Universidade Federal de Pernambuco Centro Acadêmico do Agreste Núcleo de Tecnologia Engenharia Civil

Prova Final - Cálculo Diferencial e Integral 3 Prof. Fernando R. L. Contreras

Aluno(a):

- 1. Seja $\vec{E}(x,y,z) = \frac{q}{x^2+y^2+z^2} \frac{1}{\sqrt{x^2+y^2+z^2}}(x,y,z)$ o campo elétrico criado por uma carga q localizada na origem. Calcule o fluxo de \vec{E} através da superfície esférica de raio r e centrada na origem, com normal \vec{n} apontando para fora da esfera. Considere, $A(S) = 4\pi r^2$.
- 2. Seja \vec{F} um campo de classe C^1 num aberto contendo a fronteira do cubo $0 \le x \le 1$, $0 \le y \le 1$ e $0 \le z \le 1$. Seja \vec{n} a normal apontando para fora do cubo. Mostre que $\iint_S rot(\vec{F}) \cdot \vec{n} ds = 0$
- 3. Calcule $\iint_S rot(F)dS$, onde $S = \{(x, y, z) \in \mathbb{R}^3 \text{ tal que } x = -1 + y^2 + z^2, x \le 0\}$ e o campo \vec{F} é definido por $\vec{F}(x, y, z) = (xz, ze^x, -y)$.
- 4. Estude a série de potencia $\sum_{n=0}^{\infty} \frac{(2x-3)^n}{\sqrt{n+1}}.$

Opcional. Enuncie o Teorema de Stokes.

Êxitos...!!!

Universidade Federal de Pernambuco Centro Acadêmico do Agreste Núcleo de Tecnologia Engenharia Civil

Prova Final - Cálculo Diferencial e Integral 3 Prof. Fernando R. L. Contreras

Aluno(a):

- 1. Seja $\vec{E}(x,y,z) = \frac{q}{x^2+y^2+z^2} \frac{1}{\sqrt{x^2+y^2+z^2}} (x,y,z)$ o campo elétrico criado por uma carga q localizada na origem. Calcule o fluxo de \vec{E} através da superfície esférica de raio r e centrada na origem, com normal \vec{n} apontando para fora da esfera.
- 2. Seja \vec{F} um campo de classe C^1 num aberto contendo a fronteira do cubo $0 \le x \le 1$, $0 \le y \le 1$ e $0 \le z \le 1$. Seja \vec{n} a normal apontando para fora do cubo. Mostre que $\iint_S rot(\vec{F}) \cdot \vec{n} ds = 0$
- 3. Calcule $\iint_S rot(F)dS$, onde $S = \{(x, y, z) \in \mathbb{R}^3 \text{ tal que } x = -1 + y^2 + z^2, x \le 0\}$ e o campo \vec{F} é definido $\vec{F}(x, y, z) = (xz, ze^x, -y)$.
- 4. Estude a série de potencia $\sum_{n=0}^{\infty} \frac{(2x-3)^n}{\sqrt{n+1}}.$

Opcional. Enuncie o Teorema de Stokes.