

第3课 计算机图形变换

# **Key Contents**

- 1. Viewing
- 2. Computer Viewing Pipeline
- 3. Modeling and Viewing Transformations
- 4. Viewing Matrix by LookAt
- 5. Projection: Orthogonal and Perspective Matrices
- 6. Normalization of View Volume
- 7. Viewport Transformation
- 8. Applications of Transformation: Moving Light Sources

# Viewing

- physical imaging systems
  - Eye(viewer) viewing
  - Camera(video) viewing
- Three basic elements:
  - Objects
  - Viewer with a projection surface
  - Light
- Note independence of objects, viewer, and light
- The light reflects off the objects (materials) to the viewer
- CG imaging system: Screen is an emission display, not reflection
  - Objects
  - Viewer with a projection surface
  - Viewer direction



# Computer Viewing Pipeline



- The pipeline involves several spaces and transformations between them
- A graphics scene starts with geometry
- The scene is independent of the viewer

# **Modeling Transformations**

- Your models in their coordinates are natural to be defined
- Modeling transformations put the parts of your models together properly into a world space by translations, scales and rotations
- All the parts of a scene are placed in a single 3D world coordinate system



# Viewing Transformations

- A scene becomes an image when there is a viewer and a viewing context
- A viewer (or camera) is placed in the world space with a position and orientation
- The camera is located at origin and points in the negative z direction by default in OpenGL



# Moving Camera back from Origin

coordinates after translation by -d



# Moving the Camera

- We can move the camera to any desired position by a sequence of rotations and translations
- Example: side view from x-axis
  - Rotate the camera
  - Move it away from origin
  - Viewing matrix C = TR



# Camera in Anywhere

- Where is the projection plane?
- Transform the objects of the world space into eye space because projection is transformed in eye space
- ❖ Viewing Matrix
  M= R<sub>2</sub>\*R<sub>1</sub>\*T
- Can be done by rotations and translations or easier to use a LookAt function

## Viewing and Modeling Transformations





#### Viewing transformation:

Modeling transformation:

Translate(tx, ty, tz);

## Viewing Transformation by LookAt

LookAt (eye<sub>x</sub>, eye<sub>y</sub>, eye<sub>z</sub>, at<sub>x</sub>, at<sub>y</sub>, at<sub>z</sub>, up<sub>x</sub>, up<sub>y</sub>, up<sub>z</sub>) For eye coordinate system:

- 1. eye (View Reference Point, VRP) as an origin, (eyex, eyey, eyez)
- 2. View-Plane Normal n as a z-axis, VPN=at eye, n = VPN / |VPN|
- 3. The x-axis (the third vector  $\underline{u}$ ) as a vector perpendicular to n and up by cross product:  $u = up \times n / |up \times n|$
- 4. View-UP vector(VUP) v as a y-axis,  $v = n \times u / |n \times u|$



If translate, and rotate twice along z-axis and y-axis:

$$M = R_v(\beta) R_z(\alpha) T$$

The eye space and the world space overlap

# Viewing Matrix

- Here we use vectors u, v and n to represent the
- viewing matrix

  VRP:  $E_0 = (e_x, e_y, e_z)$   $T = \begin{bmatrix} 1 & 0 & 0 & -e_x \\ 0 & 1 & 0 & -e_y \\ 0 & 0 & 1 & -e_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- The rotation matrix:

$$\mathsf{R} = \begin{bmatrix} u_{x} & u_{y} & u_{z} & 0 \\ v_{x} & v_{y} & v_{z} & 0 \\ n_{x} & n_{y} & n_{z} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The Viewing matrix:

The Viewing matrix:
$$M = RT = \begin{bmatrix}
u_x & u_y & u_z & 0 \\
v_x & v_y & v_z & 0 \\
n_x & n_y & n_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
1 & 0 & 0 & -e_x \\
0 & 1 & 0 & -e_y \\
0 & 0 & 1 & -e_z \\
0 & 0 & 0 & 1
\end{bmatrix} = \begin{bmatrix}
u_x & u_y & u_z & -u \cdot E_0 \\
v_x & v_y & v_z & -v \cdot E_0 \\
n_x & n_y & n_z & -n \cdot E_0 \\
0 & 0 & 0 & 1
\end{bmatrix}$$

p'=Mp the point p in the world space is transformed into p' in eye space

# Other Viewing APIs

- The LookAt function is only one possible API for positioning the camera
- Others include
  - View Reference Point, View Plane Normal, View UP (PHIGS, GKS-3D)
  - > Yaw, Pitch, Roll
  - > Elevation, Azimuth, Twist
  - Direction angles

## VRP, VPN and VUP Matrix

Look(eye<sub>x</sub>, eye<sub>y</sub>, eye<sub>z</sub>, n<sub>x</sub>, n<sub>y</sub>, n<sub>z</sub>, vup<sub>x</sub>, vup<sub>y</sub>, vup<sub>z</sub>);

For eye coordinate system in PHIGS, GKS-3D:

- 1. VRP: View Reference Point as an origin
- 2. VPN: View-Plane Normal n as a z-axis, normal of projection face
- 3. VUP: View-UP v as a y-axis, can not be parallel with projection face
- 4. The x-axis (the third vector u) can be computed with a cross product:  $u = v \times n$



#### Viewing matrix:

$$M = \begin{bmatrix} u_x & u_y & u_z & -xu_x - yu_y - zu_z \\ v_x & v_y & v_z & -xv_x - yv_y - zv_z \\ n_x & n_y & n_z & -xn_x - yn_y - zn_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

## Yaw, Pitch, Roll



How to represent a viewing matrix in terms of these parameters?

## Elevation, Azimuth, Twist

#### Elevation, Azimuth, Twist



#### Direction angles



# Classical Projections



Front elevation



Isometric



Elevation oblique



One-point perspective



Plan oblique



Three-point perspective

# Taxonomy of Planar Geometric Projections



## Perspective vs Parallel

- Classical viewing developed different techniques for drawing each type of projection
- Computer graphics treats all projections the same and implements them with a single pipeline
- Fundamental distinction is between parallel and perspective viewing even though mathematically parallel viewing is the limit of perspective viewing

# Perspective View Volume



# Orthographic View Volume



## **Default Projection**

Default projection is normalized and orthogonal



# OpenGL Orthogonal Viewing

To define the view volume for clipping when projection

```
glOrtho (GLdouble left, GLdouble right, GLdouble
 bottom, GLdouble top, GLdouble near, GLdouble far);
```

#### Six planes of view volume:

$$x = right$$

$$x = 1eft$$

$$y = top$$

$$y = bottom$$

$$z_{\min} = -near$$

$$z_{\text{max}} = -far$$



# OpenGL Perspective Viewing

To define the view volume for clipping when projection

void glFrustum(GLdouble left, GLdouble Right, GLdouble
bottom, GLdouble top, GLdouble near, GLdouble far);



# Using Field of View for Perspective

- With glfrustum it is often difficult to get the desired view
- Field of view often provides a better interface

void gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble zNear, GLdouble zFar);





perspective(fovy, aspect, near, far)

where, aspect=w/h, and 0<near<far

So, top=h/2=near\*tg(fovy/2) right=w/2=(aspect\*h)/2

#### Normalization of View Volume

- Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume
- This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping

## Pipeline View



#### **Notes**

- We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
  - Both these transformations are nonsingular
  - Default to identity matrices (orthogonal view)
- Normalization lets us clip against simple cube regardless of type of projection
- Delay final projection until end
  - Important for hidden-surface removal to retain depth information as long as possible

## Orthogonal Normalization

Ortho(left, right, bottom, top, near, far)

normalization ⇒ find transformation to convert specified clipping volume to default



## Orthogonal Normalization Matrix

(left, bottom,-near)

(right,top,-far)

(1,1,-1)

#### Two steps

- Move center to origin
   T(-(left+right)/2, -(bottom+top)/2, (near+far)/2))
- Scale to have sides of length 2
   S(2/(left-right), 2/(top-bottom), 2/(near-far))

$$\mathbf{M} = \mathbf{ST} = \begin{bmatrix} \frac{2}{right - left} & 0 & 0 & -\frac{right - left}{right - left} \\ 0 & \frac{2}{top - bottom} & 0 & -\frac{top + bottom}{top - bottom} \\ 0 & 0 & \frac{2}{near - far} & \frac{far + near}{far - near} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

#### Ortho(left,right,bottom,top,Near,Far)--code

```
mat4 Ortho( const GLfloat left, const GLfloat right, const
GLfloat bottom, const GLfloat top, const GLfloat zNear,
const GLfloat zFar )
    mat4 c;
    c[0][0] = 2.0/(right - left);
    c[1][1] = 2.0/(top - bottom);
    c[2][2] = 2.0/(zNear - zFar);
    c[3][3] = 1.0;
    c[0][3] = -(right + left)/(right - left);
    c[1][3] = -(top + bottom)/(top - bottom);
    c[2][3] = -(zFar + zNear)/(zFar - zNear);
    return c;
```

# Final Normalization Orthogonal

- $\bullet$  Set z = 0
- Equivalent to the homogeneous coordinate transformation  $(x_p, y_p, 0)$  z = 0

$$\mathbf{M}_{\text{orth}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Hence, general orthogonal projection in 4D is

$$M_p = M_{orth}ST$$

We can let  $M_{orth} = I$  and set the z term to zero later

## Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at z = -1(d=-1), and a 90 degree field of view determined by the planes

$$x = \pm z$$
,  $y = \pm z$ 

six planes of view volume:

$$x = \pm z,$$

$$y = \pm z$$

$$z = -1$$

$$z = -far$$



#### Perspective Matrices

Simple projection matrix in homogeneous coordinates, z= -1

$$\mathbf{M} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Note that this matrix is independent of the far clipping plane

#### Perspective Normalization Matrix

N matrix transforms the frustum into parallelepiped

$$\mathbf{N} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{bmatrix} \qquad \begin{array}{c} p' = \mathbf{N}p & \text{Then} \\ x' = x \\ y' = y \\ z' = \alpha z + \beta \end{array}$$

Then
$$p'=Np$$

$$x' = x$$

$$y' = y$$

$$z' = \alpha z + \beta$$

$$w' = -z$$

after perspective division, the point (x, y, z, 1) goes to

$$x'' = -x/Z$$

$$y'' = -y/Z$$

$$z'' = -(\alpha + \beta/Z)$$

which projects orthogonally to the desired point regardless of  $\alpha$  and  $\beta$ 

 $z'' = -(\alpha + \beta/z)$  is nonlinear but preserves the ordering of depths, if  $z_1 > z_2$ , then  $z_1$ " >  $z_2$ "



### Picking $\alpha$ and $\beta$

#### If we pick

$$\alpha = \frac{\text{near} + \text{far}}{\text{far} - \text{near}}$$
$$\beta = \frac{2\text{near} * \text{far}}{\text{near} - \text{far}}$$

the near plane is mapped to z = -1the far plane is mapped to z = 1and the sides are mapped to  $x = \pm 1$ ,  $y = \pm 1$ 

# Perspective Normalization Matrix

If we apply an orthographic projection along the z-axis to N, the matrix is

$$\mathbf{M}_{p} = \mathbf{M}_{orth} \mathbf{N} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \alpha & \beta \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

$$p'=M_{\text{orth}}Np = \begin{bmatrix} x \\ y \\ 0 \\ -z \end{bmatrix}$$

 After doing the perspective division, we obtain the perspective point xp and yp

$$x_p = -\frac{x}{z} \qquad y_p = -\frac{y}{z}$$

#### Normalization Transformation



Hence the new clipping volume is the default clipping volume

## Why do we do it this way?

- Normalization allows for a single pipeline for both perspective and orthogonal viewing
- We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
- We simplify clipping

### Perspective Normalization Matrix

#### Scaling from view volume to normalization:

$$s_x = 1 / x = -2 * near / (right - left)$$
  
 $s_y = 1 / y = -2 * near / (top - bottom)$   
 $s_z = 1$ 



$$M_{persp} = \begin{bmatrix} \frac{2*near}{right - left} & 0 & \frac{right + left}{right - left} & 0 \\ 0 & \frac{2*near}{top - bottom} & \frac{top + bottom}{top - bottom} & 0 \\ 0 & 0 & -\frac{far + near}{far - near} & \frac{-2*far * near}{far - near} \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

### perspective(fovy, aspect, near, far)--code

```
mat4 Perspective( const GLfloat fovy, const GLfloat aspect,
               const GLfloat zNear, const GLfloat zFar)
   GLfloat top = zNear * tan(fovy*DegreesToRadians/2);
   GLfloat right = top * aspect;
   mat4 c;
   c[0][0] = zNear/right;
   c[1][1] = zNear/top;
   c[2][2] = -(zFar + zNear)/(zFar - zNear);
   c[2][3] = -2.0*zFar*zNear/(zFar - zNear);
   c[3][2] = -1.0;
   return c;
```

# **Definition of Viewport**

- A viewport is a rectangular region in the window to which you can draw
- Default viewport is the entire window
- You can define a smaller viewport so all drawing is restricted to that region
- You can use separate modeling for each viewport





### 2D Window Mapping into Viewport



$$(x - XMIN) / WW = (u - L) / VW$$
  
 $(y - YMIN) / WH = (v - B) / VH$ 



#### viewport

$$VW=R-L$$
  
 $VH=T-B$ 

$$u = L + (x - XMIN) * VW / WW$$
  
 $v = B + (y - YMIN) * VH / WH$ 

# Viewport Matrix

$$p' = T_2ST_1p$$

$$T_{1} = \begin{pmatrix} 1 & 0 & -xw_{min} \\ 0 & 1 & -yw_{min} \\ 0 & 0 & 1 \end{pmatrix}$$

$$S = \begin{pmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{pmatrix}$$



(xv<sub>max</sub>, yv<sub>max</sub>)

viewport

(xv<sub>min,</sub> yv<sub>min</sub>)

$$T_{2} = \begin{pmatrix} 1 & 0 & xv_{min} \\ 0 & 1 & yv_{min} \\ 0 & 0 & 1 \end{pmatrix}$$

其中: 
$$S_X = \frac{XV_{max} - XV_{min}}{XW_{max} - XW_{min}}$$

$$S_y = \frac{yV_{max} - yV_{min}}{yW_{max} - yW_{min}}$$

Question: if  $Sx \neq Sy$ , how to make the transformation distortionless?

### Sequence of OpenGL Transformation



# Applications of Transformation: Moving Light Sources

- Light sources are geometric objects whose positions or directions are affected by the modelview matrix
- Depending on where we place the position (direction) setting function, such as we can
  - Move the light source(s) with the object(s)
  - Fix the object(s) and move the light source(s)
  - Fix the light source(s) and move the object(s)
  - Move the light source(s) and object(s) independently
  - **>** .....

# Positioning and Moving Lights

#### Lights are affected by all transformations:

- 1. The light is at a fixed place in the scene
- 2. The light is at a fixed place relative to the eyepoint, light's
  - geometry is modified
  - by the viewing transformation
- 3. The light is at a fixed place relative to an object in the scene,
  - light's geometry is defined
  - in a branch of the group node
- 4. The light moves around in the scene on its own
- 5. Move the light source(s) with the object(s)
- 6. Move the light source(s) and object(s) independently





#### **Summary of Viewing Transformation**

| Transformation | Use                                                                                                            |
|----------------|----------------------------------------------------------------------------------------------------------------|
| Viewing        | Specifies the location of the viewer or camera                                                                 |
| Modeling       | Moves objects around the scene                                                                                 |
| Modelview      | Describes the duality of viewing and modeling transformations                                                  |
| Projection     | Normalization projection in the view volume; Perspective division; Transform 4D model into 3D window; Clipping |
| Viewport       | Specifies the size of viewport; Transforms (scales) the geometry on the normalized window to the screen        |

#### Shadows

#### The shadow areas are

- ✓ to be seen from the view position
- ✓ not to be seen from light source position

#### soft shadow





# 5.1 Shadows from a directional light





The direction of light is (dx, dy, dz).

The shadow of a vertex (x, y, z) on the plane is at (x', y', z'). Hence, we have  $x' = x + \alpha dx$ ,  $y' = y + \alpha dy$ ,  $z' = z + \alpha dz$ . Moreover, a  $(x + \alpha dx) + b (y + \alpha dy) + c (z + \alpha dz) + d = 0$ .  $\alpha = -(a x + b y + c z + d) / (a dx + b dy + c dz)$ 

#### $\alpha = -(a x + b y + c z + d) / (a dx + b dy + c dz)$

$$x' = x - \frac{a \times x + b \times y + c \times z + d}{a \times dx + b \times dy + c \times dz} dx$$

$$x' = \frac{(b \times dy + c \times dz)x - (b \times dx)y - (c \times dx)z - d \times dx}{a \times dx + b \times dy + c \times dz}$$

$$y' = \dots$$

$$z' = \dots$$

$$\begin{pmatrix} x' \\ y' \\ z' \\ w' \end{pmatrix} = \begin{pmatrix} b \times dy + c \times dz & -b \times dx & -c \times dx & -d \times dx \\ -a \times dy & a \times dx + c \times dz & -c \times dy & -d \times dy \\ -a \times dz & -b \times dz & a \times dx + b \times dy & -d \times dz \\ 0 & 0 & 0 & a \times dx + b \times dy + c \times dz \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$$

```
----
```

```
//Set up the matrix M such that it projects a vertex on the plane
// ax + by + cz + d = 0.
  The direction of light is (dx, dy, dz).
void directionalLightShadow( double dx, double dy, double dz,
            double a, double b, double c, double d, GLfloat M[16])
   M[0] = b*dy+c*dz; M[4] = -b*dx; M[8] = -c*dx; M[12] = -d*dx;
   M[1] = -a*dy; M[5] = a*dx+c*dz; M[9] = -c*dy; M[13] = -d*dy;
   M[2] = -a*dz; M[6] = -b*dz; M[10] = a*dx+b*dy; M[14] = -d*dz;
   M[3] = 0; M[7] = 0; M[11] = 0; M[15] = a*dx+b*dy+c*dz;
```

# 5.2 Shadows from a point light



Assume that the point light source is at the origin.

The shadow of a vertex (x, y, z) on the plane is at (x', y', z').

Hence, we have  $x' = \alpha x$ ,  $y' = \alpha y$ ,  $z' = \alpha z$ .

Moreover, a  $(\alpha x) + b(\alpha y) + c(\alpha z) + d = 0$ .

$$\alpha = - d / (ax + by + cz)$$
  
$$x' = - d \cdot x / (ax + by + cz)$$

$$x' = \frac{x}{\frac{a}{-d}x + \frac{b}{-d}y + \frac{c}{-d}z}$$

$$y' = \dots$$
 $z' = \dots$ 



$$(x, y, z)$$
 $(0,0,0)$ 

If the light source is at (Ix, Iy, Iz) instead of at the origin, first

translate the origin to the light source.



 $x = x - l_x$   $y = y - l_y$   $z = z - l_z$  $a(x - l_x) + b(y - l_y) + c(z - l_z) + \text{new\_d} = 0$   $\text{new\_d} = d + a l_x + b l_y + c l_z$ 

Note that the constant term of the plane equation is changed after the translation.

(x, y, z) (0, 0, 0) (x', y', z')

 $ax + by + cz + new_d = 0$ 

```
//Set up the matrix M such that it projects a vertex on the plane
// ax + by + cz + new_d = 0 that new_d = d + a I_x + b I_y + c I_z
// The light source is at (lx, ly, lz).
void pointSourceShadow( double lx, double ly, double lz,
      double a, double b, double c, double new_d, GLfloat M[16]) {
   M[0] = 1; M[4] = 0; M[8] = 0;
                                                 M[12] = 0;
   M[1] = 0; M[5] = 1; M[9] = 0; M[13] = 0;
   M[2] = 0; M[6] = 0; M[10] = 1; M[14] = 0;
```

M[3] = -a/d; M[7] = -b/d; M[11] = -c/d; M[15] = 0;

### Questions

- In interactive computer graphics, when modeling, how to use two-dimensional devices such as a mouse to interface with three dimensional objects?
- ❖ In the future, volume holographic imaging will be applied to 3D display 全息成像

## 作业5

- 1. 飞机移动的位置由滚转角、俯视角和偏航角以及与物体的距离确定。 根据这些参数给出一个观察矩阵?
- 2. 在进行视见变换时,眼睛空间的作用是什么?
- 3. 当我们从远处观察一个封闭房间的内部时,给出透视视见体的定义。
- 4. 我们有一个变换,是从场景2D窗口映射到视见窗,其中缩放系数为 (Sx, Sy), 讨论当Sx≠Sy时,视见窗的无变形的变换矩阵是什么。



#### exercises

- 1. Consider an airplane whose position is specified by the roll, pitch, and yaw and by the distance from the object. Give a viewing matrix in terms of these parameters?
- 2. When viewing transformations, what is the eye space function?
- 3. When we view the interior of a closed room from a distance, give a define for view volume of perspective.
- 4. We have the transformation matrix from scene 2D window into viewport, here scaling by (Sx, Sy). Discuss transformation matrix of distortionless in the viewport when  $Sx \neq Sy$ .



Perspective(fovy, aspect, zNear, zFar);

COP