MATH-300 Andrew Jones

Worksheet 4

Let R be a relation from A to B, let S be a relation from B to C, and let T be a relation from C to D.

Prove the following statements.

1. $I_A \circ R = R$

Proof. Let $a \in A$ and $b \in B$ and observe:

$$a(I_a \circ R)b \iff \exists a' \in A : a = a' \land a'Rb \iff aRb$$

2. $R \circ I_A = R$

Proof. Let $a \in A$ and $b \in B$ and observe:

$$a(R \circ I_a)b \iff \exists b^{'} \in B : b = b^{'} \wedge aRb^{'} \iff aRb$$

3. $(R^{-1})^{-1} = R$

Proof. Fix $a \in A$ and $b \in B$:

$$\begin{array}{ccc} a(R^{-1})^{-1}b & \Longleftrightarrow & bR^{-1}a \\ & \Longleftrightarrow & b(R^{-1})^{-1}a \end{array}$$

4. $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$

Proof. Suppose $(c, a) \in (S \circ R)^{-1}$. Then by implication: $a(S \circ R)^{-1}$. Hence, there exists a $b \in B$ such that bSc and aRb and $cS^{-1}b$ and $bR^{-1}a$. Therefore $(c, a) \in (R^{-1} \circ S^{-1})$ and $(R^1 \circ S^{-1}) \subseteq (S \circ R)^{-1}$. The converse implication is obtained by retracing the given steps.

5. $(T \circ S) \circ R = T \circ (S \circ R)$

Proof. Assume $(a,d) \in (T \circ S) \circ R$. It follows that $b \in B$ such that aRb and $b(T \circ S)d$. Hence there is a $c \in C$ such that bSc and cTd. This implies $a(S \circ R)c$, hence $aT \circ (S \circ R)d$. So we can conclude $T \circ (S \circ R) \subseteq (T \circ S) \circ R$. The converse implication is similar.

6. $Dom R = Rng R^{-1}$

Proof. (\subseteq) Fix $a \in A$ and observe that $a \in Dom R$. There there must exist $b \in B$ such that aRb and $bR^{-1}a$. Hence $a \in Rng R^{-1}$ and $Rng R^{-1} \subseteq Dom R$.

Proof. (\supseteq) Fix $a \in A$ and observe $a \in Rng R^{-1}$. There must be $b \in B$ such that bR^1a and aRb. Hence $a \in Dom R$ and $Dom R \subseteq Rng R^{-1}$. \square

7. $Rng R = Dom R^{-1}$

Proof. (⊇) Suppose $b \in Rng R$. This implies $a \in A$ such that aRb and bR^1a . Hence by the invertibility of R, $b \in Dom R^{-1}$ and $Dom R^{-1} \subseteq Rng R$.

Proof. (\subseteq) Fix $b \in Dom R^{-1}$. By implication we have $a \in A$ such that $bR^{-1}a$ and aRb. So it follows that $b \in Rng R$ and $Rng R \subseteq Dom R^{-1}$. \square

For Question 8–10, suppose that A = B = C.

8. If R and S are equivalence relations, then $S \circ R$ is an equivalence relation.

Proof. Suppose R is an equivalence relation from A to B and S is an equivalence relation from B to C and A = B = C.

$$\begin{split} S \circ R &\iff \forall a \in A : aSa \wedge aRa \\ &\iff \forall a,b,c \in A : (aSb \wedge bSc) => aSa \wedge (aRb \wedge bRc) => aRc \\ &\iff \forall a,b \in A : (aSb \wedge bSa) \wedge (aRb \wedge bRa) \end{split}$$

9. If R is a partial order, then $R \circ R$ is a partial order.

Proof. Fix $a, b, c \in A$:

$$aRc \iff aRa \wedge bRb \wedge cRc$$

$$\iff (aRb \wedge bRc) \Rightarrow aRc$$

$$\iff (aRb \wedge bRa) \Rightarrow a = b$$

$$\iff (a(R \circ R)b \wedge b(R \circ R)a) \Rightarrow a = b$$

$$\iff a(R \circ R)a \wedge b(R \circ R)b \wedge c(R \circ R)c$$

$$\iff (a(R \circ R)b \wedge b(R \circ R)c) \Rightarrow a(R \circ R)c$$

$$\iff a(R \circ R)c$$

	f R and S are partial orders, then it is not generally true that $S \circ R$ is a partial order.
le C	Proof. Let $R = \le$ and $S = $ therefore $a(S \circ R)c = a \le b c$ where b is both ess than a and a divisor of c. Fix $a = 5$ and $c = 3$. We have $5 \le b 3$. Observe that there is no integer b that is a divisor of 3 and greater then or equal to 5.
Bonus Questions Give an example of two relations R and S on a set A such that	
11. <i>I</i>	$R \circ S \neq S \circ R$.

 ${\rm relation.}$

Proof. Suppose $R=\leq$ and S=|x|. Fix a=-9 and b=5. Observe that $-9(R\circ S)5\neq -9(S\circ R)5.$

12. $S \circ R$ is an equivalence relation, but neither R nor S is an equivalence