Minimierung von dea

Sei L=L(A) dea Sprache

Aufgabe: Finde den kleinsten dea A_{min} mit L=L(A_{min}) (Grösse eines dea A := Anzahl der Zustände von <math>A)

Idee:

- 1. Eliminierung von nicht erreichbaren Zuständen
- 2. berechne A_{min} aus A durch Verschmelzen äquivalenter Zustände

Grundlagen der theoretischen Informatik - Christian Knauer

1

Eliminierung unerreichbarer Zustände

Def.: Sei $A=(Q, \Sigma, \delta, q, F)$ dea. $q \in Q$ heisst unerreichbar, wenn $\forall w \in \Sigma^* : \delta^*(q_0, w) \neq q$

Satz: Die Menge der unerreichbaren Zustände eines dea $A=(Q,\Sigma,\delta,q,F)$ kann in $O(|Q||\Sigma|)$ Zeit bestimmt werden

Bew :

- betrachte Zustandsdiagramm von A als gerichteten Graphen G_A mit $\leq |Q||\Sigma|$ Kanten
- wenn es in G_A von q_0 keinen gerichteten Weg nach $q \in Q$ gibt, so kann q gestrichen werden
- Breitensuche auf G_A bestimmt von q_0 erreichbare Knoten

Äquivalente Zustände

Def.: Sei $A=(Q,\Sigma,\delta,q,F)$ dea. Zwei Zustände $q,q'\in Q$ heissen äquivalent q=q', wenn

 $\forall w \in \Sigma^* : \delta^*(q, w) \in F \text{ gdw. } \delta^*(q', w) \in F$

"alle von q,q'ausgehenden Berechnungen liefern dasselbe Ergebnis (bzgl. Akzeptanz)"

Grundlagen der theoretischen Informatik - Christian Knauer

2

Eigenschaften der ≡-Relation

Satz: ≡ ist Äquivalenzrelation

• reflexiv $x \equiv x$

• symmetrisch $x \equiv y \Rightarrow y \equiv x$

• transitiv $X \equiv y \land y \equiv Z \Rightarrow X \equiv Z$

Äquivalente Zustände

Def.: Sei $A=(Q,\Sigma,\delta,q,F)$ dea. Für $q\in Q$ heisst

$$[q] := \{q' \in \mathbb{Q} \mid q = q'\}$$

Äquivalenzklasse von q und

$$Q' := Q/\equiv = \{[q] \mid q \in Q\}$$

bezeichnet die Menge der Äquivalenzklassen von ≡

Grundlagen der theoretischen Informatik - Christian Knaue

Bsp.: Äquivalenzklassen

$$[q_0] = \{q_0, q_2\}$$

 $[q_1] = \{q_1, q_3\}$
 $[q_4] = \{q_4\}$

	q ₀	q_1	q ₂	q ₃	q ₄
0	-	F	-	F	F
1	-	-	-	-	F
00	F	F	F	F	F
01	-	F	-	F	F
10	-	-	-	-	F
11	-	-	-	-	F
000	F	F	F	F	F
001	F	F	F	F	F
010	-	F	-	F	F
011	-	F	-	F	F
100	F	F	F	F	F
101	-	-	-	-	F

Grundlagen der theoretischen Informatik – Christian Knauer

Bsp.: Äquivalenzklassenautomat

Grundlagen der theoretischen Informatik - Christian Knauer

7

\ddot{A} quivalenzklassen und δ


```
Satz: Sei A=(Q, \Sigma, \delta, q_0, F) dea.
Falls q=q', so ist \forall a \in \Sigma \ \delta(q, a) \equiv \delta(q', a)
```

```
\forall a \in \Sigma \ \delta(q, a) \equiv \delta(q', a) \Leftrightarrow
\forall a \in \Sigma \ \forall w \in \Sigma^* : \delta^*(\delta(q, a), w) \in F \ gdw. \ \delta^*(\delta(q', a), w) \in F \Leftrightarrow
\forall a \in \Sigma \ \forall w \in \Sigma^* : \delta^*(q, aw) \in F \ gdw. \ \delta^*(q', aw) \in F \Leftrightarrow
\forall w' \in \Sigma^* : \delta^*(q, w') \in F \ gdw. \ \delta^*(q', w') \in F \Leftrightarrow
q \equiv q'
```

Grundlagen der theoretischen Informatik – Christian Knauer

Äquivalenzklassenautomat

Def.: Sei $A=(Q, \Sigma, \delta, q_0, F)$ dea. Der dea

$$A_{\equiv} := (\mathbb{Q}/\equiv, \Sigma, \delta_{\equiv}, [q_0], \{[q] \mid q \in F\})$$

mit

$$\delta_{\underline{}}([q], a) := [\delta(q, a)]$$

heisst Äquivalenzklassenautomat von A

Bem.: A ist wohldefiniert!!

Grundlagen der theoretischen Informatik - Christian Knauer

Bsp.: Äquivalenzklassenautomat

Äquivalenzklassenautomat

Satz: Sei $A=(Q,\Sigma,\delta,q_0,F)$ dea. Dann ist $L(A_{\equiv})=L(A)$

Bew.: sei $w=w_1...w_n \in L(A)$

 \rightarrow es gibt Folge von Zuständen $q_1,...,q_n$ mit

$$q_n \in F$$
 und
 $q_{i+1} = \delta(q_i, w_{i+1})$ für $0 \le i < n$

z.z.:
$$[q_1],...,[q_n]$$
 ist Folge von Zuständen mit $[q_n] \in \{[q] \mid q \in F\}$ und $[q_{i+1}] = \delta_{=}([q_i], w_{i+1})$ für $0 \le i < n$

$$\rightarrow$$
 weL(A₌)

Grundlagen der theoretischen Informatik - Christian Knauer

Äquivalenzklassenautomat

 $z.z.: [q_1],...,[q_n]$ ist Folge von Zuständen mit

$$[q_n] \in \{[q] \mid q \in F\} \text{ und }$$

 $[q_{i+1}] = \delta_{\equiv}([q_i], w_{i+1}) \text{ für } 0 \le i < n$

- $q_n \in F \rightarrow [q_n] \in \{[q] \mid q \in F\}$ und
- $\bullet \quad \delta(q_i, w_{i+1}) = q_{i+1} \to \delta_{=}([q_i], w_{i+1}) := [\delta(q_i, w_{i+1})] = [q_{i+1}]$

(Fall $w \in L^{c}(A)$ analog)

Berechnung des Äquivalenzautomaten

Problem: Wie berechnet man für einen dea A den Äquivalenz automaten A effizient?

Grundlagen der theoretischen Informatik - Christian Knauer

12

Zeugen für Nichtäquivalenz

Def.: $q,q' \in \mathbb{Q}$ sind nicht äquivalent $q \equiv^c q'$, wenn $\exists w \in \Sigma^* : (\delta^*(q,w) \in F^c \text{ und } \delta^*(q',w) \in F) \text{ oder } (\delta^*(q,w) \in F \text{ und } \delta^*(q',w) \in F^c)$

w heisst Zeuge für die Nichtäquivalenz von q,q'

Eigenschaften von kürzesten Zeugen

- ist w=aw' kürzester Zeuge für $q \equiv^c q'$, so ist w' kürzester Zeuge für $\delta(q,a) \equiv^c \delta(q',a)$
- ist w' kürzester Zeuge für $\delta(q,a) \equiv^c \delta(q',a)$, so ist aw' Zeuge für $q \equiv^c q'$
- $|Q|^2$ ist obere Schranke für die Länge eines Zeugen für q = q'

von $(q,q') \in \mathbb{Q} \times \mathbb{Q}$ aus landet man nach $\leq 1 + |\mathbb{Q}|^2$ Schritten in einem Zustandspaar das man schon besucht hat

Grundlagen der theoretischen Informatik - Christian Knauer

Idee zur Berechnung von A_

- alle Paare nicht äquivalenter Zustände, die Zeugen der Länge ≤ k haben, seien bekannt
- (p,q) hat Zeugen der Länge \leq k+1 falls $\exists a \in \Sigma : (\delta(p,a), \delta(q,a))$ hat Zeugen der Länge \leq k

Berechnung von A

- erstelle Tabelle aller ungeordneten Zustandspaare {p,p'}
- markiere alle {p,p'} mit (peFc und p'eF) oder (p'eFc und peF)
- solange es ein unmarkiertes $\{p,p'\}$ und ein $a\in\Sigma$ gibt, so dass $\{\delta(p,a), \delta(p',a)\}$ bereits markiert ist, markiere $\{p,p'\}$
- bilde maximale Mengen (bzgl. Inklusion) von paarweise unmarkierten (d.h. äquivalenten) Zuständen

Grundlagen der theoretischen Informatik - Christian Knauer

4.7

Bsp.: Berechnung von A_

В							
С							
D							
Е							
F							
G							
Н							
	Α	В	С	D	Е	F	G

Grundlagen der theoretischen Informatik – Christian Knaue

C einziger akzeptierender Zustand \rightarrow markiere Zeile/Spalte C

В							
С	X	X					
D			X				
Е			X				
F			Χ				
G			X				
Н			X				
	Α	В	С	D	Е	F	G

Grundlagen der theoretischen Informatik - Christian Knauer

Bsp.: Berechnung von $A_{=}$

 $\{E,F\} \rightarrow_0 \{C,H\}$ und $\{C,H\}$ markiert \rightarrow markiere $\{E,F\}$

В							
С	X	X					
D			X				
Ε			X				
F			X		X		
G			X				
Н			Х				
	Α	В	С	D	Е	F	G

Grundlagen der theoretischen Informatik – Christian Knauer

 $\{A,B\} \rightarrow_1 \{C,F\} \text{ und } \{C,F\} \text{ markiert } \rightarrow \text{ markiere } \{A,B\}$

В	X						
С	X	X					
D			X				
Ε			X				
F			Χ		Χ		
G			Χ				
Н			X				
	Α	В	С	D	Е	F	G

Grundlagen der theoretischen Informatik - Christian Knauer

Bsp.: Berechnung von $A_{=}$

 $\{A,D\} \rightarrow_0 \{B,C\}$ und $\{B,C\}$ markiert \rightarrow markiere $\{A,D\}$

В	Χ						
С	Х	Х					
D	X		Х				
Е			Х				
F			X		X		
G			Х				
Н			Х				
	Α	В	С	D	Е	F	G

Grundlagen der theoretischen Informatik - Christian Knauer

 $\{A,F\} \rightarrow_0 \{B,C\}$ und $\{B,C\}$ markiert \rightarrow markiere $\{A,F\}$

В	X						
С	X	X					
D	Х		Χ				
Ε			Χ				
F	X		X		X		
G			X				
Н			X				
	Α	В	С	D	Е	F	G

Grundlagen der theoretischen Informatik - Christian Knauer

Bsp.: Berechnung von $A_{=}$

В	X						
С	X	X					
D	X	X	X				
Е		Χ	X	X			
F	X	Χ	Х		X		
G	X	X	X	X	X	X	
Н	X		X	X	X	X	X
	Α	В	С	D	Е	F	G

Grundlagen der theoretischen Informatik – Christian Knauer

В	Х						
С	X	Х					
D	X	X	X				
Е		Х	X	X			
F	X	Х	Х		X		
G	X	X	X	X		X	
Н	Х		Х	X	Х	Χ	X
	Α	В	С	D	Е	F	G

Grundlagen der theoretischen Informatik - Christian Knauer

25

Bsp.: Berechnung von $A_{=}$

Grundlagen der theoretischen Informatik - Christian Knauer

Zur Berechnung von $A_{=}$

- Korrektheit → Übung
- kann in $O(|Q|^2 |\Sigma|)$ Laufzeit implementiert werden

Grundlagen der theoretischen Informatik - Christian Knaue