#### Data Science for Engineers

Module III : Machine Learning

By
Dr Sushila Palwe
sushila.palwe@mitwpu.edu.in

#### Contents:

Machine Learning:

Introduction to machine learning

Supervised and Unsupervised Learning

Splitting datasets: Training and Testing

Regression: Simple Linear Regression

Classification: Naïve Bayes classifier

Clustering: K-means

Evaluating model performance

Python libraries for machine learning.

## What you guess(infer) from the following data

| RollNo | Practical | DBMS  | ТОС   | Machine<br>Learning | Attend the Orientation at 3.30?? |
|--------|-----------|-------|-------|---------------------|----------------------------------|
|        | 8.30      | 10.45 | 11.45 | 12.45               |                                  |
| 1      | А         | Р     | Р     | Р                   | Yes                              |
| 2      | А         | А     | А     | А                   | NO                               |
| 3      | А         | Р     | Р     | Р                   | Yes                              |
| 4      | А         | Р     | Р     | Р                   | Yes                              |
| 5      | А         | Α     | А     | А                   | NO                               |
| 6      | А         | Α     | А     | А                   | NO                               |
| 7      | Р         | Р     | Р     | Р                   | YES                              |
| 8      | Р         | Р     | Р     | Р                   | Yes                              |
| 9      | А         | Р     | Р     | Р                   | ??                               |

## Introduction: What is Machine Learning

"Machine Learning allows the machines to learn and make predictions based on its experience(data)"

Definition by Tom Mitchell (1998):

Machine Learning is the study of algorithms that

- improve their performance P
- at some task T
- with experience E.

A well-defined learning task is given by <P, T, E>.

## Defining the Learning Task: Improve on task T, with respect to performance metric P, based on experience E

#### Q. Define the learning task for Automated handwritten word recognition

T: Recognizing hand-written words

P: Percentage of words correctly classified

E: Database of human-labeled images of handwritten words

#### Q. Define a learning task for Automated Spam filter

T: Categorize email messages as spam or legitimate.

P: Percentage of email messages correctly classified.

E: Database of emails, some with human-given labels

## When Do We Use Machine Learning?

#### ML is used when:

- Human expertise does not exist (navigating on Mars)
- Models must be customized (personalized medicine)
- Models are based on huge amounts of data (genomics)

#### Learning isn't always useful:

• There is no need to "learn" to calculate payroll

## Some more examples of tasks that are best solved by using a learning algorithm

- Recognizing patterns:
- Handwritten or spoken words
- Medical images
- Generating patterns:
- Generating images or motion sequences
- Recognizing anomalies:
- Unusual credit card transactions
- Unusual patterns of sensor readings in a nuclear power plant
- Prediction:
- Future stock prices or currency exchange rates



#### •Regression:

- Simple Linear Regression Algorithm
- **Multivariate Regression Algorithm**
- **Decision Tree Algorithm**
- Lasso Regression

#### •Classification:

- Naïve Bayes Classifier Algorithm
- **Random Forest Algorithm**
- **Decision Tree Algorithm**
- Logistic Regression Algorithm
- **Support Vector Machine Algorithm**

#### Clustering

- •K-Means Clustering algorithm
- Mean-shift algorithm
- **•DBSCAN Algorithm**
- Principal Component Analysis
- Independent Component Analysis
- Association

## Supervised Learning: Regression

- Given (X1, Y1), (X2, Y2), ..., (Xn, Yn)
- Learn a function f(x) to predict y given x
- y is real-valued == regression



## Supervised Learning: Classification

- Given (x1, y1), (x2, y2), ..., (xn, yn)
- Learn a function f(x) to predict y given x
- y is categorical == classification



## Unsupervised Learning

- Given x1, x2, ..., xn (without labels)
- Output hidden structure behind the x's
- E.g., clustering





## Python Libraries for Data Science

#### SciKit-Learn:

provides machine learning algorithms: classification, regression, clustering, model validation etc.

built on NumPy, SciPy and matplotlib

Link: <a href="http://scikit-learn.org/">http://scikit-learn.org/</a>

## Basic Steps of Machine Learning

- Understand domain, prior knowledge, and goals
- Data integration, selection, cleaning, pre-processing, etc.
- Learn models
- Interpret results
- Consolidate and deploy discovered knowledge

## Creating training and test sets

• When a dataset is large enough, it's a good practice to split it into training and test sets; the former to be used for training the model and the latter to test its performances.

from sklearn.model\_selection import train\_test\_split
>>> X\_train, X\_test, Y\_train, Y\_test = train\_test\_split(X, Y,
test\_size=0.25, random\_state=1)



## Linear Regression

## Example

| Experience | Salary |
|------------|--------|
| 12         | 87000  |
| 35         | 187000 |
| 23         | 117000 |
| 13         | 89000  |
| 18         | 110000 |





# We can solve this using Linear Regression



### Contd...

$$Y = B_0 + B_1 X$$
  
Where,

- Y = Dependent Variable
- X = Independent Variable
- $B_0$  = Constant term
- $B_1$  = Coefficient of relationship between 'X' & 'Y' ( $B_1$  explains the change in Y with a change in X by one unit. In other words, if we increase the value of 'X' by one unit then what will be the change in value of Y)

## Linear Regression

- Regression Analysis can be defined as the process of developing a mathematical model that can be used to predict one variable by another variable.
- Linear regression is supervised machine learning statistical technique wherein we
  use linear modeling approach to build relationship between dependent variable
  and independent variable.
- Regression is a statistical way to establish a relationship between a dependent variable and a set of independent variable(s).
- Technique is called Simple linear regression if only one independent variable (x) is analyzed
- In Multiple linear regression, multiple independent variables(x1,x2,...) are analyzed.
- If Multiple dependent variable(y1,y2..) are predicted, it is called as multivariate linear regression.

## Properties of linear regression line

- Regression line always passes through mean of independent variable
   (x) as well as mean of dependent variable (y)
- Regression line minimizes the sum of "Square of Residuals".
- The differences between the actual and estimated function values on the training example  $\epsilon_i = f(x_i) \hat{f}(x_i)$ .



$$b_0 = 2.2$$
  
 $b_1 = .6$   
 $\hat{y} = 2.2 + .6x$ 

| × | У | x - <del>X</del> | y - <del>y</del> | $(x - \overline{x})^2$ | $(x - \overline{x})(y - \overline{y})$ |
|---|---|------------------|------------------|------------------------|----------------------------------------|
| 1 | 2 | -2               | -2               | 4                      | 4                                      |
| 2 | 4 | -1               | 0                | 1                      | 0                                      |
| 3 | 5 | 0                | 1                | 0                      | 0                                      |
| 4 | 4 | 1                | 0                | 1                      | 0                                      |
| 5 | 5 | 2                | 1                | 4                      | 2                                      |
| 0 | 1 |                  |                  | 10                     | 6                                      |

mean 3

$$4 = b_0 + .6(3)$$

$$4 = b_0 + 1.8$$

$$b_1 = \frac{6}{10} = .6 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

## Example

- What linear regression equation best predicts statistics performance, based on math aptitude scores?
- If a student made an 80 on the Math test, what grade would we expect her to make in statistics?
- How well does the regression equation fit the data?

| RollNo | Maths Marks | Stat Marks |
|--------|-------------|------------|
| 1      | 95          | 85         |
| 2      | 85          | 95         |
| 3      | 80          | 70         |
| 4      | 70          | 65         |
| 5      | 60          | 70         |

## Solution

- $b_1 = 0.644$
- $b_0 = 26.768$

## Classification

#### Classification Process

- Model construction: describing a set of predetermined classes
  - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
  - The set of tuples used for model construction is training set
  - The model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
  - Estimate accuracy of the model
    - The known label of test sample is compared with the classified result from the model
    - Accuracy rate is the percentage of test set samples that are correctly classified by the model
    - Test set is independent of training set, otherwise over-fitting will occur
  - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

## Step 1: Model Construction



## Step 2: Model Usage



## Bayesian Classification

- <u>A statistical classifier</u>: performs *probabilistic prediction, i.e.,* predicts class membership probabilities
- Foundation: Based on Bayes' Theorem.
- <u>Performance</u>: A simple Bayesian classifier, *naïve Bayesian classifier*, has comparable performance with decision tree and selected neural network classifiers

| age  | income | student | credit_ratin<br>g | buys_co<br>mputer |
|------|--------|---------|-------------------|-------------------|
| <=30 | high   | no      | fair              | no                |
| <=30 | high   | no      | excellent         | no                |
| 3140 | high   | no      | fair              | yes               |
| >40  | medium | no      | fair              | yes               |
| >40  | low    | yes     | fair              | yes               |
| >40  | low    | yes     | excellent         | no                |
| 3140 | low    | yes     | excellent         | yes               |
| <=30 | medium | no      | fair              | no                |
| <=30 | low    | yes     | fair              | yes               |
| >40  | medium | yes     | fair              | yes               |
| <=30 | medium | yes     | excellent         | yes               |
| 3140 | medium | no      | excellent         | yes               |
| 3140 | high   | yes     | fair              | yes               |
| >40  | medium | no      | excellent         | no                |

X = (age = 31..40, Income = low, Student = yes, Credit\_rating= Fair)

## Probability

• Probability: How likely something is to happen

Probability of an event happening =
 Number of ways it can happen

Total number of outcomes

## Bayesian Theorem Basics

- Let X be a data sample ("evidence"): class label is unknown
- Let H be a hypothesis that X belongs to class C  $P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})}$
- Classification is to determine  $P(H \mid X)$ , the probability that the hypothesis holds given the observed data sample X
- P(H) (prior probability), the initial probability
  - E.g., X will buy computer, regardless of age, income, ...
- P(X): probability that sample data is observed
- P(X|H) (posteriori probability), the probability of observing the sample X, given that the hypothesis holds
  - E.g., Given that X will buy computer, the prob. that X is 31..40, medium income

## Bayesian Theorm

Given training data X, posteriori probability of a hypothesis H, P(H|X), follows the Bayes
 theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})}$$

- Informally, this can be written as
   posteriori = likelihood x prior/evidence
- Predicts X belongs to  $C_2$  iff the probability  $P(C_i|X)$  is the highest among all the  $P(C_k|X)$  for all the k classes
- Practical difficulty: require initial knowledge of many probabilities, significant computational cost

## Naiive Bayesian

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector  $\mathbf{X} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$
- Suppose there are m classes C<sub>1</sub>, C<sub>2</sub>, ..., C<sub>m</sub>.
- Classification is to derive the maximum posteriori, i.e., the maximal P(C<sub>i</sub> | X)
- This can be derived from Bayes' theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

• Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

## Training Data

Class:

C1:buys\_computer = 'yes'

C2:buys\_computer = 'no'

Data sample

X = (age = 31..40,

Income = low,

Student = yes

Credit\_rating = fair)

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

| age  | income | student | credit_ratin | buys_co<br>mputer |
|------|--------|---------|--------------|-------------------|
| <=30 | high   | no      | fair         | no                |
| <=30 | high   | no      | excellent    | no                |
| 3140 | high   | no      | fair         | yes               |
| >40  | medium | no      | fair         | yes               |
| >40  | low    | yes     | fair         | yes               |
| >40  | low    | yes     | excellent    | no                |
| 3140 | low    | yes     | excellent    | yes               |
| <=30 | medium | no      | fair         | no                |
| <=30 | low    | yes     | fair         | yes               |
| >40  | medium | yes     | fair         | yes               |
| <=30 | medium | yes     | excellent    | yes               |
| 3140 | medium | no      | excellent    | yes               |
| 3140 | high   | yes     | fair         | yes               |
| >40  | medium | no      | excellent    | no                |

## Test for X = (age <= 30, income = medium, student = yes, credit\_rating = fair)

- $P(C_i)$ : P(buys\_computer = "yes") = 9/14 = 0.643 P(buys\_computer = "no") = 5/14= 0.357
- Compute P(X|C<sub>i</sub>) for each class

| • <b>P(X C<sub>i</sub>)</b> : P(X buys_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 |
|--------------------------------------------------------------------------------------------------|
| $P(X buys\_computer = "no") = 0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$                      |
| $P(X C_i)*P(C_i): P(X buys_computer = "yes") * P(buys_computer = "yes") = 0.028$                 |
| P(X buys_computer = "no") * P(buys_computer = "no") = 0.007                                      |

P(credit\_rating = "fair" | buys\_computer = "no") = 2/5 = 0.4

| _    |        |         |                   |                   |
|------|--------|---------|-------------------|-------------------|
| age  | income | student | credit_ratin<br>g | buys_co<br>mputer |
| <=30 | high   | no      | fair              | no                |
| <=30 | high   | no      | excellent         | no                |
| 3140 | high   | no      | fair              | yes               |
| >40  | medium | no      | fair              | yes               |
| >40  | Iow    | yes     | fair              | yes               |
| >40  | Iow    | yes     | excellent         | no                |
| 3140 | Iow    | yes     | excellent         | yes               |
| <=30 | medium | no      | fair              | no                |
| <=30 | Iow    | yes     | fair              | yes               |
| >40  | medium | yes     | fair              | yes               |
| <=30 | medium | yes     | excellent         | yes               |
| 3140 | medium | no      | excellent         | yes               |
| 3140 | high   | yes     | fair              | yes               |
| >40  | medium | no      | excellent         | no                |

```
0.028>0.007 ..
Therefore, X belongs to class ("buys_computer = yes")
```

## Clustering

Unsupervised learning: no predefined classes (i.e., learning by observations vs. learning by examples: supervised)

Cluster: A collection of data objects similar (or related) to one another within the same group dissimilar (or unrelated) to the objects in other groups

#### Cluster analysis (or clustering, data segmentation, ...)

Finding similarities between data according to the characteristics found in the data and grouping similar data objects into clusters





## Similarity Measure

#### Dissimilarity/Similarity metric

Similarity is expressed in terms of a distance function, typically metric: d(i, j)

#### **Distance Calculation**

 Distance of Data from each centroid can be calculated using following distance functions

Euclidean 
$$\sqrt{\sum_{i=1}^{k} (x_i - y_i)^2}$$
Manhattan 
$$\sum_{i=1}^{k} |x_i - y_i|$$

$$\sum_{i=1}^{k} |x_i - y_i|$$
Minkowski 
$$\left(\sum_{i=1}^{k} (|x_i - y_i|)^q\right)^{1/q}$$

## K Means Algorithm

The K-means algorithm starts by randomly choosing a centroid value for each cluster.

After that the algorithm iteratively performs three steps:

- (i) Find the Euclidean distance between each data instance and centroids of all the clusters;
- (ii) Assign the data instances to the cluster of the centroid with nearest distance;
- (iii) Calculate new centroid values based on the mean values of the coordinates of all the data instances from the corresponding cluster.

### Centroid of the Cluster

#### **Centroid Calculation Function**



The centroid of the points 
$$(x_1, y_1)$$
,  $(x_2, y_2)$ ,  $(x_3, y_3)$ , . . . ,  $(x_o, y_o)$  is 
$$\left(\frac{x_1 + x_2 + x_3 + \dots + x_o}{n}, \frac{y_1 + y_2 + y_3 + \dots + y_o}{n}\right)$$

Where n is the number of stored points in your system.

points having 2-dimensional coordinates (x and y)

### how







Assign Cluster Centroids
Until Convergence: Cluster Assignment Step
Re-assigning Centroid Step

To define, the number of Clusters:

- Elbow Method
- Silhouette Method

### Elbow Method:

- Assume no. of clusters k = 2, 3, 4,......
- Calculate the sum of squared errors (SSE) for each k.
- Plot k versus SSE and find out elbow.



## Elbow Method



## K Means Case Study: Cluster the data (2,4,4,4,6,6) in 2 Clusters

The centroid of the points 
$$(x_1, y_1)$$
,  $(x_2, y_2)$ ,  $(x_3, y_3)$ , . . . ,  $(x_s, y_s)$  is 
$$\left(\frac{x_1 + x_2 + x_3 + \dots + x_s}{n}, \frac{y_1 + y_2 + y_3 + \dots + y_s}{n}\right)$$

$$\sum_{i=1}^{k} \left| x_i - y_i \right|$$

| x | C1=4  | C2=6  | Cluser Labels | NewCentroid1 (3.5) | NewCentroid2(6) | Cluser Labels |           |
|---|-------|-------|---------------|--------------------|-----------------|---------------|-----------|
| 2 | 4-2=2 | 6-2=4 | C1            | 3.5-2=1.5          | 6-2=4           | C1            |           |
| 4 | 4-4=0 | 6-4=2 | C1            | 3.5-4=0.5          | 6-4=2           | C1            |           |
| 4 | 4-4=0 | 6-4=2 | C1            | 3.5-4=0.5          | 6-4=2           | C1            | NO CHANGE |
| 4 | 4-4=0 | 6-4=2 | C1            | 3.5-4=0.5          | 6-4=2           | C1            |           |
| 6 | 4-6=2 | 6-6=0 | C2            | 3.5-6=2.5          | 6-6=0           | C2            |           |
| 6 | 4-6=2 | 6-6=0 | C2            | 3.5-6=2.5          | 6-6=0           | C2            |           |

## **Evaluating Model Performance**

#### **Confusion Matrix : Classifier Accuracy Measure**

| Actual class\Predicted class | C <sub>1</sub>       | ¬ C <sub>1</sub>     |  |
|------------------------------|----------------------|----------------------|--|
| C <sub>1</sub>               | True Positives (TP)  | False Negatives (FN) |  |
| ¬ C <sub>1</sub>             | False Positives (FP) | True Negatives (TN)  |  |

#### Example of Confusion Matrix:

| Actual class\Predicted class | buy_computer<br>= yes | buy_computer<br>= no | Total |
|------------------------------|-----------------------|----------------------|-------|
| buy_computer = yes           | 6954                  | 46                   | 7000  |
| buy_computer = no            | 412                   | 2588                 | 3000  |
| Total                        | 7366                  | 2634                 | 10000 |

- Given m classes, an entry,  $CM_{i,j}$  in a confusion matrix indicates # of tuples in class i that were labeled by the classifier as class j
- May have extra rows/columns to provide totals

| A\P | С  | ¬C |     |
|-----|----|----|-----|
| С   | TP | FN | P   |
| ۲   | FP | TN | N   |
|     | P' | N' | All |

 Classifier Accuracy, or recognition rate: percentage of test set tuples that are correctly classified

• Error rate: 1 – accuracy, or

Precision: exactness – what % of tuples that the classifier labeled as positive are actually positive

$$precision = \frac{TP}{TP + FP}$$

- Recall: completeness what % of positive tuples did the classifier label as positive?
- Perfect score is 1.0

$$recall = \frac{TP}{TP + FN}$$

• F measure (F, or F-score): harmonic mean of precision and recall,

$$F = \frac{2 \times precision \times recal}{precision + recall}$$

## Thank You