鉄緑会 高3化学 発展例題 第7回 板書ノート

発展例題7-1

【問題文】

アンモニアの工業的製法として、ハーバー・ボッシュ法という方法が広く用いられている。ハーバー・ボッシュ法では、次の平衡 反応を利用して、アンモニアを合成する。

 $N_2 + 3H_2 \rightleftharpoons 2NH_3 \quad \cdots \quad (*)$

この反応について、後の問に答えよ。

- (1) H−H の結合エネルギーは 432 kJ/mol, N≡N の結合エネルギーは 945 kJ/mol, N−H の結合エネルギーは 390 kJ/mol である。 これを用いて、(*) の正反応の反応熱を求めよ。
- (2) ある密閉容器内に、一定量の窒素と水素の混合気体を封入した。この混合気体を加熱すると、(*)の反応が始まった。このとき、反応条件を次の(r)~(r)0のように変化させると、
 - (a) 反応開始直後における NH。の生成速度
 - (b) 平衡状態における NH₃ の物質量
- は、それぞれどのように変化するか。{1. 増加する、2. 減少する、3. 変化しない、4. ここに与えられた条件だけでは判断できない} からそれぞれ番号で選び答えよ。ただし、アルゴンはいかなる化学反応も起こさないものとする。また、特に明記していない場合には、温度は変化させないものとする。
- (ア) 触媒を加える。
- (イ) 容器の体積を一定に保ったまま、初めに封入する水素の量を増加させる。
- (ウ) 全圧を上げる。
- (エ) 容器の体積を増加させる。
- (オ) 容器の体積を一定に保ったままアルゴンを加える。
- (カ) 全圧を一定に保ったままアルゴンを加える。
- (キ) 容器の体積を一定に保ったまま温度を上げる。
- (ク) 温度を下げ、容器の体積を減少させる。

(1) E[KI] $\int \frac{2 \text{ N(s)} + 6 \text{ H(s)}}{\sqrt{945 + 3 \times 432}} \int \sqrt{390 \times 6} \quad \text{EM SY}, \\
\frac{\sqrt{N_2(s)} + 3 \text{ H}_2(s)}{\sqrt{Q}} = \frac{99}{\sqrt{3000}} \text{ KI/mol}$

(2) (a)

☆反応連度

支配要因:温度,(反応物の)濃度,触蝶 ①:温度 ↑ で ν↑ ②:(反応物の)濃度↑で ν↑

(7):③より、増加する、1

③: 触棋で ν ♠

い): 体績 固定で 反応物 添加: ※生成物(NH。) みれても意味ない

[H] 4で②おり、増加する、1

- (エ): 容器の体積 ↑: [H][N]↓で②む),減りする, 2
- (力: 体績 定で A. 添加: 温度不変, [H.][N.] 不変, 触媒もなし: ①~③の何も変化してない: 変化しない, 3
- (カ): 全圧 定で Ar 添加: 体積↑ [H₂],[N₂]↓で, ②より, 減少する, 2
- (中): 体積 定で 温度 f: ①sリ, 増加する, 1

· 仂割した結果が一致:判断可 (ex:どちらも増加⇒全体も増加)

/か割した結果が一致せず: 判断不可 (ex: 片方増加,片方減ウ⇒ 全体は不明)

(月回は,①と②と2つ変化)

1っ目: 温度↓: ①メリ, 減少する 2っ目: 紡績↓メリ [H] [N.]↑ : ②メリ, 増加する

あて、全体としては判断不可、4

(2)(4): 食平衡の粉動(定性的な考察)

支配零因: 温度、仮応物と生成物の濃度 ※触媒は平衡を紛動させない 反応速度

- ①-1:全体の濃度変化 (ex.体構変化) 「濃度↑なら気体の粒子数↓の方向 ・濃度↓なら気体の粒子数↑の方向
- ①-2:特定物質の濃度変化 (ex.物質添加) 「濃度←なら,その物質の濃度→の方向 ・濃度→なら,その物質の濃度←の方向
- ②:温度变化

温度 ←… エネルギー図の , 高い方向温度 ↓… エネルギー図の , 低い方向

※平衡の約割の 2通りの意味 ①撹乱直後と比較 (基本) ②撹乱直前と比較

今回は②ですわ

濃度のとき特に注意り

※平衡は過程によらない」を利用,

(7): 触媒は平衡に影響なし:変化しない,3

(1): 体積固定で H。添加: [H。]↑

①-2 より, 平衡は右へ傾き, [NH,] ↑

「林積不変より、N_{NH} ↑ 」 増加する.1 (ウ): ☆圧力変化は 体積変化に置き換える。

序体。体積 → 濃度 ↑

(工):全体の体積←,濃度↓

①-1 メリ. 平衡は左へ [NH3]↓ NNH3 ↓ NNH3 ↓

(オ): 温度,濃度が 変化していない: 変化にない,3

(カ): 全圧 - 定で A. 添加: 体積 ↑ (ロと同じ) ①-1 より、平衡は左へ 減りする、2

(7): 登困難は分割せよ

1つ目: 温度↓: ② おり、 平衡は右へ, 増加する 2つ目: 体績↓: ①-1おり、平衡は右へ, 増加する おて、合体とにては 増加する、1

(3)· 反応速度 ↑ ··· 高温, [N.] + [H.] ↑ (= 体積 ↓ 圧カ↑) ・平衡 を右へ ··· 低温, 全体濃度 ↑ (= 体積 ↓ 圧カ↑)

相反:ほとほとの高温 -致:高圧

鉄緑会 高3化学 発展例題 第7回 板書ノート

発展例題7-2

-【問題文】

次の文章を読んで、後の間に答えよ。ただし、気体定数は $8.3 \times 10^3 \, \text{Pa} \cdot \text{L}/(\text{K} \cdot \text{mol})$ とする。

① 色の気体である四酸化二窒素 N_2O_4 は,常に ② 色の気体である二酸化窒素 NO_2 と次のような平衡にある。

$$N_2O_4 \rightleftarrows 2NO_2 \quad \cdots \quad (*)$$

今,体積可変容器に N_2O_4 を $1.00\,\mathrm{mol}$ 封入し,温度を $27\,\mathrm{C}$,全圧を $2.74\times10^5\,\mathrm{Pa}$ に保ったところ,(*)式で表される平衡状態 に至り,容器の体積は $10.0\mathrm{L}$ になった。

- (1) 空欄①, ②に入る語句を答えよ。
- (2) N₂O₄ の解離度を有効数字2桁で求めよ。
- (3) (*) 式の濃度平衡定数は,

$$K_{\rm c} = \frac{[{\rm NO_2}]^2}{[{\rm N_2O_4}]}$$

と定義される。K。の値を、単位を明記して答えよ。答は有効数字2桁で表せ。

(4) (*) 式の圧平衡定数は,

$$K_{\rm p} = \frac{{p_{{\rm NO}_2}}^2}{{p_{{\rm N}_2{\rm O}_4}}}$$

と定義される。ただし, p_{NO_2} , $p_{\text{N}_2\text{O}_4}$ はそれぞれ NO_2 , N_2O_4 の分圧を表す。 K_{p} の値を,単位を明記して答えよ。答は有効数字 2桁で表せ。

- (5) 温度を一定に保ったまま、容器の体積を、1.00 L に圧縮して固定した。しばらく時間が経って平衡状態に至ったとき、 $N_2 O_4$ の解離度はいくらになっているか。また、容器内の気体の全圧はいくらになるか。それぞれ有効数字 2 桁で求めよ。
- (6) 再び体積を可変とし、温度を一定に保ったまま、容器の全圧を、 $1.10\times10^4\,\mathrm{Pa}$ に保った。しばらく時間が経って平衡状態に至ったとき、 $\mathrm{N_2O_4}$ の解離度はいくらになっているか。また、容器の体積はいくらになるか。それぞれ有効数字 2 桁で求めよ。ただし $\sqrt{5}=2.2$ とする。

(1) ①無 ②赤褐

(2) 解純度を αとおく. 反応表には
N₂O4 ⇄ 2NO₂ [mol] 単位!
1.00
-1.00 α + 2.00 α
100(1-4) 2.00 α

気体全体について E.O.S より、

 $2.74 \times 10^{5} \text{ k} \cdot 10.0 \text{ L} = 1.00 (1+4) \text{ mo} \left[\cdot (8.3 \times (0^{3}) \cdot 300 \text{ k} \right]$ $\therefore \quad 6 = 0.100 = 1.0 \times (0^{-1})$

(3). 平衡状態において、 | N₂O₄ = 9.0 × 10⁻¹ mol NO₂ = 2.0 × 10⁻¹ mol 濃度に直すと、 | [N₂O₄] = 9.0 × 10⁻² mol

まて、 Ke に 代入して、

$$K_c = \frac{(2.0 \times (0^{-2})^2)^2}{9.0 \times (0^{-2})^2} = \frac{4}{900} \stackrel{?}{=} 4.4 \times (0^{-3}) \text{ mol/c}$$

* これで値なら
「1ヶ975」の代めりに
「か数で保持」も 3り、

(4) 本 份压 a 求面方。

定積では EO.S

定圧では ①全圧×モル分率 、②分圧の気が全圧

全圧を Pとおくと、

 $P_{N_2O_4} = \frac{1-\alpha}{1+\alpha}P$, $P_{NO_2} = \frac{2\alpha}{1+\alpha}P + 2\alpha\tau$, $K_D = \frac{4\pi}{1+\alpha}P$

 $k_p = \frac{\left(\frac{2\alpha}{1+\alpha}P\right)^2}{\frac{1-\alpha}{1-\alpha^2}P} = \frac{4\alpha^2}{1-\alpha^2}P$

CIE $\alpha = 1.0 \times 10^{-1}$, $P = 2.74 \times 10^{5} P_{A} \in \text{MLC}$. $k_{P} = 1.10 \times 10^{4} \Rightarrow 1.1 \times 10^{4} P_{A}$

別解 keとkpの関係から捉える

ある気体 X について, その分圧: Px [Pa] とする. E O.S おり

 $P_x \cdot \nabla = n_x \cdot R \cdot T$ $P_x = [x]RT$

これを koの式に代入すると、

$$k_{p} = \frac{(P_{NO_{2}})^{2}}{P_{N_{2}O_{4}}} = \frac{([NO_{2}]R \cdot T)^{2}}{[N_{2}O_{4}]R \cdot T}$$
$$= \frac{[NO_{2}]^{2}}{[N_{2}O_{4}]} \cdot R \cdot T = k_{c} \cdot R \cdot T$$

CCIC (3) 4 C' 4 C' 4 C', 4 F_p = $\frac{4}{960} \cdot 8.3 \times (0^{3} \cdot 300)$ = 1.10 × $(0^{9} \Rightarrow 1.1 \times (0^{9} P_{a}))$ (5) まずは定性的にイメージ!

- ·全体の濃度 ↑: 気体の総粒子数を減らす方向へ
- ・平衡は行きすぎない: 2.74×106 x) りしふさい程度
- ⇒ このイX-ジをもとに解いてゆく.

N2O4 a 解離度をめなせする。

$$[N_{2}O_{4}] = \frac{1.00 (1-\alpha_{5}) \text{ mol}}{1.00 \text{ L}} = (1-\alpha_{5}) \text{ mol/L}$$

$$[NO_{3}] = \frac{2.00 \alpha_{5}}{1.00 \text{ L}} = 2\alpha_{5} \text{ mol/L}$$

$$E.7 \text{ Kers At \(\) 1.7 \(\) 1.00 \($$

$$k_c = \frac{(2\alpha_s)^2}{1-\alpha_s} = \frac{4.(\alpha_s)^2}{1-\alpha_s}$$

☆ 因± 囮 近似の 2通りの用法 -

- ② ある程度は①かたきいが、2次方程式を回避したいとき ex). CH3COOHag の pH 計算 ⇒ |祭|<0.05 の 検証が必要

→ 今回, (2) か 0.1 だったし①ではない

ひらべ1と仮定すると、400=4・(ひょ)

$$\therefore \ (x_5 = \frac{1}{30} = 3.3 \times 10^{-2})$$

よて、確かに 仮定をみたす 気体全体では (1+ タメト) = ³¹/₃₀ mol ゆえ, 求める全圧を Prpa] として E.O.S.s.!)

$$P_5 [P_A] 1.00L = \frac{31}{30} \text{ mol} \cdot R \cdot 300 \text{ k}$$

 $\therefore P_5 = 2.57 \times (0^6 \Rightarrow 2.6 \times (0^6 P_A))$

(6)・定性的な似-ジ

平衡は過程によらない

初期の平衡

2.74 × 10 Pa.

1.10 × 104 Pa

求める解離度を 06, 全日: P6=1.10×10⁴とする。 N204とNO2のmole たは (1-06): 206ゆえ、

kp = (2 α/ P6)2

 $\frac{1-\frac{6}{6}}{1+\frac{6}{6}} P_{6} \qquad \therefore (\alpha_{6})^{\frac{1}{2}} = \frac{1}{5}, \quad \alpha_{6} = \frac{\sqrt{5}}{5} = 4.4 \times 10^{\frac{1}{2}}$ 氢体全体の 総物質は、 $1+\alpha = 1.44 \text{ mol } 3\%$

気()本生()本の 配明貝は、1+以:1.44 mol 式ある体績: Vara として E.O.S より

1.10 × 10 $P_R \cdot V_6[L] = 1.44 \text{ mol} \cdot R \cdot 300 \text{ k}$ $\therefore V_6 = 3.25 \times 10^3 = 3.3 \times 10^3 \text{ k}$