# Lecture Notes week 4

# Ömer Şakar

# December 12, 2016

# **Contents**

| 1 | Lecture 1                                        |                                                |    |
|---|--------------------------------------------------|------------------------------------------------|----|
|   | 1.1                                              | Preferential Attachment (PA)                   | 2  |
|   | 1.2                                              | Maximal degree                                 | 3  |
| 2 | Lecture 2 Innovation diffusion through a network |                                                |    |
|   | 2.1                                              | Knowledge and collective action (chapter 19.6) | 8  |
|   | 2.2                                              | Small World Phenomenon SWP                     | 8  |
|   | 2.3                                              | The role of Hubs                               | 9  |
|   | 2.4                                              | Spatial Graph                                  | 10 |
|   | 2.5                                              | Some additional notes from the tutorial        | 10 |

## 1 Lecture 1

$$k^{-\gamma-1}$$
 or  $k^{-\tau}$ , with  $\tau = \gamma + 1$  and  $\gamma \in (1,3)$   
 $P_k \approx const \cdot k^{-\gamma-1}$   
 $\bar{F}_k = P(x \ge k) = \sum_{s=k}^{\infty} P_s \approx c \cdot k^{-\gamma}$ 



Figure 1: Visual representation of the formula on slide 4.

$$EX^2 = \sum\limits_{k=k_0}^{\infty} k^2 \cdot c \cdot k^{-\gamma-1} = \sum\limits_{k=k_0}^{\infty} c \cdot k^{1-\gamma} < \infty \iff \gamma > 2$$

 $X_1,X_2,X_3...$  - Independent and identically distributed random variable. LLN:  $\frac{X_1+X_2+....X_n}{n}$   $\overrightarrow{a.s}$ . EX (the mean)  $\sum_{i=1}^n X_i^P \approx n^{\frac{P}{j}}$ 

## 1.1 Preferential Attachment (PA)

A new node connects to an existing node with probability proportional to the degree of the existing node, (the idea of of "the rich get richer"). The degree of a new node m, we coinsider m = 1.

New node connects to an existing node with probability proportional to the degree m = # of links of a new node.

**Definition 1.**  $P_{k,t}$  is the fraction of nodes with degree k at time t (after node t arrived).

$$\sum_{k=m}^{\infty} k \cdot P_{k,t} = \frac{1}{t} \cdot \sum_{k=m}^{\infty} k \cdot [\# \ of \ nodes \ with \ degree \ k] = \frac{1}{t} \cdot [total \ degree] = \frac{2 \cdot m \cdot t}{t} = 2 \cdot m$$

The probability that a new node connects to a new node with degree k is:

$$\frac{k \cdot [\# \ of \ nodes \ with \ degree \ k]}{\sum\limits_{l=m}^{\infty} l \cdot [\# \ of \ nodes \ with \ degree \ k]} \stackrel{(divide}{=} \underbrace{\overset{by \ t)}{\sum}}_{l=m} \frac{k \cdot P_{k,t}}{\sum \limits_{l=m}^{\infty} l \cdot P_{k,t}} = \frac{k \cdot P_{k,t}}{2 \cdot m}$$

Change in number of nodes with degree k at t + 1:

hange in number of nodes with degree 
$$k$$
 at  $t+1$ :
$$(t+1) \cdot P_{k,t+1} - t \cdot P_{k,t} = \frac{(k-1) \cdot P_{k-1,t}}{2 \cdot m} \cdot m - \frac{k \cdot P_{k,t}}{2 \cdot m} \cdot m, \text{ with } k > m$$

$$(t+1) \cdot P_{m,t+1} - t \cdot P_{m,t} = 1 - \frac{m \cdot P_{m,t}}{2 \cdot m} \cdot m$$

The questions we have to solve are:

Solve for 
$$t \to \infty$$
  
 $P_k = \frac{1}{2} \cdot (k-1) \cdot P_{k-1} - \frac{1}{2} \cdot k \cdot P_k$ , with  $k > m$   
 $P_m = 1 - \frac{1}{2} \cdot m \cdot P_m$ 

Solutions:

$$\begin{split} P_m \cdot \left( \frac{1}{2}m + 1 \right) &= 1 \implies P_m = \frac{2}{m+2} \\ P_k &= \frac{(k-1)(k-2)(k-3).....m}{(k+2)(k+1).....m+3} = \frac{2 \cdot m \cdot (m+1)}{k \cdot (k+1) \cdot (k+2)} \approx c \cdot k^{-3} \end{split}$$

Zipf's Law is for self-study.

### 1.2 Maximal degree

$$D_1, D_2, D_3, \dots D_n$$
 - Degrees  $P(D > x) \approx c \cdot x^{-\gamma}$  Maximal degree  $\Longrightarrow$  Largest value  $\Longrightarrow$  probability is  $\frac{1}{n}$   $P(D > d_{max}) \approx \frac{1}{n} \approx c \cdot (d_{max})^{-\gamma}$   $d_{max} = c' \cdot n^{\frac{1}{\gamma}}$ 

$$j$$
-th largest value  $d^{(j)}$   
 $P(D > d^{(j)}) \approx \frac{j}{n} \approx c \cdot (d^{(j)})^{-\gamma}$   
 $d^{(j)} \approx c \cdot n^{\frac{1}{\gamma}} \cdot j^{-\frac{1}{\gamma}}$ 



Figure 2: Nice picture with text.

# 2 Lecture 2 Innovation diffusion through a network





**Definition 2.** Fraction p of the neighbours of v adapted A. Fraction 1-p of the neighbours of v adapted B.

Adapting A: reward dpa Adapting B: reqard d(1-p)b

Adapt A if  $dpa > d(1-p)b \implies pa > (1-p)b \implies p(a+b) > b$ We can rewrite this as (this is important):

- $p > \frac{b}{a+b} \implies \text{adapt A}$
- $p < \frac{b}{a+b} \implies \text{adapt B}$
- $p = \frac{b}{a+b} \implies$  adapt A (This is something we decided)

Example: if  $a = b \implies \frac{b}{a+b} = \frac{1}{2}$ .

- Step 0: all B
- Step 1:  $u \to A, v \to A$
- Step 2:  $x \to A$

- Step 3:  $y \to A, w \to A$
- Step 4:  $z \to A$



The result is a cascade which results in the whole network being A. If we were to add a node a to the neighbourhood of x, the cascading effect stops.

#### Example Clusters

**Definition 3.** Cluster of density 1-q is a set of nodes, each of which has at least 1-q fraction of their links in the cluster.



Claim: Denote  $q = \frac{b}{a+b}$ . Consider a set of inital adapters of A. The cascade is not complete  $\iff$  network contains a cluster of density > 1 - q (without the initial adapters).

Cascading behaviour:  $[fraction \ge q]$  adapted A  $\implies$  the node adapts A.



Figure 3: For this to happen,  $q \leq \frac{1}{3}$ . Think about q as a threshold. The lower the threshold, the easier to go over it

Example Hubs:



## 2.1 Knowledge and collective action (chapter 19.6)

I act only if at least k peiple act. I know only what my neighbours do. Solution: common knowledge.

How to choose inital adapters? Influence maximization 2003 Competitive technologies. (dont know what is means, but they are in my notes, so I kept them in)

#### 2.2 Small World Phenomenon SWP

 $U_1, U_2$  - 2 random nodes.  $d(U_1, U_2)$  - graph distance between  $U_1$  and  $U_2$ .  $d(U_1, U_2) < \infty$  (the path exists).

The SWP states  $d(U_1, U_2) = O(\log n)$  with n = number of nodes. Let  $h_n = d(U_1, U_2)$   $\exists c > 0, P(H_n > c \cdot \log(n)) = O(1), n \to \infty$ .

Explanation: regular tree with number of offspring d.



Number of nodes at distance 1: dNumber of nodes at distance 2:  $d^2$ 

:

Number of nodes at distance k:  $d^k \leftarrow last generation$ 

$$\frac{1+d+d^2+\cdots+d^k=n}{\frac{d^{k+1}-1}{d-1}} \approx c \cdot d^k = n \text{ where } k = \log(n) - c$$

### 2.3 The role of Hubs



- Many short routes through the hubs
- Friendship Paradox



$$\begin{split} P(d_w = k = \frac{k \cdot P_k}{\sum_{l=1}^w l \cdot P_l} = \frac{k \cdot P_l}{avg. \ Degree} \\ P_k = c \cdot k^{-\gamma - 1} \text{ - fraction of nodes with degree k.} \\ E(d_w) = \sum_{k=1}^\infty k \cdot k \cdot P_k = \frac{1}{avg. \ Degree} \cdot \sum_{k=1}^\infty k^2 \cdot c \cdot k^{-\gamma - 1} = \infty \ if \ \gamma \in (1, 2) \\ d(U_1, U_2) = O(\log \log n) \end{split}$$

Decentralized-Search Migran's experiment

# 2.4 Spatial Graph

$$x = (x_1, x_2), y = (y_1, y_2)$$
  
 $P(x \longleftrightarrow y) = (d(x, y))^{-q}$ 





The distances are short of q=2, the number of nodes on distance (d,2d) from x is  $\sim d^2$   $[\pi \cdot (2d)^2 - \pi \cdot d^2] = c \cdot d^2$   $q>2, \ P(x \longleftrightarrow y) = d^{-q}$  Number of neighbours on distance  $(d,2d) \approx c \cdot d^2 \cdot d^{-q}$   $q>2, \ c \cdot d^{2-q}$ . If d increases,  $d^{2-q}$  decreases.

# 2.5 Some additional notes from the tutorial

$$density = \frac{\# \ of \ neighbours \ in \ cluster}{\# \ of \ neighbours}$$