Struktura a architektura počítačů

Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické

© Hana Kubátová, 2021

Sekvenční obvody

BI-SAP, březen 2021

Obsah

- Logické obvody sekvenční
- Formy popisu
- Postup návrhu až k realizaci
- Příklady

Cíl:

naučit se základní principy týkající se sekvenčních obvodů a jak navrhnout takový (řídící) automat

Kombinační x sekvenční obvody

- Kombinační: výstup je dán kombinací vstupů, "nezáleží" na čase
- <u>Sekvenční</u>: výstup závisí na posloupnosti (sekvenci) hodnot na vstupech, "zapamatování" se realizuje zpětnou vazbou

- Vše lze matematicky popsat
 - Logická funkce f (Booleova algebra)
 - Konečný automat FSM (Finite State Machine)

Kombinační funkce

Kombinační funkce:

$$out_k = f_i(in_1, in_2, in_3, ... in_p), k=1,2,...,m, i=1,2,...,p$$

Algoritmus minimalizace

... opakování, ale bude se hodit i pro návrh sekvenčních obvodů.

zde pro SOP: pravdivostní tabulka, standardní vyjádření Mapa, ... Přímé implikanty (krychle) Podstatné implikanty Minimální pokrytí

Sekvenční chování

 výstup závisí na posloupnosti (sekvenci) hodnot na vstupech

Obecný model sekvenčního obvodu

též Huffmannův

Sekvenční logický obvod

Model, matematický popis: konečný automat KA (FSM: finite state machine)

- Množina přípustných kombinací hodnot vstupních proměnných KA; př: pro 3 vstupní proměnné => X může obsahovat až 2³=8 kombinací, ale všechny nemusí být možné (přípustné)
- Množina možných kombinací výstupních hodnot KA
- Množina kombinací hodnot vnitřních proměnných KA (množina stavů)
- **Q** ... Počáteční stav (kombinace hodnot vnitřních proměnných KA v počátečním stavu)
- Stavově přechodová funkce:
 - $\delta: X \times Q \rightarrow Q$... definuje příští vnitřní stav(y) KA
- Výstupní funkce ... definuje výstup(y) KA:
 - λ : a) $X \times Q \rightarrow Y$... typ Mealy
 - b) $Q \rightarrow Y \dots$ typ Moore

Mealy, Moore

Rozdíl: přímá vazba na výstup buď je (Mealy) nebo není (Moore)

Postup návrhu sekvenčního obvodu

- 1. Slovní popis
- 2. Graf přechodů ("state-transition graph STG")
- 3. Tabulky přechodů a výstupů
- 4. Zakódování vstupů, výstupů a vnitřních stavů
- 5. (Zakódované tabulky přechodů a výstupů)
- Minimalizace výrazů pro budící vstupy vybraného typu klopných obvodů (mapy)
- 7. Minimalizace výrazů pro výstupní funkce
- 8. Realizace z (předepsaného typu) hradel
- 9. Výpočet hodinové frekvence

Čítač M3 (modulo 3) v kódu 1zN:

tzn. na výstupu:

 $0 \rightarrow 1 \rightarrow 2 \rightarrow 0 \rightarrow 1 \rightarrow 2$

zakódovaně:

 $001 \rightarrow 010 \rightarrow 100$

→001→010

Příklady

Příklad 1:

 Navrhněte SSO se dvěma vstupy a, z a jedním výstupem b, který bude převádět sériově vstupující binární číslo A v doplňkovém kódu na číslo B opačné k A. A vstupuje nejnižším řádem napřed, z indikuje začátek čísla A. (jestliže je z=1, na vstupu je nejnižší řád A).

Poznámka: automat není iniciální

Postup řešení př. 1

Postup řešení př. 1: vnitřní stavy

Hledáme princip funkce: buď číslice opisuji nebo neguji:

alespoň dva vnitřní stavy:

Q₀: opiš (Op) Q₁: invertuj (Inv)

Postup řešení př. 1: přechody mezi stavy

Hledáme princip funkce: opisujeme dokud nepřijde první jednička na *a*, pak invertujeme (zatím *z*=0)

přechody podle vstupů, označíme vstupy/výstup: az/b

Postup řešení př. 1: doplnění všech možností

z=1 znamená, že přišlo
další číslo a začínáme znovu,
tzn. pro a=0 se vracíme do Op
a pro a=1 zůstáváme v Inv

Postup řešení př. 1: všechny možnosti

z=1 znamená, že přišlo další číslo a doplníme zbylé možnosti (zeleně), tak aby z každého uzlu vedly všechny možné kombinace vstupů (výstupy už máme)

Řešení př. 1: výsledný graf

2 vnitřní stavy:

Q₀: opiš (Op)

Q₁: invertuj (Inv)

vstupy/výstup: az/b

Mealy nebo Moore ???

postupně přepisujeme graf do tabulky:

Q _{next}	00	01	11	10
Ор				
Inv				

b	00	01	11	10
Op				
Inv				

 Q_{next}
 00
 01
 11
 10

 Op
 Op
 Inv
 Inv

b	00	01	11	10
Op	0			
Inv				

Q _{next}	00	01	11	10
Op	Ор		Inv	
Inv				

b	00	01	11	10
Op	0		1	
Inv				

Q _{next}	00	01	11	10
Op	Ор	Ор	Inv	Inv
Inv	Inv	Ор	Inv	Inv

b	00	01	11	10
Ор	0	0	1	1
Inv	1	0	1	0

Kódování vnitřních stavů

(vstupy a výstup už zakódované jsou)

Q _{next}	00	01	11	10
		Ор	Inv	Inv
Inv	Inv	Ор	Inv	Inv

b	00	01	11	10
Ор	0	0	1	1
Inv	1	0	1	0

2 stavy ... pro rozlišení stačí 1 bit, zvolme např. Op ... 0, lnv ... 1

Q _{next}	00	01	11	10
0	0	0	1	1
1	1	0	1	1

Následuje realizace pomocí hradel a klopných obvodů ale co je to klopný obvod?

Klopný obvod ... paměť

"Podobné" chování má obvod složený z hradel NAND:

A	В	Out			
0	0	1			
0	1	1			
1	0	1			
1	1	0			

Jde také o asynchronní R-S klopný obvod, ale/s *inverzními vstupy*, tzn.:

- pamatuje při vstupech 11 a
- při kombinaci 00 jsou na obou výstupech 1,
- 0 na S ("set") nastavuje Q do 1.

Klopné obvody – úrovňové (latch)

změna stavu (překlopení) nastane jen při h=1, při h=0 se výstup nemění

Pozn. "výhodnější" je použít 4x NAND

"Zakázaný stav"

"Zakázaný stav".....

Klopné obvody hranové

Master – Slave, flip-flop (FF)

D klopný obvod

budeme používat jen typ D

D	Q(next)
0	0
1	1

$$Q(next) = D$$

Q	Q(next)		ס		
0		0	0		
0	,	1	1		
1	()	0		
1		1 /	1/		

D-KO

Rozdíl v chování hladinového a hranového D-KO

Poznámka: Klopný, též někdy paměťový obvod, angl. často jen *latch* pro úrovňový nebo *FF* pro hranový klopný obvod

Příklad 2

 Navrhněte SSO s jedním vstupem x a jedním výstupem y, který bude detekovat, zda jsou v sériově přicházejících tříbitových vstupních posloupnostech binární čísla 4 nebo 5. Počáteční podmínky – na vstupu je nejnižší řád prvního tříbitového čísla.

• Poznámka1: automat je iniciální

Graf přechodů, začátek

4: 100 nebo 5: 101

Tentokrát nevíme, kolik vyjde stavů a nemáme indikaci začátku, tzn, že musíme počítat do 3 v návrhu (tzn. nesmíme zůstat v žádném stavu na žádný vstup).

první bit správné posloupnosti je 0 nebo 1, tzn. na obě možnosti jdeme dál, přicházející posloupnost může být ta, kterou hledáme:

Graf přechodů, pokračování

4: 100 nebo 5: 101

správně je jen 0, ale musíme dopočítat do 3, tzn. přidat i stav pro špatnou cestu (C)

Graf přechodů

4: 100 nebo 5: 101

správně je jen 1 (výstup bude 1), ale musíme dopočítat do 3 znaků a pokračovat v detekci další trojice

Další postup

- 2. Z grafu tabulky pro přechodovou a výstupní funkci
- 3. Kódování a zakódované tabulky
- 4. Mapy,
- 5. Minimalizace
- Budící funkce pro vstupy klopných obvodů a pro výstupy
- 7. Realizace
- 8. Časování výpočet maximální hodinové frekvence

Tabulky přechodové a výstupní funkce

3. Zakódování vnitřních stavů, např.:

	0	1	0	1
Α	В	В	0	0
В	D	О	0	0
С	Α	Α	0	0
D	Α	Α	0	1

		b	a
	Α	0	0
4	В	0	1

b

a

Zakódovaná tabulka přechodů a výstupů:

0

 $D_b = a\overline{b}$

Y = abX

0

0

Χ

Schema podle funkcí:

$$D_a = \overline{a}\overline{b} + \overline{b}X$$

$$D_b = a\overline{b}$$

$$Y = \overline{abX}$$

Časování

Výpočet maximální hodinové frekvence

- Záleží na:
 - Technologii
 - Typu hradel
 - Počtu vstupů
 - Větvení
 - Klopných obvodech (v podstatě nyní jen D-KO)
 - Délce spojů (vodičů)
- Návrhové systémy

Podklady pro výpočet

Na dalších snímcích:

Tabulka 1: knihovna základních hradel

Tabulka 2: standardní logická hradla s více vstupy

Popis tabulek (technologie CMOS):

Název	grafický	funkce	Cena	Zpoždění
hradla	symbol		(počet transistorů)	normalizované (ns)

Pozn. hodnoty zpoždění závisí na technologii, zde je příklad konkrétních hodnot užitých pro výpočet

Inverter
$$x \longrightarrow F$$
 $F = x'$ 2 1

Driver $x \longrightarrow F$ $F = x$ 4 2

AND $x \longrightarrow F$ $F = xy$ 6 2.4

OR $x \longrightarrow F$ $F = x + y$ 6 2.4

NAND $x \longrightarrow F$ $F = (xy)'$ 4 1.4

NOR $x \longrightarrow F$ $F = (xy)'$ 4 1.4

XOR $x \longrightarrow F$ $F = x \oplus y$ 14 4.2

XNOR $x \longrightarrow F$ $F = x \oplus y$ 12 3.2

Časování klopného obvodu

- Předstih (Setup Time): vstup musí být stabilní (ustálený) PŘED aktivní hodinovou hranou
- Přesah (Hold Time): vstup musí zůstat stabilní (ustálený) PO aktivní hodinové hraně
- Zpoždění klopného obvodu (Clock-to-Q Time): doba mezi přechodem aktuálních dat z D na Q odvozená od aktivní hrany hodin

Maximální hodinová frekvence

- Všechny klopné obvody jsou řízeny stejnou hodinovou frekvencí
- Kombinační logické bloky:
 - Vstupy jsou aktualizovány při každém taktu
 - Všechny výstupy kombinační části musí být stabilní (nastaveny na správnou hodnotu) před dalším taktem

Kritická cesta

Nejdelší možná cesta mezi každým vstupem a výstupem kombinační části:

Výpočet

Hodinová frekvence = 1/maxWi-j, kde ex. 4 cesty:

- Wx-f: ze vstupu X na vstup KO, zpoždění na hradlech + nestabilita vstupů + předstih
- Wf-y: výstup KO výstup Y, zpoždění na hradlech + zpoždění KO + požadavek na stabilitu výstupu
- Wx-y: ze vstupu X na výstup Y, zpoždění na hradlech + nestabilita vstupů + požadavek na stabilitu výstupu
- Wf-f: mezi dvěma KO, zpoždění na hradlech + předstih + zpoždění KO (Clock-to-Q)

Schema

Převody Mealy → Moore

- Uzly grafu, do něhož vstupují hrany ohodnocené stejným výstupním symbolem ponecháme
- Každý uzel, který nemá uvedenou vlastnost nahradíme tolika uzly, kolika výstupními symboly jsou ohodnoceny hrany do něho vstupující
- Připojíme vstupní a výstupní hrany, uzly ohodnotíme příslušnými výstupními symboly

Příklad: Mealy → Moore

Moore → Mealy

 Nejlépe z tabulky přechodů a výstupů – jde jen o přiřazení výstupu podle následného stavu (výstup má reagovat na vstup dříve):

X/Q X1 X2 0 Moore **Y3 Q1** Q3 Q1 A: $\mathbf{Q2}$ **Y1** Q1 Q2 **Q3 Q2 Q3 Y2** X1 X2 $\mathbb{Q}\backslash \mathbb{X}$ **X1 X2** Mealy Q3 Q1 **Y2 Q1 Y3** A´: **Q2 Q1 Q2 Y3 Y1 Q3 Q2 Q3 Y1 Y2**

Závěr

- Dotazy do chatu Teams Prosemináře a konzultace
 (příprava na on-line konzultace v pondělí 8. 3. od 16:15 a od 18:00)
- Příklady v nahraném prosemináři a ve skriptu (courses, sekce Skripta)
- Možné otázky/příklady do testů najdete na courses v sekci Přednášky u jednotlivých přednášek