第10次习题课题目 数项级数

- 1. 求级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+m)}$ 的和,其中 m 是正整数 .
- 2.证明:级数 $\sum_{n=1}^{\infty} u_n$ 收敛的充分必要条件是: $\lim_{n\to\infty} u_n = 0$, 且 $\sum_{n=1}^{\infty} (u_{2n-1} + u_{2n})$ 收敛.
- 3. 设 $\lim_{n\to\infty} a_n = l$. 证明: 若 l < 1, 则 $\sum_{n=1}^{\infty} \frac{1}{n^{a_n}} = +\infty$; 若 l > 1, 则级数 $\sum_{n=1}^{\infty} \frac{1}{n^{a_n}}$ 收敛; 若 l = 1, 举 例说明级数 $\sum_{n=1}^{\infty} \frac{1}{n^{a_n}}$ 可能收敛也可能发散.
- 4. 证明:若 $\sum_{k=1}^{\infty}(u_{n_{k-1}+1}+\cdots+u_{n_k})$ 收敛,其中 $n_0=0,\ 1\leq n_1<\cdots< n_k<\cdots$,且每个括号内各项的符号相同,则 $\sum_{k=1}^{\infty}u_n$ 收敛。
- 5. 判断下列正项级数的敛散性:

(1)
$$\sum_{n=1}^{\infty} \sin(\frac{\pi}{2n^2+1})$$
; (2) $\sum_{n=2}^{\infty} \frac{n^p}{\ln n}$; (3) $\sum_{n=1}^{\infty} (\sqrt{n+1} - \sqrt{n})^p \ln(1 + \frac{2n}{n^2+1})$;

(4)
$$\sum_{n=1}^{\infty} nr^n$$
, $\sharp r > 0$; (5) $\sum_{n=2}^{\infty} \frac{n^{\ln n}}{(\ln n)^n}$; (6) $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$;

(7)
$$\sum_{n=1}^{\infty} \frac{1}{a^{\ln n}} (a > 0);$$
 (8) $\sum_{n=2}^{\infty} \frac{1}{\ln(n!)};$

- (9) $1+a+ab+a^2b+a^2b^2+a^3b^2+\cdots+a^nb^n+a^{n+1}b^n+\cdots$, a>0, b>0.
- 6. 判断下列级数的敛散性,并说明是否绝对收敛.

(1)
$$\sum_{n=1}^{\infty} \frac{a^n}{n^p}$$
; (2) $\sum_{n=1}^{\infty} \frac{a^n}{n!}$;

- (3) 已知级数 $\sum_{n=1}^{\infty} a_n^2$ 收敛,判断级数 $\sum_{n=1}^{\infty} \frac{a_n}{n}$ 的敛散性.
- 7. 设 $a_n > 0$, $\{a_n\}$ 单调,且级数 $\sum_{n=1}^{\infty} \sqrt{a_n a_{n+1}}$ 收敛,证明: $\sum_{n=1}^{\infty} a_n$ 收敛.
- 8. 设n 为正整数, x_n 为方程 $x^n + nx 1 = 0$ 的正根. 试确定 α 的范围, 使得级数 $\sum_{n=1}^{\infty} x_n^{\alpha}$ 收敛.

9. 证明: 若级数
$$\sum_{n=1}^{\infty} u_n \ (u_n > 0)$$
 发散, $S_n = \sum_{k=1}^n u_k$, 则级数 $\sum_{n=1}^{\infty} \frac{u_n}{S_n}$ 也发散.

10.证明: 若级数
$$\sum_{n=1}^{\infty} u_n \ (u_n > 0, \ n = 1, 2, \cdots)$$
 收敛,则 $\sum_{n=1}^{\infty} \frac{u_n}{\ln u_n}$ 收敛,其逆是否成立?

11. 证明: 若级数
$$\sum_{n=1}^{\infty} b_n$$
 收敛,且级数 $\sum_{n=1}^{\infty} (a_n - a_{n-1})$ 绝对收敛,则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.