Muller Method

In this method, first we assume three approximate roots x_{i-1} , x_i and x_{i+1} of the equation f(x) = 0. The next better approximation x_{i+2} is obtained as the root of second degree polynomial equation p(x) = 0, where the second degree parabola y = p(x) is assumed to pass through the points $\{x_{i-1}, f(x_{i-1})\}$, $\{x_i, f(x_i)\}$ and $\{x_{i+2}, f(x_{i+2})\}$.

Algorithm

- 1. Let x_0 , x_1 and x_2 be the initial approximate roots of f(x) = 0. Compute $f(x_0)$, $f(x_1)$ and $f(x_2)$.
- 2. Compute $h_2 = x_2 x_1$; $h_1 = x_1 x_0$

$$f(x_2, x_1) = [f(x_2) - f(x_1)] / h_2$$
; $f(x_1, x_0) = [f(x_1) - f(x_0)] / h_1$

3. Set k = 2

Compute
$$f(x_k, x_{k-1}, x_{k-2}) = [f(x_k, x_{k-1}) - f(x_{k-1}, x_{k-2})] / (h_k + h_{k-1})$$

$$c_k = f(x_k, x_{k-1}) + h_k f(x_k, x_{k-1}, x_{k-2})$$

$$h_{k+1} = \frac{-2f(x_k)}{c_k \pm \sqrt{c_k^2 - 4f(x_k) f(x_k, x_{k-1}, x_{k-2})}}$$

Choosing the sign so that the denominator is largest in magnitude

Set
$$x_{k+1} = x_k + h_{k+1}$$

4. Compute
$$f(x_{k+1})$$
 and $f(x_{k+1}, x_k) = \frac{f(x_{k+1}) - f(x_k)}{h_{k+1}}$

Set k = k + 1 and repeat steps (3) to (4) until we get the root with required degree of accuracy.

NOTE: This method converges for all initial approximations. If no better approximations are known, we choose $x_0 = -1$; $x_1 = 0$ and $x_2 = 1$.

1. Perform five iterations for the Muller method to find the root of the equation $f(x) = \cos x - xe^x = 0$

Sol: Let
$$x_0 = -1$$
; $x_1 = 0$ and $x_2 = 1$

$$h_2 = x_2 - x_1 = 1$$
; $h_1 = x_1 - x_0 = 1$

$$f(x_2, x_1) = -3.1780 : f(x_1, x_0) = 0.0918$$

$$f(x_2, x_1, x_0) = -1.6349$$

$$c_k = c_2 = f(x_2, x_1) + h_2 f(x_2, x_1, x_0) = -4.8129$$

$$h_3 = -0.5584$$
; $\mathbf{x}_3 = \mathbf{x}_2 + \mathbf{h}_3 = \mathbf{0.4416}$
 $c_3 = f(x_3, x_2) + h_3 f(x_3, x_2, x_1)$
 $f(x_3, x_2) = -4.2896$
 $h_4 = 0.0710$; $\mathbf{x}_4 = \mathbf{x}_3 + \mathbf{h}_4 = \mathbf{0.5126}$
 $c_4 = -2.8408 + (0.0710)*(-2.9725) = -3.0518$
 $h_5 = 0.0051$
 $\mathbf{x}_5 = \mathbf{x}_4 + \mathbf{h}_5 = \mathbf{0.5177}$.

2. Find the root of the equation $x^3 + x^2 - 1 = 0$ that lies between 0 and 1, correct to four places of decimals using Muller method.

Sol: Let
$$x_0 = 0$$
; $x_1 = 0.5$ and $x_2 = 1$
 $h_2 = x_2 - x_1 = 0.5$; $h_1 = x_1 - x_0 = 0.5$
 $f(x_3, x_2, x_1) = -2.5172$; $c_3 = -2.8834$
 $f(x_2, x_1) = 3.25$: $f(x_1, x_0) = 0.75$
 $f(x_2, x_1, x_0) = 2.5$
 $c_k = c_2 = f(x_2, x_1) + h_2 f(x_2, x_1, x_0) = 4.5$
 $h_3 = -0.2597$; $x_3 = x_2 + h_3 = 0.7403$
 $c_3 = f(x_3, x_2) + h_3 f(x_3, x_2, x_1)$
 $f(x_3, x_2) = 4.0286$
 $f(x_3, x_2, x_1) = 3.2403$; $c_3 = 3.1872$
 $h_4 = 0.0142$; $x_4 = x_3 + h_4 = 0.7546$
 $x_5 = x_6 = 0.7549$

3. Use Muller method to find the root of $x^3 - 5x - 6 = 0$ that lies between 2 and 3.

Ans: 2.689

Birge-Vieta Method

In this method we seek to determine a real number p such that (x-p) is a factor of the polynomial equation $p_n(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \ldots + a_n = 0$. If we divide the given equation by the factor (x-p) then we get a quotient Q and remainder R. The value of R depends upon P. We apply Newton-Raphson method and improve the initial approximation value. For the polynomial equations, the computation are systematized using synthetic division.

		a_0	a_1	a_2	a_3	 •	•	a_n
	p	0	b_0p	b_1p	b_2p	 •		$b_{n-1}p$
		$a_0 = b_0$	b_1	b_2	b_3	 •		b_n
		0	c_0p	c_1p	c_2p		$b_{n-1}p$	
_								
		$b_0 = c_0$	c_1	c_2	c_3		c_{n-1}	

 $P_{k+1} = p_k - (b_n / c_{n-1})$; $k = 0, 1, 2, 3, \dots$

1. Use synthetic division and perform two iterations by Birge- Vieta method to find the smallest positive root of the equation $x^4 - 3x^3 + 3x^2 - 3x + 2 = 0$

Sol : Let $p_0 = 0.5$

1 -2.5 1.75 -2.125
$$0.9375 = b_4$$

0.5 -1.00 0.375

1
$$-2.0$$
 0.75 $-1.750 = c_3$

$$P_1 = p_0 - (b_4 \ / \ c_3) = 0.5 + (0.9375 \ / \ 1.750) = 1.0356$$

$$1 -1.9644 \quad 0.9657 \quad -1.9999 \quad -0.0711$$

$$1.0356 \quad -0.9619 \quad 0.0039$$

$$1 \quad -0.9288 \quad 0.0038 \quad -1.9960$$

$$P_2 = p_1 - (b_4 / c_3) = 1.0356 - (-0.0711 / -1.9960)$$

$$= 0.999979$$

The exact root is 1.0

2. Using Birge-Vieta method find a real root correct to three decimal places of the equation $x^3-11x^2+32x-22=0$ with P=0.5.

Sol: Using synthetic division

$$p_1 = 0.5 - (-8.625)/(21.75) = 0.89655$$

Now we divide the given equation with x-0.89655.

 $p_2 = 0.89655$ -(-1.43115722)/(14.687306)=0.99402. Now we divide the given equation with x - 0.99402.

 $P_3 = 0.99402 - (-0.078023)/(13.095792) = 0.999978.$

Now we divide the given equation with x-0.999978.

Therefore, the root correct to three decimal places is 0.999.

= 0.99999.