Reasoning and Proof

The National Council of Teachers of Mathematics reasoning and proof process standard in high school mathematics

Christopher H. Harvey

Introduction

- Which is more important?
 - * knowing how to do something
 - Knowing how something works

- The drive for proof:
 - Recognition of patterns, structure, and regularities
 - Question if they are coincidental or not
- Eliciting a better understanding

R&P in Education

- R&P is severely underrepresented in the mathematics classroom
- Why? Logical thinking is a natural cognitive process
- R&P and logical thinking should be developed throughout students' entire education

Content and Process

- To prove a conjecture:
 - ødetermine its validity
 - avoid misconceptions
 - have proficient knowledge in content areas and content standards

Measures of R&P

- Levels of Cognitive Demand
- Van Heile Model of Reasoning
- spectrums of proof and counterexample

Levels of Cognitive Demand

- Memorization
- Procedures without Connections
- Procedures with Connections
- Doing Mathematics

Van Heile Model of Reasoning

- Holistic Level
- Analytic Level
- Abstract Level
- Deductive Level
- ® Rigorous Level

Proofs and Counterexamples

- Proofs:
 - no response
 - restatement
 - @ counterexample
 - @ empirical
 - symbolic
 - structural
 - o completeness

- © Counterexample:
 - no response
 - proof
 - @inadequate
 - justification
 - @ incomplete
 - @ adequate

Table 2
Seven types of proof productions

Production	Description
No response	Left blank, no relevant knowledge, presented as a guess
Restatement	Restated the problem with students' own language but no basis for constructing a proof
Counterexample	Gave an incorrect counterexample attempts to refute a true proposition
Empirical	Used examples as demonstrations
Non-referential symbolic	Manipulated symbols behind the meanings involved in problem situations with logical errors but did not produce a proof
Structural	Presented mathematical definitions, relevant axioms or theorems that could construct a valid proof but making logical errors
Completeness	Provided a complete proof

Table 3
Six types of counterexample productions

Production	Description
No response	Left blank or no relevant knowledge presented as a guess
Proof	Gave an incorrect proof attempts to prove a false proposition
Inadequate	Provided a counterexample that failed to refute a false proposition or did not exist
Justification	Narrated a proposition that was false instead of providing a counterexample to refute it
Incomplete	Provided a counterexample that succeeded by refuting a false proposition but making logical errors
Adequate	Provided a complete counterexample

(Ko & Knuth, 2009, p. 71)

Mathematical Reasoning

Inductive Reasoning

- Make general statements about specific examples
- Not proof by induction
- commonly associated with false generalizations, e.g. multiplication of matrices is commutative
- inductive reasoning is a useful skill, e.g. expanding a specific rule to a general form

Deductive Reasoning

- Make specific statements from general examples
- Patterns of thinking involve applying known facts to specific situations to arrive at a logical consequence
- Axiomatic systems
- Formal proofs

some examples

- process of elimination
- syllogism

8	6	9		2				
			7				5	9
				6		8		
	4							
		5	თ					7
	2					6		
		7	5		9			

http://www.sharewarecentral.com/

Axiomatic System

- This is an important topic but I will cover it briefly
- systems founded on axioms, or self-evident truths
- ovan Heile's Rigorous Level: comparison of different systems
- otruth is relative

Formal Proofs

- Disproof by Counterexample
 - Proof by Example
- Direct Proof (modus ponens)
- Indirect Proof (modus tollens)
 - Proof by Contradiction (reductio ad absurdum)

- Proof by Induction
 - Weak Induction
 - Strong Induction

Disproof by Counterexample

- © counterexamples disprove general conjectures, examples prove specific ones
- *All primes are odd." Counterexample: 2
- "There exists an even prime." Example: 2
- disproving a conjecture by counterexample is proving its negation by example

Direct Proof

- Modus ponens (modus ponendo ponens) "the way that affirms by affirming"
- if the implication and hypothesis are true, then the conclusion must be true

p	q	p→q	\ p	→ q
F	F	T	F	T
F	T	T	F	T
T	F	F	F	T
T	T	T	T	T

Indirect Proof

- Modus tollens (modus tollendo tollens) "the way that denies by denying"
- if the implication is true and the conclusion is false, then the hypothesis must be false

Р	q	p→q	\ ¬q	→ ¬p
F	F	T	T	T
F	T	T	F	T
T	F	F	F	T
T	T	T	F	T

Proof by Contradiction

- Reductio ad absurdum "reduction to the absurd"
- otype of indirect proof
- oused if there is no contrapositive
 - assume the negation is true and arrive at a contradiction with a previously known fact
 - this contradiction dictates that the negation cannot be true, a.k.a. the original statement cannot be false
 - then the original statement must be true

Proof by Induction

- oused to show a property is true for all natural numbers
- base case(s): show it is true for one or some cases
- inductive hypothesis: assume it is true for any given case

- inductive step: show that if it is true for a given case, it is true for the case after that
- finally, deduce that it must be true for all cases

English versus Logic

Logical AND

- "This party is full of math AND music majors."
- Are there any non-music math majors at the party? Are there any non-math music majors at the party?
- No. Everyone at the party is a math and music double-major.

Logical OR

- "This party is full of math OR music majors."
- What type of party is it, a math party or a music party?
- Both. There are math majors, music majors, and possibly double-majors at the party.

Implications

- an implication is logically equivalent to its contrapositive
- an implication's converse is logically equivalent to the inverse (they are contrapositives)
- the converse and inverse are equivalent to each other, but are not always equivalent to the implication
- only biconditionals hold this property

Conditional Statement

P	q	s p→q	CP ¬q→¬p	CV q→p	IV ¬p→¬q
F	F	T	T	T	T
F	T	T	T	F	F
T	F	F	F	T	T
	T	T	T	T	T

Biconditional Statement

P	9	BC p↔q	$s_1=CV_2$ $p \rightarrow q$	$s_2=CV_1$ $q \rightarrow p$	$CP_1=IV_2$ $\neg q \rightarrow \neg p$	$CP_2=IV_1$ $\neg p \rightarrow \neg q$
F	F	T	T	T	T	T
F	T	F	T	F	T	T
T	F	F	F	T	F	F
T	T	T	T	T	T	T

Pictorial Depictions

- ouseful tools in developing reasoning skills and set theory
 - otruth tables
 - © Euler circles
 - Venn diagrams

Euler Circles

Venn Diagrams

Wrap-Up