ANÁLISIS Y DISEÑO DE ALGORITMOS

Grados II - I2ADE

COMPLEJIDAD TEMPORAL: ANÁLISIS ANALÍTICO.

Propuesta de ejercicios

Los siguientes fragmentos de código son bucles típicos que suelen presentarse. Calcula la complejidad temporal asintótica de cada uno de ellos en función del parámetro n.

- 2. **for** (**int** i = 0; i < n; i+=2) $\{\Theta(1)\}$
- 3. **for** (**int** i = 0; i < n; i+=2) { $\Theta(i)$ }
- 4. **for** (**int** i = 1; i < n; i++) **for** (**int** j = 0; j < n; j++) { $\Theta(1)$ }
- 5. for (int i = 1; i < n; i++) for (int j = 0; j < i; j++) $\{\Theta(1)\}$
- 6. for (int i = 1; i < n; i+=2) for (int j = 0; j < i; j++) $\{\Theta(1)\}$
- 7. **for** (**int** i = 1; i < n; i*=2) $\{\Theta(1)\}$
- 8. **for** (**int** i = n; i > 0; i/=2) $\{\Theta(1)\}$
- 9. for (int i = 0; i < n; i++) for (int j = 1; j < n; j*=2) $\{\Theta(1)\}$
- 11. **for** (**int** i = 1; i < n; i*=2) **for** (**int** j = 1; j < n; j*=2) $\{\Theta(1)\}$
- 12. **for** (**int** i = 1; i < n; i++++) **for** (**int** j = 1; j < i; j*=2) $\{\Theta(1)\}$
- 14. **for** (**int** i = 1; i < n; i*=2) **for** (**int** j = 1; j < i; j*=2) $\{\Theta(1)\}$