Predicting Breast Cancer Recurrence

Diego Patrik S. da Silva¹, Giuseppe F. Neto¹

¹Departamento de Computação – Universidade Federal Rural de Pernambuco (UFRPE) 52.171-900 – Recife – PE – Brasil

dpatrikone@gmail.com, fiorentinogiuseppebcc@gmail.com

Abstract. Breast cancer is the most common and the leading cause of cancer death among women worldwide. In Brazil, the National Cancer Institute (INCA) estimates that in 2018/2019 about 59.700 new cases will be diagnosed. Early stage detection and treatment are important to significantly reduce the chance of death. In such case, the worse fear of a patient is the recurrence of the cancer. This paper aims to predict whether a patient will face a recurrence using a multilayer perceptron artificial neural network based on the University Medical Centre breast cancer dataset.

Resumo. Câncer de mama é o tipo de câncer mais comum e o que mais mata mulheres em todo o mundo. No Brasil, o Instituto Nacional de Câncer (INCA) estima que para 2018/2019 sejam diagnosticados 59.700 novos casos. A detecção precoce e tratamento são muito importantes para reduzir significamente o risco de morte. Nesses casos, o maior medo para o paciente é a recorrência do câncer. Esse trabalho visa predizer se o paciente vai enfrentar uma recorrência usando uma rede neural artificial (RNA) do tipo Multilayer Perceptron (MLP) baseado no conjunto de dados de câncer de mama da University Medical Centre.

1. Introdução

Segundo dados da Agência Internacional para a Pesquisa do Câncer, o câncer de mama é o tipo de câncer mais comum e que mais mata mulheres em todo o mundo. A previsão do Inca (Instituto Nacional de Câncer) é de que em 2018/2019 ocorram 59.700 casos de câncer de mama entre mulheres no Brasil. A detecção precoce aumenta significativamente a chance de sobrevivência do paciente que sofre dessa doença. Mas o maior problema é predizer a recorrência do câncer. Recorrência é quando o câncer volta a aparecer após o tratamento, no mesmo ou em outro lugar, podendo isso acontecer até 20 anos depois.

A análise de registros médicos já existentes permite que algoritmos de *machine learning* façam previsões sobre a saúde do paciente com um certo grau de certeza. O objetivo deste trabalho é usar classificação para predizer se um paciente vai enfrentar a recorrência do câncer.

A base de dados utilizada contém 10 atributos, incluindo o atributo classe, e leva em consideração aspectos como idade do paciente e tamanho do tumor, etc. Testamos esses dados da University Medical Centre em uma rede neural do tipo Multilayer Perceptron. A linguagem de programação Java foi utilizada para fins de implementação.

2. Base de dados

A base de dados usada neste estudo é fornecida pela University Medical Centre, Institute of Oncology, Ljubljana, Yugoslavia, por meio do repositório de *machine learning* da UCI. O conjunto de dados contém 10 atributos e um total de 286 instâncias. Consideramos todos os atributos nos testes:

- 1. Age: idade do paciente quando o diagnóstico foi realizado;
- 2. Menopause: status de menopausa do paciente;
- 3. Tumor size: tamanho do tumor (em mm);
- 4. Inv-nodes: número de glândulas linfáticas que transportam câncer metastático;
- 5. Node caps: se o tumor substitui os gânglios linfáticos e permite invadir tecidos próximos ou não;
- 6. Degree of malignancy: grau do tumor;
- 7. Breast: em qual seio o tumor foi diagnosticado;
- 8. Breast quadrant: o seio pode ser dividido em quatro quadrantes;
- 9. Irradiation: se o paciente foi submetido a terapia com radiação ou não;
- 10. Class: sem recorrência ou recorrência.

Atributos	Valores		
age	10-19, 20-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80-89, 90-99		
menopause	lt40, ge40, premeno		
tumor-size	0-4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59		
inv-nodes	0-2, 3-5, 6-8, 9-11, 12-14, 15-17, 18-20, 21-23, 24-26, 27-29, 30-32, 33-35, 36-39		
node-caps	yes, no		
deg-malig	1, 2, 3		
breast	left, right		
breast-quad	left-up, left-low, right-up, right-low, central		
irradiation	yes,no		
class	no-recurrence-events, recurrence-events		

3. Algoritmo

Neste trabalho, usamos uma rede neural artificial do tipo multilayer perceptron (MLP) para a classificação.

Uma rede neural artificial é uma ferramenta poderosa capaz de representar relações complexas de entrada-saída. Uma MLP é composta de 3 camadas: camada de entrada, camadas ocultas e camada de saída. O algoritmo de treinamento mais utilizado em modelos MLP é o Backprogation, que se baseia na aprendizagem por correção de erros. O algoritmo de Backprogation é um tipo de aprendizado supervisionado, quando o valor de saída é gerado o erro é calculado e seus valores são retro-propagados para entrada, os pesos são ajustados e os valores são novamente calculados.

Implementamos a MLP em Java, ajustando a quantidade de camadas, taxa de aprendizagem, o número de neurônios e definindo a sigmóide como função de ativação, tanto para a camada oculta, como para a camada de saída.

4. Resultados

A base de dados da University Medical Centre foi dividida em 60% para fins de treino e 40% para fins de teste. Fizemos experimentos alterando entre 0.0 e 1.0 a taxa de aprendizagem e medimos a performance da MLP baseado nos resultados de acurácia, precisão e relevância.

Onde

$$acurácia = \frac{\textit{V} \ erdadeiros \ P \ ositivos + \textit{V} \ erdadeiros \ Negativos}{\textit{N\'umero Total de Exemplos}}$$

$$precisão = \frac{V erdadeiros Positivos}{V erdadeiros Positivos + Falsos Positivos}$$

$$relevância = \frac{V \, erdadeiros \, P \, ositivos}{V \, erdadeiros \, P \, ositivos + F \, alsos \, Negativos}$$

Taxa de Aprendizado	Acurácia	Precisão	Relevância
0.0	28.9%	0.289	1.0
0.1	66.6%	0.407	0.333
0.2	69.2%	0.473	0.545
0.3	63.1%	0.395	0.515
0.4	73.6%	0.545	0.545
0.5	68.4%	0.463	0.575
0.6	67.5%	0.437	0.424
0.7	67.5%	0.433	0.393
0.8	72.8%	0.529	0.545
0.9	71.9%	0.514	0.545
1.0	68.4%	0.451	0.424

Testamos diferentes funções de ativação, obtivemos sempre melhores resultados com a função sigmóide.

Transfer function	acurácia	precisão	relevância	taxa de aprendizagem
sigmoidal	73.6%	0.545	0.545	0.4
hyperbolic	61.1%	0.410	0.636	0.1
heavyside	71.0%	0.333	0.030	0.4

5. Conclusão

Esse trabalho discute sobre a predição da recorrência de câncer de mama, usando uma rede neural e dados de uma base de dados como experimento. Como conclusão, alcançamos o objetivo de usar uma rede neural do tipo MLP para predizer a recorrência de um câncer, alcançando até 73% de acurácia. Um próximo passo seria definir quais dos atributos são mais relevantes.

6. Referências

Breast Cancer Data Set.

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

Estatísticas para Câncer de Mama

http://www.oncoguia.org.br/conteudo/estatisticas-para-cancer-de-mama/6562/34/

Ahmad, Aamir (2013) "Pathways to Breast Cancer Recurrence".

https://www.hindawi.com/journals/isrn/2013/290568/