NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Clique

Beweis

Knapsack Problem

Beweis

PARTITION

Problem

Deweis

Problem

Beweis

HC

blem

C

Problem Beweis

ablam

Problem Reweis

1 / 21

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

22. Februar 2019

Inhalt I	NP-Vollständigkeit wichtiger Probleme
Clique	Sebastian Bernauer
Problem	Bernader
	Clique
Beweis	Problem
Kranasalı Duahlara	Beweis
Knapsack Problem	Knapsack Problem
Problem	Problem Beweis
Beweis	PARTITION
beweis	Problem
PARTITION	Beweis
	BP
Problem	Problem
Beweis	Beweis
	DHC
BP	Problem Beweis
Problem	HC
	Problem
Beweis	Beweis
DUG	TSP
DHC	Problem
Problem	Beweis
1 TODICIII	Literatur 2/21

Inhalt II **Beweis**

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

HC

Problem **Beweis**

TSP

Problem Beweis

Problem

In einem ungerichteten Graphen G = (V, E) bildet die Knotenmenge $V' \subseteq V$ eine Clique, wenn für alle $v, v' \in V'$ gilt $v, v' \in E$. [1]

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Problem

In einem ungerichteten Graphen G = (V, E) bildet die Knotenmenge $V' \subseteq V$ eine Clique, wenn für alle $v, v' \in V'$ gilt $v, v' \in E$. [1]

Abbildung: Ein Graph mit einer Clique der Größe 3.

 $Quelle: \ https://de.wikipedia.org/wiki/Clique_(Graphentheorie) \#/media/File: 6n-graf-clique.svg$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Clique

Problem

Knapsack Problem

Beweis

ARTITION

Problem

.

oblem

HC

blem

HC

Problem

SP

Beispiel

Abbildung: Ein Graph mit 2 Cliquen der Größe 4.

 $Quelle: \ https://en.wikipedia.org/wiki/Clique_(graph_theory)\#/media/File:VR_complex.svg$

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Clique

Problem

Karamara I. Dan

Problem

PARTITION

- ...

Problem

roblem

Beweis

OHC

eweis

HC

Problem

Beweis

ΓSΡ

Problem

iteratur

- 1. Gibt es eine Clique der Größe k?
 - \rightarrow Entscheidungsproblem

NP-Vollständigkeit wichtiger Probleme

> Sebastian Bernauer

Problem

- 1. Gibt es eine Clique der Größe k?
 - \rightarrow Entscheidungsproblem
- 2. Berechne das größte k, so dass eine Clique der Größe k vorhanden ist.
 - →Optimale Lösung

NP-Vollständigkeit wichtiger Probleme

> Sebastian Bernauer

Problem

6/21

1. Gibt es eine Clique der Größe k?

 $\rightarrow\! Entscheidungsproblem$

2. Berechne das größte k, so dass eine Clique der Größe k vorhanden ist.

→Optimale Lösung

3. Berechne eine Clique mit dem größten k.

ightarrow Optimierungsproblem

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Clique

Problem

apsack Prob

Beweis

PARTITION

Problem

rweis

oblem

Beweis

IC.

. . .

Problem Beweis

nhlem

Problem Beweis

atur 6/

CLIQUE Beweis

wichtiger Probleme Sebastian Bernauer

NP-Vollständigkeit

Beweis

Beweis

Problem

Gegeben sind ein Rucksack und *n* Objekte mit Gewichten $g_1, ..., g_n \in \mathbb{N}$ sowie eine Gewichtsschranke G. Zusätzlich seien $a_1, ..., a_n \in \mathbb{N}$ die Nutzenwerte für die Objekte. [1]

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Problem

Gegeben sind ein Rucksack und n Objekte mit Gewichten $g_1, ..., g_n \in \mathbb{N}$ sowie eine Gewichtsschranke G. Zusätzlich seien $a_1, ..., a_n \in \mathbb{N}$ die Nutzenwerte für die Objekte. [1]

Abbildung: Ein zu befüllender Rucksack.

 $Quelle: \ https://de.wikipedia.org/wiki/Rucksackproblem\#/media/File:Knapsack.svg$

Sebastian Bernauer

Clique

Beweis

Knapsack Problem

Problem

ADTITION

RTITION

Beweis

Р

Beweis

HC

reis

HC

Beweis

SP

Problem

iteratur

- 1. Gibt es unter Beachtung des Limits eine Beladung mit mindestens diesem Nutzwert?
 - \rightarrow Entscheidungsproblem

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Clique

Beweis

Knapsack Problem

Problem

PARTITION

Problem

Beweis

roblem

Beweis

НС

blem

С

Problem Rowois

SP

JI

Beweis

ratur o

- 1. Gibt es unter Beachtung des Limits eine Beladung mit mindestens diesem Nutzwert?
 - \rightarrow Entscheidungsproblem
- 2. Berechne den größtmöglichen Nutzwert.
 - →Optimale Lösung

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

1. Gibt es - unter Beachtung des Limits - eine Beladung mit mindestens diesem Nutzwert?

 \rightarrow Entscheidungsproblem

2. Berechne den größtmöglichen Nutzwert.

→Optimale Lösung

3. Berechne die optimale Beladung.

 \rightarrow Optimierungsproblem

Sebastian Bernauer

Beweis

wichtiger Probleme Sebastian Bernauer

NP-Vollständigkeit

oblem

Problem

napsack Probler

Beweis

ARTITION

Problem

hlom

С

is

.

oblem weis

Р

Beweis

tur 10 / 21

PARTITION Problem

wichtiger Probleme

Sebastian

Bernauer

NP-Vollständigkeit

que

Problem Reweis

Problem

Beweis

ARTITION

Problem

Beweis

)

blem

C

blom

is

oblem

SP

Problem Beweis

ır 11 / 21

PARTITION Beweis

NP-Vollständigkeit wichtiger Probleme Sebastian Bernauer

Reweis

Beweis

BP Problem

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Problem

Beweis

13 / 21

BP Beweis

wichtiger Probleme Sebastian Bernauer

NP-Vollständigkeit

Beweis

Beweis

14 / 21

DHC Problem

NP-Vollständigkeit wichtiger Probleme Sebastian Bernauer

ue

Problem Beweis

Problem

Problem Beweis

ARTITION

oblem

lem

С

Problem Boussis

С

oblem

oblem weis

Р

veis

ur 15 / 21

DHC Beweis

NP-Vollständigkeit wichtiger Probleme Sebastian

Bernauer

que

Beweis

Problem

Beweis

PARTITION

Problem

.....

blem

IC

olem

Beweis

C

Problem Beweis

Р

Beweis

tur 16 / 21

HC Problem

Sebastian Bernauer

NP-Vollständigkeit

wichtiger Probleme

Problem

17 / 21

Beweis

HC Beweis

NP-Vollständigkeit wichtiger Probleme Sebastian Bernauer

que

Problem Beweis

Knapsack I Problem

Beweis

PARTITION

Problem Beweis

lem

С

em

Problem Beweis

P

Beweis

ur 18 / 21

TSP Problem

wichtiger Probleme Sebastian Bernauer

NP-Vollständigkeit

roblem

roblem

Problem

weis

RTITION

olem

veis

em

5

С

is

olem

veis

Problem

Beweis

19 / 21

Problem

1 TODICITI

ratur 1

TSP Beweis

NP-Vollständigkeit wichtiger Probleme Sebastian Bernauer

que

Problem

Knapsac Problem

Beweis

PARTITION

AKTITION

Beweis

blom

tem sis

С

em e

oblem

P

Beweis

20 / 21

13P Deweis

Beweis

Litera

Quellen

Ingo WEGENER. Theoretische Informatik. Eine algorithmenorientierte Einführung. Teubner, 2005.

NP-Vollständigkeit wichtiger Probleme

Sebastian Bernauer

Reweis

Literatur