2. COMPACT AND QUASI-COMPACT SEMIGROUPS

by Günther Greiner

Using the Riesz-Schauder Theory for compact operators (see e.g. Chapter VII.4 of Dunford-Schwartz (1958) or Section 26 of Pietsch (1978)) and the results of Chapter A-III, one can easily describe the asymptotic behavior of eventually compact semigroups. Since no positivity is involved we state the fundamental result for arbitrary Banach spaces.

Theorem 2.1. Let $(T(t))_{t \geq 0}$ be a strongly continuous semigroup on a Banach space G which is eventually compact (i.e., there is $t_0 > 0$ such that $T(t_0)$ is a compact operator). Then the spectrum of the generator A is a countable set (possibly finite or empty) and contains only poles of finite algebraic multiplicity. Furthermore, the set $\{\mu \in \sigma(A) : \text{Re } \mu \geq r\}$ is finite for every $r \in \mathbb{R}$. Thus $\sigma(A) = \{\lambda_1, \lambda_2, \lambda_3, \dots\}$ with $\text{Re } \lambda_{n+1} \leq \text{Re } \lambda_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} \text{Re } \lambda_n = -\infty$ if $\sigma(A)$ is infinite.

Denoting the pole order at $\ \lambda_n$ by k(n) and the corresponding residue by P $_n$, we have for every m \in N

$$T(t) = T_1(t) + T_2(t) + \dots + T_m(t) + R_m(t) , \text{ where}$$

$$(2.1) \quad T_n(t) = \exp(\lambda_n t) \cdot \sum_{j=0}^k \sum_{j=0}^{(n)-1} \frac{1}{j!} \cdot t^j (A - \lambda_n)^j \circ P_n \quad (t \ge 0) ,$$

$$\|R_m(t)\| \le C \cdot \exp((\varepsilon + Re \lambda_m) t) \quad \text{for } t \ge 0 , \varepsilon > 0 \text{ and a suitable constant } C = C(\varepsilon, m) .$$

<u>Proof.</u> Fix $r \in \mathbb{R}$. By the Riesz-Schauder Theory we know that $\{z \in \sigma(T(t_0)) : |z| \ge \exp(rt_0)\}$ is a finite set and contains only poles of finite algebraic multiplicity. Thus the first assertion follows from A-III,Cor.6.5.

To prove the remaining assertion we fix $m\in\mathbb{N}$ and apply the spectral decomposition as described in Section 3 of Chapter A-III. For simplicity we assume $\text{Re }\lambda_{m+1}<\text{Re }\lambda_m$. Let P be the spectral projection of $T(t_0)$ corresponding to the spectral set $\{z\in\sigma(T(t_0)):|z|\geq \exp(\text{Re}\lambda_m\cdot t_0)\}$. Then P reduces the semigroup and we have $\sigma(T(t_0)|\ker P)\subseteq \{z\in\mathbb{C}:|z|<\exp(\text{Re }\lambda_m\cdot t_0)\}$. Hence the type of $(T(t_0)|\ker P)$ is less than $\text{Re }\lambda_m$. Then there exists a constant C_0 such that