State-space Model of Dynamic Correlations in Parallel Spike Sequences

Speaker: Hideaki Shimazaki

Nonlinear Dynamics Seminar, Jun. 1, Kyoto

Hideaki Shimazaki¹, Shun-ichi Amari¹, Emery N. Brown², Sonja Grün¹

1 RIKEN Brain Science Institute, Wako-shi, Saitama, Japan

2 Anesthesia and Critical Care, Massachusetts General Hospital, Boston, MA, USA Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA

起花中的 · 程" · 起华 · · 旅

Cooperative Activities of Neurons

From the observation of synchronous activities, we wish to trace dynamically correlated neuronal groups.

Evidence for Dynamic Correlations

Spike correlation in ms precision occurs at behaviorally relevant instances.

What is the Higher-order Correlation?

- A Neurons are independent.

 Synchrony may appear by chance.
 - **B** Neuron 1 and 2 are correlated. Triplets may appear by chance.
- **D** A triplewise correlation is added. Excess triplets are generated.

C Neurons are pairwisely correlated. Triplets may appear by chance.

Higher-order correlation generates excess synchrony which can not be explained from the lower-order correlations.

Correlation Analysis Methods

Cross-correlogram

Perkel, 1967; Ahissar et al., 1992; Sakurai, 1993; Steinmetz, 2000; Sakurai and Takahashi, 2006; Fujisawa, 2008

Joint-PSTH

Gerstein and Perkel, 1969 Aertsen et al. 1989

Unitary Event Analysis

Riehle et al. 1997; Gruen, 2002

Test on statistical dependence of multiple neurons against the null-hypothesis of full independence

See Brown et al. 2004 for a review

None of them can trace the dynamics of correlations, incl. higher-order dependency.

Objective

• Estimation of the Time-dependent Higher-order Correlations in Parallel Spike Trains

Our approach:

State-space Analysis with the Log-linear Model

The Log-linear Model

Log-linear model for 2 neurons

$$\begin{array}{cccc}
 x_1 & x_2 \\
 0 & 0 \\
 1 & 0 \\
 0 & 1 \\
 1 & 1
 \end{array}$$

$$\log p_{00} = -\psi$$

$$\log p_{10} = -\psi + \theta_1$$

$$\log p_{01} = -\psi + \theta_2$$

$$\log p_{11} = -\psi + \theta_1 + \theta_2 + \theta_{12}$$

2 neurons
$$\log p(x_1, x_2) = -\psi + \theta_1 x_1 + \theta_2 x_2 + \theta_{12} x_1 x_2$$

2nd order correlation

3 neurons A full model
$$\log p(\mathbf{x} | \mathbf{\theta}) = -\psi + \sum_{i} \theta_{i} x_{i} + \sum_{i < j} \theta_{i,j} x_{i} x_{j} + \theta_{123} x_{1} x_{2} x_{3}$$

3rd order correlation

A pairwise model
$$\log p(\mathbf{x} | \mathbf{\theta}) = -\psi + \sum_{i} \theta_{i} x_{i} + \sum_{i < j} \theta_{i,j} x_{i} x_{j}$$

pairwise correlation

The higher-order parameters of the log-linear model indicate the higher-order correlations.

Orthogonal coordinates

$$p(\mathbf{x} \mid \mathbf{\theta}) = \exp(-\psi + \theta_1 x_1 + \theta_2 x_2 + \theta_{12} x_1 x_2)$$

P-coordinate

η-coordinate

 θ -coordinate

$$\begin{array}{cccc}
 x_1 & x_2 \\
 0 & 0 \\
 1 & 0 \\
 0 & 1 \\
 1 & 1
 \end{array}$$

$$egin{array}{c} p_{00} \ p_{10} \ p_{01} \ p_{11} \end{array}$$

$$\eta_1 = E[x_1] = p_{10} + p_{11}$$

$$\eta_2 = E[x_2] = p_{01} + p_{11}$$

$$\eta_{12} = E[x_1x_2] = p_{11}$$

$$\log p_{00} = -\psi \log p_{10} = -\psi + \theta_1 \log p_{01} = -\psi + \theta_2 \log p_{11} = -\psi + \theta_1 + \theta_2 + \theta_{12}$$

$$J(\eta_{i}, \theta_{12}) = E\left[\frac{\partial}{\partial \eta_{i}} \log p(x|\boldsymbol{\theta}) \frac{\partial}{\partial \theta_{12}} \log p(x|\boldsymbol{\theta})\right] = 0$$

 $(\eta_1, \eta_2, \theta_{12})$ is an orthogonal coordinate Amari 2001, Nakahara & Amari 2002.

State-space Analysis

Hidden State
$$\longrightarrow \theta_{t-1} \longrightarrow \theta_t \longrightarrow \theta_{t+1} \longrightarrow \bigcup$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \downarrow$$
Observation $\searrow_{t-1} \qquad \searrow_t \qquad \searrow_{t+1}$

State model (Gaussian)

$$\mathbf{\theta}_{t} = \mathbf{F}\mathbf{\theta}_{t-1} + \mathbf{\xi}_{t} \qquad \mathbf{\xi}_{t} \sim N(\mathbf{0}, \mathbf{Q}) \ \mathbf{\theta}_{1} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$$

Observation model (Log-linear)
$$p(\mathbf{y}_{1:T} \mid \mathbf{\theta}_{1:T}) = \prod_{t=1}^{T} \exp[n(\mathbf{y}_{t}^{T}\mathbf{\theta}_{t} - \psi)]$$

$$\mathbf{\theta}_{t} = \left[\theta_{1}^{t}, \dots, \theta_{N}^{t}, \theta_{12}^{t}, \theta_{13}^{t}, \dots, \theta_{123}^{t}, \dots, \theta_{1\dots N}^{t}\right]^{T}$$
 A vector of log-linear parameters.

 $\mathbf{w} = [\boldsymbol{\mu}, \boldsymbol{\Sigma}, \mathbf{Q}, \mathbf{F}]$ Hyper-parameters.

$$\mathbf{y}_{t} = \left[y_{1}^{t}, \dots, y_{N}^{t}, y_{12}^{t}, y_{13}^{t}, \dots, y_{123}^{t}, \dots, y_{1\dots N}^{t} \right]^{T}$$
 A vector of observation for synchronous spikes rate.

 $y_{123}^t = \{ \text{# of joint spikes of Neuron 1,2,3 occurred at time t} \} / n$ n The number of total trials.

Posterior density

Prior

Posterior
$$p\left(\mathbf{\theta}_{1:T} \mid \mathbf{y}_{1:T}, \mathbf{w}\right) = \frac{p\left(\mathbf{y}_{1:T} \mid \mathbf{\theta}_{1:T}\right) p\left(\mathbf{\theta}_{1:T} \mid \mathbf{w}\right)}{p\left(\mathbf{y}_{1:T} \mid \mathbf{w}\right)} \quad \mathbf{w} = [\mathbf{\mu}, \mathbf{\Sigma}, \mathbf{Q}, \mathbf{F}]$$

$$p\left(\mathbf{y}_{1:T} \mid \mathbf{w}\right) \quad \text{Evidence}$$
Hyper-parameter

$$\mathbf{w} = [\mu, \Sigma, \mathbf{Q}, \mathbf{F}]$$

MAP estimate from
$$p(\mathbf{\theta}_{1:T} \mid \mathbf{y}_{1:T}, \mathbf{w})$$

Firing rates and correlations Observed spiking activities

Here, w is optimized so that it maximizes the (marginal) likelihood:

$$p(\mathbf{y}_{1:T} \mid \mathbf{w}) = \int p(\mathbf{y}_{1:T}, \mathbf{\theta}_{1:T} \mid \mathbf{w}) d\mathbf{\theta}_{1:T}.$$

Solution: EM-algorithm

E-step: Obtain
$$p(\boldsymbol{\theta}_{1:T} | \mathbf{y}_{1:T}, \mathbf{w})$$
, given \mathbf{w}

via Recursive filtering/smoothing algorithm.

M-step: Optimize **W**, given $p(\mathbf{\theta}_{1:T} | \mathbf{y}_{1:T}, \mathbf{w})$

by maximizing the lower bound of evidence (Q-function).

Nonlinear Recursive Filtering Algorithm

Filter Distribution

Filter
$$p(\boldsymbol{\theta}_{t} | \boldsymbol{y}_{1:t}) = \frac{p(\boldsymbol{y}_{t} | \boldsymbol{\theta}_{t}, \boldsymbol{y}_{1:t-1}) p(\boldsymbol{\theta}_{t} | \boldsymbol{y}_{1:t-1})}{p(\boldsymbol{y}_{t} | \boldsymbol{y}_{1:t-1})} \quad \text{(Bayes' rule)}$$

$$\propto \exp \left[n(\boldsymbol{y}_{t}^{T} \boldsymbol{\theta}_{t} - \boldsymbol{\psi}_{t}) - \frac{1}{2} (\boldsymbol{\theta}_{t} - \boldsymbol{\theta}_{t|t-1})^{T} W_{t|t-1}^{-1} (\boldsymbol{\theta}_{t} - \boldsymbol{\theta}_{t|t-1}) \right]$$
Observation at time t (Log-linear distribution)

One-step prediction (Normal distribution)

Approximate the posterior by the Gauss distribution (Laplace's method) (ref. Smith & Brown, 2003)

Laplace Approximation

Filter density
$$p\left(\mathbf{\theta}_{t} \mid \mathbf{y}_{1:t}\right) \propto \exp\left[n\left(\mathbf{y}_{t}^{T}\mathbf{\theta}_{t} - \psi\left(\mathbf{\theta}_{t}\right)\right) - \frac{1}{2}\left(\mathbf{\theta}_{t} - \mathbf{\theta}_{t|t-1}\right)^{T}W_{t|t-1}^{-1}\left(\mathbf{\theta}_{t} - \mathbf{\theta}_{t|t-1}\right)\right]$$

gradient
$$\nabla f \equiv \nabla \log p\left(\mathbf{\theta}_{t} \mid \mathbf{y}_{1:t}\right) = -W_{t|t-1}^{-1}\left(\mathbf{\theta}_{t} - \mathbf{\theta}_{t|t-1}\right) + n\mathbf{y}_{t} - n\nabla \psi$$

Hessian
$$H \equiv \nabla \nabla \log p(\boldsymbol{\theta}_t | \mathbf{y}_{1:t}) = -W_{t|t-1}^{-1} - n\nabla \nabla \psi$$

Derivative of the log partition function yields cumulants:

Moment:
$$\partial_I \psi = E y_I = \eta_I$$
 $\nabla \psi = \mathbf{\eta}$

2nd order cumulant (Fisher metric):
$$\partial_I \partial_J \psi = E(y_I - Ey_I) E(y_J - Ey_J) = \eta_{I \cup J} - \eta_I \eta_J$$
 $\nabla \nabla \psi = G$

Filter Mode: Newton-Raphson method (Natural gradient method)

$$\mathbf{\theta}^{new} = \mathbf{\theta}^{old} + \varepsilon H^{-1} \nabla f$$

Filter Covariance:
$$-H^{-1} = -\left[-W_{t|t-1}^{-1} - nG\right]^{-1}$$

Summary of filtering algorithm

Filtering/Smoothing

One-step prediction

Mean

$$\mathbf{\theta}_{t|t-1} = \mathbf{F}\mathbf{\theta}_{t-1|t-1}$$

Shimazaki H., Amari S., Brown E. N., and Gruen S. Statespace Analysis on Time-varying Correlations in Parallel Spike Sequences. Proc. IEEE ICASSP2009

Covariance

$$W_{t|t-1} = \mathbf{F}W_{t-1|t-1}\mathbf{F}^T + \mathbf{Q}$$

Recursive Nonlinear Filtering

Mean

Dual coordinate to θ

$$\mathbf{\theta}_{t|t} = \mathbf{\theta}_{t|t-1} + nW_{t|t-1} \left[\mathbf{y}_t - \mathbf{\eta}_{t|t} \right]$$
Solved by

Newton-Raphson Method

Covariance

$$W_{t|t}^{-1} = W_{t|t-1}^{-1} + nG$$

One-step prediction Fisher Information

Observation error

Fixed Interval Smoothing

$$oldsymbol{ heta}_{t|K} = oldsymbol{ heta}_{t|t} + A_t igg\lceil oldsymbol{ heta}_{t+1|K} - oldsymbol{ heta}_{t+1|t} igg
centcap A_t = W_{t|t} F^T W_{t+1|t}^{-1}$$

$$A_{t} = W_{t|t} F^{T} W_{t+1|t}^{-1}$$

$$W_{t|K} = W_{t|t} + A_{t} \left\lceil W_{t+1|K} - W_{t+1|t}
ight
ceil A_{t}^{T}$$

Results: 2 Neurons (Simulated)

Synchrony between two neurons is resolved into either a pairwise correlation or a chance coincidence.

Results: Simultaneous Pairwise Analysis

Simultaneous analysis resolves the pairwise dependency of 8 neurons.

Results: Triple-wise interaction

Time-dependent triple-wise interaction is estimated under time-varying firing rates and pairwise correlations.

Application to Three MI neurons

Riehle, Grün, Diesmann, Aertsen *Science* 278: 1950-1953, 1997.

Application to Three MI neurons

Science 278: 1950-1953, 1997.

Bin-width dependence

Gradual increase of a triple-wise interaction during the PP is observed in larger bin-width (5 ms).

Testing spike correlations in nonstationary data

Marginal likelihood ratio (Bayes factor) (Jeffrey 61, Kass&Raftery 95)

$$B_{12}(\mathbf{y}_{a:b}) = \frac{p(\mathbf{y}_{a:b} \mid M_1)}{p(\mathbf{y}_{a:b} \mid M_2)} = \prod_{t=a}^{b} \underbrace{\frac{\int_{S_1} p(\mathbf{\theta}_t \mid \mathbf{y}_{1:t}) d\mathbf{\theta}_t}{\int_{S_2} p(\mathbf{\theta}_t \mid \mathbf{y}_{1:t}) d\mathbf{\theta}_t}}_{\text{Filter Odds}} / \underbrace{\frac{\int_{S_1} p(\mathbf{\theta}_t \mid \mathbf{y}_{1:t-1}) d\mathbf{\theta}_t}{\int_{S_2} p(\mathbf{\theta}_t \mid \mathbf{y}_{1:t-1}) d\mathbf{\theta}_t}}_{\text{Prediction Odds}}$$

Models for latent signals (spike interactions)

Test for a triple-wise interaction

Use a triple-wise model:

$$\log p\left(\mathbf{x} \mid \mathbf{\theta}\right) = \sum_{i} \theta_{i} x_{i} + \sum_{i < j} \theta_{ij} x_{i} x_{j} + \theta_{123} x_{1} x_{2} x_{3} - \psi$$

$$M_1: \theta_{123} > 0 \ M_2: \theta_{123} \le 0$$

$$\theta_i, \theta_{ij} \in \Re \text{ for } i, j = 1, 2, 3$$

$$B_{12}(\mathbf{y}_{a:b}) > 1$$
 supports Model 1.

$$B_{12}(\mathbf{y}_{a:b}) \le 1$$
 supports Model 2.

Weight of Evidence (Good, 1985)

$$\log_2 B_{12}(\mathbf{y}_{a:b}) > 0$$
 supports Model 1.

$$\log_2 B_{12}(\mathbf{y}_{a:b}) \le 0$$
 supports Model 2.

How to compute the weight of evidence

$$\log_{2} B_{12}(\mathbf{y}_{a:b}) = \sum_{t=a}^{b} \log_{2} \frac{\int_{S_{1}} p(\mathbf{\theta}_{t} | \mathbf{y}_{1:t}) d\mathbf{\theta}_{t}}{\int_{S_{2}} p(\mathbf{\theta}_{t} | \mathbf{y}_{1:t}) d\mathbf{\theta}_{t}} / \underbrace{\frac{\int_{S_{1}} p(\mathbf{\theta}_{t} | \mathbf{y}_{1:t-1}) d\mathbf{\theta}_{t}}{\int_{S_{2}} p(\mathbf{\theta}_{t} | \mathbf{y}_{1:t-1}) d\mathbf{\theta}_{t}}}_{\text{Filter Odds}}$$
Filter Odds

Prediction Odds

Change in odds by observing a spike pattern leads to the BF larger or smaller than 1.

Sequential computation of the BF during preparation period

The weight of evidence during the preparatory period is 18.08 [bit].

Testing a triple-wise spike correlation

95% confidence interval

Observed BF -20 -10 0 $\log B_{12}(\mathbf{y}_{ab})$

- 1. Select a behaviorally relevant period.
- 2. Apply a full LLSS. Compute the BF.
- 3. Compute the surrogate BF for a triple-wise correlation.

The surrogate BF was generated under the null hypothesis of no triple-wise correlation:

- Fit a pairwise LLSS model to the data.
- Resample spikes from the fitted model.
- Compute the BF of the resampled data.
- 4. Obtain CDF of surrogate BFs.
- 5. Find 95% confidence bound, and compare it with an empirical BF.

Bin-width dependence

The data supports presence of excess synchronous spiking activities of 3 and 5 ms precision during the PP that can not be explained by pairwise correlations.

Detailed analysis

Triple-wise spike correlation was detected in late stage of the PP.

On the across-trial nonstationarity

Our results indicate that the three neurons that expresses simultaneous spikes with a precision of 3 or 5 ms are involved in a single functional assembly that can not be explained by pair interactions, and that this assembly is dynamically organized during the PP, especially in the later sessions of an experiment.

Summary

Toward detection of dynamic assembly activities in relation to behavior, we

- Constructed state-space model of time-varying higher-order spike correlations
- (Validated the inclusion of higher-order correlation by model selection.)
- Tested the evidence of the higher-order spike correlation.
- Applied the methods to small subset neurons from an awake monkey, and demonstrated that the higher-order correlation organizes in relation to behavior.

Acknowledgement:

We thank B. Staude, S. Koyama, Z. Chen, D. Ba, K. Sadeghi, and T. Toyoizumi for helpful discussion. We also thank Diesmann Unit for computing environment.