Exercise 3.1 Let V be an *n*-dimensional complex vector space. If *L* is a Hermitian matrix then V has an orthonormal basis consisting of eigenvectors of *L*.

Proof. First we must show that *L* **has** an eigenvector. Then we will show how to extend it to a full basis. For this first step, *L* can be any matrix, not necessarily Hermitian.

 $p_{_L}(\lambda) = \det(L - \lambda I)$ is a polynomial in λ known as the characteristic polynomial of L. By the Fundamental Theorem of Algebra, there are complex roots λ_i of $p_{_L}(\lambda)$ of multiplicity p_i such that $p_{_L}(\lambda) = (\lambda - \lambda_{_1})^{p_1} \cdots (\lambda - \lambda_{_r})^{p_r}$ where r is a positive integer and $p_1 + \cdots + p_r = n$. In particular, $p_{_L}(\lambda)$ has at least one root, λ_1 .

By the Lemma, below, there is an eigenvector $\left|\lambda_{\scriptscriptstyle 1}\right\rangle$ having $\lambda_{\scriptscriptstyle 1}$ as an eigenvalue. This proves that every matrix L has at least one non-zero eigenvector. WLOG we can assume $\left|\lambda_{\scriptscriptstyle 1}\right\rangle$ is a unit vector because we can, if necessary, divide $\left|\lambda_{\scriptscriptstyle 1}\right\rangle$ by its magnitude and it will still be an eigenvector having $\lambda_{\scriptscriptstyle 1}$ as its eigenvalue. Define the null space of $\left|v_{\scriptscriptstyle 1}\right\rangle$:

$$N_1 = \{ |v\rangle : \langle v | \lambda_1 \rangle = 0 \}.$$

It is easy to see that N_1 is a vector subspace of V. Claim dim $N_1 = n - 1$:
Using the Gram-Schmidt Orthogonalization process, $\left|\lambda_1\right\rangle$ can be extended to an orthonormal basis $\left\{\left|\lambda_1\right\rangle,\left|e_2\right\rangle,\cdots,\left|e_n\right\rangle\right\}$ of V, and the basis vectors $\left\{\left|e_2\right\rangle,\cdots,\left|e_n\right\rangle\right\}$ belong to N_1 because $\left\langle e_i\left|\lambda_1\right\rangle=0$ for all i.

Claim $LN_1 \subset N_1$:

Let
$$|v\rangle \in \mathbb{N}_1$$
. Let $|w\rangle = L|v\rangle$. We need to show that $|w\rangle \in \mathbb{N}_1$. Since $\langle w| = (|w\rangle)^{\dagger}$ and L is Hermitian $(L = L^{\dagger})$,
$$\langle w|\lambda_1\rangle = (\langle w|) |\lambda_1\rangle = (|w\rangle)^{\dagger} |\lambda_1\rangle = (L|v\rangle)^{\dagger} |\lambda_1\rangle = (\langle v|L^{\dagger}) |\lambda_1\rangle = \langle v|L^{\dagger} |\lambda_1\rangle = \langle v|\lambda_1|\lambda_1\rangle = \lambda_1\langle v|\lambda_1\rangle = 0$$

In the Lemma, below, we showed that L is associated with a linear transformation T on V. Let T_2 be the linear transformation generated by restricting T to N_1 , the (n-1) dimensional null space of $|v_1\rangle$, and let L_2 be the matrix associated with T_2 .

Repeating our logic above, $p_{L_2}(\lambda)$ has a root λ_2 that is an eigenvalue of L_2 with corresponding unit eigenvector $|\lambda_2\rangle$. Since $|\lambda_2\rangle \in N_1$, $\langle \lambda_1 | \lambda_2 \rangle = 0 \Rightarrow |\lambda_1\rangle \perp |\lambda_2\rangle$.

Let T_3 be the linear transformation generated by restricting T_2 to N_2 , the (n-2) dimensional null space of $|v_2\rangle$, and let L_3 be the matrix associated with T_3 . As above, we generate unit eigenvector $|\lambda_3\rangle$ such that $|\lambda_3\rangle \perp |\lambda_2\rangle$, and since $|\lambda_3\rangle \in N_1$, $|\lambda_3\rangle \perp |\lambda_1\rangle$ also. Continuing this process, we eventually obtain the orthonormal basis $\{ |\lambda_i\rangle : i=1,\cdots,n \}$.

Lemma Every real or complex matrix A has at least one (possibly complex) eigenvector corresponding to the root λ_1 of the characteristic polynomial.

Proof. We seek a non-zero vector $|x\rangle$ that satisfies $A|x\rangle = \lambda_1|x\rangle$. Let $\{|e_i\rangle\}$ be an orthonormal basis for V. Every matrix $A = (a_{ij})$ is **associated** with a linear transformation $T: V \to V$ defined by $T|e_i\rangle = \sum_j a_{ij}|e_j\rangle$ on the basis vectors and then extended linearly to all of V.

A linear transformation T is **singular** if dim TV < n, and T is singular iff det $A \ne 0$.

Set $B = A - \lambda I = (b_{ij})$. Since **det** B = 0, B is singular, and T maps V into an m dimensional subspace, where $m = \dim TV < n$. The set of n linear equations in n unknowns,

$$B\left|v\right>=\left|0\right>\Leftrightarrow\left\{\begin{array}{ll}b_{_{11}}v_{_{1}}+\cdots+b_{_{1n}}v_{_{n}}=0\\ \vdots\\ b_{_{n1}}v_{_{1}}+\cdots+b_{_{nn}}v_{_{n}}=0\end{array}\right.,\text{ where }\left|v\right>=\left(\begin{array}{c}v_{_{1}}\\ \vdots\\ v_{_{n}}\end{array}\right)$$

has n-m redundant rows that can be eliminated by row reduction. There are then n-m free variables that can be given any value. We set the free variables equal to 1 (i.e., non-zero) and then solve the remaining equations for the unique values of $v_1 - v_m$. The resulting solution $|v\rangle$ is a non-zero vector that satisfies

$$0 = B |v\rangle = (A - \lambda_1 I) |v\rangle = A |v\rangle - \lambda_1 |v\rangle \quad \Rightarrow \quad A |v\rangle = \lambda_1 |v\rangle.$$

Note: We have proven that the complex characteristic root λ_{\parallel} is in fact an eigenvalue. Since L is Hermitian, then λ_{\parallel} is in fact real. If L, in addition, has real elements, we just call it symmetric (rather than Hermitian) and the eigenvectors, also, are real because $L |v\rangle = \lambda_{\parallel} |v\rangle$ constitutes a system of real linear equations that can be solved using just addition, subtraction, multiplication, and division.