파생상품론

제10주제 블랙-숄즈 모형

교재: 파생상품의 원리(윤평식 저, 탐진출판사, 2011년)

1. 블랙-숄즈 모형의 기본 가정과 논리

피셔 블랙(Fischer Black)과 마이론 숄즈(Myron Scholes)의 1973년 모형

- 가정
 - 주가는 기하적 브라운 운동에 의해 변함 (주가는 대수정규분포를 따르며, 점프하지 않고 연속적으로 변함)
 - 거래비용과 세금 없음
 - 기초자산은 배당을 지급하지 않음
 - 무위험 차익거래기회는 존재하지 않음
 - 증권의 거래는 연속적으로 발생함
 - 무위험이자율로 차입과 대출이 가능함
 - 무위험이자율은 일정함

대수정규분포

- 논리: 복제(replication)와 차익거래(arbitrage)
- (9주제의 설명 참조)

2. 블랙-숄즈 모형의 옵션가격결정공식

무배당 주식에 대한 유로피언 콜옵션과 풋옵션의 가격결정공식은 다음과 같다:

(입력변수: 주가(S), 행사가격(K), 무위험이자율(r), 변동성(σ), 만기(T)

$$C = S \cdot N(d_1) - PV(K) \cdot N(d_2)$$

$$P = PV(K) \cdot N(-d_2) - S \cdot N(-d_1)$$

$$E \cdot PV(K) = Ke^{-rT}$$

$$d_1 = \frac{\ln\left(\frac{S}{K}\right) + \left(r + \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}}$$

$$d_2 = \frac{\ln\left(\frac{S}{K}\right) + \left(r - \frac{\sigma^2}{2}\right)T}{\sigma\sqrt{T}} = d_1 - \sigma\sqrt{T}$$

$$(12.1)$$

"C=SN(d1)-PV(K)N(d2)"는 다음과 같이 해석됨:

콜옵션 가치 = 옵션행사시 수령할 것으로 예상되는 금액의 현재가치 - 옵션행사시 지급할 것으로 예상되는 금액의 현재가치 (12.3)

N(x)의 의미

표준정규분포를 따르는 변수 z가 x보다 작을 확률임

In x 함수의 모양

N(x)의 값을 구하는데 이용되는 표

x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	0.0773	0.0770	0.0703	0.0700	0.0702	0.0700		0.0000	0.0013	0.0017
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936

- [그림 12-2] 주가별 콜옵션과 풋옵션 가격(K=100, T=0.5, $\sigma=0.2$, r=0.05)

예시:

무배당 주식 가격 10,000원, 무위험이자율 10%, 변동성 50% 행사가격 9,500원, 만기 3개월인 유로피언 콜옵션과 풋옵션 가격은?

S=10,000, K=9,500, r=0.1, T=0.25, σ =0.5이고, d1=0.4302와 d2=0.1802이다.

$$\begin{split} d_1 &= \frac{\ln\!\left(\frac{10,000}{9,500}\right) \! + \! \left(0.1 + \frac{0.5^2}{2}\right) \! \times 0.25}{0.5\,\sqrt{0.25}} \\ d_2 &= 0.4302 - 0.5\,\sqrt{0.25} = 0.1802 \end{split}$$

그리고 표로부터 N(d1)=0.6665와 N(d2)=0.5715이다.

$$N(0.4302) = 0.6664 + 0.02(0.6700 - 0.6664) = 0.6665$$

$$N(0.1802) = 0.5714 + 0.02(0.5753 - 0.5714) = 0.5715$$

콜옵션의 가격은 1,370원이다.

$$C = 10,000 \times 0.6665 - 9,500e^{-0.1 \times 0.25} \times 0.5715 = 1,370$$

N(-0.4302)=0.3335이고 N(-0.1802)=0.4285이므로 풋옵션의 가격은 635원이다.

$$P = 9.500e^{-0.1 \times 0.25} \times 0.4285 - 10.000 \times 0.3335 = 635$$

그리고 콜옵션과 풋옵션은 풋-콜 패리티를 만족시킨다.

$$P+S=635+10,000 = C+Ke^{-rT}=1,370+9,500e^{-0.1\times0.25}=10,635$$

Question:

다음 조건 하에서 블랙-숄즈 모형을 이용하여 콜옵션을 가격을 구하라. (기초자산은 배당을 지급하지 않으며 옵션은 유로피언 옵션임)

S = 10,000

K = 12,000

T = 1

r = 0.03

 $\sigma = 0.3$

그리고 동일 조건의 풋옵션의 가격도 구하라.

Answer:

 $d_1 = -0.3577$, $d_2 = -0.6577$ 이고 $N(d_1) = 0.3603$, $N(d_2) = 0.2554$ 이다.

콜옵션 프리미엄은 629원이다.

$$C = 10,000 \times 0.3603 - 12,000e^{-0.03} \times 0.2554 = 629$$

N(-d₁)=0.6397과 N(-d₂)=0.7446이므로 풋옵션 프리미엄은 2,274원이다.

$$P = -10,000 \times 0.6397 + 12,000e^{-0.03} \times 0.7446 = 2,274$$

3. BS공식의 속성

 N(d1)은 콜옵션의 델타로서 무위험포트폴리오를 구성하기 위하여 매도한 콜옵션 1개당 매입해야 할 주식의 수이고, N(d2)는 만기일의 주가가 행사가 격보다 높을 가능성임.

$$N(d_1) = \Delta_{call}$$

$$N(d_2) = \Pr\left(S_T > K\right)$$
 (12.2)

콜옵션 = [주식 1주
$$\times$$
 헤지비율(Δ_{call})] (12.5)
- [행사가격의 현가 \times 콜옵션 행사확률]

• 공식은 콜옵션 복제포트폴리오 구성방법을 알려줌

콜옵션 복제포트폴리오 = 주식
$$\Delta_{call}$$
주 매입 + 차입
$$= 주식 \ \Delta_{call}$$
주 매입 + 무위험채권 공매도 (12.6)

• 풋옵션 복제포트폴리오의 구성

풋옵션 복제포트폴리오 = 주식
$$|-N(-d_1)|$$
주 공매도 + 대출
$$= 주식 \ |-N(-d_1)|$$
주 공매도
$$+ 무위험채권 \ \mathrm{ml}$$

• 주가가 매우 높으면 콜옵션을 행사하는 것이 거의 확실시되므로 콜옵션은 인도가격을 K로 하는 선도계약과 유사해지고 콜옵션 가격은 하한선인 S-PV(K)에 접근함. 그리고 풋옵션 가격은 0에 접근함.

• 주가가 매우 낮으면 콜옵션 가격은 0에 접근하고, 풋옵션 가격은 하한선인 $_{PV(K)-S}$ 에 접근함.

4. 그릭문자

• 델타(delta): 기초자산의 가격변화에 대한 옵션가격의 변화

콜옵션의 델타 →

$$\Delta_{call} = \frac{dC}{dS} = N(d_1) \tag{12.8}$$

풋옵션의 델타 →

$$\Delta_{put} = \frac{dP}{dS} = -N(-d_1) = N(d_1) - 1$$
 (12.9)

옵션포트폴리오의 델타 →

$$\Delta_{portfolio} = \sum_{i=1}^{k} n_i \Delta_j \tag{12.10}$$

• 감마(gamma): 기초자산의 가격변화에 대한 델타의 변화

$$\Gamma_{call} = \frac{d\Delta}{dS} = \frac{d^2C}{dS^2} = \Gamma_{put}$$
 (12.11)

• 세타(theta): 시간 경과에 대한 옵션가격의 변화

$$\Theta_{call} = \frac{dC}{dT} \tag{12.12}$$

• 베가(vega): 기초자산 변동성의 변화에 대한 옵션가격의 변화

$$\Lambda_{call} = \frac{dC}{d\sigma} \tag{12.13}$$

• 로(rho): 무위험이자율의 변화에 대한 옵션가격의 변화

$$\rho_{call} = \frac{dC}{dr} \tag{12.14}$$

• 옵션탄력성(option elasticity): 주가변화율에 대한 옵션가격의 변화율

$$\Omega_{call} = \frac{\% dC}{\% dS} = \frac{\frac{dC}{C}}{\frac{dS}{S}} = \frac{S}{C} \Delta_{call}$$
 (12.15)

5. 내재변동성

• 내재변동성(implied volatility)은 옵션가격에 내재된 변동성임

- 내재변동성은 미래 지향적임
- 내재변동성은 반복적 탐색절차를 거쳐 추정함

변동성미소(volatility smile): 등가격 옵션의 변동성이 내가격 또는 외가격 옵션의 변동성보다 작아지는 현상

변동성지수

6. 변동성의 추정

• 표준편차 이용

$$\sigma_t = \sqrt{\frac{\sum_{j=t-n}^{t-1} (r_j - \overline{r_t})^2}{n-1}}$$
 (12.16)

$$\sigma_t = \sqrt{\frac{\sum_{j=t-n}^{t-1} r_j^2}{n}}$$
 (12.17)

- 문제점
 - 이동기간(moving window) 설정의 문제
 - 동일가중치 사용의 문제
 - 에코효과(echo effect)의 문제

지수가중이동평균모형 (exponential-weight moving average(EWMA) model)

$$\sigma_t^2 = (1 - \lambda)r_{t-1}^2 + \lambda \sigma_{t-1}^2 \tag{12.18}$$

가장 최근 수익률에 적용되는 가중치는 $(1-\lambda)$ 이고, 과거로 갈수록 가중치에 λ 가 곱해짐(예를 들어 λ 가 0.94이면, 가중치는 각각 6%, 5.64%, 5.30%, 4.98%로 감소함)

변동성의 변화를 반영하도록 고안됨: 즉, $\sigma_{t-1}^2 < r_{t-1}^2$ 이면 $\sigma_{t-1}^2 < \sigma_t^2$ 이다.

변동성의 시간가변성(또는 변동성의 군집현상)을 고려할 수 있음

7. 실물옵션

7.1 실물옵션의 개념

- 실물옵션(real option)은 경영진의 투자의사결정에 의해 가치가 영향을 받는 실물자산에 대한 옵션임
- 대표적인 실물옵션
 - 확장옵션(expansion option)
 - 연장옵션(extension option)
 - 축소옵션(contraction option)
 - 포기옵션(abandonment option)
 - 연기옵션(deferred option)
- 실물옵션의 가치는 의사결정수분석과 옵션가치평가법에 의해 평가 될 수 있음

👆 [표 13-6] BS모형 적용시 입력변수의 의미

구 분				의 미
기	초	자	산	투자안이 제공하는 현금유입의 현재가치(투자안의 가치)
행	사	가	격	투자비용(투자안의 현금유출금액의 현재가치)
만			기	투자안의 연수
기초	· 자산	변분	동성	투자안의 가치에 영향을 미치는 변수의 변동성
배	당 수	는 익	률	기초자산 가치의 감소비율

(본문의 예시 pp 435-436를 참조할 것)

7.2 이항모형에 의한 실물옵션의 가치평가

이항모형의 이점

- ② 이항모형은 시뮬레이션과 함께 사용이 가능하다. 그러나 BS모형은 시뮬레이션을 수용할 수 없다.
- ② BS모형은 옵션의 기초자산이 만기일 전에 현금흐름을 제공하는 경우 옵션의 가치를 정확하게 평가하지 못한다. 또한 BS모형은 아메리칸 풋옵션의 가치를 정확하게 평가하지 못한다. 반면에 이항모형은 이런 옵션들의 가치를 정확하게 평가할 수 있다.

(본문의 예시 pp 437-439를 참조할 것)