FINFET

A FinFET is a MOSFET with the channel elevated so the gate can surround it on three sides.

FinFET technology provides numerous advantages over bulk CMOS, such as higher drive current for a given transistor footprint, hence higher speed, I-V curves get flatter, meaning lower dynamic power consumption, **lower leakage**, hence lower power consumption, no random dopant fluctuation, hence better mobility and scaling of the transistor beyond 28nm.

Traditional Planar Gate Drain Drain Drain Source Silicon Substrate

Traditional 2-D planar transistor form a conducting channel in the silicon region under the gate electrode when in the "on" state

3-D Tri-Gate transistor form conducting channels on three sides of a vertical fin structure, providing "fully depleted" operation

Advantages of FINFET

- 1. A large number of transistors can be incorporated into a single chip. FinFET technology is suitable for IC fabrication, as it has higher scalability for the given footprint area than MOSFETs.
- 2. As chips are downsized, transistors also shrink. This compactness brings the drain and source closer and reduces the gate control over the channel carriers. This type of short-channel effect can cause serious issues in MOSFETs. The presence of fins gives FinFETs better short-channel behavior.
- To improve short-channel behavior, channel doping is common in planar MOSFETs. The wrap-around gate over the thin body makes channel doping optional in FinFETs. Therefore, no dopant-induced fluctuations are present in FinFETs.
- 4. The length of the gate is significant in reducing leakage current, and thereby leakage power. As the gate is wrapped around the drain-source channel, there is sufficient gate length in FinFETs and there is no leakage current when the gate is not energized. However, <u>in MOSFETs</u>, as the gate is scaled down, leakage current exists.
- 5. Leakage current and leakage voltage are responsible for leakage power in switching devices. Since FinFETs are devices with low leakage current, their power consumption is less than that of MOSFETs.
- 6. In planar MOSFETs, the device drive strength is dependent on the channel width, whereas a FinFET transistor's drive strength can be increased by incorporating multiple or longer fins.
- 7. A higher drive current can be reflected as fast switching times in FinFETs. Otherwise, it can be said that three-dimensional FinFETs are high-speed devices compared to planar MOSFETs.
- 8. It is easy to fabricate multi-gate devices using FinFET technology. Planar construction makes multi-gate construction tedious in MOSFETs.
- 9. FinFETs offer an excellent subthreshold slope and higher voltage gain than planar MOSFETs.

What's after FINFET

TSMC stays with FINFET for 3nm, Samsung might use MBCFET

https://semiengineering.com/whats-after-finfets/

New FETs

A **gate-all-around** (GAA) FET, abbreviated GAAFET, and also known as a surrounding-gate transistor (SGT), is similar in concept to a FinFET except that the gate material surrounds the channel region on all sides. Depending on design, gate-all-around FETs can have two or four effective gates.

https://hardwaresfera.com/en/noticias/hardware/intel-finfet-gaafet-litografia/

MBCFET (Samsung)

https://news.samsung.com/global/infographic-reduced-size-increased-performance-samsungs-gaa-transistor-mbcfettm

Fig. 5: Cross-section simulation of (a) finFET, (b) nanowire, and (c) nanosheet. Source: IBM.

Design Cost

