

NUMBER THEORY

The Division "Algorithm"

- It's really just a *theorem*, not an algorithm...
 - Only called an "algorithm" for historical reasons.
- **Theorem:** For any integer *dividend a* and *divisor d* $\neq 0$, there is a unique integer *quotient q* and *remainder r* \in **N** such that a = dq + r and $0 \le r < |d|$. Formally, the theorem is: $\forall a,d \in \mathbb{Z}, d\neq 0$: $\exists !q,r \in \mathbb{Z}$: $0 \le r < |d|, a = dq + r$.
- We can find q and r by: $q = \lfloor a/d \rfloor$, r = a qd. $q = a \ div \ d$, $r = a \ mod \ d$

The mod Operator

- An integer "division remainder" operator.
- Let $a,d \in \mathbb{Z}$ with $d \ge 1$. Then $a \mod d$ denotes the remainder r from the division "algorithm" with dividend a and divisor d; i.e. the remainder when a is divided by d.
- We can compute $(a \mod d)$ by: $a d \cdot \lfloor a/d \rfloor$.

$$\begin{array}{c} d \ge 1 \\ 0 \le (a \bmod d) \le d \end{array} \in \mathbb{Z}$$

4

Modular Congruence

- Let $a,b \in \mathbb{Z}$, $m \in \mathbb{Z}^+$. Where $\mathbb{Z}^+ = \{n \in \mathbb{Z} \mid n > 0\} = \mathbb{N} - \{0\}$ (the + integers).
- Then *a* is congruent to *b* modulo *m*, written " $a \equiv b \pmod{m}$ ", iff $m \mid a b$.
 - Note: this is a different use of "≡" than the meaning "is defined as" I've used before.
- It's also equivalent to: $(a-b) \mod m = 0$.

Useful Congruence Theorems

- Theorem 3: Let $a,b \in \mathbb{Z}$, $m \in \mathbb{Z}^+$. Then: $a \equiv b \pmod{m} \Leftrightarrow a \mod m = b \mod m$.
- Theorem 4: Let $a,b \in \mathbb{Z}$, $m \in \mathbb{Z}^+$. Then: $a \equiv b \pmod{m} \Leftrightarrow \exists k \in \mathbb{Z} \ a = b + km$.
- Theorem 5: Let $a,b,c,d \in \mathbb{Z}$, $m \in \mathbb{Z}^+$. Then if $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then:
 - $a+c \equiv b+d \pmod{m}$, and
 - $ac \equiv bd \pmod{m}$

Corollary 2

■ Let *m* be a positive integer and *a* and *b* be integers. Then

 $(a+b) \mod m = ((a \mod m) + (b \mod m)) \mod m$ and

 $ab \mod m = ((a \mod m)(b \mod m)) \mod m$

Modular Exponentiation Problem

Problem: Given large integers b (base), n (exponent), and m (modulus), efficiently compute $b^n \mod m$.

Modular Exponentiation

Note that:

The binary expansion of n

$$b^{n} = b^{n_{k-1} \cdot 2^{k-1} + n_{k-2} \cdot 2^{k-2} + \dots + n_{0} \cdot 2^{0}} = b^{1} = b$$

$$= (b^{2^{k-1}})^{n_{k-1}} \times (b^{2^{k-2}})^{n_{k-2}} \times \dots \times (b^{2^{0}})^{n_{0}}$$

- We can compute *b* to various powers of 2 by repeated squaring.
 - Then multiply them into the partial product, or not, depending on whether the corresponding n_i bit is 1.
- Crucially, we can do the mod m operations <u>as we</u> go along, because of the various identity laws of modular arithmetic. All the numbers stay small.

Modular Exponentiation

$$b^{n} = (b^{2^{k-1}})^{n_{k-1}} \times (b^{2^{k-2}})^{n_{k-2}} \times \dots \times (b^{2^{0}})^{n_0}$$

```
x = 1
b_0 = b \mod m
if n_0 = 1:
x = (x * b_0) \mod m
```

```
\forall (1 \le i \le k-1):
b_i = (b_{i-1} \cdot b_{i-1}) \bmod m
if \ n_i = 1:
x = (x * b_i) \bmod m
```

Modular Exponentiation

```
procedure modularExponentiation(b: integer,
  n = (n_{k-1}...n_0)_2, m: positive integers)
  x := 1 {result will be accumulated here}
   b^{2^{i}} = b \mod m \quad \{ b^{2^{i}} \mod m; i = 0 \text{ initially} \}
   for i := 0 to k-1 {go thru all k bits of n}
        if n_i = 1 then x := (x \cdot b^{2^i}) mod m
       b^{2^i} := (b^{2^i} \cdot b^{2^i}) \mod m
   return x
                               h^{2^{i+1}} = b^{2 \cdot 2^i}
```

Example 12

- Use Algorithm 5 to find 3⁶⁴⁴ mod 645.
 - 644=(1010000100)₂

```
i = 0: Because a<sub>0</sub> = 0, we have x = 1 and power = 3<sup>2</sup> mod 645 = 9 mod 645 = 9;
i = 1: Because a<sub>1</sub> = 0, we have x = 1 and power = 9<sup>2</sup> mod 645 = 81 mod 645 = 81;
i = 2: Because a<sub>2</sub> = 1, we have x = 1 · 81 mod 645 = 81 and power = 81<sup>2</sup> mod 645 = 6561 mod 645 = 111;
i = 3: Because a<sub>3</sub> = 0, we have x = 81 and power = 111<sup>2</sup> mod 645 = 12,321 mod 645 = 66;
i = 4: Because a<sub>4</sub> = 0, we have x = 81 and power = 66<sup>2</sup> mod 645 = 4356 mod 645 = 486;
i = 5: Because a<sub>5</sub> = 0, we have x = 81 and power = 486<sup>2</sup> mod 645 = 236,196 mod 645 = 126;
i = 6: Because a<sub>6</sub> = 0, we have x = 81 and power = 126<sup>2</sup> mod 645 = 15,876 mod 645 = 396;
i = 7: Because a<sub>7</sub> = 1, we find that x = (81 · 396) mod 645 = 471 and power = 396<sup>2</sup> mod 645 = 156,816 mod 645 = 81;
i = 8: Because a<sub>8</sub> = 0, we have x = 471 and power = 81<sup>2</sup> mod 645 = 6561 mod 645 = 111;
i = 9: Because a<sub>9</sub> = 1, we find that x = (471 · 111) mod 645 = 36.
```

 $3^{644} \mod 645 = 36$

 $power: b^{2^{i+1}}$

SECTION 4.2 Integer Representations and Algorithms

26. Use Algorithm 5 to find 11⁶⁴⁴ mod 645.

26.
$$11^{644} \mod 645$$

 $644 = (1010000100)_2$
 $i=0$, $x=1$, $power = 11^2 \mod 645 = 121$
 $i=1$, $x=1$, $power = 121^2 \mod 645 = 451$
 $i=2$, $x=451$, $power = 226^2 \mod 645 = 121$
 $i=4$, $x=451$, $power = 121^2 \mod 645 = 451$
 $i=5$, $x=451$, $power = 451^2 \mod 645 = 226$
 $i=5$, $x=451$, $power = 226^2 \mod 645 = 121$
 $i=7$, $x=451$, $power = 226^2 \mod 645 = 121$
 $i=7$, $x=451$, $power = 226^2 \mod 645 = 226$
 $i=8$, $x=391$, $power = 451^2 \mod 645 = 226$
 $i=9$, $x=391$, $power = 451^2 \mod 645 = 226$
 $i=9$, $x=391$, $power = 451^2 \mod 645 = 1$

SECTION 4.2 Integer Representations and Algorithms

26. Use Algorithm 5 to find 11⁶⁴⁴ **mod** 645.

14.	(644)10	= (10)000	0(00).
T=0	ao = 0	x=1	112 mod 845 = 121 mod 645 = 121
FI	Qe=0	X=1	121° mad 845 = 451
1=2	A2=1	X= 451	451 mod 453 643 = 226
j=3	03=0	× 451	276° mod 845 = 121
1=4	P4=0	X=451	1212 mod 845 = 451
F-5	6520	7=451	451 med 895 = 226
F=6	96=0	X= 451	2262 med 645 = 121
1:7	97=1	X= (451	x121 mod bus = 37/ 142 mod 645 = 451
158	a8=0	x= 39	
7-9	9=1	x= (391×226) mod 645=1 Fhor、发享为1

```
11644 mod 645
= 11 (1010000100)2 mod 645
= (110,50 . 110,51 . 11,55 . 110,54 . 110,52 . 110,5 . 11,57 . 110,58 . 11,159) mod pas
= (1122. 1)27, 1129) mod 645
= ((1)22 mod 645) (1127 mod 645) (1129 mod 645)) mod 645
  112 mod bus = 121 112 mod 645 = (121 mod 645) (121 mod 645) mod 645 = 451
  112 mod b45 = 451 112 mod 645 = (451 x 451) mod 645 = 226
  1123 mod 645 = 226 1124 mod 645 = 2262 mod 645 = 121
  1124 mod 645=121 1125 mod 645 = 1212 mod 645 = 451
  : 1126 mod 645= 226
    1127 mod 645 = 121
    1) 28 mod 645 = 451
    1129 mod 645 = 226
       ·原本=(451 × 121 × 226) mod 645
             = 12335046 mod 645 = 1233046 - 645 X19121
```


Greatest Common Divisor

• The greatest common divisor gcd(a,b) of integers a,b (not both 0) is the largest (most positive) integer d that is a divisor both of a and of b.

Relative Primality

- Integers *a* and *b* are called *relatively prime* or *coprime* iff their gcd = 1.
 - **Example:** Neither 21 nor 10 is prime, but they are *coprime*. 21=3.7 and 10=2.5, so they have no common factors > 1, so their gcd = 1.
- A set of integers $\{a_1, a_2, ...\}$ is (pairwise) relatively prime if all pairs (a_i, a_j) , for $i \neq j$, are relatively prime.
 - Example: {10,17,21}

Euclid's Algorithm for GCD

- Finding GCDs by comparing prime factorizations can be difficult when the prime factors are not known!
- **Euclid discovered:** For all ints. a, b, gcd(a, b) = gcd((a mod b), b).
- Sort a,b so that a>b, and then (given b>1) $(a \mod b) < b$, so problem is simplified.

Euclid of Alexandria 325-265 B.C.

Euclidean Algorithm

• Suppose that a and b are positive integers with $a \ge b$.

Let
$$r_0 = a$$
 and $r_1 = b$.

Successive applications of the division algorithm yields:

$$\begin{array}{ll} r_0 &= r_1 q_1 + r_2 & 0 \leq r_2 < r_1, \\ r_1 &= r_2 q_2 + r_3 & 0 \leq r_3 < r_2, \\ & \cdot \\ & \cdot \\ & \cdot \\ & r_{n-2} = r_{n-1} q_{n-1} + r_n & 0 \leq r_n < r_{n-1}, \\ r_{n-1} &= r_n q_n. \end{array}$$

- Eventually, a remainder of zero occurs in the sequence of terms: $a = r_0 > r_1 > r_2 > \cdots$ $\cdot \geq 0$. The sequence can't contain more than a terms.
- By Lemma 1 $gcd(a,b) = gcd(r_0,r_1) = \cdots = gcd(r_{n-1},r_n) = gcd(r_n, 0) = r_n.$
- Hence the greatest common divisor is the last nonzero remainder in the sequence of divisions.

GCDs as Linear Combinations

Bézout's Theorem: If a and b are positive integers, then there exist integers s and t such that gcd(a,b) = sa + tb. (proof in exercises of Section 5.2)

Definition: If a and b are positive integers, then integers s and t such that gcd(a,b) = sa + tb are called $B\'{e}zout$ coefficients of a and b. The equation gcd(a,b) = sa + tb is called $B\'{e}zout$'s identity.

- By Bézout's Theorem, the gcd of integers a and b can be expressed in the form sa + tb where s and t are integers. This is a linear combination with integer coefficients of a and b.
 - $\gcd(6,14) = (-2) \cdot 6 + 1 \cdot 14$

Finding GCDs as Linear Combinations

Example 17: Express gcd(252,198) = 18 as a linear combination of 252 and 198. **Solution**: First use the Euclidean algorithm to show gcd(252,198) = 18

```
i. 252 = 1.198 + 54

ii. 198 = 3.54 + 36

iii. 54 = 1.36 + 18

iv. 36 = 2.18
```

Now working backwards, from iii and ii above

```
18 = 54 - 1.3636 = 198 - 3.54
```

• Substituting the 2nd equation into the 1st yields:

```
18 = 54 - 1 \cdot (198 - 3.54) = 4.54 - 1.198
```

• Substituting 54 = 252 - 1.198 (from i)) yields:

$$18 = 4 \cdot (252 - 1 \cdot 198) - 1 \cdot 198 = 4 \cdot 252 - 5 \cdot 198$$

This method illustrated above is a two pass method. It first uses the Euclidian algorithm to find the gcd and then works backwards to express the gcd as a linear combination of the original two integers.

Extended Euclidean Algorithm

It uses one pass through the steps of the Euclidean algorithm to find Bezout coefficients of a and b,

set
$$s_0 = 1$$
, $s_1 = 0$, $t_0 = 0$, and $t_1 = 1$ and let
$$s_j = s_{j-2} - q_{j-1}s_{j-1}$$
 and $t_j = t_{j-2} - q_{j-1}t_{j-1}$

for j = 2, 3, ..., n, where the q_j are the quotients in the divisions used when the Euclidean algorithm finds gcd(a, b).

$$gcd(a,b) = sa + tb$$

$$egin{array}{lll} r_0 &= r_1 q_1 + r_2 & 0 \leq r_2 < r_1, \\ r_1 &= r_2 q_2 + r_3 & 0 \leq r_3 < r_2, \\ & \cdot & \\ & \cdot & \\ r_{n-2} &= r_{n-1} q_{n-1} + r_n & 0 \leq r_n < r_{n-1}, \\ r_{n-1} &= r_n q_n. \end{array}$$

j	r_{j}	r_{j+1}	q_{j+1}	r_{j+2}
0	252	198	1	54
1	198	54	3	36
2	54	36	1	18
3	36	18	2	0

EAAWIFLE IC

$$q_1 = 1$$
, $q_2 = 3$, $q_3 = 1$, and $q_4 = 2$

$$s_0 = 1$$
, $s_1 = 0$, $t_0 = 0$, and $t_1 = 1$

			q_{j+1}		s_j	t_j
0	252	198	1 3 1	54	1	0
1	198	54	3	36	0	1
2	54	36	1	18	1	- 1
3	36	18	2		-3	4
4					4	-5

$$s_j = s_{j-2} - q_{j-1}s_{j-1}$$
 and $t_j = t_{j-2} - q_{j-1}t_{j-1}$

$$s_2 = s_0 - s_1 q_1 = 1 - 0 \cdot 1 = 1$$
, $t_2 = t_0 - t_1 q_1 = 0 - 1 \cdot 1 = -1$, $s_3 = s_1 - s_2 q_2 = 0 - 1 \cdot 3 = -3$, $t_3 = t_1 - t_2 q_2 = 1 - (-1)3 = 4$, $s_4 = s_2 - s_3 q_3 = 1 - (-3) \cdot 1 = 4$, $t_4 = t_2 - t_3 q_3 = -1 - 4 \cdot 1 = -5$.

$$18 = 4 \cdot 252 - 5 \cdot 198$$

Solving Congruences

- A congruence of the form $ax \equiv b \pmod{m}$, where m is a positive integer, a and b are integers, and x is a variable, is called a linear congruence.
- One method uses an integer \overline{a} such that $\overline{a}a\equiv 1 \mod m$ if such an integer exists. Such an integer \overline{a} is said to be an inverse (逆元) of $a \mod m$.

Inverse of a modulo m

■ **Theorem 1**: If a and m are relatively prime integers and m > 1, then an inverse of a modulo m exists.

Proof: Since gcd(a,m) = 1, there are integers s and t such that sa + tm = 1.

- Hence, $sa + tm \equiv 1 \pmod{m}$.
- Since $tm \equiv 0 \pmod{m}$, it follows that $sa \equiv 1 \pmod{m}$
- Consequently, s is an inverse of a modulo m.

Finding Inverses

Example: Find an inverse of 101 modulo 4620.

Solution: First use the Euclidian algorithm to show that

gcd(101,4620) = 1.

Working Backwards:

$$\frac{4620 = 45 \cdot 101 + 75}{101 = 1 \cdot 75 + 26} \\
\underline{75 = 2 \cdot 26 + 23} \\
\underline{26 = 1 \cdot 23 + 3} \\
\underline{23 = 7 \cdot 3 + 2} \\
\underline{3 = 1 \cdot 2 + 1} \\
\underline{2 = 2 \cdot 1}$$

$$\frac{1 = 3 - 1 \cdot 2}{1 = 3 - 1 \cdot (23 - 7 \cdot 3)} = -1 \cdot 23 + 8 \cdot 3$$

$$\frac{1 = -1 \cdot 23 + 8 \cdot (26 - 1 \cdot 23)}{1 = 8 \cdot 26 - 9 \cdot (75 - 2 \cdot 26)} = 8 \cdot 26 - 9 \cdot 23$$

$$\frac{1 = 26 \cdot (101 - 1 \cdot 75) - 9 \cdot 75}{1 = 26 \cdot 101 - 35 \cdot (4620 - 45 \cdot 101)}$$

$$= -35 \cdot 4620 + 1601 \cdot 101$$

<u>Since the last nonzero</u> <u>remainder is 1,</u> <u>gcd(101,4260) = 1</u>

Bézout coefficients : - 35 and 1601 <u>1601 is an</u> inverse of 101 modulo 4620

Using Inverses to Solve Congruences

Example: What are the solutions of the congruence $3x \equiv 4 \pmod{7}$.

Solution:

(1. Find an inverse of 3 modulo 7)

Because gcd(3,7) = 1, an inverse of 3 modulo 7 exists.

Using the Euclidean algorithm: 7 = 2.3 + 1.

From this equation, we get -2.3 + 1.7 = 1, and see that -2 and 1 are Bézout coefficients of 3 and 7.

Hence, -2 is an inverse of 3 modulo 7.

(Also every integer congruent to -2 modulo 7 is an inverse of 3 modulo 7, i.e., 5, -9, 12, etc.)

Using Inverses to Solve Congruences

• (2. Solve the congruence using the inverse) Multiply both sides of the congruence by -2 giving $-2 \cdot 3x \equiv -2 \cdot 4 \pmod{7}$.

Because $-6 \equiv 1 \pmod{7}$ and $-8 \equiv 6 \pmod{7}$, it follows that if x is a solution, then $x \equiv -8 \equiv 6 \pmod{7}$

- (3. Determine if every x with $x \equiv 6 \pmod{7}$ is a solution) Assume that $x \equiv 6 \pmod{7}$. It follows that $3x \equiv 3 \cdot 6 = 18 \equiv 4 \pmod{7}$ which shows that all such x satisfy the congruence.
- (4. Conclusion) The solutions are the integers x such that $x \equiv 6 \pmod{7}$.

- **6.** Find an inverse of *a* modulo *m* for each of these pairs of relatively prime integers using the method followed in Example 2.
 - **b**) a = 34, m = 89

- 12. Solve each of these congruences using the modular inverses found in parts (b), (c), and (d) of Exercise 6.
 - $\mathbf{a)} \ 34x \equiv 77 \pmod{89}$
 - L) 144 4 (--- 1022)

Linear comb.:
$$1 = 3 - 2 = 3 - (5 - 3) = 3 \cdot 2 - 5 = (8 - 5) \cdot 2 - 5 = 8 \cdot 2 - 5 \cdot 3 = 8 \cdot 2 - (13 - 8) \cdot 3$$

$$=8.5-13.3=(21-13).5-13.3=21.5-13.8=21.5-(34-21).8=21.13-34.8$$

So -34 is an inverse of 34 modulo 89

b)
$$89 = 2.34 + 11$$
 $1 = 3 - 1.2$
 $34 = 1.21 + 13$ $= 3 - (5 - 1.3) = -1.5 + 2.3$
 $21 = 1.13 + 8$ $= -1.5 + 2 \cdot (8 - 1.5) = 2.8 - 3.5$
 $13 = 1.8 + 5$ $= 2.8 - 3 \cdot (13 - 1.8) = -3.13 + 5.8$
 $13 = 1.5 + 3$ $= 3.13 + 5 \cdot (21 - 1.13) = 5.21 - 8.13$
 $13 = 1.3 + 2$ $= -8.34 + 13 \cdot (89 - 2.34)$
 $13 = 2.1$ $= 13.89 - 34.34$
 $13 = 2.1$ $= 13.89 - 34.34$
 $13 = 2.1$ $= 13.89 - 34.34$
 $13 = 2.1$ $= 13.89 - 34.34$
 $13 = 2.1$ $= 13.89 - 34.34$
 $13 = 2.1$ $= 3.40$ and $3 = 1.30$
 $13 = 3.40$ $= 3.40$ $= 1.30$
 $13 = 3.40$ $= 3.40$ $= 1.30$
 $13 = 3.40$ $= 3.40$ $= 1.30$
 $13 = 3.40$ $= 3.40$ $= 1.30$
 $13 = 3.40$ $= 3.40$ $= 1.30$

-34 is an inverse of 34 modulo 87 (also 55) $x = 77 \cdot 55 = 4235 = 52 \pmod{89}$

Check: 34.52 = 1768 = 77 (mod 89)