

Universidade do Minho

Licenciatura em Engenharia Informática

Redes de Computadores

Trabalho Prático 3

Grupo 34

Diogo Rebelo (A93278)

Hugo Brandão (A93287)

Gonçalo Freitas (A93297)

Conteúdo

1	Que	estões e Respostas	3
	1	Questão nº 3: Captura e análise de Tramas Ethernet	3
		1.1 Alínea 1	4
		1.2 Alínea 2	4
		1.3 Alínea 3	5
		1.4 Alínea 4	5
		1.5 Alínea 5	7
		1.6 Alínea 6	7
		1.7 Alínea 7	8
	2	Questão nº 4: Protocolo ARP	9
		2.1 Alínea 8	9
		2.2 Alínea 9	9
		2.3 Alínea 10	10
		2.4 Alínea 11	10
		2.5 Alínea 12	10
		2.6 Alínea 13	11
		2.7 Alínea 14	12
	3	Questão 5	14
		3.1 Alínea 15	14
		3.2 Alínea 16	16
2	Cor	nclusão	20
4	COL	iciusao	20
_	• ,	1 TV	
L	ısta	de Figuras	
	1	Trecho da captura de tráfego no acesso ao url especificado	4
	2	Informações Ethernet sobre a mensagem HTTP GET	4
	3	Informações mais detalhadas sobre a mensagem HTTP GET	5
	4	Informação alusiva aos tamanhos necessários da mensagem HTTP GET	6
	5	Informação alusiva à mensagem de resposta	7
	6	Tabela ARP	9
	7	Tabela ARP	9
	8	Tabela ARP	10
	9	Tabela ARP	11
	10	Topologia	12
	11	Tcpdump em LAN comutada	14

12	Tcpdump em LAN partilhada	15
13	Departamento B com interfaces identificadas	16
14	Comando ping 192.168.34.164	18
15	Comando ping 192.168.34.163	18
16	Captura de tráfego no Departamento B, na Jasmine.	18
17	Captura de tráfego no Departamento B, no Servidor B	19
Lista	a de Tabelas	
1	Tabela de Mensagens com formato $< ordem > - < tipo_mensagem >$	12
2	Tabela final de enderecos MAC do Departamento B	19

1. Questões e Respostas

Questão nº 3: Captura e análise de Tramas Ethernet

Assegure-se que a cache do seu browser está vazia. Ative o Wireshark na sua máquina nativa. No seu browser, aceda ao URL https://elearning.uminho.pt. Pare a captura do Wireshark e proceda da seguinte forma:

- Localize o estabelecimento da conexão entre o cliente e o servidor HTTP (sequência de tramas com as TCP flags TCP SYN, SYNACK, ACK ativas);
- 2. Após a fase de estabelecimento seguro da conexão, obtenha o número de ordem da sequência de bytes capturada (coluna da esquerda na janela do Wireshark) correspondente à trama que transporta os primeiros dados aplicacionais enviados do cliente para o servidor (Application Data);
- 3. Identifique também o número de ordem da trama com a resposta proveniente do servidor que contém os dados correspondentes ao acesso web realizado pelo cliente (browser);
- 4. [...] Expanda a informação do nível da ligação de dados e observe o conteúdo da trama Ethernet (cabeçalho e dados (payload)).

Responda às perguntas seguintes com base no conteúdo da trama Ethernet que contém a mensagem de acesso ao servidor (HTTP GET encriptada).

Como sugerido, iniciamos a captura no Wireshark, abrimos o Browser e acedemos ao link solicitado. Aquando da captura, não conseguiamos identificar a mensagem de acesso ao servidor (HTTP GET) diretamente, já que esta se encontrava encriptada, através da utilização do protocolo TLS. Poderíamos utilizar equivalentemente uma mensagem que mostrasse este acesso, como a de "Client Hello", todavia, optamos por aceder ao um url diferente: https://cbslocal.com/, sugerido pelo docente.

Então, voltamos a iniciar a captura, acedemos ao site em questão, paramos a captura e agora conseguimos identificar de imediato a mensagem que pretendíamos.

Seguindo a metodologia, identificamos a sequência de tramas que evidencia o início do estabelecimento da conexão HTTP e encontramos a mensagem procurada. Uma forma de o encontrar de imediato é através da aplicação de um filtro ao protocolo HTTP.

Abaixo surge selecionada a mensagem HTTP GET, sendo através dela que se respondem às questões seguintes. As informações dessa mensagem surgem de seguida, na respetiva alínea.

No.	Time	Source	Destination	Protocol	Length	Info
	559 15.092431896	193.137.16.65	172.26.33.158	DNS	99	Standard query response 0xb77e A cbslocal.co
г	560 15.093471662	172.26.33.158	192.0.66.136	TCP	74	39714 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1
	561 15.094022171	172.26.33.158	192.0.66.136	TCP	74	39716 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1
	562 15.111605462	192.0.66.136	172.26.33.158	TCP	66	80 → 39714 [SYN, ACK] Seq=0 Ack=1 Win=29200
	563 15.111712948	172.26.33.158	192.0.66.136	TCP	54	39714 → 80 [ACK] Seq=1 Ack=1 Win=64256 Len=0
	564 15.111857916	192.0.66.136	172.26.33.158	TCP	66	80 → 39716 [SYN, ACK] Seq=0 Ack=1 Win=29200
	565 15.111895528	172.26.33.158	192.0.66.136	TCP	54	39716 → 80 [ACK] Seq=1 Ack=1 Win=64256 Len=0
+	566 15.112205996	172.26.33.158	192.0.66.136	HTTP	496	GET / HTTP/1.1
	567 15.129225143	192.0.66.136	172.26.33.158	TCP		80 → 39714 [ACK] Seq=1 Ack=443 Win=30720 Len
-	568 15.129477347	192.0.66.136	172.26.33.158	HTTP	405	HTTP/1.1 301 Moved Permanently (text/html)
L	569 15.129502096	172.26.33.158	192.0.66.136	TCP	54	39714 → 80 [ACK] Seq=443 Ack=352 Win=64128 L
	570 15.133710401	172.26.33.158	142.250.200.138	UDP	151	36591 → 443 Len=109
	571 15.135216307	172.26.33.158	192.0.66.136	TCP	74	38260 → 443 [SYN] Seq=0 Win=64240 Len=0 MSS=
4	F70 4F 4404704F4	440 050 000 400	470 00 00 450	LIBB		110 00501

Figura 1: Trecho da captura de tráfego no acesso ao url especificado.

Alínea 1

Anote os endereços MAC de origem e de destino da trama capturada.

Com a mensagem selecionada, analisamos os detalhes na janela abaixo e verificamos os endereços MAC associados:

- Endereço MAC de Origem: e8:d0:fc:ce:46:37
- Endereço MAC de Destino: 00:d0:03:ff:94:00

Segue-se a informação relativa à mensagem que o comprova:

```
Time
                       Source
                                             Destination
                                                                   Protocol Length Info
    566 15.112205996 172.26.33.158
                                            192.0.66.136
                                                                          496
                                                                                  GET / HTTP/1.1
Frame 566: 496 bytes on wire (3968 bits), 496 bytes captured (3968 bits) on interface wlp2s0, id 0
Ethernet II, Src: LiteonTe_ce:46:37 (e8:d0:fc:ce:46:37), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)
    Destination: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)
    Source: LiteonTe_ce:46:37 (e8:d0:fc:ce:46:37)
    Type: IPv4 (0x0800)
Internet Protocol Version 4, Src: 172.26.33.158, Dst: 192.0.66.136
Transmission Control Protocol, Src Port: 39714, Dst Port: 80, Seq: 1, Ack: 1, Len: 442
Hypertext Transfer Protocol
```

Figura 2: Informações Ethernet sobre a mensagem HTTP GET.

Alínea 2

Identifique a que sistemas se referem. Justifique.

Tendo em conta o que é um endereço MAC (endereço/identificador único associado à interface de comunicação que conecta um dispositivo à respetiva rede), o endereço MAC de Origem é o endereço da NIC (Network Interface Controller) associada ao dispositivo de origem, que é, neste caso, o nosso computador pessoal. Já o endereço MAC de Destino é o endereço da NIC associada ao dispositivo de destino, que é, neste caso, o servidor da rede local [1].

Alínea 3

Qual o valor hexadecimal do campo Type da trama Ethernet? O que significa?

Como é visível na figura 2, o valor do campo *Type* é 0x0800 e este valor corresponde ao protocolo IP, mais propriamente, indica que a trama em questão transporta datagramas IPv4. Este valor indica a camada para a qual o payload do pacote da camada Ethernet será passado (IP)[2].

Alínea 4

Quantos bytes são usados no encapsulamento protocolar, i.e. desde o início da trama até ao início dos dados do nível aplicacional (Application Data Protocol: http-over-tls)? Calcule e indique, em percentagem, a sobrecarga (overhead) introduzida pela pilha protocolar.

```
Source
                                              Destination
                                                                    Protocol Length Info
                       172.26.33.158
    566 15.112205996
                                             192.0.66.136
                                                                    HTTP
                                                                             496
                                                                                    GET / HTTP/1.1
Frame 566: 496 bytes on wire (3968 bits), 496 bytes captured (3968 bits) on interface wlp2s0, id 0
Ethernet II, Src: LiteonTe_ce:46:37 (e8:d0:fc:ce:46:37), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)
Internet Protocol Version 4, Src: 172.26.33.158, Dst: 192.0.66.136
    0100 .... = Version: 4
    \dots 0101 = Header Length: 20 bytes (5)
    Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
    Total Length: 482
    Identification: 0x07cd (1997)
    Flags: 0x4000, Don't fragment
    Fragment offset: 0
    Time to live: 64
    Protocol: TCP (6)
    Header checksum: 0x6108 [validation disabled]
    [Header checksum status: Unverified]
    Source: 172.26.33.158
    Destination: 192.0.66.136
Transmission Control Protocol, Src Port: 39714, Dst Port: 80, Seq: 1, Ack: 1, Len: 442
Hypertext Transfer Protocol
```

Figura 3: Informações mais detalhadas sobre a mensagem HTTP GET.

Sabemos que, em termos de camadas, temos a seguinte estrutura, analisando a figura 3:

```
1. Layer 7 – Application Layer: HTTP
```

- 2. Layer 5 Transport Layer : TCP
- 3. Layer 3 Network Layer : IP
- 4. Layer 2 Data Link Layer : Ethernet
- 5. Layer 1 Physical Layer: Frame

```
Frame 566: 496 bytes on wire (3968 bits), 496 bytes captured (3968 bits) on interface wlp2s0, id 0
Figure 11, Src: LiteonTe_ce:46:37 (e8:d0:fc:ce:46:37), Dst: ComdaEnt_ff:94:00 (00:d0:03:ff:94:00)
Internet Protocol Version 4, Src: 172.26.33.158, Dst: 192.0.66.136
      0100 .... = Version: 4
       ... 0101 = Header Length: 20 bytes (5)
    Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
      Total Length: 482
      Identification: 0x07cd (1997)
      Flags: 0x4000, Don't fragment
      Fragment offset: 0
      Time to live: 64
      Protocol: TCP (6)
      Header checksum: 0x6108 [validation disabled]
      [Header checksum status: Unverified]
      Source: 172.26.33.158
      Destination: 192.0.66.136
- Transmission Control Protocol, Src Port: 39714, Dst Port: 80, Seq: 1, Ack: 1, Len: 442
      Source Port: 39714
      Destination Port: 80
      [Stream index: 1]
      [TCP Segment Len: 442]
      Sequence number: 1 (relative sequence number)
Sequence number (raw): 1420962871
                                          (relative sequence number)]
      [Next sequence number: 443
      Äcknowledgment number: 1
                                        (relative ack number)
      Acknowledgment number (raw): 337687178
      0101 .... = Header Length: 20 bytes (5)
     Flags: 0x018 (PSH, ACK)
      Window size value: 502
      [Calculated window size: 64256]
      [Window size scaling factor: 128]
      Checksum: 0xd215 [unverified]
      [Checksum Status: Unverified]
      Ùrgent pointer: 0
      [SEQ/ACK analysis]
      [Timestamps]
TCP payload (442 bytes)

Hypertext Transfer Protocol
```

Figura 4: Informação alusiva aos tamanhos necessários da mensagem HTTP GET.

Através da figura anterior, conseguimos extrair vários valores:

- Frame Length: 496 Bytes;
- IP Total Length: 482 Bytes;

- IP Total Length = IP Header Length + TCP Header Length + Application = 482 Bytes;
- TCP Payload = 442 Bytes

Assim, sabendo o TCP payload, basta ir ao tamanho total da trama e subtrair esse valor e o dos cabeçalhos:

```
FrameLength-TCPPayload-IPHeader-TCPHeader
```

496 - 442 - 20 - 20 = 14 Bytes. O que nos dá um overhead de 14/496 = 0.028225806 (aproximadamente 2.8~% (1cd))

Alínea 5

Qual é o endereço Ethernet da fonte? A que sistema de rede corresponde? Justifique.

Analisando a informação da mensagem de resposta, temos:

Figura 5: Informação alusiva à mensagem de resposta.

O endereço da fonte é 00:d0:03:ff:94:00 e corresponde ao servidor, o qual envia a resposta ao pedido feito pelo computador pessoal, o endereço coincide inclusive com o endereço MAC de destino na trama HTTP GET.

Alínea 6

Qual é o endereço MAC do destino? A que sistema corresponde?

De modo análogo, olhando para a figura 4, o endereço MAC do destino é e8:d0:fc:ce:46:37, correspondendo ao nosso computador pessoal.

Alínea 7

Atendendo ao conceito de desencapsulamento protocolar, identifique os vários protocolos contidos na trama recebida.

Observando a figura 4, identificamos 4 protocolos: Ethernet, IPv4, TCP e HTTP.

Questão nº 4: Protocolo ARP

Alínea 8

Observe o conteúdo da tabela ARP. Diga o que significa cada uma das colunas.

Figura 6: Tabela ARP

A coluna Adress é a coluna referente aos endereços IP ou alternativamente o nome do host, neste caso a entrada "_gateway" significa o IP da máquina. A coluna HWtype indica o tipo da conexão, que neste caso é ethernet. A seguinte (HWaddress) indica o endereço MAC. A coluda Flags, "C" (Complete) significa que a entrada foi obtida dinamicamente através do protocolo ARP, ou seja, a conexão foi obtida com sucesso. A última coluna Iface significa "Interface" e representa a porta do sistema pela qual a conexão é feita.

Alínea 9

Qual é o valor hexadecimal dos endereços origem e destino na trama Ethernet que contém a mensagem com o pedido ARP (ARP Request)? Como interpreta e justifica o endereço destino usado?

De forma a conseguir obter pedidos ARP mais facilmente utilizamos a seguinte topologia no *core* dentro da máquina virtual:

Figura 7: Tabela ARP

De forma a observar o pedido ARP efetuamos um ping a partir do Portátil n3 para o Portátil n4 (10.0.0.21). Obtendo no Wireshark as seguintes entradas.

Figura 8: Tabela ARP

Tal como conseguimos verificar acima, os endereços são:

• Origem: 00:00:00:aa:00:00

• Destino: ff:ff:ff:ff:ff

O endereço de destino é este, pois como o a tabela ARP estava vazia, o Portátil n3 não conhecia o IP fornecido, ou seja, necessitava de enviar a todos os nós da rede local a quem pertencia o IP dado.

Alínea 10

Qual o valor hexadecimal do campo tipo da trama Ethernet? O que indica?

Tal como é possível verificar na Figura 8, o tipo da trama é 0x0806, que indica que esta é uma mensagem do protocolo ARP

Alínea 11

Como pode confirmar que se trata efetivamente de um pedido ARP? Identifique que tipo de endereços estão contidos na mensagem ARP? Que conclui?

Trata-se de um pedido ARP, já que o valor o Opcode é 1 (request) e os endereços contidos na mensagem ARP são endereços MAC.

Alínea 12

Explicite que tipo de pedido ou pergunta é feita pelo host de origem.

O host de origem pergunta a todos os nós da sua rede se o seu IP é igual ao que está à procura, em caso afirmativo quer saber o seu endereço MAC.

Alínea 13

Localize a mensagem ARP que é a resposta ao pedido ARP efetuado.

Figura 9: Tabela ARP

Qual o valor do campo ARP opcode? O que especifica?

O valor do campo ARP opcode é 2, e especifica que é uma mensagem do tipo reply.

Em que campo da mensagem ARP está a resposta ao pedido ARP?

A resposta ao pedido ARP está no campo $Sender\ MAC\ address$, sendo neste caso "00:00:00:aa:00:01".

Alínea 14

Na situação em que efetua um ping a outro host, assuma que este está diretamente ligado ao mesmo router, mas noutra subrede, e que todas as tabelas ARP se encontram inicialmente vazias. Esboce um diagrama em que indique claramente, e de forma cronológica, todas as mensagens ARP e ICMP trocadas, até à recepção da resposta ICMP do host destino.

Tendo em conta a seguinte topologia como orientação:

Figura 10: Topologia

E tendo em conta um ping do Portátil n1 para 10.0.1.20 (Portátil n5), nas condições referidas no enunciado, chegamos à seguinte tabela cronológica de mensagens:

De \Para	n1	n2	n3	n4	n5
n1				1 - ARP REQUEST 5 - PING REQUEST	
n2					
n3				3 - ARP REPLY	7 - ARP REQUEST
113				11 - PING REPLY	9 - PING REQUEST
n4	4 - ARP REPLY	2 - ARP REQUEST	2 - ARP REQUEST		
114	12 - PING REPLY	2 - AIRI REQUEST	6 - PING REQUEST		
n5			8 - ARP REPLY		
119			10 - PING REPLY		

Tabela 1: Tabela de Mensagens com formato $< ordem > - < tipo_mensagem >$

Sendo assim, inicialmente n2 consulta a sua tabela de encaminhamento, a qual revela que o IP dado é exterior à sua rede, ou seja, o ping terá de ser encaminhado ao router (pois é

este que tem contacto com a restante subrede), desta forma é enviado um pedido ARP para todos os nós da sua subrede de forma a conhecer o endereço MAC do nó com endereço IP 10.0.0.1. Quando o pedido chega ao router este envia uma respota ARP de volta ao Portátil n1 informando o seu endereço MAC. A partir do momento que a tabela ARP foi preenchida, é enviado o ping para o router. Ao chegar ao router este envia um pedido ARP para todos os nós da outra subrede (neste caso só existe um) de forma a conhecer o endereço MAC do nó com endereço IP 10.0.1.20. O pedido ao chegar a n5 é respondido, e após isso o router envia o ping a n5. Resta agora fazer o caminho inverso.

Questão 5

Alínea 15

Através da opção tepdump verifique e compare como flui o tráfego nas diversas interfaces do dispositivo de interligação no departamento A (LAN partilhada) e no departamento B (LAN comutada) quando se gera tráfego intra-departamento (por exemplo, fazendo ping IPaddr da Bela para Monstro, da Jasmine para o Alladin, etc.). Que conclui?

Figura 11: Tcpdump em LAN comutada

Figura 12: Tcpdump em LAN partilhada

Tal como conseguimos comprovar nas figuras acima, em redes com LAN partilhada os pacotes ICMP são repetidos para todas as interfaces, e sendo assim no caso acima em que é feito um ping de Bela para Monstro os pacotes não são trocados apenas entre origem e destino pois SA também os recebe. Este comportamento não é verificado em LAN comutada, sendo estes pacotes trocados apenas entre origem e destino. Sendo assim, hubs resolvem o problema dos domínios de colisão repetindo as mensagens para todos os nós, enquanto os switches constroem a própria tabela de comutação de forma a saber para quem devem redirecionar os pacotes.

Para além disso, conseguimos perceber que assim que a tabela de endereços MAC está construída, o switch consegue estabelecer apenas a comunicação entre as entidades em questão, redirecionando o pacote que recebe apenas para o respetivo destino e não para todos os outros dispositivos. Isto permite um aumento de performance na respetiva rede. De um modo geral, conseguimos identificar diferenças principais entre estas estruturas: (1) o hub tem apenas um domínio de colisão, enquanto no switch diferentes portas têm dife-

rentes domínios de colisão. (2) O hub não consegue guardar endereços MAC, enquanto o switch consegue. (3) os dispositivos em questão operam em camadas diferentes: o primeiro na camada física e o segundo na camada de ligação de rede.

Alínea 16

Construa manualmente a tabela de comutação do switch do Departamento B, atribuindo números de porta à sua escolha.

Figura 13: Departamento B com interfaces identificadas

Por definição, um switch tem a capacidade de transmitir um pacote apenas para um dispositivo capaz de o receber. Para isso, o switch usa sua tabela de endereços MAC para tomar uma decisão em relação a este encaminhamento. Sempre que um switch inicia a sua atividade começa por ter a sua tabela de endereços MAC vazia. Quando o switch recebe um pacote numa das interfaces, coloca o endereço MAC de origem do dispositivo de envio na sua tabela de endereços MAC. Contudo, o switch ainda não tem ideia do endereço MAC

de destino, portanto, ele envia o pacote para todas as suas interfaces ativas, exceto para a interface de onde recebeu esse pacote (Flooding).

Tendo em conta a ideia anterior, para construir a tabela de endereços MAC do departamento B temos de determinar uma maneira estabelecer uma troca de pacotes entre os constituintes deste departamento. Podemos, então, efetuar um ping da Jasmine para o Alladin e posteriormente do Router B para o Servidor B. Isto faz com que, seguindo o raciocínio anterior, se tenha o fluxo seguinte:

- 1. (PING 1) Com o primeiro ping, a Jasmine envia um pacote para o Alladin, iniciando o processo de comunicação;
- 2. O switch recebe o pacote na interface 1 e coloca o endereço MAC de origem (Jasmine) na sua tabela de endereços MAC;
- 3. Como o endereço MAC do Alladin não está disponível na tabela de endereços MAC do switch, o pacote é encaminhado para todas as interfaces ativas à exceção da 1;
- 4. O Alladin recebe o pacote e responde à Jasmine. O switch recebe este pacote na interface 3 e coloca o endereço MAC de origem (Alladin) na tabela de endereços MAC;
- 5. Agora, Jasmine e Alladin podem fazer uma comunicação entre si. No entanto, o Servidor B não poderá ver os pacotes transmitidos entre estes. Quando um dispositivo comunicar com o Servidor B, o seu endereço MAC também será atualizado na tabela de endereços MAC do switch. Então, ao fazer o segundo ping, inicia-se esta comunicação;
- 6. (PING 2) O switch recebe o pacote do Router B pela interface 4 e coloca na sua tabela o endereço deste. Novamente, o endereço do Servidor B não está na tabela do switch, pelo que este envia este pacote para todos os outros dispositivos à exceção do router B. O Servidor B recebe este pacote e responde pela interface 2 ao router, então, o switch guarda o endereço MAC do servidor na sua tabela. Neste momento, podem comunicar entre si.

Começamos por identificar cada uma das interfaces, atribuindo-lhes um número. Iniciamos a captura no Wireshark, a partir da Jasmine, enviando o primeiro ping para o Alladin. De seguida, enviamos um ping do Router B para o Servidor B. Estas duas operações [PING 1] e [PING 2], estão ilustradas nas capturas abaixo:

```
root@Jasmine:/tmp/pycore.36977/Jasmine.conf# ping 192.168.34.164
PING 192.168.34.164 (192.168.34.164) 56(84) bytes of data.
64 bytes from 192.168.34.164: icmp_seq=1 ttl=64 time=1.55 ms
64 bytes from 192.168.34.164: icmp_seq=2 ttl=64 time=0.335 ms
64 bytes from 192.168.34.164: icmp_seq=3 ttl=64 time=0.319 ms
64 bytes from 192.168.34.164: icmp_seq=4 ttl=64 time=2.47 ms
```

Figura 14: Comando ping 192.168.34.164

```
root@RB:/tmp/pycore.36977/RB.conf# ping 192.168.34.163
PING 192.168.34.163 (192.168.34.163) 56(84) bytes of data.
64 bytes from 192.168.34.163: icmp_seq=1 ttl=64 time=1.57 ms
64 bytes from 192.168.34.163: icmp_seq=2 ttl=64 time=0.109 ms
64 bytes from 192.168.34.163: icmp_seq=3 ttl=64 time=0.107 ms
```

Figura 15: Comando ping 192.168.34.163

Em relação ao tráfego e aos detalhes dos pacotes, temos:

No.	Time	Source	Destination	Protocol	Length	Info				
	1 0.0000	00000 192.168.34.161	224.0.0.5	0SPF	78	Hello Pac	ket			
	2 1.9999	2025 192.168.34.16	. 224.0.0.5	0SPF	78	Hello Pac	ket			
	3 3.6215	9468 fe80::200:ff:1	eaa:9 ff02::5	0SPF	90	Hello Pac	ket			
7*	4 4.0066		192.168.34.164	ICMP	98	Echo (pin	g) request	id=0x001f,	seq=1/256,	ttl=
	5 4.0078	.7663 192.168.34.161	. 224.0.0.5	0SPF		Hello Pac				
-	6 4.0081	7096 192.168.34.164	192.168.34.162	ICMP		Echo (pin			seq=1/256,	
	7 5.0078	5722 192.168.34.162	192.168.34.164	ICMP	98	Echo (pin	g) request	id=0x001f,	seq=2/512,	ttl=
	8 5.0081	3486 192.168.34.164	192.168.34.162	ICMP	98	Echo (pin	g) reply	id=0x001f,	seq=2/512,	ttl=
	9 6.0082		224.0.0.5	0SPF		Hello Pac				
	10 6.0147	3668 192.168.34.162	192.168.34.164	ICMP	98	Echo (pin	g) request	id=0x001f,	seq=3/768,	ttl=
	11 6.0150			ICMP			g) reply		seq=3/768,	
	12 7.0389		192.168.34.164	ICMP				id=0x001f,	seq=4/1024	, ttl
	13 7.0413	9589 192.168.34.164	192.168.34.162	ICMP			g) reply	id=0x001f,	seq=4/1024	, ttl
	14 8.0088			0SPF		Hello Pac				
	15 9.0572				42	Who has 1	92.168.34.:	164? Tell 19	2.168.34.16	2
	16 9.0578	7665 00:00:00 aa:00):10 00:00:00 aa:00:0f	ARP	42	192.168.3	4.164 is at	t 00:00:00:a	a:00:10	
4										•
-	Frame 4: 98 I	ytes on wire (784 bit	s), 98 bytes captured (78	84 bits) on	interf	ace veth10	0.0.e1, id	0		
-										
	> Destination: 00:00:00_aa:00:10 (00:00:00:aa:00:10)									
	> Source: 00:00:00_aa:00:0f (00:00:00:aa:00:0f)									
	Type: IPv4 (0x0800)									
 	▶ Internet Protocol Version 4, Src: 192.168.34.162, Dst: 192.168.34.164									
-	Internet Control Message Protocol									

Figura 16: Captura de tráfego no Departamento B, na Jasmine.

No.	Time	Source	Destination	Protocol	Length	Info
	7 10.014197502	192.168.34.161	224.0.0.5	0SPF	78	Hello Packet
	8 12.014288208	192.168.34.161	224.0.0.5	0SPF	78	Hello Packet
	9 13.435630598	fe80::200:ff:feaa:9	ff02::5	0SPF	90	Hello Packet
	10 14.031386722		224.0.0.5	0SPF		Hello Packet
	11 16.023084570	192.168.34.161	224.0.0.5	0SPF	78	Hello Packet
	12 18.023629687	192.168.34.161	224.0.0.5	0SPF	78	Hello Packet
	13 20.023987738	192.168.34.161	224.0.0.5	0SPF	78	Hello Packet
	14 20.636022511		Broadcast	ARP		Who has 192.168.34.163? Tell 192.168.34.161
	15 20.636153320	00:00:00_aa:00:0e	00:00:00_aa:00:09	ARP		192.168.34.163 is at 00:00:00:aa:00:0e
_+	16 20.636288000	192.168.34.161	192.168.34.163	ICMP		Echo (ping) request id=0x0058, seq=1/256, ttl=
-	17 20.636345932		192.168.34.161	ICMP		Echo (ping) reply id=0x0058, seq=1/256, ttl=
	18 21.636510128		192.168.34.163	ICMP		Echo (ping) request id=0x0058, seq=2/512, ttl=
	19 21.636545319	192.168.34.163	192.168.34.161	ICMP		Echo (ping) reply id=0x0058, seq=2/512, ttl=
	20 22.027518184		224.0.0.5	0SPF		Hello Packet
	21 22.644208209		192.168.34.163	ICMP		Echo (ping) request id=0x0058, seq=3/768, ttl=
L	22 22.644242953	192.168.34.163	192.168.34.161	ICMP		Echo (ping) reply id=0x0058, seq=3/768, ttl=
		fe80::200:ff:feaa:9	ff02::5	0SPF		Hello Packet
	24 24.032301471	192.168.34.161	224.0.0.5	0SPF	78	Hello Packet
4						▶
→ Et	<pre>Frame 16: 98 bytes on wire (784 bits), 98 bytes captured (784 bits) on interface vethf.0.e1, id 0 Fithernet II, Src: 00:00:00_aa:00:09 (00:00:00:aa:00:09), Dst: 00:00:00_aa:00:0e (00:00:00:aa:00:0e) Destination: 00:00:00_aa:00:0e (00:00:00:aa:00:0e) Source: 00:00:00_aa:00:09 (00:00:00:aa:00:09) Type: IPv4 (0x0800) Internet Protocol Version 4, Src: 192.168.34.161, Dst: 192.168.34.163 Internet Control Message Protocol</pre>					

Figura 17: Captura de tráfego no Departamento B, no Servidor B.

Assim sendo, olhando para os campos de "Source" e "Destination", de cada imagem acima, obtemos a tabela resultante de endereços MAC formada pelo switch:

Device	Interface	MAC Address
Jasmine	1	00:00:00:aa:00:0f
SB	2	00:00:00:aa:00:0e
Alladin	3	00:00:00:aa:00:10
RB	4	00:00:00:aa:00:09

Tabela 2: Tabela final de endereços MAC do Departamento B.

2. Conclusão

O presente trabalho assentou em três partes estruturais. A primeira parte prendeu-se principalmente com a análise de tráfego de tramas Ethernet, onde ficamos a compreender a relação entre a identificação dos respetivos endereços MAC e os sistemas físicos, sendo-se abordado o conceito de encapsulamento protocolar e o respetivo tamanho, em bytes, de cada porção na pilha protocolar. Já em relação à segunda parte, aprofunda-se o protocolo ARP e procura-se compreender o significado de alguns conceitos consigo relacionados, nomeadamente, analisando mensagens de pedido/resposta. Na última parte, estuda-se a questão dos domínios de colisão, já que existiria, na topologia utilizada, a possibilidade de vários hosts poderem coincidir temporalmente no envio de uma trama, deteriorizando as tramas originalmente enviadas. Esta parte permitiu compreender o modo de funcionamento de switches e a sua importância no solucionamento destas colisões. A construção de tabelas de endereços MAC é, então, fulcral, neste sentido.

Concluindo, este trabalho correu bastante bem, conseguimos responder a todas as perguntas, o que nos permitiu aprofundar e consolidar os conceitos teóricos que já aprendemos.

Referências

- [1] C. N. Academy, "Ethernet switching." [Online]. Available: https://www.ciscopress.com/articles/printerfriendly/3089352
- [2] J. F. Kurose and K. W. Ross, Computer networking: a top-down approach.