Apostol p.28 no.1

Claim. For $x, y \in \mathbb{R}, x < y \implies \exists z \in \mathbb{R} \mid x < z < y$.

Proof. Consider $z = \frac{x}{2} + \frac{y}{2}$. We have $z \in \mathbb{R}$ as \mathbb{R} is closed under addition and multiplication as it is a field under those operations.

Further, we have that
$$x \leq y \implies \frac{x}{2} < \frac{y}{2} \implies \frac{x}{2} + \frac{x}{2} < \frac{x}{2} + \frac{y}{2}, \frac{x}{2} + \frac{y}{2} < \frac{y}{2} + \frac{y}{2}$$
.
As $\forall a \in \mathbb{R}, \frac{a}{2} + \frac{a}{2} = \frac{1}{2}(a+a) = \frac{1}{2}(2a) = a$, we have that $x < \frac{x}{2} + \frac{y}{2} < y$.

Apostol p.28 no.3

Claim. For $x \in \mathbb{R}, x > 0 \implies \exists n \in \mathbb{Z}_{>0} \mid \frac{1}{n} < x$.

Proof. The Archimedian property of the reals furnishes an $n \in \mathbb{Z}_{>0} \mid nx > 1$. Then, we see that $nx > 1 \implies 1 < nx \implies n^{-1}(1) < n^{-1}(nx) \implies \frac{1}{n} < x$.

Apostol p.28 no.4

Claim. For $x \in \mathbb{R}, \exists ! n \in \mathbb{Z} \mid n < x < n + 1$.

Proof. We will first show existence. Consider $S := \{n \in \mathbb{Z} \mid n \leq x\}$. This must be nonempty, or else x would be a lower bound to \mathbb{Z} , as $\neg \exists n \in \mathbb{Z} \mid n \leq x \implies \forall n \in \mathbb{Z}, \neg (n \leq x) \implies \forall n \in \mathbb{Z}, x \leq n$.

Now, note that if x is a lower bound for \mathbb{Z} , then -x is an upper bound for \mathbb{Z} . This follows as $x \leq n \implies -x \geq -n$, but as $n \in \mathbb{Z} \implies -n \in \mathbb{Z}$, we have that $\forall n \in \mathbb{Z}, x \leq n \implies \forall n \in \mathbb{Z}, x \leq -n \implies \forall n \in$

However, we proved that $\mathbb{Z}_{\geq 0} \subset \mathbb{Z}$ has no upper bound, meaning that -x cannot be an upper bound of \mathbb{Z} . Thus, S must be nonempty.

Now, the approximation theorem proved in class furnishes $n \in S \mid \sup(S) - 1 < n$. Thus, since we have $\sup(S) - 1 < n \implies \sup(S) < n + 1 \implies n + 1 \notin S$, and by definition of S, $n \in S \implies n \le x$ and $n + 1 \notin S \implies \neg(n + 1 \le x) \implies x < n + 1 \implies n \le x < n + 1$.

We will now show uniqueness: suppose that $\exists n, n' \in \mathbb{Z} \mid n \neq n', n \leq x < n+1, n' \leq x < n'+1.$ $n' > n \implies n' \geq n+1 > x$. However, n' < n, then we have that $n \geq n'+1 > x$. Either way, we have $\Rightarrow \Leftarrow$, so n = n'.

The above relies on the fact that $a, b \in \mathbb{Z}, a > b \implies a \geq b+1$. This follows from $a > b \implies a-b > 0$, and as $a-b \in \mathbb{Z}$, the fact that there is no integer between 0 and 1 (proved in an earlier homework) allows that a-b=1 or a-b>1 by trichotomy. However, this means that $a-b \geq 1 \implies a \geq b+1$.

Apostol p.28 no.6

Claim. \mathbb{Q} is dense in \mathbb{R} .

Proof. We shall start by proving at for $x, y \in \mathbb{R}$, x < y, $\exists r \in \mathbb{Q} \mid x < r < y$. The Archimedian property furnishes $n \in \mathbb{Z}_{>0} \mid n(y-x) > 1 \implies ny > nx + 1$. Now consider [nx]. We have that $[nx] \leq nx \implies [nx] + 1 \leq nx + 1 < ny$, and also nx < [nx] + 1.

These together yield that

$$nx < [nx] + 1 \le nx + 1 < ny$$

$$\implies n^{-1}(nx) < n^{-1}([nx] + 1) \le n^{-1}(nx + 1) < n^{-1}(ny)$$

$$\implies x < \frac{[nx] + 1}{n} < y$$

Critically, $[nx] \in \mathbb{Z}$, meaning that as $[nx] + 1, n \in \mathbb{Z}$, we have $\frac{[nx]+1}{n} \in \mathbb{Q}$.

Now that we have one such r, we can construct infinitely many: simply use the above process to find r' such that r < r' < y. This can be repeated ad infinitum.

Apostol p.64 no.4b

Claim.

$$[-x] = \begin{cases} -[x] & x \in \mathbb{Z} \\ -[x] - 1 & x \notin \mathbb{Z} \end{cases}$$

Proof. Note that if we find one such a such that $a \le x < a + 1$, we have that [x] = a as we have shown previously that such an a must be unique.

Suppose that $x \in \mathbb{Z}$. Then we have that $-x \le -x < -x + 1$, and so [-x] = -x.

Otherwise, we have that $[x] \le x$. However, we have that as $[x] \in \mathbb{Z}, x \notin \mathbb{Z}, [x] < x$. This then provides that -[x] > -x. Further, $x < [x] + 1 \implies -x > -([x] + 1) = -[x] - 1$.

These together give us
$$-[x] - 1 < -x < -[x] \implies -[x] - 1 \le -x < -[x] \implies [-x] = -[x] - 1$$
.

Apostol p.64 no.4d

Claim.
$$[2x] = [x] + [x + \frac{1}{2}]$$

Proof. Consider $[x] + \frac{1}{2}$. We have that by trichotomy, exactly one of x < y, x = y, x > y is true.

If $x < [x] + \frac{1}{2}$, then $[x] \le x < [x] + \frac{1}{2} \implies [x] < x + \frac{1}{2} < [x] + \frac{1}{2} + \frac{1}{2} = [x] + 1 \implies [x + \frac{1}{2}] = [x]$. Further, $2[x] \le 2x < 2([x] + \frac{1}{2}) = 2[x] + 1 \implies [2x] = 2[x] = [x] + [x] = [x] + [x + \frac{1}{2}]$. If $x = [x] + \frac{1}{2}$, then $x + \frac{1}{2} = [x] + \frac{1}{2} + \frac{1}{2} = [x] + 1$, and $[x] + 1 \in Z \implies [x] + 1 \le [x] + 1 \le [x] + 1 \le [x] + 2 \implies [x + \frac{1}{2}] = [[x] + 1] = [x] + 1$. Further, $2x = 2([x] + \frac{1}{2}) = 2[x] + 1 = [x] + [x] + 1 = [x] + [x + \frac{1}{2}]$. If $x > [x] + \frac{1}{2}$, then $[x] + \frac{1}{2} \le x < [x] + 1 \implies [x] + \frac{1}{2} + \frac{1}{2} \le x + \frac{1}{2} < [x] + 1 + \frac{1}{2} \implies [x] + 1 \le x + \frac{1}{2} < [x] + 2 \implies [x + \frac{1}{2}] = [x] + 1$. Further, $2x > 2([x] + \frac{1}{2}) = 2[x] + 1$, and $x < [x] + 1 \implies 2x < 2[x] + 2 \implies 2[x] + 1 < 2x < 2[x] + 2 \implies [2x] = 2[x] + 1 = 2[x]$

Problem 1

 $[x] + [x] + 1 = [x] + [x + \frac{1}{2}].$

Problem 2

Problem 3

Problem 4