Лабораторная работа 5. 5. Компьютерная сцинтиляционная γ -спектрометрия

Лось Денис (группа 618)

21 декабря 2018

Цель работы: исследовать сцинтиляционные гамма-спектрометры на основе неорганического кристалла NaI и органической сцинтиллирующей пластмассы

Введение в теоритическую часть

Положение пика обратного рассеяния определяется по формуле:

$$E_{\text{oбp}} = \frac{E}{1 + 2E/mc^2},$$

где E — энергия фотопика.

Энергетическое разрешение спектрометра

$$R_i = \frac{\Delta E_i}{E_i}$$

, где ΔE_i — ширина пика полного поглощения на половине высоты, E_i — энергия регистрируемого излучения.

Ход работы и результаты исследования

Построение калибровочного графика

N канала	E_i , МэВ
435	0.511
1042	1.275
553	0.662

Таблица 1: Данные для построения калибровочного графика

Рис. 1: Калибровочный график $N=a\cdot E_i+b$

Из построенного графика с помощью МНК

$$a = (795 \pm 3) \text{ (M$\cdot B)}^{-1}$$

 $b = (28 \pm 3)$

С помощью калибровочного графика определим искомые величины для остальных образцов

Источник	N_i	ΔN_i	E_i , МэВ	ΔE_i , МэВ	R_i
Am	92	25	0.081	0.031	0.391
Со	956	63	1.167	0.079	0.068
Со	1093	58	1.340	0.073	0.054
Eu	140	29	0.141	0.036	0.259
Eu	228	40	0.252	0.050	0.200
Eu	306	37	0.350	0.047	0.133

Построим график $R_i^2 = f(1/E_i)$

Произведём измерения для края комптоновского спектра

Источник	N_i	$E_{\text{ком}}, \text{ МэВ}$
Со	808	0.981
Cs	300	0.342
Na	264	0.297

Построим график зависимости энергии пика обратного рассеяния от энергии

