

Quantitative Methods I Notes 2016

Quantitative Methods 1 (University of Melbourne)

ECON10005 Quantitative Methods I Notes

Commerce University of Melbourne

Semester 1, 2016

1 INTRODUCTION OF KEY TERMS AND CONCEPTS

Basic terms

- Population: Collection of everything in the universe with regards to the variable
- Parameter: Is a quantity that describes (or characterises) the shape of a probability density (or mas) function. Parameters are population objects and are unobservable.
- Estimator: An estimator is a function of random variables. It is a rule that tells us how to combine our data in order to produce an estimate of unknown population parameters. For instance, an estimator for the population mean μ is the sample mean \bar{x} .
- Estimate: An estimate is a particular realisation of the estimator (which is a random variable). It is a quantity that we compute from the data in order to infer the value of an unknown parameter.
- Sample: Small group of things taken from the population
- Statistic: A characteristic of the sample
- Variable: Is a characteristic that we get data on

Types of variables

- Discrete: cannot include every possible observation within sample space
- Continuous: can include all possible observations within sample space
- Qualitative: in terms of words, e.g. categories
- Quantitative: in terms of numbers
- Ordinal data: qualitative data with rankings
- Time series data: references data with time
- Descriptive statistics: summarise data in terms of numerical values
- Inferential statistics: gives inferences about the populations

Types of data

- Primary: first hand data.
- Secondary: data collected by someone else.
- Observational: measures behaviour and outcome.
- Experimental: use experiment conditions to determine the cause and effect of introducing a treatment variable.

Types of sampling

- Simple random sampling
- Stratified random sampling
- Systematic sampling
- Cluster sampling
- Convenience sampling
- Judgement sampling

2 DESCRIPTIVE STATISTICS

Measures of central tendency

- Sample mean: numerical centre of our data. Informative unless there are outliers.
- Median: the value that partitions the ordered set into two, not sensitive to extreme values.
- Mode: useful for categorical data or ordinal data, most frequently occurring value in the data set.

Measures of spread

- Sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x} \dot{c}^2)$
- Standard deviation: rescale of the sample variance back into the same units as the data. Square root of the sample variance.
- The interquartile range: Q₁, Q₂ (median), Q₃, IQR = Q₃ Q₁

Histograms

- Sturge's formula: number of class intervals, k = 1 + 3.3log₁₀(n)
- Class width = (largest value smallest value) / k
- Depicts: location (range), spread, skew and kurtosis.

Box and whisker plot

- Depicts: median, upper and lower quartiles and range.
- Outliers: any value more than 1.5 x (IQR) above or below the upper and lower quartiles respectively.

Measures of skew

Measures of kurtosis

- Measures the relative proportion of extreme observations to 'regular' observations.
- Positive excess kurtosis is considered leptokurtic, while a negative excess kurtosis is considered platykurtic.

Percentiles

- Approximation formula: $L_P = (n + 1) \frac{P}{100}$
- Partition method: for median, Q₁ or Q₃.

3 BIVARIATE DATA

The sample covariance

- Cov(x,y) = $s_{xy} = \sum_{i=1}^{n} (x_i \acute{x} \. \. \. .$
- If x and y are positively related then small observations of x will tend to be associated with small observations of y.
- If x and y are negatively related, then small observations of x will be associated with large observations y and vice versa.

Coefficient of correlation

- Rescaled (just like z score [standardised]) covariance by dividing by the standard deviations of the two variables.
- $r = \frac{S_{xy}}{S_x S_y}$
- Takes values of -1 ≤ r ≤ 1
- Measures degree to which two variables are linearly related (sensitive to outliers).

4 SIMPLE LINEAR REGRESSIONS

Linear relationships

- If two variables are perfectly linearly related (i.e. $r = \pm 1$) then we can represent their relationship using a linear function, $y_i = b_0 + b_1x_i$
- y: dependent variable
- x: explanatory variable
- b₀: intercept
- b₁: slope coefficient (gradient)

Line of best fit

- $y_i = b_0 + b_1 x_i + e_i$
- in order to fit a line to the data $\{x_i, y_i\}_{i=1}^n$, we need to choose b_0 and b_1 . The fitted line: $\hat{y} = y_i = b_0 + b_1 x_i$
- $b_0 = \overline{y} b_1 \overline{x}$
- $b_1 = s_{xy} / s_x^2$
- Obtain the above values through ordinary least squares (OLS).

OLS:

$$\min_{b_0,b_1} \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \min_{b_0,b_1} \sum_{i=1}^n (y_i - b_0 - b_1 x_i)^2$$

The first step is to take the derivative of the above function with respect to b_1 and set it equal to zero. Let

$$SSE = \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i)^2$$

$$\frac{\partial SSE}{\partial b_1} = -2\sum_{i=1}^n x_i(y_i - b_0 - b_1x_i) = 0$$

Now we take the derivative of the SSE function with respect to b_0 and also set it equal to zero

$$\frac{\partial SSE}{\partial b_0} = -2\sum_{i=1}^n (y_i - b_0 - b_1 x_i) = 0$$

Dividing out the -2, we have two equations and two unknowns

$$\sum_{i=1}^{n} x_i (y_i - b_0 - b_1 x_i) = 0$$
 (1)

$$\sum_{i=1}^{n} (y_i - b_0 - b_1 x_i) = 0 (2)$$

To solve, take (2) and re-write

$$\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} b_0 - \sum_{i=1}^{n} b_1 x_i = 0$$

Using the fact that $\sum_{i=1}^{n} b_0 = nb_0$, we can write

$$nb_0 = \sum_{i=1}^n y_i - \sum_{i=1}^n b_1 x_i$$

Which we can rewrite as

$$b_0 = \frac{1}{n} \sum_{i=1}^n y_i - \frac{1}{n} \sum_{i=1}^n b_1 x_i = \overline{y} - b_1 \overline{x}$$
 (3)

Now let's go back to equation (1)

$$\sum_{i=1}^{n} x_i (y_i - b_0 - b_1 x_i) = 0$$

Substituting (3) into (1) yields

$$\sum_{i=1}^{n} x_i (y_i - (\overline{y} - b_1 \overline{x}) - b_1 x_i) = 0$$

$$\sum_{i=1}^{n} x_i (y_i - \overline{y} - b_1 (x_i - \overline{x})) = 0$$

All that's left to do is solve for b_1

To solve for b_1 rewrite the previous equation as

$$\sum_{i=1}^{n} x_i (y_i - \overline{y}) - b_1 \sum_{i=1}^{n} x_i (x_i - \overline{x}) = 0$$

Rearranging in terms of b_1 yields

$$b_1 = \frac{\sum_{i=1}^n x_i (y_i - \overline{y})}{\sum_{i=1}^n x_i (x_i - \overline{x})}$$

We can rewrite b_1 in terms of quantities that we already know.

Let's start with the numerator $\sum_{i=1}^{n} x_i(y_i - \overline{y})$, multiplying out we get

$$\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \overline{y} = \sum_{i=1}^{n} x_i y_i - n(\overline{y})(\overline{x})$$

Now the for the denominator $\sum_{i=1}^{n} x_i(x_i - \overline{x})$, multiplying out we get

$$\sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i \overline{x} = \sum_{i=1}^{n} x_i^2 - n \overline{x}^2$$

Therefore

$$b_1 = \frac{\sum_{i=1}^n x_i y_i - n(\overline{y})(\overline{x})}{\sum_{i=1}^n x_i^2 - n\overline{x}^2}$$

Finally, multiplying and dividing by $\frac{1}{n-1}$ we obtain

$$b_1 = \frac{\frac{1}{n-1} \left[\sum_{i=1}^n x_i y_i - n(\overline{y})(\overline{x}) \right]}{\frac{1}{n-1} \left[\sum_{i=1}^n x_i^2 - n\overline{x}^2 \right]} = \frac{s_{xy}}{s_x^2}$$
(4)

Therefore we can always find the slope coefficient that minimises the sum of squared errors by dividing the sample covariance of x and y by the sample variance of x! Then to find the intercept:

$$b_0 = \overline{y} - b_1 \overline{x} \tag{5}$$

- So, given a set of n observations on variables x and y, we obtain a line of best fit by:
 - 1. Computing \overline{x} and \overline{y}
 - 2. Then, computing s_{xy} and s_x^2
 - 3. Finally, computing $b_1 = s_{xy} / s_x^2$ and $b_0 = \overline{y} b_1 \overline{x}$
- Multiply b₁ by s_x / s_y to get the coefficient of correlation, r.

The degree of linear relationship

- $\Sigma (y_i \overline{y})^2 = \Sigma (y_i \hat{y}_i)^2 + \Sigma (\hat{y}_i \overline{y})^2$ [SST = SSE +SSR]
- SST = total variation of the dependent variable y
- SSE = sum of squares for errors (unexplained)
- SSR = sum of squares for regression (explained)

Coefficient of determination R²

- R² = SSR/SST = 1 SSE/SST = degree of linear relationship
- Lies within the range: $0 \le R^2 \le 1$
- $R^2 = S_{xy}^2 / S_x^2 S_y^2 = r^2$

5 PROBABILITY

Set operations

- Union: *A* ∪ *B*
- Intersection: $A \cap B$
- Difference: $A \setminus B$ = elements in A that are not in B.
- Complement: $\overline{A} = \varphi \setminus A$ (where φ = sample size).
- Subset: A ⊂ B, every element of A is contained in B.
- Superset: $A \supset B$, every element in B is contained in A.

Rules for set operations

• $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $A \setminus B = A \cap \overline{B}$

Axioms of probability - implications

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Mutually exclusive events: P(A ∩ B) = 0
- Independent events: $P(A \cap B) = P(A) \times P(B)$ P(A|B) = P(A)

Marginal probability

• The probability of the event occurring e.g. P(A)

Joint probability

• $P(A \cap B)$

Conditional probability

• P(A|B)

Independent events

- $P(A \cap B) = P(A) \times P(B)$: the joint probability is equal to the product of its marginal.
- P(A|B) = P(A): the conditional probability is equal to the marginal probability.

6 DISCRETE RANDOM VARIABLES

Discrete bivariate distributions

X/Y	y ₁	y ₂	P(x)
X ₁	(x_1, y_1)	(x_1, y_2)	P(x ₁)
X ₂	(x_2, y_1)	(x_2, y_2)	$P(x_2)$
P(Y)	P(y ₁)	P(y ₂)	1

- Where $(x_1, y_1) = P(x_1 \cap y_1)$
- Expectation: E[X + Y] = E[X] + E[Y]
- Variance: V(X + Y) = V(X) + V(Y) + 2COV(X,Y)
 V(X Y) = V(X) + V(Y) 2COV(X,Y)

For independent X and Y then: V(X + Y) = V(X - Y) = V(X) + V(Y)

The Bernoulli distribution

- Two possible outcomes: success or failure
- B= $\begin{cases} 1, & \text{with probability p} \\ 0, & \text{with probability q= 1 p} \end{cases}$
- Mean, E[B] = p, and variance σ_B^2 = p(1 p)

Binomial distribution

- Sequence of Bernoulli's trials with probability $p^{x}(1-p)^{n-x}$
- $\bullet \quad {}^{\mathsf{n}}\mathsf{C}_{\mathsf{x}} = \frac{\mathsf{n}!}{\mathsf{x}! \; (\mathsf{n} \mathsf{x})!}$

•
$$P(X = x) = \left[\frac{n!}{x! (n-x)!}\right] x [p^{x}(1-p)^{n-x}]$$

•
$$E[X] = np, V[X] = np(1-p)$$

Poisson distribution

- Let λ be the average number of occurrences
- $P(X = x) = \frac{e^{-\lambda} \lambda^x}{x!}$
- $E[X] = \lambda$, $V[X] = \lambda$

7 CONTINOUS PROBABILITY

Uniform distribution

- $f_x(x)\dot{c}$ $\begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$
- Cumulative distribution: $F_x(x) = \frac{x a}{b a}$
- $E[X] = \frac{b+a}{2}, V[X] = \frac{(b-a)^2}{12}$

Normal distribution

- P(a \le x \le b) = $\int_{a}^{b} f_x(x) dx = P(\frac{a \mu}{\sigma} \le z \le \frac{b \mu}{\sigma})$
- $Z = \frac{x \mu}{\sigma}$

8 INFERENCE ON μ

The sample mean

- Law of large numbers: $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \rightarrow \mu$ as $n \rightarrow \infty$
- Sample mean = point estimate

Sampling distribution

• Central limit theorem: as n → ∞

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \stackrel{\rightarrow}{\text{distribution}} N(\mu, \frac{\sigma^2}{n})$$

Confidence intervals

- (1α) % confidence interval
- Known σ^2 : $\overline{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$ (normal, z score)

- Unknown σ^2 : $\frac{\overline{X} \pm t_{\frac{\alpha}{2}}}{2}$, $(n-1) \times \frac{s}{\sqrt{n}}$, where s = sample variance, when \geq 30 the student t converges to a normal: $\frac{\overline{X} \pm Z_{\frac{\alpha}{2}}}{\sqrt{2}} \frac{S}{\sqrt{2}}$
- Population proportion: $\hat{p} \pm \frac{z_{\frac{\alpha}{2}}}{n} \sqrt{\hat{p}(1-\hat{p}\dot{c})}$

Estimating population proportion p

- $\hat{p} = \frac{Y}{n}$, where Y = number of observations in the sample that belong to the category of interest.
- $E[\hat{p}\hat{c} = E[\frac{Y}{n}] = p \text{ and } V[\hat{p}\hat{c} = \frac{p(1-p)}{n}]$, because Y is binomial,

therefore
$$\frac{Y}{n} \to p$$
 as $n \to \infty$

- $\frac{Y}{n}$ distribution $N(p, \frac{p(1-p)}{n})$
- $\bullet \quad \frac{\hat{p} p}{\sqrt{\hat{n}(1 \hat{n})/n}} \sim N(0,1)$

Comparing two populations (known σ^2)

Distribution of difference of sample means

$$\overline{x}_1 - \overline{x}_2 \sim N(\mu_1 - \mu_2, \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2})$$

- $Z = [(\overline{x}_1 \overline{x}_2) (\mu_1 \mu_2)] / \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
- Confidence interval: $(\overline{x}_1 \overline{x}_2) \pm \frac{z_{\alpha}}{2} \sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{n}}$

Comparing two populations (unknown σ^2)

Replace with sample variance, student t

$$(s_1^2/n_1+s_2^2/n_2)^2$$

- Degrees of freedom: $\frac{(s_1^2/n_1 + s_2^2/n_2)^2}{(s_1^2/n_1 \dot{c}^2)^2} + (s_2^2/n_2 \dot{c}^2) \frac{\dot{c}}{n_2 1} \dot{c}$
- Confidence interval: $(\overline{x}_1 \overline{x}_2) \pm \frac{t_{\alpha}}{2}$, d.f. $\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{n}}$

9 HYPOTHESIS TESTING

Testing hypotheses on μ

- H_0 : $\mu = k$
- H_A : $\mu \neq k$ (two tailed test)
- H_A: μ>ἐ k (one tailed test)
- H_A : μ < ι k (one tailed test)
- Decide on a significance level α

- Convert relevant test statistic (e.g. \overline{x}) into test statistic e.g. z score or t score and then compare.
- · Or use probability

Type I and Type II errors

- Type I: reject the null when the null is true (false positive, innocent person to jail)
- Type II: fail to reject the null when the null is false (false negative, guilty person walks free).

Testing on a population proportion p

- H₀: p = c
- H_A: p ≠ c
- $Z = \frac{\hat{p} c}{\sqrt{\frac{c(1-c)}{n}}} \sim N (0,1)$

Testing hypotheses on σ^2

- $H_0: \sigma^2 = \sigma_0^2$
- H_A : $\sigma^2 \neq \sigma_0^2$ (two tailed test)
- H_A : $\sigma^2 > \sigma_0^2$ (one tailed test)
- H_A : $\sigma^2 < \sigma_0^2$ (one tailed test)
- $\frac{(n-1)s^2}{\sigma_0^2}$ is a χ^2 random variable
- chi-squared critical values: $\left[\frac{(n-1)s^2}{\chi_k^2, \frac{\alpha}{2}}, \frac{(n-1)s^2}{\chi_k^2, 1-\frac{\alpha}{2}}\right]$

10 INFERENCE ON σ^2

The sampling distribution of s²

- Chi-squared distribution with k = n 1 degrees of freedom.
- σ^2 : parameter of interest
- s²: estimator
- Sampling distribution = $\frac{(n-1)s^2}{\sigma_0^2} \sim \chi^2(k)$

Confidence interval for s^2

- Note: $\chi^2(k)$ density function is not symmetric
- $P(\chi^2(k), 1 \frac{\alpha}{2} < \frac{(n-1)s^2}{\sigma_0^2} < \chi^2(k), \frac{\alpha}{2}) = 1 \alpha \%$
- Re-arrange to centre solely around unknown σ^2

•
$$P\left[\frac{(n-1)s^2}{\chi_k^2, \frac{\alpha}{2}} < \sigma^2 < \frac{(n-1)s^2}{\chi_k^2, 1 - \frac{\alpha}{2}}\right] = 1 - \alpha \%$$

Therefore, confidence interval for σ^2 is given by: $\left| \frac{(n-1)s^2}{\chi_k^2, \frac{\alpha}{2}}, \frac{(n-1)s^2}{\chi_k^2, 1-\frac{\alpha}{2}} \right|$

11 BIVARIATE DISTRIBUTION FUNCTIONS & CONDITIONAL **MEANS**

Covariation and conditional means

Conditional mean of Y given a particular value of X is:

$$E[Y|X = x_i] = f(x) = \begin{cases} \sum_{i=0}^{n} y_i \cdot P(Y = y_i | X = x_i), \land [discrete] \\ \int_{-\infty}^{\infty} yf(y|X = x_i) dy, \land [continuous] \end{cases}$$

The regression model

•
$$Y = \beta_0 + \beta_1 X + \varepsilon$$

•
$$\varepsilon \sim N(0, \sigma^2)$$

•
$$\hat{\beta}_1 = \mathbf{s}_{xy} / \mathbf{s}_x^2$$

•
$$\hat{\beta}_1 = \mathbf{s}_{xy} / \mathbf{s}_x^2$$

• $\hat{\beta}_0 = \overline{\mathbf{Y}} - \hat{\beta}_1 \overline{\mathbf{X}}$

Sampling distribution of $\hat{\beta}_1$

•
$$E[\hat{\beta}_1] = \beta_1$$

•
$${}^{s}\hat{\beta}_{1} = \frac{s\varepsilon}{\sqrt{(n-1)s_{x}^{2}}}$$
 where $s\varepsilon = \sqrt{\frac{\Sigma(y_{i} - \hat{y})^{2}}{n-2}}$

$$\bullet \quad \frac{\hat{\beta}_1 - \beta_1}{{}^s \hat{\beta}_1} \sim \mathsf{t}_{\mathsf{n-2}}$$

Sampling distribution of $\hat{\beta}_0$

•
$$E[\hat{\beta}_0] = \beta_0$$

•
$$E[\beta_0] = \beta_0$$
•
$$s\hat{\beta}_1 = \frac{s\varepsilon\sqrt{\frac{\sum x_i^2}{n}}}{\sqrt{(n-1) s_x^2}}$$

$$\bullet \quad \frac{\hat{\beta}_0 - \beta_0}{{}^s \hat{\beta}_0} \sim \mathsf{t}_{\mathsf{n-2}}$$

Interval estimators and hypotheses tests on β_1 and β_0

 $(1 - \alpha)$ % interval estimator is given by:

$$\hat{\beta}_1 \pm \frac{t_{\alpha}}{2}$$
, $n-2 \hat{\beta}_1$

$$\hat{\beta}_0 \pm \frac{t_{\alpha}}{2}$$
, $n-2 \hat{\beta}_0$

 Hypothesis tests: whether or not a linear relationship exists between X and Y;

$$H_0: \beta_1 = 0$$

 H_A : $\beta_1 \neq 0$ (two tailed test)

SUMMATION NOTATION

1. Definition:
$$\sum_{i=1}^{n} R_i = R_1 + R_2 + \ldots + R_n$$

2.
$$\sum_{i=1}^{n} bR_i = b \sum_{i=1}^{n} R_i$$
, where b is any value that does not depend on the index i.

3.
$$\sum_{i=1}^{n} k = nk$$
, where k is any value that does not depend on the index i.

4.
$$\sum_{i=1}^{n} (R_i \pm a) = \sum_{i=1}^{n} R_i \pm na$$
, where a is any value that does not depend on the index i.

$$\sum_{i=1}^{N} (X_i - \mu)^2 P(X_i) = \sum_{i=1}^{N} X_i^2 P(X_i) - \mu^2$$

$$\sum_{i=1}^{N_Y} \sum_{j=1}^{N_Y} (X - \mu_X) (Y - \mu_Y) P(X_i, Y_j) = \sum_{i=1}^{N_Y} \sum_{j=1}^{N_Y} X_i Y_j P(X_i, Y_j) - \mu_X \mu_Y$$

DESCRIPTIVE STATISTICS

1. Sample mean (sample of size
$$n$$
): $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

2. Sample variance (sample of size
$$n$$
): $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$

3. Sample skewness (sample of size
$$n$$
): $g = \frac{n^2}{(n-1)(n-2)} \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^3}{\left(\frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2\right)^{\frac{3}{2}}}$

4. Sample excess kurtosis (sample of size
$$n$$
):

$$k = \frac{(n+1)n}{(n-1)(n-2)(n-3)} \frac{\sum_{i=1}^{n} (x_i - \overline{x})^4}{s^4} - 3 \frac{(n-1)^2}{(n-2)(n-3)}$$

5. Approximate percentile location (sample of size n): $L_p = (n+1)\frac{p}{100}$

POPULATION MOMENTS

1. Mean:
$$\mu = E[X]$$

2. Variance:
$$\sigma^2 = E[(X - \mu)^2]$$

3. Skewness:
$$\gamma_1 = E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right]$$

4. Ex. Kurtosis:
$$\gamma_2 = E\left[\left(\frac{X-\mu}{\sigma}\right)^4\right] - 3$$

Variable	Density (Mass) Function	Mean	Variance	Skewness	Ex. Kurtosis
Binomial	$\frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$	np	np(1-p)	$\frac{1-2p}{\sqrt{np(1-p)}}$	$\frac{1-6p(1-p)}{np(1-p)}$
Uniform	$\begin{array}{ll} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{otherwise} \end{array}$	$\frac{1}{2}(a+b)$	$\frac{1}{12}(b-a)^2$	0	$-\frac{6}{5}$
Bernoulli	$ \begin{array}{cc} p & x = 1 \\ (1-p) & x = 0 \end{array} $	p	p(1 - p)	$\frac{1-2p}{\sqrt{p(1-p)}}$	$\frac{1-6p(1-p)}{p(1-p)}$
Poisson	$\frac{\lambda^x e^{-\lambda}}{x!}$	λ	λ	$\frac{1}{\sqrt{\lambda}}$	$\frac{1}{\lambda}$
Normal	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	0	0
Student t	$\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\Gamma(\frac{\nu}{2})}\left(1+\frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$	0	$\frac{\nu}{\nu-2}$	0	$\frac{6}{\nu-4}$
Chi-squared	$ \frac{x^{\frac{k}{2}-1}e^{\frac{-x}{2}}}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})} x \ge 0 $ 0 otherwise	k	2k	$\sqrt{rac{8}{k}}$	$\frac{12}{k}$

PROBABILITY THEORY

1. Definition: If each simple event in a finite sample space S has the same chance of occurring, then the probability that an event A will occur is

$$P(A) = \frac{\text{number of simple events in } A}{\text{number of simple events in } S}$$

2. Addition Rule:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

or, equivalently,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Note that

$$P(A \cup B) = P(A) + P(B)$$
 if A and B are mutually exclusive

- 3. Conditional Probability: $P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$ provided that P(B) > 0.
- 4. Multiplication Rule:

$$P(A \text{ and } B) = P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

Note that

$$P(A \cap B) = P(A)P(B)$$
 if A and B are independent events

5. Expectation:
$$\mu = E[X] = \sum_{i=1}^{K} X_i P(X_i)$$
 or $\mu = \int_{-\infty}^{\infty} x f(x) dx$

$$\mu = E[X] = \begin{cases} \sum_{i=1}^{N} X_i P(X_i), & X \text{ discrete} \\ \int_{-\infty}^{\infty} x f(x) dx, & X \text{ continuous} \end{cases}$$

6. Variance:

$$\sigma^2 = E[(X - \mu)^2] = \begin{cases} \sum_{i=1}^{N} (X_i - \mu)^2 P(X_i), & X \text{ discrete} \\ \int_{-\infty}^{\infty} (x - \mu)^2 f(x) dx & X \text{ continuous} \end{cases}$$

7. Covariance:

$$\sigma_{XY}^2 = COV[X, Y] = E[(X - \mu_X)(Y - \mu_Y)]$$

EXPECTED VALUES

Let X and Y be random variables and let a, b and c denote constants with respect to the distributions of X and Y. Then

1.
$$E[c] = c$$

$$2. \ E[cX] = cE[X]$$

3.
$$E[X \pm Y] = E[X] \pm E[Y]$$

4.
$$E[aX \pm bY] = aE[X] \pm bE[Y]$$

5.
$$E[XY] = E[X]E[Y]$$
 if X and Y are independent

6.
$$V[c] = 0$$

7.
$$V[cX] = c^2 V[X]$$

8.
$$V[X + b] = V[X]$$

9.
$$V[X \pm Y] = V[X] + V[Y] \pm 2COV[X, Y]$$

10.
$$V[aX \pm bY] = a^2V[X] + b^2V[Y] \pm 2abCOV[X, Y]$$

MEASURING RELATIONSHIPS

Suppose that the exists two discrete random variables X and Y where X can take on k possible realisations and Y can take on k possible realisations. Then:

1. Population covariance:
$$\sigma_{XY}^2 = COV[X,Y] = \sum_{i=1}^k \sum_{j=1}^l (X_i - \mu_X)(Y_j - \mu_Y)$$

2. Population correlation:
$$\rho = \frac{COV[X, Y]}{\sigma_X \sigma_Y}$$

Suppose that a sample is comprised of n pairs of observations on the variable X, Y. Then:

- 1. Sample covariance: $cov[x,y] = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \overline{x})(y_i \overline{y})$
- 2. Sample correlation: $r = \frac{cov[x, y]}{s_x s_y}$

Central Limit Theorem & Law of Large Numbers

Given a set or sequence of independent random variables $\{X_1, X_2, \dots, X_n\}$ where for each i, $E[X_i] = \mu_X$ and $E[(X_i - \mu_X)^2] = \sigma_X^2$ the Central Limit Theorem states that

$$\frac{1}{n} \sum_{i=1}^{n} X_i = \overline{X} \sim \mathcal{N}\left(\mu_X, \frac{\sigma_X^2}{n}\right)$$

As $n \to \infty$

Given a set of observations $\{x_1, x_2, \dots, x_n\}$ where each x_i is an observation from a random variable X_i where for each i, $E[X_i] = \mu_X$ then the Law of Large Numbers states that

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \to \mu_X$$

As $n \to \infty$

REGRESSION ANALYSIS

Simple Linear Regression Model

$$Y = \beta_0 + \beta_1 X + \varepsilon$$

so that

$$\mu_{Y|X} = E[Y|X] = \beta_0 + \beta_1 X$$

Line of Best Fit

Suppose that a sample is comprised of n pairs of observations on the variable X, Y, then the line of best fit is defined as

$$\hat{y}_i = b_0 + b_1 x_i$$

where for each i

$$y_i = b_0 + b_1 x_i + e_i$$

Some Formulae

1. Total Sum of squares:
$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

2. Sum of squared errors:
$$SSE = \sum_{i=1}^{n} e_i^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

3. Sum of squares of regression:
$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

$$4. SST = SSR + SSE$$

5. Standard error of the estimate:
$$s_e = \sqrt{\frac{SSE}{n-k-1}}$$

6. Sampling distribution for
$$\hat{\beta}_j$$
: $\hat{\beta}_j \sim N\left(\beta_j, \sigma_{\hat{\beta}_j}^2\right)$, $j = 0, 1, \dots, k$.

7.
$$t$$
 statistic for testing $H_0: \beta_j = \beta_j^0: t = \frac{\hat{\beta}_j - \beta_j^0}{s_{\hat{\beta}_j}} \sim t_{n-k-1}, j = 0, 1, \dots, k.$

8. Degrees of freedom term for the sampling distribution of the difference of means where the population variances are unknown:

$$d.f. = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$$

9. Coefficient of Determination:
$$R^2 = 1 - \frac{SSE}{SST}$$

Table 1: Values of the Standard Normal Distribution Function $\Phi_Z(z)$

Shaded Area: $\Phi_Z(z)=\int_{-\infty}^z\phi_Z(u)\,\mathrm{d}u$, where $\phi_Z(u)$ denotes a standard Normal density function.

For example, $P(Z \le 1.05) = 0.8531$.

By symmetry, if z < 0 then $\Phi_Z(z) = 1 - \Phi_Z(-z)$

Note that z is the sum of terms in the first row and column.

\overline{z}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.00	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.10	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.20	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.30	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.40	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.50	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.60	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.70	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.80	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.90	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.00	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.10	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.20	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.30	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.40	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.50	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.60	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.70	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.80	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.90	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.00	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.10	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.20	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.30	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.40	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.50	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.60	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.70	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.80	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.90	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.00	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.10	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.20	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.30	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.40	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
$\frac{3.50}{3.60}$	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998	0.9998
$\frac{3.60}{2.70}$	0.9998	0.9998	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
3.70	0.9999	0.9999	0.9999	0.9999	0.9999 0.9999	0.9999	0.9999	0.9999	0.9999	0.9999
$3.80 \\ 3.90$	0.9999 1.0000	0.9999 1.0000	0.9999 1.0000	0.9999 1.0000	0.9999 1.0000	0.9999 1.0000	0.9999 1.0000	0.9999 1.0000	0.9999 1.0000	0.9999 1.0000
3.90	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

Table 2: Critical Values for Upper-Tail Probabilities of Student's t distribution

Shaded Area: $P(t \ge t_{\nu,\alpha}) = \alpha$, where $t \sim t_{\nu}$.

For example, $P(t \ge t_{3,0.05}) = P(t \ge 2.3534) = 0.05$.

Note that ν denotes the degrees of freedom of the distribution.

ν	0.1	0.05	0.025	0.01	0.005	ν	0.1	0.05	0.025	0.01	0.005
1	3.0777	6.3137	12.7062	31.8210	63.6559	28	1.3125	1.7011	2.0484	2.4671	2.7633
2	1.8856	2.9200	4.3027	6.9645	9.9250	29	1.3114	1.6991	2.0452	2.4620	2.7564
3	1.6377	2.3534	3.1824	4.5407	5.8408	30	1.3104	1.6973	2.0423	2.4573	2.7500
4	1.5332	2.1318	2.7765	3.7469	4.6041	31	1.3095	1.6955	2.0395	2.4528	2.7440
5	1.4759	2.0150	2.5706	3.3649	4.0321	32	1.3086	1.6939	2.0369	2.4487	2.7385
6	1.4398	1.9432	2.4469	3.1427	3.7074	33	1.3077	1.6924	2.0345	2.4448	2.7333
7	1.4149	1.8946	2.3646	2.9979	3.4995	34	1.3070	1.6909	2.0322	2.4411	2.7284
8	1.3968	1.8595	2.3060	2.8965	3.3554	35	1.3062	1.6896	2.0301	2.4377	2.7238
9	1.3830	1.8331	2.2622	2.8214	3.2498	36	1.3055	1.6883	2.0281	2.4345	2.7195
10	1.3722	1.8125	2.2281	2.7638	3.1693	37	1.3049	1.6871	2.0262	2.4314	2.7154
11	1.3634	1.7959	2.2010	2.7181	3.1058	38	1.3042	1.6860	2.0244	2.4286	2.7116
12	1.3562	1.7823	2.1788	2.6810	3.0545	39	1.3036	1.6849	2.0227	2.4258	2.7079
13	1.3502	1.7709	2.1604	2.6503	3.0123	40	1.3031	1.6839	2.0211	2.4233	2.7045
14	1.3450	1.7613	2.1448	2.6245	2.9768	45	1.3007	1.6794	2.0141	2.4121	2.6896
15	1.3406	1.7531	2.1315	2.6025	2.9467	50	1.2987	1.6759	2.0086	2.4033	2.6778
16	1.3368	1.7459	2.1199	2.5835	2.9208	60	1.2958	1.6706	2.0003	2.3901	2.6603
17	1.3334	1.7396	2.1098	2.5669	2.8982	70	1.2938	1.6669	1.9944	2.3808	2.6479
18	1.3304	1.7341	2.1009	2.5524	2.8784	80	1.2922	1.6641	1.9901	2.3739	2.6387
19	1.3277	1.7291	2.0930	2.5395	2.8609	90	1.2910	1.6620	1.9867	2.3685	2.6316
20	1.3253	1.7247	2.0860	2.5280	2.8453	100	1.2901	1.6602	1.9840	2.3642	2.6259
21	1.3232	1.7207	2.0796	2.5176	2.8314	120	1.2886	1.6576	1.9799	2.3578	2.6174
22	1.3212	1.7171	2.0739	2.5083	2.8188	140	1.2876	1.6558	1.9771	2.3533	2.6114
23	1.3195	1.7139	2.0687	2.4999	2.8073	160	1.2869	1.6544	1.9749	2.3499	2.6069
24	1.3178	1.7109	2.0639	2.4922	2.7970	180	1.2863	1.6534	1.9732	2.3472	2.6034
25	1.3163	1.7081	2.0595	2.4851	2.7874	200	1.2858	1.6525	1.9719	2.3451	2.6006
26	1.3150	1.7056	2.0555	2.4786	2.7787	∞	1.2816	1.6449	1.9600	2.3263	2.5758
27	1.3137	1.7033	2.0518	2.4727	2.7707						

Table 3: Critical Values for Upper-Tail Probabilities of the Chi-square Distribution

Shaded Area: $P(\chi_{\nu}^2 \ge \chi_{\nu,\alpha}^2) = \alpha$.

For example, $P(\chi_3^2 \ge \chi_{3,0.95}^2) = P(\chi_{\nu}^2 \ge 0.3518) = 0.95$.

Note that ν denotes the degrees of freedom of the distribution.

	Upper-Tail Probabilities (α)								
ν	0.9950	0.9900	0.9750	0.9500	0.9000	0.7500	0.5000		
1	3.927×10^{-5}	0.0002	0.0010	0.0039	0.0158	0.1015	0.4549		
2	0.0100	0.0201	0.0506	0.1026	0.2107	0.5754	1.3863		
3	0.0717	0.1148	0.2158	0.3518	0.5844	1.2125	2.3660		
4	0.2070	0.2971	0.4844	0.7107	1.0636	1.9226	3.3567		
5	0.4117	0.5543	0.8312	1.1455	1.6103	2.6746	4.3515		
6	0.6757	0.8721	1.2373	1.6354	2.2041	3.4546	5.3481		
7	0.9893	1.2390	1.6899	2.1673	2.8331	4.2549	6.3458		
8	1.3444	1.6465	2.1797	2.7326	3.4895	5.0706	7.3441		
9	1.7349	2.0879	2.7004	3.3251	4.1682	5.8988	8.3428		
10	2.1559	2.5582	3.2470	3.9403	4.8652	6.7372	9.3418		
11	2.6032	3.0535	3.8157	4.5748	5.5778	7.5841	10.3410		
12	3.0738	3.5706	4.4038	5.2260	6.3038	8.4384	11.3403		
13	3.5650	4.1069	5.0088	5.8919	7.0415	9.2991	12.3398		
14	4.0747	4.6604	5.6287	6.5706	7.7895	10.1653	13.3393		
15	4.6009	5.2293	6.2621	7.2609	8.5468	11.0365	14.3389		
16	5.1422	5.8122	6.9077	7.9616	9.3122	11.9122	15.3385		
17	5.6972	6.4078	7.5642	8.6718	10.0852	12.7919	16.3382		
18	6.2648	7.0149	8.2307	9.3905	10.8649	13.6753	17.3379		
19	6.8440	7.6327	8.9065	10.1170	11.6509	14.5620	18.3377		
20	7.4338	8.2604	9.5908	10.8508	12.4426	15.4518	19.3374		
21	8.0337	8.8972	10.2829	11.5913	13.2396	16.3444	20.3372		
22	8.6427	9.5425	10.9823	12.3380	14.0415	17.2396	21.3370		
23	9.2604	10.1957	11.6886	13.0905	14.8480	18.1373	22.3369		
24	9.8862	10.8564	12.4012	13.8484	15.6587	19.0373	23.3367		
25	10.5197	11.5240	13.1197	14.6114	16.4734	19.9393	24.3366		
26	11.1602	12.1981	13.8439	15.3792	17.2919	20.8434	25.3365		
27	11.8076	12.8785	14.5734	16.1514	18.1139	21.7494	26.3363		
28	12.4613	13.5647	15.3079	16.9279	18.9392	22.6572	27.3362		
29	13.1211	14.2565	16.0471	17.7084	19.7677	23.5666	28.3361		
30	13.7867	14.9535	16.7908	18.4927	20.5992	24.4776	29.3360		
35	17.1918	18.5089	20.5694	22.4650	24.7967	29.0540	34.3356		
40	20.7065	22.1643	24.4330	26.5093	29.0505	33.6603	39.3353		
50	27.9907	29.7067	32.3574	34.7643	37.6886	42.9421	49.3349		
60	35.5345	37.4849	40.4817	43.1880	46.4589	52.2938	59.3347		
70	43.2752	45.4417	48.7576	51.7393	55.3289	61.6983	69.3345		
80	51.1719	53.5401	57.1532	60.3915	64.2778	71.1445	79.3343		
100	67.3276	70.0649	74.2219	77.9295	82.3581	90.1332	99.3341		

Critical Values for Upper-Tail Probabilities of the χ^2_{ν} Distribution (Table 3 continued)

Shaded Area: $P(\chi_{\nu}^2 \ge \chi_{\nu,\alpha}^2) = \alpha$.

For example, $P(\chi_3^2 \ge \chi_{3,0.05}^2) = P(\chi_{\nu}^2 \ge 7.8147) = 0.05$.

Note that ν denotes the degrees of freedom of the distribution.

	Upper Tail Probabilities (α)								
ν	0.2500	0.1000^{1}	0.0500	0.0250	0.0100	0.0050			
1	1.3233	2.7055	3.8415	5.0239	6.6349	7.8794			
2	2.7726	4.6052	5.9915	7.3778	9.2103	10.5966			
3	4.1083	6.2514	7.8147	9.3484	11.3449	12.8382			
4	5.3853	7.7794	9.4877	11.1433	13.2767	14.8603			
5	6.6257	9.2364	11.0705	12.8325	15.0863	16.7496			
6	7.8408	10.6446	12.5916	14.4494	16.8119	18.5476			
7	9.0371	12.0170	14.0671	16.0128	18.4753	20.2777			
8	10.2189	13.3616	15.5073	17.5345	20.0902	21.9550			
9	11.3888	14.6837	16.9190	19.0228	21.6660	23.5894			
10	12.5489	15.9872	18.3070	20.4832	23.2093	25.1882			
11	13.7007	17.2750	19.6751	21.9200	24.7250	26.7568			
12	14.8454	18.5493	21.0261	23.3367	26.2170	28.2995			
13	15.9839	19.8119	22.3620	24.7356	27.6882	29.8195			
14	17.1169	21.0641	23.6848	26.1189	29.1412	31.3193			
15	18.2451	22.3071	24.9958	27.4884	30.5779	32.8013			
16	19.3689	23.5418	26.2962	28.8454	31.9999	34.2672			
17	20.4887	24.7690	27.5871	30.1910	33.4087	35.7185			
18	21.6049	25.9894	28.8693	31.5264	34.8053	37.1565			
19	22.7178	27.2036	30.1435	32.8523	36.1909	38.5823			
20	23.8277	28.4120	31.4104	34.1696	37.5662	39.9968			
21	24.9348	29.6151	32.6706	35.4789	38.9322	41.4011			
22	26.0393	30.8133	33.9244	36.7807	40.2894	42.7957			
23	27.1413	32.0069	35.1725	38.0756	41.6384	44.1813			
24	28.2412	33.1962	36.4150	39.3641	42.9798	45.5585			
25	29.3389	34.3816	37.6525	40.6465	44.3141	46.9279			
26	30.4346	35.5632	38.8851	41.9232	45.6417	48.2899			
27	31.5284	36.7412	40.1133	43.1945	46.9629	49.6449			
28	32.6205	37.9159	41.3371	44.4608	48.2782	50.9934			
29	33.7109	39.0875	42.5570	45.7223	49.5879	52.3356			
30	34.7997	40.2560	43.7730	46.9792	50.8922	53.6720			
35	40.2228	46.0588	49.8018	53.2033	57.3421	60.2748			
40	45.6160	51.8051	55.7585	59.3417	63.6907	66.7660			
50	56.3336	63.1671	67.5048	71.4202	76.1539	79.4900			
60	66.9815	74.3970	79.0819	83.2977	88.3794	91.9517			
70	77.5767	85.5270	90.5312	95.0232	100.4252	104.2149			
80	88.1303	96.5782	101.8795	106.6286	112.3288	116.3211			
90	98.6499	107.5650	113.1453	118.1359	124.1163	128.2989			
_100	109.1412	118.4980	124.3421	129.5612	135.8067	140.1695			