中 山 大 学

2017 年港澳台人士攻读硕士学位研究生入学考试试题

科目代码: 360

科目名称: 统计学

考试时间: 4月9日上午

考生须知 全部答案一律写在答题纸 上,答在试题纸上的不计分!答 题要写清题号,不必抄题。

- 一、单项选择题(每小题3分,共60分)
- 1. 下面关于概率P的叙述中不正确的是()
- (A) 空集的概率P(Ø) = 0
- (B) 全集的概率 $P(\Omega) = 1$
- (C) 如果事件A, B互不相容,则 $P(A \cup B) = P(A)P(B)$
- (D) 如果事件A,B互不相容,则 $P(A \cup B) = P(A) + P(B)$
- 2. 在[0,1]线段上随机投掷两点,两点间距离大于 0.8 的概率为()
- (A) 0.04 (B) 0.16 (C) 0.20 (D) 0.25

- 3. 设两两相互独立的三个随机事件A,B,C满足条件 $ABC=\emptyset$,P(A)=P(B)=P(C)<1/2,且已知 $P(A \cup B \cup C) = 2/3$, 则P(A)是()
- (A) 1/3

- (B) 2/3 (C) 1/5 (D) 1/4
- 4. 三个工作小组独立对某个密码进行破译。如果他们成功的概率为 0.4、0.5、0.7,则该密码被成功 破译的概率为()
- (A) 0.14

- (B) 0.86 (C) 0.91 (D) 0.16
- 5. 当X服从哪个分布时,EX = DX? ()
- (A) 二项分布B(n, 0.5)
- (B) 参数为 2 的泊松分布Poisson(2)
- (C) 参数为 2 的指数分布Exp(2) (D) 参数为 1 的卡方分布χ²(1)

	人 1,2,3,4 中任耳 25/48			再从1,2, (C)			已为Y,则)) 4/25	P(X=3 Y	= 1)是()
				(0)	1/3	(L	7) 4/25		
7. 女	口果随机变量 <i>X</i>	的概率密	度函数为	J					
				f(x) =	$\begin{array}{ccc} x, & 0 \\ 2-x, & 1 \\ 0, & \end{array}$	$\leq x < 1, \\ \leq x < 2,$			
				(0,	其他.			
贝	$IP(X \leq 1.5)$ 是	()							
(A)	$\int_0^1 x dx + \int_1^{1.5}$	(2-x)d	!x	(B)	$\int_{1}^{1.5} (2 -$	x)dx			
(C)	$\int_1^{1.5} (1-x) dx$	r		(D)	$\int_{-\infty}^{1.5} (2 -$	x)dx			
	保险公司多年								
	()								
(A)	Φ(1)	(B)	Φ(2)	(C)	2Ф(2) —	1.	(D) 1	- Φ(1)	
9. 下	面关于随机变	量 X_n 的收	(敛性中,	正确的是	: ()				
(A)	若Xn依分布的	女敛于 X,	则 X_n 依	概率收敛于	F-X				
(B)									
(C)									
(D)									
10. 设	X ₁ ,…,X _n 为来[自正态分	布N(μ,σ	²)的样本,	其中μ已统	知而 σ^2 未知,	则下列	不是统计量	的是()
(A)	$\sum_{i=1}^n X_i/\sigma$	(B)	<i>X</i> ₁	(C)	$\sum_{i=1}^n X_i^2 /$			$X_1 X_2 \cdots X_n$	H3/C ()
11. 设	X ₁ ,…,X ₄ 为来自	目正态分	布N(0,σ²	²)的样本,	则 $Y = \left(\frac{X}{Y}\right)$	1+ <i>X</i> 2) ² 的分布	ī是()		
	$\chi^{2}(1)$					THE RESERVE TO THE RE			
-		The Market of	And the second second						

12. 设 X_1, \cdots, X_n 为来自正态分布 $N(0,1)$ 的样本, $ar{X}$ 为样本均值,则()
(A) $\bar{X} \sim N(0,1)$ (B) $n\bar{X} \sim N(0,1)$
(C) $nX_1^2/\sum_{i=1}^n X_i^2 \sim F(1,n)$ (D) $(n-1)X_1^2/\sum_{i=2}^n X_i^2 \sim F(1,n-1)$
13. 下列关于统计学常用的分布的判断中,错误的是()
(A) 若 $T \sim F(n_1, n_2)$, 则 $1/T \sim F(n_2, n_1)$
(B) 若 $T\sim t(n)$,则 $T^2\sim F(1,n)$
(C) 若 $T \sim N(0,1)$,则 $T^2 \sim \chi^2(1)$
(D) 若 $T_1 \sim N(0,1)$, $T_2 \sim \chi^2(n)$, 则 $T_1/T_2 \sim t(n)$
14. 设 X_1,\cdots,X_n 为来自均匀分布 $U(0,\theta)$ 的样本,其顺序统计量记为 $X_{(1)},\cdots,X_{(n)}$,则 θ 的充分统计量()
(A) $X_{(1)}$ (B) $X_{(n)}$ (C) $X_{(n)} - X_{(1)}$ (D) 以上皆非
15. 设 X_1, \cdots, X_n 为来自正态分布 $N(\mu, \sigma^2)$ 的样本,若 $T = C \sum_{i=1}^{n-1} (X_{i+1} - X_i)^2$ 是 σ^2 的无偏估计,则 C
(A) $\frac{1}{n}$ (B) $\frac{1}{n-1}$ (C) $\frac{1}{2(n-1)}$ (D) $\frac{1}{2n}$
16. 设 X_1,\cdots,X_n 为来自正态分布 $N(0,\sigma^2)$ 的样本, $ar{X}$ 为样本均值,则 σ^2 的无偏估计是()
(A) $\sum_{i=1}^{n} (X_i - \bar{X})^2 / n$ (B) $\sum_{i=1}^{n} X_i^2 / (n-1)$
(C) $\sum_{i=1}^{n} X_i^2 / n$ (D) $(n-1)\bar{X}^2$
17. 设 X_1,\cdots,X_n 为来自均匀分布 $N(\mu,\sigma^2)$ 的随机样本,则 μ 的相合估计是()
(A) $X_{(1)}$ (B) $X_{(n)}$ (C) $(X_{(n)} + X_{(1)})/2$ (D) 以上皆非
8. 设 X_1,\cdots,X_n 为来自正态分布 $N(\mu,1)$ 的样本,则 μ 的上侧 95%置信区间为()
(A) $\left(-\infty, \overline{X} - \frac{1.64}{\sqrt{n}}\right)$ (B) $\left(-\infty, \overline{X} + \frac{1.64}{\sqrt{n}}\right)$
(C) $\left(\overline{X} - \frac{1.64}{\sqrt{n}}, +\infty\right)$ (D) $\left(\overline{X} + \frac{1.64}{\sqrt{n}}, +\infty\right)$
Mr. a. T

(A) H_0 为真,经检验拒绝 H_0 的概率	(B)H ₀ 为真,约	A检验接受H。	的概率
(C) H ₀ 为假,经检验拒绝H ₀ 的概率			
		-1-4-4-2.1101	u 31%.—
二、(24分)设二维随机向量(X,Y)的联合	合概率密度为		
	$y) = \begin{cases} Ae^{-y}, & 0 < x < 0, & \text{i.e.} \end{cases}$	у,	
(1)(8分)求 A 和 X,Y 的边缘密度 $f(x)$,			
(2)(8分)求X,Y的相关系数;判断X与	FY是否相互独立,并	说明理由。	
(3)(8分)求P(X+Y<2)。			
	나는 이 얼마나 가는 것이 없는 것이 없습니 없는 것이 없는 것이 없는 것이 없습니 없는 것이 없습니		
$\mathcal{N}(12 \mathcal{O}) \partial X_1, \cdots, X_n (n \geq 2)$ 为来自总位	AX的样本,总体期望是	为μ,总体方差	Θ 为 σ^2 ,记 $T = \sum_{i=1}^n a_i X_i$,
$\Psi \sum_{i=1}^{n} a_i = 1.$			$ ilde{\Xi} $ 为 σ^2 ,记 $T = \sum_{i=1}^n a_i X_i$,
$(\Psi \sum_{i=1}^{n} a_i = 1)$ 1) $(6 \mathcal{G})$ 证明:对任意满足 $\sum_{i=1}^{n} a_i = 1$	1的常数a _i ,T均为μ的	力无偏估计。	$eta eta \sigma^2$,记 $T = \sum_{i=1}^n a_i X_i$,
$(1)(6 \mathcal{G})$ 证明:对任意满足 $\sum_{i=1}^n a_i = 1$	1的常数a _i ,T均为μ的	力无偏估计。	[为 σ^2 ,记 $T=\sum_{i=1}^n a_i X_i$,
$(1)(6 \mathcal{G})$ 证明:对任意满足 $\sum_{i=1}^n a_i = 1$	1的常数a _i ,T均为μ的	力无偏估计。	$ar{z}$ 为 σ^2 ,记 $T=\sum_{i=1}^n a_i X_i$,
$(+2)_{i=1}^n a_i = 1$ 。 $(+1) = 1$ 。 $(+1) = 1$ 。 $(+1) = 1$ 。 $(+1) = 1$ 。 $(+1) = 1$ 。 $(+1) = 1$ 。 $(+1) = 1$ 。 $(+1) = 1$ 。 $(+1) = 1$ 。 $(+1) = 1$ 。 $(+1) = 1$ 。	1的常数a _i ,T均为μ的	力无偏估计。	$ar{z}$ 为 σ^2 ,记 $T=\sum_{i=1}^n a_i X_i$,
$P+\sum_{i=1}^{n}a_{i}=1$ 。 1)(6 分)证明:对任意满足 $\sum_{i=1}^{n}a_{i}=1$ 2)(6 分)求满足 $\sum_{i=1}^{n}a_{i}=1$ 的 a_{i} ,使得	1的常数a _i ,T均为μ的	力无偏估计。	$\mathbb{E} eta \sigma^2, \; \mathrm{id} T = \sum_{i=1}^n a_i X_i,$
中 $\Sigma_{i=1}^{n}a_{i}=1$ 。 1)(6 分)证明:对任意满足 $\sum_{i=1}^{n}a_{i}=1$ 2)(6 分)求满足 $\sum_{i=1}^{n}a_{i}=1$ 的 a_{i} ,使得 、(12 分)设总体 X 的概率分布列为:	1的常数a _i ,T均为μ的 身T为最小方差无偏估- 1	力无偏估计。	$rac{1}{2} eta \sigma^2, \; \mathrm{id} T = \sum_{i=1}^n a_i X_i,$
中 $\Sigma_{i=1}^{n}a_{i}=1$ 。 1)(6 分)证明:对任意满足 $\Sigma_{i=1}^{n}a_{i}=1$)(6 分)求满足 $\Sigma_{i=1}^{n}a_{i}=1$ 的 a_{i} ,使得 、(12 分)设总体 X 的概率分布列为: X 0 概率 p^{2}	1的常数 a_i , T 均为 $μ$ 的 $β$ T 为最小方差无偏估 1	为无偏估计。 计。	3
$P+\Sigma_{i=1}^{n}a_{i}=1$ 。 1)(6分)证明:对任意满足 $\sum_{i=1}^{n}a_{i}=1$ 2)(6分)求满足 $\sum_{i=1}^{n}a_{i}=1$ 的 a_{i} ,使得 、(12分)设总体 X 的概率分布列为: X 0 概率 p^{2}	1的常数 a_i , T 均为 $μ$ 的 $β$ T 为最小方差无偏估 1	的无偏估计。 计。 2	
$+2\sum_{i=1}^{n}a_{i}=1$ 。 1)(6分)证明:对任意满足 $\sum_{i=1}^{n}a_{i}=1$ 2)(6分)求满足 $\sum_{i=1}^{n}a_{i}=1$ 的 a_{i} ,使得 、(12分)设总体 X 的概率分布列为:	1的常数 a_i , T 均为 μ 的 βT为最小方差无偏估 1 2p(1-p) 总体 X 的如下样本值:	的无偏估计。 计。 2	3
$x+2_{i=1}^n a_i = 1$ 。 (1) $(6 eta)$ 证明:对任意满足 $\sum_{i=1}^n a_i = 2$) $(6 eta)$ 求满足 $\sum_{i=1}^n a_i = 1$ 的 a_i ,使得 $x \qquad 0$ 概率 p^2 其中 $p(0 是未知参数.利用p(0, 2, 3, 3, 1)$	1的常数 a_i , T 均为 μ 的 βT为最小方差无偏估 1 2p(1-p) 总体 X 的如下样本值:	的无偏估计。 计。 2	3
$x+2_{i=1}^n a_i = 1$ 。 (1) $(6 eta)$ 证明:对任意满足 $\sum_{i=1}^n a_i = 2$) $(6 eta)$ 求满足 $\sum_{i=1}^n a_i = 1$ 的 a_i ,使得 (12 $eta)$ 设总体 X 的概率分布列为: X 0 概率 p^2 其中 p $(0 是未知参数.利用p 1, 3, 0, 2, 3, 3, 11) (6 eta) 求p的矩估计值。$	1的常数 a_i , T 均为 μ 的 βT为最小方差无偏估 1 2p(1-p) 总体 X 的如下样本值:	的无偏估计。 计。 2	3
概率 p^2 其中 $p(0 是未知参数. 利用p(0$	1的常数 a_i , T 均为 μ 的 βT为最小方差无偏估 1 2p(1-p) 总体 X 的如下样本值:	的无偏估计。 计。 2	3

19. 假设其他条件不变,把 α 从 5%上升到 10%,则总体均值 μ 的置信程度为 $1-\alpha$ 的置信区间的宽度

(A) 增加 (B) 降低 (C) 不变 (D) 不能确定

20. 关于假设检验第一类错误概率的叙述,下列正确的是()

将()

五、(18分)某冶金实验室对锰的熔化点作了四次试验,结果分别为:

1269°C 1271°C 1263°C 1265°C

设数据服从正态分布 $N(\mu, \sigma^2)$,以 $\alpha = 0.05$ 的水平作如下检验:

- (1)(9分)这些结果是否符合于公布的数字 1260℃?
- (2)(9分)测定值的标准差是否不超过2℃?

(注:要求须详细写出检验过程)

六、(24 分)设 X_1, \dots, X_{10} 为来自正态分布 $N(\mu, 1)$ 的样本。考虑如下检验:

 $H_0: \mu = 0$ v.s. $H_1: \mu \neq 0$,

- (1)(6分)若在显著水平 $\alpha=0.05$ 下取拒绝域为 $W=\{|\bar{X}|\geq c\}$,求c的值。
- (2)(6分)若已知 $\bar{x}=-1.2$,是否可以得到拒绝 H_0 的结论?
- (3)(6分)若取拒绝域为 $W = \{|\bar{X}| \geq 1\}$,求该检验的第一类风险。
- (4) (6 分) 若 μ 的真实值为 1,拒绝域取为 $W = \{|\bar{X}| \geq 1\}$,求该检验的第二类风险。

附表

- 1. 记 $\Phi(x)$ 为标准正态分布的分布函数。 $\Phi(1.28) = 0.90$; $\Phi(1.64) = 0.95$; $\Phi(1.96) = 0.975$; $\Phi(2.33) = 0.99$ 。
- 2. 记 $t_{\alpha}(n)$ 为t(n)分布的 α 上侧分位数。

	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.025$	$\alpha = 0.01$
n = 1	3.08	6.31	12.71	$\alpha = 0.01$
n=2	1.89	2.92	4.30	31.82
n = 3	1.64	2.35	3.18	6.96
n = 4	1.53	2.13		4.54
		2.13	2.78	3.75

3. 记 $\chi_a^2(n)$ 为 $\chi^2(n)$ 分布的 α 上侧分位数。

	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.025$	$\alpha = 0.01$
n=1	2.71	3.84	5.02	a = 0.01
n=2	4.61	5.99	7.38	
n = 3	6.25	7.81		9.21
n = 4	7.78		9.35	11.34
	7.76	9.49	11.14	13.28