STATS 551 - HW1

Zhen Qin

5.

Compute the total number of quizzes for 10000 times. The sample mean and sample variance of these numbers are very close to the theoretical values: mean = 13.5 and variance = 6.75. Thus the results in question 4 are verified.

```
# set the number of trials
n = 10000
# create a function to generate results
quiz = function(){
  theta = runif(1,0,1)
  rbinom(1,1,theta)
total = rep(0,n)
for(i in 1:n){
  for(j in 1:27){
    total[i] = total[i] + quiz()
  }
}
# compute the sample mean and sample variance
mean(total)
## [1] 13.4783
var(total)
```

[1] 6.564786

Exploratory Data Analysis

The dataset is available here. There are six variables crab(the ID of the observed crab), y(stands for the number of crabs near the observation), weight, width, color and spine.

Description

First, I loaded the data using R and extracted 6 rows. It is clear that y, weight and width are numerical variables, while others are categorical variables.

```
library(knitr)
library(ggplot2)
library(GGally)
## Warning: package 'GGally' was built under R version 3.4.3
# load the data and show 6 rows
crab = read.table("crabs.dat.txt", header = T)
kable(head(crab))
```

spine	color	width	weight	У	crab
3	2	28.3	3.05	8	1
3	3	22.5	1.55	0	2
1	1	26.0	2.30	9	3
3	3	24.8	2.10	0	4
3	3	26.0	2.60	4	5
3	2	23.8	2.10	0	6
	3	24.8 26.0	2.10 2.60	0 4	4 5

Quantative Analysis

Second, I used quantative methods to show some properties. The median of y is less than the mean of y, which suggests y may have skewness. **weight** and **width** seem to have normality.

```
# data summary
crab = crab[,2:6]
crab$color = as.factor(crab$color)
crab$spine = as.factor(crab$spine)
kable(summary(crab))
```

У	weight	width	color	spine
Min.: 0.000	Min. :1.200	Min. :21.0	1:12	1: 37
1st Qu.: 0.000	1st Qu.:2.000	1st Qu.:24.9	2:95	2: 15
Median: 2.000	Median $:2.350$	Median $:26.1$	3:44	3:121
Mean: 2.919	Mean $:2.437$	Mean:26.3	4:22	NA
3rd Qu.: 5.000	3rd Qu.:2.850	3rd Qu.:27.7	NA	NA
Max. :15.000	Max. $:5.200$	Max. $:33.5$	NA	NA

Then I calculated the correlation matrix of numerical variables. It is worthwhile to note that the correlation of **weight** and **width** is big. Maybe they have colinearity.

```
# correlation matrix of numerical variables
kable(cor(crab[1:3]))
```

	У	weight	width
y weight width	1.0000000 0.3692474 0.3398903	$\begin{array}{c} 0.3692474 \\ 1.0000000 \\ 0.8868715 \end{array}$	$\begin{array}{c} 0.3398903 \\ 0.8868715 \\ 1.0000000 \end{array}$

Graphic Analysis

Third, I used graphic methods to explore.

The scatter plot matrix shows pairwise relationship of variables. This plot verifies the guess of quantative analysis.

```
# scatter plot matrix
ggpairs(crab) + ggtitle("scatter plot")

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

scatter plot

The histogram of y shows there are many 0s in y, so I cannot use any model that assumes y has normality. This may be a potential difficult feature of the data.

```
# histogram of y
ggplot(data = crab) + geom_histogram(aes(x = y), binwidth = 1) + ggtitle('Hist of y')
```


The regression line in the following plot has good fit, so these varibles have colinearity.

```
# linearity between variables
ggplot(data = crab, aes(x = weight, y = width)) + geom_point(shape = 1) + geom_smooth(method = lm) + gg
```

Linearity

The boxplot shows \mathbf{y} has considerable skewness when \mathbf{color} is 2, 3 or 4.

```
# boxplot by color
ggplot(data = crab, aes(x = color, y = y))+geom_boxplot()+ggtitle('Boxplot')
```

Boxplot

The frequency plot verifies this idea.

```
# frequency plot
ggplot(data = crab, aes(x = y, y = ..density..))+geom_freqpoly(aes(colour = color),binwidth = 1)+ggtitl
```

Frequency

The dot plot shows some categories have few cases, e.g. color = 1, spine = 3. Maybe they have relationship with y because all of them are not distributed evenly.

```
# number of cases by color and spine
ggplot(data = crab, aes(x = color, y = spine)) + geom_count() + ggtitle('Count')
```


The scatter plot of MDS coordinates shows that points can be divided into 2 groups in a way.

```
# MDS plot
mds = cmdscale(dist(crab,method = 'canberra'))
mds = as.data.frame(mds)
ggplot(data = mds, aes(x = V1, y = V2)) + geom_point() + ggtitle('MDS')
```


Conclusion

Here are some interesting properties of the data:

- In \mathbf{y} majority is equal to 0
- The two variables weight and width have colinearity. And they both have normality
- The categorical variables may be influential with respect to ${\bf y}$

I will not use this dataset to do the final project. The main reason is that the data is relatively simple but I would like to do some challenging works. In addition, it is hard to get proper prior knowledge of crabs, so bayesian modeling may be not good for the data.