Metody Probabilistyczne i Statystyka

 Z_3

- 1. Zmienna losowa X ma rozkład dyskretny o dystrybuancie $F(x) = \begin{cases} 0 & , & x < 1 \\ 1/8 & , & 1 \leqslant x < 2 \\ 1/2 & , & 2 \leqslant x < 3 \end{cases}$. Wyznaczyć funkcję $3/4 & , & 3 \leqslant x < 4 \\ 1 & , & x \geqslant 4 \end{cases}$ prawdopodobieństwa zmiennej losowej X oraz obliczyć $P(X^2 X = 0)$.
- 2. Mamy 9 monet: 6 dwustronnych $\left(P(O)=\frac{2}{5}\right)$ oraz 3 z podwójnym orłem. Wybieramy losowo jedną monetę i zaczynamy nią rzucać. Znaleźć rozkład liczby wykonanych rzutów, gdy:
 - (a) rzucamy tak długo, dopóki nie wypadnie orzeł;
 - (b) rzucamy tak długo, dopóki po raz trzeci nie wypadnie orzeł;
 - (c) rzucamy tak długo, dopóki nie wypadnie orzeł, ale nie więcej niż 4 razy.
- 3. Na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) , gdzie $\Omega = \{0, 1, 2, 3\}$ oraz $P(\{\omega\}) = \frac{1}{4}$ dla każdej $\omega \in \Omega$, określone są zmienne losowe $X(\omega) = \sin\frac{\pi\omega}{2}$ i $Y(\omega) = \cos\frac{\pi\omega}{2}$. Wyznaczyć ich dystrybuanty oraz obliczyć $P(\{\omega \in \Omega : X(\omega) = Y(\omega)\})$.
- 4. Na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) , gdzie $\Omega = [-2; 2]$, a P jest prawdopodobieństwem geometrycznym, określone są zmienne losowe

$$X(\omega) = \left\{ \begin{array}{lll} 2 & , & -2 \leqslant \omega < 0 \\ 1 & , & \omega = 0 \\ \omega & , & 0 < \omega \leqslant 2 \end{array} \right. , \quad Y(\omega) = \left\{ \begin{array}{lll} \omega + 2 & , & -2 \leqslant \omega < 0 \\ 0 & , & \omega = 0 \\ 2 & , & 0 < \omega \leqslant 2 \end{array} \right. .$$

Wykazać, że X i Y mają ten sam rozkład. Wskazać punkt skokowy tego rozkładu.

- 5. Na przestrzeni probabilistycznej (Ω, \mathcal{F}, P) , gdzie $\Omega = \{(x,y): -1 \leqslant x \leqslant 1, 0 \leqslant y \leqslant 1 |x|\}$, a P jest prawdopodobieństwem geometrycznym, określona jest zmienna losowa $T(x,y) = \operatorname{sgn}(x+y)$. Wyznaczyć dystrybuantę zmiennej losowej T. Czy każda wartość zmiennej losowej T jest punktem skokowym jej rozkładu?
- 6. Sprawdzić, które z następujących funkcji $F:\mathbb{R}\to\mathbb{R}$ mogą być dystrybuantami jednowymiarowej zmiennej losowej:
 - (a) $F(x) = \operatorname{arctg} x$ dla każdego $x \in \mathbb{R}$
 - (b) $F(x) = 1 + \operatorname{sgn}(x)$ dla każdego $x \in \mathbb{R}$

(c)
$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-2x}, & x \ge 0 \end{cases}$$

(d)
$$F(x) = \begin{cases} 0 & , & x \leq 1 \\ 1 & , & x > 1 \end{cases}$$

(e)
$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}(x + \frac{1}{4}), & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

7. Sprawdzić, czy istnieje $a \in \mathbb{R}$ przy którym funkcja

$$f(x) = \left\{ \begin{array}{ll} ax-1 &, & x \in (0;1) \\ 0 &, & \text{w p.p.} \end{array} \right. ,$$

jest gęstością rozkładu jednowymiarowej zmiennej losowej

8. Funkcja gęstości pewnej jednowymiarowej zmiennej losowej X ma postać

$$f_X(x) = \begin{cases} b & , & x \in [0; 1] \\ b^2 & , & x \in (1; 3] \\ 0 & , & \text{w p.p.} \end{cases},$$

gdzie $b\in\mathbb{R}$ jest pewną stąłą. Wyznaczyć b oraz dystrybuantę zmiennej losowej X. Obliczyć $P(X^2-3X+2>0)$.