Business Report Data Mining

Contents

Content : DM Project	Page
Clustering: Digital Ads Data	3
1.1 Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.	5
1.2 Treat missing values in CPC, CTR and CPM using the formula given.	7
1.3 Check if there are any outliers. Do you think treating outliers is necessary for K-Means clustering? Based on your judgement decide whether to treat outliers and if yes, which method to employ.	7
1.4 Perform z-score scaling and discuss how it affects the speed of the algorithm.	10
1.5 Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.	12
1.6 Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.	12
1.7 Print silhouette scores for up to 10 clusters and identify optimum number of clusters.	14
1.8 Profile the ads based on optimum number of clusters using silhouette score and your domain understanding	14
1.9 Conclude the project by providing summary of your learnings	
PCA	16
2.1 Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.	19
2.2 Perform detailed Exploratory analysis by creating certain questions. Pick 5 variables out of the given 24 variables below for EDA:	24
2.3 We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?	29
2.4 Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment.	29
2.5 Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get eigen values and eigen vector.	31
2.6 Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot.	35
2.7 Compare PCs with Actual Columns and identify which is explaining most variance. Write inferences about all the Principal components in terms of actual variables.	36
2.8 Write linear equation for first PC.	38

Problem 1

Clustering: Digital Ads Data:

The ads24x7 is a Digital Marketing company which has now got seed funding of \$10 Million. They are expanding their wings in Marketing Analytics. They collected data from their Marketing Intelligence team and now wants you (their newly appointed data analyst) to segment type of ads based on the features provided. Use Clustering procedure to segment ads into homogeneous groups.

The following three features are commonly used in digital marketing:

CPM = (Total Campaign Spend / Number of Impressions) * 1,000. Note that the Total Campaign Spend refers to the 'Spend' Column in the dataset and the Number of Impressions refers to the 'Impressions' Column in the dataset.

CPC = Total Cost (spend) / Number of Clicks. Note that the Total Cost (spend) refers to the 'Spend' Column in the dataset and the Number of Clicks refers to the 'Clicks' Column in the dataset.

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100. Note that the Total Measured Clicks refers to the 'Clicks' Column in the dataset and the Total Measured Ad Impressions refers to the 'Impressions' Column in the dataset.

The Data Dictionary

SI. No	Column Name	Column Description
1	Timestamp	The Timestamp of the particular Advertisement.
2	InventoryType	The Inventory Type of the particular Advertisement. Format 1 to 7. This is a Categorical Variable.
3	Ad - Length	The Length Dimension of the particular Adverstisement.
4	Ad- Width	The Width Dimension of the particular Advertisement.
5	Ad Size	The Overall Size of the particular Advertisement. Length*Width.
6	Ad Type	The type of the particular Advertisement. This is a Categorical Variable.
7	Platform	The platform in which the particular Advertisement is displayed. Web, Video or App. This is a Categorical Variable.
8	Device Type	The type of the device which supports the partciular Advertisement. This is a Categorical Variable.

9	Format	The Format in which the Advertisement is displayed. This is a Categorical Variable.
10	Available_Impressions	How often the particular Advertisement is shown. An impression is counted each time an Advertisement is shown on a search result page or other site on a Network.
11	Matched_Queries	Matched search queries data is pulled from Advertising Platform and consists of the exact searches typed into the search Engine that generated clicks for the particular Advertisement.
12	Impressions	The impression count of the particular Advertisement out of the total available impressions.
13	Clicks	It is a marketing metric that counts the number of times users have clicked on the particular advertisement to reach an online property.
14	Spend	It is the amount of money spent on specific ad variations within a specific campaign or ad set. This metric helps regulate ad performance.
15	Fee	The percentage of the Advertising Fees payable by Franchise Entities.
16	Revenue	It is the income that has been earned from the particular advertisement.
17	CTR	CTR stands for "Click through rate". CTR is the number of clicks that your ad receives divided by the number of times your ad is shown. Formula used here is CTR = Total Measured Clicks / Total Measured Ad Impressions x 100. Note that the Total Measured Clicks refers to the 'Clicks' Column and the Total Measured Ad Impressions refers to the 'Impressions' Column.
18	СРМ	CPM stands for "cost per 1000 impressions." Formula used here is CPM = (Total Campaign Spend / Number of Impressions) * 1,000. Note that the Total Campaign Spend refers to the 'Spend' Column and the Number of Impressions refers to the 'Impressions' Column.
19	CPC	CPC stands for "Cost-per-click". Cost-per-click (CPC) bidding means that you pay for each click on your ads. The Formula used here is CPC = Total Cost (spend) / Number of Clicks. Note that the Total Cost (spend) refers to the 'Spend' Column and the Number of Clicks refers to the 'Clicks' Column.

Perform the following in given order:

• Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.

Answer: Reading the head & tail of the dataset **Head & Tail of data** - Top & bottom 5 values

index	Timestamp	InventoryType	Ad - Length	Ad-Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	CPM	CPC
0	2020-9-2-17	Format1	300	250	75000	Inter222	Video	Desktop	Display	1806	325	323	1	0.0	0.35	0.0	0.0031	0.0	0.0
1	2020-9-2-10	Format1	300	250	75000	Inter227	Арр	Mobile	Video	1780	285	285	1	0.0	0.35	0.0	0.0035	0.0	0.0
2	2020-9-1-22	Format1	300	250	75000	Inter222	Video	Desktop	Display	2727	356	355	1	0.0	0.35	0.0	0.0028	0.0	0.0
3	2020-9-3-20	Format1	300	250	75000	Inter228	Video	Mobile	Video	2430	497	495	1	0.0	0.35	0.0	0.002	0.0	0.0
4	2020-9-4-15	Format1	300	250	75000	Inter217	Web	Desktop	Video	1218	242	242	1	0.0	0.35	0.0	0.0041	0.0	0.0

index	Timestamp	InventoryType	Ad - Length	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	CPM	CPC
23061	2020-9-13-7	Format5	720	300	216000	Inter220	Web	Mobile	Video	1	1	1	1	0.07	0.35	0.0455000000000000006	NaN	NaN	NaN
23062	2020-11-2-7	Format5	720	300	216000	Inter224	Web	Desktop	Video	3	2	2	1	0.04	0.35	0.02600000000000000002	NaN	NaN	NaN
23063	2020-9-14-22	Format5	720	300	216000	Inter218	Арр	Mobile	Video	2	1	1	1	0.05	0.35	0.0325	NaN	NaN	NaN
23064	2020-11-18-2	Format4	120	600	72000	inter230	Video	Mobile	Video	7	1	1	1	0.07	0.35	0.0455000000000000006	NaN	NaN	NaN
23065	2020-9-14-0	Format5	720	300	216000	Inter221	Арр	Mobile	Video	2	2	2	1	0.09	0.35	0.058499999999999996	NaN	NaN	NaN

Tail - bottom 5 values Info of the dataset

Range	eIndex: 23066 entries,	0 to 23065	
Data	columns (total 19 colu	mns):	
#	Column	Non-Null Count	Dtype
0	Timestamp	23066 non-null	object
1	InventoryType	23066 non-null	object
2	Ad - Length	23066 non-null	int64
3	Ad- Width	23066 non-null	int64
4	Ad Size	23066 non-null	int64
5	Ad Type	23066 non-null	object
6	Platform	23066 non-null	object
7	Device Type	23066 non-null	object
8	Format	23066 non-null	object
9	Available_Impressions	23066 non-null	int64
10	Matched_Queries	23066 non-null	int64
11	Impressions	23066 non-null	int64
12	Clicks	23066 non-null	int64
13	Spend	23066 non-null	float64
14	Fee	23066 non-null	float64
15	Revenue	23066 non-null	float64
16	CTR	18330 non-null	float64
17	CPM	18330 non-null	float64
18	CPC	18330 non-null	float64
dtype	es: float64(6), int64(7), object(6)	

Shape of dataset:

- The dataset has 23066 rows & 19 columns

Checking for Null Values

Timestamp	0
InventoryType	0
Ad - Length	0
Ad- Width	0
Ad Size	0
Ad Type	0
Platform	0
Device Type	0
Format	0
Available_Impressions	0
Matched_Queries	0
Impressions	0
Clicks	0
Spend	0
Fee	0
Revenue	0
CTR	4736
CPM	4736
CPC	4736
dtype: int64	

We can see that there are 3 variables wherein we have Null values

- CTR, CPM, CPC having 4736 Null values each

Checking for Duplicate values

There are **no duplicate** values in the dataset

Five Point Summary of the dataset

Ad - Length			std	min	25%	50%	75%	max
Au - Longtii	23066.0	385.163097199341	233.65143380263876	120.0	120.0	300.0	720.0	728.0
Ad- Width	23066.0	337.89603745773	203.09288492918358	70.0	250.0	300.0	600.0	600.0
Ad Size	23066.0	96674.46804820948	61538.32955689539	33600.0	72000.0	72000.0	84000.0	216000.0
Available_Impressions	23066.0	2432043.665871846	4742887.764666151	1.0	33672.25	483771.0	2527711.75	27592861.0
Matched_Queries	23066.0	1295099.1432411342	2512969.8612578264	1.0	18282.5	258087.5	1180700.0	14702025.0
Impressions	23066.0	1241519.5188589266	2429399.9610913517	1.0	7990.5	225290.0	1112428.5	14194774.0
Clicks	23066.0	10678.518815572705	17353.409362737486	1.0	710.0	4425.0	12793.75	143049.0
Spend	23066.0	2706.625688892743	4067.9272729126783	0.0	85.18	1425.125	3121.4	26931.87
Fee	23066.0	0.33512312494580765	0.03196322155198887	0.21	0.33	0.35	0.35	0.35
Revenue	23066.0	1924.25233071187	3105.2384103287695	0.0	55.365375	926.335	2091.3381499999996	21276.18
CTR	18330.0	0.07366054009819965	0.07515992494457631	0.0001	0.0026	0.08255000000000001	0.13	1.0
CPM	18330.0	7.672045280960174	6.481390870689706	0.0	1.71	7.66	12.51	81.56
CPC	18330.0	0.3510605564648118	0.34333379368050065	0.0	0.09	0.16	0.57	7.26

• Treat missing values in CPC, CTR and CPM using the formula given.

Answer: Treating the Null values using a user defined function.

We created a function given in the problem statement as below. The function successfully added the relevant data in the respective CPM, CPC & CTR variables.

CPM = (Total Campaign Spend / Number of Impressions) * 1,000.

CPC = Total Cost (spend) / Number of Clicks.

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100.

Dataset info after the null value treatment:

Timestamp	0
InventoryType	0
Ad - Length	0
Ad- Width	0
Ad Size	0
Ad Type	0
Platform	0
Device Type	0
Format	0
Available_Impressions	0
Matched_Queries	0
Impressions	0
Clicks	0
Spend	0
Fee	0
Revenue	0
CTR	0
CPM	0
CPC	0
dtype: int64	

• Check if there are any outliers. Do you think treating outliers is necessary for K-Means clustering? Based on your judgment decide whether to treat outliers and if yes, which method to employ. (As an analyst your judgment may be different from another analyst).

Answer: Outliers before treatments

Outlier treatment: We will treat the outliers basis the 1.5*IQR on Q1 & Q3 to set upper & lower range i.e.

Upper Range = Q3 + 1.5*IQR. Lower Range = Q1 - 1.5*IQR

Boxplot after the treatments

From above boxplot, we can see that the outliers are treated & ready for further analysis

Perform z-score scaling and discuss how it affects the speed of the algorithm.

We applied z-score scaling on the dataset

Head & tail of the scaled dataset as shown below:

	Ad - Length	Ad- Width	Ad Size	${\tt Available_Impressions}$	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	CPM	CPC
0	-0.364496	-0.432797	-0.102518	-0.755333	-0.778949	-0.768478	-0.867488	-0.893170	0.535724	-0.880093	-0.958836	-1.194498	-1.042561
1	-0.364496	-0.432797	-0.102518	-0.755345	-0.778988	-0.768516	-0.867488	-0.893170	0.535724	-0.880093	-0.953835	-1.194498	-1.042561
2	-0.364496	-0.432797	-0.102518	-0.754900	-0.778919	-0.768445	-0.867488	-0.893170	0.535724	-0.880093	-0.962218	-1.194498	-1.042561
3	-0.364496	-0.432797	-0.102518	-0.755040	-0.778781	-0.768302	-0.867488	-0.893170	0.535724	-0.880093	-0.971871	-1.194498	-1.042561
4	-0.364496	-0.432797	-0.102518	-0.755610	-0.779030	-0.768560	-0.867488	-0.893170	0.535724	-0.880093	-0.946281	-1.194498	-1.042561
23061	1.433093	-0.186599	1.652896	-0.756182	-0.779265	-0.768806	-0.867488	-0.893141	0.535724	-0.880066	3.035808	3.162718	-0.821435
23062	1.433093	-0.186599	1.652896	-0.756181	-0.779264	-0.768805	-0.867488	-0.893154	0.535724	-0.880078	3.035808	1.712113	-0.916204
23063	1.433093	-0.186599	1.652896	-0.756182	-0.779265	-0.768806	-0.867488	-0.893150	0.535724	-0.880074	3.035808	3.162718	-0.884614
23064	-1.134891	1.290590	-0.297564	-0.756179	-0.779265	-0.768806	-0.867488	-0.893141	0.535724	-0.880066	3.035808	3.162718	-0.821435
23065	1.433093	-0.186599	1.652896	-0.756182	-0.779264	-0.768805	-0.867488	-0.893133	0.535724	-0.880058	3.035808	3.162718	-0.758256
23066 rd	ows × 13 column	S											

Summary of the z-score scaled dataset

Ad - Length23066.01.281478e-161.000022-1.134891-1.134891-0.3644961.4330931.467332Ad-Width23066.0-1.182903e-161.000022-1.319110-0.432797-0.1865991.2905901.290590Ad Size23066.03.055833e-161.000022-1.467840-0.297564-0.2975640.4826201.652896Available_Impressions23066.09.857525e-181.000022-0.756182-0.740341-0.5285770.4330592.193158Matched_Queries23066.01.971505e-171.000022-0.779265-0.761447-0.5277220.3714982.070914Impressions23066.01.182903e-161.000022-0.768806-0.760655-0.5389750.3660512.056111Clicks23066.0-1.182903e-161.000022-0.893170-0.858046-0.3055230.3939322.271900Spend23066.01.143473e-151.000022-0.893170-0.858046-0.3055230.3939322.271900Fee23066.03.943010e-171.000022-0.880093-0.846474-0.3176070.3898032.244218CTR23066.01.380054e-161.000022-0.995031-0.9642270.1415240.6357873.035808CPM23066.02.464381e-171.000022-1.042561-0.759091-0.6023710.6829872.846105									
Ad- Width 23066.0 -1.182903e-16 1.000022 -1.319110 -0.432797 -0.186599 1.290590 1.290590 Ad Size 23066.0 3.055833e-16 1.000022 -1.467840 -0.297564 -0.297564 0.482620 1.652896 Available_Impressions 23066.0 9.857525e-18 1.000022 -0.756182 -0.740341 -0.528577 0.433059 2.193158 Matched_Queries 23066.0 1.971505e-17 1.000022 -0.779265 -0.761447 -0.527722 0.371498 2.070914 Impressions 23066.0 0.000000e+00 1.000022 -0.768806 -0.760655 -0.538975 0.366051 2.056111 Clicks 23066.0 -1.182903e-16 1.000022 -0.867488 -0.793438 -0.405431 0.468629 2.361729 Spend 23066.0 -9.857525e-17 1.000022 -0.893170 -0.858046 -0.305523 0.393932 2.271900 Fee 23066.0 3.943010e-17 1.000022 -0.880093 -0.846474 -0.317607 0.3898		count	mean	std	min	25%	50%	75%	max
Ad Size 23066.0 3.055833e-16 1.000022 -1.467840 -0.297564 -0.297564 0.482620 1.652896 Available_Impressions 23066.0 9.857525e-18 1.000022 -0.756182 -0.740341 -0.528577 0.433059 2.193158 Matched_Queries 23066.0 1.971505e-17 1.000022 -0.779265 -0.761447 -0.527722 0.371498 2.070914 Impressions 23066.0 0.000000e+00 1.000022 -0.768806 -0.760655 -0.538975 0.366051 2.056111 Clicks 23066.0 -1.182903e-16 1.000022 -0.867488 -0.793438 -0.405431 0.468629 2.361729 Spend 23066.0 -9.857525e-17 1.000022 -0.893170 -0.858046 -0.305523 0.393932 2.271900 Fee 23066.0 3.943010e-17 1.000022 -0.880093 -0.846474 -0.317607 0.389803 2.244218 CTR 23066.0 1.380054e-16 1.000022 -0.995031 -0.964227 0.141524 0.635787	Ad - Length	23066.0	1.281478e-16	1.000022	-1.134891	-1.134891	-0.364496	1.433093	1.467332
Available_Impressions 23066.0 9.857525e-18 1.000022 -0.756182 -0.740341 -0.528577 0.433059 2.193158 Matched_Queries 23066.0 1.971505e-17 1.000022 -0.779265 -0.761447 -0.527722 0.371498 2.070914 Impressions 23066.0 0.000000e+00 1.000022 -0.768806 -0.760655 -0.538975 0.366051 2.056111 Clicks 23066.0 -1.182903e-16 1.000022 -0.867488 -0.793438 -0.405431 0.468629 2.361729 Spend 23066.0 -9.857525e-17 1.000022 -0.893170 -0.858046 -0.305523 0.393932 2.271900 Fee 23066.0 1.143473e-15 1.000022 -2.222416 -0.567532 0.535724 0.535724 0.535724 Revenue 23066.0 1.380054e-16 1.000022 -0.995031 -0.964227 0.141524 0.635787 3.035808 CPM 23066.0 2.464381e-17 1.000022 -1.194498 -0.940303 0.022146 0.700905	Ad- Width	23066.0	-1.182903e-16	1.000022	-1.319110	-0.432797	-0.186599	1.290590	1.290590
Matched_Queries 23066.0 1.971505e-17 1.000022 -0.779265 -0.761447 -0.527722 0.371498 2.070914 Impressions 23066.0 0.000000e+00 1.000022 -0.768806 -0.760655 -0.538975 0.366051 2.056111 Clicks 23066.0 -1.182903e-16 1.000022 -0.867488 -0.793438 -0.405431 0.468629 2.361729 Spend 23066.0 -9.857525e-17 1.000022 -0.893170 -0.858046 -0.305523 0.393932 2.271900 Fee 23066.0 1.143473e-15 1.000022 -2.222416 -0.567532 0.535724 0.535724 0.535724 0.535724 Revenue 23066.0 3.943010e-17 1.000022 -0.880093 -0.846474 -0.317607 0.389803 2.244218 CFM 23066.0 2.464381e-16 1.000022 -1.194498 -0.940303 0.022146 0.700905 3.162718	Ad Size	23066.0	3.055833e-16	1.000022	-1.467840	-0.297564	-0.297564	0.482620	1.652896
Impressions 23066.0 0.000000e+00 1.000022 -0.768806 -0.760655 -0.538975 0.366051 2.056111 Clicks 23066.0 -1.182903e-16 1.000022 -0.867488 -0.793438 -0.405431 0.468629 2.361729 Spend 23066.0 -9.857525e-17 1.000022 -0.893170 -0.858046 -0.305523 0.393932 2.271900 Fee 23066.0 1.143473e-15 1.000022 -2.222416 -0.567532 0.535724 0.535724 0.535724 0.535724 Revenue 23066.0 3.943010e-17 1.000022 -0.880093 -0.846474 -0.317607 0.389803 2.244218 CTR 23066.0 1.380054e-16 1.000022 -0.995031 -0.964227 0.141524 0.635787 3.035808 CPM 23066.0 2.464381e-17 1.000022 -1.194498 -0.940303 0.022146 0.700905 3.162718	Available_Impressions	23066.0	9.857525e-18	1.000022	-0.756182	-0.740341	-0.528577	0.433059	2.193158
Clicks 23066.0 -1.182903e-16 1.000022 -0.867488 -0.793438 -0.405431 0.468629 2.361729 Spend 23066.0 -9.857525e-17 1.000022 -0.893170 -0.858046 -0.305523 0.393932 2.271900 Fee 23066.0 1.143473e-15 1.000022 -2.222416 -0.567532 0.535724 0.535724 0.535724 Revenue 23066.0 3.943010e-17 1.000022 -0.880093 -0.846474 -0.317607 0.389803 2.244218 CTR 23066.0 1.380054e-16 1.000022 -0.995031 -0.964227 0.141524 0.635787 3.035808 CPM 23066.0 2.464381e-17 1.000022 -1.194498 -0.940303 0.022146 0.700905 3.162718	Matched_Queries	23066.0	1.971505e-17	1.000022	-0.779265	-0.761447	-0.527722	0.371498	2.070914
Spend 23066.0 -9.857525e-17 1.000022 -0.893170 -0.858046 -0.305523 0.393932 2.271900 Fee 23066.0 1.143473e-15 1.000022 -2.222416 -0.567532 0.535724 0.535724 0.535724 Revenue 23066.0 3.943010e-17 1.000022 -0.880093 -0.846474 -0.317607 0.389803 2.244218 CTR 23066.0 1.380054e-16 1.000022 -0.995031 -0.964227 0.141524 0.635787 3.035808 CPM 23066.0 2.464381e-17 1.000022 -1.194498 -0.940303 0.022146 0.700905 3.162718	Impressions	23066.0	0.000000e+00	1.000022	-0.768806	-0.760655	-0.538975	0.366051	2.056111
Fee 23066.0 1.143473e-15 1.000022 -2.222416 -0.567532 0.535724 0.535724 0.535724 Revenue 23066.0 3.943010e-17 1.000022 -0.880093 -0.846474 -0.317607 0.389803 2.244218 CTR 23066.0 1.380054e-16 1.000022 -0.995031 -0.964227 0.141524 0.635787 3.035808 CPM 23066.0 2.464381e-17 1.000022 -1.194498 -0.940303 0.022146 0.700905 3.162718	Clicks	23066.0	-1.182903e-16	1.000022	-0.867488	-0.793438	-0.405431	0.468629	2.361729
Revenue 23066.0 3.943010e-17 1.000022 -0.880093 -0.846474 -0.317607 0.389803 2.244218 CTR 23066.0 1.380054e-16 1.000022 -0.995031 -0.964227 0.141524 0.635787 3.035808 CPM 23066.0 2.464381e-17 1.000022 -1.194498 -0.940303 0.022146 0.700905 3.162718	Spend	23066.0	-9.857525e-17	1.000022	-0.893170	-0.858046	-0.305523	0.393932	2.271900
CTR 23066.0 1.380054e-16 1.000022 -0.995031 -0.964227 0.141524 0.635787 3.035808 CPM 23066.0 2.464381e-17 1.000022 -1.194498 -0.940303 0.022146 0.700905 3.162718	Fee	23066.0	1.143473e-15	1.000022	-2.222416	-0.567532	0.535724	0.535724	0.535724
CPM 23066.0 2.464381e-17 1.000022 -1.194498 -0.940303 0.022146 0.700905 3.162718	Revenue	23066.0	3.943010e-17	1.000022	-0.880093	-0.846474	-0.317607	0.389803	2.244218
	CTR	23066.0	1.380054e-16	1.000022	-0.995031	-0.964227	0.141524	0.635787	3.035808
CPC 23066.0 3.943010e-17 1.000022 -1.042561 -0.759091 -0.602371 0.682987 2.846105	СРМ	23066.0	2.464381e-17	1.000022	-1.194498	-0.940303	0.022146	0.700905	3.162718
	CPC	23066.0	3.943010e-17	1.000022	-1.042561	-0.759091	-0.602371	0.682987	2.846105

• Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.

Answer:

Performing Hierarchical clustering by plotting Dendrogram using Ward & Euclidean distance

Dendrogram with p=10

Cluster Frequency

1	1253	
2	6042	
3	5422	
4	5150	
5	5199	

Head of the dataset after Clustering

Timestamp	InventoryType	Ad - Length	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	 Clicks	Spend	Fee	Revenue	CTR	CPM	СРС	clusters
0 2020-9-2-17	Format1	300	250	75000	Inter222	Video	Desktop	Display	1806	 1	0.0	0.35	0.0	0.309598	0.0	0.0	4
1 2020-9-2-10	Format1	300	250	75000	Inter227	Арр	Mobile	Video	1780	 1	0.0	0.35	0.0	0.350877	0.0	0.0	4
2 2020-9-1-22	Format1	300	250	75000	Inter222	Video	Desktop	Display	2727	 1	0.0	0.35	0.0	0.281690	0.0	0.0	4
3 2020-9-3-20	Format1	300	250	75000	Inter228	Video	Mobile	Video	2430	 1	0.0	0.35	0.0	0.202020	0.0	0.0	4
4 2020-9-4-15	Format1	300	250	75000	Inter217	Web	Desktop	Video	1218	 1	0.0	0.35	0.0	0.413223	0.0	0.0	4
C 22l																	

 Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.

Answer:

Elbow Plot for n=10

The optimum number of clusters for k-means algorithm are 5 as the drop become significant

• Print silhouette scores for up to 10 clusters and identify optimum number of clusters.

Answer: The silhouette score here is 0.5240956940501831.

The silhouette score for rest clusters upto 10.

```
2
183349.10202886112
0.38572769619101077
-0.052971575130041706
130878.34240367389
0.3825486036570082
-0.13228597797973302
95133.92434119384
0.44534519247649795
-0.1357679674165574
61539.18919785395
0.5240956940501831
-0.03709167751991964
51676.89230709949
0.5221533662938636
-0.05673927439483464
44598.25849746805
0.5165635029478517
-0.04895751557522969
8
39597.84955874646
0.4797334335943954
-0.19992415610651804
36061.65051550149
0.4319440318900223
-0.28287351144842826
10
32998.39164098352
0.4406696514831378
-0.18687864301172427
```

• Profile the ads based on optimum number of clusters using silhouette score and your domain understanding [Hint: Group the data by clusters and take sum or mean to identify trends in Clicks, spend, revenue, CPM, CTR, & CPC based on Device Type. Make bar plots].

	Ad - Length	Ad- Width	Ad Size	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	СРМ	CPC	clusters	sil_width	freq
Clus_kmeans																
0	141.454782	572.446324	75614.834092	8.063284e+05	5.668641e+05	4.781485e+05	65315.176318	6990.360898	0.288302	5017.538285	13.752664	15.385753	0.111918	1.202342	0.663102	1537
1	683.825492	303.785287	206160.821215	2.513465e+05	1.375509e+05	1.167714e+05	14406.540205	1252.285569	0.349538	815.541831	13.857220	12.098200	0.090012	3.001069	0.402930	4676
2	465.781944	199.148989	75176.566354	1.038821e+07	5.625808e+06	5.447310e+06	11245.754810	8646.647997	0.290439	6373.659814	0.217242	1.573280	0.760929	5.000000	0.496800	4054
3	421.696255	152.001594	55008.841434	1.810314e+06	8.642623e+05	8.262209e+05	3263.131952	1500.090563	0.349264	977.424163	0.404392	1.788731	0.544614	4.182470	0.462916	6275
4	143.280809	572.103004	76597.026364	3.209356e+04	1.962406e+04	1.349204e+04	1914.448804	209.162609	0.349988	135.993379	16.037897	14.693481	0.102794	2.115573	0.343806	6524

-Conclusions in next points

• Conclude the project by providing a summary of your learnings.

We can conclude that

Cluster-1 have the most Click through rate (CTR).

Cluster-5 have the highest cost per 1000 impressions (CPM)

Cluster-2 have generated the maximum revenue followed by Cluster-5 than Cluster-3

Cluster 5 have the maximum clicks followed by Cluster-4 than Cluster-2. Maximum spent has been done on Cluster-2 followed by Cluster-5 than Cluster-3.

PCA:

PCA FH (FT): Primary census abstract for female headed households excluding institutional households (India & States/UTs - District Level), Scheduled tribes - 2011 PCA for Female Headed Household Excluding Institutional Household. The Indian Census has the reputation of being one of the best in the world. The first Census in India was conducted in the year 1872. This was conducted at different points of time in different parts of the country. In 1881 a Census was taken for the entire country simultaneously. Since then, Census has been conducted every ten years, without a break. Thus, the Census of India 2011 was the fifteenth in this unbroken series since 1872, the seventh after independence and the second census of the third millennium and twenty first century. The census has been uninterruptedly continued despite of several adversities like wars, epidemics, natural calamities, political unrest, etc. The Census of India is conducted under the provisions of the Census Act 1948 and the Census Rules, 1990. The Primary Census Abstract which is important publication of 2011 Census gives basic information on Area, Total Number of Households, Total Population, Scheduled Castes, Scheduled Tribes Population, Population in the age group 0-6, Literates, Main Workers and Marginal Workers classified by the four broad industrial categories, namely, (i) Cultivators, (ii) Agricultural Laborers, (iii) Household Industry Workers, and (iv) Other Workers and also Non-Workers. The characteristics of the Total Population include Scheduled Castes, Scheduled Tribes, Institutional and Houseless Population and are presented by sex and rural-urban residence. Census 2011 covered 35 States/Union Territories, 640 districts, 5,924 sub-districts, 7,935 Towns and 6,40,867 Villages. The data collected has so many variables thus making it difficult to find useful details without using Data Science Techniques. You are tasked to perform detailed EDA and identify Optimum Principal Components that explains the most variance in data. Use Sklearn only.

Data dictionary:

Name	Description
State	State Code
District	District Code
Name	Name
TRUI	Area Name
No_HH	No of Household
TOT_M	Total population Male
TOT_F	Total population Female

M_06	Population in the age group 0-6 Male
F_06	Population in the age group 0-6 Female
M_SC	Scheduled Castes population Male
F_SC	Scheduled Castes population Female
M_ST	Scheduled Tribes population Male
F_ST	Scheduled Tribes population Female
M_LIT	Literates population Male
F_LIT	Literates population Female
M_ILL	Illiterate Male
F_ILL	Illiterate Female
TOT_WORK_M	Total Worker Population Male
TOT_WORK_F	Total Worker Population Female
MAINWORK_M	Main Working Population Male
MAINWORK_F	Main Working Population Female
MAIN_CL_M	Main Cultivator Population Male
MAIN_CL_F	Main Cultivator Population Female
MAIN_AL_M	Main Agricultural Labourers Population Male
MAIN_AL_F	Main Agricultural Labourers Population Female
MAIN_HH_M	Main Household Industries Population Male
MAIN_HH_F	Main Household Industries Population Female
MAIN_OT_M	Main Other Workers Population Male

MAIN_OT_F	Main Other Workers Population Female
MARGWORK_M	Marginal Worker Population Male
MARGWORK_F	Marginal Worker Population Female
MARG_CL_M	Marginal Cultivator Population Male
MARG_CL_F	Marginal Cultivator Population Female
MARG_AL_M	Marginal Agriculture Labourers Population Male
MARG_AL_F	Marginal Agriculture Labourers Population Female
MARG_HH_M	Marginal Household Industries Population Male
MARG_HH_F	Marginal Household Industries Population Female
MARG_OT_M	Marginal Other Workers Population Male
MARG_OT_F	Marginal Other Workers Population Female
MARGWORK_3_6_M	Marginal Worker Population 3-6 Male
MARGWORK_3_6_F	Marginal Worker Population 3-6 Female
MARG_CL_3_6_M	Marginal Cultivator Population 3-6 Male
MARG_CL_3_6_F	Marginal Cultivator Population 3-6 Female
MARG_AL_3_6_M	Marginal Agriculture Labourers Population 3-6 Male
MARG_AL_3_6_F	Marginal Agriculture Labourers Population 3-6 Female
MARG_HH_3_6_M	Marginal Household Industries Population 3-6 Male

MARG_HH_3_6_F	Marginal Household Industries Population 3-6 Female
MARG_OT_3_6_M	Marginal Other Workers Population Person 3-6 Male
MARG_OT_3_6_F	Marginal Other Workers Population Person 3-6 Female
MARGWORK_0_3_M	Marginal Worker Population 0-3 Male
MARGWORK_0_3_F	Marginal Worker Population 0-3 Female
MARG_CL_0_3_M	Marginal Cultivator Population 0-3 Male
MARG_CL_0_3_F	Marginal Cultivator Population 0-3 Female
MARG_AL_0_3_M	Marginal Agriculture Labourers Population 0-3 Male
MARG_AL_0_3_F	Marginal Agriculture Labourers Population 0-3 Female
MARG_HH_0_3_M	Marginal Household Industries Population 0-3 Male
MARG_HH_0_3_F	Marginal Household Industries Population 0-3 Female
MARG_OT_0_3_M	Marginal Other Workers Population 0-3 Male
MARG_OT_0_3_F	Marginal Other Workers Population 0-3 Female
NON_WORK_M	Non Working Population Male
NON_WORK_F	Non Working Population Female

• Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.

Answer:

Checking head & tail of data

	State Code Dis	t.Code	State	Area Name	No_HH	тот_м	тот_ғ	M_06	F_06	M_SC	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_F	MARG_HH_0_3_M	MARG_HH_0_3_F	MARG_OT_0_3_M	MARG_OT_0_3_F	NON_WORK_M	NON_WORK_F
0	1	1	Jammu & Kashmir	Kupwara	7707	23388	29796	5862	6196	3	1150	749	180	237	680	252	32	46	258	214
1	1	2	Jammu & Kashmir	Badgam	6218	19585	23102	4482	3733	7	525	715	123	229	186	148	76	178	140	160
2	1	3	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10964	1082	1018	3	114	188	44	89	3	34	0	4	67	61
3	1	4	Jammu & Kashmir	Kargil	1320	2784	4206	563	677	0	194	247	61	128	13	50	4	10	116	59
4	1	5	Jammu & Kashmir	Punch	11654	20591	29981	5157	4587	20	874	1928	465	1043	205	302	24	105	180	478
635	34	636	Puducherry	Mahe	3333	8154	11781	1146	1203	21	32	47	0	0	0	0	0	0	32	47
636	34	637	Puducherry	Karaikal	10612	12346	21691	1544	1533	2234	155	337	3	14	38	130	4	23	110	170
637	35	638	Andaman & Nicobar Island	Nicobars	1275	1549	2630	227	225	0	104	134	9	4	2	6	17	47	76	77
638	35	639	Andaman & Nicobar Island	North & Middle Andaman	3762	5200	8012	723	664	0	136	172	24	44	11	21	1	4	100	103
639	35	640	Andaman & Nicobar Island	South Andaman	7975	11977	18049	1470	1358	0	173	122	6	2	17	17	2	4	148	99
640 rows ×	61 columns																			

Shape of the data

- We have 640 rows and 61 columns

RangeIndex: 640 entries, 0 to 639 Data columns (total 61 columns):

#		Non-Null Count Dtype
0		640 non-null int64
1	Dist.Code	640 non-null int64
		640 non-null object
3	Area Name	640 non-null object
		640 non-null int64
		640 non-null int64
6	TOT_F	640 non-null int64
7	M_06	640 non-null int64
		640 non-null int64
9	M_SC	640 non-null int64
10	F_SC	640 non-null int64
		340 non-null int64
		640 non-null int64
16	F_ILL 6	40 non-null int64
		_M 640 non-null int64
18	TOT_WORK	_F 640 non-null int64
19	MAINWORK_	_M 640 non-null int64
		_F 640 non-null int64
21	MAIN_CL_M	640 non-null int64

```
22 MAIN_CL_F
                640 non-null int64
23 MAIN_AL_M
                640 non-null int64
24 MAIN_AL_F
                640 non-null
                            int64
25 MAIN_HH_M
                 640 non-null int64
26 MAIN_HH_F
                             int64
                640 non-null
27 MAIN_OT_M
                 640 non-null int64
28 MAIN_OT_F
                640 non-null int64
29 MARGWORK_M
                   640 non-null int64
                  640 non-null int64
30 MARGWORK_F
31 MARG_CL_M
                             int64
                 640 non-null
32 MARG_CL_F
                             int64
                 640 non-null
33 MARG_AL_M
                 640 non-null int64
34 MARG_AL_F
                 640 non-null int64
35 MARG_HH_M
                  640 non-null
                              int64
36 MARG_HH_F
                              int64
                 640 non-null
37 MARG_OT_M
                              int64
                 640 non-null
38 MARG_OT_F
                 640 non-null int64
39 MARGWORK_3_6_M 640 non-null int64
40 MARGWORK_3_6_F 640 non-null
                                 int64
41 MARG_CL_3_6_M 640 non-null
                                int64
42 MARG_CL_3_6_F 640 non-null
                                int64
43 MARG_AL_3_6_M 640 non-null
                                int64
44 MARG_AL_3_6_F 640 non-null
45 MARG_HH_3_6_M 640 non-null
                                 int64
46 MARG_HH_3_6_F 640 non-null
                                 int64
47 MARG_OT_3_6_M 640 non-null
48 MARG_OT_3_6_F 640 non-null int64
49 MARGWORK_0_3_M 640 non-null
50 MARGWORK_0_3_F 640 non-null
                                 int64
51 MARG_CL_0_3_M 640 non-null
                                int64
52 MARG_CL_0_3_F 640 non-null
53 MARG_AL_0_3_M 640 non-null
                                int64
54 MARG_AL_0_3_F 640 non-null
55 MARG_HH_0_3_M 640 non-null
                                 int64
56 MARG_HH_0_3_F 640 non-null
                                 int64
57 MARG_OT_0_3_M 640 non-null
                                 int64
58 MARG_OT_0_3_F 640 non-null
                                int64
59 NON WORK M
                   640 non-null int64
60 NON_WORK_F
                  640 non-null int64
dtypes: int64(59), object(2)
memory usage: 305.1+ KB
```

Checking Null Values

```
State Code 0
Dist.Code 0
State 0
Area Name 0
No_HH 0
...

MARG_HH_0_3_F 0
MARG_OT_0_3_M 0
MARG_OT_0_3_F 0
NON_WORK_M 0
NON_WORK_F 0
Length: 61, dtype: int64
```

- There are **no null values**

Checking for duplicate values:

- There are **no duplicate values** in the given dataset

Summary of the data

index	count	mean	std	min	25%	50%	75%	max
State Code	640	17.1140625	9.426486295	1	9	18	24	35
Dist.Code	640	320.5	184.8963674	1	160.75	320.5	480.25	640
No_HH	640	51222.87188	48135.40547	350	19484	35837	68892	310450
тот_м	640	79940.57656	73384.51111	391	30228	58339	107918.5	485417
TOT_F	640	122372.0844	113600.7173	698	46517.75	87724.5	164251.75	750392
м_06	640	12309.09844	11500.90688	56	4733.75	9159	16520.25	96223
F_06	640	11942.3	11326.29457	56	4672.25	8663	15902.25	95129
M_SC	640	13820.94688	14426.37313	0	3466.25	9591.5	19429.75	103307
F_SC	640	20778.39219	21727.88771	0	5603.25	13709	29180	156429
M_ST	640	6191.807813	9912.668948	0	293.75	2333.5	7658	96785

F_ST	640	10155.64063	15875.70149	0	429.5	3834.5	12480.25	130119
M_LIT	640	57967.97969	55910.28247	286	21298	42693.5	77989.5	403261
F_LIT	640	66359.56563	75037.86021	371	20932	43796.5	84799.75	571140
M_ILL	640	21972.59688	19825.60527	105	8590	15767.5	29512.5	105961
F_ILL	640	56012.51875	47116.69377	327	22367	42386	78471	254160
TOT_WORK_M	640	37992.40781	36419.53749	100	13753.5	27936.5	50226.75	269422
TOT_WORK_F	640	41295.76094	37192.36094	357	16097.75	30588.5	53234.25	257848
MAINWORK_M	640	30204.44688	31480.91568	65	9787	21250.5	40119	247911
MAINWORK_F	640	28198.84688	29998.26269	240	9502.25	18484	35063.25	226166
MAIN_CL_M	640	5424.342188	4739.161969	0	2023.5	4160.5	7695	29113
MAIN_CL_F	640	5486.042188	5326.362728	0	1920.25	3908.5	7286.25	36193
MAIN_AL_M	640	5849.109375	6399.507966	0	1070.25	3936.5	8067.25	40843
MAIN_AL_F	640	8925.995313	12864.28758	0	1408.75	3933.5	10617.5	87945
MAIN_HH_M	640	883.89375	1278.642345	0	187.5	498.5	1099.25	16429
MAIN_HH_F	640	1380.773438	3179.414449	0	248.75	540.5	1435.75	45979
MAIN_OT_M	640	18047.10156	26068.48089	36	3997.5	9598	21249.5	240855
MAIN_OT_F	640	12406.03594	18972.20237	153	3142.5	6380.5	14368.25	209355
MARGWORK_M	640	7787.960938	7410.791691	35	2937.5	5627	9800.25	47553
MARGWORK_F	640	13096.91406	10996.47453	117	5424.5	10175	18879.25	66915
MARG_CL_M	640	1040.7375	1311.546847	0	311.75	606.5	1281	13201
MARG_CL_F	640	2307.682813	3564.626095	0	630.25	1226	2659.25	44324
MARG_AL_M	640	3304.326563	3781.555707	0	873.5	2062	4300.75	23719
MARG_AL_F	640	6463.28125	6773.876298	0	1402.5	4020.5	9089.25	45301
MARG_HH_M	640	316.7421875	462.6618914	0	71.75	166	356.5	4298
MARG_HH_F	640	786.6265625	1198.718213	0	171.75	429	962.5	15448

MARG_OT_M	640	3126.154688	3609.391821	7	935.5	2036	3985.25	24728
MARG_OT_F	640	3539.323438	4115.191314	19	1071.75	2349.5	4400.5	36377
MARGWORK_3_6_M	640	41948.16875	39045.31692	291	16208.25	30315	57218.75	300937
MARGWORK_3_6_F	640	81076.32344	82970.40622	341	26619.5	56793	107924	676450
MARG_CL_3_6_M	640	6394.9875	6019.806644	27	2372	4630	8167	39106
MARG_CL_3_6_F	640	10339.86406	8467.473429	85	4351.5	8295	15102	50065
MARG_AL_3_6_M	640	789.8484375	905.6392794	0	235.5	480.5	986	7426
MARG_AL_3_6_F	640	1749.584375	2496.541514	0	497.25	985.5	2059	27171
MARG_HH_3_6_M	640	2743.635938	3059.586387	0	718.75	1714.5	3702.25	19343
MARG_HH_3_6_F	640	5169.85	5335.64096	0	1113.75	3294	7502.25	36253
MARG_OT_3_6_M	640	245.3625	358.7285666	0	58	129.5	276	3535
MARG_OT_3_6_F	640	585.884375	900.0258173	0	127.75	320.5	719.25	12094
MARGWORK_0_3_M	640	2616.140625	3036.964381	7	755	1681.5	3320.25	20648
MARGWORK_0_3_F	640	2834.545313	3327.836932	14	833.5	1834.5	3610.5	25844
MARG_CL_0_3_M	640	1392.973438	1489.707052	4	489.5	949	1714	9875
MARG_CL_0_3_F	640	2757.05	2788.776676	30	957.25	1928	3599.75	21611
MARG_AL_0_3_M	640	250.8890625	453.336594	0	47	114.5	270.75	5775
MARG_AL_0_3_F	640	558.0984375	1117.642748	0	109	247.5	568.75	17153
MARG_HH_0_3_M	640	560.690625	762.5789913	0	136.5	308	642	6116
MARG_HH_0_3_F	640	1293.43125	1585.377936	0	298	717	1710.75	13714
MARG_OT_0_3_M	640	71.3796875	107.8976268	0	14	35	79	895
MARG_OT_0_3_F	640	200.7421875	309.740854	0	43	113	240	3354
NON_WORK_M	640	510.0140625	610.6031868	0	161	326	604.5	6456
NON_WORK_F	640	704.778125	910.209225	5	220.5	464.5	853.5	10533
NON_WORK_F	640	704.778125	910.209225	5	220.5	464.5	853.5	10533

Perform detailed Exploratory analysis by creating certain questions like (i) Which state has highest gender ratio and which has the lowest? (ii) Which district has the highest & lowest gender ratio? (Example Questions). Pick 5 variables out of the given 24 variables below for EDA: No_HH, TOT_M, TOT_F, M_06, F_06, M_SC, F_SC, M_ST, F_ST, M_LIT, F_LIT, M_ILL, F_ILL, TOT_WORK_M, TOT_WORK_F, MAINWORK_F, MAIN_CL_M, MAIN_CL_F, MAIN_AL_M, MAIN_AL_F, MAIN_HH_M, MAIN_HH_F, MAIN_OT_M, MAIN_OT_F

Answer: Performing the EDA..

- We have picked **No_HH, TOT_M, TOT_F, M_LIT, F_LIT** for this purpose.
- Below is the details of EDA performed:

#Which state has highest Female gender ratio and which has the lowest? (Not in terms of per 1000 population)

	Female_Gender_Ratio
State	
Lakshadweep	1.151993
Haryana	1.283484
NCT of Delhi	1.290194
Uttar Pradesh	1.329492
Meghalaya	1.329504

Female_Gender_Rat						
State						
Andhra Pradesh	1.862113					
Tamil Nadu	1.825079					
Chhattisgarh	1.820831					
Arunachal Pradesh	1.741054					
Odisha	1.737621					

- We can see that Andhra has the highest while Lakshadweep has the lowest

Which District code has highest Female gender ratio and which has the lowest? (Not in terms of per 1000 population)

Female_Gender_Ratio								
1.151993								
1.179576								
1.180202								
1.180761								
1.184830								

	Female_Gender_Ratio							
Dist.Code								
547	2.283250							
398	2.268763							
625	2.225429							
546	2.221849							
391	2.215060							

- We can see that the Dist. 587 has the lowest while Dist code 547 has the highest

#. Which state has highest No of Literate Male and which has the lowest? (Based on the absolute nos, not ratio)

State	_
Dadara & Nagar Havelli	5119
Lakshadweep	10601
Daman & Diu	10880
Andaman & Nicobar Island	15488
Sikkim	21230

Uttar Pradesh 6016402 Maharashtra 3308633
Maharashtra 3308633
West Bengal 2932621
Karnataka 2554163
Tamil Nadu 2485404

#. Which state has highest No of Literate Female and which has the lowest? (Based on the absolute nos, not ratio)

State	
Dadara & Nagar Havelli	5308
Lakshadweep	11334
Daman & Diu	12520
Andaman & Nicobar Island	20237
Sikkim	27112

State	
Uttar Pradesh	5574752
Maharashtra	4619012
Kerala	3878204
West Bengal	3479316
Tamil Nadu	3205093

- From Above two, we can see that Dadara & Nagar Havelli has the lowest literate while Uttar Pradesh has the highest.
- However, the population of Uttar pradesh being higher than other states & Dadara & Nagar Haweli being low would not give insightful data, we can look basis the population ratio to further analyze it)

Plotting the Histogram of these 5 variables selected:.

- Since it is population data, tends to be normally distributed

Plotting Papilot

Correlation Matrix

- From Paiplot & above correlation, we see a **positive correlation** between the selected variables
- We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?

Answer: In the case of census data, outlier treatment may not be necessary for several reasons:

- 1. The data is usually collected from a large and representative sample of the population. This means that the data is likely to be normally distributed, and outliers are less likely to occur
- 2. Census data is often collected using standardized methods and questionnaires, which reduce the likelihood of errors and outliers
- 3. The purpose of census data is often to provide an accurate representation of the population as a whole. Outliers, by definition, are not representative of the population and may not provide any useful information
- 4. Outliers may also be due to errors or anomalies in the data collection process. In the case of census data, the data collection process is typically rigorous and standardized, making it less likely that errors will occur.
 - Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment.

Answer:
Data before scaling

Scaled data - head & tail

	No_HH	тот_м	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT	 MAINWORK_M	MAINWORK_F	MAIN_CL_M	MAIN_CL_F	MAIN_AL_M	MAIN_AL_F	MAIN_HH_M	MAIN_HH_F	MAIN_OT_M	MAIN_OT_F
0	-0.904738	-0.771236	-0.815563	-0.561012	-0.507738	-0.958575	-0.957049	-0.423306	-0.476423	-0.798097	-0.872367	-0.898216	-1.042844	-0.986630	-0.851060	-0.683276	-0.630766	-0.407555	-0.624042	-0.611637
1	-0.935695	-0.823100	-0.874534	-0.681096	-0.725367	-0.958297	-0.956772	-0.582014	-0.607607	-0.849434	-0.813078	-0.882936	-0.913606	-0.963707	-0.845587	-0.685999	-0.270728	-0.326659	-0.594942	-0.605624
2	-0.972412	-1.000919	-0.981466	-0.976956	-0.965262	-0.958575	-0.956772	-0.038951	-0.027273	-0.956457	-0.898530	-0.843236	-1.035875	-0.804375	-0.909079	-0.688878	-0.676945	-0.417313	-0.640396	-0.570440
3	-1.037530	-1.052224	-1.041001	-1.022118	-0.995393	-0.958783	-0.957049	-0.355965	-0.390060	-1.004643	 -0.944594	-0.927140	-1.138083	-1.011620	-0.913457	-0.692534	-0.684772	-0.432737	-0.675984	-0.639858
4	-0.822676	-0.809381	-0.813933	-0.622359	-0.649908	-0.957395	-0.955529	0.149238	0.043330	-0.800568	-0.879997	-0.865121	-0.988572	-0.886859	-0.874987	-0.675964	-0.664422	-0.414480	-0.635597	-0.591118
635	-0.995677	-0.978990	-0.974268	-0.971387	-0.948916	-0.957326	-0.955667	-0.625124	-0.640197	-0.913820	-0.850241	-0.907490	-1.143784	-1.030221	-0.910486	-0.694012	-0.679293	-0.433681	-0.562003	-0.602406
636	-0.844340	-0.921822	-0.886965	-0.936754	-0.919757	-0.803806	-0.765670	-0.625124	-0.640197	-0.853390	-0.781574	-0.803836	-1.117599	-1.010492	-0.813841	-0.624152	-0.672249	-0.380170	-0.507910	-0.500388
637	-1.038465	-1.069066	-1.054885	-1.051356	-1.035331	-0.958783	-0.957049	-0.522953	-0.529880	-1.016367	-0.949871	-0.922936	-1.143784	-1.029282	-0.914552	-0.694323	-0.679293	-0.422664	-0.681320	-0.628728
638	-0.986758	-1.019276	-1.007472	-1.008195	-0.996541	-0.958783	-0.957049	-0.622297	-0.637046	-0.962328	 -0.893507	-0.885171	-1.028695	-0.988509	-0.904856	-0.692223	-0.685554	-0.432422	-0.636250	-0.580251
639	-0.899166	-0.926854	-0.919050	-0.943193	-0.935220	-0.958783	-0.957049	-0.608870	-0.623555	-0.856916	-0.789617	-0.790158	-1.091625	-0.984563	-0.900947	-0.689189	-0.662856	-0.422349	-0.501422	-0.434872
640 rc	ws × 25 colu	imns																		

Outliers after Scaling

Thus we can see from above that scaling has **no significant impact on Outliers**

• Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get eigen values and eigen vector.

Answer:

Checking for Correlation

PCA Components

```
array([[ 2.38709793e-01, 2.41900082e-01, 2.44573206e-01,
       2.20937829e-01, 2.20547952e-01, 2.14817474e-01,
       2.17988628e-01, 3.51272864e-02, 3.56584288e-02,
       2.40051149e-01, 2.25970766e-01, 2.18424186e-01,
       2.29798146e-01, 2.41797250e-01, 2.25614542e-01,
       2.35359144e-01, 2.13711260e-01, 1.42611235e-01,
      1.10946487e-01, 1.72790685e-01, 1.34034463e-01,
      1.84217020e-01, 1.28232746e-01, 2.06845216e-01,
      1.94392948e-01,
       [ 1.62290697e-02, -9.40391173e-02, -4.63346143e-02,
       -1.00523300e-01, -9.33814815e-02, -8.22317092e-02,
       -3.24130673e-02, 4.78461556e-01, 4.88306682e-01,
       -1.09986449e-01, -1.25864235e-01, -3.79126499e-02,
       8.87357981e-02, -7.90420705e-02, 1.77987002e-01,
       -8.16965531e-02, 1.67367642e-01, 1.70396692e-01,
       3.19063353e-01, 2.40585193e-01, 3.63978211e-01,
       -1.61006580e-01, -3.99156365e-03, -1.80799828e-01,
       -7.10691453e-02],
       8.76647456e-02, 1.33624380e-02, 5.32336244e-02,
       -9.64525135e-02, -9.52827253e-02, -1.76882764e-01,
       -1.55443948e-01, 3.49090415e-01, 3.50657157e-01,
       7.76706996e-02, 1.87476114e-01, -1.69578418e-01,
       -1.70224774e-01, 8.95299212e-02, 5.57167231e-02,
      1.38074688e-01, 1.09949099e-01, -3.94896798e-01,
       -2.69405829e-01, -2.56907430e-01, -1.48355950e-01,
       -3.24970967e-02, 3.03101749e-02, 3.03194913e-01,
       3.44997380e-01,
       [-1.18008259e-01, 1.32280714e-01, 3.28898712e-02,
       2.84972993e-01, 2.88517949e-01, 2.67974025e-02,
       -6.18350213e-02, 3.35599493e-01, 3.06504948e-01,
       8.11420277e-02, 2.01677716e-02, 2.60808272e-01,
       4.71800194e-02, 2.30256537e-02, -2.01428618e-01,
       -5.19484729e-02, -3.16826986e-01, 2.19112149e-01,
       2.67476427e-02, -1.81596063e-01, -4.20676847e-01,
       5.40157997e-02, -2.71384805e-01, -6.06377832e-02,
       -1.77742891e-01],
       -8.76388277e-02, -3.11677026e-02, -7.51896600e-02,
       -4.92306785e-02, -4.27193129e-02, 3.41962968e-02,
      1.04259772e-02, 1.39877719e-01, 1.32026114e-01,
       -6.95207195e-02, -1.57693833e-01, 8.06884038e-02,
       6.98565250e-02, 5.75280609e-03, -7.35201847e-02,
       -2.06298288e-02, -1.01977154e-01, 1.86011693e-02,
```

```
-2.48559509e-01, 9.36149711e-02, -1.21286896e-01,
4.09028148e-01, 7.79900106e-01, -7.13386533e-02,
-1.39919207e-01],
-6.21462065e-02, -3.14874634e-02, -2.94719538e-02,
-6.19096038e-02, -6.51777783e-02, -7.91540731e-02,
-1.00183717e-01, -6.28134009e-02, -7.58177727e-02,
6.83852637e-03, 2.65050831e-02, -1.35836259e-01,
-1.13270253e-01, -1.73816018e-02, 8.83568983e-02,
1.97344204e-02, 1.31880849e-01, 2.88436132e-01,
6.61810749e-01, -4.37726183e-01, -2.76204686e-01,
9.38716756e-02, 2.67565417e-01, 7.42473635e-02,
1.65169406e-01,
[6.79659636e-02, 8.71613874e-02, 1.12553106e-01,
2.84862949e-01, 2.99099279e-01, -4.76369673e-01,
-4.50805495e-01, -1.04477565e-01, -9.75274163e-02,
5.43394286e-02, 1.15439514e-01, 1.69385144e-01,
8.7522682le-02, -6.467860l8e-02, 3.62445204e-02,
-9.11874930e-02, 1.19371039e-02, -2.32930642e-01,
1.01629745e-01, 5.57412156e-02, 9.57699129e-02,
-3.11567095e-01, 3.05301846e-01, -6.61758244e-02,
-1.25758584e-01,
-6.43699653e-02, 1.01066088e-02, -5.18361136e-02,
-9.98996559e-02, -9.46146237e-02, -3.94286838e-01,
-4.48552947e-01, -3.81513852e-02, -6.27952256e-02,
-5.49152595e-03, -2.86759884e-02, 5.28963074e-02,
-7.93102100e-02, 1.52599101e-01, -9.96060743e-02,
2.49550664e-01, 2.84960681e-02, 3.18076692e-01,
-6.16041808e-02, 2.38725403e-01, 1.31861508e-01,
4.83130764e-01, -2.58489458e-01, 1.61236472e-01,
1.62606062e-02,
[-7.64918910e-03, -6.93858859e-03, 1.93301052e-02,
7.47134132e-02, 7.87682167e-02, -8.84910084e-03,
2.44650725e-02, -1.62273992e-02, 3.38962757e-02,
-2.54220667e-02, -5.98994561e-02, 4.60096922e-02,
1.42001492e-01, -1.34253603e-01, 1.33318720e-01,
-2.06688021e-01, 4.03682070e-02, -5.54065911e-01,
2.49696078e-01, -1.87622687e-01, 1.54250464e-01,
6.15544504e-01, -2.20450555e-01, -1.33006924e-01,
-7.39194336e-02],
[-1.42143998e-01, -3.87168511e-02, -1.17650186e-01,
-2.25354026e-02, 5.63856609e-03, -2.70203331e-02,
-1.02647469e-01, -4.65885208e-02, -4.45930049e-02,
```

```
-2.03074693e-01, -4.07601638e-01, 4.29381405e-01,
3.65484245e-01, -3.16676979e-02, 2.01631931e-01,
-6.67349980e-02, 2.09294334e-01, 5.41535912e-02,
-1.82878223e-01, -1.19148943e-01, -1.44185464e-01,
-1.00270489e-01, -7.61942644e-02, -5.62678274e-02,
4.92807235e-01],
4.68119251e-01, -4.94496518e-02, 2.24822988e-01,
-9.08884876e-02, -5.78434692e-02, -2.28867926e-01,
1.47541079e-02, -1.05820175e-01, 6.43370801e-02,
1.2511407le-02, 2.10331628e-01, -2.18321447e-01,
2.07086206e-01, -9.54910810e-02, 2.39639785e-01,
-2.71175782e-01, -7.62154731e-02, 3.22587536e-01,
-2.81843303e-01, -1.63568570e-01, -1.09114861e-01,
1.29432985e-01, -5.23794311e-02, -3.52318061e-01,
4.13810025e-02],
3.26275798e-01, -3.07176442e-02, 5.99477032e-02,
-2.67718922e-01, -2.53379596e-01, -6.97256240e-02,
2.06439000e-04, -6.57225175e-02, 3.78233329e-02,
-8.25836103e-02, -6.25981241e-02, 1.19193016e-01,
2.44230451e-01, 1.69015580e-01, 1.87582990e-02,
9.93626515e-02, -2.17463173e-01, -2.70243438e-01,
3.01694672e-01, 3.88808500e-01, -4.84288957e-01,
-7.11279322e-02, -5.20654304e-02, 7.71628689e-02,
-9.14433977e-02]])
```

eigen values

```
array([16.21075146, 2.42307151, 2.005783 , 1.3444504 , 0.82011656, 0.72051381, 0.50566632, 0.30728878, 0.30151323, 0.16697367, 0.07479658, 0.06118332])
```

• Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot

Answer:

Explained variance for each PC is as shown below:

```
array([0.64741689, 0.09677142, 0.08010596, 0.05369399, 0.03275341, 0.02877552, 0.02019505, 0.01227235, 0.01204168, 0.00666851, 0.00298719, 0.00244351])
```

From the above, we can see that Optimum number of PCs for 90 % variance is 5.

Scree plot

• Compare PCs with Actual Columns and identify which is explaining most variance. Write inferences about all the Principal components in terms of actual variables.

Answer:

Below graphs shows how the original features matter to each PC

No_HH -	0.24	0.02	0.09	0.12	0.09	
TOT_M -	0.24	0.09	0.01	0.13	0.03	
TOT_F -	0.24	0.05	0.05	0.03	0.08	- 0.7
M_06 -	0.22	0.10	0.10	0.28	0.05	
F_06 -	0.22	0.09	0.10	0.29	0.04	
M_SC -	0.21	0.08	0.18	0.03	0.03	- 0.6
F_SC -	0.22	0.03	0.16	0.06	0.01	
M_ST -	0.04	0.48	0.35	0.34	0.14	
F_ST -	0.04	0.49	0.35	0.31	0.13	0.5
M_LIT -	0.24	0.11	0.08	0.08	0.07	- 0.5
F_LIT -	0.23	0.13	0.19	0.02	0.16	
M_ILL -	0.22	0.04	0.17	0.26	0.08	
F_ILL -	0.23	0.09	0.17	0.05	0.07	- 0.4
TOT_WORK_M -	0.24	0.08	0.09	0.02	0.01	
TOT_WORK_F -	0.23	0.18	0.06	0.20	0.07	
MAINWORK_M -	0.24	0.08	0.14	0.05	0.02	- 0.3
MAINWORK_F -	0.21	0.17	0.11	0.32	0.10	
MAIN_CL_M -	0.14	0.17	0.39	0.22	0.02	
MAIN_CL_F -	0.11	0.32	0.27	0.03	0.25	- 0.2
MAIN_AL_M -	0.17	0.24	0.26	0.18	0.09	
MAIN_AL_F -	0.13	0.36	0.15	0.42	0.12	
MAIN_HH_M -	0.18	0.16	0.03	0.05	0.41	- 0.1
MAIN_HH_F -	0.13	0.00	0.03	0.27	0.78	- 0.1
MAIN_OT_M -	0.21	0.18	0.30	0.06	0.07	
MAIN_OT_F -	0.19	0.07	0.34	0.18	0.14	
	PC1	PC2	PC3	PC4	PC5	

Presence of correlations among the PCs

The above heatmap indicates that the PC's are not correlated with each other which should be the ideal case

• Write linear equation for first PC.

The Linear equation for first PC is:

PC1 = 0.246 * x1 + 0.381 * x2 + 0.599 * x3 + 0.055 * x4 + 0.054 * x5 + 0.063 * x6 + 0.096 * x7 + 0.007 * x8 + 0.011 * x9 + 0.292 * x10 + 0.380 * x11 + 0.089 * x12 + 0.218 * x13 + 0.188 * x14 + 0.172 * x15 + 0.159 * x16 + 0.132 * x17 + 0.012 * x18 + 0.011 * x19 + 0.021 * x20 + 0.032 * x21 + 0.005 * x22 + 0.008 * x23 + 0.121 * x24 + 0.081 * x25