K=R ou €

I. Normes sur un lK- espace vectoriel

I.1. Définition

E Kespace vectoriel

Une norme sur E est une application $N:E\longrightarrow \mathbb{R}_+$ vérifiant :

(i)
$$\forall x \in E \quad N(x) = 0 \iff x = 0$$
 (propriété de séparation)

$$(ii) \; \forall \; x \in E \quad \forall \; \lambda \in \mathbb{K} \quad N(\lambda x) = |\lambda| N(x) \quad \text{(propriété d'homogénéité)}$$

(iii)
$$\forall (x,y) \in E^2$$
 $N(x+y) \leq N(x) + N(y)$ (inégalité triangulaire)

On dit que (E, N) est un evn

Corollaire:
$$\forall (x,y) \in E^2 \quad |N(x) - N(y)| \le N(x-y)$$

<u>définition</u>: Si (E, N) est un evn et F un sous-espace vectoriel de E, alors N_F la restriction de N à F est une norme, appelée norme induite par N sur F

I.2. Exemples

a/ Norme associée à un produit scalaire : E Respace vectoriel muni d'un produit scalaire

$$noté < , > et ||x|| = \sqrt{\langle x, x \rangle}$$

 $\| \cdot \|$ est une norme sur E

d'où si
$$E = \mathbb{R}^n$$
muni du produit scalaire < $x,y> = \sum_{i=1}^n x_i y_i$

l'application
$$x \longmapsto \|x\| = \sqrt{\sum_{i=1}^n x_i^2}$$
 est une norme sur \mathbb{R}^n appelée **norme euclidienne**

si $E = \mathcal{M}_n(\mathbb{R})$ muni du produit scalaire $\langle A, B \rangle = tr(A^T B)$

l'application
$$A \longmapsto \|A\| = \sqrt{tr(A^TA)} = \sqrt{\sum_{1 \le i,j \le n} a_{i,j}^2}$$
 est une norme sur $\mathcal{M}_n(\mathbb{R})$ appelée **norme euclidienne**

Si
$$E = \mathcal{C}^0([a,b],\mathbb{R})$$
 $(a < b)$ muni du produit scalaire $\langle f,g \rangle = \int_a^b f(t)g(t)dt$

l'application
$$f \longmapsto \|f\| = \sqrt{\int_a^b f^2(t)dt}$$
 est une norme sur $\mathcal{C}^0([a,b],\mathbb{R})$ appelée **norme de la convergence**

en moyenne quadratique

Remarque : Ces normes se généralisent avec K=C

$$E = \mathbb{C}^n \qquad ||x|| = \sqrt{\sum_{i=1}^n |x_i|^2}$$

$$E = \mathcal{M}_n(\mathbb{C}) \qquad ||A|| = \sqrt{\sum_{1 \le i, j \le n} |a_{i,j}|^2}$$

Si
$$E = C^0([a, b], \mathbb{C}) \ (a < b)$$
 $||f|| = \sqrt{\int_a^b |f|^2(t)dt}$

b/ Normes usuelles sur \mathbb{K}^n :

Norme euclidienne :
$$\|x\| = \sqrt{\sum_{i=1}^{n} |x_i|^2}$$

Norme infinie :
$$||X||_{\infty} = \max_{1 \le k \le n} |x_k|$$

Norme 1:
$$||X||_1 = \sum_{k=1}^n |x_k|$$

Généralisation:
$$E$$
 Kespace vectoriel de dimension n , $(e_1,...,e_n)$ base de E , si $x \in E$ $x = \sum_{k=1}^n x_k e_k$

Norme euclidienne :
$$||x|| = \sqrt{\sum_{k=1}^{n} |x_k|^2}$$

Norme infinie :
$$||x||_{\infty} = \max_{1 \le k \le n} |x_k|$$

Norme 1:
$$||x||_1 = \sum_{k=1}^n |x_k|$$

\underline{c} / Norme de la convergence uniforme (cvu) sur $\mathcal{B}(\mathcal{I}, \mathbb{K})$:

<u>théorème</u>: Soit \mathcal{A} une partie non vide bornée de \mathbb{R} et $k \in \mathbb{R}_+$ alors $\sup(k\mathcal{A}) = k \sup \mathcal{A}$

 $\mathcal{B}(\mathcal{I},\mathbb{K})$ est l'espace vectoriel des fonctions bornées de \mathcal{I} dans \mathbb{K}

Si
$$f \in \mathcal{B}(\mathcal{I},\!\mathbb{K})$$
 , $\|f\|_{\infty} = \sup_{x \in \mathcal{I}} |f(x)|$

 $\|.\|_{\infty}$ est une norme

d/ Normes sur $C^0([a,b],\mathbb{K})$:

norme de la convergence en moyenne quadratique :
$$\|f\| = \sqrt{\int_a^b |f|^2(t)dt}$$

norme de la convergence en moyenne :
$$\|f\|_1 = \int_a^b |f(x)| dx$$

I.3. Distance associée

<u>définition</u>: (E, N) evn, on appelle distance associée à N, l'application

$$d: E^2 \longrightarrow \mathbb{R}_+$$

$$(x,y) \longmapsto N(x-y)$$

On a :
$$\forall (x, y, z) \in E^3$$
 $d(x, y) = 0 \iff x = y$

$$d(x,y) = d(y,x)$$

$$d(x,y) \le d(x,z) + d(z,y)$$

On en déduit: $\forall (x, y, z) \in E^3 \quad |d(x, z) - d(z, y)| \le d(x, y)$

<u>**définition**</u>: $A \subset E$, A non vide, on appelle distance de x à A, l'application $d(x,A) = \inf_{a \in A} d(x,a)$

 $\underline{\mathbf{d\'efinition}}:(E,N)$ espace vectoriel normé, d distance associée à N

 $a \in E$ $r \in \mathbb{R}_+^*$, on appelle

boule ouverte de centre a de rayon r , $\mathcal{B}(a,r) = \{x \in E; d(a,x) < r\}$

boule fermée de centre a de rayon r , $\mathcal{B}_f(a,r) = \{x \in E; d(a,x) \leq r\}$

sphère de centre a de rayon r , $\mathcal{S}(a,r) = \{x \in E; d(a,x) = r\}$

Si a=0 et r=1, on parle de boule unité ouverte ou fermée ou sphère unité.

<u>définition</u> : $A \subset E$, A non vide ,

$$A$$
 est convexe si \forall $(x,y) \in A^2$ $[x,y] \subset A$ (ie \forall $t \in [0,1]$ $tx + (1-t)y \in A$)

A est bornée si $\exists a \in E \quad \exists r > 0 \quad A \subset \mathcal{B}(a,r)$

théorème : Les boules d'un espace vectoriel normé sont convexes

I.4. Normes équivalentes

alors N_1 et N_2 sont non équivalentes.

<u>définition</u>: E espace vectoriel muni de deux normes N_1 et N_2

 N_1 et N_2 sont équivalentes si $\exists (a,b) \in (\mathbb{R}_+^*)^2 \quad aN_1 \leq N_2 \leq bN_1$

(ie
$$\exists (a,b) \in (\mathbb{R}_+^*)^2 \quad \forall \ x \in E \quad aN_1(x) \le N_2(x) \le bN_1(x)$$
)

donc N_1 et N_2 sont non équivalentes si \forall $(a,b) \in (\mathbb{R}_+^*)^2 \quad \exists \ x \in E \quad aN_1(x) > N_2(x) \text{ ou } N_2(x) > bN_1(x)$

 $\operatorname{donc}\left(\operatorname{si} a = \frac{1}{n} \operatorname{ou} b = n\right), \operatorname{s'il} \operatorname{existe} \operatorname{une} \operatorname{suite}\left(x_n\right)_n \in E^{\mathbb{IN}} \quad \lim_{n \mapsto +\infty} \frac{N_1(x_n)}{N_2(x_n)} = +\infty \quad \operatorname{ou} \lim_{n \mapsto +\infty} \frac{N_2(x_n)}{N_1(x_n)} = +\infty$

<u>théorème admis</u>: Si E Kespace vectoriel de dimension finie, alors toutes les normes sont équivalentes.

Exemple important : $E = \mathbb{K}^n$ de dimension n, on a donc $\| \cdot \|_{\infty}$, $\| \cdot \|$ et $\| \cdot \|_1$ équivalentes

$$||X||_{\infty} \le ||X||_1 \le n||X||_{\infty}$$

$$||X||_{\infty} \le ||X|| \le \sqrt{n} ||X||_{\infty}$$

donc
$$\frac{1}{\sqrt{n}} ||X|| \le ||X||_1 \le n||X||$$

Propriété : Soit E muni de deux normes équivalentes N_1 et N_2 , alors

PC Lycee Pasteur 2023 2024

A partie de E est bornée pour \mathcal{N}_1 est équivalent à A est bornée pour $\mathcal{N}_2.$

I.5. Applications lipschitziennes

<u>définition</u>: $(E, \| . \|_E)$ espace vectoriel normé $(F, \| . \|_F)$ espace vectoriel normé $f: E \longrightarrow F$ est lipschitzienne si $\exists \ k \in \mathbb{R}_+ \quad \forall \ (x,y) \in E^2 \quad \|f(x) - f(y)\|_F \le k\|x - y\|_E$

II. Suites dans un espace vectoriel normé

II.1. Définition

 $(E, \| . \|)$ Kespace vectoriel normé, une suite $(u_n)_n$ est une application $u : \mathbb{N} \longrightarrow E$, suite notée u ou $(u_n)_n$. On note $E^{\mathbb{N}}$ l'ensemble des suites à valeurs dans $E, E^{\mathbb{N}}$ est un K-espace vectoriel

II.2. Vocabulaire

La suite $(u_n)_n$ est constante si $\forall n \in \mathbb{N} \quad u_{n+1} = u_n (= u_0)$

La suite $(u_n)_n$ est stationnaire si $\exists n_0 \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad n \geq n_0 \Longrightarrow u_{n+1} = u_n (= u_{n_0})$

La suite $(u_n)_n$ est périodique de période T si $\forall n \in \mathbb{N}$ $u_{n+T} = u_n$

Une suite extraite ou sous-suite de $(u_n)_n$ est une suite $u_{\varphi(n)}$ où $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante (on montre qu'alors $\varphi(n) \geq n$)

II.3. Suites bornées

<u>définition</u>: La suite $(u_n)_n$ est bornée si $\exists M \in \mathbb{R}_+ \quad \forall n \in \mathbb{N} \quad ||u_n||_E \leq M$

théorème : L'ensemble $\mathcal{B}(E)$ des suites bornées est un sous-espace vectoriel de $E^{\mathbb{N}}$

$$\frac{\text{norme sur } \mathcal{B}(E):}{n \in \mathbb{N}} \text{ on pose } ||u||_{\infty} = \sup_{n \in \mathbb{N}} ||u_n||_{E}$$

 $\| \cdot \|_{\infty}$ est une norme sur $\mathcal{B}(E)$

II.4. Convergence

La suite $(u_n)_n$ est convergente si $\exists l \in E$ $\lim_{n \mapsto +\infty} ||u_n - l||_E = 0$,

ie
$$\forall \varepsilon \in \mathbb{R}_+^* \quad \exists \ n_0 \in \mathbb{N} \quad \forall \ n \in \mathbb{N} \quad n \ge n_0 \Longrightarrow \|u_n - l\|_E \le \varepsilon$$

Une suite non convergente est divergente

<u>théorème</u>: Si l existe alors l est unique, notée $\lim_{n \to +\infty} u_n$

Remarque:
$$\lim_{n \to +\infty} u_n = l \iff \lim_{n \to +\infty} (u_n - l) = 0$$

<u>théorème</u>: Une suite convergente est bornée (réciproque fausse)

<u>théorème</u>: Toute suite extraite d'une suite convergente est convergente vers la même limite (réciproque fausse)

II.4. Propriétés des limites

<u>linéarité</u>: Soient deux suites $(u_n)_n$ et $(v_n)_n$ de $E^{\mathbb{N}}$ convergeant respectivement vers l et l' alors

Si
$$\alpha \in \mathbb{K}$$
 $\lim_{n \to +\infty} (\alpha u_n + v_n) = \alpha l + l'$

produit par une suite bornée: Soit $(u_n)_n \in de E^{\mathbb{N}}$ et $(\alpha_n)_n \in de \mathbb{K}^{\mathbb{N}}$ avec $(u_n)_n$ converge vers O_E et $(\alpha_n)_n$ bornée (respectivement $(u_n)_n$ bornée et $(\alpha_n)_n$ converge vers 0)

alors
$$\lim_{n \to +\infty} (\alpha_n u_n) = 0$$

produit: Soit $(u_n)_n \in de E^{\mathbb{N}}$ et $(\alpha_n)_n \in de \mathbb{K}^{\mathbb{N}}$ avec $(u_n)_n$ converge vers l et $(\alpha_n)_n$ converge vers α alors $\lim_{n \to +\infty} (\alpha_n u_n) = \alpha l$

<u>norme</u>: Soit $(u_n)_n \in de E^{\mathbb{N}}$ avec $(u_n)_n$ converge vers l alors $\lim_{n \to +\infty} ||u_n||_E = ||l||_E$

II.5. Limites et normes

théorème: E muni de deux normes $\| \|_E$ et N_E , alors

$$(\forall (u_n)_n \in E^{\mathbb{N}} \quad (u_n)_n \text{ converge vers } 0_E \text{ pour } N_E \Longrightarrow \quad (u_n)_n \text{ converge vers } 0_E \text{ pour } \| \parallel_E)$$
 $\iff \exists \ \alpha > 0 \ \| \ \|_E \le \alpha N_E$

théorème (généralisation) : E muni de deux normes $\| \|_E$ et N_E , alors

$$(\forall (u_n)_n \in E^{\mathbb{N}} \quad (u_n)_n \text{ converge vers } l \text{ pour } N_E \Longrightarrow (u_n)_n \text{ converge vers } l \text{ pour } || \parallel_E) \iff \exists \alpha > 0 \mid| \parallel_E \le \alpha N_E$$

théorème (généralisation) : E muni de deux normes $\| \|_E$ et N_E , alors

$$(\forall (u_n)_n \in E^{\mathbb{N}} \quad (u_n)_n \text{ converge vers } l \text{ pour } N_E \iff (u_n)_n \text{ converge vers } l \text{ pour } || \parallel_E) \iff N_E \text{ et } || \parallel_E \text{ sont \'equivalentes}$$

donc la convergence d'une suite et la valeur de la limite ne dépend pas du choix de la norme si E de dimension finie

Cas de la dimension finie : théorème : E Kespace vectoriel de dimension finie $p, (e_1, ..., e_p)$ base de E

Soit
$$(u_n)_n \in \text{de } E^{\mathbb{N}}$$
 avec $\forall n \in \mathbb{N}$ $u_n = \sum_{k=1}^p u_{n,k} e_k$ alors

$$\lim_{n \to +\infty} u_n = l \iff \forall \ k \in \{1, .., p\} \qquad \lim_{n \to +\infty} u_{n,k} = l_k \qquad \text{avec } l = \sum_{k=1}^p l_k e_k$$

III. Topologie d'un espace vectoriel normé

 $(E, || ||_E)$ espace vectoriel normé

III.1. Ouvert. Fermé

<u>définition</u>: $\Omega \subset E$, Ω est un ouvert de E si $\Omega = \emptyset$ ou

$$\forall x \in \Omega \quad \exists r \in \mathbb{R}_+^* \quad \mathcal{B}(x,r) \subset \Omega$$

 $F \subset E$, F est un fermé de E si $E \setminus F$ ouvert de E

<u>théorème</u>: Toute boule ouverte de E est un ouvert de E, toute boule fermée est un fermé de E

PC Lycee Pasteur 2023 2024

Une sphère est un fermé de E

 $\underline{\mathbf{th\'{e}or\`{e}me}}$: 1. La réunion quelconque d'ouverts est un ouvert de E

L'intersection quelconque de fermés de E est un fermé de E

2. L'intersection finie d'ouverts est un ouvert de E

La réunion finie de fermés est un fermé de E

mais l'intersection quelconque d'ouverts peut ne pas être un ouvert de E et la réunion quelconque de fermés peut ne pas être un fermé de E

théorème : invariance des notions topologiques par passage à une norme équivalente :

E espace vectoriel normé muni de deux normes équivalentes N_1 et N_2 , alors (E, N_1) et (E, N_2) ont les mêmes ouverts (et les mêmes fermés)

<u>théorème</u>: E espace vectoriel normé de dimension finie p (toutes les normes sont équivalentes), l'étude topologique de E se ramène à celle de \mathbb{K}^p muni d'une norme

III.2. Point intérieur. Intérieur

définition : E espace vectoriel normé , $A \subset E$ et $A \neq \emptyset$

 $a \in E$ est un point intérieur à A si $\exists r > 0$ $\mathcal{B}(a,r) \subset A$ (donc $a \in A$)

L'intérieur de A, noté \mathring{A} , est l'ensemble des points intérieurs à A (donc $\mathring{A} \subset A$)

théorème: A ouvert de $E \iff \mathring{A} = A$

III.4. Point adhérent. Adhérence

<u>définition</u>: E espace vectoriel normé, $A \subset E$ et $A \neq \emptyset$

 $a \in E$ est un point adhérent à A si $\forall r > 0$ $\mathcal{B}(a,r) \cap A \neq \emptyset$

L'adhérence de A, noté \bar{A} , est l'ensemble des points adhérents à A (donc $A \subset \bar{A}$)

théorème : caractérisation séquentielle des points adhérents

$$a \in \bar{A} \iff \exists (u_n)_n \in A^{\mathbb{N}} \quad \lim_{n \to +\infty} u_n = a$$

théorème : A fermé de $E \iff \bar{A} = A$

théorème : caractérisation séquentielle des fermés

$$A$$
 fermé $\iff \forall (u_n)_n \in A^{\mathbb{N}}$ telle que $\lim_{n \to +\infty} u_n = a$, alors $a \in A$

III.5. Partie dense

<u>définition</u>: A partie de E est dense si $\bar{A} = E$

III.6. Frontière

<u>définition</u>: E espace vectoriel normé, $A \subset E$ et $A \neq \emptyset$, on a $\mathring{A} \subset A \subset \overline{A}$, on appelle frontière de A, $Fr(A) = \overline{A} \setminus \mathring{A}$