1.	Electro a.	lytes Cations:
	b.	Anions:
	C.	Electroneutrality
		i. Change begets
	d.	Electrolyte Funtions: i.
		ii.
		iii.
		iv.
		v.

e. Electrolyte Requirements

i. Daily Required Intake

ii. Excretion
iii. Unusual losses
2. Electrolytes in the lab
a. Routine Electrolytes
b. Anion Gap
i. Where is the gap? What about electroneutrality
ii. Anion Gap Increases
iii. Anion Gap Decreases

_	_			
2	So	Мi	1	m

a.	of ECF cations
b.	% of osmolality

c. Roles:

d. Homeostasis

i. Absorbed from GI

- iii. Regulation
 - 1. Aldosterone

a. Adrenal insufficiency (Addison's)

b. Adrenal hyperproduction (Cushing's)

2. Hyponatermia

a. Pseudohyponatremia

3. Hypernatremia

iv. Methods

- 1. ISE Potentiometry
 - a. Glass Membrane
 - b. Crown Ether
 - c. Direct vs. Indirect
 - d. ISE issues?
- e. Potassium

i. _____ Cation

ii.	Roles:	
	1.	Homeostasis:
		a. Excretion
		b. Why can we afford to excrete so much?
	2.	Hypokalemia:
	3.	Hyperkalemia:
	3.	Trype Nate III a
	4.	Methods of analysis:
		a. ISE
		i. Valinomycin
		ii. Crown Ether

4. Water Balance

- 5. Chloride
 - a. _____Anion
 - b. Functions:
 - c. Homeostasis

- d. Importance?
- e. Hypochloremia

i.	Cystic Fibrosis
	1. Iontophoresis
	2. Analysis: Coulometric Titration
f. Method i.	ds ISE
ii.	Mercurimetric Titration
iii.	Coulometric Titration
6. Bicarbonate	

a.		Anion
b.	What a	re we really talking about
c.	110 11511	: Increased Levels
	ii.	Decreased levels

iii. Measurement

- 1. PCO2 Electrode
- 2. Enzymatic
- 7. Calcium Magnesium and Phosphorus

- i. Major reserve in bones and teeth
- ii. Functions:
- iii. 3 States of circulation
 - 1. Free (ionized)
 - 2. Protein Bound
 - 3. Complexed

iv.	pH effect on ICA 1. Alkalosis
	2. Acidosis
v.	Homeostasis
	1. Dietary Sources
	2. Excretion

3. Regulation

2. Functions:

1. Short half-life ~4min

vi. PTH

vii. Calcitonin

1. The Thyroid's ANTI PTH

viii. Vitamin D

I HAD VITAMIN D ONGE ix. H

- 1. 25-hydroxycholecalciferol 23-OH-D₃
- 2. 1,25-dihydroxycholecalciferol 1,25-[OH]₂-D₃
- ix. Hypocalcemia Hypercalcemia

x. Methods

- 1. Spectrophotometric
- 2. Titration
- 3. ISE

4. Atomic Absorption Spectroscopy Components of AA Spectrophotometer: c. Magnesium i. Functions: ii. Hypomagnesemia Hypermagnesemia iii. Methods 1. AAS 2. Spectrophotometric a. Dye-binding

b. EGTA

	d. Phosph	norus	
	i.	Distribution:	
	ii.	Functions:	
		1. Hypophosphatemia	Hyperphosphatemia
	iii.	Methods	
		1. Ammonium phosphomolybdate	
		2. Circadian Rhythm	
8.	Ammonia		
	a. Ammo	nium pKa 9.25	
	i.	Sources	

b.	Methods:
	i. Ion Exchange Column
	ii. Enzymatic method
	iii. ISE
C.	Considerations for Ammonia
9. Serum	Osmolality

ii. Elimination

iii. High Ammonia Causes

a.	Represents:
b.	Freezing Point Depression
c.	Osmolal gap?