METODOS NUMERICOS 3006907 SEMESTRE 02, 2020, TALLER 2

- 1. En cada caso, determine la fórmula de iteración de Newton y calcule manualmente los iterados p_1 y p_2 .
 - (a) $f(x) = x^2 5$, $p_0 = 4$.
 - (b) $f(x) = x^2 x 3$, $p_0 = 1.6$
 - (c) $f(x) = x^2 x + 2$, $p_0 = -1.5$
 - (d) $f(x) = x^2 6$, $p_0 = 1$
- 2. Utilice el método de Newton para aproximar el valor de x que produce el valor de y = 1/x más cercano al punto (2,1). Sugerencia: Minimizar la función distancia entre (x,1/x) y (2,1).
- 3. Encuentre una raiz positiva para $x^2 4x \operatorname{sen}(x) + (2\operatorname{sen}(x))^2 = 0$ por medio del método de Newton o alguna otra iteración de punto fijo. Escoja el primer iterado libremente. ¿Es posible usar método de bisección para resolver este ejercicio? Explique.
- 4. Para los siguientes problemas de la forma f(x) = 0, aproxime una raíz por medio del método de Newton.
 - (a) $\frac{1}{x} 2^x = 0$, en [0.2, 1].
 - (b) $2^{-x} + e^x + 2\cos(x) 6 = 0$, en [1, 3].
 - (c) $x \tan(x) = 0$ en [-1.5, 1]. ¿Qué dificultades encuentra? ¿Cree que este problema lo puede resolver en un intervalo arbitrario?
 - (d) $\frac{1}{x} \tan(x) = 0$, en (0.5, 1). ¿Qué dificultades encuentra? ¿Cree que este problema lo puede resolver en un intervalo arbitrario?
- 5. Demuestre que

$$p_{n+1} = \frac{p_n \left(p_n^2 + 3a \right)}{3p_n^2 + a}$$

es un método de tercer orden para aproximar \sqrt{a} , con a > 0. Sugerencia: Use la definición de orden de convergencia.

6. Se usa el método de Newton para aproximar la raiz 0 de

$$xe^x - e^x + 1 = 0.$$

¿Cuál es el orden de convergencia del método de Newton para este ejemplo? Justifique su respuesta.

7. Dos de los ceros de $x^4 + 2x^3 - 7x^2 + 3$ son positivos. Aproxímelos por medio del método de Newton. Genere tablas con columnas

$$k p_k \frac{|p-p_k|}{|p-p_{k-1}|} \frac{|p-p_k|}{|p-p_{k-1}|^2}$$

que indiquen el orden de convergencia del método de Newton en cada caso.

Los valores exactos de las dos raíces positivas los puede obtener por medio de las instrucciones MATLAB

 $\operatorname{syms}_{\sqcup} x$

raices=vpasolve($x^4+2*x^3-7*x^2+3==0,x$)

Nota: El símbolo \sqcup significa que hay un espacio entre syms y x.