Statistical Arbitrage Using Limit-Order Book Imbalance

Anton Rubisov

University of Toronto

17 September 2015

Order Imbalance

Anton Rubisov

Roadmap

Information

Analysis

Analysis

Maximizing Vealth via Continuous-Time Stochastic Control

Maximizing Wealth via Discrete-Time Stochastic Control

acktesting esults

Order Imbalance

Anton Rubisov

Roadmap

ackground nformation

kploratory Data nalysis

alth via ntinuous-Time chastic Contro

Maximizing Wealt is Discrete-Time

ktesting aults

onclusion and

onclusion and uture Work

Background Information

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Control

Maximizing Wealth via Discrete-Time Stochastic Control

Backtesting Results

Anton Rubisov

Background Information

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Background Information

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Control

Maximizing Wealth
via Discrete-Time

Backtestini Paculte

esults

Conclusion and Future Work

Order Imbalance

Background Information

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Control

Maximizing Wealth via Discrete-Time Stochastic Control

Backtesting Results

the bid and ask side.

Imbalance is a ratio of quoted limit order volumes between

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Background

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Control

Maximizing Wealth
ia Discrete-Time

acktesting esults

the bid and ask side.

Imbalance is a ratio of quoted limit order volumes between

 $I(t) = \frac{V_{bid}(t) - V_{ask}(t)}{V_{bid}(t) + V_{ask}(t)} \in [-1, 1]$

Exploratory Data Analysis

Continuous-Time
Stochastic Control

Maximizing Wealth

Maximizing Wealti via Discrete-Time Stochastic Control

cktesting sults

Conclusion and

5 / 75

Volume

28.90

28.91

28.92

Arbitrage with Order Imbalance

Roadma

Background Information

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Control

Maximizing Wealth via Discrete-Time

acktesting esults

onclusion and

Bid (buy) LO

Ask (sell) LO

Prid

28.94

28.93

Volume

Arbitrage with Order Imbalance

Anton Rubisov

Roadmaj

Background Information

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Control

Maximizing Wealth

acktestinį esults

nclusion and

Anton Rubisov

Roadmar

Background

Exploratory Data Analysis

Wealth via Continuous-Time Stochastic Contro

Maximizing Wealth

acktesting esults

Conclusion and

Smooth it by averaging on a sliding window (1 s).

Anton Rubisov

Background nformation Exploratory Date

Maximizing Wealth via Continuous-Time Stochastic Contro Maximizing Weal

Backtesting Results

Model as a continuous-time Markov chain Z(t) with generator G.

Anton Rubisov

admap

ckground ormation

Exploratory Da Analysis

laximizing Jealth via Jeath via tochastic Control Jaximizing Wealth a Discrete-Time tochastic Control

esults

Model as a continuous-time Markov chain Z(t) with generator G.

$$Z = \left\{ \begin{array}{ll} 5, & \rho \in [+\frac{3}{5}, +1], & \text{buy-heavy} \\ 4, & \rho \in [+\frac{1}{5}, +\frac{3}{5}], & \text{buy-biased} \\ 3, & \rho \in [-\frac{1}{5}, +\frac{1}{5}), & \text{neutral} \\ 2, & \rho \in [-\frac{3}{5}, -\frac{1}{5}), & \text{sell-biased} \\ 1, & \rho \in [-1, -\frac{3}{5}), & \text{sell-heavy} \end{array} \right.$$

4,
$$\rho \in [+\frac{1}{5}, +\frac{3}{5}]$$
, buy-biased

3,
$$\rho \in \left[-\frac{1}{5}, +\frac{1}{5}\right)$$
, neutra

2,
$$\rho \in \left[-\frac{3}{5}, -\frac{1}{5}\right)$$
, sell-biased

1,
$$\rho \in [-1, -\frac{3}{5})$$
, sell-heavy

$$\rho(t) \in \{1, 2, \dots, \#_{bins}\}$$

is the bin corresponding to imbalance averaged over the interval $[t - \Delta t_l, t]$, and

$$\Delta S(t) = \operatorname{sgn}(S(t + \Delta t_S) - S(t)) \in \{-1, 0, 1\}$$

is the sign of the change in midprice of the *future* time interval Δt_s .

 $\rho(t)$ is the imbalance bin of the time-weighted average of I(t) over this past interval.

 $\Delta S(t)$ is the sign of the midprice change over this future interval.

Using MLE, we obtain a generator matrix G for the CTMC. The transition matrix over a step of size Δt_l is given by

$$P(\Delta t_I) = [p_{ij}(\Delta t_I)] = e^{G\Delta t_I}$$

called our *one-step transition probability matrix*. Matrix entries give the probability of transition from one (imbalance, price change) pair to another over the time interval Δt_I . This can be written semantically as

$$p_{ij} = \mathbb{P}\left[\varphi(\rho_{\mathsf{curr}}, \Delta S_{\mathsf{future}}) = j \mid \varphi(\rho_{\mathsf{prev}}, \Delta S_{\mathsf{curr}}) = i\right]$$

Information

Analysis

ntinuous-Time ochastic Contro ximizing Weal

Backtesting Results

Using Bayes' Rule, we can transform the P matrix to

$$\mathbb{P}\left[\Delta S_{\mathsf{future}} = j \mid B, \rho_{\mathsf{curr}} = i\right] = \frac{\mathbb{P}\left[\rho_{\mathsf{curr}} = i, \Delta S_{\mathsf{future}} = j \mid B\right]}{\mathbb{P}\left[\rho_{\mathsf{curr}} = i \mid B\right]}$$

This allows us to predict future price moves. We'll call the collection of these probabilities the ${\it Q}$ matrix.

Predicting Future Price Change

Sample Q matrix.

	$\Delta S_{curr} < 0$			$\Delta S_{curr} = 0$			$\Delta S_{curr} > 0$		
	$ ho_{\it curr}=1$	2	3	1	2	3	1	2	3
$\Delta S_{future} < 0$									
$\rho_{prev} = 1$	0.53	0.15	0.12	0.05	0.10	0.14	0.08	0.13	0.14
$ ho_{prev} = 2$	0.10	0.58	0.14	0.07	0.04	0.10	0.13	0.06	0.12
$\rho_{prev} = 3$	0.08	0.12	0.52	0.09	0.06	0.03	0.11	0.10	0.05
$\Delta S_{\text{future}} = 0$									
$ ho_{prev} = 1$	0.41	0.75	0.78	0.91	0.84	0.79	0.42	0.79	0.77
$ ho_{prev} = 2$	0.79	0.36	0.71	0.83	0.92	0.82	0.75	0.37	0.78
$\rho_{prev} = 3$	0.79	0.74	0.40	0.81	0.83	0.91	0.70	0.76	0.39
$\Delta S_{\text{future}} > 0$									
$ ho_{prev} = 1$	0.06	0.10	0.09	0.04	0.06	0.07	0.50	0.09	0.09
$ ho_{prev} = 2$	0.10	0.06	0.15	0.10	0.04	0.08	0.12	0.57	0.10
$ ho_{prev} = 3$	0.13	0.14	0.08	0.10	0.11	0.05	0.19	0.14	0.56

Anton Rubisov

Sackground Information Exploratory Data Inalysis

Trading Strategies Informed by the Q Matrix

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Background Information

Exploratory Data Analysis

Maxımızıng Wealth via Continuous-Time Stochastic Control

Maximizing Wealt via Discrete-Time Stochastic Contro

acktesting esults

Conclusion and Future Work

Naive Use market orders to buy (sell) if price is predicted to move up (down).

Naive+ Post at-the-touch limit orders when zero price change is predicted.

ive++ Post a limit order to buy (sell) is price is predicted to move up (down).

- price change observation period Δt_S
- imbalance averaging period Δt_I
- ▶ number of imbalance bins #_{bins}

Calibration done on the first day of the trading year, same parameters used for all days.

Brute-force search of parameter space, using max Sharpe ratio criterion, found that $\Delta t_S = \Delta t_I = 1 sec$, and $\#_{bins} = 4$

Results of Naive Trading Strategies

Anton Rubisov

Normalized Profit and Loss (P&L)

Time (h)

Conclusions from Naive Trading Strategies

Anton Rubisov

Koadmap

Information

Exploratory Data Analysis

Wealth via Continuous-Tin Stochastic Con

Maximizing Wea via Discrete-Tim Stochastic Contr

Results

Conclusion and

Why is the Naive strategy producing, on average, normalized losses?

- ► Backtest is out-of-sample; evidence to reject time-homogeneity
- Calibration is done on first trading day; likely nonrepresentative of trading activity
- Price change probability matrix Q obtained using midprices, ignoring bid-ask spread; $\operatorname{sgn}(\Delta S)$ may be insufficient for create profit, especially on FARO

Conclusions from Naive Trading Strategies

Anton Rubisov

Why do the Naive+ and Naive++ strategies outperform the Naive strategy?

- ► LOs vs MOs means different transaction price is being used (only MO loses value)
- Naive only executes when predicting non-zero price change
 - Only sign, not magnitude
 - Only if one was already seen

Background Information

Exploratory Data Analysis

> /ealth via ontinuous-Timo tochastic Contr

Backtesting Results

Anton Rubisov

Maximizing Wealth via Continuous-Time Stochastic Control

- Imbalance Averaging Time Δt_I
 A constant, specifying the time window over which the imbalance ratio I(t) will be averaged.
- Price Change Time Δt_S
 A constant, specifying the time window over which price changes will be computed.
- Number of Imbalance Bins #_{bins} A constant, specifying the number of bins (spaced by percentiles, symmetric around zero) into which I(t) will be sorted.
- Imbalance ρ_t The finite, discrete stochastic process that results from sorting I(t) into the imbalance bins $\{1,\ldots,\#_{bins}\}$, and which evolves in accordance with the CTMC Z.

- ▶ Midprice *S_t* Stochastic process, evolves according to CTMC Z.
- ▶ Midprice Change $\Delta S_t = \operatorname{sgn}(S_t S_{t-\Lambda t_c})$
- ▶ Imbalance & Midprice Change $Z_t = (\rho_t, \Delta S_t)$ Continuous-time Markov chain with generator \boldsymbol{G} .
- Bid-Ask Half-Spread ξ Assumed constant. 2ξ is equal to the bid-ask spread.
- ▶ Midprice Change $\{\eta_{0,z}, \eta_{1,z}, \dots\} \sim F_z$ i.i.d. RVs, with distribution dependent on the Markov chain state.

- ▶ Other Agent Market Orders K_t^{\pm} Poisson processes with rate $\mu^{\pm}(\mathbf{Z}_t)$. K^+ represents the arrival of another agent's buy market order.
- Our Limit Order Posting Depth δ_t^{\pm} One of our controlled \mathcal{F} -predictable processes. δ^+ dictates how deep on the buy side we will post our buy limit order; $\delta^+=0$ implies at-the-touch.
- Our Limit Order Fill Count L[±]_t
 Counting processes (not Poisson), satisfying

$$\mathbb{P}[\,\mathrm{d}L_t^{\pm} = 1\,|\,\,\mathrm{d}K_t^{\mp} = 1] = e^{-\kappa\delta_t^{\pm}}$$

- Fill Probability Constant κ Fitted to satisfy the above relation, by considering the avg vol available at the first few depths relative to distribution of volumes of incoming market orders
- Our Market Orders M_t[±] M⁺ represents our buy market order. Assume we achieve the best bid/ask price.
- Our Market Order Execution Times $au^\pm = \{ au_k^\pm : k = 1, \dots \}$ An increasing sequence of $\mathcal F$ -stopping times.

ightharpoonup Cash $X_t^{\tau,\delta}$

A stochastic variable representing our cash, initially zero, that evolves according to

$$\mathrm{d}X_t^{\tau,\delta} = \underbrace{(S_t + \xi + \delta_t^-)\,\mathrm{d}L_t^-}_{\text{sell limit order}} - \underbrace{(S_t - \xi - \delta_t^+)\,\mathrm{d}L_t^+}_{\text{buy limit order}} + \underbrace{(S_t - \xi)\,\mathrm{d}M_t^-}_{\text{sell market order}} - \underbrace{(S_t + \xi)\,\mathrm{d}M_t^+}_{\text{buy market order}}$$

Inventory $Q_t^{\tau,\delta}$ A stochastic process representing our assets, initially zero, that satisfies

$$Q_0^{\tau,\delta} = 0,$$
 $Q_t^{\tau,\delta} = L_t^+ + M_t^+ - L_t^- - M_t^-$

Roadmap

Background Information

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Control

Maximizing Wealth via Discrete-Time Stochastic Control

acktesting esults

At T. we:

Call $W_t^{\tau,\delta}$ our net present value (NPV) at time t. Hence

finish each trading day with zero inventory (avoid

- submit a market order (of a possibly large volume) to liquidate remaining stock
- price achieved will be $S \xi \operatorname{sgn} Q \alpha Q$

 $W_{\tau}^{\tau,\delta}$ at terminal time T is our 'terminal wealth.'

- $\xi \operatorname{sgn} Q$ represents crossing the spread
- $ightharpoonup \alpha$ is a penalty constant

overnight positional risk)

 $ightharpoonup \alpha Q$ represents receiving a worse price linearly in Q due to walking the book

Hence, $W_t^{\tau,\delta}$ satisfies:

$$W_t^{\tau,\delta} = \underbrace{X_t^{\tau,\delta}}_{\text{cash}} + \underbrace{Q_t^{\tau,\delta}\left(S_t - \xi \operatorname{sgn}(Q_t^{\tau,\delta})\right)}_{\text{book value of assets}} - \underbrace{\alpha\left(Q_t^{\tau,\delta}\right)^2}_{\text{liquidation penalty}}$$

Our performance criterion will be to maximize terminal wealth:

$$H^{ au,\delta}(t,x,s,oldsymbol{z},q)=\mathbb{E}_{t,x,s,z,q}\left[W_T^{ au,\delta}
ight]$$

The value function is given by

$$H(t, x, s, \mathbf{z}, q) = \sup_{\boldsymbol{\tau} \in \mathcal{T}_{[t, T]}} \sup_{\delta \in \mathcal{A}_{[t, T]}} H^{\boldsymbol{\tau}, \delta}(t, x, s, \mathbf{z}, q)$$

Admissible trading strategies is the product of the set \mathcal{T} of all \mathcal{F} -stopping times, with the set \mathcal{A} of all \mathcal{F} -predictable, bounded-from-below depths $\delta > 0$.

- ightharpoonup recognizing au does not require knowledge of the future
- \triangleright δ cannot 'see into the future'; measurable with respect to information at an earlier time

Theorem

Dynamic Programming Equation for Optimal Stopping and Control. (Cartea et al., 2015) Assume that the value function H(t,x) is once differentiable in t, all second-order derivatives in x exist, and that $G: \mathbb{R}^m \to \mathbb{R}$ is continuous. Then H solves the quasi-variational inequality

$$\max \left\{ \partial_t H + \sup_{\boldsymbol{u} \in \mathcal{A}_t} \mathcal{L}_t^{\boldsymbol{u}} H \; ; \; G - H \right\} = 0$$

on \mathcal{D} , where $\mathcal{D} = [0, T] \times \mathbb{R}^m$.

 $dH(t, x, s, z, q) = \partial_t H dt$ $+ e^{-\kappa\delta^{-}} [H(t,x+(s+\xi+\delta^{-}),s,z,q-1)-H(\cdot)] dK^{+}$

probability of our sell limit order being filled, times the change in value

 $+ e^{-\kappa\delta^{+}} [H(t, x - (s - \xi - \delta^{+}), s, z, q + 1) - H(\cdot)] dK^{-}$ probability of our buy limit order being filled, times the change in value

$$+ \sum_{j} \underbrace{\mathbb{E}\left[H(t,x,s+\eta_{0,j},j,q) - H(\cdot)\right] \, \mathrm{d}Z_{z,j}}_{\text{change in value resulting from a CTMC state switch}}$$

Compensated Markov Chain Process

To solve for $\mathcal{L}_t^{\mathbf{u}}Ht$ we need the compensated Markov chain process. For Poisson processes, this is

$$dK^{\pm} = d \widetilde{\mathcal{K}}^{\pm} + \mu^{\pm}(\mathbf{z}) dt$$

For the CTMC:

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Background Information

Exploratory Data Analysis

Maximizing Vealth via Continuous-Time tochastic Control

Maximizing Wealth

via Discrete-Time

Stockastic Control

acktesting esults

Future Work

Analysis

Wealth via Continuous-Time Stochastic Control

via Discrete-Tim Stochastic Contr

acktesting esults

Conclusion and Future Work

0111

To solve for $\mathcal{L}_t^{\mathbf{u}}Ht$ we need the compensated Markov chain process. For Poisson processes, this is

$$\mathrm{d}K^{\pm} = \mathrm{d}\,\widetilde{\mathcal{K}}^{\pm} + \mu^{\pm}(\mathbf{z})\,\mathrm{d}t$$

For the CTMC:

▶ Define $K_I(t)$ to be the number of jumps with $Z_s - Z_{s^-} = I$ up to time t

Maximizing Wealth via Continuous-Time Stochastic Control

Stochastic Con

acktesting lesults

onclusion and uture Work

To solve for $\mathcal{L}_t^{\mathbf{u}}Ht$ we need the compensated Markov chain process. For Poisson processes, this is

$$dK^{\pm} = d \widetilde{K}^{\pm} + \mu^{\pm}(\mathbf{z}) dt$$

For the CTMC:

- ▶ Define $K_I(t)$ to be the number of jumps with $Z_s Z_{s^-} = I$ up to time t
- ▶ Define $\beta_I(x) = G_{x,x+I}$

To solve for $\mathcal{L}_t^{\mathbf{u}}Ht$ we need the compensated Markov chain process. For Poisson processes, this is

$$\mathrm{d}K^{\pm} = \,\mathrm{d}\,\widetilde{\mathcal{K}}^{\pm} + \mu^{\pm}(\mathbf{z})\,\mathrm{d}t$$

For the CTMC:

- ▶ Define $K_I(t)$ to be the number of jumps with $Z_s Z_{s^-} = I$ up to time t
- ▶ Define $\beta_I(x) = G_{x,x+I}$
- ▶ Then the compensated process (a martingale) is

$$\widetilde{\mathcal{K}}_{I}(t) = \mathcal{K}_{I}(t) - \int_{0}^{t} \beta_{I}(Z_{s}) \,\mathrm{d}s$$

Anton Rubisov

Roadmap

Background Information

Exploratory Data Analysis

$$\mathcal{L}_{t}^{\delta}H = \mu^{+}(\mathbf{z})e^{-\kappa\delta^{-}}\left[H(t, \mathbf{x} + (\mathbf{s} + \boldsymbol{\xi} + \delta^{-}), \mathbf{s}, \mathbf{z}, q - 1) - H(\cdot)\right] + \mu^{-}(\mathbf{z})e^{-\kappa\delta^{+}}\left[H(t, \mathbf{x} - (\mathbf{s} - \boldsymbol{\xi} - \delta^{+}), \mathbf{s}, \mathbf{z}, q + 1) - H(\cdot)\right] + \sum_{\mathbf{j}} G_{\mathbf{z},\mathbf{j}}\mathbb{E}\left[H(t, \mathbf{x}, \mathbf{s} + \eta_{0,\mathbf{j}}, \mathbf{j}, q) - H(\cdot)\right]$$

Our dynamic programming equation simplifies to

$$0 = \max \left\{ \partial_t H + \sup_{\boldsymbol{u} \in \mathcal{A}_t} \mathcal{L}_t^{\boldsymbol{u}} H \; ; \; H(t, x - (s + \xi), s, \boldsymbol{z}, q + 1) - H(\cdot) \right\}_{\text{total total property}}^{\text{Analysis}} H(t, x + (s - \xi), s, \boldsymbol{z}, q - 1) - H(\cdot) \right\}_{\text{total total property}}^{\text{Analysis}}$$

with boundary conditions

$$H(T, x, s, \mathbf{z}, q) = x + q(s - \xi \operatorname{sgn}(q)) - \alpha q^{2}$$

$$H(t, x, s, \mathbf{z}, 0) = x$$

Alisatz for value i unction i

Introduce the ansatz

$$H(t,x,s,z,q) = x + q(s - \xi \operatorname{sgn}(q)) + h(t,z,q)$$

- separates out mark-to-market of the current position
- $h(t, \mathbf{z}, q)$ captures value due to optimal trading

Boundary conditions on h are

$$h(T, \mathbf{z}, q) = -\alpha q^2$$
$$h(t, \mathbf{z}, 0) = 0$$

Roadmap

Backgroun

ixploratory Data Analysis

ximizing

$$\mathcal{L}_t^{\delta} H = \mu^+(\mathbf{z}) e^{-\kappa \delta^-} ig[\delta^- + 2 \xi \cdot \mathbb{1}_{q \geq 1} + h(t, \mathbf{z}, q - 1) - h(t, \mathbf{z}, q) ig]^{\mathrm{definition}}_{\mathrm{ordination}} + \mu^-(\mathbf{z}) e^{-\kappa \delta^+} ig[\delta^+ + 2 \xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) ig]^{\mathrm{ordination}}_{\mathrm{ordination}} + \sum_{\mathbf{i}} G_{\mathbf{z}, \mathbf{j}} ig[q \mathbb{E}[\eta_{0, \mathbf{j}}] + h(t, \mathbf{j}, q) - h(t, \mathbf{z}, q) ig]^{\mathrm{ordination}}_{\mathrm{ordination}}$$

To find the supremum over δ^+ , consider the first-order constraint:

$$0 = \partial_{\delta^+} igg[\mathrm{e}^{-\kappa \delta^{+*}} igg[\delta^{+*} + 2 \xi \cdot \mathbb{1}_{q \leq -1} + extit{h}(t, extbf{z}, q+1) - extit{h}(t, extbf{z}, q) igg] igg]$$

constraint:

To find the supremum over δ^+ , consider the first-order

 $0 = \partial_{\delta^{+}} \left[e^{-\kappa \delta^{+*}} \left[\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right] \right]$ $= -\kappa e^{-\kappa \delta^{+*}} \left[\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right] + e^{-\kappa \delta^{+*}}$ $= -\kappa e^{-\kappa \delta^{+*}} \left[\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right] + e^{-\kappa \delta^{+*}}$

To find the supremum over δ^+ , consider the first-order constraint:

$$\begin{split} 0 &= \partial_{\delta^{+}} \bigg[e^{-\kappa \delta^{+*}} \big[\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \big] \bigg]^{\text{Displayange}} \\ &= -\kappa e^{-\kappa \delta^{+*}} \big[\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \big] + e^{-\kappa \delta^{+*}} \\ &= e^{-\kappa \delta^{+}} \big[-\kappa (\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q)) + 1 \bigg]^{\text{Continuous-Time}} \\ &= e^{-\kappa \delta^{+}} \big[-\kappa (\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q)) + 1 \bigg]^{\text{Continuous-Time}} \end{split}$$

To find the supremum over δ^+ , consider the first-order constraint:

$$0 = \partial_{\delta^{+}} \left[e^{-\kappa \delta^{+*}} \left[\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \le -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right] \right]$$

$$= -\kappa e^{-\kappa \delta^{+*}} \left[\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \le -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right] + e^{-\kappa \delta^{+*}}$$

$$= e^{-\kappa \delta^{+}} \left[-\kappa \left(\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \le -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right) + 1$$

$$= -\kappa \left(\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \le -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right) + 1$$
we become the problem of the pr

To find the supremum over δ^+ , consider the first-order constraint:

$$0 = \partial_{\delta^{+}} \left[e^{-\kappa \delta^{+*}} \left[\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right] \right]^{\text{Exploratory Da}}$$

$$= -\kappa e^{-\kappa \delta^{+*}} \left[\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right] + e^{-\kappa \delta^{+*}}$$

$$= e^{-\kappa \delta^{+}} \left[-\kappa \left(\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right) + 1 \right]^{\text{chartic Con}}$$

$$= -\kappa \left(\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \mathbf{z}, q + 1) - h(t, \mathbf{z}, q) \right) + 1$$

Rearranging, and recalling we want non-negative posting depths, the optimal buy depth δ^* is given by:

$${\delta^+}^* = \max\left\{0\;;\; \frac{1}{\kappa} - 2\xi \cdot \mathbb{1}_{q \leq -1} - \textit{h}(\textit{t}, \textit{z}, q+1) + \textit{h}(\textit{t}, \textit{z}, q)\right\}$$

Anton Rubisov

$$0 = \max \left\{ \partial_t h + \mu^+(\boldsymbol{z}) e^{-\kappa \delta^{-*}} \left(\delta^{-*} + 2\xi \cdot \mathbb{1}_{q \geq 1} + h(t, \boldsymbol{z}, q - 1) \right) - \frac{\kappa \delta^{-*}}{h(t, \boldsymbol{z}, q)} \right\}$$

$$+ \mu^-(\boldsymbol{z}) e^{-\kappa \delta^{+*}} \left(\delta^{+*} + 2\xi \cdot \mathbb{1}_{q \leq -1} + h(t, \boldsymbol{z}, q + 1) \right) - \frac{\kappa \delta^{-*}}{h(t, \boldsymbol{z}, q)}$$

$$+ \sum_{\boldsymbol{j}} G_{\boldsymbol{z}, \boldsymbol{j}} \left[q / \mathbb{E} \left[\eta_{0, \boldsymbol{j}} \right] + h(t, \boldsymbol{j}, q) - h(t, \boldsymbol{z}, q) \right] ;$$

$$- 2\xi \cdot \mathbb{1}_{q \geq 0} + h(t, \boldsymbol{z}, q + 1) - h(t, \boldsymbol{z}, q) ;$$

$$- 2\xi \cdot \mathbb{1}_{q \leq 0} + h(t, \boldsymbol{z}, q - 1) - h(t, \boldsymbol{z}, q) \right\}$$

A buy market order will be executed at time τ_a^+ whenever

$$h(\tau_q^+, \mathbf{z}, q+1) - h(\tau_q^+, \mathbf{z}, q) = 2\xi \cdot \mathbb{1}_{q \ge 0}$$

and a sell market order whenever

$$h(\tau_q^+, \mathbf{z}, q - 1) - h(\tau_q^+, \mathbf{z}, q) = 2\xi \cdot \mathbb{1}_{q \le 0}$$

- \triangleright 2 ξ is the difference between purchase price and mark-to-market
- drives inventory back to zero when value unaffected

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Control

Maximizing Wealth via Discrete-Time

Backtesting Results

ionclusion and uture Work

Combining continuation region inequalities:

$$\begin{array}{c} \text{sell if } = & \text{buy if } = \\ h(t, \boldsymbol{z}, q) \overset{\downarrow}{\leq} h(t, \boldsymbol{z}, q + 1) \overset{\downarrow}{\leq} h(t, \boldsymbol{z}, q) + 2\xi, \qquad q \geq 0 \\ h(t, \boldsymbol{z}, q) \overset{\leq}{\uparrow} h(t, \boldsymbol{z}, q - 1) \overset{\leq}{\uparrow} h(t, \boldsymbol{z}, q) + 2\xi, \qquad q \leq 0 \\ \text{buy if } = & \text{sell if } = \end{array}$$

Exploratory Data Analysis

Maximizing Wealth via Continuous-Time Stochastic Control

Maximizing Wealth via Discrete-Time

acktesting

Conclusion and

Substituting the previous inequalities into our posting depth formula, we obtain bounds on our depths

$$\frac{1}{\kappa} - 2\xi \le \delta^{\pm *} \le \frac{1}{\kappa}$$

 possible interpretation: if buy depth is 'sufficiently' large, then actually optimal to sell instead

Roadmap

Anton Rubisov

Maximizing Wealth via Discrete-Time Stochastic Control

Conclusion and Future Work

All names and variables are the same as in the continuous-time case.

We will consider the embedded discrete time Markov chain determined by

$$\mathbf{P} = e^{\mathbf{G}\Delta t}$$

for any time interval of size Δt . For our purposes, take $\Delta t = \Delta t_I = \Delta t_S = 1000 \text{ ms}$

 $\mathsf{State}\ \vec{\mathsf{x}_k} = \begin{pmatrix} \mathsf{x}_k \\ \mathsf{s}_k \\ \mathsf{z}_k \end{pmatrix} \quad \begin{matrix} \mathsf{cash} \\ \mathsf{stock}\ \mathsf{price} \\ \mathsf{Markov}\ \mathsf{chain}\ \mathsf{state},\ \mathsf{as}\ \mathsf{above} \\ \end{matrix}$ inventory

 $\begin{array}{c} \text{Control } \vec{u_k} = \begin{pmatrix} \delta_k^{\; k} \\ \delta_k^{\; k} \\ M_{k}^{\; k} \\ M_{k}^{\; k} \end{pmatrix} & \text{bid posting depth} \\ \text{ask posting depth} \\ \text{buy market order - binary control} \\ \vdots & \vdots & \vdots \\ \end{array}$ sell market order - binary control

other agent buy market orders Random $\vec{w}_k = \begin{pmatrix} \kappa_k \\ K_k^- \end{pmatrix}$ other agent buy market orders other agent sell market orders random variable uniformly distributed on [0,1]

Anton Rubisov

$$\begin{pmatrix} x_{k+1} \\ s_{k+1} \\ z_{k+1} \\ q_{k+1} \end{pmatrix} = \begin{pmatrix} x_k \\ s_k + \eta_{k+1, T(z_k, \omega_k)} \\ T(z_k, \omega_k) \\ q_k \end{pmatrix} + \begin{pmatrix} s_k + \xi + \delta_k^- \\ 0 \\ -1 \end{pmatrix} L_k^-$$

$$+ \begin{pmatrix} -(s_k - \xi - \delta_k^+) \\ 0 \\ 0 \\ 1 \end{pmatrix} L_k^+$$

Background Information

Exploratory Data Analysis

> Maximizing Vealth via Continuous-Time Stochastic Control

Maximizing Wealth via Discrete-Time Stochastic Control

acktesting esults

onclusion and

$$\begin{pmatrix} x_k \\ s_k \\ z_k \\ q_k \end{pmatrix} = \begin{pmatrix} x_k \\ s_k \\ z_k \\ q_k \end{pmatrix} + \begin{pmatrix} s_k - \xi \\ 0 \\ 0 \\ -1 \end{pmatrix} M_k^- + \begin{pmatrix} -(s_k + \xi) \\ 0 \\ 0 \\ 1 \end{pmatrix} M_k^+$$

Other agents' market orders are Poisson distributed, so

$$\mathbb{P}[K_k^+ = 0] = \frac{e^{-\mu^+(z)\Delta t}(\mu^+(z)\Delta t)^0}{0!} = e^{-\mu^+(z)\Delta t}$$

and

$$\mathbb{P}[K_k^+ > 0] = 1 - e^{-\mu^+(\mathbf{z})\Delta t}$$

- assume the aggregate of the orders walks the LOB to depth p_k
- if $p_k > \delta^-$, our sell limit order is lifted
- as in continuous time, assume order is lifted with probability $e^{-\kappa\delta^-}$.

$$\mathbb{E}[L_k^-] = (1 - e^{-\mu^+(\mathbf{z})\Delta t})e^{-\kappa\delta^-} = \underbrace{p(\delta^-)}_{\text{short-hand}}$$

Again, our performance criterion is our terminal wealth:

$$V_k^{\delta^{\pm}}(x, s, \mathbf{z}, q) = \mathbb{E}_{k, x, s, \mathbf{z}, q} \left[W_T^{\delta^{\pm}} \right]$$

= $\mathbb{E}_{k, x, s, \mathbf{z}, q} \left[X_T^{\delta^{\pm}} + Q_T^{\delta^{\pm}}(S_T - \xi \operatorname{sgn}(Q_T^{\delta^{\pm}})) - \alpha (Q_T^{\delta^{\pm}})^2 \right]$

So that our dynamic programming equations are

$$\begin{split} V_{\mathcal{T}}(x,s,\boldsymbol{z},q) &= x + q(s - \xi \operatorname{sgn}(q)) - \alpha q^2 \\ V_{k}(x,s,\boldsymbol{z},q) &= \max \Bigl\{ \sup_{\delta^{\pm}} \bigl\{ \mathbb{E}_{\boldsymbol{w}} \left[V_{k+1}(f((x,s,\boldsymbol{z},q),\boldsymbol{u},\boldsymbol{w}_{k})] \right\} ; \\ V_{k}(x + s_{k} - \xi, s_{k}, \boldsymbol{z}_{k}, q_{k} - 1) ; \\ V_{k}(x - s_{k} - \xi, s_{k}, \boldsymbol{z}_{k}, q_{k} + 1) \Bigr\} \end{split}$$

Introduce the same ansatz

$$V_k(x, s, \mathbf{z}, q) = x + q(s - \xi \operatorname{sgn}(q)) + h_k(\mathbf{z}, q)$$

with boundary condition $h_k(\mathbf{z},0)=0$ and terminal condition $h_T(\mathbf{z},q)=-\alpha q^2$.

The DPE simplifies to

$$\begin{split} 0 &= \max \biggl\{ \sup_{\delta^{\pm}} \bigl\{ \mathbb{E}_{\boldsymbol{w}} \bigl[(s + \xi + \delta^{-}) L_{k}^{-} - (s - \xi - \delta^{+}) L_{k}^{+} \\ &\quad + (L_{k}^{+} - L_{k}^{-}) \bigl(s + \eta_{0, T(\boldsymbol{z}, \omega)} - \xi \operatorname{sgn}(\boldsymbol{q} + L_{k}^{+} - L_{k}^{-}) \bigr) \\ &\quad + q \left(\eta_{0, T(\boldsymbol{z}, \omega)} - \xi \left(\operatorname{sgn}(\boldsymbol{q} + L_{k}^{+} - L_{k}^{-}) - \operatorname{sgn}(\boldsymbol{q}) \right) \right) \\ &\quad + h_{k+1} \bigl(T(\boldsymbol{z}, \omega), \boldsymbol{q} + L_{k}^{+} - L_{k}^{-} \bigr) - h_{k}(\boldsymbol{z}, \boldsymbol{q}) \bigr] \bigr\} \; ; \\ &\quad - 2\xi \cdot \mathbb{1}_{q \geq 0} + h_{k}(\boldsymbol{z}, \boldsymbol{q} + 1) \; ; \\ &\quad - 2\xi \cdot \mathbb{1}_{q \leq 0} + h_{k}(\boldsymbol{z}, \boldsymbol{q} - 1) \biggr\} \end{split}$$

44 / 75

To solve the supremum in the continuation region, again consider first-order condition and floor at zero. We obtain:

$$\delta^{-*} = \max \left\{ 0 \; ; \; \frac{1}{\kappa} + \mathbb{E}[\eta_{0,T(\mathbf{z},\omega)}] - 2\xi \mathbb{1}_{q \geq 1} + \sum_{\boldsymbol{j}} \boldsymbol{P}_{\boldsymbol{z},\boldsymbol{j}} [h_{k+1}(\boldsymbol{j},q) - h_{k+1}(\boldsymbol{j},q)] - h_{k+1}(\boldsymbol{j},q) - h_{k+1}(\boldsymbol{j},q)$$

And similarly, the optimal buy posting depth is given by:

$$\delta^{+*} = \max \left\{ 0 \; ; \; rac{1}{\kappa} - \mathbb{E}[\eta_{0,T(oldsymbol{z},\omega)}] - 2\xi \mathbb{1}_{q \le -1} + \sum_{oldsymbol{j}} oldsymbol{P}_{oldsymbol{z},oldsymbol{j}} \left[h_{k+1}(oldsymbol{j},q) - h_$$

Substituting one into the other, the optimal depth sell order posting depth is

$$\begin{split} \delta^{-*} &= \max \bigg\{ 0 \; ; \; \frac{1}{\kappa} + \mathbb{E}[\eta_{0,T(\mathbf{z},\omega)}] - 2\xi \mathbb{1}_{q \geq 1} + \sum_{\boldsymbol{j}} \boldsymbol{P}_{\boldsymbol{z},\boldsymbol{j}} \bigg[h_{k+1}(\boldsymbol{j},q) - h_{k+1}(\boldsymbol{j},q) - h_{k+1}(\boldsymbol{j},q) \bigg] \\ &- (1 - e^{\mu^{-}(\mathbf{z})\Delta t}) e^{-\kappa \max \left\{ 0 \; ; \; \frac{1}{\kappa} - \mathbb{E}[\eta_{0,T(\mathbf{z},\omega)}] - 2\xi \mathbb{1}_{q \leq -1} + \sum_{\boldsymbol{j}} \boldsymbol{P}_{\boldsymbol{z},\boldsymbol{j}} \bigg[h_{k+1}(\boldsymbol{j},q) - h_{k+1}(\boldsymbol{j},q) - h_{k+1}(\boldsymbol{j},q) - h_{k+1}(\boldsymbol{j},q) \bigg] \\ &- (1 - e^{\mu^{+}(\mathbf{z})\Delta t}) e^{-\kappa \delta^{-*}} (2\xi \mathbb{1}_{q = 0} - \aleph(q)) \bigg\} \; \left(2\xi \mathbb{1}_{q = 0} - \aleph(q) \right) \bigg\} \end{split}$$

where

$$\aleph(q) = \sum_{j} P_{z,j} [h_{k+1}(j, q-1) + h_{k+1}(j, q+1) - 2h_{k+1}(j, q)]$$

• solve numerically due to difficulty in isolating δ^{-*}

Simplified Dynamic Programming Equation

Anton Rubisov

$$\begin{split} h_k(\mathbf{z},q) &= \max \bigg\{ q \mathbb{E}[\eta_{0,T(\mathbf{z},\omega)}] + \frac{1}{\kappa} (p(\delta^{+*}) + p(\delta^{-*})) + \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{z},\mathbf{j}} h_{k+1}(\mathbf{j},q) \\ &+ p(\delta^{+*}) p(\delta^{-*}) \sum_{\mathbf{j}} \mathbf{P}_{\mathbf{z},\mathbf{j}} \left[h_{k+1}(\mathbf{j},q-1) + h_{k+1$$

 $-2\xi\cdot\mathbb{1}_{q\leq 0}+h_k(\boldsymbol{z},q-1)\bigg\}$

Maximizing Wealth via Continuous-Time Stochastic Control

Maximizing Wealth via Discrete-Time Stochastic Control

acktesting

Conclusion and

Again we have

$$\begin{array}{ll} \operatorname{sell \ if} = & \operatorname{buy \ if} = \\ h_k(\boldsymbol{z},q) \overset{\downarrow}{\leq} h_k(\boldsymbol{z},q+1) \overset{\downarrow}{\leq} h_k(\boldsymbol{z},q) + 2\xi, \qquad q \geq 0 \\ h_k(\boldsymbol{z},q) \overset{f}{\leq} h_k(\boldsymbol{z},q-1) \overset{f}{\leq} h_k(\boldsymbol{z},q) + 2\xi, \qquad q \leq 0 \\ \operatorname{buy \ if} = & \operatorname{sell \ if} = \end{array}$$

- recalling $h_k(\mathbf{z},0) = 0$, again tells us h non-negative everywhere
- but no upper/lower bounds on $\delta^{\pm *}$

Roadmap

Anton Rubisov

Backtesting Results

Conclusion and Future Work

Calibrate and backtest on the NASDAQ Historical TotalView-ITCH, timestamped to the millisecond

Ticker	Company	Average Daily Volume
FARO	FARO Technologies Inc.	200,000
NTAP	NetApp, Inc.	4,000,000
ORCL	Oracle Corporation	15,000,000
INTC	Intel Corporation	30,000,000
AAPL	Apple Inc.	50,000,000

Calibration

Order Imbalance Anton Rubisov

Global parameters for backtesting

Parameter	Value	Description
Δt_S	1000ms	time window for computing price change
Δt_I	1000ms	time window for averaging order imbalance
$\#_{\mathit{bins}}$	5	number of imbalance bins
κ	100	fill probability constant

 $\kappa = 100$ implies:

- $lackbox{ Orders posted at } \delta = 0$ filled with probability 1
- ▶ Orders posted at $\delta = \$0.01$ filled with probability 0.37
- ▶ Orders posted at $\delta = \$0.02$ filled with probability 0.13
- **•** . .

Calculated parameters for backtesting

Parameter	Equation
G	infinitesimal generator matrix
P	transition probability matrix
μ^\pm	market order arrival intensities
H(t,x,s,z,q)	dynamic programming value function
δ^\pm	limit order posting depths

toadmap

Background Information

Exploratory Data Analysis

ealth via ontinuous-Time ochastic Contro aximizing Wealt a Discrete-Time

acktestin esults

52 / 75

Exploratory Dat Analysis

ontinuous-Time
ochastic Contro

Backtesting

Results

Non- \mathcal{F} -predictable calibration

 $\rho(t)$ is the imbalance bin of the time-weighted average of I(t) over this past interval.

 $\Delta S(t)$ is the sign of the midprice change over this future interval.

Regular calibration

 $\rho(t)$ unchanged.

 $\Delta S(t)$ calculated over the same past interval.

Dynamics of Posting Depths

0.004

0.002

-15

100 200 300 400 500 600

Inventory Level O

Discrete nFPC

-10

0.004

0.002

100 200 300 400 500 600

Continuous nFPC

SELL Posting Depth δ^+ [\$] at $Z = (\rho = +1, \Delta S = +1)$

10

15

Anton Rubisov

54 / 75

Dynamics of Posting Depths

-15

-10

Inventory Level O

SELL Posting Depth δ^+ [\$] at $Z = (\rho = 0, \Delta S = 0)$

10

15

Anton Rubisov

admap ckground

xploration

xploratory Data

nalysis

Wealth via Continuous-Timo Stochastic Contr Maximizing Wea via Discrete-Tim

Backtesting Results

Dynamics of Posting Depths

-15

-10

Inventory Level O

SELL Posting Depth δ^+ [\$] at $Z = (\rho = -1, \Delta S = -1)$

15

10

Anton Rubisov

56 / 75

Anton Rubisov

Roadmap

Information

Exploratory D Analysis

Maximizing Wealth via Continuous-Tim Stochastic Cont

Stochastic Cor Backtesting

Anton Rubisov

Roadmap

Information

Exploratory Dat Analysis

Maximizing Wealth via Continuous-Ti

Maximizing Wea

Backtesting Results

Conclusion and Future Work

Single day performance for ORCL on 2013-05-15

Anton Rubisov

Single day performance for ORCL on 2013-05-15

Anton Rubisov

Background Information

Maximizing
Wealth via
Continuous-Tin
Stochastic Con
Maximizing We

Backtesting Results

In-Sample Backtesting: Same Day Calibration

Anton Rubisov

Roadma

Backgroun Information

Exploratory Data Analysis

> Maximizing Wealth via Continuous-Time Stochastic Contro

Maximizing Wealth via Discrete-Time Stochastic Control

Backtestin Results

Conclusion and Future Work

Trading Day Number of 2013

In-Sample Backtesting: Same Day Calibration

Anton Rubisov

Strategy	Average Return	Risk Adj Return	# Trades	Average Inventory	% Win
ORCL					
Naive	-0.105	-0.253	484	1.40	28%
Naive +	-0.034	-0.011	4086	-55.18	61%
$Naive{+}{+}$	0.002	0.006	132	0.61	52%
Continuous	0.115	1.348	1874	1.94	92%
Discrete	0.135	1.620	1898	3.93	98%
Continuous with nFPC	-0.010	-0.100	2455	1.32	48%
Discrete with nFPC	0.144	1.501	1759	2.85	97%
INTC					
Naive	-0.082	-0.228	258	-5.21	33%
Naive +	0.365	0.134	3962	-32.50	63%
$Naive{+}{+}$	-0.001	-0.003	74	-0.84	48%
Continuous	0.214	2.159	1577	5.17	97%
Discrete	0.232	2.528	1642	4.48	98%
Continuous with nFPC	0.114	1.218	1894	2.01	90%
Discrete with nFPC	0.226	2.202	1569	4.28	98%

In-Sample Backtesting: Annual Calibration

Anton Rubisov

Background Information

Exploratory Data Analysis

Wealth via Continuous-Time Stochastic Control

Maximizing Wealt via Discrete-Time Stochastic Contro

Backtestir Results

onclusion and

Cts Stoch Ctrl — Dscr Stoch Ctrl — Cts Stoch Ctrl w nFPC — Dscr Stoch Ctrl w nFPC

In-Sample Backtesting: Annual Calibration

Anton Rubisov

Strategy	Average Return	Risk Adj Return	# MO	# LO	Average Invntry	% Win
ORCL						
Continuous	-0.089	-0.875	1540	1383	1.19	14%
Discrete	0.140	1.596	368	1344	0.46	96%
Continuous with nFPC	0.113	1.327	476	1338	2.67	94%
Discrete with nFPC	0.118	1.735	590	1337	3.43	99%
INTC						
Continuous	0.065	0.743	888	1207	1.22	84%
Discrete	0.235	2.189	380	1170	1.19	99%
Continuous with nFPC	0.209	2.030	396	1160	5.58	98%
Discrete with nFPC	0.197	2.588	576	1164	3.78	100%

- average return increases as the underlying stock liquidity increases;
- average return increases as the underlying stock bid-ask spread decreases;
- average return is stable and risk-adjusted return is improved when calibrating over a larger period of time, and is therefore preferred;
- there is no clear victor between regular calibration and the nFPC method.

Out-Of-Sample Backtesting: Annual Calibration

AAPL

INTC

2.5

Anton Rubisov

Background Information

Exploratory Data Analysis

Wealth via Continuous-Time Stochastic Control

via Discrete-Time Stochastic Contr

Backtestin Results

> onclusion and uture Work

Cts Stoch Ctrl — Dscr Stoch Ctrl — Cts Stoch Ctrl w nFPC — Dscr Stoch Ctrl w nFPC

2.5

Out-Of-Sample Backtesting: Annual Calibration

Anton Rubisov

Strategy	Average Return	Risk Adj Return	# MO	# LO	Average Invntry	% Win
INTC						
Continuous	0.209	2.112	2118	1758	0.44	98%
Discrete	0.372	1.591	949	1770	-5.89	98%
Continuous with nFPC	0.483	2.364	704	1693	1.46	100%
Discrete with nFPC	0.515	2.033	490	1629	2.81	100%
AAPL						
Continuous	0.378	1.571	3853	6297	-5.80	96%
Discrete	0.761	2.457	830	5566	4.05	100%
Continuous with nFPC	0.710	2.479	1276	5689	2.93	100%
Discrete with nFPC	0.764	2.442	796	5559	3.85	100%

Back-of-the-envelope calculation:

Trade 100 shares at a time \times average strategy return \times average share price \times 249 (trading days)

Trading INTC would have generated revenue of \$384,705.

Trading AAPL would have generated revenue of \$1,807,200.

Capital requirements: 100 shares \times average share price \times 20 (maximum inventory) = \$250,000.

Return on investment (ROI) is 877%.

Roadmap

Anton Rubisov

Conclusion and Future Work

Conclusion

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

nformation

Exploratory Data Analysis

Maximizing Wealth via Continuous-Tim

ocktesting

Conclusion and

Euture Work

▶ 877% ROI on INTC and AAPL

- Factor in colocation fees, data subscription fees...
- ► ROI down to 359%
- Other high liquidity, low bid-ask spread stocks: DELL, MSFT
- ► Can we take this strategy to market?

Market order costs

- ▶ LOs are free but MOs have a cost of c
- presumed effect: upper bound on δ^{\pm} from $1/\kappa$ to $1/\kappa + c$.
- presumed effect: fewer market orders
- Discrete posting depths in increments of 1 tick
 - Current depths are continuous variables
 - ▶ For most stocks, depth is in increments of \$0.01
 - Can be solved by rounding...
- Short-term price impact
 - what effect does our trading have on the market?
 - ▶ 100 shares per execution = 600k shares per day = 1% daily vol

oadmap

Information

Exploratory Data Analysis

Vealth via ontinuous-Time tochastic Contr 1aximizing Wea

Backtesting Results

Future Work

- Accounting for non-homogeneity
 - data is nonhomogeneous, both intra-day and inter-day
 - calibrate first/last hour separately?
- Backtesting engine: information latency
 - minimizing latency is critical in high-frequency algorithmic trading
 - currently we have immediate execution
 - ▶ introduce simple 2-4 ms execution lag?
- Backtesting engine: algorithm latency
 - currently we feed a reconstructed LOB
 - requires redesign to process live data feed

Future Work

Anton Rubisov

- ▶ Backtesting engine: tracking LOB queue position
 - $e^{-\kappa\delta}$ fill probability is highly flawed
 - random numbers determine whether our orders get filled
 - depth $\delta = 0$ is guaranteed execution
 - implicit cancellation and reposting of orders
 - queue position tracking adds a control of modifying/keeping existing order

Background nformation

Exploratory Data Analysis

> Vealth via ontinuous-Timo tochastic Contr laximizing Wea

Backtesting Results

Euture Work

Thank you!

Arbitrage with Order Imbalance

Anton Rubisov

Roadmap

Background Information

Exploratory Data Analysis

Maximizing Vealth via Jontinuous-Time tochastic Control

Maximizing Wealth via Discrete-Time Stochastic Control

acktesting esults

onclusion and iture Work

74 / 75

Questions?

Acknowledgement

Anton Rubisov

Dr. Gabriele D'Eleuterio

For acting as my supervisor and supporting me through the graduate school tumult.

Dr. Sebastian Jaimungal

For taking me on as a surrogate student and guiding me through the research.

Dr. Dmitri Rubisov (my dad)

For pretty much being a supervisor too.