## Correction de la feuille d'Exercices n° 4:

LOIS CONTINUES (V.A.R)

## Exercice 4.1 : v.a.r. avec espérance

### 1) •

- (i) Comme  $x(1-x) \ge 0$  pour  $x \in [0,1]$ , f est bien une fonction positive.
- (ii) De plus on vérifie facilement que f est continue sur  $\mathbb{R}$ .
- (iii) Enfin on voit que  $\int_{-\infty}^{0} f(x) dx$  et  $\int_{1}^{+\infty} f(x) dx$  sont convergentes car f est nulle sur  $]-\infty;0]$  et sur  $[1;+\infty[$  et  $\int_{0}^{1} f(x) dx$  est convergente car f est continue sur [0;1].

  Donc  $\int_{-\infty}^{+\infty} f(x) dx$  est convergente et :

$$\int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{1} 6x(1-x) \, dx + \int_{1}^{+\infty} 0 \, dx = \int_{0}^{1} (6x-6x^2) \, dx = \left[3x^2 - 2x^3\right]_{0}^{1} = 1$$

Donc f est bien une densité de probabilité.

• La fonction  $x \to |xf(x)|$  est nulle sur  $]-\infty;0]$  et sur  $[1;+\infty[$  donc  $\int_{-\infty}^{0} |xf(x)| dx$  et  $\int_{1}^{+\infty} |xf(x)| dx$  sont convergente. De plus  $x \to |xf(x)|$  est continue sur [0;1] donc  $\int_{0}^{1} |xf(x)| dx$  est aussi convergente.

Par conséquent  $\int_{-\infty}^{+\infty} x f(x) dx$  est absolument convergente et X admet donc une espérance. De plus :

$$E(X) = \int_{-\infty}^{0} 0 \, dx + \int_{0}^{1} 6x^{2} (1 - x) \, dx + \int_{1}^{+\infty} 0 \, dx = \int_{0}^{1} (6x^{2} - 6x^{3}) \, dx = \left[ 2x^{3} - \frac{3}{2}x^{4} \right]_{0}^{1} = \frac{1}{2}$$

- 2) Il nous reste ici à vérifier que X admet un moment d'ordre 2 et à le calculer.
- Sur  $]-\infty;0]$  et sur  $[1;+\infty[$ ,  $|x^2f(x)|=0$  donc  $\int_{-\infty}^0 |x^2f(x)| dx$  et  $\int_1^{+\infty} |x^2f(x)| dx$  sont convergentes.
- Sur [0;1]  $x \to |x^2 f(x)|$  est continue donc  $\int_0^1 |x^2 f(x)| dx$  est convergente.

Donc l'intégrale  $\int_{-\infty}^{+\infty} x^2 f(x) dx$  est absolument convergente ainsi X admet un moment d'ordre 2 et donc une variance.

De plus :

$$E(X^2) = \int_{-\infty}^{+\infty} x^2 f(x) dx = \int_{0}^{1} (6x^3 - 6x^4) dx = \left[ \frac{3}{2} x^4 - \frac{6}{5} x^5 \right]_{0}^{1} = \frac{3}{10}$$

- Donc  $V(X) = E(X^2) E(X)^2 = \frac{3}{10} \frac{1}{4} = \frac{1}{20}$ . 3) Pour **toutes** les VAR (continues ou non) on définit la fonction de répartition de X, que l'on note  $F_X$ , par  $F_X(t) = P(X \le t) = \int_{-\infty}^t f(x) dx$  pour tout réel t.
  - 1. Commençons par le premier cas : t < 0. Dans ce cas, on voit que f est nulle sur  $]-\infty;t]\subset ]-\infty;0]$ . Par conséquent,  $F_X(t)=0$ .
  - 2. Passons au deuxième cas  $t \in [0; 1]$ .

On a 
$$F_X(t) = P(X \le t) = \int_{-\infty}^t f(x) dx = \int_{-\infty}^0 0 dx + \int_0^t 6x(1-x) dx$$
. Donc  $F_X(t) = 0 + [3x^2 - 2x^3]_0^t = 3t^2 - 2t^3$ .

3. Terminons par le troisième (et dernier) cas : t > 1.

$$\int_{-\infty}^{t} f(x) dx = \int_{-\infty}^{0} 0 dx + \int_{0}^{1} 6x(1-x) dx + \int_{1}^{t} 0 dx = \int_{0}^{1} (6x - 6x^{2}) dx = [3x^{2} - 2x^{3}]_{0}^{1} = 1$$

4)



FIGURE 1 – Courbes de la d.d.p f ( à gauche ) et de la f.r. F ( à droite)

## Exercice 4.2 : v.a r. sans espérance

- (i) f est bien une fonction à valeurs positive
- (ii) De plus f est continue sur  $\mathbb{R} \setminus \{1\}$ .
- (iii) On voit que  $\int_{-\infty}^{1} f(x) dx$  est convergente car f est nulle sur  $]-\infty;1[$ . Sur  $[1; +\infty[$ ,  $\int_{1}^{+\infty} f(x) dx$  converge car c'est une intégrale de Riemann avec  $\alpha = 2 > 1$ . Donc  $\int_{-\infty}^{+\infty} f(x) dx$  est convergente et :

$$\int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{1} 0 \, dx + \int_{1}^{+\infty} \frac{1}{x^2} \, dx = \lim_{A \to +\infty} \int_{1}^{A} \frac{1}{x^2} \, dx = \lim_{A \to +\infty} \left[ -\frac{1}{x} \right]_{1}^{A} = \lim_{A \to +\infty} \left( 1 - \frac{1}{A} \right) = 1$$

f est donc bien une densité de probabilité.

• -  $Sur \ ] - \infty; 1[, xf(x) = 0 \ donc \ \int_{-\infty}^{1} xf(x) dx \ converge.$ -  $Sur \ [1; +\infty[, xf(x) = \frac{1}{x} \ et \ donc \ \int_{1}^{+\infty} xf(x) dx \ diverge.$ Donc \int\_{-\infty}^{+\infty} xf(x) dx \ n'est \ pas \ convergente \ et \ donc \ X \ n'admet \ donc \ pas \ d'esp\'erance.

## Exercice 4.3: Comparaison du temps de fonctionnement de deux systèmes

1)

a) Comme  $X_1$  suit une loi exponentielle de paramètre  $\lambda_1 = \frac{1}{E(X_1)} = 1/1000$ ,

$$p(X_1 \le 900) = \int_0^{900} \frac{1}{1000} e^{-t/1000} dt = \int_0^{0.9} e^{-u} du = 1 - e^{-0.9} = 0.593.$$

b) Comme  $X_2$  suit une loi exponentielle de paramètre  $\lambda_2 = \frac{1}{E(X_2)} = 1/1500$ ,

$$p(X_2 \le 900) = \int_0^{900} \frac{1}{1500} e^{-t/1500} dt = \int_0^{0.6} e^{-u} du = 1 - e^{-0.6} = 0.451.$$

- c) L'évènement A = "le système en parallèle fonctionne moins de 900h" s'écrit A =  $\{X_1 \le 900\}$   $\cap \{X_2 \le 900\}$ . Comme  $X_1$  et  $X_2$  sont indépendantes, les probabilités se multiplient, et  $p(A) = 0.593 \times 0.451 = 0.268$ .
- 2) Dans le cas d'un branchement en série, l'évènement B = "le système en série fonctionne moins de 900h" s'écrit  $B = \{X_1 \le 900\} \cup \{X_2 \le 900\}$ , d'où

$$p(B) = p(X_1 \le 900) + p(X_2 \le 900) - p(A)$$
  
= 0.593 + 0.451 - 0.268 = 0.776.

Cela fait une très grande différence!

## Exercice 4.4 : Confiture "pur sucre" et loi normale

1) Calculons le pourcentage de la production du fabriquant qui ne doit pas porter la mention pur sucre :

Soit X le poids de sucre par 1 kg, on a  $X \hookrightarrow \mathcal{N}(465, 30^2)$  donc  $T = \frac{X-465}{30} \hookrightarrow \mathcal{N}(0, 1)$ 

$$P(0 \le X \le 420) + P(520 \le X \le 1000) = P(-15.5 \le T \le -1.5) + P(1.8333 \le T \le 17.833)$$
$$= \Phi(15.5) - \Phi(1.5) + \Phi(17.833) - \Phi(1.8333)$$
$$= 0.5 - 0.4332 + 0.5 - 0.4664$$
$$= 0.1004$$

D'où 10.04% est le pour centage cherché. (= 100 × (1 –  $P(420 \le X \le 520))$  = 10.04%) **2)** On pose  $[a; b] = [465 - \alpha; 465 + \alpha]$ , donc

$$P(a \le X \le b) = 0.85 \iff P(465 - \alpha \le X \le 465 + \alpha) = 0.85$$

$$\Leftrightarrow P(-\frac{\alpha}{30} \le T \le \frac{\alpha}{30}) = 0.85$$

$$\Leftrightarrow 2\Phi(\frac{\alpha}{30}) = 0.85$$

$$\Leftrightarrow \Phi(\frac{\alpha}{30}) = 0.425$$

$$\Leftrightarrow \frac{\alpha}{30} = 1.44$$

$$\Leftrightarrow \alpha = 43.2$$

D'où [a; b] = [421.8; 508.2].

3) On cherche  $x_0$  tel que

$$P(x_0 \le X \le 495) = \underline{0.8} \iff P(\frac{x_0 - 465}{30} \le T \le 1) = 0.8$$

$$\Leftrightarrow \Phi(1) + \Phi(-\frac{x_0 - 465}{30}) = 0.8$$

$$\Leftrightarrow \Phi(-\frac{x_0 - 465}{30}) = -\Phi(1) + 0.8$$

$$\Leftrightarrow \Phi(-\frac{x_0 - 465}{30}) = -0.3413 + 0.8$$

$$\Leftrightarrow \Phi(-\frac{x_0 - 465}{30}) = 0.4587$$

$$\Leftrightarrow -\frac{x_0 - 465}{30} = 1.74 \implies x_0 = 412.8$$

On prendra alors  $x_0 = 412.8 g$ .

## Exercice 4.5 : Tailles et loi normale

1) On a  $X \hookrightarrow \mathcal{N}(175; 6^2)$ , avec X la taille en centimètre, d'un homme agé de 25 ans. Alors  $T = \frac{X-175}{6} \hookrightarrow \mathcal{N}(0; 1)$ , donc

$$P(X \ge 185) = P(T \ge 1.66) = 0.5 - \Phi(1.66) = 0.5 - 0.4515 = 0.0485$$

d'où le pourcentage cherché est 4.85%

2) De la même manière on cherche  $P(X \ge 180) = 0.2033$  alors le pourcentage de cette catégorie est 20.33% pour  $P(X \ge 192) = 0.0023$  donc de pourcentage 0.23% et on a aussi  $P(180 \le X \le 192) = 0.2010$  donc de pourcentage 20.10%. Mais puisque on s'interesse au pourcentages d'hommes parmi ceux mesurant plus de 180 cm et dont la taille dépasse 192 cm, on doit calculer

$$\frac{100 \times 0.23}{20.33} = 1.131\%.$$

ou bien calculer  $P(X \ge 192 | X \ge 180) = P(X \ge 192)/P(X \ge 180) = 0.0023/0.2033 = 0.01131 ⇒ Pourcentage = 1.131%.$ 

**Exercice 4.6**: Deux informations et deux inconnues

On a 
$$X \hookrightarrow N(m; \sigma^2) \Longrightarrow T = \frac{X - m}{\sigma} \hookrightarrow \mathcal{N}(0, 1)$$
, alors

$$P(X < 0) = 0.6 \iff P(T < \frac{-m}{\sigma}) = 0.6$$

$$\iff \begin{cases} \frac{-m}{\sigma} > 0, \\ P(0 < T < \frac{-m}{\sigma}) = 0.1 \end{cases}$$

$$\implies \Phi(\frac{-m}{\sigma}) = 0.1$$

$$\implies \frac{-m}{\sigma} = \underline{0.25} \text{ lecture inverse de la table de la loi normale.}$$

de la même manière, on aura

$$\frac{2-m}{\sigma} = 0.67$$

ainsi il suffit de résoudre le système

$$\begin{cases} \frac{-m}{\sigma} = 0.25 \\ \frac{2^{-m}}{\sigma} = 0.67 \end{cases} \implies m \simeq -1.19, \sigma \simeq 4.76$$

# Exercice 4.7: Transformations affines de lois

1. On a  $Y = aX + b, a \neq 0, donc$ 

$$F_{V}(t) = P(Y \le t) = P(aX + b \le t) = P(aX \le t - b)$$

ainsi,

cas où a > 0

$$F_Y(t) = P(X \le \frac{t-b}{a}) = F_X(\frac{t-b}{a})$$

et

$$f_Y(t) = F_Y(t) = \frac{1}{a} F_X(\frac{t-b}{a}) = \frac{1}{a} f_X(\frac{t-b}{a}).$$

cas où a < 0

$$F_Y(t) = P(X \ge \frac{t-b}{a}) = 1 - P(X \le \frac{t-b}{a}) = 1 - F_X(\frac{t-b}{a})$$

et

$$f_Y(t) = (1 - F_Y)'(t) = -\frac{1}{a}F_X'(\frac{t-b}{a}) = -\frac{1}{a}f_X(\frac{t-b}{a}).$$

Cas général:

$$f_Y(t) = \frac{1}{|a|} f_X(\frac{t-b}{a}).$$

2. — Si X suit une loi de Cauchy, on aura :

$$f_Y(t) = \frac{|a|}{\pi((t-b)^2 + a^2)},$$

$$F_Y(t) = \frac{1}{\pi} \left(\arctan\left(\frac{t-b}{a}\right) + \frac{\pi}{2}\right) \text{ si } a > 0,$$

$$F_Y(t) = 1 - \frac{1}{2} (\arctan(\frac{t-b}{2}) + \frac{\pi}{2}) \text{ si } a < 0.$$

$$\begin{split} F_Y(t) &= \frac{1}{\pi} (\arctan(\frac{t-b}{a}) + \frac{\pi}{2}) \text{ si } a > 0, \\ F_Y(t) &= 1 - \frac{1}{\pi} (\arctan(\frac{t-b}{a}) + \frac{\pi}{2}) \text{ si } a < 0, \\ &- \text{Si } X \hookrightarrow N(m;\sigma) : F_Y(t) = F_X(\frac{t-b}{a}) \text{ si } a > 0 \text{ et } F_Y(t) = 1 - F_X(\frac{t-b}{a}) \text{ si } a < 0. \end{split}$$

$$f_Y(t) = \frac{1}{|a|\sigma\sqrt{2\pi}} e^{-\frac{(t-(am+b))^2}{2(|a|\sigma)^2}}.$$

**Remarque**:  $Y \hookrightarrow \mathcal{N}(am + b; |a|\sigma)$  pour  $a \neq 0$ .

Exercice 4.8 : Confectionnement

a) L'énoncé suggère que le poids en grammes P des paquets est une variable aléatoire qui suit une loi normale d'espérance 500 et de variance  $25^2$  (d'écart-type 25). Soit X la variable aléatoire centrée et réduite correspondante, Y = (X - 500)/25. Alors

$$p(480 \le X \le 520) = p(|Y| \le 4/5) = 2p(0 \le Y \le 0.8) = 0.576.$$

On s'attend donc à ce que, sur 1000 paquets, il y en ait 576 dont le poids est compris entre 480g et 520g.

b)

$$p(480 \le X \le 490) = p(-0.8 \le Y \le -0.4)$$

$$= p(0.4 \le Y \le 0.8)$$

$$= p(Y \le 0.8) - p(Y \le 0.4) = 0.1327.$$

On s'attend donc à ce que, sur 1000 paquets, il y en ait 132 dont le poids est compris entre 480g et 490g.

c)

$$p(450 \le X) = 0.5 + p(Y \le 2) = 0.5 + 0.4772 = 0.9772.$$

On s'attend donc à ce que, sur 1000 paquets, il y en ait 977 dont le poids est supérieur à 450g.

d) Il faut trouver t tel que p(|Y| < t) = 0.9. La table donne t = 1.645, puis 500 + 25t = 541, 500 - 25t = 459. Par conséquent, environ 90% de la production a un poids compris entre 459g et 541g.

## Exercice 4.9: Une nouvelle d.d.p

1) On veut que:

$$\int_{-\infty}^{+\infty} f(x) \ dx = 1$$

Donc:

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{+\infty} (a^2 - x^2) \mathbb{I}_{[-a,a]}(x) dx$$

$$= \int_{-a}^{a} (a^2 - x^2) dx$$

$$= 2 \int_{0}^{a} (a^2 - x^2) dx$$

$$= 2 \left[ a^2 x - \frac{x^3}{3} \right]_{0}^{A}$$

$$= 2 \left( a^3 - \frac{a^3}{3} \right)$$

$$= \frac{4a^3}{3}$$

$$a^3 = \frac{3}{4}$$

$$a = \sqrt[3]{\frac{3}{4}}$$

$$E(X) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$= \int_{-\infty}^{+\infty} x (a^2 - x^2) \mathbb{I}_{[-a,a]}(x) dx$$

$$= \int_{-a}^{a} (a^2 x - x^3) dx$$

$$= 0$$

$$V(X) = E(X^{2}) - (E(X))^{2}$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx$$

$$= \int_{-a}^{a} x^{2} (a^{2} - x^{2}) dx$$

$$= 2 \int_{0}^{a} (a^{2}x^{2} - x^{4}) dx$$

$$= 2 \left(a^{2} \left[\frac{x^{3}}{3}\right]_{0}^{a} - \left[\frac{x^{5}}{5}\right]_{0}^{a}\right)$$

$$= 2 \left(\frac{a^{5}}{3} - \frac{a^{5}}{5}\right)$$

$$= \frac{4a^{5}}{15}$$

$$V(X) = \frac{4a^{5}}{15}$$

$$\begin{array}{l} \mathbf{b}) \\ - \operatorname{Si} x < -a : \end{array}$$

$$F_X(x) = 0$$

— Si 
$$-a \le x \le a$$
:

$$F_X(x) = \int_{-a}^x f(t) dt$$

$$= \int_{-a}^x (a^2 - t^2) \, \mathbb{I}_{[-a,a]}(t) dt$$

$$= \left[ a^2 t - \frac{t^3}{3} \right]_{-a}^x$$

$$= a^2 x - \frac{x^3}{3} - \left( -a^3 + \frac{a^3}{3} \right)$$

$$= a^2 x - \frac{x^3}{3} + \frac{2a^2}{3}$$

-- Si x > a:

$$F_X(x) = 1$$

**Exercice 4.10** : Y = aX + b

#### Théorème 1

Soit F une fonction de  $\mathbb{R}$  dans  $\mathbb{R}$ . Si

- (i) F est une fonction continue sur  $\mathbb{R}$
- (ii) F est  $\mathcal{C}^1$  sur  $\mathbb{R}$  sauf en un nombre fini de points
- (iii) F est croissante sur  $\mathbb{R}$ .

(iv) 
$$\lim_{x\to+\infty} F(x) = 1$$
 et  $\lim_{x\to-\infty} F(x) = 0$ 

alors il existe un espace probabilisé  $(\Omega, \mathcal{A}, P)$  et une variable aléatoire X définie sur cet espace, tels que F est la fonction de répartition de X.

De plus X est alors une variable à densité et si f est une fonction positive ou nulle telle que F'(x) = f(x)en tout point x où F est dérivable, alors f est une densité de X.

## 1) Étape 1 : fonction de répartition de Y

On pose F la fonction de répartition de X et G celle de Y.

Le but est d'exprimer G en fonction de F.

Par définition,  $\forall x \in \mathbb{R}$ ,  $G(x) = P(Y \le x) = P(aX + b \le x) = P(aX \le x - b)$ . Afin de « passer a de l'autre côté » il nous faut différencier 2 cas :

• Si 
$$a > 0$$
,  $G(x) = P\left(X \le \frac{x-b}{a}\right) = F\left(\frac{x-b}{a}\right)$ 

• Si 
$$a < 0$$
,  $G(x) = P\left(X \ge \frac{x-b}{a}\right) = 1 - F\left(\frac{x-b}{a}\right)$ 

## 2) Étape 2 : vérifier que Y est une variable à densité

On souhaite ici utiliser le théorème 1 donc nous avons deux hypothèses à vérifier sur G.

- Que a soit positif ou négatif, G est bien une fonction continue sur  $\mathbb{R}$  car F est continue ainsi que la fonction  $x \to \frac{x-b}{a}$ .

  • Si on note  $x_1, \dots, x_n$  les points où F n'est pas dérivable, alors en posant  $y_i = ax_i + b$ , on voit
- que G est  $\mathcal{C}^1$  sur  $\mathbb{R} \setminus \{y_1, \dots, y_n\}$ .

On en déduit donc grâce au théorème 1 que Y est bien une variable à densité.

## 3) Étape 3 : donner une densité de Y

Pour donner une densité de Y il nous faut calculer G'. En tout point où G est dérivable, on a :

$$\begin{cases} \sin a > 0 & G'(x) = \frac{1}{a} f\left(\frac{x-b}{a}\right) \\ \sin a < 0 & G'(x) = -\frac{1}{a} f\left(\frac{x-b}{a}\right) \end{cases}$$

Ainsi en posant  $g(x) = \frac{1}{|a|} f\left(\frac{x-b}{a}\right)$  on a obtenu une densité de Y.

**Exercice 4.11**: Fonction carrée  $Y = X^2$  et exponentielle  $Y = e^{X}$ 

1)

## a) Étape 1 : fonction de répartition de Y

On pose  $\overline{F}$  la fonction de répartition de X et G celle de Y.

Par définition,  $\forall x \in \mathbb{R}$ ,  $G(x) = P(Y \le x) = P(X^2 \le x)$ 

- Si x < 0, G(x) = 0.
- Si  $x \ge 0$ ,  $G(x) = P(-\sqrt{x} \le X \le \sqrt{x}) = F(\sqrt{x}) F(-\sqrt{x})$ 
  - b) Étape 2 : vérifier que Y est une variable à densité

- G est bien évidemment continue sur  $]-\infty;0[$  et par opération sur les fonctions continues, G est continue sur  $]0; +\infty[$ . De plus  $\lim_{\Omega \to 0} G = F(0) - F(0) = 0 = \lim_{\Omega \to 0} G = G(0)$  donc G est en fait continue sur  $\mathbb{R}$ .
- Si on note  $x_1, \dots, x_n$  les points où F n'est pas dérivable, alors en posant  $y_i = x_i^2$ , on voit que G est  $\mathcal{C}^1$  sur  $\mathbb{R} \setminus \{0, y_1, \dots, y_n\}$ .

On en déduit donc grâce au théorème 1 que Y est bien une variable à densité.

c) Étape 3 : donner une densité de Y

Lorsque 
$$G'(x)$$
 existe, on a  $G'(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{2\sqrt{x}} \left( f(\sqrt{x}) + f(-\sqrt{x}) \right) & \text{si } x > 0 \end{cases}$ 

Lorsque G'(x) existe, on a  $G'(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{2\sqrt{x}} \left( f(\sqrt{x}) + f(-\sqrt{x}) \right) & \text{si } x > 0 \end{cases}$ Donc en posant :  $g(x) = \begin{cases} 0 & \text{si } x \le 0 \\ \frac{1}{2\sqrt{x}} \left( f(\sqrt{x}) + f(-\sqrt{x}) \right) & \text{si } x > 0 \end{cases}$  on obtient une densité de Y.

2)

### a) Étape 1 : fonction de répartition de Y

On pose  $\overline{F}$  la fonction de répartition de X et G celle de Y.

Par définition,  $\forall x \in \mathbb{R}, G(x) = P(Y \le x) = P(e^X \le x)$ 

- Si  $x \le 0$ , G(x) = 0.
- Si x > 0,  $G(x) = P(X \le \ln(x)) = F(\ln(x))$

### b) Étape 2 : vérifier que Y est une variable à densité

- G est bien évidemment continue sur  $]-\infty;0[$  et par opération sur les fonctions continues, G est continue sur ]0; + $\infty$ [. De plus  $\lim_{0^+} G = 0$  car  $\lim_{-\infty} F = 0$ , et comme  $\lim_{0^-} G = 0 = G(0)$ , G est en fait continue sur  $\mathbb{R}$ .
- Si on note  $x_1, \dots, x_n$  les points où F n'est pas dérivable, alors en posant  $y_i = e^{x_i}$ , on voit que G est  $C^1$  sur  $\mathbb{R} \setminus \{0, y_1, \dots, y_n\}$ .

On en déduit donc grâce au théorème 1 que Y est bien une variable à densité.

c) Étape 3 : donner une densité de Y

• Lorsque 
$$G'(x)$$
 existe, on a  $G'(x) = \begin{cases} 0 & \text{si } x < 0 \\ \frac{1}{x} f(\ln(x)) & \text{si } x > 0 \end{cases}$ 

Donc en posant :  $g(x) = \begin{cases} 0 & \text{si } x \leq 0 \\ \frac{1}{x} f(\ln(x)) & \text{si } x > 0 \end{cases}$  on obtient une densité de Y.

**Exercice 4.12** : Encore un composant électronique !

Fait:

$$I_n = \int_0^{+\infty} x^n e^{-\alpha x} dx = \frac{n!}{\alpha^{n+1}}$$

Idée pour démontrer le fait : On exprime  $I_n$  en fonction de  $I_{n-1}$ , par l'intégration par partie.

1) Montrons que :

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{+\infty} \alpha^2 x e^{-\alpha x} \operatorname{II}_{\mathbb{R}^+_*}(x) dx$$

$$= \alpha^2 \underbrace{\int_{0}^{+\infty} x e^{-\alpha x} dx}_{I_1}$$

$$= \alpha^2 \frac{1}{\alpha^2}$$

$$= 1$$

2) On calcule E(x) et V(x):

$$E(x) = \int_{-\infty}^{+\infty} x f(x) dx$$

$$= \alpha^2 \underbrace{\int_{0}^{+\infty} x^2 e^{-\alpha x} dx}_{I_2}$$

$$= \alpha^2 \frac{2}{\alpha^3}$$

$$= \frac{2}{\alpha}$$

$$V(x) = E(x^{2}) - (E(x))^{2}$$

$$E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f(x) dx$$

$$= \alpha^{2} \underbrace{\int_{0}^{+\infty} x^{3} e^{-\alpha x} dx}_{I_{3}}$$

$$= \alpha^{2} \frac{3!}{\alpha^{4}}$$

$$= \frac{6}{\alpha^{2}}$$

$$V(x) = \frac{6}{\alpha^{2}} - \frac{4}{\alpha^{2}}$$

$$= \frac{2}{\alpha^{2}}$$

3) On veut:

$$P\left(X \ge \frac{2}{\alpha}\right) = \int_{\frac{2}{\alpha}}^{+\infty} f(x) dx$$

$$= \int_{\frac{2}{\alpha}}^{+\infty} \alpha^2 x e^{-\alpha x} \operatorname{II}_{\mathbb{R}_*^+}(x) dx$$

$$= \alpha^2 \int_{\frac{2}{\alpha}}^{+\infty} x e^{-\alpha x} dx$$

$$= \alpha^2 \left(-\frac{1}{\alpha} \left[x e^{-\alpha x}\right]_{\frac{2}{\alpha}}^{+\infty} - \int_{\frac{2}{\alpha}}^{+\infty} -\frac{1}{x} e^{-\alpha x} dx\right)$$

$$= \alpha \left(\frac{2}{\alpha} e^{-2} - \frac{1}{\alpha} \left[e^{-\alpha x}\right]_{\frac{2}{\alpha}}^{+\infty}\right)$$

$$= 2 e^{-2} + e^{-2}$$

$$= \frac{3}{e^2}$$

## Exercice 4.13 : Particularité de la loi de Cauchy

À faire