APEC Math Review

Part 3 Functions

Ling Yao

August, 2020

Relations

A collection of ordered-pairs (s, t) constitutes a **binary relation** sRt between the sets S and T.

- A relation \mathcal{R} on S is **complete** if for all elements x and y in S, $x\mathcal{R}y$ or $y\mathcal{R}x$.
- A relation \mathcal{R} on S is **transitive** if for any three elements x y and z in S, $x\mathcal{R}y$ and $y\mathcal{R}z \implies x\mathcal{R}z$.

Recall the exercise from the last lecture, a preference relation is **rational** if it is both complete and transitive.

Correspondences and functions

- A correspondence is a relation that associates each element of one set (domain) with a set of elements of another set (range)
- A function is a relation that associates each element of the domain with a single, unique element of the range.

$$f: D \rightarrow R$$

- every element in the range is mapped into by some point in the domain: **onto**
- every element in the range is assigned to at most a single point in the domain: one-to-one

Indifference curves

We all remember seeing this:

How do we characterize the shape of indifference curves with properties of the utility function?

Level, superior and inferior sets

Quasiconcavity and quasiconvexity

$$f: D \to R$$
 is quasiconcave iff, for all \mathbf{x}^1 and \mathbf{x}^2 in D,
$$f(t\mathbf{x}^1 + (1-t)\mathbf{x}^2) \ge min[f(\mathbf{x}^1), f(\mathbf{x}^2)] \quad \forall t \in [0, 1]$$

$$f: D \to R$$
 is **quasiconvex** iff, for all \mathbf{x}^1 and \mathbf{x}^2 in D,
$$f(t\mathbf{x}^1 + (1-t)\mathbf{x}^2) \le max[f(\mathbf{x}^1), f(\mathbf{x}^2)] \quad \forall t \in [0,1]$$

The quansiconcavity and quasiconvexity are strict when the inequality holds for all $\mathbf{x}^1 \neq \mathbf{x}^2$.

A quasiconcave and quasiconvex function

A quasiconcave but not quasiconvex function

A quasiconcave function of two variables

A quasiconcave function of two variables

 $f: D \to R$ is **quasiconcave** iff S(y) is a **convex** set for all $y \in \mathbb{R}$.

A quasiconvex function of 2 variables

A quasiconvex function of 2 variables

 $f: D \to R$ is quasiconvex iff I(y) is a convex set for all $y \in \mathbb{R}$.

Concavity and convexity

A real-valued function f defined on a convex subset $D \subset \mathbb{R}^n$ is **concave** if for all $\mathbf{x}^1, \mathbf{x}^2 \in D$ and for all $t \in [0, 1]$,

$$f(t\mathbf{x^1} + (1-t)\mathbf{x^2}) \ge tf(\mathbf{x^1}) + (1-t)f(\mathbf{x^2})$$

It is convex if

$$f(t\mathbf{x^1} + (1-t)\mathbf{x^2}) \le tf(\mathbf{x^1}) + (1-t)f(\mathbf{x^2})$$

The concavity and convexity are **strict** when the inequality holds.

Concave function in 2D

Concave but not strictly concave

Convex function in 2D

Questions

- What is the relationship between a convex function and a convex set?
 - f convex $\implies f$ quasiconvex \Leftrightarrow inferior sets convex
- What is the relationship between a concave function and a convex set?
 - f concave ⇔ points on an below the graph form a convex set
- What is a concave set?
 - not defined

Exercise

Prove that if *f* is concave, it is quasiconcave.

Continuity

A function $f: \mathbb{R}^m \to \mathbb{R}^n$ is **continuous** at $\mathbf{x}_0 \in \mathbb{R}^m$ if whenever $\{\mathbf{x}_n\}_{n=1}^{\infty}$ is a sequence in \mathbb{R}^m which converges to \mathbf{x}_0 , then the sequence $\{f(\mathbf{x}_n)\}_{n=1}^{\infty}$ in \mathbb{R}^n converges to $f(\mathbf{x}_0)$. If D is a compact subset of \mathbb{R}^m , then f(D) is a compact subset of \mathbb{R}^n .

Continuity

Given $\mathbf{A} \subset \mathbb{R}^n$ and the closed set $\mathbf{Y} \subset \mathbb{R}^n$, the correspondence $f: \mathbf{A} \to \mathbf{Y}$ is **upper hemicontinuous(uhc)** if it has a closed graph and the images of compact sets are bounded, that is for every compact set $\mathbf{B} \subset \mathbf{A}$ the set $f(\mathbf{B}) = \{\mathbf{v} \in \mathbf{Y} : \mathbf{v} \in f(\mathbf{x}) \text{ for some } \mathbf{x} \in \mathbf{B}\}$ is bounded.

Given $\mathbf{A} \subset \mathbb{R}^n$ and a compact set $\mathbf{Y} \subset \mathbb{R}^n$, the correspondence $f: \mathbf{A} \to \mathbf{Y}$ is **lower hemicontinuous(lhc)** if for every sequence $\mathbf{x}^m \to \mathbf{x} \in \mathbf{A}$ with $\mathbf{x}^m \in \mathbf{A}$ for all m, and every $\mathbf{y} \in f(\mathbf{x})$, we can find a sequence $\mathbf{y}^m \to \mathbf{y}$ and an integer M such that $\mathbf{y}^m \in f(\mathbf{x}^m)$ for m > M.

A correspondence is **continuous** if it is both uhc and lhc.

Brouwer's fixed-point theorem

Suppose $D \subset \mathbb{R}^m$ is a nonempty, compact, convex set, and that $f: D \to D$ is a continuous function from D to itself. Then $f(\cdot)$ has a fixed point; that is, there is an $\mathbf{x} \in D$ such that $\mathbf{x} = f(\mathbf{x})$.

Kakutani's fixed-point theorem

Suppose $D \subset \mathbb{R}^m$ is a nonempty, compact, convex set, and that $f: D \to D$ is a continuous **upper hemicontinuous correspondence** from D to itself with the property that the set $f(\mathbf{x}) \subset D$ is non-empty and convex for every $\mathbf{x} \in D$. Then $f(\cdot)$ has a fixed point; that is, there is an $\mathbf{x} \in D$ such that $\mathbf{x} = f(\mathbf{x})$.

