How to work if your independent variables are continuous?

How do we use real values inputs?

Income	Credit	Term	У
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

Split on each numeric value?

Prediction values for above split is Risky (7) and Safe (5)

Similarly you can calculate for <\$50k and >=\$50k, <\$40k and >=\$40k, <\$70k and >=\$70k

Split on the different range values such that where ever you get Minimum classification error. This is finalized.

ADVANTAGES:

- ★ high interpretability easy to expalin
- high visualization power
- ★ close to resemblance to human-thinking process.
- ★ can handle qualitative predictors without creating dummy variables.

DISADVANTAGES:

- ★ lower prediction accuracy
- non-robust with small changes in data