10. Objasnite razliku između aditivnog i suptraktivnog miješanja boja te kako su definirani CIE primari.

- CIE primari
- temeljni uvjet za odabir sustava triju primarnih boja je da zbroj dva primara ne daje treći primar
- kao primarne boje odabrane su: crvena (R, Red), zelena (G, Green) i plava (B, Blue)
- primarne boje definirane su valnom duljinom svjetlosti koja se dobije iz točno definiranog izvora svjetlosti uz primjenu odgovarajućeg filtra
- $-\lambda R = 700 \text{ nm}$
- $\lambda G = 546,1 \text{ nm}$
- $\lambda B = 435,8 \text{ nm}$
- CIE primari se rabe kolorimetriji (mjerenju boja)
- boje se proizvode aditivnim miješanjem tri primarne boje (R, G i B)
- aditivno miješanje boja miješanje obojenih svjetlosti
- miješanjem primarnih boja mogu se postići sve ostale boje iz spektra bijele svjetlosti, ali i ostale boje kojih nema u spektru
- aditivno miješanje boja
- na mjestima gdje se primarne boje preklapaju oko doživljav<mark>a fiktivnu</mark> boju koje nema u izvorima svjetlosti
- R+G=žuta
- R+B=purpurna
- B+G=ciian
- R+G+B=bijela
- komplementarne boje
- par boja čije aditivno miješanje daje bijelu boju
- R+cijan=bijela
- G+purpurna=bijela
- B+žuta=bijela
- stvaranje slike u boji u uređajima za prikazivanje slike temelji se aditivnom miješanju boja
- suptraktivno miješanje boja
- miješanje obojenih pigm<mark>enat</mark>a
- koristi se u slikarstvu
- primarne boje su: cijan, purpurna i žuta
- cijan+žuta=G
- cijan+purpurna=B
- purpurna+žuta=R
- miješanjem triju suptraktivnih primara nastaje crno obojena površina

11. Opišite eksperiment s tropodražajnim kolorimetrom te navedite što se njime određuje.

tropodražajni kolorimetar (aditivni kolorimetar)

- uređaj pomoću kojeg se provodi uspoređivanje i izjednačenje boja
- nepoznata boja (C) se uspoređuje s bojom koja nastaje miješanjem triju primarnih boja (R, G i B)
- količine svake od triju primarnih boja se mogu podešavati kako bi se postiglo izjednačenje s nepoznatom bojom
- na taj način se određuje količina primarnih boja u nepoznatoj boji

12. Navedite nedostatke RGB sustava za prikaz boja.

- \bullet loša strana RGB sustava za prikaz boja je ta da kromatske koordinate r, g i b imaju negativne vrijednosti, što proračune čini složenima
- spektralna krivulja izlazi izvan trokuta boja
- vrhovi trokuta boja određeni su jediničnim količinama primarnih boja (R*,G*,B*)
- boje koje se nalaze unutar trokuta boja mogu se prikazati pozitivnim količinama primara

13. Objasnite kako se u CIE dijagramu kromatičnosti određuje vrsta i zasićenje boje.

- za nepoznatu boju C u potkovičastom dijagramu očitavaju se slijedeće vrijednosti:
- VRSTA (TON) BOJE
- određuje se tako da povučemo polupravac od točke referentnog bijelog (E) kroz nepoznatu boju (C)
- na mjestu gdje polupravac siječe spektralnu krivulju očitavamo valnu du<mark>ljinu</mark> λC pa time i vrstu boje Cλ
- ZASIĆENJE BOJE
- ovisi o duljini dužine EC
- što je ta duljina veća, to je i zasićenje veće, odnosno, što je nepoznata

14. Objasnite način analiziranja slike u kamerama s analizirajućom cijevi.

- način analiziranja u kamerama s analizirajućim cijevima
- analizirajući snop kreće se preko slike slijeva nadesno, a zatim se vraća na početak i započinje analiziranje iduće linije
- proces analiziranja po linija<mark>ma</mark> se na<mark>stav</mark>lja do kraja slike, kada se analizirajući snop vraća prema gore i započinje analiziranje nove slike
- brzina analiziranja mora biti dovoljno visoka kako bi se cijela slika analizirala prije promjene njezina sadržaja
- analiziranjem slike slijeva nadesno nast<mark>aje</mark> aktivni dio videosignala jedne linije (vidljiv na ekranu)
- visokoj razini svjetlosnih jakosti (bijeli i svijetli dijelovi slike) odgovara veća amplituda električkog signala
- niskoj razini svjetlosnih jakosti (crni dijelovi slike) odgovara manja amplituda videosignala
- pov<mark>rat</mark>ak elektr<mark>on</mark>skog <mark>sno</mark>pa s kr<mark>aja</mark> jedne na početak iduće linije ne smije biti vidljiv i događa se za vrijeme horizontalnog potisnog intervala (HPI)

15. Čemu služi horizontalni i vertikalni potisni interval?

- horizontalni potisni interval
- dodaje se nakon aktivnog dijela linije
- osigurava potiskivanje elektronskog snopa u analizirajućoj cijevi i katodnoj cijevi za vrijeme horizontalnog povratka elektronskog snopa s kraja jedne na početak iduće linije
- unutar HPI nalaze se horizontalni sinkronizacijski impulsi (HSI)
- razina sinkronizacijskih impulsa je u području "crnjem od crnog" (ne vide se na ekranu)
- omogućavaju sinkronizaciju odašiljačke i prijamne strane
- vertikalni potisni interval (VPI)
- dodaje se nakon završetka analiziranja cijele slike
- osigurava potiskivanje elektronskog snopa za vrijeme vertikalnog povratka (*T*VP) s kraja jedne na početak iduće slike
- unutar VPI nalaze se vertikalni sinkronizacijski impulsi (VSI)
- omogućavaju sinkronizaciju odašiljačke i prijamne strane

16. Zašto i gdje se provodi gama-korekcija?

- nelinearni odnos između napona E, koji se privodi katodnoj cijevi i luminancije slike Y može prikazati kao: Y=k(E)y
- faktor γ (gama-faktor) iskazuje stupanj nelinearnosti koja se pojavljuje pri pretvorbi videosignala u svjetlost
- propisana vrijednost gama-faktora televizijskih prijamnika iznosi europskim TV sustavima γ =2,8, a u američkom sustavu γ =2,2
- krivulja CRT televizora:
- *Y*=k*E*2,8 (Europa)
- Y=k*E*2,2 (Amerika)
- gama-korekcija ne provodi se u televizorima
- neekonomično rješenje (svaki TV prijamnik bi morao sadržavati složeno nelinearno pojačalo)
- gama-korekcija se provodi u kamerama
- videosignal nastao u kame<mark>ri (E), propušta</mark> se preko nelinearnog pojačala i nastaje signal E'
- pojačalo ima recipročnu karakteristiku karakteristici katodne cijevi
- gama-faktor tog pojačala iznosi
- 1/2,8=0,3571 (Europa)
- 1/2,2=0,4545(Amerika)
- provedbom gama-korekcije u kameri poništava se nelinearnost katodne cijevi
- ukupna prijenosna karakteristika je linearna
- u akr<mark>omats</mark>kim k<mark>amer</mark>ama ga<mark>m</mark>akorekcija se provodi na luminantnom signalu
- $-Y \rightarrow EY 1/\gamma = E'Y; (E'Y)\gamma \rightarrow Y$
- u kamerama u boji gama-korekcija se provodi na signalima primarnih boja
- $-R \rightarrow ER 1/\gamma = E'R; (E'R)\gamma \rightarrow R$
- $-G \rightarrow EG 1/\gamma = E'G; (E'G)\gamma \rightarrow G$
- B → EB $1/\gamma = E$ 'B; (E'B) $\gamma \rightarrow B$

17. Navedite uvjete koje je potrebno ispuniti prilikom određivanja broja linija L za analiziranje slike u TV sustavima.

- ullet prilikom određivanja broja linija za analiziranje slike (L), broj linija se određuje na temelju dva uvjeta
- -L treba biti dovoljno velik da se ne vidi linijska struktura (tj. da se slika doživljava kao cjelina)
- L ne treba biti prevelik kako se ne bi prenosili detalji koje ljudsko oko ne vidi
- u postupku određivanja potrebnog broja linija u sustavu treba definirati uvjete promatranja kao što su rasvjeta (osvjetljenje) i udaljenost promatrača od slike
- promjenom udaljenosti mijenja se kut pod kojim oko vidi dva susjedna detalja u slici
- promjenom rasvjete mijenja se osjetljivost štapića što djeluje na promjenu vidnog kuta
- optimalni broj linija u SDTV sustavima se određuje tako da za određenu udaljenost promatrača od slike (D), oko vidi susjedne linije pod kutom koji je približno jednak 1,5'

18. Kolika je optimalna udaljenost promatrača od slike u SDTV, a kolika u HDTV sustavu, koja je pretpostavljena pri određivanju potrebnog broja linija za analiziranje?

- SDTV optimalna udaljenost promatrača od slike iznosi 4-6 visina slike (D=4-6H)
- HDTV optimalna udaljenost promatrača od slike iznosi 3 visine slike (D=3H)
- broj linija u SDTV sustavima treba biti između 417 i 625
- SDTV norme
- 525-linijska norma (L=485, preostalih 40 linija nalazi se u VPI)
- 625-linijska norma (L=575, preostalih 50 linija nalazi se u VPI)
- odabrani broj linija u HDTV sustavu iznosi L=1080
- ukupan broj linija u HDTV sustavu je 1125

19. Što je omjer stranica slike i kolik<mark>o on iznosi za SDTV i HDTV sustave?</mark>

- omjer stranica slike (AR, Aspect Ratio) je definiran kao omjer širine (W) i visine (H) slike
- u sustavima standardne televizije (SDTV) omjer stranica je 4:3 (1,33:1)
- u sustavima televizije visoke kvalitete (HDTV) omjer stranica je 16:9 (1,78:1)
- veličine televizijskog ekrana se najčešće izražavaju preko duljine dijagonale ekrana (S) iskazane u inčima

20. Što je efekt treptanja i kada on nestaje za većinu ljudi?

- dodatka poteškoća: nestanak slike za vrijeme VPI može dovesti do efekta treptanja (flicker)
- pojava da gledatelj vidi zatamnjenje umetnuto između dvije slike
- efekt treptanja nestaje pri dovoljno visokoj frekvenciji izmjene slika (fS)
- efekt treptanja nestaje za većinu ljudi pri frekvencijama izmjene slika višim od 50 Hz (50 slika u sekundi)

21. Objasnite postupak analiziranja s proredom?

- analiziranje s proredom
- vertikalna frekvencija (f_V) je frekvencija izmjene poluslika, tj. Frekvencija pojavljivanja VPI (zatamnjenja)
- f_V je dvostruko viša od frekvencije izmjene slika ($f_V = 2 \cdot fS$)
- f_H je dvostruko niža od f_H sustava s progresivnim analiziranjem (uz uvjet da sustav s progresivnim analiziranjem ima jednaku frekvenciju pojave VPI)

22. Izračunajte vrijeme tra<mark>ja</mark>nja li<mark>nije</mark> videosignala, t<mark>raj</mark>anje slike i poluslike kod europske norme za SDTV.

```
- fH = LU \cdot fS = (LU /2) \cdot fV
```

• $625/50 \text{ sustav} \rightarrow fH = 625.25 \text{ Hz} = 312,5.50 = 15.625 \text{ Hz}$

trajanje linije videosignala: TH = 1/fH

• $625/50 \text{ sustav} \rightarrow TH = 1/15 625 \text{ Hz} = 64 \text{ µs}$

- trajanje poluslike: TV = 1/fV

• 625/50 sustav \rightarrow TV = 1/50 Hz = 20 ms

- traj<mark>an</mark>je slike: TS = 2 ·TV

• $625/50 \text{ sustav} \rightarrow TS = 2 \cdot 20 \text{ ms} = 40 \text{ ms}$

- frekvencija izmjene slika: fS = 1/TS

• $625/50 \text{ sustav} \rightarrow fS = 1/40 \text{ ms} = 25 \text{ Hz}$

23. Kako je definirana horizontalna, a kako vertikalna rezolucija te čime su one ograničene u TV sustavu?

- horizontalna rezolucija
- broj crnih i bijelih vertikalnih linija koje se uzastopno izmjenjuju po širini slike (W) pri čemu širina slike na kojoj se mjeri rezolucija mora biti jednaka visini slike
- u SDTV omjer stranica (AR) slike je 4:3
- za određivanje rezolucije širinu slike treba pomnožiti s 3/4
- u HDTV omjer stranica (AR) slike je 16:9
- za određivanje rezolucije širinu slike treba pomnožiti s 9/16
- vertikalna rezolucija
- broj crnih i bijelih horizontalnih linija koje se uzastopno izmjenjuju po visini slike, a mogu biti međusobno razlikovane od strane ljudskog vizualnog sustava
- ovisi o broju analizirajućih linija (L) po visini slike (H) za vrijeme analiziranja slike te značajkama optoelektričke i elektrooptičke pretvorbe

24. Kako se dobiva signal E'_{Y} iz E'_{R} , E'_{G} i E'_{B} ? Koje komponente videosignala se prenose u YUV modelu?

$$- \lambda(Rr) = 610 \text{ nm}$$

$$- \lambda(Gr) = 540 \text{ nm}$$

$$- \lambda(Br) = 465 \text{ nm}$$

$$v_{\lambda}$$

$$v_{\lambda}(Rr) = 0.47$$

$$v_{\lambda}(Rr) = 0.47$$

$$v_{\lambda}(Gr) = 0.92$$

$$v_{\lambda}(Gr) = 0.92$$

$$v_{\lambda}(Gr) = 0.92$$

$$v_{\lambda}(Gr) = 0.17$$

$$v_{\lambda}(Br) = 0.17$$

$$v_{\lambda}(Br) = 0.17$$

$$v_{\lambda}(Br) = 0.17$$

$$v_{\lambda}(Br) = 0.17$$

$$E'_{Y} = 0.3 \cdot E'_{R} + 0.59 \cdot E'_{G} + 0.11 \cdot E'_{B}$$

• za prijenos su odabrani signali $(E'_R - E'_Y)$ i $(E'_B - E'_Y)$ jer signal $(E'_G - E'_Y)$ ima najmanji amplitudni raspon (od -0,41 do 0,41)

$$E'_{Y} = 0.30 \cdot E'_{R} + 0.59 \cdot E'_{G} + 0.11 \cdot E'_{B}$$

 $(E'_{B} - E'_{Y}) = -0.30 \cdot E'_{R} - 0.59 \cdot E'_{G} + 0.89 \cdot E'_{B}$
 $(E'_{R} - E'_{Y}) = 0.70 \cdot E'_{R} - 0.59 \cdot E'_{G} - 0.11 \cdot E'_{B}$

25. Kako nastaje kompozitni videosignal u sustavima NTSC i PAL?

- prijenos signala (E'_R E'_Y) i (E'_B E'_Y):
 NTSC i PAL sustav → kvadraturna amplitudna modulacija (QAM)
 SECAM sustav → frekvencijska modulacija
- QAM
- signali $(E'_R E'_Y)$ i $(E'_B E'_Y)$ moduliraju dva nositelja boje frekvencije f_K između kojih postoji fazni pomak od 90°
- zbrajanjem moduliranih nos<mark>ite</mark>lja nast<mark>aje</mark> krominantni signal
- kompozitni (složeni) videosignal u boji
- nastaje zbrajanjem luminantnog i krominantnog signala
- u sustavu PAL nositelj boje frekvencije $f_{\rm K}$ = 4,43 MHz moduliran je signalima $E'_{\rm U}$ i $E'_{\rm V}$
- u sustavu NTSC nositelj boje frekvencije $f_{\rm K}=3,58$ MHz moduliran je signalima $E'_{\rm I}$ i $E'_{\rm O}$

26. Objasnite razliku između 4:4:4 i 4:2:2 struktura uzorkovanja prema preporuci ITU-R BT.601.

- ITU-R preporuka BT.601
- uključuje dvije temeljne skupine normi
- 13,5 MHz skupina normi za omjer stranica 4:3 i 16:9
- 18 MHz skupina normi za omjer stranica 16:9
- svaka skupina sadrži dvije strukture uzorkovanja
- 4:4:4
- komponente signala mogu biti $[E'_Y, (E'_R-E'_Y), (E'_B-E'_Y)]$ ili $[E'_R, E'_G, E'_B]$
- frekvencija uzorkovanja iznosi 13,5 MHz ili 18 MHz za svaku komponentu
- 4:2:2
- komponente signala su $[E'_Y, (E'_R-E'_Y), (E'_B-E'_Y)]$
- frekvencija uzorkovanja za E'_Y je 13,5 MHz ili 18 MHz, a za $(E'_R-E'_Y)$, $(E'_B-E'_Y)$ 6,75 MHz ili 9 MHz (poduzorkovanje s faktorom 2)

Struktura uzorkovanja	Horizontalna [%]	Vertikalna [%]
4:4:4	100	100
4:2:2	50	100
4:2:0	50	50
4:1:1	25	100

27. Navedite značajke mogućih formata HDTV signala za proizvodnju TV programa u europskim zemljama.

- mogući formati HDTV signala za proizvodnju TV programa u europskim zemljama određeni su dokumentom EBU Tech 3299: *High Definition (HD) Image Formats for Television Production*
- -Sustav 1 (S1)
- 1280 horizontalnih uzoraka i 720 linija u aktivnom dijelu slike, progresivno analiziranje s frekvencijom izmjene slika 50Hz
- -Sustav 2 (S2)
- 1920 horizontalnih uzoraka i 1080 linija u aktivnom dijelu slike, analiziranje s proredom s frekvencijom izmjene slika 25 Hz
- -Sustav 3 (S3)
- 1920 horizontalnih uzoraka i 1080 linija u aktivnom dijelu slike, p<mark>rogresiv</mark>no analiziranje s frekvencijom izmjene slika 25 Hz
- -Sustav 4 (S4)
- 1920 horizontalnih uzoraka i 1080 linija u aktivnom dijelu slike, progresivno analiziranje s frekvencijom izmjene slika 50 Hz

28. Navedite razliku između prostorne i vremenske redundancije te objasnite optimalnu, ekscesnu i savršenu kompresiju.

- prostorna redundancija
- javlja se kao posljedica postojanja korelacije (m<mark>eđu</mark>ovisnosti il<mark>i s</mark>ličnosti) između elemenata slike u pojedinoj slici
- vremenska redundancija
- javlja se kao posljedica post<mark>ojanja kore</mark>lacije između uz<mark>ast</mark>opnih slika u videosignalu
- savršena kompresija
- uređaj za komprimiranje odbacuje redundanciju i izdvaja samo entropiju
- u praksi bi takav uređaj bio vrlo složen i zahtijevao dugo vrijeme procesiranja
- ekscesna kompresija ili kompresija s gubicima
- uređaj za komprimiranje uz redundanciju odbacuje i dio entropije
- optimalna kompresija ili kompresija bez gubitaka
- uređaj za komprimiranje uz dio redundancije izdvaja i cijelu entropiju

Savršena kompresija - sva entropija odaslana - sva redundancija uklonjena - nema gubitka kvalitete Ekscesna kompresija - dio entropije izgubljen - gubitak kvalitete Optimalna kompresija - sva entropija i dio redundancije odaslani - nema gubitka kvalitete

29. Objasnite temeljne elemente postupka kodiranja unutar slike.

- kodiranje unutar slike (*intraframe coding*)
- slika se obrađuje neovisno o ostalim slikama u slijedu slika,
- a uklanja se prostorna i statistička redundancija
- najčešće se rabi transformacijsko kodiranje
- moguće je primijeniti kodiranje s predviđanjem (predikcijsko kodiranje) kod kojega se vrijednost pojedinog elementa slike koji treba biti kodiran (×) predviđa iz prethodno kodiranog elementa slike (A) u istoj liniji ili iz njemu najbližih elemenata slike (B, C, D) prethodne linije

Prostorna korelacija

30. Objasnite temeljne elemente postupka kodiranja između slika.

- kodiranje između slika (interframe coding)
- kodira se razlika slika i uklanja vremenska redundancija
- do dekodera se prenosi slika A i slika C=(A-B)
- slika C može biti djelotvornije kodirana primjenom kodiranja unutar slike od slike B
- slika B se rekonstruira u dekoderu kao (A+C)
- ukoliko se radi o sekvenc<mark>i s v</mark>rlo brzim p<mark>okreti</mark>ma, kodiranjem razlike uzastopnih slika ne može se postići velika kompresija
- razlika između uzastopnih slika se smanjuje postupkom predviđanja i nadomještanja pokreta (motion compensation)
- kodiranje s predviđanjem uz nadomještanje pokreta
- primje<mark>njuje</mark> se za <mark>kod</mark>iranje razlike slika u sekvenci videosignala s visokom razinom pokreta koja uzrokuje pojavu velike razlike između uzastopnih slika
- provodi se <mark>usp</mark>oredba trenutne i prethodne slike, kako bi se odredio smjer i udaljenost pomaka pokretnih objekata između slika
- smjer i udaljenost pomaka objekata iskazuje preko dvodimenzijskog vektora pokreta
- koder koristi vektore pokreta za dobivanje predviđene slike, koja nastaje pomakom elemenata slike prethodne slike za vektore pokreta (na taj način smanjuje se razlika između trenutne i prethodne slike)
- predviđena slika se oduzima od trenutno procesirane slike
- do dekodera se prenosi razlika trenutne i predviđene slike, te vektori pokreta