

CHEMICAL BONDING & MOLECULAR STRUCTURES

MULTIPLE CHOICE QUESTIONS

- 1. The bond angle is minimum in
 - (a) NH_4^+

(b) NOCl

(c) H₂Se

(d) SO_3

Sol. (c)

 $NH_4^+ \longrightarrow sp^3$ hybridisation – 109°28′.

 $NOCl \longrightarrow sp^2$ hybridisation -120°

 $H_2Se \longrightarrow sp^3$ hybridisation because of lone pair bond angle gets minimized.

 $SO_3 \longrightarrow sp^2$ hybridisation 120°.

2. The observed dipole moment of HCl molecule is 1.03 D. If H–Cl bond distance is 1.275 Å and electronic charge is 4.8 \times 10⁻¹⁰ e.s.u. The % polarity in HCl will be

(a)
$$1.275 \times 1.03 \%$$

(b)
$$\frac{4.8 \times 1.275 \times 10^{-8}}{1.03}$$
 %

(c)
$$\frac{1.03\times100}{4.8\times1.275}$$
%

(d)
$$\frac{4.8 \times 10^{-10}}{1.03} \times 100\%$$

Sol. (c)

Percentage polarity = $\frac{\text{observed dipole moment of molecules} \times 100}{\text{calculated dipole moment}}$ %

Here observed dipole moment of HCl = 1.03 D

Calculated dipole moment of HCl = $4.8 \times 10^{-10} \times 1.275 \times 10^{-8}$

$$= 4.8 \times 1.275 D$$

Therefore, % polarity = $\frac{1.03}{4.8 \times 1.275} \times 100\%$.

- Which of the following has same bond order as NO⁺ has? **3.**
 - (a) CN⁻

(b) O_2^-

(c) CN⁺

(d) none of them

Sol. (a)

NO⁺ and CN⁻ both have 14 electrons and also both will have the following configuration.

$$\sigma 1s^2\sigma^* \ 1s^2\sigma 2s^2\sigma^* 2s^2 {\left(\begin{smallmatrix} \pi_{2p_y} \\ \pi_{2p_z} \end{smallmatrix}\right)} \sigma 2p_x^{\ 2}$$

- Bond order of NO^+ = Bond order of CN^- = 3.
- 4. The correct order of increasing bond angles is

 - (a) $PF_3 < PCl_3 < PBr_3 < PI_3$ (b) $PI_3 < PCl_3 < PBr_3 < PF_3$

 - (c) $PI_3 < PBr_3 < PCl_3 < PF_3$ (d) $PCl_3 < PBr_3 < PI_3 < PF_3$
- Sol. (a)

As the size of surrounding atom increases the electronic repulsion increases bond angle increases.

- **5.** Which of the following is planar?
 - (a) XeO₄

(b) XeO₂F₂

(c) XeO_3F_2

(d) XeF₄

Sol. (d)

XeO₄– tetrahedral

XeO₃F₂- trigonal bipyramidal

 XeO_2F_2 - trigonal bipyramidal XeF_4 - square planar.

- **6.** Which of the following does not contain coordinate bond?
 - (a) BH_4^-

(b) NH₄⁺

(c) CO_3^{2-}

(d) H_3O^+

Sol. (c)

$$CO_3^{2-}is \xrightarrow{O \setminus O \setminus O} C \xrightarrow{O \setminus O} C \xrightarrow{O \setminus O \setminus O} C \xrightarrow{O \setminus O \setminus O} C \xrightarrow{O \setminus O} C C \xrightarrow{O \setminus O} C C \xrightarrow{O \setminus O} C C \xrightarrow{O \setminus O}$$

- 7. The correct order in which the O–O bond length increases in the following is
 - (a) $O_2 < O_3 < H_2O_2$

(b) $H_2O_2 < O_3 < O_2$

(c) $O_3 < O_2 < H_2O_2$

(d) $O_2 < H_2 O_2 < O_3$

Sol. (a)

Due to resonance in O₃, O–O bond length will be in between O=O and O–O.

- **8.** Which species has the maximum number of lone pair of electrons on the central atom?
 - (a) ClO_3^-

(b) XeF₄

(c) SF₄

(d) I_3^-

Sol. (d)

In I_3^- , central atom has 3 lone pair and two bond pair.

- **9.** Which of the following compound has highest covalent character?
 - (a) NaCl

(b) KCl

(c) MgCl₂

(d) LiCl

Sol. (c)

More is the charge on cation, more is the polarisation of anion by cation. Hence, more is the covalent character.

- 10. Which one of the following species is paramagnetic?
 - (a) o_2^-

(b) CN-

(c) CO

 $(d) NO^{+}$

Sol. (a)

Only o₂ has unpaired electrons in molecular orbital.

- 11. The shape of XeO₃ is
 - (a) T-shaped

(b) Tetrahedral

(c) Triangular planar

(d) Pyramidal

Sol. (d)

The state of hybridisation of Xe in XeO₃ is sp³. Three corners of tetrahedron are occupied by the three O-atoms and the fourth corner is occupied by lone pair. Therefore shape of XeO₃ is pyramidal.

12. The shape of XeO_3 is

(a) T-shaped

- (b) Tetrahedral
- (c) Triangular planar
- (d) Pyramidal

Sol. (d)

The state of hybridisation of Xe in XeO₃ is sp³. Three corners of tetrahedron are occupied by the three O-atoms and the fourth corner is occupied by lone pair. Therefore shape of XeO₃ is pyramidal.

13. Which of the following is arranged in order of increasing dipole moment?

- (a) $BCl_3 < NH_3 < H_2O < NF_3$ (b) $BCl_3 < NF_3 < NH_3 < H_2O$
- (c) $NH_3 < NF_3 < H_2O < BCl_3$ (d) $H_2O < NF_3 < NH_3 < BCl_3$

Sol. (b)

BCl₃ is a planar species. Hence it has zero dipole moment. Out of NH₃ and NF₃, NH₃ has higher dipole moment because of orientation of bond moments as shown

- ∴ Correct order is BCl₃< NF₃< NH₃< H₂O.
- Predict the correct statement with regard to the bond orders of the species CN⁺, CN and CN⁻.
 - (a) The bond order of CN⁺ is greater than the bond orders of CN and CN⁻.

- (b) The bond orders of CN⁻ and CN are greater than the bond order of CN⁺.
- (c) CN⁺ and CN⁻ have the same bond orders, while that of CN is less than that of CN⁺ or CN⁻.
- (d) The bond orders of CN⁺, CN and CN⁻ are 2, 3 and 2.5 respectively.

Sol. (b)

The bond order of CN⁺, CN and CN⁻ are 2, 2.5 and 3 respectively.

15. N₀/2 atoms of X(g) are converted into X⁺(g) by energy E₁.
N₀/2 atoms of X(g) are converted into x⁻(g) by energy E₂.
Hence, ionization potential and electron affinity of X(g) are: (N₀ is Avogadro Number)

(a)
$$\frac{2E_1}{N_0}$$
, $\frac{2(E_1 - E_2)}{N_0}$

(b)
$$\frac{2E_1}{N_0}$$
, $\frac{2E_2}{N_0}$

(c)
$$\frac{(E_1 - E_2)}{N_0}$$
, $\frac{2E_2}{N_0}$

(d) $2E_1$, $2E_2$

Sol. (d)

$$X(g) \longrightarrow X^{+}(g) + e$$

If I is ionization energy then

$$\frac{1}{2}(I) = E_1$$

$$I = 2E_1$$

If E is electron affinity then

$$\frac{1}{2}(E) = E_2$$

$$E = 2E_2$$

- **16.** In XeF₂, XeF₄ and XeF₆ the number of lone pair of electrons on Xe is respectively (Atomic numbers: F = 9, Xe = 54)
 - (a) 2, 3, 1

(b) 1, 2, 3

(c) 4, 1, 2

(d) 3, 2, 1

Sol. (d)

XeF₂:Xe has got2 bond pairs and 3 lone pairs.

XeF₄: Xe has got 4 bond pairs and 2 lone pairs.

XeF₆:Xe has got 6 bond pairs and 1 lone pair.

17. The resonating structures of isocyanate ion (NCO⁻) are

$$O = C = N^{-} \longleftrightarrow {^{-}O} - C \equiv N \longleftrightarrow {^{+}O} \equiv C - N^{2-}$$

Choose the most stable resonating structure of NCO⁻ and give oxidation states of O, C and N is that order.

- (a) (i) O(-3), C(+4), N(-2)
- (b) (ii) O(-2), C(+4), N(-3)
- (c) (iii) O(-1), C(+4), N(-3)
- (d) (i) O(0), C(+4), N(-5)

Sol. (b)

18. Molecular shapes of SF₄, CF₄ and XeF₄ are

- (a) same with 2, 0 and 1 lone pairs of electrons respectively.
- (b) same with 1, 1 and 1 lone pairs of electrons respectively.
- (c) different with 1, 0 and 2 lone pairs of electrons respectively.
- (d) different with 1, 1 and 1 lone pairs of electrons respectively.

Sol. (c)

In SF_4 , BP = 4, LP = 1, see-saw shaped.

In CF_4 , BP = 4, LP = 0, tetrahedral shape.

In XeF_4 , BP = 4, LP = 2, square planar shape.

19. Match List I with List II and select the correct answer:

List I (Ion)		List II (Shapes)	
A.	ICl ₂	1.	Linear
В.	$\mathrm{BrF}_2^{\scriptscriptstyle +}$	2.	Pyramidal
C.	ClF ₄	3.	Tetrahedral
D.	AlCl ₄	4.	Square planar
		5.	Angular

	A	В	C	D
(a)	1	2	4	5
(b)	4	5	2	3
(c)	1	5	4	3
(d)	5	1	3	4

Sol. (c)

$$ICl_2^-$$
; BP = 2 LP = 3; Linear

$$BrF_2^+$$
; $BP = 2$ $LP = 2$; Angular

$$ClF_4^-$$
; $BP = 4$ $LP = 2$; Square planar

$$AlCl_4^-$$
; $BP = 4LP = 0$; Tetrahedral

20. In which of the following process, the least energy is released?

(a)
$$N(g) + e^- \rightarrow N^-(g)$$

(b)
$$O(g) + e^- \rightarrow O^-(g)$$

$$(c)$$
 $F(g) + e^- \rightarrow F^-(g)$

(d)
$$S(g) + e^- \rightarrow S^-(g)$$

Sol. (a)

2p³ of N has symmetrical electronic configuration.

3p⁴ of s has unsymmetrical electronic configuration.

21. The three–dimensional representation of H_2N^- is

Sol. (c)

22. In the formation of N_2^+ from N_2 , the electron is lost from a

(a) σ-orbital

(b) π -orbital

(c) σ*–orbital

(d) π^* -orbital

Sol. (a)

M.O. configuration of N₂ is:

$$\sigma 1s^2 \sigma^* 1s^2 \sigma 2s^2 \sigma^* 2s^2 \pi 2p_y^2 = \pi 2p_z^2 \sigma 2p_x^2$$

M.O. configuration of N₂ is:

$$1s^2\sigma^*1s^2\sigma2s^2\sigma^*2s^2\pi_{2p_y}^2 = \pi_{2p_z}^2 \sigma_{2p_x}^1.$$

INTEGER TYPE QUESTIONS

- **23.** If MX₃ is T shaped, then the number of lone pair around M is
- **Sol.** (2)

For T-shape 2 lps appear at same side of axial line at plane of paper.

- 24. The lattice energy of solid NaCl is 180 kcal/mol. The dissolution of the solid in water in the form of ions is endothermic to the extent of 1 kcal/mol. If the solution energies of Na⁺ and Cl⁻ are in the ratio 6:5, what is the enthalpy of hydration of Na⁺ ion?
- Sol. (b)

$$Na^{+}(g) + Cl^{-}(g) \longrightarrow NaCl(s)$$
; $\Delta H = 180$ kcal $NaCl(s) + aq \longrightarrow Na^{+}(aq) + Cl^{-}(aq)$; $\Delta H = 1$ kcal $Na^{+}(g) + Cl^{-}(g) + aq. \longrightarrow Na^{+}(aq.) + Cl^{-}(aq.)$; $\Delta H = A$ kcal $\Delta H_{solution} = \Delta H_{lattice} + \Delta H_{hydration}$

- \therefore 1 = 180 + Δ H_{hydration}
- $\triangle H_{\text{hydration}} = -179 \text{ kcal} = A$ $\triangle H_{\text{Na}^+} (\text{hydration}) + \triangle H_{\text{CI}^-} (\text{hydration}) = a$ $\triangle H_{\text{Na}^+} (\text{hydration}) = \frac{6A}{11} = \frac{6 \times (-179)}{11} = -97.5 \text{ kcal}.$

- 25. The lattice energy of solid NaCl is 180 kcal/mol. The dissolution of the solid in water in the form of ions is endothermic to the extent of 1 kcal/mol. If the solution energies of Na⁺ and Cl⁻ are in the ratio 6:5, what is the enthalpy of hydration of Cl⁻ ion?
- Sol. $Na^+(g) + Cl^-(g) \longrightarrow NaCl(s)$; $\Delta H = 180$ kcal $NaCl(s) + aq \longrightarrow Na^+(aq) + Cl^-(aq)$; $\Delta H = 1$ kcal $Na^+(g) + Cl^-(g) + aq. \longrightarrow Na^+(aq.) + Cl^-(aq.)$; $\Delta H = A$ kcal

$$\Delta H_{solution} = \Delta H_{lattice} + \Delta H_{hydration}$$

$$\therefore 1 = 180 + \Delta H_{hydration}$$

$$\triangle H_{\text{hydration}} = -179 \text{ kcal} = A$$

$$\triangle H_{\text{Na}^+}(\text{hydration}) + \triangle H_{\text{Cl}^-}(\text{hydration}) = A$$

$$\triangle H_{\text{Cl}^-}(\text{hydration}) = \frac{5A}{11} = \frac{5 \times (-179)}{11} = -81.4 \text{ kcal}.$$

- **26.** A molecule MX₄ has a square planar shape. The number of non-bonding pair of electrons is
- **Sol.** (2)

$$X \longrightarrow X$$
 $X \longrightarrow M \longrightarrow X \Rightarrow sp^3d^2 \Rightarrow Octahedral structure \Rightarrow square planar (geo).$

27. The maximum number of H-bonds in which water molecule can participate is

Sol. (4)

28. The dipole moment (in Debye units) of m-dichlorobenzene is 1.72. What is the value of dipole moment for o-dichlorobenzene?

Sol. (2.98)

$$\mu_{R} = \sqrt{\mu_{1}^{2} + \mu_{2}^{2} + 2\mu_{1}\mu_{2}\cos 120^{\circ}} = \sqrt{\mu^{2}} \qquad (\mu_{1} = \mu_{2} = \mu)$$

$$\mu = \mu_{R} = 1.72$$

$$\mu_{R} = \sqrt{\mu_{1}^{2} + \mu_{2}^{2} + 2\mu_{1}\mu_{2}\cos 60^{\circ}} = \sqrt{2\mu^{2} + 2\mu^{2}\frac{1}{2}} \qquad (\mu_{1} = \mu_{2} = \mu)$$

$$= \sqrt{3} \times \mu = \sqrt{3} \times 1.72 = 2.98 \text{ D}.$$

- **29.** A diatomic molecule has a dipole moment of 1.92 D and a bond length of 2.0Å. What is the percentage ionic character in the molecule if $e = 4.8 \times 10^{-10}$ esu?
- Sol. % ionic characters = $\frac{\text{observed dipole moment}}{\text{calculated dipole moment assu min g}} \times 100$ 100% ionic character

=
$$\left[\frac{1.92 \,\mathrm{D}}{(4.80 \times 10^{-10}) \times (2 \times 10^{-8} \,\mathrm{cm})}\right] \times 100 = \frac{1.92 \,\mathrm{D}}{(4.8 \times 2) \mathrm{D}} \times 100 = \mathbf{20\%}.$$

- **30.** If the electronegativity difference between two atoms A and B is 2.0, then the percentage ionic character in the molecule is
- **Sol.** % ionic character= $16(\Delta E.N) + 3.5(\Delta E.N)^2$

