FCS152 Tutorial 11 Paths, Circuits & Trees

- 1. (i) Give an example of a graph that has an Euler Circuit but not a Hamilton Circuit.
 - Give an example of a graph that has a Hamilton Circuit but not an (ii) Euler Circuit.
 - (iii) Give an example of a graph that has a circuit which is both an Euler Circuit and a Hamilton Circuit.
 - (iv) Give an example of a graph that has a Hamilton Circuit and an Euler Circuit but they are not the same.
- 2. Determine whether each of the following graphs has.
 - An Euler Circuit. Construct such a circuit when one exists. (i)
 - An Euler path but not an Euler Circuit. Construct such a path when one (ii) exists.

3. Determine whether the following graphs given by their adjacency matrices have a Hamilton circuit. If so find such a circuit. If it does not, give an argument to show why no such circuit exists. Do the graphs have a Hamilton path. If so, find such a path. If not, give the reason.

$$\mathbf{A}\mathbf{1} = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}1 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{A}2 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{A}3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$\mathbf{A}3 = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{bmatrix} \qquad \mathbf{A}4 = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

4. Consider the following binary tree T.

- Find the depth of T. (i)
- (ii) Traverse T using the preorder algorithm.
- (iii) Traverse T using the inorder algorithm.
- Traverse T using the postorder algorithm. (iv)