Liste der noch zu erledigenden Punkte

Layout!	2
so richtig?	2
Wort?	2
Skizze	2
skipped: Very fast intro: Matlab and images	2
motions?P.4	3
Matlab stuff	4
basis	5
hier fehlt noch das Kronecker underarrow	7
Matlab-Code	7
Layout S.12 u	8
Exercise ?!	9

Kapitel 1

1.Overview

• "image society" (webpages: 1995 text-based, 2005 image based, 2015 video based . . .) - data transfer rates ↑, compression rates ↑ critical shift: reading \rightarrow watching • "Photoshop"-ing (remove wrinkles, bumps, ...) • Images in medicine ("medical image proscessing"), x-ray, CT, MRI, ultrasound, ... ("modalities"). different questions: Layout! measurments $\stackrel{?}{\Rightarrow}$ image align bottom \exp l: tomography \Rightarrow difficult mathematical problems 2.) Image enhancements - denoising simple pixels/lines: "sandpaper" interpolation so richtig? global noise: smoothing - grayscale histogramm balancing (spreading) distortion makes straight lines (in real world) straight (in the images) - edge detection contour enhancement - segmentation detect and separate parts of the image sequence of images of the same object \Rightarrow Wort?, compare Skizze → object following in a movie Our Focus: - mathematical models/methods/ideas - (algorthms) - ((implementation))

skipped: Very fast intro: Matlab and images

Kapitel 2

2. What is an image?

2.1 Discrete and continuous images

There are (at least) two different points of view:

• continuous/analogue

object: matrix

tools: linear algebra (SVD, ...)

pros: (finite storage) storage, complexity

cons: limitations: zooming, rotations, ...

function

analysis (differentrage, integrate, ...)

freedom, tools, motions?P.4

(e.g. edge discontinuity)

storage (infinite amout of data)

arguably, one has:

- $\bullet \ \ {\rm real \ life} \Rightarrow {\rm continuous} \ ,\!\! {\rm images} \mbox{`` (objects)}$
- \bullet digital camers \Rightarrow discrete images

In general we will say:

Definition 2.1 ((mathematical) image). A (mathematical) image is a function

$$u:\Omega\to F$$
,

where:
$$\Omega \subset \mathbb{Z}^d$$
 (discrete) or $\Omega \subset \mathbb{R}^d$ (continuous) . . . $domain$ $d=2$ (typical case 2D), $d=3$ (,,3D image" = body or $2D + time$) $d=4$ (3D + time)

 $F \dots range \ of \ colours$

$$F = \mathbb{R}$$
 or $[0, \infty]$ or $[0, 1]$ or $\{0, \dots 255\}$, ... grayscale (light intensity) $F \subset \mathbb{R}^3 \dots RGB$ image (colored)

$$F = \{0, 1\} \dots \text{black/white}$$

 $\begin{array}{l} \text{3 Layers} \\ \Rightarrow \text{colored images:w} \end{array}$

Matlab stuff

Large parts of the course: analytical approach (i.e. continuous domain Ω) Since we want to differentiate, ... the image u.

Still: need to assume that also F ist continuous (not as $\{0,1\}, \{0,1,\ldots,255\}$ or \mathbb{N}) since otherwise the only differentiable (actually, the only continuous) functions $u:\Omega\to F$ are constant functions \Leftrightarrow single-colour images

Also: We usually take F one-dimensional $(F \subset \mathbb{R})$. Think of it as either

- gray scaled image, or
- treating R,G & B layer separately

2.2 Switching between discrete and continuous images

continuous \rightarrow discrete:

- divide the continuous image in small squared pieces (boxes) (superimpose grid)
- now: represent each box by one value
 - strategy 1: take function value $u(x_i)$ for $x_i = \text{midpoint of box } B_i$
 - strategy 2: use mean value

$$\frac{1}{|B_i|} \int_{B_i} u(x) dx$$

 \Rightarrow discrete image

- strategy 1: simple (and quick) but problemativ $(u(x_i) \text{ might represent } u|_{B_i} \text{ badly; for } u \in L^p$, single point evaluation not even defined)
- strategy 2: more komplex but also more "democratic" (actually closer to the way how CCD Sensors in digital camers work)

often the image value of the box B_i gets also digitized, i.e. fitted (by scaling & rounding) into range $\{0, 1, dots, 255\}$

$discrete \rightarrow continous$

This is of course more tricky ...

- Again: each pixel of the discrete image corresponds to a "box" of the continuous image (that is still to be constructed)
- \bullet Usually: \quad pixel value \mapsto function value at the $\mathit{midpoint}$ of the box
- Question: How to get the other function values (in the box)?

 $\begin{array}{ll} \underline{idea~1:} & \underline{just~take~the~function~value~of~the~nearest} \\ & \underline{midpoint~(,,nearest~neighbour~interpolation")} \end{array}$

For each $x \in B_i : u(x) := u(x_j)$ where $|x - x_j| = \min_k |x - x_k|$

- $\Rightarrow u(x) = u(x_i) \text{ for all } x \in B_i$
- \Rightarrow each box is uni-color
- ⇒ the continuous image is essentially still discrete

idea 2: (bi-) lineare interpolation

Let $a,b,c,d\dots$ function values at 4 surroundring adjacemt midpointes (\nearrow figure)

 $\alpha, \beta, 1-\alpha, 1-\beta...$ distance to dotted lines (\nearrow figure, w.l.o.g, bob is 1×1)

interpolation (linear) on the dotted line between a and b:

$$e := a + \alpha(b - a) = (1 - \alpha)a + ab$$

(1D - interpolation, convex combination)

similarly:
$$f = (a - \alpha)c + ad$$

Then: The same 1D-interpolation between e and f

$$\Rightarrow u(x) := (1 - \beta) \cdot e + \beta \cdot f$$

$$= (1 - \beta)[(1 - \alpha)a + ab] + \beta[(1 - \alpha)c + \alpha d]$$

$$= \underbrace{(1 - \alpha)(1 - \beta)}_{\in [0, 1]} a + \underbrace{\alpha(1 - \beta)}_{\in [0, 1]} b + \underbrace{(1 - \alpha)\beta}_{\in [0, 1]} c + \underbrace{\alpha\beta}_{\in [0, 1]} d$$

- \Rightarrow convex combination of the function values a, b, c, d at the the surrounding 4 midpoints (on which points is the nearest instead of taking just a, b, c or d depending)
- \Rightarrow 2D linear interpolation, bi-linear interpolation (can be interpreted as spline interpolation with bilinear basis splines).

Beispiel 2.2. Rotate image

by angle $\phi \neq k \cdot \frac{\pi}{2}$

• continuous image case: no problem

$$x = D_{\varphi} y$$
 $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, D_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$ 2D rotation matrix

$$y = D_{\varphi}^{-1} \ x = D_{-\varphi} \ x$$

 $\Rightarrow v(x) := u(y) = u(D_{-\varphi} x) \quad \forall x \in \text{domain of the rotated image}$

• discrete image case: problem!

For $x \in \text{domain of notated image}$, in general $D_{-\varphi} x \notin \text{domain of original image}^1$ Way out: v(x) := interpolation between the $u(\cdot)$ of the 4 surrounding pixels of $D_{-\varphi}$

Something to think about:

What happens in the limit (?) if we, starting with an image (discrete or continuous), repeatedly switch between discrete and continuous, non-stop ...?

Does the answer depend on the way of switching? (continuous \rightarrow discrete: midpoint or average, discrete \rightarrow continuous: nearest neighbour or bilinear?)

 $^{^{1}\}mathrm{it}\mathrm{'s}$ not an integer

Kapitel 3

3. Histogramm and first application

3.1 The histogramm

Definition 3.1 (histogram). Let $\Omega \subset \mathbb{Z}^d$, $F \subset \mathbb{R}$ discrete and $u : \Omega \to F$ a discrete discrete image. The function

$$H_u: F \to \mathbb{N}_0 \ (:= \mathbb{N} \cup \{0\})$$

with

$$H_u(k) := \# \{ x \in \Omega : u(x) = k \}, \quad k \in F$$

is called histogramm of the image u.

 $H_u(k)$ counts how often colour k appears in u.

$$\sum_{k \in F} H_u(k) = |\Omega| = \text{number of pixels in the whole image}$$

or

$$\frac{H_u(k)}{|\Omega|} = \text{relative frequence of colour } k \text{ in image } u$$
 (relative Häufigkeit)

Beispiel 3.2.
$$u = \frac{1}{2}$$
 has $H_n = \frac{1}{2}$

has
$$H_n =$$

If u ist a continous image, H_u can be understood as measure (generalized function)¹. Another way to writ this:

$$H_u(k) = \sum_{x \in \Omega} \delta_{u(x)}(k), \ k \in F$$
 $H_u(k) = \int_{\Omega} \delta_{u(x)}(k) dx, \ k \in F$

hier fehlt noch das Kronecker underarrow

Matlab-Code

Application: contrast enhancement 3.2

If the image only uses a small part of the available colour/grayscale "palette" F, then its contrast can be improved by "spreading" the histogramm over all of F. Simple idea:

¹density of a probability distribution

$$v = \varphi \circ u$$
$$v(k) = \varphi(u(k))$$

The above simple idea ("contrast stretching") corresponds to

$$\begin{split} \varphi: k_{\min} &\mapsto 0 \\ k_{\max} &\mapsto N \\ \text{and linear in between} \end{split}$$
 i.e
$$\varphi(k) &= \left[\frac{k-k_{\min}}{k_{\max}-k_{\min}}\right] \end{split}$$

Where $[\cdot]$ means ... rounding to the nearest integer (assuming that $F = \{0, 1, ..., N\}$.

A bit more sophisticated:

$$\varphi: (k_{\min} \mapsto 0)$$

$$k_{\max} \mapsto N$$
 and **non** linear in between

such that colour ranges that occur more frequently in u can occupy a larger range of colours in u. (\Rightarrow visibility \uparrow)

spread out according to frequency of occurence:

 \Rightarrow ,, density" is equalized over $F = \{0, \dots, N\}$

Layout S.12 u

Note: The new colours (i.e the location of the bars in the histogramm of u) only depend on the frequencies / height of the bars in H_u but not on the colours/location of the bars in H_u

Finally: The formula

$$\varphi(k) = \left[\frac{N}{|\Omega|} \sum_{l=0}^{k} H_u(l) \right]$$

This process is called "histogramm equalization"

Exercise ?!

3.3 Another application: conversion to b/w

Task: convert grayscale image to black white

- interesting for object detection/segmentation ...!

Idea: Find a threshold $t \in T$ s.t. the histogramm splits into two "characteristic" parts

For $t \in F$ put

black :=
$$\{k \in F : k \le t\}$$

white := $\{k \in F : k > t\}$

and

$$\widetilde{u} := \begin{cases} 0, & u(x) \in \text{black} \\ 1, & u(x) \in \text{white} \end{cases} \quad \widetilde{F} = \{0, 1\}$$

How to find the threshold t:

1.) Shape based methods If the histogramm is "biomodal" Put $t:=\frac{k_{\max_1}+k_{\max_2}}{2}$ or $t:=k_{\min}$

