Contents

1	Sufl	fix notation	3			
2	Car	tesian tensors	3			
	2.1	True tensors	3			
		2.1.1 Rank 2 quotient theorem	3			
		2.1.2 General quotient theorem	3			
	2.2	Matrices as tensors	4			
	2.3	Pseudotensors	4			
	2.4	Invariant tensors	4			
	2.5	Rotation tensors	4			
	2.6	Reflections, inversions and projections	4			
	2.7	Inertia tensors	4			
3	Tay	lor expansions	4			
4	Vec	tor calculus	5			
	4.1	Vector operators	5			
		4.1.1 Gradient	5			
		4.1.2 Divergence	5			
		4.1.3 Curl	5			
	4.2	Integrals theorems	5			
		4.2.1 Line, volume and surface integrals	5			
		4.2.2 Divergence theorem	5			
		4.2.3 Stokes's theorem	5			
5	Curvilinear coordinates 6					
_	5.1	Orthogonal curvilinear coordinates	6			
		5.1.1 Scale factors and basis vectors	6			
		5.1.2 Cylindrical coordinates	6			
		5.1.3 Spherical coordinates	7			
	5.2	Length, area and volume	8			
		5.2.1 Vector and arc length	8			
		5.2.2 Vector area	9			
		5.2.3 Volume	9			
6	Elec	ctrostatics	10			
•	6.1	Dirac delta function	10			
	6.2	Coulomb's law	11			
	6.3	Electrostatic Maxwell's equations	12			
	6.4	Electric dipoles	13			
	0.1	6.4.1 Multidipole expansion	13			
	6.5	Gauss's law	14			
	0.0	6.5.1 Boundaries	14			
		6.5.2 Conductors	14			
		0.0.2 Conduction				

EI	ectro:	magnetism and Relativity	Winter 2023 - Summer 2024		
	6.6	Poisson's equation	15		
	0.0	6.6.1 Existence and uniqueness of so			
	6.7	Capacitors			
7	Ma	gnetostatics	16		
	7.1	Currents			

1 Suffix notation

2 Cartesian tensors

2.1 True tensors

tensor algebra

2.1.1 Rank 2 quotient theorem

The **quotient theorem** is as an alternative definition for tensors. In the context of $\underline{\text{rank } 2}$ tensors it states that if b_i always transforms as a $\underline{\text{vector}}$ in

$$b_i = T_{ij}a_j$$

and that a_j is also a vector then T_{ij} is a rank 2 tensor.

Proof. We egregiously define entity T_{ij} in frame S and T'_{ij} in frame S'.

The usual transformation laws apply, namely $e'_i = \ell_{ij}e_j$. By definition:

$$b'_i = T'_{ij}a'_j$$
$$= T'_{ij}\ell_{jk}a_k$$

Also directly from transformation laws:

$$b_i' = \ell_{ij}b_j$$
$$= \ell_{ij}T_{jk}a_k$$

$$\therefore (T'_{ij}\ell_{jk} - \ell_{ij}T_{jk})a_k = 0$$

Since a_k are constants of our vector it must then be that:

$$T'_{ij}\ell_{jk} = \ell_{ij}T_{jk}$$

$$T_{ij}'\ell_{jk}\ell_{mk} = \ell_{ij}\ell_{mk}T_{jk}$$

Where here we aim to eliminate the first two ℓ s. Finally:

$$T'_{im} = \ell_{ij}\ell_{mk}T_{jk}$$

2.1.2 General quotient theorem

Let $R_{ij...r}$ be a rank m tensor, and $T_{ij...s}$ be a set of 3^n numbers where n > m.

If $R_{ij...r}T_{ij...s}$ is a rank n-m tensor then $T_{ij...s}$ is a rank n tensor.

symmetric and anti symmetric tensors

2.2 Matrices as tensors

2.3 Pseudotensors

Firstly note that $\det L = +1$ for <u>rotations</u>, and $\det L = -1$ for <u>reflections</u> and <u>inversions</u>. Recall the transformation law $e'_i = \ell_{ij}e_j$.

A <u>second</u> rank **pseudotensor** is defined:

$$T'_{ij} = (\det L)\ell_{ip}\ell_{jq}T_{pq}.$$

Furthermore a $\underline{\text{rank } 1}$ pseudotensor is a **pseudovector** and is defined as:

$$T_i' = (\det L)\ell_{ip}T_p.$$

Finally a **pseudoscalar** is a <u>rank 0</u> pseudotensor:

$$a' = (\det L) \cdot a,$$

and changes sign under transformation.

2.4 Invariant tensors

2.5 Rotation tensors

2.6 Reflections, inversions and projections

active and passive transformations maybe merge with rotations?

2.7 Inertia tensors

3 Taylor expansions

4 Vector calculus

4.1 Vector operators

- 4.1.1 Gradient
- 4.1.2 Divergence
- 4.1.3 Curl

chain rules, important identities

4.2 Integrals theorems

4.2.1 Line, volume and surface integrals

4.2.2 Divergence theorem

4.2.3 Stokes's theorem

Consider surface S enclosed by line C. We then have that:

$$\int_{S} \mathbf{\nabla} \times \mathbf{E} \cdot d\mathbf{S} = \oint_{C} \mathbf{E} \cdot d\mathbf{r}.$$

5 Curvilinear coordinates

5.1 Orthogonal curvilinear coordinates

5.1.1 Scale factors and basis vectors

Consider change of variables:

$$(x_1, x_2, x_3) \leftrightarrow (u_1, u_2, u_3)$$

where u_i are our curvilinear coordinates, and

$$u_i = u_i(x_1, x_2, x_3)$$

$$x_i = x_i(u_1, u_2, u_3).$$

Then we define:

$$d\mathbf{r}_i = \frac{\partial \mathbf{r}}{\partial u_i} du_i$$
$$= h_i \mathbf{e}_i du_i$$

where $h_i = \left| \frac{\partial \mathbf{r}}{\partial u_i} \right|$ is our scale factor and

$$\boldsymbol{e}_i = \frac{1}{h_i} \frac{\partial \boldsymbol{r}}{\partial u_i}$$

is our **basis vector** of unit length for a specific set of curvilinear coordinates.

Now if the basis vectors satisfy

$$e_i \cdot e_j = \delta_{ij}$$

we have an orthogonal set of curvilinear coordinates.

5.1.2 Cylindrical coordinates

We define cylindrical coordinates as

$$(u_1, u_2, u_3) = (\rho, \phi, z)$$

and with the following relation to Cartesian coordinates:

$$r = \rho \cos \phi e_x + \rho \sin \phi e_y + z e_z.$$

Furthermore:

$$h_{\rho} = 1$$
 and $e_{\rho} = \cos \phi e_x + \sin \phi e_y$
 $h_{\phi} = \rho$ and $e_{\phi} = -\sin \phi e_x + \cos \phi e_y$
 $h_z = 1$ and $e_z = e_z$.

Here ϕ is the <u>anticlockwise</u> rotation of the xy-plane.

5.1.3 Spherical coordinates

We define the spherical coordinates as

$$(u_1, u_2, u_3) = (r, \theta, \phi)$$

$$r = r \sin \theta \cos \phi e_x + r \sin \theta \sin \phi e_y + r \cos \theta e_z$$

where $\boldsymbol{e}_x,\,\boldsymbol{e}_y$ and \boldsymbol{e}_z represent the Cartesian unit vectors.

Now $\phi \in [0,2\pi]$ is the <u>rotation</u> angle in xy-plane, and $\theta \in [0,\pi]$ in z-plane. We also have that:

$$h_r = 1$$
 and $e_r = \sin \theta \cos \phi e_x + \sin \theta \sin \phi e_y + \cos \theta e_z$

$$h_{\theta} = r$$
 and $e_{\theta} = \cos \theta \cos \phi e_x + \cos \theta \sin \phi e_y - \sin \theta e_z$

$$h_{\phi} = r \sin \theta$$
 and $e_{\phi} = -\sin \phi e_x + \cos \phi e_y$.

5.2 Length, area and volume

5.2.1 Vector and arc length

Firstly the vector length due to infinitesimal change in all directions is

$$\mathrm{d}\boldsymbol{r} = \sum_{i=1}^{3} h_i \mathrm{d}u_i \boldsymbol{e}_i.$$

It is important to note that summation notation does not work here.

Now the arc length of dr is:

$$ds = |d\mathbf{r}|$$
$$= \sqrt{d\mathbf{r} \cdot d\mathbf{r}}$$

and we define the \mathbf{metric} tensor as

$$g_{ij} = \frac{\partial x_k}{\partial u_i} \frac{\partial x_k}{\partial u_j}$$
$$= \frac{\partial \mathbf{r}}{\partial u_i} \cdot \frac{\partial \mathbf{r}}{\partial u_j}.$$

Since $d\mathbf{r} = dx_k$ we then the following relation:

$$(\mathrm{d}s)^2 = g_{ij}\mathrm{d}u_i\mathrm{d}u_j.$$

5.2.2 Vector area

5.2.3 Volume

The volume of the infinitesimal parallelepiped defined by $\mathrm{d} \boldsymbol{r}_1,\,\mathrm{d} \boldsymbol{r}_2$ and $\mathrm{d} \boldsymbol{r}_3$ is:

$$dV = |(d\mathbf{r}_1 \times d\mathbf{r}_2) \cdot d\mathbf{r}_3|$$

$$= h_1 h_2 h_3 du_1 du_2 du_3 |(\mathbf{e}_1 \times \mathbf{e}_2) \cdot \mathbf{e}_3|$$

$$= \sqrt{g} du_1 du_2 du_3$$

where g is the <u>determinant</u> of the metric tensor.

6 Electrostatics

6.1 Dirac delta function

The one dimensional **Dirac delta** is defined:

$$\delta(x) = \begin{cases} \infty & x = 0\\ 0 & x \neq 0, \end{cases}$$

and can be thought of as infinitely sharp at x = 0 and zero elsewhere.

It satisfies some useful properties:

•
$$\delta(x-a) = \lim_{\sigma \to 0} \left[\frac{1}{|\sigma|\sqrt{\pi}} \exp\left(-\frac{(x-a)^2}{\sigma^2}\right) \right]$$

i.e. an infinitely sharp Gaussian. (generalised functions)

• Sift property

$$\int_{\mathbb{R}} f(x)\delta(x-a)dx = f(a)$$

• Let x_i be the solutions to $g(x_i) = 0$. Then:

$$\int_{\mathbb{R}} f(x)\delta[g(x)]dx = \sum_{i} \frac{f(x_i)}{|g'(x_i)|}$$

Now we consider the **3D Dirac delta**, which is defined as follows:

$$\delta(\mathbf{r} - \mathbf{r}_0) = \delta(x - x_0)\delta(y - y_0)\delta(z - z_0)$$

given Cartesian coordinates (x_1, x_2, x_3) . It also satisfies the **sift** property:

$$\int_{\mathbb{R}^3} f(\boldsymbol{r}) \delta(\boldsymbol{r} - \boldsymbol{r}_0) = f(\boldsymbol{r}_0).$$

The three dimensional Dirac delta defined in a orthogonal <u>curvilinear</u> coordinate system (u_1, u_2, u_3) is as follows:

$$\delta(\mathbf{r} - \mathbf{a}) = \frac{1}{h_1 h_2 h_3} \delta(u_1 - a_1) \delta(u_2 - a_2) \delta(u_3 - a_3)$$

for h_1, h_2 and h_3 are the scale factors.

6.2 Coulomb's law

Consider the force on charge q at r due to charge q_1 at r_1 :

$$F_1(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{qq_1(\mathbf{r} - \mathbf{r}_1)}{|\mathbf{r} - \mathbf{r}_1|^3},$$

for here $\epsilon_0 = 8.85 \times 10^{-12} C^2 N^{-1} m^{-2}$ in vacuum.

Physically, like charges $(qq_1 > 0)$ repel while opposite charges $(qq_1 < 0)$ attract.

We then define an **electric field** as the force on a small positive test charge:

$$\boldsymbol{E}(\boldsymbol{r}) = \lim_{q \to 0} \left(\frac{1}{q} \boldsymbol{F}(\boldsymbol{r}) \right).$$

The force on a charge q at r from the origin in this electric field is:

$$F(r) = qE(r).$$

A negative point charge is a sink whereas a positive point charge is a source.

Consider a collection of charges q_i at position r_i . The **principle of superposition** tells us that:

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{1}{4\pi\epsilon_0} \sum_i \left(\frac{q_i(\boldsymbol{r} - \boldsymbol{r}_i)}{|\boldsymbol{r} - \boldsymbol{r}_i|^3} \right).$$

Now consider a continuous charged object with volume V and **charge density** $\rho(\mathbf{r}')$. It generates the following electric field:

$$E(r) = \frac{1}{4\pi\epsilon_0} \int_{V} \rho(r') \frac{r - r'}{|r - r'|^3} dV'.$$

Returning to the electric field generated by a point charge q_1 at position r_1 :

$$\boldsymbol{E}(\boldsymbol{r}) = \frac{q_1}{4\pi\epsilon_0} \frac{\boldsymbol{r} - \boldsymbol{r}_1}{|\boldsymbol{r} - \boldsymbol{r}_1|^3},$$

this is a conservative field, and we may write it as:

$$\boldsymbol{E}(\boldsymbol{r}) = -\boldsymbol{\nabla}\phi(\boldsymbol{r}),$$

where:

$$\phi(\boldsymbol{r}) = \frac{q_1}{4\pi\epsilon_0} \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_1|}.$$

Conservative fields have zero curl, and their line integrals are path independent. This namely applies to finding work done.

6.3 Electrostatic Maxwell's equations

Firstly for a continuous charge distribution:

$$E(\mathbf{r}) = -\frac{1}{4\pi\epsilon_0} \int_V \rho(\mathbf{r}') \frac{\mathbf{r} - \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|^3} dV'$$
$$= -\nabla \left(\frac{1}{4\pi\epsilon_0} \int_V \rho(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} dV' \right)$$

and therefore $\nabla \times \mathbf{E} = \mathbf{0}$ for static electric fields.

Hence electrostatic fields are conversative fields:

$$\int_{C_1} \boldsymbol{E} \cdot \mathrm{d}\boldsymbol{r} = \int_{C_2} \boldsymbol{E} \cdot \mathrm{d}\boldsymbol{r}$$

and that

$$-\int_{a}^{b} \mathbf{E} \cdot d\mathbf{r} = \phi(b) - \phi(a)$$

where $\boldsymbol{E}(\boldsymbol{r}) = -\boldsymbol{\nabla}\phi(\boldsymbol{r})$. Therefore:

$$\phi(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_V \rho(\mathbf{r}') \frac{1}{|\mathbf{r} - \mathbf{r}'|} dV'.$$

6.4 Electric dipoles

Dipoles consist of two equal and opposite point charges that are d apart.

An **ideal dipole** is defined as when the following **dipole limit** is <u>finite</u> and <u>constant</u>:

$$oldsymbol{p} = \lim_{\substack{q o \infty \ oldsymbol{d} o 0}} q oldsymbol{d}.$$

A dipole moment is simply p = qd. The dipole potential at r_0 is:

$$\begin{split} \phi(\boldsymbol{r}) &= \frac{q}{4\pi\epsilon_0} \left(\frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0 - \boldsymbol{d}|} - \frac{1}{|\boldsymbol{r} - \boldsymbol{r}_0|} \right) \\ &= \frac{1}{4\pi\epsilon_0} \frac{\boldsymbol{p} \cdot (\boldsymbol{r} - \boldsymbol{r}_0)}{|\boldsymbol{r} - \boldsymbol{r}_0|^3}, \end{split}$$

where we have Taylor expanded the <u>first term</u> about $|r - r_0|$. For simplicity we set $r_0 = 0$. Then the **electric field** generated by our dipole at the origin is:

$$E(r) = \frac{1}{4\pi\epsilon_0} \left(\frac{3p \cdot r}{r^5} r - \frac{1}{r^3} p \right),$$

since $E = -\nabla \phi(r)$. Note that these formulae are in <u>Cartesian</u> coordinates.

Now we repeat this in spherical.

Force, torque and energy.

6.4.1 Multidipole expansion

potential

work done

6.5 Gauss's law

Gauss's law is the integral form of Maxwell's first equation:

$$\int_{S} \mathbf{E} \cdot d\mathbf{S} = \frac{Q_{enc}}{\epsilon_0}$$

where Q_{enc} is the total charge enclosed by volume V. This result follows from the application of the divergence theorem and is useful in problems with symmetry.

6.5.1 Boundaries

6.5.2 Conductors

special case for electrostatics

6.6 Poisson's equation

In electrostatics we have:

$$\boldsymbol{\nabla}^2 \phi = \frac{\rho}{\epsilon_0}$$

where ρ is our charge density. This is the **Poisson's equation** and is a consequence of the fact that $\nabla \times E = \mathbf{0}$ and $\nabla \cdot E = \frac{\rho}{\epsilon_0}$.

6.6.1 Existence and uniqueness of solutions

The existence of solutions is given by the fact that:

$$\boldsymbol{E} = -\boldsymbol{\nabla}\phi.$$

Poisson's equation has **unique** solution ϕ if we have volume V bounded by surface S and one of the following boundary conditions:

1.

method of images

6.7 Capacitors

7 Magnetostatics

```
charge distribution \implies electric field current \implies magnetic field
```

7.1 Currents

Elementary current

Bulk current density

Surface current density

Line current

units!

Infinitesimal current element (dependent on material)

units: $Cs^{-1}m = Am$

Note that $J = Am^{-2}$.

Current flowing through surface and line.