MIC Assignment 2

Evuri Mohana Sreedhara Reddy (23B1017)

Gautam Siddharth K (23B0957)

Q1) X-Ray Computed Tomography: Radon Transform dt = 5, d_theta = 5 ds = 0.5

Q1) X-Ray Computed Tomography: Radon Transform dt = 5, d_theta = 5 ds = 1

Q1) X-Ray Computed Tomography: Radon Transform dt = 5, d_theta = 5 ds = 3

Q1) X-Ray Computed Tomography: Radon Transform dt = 3, d_theta = 3 ds = 1

Q1) X-Ray Computed Tomography: Radon Transform

- Smaller the step size, better the accuracy -> ds = 0.5
- The image-interpolation scheme used is spline-based interpolation method because it preserves fine image details while avoiding over smoothing by fitting cubic splines and is also efficient
- Smoothest plot is when ds = 0.5 as we are sampling the most number of points and roughest when ds = 3 and we are sampling the least number of points
 - For small dt and d_theta, you have higher accuracy but higher computation time and can introduce noise
 - Having a moderate step size (ds = 1) ensures that sufficient detail is captured while not being too computationally heavy
 - For ds >> 1 -> undersampled and you lose a lot of the features of the CT
 - For ds << 1 -> computationally very heavy and gives weight to small fluctuations caused by noise

Shepp - Logan Phantom and its Radon Transform

The Inverse Radon Transform with various filters

The Inverse Radon Transform with blurred images

The RRMSE values v/s L graphs (w_{max}/50 to w_{max})

Backprojection (FBP) with Incomplete Data

The given Images: Chest CT and My Phantom

Radon Transform v/s the starting θ (θ to θ + 150°)

Inverse Radon Transform for the best θ

Q4) ART, ds = 0.5

