Théorème de Hille-Yosida et applications

Sacha Ben-Arous, Quentin Verrier, Clément Robiez

March 3, 2024

ENS Paris-Saclay

Théorème de Hille-Yosida

Équation de la chaleur

Régularité elliptique

_

Théorème de Hille-Yosida

Définitions

On travaille dans un espace de Hilbert H. On considère un opérateur linéaire non borné (i.e non continu) $A:D(A)\to H.$

- A est monotone si $\forall v \in D(A), \ \langle Av, v \rangle \geq 0$
- A est maximal si $\forall f \in H, \exists u \in D(A), u + Au = f$

Propriétés fondamentales

Si A est un opérateur maximal monotone, alors :

- ullet D(A) est dense dans H
- ullet Le graphe de A est fermé
- $\forall \lambda > 0, \ (I + \lambda A)$ est une bijection, et $\|(I + \lambda A)^{-1}\|_{\mathcal{L}(H)} \leq 1$

Outils de la preuve

Soit A est un opérateur maximal monotone, on note pour $\lambda>0$:

- $J_{\lambda} := (I + \lambda A)^{-1}$ la résolvante de A
- $\bullet \ A_{\lambda} := \frac{1}{\lambda} (I J_{\lambda})$ l'approximation de Yosida de A

 $\operatorname{Rq}:A_{\lambda}$ est continue et définie sur H.

Outils de la preuve

Soit A est un opérateur maximal monotone, on note pour $\lambda>0$:

- $J_{\lambda} := (I + \lambda A)^{-1}$ la résolvante de A
- $\bullet \ A_{\lambda} := \frac{1}{\lambda} (I J_{\lambda})$ l'approximation de Yosida de A

 $\operatorname{Rq}:A_{\lambda}$ est continue et définie sur H.

On a les propriétés suivantes :

- $A_{\lambda}v = A(J_{\lambda}v)$ et $A_{\lambda}v = J_{\lambda}(Av)$
- $\lim_{\lambda \to 0} J_{\lambda} v = v$ et $\lim_{\lambda \to 0} A_{\lambda} v = Av$
- $||A_{\lambda}v|| \leq \frac{1}{\lambda}||v||$ et $||A_{\lambda}v|| \leq ||Av||$

Théorème de Hille-Yosida

Théorème (Hille-Yosida) :

Soit A un opérateur maximal monotone.

Alors, $\forall u_0 \in D(A), \ \exists ! u \in \mathcal{C}^1([0,+\infty[,H) \cap \mathcal{C}([0,+\infty[,D(A)) \ \text{tel que} :$

$$(*) \begin{cases} \frac{du}{dt} + Au = 0 & \text{ sur } [0, +\infty[\\ u(0) = u_0 \end{cases}$$

De plus
$$\forall t \geq 0$$
, $\|u(t)\| \leq 0$ et $\|\frac{du}{dt}\| \leq \|Au_0\|$

5

Preuve (1): Unicité

Soient u_1, u_2 solutions de (*), on a :

$$\frac{1}{2}\frac{d}{dt}|u_1 - u_2|^2 = \left\langle \frac{d}{dt}(u_1 - u_2), (u_1 - u_2) \right\rangle
= -\langle A(u_1 - u_2), (u_1 - u_2) \rangle \le 0$$

Or
$$u_1(0) = u_2(0) = u_0$$
, donc $\forall t \ge 0, u_1(t) = u_2(t)$

Preuve (2) : Approximations

Équation de la chaleur

Régularité elliptique