Big Data Technology and its Applications

Mathematics foundation

张宁 ningzhang@tsinghua.edu.cn

Outline

Linear programming

Non-linear programming

Karush–Kuhn–Tucker (KKT) conditions

Introduction to Linear programming

Example: Transportation problem

- The objective consists in minimizing transportation cost of a given commodity from a number of sources or origins (e.g. factory, manufacturing facility) to a number of destinations (e.g. warehouse, store).
- Each source has a limited supply (i.e. maximum number of products that can be sent from it)
- Each destination has a demand to be satisfied (i.e. minimum number of products that need to be shipped to it).
- The cost of shipping from a source to a destination is directly proportional to the number of units shipped.

Example: Transportation problem

Formulation

$$\min s = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

subject to the constraints:

$$\sum_{i=1}^{m} x_{ij} \ge b_j, \quad j = 1, ..., n$$

$$\sum_{j=1}^{n} x_{ij} \le a_i, \quad i = 1, ..., m$$

$$x_{ij} \geq 0, \quad \forall i, j$$

where a_i is the supply of i-th origin, b_j is the demand of the j-th destination, x_{ij} is the amount of shipment from source i to destination j and c_{ij} is the corresponding unit transportation cost from i to j.

Linear programming definition

If the minimized (or maximized) function and the constraints are all in linear form, this type
of optimization is called linear programming (LP).

linear form:
$$a_1x_1 + a_2x_2 + ... + a_nx_n + b$$

Transportation problem is a typical linear programming problem.

linear objective:
$$\min s = \sum_{i=1}^m \sum_{j=1}^n c_{ij} x_{ij}$$

$$\sum_{i=1}^m x_{ij} \ge b_j, \qquad j = 1, ..., n$$

$$\sum_{j=1}^n x_{ij} \le a_i, \qquad i = 1, ..., m$$

$$x_{ij} \ge 0, \ \forall i, j$$

Does optimal solution of Linear programming has a closed form?

- A Yes
- B No

Standard form of LP

• The minimized function will always be

$$\min c^T x$$
 (or max)

• The constraints are equality constraints and variables are positive.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\ x_i \ge 0 \end{cases}$$

where $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, $\mathrm{rank}(A) = m \le n$, $\mathbf{b} \ge 0$

Standard form of LP

For general form of constraints, how to transform to standard form?

Introduce slack variable x_{n+1}

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \le b_1$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + x_{n+1} = b_1$$

 $x_{n+1} \ge 0$

Introduce surplus variable x_{n+1}

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \ge b_1$$

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n - x_{n+1} = b_1$$

 $x_{n+1} \ge 0$

• If some of $b_i < 0$ in the primitive form, we can time -1 to both sides at first and introduce the slack and surplus variables again.

Fundamental theorem for LP

- For the standard form $A \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, n is called dimension, m is called order, variables \mathbf{x} satisfying constraints are called feasible solution.
- Suppose rank(A) = m, and the first m columns of A are linearly independent, i.e.

$$\boldsymbol{B} = (\boldsymbol{a}_1, \boldsymbol{a}_2, ..., \boldsymbol{a}_m)$$

is nonsingular, where $a_i = (a_{1i}, a_{2i}, ..., a_{mi})$ T . Then call **B** a basis.

• Then the original constraints can be rewritten as:

$$\mathbf{A}\mathbf{x} = \mathbf{b} \qquad \mathbf{b} \qquad \mathbf{B}^{-1}\mathbf{b} - \mathbf{B}^{-1}\mathbf{N}\mathbf{x}_{N}$$

Fundamental theorem for LP

- As $\mathbf{rank}(A) = m$, we could simply let $x_N = 0$ and get $x = \begin{vmatrix} B^{-1}b \\ 0 \end{vmatrix}$
- We call $x = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix}$ a basic solution with respect to basis **B**
- If a basic solution is also a feasible solution $x = \begin{bmatrix} B^{-1}b \\ 0 \end{bmatrix} \ge 0$, it is called a basic feasible solution.
- x_i corresponding to column indices in **B** are called basic variable. The others are called non-basic variables.

Fundamental theorem for LP: Example

Linear programming example:

- Choose $\boldsymbol{B} = (\boldsymbol{a}_3, \boldsymbol{a}_4, \boldsymbol{a}_5) = \boldsymbol{I}_{3\times 3}$, then B is a basis.
- x = (0,0,9,8,1) is a basic solution. It satisfies the constraint $x \ge 0$, thus is a basic feasible solution. x_3, x_4, x_5 are basic variables.

Fundamental theorem for LP

The set of all the feasible solutions are called feasible region.

$$\min -10x_{1} - 11x_{2}$$

$$3x_{1} + 4x_{2} \le 9$$

$$5x_{1} + 2x_{2} \le 8$$

$$x_{1} - 2x_{2} \le 1$$

$$x_{i} \ge 0$$

• A convex set S means for any $x_1, x_2 \in S$ and $\lambda \in [0,1]$, then $x = \lambda x_1 + (1 - \lambda)x_2 \in S$. A non-convex set is shown here.

• The vertices of a convex set are called extreme points.

Fundamental theorem for LP

• **Theorem 1:** Optimizing a linear objective function $c^T x$ is achieved at the extreme points in the convex feasible region if the feasible solution set is not empty and the optimum is finite.

• **Theorem 2:** A point in the feasible solution set is a extreme point if and only if it is a basic feasible solution.

Simplex method for LP

- Simplex method is first proposed by G.B. Dantzig in 1947.
- Simply searching for all of the basic solution is not applicable because the whole number is C_n^m
- Basic idea of simplex: Give a rule to transfer from one extreme point to another such that the objective function is decreased. This rule must be easily implemented.

Simplex method for LP

First suppose the standard form is

$$Ax = b, x \ge 0$$

• One canonical form (标准型) is to transfer a coefficient submatrix into I_m with Gaussian elimination. For example

$$\mathbf{x} = (x_1, x_2, x_3, x_4, x_5)$$

$$(A/b) = \begin{pmatrix} 3 & 4 & 1 & & | 9 \\ 5 & 2 & & 1 & & | 8 \\ 1 & -2 & & & 1 & | 1 \end{pmatrix}$$

• then it is a canonical form for x_3 x_4 , x_5 . They are basic variables and the extreme point is $\mathbf{x} = (0,0,9,8,1)$

the extreme point
$$\mathbf{x} = \begin{bmatrix} \mathbf{B}^{-1}\mathbf{b} \\ \mathbf{0} \end{bmatrix}$$
 \longrightarrow $\begin{pmatrix} x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}^{-1} \begin{pmatrix} 9 \\ 8 \\ 1 \end{pmatrix}$

Simplex method for LP

- Now suppose A is in canonical form as the last example, then we transfer from one basic solution to another.
- Choose x_2 to enter the basis and x_3 to leave the basis

$$(A/b) = \begin{pmatrix} 3 & 4 & 1 & & | & 9 \\ 5 & 2 & & 1 & & | & 8 \\ 1 & -2 & & & 1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 3/4 & 1 & 1/4 & & | & 9/4 \\ 5 & 2 & & & 1 & & | & 8 \\ 1 & -2 & & & & 1 & | & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 3/4 & 1 & 1/4 & & | & 9/4 \\ 14/4 & & & & | & -2/4 & & 1 \\ 10/4 & & & & 2/4 & & 1 \end{pmatrix} 14/4$$

- then it is a canonical form for x_2 , x_4 and x_5 . The basic solution is $x = (0, \frac{9}{4}, 0, \frac{14}{4}, \frac{11}{4})$. It is also a extreme point.
- The transferred basic solution may be not feasible in general.
 - 1. How to make the transferred basic solution feasible?
 - 2. How to make the objective function decreasing after transfer?

How to make the transferred basic solution feasible?

- Assumption: All of the basic feasible solutions are non-degenerate. i.e. if $\mathbf{x} = (x_1, x_2, ..., x_m, 0, ..., 0)$ is a basic feasible solution, then $x_i > 0$.
- Suppose the basis is $\{a_1, a_2, ..., a_m\}$ initially, and select $a_k (k > m)$ enter the basis. Suppose:

$$\boldsymbol{a}_k = \sum_{i=1}^m y_{ik} \boldsymbol{a}_i$$

• then for any $\epsilon > 0$

$$\varepsilon \boldsymbol{a}_{k} = \sum_{i=1}^{m} \varepsilon y_{ik} \boldsymbol{a}_{i}$$

• Suppose x is a basic feasible solution initially.

$$\sum_{i=1}^{m} x_i \boldsymbol{a}_i = \boldsymbol{b}$$

How to make the transferred basic solution feasible?

Then we have

$$\sum_{i=1}^{m} (x_i - \varepsilon y_{ik}) \boldsymbol{a}_i + \varepsilon \boldsymbol{a}_k = \boldsymbol{b}$$

• Because $x_i > 0$, if $\epsilon > 0$ is small enough,

$$x = (x_1 - \varepsilon y_{1k}, x_2 - \varepsilon y_{2k}, ..., x_m - \varepsilon y_{mk}, 0, ..., 0, \varepsilon, 0, ...0)$$
position k

is a feasible solution.

To make it a basic solution we choose

$$\varepsilon = \min_{1 \le i \le m} \left\{ \frac{x_i}{y_{ik}} \middle| y_{ik} > 0 \right\} = \frac{x_r}{y_{rk}}$$

then \tilde{x} is a basic feasible solution, and we can let the selected a_r leave the basis while the a_k (k > m) enter the basis.

How to make the objective function decrease after transfer?

• The aim is to choose k such that the objective function decreasing after a_k enter the basis.

Suppose the basic feasible solution is

$$\mathbf{x} = (x_{10}, x_{20}, ..., x_{m0}, 0, ..., 0)$$

The value of objective function is

$$z_0 = \boldsymbol{c}_B^T \boldsymbol{x}_B = \sum_{j=1}^m c_j x_{j0}$$

How to make the objective function decrease after transfer?

• For any feasible solution $\mathbf{x} = (x_1, x_2, ..., x_m, x_{m+1}, ..., x_n)$, we have:

• For any feasible solution
$$\mathbf{x} = (x_1, x_2, \dots, x_m, x_{m+1}, \dots, x_n)$$
, we have: Why? $\Longrightarrow \mathbf{z} = \sum_{j=1}^m c_j (x_{j0} - \sum_{k=m+1}^n y_{jk} x_k) + \sum_{k=m+1}^n c_k x_k$
$$= \sum_{j=1}^m c_j x_{j0} + \sum_{k=m+1}^n c_k x_k - \sum_{k=m+1}^n (\sum_{j=1}^m c_j y_{jk}) x_k$$

$$= \mathbf{z}_0 + \sum_{k=m+1}^n (c_k - \sum_{j=1}^m c_j y_{jk}) x_k$$

$$= \mathbf{z}_0 + \sum_{k=m+1}^n (c_k - z_k) x_k$$
 where $\mathbf{z}_k = \mathbf{c}_B^T \mathbf{y}_k = \sum_{j=1}^m c_j y_{jk}$

- if there exists k $(m+1 \le k \le n)$ such that $r_k = c_k z_k < 0$, then when x_k changes from 0 to positive, the objective function will be decreased.
- Optimality Criterion: If $\forall k \; r_k \geq 0$, then it is an optimal feasible solution

> Example

$$\min z = -(3x_1 + x_2 + 3x_3)$$

$$\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 3 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \le \begin{pmatrix} 2 \\ 5 \\ 6 \end{pmatrix}, \quad x \ge 0$$

> Step 1: change into standard form

$$\min z = -(3x_1 + x_2 + 3x_3)$$

$$\begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \\ 6 \end{pmatrix}, \ x_i \ge 0, i = 1, 2, \dots 6$$

 \triangleright Step 2: Choose x_4, x_5, x_6 as basic variables, and compute the test number

$$r_1 = c_1 - z_1 = -3$$
, $r_2 = c_2 - z_2 = -1$, $r_3 = c_3 - z_3 = -3$

set up simplex tableau

Basis	a_1	a_2	a_3	a_4	a_5	a_6	b
a_4	2	1	1	1	0	0	2
a_5	1	2	3	0	1	0	5
a_6	2	2	1	0	0	1	6
r_k	-3	-1	-3	0	0	0	$z_0 = 0$

- > Step 3: Choose vector to enter the basis. Because $r_k < 0$, k=1,2,3, any one among a_1 , a_2 , a_3 could enter the basis. We choose a_2 (in general, a_1 or a_3 will be chosen because -3 is smaller)
- > Step 4: Choose vector to leave the basis. Compute $\frac{x_{i0}}{y_{ir}}$, $y_{ir} > 0$

r=2, i=4, 5, 6, we have

$$\frac{x_{40}}{y_{42}} = 2$$
, $\frac{x_{50}}{y_{52}} = 2.5$, $\frac{x_{60}}{y_{62}} = 3$

Thus a_4 leave the basis.

> Step 5: Perform Gaussian elimination to obtain a new canonical form for basis a_2 , a_5 , a_6 and set up simplex tableau.

Basis	a_1	a_2	a_3	a_4	a_5	a_6	b
a_2	2	1	1	1	0	0	2
a_5	-3	0	1	-2	1	0	1
a_6	-2	0	-1	-2	0	1	2
r_k	-1	0	-2	1	0	0	$z_0 = -2$

- > Step 6: Choose vector to enter the basis. Because r_k < 0, k=1, 3, any one among a_1 , a_3 could enter the basis. We choose a_3 .
- > Step 7: Choose vector to leave the basis. Compute $\frac{x_{i0}}{y_{ir}}$, $y_{ir} > 0$ r=3, i=2, 5, 6, we have $(y_{i3}>0, i=2, 5)$

$$\frac{x_{20}}{y_{23}} = 2, \qquad \frac{x_{50}}{y_{53}} = 1$$

Thus a_5 leave the basis.

> Step 8: Perform Gaussian elimination to obtain a new canonical form for basis a_2 , a_3 , a_6 and set up simplex tableau.

Basis	a_1	a_2	a_3	a_4	a_5	a_6	b
a_2	5	1	0	3	-1	0	1
a_3	-3	0	1	-2	1	0	1
a_6	-5	0	0	-3	2	1	4
r_k	-7	0	0	-3	2	0	$z_0 = -4$

- > Step 9: Choose vector to enter the basis. Because r_k < 0, k=1, 4, any one among a_1 , a_4 could enter the basis. We choose a_1 .
- > Step 10: Choose vector to leave the basis. Compute $\frac{y_{i0}}{y_{ik}}$, $y_{ik} > 0$ r=1, i=2, 3, 6, we have($y_{i1} > 0$, i=2)

$$\frac{y_{20}}{y_{21}} = \frac{1}{5}$$

Thus a_2 leave the basis.

> Step 11: Perform Gaussian elimination to obtain a new canonical form for basis a_1, a_3, a_6 and set up simplex tableau.

Basis	a_1	a_2	a_3	a_4	a_5	a_6	b
$egin{array}{c} a_2 \ a_3 \ a_6 \ \end{array}$	1 0 0	1 5 3 5 1	0 1 0		$-\frac{1}{5}$ $\frac{2}{5}$ 0	0 0 1	1 5 8 5 4
r_j	0	<u>7</u> 5	0	<u>6</u> 5	$\frac{3}{5}$	0	$z_0 = -\frac{27}{5}$

> Step 12: Choose vector to enter the basis. Because $r_k > 0$, k=1, 3, 6, so we obtain the optimal solution $z^* = -\frac{27}{5}$, and the corresponding extreme point is

$$x = (\frac{1}{5}, 0, \frac{8}{5}, 0, 0, 4)$$

Minimal objective achieved!

Introduction to Non-linear programming

Example: Nonlinear least squares

• Suppose we have a series of experimental data (x_i, y_i) , i = 1, ..., m. We wish to find parameter $\theta \in \mathbb{R}^n$ such that the remainder is minimized.

$$r_i(\theta) = y_i - f_\theta(x_i)$$

• Mathematically, the objective is to find the optimal parameter θ that minimize the error function

$$\min \quad \phi(\theta) = \frac{1}{2} \mathbf{r}^{T}(\theta) \mathbf{r}(\theta)$$

- where $r(\theta) = (r_1, r_2, ..., r_m)$
- This is a nonlinear programming, as the objective contains quadratic terms.
- If the function f_{θ} is linear, it is called least square problem and is a convex problem

$$f_{\theta}(x) = \theta x$$

• If the function f_{θ} is nonlinear, it is called nonlinear least square problem and is usually a non-convex problem

$$f_{\theta}(x) = \sin(\theta x)$$

Convex and Non-convex programming

General form of nonlinear optimization

$$\min f(\boldsymbol{x})$$
 $g_i(\boldsymbol{x}) \leq 0, \quad i = 1, 2, \dots, m$
 $h_j(\boldsymbol{x}) = 0, \quad j = 1, 2, \dots, p$
 $\boldsymbol{x} \in X \subset \mathbb{R}^n, \boldsymbol{x} = (x_1, x_2, \dots, x_n)$

- If f(x), g(x) are convex function and h(x) is linear function, the problem is a convex programming. Otherwise, it is a non-convex programming.
- Convex programming has only one optimum point, which is global optimum.
- Non-convex programming usually has many local optimum points.

How to solve nonlinear programming?

- General idea 1——Iterative methods
- Object: construct sequence $\{x_k\}_{k=1\to\infty}$ such that x_k converges to a fixed vector
- Non-gradient method: Golden section method, bisection method...
- **Gradient method**: make the optimum of the optimization the root of gradient equations and constraints:

$$g(x) = 0$$

• Make another equation x = f(x) that has the same solution as it, then construct

$$x_{k+1} = f\left(x_k\right)$$

• If $x_k \to x^*$, then $x^* = f(x^*)$, thus the root of g(x) = 0 is obtained.

Golden section method

• Suppose there is a triplet (a, x_k, c) and $f(x_k) < f(a), f(x_k) < f(c)$, we want to find x_{k+1} in (a, c) to perform a section. Suppose x_{k+1} is in (a, x_k) .

- If $f(x_{k+1}) > f(x_k)$, then the new search interval is (x_{k+1}, c) ;
- If $f(x_{k+1}) < f(x_k)$, then the new search interval is (a, x_k) .

Golden section method

Define

$$w = \frac{x_k - a}{c - a}$$
 $1 - w = \frac{c - x_k}{c - a}$ $z = \frac{x_k - x_{k+1}}{c - a}$

• If we want to minimize the worst case possibility (for two cases), we must make

$$w = z + (1 - w)$$
. $(w > 1/2)$

• Pay attention that w is also obtained from the previous stage of applying same strategy. This scale similarity implies

$$\frac{z}{w} = 1 - w$$

We have

$$w = \frac{\sqrt{5} - 1}{2} \approx 0.618$$

This is called Golden section method.

Golden section method

- Golden section method is a method to find the local minimum of a function f.
 (Global minimum for convex function)
- Golden section method is a linear (first-order) convergence method. The contraction coefficient is C = 0.618.

Steepest decent method (最速下降法) Gradient Descent method (梯度下降法)

• Basic idea: Find a series of decent directions p_k and corresponding stepsize α_k such that the iterations

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{p}_k$$
$$f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k).$$

• The negative gradient direction $-\nabla f$ is the "steepest" decent direction, so choose

$$\boldsymbol{p}_{k} = -\nabla f(\boldsymbol{x}_{k})$$

and choose α_k such that

$$\min_{\alpha} f\left(\boldsymbol{x}_{k} + \alpha_{k} \boldsymbol{p}_{k}\right)$$

Steepest decent method (最速下降法) Gradient Descent method (梯度下降法)

Also a linear convergence method. However, first order convergence is a bit slow. Is there any method that converges faster?

One dimensional Newton's method (牛顿法)

• Suppose we want to minimize f(x) without any constraints

$$\min f(x)$$

• Taylor expansion at current iteration point x_0

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2 + \dots$$

• Local quadratic approximation

$$f(x) \approx g(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

• Minimize g(x) at g'(x) = 0, then

$$x_1 = x_0 - \frac{f'(x_0)}{f''(x_0)}$$

Newton's method

$$x_{k+1} = x_k - \frac{f'(x_0)}{f''(x_0)}$$

Newton's method converges with second order

One dimensional Newton's method

$$g'(x) = 0$$

 $\min f(x)$

High dimensional Newton's method

• Suppose we want to minimize $\phi(x), x \in \mathbb{R}^n$

$$\min \phi(x)$$

• Taylor expansion at current iteration point x_0

$$\phi(x) = \phi(x_0) + \nabla \phi(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^T \nabla^2 \phi(x_0)(x - x_0) + \dots$$

Local quadratic approximation

$$\phi(x) \approx g(x) = \phi(x_0) + \nabla \phi(x_0)(x - x_0) + \frac{1}{2}(x - x_0)^T H(x_0)(x - x_0)$$

• Minimize g(x) at $\nabla g(x) = 0$, then

Hessian matrix

$$\boldsymbol{x}_{1} = \boldsymbol{x}_{0} - \boldsymbol{H}^{-1}(\boldsymbol{x}_{0}) \nabla \phi(\boldsymbol{x}_{0})$$

Newton's method

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \boldsymbol{H}^{-1}(\boldsymbol{x}_k) \nabla \phi(\boldsymbol{x}_0)$$

High dimensional Newton's method

How to solve nonlinear programming?

General idea 2——find the points with gradient equals zero

$$\frac{\partial f}{\partial x} = 0$$

- Difficulty 1: The equation $\frac{\partial f}{\partial x} = 0$ may be hard to solve. Iterative methods work!
- Difficulty 2: How to solve the constrained nonlinear optimization?

$$\min f(oldsymbol{x})$$
 $g_i(oldsymbol{x}) \leq 0, \quad i = 1, 2, \dots, m$ $h_j(oldsymbol{x}) = 0, \quad j = 1, 2, \dots, p$ $oldsymbol{x} \in X \subset \mathbb{R}^n, oldsymbol{x} = (x_1, x_2, \dots, x_n)$

Introduction to KKT Conditions

Karush-Kuhn-Tucker conditions

Given a minimization problem (regardless of whether is convex or not)

$$\min f(oldsymbol{x})$$
 $g_i(oldsymbol{x}) \leq 0, \quad i=1,2,\ldots,m$ $h_j(oldsymbol{x}) = 0, \quad j=1,2,\ldots,p$ $oldsymbol{x} \in X \subset \mathbb{R}^n, oldsymbol{x} = (x_1,x_2,\ldots,x_n)$

We define the Lagrangian function:

$$L(x,u,v) = f(x) + \sum_{i=1}^{m} \mu_i g_i(x) + \sum_{i=1}^{p} v_i h_i(x)$$

• The Karush-Kuhn-Tucker conditions or KKT conditions are:

$$\frac{\partial L(x,u,v)}{\partial x} = 0$$
 stationarity $\nabla f(x) + \sum_{i=1}^{m} \mu_i \nabla g_i(x) + \sum_{i=1}^{p} v_i \nabla h_i(x) = 0$
$$\mu \cdot g(x) = 0$$
 complementary slackness
$$g(x) \leq 0, h(x) = 0$$
 primal feasibility
$$\mu \geq 0$$
 dual feasibility

KKT conditions

• For a non-convex programming:

 x^* is local optimum $\Rightarrow x^*, \mu^*, \nu^*$ satisfy the KKT conditions

• For a convex programming:

 x^* is global optimum $\Leftrightarrow x^*, \mu^*, \nu^*$ satisfy the KKT conditions

KKT conditions: Example

$$\min J = x_1^2 + x_2^2 + x_3^2$$
s.t. $x_1 + x_2 + x_3 = 1$

$$x_1 \le \frac{1}{2}$$

$$L = x_1^2 + x_2^2 + x_3^2 + \mu \left(x_1 - \frac{1}{2}\right) + \nu \left(x_1 + x_2 + x_3 - 1\right)$$

$$\frac{\partial L(x,u,v)}{\partial x} = \begin{bmatrix} 2x_1 + v + \mu \\ 2x_2 + v \\ 2x_3 + v \end{bmatrix} = 0$$
 stationarity

$$\mu\left(x_1 - \frac{1}{2}\right) = 0$$

 $\mu\left(x_1 - \frac{1}{2}\right) = 0$ complementary slackness

$$x_1 + x_2 + x_3 = 1$$

primal feasibility

$$x_1 \le \frac{1}{2}$$

dual feasibility

$$\mu \ge 0$$

$$x_1 = x_2 = x_3 = \frac{1}{3}$$

Homework

• Given the python code of solving LP problem, make the problem into a non-linear programing problem and solve it using python.

Q&A