Wydział	Imię i nazwisko)	Rok	Grupa	Zespół	
	1. Michał Rogo	owski				
WFiIS	2. Ihnatsi Yerm	nakovich	II	10	02	
PRACOWNIA	Temat	Temat				
ELEKTRONICZNA						
WFiIS AGH	Programowalna	Programowalna matryca logiczna - logika sekwencyjna				
Data wykonania	Data oddania	Zwrot do poprawy	Data oddania	Data zaliczenia	OCENA	
09.06.2022	14.06.2022					

Programowalna matryca logiczna - logika sekwencyjna

Ćwiczenie nr 07

Michał Rogowski

Ihnatsi Yermakovich

1	Cel ćwiczenia	2
2	Przebieg ćwiczenia	2
3	Wyniki	3
	3.1 Licznik modulo N (4-bitowy) (wersja 3)	3
	3.2 Licznik binarny 3-bitowy ze sterowaniem zewnetrznym (wersia 3)	6

1 Cel ćwiczenia

Celem ćwiczenia było zaprojektowanie układów sekwencyjnych oraz sprawdzenie ich działania w praktyce za pomocą matrycy logicznej.

2 Przebieg ćwiczenia

- A Grupa przełączników do ustawiania sygnałów wejściowych
- B Programowalny blok logiczny
- C Zworki wyboru wejścia kombinacyjnego (C) lub sekwencyjnego (S) wraz z diodami sygnalizującymi stan wyjścia danego bloku logicznego
- D Blok wyboru źródła sygnału zegarowego
- E Złącze doprowadzające sygnały wejściowe
- F Złącze wyprowadzające sygnały wyjściowe

Rysunek 1: Budowa programowalnej matrycy logicznej

Korzystaliśmy z matrycy logicznej (rys. 1) działającej w trybie sekwencyjnym do zaprojektowania poszczególnych układów. Matryca zasilana była napięciem pojedynczym +5V względem masy.

3 Wyniki

3.1 Licznik modulo N (4-bitowy) (wersja 3)

Ćwiczenie rozpoczęliśmy od zaprojektowania czterobitowego synchronicznego licznika modulo 14 w kodzie Gray'a , który miał 2 stany nadmiarowe. Do jego budowy wykorzystaliśmy wyjścia O_1 - O_4 matrycy pracującej w trybie sekwencyjnym (O_1 to najmłodszy bit licznika).

W celu wizualizacji konfiguracji matrycy i sprawdzenia jej poprawności dokonaliśmy symulacji w symulatorze PLD dostępnym na serwerze Taurus:

Rysunek 2: Konfiguracja matrycy logicznej dla licznika modulo 14

Ponadto umieścimy zdjęcie skonfigurowanej matrycy w laboratoruim:

Rysunek 3: Konfiguracja matrycy logicznej dla licznika modulo 14

Poniżej przedstawiona jest tabela stanów dla powyższej konfiguracji:

Tabela 1: Tabela stanów dla licznika modulo 14 w kodzie Gray'a

	O_4	O_3	O_2	O_1	$\mathbf{O_4}'$	$\mathbf{O_4}'$	$\mathbf{O_2}'$	O_1
0	0	0	0	0	0	0	0	1
1	0	0	0	1	0	0	1	1
2	0	0	1	1	0	0	1	0
3	0	0	1	0	0	1	1	0
4	0	1	1	0	0	1	1	1
5	0	1	1	1	0	1	0	1
6	0	1	0	1	0	1	0	0
7	0	1	0	0	1	1	0	0
8	1	1	0	0	1	1	0	1
9	1	1	0	1	1	1	1	1
10	1	1	1	1	1	1	1	0
11	1	1	1	0	1	0	1	0
12	1	0	1	0	1	0	1	1
13	1	0	1	1	0	0	0	0
14	1	0	0	1	X	X	X	X
15	1	0	0	0	X	X	X	X

Następnie dokonamy minimalizacji funkcji logicznych dla każdego z 4 wyjść O_4 - O_1 wykorzystując metodę tablic Karnaugh'a:

O ₂ O ₁	00	01	11	10
00	0	0	0	0
01	1	0	0	0
11	1	1	1	1
10	Х	х	0	1
		O_4		

O ₂ O ₁	00	01	11	10
00	0	1	1	1
01	0	0	0	1
11	0	1	1	1
10	х	х	0	1
		O_2		

O ₂ O ₁	00	01	11	10
00	1	1	0	0
01	0	0	1	1
11	1	1	0	0
10	X	Х	0	1

 O_1

Teraz korzystając z powyższych map możemy zapisać zminimalizowane funkcje:

Wyjście	Funkcja
$\mathbf{O_4'}$	$O_3\overline{O_2O_1} + O_4\overline{O_1} + O_4O_3$
O_3'	$\overline{O_4}O_2\overline{O_1} + O_3O_1 + O_3\overline{O_2}$
$\mathbf{O_2'}$	$O_2\overline{O_1} + \overline{O_4O_3}O_1 + O_4O_3O_1$
O_1	$\overline{O_3O_2} + \overline{O_4}O_3O_2 + O_4\overline{O_3O_1} + O_4\overline{O_2}$

Widzimy, jak wykorzystując kilka przerzutników (4 przerzutniki typu D) i dokonując proste obliczenia potrafimy zbudować dekoder kodu binarnego na kod szesnastkowy.

3.2 Licznik binarny 3-bitowy ze sterowaniem zewnętrznym (wersja 3)

Naszym zadaniem było zaprojektowanie licznika binarnego, który dla A=0 (tryb 1) liczy po liczbach parzystych (0,2,4,6), a stany nadmiarowe przechodzą w 0; dla A=1 (tryb 2) liczy po liczbach nieparzystych (1,3,5,7), a stany nadmiarowe przechodzą w 1.

W celu wizualizacji konfiguracji matrycy i sprawdzenia jej poprawności dokonaliśmy symulacji w symulatorze PLD dostępnym na serwerze Taurus:

Rysunek 8: Konfiguracja matrycy logicznej dla powyższego licznika

Ponadto umieścimy zdjęcie skonfigurowanej matrycy w laboratoruim:

Rysunek 9: Konfiguracja matrycy logicznej dla licznika 3-bitowego

Poniżej przedstawiona jest tabela stanów dla powyższej konfiguracji:

Tabela 2: Tabela stanów dla licznika 3 bitowego (w wersji 3)

	A	O_3	O_2	O_1	\mathbf{A}'	$\mathbf{O_4}'$	$\mathbf{O_2}'$
0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	1
1	0	0	0	1	0	0	0
1	1	0	0	1	0	1	1
2	0	0	1	0	1	0	0
2	1	0	1	0	0	0	1
3	0	0	1	1	0	0	0
3	1	0	1	1	1	0	1
4	0	1	0	0	1	1	0
4	1	1	0	0	0	0	1
5	0	1	0	1	0	0	0
5	1	1	0	1	1	1	1
6	0	1	1	0	0	0	0
6	1	1	1	0	0	0	1
7	0	1	1	1	0	0	0
7	1	1	1	1	0	0	1

Następnie dokonamy minimalizacji funkcji logicznych dla każdego z 4 wyjść A - O_1 wykorzystując metodę tablic Karnaugh'a:

O ₂ O ₁	00	01	11	10
00	0	0	0	1
01	1	0	0	0
11	0	1	0	0
10	0	0	1	0

 O_3

O ₂ O ₁	00	01	11	10
00	1	0	0	0
01	1	0	0	0
11	0	1	0	0
10	0	1	0	0
		O_2		

O ₂ O ₁	00	01	11	10
00	0	0	0	0
01	0	0	0	0
11	1	1	1	1
10	1	1	1	1

 O_1

Teraz korzystając z powyższych map możemy zapisać zminimalizowane funkcje:

Wyjście	Funkcja
O_3'	$\overline{AO_3}O_2\overline{O_1} + \overline{AO_3}\overline{O_2O_1} + A\overline{O_3}O_2O_1 + AO_3\overline{O_2}O_1$
O_2'	$\overline{AO_2O_1} + A\overline{O_2}O_1$
O ₁	A

Zauważmy, że dla wykonania ćwiczenia wystarczyły 3 przerzutniki typu D.