Python for Data Analysis

Drug Consumption

Table of content

- Presentation of the Database
 - Database features
- Data Pre Processing for Visualization
 - Cleaning
 - o Replacement
- Data Visualization
 - Data Distribution
 - Data Analysis
- Data Pre Processing for Modeling
- Data Modeling

Missing Values

We observe that there are no missings values in the DataFrame.

We won't need do delete any rows.

```
print(df.isna().sum())
```

Age	0
Gender	0
Education	0
Country	0

. .

Ketamine	0
Legalh	0
LSD	0
Meth	0
Mushrooms	0
Nicotine	0
Semer	0
VSA	0
dtype: int64	

Database features

Personal Information

- Age range
- Gender
- Level of education
- Country
- Ethnicity

Personality Scores

- N score
- E score
- O score
- A score
- C score
- BIS-11
- ImpSS

Consumption Frequency

- Alcohol
- Amphetamines
- Amyl nitrite
- Benzodiazepine
- Cannabis
- Chocolate
- Cocaïne
- Caffeine
- Crack
- Ecstasy

- Heroin
- Ketamine
- Legal highs
- LSD
- Methadone
- Mushrooms
- Nicotine
- volatile substance
- Semeron (fictionnal)

Presentation of the database

- Created by E. Fehrman, V. Egan and E. Mirkes [1]
- Record of 1885 individuals regarding their profile and drugs consumption

Data Pre Processing - Overview

Goal of this task: Prepare the dataframe for the followings parts:

- Data visualization
- Modeling

A specific data pre processing is required for each part.

Missing Values

We observe that there are no missings values in the DataFrame.

Thus we won't need do delete any rows.

```
print(df.isna().sum())
```

Age	0	
Gender	0	
Education	0	
Country	0	

. .

Ketamine	0
Legalh	0
LSD	0
Meth	0
Mushrooms	0
Nicotine	0
Semer	0
VSA	0
dtype: int64	

A quick look at the DataFrame...

	Age	Gender	Education	Country	Ethnicity	Nscore	Escore	Oscore	Ascore
ID									
1	0.49788	0.48246	-0.05921	0.96082	0.12600	0.31287	-0.57545	-0.58331	-0.91699
2	-0.07854	-0.48246	1.98437	0.96082	-0.31685	-0.67825	1.93886	1.43533	0.76096
3	0.49788	-0.48246	-0.05921	0.96082	-0.31685	-0.46725	0.80523	-0.84732	-1.62090
4	-0.95197	0.48246	1.16365	0.96082	-0.31685	-0.14882	-0.80615	-0.01928	0.59042
5	0.49788	0.48246	1.98437	0.96082	-0.31685	0.73545	-1.63340	-0.45174	-0.30172

• At this point, the values are not understable. We'll replace them for the visualization's purpose by their corresponding readable values given in the study

Example: Replacement of the Age column

```
# Replacement of the Age column's values
                                  age_dict = {
ID
                                      -0.95197: '18-24',
                                                                                                        35-44
                                      -0.07854: '25-34',
         0.49788
                                                                                                        25-34
                                      0.49788: '35-44',
        -0.07854
                                                                                                        35-44
                                      1.09449: '45-54',
        0.49788
                                      1.82213: '55-64',
                                                                                                        18-24
        -0.95197
                                      2.59171: '65+'
                                                                                                        35-44
         0.49788
                                  df_v.replace({"Age": age_dict},inplace=True)
```

We repeated this processes for every column of the DataFrame to get understandable values

DataFrame ready for visualization

ID	Age	Gender	Education	Country	Ethnicity	Nscore	Escore	Oscore	Ascore
1	35- 44	Female	Professional certificate/ diploma	UK	Mixed- White/Asian	39.0	36.0	42.0	37.0
2	25- 34	Male	Doctorate degree	UK	White	29.0	52.0	55.0	48.0
3	35- 44	Male	Professional certificate/ diploma	UK	White	31.0	45.0	40.0	32.0
4	18- 24	Female	Masters degree	UK	White	34.0	34.0	46.0	47.0
5	35- 44	Female	Doctorate degree	UK	White	43.0	28.0	43.0	41.0

Data Pre Processing - Modeling

In this section, we prepare the DataFrame for the Modeling part.

However, some columns contain some **nominal values**,

But the models can only allow numerical values in input.

Gender

Female

Male

Male

Example of nominal values in the DataFrame

Data Vizualisation: Presentation of the data distribution:

Data Vizualisation: Analysis steps

- Analyze how age correlates with the use of different drugs.
- Search for differences in drug consumption based on the gender.
- Analyze drug use patterns based on the country of residence.
- Explore correlations between the use of different drugs. For example,
 do individuals who use one type of drug tend to use another?
- Explore how different personality traits (NEO-FFI- R) correlate with drug use.

Age and Drug Use

```
usage_mapping = {
    'Never Used': 0,
    'Used over a Decade Ago': 1,
    'Used in Last Decade': 5,
    'Used in Last Year': 10,
    'Used in Last Month': 50,
    'Used in Last Week': 100,
    'Used in Last Day': 200
}
```


Gender and Drug Use

Country

Drug Use Patterns by Country

Usage

Strategies proposed

We first wanted to arbitrarily attribue numbers to the categories

(example for Age : 18-24 = 0, 25-34 = 1...)

But this would create a bias in the model.

Hence we proposed to represent the categories as the following:

Individual	18-24	25-34	35-44	45-54	55-64
Indiv 1	1	0	0	0	0
Indiv 2	0	0	0	1	0

In this case, an individual with zeros in all categories would belong to the 65+ category.

Application on the DataFrame

```
age_d = pd.get_dummies(df_v.Age)
age_d.drop([age_d.columns[len(age_d.columns)-1]], axis=1, inplace=True)

df_m = pd.concat([df_m, age_d], axis=1, join='inner')
```


DataFrame ready for Modeling

1 0 0 1 2 0 1 0 3 0 0 1	0 0						Used	Decade	in Last Month	in Last Year	Used	in Last Day	Last Decade	in Last Month	in Last Week	in Last Year
2 0 1 0	0 0															
		1	0	0	0	0	 1	0	0	0	1	0	0	0	0	0
3 0 0 1	0 0	0	1	0	0	0	 1	0	0	0	1	0	0	0	0	0
	0 0	0	0	0	0	0	 1	0	0	0	1	0	0	0	0	0
4 1 0 0	0 0	1	0	0	0	0	 1	0	0	0	1	0	0	0	0	0
5 0 0 1	0 0	1	1	0	0	0	 1	0	0	0	1	0	0	0	0	0
1884 1 0 0	0 0	1	0	0	0	0	 1	0	0	0	0	0	0	0	1	0
1885 1 0 0	0 0	0	0	0	0	0	 1	0	0	0	1	0	0	0	0	0
1886 0 1 0	0 0	1	0	0	0	0	 1	0	0	0	1	0	0	0	0	0
1887 1 0 0	0 0	1	0	0	0	0	 1	0	0	0	1	0	0	0	0	0
1888 1 0 0	0 0	0	0	0	0	0	 1	0	0	0	0	0	1	0	0	0

Modeling

Our entry Values :

- Age
- Gender
- Education level
- Country of residence
- Ethnicity
- Personality Test Scores NEO-FFI-R et BIS-11

Values to predict:

The frequency of consuption of each drug for each individual

Classification multi-label

- Classification models -> binary classification
- One vs All -> multi-class classification
- MultiLabelBinarizer -> multi-label classification

Models and metrics used

Models:

- Linear SVC
- KNN
- Naive Bayes
- SVC
- SGD

Metrics:

- Precision
- Rappel
- F1
- Hamming loss

Precision_ LinearSVC() : 0.4002654080681768 Rappel_ LinearSVC() : 0.4618794326241135 f1_ LinearSVC() : 0.42837663992171576 Hamming Loss LinearSVC() : 0.1743498817966903

Precision_ KNeighborsClassifier() : 0.6525115338006452 Rappel_ KNeighborsClassifier() : 0.4664598108747045

f1_ KNeighborsClassifier() : 0.5363100877762321

Hamming Loss_ KNeighborsClassifier(): 0.10887369132049983

Precision_ GaussianNB() : 0.1447261027964733
Rappel_ GaussianNB() : 0.6529255319148937

f1_ GaussianNB() : 0.23386626468891622

Hamming Loss_ GaussianNB() : 0.6340341100979399

Precision_ SVC() : 0.7484210824636358 Rappel SVC() : 0.46365248226950356

f1 SVC(): 0.5621796778390171

Hamming Loss_ SVC(): 0.09747551502870652

Precision_ SGDClassifier(): 0.5020764256229865 Rappel_ SGDClassifier(): 0.5323581560283688 f1 SGDClassifier(): 0.5159125821738637

Hamming Loss_ SGDClassifier(): 0.14163289429246875

Performance des modèles sur dataset initial

Simplifying the DataSet

Changes:

Never Used -> Never

Used over a Decade Ago -> Tryed

Used in Last Decade -> Tryed

Used in Last Year -> Tryed

Used in Last Month -> Frequently

Used in Last Week -> Frequently

Used in Last Day -> Frequently

New results:

Precision_ LinearSVC() : 0.6065315137813244

Rappel_ LinearSVC() : 0.618646572104019

f1_ LinearSVC() : 0.6120200756381468

Hamming Loss LinearSVC() : 0.259801024428684

Precision_ KNeighborsClassifier(): 0.6991531498591105
Rappel_ KNeighborsClassifier(): 0.6326832151300237
f1_ KNeighborsClassifier(): 0.6626386295901975
Hamming Loss KNeighborsClassifier(): 0.2119286840031521

Precision_ GaussianNB(): 0.31729246558354324 Rappel_ GaussianNB(): 0.5821513002364066 f1_ GaussianNB(): 0.40842516965953446 Hamming Loss_ GaussianNB(): 0.5701832151300237

Precision_ SVC() : 0.7804863465435273 Rappel_ SVC() : 0.5992907801418441 f1_ SVC() : 0.6735699947301089

Hamming Loss_ SVC() : 0.18799251379038612

Precision_ SGDClassifier() : 0.6054365936418785 Rappel_ SGDClassifier() : 0.6385933806146572 f1_ SGDClassifier() : 0.6206683752769722 Hamming Loss SGDClassifier() : 0.25950551615445233

Validation Curve

Choosing hyperparameters

KNN:

- estimator__n_neighbors: [5, 7,10]
- estimator__weights:['uniform', 'distance']

SVC:

- estimator__C: [1, 5, 10]
- estimator__kernel: ['linear', 'rbf']

Gridsearch Results

```
Meilleurs paramètres : {'estimator__n_neighbors': 7, 'estimator__weights': 'distance'}
Precision_ KNeighborsClassifier() : 0.6966359164927688
Rappel_ KNeighborsClassifier() : 0.6182033096926713
f1_ KNeighborsClassifier() : 0.653291343882303
Hamming Loss_ KNeighborsClassifier() : 0.2157702915681639
Meilleurs paramètres : {'estimator__C': 1, 'estimator__kernel': 'linear'}
Precision_ SVC() : 0.7687046302652364
Rappel_ SVC() : 0.6354905437352246
f1_ SVC() : 0.6921714562164204
Hamming Loss_ SVC() : 0.18287037037037038
```

Courbe d'apprentissage / Training Curve

The weaknesses

