbor v, x maintains D_v = [D_v(y): y ∈ N]
- Each node v periodically sends D_v to its neighbors And neighbors update their own distance vectors $-D_x(y) \leftarrow \min_v \{c(x,v) + D_v(y)\}$ for each node $y \in N$
- Over time, the distance vector D_x converges

