Problema 2

A) Controle Monociclo: considere o controle monociclo visto em aula e o conjunto de instruções colocado como solução para o problema 1. Quais alterações são necessárias em tal controle monociclo para ser acrescentada a instrução "Add \$r1, 8(\$r2)" que soma o conteúdo do registrador \$r1 com o conteúdo da memória na posição 8+\$r2 e salva na mesma posição, isto é, Mem[\$r2+8] = \$r1 + Mem[\$r2+8].

Conjunto de Instruções

• Instrução Significado add \$r1, 8(\$r2) Mem[\$r2+8] = Mem[\$r2+8] + \$r1

Formatos:

op (6 bits)	r2 (5 bits)	r1 (5 bits)	offset (16 bits)
-------------	-------------	-------------	------------------

Exemplo: add \$5, 8(\$7)

Caminho de Dados: add \$5, 8(\$7)

Execução: add \$5, 8(\$7)

Memória				
end.	valor			
	•••			
1351	345			
1352	122			
1353	320			
1354	3453			
1355	57656			
	•••			

Execução: add \$5, 8(\$7)

Memória				
end.	valor			
•••	•••			
1351	345			
1352	122			
1353	320			
1354	3453			
1355	57656			
	•••			

Integração

Problema 2

B) Controle Multiclo: considerando novamente o problema 1, especifique uma implementação multiciclo para a instrução "Add 6(\$r1), 8(\$r2)" que significa Mem[\$r2+8] = Mem[\$r1+6] + Mem[\$r2+8].

Conjunto de Instruções

• Instrução Significado add 6(\$r1), 8(\$r2) Mem[\$r2+8] = Mem[\$r1+6] + Mem[\$r2+8]

Formatos:

op (6 bits)	r2 (5 bits)	r1 (5 bits)	offset 2 (8 bits)	offset 1 (8 bits)
- - -	(/	()	,	()

Exemplo: add 8(\$5), 4(\$7)

010101	00101	00111	00001000	00000110

Ciclos das Instruções MIPs

	Action for R-type	Action for memory-reference	Action for	Action for	
Step name	instructions	instructions	branches	jumps	
Instruction fetch	IR = Memory[PC]				
		PC = PC + 4			
Instruction		A = Reg [IR[25-21]]			
decode/register fetch		B = Reg [IR[20-16]]			
_	ALUOut = PC + (sign-extend (IR[15-0]) << 2)				
Execution, address	ALUOut = A op B	ALUOut = A + sign-extend	if (A ==B) then	PC = PC [31-28] II	
computation, branch/		(IR[15-0])	PC = ALUOut	(IR[25-0]<<2)	
jump completion					
Memory access or R-type	Reg [IR[15-11]] =	Load: MDR = Memory[ALUOut]			
completion	ALUOut	or			
·		Store: Memory [ALUOut] = B			
Memory read completion		Load: Reg[IR[20-16]] = MDR			

Solução com 8 ciclos

- Instrução Significado add 6(\$r1), 8(\$r2) Mem[\$r2+8] = Mem[\$r1+6] + Mem[\$r2+8]
- Formatos:

op (6 bits)	r2 (5 bits)	r1 (5 bits)	offset 2 (8 bits)	offset 1 (8 bits)
- - - -	\ /	\ /	()	\ /

- Ciclos:
 - IR = Memory[PC]; PC = PC+4 (IR guarda instrução)
 - A = Reg[IR[20-16]]; B = Reg[IR[25-21]] (A guarda o valor do registrador r1 e B guarda o valor do registrador r2)
 - E1 = A + sign-extend(IR[7-0]) (E1 guarda o endereço do primeiro operando)
 - E2 = B + sign-extend(IR[15-8]) (E2 guarda o endereço do segundo operando)
 - A = Memory[E1] (A guarda o valor do primeiro operando)
 - B = Memory[E2] (B guarda o valor do segundo operando)
 - ALUout = A + B (ALUout guarda o resultado da operação)
 - Memory[E2] = ALUout (Resultado da operação está na memória)

Solução com 7 ciclos

- Instrução Significado add 6(\$r1), 8(\$r2) Mem[\$r2+8] = Mem[\$r1+6] + Mem[\$r2+8]
- Formatos:

op (6 bits)	r2 (5 bits)	r1 (5 bits)	offset 2 (8 bits)	offset 1 (8 bits)
	- ()	()	(0.000)	(3 13113)

- Ciclos:
 - IR = Memory[PC]; PC = PC+4 (IR guarda instrução)
 - A = Reg[IR[20-16]]; B = Reg[IR[25-21]]
 - E1 = A + sign-extend(IR[15-8])
 - E2 = B + sign-extend(IR[7-0]); A = Memory[E1]
 - B = Memory[E2]
 - ALUout = A + B
 - Memory[E2] = ALUout