REMARKS

Claims 21, 26, 32, 33, 38 and 39 are now pending in the application. Claims 1-20, 22-25, 27-31, and 34-37 are cancelled. Claims 21, 26, 32, and 33 are currently amended. Claims 38 and 39 are new. Support for the foregoing amendment can be found throughout the specification, drawings, and claims as originally filed. The Examiner is respectfully requested to reconsider and withdraw the rejections in view of the amendments and remarks contained herein.

REJECTION UNDER 35 U.S.C. § 102

Claims 1-9, 19-21, 32, 33, and 37 stand rejected under 35 U.S.C. § 102(b) as being anticipated by Ishihara (JP 2003-050534; "Ishihara"). This rejection is respectfully traversed.

Production Method of a Laminated Holographic Medium

First, Applicant maintains that there is a difference between the present application and Ishihara, particularly in the step of merging a main body and a recordable body portion. In Ishihara, on or under the main body, each layer of the recordable body portion is applied or laminated, and the holographic medium is produced. Therefore, in Ishihara, after producing the holographic medium, a user conducts a holographic recording operation of, for example, an ID. In such a production method, there are various problems such as damaging data due to exposure and tampering of data. In the prior art, a solution for such a problem is known that uses a holographic fixing technique (such as UV curing). In other words, in the prior art, in

order to produce a recordable holographic medium, three production steps are necessary, "laminating a recordable body on the main body," "holographic recording" and "holographic fixing." Compared to the prior art, in the present application, the main body and the recordable body are independently produced, there is no holographic recording step, and "producing recordable body" and "combining main body and recordable body" are conducted. Hence, the present application has an advantage in which "holographic fixing" is not necessary. In addition, in the present application, it is not possible for the user to tamper with the data after combining. For example, if the user tries to forcibly tamper with the data, a state-like bubble or blister is caused at an area around a portion on which a recording laser is radiated because of heat caused by radiation, that is, the holographic medium is broken, and it is impossible to reproduce the medium. Therefore, it is possible to reduce the possibility of tampering with the data and damaging data. In addition, it is possible to achieve an improvement with regard to security against, for example, illegally copying. Therefore, as described above, an advantage of the present application is a simple recording step. In addition, the present application has an advantage of improved security because it is difficult to tamper with the data recorded in the holographic medium. Applicant asserts that Ishihara does not provide such advantages.

Materials for Recording (Selecting and Using Various Materials)

In Ishihara, regarding recording methods, a phenomena of changing a refractive index of the recording layer is explained, that is a holographic (diffraction grating) recording, for example, an optical recording operation on a photopolymer and a

magneto-optical recording on a magnetic thin film with perpendicular magnetization.

However, there are various limitations on materials applied to such a recording method.

For instance, pages 43-44 of the specification indicate:

(i) Upon working as the recording mark (transmitting the light), it is necessary that the core layer and the cladding layer have approximately same refractive indices ... (ii) It is necessary that it satisfies a condition that the refractive index or the transmittance is changed by radiating the light upon recording however the refractive index or the transmittance is not changed by radiating the light upon reproducing ... (iii) With respect to the new material for the recording layer, it is necessary to have an environmental resistance (thermal/chemical stability), and nonpoisonous/innocence, however it is needed to have no thermal expansion due to the energy of the light or ...

Applicant maintains that it is tremendously difficult and almost impossible to find materials that satisfy such limitations. In fact, there are various studies and researches with regard to a holographic memory applied to hologram recording. Regarding such studies and researches, even today, InPhase Technologies Inc. and Hitachi Maxcell, Ltd. state (a possibility of) a commercial release. For example, Applicant has attached to this response a Japanese document (including English summary, drawings and endnotes) entitled, "Development of recording materials for digital holographic data storage," Pioneer R&D, Vol. 11, No. 1 (2001). Even for researchers, it is not easy to find materials (for example, see "2. Development trend of recording materials for digital hologram memory"). There are several reports of experiments with successful examples, but they are experiments and are not successful in practical environments because of problems such as vibration, thermal expansion and cost. In consideration of such background and problems, in the present application, materials such as ink and paints are used as recording materials that can be easily obtained while avoiding

hologram materials that have low possibility. In fact, in the amended claims, there is no limitation on materials that requires special or unusual materials. Therefore, in accordance with the present application, it is possible to use materials that have better characteristics with regard to control of reflective index, selection of wavelength and a variety of applicable materials, and that are cost effective. In addition, the present application has an advantage in which it is easy to realize a method of the present application.

Hence, in the present application, both the recording method (production method) and the recording materials differ significantly from Ishihara. In addition, regarding realization, the present application is much simpler than Ishihara, and Applicant asserts that the present application has sufficient novelty and non-obviousness for allowance.

REJECTION UNDER 35 U.S.C. § 103

Claim 4 stands rejected under 35 U.S.C. § 103(a) as being unpatentable over Ishihara. This rejection is respectfully traversed.

Claim 4 having been cancelled, this rejection should now be rendered moot.

CLAIM AMENDMENTS

Applicant has amended the claims to include technical features of the production method and the recording medium. Specifically, the claims are amended based on the following portions of the specification: (1) pages 32-37 ("third and fourth embodiments of the medium"); and (2) pages 37-49 ("a first embodiment of the recording apparatus

and the recording method" and "a second embodiment of the recording apparatus and the recording method").

Applicant has cancelled claims 1-9 and provided claims of a production method and a medium obtained by using the production method. In other words, Applicant provides claims of both a production method of a storage medium in which after recording an identification information storing medium, a ROM type recording medium is adhered to the identification information storing medium and a storage medium produced in accordance with the production method.

Claim 21 is supported by FIG. 11. Applicant wishes to make clear that in claim 26 "the presence of brightness/darkness and the position of the reproduction beam, determined beforehand" corresponds to the recording layer. Claim 39 is supported by FIG. 29. Claim 32 is supported by FIG. 11 and is a claim which does not include the ROM portion of original claim 2.

CONCLUSION

It is believed that all of the stated grounds of rejection have been properly traversed, accommodated, or rendered moot. Applicant therefore respectfully requests that the Examiner reconsider and withdraw all presently outstanding rejections. It is believed that a full and complete response has been made to the outstanding Office Action and the present application is in condition for allowance. Thus, prompt and favorable consideration of this amendment is respectfully requested.

If the Examiner believes that personal communication will expedite prosecution of this application, the Examiner is invited to telephone the undersigned at (248) 641-1600.

Respectfully submitted,

Dated: February 2, 2009

Gregory A Stobb Reg. No. 28,764

HARNESS, DICKEY & PIERCE, P.L.C. P.O. Box 828 Bloomfield Hills, Michigan 48303 (248) 641-1600

GAS/dec

Serial No. 10/579,115 Page 11 of 11

ディジタルホログラムメモリー用記録材料の開発

Development of recording materials for digital holographic data storage

畑野 秀樹, 田中 覚, 山路 崇

Hideki Hatano, Satoru Tanaka, Takashi Yamaji

伊藤 善尚, 松下 元

Yoshihisa Itoh, Hajime Matsushita

要 旨 当社がこれまで文部科学省無機材質研究所と共同で進めてきた、ホログラムメ モリー用定比組成LINBO。単結晶の開発をメインに、最近のホログラムメモリー用記録材料の 進展についてレビューする。筆者らは、従来のLINBO。単結晶材料における問題点を明確にす るとともに、LINBO。の不定比制節技術により前たなブレークスルーを見いだした。不定比を 制御して育成した定比組成LINBO。においては、従来の一致溶験組成結晶に比べさまざまな物 性を改善した。その結果、これまで最大の課題とされてきたメモリーの不揮発化を達成し、 さらに紫外光の照射によって選択的に光初刷化が行える新記録方式、『PEKYを開発した。

Summary We review recent developments in recording materials for digital holographic data storage. We especially demonstrate new features obtained by using single crystal stoichiometric lithium niobate (LN) newly developed by the collaboration between Pioneer and NIRIM. The stoichiometric LN has many superior characteristics compared to the conventional congruent LN originating from its reduced nonstoichiometric defect density. By using stoichiometric LN we resolved a long-standing issue of destructive readout, and we developed a promising new recording method "PREX", in which selective initialization and selective re-writing can be achieved by all-optical means.

キーワード: ホログラムメモリー、データストレージ、乡電記録, ホログラム記録材料, ニオブ酸 リチウム、不定比欠陥。定比相成、Tb添加, フォトリフラクティブ効果, フォトクロミズム, 2色 ホログラム、不理発再生

1. まえがき

高速情報ネットワークの構築が進み、ビデオ オンデマンド配信などにより大容量のディジタル 情報が高速にやりとりされる時代が現実のものと なりつつあり、ホームサーバー、超大容量ビデオ サーバー、ビデオアーカイバルメモリーなどに用 いる高速大容量ストレージに対する社会的ニーズ が加速度的に増大している。原理的に大容量で、 高速回転や高度なサーボ機構を使わずに高速の データ転送が可能なホログラムメモリーが次世代 ストレージの可能性のひとつとして新たに注目さ れている。 体積ホログラムに情報を多重記録して保存する という3次元ストレージの概念は1963年、 Polarotd社のHeerdenによって提案されたの。 ディジタルホログラムメモリーは図1に示すよう に、2値化された画像のホログラムを多重記録す るという原理に基づいており。

- (1) 記録の3次元性に基づく大容量
- (2)2次元ページ単位での入出力による高速デー タ転送
- (3)高速アクセス

といった基本的な特長を備えている。原理的に は、1Tbit/cm³以上の配録密度と1Gb/s以上の高 速データ転送が可能である。

アイディア提案から30年以上も経過してホログ ラムメモリー開発は新たな展開を示した。特に米 国では1994-95年から約5年間、DARPA(国所総合) の支援の基に2つのコンソーシアム(PRISW: Photorefractive Information Storage Materials projectとHDSS: Holographic Data Storage System project)が活発に活動し、ホログラムメモ リーシステムの実用化を目指した研究を行ってい た。最近のホログラムメモリー研究をまとめた文 献を引用しておくので参考にされたいか。

当社では、米国でのコンソーシアムの活動とほ

ぼ時期を同じくして、ホログラムメモリーの研究 開発を開始した。米国コンソーシアムの最大の目的の一つがそうであったように、当社もホログラムメモリーシステム実用化のキーとなるのが記録 材料との判断から、記録材料の開発を最大のターゲットとして進めてきた。そのために、当社では 文部科学省無機材質研究所(以後、無機材研と略記、2001年4月から物質・材料研究機構となっている)と共同研究を行って、ニオブ酸リチウム(LINbo,以後LIと略記する)の性能改善に取り組んできた。その結果、筆者らは実用化への可能性を開くブレークスルーを見いだした。本稿では当社の研究成果の紹介を中心に、最近のホログラムメロー用記録材料開発のトピックについてレビューする。

2. ディジタルホログラムメモリー用記録 材料の開発動向

1990 年代に入ってからのホログラムメモリー システム開発は、ディジタル技術を取り込んで大 きく進步した。コンシューマ用電子機器発展の限 恵を受け、システムを構築する基本デバィス(小 型レーザ、液晶空間光変調器、2次元光検出器)や 両像処理コンピュータなどのディジタル機器にお

図1 ディジタルホログラムメモリーの記録再生原理

いて大幅に性能改善と低価格化が実現し、秒速1 ギガピット程度のデータ転送のためのインフラが 整備された。またシステムを構築する要素技術 (多重記録方式、ノイズやクロストークの解析と 低減化技術、システムの符号化、エラー訂正など) も体系化された。これらの技術を集積し、ホログ ラフィックメモリーの機能をデモンストレートす るためのシステムが多くの機関から発表されるよ うになった。しかしながら製品レベルでの完全な システムは実現できていない。その最大の理由の 一つは、すべての条件を満足する記録材料が見出 されていない点である。

記録材料へ求められる性質は、(A)情報をストレージする光に対して高い感度を有すること(弱い光でも照射した部分の屈折率が調時に変わること)、(B) 情報を読み出す光に対しては、ストレージした情報が消えないこと(不揮発性)が要求され、しかも、(C)必要とあれば、一瞬のうちにすべての情報を消し去ることも必要である。これらはある意味ではお互いに矛盾する性質で、実現は容易ではない。加えるに、低コスト、保存安定性などが必要である。これらを同時に満足する完全なメディアは現在のところ存在しない。現在のところ、大きく分けて以下の2条後の記録材料が開発されている。

2.1 フォトポリマー

フォトポリマーは有機高分子配録材料であって、デスクに適したWDR型メディア(Write Once Read Manyの路、追加記録のみつで消去や書き換えはできない方式)である。米国のコンソーシアムが途中で開発方向をフォトリフラクティブ結晶からフォトポリマーに転換したこともあり、フォトポリマー材料は最近の数年間で大幅に性能が改善された。Polaroid社とLucent社(Bellim)が各々独自の材料を開発した。そのポイントは、数100ミクロンの厚さで光学特性に優れ、記録に伴う収縮を低減することに成功した点にある。その結果高い光態度と高い体積記録密度が両立できた。フォトポリマーにおいては、シアト多重法とよばれる、メディアを動かしながら順次ホロゲラムを多量記

録する記録方法が適している。シフト多重の改良版 として、参照ビームの位相面をランダム位相マスク で、ある規則に基づいて変調することでページ間 クロストークが低減し、多重記記録性が大幅に 向上した。位相相関多重法と呼ばれる方法である。 現在平方ミクロンあたり45~55ビットの記録密度 が得られている。Stanford大学では、Polaroid社 の材料を用いて5インチディスクで約17bit相当の 記録容量と16bit/sのデータ転送速度での記録再生 を行った。

2.2 フォトリフラクティブ単結晶

フォトリフラクティブ材料は消去再書き込みが可 能な媒体であり、ホログラムメモリーの開発当初か ら、もっとも有力視されてきた(3)。フォトリフラク ティブ効果は, 不純物や欠陥に起因する深いトラッ プ準位(フォトリフラクティブ中心)の存在する電気 光学物質に光を照射したときに生じる現象である。 フォトリフラクティブ中心が光イオン化され、その 際に生成された自由キャリアが拡散、外部電場、光 起電力効果などにより移動したのち再結合し、その 結果,光の強度分布に対応した空間電荷分布が生じ る。これが電気光学効果により屈折率変化を引き起 こす。ホログラム記録材料としての特徴は、屈折率 が変化する位相型ホログラムであり、吸収率が変化 する振幅型ホログラムより高い回折効率が期待でき ること, 現像処理を必要とせず, 干渉縞を照射する だけで回折格子を書き込むことができること、1度 記録されたホログラムはある時間保持できることな どがあげられる。

通常厚い結晶(数 mm ~ cm)を用い、一カ所に多 くのページを多重する使い方をする。多重した ページは参照光を振るだけで高速にアクセスでき る。ただし、現在の結晶の実力として一カ所に多 重できる容量は数GBから数106階にとどまり、さ らに容量を上げるためには空間多重を併用する。

フォトリフラクティブ材料としては、LN単結品 が代表的な材料である。これについては以下の節 で詳細に議論する。他に SBN 単結晶も候補である が、メモリーの不揮発化にめどがついていない。

3. 定比組成LiNb0,単結晶の開発

3.1 ホログラム材料としての二オブ酸リチウル LN単結晶 通常は序を添加して使用) はAshkin らいによりフォトリフラクティブ効果が発見され、Chenらいによりその体積ホログラム記録への 応用が提案されて以来、書き換えが可能なホログ ラム記録媒体としての展有力候補とされてきた。 LNは量産が可能で、光学的な特性に優れた大きな 結晶が容易に得られるメリットは大きい。LNは数 あるフォトリフラクティブ材料の中で一番保持時 即の長い材料であり、ホログラムメモリーシステ ムの評価にはほとんどこれが用いられてきた。

しかしながら、LNには、再生劣化(情報の揮発性のことで、再生を続けるに従い徐々に情報が劣化する問題。破壊読み出しとも呼ばれる)、光ダメージ(記録時あるいは再生時に不必要に光を吸収し、再生光にひずみを生じる問題)、熱処理にはい導電率が上昇してストレージ寿命が短くなるなどの問題点を抱えている。また本質的に記録時間が長く、高級催化は基本的な課題であった。

すでに述べたようにフォトリフラクティブ効果 を使ったホログラム記録においては, 記録光と参 照光で作られる干渉縞の明るい部分で生じた電荷 を暗部に輸送し、その結果得られる電荷分布を蓄 積して記録するものである。図2において、従来 のFe添加LNを用いた単色記録(記録再生に用いる 1種類の光源のみを用いる記録法)におけるホログ ラム記録時の電荷移動過程を考えてみよう。LN内 においては、Fe は 2 価(Fe2+) あるいは 3 価(Fe3+) のいずれかの状態として存在する(3)。2価のFeイ オンの濃度に比例して記録再生波長域(通常波長 488~532nm)における光の吸収を生じる。通常結 晶内には、電荷のドナーとなるFe2(光吸収中心) とアクセプタとなる Fe3 (深いトラップ準位)が、 結晶育成時に添加される Fe の添加量と結晶育成 後の熱処理によって, 適切な割合にコントロール されて存在している。記録光照射でFe2・サイトか ら電子が励起され、空間をドリフトした後、Fe3-サイトにトラップされるのが記録過程である。つ まり記録過程はFe²'とFe³'の空間的な再配列過程

である。明部から暗部へ電荷の移動が、フォトリ フラクティブ効果のスピードを決定する。LNにお いては、フォトリフラクティブ材料の中でもキャ リアの移動度が小さく、そのため記録速度が遅い ことが指摘されている。

両生時には、均一な参照ビームで結晶が照射されるため、トラップされた電子が両勤起され、ホログラム強度は徐々に減衰する。これが再生男化のメカニズムのある。また記録再生を問わず、2価のFeは存在し、これが記録再生光に対する光ダメージが発生する形因をも作り出していることになる。LNを用いた従来の記録法における問題点、本質的にこのようなFeの単一単位に起因していることは明白である。

LN の再生劣化に対する対策として、160で程度 の高温で熱定量を行い、常温では光に不活性なプ ロトンの格子に変換して記録する方法が試みられ た。しかし熱波醤法はリアルタイムで行うことが できず、結果的に書き換えが可能で高速再生可能 な大容量ROUという限定的な用途にしか向かない。

3.2 LNの不定比欠陥

このような、従来の単一準位を用いた単色記録 における問題点を解決するためには、結晶内に多準 位系マルチカラー(多波長)記録を行うのが有効と思

図2 従来のFe添加LiNb03における 記録再生に伴う電荷移動の模式

われる。しかしながら、多準位系をLN内に最適に構築すること、すなわち深さの異なるエネルギー準位 を導入し、それらの準位の密度やキャリア寿命など を制御することは必ずしよ公鬼ではかい

これまで工業的に使われてきた引き上げ単結品 法でLN単結品を育成する場合は、育成する結晶に育 成できない。この組成は一致冷離組成と呼ばれ、 Li: Nbの比がおよそ48.5:51.5である。従来か らホログラムメモリーのシステム検討に使われて きた結晶も一致溶離組成LNであった。この一致溶 酸組成LN単結品は、組成のずれに起因して数%1に なよぶ不定比欠陥(アンチサイト欠陥や陽イン 空位)を含んでいる。多量の欠陥の存在は、多く の場合キャリアの再結合中心(格子緩和などでの キャリアの消滅過程を含む)を生み、フォトリフ ラクティブ過程における中間生成キャリアの寿命 の制御を困難にするなどせっかく導入したエネル 半一準位を不活性化させてしまう。

そもそもフォトリフラクティブ効果は、光励起、 光キャリアの輸送、キャリア再結合、電気光学効 果、光起電力効果など多くのプロセスが複合して 生じる現象であるため、本質的に材料の構造や固 有の欠陥に依存する。しかしながら、フォトリフ ラクティブ効果と不定比欠陥との関係は最近まで 明らかにされてこなかった。最近になって、2 重る のぼ法など不定比組成を制御して単結品を育成す るための新技術が開発されることにより、定比に 近い組成(Li: Nbの比が1に近い組成)のLNの評価 が可能となり、従来の一数溶機組成LN数溶機組成 LNとは異なるすぐれた物性を示すことが明らかに なってきた。

3.3 定比組成 LN の開発

無機材研では、結晶育成時に不定比欠陥を制御 し、直径2インチ以上のサイズの定比に近い組成 のLN単結晶を育成する技術を確立している(ω)。す でに述べたように従来の引き上げ法では均一4枚組 放の結晶引き上げは不可能であるため、原料化 を伴う二重るつぼ法などの新規な結晶育成法が開 発された。育成された結晶の組成は 1: 1 Nb 比が 49.7:50.3ときわめて定比に近く、この結晶(以後 定比組成INと略記する)は従来の一致溶験組成IN に比べて様々な物性上の改善がみられることが分 かってきており、ホログラム応用のほかに、非線形 光学応用やドメインの制御を用いた光通信分野へ の応用などへの展開が期待されているの。

定比組成 LNでは、一数溶験組成 LNに比べて、 不定比欠陥密度がI桁から1.5桁低減したことが分 かっている。定比組成 LNによって改善した、ホロ グラム応用上重要な物性上の特徴を以下に列記 する(40)。

- (1)構造敏感性の増加:これにより、不純物やネイティブな欠陥の作用が敏感に働くようになり、多準位系を有効に機能させることが可能である。
- (2) 光学パンドギャップの増加: 光吸収端が 20nm程度短波長側にシフトする。
- (3)電気光学効果の増大:異常光線に対する線 形電気光学係数(r,s)が20%増大する。常光線 に対する係数(r,、)は変化しない。
- (4)光導電率の増加:欠陥の低減に伴うキャリア 移動度の増大に起因するものと考えられる。
- (5)熱力学的に安定な相であるため、光散乱に 寄与する散乱中心などが熱処理時に形成さ れにくい。

これらの特徴をホログラムメモリーの性能改善 に生かした例を以下の章で述べる。

4. 定比 LN のホログラムへの応用

4.1 単色ホログラムにおける性能改善

筆者らは、鉄を添加した定比組成 LN を用いた 単色ボログラムにはるディジタルボログラム記録を を献みた™。 検討の主眼は、定比組成 LN を異常 光で用いることによる記録感度向上の可能性探索 であった。さきに述べたように、定比組成 LN を 熱力学的安定性に起因して、光散乱中心になる欠 筋が本質的に生じにくく、従来の CLN ではファニ ングなどのために使用できなかった異常光が使用 可能である。異常光の使用により、定比組成 CF くなる C₃、を用いることになり、光導電率も増大 するため従来の一致溶融組成 LN を用いた場合に 比べて 10 倍ほど配録速度が速いホログラムメモ リーが得られたが、実用上に求められる仕様には まだ遠く、また読み出し中にメモリーが揮発する 問題の解決は得られなかった。

4.2 バイポーラロン方式2色ホログラム

Fe 添加LNにおける破壊読み出しの対策として、結晶内に複数の単位を形成して、複数の波長の光源を用いて記録再生するマルチカラーホログラムの手法が有効であることはすでに述べた。実は多フォトン過程を用いたメモリー不揮発化に対する取り組みは、すでに1974~1976年にLinde らの一般によって試みられている。この方式では記録時に仮想的な単位あるいは、添加元素の作る単位を介した2フォトン励起により、ホログラムを形成し、再生時にはシングルフォトン再生を行うため、再生時にはシングルフォトン再生を行うため、再生の化がないというものである。その後いくつかの改良があったが、中間単位におけるキャリアの時命がナノ杉オーダと非常に小さかったため、パフーの大きなパルスレーザ書き込みを余儀なくれ、実用からはかけ離れたシステムであった。

最近 Stanford大学やIBMなどで行われた、パイポーラロンによる2色ホログラム記録は、定比に近い組成のLNを用いることでマルチフォトン記録の感度を大幅に改善した手法として興味深い

図3 バイポーラロンを用いた2色 ホログラムにおける電荷移動の模式

方法である⁽¹³⁻¹⁴⁾。バイポーラロンによる2色ホロ グラム記録の電荷移動のモデルを図3に示す。本 方式においては、ゲート光と呼ぶ、記録光よりエ ネルギーの大きな光を記録時のみ記録光と同時に 照射する。ゲート光は, それが照射されている間 だけバイポーラロン準位を励起して、メタステー プルな電荷を浅いトラップ準位に形成する。 記録 光はこの一時的な電荷を使ってホログラムを形成 する。再生時はゲート光を照射しないため不揮発 となる。この技術のポイントは、定比に近い組成 のLNを還元処理して用いることで、メタステープ ルな準位における電子の寿命が数 10~数 100ms まで増大し、記録感度の大幅な向上がはかられた 点にある。しかしパイポーラロン方式では、結晶 のストイキオメトリーと還元熱処理の微妙な制御 が必要であるうえに、還元しすぎでFeに起因した 好ましくない光吸収の増加や導電率の上昇に起因 した保存寿命の低下などを引き起こすこともあ る。本来ネイティブな欠陥を用いており性能改善 には限界があると考えられている。

4.3 LN におけるフォトクロミズム(光による Fe のイオン化状態制御)

筆者らは、TbとFeを共ドープした定比組成LN (SLN)が、紫外光(波長313nm)照射で着色し、可 視光照射で消色する, 可逆的なフォトクロミズム を示すことを見出した(15-16)。実験した Tb の添加 量は20~200ppm, Feの添加量は0.6~40ppmの 範囲である。図4(a)は着色時および消色時の光透 過スペクトルの例を示したものである。EPR など による検討から、フォトクロミズムに関与する電 子遷移のメカニズムが解明された(17)。その模式を 図4(b)に示す。すなわち着色過程は,紫外光によっ てUV中心から励起された電子が, 伝導帯を介して Fe3'のサイトにトラップされ、Fe2'に変わる電子遷 移。すなわち光還元反応であり、消色過程はFe2:準 位から電子が励起されてUV中心にもどる逆の過程 である。Feの単位にトラップされた電荷は、光照 射がない限りは室温で少なくとも数年以上の寿命 を有し、きわめて安定である。また興味深いこと に,これらの着色,消色過程での電子遷移は浅いト

図4 TbとFeを添加した定比組成 LiNb03 におけるフォトクロミズム

ラップ準位を介して行われること、さらに浅いトラップ準位における電子寿命は、Fe添加量の増加にしたがって減少し、数秒から数msの範囲でコントロールできることがわかった。この短寿命の浅いトラップ準位は、2色記録におけるメタステーブルなトラップとして利用できる。またこの結晶は、バイボーラロン方式のような厳密な遺元熱処理は不要であり、as-grown状態や酸化熱処理を行った状態で使用することができる点は大きなメリットである。

4.4 紫外光ゲート2色記録

この結晶に波長313nmの紫外光(ゲート光)で UV中心から電子を励起し、上述の浅いトラップ準 位に一時的に生成された電荷を用いて、被長 850mのレーザ光を書き込み光としてホログラム を形成することで、再生劣化のきわめて少ない2 の電子選移のモデルを図5(a)に示す。記録感度は 0.01~0.02cm/Jとバイポーラロン方式と同等で あった。本方式を用いて1ページ384×256ビットのディジタルホログラムの記録再生を実際に行い、2×10*のオーダの良好なビットエラー率が得 日本の参照光で約4時間の連続再生(加速試験)を行い、2×10*のオーダの良好などットエラー率が得 自たの参照光で約4時間の連続再生(加速試験)を行い、ビットエラー率、同断効率とも劣化はほとん どみられず、不揮発性に優れていることを確認し

図5 TbとFeを添加した定比組成LiNb03における3種類のホログラム記録方式の電荷移動に関する模式

た。ただし本方式はゲート光のフォトンエネルギー が大きいため多重記録には不向きである。

4.5 PREX記録

さらに筆者らは、紫外光(313mm)の照射によりあらかじめ着色させた状態からホログラムを記録する 方式を新たに開発した。これを"PREX"記録(PREX はpre-exposureの略)とよぶことにする。これは紫 外光の光遠元作用で深いトラップ準位(Fe^{*})に蓄積 むれた電荷をリソースとして使い、記録完了後結品 は透明になる(消色過程に相当)ため、従来の記録法 にはない以下のような特長がある。

- (1)熱を使わず、すべて光のみで記録/再生、消 去が行える。
- (2)選択的に部分初期化(つまり光感度の生成) が可能である。
- (3)不揮発再生(PREX2色記録), 準不揮発再生 (PREX単色記録)が可能である。

(4)記録完了後透明になるため光ダメージがない。 PREX2色とPREX単色の構成が可能である。PREX2 色記録は、紫外光プレ照射後、可視光(400~600nm 程度)をゲート光とし、近赤外の記録光で2色記録 を行うものである(19)。今回の実験では記録光とし て850nmを用いた。PREX2色記録における雷荷移動 のモデルを図5(b)に示した。筆者らは、PREX2色 記録法がホログラムの多重性に優れていることを 見いだした。PREX 記録においては、紫外光照射に よって一時的にFeのトラップ準位に蓄積した電荷 を使ってホログラムを形成するため、記録の間に 有効な電荷密度がダイナミックに変化する。筆者 らはこのPREX特有の電荷移動を考慮した多重記録 法を開発し、100ページの均一強度のホログラムを 角度多重記録することに成功した(19)。角度多重し たホログラムを記録時と同一強度の参照光で連続 再生(加速試験)を行い、データの揮発性の推定を 行ったところ、毎秒1Gbitの情報の転送を想定し た再生状態に換算すると、出力が半減するまでの 読み出し回数は8000万回程度にも相当するという 良好な非破壊再生能力を示した。

PREX単色記録は、紫外光プレ照射後、可視光の 記録光でFeのトラップのチャージを直接励起し て記録するものである⁽²⁰⁾。PREX単色記録における 電荷移動のモデルを図5(c)に示した。記録方式は 従来のFe添加LNの単色記録と類似であるが、記録 を十分に行ったあとでは結晶は透明になるため、 従来の単色記録に比べて、再生労化しにくくなる こと(第不揮発再生)や光ダメージがないという大 きなメリットがある。

筆者らは PREX 単色記録方式によるディジタル 信号の記録再生システムを開発した⁽¹⁾。 図 6(a) はその写真である。記録再生には被長532nmの図 体レーザを使用している。本記録再生システムを 用いて動画ファイル(Windows AVI形式、約2Mパ イト)を記録再生した。図 6(b)がその1フレーム の写真である。

5. まとめ

これまで述べてきたように、定比組成ニオブ酸 リチウム(LK)単結晶は従来の記録材料における鯖 課題を解決するためのプレークスルーとなる糸口 を与えてくれた。実用レベルの性能を得るために は今一歩の改善が必要であるが、不定比制御はそ のキーとなるものと考える。

本稿で筆者らは、新規に開発したTbとFeを共 ドープした定比組成LNにおけるフォトクロミズム 現象とそれを利用した新しいホログラム記録方式 "PREX"について述べた。これらの技術は、LNの実 用化をはばんできた再生劣化や光ダメージの問題 を解決するものである。これはLN中のFeイオンの 酸化還元状態を,光の照射によって自由自在にコ ントロールすることによって可能になった技術で ある。これまで、200℃程度での熱処理によって 行っていたメモリーの初期化プロセスを, 熱を用 いずに光のみで行うことを可能にしたという意味 でも画期的である。これは紫外光を所定のセクタ サイズに集光することで、任意のセクタを自由に 初期化ならびに書き換えを行うことが可能である ことを示している。PREX記録の多くのメリットは、 構成の複雑さや記録光感度とのトレードオフの関 係にある。とはいえ,レーザ光源や紫外光光源のコ ンパクト化. 低廉化は将来的には解決されるもの

と期待される。

30年も前に原理提案され、一時忘れ去られていたかのようなホログラムメモリーが復活しようとしている。この間ホログラムメモリー技術は多くの研究者を魅了し、いくたびかのブームが作られた。そのたびにニオブ酸リチウム単結晶は、システムのテスト用に使われてきたが、製品化されることはなかった。ここにきて、定比組成LNは30年の歴史を塗り替えるかもしれない。

これを機会に、有用なアプリケーションへの応用が進むことを期待するものである。ホログラフィックメモリーの動作は位相共役なアナログ像の多重記録である。位相共役再生法により光学系がはあかにコンパクトにできる可能性がある。また記録した多くの情報の中から、ビット毎の対照ではなく、曖昧検索を高速に行うというデータマイニング機能も注目される。デパイスは MEMS (Microelectromechanical Systems)技術の応用などにより小型化が可能になるであろう。ホログラムメモリーの競母を手となるストレージデバイスの分野は日進月を企業をしている。これらの競合デバイスとの競争にも勝たねばならない。いまがまさに正念場といえよう。

6. 謝辞

ここで紹介した研究成果は、科学技術庁無機材質研究所(現在は物質・材料研究機構)との共同研究の中で得られたものである。とくに同研究所第13研究グループの北村健二総合研究官、古川保典主任研究官、現在株式会社オキサイド社長)、竹川と使二主任研究官、李明産博士には、単結品育成と、基礎的結晶評価に関して全面的に協力をいただいた。この場を借りて厚く郷礼申し上げます。

参考文献

- P. J. van Heerden, "Theory of optical information storage in solids", Appl. Opt., Vol.2, 393-400(1963).
 Holographic Data Storage, eds. H. J. Coufal, D.
- Psaitis, and G. T. Sincerbox (Springer-Verlag, 2000).

 (3) Photorefractive Materials and Their Applications I, eds. P. Guenter and J. -P. Huignard (Springer Verlag.
- eds. P. Guenter and J. -P. Huignard (Springer-Verlag, 1988). (4) A. Ashkin, G. D. Boyd, D. M. Dziedzie, R. G. Smith,
- A. A. Ballman, J. J. Levinstein, and K. Nassau, Appl. Phys. Lett. Vol.9, 72 (1966). (5) F. S. Chen, J. T. LaMacchia, and D. B. Fraser, Appl. Phys. Lett. Vol. 13, 223(1968).
- (6) 北村健二, " 強誘電体光学単結品のプレイクス ルー-不定比欠陥の制御-", 応用物理, Vol. 69, 511(2000)

図6 試作したホログラムメモリー記録再生システムと記録再生したディジタル動画ファイルの一部

- (7)北村健二、竹川俊二、古川保興、中村 優、"21 世紀通信信報技術を支える光機能単結品材料 - 単 結晶の欠陥制御と特性の改善-"、マテリアルイン テグレーション Vol.13, No.8, 3-10(2000).
- (8)K. Kitamura, Y. Furukawa, S. Tanaka, T. Yamaji and H. Hatano: "Improved properties of stoichiometric lithium niobate for holographic data storage material", Proceedings SPIE, Vol. 3291 p115-119(Jan. 1998).
- (9) Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, and H. Hatano; "Improved properties of stoichiometric LiNbO, for Electro-optic applications", J. Intelligent Material System and Structures, Vol.10,p.470(2000).
- (10) H. Hatano, T. Yamaji, S. Tanaka, Y. Furukawa and K. Kitamura: "Investigation of the oxidation state of Feinstoichiometric Feii.NbO₂ for digital holographic recording," Japan. J. Appl. Phys. Pt. 1, Vol. 38 (1999) No. 38,1820-1825.
- (11) D. von der Linde, A. M. Glass and K. F. Rodgers: "Multiphoton photorefractive processes for optical storage in LiNbO,", Appl. Phys. Lett., Vol. 25, pp. 155-157 (1974).
- (12) D. von der Linde, A. M. Glass and K. F. Rodgers : "Optical storage using refractive index changes induced by two-step excitation", J. Appl. Phys., Vol. 47, pp. 217-220 (1976)
- (13) L. Hesselink, S. S. Orlov, A. Liu, A. Akella, D. Lande, and R. R. Neurgaonkar: "Photorefractive Materials for Nonvolatile Volume Holographic Data Storage", Science Vol. 282 (Nov 6), pp. 1089-1094 (1998).
- (14) H. Guenther, R. M. Macfarlane, Y. Furukawa, K. Kitamura, and R. Neurgaonkar: "Two-color holography in reduced near-stoichiometric lithium niobate", Appl. Opt. Vol. 37, pp.7611-7623 (1998).
- (15) M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura and H. Hatano: "Photoinduced charge transfer in near-stoichiometric LiNbO,", J.Appl. Phys. Vol.87 (2000) 1291-1294.
- (16) M. Lee, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, H. Hatano and S. Tanaka: "Photochromic effect in near-stoichiometric LiNbO, and two-color holographic recording", J. Appl. Phys. Vol. 88, p. 4476(2000).
- (17) M. Lee, J. G. Kim, S. Takekawa, Y. Furukawa, Y. Uchida, K. Kitamura, and H. Hatano: "Electron Paramagnetic Resonance Investigation of the Photochromic Effect in Near-Stoichiometric LiNbO, with Applicationto Holographic Storage", J. Appl. Phys. (to be published).
- (18) M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano and S. Tanaka: "Nonvolatile two-color holographic recording in Tb-doped LiNbO₃", Appl. Phys. Lett. Vol. 76 (2000), 1653.

- (19) H. Hatano, S. Tanaka, T. Yamaji, M. Lee, S. Takekawa, and K. Kitamyra: "Nonvolatile hologram storage in near-stofehiometric LiNbO, "Tb, Fe", in Advances in Photorefractive Materials, Effects and Devices, 2001 TOPS Vol. 62(to be published).
- (20) M. Lee, S. Takekawa, Y. Furukawa, K. Kitamura, H. Hatano: "Quasi-nondestructive holographic recordingin photochromic LiNbO₃", Phys. Rev. Lett. Vol. 84, (2000) 875-878.
- (21) パイオニア株式会社 報道資料(2000年9月21 同): http://www.pioneer.co.jp/press/release203-j.html.

著者

畑野 秀樹(はたの ひでき)

- a. 研究開発本部総合研究所研究統括部マテリアル研 究グループ
- b.1978 4:4 JJ
- c. 光磁気動画記録装置、投射型ディスプレイ素子などの研究開発を経て、現在体積ホログラムメモリーの研究に従事。工学博士。

田中 覚(たなか さとる)

- a. 研究開発本部総合研究所研究統括部マテリアル研 究グループ
- b.1988年4月
- c. ディスプレイ素子の研究, CD-R, R-LD, DLDなど 光ディスク川記録媒体の研究開発を経て、現在体 報ホログラムメモリーの研究に従事。

山路 崇(やまじ たかし)

- a. 研究開発本部総合研究所研究統括部マテリアル研 究グループ
- b.1988年4月
- c. 投射型ディスプレイ素子の研究開発を経て、現在 体積ホログラムメモリーーの研究に従事。

伊藤 善尚(いとう よしひさ)

- a. 研究開発本部総合研究所研究統括部マテリアル研 究グループ
- b.1979年4月
- c. 光ピックアップおよび周辺システム. 投射型ディ スプレイ装置、SHGブルーレーザ, 有機 ELフル カラーディスプレイの研究開発を経て、現在体積 ホログラムメモリーの研究に従事。

松下元(まつした はじめ)

- a.研究開発本部総合研究所研究統括部マテリアル研 究グループ
- b.1987年4月
- c.DAT 川磁気ヘッド、投射型ディスプレイ装置の研 発開発を経て、現在体積ホログラムメモリーの研 乳に従す。