DAILY ASSESSMENT FORMAT

Date:	29-06-2020	Name:	Poorvi j gowda
Course:	Satellite photogrammetry and its applications	USN:	4AL17EC071
Topic:	Introducing photogrammetry concepts	Semester & Section:	6 th sem 'B' sec
Github	Poorvi-2000		
Repository:			

Report – Report can be typed or hand written for up to two pages.

Photogrammetry and Remote sensing Department, established in 1966 is one of the oldest

departments of the institute imparting professional training in the field of photogrammetry,

cartography, remote sensing, and image processing to varied course participants: university teachers,

academicians, govt. officials, and freshly graduated students. Initially it started with aerial data

interpretation, analysis and aerial photogrammetry with a gradual transition to satellite data

interpretation, analysis, satellite photogrammetry and its applications.

Photogrammetry is the science and technology of obtaining reliable information about physical

objects and the environment through the process of recording, measuring and interpreting

photographic images and patterns of electromagnetic radiant imagery and other phenomena.

Photogrammetry appeared in the middle of the 19th century, almost simultaneously with the

appearance of photography itself. The use of photographs to create topographic maps was first

proposed by the French surveyor Dominique F. Arago in about 1840.

The term photogrammetry was coined by the Prussian architect Albrecht Meydenbauer, which

appeared his 1867 article "Die Photometrographie.

There are many variants of photogrammetry. One example is the extraction of threedimensional

measurements from two-dimensional data (i.e. images); for example, the distance between two points

that lie on a plane parallel to the photographic image plane can be determined by measuring their

distance on the image, if the scale of the image is known. Another is the extraction of accurate color ranges and values representing such quantities as albedo, specular

reflection, metallicity, or ambient occlusion from photographs of materials for the purposes

of physically based rendering.

Close-range photogrammetry refers to the collection of photography from a lesser distance than

traditional aerial (or orbital) photogrammetry. Photogrammetric analysis may be applied to one

photograph, or may use high-speed photography and remote sensing to detect, measure and record

complex 2D and 3D motion fields by feeding measurements and imagery analysis into computational

models in an attempt to successively estimate, with increasing accuracy, the actual, 3D relative

motions.

From its beginning with the stereoplotters used to plot contour lines on topographic maps, it now has

a very wide range of uses such as sonar, radar, and lidar.

Methods

A data model of photogrammetry]

Photogrammetry uses methods from many disciplines, including optics and projective geometry.