Worksheet #3; date: 01/23/2018 MATH 53 Multivariable Calculus

1. (Stewart 10.3.57) Find the slope of the tangent line to the polar curve

$$r = 1/\theta$$

at the point $\theta = \pi$.

2. (Stewart 10.3.59) Find the slope of the tangent line to the polar curve

$$r = \cos 2\theta$$

at the point $\theta = \pi/4$.

3. (Stewart 10.3.63) Find the points on the curve

$$r = 1 + \cos \theta$$

where the tangent line is horizontal or vertical.

- 4. (Stewart 10.2.33) Find the area enclosed by the x-axis and the curve $x = t^3 + 1$, $y = 2t t^2$.
- 5. (Stewart 10.2.39) Set up an integral that represents the length of the curve.

$$x = t - 2\sin t$$
, $y = 1 - 2\cos t$, $0 \le t \le 4\pi$.

6. (Stewart 10.2.63) Find the exact area of the surface obtained by rotating the curve

$$x = a\cos^3\theta$$
, $y = a\sin^3\theta$, $0 \le \theta \le \pi/2$.

about the x-axis.

7. (Stewart 10.4.5; modified) Find the area enclosed by the polar curve

$$r^2 = \sin 2\theta$$
.

8. (Stewart 10.4.31) Find the area of the region that lies inside both curves

$$r = \sin 2\theta$$
, $r = \cos 2\theta$.

9. (Stewart 10.4.47) Find the exact length of the polar curve

$$r = \theta^2$$
, $0 \le \theta \le 2\pi$.