Self introduction and future plans

Can Xu

2023/6/17

- Basic information
- 2 Publications
- 3 Experiences
- 4 研究内容
- 5 计划进度

- Basic information

Basic information •0

Basic information

Basic information

- I'm from Suzhou, Jiangsu.
- I got my bachelor's degree at Nanjing University of Information Science & Technology and currently a master degree candidate of science in Zhejiang Gongshang University.
- My github page is https://github.com/LEOXC1571 and my personal blog is https://leoxc1571.github.io/

- 2 Publications

A fairness-aware graph contrastive learning recommender framework for social tagging systems

Publications

- The proposed method integrates contrastive learning into tag-aware recommender systems. By perturbing features with normalized noises, different perspectives on features are generated. They help the model learn high quality features via contrastive learning tasks.
- In order to promote fairness of recommendations, we introduce fairness-aware learning, which jointly optimizes TAGCL through negative tag loss and TransT regularization. Negative tag loss leverages the distribution difference between items and tags in the training data.
- TransT regularization is also propsosed to promote consistency between two bipartite graphs. The differences between tag embeddings in separate graphs are regarded as relations between users and items.

A fairness-aware graph contrastive learning recommender framework for social tagging systems

Publications

00000

A fairness-aware graph contrastive learning recommender framework for social tagging systems

Table 3 Performance Comparison.

Dataset	Metric	General		Tag-aware			TAGCL	imp. SOTA	imp. TRS
		LGCN	SimGCL	BPR-T	TGCN	LFGCF			
	Rec.	0.2788	0.2857	0.2826	0.2774	0.2929	0.3180	8.57%	8.57%
	Pre.	0.0349	0.0385	0.0365	0.0351	0.0365	0.0405	5.19%	10.96%
ML	NDCG	0.2015	0.2279	0.2209	0.2147	0.2140	0.2338	2.59%	5.84%
	MRR	0.2101	0.2372	0.2273	0.2202	0.2183	0.2356	-0.67%	3.65%
	ARP	26.78	17.87	22.76	19.87	18.10	14.96	16.26%	17.29%
LFM	Rec.	0.4742	0.5055	0.4759	0.4663	0.5057	0.5199	2.81%	2.81%
	Pre.	0.1350	0.1534	0.1374	0.1313	0.1465	0.1611	5.02%	9.97%
	NDCG	0.4015	0.4680	0.4358	0.4149	0.4482	0.4949	5.75%	10.42%
	MRR	0.4598	0.5263	0.5132	0.4727	0.5033	0.5541	5.28%	7.97%
	ARP	114.46	51.67	102.84	80.76	80.65	42.99	16.79%	46.70%
DE	Rec.	0.3337	0.3351	0.3150	0.3158	0.3300	0.3432	2.42%	4.00%
	Pre.	0.3525	0.3554	0.3409	0.3407	0.3498	0.3705	4.25%	5.92%
	NDCG	0.4213	0.4177	0.3984	0.4044	0.4080	0.4385	4.08%	7.48%
	MRR	0.5786	0.5529	0.5373	0.5577	0.5395	0.5828	0.73%	4.45%
	ARP	3.11	4.67	6.32	7.25	4.69	5.61	-79.99%	-19.62%

Pursuit and Evasion Strategy of a Differential Game Based on Deep Reinforcement Learning

- For the kinematic solve of dog sheep game, by finding the equilibrium point in the game, this study successfully establishes the kinematic pursuit and evasion policies.
- Leverage DQN and DDPG models to train the escaping strategy for intelligent agent.
- Propose a refined reward mechanism and an attenuation mechanism to minimize the defect of DQN.

- 3 Experiences

Internship at Zhejiang Lab

- 生成模型近年来在作画、视频创作、空间建模、文本生成等 多方面都有了成功的应用。早期的生成模型研究主要集中在 变分自编码器(VAE)、生成对抗网络(GAN)、流型模型 (Flow-based models)、自回归模型(Auto-regressive models) 及深度强化学习领域。近两年来,基于扩散模型的生成模型 (Diffusion-based models)以其优异的性能、计算资源消耗相 对较少在学术圈与工业界爆火。
- 相关 Diffusion 模型的研究包括对干扰、去噪过程的改进 (DDPMs, SGMs, Score SDEs),采样策略的改进,损失函数,各类型数据应用(计算机视觉、自然语言处理、时序建模、信号传递、多模态学习、图建模、医学影像)等。

计算医药

- 生成模型的发展也带动了其在智能计算领域的应用。5年前,药物分子、蛋白质配体分子等分子学习任务主要聚焦于2D分子结构,但实际上,分子结构信息远不止原子间的拓扑结构信息这么简单,因此某一分子在自然界中可能存在种类繁多的同分异构体,故近来对分子的研究拓展到了结合3D信息对不同分子构型的相关研究。因此在3D分子生成任务上,目标不再是生成简单的可能有效的分子,更要生成具备理想属性和性质稳定的分子3D构型。
- 3D分子生成任务又可分为3D构型生成与全新分子生成。
 3D构型生成的目标是根据给定的分子式,生成理想的三维构型。全新分子生成的目标则是凭空生成全新的、有效的分子。
- 3D 构型生成的研究有基于 VAE 的 CVGAE, GraphDG, ConfVAE, 基于扩散模型的 ConfGF, EVFN, GeoDiff 等。

- 4 研究内容

前期准备

- 本文意在利用生成模型,提出创新的算法,生成全新且有效的分子。
- 本文首先选取 GEOM-QM9 和 GEOM-Drugs 作为研究数据集。GEOM-QM9 包含 130831 个分子, 平均每个分子由 19个分子构成。
- GEOM-Drugs 包含超过 600W 个分子构型,将每个分子的不同构型经过筛选后,处理得到 29W 个稳定的分子构型,平均每个分子由 44 个原子构成。

研究内容

生成模型构建

- 本文基于 DDPMs 构建分子生成模型框架,包括扩散过程与 去噪过程。
- 扩散过程本质是通过给初始数据有规律地增加噪声, 使其经 过T时间步后收敛至高斯噪声。
- 去噪过程的本质是通过设计的去噪神经网络内核,将高斯噪 声还原至初始状态, 使其与初始数据相似。

- 5 计划进度

- 2023.01-2023.03: 前期调研与相关文献阅读
- 2023.03-2023.04: 模型搭建
- 2023.04-2023.05: 模型训练, 性能调优与对比试验
- 2023.05-2023.07: 文章撰写
- 2023.07-2023.09: 文章修改

Thanks!