微纳光电子材料与器件工艺原理

Photolithography 光刻 Part I: Optics

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Integrate Circuits

Moore's law

transistor number

Transistor size

CMOS Process

'Lithography is the cornerstone of modern IC technology'
---- Silicon VLSI, Plummer et al.,

Lithography

litho- 石头 -graph 图案

Photography

显影

2. Developing

Photolithography(光刻)

Photolithography(光刻)

Exposure (曝光)

接触式

接近式

投影式

1:1 Exposure Systems

Usually 4X or 5X Reduction

Figure 5.3 **Contact Printing**

Proximity Printing

Projection Printing

High resolution. But mask wear, defect generation.

Less mask wear /contamination, less resolution (depend on gap).

Fast, simple and inexpensive, choice for R&D.

No mask wear/contamination, mask de-magnified 4× (resist features 4× smaller than mask). Very expensive, mainly used for IC industry.

Exposure (曝光)

stepper (步进投影)

Video

Method of stepper

ideal case

actual case

the smaller, the harder

diffraction: light is a wave!

contact and proximity mode

- **R** resolution
- wavelength
- g gap size

$$R \sim \sqrt{\lambda \cdot g}$$

smaller λ , $g \longrightarrow$ smaller R

- λ UV, DUV, EUV, x-ray, ...
- g minimum: resist film thickness

projection mode

modulation transfer function (MTF)

$$MTF = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

diffraction pattern (Airy's disk)

resolution

 $NA \equiv numerical \ aperture \ of \ lens$.

 $=n.\sin\Theta$, where n is the index of refraction

 k_1 = a constant between 0.25 and 1, depending on optics, resist, and process latitude

smaller *λ*, larger NA ---> smaller resolution

 λ UV, DUV, EUV, x-ray, ...

n refractive index (air: 1, oil: 1.4~1.7)

 $\sin\theta$ maximum = 1.0

Depth of Focus (DOF)

$$\Delta z = k_2 \frac{\lambda}{(NA)^2}$$
$$0.5 < k_2 < 1$$

$$\Delta z = k_2 \frac{\lambda}{(NA)^2}$$

$$0.5 < k_2 < 1$$

$$\approx \frac{\pm \frac{l_m}{2}}{\tan \theta} \approx \frac{\pm \frac{l_m}{2}}{\sin \theta} = \pm \frac{\lambda}{2(NA)^2}$$
for small θ

(1)
$$l_m \approx 0.6 \frac{\lambda}{NA}$$
 want small l_m
(2) $DOF = \pm \frac{\lambda}{2(NA)^2}$ want large DOF

$$(2)DOF = \pm \frac{\lambda}{2(NA)^2} \quad want \, large \, DOF$$

trade-off between resolution and DOF

Depth of Focus (DOF)

Spatial Coherence

S = spatial coherence of light source

$$S = \frac{\text{light source diameter}}{\text{condenser lens diameter}} = \frac{s}{d}$$

Resolution Improvement

$$R \sim \frac{\lambda}{n\sin\theta}$$

reduce λ increase n???

Immersion Lithography

$$R \sim \frac{\lambda}{n\sin\theta}$$

$$n = 1.0$$

high index fluid n = 1.7 resolution is reduced by ~40%

Phase Shift Mask

Double Patterning

Optical Proximity Correction (OPC)

Photomasks (掩膜)

Photomasks (掩膜)

- Layout design
 - CAD tools
 - see examples

Example

design layout

- Transparency film
 - flexible mask
- Chrome mask
 - glass substrate
 - chrome coating

transparency film

chrome mask

Photomasks (掩膜)

Light Sources

- Mercury (Hg) arc lamp
 - g-line 436 nm, h-line 405 nm, i-line 365 nm

$$R \sim \frac{\lambda}{n\sin\theta}$$

Filters can be used to limit exposure wavelengths.

Light Sources

- Mercury (Hg) arc lamp
 - g-line 436 nm, h-line 405 nm, i-line 365 nm

yellow light in cleanroom

Light Sources

- Deep UV (DUV)
 - excimer lasers, KrF (248 nm), ArF (193 nm)

$$R \sim \frac{\lambda}{n\sin\theta}$$

- Extreme UV (EUV)
 - □ Tin (Sn) plasma lasers, 13.5 nm
- X-ray
 - □ 0.01 ~ 10 nm
- Electron beam (E-beam)
- ...

Optics for EUV

at EUV:

glass is not transparent metal is not reflective even air is absorptive

Optics for EUV

multilayer mirrors (Mo/Si)

reflective masks

Optics

optical loss > 95%

UV (365 nm)

EUV (13.5 nm)

Equipment

UV (365 nm)
resolution ~ 2 μm
price ~ 200,000 RMB

EUV (13.5 nm)
resolution ~ 10 nm
price ~ 100,000,000 \$\$\$

X-ray Lithography

wavelength 0.1~10 nm

Electron Beam (Ebeam) Lithography

similar to a scanning electron microscope (SEM)

proximity effect

Electron Beam (Ebeam) Lithography

- Wavelength $\lambda(\text{nm}) = \frac{1.23}{\sqrt{V}}$
 - \square example: for V = 30 kV, $\lambda = 0.007$ nm
- The resolution is limited by secondary electrons
 - □ resolution ~ 10 nm
- No mask for electron, only direct writing!
 - □ "To cover the 700 cm² surface area of a 300 mm silicon wafer, the minimum write time would extend to 7*108 seconds, about 22 years." - Wikipedia
- Only for research purposes now

NanoPhotonics

Optical Cloak

An optical cloak made of dielectrics

Jason Valentine1*, Jensen Li1*, Thomas Zentgraf1*, Guy Bartal1 and Xiang Zhang1,2†

Metalens

RESEARCH ARTICLE

APPLIED OPTICS

Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging

Mohammadreza Khorasaninejad, ^{1*} Wei Ting Chen, ^{1*} Robert C. Devlin, ^{1*} Jaewon Oh, ^{1,2} Alexander Y. Zhu, ¹ Federico Capasso ¹†

Thank you for your attention