

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

22 de Mayo de 2022

Definición.

Una sucesión de números reales es una función $f: \mathbb{N} \to \mathbb{R}$ que asocia a cada número natural n un número real $f(n) = f_n$, llamado el n-ésimo término de la sucesión.

Una sucesión es una lista de números que podemos escribir como

$$f(1), f(2), f(3), \ldots, f(n), \ldots$$

en donde los puntos indican que la lista continua.

Cuando no sea confuso, nos referiremos a dicha sucesión utilizando la expresión $\{f_n\}$ (con el entendimiento de que el índice n varía sobre todos los números naturales). También se usa la notación $\{f_n\}_{n\in\mathbb{N}}$.

EJEMPLO 1 La sucesión cuyos términos son

$$1, 1, 1, 1, \ldots, 1, \ldots$$

es la sucesión $x_n : \mathbb{N} \to \mathbb{R}$ dada por $x_n = 1$.

EJEMPLO 2 La sucesión de naturales pares

$$2, 4, 6, 8, 10, \dots$$

Podemos comunicar esta sucesión de tres maneras distintas:

- Podría comunicarse precisamente de esa manera: "Considere la sucesión de naturales pares".
- ② Quizás más directo sería dar una fórmula para todos los términos de la sucesión: "Considere la sucesión cuyo enésimo término es $x_n = 2n$."
- O de forma recursiva: "Considere la sucesión cuyo primer término es 2 y cuyo enésimo término es 2 más el (n-1)-énimo término", es decir, $x_n = 2 + x_{n-1}$.

EJEMPLO 3 El número factorial es una sucesión que se define de manera recursiva:

$$0! = 1$$
, $1! = 1$, $n! = n \cdot (n-1)!$.

Observación A menudo, una fórmula explícita es la mejor. Sin embargo, con frecuencia, es preferible una fórmula que relacione el enésimo término con algún término precedente. Dichas fórmulas se llaman fórmulas de recursión y generalmente serán más eficientes si se usa una computadora para generar los términos.

EJEMPLO 4 Progresión aritmética. Una sucesión que es bastante sencilla es aquella en que cada término se obtiene a partir del termino anterior sumando una cantidad fija. Estas son llamadas progresiones aritméticas. La sucesión

$$c, c + d, c + 2d, c + 3d, c + 4d, \dots, c + (n-1)d, \dots$$

es una progresión aritmética general. El número d es llamado la diferencia de la progresión.

Por ejemplo, si c=3 y d=5 entonces los términos de la sucesión son

$$3, 8, 13, 18, \dots$$

El n-ésimo término de esta sucesión es

$$x_n = c + (n-1) \cdot d = 3 + (n-1) \cdot 5 = 5n-2$$
.

Toda progresión aritmética se puede escribir por la fórmula

$$x_n = c + (n-1)d$$

o con la fórmula recursiva

$$x_1 = c$$
, $x_n = x_{n-1} + d$.

EJEMPLO 5 Progresión Geométrica. Una variante de la progresión aritmética se obtiene reemplazando la adicción de una cantidad fija por la multiplicación de una cantidad fija. Estas sucesiones son llamadas progresiones geométricas. La sucesión

$$c, cr, cr^2, cr^3, cr^4, \ldots, cr^{n-1}, \ldots$$

es una progresión geométrica general. El número r es llamado la razón de la progresión geométrica.

Por ejemplo, si c=3 y $r=\frac{1}{2}$, entonces los términos de la sucesión son

$$3, \frac{3}{2}, \frac{3}{4}, \frac{3}{8}, \dots, \frac{3}{2^{n-1}}, \dots$$

El término general de la sucesión es

$$x_n = 3\left(\frac{1}{2}\right)^{n-1} .$$

Toda progresión geométrica se puede escribir por la fórmula

$$x_n = cr^{n-1}$$

o por la fórmula recursiva

$$x_1 = c$$
, $x_n = r \cdot x_{n-1}$.

EJEMPLO 6 Iteración. Los ejemplos de progresiones aritméticas y geométricas son un caso especial de una proceso llamado iterativo. Sea $f:X\to\mathbb{R}$ una función real y $c\in X$. Definimos la sucesión iterativa cuyos términos son

$$c, f(c), f(f(c)), f(f(f(c))), f(f(f(f(c)))), \dots$$

Si f es una función de la forma f(x) = x + b, entonces el resultado de esta iteración es una progresión aritmética. Si f es una función de la forma f(x) = ax, entonces el resultado de esta iteración es una progresión geométrica.

Una fórmula recursiva que representa este proceso iterativo es

$$x_1 = c$$
, $x_n = f(x_{n-1})$.

Por ejemplo, si $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x y tomamos $c = \frac{1}{2}$. Realizando las iteraciones obtenemos

$$x_{1} = c = \frac{1}{2}$$

$$x_{2} = f(c) = f(\frac{1}{2}) = 2(\frac{1}{2}) = 1$$

$$x_{3} = f(x_{2}) = f(1) = 2$$

$$x_{4} = f(x_{3}) = f(2) = 4$$

$$\vdots$$

$$x_{n} = \frac{1}{2} \cdot 2^{n-1}$$

lo cual es una progresión geométrica.

Definición.

Dada una sucesión $\{x_n\}$ podemos construir una nueva sucesión sumando los términos

$$s_1 = x_1$$

 $s_2 = x_1 + x_2$
 $s_3 = x_1 + x_2 + x_3$
 $s_4 = x_1 + x_2 + x_3 + x_4$
 \vdots

El proceso se puede escribir por la fórmula recursiva:

$$s_1 = x_1$$
, $s_n = s_{n-1} + x_n$.

La nueva sucesión es llamada la **sucesión de sumas parciales** de la sucesión $\{x_n\}$.

EJEMPLO 7 Considere la sucesión $x_n = \left(\frac{1}{2}\right)^n$. La sucesión de sumas parciales para esta sucesión es

$$s_{1} = x_{1} = \frac{1}{2}$$

$$s_{2} = x_{1} + x_{2} = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$s_{3} = x_{1} + x_{2} + x_{3} = s_{2} + x_{3} = \frac{3}{4} + \frac{1}{8} = \frac{7}{8}$$

$$s_{4} = x_{1} + x_{2} + x_{3} + x_{4} = s_{3} + x_{4} = \frac{7}{8} + \frac{1}{16} = \frac{15}{16}$$

$$\vdots$$

El término general de la sucesión de sumas parciales es

$$s_n=\frac{2^n-1}{2^n}.$$