Math 151A: Problem Set 1

Owen Jones

4/14/2023

Problem 1: (T) Taylor's Theorem

Let $f(x) = e^{2x}$ for $x \in [0, 2]$.

- a) Find Taylor's polynomial of degree-2, i.e. $P_2(x)$, around the point $x_0 = 0$ and use it to approximate the value of f(1.5), i.e. $f(1.5) \approx P_2(1.5)$.
- b) What is the error as a function of $\xi(x)$ when x = 1.5 (specify the domain for $\xi(1.5)$)?
- c) What is the actual error (in magnitude)?

Solution:

a)
$$P_2(x) = 1 + 2x + 2x^2 \Rightarrow f(1.5) \approx P_2(1.5) = 8.5$$

b)
$$R_2(x) = \frac{f'''(\xi(x))x^3}{6} = \frac{4e^{2\xi(x)}x^3}{3} \Rightarrow R_2(1.5) = \frac{4e^{2\xi(1.5)}1.5^3}{3} \xi(1.5) \in (0, 1.5)$$

c)
$$R_2(1.5) = e^3 - 8.5 \approx 11.5855$$

Problem 2: (T) Bisection Method

Let $f(x) = \sqrt{\pi x} - \cos(\pi x)$ over the interval [0, 1]. We would like to find p such that f(p) = 0.

- a) Show that the bisection method applied to this problem converges (apply the theorem from class).
- b) How many iterations are needed to have a 10^{-q} -accurate approximation to the true root where q > 1? Write your answer in the form $n \ge Cq$ where C is an explicit constant that you need to provide.

Solution:

- a) Applying the theorem from class, f is continuous over [0,1] and $f(0) \cdot f(1) < 0$. Thus, $\exists p \in (0,1)$ s.t f(p) = 0. f(x) over the interval [0.1] is strictly monotonically increasing, so p is unique.
- b) $|p_n p| \le 2^{-n} \le 10^{-q} \Rightarrow n \ge \log_2(10)q$

Problem 3: (C) Bisection Method

Find a 10^{-5} -accurate approximation to $\sqrt[4]{25}$ using the Bisection Algorithm. To do so, you will need to define a function f(x) whose root is $\sqrt[4]{25}$. The function f(x) must only use simple operations: multiplication and addition/subtraction. Use the corollary from class to determine the number of steps required to achieve the given accuracy.

Solution:

Applying the theorem from class, $f(x) = x^4 - 25$ which is continuous over [2, 3] and $f(2) \cdot f(3) < 0 \Rightarrow \exists p \in (2,3) \text{ s.t } f(p) = 0$

f'(x) > 0 over the interval [2, 3], so f will only intersect with the x - axis at 1 point. Thus, p is unique.

$$a_0 = 2 \ b_0 = 3 \ p = \sqrt[4]{25}$$

 $|p_n - p| \le \frac{3-2}{2^n}$

By the corollary from class, $\frac{1}{2^n} < 10^{-5} \Rightarrow n = 17 > log_2(\frac{1}{10^{-5}})$ $p_{17} = 2.236061096191406$ which is within 10^{-5} of $\sqrt[4]{25}$ ($|p_{17} - p| \approx 6.88 \cdot 10^{-6}$)

4/11/23 3:45 PM /Users/theelusivegerbi.../hw_1_problem_3.m 1 of 1 % Bisection Method on function F(x)=x^4-25 clc; clear alt; % Inputs: a, b, tol, N0 tol = 1e-5; % error tolerance N0 = 20; % maximum number of iterations a=2; % starting left point b=3; % starting right point % Start Iterating n = 1; Fa = a^4-25; Fb = b^4-25; Fb = b^4-25; Fb = b^4-25; % evaluate the function at p if Fp==0 || (b-a)/2; % better way for writing p = (a+b)/2 Fp = p^4-25; % evaluate the function at p if Fp==0 || (b-a)/2 < tol % close enough to actual root, stop iteration break; elself signif(Pa) signif(Fp) > 0 % continue search in right half interval a = p; Fa = Fp; else v continue search in left half interval b = p; Fb = fp; end n = n + 1; end fprintf('Iteration number = %d \n', n); fprintf('Pp) = %.6f \n',p); fprintf('Pp) = %.6f \n',p); fprintf('Pp) = %.6f \n',p); fprintf('Pp) = %.6f \n',p); fprintf('Pp) = %.4f \n',p^2-25); fprintf

MATLAB Workspa Apr 11, 2023	ce		Page 1 3:52:25 PM
Name A a b Fa Fb	Value 2.2361 2.2361 -6.4893e-04 3.3455e-05	I	
Fp n N0 p tol	-3.0774e-04 17 20 2.2361 1.0000e-05		

Problem 4: (T) Bisection Method

You will show that the bisection method may not converge monotonically. Provide a continuous function f(x) and an interval [a, b] so that the error at the k-th step, denoted $E_k = |p_k - p|$, increases between some iterations although the sequence p_k converges to the unique root. To receive credit for this problem, you must justify your answer and prove that your example is convergent.

Solution:

f(x) = x - 0.124 on the interval [-1, 1]. Let $p_k = \frac{1}{2}(a_{k-1} + b_{k-1})$ and $a_0 = -1, b_0 = 1$. We define $E_k = |f(p_k)| = |p_k - 0.124|$.

Given f is continuous over [-1,1] and $f(-1) \cdot f(1) < 0 \exists p \in (-1,1)$ s.t f(p) = 0 f'(x) > 0 over the interval [-1,1], so f will only intersect with the x-axis at 1 point. Thus, p is unique.

 $E_1 = 0.124, E_2 = 0.376, E_3 = 0.126, E_4 = 0.001...$

Since $E_2 > E_3 > E_1$ the sequence does not converge monotonically.

Problem 5: (T) Stopping Criteria for General Root-Finding Algorithms

Assume that we have a sequence p_n for n = 1, 2, ... that is generated by an algorithm in order to find the root of a function f(x). Let ϵ be the prescribed tolerance used to stop the iterative process.

You may use, without proof, that $\sum_{k=1}^{n} \frac{1}{k}$ diverges as $n \to \infty$.

- a) Consider the stopping criterium $|p_n p_{n-1}| < \epsilon$ for n > 2. Show that $p_n = \sum_{k=1}^n \frac{1}{k}$ satisfies the criterium when $n \ge \frac{1}{\epsilon}$; however, $p_n \to \infty$ (thus the sequence does not converge to a finite value).
- b) Consider the stopping criterium $\frac{|p_n-p_{n-1}|}{|p_n|} < \epsilon$ for n > 2 and $p_n \neq 0$. Show that $p_n = \sum_{k=1}^n \frac{1}{k}$ satisfies the criterium; however, $p_n \to \infty$ (thus the sequence does not converge to a finite root).
- c) Let $f(x) := (x-1)^{10}$, whose root is p = 1, and define the sequence $p_n = 1 + \frac{1}{n}$. Note that p_n goes to the root in the limit. Show that the stopping criterium $|f(p_n)| < 10^{-3}$ is achieved for all n > 1 but $|p - p_n| \le 10^{-3}$ requires n > 1000.

Solution:

- a) If $n > \frac{1}{\epsilon}$ $\Rightarrow \epsilon > \frac{1}{n} = |\frac{1}{n} + \sum_{k=1}^{n-1} \frac{1}{k} \sum_{k=1}^{n-1} \frac{1}{k}| = |\sum_{k=1}^{n} \frac{1}{k} \sum_{k=1}^{n-1} \frac{1}{k}|$ Hence, the stopping criteria is met for $n > \frac{1}{\epsilon}$. However, since $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges, $\lim_{k \to \infty} p_k = \infty$.
- b) $|p_n| = |\sum_{k=1}^n \frac{1}{k}| \ge |\sum_{k=1}^n \frac{1}{n}| = 1 \Rightarrow \frac{1}{|p_n|} \le 1$ It follows $\frac{|p_n - p_{n-1}|}{|p_n|} \le \frac{|p_n - p_{n-1}|}{\sum_{k=1}^n \frac{1}{n}} = \frac{|p_n - p_{n-1}|}{\frac{n}{n}} = |p_n - p_{n-1}|$ By part a, $n > \frac{1}{\epsilon} \Rightarrow |p_n - p_{n-1}| < \epsilon$ Because $\frac{|p_n - p_{n-1}|}{|p_n|} \le |p_n - p_{n-1}| \Rightarrow \frac{|p_n - p_{n-1}|}{|p_n|} < \epsilon$ Hence, the stopping criteria is met for $n > \frac{1}{\epsilon}$. However, since $\sum_{k=1}^{\infty} \frac{1}{k}$ diverges, $\lim_{k \to \infty} p_k = \infty$.
- c) $|p_n p| = |1 + \frac{1}{n} 1| = \frac{1}{n} < 10^{-3} \Rightarrow n > 1000$ If $10^{\frac{3}{10}} < n \Rightarrow |f(p_n) - f(p)| = \frac{1}{n^{10}} < 10^{-3}$