Ciência da Computação

Aula 16 Algoritmos para Árvores Parte 4 – Árvore B

André Luiz Brun

- Muito indicado para funcionar em discos e fitas
- Usado em sistemas de banco de dados
- Memória secundária vs Memória primária
 - Tempo (2009)
 - Uma rotação HD 7200 RPM leva 8,33 milissegundos (10⁻³)
 - 50 nanosegundos (10⁻⁹)
 - Custo
 - Espaço
- Cada página tende a ser o maior possível (geralmente o tamanho de uma página de disco)

Adendo

Comparativo HD vs SSD M.2 (em MB/S)

Fonte: https://meiobit.com/395818/resenha-wd-green-sata-ssd-m-2-2280-o-nome-e-maior-que-o-bicho/

1 nó, 1000 chaves

1001 nós, 1.001.000 chaves

1.002.001 nós, 1.002.001.000 chaves

Consegue recuperar mais de 1 bilhão de chaves com dois acessos a disco

- 1) Todo nó x tem os seguintes atributos:
 - a) x.n, o número de chaves atualmente armazenadas no nó x
 - b) as próprias x.n chaves, $x.chave_1$, $x.chave_2$, ... , $x.chave_{x.n}$, armazenadas em ordem não decrescente, de modo que $x.chave_1 \le x.chave_2 \le ... \le x.chave_{x.n}$
 - c) x.folha, um valor booleano que é VERDADEIRO se x é uma folha e FALSO se x é um nó interno
- 2) Cada nó interno x também contém x.n + 1 ponteiros x.c₁, x.c₂, ..., x.c_{x.n} + 1 para seus filhos. Os nós de folhas não têm filhos e, assim, seus atributos c_i são indefinidos.

3) As chaves x.chave; separam as faixas de chaves armazenadas em cada subárvore: se k; é qualquer chave armazenada na subárvore com raiz c;x, então

$$k_1 \le x.chave_1 \le k_2 \le x.chave_2 \le \dots \le x.chave_{n[x]} \le k_{x.n+1}$$
.

- 4) Todas as folhas têm a mesma profundidade, que é a altura h da árvore.
- 5) Os nós têm limites inferiores e superiores para o número de chaves que podem conter. Esses limites são expressos em termos de um inteiro fixo t ≥ 2 denominado grau mínimo da B-árvore

- a) Todo nó, exceto a raiz, deve ter no mínimo t 1 chaves. Assim, todo nó interno, exceto a raiz, tem no mínimo t filhos. Se a árvore é não vazia, a raiz deve ter no mínimo uma chave.
- b) Todo nó pode conter no máximo 2t 1 chaves. Portanto, um nó interno pode ter no máximo 2t filhos. Dizemos que um nó está cheio se contém exatamente 2t - 1 chaves.

Ordem 4 segundo Knuth
Ordem 2 segundo Bayer & McCreight

t = 2

Máximo por página: 2t - 1 = 3

Mínimo por página: t-1 = 1

Máximo de Filhos: 2t = 4

Altura da Árvore B

$$h \leq \log_t \frac{n+1}{2}.$$

profundidade número de nós

)

1 3

2 2t

 $3 2t^2$

Altura da Árvore B

$$h \leq \log_t \frac{n+1}{2}$$
.

Consulta

Custo de acesso a disco

Custo de processamento (busca)

Consulta

Consulta

Inserção

Paga-se primeiro uma operação de consulta para descobrir onde o elemento deve ser inserido

Inserção

Se o elemento couber na página, basta incluí-lo de forma ordenada. Exemplos: 17, 43, 55

Inserção

Se o elemento não couber, a página deve ser dividida em duas e o elemento mediano deve ser promovido à página pai. Exemplos: 28, 36, 46

Caso 1: tenta remover um elemento que está em uma folha que continua com a ocupação mínima após a exclusão. Exemplos: 5, 14, 49

Caso 2: o elemento a ser excluído não está numa folha, então busca-se seu antecessor para ocupar seu lugar. Exemplos: 15, 37, 8

Caso 3: Após a exclusão a folha fica com menos do que a ocupação mínima. No entanto, uma página irmã pode ceder uma chave para atender ao mínimo necessário.

Caso 3: Após a exclusão a folha fica com menos do que a ocupação mínima. No entanto, uma página irmã pode ceder uma chave para atender ao mínimo necessário.

Caso 4: Após a exclusão a folha fica com menos do que a ocupação mínima. Além disso, nenhuma página irmã pode ceder uma chave para atender ao mínimo necessário.

Neste caso é preciso juntar a página com uma das irmãs.

Neste processo, desce o elemento que está entre as duas páginas e junta-se as duas

Caso 4: Após a exclusão a folha fica com menos do que a ocupação mínima. Além disso, nenhuma página irmã pode ceder uma chave para atender ao mínimo necessário.

Propriedades

- Cada página apresenta no máximo m páginas filhas (m = 2t)
- Uma página folha contém pelo menos [(2m-1)/3]-1 chaves e no máximo m-1
- Todas as páginas folha estão no mesmo nível
- Toda página, exceto a raiz e as folhas possuem no mínimo [(2m-1)/3] descendentes
- Uma página não folha com k páginas filhas possui k-1 chaves

Split do tipo dois para três (ao invés do um para dois)

Consulta

Inserção

Similar 3 Liudicional

Remoção

- Estrutura similar à das Árvores B e B*
- No entanto, os elementos nos nós internos representam apenas apontadores para onde os dados realmente estão armazenados
- As informações são armazenadas apenas nas folhas
- As folhas são ligadas através de listas

Consulta

Inserção (ainda há espaço na folha)

Inserção (não há espaço na folha)

Inserção (não há espaço na folha)

Remoção (limite mínimo ainda é respeitado)

Exclusão (limite mínimo é ultrapassado, mas irmã pode emprestar)

Exclusão (limite mínimo é ultrapassado, mas irmã pode emprestar)

Exclusão (quando remove o elemento apontador)

Exclusão (quando não há como emprestar)

