Towards an Object-oriented Implementation of von Mises' Motor Calculus Using Modelica

2nd International Workshop on Equation-based Object-oriented Languages and Tools, Paphos, Cyprus, July 8, 2008

Tobias Zaiczek, Olaf Enge-Rosenblatt

Fraunhofer-Institut Integrierte Schaltungen Branch Lab Design Automation, Dresden, Germany

- 1. Introduction
- 2. Motor calculus
- 3. Aspects of implementation
- 4. Examples
- 5. Summary/Outlook

- 1. Introduction
- 2. Motor calculus
- 3. Aspects of implementation
- 4. Examples
- 5. Summary/Outlook

Integrierte Schaltungen

© Fraunhofer-Gesellschaft 2008

Object-oriented Implementation of von Mises' Motor Calculus

1. Introduction

Current situation

- description of the behaviour of multi-body systems is not an easy task
- Modelica Multibody Standard Library is a well-designed tool
- equations of motions are hard to read and understand

Idea

- usage of motor calculus proposed by Richard von Mises in 1924
- make equations easier to understand

What did we do?

- first phase: implementation of motor calculus by extending Modelica Multibody Standard Library
- approach corresponds with the object-oriented paradigm
- not equation-based to its full sense because of missing operator overloading possibilities

- 1. Introduction
- 2. Motor calculus
 - 2.1 Fundamentals
 - 2.2 Geometrical interpretation
 - 2.3 Application to rigid bodies
- 3. Aspects of implementation
- 4. Examples
- 5. Summary/Outlook

2. Motor calculus

2.1 Fundamentals

A motor

$$\mathfrak{h}=egin{pmatrix} oldsymbol{g} \ oldsymbol{h}_o \end{pmatrix}$$

can be represented by an ordered pair of vectors g and h_o defining a vector field in the three-dimensional space:

$$m{h}(m{r}) = m{h}_o + m{g} imes m{r}$$

6

 $oldsymbol{h}_o$: moment vector at the reference point O

 $oldsymbol{g}$: resultant vector

 $m{r}$: position vector for (any) point P

 $m{h}$: moment vector for point P

2. Motor calculus

Fundamental algebraic definitions

addition:

$$egin{aligned} \mathfrak{h}_1 + \mathfrak{h}_2 &= egin{pmatrix} oldsymbol{g}_1 + oldsymbol{g}_2 \ oldsymbol{h}_{o1} + oldsymbol{h}_{o2} \end{pmatrix} \end{aligned}$$

multiplication with a scalar:

$$\alpha \mathfrak{h} = \begin{pmatrix} \alpha \boldsymbol{g} \\ \alpha \boldsymbol{h}_o \end{pmatrix} \qquad \alpha \in \mathbb{R}$$

dot or inner product:

$$(\boldsymbol{\mathfrak{h}}_1, \boldsymbol{\mathfrak{h}}_2) = (\boldsymbol{g}_1, \boldsymbol{h}_{o2}) + (\boldsymbol{g}_2, \boldsymbol{h}_{o1})$$

cross or outer product:

$$egin{aligned} oldsymbol{\mathfrak{h}}_1 imes oldsymbol{\mathfrak{h}}_2 &= egin{pmatrix} oldsymbol{g}_1 imes oldsymbol{g}_2 \\ oldsymbol{g}_1 imes oldsymbol{h}_{o2} + oldsymbol{h}_{o1} imes oldsymbol{g}_2 \end{pmatrix} \end{aligned}$$

multiplication with a dyad \mathfrak{D} :

$$\mathfrak{D} \circ \mathfrak{h}_1 = egin{pmatrix} oldsymbol{D}_{11}oldsymbol{h}_{o1} + oldsymbol{D}_{12}oldsymbol{g}_1 \ oldsymbol{D}_{21}oldsymbol{h}_{o1} + oldsymbol{D}_{22}oldsymbol{g}_1 \end{pmatrix}$$

2.2 Geometrical interpretation of motors

- can be represented geometrically by an ordered pair of straight lines $(\mathcal{G}_1, \mathcal{G}_2)$
- all mathematical operations interpretable as geometrical constructions
- \mathcal{N} ... motor axis = common normal of \mathcal{G}_1 and \mathcal{G}_2
- h_n ... moment of the motor on the motor axis, connects \mathcal{G}_1 and \mathcal{G}_2 along \mathcal{N}
- ullet $oldsymbol{g}$ represents the rotation of $oldsymbol{\mathcal{G}}_1$ when transferred into $oldsymbol{\mathcal{G}}_2$
- mapping $(\mathcal{G}_1, \mathcal{G}_2) \mapsto \mathfrak{h}$ is not a one-to-one mapping (motor \mathfrak{h} is invariant w. r. t. translations and rotations of \mathcal{G}_1 and \mathcal{G}_2 across \mathcal{N})

2.3 Application to rigid bodies

Force motor, velocity motor, momentum motor und inertia dyad

$$\mathfrak{f} = egin{pmatrix} oldsymbol{f} = egin{pmatrix} oldsymbol{d}_o \end{pmatrix} & \mathfrak{v} = egin{pmatrix} oldsymbol{\omega} \\ oldsymbol{v}_o \end{pmatrix} & \mathfrak{v} = egin{pmatrix} oldsymbol{p} \\ oldsymbol{d}_o \end{pmatrix} & \mathfrak{v} = egin{pmatrix} moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{R}_s & oldsymbol{\Theta}_o \end{pmatrix} & oldsymbol{v} = egin{pmatrix} moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{R}_s & oldsymbol{\Theta}_o \end{pmatrix} & oldsymbol{v} = egin{pmatrix} moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{R}_s & oldsymbol{\Theta}_o \end{pmatrix} & oldsymbol{V} = egin{pmatrix} moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{R}_s & oldsymbol{\Theta}_o \end{pmatrix} & oldsymbol{V} = egin{pmatrix} moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{R}_s & oldsymbol{\Theta}_o \end{pmatrix} & oldsymbol{V} = egin{pmatrix} moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{R}_s & oldsymbol{\Theta}_o \end{pmatrix} & oldsymbol{V} = egin{pmatrix} moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{I} & -moldsymbol{I} & -moldsymbol{R}_s \\ moldsymbol{I} & -moldsymbol{I} & -moldsymbol{I} \\ moldsymbol{I} & -moldsymbol{I} & -moldsymbol{I} \\ moldsymbol{I} & -moldsymbol{I} \\ moldsy$$

9

Basic relations

momentum:
$$\mathfrak{p}=\mathfrak{M}\circ\mathfrak{v}$$

momentum:
$$\mathfrak{p}=\mathfrak{M}\circ\mathfrak{v}$$
 kinetic energy:
$$T=\frac{1}{2}\left(\mathfrak{v},\mathfrak{p}\right)=\frac{1}{2}\left(\mathfrak{v},\mathfrak{M}\circ\mathfrak{v}\right)$$

power:
$$P = (\mathfrak{f}, \mathfrak{v})$$

Equations of motion

inertial:
$$\dot{\mathfrak{p}}=\mathfrak{f}$$

body-fixed:
$$\mathring{\mathfrak{p}} + \mathfrak{v} imes \mathfrak{p} = \mathfrak{f}$$

© Fraunhofer-Gesellschaft 2008

Object-oriented Implementation of von Mises' Motor Calculus

Goals of the Motor Calculus

- description of
 - rigid body movement
 - forces and torques acting on a rigid body
 - momentum and angular momentum each by a six-dimensional "vector"
- description independent of reference frame and chosen reference point (geometrical interpretation)
- very clear and simple structure of the fundamental mechanical laws
- formal equivalence to Newton's Second Law

- 1. Introduction
- 2. Motor calculus
- 3. Aspects of implementation
 - 3.1 Implementation of a motor library
 - 3.2 Modification of the MultiBody Library
- 4. Examples
- 5. Summary/Outlook

3. Aspects of implementation

3.1 Implementation of a motor library Objective

#R11 +R12 +R21 +R22

Motor
+Resultant Real[3] +Moment Real[3]
_

MotorDyad	
+R11	
+R12	
+R21	
+R22	

coordChange1(r_0: Real[3], R: Orientation, m: Motor): Motor coordChange2(r_0: Real[3], R: Orientation, m: Motor): Motor

 taking advantage of the efficient description in terms of motor calculus in Modelica

 object-oriented implementation of all operations in the class Motor

specialisation by means of inheritance and polymorphy

- no overloading of operators or functions
- no attachment of functions to classes

=> Compromise

© Fraunhofer-Gesellschaft 2008

3.2 Modification of the MultiBody Library

Modification of the class Body

• object-oriented implementation of the equations of motion using the motor calculus

13

- 1. Introduction
- 2. Motor calculus
- 3. Aspects of implementation
- 4. Examples
 - 4.1 Damped moveable double pendulum
 - 4.2 Damped fourfold pendulum on two movable sliders
- 5. Summary/Outlook

Olaf Enge-Rosenblatt, Workshop EOOLT 2008, Paphos, Cyprus, July 8, 2008

4. Examples

4.1 Damped moveable double pendulum

- Three rigid bodies moving in the Earth's gravitational field
- ullet trolley: mass M_0
 - viscose friction (ρ_0)
- ullet 1st pendulum: mass M_1 , moment of inertia J_1
 - viscose friction (ρ_1)
- 2nd pendulum: mass M_2 , moment of inertia J_2
 - viscose friction (ρ_2)

Animation of simulation results

Comparison of simulation results

> Errors between both simulation results are sufficiently small and decay for increasing values of the time t

4.2 Damped fourfold pendulum on two movable sliders

Six rigid bodies moving in the Earth's gravitational field

• trolleys: masses M_0 , M_5

viscose friction (ρ_0 and ρ_5)

ith pendulum: mass M_i , moment of inertia J_i

viscose friction (ρ_i) , $i = 1, \ldots, 4$

> closed planar kinematic loop

Animation of simulation results

Eraunhofer-Gesellschaft 200

Comparison of simulation results

and decay for increasing values of the time t

- 1. Introduction
- 2. Motor calculus
- 3. Aspects of implementation
- 4. Examples
- 5. Summary/Outlook

5. Summary/Outlook

presented:

- short introduction to von Mises' motor calculus
- implementation of Modelica library for motor calculus
- first simple implementation of the motor calculus within the MultiBody Standard Library
- simulation results for different non-trivial mechanical problems

future tasks:

- more sophisticated MultiBody implementation
- numerical analysis in terms of effectiveness and accuracy

Thank You!

Integrierte Schaltungen