MATHEMATICAL FORMULAE

Algebra

1.
$$(a+b)^2 = a^2 + 2ab + b^2$$
; $a^2 + b^2 = (a+b)^2 - 2ab$

2.
$$(a-b)^2 = a^2 - 2ab + b^2$$
; $a^2 + b^2 = (a-b)^2 + 2ab$

3.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$$

4.
$$(a+b)^3 = a^3 + b^3 + 3ab(a+b)$$
; $a^3 + b^3 = (a+b)^3 - 3ab(a+b)$

5.
$$(a-b)^3 = a^3 - b^3 - 3ab(a-b)$$
; $a^3 - b^3 = (a-b)^3 + 3ab(a-b)$

6.
$$a^2 - b^2 = (a+b)(a-b)$$

7.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

8.
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

9.
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + \dots + b^{n-1})$$

10.
$$a^n = a.a.a...n$$
 times

11.
$$a^m.a^n = a^{m+n}$$

12.
$$\frac{a^m}{a^n} = a^{m-n} \text{ if } m > n$$

$$= 1 \quad \text{if } m = n$$

$$= \frac{1}{a^{n-m}} \text{ if } m < n; a \in R, a \neq 0$$
13. $(a^m)^n = a^{mn} = (a^n)^m$

13.
$$(a^m)^n = a^{mn} = (a^n)^m$$

14.
$$(ab)^n = a^n.b^n$$

$$15. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

16.
$$a^0 = 1$$
 where $a \in R, a \neq 0$

16.
$$a^0 = 1$$
 where $a \in R, a \neq 0$
17. $a^{-n} = \frac{1}{a^n}, a^n = \frac{1}{a^{-n}}$

18.
$$a^{p/q} = \sqrt[q]{a^p}$$

19. If
$$a^m = a^n$$
 and $a \neq \pm 1, a \neq 0$ then $m = n$

20. If
$$a^n = b^n$$
 where $n \neq 0$, then $a = \pm b$

21. If
$$\sqrt{x}$$
, \sqrt{y} are quadratic surds and if $a + \sqrt{x} = \sqrt{y}$, then $a = 0$ and $x = y$

22. If
$$\sqrt{x}$$
, \sqrt{y} are quadratic surds and if $a + \sqrt{x} = b + \sqrt{y}$ then $a = b$ and $x = y$

23. If
$$a, m, n$$
 are positive real numbers and $a \neq 1$, then $\log_a mn = \log_a m + \log_a n$

24. If
$$a, m, n$$
 are positive real numbers, $a \neq 1$, then $\log_a \left(\frac{m}{n}\right) = \log_a m - \log_a n$

25. If a and m are positive real numbers,
$$a \neq 1$$
 then $\log_a m^n = n \log_a m$

26. If
$$a, b$$
 and k are positive real numbers, $b \neq 1, k \neq 1$, then $\log_b a = \frac{\log_k a}{\log_k b}$

27.
$$\log_b a = \frac{1}{\log_a b}$$
 where a, b are positive real numbers, $a \neq 1, b \neq 1$

28. if
$$a, m, n$$
 are positive real numbers, $a \neq 1$ and if $\log_a m = \log_a n$, then $m = n$

- 29. if a + ib = 0 where $i = \sqrt{-1}$, then a = b = 0
- 30. if a + ib = x + iy, where $i = \sqrt{-1}$, then a = x and b = y
- 31. The roots of the quadratic equation $ax^2 + bx + c = 0$; $a \neq 0$ are $\frac{-b \pm \sqrt{b^2 4ac}}{2a}$

The solution set of the equation is $\left\{\frac{-b+\sqrt{\Delta}}{2a}, \frac{-b-\sqrt{\Delta}}{2a}\right\}$ where $\Delta = \text{discriminant} = b^2 - 4ac$

- 32. The roots are real and distinct if $\Delta > 0$.
- 33. The roots are real and coincident if $\Delta = 0$.
- 34. The roots are non-real if $\Delta < 0$.

roots.

- 35. If α and β are the roots of the equation $ax^2 + bx + c = 0, a \neq 0$ then

 i) $\alpha + \beta = \frac{-b}{a} = -\frac{\text{coeff. of } x}{\text{coeff. of } x^2}$ ii) $\alpha \cdot \beta = \frac{c}{a} = \frac{\text{constant term}}{\text{coeff. of } x^2}$ 36. The quadratic equation whose roots are α and β is $(x \alpha)(x \beta) = 0$ i.e. $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ i.e. $x^2 - Sx + P = 0$ where S = Sum of the roots and P = Product of the
- 37. For an arithmetic progression (A.P.) whose first term is (a) and the common difference is (d).
 - i) n^{th} term= $t_n = a + (n-1)d$
 - ii) The sum of the first (n) terms $= S_n = \frac{n}{2}(a+l) = \frac{n}{2}\{2a+(n-1)d\}$ where l = last term = a + (n-1)d.
- 38. For a geometric progression (G.P.) whose first term is (a) and common ratio is (γ) ,
 - i) n^{th} term= $t_n = a\gamma^{n-1}$.
 - ii) The sum of the first (n) terms:

$$S_n = \frac{a(1 - \gamma^n)}{1 - \gamma} \quad \text{if } \gamma < 1$$
$$= \frac{a(\gamma^n - 1)}{\gamma - 1} \quad \text{if } \gamma > 1$$
$$= na \quad \text{if } \gamma = 1$$

- 39. For any sequence $\{t_n\}, S_n S_{n-1} = t_n$ where $S_n = \text{Sum of the first } (n)$
- 40. $\sum_{n=1}^{n} \gamma = 1 + 2 + 3 + \dots + n = \frac{n}{2}(n+1).$
- 41. $\sum_{n=1}^{n} \gamma^2 = 1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n}{6}(n+1)(2n+1).$

42.
$$\sum_{\gamma=1}^{n} \gamma^3 = 1^3 + 2^3 + 3^3 + 4^3 + \dots + n^3 = \frac{n^2}{4} (n+1)^2.$$

43.
$$n! = (1).(2).(3)....(n-1).n$$
.

44.
$$n! = n(n-1)! = n(n-1)(n-2)! = \dots$$

45.
$$0! = 1$$
.

46.
$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^3 + \dots + b^n, n > 1.$$