Komputerowe wspomaganie diagnozowania zawałów z wykorzystaniem algorytmu kNN

Karolina Działek^[242040] i Damian Koper^[241292]

Politechnika Wrocławska, Wydział Elektroniki, wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław {242040, 241292}@student.pwr.edu.pl

Streszczenie Algorytm K-najbliższych sąsiadów (kNN) stanowi jedną z metod klasyfikacji. Jest prosty w implementacji w swojej podstawowej formie oraz wykonuje dość złożone zadania klasyfikacyjne. Cel niniejszego projektu to stworzenie programu do komputerowego wspomagania diagnozowania zawałów z wykorzystaniem algorytmu kNN. Do realizacji zadania wykorzystano pięć plików tekstowych jako dane wejściowe. Każdy z nich odpowiada osobnej klasie.

Słowa kluczowe: knn, myocardial, infarction

1 Wprowadzenie

Cel projektu stanowi stworzenie programu do komputerowego wspomagania diagnozowania zawałów z wykorzystaniem algorytmu kNN.

1.1 Problem medyczny jako zadania klasyfikacji

Zadanie klasyfikacji w projekcie polega na tym, aby wspomóc rozpoznawanie stanów zwałowych wśród pacjentów na podstawie danych zgromadzonych podczas badań na ludziach, u których potwierdzono jedną z następujących diagnoz:

- ból niepochodzący z serca,
- dusznica bolesna dławica piersiowa,
- dusznica Prinzmetala dławica naczynioskurczowa,
- pełnościenny zawał serca,
- podwsierdziowy zawał serca.

Rozkład wystąpień każdej z diagnoz przedstawia tabela 1.

W zadaniu klasyfikacji wyróżnić można pewne pojęcia, w celu lepszego jego opisu:

– Klasa – pewna podprzestrzeń wartości zestawu danych, która w uczeniu nadzorowanym posiada swoją etykietę. Problem klasyfikacji jest odpowiedzią na pytania do jakiej klasy przyporządkować nowo napotkany zestaw wartości. Z punktu widzenia medycznego jest to zakwalifikowanie pacjenta jako zdrowego lub chorego z wyróżnieniem chorób na podstawie liczebności klas w danych uczących.

K. Działek, D. Koper

 Cecha – właściwość, która opisuje daną klasę. W medycynie jest to między innymi płeć, wiek, samopoczucie, czy też wynik badań.

Wynik zadania klasyfikacji to przyporządkowanie każdego z pacjentów do jednej z wymienionych klas. Jakość klasyfikacji za pomocą klasyfikatora k najbliższych sąsiadów została zbadana w zależności od liczby cech uwzględnionych podczas uczenia, a także zastosowanej metryki odległości.

1.2 Opis cech

2

Dane uczące to pięć plików tekstowych, przy czym każdy z nich odpowiada osobnej klasie i zawiera opis tego samego zestawu cech. Zbiór danych zawiera 5 klas, 59 cech oraz 901 rekordów. Opis poszczególnych cech z podziałem na ich charakter i możliwe do przyjęcia wartości zawiera tabela 2.

Tabela 1. Rozkład cech dla poszczególnych klas.

Diagnoza	Liczba przypad- ków	Procent wszystkich przypad- ków
Pełnościenny zawał serca	263	29.19%
Podwsierdziowy zawał serca	198	21.98%
Dusznica bolesna – dławica piersiowa	142	15.76%
Dusznica Prinzmetala – dławica naczynioskurczowa	68	7.55%
Ból niepochodzący z serca	230	25.53%

Tabela 2. Opis zbioru cech danych uczących i treningowych klasyfikatora.

L.p.	Cecha	Charakter	Wartości
	Ogólne		
1	wiek	dyskretny	liczby naturalne
2	płeć	dychotomiczny	0 - K, 1 - M
	Ból		
3	miejsce	kategoryczny	tabela 3
4	promieniowanie w klatce piersiowej	kategoryczny	tabela 4
5	${\it charakter}$	kategoryczny	tabela 5
6	początek występowania	kategoryczny	tabela 6
7	liczba godzin od rozpoczęcia	${ m dyskretny}$	liczby naturalne
8	długość trwania poprzedniego	kategoryczny	tabela 7
	Powiązane objawy		
9	nudności	dychotomiczny	0 - brak, 1 - obecny
10	potliwość	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
11	kołatanie serca	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
12	duszności	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
13	zawroty głowy/omdlenia	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
14	odbijanie	dychotomiczny	0 - brak, 1 - obecny
	Czynniki paliatywne		
15	czynniki paliatywne	kategoryczny	tabela 8
	Historia podobnego bólu		
16	wcześniejszy, tego samego rodzaju w klatce piersiowej	${ m dychotomiczny}$	0 - brak, 1 - obecny
17	konsultacja lekarska przy wcześniejszym bólu	dychotomiczny	0 - brak, 1 - obecny
18	wcześniejszy, powiązany z sercem	dychotomiczny	0 - brak, 1 - obecny
19	wcześniejszy, spowodowany zawałem	dychotomiczny	0 - brak, 1 - obecny
20	wcześniejszy, spowodowany chorobą niedokrwienną serca	dychotomiczny	0 - brak, 1 - obecny

L.p.	Cecha	Charakter	Wartości
	Historia medyczna		
21	wcześniejszy zawał serca	dychotomiczny	0 - brak, 1 - obecny
22	wcześniejsza choroba	${ m dychotomiczny}$	0 - brak, 1 - obecny
23	niedokrwienna serca wcześniejszy nietypowy ból w klatce piersiowej	${ m dychotomiczny}$	0 - brak, 1 - obecny
24	niewydolność serca	${ m dychotomiczny}$	0 - brak, 1 - obecny
25	choroba naczyń obwodowych	${ m dychotomiczny}$	0 - brak, 1 - obecny
26	przepuklina rozwory przełykowego	${ m dychotomiczny}$	0 - brak, 1 - obecny
27	nadciśnienie tętnicze	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
28	cukrzyca	${ m dychotomiczny}$	0 - brak, 1 - obecny
29	palacz	dychotomiczny	0 - brak, 1 - obecny
	Obecne użycie leków		
30	diuretyki	${ m dychotomiczny}$	0 - brak, 1 - obecny
31	azotany	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
32	beta-blokery	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
33	$\operatorname{digoksyna}$	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
34	niesteroidowe leki przeciwzapalne	${ m dychotomiczny}$	0 - brak, 1 - obecny
35	leki zobojętniające kwas żołądkowy, blokery H2	dychotomiczny	0 - brak, 1 - obecny
	Badanie fizyczne		
36	skurczowe ciśnienie tętnicze	dyskretny	liczby naturalne
37	rozkurczowe ciśnienie tętnicze	dyskretny	liczby naturalne
38	tętno	${ m dyskretny}$	liczby naturalne
39	szybkość oddychania	${ m dyskretny}$	liczby naturalne
40	rzężenia	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
41	sinica	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
42	bladość	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
43	szmery skurczowe	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
44	szmery rozkurczowe	dychotomiczny	0 - brak, 1 - obecny
45	obrzęk	${ m dychotomiczny}$	0 - brak, 1 - obecny
46	trzeci ton serca	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny

L.p.	Cecha	Charakter	Wartości
47	czwarty ton serca	dychotomiczny	0 - brak, 1 - obecny
48	tkliwość ściany klatki	${ m dychotomiczny}$	0 - brak, 1 - obecny
	piersiowej		
49	potliwość	0 - brak, 1 - obecny	
	Badanie EKG		
50	nowy załamek Q	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
51	jakikolwiek załamek Q	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
52	nowe uniesienie	${ m dychotomiczny}$	0 - brak, 1 - obecny
	odcinka ST		
53	jakiekolwiek uniesienie	${ m dychotomiczny}$	0 - brak, 1 - obecny
٠,	odcinka ST		
54	nowe obniżenie	$\operatorname{dychotomiczny}$	0 - brak, 1 - obecny
55	odcinka ST jakiekolwiek obniżenie	dychotomiczny	0 - brak, 1 - obecny
99	odcinka ST	dycholomiczny	0 - blak, 1 - obecity
56	nowy odwrócony	dychotomiczny	0 - brak, 1 - obecny
	załamek T	J	, ,
57	jakikolwiek odwrócony	${ m dychotomiczny}$	0 - brak, 1 - obecny
	załamek T		
58	nowe zaburzenie	${ m dychotomiczny}$	0 - brak, 1 - obecny
	przewodnictwa		
	śródkomorowego		
59	jakiekolwiek zaburzenie	${\operatorname{dychotomiczny}}$	0 - brak, 1 - obecny
	przewodnictwa		
	śródkomorowego		

 ${\bf Tabela}$ 3. Opis wartości cechy $miejsce\ b\'olu.$

Wartość	Znaczenie
1	zamostkowy
2	lewa strona, w okol. serca
3	prawa strona na wys. serca
4	lewy bok klatki piersiowej
5	prawy bok klatki piersiowej
6	brzuch
7	plecy
8	inne

Tabela 4. Opis wartości cechy promieniowanie bólu w klatce piersiowej.

Wartość	Znaczenie
1	szyja
2	szczęka
3	lewe ramię
4	lewa ręka
5	prawe ramię
6	plecy
7	brzuch
8	inne

Tabela 5. Opis wartości cechy charakter bólu.

Wartość	Znaczenie
1	szyja
2	szczęka
3	lewe ramię
4	lewa ręka
5	prawe ramię
6	plecy
7	brzuch
8	inne

 ${\bf Tabela~6}.~{\bf Opis~wartości~cechy~} początek~występowania~b\'olu.$

Wartość	Znaczenie
1	podczas wysiłku
2	w spoczynku
3	podczas snu

Tabela 7. Opis wartości cechy długość trwania ostatniego bólu.

Wartość	Znaczenie
1	poniżej 5 min
2	5 - 30 min
3	30 - 60 min
4	1 - 6 godz.
5	6 - 12 godz.
6	powyżej 12 godz.

Tabela 8. Opis wartości cechy czynniki paliatywne.

Wartość	Znaczenie
1	brak
2	nitrogliceryna w ciągu 5 min
3	nitrogliceryna po upływie 5 min
4	leki zobojętniające kwas żołądkowy
5	znieczulenie poza morfiną
6	morfina

1.3 Algorytm selekcji cech według rankingu

Za pomocą rankingu cech można wyróżnić najważniejsze cechy ze zbioru wszystkich cech. Jest to konieczne do przeprowadzenia procesu klasyfikacji. Aby wyznaczyć wspomniany ranking wykorzystano metodę ANOVA[2] - analizę wariancji. ANOVA stanowi popularną oraz często stosowaną analizę statystyczną służącą do porównania wpływu zmiennej na wartość analizowanej funkcji. Można podzielić analizę wariancji na 3 grupy:

- jednoczynnikowa wpływ każdego czynnika analizowany jest oddzielnie,
- wieloczynnikowa wpływy czynników analizowane są razem,
- analiza wariancji dla czynników wewnątrzgrupowych.

Zdarza się także, że łączy się różne rodzaje: międzygrupową (jedno lub wieloczynnikową) z wewnątrzgrupową, co nazywa się mianem analizy wariancji w schemacie mieszanym. Ideę analizy wariancji stanowi sprawdzenie, czy pewne zmienne niezależne wpływają na poziom zmiennej zależnej (testowanej).

W celu porównania wariancji dla analizowanych cech wykorzystano jednoczynnikową analizę wariancji. Porównanie wszystkich cech wraz z wartością statystyki F dla metody ANOVA widoczne jest na wykresie na rysunku 1. Działania matematyczne niezbędne do obliczenia statystyki F przedstawia równanie 1.

$$F = \frac{MSTR}{MSE}$$

$$MSTR = \frac{1}{r-1} \sum_{i=1}^{r} n_i (\overline{x_i} - \overline{x})^2$$

$$MSE = \frac{1}{n-r} \sum_{i=1}^{r} \sum_{j=1}^{n_i} n_i (x_{ij} - \overline{x_i})^2$$
gdzie: (1)

 n_i – liczba pomiarów *i*-klasy

 $\overline{x_i}$ – średnia arytmetyczna wartości pomiarów *i*-klasy

 $\overline{x}-$ średnia arytmetyczna wartości pomiarów wszystkich klas

 x_{ij} – wartości pomiaru j klasy i

r - liczba klas

W dalszej analizie brano pod uwagę k cech, dla których metoda analizy wariancji zwróciła najwyższy wynik, gdzie parametr k był analizowany pod kątem liczby cech dających najlepsze rezultaty.

Rysunek 1. Ranking cech na podstawie metody ANOVA

2 Algorytm k-NN

Algorytm k-Najbliższych Sąsiadów stanowi jedną z najbardziej prostych metod klasyfikacji. Jest łatwy w implementacji w swojej podstawowej formie oraz wykonuje dość złożone zadania klasyfikacyjne. k-NN to przykład klasyfikatora leniwego, czyli takiego, który wyciąga wnioski dopiero przy procedurze predykcji bazując na wiedzy o danych zebranej podczas procesu uczenia. W następnych etapach swojego działania omawiany algorytm wyszukuje k najbliższych wzorców ze zbioru uczącego, oblicza do nich odległość za pomocą metryki, jako predykcję zwraca tę klasę, która występuje częściej w obrębie lokalnego sąsiedztwa. Przyjmuje się, że k powinno być liczbą nieparzystą, żeby uniknąć remisu w przypadku problemów binarnych, niemniej jednak nie ma żadnej liczby, która byłaby najlepsza.

Algorithm 1: K Nearest Neighbors

Input: X = zestaw uczący

L =etykiety klas zestawu

 $x_q = \text{niesklasyfikowana próbka}$

k = liczba sąsiadów

1 for $(x', l') \in X$ do

2 | Oblicz odległość $d(x', x_q)$

- 3 Posortuj rosnąco obliczone odległości elementów zestawu uczącego X od x_q
- 4 Policz wystąpienia każdej z klas w Lpośród najbliższych ksąsiadów $\boldsymbol{x_q}$
- **5** Przydziel x_q do najczęściej występującej klasy

2.1 Miary odległości

Istotnym elementem algorytmu k-NN jest odległość, na podstawie której wyznacza się najbliższych sąsiadów. Wybrano dwie metryki, które zostaną wykorzystane w projekcie. Pierwsza metryka to odległość euklidesowa. Stanowi jedną na najczęściej wykorzystywanych metryk, za jej pomocą można obliczyć odległość między dwoma punktami (x, y) na płaszczyźnie (wzór 2).

$$d_e(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$
 (2)

Drugą metryką jest Manhattan, którą oblicza się stosując wzór 3.

$$d_{m}(x,y) = \sum_{i=1}^{n} |x_{i} - y_{i}|$$
(3)

Trzecią metryką jest metryka Czebyszewa, którą oblicza się stosując wzór 4.

$$d_{ch}\left(x,y\right) = \max_{i}\left|x_{i} - y_{i}\right| \tag{4}$$

2.2 Implementacja środowiska eksperymentowania

Do zaimplementowania środowiska eksperymentowania wykorzystano język Python, ponieważ wykorzystywaną biblioteką do uczenia maszynowego jest scikitlearn[1].

3 Wyniki ewaluacji eksperymentalnej

Walidacja została dokonana z użyciem 5 razy powtórzonej 2-krotnej walidacji krzyżowej, a jakość klasyfikacji mierzona metryką dokładności (accuracy). Wyniki pokazane zostały na rysunkach 2, 3 i 4 dla każdej z metryk odległości.

3.1 Wnioski

Wyniki eksperymentów uwidaczniają jak zmienia się dokładność klasyfikacji na podstawie liczby cech, liczby sąsiadów branych pod uwagę w tym procesie oraz metryk odległości.

Dla metryki euklidesowej maksymalna dokładność 65,68% osiągana jest dla 5 sąsiadów i 34 cech. Dokładność ta wzrasta do poziomu 60-65% dla liczby cech od 13 do 35, a potem maleje schodkowo.

Dla metryki Manhattan maksymalna dokładność 72,16% osiągana jest dla 8 sąsiadów i 47 cech. Dokładność ta wzrasta do poziomu ok. 70% dla liczby cech od 13 i utrzymuje się na stałym poziomie niezależnie od dalszego przyrostu liczby cech.

Dla metryki Czebyszewa maksymalna dokładność 59,08% osiągana jest dla 3 sąsiadów i 16 cech. Dokładność ta wzrasta do poziomu 60-65% dla liczby cech od 13 do 35, a potem maleje schodkowo. Z uwagi na charakterystykę tej metryki dokładność nie podlega żadnym wahaniom w określonych przedziałach. Z uwagi na charakterystykę zestawu danych uczących dla liczby cech od 6 do 8 występuje spadek dokładności.

Metryką pozwalającą osiągnąć największą dokładność klasyfikacji jest metryka Manhattan.

Literatura

- scikit-learn, https://scikit-learn.org/
 Wahid, Z.: Application of one-way anova in completely randomized experiments. Journal of Physics: Conference Series (949) (2017)