AutoML: Dynamic Configuration & Learning

Learning to Learn: Reinforcement Learning

Bernd Bischl Frank Hutter Lars Kotthoff <u>Marius Lindauer</u> Joaquin Vanschoren

Source: https://bair.berkeley.edu/blog/2017/09/12/learning-to-optimize-with-rl/

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Action Step update Δx

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Action Step update Δx

Transition $\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} + \Delta \mathbf{x}$

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Action Step update Δx

Transition
$$\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} + \Delta \mathbf{x}$$

Cost/Reward Objective value at the current location

- Since the RL agent will optimize the cumulative cost, this is equivalent to L_{sum} [Chen et al'17] $(\gamma = 0)$
- encourages the policy to reach the minimum of the objective function as quickly as possible

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Action Step update Δx

Transition
$$\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} + \Delta \mathbf{x}$$

Cost/Reward Objective value at the current location

- Since the RL agent will optimize the cumulative cost, this is equivalent to $L_{\sf sum}$ [Chen et al'17] $(\gamma=0)$
- encourages the policy to reach the minimum of the objective function as quickly as possible

Policy DNN predicting μ_d of Gaussian (with constant variance σ^2) for dimension d; sample $\Delta \mathbf{x}_d \sim \mathcal{N}(\mu_d, \sigma^2)$

Reinforcement Learning for Learning to Optimize

State current location, objective values and gradients evaluated at the current and past locations

Action Step update Δx

Transition $\mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)} + \Delta \mathbf{x}$

Cost/Reward Objective value at the current location

- Since the RL agent will optimize the cumulative cost, this is equivalent to L_{sum} [Chen et al'17] $(\gamma = 0)$
- encourages the policy to reach the minimum of the objective function as quickly as possible

Policy DNN predicting μ_d of Gaussian (with constant variance σ^2) for dimension d; sample $\Delta \mathbf{x}_d \sim \mathcal{N}(\mu_d, \sigma^2)$

Training Set randomly generated objective functions

- 2-layer DNN with ReLUs
- Training datasets for training RL agent: four multivariate Gaussians and sampling 25 points from each
 - → hard toy problem

• Instead of learning everything, it might be sufficient to learn hand-design heuristics

- Instead of learning everything, it might be sufficient to learn hand-design heuristics
- In Bayesian Optimization (BO), the most critical hand-design heuristic is the acquisition function
 - trade-off between exploitation and exploration
 - ▶ Depending on the problem at hand, you might need a different acquisition function

- Instead of learning everything, it might be sufficient to learn hand-design heuristics
- In Bayesian Optimization (BO), the most critical hand-design heuristic is the acquisition function
 - trade-off between exploitation and exploration
 - ▶ Depending on the problem at hand, you might need a different acquisition function
 - Choices:
 - ★ probability of improvement (PI)
 - ★ expected improvement (EI)
 - ★ upper confidence bounds (UCB)
 - ★ entropy search (ES) quite expensive!
 - ★ knowledge gradient (KG)
 - ***** ...

- Instead of learning everything, it might be sufficient to learn hand-design heuristics
- In Bayesian Optimization (BO), the most critical hand-design heuristic is the acquisition function
 - trade-off between exploitation and exploration
 - ▶ Depending on the problem at hand, you might need a different acquisition function
 - Choices:
 - ★ probability of improvement (PI)
 - ★ expected improvement (EI)
 - ★ upper confidence bounds (UCB)
 - ★ entropy search (ES) quite expensive!
 - ★ knowledge gradient (KG)
 - *
- Idea: Learn a neural acquisition function from data
- → Replace acquisition function

Bayesian Optimization: Algorithm

Algorithm 1 Bayesian Optimization (BO)

Input : Search Space $\mathcal X$, black box function f, acquisition function α , maximal number of function evaluations T

3 return Best \mathbf{x} according to D or \hat{c}

Neural Acquisition Function [Volpp et al.'19]

Although the acquisition function α depends on the history $\mathcal{D}^{(t-1)}$ and the predictive model \hat{c} , α mainly makes use of the predictive mean μ and variance σ^2 .

Neural Acquisition Function [Volpp et al.'19]

Although the acquisition function α depends on the history $\mathcal{D}^{(t-1)}$ and the predictive model \hat{c} , α mainly makes use of the predictive mean μ and variance σ^2 .

Neural acquisition function (AF):

$$\alpha_{\theta}(\mathbf{x}) = \alpha_{\theta}(\mu^{(t)}(\mathbf{x}), \sigma^{(t)}(\mathbf{x}), \mathbf{x}, t, T)$$

where θ are the parameters of a neural network, and μ , σ , \mathbf{x} , t, T are its inputs.

Policy π_{θ} : Neural acquisition function α_{θ}

Policy π_{θ} : Neural acquisition function α_{θ}

Episode: run of π on $f \in \mathcal{F}'$

 \bullet $\ensuremath{\mathcal{F}}$ is a set of functions we can sample functions from

Policy π_{θ} : Neural acquisition function α_{θ}

Episode: run of π on $f \in \mathcal{F}'$

 \bullet $\ensuremath{\mathcal{F}}$ is a set of functions we can sample functions from

State $s^{(t)}$: $\mu^{(t)}$ and $\sigma^{(t)}$ on a set of points $\xi^{(t)}$, and t and T

Policy π_{θ} : Neural acquisition function α_{θ}

Episode: run of π on $f \in \mathcal{F}'$

 \bullet $\ensuremath{\mathcal{F}}$ is a set of functions we can sample functions from

State $s^{(t)}$: $\mu^{(t)}$ and $\sigma^{(t)}$ on a set of points $\xi^{(t)}$, and t and T

Action $a^{(t)}$: Sampled point $\mathbf{x}^{(t)} \in \xi^{(t)}$

```
Policy \pi_{\theta}: Neural acquisition function \alpha_{\theta}
```

Episode: run of π on $f \in \mathcal{F}'$

ullet ${\mathcal F}$ is a set of functions we can sample functions from

State $s^{(t)}$: $\mu^{(t)}$ and $\sigma^{(t)}$ on a set of points $\xi^{(t)}$, and t and T

Action $a^{(t)}$: Sampled point $\mathbf{x}^{(t)} \in \xi^{(t)}$

Reward $r^{(t)}$: negative simple regret: $r^{(t)} = f(\mathbf{x}^*) - f(\hat{\mathbf{x}})$

 \bullet assumes that we can estimate the optimal \mathbf{x}^* for training functions

```
Policy \pi_{\theta}: Neural acquisition function \alpha_{\theta}
```

Episode: run of π on $f \in \mathcal{F}'$

ullet ${\cal F}$ is a set of functions we can sample functions from

State $s^{(t)}$: $\mu^{(t)}$ and $\sigma^{(t)}$ on a set of points $\xi^{(t)}$, and t and T

Action $a^{(t)}$: Sampled point $\mathbf{x}^{(t)} \in \xi^{(t)}$

Reward $r^{(t)}$: negative simple regret: $r^{(t)} = f(\mathbf{x}^*) - f(\hat{\mathbf{x}})$

ullet assumes that we can estimate the optimal \mathbf{x}^* for training functions

Transition probability: Noisy evaluation of f and the predictive model update

 \bullet The state is described by a discrete set of points $\xi^{(t)} = \{\xi_n\}_{n=1}^N$

- The state is described by a discrete set of points $\xi^{(t)} = \{\xi_n\}_{n=1}^N$
- We feed these points through the predictive model and the neural AF to obtain $\alpha_{\theta}(\xi_n) = \alpha_{\theta}(\mu^{(t)}(\xi_n), \sigma^{(t)}(\xi_n), \xi_n, t, T),$

- ullet The state is described by a discrete set of points $\xi^{(t)}=\{\xi_n\}_{n=1}^N$
- We feed these points through the predictive model and the neural AF to obtain $\alpha_{\theta}(\xi_n) = \alpha_{\theta}(\mu^{(t)}(\xi_n), \sigma^{(t)}(\xi_n), \xi_n, t, T),$
- $\alpha_{\theta}(\xi_i)$ are interpreted as the logits of categorical distribution, s.t.

$$\pi_{\alpha}(\cdot \mid s^{(t)}) = \mathsf{Cat}\left[\alpha_{\theta}(\xi_1), \dots, \alpha_{\theta}(\xi_N)\right]$$

- ullet The state is described by a discrete set of points $\xi^{(t)}=\{\xi_n\}_{n=1}^N$
- We feed these points through the predictive model and the neural AF to obtain $\alpha_{\theta}(\xi_n) = \alpha_{\theta}(\mu^{(t)}(\xi_n), \sigma^{(t)}(\xi_n), \xi_n, t, T),$
- $\alpha_{\theta}(\xi_i)$ are interpreted as the logits of categorical distribution, s.t.

$$\pi_{\alpha}(\cdot \mid s^{(t)}) = \mathsf{Cat}\left[\alpha_{\theta}(\xi_1), \dots, \alpha_{\theta}(\xi_N)\right]$$

- ullet Due to curse of dimensionality, we need a two step approach for $\xi^{(t)}$
 - lacktriangle sample $\xi_{
 m global}$ using a coarse Sobol grid
 - 2 sample ξ_{local} using local optimization starting from the best samples in ξ_{global}
- $\leftrightarrow \xi^{(t)} = \xi_{\mathsf{global}} \cup \xi_{\mathsf{local}}$

Results on Artificial Functions [Volpp et al.'19]

- Approach by [Volpp et al. '19] called MetaBO
- MetaBO performs better than other acquisition functions (EI, GP-UCB, PI) and other baselines (Random, TAF)

Results on Artificial Functions [Volpp et al.'19]

- Approach by [Volpp et al. '19] called MetaBO
- MetaBO performs better than other acquisition functions (EI, GP-UCB, PI) and other baselines (Random, TAF)

Assumption: You have a family of functions at hand that resembles your target function.