data=pd.read_csv("/home/kj-comp/aditya/archive(1)/diabetes.csv")

import pandas as pd import numpy as np

data

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0
768 rows × 9 columns								•	

data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767

Data columns (total 9 columns):

#	Column		-Null Count	Dtype
0	Pregnancies	768	non-null	int64
1	Glucose	768	non-null	int64
2	BloodPressure	768	non-null	int64
3	SkinThickness	768	non-null	int64
4	Insulin	768	non-null	int64
5	BMI	768	non-null	float64
6	DiabetesPedigreeFunction	768	non-null	float64
7	Age	768	non-null	int64
8	Outcome	768	non-null	int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

data.describe()

→▼ (768, 9)

data_x.shape,data_y.shape

knn.fit(x_train,y_train)
y_pred=knn.predict(x_test)

knn = KNeighborsClassifier(n_neighbors=7)

_		_
۰		
-	→	$\overline{}$
	_	_

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000

```
data.columns
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin',
            'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
           dtype='object')
data.isnull().sum()
    Pregnancies
     Glucose
     BloodPressure
     SkinThickness
     Insulin
     BMI
     {\tt DiabetesPedigreeFunction}
     Age
                                  0
     Outcome
     dtype: int64
data_x=data.drop(columns = "Outcome",axis=1)
data_y=data["Outcome"]
data.shape
```

```
from sklearn.preprocessing import StandardScaler
scale= StandardScaler()
scaledx= scale.fit_transform(data_x)

from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(scaledx,data_y,test_size=0.2,)

from sklearn.neighbors import KNeighborsClassifier
```

```
from sklearn import metrics
cs = metrics.confusion_matrix(y_test,y_pred)
print("Confusion Matrix is:\n",cs)
    Confusion Matrix is:
      [[82 21]
      [25 26]]
ac=metrics.accuracy_score(y_test,y_pred)
print ("Accuracy score is :",ac)
→ Accuracy score is : 0.7012987012987013
er = 1-ac
print("Error rate is : ",er)
→ Error rate is : 0.2987012987012987
p=metrics.precision_score(y_test,y_pred)
print("precision:",p)
precision: 0.5531914893617021
r=metrics.recall_score(y_test,y_pred)
print("Recall:",r)
Recall: 0.5098039215686274
Start coding or generate with AI.
```