Domestic lifetime gross prediction for PG-13 movies

-- Xufei Li

Background story

Our client is a movie investing firm who is going to invest in several PG13 movies in the coming year. They want us to help them predict the domestic lifetime gross for the movies that they are interested in, they want to know which movies can bring them the highest return.

Data Collection- Web Scraping

Total: 1000 data points

All Releases	Domestic Distributor	Walt Disney Studios Motion Pictures See full company information ☑
DOMESTIC (45.3%) \$936,662,225	Domestic Opening	\$247,966,675
NTERNATIONAL (54.7%) \$1,131,793,436	Budget	\$245,000,000
worldwide \$2,068,455,661	Earliest Release Date	December 16, 2015 (APAC, EMEA)
,_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	МРАА	PG-13
	Running Time	2 hr 18 min
	Genres	Action Adventure Sci-Fi
	IMDbPro	See more details at IMDbPro ☑

Data Cleaning & EDA(Numerical)

Q: Why 'title_len'?

Target: lifetime_gross (right skewed)

Methodology:

- Log Transformation
- Removing outliers (968 observations)

EDA(Categorical)

Graph1: No pattern

Graph2: Summer & Winter are higher

EDA(Categorical-continue)

Genres:

Adventure - Not significant(why?)
Action - Not significant (why?)
Comedy - Significant
Romance - Not significant

Modeling - Base model (5 folds CV)

Baseline Linear Regression Model:

R2: 0.7328

Features: 'budget', 'running_time', 'year'

Target: 'lifetime_gross'

Feature Engineering

New model with R2: 0.7481 (+1.53%)

Feature: 'budget', 'running_time', 'year', 'genre_comedy', 'earliest_release_season_spring',

'earliest_release_season_summer', 'earliest_release_season_winter'

Target: 'lifetime_gross'

			coef	std err	t	P> t	[0.025	0.975]
		const	1.954e+09	2.88e+08	6.783	0.000	1.39e+09	2.52e+09
	b	udget	2.4319	0.051	47.685	0.000	2.332	2.532
	running	_time	7.353e+05	7.06e+04	10.419	0.000	5.97e+05	8.74e+05
		year	-1.004e+06	1.43e+05	-7.001	0.000	-1.29e+06	-7.23e+05
	genre_co	medy	5.251e+06	2.54e+06	2.064	0.039	2.59e+05	1.02e+07
earliest_releas	e_season_s	spring	-6.374e+06	3.38e+06	-1.888	0.059	-1.3e+07	2.53e+05
earliest_release_	season_su	mmer	8.626e+06	3.27e+06	2.640	0.008	2.21e+06	1.5e+07
earliest_releas	e_season_	winter	1.138e+07	3.37e+06	3.375	0.001	4.76e+06	1.8e+07
Omnibus:	327.143	Durb	in-Watson:	1.515				
Prob(Omnibus):	0.000	Jarque	-Bera (JB):	2323.327				
Skew:	1.358		Prob(JB):	0.00				
Kurtosis:	10.087		Cond. No.	9.41e+09				

Candidate models (5 folds CV)

Baseline model: 0.7328

Model	Val score	RMSE	MAE
1. Simple linear regression	0.748 +- 0.049	41,538,596	25,389,385
2. +Polynomial (degree 2)	0.764 +- 0.043	39,440,843	24,326,173
3. +LassoCV with Polynomial(degree 2)	0.764 +- 0.041	39,049,303	24,228,014
4. Random Forest	0.770 +- 0.048	39,064,999	23,901,101

Selected Model: Random Forest

Retrain model (train & validation) \rightarrow Test score: 0.7764

Final model & Conclusion

Train RF model on Entire dataset (1000 observations)

(RF - good at dealing with missing values & Outliers)

Training score: 0.8463

Validation Score: 0.8393 (base+10.65%)

Test Score: **0.8393**

MAE for validation: 24,873,153

Movies	Prediction	Actual
'The River Wild'	48,979,015	46,816,343
'Norbit'	109,733,112	95,673,607

Future work

1. Getting more data to improve our model: directors, writers, etc...

2.Linear Model:

Ordinary Least Square vs Weight Least Square

Appendix 1 Tuning hyper-parameter for Random Forest

```
#Grid Search with Cross Validation
from sklearn.model selection import GridSearchCV# Create the parameter grid based on the results of random search
param grid = {
    'bootstrap': [True],
    'max depth': [80, 90, 100, 110],
   'max features': [2, 3],
   'min samples leaf': [3, 4, 5],
   'min samples split': [8, 10, 12],
    'n estimators': [100, 200, 300, 1000]
# Create a based model
rf = RandomForestRegressor()
# Instantiate the grid search model
grid search = GridSearchCV(estimator = rf, param grid = param grid,
                          cv = 3, n jobs = -1, verbose = 2)
# Fit the grid search to the data
grid search.fit(X, v)
Fitting 3 folds for each of 288 candidates, totalling 864 fits
GridSearchCV(cv=3, estimator=RandomForestRegressor(), n jobs=-1,
             param grid={'bootstrap': [True], 'max depth': [80, 90, 100, 110],
                         'max features': [2, 3], 'min samples leaf': [3, 4, 5],
                         'min samples split': [8, 10, 12],
                         'n estimators': [100, 200, 300, 1000]},
             verbose=2)
grid search.best params
{ 'bootstrap': True.
 'max depth': 110,
 'max features': 3,
 'min samples leaf': 3,
 'min samples split': 8,
 'n estimators': 1000}
```

Appendix 2: LassoCV best alpha & Coefficient

```
lm lasso.alpha
1,552225357427048
lm lasso.coef
array([
                        , 64354616.09868296, 18202987.78807636,
       -18285172.71546404,
                            3159226.69210198, -5795874.33500904,
       -2207334.42675896,
                            2601987.91235384, -19525676.88308844,
       21580001.36912451, -7865004.79409379,
                                               -333390.20366841,
        2447389.28738019, 10158093.32193002, -2643302.69607428,
         905896.90672173, -11115756.42693536, -15937789.46516543,
       -23005907.15027149,
                            5935353.81863886, 24336698.22583675,
         8535029.87492859, 16689538.06061841, 30527042.53809172,
      -10688674.27126923, -16669995.1843216 , -1658338.97828754,
        -376503.0711751 ,
                             153656.30873463.
                                                918162.59020638,
       -6528270.45307485,
                                  0.
        1157136.68346927,
                                  0.
                                              -3780732.304488081)
```