Introduction to Torque

Rotation	Translation
$\Delta\theta$	Δx
ω	v
α	a
I	$\mid m \mid$
$\frac{\frac{1}{2}I\omega^2}{I\vec{\omega} = \vec{L}}$	$\frac{1}{2}mv^2$
$I\vec{\omega} = \vec{L}$	$mec{v}=ec{p}$
$\sum \vec{\tau} = I\vec{\alpha}$	$\sum \vec{F} = m\vec{a}$

 τ is tau = torque

Force vector could be broken up into \vec{F}_{\parallel} and \vec{F}_{\perp}

Only \vec{F}_{\perp} matters because \vec{F}_{\parallel} pushes into it

$$\sum \vec{\tau} \propto \vec{F}_{\perp}$$

$$\sum \vec{\tau} \propto \vec{r}$$
, lever-arm

$$\sum \vec{\tau} = \vec{r} \cdot \vec{F}$$

Note: Dot Product took parallel and gave back scalar

We want perpendiular and $\underline{\mathrm{vector}}$

$$F_{\perp} = F \sin \theta$$

$$|\vec{\tau}| = |\vec{r}| \cdot |F \sin \theta|$$

$$|\vec{ au}| = |\vec{r}_\perp| \cdot |\vec{F}|$$