Homework 7

Cameron Dart Graph Theory

November 6, 2017

Problem 1

Claim If G is a simple graph G with $\Delta(G) = 3$, then $\kappa'(G) = \kappa(G)$
Problem 2
Claim A simple connected graph G with at least 3 vertices is 2—connected if and only if $\forall x,y \in V(G)$ and any $e \in E(G)$. G has an x,y path through e .
Proof. \Box
Problem 3
Claim A graph G is 2-connected if and only if $\forall u, v \in V(G)$ there is a u, v necklace in G .
Proof. \Box
Problem 4
Claim For $k \geq 2$, a graph G with at least $k+1$ vertices is k -connected if and only if for all subsets S, T of $V(G)$ such that $ T =2, S =kandT\subseteq S$, there is a cycle in G that contains T and avoids $S-T$.
Proof. \Box
Problem 5
Claim Let xy be an edge in a digraph G .
Proof.