Transformações Lineares, Autovalor e Autovetor, Diagonalização de Operadores

Matheus Pimenta

Universidade Tecnológica Federal do Paraná Câmpus Cornélio Procópio

Junho de 2019

Conceitos e Teoremas

Theorem

Dados dois espaços vetoriais reais V e W e uma base de V, $\{v_1, v_2, \ldots, v_n\}$, sejam w_1, w_2, \ldots, w_n elementos arbitrários de W. Então existe uma única aplicação linear $T: V \to W$ tal que $T(v_1) = w_1, \ldots, T(v_n) = w_n$. Essa aplicação é dada por: Se $V = a_1 v_1 + \cdots + a_n v_n$,

$$T(v) = a_1 T(v_1) + \dots + a_n T(v_n)$$

= $a_1 w_1 + \dots + a_n w_n$

Verifique que T assim definida é linear e que é a única que satisfaz as condições exigidas.

Exemplo 01: Qual é a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,0)=(2,-1,0) e T(0,1)=(0,0,1)?

Núcleo e Imagem

Definition (Imagem de uma Transformação Linear)

Seja $T:V\to W$ uma aplicação linear. A *imagem* de T é o conjunto dos vetores $w\in W$ tais que existe um vetor $v\in V$, que satisfaz T(v)=w. Ou seja,

$$Im(T) = \{ w \in W; T(v) = w \text{ para algum } v \in V \}$$

Note que Im(T) é um subconjunto de W e, além disso, é um subespaço vetorial de W.

Núcleo e Imagem

Definition (Núcleo de uma Transformação Linear)

Seja $T:V\to W$ uma transformação linear. O conjunto de todos os vetores $v\in V$ tais que T(v)=0 é chamado *núcleo* de T, sendo denotado por ker(T). Isto é:

$$ket(T) = \{v \in V; T(v) = 0\}$$

Note que $Ker(T) \subset V$ é um subconjunto de V e, além disso, é um subespaço vetorial de V.

Exemplo 01: $T: \mathbb{R}^2 \to \mathbb{R}$ onde T(x,y) = x + y

Exemplo 02: Seja a transformação linear $\mathcal{T}:\mathbb{R}^3 o \mathbb{R}^3$ dada por

$$T(x, y, z) = (x, 2y, 0)$$

Definition

Dada uma aplicação (ou função) $T: V \to W$, diremos que T é *injetora* se dados $u \in V$, $v \in V$ com T(u) = T(v) tivermos u = v.

Equivalentemente, T é injetora se dados $u, v \in V$ com $u \neq v$, então $T(u) \neq T(v)$.

Em outras palavras, T é injetora se as imagens de vetores distintos são distintas.

Definition

Dada uma aplicação (ou função) $T: V \to W$, diremos que T é *injetora* se dados $u \in V$, $v \in V$ com T(u) = T(v) tivermos u = v.

Equivalentemente, T é injetora se dados $u, v \in V$ com $u \neq v$, então $T(u) \neq T(v)$.

Em outras palavras, T é injetora se as imagens de vetores distintos são distintas.

Definition

A aplicação $T:V\to W$ será sobrejetora se a imagem de T coincidir com W, ou seja T(V)=W.

Em outras palavras, T será sobrejetora se dado $w \in W$, existir $v \in V$ tal que T(v) = w.

Teorema

Theorem

Seja $T: V \to W$, uma aplicação linear. Então $ker(T) = \{0\}$, se e somente se T é injetora.

Teorema

Theorem

Seja $T: V \to W$, uma aplicação linear. Então $ker(T) = \{0\}$, se e somente se T é injetora.

Uma consequência é que uma aplicação linear injetora leva vetores LI em vetores LI.

Teorema do Núcleo e Imagem

Theorem (do Núcleo e Imagem)

Seja $T:V \to W$ uma aplicação linear. Então:

$$dim(V) = dim(ker(T)) + dim(Im(T))$$

Teorema do Núcleo e Imagem

Theorem (do Núcleo e Imagem)

Seja $T:V \to W$ uma aplicação linear. Então:

$$dim(V) = dim(ker(T)) + dim(Im(T))$$

Corollary

Se dimV = dimW, então T linear é injetora se e somente se T é sobrejetora.

Teorema do Núcleo e Imagem

Theorem (do Núcleo e Imagem)

Seja $T:V \to W$ uma aplicação linear. Então:

$$dim(V) = dim(ker(T)) + dim(Im(T))$$

Corollary

Se dimV = dimW, então T linear é injetora se e somente se T é sobrejetora.

Corollary

Seja $T:V\to W$ uma aplicação linear injetora. Se dimV=dimW, então T leva base em base.

Quando $T:V\to W$ for injetora e sobrejetora, ao mesmo tempo, dá-se o nome de *isomorfismo*. Quando há uma tal transformação entre dois espaços vetoriais dizemos que estes são *isomorfos*.

Quando $T:V\to W$ for injetora e sobrejetora, ao mesmo tempo, dá-se o nome de *isomorfismo*. Quando há uma tal transformação entre dois espaços vetoriais dizemos que estes são *isomorfos*.

No ponto de vista da álgebra linear, dois espaços vetoriais *isomorfos* são, por assim dizer, idênticos. Devido aos resultados anteriores, os espaços isomorfos possuem a mesma dimensão e um isomorfismo leva base a base.

Além, disso $T:V\to W$ tem uma aplicação inversa $T^{-1}:W\to V$ que é linear e também é um isomorfismo.

Exemplo 01: Seja $T : \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x - 2y, z, x + y). Mostre que T é isomorfismo e determine T^{-1} .

Exemplo 01:
$$A = \begin{bmatrix} 1 & -3 & 5 \\ 2 & 4 & -1 \end{bmatrix}$$
, $B = \{(1,0), (0,1)\}$ e $B' = \{(1,0,0), (0,1,0), (0,0,1)\}$ e $T_A : \mathbb{R}^3 \to \mathbb{R}^2$. Determine T_A .

Agora vamos encontrar a matriz associada a uma transformação linear.

Agora vamos encontrar a matriz associada a uma transformação linear.

Exemplo 02: Seja $T: \mathbb{R}^3 \to \mathbb{R}^2$ tal que

$$T(x, y, z) = (2x + y - z, 3x - 2y + 4z)$$
. Sejam

$$B = \{(1,1,1),(1,1,0),(1,0,0)\}$$
 e $B' = \{(1,3),(1,4)\}$. Determine $[T]_{B'}^B$.

Exemplo 03: Dadas as bases $B = \{(1,1), (0,1)\}\ de \mathbb{R}^2$ e

B' = {
$$(0,3,0),(-1,0,0),(0,1,1)$$
} de \mathbb{R}^3 , encontremos a transformação linear $T:\mathbb{R}^2\to\mathbb{R}^3$ cuja matriz é: $[T]_{B'}^B=\begin{bmatrix}0&2\\-1&0\\-1&3\end{bmatrix}$

Theorem

Sejam V e W espaços vetoriais, α base de V, β base de W e T : $V \to W$ uma aplicação linear. Então, para todo $v \in V$ vale:

$$[T(v)]_{\beta} = [T]_{\beta}^{\alpha} \cdot [v]_{\alpha}$$

Theorem

Sejam V e W espaços vetoriais, α base de V, β base de W e T : $V \to W$ uma aplicação linear. Então, para todo $v \in V$ vale:

$$[T(v)]_{\beta} = [T]_{\beta}^{\alpha} \cdot [v]_{\alpha}$$

Através deste teorema, o estudo de transformações lineares entre espaços de dimensão finita é reduzido ao estudo de matrizes. No caso particular de V=W e T=I, o resultado é o mesmo da matriz de mudança de base.

Exemplo 04: Seja a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ dada por

$$[T]_{\alpha}^{\beta} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -2 & 3 \end{bmatrix}$$

onde $\alpha = \{(1,0),(0,1)\}$ é base de \mathbb{R}^2 , $\beta = \{(1,0,1),(-2,0,1),(0,1,0)\}$ é base de \mathbb{R}^3 . Qual a imagem do vetor v = (2,-3) gerada por T.

Teoremas

Theorem

Seja $T:V\to W$ uma aplicação linear e α e β bases de V e W respectivamente. Então:

$$\dim Im(T) = posto \ de \ [T]^{\alpha}_{\beta}$$
$$\dim ker(T) = nulidade \ de \ [T]^{\alpha}_{\beta}$$

ou ainda, dim ker(T) = número de colunas - posto de $[T]^{\alpha}_{\beta}$.

Teorema

Theorem

Sejam $T_1:V\to W$ e $T_2:W\to U$ transformações lineares e α,β e γ bases de V,W e U respectivamente. Então a composta de T_1 com T_2 , $T_1\circ T_2:V\to U$ é linear e

$$[T_2 \circ T_1]^{\alpha}_{\gamma} = [T_2]^{\beta}_{\gamma} \cdot [T_1]^{\alpha}_{\beta}$$

Exemplo 02: Sejam as transformações lineares $T_1 : \mathbb{R}^2 \to \mathbb{R}^3$ e $T_2 : \mathbb{R}^3 \to \mathbb{R}^2$ cujas matrizes são:

$$[\mathcal{T}_1]^lpha_eta = \left[egin{array}{ccc} 1 & 0 \ 1 & -1 \ 0 & 1 \end{array}
ight] ext{ e } [\mathcal{T}]^eta_\gamma = \left[egin{array}{ccc} 0 & 1 & -1 \ 0 & 0 & 0 \end{array}
ight]$$

em relação às bases $\alpha = \{(1,0),(0,2)\}$, $B = \{(\frac{1}{3},0,-3),(1,1,15),(2,0,5)\}$ e $\gamma = \{(2,0),(1,1)\}$. Determine a transformação linear composta $T_2 \circ T_1 : \mathbb{R}^2 \to \mathbb{R}^2$, isto é, $(T_2 \circ T_1)(x,y)$.

Corollary

Se $T:V\to W$ é uma transformação linear inversível (T é um isomorfismo) e α e β são bases de V e W, então $T^{-1}:W\to V$ é um operador linear e

$$[T^{-1}]^{\beta}_{\alpha} = ([T]^{\alpha}_{\beta})^{-1}$$

Corollary

Se $T:V\to W$ é uma transformação linear inversível (T é um isomorfismo) e α e β são bases de V e W, então $T^{-1}:W\to V$ é um operador linear e

$$[T^{-1}]^{\beta}_{\alpha} = ([T]^{\alpha}_{\beta})^{-1}$$

Corollary

Seja $T:V\to W$ uma transformação linear e α e β bases de V e W. Então T é inversível se e somente se $\det[T]^{\alpha}_{\beta}\neq 0$.

Corollary

Conhecendo a matriz de uma transformação linear em relação a certas bases α e β e as matrizes de mudança de base para novas bases α' e β' , podemos achar a matriz da mesma transformação linear, desta vez em relação às novas bases α' e β' . Matematicamente,

$$[T]_{\beta'}^{\alpha'} = [I \circ T \circ I]_{\beta'}^{\alpha'} = [I]_{\beta'}^{\beta} [T]_{\beta}^{\alpha} [I]_{\alpha}^{\alpha'}$$

Como caso particular, se $T:V\to V$ é uma transformação linear e α e β são bases de V, então

$$[T]^{\beta}_{\beta} = [I \circ T \circ I]^{\beta}_{\beta} = [I]^{\alpha}_{\beta} [T]^{\alpha}_{\alpha} [I]^{\beta}_{\alpha}$$

Lembre-se que $[I]^{\beta}_{\alpha}=([I]^{\alpha}_{\beta})^{-1}$ denotando $[I]^{\beta}_{\alpha}=A$, segue que

$$[T]^{\beta}_{\beta} = A \cdot [T]^{\alpha}_{\alpha} \cdot A^{-1}$$

Dizemos neste caso que as matrizes $[T]^{\alpha}_{\alpha}$ e $[T]^{\beta}_{\beta}$ são semelhantes.

Exemplo 01: Dada $T: V \to V$, quais vetores $v \in V$ tais que T(v) = v? ($v \in denominado vetor fixo$).

O primeiro exemplo é o trivial, a aplicação identidade, onde todo vetor é definido como vetor fixo.

Exemplo 02: $r_x : \mathbb{R}^2 \to \mathbb{R}^2$ dada por $r_x(x,y) = (x,-y)$ ou

$$\left[\begin{array}{c} x \\ y \end{array}\right] \rightarrow \left[\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

Dada uma transformação linear de um espaço vetorial $T:V\to V$, nosso interesse é descobrir quais vetores são levados em um múltiplo de si mesmo, isto é, procuramos um vetor $v\in V$ e um escalar $\lambda\in\mathbb{R}$ tais que:

$$T(v) = \lambda v$$

.

Dada uma transformação linear de um espaço vetorial $T:V\to V$, nosso interesse é descobrir quais vetores são levados em um múltiplo de si mesmo, isto é, procuramos um vetor $v\in V$ e um escalar $\lambda\in\mathbb{R}$ tais que:

$$T(v) = \lambda v$$

Neste caso, T(v) será um vetor de mesma "direção" que v (sobre a mesma reta suporte). Como v=0 satisfaz a equação para todo λ , estamos interessados em determinar vetores $v\neq 0$ satisfazendo a condição acima.

Definition (Autovetor e Autovalor)

Seja $T:V\to V$ um operador linear. Se existirem $v\in V$, $v\neq 0$, e $\lambda\in\mathbb{R}$ tais que $T(v)=\lambda v$, λ é um *autovalor* de T e v é um *autovetor* de T associado a λ .

Note que λ pode ser igual a 0, embora $v \neq 0$.

Theorem

Dada uma transformação $T:V\to V$ e um autovetor v associado a um autovalor λ , qualquer vetor $w=\alpha v(\alpha\neq 0)$ também é um autovetor de T associado a λ .

Theorem

Dada uma transformação $T:V\to V$ e um autovetor v associado a um autovalor λ , qualquer vetor $w=\alpha v(\alpha\neq 0)$ também é um autovetor de T associado a λ .

MOSTRE QUE: o conjunto formado pelos autovetores associados a um autovalor λ e o vetor nulo é um subespaço vetorial de V, isto é, $V_{\lambda} = \{v \in V; T(v) = \lambda v\}$ é subespaço de V.

Definition

O subespaço $V_{\lambda} = \{v \in V; T(v) = \lambda v\}$ é chamado o *subespaço associado* ao autovalor λ .

Dada uma matriz quadrada de ordem n, A, estaremos entendendo por autovalor e autovetor de A, autovalor e autovetor da transformação linear $T_A: \mathbb{R}^n \to \mathbb{R}^n$, associada à matriz A em relação à base canônica, isto é, $T_A(v) = A \cdot v$ (na forma coluna). Assim, um autovalor $\lambda \in \mathbb{R}$ de A, e um autovetor $v \in \mathbb{R}^n$, são soluções da equação $A \cdot v = \lambda v, v \neq 0$.

Polinômio Característico

Nesta seção determinaremos um método prático para determinar autovalores e autovetores de uma matriz real A de ordem n.

Polinômio Característico

Nesta seção determinaremos um método prático para determinar autovalores e autovetores de uma matriz real A de ordem n.

Exemplo:

$$A = \left[\begin{array}{rrr} 4 & 2 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 2 \end{array} \right]$$

Nosso interesse esta em determinar vetores $v \in \mathbb{R}^3$ e escalares $\lambda \in \mathbb{R}$ tais que $A \cdot v = \lambda v$.

Exemplo 02:

$$A = \left[\begin{array}{cc} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{array} \right]$$

OBS: Quando trabalhamos em espaços algebricamente fechados, o polinômio característico sempre apresentará raízes (o caso quando estamos em \mathbb{C}).

No exemplo anterior, as raízes seriam $\lambda=\sqrt{3}+i$ e $\lambda=\sqrt{3}-i$. Os autovetores encontrados, da mesma maneira que no caso real, são do tipo (x,-ix) e (x,ix), respectivamente. Porém, não se tem a visão geométrica do comportamento do vetor. Autovalores e autovetores complexos são utilizados na resolução de um sistema de equações diferenciais.

Exemplo:

$$A = \left[\begin{array}{rrr} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{array} \right]$$

Pode-se também definir o polinômio característico de uma matriz, cuja a transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ esta associada a ela.

Pode-se também definir o polinômio característico de uma matriz, cuja a transformação linear $T: \mathbb{R}^n \to \mathbb{R}^n$ esta associada a ela.

Definition

Chamamos de *multiplicidade algébrica de um autovalor* a quantidade de vezes que ele aparece como raiz do polinômio característico.

A multiplicidade geométrica de um autovalor λ é a dimensão do subespaço V_{λ} de autovetores associados a λ .

Dado um operador linear $T:V\to V$, nosso objetivo é conseguir uma base B de V na qual a matriz do operador nesta base $([T]_B^B)$ seja uma matriz diagonal, que é a forma mais simples possível de se representar um operador.

Dado um operador linear $T:V\to V$, nosso objetivo é conseguir uma base B de V na qual a matriz do operador nesta base $([T]_B^B)$ seja uma matriz diagonal, que é a forma mais simples possível de se representar um operador.

Theorem

Autovetores associados a autovalores distintos são linearmente independentes.

Corollary

Se V é um espaço vetorial de dimensão n e T : $V \rightarrow V$ é um operador linear que possui n autovalores distintos, então V possui uma base cujos vetores são todos autovetores de T.

Em outras palavras, se conseguirmos encontrar tantos autovalores distintos quanto for a dimensão do espaço, podemos garantir a existência de uma base de autovetores.

Exemplo 02: Seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear cuja matriz em relação à base canônica α é:

$$[T]^{\alpha}_{\alpha} = \left[\begin{array}{ccc} 3 & 0 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{array} \right]$$

Dada uma transformação linear qualquer $T:V\to V$, se conseguirmos uma base $B=\{v_1,v_2,\ldots,v_n\}$ formada por autovetores de T, então, como

$$T(v_1) = \lambda_1 v_1 + 0 v_2 + \dots + 0 v_n$$

$$T(v_2) = 0 v_1 + \lambda_2 v_2 + \dots + 0 v_n$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$T(v_n) = 0 v_1 + 0 v_2 + \dots + \lambda_n v_n$$

A matriz $[T]_B^B$ será uma matriz diagonal onde os elementos da diagonal principal são os autovalores λ_i , isto é,

$$[T]_{B}^{B} = \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & \lambda_{n} \end{bmatrix}$$

Um autovalor aparecerá na diagonal quantas vezes forem os autovetores LI a ele associados.

Por outro lado, se $\gamma = \{u_1, u_2, \dots, u_n\}$ é uma base de V tal que

$$[T]_{\gamma}^{\gamma} = \left[egin{array}{cccc} a_1 & 0 & \dots & 0 \ 0 & a_2 & \dots & 0 \ dots & dots & dots \ 0 & 0 & \dots & a_n \end{array}
ight]$$

Dessa forma, u_1, \ldots, u_n são necessariamente autovetores de T com autovalores a_1, \ldots, a_n respectivamente. De fato, da definição de $[T]_{\gamma}^{\gamma}$ temos:

$$T(u_1) = a_1 u_1 + 0 u_2 + \dots + 0 u_n = a_1 u_1$$

$$T(u_2) = 0 u_1 + a_2 u_2 + \dots + 0 u_n = a_2 u_2$$

$$\vdots \qquad \vdots$$

$$T(u_n) = 0 u_1 + 0 u_2 + \dots + a_n u_n = a_n u_n$$

Dessa forma, concluímos que um operador $T:V\to V$ admite uma base B em relação à qual sua matriz $[T]_B^B$ é diagonal se, e somente se essa base B for formada por autovetores de T.

Dessa forma, concluímos que um operador $T:V\to V$ admite uma base B em relação à qual sua matriz $[T]^B_B$ é diagonal se, e somente se essa base B for formada por autovetores de T.

Definition

Seja $T:V\to V$ um operador linear. Dizemos que T é um operador diagonalizável se existe uma base de V cujos elementos são autovetores de T.

Os operadores do exemplo 01 e 02 são diagonalizáveis. Agora seja $T: \mathbb{R}^3 \to \mathbb{R}^3$ a transformação linear cuja matriz em relação à base canônica α é:

$$[T]^{\alpha}_{\alpha} = \begin{bmatrix} 3 & -3 & -4 \\ 0 & 3 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$

Definition

Seja $p(x) = a_n x^n + \cdots + a_1 x + a_0$ um polinômio e A uma matriz quadrada. Então p(A) é a matriz

$$p(A) = a_n A^n + \cdots + a_1 A + a_0 I$$

Quando p(A) = 0, dizemos que o polinômio anula a matriz A.

Exemplo: Sejam
$$p(x) = x^2 - 9$$
 e $q(x) = 2x + 3$. Se $A = \begin{bmatrix} -1 & 4 \\ 2 & 1 \end{bmatrix}$. Determine $p(A)$ e $q(A)$.

Definition

Seja A uma matriz quadrada. O polinômio minimal de A é um polinômio

$$m(x) = x^k + a_{k-1}x^{k-1} + \cdots + a_0$$

tal que:

- i) m(A) = 0, isto é, m(x) anula a matriz A.
- ii) m(x) é o polinômio de menor grau entre aqueles que anulam A.

Note que o coeficiente do termo x^k do polinômio minimal é 1 ($a_k = 1$).

Theorem

Sejam $T:V\to V$ um operador linear e α uma base qualquer de V de dimensão n. Então T é diagonalizável se, e somente se o polinômio minimal de $[T]^{\alpha}_{\alpha}$ é da forma

$$m(x) = (x - \lambda_1)(x - \lambda_2) \dots (x - \lambda_r)$$

com $\lambda_1, \lambda_2, \dots, \lambda_r$ distintos.

Theorem (de Cayley-Hamilton)

Seja $T:V\to V$ um operador linear, α uma base de V e p(x) o polinômio característico de T. Então

$$p([T]^{\alpha}_{\alpha})=0$$

Theorem (de Cayley-Hamilton)

Seja $T:V\to V$ um operador linear, α uma base de V e p(x) o polinômio característico de T. Então

$$p([T]^{\alpha}_{\alpha})=0$$

Isto significa que o polinômio característico é um candidato ao polinômio minimal, já que satisfaz a condição i) da definição de polinômio minimal.

Theorem

As raízes do polinômio minimal são as mesmas raízes (distintas) do polinômio característico.

Theorem

Sejam $\lambda_1, \lambda_2, \dots, \lambda_r$ os autovalores distintos de um operador linear T. Então T será diagonalizável se, e somente se o polinômio

$$(x-\lambda_1)(x-\lambda_2)\dots(x-\lambda_r)$$

anular a matriz de T.

Exemplo 01: O operador linear $T : \mathbb{R}^4 \to \mathbb{R}^4$ definido por T(x, y, z, t) = (3x - 4z, 3y + 5z, -z, -t) é diagonalizável?

Obtemos que T_1 e T_2 operadores diagonalizáveis, então T_1 e T_2 são simultaneamente diagonalizáveis se e somente se T_1 e T_2 comutam $(T_1 \circ T_2 = T_2 \circ T_1)$.

Na prática, dados T_1 e T_2 , tomamos uma base B qualquer de V e verificamos se T_1 e T_2 são diagonalizáveis. Se isto acontecer e, além disso, $[T_1]_B^B[T_2]_B^B=[T_2]_B^B[T_1]_B^B$, então podemos concluir que T_1 e T_2 são simultaneamente diagonalizáveis.