CDMAF-CEST: Conditional Diffusion model for multi-acceleration-factor CEST-MRI Reconstruction

Pei Cai¹, Lequan Yu², Ziyan Wang¹, Jiawen Wang¹, Kyongtae Ty Bae¹, Henry KF Mak¹, Jianpan Huang^{1*}

¹ Department of Diagnostic Radiology, The University of Hong Kong, Hong Kong, China; ² Department of Statistics and Actuarial Science, The University of Hong Kong, Hong Kong, China; * Corresponding Author (jphuang @hku.hk).

INTRODUCTION: CEST MRI is a promising molecular imaging technique that provides molecular-level information within the body¹. However, the prolonged scan time required for acquiring images at multiple saturation frequency offsets hinders its application in clinical settings². To accelerate CEST-MRI acquisition, advanced deep learning techniques have been explored for CEST MRI reconstruction²⁻⁴. Currently, diffusion-based generative models have demonstrated competitive ability in image reconstruction tasks⁵⁻⁸. In this study, we leverage a conditional diffusion model to reconstruct the high-resolution (HR) CEST image conditioned on its low-resolution (LR) counterpart that is undersampled in k-space along with

the M0 image at multiple acceleration factors (CDMAF-CEST). To the best of our knowledge, this is the first diffusion-based CEST-MRI reconstruction work. METHODS: (1) CDMAF-CEST: As illustrated in Fig. 1a, the approach achieves multi-acceleration-factor CEST-MRI SR through forward and reverse diffusion processes. Given the HR image $x_0 \sim q(x_0)$, the forward diffusion process gradually adds Gaussian noise to x_0 over T diffusion steps. On the other hand, the reverse diffusion process p aims to denoise the image from x_T step by step, with the conditioning part of its associated LR image y and M0 image. This process can be expressed as: $p_{\theta}(x_{0:T}) = \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)$, $p_{\theta}(x_{t-1}|x_t, y, z) = N(x_{t-1}; \mu_{\theta}(x_t, y, z, t), \sigma^2 I)$, where p_{θ} parameterized model with trainable parameters θ. To estimate the reverse distribution by learning latent representations from various input, we adopt a multi-stream U-Net model with disentanglement loss and charbonnier loss8, as shown in Fig. 1b. (2) Dataset: The human CEST dataset was acquired using a GE Signa 3T MRI scanner on 24 healthy volunteers. For each subject, CEST images from 12 slices and 40 frequency offsets (one M0 image at -300 ppm and 39 CEST images ranging from -20 ppm to 20 ppm) were acquired. Each image was normalized and center cropped to a size of 224×224. We split 24 healthy brain CEST-MRIs into 19 for training (9120 images), 2 for validation (960 images), and 3 for testing (1440 images). The LR images were

Fig. 1. Illustration of CDMAF model. (a) The forward and inverse diffusion process of the proposed conditional diffusion model. (b) The network architecture.

Fig. 2. The reconstruction results of the CDMAF-CEST at various AFs. The red and yellow numbers are the PSNR and SSIM, respectively.

obtained by undersampling varied numbers of central k-space lines. (3) Implementation details: CDMAF-CEST was implemented using PyTorch with the following settings: diffusion steps T = 1000, batch size = 4. The model was trained for 100,000 iterations on four NVIDIA-SMI Tesla V100 16GB GPUs using the AdamW optimizer with a learning rate of 10 $^{-4}$.

RESULTS & DISCUSSION: Fig. 2 shows examplary reconstruction results of CDMAF-CEST with acceleration factors (AFs) of $\times 4$, $\times 8$, $\times 12$, $\times 14$, $\times 16$, $\times 20$. Compared with the LR images, the proposed method can generate HR images comparable to the original images with a high PSNR and SSIM, and a low difference at all AFs. Notably, our method can reconstruct spatial details even at a large AF of $\times 20$. This could be owing to diffusion models' ability to improve image resolution by sharpening and recover image details through learning distributions. Despite of its promise, the inference of the CDMAF-CEST is time-consuming, which can be addressed by accelerating the diffusion sampling process. Ongoing work is being made to address this problem and further improve the network performance by leveraging attention mechanisms.

CONCLUSION: This study demonstrates the feasibility of using diffusion models for CEST-MRI reconstruction. The results revealed great adaptability of CDMAF-CEST to a wide range of AFs, effectively restoring image details with high SSIM and PSNR values. CDMAF-CEST has potential to promote the clinical application of CEST MRI by enhancing the image quality within the limited acquisition time.

ACKNOWLEDGMENTS: The University of Hong Kong: 109000487, 204610401 and 204610519.

REFERENCES: 1. P. C. van Zijl, *et al.* Magn Reson Med 2011;65:927. **2.** Xu J, *et al.* Magn Reson Med. 2023;91:583. **3.** Yang Z, *et al.* IEEE J Biomed Health Inform 2024. **4.** Pemmasani Prabakaran RS, *et al.* NMR Biomed. 2024;e5130. **5.** Korkmaz Y, *et al.* MICCAI. 2023;491-501. **6.** Xie Y, *et al.* MICCAI. 2022; 655-664. 2019;32:e4139. **7.** Peng C, *et al.* MICCAI. 2022;623-633. **8.** Mao Y, *et al.* LNCS, vol 14229.2023.