10-701 Cheat Sheet

Non-Parametric

MaxLikelihood learning window will give you delta functions, which is a kind of over fitting. Use Leave-one-out cross validation for model selection. Idea: Use some of the data to estimate density; Use other part to evaluate how well it works. Pick the parameter that works best.

$$\begin{split} \log p(x_i|X\setminus\{x_i\}) &= \log\frac{1}{n-1}\sum_{j\neq i}k(x_i,x_j), \text{ the sum over all } \\ \text{points is } &\frac{1}{n}\sum_{i=1}^n\log\left[\frac{n}{n-1}p(x_i)-\frac{1}{n-1}k(x_i,x_i)\right] \text{ where } p(x) = \\ &\frac{1}{n}\sum_{i=1}^nk(x_i,x). \end{split}$$

why must we not check too many parameters? that you can overfit more; for a given dataset, a few particular parameter values might happen to do well in k-fold CV by sheer chance, where if you had a new dataset they might not do so well. Checking a reasonable number of parameter values makes you less likely to hit those "lucky" spots helps mitigate this risk.

Silverman's Rule for kernel size Use average distance from k nearest neighbors $r_i = \frac{r}{k} \sum_{x \in \text{NN}(x_i, k)} ||x_i - x||$.

Watson Nadaraya 1. estimate p(x|y=1) and p(x|y=-1); 2. compute by Bayes rule

2. Compute by Bayes rule
$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{\frac{1}{m_y}\sum_{j=y}k(x_i,x)\cdot\frac{m_y}{m}}{\frac{1}{m_y}\sum_{i}k(x_i,x)}.$$
 3. Decision boundary

boundary $p(y=1|x)-p(y=-1|x)=\frac{\sum_{j}y_{j}k(x_{j},x)}{\sum_{i}k(x_{i},x)}=\sum_{j}y_{j}\frac{k(x_{j},x)}{\sum_{i}k(x_{i},x)}$ Actually, we assume that p(x-y) is equal to $1/m_{y}*\sum_{y}k(x_{i},x).$ Using this definition, we can see p(x,-1)+p(x,1)=p(x|-1)p(-1)+p(x|1)p(1)=p(x). This can be incorporated into the regression framework in chap 6 of PRML. Where we define $f(x-x_{n},t\neq t_{n})=0$, and $f(x-x_{n},t=t_{n})=f(x-x_{n}).$ Using this definition, we can derive all the probabilities on this slide. (see my handwritten notes on chap 6 of PRML).

Regression case is the same equation.

kNN Let optimal error rate be p. Given unlimited **iid** data, 1NN's error rate is $\leq 2p(1-p)$.

Matrix Cookbook

$$\begin{array}{l} \frac{\partial \boldsymbol{x}^T \boldsymbol{a}}{\partial \boldsymbol{x}} = \frac{\partial \boldsymbol{a}^T \boldsymbol{x}}{\partial \boldsymbol{x}} = \boldsymbol{a} \\ \frac{\partial \boldsymbol{a}^T \boldsymbol{X} \boldsymbol{b}}{\partial \boldsymbol{X}} = \boldsymbol{a} \boldsymbol{b}^T, \ \frac{\partial \boldsymbol{a}^T \boldsymbol{X}^T \boldsymbol{b}}{\partial \boldsymbol{X}} = \boldsymbol{b} \boldsymbol{a}^T, \ \frac{\partial \boldsymbol{a}^T (\boldsymbol{X}^T | \boldsymbol{X}) \boldsymbol{a}}{\partial \boldsymbol{X}} = \boldsymbol{a} \boldsymbol{a}^T \\ W \in \boldsymbol{S}, \ \frac{\partial}{\partial \boldsymbol{s}} (\boldsymbol{x} - \boldsymbol{A} \boldsymbol{s})^T \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{A} \boldsymbol{s}) = -2 \boldsymbol{A}^T \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{A} \boldsymbol{s}), \\ \frac{\partial}{\partial \boldsymbol{x}} (\boldsymbol{x} - \boldsymbol{s})^T \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{s}) = 2 \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{s}), \\ \frac{\partial}{\partial \boldsymbol{s}} (\boldsymbol{x} - \boldsymbol{s})^T \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{s}) = -2 \boldsymbol{W} (\boldsymbol{x} - \boldsymbol{s}), \end{array}$$

$$\frac{\partial}{\partial \boldsymbol{x}}(\boldsymbol{x} - \boldsymbol{A}\boldsymbol{s})^T \boldsymbol{W}(\boldsymbol{x} - \boldsymbol{A}\boldsymbol{s}) = 2\boldsymbol{W}(\boldsymbol{x} - \boldsymbol{A}\boldsymbol{s}),$$

$$\frac{\partial}{\partial \boldsymbol{A}}(\boldsymbol{x} - \boldsymbol{A}\boldsymbol{s})^T \boldsymbol{W}(\boldsymbol{x} - \boldsymbol{A}\boldsymbol{s}) = -2\boldsymbol{W}(\boldsymbol{x} - \boldsymbol{A}\boldsymbol{s})\boldsymbol{s}^T.$$

$$\operatorname{Tr}(\boldsymbol{A}) = \sum_i \boldsymbol{A}_{ii}. \text{ For two equal sized matrices, } \operatorname{Tr}(\boldsymbol{A}^T\boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{B}^T\boldsymbol{A}) = \operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}^T) = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{A}^T) = \sum_{i,j} \boldsymbol{A}_{ij}\boldsymbol{B}_{ij}.$$

$$\operatorname{Tr}(\boldsymbol{A}) = \operatorname{Tr}(\boldsymbol{A}^T), \operatorname{Tr}(\boldsymbol{A} + \boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{A}) + \operatorname{Tr}(\boldsymbol{B}). \text{ For square matricis,}$$

$$\operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{A}), \operatorname{Tr}(\boldsymbol{A}\boldsymbol{B}\boldsymbol{C}) = \operatorname{Tr}(\boldsymbol{C}\boldsymbol{A}\boldsymbol{B}) = \operatorname{Tr}(\boldsymbol{B}\boldsymbol{C}\boldsymbol{A}).$$

 $\operatorname{Tr}(\boldsymbol{AB}) = \operatorname{Tr}(\boldsymbol{BA}), \operatorname{Tr}(\boldsymbol{ABC}) = \operatorname{Tr}(\boldsymbol{CAB}) = \operatorname{Tr}(\boldsymbol{BCA})$ (trace rotation).

Classifers and Regressors

Naive Bayes Conditionally independent:

 $P(x_1,x_2,\ldots|C)=\prod_i P(x_i|C)$. One way to avoid divide by zero: add $(1,1,\ldots,1)$ and $(0,0,\ldots,0)$ to both classes.

Learns
$$P(x_i|y)$$
 for Discrete $x_i - P(x_i|y) = \frac{\#D(X_i=x_i,Y=y)}{\#D(Y=y)}$

For smoothing, use $P(x_i|y) = \frac{\#D(X_i=x_i,Y=y)+k}{\#D(Y=y)+n_ik}$, where n_i is the number of different possible values for X_i (In practice problem set, Jing Xiang used k=1?) Continuous x_i – Can use any PDF, but usually use Gaussian

 $P(x_i|y) = \mathcal{N}(\mu_{X_i|y}, \sigma^2_{X_i|y})$, where $\mu_{X_i|y}$ and $\sigma_{X_i|y}$ are, respectively, the average and variance of X_i for all data points where Y=y. The Gaussian distribution already provides smoothing.

Perceptron Produces linear decision boundaries. Classifies

using $\hat{y} = X_{test} \ w + b \ Learns \ w$ and b by updating w whenever $y_i(w^Tx_i + b) \leq 0$ (i.e. incorrectly classified). Updates as $w \leftarrow w + x_iy_i, b \leftarrow b + y_i$ Repeat until all examples are correctly classified. w is some linear combination $\sum_i \alpha_i x_i (y_i * x_i)$ of data points, and decision boundary is the linear hyperplane $f(x) = w^Tx + b$. Note that the perceptron is the same as stochastic gradient descent with a hinge loss function of $max(0, 1 - y_i [< w, x_i > +b])$ (we can't remove 1 in the loss function; otherwise we can set w, b = 0). Convergence of perceptron proof 1 Here we use a

perceptron without b. Assume we have \boldsymbol{w}^* that has margin γ $(\min(\boldsymbol{w}^*)^Ty_ix_i=\gamma)$, and $\|\boldsymbol{w}^*\|=1, \|x_i\|=1$. We start from $\boldsymbol{w}_0=0$. Assume that we have made M mistakes. We have 1) $\boldsymbol{w}_M\cdot\boldsymbol{w}^*=(\boldsymbol{w}_{M-1}+y_ix_i)\cdot\boldsymbol{w}^*\geq \boldsymbol{w}_{M-1}\cdot\boldsymbol{w}^*+\gamma$. So we have $\boldsymbol{w}_M\cdot\boldsymbol{w}^*\geq M\gamma$.

2) $\mathbf{w}_{M} \cdot \mathbf{w}_{M} = (\mathbf{w}_{M-1} + y_{i}x_{i}) \cdot (\mathbf{w}_{M-1} + y_{i}x_{i}) = \mathbf{w}_{M-1} \cdot \mathbf{w}_{M-1} + 2y_{i}x_{i} \cdot \mathbf{w}_{M-1} + (y_{i}x_{i}) \cdot (y_{i}x_{i}) \leq \mathbf{w}_{M-1} \cdot \mathbf{w}_{M-1} + 1.$ So we have $\mathbf{w}_{M} \cdot \mathbf{w}_{M} < M$.

Combining them, using Cauchy-Schwarz, we have $M\gamma \leq \boldsymbol{w}_M \cdot \boldsymbol{w}^* \leq \|\boldsymbol{w}_M\| \|\boldsymbol{w}^*\| \leq \sqrt{M}$. So $M \leq 1/\gamma^2$. **proof 2** Let potential function $Q_i = \|\boldsymbol{w}_i\| - \boldsymbol{w}_i \cdot \boldsymbol{w}^*$, where i is the number of iterations. Assuming up to iteration i, we have M mistakes, so we have $Q_i \leq \sqrt{M} - M\gamma$. Clearly $Q_i \geq 0$ by Cauchy-Schwarz. So we have $\sqrt{M} - M\gamma \geq 0$.

Kernel

Kernel function $k(\boldsymbol{x}, \boldsymbol{x}') = \phi(\boldsymbol{x})^T \phi(\boldsymbol{x}')$ for some $\phi(\cdot)$. For a set of data points $\{\boldsymbol{x}_i\}$, we have Gram matrix (kernel matrix) $K_{ij} = k(\boldsymbol{x}_i, \boldsymbol{x}_j)$. A **necessary and sufficient** condition for being a valid kernel function: K always positive semidefinite. Proof: $\boldsymbol{\alpha}^T K \boldsymbol{\alpha} = \sum_{ij} \alpha_i \alpha_j K_{ij} = \sum_{ij} \alpha_i \alpha_j \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}_j) \rangle = \langle \sum_i \alpha_i \phi(\boldsymbol{x}_i), \sum_j \alpha_j \phi(\boldsymbol{x}_j) \rangle \geq 0$.

Mercer's Theorem for any symmtric function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ which is square integrable and satisfying $\int_{\mathcal{X} \times \mathcal{X}} k(x, x') f(x) f(x') dx dx' \geq 0$ for $f \in L_2(\mathcal{X})$, we have a feature space $\Phi(x)$ and $\lambda \geq 0$ that $k(x, x') = \sum_i \lambda_i \phi_i(x) \phi_i(x')$.

Convexity

Convex Sets

Definition: A set C is convex if the line segment between any two points in C lies in C, i.e. if for any $x_1, x_2 \in C$ and any θ with $0 \le \theta \le 1$, we have

$$\theta x_1 + (1 - \theta)x_2 \in C$$

Examples:

- Empty set \emptyset , single point x_0 , the whole space \mathbb{R}^n
- Hyperplane $\{x|a^Tx=b\}$, halfspaces $\{x|a^Tx\leq b\}$
- Euclidean balls $\{x|||x-x_c||_2 \le r\}$
- Positive semidefinite marices $S^n_+ = \{A \in S^n | A \succeq 0\}$ (S^n is the set of symmetric $n \times n$ matrices)

Convexit preserving set operations:

- Translation $\{x + b | x \in C\}$
- Scaling $\{\lambda x | x \in C\}$
- Affine function $\{Ax + b | x \in C\}$
- Intersection $C \cap D$
- Set sum $C + D = \{x + y | x \in C, y \in D\}$

Convex Functions

Definition: A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if $\operatorname{\mathbf{dom}} f$ is a convex set and if for all $x, y \in \operatorname{\mathbf{dom}} f$, and θ with $0 \le \theta \le 1$, we have

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

First-order conditions: Suppose f is differentiable. Then f is convex if and only if $\operatorname{\mathbf{dom}} f$ is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

 $Second\mbox{-}order$ conditions: Assume that f is twice differentiable

Copyright © 2013 Yimeng Zhang.