THOMSON SEMICONDUCTORS

UAA4006A

SWITCH MODE POWER SUPPLY CONTROL CIRCUIT

The UAA4006A is a regulation and control device for fly-back switch mode power supplies using one external switching transistor.

- Includes oscillator, PWM and error amplifier
- Soft start
- Direct drive of the switching transistor
- Self-regulated positive base current (peak 1.5 A)
- Negative base current providing fast turn-off and allowing the best use of the safe operating area (peak 1.5 A)
- Switching transistor protected against saturation failure
- Instantaneous collector current limitation
- Positive power supply monitoring
- On chip thermal protection
- Adjustable minimum conducting time for use of a snubber circuit
- Internal reference voltage
- · Start up with very low supply current
- Application note available AN027R1

ORDERING INFORMATION

PART NUMBER	PACI	(AGE
	DP	SP
UAA4006A	•	•

SWITCH MODE POWER SUPPLY CONTROL CIRCUIT

DP SUFFIX
PLASTIC PACKAGE

CB-501

PLASTIC PACKAGE

PIN ASSIGNMENTS

(Top view)

CB-79

Ct : Oscillator timing capacitor
Rt : Oscillator timing resistor
VCC : Supply voltage
VCE : VCE(sat) sensing

Power stage positive supply
 Power stage output
 Power stage negative supply
 Secondary current monitoring input
 Primary current limit input

ton : ton(max) limit access
Sop : Amplifier output
E : Amplifier input
GND : Ground

(Front view) CB-501

MAXIMUM RATINGS

Rating	Symbol	Value	Unit V	
Supply voltage	Vcc	+ 15		
Supply voltages (Power stage) Positive Negative	V+ V-	+ 15 -6	V	
Voltage between pins 11 and 13	v+-v-	+ 18	٧	
Output current	10	±1.6	Α	
Current into input I _C (internal protection diodes)	_	±5	mA	
Current into input Is	_	±5	mA	
Minimum value of resistance R _t	R _{t(max)}	18	kΩ	
Junction temperature range	Τį	- 40 to + 150	°C	
Storage temperature range	T _{stg}	-40 to +150	°C	

THERMAL CHARACTERISTICS

Characteristic	Symbol	CB-79	CB-501	Unit
Junction-ambient thermal resistance	R _{th(j - a)}	50	40	°C/W
Junction-case thermal resistance	R _{th(j - c)}	7	2.5	°C/W

CASE	Ct	Rt	VCC	VCE	V+	٧o	v-	NC	İs	1c	ton	Sop	E	GND
CB-79	1	2	3	4	5	6	7	8, 9, 10	11	12	13	14	15	16
C8-501	9	10	11	12	13	14	8	1, 15	2	3	4	5	6	7

CIRCUIT DESCRIPTION

OSCILLATOR

The oscillator provides a triangular waveform with a fall time much smaller than the rise time. The voltage swings between +1.5 V and about $V_{CC}/2$. The maximum operating frequency is 60 kHz, the period being given by $T_{OSC}=0.5R_{t}C_{t}$ Resistor R_{t} adjusts the frequency, but determines also the value of $t_{On(min)}$ (see logic processor).

PULSE WIDTH MODULATOR (PWM)

The variable duty-cycle signal is elaborated by comparing the oscillator voltage (pin C₂) to the inverted error amplifier output voltage. Another comparator determines the maximum value of the duty-cycle by comparing the oscillator signal with the voltage on pin ''ton'. If V(ton) = 0, then the maximum duty-cycle is internally set to 0.9 $T_{\rm OSC}$, otherwise, the maximum duty-cycle is given by :

$$\left(\frac{t_{on}}{T_{osc}}\right)$$
 max = 1 - $\frac{R_{ton}}{2R_t}$

(valid only if ${\rm Rt_{on}} > 0.2~{\rm R_{t}}$, where ${\rm Rt_{on}}$ is the resistor inserted between t_{on} pin and ground).

CURRENT LIMITATION

A level lower than $-0.15\,\mathrm{V}$ on pin I_C involves two actions : • a direct action through the logic processor which stops the drive until the end of the oscillator period ;

• an indirect action through the t_{OR} funtion. The change of state at the output of comparator I_C is applied to pin t_{OR} as long as the overload current persists. By inserting capacitor C_B between pin t_{OR} and V_{CC} (about $0.1~\mu F$), the voltage at this point rises by a quantity ΔV proportional to the duration and the frequency of the overcurrent.

This will consequently lower the maximum conduction ratio, thus decreasing the frequency of the overcurrent. At the end of an overload condition, capacitor Cg slowly charges up through a 20k internal impedance, in order to return progressively to normal operation.

NOTE: If capacitor CB is omitted, direct action will only be implemented.

SUPERVISION OF THE SECONDARY CURRENT

In order to avoid the magnetization of the transformer core in case of short-circuits or heavy overloads on the secondary winding, a new cycle of conduction can only begin after the secondary current has completly fallen to zero.

This task is accomplished by comparator Is whose threshold is 0.1 V and detects the zero crossing of the secondary current.

PROTECTION AGAINST DESATURATION

If, because of a too low base current or a too heavy load, the collector to emitter voltage of the switching transistor rises above 4 V approximately, the output of comperator VCE changes state, and the drive is interrupted.

FRROR AMPLIFIED

This is an operational amplifier whose open loop gain is about 1000. The input current are less than 3 μ A, and the input offset voltage is lower than 5 mV.

The input common-mode voltage range is 0 V to (VCC - 3 V). Due to an internal limitation the output source current of the amplifier can not exceed 2 mA.

START SWITCH

An internal switch is inserted between pin VCC supply line and internal voltage.

During power-up, this switch closes when V_{CC} reaches +7.2 V. The leakage current (I_{CC})L is about 0.4 mA before the switch closes. This original feature enables starting the converter by means of a high value resistance directly connected between V_{CC} and the high supply voltage. The smoothing capacitor on V_{CC} supply provides the energy required for the start. The turn-off of the internal switch requires that V_{CC} falls below +6.2 V.

THERMAL PROTECTION

This protection becomes active when the junction temperature reaches +160°C.

LOGIC PROCESSOR

A logic unit processes the information coming from the fault detectors, and ensures that the output signal fulfils two conditions:

- No double pulsing with a period : the occurrence of a hault detection is memorized until the end of the period.
- To allow the discharge of a snubber network, the minimum width of the output pulse is set at a given value ton(min) by an internal monostable. If this monostable is not triggered, there will be no conduction. The duration ton(min) is programmable by resistor R₁ using the relationship:

$$t_{on(min)} = 0.144 R_t - 2@(V_{CC} = +12 V)$$

 μs (kΩ)

ELECTRICAL CHARACTERISTICS

 $T_{amb} = +25$ °C, $V_{CC} = \pm 10$ V, $V^- = -5$ V (Unless otherwise specified)

Characteristic	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	_	_	14	V
Rise supply voltage threshold	VCCR	6.5	7.2	7.9	V
Fall supply voltage threshold	VCCF	5.3	6.0	6.7	٧
Hysteresis on V _{CC} threshold	ΔV _{CC}	1	1.2	1.7	V
Current I _{CC} (V _{CC} under threshold voltage)	_	_	0.4	1	mA
Supply current (V _{CC} = + 10 V)	lcc	_	10	-	mA
Positive supply voltage (Power stage)	V ⁺ .	4	-	15	V
Negative supply voltage (Power stage)	V-	6	_	-1	v
Threshold of input I _C	^I C(th)	-0.176	-0.16	-0.144	v
¹ C input current (V(I _C) = 0 V)	-	-	5	20	μΑ
Threshold of input Is	IS(th)	0.065	0.1	0.135	V
Is input current $(V_{(I_S)} = 0 \ V)$	_	_	5	20	μΑ
Error amplifier open-loop gain	Av	60	_	_	dB
Error amplifier offset voltage	V _{IO}	-	5	_	mV
Internal reference voltage	V _(ref)	2.1	2.2	2.3	V
Oscillator frequency $f_{OSC} = \frac{1}{T_{OSC}}$	fosc	_	2/R _t C _t	60	kHz
Value of resistance R _t (V _{CC} = +14 V) (See figure 1) $(V_{CC} = +8 V)$	Rt	39 18	50 50	100 100	kΩ
Output current (V $^+$ – V _S = 3 V, V _S – V $^+$ = 3 V)	lo	±1.5		-	Α
VCE comparator threshold voltage	V _{CE(th)}	3.6	4	4.4	٧
$t_{on(min)}$ adjustment range ($V_{CC} = +14 \text{ V}$) (See figure 1) ($V_{CC} = +8 \text{ V}$)	-	4	_	8 13	μs
$\label{eq:max_duty_cycle} \text{Max duty cycle}: \left(\frac{t_{on}}{T_{osc}}\right)_{max} \frac{(R_{t_{on}}{>} 0.2~R_{t}) - \text{Note 1}}{(R_{t_{on}}{<} 0.2~R_{t})}$		- -	1-\frac{R_{ton}}{2R_{t}} 0.9	-	
Oscillator frequency drift with temperature (V _{CC} = 12 V)	_	-	0.02	0.05	%/°C
Oscillator frequency drift with VCC		-	0.2	0.5	%/V

Note 1 : $R_{t_{On}}$ externally connected between pin " t_{On} " and GND R_t externally connected between pin " R_t " and GND

FIGURE 1 - ton(min) ADJUSTMENT RANGE

OUTPUT STAGE

ON-state

The positive stage achieves a very efficient drive of the switching transistor.

Its features are essentially :

- · Direct drive (neither inductor, nor tranformer);
- The transistor stays in a quasi-saturation mode, and thus has a reduced storage time;
- · The drive energy is strictly limited to the required amount;
- · Easy implementation.

K1 is closed to turn the positive stage on. The maximum value of the positive base current is determined by the exter-

nal limitation resistor R (between VCC and V⁺). Diode D maintains Q in a quasi-saturation mode : the more Q is saturated, the more diode D will shunt an important part of the drive current IB1, through diode D1.

Resistor R_B has a low value (about 1 Ω), and is used to stabilize the regulation loop. For a good efficiency of the negative drive, the value of this resistor should be as low as possible.

Integrated Darlington T₁ is able to supply a peak current of 1.5 A with a 2 V saturation voltage.

The voltage V_{CE} on transistor Q is : V_{CE}=V_D + R_B I_{B1}

OFF-state

The turn off is accomplished in two steps:

- an immediate action through K₂ which connects the base of the switching transistor to the negative supply through a 120 Ω integrated resistor (current IB2) :
- · a detayed action through K3 which is closed only after the desaturation of the external transistor. This is detected by comparator VCE, when the collector to emitter voltage reaches 4.5 V.

Darlington T₃ can supply 1.5 A with a 2 V saturation voltage (current lg3).

NOTE: The negative drive IB3 for the removal of the stored charges is delayed in order to limit the slope dlg/dt at the on-off transition. A high dlg/dt might indeed lead to a destructive overheating of the base-collector junction (see "The power transistor in its environment" published by Thomson-CSF Division Semiconducteurs Discrets).

SELF REGULATED BASE CURRENT IB = f(VCE)

TYPICAL WAVEFORMS

LIMITS OF THE DUTY CYCLE

CURRENT LIMITATION

50 W FLY-BACK CONVERTER

EXTERNAL SYNCHRONIZATION

The oscillator may be synchronized to an external frequency f_{ext} so that : $f_{\text{osc}}\!<\!f_{\text{ext}}\!<\!1.2$ f_{osc}

These specifications are subject to change without notice. Please inquire with our sales offices about the availability of the different packages.