Problem Solutions: Antennas and Free-Space Propagation EL-GY 6023. Wireless Communications

Prof. Sundeep Rangan

In all the problems below, unless specified otherwise, ϕ is the azimuth angle and θ is elevation angle.

1. EM wave: Suppose an EM plane wave has an E-field

$$\mathbf{E}(x, y, z, t) = E_0 \mathbf{e}_y \cos(2\pi f t - kx).$$

- (a) What is direction of motion?
- (b) If the average power flux density is 10^{-8} mW/m², what is E_0 ? Assume the characteristic impedance is $\eta_0 = 377 \Omega$.
- (c) If the frequency is $f = 1.5 \,\text{GHz}$, what is k? What are the units of k?
- 2. dBm to linear conversions:
 - (a) Convert the following to mW: 17 dBm, -73 dBm, -97 dBW.
 - (b) Convert the following to dBm: 250 mW, $8(10)^{-8}$ W, $5(10)^{-6}$ mW
- 3. Spherical-cartesian conversions: When a transmitter is at the origin, its E-field in the far field can often be represented as,

$$\mathbf{E} = E_{\theta} \mathbf{e}_{\theta} + E_{\phi} \mathbf{e}_{\phi}$$

where \mathbf{e}_{θ} and \mathbf{e}_{ϕ} are the basis vectors in elevation and azimuth direction. Complete the following MATLAB function that takes a 1×3 position vector pos and $n \times 1$ values of E_{θ} and E_{ϕ} and returns the an $n \times 3$ matrix E representing the E-field values in cartesian coordinates. You may use any built in MATLAB functions. Be careful whether the methods use degrees or radians.

4. Rotation matrices: In wireless systems, we often need to consider antennas that can be in arbitrary rotations. One way of specifying the orientation of an object is through its so-called Euler angles (α, β, γ) or yaw, pitch and roll. Let $R(\alpha, \beta, \gamma)$ be the rotation matrix for a given set of Euler angles. You can find the formulae for $R(\alpha, \beta, \gamma)$ in any reference such as wikipedia.

- (a) Given elevation and azimuth angles (θ, ϕ) find (α, β, γ) with $\gamma = 0$ that rotates the x-axis to point in (θ, ϕ) .
- (b) Is $R(\alpha, 0, 0)^{-1} = R(-\alpha, 0, 0)$? Explain.
- (c) Is $R(\alpha, \beta, 0)^{-1} = R(-\alpha, -\beta, 0)$? Explain.
- 5. Angular areas: Find the angular area in steradians of following sets of angles where ϕ is the azimuth angle and θ is the elevation angles in degrees:
 - (a) $A_1 = \{ (\phi, \theta) \mid \phi \in [-30^{\circ}, 30^{\circ}], \ \theta \in [-90^{\circ}, 90^{\circ}] \}$
 - (b) $A_2 = \{(\phi, \theta) \mid \phi \in [-30^\circ, 30^\circ], \ \theta \in [-45^\circ, 45^\circ]\}$
- 6. Directivity: Suppose an antenna radiates power uniformly in the angular beam $\phi \in [-30^{\circ}, 30^{\circ}]$, and $\theta \in [-45^{\circ}, 45^{\circ}]$, and radiates no power at other angles. What is the maximum directivity of the antenna in dBi? You can use the results from the previous problem.
- 7. Radiation intensity: A $170 \,\mathrm{cm} \times 40 \,\mathrm{cm}$ object (roughly the size of a human) is $800 \,\mathrm{m}$ from a base station. If the base station antenna transmits $250 \,\mathrm{mW}$ isotropically, how much power reaches the human? Use reasonable approximations that the human is far from the transmitter.
- 8. Radiation integration: Suppose the radiation intensity is

$$U(\phi, \theta) = A\cos^2(\theta), \quad A = 10 \,\text{mW/sr},$$

where (ϕ, θ) are the azimuth and elevation angles. find the total radiated power in dBm and maximum directivity in dBi. You can look up any integrals you need.

- 9. Numerically integrating patterns: Suppose we are given the radiation intensity $U(\theta, \phi)$ at discrete points, (θ_i, ϕ_j) where θ_i , i = 1, ..., M is uniformly spaced on $[-\pi/2, \pi/2]$ and ϕ_j , j = 1, ..., N is uniformly spaced on $[-\pi, \pi]$. Assume (θ, ϕ) are elevation and azimuth angles. Write a short MATLAB function to compute the radiated power P_{rad} and directivity $D(\theta_i, \phi_j)$ from a matrix of values $U(\theta_i, \phi_j)$.
- 10. Friis' Law: A transmitter radiates 15 dBm at a carrier $f_c = 2.1$ GHz with a directional gain of $G_t = 9$ dBi. Suppose the receiver is d = 200 m from the transmitter and the path is free space. What is the received power in dBm if:
 - (a) The effective received aperture is $1 \, \text{cm}^2$.
 - (b) The receiver gain is $G_r = 5 \,\mathrm{dBi}$.