${ m DM3}:$ intégrales

Exercice 1: Intégration terme à terme (Solution)

Montrer que $\int_0^{+\infty} \left(\sum_{n=1}^{+\infty} t^2 e^{-nt}\right) dt = \sum_{n=1}^{+\infty} \frac{2}{n^3}$. On justifiera au passage la convergence des séries et intégrales intervenant dans chaque membre de l'égalité à démontrer.

Exercice 2: Intégration terme à terme (Solution)

- 1. (a) Justifier que la série $\sum_{n\geq 1} \frac{(-1)^{n+1}}{n}$ converge.
 - (b) Démontrer que l'on a :

$$\sum_{n=0}^{+\infty} \int_0^1 x^{2n} (1-x) dx = \int_0^1 \frac{dx}{1+x}.$$

(c) Montrer que :

$$\sum_{n=0}^{N} \int_{0}^{1} x^{2n} (1-x) dx = \sum_{k=1}^{2N+2} \frac{(-1)^{k+1}}{k}.$$

- (d) En déduire la valeur de $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n}$.
- 2. On pose $f(x) = \sum_{n=1}^{+\infty} (-1)^{n+1} \frac{x^n}{n}$.
 - (a) Déterminer soigneusement l'ensemble de définition de la fonction f. Que vaut f(1)?
 - (b) Calculer l'intégrale $\int_0^1 \frac{1-x}{1+x^2} dx$.
 - (c) En calculant de deux façons différentes $\sum_{n=0}^{+\infty} (-1)^n \left(\int_0^1 x^{2n} (1-x) dx \right)$ déterminer la valeur de la somme $S = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)(2n+2)}$ après en avoir justifié l'existence.

Exercice 3: Intégration terme à terme? (Solution)

On pose $u_n = (-1)^n \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

On rappelle que l'on a déjà étudié la série $\sum u_n$ dans le DM1 : on a prouvé sa convergence et calculé sa somme. Dans cet exercice, on propose de montrer que le théorème d'intégration terme à terme ne s'applique pas pour le calcul de $\sum u_n$.

- 1. (a) A l'aide d'une IPP, déterminer une relation de récurrence entre $|u_{n+2}|$ et $|u_n|$.
 - (b) Démontrer par récurrence double que pour tout entier naturel n, on $a: \forall n\in \mathbb{N}, |u_n|\geqslant \frac{1}{n+1}.$
 - (c) Quelle hypothèse n'est pas vérifiée afin d'appliquer le théorème d'intégration terme à terme pour calculer $\sum u_n$?

 Justifier soigneusement.
- 2. Une expression explicite des intégrales de Wallis. A partir de la relation de récurrence de la question 1., montrer que pour tout $n \in \mathbb{N}$:

$$|u_{2n}| = \frac{(2n)!}{(2^n n!)^2} \frac{\pi}{2} \text{ et } |u_{2n+1}| = \frac{(2^n n!)^2}{(2n+1)!}.$$

C	O.	ТΤ			TC	DI	/ [1
-	u	D.U.	, , ,	\mathbf{U}	<i>10</i>		$\mathbf{v}\mathbf{L}\mathbf{I}$

Solution Exercice ??.

Solution Exercice ??.