

-Zubair uddin Shaikh

Programming....

Programming is a two phase process...

Problem Solving Phase

- Analysis and Specification
 - ▶ Understand (define) the problem and what the solution must do.
- ► General Solution (Algorithm)
 - ► Logical Sequence of Steps
- Verify
 - Dry run

Phases...

► Implementation Phase

- ► Concrete Solution
 - ► Algorithm → Program
- ► Test/Evaluate
 - Manual/Automated

▶ Maintenance

Improvements

Programming!!!

Figure 1.1 Programming process

Problem Solving.... Clue for Learning

(CFL)

- ► Finding Solution is not enough....
- ▶ The Process to Solution
 - AND
- ► The Effectiveness of Solution
 - ► Are As much Important

Problem solving Requires Determination......CFL

Problem Solving.....Mistakes (CFLs:)

- You will make mistakes;
 - Accept it.
 - ▶ This is normal and you learn from them.
 - Do not avoid risking making them.
 - ► The Process is MORE important than ANSWER ©
- Solution is not always complex;
 - Sometimes a simple solution can fix a complex problem.
- "An expert is a man who has made all the mistakes which can be made in a very narrow field."Niels Bohr
- "Anyone who has never made a mistake has never tried anything new." Albert Einstein

Problem Solving.....Simplicity (CFLs:)

"Any intelligent fool can make things bigger and more complex... It takes a touch of genius - and a lot of courage to move in the opposite direction."

Albert Einstein

- "Everything should be made as simple as possible, but not simpler."
 Albert Einstein
- Take the problem and break it down in to smaller and smaller chunks that are now manageable.

Formalizing the Thinking Process!!!!

- In day to day life, we come to a lot of problems and find solutions to them.....
 - Finding a solution starts with thinking....
- ▶ We are going to formalize ... What we are already doing ☺
- ► The First step/exercise: Transform the thoughts to Paper → Natural Language transformation of thoughts....
- Swap contents of two containers... 1st Example

Formalizing the Thinking Process!!!!

- Bottle Opening Problem [Class activity]
- Write down a detailed list of instructions on how to open a bottle. [2 column form]
- Have you considered all situations?
 - For example:
 - ▶ What if the bottle is upside does your routine still work?
 - ▶ What if the top is already off, does you routine still work?
 - ▶ Is your routine sufficiently detailed that if you gave it to someone they would follow exactly as you expected?
 - Is there any other way it could have been done?
 - What type of bottle is being opened?
 - Does it work for all bottles?
- You have produced the solution based on assumptions

Formalizing the Thinking Process!!!!

- Making a cup of tea [Class activity]
- Write down a detailed list of instructions on how to make a cup of tea. [2 column form]
- ► Have you considered all situations?
 - ▶ Give the list of steps to another class mate
 - ▶ Let's see, how much the steps are clear to him
- Have you made any assumptions?????
- Let's compare the lists of steps produced by students.....

What is an algorithm?

- Before a computer can perform a task, it must have an algorithm that tells it what to do.
- Informally: "An algorithm is a set of steps that define how a task is performed."
- Formally: "An algorithm is an ordered set of unambiguous executable steps, defining a terminating process."
 - Ordered set of steps: structure!
 - Executable steps: doable!
 - Unambiguous steps: follow the directions!
 - ▶ Terminating: must have an end!

What is an algorithm? (Cont'd)

- ► An algorithm is an ordered set of
 - unambiguous,
 - executable steps,
 - defining a terminating process.

Important Properties of Algorithm

- Correct
 - always returns the desired output for all legal instances of the problem.
- Unambiguous
- Precise
- Efficient
 - ► Can be measured in terms of
 - ▶ Time
 - Space
 - ► Time tends to be more important

Representation of Algorithms

- A single algorithm can be represented in many ways:
 - Formulas: F = (9/5)C + 32
 - ▶ Words: Multiply the Celsius by 9/5 and add 32.
 - Flow Charts.
 - Pseudo-code.
- ▶ In each case, the algorithm stays the same; the implementation differs!

Expressing Algorithms

More easily expressed

- English description
- Flow Chart
- Pseudo-code
- High-level programming language

More precise

Problem Solving....

- ► 1- Analysis and Specification
 - ► Input-Process-Output (IPO)
 - Problem Analysis Chart (PAC)
 - Examples
 - Problem sets
- 2- Algorithm
 - ► Algorithmic Constructs
 - Flow Chart
 - Pseudo code
- 3- Test/Evaluate
 - Dry run

Analyze the Problem...

- Thoroughly understand the problem
- Understand problem requirements
 - Does program require user interaction?
 - Does program manipulate data?
 - What is the output?
- ▶ If the problem is complex, divide it into subproblems
 - Analyze each subproblem as above

Analyze the Problem...

- Example: Payroll Problem
 - ► Calculate the salary of an employee who works by hourly basis. The formula to be used is

Salary = Hour works * Pay rate

Input	Processing	Output
Hours work,	Salary = Hours work * payrate	Salary
Pay rate		

Write a Problem Analysis Chart (PAC) to convert the distance in miles to kilometers where 1.609 kilometers per mile.

Input	Processing	Output
Distance in miles	Kilometers = 1.609 x miles	Distance in kilometers

Write a Problem Analysis Chart (PAC) to find an area of a circle where area = pi * radius * radius

Input	Processing	Output
radius	area = 3.14 x radius x radius	area

Write a Problem Analysis Chart (PAC) to compute and display the temperature inside the earth in Celsius and Fahrenheit. The relevant formulas are

```
Celsius = 10 \times (depth) + 20
Fahrenheit = 1.8 \times (Celsius) + 32
```

Input	Processing	Output
depth	Step1: celsius = 10 x (depth) + 20 Step2: fahrenheit = 1.8 x (celsius) + 32	Display celsius, Display fahrenheit

Write a problem analysis chart (PAC) that asks a user to enter the distance of a trip in miles, the miles per gallon estimate for the user's car, and the average cost of a gallon of gas. Calculate and display the number of gallons of gas needed and the estimated cost of the trip.

Input	Processing	Output
distance, miles per gallon,	Step1: gas needed = distance / miles per gallon.	Display gas needed
cost per gallon	Step2: estimated cost = cost per gallon x gas needed	Display estimated cost