

COMP3430 / COMP8430 Data wrangling

Lecture 19: Record linkage evaluation (1)

(Lecturer: Peter Christen)

Lecture outline

Evaluating the record linkage process

Linkage quality measures

Linkage complexity measures

Evaluating the record linkage process

- Different techniques are available for each step of the record linkage process (cleaning and standardisation, blocking, comparison, and classification)
- When employing a record linkage system, one wants to get the best possible results within operational constraints (linkage time, computational resources, minimum linkage quality, available software and human expertise, etc.)
- Measures are required to evaluate the two main aspects of record linkage
 - Linkage quality (effectiveness)
 - Linkage complexity (efficiency)

Measuring linkage quality (1)

- Achieving high linkage quality is a main goal of most record linkage projects / applications
- Questions: What affects linkage quality?
 What is required in order to be able to measure linkage quality?

Measuring linkage quality (2)

- Ground truth data is needed to measure linkage quality
 - A set of true matching record pairs
 - A set of true non-matching record pairs
- How to obtain such ground truth data?
 - Results of a previous linkage
 - Manual clerical review (more in the next lecture) or manually classified (sampled) record pairs
 - Contact all individuals in the databases and ask them?
- How confident can one be such ground truth data is always correct?

Measuring linkage quality (3)

- Various difficulties with manually prepared ground truth data
 - It is easy to classify record pairs that have totally different attribute values as non-matches
 - It is (generally) easy to classify record pairs that are very similar as matches (but what about twins, or if not enough information is available?)
 - It is difficult to classify record pairs where some attribute values are the same/similar while others are different
 - Studies have shown that manual classification of record pairs is never 100% correct
 - Domain expertise is often required (such as knowledge about names and their origins / cultures)
 - If randomly sampled, most record pairs will be non-matches

Measuring linkage quality with ground truth (1)

- Assuming ground truth data are available, the classification of record pairs into matches and non-matches has four possible outcomes:
 - True positives (TP): True matches correctly classified as matches (correct matches)
 - False negatives (FN): True matches incorrectly classified as non-matches (false non-matches)
 - True negatives (TN): True non-matches correctly classified as non-matches (correct non-matches)
 - False positives (FP): True non-matches incorrectly classified as matches (false matches)

Measuring linkage quality with ground truth (2)

True matches True non-matches Classified matches Classified non-matches FP TN FN

Measuring linkage quality with ground truth (3)

- Due to the quadratic comparison space, the number of true non-matches is usually much larger than the number of true matches
 - As the number of records in the databases to be linked increases, the number of true matches increases *linearly* while the number of possible record pairs increases *quadratically*
- This holds even after blocking
- **Question**: Assuming no duplicates in two databases with 1 and 5 million records, respectively, what is the maximum number of true matches between these two databases?

Error or confusion matrix (1)

		Predicted classes	
		Matches	Non-matches
Actual classes	Matches	True positives (true matches)	False negatives (false non-matches)
	Non-matches	False positives (false matches)	True negatives (true non-matches)

Error or confusion matrix (2)

- Based on the values in the four cells of the error/confusion matrix, different linkage quality measures can be defined
- These measures are binary classification measures as also used in other domains
 - Machine learning and data mining
 - Information retrieval (Web search)
 - Medical tests
 - Security (airport screening), etc.
- There is often a trade-off between the number of false positives and false negatives (as one goes down the other goes up)

Accuracy

- Widely used in machine learning and data mining
- Considers both true positives and true negatives

$$acc = (TP + TN) / (TP + FP + FN + TN)$$

• **Question**: Is accuracy a good measure for record linkage? Why or why not?

Precision (or positive predictive value)

- Widely used in information retrieval (Web search) to assess the quality of search results (how many documents retrieved for a query are relevant?)
- Considers only true positives

$$prec = TP / (TP + FP)$$

 For record linkage, it measures how many of the classified matches are true matches

Recall (or positive predictive value)

- Widely used in information retrieval to assess the quality of search results (how many of all relevant documents have been retrieved for a query?)
- Considers only true positives

$$reca = TP / (TP + FN)$$

 For record linkage, it measures how many of all true matches have been classified as matches

F-measure: Combining precision and recall

 Precision and recall are often combined into the F-measure (or F-score):

```
fmeas = 2 * (prec * reca) / (prec + reca)
```

- It is the *harmonic mean* of precision and recall
- As precision goes up (e.g. lowering a similarity threshold), recall goes down, and vice-versa
- **But**: Recent research has shown that comparing F-measure results can be misleading (Hand and Christen, Statistics and Computing, 2017)

Visualising linkage quality results (1)

- Each of the presented measures is calculated based on a specific error / confusion matrix
- Each classifier, and each change in a classifier parameter, will produce a different error matrix
 - Lowering a classification threshold, t, will usually increase the numbers of TP but also FP, and lower the numbers of TN and FN
 - Raising a classification threshold leads to the opposite
- To better understand classifiers and to compare them, plots are useful tools (for example for different classification thresholds)

Visualising linkage quality results (2)

 F-measure graph shows precision, recall and f-measure for different classifier thresholds

Visualising linkage quality results (3)

 Precision-recall graph shows precision versus recall for different classifier thresholds

Visualising linkage quality results (4)

 ROC (receiver operating curve) graph shows true positive rate versus false positive rate for different classifier thresholds

Measuring linkage complexity

- We can easily measure run-time and memory consumption of a linkage program / system (but is this meaningful)?
- Generally, platform independent measure are better
 - Allows the performance of systems to be compared even when not run on the same computing platform (but same data sets and same parameter settings)
- Linkage complexity is generally measured by the number of record pairs that need to be compared
 - The number of candidate record pairs generated by blocking

Reduction ratio

- Measures by how much a blocking technique is able to reduce the comparison space
 - Compared to the full pair-wise comparison of all record pairs

$$rr = 1 - (s_M + s_N) / (n_M + n_N)$$

where:

- $-s_{M}$ and s_{N} are the number of true matching and non-matching candidate record pairs generated by a blocking technique
- $-n_{_{M}}$ and $n_{_{N}}$ are the total number of true matching and non-matching record pairs (in the pair-wise comparison space)

Pairs completeness

- Measures how many true matches 'pass' through a blocking process
- It corresponds to the recall of blocking

$$pc = s_{M}/n_{M}$$

• It requires the truth match status of all record pairs (as with the linkage quality measures)

Pairs quality

- Measures how many candidate record pairs generated by blocking are true matches
- It corresponds to the precision of blocking

$$pq = s_M / (s_M + s_N)$$

• It requires the truth match status of all record pairs (as with the linkage quality measures)