CURS	O DE CIÊNCIA DA	COMPUTAÇÃO		
Disciplina: CÁLCULO I	Turma: CC2M	Data: 19/05/2023	Semestre: 2023/1	Nota:
Avaliação: 2º BIMESTRE – TESTE	Professor(a): LUCIANA B. FIOROTTI		Valor: 4,0 (quatro)	3,4
Aluno(a): Lucas Carrigo Ferrarionales Aluno(a): Brathelis Dances Fernandes			Assuntos: Derivada de uma função e regras de derivação	

JUSTIFIQUE TODAS AS SUAS RESPOSTAS.

1ª Questão (1,0 ponto):

Obtenha a primeira derivada da função $f(x) = \frac{x+3}{x^2-4}$.

$$\int_{0}^{1} (x) = -x^{2} - 6x - 4$$

$$(x^{2} + 4)^{2}$$

2ª Questão (1,0 ponto):

Dada a função $f(x) = e^x(x^2 - 3)$, calcule f'(0) e, se existir, o valor de x tal que f'(x) = 0.

$$f'(0) = -3$$

$$\begin{cases} parq & f'(x) = 0 \\ x_1 = -3 \\ x_2 = 1 \end{cases}$$

3ª Questão (1,0 ponto):

Seja a função $f(x) = 2\sqrt{x+5}$.

a) Obtenha f'(x).

b) Calcule f'(11).

4º Questão (1,0 ponto):

A função $f(x) = x^4 - 6x^3 + 10x^2$ tem ponto de máximo local em x = 2? Em caso positivo, determine-o.

Sim, ela tem máximo em 2 e

$$\chi = 2$$

$$y = 8$$

$$(2.8)$$

Nomes: Lucas Cavijo Levrari / Matheur Soaren Evenandes Turma: CC2M h(x)= 22-4 1 f(x): g(x) g(x)= x+3 g'(x) = 1h'(z)= 2x h(x) 5'(x)= g(x).h(x) - g(x).h'(x) (h(x1) $5'(x) = 1 \cdot x^{2} \cdot 4 - [(x+3) \cdot 2x]$ $(x^{2} \cdot 4)^{2}$ $f'(x) = \chi^2 4 - 2\chi^2 6x \longrightarrow f'(x) = -\chi^2 - 6\chi - 4$ $(\chi^2 4)^2 \qquad (\chi^2 4)^2$ $f(x) = e^{x} \cdot (x^{2} - 3)^{\int_{-\infty}^{\infty}}$ 5'(0)= e0.(02+2.0-3) f'(0) = 1. (-3) 5'(0) = -3 $f(x) = e^{x} \cdot (x^{2} - 3) + e^{x} \cdot 2x$ $0 = e^{x} \cdot (x^{2} + 2x - 3)$ $\begin{array}{c|c}
2x-3 & -3 \\
-3 & x=1 \\
\hline
\rho=-3 & -3 & x=1 \\
\end{array}$ $f(x) = e^{\chi}((x^2-3)+2\chi)$ $S'(x) = e^{x} (x^{2} + 2x - 3)$ b) $y'(11) = \frac{1}{\sqrt{11+5}}$ a) f(x) = 2 1x+5 u=x+5 u'= 1 5(x)=21u f'(x) = & · 1 y'(11) = 1 f'(z)= 1

(4) $f(x) = \chi^{4} - 6x^{3} \cdot 10x^{2}$
5'(x)= 4x3-18x2+20x
3 1 1/2
$0 = 4x^3 - 18x^2 + 20x$ (÷2)
$0 = 2x^3 - 9x^2 + 10x$
$0=x(2x^2-9x+0)$ 2.5
L 5= 9 = 4,5 { 2
2.
$P = \frac{10}{2} = 5 < 2$
2
2 ₁ = 2.5
2 ₂ = 2
$x_{3=0}$

$$5''(x) = 12x^{2} - 36x + 20$$

$$5''(2) = -4$$

$$5(2) = 6 - 4$$

$$5(2) = 16 - 6 \cdot 8 + 10 \cdot 4$$

$$5(2) = 16 - 48 + 40$$

$$5(2) = 16 - 8$$

$$5(2) = 8$$