6-4.피타고라스 정리

6-4-2.피타고라스 정리를 이용한 성질_비상(김원경)

내 교과서 속 문제를 실제 기출과 유사 변형하여 구성한 단원별 족보

◇「콘텐츠산업 진흥법 시행령」제33조에 의한 표시

- 1) 제작연월일: 2020-07-25
- 2) 제작자 : 교육지대㈜
- 3) 이 콘텐츠는 「콘텐츠산업 진흥법」에 따라 최초 제작일부터 5년간 보호됩니다.

◇「콘텐츠산업 진흥법」외에도「저작권법」에 의하여 보호 되는 콘텐츠의 경우, 그 콘텐츠의 전부 또는 일부를 무 단으로 복제하거나 전송하는 것은 콘텐츠산업 진흥법 외에도 저작권법에 의한 법적 책임을 질 수 있습니다.

개념check /

[삼각형의 변과 각 사이의 관계]

 $\triangle ABCOMM \overline{AB} = c$, $\overline{BC} = a$, $\overline{CA} = bOIZ$,

c가 가장 긴 변의 길이일 때

- (1) $c^2 < a^2 + b^2 \Rightarrow \angle C < 90$ 이고 $\triangle ABC$ 는 예각삼각형이다.
- (2) $c^2 = a^2 + b^2 \Rightarrow \angle C = 90$ 이고 $\triangle ABC$ 는 직각삼각형이다.
- (3) $c^2 > a^2 + b^2 \Rightarrow \angle C > 90$ 이고 $\triangle ABC$ 는 둔각삼각형이다.

[피타고라스 정리의 활용]

(1) 직각삼각형의 세 반원 사이의 관계 직각삼각형 ABC에서 직각을 낀 두 변을 지름으로 하는 반원의 넓이를 각각 $S_1,\ S_2,\$ 빗변을 지름으로 하는 반원의 넓이를 S_3 이라 할 때, $S_1 + S_2 = S_3$

(2) 히포크라테스의 원의 넓이 직각삼각형 ABC의 세 변을 각각 지름으로 하는 반원을 그렸을 때

(4) 두 대각선이 직교하는 사각형의 성질 사각형 ABCD에서 두 대각선이 직교할 때, $\overline{AB}^2 + \overline{CD}^2 = \overline{BC}^2 + \overline{DA}^2$

평가문제

[중단원 학습 점검]

1. 다음 그림은 직각삼각형 ABC의 각 변을 한 변으 로 하는 세 정사각형을 그려 그 넓이를 나타낸 것이 다. 이때 □ADEB의 넓이를 구하면?

② 60cm²

3 62cm²

4 64cm²

⑤ 66cm²

유사문제

직각삼각형 ABC의 각 변을 한 변으로 하는 세 정사각형을 그려 그 넓이를 나타낸 것이다. x의 값 은?

① 9

② 18

3 36

4 81

⑤ 121

 $\square ABCD$ 에서 $\overline{AC} \perp \overline{BD}$ 이고 $\overline{AB} = 11$, $\overline{BC} = 14$, \overline{AD} = 5일 때, \overline{CD} 의 길이는?

1) 8

2 10

3 11

(4) 13

⑤ 14

4. $\angle C = 90^{\circ}$ 인 직각삼각형 ABC의 각 변을 한 변 으로 하는 정사각형을 그린 $\Box AFGB = 34 \text{ cm}^2$, $\Box BHIC = 10 \text{ cm}^2$ **2** 때. △ CAF 의 넓이는?

- 10 cm^2
- ② 11 cm²
- $312 \, \text{cm}^2$
- $4.13 \, \text{cm}^2$
- $514 \, \text{cm}^2$
- $oldsymbol{5}$. $\triangle ABC$ 는 $\angle A$ 가 직각인 직각삼각형이다. \overline{AB} , \overline{AC} , \overline{BC} 를 한 변으로 하는 정사각형을 각각 $\square ADEB$, $\square ACHI$, $\square BFGC$ 라고 할 때, 색칠한 부 분의 넓이가 다른 것은? (단, $\overline{AM} \perp \overline{BC}$, $\overline{AB} \neq \overline{AC}$)

6. 그림과 같이 점 P가 직사각형 ABCD의 내부의 한 점일 때, $\overline{BP}^2 + \overline{DP}^2$ 의 값은?

- ① 24
- ② 30
- 3 32
- **4**0
- (5) 42
- 7. $\square ADEB$, $\square BFGC$, $\square ACHI$ 는 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC의 각 변을 한 변으로 하는 정사 각형이다. $\overline{AC} = 3$, $\overline{BC} = 5$ 일 때, $\triangle ABF$ 의 넓이 는?

1) 8

- 2 9
- 3 10
- 4 11
- ⑤ 12

8. 직사각형 ABCD의 내부의 한 점 P에 대하여 $\overline{PA} = 3$, $\overline{PD} = 7$, $\overline{PC} = 8$ 일 때, \overline{PB}^2 의 값은?

- ① 22
- 2 24
- 3 26
- **4**) 28
- **⑤** 30
- **9.** 다음 그림은 직각삼각형 ABC의 각 변을 한 변 으로 하는 정사각형을 그린 것이다. $\overline{AC} = 9cm$, BC=15cm**일 때, 삼각형** FML**의 넓이는?**

- ① 72cm^2
- ② 81cm²
- ③ 125cm²
- 4 144cm²
- ⑤ 150cm²
- **10.** 다음 그림과 같이 직각삼각형 ABC의 세 변을 각각 한 변으로 하는 정사각형을 그리고 점 A에서 $\overline{\mathrm{FG}}$ 에 내린 수선의 발을 M 이라고 하면, 다음 중 □ACHI의 넓이와 같지 않은 것은?

- ① $2\Delta ACH$
- ② □LMGC
- ③ 2△HBC
- \bigcirc 2 \triangle AGC
- \bigcirc 2 \triangle AMG

 $oldsymbol{11}$. 그림은 $\angle A$ 가 직각인 $\triangle ABC$ 에서 각 변을 한 변으로 하는 정사각형을 그린 것이다. 점 A에서 \overline{BC} , \overline{FG} 에 내린 수선의 발을 각각 R, M이라 할 때, 옳지 않은 것은?

- ② $\triangle ABF = \triangle FBR$
- \bigcirc $\triangle EBC \equiv \triangle ABF$
- $\textcircled{4} \ \triangle AEC = \triangle AFR$
- \bigcirc $\Box ADEB + \Box ACHI = \Box BFGC$
- **12.** 다음 그림은 $\angle A = 90^{\circ}$ 인 직각삼각형 ABC의 각 변을 한 변으로 하는 정사각형을 그린 것이다. $\overline{AB} = 4 \text{cm}$, $\overline{BC} = 5 \text{cm}$ 일 때, $\triangle AFG$ 의 넓이를 구하 며?

- ① 12cm²
- ② 20cm²
- ③ 25cm²
- $4 \frac{37}{2} \text{cm}^2$

13. □*ABCD*는 정사각형이고

 \overline{AE} = \overline{BF} = \overline{CG} = \overline{DH} = 12cm이다. $\Box EFGH$ 의 넓이가 $169cm^2$ 일 때, $\square ABCD$ 의 넓이는?

- ① $289cm^{2}$
- $2324cm^2$
- $\ \, \ \, 361cm^2$
- $\textcircled{4} 400cm^2$
- (5) $441cm^2$

정답 및 해설

1) [정답] ①

[해설] △ABC에서 피타고라스 정리에 의하여 $\overline{BC}^2 = \overline{AB}^2 + \overline{AC}^2$ 이므로 $90 = \overline{AB}^2 + 32$, $\overline{AB}^2 = 58$ 이때 \square ADEB의 넓이는 $\overline{AB}^2 = 58 \text{cm}^2$

[해설]
$$x = \overline{BC}^2 = 225 - 144 = 81$$

3) [정답] ②

[해설]
$$\overline{AB}^2 + \overline{CD}^2 = \overline{AD}^2 + \overline{BC}^2$$
이므로 $14^2 + 5^2 = 11^2 + \overline{CD}^2$, $\overline{CD}^2 = 100$ $\therefore \overline{CD} = 10$

4) [정답] ③

[해설]
$$\square AFGB = \square BHIC + \square ACDE$$
이므로
$$\square ACDE = 34 - 10 = 24(cm^2)$$

$$\triangle CAF = \triangle ABE = \triangle AEC = \frac{1}{2}\square ACDE$$

$$= \frac{1}{2} \times 24 = 12(cm^2)$$

5) [정답] ④

[해설] $\triangle EBA = \triangle EBC$ (밑변이 일치하고 높이가 같다.)

$$\triangle$$
FRM = \triangle BFR = $\frac{1}{2}$ \square BFMR
$$\square$$
BFMR = \square ABED가 되어서 \square = 2 = 3 = 5

6) [정답] ④

[해설]
$$\overline{BP}^2 + \overline{DP}^2 = \overline{AP}^2 + \overline{CP}^2 = 2^2 + 6^2 = 40$$

7) [정답] ①

[해설]
$$\triangle ABC$$
에서 $\overline{AB}^2=5^2-3^2=16$
 $\therefore \overline{AB}=4$
 $\triangle ABF=\triangle EBC=\triangle ABE$ 이므로
 $\triangle ABF=\frac{1}{2}\times 4^2=8$

8) [정답] ②

[해설]
$$3^2 + 8^2 = 7^2 + \overline{PB}^2$$

 $49 + \overline{PB}^2 = 73 \quad \therefore \overline{PB}^2 = 24$

9) [정답] ①

[해설]
$$\overline{BF}//\overline{AM}$$
이므로 $\triangle FML = \triangle ABF$
 $\triangle ABF = \triangle EBC(SAS 합동)$
 $\overline{EB}//\overline{DC}$ 이므로 $\triangle EBC = \triangle EBA$
 $\therefore \triangle FML = \triangle ABF = \triangle EBC = \triangle EBA$
직각삼각형 ABC 에서
 $\overline{AB}^2 = 15^2 - 9^2 = 12^2$, $\overline{AB} = 12$

$$\triangle$$
FML = $\frac{1}{2}\Box$ ADEB = $\frac{1}{2} \times 12^2 = 72$

10) [정답] ⑤

[해설] $\overline{BI}//\overline{CH}$ 이므로 $\triangle ACH = \triangle BCH$ Δ BCH = Δ GCA(SAS 합동)이고, $\overline{AM}//\overline{CG}$ 이므로 $\triangle GCA = \triangle GCL$

$$\therefore \triangle ACH = \triangle BCH = \triangle GCA = \triangle GCL$$

①
$$2\triangle ACH = \Box ACHI$$

②
$$\Box$$
LMGC = $2\triangle$ GCL = $2\triangle$ ACH = \Box ACHI

$$3 2\Delta HBC = 2\Delta ACH = \Box ACHI$$

$$\textcircled{4}$$
 $2\triangle AGC = 2\triangle HBC = 2\triangle ACH = \Box ACHI$

11) [정답] ④

[해설] ④
$$\triangle AFR = \triangle ABR$$

12) [정답] ④

[해설] $\triangle ABC$ 에서 $\overline{AC}^2 = 5^2 - 4^2 = 3^2$. $\overline{AC} = 3$ 점 A에서 \overline{FG} 에 내린 수선의 발을 Q라 하고, 이 수선이 \overline{BC} 와 만나는 점을 H라 하면 $\triangle ABC$ 에서 $\overline{AB} imes \overline{AC} = \overline{AH} imes \overline{BC}$ 이므로 $12 = 5 \times \overline{AH}$ $\therefore \overline{AH} = \frac{12}{5}$ $\therefore \triangle AFG = \frac{1}{2} \times 5 \times \left(5 + \frac{12}{5}\right) = \frac{37}{2}$

13) [정답] ①

[해설] □ EFGH는 한 변이 13cm 인 정사각형이다.

$$\overline{AE} = \overline{BF} = \overline{CG} = \overline{DH} = 12cm$$
 $\overline{CH} = \overline{DE} = \overline{AF} = \overline{BG} = x$
 $\therefore x^2 = 13^2 - 12^2 = 5^2, x = 5$
 $\Box ABCD$ 의 한 변의 길이는 $17cm$ 이다.
따라서 넓이는 $17 \times 17 = 289(cm^2)$