

A Finite Automaton

A Pushdown Automaton

1

2

An Example

A Pushdown Automaton

- can push symbols onto the stack
- can pop them (read them back) later
- stack is potentially unbounded

Recall that $0^n 1^n$ not regular.

Consider the following PDA:

- read input symbols
- for each 0, push it on the stack
- as soon as a 1 is seen, pop a 0 for each 1 read
- accept if stack empty when last symbol read.
- reject if stack non-empty, if input symbol exist, if 0 read after 1, etc.

3

4

Formal Definition

Non-Determinism

PDA may be non-deterministic.

PDA *must* be non-deterministic.

Unlike finite automata, non-determinism adds power.

Use a different alphabet for inputs Σ and for stack Γ .

Transition function looks different.

From:

- current state: Q
- next input, if any: Σ_ε
- stack symbol popped, if any: Γ_ε

To:

- new state: Q
- stack symbol pushed, if any: Γ_ε
- non-determinism: $\mathcal{P}(\dots)$

$$\delta : Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \rightarrow \mathcal{P}(Q \times \Gamma_\varepsilon)$$

5

6

Formal Definitions

A *pushdown automaton (PDA)* is a 6-tuple

$(Q, \Sigma, \Gamma, \delta, q_0, F)$, where

- Q is a finite set called the states,
- Σ is a finite set called the input alphabet,
- Γ is a finite set called the *stack alphabet*,
- $\delta : Q \times \Sigma_\varepsilon \times \Gamma_\varepsilon \rightarrow \mathcal{P}(Q \times \Gamma_\varepsilon)$ is the *transition function*,
- $q_0 \in Q$ is the start state, and
- $F \subseteq Q$ is the set of accept states.

Conventions

Question: When is the stack empty?

- start by pushing $\$$ onto stack
- if you see it again, stack is empty.

When is input string exhausted?

- doesn't matter
- accepting state accepts only if inputs exhausted!

7

8

Example

Notation

Transition

$$a, b \rightarrow c$$

means

- read a from input
- pop b from stack
- push c onto stack

Meaning of ϵ transitions:

- if $a = \epsilon$, don't read inputs
- if $b = \epsilon$, don't pop any symbols
- if $c = \epsilon$, don't push any symbols

The PDA

accepts

$$\{0^n 1^n \mid n \geq 1\}.$$

9

10

Another Example

Another Example

A PDA that accepts

$$\{a^i b^j c^k \mid i, j, k > 0 \text{ and } i = j \text{ or } i = k\}$$

Informally:

- read and push a 's
- either pop and match with b 's
- or else pop and match with c 's
- non-deterministic choice!

Note: non-determinism essential here!

Unlike finite automata, non-determinism adds power

A PDA that accepts

$$\{a^i b^j c^k \mid i, j, k > 0 \text{ and } i = j \text{ or } i = k\}$$

11

12

Yet Another Example

Yet Another Example

A palindrome has the form ww^R .

- "Madam I'm Adam"
- "Dennis and Edna sinned"
- "Red rum, sir, is murder"
- "In girum imus nocte et consumimur igni"

This PDA

accepts binary palindromes.

13

14

If Part

Theorem

Theorem: If a language is context free, then some pushdown automaton accepts it.

- Let A be a context-free language.
- We know A has a context-free grammar G .
- on input w , the PDA P figures out if there is a derivation of w using G .

Question: How does P figure out which substitution to make?

Answer: It guesses.

Theorem: A language is context free if and only if some pushdown automaton accepts it.

This time, both the "if" part and the "only if" part are interesting.

15

16

CFL Implies PDA

CFL Implies PDA

Informally:

- P pushes start variable S on stack
- keeps making substitutions
- when only terminals remain ...
- tests whether derived string equals input

Where do we keep the intermediate string?

intermediate string 01A1A0

- can't put it all on the stack
- only symbols starting with first variable on stack

17

18

CFL Implies PDA

CFL Implies PDA

Informal description:

- push $S\$$ on stack
- if top of stack is variable A , non-deterministically select rule and substitute.
- if top of stack is terminal a read next input and compare. If they differ, reject.
- if top of stack is $\$$, enter accept state. (Really accepts only if input has all been read!).

Need shorthand to push entire string onto stack.

$$(r, w) \in \delta(q, a, s)$$

Easy to do by introducing intermediate states.

19

20

Transition Function

CFL Implies PDA

Initialize stack

$$\delta(q_s, \epsilon, \epsilon) = \{q_\ell, S\$ \}$$

Top of stack is variable

$$\delta(q_\ell, \epsilon, A) = \{(q_\ell, w) \mid \text{where } A \rightarrow w \text{ is a rule}\}$$

States of P are

- start state q_s
- accept state q_a
- loop state q_ℓ
- E states needed for shorthand

Top of stack is terminal

$$\delta(q_\ell, a, a) = \{(q_\ell, \epsilon)\}$$

End of Stack

$$\delta(q_\ell, \epsilon, \$) = \{(q_a, \epsilon)\}$$

21

22

Transition Function

Example

$$\begin{aligned} S &\rightarrow aTb|b \\ T &\rightarrow Ta|\epsilon \end{aligned}$$

Initialization:

23

24

Example

$$\begin{aligned} S &\rightarrow aTb|b \\ T &\rightarrow Ta|\varepsilon \end{aligned}$$

Rules for S

25

Example

$$\begin{aligned} S &\rightarrow aTb|b \\ T &\rightarrow Ta|\varepsilon \end{aligned}$$

Rules for T

26

Example

$$\begin{aligned} S &\rightarrow aTb|b \\ T &\rightarrow Ta|\varepsilon \end{aligned}$$

Rules for terminals

27

Example

$$\begin{aligned} S &\rightarrow aTb|b \\ T &\rightarrow Ta|\varepsilon \end{aligned}$$

Termination:

28