

Choose a point p in \mathbb{R}^2 , and consider all balls $\mathcal{B}_p(r)$ of radius r centered at p. Let $f(\mathcal{B}_p(r))$ be the number of "boxes" of \mathbb{Z}^2 that are partly contained in the interior of a ball.

Figure 1: When $p \in \mathbb{Z}^2$, the range of f is $\{0,4,12,16,24,32,36,\dots\}$; when p is in the middle of an edge, the range of f is $\{0,2,6,8,12,16,20,22,26,34,38,\dots\}$; when p has irrational coordinates, the range of f is \mathbb{N} .

Question. What are all possible sequences for varying p?

Related.

- 1. What if f' counts the number of vertices in a circle? Or if f'' counts the number of boxes that are entirely inside of a circle?
- 2. What happens on other lattices, tilings, or higher dimensional analogs?
- 3. How does this vary when the "circles" are generated by other metrics?

References.

Problem 30.