

Conceptos de Estimaciones de Software

¿ Qué preguntas nos hacemos al estimar ?

- La mayoría de las veces nos preguntamos:
 - ¿ Cuánto *tiempo* vamos a tardar en desarrollar el proyecto ?
 - ¿ Cuantas hs/pers se necesitan para desarrollarlo?
 - ¿ Cuánto va a costar el proyecto?

Son pocas las veces que nos preguntamos:

- ¿ Cuál es el tamaño de lo que tenemos que construir ?
 - Esta pregunta debería ser la primera para poder pasar a las anteriores !!!
 - La realidad parece indicarnos que el tamaño se calcula informalmente y solo formalizamos el esfuerzo, ventana y costo
 - Debemos ser lo mas rigurosos posibles con la estimación del tamaño

EL PROCESO DE ESTIMAR

¿Por qué fallan las estimaciones?

- Optimismo
- Estimaciones informales ("estomacales")
- No hay historia
- Mala definición del alcance
- Novedad / Falta de Experiencia
- Complejidad del problema a resolver
- No se estima el tamaño
- Porque la estimación fue buena pero cuando empieza el proyecto:
 - Mala administración de los requerimientos
 - No hay seguimiento y control
 - Se confunde progreso con esfuerzo

"Nivel de incertidumbre"

- El "cono de la incertidumbre" define niveles estadísticos predecibles de la incertidumbre de las estimaciones en cada etapa del proyecto
- Cuanto más refinada la definición, mas exacta será la estimación

Tips para estimar ...

- Diferenciar entre estimaciones, objetivos y compromisos
- Asociar a las estimaciones un % de confiabilidad
- Es recomendable presentar las estimaciones como rangos en lugar de un único valor
- Siempre presentar junto con la estimación, los supuestos que se tuvieron en cuenta para llegar a la misma

Tips para estimar ... (cont.)

- Tener presente la Ley de Parkinson: "Toda tarea se expande hasta ocupar el tiempo que tiene asignado"
- Considerar todas las actividades relacionadas al desarrollo de sw, no solamente codificación y testing (análisis, diseño, actividades de SCM, testing, etc.)
- No asumir que solo por el paso del tiempo y de las fases de un proyecto se avanza con menor incertidumbre en las estimaciones (Cono de la incertidumbre)
- Recolectar datos históricos para tener como referencia

Estimaciones creíbles ...

- Las estimaciones las hacen las personas, no herramientas ni modelos.
 - Se necesitan juicios razonables y compromisos con los objetivos organizacionales que no se pueden delegar a modelos automáticos
- Las estimaciones se basan en comparaciones.
 - Cuando las personas estiman buscan similitudes y diferencias con proyectos previos
- Para que la gente pueda estimar necesitamos <u>historia</u> de proyectos pasados para poder comparar
 - Las estimaciones se pueden mejorar colectivamente juntando historia
- Un método creíble debe ser de caja blanca

Ciclo de Estimación

- Estimar: Comenzar x estimar el tamaño para derivar el esfuerzo y el costo
- Medir: Mientras evoluciona el proyecto, medir el tamaño, el esfuerzo y costo incurrido
- Registrar: Dejar claras las mediciones tomadas
- Analizar: Razones de desvíos, supuestos que quizás variaron, temas no contemplados, etc...
- Calibrar: Ajustar c/u de las variables y parámetros que intervienen en el proceso de estimación
- Volver a estimar:
 - El mismo proyecto pero ahora con mas información que al comienzo del mismo
 - Nuevos proyectos con el proceso ajustado por la "calibración"

Métodos de Estimación

Métodos de Estimación

Métodos rudimentarios

- Juicio Experto
- Pert
- Wideband Delphi
- Planning Poker

Métodos parámetricos

- Function Points
- Use Case Points
- Story Points
- Objects Ponts

Métodos de estimación

Recomendaciones - ¿Qué hacer?

- Juntar historia de todos los proyectos
 - Registrar todas las lecciones aprendidas
 - Tener en cuanta la importancia de la comunicación

- Basarse en los conocidos y crear el propio
- Lo importante es su eficacia
- Apoyarnos en herramientas
 - Permiten ayudarnos en la implementación del "ciclo dorado" para implementar un método

Métodos de estimación

Recomendaciones - ¿Qué NO hacer?

- Descartar los métodos (Rechazarlos porque los consideramos inaplicables
 - Rechazarlos porque los consideramos inaplicables

- Utilizar métodos elaborados sin experiencia o información suficiente
 - Los métodos elaborados requieren de habilidades que hay que desarrollar
- Ignorar los supuestos
 - Siempre deben estar claro al comienzo, dejando claro el nivel de certidumbre de la estimación.

Preguntas

Apéndices

Métodos Paramétricos

OBJECT POINTS

- Los "objetos" contemplan pantallas, reportes & módulos
 - No está relacionado necesariamente con objetos de OOP
 - El método original contempla solo estos tres tipos de objetos
 - Implementaciones ad-hoc del método consideran otros tipos de componentes como (stored procedures, clases, scripts SQL, etc ...)
- Se asigna a cada componente un peso de acuerdo a su clasificación por complejidad
- Considera como factor de ajuste el porcentaje de reuso de código

Métodos Paramétricos

OBJECT POINTS (cont.)

- Cada objeto es clasificado de acuerdo a su nivel de complejidad en:
 - Simple
 - Medio
 - Difícil

	Number and sources of data tables		
Number of Views Contained	Total < 4	Total < 8	Total 8+
<3	simple	simple	medium
3-7	simple	medium	difficult
8+	medium	difficult	difficult

	Number and source of data tables		
Number of Sections	Total < 4	Total < 8	Total 8+
0-1	simple	simple	medium
2-3	simple	medium	difficult
4+	medium	difficult	difficult

Métodos Paramétricos

OBJECT POINTS (cont.)

 Luego se le brinda un peso a cada nivel de complejidad (teniendo directa proporción con el esfuerzo que requiere la implementación de c/u)

	Weight		
Туре	Simple	Medium	Difficult
Screen	1	2	3
Report	2	5	7
Modules	10	10	10

- Finalmente sumando la cantidad de objetos de cada complejidad con sus respectivos pesos nos da como resultado los OPs
- Teniendo en cuenta el reuso → NOP (NewOP) = OP * [(100 % Reuso) / 100]