Asymmetric Cryptography Standards

Alexandre Duc

1/59

1. RSA Encryption

2. Parameter Choices

3. Hybrid Encryption

4. Digital Signatures

Alexandre Duc 2/59

Textbook RSA (Plain RSA)

- Generate two random secret prime numbers p and q.
 Compute n = pq.
- Choose a small number e coprime with $\varphi(n) = (p-1)(q-1)$.
- Compute $d = e^{-1} \mod \varphi(n)$, and erase p, q and $\varphi(n)$.
- Public key : (n, e). Private key : (n, d).
- **Encryption** : $c = m^e \mod n$.
- **Decryption**: $m = c^d \mod n$.

Alexandre Duc 3/59

Small Exponent

We decide to encrypt an AES 128-bit key with textbook RSA. The AES key will be then used to encrypt data. To make things secure, we decide to select a 2048-bit RSA modulus and e=3. What attack can you do?

Alexandre Duc 4/59

Small Exponent

Solution

Since the exponent e and the plaintext m are small, m^e (over the reals) is still smaller than the modulus. Hence, the modulus has no effect here. It is, thus, possible to recover easily m from the ciphertext c by computing $\sqrt[3]{c}$. There are simple numerical algorithms doing so (e.g. Newton's method).

Alexandre Duc 5/59

Small Exponent and Broadcasting

Suppose that we use textbook RSA with e=3 to send the same message to three different participants.

All three participants have a different RSA modulus, the RSA moduli are 2048-bit long and the message that is sent is also 2048 bit long.

What attack can you perform?

Alexandre Duc 6/59

Small Exponent and Broadcasting

Solution

We will use the Chinese Reminder Theorem (CRT) to increase the space of the message. We have at our disposal three ciphertexts $c_1 = m^e \mod n_1$, $c_2 = m^e \mod n_2$, and $c_3 = m^e \mod n_3$. Using CRT, we obtain a new ciphertext $c = m^e \mod n_1 n_2 n_3$. The exponent is now much bigger and we can perform the same attack as in the previous question.

Alexandre Duc 7/59

Small Exponents

WARNING

Always avoid small exponent, even if the message is formatted. Coppersmith's attack allows to decrypt when *e* is small.

A typical (good) choice is e = 65537

Alexandre Duc 8/59

Small Private Keys

Warning

Small private keys are also bad. Wiener key recovery attack : for $d < \sqrt[4]{N}$.

Don't fix a private key. The inverse of 65537 is extremely likely to **not** be too small.

Alexandre Duc 9/59

Indistinguishability under Chosen-Plaintext Attacks (IND-CPA)

Adversary

Challenger

 A cryptosystem is said to be indistinguishable under chosen-plaintext attack (IND-CPA) if every efficient adversary has only a negligible advantage over random guessing.

Alexandre Duc 10/59

IND-CPA Security (formal)

IND-CPA Security

A cryptosystem is IND-CPA secure if Pr[win IND-CPA game] $-\frac{1}{2}$ is **negligible** for every PPT (probabilistic polynomial time) adversary.

Alexandre Duc 11/59

Textbook RSA: IND-CPA secure?

Question

Is Textbook RSA IND-CPA secure?

Alexandre Duc 12/59

Textbook RSA: IND-CPA secure?

Solution

No, it is not. Since we possess the public key, we can try to encrypt both M_0 and M_1 and check which one matches y.

Alexandre Duc 13/59

RSA PKCS v1.5

- Older version of the standard RSA encryption and signature padding method.
- Standardized in PKCS#1 v1.5 and RFC 2313.
- Format : EB = 00 || BT || PS || 00 || D, where :
 - BT is the block type and can be equal to 00, 01 or 02;
 - PS is a string of 00's (if BT==00), or of FF's (if BT==01) or of non-zero pseudo-random bytes (if BT==02) of at least 8 bytes;
 - D are the data bytes to be encrypted.
- None of the versions of PKCS#1 v1.5 are IND-CPA secure!
- RSA PKCS#1 v1.5 should be avoided in all new applications!

Alexandre Duc 14/59

Bleichenbacher Attack and Chosen-Ciphertext Security

- Daniel Bleichenbacher, a Swiss cryptographer, has exhibited the first adaptive chosen-ciphertext attack against RSA PKCS v1.5 in 1998.
- Chosen-ciphertext security has transformed itself from a theoretical to a practical concern.
- 2017: ROBOT attack. Attack on SSL/TLS using Bleichenbacher's attack.
- Typical case of oracle attack.

Alexandre Duc 15/59

Bleichenbacher Attack: Details

- Let's suppose that BT = 02 (most common).
- Idea: multiply unknown ciphertext by s^e and use oracle to check if it is valid.
- A valid ciphertext starts with 0x0002. → ms starts with 0x0002.
- We have $0002 \dots < ms < 0003 \dots$
- With a binary search technique and thousands of queries : can decrypt ciphertext.

Warning

Typical **implementation problem**: padding oracle attack.

Alexandre Duc 16/59

Indistinguishability under Chosen-Ciphertext Attacks (IND-CCA)

IND-CCA Security (formal)

 Two versions: non-adaptive (IND-CCA) and adaptive (IND-CCA2).

IND-CCA Security

A cryptosystem is IND-CCA secure if $Pr[win IND-CCA game] - \frac{1}{2}$ is **negligible** for every PPT (probabilistic polynomial time) adversary.

Alexandre Duc 18/59

RSA-OAEP

- Improved version proposed by Bellare and Rogaway in 1994.
- Padding shown to be IND-CCA2 secure when used with the RSA permutation
- Design goals :
 - Add randomness
 - Prevent partial decryption of ciphertexts: an adversary cannot recover any part of the plaintext without inverting the underlying trapdoor one-way function.
- Standardized in PKCS#1 v2.1 and v2.2 as well as in RFC 3447

Alexandre Duc 19/59

RSA-OAEP

Alexandre Duc 20/59

Manger's Attack on RSA-OAEP

- RSA-OAEP is IND-CCA secure against black-box adversaries.
- Manger's attack: Similar to Bleichenbacher's in the idea.
- Two error messages should be identical.
- Problem : timings, typos, . . .

Alexandre Duc 21/59

- 1. RSA Encryption
- 2. Parameter Choices
- 3. Hybrid Encryption
- 4. Digital Signatures

Alexandre Duc 22/59

keylength.com

- There exist many tables.
- It is up to you to choose which ones you trust.

Alexandre Duc 23/59

ECRYPT

The goal of ECRYPT-CSA (Coordination & Support Action) is to strengthen European excellence in the area of cryptology. This report [3] on cryptographic algorithms, schemes, keysizes and protocols is a direct descendent of the reports produced by the ECRYPT I and II projects (2004-2012), and the ENISA reports (2013-2014). It provides rather conservative guiding principles, based on current state-of-the-art research, addressing construction of new systems with a long life cycle. This report is aimed to be a reference in the area, focusing on commercial online services that collect, store and process the data.

Protection	Symmetric	Factoring Modulus	Discrete Key	Logarithm Group	Elliptic Curve	Hash
Legacy standard level Should not be used in new systems	80	1024	160	1024	160	160
Near term protection Security for at least ten years (2018-2028)	128	3072	256	3072	256	256
Long-term protection Security for thirty to fifty years (2018-2068)	256	15360	512	15360	512	512

All key sizes are provided in bits. These are the minimal sizes for security.

Click on a value to compare it with other methods.

Recommended algorithms; Block Ciphers: For near term use, AES-128 and for long term use, AES-256. Hash Functions: For near term use, SHA-256 and for long term use, SHA-512 and SHA-3 with a 512-bit result. Public Key Primitive: For near term use, 256-bit elliptic curves, and for long term use 512-bit elliptic curves.

Educe abjorithms (esuscied for remain secure in 10-50 year lifetime):
Block Ciphers, RSC, Camella, Septent
Block Ciphers, RSC, Camella, Septent
Hash Functions: SHA2 (256, 584, 512, 512/256), SHA3 (256, 384, 512, SHAKE128, SHAKE256), Whirlpool-512, BLAKE (256, 584, 512)
Stream Ciphers HC-128, Sisias202C, Chacha, SHOW 20, SHOW 30, SOSEMANUK, Grain 128a

Alexandre Duc 24/59

Elliptic Curve Choice

- Which elliptic curve should I choose?
- Many different curves : some have multiple different names.
 - Three different categories : **Weierstrass, Montgomery, Edwards**.
- Weierstrass curves (seen in class) : $y^2 = x^3 + ax + b$
- Montgomery curves : $By^2 = x^3 + Ax^2 + x$
- Twisted Edwards curves : $ax^2 + y^2 = 1 + dx^2y^2$. **No** point at infinity. The point (0,1) is the neutral element.

Alexandre Duc 25/59

Which Type?

- Twisted Edwards curves can be mapped to Montgomery form.
- Montgomery curves can be mapped to Weierstrass form.
- Not all Weierstrass curves are Montgomery (or Edwards).
- The mappings are described here: https://tools.ietf.org/id/ draft-struik-lwip-curve-representations-00.html
- Classical double-and-add algorithm is vulnerable to side-channel attacks.
- Solution: Montgomery ladder: very efficient for Montgomery (and Edwards) curves.
- Twisted Edwards are needed for EdDSA.

Alexandre Duc 26/59

Recommendation

Curve	Legacy	Future	Remark			
Weierstrass						
W-25519, W-448	✓	\checkmark	From Montgomery curves			
P-256, P-384, P512	√	✓	Hard to implement. Used al-			
. 200, . 00., . 012	,	•	most everywhere			
P-192, P-224	✓	X	too small			
Montgomery						
Curve25519	✓	√				
Curve448	✓	\checkmark				
Twisted Edwards						
Edwards25519	✓	√				
Edwards448, E448	✓	\checkmark				
Binary fields	X	X	Broken . Favor underlying			
Dillary fields	^	^	prime fields			

Alexandre Duc 27/59

- 1. RSA Encryption
- 2. Parameter Choices
- 3. Hybrid Encryption
- 4. Digital Signatures

Alexandre Duc 28/59

Hybrid Encryption

- Hybrid encryption combines an asymmetric encryption algorithm with a symmetric one.
- Two parts: a Key encapsulation mechanism (KEM) and a Data encapsulation mechanism (DEM).
- The KEM is asymmetric and encrypts a symmetric key.
- The DEM is a symmetric encryption algorithm.
- Typical usecase : encrypted emails.

Alexandre Duc 29/59

ECIES

- The Elliptic Curve Integrated Encryption Scheme (ECIES) is an integrated encryption scheme that uses the following functions: a key agreement protocol, a key derivation function, a hash function, an symmetric encryption scheme and a MAC.
- Standardized in ANSI X9.63, IEEE 1363a, ISO 18033-2 and SECG SEC 1.
- All the standardized versions show minor differences...

Alexandre Duc 30/59

ECIES Setup

- ECIES allows hybrid encryption: uses public key crypto to exchange a symmetric key and use symmetric crypto later to send data.
- Public parameters: an elliptic curve E, a point G on E of order n (prime), KDF, symmetric encryption scheme Enc, MAC.
- Secret key : $k \in \mathbb{Z}_n$. Public key : K = kG.

Alexandre Duc 31/59

ECIES Encryption(m)

- 1. Draw $r \in \mathbb{Z}_n^*$ uniformly at random.
- 2. Let R = rG.
- 3. $(k_E || k_M) = KDF(rK)$.
- 4. $c = \operatorname{Enc}_{k_F}(m)$
- 5. $\tau = \mathsf{MAC}_{k_M}(c)$.
- 6. Ciphertext is $R||c||\tau$.

Alexandre Duc 32/59

ECIES Decryption($R||c||\tau$)

Question

How do you decrypt?

33/59

ECIES Decryption($R||c||\tau$)

Solution

- 1. $(k_E || k_M) = KDF(kR)$.
- 2. Verify that $\tau = MAC_{k_M}(c)$.
- 3. If correct : $m = Dec_{k_F}(c)$

Alexandre Duc 34/59

RSA-KEM

- Hybrid encryption based on RSA.
- See RFC 5990.
- Algorithm :
 - 1. Draw a random number $z \in \mathbb{Z}_n$.
 - 2. Let $u = z^e \mod n$
 - 3. Use $(k_E || k_M) = KDF(z)$ for the data.
 - 4. $c = \operatorname{Enc}_{k_E}(m)$
 - 5. $\tau = MAC_{k_M}(c)$
 - 6. Ciphertext is (u, c, τ) .

Alexandre Duc 35/59

Encryption Summary

Warning

Warning with the **implementation** of RSA-OAEP.

Primitive	Legacy	Future
RSA-OAEP	✓	√
RSA-KEM	✓	✓
ECIES	✓	✓
RSA-PKCS#1 v1.5	X	х

source of recommendations: https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

Alexandre Duc 36/59

- 1. RSA Encryption
- 2. Parameter Choices
- 3. Hybrid Encryption
- 4. Digital Signatures

Alexandre Duc 37/59

RSA-PSS

- RSA-PSS uses the Probabilistic Signature Scheme (PSS) proposed by Bellare and Rogaway.
- Standardized in PKCS#1 v2.1 and v2.2 as well as in RFC 8017.
- Relies on randomization and hash functions.

Alexandre Duc 38/59

RSA-PSS

Alexandre Duc 39/59

RSA-PSS Verification

Question

How do you verify the signature?

Alexandre Duc 40/59

RSA-PSS Verification

Solution

Alexandre Duc 41/59

DSA

- DSA stands for Digital Signature Algorithm
- DSA is a variant of El-Gamal signatures and its security relies on the discrete logarithm problem in \mathbb{Z}_p .
- DSA is standardized in NIST FIPS 186-4 (known as the "Digital Signature Standard (DSS)") and withdrawn in FIPS 186-5.

Alexandre Duc 42/59

DSA: Key Generation

- We work in \mathbb{Z}_p^* with an element $g \in \mathbb{Z}_p^*$ of prime order q.
- Private Key : $a \in \mathbb{Z}_q$, public key : $A = g^a \mod p$.

43/59

DSA: Signature

- We use a cryptographically secure hash function $h: \{0,1\}^* \longrightarrow \{1,\ldots,q-1\}.$
- We generate a uniformly random number $k \in \{1, \dots, q-1\}$.
- To sign a message m, we compute $r = (g^k \mod p) \mod q$ and $s = k^{-1}(h(m) + ar) \mod q$.
- The signature of m is (r, s) if $r \neq 0$ and $s \neq 0$. Otherwise, restart with a fresh k.

Alexandre Duc 44/ 59

DSA: Verification

- We first **verify** that 0 < r < q and 0 < s < q.
- To verify the signature (r, s) attached to a message m, we verify that $r = (g^{h(m)s^{-1}}A^{rs^{-1}} \mod p) \mod q$.

45 / 59

ECDSA

- ECDSA is a variant of DSA working on elliptic curves.
- It is standardized in NIST FIPS 186-4, X9.62 and SEC2.
- Used in TLS 1.x and SSH
- More and more seen. Will replace DSA.

Alexandre Duc 46/59

ECDSA parameters

- We adapt the DSA signature algorithm to elliptic curves (obtaining the ECDSA algorithm).
 - 1. Choose a cryptographically secure elliptic curve and a point G of order n.
 - 2. **Private Key** : $a \in \{1, ..., n-1\}$.
 - 3. Public Key : A = aG

Alexandre Duc 47/59

ECDSA signature

To sign a message M:

- 1. Generate a random, uniform, secret number $k \in \{1, ..., n-1\}$.
- 2. Compute $(x_1, y_1) = kG$.
- 3. $r = x_1 \mod n$.
- 4. $s = \frac{H(M) + ar}{k} \mod n$
- 5. The signature is (r, s) if $r \neq 0$ and $s \neq 0$. Otherwise, restart with a fresh k.

Alexandre Duc 48/59

ECDSA verification

We verify a signature (r, s) in the following way :

- 1. We verify that the public key $A \neq \mathcal{O}$, that A is a point on the curve and that $nA = \mathcal{O}$.
- 2. We verify that r and s are in [1, n-1].
- 3. We compute $u_1 = \frac{H(M)}{s} \mod n$ and $u_2 = \frac{r}{s} \mod n$.
- 4. We compute $(x_1, y_1) = u_1 G + u_2 A$
- 5. We verify that $r = x_1 \mod n$.

Alexandre Duc 49/59

Verification Mistakes

- It is essential to verify the values of r and s.
- April 2022 : CVE-2022-21449, vulnerability in Java 15, 16, 17, 18.
- The check is not done for ECDSA: the signature (0,0) is always valid!
- Why no division by 0? $s^{-1} = s^{n-2}$ by the Little Fermat Theorem when $s \neq 0$.
- Efficient way to compute inverses.

Alexandre Duc 50/59

DSA and Randomness

Warning

Both DSA and ECDSA are very **vulnerable** to bad randomness for *k*. One can **recover the private key**.

- One can recover the key when the randomness k is fixed.
- One can recover the key when the randomness k depends
 on the previous randomness: counter, affine function,
- If few bits of the randomness k leak (two bits is possible) and hundreds of signatures, one can recover the private key.
- With one byte only about 20 signatures are required.
- Very interesting combined with a software bug: wrong buffer size, buffer overflow, . . .

Alexandre Duc 51/59

DSA and Security Proof

- There are variants of DSA: KDSA and GDSA.
- Exist also in elliptic curve variant : ECKDSA and ECGDSA.
- German and Korean variants.
- The Korean variant has a better security proof.
- Schnorr signatures are also a better alternative (good proof, simpler equations).
- All these solutions still suffers from randomness problem.

Alexandre Duc 52/59

EdDSA

- EdDSA is a deterministic signature algorithm.
- Based on twisted Edward curves, a special type of elliptic curves with a different equation and different formulas.
- Ed25519: optimized to be fast on the x86-64
 Nehalem-Westmere processor family.
- No need of random number generator while signing.
- No branching depending on secrets to avoid side-channel attacks.
- Described in RFC 8032 and introduced in FIPS 186-5.

Alexandre Duc 53/59

EdDSA: Global Picture

Source: https://blog.safeheron.com/blog/insights/safeheron-originals/analysis-on-ed25519-use-risks-your-wallet-private-key-can-be-stolen

Alexandre Duc 54/59

EdDSA: Parameters and Key Generation

- Let q be a prime number, e.g. $2^{255} 19$ for Ed25519.
- We are working on an Edward curve E (e.g. Ed25519), with a point B of order ℓ over GF(q).
- The elliptic curve has $2^c \ell$ points.
- H is SHA-512.
- The private key k is a random 256-bit string.
- The **public key** is A = sB, where $s = H_{\text{msb}(256)}(k)$, i.e., the 256 most significant bits of the hash.

Alexandre Duc 55/ 59

EdDSA: Signature

- The **signature** of a message M is (R, S), with
- R = rB, with $r = H(H_{lsb(256)}(k)||M)$
- $S = r + H(R||A||M)s \mod \ell$, with $s = H_{msb(256)}(k)$.
- The **verification** is $2^cSB = 2^cR + 2^cH(R||A||M)A$. (Note that the 2^c is not always needed, see RFC).
- Implementations mistakes: API allows to provide A that is different from the public key corresponding to k. Allows to recover k.

Alexandre Duc 56/59

Making (EC)-DSA Deterministic

- It is possible to make (EC)-DSA deterministic.
- Formalized in RFC 6979.
- The construction derives the nonce from HMAC-DRBG, the private key and the message.
- Gained a lot of popularity.

Alexandre Duc 57/59

Minerva Attack

- 2020 : Minerva attack : side-channel attack breaking deterministic (EC)-DSA.
- https://minerva.crocs.fi.muni.cz/
- Timing attack allows to recover the nonce bit-length.
- Sufficient to recover the private key.
- Broke many smart cards and cryptographic libraries.

Implementation Point

It is very hard **not** to leak the bit-length. EdDSA seem to avoid this problem because we take SHA hash which is **not** modulo the order of the curve.

Alexandre Duc 58/59

Signature Recommendations

Primitive	Legacy	Future	Remark
RSA-PKCS#1 v1.5	✓	Х	no proof
RSA-PSS	✓	✓	Big sizes
(EC)-DSA	✓	X	randomness danger
(EC)-GDSA	✓	X	randomness danger
(EC)-KDSA	✓	✓	randomness danger
(EC)-Schnorr	✓	✓	randomness danger
EdDSA	✓	✓	deterministic

source of recommendations (except last) :

https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

Alexandre Duc 59/59