Espaces préhilbertiens réels

Bases orthonormales

Solution 1

1. Soit u l'endomorphisme de E tel que $u(\mathcal{B}) = \mathcal{B}'$. u transforme une base orthonormée directe en une base orthonormée directe donc u est une isométrie vectorielle directe donc $\det(u) = 1$. Or $\det(u) = \det_{\mathcal{B}}(\mathcal{B}')$.

2. On a $\det_{\mathcal{B}'} = \det_{\mathcal{B}}(\mathcal{B}') \det_{\mathcal{B}}$. Donc $\det_{\mathcal{B}'} = \det_{\mathcal{B}}(\mathcal{B}')$

Remarque. On en déduit que le déterminant dans une base orthonormée directe ne dépend pas du choix de cette base. Le déterminant de n vecteurs u_1, \ldots, u_n dans une base orthonormée quelconque s'appelle le *produit mixte* de ces vecteurs et est noté $[x_1, \ldots, x_n]$.

- 3. Cette application est linéaire car le déterminant est linéaire par rapport à chacune de ses variables et notamment par rapport à la dernière. De plus, elle est à valeurs dans R. C'est donc une forme linéaire.
- 4. C'est tout simplement le théorème de Riesz.
- 5. Démontrons simplement la linéarité par rapport à la première variable. Soient $x_1, \dots, x_{n-1} \in E$, $x_1' \in E$ et $\lambda, \mu \in \mathbb{R}$. Pour tout $x \in E$,

$$\det_{\mathcal{B}}(\lambda x_1 + \mu x_1', x_2, \dots, x_n) = \lambda \det_{\mathcal{B}}(x_1, x_2, \dots, x_n) + \mu \det_{\mathcal{B}}(x_1', x_2, \dots, x_n)$$

Notons $u = (\lambda x_1 + \mu x_1') \wedge x_2 \wedge ... \wedge x_{n-1}, v = x_1 \wedge x_2 \wedge ... \wedge x_{n-1}$ et $w = x_1' \wedge x_2 \wedge ... \wedge x_{n-1}$. Ainsi pour tout $x \in E$, $\langle u, x \rangle = \lambda \langle v, x \rangle + \mu \langle w, x \rangle$ i.e. $\langle u - (\lambda v + \mu w), x \rangle = 0$. Donc $u - (\lambda v + \mu w) \in E^{\perp} = \{0\}$. On a donc $u = \lambda v + \mu w$, ce qui prouve bien la linéarité par rapport à la première variable. La linéarité par rapport aux autres variables se traite de la même manière.

Soient $x_1, \ldots, x_{n-1} \in E$ tels que deux vecteurs parmi ceux-ci soient égaux. On a donc $\det(x_1, \ldots, x_{n-1}, x) = 0$ pour tout $x \in E$ puisque le déterminant est une forme multilinéaire alternée. Ceci signifie que $\langle x_1 \wedge \ldots \wedge x_{n-1}, x \rangle = 0$ pour tout $x \in E$. Ainsi $x_1 \wedge \ldots \wedge x_{n-1} = 0$. L'application de l'énoncé est bien alternée.

Solution 2

- 1. L'application $\langle .,. \rangle$ est clairement symétrique. Elle est bilinéaire puisque la dérivation et l'évaluation en a sont linéaires. Elle est évidemment positive. Soit enfin $P \in \mathbb{R}_n[X]$ tel que $\langle P, P \rangle = 0$. On a donc $P(a) = P'(a) = \cdots = P^{(n)}(a) = 0$. Ainsi a est une racine d'ordre au moins n+1 de P et deg $P \le n$ donc P = 0.
- **2.** La famille $((X a)^k)_{0 \le k \le n}$ est clairement orthonormée. Puisqu'elle contient n + 1 éléments et que dim $\mathbb{R}_n[X] = n + 1$, c'est une base.

Solution 3

1. En développant $||x + y||^2$, on prouve sans peine que

$$\langle x \mid y \rangle = \frac{\|x + y\|^2 - \|x\|^2 - \|y\|^2}{2}$$

et l'on en déduit que

$$\forall (x, y) \in E^2, \ \langle x \mid y \rangle = \sum_{i=1}^n \langle x \mid e_i \rangle \langle y \mid e_i \rangle$$

2. Soit $x \in E$. Posons

$$z = x - \sum_{i=1}^{n} \langle x \mid e_i \rangle e_i$$

1

On a

$$||z||^{2} = \sum_{k=1}^{n} \langle z \mid e_{k} \rangle^{2} = \sum_{k=1}^{n} \left\langle x - \sum_{i=1}^{n} \langle x \mid e_{i} \rangle e_{i} \mid e_{k} \right\rangle^{2} = \sum_{k=1}^{n} \left(\langle x \mid e_{k} \rangle - \sum_{i=1}^{n} \langle x \mid e_{i} \rangle \langle e_{k} \mid e_{i} \rangle \right)^{2}$$

$$= \sum_{k=1}^{n} (\langle x \mid e_{k} \rangle - \langle x \mid e_{k} \rangle)^{2} = 0$$

Ainsi z = 0.

3. D'après la question précédente, la famille $(e_k)_{1 \le k \le n}$ est génératrice de E. Comme $n = \dim(E)$, cette famille est une base de E. Pour tout $1 \le k \le n$, on a

$$e_k = \sum_{i=1}^n \langle e_k \mid e_i \rangle e_i$$

Ainsi, par identification des coordonées dans la base (e_1, \dots, e_n) ,

$$\forall 1 \leq i \leq n, \ \langle e_k \mid e_i \rangle = \delta_{k,i}$$

Comme cela est valable pour tout $1 \le k \le n$, on en déduit que la famille (e_1, \dots, e_n) est une base orthonormée de E.

Solution 4

Notons p_n le projecteur orthogonal sur $\text{vect}(e_0, \dots, e_n)$. Soit $x \in E$. On sait alors que $(p_n(x))_{n \in \mathbb{N}}$ converge vers x pour la norme euclidienne $\|\cdot\|$. D'après le théorème de Pythagore, pour tout $n \in \mathbb{N}$,

$$||x||^2 = ||p_n(x)||^2 + ||x - p_n(x)||^2$$

D'une part,

$$||x - p_n(x)||^2 \xrightarrow[n \to +\infty]{} 0$$

et d'autre part,

$$\forall n \in \mathbb{N}, \ \|p_n(x)\|^2 = \sum_{k=0}^n \langle e_k, x \rangle^2$$

Par passage à la limite

$$||x||^2 = \sum_{k=0}^{+\infty} \langle e_k, x \rangle^2$$

Sous-espaces orthogonaux

Solution 5

s est clairement linéaire et $s^2 = \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})}$ donc s est une symétrie. Soit $S \in \operatorname{Ker}(s - \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$ et $A \in \operatorname{Ker}(s + \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$. Ainsi $S^T = S$ et $A^T = -A$. Par conséquent $\langle S, A \rangle = \operatorname{tr}(S^T A) = \operatorname{tr}(SA)$ et $\langle A, S \rangle = \operatorname{tr}(A^T S) = -\operatorname{tr}(AS) = -\operatorname{tr}(SA)$. Donc $\langle S, A \rangle = 0$. Ceci signifie que $\operatorname{Ker}(s - \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$ et $\operatorname{Ker}(s + \operatorname{Id}_{\mathcal{M}_n(\mathbb{R})})$ sont orthogonaux l'un à l'autre : s est une symétrie orthogonale.

Solution 6

- Supposons F ⊂ G. Soit x ∈ G[⊥]. Alors x est orthogonal à tout vecteur de G et a fortiori de F donc x ∈ F[⊥]. Ainsi G[⊥] ⊂ F[⊥]. Supposons F et G de dimension finie et G[⊥] ⊂ F[⊥]. D'après ce qui précède, (F[⊥])[⊥] ⊂ (G[⊥])[⊥]. Mais F et G étant de dimension finie, (F[⊥])[⊥] = F et (G[⊥])[⊥] = G.
- 2. On sait que $F \subset F + G$ donc $(F + G)^{\perp} \subset F^{\perp}$ d'après la question précédente. De même, $G \subset F + G$ donc $(F + G)^{\perp} \subset G^{\perp}$. Ainsi $(F + G)^{\perp} \subset F^{\perp} \cap G^{\perp}$.

Soit $x \in F^{\perp} \cap G^{\perp}$. Soit $y \in F + G$. Il existe donc $(u, v) \in F \times G$ tel que y = u + v. Alors $\langle x, y \rangle = \langle x, u \rangle + \langle x, v \rangle$. Or $x \in F^{\perp}$ et $u \in F$ donc $\langle x, u \rangle = 0$. De même, $x \in G^{\perp}$ et $v \in G$ donc $\langle x, v \rangle = 0$. Ainsi $\langle x, y \rangle = 0$. Ceci étant vrai pour tout $y \in F + G$, $x \in (F + G)^{\perp}$. D'où $F^{\perp} \cap G^{\perp} \subset (F + G)^{\perp}$.

Par double inclusion, $(F + G)^{\perp} = F^{\perp} \cap G^{\perp}$.

3. $F \cap G \subset F$ donc $F^{\perp} \subset (F \cap G)^{\perp}$ d'après la première question. De même, $F \cap G \subset G$ donc $G^{\perp} \subset (F \cap G)^{\perp}$. On en déduit que $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$.

Supposons E de dimension finie. Alors

$$\dim(F^{\perp} + G^{\perp}) = \dim F^{\perp} + \dim G^{\perp} - \dim(F^{\perp} \cap G^{\perp})$$

Or d'après la question précédente, $F^{\perp} \cap G^{\perp} = (F + G)^{\perp}$ donc

$$\begin{split} \dim(F^{\perp}+G^{\perp}) &= \dim F^{\perp} + \dim G^{\perp} - \dim(F+G)^{\perp} \\ &= (\dim E - \dim F) + (\dim E - \dim G) - (\dim E - \dim(F+G)) \\ &= \dim E - (\dim F + \dim G - \dim(F+G)) \\ &= \dim E - \dim(F \cap G) = \dim(F \cap G)^{\perp} \end{split}$$

Puisqu'on a précédemment montré que $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$, on peut conclure que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Solution 7

1. Remarquons que pour tout $y \in E$, la forme linéaire $\varphi_y : x \mapsto \langle x, y \rangle$ est continue. En effet, d'après l'inégalité de Cauchy-Schwarz :

$$\forall x \in E, |\varphi_v(x)| = |\langle x, y \rangle| \le ||x|| ||y||$$

de sorte que φ_{ν} est continue d'après la caractérisation de la continuité pour les applications linéaires.

2. On peut remarquer que

$$\mathbf{F} = \{x \in \mathbf{E}, \ \forall y \in \mathbf{F}, \ \langle x, y \rangle = 0\} = \bigcap_{y \in \mathbf{F}} \varphi_y^{-1}(\{0_{\mathbf{E}}\})$$

Pour tout $y \in E$, $\phi_y^{-1}(\{0_E\})$ est fermé comme image réciproque d'un fermé (le sous-espace nul) par une application continue. Par conséquent, F est fermé comme intersection de fermés.

On peut aussi utiliser la caractérisation séquentielle des fermés si l'on préfère. Soit (x_n) une suite d'éléments de F^{\perp} convergeant vers $x \in E$. Fixons $y \in F$. Alors pour tout $n \in \mathbb{N}$, $\varphi_y(x_n) = \langle x_n, y \rangle = 0$. Par continuité de φ_y , $\lim_{n \to +\infty} \varphi_y(x_n) = \varphi_y(x)$. Par unicité de la limite, $\langle x, y \rangle = \varphi_y(x) = 0$. Ceci étant valable pour tout $y \in F$, $x \in F^{\perp}$. Ainsi F^{\perp} est fermé par caractérisation séquentielle de la limite.

3. On sait que $F \subset (F^{\perp})^{\perp}$. Or $(F^{\perp})^{\perp}$ est fermé en applquant la question précédente à F^{\perp} . On sait que \overline{F} est le plus grand fermé contenant F. Ainsi $\overline{F} \subset (F^{\perp})^{\perp}$.

Projection orthogonale

Solution 8

Notons p la projection orthogonale sur vect(u) et P sa matrice dans \mathcal{B} . Comme (u) est une base orthonormale de vect(u), on a, pour $x \in E$, $p(x) = \langle x, u \rangle u$. Notons X le vecteur colonne associé à un vecteur x de E. On a $PX = (U^TX)U = U(U^TX) = UU^TX$. La matrice de P dans \mathcal{B} est donc UU^t .

Solution 9

- 1. Notons p_u le projecteur orthogonal sur $\operatorname{vect}(u)$. Remarquons que $p_u(e_i) = \left\langle \frac{u}{\|u\|}, e_i \right\rangle \frac{u}{\|u\|}$. Ainsi $\|p_u(e_i)\| = \frac{|\langle u, e_i \langle l \rangle|}{\|u\|}$. Posons alors $u = \sum_{i=1}^n \frac{e_i}{\|e_i\|^2}$. Comme (e_1, \dots, e_n) est orthogonale, pour tout $k \in [1, n]$, $\langle u, e_k \rangle = 1$. Donc pour tout $k \in [1, n]$, $\|p_u(e_k)\| = \frac{1}{\|u\|}$. Les projetés orthogonaux de e_1, \dots, e_n sur $\operatorname{vect}(u)$ ont donc toute la même norme.
- 2. Soit u un vecteur répondant aux conditions de l'énoncé. Notons N la norme commune des vecteurs $p_u(e_1), \dots, p_u(e_n)$. On a donc $N = \frac{|\langle e_i, u \rangle|}{\|u\|}$ pour $1 \le i \le n$.

Comme la base $\left(\frac{e_i}{\|e_i\|}\right)_{1 \le i \le n}$ est orthonormale, on a :

$$||u||^2 = \sum_{i=1}^n \frac{\langle e_i, u \rangle^2}{||e_i||^2} = \sum_{i=1}^n \frac{N^2 ||u||^2}{||e_i||^2}$$

Comme u est non nul, on obtient :

$$N = \left(\sum_{i=1}^{n} \frac{1}{\|e_i\|^2}\right)^{-\frac{1}{2}}$$

Ceci prouve que N est indépendante de u et nous donne bien une expression de N en fonction de $|e_1|, \dots, |e_n|$.

Solution 10

• Prouvons que $1. \Rightarrow 2$.

Lorsque p est une projection orthogonale de E, on a $\text{Im}(id_E - p) = \text{Ker}(p) = \text{Im}(p)^{\perp}$ donc, pour tout x et y dans E, $p(x) \perp y - p(y)$ ie

$$\langle p(x)|y\rangle = \langle p(x)|p(y)\rangle.$$

Cette expression étant symétrique en (x, y), on a

$$\langle p(x)|y\rangle = \langle p(x)|p(y)\rangle = \langle p(y)|p(x)\rangle = \langle p(y)|x\rangle$$

= $\langle x|p(y)\rangle$

• Prouvons que $2. \Rightarrow 3$.

Soit x dans E. Appliquons le 2. à x et y = p(x). On a

$$||p(x)||^2 = \langle p(x)|p(x)\rangle = \langle x|p(x)\rangle.$$

ainsi, d'après l'inégalité de Cauchy-Schwarz,

$$||p(x)||^2 \le ||x|| \cdot ||p(x)||.$$

Si p(x) = 0, l'inégalité **3.** est banalement vérifiée. Si $p(x) \neq 0$, ||p(x)|| > 0 et en divisant membre à membre l'inégalité précédente, on aboutit à

$$||p(x)|| \leq ||x||.$$

• Prouvons que $3. \Rightarrow 1$.

Soient $x \in \text{Im } p, y \in \text{Ker } p \text{ et } \lambda \in \mathbb{R}$. Si y = 0, alors $x \perp y$.

Supposons maintenant $y \neq 0$. D'une part,

$$||p(x + \lambda y)||^2 = ||x||^2$$

et d'autre part,

$$||x + \lambda v||^2 = ||x||^2 + 2\lambda \langle x|v \rangle + \lambda^2 ||v||^2$$

D'après 2., $2\lambda \langle x|y \rangle + \lambda^2 ||y||^2 \ge 0$ pour tout $\lambda \in \mathbb{R}$. Le discriminant de ce trinôme du second degré en λ est donc négatif, ce qui impose $\langle x|y \rangle^2 \le 0$ et donc $\langle x|y \rangle = 0$. On a donc $x \perp y$. On en déduit que Im $p \perp$ Ker p et donc que p est une projection orthogonale.

Solution 11

1. Soient $x \in \text{Ker}(\text{Id}_E - u)$ et $y \in \text{Im}(\text{Id}_E - u)$. Alors u(x) = x et il existe $a \in E$ tel que y = a - u(a). Ainsi

$$\langle x, y \rangle = \langle x, a - u(a) \rangle = \langle x, a \rangle - \langle x, u(a) = \langle x, a \rangle - \langle u(x), u(a) \rangle = 0$$

car u conserve le produit scalaire. Ainsi $\text{Ker}(\text{Id}_{\text{E}} - u)$ et $\text{Im}(\text{Id}_{\text{E}} - u)$ sont orthogonaux. On conclut grâce au théorème du rang.

2. D'après la question précédente, il existe $y \in \text{Ker}(\text{Id}_E - u)$ et $a \in E$ tel que x = y + a - u(a). Pour tout $k \in \mathbb{N}$, $u^k(x) = y + u^k(a) - u^{k+1}(a)$. Par télescopage, $x_n = y + \frac{1}{n}(a - u^n(a))$. On a alors

$$||x_n - y|| \le \frac{||a|| + ||u^n(a)||}{n} = \frac{2||a||}{n}$$

car u^n conserve la norme. En passant à la limite, on obtient que (x_n) converge vers y qui est justement la projection de x sur $Ker(Id_E - u)$ parallélement à $Im(Id_E - u)$.

Solution 12

- 1. Tout d'abord, pour $(P,Q) \in E^2$, $P(t)Q(t)e^{-t} = o(1/t^2)$ par croissances comparées donc $\langle P,Q \rangle$ est bien défini. La bilinéarité et la positivité sont évidentes. Soit enfin $P \in E$ tel que $\langle P,P \rangle = 0$. Comme $t \mapsto P^2(t)e^{-t}$ est continue, positive et d'intégrale nulle sur \mathbb{R}_+ , cette fonction est nulle sur \mathbb{R}_+ . Ainsi P admet une infinité de racines puis P = 0.
- **2.** Notons I_n l'intégrale à calculer. Par intégration par parties, $I_n = nI_{n-1}$ pour $n \in \mathbb{N}^*$. Or $I_0 = 1$ donc $I_n = n!$ pour tout $n \in \mathbb{N}$.
- 3. On orthonormalise la base (1, X, X²) de F via le procédé de Gram-Schmidt. On pose

$$\begin{split} &P_0 = \frac{1}{\|1\|} = 1 \\ &P_1 = \frac{X - \langle P_0, X \rangle P_0}{\sqrt{\|X\|^2 - \langle P_0, X \rangle^2}} = \frac{X - I_1 P_0}{\sqrt{I_2 - I_1^2}} = X - 1 \\ &P_2 = \frac{X^2 - \langle P_0, X^2 \rangle P_0 - \langle P_1, X^2 \rangle P_1}{\sqrt{\|X^2\|^2 - \langle P_0, X^2 \rangle^2 - \langle P_1, X^2 \rangle^2}} = \frac{X^2 - I_2 P_0 - (I_3 - I_2) P_1}{\sqrt{I_4 - I_2^2 - (I_3 - I_2)^2}} = \frac{1}{2} X^2 - 2X + 1 \end{split}$$

Alors (P₀, P₁, P₂) est une base orthonormée de F.

4. Comme (P_0, P_1, P_2) est une base orthonormée de F, le projeté orthogonal de X^3 sur F est

5. Par inégalité de Cauchy-Schwarz,

$$\left|\int_0^{+\infty} \mathbf{P}(t)e^{-t} \ \mathrm{d}t\right| = |\langle \mathbf{P}, \mathbf{1}\rangle| \leq \|\mathbf{P}\| \|\mathbf{1}\| = \sqrt{\int_0^{+\infty} \mathbf{P}^2(t)e^{-t} \ \mathrm{d}t}$$

Solution 13

- 1. L'image de M est clairement engendrées par les deux premières colonnes de M qui sont linéairement indépendantes. Ainsi rg(M) = 2.
- 2. D'après le théorème du rang dim Ker M = 2. Ainsi 0 est valeur propre de M est la dimension du sous-espace propre associé est n-2. Il est engendré par les $E_2 E_i$ pour $3 \le i \le n$ où $(E_1, ..., E_n)$ est la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$. Le calcul (laborieux) du polynôme caractéristique donne $\chi_M = X^n (n-1)X^{n-2}$. Ainsi M possède deux valeurs propres supplémentaires qui sont $\pm \sqrt{n-1}$. On aurait aussi pu remarquer que $M^3 = (n-1)M$. Les sous-espaces propres associés aux valeurs propres $\sqrt{n-1}$

qui sont
$$\pm \sqrt{n-1}$$
. On aurait aussi pu remarquer que $M^3 = (n-1)M$. Les sous-espace et $-\sqrt{n-1}$ sont respectivement engendrés par $U = \begin{pmatrix} \sqrt{n-1} \\ 1 \\ \vdots \\ 1 \end{pmatrix}$ et $V = \begin{pmatrix} -\sqrt{n-1} \\ 1 \\ \vdots \\ 1 \end{pmatrix}$.

3. Notons u et v les vecteurs canoniquement associés à U et V. Puisque $\pm \sqrt{n-1}$ sont les seules valeurs propres non nulles de f, il est clair que Im f est engendré par u et v. Remarquons que u et v sont orthogonaux (ce qui est normal puisque M est symétrique). En notant p le projecteur orthogonal sur Im f, on a donc,

$$\forall x \in \mathbb{R}^n, \ p(x) = \frac{\langle u, x \rangle}{\|u\|^2} u + \frac{\langle v, x \rangle}{\|v\|^2} v$$

Comme $||u||^2 = ||v||^2 = 2(n-1)$, on obtient en notant P la matrice de p dans la base canonique,

$$\forall \mathbf{X} \in \mathcal{M}_{n,1}(\mathbb{R}), \ \mathbf{P}\mathbf{X} = \frac{1}{2n-2} \left((\mathbf{U}^{\mathsf{T}}\mathbf{X})\mathbf{U} + (\mathbf{V}^{\mathsf{T}}\mathbf{X})\mathbf{V} \right) = \frac{1}{2n-2} \left(\mathbf{U}\mathbf{U}^{\mathsf{T}}\mathbf{X} + \mathbf{V}\mathbf{V}^{\mathsf{T}}\mathbf{X} \right)$$

car U^TX et V^TX sont des scalaires. On en déduit que

$$P = \frac{1}{2n-2} (UU^{T} + VV^{T}) = \frac{1}{n-1} \begin{pmatrix} n-1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 1 & \cdots & 1 \end{pmatrix}$$

Automorphismes orthogonaux et matrices orthogonales

Solution 14

- Si H = K alors $s_H = s_K$ et s_H et s_K commutent évidemment.
- Si $H^{\perp} \subset K$, alors on a également $K^{\perp} \subset H$. Soient $a, b \in E$ tels que $H = \text{vect}(a)^{\perp}$ et $K = \text{vect}(b)^{\perp}$. On a donc $a \in K$ et $b \in H$. De plus, a et b sont orthogonaux. Enfin, $(H \cap K)^{\perp} = H^{\perp} + K^{\perp} = \text{vect}(a) \oplus \text{vect}(b)$. Soit $x \in E$. Il existe donc $u \in H \cap K$ et $\lambda, \mu \in K$ tels que $x = u + \lambda a + \mu b$. On a alors :

$$s_{H} \circ s_{K}(x) = s_{H}(u + \lambda a - \mu b) = u - \lambda a - \mu b$$

$$s_{K} \circ s_{H}(x) = s_{K}(u - \lambda a + \mu b) = u - \lambda a - \mu b$$

On a bien prouvé que s_H et s_K sommutent.

Remarque. On a même prouvé que $s_H \circ s_K = s_K \circ s_H = s_{H \cap K}$.

• Réciproquement, si s_H et s_K commutent, soit à nouvau a tel que $H = \text{vect}(a)^{\perp}$. On a donc $s_H(a) = -a$. Par conséquent, $s_H \circ s_K(a) = s_K \circ s_H(a) = -s_K(a)$. Ceci implique que $s_K(a) \in H^{\perp} = \text{vect}(a)$. Comme s_K est une isométrie, on a $s_K(a) = a$ ou $s_K(a) = -a$. Si $s_K(a) = a$ alors $a \in K$ et donc $H^{\perp} \subset K$. Si $s_K(a) = -a$ alors $a \in K^{\perp}$, c'est-à-dire que $K = \text{vect}(a)^{\perp} = H$.

Solution 15

1. Soit (i, j, k) une base orthonormée directe de E et f vérifiant la condition de l'énoncé. Alors

$$f(i) = f(j) \land f(k) \qquad \qquad f(j) = f(k) \land f(i) \qquad \qquad f(k) = f(i) \land f(j)$$

La famille (f(i), f(j), f(k)) est donc orthogonale. Par conséquent

$$||f(i)|| = ||f(j)|| ||f(k)||$$

$$||f(j)|| = ||f(k)|| ||f(i)||$$

$$||f(k)|| = ||f(i)|| ||f(j)||$$

Si l'un des vecteurs f(i), f(j), f(k) est nul alors ces 3 vecteurs sont nuls et donc f = 0. Si les 3 vecteurs sont non nuls, on tire des 3 dernières relations que :

$$||f(i)|| = ||f(j)|| = ||f(k)|| = 1$$

Comme de plus $f(i) = f(j) \land f(k)$, la famille (f(i), f(j), f(k)) est une base orthonormée directe. On a donc $f \in SO(E)$. Réciproquement, si f = 0 ou $f \in SO(E)$, alors f vérifie bien la condition de l'énoncé puisque les applications $(u, v) \mapsto f(u \land v)$ et $(u, v) \mapsto f(u) \land f(v)$ sont bilinéaires et que ces deux applications coïncident sur une base orthonormée directe. L'ensemble des endomorphismes recherché est donc $SO(E) \cup \{0\}$.

2. Tout le raisonnement précédent reste valable à l'exception près que $f(i) = -f(j) \land f(k)$ et la famille (f(i), f(j), f(k)) est donc une base orthonormée indirecte. f est donc soit l'endomorphisme nul soit une isométrie indirecte. L'ensemble recherché est donc $(O(E) \setminus SO(E)) \cup \{0\}$.

Solution 16

Notons P le plan d'équation x + 2y - 3z = 0. On a $P = \{(3z - 2y, y, z), (y, z) \in \mathbb{R}^2\} = \text{vect}((-2, 1, 0), (3, 0, 1))$. Notons $u_1 = (-2, 1, 0)$ et $u_2 = (3, 0, 1)$. Notons s la symétrie de l'énoncé. On va déterminer les images des vecteurs de la base canonique par s. Un vecteur normal à P est $n = u_1 \wedge u_2 = (1, 2, -3)$. Le projeté orthogonal d'un vecteur u sur $P^{\perp} = \text{vect}(n)$ est donc $p(u) = \frac{\langle u, n \rangle}{\|n\|^2} n$. On a alors $s(u) = u - 2p(u) = u - 2\frac{\langle u, n \rangle}{\|n\|^2} n$. Il suffit alors d'appliquer à $e_1 = (1, 0, 0)$, $e_2 = (0, 1, 0)$ et $e_3 = (0, 0, 1)$. On trouve

$$s(e_1) = \frac{1}{7}(6, -2, 3)$$
 $s(e_2) = \frac{1}{7}(-2, 3, 6)$ $s(e_3) = \frac{1}{7}(3, 6, -2)$

La matrice de *s* dans la base canonique est donc $\frac{1}{7}$ $\begin{pmatrix} 6 & -2 & 3 \\ -2 & 3 & 6 \\ 3 & 6 & -2 \end{pmatrix}$.

Solution 17

Notons L_1 , L_2 , L_3 les lignes de A. La matrice A est une matrice de rotation si et seulement si la famille (L_1, L_2, L_3) est orthonormale et si det A = 1.

La condition $||\mathbf{L}_1|| = 1$ équivaut à $a^2 = \frac{1}{6}$ i.e. $a = \pm \frac{1}{\sqrt{6}}$.

La condition $\|\mathbf{L}_2\| = 1$ équivaut à $b^2 = \frac{2}{3}$ i.e. $b = \pm \frac{2}{\sqrt{6}}$.

La condition $\|\mathbf{L}_3\| = 1$ équivaut à $c^2 = \frac{1}{6}$ i.e. $c = \pm \frac{1}{\sqrt{6}}$.

La condition $\langle L_1, L_2 \rangle = 0$ équivaut à $ab = -\frac{1}{3}$.

La condition $\langle L_1, L_3 \rangle = 0$ équivaut à $ac = \frac{1}{6}$.

La condition $\langle L_2, L_3 \rangle = 0$ équivaut à $bc = -\frac{1}{6}$.

La condition det A = 1 équivaut à $-a + 2b - c = \sqrt{6}$.

Toutes ces conditions équivalent à $\begin{cases} a = \varepsilon \frac{1}{\sqrt{6}} \\ b = -\varepsilon \frac{2}{\sqrt{6}} \\ dC = \varepsilon \frac{1}{\sqrt{6}} \end{cases}. \text{ On trouve } \varepsilon = -1 \text{ puis } a = -\frac{1}{\sqrt{6}}, b = \frac{2}{\sqrt{6}}, c = -\frac{1}{\sqrt{6}}.$ $-a + 2b - c = \sqrt{6}$ $\varepsilon = \pm 1$

Solution 18

1. Soient s une réflexion de E, (u, v) une base de E, et $A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$ la matrice de s dans la base (u, v). Recherchons l'axe de s.

Les vecteurs de l'axe sont les vecteurs de matrice colonne X dans la base (u, v) vérifiant AX = X. Posons $X = \begin{pmatrix} x \\ y \end{pmatrix}$. Alors

$$AX = X \iff \begin{cases} x\cos\theta + y\sin\theta = x \\ x\sin\theta - y\cos\theta = y \end{cases} \iff \begin{cases} x(\cos\theta - 1) + y\sin\theta = 0 \\ x\sin\theta - y(\cos\theta + 1) = 0 \end{cases}$$
$$\iff \begin{cases} -2x\sin^2\frac{\theta}{2} + 2y\sin\frac{\theta}{2}\cos\frac{\theta}{2} = 0 \\ 2x\sin\frac{\theta}{2}\cos\frac{\theta}{2} - 2y\cos^2\frac{\theta}{2} = 0 \end{cases} \iff x\sin\frac{\theta}{2} - y\cos\frac{\theta}{2} = 0$$

La dernière équivalence est justifiée par le fait que $\sin\frac{\theta}{2}$ et $\cos\frac{\theta}{2}$ ne peuvent être simultanément nuls. Un vecteur directeur de l'axe est donc $\cos\frac{\theta}{2}u+\sin\frac{\theta}{2}v$. On en déduit que $\frac{\theta}{2}$ est l'angle orienté de droites entre l'axe des abscisses i.e. vect(u) et l'axe de la réflexion s (modulo π puisqu'il s'agit d'un angle orienté de droites).

2. Soit s_1 et s_2 deux réflexions de E. On peut choisir une base orthonormée \mathcal{B} de E de telle sorte que la matrice de s_1 dans cette base soit $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. La matrice de s_2 dans \mathcal{B} est de la forme $\begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$. La matrice de s_1+s_2 dans \mathcal{B} est donc $A = \begin{pmatrix} 1+\cos \theta & \sin \theta \\ \sin \theta & -1-\cos \theta \end{pmatrix}$. s_1+s_2 est une réflexion si et seulement si la matrice A est orthogonale de déterminant -1. Ceci nous donne donc les conditions

$$\begin{cases} (1 + \cos \theta)^2 + \sin^2 \theta = 1\\ \sin^2 \theta + (-1 - \cos \theta)^2 = 1\\ (1 + \cos \theta)(-1 - \cos \theta) - \sin^2 \theta = -1 \end{cases}$$

Un rapide calcul montre que chacune des équations de ce système équivaut à $2\cos\theta=-1$ i.e. $\theta\equiv\pm\frac{2\pi}{3}\pmod{2\pi}$. On a donc $\frac{\theta}{2}\equiv\pm\frac{\pi}{3}\pmod{\pi}$. Avec notre choix de base, l'axe de s_1 est l'axe des abscisses. A l'aide de la première question, on peut donc conclure que s_1+s_2 est une réflexion si et seulement si l'angle non orienté de droites entre l'axe de s_1 et l'axe de s_2 vaut $\frac{\pi}{3}$.

Solution 19

1. Soient $y \in \text{Im } v \text{ et } z \in \text{Ker } v$. Il existe donc $x \in \text{E tel que } y = v(x)$ i.e. y = x - u(x). On a également $v(z) = 0_E$ i.e. z = u(z).

$$(y|z) = (x - u(x)|z) = (x|z) - (u(x)|z) = (x|z) - (u(x)|u(z)) = 0$$

car u conserve le produit scalaire. On a donc prouvé que Im v et Ker v sont orthogonaux. En particulier, ces deux sous-espaces vectoriels sont en somme directe. De plus, d'après le théorème du rang dim Ker v + dim Im v = dim E, donc Im v et Ker v sont supplémentaires.

2. Une composée d'automorphismes orthogonaux est un automorphisme orthogonal.

Solution 20

1. L'application Φ est clairement symétrique. Elle est bilinéaire par linéarité de l'intégrale. Elle est positive par positivité de l'intégrale. Enfin, soit $f \in E$ telle que $\Phi(f,f) = 0$. On a donc $\int_0^1 f(t)^2 dt = 0$. Comme l'application f^2 est positive et continue sur [0,1], elle est nulle sur [0,1]. Par conséquent, f est également nulle sur [0,1]. De plus, f est une combinaison linéaire des fonctions 1-périodiques e_1,e_2,e_3 . Donc f est aussi 1-périodique. Elle est alors nulle sur \mathbb{R} . L'application Φ est une forme bilinéaire symétrique définie positive : c'est un produit scalaire.

2. Les calculs sont élémentaires :

$$\begin{aligned} \|e_1\|^2 &= 2 \int_0^1 \frac{1}{2} \, \mathrm{d}t = 1 \\ \|e_2\|^2 &= 2 \int_0^1 \cos^2(2\pi t) \, \mathrm{d}t = \int_0^1 (1 + \cos(4\pi t)) \, \mathrm{d}t = 1 \\ \|e_3\|^2 &= 2 \int_0^1 \sin^2(2\pi t) \, \mathrm{d}t = \int_0^1 (1 - \cos(4\pi t)) \, \mathrm{d}t = 1 \\ \langle e_1, e_2 \rangle &= \sqrt{2} \int_0^1 \cos(2\pi t) \, \mathrm{d}t = 0 \\ \langle e_1, e_3 \rangle &= \sqrt{2} \int_0^1 \sin(2\pi t) \, \mathrm{d}t = 0 \\ \langle e_2, e_3 \rangle &= 2 \int_0^1 \sin(2\pi t) \cos(2\pi t) \, \mathrm{d}t = \int_0^1 \sin(4\pi t) \, \mathrm{d}t = 0 \end{aligned}$$

La base (e_1, e_2, e_3) est donc orthonormée.

3. a. Soient $\lambda, \mu \in \mathbb{R}$ et $f_1, f_2 \in \mathbb{E}$. $\tau_x(\lambda f_1 + \mu f_2)$ est l'application $t \mapsto (\lambda f_1 + \mu f_2)(x - t)$, c'est-à-dire l'application $t \mapsto \lambda f_1(x - t) + \mu f_2(x - t)$ i.e. l'application $\lambda \tau_x(f_1) + \mu \tau_x(f_2)$. Ainsi τ_x est linéaire. De plus, $\tau_x(e_1) = e_1$. De plus, pour $x, t \in \mathbb{R}$:

$$\cos(2\pi(x-t)) = \cos(2\pi x)\cos(2\pi t) + \sin(2\pi x)\sin(2\pi t)$$
$$\sin(2\pi(x-t)) = \sin(2\pi x)\cos(2\pi t) - \cos(2\pi x)\sin(2\pi t)$$

Autrement dit, $\tau_x(e_2) = \cos(2\pi x)e_2 + \sin(2\pi x)e_3$ et $\tau_x(e_3) = \sin(2\pi x)e_2 - \cos(2\pi x)e_3$. Donc $\tau_x(e_1)$, $\tau_x(e_2)$ et $\tau_x(e_3)$ appartiennent à $\text{vect}(e_1, e_2, e_3) = \text{E}$. Comme (e_1, e_2, e_3) est une famille génératrice de E, on en déduit que $\tau_x(f) \in \text{E}$ pour tout $f \in \text{E}$. Ainsi f est bien un endomorphisme de E.

- **b.** Les calculs précédents montrent que la matrice de τ_x dans la base (e_1, e_2, e_3) est $M_x = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(2\pi x) & \sin(2\pi x) \\ 0 & \sin(2\pi x) & -\cos(2\pi x) \end{pmatrix}$.
- c. On vérifie sans peine que M_x est orthogonale. Comme M_x est la matrice de τ_x dans une base orthonormale, on en déduit que τ_x est un automorphisme orthogonal.
- **d.** On a det M = -1 donc τ_x est une isométrie vectorielle indirecte. Comme dim E = 3, τ_x est une réflexion ou une anti-rotation.

Cherchons les vecteurs invariants par τ_x . On résout le système MX = X où $X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$.

$$\begin{aligned} & x_1 = x_1 \\ & \text{MX} = \text{X} \iff \begin{cases} x_2 \cos(2\pi x) + x_3 \sin(2\pi x) = x_2 \\ x_2 \sin(2\pi x) - x_3 \cos(2\pi x) = x_3 \end{cases} \\ & \Leftrightarrow \begin{cases} x_2 (\cos(2\pi x) - 1) + x_3 \sin(2\pi x) = 0 \\ x_2 \sin(2\pi x) - x_3 (1 + \cos(2\pi x)) = 0 \end{cases} \\ & \Leftrightarrow \begin{cases} -2x_2 \sin^2(\pi x) + 2x_3 \sin(\pi x) \cos(\pi x) = 0 \\ 2x_2 \sin(\pi x) \cos(\pi x) - 2x_3 \cos^2(\pi x) = 0 \end{cases} \\ & \Leftrightarrow x_2 \sin(\pi x) - x_3 \cos(\pi x) = 0 \end{aligned}$$

Le sous-espace des vecteurs invariants par τ_x est donc le plan P_x d'équation $x_2 \sin(\pi x) - x_3 \cos(\pi x) = 0$ dans la base (e_1, e_2, e_3) . τ_x est donc une réflexion. On peut également définir P_x par $P_x = \text{vect}(e_1, \cos(\pi x)e_2 + \sin(\pi x)e_3)$.

Solution 21

Notons r la rotation de l'énoncé. La droite \mathcal{D} d'équation $\begin{cases} x=0 \\ z=0 \end{cases}$ admet pour vecteur directeur $\overrightarrow{u}(0,0,1)$. L'image de \mathcal{D} par r est une droite dirigée par $r(\overrightarrow{u})$. Notons $\overrightarrow{b}=\frac{\overrightarrow{a}}{\|\overrightarrow{a}\|}$. Le vecteur \overrightarrow{b} a donc pour coordonnées $\frac{1}{\sqrt{3}}(1,1,1)$. Notons Δ l'axe de la rotation. Le projeté orthogonal de \overrightarrow{u} sur Δ est $\overrightarrow{v}=(\overrightarrow{u}.\overrightarrow{b})\overrightarrow{b}$. Le vecteur \overrightarrow{v} a donc pour coordonnées $\frac{1}{3}(1,1,1)$. On a alors $\overrightarrow{u}=\overrightarrow{v}+\overrightarrow{w}$ avec $\overrightarrow{w}\in\Delta^{\perp}$. Le vecteur \overrightarrow{w} a pour coordonnées $\frac{1}{3}(-1,-1,2)$. Mais alors $r(\vec{u})=r(\vec{v})+r(\vec{w})=\vec{v}+r(\vec{w})$ car $\vec{v}\in\Delta$. Comme $\vec{w}\in\Delta^\perp$, $r(\vec{w})=\cos\frac{\pi}{6}\vec{w}+\sin\frac{\pi}{6}\vec{b}\wedge\vec{w}$. Après calcul, le vecteur $r(\vec{w})$ admet pour coordonnées $\frac{1}{\sqrt{3}}(0,-1,1)$. Ainsi $r(\vec{u})$ admet donc pour coordonnées $\left(\frac{1}{3},\frac{1}{3}-\frac{1}{\sqrt{3}},\frac{1}{3}+\frac{1}{\sqrt{3}}\right)$.

Solution 22

1. Les vecteurs $\vec{a}(1,1,1)$ et $\vec{b}(1,-1,0)$ sont des vecteurs du plan d'équation x+y-2z=0. Le vecteur $\vec{c}(1,1,-2)$ est normal à ce plan. On vérifie que \vec{a} et \vec{b} sont orthogonaux. Posons $\vec{u}_1 = \frac{\vec{a}}{\|\vec{a}\|}$, $\vec{u}_2 = \frac{\vec{b}}{\|\vec{b}\|}$ et $\vec{u}_3 = \frac{\vec{c}}{\|\vec{c}\|}$. La famille (u_1, u_2, u_3) est une base orthonormale de E et dans cette base, la matrice de s_1 est $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$. La matrice de (u_1, u_2, u_3) dans la base canonique est

$$P = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix}. \text{ La matrice de } s_1 \text{ dans la base canonique est donc } M_1 = PMP^T = \frac{1}{3} \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 2 \\ 2 & 2 & -1 \end{pmatrix}.$$

2. Notons A la matrice de l'énoncé. A est clairement orthogonale et, en développant par rapport à la première ligne, det A = 1. f est tr(A) = $1 + 2\cos\theta = 0$ donc $\theta = \pm \frac{2\pi}{3}$ (mod 2π). De plus, on a vu que \vec{b} est orthogonal à \vec{a} et, si \mathcal{B} désigne la base canonique, $\det_{\mathcal{B}}(\vec{b}, f(\vec{b}), \vec{a}) = \begin{vmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{vmatrix} = 3 > 0$ donc $\sin\theta > 0$. On en déduit $\theta = \frac{2\pi}{3}$ (mod 2π). donc une rotation. On a clairement $f(\vec{a}) = \vec{a}$ donc l'axe de f est $\text{vect}(\vec{a})$. Notons θ l'angle de f si on dirige l'axe par \vec{a} . On a

$$\det_{\mathcal{B}}(\overrightarrow{b}, f(\overrightarrow{b}), \overrightarrow{a}) = \begin{vmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & -1 & 1 \end{vmatrix} = 3 > 0 \text{ donc } \sin \theta > 0. \text{ On en d\'eduit } \theta \equiv \frac{2\pi}{3} \pmod{2\pi}.$$

Remarque. On peut raisonner plus géométriquement. Si on note A(1,0,0), B(0,1,0), C(0,0,1) la rotation affine d'axe $O + \text{vect}(\vec{a})$ associée à f effectue une permutation circulaire des trois points A, B, C. Comme le vecteur \vec{a} est normal au plan ABC, la restriction de la rotation à ce plan est une rotation plane d'angle θ . Il est alors évident que $\theta \equiv \frac{2\pi}{3} \pmod{2\pi}$.

3. Il suffit de poser $s_2 = s_1 \circ f$ et $s_3 = f \circ s_1$. Les matrices de s_2 et s_3 dans la base canonique sont donc respectivement $M_2 = M_1 A = M_2 A$

If suffit deposer
$$s_2 = s_1 \circ f$$
 et $s_3 = f \circ s_1$. Les matrices de s_2 et s_3 dans la base canonique sont donc respectivement $M_2 = M_1 A = \begin{pmatrix} -1 & 2 & 2 \\ 2 & 2 & -1 \\ 2 & -1 & 2 \end{pmatrix}$ et $M_3 = AM_1 = \frac{1}{3} \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}$. On trouve les plans plans de réflexions de s_2 et s_3 en résolvant $M_2 X = X$ et

$$M_3X = X$$
 avec $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. On trouve pour s_2 le plan d'équation $2x - y - z = 0$ et pour s_3 le plan d'équation $2y - x - z = 0$.

Solution 23

Supposons que f est une symétrie orthogonale. Alors f est un automorphisme orthogonal et donc A est orthogonale i.e. $A^TA = I_n$. De plus, f est une symétrie donc $A^2 = I_n$. On en déduit que $A^T = A$ et donc A est symétrique. Réciproquement, supposons A orthogonale et symétrique. Alors f est un automorphisme orthogonal. Or $A^TA = I_n$ et $A^T = A$ donc $A^2 = I_n$ et f est une symétrie. Il est alors classique de montrer que f est une symétrie orthogonale.

Solution 24

f et g sont deux rotations. Si l'une des deux est l'identité, alors on peut toujours considérer que f et g sont deux rotations de même axe. Supposons maintenant f et g distinctes de l'identité. Soit u un vecteur directeur de l'axe de f. Comme f et g commutent, f(g(u)) = g(f(u)) = g(u). Donc g(u) appartient à l'axe de f, c'est-à-dire vectg(u). Mais comme g est une isométrie, $\|g(u)\| = \|u\|$ et donc g(u) = u ou g(u) = -u. Si g(u) = u, alors g(u) = u est un vecteur de l'axe de g(u) = u sont donc deux rotations de même axe.

Si g(u) = -u, notons v un vecteur directeur de l'axe de g de sorte que g(v) = v. Puisque g est une isométrie $\langle g(u), g(v) \rangle = \langle u, v \rangle$ et donc $\langle u, v \rangle = 0$. Les axes de f et g sont donc orthogonaux. Comme g(u) = -u, g est une rotation d'angle π autrement dit une symétrie orthogonale par rapport à son axe. On a également g(f(v)) = f(v) donc f(v) appartient à l'axe de g et on a à nouveau f(v) = v ou f(v) = -v. On ne peut avoir f(v) = v puisque v n'appartient pas à l'axe de g (il lui est orthogonal et non nul). Ainsi g(v) = -v, ce qui prouve que g(v) = v est une rotation d'angle g(v) = v qui prouve que g(v) = v son axe.

Solution 25

1. Soit $(x, y) \in \text{Ker}(f - \text{Id}_{\text{E}}) \times \text{Im}(f - \text{Id}_{\text{E}})$. Alors f(x) = x et il existe $a \in \text{E}$ tel que y = f(a) - a. Alors

$$\langle x, y \rangle = \langle x, f(a) - a \rangle = \langle x, f(a) \rangle - \langle x, a \rangle = \langle f(x), f(a) \rangle - \langle x, a \rangle = 0$$

car $f \in O(E)$. Ainsi $Ker(f - Id_E) \subset Im(f - Id_E)^{\perp}$. De plus, d'après le théorème du rang,

$$\dim \operatorname{Ker}(f - \operatorname{Id}_{E}) = \dim E - \dim \operatorname{Im}(f - \operatorname{Id}_{E}) = \dim \operatorname{Im}(f - \operatorname{Id}_{E})^{\perp}$$

Par conséquent, $Ker(f - Id_E) = Im(f - Id_E)^{\perp}$.

2. Supposons que $(f-\mathrm{Id}_{\mathrm{E}})^2=0$. Alors $\mathrm{Im}(f-\mathrm{Id}_{\mathrm{E}})\subset \mathrm{Ker}(f-\mathrm{Id}_{\mathrm{E}})$. D'après la question précédente, on a donc $\mathrm{Im}(f-\mathrm{Id}_{\mathrm{E}})\subset \mathrm{Im}(f-\mathrm{Id}_{\mathrm{E}})^{\perp}$. Il est à peu près clair que, si F est un sous-espace vectoriel de E tel que $\mathrm{F}\subset\mathrm{F}^{\perp}$, alors $\mathrm{F}=\{0_{\mathrm{E}}\}$ (tout vecteur de F est orthogonal à lui-même). Ainsi $\mathrm{Im}(f-\mathrm{Id}_{\mathrm{E}})=\{0_{\mathrm{E}}\}$ i.e. $f=\mathrm{Id}_{\mathrm{E}}$.

Solution 26

Comme O est orthogonale, $O^{\mathsf{T}}O = I_n$. On en déduit en particulier,

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} + \mathbf{C}^{\mathsf{T}}\mathbf{C} = \mathbf{I}_{p}$$

$$\mathbf{A}^{\mathsf{T}}\mathbf{B} + \mathbf{C}^{\mathsf{T}}\mathbf{D} = \mathbf{0}$$

$$\mathbf{B}^{\mathsf{T}}\mathbf{B} + \mathbf{D}^{\mathsf{T}}\mathbf{D} = \mathbf{I}_{q}$$

$$\mathbf{B}^{\mathsf{T}}\mathbf{A} + \mathbf{D}^{\mathsf{T}}\mathbf{C} = \mathbf{0}$$

- Si det A = det D = 0, alors on a bien l'inégalité demandée.
- Si det D \neq 0, posons M = $\left(\begin{array}{c|c} A^T & C^T \\ \hline \mathbf{0} & D^T \end{array}\right)$ et N = MO = $\left(\begin{array}{c|c} I_p & \mathbf{0} \\ \hline D^TC & D^TD \end{array}\right)$. Les matrices M et N étant triangulaires par blocs, on a det M = det(A^T) det(D^T) = det A det D et det N = det I_p det(D^TD) = (det D)². De plus, det N = det(MO) = det M det O. On en déduit que (det D)² = det A det D det O. Puisque det D \neq 0, det D = det A det O et donc (det D)² = (det A)²(det O)². Or O est orthogonale donc det O = ± 1 et (det O)² = 1. On a bien l'égalité demandée.
- Si $\det A \neq 0$, posons $M = \begin{pmatrix} A^T & \mathbf{0} \\ B^T & D^T \end{pmatrix}$ et $N = MO = \begin{pmatrix} A^TA & A^TB \\ \mathbf{0} & I_q \end{pmatrix}$. Les matrices M et N étant triangulaires par blocs, on a $\det M = \det(A^T)\det(D^T) = \det A \det D$ et $\det N = \det(A^TA) \det I_q = (\det A)^2$. De plus, $\det N = \det(MO) = \det M \det O$. On en déduit que $(\det A)^2 = \det A \det D \det O$. Puisque $\det A \neq 0$, $\det A = \det D \det O$ et donc $(\det A)^2 = (\det D)^2 (\det O)^2$. On conclut comme précédemment en remarquant que $(\det O)^2 = 1$.

Solution 27

On a $B = P^{-1}AP$ où P est une matrice de passage entre deux bases orthonormales. P est donc une matrice orthogonale. On a donc $P^{-1} = P^{T}$ puis $B = P^{T}AP$. Ainsi

$$tr(B^{\mathsf{T}}B) = tr(P^{\mathsf{T}}A^{\mathsf{T}}PP^{\mathsf{T}}AP = tr(P^{\mathsf{T}}A^{\mathsf{T}}AP) = tr((P^{\mathsf{T}}A^{\mathsf{T}}A)P) = tr(P(P^{\mathsf{T}}A^{\mathsf{T}}A)) = tr(A^{\mathsf{T}}A)$$

Solution 28

1. Notons $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Alors X^TX est une matrice carrée réelle de taille 1 i.e. un réel et $X^TX = \sum_{k=1}^n x_k^2$. Ainsi $X^TX \ge 0$ puisque les x_k sont des réels et $X^TX = 0$ implique $\forall k \in [1, n], x_k = 0$ i.e. X = 0.

- 2. Soit $X \in \text{Ker}(I_n + M)$. On a donc $(I_n + M)X = 0$ i.e. MX = -X. Ainsi $X^TMX = -X^TX$. Mais en transposant l'égalité MX = -X, on obtient $X^TM^T = -X^T$ et donc $X^TM = X^T$ puisque $M^T = -M$. Ainsi $X^TMX = X^TX$. Par conséquent, $X^TX = -X^TX$ et donc $X^TX = 0$. D'après la question précédente, X = 0. D'où $\text{Ker}(I_n + M) = \{0\}$ et $I_n + M$ est inversible.
- 3. On a $A^T A = ((I_n + M)^{-1})^T (I_n M)^T (I_n M)(I_n + M)^{-1}$. Or

$$((I_n + M)^{-1})^T = ((I_n + M)^T)^{-1} = (I_n - M)^{-1}$$
 et $(I_n - M)^T = I_n + M$

Ainsi $A^TA = (I_n - M)^{-1}(I_n + M)(I_n - M)(I_n + M)^{-1}$. Or $I_n - M$ et $I_n + M$ commutent donc

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = (\mathbf{I}_n - \mathbf{M})^{-1}(\mathbf{I}_n - \mathbf{M})(\mathbf{I}_n + \mathbf{M})(\mathbf{I}_n + \mathbf{M})^{-1} = \mathbf{I}_n$$

Ainsi A est orthogonale.

Solution 29

Soit $A \in \mathcal{O}_n(\mathbb{R})$ laissant $(\mathbb{R}_+)^n$ invariant. On notera $(C_j)_{1 \leq j \leq n}$ la famille des vecteurs colonnes de A et $(L_i)_{1 \leq i \leq n}$ la famille des vecteurs lignes de A. Notons $(E_i)_{1 \leq j \leq n}$ la base canonique de \mathbb{R}^n . Comme $E_i \in (\mathbb{R}_+)^n$ pour tout $i \in [1, n]$, $C_i = AE_i \in (\mathbb{R}_+)^n$ pour tout $i \in [1, n]$. Autrement dit A est à coefficients positifs.

Soit $(i, j) \in [1, n]^2$. Supposons $A_{ij} \neq 0$, c'est-à-dire $A_{ij} > 0$ puisque A est à coefficients positifs. Soit $k \in [1, n] \setminus \{i\}$.

$$\langle \mathbf{L}_i, \mathbf{L}_k \rangle = \sum_{l=1}^n \mathbf{A}_{il} \mathbf{A}_{kl} \ge \mathbf{A}_{ij} \mathbf{A}_{kj}$$

car A est à coefficients positifs. Or la famille des vecteurs lignes de A est orthonormée donc $\langle L_i, L_k \rangle = 0$. On en déduit que $A_{kj} = 0$. En raisonnnant sur les colonnes de A, on démontre de la même manière que pour $k \in [1, n], \{j\}, A_{ik} = 0$.

Ceci signifie que chaque ligne et chaque colonne comporte au plus un coefficient non nul. Puisque les vecteurs lignes et colonnes de A sont normés, chaque ligne et chaque colonne possède exactement un coefficient non nul valant ± 1 , en fait 1 car A est à coefficients positifs. Ainsi A est une matrice de permutation.

Réciproquement, toute matrice de permutation est bien orthogonale et laisse stable $(\mathbb{R}_+)^n$.

Solution 30

Supposons A = 0. Alors il est clair que A = com(A) = 0.

Supposons $A \in SO(n)$. On sait que $com(A)A^T = det(A)I_n$. Puisque $A \in SO(n)$, det(A) = 1 et $A^T = A^{-1}$. Il s'ensuit que com(A) = A. Supposons maintenant A = com(A). Puisque $com(A)^TA = det(A)I_n$, $A^TA = det(A)I_n$.

- Si $\det(A) = 0$, $A^T A = 0$ et, a fortiori, $\operatorname{tr}(A^T A) = 0$ et donc A = 0 puisque $(M, N) \mapsto \operatorname{tr}(M^T N)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- Si $\det(A) \neq 0$, alors $\operatorname{tr}(A^T A) = \operatorname{tr}(\det(A)I_n) = n \det A$. En particulier, $\det(A) > 0$ à nouveau car $(M, N) \mapsto \operatorname{tr}(M^T N)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$. Par ailleurs, $\det(A^T A) = \det(\det(A)I_n)$ ou encore $\det(A)^2 = \det(A)^n$. Puisque $n \neq 2$ et $\det(A) > 0$, $\det(A) = 1$. Ainsi $A^T A = I_n$ et $A \in SO(n)$.

Optimisation

Solution 31

Soit E = $\mathcal{C}([0;\pi],\mathbb{R})$. On munit E du produit scalaire $(f,g)\mapsto \int_0^\pi f(x)g(x)\ \mathrm{d}x$. On pose pour $(a,b)\in\mathbb{R}^2$

$$f_{a,b}: \left\{ \begin{array}{ccc} [0,\pi] & \longrightarrow & \mathbb{R} \\ x & \longmapsto & ax^2 + bx \end{array} \right.$$

et

$$F = \{f_{a,b}, (a,b) \in \mathbb{R}^2\} = \text{vect}(f_1, f_2)$$

avec $f_1 = f_{0,1}$ et $f_2 = f_{1,0}$. F est un sous-espace vectoriel de E et $\phi(a,b) = \|\sin - f_{a,b}\|^2$. Le minimum de ϕ est donc atteint quand $f_{a,b}$ est la projection orthogonale de sin sur F et vaut alors $d(x, F)^2 = \|\sin - p_F(\sin)\|^2$ où p_F est la projection orthogonale sur F.

Première méthode

On utilise le procédé d'orthonormalisation de Schmidt pour orthonormaliser la famille (f_1, f_2) . On pose donc $e_1 = \frac{J_1}{\|f_1\|}$ et $e_2 = \frac{g}{\|g\|}$ avec $g = f_2 - \langle f_2, e_1 \rangle e_1$. Alors $p_F(\sin) = \langle \sin, e_1 \rangle e_1 + \langle \sin, e_2 \rangle e_2$. D'après le théorème de Pythagore,

$$\begin{split} \|\sin - p_{\mathrm{F}}(\sin)\|^2 &= \|\sin\|^2 - \|p_{\mathrm{F}}(\sin)\|^2 \\ &= \|\sin\|^2 - \langle\sin, e_1\rangle^2 - \langle\sin, e_2\rangle^2 \\ &= \|\sin\|^2 - \frac{\langle\sin, f_1\rangle^2}{\|f_1\|^2} - \frac{\langle\sin, g\rangle^2}{\|g\|^2} \\ &= \|\sin\|^2 - \frac{\langle\sin, f_1\rangle^2}{\|f_1\|^2} - \frac{(\langle\sin, f_2\rangle - \langle f_2, e_1\rangle \langle\sin, e_1\rangle)^2}{\|f_2\|^2 - \langle f_2, e_1\rangle^2} \\ &= \|\sin\|^2 - \frac{\langle\sin, f_1\rangle^2}{\|f_1\|^2} - \frac{\left(\langle\sin, f_2\rangle - \frac{\langle f_2, f_1\rangle \langle\sin, f_1\rangle}{\|f_1\|^2}\right)^2}{\|f_2\|^2 - \frac{\langle f_2, f_1\rangle \langle\sin, f_1\rangle}{\|f_1\|^2}} \\ &= \|\sin\|^2 - \frac{\langle\sin, f_1\rangle^2}{\|f_1\|^2} - \frac{\left(\|f_1\|^2 \langle\sin, f_2\rangle - \langle f_2, f_1\rangle \langle\sin, f_1\rangle\right)^2}{\|f_1\|^2 (\|f_1\|^2 \|f_2\|^2 - \langle f_2, f_1\rangle^2)} \end{split}$$

A l'aide éventuellement d'intégrations par parties, on trouve

$$\|\sin\|^2 = \frac{\pi}{2} \qquad \|f_1\|^2 = \frac{\pi^3}{3} \qquad \|f_2\|^2 = \frac{\pi^5}{5} \qquad \langle f_1, f_2 \rangle = \frac{\pi^4}{4} \qquad \langle \sin, f_1 \rangle = \pi \qquad \langle \sin, f_2 \rangle = \pi^2 - 4$$

$$||f_1||^2 = \frac{\pi^3}{3}$$

$$||f_2||^2 = \frac{\pi^5}{5}$$

$$\langle f_1, f_2 \rangle = \frac{\pi^4}{4}$$

$$\langle \sin, f_1 \rangle = \pi$$

$$\langle \sin, f_2 \rangle = \pi^2 - 4$$

On trouve finalement

$$\min_{\mathbb{R}^2} \phi = d(x, \mathbf{F})^2 = \frac{\pi}{2} - \frac{8}{\pi} + \frac{160}{\pi^3} - \frac{1280}{\pi^5}$$

Seconde méthode

On sait qu'il existe $(a,b) \in \mathbb{R}^2$ tel que $p_F(\sin) = af_2 + bf_1$. De plus, $\sin -p_F(\sin) \in F^{\perp} = \text{vect}(f_1,f_2)^{\perp}$ donc

$$\begin{cases} \langle \sin - p_{\rm F}(\sin), f_1 \rangle = 0 \\ \langle \sin - p_{\rm F}(\sin), f_2 \rangle = 0 \end{cases}$$

Ceci équivaut à

$$\begin{cases} a\langle f_2, f_1 \rangle + b \|f_1\|^2 = \langle \sin, f_1 \rangle \\ a \|f_2\|^2 + b\langle f_1, f_2 \rangle = \langle \sin, f_2 \rangle \end{cases}$$

Or on a trouvé précédemment que

$$||f_1||^2 = \frac{\pi^3}{3}$$

$$||f_2||^2 = \frac{\pi^5}{5}$$

$$\langle f_1, f_2 \rangle = \frac{\pi^4}{4}$$

$$\langle \sin, f_1 \rangle = \pi$$

$$||f_1||^2 = \frac{\pi^3}{3}$$
 $||f_2||^2 = \frac{\pi^5}{5}$ $\langle f_1, f_2 \rangle = \frac{\pi^4}{4}$ $\langle \sin, f_1 \rangle = \pi$ $\langle \sin, f_2 \rangle = \pi^2 - 4$

Ainsi

$$\begin{cases} \frac{\pi^4}{4}a + \frac{\pi^3}{3}b = \pi\\ \frac{\pi^5}{5}a + \frac{\pi^4}{4}b = \pi^2 - 4 \end{cases}$$

La résolution de ce système donne

$$a = \frac{20}{\pi^3} - \frac{320}{\pi^5}$$

$$b = -\frac{12}{\pi^2} + \frac{240}{\pi^4}$$

A nouveau en vertu du théorème de Pythagore

$$\begin{split} \|\sin - p_{\mathrm{F}}(\sin)\|^2 &= \|\sin\|^2 - \|p_{\mathrm{F}}(\sin)\|^2 \\ &= \|\sin\|^2 - \|af_2 + bf_1\|^2 \\ &= \|\sin\|^2 - a^2 \|f_2\|^2 - 2ab\langle f_1, f_2\rangle - b^2 \|f_1\|^2 \\ &= \frac{\pi}{2} - \frac{8}{\pi} + \frac{160}{\pi^3} - \frac{1280}{\pi^5} \end{split}$$

Solution 32

- 1. E est une partie non vide de \mathbb{R} minorée par 0. Elle admet une borne inférieure.
- 2. Si (S) admet une solution, alors K = 0. Les pseudo-solutions de (S) sont donc les éléments X de $\mathcal{M}_{n,1}(\mathbb{R})$ tels que $\|AX B\|^2 = 0$ i.e. tels que AX B = 0. Ce sont donc les solutions de (S).

3. Première méthode

Puisque $\{AX, X \in \mathcal{M}_{n,1}(\mathbb{R})\}$ = Im A, on peut affirmer que $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si AX est la projection de B sur Im A. Or AX est la projection de B sur Im A si et seulement si AX - B est orthogonal à Im A. Or AX - B est orthogonal à Im A si et seulement si il est orthogonal à chaque colonne de A puisque les colonnes de A engendrent Im A. Ainsi $X \in \mathcal{M}_{n,1}(\mathbb{R})$ est pseudo-solution de (\mathcal{S}) si et seulement si $A^T(AX - B) = 0$ i.e. si et seulement si X est solution de (\mathcal{S}') .

Seconde méthode

Supposons que X soit solution de (S') i.e. $A^{T}(AX - B) = 0$. Alors pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{R})$

$$\begin{aligned} \|AY - B\|^2 &= \|A(Y - X) + AX - B\|^2 \\ &= \|A(Y - X)\|^2 + \|AX - B\|^2 + 2\langle A(Y - X), AX - B\rangle \\ &= \|A(Y - X)\|^2 + \|AX - B\|^2 + 2(Y - X)^T A^T (AX - B) \\ &= \|A(Y - X)\|^2 + \|AX - B\|^2 \ge \|AX - B\|^2 \end{aligned}$$

Ainsi X est pseudo-solution de (S).

Supposons que X soit pseudo-solution de (S). Alors pour tout $\lambda \in \mathbb{R}$ et tout $Y \in \mathcal{M}_{n,1}(\mathbb{R})$,

$$||A(X + \lambda Y) - B||^2 \ge ||AX - B||^2$$

ou encore

$$||(AX - B) + \lambda AY||^2 \ge ||AX - B||^2$$

ce qui donne via une identité remarquable

$$2\lambda \langle AY,AX-B\rangle + \lambda^2 \|AY\|^2 \geq 0$$

Si on fixe Y, la dernière inégalité étant vraie pour tout $\lambda \in \mathbb{R}$, on a nécessairement $\langle AY, AX - B \rangle = 0$. Ainsi pour tout $Y \in \mathcal{M}_{n,1}(\mathbb{R})$, $\langle AY, AX - B \rangle = 0$ ou encore $\langle Y, A^T(AX - B) = 0$, ce qui prouve que $A^T(AX - B) = 0$ et que X est solution de (S').

- **4.** Soit $X \in \text{Ker } A$. On a donc AX = 0 puis $A^TAX = 0$ donc $X \in \text{Ker } A^TA$. Ainsi $\text{Ker } A \subset \text{Ker } A^TA$. Soit maintenant $X \in \text{Ker } A^TA$. On a donc $A^TAX = 0$ puis $X^TA^TAX = 0$. Notons Y = AX. Ainsi $Y^TY = 0$ i.e. $\|Y\|^2 = 0$ donc Y = 0 i.e. AX = 0. D'où $X \in \text{Ker } A$. Ainsi ATA = 0. Finalement, ATA = 0. Finalement, ATA = 0. We have ATA = 0. Finalement, ATA = 0. We have ATA = 0. Finalement, ATA = 0. We have ATA = 0. Finalement, ATA = 0. A via le théorème du rang.
- **5.** Si rg(A) = n, alors $rg(A^TA) = n$. La matrice A^TA est une matrice carrée de taille n et de rang n le système (S') est donc de Cramer : il admet une unique solution i.e. (S) admet une unique pseudo-solution.

Solution 33

Comme E est ouvert, un minimum de f est forcément un minimum local et donc un point critique. Pour $x \in E$, $\nabla f(x) = 2\sum_{i=1}^{p}(x-x_i)$.

L'unique point critique de f sur E est donc $m = \frac{1}{p} \sum_{i=1}^{p} x_i$. Il suffit donc de vérifier que m est bien un minimum : il sera nécessairement unique.

Pour $x \in E$

$$f(x) = \sum_{i=1}^{p} \|x - m + m - x_i\|^2$$

$$= \sum_{i=1}^{p} (\|x - m\|^2 + 2\langle x - m, m - x_i \rangle + \|m - x_i\|^2)$$

$$= p\|x - m\|^2 + f(m) + \left\langle x - m, \sum_{i=1}^{p} m - x_i \right\rangle$$

$$= p\|x - m\|^2 + f(m) \ge f(m)$$

car $\sum_{i=1}^{p} m - x_i = 0$. Ceci prouve que f atteint bien son minimum en m.

Solution 34

Pour $x \in E$,

$$f(x) = \sum_{i=1}^{p} \|x - m + m - x_i\|^2$$

$$= \sum_{i=1}^{p} (\|x - m\|^2 + 2\langle x - m, m - x_i \rangle + \|m - x_i\|^2)$$

$$= p\|x - m\|^2 + f(m) + \left\langle x - m, \sum_{i=1}^{p} m - x_i \right\rangle$$

$$= p\|x - m\|^2 + f(m) \ge f(m)$$

car $\sum_{i=1}^{p} m - x_i = 0$. Ceci prouve que f atteint bien son minimum en m.

Solution 35

- 1. Remarquons que l'intégrale définissant $\langle P, Q \rangle$ est bien définie car $P(t)Q(t)e^{-t^2} = o(1/t^2)$.
 - (i) $\langle \cdot, \cdot \rangle$ est clairement symétrique.
 - (ii) $\langle \cdot, \cdot \rangle$ est bilinéaire par linéarité de l'intégrale.
 - (iii) $\langle \cdot, \cdot \rangle$ est positive par positivité de l'intégrale.
 - (iv) Soit $P \in \mathbb{R}[X]$ tel que $\langle P, P \rangle = 0$. Alors $\int_{-\infty}^{+\infty} P(t)^2 e^{-t^2} dt = 0$. Comme $t \mapsto P(t)e^{-t^2}$ est continue, elle est nulle sur $]-\infty, +\infty[$. Par conséquent, P admet une infinité de racines (tous les réels) puis P = 0.

Ainsi $\langle \cdot, \cdot \rangle$ est bien un produit scalaire sur $\mathbb{R}[X]$.

2. Remarquons que $t \mapsto t^{2n+1}e^{-t^2}$ est impaire donc $A_{2n+1} = 0$. Par intégration par parties

$$A_n = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} t^n e^{-t^2} dt = \frac{1}{\sqrt{\pi}} \left(\frac{1}{n+1} \left[t^{n+1} e^{-t^2} \right]_{-\infty}^{+\infty} + \frac{2}{n+1} \int_{-\infty}^{+\infty} t^{n+2} e^{-t^2} dt \right)$$

L'intégration par parties est légitimée par le fait que $\lim_{t\to\pm\infty}t^{n+1}e^{-t^2}=0$. On en déduit que

$$A_n = \frac{2}{n+1} A_{n+2}$$

ou encore

$$A_{n+2} = \frac{n+1}{2} A_n$$

Comme $A_0 = 1$, on en déduit que

$$A_{2n} = \frac{(2n)!}{2^{2n}n!}$$

3. On peut orthonormaliser la base canonique $(1, X, X^2)$ via le processus de Gram-Schmidt.

Remarque. Si (e_1, \dots, e_n) est une base d'un espace euclidien E, on peut l'orthonormaliser en une base orthonormée en posant

$$\forall k \in [1, n], \ f_k = \frac{e_k - \sum_{i=0}^{k-1} \langle f_i, e_k \rangle f_i}{\left\| e_k - \sum_{i=0}^{k-1} \langle f_i, e_k \rangle f_i \right\|} = \frac{e_k - \sum_{i=0}^{k-1} \langle f_i, e_k \rangle f_i}{\sqrt{\|e_k\|^2 - \sum_{i=0}^{k-1} \langle f_i, e_k \rangle^2}}$$

- (i) $||1||^2 = A_0 = 1$ donc on pose $P_0 = 1$.
- (ii) $\langle 1, X \rangle = A_1 = 0$ et $||X||^2 = A_2 = \frac{1}{2}$ donc on pose $P_1 = X\sqrt{2}$.

$$\text{(iii)}\ \ \langle 1, X^2 \rangle = A_2 = \frac{1}{2}, \\ \langle X, X^2 \rangle = A_3 = 0 \text{ et } \|X^2\|^2 = A_4 = \frac{3}{4} \text{ donc on pose } P_2 = \frac{2(2X^2 - 1)}{\sqrt{5}}.$$

 (P_0, P_1, P_2) est alors une base orthonormée de $\mathbb{R}_2[X]$.

4. Si p désigne le projecteur orthogonal sur $\mathbb{R}_2[X]$,

$$\begin{split} d(\mathbf{X}^3, \mathbb{R}_2[\mathbf{X}])^2 &= \|\mathbf{X}^3 - p(\mathbf{X}^3)\|^2 \\ &= \|\mathbf{X}^3\|^2 - \|p(\mathbf{X}^3)\|^2 \\ &= \|\mathbf{X}^3\|^2 - \langle \mathbf{X}^3, \mathbf{P}_0 \rangle^2 - \langle \mathbf{X}^3, \mathbf{P}_1 \rangle^2 - \langle \mathbf{X}^3, \mathbf{P}_2 \rangle^2 \\ &= \mathbf{A}_6 - \mathbf{A}_3^2 - 2\mathbf{A}_4 \qquad \text{car } \mathbf{X}^3\mathbf{P}_2 \text{ est impair} \\ &= \frac{15}{8} - \frac{3}{2} = \frac{3}{8} \end{split}$$

$$\operatorname{donc} d(\mathbf{X}^3, \mathbb{R}_2[\mathbf{X}]) = \frac{\sqrt{6}}{4}.$$

Endomorphismes symétriques et matrices symétriques

Solution 36

Remarquons que $\phi = p + q$ où p et q sont les projecteurs orthogonaux respectifs sur vect(a) et vect(b). Ainsi ϕ est un endomorphisme symétrique comme somme d'endomorphismes symétriques. En particulier, ϕ est diagonalisable. On va de toute façon s'en rendre compte en déterminant les éléments propres de ϕ .

Remarquons déjà que ϕ est nulle sur $(\text{vect}(a) + \text{vect}(b))^{\perp}$. Ainsi $(\text{vect}(a) + \text{vect}(b))^{\perp} \subset \text{Ker } \phi$. Réciproquement si $x \in \text{Ker } \phi$, $\langle a, x \rangle a + \langle b, x \rangle b = 0$ de sorte que $\langle a, x \rangle = \langle b, x \rangle = 0$ car la famille (a, b) est libre. Ainsi $x \in \text{vect}(a)^{\perp} \cap \text{vect}(b)^{\perp} = (\text{vect}(a) + \text{vect}(b))^{\perp}$. Finalement, $\text{Ker } \phi = (\text{vect}(a) + \text{vect}(b))^{\perp}$.

La nature géométrique de ϕ incite fortement à penser que a+b et a-b sont vecteurs propres. En effet, ces deux vecteurs sont non nuls puisque a et b sont non colinéaires et un calcul simple montrer que $\phi(a)=a+\langle a,b\rangle b$ et $\pi(b)=b+\langle a,b\rangle b$ donc $\phi(a+b)=(1+\langle a,b\rangle)(a+b)$ et $\phi(a-b)=(1-\langle a,b\rangle)(a-b)$. Donc a+b et a-b sont bien des vecteurs propres associés aux valeurs propres $1+\langle a,b\rangle$ et $1-\langle a,b\rangle$. Si $\langle a,b\rangle\neq 0$, ces valeurs propres sont distinctes : les sous-espaces propres associées à ces valeurs propres sont donc de dimension 1 puisqu'on a déjà vu que le noyau i.e. le sous-espace propre associé à la valeur propre 0 était de dimension n-2. Ces sous-espaces propres sont donc respectivement vect(a+b) et vect(a-b). Si $\langle a,b\rangle=0$, alors le sous-espace propre associé à la valeur propre 1 contient vect $(a+b,a-b)=\mathrm{vect}(a,b)$ et est en fait exactement égal à celui-ci puisque la diemnsion de vect(a,b) est 2 et que Ker ϕ est déjà de dimension n-2.

Récapitulons. Dans tous les cas, 0 est valeur propre de ϕ et le sous-espace propre associé est $(\text{vect}(a) + \text{vect}(b))^{\perp}$. Si $\langle a, b \rangle \neq 0$, ϕ possède deux valeurs propres supplémentaires $1 + \langle a, b \rangle$ et $1 - \langle a, b \rangle$ et les sous-espaces propres respectivement associés sont vect(a+b) et vect(a-b). Si $\langle a, b \rangle = 0$, ϕ possède 1 comme seule valeur propre en sus de 0 et le sous-espace propre associé est vect(a,b). Il est d'ailleurs géométriquement clair dans ce cas que ϕ induit l'identité sur vect(a,b).

Solution 37

1. a. Supposons que v est positif. Soit λ une valeur propre de v. et x un vecteur propre associé. Ainsi $\langle v(x), x \rangle = \lambda ||x||^2$. Puisque $\langle v(x), x \rangle \geq 0$ et ||x|| > 0 (x n'est pas nul), $\lambda \geq 0$.

Réciproquement, supposons que $\operatorname{Sp}(v) \subset \mathbb{R}_+$. Comme v est symétrique, il existe une base orthonormée (e_1,\ldots,e_n) de E formée de vecteurs propres de v. Notons $\lambda_1,\ldots,\lambda_n$ les valeurs prores assocciées à ces vecteurs propres. Soit $x\in\operatorname{E}$. Notons (x_1,\ldots,x_n) les coordonnées de x dans la base (e_1,\ldots,e_n) . Alors

$$x = \sum_{i=1}^{n} x_i e_i$$

$$v(x) = \sum_{i=1}^{n} x_i v(e_i) = \sum_{i=1}^{n} \lambda_i x_i e_i$$

Comme (e_1, \dots, e_n) est une base orthonormée de E,

$$\langle v(x), x \rangle = \sum_{i=1}^{n} \lambda_i x_i^2 \ge 0$$

car les λ_i sont positifs.

b. Supposons v défini positif. Soit λ une valeur propre de E et x un vecteur propre associé. A nouveau, $\langle v(x), x \rangle = \lambda ||x||^2$. Mais comme x n'est pas nul, $\langle v(x), x \rangle > 0$ et donc $\lambda > 0$.

Réciproquement, supposons $\operatorname{Sp}(v) \subset \mathbb{R}_+^*$. A fortiori, $\operatorname{Sp}(v) \subset \mathbb{R}_+$ et donc v est positif d'après la question précédente. On considère la même base (e_1, \dots, e_n) de la question précédente. Donnons nous $x \in E$ tel que $\langle v(x), x \rangle = 0$. A nouveau

$$\langle v(x), x \rangle = \sum_{i=1}^{n} \lambda_i x_i^2$$

Tous les termes de cette somme sont positifs donc $\lambda_i x_i^2 = 0$ pour tout $i \in [1, n]$. Mais les λ_i ne sont pas nuls donc tous les x_i sont nuls. Ainsi $x = 0_E$.

2. a. Pour tout $x \in E$,

$$\langle f(x), x \rangle = \sum_{k=1}^{n} \langle x, u_k \rangle^2 \ge 0$$

donc v est positif. Supposons maintenant que $\langle f(x), x \rangle = 0$. Tous les termes de la somme précédente étant poitifs, ils sont tous nuls. Ainsi x est orthogonal à chacun des u_k et donc au sous-espace vectoriel qu'ils engendrent, c'est-à-dire E. Ainsi $x = 0_E$.

b. Considérons une base orthonormée (e_1, \dots, e_n) de E formée de vecteurs propres de E. Notons $\lambda_1, \dots, \lambda_n$ les valeurs propres assocciées à ces vecteurs propres. Ces valeurs propres sont toutes strictement positives. Comme (e_1, \dots, e_n) est une base de E, il existe un unique endomorphisme g de E tel que $g(e_i) = \frac{1}{\sqrt{\lambda_i}} e_i$. On a clairement $g^2(e_i) = \frac{1}{\lambda_i} e_i = f^{-1}(e_i)$ pour tout $i \in [1, n]$.

Comme $(e_1, ..., e_n)$ est une base de E, $g^2 = f^{-1}$. Soit $(x, y) \in E^2$. Alors

$$\langle g(x), y \rangle = \sum_{i=1}^{n} \frac{1}{\lambda_i} \langle x, e_i \rangle \langle y, e_i \rangle = \langle x, g(y) \rangle$$

donc g est symétrique. Les valeurs propres de g sont les réels strictement positifs $\frac{1}{\sqrt{\lambda_i}}$ donc v est défini positif.

c. Soit $i \in [1, n]$. Alors

$$u_i = f(f^{-1}(u_i)) = \sum_{k=1}^{n} \langle f^{-1}(u_i), u_k \rangle u_k$$

Mais comme $(u_1, ..., u_n)$ est libre, $\langle f^{-1}(u_i), u_k \rangle = \delta_{i,k}$ pour tout $k \in [1, n]$. Soit $(i, j) \in [1, n]^2$. Alors, comme g est symétrique,

$$\langle g(u_i), g(u_j) \rangle = \langle g^2(u_i), u_j \rangle = \langle f^{-1}(u_i), u_j \rangle = \delta_{i,j}$$

Ainsi $(g(u_1), \dots, g(u_n))$ est bien une base orthonormée de E.

Solution 38

D'après le théorème spectral, il existe une base orthonormée (e_1, \dots, e_n) de E formée de vecteurs propres de f. Notons λ_i la valeur propre associée à e_i . Comme $\operatorname{Sp}(f) \subset \mathbb{R}_+$, $\lambda_i \geq 0$ pour tout $i \in [\![1,n]\!]$. Comme (e_1,\dots,e_n) est une base de E, on définit bien un endomorphisme g de E en posant $g(e_i) = \sqrt{\lambda_i}e_i$ pour tout $i \in [\![1,n]\!]$. On a alors clairement $g^2(e_i) = \lambda_ie_i = f(e_i)$ pour tout $i \in [\![1,n]\!]$. Comme (e_1,\dots,e_n) est une base de E, on a bien $g^2 = f$.

Enfin, la matrice de g dans la base orthonormale (e_1, \dots, e_n) est diagonale donc symétrique: g est donc un endomorphisme symétrique.

Solution 39

Soit $x \in \text{Ker } f$ et $y \in \text{Im } f$. Il existe donc $z \in \text{E tel que } y = f(z)$. Ainsi

$$\langle x, y \rangle = \langle x, f(z) \rangle = \langle f(x), z \rangle = \langle 0_{\text{E}}, z \rangle 0$$

Ainsi Ker $f \subset (\operatorname{Im} f)^{\perp}$. De plus, $\dim(\operatorname{Im} f)^{\perp} = n - \dim \operatorname{Im} f = \dim \operatorname{Ker} f$ d'après le théorème du rang. Ainsi Ker $f = (\operatorname{Im} f)^{\perp}$.

Solution 40

Soit S_n l'ensemble des vecteurs de \mathbb{R}^n de norme 1. Pour $A \in \S_n(\mathbb{R})$ et $X \in \mathbb{R}^n$, on pose $\varphi_A(X) = X^T A X$. Soit $A \in S_n(\mathbb{R})$. Il existe une base orthonormée (E_1, \dots, E_n) de \mathbb{R}^n dans laquelle A diagonalise. Pour $i \in [1, n]$, notons λ_i la valeur propre de A associée à E_i . Soit $X \in S_n$. Il existe donc $(x_1, \dots, x_n) \in \mathbb{R}^n$ tel que $X = \sum_{i=1}^n x_i E_i$ et $\sum_{i=1}^n x_i^2 = 1$. On a alors $\phi_A(X) = \sum_{i=1}^n \lambda_i x_i^2$. On a

alors $\varphi(X) \le \left(\max_{i \in [\![1,n]\!]} \lambda_i\right) \sum_{i=1}^n x_i^2 = \Phi(A)$. De plus, notons j l'indice de la plus grande valeur propre de A, on a alors $\varphi_A(E_j) = \lambda_j = \Phi(A)$. Par conséquent, $\Phi(A) = \max_{X \in S_n} \varphi_A(X)$.

Soient A, B $\in S_n(\mathbb{R})$ et $\lambda \in [0,1]$.

$$\Phi(\lambda A + (1 - \lambda)B) = \max_{X \in S_n} \varphi_{\lambda A + (1 - \lambda)B}(X) = \max_{X \in S_n} (\lambda \varphi_A(X) + (1 - \lambda)\varphi_B(X))$$

Puisque $\lambda \ge 0$ et $1 - \lambda \ge 0$, on a pour tout $X \in S_n$

$$\lambda \phi_A(X) + (1-\lambda)\phi_B(X) \leq \lambda \max_{X \in S_n} \phi_A(X) + (1-\lambda) \max_{X \in S_n} \phi_B(X) = \lambda \Phi(A) + (1-\lambda)\Phi(B)$$

Il suffit alors de passer au maximum pour $X \in S_n$ pour obtenir

$$\Phi(\lambda A + (1 - \lambda)B) \le \lambda \Phi(A) + (1 - \lambda)\Phi(B)$$

Autrement dit, Φ est convexe.

Solution 41

Comme A est symétrique, elle diagonalise dans une base orthonormale i.e. il existe $P \in \mathcal{O}_n(\mathbb{R})$ telle que $P^TAP = D$ avec D diagonale. Posons $Q = \frac{1}{\sqrt{2}} \left(\frac{P \mid P}{P \mid -P} \right)$. On vérifie que $Q \in \mathcal{O}_{2n}(\mathbb{R})$. De plus, $Q^T B Q = \left(\frac{D + I_n \mid 0}{0 \mid D - I_n} \right)$. Ceci prouve que B est diagonalisable et que ses valeurs propres sont les $\lambda \pm 1$ où $\lambda \in Sp(A)$

Solution 42

1. Puisque A est réelle symétrique positive, elle est diagonalisable. Notons (X_1, \dots, X_n) une base de \mathbb{R}^n constituée de vecteurs propres de A et λ_i la valeur propre associée au vecteur propre X_i pour chaque i dans [1, n].

Soit X un vecteur propre de A^k associée à une valeur propre λ . Il existe donc $\alpha_1, \dots, \alpha_n \in \mathbb{R}$ non tous nuls tels que $X = \sum_i \alpha_i X_i$. Notons

I l'ensemble des indices $i \in [1, n]$ tels que $\alpha_i \neq 0$ de sorte que $X = \sum_{i \in I} \alpha_i X_i$. Ainsi d'une part

$$A^k X = \sum_{i \in I} \lambda_i^k \alpha_i X_i$$

et d'autre part

$$A^k X = \lambda X = \sum_{i \in I} \lambda \alpha_i X_i$$

Comme $(X_i)_{i \in I}$ est une famille libre, $\lambda_i^k \alpha_i = \lambda \alpha_i$ pour tout $i \in I$. Or $\alpha_i \neq 0$ pour $i \in I$ donc $\lambda_i^k = \lambda$. De plus, A est symétrique positive donc les λ_i sont positifs : pour tout $i \in I$, $\lambda_i = \sqrt[k]{\lambda}$. Finalement

$$AX = \sum_{i \in I} \lambda_i \alpha_i X = \sqrt[k]{\lambda} \sum_{i \in I} \alpha_i X_i = \sqrt[k]{\lambda} X$$

et donc X est un vecteur propre de A.

2. Puisque $(A^k)^T = (A^T)^k = A^k$, A^k est symétrique. Il existe donc $P \in \mathcal{O}_n(\mathbb{R})$ tel que $P^{-1}A^kP$ soit diagonale. Les vecteurs colonnes de P sont des vecteurs propres de A^k et donc de A d'après la question précédente. En clair, $P^{-1}AP$ est également diagonale. Puisque $A^k = B^k$, le même raisonnement montre que $P^{-1}BP$ est également diagonale. Notons $\lambda_1, \ldots, \lambda_n$ les éléments diagonaux de $P^{-1}AP$ et μ_1, \ldots, μ_n ceux de $P^{-1}BP$. Puisque $(P^{-1}AP)^k = P^{-1}A^kP$ et $(P^{-1}BP)^k = P^{-1}B^kP$, on a $\lambda_i^k = \mu_i^k$ pour tout $i \in [1, n]$. Mais puisque, $A^k = B^k$ et $A^k =$

3. Le résultat ne tient plus. Prendre par exemple $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ et k = 2.

Néanmoins, le résultat reste valable si A et B sont symétriques (non nécessairement positives) et si k est impair car dans ce cas $x \mapsto x^k$ est injective sur \mathbb{R} .

Solution 43

Première méthode

D'après le théorème spectral, il existe une matrice orthogonale P et une matrice diagonale D à coefficients positifs de $\mathcal{M}_n(\mathbb{R})$ telles que $A = PDP^T$. Mais alors

$$tr(AB) = tr(PDP^{\mathsf{T}}B) = tr(DP^{\mathsf{T}}BP) = tr(DC)$$

en posant $C = P^TBP$. La matrice C est évidemment symétrique et pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$

$$X^{\mathsf{T}}CX = X^{\mathsf{T}}P^{\mathsf{T}}BPX = (PX)^{\mathsf{T}}B(PX) \ge 0$$

car B est positive. Ainsi C est positive. En notant $(E_1, ..., E_n)$ la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$, on a pour tout $i \in [1, n]$

$$C_{ii} = E_i^\mathsf{T} C E_i \ge 0$$

puisque C est positive. Finalement

$$tr(DC) = \sum_{i=1}^{n} \sum_{i=1}^{n} D_{ij}C_{ji} = \sum_{i=1}^{n} D_{ii}C_{ii} \ge 0$$

Deuxième méthode

D'après le théorème spectral, il existe une matrice orthogonale P et une matrice diagonale D à coefficients positifs de $\mathcal{M}_n(\mathbb{R})$ telles que $A = PDP^T$. En notant Δ la matrice diagonale dont les coefficients diagonaux sont les racines carrées de ceux de A, et en posant $R = P\Delta P^T$, on a $A = R^TR$. De la même manière, on peut trouver $S \in \mathcal{M}_n(\mathbb{R})$ telle que $B = S^TS$. Mais alors

$$tr(AB) = tr(R^\mathsf{T}RS^\mathsf{T}S) = tr(SR^\mathsf{T}RS^\mathsf{T}) = \|RS^\mathsf{T}\|^2 \ge 0$$

où on note $\|\cdot\|$ la norme euclidienne associée au produit scalaire $(X,Y) \in \mathcal{M}_n(\mathbb{R})^2 \mapsto \operatorname{tr}(X^TY)$ (il est classique de montrer que c'est bien un produit scalaire).

Solution 44

1. On note $\|\cdot\|$ la norme euclidienne sur $\mathcal{M}_{p,1}(\mathbb{R})$. Soit $A \in \mathcal{M}_{n,p}(\mathbb{R})$. Alors $A^{\mathsf{T}}A$ est une matrice symétrique donc elle est diagonalisable. Soit x un vecteur propre associée à une valeur propre λ de $A^{\mathsf{T}}A$. Alors $x^{\mathsf{T}}A^{\mathsf{T}}Ax = (Ax)^{\mathsf{T}}(AX) = \|Ax\|^2 \in \mathbb{R}_+$ et $x^{\mathsf{T}}A^{\mathsf{T}}Ax = \lambda x^{\mathsf{T}}x = \lambda \|x\|^2$. Comme $\|x\|^2 \in \mathbb{R}_+^+$, $\lambda \geq 0$. Ainsi $\mathrm{Sp}(A^{\mathsf{T}}A) \subset \mathbb{R}_+$ donc $\mathrm{N}(A)$ est bien définie. Soit $\mu \in \mathbb{R}$. Alors

$$N(\mu A) = \sqrt{\max Sp(\mu^2 A^{\mathsf{T}} A)} = \sqrt{\max \mu^2 Sp(A^{\mathsf{T}} A)} = \sqrt{\mu^2 \max Sp(A^{\mathsf{T}} A)} = |\mu| \sqrt{\max Sp(A^{\mathsf{T}} A)} = |\mu| N(A)$$

donc N est bien homogène.

Supposons que N(A) = 0. Alors max Sp(A^TA) = 0. Mais comme Sp(A^TA) $\subset \mathbb{R}_+$, Sp(A^TA) = {0}. Comme A^TA est diagonalisable, A^TA = 0. Soit $x \in \mathcal{M}_{p,1}(\mathbb{R})$. Alors $||Ax||^2 = (Ax)^T Ax = x^T A^T Ax = 0$ donc Ax = 0. Ceci étant vrai pour tout $x \in \mathcal{M}_{p,1}(\mathbb{R})$, A = 0. Ainsi N vérifie l'axiome de séparation.

Soit enfin $(A, B) \in \mathcal{M}_{n,p}(\mathbb{R})^2$. Notons λ la plus grande valeur propre de $(A + B)^T(A + B)$ et x un vecteur propre associé à cettte valeur

propre. Alors $\|(A+B)x\|^2 = \lambda \|x\|^2$. Donc $\|(A+B)x\| = N(A+b)\|x\|$. Par ailleurs, $\|\cdot\|$ est une norme donc $\|(A+B)x\| \le \|Ax\| + \|Bx\|$. Notons $\lambda_1, \dots, \lambda_p$ les valeurs propres de A^TA et (e_1, \dots, e_p) une base orthonormée de vecteurs propres de A^TA. Alors

$$x = \sum_{i=1}^{p} x_i e_i$$
 et $A^{\mathsf{T}} A x = \sum_{i=1}^{p} x_i \lambda_i e_i$

Comme $(e_1, ..., e_p)$ est une base orthonormée de $\mathcal{M}_{p,1}(\mathbb{R})$,

$$\|\mathbf{A}x\|^2 = x^{\mathsf{T}} \mathbf{A}^{\mathsf{T}} \mathbf{A}x = \sum_{i=1}^{p} \lambda_i x_i^2 \le \lambda_p \sum_{i=1}^{p} x_i^2 = \lambda_p \|x\|^2$$

Par conséquent, $||Ax|| \le N(A)||x||$. De la même manière, $||Bx|| \le N(B)||x||$ Finalement,

$$N(A + B)||x|| \le N(A)||x|| + N(B)||x||$$

et donc $N(A + B) \le N(A) + N(B)$ car ||x|| > 0.

N est bien une norme.

2. Soit x un vecteur propre associé à la plus grande valeur propre de (AB)^T(AB). On a alors ||ABx|| = N(A)||x|| (cf. précédemment). De plus, ||ABx|| ≤ N(A)||Bx|| ≤ N(A)N(B)||x|| (cf. précédemment). Comme ||x|| > 0, N(A) ≤ N(A)N(B) donc N est bien une norme d'algèbre.

Solution 45

Remarquons qu'en remplaçant x par x/y, on obtient

$$\forall (x, y) \in \mathbb{R} \times \mathbb{R}^*, \ |ax^2 + bxy + cy^2| \le |Ax^2 + Bxy + Cy^2|$$

Par continuité des deux membres sur \mathbb{R}^2 , l'inégalité est également vraie sur l'adhérence de $\mathbb{R} \times \mathbb{R}^*$, c'est-à-dire \mathbb{R}^2 . Ainsi

$$\forall (x, y) \in \mathbb{R}^2, |ax^2 + bxy + cy^2| \le |Ax^2 + Bxy + Cy^2|$$

Posons
$$m = \begin{pmatrix} a & b/2 \\ b/2 & c \end{pmatrix}$$
 et $M = \begin{pmatrix} A & B/2 \\ B/2 & C \end{pmatrix}$. Ainsi,

$$\forall u = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathcal{M}_{2,1}(\mathbb{R}), \ |u^{\mathsf{T}} m u| \le |u^{\mathsf{T}} M u|$$

En élevant au carré, on obtient

$$\forall u \in \mathcal{M}_{2,1}(\mathbb{R}), \ \|u\|^2 u^{\mathsf{T}} m^2 u \le \|u\|^2 u^{\mathsf{T}} M^2 u$$

Notamment, en notant S la sphère unité de $\mathcal{M}_{2,1}(\mathbb{R})$,

$$\forall u \in S, \ u^{\mathsf{T}} m^2 u \le u^{\mathsf{T}} M^2 u$$

Les matrices m et M sont symétriques réelles donc diagonalisables. Notons λ_1 et λ_2 les valeurs propres (éventuellement confondues) de m ainsi que Λ_1 et Λ_2 celles de M. Quitte à les échanger, on peut supposer $|\lambda_1| \le |\lambda_2|$ et $|\Lambda_1| \le |\Lambda_2|$. En considérant des bases orthonormées de vecteurs propres de m et M, on montre classiquement que

$$\lambda_1^2 = \inf_{u \in S} u^{\mathsf{T}} m^2 u$$

$$\lambda_2^2 = \sup_{u \in S} u^{\mathsf{T}} m^2 u$$

$$\lambda_1^2 = \inf_{u \in S} u^{\mathsf{T}} M^2 u$$

$$\lambda_2^2 = \sup_{u \in S} u^{\mathsf{T}} M^2 u$$

L'inégalité précédente montre alors que $\lambda_1^2 \le \Lambda_1^2$ et $\lambda_2^2 \le \Lambda_2^2$. Puisque toutes ces quantités sont positives, $(\lambda_1\lambda_2)^2 \le (\Lambda_1\Lambda_2)^2$. Or $\lambda_1\lambda_2 = \det(m) = ac - b^2/4$ et $\Lambda_1\Lambda_2 = AC - B^2/4$ de sorte que

$$(b^2 - 4ac)^2 \le (B^2 - 4AC)^2$$

ou encore

$$|b^2 - 4ac| \le |B^2 - 4AC|$$

Solution 46

Comme M^TM et MM^T sont symétriques réelles, leurs spectres sont inclus dans \mathbb{R} . Soit $\lambda \in Sp(M^TM) \setminus \{0\}$. Alors il existe $X \in \mathcal{M}_{n,1}(\mathbb{R})$ non nul tel que $M^TMX = \lambda X$. On en déduit que

$$\|MX\|^2 = X^TM^TMX = \lambda XX^T = \lambda \|X\|^2 \neq 0$$

car X et λ sont non nuls. Ainsi $MX \neq 0$. Mais comme $M^TMX = \lambda X$, on a également $(MM^T)MX = \lambda MX$ de sorte que $\lambda \in Sp(MM^T)$. On en déduit que

$$Sp(M^TM) \setminus \{0\} \subset Sp(MM^T) \setminus \{0\}$$

En appliquant ce qui précède à M^T, on obtient l'inclusion réciproque et donc l'égalité.

Solution 47

Supposons (i). Alors il existe une base (e_1, \dots, e_n) de $\mathcal{M}_{n,1}(\mathbb{R})$ formée de vecteurs propres de A. Notons $\lambda_1, \dots, \lambda_n$ les valeurs propres associées. Posons également $E_{i,j} = e_i e_j^\mathsf{T} + e_j e_i^\mathsf{T}$. On montre aisément que $(E_{i,j})_{1 \le i \le j \le n}$ est une base de $\mathcal{S}_n(\mathbb{R})$. L'application

$$\Phi: \left\{ \begin{array}{ccc} \mathcal{S}_n(\mathbb{R}) & \longrightarrow & \mathcal{S}_n(\mathbb{R}) \\ \mathbf{M} & \longmapsto & \mathbf{A}\mathbf{M} + \mathbf{M}\mathbf{A} \end{array} \right.$$

est bien définie et c'est un endomorphisme de $\mathcal{S}_n(\mathbb{R})$. De plus, pour tout $1 \leq i \leq j \leq n$, $\Phi(E_{i,j}) = (\lambda_i + \lambda_j)E_{i,j}$. L'application Φ est donc diagonalisable et ses valeurs propres sont les $\lambda_i + \lambda_j$ pour $1 \leq i \leq j \leq n$. Aucune de ces valeurs propres n'est nulle donc Φ est un automorphisme. On en déduit la proposition (ii).

Remarque. On peut raisonner différemment. Il existe $P \in O_n(\mathbb{R})$ et $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telle que $A = PDP^T$. Fixons $B \in \mathcal{S}_n(\mathbb{R})$. L'équation AM + MA = B équivaut à DN + ND = C en posant $N = P^TMP$ et $C = P^TBP$. Cette équation équivaut à

$$\forall (i, j) \in [1, n]^2, (\lambda_i + \lambda_j) N_{i, j} = C_{i, j}$$

Comme $\lambda_i + \lambda_j \neq 0$ pour tout $(i, j) \in [1, n]^2$, l'équation admet donc bien une unique solution N. Comme C est symétrique, N l'est également et donc M aussi. L'équation AM + MA = B admet donc bien une unique solution symétrique.

Supposons (ii). Considérons l'application Ψ qui à $B \in \mathcal{S}_n(\mathbb{R})$ associe l'unique matrice $M \in \mathcal{S}_n(\mathbb{R})$ telle que AM + MA = B. On vérifie aisément que Ψ est un automorphisme de $\mathcal{S}_n(\mathbb{R})$. Alors $I_n = \Psi(\Psi^{-1}(I_n))$ est l'unique matrice telle que $AI_n + I_nA = \Psi^{-1}(I_n)$. Ainsi $A = \frac{1}{2}\Psi^{-1}(I_n) \in \mathcal{S}_n(\mathbb{R})$. On reprend alors le raisonnement de la première implication. L'endomorphisme Φ (qui n'est autre que Ψ^{-1}) est alors un automorphisme. Ses valeurs propres, à savoir les $\lambda_i + \lambda_i$ ne peuvent être nulles.

Solution 48

Soit (X, Y) un éventuel couple solution. Alors

$$X^{\mathsf{T}} = X^{\mathsf{T}}(Y^{\mathsf{T}}XY) = (X^{\mathsf{T}}Y^{\mathsf{T}}X)Y = (X^{\mathsf{T}}YX)^{\mathsf{T}}Y = Y$$

Par conséquent, $X(XX^T) = I_n$. On en déduit que XX^T est inversible et que $X = (XX^T)^{-1}$. Or XX^T est symétrique donc X également. D'après le théorème spectral, il existe $D \in \mathcal{M}_n(\mathbb{R})$ diagonale et $P \in O_n(\mathbb{R})$ telle que $X = PDP^T$. En reportant dans l'égalité $X(XX^T) = I_n$ i.e. $X^3 = I_n$, on obtient $D^3 = I_n$. Comme D est diagonale à coefficients $r\acute{e}els$, $D = I_n$ puis $X = Y = I_n$. Réciproquement, le couple (I_n, I_n) convient. C'est donc l'unique solution du système.

Solution 49

Il est clair que si S est nulle, S + D est semblable à D.

Supposons maintenant que S + D est semblable à D. On rappelle que $X \mapsto tr(X^TX)$ est une norme euclidienne de $\mathcal{M}_n(\mathbb{R})$. Comme S + D est semblable à D, $(S + D)^2$ est également semblable à D^2 et ces deux matrices ont même trace. Ainsi

$$tr(D^2) = tr((S+D)^2) = tr(S^2) + tr(SD) + tr(DS) + tr(D^2)$$

On vérifie aisément que SD a une diagonale nulle donc tr(SD) = tr(DS) = 0. Ainsi $tr(S^2) = tr(S^TS) = 0$ puis S = 0 via la norme euclidienne citée plus haut.

Solution 50

D'après le théorème spectral, Il existe $P \in O_n(\mathbb{R})$ et $D \in \mathcal{M}_n(\mathbb{R})$ diagonale telle que $A = PDP^T$. Comme $Sp(A) \subset \mathbb{R}_+$, les coefficients diagonaux $\lambda_1, \dots, \lambda_n$ de D sont positifs. On note alors $\Delta \in \mathcal{M}_n(\mathbb{R})$ la matrice diagonale dont les coefficients diagonaux sont $\sqrt{\lambda_1}, \dots, \sqrt{\lambda_n}$ de sorte que $\Delta^2 = D$. Posons $B = P\Delta P^T$. On vérifie asiément que B est symétrique et que $B^2 = A$.

Polynômes orthogonaux

Solution 51

- 1. La symétrie de φ est évidente. La bilinéarité de φ provient de la linéarité de l'intégrale. Pour $P \in \mathbb{R}_n[X]$, $\int_{-1}^1 P(t)Q(t) dt \ge 0$ donc φ est positive. Soit $P \in \mathbb{R}_n[X]$ tel que $\int_{-1}^1 P(t)Q(t) dt = 0$. Comme P^2 est continue positive qur [-1,1], on en déduit que P^2 est nulle sur [-1,1]. Le polynôme P^2 admet donc une infinité de racines : il est donc nul. Par conséquent, P est également nul. Ceci prouve que φ est definie. φ est donc un produit scalaire.
- 2. 1 et -1 sont des racines de multiplicité n de Q_n . On en déduit que $Q_n^{(k)}(-1) = Q_n^{(k)}(1) = 0$ pour k < n.
- 3. Soit $k, l \in [0, n]$ avec $k \neq l$. On peut supposer k < l. Supposons $l \geq 1$ pour se donner une idée de la marche à suivre. On utilise une intégration par parties :

$$\langle \mathbf{P}_k, \mathbf{P}_l \rangle = \int_{-1}^1 \mathbf{Q}_k^{(k)}(t) \mathbf{Q}_l^{(l)}(t) \; \mathrm{d}t = \left[\mathbf{Q}_k^{(k)}(t) \mathbf{Q}_l^{(l-1)}(t) \right]_{-1}^1 - \int_{-1}^1 \mathbf{Q}_k^{(k+1)}(t) \mathbf{Q}_l^{(l-1)}(t) \; \mathrm{d}t$$

Or l-1 < l donc $\mathbf{Q}_l^{(l-1)}(-1) = \mathbf{Q}_l^{(l-1)}(1) = 0$ d'après la question précédente. Ainsi $\langle \mathbf{Q}_k^{(k)}, \mathbf{Q}_l^{(l)} \rangle = -\langle \mathbf{Q}_k^{(k+1)}, \mathbf{Q}_l^{(l-1)} \rangle$. On peut donc prouver à l'aide d'une récurrence finie que $\langle \mathbf{Q}_k^{(k)}, \mathbf{Q}_l^{(l)} \rangle = (-1)^l \langle \mathbf{Q}_k^{(k+l)}, \mathbf{Q}_l \rangle$. Or k < l donc k+l > 2k. Puisque deg $\mathbf{Q}_k = 2k$, $\mathbf{Q}_k^{(k+l)} = 0$. On a donc $\langle \mathbf{P}_k, \mathbf{P}_l \rangle = 0$.

Les P_k sont donc orthogonaux deux à deux. La famille $(P_k)_{0 \le k \le n}$ est donc orthogonale. De plus, deg $Q_k = 2k$ donc deg $P_k = \deg Q_k^{(k)} = k$. La famille $(P_k)_{0 \le k \le n}$ est une famille de polynômes à degrés étagés : elle est donc libre. Comme elle comporte n+1 éléments et que dim $\mathbb{R}_n[X] = n+1$, c'est une base orthogonale de $\mathbb{R}_n[X]$.

Solution 52

- **1.** Remarquons déjà que l'intégrale définissant $\langle P, Q \rangle$ est bien définie car $t \mapsto P(t)Q(t)e^{-t^2}$ est continue sur \mathbb{R} et $P(t)Q(t)e^{-t^2} = o\left(\frac{1}{t^2}\right)$. L'application $\langle \cdot, \cdot \rangle$ est clairement bilinéaire, symétrique et positive. Enfin, soit $P \in E$ vérifiant $\langle P, P \rangle = 0$. Comme $t \mapsto P(t)^2 e^{-t^2}$ est continue, positive et d'intégrale nulle sur \mathbb{R} , elle y est constamment nulle. Comme l'exponentielle ne s'annule pas sur \mathbb{R} , $t \mapsto P(t)^2$ est nulle sur \mathbb{R} . Le polynôme P admet donc une infinité de racines : il est nul. On a bien vérifié que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E.
- 2. La matrice de L dans la base canonique est triangulaire supérieure et ses coefficients diagonaux sont 0, -2, ..., -2n. Ainsi L admet pour valeurs propres les n + 1 réels distincts 0, -2, ..., -2n. Comme dim E = n + 1, on peut affirmer que L est diagonalisable.
- 3. Soient $(P, Q) \in E^2$. Alors

$$\langle L(P), Q \rangle = \int_{-\infty}^{+\infty} (P''(t) - 2tP'(t))Q(t)e^{-t^2} dt = \int_{-\infty}^{+\infty} P''(t)Q(t)e^{-t^2} dt - 2\int_{-\infty}^{+\infty} tP'(t)Q(t)e^{-t^2} dt$$

Comme $t \mapsto e^{-t^2}$ et $t \mapsto P'(t)Q(t)$ sont de classe \mathcal{C}^1 sur \mathbb{R} de dérivées respectives $t \mapsto -2te^{-t^2}$ et $t \mapsto P''(t)Q(t) + P'(t)Q'(t)$, on obtient par une intégration par parties :

$$2\int_{-\infty}^{+\infty} t P'(t) Q(t) e^{-t^2} dt = -\left[P'(t) Q(t)\right]_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} \left(P'(t) Q'(t) + P''(t) Q(t)\right) e^{-t^2} dt$$

On en déduit que

$$\langle L(P), Q \rangle = -\int_{-\infty}^{+\infty} P'(t)Q'(t)e^{-t^2} dt$$

Comme cette expression est invariante par échange de P et Q,

$$\langle L(P), Q \rangle = \langle P, L(Q) \rangle$$

L est bien un endomorphisme symétrique.

4. Notons (P_0, \dots, P_n) l'orthonormalisée de Gram-Schmidt de la base canonique. On sait alors que (L_0, \dots, L_n) est une base orthonormée de E et que pour tout $k \in [\![0,n]\!]$, vect $(P_0, \dots, P_k) = \mathbb{R}_k[X]$. Soit $k \in [\![0,n]\!]$. Alors $P_k \in \mathbb{R}_k[X]$. Il est clair que $\mathbb{R}_k[X]$ est stable par L donc $L(P_k) \in \mathbb{R}_k[X] = \text{vect}(P_0, \dots, P_k)$. Il existe donc $(\lambda_0, \dots, \alpha_k) \in \mathbb{R}^{k+1}$ tel que $L(P_k) = \sum_{j=0}^k \alpha_j P_j$. Pour tout $j \in [\![0,k-1]\!]$, $\langle L(P_k), P_j \rangle = \alpha_j \operatorname{car}(P_0, \dots, P_n)$ est orthonormée. Mais comme L est symétrique, $\langle L(P_k), P_j \rangle = \langle P_k, L(P_j)$. Or $L(P_j) \in \mathbb{R}_j[X] = \operatorname{vect}(P_0, \dots, P_j)$ donc $\langle P_k, L(P_j) = 0 \operatorname{car}(P_0, \dots, P_n)$ est orthonormée. On en déduit donc que $\alpha_j = 0$ et donc $L(P_k) = \alpha_k P_k$ donc P_k est un vecteur propre de L. Finalement, (P_0, \dots, P_n) est bien une base de E formée de vecteurs propres de L.

Divers

Solution 53

1. Soient $x, y, z \in E$ et $\lambda, \mu \in \mathbb{R}$.

$$\langle z, u(\lambda x + \mu y) \rangle = -\langle u(z), \lambda x + \mu y \rangle$$
 par antisymétrie
 $= -\lambda \langle u(z), x \rangle - \mu \langle u(z), y \rangle$ par bilinéarité du produit scalaire
 $= \lambda \langle z, u(x) \rangle + \mu \langle z, u(y) \rangle$ par antisymétrie

On a donc $\langle z, u(\lambda x + \mu y) - \lambda u(x) - \mu(y) \rangle = 0$ pour tout $z \in E$. Comme $E^{\perp} = \{0_E\}$, $u(\lambda x + \mu y) - \lambda u(x) - \mu(y) = 0_E$. D'où la linéarité de u.

2. (i) \Rightarrow (ii) Soient $x, y \in E$. Alors $\langle u(x+y), x+y \rangle = 0$. Or, par linéarité de u et bilinéarité du produit scalaire :

$$\langle u(x+y), x+y \rangle = \langle u(x), x \rangle + \langle u(x), y \rangle + \langle u(y), x \rangle + \langle u(y), y \rangle = \langle u(x), y \rangle + \langle u(y), x \rangle$$

D'où l'antisymétrie de *u*.

- $(ii)\Rightarrow (iii)$ On a vu dans la question précédente que u était linéaire. Soit $\mathcal{B}=(e_1,\dots,e_n)$ une base orthonormée de E et A la matrice de u dans cette base. Comme \mathcal{B} est orthonormée, $u(e_j)=\sum_{i=1}^n \left\langle u(e_j),e_i\right\rangle e_i$ pour $1\leq j\leq n$. On en déduit que $a_{ij}=\left\langle u(e_j),e_i\right\rangle$ pour $1\leq i,j\leq n$. Or, par antisymétrie de u, $\left\langle u(e_j),e_i\right\rangle =-\left\langle u(e_i),e_j\right\rangle$ i.e. $a_{ij}=-a_{ji}$ pour $1\leq i,j\leq n$. On en déduit que A est antisymétrique.
- $(iii) \Rightarrow (i)$ u est bien linéaire par hypothèse. Soient \mathcal{B} une base orthonormale de E et A la matrice de u dans \mathcal{B} . Soit $x \in E$ et X la matrice colonne de x dans \mathcal{B} . Alors

$$\langle u(x), x \rangle = (MX)^{\mathsf{T}}X = -X^{\mathsf{T}}MX = -\langle x, u(x) \rangle$$

On en déduit que $\langle u(x), x \rangle = 0$.

- 3. Fixons une base orthonormée \mathcal{B} de E et considérons Φ l'isomorphisme de $\mathcal{L}(E)$ dans $\mathcal{M}_n(\mathbb{R})$ qui à un endomorphisme de E associe sa matrice dans la base \mathcal{B} . D'après la question précédente, $\Phi(A(E)) = A_n(\mathbb{R})$ où $A_n(\mathbb{R})$ est le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ constitué des matrices antisymétriques. On a donc également $A(E) = \Phi^{-1}(A_n(\mathbb{R}))$ donc A(E) est un sous-espace vectoriel de $\mathcal{L}(E)$ comme image d'un sous-espace vectoriel par une application linéaire et dim $A(E) = \dim A_n(\mathbb{R}) = \frac{n(n-1)}{2}$ car Φ est un isomorphisme.
- **4.** Soient $x \in \text{Ker } u \text{ et } y \in \text{Im } u$. Il existe $z \in \text{E tel que } y = u(z)$.

$$\langle x, y \rangle = \langle x, u(z) \rangle = -\langle z, u(x) \rangle = -\langle z, 0_{\rm E} \rangle = 0$$

Ainsi $\operatorname{Im} u \subset (\operatorname{Ker} u)^{\perp}$. D'après le théorème du rang $\operatorname{dim} \operatorname{Im} u = n - \operatorname{dim} \operatorname{Ker} u = \operatorname{dim} (\operatorname{Ker} u)^{\perp}$. Ainsi $\operatorname{Im} u = (\operatorname{Ker} u)^{\perp}$.

5. Soit F un sous-espace vectoriel stable par u. Soient $x \in F^{\perp}$. Alors, pour tout $y \in F$, $\langle u(x), y \rangle = -\langle x, u(y) \rangle = 0$ car $u(y) \in F$. Ainsi $u(x) \in F^{\perp}$, ce qui prouve que $u(F^{\perp}) \subset F^{\perp}$.

Solution 54

Soit \mathcal{B}' une base orthonormale adaptée à la décomposition en somme directe $E = \operatorname{Im} p \oplus \operatorname{Ker} p$. La matrice A' de p dans la base \mathcal{B}' est diagonale (les éléments diagonaux valent 1 ou 0). Notons P la matrice de passage de \mathcal{B} vers \mathcal{B}' . On a $A = PA'P^{-1}$. Or P est orthogonale donc $P^{-1} = P^{T}$. Ainsi $A = PA'P^{T}$ est symétrique.

Solution 55

Soit $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique. Si A est nulle, rg A = 0 et donc le rang de A est pair.

Sinon, notons u l'endomorphisme de \mathbb{R}^n canoniquement associée à A. On munit \mathbb{R}^n de son produit scalaire canonique et on se donne une base orthonormale \mathcal{B} de \mathbb{R}^n adaptée à la décomposition en somme directe $\mathbb{R}^n = S \oplus \operatorname{Ker} u$ où S est un supplémentaire de $\operatorname{Ker} u$. La matrice de u dans cette base \mathcal{B} est de la forme $A' = \begin{pmatrix} B & 0 \\ C & 0 \end{pmatrix}$ avec B carrée de taille $p = \dim S$. Si on note P la matrice de passage de la base canonique vers la base \mathcal{B} , P est orthogonale et $A' = P^{-1}BP = P^{T}AP$. On en déduit que A' est également antisymétrique et donc B est antisymétrique et C est nulle. On a donc $A' = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$. On a $\operatorname{rg} A' = \operatorname{rg} B$ mais comme S est un supplémentaire de $\operatorname{Ker} u$, $\operatorname{rg} A' = \dim S = p$, ce qui prouve que B est inversible. Or $\det(B^T) = \det(-B) = (-1)^p \det B$ donc p est pair sinon on aurait $\det B = 0$ et B non inversible.

Solution 56

- 1. Si A est symétrique $A^T = A$ et donc $A^2 = I_n$. On en déduit que a est une symétrie orthogonale.
- 2. Première méthode. Remarquons que

$$A = (A^{T})^{2} + A^{T} - I_{n} = (A^{2} + A - I_{n})^{2} + (A^{2} + A - I_{n}) - I_{n}$$

Après simplification, on obtient

$$A^4 + 2A^2 - 2A - I_n = 0$$

Ainsi $X^4 + 2X^3 - 2X - 1 = (X - 1)(X + 1)^3$ est un polynôme annulateur de A. Ainsi $Sp(A) \subset \{-1, 1\}$. On en déduit que 0 est la seule valeur propre de $A^T - A = A^2 - I_n$. Autrement dit, $M = A^T - A$ est nilpotente. Comme $A^T = A^2 + A - I_n$, A^T commute avec A puis M^T commute avec M. On en déduit que M^TM est également nilpotente. Comme M^TM est symétrique réelle, elle est également diagonalisable donc nulle. Ainsi

$$||M||^2 = tr(M^T M) = 0$$

puis M = 0. Ceci signifie que $A^T = A$ et on est ramené à la question précédente : a est à nouveau une symétrie orthogonale.

Deuxième méthode. Posons $S = \frac{A + A^T}{2}$ et $T = \frac{A - A^T}{2}$. Alors A = S + T et S et T sont respectivement symétrique et antisymétrique. Comme A et A^T commutent, S et T commutent également. L'égalité $A^T = A^2 + A - I_n$ peut alors s'écrire

$$S - T = S^2 + T^2 + 2ST + S + T - I_n$$

ou encore

$$S^2 + T^2 + 2ST + 2T = I_n$$

Remarquons que ST est antisymétrique. Comme toute matrice s'écrit de manière unique comme la somme d'une matrice symétrique et d'une matrice antisymétrique,

$$\begin{cases} S^2 + T^2 = I_n \\ ST + T = 0 \end{cases}$$

puis

$$\begin{cases} S^2 + T^2 = I_n \\ S^2 T^2 = T^2 \end{cases}$$

Comme S^2 et T^2 sont symétriques et diagonalisables, elles possèdent une base commune de vecteurs propres. En notant $\lambda_1, \dots, \lambda_n$ et μ_1, \dots, μ_n leurs valeurs propres respectives, on a alors

$$\forall i \in [1, n], \begin{cases} \lambda + \mu &= 1 \\ \lambda \mu &= \mu \end{cases}$$

On en déduit sans peine que $\lambda_i = 1$ et $\mu_i = 0$. Ainsi $T^2 = 0$ et $S^2 = I_n$. De plus,

$$||T||^2 = tr(T^TT) = tr(-T^2) = 0$$

donc T = 0. Ainsi A = S = A^T et $A^2 = S^2 = I_n$. a est donc une symétrie orthogonale.

Solution 57

1. La bilinéarité vient de la linéarité de la trace. De plus, pour tout $M \in \mathcal{M}_n(\mathbb{R})$, $tr(M^T) = tr(M)$. Par conséquent, $tr(A^TB) = tr(B^TA)$, d'où la symétrie. De plus,

$$tr(\mathbf{A}^{\mathsf{T}}\mathbf{B}) = \sum_{1 \le i, j \le n} a_{ij} b_{ij}$$

et en particulier

$$\operatorname{tr}(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = \sum_{1 \le i, j \le n} a_{ij}^2 \ge 0$$

Cette dernière somme ne s'annulant que si tous les a_{ij} sont nuls i.e. A = 0. L'application est donc définie positive. On vérifie sans difficulté que la base canonique de $\mathcal{M}_n(\mathbb{R})$ est orthonormée.

2. D'après l'inégalité de Cauchy-Schwarz,

$$|\operatorname{tr}(A)| = |\operatorname{tr}(I_n A)| \le ||I_n|| ||A||$$

On vérifie facilement que $\|I_n\| = \sqrt{n}$.

3. a. Soient $A \in \mathcal{A}_n(\mathbb{R})$ et $S \in \mathcal{S}_n(\mathbb{R})$.

$$(A|S) = tr(A^{\mathsf{T}}S) = -tr(AS)$$

$$(S|A) = tr(S^T A) = tr(SA)$$

Or $\operatorname{tr}(\operatorname{SA}) = \operatorname{tr}(\operatorname{AS})$ donc $(\operatorname{A}|\operatorname{S}) = 0$. Les sous-espaces vectoriels $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont donc orthogonaux. On sait également que $\mathcal{A}_n(\mathbb{R})$ et $\mathcal{S}_n(\mathbb{R})$ sont supplémentaires dans $\mathcal{A}_n(\mathbb{R})$. On en déduit donc que $\mathcal{A}_n(\mathbb{R})$ est l'orthogonal de $\mathcal{S}_n(\mathbb{R})$.

b. $d(A, S_n(\mathbb{R})) = \|A - p(A)\|$ où p désigne la projection orthogonale sur $S_n(\mathbb{R})$, c'est-à-dire la projection sur $S_n(\mathbb{R})$ parallèlement à $\mathcal{A}_n(\mathbb{R})$. On trouve facilement que $p(A) = \frac{A^T + A}{2}$. Ainsi

$$\|\mathbf{A} - p(\mathbf{A})\| = \frac{1}{2} \|\mathbf{A} - \mathbf{A}^{\mathsf{T}}\| = \frac{1}{2} \sqrt{\sum_{1 \le i, j \le n} (a_{ij} - a_{ji})^2}$$

en utilisant la formule donnant le carré de la norme vue à la première question.

4. Comme $U \in \mathcal{O}_n(\mathbb{R})$, $U^TU = UU^T = I_n$.

$$\begin{split} \|UA\|^2 &= tr((UA)^T UA) = tr(A^T U^T UA) = tr(A^T A) = \|A\|^2 \\ \|AU\|^2 &= tr((AU)^T AU) = tr(U^T A^T AU) = tr(A^T AUU^T) = tr(A^T A) = \|A\|^2 \end{split}$$

5. D'après l'inégalité de Cauchy-Schwarz

$$||AB||^2 = tr(B^T A^T A B) = tr(A^T A B B^T) = tr((A^T A)^T B B^T)$$
$$= (A^T A ||BB^T|) \le ||A^T A|| ||BB^T|| = ||A^T A|| ||B^T B||$$

car $\|BB^{\mathsf{T}}\|^2 = tr(BB^{\mathsf{T}}BB^{\mathsf{T}}) = tr(B^{\mathsf{T}}BB^{\mathsf{T}}B) = \|B^{\mathsf{T}}B\|^2$. En utilisant la formule donnant le carré de la norme vue à la première question, on a :

$$\|\mathbf{A}^{\mathsf{T}}\mathbf{A}\|^2 = \sum_{1 \le i, j \le n} \left(\sum_{k=1}^n a_{ki} a_{kj}\right)^2$$

Or pour tous $i, j \in [1, n]$, on a d'après Cauchy-Schwarz dans \mathbb{R}^n

$$\sum_{k=1}^{n} a_{ki} a_{kj} \le \sqrt{S_i} \sqrt{S_j}$$

avec $S_i = \sum_{k=1}^n a_{ki}^2$ pour $1 \le i \le n$. Ainsi

$$\|\mathbf{A}^{\mathsf{T}}\mathbf{A}\|^2 \leq \sum_{1 \leq i,j \leq n} \mathbf{S}_i \mathbf{S}_j = \left(\sum_{i=1}^n \mathbf{S}_i\right) \left(\sum_{j=1}^n \mathbf{S}_j\right) = \left(\sum_{l=1}^n \mathbf{S}_l\right)^2$$

Par conséquent,

$$\|\mathbf{A}^{\mathsf{T}}\mathbf{A}\| \le \sum_{1 \le k,l \le n} a_{kl}^2 = \|\mathbf{A}\|^2$$

On a donc également $\|B^TB\| \le \|B\|^2$, ce qui nous donne finalement l'inégalité demandée.

Solution 58

Pour simplifier, on peut supposer u_1, \dots, u_{n+1} unitaires de sorte que pour $i, j \in [1, n+1]$ distincts, $(u_i \mid u_j) = \cos \alpha_n$.

Première méthode

Notons u_1',\ldots,u_n' les projections orthogonales de u_1,\ldots,u_n sur $\operatorname{vect}(u_{n+1})^\perp$. Pour $i\in [\![1,n]\!]$ $u_i'=u_i-(\cos\alpha_n)u_{n+1}$ et par le théorème de Pythagore, $\|u_i'\|^2=\|u_i\|^2-(\cos^2\alpha_n)\|u_{n+1}\|^2=1-\cos^2\alpha_n$. Pour $i,j\in [\![1,n]\!]$ distincts

$$(u_i' \mid u_j') = (u_i \mid u_j) - \cos \alpha_n \left((u_i \mid u_{n+1}) + (u_j \mid u_{n+1}) \right) + \cos^2 \alpha_n \|u_{n+1}\|^2 = \cos \alpha_n - \cos^2 \alpha_n$$

Par conséquent,

$$\frac{(u_i' \mid u_j')}{\|u_i'\| \|u_i'\|} = \frac{\cos \alpha_n - \cos \alpha_n^2}{1 - \cos \alpha_n^2} = \frac{\cos \alpha_n}{1 + \cos \alpha_n}$$

Les vecteurs u_1', \dots, u_n' font donc un angle constant α_{n-1} deux à deux. De plus, $\cos \alpha_{n-1} = \frac{\cos \alpha_n}{1 + \cos \alpha_n}$ i.e. $\cos \alpha_n = \frac{\cos \alpha_{n-1}}{1 - \cos \alpha_{n-1}}$.

L'énoncé n'a de sens que pour $n \ge 2$. On trouve aisément $\alpha_2 = \frac{2\pi}{3}$. Posons $z_n = \frac{1}{\cos \alpha_n}$. La suite (z_n) vérifie la relation de récurrence

$$z_n = z_{n-1} - 1$$
. Puisque $z_2 = -2$, on trouve $z_n = -n$ pour tout $n \ge 2$. Ainsi $\alpha_n = \arccos\left(-\frac{1}{n}\right)$.

Deuxième méthode

Puisque dim E = n, les n + 1 vecteurs u_1, \dots, u_{n+1} forment une famille liée. Il existe donc $(\lambda_1, \dots, \lambda_{n+1}) \in \mathbb{R}^{n+1} \setminus \{(0, \dots, 0)\}$ tel que $\sum_{i=1}^{n+1} \lambda_i u_i = 0_E$. Fixons $j \in [1, n+1]$. On a donc

$$\sum_{i=1}^{n+1} \lambda_i(u_i \mid u_j) = (0_E \mid u_j) = 0$$

ou encore

$$\lambda_j + \sum_{i \neq j} \lambda_i \cos \alpha_n = 0$$

Posons $\Lambda = \sum_{i=1}^{n+1} \lambda_i$. L'égalité précédente s'écrit encore

$$\lambda_i + (\Lambda - \lambda_i) \cos \alpha_n = 0$$

ce qui équivaut à

$$\lambda_i(1-\cos\alpha_n) + \Lambda\cos\alpha_n = 0$$

En sommant ces égalités pour $j \in [1, n+1]$, on obtient

$$\Lambda(1-\cos\alpha_n) + (n+1)\Lambda\cos\alpha_n = 0$$

ou encore

$$\Lambda(1 + n\cos\alpha_n) = 0$$

Par ailleurs, il existe $j \in [1, n+1]$ tel que $\lambda_j \neq 0$ et on rapelle que $\lambda_j (1-\cos\alpha_n) + \Lambda\cos\alpha_n = 0$. Si on avait $\Lambda = 0$, on aurait donc $\cos\alpha_n = 1$, ce qui est exclu par l'énoncé. Ainsi $\Lambda \neq 0$, ce qui permet d'affirmer que $\cos\alpha_n = -\frac{1}{n}$. On cherche implicitement un angle α_n non orienté donc $\alpha_n = \arccos\left(-\frac{1}{n}\right)$.

Solution 59

Soit $X \in \text{Ker } A$. On a donc AX = 0 puis $A^TAX = 0$ donc $X \in \text{Ker } A^TA$. Ainsi $\text{Ker } A \subset \text{Ker } A^TA$.

Soit maintenant $X \in \text{Ker } A^T A$. On a donc $A^T A X = 0$ puis $X^T A^T A X = 0$. Notons Y = A X. Ainsi $Y^T Y = 0$. Or $Y^T Y$ est la somme des carrés des composantes de Y donc Y = 0 i.e. A X = 0. D'où $X \in \text{Ker } A$. Ainsi $\text{Ker } A^T A \subset \text{Ker } A$.

Finalement, $\operatorname{Ker} A = \operatorname{Ker} A^T A$ et $\operatorname{rg} A = \operatorname{rg} A^T A$ via le théorème du rang. En changeant A en A^T , on a également $\operatorname{rg} A^T = \operatorname{rg} AA^T$. Or $\operatorname{rg} A = \operatorname{rg} A^T$. Ainsi $\operatorname{rg} A^T A = \operatorname{rg} AA^T = \operatorname{rg} A$.

Solution 60

- 1. Évident.
- **2.** On va montrer que F admet pour supplémentaire la droite vectorielle $\mathbb{R}_0[X]$ dans $\mathbb{R}[X]$.

Soit
$$P \in \mathbb{R}_0[X] \cap F$$
. Alors il existe $(\lambda_n) \in \mathbb{R}^{(\mathbb{N}^*)}$ tel que $P = \sum_{n=1}^{+infty} \lambda_n (1 + X^n)$. On a donc

$$P = \left(\sum_{n=1}^{+\infty} \lambda_n\right) + \sum_{n=1}^{+\infty} \lambda_n X^n$$

Mais comme deg $P \le 0$, $\lambda_n = 0$ pour tout $n \in \mathbb{N}^*$ et donc P = 0. Ainsi F et $\mathbb{R}_0[X]$ sont en somme directe.

3. Soit $P \in F^{\perp}$. Posons $P = \sum_{n=0}^{+\infty} a_n X^n$ avec $(a_n) \in \mathbb{R}^{(\mathbb{N})}$. Puisque $\langle P, 1 + X^n \rangle = 0$ pour tout $n \in \mathbb{N}^*$, on a $a_0 + a_n = 0$ pour tout $n \in \mathbb{N}^*$. Mais comme la suite (a_n) est nulle à partir d'un certain rang, on en déduit que $a_0 = 0$ puis que $a_n = 0$ pour tout $n \in \mathbb{N}^*$. Ainsi P = 0 puis $F^{\perp} = \{0\}$. En particulier, $F \oplus F^{\perp} = F \neq \mathbb{R}[X]$ puisque F est un hyperplan de $\mathbb{R}[X]$.

Solution 61

Notons pour $a \in E$, $\varphi : x \in E \mapsto \langle a, x \rangle$. φ_a est clairement une forme linéaire. Il suffit donc de montrer que l'application $\Phi : EE^*a\varphi_a$ est bijective. On montre facilement que Φ est linéaire. Puisque dim $E = \dim E^*$, il suffit de montrer que Φ est injective pour en déduire que c'est un isomorphisme. Soit alors $a \in \ker \Phi$. Alors φ_a est nulle et notamment, $\varphi_a(a) = \|a\|^2 = 0$ puis $a = 0_E$. Ainsi $\ker \Phi = \{0_E\}$: Φ est injective et donc bijective.