代数系入門 第3章環と多項式

今村勇輝

January 13, 2022

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

Def. 1.1

R:集合, $R\neq\emptyset$,

 $R \times R \to R, (a, b) \mapsto a + b, (a, b) \mapsto ab$

■ R:加法について可換群

 $\forall a, b, c \in R \Rightarrow (ab)c = a(bc)$

 $\exists \ \forall a,b,c \in R \Rightarrow a(b+c) = ab + ac, (b+c)a = ba + ca$

 $\exists e \in R \text{ s.t. } \forall a \in R, ea = ae = a$

 $\stackrel{\text{def}}{\Leftrightarrow} R$: 環 (ring)

Def. 1.2

R: 環

■ $\exists ! e_+ \in R \text{ s.t. } \forall a \in R, e_+ + a = a \stackrel{\text{def}}{\Leftrightarrow} 0 := e_+ : R$ の零元

 \blacksquare $\forall a \in R, \exists ! a' \in R \text{ s.t. } a + a' = 0 \stackrel{\text{def}}{\Leftrightarrow} -a := a'$

Def. 1.3

R:環 $, \forall a,b \in R \Rightarrow ab = ba \stackrel{\text{def}}{\Leftrightarrow} R:$ 可換環

一 §1 壊とその例

Thm. 1.1

 $R: 環, \exists ! e \in R \text{ s.t. } \forall a \in R, ea = ae = e \stackrel{\text{def}}{\Leftrightarrow} 1 := e : R の単位元$

Exm. 1

Z:可換環:有理整数環

Exm. 2

ℚ, ℝ, ℂ: 可換環

Exm. 3

 $[0,1] \subset \mathbb{R}, R = \{f \mid f : [0,1] \to [0,1]\},$ $f,g \in R, \forall t \in [0,1], (f+g)(t) = f(t) + g(t), (fg)(t) = f(t)g(t) \Rightarrow R :$ 可換環

4/25

└─§1 環とその例

Exm. 4

 $\forall R: \mathbb{Z}, \forall S: \text{\mathfrak{L}} \Rightarrow \emptyset, M(S,R) = \{f \mid f: S \rightarrow R\},\$

 $f, g \in M(S, R), \forall x \in S, (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x) \Rightarrow M(S, R) : \mathbb{R}$

Def. 1.4

- $0 \in M(S,R) : S$ から R の零写像
- $-f \in R, \forall x \in S, (-f)(x) = -f(x)$

Rem. $\forall x \in S, 0(x) = 0_R$

Def. 1.5

 $\forall A:$ 加法群, $f:A\to A:$ hom. : 自己準同型写像, 自己準同型 (endomorphism)

 $\operatorname{End}(A) := \{ f \mid f : A \to A : \text{hom.} \}$

Exm. 5

∀A:加法群,

 $f, g \in \text{End}(A), \forall x \in A, (f+g)(x) = f(x) + g(x), (fg)(x) = f(g(x)) \Rightarrow \text{End}(A) : \mathbb{R}$

Rem. End(A): **自己準同型環**

Thm. 1.2

R:環

$$0 \in R, \forall a \in R \Rightarrow a0 = 0a = 0$$

$$\forall a, b \in R \Rightarrow a(-b) = (-a)b = -ab$$

$$\forall a, b \in R \Rightarrow (-a)(-b) = ab$$

$$a_1, \dots, a_m, b_1, \dots, b_n \in R \Rightarrow (a_1 + \dots + a_m)(b_1 + \dots + b_m) = \sum_{i=1}^m \sum_{j=1}^n a_i b_j$$

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 Z または © の上の多項式
- §13 多変数の多項式

└ §2 整域, 体

Thm. 2.1

 $R: 環, 0, 1 \in R$

 $1 = 0 \Rightarrow R = \{0\} \ (\because \forall a \in R, a = 1a = 0a = 0)$

Def. 2.1

R:環 $, 0, 1 \in R, 1 = 0 \stackrel{\text{def}}{\Leftrightarrow} R:$ 零環

Rem. 今後, R は零環ではないとする.

Def. 2.2

 $\exists a,b \in R \text{ s.t. } a \neq 0, b \neq 0, ab = 0 \stackrel{\text{def}}{\Leftrightarrow} a,b : R$ の零因子 (a : 左零因子,b : 右零因子)

Def. 2.3

 $\forall a,b \in R, a \neq 0, b \neq 0 \Rightarrow ab \neq 0, R$: 可換 $\stackrel{\text{def}}{\Leftrightarrow} R$: 整域

└-- §2 整域, 体

Exm. 1

ℤ:整域

Exm. 2

§1 Exm. 3 は整域ではない

Def. 2.4

 $a \in R$, $\exists b \in R$ s.t. $ba = ab = 1 \stackrel{\mathrm{def}}{\Leftrightarrow} a : R$ の可逆元または単元, $a^{-1} \coloneqq b : a$ の逆元

Thm. 2.2

- $a \in R :$ 単元 $\Rightarrow a \neq 0$
- $a \in R$: 単元 $\Rightarrow \exists! a^{-1} \in R$ s.t. $a^{-1}a = aa^{-1} = 1$

└- §2 整域, 体

Lem. A

 $R: \mathbb{Q}, G = \{a \in R \mid a: R \text{ o} \text{ u} \in A\} \Rightarrow G:$ 乗法に関して群

Exm. 3

A: 加法群, $A \neq \{0\}$

- $f \in \text{End}(A), f :$ **単元** $\Rightarrow f :$ iso.
- $G = \{ f \in \text{End}(A) \mid f :$ 単元 $\} \Rightarrow G = \text{Aut}(A)$

Def. 2.5

R:環

- $\forall a \in R, a \neq 0 \Rightarrow a :$ 単元 $\stackrel{\text{def}}{\Leftrightarrow} R :$ 斜体
- R: 斜体, $\forall a, b \in R, ab = ba \stackrel{\text{def}}{\Leftrightarrow} R:$ 体

└ §2 整域, 体

Thm. 2.3

R: 環

■ R: 斜体 $\Leftrightarrow G = \{a \in R \mid a \neq 0\}:$ 乗法に関して群

■ R: 体 ⇔ G = {a ∈ R | a ≠ 0}: 乗法に関して可換群

Exm. 4

■ Z:環 ⇒ Z:体

■ $\mathbb{Q}, \mathbb{R}, \mathbb{C} : \mathbb{T} \to \mathbb{Q}, \mathbb{R}, \mathbb{C} : \mathbf{\Phi}$

Rem. Q: 有理数体, R: 実数体, C: 複素数体

└- §2 整域, 体

Thm. 2.4

 $\forall R: \mathbf{\Phi} \Rightarrow R: 整域$

Lem. B

R:整域, $|R|<\infty\Rightarrow R:$ 体

Def. 2.6

 $R: \overline{\mathfrak{P}}, R' \subset R, R' \neq \emptyset$

R': R で定義されている加法, 乗法に関して環, $1_R \in R' \stackrel{\text{def}}{\Leftrightarrow} R': R$ の部分環

Thm. 2.5

 $R: 環, R' \subset R$

R': R の部分環 $\Leftrightarrow 1_R \in R', \forall a, b \in R' \Rightarrow -a, a+b, ab \in R'$

└- §2 整域, 体

Def. 2.7

R': R の部分環

■ R': 斜体 ⇔ R の部分斜体

■ R': 体 ⇔ R の部分体

Exm. 5

■ 環 Z:体 Q の部分環

■ 体 ℚ: 体 ℝ の部分体

Exm. 6

 $R = \{f \mid f \colon [0,1] \to [0,1]\}$ (§1 Exm. 3 の環)

■ R' = {f | f: [0,1] → [0,1]:連続関数 } ⇒ R': R の部分環

■ R'' = {f | f: [0,1] → [0,1]: 微分可能関数 } ⇒ R'': R' の部分環

└-- §2 整域, 体

Def. 2.8

R: 斜体, $\forall a,b \in R \Rightarrow ab \neq ba \stackrel{\text{def}}{\Leftrightarrow} R:$ 非可換体

Exm. 7

 \mathbb{C} : 複素数の加法群, $A = \mathbb{C} \times \mathbb{C}$

 $\bullet \alpha, \beta \in \mathbb{C}, f_{\alpha,\beta} \colon A \to A, (x,y) \mapsto (\alpha x - \beta y, \bar{\beta} x + \bar{\alpha} y) \Rightarrow f_{\alpha,\beta} \in \operatorname{End}(A)$

② $Q = \{f_{\alpha,\beta} \mid \textbf{上記} f_{\alpha,\beta}\} \Rightarrow Q : \text{End}(A)$ の部分環

3 Q: 非可換体

Rem. Q: R 上の四元数環

Thm. 2.6

R: 整域または斜体 ⇒ ∃0,1 ∈ R s.t. 0 ≠ 1

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 Z または © の上の多項式
- §13 多変数の多項式

└─_{§4}ℤ の商環

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 ℤ の商環
- 85 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 Z または © の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 ℤ の商環

■ §5 準同型写像

- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像

■ §6 商の体

- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

└─_{§7} 多項式環

1 第3章環と多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体

■ §7 多項式環

- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環

■ §8 体の上の多項式, 単項イデアル整域

- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域

■ §9 素元分解とその一意性

- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性

■ §10 ℤ[i] の素元

- §11 多項式の根, 代数的閉体
- §12 Z または Q の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元

■ §11 多項式の根, 代数的閉体

- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 Z の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式

- §1 環とその例
- §2 整域, 体
- §3 イデアルと商環
- §4 ℤ の商環
- §5 準同型写像
- §6 商の体
- §7 多項式環
- §8 体の上の多項式, 単項イデアル整域
- §9 素元分解とその一意性
- §10 ℤ[i] の素元
- §11 多項式の根, 代数的閉体
- §12 ℤ または ℚ の上の多項式
- §13 多変数の多項式