© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°18

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 - Centrale Maths1 PC 2017

Soit E un ensemble non vide.

On appelle partition de E tout ensemble $\mathcal{U} = \{A_1, \dots, A_k\}$ de parties de E tel que

- chaque A_i , pour $i \in [1, k]$ est une partie non vide de E;
- les parties $A_1, ..., A_k$ sont deux à deux disjointes, c'est-à-dire que pour tous $i \neq j$ entre 1 et $k, A_i \cap A_j = \emptyset$;
- la réunion des A_i forme E tout entier : $E = \bigcup_{i=1}^k A_i$.

Si \mathcal{U} une partition de E et si k est le nombre d'éléments de \mathcal{U} , on dit aussi que \mathcal{U} une partition de E en k parties.

I Nombre de partitions en k parties

Soit k et n deux entiers strictement positifs. Montrer qu'il n'existe qu'un nombre fini de partitions de l'ensemble [1, n] en k parties.

Dans tout le problème, pour tout couple (n, k) d'entiers strictement positifs, on note S(n, k) le nombre de partitions de l'ensemble [1, n] en k parties.

On pose de plus S(0,0) = 1 et, pour tout $(n,k) \in (\mathbb{N}^*)^2$, S(n,0) = S(0,k) = 0.

2 Exprimer S(n, k) en fonction de n ou de k dans les cas suivants :

2.a
$$k > n$$
;

2.b
$$k = 1$$
.

 $\boxed{3}$ Montrer que pour tous k et n entiers strictement positifs, on a

$$S(n,k) = S(n-1, k-1) + kS(n-1, k)$$

Indication. On pourra distinguer les partitions de $[\![1,n]\!]$ selon qu'elles contiennent ou non le singleton $\{n\}$.

- **4.a** Rédiger une fonction Python récursive permettant de calculer le nombre S(n, k), par application directe de la formule établie à la 3.
 - **4.b** Montrer que, pour $n \ge 1$, le calcul de S(n,k) par cette fonction récursive nécessite au moins $\binom{n}{k}$ opérations (sommes ou produits).

II Nombres de Bell

Dans toute la suite, on pose pour tout entier $n \ge 0$,

$$B_n = \sum_{k=0}^n S(n, k)$$

- **5** Montrer que pour $n \ge 1$, B_n est égal au nombre total de partitions de l'ensemble [1, n].
- 6 Démontrer la formule

$$\forall n \in \mathbb{N}, \ \mathbf{B}_{n+1} = \sum_{k=0}^{n} \binom{n}{k} \mathbf{B}_k$$

- 7 Montrer que la suite $\left(\frac{B_n}{n!}\right)_{n\in\mathbb{N}}$ est majorée par 1.
- **8** En déduire une minoration du rayon de convergence R de la série entière $\sum_{n\geq 0} \frac{B_n}{n!} z^n$.

Pour
$$x \in]-R$$
, R[, on pose $f(x) = \sum_{n=0}^{+\infty} \frac{B_n}{n!} x^n$.

- 9 Montrer que pour tout $x \in]-R, R[, f'(x) = e^x f(x).$
- 10 En déduire une expression de la fonction f sur] R, R[.

III Une suite de polynômes

On définit la suite de polynômes $(H_k)_{k \in \mathbb{N}}$ dans $\mathbb{R}[X]$ par $H_0(X) = 1$ et, pour tout $k \in \mathbb{N}^*$,

$$\mathbf{H}_k(\mathbf{X}) = \mathbf{X}(\mathbf{X} - 1) \cdots (\mathbf{X} - k + 1)$$

- 11 Montrer que la famille $(H_0, ..., H_n)$ est une base de l'espace $\mathbb{R}_n[X]$.
- 12 12.a Pour tout $k \in \mathbb{N}$, établir une expression simplifiée de $H_{k+1}(X) + kH_k(X)$.
 - **12.b** En déduire que, pour tout entier naturel n

$$X^{n} = \sum_{k=0}^{n} S(n, k) H_{k}(X)$$

- 13 Soit $k \in \mathbb{N}$.
 - **13.a** Montrer que la fonction $f_k: x \mapsto \sum_{n=k}^{+\infty} S(n,k) \frac{x^n}{n!}$ est définie sur]-1,1[.
 - **13.b** Pour $k \in \mathbb{N}^*$, on considère la fonction $g_k : x \mapsto \frac{(e^x 1)^k}{k!}$. Montrer que la fonction g_k vérifie l'équation différentielle

$$y' = \frac{(e^x - 1)^{k-1}}{(k-1)!} + ky$$

13.c En déduire que pour tout $k \in \mathbb{N}$ et pour tout $x \in]-1,1[$,

$$\frac{(e^x - 1)^k}{k!} = \sum_{n=k}^{+\infty} S(n, k) \frac{x^n}{n!}$$

- **14 14.a** Pour $x \in]-1,1[$ et $\alpha \in \mathbb{R}$, simplifier $\sum_{k=0}^{+\infty} H_k(\alpha) \frac{x^k}{k!}$.
 - **14.b** Montrer que pour $u < \ln 2$

$$e^{u\alpha} = \sum_{k=0}^{+\infty} H_k(\alpha) \frac{(e^u - 1)^k}{k!}$$

IV Fonctions génératrices

On se donne dans la suite un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Soit m un entier strictement positif. On dit qu'une variable aléatoire $Y: \Omega \to \mathbb{N}$ admet un moment d'ordre m fini si Y^m admet une espérance finie, c'est-à-dire si la série $\sum n^m \mathbb{P}(Y=n)$ converge. On appelle alors moment d'ordre m de Y le réel

$$\mathbb{E}(\mathbf{Y}^m) = \sum_{n=0}^{\infty} n^m \mathbb{P}(\mathbf{Y} = n)$$

- Montrer que si Y : $\Omega \to \mathbb{N}$ est une variable aléatoire associée à une fonction génératrice G_Y de rayon strictement supérieur à 1, alors Y admet à tout ordre un moment fini.
- **16** Réciproquement, soit Y : $\Omega \to \mathbb{N}$ une variable aléatoire admettant à tout ordre un moment fini.
 - **16.a** Montrer que la fonction génératrice G_Y est de classe \mathcal{C}^{∞} sur [-1,1].
 - **16.b** Exprimer $G_{\mathbf{v}}^{(k)}(1)$ à l'aide des polynômes $H_k(\mathbf{X})$ et de la variable Y.
 - **16.c** La fonction génératrice G_Y a-t-elle nécessairement un rayon de convergence strictement supérieur à 1?

Indication. On pourra utiliser la série entière $\sum e^{-\sqrt{n}}x^n$.

- 17 On suppose dans cette question que Y suit la loi de Poisson de paramètre 1.
 - **17.a** Montrer que pour tout $n \in \mathbb{N}$, $B_n = \mathbb{E}(Y^n)$.
 - 17.b En déduire que pour tout polynôme Q(X) à coefficients entiers, la série $\sum_{n \in \mathbb{N}} \frac{Q(n)}{n!}$ est convergente et sa somme est de la forme Ne, où N est un entier.

V Somme de puissances

On fixe $n \in \mathbb{N}$. On pose l'application linéaire :

$$\Delta: \left\{ \begin{array}{ll} \mathbb{R}[X] & \longrightarrow & \mathbb{R}[X] \\ P(X) & \longmapsto & P(X+1) - P(X) \end{array} \right.$$

- 18 À l'aide d'un encadrement par des intégrales, déterminer un équivalent de $U_n(p) = \sum_{k=0}^p k^k$, à $n \ge 1$ fixé, lorsque p tend vers $+\infty$.
- Soit Δ_n l'endomorphisme induit par Δ sur le sous-espace stable $\mathbb{R}_n[X]$. Déterminer la matrice A de Δ_n dans la base (H_0, \dots, H_n) .
- **20** En déduire que $U_n(p) = \sum_{k=0}^n \frac{S(n,k)}{k+1} H_{k+1}(p+1)$.
- 21 On note $F = \{P \in \mathbb{R}_n[X] \mid P(0) = 0\}$, puis $G = \text{vect}(X^{2k+1}; 0 \le k \le n-1)$. Soit Q(X) le polynôme tel que $\forall p \in \mathbb{N}$, $Q(p) = \sum_{k=0}^{p} k$.
 - **21.a** Rappeler l'expression explicite du polynôme Q(X).
 - **21.b** Montrer que l'application :

$$\Phi: \left\{ \begin{array}{ccc} F & \longrightarrow & G \\ P(X) & \longmapsto & \Delta(P(Q(X-1))) \end{array} \right.$$

est un isomorphisme.

21.c En déduire que pour tout $r \in \mathbb{N}$, il existe un seul polynôme $P_r(X)$ tel que

$$\forall p \in \mathbb{N}, \ \sum_{k=1}^{p} k^{2r+1} = P_r\left(\frac{p(p+1)}{2}\right)$$

- **22 22.a** Déterminer le terme dominant dans $P_r(X)$.
 - **22.b** Montrer que pour $r \ge 1$, X^2 divise $P_r(X)$.
 - **22.c** Expliciter les polynômes $P_1(X)$ et $P_2(X)$.