Applied Data Science

Building a predictive model for New York City Taxi drivers to maximise their revenue

Group 7

- Xuanken Tay
- Geng Yuxiang
- Li Shangqian
- Yin Zhou Zheng

Progress Report

Presentation Outline

- Problem description
 - Workflow
- Feature Engineering
- Classification Model
 - Decision Making
- Evaluation of models
- Allocation of tasks

Problem Formulation

- Problem: What are the decisions that result in maximum revenue?
- Aim: Given the current time and location of taxi driver, find the next best decision to maximise revenue

Workflow

FEATURES

Profitability = ...

Average Total Earnings Rate [AVG(TER)]

Calculated as

$$AVG(TER) = \frac{Averge Total Earnings [AVG(TE)]}{Average Trip Duration [AVG(TD)]}$$

- Grouping Factors (Predictors)
 - Cell Id (e.g. "23:60")
 - Day of the Week (e.g. Saturday)
 - Time of the day (e.g. 21:52:00)

Complementary Features (Penalized)

- Driving Duration [DD]
 - Time taken for driving from origin cell to destination cell.
 - Determine Shortest Cell Path between current cell and destination cell using Breadth First Search
- Average Waiting Time [AWT]
 - Average waiting time before next trip

Profitability = AVG(TER) +
$$f$$
(DD) + g (AWT)

Method Implementation

- Different models to predict features:
 - Linear Modelling:
 - Predicting Average Total Earnings
 - Generalised Linear Model (Poisson, Gamma, Negative-binomial)
 - Waiting Time (Trip Frequency)
 - Clustering Method
 - Average Trip Duration

Classification Process

- Combine the predictions from the small models.
- Calculate standardised profitability of each cell.
- Choose cell with maximum as next cell.
- Goal-driven algorithm to prevent deadlock.

Evaluation

- Model Implementations:
 - Different combinations to produce players.
- Running on local game platform.
 - Observe total earnings over simulated week.
 - Compute statistics.
- Choose "best" player.
- Review logs to address uncertainty.

Job Allocation

- Partition:
 - Avoid overlapping.
 - Covering all avenues.
- Initial Ideas:
 - Models trained by different members.
 - Report sections split among members.
- Tools:
 - Meeting Minutes.
 - GitLab issue assignments.

Thank you for your time.

Questions.