(12) UK Patent Application (19) GB (11) 2 072 578 A

- (21) Application No 8107330
- (22) Date of filing 9 Mar 1981
- (30) Priority data
- (31) 55/0298770
- (32) 10 Mar 1980
- (33) Japan (JP)
- (43) Application published 7 Oct 1981
- (51) INT CL² B32B 5/02 // 25/04 25/10 25/14 27/06 27/32
- (52) Domestic classification B5N 0502 2504 2510 2514 2706 2732
- (56) Documents cited GB 1391824 GB 1059516
- (58) Field of search B5N
- (71) Applicant
 Toa Nenryo Kogyo KK
 1-1 Hitotsubashi
 1-Chome
 Chiyoda-ku
 Tokyo
 Japan
- (72) Inventors
 Noboru Yamamoto
 Yoshinaga Murakami
 Hajimu Nishioka
 Junji Takeuchi
 Masami Yabune
- (74) Agents
 P C Bawden
 PO Box 1
 Abingdon
 Oxfordshire OX13 6BB

(54) Sound insulating carpets

(57) A carpet construction having superior sound insulating characteristics useful in the preparation of carpeting for covering the floor of an automobile is disclosed. A carpet has bonded to its rear surface a composition comprising a polyolefin, synthetic rubber, petroleum oil and an inorganic filler. The concentration of inorganic filler is sufficient to provide a composition having a density of at least 1.5 and, in combination with the disclosed polyolefin, synthetic rubber and oil, the flexural modulus of the composition does not exceed 5,000 kg/cm². Carpet constructions incorporating the composition are also disclosed including needle punched, looped-pile, and cut pile.

40

45

50

55

60

65

Sound insulating carpets (P-928)

5 This invention relates t a carpet having sup rior s und insulating charact ristics, particularly for 5 covering the floor of an automobile. This invention particularly relates to sound insulating carpeting which is highly flexible and readily formed by injection molding, extrusion and the tike. More particularly the invention relates to carpet constructions, including a primary cloth with implanted carpet pile and a bonded, dense, sound insulating composition as a backing. 10 Still more particularly this invention relates to methods for preparing sound insulating carpet 10 constructions. BACKGROUND OF THE INVENTION It is known to cover the floor of an automobile with a carpet for shielding or absorbing any 15 noise arising from the bottom of the automobile or its engine or the like to improve comfort 15 when the automobile is running. A known carpet for covering the floor of an automobile is a carpet backed with a polyolefin resin such as polyethylene and an ethylene-vinyl acetate copolymer. The backing material has, however, had only a low surface density and failed to provide satisfactory sound insulation, since it contains no or little filler. In order to improve the 20 sound insulation of such a carpet, it has been proposed to use a backing material containing a 20 large quantity of a high-density filler. The addition of a large quantity of a filler into a polyolefin results, however, in a sharp reduction in its melt-flow characteristics, and renders it difficult to mold in an injection molding machine, an extruder, or the like, since an extremely high torque is required. The backing 25 25 material thus obtained forms a molded product having a poor appearance, and as it has a high flexural modulus, lacks flexibility and is brittle, and fails to adhere tightly to a carpet when used for backing it. Such material having a high flexural modulus is at a disadvantage in sound insulation, as its coincidence frequency falls within the audible range. Among other polyolefins, an ethylene-vinyl acetate copolymer having a high vinyl acetate 30 content is flammable, has a low melting point and is inferior in heat resistance even if it contains 30 a large quantity of a filler. SUMMARY OF THE INVENTION This invention provides a sound insulating carpet which comprises a carpet having a rear 35 35 surface, and a composition bonded to the rear surface of the carpet, comprising a polyolefin, synthetic rubber, petroleum oil and an inorganic filler, and having a density of at least 1.5 and a flexural modulus not exceeding 5,000 kg/cm2. The carpet of this invention is superior in sound insulation and flexibility, and possesses the properties required of a carpet.

insulation and flexibility, and possesses the properties required of a carpet.

The sound insulating carpet construction of this invention may specifically be constructed in 40 various forms, each comprising the composition described above, bonded to the rear surface of the carpet. In one embodiment a needle punched carpet is obtained by needle punching the carpet fibers on a primary cloth such as jute, synthetic fibers and flat yarn. In another embodiment, looped piles are implanted in the primary cloth and in still another embodiment

cut piles are implanted in the primary cloth.

In a preferred embodiment the composition includes synthetic rubber from 5 to 400 parts by weight for 100 parts by weight of the polyolefin. In one embodiment, the synthetic rubber is preferably ethylene-α-olefin copolymer, such as ethylene-propylene rubber or ethylene-α-olefin terpolymer, such as ethylene-propylene-ethylidenenorbornene, ethylene-propylene-dicyclopenta-diene or ethylene-propylene-1,4-hexadiene. In another preferred embodiment, the synthetic rubber comprises a copolymer of a monovinyl aromatic hydrocarbon and a conjugated diolefin, for example, styrene-butadiene rubber.

In another embodiment, the polyolefin component will be an α-olefin homopolymer such as polypropylene. In another embodiment the polyolefin is an ethylene-propylene block copolymer.

In yet another preferred embodiment the petroleum oil is a paraffinic process oil.

In another embodiment of this invention the composition includes inorganic filler at a concentration which results in a density for the composition of at least 1.5. In a preferred embodiment the inorganic filler is a powder having a particle size not exceeding 150 microns and in yet another preferred embodiment the inorganic filler is barium sulfate.

In another preferred embodiment the composition is extruded and laminated on the rear 60 surface of a carpet, and in a particularly preferred embodiment the composition is at least 0.5mm thick.

DETAILED DESCRIPTION

This inventi n may specifically be constructed in various f rms including:

(1) a s und insulating needle punch d carpet comprising the comp siti n having a density

	of at least 1.5 and a fl xural modulus not exceeding 5,000 kg/cm², and b inded to the rear	
5	surface f a carpet obtained by n edle punching the fibers on a primary cloth such as of jute, synthetic fibers and flat yarn; (2) a s und insulating to ped-pile carpet comprising the composition having a density f at least 1.5 and a flexural modulus n t xceeding 5,000 kg/cm², and bonded to the rear surface of a carpet obtained by implanting looped piles n a primary cloth such as f jute, synthetic fibers and flat yarn; (3) a carpet similar to that described in (2), but having cut piles thereon.	5
	For the purpose of this invention, the carpet may be a known carpet, such as one obtained by	
10	implanting looped or cut piles on the front surface of a primary cloth composed mainly of jute, synthetic fibers, flat yarn, or the like, and a needle punched carpet. The composition for use according to this invention, comprising a polyolefin, synthetic rubber, petroleum oil and an inorganic filler, and having a density of at least 1.5 and a flexural modulus.	10
	not exceeding 5,000 kg/cm² may contain 5 to 400 parts by weight of the synthetic rubber for	
15	100 parts by weight of the polyolefin, 5 to 100 parts of the petroleum oil for a total of 100 parts by weight of the polyolefin and the synthetic rubber, and that quantity of the inorganic filler which is required to enable the composition to have a density of at least 1.5 and a flexural modulus not exceeding 5,000 kg/cm ² .	15
	The polyolefin may be an α -olefin homopolymer, or a crystalline consisting mainly	
20	thereof, such as polyethylene, polypropylene, polybutene-1, poly-4-methylpentene-1, an ethylene-propylene copolymer, e.g., ethylene-propylene block copolymer, an ethylene-butene-1 copolymer, a propylene-butene-1 copolymer, an ethylene-vinyl acetate copolymer, and ethylene-ethylacrylate copolymer. Polypropylene and an ethylene-propylene block copolymer are particularly preferable. It is possible to use either only one such polyolefin, or a mixture of two or more	20
	polyoletins.	
25	comprising ethylene, an &-clefin and one or more dienes, or a copolymer of a monovinyl aromatic hydrocarbon and a conjugated dioletin. It may have an athylene content of 20 to 20%	25
	by weight, a diene content of 5 to 40% by weight, a monovinyl aromatic hydrocarbon content	
30	of 20 to 80% by weight, and a Mooney viscosity (ML ₁₊₄ at 100°C) of 10 to 150. Examples of such rubber include ethylene-propylene rubber, an ethylene-butene-1 copolymer, an ethylene-	30
	lymer, an ethylene-propylene-1,4-hexadiene terpolymer, a styrene-butadiene block copolymer, and a styrene-butadiene random copolymer. Ethylene-propylene rubber is particularly preferable.	
35	The petroleum oil may be a hydrocarbon having a boiling point of at least 350°C, for example, a paraffinic, naphthenic or aromatic high-boiling petroleum fraction. A paraffinic	35
	traction is particularly preferable. These oils include process oil	-
	The inorganic filler may be selected from among metals, metal compounds, silicates and silicate minerals, and those which are chemically stable in ordinary use. More specifically, the	
40	morganic filler may, for example, be a metal such as iron, zinc, nickel, chromium, lead, conner	
	aluminum, titanium, calcium or magnesium, or talc, clay, silica, mica, asbestos, silicic anhydride, or the like. It is particularly preferable to use calcium carbonate, barium sulfate, lead	40
	iron, zinc, or a compound of any such metal. Barium sulfate is most preferable from the standpoint of thermal stability. It is possible to use either only a single kind of filler, or a mixture	
70	desirable to use a powder having a particle size not exceeding 150 μ (microns) based on workability. The quantity of the filler to be incorporated depends on its specific growing. If a filler	45
	ilevilly a specific gravity of Z is used. It is necessary to incorporate at least 260 meets by the least	
30	of the filler for 100 parts by weight of a polymer composition, i.e., a combination of the polyolefin, the synthetic rubber and the petroleum oil. Any smaller amount than that results in a	50
	shoet having a specific gravity of 1.5 of below, and which is not expected to be estimated in	30
	sound insulation. The upper limit to the quantity of the filler which can be incorporated may be increased to the maximum quantity that is generally proportional to the density of the powder if	
	the powder has a particle size of 150 # of below. If the workshilts, and floribility of the	
	ratio It is, thus, effective to incorporate within the aforegaid range a lot of a filler basing the	55
	highest possible specific gravity in order to obtain a composition having a sufficiently high density to provide a satisfactory sound insulating effect, and yet high workability and flexibility.	
	density of at least 1.5 and a flexural modulus not exceeding 5.000 kg (cm² but it is nearly to	60
i	it is, however, industrially appr priate to milit the polymer composition by heat, extrude it continuously through a nizzli on an extruder for lamination on the room surface.	
5 CO	apply a pressur thereto by a roller. The amount of the composition to b laminated dep nds n 6	5
	•	

5	effect of sound in 0.5 mm, and particularly of at leas fantistatic agent, surface active ag As hereinabove insulation and fle vehicles and built	nsulat rticula et 2 kç an an ent, o e desc exibilit dings will no	ion, it arly at g/cm ² , tioxidate the learning the learn	is desi least 0). If rec int, a li ike into this in is not descril	rable to 1.8 mm (in quir d, it ubricant, o the correction conty suited with	laminat the c i.e., t the exterior special to an ultraviolet mposition. provides a carp table for use we reference to ex	s a greater thickn ss pr duces a high mposition in a thickn ss f at least ent that the carpet may have a surface incorporate a coloring agent, an liquid abs rb r, a heat stabilizer, a pet which is superior in sound with automobiles, but also with other examples which are not intended to be	5
15	of polypropylene	sition (PP) olyme	s were having er (EVA	prepa a Mil N havii	red by cloof 22 at no a MI o	harging various 230°C accordi of 20 at 190°C	s proportions, as shown in TABLE 1, ing to ASTM D-1238, an ethylene- C, ethylene-propylene rubber having an	15
20	having an average a Banbury mixer, followed by cooling to US	e par and ng an K-67	ticle si kneadi d crus	ze of 7 ing the shing. I	7 μ and a em for 10 Each of t eral mode	paraffinic prod minutes at a he composition alus according	ty of 70, barium sulfate (BaSO ₄) cess oil (Kyodo Sekiyu's R-1000) into temperature of 190°C to 200°C, as thus obtained was tested for density to ASTM D-790, for melting point by its are shown in TABLE 1. The	20
25	flevibility of each	comi	nositio	n was	evaluated	d bv a bend an	id feel test on a sheet thereof having a ery soft'; a single circle, 'soft'; and an	25
30	an extrusion mole needle punched and backing with The carnets of	mposi ding r carpet a late	tions of machin t obtain ex, foli exention	obtaine ne, and ned by lowed on obta	ed from F l laminate needle p by comp ained as	Run Nos. 1 and ed in a thickne punching polyp ression, where hereinabove de	1 2 was continuously extruded through ss of 2.5 mm on the rear surface of a propylene fibers (15 d) (800 g/m²) by a carpet was formed.	30
35	automobile carpe and a density of this invention. The	ts obt 0.912 te car te noi	tained 2 on ca pets w	by ext arpet b	rusion la pases of t punted fo	minating low-d he same type a or covering the	ensity polyethylene having a MI of 5 as used for preparing the carpets of floor of an automobile, and compared it was running. The results are	35
40	TABLE 1			of com	nposition: ts	s for		40
45	Run No.	PP	EVA	EPR	BaSO ₄	Process oil		45
40	1 2	10 15	=	10 10	65 65	15 10		
ΕΛ	3 (Comparative Example	35	_	_	65		•	50
50	4 (Comparative Example Comparative	_	35		65	_		
	Example		_	_				

TABLE 1	(Continued)
	Properties of compositions for
	honding t carnets

5					Carpet eva	lluation Noise*	
Run No.	Density (g/cm³)	Flexural modulus (Kg/cm²)		Flexibility	Surface density (Kg/cm²)	inside automobile (dB)	•
0	1.86	2,000	151.8	<u> </u>	5.45	65	
2 3 (Comparative	1.87	2,500	153.2	O	5.48	65	
Example)	1.88	22,000	161.5	×		-	
5 4 (Comparative Example	1.89	5,000	65.0	0			
Comparative Example					3.08	74	

Compositions and carpets were prepared and tested by repeating the procedures of Example 25 1, except for the use of the polyolefin, synthetic rubber, petroleum oil, inorganic filler and carpet 25 which will hereunder be listed. The results are shown in TABLE 2.

50

(1) Polyolefin
(A) Ethylene-propylene block copolymer having an ethylene content of 7% by weight and a 30 Ml of 9 at 230°C.

30

45

50

(2) Synthetic rubber

- (B₁) Styrene-butadiene block copolymer having a styrene content of 40% by weight and a Mooney viscosity of 24;
- (B2) Ethylene-propylene rubber having an ethylene content of 70% by weight and a Mooney 35 viscosity of 70; or
 - (B₃) Ethylene-propylene-ethylidenenorbornene terpolymer having a propylene content of 40% by weight, an ethylidenenorbornene content of 15% by weight and a Mooney viscosity of 105.
- 40 (3) Petroleum oil 40 (C₁) Paraffinic process oil; or (C₂) Napthenic process oil.

 - (4) Inorganic filler (D₁) Zinc oxide having an average particle size not greater than 1 μ;
 - (D₂) Calcium carbonate having an average particle size of 2 μ; (D₃) Talc having an average particle size of 12 μ;
 - (D_4) Iron powder having an average particle size of 90 μ ; or
- (D_s) Iron oxide having an average particle size of 1 μ.

(5) Carpet Needle punched carpet (15 d polypropylene fibers; 800 g/m²).

40

45

TABLE 2 Properties of compositions for bonding t carp ts

4Run No.	Polyolefin (parts)	Synthetic rubber (parts)	P troleum il (parts)	Inorganic filler (parts)	
5	A (20)	B ₁	C ₂	D,	
6	À	В,	C ₂	D ₁	
7	À	B ₂	C ₁	D_{2}	
8	À	B ₂	C,	D_3	
9	À	B ₃	C,	D_4	
10	A	B ₃	C,	D ₅	
Comparative	(20)				
	6 7 8 9	FRun No. (parts) 5 A (30) 6 A (20) 7 A (10) 8 A (10) 9 A (20) 10 A (20) Comparative	Polyolefin rubber (parts) 5 A B ₁ (30) (10) 6 A B ₂ (10) (5) 8 A B ₂ (10) (5) 9 A B ₃ (20) (10) 10 A B ₃ (20) (10) Comparative —	Polyolefin rubber (parts) 5 A B ₁ C ₂ (30) (10) (10) 6 A B ₁ C ₂ (20) (10) (20) 7 A B ₂ C ₁ (10) (5) (10) 8 A B ₂ C ₁ (10) (5) (10) 9 A B ₃ C ₁ (20) (10) (10) 10 A B ₃ C ₁ (20) (10) (10) Comparative	Polyolefin rubber il Inorganic filler (parts) 5 A B ₁ C ₂ D ₁ (30) (10) (10) (100) 6 A B ₁ C ₂ D ₁ (20) (10) (20) (100) 7 A B ₂ C ₁ D ₂ (10) (5) (10) (75) 8 A B ₂ C ₁ D ₃ (10) (5) (10) (75) 9 A B ₃ C ₁ D ₄ (20) (10) (10) (10) (120) 10 A B ₃ C ₁ D ₅ (20) (10) (10) (10) (120) Comparative ————————————————————————————————————

TABLE 2 (Continued) Properties of compositions of bonding to carpets

25		Carpet evaluation Noise							
	Run No.	Density (g/cm³)	Flexural modulus (Kg/cm²)		Flexibility	Surface density (Kg/cm²)	inside an automobile (dB)		
30	5	2.03	2,000	154.1	0	5.88	64	30	
	6	2.02	1,500	152.9	0	5.85	64		
	7	1.79	3,800	156.3	Õ	5.28	65	,	
	8	1.68	4,500	158 <i>.</i> 4	Ŏ	5.00	66		
	9	2.66	2,500	155.5	Ŏ	7.45	62		
35	10	2.33	2.200	154.8	A	6.62	63	35	
	Comparative	_	_		<u>~</u>	3.08	74		

Reference Example

40 TABLE 3 shows the sound insulating characteristics measured on the carpets prepared in Runs Nos. 2 and 9 and the Comparative Example shown in TABLE 1. For determination of the sound insulating effect of each carpet, it was mounted on a speaker box in which the vibration generated by a transmitter was converted to a noise by a loud speaker. The noise arising from the loud speaker was received by a microphone in a noise meter positioned opposite to the speaker, and the sound pressure was measured at various frequencies.

TABLE 3

50	Run No.	Filler	Surface density (Kg/cm²)
	2	BaSO ₄	5.48
55	9	lron powder	7.45
	comparative Example	-	3.08

TARIF 3	(Continued)

		Transm	ission I ss	(dB)	[Needle r	unched carpe	t having a			
		T C I SILL	1331011 1 33	(UD)		thick sh et la				
Run	No.	Fr quer	cy for m	asuren	ent (Hz)					j
2 9		100 17 15	200 14 12	16	0800 25 27	1,000 25 28	2,000 33 36	4,000 38 41		•
	nparative mple	<5	<5	10	15	16	23	29		
corr ethy petr 2 pun	nposition b /lene-α-ole roleum oil . A carps iched carps	onded to fin or mo and (D) in t construct, loope	said rear pnovinyl ar norganic f action acco d pile carp	surfaction surfaction surface	e, said co : hydrocai to claim 1 cut pile (mprising a car mposition con bon conjugate wherein said carpet.	nprising (A ed diolefin) polyolefin, copolymer r selected fron	(B) ubber, (C) n needle	
4 at le 5 mod	rimary clot . A carpe east 1.5 A carpe dulus not e . A carpe	h selecte it constru it constru exceeding it constru	ed from jut action account action account g 5,000 kg action acco	e, syntording ording g/cm ² ording	hetic fibe to claims to claims	rs and flat yar 1–3 wherein 1–4 wherein 1–5 wherein	n. said comp said comp	osition has a	density of	
7. sele den pyle	cted from enorborne ene-1,4-he	t constru the groune terpol kadiene t	oction according consisting per	ording ng of e ylene-p :.	thylene-pr ropylene-	1-6 wherein copodicyclopentad	lymer, ethy iene terpol	ylene-propyle ymer and eti	ene-ethyli- nylene-pro-	
para 9. from sulfa	offinic, nap . A carpe of the group ate of lead	hthenic t constru consist , iron an	and aroma action acco ing of calco d zinc.	itic pro ording cium ca	cess oils. to claims irbonate,	1–7 wherein 1–8, wherein barium sulfate	said inorg e, and the	anic filler is oxide carbon	selected ate and	
havi	ing a partion 1. A carp ganic filler	cle size r et const	ot exceedi	ing 15 cording	0 microns to claim	9 wherein sai i. 10 wherein ti ponents (A), (he ratio of	the volume	of said	•
1: tion 1: 1-1 sour aron	2. A carp bonded to 3. A met 2 comprised insulation atic hydromatic hydromatic bydromatic hydromatic hydromati	said real hod for ping proving comp ng compocarbon-	ar surface in producing ided a prin osition con conjugated	is at le a soun nary ci nprisir I diolei	ast 0.5 m d insulation oth having g (A) poly in copoly	s 1–11 where m. ng carpet con: g a rear surfa: /olefin, (B) eth mer rubber, (C e and bonding	struction acce and a froylene-α-old	ccording to cont surface, efin or monomore (D)	claims preparing a vinyl inorganic	•
Surfa 14	ace. 4. A meti	hod acco	ording to c	iaim 1	3 wherein	said composi	ition is mel	•		ļ

of heat, extruded and laminated to said rear surface by the application of pressure.

15. A method according to claim 13 or 14 wherein the thickness of said composition on

said rear surface is at least 0.5 mm.

16. A method according to claims 13-15 including molding said carpet construction into a 55 desired shape by the application of heat and pressure thereto.