FACULTY OF ARTS AND SCIENCES

Name Surname :	Student N	o :	******		Sign		,
Math 373 Numerical Analysis F	inal Exam	Q1	Q2	Q3	Q4	тот	

Spring Semester 2020-2021 24 June 2021 Duration: 80 minutes

1. Derive the numerical differentiation formula using Taylor Series expansion $f'(x) = \frac{3f_0 - 4f_{-1} + f_{-2}}{2f_0}$

by obtaining the error and give the optimum stepsize h that minimizes the error

$$-4/f(x-h) = f(x) - h f'(x) + h^2 f''(x) - h^3 f''(x) + -\frac{3}{2!} f''(x) + \frac{3}{3!} f''(x) + \frac{3}{2!} f''(x) + \frac{3}{3!} f''(x) + \frac{3}{3!}$$

$$-4f^{-1}+f^{-2} = -3f(x) + 2h f'(x) - 6h^{3}f''(x)$$

$$-4f^{-1}+f^{-2} = -3f(x) + 2h f'(x) - 6h^{3}f''(x)$$

$$-4f^{-1}+f^{-2} = -3f(x) + 2h f'(x) - 6h^{3}f''(x)$$

$$-15$$

2. Solve the initial value problem

$$y' = ty^{-3} - \frac{yt^{-1}}{2}$$

using Heun's method over [1, 1.4] with h=0.1 and y(1)=2 to obtain approximation for the solution of the I.V.P at y(1.2)

Question3. (25 pts.)

a) Find the curve fit $y = Cxe^{-Dx}$, using the data linearization for the given points.

xk	y _k			
0.2	0.72			
0.3	1.38			
0.4	2.24			
0.5	4.26			

b) Determine RMS Error $E_2(f)$.

a)
$$y = Cxe^{-Dx}$$

 $\frac{y}{x} = Ce^{-Dx}$
 $h(\frac{y}{x}) = hc - Dx$
 $y = Ax + B$ where $y = h(\frac{y}{x})$, $A = -D$, $B = hC$

XK	YK	44/xx	YE GO(XX)	x 2	XKYK	t(xr)	$e_k = f(x_k) - y_k $	er
0.2	0.72	3.6	1.2809	0.04	0.25618	0.6987	0.0213	0.00045
0.3	1.38	4.6	1.5261	0.09	0.45783	1.3841	0.0041	0.000017
0.4	2.24	5.6	1.7228	0.16	0.68912	2.4371	0.01971	0.039
0.5	4.26	8.52	2.1424	0,25	1.0712	4.0232	0.2368	0.056
1.4	8.6		6.6722	0.54	12.47433			0.0955
			0	0	1	0	1	1

$$(\Sigma x_k^2) A + (\Sigma x_k) B = \Sigma x_k x_k^*$$

 $(\Sigma x_k) A + NB = \Sigma x_k^*$

A = 2.7812 D = -2.7812

$$B = 0.69463$$
 2

 $B = 0.69463$ 2.002968 10.

$$B = hC \Rightarrow C = e^{B} = 0.69463 = 2.002968$$
 [C=2.002968]

Curve Fit:
$$y = Cxe^{-Dx}$$
 $y = 2.002968xe^{2.7812x}$

$$E_{2}(f) = \left[\frac{1}{N} \sum_{n} |a_{n}|^{2}\right]^{1/2}$$

$$= \left[\frac{1}{4} (0.0955)\right]^{1/2}$$

$$= \left[0.1545\right] (3)$$

Question4. (25 pts.)

a) Determine the number M and the interval width h so that the Composite Simpson Rule for 2M subintervals can be used to compute the given integral with an accuracy of 3×10^{-6} .

$$\int_{2}^{3} \frac{1}{5-x} dx$$

b) Evaluate $\int_{2}^{3} \frac{1}{5-x} dx$ using Composite Simpson Rule with an error bound by 3×10^{-6} .

a)
$$[a,b] = [2,3]$$
, $f(x) = \frac{1}{5-x} = (5-x)^{-1}$
 $f'(x) = (5-x)^{-2}$
 $f''(x) = 2(5-x)^{-3}$
 $f'''(x) = 6(5-x)^{-1}$
 $f^{(+)}(x) = 24(5-x)^{-5} = \frac{24}{(5-x)^{5}}$ 3
 $\max \left\{ f^{(+)}(x) \right\} = \max \left\{ \frac{24}{(5-2)^{5}}, \frac{24}{(5-2)^{5}} \right\} = \frac{24}{32} = 0.75$ 3

$$|E_5(f,h)| \leq \frac{|b-a||f^{(4)}(c)||h^4|}{180} \leq 3x10^{-6}$$

$$\Rightarrow \frac{0.75 \, \text{h}^4}{180} \leq 3 \times 10^{-6}$$

$$h^{4} \leq \frac{(3\times10^{-6})\times180}{0.0988} = 7.2\times10^{-4}$$

$$h = \frac{b-a}{2M} \Rightarrow M = \frac{b-a}{2h} = \frac{3-2}{2(0.1638)} = 3.0525$$

M should be even, $M = 4$

b) when
$$M=4 \implies h = \frac{b-a}{2M} = \frac{1}{8} = 0.125$$
, $f(x) = \frac{1}{5-x}$

$$S(f,h) = \frac{h}{3} \left[f(2) + f(3) \right] + \frac{2h}{3} \left[f(2.25) + f(2.5) + f(2.75) \right]$$

$$+ \frac{4h}{3} \left[f(2.125) + f(2.375) + f(2.625) + f(2.875) \right]$$

$$= \frac{0.125}{3} \left[0.333 + 0.5 \right] + \frac{0.25}{3} \left[0.364 + 0.4 + 0.444 \right]$$

$$+ \frac{0.5}{3} \left[0.348 + 0.381 + 0.421 + 0.471 \right]$$

$$= 0.40554 \qquad (4)$$

Exact Value:

$$\int_{2}^{3} \frac{1}{5-x} dx = -\ln(5-x) \int_{2}^{3} = \ln 3 - \ln 2 = 0.4055$$