and if we multiply the original dependency relation by λ_{i_1} and subtract it from the above, we get

$$\mu_2(\lambda_{i_2} - \lambda_{i_1})u_{i_2} + \dots + \mu_k(\lambda_{i_k} - \lambda_{i_1})u_{i_k} = 0,$$

which is a nontrivial linear dependency among a proper subfamily of $(u_{i_1}, \ldots, u_{i_k})$ since the λ_i are all distinct and the μ_i are nonzero, a contradiction.

As a corollary of Proposition 15.3 we have the following result.

Corollary 15.4. If $\lambda_1, \ldots, \lambda_m$ are all the pairwise distinct eigenvalues of f (where $m \leq n$), we have a direct sum

$$E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m}$$

of the eigenspaces E_{λ_i} .

Unfortunately, it is not always the case that

$$E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m}$$
.

Definition 15.4. When

$$E = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_m},$$

we say that f is diagonalizable (and similarly for any matrix associated with f).

Indeed, picking a basis in each E_{λ_i} , we obtain a matrix which is a diagonal matrix consisting of the eigenvalues, each λ_i occurring a number of times equal to the dimension of E_{λ_i} . This happens if the algebraic multiplicity and the geometric multiplicity of every eigenvalue are equal. In particular, when the characteristic polynomial has n distinct roots, then f is diagonalizable. It can also be shown that symmetric matrices have real eigenvalues and can be diagonalized.

For a negative example, we leave it as exercise to show that the matrix

$$M = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

cannot be diagonalized, even though 1 is an eigenvalue. The problem is that the eigenspace of 1 only has dimension 1. The matrix

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

cannot be diagonalized either, because it has no real eigenvalues, unless $\theta = k\pi$. However, over the field of complex numbers, it can be diagonalized.