Numerical and certified computation of the topology of projected curves

Rémi Imbach¹, Guillaume Moroz² and Marc Pouget²

¹ City University of New York, New York University

² INRIA: French Institute for Research in Computer Science and Control, team Gamble, Ex-Vegas

Introduction

Projection and Apparent Contour

P, Q two (polynomial or analytic) maps $\mathbb{R}^3 \to \mathbb{R}$ Curve defined as the intersection of two surfaces:

$$C: \left\{ egin{array}{ll} P(x,y,z) &= 0 \ Q(x,y,z) &= 0 \end{array} , (x,y,z) \in \mathbb{R}^3
ight.$$

Projection in the plane: $\mathcal{B} = \pi_{(x,y)}(\mathcal{C})$

Projection and Apparent Contour

P, Q two (polynomial or analytic) maps $\mathbb{R}^3 \to \mathbb{R}$ Curve defined as the intersection of two surfaces:

$$C: \left\{ \begin{array}{l} P(x,y,z) = 0 \\ P_z(x,y,z) = 0 \end{array} \right., (x,y,z) \in \mathbb{R}^3, \qquad P_z = \frac{\partial P}{\partial z}$$

Enclosing C

Apparent contour: $\mathcal{B} = \pi_{(x,y)}(\mathcal{C})$

$$C = \{(x, y, z) \in \mathbb{R}^3 | P(x, y, z) = Q(x, y, z) = 0\}$$

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

Our problem: given P, Q (with possibly $Q = P_z$), compute a geometric approximation of \mathcal{B} compute the topology of \mathcal{B}

Computing topology

Computing the topology of the projected curve \mathcal{B}

$$C = \{(x, y, z) \in \mathbb{R}^3 | P(x, y, z) = Q(x, y, z) = 0\}$$

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

Our problem: given P,Q (with possibly $Q=P_z$), an initial box \mathbf{B}_0 compute a geometric approximation of $\mathcal{B}\cap\mathbf{B}_0$ compute the topology of $\mathcal{B}\cap\mathbf{B}_0$

2/24

Computing the topology of the projected curve \mathcal{B}

$$C = \{(x, y, z) \in \mathbb{R}^3 | P(x, y, z) = Q(x, y, z) = 0\}$$

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

Our problem: given P,Q (with possibly $Q=P_z$), an initial box \mathbf{B}_0 compute a geometric approximation of $\mathcal{B}\cap\mathbf{B}_0$ compute the topology of $\mathcal{B}\cap\mathbf{B}_0$

faces of \mathcal{B} : C.C. of $\mathbf{B}_0 \setminus \mathcal{B}$

$$C = \{(x, y, z) \in \mathbb{R}^3 | P(x, y, z) = Q(x, y, z) = 0\}$$

$$B = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in C\}$$

Our problem: given P, Q (with possibly $Q = P_z$), an initial box \mathbf{B}_0 compute a geometric approximation of $\mathcal{B} \cap \mathbf{B}_0$ compute the topology of $\mathcal{B} \cap \mathbf{B}_0$

- **o** Restrict to a box \mathbf{B}_0
- Isolate special points:
 - boundary points
 - x-critical points
 - singularities
- 2 Loc. topology around special points
- Connect special points
- 4 Embed the graph

$$C = \{(x, y, z) \in \mathbb{R}^3 | P(x, y, z) = Q(x, y, z) = 0\}$$

$$B = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in C\}$$

Our problem: given P, Q (with possibly $Q = P_z$), an initial box \mathbf{B}_0 compute a geometric approximation of $\mathcal{B} \cap \mathbf{B}_0$ compute the topology of $\mathcal{B} \cap \mathbf{B}_0$

- **o** Restrict to a box \mathbf{B}_0
- Isolate special points:
 - boundary points
 - x-critical points
 - singularities
- 2 Loc. topology around special points
- Connect special points
- 4 Embed the graph

Computing topology

Computing the topology of the projected curve \mathcal{B}

$$C = \{(x, y, z) \in \mathbb{R}^3 | P(x, y, z) = Q(x, y, z) = 0\}$$

$$B = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in C\}$$

Our problem: given P,Q (with possibly $Q=P_z$), an initial box \mathbf{B}_0 compute a geometric approximation of $\mathcal{B}\cap\mathbf{B}_0$ compute the topology of $\mathcal{B}\cap\mathbf{B}_0$

- **o** Restrict to a box \mathbf{B}_0
- Isolate special points:
 - boundary points
 - x-critical points
 - singularities
- 2 Loc. topology around special points
- 3 Connect special points
- 4 Embed the graph

$$C = \{(x, y, z) \in \mathbb{R}^3 | P(x, y, z) = Q(x, y, z) = 0\}$$

$$B = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in C\}$$

Our problem: given P,Q (with possibly $Q=P_z$), an initial box \mathbf{B}_0 compute a geometric approximation of $\mathcal{B}\cap\mathbf{B}_0$ compute the topology of $\mathcal{B}\cap\mathbf{B}_0$

- **o** Restrict to a box \mathbf{B}_0
- Isolate special points:
 - boundary points
 - x-critical points
 - singularities
- 2 Loc. topology around special points
- 3 Connect special points
- 4 Embed the graph

$$C = \{(x, y, z) \in \mathbb{R}^3 | P(x, y, z) = Q(x, y, z) = 0\}$$

$$B = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in C\}$$

Our problem: given P, Q (with possibly $Q = P_z$), an initial box \mathbf{B}_0 compute a geometric approximation of $\mathcal{B} \cap \mathbf{B}_0$ compute the topology of $\mathcal{B} \cap \mathbf{B}_0$

- **o** Restrict to a box \mathbf{B}_0
- Isolate special points:
 - boundary points
 - x-critical points
 - singularities
- 2 Loc. topology around special points
- Connect special points
- 4 Embed the graph

- Isolate special points:
 - boundary points
 - x-critical points
 - singularities

Characterization of nodes and cusps:

- Resultant approaches
- Geometric approach

Certified numerical tools:

0-dim solver: subdivision solver

- Isolate special points:
 - boundary points
 - x-critical points
 - singularities

Characterization of nodes and cusps:

- Resultant approaches
- Geometric approach

Enclosing C in a sequence of boxes:

- δ approximation of $\mathcal{B} \cap \mathbf{B}_0$
- Filter for isolating the singularities

Certified numerical tools:

- 0-dim solver: subdivision solver
- 1-dim solver: certified path tracker

- 1 Isolate special points:
 - boundary points
 - x-critical points
 - singularities

Characterization of nodes and cusps:

- Resultant approaches
- Geometric approach

Enclosing C in a sequence of boxes:

- δ approximation of $\mathcal{B} \cap \mathbf{B}_0$
- Filter for isolating the singularities
- Compute topology

Certified numerical tools:

- 2 Loc. topology around special points 0-dim solver: subdivision solver
- 3 Connect special points
- 4 Embed the graph

• 1-dim solver: certified path tracker

Isolating singularities

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\},\$$

Singularities of \mathcal{B} are the solutions of:

$$(S) \begin{cases} r(x,y) = 0 \\ r_x(x,y) = 0 \\ r_y(x,y) = 0 \end{cases}$$

... that is over-determined

... that has solutions of multiplicity 2

symbolic approaches: Gröbner Basis, RUR

Isolating singularities of apparent contours

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}, \text{ where } r(x, y) = Res(P, P_z, z)(x, y)$$

Singularities of \mathcal{B} are the solutions of:

$$(S) \begin{cases} r(x,y) = 0 \\ r_x(x,y) = 0 \\ r_y(x,y) = 0 \end{cases}$$

- ... that is over-determined
- ... that has solutions of multiplicity 2

symbolic approaches: Gröbner Basis, RUR

5/24

Example

P, degree 6, bit-size 8, 84 monomials

$$P = 158x^6 - 186x^5y + 205x^5z - 160x^4y^2 + 105x^4yz + 116x^4z^2 - 69x^3y^3 - 161x^3y^2z - 8x^3yz^2 + 107x^3z^3 + 144x^2y^4 - 193x^2y^3z + 130x^2y^2z^2 + x^2yz^3 + 47x^2z^4 + 165xy^5 - 220xy^4z - 21xy^3z^2 + 50xy^2z^3 - 130xyz^4 - 77xz^5 + 66y^6 - 55y^5z + 219y^4z^2 - 30y^3z^3 - 162y^2z^4 - 182yz^5 - 145z^6 + 105x^5 + 241x^4y - 177x^4z - 127x^3y^2 - 97x^3yz + 223x^3z^2 - 46x^2y^3 - 213x^2y^2z + 39x^2yz^2 + 191x^2z^3 + 65xy^4 - 105xy^3z - 248xy^2z^2 + 158xyz^3 - 183xz^4 + 48y^5 - 240y^4z + 235y^3z^2 + 194y^2z^3 - 45yz^4 + 159z^5 - 81x^4 - 230x^3y - 247x^3z - 38x^2y^2 + 106x^2yz + 184x^2z^2 + 49xy^3 - 197xy^2z - 182xyz^2 - 223xz^3 - 205y^4 - 225y^3z - 14y^2z^2 - 17yz^3 + 73z^4 - 234x^3 - 82x^2y + 179x^2z + 46xy^2 - 222xyz - 95xz^2 + 139y^3 + 168y^2z + 8yz^2 + 156z^3 + 159x^2 - 147xy - 22xz - 104y^2 + 181yz + 26z^2 - 90x + 250y + 19z + 19z + 19z^2 + 181yz^2 + 26z^2 - 90x + 250y + 19z + 19z^2 + 181yz^2 + 26z^2 - 90x + 250y + 19z + 19z^2 + 181yz^2 + 26z^2 - 90x + 250y + 19z + 19z^2 + 181yz^2 + 26z^2 - 90x + 250y + 19z + 19z^2 + 181yz^2 + 26z^2 - 90x + 250y + 19z^2 + 181yz^2 + 26z^2 - 90x + 250y + 19z^2 + 19z^2 + 181yz^2 + 26z^2 - 90x + 250y + 19z^2 + 181yz^2 + 26z^2 - 90x + 250y + 19z^2 + 181yz^2 +$$

Example

P, degree 6, bit-size 8, 84 monomials

5/24

Example

degree 6, bit-size 8, 84 monomials degree 30, bit-size 111, 496 monomials r,

```
Res(P, P_2, z) = 25378517513821930985374726185 x^{30} - 195028956698484982176266264460 x^{29} y +
669460660893860813921604554100 \times^{28} y^2 - 631323116304152251056202148000 \times^{27} y^3 -
1028704563680432990245022354280 \times 2^{6}v^{4} + 45977970156051179086240080820 \times 2^{5}v^{5} +
3554469553406371293751987742270 x^{24}y^6 + 3711031010928440039666656612920 x^{23}y^7 -
5634442800184514383998916600260 \times^{22} v^8 - 11658591855069381144706595841060 \times^{21} v^9 - 1165859185069381144706595841060 \times^{21} v^9 - 116585918506938100 \times^{21} v^9 - 11658591850690 \times^{21} v^9 - 11658591850690 \times^{21} v^9 - 11658591800 \times^{21} v^9 - 11658591800 \times^{21} v^9 - 1165859180 \times^{21} v^9 - 1165850 \times^{21} v^9 - 116580 \times^{21} v^9 - 116580 \times^{21} v^9 - 116580 \times^{21} v^9 - 116580 \times^{21}
4387874939266072948066332459470 \times^{20} v^{10} + 16408843461038228420223023180230 \times^{19} v^{11} +
23700165794251777062304009772915 \times ^{18} v^{12} + 4316324180997748865901800201620 \times ^{17} v^{13} -
24929137305247653219088728498740 \times^{16} v^{14} - 33372908351021778030492119654810 \times^{15} v^{15} -
9633448028150975870147511674570 \times^{14} v^{16} + 20500155431790235158403374001190 \times^{13} v^{17} +
31668089060759309350684716458350 \times^{12} v^{18} + 16544278550218652616250018398520 \times^{11} v^{19} -
5014730522275651771719575652535 \times^{10} v^{20} - 16590111614945163714073974823320 \times^{9} v^{21} -
```

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}, \text{ where } r(x, y) = Res(P, P_z, z)(x, y)$$

Singularities of \mathcal{B} are the solutions of:

$$(S) \begin{cases} r(x,y) = 0 \\ r_x(x,y) = 0 \\ r_y(x,y) = 0 \end{cases}$$

Ρ, degree 6, bit-size 8, 84 monomials degree 30, bit-size 111, 496 monomials r,

symbolic approaches: Gröbner Basis, RUR

degree of P	6	7	8	9	
(\mathcal{S}) with RSCube*	32s	254s	1898s	9346	è
					1

Rouillier

Resultant approaches

Introduction

Sub-resultant based deflation system

$$(\alpha, \beta)$$
 node of \mathcal{B} :
 $\iff P(\alpha, \beta, z_1) = P_z(\alpha, \beta, z_1) = P(\alpha, \beta, z_2) = P_z(\alpha, \beta, z_2) = 0$
 $\iff P(\alpha, \beta, z) \text{ and } P_z(\alpha, \beta, z) \text{ have two common roots } z_1, z_2$

$$(\alpha, \beta)$$
 cusp of \mathcal{B} :
 $\iff P(\alpha, \beta, z_1) = P_z(\alpha, \beta, z_1) = P_{zz}(\alpha, \beta, z_1) = 0$
 $\iff P(\alpha, \beta, z) \text{ and } P_z(\alpha, \beta, z) \text{ have a common double root } z_1$

Sub-resultant based deflation system

$$(\alpha, \beta)$$
 node of \mathcal{B} :
 $\iff P(\alpha, \beta, z_1) = P_z(\alpha, \beta, z_1) = P(\alpha, \beta, z_2) = P_z(\alpha, \beta, z_2) = 0$
 $\iff P(\alpha, \beta, z) \text{ and } P_z(\alpha, \beta, z) \text{ have two common roots } z_1, z_2$

$$(\alpha, \beta)$$
 cusp of \mathcal{B} :
 $\iff P(\alpha, \beta, z_1) = P_z(\alpha, \beta, z_1) = P_{zz}(\alpha, \beta, z_1) = 0$
 $\iff P(\alpha, \beta, z) \text{ and } P_z(\alpha, \beta, z) \text{ have a common double root } z_1$

$$P(\alpha, \beta, z), P_z(\alpha, \beta, z)$$
 have a gcd of degree 2

Sub-resultant based deflation system

Sub-resultant chain of P, P_z, z : ς^0 — $Res(P, P_z, z)(x, y) = r(x, y)$ $S^1 =$ $s_{11}(x,y)z + s_{10}(x,y)$ $S^2 = s_{22}(x, y)z^2 + s_{21}(x, y)z +$ $s_{20}(x, y)$ $\dots =$

where $s_{l,k} = det(A)$, $A \in \mathcal{M}_{(m+n-l)\times(m+n-l)}(\mathbb{Q}[x,y])$

Proposition $P(\alpha, \beta, z), P_z(\alpha, \beta, z)$ have a gcd of degree 2 $r(\alpha, \beta) = s_{11}(\alpha, \beta) = s_{10}(\alpha, \beta) = 0$ and $s_{22}(\alpha, \beta) \neq 0$.

Genericity assum.: $P(\alpha, \beta, z), P_z(\alpha, \beta, z)$ have a gcd of degree ≤ 2 then $s_{22}(x, y) \neq 0 \Leftrightarrow r(x, y) = 0$.

Sub-resultant based deflation system

$$(\mathcal{S}_2) \left\{ \begin{array}{l} s_{10}(x,y) = 0 \\ s_{11}(x,y) = 0 \end{array} \right.$$
 s.t. $\begin{array}{l} s_{22}(x,y) \neq 0 \\ (\Leftrightarrow r(x,y) = 0) \end{array}$

Proposition $P(\alpha, \beta, z), P_z(\alpha, \beta, z)$ have a gcd of degree 2 iff $r(\alpha, \beta) = s_{11}(\alpha, \beta) = s_{10}(\alpha, \beta) = 0$ and $s_{22}(\alpha, \beta) \neq 0$.

Genericity assum.: $P(\alpha, \beta, z), P_z(\alpha, \beta, z)$ have a gcd of degree ≤ 2 then $s_{22}(x, y) \neq 0 \Leftrightarrow r(x, y) = 0$.

Isolating singularities of apparent contours

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}, \text{ where } r(x, y) = Res(P, P_z, z)(x, y)$$

Singularities of \mathcal{B} are the regular solutions of:

$$(\mathcal{S}_2) \left\{ \begin{array}{l} s_{10}(x,y) = 0 \\ s_{11}(x,y) = 0 \end{array} \right. \text{ s.t. } \left. \begin{array}{l} s_{22}(x,y) \neq 0 \\ (\Leftrightarrow r(x,y) = 0) \end{array} \right.$$

... where s_{10} , s_{11} , s_{22} are coefficients in the subresultant chain.

degree 6, bit-size 8, 84 monomials degree 30, bit-size 111, 496 monomials r, $s_{11}, s_{10}, degree 20,$ bit-size 90, 231 monomials

degree of P	6	7	8	9
(\mathcal{S}) with RSCube*	32s	254s	1898s	9346
(\mathcal{S}_2) with RSCube	15s	105s	620s	3 300s

Rouillier

8/24

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | r(x, y) = 0\}, \text{ where } r(x, y) = Res(P, P_z, z)(x, y)$$

Singularities of \mathcal{B} are the regular solutions of:

$$(\mathcal{S}_2) \left\{ \begin{array}{l} s_{10}(x,y) = 0 \\ s_{11}(x,y) = 0 \end{array} \right. \text{ s.t. } \left. \begin{array}{l} s_{22}(x,y) \neq 0 \\ (\Leftrightarrow r(x,y) = 0) \end{array} \right.$$

... where s_{10} , s_{11} , s_{22} are coefficients in the subresultant chain.

Р, degree 6, bit-size 8, 84 monomials r, degree 30, bit-size 111, 496 monomials s_{11} , s_{10} , degree 20, bit-size 90, 231 monomials

degree of <i>P</i>	6	7	8	9	
(\mathcal{S}) with RSCube*	32s	254s	1898s	9346	i
(S_2) with RSCube	15s	105s	620s	3 3009	X
(\mathcal{S}_2) with Bertini	1005s	≥ 3000s	≥ 3000s	≥ 300¢)s\

F. Rouillier

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x, y) \mapsto (s_{10}(x, y), s_{11}(x, y))$
find (x, y) s.t. $F(x, y) = 0$

Subdivision solver

[Neu90] A. Neumaier.

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$

$$(x, y) \mapsto (s_{10}(x, y), s_{11}(x, y))$$
find (x, y) s.t. $F(x, y) = 0$

Subdivision solver

Interval extension $\Box F$ of F: $0 \notin \Box F(\mathbf{B}) \Rightarrow \text{no solution in } \mathbf{B}$

[Neu90] A. Neumaier.

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x, y) \mapsto (s_{10}(x, y), s_{11}(x, y))$
find (x, y) s.t. $F(x, y) = 0$

Subdivision solver

Interval extension $\Box F$ of F: $0 \notin \Box F(\mathbf{B}) \Rightarrow \text{no solution in } \mathbf{B}$

Interval newton operators $K_F(\mathbf{B})$: $K_F(\mathbf{B}) \subset int(\mathbf{B}) \Rightarrow \exists ! \text{ solution in } \mathbf{B}$ $\mathbf{B}_i = K_F(\mathbf{B}_{i-1})$ converges quadratically

[Neu90] A. Neumaier.

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x, y) \mapsto (s_{10}(x, y), s_{11}(x, y))$
find (x, y) s.t. $F(x, y) = 0$
and $s_{22}(x, y) \neq 0$

Subdivision solver

Interval extension $\Box F$ of F. $0 \notin \Box F(\mathbf{B}) \Rightarrow \text{no solution in } \mathbf{B}$

Interval newton operators $K_F(\mathbf{B})$: $K_F(\mathbf{B}) \subset int(\mathbf{B}) \Rightarrow \exists ! \text{ solution in } \mathbf{B}$ $\mathbf{B}_i = K_F(\mathbf{B}_{i-1})$ converges quadratically

Constraints: at F(x, y) = 0, either $s_{22}(x, y) \neq 0$ or $r(x, y) \neq 0$

[Neu90] A. Neumaier.

$$F: \mathbb{R}^2 \to \mathbb{R}^2$$

 $(x, y) \mapsto (s_{10}(x, y), s_{11}(x, y))$
find (x, y) s.t. $F(x, y) = 0$

Subdivision solver

Interval extension
$$\Box F$$
 of F : $0 \notin \Box F(\mathbf{B}) \Rightarrow$ no solution in \mathbf{B}

Interval newton operators $K_F(\mathbf{B})$: $K_F(\mathbf{B}) \subset int(\mathbf{B}) \Rightarrow \exists ! \text{ solution in } \mathbf{B}$ $\mathbf{B}_i = K_F(\mathbf{B}_{i-1})$ converges quadratically

Constraints: at F(x, y) = 0, either $s_{22}(x, y) \neq 0$ or $r(x, y) \neq 0$ if \exists ! sol. in **B** and $0 \notin \Box s_{22}(\mathbf{B})$ \rightarrow singularity

if \exists ! sol. in **B** and $0 \in \Box s_{22}(\mathbf{B})$ \rightarrow refine **B** (with K_F) until $0 \notin \Box s_{22}(\mathbf{B})$ or $0 \notin \Box r(\mathbf{B})$

```
-140117848627008812531220 x^{20} - 610153133593349354171040 x^{10} v +
39516518923021733844070 \times x^{18} v^2 + 3342883727033466620154170 \times x^{17} v^3 +
2891274355142589403901890 \times ^{16} v^4 + 112794729750527524649840 \times ^{15} v^5 -
11340692490521298700125220\,{x^{14}}{y^{6}}\,-\,11062911106388945165447000\,{x^{13}}{y^{7}}\,-\,
2946445042372334921153850 \times^{12} y^8 + 12890641493062475757808370 \times^{11} y^9 +
20482823881470123106468370\,{x}^{10}{y}^{10}\,+\,11024860229216130931420010\,{x}^{9}{y}^{11}\,-\,
1126962434297495978162860\,{x}^{8}{y}^{12}\,-\,12884485324685747664432680\,{x}^{7}{y}^{13}\,-\,
9059725287074848327234580 \times^6 y^{14} - 4941320817429025658253850 \times^5 y^{15} +
2122391146412348698406760 \times^4 y^{16} + 2384112136850068775369540 \times^3 y^{17} + \\
2363347796938811648578260 \times^{2} v^{18} + 735933941537801203166720 \times v^{19} +
293011939904302120871210\,{y}^{20}\,+\,693411445688541987909840\,{x}^{19}\,+\,
4819667434476299196422270 \times^{18} y - 854531603999857310010090 \times^{17} y^2 -
4588903065796097271527060 \times ^{16} v^3 - 12454540077632985887041990 \times ^{15} v^4 -
19038809918580772113933260 \ x^{14}y^5 \ - \ 5255594134400598288192960 \ x^{13}y^6 \ +
1174005266404773044076220 \times^{12} v^7 + 39658021585466235582243720 \times^{11} v^8 +
49141822061980186469013340 \times^{10} v^9 + 51251450511200391856666690 \times^9 v^{10} +
```

Subdivision solver

```
Interval extension \Box F of F.
0 \notin \Box F(\mathbf{B}) \Rightarrow \text{no solution in } \mathbf{B}
Interval newton operators K_F(\mathbf{B}):
K_F(\mathbf{B}) \subset int(\mathbf{B}) \Rightarrow \exists ! \text{ solution in } \mathbf{B}
\mathbf{B}_i = K_F(\mathbf{B}_{i-1}) converges quadratically
```

Constraints: at
$$F(x, y) = 0$$
, either $s_{22}(x, y) \neq 0$ or $r(x, y) \neq 0$

Main Issues:

Evaluating $\Box F$:

- quickly
- sharply (with low over-estimation)

Adapting arithmetic precision

Computing topology

Results:

Datas: Random dense polynomials of degree d, bit-size 8

0-dim solver: multi-precision subdivision solver, c++/cython/sage IA libraries: BOOST for double precision, MPFI otherwise

[lmb16] Rémi Imbach.

> A Subdivision Solver for Systems of Large Dense Polynomials. Technical Report 476, INRIA Nancy, March 2016.

Numerical results: Isolating singularities of an apparent contour

\mathcal{S}_2 , RSCube	\mathcal{S}_2 , subd.		
\mathbb{R}^2	[-1,1] imes[-1,1]		
15	0.5		
105	4.44		
620	37.9		
3300	23.2		
	15 105 620	$\begin{array}{c c} \mathbb{R}^2 & [-1,1] \times [-1,1] \\ \hline 15 & 0.5 \\ 105 & 4.44 \\ 620 & 37.9 \\ \hline \end{array}$	\mathbb{R}^2 $[-1,1] \times [-1,1]$ 15 0.5 105 4.44 620 37.9

means on 5 examples of sequential times.

[Sta95] Volker Stahl.

Unbounded domain

Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations.

PhD thesis, Johannes Kepler University, Linz, Austria, 1995.

[Sta95] Volker Stahl.

> Interval Methods for Bounding the Range of Polynomials and Solving Systems of Nonlinear Equations.

PhD thesis, Johannes Kepler University, Linz, Austria, 1995.

Results:

Unbounded domain

[IMP16] Rémi Imbach, Guillaume Moroz, and Marc Pouget.

> A certified numerical algorithm for the topology of resultant and discriminant curves.

Journal of Symbolic Computation, 2016.

Numerical results: Isolating singularities of an apparent contour

system	\mathcal{S}_2 , RSCube	\mathcal{S}_2 , subd.		
domain	\mathbb{R}^2	$[-1,1]\times[-1,1]$	\mathbb{R}^2	
d				
6	15	0.5	1.35	
7	105	4.44	21.9	1
8	620	37.9	57.7	1
9	3300	23.2	54.7	

means on 5 examples of sequential times.

Ball system

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

Lemma 1: (x, y) is a node of $\mathcal{B} \Leftrightarrow (x, y, z_1, z_2)$ satisfies:

$$P(x, y, z_1) = P_z(x, y, z_1) = P(x, y, z_2) = P_z(x, y, z_2) = 0$$

Lemma 2: (x, y) is a cusp of $\mathcal{B} \Leftrightarrow (x, y, z)$ satisfies:

$$P(x, y, z) = P_z(x, y, z) = P_{zz}(x, y, z) = 0$$

Characterizing singularities:

Ball system

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

c: center of
$$z_1, z_2$$

 $r = ||c - z_1||_2^2$
 $z_1, z_2 = c \pm \sqrt{r}$

Singularities of \mathcal{B} are exactly the real solutions of:

$$(S_4) \left\{ \begin{array}{ll} \frac{1}{2} (P(x,y,c+\sqrt{r}) + P(x,y,c-\sqrt{r})) &= 0 \\ \frac{1}{2\sqrt{r}} (P(x,y,c+\sqrt{r}) - P(x,y,c-\sqrt{r})) &= 0 \\ \frac{1}{2} (P_z(x,y,c+\sqrt{r}) + P_z(x,y,c-\sqrt{r})) &= 0 \\ \frac{1}{2\sqrt{r}} (P_z(x,y,c+\sqrt{r}) - P_z(x,y,c-\sqrt{r})) &= 0 \end{array} \right.$$

$$\mathcal{B} = \{(x, y) \in \mathbb{R}^2 | \exists z \in \mathbb{R} \text{ s.t. } (x, y, z) \in \mathcal{C} \}$$

c: center of
$$z_1, z_2$$

 $r = ||c - z_1||_2^2$
 $z_1, z_2 = c \pm \sqrt{r}$

Singularities of \mathcal{B} are exactly the real solutions of:

when $r \rightarrow 0$

$$(\mathcal{S}_4)$$

$$P(x, y, c) = 0$$

$$P_z(x, y, c) = 0$$

$$P_z(x, y, c) = 0$$

$$P_{zz}(x, y, c) = 0$$

Characterizing singularities: the Ball system

[IMP15] Rémi Imbach, Guillaume Moroz, and Marc Pouget.

> Numeric and certified isolation of the singularities of the projection of a smooth space curve.

In Proceedings of the 6th International Conferences on Mathematical Aspects of Computer and Information Sciences, MACIS'15, 2015.

Lemma 4. Under some genericity assumptions, all the solutions of S_4 in $\mathbb{R}^2 \times \mathbb{R} \times \mathbb{R}^+$ are regular.

Lemma 3. Singularities of \mathcal{B} are exactly the real solutions of:

$$(S_4) \begin{cases} \frac{1}{2} (P(x, y, c + \sqrt{r}) + P(x, y, c - \sqrt{r})) &= 0\\ \frac{1}{2\sqrt{r}} (P(x, y, c + \sqrt{r}) - P(x, y, c - \sqrt{r})) &= 0\\ \frac{1}{2} (P_z(x, y, c + \sqrt{r}) + P_z(x, y, c - \sqrt{r})) &= 0\\ \frac{1}{2\sqrt{r}} (P_z(x, y, c + \sqrt{r}) - P_z(x, y, c - \sqrt{r})) &= 0 \end{cases}$$

Finding the singularities of \mathcal{B} in $\mathbf{B}_0 = (\mathbf{x}_0, \mathbf{y}_0)$:

 \iff solving the ball system on $\mathbf{B}_0 \times \mathbb{R} \times \mathbb{R}^+$

Ball system

Ball system

Finding the singularities of \mathcal{B} in $\mathbf{B}_0 = (\mathbf{x}_0, \mathbf{y}_0)$:

 \iff solving the ball system on $\mathbf{B}_0 \times \mathbb{R} \times \mathbb{R}^+$

 \longleftrightarrow 3 systems solving on $\mathbf{B}_0 \times [-1,1] \times [0,1]$

Finding the singularities of \mathcal{B} in $\mathbf{B}_0 = (\mathbf{x}_0, \mathbf{y}_0)$:

 \iff solving the ball system on $\mathbf{B}_0 \times \mathbb{R} \times \mathbb{R}^+$

 \longleftrightarrow 3 systems solving on $\mathbf{B}_0 \times [-1,1] \times [0,1]$

Finding the singularities of \mathcal{B} in $\mathbf{B} = \mathbb{R}^2$:

 \longleftrightarrow 5 systems solving on $[-1,1]^2 \times [-1,1] \times [0,1]$

Ball system

Results:

Datas: Random dense polynomials of degree d, bit-size 8

O-dim solver: multi-precision subdivision solver, c++/cython/sage IA libraries: BOOST for double precision, MPFI otherwise

[Imb16] Rémi Imbach.

A Subdivision Solver for Systems of Large Dense Polynomials. Technical Report 476, INRIA Nancy, March 2016.

Numerical results: Isolating singularities of an apparent contour

system	\mathcal{S}_2 , RSCube	\mathcal{S}_2 , subd.		\mathcal{S}_4 , subd.	
domain	\mathbb{R}^2	$[-1,1]\times[-1,1]$	\mathbb{R}^2	[-1,1] imes[-1,1]	\mathbb{R}^2
d					
6	15	0.5	1.35	8.4	11.3
7	105	4.44	21.9	43.8	54.2
8	620	37.9	57.7	70.2	99.2
9	3300	23.2	54.7	45.6	95.1

means on 5 examples of sequential times.

Filtering the domain where singularities of ${\cal B}$ are sought

Enclosure of C: a sequence $\{C_k\}_{1 \le k \le l}$ such that

- $\mathcal{C} \subset \bigcup_k \mathbf{C}_k$,
- in each C_k , $C \cap C_k$ is diffeomorphic to a close segment,
- each C_k has width less than δ .

Filtering the domain where singularities of ${\cal B}$ are sougth

Enclosure of
$$C$$
:

$$\{\mathsf{C}_k\}_{1\leq k\leq l}=\{(\mathsf{x}_k,\mathsf{y}_k,\mathsf{z}_k)\}_{1\leq k\leq l}$$

 $o \delta$ approximation of \mathcal{B} : each point of \mathcal{B} is in a $\mathbf{B}_k = \pi_{(x,v)}(\mathbf{C}_k)$

Filtering the domain where singularities of ${\cal B}$ are sought

Enclosure of C:

 δ approximation of \mathcal{B} :

 $\{\mathbf{C}_k\}_{1 \le k \le l} = \{(\mathbf{x}_k, \mathbf{y}_k, \mathbf{z}_k)\}_{1 \le k \le l}$ $\{\mathbf{B}_k\}_{1 \le k \le l} = \{(\mathbf{x}_k, \mathbf{y}_k)\}_{1 \le k \le l}$

- \rightarrow Location of singularities:
 - each cusp is in a \mathbf{B}_k
 - ullet each node is in a ${f B}_k$ or in a ${f B}_{ij}={f B}_i\cap{f B}_j$
- ightarrow Singularities are in $\bigcup_k \mathbf{B}_k \cup \bigcup_{i,j} \mathbf{B}_{ij}$

Filtering the domain where singularities of ${\cal B}$ are sought

Enclosure of C:

 δ approximation of \mathcal{B} :

$$\{\mathbf{C}_k\}_{1 \le k \le l} = \{(\mathbf{x}_k, \mathbf{y}_k, \mathbf{z}_k)\}_{1 \le k \le l}$$
$$\{\mathbf{B}_k\}_{1 \le k \le l} = \{(\mathbf{x}_k, \mathbf{y}_k)\}_{1 \le k \le l}$$

- \rightarrow Location of singularities:
 - each cusp is in a \mathbf{B}_k
 - ullet each node is in a ${f B}_k$ or in a ${f B}_{ij}={f B}_i\cap{f B}_j$
- ightarrow Singularities are in $\bigcup_k \mathbf{B}_k \cup \bigcup_{i,j} \mathbf{B}_{ij}$
- ightarrow Sols. of the ball system are in $\bigcup_k \mathbf{D}_k \cup \bigcup_{i,j} \mathbf{D}_{ij}$

$$\mathbf{D}_{k} = (\mathbf{x}_{k}, \mathbf{y}_{k}, \mathbf{z}_{k}, [0, (\frac{w(\mathbf{z}_{k})}{2})^{2}])
\mathbf{D}_{ij} = (\mathbf{x}_{ij}, \mathbf{y}_{ij}, \frac{(\mathbf{z}_{i} + \mathbf{z}_{j})}{2}, [0, (\frac{(\mathbf{z}_{i} - \mathbf{z}_{j})}{2})^{2}])$$

Certified numerical tools: 1-dim solver

$$F: \mathbb{R}^3 \to \mathbb{R}^2$$
, $\mathbf{C}_0 = \mathbf{B}_0 \times \mathbb{R}$ a box of \mathbb{R}^3 $\mathcal{C} = \{ C \in \mathbf{C}_0 | F(C) = 0 \}$ is a smooth curve of \mathbb{R}^3 $\mathcal{C}^1, \dots, \mathcal{C}^m$: connected components of \mathcal{C}

Certified numerical tools: 1-dim solver

 $F: \mathbb{R}^3 \to \mathbb{R}^2$, $\mathbf{C}_0 = \mathbf{B}_0 \times \mathbb{R}$ a box of \mathbb{R}^3 $\mathcal{C} = \{ C \in \mathbf{C}_0 | F(C) = 0 \}$ is a smooth curve of \mathbb{R}^3 $\mathcal{C}^1, \dots, \mathcal{C}^m$: connected components of \mathcal{C}

Certified path-tracker:

Input: $F: \mathbb{R}^3 \to \mathbb{R}^2$, $\mathbf{C}_0 = \mathbf{B}_0 \times \mathbb{R}$, $\delta \in \mathbb{R}_*^+$

An initial box $\mathbf{C} \in \mathcal{C}^i$

Output: a sequence of boxes $\{C_k\}_{1 \le k \le l}$ of width less than δ

enclosing C^i .

 $F: \mathbb{R}^3 \to \mathbb{R}^2$, $\mathbf{C}_0 = \mathbf{B}_0 \times \mathbb{R}$ a box of \mathbb{R}^3 $\mathcal{C} = \{ C \in \mathbf{C}_0 | F(C) = 0 \}$ is a smooth curve of \mathbb{R}^3 $\mathcal{C}^1, \dots, \mathcal{C}^m$: connected components of \mathcal{C}

Certified path-tracker:

Input: $F: \mathbb{R}^3 \to \mathbb{R}^2$, $\mathbf{C}_0 = \mathbf{B}_0 \times \mathbb{R}$, $\delta \in \mathbb{R}^+_*$

An initial box $\mathbf{C} \in \mathcal{C}^i$

Output: a sequence of boxes $\{C_k\}_{1 \le k \le l}$ of width less than δ

enclosing C^i .

Certified numerical tools: 1-dim solver

[MGGJ13] B. Martin, A. Goldsztejn, L. Granvilliers, and C. Jermann. Certified parallelotope continuation for one-manifolds. SIAM Journal on Numerical Analysis, 51(6):3373–3401, 2013.

 $F: \mathbb{R}^3 \to \mathbb{R}^2$, \mathbf{B}_0 a box of \mathbb{R}^2 $\mathcal{C} = \{C \in \mathbf{B}_0 \times \mathbb{R} | F(X) = 0\}$ is a smooth curve of \mathbb{R}^3

Assumption (A1): \mathcal{C} is compact over \mathbf{B}_0 (A1) holds for generic polynomials P

 $\mathcal{C}^1,\ldots,\mathcal{C}^m$: connected components of \mathcal{C}

Finding one point on each connected component

1-dim solver

Finding one point on each connected component

Assumption (A1): C is compact over B_0

Lemma: If (A1) holds, C^k is

- either diffeomorphic to [0, 1] \Rightarrow has 2 intersections with $\partial \mathbf{B}_0 \times \mathbb{R}$
- or diffeomorphic to a circle \Rightarrow has at least two x-critical points

Finding one point on each connected component

Assumption (A1): C is compact over B_0

Lemma: If (A1) holds, C^k is

1-dim solver

- either diffeomorphic to [0, 1] \Rightarrow has 2 intersections with $\partial \mathbf{B}_0 \times \mathbb{R}$
- or diffeomorphic to a circle \Rightarrow has at least two x-critical points

 $\mathcal{C} \cap (\partial \mathbf{B}_0 \times \mathbb{R})$ are the solutions of the 4 systems:

$$\begin{cases} P(x = a, y, z) = 0 \\ P_z(x = a, y, z) = 0 \end{cases}$$

$$\begin{cases} P(x, y = b, z) = 0 \\ P_z(x, y = b, z) = 0 \end{cases}$$

where
$$a \in \{x_{inf}, x_{sup}\}$$
, $b \in \{v_{inf}, v_{sup}\}$

Finding one point on each connected component

Assumption (A1): C is compact over B_0

Lemma: If (A1) holds, C^k is

- either diffeomorphic to [0, 1] \Rightarrow has 2 intersections with $\partial \mathbf{B}_0 \times \mathbb{R}$
- or diffeomorphic to a circle \Rightarrow has at least two x-critical points

Assumption (A1): C is compact over \mathbf{B}_0

Lemma: If (A1) holds, C^k is

- either diffeomorphic to [0,1] \Rightarrow has 2 intersections with $\partial \textbf{B}_0 \times \mathbb{R}$
- or diffeomorphic to a circle
 ⇒ has at least two x-critical points

x-critical points of C are the solutions of the system:

$$\begin{cases} P(x,y,z) &= 0\\ P_z(x,y,z) &= 0\\ P_y & P_z\\ P_{zy} & P_{zz} & (x,y,z) &= 0 \end{cases}$$

Results:

Datas: Random dense polynomials of degree d, bit-size 8

O-dim solver: multi-precision subdivision solver, c++/cython/sage

Path tracker: prototype in python/cython

[MGGJ13] B. Martin, A. Goldsztejn, L. Granvilliers, and C. Jermann. Certified parallelotope continuation for one-manifolds. SIAM Journal on Numerical Analysis, 51(6):3373–3401, 2013.

Numerical results: Isolating singularities of an apparent contour

system	\mathcal{S}_2 , RSCube	\mathcal{S}_2 , subd.	\mathcal{S}_4 , subd.	with $\mathcal C$
domain	\mathbb{R}^2	[-1,1] imes[-1,1]	[-1,1] imes[-1,1]	ig [-1,1] imes [-1,1] ig
d				
6	15	0.5	8.4	2.36
7	105	4.44	43.8	4.13
8	620	37.9	70.2	5.91
9	3300	23.2	45.6	5.30

means on 5 examples of sequential times.

Computing the topology of the projected curve ${\cal B}$

A general framework

- **o** Restrict to a box \mathbf{B}_0
- Isolate special points:
 - boundary points
 - x-critical points
 - singularities
- **2** Loc. topology around special points
- 3 Connect special points
- Embed the graph

Computing the topology of the projected curve ${\cal B}$

A general framework

- **o** Restrict to a box \mathbf{B}_0
- Isolate special points:
 - boundary points
 - x-critical points
 - singularities
- **2** Loc. topology around special points
- 3 Connect special points
- 4 Embed the graph

Local topology at special points

 $B^s = 2D$ boxes isolating the special points

Assumption: the topology in each $\mathbf{B}_{i}^{s} \in B^{s}$ is simple

i.e. $\mathcal{B} \cap \mathbf{B}_0 \cap \mathbf{B}_i^s$ is diffeomorphic to:

Local topology at special points

Local topology

 $B^s = 2D$ boxes isolating the special points

Assumption: the topology in each $\mathbf{B}_{i}^{s} \in B^{s}$ is simple

Definition: we call *connection* of $\mathcal{B} \cap \mathsf{B}_0$ in B_i^s the points $\mathcal{B} \cap \mathsf{B}_0 \cap \partial \mathsf{B}_i^s$

Computing topology

21/24

Local topology

 $B^s = 2D$ boxes isolating the special points

Assumption: the topology in each $\mathbf{B}_{i}^{s} \in B^{s}$ is simple

Definition: we call *connection* of $\mathcal{B} \cap \mathbf{B}_0$ in \mathbf{B}_i^s the points $\mathcal{B} \cap \mathbf{B}_0 \cap \partial \mathbf{B}_i^s$

Cylinder \mathbf{C}_{i}^{s} above $\mathbf{B}_{i}^{s}:\mathbf{B}_{i}^{s}\times\mathbb{R}$

Definition: we call *connection* of $C \cap C_0$ in C_i^s the points $C \cap C_0 \cap \partial C_i^s$

Computing the topology of the projected curve ${\cal B}$

A general framework

- **o** Restrict to a box \mathbf{B}_0
- Isolate special points:
 - boundary points
 - x-critical points
 - singularities
- **2** Loc. topology around special points
- 3 Connect special points
- 4 Embed the graph

Computing a graph

Computing a graph G s.t. any embedding G of G is homeo. to $\mathcal{B} \cap \mathbf{B}_0$

- Vertices of G: boxes of B^s
- Edges of G: connected components of $(\mathcal{B} \cap \mathbf{B}_0) \setminus \bigcup_{\mathbf{B}^s \in \mathcal{B}^s} \mathbf{B}^s_i$

Computing a graph G s.t. any embedding \mathcal{G} of G is homeo. to $\mathcal{B} \cap \mathbf{B}_0$

- Vertices of G: boxes of B^s
- Edges of G: connected components of $(\mathcal{B} \cap \mathbf{B}_0) \setminus \bigcup_{\mathbf{B}^s \in \mathcal{B}^s} \mathbf{B}_i^s$

For each $\mathbf{C}_{i}^{s} \in C^{s}$

For each connection c of $\mathcal{C} \cap \mathbf{C}_0$ in \mathbf{C}_i^s

Track \mathcal{C} from c until it reaches a connection c' of $\mathcal{C} \cap \mathbf{C}_0$ in \mathbf{C}_i^s

Computing a graph G s.t. any embedding G of G is homeo. to $\mathcal{B} \cap \mathbf{B}_0$

- Vertices of G: boxes of B^s
- Edges of G: connected components of $(\mathcal{B} \cap \mathbf{B}_0) \setminus \bigcup_{\mathbf{B}^s \in \mathcal{B}^s} \mathbf{B}^s_i$

For each $\mathbf{C}_{i}^{s} \in C^{s}$

For each connection c of $\mathcal{C} \cap \mathbf{C}_0$ in \mathbf{C}_i^s

Track \mathcal{C} from c until it reaches a connection c' of $\mathcal{C} \cap \mathbf{C}_0$ in \mathbf{C}_i^s

Computing a graph G s.t. any embedding $\mathcal G$ of G is homeo. to $\mathcal B\cap \mathbf B_0$

- Vertices of G: boxes of Bs
- Edges of G: connected components of $(\mathcal{B} \cap \mathsf{B}_0) \setminus \bigcup_{\mathsf{B}_i^s \in \mathcal{B}^s} \mathsf{B}_i^s$

For each $\mathbf{C}_i^s \in C^s$

For each connection c of $C \cap \mathbf{C}_0$ in \mathbf{C}_i^s

Track $\mathcal C$ from c until it reaches a connection c' of $\mathcal C\cap \mathbf C_0$ in $\mathbf C_j^s$

Computing a graph G s.t. any embedding $\mathcal G$ of G is homeo. to $\mathcal B\cap \mathbf B_0$

- Vertices of G: boxes of Bs
- Edges of G: connected components of $(\mathcal{B} \cap \mathsf{B}_0) \setminus \bigcup_{\mathsf{B}_i^s \in \mathcal{B}^s} \mathsf{B}_i^s$

For each $\mathbf{C}_i^s \in C^s$

For each connection c of $C \cap \mathbf{C}_0$ in \mathbf{C}_i^s

Track $\mathcal C$ from c until it reaches a connection c' of $\mathcal C\cap \mathbf C_0$ in $\mathbf C_j^s$

Computing the topology of the projected curve ${\cal B}$

A general framework

- \bullet Restrict to a box \mathbf{B}_0
- Isolate special points:
 - boundary points
 - x-critical points
 - singularities
- **2** Loc. topology around special points
- 3 Connect special points
- Embed the graph

[Köt02] Ullrich Köthe.

Xpmaps and topological segmentation-a unified approach to finite topologies in the plane. In International Conference on Discrete Geometry for Computer Imagery, pages 22–33. Springer, 2002.

Computing the topology of the projected curve ${\cal B}$

[IMP17] Rémi Imbach, Guillaume Moroz, and Marc Pouget.
Reliable location with respect to the projection of a smooth space curve.
Research report, to appear in reliable computing, INRIA, November 2017.

24/24

Results:

Datas: Random dense polynomials P of degree d, bit-size 8

Extern comparison: Isotop with input $Res(P, P_z, z)$, uses RSCube.

[CLP+10] J. Cheng, S. Lazard, L. Peñaranda, M. Pouget, F. Rouillier, and E. Tsigaridas.

> On the topology of real algebraic plane curves. Mathematics in Computer Science, 4:113–137, 2010.

Numerical results: Topology of an apparent contour

method domain	$\frac{\texttt{Isotop}}{\mathbb{R}^2}$	Our approach $\mathbf{B}_0 = [-1,1] \times [-1,1]$
d	t	t
5	4.78	3.17
7	251	8.13
9	_	24.1
11	_	75.5
13	_	90.6
15	_	169

means on 5 examples of seq. times in seconds.