Проект

Единый государственный экзамен по ФИЗИКЕ

Спецификация

контрольных измерительных материалов для проведения в 2018 году единого государственного экзамена по физике

подготовлена Федеральным государственным бюджетным научным учреждением

«ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

ФИЗИКА, 11 класс 2

Спецификация контрольных измерительных материалов для проведения в 2018 году единого государственного экзамена по ФИЗИКЕ

1. Назначение КИМ ЕГЭ

Единый государственный экзамен (далее – ЕГЭ) представляет собой форму объективной оценки качества подготовки лиц, освоивших образовательные программы среднего общего образования, с использованием заданий стандартизированной формы (контрольных измерительных материалов).

ЕГЭ проводится в соответствии с Федеральным законом от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».

Контрольные измерительные материалы позволяют установить уровень освоения выпускниками Федерального компонента государственного образовательного стандарта среднего (полного) общего образования по физике, базовый и профильный уровни.

Результаты единого государственного экзамена по физике признаются образовательными организациями высшего профессионального образования как результаты вступительных испытаний по физике.

2. Документы, определяющие содержание КИМ ЕГЭ

Содержание экзаменационной работы определяется Федеральным компонентом государственного образовательного стандарта среднего (полного) общего образования по физике, базовый и профильный уровни (приказ Минобразования России от $05.03.2004 \ Ne \ 1089$).

3. Подходы к отбору содержания, разработке структуры КИМ ЕГЭ

Каждый вариант экзаменационной работы включает в себя задания, проверяющие освоение контролируемых элементов содержания из всех разделов школьного курса физики, при этом для каждого раздела предлагаются задания всех таксономических уровней. Наиболее важные с точки зрения продолжения образования в высших учебных заведениях содержательные элементы контролируются в одном и том же варианте заданиями разных уровней сложности. Количество заданий по тому или иному разделу определяется его содержательным наполнением и пропорционально учебному времени, отводимому на его изучение в соответствии с примерной программой по физике. Различные планы, по которым конструируются экзаменационные варианты, строятся по принципу содержательного дополнения так, что в целом все серии вариантов обеспечивают диагностику освоения всех включенных в кодификатор содержательных элементов.

Приоритетом при конструировании КИМ является необходимость проверки предусмотренных стандартом способов деятельности (с учетом ограничений в условиях массовой письменной проверки знаний и умений обучающихся): усвоение понятийного аппарата школьного курса физики, овладение методоло-

© 2018 Федеральная служба по надзору в сфере образования и науки Российской Федерации

3

гическими умениями, применение знаний при объяснении физических явлений и решении задач. Овладение умениями по работе с информацией физического содержания проверяется опосредованно при использовании различных способов представления информации в текстах (графики, таблицы, схемы и схематические рисунки).

Наиболее важным способом деятельности с точки зрения успешного продолжения образования в вузе является решение задач. Каждый вариант включает в себя задачи по всем разделам разного уровня сложности, позволяющие проверить умение применять физические законы и формулы как в типовых учебных ситуациях, так и в нетрадиционных ситуациях, требующих проявления достаточно высокой степени самостоятельности при комбинировании известных алгоритмов действий или создании собственного плана выполнения задания.

Объективность проверки заданий с развернутым ответом обеспечивается едиными критериями оценивания, участием двух независимых экспертов, оценивающих одну работу, возможностью назначения третьего эксперта и наличием процедуры апелляции.

Единый государственный экзамен по физике является экзаменом по выбору выпускников и предназначен для дифференциации при поступлении в высшие учебные заведения. Для этих целей в работу включены задания трех уровней сложности. Выполнение заданий базового уровня сложности позволяет оценить уровень освоения наиболее значимых содержательных элементов курса физики средней школы и овладение наиболее важными видами деятельности. Минимальное количество баллов ЕГЭ по физике, подтверждающее освоение выпускником программы среднего общего образования по физике, устанавливается исходя из требований освоения ФК ГОС базового уровня. Использование в экзаменационной работе заданий повышенного и высокого уровней сложности позволяет оценить степень подготовленности учащегося к продолжению образования в вузе.

4. Структура КИМ ЕГЭ

Каждый вариант экзаменационной работы состоит из двух частей и включает в себя 32 задания, различающихся формой и уровнем сложности (таблица 1).

Часть 1 содержит 24 задания с кратким ответом. Из них 13 заданий с записью ответа в виде числа, слова или двух чисел, 11 заданий на установление соответствия и множественный выбор, в которых ответы необходимо записать в виде последовательности цифр.

Часть 2 содержит 8 заданий, объединенных общим видом деятельности – решение задач. Из них 3 задания с кратким ответом (25-27) и 5 заданий (28-32), для которых необходимо привести развернутый ответ.

ФИЗИКА, 11 класс

Таблица 1. Распределение з	гаданий
экзаменационной работы по частям р	работы

№	Часть работы	Коли- чество зада- ний	Макси- мальный первич- ный балл	Процент максимального первичного балла за задания данной части от максимального первичного балла за всю работу, равного 52	Тип заданий
1	Часть 1	24	34	65	С кратким ответом
2	Часть 2	8	18	35	С кратким ответом и
					развернутым ответом
	Итого	32	52	100	

Всего для формирования КИМ ЕГЭ 2018 г. используется несколько планов. В части 1 для обеспечения более доступного восприятия информации задания 1-21 группируются исходя из тематической принадлежности заданий: механика, молекулярная физика, электродинамика, квантовая физика. В части 2 задания группируются в зависимости от формы представления заданий и в соответствии с тематической принадлежностью.

5. Распределение заданий КИМ по содержанию, видам умений и способам **действий**

При разработке содержания КИМ учитывается необходимость проверки усвоения элементов знаний, представленных в разделе 1 кодификатора. В экзаменационной работе контролируются элементы содержания из следующих разделов (тем) курса физики.

- Механика (кинематика, динамика, статика, законы сохранения в механике, механические колебания и волны).
- Молекулярная физика (молекулярно-кинетическая теория, термодинамика).
- Электродинамика и основы СТО (электрическое поле, постоянный ток, магнитное поле, электромагнитная индукция, электромагнитные колебания и волны, оптика, основы СТО).
- Квантовая физика и элементы астрофизики (корпускулярноволновой дуализм, физика атома, физика атомного ядра, элементы астрофизики).

Общее количество заданий в экзаменационной работе по каждому из разделов приблизительно пропорционально его содержательному наполнению и учебному времени, отводимому на изучение данного раздела в школьном курсе физики.

В таблице 2 дано распределение заданий по разделам. Задания части 2 (задания 28-32) проверяют, как правило, комплексное использование знаний и умений из различных разделов курса физики.

Таблица 2. Распределение заданий по основным содержательным разделам (темам) курса физики

Раздел курса физики, включенный	Количество заданий		
в экзаменационную работу	Вся работа	Часть 1	Часть 2
Механика	9–11	7–9	2
Молекулярная физика	7–8	5–6	2
Электродинамика	9–11	6–8	3
Квантовая физика и элементы астрофизики	5–6	4–5	1
Итого	32	24	8

Экзаменационная работа разрабатывается исходя из необходимости проверки умений и способов действий, отраженных в разделе 2 кодификатора. В таблице 3 приведено распределение заданий по видам умений и способам действий.

Таблица 3. Распределение заданий по видам умений и способам действий

5

Основные умения	Колич	нество заданий			
и способы действий	Вся работа	Часть 1	Часть 2		
Требования 1.1–1.3	11	11	_		
Знать/понимать смысл физических понятий, величин,					
законов, принципов, постулатов					
Требования 2.1–2.4	11	11	_		
Уметь описывать и объяснять физические явления					
и свойства тел (включая космические объекты),					
результаты экспериментов приводить примеры пра-					
ктического использования физических знаний					
Требование 2.5	2	2	_		
Отличать гипотезы от научной теории, делать выводы					
на основе эксперимента и т.д.					
Требование 2.6	8	_	8		
Уметь применять полученные знания при решении					
физических задач					
Требования 3.1–3.2	0-1	0-1	_		
Использовать приобретенные знания и умения					
в практической деятельности и повседневной жизни					
Итого	32	24	8		

6. Распределение заданий КИМ по уровню сложности

В экзаменационной работе представлены задания разных уровней сложности: базового, повышенного и высокого.

Задания базового уровня включены в часть 1 работы (19 заданий с кратким ответом, из которых 15 заданий с записью ответа в виде числа или слова и 4 задания на соответствие или изменение физических величин с записью ответа в виде последовательности цифр). Это простые задания, проверяющие усвоение наиболее важных физических понятий, моделей, явлений и законов, а также знаний о свойствах космических объектов.

Задания повышенного уровня распределены между частями 1 и 2 экзаменационной работы: 5 заданий с кратким ответом в части 1, 3 задания с кратким

© 2018 Федеральная служба по надзору в сфере образования и науки Российской Федерации

ответом и 1 задание с развернутым ответом в части 2. Эти задания направлены на проверку умения использовать понятия и законы физики для анализа различных процессов и явлений, а также умения решать задачи на применение одногодвух законов (формул) по какой-либо из тем школьного курса физики.

4 задания части 2 являются заданиями высокого уровня сложности и проверяют умение использовать законы и теории физики в измененной или новой ситуации. Выполнение таких заданий требует применения знаний сразу из двухтрех разделов физики, т.е. высокого уровня подготовки. Включение в часть 2 работы сложных заданий разной трудности позволяет дифференцировать учащихся при отборе в вузы с различными требованиями к уровню подготовки.

В таблице 4 представлено распределение заданий по уровню сложности.

Таблица 4. Распределение заданий по уровню сложности

Уровень сложности заданий	Коли- чество заданий	Макси- мальный первичный балл	Процент максимального первичного балла за задания данного уровня сложности от максимального первичного балла за всю работу, равного 52	
Базовый	19	24	46	
Повышенный	9	16	31	
Высокий	4	12	23	
Итого	32	52	100	

7. Продолжительность ЕГЭ по физике

На выполнение всей экзаменационной работы отводится 235 минут.

Примерное время на выполнение заданий различных частей работы составляет:

- 1) для каждого задания с кратким ответом 3–5 минут;
- 2) для каждого задания с развернутым ответом 15–20 минут.

8. Дополнительные материалы и оборудование

Используется непрограммируемый калькулятор (на каждого ученика) с возможностью вычисления тригонометрических функций (cos, sin, tg) и линейка.

Перечень дополнительных устройств и материалов, использование которых разрешено на ЕГЭ, утверждается Рособрнадзором.

9. Система оценивания выполнения отдельных заданий и экзаменационной работы в целом

Задание с кратким ответом считается выполненным, если записанный в бланке № 1 ответ совпадает с верным ответом.

Задания 1–4, 8–10, 13–15, $\overline{19}$, 20, 22 и 23 части 1 и задания 25–27 части 2 оцениваются 1 баллом.

Задания 5–7, 11, 12, 16–18, 21 и 24 части 1 оцениваются 2 баллами, если верно указаны оба элемента ответа; 1 баллом, если допущена ошибка в указании одного из элементов ответа, и 0 баллов, если допущено две ошибки.

^{© 2018} Федеральная служба по надзору в сфере образования и науки Российской Федерации

Задание с развернутым ответом оценивается двумя экспертами с учетом правильности и полноты ответа. Максимальный первичный балл за задания с развернутым ответом — 3. К каждому заданию приводится подробная инструкция для экспертов, в которой указывается, за что выставляется каждый балл — от нуля до максимального балла. В экзаменационном варианте перед каждым типом задания предлагается инструкция, в которой приведены общие требования к оформлению ответов.

Максимальный первичный балл – 52.

В соответствии с Порядком проведения государственной итоговой аттестации по образовательным программам среднего общего образования (приказ Минобрнауки России от 26.12.2013 № 1400 зарегистрирован Минюстом России 03.02.2014 № 31205)

- \ll 61. По результатам первой и второй проверок эксперты независимо друг от друга выставляют баллы за каждый ответ на задания экзаменационной работы $E\Gamma$ 9 с развёрнутым ответом...
- 62. В случае существенного расхождения в баллах, выставленных двумя экспертами, назначается третья проверка. Существенное расхождение в баллах определено в критериях оценивания по соответствующему учебному предмету.

Эксперту, осуществляющему третью проверку, предоставляется информация о баллах, выставленных экспертами, ранее проверявшими экзаменационную работу».

Если расхождение составляет 2 или более балла за выполнение любого из заданий 28–32, то третий эксперт проверяет ответы только на те задания, которые вызвали столь существенное расхождение.

Баллы для поступления в вузы подсчитываются по 100-балльной шкале на основе анализа результатов выполнения всех заданий экзаменационной работы.

10. Изменения в КИМ ЕГЭ в 2018 году по сравнению с 2017 годом

В кодификатор элементов содержания, проверяемых на ЕГЭ по физике, включен подраздел 5.4 «Элементы астрофизики».

В часть 1 экзаменационной работы добавлено одно задание с множественным выбором, проверяющее элементы астрофизики. Расширено содержательное наполнение линий заданий 4, 10, 13, 14 и 18. Часть 2 оставлена без изменений. Максимальный балл за выполнение всех заданий экзаменационной работы увеличился с 50 до 52 баллов.

Обобщенный план варианта КИМ ЕГЭ 2018 года по ФИЗИКЕ

Уровни сложности заданий: Б-базовый; $\Pi-повышенный$; B-высокий.

Обо- значе- ние зада- ния в работе	Проверяемые элементы содержания	Коды элементов содержания по кодификатору элементов содержания	Коды проверя- емых умений	Уро- вень слож- ности зада- ния	Макси- маль- ный балл за выпол- нение задания
	Част				
1	Равномерное прямолинейное движение, равноускоренное прямолинейное движение, движение по окружности	1.1.3–1.1.8	1, 2.1– 2.4	Б	1
2	Законы Ньютона, закон всемирного тяготения, закон Гука, сила трения	1.2.1, 1.2.3–1.2.6, 1.2.8, 1.2.9	1, 2.1– 2.4	Б	1
3	Закон сохранения импульса, кинетиче- ская и потенциальные энергии, работа и мощность силы, закон сохранения механической энергии	1.4.1–1.4.8	1, 2.1– 2.4	Б	1
4	Условие равновесия твердого тела, закон Паскаля, сила Архимеда, математический и пружинный маятники, механические волны, звук	1.3.1–1.3.5, 1.5.1, 1.5.2, 1.5.4, 1.5.5	1, 2.1– 2.4	Б	1
5	Механика (объяснение явлений; интер- претация результатов опытов, представленных в виде таблицы или графиков)	1.1–1.5	2.4	П	2
6	Механика (изменение физических величин в процессах)	1.1–1.5	2.1	Б	2
7	Механика (установление соответствия между графиками и физическими величинами, между физическими величинами и формулами)	1.1–1.5	1, 2.4	Б	2
8	Связь между давлением и средней кинетической энергией, абсолютная температура, связь температуры со средней кинетической энергией, уравнение Менделеева – Клапейрона, изопроцессы	2.1.6.–2.1.10, 2.1.12	1, 2.1– 2.4	Б	1
9	Работа в термодинамике, первый закон термодинамики, КПД тепловой машины	2.2.6, 2.2.7, 2.2.9, 2.2.10	1, 2.1– 2.4	Б	1
10	Относительная влажность воздуха, количество теплоты	2.1.13, 2.1.14, 2.2.1–2.2.4, 2.2.5, 2.2.11	1, 2.1– 2.4	Б	1
11	МКТ, термодинамика (объяснение явлений; интерпретация результатов опытов, представленных в виде таблицы или графиков)	2.1, 2.2	2.4	П	2

ФИЗИКА, 11 класс 10

Часть 2					
25	Механика, молекулярная физика (расчетная задача)	1.1–1.5, 2.1, 2.2	2.6	П	1
26	Молекулярная физика, электродинамика (расчетная задача)	2.1, 2.2, 3.1–3.6	2.6	П	1
27	Электродинамика, квантовая физика (расчетная задача)	3.1–3.6 5.1–5.3	2.6	П	1
28	Механика – квантовая физика (качественная задача)	1.1–5.3	2.6, 3	П	3
29	Механика (расчетная задача)	1.1-1.5	2.6	В	3
30	Молекулярная физика (расчетная задача)	2.1, 2.2	2.6	В	3
31	Электродинамика (расчетная задача)	3.1-3.6	2.6	В	3
32	Электродинамика, квантовая физика (расчетная задача)	3.1–3.6 5.1–5.3	2.6	В	3

Всего заданий – 32; из них

9

по уровню сложности: B - 19; $\Pi - 9$; B - 4.

Максимальный первичный балл за работу – 52.

Общее время выполнения работы – 235 мин.