Summary Data and Results

Dataset	Frequency	Horizon	Number of	Minimum
			Samples	training
				sample
				length
Prison	4 (quarterly)	8	3	24
Tourism	12 (monthly)	12	10	144
Wikipedia	7 (weekly)	7	10	324
Labour	4 (quarterly)	12	5	68

Error calculation

- Step 1 For each time series in the hierarchy calculate the error metric (MSE, MAPE)
- Step 2 Calculate the mean error across the time series in each level (this gives the mean error for each level)
- Step 3 Calculate the overall error by getting the mean error across all time series errors we have in Step 1
- Step 4 Repeat step 1-3 for all samples
- Step 5 Calculate the mean error for each level and overall, across the samples
- Step 6 Calculate the percentage improvement for each level and overall

Results Across Samples

Full Horizon (In the full horizon ML reconciliation performs best for most 3 out of datasets when the base model is ETS. However, when the base forecasts are from ARIMA the ML reconciliation performs best only for the Tourism dataset)

Dataset	ARIMA	ETS
Prison	OLS	Case 1 Lambda 0.01-0.09
	Best ML Rank – 4 (Case 1	
	Lambda 1-4)	
Tourism	Case 1 Lambda 0.01-5	Case 2 Lambda 1
Labour	OLS	Case 1 Lambda 0.01-0.09
	Best ML Rank – 4 (Case 2	
	Lambda 1)	
Wikipedia	OLS	OLS
	Best ML Rank – 5 (Case 2	Best ML Rank – 5 (Case 2
	Lambda 0.1-0.9)	Lambda 1)

Short Horizon (In the short horizon ML reconciliation performs best for most 3 out of datasets when the base model is ETS – similar observation as the full horizon. When the base forecasts are from ARIMA the ML reconciliation performs best for Prison and Tourism datasets)

Dataset	ARIMA	ETS
Prison	Case 1 Lambda 1-4	Case 1 Lambda 0.01-0.09
Tourism	Case 2 Lambda 0.01-5	Case 1 Lambda 1-4
Labour	OLS	Case 1 Lambda 0.01-0.09
	Best ML Rank – 2 (Case 2	
	Lambda 1)	
Wikipedia	OLS	OLS
	Best ML Rank – 5 (Case 2	Best ML Rank – 5 (Case 2
	Lambda 0.1-0.9)	Lambda 0.01-5)

Lambda Ranges – Lambda value for each sample from the overall best ML method

Prison

ARIMA

ETS

Tourism

ARIMA

ETS

Labour

Wikipedia

ARIMA

ETS

Lambda Ranges – Lambda value and the best ML method per sample

Prison

ARIMA

Tourism

ARIMA

ETS

Labour

ARIMA

ETS

Wikipedia

ARIMA

