Linear Algebra 4.2 Homework

Michael Brodskiy

Instructor: Prof. Knight

1. (0,0,0,0)

5. 0 or
$$0 + 0x + 0x^2 + 0x^3$$

7.
$$(a, b, c) + (-a, -b, -c) = (0, 0, 0)$$

9.
$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} + \begin{bmatrix} -a & -b & -c \\ -d & -e & -f \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

11.
$$a + bx + cx^2 + dx^3 + ex^4 + (-a - bx - cx^2 - dx^3 - ex^4) = 0$$

- 13. $M_{4,6}$ meets all axioms, and, therefore, is a vector space
- 15. P_3 does not meet axiom one, and, therefore, is not a vector space. (For example, if $v_1 = 1 x^3$ and $v_2 = 1 + x^2 + x^3$, then $v_1 + v_2 = 2 + x^2$, and is not in P_3)
- 21. The set $\{(x,y): x \ge 0, y \text{ is a real number}\}$ is not a vector space because it fails axiom six. If (x,y)=(1,1), and c=-1, then c(x,y) is not in the vector space
- 24. The set $\{(x, \frac{1}{2}x) : x \text{ is a real number}\}$ meets all 10 axioms, and is therefore a vector space
- 26. The set of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ c & 1 \end{bmatrix}$ fails axiom six, and, therefore, is not a vector space (ex. $k = -1 \Rightarrow k \begin{bmatrix} a & b \\ c & 1 \end{bmatrix} = \begin{bmatrix} -a & -b \\ -c & -1 \end{bmatrix}$, and is no longer in \mathbf{V})
- 27. The set of all 3×3 matrices of the form $\begin{bmatrix} 0 & a & b \\ c & 0 & d \\ e & f & 0 \end{bmatrix}$ meets all 10 axioms and is, therefore, a vector space

- 34. The set of all 3×3 upper triangular matrices meet all 10 axioms, and, therefore, are vector spaces
- 35. C[0,1], the set of all continuous functions defined on the interval [0,1] meet all 10 axioms, and, therefore, are vector spaces
- 36. C[-1,1], the set of all continuous functions defined on the interval [-1,1] meet all 10 axioms, and, therefore, are vector spaces
- 37. By the definition given, it is not a vector space, because it fails axioms 4,5,7, and 8.
 - (a) $x_1 + y_1 = x_1 y_1$ is in **V** \checkmark
 - (b) $x_1 + y_1 = x_1 y_1 = y_1 x_1 = y_1 + x_1$ is true \checkmark
 - (c) $x_1 + (y_1 + z_1) = x_1 + y_1 z_1 = x_1 y_1 z_1 = x_1 y_1 + z_1 = (x_1 + y_1) + z_1$ is true \checkmark
 - (d) $x_1 + 0 = x_1 \cdot 0$ is not true X
 - (e) $x_1 + (-a) = 0 \Rightarrow -ax_1$ is not true X
 - (f) $cx_1 = x_1^c$ is in $\mathbf{V} \checkmark$
 - (g) $c(x_1 + y_1) \neq cx_1 + cy_1 \times$

i.
$$c(x_1 + y_1) = (x_1 + y_1)^c$$

ii.
$$cx_1 + cy_1 = x_1^c + y_1^c$$

(h) $(c+d)x_1 \neq cx_1 + dx_1 \times$

i.
$$(c+d)x_1 = x_1^{(c+d)}$$

ii.
$$cx_1 + dx_1 = x_1^c + x_1^d$$

(i) $c(dx_1) = (cd)x_1 \checkmark$

i.
$$c(dx_1) = cx_1^d = x_1^{cd}$$

ii.
$$(cd)x_1 = x_1^{cd}$$

(j)
$$1x_1 = x_1^1$$
 is true \checkmark

40. $M_{2,2}$ is a vector space because:

(a)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$
 is in \mathbf{V}

(b)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ q & h \end{bmatrix} = \begin{bmatrix} e & f \\ q & h \end{bmatrix} + \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is true \checkmark

(c)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \left(\begin{bmatrix} e & f \\ g & h \end{bmatrix} + \begin{bmatrix} i & j \\ k & l \end{bmatrix} \right) = \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} \right) + \begin{bmatrix} i & j \\ k & l \end{bmatrix}$$
 is true \checkmark

(d)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 exists \checkmark

(e)
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} = 0$$
 exists \checkmark

(f)
$$k \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} ka & kb \\ kc & kd \end{bmatrix}$$
 is in $\mathbf{V} \checkmark$

(g)
$$k \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} \end{pmatrix} = k \begin{bmatrix} a & b \\ c & d \end{bmatrix} + k \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$
 is true \checkmark

(h)
$$(k+l)\begin{bmatrix} a & b \\ c & d \end{bmatrix} = k\begin{bmatrix} a & b \\ c & d \end{bmatrix} + l\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is true \checkmark

(i)
$$k \left(l \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = (kl) \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is true \checkmark

(j)
$$1 \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is true \checkmark

- 41. (a) It is not a vector space because axiom eight fails. For example, if c = 5 and d = 10, $(5 + 10)(x_1, y_1) = (15x_1, y_1)$, while $5(x_1, y_1) + 10(x_1, y_1) = (15x_1, 2y_1)$
- 42. (d) By this \mathbb{R}^3 definition, it is a vector space

i.
$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2 + 1, y_1 + y_2 + 1, z_1 + z_2 + 1)$$
 is in $\mathbf{V} \checkmark$

ii.
$$\overrightarrow{\mathbf{v}}_1 + \overrightarrow{\mathbf{v}}_2 = \overrightarrow{\mathbf{v}}_2 + \overrightarrow{\mathbf{v}}_1$$
 is true \checkmark

iii.
$$\overrightarrow{\mathbf{v}}_1 + (\overrightarrow{\mathbf{v}}_2 + \overrightarrow{\mathbf{v}}_3) = (\overrightarrow{\mathbf{v}}_1 + \overrightarrow{\mathbf{v}}_2) + \overrightarrow{\mathbf{v}}_3$$
 is true \checkmark

iv.
$$(x_1, y_1, z_1) + \overrightarrow{\mathbf{o}} = (x_1 + o_1 + 1, y_2 + o_2 + 1, z_1 + o_3 + 1) \Rightarrow \overrightarrow{\mathbf{o}} = (-1, -1, -1)$$

v.
$$(x_1, y_1, z_1) + (a, b, c) = (-1, -1, -1) \Rightarrow \begin{cases} a = -x_1 - 2 \\ b = -y_1 - 2 \end{cases} \checkmark$$

 $c = z_1 - 2$

vi.
$$c(x_1, y_1, z_1) = (cx + c - 1, cy + x - 1, cz + c - 1)$$
 is in **V** \checkmark

vii.
$$c(\overrightarrow{\mathbf{v}}_1 + \overrightarrow{\mathbf{v}}_2) = c\overrightarrow{\mathbf{v}}_1 + c\overrightarrow{\mathbf{v}}_2$$

A.
$$c((x_1, y_1, z_1) + (x_2, y_2, z_2)) = c(x_1 + x_2 + 1, y_1 + y_2 + 1, z_1 + z_2 + 1) \Rightarrow (c(x_1 + x_2 + 1) + c - 1, c(y_1 + y_2 + 1) + c - 1, c(z_1 + z_2 + 1) + c - 1)$$

B.
$$c(x_1, y_1, z_1) + c(x_2, y_2, z_2) =$$

 $(cx_1 + c - 1, cy_1 + c - 1, cz_1 + c - 1) + (cx_2 + c - 1, cy_2 + c - 1, cz_2 + c - 1) \Rightarrow$
 $(cx_1 + cx_2 + 2c - 2 + 1, cy_1 + cy_2 + 2c - 2 + 1, cz_1 + cz_2 + 2c - 2 + 1) =$
 $(cx_1 + cx_2 + 2c - 1, cy_1 + cy_2 + 2c - 1, cz_1 + cz_2 + 2c - 1)$

viii.
$$(c+d)\overrightarrow{\mathbf{v}}_1 = c\overrightarrow{\mathbf{v}}_1 + d\overrightarrow{\mathbf{v}}_1 \checkmark$$

A.
$$(c+d)(x_1, y_1, z_1) =$$

 $((c+d)x_1 + (c+d) - 1, (c+d)y_1 + (c+d) - 1, (c+d)z_1 + (c+d) - 1)$

B.
$$c(x_1, y_1, z_1) + d(x_1, y_1, z_1) =$$

 $(cx_1 + c - 1, cy_1 + c - 1, cz_1 + c - 1) + (dx_1 + d - 1, dy_1 + d - 1, dz_1 + d - 1) \Rightarrow$
 $((c + d)x_1 + (c + d) - 1, (c + d)y_1 + (c + d) - 1, (c + d)z_1 + (c + d) - 1)$

ix.
$$c(d\overrightarrow{\mathbf{v}}_1) = (cd)\overrightarrow{\mathbf{v}}_1 \checkmark$$

A.
$$(cd)\overrightarrow{\mathbf{v}}_1 = (cdx_1 + cd - 1, cdy_1 + cd - 1, cdz_1 + cd - 1)$$

B.
$$c(d\overrightarrow{\mathbf{v}}_1) = c(dx_1 + d - 1, dy_1 + d - 1, dz_1 + d - 1) =$$

 $(c(dx_1 + d - 1) + c - 1, c(dy_1 + d - 1) + c - 1, c(dz_1 + d - 1) + c - 1) \Rightarrow$
 $(cdx_1 + cd - 1, cdy_1 + cd - 1, cdz_1 + cd - 1)$

x.
$$1(x_1, y_1, z_1) = (1x_1 + 1 - 1, 1y_1 + 1 - 1, 1z_1 + 1 - 1) = (x_1, y_1, z_1)$$
 \checkmark