Deterministic architectures for low latency in 5G and beyond systems

Maël Guiraud

Nokia Bell Labs France - DAVID, Université de Versailles Saint Quentin

October 14, 2020

Context

Use case: Cloud-RAN

RU=RRH, Distributed/Centralized Unit=BBU

Use case: Cloud-RAN

Use case: Cloud-RAN

C-RAN aims to mutualize the computation ressources.

Since the processing time is constrained by protocol, the lower the transmission delay, the more important the sharing (ie. the coverage area of a data center).

The minimum latency allows to increase the mutualization.

Problematic

Specificity of Cloud-RAN:

- Minimize latency: increase the cover area.
- Periodic traffic

Current approaches:

- Dedicated network → Too expensive
- Statistical multiplexing $(TSN/Qbv) \rightarrow bounded latency only$

Model

- ullet Network o Weighted DAG
- \bullet Physical Delay of a link \to Weight of the arc
- Only the contention points are represented in the graph

Model

Both ways: from RRH to BBU (forward) then from BBU to RRH (backward)

Model

The communication process

The time is discretized.

Two fixed parameters determined by the use case.

- The period P
- \bullet The size of a message τ

Every P units of time, a message of size τ is emitted from each RRH.

The process is periodic: the message is emitted in each period at the same time, called offset.

Collisions

There is a collision between two routes when their messages go through the first vertex of a common arc at the same time.

Periodicity must be taken into consideration

Assignment

$$P = 13, \tau = 3$$

Assignment

Choosing the offset such that there are no collisions.

Assignment

Choosing the offset such that there are no collisions.

An assignment is a choice of offsets for each route without collisions.

Full process

In each BBU, one can choose the waiting time before sending back the answer.

Problem:

Given a routed network, a period and a message size, find an assignment such that there is no collisions.

Two measures to optimize.

PALL:

- The sources may send their message at different dates in the period.
- Local latency constraint.
- Minimizing the process time on the longest route.
- Use cases: URLLC/Indutry 4.0

SPALL:

- The sources send their message at the same date: Synchronized.
- Global time constraint.
- Minimize the time between the emission of the first message and the reception of the last message.
- use cases: C-RAN

The optimal solutions for PALL and SPALL are not the same.

Different topologies

The **conflict depth** of a route is defined as the number of contention point on the route.

The conflict depth of a routed network is the maximal conflict depth of the routes in the network.

Conflict depth 2.

Conflict depth 3 and more.

NP-Hardness

PALL:

- NP-hard on conflict depth ≥ 3: reduction from k-coloring problem
- NP-hard on conflict depth 2 if the shared arc is not bidirectional.

SPALL:

- NP-hard on conflict depth ≥ 3
- NP-hard on conflict depth 2: reduction from two processors scheduling problem.

Algorithmic solutions

Conflict depth 2:

- Algorithms with theoretical guarantees for moderate load.
- FPT algorithm based on single processor scheduling. FPT: exponential in n, the number of routes but linear in P and τ

Conflict depth ≥ 3 :

- Local search algorithms (hill climbing, simulated anealing)
- Optimized Branch and bound: computes realistic instances.

Deterministic vs Statistic

 $\begin{array}{c} \text{Conflict depth 2 - Deterministic} = \text{optimal solution} \\ \text{Period}: 20.000 \text{ tics} \end{array}$

BE Latency optimization

Conflict depth 2 - Deterministic = optimal solution Period : 33.000 tics - CRAN Load : 60% - BE Load $\simeq 20\%$

Conclusion

- Minimal latency allows higher area coverage: better OPEX
- Deterministic traffic:
 - Zero contention
 - Transparent optical transmission (i.e. without opto-electronic convertion)
 - Energy efficiency
- Better overall traffic on loaded networks

Conclusion

- Minimal latency allows higher area coverage: better OPEX
- Deterministic traffic:
 - Zero contention
 - Transparent optical transmission (i.e. without opto-electronic convertion)
 - Energy efficiency
- Better overall traffic on loaded networks

Future work

- ullet Performance evaluation for conflict depth ≥ 3
- Writing the PhD manuscript

Conclusion

- Minimal latency allows higher area coverage: better OPEX
- Deterministic traffic:
 - Zero contention
 - Transparent optical transmission (i.e. without opto-electronic convertion)
 - Energy efficiency
- Better overall traffic on loaded networks

Future work

- ullet Performance evaluation for conflict depth ≥ 3
- Writing the PhD manuscript

Thank you for your attention.

