Math 655 Henry Woodburn

Homework 4

1. Let $(x_n)_1^{\infty} \in \ell^{\infty}$. We will show that

$$d((x_n)_1^{\infty}, c_0) = \limsup_{n} |x_n|.$$

By definition,

$$d((x_n)_1^{\infty}, c_0) = \inf_{(y_n) \in c_0} d((x_n), (y_n)),$$

where $d((x_n), (y_n)) = \sup_{x} |x_n - y_n|$.

To show that the distance $d((x_n), c_0)$ is at most $\liminf_n |x_n|$, define a family of sequences in c_0 as follows: Let

$$(y_n^k) := \begin{cases} x_n & n < k \\ 0 & n \ge k \end{cases},$$

so that

$$d((x_n), (y_n^k)) = \sup_{n} |x_n - y_n^k| = \sup_{n \ge k} |x_n|.$$

Then we have

$$d((x_n), c_0) \le \inf_k d((x_n), (y_n^k)) = \inf_k \sup_{n \ge k} |x_n| = \liminf_n |x_n|,$$

which proves one direction. On the other hand, for any $(y_n) \in c_0$,

$$d((x_n), (y_n)) = \sup_{n} |x_n - y_n| \ge \sup_{n} |x_n| - |y_n| = \sup_{n} |x_n| \ge \limsup_{n} |x_n|,$$

and thus $d((x_n), c_0) = \inf_{(y_n) \in c_0} d((x_n), (y_n)) \ge \limsup_n |x_n|$. Then we have shown $d((x_n), c_0) = \limsup_n |x_n|$.

2. Let \mathcal{U} be a non-principal ultrafilter on a set I, $(X_i)_{i\in I}$ a collection of Banach spaces, and $(\prod_{i\in I} X_i)^{\mathcal{U}}$ its ultraproduct with respect to \mathcal{U} .

We will show that for some $(x_i)_{i \in I}$,

$$||(x_i)||_{\mathcal{U}} = \lim_{i,\mathcal{U}} ||x_i||_{X_i}.$$

Let $\lim_{i,\mathcal{U}} ||x_i||_{X_i} = a$. By the definition of the ultrafilter limit, if we choose some $\varepsilon > 0$ we get a set $U \in \mathcal{U}$ such that for $i \in U$, $|||x_i||_{X_i} - a| < \varepsilon$. Then we know $||x_i|| < a + \varepsilon$ for all $i \in U$.

Define a sequence

$$y_i = \begin{cases} x_i & i \notin U \\ 0 & i \in U \end{cases}$$

so that

$$d((x_n), (y_n)) = \sup_i ||x_i - y_i|| = \sup_{i \in U} ||x_i|| < a + \varepsilon.$$

We know that $(y_n)_{i\in I}$ is an element of $N_{\mathcal{U}}$ since for any $\varepsilon > 0$, the set of $i \in I$ for which $||y_i||_{X_i} < \varepsilon$ contains the set U and thus is an element of \mathcal{U} .

Moreover,

$$||(x_i)||_{\mathcal{U}} = \inf_{(z_n) \in N_{\mathcal{U}}} d((x_n), (z_n)) \le d((x_n), (y_n)) < a + \varepsilon.$$

Then this holds for any $\varepsilon > 0$, so in fact $||(x_i)||_{\mathcal{U}} \le a = \lim_{i,\mathcal{U}} ||x_i||_{X_i}$.

In the other direction, let $(y_n) \in N_{\mathcal{U}}$ and choose $\varepsilon > 0$. Then there is a set $U \in \mathcal{U}$ such that for $i \in U, ||y_i|| < \varepsilon$, and a set $V \in \mathcal{U}$ such that for $i \in V, ||x_i|| \ge a - \varepsilon$. So

$$d((x_n), (y_n)) = \inf_{i} ||x_i - y_i|| \ge \sup_{i \in U \cap V} ||x_i|| - ||y_i|| \ge a - 2\varepsilon.$$

Then $d((x_n), (y_n)) \ge \lim_{i \in \mathcal{U}} ||x_i||$ for any $(y_n) \in N_{\mathcal{U}}$, and thus

$$||(x_i)||_{\mathcal{U}} = \inf_{(y_n) \in N_{\mathcal{U}}} d((x_i), (y_n)) \ge \lim_{i, \mathcal{U}} ||x_i||$$

and we are done.

3. We will show that $\mathbb{R} \simeq \mathbb{R}^{\mathcal{U}}$, the ultrapower of \mathbb{R} with respect to \mathcal{U} .

Define a map $\Phi : \mathbb{R}^{\mathcal{U}} \to \mathbb{R}$ by $(x_i) \mapsto \lim_{i,\mathcal{U}} |x_i|$. The map is linear because of the linearity of the limit. It is an isometry since

$$\|(x_i)\|_{\mathcal{U}} = \lim_{i,\mathcal{U}} |x_i| = |\lim_{i,\mathcal{U}} x_i|$$

as $\lim_{i,\mathcal{U}} x_i$ always exists. It is clearly surjective, since for any $x \in \mathbb{R}$ we can take $(x_n) = x$ for all n. Then the two spaces are isometrically isomorphic.