Schedule

[Fundamentals]

- 1. 4/15 Basic chemical and biochemical concepts
- 2. 4/22 Basic biophysical concepts
- 3. 4/29 Basic bioelectrochemical concepts1
- 4. 5/13 Basic bioelectrochemical concepts2

[Applications]

- 5. 5/20 Cancel (Homework1 and 2)
- 6. 5/27 Biosensors and bioelectronics1
- 7. 6/03 Cancel (Homework3 and 4)
- 8. 6/10 Student seminar
- 9. 6/17 Biosensors and bioelectronics2
- 10. 6/24 From bioelectronics (electron) to iontronics (ion) 1
- 11. 7/01 From bioelectronics (electron) to iontronics (ion)2
- 12. 7/ 8 Wearable applications1
- 13. 7/15 Wearable applications2
- 14. 7/22 Student seminar

Homework2

生物に存在する<u>building blocks</u>の例(図を含む)を示し, その説明をまとめよ.

Confirm a journal paper regarding an example of <u>building blocks</u> in Nature, and then summarize as the following contents (any pages, including the figures and references).

- 1. Reason why you choose the paper (なぜその文献を選んだのか?)
- 2. Purpose of the paper (その文献の目的は?何が新しいのか?)
- 3. Results of the paper (結果の説明, 図を含む)
- 4. Conclusions and future perspective (結論と将来性)

Deadline: May 6 2025

✓ Upload electrical file (MS word or pdf) to this lecture in MvWaseda

Cells (<u>their components</u>) and their basic building blocks

Biological size and cell diversity

Building blocks (Bottom-up)

Monomers Polymers

Self-assembly Static interaction

Fatty acids Fats, Lipids, membrane

Genome

Spider silk

20 amino acids

Building blocks

Protein synthesis

Single molecule imaging of protein synthesis

Monomer

Polymers

Self-assembly Static interaction

Fatty acids

Fats, Lipids, membrane

Polysaccharides: glucose to cellulose

Why β-glucose in cellulose

Natural Materials vs Synthetic Materials

Materials	Young's Modulus (GPa)	Density (g/cm³)	Specific Stiffness (GPa.cm³/g)
Steel	200	7.9	25
Titanium Alloys	112	4.5	25
Aluminum	69	2.7	26
Cellulose	138	1.5	92
Chitin	3-92	1.4	2-66
Mollusk Shell	80	3	26

Ritchie, et. al., "Bioinspired Structural Materials", Nature Materials, 2015. Ashby, et. al., "On the Engineering Properties of Materials", Acta metall, 1989.

Transparent cellulose nanofiber films

Squid Pen

Rhe in stadter, et. al., "Hierarchical, self-similar structure in native squid pen", Soft Matter, 2014.

Examples of lipids

Oils, fats, phospholipids, steroids

lipids

Lipid = a compound that is insoluble in water, but soluble in an organic solvent (e.g., ether, benzene, acetone, chloroform)

"lipid" is synonymous with "fat", but also includes phospholipids, sterols, etc.

chemical structure: glycerol + fatty acids

Lipid molecule

Raw tuna vs. Raw beef

Why so bad for us?

Phospholipids

Phospholipids

Permeability

FIGURE 6.8 Selective Permeability of Lipid Bilayers. (a) The numbers represent "permeability coefficients," or the rate (cm/s) at which an ion or molecule crosses a lipid bilayer. (b) The relative permeabilities of various molecules and ions, based on data like those presented in part (a).

Permeability depends on the types of the lipids in the membrane

Lower permeability

Question: Does adding cholesterol to a membrane affect its permeability?

How small molecules across membranes

Fick's law

Figure 18. Passive diffusion of an uncharged molecule across a membrane. Abbreviations used: C_o , concentration outside (mol·cm⁻³); C_i , concentration inside (mol·cm⁻³); P, permeability coefficient (cm·s⁻¹); K, partition coefficient (ratio of the solubilities of the diffusing material in lipid and water; no units); D, diffusion coefficient (cm²·s⁻¹); d, membrane thickness (cm). The negative sign means that the flow is downhill.

Different types of membrane transport

Cation permeability in gramicidin channel

Osmosis: Water permeability in membrane

Different types of membrane transport

Active transport

Active transport

$$ATP + H_2O + 3Na^+_{in} + 2K^+_{out} \rightarrow 2K^+_{in} + 3Na^+_{out} + ADP + P_i$$
 $n \qquad \Delta\mu \qquad \Delta G(kJ \ mol^{-1})$
 $Na^+_{in} \rightarrow Na^+_{out} \qquad 3$
 $K^+_{out} \rightarrow K^+_{in} \qquad 2$
 $ATP + H_2O \rightarrow ADP + Pi$
 $ATP + H_2O + 3Na^+_{in} + 2K^+_{out}$
 $ADP + Pi + 3Na^+_{out} + 2K^+_{in}$

$$\begin{split} \Delta \mu &= ZFV + RT ln \frac{a_{in}}{a_{out}} \\ Na^{+}_{in} &\to Na^{+}_{out} \qquad J \, mol^{-1} \\ \Delta \mu &= 1 \times 96485.3 \times -0.007 + 8.31447 \times 310 \times ln \frac{10}{140} = \qquad J \, mol^{-1} \\ K^{+}_{out} &\to K^{+}_{in} \qquad J \, mol^{-1} \\ \Delta \mu &= 1 \times 96485.3 \times -0.007 + 8.31447 \times 310 \times ln \frac{100}{5} = \qquad J \, mol^{-1} \\ \Delta \mu &= \Delta \mu^{\circ} + RT ln \frac{[ADP][Pi]}{[ATP]} \\ ATP &+ H_{2}O &\to ADP + Pi \qquad J \, mol^{-1} \\ \Delta \mu &= -31300 + 8.31447 \times 310 \times ln(0.001) = \qquad J \, mol^{-1} \end{split}$$

Active transport

ATP synthesis in mitochondria

https://www.youtube.com/watch?v=6W-7FG9KlpA

Water turbine vs. ATP synthase

Potential energy (water) Mechanical energy Electrical energy

Potential energy (proton)

Mechanical energy

Chemical energy (ATP synthesis)

ATP synthase

$$ADP + Pi + 3\frac{1}{3}H^{+}_{out}$$

 $\rightarrow ATP + H_{2}O + 3\frac{1}{3}H^{+}_{in}$

Potential energy (proton)

Mechanical energy

Chemical energy (ATP synthesis)

$$\Delta \mu = ZFV + RT ln \frac{a_{in}}{a_{out}}$$

$$= ZFV - 2.303RT \Delta pH$$

$$H^{+}_{out} \rightarrow H^{+}_{in} - 18292 \text{ J mol}^{-1}$$

$$\Delta \mu = 1 \times 96485.3 \times -0.16$$

$$-8.31447 \times 298.15 \times 2.303 \times 0.5$$

$$= -18292 \text{ J mol}^{-1}$$

 $ADP + Pi \rightarrow ATP + H_2O \quad 49133 \, J \, mol^{-1}$

ATP synthase

$$ADP + Pi + 3\frac{1}{3}H_{out}^{+} \rightarrow ATP + H_{2}O + 3\frac{1}{3}H_{in}^{+}$$

$$n \qquad \Delta \mu \qquad \Delta G(kJ \ mol^{-1})$$

$$H^+_{out} \rightarrow H^+_{in}$$

$$ADP + Pi \rightarrow ATP + H_2O$$

$$ADP + Pi + 3\frac{1}{3}H^{+}_{out} \rightarrow ATP + H_{2}O + 3\frac{1}{3}H^{+}_{in}$$