第二章 线性规划(linear programming)的 基本性质

LP的标准形式

- 1、极小化型
- 2、约束方程为等式
- 3、所有的决策变量为非负值

min
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t $\sum_{j=1}^{n} a_{ij} x_j = b_i$ $i = 1, \dots, m$
 $x_j \ge 0$ $j = 1, \dots, n$

$$\begin{array}{lll}
\min & z = cx & c_{1 \times n} \\
s.t. & Ax = b & A_{m \times n} & b_{m \times 1} \\
& x \ge 0 & x_{n \times 1}
\end{array}$$

• 非标准型LP模型转化为标准型LP模型

一、目标函数是极大化的转化

例: max
$$z = 3x_1 + 2x_2 - 7x_3$$

等价变换: $\Diamond z' = -z$,

则目标函数转换为→

$$z' = -3x_1 - 2x_2 + 7x_3$$

 $\max z \Rightarrow \min z'$

- 二、约束方程为不等式的转换
- 1、约束方程为≤

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \le b_i$$

等价干

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n + y_i = b_i$$

 $y_i \ge 0$ y_i 称为松弛变量(slack variable)

2、约束方程为≥

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n \ge b_i$$

等价干

$$a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n - y_i = b_i$$

 $y_i \ge 0$ y_i 称为剩余变量(surplus variable)³

三、决策变量x_j无非负限制的转换

如: x_j 无非负约束

引入
$$x'_j \ge 0, x''_j \ge 0,$$
 令 $x_j = x'_j - x''_j$

四、决策变量有上下界的转换

 $x_2 = x_2' - x_2'', x_3' = x_3 - 1$

如:
$$1 \le x_3 \le 5, \rightarrow x_3 \ge 1, x_3 \le 5$$

 $\Rightarrow x_3' = x_3 - 1, 则 x_3' \ge 0, x_3' \le 4$

例:
$$\max z = 3x_1 - 2x_2 + x_3$$
 $\min \overline{z} = -3x_1 + 2(x_2' - x_2'') - (x_3' + 1)$ s.t $x_1 + x_2 \le 7$ s.t $x_1 + (x_2' - x_2'') + x_4 = 7$ $x_1 - x_2 + x_3 \ge 5$ $x_1 - (x_2' - x_2'') + x_3' - x_5 = 4$ $1 \le x_3 \le 6$ $x_1 \ge 0, x_2$ 无非负约束 $x_3' + x_6 = 5$ $x_1, x_2', x_2'', x_3', x_4, x_5, x_6 \ge 0$ $\Rightarrow : \overline{z} = -3x_1 + 2x_2 - x_3$, $x_1, x_2', x_2'', x_3', x_4, x_5, x_6 \ge 0$

五. 含有绝对值

规划问题为

$$\min |x_1| + |x_2| + \cdots + |x_n|$$

s.t.
$$Ax \leq b$$

其中 $x = (x_1, x_2, \dots, x_n)^T$, A, b为相应维数的矩阵和向量

解: 取
$$u_i = \frac{x_i + |x_i|}{2}$$
, $v_i = \frac{|x_i| - x_i}{2}$

$$\text{III} \ u_i, v_i \ge 0, \ x_i = u_i - v_i, \ |x_i| = u_i + v_i$$

记
$$u = (u_1, u_2, \dots, u_n)^T, v = (v_1, v_2, \dots, v_n)^T$$

min
$$(u_1 + v_1) + (u_2 + v_2) + \dots + (u_n + v_n)$$

$$s.t.$$
 $A(u-v)+w=b$

$$u, v, w \ge 0$$

两变量线性规划问题的图解法

- 1.线性不等式的几何意义—半平面
- 2.图解法步骤
 - 1) 作出LP问题的可行域
 - 2) 作出目标函数的等值线
 - 3) 移动等值线到可行域边界得到最优点

例 max $Z = 2x_1 + 3x_2$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 & \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

做目标函数 $2x_1+3x_2$ 的等值线,与阴影部分的边界相交于Q(4,2)点,Q点为最优解。

例

$$\max Z = 6x_1 + 4x_2$$

$$2x_1 + x_2 \le 10$$

$$x_1 + x_2 \le 8$$

$$x_2 \le 7$$

$$x_1, x_2 \ge 0$$

最优解:
$$x_1 = 2$$

 $x_2 = 6$
 $Z = 36$

结论: <u>若LP问题存在最优解,则必在</u>可行域的某个极点上找到。

一般的,当等值线沿目标函数法向量方向平行移动时,目标函数值逐步增加;当等值线沿目标函数法向量反方向平行移动时,目标函数值逐步减少。

二、几种特殊情况

1、LP存在多个最优解

 \mathbf{X}_2

150

结论:以z为参数的直线族与可行域某一条边平行,

最终重合,则该LP存在多个最优解。

2、LP问题无可行解

例:
$$\min z = -10x_1 - 12x_2$$

$$s.t \quad 5x_1 + 6x_2 \ge 900 \quad l_1$$

$$2x_1 + 3x_2 \le 300 \quad l_2$$

 $x_1, x_2 \ge 0$

结论: 若LP的可行域为空集,则该LP问题 无可行解。

3、LP问题存在无界解

例:
$$\min z = -3x_1 - 4x_2$$

s.t $x_1 \leq 3$

 l_1

$$x_1 - x_2 \le 1$$
 l_2

$$x_1, x_2 \ge 0$$

判断: 若LP的可行域无界,则该LP可能存在无界解。

3. 图解法的作用

- 能解决少量问题
- •揭示了线性规划问题的若干规律规律1:

 有可行解
 有最优解
 唯一解

 LP问题
 无可行解(无解)

思考题

己知LP问题如下:

$$\max z = c_1 x_1 + c_2 x_2$$

$$s.t \qquad 5x_2 \le 15$$

$$6x_1 + 2x_2 \le 24$$

$$x_1 + x_2 \le 5$$

$$x_1, x_2 \ge 0$$

$$(2,3)$$

$$(0,3)$$

$$(0,0)$$

$$(0,0)$$

$$(0,0)$$

D (3.5,1.5)

E(4,0)

第二节 LP问题的基本性质

一、可行解

满足LP模型的约束条件且满足非负条件的解。

例:
$$\max z = 3x_1 + 2x_2$$

$$\begin{aligned}
 s.t & x_1 + 3x_2 \ge 6 \\
 x_1 - 2x_2 \le 4 \\
 x_1, x_2 \ge 0
 \end{aligned}$$

判断 $X = (5 \ 1)^T$, $X = (-1 \ 3)^T$, $X = (2 \ 1)^T$ 是否为可行解?

定理1:线性规划的可行域是凸集。

二. 最优极点

考虑标准形式:
$$\begin{cases} \min & cx \\ s.t. & Ax = b \\ & x \ge 0 \end{cases}$$

设可行域 $S = \{x \mid Ax = b, x \ge 0\} \ne \emptyset$.

极点: $x^{(1)}, x^{(2)}, \dots, x^{(k)}$

极方向: $d^{(1)}, d^{(2)}, \dots, d^{(l)}$.

由表示定理,对任意 $x \in S$

$$x = \sum_{j=1}^{k} \lambda_{j} x^{(j)} + \sum_{j=1}^{l} \mu_{j} d^{(j)}$$

$$\sum_{j=1}^{k} \lambda_j = 1, \quad \lambda_j \ge 0, j = 1, \dots, k$$

$$\mu_j \geq 0, j = 1, \dots, l.$$

$$\begin{cases} \text{m in } \sum_{j=1}^{k} \lambda_{j} c x^{(j)} + \sum_{j=1}^{l} \mu_{j} c d^{(j)} = f(\lambda, \mu) \\ s.t. & \sum_{j=1}^{k} \lambda_{j} = 1 \\ \lambda_{j} \geq 0, j = 1, \dots, k \\ \mu_{j} \geq 0, j = 1, \dots, l. \end{cases}$$

- (1) 若存在j,使得 $cd^{(j)} < 0$,则 $f(\lambda, \mu) \rightarrow -\infty$,即该问题无界.
- (2)对任意 $j, cd^{(j)} \ge 0, \Leftrightarrow \mu_i = 0, j = 1, \dots, l.$ 得

$$(2) 对 任 意 j, cd^{(j)} \ge 0, \diamondsuit \mu$$

$$\begin{cases} m \text{ in } \sum_{j=1}^{k} \lambda_{j} cx^{(j)} \\ s.t. & \sum_{j=1}^{k} \lambda_{j} = 1 \\ \lambda_{j} \ge 0, j = 1, \cdots, k \end{cases}$$

$$\Leftrightarrow cx^{(p)} = \min_{1 \le j \le k} cx^{(j)}, \text{则}$$

令
$$cx^{(p)} = \min_{1 \le j \le k} cx^{(j)}$$
,则 当 $\lambda_p = 1, \lambda_j = 0 (j \ne p)$ 时, $f(\lambda, \mu) = cx^{(p)}$ 最小。

对任意 $x \in S$,由于

$$cx = \sum_{j=1}^{k} \lambda_{j} cx^{(j)} + \sum_{j=1}^{l} \mu_{j} cd^{(j)}$$

$$\geq \sum_{j=1}^{k} \lambda_{j} cx^{(j)} \geq \sum_{j=1}^{k} \left(cx^{(p)} \right) \lambda_{j}$$

$$\geq \left(cx^{(p)} \right) \sum_{j=1}^{k} \lambda_{j} = cx^{(p)}$$

所以,极点 $x^{(p)}$ 是原问题的最优解。

- 定理2. 设线性规划(L)的可行域非空,则
 - (1) (L)存在最优解的充要条件是对任意的j, $cd^{(j)} \ge 0$, 其中 $d^{(j)}$ 为可行域的极方向。
 - (2) 若(L)存在最优解,则目标函数的最优值可在某个极点达到。

三、基和基本解

min z = cx $c_{1\times n}$ s.t. Ax = b $A_{m\times n}$ $(n \ge m)$ $b_{m\times 1}$ $x \ge 0$ $x_{n\times 1}$ 接列分块 (P_1, P_2, \dots, P_n) Ax = b 等价于 $P_1x_1 + P_2x_2 + \dots + P_nx_n = b$

1、系数矩阵A中任意m列所组成的m阶可逆子方阵B,称为(LP)的一个基(矩阵),变量 x_j ,若它所对应的列 P_j 包含在基B中,则称 x_j 为基变量,否则称为非基变量。基变量的全体称为一组基变量,记

$$X_{B_1}, X_{B_2}, \cdots, X_{B_m}$$
.

基矩阵的个数最多为
$$C_n^m = \frac{n!}{m!(n-m)!}$$

(2) 设
$$A = [B \ N]$$
,其中 $r(B) = m$,设 $x = \begin{bmatrix} x_B \\ x_N \end{bmatrix}$.

由
$$Ax = b$$
得, $Bx_B + Nx_N = b$

$$\Rightarrow x_B = B^{-1}b - B^{-1}Nx_N$$

B称为可行基矩阵, $x_{B_1}, x_{B_2}, \dots, x_{B_m}$ 为一组可行基。

(4) $若B^{-1}b > 0$,则称基本可行解是非退化的,否 则称为退化的。

例: $\begin{cases} x_1 + 3x_2 \ge 6 \\ x_1 - 2x_2 \le 4 \end{cases}$ 引入松弛变量化为

基矩阵为:

$$B_{1} = \begin{pmatrix} 1 & 3 \\ 1 & -2 \end{pmatrix} \qquad B_{2} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix} \qquad B_{3} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$B_{4} = \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix} \qquad B_{5} = \begin{pmatrix} 3 & 0 \\ -2 & 1 \end{pmatrix} \qquad B_{6} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}_{22}$$

$$\begin{cases} x_1 + 3x_2 - x_3 = 6 \\ x_1 - 2x_2 + x_4 = 4 \end{cases}$$

求基本解。

(1)
$$B_1 = \begin{pmatrix} 1 & 3 \\ 1 & -2 \end{pmatrix}$$
 $B_1^{-1} = -\frac{1}{5} \begin{pmatrix} -2 & -3 \\ -1 & 1 \end{pmatrix}$

$$B_1^{-1}b = -\frac{1}{5} \begin{pmatrix} -2 & -3 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} = \begin{pmatrix} \frac{24}{5} \\ \frac{2}{5} \end{pmatrix}$$

:. 基本解为
$$x^{(1)} = \left(\frac{24}{5}, \frac{2}{5}, 0, 0\right)^{T}$$
.

或 $B_1X_{B_1}=b$

$$\begin{pmatrix} 1 & 3 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \end{pmatrix} \stackrel{\text{ій} \cap \text{EEP}}{\Rightarrow} \begin{pmatrix} 1 & 3 & 6 \\ 1 & -2 & 4 \end{pmatrix} \stackrel{\text{id} \oplus \text{EEP}}{\Rightarrow} \begin{pmatrix} 1 & 3 & 6 \\ 0 & -5 & -2 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 3 & 6 \\ 0 & 1 & 2/5 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 & 24/5 \\ 0 & 1 & 2/5 \end{pmatrix} \qquad x_1 = 24/5 \qquad x_2 = 2/5$$

$$x^{(1)} = \left(\frac{24}{5} \quad \frac{2}{5} \quad 0 \quad 0\right)^T x^{(2)} = (4 \quad 0 \quad -2 \quad 0)^T \quad x^{(3)} = (6 \quad 0 \quad 0 \quad -2)^T$$

$$x^{(4)} = (0 -2 -12 \ 0)^T \ x^{(5)} = (0 \ 2 \ 0 \ 8)^T \ x^{(6)} = (0 \ 0 \ -6 \ 4)^T$$

只有x⁽¹⁾和x⁽⁵⁾为基本可行解。

线性规划标准型问题解的关系

可行解、基本解和基本可行解举例

$$\max Z = 6x_1 + 4x_2$$

$$2x_1 + x_2 \le 10$$

$$x_{2} \le 7$$

$$x_1, x_2 \ge 0$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\min Z = -6x_1 - 4x_2$$

$$\begin{cases} 2x_1 + x_2 \le 10 \\ x_1 + x_2 \le 8 \\ x_2 \le 7 \\ x_1, x_2 \ge 0 \end{cases}$$
 s.t.
$$\begin{cases} 2x_1 + x_2 + x_3 = 10 \\ x_1 + x_2 + x_4 = 8 \\ x_2 + x_5 = 7 \\ x_1, x_2, x_3, x_4, x_5 \ge 0 \end{cases}$$

$$x_1 + x_2 + x_4 = 8$$

$$x_2 + x_5 = 7$$

$$x_1, x_2, x_3, x_4, x_5 \ge 0$$

可行解、基本解和基本可行解举例

非基 变量	基变量				图中的点 解
x_1, x_2	$x_3 = 10$	$x_4 = 8$	$x_5 = 7$	0	基本可行解
x_1, x_3	$x_2 = 10$	$x_4 = -2$	$x_5 = -3$	F	基本解
x_1, x_4	$x_2 = 8$	$x_3 = 2$	$x_5 = -1$	E	基本解
x_1, x_5	$x_2 = 7$	$x_3 = 3$	$x_4 = 1$	A	基本可行解
x_2, x_3	$x_1 = 5$	$x_4 = 3$	$x_5 = 7$	D	基本可行解
x_2, x_4	$x_1 = 8$	$x_3 = -6$	$x_5 = 7$	H	基本解
x_3, x_4	$x_1 = 2$	$x_2 = 6$	$x_5 = 1$	C	基本可行解
					最优解
$\overline{x_3, x_5}$	$x_1 = 1.5$	$x_2 = 7$	$x_4 = -0.5$	G	基本解
x_4, x_5	$x_1 = 1$	$x_2 = 7$	$x_3 = 1$	B	基本可行解
$x_1=2, x_2=2, x_3=4, x_4=4, x_5=3$				K	可行解
					27

三. 基本可行解与极点之间的关系

引理: 可行解 $_x$ 是基本可行解 $_{\Leftrightarrow x}$ 的非零分量所对应的 $_{A}$ 的列向量线性无关。

证明: 不妨设x的前k个分量为正分量

$$\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_k, 0, \dots, 0)^T, \overline{x}_j > 0, j = 1, \dots, k.$$

"⇒"x是基本可行解,则取正值的变量必为基变量,它们对应的列向量 P_1, P_2, \dots, P_k 为基向量,所以线性无关。

" \leftarrow "设 P_1, P_2, \dots, P_k 线性无关,则 $k \le m$.因为x是可行解,所以有

$$P_1 \overline{x_1} + P_2 \overline{x_2} + \dots + P_k \overline{x_k} = b$$

若k = m,则 $B = (P_1, P_2, \dots, P_k)$ 就是基.

则B是基,且 $P_1 \bar{x}_1 + P_2 \bar{x}_2 + \dots + P_m \bar{x}_m + \dots + P_n \bar{x}_n = b$.

所以,x是相应于B的基本可行解。

定理2设S是(L)的可行域, $x \in S$,则x是S的极点 $\Leftrightarrow x$ 是(L)的基本可行解。

证明: "⇒"设 $\overline{x} = (\overline{x}_1, \dots, \overline{x}_k, \overline{x}_{k+1}, \dots, \overline{x}_n)^T$ 是S的极点,其中 $\overline{x}_j > 0, j = 1, \dots, k,$

 $\overline{x}_j = 0, j = k+1, \dots, n$. 设 \overline{x}_j 对应的列向量为 P_j ,则 P_1, P_2, \dots, P_k 线性无关.

否则,存在不全为0的数 y_1, y_2, \dots, y_k ,使得

$$y_1 P_1 + y_2 P_2 + \dots + y_k P_k = 0$$

因为 $\bar{x}_j > 0$, $j = 1, 2, \dots, k$, 所以,当 λ 充分小时,有 $x^{(1)} \ge 0$, $x^{(2)} \ge 0$ 。

由于 $\bar{x} \in S$, 因此 $A\bar{x} = b$,即 $\bar{x}_1P_1 + \bar{x}_2P_2 + \dots + \bar{x}_kP_k = b$.

$$\mathbb{A}x^{(1)} = (P_1, P_2, \dots, P_k, P_{k+1}, \dots, P_n)(\bar{x}_1 + \lambda y_1, \dots, \bar{x}_k + \lambda y_k, 0, \dots, 0)^T
= (\bar{x}_1 P_1 + \bar{x}_2 P_2 + \dots + \bar{x}_k P_k) + \lambda (y_1 P_1 + y_2 P_2 + \dots + y_k P_k) = b$$

同理可证 $Ax^{(2)} = b$

所以,
$$x^{(1)}$$
, $x^{(2)} \in S$,且 $x^{(1)} \neq x^{(2)}$,但 $\overline{x} = \frac{1}{2}x^{(1)} + \frac{1}{2}x^{(2)}$

与x是极点矛盾,所以 P_1, P_2, \dots, P_k 线性无关,由引理,x是基本可行解。

定理2设S是(L)的可行域, $x \in S$,则x是S的极点 $\Leftrightarrow x$ 是(L)的基本可行解。 " \Leftarrow "已知x是 $Ax = b, x \ge 0$ 的基本可行解,即

$$\overline{x} = \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} \ge 0.$$

假设存在 $x^{(1)}, x^{(2)} \in S$ 及 $\lambda \in (0,1)$ 使得 $x = \lambda x^{(1)} + (1-\lambda)x^{(2)}$.

设
$$x^{(1)} = \begin{pmatrix} x_B^{(1)} \\ x_N^{(1)} \end{pmatrix}$$
, $x^{(2)} = \begin{pmatrix} x_B^{(2)} \\ x_N^{(2)} \end{pmatrix}$, 则有

$$\begin{pmatrix} B^{-1}b \\ 0 \end{pmatrix} = \lambda \begin{pmatrix} x_B^{(1)} \\ x_N^{(1)} \end{pmatrix} + (1-\lambda) \begin{pmatrix} x_B^{(2)} \\ x_N^{(2)} \end{pmatrix} = \begin{pmatrix} \lambda x_B^{(1)} + (1-\lambda) x_B^{(2)} \\ \lambda x_N^{(1)} + (1-\lambda) x_N^{(2)} \end{pmatrix}$$

$$0 = \lambda x_N^{(1)} + (1 - \lambda) x_N^{(2)}$$

$$x^{(1)}, x^{(2)} \in S$$
, $x^{(1)}, x^{(2)} \ge 0$ 又因为 $\lambda, 1 - \lambda > 0$,所以 $x^{(1)} = x^{(2)} = 0$ 。

$$x^{(1)}, x^{(2)} \in S, \quad \therefore \quad Ax^{(1)} = b, Ax^{(2)} = b$$

即
$$Bx_B^{(1)} + Nx_N^{(1)} = b$$
且 $Bx_B^{(2)} + Nx_N^{(2)} = b$ 因此有 $x_B^{(1)} = B^{-1}b$ 所以 $\overline{x} = x^{(1)} = x^{(2)}$,即 \overline{x} 是极点。

例:
$$\begin{cases} x_1 + x_2 \le 10 \\ x_1 \le 10 \end{cases} = \begin{cases} x_1 + x_2 \le 10 \end{cases}$$

$$\begin{cases} x_1 + x_2 \le 10 \\ x_1 \le 10 \end{cases} \implies \begin{cases} x_1 + x_2 + x_3 = 10 \\ x_1 + x_4 = 10 \\ x_1, x_2 \ge 0 \end{cases}$$

$$B_1 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \quad B_3 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

$$B_4 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B_5 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \begin{array}{c} x_1, x_3 \\ \end{array}$$

$$x_2, x_4$$

$$x_3, x_4$$

$$x^{(1)} = x^{(2)} = x^{(3)} = (10, 0, 0, 0)^T$$

$$x^{(4)} = (0,10,0,10)^T, x^{(5)} = (0,0,10,10)^T$$

定理3 设 $S = \{x \mid Ax = b, x \ge 0\}$ 的方向d有k个非零分量,则d是S的极方向 \Leftrightarrow d的非零分量所对应的A的列向量组的秩为k-1

证明: $(c) = m, : k \le m+1.$

设d的非零分量为 $d_1, d_2, \dots, d_{k-1}, d_{m+1}$,使得 P_1, P_2, \dots, P_{k-1} 线性无关,则这k-1个向量可以扩充为一组基,设 $B = (P_1, P_2, \dots, P_m), r(B) = m$. 设存在S的方向 $d^{(1)}, d^{(2)}$ 及 λ_1 , $\lambda_2 > 0$ 使得 $d = \lambda_1 d^{(1)} + \lambda_2 d^{(2)}$ 则 $d^{(1)}, d^{(2)}$ 的后n-m-1个分量为0,故可设

$$d^{(1)} = \begin{pmatrix} d_B^{(1)} \\ d_{m+1}^{(1)} \\ 0 \end{pmatrix}, \quad d^{(2)} = \begin{pmatrix} d_B^{(2)} \\ d_{m+1}^{(2)} \\ 0 \end{pmatrix}$$

曲 $Ad^{(1)}=0, Ad^{(2)}=0$ 知

$$Bd_{B}^{(1)} + d_{m+1}^{(1)}P_{m+1} = 0$$

$$Bd_{B}^{(2)} + d_{m+1}^{(2)}P_{m+1} = 0$$

$$d_{B}^{(1)} = -d_{m+1}^{(1)}B^{-1}P_{m+1}$$

$$d_{B}^{(2)} = -d_{m+1}^{(2)}B^{-1}P_{m+1}$$

若 $d_{m+1}^{(1)} = 0$, 则 $d_B^{(1)} = 0$ \Rightarrow $d^{(1)} = 0$ 与 $d^{(1)}$ 是方向矛盾.

所以,
$$d_{m+1}^{(1)} > 0$$
,同理, $d_{m+1}^{(2)} > 0$, ∴ $d^{(1)} = \frac{d_{m+1}^{(1)}}{d_{m+1}^{(2)}} d^{(2)}$

即 $d^{(1)}$, $d^{(2)}$ 是相同的方向,所以,d为极方向.

定理3 设 $S = \{x \mid Ax = b, x \ge 0\}$ 的方向d有k个非零分量,则d是S的极方向 \Leftrightarrow d的非零分量所对应的A的列向量组的秩为k-1

"⇒"设d为极方向,且 $d_{m+1} > 0$.

$$(1) k = 1$$
,则由 $Ad = 0$ 得 $d_{m+1}P_{m+1} = 0$,因此 $P_{m+1} = 0$,结论成立。

$$(2)$$
 $k > 1$.设 $d_1, \dots, d_{k-1} > 0, d = (d_1, \dots, d_{k-1}, 0, \dots, 0, d_{m+1}, 0, \dots, 0)^T$.

曲
$$Ad = 0$$
, 得 $d_1P_1 + \cdots + d_{k-1}P_{k-1} + d_{m+1}P_{m+1} = 0$,

因此, $P_1, \dots, P_{k-1}, P_{m+1}$ 线性相关。

 $若P_1, \dots, P_{k-1}$ 线性相关,则存在不全为0的数 y_1, \dots, y_{k-1} ,使得

$$y_1P_1 + y_2P_2 + \dots + y_{k-1}P_{k-1} = 0$$

则有 $Ad^{(1)} = Ad^{(2)} = 0$,且当 λ 充分小时,有 $d^{(1)}, d^{(2)} \ge 0$, $d^{(1)} \ne 0, d^{(2)} \ne 0, \therefore d^{(1)}, d^{(2)}$ 是方向。

显然, $d^{(1)} \neq d^{(2)}$,但 $d = \frac{1}{2}d^{(1)} + \frac{1}{2}d^{(2)}$,与d是极方向矛盾。

四. 基本可行解的存在问题

定理1. 如果(LP)有可行解,则一定存在基本可行解.

证明: 设 $A = (P_1, P_2, \dots, P_n), x = (x_1, \dots, x_s, 0, \dots, 0)^T$ 是一个可行解且 $x_j > 0, j = 1, \dots, s$.

 $若P_1, P_2, \cdots, P_s$ 线性无关,则由引理,x为基本可行解;

设 P_1, P_2, \cdots, P_s 线性相关,则存在不全为0的、而且其中至少有一个为正的数 y_1, \cdots, y_s

使得 $y_1P_1 + y_2P_2 + \cdots + y_sP_s = 0.$

定义
$$\overline{x}_j = \begin{cases} x_j - \lambda y_j & j = 1, 2, \dots s \\ 0 & j = s + 1, \dots, n \end{cases}$$
 其中
$$\lambda = \min \left\{ \frac{x_j}{y_j} \mid y_j > 0 \right\} = \frac{x_k}{y_k} (>0)$$

则当
$$j = 1, 2, \dots, s$$
时,有 $\overline{x}_j = x_j - \lambda y_j = x_j - \frac{x_k}{y_k} y_j \ge 0$

$$\exists \quad \overline{x}_k = x_k - \frac{x_k}{y_k} y_k = 0.$$

$$Ax = \sum_{j=1}^{n} \overline{x}_{j} P_{j} = \sum_{j=1}^{s} \left(x_{j} - \frac{x_{k}}{y_{k}} y_{j} \right) P_{j} = \sum_{j=1}^{s} x_{j} P_{j} - \frac{x_{k}}{y_{k}} \sum_{j=1}^{s} y_{j} P_{j} = b$$

:. x是可行解,且x的正分量至少比x少1若x的正分量所对应的A的列线性无关,则x为基本可行解,否则,从x出发,重复以上步骤,直至获得一个基本可行解。

定理2. 如果(LP)有最优解,则存在一个基本可行解是最优解。

结论:若LP问题有最优解,则要么最优解唯一,要么有无穷多最优解。

证明:min z = cx

$$s.t. \begin{cases} Ax = b \\ x \ge 0 \end{cases}$$

不妨设 $x^{(1)} \neq x^{(2)}$ 是LP问题的最优解

则有
$$Ax^{(1)} = b$$
, $x \ge 0$, $z^* = cx^{(1)}$

$$Ax^{(2)} = b$$
, $x \ge 0$, $z^* = cx^{(2)}$

$$\sqrt[4]{E}\overline{x} = \alpha x^{(1)} + (1 - \alpha) x^{(2)}, \quad \alpha \in [0,1]$$

则
$$A\overline{x} = A[\alpha x^{(1)} + (1-\alpha) x^{(2)}] = \alpha b + (1-\alpha) b = b$$

又
$$\overline{x} \ge 0$$
,且 $c\overline{x} = c[\alpha x^{(1)} + (1-\alpha) x^{(2)}] = \alpha z^* + (1-\alpha) z^* = z^*$ 则 \overline{x} 是最优解。