

CS205 - FINAL PROJECT SPRING 2018

Genomic Sequencing Parallelization

Kar-Tong Tan Nripsuta Saxena Divyam Misra Andrew Lund

Uses of genomic sequencing

- Quicker diagnosis of mysterious diseases
- Find patients with the same disease
 - Very important for extremely rare disorders
- Testing for hereditary disorders
 - In utero and carrier testing
- Predictive (presymptomatic) testing
- Faster pharmacogenetic testing
 - Testing how someone will respond to a certain medication
 - Used for certain kinds of cancers

Problem Description

The cost of sequencing has dramatically decreased in the last decade.

- First Genome: >\$2.7B 15 years
- Today: \$1,000, ~1 week

The primary overhead is now cost of computation.

- Not easy to parallelize algorithms
- Algorithms do not scale linearly

Results need to be returned in timely fashion for clinical applications

- >1 week algorithmic runtime in some applications
- Too slow for timely diagnostics

Models & Data

Application of interest:

- Single Nucleotide Polymorphisms (SNPs)
- Drives differences between individuals

Algorithms:

- SNP calling
- Most are open-source

Data:

- DNA, RNA alignment files
 - 2 individuals (public data from the 1000 Genomes Project)
 - .bam (~10GB each)
 - .bai (~5MB each)

Tools & Infrastructure

Infrastructure:

- Compute Cluster at Harvard Medical School
 - https://rc.hms.harvard.edu/
- 8,000 cores with several PB network storage
- Nodes support up to 32 cores but capped at 20 cores
 - Known problem in parallelization of related algorithms

Tools:

- SAMtools, bcftools
 - Calling of single nucleotide variations
- MPI + Spark/MapReduce

Harvard Medical School Research Computing

SAMtools