2E200 : Electronique Numérique, Combinatoire et Séquentielle

Bertrand Granado

Licence E²A

Hiver 2019

Plan

- Introduction: L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
- 3 Codage
- 4 Les composants combinatoire simples
- Les composants combinatoires complexes
- 6 Les composants séquentiels : les bascules
- Les composants séquentiels : les registres
- 8 Les composants séquentiels : les compteurs / Le traitement Pipeliné
- Interface avec l'environnement continu : Conversion Analogique vers Numérique et Numérique vers Analogique

Plan

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
 - Histoire de l'algèbre de Boole
 - Les bases
 - Définitions
 - Ordre et Fonctions
- Codage
- Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels : les bascules

Mister G. Boole

• Mathématicien Anglais du 19^{ième} siècle.

1815 - 1864

Georges Boole introduit un formalise mathématique de la logique The Calculus of Logic Cambridge and Dublin Mathematical Journal Vol. III (1848), pp. 183–9

- Georges Boole introduit un formalise mathématique de la logique The Calculus of Logic Cambridge and Dublin Mathematical Journal Vol. III (1848), pp. 183–9
- (3) That those laws are capable of mathematical expression, and that they thus constitute the basis of an interpretable calculus.

- Georges Boole introduit un formalise mathématique de la logique The Calculus of Logic Cambridge and Dublin Mathematical Journal Vol. III (1848), pp. 183–9
- (3) That those laws are capable of mathematical expression, and that they thus constitute the basis of an interpretable calculus.
- Au départ beaucoup utilisé dans les jeux de salons

- Georges Boole introduit un formalise mathématique de la logique The Calculus of Logic Cambridge and Dublin Mathematical Journal Vol. III (1848), pp. 183–9
- (3) That those laws are capable of mathematical expression, and that they thus constitute the basis of an interpretable calculus.
- Au départ beaucoup utilisé dans les jeux de salons
- Mais à l'arrivée : Véritable révolution qui est devenue le fondement de l'électronique numérique

Plan

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
 - Histoire de l'algèbre de Boole
 - Les bases
 - Définitions
 - Ordre et Fonctions
- Codage
- 4 Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels : les bascules

• L'algèbre de Boole manipule des variables qui ne peuvent prendre que deux états : *Vrai* ou *Faux*

- L'algèbre de Boole manipule des variables qui ne peuvent prendre que deux états : Vrai ou Faux
- Une telle variable est appelée variable Booléenne

- L'algèbre de Boole manipule des variables qui ne peuvent prendre que deux états : Vrai ou Faux
- Une telle variable est appelée variable Booléenne
- Il est possible aussi d'associer le chiffre 1 à la valeur Vrai et le chiffre 0 à la valeur Faux

- L'algèbre de Boole manipule des variables qui ne peuvent prendre que deux états : Vrai ou Faux
- Une telle variable est appelée variable Booléenne
- Il est possible aussi d'associer le chiffre 1 à la valeur Vrai et le chiffre 0 à la valeur Faux
- Les variables Booléennes dans ce cas sont des variables Binaires

exemples

Plan

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
 - Histoire de l'algèbre de Boole
 - Les bases
 - Définitions
 - Ordre et Fonctions
- Codage
- Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels : les bascules

Algèbre de Boole B

Algèbre de Boole B

- Algèbre de Boole B
 - $B = \langle E, +, ., ^-, 0, 1 \rangle$

- Algèbre de Boole B
 - $B = \langle E, +, ., -, 0, 1 \rangle$
 - ▶ +,. sont des lois de composition interne

- Algèbre de Boole B
 - $B = \langle E, +, ., -, 0, 1 \rangle$
 - ▶ +,. sont des lois de composition interne
 - est la loi de complémentation

loi de composition .

loi de composition .

•		0	1
	0	0	0
	1	0	1

loi de composition .

		0	1
•	0	0	0
	1	0	1

ullet loi de composition +

loi de composition .

•		0	1
	0	0	0
	1	0	1

• loi de composition +

•	+	0	1
	0	0	1
	1	1	1

• Le complément a d'une variable a est défini par :

- Le complément a d'une variable a est défini par :
 - ▶ si $a = 1 \rightarrow \overline{a} = 0$

- Le complément a d'une variable a est défini par :
 - ightharpoonup si $a=1 \rightarrow \overline{a}=0$
 - ▶ si $a = 0 \rightarrow \overline{a} = 1$

- Le complément a d'une variable a est défini par :
 - ▶ si $a = 1 \rightarrow \overline{a} = 0$
 - ▶ si $a = 0 \rightarrow \overline{a} = 1$
- La variable a, lorsqu'elle est notée a, est dite sous sa forme normale

- Le complément a d'une variable a est défini par :
 - ▶ si $a = 1 \rightarrow \overline{a} = 0$
 - ▶ si $a = 0 \rightarrow \overline{a} = 1$
- La variable a, lorsqu'elle est notée a, est dite sous sa forme normale
- La variable a, lorsqu'elle est notée a, est dite sous sa forme complémentée

Commutativité

- Commutativité
 - ▶ $\forall (a,b) \in E^2$

- Commutativité
 - ▶ \forall (a,b) ∈ E^2
 - \triangleright a+b=b+a

- Commutativité
 - ▶ $\forall (a,b) \in E^2$
 - $\rightarrow a+b=b+a$
 - ► a.b = b.a

- Commutativité
 - ▶ $\forall (a,b) \in E^2$
 - \triangleright a+b=b+a
 - ► a.b = b.a
- Distributivité

- Commutativité
 - ▶ $\forall (a,b) \in E^2$
 - \triangleright a+b=b+a
 - ► a.b = b.a
- Distributivité
 - ▶ $\forall (a,b,c) \in E^3$

- Commutativité
 - ▶ \forall (a,b) ∈ E^2
 - $\rightarrow a+b=b+a$
 - \triangleright a.b = b.a
- Distributivité
 - ▶ \forall (a,b,c) $\in E^3$
 - a+(b.c)=(a+b).(a+c)

- Commutativité
 - ▶ \forall (a,b) ∈ E^2
 - \triangleright a+b=b+a
 - ► a.b = b.a
- Distributivité
 - ▶ $\forall (a,b,c) \in E^3$
 - a+(b.c)=(a+b).(a+c)
 - a.(b+c) = (a.b) + (a.c)

Eléments Neutre

- Eléments Neutre
 - ∀a ∈ E

- Eléments Neutre
 - ∀a ∈ E
 - ▶ a+0=a

- Eléments Neutre
 - ∀a ∈ E
 - ▶ a+0=a
 - ► a.1 = a

- Eléments Neutre
 - ∀a ∈ E
 - ► a + 0 = a
 - ▶ a.1 = a
- Complémentation

- Eléments Neutre
 - ∀a ∈ E
 - ► a + 0 = a
 - ▶ a.1 = a
- Complémentation
 - ∀a ∈ E

- Eléments Neutre
 - ∀a ∈ E
 - ► a + 0 = a
 - ► a.1 = a
- Complémentation
 - ∀a ∈ E
 - $\rightarrow a + \overline{a} = 1$

- Eléments Neutre
 - ∀a ∈ E
 - ► a + 0 = a
 - ► a.1 = a
- Complémentation
 - ∀a ∈ E
 - $\rightarrow a + \overline{a} = 1$
 - $ightharpoonup a.\overline{a} = 0$

• A partir des axiomes de base des propriétés fondamentales sont déduites.

- A partir des axiomes de base des propriétés fondamentales sont déduites.
- Eléments Absorbants

- A partir des axiomes de base des propriétés fondamentales sont déduites.
- Eléments Absorbants
 - ∀a ∈ E

- A partir des axiomes de base des propriétés fondamentales sont déduites.
- Eléments Absorbants
 - ∀a ∈ E
 - ▶ a+1=1

- A partir des axiomes de base des propriétés fondamentales sont déduites.
- Eléments Absorbants
 - ∀a ∈ E
 - ▶ a+1=1
 - a.0 = 0

- A partir des axiomes de base des propriétés fondamentales sont déduites.
- Eléments Absorbants
 - ∀a ∈ E
 - ▶ a+1=1
 - a.0 = 0
- Loi d'idempotence

- A partir des axiomes de base des propriétés fondamentales sont déduites.
- Eléments Absorbants
 - ∀a ∈ E
 - ▶ a+1=1
 - a.0 = 0
- Loi d'idempotence
 - ∀a ∈ E

- A partir des axiomes de base des propriétés fondamentales sont déduites.
- Eléments Absorbants
 - ∀a ∈ E
 - ▶ a+1=1
 - a.0 = 0
- Loi d'idempotence
 - ∀a ∈ E
 - \triangleright a+a=a

- A partir des axiomes de base des propriétés fondamentales sont déduites.
- Eléments Absorbants
 - ∀a ∈ E
 - ▶ a+1=1
 - a.0 = 0
- Loi d'idempotence
 - ∀a ∈ E
 - \triangleright a+a=a
 - ▶ a.a = a

Loi d'involution

- Loi d'involution
 - ∀a ∈ E

- Loi d'involution
 - ∀a ∈ E
 - $ightharpoonup <math>\overline{\overline{a}} = a$

- Loi d'involution
 - ∀a ∈ E
 - $\triangleright \ \overline{\overline{a}} = a$
- Loi d'absorption

- Loi d'involution
 - ∀a ∈ E
 - $\mathbf{a} = \mathbf{a}$
- Loi d'absorption
 - ▶ $\forall (a,b) \in E^2$

- Loi d'involution
 - ∀a ∈ E
 - $\rightarrow \bar{a} = a$
- Loi d'absorption
 - ▶ $\forall (a,b) \in E^2$
 - a + (a.b) = a

- Loi d'involution
 - ∀a ∈ E
 - $\triangleright \bar{a} = a$
- Loi d'absorption
 - ▶ $\forall (a,b) \in E^2$
 - ▶ a + (a.b) = a
 - a.(a+b) = a

Loi d'associativité

- Loi d'associativité
 - ▶ $\forall (a,b,c) \in E^3$

- Loi d'associativité
 - ▶ \forall (a,b,c) ∈ E^3
 - a+(b+c)=(a+b)+c

- Loi d'associativité
 - $\forall (a,b,c) \in E^3$
 - a+(b+c)=(a+b)+c
 - a.(b.c) = (a.b).c

- Loi d'associativité
 - $\forall (a,b,c) \in E^3$
 - a+(b+c)=(a+b)+c
 - a.(b.c) = (a.b).c
- Loi de De Morgan

- Loi d'associativité
 - $\forall (a,b,c) \in E^3$

$$a+(b+c)=(a+b)+c$$

- a.(b.c) = (a.b).c
- Loi de De Morgan
 - ▶ $\forall (a,b) \in E^2$

- Loi d'associativité
 - $\forall (a,b,c) \in E^3$
 - a+(b+c)=(a+b)+c
 - a.(b.c) = (a.b).c
- Loi de De Morgan
 - ▶ $\forall (a,b) \in E^2$
 - $\overline{a+b} = \overline{a}.\overline{b}$

- Loi d'associativité
 - $\forall (a,b,c) \in E^3$
 - a+(b+c)=(a+b)+c
 - a.(b.c) = (a.b).c
- Loi de De Morgan
 - ▶ $\forall (a,b) \in E^2$
 - $\overline{a+b} = \overline{a}.\overline{b}$
 - $\overline{a.b} = \overline{a} + \overline{b}$

Plan

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
 - Histoire de l'algèbre de Boole
 - Les bases
 - Définitions
 - Ordre et Fonctions
- Codage
- Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels : les bascules

L'algèbre - Ordre et Fonction

• Relation d'ordre :

Relation d'ordre :

▶ Ordre Total : 0 < 1</p>

- Relation d'ordre :
 - ▶ Ordre Total : 0 < 1</p>
 - ➤ Ordre Lexicographique : 00 < 01 < 10 < 11 *Utile pour les tables de vérité*

- Relation d'ordre :
 - ▶ Ordre Total : 0 < 1</p>
 - ➤ Ordre Lexicographique : 00 < 01 < 10 < 11 *Utile pour les tables de vérité*

- Relation d'ordre :
 - ▶ Ordre Total : 0 < 1</p>
 - ▶ Ordre Lexicographique : 00 < 01 < 10 < 11 *Utile pour les tables de vérité*
- Definition d'une fonction logique :

- Relation d'ordre :
 - ▶ Ordre Total : 0 < 1</p>
 - ▶ Ordre Lexicographique : 00 < 01 < 10 < 11 Utile pour les tables de vérité</p>
- Definition d'une fonction logique :
 - $f(x_{n-1},x_{n-2},\ldots,x_1,x_0):0,1^n\to 0,1,n\in\mathbb{N}^*$

• 1 variable soit 4 fonctions possibles :

- 1 variable soit 4 fonctions possibles :
 - f = 0: fonction constante nulle

- 1 variable soit 4 fonctions possibles :
 - ightharpoonup f = 0: fonction constante nulle
 - f = 1: fonction constante à un

- 1 variable soit 4 fonctions possibles :
 - ightharpoonup f = 0: fonction constante nulle
 - ightharpoonup f = 1: fonction constante à un
 - ▶ f = a : fonction identité

- 1 variable soit 4 fonctions possibles :
 - ightharpoonup f = 0: fonction constante nulle
 - f = 1: fonction constante à un
 - ightharpoonup f = a: fonction identité
 - $f = \overline{a}$: fonction complément ou fonction *NON*

2 variables soit 16 fonctions possibles

- 2 variables soit 16 fonctions possibles
 - f = a.b: fonction ET

- 2 variables soit 16 fonctions possibles
 - ightharpoonup f = a.b: fonction ET
 - f = a + b: fonction OU

- 2 variables soit 16 fonctions possibles
 - ightharpoonup f = a.b: fonction ET
 - f = a + b: fonction OU
 - ▶ $f = a \oplus b$: fonction *OU-EXCLUSIF*

- 2 variables soit 16 fonctions possibles
 - f = a.b: fonction ET
 - f = a + b: fonction OU
 - ▶ $f = a \oplus b$: fonction *OU-EXCLUSIF*
 - $f = \overline{a.b}$: fonction *NON-ET*

- 2 variables soit 16 fonctions possibles
 - ightharpoonup f = a.b: fonction ET
 - f = a + b: fonction OU
 - ▶ $f = a \oplus b$: fonction *OU-EXCLUSIF*
 - $f = \overline{a.b}$: fonction *NON-ET*
 - $f = \overline{a+b}$: fonction *NON-OU*

- 2 variables soit 16 fonctions possibles
 - ightharpoonup f = a.b: fonction ET
 - ightharpoonup f = a + b: fonction *OU*
 - f = a⊕b: fonction OU-EXCLUSIF
 - $f = \overline{a.b}$: fonction *NON-ET*
 - $f = \overline{a+b}$: fonction *NON-OU*
 - $f = \overline{a \oplus b}$: fonction NON-OU-EXCLUSIF

- 2 variables soit 16 fonctions possibles
 - ightharpoonup f = a.b: fonction ET
 - f = a + b: fonction *OU*
 - $f = a \oplus b$: fonction *OU-EXCLUSIF*
 - $f = \overline{a.b}$: fonction *NON-ET*
 - $f = \overline{a+b}$: fonction *NON-OU*
 - $f = \overline{a \oplus b}$: fonction NON-OU-EXCLUSIF
 - etc...

• *n* variables soit 2^{2ⁿ} fonctions possibles

- *n* variables soit 2^{2ⁿ} fonctions possibles
 - lacksquare 3 variables ightarrow 256 fonctions possibles

- *n* variables soit 2^{2^n} fonctions possibles
 - ▶ 3 variables → 256 fonctions possibles
 - lacktriangle 4 variables ightarrow 65536 fonctions possibles

- *n* variables soit 2^{2ⁿ} fonctions possibles
 - ▶ 3 variables → 256 fonctions possibles
 - lacktriangle 4 variables ightarrow 65536 fonctions possibles
 - etc ...

La Table de Vérité

- La Table de Vérité
- Représentation sous forme de tableau des valeurs de la fonction logique pour toutes les combinaisons de ses variables

- La Table de Vérité
- Représentation sous forme de tableau des valeurs de la fonction logique pour toutes les combinaisons de ses variables

а	b	f
0	0	f_0
0	1	<i>f</i> ₁
1	0	f_2
1	1	f_3

Le Tableau de Karnaugh

- Le Tableau de Karnaugh
 - Représentation sous forme de matrice des valeurs de la fonction logique pour toutes les combinaisons de ses variables en exploitant la propriété d'adjacence

- Le Tableau de Karnaugh
 - Représentation sous forme de matrice des valeurs de la fonction logique pour toutes les combinaisons de ses variables en exploitant la propriété d'adjacence

	b	0	1
а			
0		f_0	f_1
1		f_2	f_3

- Le Tableau de Karnaugh
 - Représentation sous forme de matrice des valeurs de la fonction logique pour toutes les combinaisons de ses variables en exploitant la propriété d'adjacence

	b	0	1
а	С		
0	0	f_0	<i>f</i> ₁

- Le Tableau de Karnaugh
 - Représentation sous forme de matrice des valeurs de la fonction logique pour toutes les combinaisons de ses variables en exploitant la propriété d'adjacence

	b	0	1
а	С		
0	0	f_0	<i>f</i> ₁
0	1	f ₂	f ₃

- Le Tableau de Karnaugh
 - Représentation sous forme de matrice des valeurs de la fonction logique pour toutes les combinaisons de ses variables en exploitant la propriété d'adjacence

	b	0	1
а	С		
0	0	f_0	<i>f</i> ₁
0	1	f_2	f ₃
1	1	f ₆	f ₇

- Le Tableau de Karnaugh
 - Représentation sous forme de matrice des valeurs de la fonction logique pour toutes les combinaisons de ses variables en exploitant la propriété d'adjacence

	b	0	1
а	С		
0	0	f_0	<i>f</i> ₁
0	1	f ₂	f ₃
1	1	f ₆	<i>f</i> ₇
1	0	f_4	<i>f</i> ₅

Diagramme de Veitch

- Diagramme de Veitch
- Diagramme de Venn

- Diagramme de Veitch
- Diagramme de Venn
- Arbre de décision binaire

- Diagramme de Veitch
- Diagramme de Venn
- Arbre de décision binaire
- Logigramme Partie technologie

Représentation des fonctions logiques

- Diagramme de Veitch
- Diagramme de Venn
- Arbre de décision binaire
- Logigramme Partie technologie
- Représentation algébrique Ecriture logique

 \bullet La représentation sous forme de tableau ou de matrice est limitée ~ 5 variables.

- \bullet La représentation sous forme de tableau ou de matrice est limitée ~ 5 variables.
- Nécessité d'utiliser une écriture algébrique

- \bullet La représentation sous forme de tableau ou de matrice est limitée ~ 5 variables.
- Nécessité d'utiliser une écriture algébrique
- La fonction logique s'exprime alors sous la forme de variables booléennes reliées entre elles par des opérateurs de l'algèbre de Boole

- \bullet La représentation sous forme de tableau ou de matrice est limitée ~ 5 variables.
- Nécessité d'utiliser une écriture algébrique
- La fonction logique s'exprime alors sous la forme de variables booléennes reliées entre elles par des opérateurs de l'algèbre de Boole
- $f(a) = \overline{a}$ Fonction NON

- ullet La représentation sous forme de tableau ou de matrice est limitée \sim 5 variables.
- Nécessité d'utiliser une écriture algébrique
- La fonction logique s'exprime alors sous la forme de variables booléennes reliées entre elles par des opérateurs de l'algèbre de Boole
- $f(a) = \overline{a}$ Fonction NON
- $f(a,b,c) = \overline{c}b + a\overline{b}$

• Un produit booléen de variables booléennes est appelé *p-terme*

- Un produit booléen de variables booléennes est appelé p-terme
- Une somme booléenne de variables booléennes est appelée s-terme

- Un produit booléen de variables booléennes est appelé p-terme
- Une somme booléenne de variables booléennes est appelée s-terme
- Un *Minterme* est un p-terme de degré *n*

$$m_j = \prod_{i=0}^{n-1} \tilde{a}_i, \tilde{a}_i \in (\overline{a_i}, a_i)$$

- Un produit booléen de variables booléennes est appelé *p-terme*
- Une somme booléenne de variables booléennes est appelée s-terme
- Un *Minterme* est un p-terme de degré *n*

$$m_j = \prod_{i=0}^{n-1} \tilde{a}_i, \tilde{a}_i \in (\overline{a_i}, a_i)$$

Un *Maxterme* est un s-terme de degré n

$$M_j = \sum_{i=0}^{n-1} \tilde{a}_i, \tilde{a}_i \in (\overline{a}_i, a_i)$$

 La somme logique de tous les Mintermes est égale à 1 si la fonction réalisée est différente de la fonction constante 0

$$\sum_{j=0}^{p-1} m_j = 1$$

 La somme logique de tous les Mintermes est égale à 1 si la fonction réalisée est différente de la fonction constante 0

$$\sum_{j=0}^{p-1} m_j = 1$$

 Le produit logique de tous les Maxtermes est égal à 0 si la fonction réalisée est différente de la fonction constante 1

$$\prod_{j=0}^{p-1} M_j = 0$$

 La somme logique de tous les Mintermes est égale à 1 si la fonction réalisée est différente de la fonction constante 0

$$\sum_{j=0}^{p-1} m_j = 1$$

 Le produit logique de tous les Maxtermes est égal à 0 si la fonction réalisée est différente de la fonction constante 1

$$\prod_{j=0}^{p-1} M_j = 0$$

Relation entre Minterme et Maxterme

$$\overline{m_j} = M_j$$

Exemples

 Ecriture algébrique d'une fonction logique n'utilisant que des Mintermes ou des Maxtermes.

- Ecriture algébrique d'une fonction logique n'utilisant que des Mintermes ou des Maxtermes.
- Il existe deux possibilités d'écriture :

- Ecriture algébrique d'une fonction logique n'utilisant que des Mintermes ou des Maxtermes.
- Il existe deux possibilités d'écriture :
 - Forme Canonique Disjonctive ou première forme canonique :
 Elle s'exprime sous forme d'une somme de Mintermes

- Ecriture algébrique d'une fonction logique n'utilisant que des Mintermes ou des Maxtermes.
- Il existe deux possibilités d'écriture :
 - Forme Canonique Disjonctive ou première forme canonique : Elle s'exprime sous forme d'une somme de Mintermes
 - ► Forme Canonique Conjonctive ou seconde forme canonique : Elle s'exprime sous forme d'un produit de Maxtermes

ullet Fonction Ou-exclusif \oplus : la valeur de la fonction est un si une et une seule des deux variables a la valeur un.

а	b	f
0	0	0
0	1	1
1	0	1
1	1	0

• Fonction Ou-exclusif \oplus : la valeur de la fonction est un si une et une seule des deux variables a la valeur un.

а	b	f
0	0	0
0	1	1
1	0	1
1	1	0

• Forme Canonique Disjonctive :

$$f(a,b) = a\overline{b} + b\overline{a}$$

• Fonction Ou-exclusif \oplus : la valeur de la fonction est un si une et une seule des deux variables a la valeur un.

а	b	f
0	0	0
0	1	1
1	0	1
1	1	0

• Forme Canonique Disjonctive : $f(a,b) = a\overline{b} + b\overline{a} \rightarrow \textit{Somme des Mintermes tel que f(a,b)=1, lu directement de la}$

table

• Fonction Ou-exclusif \oplus : la valeur de la fonction est un si une et une seule des deux variables a la valeur un.

a	b	f
0	0	0
0	1	1
1	0	1
1	1	0

- Forme Canonique Disjonctive : $f(a,b) = a\overline{b} + b\overline{a} \rightarrow \textit{Somme des Mintermes tel que f(a,b)=1, lu directement de la table}$
- Forme Canonique Conjonctive : $f(a,b) = (a+b).(\overline{a}+\overline{b})$

 Fonction Ou-exclusif ⊕: la valeur de la fonction est un si une et une seule des deux variables a la valeur un.

a	b	f
0	0	0
0	1	1
1	0	1
1	1	0

- Forme Canonique Disjonctive : $f(a,b) = a\overline{b} + b\overline{a} \rightarrow Somme \ des \ Mintermes \ tel \ que \ f(a,b)=1, \ lu \ directement \ de \ la \ table$
- Forme Canonique Conjonctive:
 f(a,b) = (a+b).(ā+b̄) → Produit des Maxtermes tel que f(a,b)=1, cherche les mintermes pour lesquels f(a,b)=0 et on détermine les valeurs de a et de b liées à ce minterme qui nie f(a,b)=0

Exemples

 Un fonction logique peut-être soit complétement soit incomplétement définie

- Un fonction logique peut-être soit complétement soit incomplétement définie
- Une fonction est complétement définie lorsque pour toutes les combinaisons de ses variables la valeur de la fonction est définie

33 / 43

- Un fonction logique peut-être soit complétement soit incomplétement définie
- Une fonction est complétement définie lorsque pour toutes les combinaisons de ses variables la valeur de la fonction est définie
- Une fonction est complétement définie lorsque pour toutes les combinaisons de ses variables la valeur de la fonction est définie

а	b	f
0	0	0
0	1	0
1	0	0
1	1	1

 Une fonction est incomplétement définie lorsque pour toutes les combinaisons de ses variables la valeur de la fonction n'est pas définie

- Une fonction est incomplétement définie lorsque pour toutes les combinaisons de ses variables la valeur de la fonction n'est pas définie
- Une fonction est incomplétement définie lorsque pour toutes les combinaisons de ses variables la valeur de la fonction n'est pas définie

а	b	f
0	0	1
0	1	Х
1	0	Х
1	1	1

• Utilisation des axiomes de base et des Propriétés qui en découlent

- Utilisation des axiomes de base et des Propriétés qui en découlent
- f(a,b,c) = ab + bc + c en utilisant la loi d'absorption bc + c = c on obtient f(a,b,c) = ab + c

- Utilisation des axiomes de base et des Propriétés qui en découlent
- f(a,b,c) = ab + bc + c en utilisant la loi d'absorption bc + c = c on obtient f(a,b,c) = ab + c
- $f(a,b) = a.(\overline{a}+b)$ en utilisant l'axiome de la complémentation $a.\overline{a} = 0$ on obtient f(a,b) = ab.

- Utilisation des axiomes de base et des Propriétés qui en découlent
- f(a,b,c) = ab + bc + c en utilisant la loi d'absorption bc + c = c on obtient f(a,b,c) = ab + c
- $f(a,b) = a.(\overline{a}+b)$ en utilisant l'axiome de la complémentation $a.\overline{a} = 0$ on obtient f(a,b) = ab.
- f(a,b,c) = (a+bc)ab = aab+abbc = ab+abc = ab en utilisant successivement la loi d'idempotence et la loi d'absorption.

Exemples

• Une méthode graphique : Les Tableaux de Karnaugh

- Une méthode graphique : Les Tableaux de Karnaugh
- Les variables sont présentées de façon à faire apparaître la loi d'absorption

- Une méthode graphique : Les Tableaux de Karnaugh
- Les variables sont présentées de façon à faire apparaître la loi d'absorption
- $a.b + a.\overline{b} = a$

- Une méthode graphique : Les Tableaux de Karnaugh
- Les variables sont présentées de façon à faire apparaître la loi d'absorption
- $a.b + a.\overline{b} = a$
- Pour ce faire le code binaire réfléchi ou code de Gray est utilisé

• Les Tableaux de Karnaugh : étapes

- Les Tableaux de Karnaugh : étapes
- Regroupement d'ensembles de 2ⁱ cases de même valeur (en général de valeur 1) en maximisant i à chaque fois. Possibilité de regrouper les cases extrêmes

- Les Tableaux de Karnaugh : étapes
- Regroupement d'ensembles de 2ⁱ cases de même valeur (en général de valeur 1) en maximisant i à chaque fois. Possibilité de regrouper les cases extrêmes
- Regrouper les cases de même valeur restantes avec des cases d'ensembles déjà établis pour avoir 2^j cases en maximisant j

- Les Tableaux de Karnaugh : étapes
- Regroupement d'ensembles de 2ⁱ cases de même valeur (en général de valeur 1) en maximisant i à chaque fois. Possibilité de regrouper les cases extrêmes
- Regrouper les cases de même valeur restantes avec des cases d'ensembles déjà établis pour avoir 2^j cases en maximisant j
- Ecrire l'équation booléenne algébrique.

Exemples

• Les Tableaux de Karnaugh : remarques

- Les Tableaux de Karnaugh : remarques
- Dans le cas de fonctions incomplétement définies, considérer X comme un 1 afin de maximiser les ensembles

- Les Tableaux de Karnaugh : remarques
- Dans le cas de fonctions incomplétement définies, considérer X comme un 1 afin de maximiser les ensembles
- Méthode limitée à ∼ 5 variables.

Exemples

Plan

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
- Codage
- Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels : les bascules
- Les composants séquentiels : les registres
- B Les composants séquentiels : les compteurs / Le traitement Pipeliné

Plan

- Introduction : L'électronique numérique à l'aube de 2020 / Méthodes et outils de Conception des systèmes numériques
- Algèbre de Boole
- Codage
- Les composants combinatoire simples
- 5 Les composants combinatoires complexes
- 6 Les composants séquentiels : les bascules
- Les composants séquentiels : les registres
- 3 Les composants séquentiels : les compteurs / Le traitement Pipeliné