Stochastic Processes II: Homework 5

Chris Hayduk

March 17, 2021

Problem I. LPW 5.4

a) We have from the proof of Theorem 5.6 that for any coordinate i, the expected coupling time is,

$$E_{x,y}(\tau_i) \le \frac{dn^2}{4}$$

Thus, we have that, if $t = dn^2$, then,

$$P_{x,y}\{\tau_i > t\} \le \frac{E_{x,y}(\tau_i)}{t}$$
$$\le \frac{1}{t} \frac{dn^2}{4}$$
$$= \frac{1}{4}$$

Now suppose $t = 2dn^2$. By Remark 5.3, we know that this coupling is Markovian and hence, the probability that that x and y have not coupled between $t_0 = dn^2$ and $t = 2dn^2$ is still 1/4. Thus, by induction, we have that if $t \ge kdn^2$,

$$P_{x,y}\{\tau_i > t\} \le P_{x,y}\{\tau_i > kdn^2\}$$

 $< (1/4)^k$

b) We have that,

$$P\left\{\max_{1 \le i \le d} \tau_i > kdn^2\right\} \le P\left(\bigsqcup_{i=1}^d \tau_i > kdn^2\right)$$

Since the coordinates are independent of one another, our union in the second part of the above equation is disjoint. Hence, we have,

$$P\left(\bigsqcup_{i=1}^{d} \tau_i > k dn^2\right) = \sum_{i=1}^{d} P\left(\tau_i > k dn^2\right)$$
$$= \frac{d}{4^k}$$

Now, if we take
$$k = \left\lceil \log_4(d/\epsilon) \right\rceil$$
, then we have,

$$P\left\{\max_{1 \le i \le d} \tau_i > k d n^2\right\} \le \frac{d}{4^k}$$

$$= \frac{d}{4^{\lceil \log_4(d/\epsilon) \rceil}}$$

$$= \frac{d}{\lceil d/\epsilon \rceil}$$

$$\le \frac{d}{d/\epsilon}$$

$$= \epsilon$$

And hence by Corollary 5.5, we have that,

$$d(t) \le \max_{x,y \in \mathcal{X}} P_{x,y} \{ \tau_{\text{couple}} > t \}$$

$$\le \epsilon$$

when
$$t > kdn^2$$
 and $k = \left\lceil \log_4(d/\epsilon) \right\rceil$. Hence,

$$t_{\text{mix}} = k dn^2$$
$$= \left\lceil \log_4(d/\epsilon) \right\rceil dn^2$$

as required.

Problem II. LPW 5.5

Let us assume that we now have a finite b-ary tree with depth k. By the same coupling process as described in section 5.3.4, we have that,

$$\tau = \min\{t \ge 0 : X_t = Y_t\}$$

$$\tau_{\rho} = \min\{t \ge 0 : Y_t = \rho\}$$

And $E(\tau) \leq E_{y_0}(\tau_{\rho})$. Moreover, the distance of Y_t from the leaves is still a birth-and-death chain, this time with $p = \frac{1}{2} \cdot \frac{1}{b} = \frac{1}{2b}$ and $q = \frac{1}{2} - p = \frac{b-1}{2b}$. Then by (2.14), we have,

$$E_{y_0}(\tau_{\rho}) \leq \frac{2b}{2-b} \left[k + \frac{b-1}{2b} \left(\frac{1-(b-1)^k}{\frac{2-b}{2b}} \right) \right]$$

$$= \frac{2b}{2-b} \left[k + \frac{b-1}{2-b} \left(1 - (b-1)^k \right) \right]$$

$$\leq -2b \left[k + b \left(1 - b^k \right) \right]$$

$$= -2bk - 2b^2 + 2b^{k+2}$$

$$= 2b(b^{k+1} - k - b)$$

$$\leq 2bn$$

And so,

$$t_{\text{mix}} \le 4(2bn)$$
$$= 8bn$$

Problem III. LPW 6.10

Let τ_k be the first time that vertex k has been reached.