Time Delay Estimation in Gravitationally Lensed Photon Stream Pairs

Michał Staniaszek Supervisor: Peter Tiňo

The University of Birmingham

March 17, 2013

Outline

- 1 The Problem
- 2 The Project
- 3 System Components
- 4 Experimentation

- The bending of light due to gravitational effects

- Source has a characteristic signal

- The bending of light due to gravitational effects
- Objects such as galaxy clusters affect the path of light
- Source has a characteristic signal

- The bending of light due to gravitational effects
- Objects such as galaxy clusters affect the path of light
- Multiple images of the lensed object can be observed
- Source has a characteristic signal

- The bending of light due to gravitational effects
- Objects such as galaxy clusters affect the path of light
- Multiple images of the lensed object can be observed
- Source has a characteristic signal

- The bending of light due to gravitational effects
- Objects such as galaxy clusters affect the path of light
- Multiple images of the lensed object can be observed
- Source has a characteristic signal
- ullet Images have the same signal, but with some time delay Δ

Strong Lensing

Time delays can be on the order of hundreds of days

• Daily measurements of photon flux used to observe variation

Weak Lensing

- Variation in the signal observed on the order of hours rather than days
- Track individual photon arrival times (streams of photons)

Strong vs. Weak Lensing

Strong Lensing

Time delays can be on the order of hundreds of days

• Daily measurements of photon flux used to observe variation

Strong vs. Weak Lensing

Strong Lensing

Time delays can be on the order of hundreds of days

• Daily measurements of photon flux used to observe variation

Weak Lensing

- Variation in the signal observed on the order of hours rather than days
- Track individual photon arrival times (streams of photons)

Strong vs. Weak Lensing

Strong Lensing

Time delays can be on the order of hundreds of days

• Daily measurements of photon flux used to observe variation

Weak Lensing

- Variation in the signal observed on the order of hours rather than days
- Track individual photon arrival times (streams of photons)

Strong Lensing

Time delays can be on the order of hundreds of days

• Daily measurements of photon flux used to observe variation

Weak Lensing

- Variation in the signal observed on the order of hours rather than days
- Track individual photon arrival times (streams of photons)

Aim of the Project

Create a system to estimate the time delay Δ between pairs of photon streams from weakly lensed objects

- 1 Form the base for a system to automatically flag potential lensed objects
 - Lots of data, but analysing it all is difficult
 - Flag interesting-looking objects for further investigation
- 2 Better estimates of time delay are useful
 - ullet Improved estimates of H_0
 - Dark matter measurements
 - Mass distribution for regions of space

- Form the base for a system to automatically flag potential lensed objects
 - Lots of data, but analysing it all is difficult
 - Flag interesting-looking objects for further investigation
- 2 Better estimates of time delay are useful
 - Improved estimates of H₀
 - Dark matter measurements
 - Mass distribution for regions of space

- Form the base for a system to automatically flag potential lensed objects
 - Lots of data, but analysing it all is difficult
 - Flag interesting-looking objects for further investigation
- 2 Better estimates of time delay are useful

- Form the base for a system to automatically flag potential lensed objects
 - Lots of data, but analysing it all is difficult
 - Flag interesting-looking objects for further investigation
- 2 Better estimates of time delay are useful
 - Improved estimates of H_0
 - Dark matter measurements
 - Mass distribution for regions of space

- Form the base for a system to automatically flag potential lensed objects
 - Lots of data, but analysing it all is difficult
 - Flag interesting-looking objects for further investigation
- 2 Better estimates of time delay are useful
 - Improved estimates of H₀
 - Dark matter measurements
 - Mass distribution for regions of space

- 1 Form the base for a system to automatically flag potential lensed objects
 - Lots of data, but analysing it all is difficult
 - Flag interesting-looking objects for further investigation
- 2 Better estimates of time delay are useful
 - Improved estimates of H_0
 - Dark matter measurements
 - Mass distribution for regions of space

- Form the base for a system to automatically flag potential lensed objects
 - Lots of data, but analysing it all is difficult
 - Flag interesting-looking objects for further investigation
- 2 Better estimates of time delay are useful
 - Improved estimates of H_0
 - Dark matter measurements
 - Mass distribution for regions of space

- Photon stream simulation
- 2 Function estimation
- 3 Time delay estimation

- Photon stream simulation
- Function estimation
- 3 Time delay estimation

- Photon stream simulation
- Punction estimation
- 3 Time delay estimation

- Photon stream simulation
- Punction estimation
- 3 Time delay estimation

Photon Simulation

We use a nonhomogeneous poisson process to simulate arrival times.

System Components

- Rate parameter λ is the expected number of arrivals per unit time
- Waiting time until the next event has an exponential distribution
- Time to next event in homogeneous process $t = -\frac{1}{5} \ln(U)$, where $U \sim U(0,1)$
- Use thinning on events generated using the above to generate times based on a nonhomogeneous process

Function Generation

To generate events, need some function $\lambda(t)$

- Randomly generate function by using Gaussians
- Centre Gaussians at uniform intervals Δt , with standard deviation $\alpha \cdot \Delta t$
- Sum the Gaussians to give a continuous function

Figure: The red function is generated by summing the blue Gaussians. Gaussian values are multiplied by 3. Function is shifted so all $y \ge 0$

10 / 29

•00000000

- Photon stream simulation
- 2 Function estimation
- 3 Time delay estimation

Function Estimation

Show what residuals are

- Split the interval into bins
- Count the number of events that occur in each bin

00000000

• Estimate functions based on these counts

Iterative Weighted Least Squares

Estimate linear functions of the form y = a + bx using Iterative Weighted Least Squares (IWLS)

Find

$$\min_{\alpha,\beta} \sum_{k=1}^{n} w_k \cdot (Y_k - [\alpha + \beta x])^2$$

- α and β are estimators for a and b, w_k is the weight assigned to each value Y_k, which is the event count for the kth bin. x is the midpoint of the sub-interval.
- Update weights at each iteration by using estimated values of λ in each sub-interval.

Iterative Weighted Least Squares

Estimate linear functions of the form y = a + bx using Iterative Weighted Least Squares (IWLS)

System Components 0000000

Find

$$\min_{\alpha,\beta} \sum_{k=1}^{n} w_k \cdot (Y_k - [\alpha + \beta x])^2$$

- α and β are estimators for a and b, w_k is the weight assigned to each value Y_k , which is the event count for the kth bin. x is the midpoint of the sub-interval.
- Update weights at each iteration by using estimated values

Iterative Weighted Least Squares

Estimate linear functions of the form y = a + bx using Iterative Weighted Least Squares (IWLS)

System Components 0000000

Find

$$\min_{\alpha,\beta} \sum_{k=1}^{n} w_k \cdot (Y_k - [\alpha + \beta x])^2$$

- α and β are estimators for a and b, w_k is the weight assigned to each value Y_k , which is the event count for the kth bin. x is the midpoint of the sub-interval.
- Update weights at each iteration by using estimated values of λ in each sub-interval.

Function Estimation

Piecewise

Some parts of functions can be reasonably approximated by straight lines

- Split the interval into several subintervals and estimate each in turn
- Once an estimate is done, extend the line to probe the next interval
- If the extension matches the data, keep it

Piecewise

Some parts of functions can be reasonably approximated by straight lines

- Split the interval into several subintervals and estimate each in turn
- Once an estimate is done, extend the line to probe the next interval
- If the extension matches the data, keep it

Piecewise

Some parts of functions can be reasonably approximated by straight lines

000000000

- Split the interval into several subintervals and estimate each in turn
- Once an estimate is done, extend the line to probe the next interval
- If the extension matches the data, keep it

Baseline

Characteristic functions of photon streams are continuous - must make the piecewise estimate continuous as well.

000000000

- Modify each interval estimate to make a continuous function
- At each breakpoint, find the midpoint between the estimates
- Modify function values to make the end point of one interval estimate meet the start of the next

Baseline

Characteristic functions of photon streams are continuous - must make the piecewise estimate continuous as well.

00000000

- Modify each interval estimate to make a continuous function
- At each breakpoint, find the midpoint between the estimates
- Modify function values to make the end point of one interval estimate meet the start of the next

Baseline

Characteristic functions of photon streams are continuous - must make the piecewise estimate continuous as well.

00000000

- Modify each interval estimate to make a continuous function
- At each breakpoint, find the midpoint between the estimates
- Modify function values to make the end point of one interval estimate meet the start of the next

Function Estimation

Piecewise Estimate Example

Example piecewise estimate

Michał Staniaszek

Function Estimation

Baseline Estimate vs Piecewise Estimate

Example of piecewise estimate compared to baseline for the same function

Function Estimation

Kernel Density

- Centre a Gaussian kernel at each event time
- Sum Gaussians to approximate the function
- Must be normalised depending on standard deviation used

000000000

 Use probability density function to automatically calculate normalisation constant 00000

Time Delay Estimation

Three main parts of the system

- Photon stream simulation
- 2 Function estimation
- 3 Time delay estimation

General Idea

The actual Δ is not known, so we make guesses and check to see how good they are.

- Pick a value of Δ and shift the function estimate
- Compare it to the other estimate and see how good the match is
- Hierarchical coarse first pass, improve estimate with finer second pass

Area Between Curves

1 Approximate the area between the two function estimates $\hat{\lambda}_1$ and $\hat{\lambda}_2$

System Components

$$d(\hat{\lambda}_1, \hat{\lambda}_2) = \int (\hat{\lambda}_1(t) - \hat{\lambda}_2(t))^2 dt$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} (\hat{\lambda}_1(t) - \hat{\lambda}_2(t))^2$$

2 Find the value of Δ for which $d(\hat{\lambda}_1, \hat{\lambda}_2)$ is minimised

Time Delay Estimation

Diagram for area between curves

Probability Density

- \bullet Pick a value of Δ
- **2** Combine function estimates $\hat{\lambda}_2$ and $\hat{\lambda}_2$ into an "average" function $\overline{\lambda}$, where

System Components

$$\overline{\lambda}(t) = \frac{\hat{\lambda}_1(t) + \hat{\lambda}_2(t+\Delta)}{2}$$

3 See how well $\overline{\lambda}$ matches the data from the two streams

$$P(S_A, S_B \mid \overline{\lambda}(t)) = \sum_{t=\Delta}^{T-\Delta} \log P(S_A(t) \mid \overline{\lambda}(t)) + \log P(S_B(t+\Delta) \mid \overline{\lambda}(t))$$

Experimental Setup

Three sets of experiments

- 1 Preliminary sine function experiments
 - Vary α in $y = a b\sin(\alpha t)$
- 2 Experiments on a smaller range to show degradation
- 3 Random functions
 - Vary α where standard deviation of Gaussian $\sigma = \alpha \cdot \Delta t$

Results

	Gaussian	Baseline
Area	14.30 ± 1.48	14.22 ± 1.46
PDF	19.71 ± 3.09	20.31 ± 3.27

Figure: Experimental results for $\alpha=0.06$ in the second set of sine function experiments ($\mu\pm\sigma$, n=10). Actual delay is 15.

Code Structure

Summary

- We want to find the value of Δ , the time delay between photon stream arrival times
- Photon stream simulation using Poisson processes
- Estimation of characteristic function of stream using baseline
- Estimation of time delay with PDF or area estimators
- Experimental results indicate area estimator is significantly

- We want to find the value of Δ , the time delay between photon stream arrival times
- Photon stream simulation using Poisson processes
- Estimation of characteristic function of stream using baseline or kernel density estimators
- Estimation of time delay with PDF or area estimators
- Experimental results indicate area estimator is significantly better than PDF

- We want to find the value of Δ , the time delay between photon stream arrival times
- Photon stream simulation using Poisson processes
- Estimation of characteristic function of stream using baseline or kernel density estimators
- Estimation of time delay with PDF or area estimators
- Experimental results indicate area estimator is significantly better than PDF

Summary

- We want to find the value of Δ , the time delay between photon stream arrival times
- Photon stream simulation using Poisson processes
- Estimation of characteristic function of stream using baseline or kernel density estimators
- Estimation of time delay with PDF or area estimators

- We want to find the value of Δ , the time delay between photon stream arrival times
- Photon stream simulation using Poisson processes
- Estimation of characteristic function of stream using baseline or kernel density estimators
- Estimation of time delay with PDF or area estimators
- Experimental results indicate area estimator is significantly better than PDF