Sheet 7: Return of the Continuum

Definition 1 (Open Cover) Let $X \subseteq C$ be a set and let A be a set of subsets of C. We say that A is an open cover for X if for all $A \in A$ the set A is open and

$$X \subseteq \bigcup_{A \in \mathcal{A}} A.$$

Exercise 2 Let $p \in C$ be a point and let

$$\mathcal{A} = \{ \text{ext}(a; b) \mid p \in (a; b) \}.$$

Show that \mathcal{A} is an open cover for $C \setminus p$.

Proof. Let $x \in C \setminus p$. Then $x \in C$ and $x \neq p$ and so x < p or p < x. Suppose x < p. Since regions are nonempty there exists $a \in C$ such that x < a < p (5.8). And because C has no last point there exists $b \in C$ such that p < b (A2.3). But then $p \in (a;b)$ and since x < a, $x \in \text{ext}(a;b)$. Because this is true for some region (a;b), we see $x \in \bigcup_{A \in \mathcal{A}} A$. Therefore, $C \setminus p \subseteq \bigcup_{A \in \mathcal{A}} A$. From Exercise 12 we see that ext(a;b) is open and so \mathcal{A} is an open cover for $C \setminus p$ (7.12). A similar argument holds if p < x because C has no first point (A2.3). Note that Exercise 12 does not depend on this exercise.

Definition 3 (Subcover) Let A be an open cover for X. A subset $B \subseteq A$ is a subcover if

$$X \subseteq \bigcup_{B \in \mathcal{B}} B$$
.

Exercise 4 Show that the set

$$A = \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \{0\}.$$

is closed.

Proof. Let $p \in C$ be point such that $p \notin A$. Then there are three cases.

Case 1: Let p < 0. Then since C has no first point there exists a point $x \in C$ such that x < p and so the region (x; 0) contains p but no points in A (A2.3).

Case 2: Let p > 1. Then since C has no last point there exists a point $y \in C$ such that p < y and so the region (1; y) contains p but no points in A (A2.3).

Case 3: Let $p \in (0;1)$. Then $p = \frac{a}{b}$ for some $a, b \in \mathbb{N}$ and since $0 < \frac{a}{b} < 1$, we have a < b. Since $0 < \frac{b}{a}$, by the Archimedean Property there exists a natural number k such that $\frac{b}{a} < k$ (4.20). But since $k \in \mathbb{N}$, by the Well Ordering Principle there exists a least such element n. Since $p \notin A$, $a \ne 1$ and so $\frac{b}{a} \notin \mathbb{N}$. But then $n-1 < \frac{b}{a} < n$ and so $\frac{1}{n} . Therefore <math>p \in \left(\frac{1}{n}; \frac{1}{n-1}\right)$ which doesn't contain any elements of A.

In all three cases there exists a region containing p which contains no elements of A and so p cannot be a limit point of A. Therefore if A has any limit points, they must be in A. Since A contains all its limit points, it is closed.

Exercise 5 Prove that every open cover of A has a finite subcover.

Proof. Let \mathcal{A} be a cover of A. Then for every element of A, there exists an open set in \mathcal{A} which contains that element. But then there exists an open set B in \mathcal{A} containing 0. And so there exists a region $(a;b) \subseteq B$ such that $0 \in (a;b)$ by the open condition (3.17). There are three cases.

Case 1: Let 1 < b. Then $A \subseteq B$ and so the set containing B is a finite subcover of A.

Case 2: Let b = 1. Then the region (a; b) contains all the elements of A except for 1. Thus the set containing B and a set from A containing 1 is a finite subcover of A.

Case 2: Let b < 1. Then $b = \frac{p}{q}$ for some $p, q \in \mathbb{N}$ and since $0 < \frac{p}{q} < 1$, we have p < q. Since $0 < \frac{q}{p}$, by the Archimedean Property there exists a natural number k such that $\frac{q}{p} < k$ (4.20). But since $k \in \mathbb{N}$, by the Well Ordering Principle there exists a least such element n. There are a finite number of natural numbers less than n and since every element of A is a reciprocal of a natural number, there are a finite number of elements x of A such that $\frac{1}{n} < x$. All the other elements of A are less than b so they are contained in (a;b). For each element of A greater than $\frac{1}{n}$ there exists a set in A containing that element. There are finitely many of these elements so there exist finitely many sets of A containing them. So those sets and B form a finite subcover of A.

Definition 6 (Compact Set) A set X is compact if every open cover of X has a finite subcover.

Exercise 7 Let \mathcal{A} be the set of all regions. Show that no finite subset of \mathcal{A} covers C.

Proof. Let \mathcal{B} be a finite subset of \mathcal{A} . If $\mathcal{B} = \emptyset$ then it is clear that it is not an open cover for C. Then $\mathcal{B} = \{(a_1; b_1), (a_2; b_2), \dots, (a_n; b_n)\}$. But since there are a finite number of lower boundary points a_i for regions in \mathcal{B} , we can order them so that x is a lower boundary point and $x \leq a_i$ for all regions in \mathcal{B} . Then x is less than every point in every region in \mathcal{B} . But since C has no first point there exists a point $p \in C$ such that p < x and so $C \nsubseteq \bigcup_{(a:b) \in \mathcal{B}} (a;b)$ (A2.3).

Exercise 8 Let $p \in C$ be a point and let $\mathcal{A} = \{ \text{ext}(a; b) \mid p \in (a; b) \}$. Show that no finite subset of \mathcal{A} covers $C \setminus p$.

Proof. Let \mathcal{B} be a finite subset of \mathcal{A} . Clearly if $\mathcal{B} = \emptyset$ then it is not an open cover for $C \setminus p$. Then $\mathcal{B} = \{ \operatorname{ext}(a_1; b_1), \operatorname{ext}(a_2; b_2), \dots, \operatorname{ext}(a_n; b_n) \}$ such that $p \in (a; b)$ for all $\operatorname{ext}(a; b) \in \mathcal{B}$. Consider the finite set of values of a_i for exteriors in \mathcal{B} . Since this set is finite there exists a last point x so that $x \geq a_i$ for all exteriors in \mathcal{B} (2.2). Since regions are nonempty there exists a point $y \in C$ such that x < y < p and so $y \notin \operatorname{ext}(a_i; b_i)$ for any exterior in T (5.8). But then $C \setminus p \nsubseteq \bigcup_{B \in \mathcal{B}} B$.

Theorem 9 (Compact Sets Are Bounded) If $X \subseteq C$ is not bounded, then X is not compact.

Proof. Let $X \subseteq C$ be a set which is not bounded below and let \mathcal{A} be the set of all regions. Consider a finite subset of \mathcal{A} , \mathcal{B} . Since \emptyset is bounded below, $X \neq \emptyset$. So in the case where $\mathcal{B} = \emptyset$ we see that \mathcal{B} is not an open cover for X. Then $\mathcal{B} = \{(a_1; b_1), (a_2; b_2), \dots, (a_n; b_n)\}$. But since there are a finite number of lower boundary points a_i for regions in \mathcal{B} , we can order them so that x is a lower boundary point and $x \leq a_i$ for all regions in \mathcal{B} (2.2). Then x is less than every point in every region in \mathcal{B} . But since X has no lower bound, for all $p \in C$ there exists $q \in X$ such that q < p. Therefore there exists a $q \in X$ such that q < x and so $X \nsubseteq \bigcup_{\mathcal{B} \in \mathcal{B}} \mathcal{B}$. A similar proof holds if X is a set which is not bounded above.

Theorem 10 (Compact Sets Are Closed) If $X \subseteq C$ is not closed, then X is not compact.

Proof. Let $X \subseteq C$ be a set which is not closed and $p \notin X$ be a limit point of X. Let $\mathcal{A} = \{ \text{ext}(a;b) \mid p \in (a;b) \}$. Since $p \notin X$ we see that \mathcal{A} covers X. Suppose that \mathcal{B} is a finite subset of \mathcal{A} . We see that $X \neq \emptyset$ because \emptyset is closed (3.13). So in the case where $\mathcal{B} = \emptyset$ we see that \mathcal{B} does not cover X. Then $\mathcal{B} = \{ \text{ext}(a_1;b_1), \text{ext}(a_2;b_2), \dots, \text{ext}(a_n;b_n) \}$. But then the set of lower boundary points a_i and the set of upper boundary points b_i for exteriors in \mathcal{B} are finite. Thus there exists a last point x such that x is

a lower boundary point of some exterior in \mathcal{B} and $x \geq a_i$ for all exteriors in \mathcal{B} . Likewise there exists a smallest upper boundary point y for exteriors in \mathcal{B} . Note that x and y need not define the same exterior in \mathcal{B} . But then the region (x;y) must contain p because all lower boundary points are less than p and all upper boundary points are greater than p. Since p is a limit point of X, then (x;y) also contains a point in X. But (x;y) is defined so that $(x;y) \nsubseteq \bigcup_{B \in \mathcal{B}} B$. Therefore $X \nsubseteq \bigcup_{B \in \mathcal{B}} B$ and so \mathcal{B} is not a finite subcover for \mathcal{A} and X is not compact.

Definition 11 For a < b let the closed interval [a; b] be defined as

$$[a;b] = (a;b) \cup \{a\} \cup \{b\}.$$

Exercise 12 Closed intervals are closed

Proof. Let $a, b, p \in C$ be points such that a < b and $p \notin [a; b]$. Then p < a or p > b. Let p < a. Since C has no first point there exists a point $x \in C$ such that x < p (A2.3). But then the region (x; a) contains x but no points in [a; b]. A similar argument holds for b < p and so p cannot be a limit point of [a; b](A2.3). But then any limit points of [a; b] must be in [a; b] and so [a; b] is closed.

Definition 13 (Chain of Regions) Let a < b. A chain of regions going from a to b is defined as a finite sequence R_1, R_2, \ldots, R_n of regions such that $a \in R_1, b \in R_n$ and for $1 \le i \le n-1$ we have $R_i \cap R_{i+1} \ne \emptyset$.

Exercise 14 A chain of regions from a to b covers the closed interval [a; b].

Proof. Let $R_1, R_2, \ldots R_n$ be a chain of regions going from a to b such that $R_i = (p_i; q_i)$. Let $x \in [a; b]$. Then x is greater than a finite number of upper boundary points q_i . Consider the set of indexes for these points. If the set is empty then $x \in R_1$. If the set is not empty then we can take the last point of the set k (2.2). By definition $R_k \cap R_{k+1} \neq \emptyset$ and so $p_{k+1} < q_k$. But $q_k < x$ and $x < q_{k+1}$ and so $x \in (p_{k+1}; q_{k+1}) = R_{k+1}$. Therefore, if $x \in [a; b]$ then x is in one of the regions R_1, R_2, \ldots, R_n . Thus $[a; b] \subseteq R_1 \cup R_2 \cup \cdots \cup R_n$. Since all regions are open, the chain of regions covers [a; b] (3.16).

Theorem 15 Let a < b and let A be a set of regions that covers [a;b]. Let $X = \{x \in [a;b] \mid \text{ there is a chain of regions } R_1, R_2, \dots, R_n \in S \text{ going from } a \text{ to } x\}$. Then $\sup X = b$. Moreover $b \in X$.

Proof. Since $X \subseteq [a;b]$ we see that X is bounded above by b. Additionally, $X \neq \emptyset$ because there exists a region $R_1 \in \mathcal{A}$ which contains a and so there is a finite chain of regions going from a to all points in R_1 greater than or equal to a. Therefore $\sup X$ exists (6.11). Let $u = \sup X$. If u > b then we have $b \geq x$ for all $x \in [a;b]$ and thus $b \geq x$ for all $x \in X$. Therefore b is an upper bound of X which is less than u. This is a contradiction and so $u \leq b$. So we have a < u and $u \leq b$ so $u \in [a;b]$. Since \mathcal{A} is an open cover of [a;b] there exists a region $R_i \in \mathcal{A}$ such that $u \in R_i$. Suppose to the contrary that all the points in R_i which are between a and u are not in X and consider one of these points p. We see that there are no elements of X between p and u and because $\sup X = u$, p is an upper bound of X. But this is a contradiction because p < u. Therefore there exists a point $c \in X$ such that $c \in R_i$ and $c \in X$ such that $c \in X_i$ and $c \in X_i$ such that $c \in X_i$ and $c \in X_i$ we have $c \in X_i$ and $c \in X_i$ such that $c \in X_i$ and $c \in X_i$ such that $c \in X_i$ and $c \in X_i$ such that $c \in X_i$ such that $c \in X_i$ and $c \in X_i$ such that $c \in X_i$

Theorem 16 (Closed Intervals Are Compact With Respect To Regions) Let a < b. Then any set of regions that covers [a; b] has a finite subcover.

Proof. This follows from Theorem 15 and Exercise 14. Because $b \in X$ we see that there exists a finite chain of regions going from a to b (7.15). Since regions are open sets, this chain forms a finite subcover for [a;b] (7.14).

Theorem 17 Let a < b be points in C and let A be an open cover for [a;b]. Let

$$S = \{(c; d) \mid c < d, \text{ there exists } A \in \mathcal{A} \text{ with } (c; d) \subseteq A\}.$$

We have

$$[a;b] \subseteq \bigcup_{(c;d)\in S} (c;d).$$

Proof. We know that \mathcal{A} is an open cover for [a;b]. Thus, for all $x \in [a;b]$ there exists $A \in \mathcal{A}$ such that A is open and $x \in A$. But by the open condition there exists a region $(c;d) \subseteq A$ such that $x \in (c;d)$ (3.17). Then $x \in \bigcup_{(c;d) \in S} (c;d)$ because $x \in \bigcup_{A \in \mathcal{A}} A$ and $(c;d) \subseteq A$ for all $A \in \mathcal{A}$. Therefore $[a;b] \subseteq \bigcup_{(c;d) \in S} (c;d)$.

Corollary 18 For $(c;d) \in S$ let $A_{(c;d)} \in A$ such that $(c;d) \subseteq A_{(c;d)}$. We have

$$[a;b] \subseteq \bigcup_{(c;d)\in S} A_{(c;d)}.$$

Proof. From Theorem 17 we have $[a;b] \subseteq \bigcup_{(c;d) \in S} (c;d)$ (7.17). For all $(c;d) \in S$ we have $(c;d) \subseteq A_{(c;d)}$. Therefore $\bigcup_{(c;d) \in S} (c;d) \subseteq \bigcup_{(c;d) \in S} A_{(c;d)}$.

Theorem 19 (Closed Intervals Are Compact) For a < b the closed interval [a; b] is compact

Proof. Let \mathcal{A} be an open cover for [a;b] for $a,b\in C$. Define

$$S = \{(c; d) \mid c < d, \text{ there exists } A \in \mathcal{A} \text{ with } (c; d) \subseteq A\}.$$

From Theorem 17 we know that S is a cover for [a;b] (7.17). Since S is composed entirely of regions, by Theorem 16 there exists a finite subcover of S for [a;b]. So there exists finitely many regions from S which will form an open cover of [a;b]. Call this set T. Then for $(c;d) \in T$ let $B_{(c;d)} \in \mathcal{A}$ such that $(c;d) \subseteq B_{(c;d)}$. From Corollary 18 we know that the set of all $A_{(c;d)}$ for $(c;d) \in S$ is an open cover for [a;b] (7.18). But $T \subseteq S$ and so the set of all $B_{(c;d)}$ is a subset of the set of all $A_{(c;d)}$. And because $(c;d) \subseteq B_{(c;d)}$ for all $(c;d) \in T$, and T is an open cover for [a;b] we have $[a;b] \subseteq \bigcup_{(c;d) \in T} B_{(c;d)} \subseteq \bigcup_{(c;d) \in S} A_{(c;d)}$. So the set of all $B_{(c;d)}$ is a finite open subcover for [a;b] because T is finite and $B_{(c;d)} \in \mathcal{A}$ for all $(c;d) \in T$.

Theorem 20 Let $X \subseteq C$ be a closed set and let \mathcal{A} be an open cover of X. Then $\mathcal{A} \cup \{C \setminus X\}$ is an open cover of C.

Proof. We know that $X = C \setminus (C \setminus X)$ is closed and so $C \setminus X$ is open. Then let $p \in C$. Then $p \in X$ or $p \notin X$. If $p \in X$ then $p \in \bigcup_{A \in \mathcal{A}} A$. If $p \notin X$ then $p \in C \setminus X$. Therefore $p \in \bigcup_{A \in \mathcal{A}} \cup (C \setminus X)$. Thus $C \subseteq \bigcup_{A \in \mathcal{A}} A \cup (C \setminus X)$. Since all the sets in $A \cup \{C \setminus X\}$ are open, $A \cup \{C \setminus X\}$ is an open cover for C.

Theorem 21 Let $X \subseteq C$ be a set and let \mathcal{B} be an open cover of X such that $C \setminus X \in \mathcal{B}$. Then $\mathcal{B} \setminus \{C \setminus X\}$ is an open cover of X.

Proof. There are no points of X which are in $C \setminus X$. Therefore, since $X \subseteq \bigcup_{B \in \mathcal{B}} B$, we also have $X \subseteq \bigcup_{B \in \mathcal{B}, B \neq (C \setminus X)} B$. And so $\mathcal{B} \setminus \{C \setminus X\}$ is an open cover for X.

Theorem 22 (Bounded Closed Sets Are Compact) Let $X \subseteq C$ be a bounded closed set. Then X is compact.

Proof. Let \mathcal{A} be an open cover of X. Then from Theorem 20 we have $\mathcal{A} \cup \{C \setminus X\}$ is an open cover of C (7.20). Since X is bounded we see that $\inf X$ and $\sup X$ exist (6.11, 6.12). But then $[\inf X; \sup X] \subseteq C$ and so $\mathcal{A} \cup \{C \setminus X\}$ is an open cover for $[\inf X; \sup X]$. But from Theorem 19 we know that $[\inf X; \sup X]$ is compact and so we let $\mathcal{B} \subseteq \mathcal{A} \cup \{C \setminus X\}$ be a finite subset which covers $[\inf X; \sup X]$ (7.19). Then $X \subseteq [\inf X; \sup X]$ by definition and so \mathcal{B} is an open cover for X. But then we know that $\mathcal{B} \subseteq \mathcal{A} \cup \{C \setminus X\}$ and so $\mathcal{B} \setminus \{C \setminus X\} \subseteq \mathcal{A}$. From Theorem 21 we know that $\mathcal{B} \setminus \{C \setminus X\}$ is an open cover for X because \mathcal{B} is an open cover for X (7.21). Since $\mathcal{B} \setminus \{C \setminus A\} \subseteq \mathcal{A}$ is finite we now have a finite open subset of \mathcal{A} which covers X so X is compact.