Кодирующие КС-языки Нисходящий разбор

Теория формальных языков $2022 \ z$.

Кодировка путей праволинейной грам-

Рассмотрим путь вывода произвольного слова $a_1 \dots a_n$ в праволинейной грамматике. Он имеет вид $S \to a_1 A_1$; $A_1 \to a_2 A_2$; . . . $A_n \to a_n$. Применим к нему обратный гомоморфизм $h(A_i; A_i \rightarrow) = \varepsilon$ и сотрём префикс $S \rightarrow$, получим искомое слово.

Алфавит:
$$\Sigma \cup \mathbb{N} \cup \{$$
; , $\rightarrow \}$. Описание языка: $\{S \to \mathfrak{a}_\mathfrak{i}(A_\mathfrak{i}; A_\mathfrak{i} \to \mathfrak{a}_\mathfrak{j})^*\}$.

Описание языка привязано к множеству нетерминалов в рассматриваемой грамматике, но левые и правые вхождения нетерминалов можно было бы закодировать скобками, по количеству считающими номер нетерминала.

Кодировка путей КС-грамматики

Аналогично — с кодировкой путей вывода в КС-грамматике. Но здесь есть проблема с "перепутанными скобками": в пути $A_1 \to a_1 A_2 A_3$; $A_2 \to \dots$; $A_3 \to \dots$ имена A_2 и A_3 состоят в зависимости с соответствующими левыми частями, но перемежаются.

Решение

Поменять местами кодировки для A_2 и A_3 в правых частях.

Язык Грейбах

Здесь ε-free вариант. D — язык сбалансированных скобочных структур над $\{(,),[,]\}$.

$$L_0 = \{x_1 c y_1 c z_1 d \dots d x_n c y_n c z_n d | y_1 \dots y_n \in eD \& z_i, x_i$$
 не содержат $e \& y_1 \in e\{(,),[,]\}^* \& y_{i+1} \in \{(,),[,]\}^* \}$

Язык Грейбах

Здесь ε -free вариант. D — язык сбалансированных скобочных структур над $\{(,),[,]\}$.

$$L_0 = \{x_1 c y_1 c z_1 d \dots d x_n c y_n c z_n d \, | \, y_1 \dots y_n \in eD \, \& z_i, x_i$$
 не содержат е & $y_1 \in e\{(,),[,]\}^*$ & $y_{i+1} \in \{(,),[,]\}^*$

Утверждение

Если L — КС-язык, тогда существует $h \in \text{Hom}$ такой, что $h^{-1}(L_0) = L$.

Гомоморфизм Грейбах

Пусть G — грамматика для L в форме Грейбах (Шейлы!). Пронумеруем нетерминалы G так, чтобы стартовый был первым. Построим вспомогательную функцию ξ:

- для правил $A_i \to a$ положим $\xi(i) =)]^i)$
- для правил $A_i \to a A_{j1} \dots A_{jn}$ положим $\xi(i) =)^{[i)}([j^{im}(\dots([j^{i1}($
- $oldsymbol{\circ}$ если $oldsymbol{\mathfrak{i}}=1$, тогда дополнительно припишем префикс e([(.

Пусть терминалом α начинаются левые части правил k_1, \ldots, k_m . Тогда $h(\alpha) = c \, \xi(k_1) c \ldots c \, \xi(k_m) d$.

Коммутативный образ по Пиллингу

Лемма Ардена для коммутативных образов

Пусть правила грамматики имеют следующий вид:

$$\mathsf{T} \to W_1 \mathsf{T}^{i_1} \mathsf{T} \hspace{0.5mm}|\hspace{0.5mm} \ldots \hspace{0.5mm}|\hspace{0.5mm} W_{k-1} \mathsf{T}^{i_{k-1}} \mathsf{T} \hspace{0.5mm}|\hspace{0.5mm} W_k$$

где W_i не содержит T, и степени i_i различны. При этом W_i могут содержать любые регулярные операции над константами и нетерминалами, отличными от Т. Коммутативный образ правил для Т есть $T = (W_1(W_k)^{i_1})^*W_k + \cdots + (W_{k-1}(W_k)^{i_{k-1}})^*W_k.$

Ограничение: меняет местами подвыводы, соединяя те, которые накачиваются отдельно.

μ-регулярные выражения и РБНФ

Определим оператор минимальной неподвижной точки: скажем, что $L(\mu X.r(X))$ — это объединение языков $r(X), r(r(X)), \ldots, r^n(X)$.

Что будет, если добавить в регулярные выражения μ-оператор?

μ-регулярные выражения и РБНФ

Определим оператор минимальной неподвижной точки: скажем, что $L(\mu X.r(X))$ — это объединение языков $r(X), r(r(X)), \ldots, r^n(X)$.

Что будет, если добавить в регулярные выражения µ-оператор?

μ-оператор по переменным + регулярные операции определяют множество всех КС-языков.

Пример: $\mu y.\alpha(\mu x.\alpha xb+y+\alpha)$ определяет грамматику Y \to α X, X \to α X b | Y | $\alpha.$

μ-регулярные выражения и РБНФ

Определим оператор минимальной неподвижной точки: скажем, что $L(\mu X.r(X))$ — это объединение языков $r(X), r(r(X)), \ldots, r^n(X)$.

Что будет, если добавить в регулярные выражения μ-оператор?

μ-оператор по переменным + регулярные операции определяют множество всех КС-языков.

Пример: $\mu y. \alpha (\mu x. \alpha xb + y + \alpha)$ определяет грамматику $Y \to \alpha X,$ $X \to \alpha X b \, |Y| \alpha.$

Неудобно, если язык некоторого нетерминала используется в нескольких правилах (например, $S \to A \ B \mid B \ A$ заставит дважды выписывать μ -выражения для A и B).

В действительности аналогом μ-регулярных выражений выступает РБНФ: в правых частях правил разрешены любые регулярные операции.

Проблемы PDA и сила Рефала

Не всегда по стеку и входным символам можно понять, что делать со стеком. Пример: грамматика палиндромов.

Неформально: заглядывание вперёд на произвольное, но заранее ограниченное число символов не даёт никакой информации о том, что делать со стеком.

- Возьмём слова a^{2p} b a^{2p} и a^{2p} .
- После чтения р символов в первом случае нужно продолжать накапливать стек, а во втором — начинать вынимать из него.
- Но впереди одни и те же α^р букв...

Нисходящий разбор

Пусть PDA-анализатор хранит пару $\langle \alpha, \alpha_i \dots \alpha_{i+k} \rangle$, где α — сент. форма, $\alpha_i \dots \alpha_{i+k}$ — k следующих символов в строке.

- Если $\alpha = A\alpha'$, тогда по правилу $A \to \beta$ стековый анализатор переходит в $\langle \beta\alpha', \alpha_i \dots \alpha_{i+k} \rangle$, либо сообщает об ошибке.
- Если $\alpha = a_i \alpha'$, тогда a_i одновременно снимается со стека и читается во входной строке.

LL(k)-грамматики

Определение

Грамматика G называется LL(k) (left-to-right, leftmost derivation) \Leftrightarrow в ситуации, когда существуют выводы S $\to^* w_1 A \alpha \to w_1 \xi \alpha \to^* w_1 c w_2$, S $\to^* w_1 A \alpha \to w_1 \eta \alpha \to^* w_1 c w_3$, причём с $\in \Sigma^k$, $w_1, w_2, w_3 \in \Sigma^*$, или с $\in \Sigma^{< k}$, $w_2 = w_3 = \epsilon$, всегда $\eta = \xi$.

LL(k)-грамматики

Определение

Грамматика G называется LL(k) (left-to-right, leftmost derivation) \Leftrightarrow в ситуации, когда существуют выводы $S \to^* w_1 A \alpha \to w_1 \xi \alpha \to^* w_1 c w_2$, $S \to^* w_1 A \alpha \to w_1 \eta \alpha \to^* w_1 c w_3$, причём $c \in \Sigma^k$, $w_1, w_2, w_3 \in \Sigma^*$, или $c \in \Sigma^{< k}$, $w_2 = w_3 = \varepsilon$, всегда $\eta = \xi$.

Неформально: неоднозначность в выборе правила грамматики при разборе сверху вниз устраняется заглядыванием вперёд на k букв.

Критерий LL(k)-грамматики

Определим

- FIRST_k(η) = { $\alpha_1 \dots \alpha_j \mid (j < k \& \eta \rightarrow \alpha_1 \dots \alpha_j) \lor (j = k \& \eta \rightarrow \alpha_1 \dots \alpha_k \alpha)$ } $\cup {\{\epsilon \mid \eta \rightarrow^* \epsilon\}}$
- FOLLOW_k(η) = { $\alpha_1 \dots \alpha_j \mid (j < k \& S \rightarrow^* \beta \eta \alpha_1 \dots \alpha_j) \lor (j = k \& S \rightarrow^* \beta \eta \alpha_1 \dots \alpha_k \alpha)$ } \cup {\$ $\mid S \rightarrow^* \beta \eta$ }

Тогда G — LL(k)-грамматика $\Leftrightarrow \forall A \to \alpha, A \to \beta$ (FIRST_k(α FOLLOW_k(A)) \cap FIRST_k(β FOLLOW_k(A)) = \varnothing).

Вычисление FIRST_k

- FIRST_k(A) = { $a_1 \dots a_k | A \rightarrow a_1 \dots a_k \alpha$ } $\cup \{a_1 \dots a_j | j < k \& A \rightarrow a_1 \dots a_j\};$
- До исчерпания: $\forall A \to B_1 \dots B_n$, $FIRST_k(A) = FIRST_k(A) \cup first_k(FIRST_k(B_1) \dots FIRST_k(B_n))$, где $first_k$ это k первых символов строки.

Вычисление FIRST_k

- FIRST_k(A) = { $a_1 \dots a_k | A \rightarrow a_1 \dots a_k \alpha$ } $\cup \{a_1 \dots a_j | j < k \& A \rightarrow a_1 \dots a_j\};$
- До исчерпания: $\forall A \to B_1 \dots B_n$, $FIRST_k(A) = FIRST_k(A) \cup first_k(FIRST_k(B_1) \dots FIRST_k(B_n))$, где $first_k$ это k первых символов строки.

Алгоритм задаёт фундированный порядок на множестве конфигураций $FIRST_k(A_i)$, поэтому рано или поздно множества $FIRST_k$ перестанут изменяться.

Вычисление FOLLOW_k

Добавляем правило из нового стартового символа $S_0 \to S\$$.

- FOLLOW_k(A) = \varnothing для всех A \neq S.
- До исчерпания: $\forall B \to \beta$ и разбиений $\beta = \eta_1 A \eta_2$, $FOLLOW_k(A) = FOLLOW_k(A) \cup first_k(FIRST_k(\eta_2)FOLLOW_k(B))$, где $first_k \longrightarrow$ это k первых символов строки.

Алгоритм также задаёт wfo на множестве конфигураций $FOLLOW_k(A_i)$.

13 / 25

Таблица LL(k)-разбора

Таблица $T_k(A, x)$ по нетерминалу A и lookahead-символам xвычисляет правило для парсинга.

```
for all A \rightarrow \alpha
for all x \in first_k(FIRST_k(\alpha) FOLLOW_k(A))
   if T_k(A,x) не задано, тогда T_k(A,x) = A \rightarrow \alpha
         else объявление о конфликте
```


PDA для LL(1)-грамматик

- Чтение терминалов с ленты происходит только в одном состоянии, при этом не меняется стек, но делается переход в другое состояние (учёт lookahead-ов).
- Во всех остальных состояниях только меняется стек. Переход ничего не читает с ленты и возвращает автомат в читающее состояние.

Для LL(k) аналогично, но состояния будут соответствовать k последним прочитанным буквам.

LL(k)-грамматики без ε-правил

Пример

Стандартный алгоритм удаления є-правил приводит к разрушению LL-свойств:

 $\begin{array}{ccc} S & \rightarrow & ABC \\ A & \rightarrow & \alpha A \,|\, d \\ B & \rightarrow & b \,|\, \epsilon \\ C & \rightarrow & c \,|\, \epsilon \end{array}$

______ LL(k)-грамматики без ε-правил

Утверждение (Куроки-Суонио)

Всякая LL(k)-грамматика может быть преобразована в LL(k+1)-грамматику без ε -правил.

LL(k)-грамматики без ε-правил

Утверждение (Куроки-Суонио)

Всякая LL(k)-грамматика может быть преобразована в LL(k+1)-грамматику без ε -правил.

Идея доказательства

Сначала избавимся от всех правил, начинающихся с nullable-нетерминала, путём введения notnull-двойников.

Затем присоединим все nullable-нетерминальные отрезки, стоящие в правых частях, к предшествующим им notnull-нетерминалам, и объявим полученные строки новыми нетерминалами.

В новых правилах nullable-кусок приписывается к самому последнему нетерминалу в правой части.

Пример устранения ε без разрушения LL-свойства

$$\begin{array}{lll} S \rightarrow ABC \,|\, Bk & A \rightarrow \alpha A \,|\, d \\ B \rightarrow b \,|\, \epsilon & C \rightarrow c \,|\, \epsilon \end{array}$$

Сначала избавимся от обнуляемого нетерминала в начале правой части правила стандартным приёмом:

$$\begin{array}{lll} S \rightarrow ABC \,|\, B'k \,|\, k & A \rightarrow \alpha A \,|\, d \\ B \rightarrow b \,|\, \epsilon & C \rightarrow c \,|\, \epsilon & B' \rightarrow b \end{array}$$

Пример устранения ε без разрушения LL-свойства

$$\begin{array}{lll} S \rightarrow ABC \,|\, B'k \,|\, k & A \rightarrow \alpha A \,|\, d \\ B \rightarrow b \,|\, \epsilon & C \rightarrow c \,|\, \epsilon & B' \rightarrow b \end{array}$$

Теперь присоединим правый обнуляемый контекст к A и протащим его по правилу переписывания для A:

$$\begin{array}{ll} S \rightarrow [ABC] \,|\, B'k \,|\, k & [ABC] \rightarrow \alpha [ABC] \,|\, [dBC] \\ B \rightarrow b \,|\, \epsilon & C \rightarrow c \,|\, \epsilon & B' \rightarrow b \end{array}$$

Пример устранения ε без разрушения LL-свойства

$$\begin{array}{ll} S \rightarrow [ABC] \,|\, B'k \,|\, k & [ABC] \rightarrow \alpha [ABC] \,|\, [dBC] \\ B \rightarrow b \,|\, \epsilon & C \rightarrow c \,|\, \epsilon & B' \rightarrow b \end{array}$$

Определяем правила переписывания для нетерминала [dBC], соответствующие коллапсу всего обнуляемого контекста, его префиксов, и непустой развёртке префикса.

$$\begin{array}{lll} S \rightarrow [ABC] \mid B'k \mid k & [ABC] \rightarrow \alpha[ABC] \mid [dBC] \\ [dBC] \rightarrow d[bC] \mid dc \mid d & B \rightarrow b \mid \epsilon \\ C \rightarrow c \mid \epsilon & B' \rightarrow b \end{array}$$

Пример устранения ε без разрушения LL-свойства

$$\begin{array}{lll} S \rightarrow [ABC] \mid B'k \mid k & [ABC] \rightarrow \alpha [ABC] \mid [dBC] \\ [dBC] \rightarrow d[bC] \mid dc \mid d & B \rightarrow b \mid \varepsilon \\ C \rightarrow c \mid \varepsilon & B' \rightarrow b \end{array}$$

Аналогично обрабатываем нетерминал [bC] и удаляем все правила для обнуляемых нетерминалов из грамматики.

$$\begin{array}{lll} S \rightarrow [ABC] \,|\, B'k \,|\, k & [ABC] \rightarrow \alpha [ABC] \,|\, [dBC] \\ [dBC] \rightarrow d[bC] \,|\, dc \,|\, d & [bC] \rightarrow bc \,|\, b & B' \rightarrow b \end{array}$$

Лемма Розенкранца-Стирнса

Утверждение

Если G — LL(k)-грамматика, тогда вышеописанный алгоритм устранения є-правил всегда завершается, поскольку ни на одном шаге не появляется новых нетерминалов, дважды присоединяющих в правый контекст один и тот же обнуляемый нетерминал грамматики G.

Покажем, что в общем случае алгоритм может и не завершаться. Рассмотрим следующую грамматику, не являющуюся однозначной (и следовательно, LL(k) ни для какого значения k).

$$S \to SS \,|\, \alpha \,|\, \epsilon$$

Лемма Розенкранца-Стирнса

Утверждение

Если G — LL(k)-грамматика, тогда вышеописанный алгоритм устранения є-правил всегда завершается.

Покажем, что в общем случае алгоритм может и не завершаться. Рассмотрим следующую грамматику, не являющуюся однозначной (и следовательно, LL(k) ни для какого значения k).

$$S \rightarrow SS \mid \alpha \mid \varepsilon$$

По алгоритму, устраним сначала обнуляемый правый нетерминал.

$$S \rightarrow S'S |S'| \alpha |\epsilon \quad S' \rightarrow S'S |S'| \alpha$$

Теперь присоединим обнуляемые контексты (это оставшиеся вхождения S) и посмотрим, какие правила получатся для нового нетерминала [S'S].

$$S \rightarrow [S'S] | S' | \alpha | \epsilon$$
 $S' \rightarrow [S'S] | S' | \alpha$ $[S'S] \rightarrow S'SS | S'S | \alpha S$

Лемма Розенкранца-Стирнса

Покажем, что в общем случае алгоритм может и не завершаться. Рассмотрим следующую грамматику, не являющуюся однозначной (и следовательно, LL(k) ни для какого значения k).

$$S \to SS \,|\, \alpha \,|\, \epsilon$$

По алгоритму, устраним сначала обнуляемый правый нетерминал.

$$S \rightarrow S'S \,|\, S' \,|\, \alpha \,|\, \epsilon \quad S' \rightarrow S'S \,|\, S' \,|\, \alpha$$

Теперь присоединим обнуляемые контексты (это оставшиеся вхождения S) и посмотрим, какие правила получатся для нового нетерминала [S'S].

$$S \rightarrow [S'S] |S'| \alpha | \epsilon$$
 $S' \rightarrow [S'S] |S'| \alpha$ $[S'S] \rightarrow S'SS |S'S| \alpha S$

Видно, что нужно порождать новый нетерминал, потому что обнуляемый контекст у правила $[S'S] \to S'SS$ — это уже два вхождения S. После его порождения опять получим правило вида $[S'SS] \to S'SSS$. и вообще, для каждого нового $[S'S^n]$ — правило $[S'S^n] \to S'S^{n+1}$. Значит, ни на какой итерации процесс не сходится.

GNF для LL(k)-грамматики

Утверждения

- Ни одна леворекурсивная грамматика не LL(k) ни для какого k.
- Всякая LL(k)-грамматика может быть преобразована в LL(k+1)-грамматику в GNF.

LL(k)-языки

Определение

CFL L — это LL(k)-язык, если для него существует LL(k)-грамматика.

LL(k)-языки

Определение

CFL L — это LL(k)-язык, если для него существует LL(k)-грамматика.

Существуют LL(k), но не LL(k-1)-языки.

Рассмотрим язык $\{a^n(b^kd|b|c)^n\}$. Это LL(k)-язык:

$$\begin{array}{ccc} S & \rightarrow & \alpha CA \\ C & \rightarrow & \alpha CA \,|\, \epsilon \\ A & \rightarrow & bB \,|\, c \\ B & \rightarrow & b^{k-1}d \,|\, \epsilon \end{array}$$

Неформально: не LL(k-1) потому, что иначе бы имелась LL(k)-грамматика в GNF для L. В стеке разбора для префикса \mathfrak{a}^n оказалось бы больше, чем 2k-1 символов. Подставляя варианты суффиксов к \mathfrak{a}^{n+k-1} , получаем противоречие (метод подмены).

Метод подмены

Общая схема метода

- Рассматриваем сразу LL(k)-грамматику в GNF.
- Показываем, что в её стеке в состоянии α должно находиться не меньше, чем f(k) разных символов при предъявлении тех же самых lookahead k символов.
- После данных k символов предъявляем длинный суффикс, отрезок которого должен контекстно-свободно выводиться из некоторого нетерминала в стеке.
- Предъявляем другой суффикс к тому же префиксу и lookahead, в котором не может быть такого отрезка, и подменяем вывод нетерминала.

Техника метода подмены

- Ищем такие два слова xfy, xfz, что |f| = k и при чтении префикса x стек мог неограниченно разрастись (т.е. есть синхронная накачка хотя бы одной из пар x и y и x и z). Предполагаем высоту стека равной хотя бы k + t (где t выбирается в зависимости от задачи).
- к символов в стеке при выталкивании точно распознают фрагмент f (lookahead). Рассматриваем, что может распознаться остальными t символами. Комбинируем распознанные фрагменты и показываем, что их комбинация не входит в язык.
- Либо если в стеке осталось t символов, а длина, например, у меньше t, тогда с этим стеком точно нельзя распознать у.

Пример подмены

Может ли язык $\{a^nb^n\} \cup \{a^nc^n\}$ задаваться LL(k)-грамматикой для некоторого k?

Пусть такое k нашлось (без ограничения общности — в GNF). Рассмотрим слово $a^{n+k}b^{n+k}$ и подберём такое n, что после чтения a^n LL-анализатор имеет в стеке не меньше k+2 символов. Пусть последний символ — это Y. Он распознает некоторое подслово суффикса b^{n+k} , а именно b^s . Теперь подменим строку на $a^{n+k}c^{n+k}$. В этом случае Y должен распознать некоторое c^t . Но значит, $a^{n+k}b^{n+k-s}c^t \in L$, что невозможно.

Опциональный Else

Рассмотрим GNF-грамматику для языка $\{a^nb^m\,|\,n\geqslant m\}.$

Опциональный Else

Рассмотрим GNF-грамматику для языка $\{a^nb^m \mid n \geqslant m\}$. Положим $w=a^{n+k}b^{n+k}$, где n таково, что в стеке на момент чтения a^n не меньше, чем k+2 нетерминала. Тогда при подмене w на a^{n+k+1} из стека достанется только k нетерминалов, и слово a^{n+k+1} распознаться не сможет.

Опциональный Else

Рассмотрим GNF-грамматику для языка $\{a^nb^m \mid n \geqslant m\}$. Положим $w=a^{n+k}b^{n+k}$, где n таково, что в стеке на момент чтения a^n не меньше, чем k+2 нетерминала. Тогда при подмене w на a^{n+k+1} из стека достанется только k нетерминалов, и слово a^{n+k+1} распознаться не сможет.

Следствие

Опциональный else не парсится с помощью LL-разбора.

Свойства LL(k)-языков

Утверждение

- LL(k)-языки не замкнуты относительно объединения.
- LL(k)-языки не замкнуты относительно пересечения с регулярным языком (пример: $\{a^nba^nb\} \cup \{a^nca^nc\}$ не LL(k)-язык).
- Если L LL(k)- нерегулярный язык, то его дополнение не LL(k) ни для какого k.
- (Более сильное утверждение) Если $L_1 \cup L_2$ регулярный язык, и L_1 нерегулярный LL(k)-язык, то L_2 не LL(k) ни для какого k.