APPENDIX A

Conventions followed in specification

Note 1

Where Von Neumann architecture is represented diagrammatically, the following symbols are used:

Arithmetic logic unit	
Register	
Control unit	

Note 2

Where candidates are required to apply computing-related mathematics, the following arithmetical and relational operators will be used:

Operator	Meaning	Example
>	Greater than	A>B will return TRUE if the value of A is higher than the value of B otherwise it will return FALSE.
<	Less than	A <b a="" b="" false.<="" if="" is="" it="" lower="" of="" otherwise="" return="" td="" that="" the="" true="" value="" will="">
<=	Less than or equal to	A<=B will return TRUE if A is the same as or lower than B otherwise it will return FALSE.
>=	Greater than or equal to	A>=B will return TRUE if A is the same as or higher than B otherwise it will return FALSE.
<>	Not equal to	A<>B will return TRUE if A is not the same as B but FALSE if A is the same as B.
EQUALS (usually =)	The same as	A=B will return TRUE if A is the same as B otherwise it will return FALSE.
AND	Both statements must be true for the argument as a whole to be true.	(A=1) AND (B=4) will return TRUE if A is 1 and B is 4. It would return FALSE in all other situations.
OR	Only one of the statements needs to be true for the argument as a whole to be true.	(A=1) OR (B=4) will return TRUE if A is 1 or B is 4. It would only return FALSE if A is not 1 and B is not 4.
NOT	The opposite of	NOT(A) will return TRUE if A is FALSE and FALSE if A is TRUE.

XOR	The argument is false if both statements are true.	A XOR B would return TRUE if A and B are different values.
	The argument is false if both statements are false.	
	Otherwise the statement is true.	
DIV	Integer division	11 DIV 2 = 5
	Finds the quotient or the 'whole number of times' a divisor can be divided into a number.	The quotient is 5 as 2 divides into 11 a whole number of 5 times
MOD	Modulo division	11 MOD 2 = 1
	Finds the remainder when a divisor is divided into a number.	The remainder is 1 as 2 divides 5 times into 11 with '1 remaining'

Note 3

Algorithms written in pseudo code will be represented using the following convention:

Construct	Example usage
Declare subroutines	Declare CapitalLetterOfName End Subroutine
Call a subroutine	call SubroutineNeeded
Declare and use arrays	myarray[99]
Literal outputs	output "Please enter a number"
Variable names	myvariable
Define variable data type	myvariable is integer
Data types	integer, character, string, boolean, real
Assignment	set counter = 0
Selection	if else end if
Indent at least single space after if or do or repeat etc.	<pre>if counter = 1 output counter end if</pre>
Annotation	{Some annotation goes here}
Comments	/** Comments for program */
Repetition	for i next i repeat until do loop do while while repeat

Logical operators AND, OR, NOT and XOR will be in upper case. Logical TRUE and FALSE will be in upper case.

Note 4

Algorithms represented using a flowchart will use the following convention:

Start / Stop procedure	
Decision box	\Diamond
Input / Output	
Operation	
Connector	
Store / Subroutine call	
Flow of control (Arrowhead indicates direction of flow)	•