# Arhitectura Calculatoarelor

Fizică - Informatică an II

gasner@uaic.ro

# 2. Circuite logice

### Cuprins

- Funcții booleene
- Porți logice
- Circuite combinaționale
  - codoare şi decodoare
  - multiplexoare şi demultiplexoare
  - regiştri de deplasare
  - sumatoare
- Circuite secvențiale
  - circuite flip/flop
  - circuite flip-flop J/K master-slave
  - contor binar codat zecimal (BCD)

# Analogic și digital

- Semnal analogic
  - variație continuă în timp
  - spectru continuu de valori
- Semnal digital
  - variație bruscă ("discontinuă") în timp
  - spectru discret de valori
  - imensa majoritate a calculatoarelor utilizează semnal digital cu 2 niveluri – logică binară
- Conversia analogic-digital se realizează cu modem modulator-demodulator (semnalele analogice sunt utilizate la transmisia la distanță a semnalelor digitale)

# 2.1 Funcții booleene

- mulțimea  $B=\{0,1\}$
- funcția  $f:B^n \to B^m$ 
  - are *n* variabile şi *m* valori
  - corespunde unui circuit cu n intrări și m ieșiri
- există (2<sup>m</sup>)<sup>2n</sup> funcții
- n=1, m=1: 4 funcții unare:

| X | $f_1(x)=0$ | $f_2(x)=x$ | $f_3(x)=NOT x$ | $f_1(x)=1$ |
|---|------------|------------|----------------|------------|
| 0 | 0          | 0          | 1              | 1          |
| 1 | 0          | 1          | 0              | 1          |

### Funcții booleene cu două variabile

• 16 funcții cu 2 variabile de intrare și 1 variabilă de ieșire



| X | y | Fo | $F_1$      | $F_2$      | $F_3$ | F | $F_{5}$ | $F_6$ | $F_{7}$ | F <sub>8</sub> | F | F <sub>10</sub> | F <sub>11</sub> | F <sub>12</sub> | F <sub>13</sub> | F <sub>14</sub> | F <sub>15</sub> |
|---|---|----|------------|------------|-------|---|---------|-------|---------|----------------|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| 0 | 0 | 0  | $\bigcirc$ | $\bigcirc$ | 0     | 0 | 0       | 0     | 0       | 1              | ~ | 1               | ~               | 1               | ~               | 1               | 1               |
| 0 | 1 | 0  | 0          | 0          | 0     | 1 | 1       | 1     | 1       | 0              | 0 | 0               | 0               | 1               | 1               | 1               | 1               |
| 1 | 0 | 0  | 0          | 1          | 1     | 0 | 0       | 1     | 1       | 0              | 0 | 1               | 1               | 0               | 0               | 1               | 1               |
| 1 | 1 | 0  | 1          | 0          | 1     | 0 | 1       | 0     | 1       | 0              | 1 | 0               | 1               | 0               | 1               | 0               | 1               |

# Axiome și teorii



# Operațiile calculatorului

- la nivel logic elementar, operațiile circuitelor de bază sunt operațiile logicii booleene
- se efectuează operațiile aritmetice în baza 2
- funcțiile booleene sunt implementate la nivel logic cu circuite combinationale

# Operațiile calculatorului

• este utilizată tensiunea electrică pentru reprezentarea celor două valori discrete 1 și 0, cu care se formează numerele binare

18

True

False

- tensiunea electrică este utilizată și la reprezentarea valorilor logice 'adevărat' (true) și 'fals' (false)
- pentru simplicitate:
  - 1 este 'adevărat' (true)
  - 0 este 'fals' (false)
- această interpretarea este utilizată pentru implementarea funcțiilor speciale în hardware şi la efectuarea diverselor calcule

# Exprimarea funcțiilor

- Şi funcțiile logice pot fi exprimate în două modalități:
  - O expresie booleană. finită, dar nu unică
  - tabelă de adevăr unică și finită

O expresie este finită dar nu unică

$$f(x,y) = 2x + y$$
  
=  $x + x + y$   
=  $2(x + y/2)$   
= ...

O tabelă de adevăr este unică dar finită

| ×     | У      | f(x,y) |
|-------|--------|--------|
| 0     | 0      | 0      |
| <br>2 | <br>2  | <br>6  |
| 23    | <br>41 | <br>87 |
| •••   | •••    |        |

# Operații booleene elementare

Operație:

AND (produs) două intrări

OR (sumă) două intrări NOT (complement) o intrare

Expresie:

xy, sau x•y

x + y

 $\overline{\chi}$ 

Tabela de adevăr:

| × | У | ху |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 0  |
| 1 | 1 | 1  |

| × | У | х+у |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |

| X | NOTx |
|---|------|
| 0 | 1    |
| 1 | 0    |

# Porți logice elementare

• Fiecare operație elementară poate fi implementată hardware utilizând porțile logice elementare (primitive logic gate)

Operație:

AND (produs)

OR (sumă) două intrări NOT (complement) o intrare

Expresie:

xy, sau x•y

x + y

 $\overline{\chi}$ 

Poarta:







Tabela de adevăr:

| X | У | ху |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 0  |
| 1 | 1 | 1  |

| X | У | х+у |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |

| X | NOTx |
|---|------|
| 0 | 1    |
| 1 | 0    |

# Porți și expresii

• *Orice* expresie booleană poate fi convertită într-un circuit prin combinarea porților elementare

$$((x+\overline{y})\cdot z)+(\overline{x}\cdot y\cdot \overline{z})$$



### Expresii booleene

 Operațiile de bază por fi utilizate deci pentru a forma expresii complicate:

$$f(x,y,z) = (x + y')z + x'$$

- Notă:
  - f este numele funcției
  - (x,y,z) sunt variabilele de intrare (1 sau 0)
  - complementul se notează x'=NOT x
- Ordinea operațiilor:
  - NOT urmat de AND, apoi OR.
  - paranteze (de ex. expresia de mai sus):

$$f(x,y,z) = (((x + (y'))z) + x')$$

#### Tabele de adevăr

- O tabelă de adevăr prezintă toate valorile posibile pentru intrările și ieșirile funcției
  - Deoarece există doar un număr finit de valori (1 and 0), tabela de adevăr este și ea finită
  - O funcție cu n variabile are  $2^n$  combinații posibile are intrărilor
- Intrările sunt listate în ordine binară (de ex. de la 000 la 111)



# Expresii și circuite

- Expresia booleeană este convertită într-un circuit cu porți logice
- Diagrama de mai jos prezintă intrările şi ieşirile pentru fiecare poartă
- Ordinea operațiilor este explicită în circuit



#### Analiza circuitului...

- Analiza de circuit explică modul de funcționare a circuitelor din punct de vedere logic
  - Fiecare circuit calculează o funcție care poate fi descrisă ca o expresie booleeană sau prin tabela de adevăr
  - Scopul este deci de a găsi o expresie echivalentă sau tabela de adevăr a circuitului
- 1. În primul rând trebuie stabilite clar mărimile de intrare și de ieșire pentru circuit



# ...ecuațiile algebrice...

- 2. Se scriu expresiile la ieşirea fiecărei porți, în funcție de intrările sale
  - Se începe de la inputs și se termină la outputs
  - E preferabilă efectuarea de simplificări algebrice
- Exemplu:
  - Apare o mică simplificare la poarta AND de sus
  - Se observă că circuitul calculează f(x,y,z) = xz + y'z + x'yz'



#### ...sau tabela de adevăr

- 3. Este posibilă obținerea tabelei de adevăr direct din circuit
- Cunoscând numărul de inputs şi outputs, se listează toate combinațiile posibile în tabela de adevăr
  - Un circuit cu n inputs va avea o tabelă de adevăr cu  $2^n$  linii
  - În exemplul nostru cu 3 inputs, tabela de adevăr are  $2^3 = 8$  linii



| × | У | Z | f |
|---|---|---|---|
| 0 | 0 | 0 |   |
| 0 | 0 | 1 |   |
| 0 | 1 | 0 |   |
| 0 | 1 | 1 |   |
| 1 | 0 | 0 |   |
| 1 | 0 | 1 |   |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |

#### Simularea circuitului...

- Circuitul poate fi simulat "la mână" sau cu un program de simulare și se găsesc stările ieșirilor pentru fiecare combinație posibilă a intrărilor
- De exemplu, când xyz = 101, ieşirile porților vor arăta astfel:
  - Se utilizează tabelele de adevăr pentru AND, OR și NOT pentru a găsi ieşirile porților
  - Ieşirea finală este f(1,0,1) = 1



| X | У | Z | f |
|---|---|---|---|
| 0 | 0 | 0 |   |
| 0 | 0 | 1 |   |
| 0 | 1 | 0 |   |
| 0 | 1 | 1 |   |
| 1 | 0 | 0 |   |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 |   |
| 1 | 1 | 1 |   |

### ... și finalizarea tabelei de adevăr

- În mod analog se procedează cu toate combinațiile posibile și se completează tabela de adevăr
- Procesul este foarte simplu, dar îndelungat



| X | У | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

### Expresii și tabele de adevăr

- Dacă deja avem expresia booleeană, se poate calcula uşor tabela de adevăr
- În exemplul nostru am găsit că circuitul calculează funcția f(x,y,z) = xz + y'z + x'yz', wcu care se completează tabela (mai întâi termenii intermediari xz, y'z, x'yz'):

| X | У | Z | XZ | y'z | x'yz' | f |
|---|---|---|----|-----|-------|---|
| 0 | 0 | 0 | 0  | 0   | 0     | 0 |
| 0 | 0 | 1 | 0  | 1   | 0     | 1 |
| 0 | 1 | 0 | 0  | 0   | 1     | 1 |
| 0 | 1 | 1 | 0  | 0   | 0     | 0 |
| 1 | 0 | 0 | 0  | 0   | 0     | 0 |
| 1 | 0 | 1 | 1  | 1   | 0     | 1 |
| 1 | 1 | 0 | 0  | 0   | 0     | 0 |
| 1 | 1 | 1 | 1  | 0   | 0     | 1 |

# Tabele de adevăr și expresii

- Şi reciproca este valabilă: dacă avem tabela de adevăr se poate găsi uşor expresia booleană
- Tabela de adevăr poate fi convertită într-o sumă de minitermeni care corespund liniilor din tabelă a căror valoare la ieșire este 1

| X | У | Z | f |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 |

$$f(x,y,z) = x'y'z + x'yz' + xy'z + xyz = m_1 + m_2 + m_5 + m_7$$

 Suma de minitermeni poate fi simplificată – cu K-map de exemplu

#### Analiza de circuit: concluzii

 După determinarea intrărilor şi ieşirilor unui circuit se poate găsi o expresie sau o tabelă de adevăr referitoare la comportamentul circuitului



# Simplificarea expresiilor

Expresia booleană se poate simplifica:

```
x'y' + xyz + x'y
= x'(y' + y) + xyz 	 (Distributivitatea: x'y' + x'y = x'(y' + y))
= x' \cdot 1 + xyz 	 (y' + y = 1)
= x' + xyz 	 (x' \cdot 1 = x']
= (x' + x)(x' + yz) 	 (Distributivitate)
= 1 \cdot (x' + yz) 	 (x' + x = 1)
= x' + yz
```

#### Circuite echivalente

- Expresia booleană are aşadar două circuite echivalente
- Circuitul optim este circuitul cu cel mai puține porți:
  - este mai ieftin
  - consumă mai puţină energie
  - este mai fiabil





# Complementul unei funcții

- Complementul unei funcții este negarea rezultatului funcției
- În tabela de adevăr, **0**-urile și **1**-urile se interschimbă în coloana output

$$f(x,y,z) = x(y'z' + yz)$$

| X | У | Z | f(x,y,z) |
|---|---|---|----------|
| 0 | 0 | 0 | 1        |
| 0 | 0 | 1 | 1        |
| 0 | 1 | 0 | 1        |
| 0 | 1 | 1 | 1        |
| 1 | 0 | 0 | 0        |
| 1 | 0 | 1 | 0        |
| 1 | 1 | 0 | 1        |
| 1 | 1 | 1 | 0        |



| X | У | Z | f'(x,y,z) |
|---|---|---|-----------|
| 0 | 0 | 0 | 0         |
| 0 | 0 | 1 | 0         |
| 0 | 1 | 0 | 0         |
| 0 | 1 | 1 | 0         |
| 1 | 0 | 0 | 1         |
| 1 | 0 | 1 | 1         |
| 1 | 1 | 0 | 0         |
| 1 | 1 | 1 | 1         |

# Complementul unei funcții algebrice

Se pot utiliza legile lui de Morgan:

```
        • f(x,y,z) = x(y'z' + yz)

        • f'(x,y,z) = (x(y'z' + yz))' [complementare în ambii membri]

        • x' + (y'z' + yz)' [(xy)' = x' + y']

        • x' + (y'z')'(yz)' [(x + y)' = x' y']

        • x' + (y + z)(y' + z') [(xy)' = x' + y']
```

- Se poate negarea fiecărui termen din duala funcției:
  - f(x,y,z) = x(y'z' + yz)
  - duala funcției f este x + (y' + z')(y + z)
  - complementarea fiecărei variabile conduce la x' + (y + z)(y' + z')
  - $\sin \det f'(x,y,z) = x' + (y+z)(y'+z')$

# Forme standard ale unei expresii

- O expresie poate fi scrisă în mai multe moduri, dar unele sunt mai folositoare decât altele
- $\Sigma$ -notația sau suma de produse (sum of products SOP) conține:
  - Numai operații OR la nivelul cel mai apropiat de ieșire
  - Fiecare termen al sumei este un produs de variabile

$$f(x,y,z) = y' + x'yz' + xz$$

- Avantajul major al notației  $\Sigma$  este că implementarea se face pe un circuit pe două nivele y ......
  - nivel 0: variabilele şi complementele lor
  - nivel 1: porți AND
  - nivel 2: o singură poartă OR
- Notă: porțile NOT sunt implicite iar variabilele apar de mai multe ori la intrare

#### Mintermeni

- Un mintermen este un produs special de variabile în care fiecare variabilă apare o singură dată
- O funcție cu *n* variabile are 2<sup>n</sup> mintermeni
- Fiecare mintermen este adevărat pentru o singură combinație de intrări:

| Mintermen | Adevărat dacă | Notație          |
|-----------|---------------|------------------|
| x'y'z'    | x=0, y=0, z=0 | $\mathbf{m}_0$   |
| x'y'z     | x=0, y=0, z=1 | $\mathbf{m}_1$   |
| x'yz'     | x=0, y=1, z=0 | $m_2$            |
| x'yz      | x=0, y=1, z=1 | $m_3$            |
| xy'z'     | x=1, y=0, z=0 | $m_4$            |
| xy'z      | x=1, y=0, z=1 | $m_5$            |
| xyz'      | x=1, y=1, z=0 | $\mathbf{m}_{6}$ |
| xyz       | x=1, y=1, z=1 | $\mathbf{m}_7$   |

#### Suma de mintermeni

- Orice funcție poate fi scrisă ca o sumă de minitermeni
- Notația  $\Sigma$  este unică pentru o funcție
- Dacă avem tabela de adevăr pentru o funcție, suma de mintermeni poate fi scrisă luând în considerare doar liniile care au 1 la output

| X | У | Z | f(x,y,z) | f'(x,y,z) |
|---|---|---|----------|-----------|
| 0 | 0 | 0 | 1        | 0         |
| 0 | 0 | 1 | 1        | 0         |
| 0 | 1 | 0 | 1        | 0         |
| 0 | 1 | 1 | 1        | 0         |
| 1 | 0 | 0 | 0        | 1         |
| 1 | 0 | 1 | 0        | 1         |
| 1 | 1 | 0 | 1        | 0         |
| 1 | 1 | 1 | 0        | 1         |

$$f = x'y'z' + x'y'z + x'yz' + x'yz + xyz'$$
  
 $= m_0 + m_1 + m_2 + m_3 + m_6$   
 $= \sum m(0,1,2,3,6)$   
 $f' = xy'z' + xy'z + xyz$   
 $= m_4 + m_5 + m_7$   
 $= \sum m(4,5,7)$   
 $f'$  conţine mintermenii care nu se găsesc în  $f$ 

### Produsul de sume – notația Π

- Există și posibilitatea duală, produsul de sume, care conține
  - Numai operații AND la nivelul final
  - Fiecare termen este o sumă de variabile

$$f(x,y,z) = y'(x' + y + z')(x + z)$$

- Implementarea se realizează cu un circuit pe două nivele
  - nivel 0: inputs şi complementele lor
  - nivel 1: porți OR
  - nivel 2: o singură poartă AND



#### Maxtermeni

- Un maxtermen este o sumă de variabile în care fiecare input apare o singură dată
- O funcție cu *n* variabile are 2<sup>n</sup> maxtermeni
- Fiecare maxtermen este fals pentru o singură combinație de inputs:

| Maxtermen    | Fals dacă     | Notație          |
|--------------|---------------|------------------|
| x + y + z    | x=0, y=0, z=0 | $\mathbf{M}_0$   |
| x + y + z    | x=0, y=0, z=1 | $\mathbf{M}_1$   |
| x + y' + z   | x=0, y=1, z=0 | $\mathbf{M}_2$   |
| x + y' + z'  | x=0, y=1, z=1 | $M_3$            |
| x' + y + z   | x=1, y=0, z=0 | $M_4$            |
| x' + y + z'  | x=1, y=0, z=1 | $M_5$            |
| x' + y' + z  | x=1, y=1, z=0 | $M_6$            |
| x' + y' + z' | x=1, y=1, z=1 | $\overline{M}_7$ |

#### Produs de maxtermeni

- Orice funcție poate fi scrisă ca un produs unic de maxtermeni
- Dată tabela de adevăr a unei funcții, expresia funcției în notația
   Π se obține luând liniile din tabelă care au 0 la output

| X | У | Z | f(x,y,z) | f'(x,y,z) |
|---|---|---|----------|-----------|
| 0 | 0 | 0 | 1        | 0         |
| 0 | 0 | 1 | 1        | 0         |
| 0 | 1 | 0 | 1        | 0         |
| 0 | 1 | 1 | 1        | 0         |
| 1 | 0 | 0 | 0        | 1         |
| 1 | 0 | 1 | 0        | 1         |
| 1 | 1 | 0 | 1        | 0         |
| 1 | 1 | 1 | 0        | 1         |

```
f = (x' + y + z)(x' + y + z')(x' + y' + z')
= M_4 M_5 M_7
= \Pi M(4,5,7)
f' = (x + y + z)(x + y + z')(x + y' + z)
(x + y' + z')(x' + y' + z)
= M_0 M_1 M_2 M_3 M_6
= \Pi M(0,1,2,3,6)
f' \text{ conține maxtermenii care nu se}
găsesc în f
```

### Mintermeni și maxtermeni; conversii

- Mintermenul  $m_i$  este complementul maxtermenului  $M_i$
- De exemplu,  $m_4' = M_4$  deoarece (xy'z')' = x' + y + z
- Notația  $\Sigma$  se poate converti în  $\Pi$ :
  - $f = \Sigma m(0,1,2,3,6)$   $\sin f' = \Sigma m(4,5,7) = m_4 + m_5 + m_7$
  - prin complementare (f')' = (m4 + m5 + m7)' și deci
  - $f = m_4$ '  $m_5$ '  $m_7$ ' [ DeMorgan ]
  - $\bullet = M_4 M_5 M_7 = \Pi M(4,5,7)$
- În general, se înlocuiesc mintermenii cu maxtermenii, utilizând numerele de maxtermeni care nu apar în suma de mintermeni
- În mod analog se procedeză la conversia din produse de maxtermeni la sumă de mintermeni

#### Concluzii

- Algebra Bool ajută la simplificare expresiilor şi circuitelor, garantând obținerea unui circuit echivalent cu cel original
- Este necesară o metodă de optimizare mai simplă