Theoretical Guide meia noite eu te conto

Victor Manuel, Maxwell Oliveira & Pablo Arruda

Thanks to UFMG - Humuhumunukunukuapua'a

1 Number Theory

$$(a+b) \bmod m = (a \bmod m + b \bmod m) \bmod m$$

$$(a-b) \bmod m = (a \bmod m - b \bmod m) \bmod m$$

$$(a \times b) \bmod m = ((a \bmod m) \times (b \bmod m)) \bmod m$$

$$a^b \bmod m = (a \bmod m)^b \bmod m$$

$$a \equiv b \pmod m \iff (b-a)|m$$

$$\gcd(a_1, a_2, a_3, a_4) = \gcd(a_1, \gcd(a_2, \gcd(a_3, a_4)))$$

$$\gcd(a, b) \times \gcd(a, b) = a \times b$$

$$\gcd(a, b) = \frac{a \times b}{\gcd(a, b)} = \frac{a}{\gcd(a, b)} \times b$$

1.1 Sum of digits of N written in base b

$$f(n,b) = \begin{cases} n & n < b \\ f\left(n, \left\lfloor \frac{n}{b} \right\rfloor + (n \mod b) \right) & n \ge b \end{cases}$$

1.2 Some Primes

999999937 1000000007 1000000009 1000000021 1000000033 $10^{18} - 11 10^{18} + 3 2305843009213693951 = 2^{61} - 1 998244353 = 119 imes 2^{23} + 1 10^6 + 3$

1.3 Prime counting function - $\pi(x)$

Expected to have $\frac{x}{\log x}$ primes within [1, x]. The prime counting function is asymptotic to $\frac{x}{\log x}$, by the prime number theorem.

X	10	10^{2}	10^{3}	10^{4}	10^{5}	10^{6}	10^{7}	10^{8}
$\pi(x)$	4	25	168	1229	9592	78498	664579	5 761 455

1.4 Number of Divisors

The number of divisors of n is about $\sqrt[3]{n}$.

n	6	60	360	5040	55440	720720	4324320	21621600
d(n)	4	12	24	60	120	240	384	576

1.5 Large Prime Gaps

For numbers until 10^9 the largest gap is 400. For numbers until 10^{18} the largest gap is 1500.

1.6 Fermat's Theorems

Let P be a prime number and a an integer, then:

$$a^p \equiv a \pmod{p}$$

$$a^{p-1} \equiv 1 \pmod{p}$$

Lemma: Let p be a prime number and a and b integers, then:

$$(a+b)^p \equiv a^p + b^p \pmod{p}$$

1.7 Diophantine Equations 5 MATH

Lemma: Let p be a prime number and a an integer. The inverse of a modulo p is a^{p-2} :

$$a^{-1} \equiv a^{p-2} \pmod{p}$$

1.7 Diophantine Equations

2 Bitwise

Turn on bit i x & (1 << i)Turn off bit i x & (~(1 << i))

2.1 XOR from 1 to N

$$f(n) = \begin{cases} n & n \equiv 0 \pmod{4} \\ 1 & n \equiv 1 \pmod{4} \\ n+1 & n \equiv 2 \pmod{4} \\ 0 & n \equiv 3 \pmod{4} \end{cases}$$

3 Notes

 \bullet number of digits in n!

$$\log_b n! = \log_b (1 \times 2 \times 3 \times ... \times n) = \log_b 1 + \log_b 2 + \log_b 3 + ... + \log_b n$$

4 C++

template < class T> using min_priority_queue = priority_queue <T,
string(1, 'a')</pre>

4.1 Pragma optimize

```
#pragma GCC optimize("Ofast")
#pragma GCC target("avx,avx2,fma")
```

4.2 Ordered set and multiset

typedef tree<pair<ll , ll>, null_type , less<pair<ll , ll>>, rb_tree_ta
To change to multiset switch equal to less equal.

4.3 Optimized unordered map

```
mp.reserve(8192);
mp.max load factor(0.25);
```

4.4 Interactive Problems

```
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
```

5 Math

 $\wedge =$ and =conjunction $\vee =$ or =disjunction

5.1 Trigonometry

5.2 Logarithm

$$\begin{split} \text{VqG}_b^* & \text{Om} \\ \text{T} &= \log_b \\ \text{Then} \\$$

5.3 Truth Tables 7 COUNTING PROBLEMS

5.3 Truth Tables

a	b	$a \Rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

a	b	$a \oplus b$
0	0	0
0	1	1
1	0	1
1	1	0

5.4 De Morgan

$$\neg (p \land q) \iff \neg p \lor \neg q$$
$$\neg (p \lor q) \iff \neg p \land \neg q$$

5.5 2-SAT

Check and finds solution for boolean formulas of the form:

$$(a \lor b) \land (\neg a \lor c) \land (a \lor \neg b)$$

As $a \lor b \iff \neg a \Rightarrow b \land \neg b \Rightarrow a$, we construct a directed graph of these implications. It's possible to construct any truth table of 1 or 2 variables with only and's from pairs of or's.

$$(a \lor b)$$
 turn of only the case $a = 0, b = 0$
 $(a \lor \neg b)$ turn of only the case $a = 0, b = 1$
 $(\neg a \lor b)$ turn of only the case $a = 1, b = 0$
 $(\neg a \lor \neg b)$ turn of only the case $a = 1, b = 1$

Examples:

$$a \oplus b = (a \lor b) \land (\neg a \lor \neg b)$$
$$a \land b = (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b)$$

6 Constants

LLINF = 0x3f3f3f3f3f3f3f1LL

MOD = 998'244'353

$$PI = acos(-1)$$

INT_MIN INT_MAX INT64_MIN INT64_MAX

6.1 Some Powers of Two

$2^0 \approx 10^0$	$2^1 \approx 10^0$	$2^2 \approx 10^0$	$2^3 \approx 10^0$	$2^4 \approx 10^1$	$2^5 \approx 10^1$
$2^6 \approx 10^1$	$2^7 \approx 10^2$	$2^8 \approx 10^2$	$2^9 \approx 10^2$	$2^{10} \approx 10^3$	$2^{11} \approx 10^3$
$2^{12} \approx 10^3$	$2^{13} \approx 10^3$	$2^{14} \approx 10^4$	$2^{15} \approx 10^4$	$2^{16} \approx 10^4$	$2^{17} \approx 10^5$
$2^{18} \approx 10^5$	$2^{19} \approx 10^5$	$2^{20} \approx 10^6$	$2^{21} \approx 10^6$	$2^{22} \approx 10^6$	$2^{23} \approx 10^6$
$2^{24} \approx 10^7$	$2^{25} \approx 10^7$	$2^{26} \approx 10^7$	$2^{27} \approx 10^8$	$2^{28} \approx 10^8$	$2^{29} \approx 10^8$
$2^{30} \approx 10^9$	$2^{31} \approx 10^9$	$2^{32} \approx 10^9$	$2^{33} \approx 10^9$	$2^{34} \approx 10^{10}$	$2^{35} \approx 10^{10}$
$2^{36} \approx 10^{10}$	$2^{37} \approx 10^{11}$	$2^{38} \approx 10^{11}$	$2^{39} \approx 10^{11}$	$2^{40} \approx 10^{12}$	$2^{41} \approx 10^{12}$
$2^{42} \approx 10^{12}$	$2^{43} \approx 10^{12}$	$2^{44} \approx 10^{13}$	$2^{45} \approx 10^{13}$	$2^{46} \approx 10^{13}$	$2^{47} \approx 10^{14}$
$2^{48} \approx 10^{14}$	$2^{49} \approx 10^{14}$	$2^{50} \approx 10^{15}$	$2^{51} \approx 10^{15}$	$2^{52} \approx 10^{15}$	$2^{53} \approx 10^{15}$
$2^{54} \approx 10^{16}$	$2^{55} \approx 10^{16}$	$2^{56} \approx 10^{16}$	$2^{57} \approx 10^{17}$	$2^{58} \approx 10^{17}$	$2^{59} \approx 10^{17}$
$2^{60} \approx 10^{18}$	$2^{61} \approx 10^{18}$	$2^{62} \approx 10^{18}$	$2^{63} \approx 10^{18}$	$2^{64} \approx 10^{19}$	$2^{65} \approx 10^{19}$
$2^{66} \approx 10^{19}$	$2^{67} \approx 10^{20}$	$2^{68} \approx 10^{20}$	$2^{69} \approx 10^{20}$	$2^{70} \approx 10^{21}$	$2^{71} \approx 10^{21}$

6.2 Some Factorials

					$11! \approx 10^7$
					$17! \approx 10^{14}$
$18! \approx 10^{15}$	$19! \approx 10^{17}$	$20! \approx 10^{18}$	$21! \approx 10^{19}$	$22! \approx 10^{21}$	$23! \approx 10^{22}$

7 Counting Problems

7.1 Burnside's Lemma

Let G be a group that acts on a set X. The Burnside Lemma states that the number of distinct orbits is equal to the average number of points fixed by an element of G.

$$T = \frac{1}{|G|} \sum_{g \in G} |\mathtt{fix}(g)|$$

Where a orbit orb(x) is defined as

$$\mathtt{orb}(x) = \{ y \in X : \exists g \in G \ gx = y \}$$

and fix(g) is the set of elements in X fixed by g

$$\mathtt{fix}(g) = \{x \in X : gx = x\}$$

Example: With k distinct types of beads how many distinct necklaces of size n can be made? Considering that two necklaces are equal if the rotation of one gives the other.

$$T = \frac{1}{n+1} \sum_{i=0}^{n} k^{gcd(i,n)} \qquad T = \frac{1}{n} \sum_{i=0}^{n-1} k^{gcd(i,n)}$$

8 Identities

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \qquad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \qquad \sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2$$
$$\sum_{i=1}^{n} \frac{1}{i} \approx \log n \qquad \sum_{i=0}^{\infty} \frac{1}{2^i} = 2$$