THE FOLLOWING ARE THE ENGLISH TRANSLATION OF ANNEXES TO THE INTERNATIONAL PRELIMINARY EXAMINATION REPORT (ARTICLE 34):

Amended Sheets (Pages 34-38)

34

We claim:-

5

20

- A process for stabilizing polymerizable compounds to polymerization during working-up, storage and/or transport, wherein at least one free radical scavenger which comprises at least two glycine units and at least one amide and/or ester unit is used.
- 2. The process according to claim 1, wherein at least one free radical scavenger of the formula (I)

G¹ O O G²

where

25 G^1 may be NR^3R^4 or OR^7 ,

G² may be NR⁵R⁶ or OR⁸,

- R¹ to R⁶, independently of one another, may be hydrogen, C₁-C₂₀-alkyl, C₁-C₂₀-30 alkylcarbonyl, C₂-C₂₀-alkenyl, C₂-C₂₀-alkenylcarbonyl, C₂-C₂₀-alkynylcarbonyl, C₃-C₁₅-cycloalkyl, C₅-C₁₅-cycloalkylcarbonyl, aryl, arylcarbonyl or heterocycles,
- R⁷ and R⁸, independently of one another, may be C₁-C₂₀-alkyl, C₁-C₂₀-35 alkylcarbonyl, C₂-C₂₀-alkenyl, C₂-C₂₀-alkenylcarbonyl, C₂-C₂₀-alkynylcarbonyl, C₃-C₁₅-cycloalkyl, C₅-C₁₅-cycloalkylcarbonyl, aryl, arylcarbonyl or heterocycles,
- may be C₁-C₂₀-alkyl, NCH₂COOR⁹, NR¹⁰, O, S, PR¹¹, Se, SiOR¹²R¹³
 or aryl, where R⁹ to R¹³, independently of one another, may be
 hydrogen or C₁-C₂₀-alkyl, and

k, I, m and n, independently of one another, may be numbers from 0 to 20,

45 is used.

20

- 3. The process according to claim 2, wherein R^1 and R^2 are identical and are hydrogen or C_1 - C_{20} -alkyl.
- 4. The process according to claim 2 or 3, wherein R³ and R⁵ are identical and are hydrogen, C₁-C₂₀-alkyl or C₁-C₂₀-alkylcarbonyl.
 - 5. The process according to any of claims 2 to 4, wherein R⁴ and R⁶ are identical and are C₁-C₂₀-alkyl, C₁-C₂₀-alkylcarbonyl, aryl, C₂-C₂₀-alkenyl, C₂-C₂₀-alkynyl or C₂-C₂₀-alkynylcarbonyl.
- The process according to either of claims 4 and 5, wherein R³ and R⁵ are hydrogen and R⁴ and R⁶ are selected from phenyl, benzyl, p-methoxyphenyl, o-, m- or p- hydroxyphenyl, 1-hydroxyhexyl, methyl, ethyl, propyl, butyl, ethylene glycol, diethylene glycol, triethylene glycol, ethoxylate having 4 to 10 EO units, ethylenediamine, diethylenetriamine, triethylenetetramine and amino acids.
 - 7. The process according to any of claims 2 to 6, wherein R^7 and R^8 are identical and are C_1 - C_{20} -alkyl, C_1 - C_{20} -alkylcarbonyl, aryl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl or C_2 - C_{20} -alkynylcarbonyl.
- 8. The process according to claim 7, wherein R⁷ and R⁸ are selected from phenyl, benzyl, p-methoxyphenyl, o-, m- or p-hydroxyphenyl, 1-hydroxyhexyl, methyl, ethyl, propyl, butyl, ethylene glycol, diethylene glycol, ethoxylate having 4 to 10 EO units, ethylenediamine, diethylenetriamine, triethylenetetramine and amino acids.
 - 9. The process according to any of claims 2 to 8, wherein X is C_1 - C_{20} -alkyl or CH_2NCOOR^9 .
- 30 10. The process according to any of claims 1 to 9, wherein at least one of the following compounds is used:

11. The process according to any of claims 1 to 10, wherein from 0.1 to 1 000 ppm, based on the polymerizable compound, of the free radical scavenger or of a free radical scavenger mixture are used.

15

- The process according to any of claims 1 to 11, wherein at least one costabilizer is used.
- The process according to claim 12, wherein the costabilizer is selected from the group consisting of the oxygen-containing gases, phenolic compounds, quinones and hydroquinones, N-oxyl compounds, aromatic amines, phenylenediamines, imines, sulfonamides, oximes, hydroxylamines, urea derivatives, phosphorus-containing compounds, sulfur-containing compounds, complexing agents based on tetraazaannulenes and metal salts, and, if appropriate, mixtures thereof.
 - 14. The process according to claim 12 or 13, wherein phenothiazine, hydroquinone, hydroquinone monomethyl ether, 2,2,6,6-tetramethylpiperidin-N-oxyl, 4-hydroxy-2,2,6,6-tetramethylpiperidin-N-oxyl, 4-oxo-2,2,6,6-tetramethylpiperidin-N-oxyl, N,N'-di-sec-butyl-p-phenylenediamine, cerium(III) acetate, cerium(III) ethylhexanoate, oxygen-containing gases and/or mixtures thereof are used as the costabilizer.
- The process according to any of the preceding claims, wherein the polymerizable compound comprises at least one ethylenically unsaturated group.
- 16. The process according to claim 15, wherein the polymerizable compound is selected from the group consisting of the mono-, di- or triethylenically unsaturated C₃-C₈-carboxylic acids, C₁-C₂₀-esters, C₁-C₂₀-amides, C₁-C₂₀-nitriles
 25 and C₁-C₂₀-anhydrides of these mono-, di- or triethylenically unsaturated C₃-C₈-carboxylic acids, vinyl esters of carboxylic acids comprising up to 20 carbon atoms, vinyl ethers of alcohols comprising from 1 to 10 carbon atoms, vinylaromatics and vinylheteroaromatics of up to 20 carbon atoms, vinyllactams having 3 to 10 carbon atoms in the ring, open-chain N-vinylamide compounds
 30 and N-vinylamine compounds, vinyl halides, aliphatic, if appropriate halogenated, hydrocarbons having 2 to 8 carbon atoms and 1 or 2 double bonds, vinylidenes or mixtures of these monomers.
- 17. The process according to claim 15 or 16, wherein mono-, di- or triethylenically unsaturated C₃-C₈-carboxylic acids, C₁-C₂₀-esters of these mono-, di- or triethylenically unsaturated C₃-C₈-carboxylic acids, vinyl esters of carboxylic acids comprising up to 20 carbon atoms, vinyl ethers of alcohols comprising 1 to 10 carbon atoms, vinylaromatics and vinylheteroaromatics of up to 20 carbon atoms, vinyllactams having 3 to 10 carbon atoms in the ring, open-chain N-vinylamide compounds or N-vinylamine compounds are used as the polymerizable compound.

- The process according to any of claims 15 to 17, wherein (meth)acrylic acid, (meth)acrylates, N-vinylcaprolactam, N-vinylformamide, N-vinylimidazole, N-vinylpyrrolidone, vinylphosphoric acids, N-vinylcarbazole, N,N-divinylethyleneurea, trimethylolpropane triacrylate, ureidomethyl methacrylate, styrene, butadiene or isoprene is used as the polymerizable compound.
 - 19. A stabilizer mixture comprising
- i) at least one free radical scavenger which comprises at least two glycine units and at least one amide and/or ester unit, and
 - ii) at least one further stabilizer or costabilizer.
- 15 20. A mixture comprising a stabilizer mixture according to claim 19 and at least one polymerizable compound.
 - 21. The use of a stabilizer mixture according to claim 19 for stabilizing polymerizable compounds to polymerization during working-up, storage and/or transport.