Time heirarchy Thm

· Then are some proviens that just don't have polynomial solutions

Today

IF ISETEP, 3 SATEP

IF MAXCUTEP, 3 SATEP

3 SAT problem

Input: 4-3CNF formula ConC, nC, ... nCm-,

Yalu claula C; = OR of 3 variables Inegations

Output: 3 SAT (4)=1 iff fx & Soil?" satisfying 4

Q. What is 35AT ((x, v x, v x,)) (x, v x, v x, v)? 1 (1x: x=111)

Independent Set

Input: Graph 6 = (V, E) and number &

Ortput: If more are k vertices with no edges.

A. 1SET(A,1) = 1 1SET(A,2) = 0

1SET (B, 4) = 1

1SET (B,5) = 0

Lo can have max 2 inside and 2 outside

3SAT Can venify
cornect answer Independent
no known poly algo Set

3 SAT = p ISET

Thm. Suppose ISETEP, then 3SATEP.

Corollary. Suppose mas 3SAT & P. men ISET & P.

Proof. We will snow poly-time R: 80,13 => 50,13 =

showing this R: \3 CNF formulas \> > \(\) \(\) \(\) \(\) \range \text{numbers} \) \(\) implies Thm \(\) \(\

> because you're compasing polynomials

! ASJVML analgo A that solver 1SET in 1X1ª time.

2. Will show an algo B that solver 3SAT in IXIb time.

3. Introdiate Lemma: Recomptable in 191° time 1stT(R(Y))=3stT(Y) + P.

Ditine Alg B(4):

rerum A(R(4))

ORUnning time = |R(4)| = (141)

@ AUNally solves: &4, B(4) = 3SMT(4)

map triples to noars

/SET(R(V))

 $\begin{array}{c} \mathbb{E} X \cdot \mathbb{V} = (X_0 \, V \, \overline{X}_1 \, V \, X_2) \, \Lambda \, (\overline{X}_0 \, V \, \overline{Y}_1 \, V \, X_2) \, \Lambda \, (X_1 \, V \, X_2 \, V \, \overline{Y}_3) \\ \text{All invensily that} \\ X_1 = 0 \\ X_2 = 1 \\ \end{array}$ $\begin{array}{c} X_1 = 0 \\ X_2 = 1 \\ \end{array}$ $\begin{array}{c} X_2 = 1 \\ X_3 = \overline{0} \\ \end{array}$

X = 1101

polynomial time algoritum

1. b = graph n13m vertices we will name (j,1), (j,2),and (j,3) for $j \in [m]$

2. for every je[m], add edges (j,1)-(j,2)-(j,3), (j,3)-(j,3)

3. for every pair of clawrs (; and (; , if literass (; and (; , a) and (; , b) contisct, add (; , a) -(; , b) edge 4. return (6, m)

[laim 1. Lompinnais: If 3SAT(Y)=1, ISET(6,m)=1

Pf. HSSVM X SATISFICS (P. Thun for every Cz,

Muris a literal (z,a) satisfied. Add (z,a) to

Stt S.

Claims. Someness: If (SET (Gim) = 1 than 3SAT(Y)=1

Pf: ASSUME Sindependent set of six m in 6.

Q. Show that S contains exactly one versex per triangle.

Two veming -> mans tuen is an edge.

D VEVAICES -> m vertices for mel triungues (hy pigronhole, one mangu will Jet X; *= 1 if S contains tugged X; =1, 0/W X; =0. For every claws by there is a vernx in S tagged "Xi=L" WY Claim X; += L. · it bol: by detinition · if b=0: Scan't contain vevex tagged "X;=1" Since its independent. M Polynomial-Home Reduction We showed: Poly time A for ISET > Poly Time 18 for 3SAT $\begin{array}{c|c} \varphi & b, k \in R(\ell) \\ \hline \end{array}$ $\begin{array}{c|c} A & ISET(b, k) = 3SAT(\ell) \\ \hline \end{array}$ Det. let F, 6: 50,13 + > 50,13. We say F =p 6 if I poly-time R: SO,13 - SO,13 S.t. +xeso,15+ F(x)= 6(K(x))

EXTULIST in book:

If F Ep b and b Ep H, then F Ep H.