Urban Heat and Health

in Johannesburg

A Multidimensional Analysis of Vulnerability, Explanatory Modelling, and Predictive Outcomes

Craig Parker, MSc, MM-PDM, BS School of Public Health University of the Witwatersrand

April 11, 2025

PhD Protocol Presentation

concept_note (1).png

Why This Research Matters

Urban heat is increasingly threatening public health in Johannesburg

Human Impact

- **0.9%** mortality increase per 1°C above 18.7°C
- 2.1% increase for elderly residents

Record temperatures reaching 38°C

Spatial Inequality

Townships up to 6°C hotter than wealthy areas

Informal housing 15°C higher indoor temperatures

Minimal green infrastructure in vulnerable areas

Presentation Overview

Background and Context

Research Gap & Rationale

Conceptual Framework

Research Aims & Objectives

Methodology

Ethical Considerations

Expected Outcomes

Project Timeline

Research Journey:

 $\mathsf{Understanding} \to \mathsf{Explaining} \to \mathsf{Predicting} \to \mathsf{Acting}$

Background and Context

Climate Change and Heat-Health Impacts

Global warming exceeding 1.2°C since pre-industrial era

Urban areas experiencing amplified effects

Johannesburg impacts:

Record 38°C (2016)

Mortality increases 0.9% per 1°C above 18.7°C

Elderly: 2.1% increase per 1°C

Urban temperatures up to 8°C warmer than surrounding rural areas

global_temp.png

Figure: Global temperature trends showing $_{\!/26}$

Climate Projections for Johannesburg

By 2050 (High-Emissions Scenario)

≈ 2°C warming

Hot nights (>20°C) to quadruple

3-4 additional weeks of very hot days

By 2100: potential 6-7°C increase

IPCC: Beyond $+2^{\circ}$ C, heat-related mortality in Africa will sharply rise

max_temp.png

Figure: Johannesburg maximum

Urban Context and Legacy of Apartheid Planning

Johannesburg: 5.87 million people, 1753m elevation

Legacy of apartheid spatial planning:

Wealthy areas: Abundant green spaces, tree canopy

Townships: Dense settlements, minimal vegetation, dark surfaces

Temperature Disparities

Townships $\approx 6^{\circ}\text{C}$ hotter than surrounding areas

Indoor temperatures in informal settlements up to 15°C higher than ambient

Extreme vulnerability for elderly and chroni-

heat_stress.png

Figure: Thermal imagery showing stark 7/26

Research Gap and Rationale

Research Gap and Rationale

Current Research Limitations

Limited African urban heat studies

Siloed disciplinary approaches

Models developed in Global North with limited applicability

African-specific urban challenges understudied

Johannesburg's Unique Challenges

Historical spatial disparities

Complex disease burden (HIV, TB, NCDs)

Accelerating climate impacts

Informal housing predominance

This research addresses critical knowledge gaps in African urban heat-health research by integrating spatial, physiological, and predictive approaches

Conceptual Framework

Heat Vulnerability Framework

Three Interconnected Dimensions:

Adaptive Capacity

Exposure Heat intensity and duration

Dense urban areas: Up to 5°C higher

Nighttime retention in informal settlements

Sensitivity Population susceptibility

Health status, chronic conditions

Age extremes, pregnancy

Adaptive Capacity Resources for coping

Access to cooling, healthcare, support

Economic resources, social networks

HVI.png

Figure: Heat Vulnerability Index components showing the interplay

Research Aims & Objectives

Primary Aim and Research Objectives

Primary Aim

Understand spatially stratified heat-health interactions in Johannesburg and develop evidence-based approaches to mitigate heat-related health risks

Three Interconnected Objectives:

Objective 1: Heat Vulnerability Mapping

Key Activities:

Comprehensive spatial vulnerability assessment

Integration of multiple data sources:

Environmental: Satellite imagery, temperature networks

Socioeconomic: Housing quality, infrastructure access

Health: Disease prevalence, healthcare access

Advanced spatial statistical analysis

Expected Outcomes

High-resolution vulnerability maps

Identification of vulnerability hotspots

Overtification of anatial values bility matterns

temp_distribution.png

Figure: Heat Vulnerability Index distribution 120

Objective 2: Heat-Health Dynamics Methodology

Clinical-Computational Approach:

Validated mechanistic pathway modeling

Multi-system physiological analysis

Temporal dynamics analysis

Distributed Lag Model

$g[E(Y_t)] = \alpha + \sum_{l=0}^{L} f(x_{t-l}, l)$

Machine Learning Approaches:

Random Forests for feature importance

XGBoost with SHAP values for explanation

LIME explanations for model interpretability

mechanisms-inflammatory.drawio

Figure: Inflammatory pathways affected by 26

Objective 3: Heat-Health Prediction Modeling

Key Activities:

Development of predictive frameworks for heat-related outcomes

Stratified predictions by:

Geographic location

Demographic characteristics

Housing conditions

Identification of risk conditions at specific temperature thresholds

Focus on vulnerable populations:

Elderly residents

People with pre-existing conditions

Those with limited adaptive capacity

Model Applications

Early warning systems

Healthcare resource allocation

Heat action plan development

Spatial targeting of interventions

Climate adaptation policy

Multi-method Approach and Data Sources

Methodological Approach:

Advanced geospatial analysis

Statistical modeling

Machine learning techniques

Sample Size:

All 135 Johannesburg wards (complete coverage)

5,000-7,000 clinical records

¿80% power for detecting relevant effects

Key Data Sources:

Category	Sources
Health Data	Clinical trials & co- hort studies (2000- 2022)
Environmenta Data	Landsat 8, Sentinel- 2, ERA5, MODIS LST
Socioeconomi	c Gauteng City-Region Observatory, QoL Surveys

Integrated multi-source approach enables robust and comprehensive analysis

Objective 1: Vulnerability Mapping Methodology

Analytical Approach:

Principal Component Analysis for Heat Vulnerability Index

Geographically Weighted PCA for spatial non-stationarity

$$X_i = V_i \Lambda_i V_i^T + \varepsilon_i$$

$$I_i = z_i \sum_i w_{ii} z_i$$

Geographic de-identification to ensure privacy

seasonal_heat.png

Objective 2: Heat-Health Dynamics Methodology

Clinical-Computational Approach:

Validated mechanistic pathway modeling

Multi-system physiological analysis

Temporal dynamics analysis

Distributed Lag Model

$g[E(Y_t)] = \alpha + \sum_{l=0}^{L} f(x_{t-l}, l)$

Machine Learning Approaches:

Random Forests for feature importance XGBoost with SHAP values for explanation

LIME explanations for model interpretability

mechanisms-inflammatory.drawio

Figure: Inflammatory pathways affected by 26

Objective 3: Predictive Modeling Methodology

Modeling Framework:

Ensemble machine learning approaches

Time-series cross-validation

Stratified risk profiles

Key Equations

$$L(\phi) = \sum_{i=1}^{n} I(y_i, \hat{y}_i) + \sum_{k=1}^{K} \Omega(f_k)$$

$$\mathsf{AUC-ROC} = \int_{0}^{1} \mathsf{TPR}(\mathsf{FPR}^{-1}(t)) dt$$

Temporal Analysis:

Scale	Health Outcomes	
Immediate	Cardiovascular, re- nal	
(0-24h)	function markers	
Short-term	Inflammatory mark- ers,	
(1-7d)	metabolic changes	
Medium-term (7-30d)	Chronic conditions, adaptation responses	

Model Evaluation

Nested cross-validation

Ethical Considerations

Regulatory Compliance

Wits HREC (ref 220606)

US HHS regulations (45 CFR 46)

South Africa's POPIA (2013)

Data Privacy

Data minimization

Secure restricted access

Geographic jittering

AES-256 encryption

Secondary Data Usage

Verification of consent

Contractual guarantees

Institutional compliance

This research prioritizes ethical data usage, privacy protection, and responsible data stewardship while maximizing public health benefits

Expected Outcomes and Impact

Public Health Practice

Targeted vulnerable population interventions

Precise clinical risk stratification

Proactive outreach protocols

Urban Planning

Evidence-based cooling strategies

Green infrastructure priority areas

Resilient building designs

Climate Adaptation Policy

Transferable methods for African cities

Comprehensive heat-health action plans

Cross-sector collaboration models

Community Resilience

Locally-accessible information

Community-based monitoring

Targeted intervention strategies

Project Timeline

Key Timeline Information

36-month research project with four phases

Critical milestones: Protocol (M3), Data collection (M9), Mapping (M18), Validation (M30), Submission (M36)

Supervision Framework

Multidisciplinary Supervisory Team

Supervisor	Affiliation	Expertise
Dr. Admire Chikandiwa	Wits University	Clinical epidemiology
Prof. Matthew Chersich	${\sf Trinity/Wits}$	Climate and health
Prof. Akbar Wal- jee	Michigan	Statistical modeling, ML
Dr. Christopher Jack	UCT	Urban climate risk

Meeting Structure

Biweekly primary supervision

Monthly team meetings

Support Resources

Wits Research Computing

Climate System Analysis Group

Acknowledgements

Supervisory Team:

Dr. Admire Chikandiwa

Professor Matthew Chersich

Professor Akbar Waljee

Dr. Christopher Jack

Institutional Support:

Wits Planetary Health Research

School of Public Health, University of the Witwatersrand

Data Partners:

Gauteng City-Region Observatory

Climate System Analysis Group (UCT)

Wits Health Consortium

South African Weather Service

Funding:

South African Medical Research Council

National Research Foundation

Wits Faculty of Health Sciences

Thank You

Questions & Discussion

craig.parker@witsphr.org