

Overview

- Review on Sets
 - Definition
 - Operations
 - Properties
- Introduction to Relational Algebra
 - − Selection *σ*
 - Projection π
 - Union ∪
 - Intersection ∩
 - Product x
 - Join ⋈

What is a set?

- A set is a well defined collection of distinct objects, called the "elements" or "members" of the set
 - A set might be finite or infinite
 - -x is an element of set A is denoted by $x \in A$
 - Negated by writing $x \notin A$

Notations

- Enumeration enumerate all elements (explicitly or implicitly)
 - Continent = {Asia, Africa, NorthAmerica, SouthAmerica, Antarctica, Europe, and Australia}
 - $M = \{2, 4, 6, 8, ..., 100\}$
- Set builder notation
 - { variable | descriptive statement }
 - E.g. Even numbers = $\{2k \mid k \in \mathbb{Z}\}$
 - Q ={ $x \mid x = p / q$ where p and q are integers and $q \neq 0$ }
- Commonly used sets
 - N set of all natural numbers
 - Z set of all integers
 - Q set of all rational numbers
 - ...

Properties and operations

- Union: $A \cup B = \{x \mid x \in A \text{ or } x \in B \}$
- Intersection: $A \cap B = \{x \mid x \in A \text{ and } x \in B \}$
- Difference: $U \setminus A = \{x \mid x \in U \text{ and } x \notin A \}$
 - Also written as U A
- Complement
 - Given a universal set U, U A is also written as \overline{A}

Complement

Difference

Properties and operations

- Subset:
 - $-A \subseteq B$ if for all $x \in A$ then $x \in B$
- Propoer subset:
 - $-A \subseteq B \text{ if } A \subseteq B \text{ and } A \neq B$
- Equality:
 - $-A = B \text{ if } A \subseteq B \text{ and } B \subseteq A$

Set Operations and Venn Diagrams

Set A

A' the complement of A

A and B are disjoint sets

B is proper $B \subset A$ subset of A

Both A and B $A \cap B$ A intersect B

A union B

Souce: https://www.onlinemathlearning.com/venn-diagrams.html

Cartesian Product

- The Cartesian product of two sets A and B is denoted as $A \times B$
 - $-A \times B = \{ (a, b) \mid a \in A \text{ and } b \in B \}$
 - Note that (a, b) is ordered pairs
- Cardinality numer of elements of the set

$$- |A \times B| = |A| \times |B|$$

- Example
 - A deck of cards: 4 suits and 13-element cards

Projection

- Given $(a, b) \in A \times B$ the projections are defined as
 - $-\pi_A(a,b)=a$
 - $-\pi_B(a,b)=b$
- Example
 - Points in 2D-space: $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$
 - If point $r \in \mathbb{R}^2$, then
 - $-\pi_x r$ is the x coordinate
 - $-\pi_y r$ is the y coordinate

Relations

- A relation R is a subset of the cartesian product of two or more sets
 - $-R \subseteq A_1 \times A_2 \times ... \times A_n$
 - Equivalent notations
 - $(a_1, a_2, ..., a_n)$ satisfies R
 - $(a_1, a_2, ..., a_n) \in R$
 - R $(a_1, a_2, ..., a_n)$
- A binary relation $R \subseteq A \times B$ consists of a set of pairs
 - Denoted using aRb

Relations

- Let R be a relation on a set A, that is $R \subseteq A \times A$
 - -R is Reflexive if for all $x \in A$. xRx
 - -R is Symmetric if for all x, $y \in A$. $xRy \rightarrow yRx$
 - -R is Transitive if for all x, y, $z \in A$. xRy and yRz -> xRz
- Example Let $A = \{0, 1, 2, 3\}$ and a relation R on A be given by
 - $-R=\{(0,0), (0,1), (0,3), (1,0), (1,1), (2,2), (3,0), (3,3)\}$
 - Is R reflexive? Symmetric? Transitive?

Relations

- Let R be a relation on a set A, that is $R \subseteq A \times A$
 - -R is Reflexive if for all $x \in A$. xRx
 - -R is Symmetric if for all x, $y \in A$. $xRy \rightarrow yRx$
 - -R is Transitive if for all x, y, $z \in A$. xRy and yRz -> xRz

- Since relations are also sets
 - -Set operations also apply

Functions

- A function from a set X to a set of Y, assigns to each element of X exactly on element of Y
 - -X is the domain of the function
 - -Denoted as $x \mapsto f(x)$
 - -or f(x) = y
 - -A function from A to B is also a relation $f \subseteq A \times B$

- Example
 - $-Rsquare \subseteq Z \times N$ such that $Rsquare(n) = n^2$

Function as mapping

Identifying a function

Function

Non-Function

Relational Model

- A relation is unordered set that contain the relation ship of attributes that represent entities
- A tuple is a set of attrubute values (domain) in the relation
- Example
 - (Intro to Computer Science, CS1310, 4, CS)

Course(Course_name, Course_code, Credit_hours, Teacher)

Course_name	Course_code	Credit_hours	Teacher
Intro to Computer Science	CS1310	4	11
Data Structures	CS3320	4	22
Discrete Mathematics	MATH2410	3	33
Database	CS3380	3	44

Relational Model - Primary Key

- Primary key is unique
 - identifies a single tuple
- If not specified
 - Some DBMS may create an internal primary key by default

Course(id, Course_name, Course_code, Credit_hours, Teacher)

id	Course_name	Course_code	Credit_hours	Teacher
ı	Intro to Computer Science	CS1310	4	II
2	Data Structures	CS3320	4	22
3	Discrete Mathematics	MATH2410	3	33
4	Database	CS3380	3	44

Relational Model – Foreign Key

Teacher(id, First_name, Last_name)

id	First_name	Last_name
П	Walter	White
22	John	Smith

Course(id, Course_name, Course_code, Credit_hours, Teacher)

id	Course_name	Course_code	Credit_hours	Teacher
I	Intro to Computer Science	CS1310	4	11
2	Data Structures	CS3320	4	22
3	Discrete Mathematics	MATH2410	3	33
4	Database	CS3380	3	44

Relational Model – Foreign Key

Teacher(id, First_name, Last_name)

id	First_name	Last_name
11	Walter	White
22	John	Smith

Teaches (Teacher id, Course id)

Teacher id	Course id
11	I
22	2
22	3
22	4

Course(id, Course_name, Course_code, Credit_hours, Teacher)

	<u> </u>		<u> </u>	,
id	Course_name	Course_code	Credit_hours	Teacher
I	Intro to Computer Science	CS1310	4	11
2	Data Structures	CS3320	4	22
3	Discrete Mathematics	MATH2410	3	33
4	Database	CS3380	3	44

Relational Algebra

• Fundamental operations to retrieve and manipulate tupels in a relation

Relational Algebra - Selection

- Syntax
 - $-\sigma_{predicate}(R)$
- Choose a subset of the tuples from a relation that satisfies a selection predicate
 - Filtering using predicates
 - Combine multiple predicates

$$\sigma_{\mathsf{Tid}=\mathsf{`al'}}(\mathsf{T})$$

Tid	Cid
al	10

SELECT *
FROM T
WHERE Tid='al';

T(Tid, Cid)

Tid	Cid
al	10
a2	11
a3	12
a3	13

$$\sigma_{\text{Tid='a3'}} \wedge \text{Cid='12'} \text{ (T)}$$

Tid	Cid
a3	12

SELECT *
FROM T
WHERE Tid='a3' AND Cid='12';

Relational Algebra - Projection

- Syntax
 - $-\pi_{A1,A2,...An}(R)$
- Generate a relation with tuples that contains attributes specified
 - Can manipulate the values
 - Can rearrange the order

T(Tid, Cid)

Tid	Cid
al	10
a2	П
a3	12
a3	13

$$\pi_{\text{Tid,Cid*2}} (\sigma_{\text{Tid='a2'}}(T))$$

Tid	Cid
a2	24

SELECT Tid, Cid*2 FROM T WHERE Tid='a2';

Relational Algebra - Union

Syntax
 – (A ∪ B)

Collect all tuples in both relations

A(Tid, Cid)

Tid	Cid
al	10
a2	11

B(Tid, Cid)

Tid	Cid
a2	11
a3	13

 $(A \cup B)$

Tid	Cid
al	10
a2	11
a2	11
a3	13

(SELECT * FROM A)
UNION ALL
(SELECT * FROM B);

Relational Algebra - Intersection

- Syntax
 (A ∩ B)
- Collect tuples that appear in both relations

Α	(Ti	d.	Ci	d)
' \	(' ' ' '	u,	U I	u,

Tid	Cid
al	10
a2	11

B(Tid, Cid)

Tid	Cid
a2	11
a3	13

$$(A \cap B)$$

Tid	Cid
a2	П

(SELECT * FROM A) INTERSECT (SELECT * FROM B);

Relational Algebra - Product

Syntax

$$-(A \times B)$$

 Generate a relation that contains all possible combinations of the tuples from both relations

SELECT * FROM A, B;

SELECT * FROM A CROSS JOIN B;

A(Tid, Cid)

Tid	Cid
al	10
a2	П

B(Tid, Cid)

Tid	Cid
a2	11
a3	13

 $(A \times B)$

A.Tid	A.Cid	B.Tid	B.Cid
al	10	a2	11
al	10	a3	13
a2	11	a2	11
a2	11	a3	13

Relational Algebra - Join

- Syntax
 (A ⋈ B)
- Generate a relation that contains all tuples with a common value(s) of one (or more) attrubute(s)

A(Tid, Cid)

Tid	Cid
al	10
a2	11

B(Tid, Cid)

Tid	Cid
a2	11
a3	13

 $(A \bowtie B)$

Tid	Cid
a2	П

SELECT * FROM A NATURAL JOIN B;

Next Lecture on Wednesday

- Some useful In-build functions & exercises
 - Ordering
 - Aggregation
 - Grouping
 - Having
- DML & DDL exercises
- Lab I intoduction
- Project finding teammates (3 person per team)

