Spatial Data Analysis with Python

Song Gao

Email: sgao@geog.ucsb.edu

UCSB BROOM CENTER

Goals of Workshop

- I. Introduction to the batch processing in ArcGIS;
- 2. Introduce the Python scripting language and its application in ArcGIS;
- 3. Become familiar with several methods for writing, and running geoprocessing scripts using Python;
- 4. Apply Python scripts to automate a GIS workflow;
- 5. Solve your own domain problem using Python.

1. Introduction

- Primary Data Types
- vector: point, line, polygon
- raster: continuous (e.g. elevation) or
- discrete surfaces (e.g. land use type)

Common Data Storage Formats

- vector: shapefile, geodatabase feature
- tables (.dbf, .xlsx), KML, GeoJSON
- raster: ASCII, GeoTIFF, JPEG2000

Why Spatial?

Discussion: What kinds of spatial variables can you think of for determining the house prices in cities?

Discussion: What kinds of spatial variables can you think of for determining the house prices in cities?

A local form of linear regression used to model spatially varying relationships Fotheringham, Stewart A., Chris Brunsdon, and Martin Charlton. Geographically Weighted Regression: the analysis of spatially varying relationships. John Wiley & Sons, 2002.

Global model

$$y = \alpha + \beta X + \varepsilon$$
becomes
$$y_i = \alpha_i + \beta_i X + \varepsilon_i$$

Where i indicates that there is a set of coefficients estimated for every observation in our data set

GWR using Python

- GeographicallyWeightedRegression Example (Python Window)
- The following Python Window script demonstrates how to use the GeographicallyWeightedRegression tool.
- import arcpy arcpy.env.workspace = "c:/data" arcpy.GeographicallyWeightedRegression_stats("CallData.shp", "Calls","BUS_COUNT;RENTROCC00;NoHSDip", "CallsGWR.shp", "ADAPTIVE", "BANDWIDTH PARAMETER", "#", "25", "#","CoefRasters", "I35", "PredictionPoints", "#", "GWRCallPredictions.shp")

Table 2. Nonstationarity of parameters in the GWR models.

Parameter	Euclidean Distance		Travel Distance	
1 arameter	F value	<i>p-</i> value	F value	<i>p-</i> value
Intercept	6.398	<0.001 *	9.858	<0.001 *
LnPlotRatio	1.140	0.178	1.718	<0.001 *
LnGreenRatio	5.032	<0.001 *	7.772	<0.001 *

 β_1 dist to school β_2 Income = house price

LnFloorArea

LnPropertyFee

 $LnEucD_{PriSchool}$

 $LnEucD_{ShoppingMall}$

Age

Table 7

Out of sample predictive accuracy: percent of predicted prices within specified range of actual price and R-squared between actual and predicted price

		10%	20%	R-squared
3	Model 1: global	57.1	82.6	0.832
	Model 2: expansion	59.3	85.2	0.867
	Model 3: expansion with lag	59.3	86.7	0.882
	Model 4: GWR	64.6	88.3	0.878

^{*} The statistically significa

Types of Models in GIS (by function)

- Descriptive models patterns
- Change models before and after
- Impact models what happens
- Explanatory models process influence
- Predictive models what will be like

building data processing chains in GIS:

data -> operations -> output

start try block
try:
arcpy.analysis.Buffer("c:/ws/roads.shp", "c:/outws/roads10.shp", 100)

If an error occurs when running a tool, print the tool messages except arcpy.ExecuteError: print arcpy.GetMessages(2)

Any other error except Exception as e: print e.message

Workflow

- Goal: Map parks for citizens
- Problem: Park data needs to be organized
 - Park areas lack facility information
 - Activity data spread across multiple point layers
 - Data does not fit web application
 - Need to automate data update process

Population density

Distance to parks

60% influence

This model finds
the most suitable
location for a new
park. The model
incorporates a
Weighted Overlay
tool, where
weights are
assigned to each
input based on
how much
influence each
should have in
siting a new park.

Potential park sites

40% influence

"Euclidean Distance"

```
import arcpy from arcpy.sa
import * env.workspace = "C:/sapyexamples/data"
```

```
outEucDistance = EucDistance("rec_sites.shp", 5000,
5, "c:/sapyexamples/output/EucDirOut")
outEucDistance.save("C:/sapyexamples/output/eucdist")
```

The Need For GIS Automation

- Automation makes work easier. You don't have to remember which tools to use or the proper sequence in which they should be run.
- Automation makes work faster.
- Automation makes work more standarlized.

Let us solve a problem!

 Find the population living within the 500 meter of HW 101 in Santa Barbara

Population Data:

https://www.census.gov/cgi-bin/geo/shapefiles/index.php

Roads:

http://geog.ucsb.edu/~sgao/data/santabarbara.zip

2. What is Python?

Python is a programming language that lets you work q https://www.b\nusure.com/\nusure.com/ and integrate systems more effectively. >>> Learn More

Applications of Python

- I. Automate workflows;
- 2. Batch process data;
- 3. Manipulate data tables, geometry, and map docs;
- 4. Use functions accessible only by scripts.

Advantages of Python

- I. Less restricted data types;
- 2. Open source support;
- 3. Cross-platform;
- 4. Object-orientated (A data structure that combines data with a set of methods for accessing and managing those data).

Python Editors

- Integrated Development Environment (IDE): A software application for programming and software development
- Source code editor: A text editor for software code, with features specially designed to simplify and speed up writing and editing of code
- Suggested Python editors:
- I) IDLE
- 2) PythonWin
- 3) IPython
- 4) Others (wiki.python.org/moin/PythonEditors)

User Resources

1) Books

A Python Primer ArcGIS

3) ArcPy site package (online)

Open Source Python Packages

- numpy 1.9
- scipy 0.15
- PySAL: not included
- pandas 0.15
- shapely: not included
- fiona: not included
- six 1.8
- Windows only

Anaconda for Python 2.7:

- numpy 1.9
- scipy 0.14
- PySAL 1.6
- pandas 0.14
- <u>shapely</u>: not included
- fiona: not included
- <u>six</u> 1.8
- <u>Virtual Machine</u> images
- Windows, Mac, Linux

Enthought Canopy for Python 2.7:

- numpy 1.8
- scipy 0.15
- PySAL 1.7 (in academic option)
- pandas 0.15
- shapely: 1.5.1 (in academic option)
- fiona: 1.4.8 (in academic option)
- <u>six</u> 1.9
- Windows, Mac, Linux

Useful Open Source Python Spatial Libraries

Data Handling:

- shapely
- GDAL/OGR
- pyQGIS
- pyshp
- Pyproj

Analysis:

- shapely
- numpy, scipy
- pandas,GeoPandas
- PySAL
- Rasterio
- scikit-learn

Plotting:

- matplotlib, prettyplotlib
- descartes
- cartopyit-image

- Programs are composed of modules
- Modules contain statements
- Statements contain expressions
- Expressions create and process objects

 Object: A piece of memory, with values and associated operations; also known as variables

- Types of objects:
 - Numbers
 - Strings
 - Lists
 - Dictionaries
 - Files

- Expression: Processes an object: x * 2
- Statement: Performs a task, via an expression: y = x * 2
- Types of statements:
 - Assignment: x=5
 - Call: open('DataFile.csv')
 - import
 - print
 - if/elif/else
 - for, while

- Module: A library of tools; permanent file of code, composed of statements.
- Types of modules:
 - Standard library modules: os, sys, string ... (module index)
 - Specialized modules or site-packages: arcpy (site package)

- Case sensitivity (DataFile ≠ datafile)
- Indentation (4, 6, 8...)
- File paths (/, \\ or r'string')
- Quotation marks (", ")
- Commenting (#)

4. Running A Python Script In ArcGIS

- Provides Python access to all geoprocessing tools and extensions in ArcGIS
- a. All geoprocessing tools in ArcMap are provided as functions in ArcPy
- b. ArcPy also includes several functions not available as tools in ArcMap
- ArcPy has several sub-modules with related sets of functions (e.g., spatial analyst, mapping)

ArcGIS

Python

4. Running A Python Script In ArcGIS

- I) Include a header
- 2) Import modules
- 3) Specify environment settings
- 4) Define variables
- 5) Run geoprocessing tools

```
File Edit View Tools Window Help
BufferandErase
    # BufferandErase.py
    # Author: Sarah E. Reed
    # Created on: 11 October 2011
    # Revised on: 12 October 2011
    # Description: Identifies the areas of a county that are located far from roads;
                  buffers roads within a county and then erases the buffer areas
                  within the county's extent
    # Import system modules
    import sys, os, string, arcpy
    # Define workspace
    arcpy.env.workspace = "c:/WorkSpace/Demo3"
    # Set overwrite option
    arcpy.env.overwriteOutput = True
    # Define the input datasets
    roads = str(arcpy.env.workspace) + os.sep + "Larimer MajorRoads.shp"
    county = str(arcpy.env.workspace) + os.sep + "Larimer County.shp"
    # Define a buffer distance
    buff = 5000
    # Define the output datasets
    roads_buff = str(arcpy.env.workspace) + os.sep + "Larimer_MajorRoads_Buff.shp"
    buff erase = str(arcpy.env.workspace) + os.sep + "Larimer MajorRoads Buff Erase.shp"
        miler the cities
    arcpy.Buffer analysis(roads, roads buff, buff, "FULL", "ROUND", "ALL")
    # Clip the buffer area to the county boundary
    arcpy.Erase_analysis(county, roads_buff, buff_erase)
```

Three Ways to Run a Python Script In ArcGIS

- I) In a Python editor
- 2) In the Python window in ArcMap
- 3) As a script tool in ArcToolbox

```
File Edit View Tools Window Help
BufferandErase
    # BufferandErase.py
    # Author: Sarah E. Reed
    # Created on: 11 October 2011
    # Revised on: 12 October 2011
    # Description: Identifies the areas of a county that are located far from roads;
                  buffers roads within a county and then erases the buffer areas
                  within the county's extent
    # Import system modules
    import sys, os, string, arcpy
    # Define workspace
    arcpy.env.workspace = "c:/WorkSpace/Demo3"
    # Set overwrite option
    arcpy.env.overwriteOutput = True
    # Define the input datasets
    roads = str(arcpy.env.workspace) + os.sep + "Larimer MajorRoads.shp"
    county = str(arcpy.env.workspace) + os.sep + "Larimer County.shp"
    # Define a buffer distance
    buff = 5000
    # Define the output datasets
    roads_buff = str(arcpy.env.workspace) + os.sep + "Larimer_MajorRoads_Buff.shp"
    buff erase = str(arcpy.env.workspace) + os.sep + "Larimer MajorRoads Buff Erase.shp"
       affer the cities
    arcpy.Buffer analysis(roads, roads buff, buff, "FULL", "ROUND", "ALL")
    # Clip the buffer area to the county boundary
    arcpy.Erase_analysis(county, roads_buff, buff_erase)
```

Three Ways to Write a Python Script In ArcGIS

- I) Edit an existing script
- 2) Export a script from ModelBuilder
- 3) Build a script in the Python window

```
File Edit View Tools Window Help
BufferandErase
    # BufferandErase.py
    # Author: Sarah E. Reed
    # Created on: 11 October 2011
    # Revised on: 12 October 2011
    # Description: Identifies the areas of a county that are located far from roads;
                  buffers roads within a county and then erases the buffer areas
                  within the county's extent
    # Import system modules
    import sys, os, string, arcpy
    # Define workspace
    arcpy.env.workspace = "c:/WorkSpace/Demo3"
    # Set overwrite option
    arcpy.env.overwriteOutput = True
    # Define the input datasets
    roads = str(arcpy.env.workspace) + os.sep + "Larimer MajorRoads.shp"
    county = str(arcpy.env.workspace) + os.sep + "Larimer County.shp"
    # Define a buffer distance
    buff = 5000
    # Define the output datasets
    roads_buff = str(arcpy.env.workspace) + os.sep + "Larimer_MajorRoads_Buff.shp"
    buff erase = str(arcpy.env.workspace) + os.sep + "Larimer MajorRoads Buff Erase.shp"
       warrer the cities
    arcpy.Buffer analysis(roads, roads buff, buff, "FULL", "ROUND", "ALL")
    # Clip the buffer area to the county boundary
    arcpy.Erase_analysis(county, roads_buff, buff_erase)
```

Tips

- 1) Python is case sensitive;
- 2) Python is sensitive to indentation
- 3) Filepaths use single forward slash (/), double back slash (\\), or raw string supression (r"filepath")
- 4) May need to hard code filepaths (workspace + os.dir + "filename")
- 5) Save scripts with the .py file extension
- 6) Avoid schema lock: remove datasets from ArcMap

Understand your GIS

This "hello world" style notebook shows how to get started with the GIS and visualize its contents.

> Get started with the GIS class

Manage your GIS

The ArcGIS API for Python provides APIs and samples for ArcGIS Online administrators to manage their online organization.

> Clone a portal

Perform Spatial Analysis

Call sophisticated spatial analysis tools that work with online content, using a few lines of code.

> Chennai floods analysis

https://developers.arcgis.com/python/